Reg. No.-RA1911031010096

EXPERIMENT 12

MUX AND ALU

Aim:- To implement Multiplexer Higher Order Multiplexer using Lower Order Multiplexer and ALU using 8:1 Multiplexer.

Definition:-

- 1) Multiplexer-A Multiplexer is a device that allows one of several analog or digital input signals which are to be selected and transmits the input that is selected into a single medium. Multiplexer is also known as Data Selector. A multiplexer of 2n inputs has n select lines that will be used to select input line to send to the output. Multiplexer is abbreviated as Mux
- 2) ALU-An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic operations. It represents the fundamental building block of the central processing unit (CPU) of a computer. Modern CPUs contain very powerful and complex ALUs. In addition to ALUs, modern CPUs contain a control unit (CU).

Block Diagram:-

1) 2:1 MUX

2) 4:1 MUX

3) 8:1 MUX

4) 16:1 MUX

Truth Table:-

1) 2:1 MUX

Truth Table

х	f
0	1
1	0

2) 4:1 MUX

Truth Table

SO SO	S1	Y
0	0	10
0	1	l1
1	0	12
1	1	13

3) 8:1 MUX

Se	Select Data Inputs		
S ₂	S ₁	S ₀	Y
0	0	0	D ₀
0	0	1	D_1
0	1	0	D ₂
0	1	1	D_3
1	0	0	D ₄
1	0	1	D ₅
1	1	0	D ₆
1	1	1	D ₇

4) 16:1 MUX

TRUTH TABLE

so	S1	S2	S3	E	SELECTED CHANNEL
X	х	х	×	1	None
0	0	0	0	0	0
1	0	0	0	0	1
0	1	0	0	0	2
1	1	0	0	0	3
0	0	1	0	0	4
1	0	1	0	0	5
0	1	1	0	0	6
1	1	1	0	0	7
0	0	0	1	0	8
1	0	0	1	0	9
0	1	0	1	0	10
1	1	0	1	0	11
0	0	1	1	0	12
1	0	1	1	0	13
0	1	1	1	0	14
1	1	1	1	0	15

Snapshot:-

1) 2:1 MUX

2) 4:1 MUX

3) 8:1 MUX

4) 16:1 MUX

Snapshot of Higher Order MUX Using Lower Order:

1) 8:1 MUX using 2:1 MUX

2) 16:1 MUX Using 4:1 MUX

3) 32:1 MUX Using 16:1 MUX

Snapshot of ALU:-

Result:-

Hence Multiplexer Higher Order Multiplexer using Lower Order Multiplexer and ALU using 8:1 Multiplexer is successfully implemented.