Exercícios

Resolva cada exercício a seguir. Para cada um, apresente uma justificativa. Ou seja, em caso positivo, encontre os valores de c e n_0 (ou c_1, c_2 e n_0 , quando necessário). Em caso contrário, explique com suas palavras por que não.

- 1. A função f(n) = 5n + 10 pertence a $O(n^2)$?
- 2. A função $f(n) = n^2 + 4n$ pertence a $O(n^2)$?
- 3. A função $f(n) = 2n^2 + 7n + 5$ pertence a O(n)?
- 4. A função f(n) = 100 pertence a O(1)?
- 5. A função $f(n) = n^2 3n$ pertence a O(n)?
- 6. A função $f(n) = 2n^2 + 5n$ pertence a $\Omega(n^2)$?
- 7. A função f(n) = 3n + 20 pertence a $\Omega(n)$?
- 8. A função $f(n) = n^2 + 10n$ pertence a $\Omega(n^2)$?
- 9. A função f(n) = 2n + 10 pertence a $\Omega(n^2)$?
- 10. A função f(n) = 5n + 100 pertence a $\Omega(n)$?
- 11. A função f(n) = 4n + 6 pertence a $\Theta(n)$?
- 12. A função $f(n) = 2n^2 + 3n + 5$ pertence a $\Theta(n^2)$?
- 13. A função $f(n) = n^2 + 7n$ pertence a $\Theta(n^2)$?
- 14. A função $f(n) = 3n^2 + 5n$ pertence a $\Theta(n)$?
- 15. A função f(n) = 10 pertence a $\Theta(1)$?

Referências

CORMEN, Thomas H. et al. Introduction to Algorithms. 3. ed. Cambridge: MIT Press, 2009.

Feofiloff, Paulo. **Anotações sobre Algoritmos: Slides.** São Paulo: Instituto de Matemática e Estatística – USP, [s.d.]. Disponível em: https://www.ime.usp.br/~pf/livrinho-AA/downloads/AA-SLIDES.pdf. Acesso em: março de 2025.

KLEINBERG, Jon; TARDOS, Éva. Algorithm Design. Boston: Pearson, 2006.