단답형 문제 정답

$1 \sqrt{\frac{10gH}{7}}$	$\frac{1}{4}Mg$	$rac{L_0}{L} ho$	4 $\frac{1}{2}\rho(v_1^2-v_2^2)A$ (절대값도 정답)	$\frac{15}{16}E$
6 (a) $hmg\sin\theta$ (또는 $hmg\theta$) (b) $2\pi\sqrt{\frac{I}{mgh}}$	$\sqrt{2} A$	8 1100 Hz	$rac{\Delta L ho A c}{Q}$	$\sqrt{3}$
(3), (4)	12 -40 J (부호 틀리면 틀림)	※ 6, 11번은 순서 맞아야 정답※ 8, 12번은 단위 써야 정답		

주관식 1.

(가) 정상파는 반대로 진행하는 파 두 개가 중첩되어 만들어 질 수 있으므로, $y(x,t) = y_1(x,t) + y_2(x,t)$

주어진 조건을 이용하여.

$$2 \sin\left(\frac{\pi}{3}x\right) \cos\left(\frac{\pi}{2}t\right) = A \sin(kx - wt) + A \sin(kx + wt)$$
$$= 2A \sin(kx) \cos(wt)$$

양변을 비교하면 $A=1({\rm cm}),\;k=\frac{\pi}{3}({\rm rad/cm}),\;\omega=\frac{\pi}{2}({\rm rad/s})$ 이므로

두 파동은
$$y_1(x,t)=\sin\left(\frac{\pi}{3}x-\frac{\pi}{2}t\right),\ y_2(x,t)=\sin\left(\frac{\pi}{3}x+\frac{\pi}{2}t\right)$$

(나) 진폭
$$A=1$$
 cm, 파수 $k=\frac{\pi}{3}$ rad/cm, 주파수 $f=\frac{\omega}{2\pi}=\frac{1}{4}$ Hz ,

주기
$$T=\frac{1}{f}=4s$$
 , 속력 $v=\frac{\omega}{k}=\frac{\pi/2}{\pi/3}=\frac{3}{2}$ cm/s , (단위를 표시해야 정답)

(다) 관계식에 의해
$$\lambda = \frac{v}{f} = \left(\frac{2\pi}{k}\right) = 6\,cm$$
 이고, 마디거리 $=\frac{\lambda}{2}$ 이므로 , 모양만 맞으면 진폭과 마디길이가 모두 표시되면

주관식 2.

- (가) 연속방정식으로부터 Av=일정이다. 따라서 $A_1v_1=A_2v_2$
- (나) 베르누이 방정식은 $p + \frac{1}{2}\rho v^2 + \rho g y$ =일정이며 설치된 파이프가 평행하므로 y는 모두 일정하므로, 두 단면적이 다른 파이프 사이에는

$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$
 와 같은 등식이 성립한다.

[또는
$$(p_2 + \rho gh) + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$
]

(다) 설치된 관의 높이차 h를 이용하면 각 파이프 면에서 압력차는 $p_1 - p_2 = \rho g h$ 와 같다.

이와 (가), (나)의 결과를 이용하여 정리하면

$$\rho g h = \frac{1}{2} \rho \! \left(\frac{A_1}{A_2} v_1 \! \right)^2 - \frac{1}{2} \rho v_1^2$$

따라서
$$v_1=\sqrt{\dfrac{2gh}{\left(\dfrac{A_1^2}{A_2^2}-1\right)}}$$

주관식 3

- (가) PV = nRT에서 등온과정이므로 $n,\ R,\ T$ 일정 $\Rightarrow P_1V_1 = P_2V_2$ $V_2 = 3\ V_1$ 이므로 $P_1V_1 = P_2 \times 3\ V_1,\ P_2 = \frac{1}{3}P_1$ $\therefore \frac{1}{3}$ 배
- (다) PV^{γ} =상수 에서 단원자 이상기체이므로 $\gamma = \frac{5}{3}$
- $\Rightarrow P_1 V_1^{\frac{5}{3}} = P_2 V_2^{\frac{5}{3}}, \quad V_2 = 3 \, V_1$ 이므로 $\Rightarrow P_1 V_1^{\frac{5}{3}} = P_2 (3 \, V_1)^{\frac{5}{3}}$ $\therefore P_2 = 3^{-\frac{5}{3}} P_1$ 한편, 이상기체의 상태 방정식 PV = nRT로부터 $P_1 V_1 = nRT_1$ 라고 하면

$$P_2V_2=(3^{-\frac{5}{3}}P_1)(3\,V_1)=3^{-\frac{2}{3}}P_1V_1,\ n,\ R$$
은 일정하므로 $T=3^{-\frac{2}{3}}T_1$ 이므로 $\therefore 3^{-\frac{2}{3}}$ 배