ARTICLE IN PRESS

Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Nuclear chiral doublet bands data tables

B.W. Xiong a, Y.Y. Wang b,*

- ^a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- b School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China

ARTICLE INFO

Article history: Received 13 April 2018 Received in revised form 30 May 2018 Accepted 31 May 2018 Available online xxxx

Keywords: Chirality Chiral doublet bands Multiple chiral doublets Rotational spectrum Electromagnetic transition probability

ABSTRACT

Since the prediction of nuclear chirality in 1997, tremendous progresses both theoretically and experimentally have been achieved. Experimentally, 59 chiral doublet bands in 47 chiral nuclei (including 8 nuclei with multiple chiral doublets) have been reported in $A \sim 80$, 100, 130, and 190 mass regions. The spins, parities, energies, ratios of the magnetic dipole transition strengths to the electric quadrupole transition strengths, and related references for these nuclei are compiled and listed. For these nuclei with the magnetic dipole transition strengths and the electric quadrupole transition strengths measured, the corresponding results are given. A brief discussion is provided after the presentation of energy E, energy difference ΔE , energy staggering parameter S(I), rotational frequency ω , kinematic moment of inertia $\mathcal{J}^{(1)}$, dynamic moment of inertia $\mathcal{J}^{(2)}$, and ratio of the magnetic dipole transition strength to the electric quadrupole transition strength B(M1)/B(E2) versus spin I in each mass region.

© 2018 Elsevier Inc. All rights reserved.

E-mail address: flyyuan@buaa.edu.cn (Y.Y. Wang).

https://doi.org/10.1016/j.adt.2018.05.002

0092-640X/© 2018 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

Contents

1.	Introd	uction	2
2.	Systen	natics of chiral doublet bands	6
	2.1.	Energy spectra	6
	2.2.	Energy difference	7
	2.3.	Energy staggering	ć
	2.4.	Rotational frequency	ć
	2.5.	Kinematic moment of inertia	ç
	2.6.	Dynamic moment of inertia	10
	2.7.	Electromagnetic transition probability	
3.	Summ	ary	12
	Ackno	wledgments	12
	Refere	nces	13
	Explan	nation of Tables	17
	Ta	ble 1. Chiral doublet bandsble 1.	17
	Ta	ble 2. Chiral doublet bands with B(M1) and B(E2) values.	17

1. Introduction

Chirality commonly exists in nature, such as the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands [1]. In geometry, a figure is chiral if it cannot be mapped onto its mirror image by rotations and translations alone. In particle physics, chirality is a dynamic property distinguishing between the parallel and anti-parallel orientations of the intrinsic spin with respect to the momentum of the massless particle. In chemistry, the study of chirality is a very active topic appearing in inorganic, organic, physical, biochemistry, and supramolecular chemistry.

The chirality in nuclear physics was originally suggested by Frauendorf and Meng in 1997 [2]. The physics mechanism of nuclear chirality is illustrated in Fig. 1. For a rotational nucleus with specific triaxial deformation, the collective angular momentum favors alignment along the intermediate axis, which in this case has the largest moment of inertia, while the angular momentum vectors of the valence particles (holes) favor alignment along the nuclear short (long) axis. The three mutually perpendicular angular momenta can be arranged to form two systems with opposite chirality, namely left- and right-handedness. These two systems are transformed into each other by the chiral operator which combines time reversal and spatial rotation of 180°, $\chi = TR(\pi)$. The spontaneous breaking of chiral symmetry thus happens in the body-fixed reference frame. In the laboratory reference frame, with the restoration of chiral symmetry due to quantum tunneling, the so-called chiral doublet bands, i.e., a pair of $\Delta I = 1$ bands (normally near degenerate) with the same parity, are expected to be observed in triaxial nuclei [2,3].

The nuclear chirality, originally suggested in Ref. [2] and vigorously investigated over the past few years from both the theoretical and experimental standpoint, continues to be the subject of intense discussion. The nuclear chirality has become one of the hot topics in current nuclear physics frontiers, as discussed in recent review articles [3–10].

Theoretically, the nuclear chirality is firstly predicted by particle rotor model (PRM) and tilted axis cranking (TAC) approach in a single-j shell [2]. Later on, various approaches have been developed to describe the nuclear chiral doublet bands.

Depending on the number of valence nucleons and the orbits occupied, 1-particle-1-hole PRM [2,11-15], 2-quasiparticles PRM [16-19], and *n*-particle-*n*-hole PRM [20-22] have been developed. The varieties of PRM include core quasiparticle coupling model [23-25], interacting boson fermion–fermion model [26-29], the generalized coherent state model [30], the angular momentum projection method [31], and pair truncated shell model [32,33].

Fig. 1. (Color online) Left- and right-handed chiral systems for a triaxial odd-odd nucleus [3].

The TAC adopted in Ref. [2] is based on a single-*j* mean field. Combining the spherical Woods–Saxon single-particle energies and the deformed part of the Nilsson potential, chiral rotation has been studied by the Strutinsky shell correction TAC method [34]. More microscopically, TAC based on covariant density functional theory (CDFT) [35,36] has been introduced and applied to the studies of chirality. The self-consistent Skyrme Hartree–Fock cranking model has also been developed [37].

To go beyond mean field approximation to describe the chiral partners, one can incorporate the quantum correlations by means of random phase approximation [38,39] or collective Hamiltonian [40,41]. By taking into account the quantum fluctuation along the collective degree of freedom, the collective Hamiltonian goes beyond the mean field approximation and restores the broken symmetry.

The attempts to understand the chiral doublet bands by the projected shell model (PSM) [42] have been performed in Ref. [43]. Although the observed energy spectra and transitions have been well reproduced in PSM, it is a big challenge to examine the chiral geometry of angular momentum due to the complication that the projected basis is defined in the laboratory frame and forms a nonorthogonal set. Recently, the chiral geometry of the angular momentum is investigated within the framework of PSM. The geometry of the angular momentum is analyzed in terms of the distributions of its components on the three intrinsic axes (*K plot*) as well as the distributions of its tilted angles in the intrinsic frame (azimuthal plot) [44,45].

The PRM is a quantal model consisting of the collective rotation and the intrinsic single-particle motions, the energy splitting and quantum tunneling between the doublet bands can be obtained directly. The rigid rotor with quadrupole deformation parameters β and γ is assumed [3].

Starting from an effective nucleon-nucleon interaction with Lorentz invariance, the CDFT naturally includes the spin-orbit

Fig. 2. (Color online) The nuclides with chiral doublet bands (red circles) and $M\chi D$ (blue pentagons) observed in the nuclear chart. The black squares represent stable nuclides.

coupling and has achieved great successes in describing many nuclear phenomena in stable and exotic nuclei of the whole nuclear chart [1,46–49]. It is interesting to search for nuclei with triaxial deformation and configurations having not only one particle and one hole but also several particles and several holes suitable for chirality in CDFT in Ref. [50], the adiabatic and configuration-fixed constrained triaxial CDFT approaches are used to investigate the triaxial shape coexistence and possible chiral doublet bands. A new phenomenon, the existence of multiple chiral doublets (M χ D), i.e., more than one pair of chiral doublet bands in one single nucleus, is suggested for ¹⁰⁶Rh. This prediction remains with the time-odd fields included [51], and also holds true for other rhodium isotopes [52].

The first experimental evidence for $M\chi D$ is reported in ¹³³Ce in 2013 [53]. Later, a novel type of $M\chi D$ with the same configuration is reported in ¹⁰³Rh [54], which shows that chiral geometry can be robust against the intrinsic excitation. Then, two pairs of positive- and negative-parity doublet bands together with eight

Fig. 3. (Color online) Energies versus spin for chiral doublet bands in $A\sim 80$ mass region. The existence of M χ D is suggested in 78 Br. The excited chiral doublet bands are shifted by 1.5 MeV.

strong electric dipole transitions linking their yrast positive- and negative-parity bands, are identified in ⁷⁸Br. This observation reports the first example of chiral geometry in octupole soft nuclei and indicates that nuclear chirality can be robust against the octupole correlations [55]. Recently, five pairs of nearly degenerate rotational bands were identified in ¹³⁶Nd [56].

It should be mentioned that two pairs of chiral doublet bands in 105 Rh have been independently observed in Refs. [57,58], which have been confirmed to be M χ D by adiabatic and configuration-fixed constrained CDFT calculations [59]. Similarly, one pair of chiral doublet bands in 107 Ag observed in Ref. [60], which together with nearly degenerate partner bands (though the difference in spin alignment in Fig. 16 needs further clarification) [61], has been claimed to show evidence of M χ D [62]. Similarly, for 138 Nd, one pair of chiral doublet bands has been suggested in Ref. [63], which together with another pair of partner bands, could be a new candidate of M χ D [30].

Generally speaking, for the description of chiral rotations, three dimensional tilted axis cranking CDFT (3D TAC-CDFT) is needed. The 3D TAC-CDFT is firstly developed in Ref. [35]. However, because of its numerical complexity, so far, it has been applied only

Fig. 4. (Color online) Energies versus spin for chiral doublet bands in $A \sim 100$ mass region. The existence of M χ D is suggested in 103 Rh, 105 Rh, and 107 Ag. One pair of excited bands in 103 Rh is shifted by 1.5 MeV, and another is shifted by 3 MeV. The excited chiral doublet bands in 105 Rh and 107 Ag are shifted by 1.5 MeV. The gray boxes are used to connect the various parts of this figure.

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■■) ■■■–■■■

Fig. 5. (Color online) Energies versus spin for chiral doublet bands in $A \sim 130$ mass region. The existences of M χ D are suggested in ¹³³Ce, ¹³⁶Nd, ¹³⁸Nd, and ¹⁴⁰Eu. For ¹³⁶Nd, there are five pairs of chiral doublet bands, the two lowest ones are shifted by -3.0 MeV and -1.5 MeV, respectively, and the next two higher ones are shifted by 1.5 MeV and 3.0 MeV, respectively. For other M χ D, the excited chiral doublet bands are shifted by 1.5 MeV. The gray boxes are used to connect the various parts of this figure.

Fig. 6. (Color online) Energies versus spin for chiral doublet bands in A \sim 190 mass region.

for the magnetic rotation in ⁸⁴Rb. Focusing on the magnetic rotation bands, in 2008, a completely new computer code for the self-consistent 2D TAC-CDFT has been established [64]. It is based on the non-linear meson-exchange models and includes considerable improvements allowing systematic investigations. Based on a point-coupling interaction, the 2D TAC-CDFT is developed to investigated the magnetic rotation bands [65,66], antimagnetic rotation bands [67,68], transitions of nuclear spin orientation [69,70], and

Fig. 7. Energy differences between the chiral doublet bands versus spin in $A\sim 80$ mass region. The red filled circles and olive filled triangles represent the energy differences between the chiral partners and the excited chiral partners, respectively.

linear alpha cluster bands [71], and demonstrates high predictive power [6,36]. Recently, the first applications of the 3D TAC-CDFT for nuclear chirality is reported in 106 Rh [72] and 136 Nd [56], respectively.

Originally the observation of two almost degenerate $\Delta I=1$ rotational bands is considered as the fingerprint of chiral doublet bands [2]. With the improvement of experimental techniques, the lifetime measurements for chiral doublet bands become possible. According to the selection rule for the electromagnetic transition in ideal case, there occurs an alternation of stronger and weaker M1 transitions with spin over the degenerate spin range of chiral doublet bands, which can manifest as B(M1)/B(E2) staggering as

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

Fig. 8. (Color online) Energy differences between the chiral doublet bands versus spin in $A \sim 100$ mass region.

Fig. 9. (Color online) Energy differences between the chiral doublet bands versus spin in $A \sim 130$ mass region.

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

Fig. 10. (Color online) Energy differences between the chiral doublet bands versus spin in $A\sim 190$ mass region.

a function of spin *I*. These characteristics are suggested as electromagnetic transition fingerprints of chiral geometry in Ref. [12]. It is pointed out that in ideal chiral doublet bands, the corresponding properties such as the identical or similarity in energies, spin alignments, and electromagnetic transition probabilities, the spin independence of the energy staggering parameters S(I), and the staggering of B(M1)/B(E2) are summarized as fingerprints of ideal chiral doublet bands [73].

During the last two decades, lots of experimental efforts have been devoted to search for nuclear chirality. Up to now, 59 chiral doublet bands in 47 chiral nuclei (including 8 M χ D nuclei) have been reported in the $A \sim 80$ [55,74], 100 [54,57,58,60,75–85], 130 [38,53,56,63,86–105], and 190 [106–109] mass regions. The distribution of the observed chiral nuclei in the nuclear chart is given in Fig. 2.

It should be pointed out that the lifetime measurements which are essential to extract the absolute electromagnetic transition probabilities are still rare for the chiral nuclei candidates.

In order to promote the study of chiral symmetry in atomic nuclei, the compilations of the data for chiral doublet bands are highly demanded. This is the purpose of the present paper.

Fig. 11. (Color online) Energy staggering parameters as functions of spin in A \sim 80 mass region.

In Section 2, the figures are presented for energy E, energy difference ΔE , energy staggering parameter S(I), rotational frequency ω , kinematic moment of inertia $\mathcal{J}^{(1)}$, dynamic moment of inertia $\mathcal{J}^{(2)}$, and ratio of the magnetic dipole transition strength to the electric quadrupole transition strength B(M1)/B(E2) versus spin I in each mass region. The explanation of the tables for chiral doublet bands is followed. Finally, a brief summary is given.

2. Systematics of chiral doublet bands

2.1. Energy spectra

The energy spectra for all chiral doublet bands in $A \sim 80$, 100, 130, and 190 mass regions are given in Figs. 3–6, respectively. For $M\chi D$ in ^{78}Br , ^{105}Rh , ^{107}Ag , ^{138}Ce , ^{138}Nd , and ^{140}Eu , the excited chiral doublet bands are shifted by 1.5 MeV. For $M\chi D$ in ^{103}Rh , there are three pairs of chiral doublet bands, one pair of excited bands are shifted by 1.5 MeV, and another are shifted by 3 MeV. As for $M\chi D$ in ^{136}Nd , there are five pairs of chiral doublet bands, the two lowest ones are shift by -3.0 MeV and -1.5 MeV, respectively, and the next two higher ones are shift by 1.5 MeV and 3.0 MeV, respectively.

The fingerprint for chiral doublet bands in energy, i.e., two almost degenerate $\Delta I=1$ rotational bands, is demonstrated in the figures.

Fig. 12. (Color online) Energy staggering parameters as functions of spin in $A \sim 100$ mass region.

ARTICLE IN PRESS

Fig. 13. (Color online) Energy staggering parameters as functions of spin in $A \sim 130$ mass region.

Fig. 14. (Color online) Energy staggering parameters as functions of spin in $A\sim 190$ mass region.

The nuclear chirality occurs at the lowest spin $4\hbar$ in 106 Mo and 110 Ru, and the highest spin $29\hbar$ in 136 Nd. The bands in 106 Mo and 110 Ru are interpreted as soft chiral vibration [78,110,111]. In 136 Nd, the chiral rotations were interpreted by TAC-CDFT with the assigned configurations [56].

Generally, the energies for the partners are close to each other and tend to be almost completely degenerate at high spins. There

Fig. 15. (Color online) The relation between the spin and the rotational frequency for chiral doublet bands in $A\sim80$ mass region.

are several exceptions: for nuclei 112 Ru, 105 Rh, 107 Ag, 136 Nd, 137 Nd, 140 Eu, and 188 Ir, crossings between some partner bands exist.

2.2. Energy difference

The energy differences $\Delta E(I) = E_{\rm side}(I) - E_{\rm yrast}(I)$ between yrast band and side band for all chiral doublet bands in $A \sim 80$, 100, 130, and 190 mass regions are given in Figs. 7–10, respectively. Although the chiral partner bands have energies close to each other, it is rare to observe a crossing between them. If crossing occurs, carefully examinations for chirality are necessary, as has been done in 106 Ag [85].

Fig. 16. (Color online) The relation between the spin and the rotational frequency for chiral doublet bands in $A \sim 100$ mass region.

Fig. 17. (Color online) The relation between the spin and the rotational frequency for chiral doublet bands in $A\sim 130$ mass region.

Fig. 18. (Color online) The relation between the spin and the rotational frequency for chiral doublet bands in $A \sim 190$ mass region.

The energy differences ΔE are below 600 keV for all chiral doublet bands except for 100 Tc, 102 Rh, 104 Ag, 106 Ag, 107 Ag, and 126 I. Several negative values exist for ΔE in nuclei 112 Ru, 105 Rh, 107 Ag, 136 Nd, 137 Nd, 140 Eu, and 188 Ir which correspond to the crossing between the partner bands in Section 2.1.

2.3. Energy staggering

From the energy staggering parameter defined as S(I) = [E(I) - E(I-1)]/2I, the energy staggering parameters as functions of spin for all chiral doublet bands in $A \sim 80$, 100, 130, and 190 mass regions are given in Figs. 11–14, respectively.

For the ideal chiral doublet bands, the S(I) values should possess a smooth dependence with spin, and it has been taken as a possible fingerprint.

Normally, the values of S(I) change dramatically at the band head. At certain spin range, they show a smooth dependence with spin. The change of S(I) values is around 20 keV/ \hbar in $A \sim 80$

Fig. 19. (Color online) Kinematic moments of inertia versus spin for chiral doublet bands in $A\sim80$ mass region.

mass region, and decrease to 10 keV/ \hbar for most nuclei in $A\sim 100$, 130, and 190 mass regions, except for 140 Eu, 194 Tl, and 198 Tl whose change is around 20 keV/ \hbar .

2.4. Rotational frequency

In order to obtain the response of angular momentum alignments to rotation frequencies and examine the similarities of the configurations for chiral partner bands, the $I-\hbar\omega$ relation has been extracted. From the rotational frequency $\hbar\omega$ defined as [112], $\hbar\omega(I)=[E(I+1)-E(I-1)]/2$, the relations between the spins and the rotational frequencies for all chiral doublet bands in $A\sim 80$, 100, 130, and 190 mass regions are shown in Figs. 15–18, respectively.

Generally, the $I - \hbar \omega$ relation for yrast band and side band is similar, except for 104 Ag, 107 Ag, 126 I, 136 Nd, 137 Nd, 188 Ir, and 193 Tl. Possible backbending in some nuclei exists.

2.5. Kinematic moment of inertia

From the definition $\mathcal{J}^{(1)}(I) = I/\hbar\omega(I)$, the kinematic moments of inertia $\mathcal{J}^{(1)}$ for all chiral doublet bands in $A \sim 80$, 100, 130, and 190 mass regions are shown in Figs. 19–22, respectively.

Generally, the kinematic moment of inertia for yrast band and side band is similar, except for 104 Ag, 107 Ag, 126 I, 136 Nd, 137 Nd, 140 Eu,

Fig. 20. (Color online) Kinematic moments of inertia versus spin for chiral doublet bands in $A \sim 100$ mass region.

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables [(]]

Fig. 21. (Color online) Kinematic moments of inertia versus spin for chiral doublet bands in $A \sim 130$ mass region.

Fig. 22. (Color online) Kinematic moments of inertia versus spin for chiral doublet bands in $A\sim 190$ mass region.

and ¹⁸⁸Ir. Normally, the kinematic moment of inertia remains roughly constant.

2.6. Dynamic moment of inertia

From the definition $\mathcal{J}^{(2)}(I) = \hbar \, \mathrm{d}I/\mathrm{d}\omega(I)$, the dynamic moments of inertia $\mathcal{J}^{(2)}$ for all chiral doublet bands in $A \sim 80$, 100, 130, and 190 mass regions are shown in Figs. 23–26, respectively.

Fig. 23. (Color online) Dynamic moments of inertia versus spin for chiral doublet bands in $A\sim80$ mass region.

Since the $\mathcal{J}^{(2)}$ corresponds to the second derivative of the energy with the spin, a large fluctuation exists. Nevertheless, similarities between the yrast bands and the side bands still exist in most chiral doublet bands.

2.7. Electromagnetic transition probability

The ratios of the magnetic dipole transition strength to the electric quadrupole transition strength B(M1)/B(E2) for all chiral doublet bands in $A \sim 80$, 100, 130, and 190 mass regions are given in Figs. 27–30, respectively. For the ideal chiral bands, due to the restoration of the chiral symmetry in the laboratory frame there are phase consequences for the chiral wavefunctions resulting in

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

Fig. 24. (Color online) Dynamic moments of inertia versus spin for chiral doublet bands in $A \sim 100$ mass region.

Fig. 25. (Color online) Dynamic moments of inertia versus spin for chiral doublet bands in $A \sim 130$ mass region.

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

Fig. 26. (Color online) Dynamic moments of inertia versus spin for chiral doublet bands in $A \sim 190$ mass region.

Fig. 27. (Color online) B(M1)/B(E2) ratios versus spin for chiral doublet bands in the $A \sim 80$ mass region.

M1 and E2 selection rules which can manifest as B(M1)/B(E2) ratios staggering as a function of spin. And the B(M1)/B(E2) ratios are expected to be very similar for the chiral partner bands [73].

For the nuclei 106 Mo, 98 Tc, 100 Tc, 110 Ru, 112 Ru, 102 Rh, 106 Rh, 111 Rh, 113 Rh, 104 Ag, 126 I, 128 Cs, 132 Cs, 132 La, 134 La, 134 Pr, 136 Nd, 137 Nd, 138 Nd, 188 Ir, and 198 Tl, the B(M1)/B(E2) ratios are extracted by equation (2) in Ref. [113]. For the nuclei 104 Rh, 106 Ag, 107 Ag, 124 Cs, 126 Cs, 130 Cs, 135 Nd, and 194 Tl with B(M1) and B(E2) values available, the B(M1)/B(E2) ratios are also calculated. The other data available are from the original references. The staggering of the B(M1)/B(E2) ratios exists in most chiral doublet bands.

3. Summary

Since the prediction of nuclear chirality in 1997, the nuclear chirality has become one of the hot topics in current nuclear physics frontiers. Experimentally, 59 chiral doublet bands in 47 chiral nuclei (including 8 nuclei with multiple chiral doublets) have been reported in $A \sim 80$, 100, 130, and 190 mass regions.

The spins, parities, energies, ratios of the magnetic dipole transition strengths to the electric quadrupole transition strengths, and related references for these nuclei have been compiled and listed in Table 1. For these nuclei with the magnetic dipole transition strengths and the electric quadrupole transition strengths measured, the corresponding results have been given in Table 2. A brief discussion has been provided after the presentation of energy E, energy difference ΔE , energy staggering parameter S(I), rotational frequency ω , kinematic moment of inertia $\mathcal{J}^{(1)}$, dynamic moment of inertia $\mathcal{J}^{(2)}$, and ratio of the magnetic dipole transition strength to the electric quadrupole transition strength B(M1)/B(E2) versus spin I in each mass region.

Acknowledgments

The authors are indebted to Prof. J. Meng for the suggestion of this topic and the guidance during this work. The authors express thanks to R. Bark, U. Garg, A. A. Hecht, P. Joshi, T. Koike, C. Liu, M. L. Liu, J. B. Lu, Y. X. Luo, K. Y. Ma, Y. J. Ma, G. Rainovski, A. K. Singh, K. Starosta, J. Timár, B. Wadsworth, S. Y. Wang, Y. Zheng, L. H. Zhu, S. F. Zhu, and S. J. Zhu for providing the data and helpful suggestions. Fruitful discussions with F. Q. Chen, Q. B. Chen, Z. Shi, Y. K. Wang, X. H. Wu, S. Q. Zhang, Z. H. Zhang, and P. W.

Fig. 28. (Color online) B(M1)/B(E2) ratios versus spin for chiral doublet bands in the $A \sim 100$ mass region.

Fig. 29. (Color online) B(M1)/B(E2) ratios versus spin for chiral doublet bands in the $A \sim 130$ mass region.

Fig. 30. (Color online) B(M1)/B(E2) ratios versus spin for chiral doublet bands in the $A \sim 190$ mass region.

Zhao are very much appreciated. This work is supported in part by the Major State 973 Program of China (Grant No. 2013CB834400) and the National Natural Science Foundation of China (Grant Nos. 11335002, 11375015, 11461141002, and 11621131001).

References

 J. Meng (Ed.), Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics, vol. 10, World Scientific, Singapore, 2016, pp. 387–411.

- [2] S. Frauendorf, J. Meng, Nuclear Phys. A 617 (1997) 131.
- [3] J. Meng, S.Q. Zhang, J. Phys. G: Nucl. Part. Phys. 37 (2010) 064025.
- [4] S. Frauendorf, Rev. Modern Phys. 73 (2001) 463.
- [5] J. Meng, Internat. J. Modern Phys. E 20 (2011) 341.
- [6] J. Meng, P.W. Zhao, Phys. Scr. 91 (2016) 053008.
- [7] S.G. Zhou, Phys. Scr. 91 (2016) 063008.
- [8] J.A. Sheikh, G.H. Bhat, W.A. Dar, S. Jehangir, P.A. Ganai, Phys. Scr. 91 (2016) 063015.
- [9] A.A. Raduta, Prog. Part. Nucl. Phys. 90 (2016) 241.
- [10] K. Starosta, T. Koike, Phys. Scr. 92 (2017) 093002.
- [11] J. Peng, J. Meng, S.Q. Zhang, Phys. Rev. C 68 (2003) 044324.
- [12] T. Koike, K. Starosta, I. Hamamoto, Phys. Rev. Lett. 93 (2004) 172502.
- [13] B. Qi, S.Q. Zhang, S.Y. Wang, J.M. Yao, J. Meng, Phys. Rev. C 79 (2009) 041302(R).
- [14] B. Qi, S.Q. Zhang, S.Y. Wang, J. Meng, Chin. Phys. Lett. 27 (2010) 112101.
- [15] Q.B. Chen, J.M. Yao, S.Q. Zhang, B. Qi, Phys. Rev. C 82 (2010) 067302.
- [16] S.Q. Zhang, B. Qi, S.Y. Wang, J. Meng, Phys. Rev. C 75 (2007) 044307.
- [17] S.Y. Wang, S.Q. Zhang, B. Qi, J. Peng, J.M. Yao, J. Meng, Phys. Rev. C 77 (2008) 034314.
- [18] S.Y. Wang, B. Qi, D.P. Sun, Phys. Rev. C 82 (2010) 027303.
- [19] B. Qi, S.Y. Wang, S.Q. Zhang, Chin. Phys. Lett. 28 (2011) 122101.
- [20] B. Qi, S.Q. Zhang, J. Meng, S.Y. Wang, S. Frauendorf, Phys. Lett. B 675 (2009) 175.
- [21] B. Qi, S.Q. Zhang, S.Y. Wang, J. Meng, T. Koike, Phys. Rev. C 83 (2011) 034303.
- [22] B. Qi, J. Li, S.Y. Wang, J. Zhang, S.Q. Zhang, Chin. Phys. Lett. 29 (2012) 072101.
- [23] K. Starosta, C.J. Chiara, D.B. Fossan, T. Koike, T.T.S. Kuo, D.R. LaFosse, S.G. Rohoziński, Ch. Droste, T. Morek, J. Srebrny, Phys. Rev. C 65 (2002) 044328.
- [24] T. Koike, K. Starosta, C.J. Chiara, D.B. Fossan, D.R. LaFosse, Phys. Rev. C 67 (2003) 044319.
- [25] Ch. Droste, S.G. Rohoziński, K. Starosta, L. Próchniak, E. Grodner, Eur. Phys. J. A 42 (2009) 79.
- [26] D. Tonev, G. de Angelis, P. Petkov, A. Dewald, S. Brant, S. Frauendorf, D.L. Balabanski, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, A. Fitzler, A. Gadea, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D.R. Napoli, A. Paleni, C.M.

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ▮ (▮▮▮▮) ▮▮▮-▮▮▮

- Petrache, G. Prete, K.O. Zell, Y.H. Zhang, Jing-ye Zhang, Q. Zhong, D. Curien, Phys. Rev. Lett. 96 (2006) 052501.
- [27] D. Tonev, G. de Angelis, S. Brant, S. Frauendorf, P. Petkov, A. Dewald, F. Dönau, D.L. Balabanski, Q. Zhong, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, D. Curien, F. Della Vedova, A. Fitzler, A. Gadea, G. Lo Bianco, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D.R. Napoli, R. Orlandi, E. Sahin, A. Saltarelli, J. Valiente Dobon, K.O. Zell, Jing-ye Zhang, Y.H. Zhang, Phys. Rev. C 76 (2007) 044313.
- [28] S. Brant, D. Tonev, G. De Angelis, A. Ventura, Phys. Rev. C 78 (2008) 034301.
- [29] S. Brant, C.M. Petrache, Phys. Rev. C 79 (2009) 054326.
- [30] A.A. Raduta, Al.H. Raduta, C.M. Petrache, J. Phys. G: Nucl. Part. Phys. 43 (2016) 095107.
- [31] M. Shimada, Y. Fujioka, S. Tagami, Y.R. Shimizu, Phys. Rev. C 97 (2018) 024319.
- [32] K. Higashiyama, N. Yoshinaga, K. Tanabe, Phys. Rev. C 72 (2005) 024315.
- [33] K. Higashiyama, N. Yoshinaga, Phys. Rev. C 88 (2013) 034315.
- [34] V.I. Dimitrov, S. Frauendorf, F. Dönau, Phys. Rev. Lett. 84 (2000) 5732.
- [35] H. Madokoro, J. Meng, M. Matsuzaki, S. Yamaji, Phys. Rev. C 62 (2000) 061301(R).
- [36] J. Meng, J. Peng, S.Q. Zhang, P.W. Zhao, Front. Phys. 8 (2013) 55.
- [37] P. Olbratowski, J. Dobaczewski, J. Dudek, W. Płóciennik, Phys. Rev. Lett. 93 (2004) 052501.
- [38] S. Mukhopadhyay, D. Almehed, U. Garg, S. Frauendorf, T. Li, P.V. Madhusudhana Rao, X. Wang, S.S. Ghugre, M.P. Carpenter, S. Gros, A. Hecht, R.V.F. Janssens, F.G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu, Phys. Rev. Lett. 99 (2007) 172501.
- [39] D. Almehed, F. Dönau, S. Frauendorf, Phys. Rev. C 83 (2011) 054308.
- [40] Q.B. Chen, S.Q. Zhang, P.W. Zhao, R.V. Jolos, J. Meng, Phys. Rev. C 87 (2013) 024314.
- [41] Q.B. Chen, S.Q. Zhang, P.W. Zhao, R.V. Jolos, J. Meng, Phys. Rev. C 94 (2016) 044301
- [42] K. Hara, Y. Sun, Internat. J. Modern Phys. E 4 (1995) 637.
- [43] G.H. Bhat, R.N. Ali, J.A. Sheikh, R. Palit, Nuclear Phys. A 922 (2014) 150.
- [44] F.Q. Chen, Q.B. Chen, Y.A. Luo, J. Meng, S.Q. Zhang, Phys. Rev. C 96 (2017) 051303(R).
- [45] F.Q. Chen, J. Meng, Acta Phys. Polon. B 11 (2018) 1001.
- [46] P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193.
- [47] J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57 (2006) 470.
- [48] J. Meng, S.G. Zhou, J. Phys. G: Nucl. Part. Phys. 42 (2015) 093101.
- [49] H.Z. Liang, J. Meng, S.G. Zhou, Phys. Rep. 570 (2015) 1.
- [50] J. Meng, J. Peng, S.Q. Zhang, S.G. Zhou, Phys. Rev. C 73 (2006) 037303.
- [51] J.M. Yao, B. Qi, S.Q. Zhang, J. Peng, S.Y. Wang, J. Meng, Phys. Rev. C 79 (2009) 067302.
- [52] J. Peng, H. Sagawa, S.Q. Zhang, J.M. Yao, Y. Zhang, J. Meng, Phys. Rev. C 77 (2008) 024309.
- [53] A.D. Ayangeakaa, U. Garg, M.D. Anthony, S. Frauendorf, J.T. Matta, B.K. Nayak, D. Patel, Q.B. Chen, S.Q. Zhang, P.W. Zhao, B. Qi, J. Meng, R.V.F. Janssens, M.P. Carpenter, C.J. Chiara, F.G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu, S.S. Ghugre, R. Palit, Phys. Rev. Lett. 110 (2013) 172504.
- [54] I. Kuti, Q.B. Chen, J. Timár, D. Sohler, S.Q. Zhang, Z.H. Zhang, P.W. Zhao, J. Meng, K. Starosta, T. Koike, E.S. Paul, D.B. Fossan, C. Vaman, Phys. Rev. Lett. 113 (2014) 032501.
- [55] C. Liu, S.Y. Wang, R.A. Bark, S.Q. Zhang, J. Meng, B. Qi, P. Jones, S.M. Wyngaardt, J. Zhao, C. Xu, S.-G. Zhou, S. Wang, D.P. Sun, L. Liu, Z.Q. Li, N.B. Zhang, H. Jia, X.Q. Li, H. Hua, Q.B. Chen, Z.G. Xiao, H.J. Li, L.H. Zhu, T.D. Bucher, T. Dinoko, J. Easton, K. Juhász, A. Kamblawe, E. Khaleel, N. Khumalo, E.A. Lawrie, J.J. Lawrie, S.N.T. Majola, S.M. Mullins, S. Murray, J. Ndayishimye, D. Negi, S.P. Noncolela, S.S. Ntshangase, B.M. Nyakó, J.N. Orce, P. Papka, J.F. Sharpey-Schafer, O. Shirinda, P. Sithole, M.A. Stankiewicz, M. Wiedeking, Phys. Rev. Lett. 116 (2016) 112501.
- [56] C.M. Petrache, B.F. Lv, A. Astier, E. Dupont, Y.K. Wang, S.Q. Zhang, P.W. Zhao, Z.X. Ren, J. Meng, P.T. Greenlees, H. Badran, D.M. Cox, T. Grahn, R. Julin, S. Juutinen, J. Konki, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, B. Cederwall, Ö. Aktas, A. Ertoprak, H. Liu, S. Matta, P. Subramaniam, S. Guo, M.L. Liu, X.H. Zhou, K.L. Wang, I. Kuti, J. Timár, A. Tucholski, J. Srebrny, C. Andreoiu, Phys. Rev. C 97 (2018) 041304(R).
- [57] J.A. Alcántara-Núñez, J.R.B. Oliveira, E.W. Cybulska, N.H. Medina, M.N. Rao, R.V. Ribas, M.A. Rizzutto, W.A. Seale, F. Falla-Sotelo, K.T. Wiedemann, V.I. Dimitrov, S. Frauendorf, Phys. Rev. C 69 (2004) 024317.
- [58] J. Timár, P. Joshi, K. Starosta, V.I. Dimitrov, D.B. Fossan, J. Molnár, D. Sohler, R. Wadsworth, A. Algora, P. Bednarczyk, D. Curieng, Zs. Dombrádi, G. Duchene, A. Gizon, J. Gizon, D.G. Jenkins, T. Koike, A. Krasznahorkay, E.S. Paul, P.M. Raddon, G. Rainovski, J.N. Scheurer, A.J. Simons, C. Vaman, A.R. Wilkinson, L. Zolnai, S. Frauendorf, Phys. Lett. B 598 (2004) 178.
- [59] J. Li, S.Q. Zhang, J. Meng, Phys. Rev. C 83 (2011) 037301.

- [60] C.Y. He, B. Zhang, L.H. Zhu, X.G. Wu, H.B. Sun, Y. Zheng, B.B. Yu, L.L. Wang, G.S. Li, S.H. Yao, C. Xu, J.G. Wang, L. Gu, Plasma Sci. Technol. 14 (2012) 518.
- [61] Dan Jerrestam, W. Klamra, J. Gizon, F. Lidén, L. Hildingsson, J. Kownacki, Th. Lindblad, J. Nyberg, Nuclear Phys. A 577 (1994) 786.
- [62] B. Qi, H. Jia, N.B. Zhang, C. Liu, S.Y. Wang, Phys. Rev. C 88 (2013) 027302.
- [63] C.M. Petrache, S. Frauendorf, M. Matsuzaki, R. Leguillon, T. Zerrouki, S. Lunardi, D. Bazzacco, C.A. Ur, E. Farnea, C. Rossi Alvarez, R. Venturelli, G. de Angelis, Phys. Rev. C 86 (2012) 044321.
- [64] J. Peng, J. Meng, P. Ring, S.Q. Zhang, Phys. Rev. C 78 (2008) 024313.
- [65] P.W. Zhao, S.Q. Zhang, J. Peng, H.Z. Liang, P. Ring, J. Meng, Phys. Lett. B 699 (2011) 181.
- [66] L.F. Yu, P.W. Zhao, S.Q. Zhang, P. Ring, J. Meng, Phys. Rev. C 85 (2012) 024318.
- [67] P.W. Zhao, J. Peng, H.Z. Liang, P. Ring, J. Meng, Phys. Rev. Lett. 107 (2011) 122501.
- [68] P.W. Zhao, J. Peng, H.Z. Liang, P. Ring, J. Meng, Phys. Rev. C 85 (2012) 054310.
- [69] P.W. Zhao, S.Q. Zhang, J. Meng, Phys. Rev. C 92 (2015) 034319.
- [70] Y.K. Wang, Phys. Rev. C 96 (2017) 054324.
- [71] P.W. Zhao, N. Itagaki, J. Meng, Phys. Rev. Lett. 115 (2015) 022501.
- [72] P.W. Zhao, Phys. Lett. B 773 (2017) 1.
- [73] S.Y. Wang, S.Q. Zhang, B. Qi, J. Meng, Chin. Phys. Lett. 24 (2007) 664.
- [74] S.Y. Wang, B. Qi, L. Liu, S.Q. Zhang, H. Hua, X.Q. Li, Y.Y. Chen, L.H. Zhu, J. Meng, S.M. Wyngaardt, P. Papka, T.T. Ibrahim, R.A. Bark, P. Datta, E.A. Lawrie, J.J. Lawrie, S.N.T. Majola, P.L. Masiteng, S.M. Mullins, J. Gál, G. Kalinka, J. Molnár, B.M. Nyakó, J. Timár, K. Juhász, R. Schwengner, Phys. Lett. B 703 (2011) 40.
- [75] S.J. Zhu, J.H. Hamilton, A.V. Ramayya, J.K. Hwang, J.O. Rasmussen, Y.X. Luo, K. Li, J.G. Wang, X.L. Che, H.B. Ding, S. Frauendorf, V. Dimitrov, Q. Xu, L. Gu, Y.Y. Yang, Chin. Phys. C 33 (2009) 145.
- [76] H.B. Ding, S.J. Zhu, J.G. Wang, L. Gu, Q. Xu, Z.G. Xiao, E.Y. Yeoha, M. Zhang, L.H. Zhu, X.G. Wu, Y. Liu, C.Y. He, L.L. Wang, B. Pan, G.S. Li, Chin. Phys. Lett. 27 (2010) 072501.
- [77] P. Joshi, A.R. Wilkinson, T. Koike, D.B. Fossan, S. Finnigan, E.S. Paul, P.M. Raddon, G. Rainovski, K. Starosta, A.J. Simons, C. Vaman, R. Wadsworth, Eur. Phys. J. A 24 (2005) 23.
- [78] Y.X. Luo, S.J. Zhu, J.H. Hamilton, A.V. Ramayya, C. Goodin, K. Li, X.L. Che, J.K. Hwang, I.Y. Lee, Z. Jiang, G.M. Ter-akopian, A.V. Daniel, M.A. Stoyer, R. Donangelo, S. Frauendorf, V. Dimitrov, Jing-ye Zhang, J.D. Cole, N.J. Stone, J.O. Rasmussen, Internat. J. Modern Phys. E 18 (2009) 1697.
- [79] D. Tonev, M.S. Yavahchova, N. Goutev, G. de Angelis, P. Petkov, R.K. Bhowmik, R.P. Singh, S. Muralithar, N. Madhavan, R. Kumar, M. Kumar Raju, J. Kaur, G. Mohanto, A. Singh, N. Kaur, R. Garg, A. Shukla, Ts.K. Marinov, S. Brant, Phys. Rev. Lett. 112 (2014) 052501.
- [80] C. Vaman, D.B. Fossan, T. Koike, K. Starosta, I.Y. Lee, A.O. Macchiavelli, Phys. Rev. Lett. 92 (2004) 032501.
- [81] P. Joshi, D.G. Jenkins, P.M. Raddon, A.J. Simons, R. Wadsworth, A.R. Wilkinson, D.B. Fossan, T. Koike, K. Starosta, C. Vaman, J. Timár, Zs. Dombrádi, A. Krasznahorkay, J. Molnár, D. Sohler, L. Zolnai, A. Algora, E.S. Paul, G. Rainovski, A. Gizon, J. Gizon, P. Bednarczyk, D. Curien, G. Duchêne, J.N. Scheurer, Phys. Lett. B 595 (2004) 135.
- [82] Y.X. Luo, S.C. Wu, J. Gilat, J.O. Rasmussen, J.H. Hamilton, A.V. Ramayya, J.K. Hwang, C.J. Beyer, S.J. Zhu, J. Kormicki, X.Q. Zhang, E.F. Jones, P.M. Gore, I-Yang Lee, P. Zielinski, C.M. Folden, T.N. Ginter, P. Fallon, G.M. Ter-Akopian, A.V. Daniel, M.A. Stoyer, J.D. Cole, R. Donangelo, S.J. Asztalos, A. Gelberg, Phys. Rev. C 69 (2004) 024315.
- [83] Z.G. Wang, M.L. Liu, Y.H. Zhang, X.H. Zhou, B.T. Hu, N.T. Zhang, S. Guo, B. Ding, Y.D. Fang, J.G. Wang, G.S. Li, Y.H. Qiang, S.C. Li, B.S. Gao, Y. Zheng, W. Hua, X.G. Wu, C.Y. He, Y. Zheng, C.B. Li, J.J. Liu, S.P. Hu, Phys. Rev. C 88 (2013) 024306.
- [84] J. Timár, T. Koike, N. Pietralla, G. Rainovski, D. Sohler, T. Ahn, G. Berek, A. Costin, K. Dusling, T.C. Li, E.S. Paul, K. Starosta, C. Vaman, Phys. Rev. C 76 (2007) 024307.
- [85] E.O. Lieder, R.M. Lieder, R.A. Bark, Q.B. Chen, S.Q. Zhang, J. Meng, E.A. Lawrie, J.J. Lawrie, S.P. Bvumbi, N.Y. Kheswa, S.S. Ntshangase, T.E. Madiba, P.L. Masiteng, S.M. Mullins, S. Murray, P. Papka, D.G. Roux, O. Shirinda, Z.H. Zhang, P.W. Zhao, Z.P. Li, J. Peng, B. Qi, S.Y. Wang, Z.G. Xiao, C. Xu, Phys. Rev. Lett. 112 (2014) 202502.
- [86] K. Starosta, T. Koike, C.J. Chiara, D.B. Fossan, D.R. LaFosse, Nuclear Phys. A 682 (2001) 375c.
- [87] Y.X. Zhao, T. Komatsubara, Y.J. Ma, Y.H. Zhang, S.Y. Wang, Y.Z. Liu, K. Furuno, Chin. Phys. Lett. 26 (2009) 082301.
- [88] Y. Zheng, L.H. Zhu, X.G. Wu, Z.C. Gao, C.Y. He, G.S. Li, L.L. Wang, Y.S. Chen, Y. Sun, X. Hao, Y. Liu, X.Q. Li, B. Pan, Y.J. Ma, Z.Y. Li, H.B. Ding, Phys. Rev. C 86 (2012) 014320.
- [89] U. Yon-Nam, S.J. Zhu, M. Sakhaee, L.M. Yang, C.Y. Gan, L.Y. Zhu, R.Q. Xu, X.L. Che, M.L. Li, Y.J. Chen, S.X. Wen, X.G. Wu, L.H. Zhu, G.S. Li, J. Peng, S.Q. Zhang, J. Meng, J. Phys. G: Nucl. Part. Phys. 31 (2005) B1.
- [90] K. Selvakumar, A.K. Singh, Chandan Ghosh, Purnima Singh, A. Goswami, R. Raut, A. Mukherjee, U. Datta, P. Datta, S. Roy, G. Gangopadhyay, S. Bhowal,

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

- S. Muralithar, R. Kumar, R.P. Singh, M. Kumar Raju, Phys. Rev. C 92 (2015) 064307
- [91] E. Grodner, I. Sankowska, T. Morek, S.G. Rohoziński, Ch. Droste, J. Srebrny, A.A. Pasternak, M. Kisieliński, M. Kowalczyk, J. Kownacki, J. Mierzejewski, A. Król, K. Wrzosek, Phys. Lett. B 703 (2011) 46.
- [92] E. Grodner, J. Srebrny, A.A. Pasternak, I. Zalewska, T. Morek, Ch. Droste, J. Mierzejewski, M. Kowalczyk, J. Kownacki, M. Kisieliński, S.G. Rohoziński, T. Koike, K. Starosta, A. Kordyasz, P.J. Napiorkowski, M. Wolińska-Cichocka, E. Ruchowska, W. Płóciennik, J. Perkowski, Phys. Rev. Lett. 97 (2006) 172501.
- [93] A.J. Simons, P. Joshi, D.G. Jenkins, P.M. Raddon, R. Wadsworth, D.B. Fossan, T. Koike, C. Vaman, K. Starosta, E.S. Paul, H.J. Chantler, A.O. Evans, P. Bednarczyk, D. Curien, J. Phys. G: Nucl. Part. Phys. 31 (2005) 541.
- [94] G. Rainovski, E.S. Paul, H.J. Chantler, P.J. Nolan, D.G. Jenkins, R. Wadsworth, P. Raddon, A. Simons, D.B. Fossan, T. Koike, K. Starosta, C. Vaman, E. Farnea, A. Gadea, Th. Kröll, R. Isocrate, G. de Angelis, D. Curien, V.I. Dimitrov, Phys. Rev. C 68 (2003) 024318.
- [95] K.Y. Ma, J.B. Lu, D. Yang, H.D. Wang, Y.Z. Liu, X.G. Wu, Y. Zheng, C.Y. He, Phys. Rev. C 85 (2012) 037301.
- [96] T. Koike, K. Starosta, C.J. Chiara, D.B. Fossan, D.R. LaFosse, Phys. Rev. C 63 (2001) 061304(R).
- [97] I. Kuti, J. Timár, D. Sohler, E.S. Paul, K. Starosta, A. Astier, D. Bazzacco, P. Bednarczyk, A.J. Boston, N. Buforn, H.J. Chantler, C.J. Chiara, R.M. Clark, M. Cromaz, M. Descovich, Zs. Dombrádi, P. Fallon, D.B. Fossan, C. Fox, A. Gizon, J. Gizon, A.A. Hecht, N. Kintz, T. Koike, I.Y. Lee, S. Lunardi, A.O. Macchiavelli, P.J. Nolan, B.M. Nyakó, C.M. Petrache, J.A. Sampson, H.C. Scraggs, T.G. Tornyi, R. Wadsworth, A. Walker, L. Zolnai, Phys. Rev. C 87 (2013) 044323.
- [98] C.M. Petrache, Q.B. Chen, S. Guo, A.D. Ayangeakaa, U. Garg, J.T. Matta, B.K. Nayak, D. Patel, J. Meng, M.P. Carpenter, C.J. Chiara, R.V.F. Janssens, F.G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu, S.S. Ghugre, R. Palit, Phys. Rev. C 94 (2016) 064309.
- [99] R.A. Bark, A.M. Baxter, A.P. Byrne, G.D. Dracoulis, T. Kibédi, T.R. McGoram, S.M. Mullins, Nuclear Phys. A 691 (2001) 577.
- [100] J. Timár, K. Starosta, I. Kuti, D. Sohler, D.B. Fossan, T. Koike, E.S. Paul, A.J. Boston, H.J. Chantler, M. Descovich, R.M. Clark, M. Cromaz, P. Fallon, I.Y. Lee, A.O. Macchiavelli, C.J. Chiara, R. Wadsworth, A.A. Hecht, D. Almehed, S. Frauendorf, Phys. Rev. C 84 (2011) 044302.
- [101] C.M. Petrache, R. Venturelli, D. Vretenar, D. Bazzacco, G. Bonsignori, S. Brant, S. Lunardi, M.A. Rizzutto, C. Rossi Alvarez, G. de Angelis, M. De Poli, D.R. Napoli, Nuclear Phys. A 617 (1997) 228.
- [102] D.J. Hartley, L.L. Riedinger, M.A. Riley, D.L. Balabanski, F.G. Kondev, R.W. Laird, J. Pfohl, D.E. Archer, T.B. Brown, R.M. Clark, M. Devlin, P. Fallon, I.M. Hibbert, D.T. Joss, D.R. LaFosse, P.J. Nolan, N.J. O'Brien, E.S. Paul, D.G. Sarantites, R.K. Sheline, S.L. Shepherd, J. Simpson, R. Wadsworth, Jing-ye Zhang, P.B. Semmes, F. Dönau, Phys. Rev. C 64 (2001) 031304(R).
- [103] K.Y. Ma, J.B. Lu, Z. Zhang, J.Q. Liu, D. Yang, Y.M. Liu, X. Xu, X.Y. Li, Y.Z. Liu, X.G. Wu, Y. Zheng, C.B. Li, Phys. Rev. C 97 (2018) 014305.
- [104] A.A. Hecht, C.W. Beausang, K.E. Zyromski, D.L. Balabanski, C.J. Barton, M.A. Caprio, R.F. Casten, J.R. Cooper, D.J. Hartley, R. Krücken, D. Meyer, H. Newman, J.R. Novak, E.S. Paul, N. Pietralla, A. Wolf, N.V. Zamfir, Jing-ye Zhang, F. Dönau, Phys. Rev. C 63 (2001) 051302(R).
- [105] A.A. Hecht, C.W. Beausang, H. Amro, C.J. Barton, Z. Berant, M.A. Caprio, R.F. Casten, J.R. Cooper, D.J. Hartley, R. Krücken, D.A. Meyer, H. Newman, J.R. Novak, N. Pietralla, J.J. Ressler, A. Wolf, N.V. Zamfir, Jing-ye Zhang, K.E. Zyromski, Phys. Rev. C 68 (2003) 054310.
- [106] D.L. Balabanski, M. Danchev, D.J. Hartley, L.L. Riedinger, O. Zeidan, Jing-ye Zhang, C.J. Barton, C.W. Beausang, M.A. Caprio, R.F. Casten, J.R. Cooper, A.A. Hecht, R. Krücken, J.R. Novak, N.V. Zamfir, K.E. Zyromski, Phys. Rev. C 70 (2004) 044305.
- [107] J. Ndayishimye, E.A. Lawrie, O. Shirinda, J.L. Easton, S.M. Wyngaardt, R.A. Bark, S.P. Bvumbi, T.R.S. Dinoko, P. Jones, N.Y. Kheswa, J.J. Lawrie, S.N.T. Majola, P.L. Masiteng, D. Negi, J.N. Orce, P. Papka, J.F. Sharpey-Schafer, M. Stankiewicz, M. Wiedeking, Acta Phys. Polon. B 48 (2017) 343.
- [108] P.L. Masiteng, E.A. Lawrie, T.M. Ramashidzha, J.J. Lawrie, R.A. Bark, R. Lindsay, F. Komati, J. Kau, P. Maine, S.M. Maliage, I. Matamba, S.M. Mullins, S.H.T. Murray, K.P. Mutshena, A.A. Pasternak, D.G. Roux, J.F. Sharpey-Schafer, O. Shirinda, P.A. Vymers, Eur. Phys. J. A 50 (2014) 119.
- [109] E.A. Lawrie, P.A. Vymers, Ch. Vieu, J.J. Lawrie, C. Schück, R.A. Bark, R. Lindsay, G.K. Mabala, S.M. Maliage, P.L. Masiteng, S.M. Mullins, S.H.T. Murray, I. Ragnarsson, T.M. Ramashidzha, J.F. Sharpey-Schafer, O. Shirinda, Eur. Phys. J. A 45 (2010) 39.
- [110] S.J. Zhu, J.H. Hamilton, A.V. Ramayya, P.M. Gore, J.O. Rasmussen, V. Dimitrov, S. Frauendorf, R.Q. Xu, J.K. Hwang, D. Fong, L.M. Yang, K. Li, Y.J. Chen, X.Q. Zhang, E.F. Jones, Y.X. Luo, I.Y. Lee, W.C. Ma, J.D. Cole, M.W. Drigert, M. Stoyer, G.M. Ter-Akopian, A.V. Daniel, Eur. Phys. J. A 25 (Suppl. 1) (2005) 459.
- [111] Y.X. Luo, S.J. Zhu, J.H. Hamilton, J.O. Rasmussen, A.V. Ramayya, C. Goodin, K. Li, J.K. Hwang, D. Almehed, S. Frauendorf, V. Dimitrov, Jing-ye Zhang, X.L. Che,

- Z. Jang, I. Stefanescu, A. Gelberg, G.M. Ter-Akopian, A.V. Daniel, M.A. Stoyer, R. Donangelo, J.D. Cole, N.J. Stone, Phys. Lett. B 670 (2009) 307.
- [112] S. Frauendorf, J. Meng, Z. Phys. A 356 (1996) 263.
- [113] Y.H. Zhang, S.Q. Zhang, Q.Z. Zhao, S.F. Zhu, H.S. Xu, X.H. Zhou, Y.X. Guo, X.G. Lei, J. Lu, W.X. Huang, Q.B. Gou, H.J. Jin, Z. Liu, Y.X. Luo, X.F. Sun, Y.T. Zhu, X.G. Wu, S.X. Wen, C.X. Yang, Phys. Rev. C 60 (1999) 044311.
- [114] C. Liu, Private Communication, January 2018.
- [115] J.H. Hamilton, Y.X. Luo, S.J. Zhu, J.O. Rasmussen, A.V. Ramayya, C. Goodin, K. Li, J.K. Hwang, S. Liu, D. Almehed, S. Frauendorf, V. Dimitrov, Jing-ye Zhang, X.L. Che, Z. Jang, I. Stefanescu, A. Gelberg, G.M. Ter-Akopian, A.V. Daniel, I.Y. Lee, H.B. Ding, R.Q. Xu, J.G. Wang, Q. Xu, M.A. Stoyer, R. Donangelo, N.J. Stone, Acta Phys. Polon. B 40 (2009) 523.
- [116] C. Vaman, (Ph.D. dissertation), State University of New York, 2004.
- [117] J. Timár, C. Vaman, K. Starosta, D.B. Fossan, T. Koike, D. Sohler, I.Y. Lee, A.O. Macchiavelli, Phys. Rev. C 73 (2006) 011301(R).
- [118] T. Suzuki, G. Rainovski, T. Koike, T. Ahn, M.P. Carpenter, A. Costin, M. Danchev, A. Dewald, R.V.F. Janssens, P. Joshi, C.J. Lister, O. Möller, N. Pietralla, T. Shinozuka, J. Timár, R. Wadsworth, C. Vaman, S. Zhu, Phys. Rev. C 78 (2008) 031302(R).
- [119] J. Timár, Private Communication, December 2017.
- [120] P. Joshi, S. Finnigan, D.B. Fossan, T. Koike, E.S. Paul, G. Rainovski, K. Starosta, C. Vaman, R. Wadsworth, J. Phys. G: Nucl. Part. Phys. 31 (2005) S1895.
- [121] P. Joshi, M.P. Carpenter, D.B. Fossan, T. Koike, E.S. Paul, G. Rainovski, K. Starosta, C. Vaman, R. Wadsworth, Phys. Rev. Lett. 98 (2007) 102501.
- [122] Y. Zheng, L.H. Zhu, X.G. Wu, C.Y. He, G.S. Li, X. Hao, B.B. Yu, S.H. Yao, B. Zhang, C. Xu, J.G. Wang, L. Gu, Chin. Phys. Lett. 31 (2014) 062101.
- [123] N. Rather, P. Datta, S. Chattopadhyay, S. Rajbanshi, A. Goswami, G.H. Bhat, J.A. Sheikh, S. Roy, R. Palit, S. Pal, S. Saha, J. Sethi, S. Biswas, P. Singh, H.C. Jain, Phys. Rev. Lett. 112 (2014) 202503.
- [124] R.A. Bark, E.O. Lieder, R.M. Lieder, E.A. Lawrie, J.J. Lawrie, S.P. Bvumbi, N.Y. Kheswa, S.S. Ntshangase, T.E. Madiba, P.L. Masiteng, S.M. Mullins, S. Murray, P. Papka, O. Shirinda, Q.B. Chen, S.Q. Zhang, Z.H. Zhang, P.W. Zhao, C. Xu, J. Meng, D.G. Roux, Z.P. Li, J. Peng, B. Qi, S.Y. Wang, Z.G. Xiao, Internat. J. Modern Phys. E 23 (2014) 1461001.
- [125] B. Zhang, L.H. Zhu, H.B. Sun, C.Y. He, X.G. Wu, J.B. Lu, Y.J. Ma, X. Hao, Y. Zheng, B.B. Yu, G.S. Li, S.H. Yao, L.L. Wang, C. Xu, J.G. Wang, L. Gu, Chin. Phys. C 35 (2011) 1009.
- [126] S.H. Yao, H.L. Ma, L.H. Zhu, X.G. Wu, C.Y. He, Y. Zheng, B. Zhang, G.S. Li, C.B. Li, S.P. Hu, X.P. Cao, B.B. Yu, C. Xu, Y.Y. Cheng, Phys. Rev. C 89 (2014) 014327.
- [127] X.F. Li, Y.J. Ma, Y.Z. Liu, J.B. Lu, G.Y. Zhao, L.C. Yin, R. Meng, Z.L. Zhang, L.J. Wen, X.H. Zhou, Y.X. Guo, X.G. Lei, Z. Liu, J.J. He, Y. Zheng, Chin. Phys. Lett. 19 (2002) 1779.
- [128] S.Y. Wang, Y.Z. Liu, T. Komatsubara, Y.J. Ma, Y.H. Zhang, Phys. Rev. C74 (2006) 017302
- [129] K. Starosta, T. Koike, C.J. Chiara, D.B. Fossan, D.R. LaFosse, A.A. Hecht, C.W. Beausang, M.A. Caprio, J.R. Cooper, R. Krücken, J.R. Novak, N.V. Zamfir, K.E. Zyromski, D.J. Hartley, D.L. Balabanski, Jing-ye Zhang, S. Frauendorf, V.I. Dimitrov, Phys. Rev. Lett. 86 (2001) 971.
- [130] L.L. Wang, X.G. Wu, L.H. Zhu, G.S. Li, X. Hao, Y. Zheng, C.Y. He, L. Wang, X.Q. Li, Y. Liu, B. Pan, Z.Y. Li, H.B. Ding, Chin. Phys. C 33 (2009) 173.
- [131] X.G. Wu, L.L. Wang, L.H. Zhu, G.S. Li, X. Hao, Y. Zheng, C.Y. He, X.Q. Li, B. Pan, Y. Liu, L. Wang, Y.X. Zhao, Z.Y. Li, H.B. Ding, Plasma Sci. Technol. 14 (2012) 526.
- [132] G. Rainovski, E.S. Paul, H.J. Chantler, P.J. Nolan, D.G. Jenkins, R. Wadsworth, P. Raddon, A. Simons, D.B. Fossan, T. Koike, K. Starosta, C. Vaman, E. Farnea, A. Gadea, Th. Kröll, G. de Angelis, R. Isocrate, D. Curien, V.I. Dimitrov, J. Phys. G: Nucl. Part. Phys. 29 (2003) 2763.
- [133] C.M. Petrache, S. Brant, D. Bazzacco, G. Falconi, E. Farnea, S. Lunardi, V. Paar, Zs. Podolyák, R. Venturelli, D. Vretenar, Nuclear Phys. A 635 (1998) 361.
- [134] C.M. Petrache, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, M. De Poli, D. Bucurescu, C.A. Ur, P.B. Semmes, R. Wyss, Nuclear Phys. A 597 (1996) 106.
- [135] C.M. Petrache, G.B. Hagemann, I. Hamamoto, K. Starosta, Phys. Rev. Lett. 96 (2006) 112502.
- [136] D. Tonev, P. Petkov, D.L. Balabanski, G. de Angelis, A. Gadea, D.R. Napoli, N. Marginean, A. Dewald, P. Pejovic, A. Fitzler, O. Möller, K.O. Zell, S. Brant, S. Frauendorf, D. Bazzacco, S. Lenzi, S. Lunardi, P. Bednarczyk, D. Curien, C. Petrache, Q. Zhong, Y.H. Zhang, Jing-ye Zhang, Internat. J. Modern Phys. E 15 (2006) 1531.
- [137] D. Tonev, G. de Angelis, S. Brant, S. Frauendorf, P. Petkov, A. Dewald, F. Dönau, D.L. Balabanski, Q. Zhong, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, D. Curien, F. Della Vedova, A. Fitzler, A. Gadea, G. Lo Bianco, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D.R. Napoli, R. Orlandi, E. Sahin, A. Saltarelli, J. Valiente Dobon, K.O. Zell, Jing-ye Zhang, Y.H. Zhang, Phys. Rev. C 76 (2007) 044313
- [138] S. Zhu, U. Garg, B.K. Nayak, S.S. Ghugre, N.S. Pattabiraman, D.B. Fossan, T. Koike, K. Starosta, C. Vaman, R.V.F. Janssens, R.S. Chakrawarthy, M.

ARTICLE IN PRESS

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

- Whitehead, A.O. Macchiavelli, S. Frauendorf, Phys. Rev. Lett. 91 (2003) 132501.
- [139] E. Mergel, C.M. Petrache, G. Lo Bianco, H. Hübel, J. Domscheit, D. Roßbach, G. Schönwaßer, N. Nenoff, A. Neußer, A. Görgen, F. Becker, E. Bouchez, M. Houry, A. Hürstel, Y.L. Coz, R. Lucas, Ch. Theisen, W. Korten, A. Bracco, N. Blasi, F. Camera, S. Leoni, F. Hannachi, A. Lopez-Martens, M. Rejmund, D. Gassmann, P. Reiter, P.G. Thirolf, A. Astier, N. Buforn, M. Meyer, N. Redon, O. Stezowski, Eur. Phys. J. A 15 (2002) 417.
- [140] S. Mukhopadhyay, D. Almehed, U. Garg, S. Frauendorf, T. Li, P.V. Madhusudhana Rao, X. Wang, S.S. Ghugre, M.P. Carpenter, S. Gros, A. Hecht, R.V.F. Janssens, F.G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu, Phys. Rev. C 78 (2008) 034311.
- [141] C.W. Beausang, A.A. Hecht, K.E. Zyromski, D. Balabanski, C.J. Barton, M.A. Caprio, R.F. Casten, J.R. Cooper, D. Hartley, R. Krücken, J.R. Novak, N.V. Zamfir, Jing-ye Zhang, F. Dönau, Nuclear Phys. A 682 (2001) 394c.

[142] A.A. Hecht, (Ph.D. dissertation), Yale University, 2004.

78 (2008) 021305(R).

- [143] P.L. Masiteng, E.A. Lawrie, T.M. Ramashidzha, R.A. Bark, B.G. Carlsson, J.J. Lawrie, R. Lindsay, F. Komati, J. Kau, P. Maine, S.M. Maliage, I. Matamba, S.M. Mullins, S.H.T. Murray, K.P. Mutshena, A.A. Pasternak, I. Ragnarsson, D.G. Roux, J.F. Sharpey-Schafer, O. Shirinda, P.A. Vymers, Phys. Lett. B 719 (2013) 83.
- [144] P.L. Masiteng, A.A. Pasternak, E.A. Lawrie, O. Shirinda, J.J. Lawrie, R.A. Bark, S.P. Bvumbi, N.Y. Kheswa, R. Lindsay, E.O. Lieder, R.M. Lieder, T.E. Madiba, S.M. Mullins, S.H.T. Murray, J. Ndayishimye, S.S. Ntshangase, P. Papka, J.F. Sharpey-Schafer, Eur. Phys. J. A 52 (2016) 28.
- 145] E.A. Lawrie, P.A. Vymers, J.J. Lawrie, Ch. Vieu, R.A. Bark, R. Lindsay, G.K. Mabala, S.M. Maliage, P.L. Masiteng, S.M. Mullins, S.H.T. Murray, I. Ragnarsson, T.M. Ramashidzha, C. Schück, J.F. Sharpey-Schafer, O. Shirinda, Phys. Rev. C

16

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

Explanation of Tables

Table 1. Chiral doublet bands.

 $_{\mathbf{z}}^{\mathbf{A}}\mathbf{X}_{N}$ Denotes the specific nuclide with

X chemical symbol A mass number Z atomic number N neutron number

A horizontal line connecting a row marks the end of entry for each chiral nucleus. For multiple chiral doublet bands, the pairs of

chiral doublet bands are separated by a horizontal line starting from the second column.

 I^{π} I denotes the level spin in units of \hbar for each band member. π denotes the parity (+or –). References for each nucleus are given

directly in last column.

E Level energy in units of keV. The number of digits follows the original experimental article. In the energy column, yrast and side denote the two partners of chiral doublet bands. The star marks the level which is the yrast state (the lowest state for given spin)

in the nucleus.

B(M1)/B(E2) The ratio of reduced transition strength in units of μ_N^2/e^2b^2 with the uncertainties available in parentheses. The number of digits follow the original experimental article. In the B(M1)/B(E2) column, yrast and side denote the two partners of chiral doublet bands. For the nuclei 106 Mo, 98 Tc, 100 Tc, 110 Ru, 112 Ru, 102 Rh, 106 Rh, 111 Rh, 113 Rh, 104 Ag, 126 I, 128 Cs, 132 Cs, 132 La, 134 La, 134 Pr, 136 Nd,

Table 2. Chiral doublet bands with B(M1) and B(E2) values.

B(M1) The magnetic dipole transition strength in units of μ_N^2 with the uncertainties available in parentheses. The number of digits follows the original experimental article. In the B(M1) column, yrast and side denote the two partners of chiral doublet bands.

B(E2) The electric quadrupole transition strength in units of e^2b^2 with the uncertainties available in parentheses. The number of digits

follows the original experimental article. In the B(E2) column, yrast and side denote the two partners of chiral doublet bands.

Please cite this article in press as: B.W. Xiong, Y.Y. Wang, Nuclear chiral doublet bands data tables, Atomic Data and Nuclear Data Tables (2018), https://doi.org/10.1016/j.adt.2018.05.002.

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare) \blacksquare \blacksquare

Table 1Chiral doublet bands. See Explanation of Tables for details.

Nuclei	$I^{\pi}(\hbar)$	E (keV)		· // · / · / · / · /		References
		yrast	side	yrast	side	
⁷⁸ Br ₄₃	8+	465.7*				[55,114]
	9+	975.3*	1408.6	.0.07422		
	10 ⁺	1369.4*	1881.5	$2.13918 \left(^{+0.07423}_{-0.07423} \right)$		
	11 ⁺	1937.8*	2482.8	$10.56231\left(^{+0.92806}_{-0.92806}\right)$	$6.15398 \left(^{+0.88693}_{-0.88693}\right)$	
	12+	2582.5*	2975.9	< 0.82258	$1.6983(^{+0.40338}_{-0.40338})$	
	13 ⁺	3146.0*	3644.4	$7.4299 \left(^{+0.6144}_{-0.6144} ight)$		
	14 ⁺	4046.2*		< 1.85685		
	15 ⁺	4539.0*		$8.02873 \left(^{+1.56134}_{-1.56134} \right)$		
	16 ⁺	5600.2*				
	17 ⁺ 18 ⁺	6084.6* 7268.2				
	19 ⁺	7818.4				
	20^{+}	9132.2				
	6-	422.6	601.1			[55,114]
	7-	683.4	828.6	0.24644(+0.07277)	0.47 (+0.08)	
	8-	1028.5	1190.2	$0.31614 \begin{pmatrix} +0.07277 \\ -0.07277 \end{pmatrix}$	$0.17 \begin{pmatrix} +0.08 \\ -0.08 \end{pmatrix}$	
	9-	1461.1	1602.8	$1.30596\left(^{+0.29978}_{-0.29978}\right)$	$0.65(^{+0.13}_{-0.13})$	
	10-	1902.8	2026.3	< 0.39233	< 0.2717	
	11 ⁻	2452.8	2666.5	2.53562 (^{+1.14277} _{-1.14277})	< 0.64594	
	12 ⁻ 13 ⁻	3013.8 3616.8	3073.1	< 1.12632 $4.08762 \left(^{+1.65843}_{-1.65843} \right)$	< 1.3865	
	14 ⁻	4292.0	4319.4	4.06702 (-1.65843)		
	15-	4919.5				
	16-	5764.0				
	17 ⁻ 19 ⁻	6412.3 8045.1				
80n						[7.4]
⁸⁰ ₃₅ Br ₄₅	6 ⁺ 7 ⁺	357.1* 447.7*				[74]
	8 ⁺	616.0*				
	9^+	1141.6*	1534.8	$7.6744\left(^{+1.6049}_{-1.6049}\right)$		
	10 ⁺	1588.7*	2002.2	$1.5662 \left(^{+0.1989}_{-0.1989}\right)$		
	11 ⁺	2257.6*	2681.4	$17.8417 \left(^{+3.3394}_{-3.3394}\right)$	$7.3 \left(^{+1.8}_{-1.8}\right)$	
	12 ⁺	2945.4*	3212.9	$1.9518 \left(^{+0.2036}_{-0.2036}\right)$	$5.3 \left(^{+1.3}_{-1.3} \right)$	
	13 ⁺	3658.7*	3972.9	$6.206\left(^{+1.8574}_{-1.8574} ight)$		
	14 ⁺	4451.8*		$0.2253\left(^{+0.0484}_{-0.0484} ight)$		
	15 ⁺	5195.2		0.0101		
	16 ⁺	5936.5				
$^{106}_{42}\text{Mo}_{64}$	4 ⁻ 5-	1052.4	1937.0			[75,110]
	5 ⁻ 6 ⁻	1952.4 2142.9	2090.6 2276.5			
	7 ⁻	2369.5	2499.0	0.58	0.22	
	8-	2630.1	2746.6	0.40	0.16	
	9 ⁻	2922.3	3041.7	0.25	0.15	
	10 ⁻ 11 ⁻	3239.5 3592.8	3349.8 3707.7	0.22 < 0.55	0.28 0.42	
	12 ⁻	3946.4	4049.4	< 0.58	< 0.49	
	13-	4372.7				
	14-	4753.2				
⁹⁸ Тс ₅₅	9-	1166.2	46	0.7		[76]
	10 ⁻ 11 ⁻	1582.5 1851.4*	1920.6	9.7 7.2		
	11 12 ⁻	2303.9*	2368.8 2671.1	7.2 5.9	3.0	
	13 ⁻	2677.4*	3266.3	2.4	< 1.9	
	14^{-}	3130.2*		1.9		
	15-	3724.7		0.9		
$^{100}_{43}$ Tc ₅₇	9-	778*	4500			[77]
	10-	1155*	1583			

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare)

Table 1	(continue	d)
---------	-----------	----

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2$	$/e^2b^2$)	References
		yrast	side	yrast	side	=
	11-	1406*	2055	$6.55(^{+0.04}_{-0.04})$		
	12-	1840*	2394	10.34 (+0.17)	$12.93\left(^{+4.14}_{-4.14}\right)$	
	13-	2238*	2802	$2.67 \begin{pmatrix} +0.02 \\ -0.02 \end{pmatrix}$	·4.14	
	14-	2693*	3273	$6.41 \left(^{+0.46}_{-0.46} \right)$		
	15-	3234*	3693	$1.71 \left(^{+0.18}_{-0.18} \right)$		
			3093			
	16-	3713*		$2.99 \binom{+0.32}{-0.32}$		
	17-	4357*		$3.13 \left(^{+1.74}_{-1.74} \right)$		
¹¹⁰ Ru ₆₆	4-		2016.2			[75,78,111,115]
	5 ⁻ 6 ⁻	2242.0	2145.3			
	7-	2242.9 2426.5	2328.0 2516.7			
	8-	2637.4	2764.7	0.38	0.30	
	9-	2892.7	3041.4	0.40	0.24	
	10-	3175.3	3337.1	0.29	0.48	
	11-	3485.3*	3689.9	0.42	0.23	
	12 ⁻ 13 ⁻	3818.5 4195.5*	4038.8 4446.3	0.32 < 0.77	0.63	
	14 ⁻	4566.5	4874.1	\ U.11		
	15-	5010.8*	5302.5			
	16-	5412.8				
¹¹² Ru ₆₈	5-	2003.2	22242			[75,78,111,115]
	6 ⁻ 7 ⁻	2230.2 2489.2	2334.2 2574.3			
	8 ⁻	2489.2 2771.7	2574.3 2829.2	0.50		
	9-	3076.5	3094.1	0.29	0.20	
	10-	3420.8	3379.8	0.40	0.38	
	11-	3768.3	3711.5	0.67	0.34	
	12-	4198.8	4032.5	0.71	< 0.91	
	13 ⁻ 14 ⁻	4561.7 5072.9	4428.3 4769.6			
	15 ⁻	3072.3	5227.8			
¹⁰² Rh ₅₇	8-	78				[79,116]
.5	9-	224		10.53		
	10-	587*	1048	$6.32 \left(^{+0.53}_{-0.53}\right)$		
	11^{-}	893*	1500	$11.42(^{+0.79}_{-0.79})$		
	12-	1355*	1859	$11.27(^{+0.83}_{-0.83})$	$4.24(^{+0.63}_{-0.63})$	
	13-	1793*	2323	$7.37(^{+0.50}_{-0.50})$	$6.94(^{+2.44}_{-2.44})$	
	14^{-}	2281*		15.61 (^{+1.37} _{-1.37})	22.82 (^{+5.48} _{-5.48})	
	15 ⁻	2809*		$7.16 \left(^{+0.70}_{-0.70} \right)$	\-J.46 /	
	16 ⁻	3337*		$10.85 \begin{pmatrix} +1.18 \\ -1.18 \end{pmatrix}$		
	17-	3939*		$7.87 \binom{+0.79}{-0.79}$		
103	18-	4544*		$10.49 \left(^{+1.50}_{-1.50}\right)$		F= 4 4 1 = 1 1 1 1 1
¹⁰³ Rh ₅₈	10.5 ⁺ 11.5 ⁺	3238 3357				[54,117–119]
	11.5 ⁺	3591		$23.9 \binom{+8.3}{-8.3}$		
	13.5 ⁺	3899	4445	$14.2 \begin{pmatrix} +1.8 \\ -1.8 \end{pmatrix}$		
	14.5 ⁺	4281	4789	$11.4 \begin{pmatrix} -1.8 \end{pmatrix}$ $11.4 \begin{pmatrix} +1.6 \\ -1.6 \end{pmatrix}$		
					12.4 (+2.9)	
	15.5 ⁺	4665	5166	$12.2 \begin{pmatrix} +2.1 \\ -2.1 \end{pmatrix}$	$12.1 \left(^{+2.9}_{-2.9} \right)$	
	16.5 ⁺	5156	5616	$13.3 \left(^{+1.7}_{-1.7} \right)$	$10.3 (^{+3.0}_{-3.0})$	
	17.5^{+}	5622	6062	$11.8 \binom{+1.7}{-1.7}$	$5.7 \left(^{+1.3}_{-1.3}\right)$	
	18.5 ⁺	6163	6528	$15.1\left(^{+3.2}_{-3.2}\right)$	$23.9\left(^{+12.7}_{-12.7}\right)$	
	19.5 ⁺	6706	7074	$15.0 \begin{pmatrix} +5.2 \\ -5.2 \end{pmatrix}$	$9.0 \binom{+5.0}{-5.0}$	
	20.5+	7317		$22.8 \begin{pmatrix} +9.8 \\ -9.8 \end{pmatrix}$	\—5.U/	
	21.5+	7952		$17.4(^{+8.5}_{-8.5})$		[FA44F 446]
	6.5^{-}	2033				[54,117–119]
	7.5	2219				
	8.5	2343		$40.6(^{+7.3}_{-7.3})$		

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare) \blacksquare \blacksquare

Table 1 (continued)

luclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2/$	e ² b ²)	References
		yrast	side	yrast	side	-
	9.5-	2538	2744	25.0 (+3.3)		
	10.5^{-}	2751	2934	$37.1(^{+5.8}_{-5.8})$		
	11.5-	3011*	3273	$16.8 (^{+2.0}_{-2.0})$		
	12.5	3327*	3615	$16.8 \binom{+3.6}{-3.6}$	$21.1\left(^{+2.5}_{-2.5}\right)$	
	13.5	3769*	4080	$12.9\left(^{+2.2}_{-2.2}\right)$	$12.6 \binom{+1.5}{-1.5}$	
	14.5^{-}	4195	4559	$10.0(^{+2.4}_{-2.4})$	$10.2(^{+1.5}_{-1.5})$	
	15.5 ⁻	4763	5091	$13.4 \begin{pmatrix} +3.0 \\ -3.0 \end{pmatrix}$	$5.4 \left(^{+1.5}_{-1.5} \right)$	
	16.5 ⁻	5297	5685	$6.7 \left(^{+1.0}_{-1.0} \right)$	$6.8 \begin{pmatrix} -3.9 \\ -3.9 \end{pmatrix}$	
	17.5 ⁻	5923		$11.3 \left(^{+2.9}_{-2.9}\right)$		
	18.5 ⁻	6586		$4.3 \left(^{+1.5}_{-1.5} \right)$		
	19.5 ⁻	7186		$12.4 \left(^{+5.4}_{-5.4} \right)$		
	6.5^{-}	2228				[54,117-119]
	7.5	2366	2443			
	8.5 ⁻	2520	2643	20.9 (+4.8)	10.3 (+3.5)	
	9.5 ⁻	2699	2871	$30.8 \binom{+4.8}{-4.8}$	$10.3 \binom{+3.5}{-3.5}$	
	10.5 ⁻	2915	3090	$18.2 \binom{+2.0}{-2.0}$ $28.2 \binom{+9.7}{-9.7}$	$33.1 \binom{+13.4}{-13.4}$ $15.2 \binom{+5.1}{-5.1}$	
	11.5	3227	3416		$15.2 \begin{pmatrix} -5.1 \\ -5.1 \end{pmatrix}$ $13.7 \begin{pmatrix} +3.0 \\ -3.0 \end{pmatrix}$	
	12.5	3668	3778	$17.7 \binom{+2.5}{-2.5}$		
	13.5	4106	4210	3.8 (+0.5)	$10.2 \begin{pmatrix} +2.6 \\ -2.6 \end{pmatrix}$	
	14.5	4606	4659	5.3 (+0.5)	$11.9 \left(^{+3.4}_{-3.4}\right)$	
	15.5	5061	5059	$2.7 \binom{+0.6}{-0.6}$		
	16.5	5577		$4.3 \begin{pmatrix} +1.0 \\ -1.0 \end{pmatrix}$		
245.1	17.5	6143		6.8 (+3.5)		[00.440]
04Rh ₅₉	9 ⁻ 10 ⁻	483* 840*	1228	$15.079\left(^{+2.643}_{-2.643}\right)$		[80,118]
	11-	1168*	1582	$9.785 \begin{pmatrix} +1.483 \\ -1.483 \end{pmatrix}$		
	12-	1636*	1971	$11.282 \begin{pmatrix} +1.384 \\ -1.384 \end{pmatrix}$		
	13-	2111*	2370	$6.289 \begin{pmatrix} +0.646 \\ -0.646 \end{pmatrix}$		
	14 ⁻	2639*	2834	0.203 (-0.646)		
	15 ⁻	3229*	3320			
	16 ⁻	3800*	3876			
05ph	17 ⁻ 11.5 ⁺	4406 2982*	4406			[57 59 110]
⁰⁵ Rh ₆₀	11.5 ⁺	3198*				[57,58,119]
	13.5 ⁺	3478*	4003	$9.9 (^{+1.8}_{-1.8})$		
	14.5 ⁺	3839*	4299	$15.6 (^{+3.6}_{-3.6})$		
	15.5 ⁺	4215*	4690	$13.6 \binom{+3.2}{-3.2}$	$8.2\left(^{+2.7}_{-2.7} ight)$	
	16.5 ⁺	4702*	5081	$14.4(^{+2.9}_{-2.9})$	$11.1\left(^{+3.2}_{-3.2}\right)$	
	17.5 ⁺	5184	5525	$13.5 \left(^{+2.8}_{-2.8}\right)$	$8.6 \left(^{+2.5}_{-2.5}\right)$	
	18.5 ⁺	5764	6020	$13.4(^{+2.9}_{-2.9})$	$9.1\left(^{+2.7}_{-2.7}\right)$	
	19.5 ⁺	6345	6566	$11.3\left(^{+2.2}_{-2.2}\right)$	$7.5 \left(^{+2.6}_{-2.6}\right)$	
	20.5^{+}	7038	7156	$10.8(^{+2.9}_{-2.9})$	$8.2\left(^{+4.4}_{-4.4}\right)$	
	21.5 ⁺	7713		$8.4(^{+3.0}_{-3.0})$		
	22.5^{+}	8467	8524	9.6 (+5.4)		
	23.5^{+}	9213		5. •		
	7.5 ⁻	2470	2417 2512			[57]
	8.5 ⁻ 9.5 ⁻	2478 2670	2512 2645			
	10.5^{-}	2915	2824			
	11.5 ⁻ 12.5 ⁻	3268 3669	3077 3469			
	13.5	4094	5.05			
	0-	428*				[01]
⁰⁶ Rh ₆₁	9 ⁻ 10 ⁻	761*	1053	8.87 (+2.42)		[81]

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare) \blacksquare \blacksquare \blacksquare

Table 1 (continued)

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2$	References	
		yrast	side	yrast	side	
	11-	1071*	1410	$5.66(^{+0.30}_{-0.30})$		
	12-	1488*	1787	$8.13 \left(^{+0.92}_{-0.92}\right)$	$59.10(^{+61.39}_{-61.39})$	
	13-	1905*	2258	$4.66(^{+0.36}_{-0.36})$	$2.23(^{+0.82}_{-0.82})$	
	14^{-}	2359*	2730	$6.92(^{+0.58}_{-0.58})$	$10.11(^{+6.10}_{-6.10})$	
	15-	2859*	3214	$4.52(^{+0.45}_{-0.45})$	$5.68 \left(^{+2.94}_{-2.94}\right)$	
	16-	3323*	3708	$5.93\left(^{+0.60}_{-0.60} ight)$	$6.06\left(^{+9.90}_{-9.90} ight)$	
	17-	3864*		$4.44\left(^{+0.91}_{-0.91}\right)$		
	18-	4320*		$7.27(^{+1.87}_{-1.87})$		
	19-	4861*		$3.77 \left(^{+1.59}_{-1.59}\right)$		
	20^{-}	5363*		$3.85 \left(^{+1.01}_{-1.01} \right)$		
	21^{-}	5948*		$4.57 \left(^{+2.28}_{-2.28}\right)$		
	22-	6533*		$4.64(^{+2.59}_{-2.59})$		
¹¹¹ Rh ₆₆	10.5 ⁺	2112.7*	2722		2.20	[82]
	11.5 ⁺ 12.5 ⁺	2355.4* 2650.8*	2733.2 2984.5	4.79	2.39 8.25	
	13.5 ⁺	2964.4*	3272.3	5.74		
	14.5 ⁺ 15.5 ⁺	3325.4* 3742.5*	3523.9 3933.4	4.92	4.09	
	16.5 ⁺	37 42.3	4249.3*			
¹³ Rh ₆₈	9.5+	1775.5*		3.27		[82]
	10.5 ⁺ 11.5 ⁺	2038.0* 2470.3	2133.2 2446.5*	3.23 1.90		
	12.5 ⁺	2723.3*	2776.9	4.47	3.84	
	13.5+	3090.9*	3133.0	3.23		
	14.5 ⁺ 15.5 ⁺	3334.8* 3770.2*				
	16.5 ⁺	4006.0*				
⁰⁴ Ag ₅₇	8-	1077				[83]
	9 ⁻ 10 ⁻	1253 1599*	2212			
	11-	1932*	2711	$13.3 \left(^{+1.8}_{-1.8}\right)$		
	12-	2376*	3040	$11.9\left(^{+2.7}_{-2.7}\right)$	$13.0(^{+5.0}_{-5.0})$	
	13-	2820*	3351	$12.2\left(^{+3.2}_{-3.2}\right)$	$18.4 \left(^{+8.3}_{-8.3} \right)$	
	14^{-}	3301*	3648	$14.1(^{+3.8}_{-3.8})$		
	15-	3809*	4097	$14.4 \left(^{+3.2}_{-3.2}\right)$		
	16^{-}	4329*	4625	$14.1 \binom{+2.2}{-2.2}$	$17.2 (^{+6.8}_{-6.8})$	
	17 ⁻	4901*		$11.7 \binom{+3.0}{-3.0}$		
	18 ⁻ 19 ⁻	5529* 6133		$16.3 \left(^{+\overline{5.7}}_{-5.7} \right)$		
^{.05} Ag ₅₈	7.5		2622.2			[84]
	8.5	2000.2	2775.2			
	9.5 ⁻ 10.5 ⁻	2908.2 3102.2	2944.2 3177.2			
	11.5	3409.2	3481.2			
	12.5	3786.2	3867.2		$17.0(^{+4.4}_{-4.4})$	
	13.5	4250.2	4314.2	$8.0(^{+1.6}_{-1.6})$	$10.7 \left(^{+1.9}_{-1.9}\right)$	
	14.5^{-}	4719.2	4797.2	$14.2 \binom{+3.1}{-3.1}$	$12.1 \left(^{+2.5}_{-2.5}\right)$	
	15.5	5227.2	5335.2	6.5 (+2.0)	8.2 (+4.3)	
¹⁰⁶ Ag ₅₉	10-	2271.7	3203.8			[85,120-124]
	11 ⁻ 12 ⁻	2441.4 2660.4	3423.5 3676.0			
	13-	2930.2	3941.6			

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare ($\blacksquare \blacksquare \blacksquare$) $\blacksquare \blacksquare \blacksquare \blacksquare$

Table 1 (continued)

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2/$	References	
		yrast	side	yrast	side	
	14-	3256.7	4263.7	$13.350(^{+6.980}_{-6.980})$		
	15-	3686.1	4636.6	$9.132\left(^{+2.633}_{-2.633} ight)$	$11.675\left(^{+4.845}_{-4.845} ight)$	
	16-	4223.3*	5051.7	$5.444\left(^{+1.273}_{-1.273}\right)$	$8.797\left(^{+2.337}_{-2.337}\right)$	
	17-	4742.6*	5561.2	$4.584\left(^{+1.313}_{-1.313}\right)$	$6.863\left(^{+2.269}_{-2.269}\right)$	
	18-	5414.9*	6065.8	$7.471\left(^{+4.078}_{-4.078}\right)$	$6.391\left(^{+2.115}_{-2.115}\right)$	
	19 ⁻	6026.8*	6691.0	$5.686 \left(^{+1.459}_{-1.459}\right)$	$5.434\left(^{+2.013}_{-2.013}\right)$	
	20^{-}	6760.7*	7276.7	$6.721\left(^{+2.400}_{-2.400} ight)$	$6.544\left(^{+3.018}_{-3.018}\right)$	
	21^{-}	7531.7	7945.6	$1.857 \left(^{+1.092}_{-1.092}\right)$		
	22^{-}	8192.5				
⁰⁷ Ag ₆₀	10.5	2620.8*	2901.6	. 2.05		[60,125,126]
	11.5	2928.7*	3091.8	$6.94 \left(^{+3.06}_{-3.06} \right)$		
	12.5	3338.7*	3392.0	$9.11\left(^{+2.85}_{-2.85}\right)$		
	13.5	3800.0	3897.5	$10.63(^{+3.40}_{-3.40})$		
	14.5 ⁻ 15.5 ⁻	4270.0 4878.8	4349.6	6.50		
	15.5 16.5	4878.8 5437.3	4932.0			
	11.5^{+}	3334.8				[60,61,125,126]
	12.5 ⁺	3556.7		$34.67 \left(^{+22.29}_{-22.29}\right)$		
	13.5 ⁺	3851.3		$11.74 \left(^{+3.65}_{-3.65}\right)$		
	14.5^{+}	4230.0*	4841.7	$12.00\left(^{+3.12}_{-3.12}\right)$		
	15.5 ⁺	4626.4*	5131.1	$13.57 \left(^{+3.61}_{-3.61}\right)$		
	16.5^{+}	5120.5*	5448.9	$8.26(^{+2.77}_{-2.77})$		
	17.5 ⁺	5621.5*	5818.4	7.81		
	18.5 ⁺ 19.5 ⁺	6192.8* 6785.9	6250.2 6761.3*			
	20.5 ⁺	7441.1	7315.5*			
	21.5^{+}		7919.9*			
10-	22.5+	0.0	8591.2*			Log1
⁸ I ₆₅	7 ⁻ 8 ⁻	0* 123*				[86]
	9-	353*	821			
	10 ⁻	647*	1025			
	11 ⁻ 12 ⁻	980* 1343*	1332 1702			
	13-	1733*	2111			
	14 ⁻ 15 ⁻	2149* 2588	2550			
²³ I ₇₀	10.5+	2300	2876			[87]
3170	10.5 ⁺	3083	3200	$1.0(^{+0.3}_{-0.3})$	$2.55(^{+0.45}_{-0.45})$	[67]
	12.5 ⁺	3324*	3490	$1.1 \binom{+0.4}{-0.4}$	$1.75 \begin{pmatrix} +0.35 \\ -0.35 \end{pmatrix}$	
	13.5 ⁺	3716	3903	$0.9 \begin{pmatrix} +0.5 \\ -0.5 \end{pmatrix}$	$1.80 \begin{pmatrix} +0.50 \\ -0.50 \end{pmatrix}$	
	14.5 ⁺	4055*	4250	(-0.5)	$1.53 \begin{pmatrix} -0.50 \end{pmatrix}$ $1.53 \begin{pmatrix} +0.60 \\ -0.60 \end{pmatrix}$	
	14.5 ⁺	4542	4699		(-0.60)	
	16.5 ⁺	4901*				
	18.5 ⁺ 20.5 ⁺	5819* 6863*				
²⁶ 1 ₇₃	8-	410.7*				[88]
3*/3	9-	735.1*				[OO]

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables ■ (■■■) ■■■-■■■

Table	1	(continue	ď

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2/2)$	(e ² b ²)	References
		yrast	side	yrast	side	_
	10-	1129.7*		$1.44(^{+0.03}_{-0.03})$		
	11-	1468.4*	2213.7	$1.83 \left(^{+0.04}_{-0.04}\right)$		
	12-	1893.7*	2432.7	$1.53 \begin{pmatrix} +0.05 \\ -0.05 \end{pmatrix}$		
	13 ⁻	2322.1*	2707.6	$0.22 \begin{pmatrix} +0.01 \\ -0.01 \end{pmatrix}$	$3.73(^{+0.15}_{-0.15})$	
					5.75 (_{-0.15})	
	14-	2759.1*	2959.4	$3.02 \begin{pmatrix} +0.16 \\ -0.16 \end{pmatrix}$	5.49 (+0.46)	
	15 ⁻	3290.4	3358.6	$0.32 \binom{+0.03}{-0.03}$	$9.47 \left(^{+0.86}_{-0.86}\right)$	
	16-	3674.5	3745.9	$4.95(^{+0.42}_{-0.42})$	$4.00(^{+0.50}_{-0.50})$	
	17-	4184.1	4235.6	$< 1.84 (^{+0.09}_{-0.09})$	$3.00(^{+0.38}_{-0.38})$	
	18-	4534.1	4649.9	$1.39(^{+0.14}_{-0.14})$		
	19-	5143.0		$< 5.56 (^{+0.62}_{-0.62})$		
	20^{-}	5528.9		\sim 1.48 $(^{+0.18}_{-0.18})$		
	21^{-}	6231.5		\sim 0.44 ($^{+0.06}_{-0.06}$)		
	22^{-}	6659.7		_0.00°		
¹²² Cs ₆₇	10 ⁺	368.4*				[89]
	11 ⁺	674.4*	915.4			
	12 ⁺ 13 ⁺	840.8* 1233.2*	1221.5			
	13 ⁺	1233.2° 1499.9*	1492.2 1911.7			
	15 ⁺	1937.3*	2227.3			
	16 ⁺	2313.8*	2757.2			
	17+	2769.1*	3093.2			
	18 ⁺ 19 ⁺	3250.8*	4040.0			
	20 ⁺	3706.8* 4284.7*	4048.0			
	21 ⁺	4731.5*				
¹²⁴ Cs ₆₉	8+	561.9*				[90]
55 0569	9 ⁺	619.9*				[50]
	10 ⁺	743.9*				
	11+	1055.9*	1260.2			
	12 ⁺ 13 ⁺	1275.9*	1631.2			
	13 ⁺ 14 ⁺	1673.9* 1989.9*	1893.2 2265.2	$0.86(^{+0.24}_{-0.31})$	$1.37 \left(^{+0.60}_{-0.63}\right)$	
	15 ⁺	2446.9*	2666.2	$3.40 \begin{pmatrix} +1.11 \\ -1.53 \end{pmatrix}$	$2.69 \left(^{+0.98}_{-0.87}\right)$	
	16 ⁺	2858.9*	3090.2	$0.22(^{+0.06}_{-0.05})$	$0.42(^{+0.16}_{-0.16})$	
	17 ⁺	3344.9*	3574.2	$2.95(^{+1.15}_{-0.75})$	$1.62 \left(^{+0.73}_{-0.60}\right)$	
	18 ⁺	3832.9*		$0.28(^{+0.06}_{-0.06})$		
	19 ⁺	4342.9*		3.02 (+0.68)		
	20^{+}	4906.9*		0.28 (+0.07)		
	21 ⁺	5424.9*				
				$2.44 \begin{pmatrix} +1.19 \\ -1.14 \end{pmatrix}$		
	22^{+}	6086.9*		$0.32 (^{+0.06}_{-0.06})$		
	23+	6550.9		$2.44(^{+0.68}_{-0.68})$		
	24 ⁺ 25 ⁺	7357.9 7649.9				
1260						[04.405.400]
¹²⁶ Cs ₇₁	9 ⁺ 10 ⁺	0* 140*				[91,127,128]
	10 · 11+	477*	637			
	12 ⁺	732*	999			
	13 ⁺	1128*	1326			
	14+	1471*	1671	$0.64 \left(^{+0.44}_{-0.12} ight) \ 4.43 \left(^{+3.71}_{-1.04} ight)$	$1.26 \left(^{+0.64}_{-0.26} \right) \\ 3.04 \left(^{+2.75}_{-0.85} \right)$	
	15 ⁺	1935*	2097	$4.43 \begin{pmatrix} +3.71 \\ -1.04 \end{pmatrix}$	$3.04 \left(^{+2.75}_{-0.85} \right)$	
	16 ⁺	2350*	2572	$0.26(^{+0.10}_{-0.04})$	$1.47 \left(^{+0.90}_{-0.23} ight)$	
	17 ⁺	2846*	3033	$2.95(^{+1.96}_{-0.62})$	$0.92(^{+0.58}_{-0.19})$	
	18 ⁺	3311*		$0.48 (^{+0.16}_{-0.07})$	2.10	
	19 ⁺	3839*	4040	$3.63 \begin{pmatrix} +3.50 \\ -1.05 \end{pmatrix}$		
			7070	0.03 (-1.05)		
	20 ⁺	4357*		$0.83 \binom{+0.40}{-0.11}$		
	21+	4911*		$2.65 \left(^{+3.75}_{-1.21}\right)$		
¹²⁸ Cs ₇₃	9 ⁺	0*				[24,92,96]
	10 ⁺	143*				
	11 ⁺	492*	652			

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare ($\blacksquare \blacksquare \blacksquare$) $\blacksquare \blacksquare \blacksquare \blacksquare$

300	13 ⁺ 14 ⁺ 15 ⁺ 16 ⁺	yrast 1173*	side	yrast	side	
300	14 ⁺ 15 ⁺		1207			
300	15 ⁺	4 = 4 4*	1387	8.3	1.2	
300		1544*	1744	0.8	6.9	
300	16⊤	2009*	2188	3.7	4.9	
300	17±	2419*	2647	2.6	2.2	
30c	17 ⁺ 18 ⁺	2913* 3349*	3100	2.6	2.2	
300	19 ⁺	3864*				
300	20 ⁺	4336*				
	10+	959.7*				[24,86,93,129–131]
¹³⁰ Cs ₇₅	10 ⁺	1312.7*	1506.4			[24,80,93,129-131]
	12 ⁺	1602.4*	1907.7	$4.12 \left(^{+1.77}_{-1.39} \right)$		
	13 ⁺	2019.0*			2 12 (+1.41)	
			2280.7	6.75 (+2.18)	$2.13 \begin{pmatrix} +1.41 \\ -1.02 \end{pmatrix}$	
	14 ⁺	2445.1*	2632.0	$1.71(^{+0.94}_{-0.70})$	$2.50(^{+0.67}_{-1.35})$	
	15 ⁺	2913.5*	3085.0	$4.84 \left(^{+3.99}_{-2.93} \right)$	$7.84 \left(^{+7.70}_{-4.91} \right)$	
	16 ⁺	3379.1*	3563.4	1.00 (+0.24)		
					4.04	
	17 ⁺ 18 ⁺	3871.0* 4320.8	4038.4	5.66 (^{+4.53} _{-3.24}) 3.25	4.04	
	18 ⁺	4320.8 4859.0	5105.1	3,43		
	20 ⁺	5338.4	3103.1			
	21 ⁺	5899.3				
	22^{+}	6450.3				
	23+	6930.6				
	24 ⁺	7487.5				
	26+	8622.0				
¹³² Cs ₇₇	9+	1131				[24,94,132]
	10 ⁺	1282	1729			
	11 ⁺	1683	1891	1 2 (+0.2)		
	12+	1982	2202	$1.3 \left(^{+0.2}_{-0.2}\right)$		
	13 ⁺	2410	2515	$5.9\left(^{+1.0}_{-1.0}\right)$		
	14 ⁺	2865	2894	$1.4 \left(^{+0.3}_{-0.3}\right)$		
	15 ⁺	3311		$6.1 \binom{+0.7}{-0.7}$		
	16 ⁺	3789		$2.2(^{+0.6}_{-0.6})$		
	17+	4241		$3.1(^{+0.6}_{-0.6})$		
	18 ⁺	4665		$4.0(^{+1.4}_{-1.4})$		
	19 ⁺	5074		1.7		
¹²⁸ La ₇₁	8+	0.0*				[95]
<i>3,</i>	9+	104.0*				- •
	10^{+}	242.5*		$1.87487 \left(^{+0.37497}_{-0.37497} ight)$		
	11 ⁺	477.7*	808.2	$2.27708 \left(^{+0.45542}_{-0.45542} \right)$		
	12 ⁺	700.0*	1078.7	$2.03719(^{+0.40744}_{-0.40744})$		
	13 ⁺	1035.0*	1465.8	$2.39101(^{+0.47820}_{-0.47820})$	$1.38023(^{+0.82814}_{-0.82814})$	
	14 ⁺	1334.0*	1778.1	$1.76221 \begin{pmatrix} +0.35244 \\ -0.35244 \end{pmatrix}$	$1.64005 \begin{pmatrix} +0.98403 \\ -0.98403 \end{pmatrix}$	
				1.070.41 (+0.39588)	1.5 1003 (-0.98403)	
	15 ⁺	1752.6*	2209.9	$1.97941 \left(^{+0.39588}_{-0.39588} \right)$	$1.50467 \left(^{+0.90280}_{-0.90280}\right)$	
	16 ⁺	2121.0*	2580.3	$1.60661\left(^{+0.32132}_{-0.32132}\right)$	$2.16842\left(^{+1.30105}_{-1.30105}\right)$	
	17 ⁺	2611.4*	3129.4	$1.25884\left(^{+0.50354}_{-0.50354} ight)$		
	18 ⁺	3044.2*	3551.3	$1.23285 \begin{pmatrix} -0.303347 \\ +0.49314 \\ -0.49314 \end{pmatrix}$		
	19 ⁺	3592.9*	4144.4	$1.32745 \left(^{+0.51771}_{-0.51771} \right)$		
	20 ⁺	4090.1*	4593.3			
	21 ⁺	4679.9*				
	22 ⁺ 23 ⁺	5243.4 5855.3				
	23 ⁺	6486.4				
130 _{f 2}						[06]
¹³⁰ La ₇₃	9 10	0 138				[96]
	10 11	138 417	693			
	12	663	1050			
	13	1037	1393			
	14	1363*	1778			
	15	1809*	2204			
	16	2202*	2576			
	17 18	2712* 3157*				

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare) \blacksquare \blacksquare \blacksquare

Table 1	(continue	2d)
---------	-----------	-----

uclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2/e^2b^2)$		References	
		yrast	side	yrast	side		
	20	4208*					
¹³² La ₇₅	10 ⁺	936.4*				[23,86,92,97,129]	
	11 ⁺ 12 ⁺	1229.4* 1523.4*	1558.4 1919.4	$7.8 (^{+0.4}_{-0.4})$			
	13 ⁺	1915.4*	2299.4	7.5 $\binom{-0.4}{-0.4}$			
	14 ⁺	2300.4*		5.7 (_{-0.4})			
			2703.4	$5.7 \binom{+0.2}{-0.2}$ $5.7 \binom{+0.2}{-0.2}$			
	15+	2753.4*	3130.4				
	16 ⁺	3205.4*		5.2 (+0.2)			
	17+	3712.4*		$6.8 \binom{+0.4}{-0.4}$			
	18+	4199.4*		$4.9 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$			
	19 ⁺ 20 ⁺	4758.4* 5218.4*		$3.4(^{+0.4}_{-0.4})$			
	22 ⁺	6337.4					
¹³ La ₇₆	7.5 ⁺	2290				[98]	
	8.5 ⁺ 9.5 ⁺	2367	2726	E 7 (+3.3)			
	9.5 ⁻ 10.5 ⁺	2502	2726	$5.7\binom{+3.3}{-3.3}$			
		2681	2893	$20.0 \left(^{+10.0}_{-10.0}\right)$	4.25.42 (+1.2181)		
	11.5 ⁺	2927	3110	$6.7 \binom{+1.7}{-1.7}$	$4.2543 \begin{pmatrix} +1.2181 \\ -1.2181 \end{pmatrix}$		
	12.5 ⁺	3258	3382	$4.7 \binom{+1.1}{-1.1}$	$3.78366 \binom{+2.32055}{-2.32055}$		
	13.5+	3614	3778	7.3 (+0.7)	4.7 (+2.2)		
	14.5+	4030	4134	$18.4 \begin{pmatrix} +5.0 \\ -5.0 \end{pmatrix}$	$10.5 \left(^{+4.0}_{-4.0}\right)$		
	15.5 ⁺	4475		$5.8 \begin{pmatrix} +1.0 \\ -1.0 \end{pmatrix}$			
	16.5 ⁺	4906		$3.0 \left(^{+2.0}_{-2.0} \right)$			
	17.5 ⁺ 19.5 ⁺	5352 6283		$2.0(^{+1.2}_{-1.2})$			
¹⁴ La ₇₇	10+	813*				[99]	
/24//	11 ⁺	1195*	1412			[55]	
	12 ⁺	1533*	1710	$3.6(^{+0.2}_{-0.2})$			
	13 ⁺	1969*	2051	$12.6(^{+0.6}_{-0.6})$			
	14 ⁺	2404	2418	$3.4(^{+0.2}_{-0.2})$			
	15 ⁺	2849		$10.3(^{+0.6}_{-0.6})$			
	16 ⁺	3284		$10.0(^{+0.8}_{-0.8})$			
	17 ⁺	3775*		$10.1(^{+0.7}_{-0.7})$			
	18 ⁺	4120*		$1.1 \begin{pmatrix} +0.1 \\ -0.1 \end{pmatrix}$			
	19 ⁺	4698*		8.0 (+0.7)			
	20^{+}	5079*		$1.0 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix}$			
	21 ⁺	5714		$4.6 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$			
	22^{+}	6137*		. 0.37			
	23 ⁺ 24 ⁺	6741* 7179*					
¹³ Ce ₇₅	8.5 ⁺	2249				[53]	
۰-/3	9.5^{+}	2379	2465			r - 1	
	10.5 ⁺ 11.5 ⁺	2585 2809	2706 2922	0.711 (+0.153)			
				$9.711 \begin{pmatrix} +0.153 \\ -0.153 \end{pmatrix}$	0.202 (+0.102)		
	12.5 ⁺	3093	3199	$9.522 \binom{+0.134}{-0.134}$	$9.393 \begin{pmatrix} +0.102 \\ -0.102 \end{pmatrix}$		
	13.5 ⁺	3399	3534	$9.621 \binom{+0.142}{-0.142}$	$9.834 \begin{pmatrix} +0.191 \\ -0.191 \end{pmatrix}$		
	14.5+	3745	3933	$9.471 \begin{pmatrix} +0.136 \\ -0.136 \end{pmatrix}$	9.337 (+0.143)		
	15.5 ⁺	4177	4334	9.591 (+0.127)	$9.459 \binom{+0.154}{-0.154}$		
	16.5 ⁺	4623	4775	$9.428(^{+0.143}_{-0.143})$	$9.435 \left(^{+0.152}_{-0.152}\right)$		
	11.5 ⁻ 12.5 ⁻	3198 3338				[53]	
	12.5 13.5 ⁻	3493					
	13.3	3 133					

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare ($\blacksquare \blacksquare \blacksquare$) $\blacksquare \blacksquare \blacksquare \blacksquare$

Table 1 (continued)

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2/e$	² b ²)	References
		yrast	side	yrast	side	
	15.5-	4028	4445	$11.8286\left(^{+0.1243}_{-0.1243}\right)$		
	16.5 ⁻	4370	4808	$11.2305 \begin{pmatrix} +0.2352 \\ -0.2352 \end{pmatrix}$		
	17.5 ⁻	4761	5175	$11.6328 \begin{pmatrix} +0.1235 \\ -0.1235 \end{pmatrix}$	$10.8364\left(^{+0.1235}_{-0.1235} ight)$	
	18.5	5177	5617	$11.0246 \begin{pmatrix} +0.1253 \\ -0.1253 \end{pmatrix}$	$10.4323 \begin{pmatrix} +0.1253 \\ -0.1253 \end{pmatrix}$	
	19.5 ⁻	5632	6040	$10.9486 \left(^{+0.2104}_{-0.2104} \right)$	$10.5896 \left(^{+0.2104}_{-0.2104}\right)$	
	20.5	6112	6508		$10.3983 \left(\substack{-0.2104 \\ -0.1345} \right)$	
				10.9207 (+0.1345)		
	21.5	6624	6999	$10.6351 \begin{pmatrix} +0.1423 \\ -0.1423 \end{pmatrix}$	$10.4571 \begin{pmatrix} +0.1423 \\ -0.1423 \end{pmatrix}$	
	22.5	7167	7557	$10.7351 \begin{pmatrix} +0.2134 \\ -0.2134 \end{pmatrix}$	$10.2723(^{+0.2134}_{-0.2134})$	
	23.5 ⁻ 24.5 ⁻	7739 8339		$10.4997(^{+0.2365}_{-0.2365})$		
¹³² Pr ₇₃	9	0				[96,133]
39	10	131*		$3.3 \left(^{+0.5}_{-0.5}\right)$		
	11	397*	727	$2.3(^{+0.3}_{-0.3})$		
	12	638*	1033	$2.5 \left(^{+0.3}_{-0.3}\right)$		
	13	1021*	1458	$2.6 \binom{+0.3}{-0.3}$		
	14	1342*	1827	$1.7 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix}$		
	15	1795*		$2.4 \begin{pmatrix} +0.1 \\ -0.1 \end{pmatrix}$		
	16	2190*		$1.6 \begin{pmatrix} +0.5 \\ -0.5 \end{pmatrix}$		
	17	2675		$2.0 \begin{pmatrix} +1.0 \\ -1.0 \end{pmatrix}$		
	18	3133*		$1.3 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$		
134n	19 9 ⁺	3608	707	1.6 (+0.5)		[20,00,100,120,124,125
¹³⁴ Pr ₇₅	10 ⁺	559 764	797 931			[26,86,100,129,134–137
	11+	930	1142			
	12 ⁺	1213	1409	as an (±0.11)		
	13 ⁺	1537*	1659	$35.22 \begin{pmatrix} +0.11 \\ -0.11 \end{pmatrix}$		
	14 ⁺	1874	2017	$150.52 \begin{pmatrix} +0.43 \\ -0.43 \end{pmatrix}$	7 42 (±0.02)	
	15 ⁺	2243*	2456	$37.11\binom{+0.12}{-0.12}$	$7.42 \binom{+0.02}{-0.02}$	
	16 ⁺	2643	2901	$7.89 \binom{+0.02}{-0.02}$	$7.93 \left(^{+0.02}_{-0.02}\right)$	
	17 ⁺	3115	3347	$8.59 \left(^{+0.02}_{-0.02}\right)$	10.97 (+0.04)	
	18 ⁺	3582	3858	$4.20(^{+0.01}_{-0.01})$	$9.78 \left(^{+0.03}_{-0.03}\right)$	
	19 ⁺	4172	4338	$3.08 (^{+0.01}_{-0.01})$	$9.04(^{+0.04}_{-0.04})$	
	20+	4648		$2.12 \begin{pmatrix} +0.01 \\ -0.01 \end{pmatrix}$		
	21 ⁺ 22 ⁺	5343 5839		$4.57 \begin{pmatrix} +0.01 \\ -0.01 \end{pmatrix}$		
	23 ⁺	6534				
¹³⁵ Nd ₇₅	11.5	2819.4				[38,138]
	12.5	2940.4	207.4			
	13.5 ⁻ 14.5 ⁻	3110.5 3358.2*	3607.4 3780.4	$10.00\left(^{+2.26}_{-2.26}\right)$		
	15.5	3649.5*	4006.4	7.81 $\binom{+1.35}{-1.35}$	$9.64(^{+1.30}_{-1.30})$	
	16.5	4007.7*	4288.4	$6.88 \left(^{+2.30}_{-2.30} \right)$	$7.50 \left({^{+2.11}_{-2.11}} \right)$	
	17.5 ⁻	4413.7*	4597.4	$7.50 \binom{+1.33}{-1.33}$	$7.86 \binom{+2.61}{-2.61}$	
	18.5	4852.7*	4969.4	5.31 (+1.31) 16.15 (+0.82)	$5.86 \left(^{+2.23}_{-2.23} \right)$	
	19.5	5315.7*	5409.4	16.15 (+0.82)	$17.27 \left(^{+0.73}_{-0.73}\right)$	
	20.5	5787.7*	5921.4	$11.05 \binom{+0.94}{-0.94}$		
	21.5 ⁻ 22.5 ⁻	6281.7* 6799.7		$9.52\left(^{+1.13}_{-1.13}\right)$		
¹³⁶ Nd ₇₆	11+	4445				[56]
00 ,0	12 ⁺	4665				÷ •
	13 ⁺ 14 ⁺	4919 5213				
	14 · 15 ⁺	5558	5635	$4.0(^{+1.3}_{-1.3})$		
	16 ⁺	5969	6053	$31\binom{+17}{-17}$		
	17 ⁺	6423	6485	$7.0\binom{+4.8}{-4.8}$		
	1/	J 123	0 100	··· (_4 8/		

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare) \blacksquare \blacksquare \blacksquare

Table 1 (continued)

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2)$	(e^2b^2)	References
		yrast	side	yrast	side	_
	19 ⁺	7502	7468			
	20^{+}	8115				
	15 ⁺	6229				[56]
	16 ⁺	6347				
	17 ⁺	6578		38		
	18 ⁺	6883		14		
	19 ⁺	7292		39.7		
	20^{+}	7668		$93\left(^{+28}_{-28}\right)$		
	21^{+}	8049	8412	453.2		
	22^{+}	8465	8838	197.7		
	23 ⁺	8946	9247	115		
	24^{+}	9489	9694			
	25 ⁺	10089	10204			
	26+	10761	10657			
	27+		11256			
	13-	5348				[56]
	14-	5531		1 72 .		
	15 ⁻	5731		$7.37\left(^{+1.72}_{-1.83}\right)$		
	16^{-}	5980		$3.73 \left(^{+1.59}_{-1.60}\right)$		
	17-	6325		11.00 (+1.49)		
	17 18 ⁻	6759		11.00 (-1.50)		
	19 ⁻	7225	7270			
	20 ⁻	7720	7721	$54.30(^{+23.20}_{-24.63})$		
	21-	8169	8214	$41.84(^{+9.15}_{-9.27})$		
	22-	8689	8751			
	23-	9231		0.00 (±5.05)		
	24-	9786		$8.69 \left(^{+5.05}_{-5.06}\right)$		[50 420 440]
	14 ⁻	5418				[56,139,140]
	15 ⁻	5648		= = 4 (±1.52)		
	16-	5957		$7.51\left(^{+1.52}_{-1.54}\right)$		
	17-	6314		$14.93 \left(^{+1.49}_{-1.62}\right)$		
	18^{-}	6703		$20.13\left(^{+4.07}_{-4.23}\right)$		
	19 ⁻	7139	7259	48.43 (+9.08)		
	20^{-}	7566	7725	43.19 (+11.42)		
	21-	8011	8199	34.79 (+5.48)		
				19.05 (±2.03)		
	22-	8499	8616	$18.65 \binom{+2.03}{-2.20}$		
	23-	9009	9080	$5.94 \left(^{+3.21}_{-3.27} \right)$		
	24-	9559	9671	$3.20(^{+0.96}_{-0.96})$		
	25-	10190				
	15 ⁺	5826				[56]
	16 ⁺	6006		4.00 (±2.00)		
	17 ⁺	6238*		$4.00 \left(^{+2.00}_{-2.00} \right)$		
	18 ⁺	6522	6932	$17.36 (^{+9.00}_{-9.00})$		
	19 ⁺	6867*	7213	$7.57 \left(^{+0.97}_{-0.97} ight)$		
	20^{+}	7255*	7543	$7.87 \left(^{+2.10}_{-2.10} \right)$	$3.22\left(^{+2.00}_{-2.04} ight)$	
	21 ⁺	7685*	7927	$5.63 \left(^{+0.75}_{-0.79}\right)$	$7.04 \left(^{+2.98}_{-3.07} \right)$	
	22 ⁺	8148*	8355	$6.35 \begin{pmatrix} +0.76 \\ -0.74 \end{pmatrix}$	7.67 (+4.70)	
	23 ⁺	8652*	8828	$6.48 \left(^{+1.30}_{-1.30} \right)$	$6.46 \left(^{+2.92}_{-2.98} \right)$	
	24 ⁺	9178*	9347	$6.60 \left(^{+3.00}_{-3.00} \right)$	$5.98 (^{+4.03}_{-0.17})$	
	25 ⁺	9745*	9911	$3.70 \left(^{+2.00}_{-2.00} \right)$		
	26 ⁺	10345*	10504	$2.69\left(^{+1.90}_{-1.90}\right)$		
	27 ⁺ 28 ⁺ 29 ⁺	10967* 11651* 12335*	11117			
¹³⁷ ₆₀ Nd ₇₇	13.5	3895				[101]
	14.5^{-}	4159				
	15.5	4513	4821	15.1		

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare) \blacksquare \blacksquare

Table 1 (continued)

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2)$ (μ_1^2	(e^2b^2)	References
		yrast	side	yrast	side	_
	16.5-	4909*	5107	13.7 (+4.9)		
	17.5 ⁻	5372*	5415	$21.7\left(^{+6.5}_{-6.5} ight)$		
	18.5 ⁻	5812	5787*	39.2 (^{+15.7} _{-15.7})		
	19.5 ⁻	6193	6262	$20.9 \binom{+6.8}{-6.8}$		
	20.5	6668*	6794	$9.0 \left(^{+4.7}_{-4.7} \right)$		
	20.5 ⁻		7313			
		7099*		$5.8 \binom{+2.1}{-2.1}$		
	22.5	7650*	7701	5.7 (+3.4)		
	23.5	8347	8196	$9.4(^{+5.6}_{-5.6})$		
	24.5 ⁻ 25.5 ⁻		8744 9336*			
¹³⁸ Nd ₇₈	10 ⁺		4344			[20.62]
60 ¹¹⁰ 78	10* 11 ⁺	4381	4544 4546			[30,63]
	12 ⁺	4737	4779			
	13 ⁺		5069			
	14 ⁺ 15 ⁺		5363 5678			
	16 ⁺		6179			
	17 ⁺		6760			
	13 ⁻ 14 ⁻	5493 5577				[63]
	14 15 ⁻	5577 5770	6018	6.5		
	16-	6001	6285	14.1		
	17-	6287	6560	11.2		
	18 ⁻ 19 ⁻	6668 7047*	6909 7415	31.6 51.9		
	20-	7564	7413	48.5		
	21-	8013*		42.9		
¹³⁶ Pm ₇₅	8+	0*				FOC 102 104 120 141 14
	9+	99*				[86,102,104,129,141,14
	10 ⁺	267*				
	11+	552*	858	$9.8 \left(^{+4.3}_{-4.3} \right)$		
	12 ⁺	844*	1146	5.5 (+0.7)	c 4 (±1.7)	
	13 ⁺ 14 ⁺	1252* 1608*	1510 1936	$5.1 \binom{+0.7}{-0.7}$ $2.6 \binom{+0.3}{-0.3}$	$6.1 \binom{+1.7}{-1.7}$ $5.7 \binom{+1.5}{-1.5}$	
	15 ⁺	2086*	2360		J.7 (_{-1.5})	
	16 ⁺	2504*	2819	10(+0.4)		
	17 ⁺	3010*	3254	$1.0 \left(_{-0.4} \right) \\ 1.8 \left(_{-0.6} \right) \\ 2.1 \left(_{-3.6} \right)$		
	18+	3479*	3654	$2.1\left(^{+3.6}_{-3.6}\right)$		
	19 ⁺ 20 ⁺	3935* 4377*	4088 4469			
	20 ⁺	4814*	4872			
138Pm ₇₇	9+	585*				[103]
	10 ⁺	706*	1210			
	11 ⁺ 12 ⁺	1063* 1413*	1319 1619	$3.46\left(^{+0.38}_{-0.38}\right)$		
	13 ⁺	1890*	2097	$3.81(^{+0.34})$	$3.2(^{+0.5}_{-0.5})$	
	14 ⁺	2283*	2506	2.90 (+0.38) 2.90 (+0.38) 2.35 (+0.33) 1.74 (+0.40)	$2.4 \begin{pmatrix} -0.5 \\ +0.5 \\ -0.5 \end{pmatrix}$	
	15 ⁺	2829*	3077	$2.35 \left(^{+0.33}_{-0.33} \right)$	$2.4 \left(^{+0.5}_{-0.5} \right) \\ 2.5 \left(^{+0.9}_{-0.9} \right)$	
	16 ⁺	3279		$1.74 \begin{pmatrix} +0.40 \\ -0.40 \end{pmatrix}$		
	17 ⁺ 18 ⁺	3855 4340		$1.83 \left(^{+0.55}_{-0.55} \right)$		
¹³⁸ Eu ₇₅	8 ⁺	0				[104,141,142]
6324/5	9^+	104*				[- / -/1
	10 ⁺	271*	628	24 (+0.4)		
	11 ⁺ 12 ⁺	544* 806*	792 1091	$3.1(^{+0.4}_{-0.4}) \ 2.3(^{+0.1}_{-0.1})$	2 1 (+0.2)	
	12 ' 13 ⁺	806* 1168*	1091	$2.3 \binom{+0.1}{-0.1}$	$3.1 \left(^{+0.2}_{-0.2} ight) \ 4.0 \left(^{+1.0}_{-1.0} ight)$	
	14 ⁺	1488*	1847	$2.5 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$ $1.6 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix}$	1.0 (-1.0)	
	15 ⁺	1916*	2230	$2.1\left(^{+0.6}_{-0.6}\right)$		
	16 ⁺	2298*	2708	1.3 (+0.2)		
	17+	2761*	3128	$ \begin{array}{c} 1.0 & (-0.2) \\ 2.2 & (^{+0.5}_{-0.5}) \\ 1.4 & (^{+0.4}_{-0.4}) \\ 3.4 & (^{+0.9}_{-0.9}) \\ 3.4 & (^{+0.7}_{-0.7}) \end{array} $		
	18 ⁺	3177*		$1.4 \begin{pmatrix} +0.4 \\ -0.4 \end{pmatrix}$		
		25000				
	19 ⁺ 20 ⁺	3589* 4015*		$3.4 \left(^{+0.9}_{-0.9}\right)$ $3.4 \left(^{+0.7}_{-0.7}\right)$		

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare) \blacksquare \blacksquare \blacksquare

Nuclei	$I^{\pi}(\hbar)$	E (keV)		$B(M1)/B(E2) (\mu_N^2$	₁ /e ² b ²)	References	
		yrast side		yrast side		_	
	22 ⁺	4982*		$1.7 \left(^{+0.8}_{-0.8}\right)$			
	23^{+}	5486		\-0.67			
	24^{+}	6025*					
	25 ⁺	6632*					
¹⁴⁰ Eu ₇₇	5-	0.0*				[105,142]	
05	6^{-}	170.6*	285.4				
	7-	361.7*		$0.94 \left(^{+0.17}_{-0.17}\right)$			
	8-	654.6	763.1	$\begin{array}{c} 0.94 \left(^{+0.17}_{-0.17}\right) \\ 0.00 \left(^{+0.08}_{-0.08}\right) \end{array}$			
	9-	898.6		$0.41 \begin{pmatrix} +0.31 \\ -0.31 \end{pmatrix}$			
	10^{-}	1376.6	1364.8				
	11-	1614.2					
	12-	1959.6	2197.1				
	13-	2444.2	2427.5				
	14 ⁻ 15 ⁻	2884.6	2597.5 2970.4				
	16 ⁻		3424.4				
	17 ⁻		3884.4				
	18-		4264.0				
	8+		53.0			[105,142]	
	9+	0.0	147.9				
	10 ⁺	71.0					
	11+	436.8	554.5	. 0.41			
	12+	711.5		$0.40(^{+0.11}_{-0.11})$			
	13+	1157.5	1201.9	$3.42 \begin{pmatrix} +0.90 \\ 0.90 \end{pmatrix}$			
	14+	1518.8		$1.53 \begin{pmatrix} +0.89 \\ -0.89 \end{pmatrix}$			
	15 ⁺	1989.3	2020.9	$1.97 \left(^{+0.39}_{-0.39} \right)$			
	16+	2438.8					
	17 ⁺	2500.2	2636.9				
	19 ⁺	3147.9					
	21 ⁺ 23 ⁺	3902.1 4809.5					
	25 ⁺	5801.2					
188r	9-	923.7*				[100]	
¹⁸⁸ lr ₁₁₁	9 10 ⁻	1222.3*				[106]	
	10 11 ⁻	1398.9*		$0.90(^{+0.04}_{-0.04})$			
	12 ⁻	1711.2*		$1.80 \begin{pmatrix} -0.04 \\ -0.05 \end{pmatrix}$			
	13 ⁻	1922.8*	2168.2	$0.64 \begin{pmatrix} +0.03 \\ -0.03 \end{pmatrix}$			
	14 ⁻	2290.1*	2443.6	1 13 (+0.05)			
	15 ⁻	2556.7*	2679.7	$0.58 \begin{pmatrix} +0.03 \\ -0.03 \end{pmatrix}$	1 25 (+0.12)		
	15 ⁻	2990.5	2945.3	$0.77 \begin{pmatrix} +0.06 \\ -0.06 \end{pmatrix}$	$1.25 \begin{pmatrix} +0.12 \\ -0.12 \end{pmatrix} \\ 1.28 \begin{pmatrix} +0.18 \\ -0.18 \end{pmatrix}$		
	17 ⁻	2330.3	3201.7	0.77 (_0.06)	1.28 (_0.18)		
¹⁹³ Tl ₁₁₂	13.5-	3092				[107]	
81 11112	14.5 ⁻	3251	3402			[107]	
	15.5	3402	3684				
	16.5	3624	3883				
	17.5 ⁻	3862	4253				
	18.5^{-}	4188	4505				
	19.5	4525	4874				
	20.5	4868	5230				
¹⁹⁴ Tl ₁₁₃	8-	293				[108,143,144]	
	9-	338					
	10-	434	4477				
	11 ⁻	712	1175				
	12 ⁻ 13 ⁻	957 1361	1481 1738				
	13 14 ⁻	1361 1644	2001				
	14 15 ⁻	2112	2344				
	16 ⁻	2404	2682				
	17 ⁻	2882	3003				
	18-	3130	3257				
	19-	3381	3427				
	20^{-}	3518	3628				
	21^{-}	3840	3877	$4.45 \left(^{+2.92}_{-1.83} \right)$			
		4081	4181	$2.46 \left(^{+1.39}_{-0.77} \right)$	$6.17 \left(^{+5.01}_{-2.34}\right)$		
	22^{-}	4001		. 2.00	4.00		
		4462	4560	$7.18 \binom{+5.89}{-2.61}$	4.03		
	22^{-}			$7.18 \binom{+5.89}{-2.61}$ $3.66 \binom{+3.61}{-2.06}$	4.03		
198Tl ₁₁₇	22 ⁻ 23 ⁻	4462		$\begin{array}{l} 4.45 \left(\substack{+2.92 \\ -1.83} \right) \\ 2.46 \left(\substack{+1.39 \\ -0.77} \right) \\ 7.18 \left(\substack{+5.89 \\ -2.61} \right) \\ 3.66 \left(\substack{+3.61 \\ -2.06} \right) \end{array}$	4.03	[109,145]	
¹⁹⁸ ГІ ₁₁₇	22 ⁻ 23 ⁻ 24 ⁻	4462 4824		7.18 (+5.89) 3.66 (+3.61) 3.66 (-2.06)	4.03	[109,145]	

ARTICLE IN PRESS

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare ($\blacksquare \blacksquare \blacksquare$) $\blacksquare \blacksquare \blacksquare \blacksquare$

Table 1 (continued)

Nuclei	I ^π (ħ)	E (keV)		$B(M1)/B(E2)$ (μ	$\frac{1}{2}/(e^2b^2)$	References
		yrast	side	yrast	side	
	11-	844*	1293	3.8 (+0.4)		
	12-	1091*	1541	$4.1 \begin{pmatrix} +0.5 \\ -0.5 \end{pmatrix}$		
	13-	1493*	1857	$3.9 \left(^{+0.5}_{-0.5} \right)$	$4.4 \left(^{+1.4}_{-1.4} \right)$	
	14^{-}	1790*	2294	$3.1\left(^{+0.6}_{-0.6}\right)$	$2.5 \begin{pmatrix} +1.2 \\ -1.2 \end{pmatrix}$	
	15-	2278		$4.3 \begin{pmatrix} +0.9 \\ -0.9 \end{pmatrix}$		
	16^{-}	2552		$6.4 \begin{pmatrix} +2.1 \\ -2.1 \end{pmatrix}$		
	17-	2947		$1.7 \begin{pmatrix} +\tilde{0}.8 \\ -0.8 \end{pmatrix}$		
	18-	3219		0.0		

30

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare)

Table 2 Chiral doublet bands with B(M1) and B(E2) values. See Explanation of Tables for details.

Nuclei I^{π} (I^{π} (\hbar)	E (keV)		$B(M1)(\mu_N^2)$		$B(E2) (e^2b^2)$		References
		yrast	side	yrast	side	yrast	side	
⁰³ Rh ₅₈	10.5 ⁺	3238						[54,117,118]
	11.5^{+}	3357						
	12.5^{+}	3591						
	13.5^{+}	3899	4445					
	14.5^{+}	4281	4789					
	15.5^{+}	4665	5166					
	16.5^{+}	5156	5616					
	17.5^{+}	5622	6062					
	18.5^{+}	6163	6528					
	19.5^{+}	6706	7074					
	20.5^{+}	7317						
	21.5^{+}	7952						
	6.5^{-}	2033						[54,117,118]
	7.5^{-}	2219						• • • •
	8.5^{-}	2343						
	9.5^{-}	2538	2744					
	10.5	2751	2934					
	11.5	3011*	3273					
	12.5	3327*	3615	$2.3(^{+0.4}_{-0.4})$		$0.077\left(^{+0.014}_{-0.014} ight)$		
	13.5	3769*	4080	$1.8 \begin{pmatrix} -0.4 \\ -0.2 \end{pmatrix}$		0.14(+0.03)		
				1.6 (_{-0.2}) 1.2 (+0.4)		$0.14 \binom{-0.03}{-0.04}$ $0.11 \binom{+0.04}{-0.04}$		
	14.5	4195	4559 5001	$1.2 \begin{pmatrix} +0.4 \\ -0.4 \end{pmatrix}$		$0.11(_{-0.04})$		
	15.5	4763	5091					
	16.5	5297	5685					
	17.5 ⁻	5923						
	18.5	6586						
	19.5	7186						[54445440]
	6.5	2228	0.440					[54,117,118]
	7.5	2366	2443					
	8.5	2520	2643					
	9.5	2699	2871					
	10.5	2915	3090					
	11.5	3227	3416					
	12.5	3668	3778					
	13.5 ⁻	4106	4210					
	14.5^{-}	4606	4659					
	15.5 ⁻	5061	5059					
	16.5	5577						
M -	17.5	6143						
⁰⁴ Rh ₅₉	9-	483*		$2.3 \left(^{+0.2}_{-0.2} \right)$. 0.017		[80,118]
	10-	840*	1228	$0.95 \begin{pmatrix} +0.08 \\ -0.08 \end{pmatrix}$		$0.063 \left(^{+0.017}_{-0.017} \right)$		
	11-	1168*	1582	$0.91 \begin{pmatrix} +0.12 \\ -0.12 \end{pmatrix}$		$0.063 \begin{pmatrix} +0.017 \\ -0.017 \end{pmatrix}$ $0.093 \begin{pmatrix} +0.020 \\ -0.020 \end{pmatrix}$		
	12-	1636*	1971	$0.44(^{+0.06}_{-0.06})$		$0.039(^{+0.010}_{-0.010})$		
				0.00		$0.067 \left(^{+0.025}_{-0.025}\right)$		
	13-	2111*	2370	$0.42 (^{+0.13}_{-0.15})$				
	13 ⁻ 14 ⁻	2111* 2639*	2370 2834	$0.42 \left(^{+0.15}_{-0.15} \right)$		\-0.025 <i>'</i>		
	14^{-}	2639*	2834	$0.42 \left(^{+0.15}_{-0.15}\right)$		\-0.023 <i>'</i>		
	14 ⁻ 15 ⁻	2639* 3229*	2834 3320	$0.42 \begin{pmatrix} +0.13 \\ -0.15 \end{pmatrix}$		\-0.023 <i>*</i>		
	14^{-}	2639*	2834 3320 3876	0.42 (+0.13)		V=0.0237		
⁰⁶ Ag ₅₀	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻	2639* 3229* 3800* 4406	2834 3320 3876 4406	0.42 (+0.15)		V=0.0237		[85 120=124]
⁹⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻	2639* 3229* 3800* 4406	2834 3320 3876 4406 3203.8	0.42 (+0.15)		V-0.0237		[85,120-124]
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4	2834 3320 3876 4406 3203.8 3423.5	0.42 (+0.15)		V-0.0237		[85,120-124]
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4	2834 3320 3876 4406 3203.8 3423.5 3676.0	0.42 (+0.15)		V-0.0237		[85,120–124]
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6					[85,120–124]
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7	1.335 (+0.397)	2.1C47+0.873.	0.100 (+0.043)	0.371 (+0.084)	[85,120-124]
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6	1.335 (+0.397) 0.968 (+0.211)	3.164 (^{+0.873} _{-0.873})	0.100 (+0.043) 0.106 (+0.020) 0.106 (+0.020)	0.271 (+0.084)	[85,120-124]
⁹⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7	1.335 (+0.397) 0.968 (+0.211) 0.539 (+0.096)	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$	0.100 (+0.043) 0.106 (+0.020) 0.106 (+0.020) 0.099 (+0.015)	$0.232 \begin{pmatrix} +0.050 \\ -0.050 \end{pmatrix}$	[85,120-124]
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2	1.335 (+0.397) 0.968 (+0.211) 0.539 (+0.996) 0.463 (+0.010)	$2.041 \binom{+0.317}{-0.317}$ $1.050 \binom{+0.221}{0.331}$	0.100 (+0.043) 0.106 (+0.020) 0.096 (+0.020) 0.099 (+0.015) 0.101 (+0.019) 0.101 (+0.019)	$0.232 \begin{pmatrix} +0.050 \\ -0.050 \end{pmatrix}$ $0.153 \begin{pmatrix} +0.039 \\ 0.039 \end{pmatrix}$	[85,120-124]
³⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7	1.335 (+0.397) 0.968 (+0.211) 0.539 (+0.996) 0.463 (+0.010)	$2.041 \binom{+0.317}{-0.317}$ $1.050 \binom{+0.221}{0.331}$	0.100 (+0.043) 0.106 (+0.004) 0.096 (+0.005) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032)	$0.232 \begin{pmatrix} +0.050 \\ -0.050 \end{pmatrix}$ $0.153 \begin{pmatrix} +0.039 \\ 0.039 \end{pmatrix}$	[85,120–124]
⁹⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2	1.335 (+0.397) 0.968 (+0.211) 0.539 (+0.996) 0.463 (+0.010)	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	0.100 (+0.043) 0.106 (+0.040) 0.106 (+0.000) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032) 0.051 (+0.000)	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	[85,120-124]
⁹⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8	1.335 (+0.397) 0.968 (+0.211) 0.539 (+0.096) 0.463 (+0.010) 0.635 (+0.251) 0.290 (+0.054)	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	0.100 (+0.043) 0.106 (+0.040) 0.106 (+0.000) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032) 0.051 (+0.000)	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	[85,120-124]
⁹⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7	1.335 (+0.397) 0.968 (+0.311) 0.539 (+0.211) 0.539 (+0.096) 0.463 (+0.010) 0.635 (+0.251) 0.290 (-0.034) 0.289 (+0.034) 0.289 (+0.034) 0.289 (+0.034)	$2.041 \binom{+0.317}{-0.317}$ $1.050 \binom{+0.221}{0.331}$	0.100 (+0.043) 0.106 (+0.040) 0.106 (+0.000) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032) 0.051 (+0.000)	$0.232 \begin{pmatrix} +0.050 \\ -0.050 \end{pmatrix}$ $0.153 \begin{pmatrix} +0.039 \\ 0.039 \end{pmatrix}$	[85,120-124]
³⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0	1.335 (+0.397) 0.968 (+0.211) 0.539 (+0.096) 0.463 (+0.010) 0.635 (+0.251) 0.290 (+0.054)	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	0.100 (+0.043) 0.106 (+0.040) 0.106 (+0.000) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032) 0.051 (+0.000)	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	[85,120-124]
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6	1.335 (+0.397) 0.968 (+0.311) 0.539 (+0.211) 0.539 (+0.096) 0.463 (+0.010) 0.635 (+0.251) 0.290 (-0.034) 0.289 (+0.034) 0.289 (+0.034) 0.289 (+0.034)	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	0.100 (+0.043) 0.106 (+0.004) 0.096 (+0.005) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032)	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	
⁰⁶ Ag ₅₉	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6	$\begin{array}{c} 1.335 \begin{pmatrix} ^{+0.397}_{-0.397} \\ 0.968 \begin{pmatrix} ^{+0.397}_{-0.211} \\ 0.539 \begin{pmatrix} ^{+0.096}_{-0.096} \\ 0.463 \begin{pmatrix} ^{+0.010}_{-0.010} \\ 0.635 \begin{pmatrix} ^{+0.251}_{-0.251} \\ 0.290 \begin{pmatrix} ^{+0.054}_{-0.072} \\ 0.290 \begin{pmatrix} ^{+0.054}_{-0.072} \\ 0.290 \begin{pmatrix} ^{+0.054}_{-0.072} \\ 0.065 \begin{pmatrix} ^{+0.028}_{-0.028} \end{pmatrix} \\ \end{array}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	$\begin{array}{c} 0.100 \left(\substack{+0.043\\ +0.043}\right)\\ 0.106 \left(\substack{+0.020\\ +0.020}\right)\\ 0.099 \left(\substack{+0.015\\ +0.015}\right)\\ 0.101 \left(\substack{+0.019\\ +0.019}\right)\\ 0.085 \left(\substack{+0.032\\ +0.032}\right)\\ 0.051 \left(\substack{+0.092\\ +0.009}\right)\\ 0.043 \left(\substack{+0.012\\ +0.009}\right)\\ 0.043 \left(\substack{+0.012\\ +0.012}\right)\\ 0.047 \left(\substack{+0.010\\ +0.010}\right)\\ 0.047 \left(\substack{+0.010\\ +0.010}\right) \end{array}$	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	[85,120-124]
	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻ 11.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8* 2928.7*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6	1.335 $\begin{pmatrix} +0.397 \\ -0.397 \end{pmatrix}$ 0.968 $\begin{pmatrix} +0.211 \\ 0.208 \end{pmatrix}$ 0.539 $\begin{pmatrix} +0.006 \\ 0.006 \end{pmatrix}$ 0.463 $\begin{pmatrix} +0.010 \\ -0.010 \end{pmatrix}$ 0.635 $\begin{pmatrix} +0.251 \\ -0.251 \end{pmatrix}$ 0.290 $\begin{pmatrix} +0.054 \\ -0.054 \end{pmatrix}$ 0.289 $\begin{pmatrix} -0.072 \\ -0.028 \end{pmatrix}$ 1.25 $\begin{pmatrix} +0.36 \\ 0.36 \end{pmatrix}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	0.100 (+0.043) 0.106 (+0.024) 0.106 (+0.020) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032) 0.051 (+0.009) 0.043 (+0.011) 0.035 (+0.014) 0.047 (+0.010) 0.18 (+0.06)	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	
	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻ 11.5 ⁻ 12.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8* 2928.7* 3338.7*	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6	1.335 $\begin{pmatrix} +0.397 \\ -0.397 \end{pmatrix}$ 0.968 $\begin{pmatrix} +0.211 \\ 0.208 \end{pmatrix}$ 0.539 $\begin{pmatrix} +0.006 \\ 0.006 \end{pmatrix}$ 0.463 $\begin{pmatrix} +0.010 \\ -0.010 \end{pmatrix}$ 0.635 $\begin{pmatrix} +0.251 \\ -0.251 \end{pmatrix}$ 0.290 $\begin{pmatrix} +0.054 \\ -0.054 \end{pmatrix}$ 0.289 $\begin{pmatrix} -0.072 \\ -0.028 \end{pmatrix}$ 1.25 $\begin{pmatrix} +0.36 \\ 0.36 \end{pmatrix}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	0.100 (+0.043) 0.106 (+0.024) 0.106 (+0.020) 0.099 (+0.015) 0.101 (+0.019) 0.085 (+0.032) 0.051 (+0.009) 0.043 (+0.011) 0.035 (+0.014) 0.047 (+0.010) 0.18 (+0.06)	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	
	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻ 11.5 ⁻ 12.5 ⁻ 13.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8* 2928.7* 3338.7* 3800.0	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6 2901.6 3091.8 3392.0 3897.5	$\begin{array}{c} 1.335 \left(^{+0.397}_{-0.397} \right) \\ 0.968 \left(^{+0.211}_{-0.211} \right) \\ 0.539 \left(^{+0.006}_{-0.006} \right) \\ 0.463 \left(^{+0.010}_{-0.054} \right) \\ 0.290 \left(^{+0.054}_{-0.054} \right) \\ 0.289 \left(^{+0.072}_{-0.028} \right) \\ \\ 1.25 \left(^{+0.36}_{-0.36} \right) \\ 0.82 \left(^{+0.18}_{-0.18} \right) \\ 0.85 \left(^{+0.17}_{-0.17} \right) \end{array}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	$\begin{array}{c} 0.100 \left(^{+0.043}_{-0.043} \right) \\ 0.106 \left(^{+0.020}_{-0.043} \right) \\ 0.099 \left(^{+0.015}_{-0.015} \right) \\ 0.101 \left(^{+0.019}_{-0.019} \right) \\ 0.085 \left(^{+0.032}_{-0.032} \right) \\ 0.051 \left(^{+0.009}_{-0.009} \right) \\ 0.043 \left(^{+0.011}_{-0.019} \right) \\ 0.047 \left(^{+0.014}_{-0.010} \right) \\ 0.18 \left(^{+0.06}_{-0.005} \right) \\ 0.09 \left(^{+0.02}_{-0.02} \right) \\ 0.08 \left(^{+0.02}_{-0.02} \right) \\ \end{array}$	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	
	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻ 11.5 ⁻ 12.5 ⁻ 13.5 ⁻ 14.5 ⁻ 14.5 ⁻ 14.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8* 2928.7* 3388.7* 3800.0 4270.0	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6	$\begin{array}{c} 1.335 \begin{pmatrix} ^{+0.397}_{-0.397} \\ 0.968 \begin{pmatrix} ^{+0.397}_{-0.211} \\ 0.539 \begin{pmatrix} ^{+0.096}_{-0.096} \\ 0.463 \begin{pmatrix} ^{+0.010}_{-0.010} \\ 0.635 \begin{pmatrix} ^{+0.251}_{-0.251} \\ 0.290 \begin{pmatrix} ^{+0.054}_{-0.072} \\ 0.290 \begin{pmatrix} ^{+0.054}_{-0.072} \\ 0.290 \begin{pmatrix} ^{+0.054}_{-0.072} \\ 0.065 \begin{pmatrix} ^{+0.028}_{-0.028} \end{pmatrix} \\ \end{array}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	$\begin{array}{c} 0.100 \left(\substack{+0.043\\ +0.043}\right)\\ 0.106 \left(\substack{+0.020\\ +0.020}\right)\\ 0.099 \left(\substack{+0.015\\ +0.015}\right)\\ 0.101 \left(\substack{+0.019\\ +0.019}\right)\\ 0.085 \left(\substack{+0.032\\ +0.032}\right)\\ 0.051 \left(\substack{+0.092\\ +0.009}\right)\\ 0.043 \left(\substack{+0.012\\ +0.009}\right)\\ 0.043 \left(\substack{+0.012\\ +0.012}\right)\\ 0.047 \left(\substack{+0.010\\ +0.010}\right)\\ 0.047 \left(\substack{+0.010\\ +0.010}\right) \end{array}$	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	
	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻ 11.5 ⁻ 12.5 ⁻ 13.5 ⁻ 14.5 ⁻ 14.5 ⁻ 15.5 ⁻ 15.5 ⁻ 15.5 ⁻ 15.5 ⁻ 15.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8* 2928.7* 3338.7* 3800.0 4270.0 4878.8	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6 2901.6 3091.8 3392.0 3897.5	$\begin{array}{c} 1.335 \left(^{+0.397}_{-0.397} \right) \\ 0.968 \left(^{+0.211}_{-0.211} \right) \\ 0.539 \left(^{+0.006}_{-0.006} \right) \\ 0.463 \left(^{+0.010}_{-0.054} \right) \\ 0.290 \left(^{+0.054}_{-0.054} \right) \\ 0.289 \left(^{+0.072}_{-0.028} \right) \\ \\ 1.25 \left(^{+0.36}_{-0.36} \right) \\ 0.82 \left(^{+0.18}_{-0.18} \right) \\ 0.85 \left(^{+0.17}_{-0.17} \right) \end{array}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	$\begin{array}{c} 0.100 \left(^{+0.043}_{-0.043} \right) \\ 0.106 \left(^{+0.020}_{-0.043} \right) \\ 0.099 \left(^{+0.015}_{-0.015} \right) \\ 0.101 \left(^{+0.019}_{-0.019} \right) \\ 0.085 \left(^{+0.032}_{-0.032} \right) \\ 0.051 \left(^{+0.009}_{-0.009} \right) \\ 0.043 \left(^{+0.011}_{-0.019} \right) \\ 0.047 \left(^{+0.014}_{-0.010} \right) \\ 0.18 \left(^{+0.06}_{-0.005} \right) \\ 0.09 \left(^{+0.02}_{-0.02} \right) \\ 0.08 \left(^{+0.02}_{-0.02} \right) \\ \end{array}$	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	
	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻ 11.5 ⁻ 12.5 ⁻ 14.5 ⁻ 14.5 ⁻ 15.5 ⁻ 16.5 ⁻ 16.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8* 2928.7* 3338.7* 380.0 4270.0 4878.8 5437.3	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6	$\begin{array}{c} 1.335 \left(^{+0.397}_{-0.397} \right) \\ 0.968 \left(^{+0.211}_{-0.211} \right) \\ 0.539 \left(^{+0.006}_{-0.006} \right) \\ 0.463 \left(^{+0.010}_{-0.054} \right) \\ 0.290 \left(^{+0.054}_{-0.054} \right) \\ 0.289 \left(^{+0.072}_{-0.028} \right) \\ \\ 1.25 \left(^{+0.36}_{-0.36} \right) \\ 0.82 \left(^{+0.18}_{-0.18} \right) \\ 0.85 \left(^{+0.17}_{-0.17} \right) \end{array}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	$\begin{array}{c} 0.100 \left(^{+0.043}_{-0.043} \right) \\ 0.106 \left(^{+0.020}_{-0.043} \right) \\ 0.099 \left(^{+0.015}_{-0.015} \right) \\ 0.101 \left(^{+0.019}_{-0.019} \right) \\ 0.085 \left(^{+0.032}_{-0.032} \right) \\ 0.051 \left(^{+0.009}_{-0.009} \right) \\ 0.043 \left(^{+0.011}_{-0.019} \right) \\ 0.047 \left(^{+0.014}_{-0.010} \right) \\ 0.18 \left(^{+0.06}_{-0.005} \right) \\ 0.09 \left(^{+0.02}_{-0.02} \right) \\ 0.08 \left(^{+0.02}_{-0.02} \right) \\ \end{array}$	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	[60,125,126]
	14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 10 ⁻ 11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 15 ⁻ 16 ⁻ 17 ⁻ 18 ⁻ 19 ⁻ 20 ⁻ 21 ⁻ 22 ⁻ 10.5 ⁻ 11.5 ⁻ 12.5 ⁻ 13.5 ⁻ 14.5 ⁻ 14.5 ⁻ 15.5 ⁻ 15.5 ⁻ 15.5 ⁻ 15.5 ⁻ 15.5 ⁻	2639* 3229* 3800* 4406 2271.7 2441.4 2660.4 2930.2 3256.7 3686.1 4223.3* 4742.6* 5414.9* 6026.8* 6760.7* 7531.7 8192.5 2620.8* 2928.7* 3338.7* 3800.0 4270.0 4878.8	2834 3320 3876 4406 3203.8 3423.5 3676.0 3941.6 4263.7 4636.6 5051.7 5561.2 6065.8 6691.0 7276.7 7945.6	$\begin{array}{c} 1.335 \left(^{+0.397}_{-0.397} \right) \\ 0.968 \left(^{+0.211}_{-0.211} \right) \\ 0.539 \left(^{+0.006}_{-0.006} \right) \\ 0.463 \left(^{+0.010}_{-0.054} \right) \\ 0.290 \left(^{+0.054}_{-0.054} \right) \\ 0.289 \left(^{+0.072}_{-0.028} \right) \\ \\ 1.25 \left(^{+0.36}_{-0.36} \right) \\ 0.82 \left(^{+0.18}_{-0.18} \right) \\ 0.85 \left(^{+0.17}_{-0.17} \right) \end{array}$	$2.041 \begin{pmatrix} +0.317 \\ -0.317 \end{pmatrix}$ $1.050 \begin{pmatrix} +0.221 \\ -0.221 \end{pmatrix}$ $1.291 \begin{pmatrix} +0.327 \\ -0.327 \end{pmatrix}$ $0.739 \begin{pmatrix} -0.327 \\ -0.922 \end{pmatrix}$	$\begin{array}{c} 0.100 \left(^{+0.043}_{-0.043} \right) \\ 0.106 \left(^{+0.020}_{-0.043} \right) \\ 0.099 \left(^{+0.015}_{-0.015} \right) \\ 0.101 \left(^{+0.019}_{-0.019} \right) \\ 0.085 \left(^{+0.032}_{-0.032} \right) \\ 0.051 \left(^{+0.009}_{-0.009} \right) \\ 0.043 \left(^{+0.011}_{-0.019} \right) \\ 0.047 \left(^{+0.014}_{-0.010} \right) \\ 0.18 \left(^{+0.06}_{-0.005} \right) \\ 0.09 \left(^{+0.02}_{-0.02} \right) \\ 0.08 \left(^{+0.02}_{-0.02} \right) \\ \end{array}$	$0.232 \binom{+0.050}{-0.050}$ $0.153 \binom{+0.039}{-0.039}$ $0.202 \binom{+0.043}{-0.043}$ $0.136 \binom{+0.034}{-0.034}$	

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare ($\blacksquare \blacksquare \blacksquare$) $\blacksquare \blacksquare \blacksquare \blacksquare$

Table 2 (continued)

Nuclei	I^{π} (\hbar)	E (keV)		$B(M1)(\mu_N^2)$		$B(E2) (e^2b^2)$		References
		yrast	side	yrast	side	yrast	side	
	13.5 ⁺ 14.5 ⁺ 15.5 ⁺ 16.5 ⁺ 17.5 ⁺ 18.5 ⁺ 20.5 ⁺ 21.5 ⁺ 22.5 ⁺	3851.3 4230.0* 4626.4* 5120.5* 5621.5* 6192.8* 6785.9 7441.1	4841.7 5131.1 5448.9 5818.4 6250.2 6761.3* 7315.5* 7919.9* 8591.2*	$\begin{array}{l} 2.7 \left(^{+0.6}_{-0.6} \right) \\ 1.8 \left(^{+0.3}_{-0.3} \right) \\ 1.9 \left(^{+0.3}_{-0.3} \right) \\ 1.9 \left(^{+0.4}_{-0.4} \right) \\ > 1.25 \end{array}$		$\begin{array}{c} 0.23 (^{+0.05}_{-0.05}) \\ 0.15 (^{+0.03}_{-0.06}) \\ 0.14 (^{+0.03}_{-0.03}) \\ 0.23 (^{+0.06}_{-0.06}) \\ > 0.16 \end{array}$		
124CS69	8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+	561.9* 619.9* 743.9* 1055.9* 1275.9* 1275.9* 1989.9* 2446.9* 2858.9* 3344.9* 4342.9* 4906.9* 5424.9* 6086.9* 6550.9 7357.9 7649.9	1260.2 1631.2 1893.2 2265.2 2666.2 3090.2 3574.2	$\begin{array}{l} 0.27 \left(^{+0.05}_{-0.07} \right) \\ 0.41 \left(^{+0.09}_{-0.13} \right) \\ 0.41 \left(^{+0.19}_{-0.13} \right) \\ \leq 0.05 \\ 0.41 \left(^{+0.17}_{-0.07} \right) \\ \leq 0.05 \\ 0.47 \left(^{+0.07}_{-0.09} \right) \\ \leq 0.05 \\ 0.38 \left(^{+0.16}_{-0.09} \right) \\ \leq 0.02 \\ 0.16 \left(^{+0.04}_{-0.04} \right) \end{array}$	$\begin{array}{c} 0.16 \left(^{+0.05}_{-0.05}\right) \\ 0.66 \left(^{+0.16}_{-0.14}\right) \\ \leq 0.05 \\ 0.34 \left(^{+0.11}_{-0.09}\right) \end{array}$	$\begin{array}{c} 0.31 \left(^{+0.06}_{-0.08} \right) \\ 0.12 \left(^{+0.06}_{-0.08} \right) \\ 0.24 \left(^{+0.06}_{-0.04} \right) \\ 0.14 \left(^{+0.06}_{-0.04} \right) \\ 0.19 \left(^{+0.04}_{-0.03} \right) \\ 0.19 \left(^{+0.04}_{-0.03} \right) \\ 0.15 \left(^{+0.03}_{-0.03} \right) \\ 0.15 \left(^{+0.05}_{-0.05} \right) \\ 0.15 \left(^{+0.05}_{-0.05} \right) \\ 0.06 \left(^{+0.05}_{-0.01} \right) \\ 0.07 \left(^{+0.01}_{-0.01} \right) \end{array}$	$\begin{array}{c} 0.12 \left(^{+0.03}_{-0.04} \right) \\ 0.25 \left(^{+0.07}_{-0.06} \right) \\ 0.13 \left(^{+0.05}_{-0.06} \right) \\ 0.21 \left(^{+0.07}_{-0.06} \right) \end{array}$	[90]
¹²⁶ CS71	9 ⁺ 10 ⁺ 11 ⁺ 12 ⁺ 13 ⁺ 14 ⁺ 15 ⁺ 16 ⁺ 17 ⁺ 18 ⁺ 19 ⁺ 20 ⁺ 21 ⁺	0 140 477 732 1128 1471 1935 2350 2846 3311 3839 4357 4911	637 999 1326 1671 2097 2572 3033 4040	$\begin{array}{c} 0.14 \left(^{+0.07}_{-0.02} \right) \\ 0.47 \left(^{+0.27}_{-0.07} \right) \\ \leq 0.04 \\ 0.23 \left(^{+0.11}_{-0.04} \right) \\ \leq 0.07 \\ 0.34 \left(^{+0.23}_{-0.07} \right) \\ \leq 0.07 \\ 0.18 \left(^{+0.18}_{-0.07} \right) \end{array}$	$\begin{array}{l} 0.16 \left(^{+0.05}_{-0.02}\right) \\ 0.25 \left(^{+0.16}_{-0.05}\right) \\ \leq 0.07 \\ 0.11 \left(^{+0.05}_{-0.02}\right) \end{array}$	$\begin{array}{c} 0.23 \begin{pmatrix} ^{+0.11}_{-0.03} \end{pmatrix} \\ 0.11 \begin{pmatrix} ^{+0.06}_{-0.02} \end{pmatrix} \\ 0.14 \begin{pmatrix} ^{+0.05}_{-0.02} \end{pmatrix} \\ 0.08 \begin{pmatrix} ^{-0.01}_{-0.02} \end{pmatrix} \\ 0.15 \begin{pmatrix} ^{+0.02}_{-0.02} \end{pmatrix} \\ 0.09 \begin{pmatrix} ^{+0.02}_{-0.01} \end{pmatrix} \\ 0.09 \begin{pmatrix} ^{+0.02}_{-0.01} \end{pmatrix} \\ 0.07 \begin{pmatrix} ^{+0.07}_{-0.02} \end{pmatrix} \end{array}$	$\begin{array}{c} 0.13 \left(^{+0.05}_{-0.02} \right) \\ 0.08 \left(^{+0.05}_{-0.02} \right) \\ 0.05 \left(^{+0.01}_{-0.01} \right) \\ 0.12 \left(^{+0.05}_{-0.02} \right) \\ 0.07 \left(^{+0.03}_{-0.01} \right) \end{array}$	[91,127,128]
130Cs75	10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 26+	959.7* 1312.7* 1602.4* 2019.0* 2445.1* 2913.5* 3379.1* 3871.0* 4320.8 4859.0 5338.4 5899.3 6450.3 6930.6 7487.5 8622.0	1506.4 1907.7 2280.7 2632.0 3085.0 3563.4 4038.4 5105.1	$\begin{array}{c} 0.70 \left(^{+0.22}_{-0.17} \right) \\ 0.54 \left(^{+0.11}_{-0.12} \right) \\ 0.24 \left(^{+0.00}_{-0.07} \right) \\ 0.92 \left(^{+0.54}_{-0.40} \right) \\ 0.12 \left(^{+0.02}_{-0.02} \right) \\ 1.98 \left(^{+1.11}_{-0.03} \right) \\ > 0.39 \end{array}$	$0.32 \begin{pmatrix} ^{+0.15}_{-0.11} \end{pmatrix}$ $0.20 \begin{pmatrix} ^{+0.04}_{-0.04} \end{pmatrix}$ $1.49 \begin{pmatrix} ^{+1.05}_{-0.69} \end{pmatrix}$ > 1.01	$\begin{array}{l} 0.17 \begin{pmatrix} +0.05 \\ -0.04 \end{pmatrix} \\ 0.08 \begin{pmatrix} +0.02 \\ -0.02 \end{pmatrix} \\ 0.14 \begin{pmatrix} +0.05 \\ -0.04 \end{pmatrix} \\ 0.19 \begin{pmatrix} +0.11 \\ -0.08 \end{pmatrix} \\ 0.12 \begin{pmatrix} +0.02 \\ -0.02 \end{pmatrix} \\ 0.35 \begin{pmatrix} +0.20 \\ -0.14 \end{pmatrix} \\ > 0.12 \end{array}$	$0.15 \begin{pmatrix} +0.07 \\ -0.05 \end{pmatrix}$ $0.08 \begin{pmatrix} +0.02 \\ -0.02 \end{pmatrix}$ $0.19 \begin{pmatrix} +0.13 \\ -0.08 \end{pmatrix}$ > 0.25	[24,86,93,129-131]
¹³⁴ Pr ₇₅	9+	559	797					fo.c.o
	10 ⁺ 11 ⁺ 12 ⁺ 13 ⁺ 14 ⁺ 15 ⁺ 16 ⁺ 17 ⁺ 18 ⁺	764 930 1213 1537* 1874 2243* 2643 3115 3582	931 1142 1409 1659 2017 2456 2901 3347 3858	$\begin{array}{c} 0.804 \left(^{+0.090}_{-0.090} \right) \\ 0.678 \left(^{+0.100}_{-0.000} \right) \\ 0.472 \left(^{+0.000}_{-0.075} \right) \\ 0.333 \left(^{+0.075}_{-0.075} \right) \\ 0.545 \left(^{+0.007}_{-0.067} \right) \end{array}$		$\begin{array}{c} 0.039 \left(\substack{+0.019 \\ -0.016} \right) \\ 0.089 \left(\substack{+0.020 \\ -0.020} \right) \\ 0.050 \left(\substack{+0.018 \\ -0.018} \right) \\ 0.047 \left(\substack{+0.017 \\ -0.017} \right) \end{array}$		[26,86,100,129,134-137

ARTICLE IN PRESS

B.W. Xiong, Y.Y. Wang / Atomic Data and Nuclear Data Tables \blacksquare (\blacksquare \blacksquare \blacksquare)

Table 2 (continued)

Nuclei	I^{π} (\hbar)	E (keV)		$B(M1)(\mu_N^2)$		$B(E2) (e^2b^2)$	References	
		yrast	side	yrast	side	yrast	side	
	19 ⁺	4172	4338					
	20^{+}	4648						
	21^{+}	5343						
	22^{+}	5839						
	23 ⁺	6534						
¹³⁵ Nd ₇₅	11.5-	2819.4						[38,138]
	12.5^{-}	2940.4						
	13.5^{-}	3110.5	3607.4					
	14.5^{-}	3358.2*	3780.4	$3.2 \left(^{+0.2}_{-0.2}\right)$		$0.32(^{+0.02}_{-0.02})$		
	15.5^{-}	3649.5*	4006.4	$2.5 \left(^{+0.3}_{-0.3} \right)$	$2.7 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$	$0.32 \begin{pmatrix} +0.03 \\ -0.03 \end{pmatrix}$	$0.28(^{+0.03}_{-0.03})$	
	16.5^{-}	4007.7*	4288.4	$3.2 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix}$ $2.5 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$ $2.2 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix}$ $2.4 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$ $1.7 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$	$\begin{array}{c} 2.7 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix} \\ 2.1 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix} \\ 2.2 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix} \\ 1.7 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix} \\ 1.9 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix} \end{array}$	0.33(+0.03)	$\begin{array}{c} 0.28 \begin{pmatrix} +0.03 \\ -0.03 \end{pmatrix} \\ 0.28 \begin{pmatrix} +0.04 \\ -0.04 \end{pmatrix} \\ 0.29 \begin{pmatrix} +0.04 \\ -0.04 \end{pmatrix} \\ 0.11 \begin{pmatrix} +0.03 \\ -0.03 \end{pmatrix} \end{array}$	
	17.5^{-}	4413.7*	4597.4	$2.4 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$	$2.2 \begin{pmatrix} +0.2 \\ -0.2 \end{pmatrix}$	$\begin{array}{c} 0.32 \ (-0.03) \\ 0.32 \ (^{+0.03}_{-0.03}) \\ 0.32 \ (^{+0.04}_{-0.04}) \\ 0.13 \ (^{+0.03}_{-0.03}) \\ 0.19 \ (^{+0.03}_{-0.04}) \\ 0.21 \ (^{+0.04}_{-0.04}) \end{array}$	$0.28 \left(^{+0.04}_{-0.04} \right)$	
	18.5^{-}	4852.7*	4969.4	$1.7 \begin{pmatrix} +0.3 \\ 0.3 \end{pmatrix}$	$1.7 (^{+0.2}_{0.2})$	$0.32 \begin{pmatrix} +0.04 \\ 0.04 \end{pmatrix}$	$0.29 \begin{pmatrix} +0.04 \\ 0.04 \end{pmatrix}$	
	19.5 ⁻	5315.7*	5409.4	$1.7 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$ $2.1 \begin{pmatrix} +0.3 \\ -0.3 \end{pmatrix}$	$1.9 \begin{pmatrix} -0.2 \\ +0.3 \end{pmatrix}$	$0.13 \begin{pmatrix} -0.04 \\ +0.03 \\ 0.03 \end{pmatrix}$	$0.11 \begin{pmatrix} -0.04 \\ +0.03 \\ 0.03 \end{pmatrix}$	
	20.5^{-}	5787.7*	5921.4		\-U.37	$0.19 \stackrel{(-0.03)}{(+0.03)}$	\=0.03 <i>'</i>	
	21.5-	6281.7*		$2.1 \left(\frac{1}{-0.3} \right)$ $2.0 \left(\frac{+0.3}{-0.3} \right)$		$0.21(^{+0.04}_{-0.04})$		
	22.5^{-}	6799.7		\-0.37		\=0.047		
¹⁹⁴ Tl ₁₁₃	8-	293						[108,143,144]
	9-	338						
	10^{-}	434						
	11^{-}	712	1175					
	12-	957	1481					
	13-	1361	1738					
	14-	1644	2001					
	15 ⁻	2112	2344					
	16 ⁻	2404	2682					
	17 ⁻ 18 ⁻	2882 3130	3003 3257					
	18 19 ⁻	3381	3427 3427		< 1.25			
	19 20 ⁻	3518	3628		< 1.25 < 1.61			
	20 21 ⁻	3840	3877	0.05 (+0.32)	1.01	$0.21\left(^{+0.12}_{-0.07}\right)$		
	21 22 ⁻	4081	4181	$0.95 \binom{+0.32}{-0.21}$ $0.97 \binom{+0.39}{-0.21}$	$1.31 \left(^{+0.54}_{-0.30} \right) \\ 1.24 \left(^{+0.43}_{-0.29} \right)$	0.21 (-0.07)	$0.20(^{+0.15}_{-0.06})$	
	22 23 ⁻	4462	4560	$0.97 \binom{-0.21}{-0.07}$ $0.34 \binom{+0.13}{-0.07}$	< 0.27	$0.39 \begin{pmatrix} +0.15 \\ -0.09 \end{pmatrix} \\ 0.05 \begin{pmatrix} +0.03 \\ -0.09 \end{pmatrix} \\ 0.07 \begin{pmatrix} +0.03 \\ -0.03 \end{pmatrix}$	< 0.07	
	23 24 ⁻	4824	4500	0.34 (-0.07)	< 0.∠/	0.03 (_{-0.01})	< 0.07	
	24	4824		$0.27 \left(^{+0.18}_{-0.09}\right)$		0.07 (_0.03)		