Network Security

Asim Rasheed

Where we are ...

- Introduction to network security
- Vulnerabilities in IP
- •I. CRYPTOGRAPHY
- -Symmetric Encryption and Message Confidentiality
- -Public-Key Cryptography and Message Authentication

•II. NETWORK SECURITY APPLICATIONS

- -Authentication Applications (Kerberos, X.509)
- -Electronic Mail Security (PGP, S/MIME)
- -IP Security (IPSec, AH, ESP, IKE)
- -Web Security (SSL, TLS, SET)

•III. SYSTEM SECURITY

- -Intruders and intrusion detection
- -Malicious Software (viruses)
- -Firewalls and trusted systems

Firewalls

Introduction

- Everyone wants to be on the Internet
- And to interconnect networks
- Such connectivity has persistent security concerns
 - can't easily secure every system in organization
- Need "harm minimization"
- Firewall is usually part of this

What is a Firewall?

- Any device, software, or arrangement or equipment that limits network access
- Interconnects networks with differing trust
- Imposes restrictions on network services
 - Only authorized traffic is allowed
- Auditing and controlling access
 - Can implement alarms for abnormal behavior
- Is itself immune to penetration
- Provides perimeter defense

Firewall

Firewall Characteristics

- All traffic must pass through it
 - No other point of entrance
- Only authorized traffic must be allowed to pass
 - As defined by the local security policy
- Immune to penetration
 - Use trusted system with a secure OS

Firewall Control Access

Service control

- Types of Internet services that can be accessed
- Both inbound and outbound
- May filter traffic on the basis of IP addresses

Direction control

 Direction in which particular service request may be initiated

User control

- Controls access to service that user is trying to use
- Applied to users inside the firewall
- May be applied to incoming traffic

Firewall Control Access...

- Behavior control
 - Controls how particular services are used
 - e.g., may filter email to eliminate spam

Firewall Capabilities

- Defines a single choke point that keeps unauthorized users out of protected network
- Provides a location for monitoring securityrelated events
- Convenient platform for several Internet functions that are not security related events
- Can serve as the platform for IPSec

Firewall Limitations

- Cannot protect from attacks bypassing it
 - e.g., sneaker net, utility modems, trusted organizations, trusted services (eg SSL/SSH)
- Cannot protect against internal threats
 - e.g., disgruntled employee
- Cannot protect against transfer of virus infected programs or files
 - Because of huge range of O/S & file types

General Firewall Configuration

Policy

- No outside Web access.
- Outside connections to Public Web Server Only.
- Prevent Web-Radios from eating up the available bandwidth.
- Prevent your network from being used for a Smuft DoS attack.
- Prevent your network from being tracerouted or Ping scanned.

Firewall Setting

- Drop all outgoing packets to any IP, Port 80
- Drop all incoming TCP SYN packets to any IP except 130:207:244.203, port 80
- Drop all incoming UDP packets except DNS and Router Broadcasts.
- Drop all ICMP packets going to a "broadcast" address (130.207.255.255 or 130.207.0.0)
- Drop all incoming ICMP, UDP, or TCP echo-request packets, drop all packets with TTL < 5.

Types of Firewalls

- Packet-Filtering Router
- Application-level Gateways
- Circuit-level Gateways
- Characterized by protocol level it controls in packet filtering, circuit gateways, and application gateways
- Combination of above is dynamic packet filter

Firewalls - Packet Filters

Firewalls - Packet Filters

- Apply a set of rules to each incoming packet
- Cheap, useful level of gateway security
 - Filtering abilities come with router software
- Foundation of any firewall system
- Drop packets based on contents
- Incoming or outgoing interfaces
- Blocks spoofed packets
 - Ingress and egress filtering

Packet Filters

- Permits or denies certain services
 - Requires intimate knowledge of TCP and UDP port utilization on a number of operating systems
- Possible default policies
 - That is not expressly permitted is prohibited
 - That is not expressly prohibited is permitted

Default Behavior

• Every rule set is followed by an implicit rule reading like this.

action	ourhost	port	theirhost	port	comment
block	*	*	*	*	default

Example 1:

- Suppose we want to allow inbound mail (SMTP, port 25) but only to our gateway machine.
- Also suppose that mail from some particular site SPIGOT is to be blocked.

action	ourhost	port	theirhost	port	comment
block	*	*	SPIGOT	*	we don't trust these people
allow	OUR-GW	25	*		connection to our SMTP port

Example 2:

 Now suppose that we want to implement the policy "any inside host can send mail to the outside"

action	ourhost	port	theirhost	port	comment
allow	**	* 4	*	25	connection to their SMTP port

Solution

• This solution allows calls to come from any port on an inside machine, and will direct them to port 25 on the outside.

Simple enough...

So is it wrong?

Solution

- Our defined rule restricts solely the outside host's port number, which we have no way of controlling.
- Now an enemy can access any internal machine and port by originating his call from port 25 on the outside machine.

Now for a better solution...

Solution

action	src	port	dest	port	flags	comment
allow allow	{our hosts}	* 25	*	25 *	ACK	our packets to their SMTP port their replies

- The ACK signifies that the packet is part of an ongoing conversation
- Packets without the ACK are connection establishment messages, which we are only permitting from internal hosts

Attacks on Packet Filters

- IP address spoofing
 - Fake source address to be trusted
 - Add filters on router to block
- Source routing attacks
 - Attacker sets a route other than default
 - Block source routed packets
- Tiny fragment attacks
 - Split header info over several tiny packets
 - Either discard or reassemble before check

Firewalls - Application Level Gateway (or Proxy)

Application-Level Filtering

- More complex than packet filtering details
- Special-purpose code for each desired application
- Easy to log and control ALL incoming and outgoing traffic
- Only deals with attacks from outside
- Principal disadvantage
 - Need for specialized user program or variant user interface

Firewalls - Application Level Gateway (or Proxy)

- Has full access to protocol
 - User requests service from proxy
 - Proxy validates request as legal
 - Then actions request and returns result to user
- Need separate proxies for each service
 - Some services naturally support proxying
 - Others are more problematic
 - Custom services generally not supported

Firewalls - Circuit Level Gateway

Circuit-Level Gateways

- Work at TCP level
- Generally used to create specific connections between isolated networks
- SOCKS protocol used in relay service
- Log the byte flow
 - Can't catch all abuses, packet filter should be used
- Well suited for some UDP applications
- Once created usually relays traffic without examining contents
- Typically used when trust internal users by allowing general outbound connections

Packet Filtering Example

Table 20.1 Packet-Filtering Examples

В

D

 \mathbf{E}

	action	ourhost	port	theirhost	port	comment
A	block	*	*	SPIGOT	*	we don't trust these people
	allow	OUR-GW	25	*	*	connection to our SMTP port

action	ourhost	port	theirhost	port	comment
block	*	*	*	*	default

action	ourhost	port	theirhost	port	comment
allow	*	*	*	25	connection to their SMTP port

action	src	port	dest	port	flags	comment
allow	{our hosts}	*	*	25		our packets to their SMTP port
allow	*	25	*	*	ACK	their replies

action	src	port	dest	port	flags	comment
allow	{our hosts}	*	*	*		our outgoing calls
allow	*	*	*	*	ACK	replies to our calls
allow	*	*	*	>1024		traffic to nonservers

Bastion Host

- Highly secure host system
- Potentially exposed to "hostile" elements
- Hence is secured to withstand this
- May support 2 or more net connections
- May be trusted to enforce trusted separation between network connections
- Runs circuit/application level gateways
- Or provides externally accessible services

Screened Host Firewall-Single Homed Bastion Host

Screened Host Firewall-Single Homed Bastion Host

- Firewall consists of two systems
 - Packet filtering router
 - Bastion host
- Only IP packets destined for the bastion host are allowed in
- Only IP packets from the bastion host are allowed out
- Disadvantage:
 - If packet filtering router is compromised, traffic could flow directly

Screened Host Firewall-Dual Homed Bastion Host

Screened Host Firewall-Dual Homed Bastion Host

- Dual layers of security also present here
- Overcomes the threat of single point of failure

Screened Subnet Firewall

Screened Subnet Firewall

- Most secure configuration
- Two packet filtering routers
 - One b/w the bastion host and the Internet
 - One b/w the bastion host and the internal network
- Creates an isolated subnet, which may consist of:
 - Bastion host
 - One or more information servers
 - Modem for dial-in capability

Advantages

- Three levels of defense
- Internal network is invisible to the Internet
 - Outside router advertises only the existence of the screened subnet
- Systems on the inside cannot create direct routes to the Internet
 - Inside router advertises only the existence of screened subnet

Access Control

- Given system has identified a user
- Determines what resources user can access
- General model is that of Access Matrix with
 - Subject entity capable of accessing objects (user, process)
 - Object anything to which access is controlled e.g., files, programs, etc.
 - Access right way object can be accessed
 e.g., read, write and execute
- Matrix can be decomposed
 - Columns as Access Control Lists
 - Rows as Capability List

Access Control Matrix

	Program1	•••	SegmentA	SegmentB
Process1	Read Execute		Read Write	
Process2				Read

(a) Access Matrix

Access Control List for Program 1:
Process1 (Read, Execute)

Access Control List for SegmentA:
Process1 (Read, Write)

Access Control List for SegmentB:
Process2 (Read)

(b) Access Control List

Capability List for Process1:
Program1 (Read, Execute)
SegmentA (Read, Write)

Capability List for Process2:
SegmentB (Read)

(c) Capability List

Trusted Computer Systems

- Information security is increasingly important
- Have varying degrees of sensitivity of information
 - like military information classifications:
 confidential, secret, etc.
- Subjects (people or programs) have varying rights of access to objects (information)
- Want to consider ways of increasing confidence in systems to enforce these rights
- Known as multilevel security
 - Subjects have max & current security level
 - Objects have a fixed security level classification

Multilevel Security

- Implemented as mandatory policies on system
- Has two key policies:
- no read up (simple security property)
 - a subject can only read/write an object if the current security level of the subject dominates
 (>=) the level of the object
- no write down (*-property)
 - a subject can only append/write to an object if the current security level of the subject is dominated by (<=) the level of the object

Reference Monitor

Reference Monitor

- Controlling element in the hardware and OS
- Regulates the access of subjects to objects based on security kernel database
- Has following properties
 - Complex Mediation
 - Security rules are enforced on every access
 - Isolation
 - Reference monitor and database are protected from unauthorized modification
 - Verifiability
 - · Reference monitor's correctness must be provable

Evaluated Computer Systems

- Governments can evaluate IT systems
- Against a range of standards:
 - TCSEC, IPSEC and now Common Criteria
- Define a number of "levels" of evaluation with increasingly stringent checking
- Have published lists of evaluated products
 - Though aimed at government/defense use
 - Can be useful in industry also

Trojan Horse Defense

- Use secure and trusted OS
- Two security levels
 - Sensitive & Public
 - Assigned to subjects on the basis of user and terminal being used
- Intruder's file and processes are restricted to public
- Legitimate user is assigned sensitive
- Therefore attempt to write in intruder's file is denied based on No Write Down rule

Any question?