Bayesian Concepts

Chao Cheng

April 7, 2023

Contents

1	Introduction	1
2	Credible Interval	2
3	Predictive distribution	2

1 Introduction

- 1. Prior and posterior distribution
- 2. Predictive probability and application in phase II design
- 3. Credible interval

From the frequentist perspective, we have the data x and the parameter of the distribution θ and we make estimation/inference about θ . But θ is always treated as a fixed parameter. But from bayesian perspective, θ is also a random variable. First we introduce some notations:

- The prior distribution $\pi(\theta|\alpha)$, where α is fixed parameters for the distribution of θ . This prior distribution of θ represents our previous knowledge of θ before the data x is collected.
- The data distribution $f(x|\theta)$, which is the same as that from frequentist's perspective.
- The posterior distribution $f_{post}(\theta|x)$, which is the distribution of θ based on (conditional on) the observed data. Note that

$$f_{post}\left(\theta|x\right) = \frac{f\left(\theta,x\right)}{f\left(x\right)} = \frac{f\left(x|\theta\right)\pi\left(\theta|\alpha\right)}{f\left(x\right)} \propto f\left(x|\theta\right)\pi\left(\theta|\alpha\right),$$

where the last \propto is taken with respect to θ . So the kernel of posterior distribution of θ given x is determined by $f(x|\theta)\pi(\theta|\alpha)$. Sometimes we will write $f_{post}(\theta|x)$ as $f_{post}(\theta|x;\alpha)$ to emphasize that this posterior distribution depends on x and parameter α .

2 Credible Interval

equal tail or equal density?

3 Predictive distribution

References