Análise de Risco

Sessão 3 Risco de Custo

Prof. E.A. Schmitz

PPGI/UFRJ

June 25, 2018

Custo

Ex-post: Custo de uma obra é igual ao somatório do custos envolvidos

Ex-ante: Custo de uma obra é uma soma de estimativas dos itens de custo esperados de ocorrer.

Custo são estimados usando uma distribuição triangular

Figure: Distribuição triangular

Custo

Ex-ante: Custo de uma obra é uma soma de estimativas dos itens de custo esperados de ocorrer.

Modelo: C_T é o custo total e C_i representam itens de custo.

$$C_T = \sum_{i=1}^n C_i$$

Se C_i forem indenpendentemente distribuidas, então:

- $\blacktriangleright \mu_T = \sum_{i=1}^n \mu_i$
- Se *n* grande: $C_T \sim N(\mu_T, \sigma_T^2)$

A solução aproximada para o risco de custo envolve avaliar: (1) a função de probabilidade de C_T e (2) a sua função cumulativa

Cenários MC

O processo de estimativa empírica do C_T usando a técnica de Monte Carlo envolve os seguintes passos:

- 1. Gerar N cenários (amostras) independentes dos itens de custo
- 2. Calcular o valor do custo da amostra C_i $i \in 1 \cdots N$ para cada um dos cenários
- 3. Use os valores das amostras C_i como uma aproximação empírica de C_T

Exercício em sala

Estimativas de custo de um projeto de construção

Item	Min	Mprov	Max
Escavação	75	82.5	92.5
Fundação	57.5	67.5	77.5
Estrutura	430	445	472.5
Telhado	145	157.5	151.18
Acabamento	72.5	92.5	107.5

Calcule o risco do custo total da obra de duas formas: (1) usando o TCL e (2) Monte Carlo

Custos aditivos em R

```
construcao<-function(Ns=1000) {
library (triangle)
#Passo 1-Gerar as amostras das variáveis de risco
Escv<-rtriangle(Ns, 75, 92.5, 82.5)
Fund<-rtriangle(Ns, 57.5, 77.5, 67.5)
Estr<-rtriangle(Ns, 430, 472.5, 445)
Telh<-rtriangle(Ns, 140, 157.5, 145)
Acab<-rtriangle(Ns,72.5,107.5,92.5)
#Passo 2-Montar a matriz de cenários
Cenarios <- cbind (Escv, Fund, Estr, Telh, Acab)
#Passo 3-Avaliar cenarios
Custo<-apply(Cenarios, M=1, sum)
#Passo 4-Mostrar resultados
hist (Custo)
plot (ecdf (Custo))
#Passo 5-Retorna resultado
Custo
```

Custos contingenciados

- Custo obrigatórios: itens de custo que certamente vão ocorrer.
- custo s\(\tilde{a}\) contigenciais: itens de custo que tem uma probabilidade \(p\) de ocorrer.

Modelo: C_T é o custo total e C_i representam itens de custo obrigatórios e C_j os contingenciais.

$$C_T = \sum_{i=1}^n C_i + \sum_{j=1}^m p_j * C_i$$

A solução aproximada para o risco de custo contingenciado envolve avaliar: (1) a função de probabilidade de C_T e (2) a sua função cumulativa

Interpretando resultados do modelo

Saída do modelo de risco de custo: dá a faixa realista de custos esperados. Dá uma medida do risco dependendo do alvo que está sendo colocado

Após avaliar prob (Custo > Preço) temos as seguintes opções:

- novo plano
- aceitar o risco
- rejeitar a proposta

Após avalliar a prob (Custo > Orçamento):

- diminui a margem de lucro
- risco zero?
- prática: assumir um risco de 15 a 20%

Alvo de custo

- orçamento liberado para o grupo do projeto
- diferença = valor de contingência
- quanto contingenciar: valor entre alvo de custo e o orçamento
- expresso em % do orçamento

