Part-of-speech tagging revisited

A simple but useful form of linguistic analysis

Christopher Manning

Sources of information

- What are the main sources of information for POS tagging?
 - Knowledge of neighboring words
 - Bill saw that man yesterday
 - NNP NN DT NN NN
 - VB VB(D) IN VB NN
 - Knowledge of word probabilities
 - man is rarely used as a verb....
- The latter proves the most useful, but the former also helps

More and Better Features → Feature-based tagger

- Can do surprisingly well just looking at a word by itself:
 - Word the: the → DT
 - Lowercased word | Importantly: importantly → RB
 - Prefixes unfathomable: un- → JJ
 - Suffixes Importantly: -ly → RB
 - Capitalization Meridian: CAP → NNP
 - Word shapes 35-year: d-x → JJ
- Then build a maxent (or whatever) model to predict tag
 - Maxent P(t|w): 93.7% overall / 82.6% unknown

Overview: POS Tagging Accuracies

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - Maxent P(t|w):
 - TnT (HMM++):
 - MEMM tagger:
 - Bidirectional dependencies:
 - Upper bound:

~95% / ~55%

93.7% / 82.6%

96.2% / 86.0%

96.9% / 86.9%

97.2% / 90.0%

~98% (human agreement)

Most errors on unknown words

How to improve supervised results?

Build better features!

```
RB
PRP VBD IN RB IN PRP VBD .
They left as soon as he arrived .
```

We could fix this with a feature that looked at the next word

```
JJ
NNP NNS VBD VBN .
Intrinsic flaws remained undetected .
```

· We could fix this by linking capitalized words to their lowercase versions

Tagging Without Sequence Information

Baseline

Three Words

Model	Features	Token	Unknown	Sentence
Baseline	56,805	93.69%	82.61%	26.74%
3Words	239,767	96.57%	86.78%	48.27%

Using words only in a straight classifier works as well as a basic (HMM or discriminative) sequence model!!

Summary of POS Tagging

- For tagging, the change from generative to discriminative model **does not by itself** result in great improvement
- One profits from models for specifying dependence on **overlapping features of the observation** such as spelling, suffix analysis, etc.
- An MEMM allows integration of rich features of the observations, but can suffer strongly from assuming independence from following observations; this effect can be relieved by adding dependence on following words
- This additional power (of the MEMM ,CRF, Perceptron models) has been shown to result in improvements in accuracy
- The **higher accuracy** of discriminative models comes at the price of **much** slower training

Part-of-speech tagging revisited

A simple but useful form of linguistic analysis

Christopher Manning