北京师范大学 2013~2014 学年第二学期期末考试试卷 (A卷)

课程名称: 基础物理学 AI				1	任课教师姓名:赵虎		
卷面总分:	分	考试时七	矣: <u>120</u> 分	钟 考试类	别:闭卷 ✓ 开卷	□ 其他 □	
院 (系):	信科	科 专业:			年级:		
姓名:		学	号:				
题号 得分	第一题	第二题	第三题	第四题		总分	
阅卷教师((签字):						
一 单项边		愛 3分)					
1 下列说法	法错误的是:						
B 驻波是 C 驻波的	不仅要满足频 无法传播能量 各质元在某些	量的 经特定时刻可	以都处于平	衡位置			
D 波的周 2 下列说法	期和波长都完 法错误的是:	注田 振源伏	泛				
B 若薄膜 C 杨氏双:	形成的干涉象 的折射率介于 缝干涉中,自 元件镀增透膊	- 薄膜上、下 光入射形成	介质的折射 的彩色带是	等间隔的	寸论薄膜干涉时无需考 5得其反。	方 虑半波损失	
3 下列说法 4 白蚜光	法错误的是: 以布儒斯特角	1入射时 5	射光为完全	偏振光			

- B 望远镜镜头直径越大,分辨本领越强
- C 太阳光不是偏振光

装

订

线

D 用光学显微镜是注定无法看到原子的

- 4 以下说法正确的是:
- A 我们可以由非相干光源获得相干光
- B 光在介质中的折射路径是唯一的
- C 在一条光路上添加光学器件,只能使最终通过的光强减小
- D 对于夫琅禾费圆孔衍射,波长越大,圆孔越小,衍射现象越明显
- 5人造卫星绕地球作圆周运动,由于受到空气的摩擦阻力,人造卫星的速度和轨道半径如何变化:
- A 速度减小, 半径增大
- B 速度减小, 半径减小
- C 速度增大, 半径增大
- D 速度增大, 半径减小
- 6 如果 v1, v2, v3 分别代表平均速率,最可几速率和方均根速率,则根据理想气体的麦克斯韦速率分布律,由大到小正确的排列顺序是:
- A v1 v2 v3
- B v1 v2 v3
- C v2 v1 v3
- D v2 v3 v1
- E v3 v1 v2
- F v3 v2 v1
- 7 一质量 m 为长为 L 的均匀细杆,一端固定于水平地板且垂直竖立。若杆自由倒下,则杆另一端以角速度 ω 撞击地板,如果把杆切为一半长度,仍自由倒下,问撞地时的角速度:
- A 2ω
- B $\sqrt{2}\omega$
- $C \omega$
- D $\omega/\sqrt{2}$
- E $\omega/2$
- 8. 在以下4种情况中,哪种一定能使理想气体分子平均碰撞频率增大
- A 增大压强 降低温度
- B 增大压强 提高温度
- C 降低压强 提高温度
- D 降低压强 保持温度不变

二: 计算问答题

1 在水平静止的车厢中,用一根弹性系数为 k 的轻弹簧水平静止地连接质量为 m 的滑块。假定滑块与车厢底板无摩擦,现在让车厢以恒定加速度 a 水平向右运动。相对于车厢参照系,求滑块的运动学方程。(本题 10 分)

- 2 一固有长度为 l_0 的车厢,以速度 0.6c (c 为真空中光速) 相对于地面作匀速直线运动,在车厢中以同样的速度 0.6c (相对于车厢) 从后壁向前壁运动。求地面某观察者测得小球由后壁运动到前壁所经历的时间(本题 10 分)
- 3 对于符合麦克斯韦速率分布的气体,记平均速率为 u,求速率在 u 和 2u 之间的气体分子数 占总数的百分比(本题 10 分)
- 4 a) 半径为 R 的光滑圆弧轨道在竖直平面内,一质量为 m 的小球在圆弧轨道最低点附近做往复运动。如果该小球可看作质点,证明小球的运动为简谐振动,并求振动周期。
- b) 频率为 500Hz 的平面简谐波,波速为 350m/s。 求 1) 波射线上相位差为 π /3 的两点相距多远。 2) 对某个质元,时间间隔为 10^{-3} s 的两状态,相位差是多少。(本题 16 分)

5 若有一波长为 600nm 的单色平行光,垂直入射到缝宽 a=0.6mm 的单缝上,缝后有一焦距 f=40~cm 透镜。试求:(1)屏上中央明纹的宽度;(2)若在屏上 P 点观察到一明纹,距离中心位置为 1.4mm, 问 P 点处是第几级明纹,对 P 点而言狭缝处波面可分成几个半波带(本题 10~分)

- 6 当前后两个偏振片偏振化方向平行时,透射光强度为 Im ,将第三个偏振片置于两偏振片中间,并使第三偏振片的偏振方向与前二者成 45 度角,求此时透射光强度。(本题 8 分)
- 7 一匀质细杆长为 L ,质量为 M,可绕通过 0 点的水平轴无摩擦转动,当杆从水平位置自由释放后,其末端摆动至竖直位置时恰与放在此处光滑水平面的质量为 m 的小滑块相撞。求:相撞前后杆的角速度。(本题 12~分)

附: 麦克斯韦速率分布函数为

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^{2}/2kT} v^{2}$$