Programação 1 Aula 2

Valeri Skliarov, Prof. Catedrático

Email: skl@ua.pt

URL: http://sweet.ua.pt/skl/

Departamento de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

http://elearning.ua.pt/

Pontos importantes

import java.util.*;

Importar a biblioteca de classes (Scanner)

Scanner sc = new Scanner(System.in);

Criar um objeto novo do tipo Scanner

Função nextInt do objeto do tipo Scanner

a = sc.nextInt();

Utilizar o objeto do tipo Scanner

Valeri Skliarov 2017/2018

```
import java.util.*;
Exemplo 1:
                         public class Nome {
                          public static void main(String[] args) {
1. Importar Scanner
                           Scanner objeto = new Scanner(System.in);
                           int inteiro;
2. Criar objeto
                           double real_v;
                                                          Inteiro:2
                                                         Real:34343
                           System.out.print("Inteiro:");
                                                         inteiro e 2; real e 34343.0
                                                         inteiro e 2; real e 34343.000000
                           inteiro = objeto.nextInt();
 3. Usar objeto
                           System.out.print("Real:");
                           real_v = objeto.nextDouble();
                           System.out.println("inteiro é " + inteiro + "; real é " + real);
                           System.out.printf("inteiro é %d; real é %f\n", inteiro, real);
                           objeto.close();
   4. Fechar objeto
```

Exemplo 2:

```
import java.util.*;
public class Nome {
public static void main(String[] args) {
```



```
Scanner objeto = new Scanner(System.in);
 int inteiro;
double real;
System.out.print("Inteiro:");
inteiro = objeto.nextInt();
real = Ler real();
 System.out.println("inteiro é " + inteiro + "; real é " + real);
 System.out.printf("inteiro é %d; real é %f\n",inteiro,real);
public static double Ler_real()
double real;
System.out.print("Real:");
real = objeto.nextDouble();
return real;
```

Exemplo 3:

```
import java.util.*;
```

```
public class Nome {
public static void main(String[] args) {
  Scanner objeto = new Scanner(System.in);
  int inteiro;
  double real:
  System.out.print("Inteiro:");
  inteiro = objeto.nextInt();
  real = Ler real();
  System.out.println("inteiro é " + inteiro + "; real é " + real);
  System.out.printf("inteiro é %d; real é %f\n",inteiro,real);
  objeto.close();
 public static double Ler_real()
  Scanner objeto = new Scanner(System.in);
  double real;
  System.out.print("Real:");
  real = objeto.nextDouble();
                                        objeto.close();
  return real;
```

Identificadores

Identificadores — nomes utilizados para designar todos os objetos existentes num programa. Devem começar por uma letra ou por símbolo '_' e só podem conter letras, números e símbolo '_' (ex. nome, idade, i, j, cont_1, dia_mes, _km, res, nome1, n1_and_n3, a____123_____b,t__,...).

```
Exemplos errados: 3i, 1__nome, 22, meu nome, o maior
```

Espaço não pode ser usado

Estilo recomendado

- Para nomear itens no seu programa **não pode** usar nomes reservados em Java (**class**, **new**, **int**, **public**, etc.).
- Aconselha-se que:
 - os nomes das classes comecem sempre por letra maiúscula; se o nome da classe inclui várias palavras, escreva cada uma destas com letra maiúscula: Pessoa, ContaBancaria;
 - todas as entidades restantes (variáveis, métodos, etc.) só incluam letras minúsculas exceto se se tratar de palavras compostas em que deve escrever cada uma destas palavras com letra maiúscula exceto a primeira: nomeCompleto, capacidadeDeposito, ano, calcularSaldo.;
 - para variáveis sejam usados nomes descritivos (p.ex. dia, mes, dist, em vez de a, b, c).

Alcance de variáveis

Um alcance é delimitado por um par de chavetas {}.

A variável definida num alcance só existe dentro deste alcance. Quando se sai deste a variável é destruída.

```
int x = 12;
// aqui a variável x está disponível

int q = 96;
// int x = 2; não se pode declarar mais um x
// aqui x e q estão disponíveis
}
// aqui apenas x está disponível
```

// nem x, nem q estão disponíveis

- Estruturas de controlo decisão
- Tipos de dados boolean
- Operadores relacionais
- Operadores lógicos
- Estrutura de decisão if
- Estrutura de decisão múltipla switch

Alguns conceitos essenciais...

classe

- Tipo de dados boolean (ou Boolean) podem assumir valores true e false (verdadeiro e falso).
- Operadores relacionais: < , <= , > , >= , == , !=
- Operadores lógicos: !, | |, &&
- Exemplos:

Operadores - prioridade

 A ordem de execução de operadores numa expressão complexa regese pelas regras de precedência.

 Para alterar a ordem e/ou clarificar as expressões complexas sugere-se que usem parênteses.

$$c = (++a) & (b>>>30);$$

Operators	Precedence			
postfix	expr++ expr			
unary	++exprexpr +expr -expr ~ !			
multiplicative	* / %			
additive	+ -			
shift	<< >> >>>			
relational	< > <= >= instanceof			
equality	== !=			
bitwise AND	٤			
bitwise exclusive OR	^			
bitwise inclusive OR	1			
logical AND	&&			
logical OR	H			
ternary	? :			
assignment	= += -= *= /= &= &= ^= = <<= >>>=			

Estruturas de controlo - decisão

- Uma das particularidades de um computador é a capacidade de repetir tarefas ou executar tarefas consoante determinadas condições.
- Para implementar programas mais complexos, temos a necessidade de executar instruções de forma condicional.
- Determinadas instruções só podem/devem ser executadas depois da avaliação de determinadas condições.
- As instruções que permitem condicionar a execução de outras designam-se por estruturas de controlo. Nestes slides vamos apresentar as estruturas de decisão.
- Temos em JAVA dois tipos de instruções de decisão: if e switch.

Instrução de decisão if

- if (expressão) instrução;
- a expressão é avaliada;
- tem que ser uma expressão cujo resultado seja do tipo booleano;
- se verdadeira, é executada a instrução;
- se falsa, o programa continua na linha seguinte;
- exemplo:

```
int x;
System.out.print("Um valor inteiro:");
x = sc.nextInt();
if( x < 0)
    x = -x;
System.out.println("O valor absoluto é " + x);</pre>
```

Instrução de decisão if

- a expressão é avaliada;
- se verdadeira, é executado o bloco1;
- se falsa, é executado o bloco2;
- se um bloco contiver mais de uma instrução, deve levar chavetas.

Exemplo:

```
if (item1 >= item2)
    System.out.println("primeiro é maior ou igual a segundo");
else
    System.out.println("segundo é o maior");
```

```
import java.util.*;
public class Igualdade
                                 Press any key to continue
public static void main (String args[])
    Scanner sc = new Scanner(System.in);
    int A, B;
    boolean a, b;
   A = sc.nextInt(); B = sc.nextInt();
    if (A == B)
        System.out.println("A = B");
    else
        System.out.println("A != B");
    if (A != B)
        System.out.println("A != B");
    else
        System.out.println("A = B");
   System.out.println(A == B ? "A = B" : "A != B");
```

Resultados

```
import java.util.*;
                                                                      Resultados
public class Igualdade4
                                            pelo menos dois valores do conjunto (A, B, C, D) sao iguais
public static void main (String args[])
                                            not(not a or not b or not c) = false
                                            Press any key to continue
    Scanner sc = new Scanner(System.in);
    int A, B, C, D;
    boolean v. a. b. c. d. e. f:
    A = sc.nextInt(); B = sc.nextInt(); C = sc.nextInt(); D = sc.nextInt();
    a = A == B; // a é true se A for igual a B e a é false no caso opósito
    b = B == C:
    c = C == D:
    d = A == C:
    e = A == D:
    f = B == D:
    if (a && b && c)
          System.out.println("A = B = C = D");
    y = !a && !b && !c && !d && !e && !f;
    if (y)
          System.out.println("todos os valores A, B, C, D são diferentes");
    if (a || b || c || d || e || f)
          System.out.println("pelo menos dois valores do conjunto {A, B, C, D} sao iguais");
 System.out.printf("a and b and c = \%b\n", a && b && c);
 System.out.printf("not(not a or not b or not c) = \%b\n", !(!a || !b || !c));
                                                            Para imprimir um valor booleano
```

Diagramas de fluxo (flowcharts)

Valeri Skliarov 2017/2018

Exercício com instrução if

Verificar a paridade dum número inteiro.

```
Scanner sc = new Scanner(System.in);
int number = sc.nextInt();
if (number % 2 == 0)
    System.out.println("O número é par");
else
    System.out.println("O número é ímpar");
sc.close();
```

Instrução de decisão if

 A seguir à instrução decisória if ou ao separador else, podemos ter qualquer tipo de instrução, inclusive outras instruções de decisão.

```
if (condiçao1)
                                     if (condiçao1)
     if (condição2)
                                          bloco1;
         bloco1;
                                     else if (condição2)
    else
                                          bloco2;
         bloco2;
                                     else
                                          bloco3;
else
    bloco3;
                             Valeri Skliarov
                              2017/2018
```

Instrução de decisão múltipla switch

Algumas situações de decisão encadeadas com a instrução **if** podem ser resolvidas através da instrução de decisão múltipla **switch**.

```
switch (expressão)
 case valor1:
    bloco1;
    break;
  case valor2:
    bloco2;
    break;
  default:
    bloco3;
```

- A expressão deve ser do tipo enumerado (número inteiro ou carater no caso dos tipos primitivos de JAVA byte, short, int ou char).
- As constantes que constituem a lista de alternativas são do mesmo tipo da expressão.
- Primeiro é calculada a expressão e depois o seu valor é pesquisado na lista de alternativas existentes em cada case, pela ordem com que são especificados.
- Se a pesquisa for bem sucedida, o bloco de código correspondente é executado.
- Caso não exista na lista e se o **default** existir, o bloco de código correspondente é executado.
- A execução do **switch** só termina com o aparecimento da instrução **break**.

Diagramas de fluxo (flowcharts)

Valeri Skliarov 2017/2018

Exemplo 1:

```
import java.util.*;
public class ex_switch
public static void main (String args[])
                                                              op
 Scanner sc = new Scanner(System.in);
                                                                            default
                                                           3 4
 int a=2, b=3;
 int op;
 System.out.print("op ?");
 op = sc.nextInt();
switch(op)
 case 1:
  System.out.printf(a + b = %d\n, a+b);
  break:
                       // remover break e experimentar
  case 2:
  System.out.printf("a - b = %d\n", a-b); <
  break:
  case 3:
  System.out.printf("a * b = %d\n", a*b); <-
  break:
  case 4:
  System.out.printf("a %% b = %d\n", a%b);
  break:
  default:
                                                                          Terminal
  System.out.println("Wrong operation");
```

```
import java.util.*;
Exemplo 2:
                       public class ex_switch_char
                        public static void main (String args[])
                        Scanner sc = new Scanner(System.in);
                                                                                    default
                        int a=2, b=3; char op;
                        System.out.print("op ?");
                        op = sc.nextLine().charAt(0);
                       switch(op)
                            case '+': <
                             System.out.printf("a + b = %d\n", a+b);
             Terminal
                             break;
                            case '-': <-----
                              System.out.printf("a - b = %d\n", a-b);
                              break;
                            case '*': <-----
                              System.out.printf("a * b = %d\n", a*b);
                              break;
                            case '%': <-
                              System.out.printf("a %% b = %d\n", a%b);
                              break:
                            default: System.out.println("Operação errada");
                                             Valeri Skliarov
                                              2017/2018
```

Switch sem break

```
import java.util.*;
public class ex switch char
                            🔞 🖨 🗇 Terminal
 public static void main
  Scanner sc = new Scannera + b = 5
  int a=2, b=3;
                            * b = 6
  char op;
                          la % b = 2
  System.out.print("op ?'
  op = sc.nextLine().char
                          (program exited with code: 0)
                          Press return to continue
 switch(op)
   case '+':
    System.out.printf(^a + b = ^d n, a+b);
>// break;
   case '-':
    System.out.printf("a - b = dn, a-b);
// break;
   case '*':
    System.out.printf("a * b = %d\n", a*b);
// break;
   case '%':
    System.out.printf("a %% b = %d\n", a%b);
   break:
   default:
    System.out.println("Operacao errada");
    Valeri Skliarov
     2017/2018
```

Exercício com instrução switch

Determinar se uma letra é vogal.

```
public class Vogais
    public static void main(String[] args) {
    Scanner ler = new Scanner(System.in);
        char letra;
        System.out.println("Introduza uma letra:");
        letra = ler.nextLine().charAt(0);
        switch (letra) {
            case 'a':
            case 'e':
            case 'i':
            case 'o':
            case 'u':
                System.out.printf("Vogal %c\n", letra);
                break;
            default:
                System.out.printf("Nao e vogal. O codigo do %c = %d\n", letra,(byte)letra);
```

Código ASCII

Código octal	Código decimal	Código hexadecimal

Código binário

! ! ! !
6 6 k
6
6
k
H
)
2
3
1
5
6
7
3
9

100 0001	101	65	41	Α
100 0010	102	66	42	В
100 0011	103	67	43	С
100 0100	104	68	44	D
100 0101	105	69	45	E
100 0110	106	70	46	F
100 0111	107	71	47	G
100 1000	110	72	48	Н
100 1001	111	73	49	1
100 1010	112	74	4A	J
100 1011	113	75	4B	K
100 1100	114	76	4C	L
100 1101	115	77	4D	М
100 1110	116	78	4E	N
100 1111	117	79	4F	0
101 0000	120	80	50	Р
101 0001	121	81	51	Q
101 0010	122	82	52	R
101 0011	123	83	53	S
101 0100	124	84	54	Т
101 0101	125	85	55	U
101 0110	126	86	56	V
101 0111	127	87	57	W
101 1000	130	88	58	Х
101 1001	131	89	59	Υ
101 1010	132	90	5A	Z

110 0001	141	97	61	a
110 0010	142	98	62	b
110 0011	143	99	63	С
110 0100	144	100	64	d
110 0101	145	101	65	е
110 0110	146	102	66	f
110 0111	147	103	67	g
110 1000	150	104	68	h
110 1001	151	105	69	i
110 1010	152	106	6A	j
110 1011	153	107	6B	k
110 1100	154	108	6C	- 1
110 1101	155	109	6D	m
110 1110	156	110	6E	n
110 1111	157	111	6F	0
111 0000	160	112	70	р
111 0001	161	113	71	q
111 0010	162	114	72	r
111 0011	163	115	73	s
111 0100	164	116	74	t
111 0101	165	117	75	u
111 0110	166	118	76	v
111 0111	167	119	77	w
111 1000	170	120	78	х
111 1001	171	121	79	у
111 1010	172	122	7A	Z