Lecture 3 key concepts

- Alternate logic symbols can be used to describe logic circuits more clearly
- With bubble: interpret as 0; without bubble: interpret as 1
- AND shape: interpret as "and"; OR shape: interpret as "or"
- XOR, XNOR, bitwise comparison, parity circuit
- Logic ICs: circuit connection diagram physical pinout, power and ground
- Applied in Experiment 1

Which concepts are unclear to you after viewing L3?

- A. Alternate logic symbols
- B. XOR, XNOR
- C. Parity circuit
- D. Logic circuit connections
- E. None

Its output is 0 when at least one of its input is 0. What gate is it?

- A. NOT
- B. OR
- C. AND

Will you be attending the concert?

"I won't attend if I don't have a free ticket <u>and</u> no one goes with me"

- Alternate symbol for 2-input OR gate

Alternatively, it is the same as "I will attend if I have a free ticket or someone goes with me"

- Standard symbol for 2-input OR gate

Alternate symbols example 1

Given X = [(ABC)' (A+D)]'
How to draw the logic circuit diagram?

3 ways:

- a) Use standard logic symbols only
- b) Show clearly how X can go Low using appropriate symbols
- c) Show clearly how X can go High using appropriate symbols

a)
$$X = [(ABC)'(A+D)]'$$

b) X=0 requires (either A=0, or B=0, or C=0) and (A=1 or D=1)

c) X=1 requires (A=B=C=1) or (A=D=0)

Alternate symbols example 2

Given another circuit Z = (A+B)+CD+E' Figure shows how to make output Z goes (a) High (b) Low

Example 2 (cont)

Interpretation of circuit diagram (a):

Example 2 (cont)

Interpretation of circuit diagram (b):

Example 2 (cont)

What if we remove pairs of matchedbubbles?

Alternate symbols example 3

RD=0 and (ROM-A=0 or ROM-B=0 or RAM=0) will make MEM = 0

Figure 3-39 Tocci, Widmer, Moss. 10th ed.

Possible to draw simpler diagram

Exclusive OR/NOR

A XOR B = AB' + A'B = A
$$\oplus$$
 B
A XNOR B = A'B' + AB = (A \oplus B)'

A XOR B XOR C =
$$(A \oplus B) \oplus C$$

= $A \oplus (B \oplus C)$

XOR is commutative and associative

$(A \oplus B)' = A \oplus B' = A' \oplus B$ True or false?

- A. True
- B. False

Example: Construct the truth table for F:

 $F = W (X \oplus Y \oplus Z \oplus W') + (X \oplus Y \oplus Z)$

W	X	Y	Z	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

How many 2-input XOR gates are needed to generate the parity bit from an 8-bit data?

- A. 4
- B. 6
- **C.** 8
- D. 10

Logic devices

Component pin assignment

Quad-NAND

Hex-NOT

Logic devices (cont)

Circuit connection diagram

Figure 4-36 Tocci, Widmer, Moss. 10th ed.

Lecture 4 key concepts

- Binary addition and subtraction
- Half adder and full adder
- Carry and sum
- 4-bit parallel adder with 4 full adders
- Carry propagation
- Sign-magnitude representation
- 2's complement representation
- http://www.falstad.com/circuit/e-fulladd.html

Which concepts are unclear to you after viewing L4?

- A. Half adder, full adder
- B. Parallel adders
- C. Carry propagation
- D. Sign-magnitude
- E. 2's complement
- F. None

Carry and Sum

Logical addition and arithmetic addition are different:

$$1 + 1 = 1$$

Logical addition

$$1 + 1 = 10$$

Arithmetic addition

$$1 + 1 + 1 = 11$$

Arithmetic addition

e.g. 21(dec) + 7(dec) = 28(dec)

Figure 6-5 Tocci, Widmer, Moss. 10th ed.

e.g. 9(dec) + 7(dec) = 16(dec)

Figure 6-6 Tocci, Widmer, Moss. 10th ed.

e.g. 9(dec) + 7(dec) = 16(dec)

Figure 6-6 Tocci, Widmer, Moss. 10th ed.

Re-write the following in hexadecimal:

$$9(dec) + 7(dec) = 16(dec)$$

$$21(dec) + 7(dec) = 28(dec)$$

Propagation delay example

How many units of gate delays in total from inputs X, Y, Z to output F?

From Digital Design: Principles and Practices, Fourth Edition, John F. Wakerly, ISBN 0-13-186389-4. ©2006, Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

F34-40

How many units of gate delay in total?

- A. 4
- B. 5
- **C.** 6
- D. 7

Do these circuits perform the same function? Do they have the same propagation delays?

Give the sign-magnitude/2's complement representation of +20 (dec):

- A. 10100
- B. 01100
- C. 010100
- D. 101100

Give the sign-magnitude representation of -20 (dec):

- A. 10100
- B. 01100
- C. 101100
- D. 110100

Give the 2's complement representation of -20 (dec):

- A. 10100
- B. 01100
- C. 101100
- D. 110100

End of L4 summary