Beginning Activities for Section 7.3

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (Sets Associated with a Relation)

1. $R[b] = \{a, b, e\}$ $R[c] = \{c, d\}$ $R[d] = \{c, d\}$ $R[e] = \{a, b, e\}$.

$$R[c] = \{c, d\}$$

$$R[d] = \{c, d\}$$

$$R[e] = \{a, b, e\}.$$

- 2. By inspection of the directed graph, we see that the relation R is reflexive, symmetric, and transitive. Therefore, R is an equivalence relation on A.
- 3. It can be seen that R[a] = R[b] = R[e] and R[c] = R[d].
- **4.** We also see that $R[a] \cap R[c] = \emptyset$. Because of the set equalities in (3), we also know that $R[a] \cap R[d] = \emptyset$ \emptyset , $R[b] \cap R[c] = \emptyset$, $R[b] \cap R[d] = \emptyset$, $R[e] \cap R[c] = \emptyset$, and $R[e] \cap R[d] = \emptyset$.
- 5. The directed graph has loops at vertices b, d, and e, an arrow from a to b, an arrow from b to c, an arrow from a to d, an arrow from c to d, and an arrow from d to c.

By inspection, we see that the relation S is not reflexive, not symmetric, and not transitive. Therefore, S is not an equivalence relation on A.

6. $S[b] = \{a, b\}$

$$S[c] = \{b, c, d\}$$
 $S[d] = \{a, c, d\}$ $S[e] = \{e\}$

$$S[d] = \{a, c, d\}$$

$$S[e] = \{e\}$$

- 7. None of the sets are equal.
- **8.** S[a] and each of the other sets are disjoint. S[e] and each of the other sets are disjoint.

Beginning Activity 2 (Congruence Modulo 3)

1. $C[0] = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$ $C[2] = \{\dots, -7, -4, -1, 2, 5, 8, 11, \dots\}$

$$C[2] = \{\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots\}$$

$$C[1] = \{\dots, -8, -5, -2, 1, 4, 7, 10, \dots\}$$
 $C[3] = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$

$$C[3] = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$$

- 2. (a) The intersection of any two of the sets, C [0], C [1], C [2], is the empty set.
 - (b) Since $734 = 244 \cdot 3 + 2$, we know that $734 \equiv 2 \pmod{3}$, and $734 \in \mathbb{C}[2]$.
 - (c) Since $79 = 26 \cdot 3 + 1$, we know that $79 \equiv 1 \pmod{3}$, and $79 \in C[1]$. Since $-79 = (-27) \cdot 3 + 2$, we know that $-79 \equiv 2 \pmod{3}$, and $-79 \in \mathbb{C}$ [2].
 - (d) Since each integer is congruent to 0, 1, or 2 modulo 3, we know that each integer is in precisely one of the three sets C[0], C[1], or C[2]. Hence, we may conclude that $C[0] \cup C[1] \cup C[2] =$ \mathbb{Z} .
 - (e) C[3] = C[0].
 - (f) C[4] = C[1].

