Universidad de la República, Facultad de Ciencias Económicas y de Administración

ECONOMETRÍA II – Curso 2016

PRÁCTICO 12 Regresiones espurias y cointegración

EJERCICIO 1

Se cuenta con información proveniente del *Economic Report of the President de 1997* que comprende los años 1948 hasta 2003 (INTDEF.RAW). Se desea analizar la relación entre el tipo de interés y la inflación en el largo plazo. Las variables disponibles son:

i3: tipo de interés de las letras del tesoro a 3 meses

inf: tasa de inflación anual calculada sobre el IPC.

Se pide:

- 1) Analice gráficamente ambas series en niveles y en diferencias.
- 2) Determine el orden de integración de ambas series utilizando el test de Dickey Fuller aumentado. Comience la prueba especificando la regresión auxiliar solo con constante con la especificación del modelo b (permita que el proceso de reducción de la dinámica se inicie en 10 rezagos).
- 3) Estime una regresión con **i3** como variable dependiente e **inf** como regresor. Explique por qué la prueba de significación del coeficiente de **inf** en esta ecuación no tiene validez.
- 4) Defina el concepto de cointegración y el de regresión espuria.
- 5) Indique si en base a la información disponible es posible afirmar que existe una relación de largo plazo entre el tipo de interés a 3 meses y la inflación. En caso contrario, haga las pruebas necesarias, al 5% de significación, teniendo especial cuidado en los valores críticos utilizados.
- 6) Explique qué se denomina Modelo de Corrección del Error (MCE) y Término de Corrección del Error (TCE) y qué aporta el TCE en una ecuación de predicción para el tipo de interés. ¿Existe alguna hipótesis respecto al signo del coeficiente asociado al TCE? Justifique.
- 7) Estime el MCE incluyendo dos retardos de cada una de las variables dependientes como regresores. Interprete la salida. Obtenga los residuos y estudie su comportamiento. ¿Son ruido blanco?
- 8) ¿Cuál es la relación entre el MCE y el ADL(1,1)?

Tabla de estimaciones para los valores críticos de MacKinnon para cointegración

N	Variant	Level	Obs.	eta_{∞}	(s.e.)	eta_1	eta_2
1	no constant	1%	600	-2.5658	(0.0023)	-1.960	-10.04
		5%	600	-1.9393	(0.0008)	-0.398	
		10%	560	-1.6156	(0.0007)	-0.181	
1	no trend	1%	600	-3.4336	(0.0024)	-5.999	-29.25
		5%	600	-2.8621	(0.0011)	-2.738	-8.36
		10%	600	-2.5671	(0.0009)	-1.438	-4.48
1	with trend	1%	600	-3.9638	(0.0019)	-8.353	-47.44
		5%	600	-3.4126	(0.0012)	-4.039	-17.83
		10%	600	-3.1279	(0.0009)	-2.418	-7.58

Para obtener los valores críticos a partir de esta tabla:

Valor crítico:
$$\beta_{\infty} + \frac{\beta_1}{T} + \frac{\beta_2}{T^2}$$

Por lo que para nuestra muestra,

	Valores críticos de MacKinnon para T=55					
	1% 5% 10%					
Sin constante	-2.60	-1.95	-1.62			
Con constante	-3.55 -2.91 -2.59					

EJERCICIO 2

Se desea contrastar la hipótesis de existencia de una Curva de Phillips de largo plazo, es decir de una relación de equilibrio entre la tasa de desempleo y la inflación en el largo plazo. Para ello se utilizan datos anuales de la tasa de desempleo (unem) y la inflación (inf) para la economía de los EE.UU. en el período 1948-2003. El archivo se llama Phillips.gdt.

Se pide:

- 1) Analice gráficamente ambas series en niveles y en diferencias.
- 2) Determine el orden de integración de ambas series utilizando el test de Dickey Fuller. Comience la prueba especificando la regresión auxiliar solo con constante y 2 rezagos de la variable dependiente.
- 3) Estime una regresión con unem como variable dependiente e inf como regresor. Explique porqué la prueba de significación del coeficiente de inf en esta ecuación no tiene validez.
- 4) Defina el concepto de cointegración y el de regresión espuria.
- 5) Indique si en base a la información disponible es posible afirmar que existe una Curva de Phillips de largo plazo. En caso contrario, haga las pruebas necesarias, al 1% de significación, teniendo especial cuidado en los valores críticos utilizados.
- 6) Dado que no se encuentra una relación de largo plazo contemporáneamente, se plantea

la hipótesis de que es la inflación en t-1 la que determina el valor de equilibrio a largo plazo del desempleo en t. Contraste la presencia de cointegración al 1% entre ambas variables.

- 7) Explique qué se denomina Modelo de Correción del Error (MCE) y Término deCorreción del Error (TCE) y qué aporta el TCE en una ecuación de predicción para el desempleo. ¿Existe alguna hipótesis respecto al signo del coeficiente asociado al TCE? Justifique.
- 8) Estime el MCE incluyendo dos retardos de cada una de las variables dependientes como regresores. Interprete la salida. Obtenga los residuos y estudie su comportamiento. ¿Son ruido blanco?

Tabla de MacKinnon para esta muestra,

Tuota de Maerkinnon para esta maestra,						
	Valores críticos de MacKinnon					
	para T=55					
	1% 5% 10%					
Sin constante	-2.60	-1.95	-1.62			
Con constante	-3.55 -2.91 -2.59					

EJERCICIO 3

Considere dos series de tiempo: $\{x\}$ y $\{y\}$, ambas integradas de orden 1. Estas series evolucionan de acuerdo al siguiente proceso generador de los datos:

$$\operatorname{Con} \alpha \neq 0 , \ \alpha \neq \beta \ \operatorname{y} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix} \sim iid \ \operatorname{Normal} \begin{bmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & 0 \\ & \sigma_2^2 \end{bmatrix}$$

Se pide:

- 1) Defina el concepto de "proceso integrado". Proporcione un ejemplo de un proceso generador del dato que sea un proceso integrado de orden 1.
- 2) Resuelva las ecuaciones [1] y [2] para las variables $\{x\}$ e $\{y\}$ en términos de las variables $\{u_t\}$ y $\{e_t\}$. Deduzca y justifique porqué las variables $\{x\}$ e $\{y\}$ son clasificadas como variables integradas, I(1).
- 3) Defina el concepto de "cointegración".
- 4) De las ecuaciones [1] y [2], ¿alguna de ellas es una relación de cointegración?, ¿cuál? Justifique su respuesta.

EJERCICIO 4

Se desea saber si existe una relación de largo plazo entre la rentabilidad de Bonos del Tesoro a 20 años, rlp, y Letras de Tesorería a 90 días, rcp. Disponemos de una muestra de 148 observaciones trimestrales de la variables rlp y rcp de Bonos y Letras emitidos por el Reino Unido. Los datos son presentados en las Gráficas 1 y 2. Para el estudio expresamos las series en logaritmos y las llamamos lrlp y lrcp.

Gráfica 1

Gráfica 2

Se pide:

- 1) Examine si los procesos *lrlp* y*lrcp* son integrados de orden 1, I(1). Utilice la información proporcionada a continuación para sacar conclusiones. Justifique.
 - i) Con la muestra del proceso *lrlp* se estimó por MCO la regresión:

(1)
$$lrlp_t = 0.0676 + 0.00015 t + 0.96491 lrlp_{t-1} + e_t$$

(0.0409) (0.00027) (0.02706)

(Debajo de los coeficientes estimados de la regresión, entre paréntesis, se presentan los errores estándares estimados de los coeficientes. Esto se repite en todas las regresiones estimadas.)

t: variable determinística tendencia, toma el valor 0 para la primera observación *e*: residuo de la regresión.

El contraste de la hipótesis nula conjunta: (t = 0, coeficiente estimado de $lrlp_{t-1} = 1$) dio por resultado: 1.467.

Realice la(s) prueba(s) que considere apropiadas, para responder si *lrlp*es un procesoI(1). Exprese el o los estadísticos que utilizó, hipótesis nula y alternativa en la(s) prueba(s) y concluya (nivel de significación 5%).

ii) Con la muestra del proceso *lrcp* se estimó por MCO la regresión:

(2)
$$lrcp_t = 0.2694 + 0.00203 t + 0.78263 lrcp_{t-1} + e_t$$
 $(0.0544) (0.00059) (0.04552)$

El contraste de la hipótesis nula conjunta: (t = 0, coeficiente estimado de $lrlp_{t-1} = 1)$ dio por resultado: 12.06

Realice la(s) prueba(s) que considere apropiadas, para responder si *lrcp* es un proceso I(1). Exprese el o los estadísticos que utilizó, hipótesis nula y alternativa en la(s) prueba(s) y concluya (nivel de significación 5%).

2) Dados los resultados del apartado 1) examine si el proceso *lrcp* se puede definir como un proceso "en tendencia estacionario"

La información proporcionada para el examen es la siguiente:

i) Resultados de la regresión MCO de otra especificación de un modelo para la serie *lrcp*:

(3)
$$lrcp_t = 1.547 + 0.0109 t + e_t R^2 = 0.72 DW = 0.347$$

(0.048) (0.00057)

ii) Gráfica 3 (resultados de la regresión (3)

(Abajo, dentro de un intervalo de confianza los *residuos* de esta regresión (residual), resultado de la regresión *ajustada* (fitted), los *datos de la serie lrcp* (actual)).

iii) Con los residuos de la regresión (3) se estimó la regresión:

(4)
$$e_t = 0.782 e_{t-1} + \mathcal{E}_t (0.045)$$

Realice la(s) prueba(s) que considere apropiadas, para responder si *lrcp* es un proceso que puede definirse en "tendencia estacionario". Exprese el o los estadísticos que utilizó, hipótesis nula y alternativa en la(s) prueba(s) y concluya (nivel de significación 5%). Justifique su respuesta.

3) Finalmente abordamos la pregunta inicial: saber si existe una relación de largo plazo, de cointegración entre *lrlp* y*lrcp*.

La información proporcionada para responder la pregunta es:

i) Estimación MCO de la regresión:

(5)
$$lrlp_t = 1.09 lrcp_t + e_t R^2 = 0.54 DW = 0.31$$
(0.012)

ii) Correlograma de los residuos de la regresión (5)

Sample: 1952:1 1988:4

Includedobservations: 148

Autocorrelation	PartialCorrelation		AC	PAC	Q-Stat	Prob
. *****	. *****	1	0.746	0.746	84.084	0.000
. ****	. *	2	0.588	0.070	136.63	0.000
. ****	. .	3	0.460	-0.001	168.96	0.000
. ***	. .	4	0.371	0.027	190.22	0.000
. **		5	0.304	0.013	204.54	0.000
. **		6	0.255	0.018	214.71	0.000
. *	. .	7	0.191	-0.047	220.45	0.000
. *	. .	8	0.146	0.000	223.85	0.000
. *	. .	9	0.114	0.005	225.92	0.000
. *	. *	10	0.127	0.087	228.53	0.000
. *		11	0.113	-0.023	230.59	0.000
. .	* .	12	0.062	-0.090	231.22	0.000

iii) Test de Dickey – Fuller aplicado a Residuos de regresión (5)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-5.568893	0.0000
Test criticalvalues:	1% level	-2.580788	
	5% level	-1.943012	
	10% level	-1.615270	

Si utiliza algún o algunos estadísticos exprese el o los estadísticos que empleó, hipótesis nula y alternativa en la(s) prueba(s) y concluya (nivel de significación 5%).

EJERCICIO 5

Se cuenta con datos mensuales respecto al valor del Indice S&P500 (SP500) del valor de las acciones el mercado de valores de Nueva York y un índice de producción industrial para la economía estadounidense (IP) para el período enero 1947 – junio 1993 (558 meses). Se consideran las siguientes variables:

lsp500:logarítmo del Indice S&P500

lip: logaritmo de IP

Los gráficos son los siguientes:

Contrastes Dickey-Fuller Aumentado para:

1a) variable lsp500

	Cantidad de lags	Valor del estadístico τ
Modelo con constante y sin tendencia	4	-0.79
Modelo con constante y tendencia	4	-2.20

1b) variable Δlsp500

	Cantidad de lags	Valor del estadístico τ
Modelo con constante y sin tendencia	3	-10.6
Modelo con constante y tendencia	3	-10.8

2a) variable lip

	Cantidad de lags	Valor del estadístico τ
Modelo con constante y sin tendencia	4	-1.37
Modelo con constante y tendencia	4	-2.52

2b) variable ∆lip

	Cantidad de lags	Valor del estadístico τ
Modelo con constante y sin tendencia	3	-8.99
Modelo con constante y tendencia	3	-9.04

Se pide 1)

1.1 Defina un proceso estocástico I(d) (integrado de orden d)

Se dice que un proceso es integrado de orden d, I(d), si es necesario realizar d diferencias para obtener la transformación estacionaria I(0).

2.2 Determine el orden de integración de

- a. la serie lsp500
- b. la serie lip

Explique detallada y rigurosamente todos los pasos que realice, escribiendo en cada caso: a) el modelo que se estima (tenga en cuenta tanto la inclusión de la constante y la tendencia y los rezagos correspondientes); b) la hipótesis nula de los contrastes; c) su distribución; d) la región crítica del contraste; e) la conclusión del contraste

Parte II

A continuación se estimaron dos modelos:

Modelo 1) $lsp500_t = \alpha + \beta lip_t + u_t$

Modelo 2) $lsp500_t = \alpha + \beta lip_t + \delta t + u_t$ donde t es una tendencia lineal en el tiempo

Modelo 1: se estima por MCO una regresión de lsp500 sobre lip . reg lsp500 lip

Source	ss	df	MS	Number of obs = 558 F(1, 556) = 5179.05
Model Residual Total	381.342724 40.9392923 +	556 		Prob> F = 0.0000 R-squared = 0.9031 Adj R-squared = 0.9029 Root MSE = .27135
- '	Coef. Std.		1 1	[95% Conf. Interval]
lip 1.694	-	4 71.	97 0.000	1.647835 1.740312 0.000 -2.589285 -2.214169

Se calculan los residuos de la regresión y se procede a estimar el estadístico para la prueba de raíz unitaria a dichos residuos, los resultados son:

	Cantidad de lags	Valor del estadístico τ
Modelo con constante y sin tendencia	0	-1.09
Modelo con constante y sin tendencia	2	-1.57

Modelo 2: se estima por MCO una regresión de lsp500 sobre $lipy\ t$ reg $lsp500\ lip\ t$

Source	SS	df	MS	Number of obs = 558 F(2, 555) = 3259.62
Model	389.152474 33.1295424	2	194.576237	Prob> F = 0.0000 R-squared = 0.9215
	422.282017			Adj R-squared = 0.9213 Root MSE = .24432

lsp500	Coef. Std.	Err.	t P> t	[95%	Conf. Interv	al]
	389 .1199295 .0041557 1.873766	.0003633	11.44	0.000	.0034421	.0048694

Se calculan los residuos de la regresión y se procede a estimar el estadístico para la prueba de raíz unitaria a dichos residuos, los resultados son:

	Cantidad de lags	Valor del estadístico τ
Modelo con constante y sin tendencia	0	-1.53
Modelo con constante y sin tendencia	2	-1.87

Se pide

- 2.1) Explique conceptualmente el sentido económico que tienen los modelos 1 y 2. Analice los resultados, incluyendo el análisis del coeficiente asociado a lip como el R cuadrado de la regresión en ambos modelos.
- 2.2) En base a las estimaciones realizadas ¿puede afirmar que *lsp500* y *lip* están cointegradas? Fundamente rigurosamente su afirmación.