

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen XVIII

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Convocatoria Ordinaria.

Fecha 6 de Junio de 2025.

Duración 3.5 horas.

Ejercicio 1 (2.5 puntos). Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\cos(t^n + e^z)}{1 + t^n} dt \qquad \forall z \in \mathbb{C}$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Ejercicio 2 (2.5 puntos). Integrando la función $z \mapsto \frac{\log(z+1)}{1+z^2}$ sobre un camino cerrado que recorra la frontera del conjunto $\{z \in \mathbb{C} : |z| < R, \operatorname{Im} z > 0\}$, con $R \in \mathbb{R}$ y R > 1, evaluar la integral

$$\int_{-\infty}^{+\infty} \frac{\log(1+x^2)}{1+x^2} \ dx$$

Ejercicio 3 (2.5 puntos). Sea $f \in \mathcal{H}(D(0,1))$.

- a) Probar que la función $f^*:D(0,1)\to\mathbb{C}$ dada por $f^*(z)=\overline{f(\overline{z})}$ es holomorfa en D(0,1).
- b) Supongamos que se cumple $|f(z)| \leq |f(\overline{z})|$ para cada $z \in D(0,1)$. Probar que existe $\lambda \in \mathbb{T}$ tal que $f(z) = \lambda f^*(z)$ para cada $z \in D(0,1)$.

Ejercicio 4 (2.5 puntos). Sea $S \subset \mathbb{C}$ un conjunto sin puntos de acumulación y $f \in \mathcal{H}(\mathbb{C} \setminus S)$ verificando que tiene un polo en cada punto de S (en tal caso se dice que f es una función meromorfa). Supongamos a demás que f diverge en infinito. Se pide:

- a) Probar que f tiene una cantidad finita de ceros.
- b) Probar que f es una función racional.

Ejercicio 1 (2.5 puntos). Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\cos(t^n + e^z)}{1 + t^n} dt \qquad \forall z \in \mathbb{C}$$

a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.

Dado $n \in \mathbb{N} \cup \{0\}$, como la función

$$\varphi_{n,z}: [n, n+1] \longrightarrow \mathbb{C}$$

$$t \longmapsto \frac{\cos(t^n + e^z)}{1 + t^n}$$

es continua para cada $z \in \mathbb{C}$, entonces f_n está bien definida. Ahora, como

$$\phi_{n,t}: \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{\cos(t^n + e^z)}{1 + t^n}$$

es holomorfa para todo $t \in [n, n+1]$, tenemos por el Teorema de Funciones definidas como una Integral Dependiente de parámetro que f_n es holomorfa, para cada $n \in \mathbb{N}$.

b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Sea $K \subset \mathbb{C}$ un conjunto compacto, como la función $z \longmapsto |\cos(e^z)| + |\sin(e^z)|$ es continua como composición de funciones continuas, podemos considerar:

$$\beta = \max\{|\cos(e^z)| + |\sin(e^z)| : z \in K\}$$

Para $n \in \mathbb{N} \cup \{0\}$ y $z \in K$, tenemos que:

$$|f_n(z)| = \left| \int_n^{n+1} \frac{\cos(t^n + e^x)}{1 + t^n} dt \right| \le \sup \left\{ \left| \frac{\cos(t^n + e^x)}{1 + t^n} \right| : t \in [n, n+1] \right\}$$

Y como:

$$|1 + t^n| = 1 + t^n \geqslant 1 + n^n \quad \forall t \in [n, n+1]$$

Y además:

$$|\cos(t^n + e^z)| \le |\cos(t^n)\cos(e^z)| + |\sin(t^n)\sin(e^z)| \le |\cos(e^z)| + |\sin(e^z)| \le \beta$$
$$\forall t \in [n, n+1], \forall z \in K$$

Tomando $M_n = \beta/(1+n^n)$ para cada $n \in \mathbb{N} \cup \{0\}$, concluimos que:

$$|f_n(z)| \le \sup \left\{ \left| \frac{\cos(t^n + e^x)}{1 + t^n} \right| : t \in [n, n+1] \right\} \le M_n \quad \forall z \in \mathbb{C}, \forall n \in \mathbb{N} \cup \{0\}$$

Como:

$$\frac{M_{n+1}}{M_n} = \frac{1+n^n}{1+(n+1)^{n+1}} \to 0$$

Por el Criterio del Cociente, tenemos que $\sum_{n\geqslant 0} M_n$ es convergente. Por el Test de Weierstrass, deducimos que $\sum_{n\geqslant 0} f_n$ converge absoluta y uniformemente en cada compacto $K\subset\mathbb{C}$. Como la convergencia absoluta implica la puntual, también tendremos que $\sum_{n\geqslant 0} f_n$ converge puntualmente en cada compacto $K\subset\mathbb{C}$.

Además, como tenemos que:

$$\mathbb{C} = \bigcup_{z \in \mathbb{C}} \{z\}$$

Y cada $\{z\}$ es compacto, como la convergencia puntual es una propiedad puntual, concluimos que $\sum_{n\geqslant 0} f_n$ converge uniformemente en \mathbb{C} , a la función $f:\mathbb{C}\to\mathbb{C}$ dada por:

$$f(z) = \lim_{n \to \infty} f_n(z) = \int_{-\infty}^{+\infty} \frac{\cos(t^n + e^z)}{1 + t^n} dt \qquad \forall z \in \mathbb{C}$$

Como $f_n \in \mathcal{H}(\mathbb{C})$ para cada $n \in \mathbb{N} \cup \{0\}$, aplicando el Teorema de Convergencia de Weierstrass, deducimos que $f \in \mathcal{H}(\mathbb{C})$.

Ejercicio 2 (2.5 puntos). Integrando la función $z \mapsto \frac{\log(z+1)}{1+z^2}$ sobre un camino cerrado que recorra la frontera del conjunto $\{z \in \mathbb{C} : |z| < R, \operatorname{Im} z > 0\}$, con $R \in \mathbb{R}$ y R > 1, evaluar la integral

$$\int_{-\infty}^{+\infty} \frac{\log(1+x^2)}{1+x^2} \ dx$$

Ejercicio 3 (2.5 puntos). Sea $f \in \mathcal{H}(D(0,1))$.

- a) Probar que la función $f^*:D(0,1)\to\mathbb{C}$ dada por $f^*(z)=\overline{f(\overline{z})}$ es holomorfa en D(0,1).
- b) Supongamos que se cumple $|f(z)| \leq |f(\overline{z})|$ para cada $z \in D(0,1)$. Probar que existe $\lambda \in \mathbb{T}$ tal que $f(z) = \lambda f^*(z)$ para cada $z \in D(0,1)$.

Ejercicio 4 (2.5 puntos). Sea $S \subset \mathbb{C}$ un conjunto sin puntos de acumulación y $f \in \mathcal{H}(\mathbb{C} \setminus S)$ verificando que tiene un polo en cada punto de S (en tal caso se dice que f es una función meromorfa). Supongamos a demás que f diverge en infinito. Se pide:

a) Probar que f tiene una cantidad finita de ceros.

Por comodidad, a lo largo del ejercicio escribiremos $\Omega = \mathbb{C} \setminus S$.

Es bien sabido que si f es una función continua, entonces:

$$Z(f) = \{ z \in Dom f : f(z) = 0 \}$$

Es un conjunto cerrado, ya que si $\{z_n\} \to z$ con $z_n \in Z(f)$ para cada $n \in \mathbb{N}$, entonces la continuidad de f nos dice que:

$$0 \leftarrow \{0\} = \{f(z_n)\} \rightarrow f(z)$$

Por lo que f(z)=0, luego $z\in Z(f)$. Una vez recordada esta propiedad, continuamos con el ejercicio:

■ En primer lugar, veamos que $Z(f) \cap \overline{D}(0,r)$ es finito para cada $r \in \mathbb{R}^+$: Por reducción al absurdo, supongamos que existe $R \in \mathbb{R}^+$ de forma que $Z(f) \cap \overline{D}(0,R)$ es infinito. En dicho caso, tenemos un conjunto cerrado (como intersección de cerrados) y acotado (contenido en D(0,R)), luego un conjunto compacto e infinito, luego (por lo que vimos en el Tema 9 antes del Principio de Identidad) tendrá puntos de acumulación. De esta forma:

$$f(z) = 0$$
 $\forall z \in Z(f) \cap \overline{D}(0, R)$

Como $(Z(f) \cap \overline{D}(0,1))' \cap \Omega \neq \emptyset$, por lo que f(z) = 0 para todo $z \in \Omega$. Sin embargo, entonces f no diverge en infinito (tendería a 0), <u>contradicción</u>, luego $Z(f) \cap \overline{D}(0,r)$ ha de ser finito, para todo $r \in \mathbb{R}^+$.

■ Por el apartado anterior, $Z(f) \cap \overline{D}(0,r)$ ha de ser finito $\forall r \in \mathbb{R}^+$, por lo que, intuitivamente, la única forma de que Z(f) sea infinito es que podamos encontrarnos ceros tan lejos como queramos. Veremos a continuación que esta idea contradice que f diverja:

Por reducción al absurdo, supongamos que Z(f) es infinito. Sea $n \in \mathbb{N}$, como $Z(f) \cap \overline{D}(0,n)$ es finito, podemos encontrar $z_n \in Z(f) \setminus \overline{D}(0,n)$; es decir, podemos encontrar $z_n \in \Omega$ con $|z_n| > n$ y $f(z_n) = 0$. Tenemos por tanto que $z_n \to \infty$ y como $\lim_{z \to \infty} f(z) = \infty$, tendremos que:

$$\{f(z_n)\}\to\infty$$

Sin embargo, $f(z_n) = 0$ para todo $n \in \mathbb{N}$, <u>contradicción</u>, que venía de suponer que Z(f) es infinito.

b) Probar que f es una función racional.

Como Z(f) es finito, suponemos que tiene n elementos:

$$Z(f) = \{x_1, x_2, \dots, x_n\}$$

Por tanto, por el Teorema de Caracterización de los ceros de una función holomorfa aplicado n veces, tenemos que $\exists k_1, k_2, \ldots, k_n \in \mathbb{N}$ y una función $\varphi : \Omega \to \mathbb{C}$ que no se anula en Z(f), de forma que:

$$f(z) = \prod_{j=1}^{n} (z - x_j)^{k_j} \varphi(z) \qquad \forall z \in \Omega$$

Como φ no se anula en Z(f) y tampoco se anula en ningún punto de $\Omega \setminus Z(f)$, concluimos que φ no se anula en ningún punto de Ω , lo que nos permite definir $\phi : \mathbb{C} \to \mathbb{C}$ dada por:

$$\phi(z) = \frac{1}{\varphi(z)}$$
 $\forall z \in \mathbb{C} \setminus S$, $\phi(z) = 0$ $\forall z \in S$

Que es holomorfa en $\mathbb{C} \setminus S$. Sea $s \in S$, como:

$$\lim_{z \to s} \phi(z) = \lim_{z \to s} \frac{1}{f(z)} = 0 = \phi(s)$$

Tendremos que ϕ es continua en s. Aplicando el Teorema de Extensión de Riemann, tenemso que ϕ será holomorfa en s, para todo $s \in S$, luego ϕ es una función entera. Además, podemos escribir:

$$f(z) = \prod_{j=1}^{n} (z - x_j)^{k_j} \varphi(z) = \frac{\prod_{j=1}^{n} (z - x_j)^{k_j}}{\phi(z)} \qquad \forall z \in \Omega$$

De esta forma, si probamos que ϕ es una función polinómica ya tenemos que f es racional. Para ello, como:

$$\lim_{z \to \infty} \frac{\prod_{j=1}^{n} (z - x_j)^{k_j}}{\phi(z)} = \lim_{z \to \infty} f(z) = \infty$$

Tendremos que $\forall M \in \mathbb{R}^+ \exists R \in \mathbb{R}^+$ de forma que:

$$\frac{\left|\prod_{j=1}^{n} (z - x_j)^{k_j}\right|}{|\phi(z)|} = |f(z)| > M \qquad \forall z \in \mathbb{C} \setminus \overline{D}(0, R)$$

Por tanto:

$$\left| \prod_{j=1}^{n} (z - x_j)^{k_j} \right| > M|\phi(z)| \qquad \forall z \in \mathbb{C} \setminus \overline{D}(0, R)$$

Es decir, ϕ es una función entera con crecimiento subpolinómico en el exterior de un disco. Vimos en un ejercicio del Tema 9 que entonces ϕ es una función polinómica, como queríamos probar.