04/05(-)浙江工业大学高等数学 A 考试试卷

学院:________ 班级:______ 姓名:______ 学号:

题 号	_	11	Ш	凹	五	长	七	八	九	总 分
得 分										

一、试解下列各题(每小题3分):

本题全部为填空题, 请将答案填入题中横线上空白处, 不填解题过程。

- 1. $\lim_{n \to \infty} 2^n \sin 2^{1-n} = \underline{\hspace{1cm}}_{\circ}$
- 3. 设 $y = x^x$,则 dy =
- 4. 函数 $y = x^2 e^{-x}$ 的单调增加区间是_____。
- 5. 已知 $\int f(x)dx = x^2 + c$,则 $\int \cos x f(\sin x)dx = \underline{\hspace{1cm}}$ 。
- 6. 反常积分 $\int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx = \underline{\qquad}$
- 7. $\lim_{n \to \infty} \frac{1}{n} \left[\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n} \right] = \int_0^1 dx$
- **义** 已知 $y_1 = e^{-2x}$, $y_2 = 3xe^{-2x}$ 是微分方程 y'' + py' + qy = 0 的解,则常数
- 二、试解下列各题(每小题4分:

本小题全部为选择题,每小题给出四种选项,其中有且仅有一个是正确的,将你认为 正确的代码填入括号内。

- 1. 设函数 y = f(x) 在点 x_0 处可导, $dy = f'(x_0)\Delta x$, $\Delta y = f(x_0 + \Delta x) f(x_0)$,则当 $\Delta x \rightarrow 0$ 时, $\Delta y - dy \not\in \Delta x$ 的(
 - A. 等价无穷小:
- B. 高阶无穷小:
- A. 等价尤穷小;B. 局阶尤穷小;C. 低阶的无穷小;D. 同阶无穷小;

2. 函数
$$f(x) = \frac{1+2^{\frac{x+1}{x}}}{2-2^{\frac{1}{x}}}$$
 的间断点类型是(

- A. 一个可去间断点,一个跳跃间断点; B. 一个无穷间断点,一个可去间断点;
- C. 一个跳跃间断点,一个无穷间断点; D. 二个无穷间断点;

3. 半径为R的圆柱形油桶装满了油,横放在地面上,油的密度为 ρ ,则油桶盖上受到 的压力是(

A.
$$\rho g \int_{-R}^{R} 2(R+x) \sqrt{R^2 - x^2} dx$$
; B. $\rho g \int_{-R}^{R} 2x \sqrt{R^2 - x^2} dx$;

C.
$$\rho g \int_{-R}^{R} 2(R-x) \sqrt{R^2 - x^2} dx$$
; D. $\rho g \int_{-R}^{R} 2\sqrt{R^2 - x^2} dx$;

A.
$$xf(x^2)$$
 B. $-xf(x^2)$ C. $2xf(x^2)$

2. 讨论函数 $y = 6x + \frac{1}{r} - x^3$ 的极大极小值点和拐点。

四、计算下列各题(每小题5分):

$$1. \ \ \vec{\Re} \colon \ \int \frac{x^2}{\sqrt{1+x}} dx$$

2. 求:
$$\int_0^{\pi} \sqrt{\sin^3 x - \sin^5 x} dx$$

五、求解下列各题(每小题6分):

1. 证明底面半经为r,高为h的正圆锥体的体积公式为 $\frac{1}{2}\pi r^2 h$ 。

$$\checkmark$$
 求微分方程 y'' $-2y'$ = xe^{2x} 的通解。

六、(7 分) 设 f(x) 有连续的二阶导数,证明:

$$\int_0^1 [2f(x) + x(1-x)f''(x)]dx = f(0) + f(1)$$

七、(7分) 设函数 $f(x) = \begin{cases} \frac{\tan x - x}{x^3} & x > 0 \\ ax + b & x \le 0 \end{cases}$,试确定常数 a, b,使 f(x) 在 x = 0处连续、

可导: 并求 f'(0)。

 $(7 \, \text{分})$ 连接两点 A(0, 1) 与 B(1, 0) 的一条曲线位于弦 AB 的上方,对于曲线上 任意一点P(x,y), 曲线与线段AP之间的面积为 x^3 , 求此曲线的方程。

九、(5分) 已知
$$u(x)$$
, $v(x)$ 为连续函数, $\lim_{x\to 0} \ln \frac{1+u(x)}{1+v(x)} = 0$, $\lim_{x\to 0} [u(x)-v(x)] = 0$,

$$u(0) \neq -1$$
, 证明: 当 $x \to 0$ 时, $\ln[1+u(x)] - \ln[1+v(x)] = \ln(x) - v(x)$ 是同阶无穷小。