DM n^o5

Parties à traiter : Exercice 1 et au choix Exercice 2 ou 2 bis (plus long et plus dur).

Exercice 1

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réels non nuls , nous dirons que le produit infini associé à la suite, noté $\prod a_n$ converge si par définition la suite $(P_n)_{n\in\mathbb{N}}$, où pour tout entier naturel n, $P_n := \prod_{k=0}^n a_k$, converge vers une limite non nulle.

- Montrer que si le produit converge alors la suite (a_n)_{n∈N} converge vers 1.
 On suppose dans la suite cette condition réalisée. On pose pour tout entier naturel n, u_n = a_n − 1 et l'on suppose que : u_n ≠ −1, pour tout entier naturel
- 2. Montrer qu'il existe un entier naturel n_0 , tel que pour tout entier $n \ge n_0$, la quantité $\ln(1+u_n)$ est définie. Montrer que le produit $\prod a_n$ converge si et seulement si la série $\sum_{n\ge n_0} \ln(1+u_n)$ converge.

Dans la suite, on supposera que $\ln(1+u_n)$ est défini pour tout $n \geq 0$.

Attention! Nous insistons sur le fait que $\prod a_n$ n'est pas un réel et que des expressions du type $\ln \left(\prod_{n \geq n_0} a_n\right)$ n'ont rigoureusement aucun sens.

- 3. On suppose en outre, dans cette question, que la suite $(u_n)_{n\in\mathbb{N}}$ est de signe fixe à partir d'un certain rang. Montrer que le produit $\prod a_n$ et la série $\sum u_n$ sont de même nature.
- 4. On ne suppose plus que la suite $(u_n)_{n\in\mathbb{N}}$ est de signe fixe à partir d'un certain rang, mais que la série $\sum u_n$ converge. Montrer que le produit converge si et seulemement si la série $\sum u_n^2$ converge.
- 5. Déterminer la nature des produits infinis suivants :
 - (a) $\prod_{n\geq 1} \left(1 \frac{1}{4n^2}\right)$.
 - (b) $\prod_{n\geq 1} \left(1-\frac{x^2}{\pi^2n^2}\right)$, où x est un élément de $]-\pi,\pi[$.
 - (c) $\prod_{n\geq 1} \left(1+\frac{x}{n}\right) \exp\left(-\frac{x}{n}\right)$, où x est un élément de \mathbb{R}_+^* .
- 6. Pour tout entier $n \geq 1$ on désigne par p_n le n-ième nombre premier. On se propose démontrer que la série $\sum_{n\geq 1} \frac{1}{p_n}$ diverge 1 .

On note $(p_n)_{n\geq 1}$, la suite des nombres premiers rangés dans l'ordre croissant :

$$p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11...$$

(a) Soit un entier $p \geq 2$. Rappeler la valeur de $\sum_{k=0}^{+\infty} \frac{1}{p^k}$.

^{1.} Cela signifie qu'il y a pas mal de nombres premiers! A titre de comparaison, la série $\sum_{n>1} \frac{1}{2^n}$ converge.

(b) Soient une entier $N \geq 2$ et un entier $M \geq 1$. Déduire de la sous question précédente que :

$$\frac{1}{\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_N}\right)} \ge \sum_{(k_1, k_2, \dots, k_N) \in \{0, 1, \dots, M\}^N} \frac{1}{p_1^{k_1} p_2^{k_2} \dots p_N^{k_N}}.$$

- (c) Montrer que le produit $\prod_{n>1} \left(1 \frac{1}{p_n}\right)$ diverge.
- (d) Montrer que la série $\sum_{n\geq 1} \frac{1}{p_n}$ diverge.

Exercice 2

Nous considèrerons la série de Riemann $\sum_{n\geq 1} \frac{1}{n^3}$ nous noterons, S sa somme, et pour tout entier n, strictement positif, R_n le reste d'ordre n et S_n la somme partielle d'ordre n.

1. En comparant la série et une intégrale donner l'encadrement suivant :

$$\frac{1}{2(n+1)^2} \le R_n \le \frac{1}{2n^2}$$

2. Posons pour tout entier $n \ge 1$,

$$x_n = S_n + \frac{1}{2(n+1)^2}$$

Pour quelle valeurs de l'entier n a-t-on :

$$|S - x_n| \le 10^{-6}$$

- 3. Nous nous proposons de trouver une suite qui converge plus vite vers S que $(x_n)_{n\in\mathbb{N}}$.
- 4. (a) Montrer que les relations suivantes définissent une unique suite $(P_n)_{n \in \mathbb{N}}$ de polynômes à coefficients rationnels :

$$P_0 = 1; (1)$$

$$P'_{n}(X) = P_{n-1}(X)$$
, pour tout $n \in \mathbf{N}^{*}$; (2)

$$\int_{0}^{1} P_{n}(t) dt = 0, \text{ pour tout } n \in \mathbf{N}^{*}.$$
 (3)

(4)

Expliciter les polynômes P_1 , P_2 et P_3 . Montrer que $P_3(\frac{1}{2}) = 0$, en déduire que pour tout réel x élément de [0,1],

$$|P_3(x)| \le \frac{1}{24}.$$

(b) Soit f une application numérique, définie sur [0,1], de classe \mathcal{C}^3 . Montrer que :

$$\int_{0}^{1} f(x) dx = \frac{1}{2} (f(0) + f(1)) - \frac{1}{12} (f'(1) - f'(0)) - \int_{0}^{1} P_{3}(x) f^{(3)}(x) dx.$$
 (5)

(c) Soit n un entier supérieur ou égal à 1. En appliquant la formule précédente à l'application $f:[0,1]\to \mathbf{R}; x\mapsto \frac{1}{(k+x)^3}$, pour tout entier k supérieur ou égal à n, montrer que :

$$R_n = \frac{1}{2n^2} - \frac{1}{2n^3} + \frac{1}{4n^4} + \mathop{\rm O}_{n \to +\infty} \left(\frac{1}{n^5}\right).$$

Plus précisément, montrer que :

$$\left| S - \left(S_n + \frac{1}{2n^2} - \frac{1}{2n^3} + \frac{1}{4n^4} \right) \right| \le \frac{1}{2n^5}.$$

Donner une valeur approchée de S à 10^{-6} près.

Exercice 2 bis

- 1. Polynômes de Bernoulli
 - (a) Montrer qu'il existe une et une seule suite de polynômes $(P_n)_{n\in\mathbb{N}}$ qui satisfait aux conditions suivantes
 - i. $P_0 = 1$;
 - ii. Pour tout entier $n \ge 1, \ P_n' = nP_{n-1}$; ii. Pour tout entier $n \ge 1, \ \int_0^1 P_n = 0.$

Dans la suite on pose pour tout entier naturel : $B_n = P_n(0)$.

Terminologie : P_n est le n^e polynôme de Bernoulli et B_n le n^e nombre de Bernoulli.

- (b) Montrer pour tout entier naturel n, que : $P_n \in \mathbf{Q}[X]$ et $P_n = \sum_{k=0}^n \binom{n}{k} B_{n-k} X^k$. Explicitez P_1, P_2 et P_3 .
- (c) Etablir, pour tout entier naturel n les égalités suivantes.

 - i. $P_n(X) = (-1)^n P_n(1-X)$; ii. $P_n(X) = 2^{n-1} \left(P_n\left(\frac{X}{2}\right) + P_n\left(\frac{X+1}{2}\right) \right)$; iii. $P_n(X+1) P_n(X) = nX^{n-1}$.
- 2. Etude des nombres de Bernoulli
 - (a) Montrer que pour tout entier $k \geq 1$, $B_{2k+1} = 0$.
 - (b) En utilisant 1. (b), montrer que pour tout entier $p \ge 1$, on peut trouver un système linéaire triangulaire à p lignes dont $(B_0, B_2, \ldots, B_{2p})$ est la solutions. Déterminer B_0, B_1, \ldots, B_6 .
- 3. (a) Montrer que pour tout entier naturel k,
 - P_{2k+2} admet dans [0,1] exactement deux racines éléments de [0,1];
 - P_{2k+1} admet dans [0, 1] exactement trois racines qui sont 0, $\frac{1}{2}$, 1.
 - (b) Déduire de la question précédente que pour tout entier k, le maximum de $|P_{2k}|$ sur [0,1] est égal à $|B_2k|$ et celui de $|P_{2k+1}|$ est inférieur à $\frac{(2k+1)|B_2k|}{2}$.
- 4. FORMULE D'EULER-MAC LAURIN Soit f un élément de $\mathcal{C}^{2p+1}([0,1],\mathbf{R})$, avec $p \in \mathbf{N}^*$.
 - (a) Donner pour f la formule de Taylor avec reste intégrale à l'ordre 2p, et rappeler sa démonstration.

(b) Montrer que:

$$\int_0^1 f(x) dx = \frac{f(1) + f(0)}{2} - \sum_{k=1}^p \frac{B_{2k}}{2k!} \left(f^{(2k-1)}(1) - f^{(2k-1)}(0) \right) - I_{2p+1},$$

avec : $I_{2p+1} = \int_0^1 f^{2p+1}(x) P_{2p+1}(x) dx$ (formule d'Euler-Mac Laurin).

(c) Montrer que pour tout entier naturel p:

$$|I_{2p+1}| \le \frac{|B_{2p}|}{2(2p)!} \max_{x \in [0,1]} |f^{2p+1}(x)|.$$

- (d) Soit g un élément de $C^{2p+1}([a,b], \mathbf{R})$, avec $p \in \mathbf{N}^*$ et a et b des réels tels que a < b. Que devient la formule d'Euler-Mac Laurin en remplaçant f par $t \mapsto g(a+t(b-a))$?
- 5. EXEMPLE D'APPLICATION DE LA FORMULE D'EULER-MAC LAURIN AU CALCUL APPROCHÉ DE SOMMES DE SÉRIES On note S la somme de la série $\sum_{n\geq 1}\frac{1}{n^3}$, et pour tout entier $n\geq 1,\, S_n$ sa somme partielle d'ordre n et R_n son reste d'ordre n.
 - (a) Ecrire la formule d'Euler-Mac Laurin pour l'application $f:[0,1]\to \mathbf{R}$; $x\mapsto \frac{1}{(j+x)^3}$ où j est un entier strictement positif.
 - (b) Soit $n \in \mathbb{N}^*$. Déduire de la sous-question précédente l'existence de réels a_k , $k = 0, 1, \ldots, p$ tels que :

$$R_n = \sum_{k=1}^p \frac{a_k}{n^{2k+2}} + o\left(\frac{1}{n^{2p+2}}\right) \ (n \to +\infty).$$

Donner une majoration de $\left| R_n = \sum_{k=1}^p \frac{a_k}{n^{2k+2}} \right|$ en fonction des nombres de Bernoulli.

(c) En déduire une valeur approchée de S_n à 10^{-12} près.

En complément, ceux qui désirent aller plus loin pourrons étudier le sujet $Centrale\ 2011$.

Indications pour DM n°5

Exercice 1

- 1. Noter pour commencer que la suite $(a_n)_{n\in\mathbb{N}}$ étant à valeurs non nulles, pour tout $n\in\mathbb{N}$, $P_n=\prod_{p=0}^n a_p\neq 0$ et donc $\frac{P_{n+1}}{P_n}$ est bien défini. Reste à laisser tendre n vers $+\infty$.
- 2. $a_n \to 1$ donc, en particulier, il existe $n_0 \in \mathbf{N}$ tel que pour $n \in \mathbf{N}$, si $n \ge n_0$, alors $|a_n 1| < 1$. Pour tout $n \ge n_0$ on a $a_n > 0$.

D'abord on montre que les produits $\prod_{n\geq 0} a_n$ et $\prod_{n\geq n_0} a_n$ sont de même nature.

Pour tout $n \in \mathbf{N}$,

$$\prod_{p=n_0}^n a_p = \exp\left(\sum_{p=n_0}^n \ln(a_p)\right),\tag{6}$$

ou de façon équivalente,

$$\ln\left(\prod_{p=n_0}^n a_p\right) = \sum_{p=n_0}^n \ln(a_p). \tag{7}$$

— Supposer que la série $\sum_{n\geq n_0} \ln(a_n)$ converge.

Utiliser l'égalité (18) et la continuité de la fonction exponentielle en $\sum_{p=n_0}^{+\infty} \ln(a_p)$

— Supposons que le produit $\prod_{n=0}^{\infty} a_n$ converge.

Alors $\prod_{n\geq n_0} a_n$ converge, cf. remarque et Utiliser (19) et la continuité du logarithme

Conclusion:

la série
$$\sum_{n\geq n_0} a_n$$
 converge si et seulement si le produit $\prod_{n\geq 0} \ln(a_n)$ converge.

3. — Supposer que le produit infini $\prod_{n>0} (1+u_n)$ converge.

Comme pour tout $n \in \mathbb{N}$, $1+u_n > 0$, la question 1.a. dit que $\sum_{n \geq 0} \ln(1+u_n)$ converge.

Par ailleurs la convergence du produit assure que $u_n \xrightarrow[n \to +\infty]{} 0$ (cf. 1.), donc

$$0 \le \ln(1 + u_n) \underset{n \to +\infty}{\sim} u_n,\tag{8}$$

Utiliser le théorème de comparaison des séries à termes positifs.

— Supposer que la série $\sum_{n>0} u_n$ converge.

Utiliser encore le théorème.

— Pour tout $n \in \mathbf{N}$: $\ln(a_n) = u_n - b_n$, ou $b_n \underset{n \to +\infty}{\sim} \frac{1}{2}u_n^2$. Par comparaison de séries positives $\sum b_n$ converge si et seulement si $\sum u_n^2$ converge. Donc, puisque $\sum u_n$ converge, $\sum \ln(a_n)$ converge si et seulement si $\sum u_n^2$ converge.

Deuxième partie

1. Pour tout $n \in \mathbf{N}^*$, $0 < \frac{1}{n}$, donc compte tenu de 3 (et de la remarque préliminaire faite au 5), la série $\sum_{n\geq 1} \frac{1}{n}$ et le produit $\prod_{n\geq 1} \left(1+\frac{1}{n}\right)$ sont de même nature. Or pour tout $n \in \mathbf{N}^*$,

$$\prod_{p=1}^{n} \left(1 + \frac{1}{p} \right) = \prod_{p=1}^{n} \frac{p+1}{p} = \dots$$

2. a. La série géométrique $\sum_{k=0}^{\infty} \frac{1}{p^k}$ converge puisque sa raison $\frac{1}{p}$ est élément de [0,1[et sa somme vaut :

$$\sum_{k=0}^{+\infty} \frac{1}{p^k} = \frac{1}{1 - \frac{1}{p}}.$$

b. Soient N un entier supérieur ou égal à 2 et $M \in \mathbf{N}^*$.

$$\frac{1}{\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_N}\right)} \ge \sum_{k=0}^M \frac{1}{p_1^k} \sum_{k=0}^M \frac{1}{p_2^k} \dots \sum_{k=0}^M \frac{1}{p_N^k} \dots$$

soit

c. Soit n un élément de $\{1, \ldots N\}$. Puisque $P_N \geq N \geq 2$, les facteurs premiers de n sont éléments de $\{p_1, \ldots p_N\}$; de plus si l'on choisit M pour que $2^M \geq N$, dans la décomposition de n en facteurs premiers aucun des exposants des facteurs n'excédera strictement M. Donc l'ensemble $\{1, \ldots, N\}$ est inclus dans l'ensemble des éléments de la forme $p_1^{k_1}p_2^{k_2}\ldots p_N^{k_N}$ avec $(k_1, k_2, \ldots, k_N) \in \{0, 1, \ldots, M\}^N$

Pour ce choix de M on a donc, grâce à la dernière inégalité,

$$\frac{1}{\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_N}\right)} \ge \sum_{m=1}^{N} \frac{1}{m}.$$
 (9)

La suite est asinitrotante

d. Utiliser 3.

EXERCICE 2Bis

- 1.
 - (a) Pour commencer observons qu'étant donné un polynôme à coefficients réels, disons $P = \sum_{i=0}^{d} a_i X^i$, un polynôme Q, vérifie Q' = P si et seulement si, il existe un réel b_0 tel que

$$Q = \sum_{i=1}^{d+1} \frac{a_{i-1}}{i} X^i + b_0,$$

De telle sorte que Q vérifie à la fois Q'=P et $\int_0^1 Q(t) \mathrm{d}t$ si et seulement si il est LE polynôme

$$\sum_{i=1}^{d+1} \frac{a_{i-1}}{i} X^i - \sum_{i=1}^{d+1} \frac{a_{i-1}}{i(i+1)}, \tag{10}$$

polynôme que nous noterons $\Phi(P)$. Donc, il existe une et une seule suite de polynômes $(P_n)_{n\in\mathbb{N}}$ qui satisfasse aux conditions i., ii. et iii. C'est LA suite de polynômes, définie récurrsivement par......

Reste à vérifier qu'une telle suite est bien à valeurs dans $\mathbf{Q}[X]$.

Soit $n \in \mathbb{N}$. La formule de Taylor dit : $P_n = \sum_{k=0}^n \frac{P_n^{(k)}(0)}{k!} X^k$. Le résultat en résulte par la propriété ii. du (a),

Après calculs :
$$P_1 = X - \frac{1}{2}, P_2 = X^2 - X + \frac{1}{6}, P_3 = X^3 - \frac{3}{2} + \frac{1}{2}X$$
.

- (b) i. Posons pour tout entier naturel n, $Q_n = (-1)^n P_n(1-X)$. On montre alors que cette suite satisfait les conditions 1. (a) i. ii., et iii.,
 - que cette suite satisfait les conditions 1. (a) i. ii., et iii., ii. Poser pour tout entier naturel n, $R_n(X) = 2^{n-1} \left(P_n\left(\frac{X}{2}\right) + P_n\left(\frac{X+1}{2}\right) \right)$; et raisonner comme au **i.**
 - iii. Pour tout entier naturel n on désigne par \mathbf{H}_n la propriété :

$$P_n(X+1) - P_n(X) = nX^{n-1}.$$
 (H_n)

On la prouve par récurrence Mais il y a d'autres méthodes

- 2. Etude des nombres de Bernoulli
 - (a) L'égalité 1. (c) i., donne

$$P_{2k+1}(1) = -P_{2k+1}(0) (11)$$

Mais d'après les propriétés ii. et iii. du 1. (a)

$$P_n(1) - P_n(0) = 0. (12)$$

(b) D'après (16) et 1. (b), pour tout entier $n \ge 2$, $B_n = P_n(0) = P_n(1) = \sum_{k=0}^n \binom{n}{k} B_{n-k}$. et donc :

$$\sum_{k=1}^{n} \binom{n}{k} B_{n-k} = 0 \tag{13}$$

Les nombres de Bernoulli d'indices impairs supérieurs à 1 étant nuls, l'écriture de (17) pour $n = 0, 2, 4 \dots, 2p$ donne :

$$\begin{cases}
B_0 = 1, \\
\binom{4}{0} B_0 + \binom{4}{2} B_2 = -\binom{4}{1} B_1, \\
\binom{6}{0} B_0 + \binom{6}{2} B_2 + \binom{6}{4} B_4 = -\binom{6}{1} B_1, \\
\vdots \\
\binom{2p+2}{0} B_0 + \binom{2p+2}{2} B_2 \cdots + \binom{2p+2}{2p-2} B_{2p} = -\binom{2p+2}{1} B_1.
\end{cases}$$

- 3. (a) Commençons par des remarques. Soit $k \in \mathbb{N}$,
 - D'après 1. (c) i. $P_{2k+1}\left(\frac{1}{2}\right) = -P_{2k+1}\left(\frac{1}{2}\right)$, donc $P_{2k+1}\left(\frac{1}{2}\right) = 0$. Donc P_{2k+1} s'annule en 0, 1 et $\frac{1}{2}$.
 - D'après 1. (c) ii. $P_{2k}\left(\frac{1}{2}\right) = \left(\frac{1}{2^{k-1}} 1\right) P_k(0)$ Donc $P_{2k}\left(\frac{1}{2}\right)$ est de signe opposé à $P_{2k}(0)$. Rappelons avoir vu que $P_{2k}(0) = P_{2k}(1)$.

Notons alors pour tout entier $k \geq 1$, On note \mathbf{R}_k la propriété : P_{2k+2} admet dans [0,1] exactement deux racines l'une dans $]0,\frac{1}{2}[$ l'autre dans $]\frac{1}{2},1[$, en lesquelles il change de signe ;

- L'expression de P_2 , assure que \mathbf{R}_1 est vraie.
- Soit un entier $k \geq 1$. On suppose que \mathbf{R}_k est vrai. On note α et β les racines de P_{2k} , $0 < \alpha < \frac{1}{2} < \beta < 1$. Pour fixer les idées on suppose $P_{2k} > 0$ sur $]0, \alpha[$. Comme alors P_{2k} est proportionnel à la dérivée de P_{2k+1} , on a les variations de P_{2k+1} et son signe, puis comme P_{2k+1} est proportionnel à la dérivée de P_{2k+1} , on a les variations de P_{2k+2} :

t	0		α		$\frac{1}{2}$		β		1
P_{2h}		+	0	_	_	_	0	+	
P_{2h+1}	0	7		\searrow	0	\searrow		7	0
P_{2h+2}		7		7		\searrow		\searrow	

Donc la fonction polynomiale P_{2k+2} induit un homéomorphisme de $]0, \frac{1}{2}[$ sur $]P_{2k+1}(0), P_{2k}(\frac{1}{2})[$ et puisque $P_{2k+2}(\frac{1}{2})$ est de signe opposé à $P_{2k+2}(0), P_{2k+2}$ s'annule en un et un seul point de $]0, \frac{1}{2}[$ en lequel il change de signe. De même P_{2k+2} s'annule t'il en un et un seul point de $]\frac{1}{2}, 1[$, en lequel il change de signe.

La propriété est \mathbf{R}_h est donc vraie pour tout entier $h \geq 1$:

 P_{2k} admet dans [0,1] exactement deux zéros éléments de [0,1];.

En revenant au tableau de variations de P_{2h+1} on voit que :

 P_{2h+1} admet dans [0,1] exactement trois zéros $0,\frac{1}{2}$ et 1.

- (b) Résulte directement du tableau de variations.
- 4. FORMULE D'EULER-MAC LAURIN Soit f un élément de $C^{2p+1}([0,1], \mathbf{R})$, avec $p \in \mathbf{N}^*$.
 - (a) C'est du cours l'idée consiste à partir de $f(0) f(1) = \int_0^1 f'(t) dt$. On effectue une intégration par parties en dérivant f' et en primitivant la fonction constante égale à 1 en $t-1 \mapsto t-1$, on obtient :

$$f(1) = f(0) + f'(0) + \int_0^1 (t-1)f''(t)dt.$$

On peut itérer les intégrations par parties pour obtenir la formule, à chaque fois on primitive le terme polynômial de sorte que la primitive s'annule en 1.

- (b) Dans la formule d'Euler-Mac Laurin on procède de même mais la fonction constante égale à 1 est primitivée initialement en en P_1 , au cours des intégrations par parties suivantes on prendra comme primitive de P_n , $\frac{1}{n+1}P_{n+1}$. La preuve se fait par récurrence...
- (c) Résulte de la majoration de P_{2p+1} .
- (d) En remplaçant f par $t\mapsto g(a+t(b-a))$, dans la formule précédente, on obtient :

$$\int_{a}^{b} g(x)dx = (b-a)\frac{g(a) + g(b)}{2} - \sum_{k=1}^{p} \frac{B_{2k}(b-a)^{2k}}{(2k)!} \left(g^{(2k-1)}(b) - g^{(2k-1)(a)}\right) - \frac{(b-a)^{2p+2}}{(2p+1)!} \int_{0}^{1} P_{2p+1}g^{(2p+1)}(a + x(b-a))dx.$$

Correction du DM n°5

EXERCICE 2

1. —

(a) Pour commencer observons qu'étant donné un polynôme à coefficients réels, disons $P = \sum_{i=0}^{d} a_i X^i$, un polynôme Q, vérifie Q' = P si et seulement si, il existe un réel b_0 tel que

$$Q = \sum_{i=1}^{d+1} \frac{a_{i-1}}{i} X^i + b_0,$$

De telle sorte que Q vérifie à la fois Q'=P et $\int_0^1 Q(t) dt$ si et seulement si il est LE polynôme

$$\sum_{i=1}^{d+1} \frac{a_{i-1}}{i} X^i - \sum_{i=1}^{d+1} \frac{a_{i-1}}{i(i+1)}, \tag{14}$$

polynôme que nous noterons $\Phi(P)$. Donc, il existe une et une seule suite de polynômes $(P_n)_{n\in\mathbb{N}}$ qui satisfasse aux conditions i., ii. et iii. C'est LA suite de polynômes, définie récurrsivement par :

$$\begin{cases} P_0 = 0, \\ \forall n, P_{n+1} = \Phi(P_n). \end{cases}$$

La relation (14) montre que $\Phi(\mathbf{Q}[X])$ est inclus dans $\mathbf{Q}[X]$, puisque \mathbf{Q} est un anneau. Donc la suite $(P_n)_{n\in\mathbb{N}}$ est bien à valeurs dans $\mathbf{Q}[X]$.

Soit $n \in \mathbb{N}$. La formule de Taylor pour le polynôme P_n dit :

$$P_n = \sum_{k=0}^{n} \frac{P_n^{(k)}(0)}{k!} X^k.$$

Le résultat en résulte par la propriété ii. du (a),

Après calculs : $P_1 = X - \frac{1}{2}, P_2 = X^2 - X + \frac{1}{6}, P_3 = X^3 - \frac{3}{2} + \frac{1}{2}X$.

(b) i. Posons pour tout entier naturel n, $Q_n = (-1)^n P_n(1-X)$. On montre alors que cette suite satisfait les conditions 1. (a) i. ii., et iii., ce qui assure que pour tout entier naturel n,

$$P_n = (-1)^n P_n (1 - X)$$

- ii. Poser pour tout entier naturel n, $R_n(X) = 2^{n-1} \left(P_n\left(\frac{X}{2}\right) + P_n\left(\frac{X+1}{2}\right)\right)$; et raisonner comme au **i.**
- iii. Pour tout entier naturel n on désigne par \mathbf{H}_n la propriété :

$$P_n(X+1) - P_n(X) = nX^{n-1}.$$
 (H_n)

• \mathbf{H}_0 est trivialement vraie.

• Soit m un entier naturel telle que \mathbf{H}_m soit vraie. En multipliant par (m+1) et primitivant la fonction polynomiale associée à $P_m(X+1) - P_m(X)$ on obtient compte tenue de \mathbf{H}_m et de 1. (a) iii., l'existence d'un réel c tel que :

$$P_{m+1}(X+1) - P_{m+1}(X) = (m+1)X^m + c.$$

En substituant alors à X la valeur 0, il vient :

$$c = P_{m+1}(1) - P_{m+1}(0) = (n+1) \int_0^1 P_m(t) dt = 0.$$

Donc par récurrence nous venons de prouver que pour tout entier naturel n,

$$P_n(X+1) - P_n(X) = nX^{n-1}$$

Mais il v a d'autre méthodes

- 2. Etude des nombres de Bernoulli
 - (a) L'égalité 1. (c) i., donne

$$P_{2k+1}(1) = -P_{2k+1}(0) (15)$$

Mais d'après les propriétés ii. et iii. du 1. (a)

$$P_n(1) - P_n(0) = 0. (16)$$

(b) D'après (16) et 1. (b), pour tout entier $n \geq 2$,

$$B_n = P_n(0) = P_n(1) = \sum_{k=0}^n \binom{n}{k} B_{n-k}.$$

et donc:

$$\sum_{k=1}^{n} \binom{n}{k} B_{n-k} = 0 \tag{17}$$

Les nombres de Bernoulli d'indices impairs supérieurs à 1 étant nuls, l'écriture de (17) pour $n=0,2,4\ldots,2p$ donne :

$$\begin{cases}
B_0 = 1, \\
\binom{4}{0} B_0 + \binom{4}{2} B_2 = -\binom{4}{1} B_1, \\
\binom{6}{0} B_0 + \binom{6}{2} B_2 + \binom{6}{4} B_4 = -\binom{6}{1} B_1, \\
\vdots \\
\binom{2p+2}{0} B_0 + \binom{2p+2}{2} B_2 \cdots + \binom{2p+2}{2p-2} B_{2p} = -\binom{2p+2}{1} B_1.
\end{cases}$$

- 3. (a) Commençons par des remarques. Soit $k \in \mathbb{N}$,
 - D'après 1. (c) i. $P_{2k+1}\left(\frac{1}{2}\right) = -P_{2k+1}\left(\frac{1}{2}\right)$, donc $P_{2k+1}\left(\frac{1}{2}\right) = 0$. Donc P_{2k+1} s'annule en 0, 1 et $\frac{1}{2}$.
 - D'après 1. (c) ii. $P_{2k}^2\left(\frac{1}{2}\right) = \left(\frac{1}{2^{k-1}} 1\right) P_k(0)$ Donc $P_{2k}\left(\frac{1}{2}\right)$ est de signe opposé à $P_{2k}(0)$. Rappelons avoir vu que $P_{2k}(0) = P_{2k}(1)$.

Notons alors pour tout entier $k \geq 1$, On note \mathbf{R}_k la propriété : P_{2k+2} admet dans [0,1] exactement deux racines l'une dans $]0,\frac{1}{2}[$ l'autre dans $]\frac{1}{2},1[$, en lesquelles il change de signe ;

- L'expression de P_2 , assure que \mathbf{R}_1 est vraie.
- Soit un entier $k \geq 1$. On suppose que \mathbf{R}_k est vrai. On note α et β les racines de P_{2k} , $0 < \alpha < \frac{1}{2} < \beta < 1$. Pour fixer les idées on suppose $P_{2k} > 0$ sur $]0, \alpha[$. Comme alors P_{2k} est proportionnel à la dérivée de P_{2k+1} , on a les variations de P_{2k+1} et son signe, puis comme P_{2k+1} est proportionnel à la dérivée de P_{2k+1} , on a les variations de P_{2k+2} :

t	0		α		$\frac{1}{2}$		β		1
P_{2h}		+	0	_	_	_	0	+	
P_{2h+1}	0	7		\searrow	0	\searrow		7	0
P_{2h+1}		7		7		\searrow		×	

Donc la fonction polynomiale P_{2k+2} induit un homéomorphisme de $\left]0,\frac{1}{2}\right[$ sur $\left]P_{2k+1}(0),P_{2k}\left(\frac{1}{2}\right)\right[$ et puisque $P_{2k+2}\left(\frac{1}{2}\right)$ est de signe opposé à $P_{2k+2}(0),P_{2k+2}$ s'annule en un et un seul point de $\left]0,\frac{1}{2}\right[$ en lequel il change de signe. De même P_{2k+2} s'annule t'il en un et un seul point de $\left[\frac{1}{2},1\right]$, en lequel il change de signe.

La propriété est \mathbf{R}_h est donc vraie pour tout entier $h \geq 1$:

 P_{2k} admet dans [0,1] exactement deux zéros éléments de [0,1];.

En revenant au tableau de variations de P_{2h+1} on voit que :

 P_{2h+1} admet dans [0,1] exactement trois zéros $0, \frac{1}{2}$ et 1.

Indicartions pour la correction du DM n°4

Nous ne donnons pour la fin de ce problème que des indications de correction

- (b) Résulte directement du tableau de variations.
- 4. FORMULE D'EULER-MAC LAURIN Soit f un élément de $C^{2p+1}([0,1], \mathbf{R})$, avec $p \in \mathbf{N}^*$.
 - (a) C'est du cours l'idée consiste à partir de $f(0) f(1) = \int_0^1 f'(t) dt$. On effectue une intégration par parties en dérivant f' et en primitivant la fonction constante égale à 1 en $t-1 \mapsto t-1$, on obtient :

$$f(1) = f(0) + f'(0) + \int_0^1 (t-1)f''(t)dt.$$

On peut itérer les intégrations par parties pour obtenir la formule, à chaque fois on primitive le terme polynômial de sorte que la primitive s'annule en 1.

- (b) Dans la formule d'Euler-Mac Laurin on procède de même mais la fonction constante égale à 1 est primitivée initialement en en P_1 , au cours des intégrations par parties suivantes on prendra comme primitive de P_n , $\frac{1}{n+1}P_{n+1}$. La preuve se fait par récurrence
- (c) Résulte de la majoration de P_{2p+1} .
- (d) En remplaçant f par $t \mapsto g(a+t(b-a))$, dans la formule précédente, et par changement de variable affine x = a + t(b-a) on obtient :

$$\int_{a}^{b} g(x)dx = (b-a)\frac{g(a)+g(b)}{2} - \sum_{k=1}^{p} \frac{B_{2k}(b-a)^{2k}}{(2k)!} \left(g^{(2k-1)}(b) - g^{(2k-1)(a)}\right) - \frac{(b-a)^{2p+2}}{(2p+1)!} \int_{0}^{1} P_{2p+1}g^{(2p+1)}(a+x(b-a))dx.$$

Exercice 1

1. Notons pour commencer que la suite $(a_n)_{n\in\mathbb{N}}$ étant à valeurs non nulles, pour tout $n \in \mathbb{N}$, $P_n = \prod_{p=0}^n a_p \neq 0$ et donc $\frac{P_{n+1}}{P_n}$ est bien défini.

Supposons que $\prod_{n>0} a_n$ converge. Il existe un réel non nul L tel que $P_n \underset{n\to+\infty}{\to} L$. Alors $P_{n+1} \xrightarrow[n \to +\infty]{n \to +\infty} L$, puisque $(P_{n+1})_{n \in \mathbb{N}}$ est une suite extraite de $(P_n)_{n \in \mathbb{N}}$. Et donc

$$a_{n+1} = \frac{P_{n+1}}{P_n} \underset{n \to +\infty}{\to} 1.$$

Donc

$$a_n \underset{n \to +\infty}{\longrightarrow} 1.$$

2. — $a_n \underset{n \to +\infty}{\to} 1$ donc, en particulier, il existe $n_0 \in \mathbf{N}$ tel que pour $n \in \mathbf{N}$, si $n \ge n_0$,

alors $|a_n - 1| < 1$. Pour tout $n \ge n_0$ on a $a_n > 0$. Pour tout $n \in \mathbb{N}$, $\prod_{p=0}^{n} a_p = \prod_{p=0}^{n_0-1} a_p \prod_{p=n_0}^{n} a_p$, avec la convention qu'un produit vide vaut 1. Or $\prod_{p=0}^{n_0-1} a_p$ est un réel non nul. Donc la suite $\left(\prod_{p=0}^{n} a_p\right)_{n \in \mathbb{N}}$ converge vers une

limite non nulle si et seulement si la suite $\left(\prod_{p=n_0}^n a_p\right)_{n\geq n_o}$ converge vers une limite

non nulle. Autrement dit, les produits $\prod_{n\geq 0} a_n$ et $\prod_{n\geq n_0} a_n$ sont de même nature.

Pour tout $n \in \mathbf{N}$,

$$\prod_{p=n_0}^n a_p = \exp\left(\sum_{p=n_0}^n \ln(a_p)\right),\tag{18}$$

ou de façon équivalente,

$$\ln\left(\prod_{p=n_0}^n a_p\right) = \sum_{p=n_0}^n \ln(a_p). \tag{19}$$

— Supposons que la série $\sum_{n \in \mathbb{Z}} \ln(a_n)$ converge.

L'égalité (18) et la continuité de la fonction exponentielle en $\sum_{p=n_0}^{+\infty} \ln(a_p)$ assurent

la convergence de la suite $\left(\prod_{p=n_0}^n a_p\right)_{n\in\mathbb{N}}$ vers $\exp\left(\sum_{n=n_0}^{+\infty} \ln(a_n)\right)$, réel non nul. Donc par la remarque initiale $\prod_{n>0}^n a_n$ converge.

— Supposons que le produit $\prod_{n\geq 0} a_n$ converge. Alors $\prod_{n\geq n_0} a_n$ converge, cf. remarque et alors d'après (19) et la continuité du

logarithme en $\prod_{n=n_0}^{+\infty} a_n$, réel non nul, on déduit que la série $\sum_{n\geq n_0} \ln(a_n)$ converge de somme $\ln\left(\prod_{n=n_0}^{+\infty} a_n\right)$.

Conclusion:

la série $\sum_{n\geq n_0} a_n$ converge si et seulement si le produit $\prod_{n\geq 0} \ln(a_n)$ converge.

3. — Supposons que le produit infini $\prod_{n>0} (1+u_n)$ converge.

Comme pour tout $n \in \mathbb{N}$, $1 + u_n > 0$, la question 1.a. dit que $\sum_{n \geq 0} \ln(1 + u_n)$ converge. Par ailleurs la convergence du produit assure que $u_n \underset{n \to +\infty}{\to} 0$ (cf. 1.), donc

$$0 \le \ln(1 + u_n) \underset{n \to +\infty}{\sim} u_n, \tag{20}$$

Donc d'après le théorème de comparaison des séries à termes positifs, la série $\sum_{n\geq 0} u_n$ converge.

— Supposons que la série $\sum_{n>0} u_n$ converge.

On a donc $u_n \underset{n \to +\infty}{\to} 0$, donc (20) est vérifiée et donc, d'après le théorème de comparaison des séries à termes positifs, la série $\sum_{n>0} \ln(1+u_n)$ converge. La question

3 assure donc que le produit $\prod_{n\geq 0} (1+u_n)$ converge.

Conclusion:

le produit infini $\prod_{n\geq 0} (1+u_n)$ converge si et seulement si la série $\sum_{n\geq 0} u_n$ converge.

4. Pour tout $n \in \mathbf{N} : \ln(a_n) = u_n - b_n$, ou $b_n \underset{n \to +\infty}{\sim} \frac{1}{2} u_n^2$. Par comparaison de séries posi-

- 4. Pour tout $n \in \mathbf{N}$: $\ln(a_n) = u_n b_n$, ou $b_n \sim \frac{1}{2}u_n^2$. Par comparaison de séries positives $\sum b_n$ converge si et seulement si $\sum u_n^2$ converge. Donc, puisque $\sum u_n$ converge, $\sum \ln(a_n)$ converge si et seulement si $\sum u_n^2$ converge.
- Donc, par 3. $\sum u_n$ converge, $\underline{\prod}(a_n)$ converge si et seulement si $\sum u_n^2$ converge.
- 5. Remarque: Les trois produits que nous allons étudier dans cette question sont associés à des suites indicées par N*. D'après le 2. ils sont de même nature que les produits associés aux suites prolongées à N par une valeur strictement positive arbitraire en 0. On peut donc leur appliquer les résultats de la question 3.
 - a. La série de Riemann $\sum_{n\geq 0} \frac{1}{n^2}$ converge (2>1) et, pour tout $n\in \mathbf{N}^*,\ 0<\frac{1}{4n^2}<1$.

Donc d'après 3.c., le produit $\prod_{n\geq 1} \left(1-\frac{1}{4n^2}\right)$ converge.

b. Soit $x \in]-\pi,\pi[$. Ecartons le cas trivial où x=0 qui conduit à la convergence du produit, puisque la suite des produits partiels est constante égale à 1.

La série de Riemann $\sum_{n>0} \frac{x^2}{\pi^2} \frac{1}{n^2}$ converge puisque 2>1 et, pour tout $n\in \mathbb{N}^*$,

$$0 < \frac{x^2}{\pi^2 n^2} < 1$$
. Donc d'après 3.c., le produit $\prod_{n \ge 1} \left(1 - \frac{x^2}{\pi^2 n^2}\right)$ converge.

c. Soit x un élément de \mathbf{R}_{+}^{*} . Par stricte positivité et stricte convexité de la fonction l'exponentielle on déduit pour tout $n \in \mathbf{N}^{*}$,

$$0 < \left(1 + \frac{x}{n}\right) \exp\left(\frac{-x}{n}\right) < \exp\left(\frac{x}{n}\right) \exp\left(\frac{-x}{n}\right) = 1.$$

Donc, en posant, pour tout naturel $n, u_n = 1 - \left(1 + \frac{x}{n}\right) \exp\left(\frac{-x}{n}\right)$, on a $0 < u_n < 1$. La question 3 assure donc que le produit infini $\prod_{n \geq 1} (1 + \frac{x}{n}) \exp\left(-\frac{x}{n}\right)$ converge si et seulement si la série $\sum_{n \geq 0} u_n$ converge. Par ailleurs

$$0 \le u_n = 1 - \left(\left(1 + \frac{x}{n} \right) \left(1 - \frac{x}{n} + O\left(\frac{1}{n^2}\right) \right) = O\left(\frac{1}{n^2}\right) \ (n \to +\infty),$$

donc d'après le théorème de comparaison des série à termes positifs $\sum_{n\geq 0} u_n$ converge.

Il en résulte que : le produit infini $\prod_{n\geq 0} (1+\frac{x}{n}) \exp\left(-\frac{x}{n}\right)$ converge.

Deuxième partie

1. Pour tout $n \in \mathbf{N}^*$, $0 < \frac{1}{n}$, donc compte tenu de 3 (et de la remarque préliminaire faite au 5), la série $\sum_{n \geq 1} \frac{1}{n}$ et le produit $\prod_{n \geq 1} \left(1 + \frac{1}{n}\right)$ sont de même nature. Or pour tout $n \in \mathbf{N}^*$,

$$\prod_{p=1}^{n} \left(1 + \frac{1}{p} \right) = \prod_{p=1}^{n} \frac{p+1}{p} = \frac{2 \times 3 \times 4 \times \dots \times n \times (n+1)}{1 \times 2 \times 3 \times \dots \times n} = n+1,$$

donc

$$\prod_{p=1}^{n} \left(1 + \frac{1}{p} \right) \underset{n \to +\infty}{\to} +\infty,$$

Autrement dit le produit $\prod_{n\geq 0}\left(1+\frac{1}{n}\right)$ diverge, et donc la série $\sum_{n\geq 1}\frac{1}{n}$ diverge.

2. a. La série géométrique $\sum_{k=0}^{\infty} \frac{1}{p^k}$ converge puisque sa raison $\frac{1}{p}$ est élément de [0,1[et sa somme vaut :

$$\sum_{k=0}^{+\infty} \frac{1}{p^k} = \frac{1}{1 - \frac{1}{p}}.$$

b. Soit N un entier supérieur ou égal à 2. D'après 5.b.

$$\frac{1}{\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_N}\right)} = \sum_{k=0}^{+\infty} \frac{1}{p_1^k} \sum_{k=0}^{+\infty} \frac{1}{p_2^k} \dots \sum_{k=0}^{+\infty} \frac{1}{p_N^k}.$$

Soit $M \in \mathbf{N}^*$. L'égalité précédente donne :

$$\frac{1}{\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_N}\right)} \ge \sum_{k=0}^M \frac{1}{p_1^k} \sum_{k=0}^M \frac{1}{p_2^k} \dots \sum_{k=0}^M \frac{1}{p_N^k},$$

soit

$$\frac{1}{\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_N}\right)} \ge \sum_{(k_1, k_2, \dots, k_N) \in \{0, 1, \dots, M\}^N} \frac{1}{p_1^{k_1} p_2^{k_2} \dots p_N^{k_N}}.$$

c. Soit n un élément de $\{1, \ldots N\}$. Puisque $P_N \geq N \geq 2$, les facteurs premiers de n sont éléments de $\{p_1, \ldots p_N\}$; de plus si l'on choisit M pour que $2^M \geq N$, dans la décomposition de n en facteurs premiers aucun des exposants des facteurs n'excédera strictement M. Donc l'ensemble $\{1, \ldots, N\}$ est inclus dans l'ensemble des éléments de la forme $p_1^{k_1}p_2^{k_2}\ldots p_N^{k_N}$ avec $(k_1, k_2, \ldots, k_N) \in \{0, 1, \ldots, M\}^N$. Pour ce choix de M on a donc, grâce à la dernière inégalité,

$$\frac{1}{\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_N}\right)} \ge \sum_{m=1}^{N} \frac{1}{m}.$$
 (21)

Or la série $\sum_{m\geq 1} \frac{1}{m}$ diverge, étant à termes positifs, $\sum_{m=1}^{K} \frac{1}{m} \underset{K\to +\infty}{\longrightarrow} +\infty$. Donc, d'après

(21),
$$\prod_{m=1}^{K} \left(1 - \frac{1}{p_m}\right) \underset{K \to +\infty}{\to} 0$$
. Le produit $\prod_{m \geq 1} \left(1 - \frac{1}{p_m}\right)$ diverge.

d. Puisque pour tout $m \in \mathbf{N}^*$, $0 < \frac{1}{p_m} < 1$, la série $\sum_{n \ge 1} \frac{1}{p_m}$ et le produit $\prod_{n \ge 1} \left(1 - \frac{1}{p_m}\right)$ sont de même nature (cf. 3).

Donc d'après c. la série $\sum_{m\geq 1} \frac{1}{p_m}$ diverge. ²

^{2.} Cela signifie qu'il y a « beaucoup » de nombres premiers, ils ne sont pas, par exemple, clairsemés comme les nombres de la forme 2^n , $n \in \mathbb{N}$, $(\sum_{n\geq 0} \frac{1}{2^n}$ converge).