Érzelemfelismerés konvolúciós neurális hálóval

Témalaboratórum

Horváth Kristóf

1. Bevezetés

Témának az érzelemfelismerést választottam. A projektet OpenCV és Keras tensorflow technológiák segítségével oldottam meg. Az OpenCV saját arc detektáló modelljét vettem alapul ('haarcascade_frontalface.xml'), ami egy adott képen felismeri, hogy van-e arc és, ha igen hol helyezkedik el. Ez a modell az összes olyan képen lévő arcot érzékeli ami szembe néz a kamerával.

A projektet 3 fő részre bontottam

- Az első az adatok begyűjtése az érzelemfelismerő háló tanításához és teszteléséhez.
- Ezután a konvolúciós neurális háló felépítése jön.
- És legvégül a tanítás és tesztelés marad

2. Adatkészlet előkészítése

A FER 2013^[1] egy széles körben elterjedt adatkészlet, amit gyakran használnak érzelemfelismeréses projektekhez és versenyekhez. Én ezt vettem alapul a convolúciós hálózathoz használt adatkészlet megalkotásához.

Az első probléma ezekkel az adatokkal az volt, hogy mindenféle szögből készített képek voltak találhatóak benne. Ezek számunkra feleslegesek voltak, hiszen a neurális hálózat, amit használunk, az arcok azonosítására egy képen, csak a szemközti arcokat ismeri fel. Az opencv python könyvtár segítségével lettek ezek kiszűrve.

A második problémát abban merült fel, hogy a különböző kategóriák között nem egyenlően voltak elosztva a képek. Ez problémát jelenthet a későbbiek során hiszen, ha az egyik kategóriában kétszer annyi kép van, mint egy másikban, akkor a hálónk azt részesítené előnyben, amiben több kép van. Mivel az undor érzelemhez tartozó képekből a többi kategóriához viszonyítva sokkal kevesebb volt, ezért ez a kategória el lett hagyva.

Az utolsó változtatás az adatkészleten egy konvertálás volt képekből számtömbökké. Ez a lépés nem az adatszűrés szempontjából volt fontos, hanem optimalizáció szempontjából. Tárolhattuk volna az adatkészletet képekként is viszont, akkor minden egyes alkalommal amikor betöltjük, ezeket a képeket, akkor át kellet volna őket konvertálni egy használható formátumba, ezzel lassítva a tanítás menetét. Ezt a lépés a NumPy könyvtár használatával ment végbe.

3. A Konvolúciós neurális háló

A neurális hálók alapköve a neuron. A neuron közvetíti az információt a háló rétegei között, ezt előre terjesztésnek hívjuk. A legelterjedtebb változata a memória nélküli neuron, ami egyenértékű bemenetekkel rendelkezik A továbbított értéket úgy kapjuk meg, hogy a neuronba kötött bemenetek értéket megszorozzuk a súlyukkal majd ezeket összeadjuk. Ezután a kapott eredményt általában egy nemlineáris függvény segítségével kiértékeljük, ami visszaad egy 0 és 1 közötti értéket amit a kimenetét küld tovább a neuron a további rétegek felé.

A háló rétegei több ilyen neuronból állnak össze, amik a legegyszerűbb esetben kapcsolódnak az őket megelőző és őket követő réteghez. A neurális hálók rétegeinek fő csoportosítása három csoportot határoz meg. Az első a bemeneti réteg, ez jelképezi, fogadja azt az adatot, amit odaadunk a hálónak kiértékelésre. A középső rejtett réteg általában több réteget foglal magában, amik a háló céljától eltérően változnak. Az utolsó a kimeneti réteg, amin az eredményt vagy eredményeket kapjuk meg.

A Konvolúciós neurális háló amit itt is használunk két főbb részből áll. Az első rész a kép jellemzőit azonosítja és tanulja meg. A mi esetünkben ezek arcvonások. A második pedig egy osztályozó rész ami a kiszűrt tulajdonságok alapán kategorizálja a bemenetet.

3.1 Rétegek a hálóban

Az első részben az itt használt rétegek a következők:

Konvolúciós réteg (Convolutional Layer)

A konvolúciós réteg neuronai kis régiókon kernelen keresztül "pásztáznak" az input rétegen, és egy konvolúciós művelettel kiszámítják az aktivációs térképet. Minden neuron az input réteg kis részét nézi, és a súlyokat és a nem-lineáris aktivációs függvényeket alkalmazza azokra az értékekre. Ezáltal a neuronok különböző jellemzőket tanulnak meg, például élek, formák vagy színek.

Pooling réteg (Pooling Layer)

A pooling réteg csökkenti a térbeli dimenziókat, például max-pooling alkalmazásával. Ezáltal csökken a számításigény és a túlzott illeszkedés kockázata, miközben az alapvető jellemzők megmaradnak.

A második részben használt réteg a sűrű réteg (dense layer)

a neurális hálózat egy olyan rétege, amelyben minden neuron kapcsolódik minden más neuronhoz a következő rétegben.

Még ezeken kívül használjuk az **aktivációs réteget**, ez tartalmazza a nem lineáris függvényeket, amiket egy adott rétegen használunk.

A hálón még használunk két technikát:

kötegelt normalizálás (batch normalization):

Normalizálja a bemeneteket a batch alapján, és ezzel segít a hálózat stabilitásának növelésében és a tanulás gyorsításában

Dropout: A rétegben amire alkalmazzuk deaktivál neuronokat, ezáltal megelőzve az overfitting jelenséget. Az overfitting az a jelenség amikor a háló pontossága a betanító adathalmazon sokkal magasabb, mint a tesztelő adathalmazon, vagyis megtanulta a betanító adathalmaz olyan jellegzetességeit amik nem fontosak a megoldás szempontjából.

3.2 A használt Konvolúciós háló felépítése

A háló a Keras python könyvtár segítségével készült el

Rétegek:

- 1. input layer (none,48,48,1)
- 2. Conv2D (none, 48,48,64)
- 3. BatchNormalization (none, 48,48,64)
- 4. Activation(relu) (none, 48,48,64)
- 5. MaxPooling2D (none, 24,24,64)
- 6. Dropout(0.25) (none, 24,24,64)
- 7. Conv2D (none, 48,48,128)
- 8. BatchNormalization (none, 48,48,128)
- 9. Activation(relu) (none, 48,48,128)
- 10. MaxPooling2D (none, 12,12,128)
- 11. Dropout(0.4) (none, 12,12,128)
- 12. Conv2D (none, 12,12,256)
- 13. BatchNormalization (none, 12,12,256)
- 14. Activation(relu) (none, 12,12,256)
- 15. MaxPooling2D (none, 6,6,256)
- 16. Dropout(0.5) (none, 6,6,256)
- 17. Flatten (none, 9261)
- 18. Dense (none, 256)
- 19. BatchNormalization (none, 256)
- 20. Activation(relu) (none, 256)
- 21. Dropout(0.5) (none, 256)
- 22. Dense (none, 6)
- 23. Activation (softmax) (none, 6)

4.1 A tanítás értékelő számai

A neurális hálót két fő mérték alapján szokás mérni. Az első a pontosság (accuracy) ami az eltalált esetek száma osztva az összes esettel.[5]

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

A másik pedig a veszteség (loss), itt categorical crossentropy típusú veszteséget használunk.

Ezeken kívül a hatékonyság vizualizálásához konfúziós mátrixot használunk. A modell által prediktált osztályokat összehasonlítja, és különböző értékekkel töltik ki a mátrix celláit.[6]

$$ext{Loss} = -\sum_{i=1}^{ ext{output size}} y_i \cdot \log \hat{y}_i$$

III[7]

A mi esetünkben 6 sor és oszlop lesz. A sor és oszlopnevek a kategóriák nevei lesznek és minden, ami nem a főátlón van false értéknek fog számítani.

4.2 Tanítás különböző paraméterekkel

A modell tanításakor a változtatható paraméterek:

Learning rate – Azt szabályozza, hogy milyen 'gyorsan' tanul a modell, milyen mértékben változtatja a visszaterjesztés során a súlyokat

Batch size – Egyszerre hány adatot küldünk át a modellen

Epoch number – Hányszor küldjük át a teljes tanító adatkészletet a modellen

Optimizáló

Két eszközt használtam a keras könyvtárból, ezen változók értékének szűkítésében, javításban.

Az első az **EarlyStopping**, ez be lett állítva, hogy a validációs adatok pontosságát (val_accuracy) figyelje és ha 10 epoch-on keresztül nincs benne javulás akkor leállítja a tanítást, és betölti a legjobb eredményt elérő súlyokat.

Ennek a használatával nem kell foglalkoznunk az epoch number meghatározásával. Ezt az értéket mindenhol 100-ra állítottam, mert a tapasztalataim alapján addig sosem fog eljutni. Például itt a teljesítménye az alábbi tanulásnak:

batch size	16
learning rate	0.01
optimalizáló	Nadam

Egy másik eszköz, amit használtam a ReduceLROnPlateau. Ezzel csökkenthető futás közben a learning rate. Ezt egy kis kísérletezés után úgy állítottam be, hogy ha a validációs pontosság nem javul 4 epoch után, akkor a learning rate 0.4-gyel redukálódik, amíg el nem éri a 0.0001 alsó határt. Ezáltal tovább finomítva a modell tanítását.

Ezen beállítások mellett, az alábbi eredmények születtek.

	Test1	Test2	Test3	Test4	Test5
Learning rate	0.01	0.01	0.001	0.01	0.001
Batch size	16	16	16	32	32
Optimizer	Nadam	Adam	Adam	Adam	Adam
Loss	1.43	0.91	1.05	0.97	1.32
Accuracy	0.65	0.7	0.67	0.68	0.63

5. Eredmény

A végső program elég jól ismeri fel az érzelmeket képekről és videó folyamból. Legjobban a neutrális és boldog arckifejezéseket azonosítja a videók alapján. Szerintem overfitting jelentkezik és még lehetne javítani rajta. Alább néhány kép látható a programról:

Források:

https://www.nature.com/articles/s41598-022-11173-0

https://www.hindawi.com/journals/jece/2023/9351345/fig1/

https://www.hindawi.com/journals/jece/2023/9351345/

https://www.youtube.com/watch?v=qFJeN9V1ZsI

- [1] https://www.kaggle.com/datasets/msambare/fer2013/
- [2] https://project.mit.bme.hu/mi_almanach/books/neuralis/ch01s02
- [3] https://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Szines_neuralis_halo.png/220px-Szines_neuralis_halo.png
- [4] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
- [5] https://miro.medium.com/v2/resize:fit:1400/1*udGMH6OQF4CMcv42mjW qg.png
- [6] https://miro.medium.com/v2/resize:fit:1400/0*pLyDoA9oQU7xq8i .png
- [7] https://assets-global.website-files.com/6266b596eef18c1931f938f9/644aea65cefe35380f198a5a_class_guide_cm08.png