PART 2: DATA SMOOTHING

(a-1) Compute a running mean smoother by hand

Running Mean Smoother						
Window width		3 hours				
Time	Hour	Ave.Veh	Ave.Veh			
06:00	6	-	N/A			
07:00	7	(200+350+500)/3	350.000			
08:00	8	(350+500+420)/3	423.333			
09:00	9	(500+420+380)/3	433.333			
10:00	10	(420+380+300)/3	366.667			
11:00	11	(380+300+250)/3	310.000			
12:00	12	(300+250+220)/3	256.667			
13:00	13	(250+220+200)/3	223.333			
14:00	14	(220+200+280)/3	233.333			
15:00	15	(200+280+400)/3	293.333			
16:00	16	(280+400+550)/3	410.000			
17:00	17	(400+550+600)/3	516.667			
18:00	18	-	N/A			

(a-2) Draw your solution on a scatter plot of the data

(a-3) Validate your solution in R

----- (Code and Output shown in the following section) -----

(b) Use R to compute a running mean smoother using ksmooth()

---- (Code and Output shown in the following section) -----

(c-1) Create a Gaussian kernel smoother in Excel

σ	2			
λ =	8			
2*σ^2				
Weights	wi			

Gaussian Kernel Smoother in Excel							
Standard deviation is two hours							
Time	Hour	Vehicles	Gaussian Kernel				
			Values				
06:00	6	200	338.0665				
07:00	7	350	360.0905				
08:00	8	500	372.6262				
09:00	9	420	369.2072				
10:00	10	380	348.6222				
11:00	11	300	318.1419				
12:00	12	250	291.1620				
13:00	13	220	281.2593				
14:00	14	200	296.4157				
15:00	15	280	335.1786				
16:00	16	400	387.3647				
17:00	17	550	440.2893				
18:00	18	600	485.3281				

(c-2) Validate your solution by hand

The estimator for $f(\cdot)$, denoted as $\hat{f}_{\lambda}(\cdot)$, is defined as follows:

$$\hat{f}_{\lambda}(\cdot) = \frac{\sum_{i=1}^n w_i y_i}{\sum_{j=1}^n w_i}$$

The weights are defined as $w_i = exp\left(-\frac{(x-x_i)^2}{\lambda}\right)$, i.e. the window is infinitely wide, but distant observations obtain little weight.

2

•			06:00		07:00		08:00		09:00		10:00	
Time	Hour (xi)	Vehicles (y,)	wi (xi =6)	w*y	wi (xi =7)	w*y	wi (xi =8)	w*y	wi (xi =9)	w*y	wi (xi =10)	w*y
)6:00	6	200	1.0000	200.0000	0.8825	176.4994	0.6065	121.3061	0.3247	64.9305	0.1353	27.0671
)7:00	7	350	0.8825	308.8739	1.0000	350.0000	0.8825	308.8739	0.6065	212.2857	0.3247	113.6284
00:80	8	500	0.6065	303.2653	0.8825	441.2485	1.0000	500.0000	0.8825	441.2485	0.6065	303.2653
)9:00	9	420	0.3247	136.3540	0.6065	254.7429	0.8825	370.6487	1.0000	420.0000	0.8825	370.6487
.0:00	10	380	0.1353	51.4274	0.3247	123.3679	0.6065	230.4817	0.8825	335.3488	1.0000	380.0000
1:00	11	300	0.0439	13.1811	0.1353	40.6006	0.3247	97.3957	0.6065	181.9592	0.8825	264.7491
12:00	12	250	0.0111	2.7772	0.0439	10.9842	0.1353	33.8338	0.3247	81.1631	0.6065	151.6327
13:00	13	220	0.0022	0.4812	0.0111	2.4440	0.0439	9.6661	0.1353	29.7738	0.3247	71.4235
4:00	14	200	0.0003	0.0671	0.0022	0.4375	0.0111	2.2218	0.0439	8.7874	0.1353	27.0671
.5:00	15	280	0.0000	0.0112	0.0003	0.0939	0.0022	0.6125	0.0111	3.1105	0.0439	12.3023
.6:00	16	400	0.0000	0.0015	0.0000	0.0160	0.0003	0.1342	0.0022	0.8750	0.0111	4.4436
17:00	17	550	0.0000	0.0001	0.0000	0.0020	0.0000	0.0220	0.0003	0.1845	0.0022	1.2031
18:00	18	600	0.0000	0.0000	0.0000	0.0002	0.0000	0.0022	0.0000	0.0240	0.0003	0.2013
	Sum		3.0066	1016.4402	3.8891	1400.4371	4.4957	1675.1988	4.8203	1779.6910	4.9556	1727.6321
Smoothed Value		338.	0665	360.	0905	372.	6262	369.	.2072	348.	6222	

(c-3) Draw your solution on a scatter plot of the data

(c-4) Validate your solution in R

---- (Code and Output shown in the following section) -----

(d) Create the Gaussian kernel smoother with R, using the function ksmooth()

---- (Code and Output shown in the following section) -----

(e) Use a LOESS smoother for this data set

----- (Code and Output shown in the following section) -----