习题 3

2、求证 n 次 Newton 插值基函数 $\{1, (x-x_0), \cdots, (x-x_0)(x-x_1)\cdots(x-x_{n-1})\}$ 是线性空间 \mathbb{P}_n 的一组基.

3、设 $f(x) = \ln(1+x)$, $x \in [0,1]$, $p_n(x)$ 为 f(x) 以 n+1 个等距节点 $x_i = \frac{i}{n}$, $i = 0, 1, 2, \cdots, n$ 为插值节点的 n 次插值多项式,证明: 对任意 $x \in [0,1]$, 成立 $\lim_{n \to \infty} |f(x) - p_n(x)| = 0$.

4、设 $l_0(x)$ 为以节点 $\{x_i\}_{i=0}^n$ 进行 n 次 Lagrange 插值相应于 x_0 处的基函数,证明:

$$l_0(x) = 1 + \frac{x - x_0}{x_0 - x_1} + \frac{(x - x_0)(x - x_1)}{(x_0 - x_1)(x_0 - x_2)} + \dots + \frac{(x - x_0)(x - x_1) \dots (x - x_{n-1})}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_{n-1})}.$$

5、若 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ 有 n 个不同实根 x_1, x_2, \dots, x_n , 证明

$$\sum_{j=1}^{n} \frac{x_j^k}{f'(x_j)} = \begin{cases} 0, & 0 \le k \le n-2; \\ \frac{1}{a_n}, & k = n-1. \end{cases}$$

6、n 次 Chebyshev 多项式定义为: $T_n(x) = \cos(n\arccos x)$.

- (1) 试求出 n 次 Chebyshev 多项式的 n 个零点.
- (2) 设 $f(x) = \frac{1}{1+x^2}$, $x \in [-5,5]$, 以 $T_n(x)$ 的零点作为插值节点,利用 MATLAB 分别作出 3 次 Lagrange 插值多项式,6 次 Lagrange 插值多项式,9 次 Lagrange 插值多项式,10 次 Lagrange 插值多项式,描述观察到的现象.