```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

data=pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/

data.head()

→		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
	0	KP281	18	Male	14	Single	3	4	29562	112	
	1	KP281	19	Male	15	Single	2	3	31836	75	
	2	KP281	19	Female	14	Partnered	4	3	30699	66	
	3	KP281	19	Male	12	Single	3	3	32973	85	
	4	KP281	20	Male	13	Partnered	4	2	35247	47	

Checking the structure & characteristics of the dataset

#finding the shape of the dataset
data.shape

#Finding the datatypes of the columns data.dtypes

Product	object
Age	int64
Gender	object
Education	int64
MaritalStatus	object
Usage	int64
Fitness	int64
Income	int64
Miles	int64

dtype: object

#Getting the information regarding the count of non-null values
data.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 180 entries, 0 to 179
 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

#Checking the null values for each column
data.isna().sum()

0

Product 0

Age 0

Gender 0

Education 0

MaritalStatus 0

Usage 0

Fitness 0

Income 0

Miles 0

dtype: int64

#Getting the count unique values in each column
data.nunique()

3

→

		0

Product

Age 32

Gender 2

Education 8

MaritalStatus 2

Usage 6

Fitness 5

Income 62

Miles 37

dtype: int64

Analyzing value counts

data['Gender'].value_counts()

count

Gender

Male 104

Female 76

dtype: int64

data['Product'].value_counts()

 $\overline{2}$

count

Product				
KP281	80			
KP481	60			
KP781	40			

dtype: int64

data['Education'].value_counts()

 $\overline{\mathbf{T}}$

count

16	85
14	55
18	23
15	5
13	5
12	3
21	3
20	1

dtype: int64

data['MaritalStatus'].value_counts()

MaritalStatus

Partnered	107
Single	73

dtype: int64

data['Usage'].value_counts()

e		_
_	4	÷
	-	

count

Usage			
3	69		
4	52		
2	33		
5	17		
6	7		
7	2		

dtype: int64

data['Fitness'].value_counts()

count

_		count
	Fitness	
	3	97
	5	31
	2	26
	4	24
	1	2

dtype: int64

data['Miles'].value_counts()

→ count

Count
27
12
10
10
9
9
8
8
7
7
6
6
6
6
5
5
4
4
3
3
3
3
3
2
2
1
1
1
1
1
1

80	1
140	1
21	1
169	1
188	1
360	1

dtype: int64

Outlier Detection

Outliers can be resolved using binning which is used in the following discussion

data.describe()

→		Age	Education	Usage	Fitness	Income	Miles	
	count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000	
			15.572222	3.455556		53719.577778 16506.684226	103.194444	
			1.617055	1.084797			51.863605	
	min	18.000000	12.000000	2.000000	1.000000 3.000000	29562.000000 44058.750000	21.000000 66.000000	
	25%	25 % 24.000000	14.000000	3.000000				
	50 % 26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000		
	75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000	
	max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000	

```
Num_cols=['Age','Miles','Income']

for i in Num_cols:
    sns.boxplot(y = data[i])
    plt.yticks(fontsize=10)
    plt.ylabel(f"{i} of the dataset", fontsize=10)
    plt.title(f"{i} of the dataset", fontsize=10)
    plt.show()
```


data.describe()

e		
_	_	_
Ξ	~	
		_

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222 3.455		3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

Univariate Analysis

```
# For categorical variables
cat_cols=['Gender','MaritalStatus','Education','Usage','Fitness','Product']
for i in cat_cols:
    sns.countplot(x=i,data=data)
    plt.show()
```



```
# For Numerical variables
num_cols=['Age','Income','Miles']
for i in num_cols:
    sns.kdeplot(data[i])
    plt.show()
```


Bivariate Analysis

```
#Bivariate Analysis fo categorical using values
cat_cols=['Gender','MaritalStatus','Education','Usage','Fitness']
for i in cat_cols:
    sns.countplot(x=i,hue='Product',data=data)
    plt.show()
```



```
#Bivariate Analysis fo categorical using Propotions/Percentage
for i in cat_cols:
    i=pd.crosstab(data[i],data['Product'],normalize='index')
    i.plot(kind='bar')
    plt.show()
```



```
#Bivariate Analysis fo Numerical variables using values
num_cols=['Age','Income','Miles']
for i in num_cols:
    sns.boxplot(x='Product', y=i, data=data)
    plt.xticks(rotation=90,fontsize=12)
    plt.yticks(fontsize=12)
    plt.title(i, fontsize=15)
    plt.show()
```


data_copy=data.copy()

```
# Binning numerical columns to categorical
bins=[0,30000,40000,50000,60000,70000,80000,90000,120000]
labels=['<30000','30000-40000','40000-50000','50000-60000','60000-70000','70000-80000','8
data['Income_Group']=pd.cut(data['Income'],bins=bins,labels=labels)
data.head()
bins=[0,20,25,30,35,40,51]
labels=['<20','20-25','25-30','30-35','35-40','>40']
data['Age_Group']=pd.cut(data['Age'],bins=bins,labels=labels)
data.head()
bins=[0,20,40,60,80,100,120,150,200,360]
labels=['<20','20-40','40-60','60-80','80-100','100-120','120-150','150-200','>200']
data['Miles_Group']=pd.cut(data['Miles'],bins=bins,labels=labels)
data.head()
```

→ ▼		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	Inco
	0	KP281	18	Male	14	Single	3	4	29562	112	
	1	KP281	19	Male	15	Single	2	3	31836	75	30
	2	KP281	19	Female	14	Partnered	4	3	30699	66	30
	3	KP281	19	Male	12	Single	3	3	32973	85	30
	4	KP281	20	Male	13	Partnered	4	2	35247	47	30

```
#Bivariate Analysis fo Numerical variables using its propotion/percentage
num_cols=['Age_Group','Income_Group','Miles_Group']
for i in num_cols:
    i=pd.crosstab(data[i],data['Product'],normalize='index')
    i.plot(kind='bar')
    plt.show()
```



```
sns.lineplot(x='Age', y='Income', data=data)
plt.show()
sns.scatterplot(x='Age', y='Income', data=data)
plt.show()
```



```
sns.lineplot(x='Age', y='Miles', data=data)
plt.show()
sns.scatterplot(x='Age', y='Miles', data=data)
plt.show()
```



```
sns.lineplot(x='Income', y='Miles', data=data)
plt.show()
sns.scatterplot(x='Income', y='Miles', data=data)
plt.show()
```


Multivariate

Multivariate analysis of Product on the basis of income.

Income based on Gender, Product wise

Income based on Education, Product wise

Income based on MaritalStatus, Product wise

Income based on Fitness, Product wise

Multivariate analysis of Product on the basis of age:

```
for i in catcols:
    sns.boxplot(x=i,y='Age',hue='Product',data=data)
    plt.xlabel(i, fontsize=12)
    plt.ylabel('Age', fontsize=12)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.title(f'Age based on {i}, Product wise', fontsize=15)
    plt.show()
```

Age based on Gender, Product wise

Age based on Education, Product wise

Age based on MaritalStatus, Product wise

Age based on Fitness, Product wise

Age based on Usage, Product wise

