Tw. 6 (ZAMIANA KOLEJNOŚCI GRANIC)

Załóżmy, że $f_n \stackrel{E}{\Longrightarrow} g$,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

oraz $\forall n$ istnieje granica właściwa $\lim_{x \to x_0} f_n(x) = A_n$.

Tw. 6 (ZAMIANA KOLEJNOŚCI GRANIC)

Załóżmy, że
$$f_n \stackrel{E}{\Longrightarrow} g$$
,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

oraz $\forall n$ istnieje granica właściwa $\lim_{x \to x_0} f_n(x) = A_n$.

Wówczas istnieje granica właściwa

$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} \lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \lim_{x\to x_0} f_n(x) = \lim_{n\to\infty} A_n.$$

Tw. 6 - Dowód:

Z Tw. 3
$$f_n \stackrel{L}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \le \varepsilon$

Tw. 6 - Dowód:

Z Tw. 3
$$f_n \stackrel{\mathcal{L}}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \leq \varepsilon$
 $\Rightarrow \forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0 \quad |A_n - A_m| \leq \varepsilon$
(gdy przejdziemy do granic przy $x \to x_0$)

Tw. 6 - Dowód:

Z Tw. 3
$$f_n \stackrel{E}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \le \varepsilon$
 $\Rightarrow \forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \quad |A_n - A_m| \le \varepsilon$
(gdy przejdziemy do granic przy $x \to x_0$)

Ciąg $\{A_n\}$ spełnia warunek Cauchy'ego, więc jest zbieżny do pewnej granicy właściwej. Oznaczmy $\lim_{n\to\infty}A_n=A$.

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

$$f_n \stackrel{E}{\Longrightarrow} g \text{ i } A_n \to A \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \ \forall x \in E \quad |f_{N_0}(x) - g(x)| \leq \frac{\varepsilon}{3} \text{ i } |A_{N_0} - A| \leq \frac{\varepsilon}{3}$

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

$$f_n \stackrel{E}{\Longrightarrow} g \text{ i } A_n \to A \Leftrightarrow \\ \forall \varepsilon > 0 \exists N_0 \forall x \in E \quad |f_{N_0}(x) - g(x)| \leq \frac{\varepsilon}{3} \text{ i } |A_{N_0} - A| \leq \frac{\varepsilon}{3}$$

Ponieważ $\lim_{x\to x_0} f_{N_0}(x) = A_{N_0}$,

$$\exists \, \delta > 0 \, \forall \, x \in E \, |x - x_0| \leq \delta \Rightarrow |f_{N_0}(x) - A_{N_0}| \leq \frac{\varepsilon}{3}$$

Dla dowolnego ustalonego n i $x \in E$ mamy $|g(x) - A| \le |g(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$.

$$f_n \stackrel{E}{\Longrightarrow} g \text{ i } A_n \to A \Leftrightarrow \\ \forall \varepsilon > 0 \exists N_0 \forall x \in E \quad |f_{N_0}(x) - g(x)| \leq \frac{\varepsilon}{3} \text{ i } |A_{N_0} - A| \leq \frac{\varepsilon}{3}$$

Ponieważ $\lim_{x\to x_0} f_{N_0}(x) = A_{N_0}$,

$$\exists \, \delta > 0 \, \forall \, x \in E \, |x - x_0| \le \delta \Rightarrow |f_{N_0}(x) - A_{N_0}| \le \tfrac{\varepsilon}{3}$$

Zatem

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in E \ |x - x_0| \le \delta \Rightarrow |g(x) - A| \le \varepsilon$$

$$tzn. \lim_{x \to x_0} g(x) = A. \blacksquare$$

Tw. 7 (PRZEMIENNOŚĆ GRANICY I RÓŻNICZKOWANIA)

Załóżmy, że