

Sr.	Unit No.	Unit No. Question					
1.	1	Define following: 1. Conjunction 2. Disjunction 3. Negation 4. Tautology 5. Composition 6. Inverse of function					
2.	1	Describe one-to-one, onto and bijection function.	U	CO1			
3.	1	Check whether the function 1. $f: R \rightarrow R$, $f(x) = x^2$ is one to one or onto. 2. $f: R \rightarrow R^+$, $f(x) = x^2$ is one to one or onto. 3. $f: R^+ \rightarrow R$, $f(x) = x^2$ is one to one or onto. 4. $f: R^+ \rightarrow R^+$, $f(x) = x^2$ is one to one or onto.					
4.	1	Define tautology and contradiction	R	CO1			
5.	1	 Derive truth table for following logic formula: 1. P → (¬P V ¬Q). Is it a tautology? A contradiction? Or neither? Justify your answer. 2. (p v q) ^ ¬(p→q) is tautology? A contradiction? Or neither? Justify your answer. 					
6.	1	Define reflexivity, symmetry, and transitivity properties of relations.	R	CO1			
7.	1	Check Equivalence Relation for given Examples. 1. $A=\{1,2,3\}$, $R=\{(1,3),(3,1),(2,2)\}$ 2. $A=\{1,2,3\}$, $R=\{(1,1),(2,2),(3,3),(1,2)\}$ 3. $R=\emptyset$ 4. $A=\{1,2,3\}$, $R=\{(1,2),(1,1),(2,1),(2,2),(3,2),(3,3)\}$					
8.	1	Prove that $\sqrt{2}$ is irrational by method of contradiction.	A	CO1			
9.	1	Prove that $V = in \text{ in that of all } S$ in the state of the state o					
10.	1	Prove that for every $n \ge 1$, $7 + 13 + 19 + + (6n + 1) = n(3n + 4)$ using PMI	A	CO1			
11.	1	Prove that for every $n \ge 1$, using PMI n Σ 1 / i(i+1) = n/(n+1) i=1					
12.	1	Prove that For every $n \ge 1$, using PMI n $\Sigma i^2 = n (n+1)(2n+1)/6$ i=1					
13.	1	Prove that $1+3+5++r=n^2$ for all $n>0$ where r is an odd integer (Note : $r=2n-1$) using PMI	A	CO1			
14.	1	Show that $2^n > n^3$ for $n >= 10$ by Mathematical Induction.	A	CO1			
15.	1	Prove that for every $n \ge 0$, $n(n^2 + 5)$ is divisible by 6 using PMI	A	CO1			
16.	2	Draw Finite Automata (FA) for following languages: L1 = $\{x / 11 \text{ is not a substring of } x, x \in \{0,1\}^*\}$ L2 = $\{x / x \text{ ends with } 10, x \in \{0,1\}^*\}$ Find FA accepting languages (i) L1 \cap L2 and (ii) L1 – L2 (iii) L1 U L2	A	CO2			

18. 2 19. 2 D E:	Find FA accepting languages (i) L1 ∩ L2 and (ii) L2 – L1 (iii) L1 U L2 Let M1, M2 and M3 be the FAs pictured in Figure, recognizing languages L1, L2 and L3, respectively. Draw FAs recognizing the following languages. a. L1 U L2 b. L1 ∩ L3 M1= A O B O O O O O O O O O O O	A	CO2
E	Explain how to convert NFA – Λ into NFA and FA with suitable example OR Convert following NFA- Λ to NFA and FA.	R	CO2
E	Explain how to convert NFA – Λ into NFA and FA with suitable example OR Convert following NFA- Λ to NFA and FA.		
20. 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	CO2

24.	2	Explain Pumpi	ng Lemma ar	nd its applicat	tions.			U	CO2
25.	2	Explain 'finite state machines with outputs. Discriminate between Mealy and Moore machines.					en Mealy and	U	CO2
26.	2	Design a Moore machine to find residue number 3 for binary number					er	A	CO2
	_	Design Moore				number.			002
27.	2	Convert Mealy machine to Moore machine. $\begin{array}{c c} b 0 & a 1 \\ \hline & a 0 \\ \hline & b 1 \end{array}$						A	CO2
		Convert Moore	e machine to	Mealy machir	ne.				
		1.		J					
		2.	p (0)	a b	q(1) b r(0) a	a, s (1)	b		
			Present	Next State		Output			
			State	0	1				
28.	2		$\rightarrow p_0$	r	q_0	3		A	CO2
			p ₁	r	q_0	1			
			q_0	p ₁	S ₀	0			
			q_1	p ₁	S ₀	1			
			r	q ₁	p ₁	0			
			S ₀	S ₁	r	0 1			
		3.	S ₁	S ₁	r	1			
		5.	Old state	After input a New state	After input b	Output			
			-q ₀	q_1	q_2	0			
			q_1	q_3	q_2	1			
			q_2	q_2	q_3	0			
			q_3	q ₃	q_3	1			
29.	3	Explain Chomsky hierarchy, Find CFG for the following languages. 1. $L = \{a^i b^j a^k \mid j > i + k\}$ 2. $L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$ 3. $L = \{0^i 1^j 0^k \mid j > i + k\}$ 4. $(011 + 1)^* (01)^*$ 5. $L = (0 + 1) 1^* (1 + (01)^*)$ 6. $L = a^* b^*$ 7. $\{a^i b^j c^k \mid i = j + k\}$					A	CO3	

2101CS603 – Theory of Computation | 2023-24

30.	3	 For string aaabbabb derivation. S→ aB bA A→a aS bAA B→b bS aBB Derive left most and grammar. S→aAS a A→SbA SS ba 	A	CO3		
31.	3	$S \rightarrow a Sa bSS SSb SbS$ $S \rightarrow A \mid B$ $A \rightarrow aAb \mid aabb$ $B \rightarrow abB \mid \Lambda$	$S \rightarrow ABA$, $A \rightarrow aA \mid \varepsilon$ $B \rightarrow bB \mid \varepsilon$ $S \rightarrow S + S \mid S *$ Write the unarules for the a	B →bB Λ	U	CO3
32.	3	Explain Union Rule and Conca	atenation Rule	for Context-Free Grammar.	U	CO3
33.	3	Define CNF and Convert following CFG to equivalent Chomsky Normal Form. S → AACD ACD AAC CD AC C A → aAb ab C → aC a D → aDa bDb aa bb			A	соз
34.	3	Convert following CFG to equivalent Chomsky Normal Form. $S \rightarrow ASB \mid \Lambda$ $A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$				соз
35.	3	Convert following CFG to equivalent Chomsky Normal Form. $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \Lambda$				соз
36.	3	Convert following CFG to equi S→ bA aB A→ bAA aS a B→ aBB bS b	A	соз		
37.	3	Convert following CFG to equivalent Chomsky Normal Form. S → aAbB A → Ab b B → Ba a			A	соз
38.	3	Convert following CFG to equivalent Chomsky Normal Form. $S \rightarrow 0A0 \mid 1B1 \mid BB$ $A \rightarrow C$ $B \rightarrow S \mid A$ $C \rightarrow S \mid \epsilon$				соз
39.	3	Convert following CFG to equiv $S \rightarrow aY \mid Ybb \mid Y$ $X \rightarrow \Lambda \mid a$ $Y \rightarrow aXY \mid bb \mid Xxa$	A	соз		
40.	3	Convert following CFG to equivalent Chomsky Normal Form. S→ AaA CA BaB				СО3

2101CS603 – Theory of Computation | 2023-24

				1
		A→ aaBa CDA aa DC		
		$B \rightarrow bB \mid bAB \mid bb \mid aS$		
		$C \rightarrow Ca \mid bC \mid D$ $D \rightarrow bD \mid \Lambda$		
		Convert following CFG to equivalent Chomsky Normal Form.		
		$S \rightarrow TU \mid V$		
4.1	2	$T \rightarrow aTb \mid \Lambda$		COD
41.	3	$U \rightarrow cU \mid \dot{\Lambda}$	A	CO3
		V →aVc W		
		$W \rightarrow bW \mid \Lambda$		
42.	4	Define PDA & its application also explain acceptance of a string by empty stack.	U	CO4
43.	4	Describe the pushdown automata for language $\{0^n1^n \mid n \ge 0\}$.	A	CO4
44.	4	Design PDA for Equal number of a's and b's OR Equal no of 0's and 1's.	A	CO4
		L = { $x \in \{a, b\}^* \mid n_a(x) > n_b(x)$ } OR Design PDA accepting strings with more a's		
45.	4	than b's. Trace it for the string "abbabaa".	A	CO4
46.	4	$L = \{ xcx^r / x \in \{a,b\}^* \}$ design a PDA and trace it for string "abcba".	A	CO4
47.	4	Design PDA accepting all odd-even length strings over {a, b}	A	CO4
48.	4	Design PDA accepting the language: $\{a^i b^j c^k i, j, k \ge 0 \text{ and } j = i \text{ or } j = k\}$	A	CO4
49.	4	Design PDA accepting the language: $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i=j+k\}$	A	CO4
50.	4	Design PDA accepting the language: $\{a^n b^{n+m} a^m \mid n, m \ge 0\}$	Α	CO4
		Design and draw a deterministic PDA accepting "Balanced strings of Brackets"		
51.	4	which are accepted by following CFG. S \rightarrow SS [S] {S} Λ OR Design a pushdown	Α	CO4
01.	-	automata to check well-formed parenthesis.		
	4	Design PDA for L = $\{x \in \{a, b\}^* \mid n_a(x) \neq n_b(x)\}$ Trace it for the string abbaababbb		604
52.	4	(no of a's and b's are not same)	A	CO4
53.	4	Design a PDA, M to accept L = $\{a^n b^{2n} \mid n \ge 1\}$	A	CO4
		Convert given CFG to PDA.		
- 4	4	$S \rightarrow 0AB$	Α.	CO4
54.	4	$ A \rightarrow 1A 1$ $ B \rightarrow 0B 1A 0$	A	CO4
		Trace the string 01011 using PDA.		
		Convert given CFG to PDA.		
		$S \rightarrow 0B 1A$	_	20.4
55.	4	$A \rightarrow 0S 1AA 0$	A	CO4
		B → 1S 0BB 1		
		Convert given CFG to PDA.		
56.	4	$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$	Α	CO4
		$E \rightarrow I \mid E * E \mid E + E \mid (E)$		
		Convert given CFG to PDA. S → AB		
57.	4	A → BB a	A	CO4
		$ B \rightarrow AB a b$		
58.	5	Draw TM to accept Palindromes over {a, b}. (Even as well as Odd Palindromes)	A	CO5
59.	5	Draw TM to accept the language: $\{0^n 1^n n \ge 1\}$	A	CO5
60.	5	Draw TM to accept the language: $\{ a^n b^n c^n \mid n \ge 1 \}$	A	CO5
61.	5	Draw the TM to copy string and delete a symbol.	A	CO5
62.	5	Design a Turing machine to reverse the string over alphabet {0, 1}	A	CO5

63.	5	Design a Turing machine which accepts the language consisting string which contain aba as a substring over alphabets {a, b}	A	CO5
64.	5	Draw the TM for L = $\{ ss \mid s \in (a, b)^* \}$ OR Draw the TM for L = $\{ xx \mid x \in \{a, b\}^* \}$ also trace string aa.	A	CO5
65.	5	Draw a transition diagram for a Turing machine accepting the following language. L = $\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}$.	A	CO5
66.	5	Explain Universal TM and Church Turing Thesis describes its capabilities.	U	CO5