

Features learnt by the end of this workshop

OpenCV Features

Read and display images

Image Properties (gray-scaling, resizing, etc)

Read and display video input

Face Detection
Haar Cascade Classifier

Face Recognition

Model trained using LBPH

Pre-requisites:

Basics of python or other programming language (C, C++, Java)

Pre-requisite Installation Steps:

Install Python>=3.5 (32/64 bit) from https://www.python.org/downloads/

After installation, Open cmd terminal

Check Python Version	pythonversion	
Install Jupyter notebook	pip install jupyter	
Install Numpy library	pip install numpy	
Install OpenCV library	pip install opency-contrib-python	

Workshop Flow

Objective	Minutes
Introduction to Computer Vision	10
 Discuss the features of OpenCV Read & display the image Modify image properties (gray-scaling, resizing, etc) 	20
Face Detection:Explain Haar Cascade ClassifierDemo on images, video	20
Face Recognition: Discuss training the model using LBPH on dataset	10
Train a model using LBPHDemo on video	20
Open for Questions/ Discussions / Poll quiz	10
	Total: 90 minutes

Introduction to Computer Vision

HOPPER INDIA 2020

- Computer Vision is the discipline under a broad area of Artificial Intelligence
- Teaches machines to see
- Extract meaning from pixels of images / videos

Implementations in various fields

Automobiles Self Driving Cars

Detects objects, Lane markings, Traffic signs & signals

Security Face Recognition

Police work,
Payment portals,
Security checkpoints at airport

Health Care
Accurate Diagnosis

Medical Imaging,
Timely identification of
illness

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library

The library has more than 2500 optimized algorithms

Used for:

- Detect and recognize faces
- Identify objects
- Track camera movements
- Track moving objects
- Extract 3D models of objects
- Many More

Supports:

- C, C++, Java, Python interfaces
- Linux, Windows, Mac OS, iOS, Android

https://opencv.org/

Features

Functions used	Output
Read and display the image imread() imshow()	OpenCV
Modify Size of image resize() Gray Scaling of Image	OpenCV
cvtColor() COLOR_BGR2GRAY	OpenCV

Haar Cascade Classifier

Haar Cascade is a machine learning object detection algorithm used to identify objects in an image or video

Steps (a) Edge Features Haar Feature Selection (b) Line Features Adaboost (c) Four-rectangle features **Training** Cascade Classifier Cascade Classifier Cascading trainCascadeObjectDetector vision.CascadeObjectDetector System Object

Classifiers

Local Binary Pattern Histogram (LBPH) Algorithm

LBP is a simple & efficient texture operator which labels the pixels of an image by thresholding the neighborhood of each pixel and considers the result as a binary number.

Steps:

- 1. Parameters: Radius, Neighbours, Grid X, Grid Y
- 2. Training the Algorithm
- 3. Applying the LBP operation

4. Extracting the Histograms

5. Performing the face recognition

References

Opency Official Documentation:

https://opencv.org/

https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html

https://opencv-pythontutroals.readthedocs.io/en/latest/py tutorials/py imgproc/py pyramids/p
y_pyramids.html

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutoria l.html#local-binary-patterns-histograms

