

Stream ciphers

Real-world Stream Ciphers

Old example (software): RC4 (1987

- Used in HTTPS and WEP
- Weaknesses:
 - 1. Bias in initial output: $Pr[2^{nd} byte = 0] = 2/256$
 - 2. Prob. of (0,0) is $1/256^2 + 1/256^3$
 - 3. Related key attacks

Old example (hardware): CSS (badly broken)

Linear feedback shift register (LFSR):

DVD encryption (CSS): 2 LFSRs

GSM encryption (A5/1,2): 3 LFSRs

Bluetooth (E0): 4 LFSRs

all broken

Old example (hardware): CSS (badly broken)

CSS: seed = 5 bytes = 40 bits

Easy to break in line 227

Cryptanalysis of CSS (217 time attack)

For all possible initial settings of 17-bit LFSR do:

- Run 17-bit LFSR to get 20 bytes of output
- Subtract from CSS prefix \Rightarrow candidate 20 bytes output of 25-bit LFSR
- If consistent with 25-bit LFSR, found correct initial settings of both!!

Using key, generate entire CSS output

Modern stream ciphers: eStream

PRG:
$$\{0,1\}^s \times R \longrightarrow \{0,1\}^n$$

Nonce: a non-repeating value for a given key.

$$E(k, m; r) = m \oplus PRG(k; r)$$

The pair (k,r) is never used more than once.

eStream: Salsa 20 (sw+hw)

Salsa20: $\{0,1\}^{128 \text{ or } 256} \times \{0,1\}^{64} \longrightarrow \{0,1\}^n$ (max n = 2⁷³ bits)

Salsa20(k;r) := H(k,(r,0)) || H(k,(r,1)) || ...

h: invertible function. designed to be fast on x86 (SSE2)

Is Salsa20 secure (unpredictable)?

Unknown: no known provably secure PRGs

In reality: no known attacks better than exhaustive search

Performance:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	<u>PRG</u>	Speed (MB/sec)
	RC4	126
eStream -	Salsa20/12	643
	Sosemanuk	727

Generating Randomness

(e.g. keys, IV)

Pseudo random generators in practice: (e.g. /dev/random)

- Continuously add entropy to internal state
- Entropy sources:
 - Hardware RNG: Intel RdRand inst. (Ivy Bridge). 3Gb/sec.
 - Timing: hardware interrupts (keyboard, mouse)

NIST SP 800-90: NIST approved generators

End of Segment