ЛЕКЦИЯ 4 Элементарные преобразования матриц. ранг матрицы

4.1.	Элементар	эные	пре	образован	КИІ	матриц.
	залентные ма		-	-		-
4.2.	Получение	обрати	ной	матрицы	c	помощью
элеме	нтарных пре	еобразо	ваниі	й. Линейн	ая за	висимость
(независимость) арифметических векторов5						
`				•		
4.3.	Ранг матри	щы. Р	анг	ступенча	той	матрицы.
Teone	ма о базисно	у минс	one	-		18

4.1. ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. ЭКВИВАЛЕНТНЫЕ МАТРИЦЫ

Как уже говорилось в **ЛЕКЦИИ 3**, когда мы находим обратную матрицу для матриц размерности 3,4 и выше, этот процесс становится очень трудоёмким - нам необходимо вычислить как минимум 9 определителей 2-го порядка, 16 определителей 3-го порядка и т.д. В таких случаях обратную матрицу находят с помощью так называемых элементарных преобразований - см. **п.4.2**. ниже.

ЗАМЕЧАНИЕ. В этом пункте мы рассмотрим основные элементарные преобразования строк матриц (отметим, что аналогичные элементарные преобразования верны и для столбиов матрицы). Одно из применений элементарных преобразований на практике - приведение матрицы системы линейных уравнений к ступенчатому виду (см. ЛЕКЦИЯ 5, п. 5.2.2). При этом мы имеем право действовать только со строками соответствующей Поэтому общий матрицы. ниже МЫ запишем вид элементарных преобразований *строк* матрицы, **НО**, повторимся там, где возможно, будем применять аналогичные элементарные преобразования к столбцам матрицы.

ОПРЕДЕЛЕНИЕ. Матрица В, полученная из матрицы А с помощью элементарных преобразований строк (или столбцов) называется эквивалентной матрице А.

Обозначение: $A \sim B$.

ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦЫ (СТРОК)

1. Умножение некоторой строки на число $\lambda \neq 0$:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \sim \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ \lambda a_{i1} & \lambda a_{i2} & \dots & \lambda a_{in} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

ПРИМЕР 1. Умножим 4-ю строку на (-2) или (короткая запись этого действия $-2 \cdot (4)$):

$$\begin{pmatrix}
1 & -2 & 3 & -1 \\
-1 & 7 & -4 & 0 \\
-3 & 4 & 5 & -2 \\
\hline
2 & 0 & 6 & 1 \\
1 & 3 & -7 & 2
\end{pmatrix}
\sim
\begin{pmatrix}
1 & -2 & 3 & -1 \\
-1 & 7 & -4 & 0 \\
-3 & 4 & 5 & -2 \\
\hline
-4 & 0 & -12 & -2 \\
\hline
1 & 3 & -7 & 2
\end{pmatrix}$$

2. Перестановка любых двух строк:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \sim \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

ЗАМЕЧАНИЕ. Обозначение действия "переставлены *i*-ая и *k*-ая строки": $(i) \leftrightarrow (k)$.

ПРИМЕР 2. Переставим (поменяем местами) 1-ю и 4-ю строки или (короткая запись этого действия $(1) \leftrightarrow (4)$):

$$\begin{bmatrix}
1 & -2 & 3 & -1 \\
-1 & 7 & -4 & 0 \\
-3 & 4 & 5 & -2 \\
2 & 0 & 6 & 1 \\
1 & 3 & -7 & 2
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 3 & -7 & 2 \\
-1 & 7 & -4 & 0 \\
-3 & 4 & 5 & -2 \\
2 & 0 & 6 & 1 \\
1 & -2 & 3 & -1
\end{bmatrix}$$

3. Прибавление к *i-ой* строки k-ой строки, умноженной на число $\lambda \neq 0$:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \sim \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

ЗАМЕЧАНИЕ. Обозначение действия "прибавление к *i*-ой строки *k*-ой строки, умноженной на число $\lambda \neq 0$ ": (*i*) + $\lambda \cdot (k)$

ПРИМЕР 3. Прибавим к 1-й строке 3-ю, умноженную на (-2) (короткая запись этого действия $(1) + (-2) \cdot (3)$):

$$\begin{bmatrix}
1 & 3 & -7 & 2 \\
-1 & 7 & -4 & 0 \\
-3 & 4 & 5 & -2 \\
2 & 0 & 6 & 1 \\
1 & -2 & 3 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 + (-2) \cdot (-3) & 3 + (-2) \cdot 4 & -7 + (-2) \cdot 5 & 2 + (-2) \cdot (-2) \\
-1 & 7 & -4 & 0 \\
-3 & 4 & 5 & -2 \\
2 & 0 & 6 & 1 \\
1 & -2 & 3 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & -5 & -17 & 6 \\
-1 & 7 & -4 & 0 \\
-3 & 4 & 5 & -2 \\
2 & 0 & 6 & 1 \\
1 & -2 & 3 & -1
\end{bmatrix}$$

4.2. ПОЛУЧЕНИЕ ОБРАТНОЙ МАТРИЦЫ С ПОМОЩЬЮ ЭЛЕМЕНТАРНЫХ ПРЕОБРАЗОВАНИЙ. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ (НЕЗАВИСИМОСТЬ) АРИФМЕТИЧЕСКИХ ВЕКТОРОВ

4.2.1. ПОЛУЧЕНИЕ ОБРАТНОЙ МАТРИЦЫ С ПОМОЩЬЮ ЭЛЕМЕНТАРНЫХ ПРЕОБРАЗОВАНИЙ

Как уже было сказано ранее (**ЛЕКЦИЯ 3**), нахождение обратной матрицы с помощью определителей в случае размерности исходной матрицы больше, чем 3, становится весьма трудоёмким делом. В таких случаях обратную матрицу находят с помощью элементарных преобразований. Алгоритм этого процесса основывается на следующем теоретическом утверждении:

TEOPEMA. Любую невырожденную матрицу с помощью конечного числа элементарных преобразований строк (столбцов) можно привести к единичной.

Доказательство:

Доказательство этой теоремы заключается в приведении соответствующего алгоритма:

НАХОЖДЕНИЕ ОБРАТНОЙ МАТРИЦЫ С ПОМОЩЬЮ КОНЕЧНОГО ЧИСЛА ЭЛЕМЕНТАРНЫХ ПРЕОБРАЗОВАНИЙ

1. Для матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

составим расширенную матрицу

$$(A \mid E) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & \mid & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \mid & \dots & \dots & \dots & 0 \\ a_{i1} & a_{i2} & \dots & a_{in} & \mid & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \mid & 0 & 0 & \dots & 0 \\ a_{n1} & a_{n2} & \dots & a_{nn} & \mid & 0 & 0 & \dots & 1 \end{pmatrix}$$

2. Элементарными преобразованиями строк матрицы (A | E) приведём матрицу *A* к ступенчатому виду так, чтобы по главной диагонали стояли 1 (алгоритм *приведения матрицы к ступенчатому виду* представлен ниже)

$$(\widetilde{\mathbf{A}} \mid \mathbf{B}) = \begin{pmatrix} 1 & \widetilde{a}_{12} & \dots & \widetilde{a}_{1n} & | & b_{11} & b_{12} & \dots & b_{1n} \\ \dots & \dots & \dots & | & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \widetilde{a}_{in} & | & b_{i1} & b_{i2} & \dots & b_{in} \\ \dots & \dots & \dots & | & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & | & b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}.$$

3. Элементарными преобразованиями строк матрицы $(\widetilde{A} \mid E)$ привести матрицу \widetilde{A} к единичной (*алгоритм приведения ступенчатой матрицы к единичной* представлен ниже) :

$$(E \mid C) = \begin{pmatrix} 1 & 0 & \dots & 0 & | & c_{11} & c_{12} & \dots & c_{1n} \\ \dots & \dots & \dots & | & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & | & c_{i1} & c_{i2} & \dots & c_{in} \\ \dots & \dots & \dots & | & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & | & c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}.$$

4. Полученная матрица C является обратной к матрице $A: C = A^{-1}$.

Рассмотрим подробно алгоритмы приведения матриц к *ступенчатому* (в частности, к треугольному, трапецевидному) и единичному виду.

ЗАМЕЧАНИЕ. Наиболее простой общий вид имеют квадратные матрицы, поэтому алгоритмы приведения матриц к ступенчатому виду мы будем рассматривать на примере квадратных матриц. Для матриц произвольной размерности действует аналогичный алгоритм.

ПРИВЕДЕНИЕ МАТРИЦЫ А К СТУПЕНЧАТОМУ ВИДУ

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

1. Из всех строк матрицы A выберем ту, у которой первый элемент равен 1 и поставим эту строку на 1-е место. Если такая строка отсутствует, выберем любую строку (пусть для определённости, это будет 1-я строка) и умножим её на $\frac{1}{a_{11}}$. Тогда получим матрицу:

$$\begin{pmatrix} 1 & a^{1}_{12} & \dots & a^{1}_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

В 1-й строке изменились все элементы: первый равен 1, остальные стали a^1_{1j} :.

$$a^{1}_{1j} = \frac{1}{a_{11}} \cdot a_{1j}, \ j = 2,3,...,n.$$

2. Из каждой последующей строки вычитаем 1-ую, умноженную на a_{i1} :

$$(i) - a_{i1} \cdot (1), i = 2,3,..,n$$

и получаем матрицу, в первом столбце которой все элемент ниже $a_{11} = 1$ - нулевые:

$$\begin{pmatrix} 1 & a^{1}_{12} & \dots & a^{1}_{1n} \\ 0 & a^{2}_{22} & \dots & a^{2}_{2n} \\ 0 & a^{2}_{32} & \dots & a^{2}_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & a^{2}_{n2} & \dots & a^{2}_{nn} \end{pmatrix}.$$

ЗАМЕЧАНИЕ. Здесь (и далее) верхний индекс i = 2,3,...,n указывает, на каком шаге были получены новые элементы строки.

3. Теперь умножаем 2-ю строку на $\frac{1}{a^2}$ и получим матрицу:

$$\begin{pmatrix} 1 & a^{1}_{12} & \dots & a^{1}_{1n} \\ 0 & 1 & \dots & a^{3}_{2n} \\ 0 & a^{2}_{32} & \dots & a^{2}_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & a^{2}_{n2} & \dots & a^{2}_{nn} \end{pmatrix}$$

4. Из каждой последующей строки вычитаем 2-ую, умноженную на a^2_{i2} :

$$(i)$$
- $a^{2}_{i2} \cdot (2)$, $i = 3,4,...,n$

и получим матрицу, в первом и втором столбцах которой все элементы ниже элементов $a_{11} = 1$ и $a_{22} = 1$ - нулевые:

$$\begin{pmatrix} 1 & a^{1}_{12} & \dots & a^{1}_{1n} \\ 0 & 1 & \dots & a^{3}_{2n} \\ 0 & 0 & \dots & a^{4}_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a^{4}_{nn} \end{pmatrix}.$$

5. Аналогично действуя с оставшимися строками, получаем ступенчатую матрицу, у которой на главной диагонали стоят $1(a_{ii} = 1, i = 1, 2, ..., n)$, а все элементы, стоящие ниже элементов главной диагонали - нулевые:

$$\begin{pmatrix} 1 & a_{12}^1 & \dots & a_{1n}^1 \\ 0 & 1 & \dots & a_{2n}^3 \\ 0 & 0 & \dots & a_{3n}^4 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

ЗАМЕЧАНИЕ. В итоге рассмотренных преобразований мы можем получить:

- треугольную матрицу, элементы главной диагонали которой все равны 1 далее мы можем привести её к единичной матрице соответствующего порядка (см. ПРИВЕДЕНИЕ СТУПЕНЧАТОЙ МАТРИЦЫ К ЕДИНИЧНОЙ)
- ступенчатую матрицу общего вида (где среди элементов главной диагонали есть нулевые) далее эту матрицу мы можем привести к ступенчатой матрице единичного вида, все элементы главной диагонали которой равны либо 1, либо 0, а все остальные элементы равны 0 (алгоритм соответствует предыдущему см. ПРИВЕДЕНИЕ СТУПЕНЧАТОЙ МАТРИЦЫ К ЕДИНИЧНОЙ)

ПРИВЕДЕНИЕ СТУПЕНЧАТОЙ МАТРИЦЫ К ЕДИНИЧНОЙ

Дана матрица
$$\begin{pmatrix} 1 & a^1_{12} & \dots & a^1_{1n} \\ 0 & 1 & \dots & a^3_{2n} \\ 0 & 0 & \dots & a^4_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

1. Вычитаем последнюю строку из всех предшествующих так, чтобы в последнем столбце все элементы, кроме a_{nn} =1, стали равны 0:

$$(i)$$
- $a^{k}_{in} \cdot (n)$, $i = 1, 2, ..., n-1$; $k = 1, 2, ...$

и получаем матрицу

$$\begin{pmatrix} 1 & a_{12}^1 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

2. Аналогично вычитаем из всех строк (n-1)-ую строку, умноженную на соответствующие коэффициенты (так, чтобы все элементы (n-1)-го столбца, кроме $a_{n-1n-1}=1$, стали равны 0. Продолжая процесс далее, получим единичную матрицу E:

$$\begin{pmatrix}
1 & 0 & \dots & 0 \\
0 & 1 & \dots & 0 \\
0 & 0 & \dots & 0 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & 1
\end{pmatrix}$$

ПРИМЕР 4. Дана матрица $A = \begin{pmatrix} 2 & 0 & 4 \\ 1 & -1 & -2 \\ -1 & 2 & 3 \end{pmatrix}$. С помощью элементарных

преобразований найти матрицу A^{-1} , обратную данной.

Решение:

Составим расширенную матрицу

$$(A \mid E) = \begin{pmatrix} 2 & 0 & 4 & | & 1 & 0 & 0 \\ 1 & -1 & -2 & | & 0 & 1 & 0 \\ -1 & 2 & 3 & | & 0 & 0 & 1 \end{pmatrix}$$

1. 2-я строка имеет первый элемент равный 1, поэтому поменяем местами 1-ю и 2-ю строки $((2) \leftrightarrow (1))$:

и получим

2. Вычтем из 2-й строки 1-ю, умноженную на 2 $((2)+(-2)\cdot(1))$:

$$\begin{pmatrix}
1 & -1 & -2 & | & 0 & 1 & 0 \\
0 & 2 & 8 & | & 1 & -2 & 0 \\
-1 & 2 & 3 & | & 0 & 0 & 1
\end{pmatrix},$$

к 3-й строке прибавим 1-ю ((3) + (1)):

3. Поменяем местами 2-ю и 3-ю строки $((2) \leftrightarrow (3))$:

$$\begin{pmatrix}
1 & -1 & -2 & | & 0 & 1 & 0 \\
0 & 2 & 8 & | & 1 & -2 & 0 \\
\hline
0 & 1 & 1 & | & 0 & 1 & 1
\end{pmatrix}$$

и получим матрицу:

$$\begin{pmatrix}
1 & -1 & -2 & | & 0 & 1 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 1 \\
0 & 2 & 8 & | & 1 & -2 & 0
\end{pmatrix}$$

4. Вычтем из 3-й строки 2-ю, умноженную на 2 $((3)+(-2)\cdot(2))$:

и получим матрицу:

$$\begin{pmatrix}
1 & -1 & -2 & | & 0 & 1 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 1 \\
0 & 0 & 6 & | & 1 & -4 & -2
\end{pmatrix}$$

5. Умножим 3-ю строку на $\frac{1}{6} \left(\frac{1}{6} \cdot (3) \right)$:

и получим матрицу:

$$\begin{pmatrix}
1 & -1 & -2 & | & 0 & 1 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 1 \\
0 & 0 & 1 & | & \frac{1}{6} & -\frac{2}{3} & -\frac{1}{3}
\end{pmatrix}$$

6. К 1-й строке прибавим 3-ю, умноженную на 2 ($(1) + 2 \cdot (3)$):

,

$$\begin{pmatrix}
1 & -1 & 0 & | & \frac{1}{3} & -\frac{1}{3} & -\frac{2}{3} \\
0 & 1 & 1 & | & 0 & 1 & 1 \\
0 & 0 & 1 & | & \frac{1}{6} & -\frac{2}{3} & -\frac{1}{3}
\end{pmatrix},$$

из 2-й строки вычтем 3-ю строку ((2) – (3))

$$\begin{pmatrix}
1 & -1 & 0 & | & \frac{1}{3} & -\frac{1}{3} & -\frac{2}{3} \\
0 & 0 & 1 & 0 & \frac{1}{6} & 1 & -\frac{2}{3} & 1 & -\frac{1}{3} \\
0 & 0 & 1 & | & \frac{1}{6} & -\frac{2}{3} & -\frac{1}{3}
\end{pmatrix}$$

и получим матрицу:

$$\begin{pmatrix}
1 & -1 & 0 & | & \frac{1}{3} & -\frac{1}{3} & -\frac{2}{3} \\
0 & 1 & 0 & | & -\frac{1}{6} & \frac{5}{3} & \frac{4}{3} \\
0 & 0 & 1 & | & \frac{1}{6} & -\frac{2}{3} & -\frac{1}{3}
\end{pmatrix}.$$

7. К 1-й строке прибавим 2-ю строку ((1)+(2)):

и получим слева единичную матрицу, а справа - матрицу, обратную исходной:

$$\begin{pmatrix}
1 & 0 & 0 & | & \frac{1}{6} & \frac{4}{3} & \frac{2}{3} \\
0 & 1 & 0 & | & -\frac{1}{6} & \frac{5}{3} & \frac{4}{3} \\
0 & 0 & 1 & | & \frac{1}{6} & -\frac{2}{3} & -\frac{1}{3}
\end{pmatrix}, A^{-1} = \begin{pmatrix}
\frac{1}{6} & \frac{4}{3} & \frac{2}{3} \\
-\frac{1}{6} & \frac{5}{3} & \frac{4}{3} \\
\frac{1}{6} & -\frac{2}{3} & -\frac{1}{3}
\end{pmatrix}.$$

ЗАМЕЧАНИЕ. Для того, чтобы убедиться в том, что найденная матрица

$$A^{-1} = \begin{pmatrix} \frac{1}{6} & \frac{4}{3} & \frac{2}{3} \\ -\frac{1}{6} & \frac{5}{3} & \frac{4}{3} \\ \frac{1}{6} & -\frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$
 является обратной к матрице
$$A = \begin{pmatrix} 2 & 0 & 4 \\ 1 & -1 & -2 \\ -1 & 2 & 3 \end{pmatrix}$$

необходимо проверить выполнение равенств¹:

$$A^{-1} \cdot A = A \cdot A^{-1} = E$$
.

4.2.2. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ (НЕЗАВИСИМОСТЬ) АРИФМЕТИЧЕСКИХ ВЕКТОРОВ. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ (НЕЗАВИСИМОСТЬ) СТРОК (СТОЛБЦОВ) МАТРИЦЫ

Рассмотрим арифметический вектор (см. **ЛЕКЦИЯ 2, п.2.1**) \vec{a} с координатами $(a_1,a_2,..,a_n)$: \vec{a} $(a_1,a_2,..,a_n)$.

ОПРЕДЕЛЕНИЕ. Линейной комбинацией векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ называется сумма

$$\alpha_1\vec{a}_1+\alpha_2\vec{a}_2+\ldots+\alpha_n\vec{a}_n\,,$$

где $\alpha_1,\alpha_2,..\alpha_n \in R$ - некоторые числа (коэффициенты линейной комбинации).

ЗАМЕЧАНИЕ. Очевидно, что линейная комбинация векторов является вектором.

ПРИМЕР 5. Даны вектора $\vec{a}_1 = (3,-1,1), \ \vec{a}_2 = (0,-1,2), \$ числа $\alpha_1 = 2, \ \alpha_2 = -1.$ Найти линейную комбинацию этих векторов с данными коэффициентами.

Решение:

По определению

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 = 2 \cdot (3,-1,1) + (-1) \cdot (0,-1,2) = (6,-2,2) + (0,1,-2) = (6,-1,0),$$

т.е. результатом линейной комбинации векторов $\vec{a}_1 = (3,-1,1), \quad \vec{a}_2 = (0,-1,2)$ является вектор (6,-1,0).

 $^{^{1}}$ Для обратной матрицы, найденной в ПРИМЕРЕ 4, выполните проверку самостоятельно

Теперь перейдём к определению понятий *линейной зависимости и независимости арифметических векторов*.

ОПРЕДЕЛЕНИЕ. Система (набор) векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ называется **линейно независимой**, если их линейная комбинация равна нулю только при $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$, т.е.

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \ldots + \alpha_n \vec{a}_n = 0 \Leftrightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$$

ПРИМЕР 6. Доказать, что вектора $\vec{a}_1 = (3,-1,1)$, $\vec{a}_2 = (0,-1,2)$ линейно независимы.

Решение:

Составим линейную комбинацию векторов $\vec{a}_1 = (3,-1,1), \quad \vec{a}_2 = (0,-1,2)$ и приравняем её к нулю (т.е. к вектору $\vec{0} = (0,0,0)$):

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 = \alpha_1 (3, -1, 1) + \alpha_2 (0, -1, 2) = (3\alpha_1, -\alpha_1, \alpha_1) + (0, -\alpha_2, 2\alpha_2) = (3\alpha_1, -\alpha_1 - \alpha_2, \alpha_1 + 2\alpha_2) = (0, 0, 0).$$

Вектора $(3\alpha_1, -\alpha_1 - \alpha_2, \alpha_1 + 2\alpha_2)$ и (0,0,0) равны, если равны их соответствующие координаты (см. **ЛЕКЦИЯ 2, п.2.1**), т.е. получаем систему уравнений:

$$\begin{cases} 3\alpha_1 = 0 \\ -\alpha_1 - \alpha_2 = 0, \\ \alpha_1 + 2\alpha_2 = 0 \end{cases}$$

откуда

$$\begin{cases} \alpha_1 = 0 \\ \alpha_2 = 0 \end{cases}$$

значит вектора $\vec{a}_1 = (3,-1,1), \ \vec{a}_2 = (0,-1,2)$ линейно независимы.

ОПРЕДЕЛЕНИЕ. Если линейная комбинация векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ равна нулю при хотя бы одном $\alpha_i \neq 0: i = 1, ..., n$, то система (набор) векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ называется линейно зависимыми:

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + ... + \alpha_n \vec{a}_n = 0 \Leftrightarrow \exists \alpha_i : \alpha_i \neq 0, i = 1,...,n$$
.

ПРИМЕР 7. Доказать, что вектора $\vec{a}_1 = (1,-2,4)$, $\vec{a}_2 = (3,-6,12)$ линейно зависимы.

Решение:

1-й способ:

Очевидно, что

$$\vec{a}_2 = (3,-6,12) = 3(1,-2,4) = 3\vec{a}_1$$
.

Тогда линейная комбинация $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 = \alpha_1 \vec{a}_1 + 3\alpha_2 \vec{a}_1$ будет равна $\vec{0} = (0,0,0)$ при любых $\alpha_1 = -3\alpha_2$, например, при $\begin{cases} \alpha_1 = -3 \\ \alpha_2 = 1 \end{cases}.$

2-й способ:

Составим линейную комбинацию векторов $\vec{a}_1 = (1,-2,4)$, $\vec{a}_2 = (3,-6,12)$ и приравняем её к нулю (т.е. к вектору $\vec{0} = (0,0,0)$):

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 = \alpha_1 (1, -2, 4) + \alpha_2 (3, -6, 12) = (\alpha_1, -2\alpha_1, 4\alpha_1) + (3\alpha_2, -6\alpha_2, 12\alpha_2) =$$

$$= (\alpha_1 + 3\alpha_2, -2\alpha_1 - 6\alpha_2, 4\alpha_1 + 12\alpha_2) = (0, 0, 0).$$

Вектора $(\alpha_1 + 3\alpha_2, -2\alpha_1 - 6\alpha_2, 4\alpha_1 + 12\alpha_2)$ и (0,0,0) равны, если равны их соответствующие координаты, т.е. получаем систему уравнений:

$$\begin{cases} \alpha_1 + 3\alpha_2 = 0 \\ -2\alpha_1 - 6\alpha_2 = 0, \\ 4\alpha_1 + 12\alpha_2 = 0 \end{cases} \begin{cases} \alpha_1 + 3\alpha_2 = 0 \\ \alpha_1 + 3\alpha_2 = 0, \\ \alpha_1 + 3\alpha_2 = 0 \end{cases}$$

откуда

$$\{\alpha_1 = -3\alpha_2 .$$

Таким образом мы нашли ненулевые значения α_1, α_2 , при которых линейная комбинация векторов $\vec{a}_1 = (1,-2,4)$, $\vec{a}_2 = (3,-6,12)$ обращается в $\vec{0} = (0,0,0)$, а значит эти вектора линейно зависимы.

СВОЙСТВА ЛИНЕЙНО ЗАВИСИМЫХ АРИФМЕТИЧЕСКИХ ВЕКТОРОВ

1. Если среди векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ есть хотя бы один нулевой $(\vec{0} = (0,0,0))$, то эти вектора линейно зависимы.

Доказательство:

Пусть некоторый вектор $\vec{a}_k = 0$. Возьмем $\alpha_k = 1$, а все остальные $\alpha_i = 0$: $i = 1,...,n; i \neq k$. Составим с этими коэффициентами линейную комбинацию векторов $\vec{a}_1, \vec{a}_2,..., \vec{a}_n$:

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n = 0 \cdot \vec{a}_1 + \dots + 1 \cdot \vec{a}_k + \dots + 0 \cdot \vec{a}_n = 1 \cdot \vec{0} = 0$$

значит вектора $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ - линейно зависимы.

2. Если два вектора $\vec{a}(a_1, a_2)$ и $\vec{b}(b_1, b_2)$ линейно зависимы, то их координаты пропорциональны, т.е. существует такое число $\lambda \neq 0$, что:

$$a_1 = \lambda b_1, a_2 = \lambda b_2$$
.

Доказательство:

Рассмотрим линейную комбинацию векторов $\vec{a}(a_1, a_2)$ и $\vec{b}(b_1, b_2)$:

$$\alpha_1 \vec{a} + \alpha_2 \vec{b} = 0$$
.

Пусть по крайней мере $\alpha_1 \neq 0$, тогда

$$\vec{a} = -\frac{\alpha_2}{\alpha_1} \vec{b} ,$$

т.е. мы нашли $\lambda = -\frac{\alpha_2}{\alpha_1}$.

Теорема доказана.

Теперь перейдём к определению понятий *линейной зависимости и независимости строк (столбцов) матрицы*.

Рассмотрим матрицу $A_{m\times n}$. Любая строка (столбец) этой матрицы может быть рассмотрена как арифметический вектор (см. **ЛЕКЦИЯ 2, п.2.1).** С другой стороны, строки (столбцы) этой матрицы мы можем рассматривать как матрицы-строки (матрицы-столбцы) соответственно (см. **ЛЕКЦИЯ 2, п.2.2**). Так как они являются строками и столбцами одной матрицы, то имеют одинаковую длину и высоту и над ними можно выполнять линейные операции - сложение, умножение на число (см. **ЛЕКЦИЯ 2, п.2.2**).

Обозначим $A_1, A_2, ..., A_m$ - строки матрицы $A_{m \times n}, \ \widetilde{A}_1, \widetilde{A}_2, ..., \widetilde{A}_n$ - столбцы матрицы $A_{m \times n}.$

ОПРЕДЕЛЕНИЕ. Выражение вида:

$$\alpha_1 A_1 + \alpha_2 A_2 + \dots + \alpha_m A_m, \ \alpha_1, \alpha_2, \dots \alpha_m \in R$$

называется линейной комбинацией строк $A_1, A_2, ..., A_m$ матрицы $A_{m \times n}$. Выражение вида

$$\alpha_1 \widetilde{A}_1 + \alpha_2 \widetilde{A}_2 + ... + \alpha_n \widetilde{A}_n$$
, $\alpha_1, \alpha_2, ... \alpha_m \in R$

называется линейной комбинацией столбцов $\widetilde{A}_1,\widetilde{A}_2,..,\widetilde{A}_n$ матрицы $A_{m imes n}$.

ОПРЕДЕЛЕНИЕ. Строки (столбцы) $A_1, A_2, ..., A_r$ называются **линейно независимыми**, если их линейная комбинация равна нулю только при $\alpha_1 = \alpha_2 = ... = \alpha_r = 0$, т.е.

$$\alpha_1 A_1 + \alpha_2 A_2 + \dots + \alpha_r A_r = 0 \Leftrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_r = 0.$$

ОПРЕДЕЛЕНИЕ. Если линейная комбинация строк (столбцов) $A_1, A_2, ..., A_r$ равна нулю при хотя бы одном $\alpha_i \neq 0$: i = 1, ..., r, то строки (столбцы) $A_1, A_2, ..., A_r$ называются линейно зависимыми:

$$\alpha_1 A_1 + \alpha_2 A_2 + ... + \alpha_r A_r = 0 \Leftrightarrow \exists \alpha_i : \alpha_i \neq 0, i = 1,...,r$$
.

ЗАМЕЧАНИЕ. Далее мы сформулируем и докажем *критерий линейной зависимости строк (столбцов) матрицы*. При этом формулировку и доказательство мы приведём для строк матрицы, так как для столбцов оно аналогично.

ТЕОРЕМА (НЕОБХОДИМОЕ И ДОСТАТОЧНОЕ УЛСОВИЕ ЛИНЕЙНОЙ ЗАВИСИМОСТИ СТРОК МАТРИЦЫ). Для того, чтобы строки $A_1, A_2, ..., A_m$ матрицы $A_{m \times n}$ были линейно зависимы необходимо и достаточно, чтобы хотя бы одна из строк являлась линейной комбинацией остальных, т.е.

$$A_i = \alpha_1 A_1 + ... + \alpha_{i-1} A_{i-1} + \alpha_{i+1} A_{i+1} + ... + \alpha_m A_m$$
 .
 Доказательство:

Необходимость:

<u>Дано</u>: строки $A_1, A_2, ..., A_m$ - линейно зависимы,

<u>Доказать:</u> существует такая строка A_i :

$$A_{i} = \alpha_{1}A_{1} + \ldots + \alpha_{i-1}A_{i-1} + \alpha_{i+1}A_{i+1} + \ldots + \alpha_{m}A_{m}.$$

Рассмотрим линейную комбинацию строк $A_1, A_2, ..., A_m$:

$$\beta_1A_1+\beta_2A_2+\ldots+\beta_iA_i+\ldots+\beta_mA_m=0\,,$$

т.к. $A_1, A_2, ..., A_m$ - линейно зависимы, то существует по крайней мере одно $\beta_i \neq 0$, тогда разделим на него линейную комбинацию строк $A_1, A_2, ..., A_m$:

$$\frac{\beta_1}{\beta_i} A_1 + \frac{\beta_2}{\beta_i} A_2 + ... + A_i + ... + \frac{\beta_m}{\beta_i} A_m = 0,$$

откуда выразим строку A_i :

$$A_{i} = -\frac{\beta_{1}}{\beta_{i}} A_{1} - \frac{\beta_{2}}{\beta_{i}} A_{2} - \dots - \frac{\beta_{m}}{\beta_{i}} A_{m}$$

т.е. мы нашли коэффициенты

$$\alpha_{1} = -\frac{eta_{1}}{eta_{i}},...,lpha_{i-1} = -\frac{eta_{i-1}}{eta_{i}},lpha_{i+1} = -\frac{eta_{i+1}}{eta_{i}},...,lpha_{m} = -\frac{eta_{m}}{eta_{i}}$$

такие, что

$$A_{i} = \alpha_{1}A_{1} + \ldots + \alpha_{i-1}A_{i-1} + \alpha_{i+1}A_{i+1} + \ldots + \alpha_{m}A_{m}.$$

Достаточность:

<u>Дано:</u> существует такая строка A_i :

$$A_{i} = \alpha_{1}A_{1} + \ldots + \alpha_{i-1}A_{i-1} + \alpha_{i+1}A_{i+1} + \ldots + \alpha_{m}A_{m}.$$

<u>Доказать:</u> строки $A_1, A_2, ..., A_m$ - линейно зависимы.

Выражение $A_i = \alpha_1 A_1 + ... + \alpha_{i-1} A_{i-1} + \alpha_{i+1} A_{i+1} + ... + \alpha_m A_m$ можно представить в виде:

$$\alpha_1 A_1 + \ldots + \alpha_{i-1} A_{i-1} + (-1) \cdot A_i + \alpha_{i+1} A_{i+1} + \ldots + \alpha_m A_m = 0,$$

т.е. в виде линейной комбинации строк $A_1, A_2, ..., A_m$, где не все коэффициенты равны 0, а значит - строки $A_1, A_2, ..., A_m$ линейно зависимы.

Теорема доказана.

4.3. РАНГ МАТРИЦЫ. РАНГ СТУПЕНЧАТОЙ МАТРИЦЫ. ТЕОРЕМА О БАЗИСНОМ МИНОРЕ

Ранее (см. **ЛЕКЦИЯ 3.п.3.2**) было рассмотрено понятие *минора матрицы*. Так как новое для нас понятие *ранг матрицы* мы будем вводить с помощью понятия *минор матрицы*, приведём здесь ещё раз его определение.

ОПРЕДЕЛЕНИЕ. Рассмотрим матрицу размера $A_{m \times n}$ и выберем в ней произвольным образом s -строк и s -столбцов $(1 \le s \le \min(m,n), \varepsilon de \min(m,n)$ -меньшее из чисел m и n). Элементы, стоящие на пересечении выбранных строк и столбцов, образуют матрицу порядка s, определитель которой называется **минором** M **порядка** s данной матрицы.

ПРИМЕР 8. Дана матрица размера
$$3 \times 5$$
: $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \end{pmatrix}$.

Выберем в ней произвольные 2 строки и 2 столбца, например 2-я и 3-я строка и 3-й и 4-й столбец:

$$\begin{pmatrix} a_{11} & a_{12} & \mathbf{a_{13}} & \mathbf{a_{14}} & a_{15} \\ \mathbf{a_{21}} & \mathbf{a_{22}} & \mathbf{a_{23}} & \mathbf{a_{24}} & \mathbf{a_{25}} \\ \mathbf{a_{31}} & \mathbf{a_{32}} & \mathbf{a_{33}} & \mathbf{a_{34}} & \mathbf{a_{35}} \end{pmatrix}$$

Тогда минор 2-го порядка для данной матрицы состоит из элементов, стоящих на пересечении выбранных строк и столбцов:

$$\begin{vmatrix} a_{23} & a_{24} \\ a_{33} & a_{34} \end{vmatrix}$$

Теперь перейдём к определению ранга матрицы.

ОПРЕДЕЛЕНИЕ. Наивысший порядок r отличного от нуля минора матрицы A называют **рангом матрицы** A.

Обозначение: r = rang A = r(A).

ЗАМЕЧАНИЕ. Если $\operatorname{rang} A = r$, то существует хотя бы один минор r-го порядка, не равный нулю, а все миноры (r+1)-го порядка равны нулю.

СВОЙСТВА rang A

- 1. rang A = r целое число: $r \in [0, \min(m, n)]$
- 2. rang $A = 0 \Leftrightarrow A = 0$
- 3. rang A = n, если $A_{n \times n}$ невырожденная (т.е. $\det A \neq 0$).

ЗАМЕЧАНИЕ. Понятие *ранг матрицы* является очень важным в курсе алгебры (в частности, при нахождении решений систем линейных уравнений). Поэтому важно уметь быстро и правильно находить ранг матрицы.

СПОСОБЫ НАХОЖДЕНИЯ РАНГА МАТРИЦЫ

1. Метод окаймляющих миноров.

По определению, для того чтобы найти ранг матрицы, необходимо найти среди миноров порядка (r-1) хотя бы один ненулевой и доказать, что все миноры порядка r равны нулю или не существуют. Иногда это может быть достаточно трудоёмкой задачей, т.к. даже у небольшой матрицы 3-го порядка 9 миноров 1-го порядка, 9 миноров 2-го порядка, 1 минор 3-го порядка.

Метод окаймляющих миноров позволяет сократить количество вычисляемых миноров и имеет простой алгоритм:

- 1. Выбираем минор 1-го порядка (это некоторый элемент матрицы), отличный от нуля (если это невозможно, то ранг, очевидно, равен нулю).
- 2. Добавляем к выбранному элементу матрицы строки и столбцы матрицы так, чтобы получился не равный нулю минор 2-го порядка. (если это невозможно, значит ранг равен 1).
- 3. Продолжаем процесс аналогично п.2. и если не удаётся найти минор более высокого порядка, отличный от нуля (или он вообще не существует), то ранг равен порядку неравного нулю минора, найденного на предыдущем шаге.

ПРИМЕР 9. Методом окаймляющих миноров найти ранг матрицы

$$A = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 2 & 0 & -6 & 0 \\ 3 & 0 & -8 & 0 \end{pmatrix}.$$

Решение:

- 1. Существует минор 1-го порядка, не равный нулю, например: $M_1 = 1 \neq 0$.
- 2. Существует минор 2-го порядка, не равный нулю, например: $M_2 = \begin{vmatrix} 1 & -2 \\ 2 & -6 \end{vmatrix} = -2 \neq 0 \ .$
- 3. Все миноры 3-го порядка равны нулю (т.к. они будут содержать 1 или 2 нулевых столбца), значит $\operatorname{rang} A = 2$
- 2. С помощью элементарных преобразований строк (столбцов) матрицы. Этот метод базируется на двух **утверждениях**:
- **1.** Ранг матрицы не изменяется при элементарных преобразованиях её строк (столбцов).
- **2.** Число ненулевых строк ступенчатой матрицы равно её рангу. Поэтому, для того чтобы вычислить ранг матрицы, необходимо с помощью элементарных преобразований привести её к ступенчатому виду и посчитать количество ненулевых строк.

ПРИМЕР 10. Найти ранг матрицы
$$A = \begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix}$$
.

Решение:

$$\begin{pmatrix}
2 & -1 & 3 & -2 & 4 \\
4 & -2 & 5 & 1 & 7 \\
2 & -1 & 1 & 8 & 2
\end{pmatrix}$$

Вычтем из 3-й строки 1-ю и из 2-й строки - две 1-х строки ((3)-(1) и (2)-2(1)):

Получили, что 3-я строка пропорциональна 2-й строке, значит эта матрица эквивалентна ступенчатой матрице:

$$\begin{pmatrix}
2 & -1 & 3 & -2 & 4 \\
0 & 0 & -1 & 5 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Тогда

$$r \begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 0 & 0 & -1 & 5 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = 2$$

Далее введём определение одного важного теоретического понятия, которое мы будем использовать как в этой, так и в последующих лекциях.

ОПРЕДЕЛЕНИЕ. Если $\operatorname{rang} A = r$, то любой ненулевой минор порядка r называется базисным минором, а его строки и столбцы - базисными строками и столбцами.

ТЕОРЕМА (О БАЗИСНОМ МИНОРЕ).

- 1. Строки(столбцы) базисного минора линейно независимы.
- 2.Любая строка (столбец) матрицы A является линейной комбинацией базисных строк (столбцов).

Доказательство:

Доказательство проведём для строк (для столбцов - аналогично).

1. Предположим противное: базисные строки линейно зависимы. Тогда по *необходимому и достаточному условию линейной зависимости строк (столбцов)* (см. ТЕОРЕМА из п. 4.2.2) выполнено:

$$A_i = \alpha_1 A_1 + ... + \alpha_{i-1} A_{i-1} + \alpha_{i+1} A_{i+1} + ... + \alpha_m A_m$$
,

где $A_1, A_2, ..., A_m$ базисные строки матрицы A.

Тогда по свойству 5 вычисления определителя (см. **ЛЕКЦИЯ 3, п.3.3**) базисный минор равен нулю, что противоречит его определению.

2. Докажем, что любая строка матрицы A является линейной комбинацией базисных строк.

Рассмотрим матрицу $A_{m \times n}$ с базисным минором порядка r:

$$A_{m \times n} = \begin{pmatrix} a_{11} & \dots & a_{1r} & \dots & a_{1n} \\ a_{21} & \dots & a_{2r} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{r1} & \dots & a_{rr} & \dots & a_{rn} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & \dots & a_{mr} & \dots & a_{mn} \end{pmatrix}.$$

Рассмотрим произвольный определитель порядка (r+1), полученный добавлением к базисному минору частей любой i-ой строки и любого j-го столбца матрицы A:

$$\Delta = \begin{pmatrix} a_{11} & \dots & a_{1r} & a_{1j} \\ a_{21} & \dots & a_{2r} & a_{2j} \\ \dots & \dots & \dots & \dots \\ a_{r1} & \dots & a_{rr} & a_{rj} \\ a_{i1} & \dots & a_{ir} & a_{ij} \end{pmatrix}.$$

Докажем, что $\Delta = 0$. Рассмотрим два случая:

- 1. Если $i \le r(j \le r)$, то Δ содержит два одинаковых столбца (строки), а значит $\Delta = 0$.
- 2. Если $i \ge r(j \ge r)$, то порядок минора Δ равен (r+1), а любой такой минор равен нулю.

Итак, мы доказали, что
$$\Delta=\begin{pmatrix}a_{11}&...&a_{1r}&a_{1j}\\a_{21}&...&a_{2r}&a_{2j}\\...&...&..&..\\a_{r1}&...&a_{rr}&a_{rj}\\a_{i1}&...&a_{ir}&a_{ij}\end{pmatrix}=0$$
 .

Вычислим этот определитель разложением по элементам j-го столбца:

$$\Delta = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{rj}A_{rj} + a_{ij}A_{ij} = 0,$$

где A_{ij} - это базисный минор (он отличен от нуля), поэтому поделим на него всё выражение:

$$\frac{A_{1j}}{A_{ij}}a_{1j} + \frac{A_{2j}}{A_{ij}}a_{2j} + \dots + \frac{A_{rj}}{A_{ij}}a_{rj} + a_{ij} = 0,$$

откуда находим a_{ij} :

$$a_{ij} = -\frac{A_{1j}}{A_{ii}} a_{1j} - \frac{A_{2j}}{A_{ii}} a_{2j} - \dots - \frac{A_{rj}}{A_{ii}} a_{rj}$$

т.е. элемент i-ой строки есть линейная комбинация элементов r базисных строк.

Теорема доказана.