JOURNAL OF KIM IL SUNG UNIVERSITY

(NATURAL SCIENCE)

Vol. 62 No. 9 JUCHE105 (2016).

C^r 반공액넘기기에 관한 편미분방정식에 의하여 주어지는 불변다양체

조 연 희

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《까학자. 기술자들은 당이 마련해준 과학기술룡마이 날개를 활짝 ជ고 과학적재능과 열 정을 총폭발시켜 누구나 다 높은 과학기술성과들을 내놓음으로써 부강조국건설에 이바지하 는 참된 애국자가 되여야 합니다.》

선행연구[1]에서는 R^m 에서 주어진 하밀톤방정식에 대하여 불변고리가 만족되는 편미분 방정식을 유도하고 뉴톤법을 적용하여 이 방정식의 풀이의 존재성을 증명함으로써 불변고리 의 존재성을 밝혔다.

선행연구[2]에서는 R^m 에서 주어진 련립상미분방정식에 대하여 불변다양체가 만족되는 편미분방정식을 유도하였다.

론문에서는 바나흐다양체에서 정의된 두 력학계가 C' 반공액이기 위해서는 C' 반공 액넘기기가 어떤 편미분방정식을 만족시킬것이 필요하고 충분하며 이때 C' 반공액넘기기 가 단일넘기기이면 그것의 영상모임이 두번째 력학계의 불변다양체가 된다는것을 밝혔다. 이 결과는 일반적인 동력학계의 불변다양체의 존재성문제를 편미분방정식의 풀이의 존재 성문제에 귀착시킨다.

점의 1 M을 바나흐공간 E를 모형공간으로 하는 C^{r+1} 다양체(간단히 $C^{r+1}E$ 다양체) 라고 하고 $X: M \to TM$ 을 C^r 벡토르마당이라고 부른다.

 $\varphi(t, x), t \in I_{\mathcal{X}}(x)$ 를 상미분방정식

$$\dot{\mathbf{y}} = X(\mathbf{y}) \tag{1}$$

의 초기조건 y(0) = x를 만족시키는 연장불가능풀이이라고 부른다.

 $D_X = \{(t, x) \in \mathbb{R} \times M ; t \in I_X(x)\}$ 라고 놓으면 넘기기 $\varphi: D_X \to M ; (t, x) \to \varphi(t, x)$ 는 C^r 넘기기가 되는데 φ 를 방정식 (1)의 C^r 흐름이라고 부른다.

점의 2 $N \mapsto C^{r+1}F$ 다양체, $Y: N \to TN \mapsto C^r$ 벡토르마당, $\psi: D_V \to N \mapsto Y$ 의 C^r 흐름 이라고 하다.

 C^r 넘기기 $u:M \to N$ 에 관하여

$$u(\varphi(t, x)) = \psi(t, u(x)) \quad (\forall x \in M, \ \forall t \in I_X(x) \cap I_Y(u(x)))$$
 (2)

일 때 C^r 흐름 φ 와 ψ 는 u에 관하여 C^r 반공액이라고 말한다.

정리 1 φ 와 ψ 가 C^r 넘기기 $u:M\to N$ 에 관하여 C^r 반공액이기 위해서는

$$Tu(X(x)) = Y(u(x)) \quad (x \in M)$$
(3)

가 성립될것이 필요하고 충분하다.

증명 (필요성) 식 (2)의 량변을 t로 미분하고 t=0으로 놓으면 식 (3)을 얻는다. (충분성) 식 (3)이 성립된다고 하자.

 $x \in M$ 을 임의로 고정하고 넘기기 $\zeta: I_X(x) \cap I_Y(u(x)) \to N; \zeta(t) = u(\varphi_x(t))$ 를 론의하자.

$$\frac{d}{dt}\zeta(t) = \frac{d}{dt}u(\varphi_x(t)) = Tu(\dot{\varphi}_x(t)) = Tu(X(\varphi_x(t))) = Y(u(\varphi_x(t))) = Y(\zeta(t))$$

이므로 $\zeta:I_X(x)\cap I_Y(u(x))\to N$ 은 미분방정식

$$\dot{z} = Y(z) \tag{4}$$

의 초기조건 z(0) = u(x)를 만족시키는 풀이이다.

한편 $\psi_{u(x)}(t),\ t\in I_X(x)\cap I_Y(u(x))$ 도 미분방정식 (4)의 초기조건 z(0)=u(x)를 만족시키는 풀이이다. 따라서 초기값문제의 풀이의 유일성으로부터 임의의 $t\in I_X(x)\cap I_Y(u(x))$ 에 대하여 $u(\varphi(t,\ x))=u(\varphi_x(t))=\zeta(t)=\psi_{u(x)}(t)=\psi(t,\ u(x))$ 가 성립된다.(증명끝)

정리 2 C^r 단일넘기기 $u:M \to N$ 이 식 (3)을 만족시키면 다음의 사실들이 성립된다.

- i) S = u(M)은 $C^r E$ 다양체의 구조를 가진다.
- ii) $T_{u(x)}S = T_x u(T_x M) \quad (x \in M)$
- iii) X가 완비이면 S는 방정식 (4)에 관한 불변다양체이다.
- iv) S가 N의 닫긴모임이면 S는 방정식 (4)에 관한 불변다양체이다.
- v) M이 콤팍트이면 벡토르마당 $X:M\to TM$ 과 $\widetilde{Y}:S\to TS$; $\widetilde{Y}(y)=Y(y)$ $(y\in S)$ 는 완비이고 S는 방정식 (4)에 관한 불변다양체이며 $u:M\to S$ 는 위상동형이다. 나아가서 X의 C^r 흐름 $\varphi:\mathbf{R}\times M\to M$ 과 \widetilde{Y} 의 C^r 흐름 $\widetilde{\psi}:\mathbf{R}\times S\to S$ 는 u에 관하여 위상공액이다.

즘명 i) 이제 모임 S에 C^r 다양체의 구조를 도입하자.

 $u^{-1}: S = u(M) \to M$ 은 완전단일넘기기 $u: M \to S$ 의 거꿀넘기기를 표시한다.

 $A = \{(U_i, \alpha_i), i \in J\}$ 를 M의 C^r 지도첩이라고 한다.

 $\forall i \in J$, $V_i = u(U_i)$ 라고 놓고 넘기기 $\beta_i : V_i \to \mathbf{E}$ 를 $\beta_i(y) = \alpha_i(u^{-1}(y))$ $(y \in V_i)$ 에 의하여 정의하면 $B = \{(V_i, \beta_i), i \in J\}$ 는 모임 S의 C^r 지도첩이 된다.

ii) $x \in M$, $y = u(x) \in S = u(M)$ 이라고 하고 $T_v S \subset T_x u(T_x M)$ 이라는것을 증명하자.

 $w \in T_y S$ 를 임의로 취하면 0을 포함하는 열린구간 $I \subset \mathbf{R}$ 와 c(0) = y 인 C^r 넘기기 $c: I \to S = u(M)$ 이 있어서 $w = [c]_y$ 가 성립된다. 여기서 $[c]_y$ 는 t = 0일 때 x 에서 c 와 접하는 M 우의 C^r 곡선전체의 모임이다.

이제 $x \in M$ 을 y = u(x) 를 만족시키는 원소라고 하고 C^1 넘기기 $\widetilde{c}: I \to M$ 을 $\widetilde{c} = u^{-1} \circ c$ 로 정의하면 $\widetilde{c}(0) = u^{-1}(c(0)) = u^{-1}(u(x)) = x$ 이다.

 $v=[\widetilde{c}\,]_x(\in T_xM)$ 라고 놓으면 $T_xu(v)=T_xu([\widetilde{c}\,]_x)=[u\circ\widetilde{c}\,]_{u(x)}=[c]_y=w\in T_xu(T_xM)$ 이다. $T_xu(T_xM)\subset T_vS$ 도 마찬가지로 증명된다.

iii) $y \in S$ 를 임의로 취하면 y = u(x)인 $x \in M$ 이 유일하게 존재한다.

정리 1로부터 임의의 $t\in I_X(x)\cap I_Y(u(x))=I_Y(y)$ 에 대하여 $\psi(t,u(x))=u(\varphi(t,x))\in S$ 가 성립된다.

iv) S=u(M) 은 C^r 다양체의 구조를 가지며 매 점 $y \in S$ 에서의 접공간은 $T_{u(x)}S=T_xu(T_xM)$ $(x \in M)$ 에 의하여 주어진다.

어떤 $x \in M$ 에 대하여 y = u(x)라고 하면 방정식 (3)으로부터

$$Y(y) = Y(u(x)) = Tu(X(x)) = T_x u(X(x)) \in T_x u(T_x M) = T_v S$$

이므로 $\widetilde{Y}:S \to TS$; $\widetilde{Y}(y)=Y(y)$ $(y \in S)$ 는 C^r 다양체 S 우의 C^r 벡토르마당을 정의한다.

벡토르마당 $\widetilde{Y}: S \to TS$ 에 관한 미분방정식

$$\dot{z} = \widetilde{Y}(z) \ (z \in S) \tag{5}$$

의 C^r 흐름을 $\widetilde{\psi}:D_{\widetilde{v}}\to S$ 로 표시하자.

 $y \in S$ 와 $t \in I_{\widetilde{v}}(y)$ 를 임의로 취하면

$$\frac{d}{dt}\widetilde{\psi}_{y}(t) = \widetilde{Y}(\widetilde{\psi}_{y}(t)) = Y(\widetilde{\psi}_{y}(t))$$

이므로 $\widetilde{\psi}_{v}(t)$, $t \in I_{\widetilde{v}}(y)$ 는 초기조건 z(0) = y를 만족시키는 방정식 (4)의 풀이이다.

그러므로 $I_{\widetilde{v}}(y) \subset I_{Y}(y)$, $\widetilde{\psi}_{v}(t) = \psi_{v}(t)$ $(\forall t \in I_{\widetilde{v}}(y))$ 가 성립된다.

이제 $I_{\widetilde{y}}(y) = I_{Y}(y)$ 라는것을 증명하자.

만일 이것을 부정하면 $s \in I_Y(y)$ 로서 t < s $(\forall t \in I_{\widetilde{Y}}(y))$ 인것이 존재하거나 $s' \in I_Y(y)$ 로서 s' < t $(\forall t \in I_{\widetilde{Y}}(y))$ 인것이 존재한다.

첫째 경우만을 론의하자.

$$s_0 = \inf\{s \in I_Y(y) \; ; \; t < s\} \; \; (\forall t \in I_{\widetilde{Y}}(y))$$

라고 놓으면 $s_0 = \sup I_{\widetilde{Y}}(y)$ 가 성립되며 극한 $z_0 = \lim_{t \to s_0} \widetilde{\psi}_y(t) = \lim_{t \to s_0} \psi_y(t) \in N$ 이 존재한다.

그런데 가정으로부터 S가 N의 닫긴모임이므로 $z_0 \in S$ 가 성립된다.

초기조건 $z(0)=z_0$ 을 만족시키는 방정식 (5)의 풀이 $\xi(t),\ t\in (-\delta,\ \delta)$ 가 존재한다.

이때
$$\eta(t) = \begin{cases} \widetilde{\psi}_y(t), & t \in I_{\widetilde{Y}}(y) \\ \xi(t-s_0), & t \in [s_0, \ s_0+\delta) \end{cases}$$
라고 놓으면 $\eta(t), \ t \in I_{\widetilde{Y}}(y) \cup [s_0, \ s_0+\delta)$ 는 초기조

건 z(0) = y를 만족시키는 방정식 (5)의 풀이이다.

이것은 $\psi_y(t)$, $t\in I_{\widetilde{Y}}(y)$ 가 초기조건 z(0)=y를 만족시키는 방정식 (5)의 연장불가능한 풀이이라는데 모순된다. 따라서 $I_{\widetilde{Y}}(y)=I_Y(y)$ 가 성립된다.

임의의 $t\in I_Y(y)=I_{\widetilde{Y}}(y)$ 에 대하여 $\psi_y(t)=\widetilde{\psi}_y(t)\in S$ 이므로 S는 방정식 (4)의 불변다양체이다.

v) M 을 콤팍트라고 가정하면 S=u(M) 도 콤팍트이므로 벡토르마당 $X:M\to TM$ 과 $\widetilde{Y}:S\to TS$ 는 완비이며 iii)으로부터 S 는 방정식 (4)의 불변다양체로 된다.

콤팍트위상공간에서 하우스돌프위상공간에로의 완전단일련속넘기기는 위상동형넘기 기이므로 $u:M \to S$ 는 위상동형넘기기이다.

이때 정리 1로부터 임의의 $x \in M$, $t \in \mathbb{R}$ 에 대하여

$$(u\circ\varphi_t)(x)=u(\varphi(t,\ x))=\psi(t,\ u(x))=\psi_t(u(x))=(\psi_t\circ u)(x)$$

가 성립된다.(증명끝)

 $T^n = R^n / Z^n$ 으로 n 차워고리를 표시한다.

 $m{U}^{2n}$ 을 어떤 열린모임 $U \subset m{R}^n$ 에 관하여 $m{U}^{2n} = U \times m{T}^n$ 과 같이 표시되거나 $m{R}^{2n}$ 의 열린모임으로 정의하다.

 C^{∞} 급 2n 차행렬값함수 B(z) $(z \in U^{2n})$ 를 U^{2n} 우의 뽜쏭구조행렬[3]이라고 한다.

 $H: U^{2n} \to \mathbf{R}$ 를 C^{∞} 함수라고 하고 H를 하밀톤함수로 하는 일반화된 하밀톤계[3]

$$\frac{dz}{dt} = B(z)\nabla H(z) \tag{6}$$

를 고찰하자.

 $\omega \in \mathbf{R}^n$ 에 대하여 $\partial_{\omega} u(\theta) = Du(\theta)\omega$ 라고 놓는다.

따름 $\omega \in \mathbf{R}^n$ 을 디오판투스적이라고 할 때 C^{∞} 단일넘기기 $u: \mathbf{T}^n \to \mathbf{U}^{2n}$ 이 $\partial_{\omega} u(\theta) = B(u(\theta)) \nabla H(u(\theta)) \tag{7}$

를 만족시키면 다음의 사실들이 성립된다.

- i) $\mathcal{G} = u(\mathbf{T}^n)$ 는 하밀톤계 (6)의 불변고리이다.
- ii) $u: \mathbf{T}^n \to \mathbf{S}$ 는 위상동형넘기기이다.
- iii) T 우에 제한한 하밀톤계 (6)의 흐름은 $R \times \mathcal{F}$ 에서 정의되고 크로네케르의 흐름 $\varphi(t, \theta) = \theta + \omega t \ (t \in R, \theta \in T^n)$ 와 u에 관하여 위상공액이다.

따라서 \mathcal{G} 우에 제한한 하밀톤계 (6)의 흐름은 준주기적이다.

참고문 헌

- [1] Wu Hwan Jong et al.; Chaos, Solitons & Fractals, 68, 114, 2014.
- [2] S. Wiggins; Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, 39~40, 2003.

주체105(2016)년 5월 5일 원고접수

Invariant Manifold given by PDE for C^r Semi-Congugacy

Jo Yon Hui

We reveal that two dynamical systems are C^r semi-conjugate if and only if the C^r semi-conjugacy satisfies a partial differential equation. And we reveal that the image set of the C^r semi-conjugacy become invariant manifold for the second dynamical system if the C^r semi-conjugacy is injection.

Key words: invariant manifold, invariant tori