Network Centrality

Ya Qian Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin lvb.wiwi.hu-berlin.de case.hu-berlin.de irtg1792.hu-berlin.de

International Trade Network

Figure 1: International trade picture

From Florida State Hispanic Chamber of Commerce

Production Network

Figure 2: Supply chain

Social Network

Figure 3: A sample of social network

From Webpage Kikolani

International Financial Network

Figure 4: A sample of international financial network

From Frank Schweitzer, et al. (Science 325, 422 (2009))

Network of Coauthorship

Figure 5: A network of coauthorships between 379 scientists whose research centers on the properties of networks of one kind or another

400

A More Specific Coauthorship Graph

Figure 6: Coauthorship graph of W.K. Härdle

Network Source: Microsoft Academic

A More Specific Coauthorship Graph

Figure 7: Coauthorship path of W.K. Härdle

Source: Microsoft Academic

Network

A More Specific Coauthorship Graph

Figure 8: Citation path of W.K. Härdle

Source: Microsoft Academic

Network

Outline

- 1. Motivation ✓
- 2. Definition
- 3. Relation to Adjacency Matrix
- 4. Network Centrality
- 5. Comparison of Various Centralities

Definition — 2-1

Network Structure

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- oxdot vertices \mathcal{V} : each individual in your context
- oxdot edges \mathcal{E} : linkages between every pair of vertices

Adjacency Matrix & Network

Example 1: symmetric, unweighted adjacency matrix with 4 nodes

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Q METISNET-adjtonet

Adjacency Matrix & Network

Example 2: asymmetric, unweighted adjacency matrix with 4 nodes

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

METISNET-adjtonet

Adjacency Matrix & Network

Example 3: asymmetric, weighted adjacency matrix with 4 nodes

 $A = \begin{bmatrix} 0 & 0.3 & 0.7 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0.1 & 0 & 0.9 & 0 \end{bmatrix}$

Q METISNET-adjtonet

Network Centrality

- Degree centrality
- Closeness centrality
- Betweenness centrality
- Eigenvector centrality
- Katz centrality
- PageRank centrality
- Percolation centrality
- Cross-clique centrality
- Freeman Centrality

Degree Centrality

For a network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, degree centrality equals

$$C_D(v) = \deg(v)$$

where deg(v) denotes the total number of edges vertice v has.

Closeness Centrality

For a network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, closeness centrality equals

$$C_C(v_1) = \frac{N-1}{\sum_{v_2} d(v_1, v_2)}$$

- N: the total number of vertices

Betweenness Centrality

For a network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, betweenness centrality equals

$$C_B(v) = \sum_{s \neq v \neq t \in \mathcal{V}} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

- \boxdot σ_{st} : total amount of shortest paths from vertice s to vertice t
- $\sigma_{st}(v)$: total amount of shortest paths from vertice s to vertice t that passes through vertice v

More about 'distance'

- \Box related to C_C and C_B
- the number of edges in the shortest connecting path (in the sense of edge number) – unweighted
- the real length of shortest connecting path (in the sense of real length) – weighted
- onsidered as a 'cost'

Example is given at the end of this talk: Minnesota Road Networks

Eigenvector Centrality

For a network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, eigenvector centrality equals

$$C_{E}(v) = \frac{1}{\lambda} \sum_{t \in M(v)} C_{E}(t) = \frac{1}{\lambda} \sum_{t \in \mathcal{G}} a_{v,t} C_{E}(t)$$
$$\lambda C_{E} = AC_{E}$$

- \Box $A = \{a_{v,t}\}_{v,t=1}^{N}$ is a 0-1 adjacency matrix
- $\ \ \ \ \lambda$: maximum eigenvalue of A

Example 4:

$$Arr$$
 $C_D(1) = 5$, $C_D(2) = C_D(3) = C_D(4) = C_D(5) = C_D(6) = 1$

$$C_{C}(1) = 1, C_{C}(2) = C_{C}(3) = C_{C}(4) = C_{C}(5) = C_{C}(6) = 0.56$$

$$Arr$$
 $C_B(1) = 1, C_B(2) = C_B(3) = C_B(4) = C_B(5) = C_B(6) = 0$

•
$$C_E(1) = 0.71, C_E(2) = C_E(3) = C_E(4) = C_E(5) = C_E(6) = 0.32$$

METISNET-centralityme

Example 5:

$$C_D(1) = C_D(5) = 1, C_D(2) = C_D(3) = C_D(4) = 2$$

$$C_C(1) = C_C(5) = 0.4, C_C(2) = C_C(4) = 0.57, C_C(3) = 0.67$$

$$C_B(1) = C_B(5) = 0, C_B(2) = C_B(4) = 0.50, C_B(3) = 0.67$$

$$C_E(1) = C_E(5) = 0.29, C_E(2) = C_E(4) = 0.50, C_B(3) = 0.58$$

METISNET-centralitymeasures

Example 6:

$$Arr$$
 $C_D(1) = 4$, $C_D(2) = C_D(3) = C_D(4) = C_D(5) = 2$

$$C_C(1) = 1, C_C(2) = C_C(3) = C_C(4) = C_C(5) = 0.67$$

$$\mathbf{C}_{\mathsf{B}}(\mathbf{1}) = \mathbf{0.67}, C_{\mathsf{B}}(2) = C_{\mathsf{B}}(3) = C_{\mathsf{B}}(4) = C_{\mathsf{B}}(5) = 0$$

$$\mathbf{C}_{\mathsf{E}}(1) = \mathbf{0.62}, C_{\mathsf{E}}(2) = C_{\mathsf{E}}(3) = C_{\mathsf{E}}(4) = C_{\mathsf{E}}(5) = 0.39$$

METISNET-centralitymeasures

Example 7:

$$C_D(1) = C_D(4) = 3$$
, $C_D(2) = C_D(3) = 4$

$$\mathbf{C}_{\mathsf{C}}(1) = \mathbf{0.63}, C_{\mathsf{C}}(2) = C_{\mathsf{C}}(3) = 0.52, C_{\mathsf{C}}(4) = 0.48$$

$$\mathbf{C}_{\mathsf{B}}(1) = \mathbf{0.61}, C_{\mathsf{B}}(2) = C_{\mathsf{B}}(3) = 0.36, C_{\mathsf{B}}(4) = 0.27$$

$$\mathbf{C}_{\mathsf{E}}(1) = \mathbf{0.51}, C_{\mathsf{E}}(2) = C_{\mathsf{E}}(3) = 0.44, C_{\mathsf{E}}(4) = 0.33$$

METISNET-centralitymeasures

- Minnesota Road Net data minnesota.mat is avaiable in Matlab R2016b and later versions
- Minnesota State of United States
- The data contains a G object which is a combination of Nodes (Coordinates of locations) and Edges (roads between each pair of nodes)

Figure 9: Display of Minnesota Road Net – no centrality displayed (left), degree centrality C_D (right)

METISNET-centralitycomparison

Figure 10: Display of Minnesota Road Net – closeness centrality unweighted (left), closeness centrality weighted (right)

METISNET-centralitycomparison

Figure 11: Display of Minnesota Road Net – betweenness centrality unweighted (left), betweenness centrality weighted (right)

METISNET-centralitycomparison

Network

Network Centrality

Ya Qian Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin lvb.wiwi.hu-berlin.de case.hu-berlin.de irtg1792.hu-berlin.de

