数字电路实验报告 50 的方的及太子介以

姓名: 万昌龙 学号: 11410338 实验日期: 2016.4.14

组合逻辑电路

1. 实验目的

- ▶ 掌握组合逻辑电路的功能测试:
- 验证半加器和全加器的逻辑功能,
- 掌握集成译码器及数据选择器的原理:
- 了解译码器及数据选择器的应用。

2. 预习要求

- > 预习组合逻辑电路的分析方法:
- ▶ 阅读本实验所用各门电路 IC 的数据手册:
- > 预习用与非门和异或门构成的半加器、全加器的工作原理:
- ▶ 预习二进制数的运算。

3. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	TDS2012C	1	
3	函数信号发生器	DG1022	1	
4	模电数电综合试验箱	TPE-ADII	1	
5	元器件	74LS00 二输入端四与非门 3片, 74LS86 二输入端四异或门 1片, 74LS54 四组输入与或非门 1片, 74LS139 2-4线译码器 1片, 74LS153 双4选1数据选择器 1片。	7	

4. 实验内容

4.1 组合逻辑电路功能测试

用 2 片 74LS00 组成图 1.1 所示逻辑电路, 图中 U1A, U1B, U1C, U1D 为第一 片 74LS00 的四个单元, U2A, U2B, U2D 为第二片 74LS00 的其中三个单元。图中 输入A、B、C接电平开关,输出Y1、Y2接LED电平指示。

按照表 1.1 改变 A、B、C 的状态,根据 LED 电平指示填表,并写出 Y1 和 Y2 的逻辑表达式。

图 1.1 组合逻辑电路功能测试

	输入		輸	出
A	В	С	YI	Y2
	- 0	0	0	0
	0	1	0	1
	1	1	1	1
	1	_1	1	0
	1	0	1	0
	0	0	1	0
	0	1	1	1
	1	0	-	1/

数字电路实验报告 的方科及大学和表

4.2 半加器的逻辑功能测试

根据半加器的逻辑表达式可知,半加器 Y 是A、B的异或,而进位 Z 是A、B 相与,故半加器可用一个集成异或门和两个与非门组成如图2.1所示的电路。其中输入A、B接电平开关,输出Y、Z接LED电平指示。按表2.1要求改变A、B的状态,填表。

表 2.1 半加器电路逻辑功能测试

输	入	输出				
A	В	Y	Z			
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	0	1			

4.3全加器的逻辑功能测试

根据以上逻辑表达式列真值表如表 3.1 所示, 填写真值表

数字电路实验报告 あかずが及れるからに明となるかでは、

表 3.1 真值表

	输入					输出			
Ai	Bi	Ci-1	Y	Z	XI	X2	X3	Si	Ci
0	0	0	0	0	1	1	1	0	0
0	0	1	0	1	1	1	0	1	0
0	1	0	1	0	1	0	1	1	0
0	1	1	- 1	1	0	1	1	0	1
1	0	0	1	0		0		1	0
1	0	1	(1	0	1	1	0	-1
1	1	0	0	0	1			0	
1	1	1	0	1	1	1	0	1	1

根据真值表, 画出逻辑函数 Si、Ci 的卡诺图

Si的卡诺图

Ci的卡诺图

Ai Ci-1	0 0	0 1	1 1	1 0	Bi Ci-l	0 0	0 1	1 1	1 0
0	0	1	0	1	0	0	0	1	0
1	1	0	1	0	1	0	1	1	1

按原理图选择与非门接线进行测试,检查逻辑功能是否与表 3.1 一致。

4.4测试用异或、与或非门组成的全加器的逻辑功能

全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或非门(3-2-2-3输入)和一个与非门实现。

画出用异或门、与或非门和与非门实现全加器的逻辑电路图,写出逻辑 表达式。

Si = Ai & Bi & Ci-1

Ci = AiBi + (Ai Bi) Ci-

数字电路实验报告 的方式或太子和技

找出异或门、与或非门以及与非门器件按自己画出的图连线,接线时注意与 或非门中不用的与门输入端接地。

当输入端 Ai、Bi 及 Ci-1 接逻辑电平开关, Si 和 Ci 接 LED 电平显示, 填写下表。

	Ai	0	0	0	0	1	1	1	1
输入端	Bi	0	0	1	1	0	0	1	1
	Ci-1	0	1	0	1	0	1	0	1
输出端	Si	0	- 1	1	0	1	0	0	1
	Ci	0	0	0	ı	0	((1

4.5 译码器功能测试

将 74LS139 译码器的管脚 1、2、3 接电平开关,管脚 4、5、6、7 接 LED 电平显示,接好电源和地,改变管脚 1、2、3 的状态,将结果记录于表 5.1。

图 5.1 译码器 74LS139 引脚图

数字电路实验报告 のかずが及れるかななる

表 5.1 译码器 74LS139 逻辑功能测试

	输入		输出				
使能	选	择		7	80 (11)		
G	В	A	YO	Y1	Y2	Y3	
Н	X	X	1	1	1	1	
L	L	L	0	1	1	1	
L	L	Н	1	0	1	1	
L	Н	L	1	1	0	1	
L	Н	H	1	1	1	0	

4.6译码器转换

将双2-4线译码器转换为带使能端的3-8线译码器(可以额外增加与非门等逻辑门),画出转换电路图并在实验箱上接线并验证设计是否正确。

4.7数据选择器的测试及应用

将双4选1数据选择器74LS153的管脚如图7.1所示,将管脚1、2、14接入逻辑 开关,连接电源,测试其功能并填写功能表7.1。

1Y 7 10 2Co	IG 0 B 0 1C ₃ 0 1C ₂ 0 1C ₁ 0	2 3 4 5	7415153	14 13 12	Vcc 26 A 20 20 20 20 20 20 20
	1Co [6	74LS1	11	2C1
	1Y [7		10	S) Estera

图 7.1 数据选择器 74LS153

表 7.1 数据选择器 74LS153 的逻辑功能测试

选择	选择端		数据等	输出控制	输出		
В	A	C0	CI	C2	C3	G	Y
X	Х	X	х	х	X	Н	0
L	L	L	X	X	X	L	0
L	L	Н	X	X	X	L	1
L	Н	X	L	X	X	L	1
L	Н	х	Н	X	X	L	0
Н	L	X	X	L	х	L	0
Н	L	X	X	H	х	L	1
н	Н	X	X	х	L	L	1
Н	Н	X	X	X	Н	L	0

将实验箱脉冲信号源中固定连续脉冲 4 个不同频率的信号接到数据选择器 4 个输入端 (3 脚接 80kHz, 4 脚接 40kHz, 5 脚接 20kHz, 6 脚接 10kHz), 将 选择端置位,在输出端用示波器可以观察到4种不同频率的脉冲信号。

附录: IC引脚图

74LS86

