Задача A. Bridges. Мосты

Имя входного файла: bridges.in Имя выходного файла: bridges.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан неориентированный граф. Требуется найти все мосты в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ($n \le 20\,000$, $m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество мостов в заданном графе. На следующей строке выведите b целых чисел — номера ребер, которые являются мостами, в возрастающем порядке. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

Пример

bridges.in	bridges.out
6 7	1
1 2	3
2 3	
3 4	
1 3	
4 5	
4 6	
5 6	

Задача В. Points. Точки сочленения

Имя входного файла: points.in Имя выходного файла: points.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан неориентированный граф. Требуется найти все точки сочленения в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ($n \le 20\,000$, $m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество точек сочленения в заданном графе. На следующей строке выведите b целых чисел — номера вершин, которые являются точками сочленения, в возрастающем порядке.

Пример

points.in	points.out
9 12	3
1 2	1
2 3	2
4 5	3
2 6	
2 7	
8 9	
1 3	
1 4	
1 5	
6 7	
3 8	
3 9	

Задача С. Из истории банка Гринготтс

Имя входного файла: euler.in
Имя выходного файла: euler.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Чтобы понять название задачи, можно прочитать красивую легенду.

http://acm.timus.ru/problem.aspx?space=1&num=1441

Задача же заключается в том, чтобы рёбра неориентированного графа разбить на минимальное число путей.

Формат входных данных

Дан граф. На первой строке число вершин n ($1 \le n \le 20\,000$) и число рёбер m ($1 \le m \le 20\,000$). Следующие m строк содержат описание рёбер графа. Каждая строка по два числа a_i b_i ($1 \le a_i, b_i \le n$). Между каждыми двумя вершинами не более одного ребра. Граф связен.

Формат выходных данных

На первой строке минимальное число путей. На каждой следующей описание очередного пути – номера вершин в порядке прохождения.

Примеры

euler.in	euler.out
7 7	3
1 2	5 7 4 2 1 4
4 1	2 3
6 7	6 7
5 7	
7 4	
2 3	
4 2	

Задача D. Раскраска в три цвета

Имя входного файла: color.in
Имя выходного файла: color.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Петя нарисовал на бумаге n кружков и соединил некоторые пары кружков линиями. После этого он раскрасил каждый кружок в один из трех цветов — красный, синий или зеленый.

Теперь Петя хочет изменить их раскраску. А именно — он хочет перекрасить каждый кружок в некоторый другой цвет так, чтобы никакие два кружка одного цвета не были соединены линией. При этом он хочет обязательно перекрасить каждый кружок, а перекрапивать кружок в тот же цвет, в который он был раскрашен исходно, не разрешается.

Помогите Пете решить, в какие цвета следует перекрасить кружки, чтобы выполнялось указанное условие.

Формат входных данных

Первая строка содержит два целых числа n и m — количество кружков и количество линий, которые нарисовал Петя, соответственно ($1 \le n \le 1000, 0 \le m \le 20000$).

Следующая строка содержит n символов из множества $\{'\mathtt{R}', '\mathtt{G}', '\mathtt{B}'\} - i$ -й из этих символов означает цвет, в который раскрашен i-й кружок $('\mathtt{R}' - \mathsf{красный}, '\mathtt{G}' - \mathsf{зеленый}, '\mathtt{B}' - \mathsf{синий}).$

Следующие m строк содержат по два целых числа — пары кружков, соединенных отрезками.

Формат выходных данных

Выведите в выходной файл одну строку, состоящую из n символов из множества $\{'R', 'G', 'B'\}$ цвета кружков после перекраски. Если решений несколько, выведите любое.

Если решения не существует, выведите в выходной файл слово "Impossible".

Примеры

color.in	color.out
4 5	BBGR
RRRG	
1 3	
1 4	
3 4	
2 4	
2 3	
4 5	Impossible
RGRR	
1 3	
1 4	
3 4	
2 4	
2 3	

Задача E. Chip Installation

Имя входного файла: chip.in
Имя выходного файла: chip.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Новый ЧИП скоро установят в новый летательный апарат, недавно выпущенной компанией Airtram. ЧИП имеет форму диска. Есть n проводов, которые нужно подсоединить к ЧИПу.

Каждый провод можно подсоединить в один из двух разъемов, допустимых для этого провода. Все 2n разъемов расположены на границе диска. По кругу. Каждый провод имеет свой цвет. Для повышения безопасности два провода одного цвета не могут быть подсоединены к соседним разъемам.

Дана конфигурация разъемов на ЧИПе, найдите способ подсоединить все провода, не нарушающий условия про цвета.

Формат входных данных

Первая строка содержит число n — количество проводов ($1 \le n \le 50\,000$). Вторая строка содержит n целых чисел от 1 до 10^9 — цвета проводов. Цвета проводов могут совпадать. Третья строка содержит 2n целых чисел от 1 до n описывающих разъемы. Число обозначает номер провода, который может быть подсоединен к данному разъему. Каждое число от 1 до n встречается ровно дважды. Разъемы перечислены в порядке "по кругу". 1-й разъем является соседним со 2-м и так далее, не забудьте, что n-й является соседним с 1-м.

Формат выходных данных

Если не существует способа подключить все провода, выведите одно слово "NO".

Иначе выведите "YES" и n целых чисел. Для каждого провода выведите номер разъема, к которому нужно подключить этот провод. Разъемы нумеруются числами от 1 до 2n в том порядке, в котором они даны во входном файле.

Примеры

chip.in	chip.out
2	YES
1 1	1 3
1 1 2 2	
2	NO
1 1	
1 2 1 2	
2	YES
1 2	1 2
1 2 1 2	