彻下杨茂下降话.

用梯波下降污水下到函数: f(x)=(x1-2)+2x2, 部值(z12). 精致104.

南: x=x-xマf(z).

$$\nabla f(x) = \begin{pmatrix} 2x_1 - 4 \\ 4x_2 \end{pmatrix} \approx \langle \frac{2}{3} \rangle t_2 \nabla f(x) = \begin{pmatrix} 0 \\ 8 \end{pmatrix}.$$

①
$$x' = x^{\circ} - \lambda \nabla f(x) = x^{\circ} - \lambda \begin{pmatrix} s \\ s \end{pmatrix} = \begin{pmatrix} 2 \\ 2 - 8\lambda \end{pmatrix}$$

$$f(x') = 2(2 - 8\lambda)^{2}$$

$$\frac{\partial f(x')}{\partial \lambda} = 0. \quad \text{for } \lambda = \frac{1}{4} : x' = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

stro of(z')=(°). ||of(z')||< E. 达到籍度宴求.

数出数在x=(2)处取到min. 为o.

例2. 芸轭梯波下降法.

同艺机梯设下降法求下列出数最小值:f(x)=(x)-1)2+2(x)-x²)²、初位(0,0). 精度10年.

So=~ Of(2)=(2) 多稀茂方的.超级宽(0,0)

f(z')=(2x-1)2+32x4.

全于'(z)=0. 求得入=年,则x'=(°5). 第1)次是多本的改合的、

② 芝作方向: S1=-ロf(ス'1+ βoSo. $\nabla f(\lambda') = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \quad \beta_0 = \frac{\|\nabla f(\lambda')\|^2}{\|\nabla f(\lambda)\|^2} = \frac{1}{4}$

x²=z²+λ5=(x), X中保留入

f(x2)=~~~ 四名、代入即す。

全f(x²)=0. 求得入二,则x=(1).

3 pf(x2)=(0). 11pf(x2) 11 < E=104. 达到精致客求, 逐代传车

(影,至(小)处厅点数有min, 最如值为o.

艺和杨治下路法

第2次开战是共轭到

2个方向量が形成

(31) 3.(1) max Z= x1+ 2x 2+x3 南京 先化作标准形式: max 2 = x1+2x2+2 $2x_1 - 3x_2 + 2x_3 + x_4 = 15$ $\frac{1}{3}x_1 + x_2 + 5x_3 + x_5 = 20$ 対応目标と数中系数 $\frac{\chi_1, \chi_2, \chi_3}{\chi_1, \chi_2, \chi_3}$ $\frac{\chi_1, \chi_2, \chi_3}{\chi_1, \chi_2}$ $\frac{\chi_2}{\chi_3}$ $\frac{\chi_4}{\chi_5}$ $\frac{\chi_5}{\eta}$ $\frac{\eta}{\eta}$ $\frac{\eta}{\eta}$ 芳変量の必为0. 粒旋数.g=g-∑ciaij 26: σ1= 1- (0×2+0×1/3)=1 $\frac{\chi_{b}}{3}$ $\frac{\zeta_{b}}{4}$ $\frac{\zeta_{b}}{5}$ $\frac{\zeta_{b}}{\chi_{1}}$ $\frac{\chi_{1}}{\chi_{2}}$ $\frac{\chi_{3}}{\chi_{4}}$ $\frac{\chi_{4}}{\chi_{5}}$ $\frac{\chi_{5}}{9}$ $\frac{\eta_{5}}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ 大.双,巷. ブb (S) X1 (b) X2

$$\frac{2b}{5}$$
 $\frac{C_{b}}{b}$ $\frac{b}{2i}$ $\frac{x_{2}}{2i}$ $\frac{x_{3}}{3}$ $\frac{x_{4}}{3}$ $\frac{x_{5}}{3}$ $\frac{0}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

说明有唯一最优解, 多x=(25, 号, D) ng. max Z= 105

南部 科林化、max => 21+24->25

无现成单位阵,要添加人2要量,可以用2种方法 (大M法), 151:大M法, max Z=21+21-223-May (M号元第大).

$$x_{1}$$
 x_{2} x_{3} x_{4} x_{5} x_{5} x_{7} x_{1} x_{1} x_{1} x_{1} x_{1} x_{2} x_{3} x_{4} x_{5} x_{5} x_{7} x_{1} x_{1} x_{1} x_{1} x_{2} x_{3} x_{4} x_{5} x_{2} x_{3} x_{4} x_{5} x_{4} x_{5} $x_{$

|-0x}-(x(-M)=M+) (大, X(旦慧)

26 (1) = 3 = 3 X1 (2) - (3) = 4) A1	 5 5 5 6 3	ス ス ス ス ス ス ス ス
	σ	0 = -13M 4M-5M 0
		(大,入学)

Xb	Сь	6	ک ا	'n					0
B-6/3=B 24	1	3	[0]	- 4	0	+4	-4 1	4	
(A) x = (b) x3	-2	4				-4	- 4	4	-
~ 4		σ	0	- 4	0	- 3	-34	-M+Z	ř\

超5型数0借小子艾子0.进代任束.布体而最优解· 况=(3,0,4)附有最优解 max Z=-S 1考2:两阶段法.

1 max = - 4

zb	Сь	Sb	0 7.1	0 X1	x,	0 44	X5	-1 ay	θ		
74 ay	0	5 7	37	1-4	-1 1	0	0 -1	0	3	(み,	24出幕)
		σ	(T)	-4 入舊)	I	0	-1	0			

26	Сь	Ь	スロ	Zz	23	χų	**	ay_		
				3_		٦,		1		
74	0	3	11[-4	0	4	- 4	4		(?)
				13	1.1	1	_3	3_		
23	0	4		-4		-4	74	_4		
							0	-1	V	
		6	1 0	O	U	,	, ,	1,		

@ a=0.

ω	, -							
001		G	1	1	-2	0	0	
24	Cb	b	74	ا کار	×	Жų	Xs.	_
74	1	3	1	-34	0	+4	-2	
73	-2	4	0	- <u>13</u>	1	-4	-3	1,
	B. K. M	6	0	-19	0		-54	
			F	20		20	20	

遂代结束.存在时间的最优解. X=(3,0,4)时.取到最优解max2=-5

DP作业方案设计.

柳本 动态规划方案设计。

设备数目。

fk(x): 数量x的设备给前K介用户得利益最 gk(y): 数量y的设备给着K介用户的得利润

Step1: 求f, (2). いかすf,(x)=g,(x)

Step 2: 求fz(双, 此的j安考底用户A.B.以间如何分配便利润max.

①
$$f_{2}(b) = \max_{y=0,1...6} \{q_{2}(y) + f_{1}(b-y)\} = \max_{y=0,1...6} \begin{cases} q_{2}(v) + f_{1}(b) \\ q_{2}(v) + f_{1}(b) \\ q_{2}(z) + f_{1}(b) \\ q_{2}(z) + f_{1}(b) \\ q_{3}(b) + f_{1}(z) \\ q_{3}(b) + f_{1}(v) \\ q_{3}(b) + f_{1}(v) \end{cases} = \max_{y=0,1...6} \begin{cases} 0 + 19 \\ 3 + 16 \\ 8 + 14 \\ 11 + 12 \\ 15 + 9 \\ 17 + 4 \\ 18 + 0 \end{cases}$$

$$(A, B) = (3,3) \text{ Introduction}$$

$$(A,$$

②
$$f_{2}(5) = \max\{g_{2}(0) + f_{1}(0)\}$$
 = $\max\{g_{2}(0) + f_{1}(0)\}$ = $\max\{g_{$

$$3 \int_{2}^{2} (4) = \max_{y=0.1...4} \left\{ g_{2}(y) + f_{1}(4) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + f_{1}(4) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + f_{1}(4) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + f_{1}(y) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + g_{1}(y) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + g_{1}(y) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + g_{1}(y) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + g_{1}(y) + g_{1}(y) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + g_{1}(y) + g_{1}(y) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + g_{1}(y) + g_{1}(y) + g_{1}(y) + g_{1}(y) + g_{1}(y) \right\} = \max_{y=0.1...4} \left\{ g_{2}(y) + g_{1}(y) + g_{1$$

⑤
$$f_2(z) = \max_{y=0.1.2} \left\{ g_2(y) + f_1(z-y) \right\} = \begin{cases} g_2(0) + f_1(1) \\ g_3(1) + f_1(1) \\ g_3(2) + f_1(0) \end{cases} = \max_{y=0.1.2} \left\{ \begin{array}{l} 0+q \\ 3+4 \\ 8+0 \end{array} \right\} = q$$
(A, B) = (2,0) ht

(B)
$$f_{Z(1)} = \max_{y=0.1} \left\{ g_{Z(y)} + f_{1}(1-y) \right\} = \max_{y=0.1} \left\{ g_{Z(0)} + f_{1}(1) \atop g_{Z(1)} + f_{1}(0) \right\} = \max_{y=0.1} \left\{ g_{Z(0)} + f_{1}(0) \atop g_{Z(0)} + f_{1}(0) \right\} = \max_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.1} \left\{ g_{Z(0)} + g_{Z(0)} + g_{Z(0)} \right\} = \min_{y=0.$$

Step 3: 起用产C的入考室,计算方的

$$\begin{cases}
g_{3}(0) + f_{2}(b) \\
g_{4}(1) + f_{2}(5) \\
g_{3}(2) + f_{2}(4)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(b) \\
g_{4}(1) + f_{2}(5) \\
g_{3}(2) + f_{2}(4)
\end{cases} = \max
\begin{cases}
0 + 33 \\
5 + 20 \\
(0 + 17) \\
12 + (2)
\end{cases} = 33$$

$$\begin{cases}
f_{3}(0) + f_{2}(0) \\
g_{3}(2) + f_{2}(4)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(2) + f_{2}(4)
\end{cases} = \max
\begin{cases}
0 + 33 \\
5 + 20 \\
(0 + 17) \\
12 + (2)
\end{cases} = 33$$

$$\begin{cases}
f_{3}(0) + f_{2}(0) \\
g_{3}(2) + f_{2}(4)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
0 + 33 \\
5 + 20
\end{cases} = 33
\end{cases} = 33$$

$$\begin{cases}
f_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \max
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + f_{2}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + f_{2}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0) + g_{3}(0)
\end{cases} = \min
\begin{cases}
g_{3}(0) + g_{3}(0) \\
g_{3}(0)$$

得上. 宴总利沙国最大. 6台设备证分配方式为: A用户3台. B用户3台. C用户0台.

13/16

1、 兰苑梯度法 min f(x)====z1+==x1-2x1-2x1.和焰巨x11)=(-214)T

南部
$$\frac{\partial f}{\partial x_1} = \beta x_1 - x_2 - \lambda_2 = \int_{x_1} (x_1)$$

 $\frac{\partial f}{\partial x_2} = x_2 - x_1 = \int_{x_2} (x_2)$

代入体函数:f(x)===(-2+12d)+=(4-bx)=(-2+12d)(4-bx)-2(-2+12d) - 206 d2-180d+26

第2次迭代· 求生轭方向

$$\beta_0 = \frac{||\nabla f(x^0)||^2}{||\nabla f(x^0)||^2} = \frac{(\frac{1}{12})^2 + (\frac{11}{12})^2}{||x^2 + (-6)|^2} = \frac{1}{289}$$

$$S^{(2)} = -\nabla f(x^{(2)}) + \beta \circ S^{(1)} = -\left[\frac{h}{17}\right] + \frac{1}{289}\left[\frac{12}{-6}\right] = \begin{bmatrix}-\frac{289}{289}\\ -\frac{219}{289}\end{bmatrix}$$

$$\chi^{(3)} = \chi^{(2)} + \alpha S^{(2)} = \begin{bmatrix} \frac{11}{14} \\ \frac{11}{14} \end{bmatrix} + \alpha \begin{bmatrix} -\frac{1}{289} \\ -\frac{11}{289} \end{bmatrix} = \begin{bmatrix} \frac{11}{14} - \frac{1}{289} \\ \frac{11}{14} - \frac{1}{289} \\ \frac{11}{14} - \frac{1}{289} \end{bmatrix} + \alpha \begin{bmatrix} \frac{1}{14} - \frac{1}{289} \\ \frac{11}{14} - \frac{1}{289} \\ \frac{11}{14} - \frac{1}{289} \end{bmatrix} + \alpha \begin{bmatrix} \frac{1}{14} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} \end{bmatrix} + \alpha \begin{bmatrix} \frac{1}{14} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} \end{bmatrix} + \alpha \begin{bmatrix} \frac{1}{14} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} - \frac{1}{289} - \frac{1}{289} \\ \frac{1}{14} - \frac{1}{289} - \frac{1}{289$$

$$\chi^{(3)} = \chi^{(1)} + \alpha S^{(1)} = \begin{bmatrix} \frac{1}{4} \end{bmatrix}^{+\alpha} \begin{bmatrix} -\frac{24}{289} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{4} - \frac{24}{289} \\ \frac{1}{4} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{4} - \frac{24}{48} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{4} - \frac{24}{48} \\ \frac{1}{4} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{4} - \frac{24}{48} \end{bmatrix}$$

$$(p'(\omega)) = \frac{1}{2} \cdot (\frac{90}{289})^{\frac{1}{2}} \cdot 2 \cdot \alpha - \frac{1}{2} \times \frac{90}{289} \cdot \frac{1}{2} + \frac{1}{2} \cdot (\frac{10}{289})^{\frac{1}{2}} \cdot 2 \cdot \alpha + \frac{1}{2} \cdot \frac{10}{289} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{$$

2· i3刚同量a=(1,0)T\$同量az=(3,-z)T关于矩阵[A=[2 3] 兰轭.
i6npl:

$$a_1^T A a_2 = [1,0] \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

= $[2 & 3] \begin{bmatrix} 3 \\ -2 \end{bmatrix} = 2 \times 3 + 3 \times (-2) = 0$. $A = 0$