Solubility rules for ionic solids in water

Soluble in water

Calcula	Exceptions						
Soluble	Insoluble	Slightly soluble					
Most chlorides	AgCl, Hg ₂ Cl ₂	PbCl ₂					
Most bromides	AgBr, Hg ₂ Br ₂ , HgBr ₂	PbBr ₂					
Most iodides	AgI, Hg ₂ I ₂ , HgI ₂ , PbI ₂						
All nitrates	No exceptions						
Most sulfates	SrSO ₄ , BaSO ₄ , HgSO ₄ , PbSO ₄ CaSO ₄ , Ag ₂ SO ₄						

Insoluble in water

Inachible	Exceptions							
Insoluble	Soluble	Slightly soluble						
Most hydroxides	NaOH, KOH, Ba(OH) ² (NH ₄ OH does not exist)	Ca(OH) 2, Sr(OH) 2						
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃							
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄							
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S							

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colours of Ions in Aqueous Solution

Cation	Colour	Cation	Colour	Anion	Colour
Al ³⁺	colourless	Hg ₂ ²⁺	colourless	CrO ₄ ²⁻	yellow
NH ₄ ⁺	colourless	Hg ²⁺	colourless	Cr ₂ O ₇ ²⁻	orange
Ba ²⁺	colourless	Ni ²⁺	green	MnO ₄ -	deep purple
Cd ²⁺	colourless	K ⁺	colourless	PO ₄ ³ ·	colourless
Ca ²⁺	colourless	Ag ⁺	colourless	S ²⁻	colourless
Cr ³⁺	deep green	Na ⁺	colourless	-	-
Co ²⁺	pink	Sr ²⁺	colourless	[Al(OH) ₄]-	colourless
Cu ²⁺	blue	Sn ²⁺	colourless	[Cr(OH) ₄]	deep green
Fe ²⁺	pale green	Zn²+	colourless	[Pb(OH) ₄] ²⁻	colourless
Fe ³⁺	brown	[Ag(NH ₃) ₂] ⁺	colourless	[Zn(OH) ₄] ²⁻	colourless
Pb ²⁺	colourless	[Cu(NH ₃) ₄] ²⁺	deep blue	-	-
Mg ²⁺	colourless	[Cd(NH ₃) ₄] ²⁺	colourless	-	-
Mn ²⁺	very pale pink	[Zn(NH ₃) ₄] ²⁺	colourless	-	-

CHEMISTRY DATA SHEET

Revised February 2000

Reproduced by kind permission of Curriculum Council

West Australian Test Papers

Periodic Table

Standard Reduction Potentials at 25°C

								Per	iodic 1	able									
1 H 1.008																		2 He 4.003	e (volts)
	3	4											5	6	7	8	9	10	
	Li	Ве											В	С	N	0	F	Ne	
ļ	6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18	PbO ₂ (
	11	12											13	14	15	16	17	18	
	Na	Mg											Al	Si	P	S	CI	Ar	
	22.99 19	24.31	21	22	23	24	25	26	27	28	29	30	26.98 31	28.09	30.97	32.06 34	35.45 35	39.95 36	
	19 K	Z0 Ca	Sc	Ti	23 V	Cr	∠5 Mn	∠o Fe	Co	Z8 Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80	
ŀ	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ī	Xe	
	85.47	87.62	88.91	91.22	92.91	95.94		101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
l	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	Cs	Ва	*La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
ļ	132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0				
	87	88	89	104	105	106	107	108	109										0()
	Fr	Ra	**Ac	Rf	Db	Sg	Bh	Hs	Mt										$O_2(g) + 2$
Į		226.0																	
			* Lanth	anide	58	59	60	61	62	63	64	65	66	67	68	69	70	71]
			Serie	·S	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
					140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	
			** Actin		90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Serie	es	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
					232.0		238.0												
6	← Ato	mic Num	ber																
	← Syr	nbol																	
.01	← Ato	mic Weiç	ght																
	Volu	mes ar	e given	in the u	nits of I	itres (L)	, or milli	litres (n	ıL)										
	Tem	peratur	es are	given in	the uni	ts of de	grees C	elsius (°C) or K	Čelvin (K	(). It ma	ay be as	sumed	that 0.0	°C = 27	'3.1 K			
					in the				,	(-	,	,							

Energy changes are given in the SI unit kilojoule (kJ)

Pressures are given in the SI unit kilopascal (kPa), in atmospheres (atm), or in millimetres of mercury (mmHg)

1.000 atm = 101.3 kPa = 760.0 mmHg

Solution concentrations are given in the unit moles per litre (mol L⁻¹)

Relating commonly used symbolism, 1 mol L⁻¹ = 1 M

Universal Gas Constant, $R = 8.315 \text{ J K}^{-1} \text{ mol}^{-1}$ or $0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Avogadro Constant, N = 6.022 x 10²³ mol⁻¹

Magnitude of the electronic charge, $q_e = 1.602 \times 10^{-19}$ coulomb (C)

Magnitude of the charge carried by one mole of electrons = 1 faraday (F) = $9.649 \times 10^4 \text{ C}$

Volume of 1.000 mol of an ideal gas at 0.0°C and 101.3 kPa is 22.41 L

and at 25.0°C and 101.3 kPa is 24.47 L

S.T.P. is 0.0°C and 101.3 kPa

Half-re	eactio	n	
(volts)			
$F_2(g) + 2 e^-$	-	2 F ⁻ (aq)	+ 2.87
$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	=	2 H ₂ O(<i>t</i>)	+ 1.78
$PbO_2(s) + SO_4^2(aq) + 4 H^+(aq) + 2 e^-$			+ 1.69
$2 \text{ HClO}(aq) + 2 \text{ H}^+(aq) + 2 \text{ e}^-$			+ 1.61
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$		$Mn^{2+}(aq) + 4 H_2O(\ell)$	+ 1.51
$Au^{3+}(aq) + 3 e^{-}$		Au(s)	+ 1.50
$HClO(aq) + H^{+}(aq) + 2 e^{-}$		$Cl^{-}(aq) + H_2O(t)$	+ 1.48
$PbO_2(s) + 4 H^+(aq) + 2 e^-$		$Pb^{2+}(aq) + 2 H_2O(t)$	+ 1.46
$Cl_2(g) + 2 e^-$		2 Cl ⁻ (aq)	+ 1.36
$Cr_2O_7^2-(aq) + 14 H^+(aq) + 6 e^-$		$2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_2 \operatorname{O}(\ell)$	+ 1.23
$O_2(g) + 4 H^+(aq) + 4 e^-$		2 H ₂ O(t)	+ 1.23
$MnO_2(s) + 4 H^+(aq) + 2 e^-$		$Mn^{2+}(aq) + 2 H_2O(\ell)$	+ 1.22
$Br_2(\ell) + 2 e^-$		2 Br ⁻ (aq)	+ 1.07
$NO_3^-(aq) + 4 H^+(aq) + 3 e^-$		$NO(g) + 2 H_2O(\ell)$	+ 0.96
$2 \text{ Hg}^{2+}(aq) + 2 \text{ e}^{-}$		$Hg_2^{2+}(aq)$	+ 0.91
$Hg^{2+}(aq) + 2 e^{-}$		Hg(<i>t</i>)	+ 0.85
$O_2(g) + 4 H^+(aq)[1.00 \times 10^{-7} \text{mol } L^{-1}] + 4 e^{-1}$		$2H_2O(t)$	+ 0.82
$NO_3^-(aq) + 2 H^+(aq) + e^-$		$NO_2(g) + H_2O(\ell)$	+ 0.80
$Ag^{+}(aq) + e^{-}$		Ag(s)	+ 0.80
$Hg_2^{2+}(aq) + 2e^{-}$		$2 \operatorname{Hg}(\ell)$	+ 0.80
$Fe^{3+}(aq) + e^{-}$		Fe ²⁺ (aq)	+ 0.77
$O_2(g) + 2 H^+(aq) + 2 e^-$		$H_2O_2(aq)$	+ 0.68
$MnO_4^-(aq) + 2 H_2O(t) + 3 e^-$		$MnO_2(s) + 4 OH^-(aq)$	+ 0.59
$I_2(s) + 2 e^{-s}$		2 I ⁻ (aq)	+ 0.54
$Cu^+(aq) + e^-$		Cu(s)	+ 0.52
$O_2(g) + 2 H_2O(t) + 4 e^{-t}$		4 OH ⁻ (aq)	+ 0.40
$Cu^{2+}(aq) + 2 e^{-}$		Cu(s)	+ 0.34
$Cu^{2+}(aq) + e^{-}$		Cu ⁺ (aq)	+ 0.16
$Sn^{4+}(aq) + 2 e^{-}$		Sn ²⁺ (aq)	+ 0.15
$S(s) + 2 H^{+}(aq) + 2 e^{-}$		$H_2S(aq)$	+ 0.14
2 H ⁺ (aq) + 2 e ⁻		$H_2(g)$	0 exactly
$Pb^{2+}(aq) + 2 e^{-}$		Pb(s)	- 0.13
$Sn^{2+}(aq) + 2 e^{-}$		Sn(s)	- 0.14
$Ni^{2+}(aq) + 2 e^{-}$	=	Ni(s)	- 0.26
$Co^{2+}(aq) + 2 e^{-}$	\rightleftharpoons	Co(s)	- 0.28
$PbSO_4(s) + 2 e^-$	\rightleftharpoons	$Pb(s) + SO_4^2-(aq)$	- 0.36
$Cd^{2+}(aq) + 2 e^{-}$		Cd(s)	- 0.40
$2 H_2 O(\ell) + 2 e^{-}$	\rightleftharpoons	$H_2(g) + 2 OH^{-}(aq)[1.00 \times 10^{-7} \text{mol } L^{-1}]$	- 0.41
$2 \text{ CO}_2(g) + 2 \text{ H}^+(aq) + 2 \text{ e}^-$	\rightleftharpoons	HOOCCOOH(aq)	- 0.43
$Fe^{2+}(aq) + 2 e^{-}$	\rightleftharpoons	Fe(s)	- 0.44
$Au(CN)_2(aq) + e^{-}$	\rightleftharpoons	$Au(s) + 2 CN^{-}(aq)$	- 0.60
$Cr^{3+}(aq) + 3 e^{-}$	\rightleftharpoons	Cr(s)	- 0.73
$Zn^{2+}(aq) + 2 e^{-}$	\rightleftharpoons	Zn(s)	- 0.76
$2 H_2O(\ell) + 2 e^{-}$	\rightleftharpoons	$H_2(g) + 2 OH^-(aq)$	- 0.83
$Mn^{2+}(aq) + 2 e^{-}$	\rightleftharpoons	Mn(s)	- 1.18
$Al^{3+}(aq) + 3 e^{-}$	\rightleftharpoons	Al(s)	- 1.66
$Mg^{2+}(aq) + 2 e^{-}$	\rightleftharpoons	Mg(s)	- 2.37
$Na^+(aq) + e^-$	\rightleftharpoons	Na(s)	- 2.71
$Ca^{2+}(aq) + 2 e^{-}$	\rightleftharpoons	Ca(s)	- 2.76
$Sr^{2+}(aq) + 2 e^{-}$	\rightleftharpoons	Sr(s)	- 2.89
D-2+() + 2		D- (-)	2.01

 $Ba^{2+}(aq) + 2 e^{-} \Rightarrow Ba(s)$

-2.91