Formelblatt Regelungstechnik

1 Parameteridentifikation

1.1 Moore-Penrose-Pseudoinverse

$$\underline{M}^+ = \left(\underline{M}^T \underline{M}\right)^{-1} \underline{M}^T$$

1.2 Rekursives Last-Squares Verfahren:

Prädiktionsschritt:

$$\hat{y}_k = \underline{m}_k^T \cdot \underline{\theta}_{k-1}$$

Update-Schritt:

$$\underline{\hat{\theta}}_k = \underline{\hat{\theta}}_{k-1} + \frac{\gamma \cdot \underline{m}_k}{\alpha + \underline{m}_k^T \cdot \underline{m}_k} \cdot (y_k - \hat{y}_k)$$

mit $\alpha \geq 0$ und $0 < \gamma \leq 2$.

2 Hurwitz-Matrix

$$H_{N} = \begin{bmatrix} a_{N-1} & a_{N-3} & a_{N-5} & a_{N-7} & \cdots & 0 \\ a_{N} & a_{N-2} & a_{N-4} & a_{N-6} & \cdots & 0 \\ 0 & a_{N-1} & a_{N-3} & a_{N-5} & \cdots & 0 \\ 0 & a_{N} & a_{N-2} & a_{N-4} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_{0} \end{bmatrix}$$

3 Einstellregeln nach Ziegler und Nichols

Reglertyp	K_P	T_n	T_{v}
Р	$\frac{T_g}{k \cdot T_u}$	-	-
PI	$0.9 \frac{T_g}{k \cdot T_{\prime\prime}}$	$3.33T_u$	-
PID	$1.2 \frac{T_g}{k \cdot T_u}$	$2T_u$	$0.5T_u$

4 Diskrete Approximation

Approximationsregel	Ersetzungsregel für s	
Euler vorwärts	$s = \frac{1}{T} \frac{z-1}{z}$	
Euler rückwärts	$s = \frac{1}{T} (z - 1)$ $s = \frac{2}{T} \frac{z - 1}{z + 1}$	
Bilinear (Tustin)	$s = \frac{2}{T} \frac{z-1}{z+1}$	