

WHAT IS CLAIMED IS:

1. A PPG phosphoramidite comprising a photolabile hydroxy protecting group, wherein said phosphoramidite nucleoside is of the formula:

wherein

R^1 is selected from the group consisting of hydrogen and alkyl;

R^2 is selected from the group consisting of hydrogen, alkyl, and an amine protecting group, or R^1 and R^2 together form an amine protecting group;

each of Z^1 , Z^2 , Z^4 , and Z^6 is independently selected from the group consisting of hydrogen, halide, alkyl, $-OR^{11}$, wherein each R^{11} is independently selected from the group consisting of hydrogen, alkyl, and a hydroxy protecting group or two R^{11} groups form a diol protecting group, or Z^2 and Z^4 together with the carbon atoms to which they are attached and C-3 carbon atom of the carbohydrate ring form a five-to seven membered ring; and

one of Z^3 or Z^5 is $-OR^{12}$ and the other is $-OR^{13}$, where R^{12} is a photolabile hydroxy protecting group and R^{13} is a phosphoramidite.

2. The PPG phosphoramidite according to Claim 1 of the formula:

wherein

R^1 , R^2 , Z^3 and Z^5 are those defined in Claim 1.

3. The PPG phosphoramidite according to Claim 2, wherein Z^3 is $-OR^{13}$ and Z^5 is $-OR^{12}$, where R^{12} and R^{13} are those defined in Claim 1.

4. The PPG phosphoramidite according to Claim 3, wherein the photolabile hydroxy protecting group is selected from the group consisting of α -methyl-6-

nitropiperonyloxycarbonyl, 2-(2-nitrophenyl)-2-methylethoxycarbonyl, 2-(2-nitro-6-chlorophenyl)-2-methylethylsulfonyl, and 3',5'-dimethoxybezinoxycarbonyl.

5. The PPG phosphoramidite according to Claim 4, wherein R¹ and R² together form an amine protecting group.

6. The PPG phosphoramidite according to Claim 5, wherein R¹ and R² together form an amine protecting group of the formula: =CH—N(CH₃)₂.

7. A process for producing a non-halogenated nucleoside base containing nucleoside comprising:

(a) contacting a halogenated nucleoside base with an activated sugar under conditions sufficient to produce a halogenated nucleoside base containing nucleoside; and

(b) reducing said halogenated nucleoside base containing nucleoside under conditions sufficient to produce said non-halogenated nucleoside base containing nucleoside.

8. The process of Claim 7, wherein said non-halogenated nucleoside base containing nucleoside is purified by recrystallization.

9. The process of Claim 7, wherein the yield of said non-halogenated nucleoside base containing nucleoside from said halogenated nucleoside base is at least about 50%.

10. The process of Claim 7, wherein said halogenated nucleoside base containing nucleoside reducing step comprises hydrogenation of said halogenated nucleoside base containing nucleoside in the presence of a hydrogenation catalyst.

11. The process of Claim 7, wherein said non-halogenated nucleoside base containing nucleoside is used in a synthesis of a phosphoramidite nucleoside.

12. The process of Claim 11, wherein said phosphoramidite nucleoside is used in a synthesis of an oligonucleoside or an oligonucleotide.

13. A process for producing a nucleoside comprising a
2 hydropyrazolopyrimidine nucleoside base, said process comprising hydrolyzing and reducing
3 or reducing and hydrolyzing an iodopyrazolopyrimidine nucleoside of the formula:

6 under conditions sufficient to produce a hydropyrazolopyrimidine nucleoside of the formula:

9 wherein

10 R^1 is selected from the group consisting of hydrogen and alkyl;

11 R^2 is selected from the group consisting of hydrogen, alkyl, and an amine
12 protecting group, or R^1 and R^2 together form an amine protecting group;

13 R^3 is selected from the group consisting of alkyl, and a hydroxy protecting
14 group; and

15 each of Y^1 , Y^2 , Y^3 , Y^4 , Y^5 , and Y^6 is independently selected from the group
16 consisting of hydrogen, halide, alkyl, $-OR^4$, wherein each R^4 is independently selected from
17 the group consisting of hydrogen, alkyl, and a hydroxy protecting group or two R^4 groups
18 form a diol protecting group, or Y^2 and Y^4 together with the carbon atoms to which they are
19 attached to and C-3 carbon atom of the carbohydrate ring form a five-to seven membered
20 ring.

1 14. The process of Claim 13, wherein R^1 , R^2 , Y^1 , Y^2 , Y^4 , and Y^6 are
2 hydrogen, and Y^3 and Y^5 are $-OR^4$.

1 15. The process of Claim 14, wherein R^4 are hydrogen.

1 16. The process of Claim 15 further comprising producing a PPG
2 phosphoramidite of the formula:

4 from said hydropyrazolopyrimidine nucleoside,

5 wherein

6 R^1 is hydrogen and R^2 is an amine protecting group or R^1 and R^2 together form
7 an amine protecting group; and

8 one of R^9 and R^{10} is a phosphoramidite and the other is a hydroxy protecting
9 group,

10 said PPG phosphoramidite producing step comprises:

- 11 (a) (i) contacting said hydropyrazolopyrimidine nucleoside with an
12 amine protecting reagent under conditions sufficient to produce an
13 amine-protected nucleoside of the formula:

- 15 (ii) contacting said amine-protected nucleoside with a hydroxy
16 protecting reagent under conditions sufficient to produce an
17 amine/monohydroxy protected nucleoside of the formula:

19 or

- 20 (i) contacting said hydropyrazolopyrimidine with a hydroxy
21 protecting reagent under conditions sufficient to produce a
22 monohydroxy protected nucleoside of the formula:

23
24
25
26

(ii) contacting said monohydroxy protected nucleoside with an amine protecting reagent under conditions sufficient to produce an amine/monohydroxy protected nucleoside of the formula:

27
28

wherein

29 R¹ is hydrogen and R² is an amine protecting group or R¹ and R²
30 together form an amine protecting group; and
31 one of R⁷ and R⁸ is hydrogen and the other is a hydroxy protecting
32 group;

33 and

34 (b) contacting said amine/monohydroxy protected nucleoside with an
35 activated phosphoramidite under conditions sufficient to produce said PPG phosphoramidite.

1 17. The process of Claim 16, wherein said amine protecting reagent is
2 selected from the group consisting of N,N-dialkylformamide dialkylacetal, and N,N-
3 dialkylacetamide dialkylacetal.

1 18. The process of Claim 16, wherein said hydroxy protecting reagent is a
2 photolabile hydroxy protecting reagent.

1 19. The process of Claim 18, wherein said photolabile hydroxy protecting
2 reagent is selected from the group consisting of 1-(3,4-methylenedioxy-6-nitrophenyl)ethyl
3 chloroformate, 2-(2-nitrophenyl)-2-methylethyl chloroformate, 2-(2-nitro-6-chlorophenyl)-2-
4 methylethylsulfonyl chloride and 3',5'-dimethoxybezoinoxyl chloroformate.

1 20. The process of Claim 16, wherein said hydroxy protecting reagent is an
2 acid labile hydroxy protecting reagent.

1 21. The process of Claim 20, wherein said acid labile hydroxy protecting
2 reagent is selected from the group consisting of trityl halide, monomethoxytrityl halide and
3 dimethoxytrityl halide.

1 22. The process of Claim 16, wherein said activated phosphoramidite is of
2 the formula:

4 wherein

5 X^2 is a leaving group.

1 23. The process of Claim 22, wherein X^2 is selected from the group
2 consisting of halide and diisopropylamino.

1 24. The process of Claim 22, wherein R^9 is dimethoxytrityl and R^{10} is a
2 phosphoramidite moiety of the formula $-\text{P}[\text{N}(\text{i-Pr})_2]\text{OCH}_2\text{CH}_2\text{CN}$.

1 25. The process of Claim 13 further comprising producing said nucleoside
2 of Formula I, wherein said nucleoside of Formula I producing step comprises:
3 contacting an iodopyrazolopyrimidine of the formula:

6 with an activated sugar of the formula:

9 under conditions sufficient to produce said nucleoside of Formula I,

10 wherein

11 $\text{R}^1, \text{R}^2, \text{R}^3, \text{Y}^1, \text{Y}^2, \text{Y}^3, \text{Y}^4, \text{Y}^5$, and Y^6 are those defined Claim 13; and
12 X^1 is a leaving group.

1 26. The process of Claim 25 further comprising producing said
2 iodopyrazolopyrimidine nucleoside of Formula I from a pyrimidinone of the formula:

4 said iodopyrazolopyrimidine nucleoside producing process comprising:
 5 (i) contacting said pyrimidinone with a halogenating agent and a
 6 formylating agent under conditions sufficient to produce a dihalopyrimidine carboxyaldehyde
 7 of the formula:

9 wherein

10 each X³ is independently selected from the group consisting of F, Cl, Br and I;

11 (ii) contacting said dihalopyrimidine carboxyaldehyde with hydrazine
 12 under conditions sufficient to produce a halopyrazolopyrimidine of the formula:

14 (iii) contacting said halopyrazolopyrimidine with an alkoxide of the
 15 formula R³-OM, wherein R³ is alkyl and M is a metal, to produce an
 16 alkoxyypyrazolopyrimidine of the formula:

18 and

19 (iv) iodinating said alkoxyypyrazolopyrimidine with an iodinating agent
 20 under conditions sufficient to produce said iodopyrazolopyrimidine.

1 27. The process of Claim 26, wherein said halogenating agent is selected
 2 from the group consisting of POCl₃, iodine monochloride, N-iodosuccinamide and SOCl₂.

1 28. The process of Claim 26, wherein said formylating agent is a
 2 compound comprising a formyl group attached to a secondary amino group.

1 29. The process of Claim 28, wherein said formylating agent is selected
 2 from the group consisting of dimethyl formamide, 1-formylpiperidine, 1-formylmorpholine
 3 and triformamide.

1 30. The process of Claim 26, wherein said iodinating agent is selected
2 from the group consisting of iodine monochloride and N-iodosuccinimide.

1 31. A process for producing a nucleoside comprising:
2 (a) contacting an iodopyrazolopyrimidine of the formula:

3 with an activated sugar of the formula:

4 under conditions sufficient to produce an deoxy iodopyrazolopyrimidine nucleoside of the
5 formula:

6 (b) producing an amino dihydro hydropyrazolopyrimidine nucleoside from
7 said deoxy iodopyrazolopyrimidine nucleoside, wherein said amino dihydro
8 hydropyrazolopyrimidine nucleoside is of the formula:

9 wherein

10 R^3 is alkyl;

11 R^5 and R^6 are hydroxy protecting groups; and

12 X^1 is a leaving group.

1 32. The process of Claim 31, wherein said step of producing said amino
2 dihydro hydropyrazolopyrimidine nucleoside comprises removing said hydroxy protecting
3 groups R^5 and R^6; hydrolyzing -OR^3 group; and reducing the iodine.

- 1 33. The process of Claim 31 further comprising:
2 (c) contacting said amino dihydro hydropyrazolopyrimidine nucleoside
3 with an amine protecting reagent under conditions sufficient to produce an amine protected
4 nucleoside of the formula:

- 6 (d) contacting said amine protected nucleoside with a hydroxy protecting
7 reagent under conditions sufficient to produce an amine/monohydroxy protected nucleoside
8 of the formula:

10 and

- 11 (e) contacting said amine/monohydroxy protected nucleoside with an
12 activated phosphoramidite of the formula:

14 under conditions sufficient to produce a PPG phosphoramidite of the formula:

16 wherein

17 R¹ is hydrogen;

18 R² is an amine protecting group;

19 or R¹ and R² together form an amine protecting group;

20 R⁴ is a hydroxy protecting group; and
21 X² is a leaving group.

1 34. The process of Claim 33, wherein X² is selected from the group
2 consisting of halide, and -N(i-Pr)₂.

1 35. The process of Claim 33, wherein R¹ and R² together form a nitrogen
2 protecting group of the formula: =CH-N(CH₃)₂.

1 36. The process of Claim 35, wherein R⁴ is selected from the group
2 consisting of an acid labile hydroxy protecting group and a photolabile hydroxy protecting
3 group.

1 37. The process of Claim 36, wherein R⁴ is selected from the group
2 consisting of dimethoxytrityl, trityl, pixyl, 1,1-bis(4-methoxyphenyl)-1-pyrenylmethyl, α-
3 methyl-6-nitropiperonyloxycarbonyl, 2-(2-nitrophenyl)-2-methylethoxycarbonyl, 2-(2-nitro-
4 6-chlorophenyl)-2-methylethylsulfonyl and 3',5'-dimethoxybezinoxy carbonyl.

1 38. The process of Claim 31, wherein said step (b) comprises reducing the
2 iodide by hydrogenation.

1 39. The process of Claim 31, wherein said iodopyrazolopyrimidine is
2 produced from a pyrimidinone of the formula:

4 said iodopyrazolopyrimidine producing step comprising:

5 (i) contacting said pyrimidinone with a halogenating agent and a
6 formylating agent under conditions sufficient to produce a dihalopyrimidine carboxyaldehyde
7 of the formula:

9 wherein each X³ is independently selected from the group consisting of F, Cl, Br and I;

10 (ii) contacting said dihalopyrimidine carboxyaldehyde with hydrazine
11 under conditions sufficient to produce a halopyrazolopyrimidine of the formula:

12

13

14 (iii) contacting said halopyrazolopyrimidine with an alcohol of the formula
 R^3-OH to produce an alkoxyypyrazolopyrimidine of the formula:

15

16 and

17 (iv) iodinating said alkoxyypyrazolopyrimidine with an iodinating agent
18 under conditions sufficient to produce said iodopyrazolopyrimidine.

1 40. The process of Claim 39, wherein said halogenating agent is selected
2 from the group consisting of $POCl_3$, iodine monochloride, N-iodosuccinamide and $SOCl_2$.

1 41. The process of Claim 40, wherein said halogenating agent is selected
2 from the group consisting of $POCl_3$ and $SOCl_2$.

1 42. The process of Claim 39, wherein said formylating agent is selected
2 from the group consisting of dimethyl formamide, 1-formylpiperidine, 1-formylmorpholine
3 and triformalide.

1 43. The process of Claim 39, wherein said iodinating agent is selected
2 from the group consisting of iodine monochloride and N-iodosuccinimide.