PROBLEM STATEMENT: - TO PREDICT THE RAIN FALL BASED ON VARIOUS FEATURES OF THE DATASET

```
In [2]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.linear model import LinearRegression
        from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import train_test_split
```

Data collection

In [3]: rain_df=pd.read_csv(r"C:\Users\LENOVO\Desktop\rainfall in india 1901-2015.csv" rain df

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4

4116 rows × 19 columns

In [4]: rain_df.shape

Out[4]: (4116, 19)

In [5]: rain_df.head()

Out[5]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4
4													

In [6]: rain_df.tail()

Out[6]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	١
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	18
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	7
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	ţ
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	20
4													•

```
In [7]: rain_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4116 entries, 0 to 4115 Data columns (total 19 columns):

Ducu	COTAMITS (COC	ar ro coramno).	
#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4112 non-null	float64
3	FEB	4113 non-null	float64
4	MAR	4110 non-null	float64
5	APR	4112 non-null	float64
6	MAY	4113 non-null	float64
7	JUN	4111 non-null	float64
8	JUL	4109 non-null	float64
9	AUG	4112 non-null	float64
10	SEP	4110 non-null	float64
11	OCT	4109 non-null	float64
12	NOV	4105 non-null	float64
13	DEC	4106 non-null	float64
14	ANNUAL	4090 non-null	float64
15	Jan-Feb	4110 non-null	float64
16	Mar-May	4107 non-null	float64
17	Jun-Sep	4106 non-null	float64
18	Oct-Dec	4103 non-null	float64
dtype	es: float64(1	7), int64(1), obj	ject(1)
		1 . KD	

memory usage: 611.1+ KB

To find null values

In [8]: rain_df.fillna(method="ffill",inplace=True) rain_df

Out[8]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4

4116 rows × 19 columns

```
In [9]: rain_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4116 entries, 0 to 4115 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4116 non-null	float64
3	FEB	4116 non-null	float64
4	MAR	4116 non-null	float64
5	APR	4116 non-null	float64
6	MAY	4116 non-null	float64
7	JUN	4116 non-null	float64
8	JUL	4116 non-null	float64
9	AUG	4116 non-null	float64
10	SEP	4116 non-null	float64
11	OCT	4116 non-null	float64
12	NOV	4116 non-null	float64
13	DEC	4116 non-null	float64
14	ANNUAL	4116 non-null	float64
15	Jan-Feb	4116 non-null	float64
16	Mar-May	4116 non-null	float64
17	Jun-Sep	4116 non-null	float64
18	Oct-Dec	4116 non-null	float64
dtype	es: float64(17	7), int64(1), obj	ject(1)

memory usage: 611.1+ KB

Visualization

In [10]: sns.lmplot(x='Jun-Sep',y='ANNUAL',data=rain_df,order=2,ci=None)

Out[10]: <seaborn.axisgrid.FacetGrid at 0x2974684b150>


```
In [11]: rain df['SUBDIVISION'].value counts()
Out[11]: SUBDIVISION
         WEST MADHYA PRADESH
                                                 115
         EAST RAJASTHAN
                                                 115
         COASTAL KARNATAKA
                                                 115
         TAMIL NADU
                                                 115
         RAYALSEEMA
                                                 115
         TELANGANA
                                                 115
         COASTAL ANDHRA PRADESH
                                                 115
         CHHATTISGARH
                                                 115
                                                 115
         VIDARBHA
         MATATHWADA
                                                 115
         MADHYA MAHARASHTRA
                                                 115
         KONKAN & GOA
                                                 115
         SAURASHTRA & KUTCH
                                                 115
         GUJARAT REGION
                                                 115
         EAST MADHYA PRADESH
                                                 115
         KERALA
                                                 115
         WEST RAJASTHAN
                                                 115
         SOUTH INTERIOR KARNATAKA
                                                 115
         JAMMU & KASHMIR
                                                 115
         HIMACHAL PRADESH
                                                 115
         PUNJAB
                                                 115
         HARYANA DELHI & CHANDIGARH
                                                 115
         UTTARAKHAND
                                                 115
         WEST UTTAR PRADESH
                                                 115
         EAST UTTAR PRADESH
                                                 115
         BIHAR
                                                 115
         JHARKHAND
                                                 115
         ORISSA
                                                 115
         GANGETIC WEST BENGAL
                                                 115
         SUB HIMALAYAN WEST BENGAL & SIKKIM
                                                 115
         NAGA MANI MIZO TRIPURA
                                                 115
         ASSAM & MEGHALAYA
                                                 115
         NORTH INTERIOR KARNATAKA
                                                 115
         LAKSHADWEEP
                                                 114
         ANDAMAN & NICOBAR ISLANDS
                                                 110
         ARUNACHAL PRADESH
                                                  97
         Name: count, dtype: int64
In [12]: rain_df.columns
Out[12]: Index(['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JU
         L',
                 'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb', 'Mar-May',
                 'Jun-Sep', 'Oct-Dec'],
                dtype='object')
```

Feature selection

```
In [13]: x=np.array(rain_df['Jun-Sep']).reshape(-1,1)
         y=np.array(rain_df['ANNUAL']).reshape(-1,1)
```

```
In [14]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=)
```

Linear Regression

```
In [15]: regr=LinearRegression()
         X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         regr.fit(X_train,y_train)
         regr.fit(X_train,y_train)
Out[15]:
          ▼ LinearRegression
          LinearRegression()
In [16]: print(regr.score(X_test,y_test))
         0.889280453409494
In [17]: y_pred=regr.predict(X_test)
         plt.scatter(X_test,y_test,color='blue')
         plt.plot(X_test,y_pred,color='black')
         plt.show()
```



```
In [18]: from sklearn.metrics import r2 score
         model=LinearRegression()
         model.fit(X train,y train)
         y pred=model.predict(X test)
         r2=r2_score(y_test,y_pred)
         print("R2 Score:",r2)
```

R2 Score: 0.889280453409494

Ridge model

```
In [19]: from sklearn.linear_model import Lasso,Ridge
         from sklearn.preprocessing import StandardScaler
In [20]: | x=np.array(rain_df['Jun-Sep']).reshape(-1,1)
         y=np.array(rain df['ANNUAL']).reshape(-1,1)
In [21]: |x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=
In [22]: ridgeReg=Ridge(alpha=10)
         ridgeReg.fit(x_train,y_train)
         train_score_ridge=ridgeReg.score(x_train,y_train)
         test_score_ridge=ridgeReg.score(x_test,y_test)
In [23]: |print("the train score for ridge model is{}".format(train_score_ridge))
         print("the test score for ridge model is{}".format(test_score_ridge))
         the train score for ridge model is 0.88425882286469
         the test score for ridge model is0.897227115927482
```

Lasso model

```
In [24]: print("\n Lasso Model:\n")
         lasso=Lasso(alpha=10)
         lasso.fit(x_train,y_train)
         train score ls=lasso.score(x train,y train)
         test_score_ls=lasso.score(x_test,y_test)
         print("The train score for ls model is {}".format(train_score_ls))
         print("The test score for ls model is{}".format(test score ls))
```

Lasso Model:

The train score for 1s model is 0.8842588226165713 The test score for 1s model is0.8972268430634212

Elastic Net

```
In [25]: from sklearn.linear_model import ElasticNet
    eln=ElasticNet()
    eln.fit(x,y)
    print(eln.coef_)
    print(eln.intercept_)
    print(eln.score(x,y))

[1.20838561]
    [129.62392906]
    0.8882690674973049
```

Conclusion

score for linearregression is 0.889280453409494, score for Rige model is 0.897227115927482, score for Lasso model is 0.8972268430634212, score for elastic net is 0.8882690674973049. From all the above models we can conclude that ridge model is the best model to predict the rainfall based on various features of the dataset.

In	[]:	
In	[]:	
In	[]:	