Algebre Lineaire II

David Wiedemann

Table des matières

L	Pol	ynomes	3
	1.1	Division avec reste	5
	1.2	Factorisation des polynomes sur un corps	6
	1.3	Factorisation des polynomes sur un corps	7
	1.4	Diviseurs Communs le plus grand	7
L	ist	of Theorems	
	1	Definition (Centre d'un anneau)	3
	2	Definition (Diviseurs de 0)	3
	3	Definition (Anneau integre)	3
	1	Theorème	3
	4	Definition (Polynome)	3
	2	Theorème	3
	5	Definition (Degre d'un polynome)	4
	3	Theorème	4
	4	Theorème	4
	5	Theorème	5
	6	Corollaire	5
	7	Theorème	5
	6	Definition (Diviseurs de polynomes)	6
	7	Definition (Racine)	6
	8	Theorème	6
	8	Definition (Multiplicite d'une racine)	7
	9	Theorème (Theoreme fondamental de l'algebre)	7
	9	Definition (Polynome irreductible)	7
	10	Theorème	7
	11	Theorème	7
	10	Definition (Polynome Unitraire)	7
	11	Definition (Diviseur Commun)	8
	12	Theorème	8

12	Definition (PGCD)	 					8
13	Theorème (Algorithme d'Euclide)	 					8

Lecture 1: Introduction

Tue 23 Feb

1 Polynomes

Definition 1 (Centre d'un anneau)

Le centre Z(R) est l'ensemble des elements x satisfaisant

$$\{x \in R | ra = ar \forall a \in R\}$$

Definition 2 (Diviseurs de 0)

a est un element non nul d'un anneau R satisfaisant qu'il existe $b \in R$ tel que ab = 0 ou ba = 0.

Definition 3 (Anneau integre)

Si un anneau est commutatif et n'a pas de diviseurs de 0, alors l'anneau est integre.

Theorème 1

Soit R un anneau, alors il existe un anneau $S\supseteq R$ (R est un sous-anneau) et $\exists x\in S\setminus R$ tel que

$$-ax = xa, \forall a \in R$$

—
$$Si \ a_0 + \ldots + a_n x^n = 0 \ et \ a_i \in R \forall i \ alors \ a_i = 0 \forall i$$

 $Cet\ x\ est\ appele\ indeterminee\ ou\ variable.$

Definition 4 (Polynome)

Un polynomer sur R est une expression de la forme

$$p(x) = a_0 + \ldots + a_n x^n$$

ou a_i est le i-eme coefficient de p(x).

R[x] est l'ensemble des polynomes sur R.

Theorème 2

R[X] est un sous-anneau. R est sans diviseurs de $0 \Rightarrow R[X]$ est sans diviseurs de 0.

De meme, si R est commutatif, R[x] aussi.

Preuve

Soit $f(x) = \sum a_i x_i, g(x) = \sum b_i x^i$ de degre n resp. m.

$$f(x) + g(x) = \sum_{i=1}^{\max(m,n)} (a_i + b_i)x^i$$

De meme, on a

$$f(x) \cdot g(x) = a_0 b_0 + \dots = \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j \right) x^k$$

Donc R[X] est stable pour +, \cdot et donc immediatement pour -, donc R[X] est un sous-anneau de S.

Soient $f(x), g(x) \neq 0$ et $n = \max\{i : a_i = 0\}$, le m + n-ieme coefficient de f(x)g(x) est a_nb_m et donc si R est integre, R[x] l'est aussi.

Definition 5 (Degre d'un polynome)

Soit $f(x) = a_0 + \ldots \in R[X]$, $f(x) \neq 0$. On definit

$$\deg(f) = \max\{i : a_i = 0\}$$

Ce dernier terme s'appelle le coefficient dominant de f, de plus on definit

$$f(x) = 0 : \deg(f) = -\infty$$

 $Si \deg(f) = 0$, alors f est une constante.

Theorème 3

Soit R un anneau, $f,g \in R[X] \neq 0$ tel que au moins un de leur coefficients dominants de f ou de g ne sont pas des diviseurs de 0. Alors $\deg(f \cdot g) = \deg(f) + \deg(g)$

Preuve

Soit $f(x)=a_0+\ldots,g(x)=b_0+\ldots,\deg f=n,\deg g=m.$ Le n+m ieme coefficient de $f\cdot g=a_n\cdot b_m\neq 0$

Soit $p(x) \in R[x]$, ce polynome induit une application $f_p : R \to R$, on ecrit aussi p(r)

Theorème 4

Soit K un corps et $r_0, r_1, \ldots, r_n \in K$ des elements distincts et soient $g_0, \ldots, g_n \in K$.

Il existe un seul polynome $f \in K[x]$ tel que

- 1. $\deg f \leq n$
- 2. $f(r_i) = g_i$

Preuve

On cherche $a_0, \ldots a_n$ tel que

$$a_0 + a_1 r_i + \dots a_n r_i^n = g_i$$

Donc, on cherche

$$\begin{pmatrix} 1 & r_0 & \dots & r_0^n \\ \vdots & \dots & \dots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \dots \end{pmatrix} = \begin{pmatrix} g_1 \\ \dots \\ \dots \end{pmatrix}$$

 ${\it Il faut \ donc \ montrer \ que \ la \ matrice \ ci-dessus \ a \ un \ determinant \ non \ nul.}$

On le montre par induction sur n.

Dans le cas n = 0, le determinant vaut trivialement 1. Dans le cas n > 0, on a

$$\det\begin{pmatrix} 1 & 0 \dots \\ 1(r_1 - r_0) & \dots \\ \dots & \ddots \\ 1(r_n - r_0) & \dots \end{pmatrix} = (r_1 - r_0)(r_2 - r_0) \dots \det(V(r_1, \dots, r_n)) \neq 0 \quad \Box$$

Lecture 2: Polynomes

Wed 24 Feb

Theorème 5

Soit K un corps fini de characteristique q, alors $K \supseteq \mathbb{Z}_q$.

De plus K est un espace vectoriel de \mathbb{Z}_q de dimension finie.

Corollaire 6

 $Soit\ K\ un\ corps\ infini.\ Deux\ polynomes\ sont\ egaux\ si\ et\ seulement\ si\ leurs\ evaluations\ sont\ les\ memes.$

Preuve

Une direction est triviale.

L'autre suit immediatement du theoreme 1.6

1.1 Division avec reste

Theorème 7

Soit R un anneau, $f,g \in R[x], g \neq 0$ et soit le coefficient de $g \in R^*$ Il existe $q,r \in R[x]$ uniques tel que

1.
$$f(x) = q(x)g(x) + r(x)$$

2.
$$\deg r < \deg g$$

Preuve

 $Si \deg f < \deg g$, on a fini.

Soit donc deg $f \ge g$, donc

$$f(x) = a_0 + \ldots + a_n x^n$$

et

$$g(x) = b_0 + \dots b_m x^m$$

 $et \ b_m^{-1} \ existe.$

On procede par induction sur n.

 $Si \ n = m :$

On note que

$$f(x) - \frac{a_n}{b_m}g(x)$$

 $est \ un \ polynome \ de \ degre < n \ Si \ n > m \ :$

 $On\ note\ que$

$$f(x) - \frac{a_n}{b_m} x^{n-m} g(x)$$

est un polynome de degre < n.

Par hypothese d'induction il existe q(x), r(x) tel que

$$- f(x) - \frac{a_n}{b_m} x^{n-m} g(x) + r(x)$$

$$- \deg r < \deg g$$

et donc on a fini de montrer l'existence.

Supposons maintenant qu'il existe r' et q' satisfaisant les memes proprietes que q et g, alors on a

$$q(x)g(x) + r(x) = q'(x)g(x) + r'(x)$$

Donc

$$r' \neq r \ et \ q' \neq q$$

en comparant les degre, on a une contradiction.

1.2 Factorisation des polynomes sur un corps

Definition 6 (Diviseurs de polynomes)

Soit $q(x) \in K[x]$.

q divise f si il existe g(x) tel que

$$q(x)g(x) = f(x)$$

On dit que q est un diviseur de f, on ecrit q(x)|f(x)

Definition 7 (Racine)

Soit $p(x) \in K[x]$, et soit $\alpha \in K$ tel que $p(\alpha) = 0$

Theorème 8

Soit $f(x) \in K[x] \setminus \{0\}$, alors $\alpha \in K$ est une racine de f si et seulement si (x-a)|f(x)

Preuve

 $Si(x-\alpha)q(x)=f(x)$, alors on a fini.

sinon, la division de f(x) par $x - \alpha$ avec reste donne

$$f(x) = q(x)(x - \alpha) + r \text{ ou } r \in K$$

Si
$$r \neq 0$$
, alors $f(\alpha) = g(\alpha)(\alpha - \alpha) + r = r = 0$ et donc $(x - a)|f(x)$

Definition 8 (Multiplicite d'une racine)

La multiplicite d'une racine α de $p(x) \in K[x]$ est le plus grand $i \geq 1$ tel que

$$(x-\alpha)^i|p(x)$$

Theorème 9 (Theoreme fondamental de l'algebre)

Tout polynome $p(x) \in \mathbb{C}[x] \setminus \{0\}$ de degre ≥ 1 possede une racine complexe.

Lecture 3: Factorisation des polynomes sur un corps

Tue 02 Mar

1.3 Factorisation des polynomes sur un corps

Soit K un corps.

Definition 9 (Polynome irreductible)

Un polynome $p(x) \in K[x] \setminus \{0\}$ est irreductible si

$$--\deg p\geq 1$$

$$-si p(x) = f(x) \cdot g(x)$$
, alors deg $f = 0$ ou deg $g = 0$.

Theorème 10

Un polynome de degre 2 sur K[x] est irreductible si et seulement si le polynome ne possede pas de racines.

1.4 Diviseurs Communs le plus grand

Theorème 11

Soient $f(x), g(x) \in K[x]$ pas tous les deux nuls.

On considere l'ensemble $I = \{u \cdot f + v \cdot g : u, v \in K[x]\}.$

Il existe un polynome $d(x) \in K[x]$ satisfaisant

$$I = \{h \cdot d : h \in K[x]\}$$

Preuve

Soit $a \in I \setminus \{0\}$ de degre minimal.

L'ensemble $\{h \cdot d : h \in K[x]\}$ est clairement un sous-ensemble de I.

Il reste a montre l'inclusion inverse.

 $Si\ d\ ne\ divise\ pas\ uf+vg,\ la\ division\ avec\ reste\ donne$

$$uf + vg = qd + r \iff r = uf + vg - qd = (u - qu')f + (v - qv')g$$

Or le reste est non nul, mais le reste est de degre inferieur a $\deg d$. \nleq

Definition 10 (Polynome Unitraire)

Un polynome $f(x) \in K[x]$ dont le coeff. dominant = 1 est un polynome unitaire.

Definition 11 (Diviseur Commun)

Soient $f, g \in K[x]$ non-nuls.

Un diviseur commun de f et g est un polynome qui divise f et g.

Theorème 12

Soient $f, g \in K[x]$ non-nuls.

Soit $d \in K[x]$ comme dans le theoreme precedent.

- d est un diviseur commun de f et g.
- Chaque diviseur commun de f et g est un diviseur de d.
- Si d est unitaire, alors d est unique.

Preuve

- $f \in I \Rightarrow \exists h \ tel \ que \ hd = f \iff d|f \ et \ g \in I \Rightarrow d|g$
- Soit $d' \in K[x]$ tq d'|f, d'|g, on veut montrer que d'|d.

$$f = f'd', q = q'd'$$

des que $d \in I$, il existe $u, v \in K[x]$ tel que

$$d = uf + vg = uf'd' + vg'd' = (uf' + vg')d' \Rightarrow d'|d \qquad \Box$$

— Soit $d' \in I$ tel que $I = \{hd' | h \in K[x]\}.$

Soient d, d' unitaires.

d|d' et d'|d, donc ils sont les memes a un facteur pres.

Definition 12 (PGCD)

L'unique polynome unitaire $d \in K[x]$ qui satisfait les conditions ci-dessus est appele le plus grand commun diviseur de f et g.

Theorème 13 (Algorithme d'Euclide)

Soient f_0, f_1 non nuls et

$$\deg f_0 \ge \deg f_1$$

On cherche $gcd(f_0, f_1)$ Si $f_1 = 0$, alors $gcd = f_0$.

 $Si f_1 \neq 0 \ On \ pose$

$$f_0 = q_1 f_1 + f_2$$

Soit $h \in K[x]$: $h|f_0$ et $h|f_1 \Rightarrow h|f_2$ Et donc on pose $gcd(f_0, f_1) = gcd(f_1, f_2)$ On repete jusqu'a trouver un f_k nul.

Grace a l'algorithme d'Euclide, on peut aussi trouver $u, v \in K[x]$ tel que $uf_0 + vf_1 = \gcd(f_0, f_1)$.

En effet, on a

$$\begin{pmatrix} f_i \\ f_{i+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_i \end{pmatrix} \begin{pmatrix} f_{i-1} \\ f_i \end{pmatrix}$$

et donc en appliquant cette matrice plusieurs fois, on trouve une dependance lineaire entre f_{k-1} et f_k Et donc le $\gcd(f_0,f_1)=\frac{1}{\operatorname{coeff\ dominant\ de\ } f_{k-1}}(uf_0+vf_1)$