Лекция 18 ЛИСТОУСКОРЯЮЩИЕ МЕХАНИЗМЫ

1. Типы листоускоряющих механизмов

Листоускоряющие механизмы предназначены для ускорения передней кромки листа после его выстоя у выравнивающих упоров до окружной скорости печатного цилиндра или несколько большей. Листоускоряющий механизм, имеющий в качестве рабочего органа захваты, называется форгрейфером. Его функции заключаются в разгоне передней кромки листа до окружной скорости печатного или листопередающего цилиндра и передаче листа в захваты этого цилиндра.

Форгрейферы могут быть качающимися или вращающимися (ротационными), механическими (с захватами) или пневматическими (с присосами вместо захватов), верхними или нижними — в зависимости от положения относительно накладного стола. Нижние форгрейферы имеют неподвижные относительно рычагов опоры захватов, а верхние могут иметь как неподвижные, так и подвижные головки («с подгибкой») и неподвижные или эксцентричные оси вращения.

2. Качающиеся форгрейферы.

На рис. 1 показан пример кинематической схемы верхнего качающегося форгрейфера с подвижной механической головкой.

Рис. 1. Схема механизма верхнего качающегося форгрейфера: 1 – рычаг форгрейфера; 2, 2′ – кулачки; 3 – пружина; 4 – створки захватов; 5 – неподвижная горка; 6 – регулировочные упоры; 7 – передние упоры; 8 – подвижная горка; $\Pi \coprod$ – печатный цилиндр

Рычаги форгрейфера I совершают качание от точки A до точки C под действием кулачка 2 и рычажного четырехзвенника. Кинематическое замыкание механизма осуществляет кулачок 2, а компенсацию неточностей в изготовлении и выборку зазоров — пружина 3.

Передача листа в захваты печатного цилиндра ПЦ происходит в зоне B–B', длина дуги которой составляет не более 1–2°. Опорные поверхности захватов форгрейфера жестко связаны с рычагами I, имеющими шарнир в точке F. Наружные створки захватов 4 в процессе передачи листа поворачиваются от неподвижной горки 5. Возврат форгрейфера к столу за следующим листом происходит с изломом рычагов I в точке F, так что вместо траектории A–B–C захваты движутся по траектории C–D–A, чтобы не произошло столкновения их наружных створок с рабочей поверхностью печатного цилиндра.

Фиксация захватов относительно стола, с целью выборки зазоров, осуществляется по упорам 6, к которым форгрейфер поднимается пружиной 3. Положение упоров при этом регулируется так, чтобы форгрейфер лишь слегка касался их и в нем не возникали бы значительные по величине упругие колебания. Перед закрыванием захватов форгрейфера у стола

происходит выравнивание листа у передних упоров 7; захваты закрываются под действием подвижной горки 8.

На рис. 2 дан пример кинематической схемы нижнего качающегося механического форгрейфера. Рычаги I не имеют излома, так как у передаточного цилиндра 2 диаметр может быть несколько меньше, чем у печатного цилиндра Π Ц, и возврат рычагов к столу может происходить по неизмененной траектории.

Рис. 2. Схема механизма нижнего качающегося форгрейфера: 1 – рычаги форгрейфера; 2 – передаточный цилиндр; ПЦ – печатный цилиндр

Таким образом, конструкция форгрейфера упрощается по сравнению с конструкцией верхнего форгрейфера, но зато появляется необходимость введения передаточного цилиндра, чтобы направление движения обеих систем захватов — передающей и принимающей — во время передачи листа было одинаковым. Нижний форгрейфер дает, кроме того, выигрыш во времени на равнение листа так же, как и нижние упоры по сравнению с верхними. На передаточном цилиндре в случае необходимости может быть размещен механизм для ускоренного увода задней кромки листа с накладного стола.

И для верхнего, и для нижнего качающегося форгрейфера совпадение скоростей захватов форгрейфера и печатного или передаточного цилиндра в течение времени передачи листа обеспечивается геометрическими параметрами приводных звеньев.

Качающиеся форгрейферы при высокой скорости машины всегда работают в достаточно напряженном динамическом режиме, при котором значительные инерционные нагрузки вызывают скручивание вала форгрейфера и вибрации его головки. Для ослабления этих нежелательных явлений валу форгрейфера в быстроходных машинах придают повышенную жесткость, иногда выполняя его в виде полого цилиндра, на поверхности которого непосредственно крепятся стойки захватов.

3. Вращающиеся (ротационные) форгрейферы.

Ротационные форгрейферы работают в более благоприятном динамическом режиме, но привод их гораздо сложнее. На рис. 3 приведен один из наиболее удачных примеров кинематической схемы привода вращающегося форгрейфера.

Головка захватов 1 сделана поворотной, хотя у нее нет обратного хода. Разворот головки захватов 1 под действием планетарного зубчатого механизма 2—4 и двух рычажных четырехзвенников производится у накладного стола, чтобы открывающиеся створки захватов 5 не задевали кромку листа во время его выстоя у передних упоров 6.

Необходимость размещать передние упоры и ротационный форгрейфер, в силу его конструктивной сложности, по разные стороны накладного стола допускает, в сущности, один вариант: верхний форгрейфер и нижние упоры. Достоинством схемы, представленной на рис. 9.3, является возможность вращения вала форгрейфера с постоянной скоростью, что положительно влияет на динамику машины.

Рис. 3. Схема механизма верхнего вращающегося форгрейфера:

I — поворотная головка захватов; 2—4 — планетарный зубчатый механизм;

5 – створки захватов; 6 – передние упоры; $\Pi \coprod$ – печатный цилиндр

4. Передача листа из захватов в захваты.

Операция передачи листа из захватов форгрейфера в захваты печатного (или передаточного) цилиндра требует соблюдения определенных условий:

- 1) листы должны быть переданы надежно, без выскальзывания;
- 2) нельзя допускать смещения, разрыва или деформации передней кромки листа.

В процессе передачи принимающие захваты I (рис. 4) закрываются несколько раньше, чем открываются передающие захваты 2, и, таким образом, листы на участке перехвата ведутся обеими системами захватов одновременно (рис. 4, δ). Наладка любой системы захватов является ответственной операцией при подготовке машины к печатанию. Эта операция весьма трудоемка и требует высокой точности исполнения.

Рис. 4. Передача листов из одной системы захватов (2) в другую (1): a-s – последовательность действий: I – принимающие захваты; 2 – передающие захваты

При неправильной установке и регулировке захватов передняя кромка может смещаться в направлении движения и деформироваться в радиальном направлении. На рис. 5 показано, как при совместном ведении двумя системами захватов передняя кромка листа приобретает не плоскую, а волнообразную форму, растягиваясь между соседними захватами. Величина растяжения h зависит от расстояния a между смежными захватами, угла перехвата α , определяющего участок, на котором листы ведутся совместно двумя системами захватов, точности установки одной системы захватов относительно другой, величины зазоров в опорах валов и межцентрового расстояния A.

Рис. 5. Деформация передней кромки листа при его совместном ведении двумя системами захватов:

1 – принимающие захваты; 2 – передающие захваты

Для уменьшения растяжения кромки передаваемого листа и возможности ее надрыва угол перехвата листа необходимо выбирать в пределах $\alpha=2$ —4°, зазоры в опорах валов следует сводить к минимуму, межцентровое расстояние сокращать против номинала, равного $A=R_1+R_2+\delta$, на величину $\Delta A=(1-\cos\alpha/2)$, где δ — толщина листа и $R=R_1=R_2$ — радиус вращения захватов, а расстояние между смежными захватами двух систем принимать равным a=20—25 мм. При сокращении межцентрового расстояния на величину ΔA прогиб листов по краям и в центре зоны перехвата оказывается одинаковым и равным $h/2=\Delta A$, в результате чего вдвое уменьшается изгиб передней кромки листа.

5. Регистровые устройства на захватах форгрейфера.

В одно- и двухкрасочных машинах, используемых для повторных прогонов оттисков, на валике захватов форгрейфера иногда устанавливают регистровые устройства (рис. 6). Регистровые устройства служат для корректировки формы листов, так как листы, запечатываемые в офсетной машине, где они подвергаются совместному воздействию давления и увлажнения, при выходе из печатного аппарата могут иметь неправильную форму A (рис. 6, a), причем особенно значительны деформации у задней кромки листа.

Рис. 6. Схема регистрового устройства для корректировки формы листа: a — изменение формы листа; δ — изгиб штанги по дуге; ε — изгиб штанги в форме треугольника

Регистровое устройство позволяет выгибать штангу захватов, удерживающих переднюю кромку листа, по дуге (рис. 6, δ) или в форме треугольника (рис. 6, ϵ). В результате передняя кромка листа принудительно деформируется и становится равной длине его задней кромки. Величина смещения средней части штанги захватов может регулироваться в пределах 0.1-0.5 мм на ходу машины.

6. Бесфоргрейферные листоускоряющие устройства.

На рис. 7 даны три варианта схем бесфоргрейферных механизмов для разгона листа.

Вталкивающие ролики (рис. 7, a) зажимают лист Π , предварительно выровненный по упорам 1, на некотором расстоянии от его передней кромки и разгоняют его до скорости, превышающей окружную скорость печатного цилиндра; лист на ходу упруго прижимается к упорам 2 цилиндра, слегка выгибаясь на величину, ограничиваемую направляющими 3. При

этом передняя кромка листа окончательно выравнивается относительно цилиндра и зажимается его захватами 4. Для разгона листа свободно установленные на осях верхние ролики 5 прижимают его к нижним роликам 6, имеющим привод, например, от кулачкового механизма (на схеме не показан) через рейку 7.

Рис. 7. Бесфоргрейферные механизмы для разгона листа:

a – фрикционными роликами; δ – вакуумным диском; ϵ – вакуумной лентой:

1 — передние упоры; 2 — упоры цилиндра; 3 — направляющие; 4 — захваты печатного цилиндра; 5 — верхние ролики; 6 — нижние ролики; 7 — рейка;

8 – вакуумный диск; 9 – вакуумная лента; Π – лист; Π Ц – печатный цилиндр

По сравнению с форгрейфером вталкивающие ролики оказывают механическое воздействие на поверхность листов, более чувствительны к изменению их толщины и жесткости, с меньшей надежностью работают на высокой скорости и требуют точной регулировки. В частности, во избежание перекоса листов они должны зажимать их по длине передней кромки с одинаковым усилием и одновременно, а также сообщать им в местах контакта одинаковую скорость. Для подачи листов малого формата обычно используют две пары роликов, которые стараются разместить так, чтобы при повторных прогонах оттисков они не соприкасались с их запечатанными участками. Эти ограничения можно смягчить, если вместо роликов использовать вакуумные диски 8 (рис. 7, 6) или вакуумные ленты 9 (рис. 7, 6).

К достоинствам листоускоряющего бесфоргрейферного устройства можно отнести: отсутствие вибраций, присущих системе захватов форгрейфера; принудительное приталкивание листов непосредственно к упорам цилиндра, что по сравнению с двукратной передачей листов (с накладного стола – форгрейферу и от него – цилиндру) в принципе должно обеспечить более высокую точность приводки; небольшие размеры и металлоемкость; сравнительно простую конструкцию; малую динамичность привода; удобство обслуживания.