Eigenvalues and Eigenvectors of Symmetric Matrices

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Recap and agenda for today's class

- Discussed eigenvalues and eigenvectors for a generic matrix A
- Discuss these concepts for symmetric matrices
 - Chapter 6.4 of the book

Eigenvalues, Eigenvectors, Diagonalization (recap)

- Almost all vectors change direction when they are multiple by A i.e., $A\mathbf{x} = \mathbf{y}$
- Certain exceptional vectors \mathbf{x} are in the same direction as Ax

$$A\mathbf{x} = \lambda \mathbf{x}$$

- \mathbf{x} is an eigenvector and λ is eigenvalue
 - ullet λ tell us whether the eigenvector is shrunk or stretched or left unchanged
 - \bullet λ can be complex also
- Suppose $n \times n$ matrix A has n linearly independent eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$
 - We have $AX = X\Lambda \Rightarrow A = X\Lambda X^{-1}$

Eigenvalues, Eigenvectors of Symmetric Matrix

- What is special about $S\mathbf{x} = \lambda \mathbf{x}$ when S is real and symmetric i.e., $S = S^T$
 - Symmetric matrix has real eigenvalues
 - Eigenvectors are chosen orthonormal when they correspond to different eigenvalues
- Why do we use the word "choose"?
 - Because eigenvectors need not be unit vectors, we can decide their lengths
 - We will choose eigenvectors of length one, which are orthonormal
- Suppose $S\mathbf{x} = \lambda \mathbf{x}$, $\lambda = a + ib$ might be complex, with conjugate $\bar{\lambda} = a ib$
- Components of x may be complex
 - We change signs of their imaginary parts and denote it as $\bar{\mathbf{x}}$
- Note that $\bar{\lambda}\bar{\mathbf{x}} = \overline{\lambda}\mathbf{x}$ and $\overline{S}\mathbf{x} = \overline{S}\overline{\mathbf{x}} = S\overline{\mathbf{x}}$

Eigenvalues of symmetric matrix are real

• We can take conjugate of $Sx = \lambda x$, with S being real

$$\overline{Sx} = \overline{\lambda x}$$
 leads to $S\overline{x} = \overline{\lambda}\overline{x}$. Transposes to $\overline{x}^T S = \overline{x}^T \overline{\lambda}$

• Take inner product of the first equation with $\bar{\mathbf{x}}$ and last equation with \mathbf{x}

$$\bar{\mathbf{x}}^T S \bar{\mathbf{x}} = \bar{\mathbf{x}}^T \lambda \bar{\mathbf{x}} = \lambda ||\bar{\mathbf{x}}||^2$$
$$\bar{\mathbf{x}}^T S \bar{\mathbf{x}} = \bar{\mathbf{x}}^T \bar{\lambda} \bar{\mathbf{x}} = \bar{\lambda} ||\bar{\mathbf{x}}||^2$$

- This implies that $\lambda = \bar{\lambda}$, which implies that λ is real
- Eigenvector come from solving $(S \lambda I)\mathbf{x} = \mathbf{0}$, they are also real

Eigenvectors are chosen orthogonal

• Suppose $S\mathbf{x} = \lambda_1\mathbf{x}$ and $S\mathbf{y} = \lambda_2\mathbf{y}$, and we have

$$(\lambda_1 \mathbf{x})^T \mathbf{y} = (S\mathbf{x})^T \mathbf{y} = \mathbf{x}^T S^T \mathbf{y} = \mathbf{x}^T S \mathbf{y} = \mathbf{x}^T \lambda_2 \mathbf{y} = \lambda_2 \mathbf{x}^T \mathbf{y}$$
(1)

We also have

$$(\lambda_1 \mathbf{x})^T \mathbf{y} = \mathbf{x}^T \lambda_1 \mathbf{y} = \lambda_1 \mathbf{x}^T \mathbf{y}$$
 (2)

• LHS of Eq. (1)= LHS of Eq. (2). RHS of Eq. (1)= RHS of Eq. (2):

$$\lambda_2 \mathbf{x}^T \mathbf{y} = \lambda_1 \mathbf{x}^T \mathbf{y} \Rightarrow (\lambda_2 - \lambda_1) \mathbf{x}^T \mathbf{y} = 0$$

- Since $\lambda_1 \neq \lambda_2$, we have $\mathbf{x}^T \mathbf{y} = 0$
- x and y may not have unit length but we can choose them to have so

$$S\mathbf{x} = \lambda_1 \mathbf{x} \Rightarrow S \frac{\mathbf{x}}{||\mathbf{x}||} = \lambda_1 \frac{\mathbf{x}}{||\mathbf{x}||}$$

Eigenvectors are chosen orthogonal

- ullet Symmetric matrix S has orthogonal eigenvector matrices Q
- Every 2 by 2 symmetric matrix S can be decomposed as

$$S = Q\Lambda Q^{-1} = Q\Lambda Q^{T} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & \\ & \lambda_{2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1}^{T} \\ \mathbf{x}_{2}^{T} \end{bmatrix}$$
$$= \lambda_{1}\mathbf{x}_{1}\mathbf{x}_{1}^{T} + \lambda_{2}\mathbf{x}_{2}\mathbf{x}_{2}^{T}$$

ullet Every n by n symmetric matrix S can be similarly decomposed as

$$S = \lambda_1 \mathbf{x}_1 \mathbf{x}_1^T + \lambda_2 \mathbf{x}_2 \mathbf{x}_2^T + \dots + \lambda_n \mathbf{x}_n \mathbf{x}_n^T$$

• Spectral Theorem: Every symmetric matrix can be factorized as $S = Q\Lambda Q^T$ with real eigenvalues in λ and orthonormal eigenvectors in the columns of Q

Complex Eigenvalues of Real Matrices

 For a real non-symmetric matrix, complex eigenvalues and eigenvectors occur in pair

If
$$A\mathbf{x} = \lambda \mathbf{x}$$
 then $A\bar{\mathbf{x}} = \bar{\lambda}\bar{\mathbf{x}}$

- For $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, $\lambda_1 = \cos \theta + i \sin \theta$ and $\lambda_2 = \cos \theta i \sin \theta$
- Eigenvectors must be \mathbf{x} and $\bar{\mathbf{x}}$ as A is real

$$A\mathbf{x} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = (\cos \theta + i \sin \theta) \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
$$A\bar{\mathbf{x}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = (\cos \theta - i \sin \theta) \begin{bmatrix} 1 \\ i \end{bmatrix}$$

All Symmetric Matrices are Diagonalizable

- When no eigenvalues of A are repeated, eigenvectors are independent
 - A can be diagonalized
- But a repeated eigenvalue can produce a shortage of eigenvectors
 - This sometimes happens for nonsymmetric matrices
- It never happens for symmetric matrices
 - There are always enough eigenvectors to diagonalize

