Tobacco exposure associated with oral microbiome anaerobiosis in the New York City Health and Nutrition Examination Study (NYC HANES) II

Francesco Beghini1*

¹Laboratory of Computational Metagenomics - Centre for Integrative Biology - University of Trento - Italy

5 May 2023

Contents

- 1 Table 1: Demographics & Descriptive Statistics
- 2 Microbial composition (8 most abundant genera)
- 3 Alpha diversity
- 4 Serum cotinine vs Smoking status
- 5 Beta Diversity
 - 5.1 Cigarette smokers vs Never smokers
 - 5.2 Cigarette smokers + Never smokers + Former smokers
 - 5.3 Cigarette smokers + Never smokers + Former smokers +
 - Secondhand smokers
 - 5.4 All smoking statuses
 - 5.5 Discrete serum blood Cotinine levels
- 6 Differential analysis
 - 6.1 DESeq2
 - 6.2 edgeR
 - 6.3 Cigarette smoker vs Never smoker: crude phylum level
- 7 Analysis on biosis of bacteria
 - 7.1 Odds ratio smokers vs never smokers
 - 7.2 Cigarette smokers vs Never smokers
 - 7.3 Secondhand smokers

^{*}francesco.beghini@unitn.it (mailto:francesco.beghini@unitn.it)

- 7.4 Continuous cotinine
- 7.5 Hookah smokers vs Never smokers
- 7.6 E-cigarette smokers vs Never smokers
- 7.7 Cigar/cigarillos smokers vs Never smokers

Table 1: Demographics & DescriptiveStatistics

	Never smoker	Cigarette	Former smoker	Alternative smoker	Secondhand
n	43	86	43	49	38
GENDER = Female (%)	28 (65.1)	45 (52.3)	25 (58.1)	22 (44.9)	22 (57.9)
RACE (%)					
Non-Hispanic White	13 (30.2)	24 (27.9)	25 (58.1)	19 (38.8)	10 (26.3)
Non-Hispanic Black	13 (30.2)	33 (38.4)	4 (9.3)	9 (18.4)	11 (28.9)
Hispanic	10 (23.3)	19 (22.1)	10 (23.3)	12 (24.5)	14 (36.8)
Asian	3 (7.0)	9 (10.5)	3 (7.0)	3 (6.1)	2 (5.3)
Other	4 (9.3)	1 (1.2)	1 (2.3)	6 (12.2)	1 (2.6)
EDU4CAT (%)					
College graduate or more	16 (37.2)	18 (20.9)	21 (48.8)	17 (34.7)	9 (23.7)
Less than High school diploma	8 (18.6)	24 (27.9)	4 (9.3)	10 (20.4)	14 (36.8)
High school graduate/GED	7 (16.3)	24 (27.9)	8 (18.6)	11 (22.4)	10 (26.3)
Some College or associate's degree	12 (27.9)	20 (23.3)	10 (23.3)	11 (22.4)	5 (13.2)
SPAGE (mean (SD))	45.42 (16.50)	45.85 (13.07)	55.47 (18.00)	35.59 (16.44)	37.76 (14.70)
AGEGRP5C (%)					
20-29	7 (16.3)	10 (11.6)	3 (7.0)	26 (53.1)	14 (36.8)
30-39	11 (25.6)	17 (19.8)	7 (16.3)	8 (16.3)	11 (28.9)
40-49	10 (23.3)	25 (29.1)	7 (16.3)	4 (8.2)	3 (7.9)
50-59	6 (14.0)	19 (22.1)	8 (18.6)	7 (14.3)	6 (15.8)
60 AND OVER	9 (20.9)	15 (17.4)	18 (41.9)	4 (8.2)	4 (10.5)

	Never smoker	Cigarette	Former smoker	Alternative smoker	Secondhand
DBTS_NEW (%)					
Yes	5 (11.6)	5 (5.8)	7 (16.3)	3 (6.1)	2 (5.3)
No	38 (88.4)	81 (94.2)	36 (83.7)	38 (77.6)	36 (94.7)
NA	0 (0.0)	0 (0.0)	0 (0.0)	8 (16.3)	0 (0.0)
SR_ACTIVE (%)					
Very active	15 (34.9)	27 (31.4)	11 (25.6)	16 (32.7)	17 (44.7)
Somewhat active	20 (46.5)	37 (43.0)	20 (46.5)	25 (51.0)	15 (39.5)
Not very active/not active at all	8 (18.6)	22 (25.6)	12 (27.9)	8 (16.3)	6 (15.8)
INC25KMOD (%)					
Less Than \$20,000	5 (11.6)	31 (36.0)	8 (18.6)	20 (40.8)	14 (36.8)
\$20,000-\$49,999	15 (34.9)	20 (23.3)	9 (20.9)	14 (28.6)	9 (23.7)
\$50,000-\$74,999	6 (14.0)	11 (12.8)	3 (7.0)	6 (12.2)	4 (10.5)
\$75,000-\$99,999	8 (18.6)	4 (4.7)	6 (14.0)	4 (8.2)	2 (5.3)
\$100,000 or More	6 (14.0)	11 (12.8)	13 (30.2)	2 (4.1)	6 (15.8)
NA	3 (7.0)	9 (10.5)	4 (9.3)	3 (6.1)	3 (7.9)
COTININE (median [IQR])	0.04 [0.04, 0.04]	271.49 [189.99, 360.99]	0.04 [0.04, 0.04]	10.54 [0.28, 55.36]	3.01 [1.39, 5.48]
OHQ_3 (%)					
Yes	4 (9.3)	9 (10.5)	5 (11.6)	4 (8.2)	4 (10.5)
No	39 (90.7)	76 (88.4)	38 (88.4)	45 (91.8)	34 (89.5)
NA	0 (0.0)	1 (1.2)	0 (0.0)	0 (0.0)	0 (0.0)

2 Microbial composition (8 most abundant genera)

3 Alpha diversity

aovSMOKINGSTATUS <- aov(Shannon ~ smokingstatus, alphadiv)
summary(aovSMOKINGSTATUS)</pre>

aovSMOKINGSTATUS <- aov(Observed ~ smokingstatus, alphadiv)
summary(aovSMOKINGSTATUS)</pre>

```
Sum Sq Mean Sq F value Pr(>F)
## smokingstatus
                   4
                       34597
                                 8649
                                         2.12 0.0788 .
## Residuals
                 254 1036314
                                 4080
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
aovSMOKINGSTATUS <- aov(Chao1 ~ smokingstatus, alphadiv)</pre>
summary(aovSMOKINGSTATUS)
##
                  Df Sum Sq Mean Sq F value Pr(>F)
                   4
                       74507
                                18627
                                         1.33 0.259
## smokingstatus
                                14002
## Residuals
                 254 3556471
```

Serum cotinine vs Smoking status 4

```
ggplot(metadata, aes(smokingstatus, COTININE, fill = smokingstatus))
  stat boxplot() +
  scale fill manual(values = scale palette) +
  theme bw() +
  scale x discrete(labels = c("Never\nsmokers", "Cigarette\nsmokers",
  xlab('Reported smoking status') +
  ylab('Serum Cotinine (ng/ml)') +
  guides(fill = FALSE) +
  theme(strip.background = element_rect(colour = "transparent", fill
        strip.text.y = element_text(angle = 180),
        axis.text = element_text(size = 12),
        axis.title = element_text(size = 12),
        legend.text = element_text(size=12),
        legend.title = element text(size=12),
        legend.position = 'bottom')
```


5 **Beta Diversity**

5.1 Cigarette smokers vs Never smokers

5.2 Cigarette smokers + Never smokers + Former smokers

5.3 Cigarette smokers + Never smokers + Former smokers +

Secondhand smokers

5.4 All smoking statuses

5.5 Discrete serum blood Cotinine levels

5.5.1 Test group with PERMANOVA (adonis, vegan package)

contrast	r2	pvalue
Never smoker vs Cigarette	0.0505876	0.001
Cigarette vs Former smoker	0.0424802	0.001
Cigarette vs Secondhand	0.0349217	0.004
Cigarette vs Alternative smoker	0.0290550	0.008
Never smoker vs Secondhand	0.0230414	0.104
Never smoker vs Former smoker	0.0186827	0.160
Former smoker vs Alternative smoker	0.0143434	0.279
Former smoker vs Secondhand	0.0129641	0.327
Alternative smoker vs Secondhand	0.0091159	0.477
Never smoker vs Alternative smoker	0.0089463	0.510

```
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## vegan::adonis2(formula = distwu_2cat ~ COTININE, data = metadata_2
##
            Df SumOfSqs
                             R2
                                     F Pr(>F)
            1 0.09755 0.04867 6.4971 0.002 **
## COTININE
## Residual 127 1.90674 0.95133
           128 2.00429 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

5.5.1.1 Three categories

```
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## vegan::adonis2(formula = distwu 3cat ~ smokingstatus + RACE + GENI
                 Df SumOfSqs
                                         F Pr(>F)
                                 R2
                  2 0.13485 0.05649 5.1964 0.001 ***
## smokingstatus
## RACE
                  4 0.07660 0.03209 1.4759 0.110
## GENDER
                  1 0.02369 0.00993 1.8259 0.094 .
## AGEGRP4C
                1 0.03184 0.01334 2.4535 0.052 .
## SR_ACTIVE
                  2 0.02715 0.01138 1.0464 0.354
## EDU3CAT
                  2 0.03124 0.01309 1.2037 0.256
## DBTS NEW
                1 0.01153 0.00483 0.8884 0.469
## Residual
                158 2.05013 0.85886
## Total
                171 2.38703 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

5.5.1.2 All categories

```
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
##
## vegan::adonis2(formula = distwu ~ smokingstatus, data = metadata)
                 Df SumOfSqs
##
                                  R2
                                          F Pr(>F)
## smokingstatus 4 0.1768 0.04838 3.2285 0.001 ***
## Residual
                254
                      3.4775 0.95162
                258
                     3.6543 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

6 Differential analysis

6.1 DESeq2

DESeq2 is presented as sensitivity analysis. Main results are calculated by edgeR.

6.1.1 Current smokers vs. never smokers crude

6.1.2 Current smokers vs. never smokers adjusting for confounding

6.1.3 Plot crude vs. adjusted from DESeq2

6.1.4 Secondhand vs Cigarette/Never

6.2 edgeR

6.2.1 Cigarette smoker vs Never smoker: crude

Cigarette vs. Never smoker

6.3 Cigarette smoker vs Never smoker: crude phylum level

Cigarette vs. Never smoker

6.3.1 Cigarette smoker vs Never smoker: Adjusted

Cigarette vs. Never smoker

6.3.2 Plot crude vs adjusted beta coefficients

6.3.3 Secondhand vs Cigarette/Never: only significant OTUs

A function for merging smoking and cotinine edgeR results:

```
mergeResults <- function(obj.smoking, obj.cotinine) {</pre>
  intersect.filters <-</pre>
    intersect(rownames(obj.smoking), rownames(obj.cotinine))
  intersect.filters <- sort(intersect.filters)</pre>
  obj.smoking <- obj.smoking[intersect.filters, ]</pre>
  obj.cotinine <- obj.cotinine[intersect.filters, ]</pre>
  stopifnot(all.equal(rownames(obj.smoking), rownames(obj.cotinine)))
  ##
  res <-
    data.frame(
      logFC_smoking = obj.smoking$table$logFC,
      logFC_cotinine = obj.cotinine$table$logFC,
      FDR smoking = obj.smoking$table$FDR,
      FDR_cotinine = obj.cotinine$table$FDR,
      OTU = rownames(obj.smoking$table)
  res <- cbind(res, obj.smoking[, c("Phylum", "Class", "Order", "Fami
  return(res)
```

And a plotting function:

```
plotSmokingcotinineComparison <--</pre>
  function(obj.smoking,
           obj.cotinine,
           labtext = "Crude",
           FDRcutoff = 1) {
    dataset <- mergeResults(obj.smoking, obj.cotinine)</pre>
    dataset <- dataset[dataset$FDR smoking < FDRcutoff,]</pre>
    corr.result <- with(dataset,</pre>
                         cor.test(logFC_smoking, logFC_cotinine))
    p <- ggplot(dataset) +</pre>
      theme bw() +
      xlab(paste(labtext, "Smokers vs. Non-smokers")) +
      ylab(paste(labtext, "Cotinine Levels (ng/ml)")) +
      geom\ text(aes(1,-0.3, label = sprintf(
        "p-value: %s\ncor: %s \nFDR<0.05: %s",
        signif(corr.result$p.value, 2),
        signif(corr.result$estimate, 2),
        sum(dataset\$FDR smoking < 0.05)
      )), size = 5) +
      geom point(aes(logFC smoking, logFC cotinine, color = FDR smoki
                  size = 3) +
      scale colour manual(values = setNames(c('black', 'grey'), c(TRL
                              FALSE) +
      geom smooth(
        aes(logFC smoking, logFC cotinine),
        method = lm,
        se = FALSE,
        color = "red"
      ) +
      theme(
        axis.text = element_text(
          hjust = 0,
          vjust = 0.5,
          size = 13
        ),
        strip.text = element text(size = 13),
        axis.title = element text(size = 15)
      )
    return(p)
```

Two thresholds for serum cotinine:

NYC_HANES.secondhand.original <- subset_samples(NYC_HANES, smokingstanyC_HANES.secondhand.strict <- subset_samples(NYC_HANES.secondhand.original)\$COTININE)

```
\triangleleft
## [1]
        1.0022 1.0394 1.0418 1.0715
                                       1.0915 1.2015
                                                       1.2282
                                                               1.27
## [10]
        1.3822
                1.4094
                        1.5315 1.6918
                                        2.0094
                                                2.5994
                                                        2.6759
                                                                2.86
## [19]
       2.9720 3.0459
                        3.1082 3.1722
                                       3.4715
                                                3.8394
                                                        4.3418 4.52
## [28] 4.7522 5.7220
                        6.3118 7.1315 7.7382 9.1118 9.6415 10.29
## [37] 10.7915 13.7894
```

summary(sample_data(NYC_HANES.secondhand.original)\$COTININE > 10)

```
FALSE
##
## logical
                 34
                           4
Number of OTUs with FDR < 0.05 and total that passed non-specific screens in
both analysis:
summary(edger.smoker_secondhand_crude$FDR_smoking < 0.05)</pre>
              FALSE
                        TRUE
## logical
                 93
                          28
# note that the different total number for strict cotinine cutoff is
# due to non-specific filtering in edgeR
summary(edger.smoker secondhand crude.strict$FDR smoking < 0.05)</pre>
                        TRUE
##
      Mode
              FALSE
## logical
                 87
                          27
corarray <- array(dim=c(2, 2, 2), dimnames=list(secondhand=c("cot14",</pre>
                                                     counfounding=c("crude
                                                     FDRcutoff=c("no", "ye
parray <- array(dim=c(2, 2, 2), dimnames=list(secondhand=c("cot14", '</pre>
                                                     counfounding=c("crude
                                                     FDRcutoff=c("no", "ye
Correlation between crude smoking and cotinine coefficients, all OTUs:
corr <- with(edger.smoker secondhand crude,</pre>
     cor.test(logFC_smoking, logFC_cotinine))
parray["cot14", "crude", "no"] <- corr$p.value</pre>
corarray["cot14", "crude", "no"] <- corr$estimate</pre>
Strict definition of second-hand smoke:
corr <- with(edger.smoker secondhand crude.strict,</pre>
     cor.test(logFC_smoking, logFC_cotinine))
parray["cot10", "crude", "no"] <- corr$p.value</pre>
corarray["cot10", "crude", "no"] <- corr$estimate</pre>
Correlation between crude smoking and cotinine coefficients, FDR < 0.05 in
smoking:
corr <- with(filter(edger.smoker_secondhand_crude, FDR_smoking < 0.05</pre>
  cor.test(logFC_smoking, logFC_cotinine))
corarray["cot10", "crude", "yes"] <- corr$p.value</pre>
parray["cot10", "crude", "yes"] <- corr$estimate</pre>
All OTUs, black for FDR < 0.05 on smoking coefficients, grey for FDR >= 0.05
p <-
  plotSmokingcotinineComparison(dasmoking.crude,
                                   dacot.crude,
                                   labtext = "Crude",
                                   FDR = 1)
```

р

Repeat, using the strict definition of second-hand smokers (cotinine < 10)

6.3.4 Adjusted Secondhand vs Adjusted Cigarette/Never: only significant OTUs

Number of differentially abundant OTUs, and total nrow(edger.smoker_secondhand_adjusted) ## [1] 121

```
summary(edger.smoker secondhand adjusted$logFC smoking < 0.05)</pre>
##
      Mode
              FALSE
                        TRUE
## logical
                 63
                          58
summary(edger.smoker secondhand adjusted$logFC cotinine < 0.05)</pre>
                        TRUE
              FALSE
                          83
## logical
                 38
Correlation between adjusted smoking and cotinine coefficients, all OTUs:
corr <- with(edger.smoker secondhand adjusted,</pre>
     cor.test(logFC smoking, logFC cotinine))
parray["cot14", "adjusted", "no"] <- corr$p.value</pre>
corarray["cot14", "adjusted", "no"] <- corr$estimate</pre>
As above, using strict serum cotinine cutoff (<10)
corr <- with(edger.smoker secondhand adjusted.strict,</pre>
     cor.test(logFC smoking, logFC cotinine))
parray["cot10", "adjusted", "no"] <- corr$p.value</pre>
corarray["cot10", "adjusted", "no"] <- corr$estimate</pre>
Correlation between adjusted smoking and cotinine coefficients, FDR < 0.05 in
smoking:
with(filter(edger.smoker_secondhand_adjusted, FDR_smoking < 0.05),</pre>
  cor.test(logFC smoking, logFC cotinine))
##
##
   Pearson's product-moment correlation
##
## data: logFC smoking and logFC cotinine
## t = 3.8131, df = 17, p-value = 0.001391
## alternative hypothesis: true correlation is not equal to \theta
## 95 percent confidence interval:
## 0.3249855 0.8660843
## sample estimates:
##
          cor
## 0.6789709
parray["cot14", "adjusted", "yes"] <- corr$p.value</pre>
corarray["cot14", "adjusted", "yes"] <- corr$estimate</pre>
Sensitivity analysis:
round(corarray, 2)
## , , FDRcutoff = no
##
##
              counfounding
## secondhand crude adjusted
##
        cot14
                 0.4
                          0.28
                          0.34
##
        cot10
                 0.4
##
## , , FDRcutoff = yes
##
              counfounding
##
## secondhand crude adjusted
                          0.34
##
        cot14
                  NA
                            NA
##
        cot10
                   0
signif(parray, 1)
```

```
, , FDRcutoff = no
##
##
             counfounding
## secondhand crude adjusted
        cot14 5e-06
                        2e-03
##
        cot10 9e-06
                        3e-04
##
##
   , , FDRcutoff = yes
##
##
##
             counfounding
## secondhand crude adjusted
##
        cot14
                  NA
                        3e-04
##
        cot10
                           NA
                 0.6
p <-
  plotSmokingcotinineComparison(
    obj.smoking = dasmoking.adjusted,
    obj.cotinine = dacot.adjusted,
    labtext = "Adjusted",
    FDRcutoff = 1
p
```


Repeat, using the strict definition of second-hand smokers (cotinine < 10)

```
p <-
plotSmokingcotinineComparison(
   obj.smoking = dasmoking.adjusted,
   obj.cotinine = dacot.adjusted.strict,
   labtext = "Adjusted",
   FDRcutoff = 1
)
p</pre>
```


6.3.5 Write supplemental file

6.3.6 Alternative smokers vs Never smoker: crude

smokingstatus: Alternative smoker vs. Never smoker

6.3.6.1 E-cigarette vs never smokers

6.3.6.2 Hookah pipe vs never smokers

6.3.6.3 Cigars and cigarillos vs never smokers

[1] "No results"

7 Analysis on biosis of bacteria

7.1 Odds ratio smokers vs never smokers

```
## $tab
##
##
                         Enriched in smokers
                                                     p0 Depleted in smc
     OTU is aerobic
##
                                           23 0.0362776
                                          611 0.9637224
##
     OTU is not aerobic
##
##
                                pl oddsratio
                                                  lower
                                                             upper
     OTU is aerobic
                         0.1074219 1.0000000
##
                                                     NA
                                                                NA
##
     OTU is not aerobic 0.8925781 0.3127808 0.1894164 0.5164911 2.682
##
  $measure
##
  [1] "wald"
##
## $conf.level
## [1] 0.95
##
## $pvalue
## [1] "fisher.exact"
```

```
## $tab
##
##
                           Enriched in smokers
                                                       p0 Depleted in s
     OTU is anaerobic
##
                                            407 0.6419558
##
     OTU is not anaerobic
                                            227 0.3580442
##
##
                                  pl oddsratio
                                                   lower
                                                            upper
     OTU is anaerobic
##
                           0.5195312 1.000000
                                                      NA
                                                               NA
                                      1.658143 1.307573 2.102704 3.107
##
     OTU is not anaerobic 0.4804688
##
## $measure
  [1] "wald"
##
## $conf.level
## [1] 0.95
##
## $pvalue
## [1] "fisher.exact"
## $tab
##
                             Enriched in smokers
                                                         p0 Depleted ir
##
     OTU is F Anaerobic
##
                                              204 0.3217666
     OTU is not F Anaerobic
##
                                              430 0.6782334
##
##
                                    pl oddsratio
                                                     lower
                                                              upper
                             0.3730469 1.0000000
##
     OTU is F Anaerobic
                                                        NA
                                                                 NA
     OTU is not F Anaerobic 0.6269531 0.7973213 0.624298 1.018298 0.6
##
##
## $measure
## [1] "wald"
##
## $conf.level
## [1] 0.95
##
## $pvalue
## [1] "fisher.exact"
```

7.2 Cigarette smokers vs Never smokers

7.2.1 GSEA

```
## DataFrame with 2 rows and 4 columns
        GENE.SET
                         ES
                                  NES
                                            PVAL
##
     <character> <numeric> <numeric> <numeric>
## 1
            fana
                     -0.322
                               -0.738
                                          0.769
## 2
                      0.282
                                0.545
                                          0.957
            anae
```


7.2.2 ORA

```
## 100 permutations completed
## 200 permutations completed
## 300 permutations completed
## 400 permutations completed
## 500 permutations completed
## 600 permutations completed
## 700 permutations completed
## 800 permutations completed
## 900 permutations completed
## 1000 permutations completed
## DataFrame with 2 rows and 4 columns
        GENE.SET GLOB.STAT NGLOB.STAT
##
                                            PVAL
##
     <character> <numeric> <numeric> <numeric>
## 1
                                 0.300
            fana
                         3
                                           0.186
## 2
            anae
                                 0.208
                                           0.531
```

7.3 Secondhand smokers

7.3.1 GSEA

```
## DataFrame with 2 rows and 4 columns
##
        GENE.SET
                         ES
                                  NES
                                            PVAL
##
     <character> <numeric> <numeric> <numeric>
## 1
            anae
                       0.77
                                 1.30
                                           0.164
## 2
            fana
                      -0.50
                                 -1.11
                                           0.360
```

7.3.2 ORA

```
## 100 permutations completed
## 200 permutations completed
## 300 permutations completed
## 400 permutations completed
## 500 permutations completed
## 600 permutations completed
## 700 permutations completed
## 800 permutations completed
## 900 permutations completed
## 1000 permutations completed
## DataFrame with 2 rows and 4 columns
        GENE.SET GLOB.STAT NGLOB.STAT
##
                                            PVAL
     <character> <numeric> <numeric> <numeric>
## 1
                                           0.001
            anae
                                    0
## 2
            fana
                         0
                                    0
                                           0.001
```

7.4 Continuous cotinine

7.4.1 GSVA continuous cotinine on secondhand smokers

7.4.2 GSVA continuous cotinine on cigarette vs never smokers

```
## logFC AveExpr t P.Value adj.P.Val ## anae 9.312388e-05 0.01061843 2.635005 0.009409142 0.02519808 - ## fana -1.031180e-04 -0.02637825 -2.421534 0.016798721 0.02519808 - ## aero 9.331210e-05 0.10299623 1.397472 0.164590432 0.16459043 -]
```

7.5 Hookah smokers vs Never smokers

7.5.1 GSEA

```
## DataFrame with 2 rows and 4 columns
## GENE.SET ES NES PVAL
## <character> <numeric> <numeric> <numeric>
## 1 anae 0.586 1.15 0.299
## 2 fana -0.532 -1.17 0.301
```

7.5.2 ORA

```
## DataFrame with 2 rows and 4 columns
##
        GENE.SET NR.GENES NR.SIG.GENES
                                               PVAL
##
     <character> <numeric>
                               <numeric> <numeric>
## 1
            anae
                         23
                                       1
                                              0.697
## 2
            fana
                         10
                                        0
                                              1.000
```

7.6 E-cigarette smokers vs Never smokers

7.6.1 GSEA

```
## DataFrame with 2 rows and 4 columns
        GENE.SET
                        ES
                                  NES
                                           PVAL
     <character> <numeric> <numeric> <numeric>
## 1
            anae
                     0.451
                                1.020
                                          0.466
## 2
            fana
                     0.329
                                0.832
                                          0.683
```

7.6.2 ORA

```
## DataFrame with 2 rows and 4 columns
## GENE.SET NR.GENES NR.SIG.GENES PVAL
## <character> <numeric> <numeric> <numeric> <numeric>
## 1 anae 29 0 1
## 2 fana 12 0 1
```

7.7 Cigar/cigarillos smokers vs Never smokers

7.7.1 GSEA

```
## DataFrame with 2 rows and 4 columns
        GENE.SET
                         ES
                                  NES
                                            PVAL
     <character> <numeric> <numeric> <numeric>
## 1
            anae
                     -0.487
                               -0.983
                                           0.508
## 2
            fana
                      0.372
                                0.813
                                           0.663
```

5/5/23, 3:09 PM Tobacco exposure associated with oral microbiome anaerobiosis in the New York City Health and Nutrition Examin...

7.7.2 ORA

```
## DataFrame with 2 rows and 4 columns
##
        GENE.SET NR.GENES NR.SIG.GENES
                                             PVAL
##
    <character> <numeric>
                              <numeric> <numeric>
## 1
                                            0.323
            fana
                        10
                                      1
## 2
            anae
                        21
                                      0
                                            1.000
sessionInfo()
```

```
## R version 4.3.0 (2023-04-21)
## Platform: x86 64-pc-linux-gnu (64-bit)
## Running under: Pop! OS 22.04 LTS
##
## Matrix products: default
## BLAS:
          /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86 64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
   [1] LC CTYPE=en US.UTF-8
                                   LC NUMERIC=C
   [3] LC TIME=en US.UTF-8
                                   LC COLLATE=en US.UTF-8
## [5] LC MONETARY=en US.UTF-8
                                   LC MESSAGES=en US.UTF-8
   [7] LC PAPER=en US.UTF-8
                                   LC NAME=C
## [9] LC ADDRESS=C
                                   LC TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    bā
##
## other attached packages:
  [1] edgeR_3.42.2
                                 limma 3.56.0
                                                           ggplot2_3.4
   [4] magrittr 2.0.3
                                 dplyr 1.1.2
                                                          nychanesmic
## [7] lsr 0.5.2
                                 phyloseq 1.44.0
                                                          Biobase 2.6
                                 BiocStyle_2.28.0
## [10] BiocGenerics 0.46.0
##
## loaded via a namespace (and not attached):
##
     [1] splines_4.3.0
                                     bitops_1.0-7
     [3] tibble 3.2.1
                                     R.oo 1.25.0
##
##
     [5] graph_1.78.0
                                     XML_3.99-0.14
##
     [7] lifecycle 1.0.3
                                     doParallel 1.0.17
     [9] lattice 0.21-8
##
                                     vroom 1.6.3
##
  [11] MASS 7.3-59
                                     survey 4.1-1
   [13] sass 0.4.5
                                     rmarkdown 2.21
##
## [15] jquerylib 0.1.4
                                     yaml 2.3.7
## [17] DBI_1.1.3
                                     RColorBrewer 1.1-3
   [19] ade4_1.7-22
                                     zlibbioc_1.46.0
##
## [21] Rtsne 0.16
                                     GenomicRanges 1.52.0
   [23] purrr 1.0.1
                                     R.utils 2.12.2
## [25] RCurl 1.98-1.12
                                     circlize 0.4.15
   [27] labelled 2.11.0
                                     GenomeInfoDbData 1.2.10
## [29] IRanges 2.34.0
                                     S4Vectors 0.38.1
## [31] irlba 2.3.5.1
                                     GSVA 1.48.0
   [33] vegan_2.6-4
                                     microbiome 1.22.0
##
## [35] annotate_1.78.0
                                     DelayedMatrixStats 1.22.0
   [37] permute 0.9-7
                                     codetools 0.2-19
##
## [39] DelayedArray 0.26.1
                                     tidyselect 1.2.0
## [41] shape 1.4.6
                                     farver 2.1.1
## [43] ScaledMatrix 1.8.0
                                     epitools 0.5-10.1
## [45] matrixStats 0.63.0
                                     stats4 4.3.0
## [47] jsonlite_1.8.4
                                     GetoptLong_1.0.5
## [49] multtest 2.56.0
                                     e1071 1.7-13
   [51] survival 3.5-5
                                     iterators 1.0.14
   [53] foreach 1.5.2
                                     tools_4.3.0
   [55] Rcpp 1.0.10
                                     glue 1.6.2
```

```
[57] xfun 0.39
                                      mgcv 1.8-42
##
    [59] DESeq2_1.40.1
                                      MatrixGenerics 1.12.0
##
   [61] GenomeInfoDb 1.36.0
                                      HDF5Array 1.28.1
   [63] withr 2.5.0
                                      BiocManager 1.30.20
##
##
   [65] fastmap 1.1.1
                                      mitools 2.4
                                      fansi_1.0.4
    [67] rhdf5filters_1.12.1
##
##
   [69] SparseM 1.81
                                      rsvd 1.0.5
##
   [71] digest_0.6.31
                                      R6 2.5.1
   [73] colorspace 2.1-0
                                      Cairo_1.6-0
##
   [75] RSQLite 2.3.1
                                      R.methodsS3 1.8.2
   [77] utf8 1.2.3
##
                                      tidyr_1.3.0
##
   [79] generics 0.1.3
                                      data.table 1.14.8
   [81] class 7.3-21
                                      httr 1.4.5
##
##
   [83] S4Arrays 1.0.1
                                      pkgconfig 2.0.3
##
   [85] gtable_0.3.3
                                      blob_1.2.4
   [87] ComplexHeatmap 2.16.0
                                      SingleCellExperiment 1.22.0
##
  [89] XVector 0.40.0
                                      htmltools 0.5.5
   [91] bookdown 0.33
                                      biomformat 1.28.0
  [93] GSEABase 1.62.0
                                      clue 0.3-64
   [95] scales 1.2.1
                                      png 0.1-8
## [97] knitr_1.42
                                      rstudioapi_0.14
## [99] tzdb 0.3.0
                                      reshape2 1.4.4
## [101] rjson 0.2.21
                                      nlme_3.1-162
## [103] proxy_0.4-27
                                      cachem_1.0.8
                                      rhdf5 2.44.0
## [105] zoo 1.8-12
## [107] GlobalOptions 0.1.2
                                      stringr 1.5.0
## [109] safe 3.40.0
                                      parallel 4.3.0
## [111] AnnotationDbi 1.62.1
                                      pillar 1.9.0
## [113] grid 4.3.0
                                      vctrs_0.6.2
## [115] BiocSingular_1.16.0
                                      beachmat 2.16.0
## [117] xtable 1.8-4
                                      cluster 2.1.4
## [119] Rgraphviz_2.44.0
                                      evaluate_0.20
## [121] KEGGgraph 1.60.0
                                      readr 2.1.4
## [123] cli 3.6.1
                                      locfit 1.5-9.7
## [125] compiler 4.3.0
                                      rlang 1.1.1
## [127] crayon 1.5.2
                                      tableone 0.13.2
## [129] labeling 0.4.2
                                      plyr 1.8.8
## [131] forcats 1.0.0
                                      stringi_1.7.12
## [133] BiocParallel_1.34.0
                                      munsell_0.5.0
## [135] Biostrings 2.68.0
                                      Matrix 1.5-4
## [137] sas7bdat 0.7
                                      hms 1.1.3
## [139] sparseMatrixStats 1.12.0
                                      bit64 4.0.5
## [141] Rhdf5lib 1.22.0
                                      KEGGREST 1.40.0
## [143] statmod 1.5.0
                                      SummarizedExperiment 1.30.1
## [145] highr 0.10
                                      haven 2.5.2
## [147] igraph 1.4.2
                                      memoise 2.0.1
## [149] bslib 0.4.2
                                      bit 4.0.5
## [151] EnrichmentBrowser 2.30.0
                                      ape 5.7-1
```