INCEPTION

2020080164 권수민

CONTENTS

```
01 Inception 이란?
```

02 기존방식의 문제점

03 제안 방법

04 효과

05 의의

1. Inception 이란?

- 2015년 ImageNet 콘테스트에서 우승한 모델
- 다양한 크기의 Convolution 필터 병렬 연결
- 다양한 스케일의 특징 동시 학습 능력 갖춤
- 모델의 특징을 유연하게 추출하여 성능을 크게 향상시킴
- 1×1 Convolution을 통해 차원을 축소하여 모델의 크기와 계산량을 효과적으로 감소 시킴

2. 기존방식의 문제점

1. Overfitting(과적합)

모델이 학습 데이터에서만 최적화

2. Computational Cost(계산복잡도)

파라미터 개수 및 계산량 증가

1) 다양한 사이즈의 필터 사용

1) 다양한 필터 병렬 사용

기존 Convolution

다양한 필터 사용

C2개의 파라미터

3개의 Convolution와 Max Pooling 4개의 Feature Map

파라미터 개수

2) 1×1 Convolution 사용

2) 1×1 Convolution 사용

1×1 Convolution으로 채널 수 감소

=> 학습할 파라미터 개수 감소

3) Average Pooling 사용

일반적인 네트워크 연결 방식

Feature Map을 Flatten 하여 1차원 값으로 바꿔준 뒤 Fully Connected 연결

3) Average Pooling 사용

네트워크 마지막 부분에서 Feature Map을 Channel Wise로 Average Pooling

=> 학습 파라미터 감소, Overfitting 방지

4) Auxiliary Classifier(보조분류기) 사용

-네트워크가 깊어짐으로 인해 생기는 Gradient Vanishing (기울기 소실) 문제 발생

=>Auxiliary Classifier를 추가하는 방법을 제안

이는 네트워크의 중간중간에 Classifier를 추가하여 학습 Loss를 흐르게 만들어주는 방법

5) 전체 구조

초기연산 Traditional Convolution과 연결 이후 Inception Module이 깊게 연결 중간중간 Auxiliary Classifier 연결

4. 효과

ImageNet 성능

Team	Year	Place	Error (top-5)	Uses external data	
SuperVision	2012	1st	16.4%	no	> AlexNet
SuperVision	2012	1st	15.3%	Imagenet 22k	11700
Clarifai	2013	1st	11.7%	no	
Clarifai	2013	1st	11.2%	Imagenet 22k	
MSRA	2014	3rd	7.35%	no	
VGG	2014	2nd	7.32%	no	
GoogLeNet	2014	1st	6.67%	no	

Table 2: Classification performance

그림9. ImageNet 성능

AlexNet에 비해 약 10% 향상

5. 의의

1) 다양한 스케일의 특징을 동시에 학습하는 방법 제안

- -CNN은 주로 하나의 크기의 필터를 사용하여 다양한 크기와 모양의 객체를 효과적으로 인식하기 어려움
- -Inception은 여러 크기의 Convolution 필터와 Pooling 레이어를 병렬로 적용
- -이를 통해 네트워크는 다양한 스케일과 방향의 특징을 동시 학습
- -이미지 분류, 객체 탐지, 이미지 세그멘테이션 등 다양한 비전 태스크에서 뛰어난 성능을 보임

5. 의의

2) 네트워크 내의 네트워크(Network In Network)라는 개념의 활용 방법을 제안

복잡한 연산량 감소, 높은 성능 유지 모델의 효율성과 확장성을 높이는 중요한 요소

3) 여러 버전을 발표하며 각각 중요한 아이디어 제안

지속적인 발전 덕분에 Inception은 딥러닝 커뮤니티에서 널리 사용되고 있으며, 다양한 응용 분야에서 뛰어난 성능을 보임.

THANK YOU