Krzysztof Pszeniczny nr albumu: 347208 str. 1/2 Seria: 3

Zadanie 1

Część a

Chcemy znaleźć wszystkie $z \in \mathbb{C}$, że $\overline{z} = z^2$, które to równanie oznaczmy \bigstar . Mamy wtedy jednak, że $|z| = |\overline{z}| \stackrel{\bigstar}{=} |z^2| = |z|^2$, łatwo widać, że |z| = 0 lub |z| = 1. W tym pierwszym przypadku łatwo widać, że z = 0 i istotnie ta wartość spełnia zadany warunek. Załóżmy więc, że |z| = 1.

Zapisując to samo dla argumentów, mamy $-\arg z=\arg \overline{z}\stackrel{\bigstar}{=}\arg z^2=2\arg z$, przy czym wszystkie równości są brane modulo 2π . Skąd mamy, że $3\arg z=0\pmod{2\pi}$, skąd $3\arg z=2k\pi$. Istotnie różnych (tzn. nieróżniących się o całkowitą wielokrotność 2π) wartości $\arg z$ jest trzy: $\arg z=0$, $\arg z=\frac{2\pi}{3}$ oraz $\arg z=\frac{4\pi}{3}$.

Argumenty te (w połączeniu z warunkiem, że |z|=1), dają następujące wartości: z=1, $z=-\frac{1}{2}+\mathrm{i}\frac{\sqrt{3}}{2}$ oraz $z=-\frac{1}{2}-\mathrm{i}\frac{\sqrt{3}}{2}$. Łatwo jednak widać, że spełniają one warunek zadania (przez prosty rachunek albo zauważenie, że koniunkcja warunków na moduł i argument jest w tym przypadku równoważna zadaniu).

Do tego zbioru należy dodać jeszcze rozpatrzony wcześniej z=0.

Część b

Chcemy znaleźć wszystkie $z \in \mathbb{C}$, że $\overline{z} = z^3$, które to równanie oznaczmy \bigstar . Mamy wtedy jednak, że $|z| = |\overline{z}| \stackrel{\bigstar}{=} |z^3| = |z|^3$, łatwo widać, że |z| = 0, |z| = -1 lub |z| = 1. W tym pierwszym przypadku łatwo widać, że z = 0 i istotnie ta wartość spełnia zadany warunek. Drugi przypadek jest niemożliwy, gdyż moduł jest zawsze nieujemny. Załóżmy więc, że |z| = 1.

Zapisując to samo dla argumentów, mamy $-\arg z=\arg \overline{z}\stackrel{\bigstar}{=}\arg z^3=3\arg z$, przy czym wszystkie równości są brane modulo 2π . Skąd mamy, że $4\arg z=0\pmod{2\pi}$, skąd $4\arg z=2k\pi$. Istotnie różnych (tzn. nieróżniących się o całkowitą wielokrotność 2π) wartości $\arg z$ jest cztery: $\arg z=0$, $\arg z=\frac{\pi}{2}$, $\arg z=\pi$ oraz $\arg z=\frac{3\pi}{4}$. Innymi słowy - są pierwiastki czwartego stopnia z jedynki. Istotnie, gdy |z|=1, to $\frac{1}{z}=\overline{z}\stackrel{\bigstar}{=}z^3$, skąd $z^4=1$.

Zapisując więc te liczby uzyskujemy: z = 1, z = i, z = -i. Znów łatwo sprawdzić, że rzeczywiście spełniają one warunki zadania. Do tego zbioru należy dodać jeszcze rozpatrzony wcześniej z = 0.

Zadanie 2

Dowód. Załóżmy, że $\frac{1+z+z^2}{1-z+z^2}=r\in\mathbb{R}$. Wtedy łatwo widać, że także $\frac{1+\overline{z}+(\overline{z})^2}{1-\overline{z}+(\overline{z})^2}=r$ z własności sprzężenia. Ponadto mamy wtedy, że $1+z+z^2=r(1-z+z^2)$, skąd $(r-1)z^2-(r+1)z+(r-1)=0$. Gdy r=1 mamy,

Ponadto mamy wtedy, że $1+z+z^2=r(1-z+z^2)$, skąd $(r-1)z^2-(r+1)z+(r-1)=0$. Gdy r=1 mamy, że z=0, jednak jest to liczba rzeczywista.

Gdy $r \neq 1$, jest to równanie drugiego stopnia, my zaś widzieliśmy wyżej, że jeśli z jest pierwiastkiem tego równania, to \overline{z} też. Jednak $z \neq \overline{z}$, a więc są to różne pierwiastki, a to równanie ma ich dokładnie dwa. Na mocy wzorów Viete'a, mamy, że iloczyn pierwiastków jest równy $\frac{r-1}{r-1} = 1$, lecz to jednak daje, że $z\overline{z} = 1$, skąd |z| = 1.

Zadanie 4

Część a

Zauważmy, że prosta z zadania jest to symetralna odcinka o końcach w punktach 0 i 2α , a więc jest to zbiór tych punktów z, że $|z-0|=|z-2\alpha|$. Dzieląc to równanie stronami przez $|z|\cdot|2\alpha|$ (co jest różne od zera, gdyż $z\neq 0$ i $\alpha\neq 0$) otrzymujemy $|\frac{1}{2\alpha}|=|\frac{1}{2\alpha}-\frac{1}{z}|$, czyli $|f(z)-\frac{1}{2\alpha}|=|\frac{1}{2\alpha}|$ – czyli obraz prostej L w tym przekształceniu jest podzbiorem okręgu o środku w $\frac{1}{2\alpha}$ i promieniu $|\frac{1}{2\alpha}|$.

Jednak przekształcenie, którego dokonaliśmy jest równoważne, tzn. biorąc dowolne $y \neq 0$ takie, że $|y - \frac{1}{2\alpha}| = |\frac{1}{2\alpha}|$ i przemnażając stronami przez $|y^{-1}| \cdot |2\alpha|$ uzyskamy, że punkt y^{-1} leży na prostej, o której mowa w zadaniu. Stąd wiemy, że każdy punkt z tego okręgu (nie licząc 0) jest wartością funkcji f obciętej do prostej L.

Stąd mamy, że szukanym obrazem jest tenże okrag z pominięciem punktu 0.

str. 2/2 Seria: 3

Część b

Wtedy zbiór punktów $z\in\mathbb{C}$ na tej prostej możemy zapisać jako z=ra, gdzie $r\in\mathbb{R}$. Mamy wtedy $f(z)=(ra)^{-1}=r^{-1}a^{-1}=r^{-1}\frac{\overline{a}}{|a|}=l\overline{a}$, gdzie $l=\frac{1}{r|a|}$. Zauważmy, że wybierając dowolne $r\neq 0$ uzyskamy dokładnie jedno $l\neq 0$ i vice versa. Stąd widać, że obrazem takiej prostej będzie prosta przechodząca przez punkt 0 i punkt \overline{a} , z pominięciem jednak punktu 0.

Zadanie 5

Niech $z=\cos 10^\circ+i\sin 10^\circ$. Zauważmy, że $\cos 60^\circ+i\sin 60^\circ=\frac{1+i\sqrt{3}}{2}=t$. Mamy wtedy $\arg z=10^\circ$, $\arg zt^{-1}=-50^\circ$, $\arg zt=70^\circ$, a ponadto moduły tych liczb są równe jedności.

Mamy wtedy $\cos 10^\circ = \Re \mathfrak{e}(z) = \frac{z+\overline{z}}{2}$, $\cos 50^\circ = \cos -50^\circ = \Re \mathfrak{e}(zt^{-1}) = \frac{zt^{-1}+\overline{(zt^{-1})}}{2}$, $\cos 70^\circ = \Re \mathfrak{e}(zt) = \frac{zt+\overline{(zt)}}{2}$. Gdy oznaczmy wynik z zadania przez R, to uzyskamy:

$$4R = (z + \overline{z})^{2} + (zt^{-1} + \overline{zt^{-1}})^{2} + (zt + \overline{zt})^{2}$$

$$= z^{2} + 2z\overline{z} + (\overline{z})^{2} + (zt^{-1})^{2} + 2zt^{-1}\overline{zt^{-1}} + (\overline{zt^{-1}})^{2} + (zt)^{2} + 2zt\overline{zt} + (\overline{zt})^{2}$$

$$= z^{2} + 2 + \overline{z^{2}} + (zt^{-1})^{2} + 2 + (\overline{zt^{-1}})^{2} + (zt)^{2} + 2 + (\overline{zt})^{2}$$

$$= 6 + z^{2} + z^{2}t^{2} + \frac{z^{2}}{t^{2}} + \overline{(z^{2} + z^{2}t^{2} + z^{2})^{2}}$$

Udowodnimy teraz, że $z^2+z^2t^2+\frac{z^2}{t^2}=0$. W tym celu wystarczy udowodnić, że $1+t^2+t^{-2}=0$. Jednak $1,t^2,t^{-2}$ są to pierwiastki trzeciego stopnia z jedynki (mają moduł równy jedności, a argumenty kolejno: $0,120^{\circ},240^{\circ}$), które rzeczywiście dodają się do zera, jak udowodniliśmy na ćwiczeniach (można też zauważyć, że są one pierwiastkami równania $\mathfrak{u}^3-1=0$, które, jak wynika ze wzorów Viete'a, ma sumę pierwiastków równą zeru). Stąd mamy $4R=6+0+\overline{0}$, a więc $R=\frac{3}{2}$.

Zadanie 6

Dowód. Zauważmy, że jeśli $z^k=1$, to $z^{kl}=\left(z^k\right)^l=1^l=1$ (dla naturalnych k, l). Stąd jeśli $z\in A_k$, to $z\in A_{kl}$, skąd $A_k\subseteq A_{kl}$.

Weźmy więc ustalone $x \in A_1 \cup A_2 \cup A_3 \dots \cup A_m$. Istnieje wtedy pewne $k \in \{1, 2, \dots, m\}$, że $x \in A_k$. Jednak zauważmy, że liczb $n-m+1, n-m+2, \dots, n$ jest m. To zaś oznacza, że wśród tych liczb istnieje taka, która jest podzielna przez k.

Gdyby takiej nie było, to weźmy tylko pewien podzbiór tych indeksów: $n-k+1, n-k+2, \ldots, n$. Jest ich k i żaden z nich nie daje reszty 0 przy dzieleniu przez k. Wtedy jednak zostaje tylko k-1 możliwych reszt z dzielenia przez k, a więc z zasady szufladkowej pewne dwie liczby dają taką samą resztę, ale przecież wtedy ich różnica musiałaby się dzielić przez k, a przecież jest ona dodatnia i mniejsza od k. Sprzeczność, a więc któraś z tych liczb się dzieli przez k.

Weźmy więc jakieś l $k \in \{n-m+1, n-m+2, \ldots, n\}$. Wtedy jednak $x \in A_{lk}$, a więc $x \in A_{n-m+1} \cup A_{n-m+2} \cup \ldots \cup A_n$.

Ponieważ zawieranie w zadaniu jest ostre, wystarczy wskazać taki element prawej strony, który nie jest elementem lewej strony. Łatwo jednak widać, że liczba zespolona o module równym 1, zaś argumencie $\frac{2\pi}{n}$ należy do A_n , zaś nie należy do żadnego A_j dla j < n, gdyż wtedy j-ta potęga ma argument $\frac{2\pi}{n}$ j, co nie jest wielokrotnością 2π .