1 Teoria

1.1 Free-space path loss

Utrata w sile sygnału spowodowana przejściem fali elektromagnetycznej przez ośrodek (najczęściej powietrze). Wzór na obliczanie FSPL:

$$FSPL = P_{tx} + AG_{tx} + AG_{rx} - P_{rx} - FM - L \tag{1}$$

Gdzie symbole oznaczają:

- P_{tx} siła trasmitera, wyrażona w dBm
- AG_{tx} przyrost wynikający z anteny transmitera, wyrażony w dBi
- AG_{rx} przyrost wynikający z anteny odbiorcy, wyrażony w dBi
- P_{rx} siła odbiornika, wyrażona w dBm
- FM margines zaniku sygnału (fade margin)
- L straty wynikające np z oddziaływania innych transmiterów, przeszkód itp.

Dodatkowo, FSPL można obliczyć, używając następujący wzór:

$$FSPL = 20log_{10} \left(\frac{d}{d_0}\right) + 20log_{10}(f) + K \tag{2}$$

Gdzie symbole oznaczają:

- \bullet d dystans dzielący trasmiter od odbiorcy, wyrażony w metrach
- d_0 dystans referencyjny w tym wypadku 1 metr
- f częstotliwość transmitera wyrażona w MHz
- K stała, którą można określić wzorem:

$$K = 20log_{10} \left(\frac{4\pi d_0}{C}\right) \tag{3}$$

gdzie d_0 to dystans referencyjny (taki sam jak we wzorze wyżej), a C to długość fali emitowanej przez transmiter

Po przekształceniu wzoru, uzytkujemy:

$$d = 10^{\left(\frac{FSPL - K - 20log_{10}(f)}{20}\right)} \tag{4}$$

A po połączeniu obu wzorów dostajemy:

$$d = 10^{\left(\frac{P_{tx} + AG_{tx} + AG_{rx} - P_{rx} - FM - L - K - 20log_{10}(f)}{20}\right)}$$
 (5)

2 Eksperymenty

2.1 Wykorzystane urządzenia

- 1. Smartphone Sony Xperia Z1 Compact (D5503) odbiornik Dane techniczne:
 - Częstotliwość 2,4GHz
 - Przyrost siły sygnału z anteny 2dBi
- 2. Router TP-Link TD-W8970 nadajnik Dane techniczne:
 - Częstotliwość 2,4GHz
 - Dwie zewnętrzne anteny kierunkowe
 - Przyrost siły sygnału z anteny 4dBi
 - Siła transmitera 16.5dBm
- 3. Router TP-Link TL-WA701ND nadajnik Dane techniczne:
 - Częstotliwość 2,4GHz
 - Jedna zewnętrzna antena kierunkowa
 - Przyrost siły sygnału z anteny 2dBi
 - Siła transmitera 15dBm
- 4. Smartphone Grand 2 (G7102) nadajnik Dane techniczne:
 - Częstotliwość 2,4GHz
 - Jedna antena wbudowana
 - Przyrost siły sygnału z anteny 0dBi
 - Siła transmitera 10dBm

2.2 Warunki

Wszystkie pomiary wykonywane były w pomieszczeniu zamknięty, bez przeszkód na drodze sygnału, dlatego jako margines zaniku sygnału została przyjęte wartość 22 dBm. Inne straty (np interferencja sygnałów z routerów) zostały pominięte i ich wykrycie jest jednym z celów eksperymentu.

2.3 Cele

Celem eksperymentu jest ustalenie, jak zmierzona i obliczona, przy użyciu siły sygnałów, odległość między odbiornikiem i transmiterami odnosi się do odległości rzeczywistej. Dodatkowo, będę się starał ustalić, jak duży wpływ na jakość sygnału mają przeszkody, kierunek, w jakim skierowane są względem siebie urządzenia oraz interferencja sygnałów.

2.4 Pomiar odległości

Eksperyment polegał na ustawieniu transmitera 1m od odbiornika na jednym poziomie, antenami do siebie. Następnie dodawana była przeszkoda (w tym wypadku książka) i pomiary zostały powtórzone. Eksperyment został wykonany dla wszystkich transmiterów.

• Router TP-Link TD-W8970

Wersja bez przeszkody:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)
1	-41	1,16
2	-40	1,04
3	-37	0.73
4	-42	1.30
5	-37	0,73

Wersja z przeszkodą:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)
1	-38	0,82
2	-39	0,92
3	-42	1,30
4	-46	2,07
7	-43	1,46

Router TP-Link TL-WA701ND

Wersja bez przeszkody:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)
1	-44	0,98
2	-44	0,98
3	-45	1,10
4	-47	1,38
5	-45	1,10

Wersja z przeszkodą:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)]
1	-49	1,74	
2	-47	1,38],,
3	-46	1,23	7 /
4	-47	1,38	
5	-47	1,38]

\bullet Samsung Grand 2

Wersja bez przeszkody:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)
1	-51	1,38
2	-50	1,23
3	-49	1,10
4	-48	0,98
5	-53	1,74

Wersja z przeszkodą:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)	
1	-50	1,23	
2	-54	1,95],,
3	-53	1,74	γ/
4	-55	2,19	
5	-55	2,19	

Rysunek 2: Model systemu do pomiaru zakłóceń

2.5 Pomiary zakłóceń

Eksperyment polegał na rozmieszczeniu trasmiterów na wierzchołkach trójkąta, w środku którego znajdował się odbiornik. Wszystkie urządzenia znajdowały się na tej samej wysokości. Mierzone były zmiany siły sygnału i obliczonej odległości w zależności od kąta położenia odbiornika w stosunku do trasmitera oraz ilości nakładających się na siebie sygnałów. Na początku, włączony był tylko transmiter o indeksie A. Odbiornik znajdował się w stosunku do transmitera pod kątem około 50 stopni. Następnie włączony został transmiter B. Na końcu do modelu został dodany trasmiter C.

Informacje o urządzeniach:

- Transmiter A TP-Link TD-W8970, współrzędne (1.80, 0)
- Transmiter B TP-Link TL-WA701ND, współrzędne (0, 0)
- Transmiter C Samsung Grand 2, współrzędne (1.07, 1.8)
- Odbiornik współrzędne (1.2, 0.45)

Pomiar bez zakłóceń dla odległości 80cm przy kącie 50°:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)
1	-41	1,16
2	-43	1,46
3	-41	1,16
4	-42	1,30
5	-43	1,46

Pomiar z zakłóceniami z transmitera B dla odległości 80cm przy kącie 50°:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)
1	-44	1,64
2	-47	2,31
3	-45	1,84
4	-48	2,60
5	-47	2,31

Pomiar z zakłóceniami z obu transmiterów dla odległości 80cm przy kącie 50°:

Pomiar	Siła sygnału (w dBm)	Obliczona odległość (w metrach)
1	-48	2,60
2	-47	2,31
3	-44	1,64
4	-48	2,60
5	-46	2,06

2.6 Wyznaczanie lokalizacji użytkownika

Narazie mało do napisania. Z dwóch pomiarów dla modelu z góry, dostałem lokalizacje (-0,4; 1,2; -0,3) oraz (1,5; 1,67; -1,5).

3 Model wyznaczania lokalizacji

Stworzyłem model algorytmu w MatLabie. Nie wyobrażam sobie modelu w trzech wymiarach i z kolorem (według mnie wynikiem będzie prostopadłościan o granatowym dominującym kolorze ścian) , dlatego stworzyłem model 2D, który jest tak naprawdę przekrojem modelu 3D (płaszczyzną XY). Algorytm zmieniłem według zastrzeżeń Pana Doktora. Prostopadłościan, który zawiera w sobie "sfery" ruterów, dzielony jest na max 20 kawałków. Wyznacza się najlepszą pozycję, dla niej brane są sąsiadujące pozycję i uzyskany sześcian dzieli się na 9 kawałków i ponownie wyznacza najlepszą pozycję. Obliczenia kończą się, jak spełnione jest założenie: $szerKawalka \leq okreslonaDokladnosc$.

