	Mathematical	$S_{\mathbf{v}}$	ymbol	Tal	bl	ϵ
--	--------------	------------------	-------	-----	----	------------

Greek		Hebrew		Bol	dface	Saı	ns Serif	'Blackboard'	Script	Go	thic	
Name	small	Capital	Name		a	A	а	Α	A	\mathcal{A}	a	\mathfrak{A}
Alpha	α	A	Aleph	×	b	В	b	В	\mathbb{B}	${\cal B}$	b	\mathfrak{B}
Beta	β	В	Beth	⊐	\mathbf{c}	\mathbf{C}	С	C	\mathbb{C}	$\mathcal C$	c	C
Gamma	γ	Γ	Gimmel	ן	d	\mathbf{D}	d	D	\mathbb{D}	${\cal D}$	ð	\mathfrak{D}
Delta	δ	Δ	Daleth	٦	\mathbf{e}	\mathbf{E}	e	Е	$\mathbb E$	${\cal E}$	e	Œ
Epsilon	ϵ or ϵ	E			\mathbf{f}	\mathbf{F}	f	F	\mathbb{F}	${\cal F}$	f	\mathfrak{F}
Zeta	ζ	Z			\mathbf{g}	\mathbf{G}	g	G	G	${\cal G}$	g	\mathfrak{G}
Eta	η	H			\mathbf{h}	Н	h	Н	IH	${\cal H}$	ħ	\mathfrak{H}
Theta	heta or $artheta$	Θ			i	I	i	I	I	${\cal I}$	i	I
Iota	ι	I			j	J	j	J	J	${\cal J}$	j	$\mathfrak J$
Kappa	κ	K			\mathbf{k}	\mathbf{K}	k	K	\mathbb{K}	$\mathcal K$	ŧ	Ŕ
Lambda	λ	Λ			1	\mathbf{L}		L	\mathbb{L}	${\cal L}$	ı	${\mathfrak L}$
Mu	μ	M			m	\mathbf{M}	m	М	\mathbb{M}	$\mathcal M$	m	M
Nu	ν	N	Nabla	∇	\mathbf{n}	N	n	N	N	$\mathcal N$	n	\mathfrak{N}
Xi	ξ	Ξ			\mathbf{p}	P	р	Р	\mathbb{P}	${\cal P}$	p	\mathfrak{P}
Omicron	О	O			\mathbf{q}	\mathbf{Q}	q	Q	Q	$\mathcal Q$	q	\mathfrak{Q}
Pi	π or ϖ	Π			\mathbf{r}	R	r	R	\mathbb{R}	${\cal R}$	r	\mathfrak{R}
Rho	ho or $arrho$	P			\mathbf{s}	\mathbf{S}	s	S	S	${\cal S}$	5	\mathfrak{S}
Sigma	σ or ς	Σ			\mathbf{t}	\mathbf{T}	t	Т	\mathbb{T}	\mathcal{T}	t	$\mathfrak T$
Tau	au	T			u	U	u	U	\mathbb{U}	\mathcal{U}	u	\mathfrak{U}
Upsilon	v	Υ			\mathbf{v}	\mathbf{V}	V	V	\mathbb{V}	\mathcal{V}	v	\mathfrak{V}
Phi	ϕ or φ	Φ			\mathbf{w}	\mathbf{W}	w	W	W	\mathcal{W}	w	W
Chi	χ	X			\mathbf{x}	\mathbf{X}	×	X	X	${\mathcal X}$	r	\mathfrak{X}
Psi	ψ	Ψ			\mathbf{y}	\mathbf{Y}	у	Y	\mathbb{Y}	${\mathcal Y}$	ŋ	\mathfrak{Y}
Omega	ω Τ	Ω			Z	\mathbf{Z}	z	Z	Z	\mathcal{Z}	3	3

		0					
Logic							
	$\forall x$	'fo	or all x				
	$\exists x$	'th	nere exists	an x s	uch	that'	
	$\exists ! x$	'tł	nere exists	a uniq	ue	x such that	t'
	$\not\exists x$	'th	nere does r	not exis	st a	ny x	
A	$\Longrightarrow B$	ʻif	A, then E	3', or,	A	implies B	,
A	$ \Longleftrightarrow B $	ʻif	B, then A	1', or,	B	$^{\prime}$ implies A	,
$A \Leftrightarrow$	$\Longrightarrow B$	'A	if and on	ly if B	, (or,	
			' A is eq	uivalen	t to	$\circ B$ '	
	TFAE	'T	he Followi	ng Are	E	quivalent	,
		Q.	E.D. —Er	nd of P	roo	of.	
₫.	or 💥	Co	ontradictio	n.			

Functions				
$f: \mathbf{X} \longrightarrow \mathbf{Y}$	'f is a function from \mathbf{X} to \mathbf{Y} '			
$f: \mathbf{X} \ni x \mapsto y \in \mathbf{Y}$	'f is a function from X to Y			
	mapping element x to element y '			
$f: \mathbf{X} \hookrightarrow \mathbf{Y}$	$\mathbf{X} \subset \mathbf{Y}$, and f is the identity map,			
	taking $x \in \mathbf{X}$ to $x \in \mathbf{Y}$			
$f: \mathbf{X} \rightarrowtail \mathbf{Y}$	f is an injective function from X to Y			
$f: \mathbf{X} woheadrightarrow \mathbf{Y}$	f is a surjective function from X to Y			
Id	The identity map: $\mathbf{Id}(x) = x$ for all x .			
11	The constant unity: $1(x) = 1$ for all x .			
$f^{-1}\{y\}$	$\{x \in \mathbf{X} ; f(x) = y\}; \text{ the fibre over } y$			
	or preimage of y (where $f: \mathbf{X} \longrightarrow \mathbf{Y}$)			

//(\			2 0 0 0						
Set Theory									
$\mathcal{A}\subset\mathcal{B}$	\mathcal{A} is a subset of \mathcal{B}	$A \subseteq \mathcal{B}$	\mathcal{A} is a subset of \mathcal{B} , and possibly $\mathcal{A} = \mathcal{B}$.						
	ie. if $a \in \mathcal{A}$, then $a \in \mathcal{B}$ also.								
$\mathcal{A}\sqcup\mathcal{B}$	The disjoint union: $A \sqcup B = A \cup B$,	$\ \mathcal{A} \times \mathcal{B} \ $							
	with the assertion that $A \cap B = \emptyset$.		$\mathcal{A} \times \mathcal{B} = \{(a,b) ; a \in \mathcal{A} \& b \in \mathcal{B}\}$						
$igcup_{\infty}^{\infty} \mathcal{A}_n$	$A_1 \cup A_2 \cup A_3 \cup \dots$	$\bigcap^{\infty} \mathcal{A}_n$	$A_1 \cap A_2 \cap A_3 \cap \dots$						
n=1		n=1							
$\bigsqcup \mathcal{A}_n$	$A_1 \sqcup A_2 \sqcup A_3 \sqcup \dots$	$\prod \mathcal{A}_n$	$A_1 imes A_2 imes A_3 imes \dots$						
$\stackrel{n=1}{\mathcal{A}} \setminus \mathcal{B}$	The difference of \mathcal{A} from \mathcal{B} :	$A \triangle \mathcal{B}$	The symmetric difference:						
	$A \setminus B = \{a \in A : a \notin B\}$		$A \wedge B = (A \setminus B) \sqcup (B \setminus A)$						