Introduction

- Reducing amount of time spent driving from home to work can help maximize productivity in the workplace.
- Compare designs to determine the optimal driving route from participants' home to workplace.
- Three route named as: Plaza (control), Rainbow, Stateline.

Groups

- Fixed
- RAR, lower interims
- RAR, arm dropping
- RAR, higher interims
- RAR, no fixed allocation to Control

*All designs considered Independent dose model.

Fixed Design

- Continuous recruiting.
- Dropout rate 0.1.
- 1:1:1 fixed allocation.
- No interims, final analysis at 33.
- Delta is about -1 minute.
- Zero type I error rate.
- Changed the continuous to deterministic.
- Use externally predefined accrual file from the 'DIAS' group.
- Changed dropout rate to 0.

RAR, lower interims

- Deterministic accrual.
- Final endpoint = 0.01 weeks.
- No dropout rate.
- Externally predefined accrual file.
- Burn-in allocation ratio: 2:1:1 then RAR.
- 25% allocation to the control.
- Block size = 4
- Interims 3 at 8,16,24 and final analysis at 33.

RAR, arm dropping

- Arm dropping.
- One interim at 15 and final analysis at 33.
- Only futility criteria.
- Optimistic prior.

RAR, higher interims

- Continuous recruitment.
- Weeks means days.
- Dropout rate 0.05.
- Burn-in allocation ratio 2:2:2.
- Interims 5 at 10,15,20,25,30 and final analysis at 33.
- Block size = 6
- Optimistic prior.

RAR, no fixed allocation to Control

- Deterministic accrual.
- Final endpoint 0.01 weeks.
- No dropout rate.
- Burn-in allocation ratio 4:3:3 then RAR.
- 40% allocation to the control.
- Block size = *10*
- Interims 5 at 10,15,20,25,30 and final analysis at 33.

Initial Designs & Results

Design Type	Number of Interims (at N drives) ¹	Early Stopping Criteria	Final Criteria	Scenari o (effect sizes)	Mean N Drives	Type 1 Error Rate/ Powe r
Fixed	0	None	Success	Null Expecte d Best	33.0 33.0 33.0	0.025 0.978 0.934
RAR, lower interims	3 (8 , 16, 24)	Futility and Success	Success	Null Expecte d Best	23.6 23.6 25.1	0.024 0.980 0.944
RAR, arm dropping	1 (15)	Futility	Futility and Success	Null Expecte d Best	30.5 32.9 32.9	0.023 0.987 0.932
RAR, higher interims	5 (10 ,15,20,25,30)	Futility and Success	Success	Null Expecte d Best	25.6 22.5 24.1	0.020 0.978 0.935
RAR, no fixed allocation to Control	5 (10 ,15,20,25,30)	Futility and Success	Success	Null Expecte d Best	25.7 24.3 25.4	0.026 0.902 0.886

Final Design: RAR, lower interims

- Best operating statistics.
- Less interim analysis.
- The power of the one best scenario is 94.4%, which is superior to any other design's power.
- The expected number of drives under all scenarios are the smallest (23.6, 23.6, and 25.1), which reduces the trial duration.