CSUS
COLLEGE OF ENGINEERING AND COMPUTER SCIENCE
Department of Computer Science

Section_				
Name				

CSc 130

Jinsong Ouyang

DATA STRUCTURES AND ALGORITHM ANALYSIS Final

Total Time – 120 Minutes Closed Book – Closed Notes

Total: 100

I. (30%) Graph

Part I (15 %)

Given the following network topology, fill out the table for constructing the least-cost paths to all network destinations from V3.

V	Known	Dv	Pv
V1			
V2			
V3			
V4			
V5			
V6			
V7			

Part II (15 %)

Using V1 as the starting point, use Prim's algorithm to fill out the table and draw the minimum spanning tree (MST).

V	Known	Dv	Pv
V1			
V2			
V3			
V4			
V5			
V6			
V7			

II. (20 %) Heap

A. (5) Show the steps to add the value "16" to the following heap:

B. (5) How can the given binary heap including "16" be represented in an array?

0	1	2	3	4	5	6	7	8

C. (10) Perform heapsort within the same array including "16" (without using additional array).

	0	1	2	3	4	5	6	7	8
Original array									
After delete 12									
After delete 16									
After delete 19									
After delete 23									
After delete 25									
After delete 44									
After delete 57									
After delete 87									

III. Write pseudocode for the mergesort algorithm (10%) Explain how you figure out the time complexity of the "conquer" part of the code? (5%)

IV. Write pseudocode for the quicksort algorithm (10%) Accordingly to the algorithm, show how you select a pivot and do the partitioning till you get S1 and S2 (**only for the top level**) (5%) Explain how you figure out the time complexity of the partitioning of an array of size N? (5%)

8 1 4 9 6 3 5 2 7 0	0
---------------------------------------	---

V. Given a hash table which has 10 slots [0, 1, 2, ..., 9] and hash function $h(x) = x \mod 10$, insert the sequence of numbers, $\{6, 16, 26, 36, 56, 76, 25, 86\}$, into the hash table using separate chaining (5%) and double hashing technique with $h2(x) = 7 - (x \mod 7)$ (10%) respectively.