Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi

Challenges in biomedical data science: data-driven solutions to clinical questions

by

Samuele Fiorini

Theses Series

DIBRIS-TH-2017-XX

DIBRIS, Università di Genova

Via Opera Pia, 13 16145 Genova, Italy

http://www.dibris.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems Engineering Computer Science Curriculum

Challenges in biomedical data science: data-driven solutions to clinical questions

by

Samuele Fiorini

Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi Indirizzo Informatica Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi Università degli Studi di Genova

DIBRIS, Univ. di Genova Via Opera Pia, 13 I-16145 Genova, Italy http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Samuele Fiorini DIBRIS, Univ. di Genova

. . . .

Date of submission: September 12, 2017

Title: Machine Learning 4 healthcare.

Advisor: Annalisa Barla Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi Università di Genova

. . .

Ext. Reviewers: Lo Scopriremo Lo Scopriremo Lo Scopriremo

Abstract

Abstract

Contents

1	Inti	Introduction						
Pa	Part I							
2	Bac	kgroun	d		9			
	2.1	What i	s data scie	ence and why we should care	9			
	2.2	Challe	nges in bi	omedical data science	9			
	2.3	From	clinical qu	estions to learning task	9			
3	Sta	te of the	e art		10			
	3.1	Basic notation and definitions						
	3.2	2 Machine learning						
		3.2.1	Supervis	ed learning	10			
			3.2.1.1	Regularization methods	10			
			3.2.1.2	Ensemble methods	10			
			3.2.1.3	Deep learning	10			
		3.2.2	3.2.2 Unsupervised learning					
			3.2.2.1	Manifold learning	10			
			3.2.2.2	Clustering	10			
		3.2.3	Model se	election and evalutation	10			
			3.2.3.1	Model selection strategies	10			
			3.2.3.2	Feature selection stability	10			
			3.2.3.3	Performance metrics	10			

Part II		12
4	ADENINE: a Data exploration tool	12
5	Model for biological age prediction [temp. title]	13
6	Temporal model for multiple sclerosis evolution	14
7	Temporal model for glucose predictions	15
8	Conclusion	16
Bibliography		17

1 Introduction

Part I

2 Background

2.1 What is data science and why we should care

{

- Data engineering
- Data exploration
- Machine learning and data understanding
- Data visualization

}

- 2.2 Challenges in biomedical data science
- 2.3 From clinical questions to learning task

3 State of the art

3.1 Basic notation and definitions

3.2 Machine learning

- 3.2.1 Supervised learning
- 3.2.1.1 Regularization methods
- 3.2.1.2 Ensemble methods
- 3.2.1.3 Deep learning
- 3.2.2 Unsupervised learning
- 3.2.2.1 Manifold learning
- 3.2.2.2 Clustering
- 3.2.3 Model selection and evalutation
- 3.2.3.1 Model selection strategies
- 3.2.3.2 Feature selection stability
- 3.2.3.3 Performance metrics

Part II

4 ADENINE: a Data exploration tool

5 Model for biological age prediction [temp	p. titie]
---	-----------

6	Temporal	model for	multiple	sclerosis	evolution

7 Temporal model for glucose predictions

8 Conclusion

Bibliography