

every σ -compact set is Lindelöf

Canonical name EverysigmacompactSetIsLindelof

Date of creation 2013-03-22 17:34:07 Last modified on 2013-03-22 17:34:07 Owner joen235 (18354) Last modified by joen235 (18354)

Numerical id 14

Author joen235 (18354)

Entry type Theorem Classification msc 54D45 **Theorem 1.** Every http://planetmath.org/SigmaCompactσ-compact set is Lindelöf (every open cover has a countable subcover).

Proof. Let X be a σ -compact. Let $\mathcal A$ be an open cover of X. Since X is σ -compact, it is the union of countable many compact sets,

$$X = \bigcup_{i=0}^{\infty} X_i$$

with X_i compact. Consider the cover $\mathcal{A}_i = \{A \in \mathcal{A} : X_i \cap A \neq \emptyset\}$ of the set X_i . This cover is well defined, it is not empty and covers X_i : for each $x \in X_i$ there is at least one of the open sets $A \in \mathcal{A}$ such that $x \in A$.

Since X_i is compact, the cover A_i has a finite subcover. Then

$$X_i \subseteq \bigcup_{j=0}^{N_j} A_i^j$$

and thus

$$X \subseteq \bigcup_{i=0}^{\infty} \left(\bigcup_{j=0}^{N_j} A_i^j \right).$$

That is, the set $\{A_i^j\}$ is a countable subcover of \mathcal{A} that covers X.