HW 02

Group 10

2022-10-03

Homework 2

Read csv

auto = read.csv("Auto.csv", na.strings = "NA")

1(a)

Frequency of vehicle production in different countries

Residuals vs Fitted

We can see from the QQ plot that the data doesn't follow the line. Towards the top the data skews upwards. 1(c)

Normal Q-Q

Residuals vs Fitted Normal Q-Q

-2

0

Theoretical Quantiles

2

0

00

000 00

0

0

0

3

Standardized residuals 0.4 Residuals 0.0

7

က

-3

The variance as x increases on the Residuals vs Fitted plot which is an indicator that heteroskedasticity is present.

-0.4

2.6

2.8

3.0

Fitted values

3.2

3.4

3.6


```
##
    Coefficients:
 ##
                     Estimate Std. Error t value Pr(>|t|)
 ##
    (Intercept)
                  18.4693014
                                2.6833895
                                             6.883 2.34e-11
                                0.0176293
                                             3.791 0.000174
    originEurope 0.0668291
 ##
    originJapan
                    0.0319711
                                0.0179382
                                             1.782 0.075477
                   -0.8750305
                                0.0270390 -32.362
    log(weight)
                                                     < 2e-16
    year
                   -0.2559684
                                0.0712094
                                            -3.595 0.000366
 ##
 ## I(year^2)
                    0.0019051
                                0.0004687
                                             4.065 5.81e-05
 ##
 ## Signif. codes:
                        '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ##
    Residual standard error: 0.1136 on 391 degrees of freedom
 ## Multiple R-squared: 0.8898, Adjusted R-squared: 0.8884
 ## F-statistic: 631.7 on 5 and 391 DF, p-value: < 2.2e-16
The model assumptions seem to have been roughly satisfied now.
The previously unsatisfied assumptions: - Heteroskedacicity - Error term is not normally distributed - Data is not normally distributed
When looking at the Residuals vs Fitted plot, we see the line follows 0 well and the variance is pretty much constant for each x value. We also see
from the QQ plot that the data is more normally distributed now.
1(d)
```

0 0

0

0

8

000000

0 (1000)

0 0 5

000000000000

0

0000000

8

0000

8

8

8

0000

(Intercept) 18.4693014 2.6833895 ## originEurope 0.0668291 0.0176293

0.0319711

-0.2559684

0.0019051

0.0179382

0.0712094

0.0004687

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-0.8750305 0.0270390 -32.362 < 2e-16

8

8

က

3.0

##

##

##

year

originJapan

log(weight)

I(year^2)

10

-13.349 -5.109

Coefficients:

(Intercept)

year_squared

##

##

##

##

##

2(f)

6500

-0.878

-15.84090

0.11230

(Year vs Year Squared)

577.25230 146.67144

4.587

Estimate Std. Error t value Pr(>|t|)

3.86508

0.02542

6.883 2.34e-11

3.791 0.000174

1.782 0.075477

-3.595 0.000366 ***

4.065 5.81e-05 ***

Log(mpg) vs year

8

(II) (III) (III)

0

Residual standard error: 0.1136 on 391 degrees of freedom ## Multiple R-squared: 0.8898, Adjusted R-squared: 0.8884 ## F-statistic: 631.7 on 5 and 391 DF, p-value: < 2.2e-16 °% ° 5 log(auto\$mpg) 30 0 က 5 S

1500 2500 3500 4500 7.4 7.8 8.2 auto\$weight log(auto\$weight) It tells us that as you increase the weight the mpg falls. The relationship for the unlogged version is similar, less linear, but still negative. 2(a) $y_i=\gamma_0+\gamma_1(x_i-\bar x)+\gamma_2(x_i-\bar x)^2+e_i=$ $\gamma_0 + y_1 x_i - y_1 ar{x} + y_2 x_i^2 - 2 y_2 x_i ar{x} + \gamma_2 ar{x}^2 + e_i =$ $(\gamma_0-\gamma_1ar{x}+\gamma_2ar{x}^2)+(\gamma_1-2\gamma_2ar{x})x_i+\gamma_2x_i^2+e_i$ $\therefore \beta_0 = \gamma_0 - \gamma_1 \bar{x} + \gamma_2 \bar{x}^2$ $eta_1 = \gamma_1 - 2\gamma_2ar{x}$ $\beta_2 = \gamma_2$ 2(b) ## ## Call: lm(formula = mpg ~ year + year_squared, data = auto) ## ## Residuals: ## ## Min **1**Q Median 3Q

18.196

3.936 9.81e-05 ***

4.419 1.29e-05 ***

30

Centered (Year vs Year Squared)

0

-4.098 5.05e-05 ***

```
##
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ##
 ##
 ## Residual standard error: 6.23 on 394 degrees of freedom
 ## Multiple R-squared: 0.3694, Adjusted R-squared: 0.3662
 ## F-statistic: 115.4 on 2 and 394 DF, p-value: < 2.2e-16
2(c)
The correlation between year and year squared is 0.999759.
The mean of year is 75.9949622.
2(e)
The correlation between centered year and centered year squared is 0.014414
```


0

Residuals: Min 10 Median ## 3Q Max -13.349 -5.109 4.587 18.196 ## -0.878 ## Coefficients: ## ## Estimate Std. Error t value Pr(>|t|)0.46577 ## (Intercept) 21.99061 47.214 < 2e-16 *** 14.469 < 2e-16 *** year_centered 1.22778 0.08486 4.419 1.29e-05 *** year_centered_squared 0.11230 0.02542

2(h)

##

 $eta_0 = \gamma_0 - \gamma_1 ar{x} + \gamma_2 ar{x}^2$ $eta_1 = \gamma_1 - 2\gamma_2ar{x}$ $eta_2=\gamma_2$ $\beta_0 = 577.2522975$ $\beta_1 = -15.8409008$ $\beta_2 = 0.1123014$

Residual standard error: 6.23 on 394 degrees of freedom ## Multiple R-squared: 0.3694, Adjusted R-squared: 0.3662 ## F-statistic: 115.4 on 2 and 394 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

を存むる

ラフララ

① Show
$$hi\bar{j} = \frac{1}{h} + \frac{(Y_i - \bar{Y})(Y_{\bar{j}} - \bar{Y})}{5xx}$$
 and $hi\bar{i} = \frac{1}{h} + \frac{(Y_i - \bar{Y})^2}{5xx}$

$$hii = (1 \times i) (x^T x)^{-1} \begin{pmatrix} 1 \\ x i \end{pmatrix}$$

$$= \frac{1}{h \sum_{i=1}^{n} (x_i - \overline{x})^2} \begin{pmatrix} \sum_{i=1}^{n} X_i^2 - n\overline{x} \\ -n\overline{x} & n \end{pmatrix}$$

$$= \frac{1}{2x} \left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x} \right)$$

$$\frac{1}{2} \cdot hii = (1 \times i) \cdot \frac{1}{5x} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} \chi_i^2 - \overline{\chi}\right) \cdot \left(\frac{1}{\chi_i}\right)$$

$$= \frac{1}{5xx} \left[\left(\frac{1}{n} \sum_{i=1}^{n} \chi_{i}^{2} - \overline{\chi}^{2} \right) + (x_{i}^{2} - 2\overline{x}\chi_{i}^{2} + \overline{\chi}^{2}) \right]$$

$$= \frac{1}{n} + \left(\frac{x_i - \overline{x}}{x_i}\right)^2 / S_{xx}$$

$$h_{ii} = \frac{1}{n} + \frac{\left(\frac{x_i - \overline{x}}{x_i}\right)^2}{S_{xx}}$$

$$hii = \frac{1}{h} + \frac{(\chi_i - \bar{\chi})^2}{5 e^{\chi_i}}$$

$$= \frac{1}{5 \times x} \left[\left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2 \right) + \left(\frac{1}{x_i x_j} - \overline{x} x_i - \overline{x} x_j + \overline{x}^2 \right) \right]$$

$$=\frac{1}{n}+\frac{(x_1-\overline{x})(x_1-\overline{x})}{(x_1-\overline{x})}$$

2 Show
$$\Sigma_{j=1}^{n} h_{ij} = 1$$

$$\sum_{j=1}^{n} h_{ij} = \sum_{j=1}^{n} \frac{1}{n} + \frac{(x_{i} - \overline{x})(x_{j} - \overline{x})}{5xx}$$

$$= 1 + \frac{(x_{i} - \overline{x})}{5xx} \cdot \sum_{j=1}^{n} (x_{j} - \overline{x})$$

$$= 1 + \frac{(x_{i} - \overline{x})}{5xx} \cdot (\Sigma_{j=1}^{n} x_{j} - n\overline{x})$$

$$= 1 + \frac{(x_{i} - \overline{x})}{5xx} \cdot 0$$

a.
$$\overrightarrow{P}_{Xi=x}$$
 for $i=1,\dots,n-1$, then $\overline{X} = \frac{(n-1)x'+x''}{n}$

$$S_{xx} = \sum (x_{1} - \overline{x})^{2} = \sum x_{1}^{2} - 2\overline{x}x_{1} + \overline{x}^{2} = \sum x_{1}^{2} - 2\overline{x}\sum x_{1} + n\overline{x}^{2} = \sum x_{1}^{2} - 2n\overline{x}^{2} + n\overline{x}^{2} = \sum x_{1}^{2} - 2n\overline{x}^{2} + n\overline{x}^{2} = \sum x_{1}^{2} - n\overline{x}^{2}$$

$$= \sum_{i=1}^{n-1} x^{i} + x^{i} - n \cdot \left[\frac{(n-1)x^{i} + x^{ii}}{n} \right]^{2}$$

$$= (h-1)x^{i} + x^{ii} - \frac{1}{n} \left[(h-1)x^{i} + x^{ii} \right]^{2}$$

$$= (n-1)x'^{2} + x''^{2} - \frac{1}{N} \left[(n-1)^{2}x'^{2} + 2(n-1)x'X'' + x''^{2} \right]$$

$$= \frac{N-1}{N} \left(nx'^{2} + \frac{n}{N-1} x''^{2} - (n-1)x'^{2} - 2x'x'' - \frac{1}{N-1}x''^{2} \right]$$

$$= \frac{h^{-1}}{h} \left(\chi'^{2} + \chi'^{2} - 2\chi' \chi'' \right)$$

$$=\frac{n-1}{n}\cdot(x'-x'')^2$$

$$b (x_{i}-x)(x_{n}-x) = (x'-x)(x''-x)$$

$$= (x'-\frac{(n-1)x'+x''}{n})(x''-\frac{(n-1)x'+x''}{n})$$

$$= \frac{(nx'-nx'+x'-x'')(nx''-nx'+x'-x'')}{n^{2}}$$

$$= -\frac{(x'-x'')[(n-1)(x'-x'')^{2}}{n^{2}}$$

$$= -\frac{(n-1)(x'-x'')^{2}}{n^{2}}$$

$$(x_{n} - \overline{x})^{2} = (x'' - \frac{(n-1)x' + x''}{n})^{2}$$

$$= \left(\frac{nx'' - nx' + x' - x''}{n}\right)^{2}$$

$$= \left[\frac{(1-n)}{n} (x' - x'')\right]^{2}$$

$$= \left(\frac{n-1}{n}\right)^{2} (x' - x'')^{2}$$

(c) From Q3, hin =
$$\frac{1}{h} + \frac{(x_1 - \overline{x})(x_1 - \overline{x})}{\sqrt{(x_1 - x_1)^2}}$$

= $\frac{1}{h} + \frac{(n-1)(x_1 - x_1)^2}{\sqrt{n^2}}$, $\frac{1}{(x_1 - x_1)^2(\frac{n-1}{n})}$
= $\frac{1}{h} - (\frac{n-1}{h^2})(\frac{n}{n-1})$
= $\frac{1}{h} - \frac{1}{h}$

$$h_{nn} = \frac{1}{n} + \frac{(x_{n} - \overline{x})^{2}}{5 \times x}$$

$$= \frac{1}{n} + \left(\frac{n-1}{n}\right) (x' - x'')^{2} \cdot \frac{1}{(x' - x'')^{2} \cdot (\frac{n-1}{n})}$$

$$= \frac{1}{n} + \left(\frac{n-1}{n}\right)^{2} \cdot \left(\frac{n}{n-1}\right)$$

$$= \frac{1}{n} + \frac{n-1}{n}$$

= 1

Control ("being xe fac)

THE WAY TO BE STORY OF THE STOR

An Kent

Proof:
$$E(\hat{\beta}_{GLS}) = \hat{\beta}_{and} \quad Cav \ (\hat{\beta}_{GLS}) = (X'X')^{-1} = 6^{2}(X'WX)^{-1}$$

$$\hat{\beta}_{GLS} = (X'WX)^{-1} X'WY$$

$$\Rightarrow \hat{\beta}_{GLS} = (X'WX)^{-1} X'W(\hat{\beta}_{X} + \hat{\epsilon})$$

$$= \hat{\beta}_{A}(X'WX)^{-1} X'W \in \{X'WX\}^{-1} X'W \in \{E(\hat{\beta}_{A})^{-1} \times X'W \times X'$$

Q6 (a)
$$\sqrt{y}_{M}$$
 will be an imbiased estimator for \sqrt{y}_{M} when.

$$E(\sqrt{y}_{M}) = \sqrt{y}_{M}$$

$$E(\sqrt{y}_{M}) = E(W, Y_{1} + W, Y_{2}) = E(W, Y_{1}) + E(W, Y_{2})$$

$$= W_{1} E(Y_{1}) + W_{2} E(Y_{2})$$

$$= W_{1} M + W_{1} M_{2}$$

$$= W_{1} M + W_{2} M_{2} M_{2}$$

$$= W_{1} M + W_{2} M_{2} M_{2}$$

$$= W_{1} M + W_{2} M + W_{2}$$

Question 7

If we imagine a plot of the data, we think it will resemble f(x) = 1/x. Quickly decreasing at first, then slowly, then plateauing. We think: theft, battery, assault, narcotics, and homicide will affect the demand whereas deceptive practice, burglary, and criminal trespassing will be somewhat or completely independent. We came up with this list because we think all crimes that're committed near the bike station will have a much stronger effect on the demand for bikes. Theft, battery, assault, narcotics, and homicide will make the renter feel more concerned about their personal safety. This will decrease their willingness to go to the station and rent a bike. The other crimes wouldn't occur near the bike station. For this reason, we think they won't have much of and effect on bike rentals.

Some crimes may have association. For example, a theft may escalate to an assault or even homicide because the person being stolen from might try to defend themselves and get hurt. Another example could be; someone taking narcotics would logically be more likely to be involved more crimes of any type. Some might be independent because there's no way for the situation to escalate. For example, deceptive practice probably won't be related to theft, homicide, or criminal trespassing.

The actual results could be different. We are thinking logically. People renting bikes won't have perfect information, think perfectly logically, and we have preconceived notions about people we don't understand. There are many other factors besides crime that affect bike demand such as geography, weather, etc. We aren't accounting for any of these.