时间 120 分钟)

考场登记麦序号

题号	-	~			
得分		-	Ξ	四	总分
阅卷人					

一、单项选择题(每小题 2 分,共 20 分)

- 1. 对于复数 z = x + jy, 其中 x < 0, y < 0, 则其辐角主值为(
 - A. $\arctan \frac{y}{x}$; B. $-\arctan \frac{y}{x}$; C. $\arctan \frac{y}{x} + \pi$; D. $\arctan \frac{y}{x} \pi$.
- 2. Rc(z) > 0 表示下面哪个图中虚线所示的区域(

- 3. 关于复数的运算,下面描述不正确的是(
 - A. $(z_1 + z_2)^* = z_1^* + z_2^*$; B. $(z_1 z_2)^* = z_1^* z_2^*$;
 - C. $|z_1 + z_2| = |z_1| + |z_2|$;
- $\mathbf{D.} \ |z_1 z_2| = |z_1| |z_2| .$
- 4. 下面对函数的描述不正确的是()
 - A. $e^z \neq 0$;
- B. 正弦函数 sin z 为无界函数
- C. 当 $z \to 0$ 时, 函数 e^z 的极限不存在; D. 对数函数 Lnz 是以 $j2\pi$ 为周期的函数。
- 5. 下面说法不正确的是(
 - A. 若 f(z) 在 z_0 点解析,则 f(z) 在 z_0 点存在任意阶导数;
 - B. 若 f(z) 在 z_0 点可导,则 f(z) 必在 z_0 点解析;
 - C. f(z) 在简单闭曲线 C 所包围的区域 G 内解析,在 C 上连续,则有 $\oint_C f(z) = 0$;
 - \mathbf{D} . 幂级数 $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ 在收敛圆内收敛到和函数 f(z),则 f(z) 为该收敛圆内的解析函数

5. 设C为逆时针方向沿面周|z-2|=1的符合组线。则间路积分2=2

$$\Re \oint_C \frac{1}{z+2} dz = \underline{\hspace{1cm}}$$

- 6. 函数 $f(z) = \frac{e^x}{z^2}$ 以 $z_0 = 0$ 为中心的罗朗级数展开实息______
- 7. z=0为 $\frac{\sin z}{z^2}$ 的_____阶极点(演数字),且图数只点或 $\frac{\sin z}{z^2}$,则=_____

三、辨析题(10分)

已知解析函数 f(z) 的实部为 $u(x,y)=x^2-y^2$,且 f(0)=0,试求 f(z) 的虚部v(x,y) 以及 f(z)。

四、计算题(第1题8分,第2,3题每题10分,第4题12分。共40分)

1. 解方程
$$z^3 + 8j = 0$$
。

得分

2. 把函数 $\frac{1}{z^2}$ 以 $z_0 = 1$ 为中心展开为泰勒(Taylor)级数。

3、把函数 $\frac{1}{z^2-3z+2}$ 以 $z_0=0$ 为中心在环形区域 1<|z|<2 内爬开为罗朗级数。

4. 计算积分 $I=\oint_C \frac{e^z}{(2z+1)(z-2)}dz$,其中 C 为逆时针方向沿圆周 |z|=1 的闭合曲线。