Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

DISK STRUCTURE

Disk Structure_{1/4}

Magnetic Disks: Moving-head disk mechanism

Disk Structure_{2/4}

- Each disk platter has a flat circular shape, like a CD.
- Common platter diameters range from 1.8 to 3.5 inches.
- The two surfaces of a platter are covered with a *magnetic* material.
- We store *information* by recording it magnetically on the platters.
- A read—write head "flies" just above each surface of every platter.

Disk Structure_{3/4}

• The heads are attached to a *disk arm* that moves all the heads as a unit.

 The surface of a platter is logically divided into circular tracks, which are subdivided into sectors.

The set of tracks that are at one arm position makes up a

cylinder.

Disk Structure 4/4

• There may be thousands of concentric cylinders in a *disk drive*, and each track may contain hundreds of sectors.

The storage capacity of common disk drives is measured in

gigabytes.

Disk Speed

Disk speed has two parts:

 Transfer rate: It is the rate at which data flow between the drive and the computer.

Disk Speed

- Positioning time/Random-access time: It consists of two parts:
 - Seek time: The time necessary to move the disk arm to the desired cylinder.
 - Rotational latency: The time necessary for the desired sector to rotate to the disk head.

• Transmission time: Time for all desired data to spin by

Disk arn

read-write head.

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

