Det Groups - finile/infinite set + binary operator Prop Groups - Closure Associationly Identity Inverse Del Homomorphism - f between Gr. &Gr. ident Similarities Homomorphism - Studen preserving Map (G₁, o) f(G₂, t) f(x), f(y), f(z) $f: G_1 \Rightarrow G_2$ $f: G_1 \Rightarrow G_2$ $f: G_1 \Rightarrow G_2$ f(x),f(y),f(z) +6,2 $x \rightarrow f(x)$ $y \rightarrow f(y)$ $y \rightarrow f(z)$ $z \rightarrow f(z)$ $= f(x \circ y)$ 20y=2 1-1 habet of gam-codom To Jetive: De surjective: Cvery y has attent one I Del Bijective: Injutive + Surjective

Mection of particles of Darticle dists Dy Rigid body: Parametrization: Explicit parametrization: minimal rep of space Implicit garametrization: maximal vep of space st constr on dim goar as embeddel in high dimenin Fuliden spau and pelet (constraints) DF: (sum of fectoms ind consto m / n W-N m dim brofiguration Space: 7the complete >per of position of every joint of the vobolt is called joint space (d) configuration space - topological grigid body in plane (2,4,8)
prove to singularity

\$ CR² \$ CR³ \$ CR^{nty}

Circle - Surface - hyprer centre

point voto of on live $x \in \mathbb{R}^1$ point what on phe $x \in \mathbb{R}^1$ if $x \in \mathbb{R}^1$

Joint	lot	Constrains	Spelial
Rouble	(2	5
porismetic	1	2	5
Adial	ſ	NA	5
Goldand	2	WA	4
Universe	2	NA NA	4
phical	3	NA	

Gruble i Condition

DF: K(N-1-j) + \(\leq fi \)

K: parants of plue or spetial link

N: Nuber of links

j: nuber of joints

fi: freedom of jthe joint (dof)

(1) Euler Angles
(2) Axis Angle
(3) pathin Matrices
(4) Queternions

Abelian Group: RT=RT

R, Rz = R.R.

A [R] - R (\hat{Z}_A , θ) = $\begin{bmatrix} (\theta - 3\theta & 0) \\ S\theta & (\theta & 0) \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (\theta & 0 & 8\theta \\ 0 & 1 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$S\theta = C\alpha_{11} \hat{Y}_{A} + C\alpha_{12} \hat{Y}_{A} + C\alpha_{23} \hat{Z}_{A}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$S\theta = C\alpha_{11} \hat{Y}_{A} + C\alpha_{12} \hat{Y}_{A} + C\alpha_{23} \hat{Z}_{A}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 & 0 & 0 \\ 0 & (\theta & -5\theta) \end{bmatrix}$$

$$R(\hat{Y}_{A}, \theta) = \begin{bmatrix} (0 & 0 & 0 &$$

Ring=1

[d & d] => det(R) => al(ba)

assis augle Theorem: $\Lambda = \Omega^{\mu} + \Lambda^{T}$ 1 - V" + VT be here to find Vn & V' 1,= 1,1 + (2) of 1+ 4 gub (UX1) U'= 1,1 + (DO (V-V") + 500 (NXV) = U" (1-(00) + Sino(vxv))+ Los O V

V= (It sind n + (rogg) 2) V

+ 100 V

$$fram(R) = 1 + 1 \cos \theta$$

$$\theta = 2 \operatorname{avecos} \left(\operatorname{fr} \left(\frac{R}{2} \right) - 1 \right)$$

$$\left(\frac{1}{2} \operatorname{avecos} \left(\frac{1}{2} \operatorname{avecos} \right) \right)$$

$$\left(\frac{1}{2} \operatorname{avecos} \right)$$

$$\left(\frac{1}{2} \operatorname{avecos} \right)$$

$$\left(\frac{1}{2} \operatorname{avecos} \right) \right)$$

$$\left(\frac{1}{2} \operatorname{avecos} \right)$$

DH TLOj xi-(xi-2i 2i 2i