Class III: Introduction to Aerospace Engineering

M. G. Bharath and M. Ramakrishna, Department of Aerospace Engineering, Indian Institute of Technology Madras

August 21, 2020

History of flight

- 1. What?
- 2. When?
- **3.** Who?
- 4. How?
- 5. Where?
- **6.** Why?
- **7.** Story

- ► Heavier than air powered controlled flight
- December 17, 1903
- ► Wilbur and Orville Wright
- ▶ Wood, fabric, 12hp piston engine, twin prop, skids
- Kitty Hawk, USA
- May not always have an answer
- ▶ Bicycle shop..... paragraph narrating the story

What is flight?

- ▶ If I throw a stone does it fly?
- ▶ If I drop a feather?
- ► I drop a parachute?
- ► I throw or launch a glider?

What do all of these objects have in common? The only power they have available is the initial total energy (potential + kinetic) supplied to them by the launch/throw.

Why does an airplane fly?

Important Fundas from Eng Mech.

$$\sum \vec{F} = 0 \tag{1}$$

and

$$\sum \vec{M} = 0 \tag{2}$$

An Antonov An-225 has a maximum takeoff weight of 640,000 kg.

Straight & Level Flight

Drag D is parallel to direction of flight, L is perpendicular

3D Airfoil

Large lift L for small drag D

Airfoil cross-section / Circular Cylinder

Fluid Particle Dynamics

Steady, Inviscid Flow Past a Cylinder

$$P_A < P_B$$

 $P_A < P_C$

2D Arbitrary Shape

Bernoulli's Equation $p + \frac{1}{2}\rho V^2 = \text{Constant}$, So, $p \downarrow \implies V \uparrow$

No conservation of time -Blocks on a Frictionless Surface

Some Parts of an Airfoil

Point A – leading edge, Point B is the trailing edge

Bernoulli's Equation $p + \frac{1}{2}\rho V^2 = \text{Constant}$, So, $p \downarrow \implies V \uparrow$

 Δs_1 is the distance between point 1 and 2 Δs_5 is from pt 5 to the trailing edge Δs_6 is from pt 6 to the trailing edge.

If we have circulation there is a possibility of lift

How do forces experienced generally depend on:

▶ Material of medium - for example water versus air

- ▶ Material of medium for example water versus air
- \blacktriangleright depends on density ρ

- Material of medium for example water versus air
- lack depends on density ho
- Speed of movement traveling faster versus slower

- Material of medium for example water versus air
- lacktriangle depends on density ho
- Speed of movement traveling faster versus slower
- lacktriangle depends on speed V

- Material of medium for example water versus air
- lacktriangle depends on density ho
- Speed of movement traveling faster versus slower
- ightharpoonup depends on speed V
- Circulation more circulation versus less circulation

- Material of medium for example water versus air
- lacktriangle depends on density ho
- Speed of movement traveling faster versus slower
- lacktriangle depends on speed V
- Circulation more circulation versus less circulation
- b depends on circulation Γ

Kutta - Joukowski Force

$$L = \rho V_{\infty} \Gamma$$

Parts of an Airfoil

Chord length = c

Point A – leading edge, Point B is the trailing edge t is the thickness reported as t/c reported in % Camber line

Camber reported as a percentage of c