Фамилия, имя, номе	ер группы:		

Вопрос 1. Рассмотрим модель множественной регрессии $Y = X\beta + \varepsilon$, где $\hat{Y} = X\hat{\beta}$, $e = Y - \hat{Y}$. Величина RSS — это квадрат длины вектора

 $A \hat{Y} - \bar{Y}$

C ϵ

 $|E| Y - \bar{Y}$

B

 \overline{D} \hat{Y}

Вопрос 2. Крокодил Гена оценивает модель регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ с помощью МНК. Чебурашка получит такую же оценку коэффициента β_1 , если будет минимизировать

- [A] выборочную дисперсию объясняющей переменной
- С выборочную ковариацию регрессора и объясняемой переменной

объясняемой переменной

- <u>В</u> коэффициент детерминации
- \overline{D} выборочную дисперсию
- *E* выборочную дисперсию остатков

Вопрос 3. Чебурашка оценил модель $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$, а Крокодил Гена — модель $X_i=\gamma_0+\gamma_1Y_i+u_i$. Оказалось, что $\hat{\gamma}_1=0.25/\hat{\beta}_1$. Величина R^2 в регрессии Чебурашки равна

A 1

C 0.75

E 0.25

B = 0

D 0.5

Вопрос 4. В модели $Y_i=\beta_0+\beta_1 X_i+\varepsilon_i$ при выполненных предпосылках теоремы Гаусса-Маркова и нормальных ошибках тестовая статистика $(\hat{\beta}_1-\beta_1)/se(\hat{\beta}_1)$ имеет распределение

A t_{n-2}

C χ^2_{n-2}

 $E \mathcal{N}(0; \sigma^2)$

 $\boxed{B} \mathcal{N}(0;1)$

D χ_1^2

Вопрос 5. Крокодил Гена оценил с помощью МНК зависимость $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$. Оказалось, что $\hat{\beta}_0 = 90$, а $\hat{\beta}_1 = 3$. Чебурашка увеличил переменные X и Y на 10% и снова оценил уравнение регрессии. В результате этой корректировки

- $oxedsymbol{A}$ оценка \hat{eta}_0 увеличилась, а оценка \hat{eta}_1 не изменилась
- лись

- лись
- $oxed{B}$ оценки \hat{eta}_0 и \hat{eta}_1 не измени- $oxed{D}$ оценки \hat{eta}_0 и \hat{eta}_1 уменьши-
- C оценки $\hat{\beta}_0$ и $\hat{\beta}_1$ увеличились
- $oxed{E}$ оценка \hat{eta}_0 уменьшилась, а оценка \hat{eta}_1 не изменилась

.....

Вопрос 6. В модели парной линейной регрессии со свободным членом $Y_i=\beta_0+\beta_1 X_i+\varepsilon_i$ несмещённой оценкой дисперсии оценки МНК $\hat{\beta}_1$ является

$$A \sum (Y_i - \bar{Y})^2 / (n-1)$$

$$C RSS/(n-2)$$

$$E \sum (Y_i - \bar{Y})^2/(n-2)$$

$$\boxed{B}$$
 RSS/n

$$\boxed{D} RSS/((n-2)\sum_{i}(X_i-\bar{X})^2)$$

Вопрос 7. Храбрый исследователь Вениамин оценил регрессию $\hat{Y}_i = 23 + 10 X_i$, в скобках приведены стандартные ошибки. Доверительный интервал для свободного члена равен [14;32]. Доверительный интервал для коэффициента наклона при том же уровне доверия будет равен

$$C$$
 [5; 15]

$$[E]$$
 [6.4; 13.6]

$$D$$
 [1; 19]

Вопрос 8. По 20 наблюдениям Чебурашка оценил модель $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$. Известно, что $\sum X_i = -10$, $\sum X_i^2 = 40$, $\sum X_i Y_i = 10$, $\sum Y_i = 50$.

Сумма оценок МНК коэффициентов $\hat{eta}_0 + \hat{eta}_1$ равна

$$|E|$$
 1

$$B = 5$$

$$D$$
 2

Вопрос 9. Распределение случайной величины X задано таблицей

Вероятность $\mathbb{P}(X=1)$ равна

$$E \mid 0.3$$

Вопрос 10. Оценки МНК вектора коэффициентов регрессии $Y = X\beta + \varepsilon$ находятся по формуле

$$\boxed{A} (XX')^{-1}X'Y$$

$$C (X'X)^{-1}X'Y$$

$$E (XX')^{-1}Y'X$$

$$B X'Y(X'X)^{-1}$$

$$D(X'X)^{-1}YX$$

Тест	1	2	3	4	Итого

1. (5 баллов) Случайные величины X и Y независимы и имеют хи-квадрат распределение с 5 и с 10 степенями свободы, соответственно. Случайная величина Z равна Z=(X+Y)/X.

Найдите значение z^* такое, что $\mathbb{P}(Z>z^*)=0.05$.

- 2. (5 баллов) Докажите, что для модели парной регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, оцененной с помощью МНК, выполнено равенство $\sum_{i=1}^n Y_i = \sum_{i=1}^n \hat{Y}_i$.
- 3. (5 баллов) Аккуратно сформулируйте теорему Гаусса-Маркова для случая парной регрессии.
- 4. (10 баллов) На основании 62 наблюдений Чебурашка оценил функцию спроса на апельсины:

$$\hat{Y}_i = \frac{3}{(1.6)} - \frac{1.25}{(0.2)} X_i$$
, где $\sum_i (X_i - \bar{X})^2 = 2.25$

- a) Проверьте гипотезы о значимости каждого из коэффициентов регрессии при уровне значимости 5%.
- б) Проверьте гипотезу о равенстве коэффициента наклона -1 при уровне значимости 5% и односторонней альтернативной гипотезе, что коэффициент наклона меньше -1.
- в) Найдите оценку дисперсии ошибок.
- г) Найдите 95% интервальный индивидуальный прогноз в точке X=8.

Фамилия, имя, номер группы:		

Вопрос 1. Крокодил Гена оценивает модель регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ с помощью МНК. Чебурашка получит такую же оценку коэффициента β_1 , если будет минимизировать

A выборочную дисперсию объясняемой переменной

переменной

D коэффициент детерминации

- B выборочную ковариацию регрессора и объясняемой
- C выборочную дисперсию объясняющей переменной
- |E| выборочную дисперсию остатков

Вопрос 2. Крокодил Гена оценил с помощью МНК зависимость $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$. Оказалось, что $\hat{\beta}_0=90$, а $ar{eta}_1=3$. Чебурашка увеличил переменные X и Y на 10% и снова оценил уравнение регрессии. В результате этой корректировки

 \overline{A} оценки \hat{eta}_0 и \hat{eta}_1 не изменились

оценка \hat{eta}_1 не изменилась

оценка $\hat{\beta}_1$ не изменилась

- \overline{B} оценка \hat{eta}_0 увеличилась, а \overline{D} оценка \hat{eta}_0 уменьшилась, а

 \boxed{C} оценки $\hat{\beta}_0$ и $\hat{\beta}_1$ увеличились

 $oxedsymbol{ar{E}}$ оценки \hat{eta}_0 и \hat{eta}_1 уменьши-

Вопрос 3. По 20 наблюдениям Чебурашка оценил модель $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$. Известно, что $\sum X_i = -10$, $\sum X_i^2 = 40, \sum X_i Y_i = 10, \sum Y_i = 50.$

Сумма оценок МНК коэффициентов $\hat{\beta}_0 + \hat{\beta}_1$ равна

 $A \mid 3$

|E| 4

 $B \mid 5$

Вопрос 4. В модели парной линейной регрессии со свободным членом $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ несмещённой оценкой дисперсии оценки МНК \hat{eta}_1 является

|A| RSS/n

C RSS/(n-2)

 $E RSS/((n-2)\sum_{i}(X_i-\bar{X})^2)$

- $B \sum (Y_i \bar{Y})^2 / (n-2)$
- $D \sum (Y_i \bar{Y})^2 / (n-1)$

Вопрос 5. Храбрый исследователь Вениамин оценил регрессию $\hat{Y_i} = 23 + 10X_i$, в скобках приведены стандартные ошибки. Доверительный интервал для свободного члена равен [14;32]. Доверительный интервал для коэффициента наклона при том же уровне доверия будет равен

 $A \mid [6.4; 13.6]$

[5; 15]

|E| [6.08; 13.92]

B | [6; 14]

[1; 19]

.....

Вопрос 6. Чебурашка оценил модель $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$, а Крокодил Гена — модель $X_i=\gamma_0+\gamma_1Y_i+u_i$. Оказалось, что $\hat{\gamma}_1=0.25/\hat{\beta}_1$. Величина R^2 в регрессии Чебурашки равна

A 1

C 0.5

|E| 0.75

B = 0

D 0.25

Вопрос 7. Рассмотрим модель множественной регрессии $Y = X\beta + \varepsilon$, где $\hat{Y} = X\hat{\beta}$, $e = Y - \hat{Y}$. Величина RSS — это квадрат длины вектора

A \hat{Y}

 $C Y - \bar{Y}$

E e

B ε

D $\hat{Y} - \bar{Y}$

Вопрос 8. В модели $Y_i=\beta_0+\beta_1 X_i+\varepsilon_i$ при выполненных предпосылках теоремы Гаусса-Маркова и нормальных ошибках тестовая статистика $(\hat{\beta}_1-\beta_1)/se(\hat{\beta}_1)$ имеет распределение

A $\mathcal{N}(0;1)$

 $\boxed{C} \mathcal{N}(0; \sigma^2)$

 $|E| t_{n-2}$

 $B \chi_1^2$

 $\boxed{D} \ \chi^2_{n-2}$

Вопрос 9. Распределение случайной величины X задано таблицей

Вероятность $\mathbb{P}(X=1)$ равна

A 0.5

 \boxed{C} 0

E 0.2

B 0.3

D 0.4

Вопрос 10. Оценки МНК вектора коэффициентов регрессии $Y = X\beta + \varepsilon$ находятся по формуле

 $A (XX')^{-1}Y'X$

 $\boxed{C} X'Y(X'X)^{-1}$

 $\boxed{E} (X'X)^{-1}YX$

 $\boxed{B} (X'X)^{-1}X'Y$

 $\boxed{D} (XX')^{-1}X'Y$

Тест	1	2	3	4	Итого

1. (5 баллов) Случайные величины X и Y независимы и имеют хи-квадрат распределение с 6 и с 10 степенями свободы, соответственно. Случайная величина Z равна Z=(X+Y)/X.

Найдите значение z^* такое, что $\mathbb{P}(Z>z^*)=0.05$.

- 2. (5 баллов) Докажите, что для модели парной регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, оцененной с помощью МНК, выполнено равенство $\sum_{i=1}^n Y_i = \sum_{i=1}^n \hat{Y}_i$.
- 3. (5 баллов) Аккуратно сформулируйте теорему Гаусса-Маркова для случая парной регрессии.
- 4. (10 баллов) На основании 52 наблюдений Чебурашка оценил функцию спроса на апельсины:

$$\hat{Y}_i = \mathop{9}\limits_{(4.8)} - \mathop{1.25}\limits_{(0.2)} X_i$$
, где $\sum_i (X_i - \bar{X})^2 = 2.25$

- a) Проверьте гипотезы о значимости каждого из коэффициентов регрессии при уровне значимости 5%.
- б) Проверьте гипотезу о равенстве коэффициента наклона -1 при уровне значимости 5% и односторонней альтернативной гипотезе, что коэффициент наклона меньше -1.
- в) Найдите оценку дисперсии ошибок.
- г) Найдите 95% интервальный индивидуальный прогноз в точке X=9.

Вопрос 1. Распределение случайной величины X задано таблицей

Вероятность $\mathbb{P}(X=1)$ равна

 $A \mid 0.4$

 $C \mid 0.5$

 $|E| \ 0.3$

 $B \mid 0.2$

Вопрос 2. В модели $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ при выполненных предпосылках теоремы Гаусса-Маркова и нормальных ошибках тестовая статистика $(\hat{eta}_1 - eta_1)/se(\hat{eta}_1)$ имеет распределение

A χ_1^2

 $C \mathcal{N}(0;1)$

 $E \chi_{n-2}^2$

 \overline{B} t_{n-2}

 $D \mathcal{N}(0; \sigma^2)$

Вопрос 3. Крокодил Гена оценивает модель регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ с помощью МНК. Чебурашка получит такую же оценку коэффициента β_1 , если будет минимизировать

- А коэффициент детерминации
- C выборочную дисперсию остатков
- E выборочную ковариацию регрессора и объясняемой переменной

- B \mid выборочную дисперсию объясняющей переменной
- |D| выборочную дисперсию объясняемой переменной

Вопрос 4. Крокодил Гена оценил с помощью МНК зависимость $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$. Оказалось, что $\hat{\beta}_0=90$, а $eta_1=3$. Чебурашка увеличил переменные X и Y на 10% и снова оценил уравнение регрессии. В результате этой корректировки

- $oxed{A}$ оценки \hat{eta}_0 и \hat{eta}_1 увеличились $oxed{C}$ оценки \hat{eta}_0 и \hat{eta}_1 уменьши-
- оценка \hat{eta}_1 не изменилась

- \overline{B} оценка \hat{eta}_0 увеличилась, а оценка $\hat{\beta}_1$ не изменилась
 - $oxedsymbol{ar{D}}$ оценка \hat{eta}_0 уменьшилась, а
- $oxedsymbol{E}$ оценки \hat{eta}_0 и \hat{eta}_1 не измени-

Вопрос 5. В модели парной линейной регрессии со свободным членом $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ несмещённой оценкой дисперсии оценки МНК \hat{eta}_1 является

- $|A| \sum (Y_i \bar{Y})^2 / (n-2)$ |C| RSS/n

- E RSS/(n-2)
- $|B| RSS/((n-2)\sum_{i}(X_{i}-\bar{X})^{2}) \qquad |D| \sum_{i}(Y_{i}-\bar{Y})^{2}/(n-1)$

Вопрос 6. Храбрый исследователь Вениамин оценил регрессию $\hat{Y}_i = 23 + 10X_i$, в скобках приведены стандартные ошибки. Доверительный интервал для свободного члена равен [14;32]. Доверительный интервал для коэффициента наклона при том же уровне доверия будет равен

A [6; 14]

C [5; 15]

E [1; 19]

 \boxed{B} [6.4; 13.6]

D [6.08; 13.92]

Вопрос 7. По 20 наблюдениям Чебурашка оценил модель $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$. Известно, что $\sum X_i = -10$, $\sum X_i^2 = 40$, $\sum X_i Y_i = 10$, $\sum Y_i = 50$.

Сумма оценок МНК коэффициентов $\hat{eta}_0 + \hat{eta}_1$ равна

A 5

C 1

|E| 4

B 2

 \overline{D} 3

Вопрос 8. Рассмотрим модель множественной регрессии $Y=X\beta+\varepsilon$, где $\hat{Y}=X\hat{\beta},\,e=Y-\hat{Y}.$ Величина RSS- это квадрат длины вектора

A $\hat{Y} - \bar{Y}$

C \hat{Y}

E e

B ε

 $D Y - \bar{Y}$

Вопрос 9. Оценки МНК вектора коэффициентов регрессии $Y = X\beta + \varepsilon$ находятся по формуле

 $A (XX')^{-1}X'Y$

C $(X'X)^{-1}YX$

 $|E|(X'X)^{-1}X'Y$

 $\boxed{B} X'Y(X'X)^{-1}$

 $\boxed{D} (XX')^{-1}Y'X$

Вопрос 10. Чебурашка оценил модель $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$, а Крокодил Гена — модель $X_i=\gamma_0+\gamma_1Y_i+u_i$. Оказалось, что $\hat{\gamma}_1=0.25/\hat{\beta}_1$. Величина R^2 в регрессии Чебурашки равна

 \overline{A} 1

C = 0

E 0.25

B 0.5

D 0.75

Тест	1	2	3	4	Итого

1. (5 баллов) Случайные величины X и Y независимы и имеют хи-квадрат распределение с 7 и с 10 степенями свободы, соответственно. Случайная величина Z равна Z=(X+Y)/X.

Найдите значение z^* такое, что $\mathbb{P}(Z>z^*)=0.05$.

- 2. (5 баллов) Докажите, что для модели парной регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, оцененной с помощью МНК, выполнено равенство $\sum_{i=1}^n Y_i = \sum_{i=1}^n \hat{Y}_i$.
- 3. (5 баллов) Аккуратно сформулируйте теорему Гаусса-Маркова для случая парной регрессии.
- 4. (10 баллов) На основании 42 наблюдений Чебурашка оценил функцию спроса на апельсины:

$$\hat{Y}_i = 1.5 - 1.25 X_i$$
, где $\sum_i (X_i - \bar{X})^2 = 2.25$

- a) Проверьте гипотезы о значимости каждого из коэффициентов регрессии при уровне значимости 5%.
- б) Проверьте гипотезу о равенстве коэффициента наклона -1 при уровне значимости 5% и односторонней альтернативной гипотезе, что коэффициент наклона меньше -1.
- в) Найдите оценку дисперсии ошибок.
- г) Найдите 95% интервальный индивидуальный прогноз в точке X=10.

Вопрос 1. В модели $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ при выполненных предпосылках теоремы Гаусса-Маркова и нормальных ошибках тестовая статистика $(\hat{\beta}_1 - \beta_1)/se(\hat{\beta}_1)$ имеет распределение

A χ^2_{n-2}

 $C \chi_1^2$

 $B \mathcal{N}(0; \sigma^2)$

 $D \mathcal{N}(0;1)$

Вопрос 2. В модели парной линейной регрессии со свободным членом $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ несмещённой оценкой дисперсии оценки МНК \hat{eta}_1 является

A RSS/(n-2)

- $C \sum (Y_i \bar{Y})^2/(n-1)$ E RSS/n

- $|B| \sum (Y_i \bar{Y})^2/(n-2)$
- $D RSS/((n-2)\sum_{i}(X_i-\bar{X})^2)$

Вопрос 3. Крокодил Гена оценил с помощью МНК зависимость $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$. Оказалось, что $\hat{\beta}_0 = 90$, а $\hat{eta}_1=3$. Чебурашка увеличил переменные X и Y на 10% и снова оценил уравнение регрессии. В результате этой корректировки

- \overline{A} оценки \hat{eta}_0 и \hat{eta}_1 не измени-
- оценка \hat{eta}_1 не изменилась
- лись

- C оценки $\hat{\beta}_0$ и $\hat{\beta}_1$ увеличились

|B| оценка $\hat{\beta}_0$ уменьшилась, а

- **Вопрос 4.** Рассмотрим модель множественной регрессии $Y=X\beta+\varepsilon$, где $\hat{Y}=X\hat{\beta},\,e=Y-\hat{Y}.$ Величина RSS — это квадрат длины вектора
 - $A \hat{Y}$

 $|E| \hat{Y} - \bar{Y}$

 $B Y - \bar{Y}$

Вопрос 5. Крокодил Гена оценивает модель регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ с помощью МНК. Чебурашка получит такую же оценку коэффициента β_1 , если будет минимизировать

- А коэффициент детерминации
- переменной

D \mid выборочную дисперсию остатков

- В выборочную ковариацию регрессора и объясняемой
- C выборочную дисперсию объясняемой переменной
- |E| выборочную дисперсию объясняющей переменной

Вопрос 6. Храбрый исследователь Вениамин оценил регрессию $\hat{Y}_i = 23 + 10X_i$, в скобках приведены стандартные ошибки. Доверительный интервал для свободного члена равен [14;32]. Доверительный интервал для коэффициента наклона при том же уровне доверия будет равен

 $\boxed{A} \ [6;14]$

C [6.08; 13.92]

E [1; 19]

 \boxed{B} [6.4; 13.6]

 $\boxed{D} \ [5;15]$

Вопрос 7. Чебурашка оценил модель $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, а Крокодил Гена — модель $X_i = \gamma_0 + \gamma_1 Y_i + u_i$. Оказалось, что $\hat{\gamma}_1 = 0.25/\hat{\beta}_1$. Величина R^2 в регрессии Чебурашки равна

A 0

C 0.25

E 0.5

B = 0.75

D 1

Вопрос 8. Оценки МНК вектора коэффициентов регрессии $Y = X\beta + \varepsilon$ находятся по формуле

 $A (X'X)^{-1}YX$

 $\boxed{C} (X'X)^{-1}X'Y$

 $E (XX')^{-1}X'Y$

 $B X'Y(X'X)^{-1}$

 $\boxed{D} (XX')^{-1}Y'X$

Вопрос 9. Распределение случайной величины X задано таблицей

Вероятность $\mathbb{P}(X=1)$ равна

A 0.5

C 0.3

 \boxed{E} 0.4

B 0.2

D = 0

Вопрос 10. По 20 наблюдениям Чебурашка оценил модель $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$. Известно, что $\sum X_i=-10$, $\sum X_i^2=40$, $\sum X_iY_i=10$, $\sum Y_i=50$.

Сумма оценок МНК коэффициентов $\hat{eta}_0 + \hat{eta}_1$ равна

A 3

C = 5

|E| 2

B 4

D 1

Тест	1	2	3	4	Итого

1. (5 баллов) Случайные величины X и Y независимы и имеют хи-квадрат распределение с 8 и с 10 степенями свободы, соответственно. Случайная величина Z равна Z=(X+Y)/X.

Найдите значение z^* такое, что $\mathbb{P}(Z>z^*)=0.05$.

- 2. (5 баллов) Докажите, что для модели парной регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, оцененной с помощью МНК, выполнено равенство $\sum_{i=1}^n Y_i = \sum_{i=1}^n \hat{Y}_i$.
- 3. (5 баллов) Аккуратно сформулируйте теорему Гаусса-Маркова для случая парной регрессии.
- 4. (10 баллов) На основании 32 наблюдений Чебурашка оценил функцию спроса на апельсины:

$$\hat{Y}_i = {6 \atop (3.2)} - {1.25 \atop (0.2)} X_i$$
, где $\sum_i (X_i - \bar{X})^2 = 2.25$

- a) Проверьте гипотезы о значимости каждого из коэффициентов регрессии при уровне значимости 5%.
- б) Проверьте гипотезу о равенстве коэффициента наклона -1 при уровне значимости 5% и односторонней альтернативной гипотезе, что коэффициент наклона меньше -1.
- в) Найдите оценку дисперсии ошибок.
- г) Найдите 95% интервальный индивидуальный прогноз в точке X=11.