КУРСОВОЙ ПРОЕКТ ПО КОМПЬЮТЕРНОЙ ГРАФИКЕ

СТУДЕНТ: ЖИГАЛКИН Д.Р

ГРУППА: ИУ7-55Б

НАУЧНЫЙ РУКОВОДИТЕЛЬ: КУЗНЕЦОВА О.В

ЦЕЛЬ РАБОТЫ

• Моделирование реалистичной сцены, расположенной за прозрачной поверхностью.

ФОРМАЛИЗАЦИЯ ОБЪЕКТОВ СЦЕНЫ

- Сфера
- Треугольник
- Источники света

ВЫБОР АЛГОРИТМА

	Бросание лучей	Трассировка лучей	Метод конечных элементов
Скорость синтеза	Высокая	Средняя	Низкая
Тени	Резкие	Мягкие	Мягкие
Отражения	Отсутствуют	Учитываются	Учитываются
Взаимное диффузное отражение	Отсутствуют	Отсутствуют	Учитываются

МОДЕЛЬ ОСВЕЩЕНИЯ ФОНГА

$$I = I_A + I_m \frac{\langle \vec{N}, \vec{L} \rangle}{|\vec{N}||\vec{L}|} + I_m \left(\frac{\langle \vec{R}, \vec{V} \rangle}{|\vec{R}||\vec{V}|} \right)^{\beta}$$

где I_m – интенсивность источника ${\sf m}$,

 I_A — интенсивность окружающего освещения,

 \vec{L} — направление на источник света,

 \overrightarrow{N} – нормаль в данной точке,

$$\vec{R} = 2\vec{N}\langle \vec{N}, \vec{L} \rangle - \vec{L},$$

 \overrightarrow{V} — вектор направления на наблюдателя,

 β — коэффициент блеска.

АЛГОРИТМ ТРАССИРОВКИ ЛУЧЕЙ

ИНТЕРФЕЙС ПРОГРАММЫ

ИССЛЕДОВАНИЕ ВИЗУАЛЬНЫХ ХАРАКТЕРИСТИК

ИССЛЕДОВАНИЕ ВРЕМЕННЫХ ХАРАКТЕРИСТИК

Исследование проводилось на ноутбуке с процессором Intel(R) Core (TM) i3-8130U CPU 2.20 GHz с 4 логическими ядрами под управлением Windows 10 с 8 Гб оперативной памяти.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы выполнены следующие задачи:

- 1) разработаны математические модели трёхмерных объектов;
- 2) описаны матрицы преобразований для переноса и поворота;
- 3) реализован алгоритм трассировки лучей для синтеза изображения;
- 4) проведён анализ визуальных и временных характеристик данного алгоритма.

Достигнута цель проекта – смоделирована реалистичная сцена, расположенная за прозрачным объектом.