

ÉCOLE SUPÉRIEURE FRANÇAISE D'INFORMATIQUE ET INTELLIGENCE ARTIFICIELLE

Sujet Algorithmique avancee

Exercice

Un nombre entier est parfait s'il est égal à la somme de ses diviseurs.

Exemple: 6 est un nombre parfait, en effet: 6 = 1 + 2 + 3.

- 1) Ecrire une fonction booléenne PARFAIT prenant en paramètre un nombre entier et permettant de tester s'il est parfait ou non.
- 2) Ecrire l'algorithme PARFAITS affichant tous les nombres parfaits inférieurs à un nombre positif N donné.

Problème

Soit un polygone P de n sommets. Chaque sommet correspond à un point $M_k = \begin{pmatrix} x_k \\ y_k \end{pmatrix}$, (k=1..n) avec $n \ge 3$.

$$M_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}; M_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}; \dots ; M_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$$

Les coordonnées (x_k, y_k) des n points sont stockées dans un vecteur abscisses **Poly**X et un vecteur ordonnées **Poly**Y de tailles n. Le rangement des coordonnées dans les vecteurs **Poly**X et **Poly**Y, est supposé être effectué dans l'ordre des sommets successifs.

- 1) Ecrire une procédure *Saisie* permettant de ranger Np points dans les vecteurs A et B.
- 2) Ecrire une fonction *PositionPoint* permettant de retourner l'indice k de la première apparition du point de coordonnée (X, Y) tel que : (IndDebut $\leq K \leq$ IndFin). Si le point n'existe pas, la fonction retourne 0.

Exemple:

X = 2,1	Y = 6,4		IndDeb	ut = 4	IndFin = 9					
A [14	21,5	2,1	7,6	6	19,3	2,1	6	3	
В	3	1,1	6,4	9,6	4	6	6,4	1	22,5	
		K = 7								

Lafonction *PositionPoint* retourne la valeur 7.

ÉCOLE SUPÉRIEURE FRANÇAISE D'INFORMATIQUE ET INTELLIGENCE ARTIFICIELLE

3) Ecrire une procédure *SupPoint* qui permet de supprimer le point d'indice IndElement.

<u>Indication</u>: la suppression d'un point implique que l'on doit effectuer un décalage à gauche de tous les points succédant le point supprimé ainsi que la réduction de la taille des tableaux A et B.

Exemple:

La taille des tableaux A et B est égale à Np =9 IndElement = 7												
A [14	21,5	2,1	7,6	6	19,3	2,1	6	3			
В[3	1,1	6,4	9,6	4	6	6,4	1	22,5			
Après la suppression du point d'indice 7 on obtient les tableaux suivants : La taille des tableaux A et B est égale à Np =8												
A [14	21,5	2,1	7,6	6	19,3	6	3				
В[3	1,1	6,4	9,6	4	6	1	22,5				

4) Ecrire une fonction *Calcul* qui permet de calculer l'aire *a* du polygone P en utilisant la formule suivante :

$$a = \frac{1}{2} \left[(x_n + x_1)(y_n - y_1) + \sum_{i=1}^{n-1} [(x_i + x_{i+1})(y_i - y_{i+1})] \right]$$

- 5) Ecrire l'algorithme **AirePolygone** permettant de :
 - Saisir un entier n ($3 \le n \le 100$).
 - Remplir les tableaux PolyX et PolyY par les coordonnées de n point.
 - Supprimer les points qui se répètent.
 - Calculer et afficher l'aire *a* du polygone P.

Bon Travail