Zadanie nr 3 i 4

Opracowanie i implementacja algorytmów dla problemu $FP||C_{max}|$. Zgodnie z notacją trójpolową F oznacza **system przepływowy (taśmowy)** (ang. *flow shop*) – każde zadanie wymaga wykonania takiej samej liczby operacji w kolejnych stadiach; kolejność wykonywania poszczególnych operacji jest taka sama dla każdego zadania; w każdym stadium jest jeden procesor. Jeżeli kolejność wykonywania zadań na każdym z procesorów jest taka sama, wówczas system nazywamy przepływowym *permutacyjnym* i dodajemy literkę "P" (tak jak w analizowanym problemie).

Sformulowanie problemu:

Dany jest zbiór n zadań $J = \{1,...,n\}$ i m procesorów $M = \{M_1,...,M_m\}$. Każde zadanie j składa się ze zbioru m operacji $O=\{O_1,j,...,O_{m,j}\}$. Każda operacja $O_{z,j}$ musi zostać wykonana na procesorze M_z (z=1,...,m). Ponadto, zakłada się, że operacja $O_{z+1,j}$ może rozpocząć się dopiero w momencie, kiedy operacja $O_{z,j}$ jest zakończona. W przypadku, gdy każdy z procesorów musi wykonywać operacje w takiej samej kolejności problem nazywamy permutacyjnym i w niniejszym rozdziale skoncentrujemy się wyłącznie na problemach permutacyjnych. Założono również, że każdy procesor może w danym momencie wykonywać co najwyżej jedną operację i nie istnieją żadne ograniczenia kolejnościowe pomiędzy zadaniami. Operacje są niepodzielne i dostępne w chwili 0 na procesorze M_1 . W dalszej części instrukcji będziemy używać określenia zadanie j na procesorze M_z zamiast operacja O. Czas wykonywania zadania j, tj. $p_j^{(z)}$, wykonywanego na procesorze M_z (z=1,...,m) opisany jest liczbą rzeczywistą. Dla m-procesorowego permutacyjnego problemu przepływowego uszeregowanie zadań na procesorach może zostać jednoznacznie zdefiniowane jako permutacja π . Zatem dla każdego zadania $\pi(i)$, tj. uszeregowanego na pozycji i w permutacji π możemy określić czas zakończenia jego wykonywania $C^{(z)}$ na procesorze M_z :

$$C_{\pi(i)}^{z} = \max \{C_{\pi(i)}^{(z-1)}, C_{\pi(i-1)}^{(z)}\} + p_{\pi(i)}^{(z)}$$

Gdzie $C_{\pi(1)}^{(0)}=C_{\pi(0)}^{(z)}=0$ dla z=1,...,m i $C_{\pi(i)}^{(1)}=\sum_{l=1}^{i}p_{\pi(i)}^{(z)}$ jest czasem zakończenia wykonywania zadania uszeregowanego na pozycji i w permutacji π na M_1 .

Celem jest znalezienie takiego uszeregowania zadań π na procesorach, które minimalizuje kryterium długości uszeregowania $C_{max} \triangleq \max_{j \in J} \{C_j\}$. W analizowanym problemie:

$$C_{max} = C_{\pi(n)}^{(m)}.$$

Problem FP||C_{max} jest problemem silnie NP-trudnym dla m>=3 (dla liczby maszyn równej co najmniej 3).

Benchmarki (instancje testowe) są dostępne np. tu: http://staff.iiar.pwr.wroc.pl/wojciech.bozejko/benchmarks.htm (pierwszy link od góry)

Zadania do zrobienia w ramach zadania nr 3:

Na ocenę 3.0	Przegląd zupełny + NEH
Na ocenę 3.5	Algorytm Johnsona dla m=2
Na ocenę 4.0	FNEH (NEH z akceleracją)
Na ocenę 4.5	Wersja podstawowa algorytmu podziału i ograniczeń (z prostym LB)
Na ocenę 5.0	Wersja zaawansowana algorytmu podziału i ograniczeń

Uwaga, oceniam też sprawozdanie (jego zawartość), w tym sposób wykonania eksperymentu numerycznego.

Zadania do zrobienia w ramach zadania nr 4:

Na ocenę 3.0	Wersja podstawowa wybranego algorytmu metaheurystycznego opartego o przeszukiwanie sąsiedztwa
Na ocenę 3.5	Wersja podstawowa dwóch wybranych algorytmów metaheurystyczych opartych o przeszukiwanie sąsiedztwa
Na ocenę 4.0	2 różne algorytmy metaheurystyczne oparte o przeszukiwanie sąsiedztwa – oba w wersji rozszerzonej
Na ocenę 4.5	3 różne algorytmy metaheurystyczne oparte o przeszukiwanie sąsiedztwa – co najmniej 2 w wersji rozszerzonej
Na ocenę 5.0	Co najmniej 3 różne algorytmy metaheurystyczne oparte o przeszukiwanie sąsiedztwa – wersje rozszerzone

Przykładowe algorytmy: symulowane wyżarzanie, tabu search, przeszukiwanie ze zmiennym sąsiedztwem, algorytm akceptacji progu.

Uwaga, oceniam też sprawozdanie (jego zawartość), w tym sposób wykonania eksperymentu numerycznego.

Algorytm Johnsona jest algorytmem optymalnym dla problemu z dwoma maszynami [1]. Jego złożoność obliczeniowa to $O(n \log n)$. Opis znajduje się poniżej.

Algorytm NEH (technika wstawień/wcięć), zaproponowany w [2] jest najlepszym konstrukcyjnym algorytmem heurystycznym dla klasycznego problemu przepływowego. Dotychczas nie udało się skonstruować innego algorytmu, który w tym samym czasie działania dostarcza rozwiązania charakteryzującego się porównywalną jakością. Rozpoczyna on działanie od pewnego rozwiązania początkowego π_{init} , które określa kolejność zadań. W wersji dla klasycznego problemu, zadania są uszeregowane zgodnie z niemalejącą sumą czasów wykonywania operacji. Następnie zadania z π_{init} , są kolejno wstawiane do rozwiązania końcowego π^* , na taką pozycję, aby zminimalizować wartość kryterium $C_{\text{max}}(\pi^*)$. Złożoność obliczeniowa klasycznej wersji algorytmu to $O(n^3m)$. Istnieje metoda szybkiego liczenia kryterium po zamianie pozycji dwóch zadań, przy której uwzględnieniu mamy złożoność obliczeniową $O(n^2m)$.

Literatura:

- [1] S. M. Johnson. Optimal two-and-three-stage production schedules. *Naval Research Logistic*, 1:61–68, 1954
- [2] M. Nawaz, Jr E. E. Enscore, I. A. Ham. A heuristic algorithm for *m*-machine, *n*-jobs Flow-shop sequencing problem. *Omega*, 11:91–95, 1983

Algorytm 1 Johnson

- 1: $C^*_{\max} = \infty$, $\pi^* = \emptyset$
- 2: Skonstruuj zbiory: $J_L = \{j: j \in J \land p_j^{(1)} < p_j^{(2)}\}$ i $J_R = \{j: j \in J \land p_j^{(1)} \geqslant p_j^{(2)}\}$
- 3: Skonstruuj uszeregowanie π_L z zadań $J \in J_L$ według niemalejących wartości $p_j^{(1)}$
- 4: Skonstruuj uszeregowanie π_R z zadań $J \in J_R$ według nierosnących wartości $p_i^{(2)}$
- 5: Konkatenacja $\pi^*=\pi_L\cap\pi_R$ jest optymalnym rozwiązaniem.

Algorytm 2 NEH

- 1: $C^*_{\max} = \infty$, $\pi^* = \emptyset$
- 2: Ustal kolejność zadań π_{init}
- 3: Pobierz pierwsze zadanie j z π_{init}
- 4: Wstaw j na taką pozycję w π^* dla której wartość $C_{ ext{max}}(\pi^*)$ jest minimalna
- 5: Usuń $j z \pi_{init}$
- 6: Jeżeli $\pi_{init} \neq \emptyset$ Idź do Krok 4
- 7: Permutacja π^* jest danym rozwiązaniem.