```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os

#for dirname, _, filenames in os.walk('/kaggle/input'):
# for filename in filenames:
# print(os.path.join(dirname, filename))

%matplotlib inline
import matplotlib.pyplot as plt
from PIL import Image
import tensorflow as tf
print(tf.__version__)
```

2.3.1

Ignoring the wildlife.h5 file as not needed for this exercise.

Investigate the dataset

· How many of each class of animal do we have

```
PATH = '../input/oregon-wildlife/oregon_wildlife/oregon_wildlife/'
animal_list = os.listdir(PATH)

for animal in animal_list:
    number = len(os.listdir(PATH+animal))
    print('There are ', number, animal, 'images')
print('There are ', len(animal_list), 'total categories')
```

```
There are 577 mountain_beaver images
There are 728 raccoon images
There are 728 virginia opossum images
There are 696 bobcat images
There are 736 coyote images
There are 660 elk images
There are 656 raven images
There are 588 ringtail images
There are 680 cougar images
There are 668 gray_fox images
There are 735 columbian_black-tailed_deer images
There are 759 red_fox images
There are 730 gray_wolf images
There are 698 seals images
There are 701 nutria images
There are 748 bald_eagle images
There are 764 deer images
There are 718 black_bear images
There are 717 canada_lynx images
There are 726 sea_lions images
There are 20 total categories
```

Now visualize an image from each category ¶

```
In [3]:
         fig=plt.figure(figsize=(16, 16))
         columns = 4
         rows = 5
         i=0
         for animal in animal_list:
              i+=1
              file = os.listdir(PATH+animal)[0]
              img = Image.open(PATH+animal+'/'+file)
              fig.add_subplot(rows, columns, i, xticks=[], yticks=[])
              plt.title(animal)
              plt.imshow(img)
                                                                       virginia_opossum
                                                                                                       bobcat
              mountain_beaver
                                              raccoon
                                                                                                       ringtail
                                                                           raven
                  coyote
                  cougar
                                                                   columbian_black-tailed_deer
                                              gray_fox
                                                                                                       red fox
                 gray_wolf
                                                                           nutria
                                                                                                      bald_eagle
                                               seals
                                                                        canada_lynx
                                             black_bear
                                                                                                      sea_lions
                   deer
```

Load and split the data in to test, train, validation sets

Using 2802 files for validation.

Use Keras.preprocessing.image_dataset_from_directory to generate train, test and validation sets. The training and validation steps are from: https://github.com/tensorflow/docs/blob/master/site/en/tutorials/load_data/images.ipynb

```
In [4]:
        #Set the batch size, and image height and width
        batch_size = 32
        img_height = 224
        img_width = 224
        IMG_SIZE = (img_height, img_width)
In [5]:
        #Generate the training dataset
        train_ds = tf.keras.preprocessing.image_dataset_from_directory(
          PATH,
          validation_split=0.2,
          subset="training",
          label_mode='int',
          seed=123,
          image_size=(img_height, img_width),
          batch_size=batch_size)
        Found 14013 files belonging to 20 classes.
        Using 11211 files for training.
In [6]:
        #Generate the validation dataset
        val_ds = tf.keras.preprocessing.image_dataset_from_directory(
          PATH,
          validation_split=0.2,
          subset="validation",
          label_mode='int',
          seed=123,
          image_size=(img_height, img_width),
          batch_size=batch_size)
        Found 14013 files belonging to 20 classes.
```

Since there was not test set create one from the validation dataset. In this case we are finding the cardinality | tf.data.experimental.cardinality | of the validation dataset (val_ds). Then create a test dataset from that by using the take | tf.data.Dataset.take() | method and 20% (val_batches // 5) where the '//' is a floor division. Then takes the unused elements of val_ds to remain in the val_ds.

```
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_sd = val_ds.skip(val_batches // 5)
```

Verification that the class names are valid and there are the correct number.

ginia_opossum'] /n The number of classes is: 20

```
class_names = train_ds.class_names
num_classes = len(class_names)
print('Class names are: ', class_names, '/n The number of classes is: ', num_classes)

Class names are: ['bald_eagle', 'black_bear', 'bobcat', 'canada_lynx', 'columbian_black-tailed_deer', 'cougar', 'coyote', 'deer', 'elk', 'gray_fox', 'gray_wolf', 'mountain_b
```

eaver', 'nutria', 'raccoon', 'raven', 'red_fox', 'ringtail', 'sea_lions', 'seals', 'vir

1. In the next few steps we will load the tf.keras.applications.MobileNetV2 base model. This model needs to be preprocessed with values between [-1,1] so we will process the inputs to it with tf.keras.applications.mobilenet v2.preprocess input.

```
from tensorflow.keras import layers

preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input
```

Setup buffering and prefetching of the training and validation datasets

```
In [10]:
AUTOTUNE = tf.data.experimental.AUTOTUNE #This sets up the runtime to dynamically tune the
   buffersize

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)

val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
```

 Here I'm loading the MobileNetV2 model from Keras. I'm not including the top layer, so I can create a cutom classification layer.

This feature extractor converts each 160x160x3 image into a n x n x p block of features in order to always be able to get the correct size for the new feature extration layer we'll measure the shape of a batch of data from the train_dataset. The output will be a tensor of shape (batch_size, n, n, p).

```
image_batch, label_batch = next(iter(train_ds))
feature_batch = base_model(image_batch)
print(feature_batch.shape)
(32, 7, 7, 1280)
```

Feature Extraction

In this section we freeze the base model layers so the pre-learned weights and biases aren't updated during training and then add the new classifier on top and train.

```
In [13]:
    base_model.trainable = False
```

The base model layers need to be frozen, this way the weights in the layers, except for the top layer won't be updated during training. The top layer is not included in order to add a custom classifier layer with the 20 classes we're training on. See this TensorFlow Tutorial. As we'll see MobilNet contains batch normalization layers, and special care should be taken as described here: BatchNorm Description

In [14]:

base_model.summary() #Look at the model architecture

Layer (type)						Connected to
input_1 (InputLayer)	[(None	, 224	, 224	, 3)	0	
Conv1_pad (ZeroPadding2D)	(None,	225,	225,	3)	0	input_1[0][0]
Conv1 (Conv2D)	(None,	112,	112,	32)	864	Conv1_pad[0][0]
bn_Conv1 (BatchNormalization)	(None,	112,	112,	32)	128	Conv1[0][0]
Conv1_relu (ReLU)	(None,	112,	112,	32)	0	bn_Conv1[0][0]
expanded_conv_depthwise (Depthw	(None,	112,	112,	32)	288	Conv1_relu[0][0]
expanded_conv_depthwise_BN (Bat e[0][0]	(None,	112,	112,	32)	128	expanded_conv_depthwis
expanded_conv_depthwise_relu (Re_BN[0][0]	(None,	112,	112,	32)	0	expanded_conv_depthwis
expanded_conv_project (Conv2D) e_relu[0][0	(None,	112,	112,	16)	512	expanded_conv_depthwis
expanded_conv_project_BN (Batch	(None,	112,	112,	16)	64	expanded_conv_project
block_1_expand (Conv2D) BN[0][0]	(None,	112,	112,	96)	1536	expanded_conv_project_
block_1_expand_BN (BatchNormali	(None,	112,	112,	96)	384	block_1_expand[0][0]

block_1_expand_relu (ReLU) [0]	(None,	112,	112	2, 96)	0	block_1_expand_BN[0]
block_1_pad (ZeroPadding2D) [0]	(None,	113,	. 113	3, 96)	0	block_1_expand_relu[0]
block_1_depthwise (DepthwiseCon	(None,	56,	56,	96)	864	block_1_pad[0][0]
block_1_depthwise_BN (BatchNorm [0]	(None,	56,	56,	96)	384	block_1_depthwise[0]
block_1_depthwise_relu (ReLU) [0][0]	(None,	56,	56,	96)	0	block_1_depthwise_BN
block_1_project (Conv2D) [0][0]	(None,	56,	56,	24)	2304	block_1_depthwise_relu
block_1_project_BN (BatchNormal	(None,	56,	56,	24)	96	block_1_project[0][0]
block_2_expand (Conv2D) [0]	(None,	56,	56,	144)	3456	block_1_project_BN[0]
block_2_expand_BN (BatchNormali	(None,	56,	56,	144)	576	block_2_expand[0][0]
block_2_expand_relu (ReLU) [0]	(None,	56,	56,	144)	0	block_2_expand_BN[0]
block_2_depthwise (DepthwiseCon	(None,	56,	56,	144)	1296	block_2_expand_relu[0]
block_2_depthwise_BN (BatchNorm	(None,	56,	56,	144)	576	block_2_depthwise[0]

block_2_depthwise_relu (ReLU) [0][0]	(None,	56,	56,	144)	0	block_2_depthwise_BN
block_2_project (Conv2D) [0][0]	(None,	56,	56,	24)	3456	block_2_depthwise_relu
block_2_project_BN (BatchNormal	(None,	56,	56,	24)	96	block_2_project[0][0]
block_2_add (Add) [0]	(None,	56,	56,	24)	0	<pre>block_1_project_BN[0] block_2_project_BN[0]</pre>
block_3_expand (Conv2D)	(None,	56,	56,	144)	3456	block_2_add[0][0]
block_3_expand_BN (BatchNormali	(None,	56,	56,	144)	576	block_3_expand[0][0]
block_3_expand_relu (ReLU) [0]	(None,	56,	56,	144)	0	block_3_expand_BN[0]
block_3_pad (ZeroPadding2D) [0]	(None,	57,	57,	144)	0	block_3_expand_relu[0]
block_3_depthwise (DepthwiseCon	(None,	28,	28,	144)	1296	block_3_pad[0][0]
block_3_depthwise_BN (BatchNorm	(None,	28,	28,	144)	576	block_3_depthwise[0]
block_3_depthwise_relu (ReLU) [0][0]	(None,	28,	28,	144)	0	block_3_depthwise_BN
block_3_project (Conv2D) [0][0]	(None,	28,	28,	32)	4608	block_3_depthwise_relu

block_3_project_BN (BatchNormal	(None,	28,	28,	32)	128	block_3_project[0][0]
block_4_expand (Conv2D) [0]	(None,	28,	28,	192)	6144	block_3_project_BN[0]
block_4_expand_BN (BatchNormali	(None,	28,	28,	192)	768	block_4_expand[0][0]
block_4_expand_relu (ReLU)	(None,	28,	28,	192)	0	block_4_expand_BN[0]
block_4_depthwise (DepthwiseCon [0]	(None,	28,	28,	192)	1728	block_4_expand_relu[0]
block_4_depthwise_BN (BatchNorm	(None,	28,	28,	192)	768	block_4_depthwise[0]
block_4_depthwise_relu (ReLU) [0][0]	(None,	28,	28,	192)	0	block_4_depthwise_BN
block_4_project (Conv2D) [0][0]	(None,	28,	28,	32)	6144	block_4_depthwise_relu
block_4_project_BN (BatchNormal	(None,	28,	28,	32)	128	block_4_project[0][0]
block_4_add (Add) [0]	(None,	28,	28,	32)	0	<pre>block_3_project_BN[0] block_4_project_BN[0]</pre>
block_5_expand (Conv2D)	(None,	28,	28,	192)	6144	block_4_add[0][0]
block_5_expand_BN (BatchNormali	(None,	28,	28,	192)	768	block_5_expand[0][0]

block_5_expand_relu (ReLU) [0]	(None,	28,	28,	192)	0	block_5_expand_BN[0]
block_5_depthwise (DepthwiseCon	(None,	28,	28,	192)	1728	block_5_expand_relu[0]
block_5_depthwise_BN (BatchNorm	(None,	28,	28,	192)	768	block_5_depthwise[0]
block_5_depthwise_relu (ReLU) [0][0]	(None,	28,	28,	192)	0	block_5_depthwise_BN
block_5_project (Conv2D) [0][0]	(None,	28,	28,	32)	6144	block_5_depthwise_relu
block_5_project_BN (BatchNormal	(None,	28,	28,	32)	128	block_5_project[0][0]
block_5_add (Add)	(None,	28,	28,	32)	0	<pre>block_4_add[0][0] block_5_project_BN[0]</pre>
block_6_expand (Conv2D)	(None,	28,	28,	192)	6144	block_5_add[0][0]
block_6_expand_BN (BatchNormali	(None,	28,	28,	192)	768	block_6_expand[0][0]
block_6_expand_relu (ReLU)	(None,	28,	28,	192)	0	block_6_expand_BN[0]
block_6_pad (ZeroPadding2D) [0]	(None,	29,	29,	192)	0	block_6_expand_relu[0]
block_6_depthwise (DepthwiseCon	(None,	14,	14,	192)	1728	block_6_pad[0][0]
block_6_depthwise_BN (BatchNorm	(None,	14,	14,	192)	768	block_6_depthwise[0]

[0]						
 block_6_depthwise_relu (ReLU) [0][0]	(None,	14,	14,	192)	0	block_6_depthwise_BN
block_6_project (Conv2D) [0][0]	(None,	14,	14,	64)	12288	block_6_depthwise_relu
plock_6_project_BN (BatchNormal	(None,	14,	14,	64)	256	block_6_project[0][0]
block_7_expand (Conv2D)	(None,	14,	14,	384)	24576	block_6_project_BN[0]
block_7_expand_BN (BatchNormali	(None,	14,	14,	384)	1536	block_7_expand[0][0]

block_7_expand_relu (ReLU)	(None, 14, 14, 384) 0	block_7_expand_BN[0]

block_7_depthwise	(DepthwiseCon	(None,	14,	14,	384)	3456	block_7_expand_relu[@)]
[0]								

block_7_depthwise_BN	(BatchNorm (None	, 14, 14, 384)	1536	block_7_depthwise[0]
[0]				

block_7_depthwise_relu (ReLU) [0][0]	(None, 14, 14, 384) 0	block_7_depthwise_BN

block_7_project (Conv2D)	(None, 14,	14, 64)	24576	block_7_depthwise_relu
[0][0]				

block_7_project_BN (BatchNormal (None, 14, 14, 64) 256 block_7_project[0][0	block_	7_project_BN	(BatchNormal	(None,	14,	14,	64)	256	block_7_project[0][0]
---	--------	--------------	--------------	--------	-----	-----	-----	-----	-----------------------

Гα	٦
LΟ	Ш

[0]						
block_8_expand (Conv2D)	(None,	14,	14,	384)	24576	block_7_add[0][0]
block_8_expand_BN (BatchNormali	(None,	14,	14,	384)	1536	block_8_expand[0][0]
block_8_expand_relu (ReLU)	(None,	14,	14,	384)	0	block_8_expand_BN[0]
block_8_depthwise (DepthwiseCon	(None,	14,	14,	384)	3456	block_8_expand_relu[0]
block_8_depthwise_BN (BatchNorm	(None,	14,	14,	384)	1536	block_8_depthwise[0]
block_8_depthwise_relu (ReLU) [0][0]	(None,	14,	14,	384)	0	block_8_depthwise_BN
block_8_project (Conv2D) [0][0]	(None,	14,	14,	64)	24576	block_8_depthwise_relu
block_8_project_BN (BatchNormal	(None,	14,	14,	64)	256	block_8_project[0][0]
block_8_add (Add) [0]	(None,	14,	14,	64)	0	<pre>block_7_add[0][0] block_8_project_BN[0]</pre>
block_9_expand (Conv2D)	(None,	14,	14,	384)	24576	block_8_add[0][0]
block_9_expand_BN (BatchNormali	(None,	14,	14,	384)	1536	block_9_expand[0][0]
block_9_expand_relu (ReLU)	(None,	14,	14,	384)	0	block_9_expand_BN[0]

block_9_depthwise (DepthwiseCon	(None,	14,	14,	384)	3456	block_9_expand_relu[0]
block_9_depthwise_BN (BatchNorm	(None,	14,	14,	384)	1536	block_9_depthwise[0]
block_9_depthwise_relu (ReLU) [0][0]	(None,	14,	14,	384)	0	block_9_depthwise_BN
block_9_project (Conv2D) [0][0]	(None,	14,	14,	64)	24576	block_9_depthwise_relu
block_9_project_BN (BatchNormal	(None,	14,	14,	64)	256	block_9_project[0][0]
block_9_add (Add)	(None,	14,	14,	64)	0	<pre>block_8_add[0][0] block_9_project_BN[0]</pre>
block_10_expand (Conv2D)	(None,	14,	14,	384)	24576	block_9_add[0][0]
block_10_expand_BN (BatchNormal	(None,	14,	14,	384)	1536	block_10_expand[0][0]
block_10_expand_relu (ReLU) [0]	(None,	14,	14,	384)	0	block_10_expand_BN[0]
block_10_depthwise (DepthwiseCo	(None,	14,	14,	384)	3456	block_10_expand_relu
block_10_depthwise_BN (BatchNor [0]	(None,	14,	14,	384)	1536	block_10_depthwise[0]
block_10_depthwise_relu (ReLU)	(None,	14,	14,	384)	0	block_10_depthwise_BN

[0][0]

block_10_project (Conv2D) u[0][0]	(None,	14,	14,	96)	36864	block_10_depthwise_rel
block_10_project_BN (BatchNorma	(None,	14,	14,	96)	384	block_10_project[0][0]
block_11_expand (Conv2D) [0]	(None,	14,	14,	576)	55296	block_10_project_BN[0]
block_11_expand_BN (BatchNormal	(None,	14,	14,	576)	2304	block_11_expand[0][0]
block_11_expand_relu (ReLU) [0]	(None,	14,	14,	576)	0	block_11_expand_BN[0]
block_11_depthwise (DepthwiseCo	(None,	14,	14,	576)	5184	block_11_expand_relu
block_11_depthwise_BN (BatchNor [0]	(None,	14,	14,	576)	2304	block_11_depthwise[0]
block_11_depthwise_relu (ReLU) [0][0]	(None,	14,	14,	576)	0	block_11_depthwise_BN
block_11_project (Conv2D) u[0][0]	(None,	14,	14,	96)	55296	block_11_depthwise_rel
block_11_project_BN (BatchNorma	(None,	14,	14,	96)	384	block_11_project[0][0]
block_11_add (Add) [0]	(None,	14,	14,	96)	0	block_10_project_BN[0] block_11_project_BN[0]
block_12_expand (Conv2D)	(None,	14,	14,	576)	55296	block_11_add[0][0]

block_12_expand_BN (BatchNormal	(None,	14,	14,	576)	2304	block_12_expand[0][0]
block_12_expand_relu (ReLU) [0]	(None,	14,	14,	576)	0	block_12_expand_BN[0]
block_12_depthwise (DepthwiseCo	(None,	14,	14,	576)	5184	block_12_expand_relu
block_12_depthwise_BN (BatchNor	(None,	14,	14,	576)	2304	block_12_depthwise[0]
block_12_depthwise_relu (ReLU) [0][0]	(None,	14,	14,	576)	0	block_12_depthwise_BN
block_12_project (Conv2D) u[0][0]	(None,	14,	14,	96)	55296	block_12_depthwise_rel
block_12_project_BN (BatchNorma	(None,	14,	14,	96)	384	block_12_project[0][0]
block_12_add (Add) [0]	(None,	14,	14,	96)	0	<pre>block_11_add[0][0] block_12_project_BN[0]</pre>
block_13_expand (Conv2D)	(None,	14,	14,	576)	55296	block_12_add[0][0]
block_13_expand_BN (BatchNormal	(None,	14,	14,	576)	2304	block_13_expand[0][0]
block_13_expand_relu (ReLU) [0]	(None,	14,	14,	576)	0	block_13_expand_BN[0]
block_13_pad (ZeroPadding2D) [0][0]	(None,	15,	15,	576)	0	block_13_expand_relu

block_13_depthwise (DepthwiseCo	(None,	7,	7,	576)	5184	block_13_pad[0][0]
block_13_depthwise_BN (BatchNor	(None,	7,	7,	576)	2304	block_13_depthwise[0]
block_13_depthwise_relu (ReLU) [0][0]	(None,	7,	7,	576)	0	block_13_depthwise_BN
block_13_project (Conv2D) u[0][0]	(None,	7,	7,	160)	92160	block_13_depthwise_rel
block_13_project_BN (BatchNorma	(None,	7,	7,	160)	640	block_13_project[0][0]
block_14_expand (Conv2D) [0]	(None,	7,	7,	960)	153600	block_13_project_BN[0]
block_14_expand_BN (BatchNormal	(None,	7,	7,	960)	3840	block_14_expand[0][0]
block_14_expand_relu (ReLU) [0]	(None,	7,	7,	960)	0	block_14_expand_BN[0]
block_14_depthwise (DepthwiseCo	(None,	7,	7,	960)	8640	block_14_expand_relu
block_14_depthwise_BN (BatchNor	(None,	7,	7,	960)	3840	block_14_depthwise[0]
block_14_depthwise_relu (ReLU) [0][0]	(None,	7,	7,	960)	0	block_14_depthwise_BN
block_14_project (Conv2D) u[0][0]	(None,	7,	7,	160)	153600	block_14_depthwise_rel

block_14_project_BN (BatchNorma	(None,	7,	7,	160)	640	block_14_project[0][0]
block_14_add (Add) [0]	(None,	7,	7,	160)	0	<pre>block_13_project_BN[0] block_14_project_BN[0]</pre>
block_15_expand (Conv2D)	(None,	7,	7,	960)	153600	block_14_add[0][0]
block_15_expand_BN (BatchNormal	(None,	7,	7,	960)	3840	block_15_expand[0][0]
block_15_expand_relu (ReLU) [0]	(None,	7,	7,	960)	0	block_15_expand_BN[0]
block_15_depthwise (DepthwiseCo	(None,	7,	7,	960)	8640	block_15_expand_relu
block_15_depthwise_BN (BatchNor [0]	(None,	7,	7,	960)	3840	block_15_depthwise[0]
block_15_depthwise_relu (ReLU) [0][0]	(None,	7,	7,	960)	0	block_15_depthwise_BN
block_15_project (Conv2D) u[0][0]	(None,	7,	7,	160)	153600	block_15_depthwise_rel
block_15_project_BN (BatchNorma	(None,	7,	7,	160)	640	block_15_project[0][0]
block_15_add (Add)	(None,	7,	7,	160)	0	block_14_add[0][0] block_15_project_BN[0]
block_16_expand (Conv2D)	(None,	7,	7,	960)	153600	block_15_add[0][0]

block_16_expand_BN (BatchNormal	(None,	7,	7,	960)	3840	block_16_expand[0][0]
block_16_expand_relu (ReLU)	(None,	7,	7,	960)	0	block_16_expand_BN[0]
block_16_depthwise (DepthwiseCo	(None,	7,	7,	960)	8640	block_16_expand_relu
block_16_depthwise_BN (BatchNor	(None,	7,	7,	960)	3840	block_16_depthwise[0]
block_16_depthwise_relu (ReLU) [0][0]	(None,	7,	7,	960)	0	block_16_depthwise_BN
block_16_project (Conv2D) u[0][0]	(None,	7,	7,	320)	307200	block_16_depthwise_rel
block_16_project_BN (BatchNorma	(None,	7,	7,	320)	1280	block_16_project[0][0]
 Conv_1 (Conv2D) [0]	(None,	7,	7,	1280)	409600	block_16_project_BN[0]
Conv_1_bn (BatchNormalization)	(None,	7,	7,	1280)	5120	Conv_1[0][0]
out_relu (ReLU) ========= Total params: 2,257,984 Trainable params: 0 Non-trainable params: 2,257,984					0	

•

4

Help and inputs at this step are from Adding a Classification Head In order to use the output to create a classification layer the output of the base model is, n,n,p. Need to convert this to a single 1280 element vector so this is done by using a average pooling layer.

```
In [15]:
         global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
         feature_batch_average = global_average_layer(feature_batch)
         prediction_layer = tf.keras.layers.Dense(num_classes, activation='softmax', name='predictio
         n')
         prediction_batch = prediction_layer(feature_batch_average)
         print(prediction_batch.shape)
         (32, 20)
In [16]:
         data_augmentation = tf.keras.Sequential([
           tf.keras.layers.experimental.preprocessing.RandomFlip('horizontal'),
           tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
         1)
In [17]:
         inputs = tf.keras.Input(shape=(img_height, img_width, 3))
         x = data augmentation(inputs)
         x = preprocess_input(inputs)
         x = base model(x)
         x = global_average_layer(x)
         x = tf.keras.layers.Dropout(0.2)(x)
         outputs = prediction_layer(x)
         model = tf.keras.models.Model(inputs, outputs)
```

Compile the Model

Compile the model before training. There are two classes, uses sparse catgegorical crossentropy

```
In [19]:
```

model.summary()

Model: "functional_1"

Layer (type)	Output Shape	Param #
<pre>input_2 (InputLayer)</pre>	[(None, 224, 224, 3)]	0
tf_op_layer_RealDiv (TensorF	[(None, 224, 224, 3)]	0
tf_op_layer_Sub (TensorFlowO	[(None, 224, 224, 3)]	0
mobilenetv2_1.00_224 (Functi	(None, 7, 7, 1280)	2257984
global_average_pooling2d (Gl	(None, 1280)	0
dropout (Dropout)	(None, 1280)	0
prediction (Dense)	(None, 20)	25620

Total params: 2,283,604
Trainable params: 25,620

Non-trainable params: 2,257,984

Train the model

Setup initial training parameters and evaluation criterial

```
In [20]:
epochs = 10
```

epochs=epochs)

```
Epoch 1/10
0.4012 - val_loss: 2.5764 - val_accuracy: 0.6542
Epoch 2/10
135 - val_loss: 2.4323 - val_accuracy: 0.7355
Epoch 3/10
700 - val loss: 2.3794 - val accuracy: 0.7698
Epoch 4/10
911 - val_loss: 2.3528 - val_accuracy: 0.7862
Epoch 5/10
038 - val_loss: 2.3357 - val_accuracy: 0.7941
Epoch 6/10
111 - val loss: 2.3239 - val accuracy: 0.8009
Epoch 7/10
180 - val_loss: 2.3141 - val_accuracy: 0.8084
Epoch 8/10
217 - val_loss: 2.3069 - val_accuracy: 0.8130
Epoch 9/10
313 - val loss: 2.2885 - val accuracy: 0.8312
Epoch 10/10
601 - val loss: 2.2658 - val accuracy: 0.8555
```

```
In [22]:
         acc = history.history['accuracy']
         val_acc = history.history['val_accuracy']
         loss = history.history['loss']
         val_loss = history.history['val_loss']
         epochs_range = range(epochs)
         plt.figure(figsize=(8, 4))
         plt.subplot(1, 2, 1)
         plt.plot(epochs range, acc, label='Training Accuracy')
         plt.plot(epochs_range, val_acc, label='Validation Accuracy')
         plt.legend(loc='lower right')
         plt.title('Training and Validation Accuracy')
         plt.subplot(1, 2, 2)
         plt.plot(epochs_range, loss, label='Training Loss')
         plt.plot(epochs_range, val_loss, label='Validation Loss')
         plt.legend(loc='upper right')
         plt.title('Training and Validation Loss')
         plt.show()
```


Baseline Model Performance

The baseline model, which contained no augmentation or fine tuning had a validation dataset accuracy of 85%.

Test dataset loss: 2.2477364540100098 Test dataset accuracy: 0.873161792755127

Visualize the feature maps for an example image

```
In [24]:
```

from keras.models import Model

#This will create a model that outputs the feature maps generated the output of block 1
feature_model = Model(inputs=base_model.inputs, outputs=base_model.layers[17].output)
feature_model.summary()

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
Conv1_pad (ZeroPadding2D)	(None, 225, 225, 3)	0
Conv1 (Conv2D)	(None, 112, 112, 32)	864
bn_Conv1 (BatchNormalization	(None, 112, 112, 32)	128
Conv1_relu (ReLU)	(None, 112, 112, 32)	0
expanded_conv_depthwise (Dep	(None, 112, 112, 32)	288
expanded_conv_depthwise_BN ((None, 112, 112, 32)	128
expanded_conv_depthwise_relu	(None, 112, 112, 32)	0
expanded_conv_project (Conv2	(None, 112, 112, 16)	512
expanded_conv_project_BN (Ba	(None, 112, 112, 16)	64
block_1_expand (Conv2D)	(None, 112, 112, 96)	1536
block_1_expand_BN (BatchNorm	(None, 112, 112, 96)	384
block_1_expand_relu (ReLU)	(None, 112, 112, 96)	0
block_1_pad (ZeroPadding2D)	(None, 113, 113, 96)	0
block_1_depthwise (Depthwise	(None, 56, 56, 96)	864
block_1_depthwise_BN (BatchN	(None, 56, 56, 96)	384
block_1_depthwise_relu (ReLU	(None, 56, 56, 96)	0
block_1_project (Conv2D)	(None, 56, 56, 24)	2304

Total params: 7,456

Trainable params: 0

Non-trainable params: 7,456

```
In [25]:
         #Here a single image is loaded in order to generate the feature maps
         from keras.preprocessing.image import load img
         from keras.preprocessing.image import img_to_array
         from numpy import expand_dims
         animal = 'elk'
         file = os.listdir(PATH+animal)[3]
         #Load a sample image and size resize to the shape expected by the model (img_height, img_wi
         dth)
         img = load_img(PATH+animal+'/'+file, target_size=(img_height, img_width))
         #Convert to an array
         img = img_to_array(img)
         #Expand dimenstion so that it represents a single 'sample
         img = expand_dims(img, axis=0)
         #Prepare the imgage for Mobilnet
         img = preprocess_input(img)
```

```
In [26]:
#This will process the single image loaded above throught the base model
feature_maps = feature_model.predict(img)
```

It is interesting to note the fine details identified in the first block of MobileNet. Upon changing to be the last output block the feature maps are very generalized.

```
In [27]:
    #plot 24 maps on the output of the first block in MobileNet
    rows = 3
    columns = 8
    ix = 1
    for _ in range(rows):
        for _ in range(columns):
            ax = plt.subplot(rows, columns, ix)

            ax.set_xticks([])
            ax.set_yticks([])
            plt.imshow(feature_maps[0,:,:,ix-1], cmap='viridis')
            ix += 1
    plt.rcParams["figure.figsize"] = (20,20)
    plt.show()
```


Fine Tuning

This next section Block 16 of the base model will be set as trainable. The model will them be trained to see if improvements can be made on the model performance.

```
In [28]:
    base_model.trainable = True
```

```
In [29]:
    num_layers = len(base_model.layers)
    print('Number of layers in the base model: ', num_layers)

fine_tune_at = num_layers-16 #this will unfreeze the block15 and block16

for layer in base_model.layers[:fine_tune_at]:
    layer.trainable = False
```

Number of layers in the base model: 155

Re-compile the model

Since I'm changing the trainable parameter of some layers of the model it needs to be re-compiled before retraining in order that the changes take effect.

Model: "functional_1"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 224, 224, 3)]	0
tf_op_layer_RealDiv (TensorF	[(None, 224, 224, 3)]	0
tf_op_layer_Sub (TensorFlowO	[(None, 224, 224, 3)]	0
mobilenetv2_1.00_224 (Functi	(None, 7, 7, 1280)	2257984
global_average_pooling2d (G1	(None, 1280)	0
dropout (Dropout)	(None, 1280)	0
prediction (Dense)	(None, 20)	25620

Total params: 2,283,604

Trainable params: 1,067,540

Non-trainable params: 1,216,064

```
Epoch 10/30
317 - val_loss: 2.2538 - val_accuracy: 0.8569
Epoch 11/30
659 - val_loss: 2.2391 - val_accuracy: 0.8683
Epoch 12/30
842 - val_loss: 2.2277 - val_accuracy: 0.8772
Epoch 13/30
952 - val_loss: 2.2196 - val_accuracy: 0.8847
Epoch 14/30
057 - val loss: 2.2114 - val accuracy: 0.8911
Epoch 15/30
140 - val_loss: 2.2042 - val_accuracy: 0.8983
Epoch 16/30
220 - val_loss: 2.1990 - val_accuracy: 0.9036
Epoch 17/30
286 - val loss: 2.1938 - val accuracy: 0.9079
Epoch 18/30
326 - val_loss: 2.1890 - val_accuracy: 0.9101
Epoch 19/30
384 - val_loss: 2.1854 - val_accuracy: 0.9104
Epoch 20/30
423 - val_loss: 2.1818 - val_accuracy: 0.9154
Epoch 21/30
461 - val_loss: 2.1788 - val_accuracy: 0.9172
Epoch 22/30
490 - val_loss: 2.1761 - val_accuracy: 0.9197
Epoch 23/30
520 - val loss: 2.1735 - val accuracy: 0.9201
Epoch 24/30
```

540 - val_loss: 2.1712 - val_accuracy: 0.9215

```
Epoch 25/30
    558 - val_loss: 2.1687 - val_accuracy: 0.9229
    Epoch 26/30
    577 - val_loss: 2.1665 - val_accuracy: 0.9247
    Epoch 27/30
    593 - val_loss: 2.1640 - val_accuracy: 0.9254
    Epoch 28/30
    608 - val_loss: 2.1619 - val_accuracy: 0.9265
    Epoch 29/30
    628 - val_loss: 2.1607 - val_accuracy: 0.9279
    Epoch 30/30
    633 - val_loss: 2.1590 - val_accuracy: 0.9272
In [33]:
    acc += history_fine.history['accuracy']
    val_acc += history_fine.history['val_accuracy']
    loss += history_fine.history['loss']
    val_loss += history_fine.history['val_loss']
```

```
In [34]:
         plt.figure(figsize=(8, 8))
         plt.subplot(2, 1, 1)
         plt.plot(acc, label='Training Accuracy')
         plt.plot(val_acc, label='Validation Accuracy')
         plt.ylim([0.8, 1])
         plt.plot([epochs-1,epochs-1],
                   plt.ylim(), label='Start Fine Tuning')
         plt.legend(loc='lower right')
         plt.title('Training and Validation Accuracy')
         plt.subplot(2, 1, 2)
         plt.plot(loss, label='Training Loss')
         plt.plot(val_loss, label='Validation Loss')
         plt.plot([epochs-1,epochs-1],
                  plt.ylim(), label='Start Fine Tuning')
         plt.legend(loc='upper right')
         plt.title('Training and Validation Loss')
         plt.xlabel('epoch')
         plt.show()
```


Thanks to the following website for hints on converting the tensorflow confusion matrix to the dataframe and plotting: TensorFlow Keras Confusion Matrix in TensorBoard

```
In [36]:
    predictions = np.array([])
    labels = np.array([])
    for x, y in test_ds:
        predictions = np.concatenate([predictions, np.argmax(model.predict(x), axis=1)])
        labels = np.concatenate([labels, y.numpy()])
        #print('predict= ', predictions, 'label= ', labels)
        con_mat = tf.math.confusion_matrix(labels=labels, predictions=predictions).numpy()
        con_mat_norm = np.around(con_mat.astype('float')/con_mat.sum(axis=1)[:, np.newaxis], decima ls=2)
        con_mat_df = pd.DataFrame(con_mat_norm, index=class_names, columns=class_names)
```

```
import seaborn as sns
figure = plt.figure(figsize=(15,15))
sns.heatmap(con_mat_df, annot=True, cmap=plt.cm.Blues)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.title('Oregon Animal Confusion Matrix')
plt.show()
```


Predicted label

Save the model and the weights that could be used later.

```
In [38]:
    # serialize model to JSON
    model_json = model.to_json()
    with open("model.json", "w") as json_file:
        json_file.write(model_json)
    # serialize weights to HDF5
    model.save_weights("model.h5")
```

```
In [ ]:
```