Все симплекс-разности неотрицательны, поэтому достигнут максимум целевой функции в точке с координатами (4,5; 3; 0; 0; 0,15). Оптимальное значение функции в этой точке равно F_{max} =40,5. Значения основных переменных получены: $k_1 = 4,5$ и $k_2 = 3$.

Результат решения совпадает с решением, рассчитанным при демонстрации графического метода.

Следовательно, для обеспечения максимально прибыли следует закупать картофель в указанных или пропорциональных (3:2) количествах у первого и у второго поставщиков соответственно. Каков же содержательнй смысл переменной $k_5 = 0.15$ в оптимальном решении?

Если подставить оптимальные значения в третье уравнение канонизированной системы, то мы получим равенство. Таким образом, 0,15 — величина уравновешивающее третье ограничение в точке оптимума. Если бы правая часть указанного ограничения была бы меньше на эту величину, то в точке оптимума пересекались бы сразу три прямые.

2.2.6. Решение ЗЛП методом искусственного базиса [24, 40, 55]

Указанный метод называют ещё методом искусственных переменных. Он предназначен для решения ЗЛП с целевой функцией

$$Z = C^T X \rightarrow opt$$
,

при наличии ограничениях на переменные вида

$$AX \otimes B$$
, (2.12)

где обозначено:

- C вектор коэффициентов целевой функции размерностью [$n \times 1$];
- T символ транспонирования;
- X вектор искомых параметров математической модели размерностью [$n \times 1$];
- *opt* вид оптимизации (min или max);
- A двумерная матрица $[m \times n]$ системы линейных ограничений;
- \otimes знак отношения (≥, =, ≤);
- B вектор правой части ограничений размерностью $[m \times 1]$.

Достаточно хотя бы **одного знака отношений** " \geq " или "=" для необходимости использовать этот метод.

Система, в которой присутствуют различные знаки ограничений, называется *смешанной*.

Пусть все знаки ограничений, для примера, имеют вид "\geq". В этом случае, после введения дополнительных переменных и приведения задачи в каноническую форму имеем

$$AX - EX_{TOT} = B \equiv A_0. \tag{2.13}$$

Если воспользоваться прямым симплекс-методом, то начальной точкой решения является дополнительные переменные, удовлетворяющие системе уравнений — $EX_{ДОП} = A_0$, но при этом будет нарушаться условие неотрицательности дополнительных переменных (в этом несложно убедиться, решив систему).

Поэтому появляется потребность во введении фиктивных *искусственных переменных*, не имеющих содержательного смысла, но обеспечивающих существование корректного допустимого базисного решения (ДБР) на начальном шаге, благодаря чему метод и получил своё наименование.

После введения искусственных переменных x_{n+m+1} , x_{n+m+2} , ..., $x_{n+2\times m}$ получаем

$$AX - EX_{IIOII} + EX_{IICK} = A_0, (2.13)$$

полагая в котором равными нулю основные и дополнительные переменные, придём к ДБР, соответствующему уравнению

$$EX_{UCK} = A_0$$
.

В случае, когда исходная математическая модель представлена в канонической форме, также вводятся искусственные переменные для обеспечения начального решения.

Когда, наряду с ограничениями ">" или "=", присутствуют ограничения "\(\sigma \)" на практике используют, для компактности расчётных таблиц, вместо целиком искусственного базиса, *смешанный базис*, составленный из ортов, соответствующих как искусственным переменным, так и дополнительным переменным, введённым для канонизации неравенств со знаком "\(\sigma \)".

Подведя итоги, скажем, что метод искусственного базиса применяется в следующих случаях.

 Все знаки отношения в системе ограничений имеют вид "≥". Имеем чисто искусственный базис.

- Все знаки имеют вид "=". Также строится чисто искусственный базис.
- Имеется смесь знаков "≥" и "=". Базис чисто искусственный.
- Имеется смесь знаков "≥", "=" и "≤". Базис смешанный.

Для того, чтобы, по мере потери надобности, избавляться от искусственных переменных, которые, как мы помним, не имеют содержательного смысла ни в постановке задачи, ни при её канонизации, в целевую функцию искусственные переменные вводятся с коэффициентами $-\mu$ для задач максимизации и $+\mu$ для решения задач минимизации, где μ – бесконечно большое число.

Обратите внимание, что знак выбран таким, чтобы помешать оптимизации.

Алгоритм метода дадим в отличиях от прямого симплекс-метода для избегания повторения, которое, вопреки расхожему мнению о "матери учения", таковою быть не может, ибо – среднего рода.

Алгоритм метода искусственных переменных

- 1. Ограничения исходной математической модели подвергаются канонизации путём введения дополнительных переменных в ограничения со знаками "≥" и "≤". Система ограничений при этом приобретёт вид (2.12).
- 2. В те ограничения, которые изначально имели знаки " \geq " и "=", вводятся искусственные переменные. Эти же одновременно вводятся в целевую функцию с бесконечно большими множителями $\pm \mu$, знаки которых определяются направлением оптимизации: $-\mu$ для задач максимизации и $+\mu$ для решения задач минимизации. Ограничения при этом трансформируются в форму (2.13). В развёрнутой форме записи, для случая всех знаков " \geq ", получается

$$\begin{split} f(x_1,\dots,x_n,x_{n+1},\dots,x_{n+m}) &= c_1x_1 + \dots + c_nx_n + 0x_{n+1} + \dots + 0x_{n+m} \pm \mu x_{n+m+1} \dots \pm \mu x_{n+2m}, \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n - 1x_{n+1} + 0x_{n+2} + \dots + 0x_{n+m} + 1x_{n+m+1} + 0x_{n+m+2} \dots + 0x_{n+2m} = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + 0x_{n+1} - 1x_{n+2} + \dots + 0x_{n+m} + 0x_{n+m+1} + 1x_{n+m+2} \dots + 0x_{n+2m} = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + 0x_{n+1} + 0x_{n+2} + \dots - 1x_{n+m} + 0x_{n+m+1} + 0x_{n+m+2} \dots + 1x_{n+2m} = b_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + 0x_{n+1} + 0x_{n+2} + \dots - 1x_{n+m} + 0x_{n+m+1} + 0x_{n+m+2} \dots + 1x_{n+2m} = b_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + 0x_{n+1} + 0x_{n+2} + \dots - 1x_{n+m} + 0x_{n+m+1} + 0x_{n+m+2} \dots + 1x_{n+2m} = b_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + 0x_{n+1} + 0x_{n+2} + \dots - 1x_{n+m} + 0x_{n+m+1} + 0x_{n+m+2} \dots + 1x_{n+2m} = b_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + 0x_{n+1} + 0x_{n+2} + \dots - 1x_{n+m} + 0x_{n+m+1} + 0x_{n+m+2} + \dots + 0x_{n+m+2} + \dots + 0x_{n+m+1} + 0x_{n+m+2} + \dots + 0x_{n+m+$$

Векторы-орты A_{n+m+1} , A_{n+m+2} , ..., $A_{n+2\times m}$ — образуют начальный базис в крайней точке

$$X_0^T = \begin{bmatrix} 0, ..., 0, & 0, ..., 0, & b_1, b_2, ..., b_m \end{bmatrix}$$

выпуклого полиэдрального множества.

3. По условиям расширенной задачи производится построение симплекс-таблицы следующего общего вида.

		c_{j}	c_1	 c_n	0	 0	±μ	±μ		±μ
Базис	$C_{\mathcal{B}}$	A_0	A_{I}	 A_n	A_{n+1}	 A_{n+m}	A_{n+m+1}	A_{n+m+2}	:	A_{n+2m}
A_{n+m+1}	±μ,	b_I	a_{11}	 a_{ln}	-1	 0	1			
A_{n+m+2}	±μ,	b_2	a_{22}	 a_{2n}	0	 0	0			
				 		 			:	
A_{n+2m}	±μ,	b_m	a_{ml}	 a_{mn}	0	 -1	0			
	δ	δ_0	δ_{l}	 δ_n	δ_{n+1}	 δ_{n+m}	δ_{n+m+1}	δ_{n+m+2}	:	δ_{n+2m}

- 4. Задача решается изложенным в предыдущем разделе симплексметолом, со всеми нюансами.
- 5. Если искусственная переменная выводится из базиса, то соответствующий ей столбец удаляется из таблицы.
- 6. В процессе решения необходимо вывести искусственные переменные из базиса. Если строка симплекс-разностей указывает на получение оптимума, а в базисе находятся искусственные переменные, то это означает несовместность системы ограничений. Это дополнительный признак неразрешимости по сравнению с прямым симплекс-методом.

Продемонстрируем работу алгоритма на ранее рассмотренном примере. Математическая модель модернизирована. Заменены: направление оптимизации, знаки в первом и втором неравенстве, а все неравенства умножены на 10 для удобства расчётов.

$$f = 5k_1 + 6k_2 \rightarrow \min,$$

$$\begin{cases} 2k_1 + 3k_2 \ge 18; \\ 2k_1 + 1k_2 \ge 12; \\ 3k_1 + 3k_2 \le 24; \\ k_1 \ge 0; k_2 \ge 0. \end{cases}$$

Каноническая форма с введёнными искусственными переменными для этого случая есть

$$\begin{split} f &= 5k_1 + 6k_2 + 0k_3 + 0k_4 + 0k_5 + \mu k_6 + \mu k_7 + \mu k_8 \longrightarrow \min, \\ \left\{ 2k_1 + 3k_2 + 1k_3 + 0k_4 + 0k_5 + 1k_6 + 0k_7 + 0k_8 = 18; \\ 2k_1 + 1k_2 + 0k_3 + 1k_4 + 0k_5 + 0k_6 + 1k_7 + 0k_8 = 12; \\ 3k_1 + 3k_2 + 0k_3 + 0k_4 + 1k_5 + 0k_6 + 0k_7 + 1k_8 = 24; \\ k_1 &\ge 0; \ k_2 \ge 0; \ k_3 \ge 0; \ k_4 \ge 0; \ k_5 \ge 0; \ k_6 \ge 0; \ k_7 \ge 0; \ k_8 \ge 0. \end{split}$$

В записи использован полностью искусственный базис A_6 , A_7 , A_8 , однако, так как вектор A_8 дублирует вектор A_5 , следует использовать смешанный базис A_6 , A_7 , A_5 , составленный как из дополнительных, так и из искусственных переменных. Первоначально решение, в последнем случае, находится в точке с координатами (0; 0; 0; 0; 24; 18; 12).

Построим симплекс-таблицу, содержащую векторное представление канонической формы.

			c_j	5	6	0	0	0	μ	μ
	Базис	$C_{\mathcal{B}}$	A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7
	A_6	μ	18	2	3	-1	0	0	1	0
\leftarrow	A_7	μ	12	2	1	0	-1	0	0	1
	A_5	0	24	3	3	0	0	1	0	0
		δ_{j}	30μ	4μ–5	4μ–6	-μ	-μ	0	0	0
				↑						

Значения симплекс-разностей свидетельствуют о том, что текущий план необходимо улучшать. По поводу выбора направляющего столбца в шутку, хотя в ней немало логики, заметим, что "четыре мешка зерна без пяти зёрнышек" больше, чем "четыре мешка зерна без шести зёрнышек"

1-я итерация даёт:

			c_j	5	6	0	0	0	μ
	Базис	$C_{\mathcal{B}}$	A_0	A_1	A_2	A_3	A_4	A_5	A_6
\leftarrow	A_6	μ	6	0	2	-1	1	0	1
	A_1	5	6	1	0,5	0	-0,5	0	0
	A_5	0	6	0	1,5	0	1,5	1	0
•		δ_{j}	6μ+30	0	2μ -3,5	-μ	μ–2,5	0	0
					\uparrow				

После 2-й итерации получим оптимальное решение:

			c_{i}	5	6	0	0	0
	Базис	$C_{\mathcal{B}}$	A_0	A_1	A_2	A_3	A_4	A_5
	A_2	6	3	0	1	-0,5	0,5	0
	A_1	5	4,5	1	0	0,25	-0,75	0
	A_5	0	1,5	0	0	0,75	2,25	1
_		δ_{i}	40,5	0	0	-1,75	-0,75	0

Достигнут минимум целевой функции в точке с координатами (4,5; 3; 0; 0; 0,15). Это хорошо просматривается на рисунке 2.3, с учётом области

действия двух первых ограничений. Оптимальное значение при этом равно $F_{\rm max} = 40,5$ при основных переменных $k_1 = 4,5$ и $k_2 = 3$.

2.2.7. Решение ЗЛП модифицированным симплекс-методом [24, 25]

Указанный метод называется ещё методом обратной матрицы.

Его особенностью является работа только с базисными векторами, поэтому объём расчётом определяется числом базисных векторов, определяемым размером системы ограничений *т*. По этой причине наибольшая эффективность алгоритма, по сравнению с прямым симплексметодом или методом искусственного базиса, проявляется, когда *п* значительно превосходит *т*. Экономия памяти под промежуточные результаты и сравнительно меньший объём вычислений обусловил преимущественную реализацию этого метода на ЭВМ. Впервые предложен Л.В. Канторовичем.

Для расчётов используются *две таблицы*. Вспомогательная таблица, содержащая в постоянной части каноническую форму системы ограничений, а в переменной части — заранее не известное число строк симплекс-разностей, пополняемых по мере расчёта при завершении итерации. По необходимости, каноническая форма пополняется искусственными переменными, а таблица — соответствующими им столбцами векторов искусственного базиса.

		c_j	c_{I}		C_n	0		0		
Базис	$C_{\mathcal{B}}$	A_0	A_1		A_n	A_{n+1}		A_{n+m}		
A_{n+1}	0	b_1	a_{11}		a_{1n}	1		0		
A_{n+2}	0	b_2	a_{22}		a_{2n}	0		0		
A_{n+m}	0	b_m	a_{m1}		a_{mn}	0		1		
	$\delta^{^{\scriptscriptstyle{0}}}$	$\delta_{\scriptscriptstyle 0}^{\scriptscriptstyle 0}$	$oldsymbol{\mathcal{\delta}}_{\scriptscriptstyle 1}^{\scriptscriptstyle 0}$	•••	$\delta^{\scriptscriptstyle 0}_{\scriptscriptstyle n}$	$\delta_{\scriptscriptstyle{n+1}}^{\scriptscriptstyle{0}}$	•••	$\delta_{\scriptscriptstyle n+m}^{\scriptscriptstyle 0}$		
	$\delta^{^{r}}$	$\delta^{r}_{\scriptscriptstyle 0}$	$\delta_{\scriptscriptstyle 1}^{\scriptscriptstyle r}$	•••	$\delta^{r}_{\scriptscriptstyle n}$	$\delta_{\scriptscriptstyle{n+1}}^{\scriptscriptstyle{r}}$	$\delta^{r}_{\scriptscriptstyle 0}$	$\delta_{\scriptscriptstyle 1}^{\scriptscriptstyle r}$		

Основная таблица, в которой производятся расчёты и содержится матрица, обратная матрице, *составленной из базисных векторов* системы ограничений *канонической задачи*, из-за чего метод и получил второе своё название.

					$-A_{x}$	\longrightarrow		
Базис	$C_{\mathcal{B}}$	e_0	e_1	e_2		e_m	A^*	Θ
A_{n+1}	0	b_I	1	0		0		
A_{n+2}	0	b_2	0	1		0		
						•••		
A_{n+m}	0	b_m	0	0		1		
	Λ	λ_0	λ_I	λ_2		λ_m		

Графы последней таблицы имеют следующее смысловое наполнение.

 $A_{\scriptscriptstyle x}^{^{-1}}$ – фрагмент матрицы, обратной исходной матрице ограничений. Первоначально – это единичная матрица.

Столбец e_0 вычисляется по векторной формуле

$$e_0 = A_x^{-1} \times A_0, \tag{2.14}$$

что, на первых порах совпадает с A_0 .

Строка оценок Λ определяется формулой

$$\Lambda^T = C_B^T \times A_x^{-1}, \tag{2.15}$$

а произведение

$$\lambda_0 = C_b^T \times e_0 \tag{2.16}$$

есть текущее значение целевой функции.

Столбец A^* рассчитывается после выбора направляющего столбца:

$$A^* = A_x^{-1} \times A_i^*. {(2.17)}$$

Столбец оценок Θ служит для определения вектора, выводимого из базиса:

$$\Theta_i = \frac{e_{i,0} \ge 0}{a_i^* > 0}.$$
 (2.18)

Алгоритм модифицированного симплекс-метода

1. Приведение задачи к канонической форме, введение, по необходимости, искусственных переменных, формирование на их базе основной и вспомогательных таблиц.

2. Расчёт текущего значения целевой функции (2.14), вектора оценок (2.15) и симплекс-разностей. Расчёт последних выполняют по формуле

$$\delta_i = \Lambda^T \times A_i - c_i, \tag{2.19}$$

где A_i — столбец вспомогательной таблицы.

- 3. Анализ симплекс-разностей на предмет получения оптимального решения. Осуществляется традиционным для прямого симплекс-метода способом. При наличии в базисе искусственных переменных, здесь может быть определена несовместность системы ограничений.
- 4. Выбор направляющего столбца и вектора, вводимого в базис, выполняется на основании симплекс-разностей по известному правила:

$$\max: \arg\min_{j} \delta_{j} < 0 \rightarrow j^{*}$$
, или $\min: \arg\max_{j} \delta_{j} > 0 \rightarrow j^{*}$.

- 5. Выполнение пересчёта вектора вводимого в базис вектор \boldsymbol{A}^* и заполнение соответствующего столбца основной таблицы осуществляется по формуле (2.17).
 - 6. Заполнение столбца Θ основной таблицы по выражению (2.18).
- 7. Выбор направляющей строки по минимальному значению компонентов столбца Θ . Если направляющую строку определить не удаётся, то необходимо выбрать другой столбец в качестве направляющего, повторив пп. 4 7. В случае невозможности выбора остаётся констатировать неразрешимость задачи по причине не замкнутости области в направлении оптимизации.
- 8. Преобразование основной таблицы по методу исключений Жордана Гаусса.
- 9. После пересчёта таблицы алгоритм продолжает своё выполнение с п.2.

Пример. Используем математическую модель из демонстрационных материалов раздела 2.2.1 вида

$$f = 5x_1 + 6x_2 \rightarrow \max,$$

$$\begin{cases} 2x_1 + 3x_2 \le 18; \\ 2x_1 + 1x_2 \le 12; \\ 3x_1 + 3x_2 \le 24; \\ x_1 \ge 0; \\ x_2 \ge 0. \end{cases}$$

Построим каноническую форму и вспомогательную таблицу.

		c_j	5	6	0	0	0
Базис	$C_{\mathcal{B}}$	A_0	A_1	A_2	A_3	A_4	A_5
A_3	0	18	2	3	1	0	0
A_4	0	12	2	1	0	1	0
A_5	0	24	3	3	0	0	1
	δ^{0}	0	-5	-6↑	0	0	0
	δ^{l}	36	-1↑	0	2	0	0
	δ^2	40,5	1	0	2/3	2/3	0

Формируем основную таблицу.

	Базис	$C_{\mathcal{B}}$	e_0	e_{l}	e_2	e_3	A^*	Θ
\leftarrow	A_3	0	18	1	0	0	3	6
	A_4	0	12	0	1	0	1	12
	A_5	0	24	0	0	1	3	8
		Λ	0	0	0	0		

$$A_x^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Рассчитываем оценки Λ по формулам (2.11) и (2.12) и заносим в основную таблицу.

$$\Lambda^{T} = C_{B}^{T} \times A_{x}^{-1} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}.$$

Рассчитываем симплекс-разности по формуле (2.15) и помещаем во вспомогательную таблицу.

$$\delta_{1} = \Lambda^{T} \times A_{1} - c_{1} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} - 5 = -5,$$

$$\delta_{2} = \Lambda^{T} \times A_{2} - c_{2} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} - 6 = -6,$$

$$\delta_3 = 0, \ \delta_4 = 0, \ \delta_5 = 0.$$

По значениям симплекс-разностей определяем: оптимум не достигнут, направляющий столбец -2-й.

1-я итерация.

Пересчитываем столбец, используя (2.17),

$$A^* = A_x^{-1} \times A_j^* = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$$
 и помещаем в основную таблицу.

Вычисляем оценки (2.18), тако же помещаем в соответствующий столбен основной таблины

$$\Theta^{T} = \begin{bmatrix} \frac{e_{i,0} \ge 0}{a_{i}^{*} > 0} \end{bmatrix} = \begin{bmatrix} \frac{18}{3} & \frac{12}{1} & \frac{24}{3} \end{bmatrix} = \begin{bmatrix} 6 & 12 & 8 \end{bmatrix}$$

и принимаем решение о выводе из базиса вектора A_3 (обозначен стрелкой), направляющий элемент выделен серым цветом.

Пересчитываем таблицу по методу исключений Жордана-Гаусса.

	Базис	$C_{\mathcal{B}}$	e_0	e_{l}	e_2	e_3	A^*	Θ
	A_2	6	6	1	0	0	2	9
				3			3	
\leftarrow	A_4	0	6	1	1	0	4	9
				$-\frac{1}{3}$			3	$\overline{2}$
	A_5	0	6	-1	0	1	1	6
		Λ	36	2	0	0		

Рассчитываем оценки Λ по формулам (2.14) и (2.15) и заносим в основную таблицу.

$$\Lambda^{T} = C_{B}^{T} \times A_{x}^{-1} = \begin{bmatrix} 6 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ -\frac{1}{3} & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}.$$

$$\lambda_{0} = C_{B}^{T} \times e_{0} = \begin{bmatrix} 6 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} = 36.$$