Dinâmica

1.
$$\vec{a} = \frac{3}{4} + \frac{1}{2} \hat{i}$$
 (m/s²)

2. a)
$$m_1/m_2 = 1/3$$
; b) $a = 0.75 \text{ m/s}^2$

7. a) 15 kg (usando
$$\mu_e = 0,20$$
); b) 2,29 m/s² (usando $\mu_c = 0,15$)

8. a)
$$3,3$$
 m/s²; $4,9$ m/s²; $0,23$ m/s² (da esquerda para a direita)
[bloc A = bloc à esquerdo em cada situação]

11. a)
$$t = 4/3 = 7$$
 b) $\vec{N} = 152,7 \hat{i} + 101,5 \hat{j} - 375,0 \hat{k}$ (m/s) $|\vec{N}| = 417,4 \text{ m/s}$

15. a)
$$0,30;$$
 5) $10,2$
16. a) $x(t) = \frac{5}{2}t^{2};$ $y(t) = \frac{3}{2}t$ j b) $y = (\frac{9x}{10})^{1/2}$
c) $\vec{\lambda} = \frac{5}{2}t^{2}\hat{\lambda} + \frac{3}{2}t\hat{\lambda}$; d) $\vec{\lambda} = 5t\hat{\lambda} + \frac{3}{2}\hat{\lambda};$ e) $5,2$ m/s

- 17. a) $\vec{x} = 2t^2 \hat{x} + \frac{4}{3}t \hat{j} \quad (m/s^2); \quad \vec{\nabla} = \frac{2}{3}t^3 \hat{x} + \frac{2}{3}t^2 \hat{j} \quad (m/s)$ $\vec{\nabla} = \frac{1}{6}t^4 \hat{x} + \frac{2}{9}t^3 \hat{j} \quad (m)$
 - c) $N(t=3s) = 6\sqrt{10}$ m/s, fazendo un ângulo de 18,4° com o eixo dos xx
- 18. $w = 2,60 \times 10^{-6} \text{ nal/s}; \quad N = 9,97 \times 10^{2} \text{ m/s}$ $\alpha_{c} = 2,60 \times 10^{-3} \text{ m/s}^{2}$
 - 19. a) F=-mw2x
 - b) A fonça aponta sempre para a origem