PART – B ($5 \times 10 = 50$ Marks) Answer ALL Questions					PO
26. a.	Illustrate the different handoff strategies employed in mobile cellular system with a neat sketch. (OR)	10	2	1	1,1
b.i.	Explain in detail about the frequency reuse scheme.	5	2	1	1,1 2
ii.	If a signal to interference ratio of 15 dB is required for satisfactory forward channel performance of a cellular system, what is the frequency reuse factor and cluster size that should be used for maximum capacity if the path loss exponent is (1) n=4 (2) n =3. Assume that there are 6 co-channels cells in the first tier, and all of them are at the same distance from the mobile. Use suitable approximations.	5	3	1	1,1
27. a.	Derive the expression for the path loss in two ray ground reflection model.	10	2	2	1,2 ,3, 4
b.i.	(OR) If a transmitter produces 50 watts of power, express the transmitted power in units of (1) dBm (2) dBW. If 50 watts is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power. In dBm at a frees space distance of 100 m from the antenna, what is $Pr(10km)$?	5	3	2	1,2 ,3, 4
	Assume unity gain for the receiver antenna.				
ii.	Derive an expression for outage probability under path loss and shadowing.	5	2	2	1,2 ,3, 4
28. a.	Elucidate the principle of impulse response model of multipath propagation.	10	2	3	1,2 ,3
b.	(OR) Consider a transmitter which radiates a sinusoidal carrier frequency of 1850 MHz. for a vehicle moving 60 mph, computer the received carrier frequency if the mobile is moving	10	3	3	1,2 ,3
150	 (i) Directly towards the transmitter (ii) Directly away from the transmitter (iii) In a direction which is perpendicular to the direction of arrival of the transmitted signal 				
29. a.	Explain the principle and operation of rake receiver in CDMA system with a neat block diagram.	10	2	4	1,2
b.	(OR) Discuss the various MIMO configurations and derive the MIMO capacity on fading channels.	10	2	4	1,2
30. a.	Explain with a neat block diagram, the process involved in forward and reverse CDMA channel.	10	2	5	1
b.i.	(OR) Elaborate the operation of an OFDM transmitter.	5	2	5	1
ii.	Discuss the various interfaces used in GSM.	5	2	5	1

* * * * *

Page 4 of 4

Reg. No.

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18ECE314T -WIRELESS COMMUNICATION NETWORKS

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

(ii)			 to hall invigilator at the end of 40th min B should be answered in answer bool 						
Time:	2½	Нοι	irs and the same of the same o			Max.	Maı	ks:	75
1	1.]	Inter	$PART - A (25 \times 1 = 2)$ Answer ALL Questions in cellular systems in	stio	ns	Marks	BL 1	co 1	PO 1,1
		` '	The distance between the area (I		received signal				-
	((C)	The ratio of the distance (I between the areas to the transmitted power of the area	D)	Power of the transmission				
2	(B)	Transmitted power Frequency of mobile user	1	.1	1	1
3	3. Name the process of subdividing a congested cell into smaller cells					1	1	1	1,1 2
			1 0	-	Sectoring Repeaters				
a ₂	4. 1	Umbrella cell approach is possible by using					1	1	1,1 2
		(A) (C)	•	•	Antenna of different heights Different control channels				
5	5. In near-far effect, a near by transmitter captures the					1	1	1	1,1 2
		(A) (C)	·		Transmitter of the subscriber Neighboring base station				
(1	recei	propagation models, that charact ved signal strength over very short Large scale propagation (I models	tra		1	1	2	1,3 ,4
		(C)	Free-space propagation models (I		Medium- scale propagation models				

24NF6&7-18ECE314T

24NF6&7-18ECE314T Page 1 of 4

Note:

(i)

7.	Calculate the path loss, if the wavel is 7 m. assume unity gain for antenn (A) 33 dB (C) 53 dB	as. (B)	is 0.6 m and Fraunhofer distance 43 dB 63 dB	1	2	2	1,2 ,3, 4
8.	The variations in received signal str path between the transmitter and rec (A) Shadowing (C) Interference	eiver (B)		1	1	2	1,3 ,4
	(0) 2233737474	(2)	,		ě		
9.	Calculate the Brewster angle for a permittivity of $\xi_r = 3$.	wave	e impinging on ground having a	1		2	1,2
	(A) 84.7	(B)	74.7 54.7				
	(C) 64.7	(D)	54.7				
10.	The frequency range of Okumura mo	odel is	s typically extra polated upto	1	2	2	1,2 ,3,
	(A) 1000 MHz	(B)	2000 MHz				1
	(C) 3000 MHz	(D)	200 kHz				
11.	The factor that does not influence sm	nall sc	cale fading is	1	1	3	1,2 ,3
	(A) Speed of mobile(C) Multipath propagation		Power density of base station Speed of surrounding objects				,,,
12.	The discretization of multipath delatime delay segments is termed as			1	1	3	2,3
	(A) Delay bins	` '	Discrete bins				
	(C) Excess delay bins	(D)	Digital bins				
13.	What is the range of frequency of D spectrum?	opple	er spread in the available Doppler	1	2	3	1,2 ,3
	(A) Zero	(B)	Infinite				
	(C) One	(D)	Non zero				. "
14.	Which of the following is not a schannels?	statist	ical model for multipath fading	1	1	3	1,2 ,3
	(A) Clarke's model for flat fading(C) Saleh and valenzuella indoor statistical model			8	×		10
1.5	701						
15.	The envelope of a sinsoid plus bandp			1	1	3	1,2 ,3
	(A) Uniform (C) Ricean		Rayleigh Gaussian				
16.	Which is used to obtain time divers without adding any overhead?	ity in	a digital communication system	1	1	4	1,2
	(A) RAKE receiver	(B)	Interleaving				
2	(C) Search window	(D)	Diversity reception				

17.	improves the quality of a wireless link without altering the common air interface without increasing power or bandwidth. (A) Equalization (B) Diversity (C) Channel coding (D) Modulation	1	1	4	1,2
18.	is performed after the data scrambling on forward link in forward CDMA channel.	1	1	4	1,2
	(A) Interleaving (B) Quadrature modulation (C) Orthogonal covering (D) Burst formatting				Æ
19.	Space diversity is also known as diversity. (A) Polarization (B) Antenna (C) Time (D) Angle	1	1	4	1,2
20.	In MIMO, which factor has the greatest influence on data rates (A) The size of antenna (B) The height of the antenna (C) The number of transmitting (D) The area of receiving antenna antenna	1	1	4	1,2
21.	When band of orthogonal frequency division multiplexing(OFDM) is divided into sub bands, it diminishes effects of(A) Channel noise (B) Collision (C) Interference (D) Signals absence	1	1	5	1,1
22.	GSM uses modulation scheme. (A) Binary phase shift keying (B) Quadrature phase shift keying (C) Gaussian minimum shift (D) Binary frequency shift keying keying	1	1	5	1,1
23.	Capacity of CDMA can be increased by operating in DTX, which stands for	1	1	5	1,1
24.	is the interference at a base station receiver that comes from hat subscriber units in the surrounding cells. (A) Forward channel interference (B) Carrier interference (C) Receiver interference (D) Reverse channel interference	1	1	5	1,1 2
25.	The air interface that connects a base transceiver station to a base station controller in GSM is called	1	1	5	1,1 2