Содержание

1	Бис	логия.	2
	1.1	Свойства живого.	2
	1.2	Уровни организации живой материи	2
2	Кле	етка.	3
	2.1	Клеточная теория.	3
	2.2	Молекулярный уровень	3
	2.3	Вещества клетки.	3
		2.3.1 Вода	3
3	Ми	неральные вещества.	4
4	Орг	ганические вещества.	4
	4.1	Углеводы	4
	4.2	Липиды или жиры	5
	4.3	Белки	7
		4.3.1 Структура белка	7
	4.4	Нуклеиновые кислоты.	8
		4.4.1 Основные нуклеиновые кислоты.	8
	4.5	АТФ	10
		4.5.1 Состав	10
		4.5.2 Синтез АТФ	10
	4.6	Витамины	10
		4.6.1 Виды	10
	4.7	Сравнение АТФ, ДНК, РНК	10
5	Кле	еточный уровень.	10

1 Биология.

Направление	OX	Ученный
Классическое.	Изучает многообразие живой природы. Наблюдает и анализирует все в живой природе.	Гиппократ, Аристотель, Теофраст.
Эволюционное.	Изучает эволюцию живых организмов. Объяснение органического разнообразия природы.	Дарвин, Шлей- ден, Опарин, Ламарк.
Физико- химическое.	Изучение с использованием новых физико-химических методов и знаний.	Мечников, Па- стер, Кох, Гар- вей.

Метод	OX	Ученый
Описание.	Наблюдение и фиксирование фактического материала. Самый древний. Основной метод примерно до 18 века.	Гиппократ, Аристотель, Теофраст.
Сравнение.	Сходства и различия организмов. Данные для систематизации.	Аристотель, Ламарк, Бэр.
Исторический.	Осмысление факторов по предыдущем результатам.	Дарвин, Ла- марк.
Экспериментальный.	Изучение при помощи опытов. Дополнительные вспомогательные инструменты.	Гарвей, Мен- дель, Матье Бал, Кох.

1.1 Свойства живого.

- Обмен веществ (дыхание, пищеварение).
- Раздражимости (реакция на окружающую среду).
- Рост (количественное) и развитие (качественное).
- Размножение.
- Единство химического состава (основные C, O, H, N).
- Структурная организация.
- Открытость.
- Наследственность и изменчивость.
- Саморегуляция.

1.2 Уровни организации живой материи.

Молекулярный уровень — вирусы. Клеточный — бактерии. Организменный — одно- и многоклеточные. Популяционно-видовой. Экосистемный. Биосферный.

2 Клетка.

- Наименьшая структурная единица.
- Наименьшая функциональная единица.

2.1 Клеточная теория.

Личность 2.1. Роберт Гук. Первый микроскоп. Ввел понятие "клетка".

Личность 2.2. Антони ван Левенгук, XVI век. Первый микроскоп с увеличением в 300 раз.

Личность 2.3. Шлейден и Шванн, XIX век. Положения клеточной теории. Ошибка в том, что не было объяснено откуда появляются клетки (считали, что появились из неклеточного вещества).

Личность 2.4. Мечников, конец XIX века. Фагоцитоз (процесс, когда клетки захватывают и переваривают твердые частицы).

2.2 Молекулярный уровень.

Химические элементы:

- Макро; до $\frac{1}{100}$; основные -C, O, H, N.
- Микро; от $\frac{1}{1000}$ до $\frac{1}{1000000}$.
- Ульра-микро.

2.3 Вещества клетки.

- Органические (большая часть органики белки).
- Неорганические (преобладают из-за воды).

2.3.1 Вода.

Свойство	OX	Пример
Растворитель.	Легко растворяет ионные соединения (соли, кислоты, основания); некоторые не ионные, но полярные соединения. Вещества, хорошо растворимые в воде — гидрофильные, плохо — гидрофобные. Благодаря полярности и водородных связях.	Кислород, углекислый газ.
Теплоемкость.	Способность поглощать тепловую энергию при минимальном повышении собственной температуры.	Защищает ткани от быстрого и сильного повышения температуры. Охлаждение с помощью выделения воды.

	Обеспечение равномерного распределения температуры.	Высокая удельная теплоемкость и вы-
		сокая теплопроводность делают воду
Теплопроводность.		идеальной жидкостью для поддержа-
		ния теплового равновесия клетки и
		организма.
	Практически не сжимается. Создает	Гидростатический скелет поддержи-
Сжимаемость.	тургорное давление, определяя объем	вает форму у круглых червей, медуз
	и упругость клеток и тканей.	и других.
	Возникает благодаря образованию во-	Капилярный кровоток, восходящий и
Поверхностное на-	дородных связей между молекулами	нисходящий токи растворов в расте-
тяжение.	воды и молекулами других веществ.	ниях.

3 Минеральные вещества.

Свойство	Химический элемент	OX
Кристаллические включения.	Слаборастворимые соли кальция и фосфора.	Образование опорных структур клетки, например вещества костных ткани у моллюсков.
Проводимость.	Катионы и Анионы минеральных веществ.	Разность потенциалов из-за различной концентрации.
Кислотность.	Ионы H^+ .	Нейтральные, кислотные, основные. Определяют кислотную среду.
Буферные системы.	$ HPO_4^{2-}, H_2PO_4^{-}, H_2CO_3, HCO_4^{-}.$	Поддерживает постоянство pH в клетках.
Синтез.	Соединения азота, фосфора, кальция и другие неорганические вещества.	Синтез белков, аминокислот, нуклеиновых кислот.

4 Органические вещества.

4.1 Углеводы.

Углеводы $(C_n(H_2O)_m)$:

- Моносахариды
- Олигосахариды
- Полисахариды

Сахариды так как большинство хорошо растворимы в воде; сладкие.

С увеличением количества мономеров растворимость полисахаридов уменьшается и исчезает сладкий вкус.

Углеводы являются первичным продуктом фотосинтеза.

Углеводы есть во всех клетках.

Группа Пример Особенность

		Имеют сладкий вкус, бесцвет-
Моносахариды.	Рибоза, глюкоза, фруктоза,	ные, кристаллические, раство-
моносахариды.	дезоксирибоза, галактоза.	римые, во всех клетках, явля-
		ются мономерами.
		Образованы двумя или более
		моносахаридами. Также рас-
Олигосахариды.	Сахароза, мальтоза, лактоза	творимы в воде и имеют слад-
		коватый вкус. Связаны кова-
		лентно друг с дургом.
		Полимеры. Состоят из неопре-
Полисахариды.	Хитин, крахмал, гликоген, цел-	деленного большого числа
полисалариды.	люлоза.	остатков молекул моносахари-
		дов.

Функция	Пример углевода	Характеристика
Энергетическая.	Моносахариды (глюкоза).	При ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1г углеводов высвобождает 17.6кДж энергии.
Запасающая.	Полисахариды (крахмал и гли- коген).	При избытке они накапливают- ся в клетке в качетсве запа- сающих веществ и при необхо- димости используется организ- мом как источник энергии.
Структурная/строительная.	Целлюлоза, хитин.	Строительный материал. В среднем 20–40% материала клеточных стенок составляет целлюлоза.
Защитная.	Камеди → производный моно- сахаридов.	Препятствуют проникновению в раны болезнетворных микроорганизмов. Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих.

4.2 Липиды или жиры.

Молекул жира состоит из глицерина и трех остатков жирной кислоты. Иногда вместо остатка жирной кислоты могут быть белки, углеводы или остатки фосфорной кислоты. Более 600 жиров. 180 — животных, 420 — растительных.

Жиры бывают:

- Протоплазменный.
- Резервный.

Функция	Пример	Характеристика
Энергетическая	Триглицериды (жиры и масла)	Основная функция. При окислении 1 г жира выделяется около 38,9 кДж (9,3 ккал) энергии, что более чем в два раза превышает энергетическую ценность углеводов или белков. Жиры служат основным запасом энергии в организме.
Структурная (строительная)	Фосфолипиды, холестерин	Образование клеточных мембран. Фосфолипиды формируют липидный бислой всех клеточных мембран, обеспечивая их текучесть и избирательную проницаемость. Холестестрол стабилизирует мембрану, придавая ей жесткость.
Запасающая	Триглицериды (в жировой тка- ни)	Создание резервов энергии. Жиры запасаются в подкожной клетчатке, сальнике и вокруг внутренних органов. Жировые запасы также обеспечивают механическую защиту (амортизация) и термоизоляцию.
Регуляторная (гормональная)	Стероидные гормоны (половые гормоны, кортикостероиды), эйкозаноиды (простагландины)	Липиды выступают в роли гормонов и сигнальных молекул. Стероиды регулируют обмен веществ, репродуктивную функцию, стрессовые реакции. Эйкозаноиды регулируют воспаление, боль, температуру тела, артериальное давление.
Защитная и теплоизоляцион- ная	Триглицериды (подкожный жир)	Защита от механических повреждений и потерь тепла. Жировая прослойка смягчает удары и защищает внутренние органы. Благодаря низкой теплопроводности жир помогает сохранять тепло организма (особенно важно у морских млекопитающих).

Источник метаболической во- ды	Триглицериды	При окислении жиров образуется вода. Из 100 г жира получается около 107 мл воды. Это особенно важно для животных пустыни (верблюды, тушканчики) и впадающих в спячку (сурки, медведи).
Каталитическая (фермента- тивная)	Жирорастворимые витамины (A, D, E, K)	Витамины-липиды являются коферментами или предшественниками коферментов. Например, витамин А входит в состав зрительного пигмента родопсина; витамин К необходим для синтеза факторов свертывания крови.
Улучшение вкуса пищи и насы- щения	Триглицериды	Жиры улучшают вкусовые качества пищи и продлевают чувство сытости, так как они медленно перевариваются и подавляют секрецию желудочного сока.

4.3 Белки.

Белок — полимерная молекула. Его мономером является аминокислота (20 штук). Белки = протеины = полипептиды.

Аминокислота. Общая формула: $NH_2 - CH(R) - COOH$. По радикалу (R) определяем аминокислоту. $NH_2 - N$ -конец аминокислоты, COOH - C-конец аминокислоты.

4.3.1 Структура белка.

- 1. Первичная структура белка в виде цепочки; индивидуальна для каждого белка. Очень большая, поэтому клетки не удобно.
- 2. Вторичная структура белка в виде спирали. Удерживается водородными связями.
- 3. Третичная (глобал). Спираль упаковывается в шарик. Образуется за счет связей внутри радикалов.
- 4. Четвертичная. Несколько глобал, соединенных между собой. Характерна только для белков с очень важной функцией.

Определение 4.1. Денатурация — разрушение структуры белка. Ренатурация — восстановление структуры белка (возможна, если белок не утратил первичную структуру).

Функция Пример Характеристика	
-------------------------------	--

Структурная (опорная)	Коллаген, кретин	Образуют волокна и сети, обеспечивающие прочность и эластичность тканей. Коллаген — основа соединительной ткани (сухожилия, хрящи), кератин — основной белок волос, ногтей, перьев.
Ферментативная (каталитиче- ская)	Амилаза, пепсин, РНК- полимераза	Биологические катализаторы (ферменты), которые в тысячи раз ускоряют химические реакции в клетке. Амилаза расщепляет крахмал, пепсин — белки в желудке.
Транспортная	Гемоглобин, транспортные бел- ки мембраны	Связывают и переносят различные вещества. Гемоглобин переносит кислород в крови. Белки-переносчики в мембранах транспортируют ионы и молекулы.
Защитная	Антитела (иммуноглобулины), фибриноген	Распознают и обезвреживают чужеродные объекты (вирусы, бактерии). Фибриноген участвует в свёртывании крови, предотвращая кровопотерю.
Регуляторная	Инсулин, гормон роста	Белки-гормоны регулируют обмен веществ и физиологические процессы. Инсулин, например, регулирует уровень глюкозы в крови.
Энергетическая	Любой белок (в крайних случа- ях)	При недостатке углеводов и жиров белки могут расщепляться для получения энергии (при этом выделяется около $17,6 \frac{\kappa \mathcal{L} \pi}{r}$).

4.4 Нуклеиновые кислоты.

Нуклеиновые кислоты — полимеры, их мономеры — нуклеотиды.

4.4.1 Основные нуклеиновые кислоты.

ДНК и РНК. Их состав: фосфатная группа, пентозный сахар и азотистое основание.

Признак	ДНК	РНК
Название	Дезоксирибонуклеиновая кис- лота	Рибонуклеиновая кислота
Белок	Дезоксирибоза	Рибоза

Основание	Аденин (2 водородные связи), гуанин (3), цитозин (3), <i>тимин</i> (2)	Аденин (2), гуанин (3), цитозин (3), <i>урацил</i> (2)	
Водородные связи	Постоянные	Временные	
Внешний вид	Спираль. 5'-конец (фосфатная группа) и 3'-конец (пентозный сахар)	Также 3'- и 5'- концы	
Местоположение	Ядро клетки, митохондрии, пластиды	Цитоплазма, рибосома, ядро, митохондрии, пластиды	

Рис. 1: транспортная РНК

Название	Процент	Местоположение	OX	Функция
иРНК (мРНК)	1 - 5%	Ядро (в процессе синтеза), цитоплазма, рибосомы	Одноцепочечная молекула, образующаяся в процессе транскрипции на матрице ДНК. Имеет самую большую длину среди РНК. Нестабильна.	Перенос генетической информации от ДНК в ядре к рибосомам в цитоплазме, где служит матрицей для синтеза белка.
тРНК	10-15%	Цитоплазма, рибосомы	Небольшая молекула (70 — 90 нуклеотидов), имеющая сложную пространственную структуру ("клеверный лист"). Имеет участок для присоединения аминокислоты (акцепторный стебель) и антикодон.	Транспорт специфических аминокислот к растущей полипептидной цепи на рибосоме. Узнаёт свой кодон в иРНК благодаря антикодону.

				Структурная (является
			Самый распростра-	каркасом рибосомы)
			нённый тип РНК.	и каталитическая (ри-
		Синтезируется в яд-	Составляет вместе с	бозимы): обеспечивает
рРНК	80-85%	рышке, составляет	белками субъедини-	связывание рибосомы
		основу рибосом	цы рибосом. Имеет	с иРНК, катализирует
			сложную вторичную и	образование пептид-
			третичную структуру.	ных связей между
				аминокислотами.

4.5 AT Φ .

Аденозинтрифосфат.

4.5.1 Состав.

Аденин + рибоза + три остатка фосфорной кислоты (именно они определяют свойства АТФ; между ними макроэргическая связь). При отделении третьего и второго остатка фосфорной кислоты (разрушение макроэргической связи) выделяется до 40 кДж энергии. При отделении первого остатка от углевода выделяется 14 кДж.

4.5.2 Синтез АТФ.

Синтез проходит в митохондриях. Аденозинмонофосфат $(AM\Phi) \to$ аденозинтрифосфат $(AT\Phi) \to$ аденозинтрифосфат $(AT\Phi)$.

4.6 Витамины.

Открыты Луниным в 1880 году. Термин "Витамины" введен в 1912 году Функом. Суточная доля витаминов мала, они не заменяемые и не синтезируются.

4.6.1 Виды.

- Водорастворимые. Основные: C, B, PP, H.
- Жирорастворимые. Основные: A, D, E, K.

4.7 Сравнение АТФ, ДНК, РНК.

Сходства: общее строение, аналогичное местоположение.

5 Клеточный уровень.

Клетки есть у животных, растений, грибов, бактерий.

Клетка — наименьшая структурная и функциональная единица.

Науки — цитология, молекулярная биология, биохимия.

Клетка состоит из 3 частей:

• Цитоплазма. Основное вещество — гиалоплазма.

- Клеточная мембрана. Толщина 12 нМ; билипидный слой обеспечивает барьер; в билипидный слой погружены молекулы белков; рецепторами.
- Генетический аппарат. Центр управления клетки; локализовано более 90% ДНК; обычно имеет шаровидную форму; отделен от цитоплазмы оболочкой, состоящей из двух мембран.