$\mu PandOS$

Contents

1	Cos'è?
2	Fase 1 - Definizione operazioni su liste di pcb e messaggi
	2.1 Obiettivi
	2.2 Prototipi delle funzioni
	2.2.1 Allocazione e deallocazione dei PCB:
	2.2.2 PCB Queue:
	2.2.3 PCB Trees:
	2.2.1 Impossible a desire control and messes 81.
	2.2.5 Message
3	Fase 2 - Definizione del Nucleo, Scheduler, SSI, Interrupt ed eccezioni
	3.1 Utility
	3.1.1 timer.c
	3.2 Inizializzazione nucleo
	3.2.1 Dichiarazione e inizializazione variabili globali
	3.2.2 Dichiarazione e inizializazione strutture dati
	3.2.3 Interval timer
	3.2.4 Processi SSI e Test
	3.3 Scheduler
4	Fase 3
5	Crediti
•	5.1 Github
	5.1 Gilliab

1 Cos'è?

μPandOS è un sistema operativo microkernel sviluppato per fini didattici; in particolare questa implementazione è fatta al fine di svolgere un progetto propedeutico all'esame per il corso 08574 - Sistemi Operativi (anno accademico 2023/24) per l'università di Bologna.

2 Fase 1 - Definizione operazioni su liste di pcb e messaggi

2.1 Obiettivi

In questa fase andremo a scrivere le basi per quanto riguarda questo progetto, ovvero definiremo i metodi di due strutture fondamentali per quanto riguarda PandOS, ossia i messaggi e i PCB

2.2 Prototipi delle funzioni

2.2.1 Allocazione e deallocazione dei PCB:

- void initPcbs(): tramite la funzione freePcb, vengono aggiunti in coda gli elementi della pcbTable (da 1 a MAXPROC) nella lista dei processi liberi;
- void freePcb(pcb_t *p): mette l'elemento puntato da p nella lista dei processi liberi;
- pcb_t *allocPcb(): rimuove il primo elemento dei processi liberi, inizializza tutti i campi e ritorna un puntatore ad esso.

2.2.2 PCB Queue:

- void mkEmptyProcQ(struct list_head *head): inizializza una variabile come puntatore alla testa della coda dei processi;
- int emptyProcQ(struct list_head *head): se la coda la cui testa è puntata da head è vuota ritorna TRUE, altrimenti FALSE;
- void insertProcQ(struct list_head *head, pcb_t *p): inserisce il PCB puntato da p in fondo alla coda dei processi puntata da *head;
- pcb_t *headProcQ(struct list_head *head): ritorna NULL se la coda dei processi è vuota, altrimenti il PCB in testa;
- pcb_t *removeProcQ(struct list_head *head): rimuove la testa della coda dei processi puntata da *head e ritorna un puntatore dell'elemento in questione; se la lista è vuota ritorna NULL;
- pcb_t *outProcQ(struct list_head *head, pcb_t *p): cerca mediante un for_each il PCB p nella lista puntata da head e lo rimuove; se lo trova ritorna p stesso, altrimenti NULL.

2.2.3 PCB Trees:

- int emptyChild(pcb_t *p): ritorna l'esito della chiamata alla funzione list_empty, alla quale viene passato come parametro l'indirizzo del list_head p_child di p;
- void insertChild(pcb_t *prnt, pcb_t *p): si assegna prnt al puntatore p_parent di p. Dopo si aggiunge p alla lista dei fratelli, tramite list_add (se non ci sono altri figli) e list_add_tail (per rispettare la FIFOness), alle quali viene passato come parametro gli indirizzi del list_head p_sib di p e del list_head p_child di prnt (p diventa fratello dei figli di prnt e quindi figlio di prnt).
- pcb_t *removeChild(pcb_t *p): il controllo sulla presenza o meno di figli avviene con la funzione emptyChild. Se ci sono figli, si sceglie il primo figlio tramite la macro container_of, chiamata sull'elemento successivo al list_head p_child. In seguito il figlio viene eliminato tramite la funzione list_del e viene troncato il legame con il padre, assegnando il valore NULL al puntatore p_parent del figlio.
- pcb_t *outChild(pcb_t *p): se p ha un padre, rimuovo p dalla lista dei suoi fratelli chiamando list_del a cui passo come parametro l'indirizzo di p_sib di p, in seguito rimuovo il legame con il padre assegnando NULL al puntatore p_parent di p.

2.2.4 Allocazione e deallocazione dei messaggi:

- void freeMsg(msg_t *m): Inserisce l'elemento puntato da m in testa alla lista dei messaggi.
- msg_t *allocMsg(): Ritorna NULL se la lista dei messaggi è vuota. Altrimenti rimuove un elemento dalla testa, imposta a 0 la variabile m_payload di ogni messaggio presente nell'array msgTable e ritorna un puntatore all'elemento rimosso.
- void initMsgs(): Inserisce gli elementi presenti nell'array msgTable in coda alla lista dei messaggi.

2.2.5 Message

- void mkEmptyMessageQ(struct list_head *head): Inizializza una una lista di messaggi vuota.
- int emptyMessageQ(struct list_head*head): $Ritorna1selalistapuntatadahead\`evuota, altrimenti0.$
- void insertMessage(struct list_head *head, msg_t *m): Inserisce il messaggio puntato da m in coda alla lista puntata da head.
- void pushMessage(struct list_head *head, msg_t *m): Inserisce il messaggio puntato da m in testa alla lista puntata da head.
- msg_t *popMessage(struct list_head *head, pcb_t *p_ptr): Rimuove il primo messaggio trovato nella lista puntata da head che è stato inviato dal thread p_ptr.

 Se p_ptr è NULL, ritorna il primo messaggio in coda.

 Se head è vuota o se non viene trovato alcun elemento mandato dal thread p_ptr, ritorna null.
- msg_t *headMessage(struct list_head *head): Se la lista puntata da head è vuota ritorna NULL, altrimenti ritorna il messaggio in testa ad essa.

3 Fase 2 - Definizione del Nucleo, Scheduler, SSI, Interrupt ed eccezioni

Di seguito sono riportate le scelte progettuali per quanto riguarda i moduli sviluppati:

3.1 Utility

3.1.1 timer.c

In questo modulo abbiamo delle funzioni/procedure ausiliarie richiamate degli altri moduli:

- unsigned int getTOD()
- void updateCPUtime(pcb_t *p)
- void setIntervalTimer(unsigned int t)
- void setPLT(unsigned int t)
- unsigned int getPLT()

3.2 Inizializzazione nucleo

3.2.1 Dichiarazione e inizializazione variabili globali

Nel modulo initial.c viene implementato il main(), la dichiarazione delle variabili globali:

- int process_count ossia il contatore dei processi attivi;
- int soft_blocked_count ossia il contatore dei processi bloccati;
- int start ...
- int pid_counter, usato per assegnare in maniera sequenziale i PID ai processi man mano che vengono creati;
- pcb_t *current_process ossia il puntatore al PCB del processo corrente;
- pcb_t *ssi_pcb, che è il puntatore al PCB del SSI;

3.2.2 Dichiarazione e inizializazione strutture dati

Vengono inoltre implementate le strutture dati principali:

- attraverso le funzioni initPcbs() e initMsgs() vengono inizializzate le strutture della fase 1;
- Ready_Queue, ossia la lista dei proessi pronti ad essere eseguiti;
- 8 liste per i processi bloccati in attesa dei device o per il terminale (una per input e una per output);
- void initPassupVector() è una procedura che viene richiamata per definire il pass up vector, ossia è la struttura dati a livello hardware che indica a quale funzione passare il controllo quando si verifica un interrupt.

3.2.3 Interval timer

Viene caricato l'interval timer a 100 ms attraverso la chiamata alla procedura ausiliaria setIntervalTimer(PSECOND) definita in timers.c

3.2.4 Processi SSI e Test

Infine, prima di richiamare lo Scheduler, attraverso la procedura void initFirstProcesses() vengono inseriti nella Ready Queue i processi del SSI e del test. Questi avranno lo status settato in modo da avere la maschera dell'interrupt abilitata, l'interval timer abilitato e che siano in modalità kernel. Avranno rispettivamente pid 0 e 1.

3.3 Scheduler

Lo Scheduler è il componente che gestisce la coda dei processi pronti ad essere eseguiti (**Ready Queue**); la procedura principale che svolge tutto ciò è void scheduler(); questa parte con un controllo iniziale sulla Ready Queue vedendo se è vuota (con emptyProcQ(&Ready_Queue)):

- se non è vuota prendo il processo che deve essere preso in carico dalla CPU (current_process) con la funzione removeProcQ(&Ready_Queue), setto il Timer attraverso la funzione setPLT() a 5 ms (con la costante TIMESLICE) per implementare il Round Robin, e infine viene caricato lo stato del processo corrente nel processore (con LDST());
- altrimenti (se vuota), si effettua la Deadlock detection; in particolare può decidere se effettuare un HALT() quando non ci sono più processi da eseguire; se ci sono altri PCB entrerà in WAIT(); se la ready queue è vuota e ci sono processi bloccati si entra in deadlock invocando PANIC() fermando così l'esecuzione;

4 Fase 3 - ...

5 Crediti

5.1 Github

Il sorgente del progetto è reperibile nella seguente repository su Github.

5.2 Autori

- Fiorellino Andrea, matricola: 0001089150, andrea.fiorellino@studio.unibo.it
- $\bullet\,$ Po Leonardo, matricola: 0001069156, leonardo.po@studio.unibo.it
- \bullet Silvestri Luca, matricola: 0001080369, luca.silvestri
9@studio.unibo.it