

www.sciencemag.org/cgi/content/full/science.1223389/DC1

Supplementary Materials for

Status and Solutions for the World's Unassessed Fisheries

Christopher Costello,* Daniel Ovando, Ray Hilborn, Steven D. Gaines, Olivier Deschenes, Sarah E. Lester

*To whom correspondence should be addressed. E-mail: costello@bren.ucsb.edu

Published 27 September 2012 on *Science* Express DOI: 10.1126/science.1223389

This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S13 Tables S1 to S12 References (28–32)

Correction: Tables S8, S11, and S12 have been updated to exactly match the figures in the main text.

Materials and Methods

1. Model Construction

1.1 Model and Results

Our approach proceeds in two steps. The first step is to estimate a panel regression model (PRM) using data from the assessed fisheries that relates the $log(B/B_{msy})$ to sets of catch history data, fishery development characteristics, biological characteristics, a time trend, and fixed effects for species type. The second step uses the regression coefficient estimates to predict B/B_{msy} for the unassessed fisheries using the same variables included in the regression model (see below for methods). Making predictions for the level of B/B_{msy} using coefficients from a log-linear model for B/B_{msy} , leads to the so-called re-transformation bias problem (28). Below we describe the method we use to address this problem.

For expositional simplicity, suppose there is a single predictor for $log(B/B_{msy})$, X_{ijt} , where i denotes fishery, j denotes species type and t represent calendar year. The baseline panel regression model is:

(1)
$$log\left(\frac{B}{B_{msy}}\right)_{ijt} = \alpha + \beta X_{ijt} + \gamma_j + \delta t + \varepsilon_{ijt}$$

where α is a constant term, β is the regression effect of X_{ijt} on log(B/B_{msy}), γ_j is a species fixed effect, δ is a time effect, and ϵ_{ijt} is an error term. Table S1 lists all the variables included in the models. Species fixed effects were created using the species categories defined by ISSCAAP. Coefficients for the species type fixed effects are relative to the group "flounders, halibut, and soles". The species fixed effects will control for all unobserved time-invariant factors that are species specific and correlated with log(B/B_{msy}). "Scaled" refers to the scaling for each fishery of harvest variables by the maximum-recorded harvest for that fishery.

Using the regression estimates of α , β , γ , and δ from this model, we can predict B/B_{msy} for unassessed fisheries, as long as we have access to data on X_{ijt} for unassessed fisheries. It is simpler to consider making a prediction for a specific year (e.g., 2009). A naïve value for the predicted B/B_{msy} (denoted as B/B_{msy}^*) for fishery i, from species family j, in year $t=\tau$ is given by:

(2)
$$\left(\frac{B}{B_{msy}}\right)_{ij\tau}^{*} = \exp\left(\hat{\alpha} + \hat{\beta}X_{ij\tau} + \hat{\gamma}_{j} + \hat{\delta}\tau\right)$$

While this method is known to provide a biased estimate of the conditional mean (28), it is an accurate prediction of the conditional median of a given fishery. However, to generate a prediction of the median across a group of fisheries, one needs to be careful about the retransformation bias (see below for methods to correct for this bias).

Since it was not possible to collect all variables listed in Table S1 for all unassessed fisheries, we estimated 6 separate models with different sets of variables included. Model 1 makes use of all the regressors contained in our database. Each subsequent model was created by sequentially dropping the variable that increases the number of valid fisheries observations the most. For any given fishery, the model utilizing the most data possible was used to calculate B/Bmsy. Table S2 contains the coefficients and significance levels of the variables in models 1 through 6. Variables marked as "NaN" under a model are the variables that were omitted in that model.

The regression coefficients were estimated with a dataset of 204 stock-assessed fisheries from the RAM II Legacy database (5). Each regression was estimated in STATA, with the variance-covariance matrix clustered by the individual fisheries.

1.2 Bias Correction

Our regression model allows us to make individual predictions about the $log(B/B_{msy})$ for any given unassessed fishery. But due to the retransformation bias problem, the exponential of this value provides a biased estimate of the mean of B/B_{msy} for any given fishery. Correction methods for the mean prediction are widely available (e.g., 28). However, if we wish to use our estimates to predict the median of a group of fisheries (e.g. all global unassessed fisheries), a bias may still exist. This section describes how we correct for this possible bias.

Denote $y_{it}=B_{it}/B_{imsy}$ for fishery i in year t. The model is: $log(y_{it})=x_{it}\beta+e_{it}$, where $e_{it}\sim N(0,\sigma_{it}^2)$. The subscripts on the variance allow for the possibility of heteroskedasticity. A naïve estimate of y_{it} is $exp(x_{it}\beta)$, which is the conditional median of y_{it} , but is not the conditional mean of y_{it} (due to the well-known "retransformation bias" problem).

Suppose one wishes to use the regression output (the estimate of β , which we denote $\hat{\beta}$) to estimate the median value of a group of fisheries $\{1, 2, ..., N\}$ in some year T. For reasons related to the retransformation bias, one cannot simply take the median of the individual median estimates, $\exp(x_{iT}\hat{\beta})$. We adopt a bootstrap approach and follow this procedure:

Simulate a period T matrix S that has dimension NxJ, where J is the number of bootstrap samples (e.g., 1000) and $S_{ij} = x_{iT}\hat{\beta} + e_{iT}$, where $e_{iT} \sim N(0, \vartheta_{iT}^2)$ (see below for the calculation of ϑ_{iT}^2 .

Take the median of each column (i.e., for each bootstrap sample). For column j, the median is: $m_i^T = Median(S_{1j}, ..., S_{Nj})$

Transform m_j^T to provide an estimate of the un-logged median, form simulation j, as follows: $z_j^T = \exp(m_j^T)$.

The J such median estimates provide a bootstrapped distribution of the desired median B/B_{msy} across the N fisheries. The mean of this bootstrapped distribution gives the expected value of the median across the fisheries. The 95% confidence interval is calculated by the upper and lower 2.5% confidence limits of the bootstrapped distribution.

The variance of the error term in the simulated matrix S is calculated as follows:

We calculate ϑ_{iT}^2 from the fitted residuals from the regression of stock assessed fisheries. To allow for heteroskedasticity, we allow ϑ_{iT}^2 to depend on the magnitude of $\exp(x_{iT}\hat{\beta})$ (with two bins, above and below 0.9) and on year.

For fishery i in year T we first calculate the appropriate "bin" by calculating $\exp(x_{iT}\hat{\beta})$. If this value is below 0.9 it is in bin 1, and if it is above 0.9 it is in bin 2. We then take the fitted residuals from assessed fisheries in that bin, year combination and fit a normal distribution to those residuals. The variance of that fitted normal distribution is our estimate of ϑ_{iT}^2 .

Note that we have performed hundreds of robustness checks on these calculations and have found the output to be highly insensitive to the manner of heteroskedasticity allowed (e.g. whether it is time-invariant, whether we use more or fewer bins, etc.). Rather than simulating values drawn from a normal distribution with variance ϑ_{iT}^2 we have also performed a nonparametric bootstrap where we drew from the pool of fitted residuals. None of the variants have any qualitative effect on our results.

Figure S1 graphs the stock assessed results for each of the 6 models. Each subplot gives the predicted median B/B_{msy} , the actual median B/B_{msy} , and the 95% confidence interval over the median.

2. Unassessed Fisheries

2.1 Selection of Unassessed Fisheries

We use the landings data maintained by the FAO to create our database of unassessed fisheries (6). The FAO organizes these data by species caught by nations within an FAO statistical region (Fig. S2; Table S3). The FAO landings data are in theory supposed to encompass both recreational and commercial fisheries, but in reality nearly always reflect only commercial catches (19). Each fishery in our database is intended to represent a complete stock. For many of our fisheries, we assume that a stock is encompassed by the catch history of a nation within an FAO region. However, we realize that this assumption will be more or less appropriate for different species, depending on their natural range of movement. For some species we set a fishery as equal to the sum of all landings for a given species within an FAO region. We determined which species are grouped in this fashion according to their classification within the categories provided by the International Standard Statistical Classification of Aquatic Animals and Plants (ISSCAAP) (Table S4). However, there is little we can do to correct for fisheries with highly localized populations; there are not sufficient data available at a global level to break down landings into finer spatial scales that might more accurately represent biological stocks of highly localized species. As a result, our assumption about the scale of a biological stock may mask changes in the landings histories of smaller individual stocks. For example, for a highly localized species, it is possible for landings at the scale of the FAO database to remain stable, while in fact representing a series of serial depletions in which fishing effort has collapsed individual stocks and moved on to historically underfished populations. Conversely, recovery of small stocks that have been closed by management might also not be noticeable under the resolution of our model. It is unclear whether the masking of localized stocks by our model would have a biased effect on our estimates of B/B_{msy}, or simply add a source of error.

Each of our fisheries must meet certain data coverage standards in order to be included in our analysis. To account for the fact that many fisheries have negligible catch levels for their early years, catch data are only included in our analysis once a fishery's landings reach a level equal to or greater than 15% of its maximum lifetime recorded landings. Within this resulting time series, because our model makes use of harvest lags, we require that a fishery have at least seven years of catch data. The analysis was also calculated using a minimum requirement of twenty years of catch data, but results did not change significantly. Within the time series of catch for a fishery, individual years are often missing data. For fisheries missing less than 10% of their landings data, missing data points were filled in by interpolation. Any fishery missing more than 10% of its catch data was excluded from the analysis. Excluding fisheries that require any interpolation does not change results significantly, but reduces the sample size by over 1000 fisheries, and thus we chose to keep these fisheries in the analysis. Our resulting database contains 1,793 fisheries distributed throughout the globe (Fig. S3). The median annual landings for these fisheries in 2009 is 770 tons, though nearly 500 of the 1,793 fisheries in our database have average landings over this period greater than 3500 tons (Fig. S4). 554 separate species are included in the final database of 1,793 unassessed fisheries (Table S5).

While our model provides information on a great number of previously unassessed stocks, due to data limitations our coverage of certain regions is not complete. For example, comparing the total 2009 landings in FAO region 61, which are included in our model, to the total landings of unassessed fisheries in that region reported by the FAO, our method only accounts for 35% of the unassessed catch. However, for more data rich regions such as FAO area 67, which includes Alaska, our method accounts for 76% of the unassessed landings reported by the FAO (Table S6). In the main text, estimates of B/B_{msy} for unassessed fisheries begin in 1979, the year after which more than half of landings are accounted for by our method.

3. Data Sources

Data for this analysis came from three publically available databases, the RAM Legacy Stock Assessment Database (5), the 2009 FAO fisheries production database (6), and FishBase (15).

3.1 RAM Legacy Stock Assessment Database

The set of models used in this analysis were fit to data available in the RAM Legacy database (5; http://ramlegacy.marinebiodiversity.ca/ram-legacy-stock-assessment-database). Our analysis was performed using a static copy of the database downloaded in July 2011. The RAM database provides time series of B/B_{msy}, SSB/SSB_{msy}, and landings for stock assessed fisheries. For the purposes of this study, SSB/SSB_{msy} was assumed to be approximately equivalent to B/B_{msy}. These data were paired with best available data on the life history of the stock assessed species to train the six panel regression models used in this analysis.

3.2 FAO Fishery Production Database

Landings data for unassessed fisheries were drawn from the 2011 release of the FAO fishery capture production database (6). These data can be accessed using the FishStat Plus program publically available from the FAO (http://www.fao.org/fishery/statistics/software/fishstat/en). Only landings data for marine finish identified to the scientific genus and species level were included in this analysis.

3.3 FishBase

Life history data for each species in our unassessed fisheries database were queried from a static version of the publically available FishBase database (15; http://www.fishbase.org) purchased from FishBase in March 2011 (specific life history variables selected can be found in Table S1). In cases where multiple estimates of a life history variable were reported for the same species, we used the mean of these estimates. This was necessitated by the fact that it was not possible to automatically link region specific estimates in FishBase to the location of specific unassessed fisheries in our database.

Supplementary Text

4. Validation of Results

4.1 Jackknife Analysis

We ran a jackknife routine in order to test the ability of our model to predict out of sample. Each stock assessed fishery was sequentially removed from the set of stock assessed fisheries used to fit our PRM models. The resulting regression was then used to predict B/B_{msy} for the omitted fishery. We then plotted the jackknifed prediction for each omitted fishery against its known B/B_{msy} value. Our results show that our model is able to predict out of sample with reasonable accuracy (Fig. S5).

4.2 Comparison to FAO Fishery Assessments

We used the above methods to predict the status of 1,793 unassessed fisheries worldwide, as described in the main text. One approach to validation is to match our PRM results to an independent database of fishery state of exploitation classifications compiled by the FAO (29). We condensed the FAO's classifications into three categories: "over exploited", "fully exploited", and "under exploited". The fisheries classified by the FAO had a median catch of 26,000 tons in 2002 (Fig. S6), far greater than the median catch of 693 tons within our database of unassessed fisheries in that year. We matched each fishery classified by the FAO with the same fishery in our unassessed database. Matching was done by identifying pairings among country, FAO region, and species between the unassessed fishery database and the FAO's assessment database. We then used a box plot to compare the values of B/B_{msy} predicted by our method among the categories (Fig. S7).

Our predictions matched well with the FAO in relative magnitude for all exploitation categories. This correspondence was preserved when we restricted the sample to only those fisheries we classified as "grouped" in Table S4.

4.3 Comparison with Marine Protected Areas

Marine reserves that exclude all fishing have been established around the world. These diverse experiments in spatial fisheries management provide another mechanism for evaluating stock status in fisheries without stock assessments. Global synthesis of the responses of species to protection from fishing (30) shows an average increase in biomass of more than 400%. One approach to estimating stock status from such comparisons inside and outside reserves is to use the biomass density inside the reserve to estimate the unfished biomass, B_0 . The biomass per unit area in the reserve will underestimate B₀ for several reasons: inadequate reserve size (which enhances mortality when fish cross the reserve boundary), inadequate reserve enforcement, and inadequate time for fish in reserves to recover. The first two biases are difficult to correct given the absence of relevant data, but studies of long term trends in marine reserves suggest that biomass tends to increase logistically over time, often for many decades (31). We used these findings to forecast B_0 as the asymptotic biomass inside the reserve by projecting logistic increases based on the observed rate of biomass increase for each reserve. Although the time to reach peak biomass in reserves varies greatly (31), we used a conservative estimate of 15 years. Therefore, for all reserves that have been in place longer than 15 years, we assumed that the biomass inside the reserve (B_R) equals B₀. For reserves younger than 15 years, we projected B₀ by assuming logistic growth at the observed rate of biomass increase with a biomass asymptote after 15 years.

Empirical and model estimates of B_{msy} as a fraction of B_0 vary among species (32). Based upon empirical and model estimates we used B_{msy} = 0.4 B_0 as a reasonably conservative estimate for comparison with B in the fished areas outside the marine reserves. The median ratio from the 78 studies of fished species with reserves greater than 2 years of age was 0.52. Matching

fisheries from the MPA database with the same regional fisheries, our corresponding estimate of the median B/B_{msy} was 0.62. The smaller estimate from the MPA data is well within the confidence limits for an estimate with 50 fisheries (see below) but may also reflect differences in the spatial scales of the estimates. The MPA estimates are far more localized than the stock level estimates at country or regional scales.

4.4 Precision of Median Estimates

Our method allows for the calculation of confidence intervals around the median of any given aggregation of fisheries, from an individual stock up to the global pool. However, the width of the 95% confidence interval around this estimate is a function of the number of fisheries included in the aggregation. For individual fisheries, the confidence interval width is approximately 1, indicating that we have very little certainty as to the value of B/B_{msy} predicted for any single fishery. To examine this in more detail, we randomly selected a set of X fisheries and estimated the median and 95% CI of the median for that group of fisheries. By drawing 1000 samples of X, and repeating this process for a range of X (from 1 to 1500), we get an estimate of the expected confidence interval width over the median for any group size (Fig. S8). As increasing numbers of fisheries are aggregated, the width of the confidence interval over the median quickly decreases, falling below 0.2 for groups of 250 fisheries or larger.

4.5 Model-by-Model Breakdown of Fisheries

Table S7 shows the number of fisheries over which each model was applied, and the median B/B_{msy} in 2009 predicted by the model for those fisheries.

4.6 Does Fishery Size Bias Results?

We questioned the extent to which fishery size (in landings) was influencing our predictions. While the PRM contains several harvest variables, most are scaled, so fishery size is irrelevant. The only variable that is influenced by fishery size is "maximum recorded catch", whose estimated coefficient was small and statistically insignificant in all 6 models. Furthermore, this coefficient is negative, suggesting that smaller fisheries should have higher B/B_{msy} , ceteris paribus. To further test the influence of this variable, we also ran the regressions for model 1 and model 6 with and without the maximum catch variable. In both cases, removing maximum catch has almost no effect on the predictions of B/B_{msy} .

4.7 Do Reporting Errors Bias Results?

A further question concerns the effects of sporadic reporting of catch data on estimates of B/B_{msy} . We ran a series of simulations of increasing variability in harvest reporting (measured as the coefficient of variation (CV) of year-to-year landings) in order to assess whether CV systemically biases our model's prediction of B/B_{msy} .

For each model m, we selected 100 random fisheries f. For each f, we retain all non-catch related model parameters. For each f, we simulated 100 catch histories, each based on the original catch history, with each year being multiplied by a randomly generated log normal error term with mean 0 and standard deviation σ , where σ is tested at levels of 0.25 to 1 in 0.25 size increments. For each fishery, this method provides 100 randomly generated catch histories over 4 increasing levels of variability, each of which were used together with the non-catch related regressors to calculate a new value of B/B_{msy} , as well as its associated new CV. This allows us to examine the effect of CV on B/B_{msy} , while holding non-landings related variables constant.

Aggregating across all models, there is some correlation between increased year-to-year CV and B/B_{msy} (slope=0.12, R²=0.01, p=0.00; Fig. S9). This suggests that grouping across all models, high year-to-year CV has a slight positive influence on our estimate of B/B_{msy}, though the fit is extremely poor. However, when broken apart some individual models show different correlations. For example, models 1 and 2 showed some negative correlation between CV and B/B_{msy} (slope =-0.03; -0.12, p=0.45; 0.00), while model 6 has a significant positive relationship (slope=0.18, p=0.00) between the two factors.

The results of our analysis of model bias from fishery size and variable catch reporting indicate that in aggregate, variable catch records do not significantly bias B/B_{msy} , and fishery size itself has no systemic effect on B/B_{msy} . As such, we see no evidence that fisheries should be removed from the analysis purely as a function of size or high year-to-year CV. Regardless, by omitting all fisheries missing more than 10% of their catch records, our interpolation filter serves to remove many fisheries with highly variable catch data from our analysis.

4.8 Does Chronic Underreporting of Catch Bias Results?

In addition to the possibility of sporadic reporting, there is also a potential source of error introduced by chronic under-reporting of landings. In order to assess the potential bias introduced by underreporting, we tested the effect on our predictions of B/B_{msy} of multiplying the catch histories of individual fisheries by increasing levels of a constant factor. Since all catch parameters in our model except the "maximum lifetime catch" are scaled by dividing them by the maximum lifetime catch, the catch factors cancel out for all variables except the maximum lifetime catch.

For each model m, we selected 100 random fisheries f. For each f, we multiplied the catch by a scalar from 1 to 5, and then calculated a new prediction of B/B_{msy} using this altered parameter. Comparing these new estimates of B/B_{msy} to the estimates produced using the original catch values provides a measure of the bias introduced if catches are in fact systemically higher than those reported in our database.

Results of this simulation show that chronic under (or over) reporting of landings are unlikely to bias our results in any systemic way. Even assuming that catches are under reported by a factor of up to 5 times has no significant effect on our model's predictions of B/B_{msy} (Fig. S10).

4.9 Do Errors in Life History Variables Bias Results?

Given the need to collect life history data on a large number of species, life history data were obtained from FishBase (15). While this is the best source available for obtaining life history parameters for a wide number of species in an automated manner, there are known limitations to the reliability of the estimates that are obtained in this way. We ran a series of simulations to test if inaccurate life history parameters could bias our results.

For each model m, we selected 100 random fisheries f. For each f, we selected each of the non-catch related model parameters. For 100 iterations over each f, every non-catch parameter was multiplied by a randomly generated log normal error term with mean 0 and standard deviation σ , where σ is tested at levels of 0.25 to 1 in 0.25 size increments. For each fishery, this method provides a set of 100 different combinations of life history parameters over 4 increasing levels of variability, each of which were used together with the catch related regressors to calculate a new value of B/B_{msy}, as well as the associated level of error introduced to the life history parameters.

The results of our simulation show that high levels of error in our life history parameters could significantly bias our predictions in a positive direction. At low levels of σ little bias is evident in our results. However, as σ is increased, a significant positive bias is introduced. This suggests that if on the whole our life history variables are extremely inaccurate, there is a possibility that our model is under-estimating B/B_{msv} (Fig. S11).

4.10 Does Increased Variance in Unassessed Fisheries Bias Results?

In order to perform the retransformation bias correction needed to calculate median values of B/B_{msy} , we make use of the variances derived from the residuals of the stock assessed fisheries (See Section 1.2). However, it is possible that due to uncertainties in data collection the variance for the unassessed fisheries are greater than those for the stock assessed group. In order to test for the effect this possibility, we ran a series of simulations testing the influence of introducing increased variance to our retransformation bias corrected estimate of global median B/B_{msy} in 2009.

We introduced a variance augmentation factor ranging from 1 to 3. For each level of this factor, we then recalculated the median 2009 global B/B_{msy} , multiplying the variance parameters within the retransformation bias correction by the correct variance augmentation factor. The results show that increasing the amount of variance assumed to exist in the unassessed fisheries has no significant bias on our prediction of median B/B_{msy} (Fig. S12). While a slight positive trend is evident, the only substantial effect of this increased variance is to widen the confidence intervals around our estimate of the median.

5. Expanded Results

5.1 Yield Increase Calculations

Recovering a fishery from $B/B_{msy}<1$ to $B/B_{msy}=1$ will increase both biomass of fish in the ocean and sustainable yield. Estimating the yield increase from recovery to B_{msy} requires making an assumption about the current fishing mortality rate (measured as annual fishing mortality rate divided by fishing mortality to maintain MSY: U/U_{msy}). Assuming logistic growth, the steady state requires: $U/U_{msy}=2-B/B_{msy}$.

Under that model, the fishing mortality that leads to collapse (collapse is B/B_{msy} =.2) is $U^{collapse}/U_{msy} = 1.8$. Let $B^{current}/B_{msy}$ be the level of biomass estimated by our model. Define by U^0/U_{msy} the level of fishing morality that would be holding current biomass in steady state, i.e. U^0/U_{msy} =2- $B^{current}/B_{msy}$.

The thought experiment in the paper hypothesizes that the current level of fishing mortality (denoted $U^{\text{current}}/U_{\text{msy}}$) is somewhere between U^0/U_{msy} and $U^{\text{collapse}}/U_{\text{msy}}$. Now introduce a scaling parameter, θ , that measures the location of $U^{\text{current}}/U_{\text{msy}}$, expressed as the fractional distance between U^0/U_{msy} and $U^{\text{collapse}}/U_{\text{msy}}$, as follows:

$$\theta = \frac{\frac{U^{current}}{U_{msy}} - \frac{U^0}{U_{msy}}}{\frac{U^{collapse}}{U_{msy}} - \frac{U^0}{U_{msy}}}$$

When θ =0, fishing mortality is assumed to be at the level that would just stabilize biomass at its current level. When θ =1, fishing mortality is assumed to be at the level that would just collapse the fishery. For any given value of θ , we calculate the resulting long-term yield from continuing to fish at $U^{current}/U_{msv}$, and compare that to the long term yield from fishing at

 U/U_{msy} =1. Figure 4 in the main text displays the percentage increase in yields across these two scenarios. Since B/B_{msy} has steadily declined over the three decades of our estimates, θ would be > 0 for a fishery that followed the trajectory of the median.

5.2 Trends in Species Groups over Time

Figure 1B in the main text provides a summary of B/B_{msy} values of species groups in 2009. We can also consider the trajectory of median B/B_{msy} for each of these groups over time (Fig. S13). While nearly all species groups have experienced a decline over time, individual groups have experienced very different histories of exploitation. Coastal species and large predators such as sharks show signs of being heavily depleted as early as 1975. Conversely, pelagic or benthic species such as herring or flounder were at much higher levels during that historic period, but have since seen marked declines. Shads alone show an increase over time, though our sample size for this group is very low and as such results should be interpreted with care.

5.3 Effects of National Development Level

In the main text we referred to the development status of countries. To do so, we used the Human Development Index (HDI) created by the United Nations Development Program (UNDP) in order to assess the effects of development level of nations in our database on B/B_{msy} . The HDI is a composite index of life expectancy, educational attainment, and income. Following the methods used by the UNDP, we define "developing" nations as those with an HDI < 0.7 and developed as nations with an HDI >= 0.7.

5.4 Model Estimates

The raw estimates of B/B_{msy} used in this paper are provided in Tables S8-S12. Due to the retransformation bias discussed in Section 1.2, these results cannot simply be aggregated together to develop new summary statistics without performing the required retransformation bias routine. Summary information includes time series of median B/B_{msy} for unassessed fisheries (Table S8), median B/B_{msy} in 2009 by species category (Table S9), median B/B_{msy} in 2009 by FAO region (Table S10), time series of median B/B_{msy} for small fisheries (unassessed fisheries whose lifetime landings are less than the median lifetime landings of all unassessed fisheries, calculated as 51,546 tons) (Table S11), and time series of median B/B_{msy} for large unassessed fisheries (Table S12).

Fig. S1. Predicted vs. actual values of B/B_{msy} for stock assessed fisheries in all six models estimated using the panel regression approach. Model 1 includes all predictors. Higher numbered models successively have a reduced number of predictor variables to expand the number of fisheries with relevant data (see Table S2).

Figure S2. Map of FAO major fishery statistical region codes (available at: ftp://ftp.fao.org/fi/maps/world_2003.gif [Accessed April 11, 2012]).

Figure S3. Number of unassessed fisheries in our database by nation. Size of bubble is scaled to the number of unassessed fisheries collected within a given nation.

Figure S4. Histogram of log landings (tons) in 2009 among fisheries in our database.

Figure S5. Jackknife analysis of regressions. The x-axis represents bins of known values of B/B_{msy} , while the y-axis shows the paired jackknifed values of B/B_{msy} .

Figure S6. Histogram of landings (tons) caught in 2002 by fisheries included in FAO (29).

Figure S7. Box plot of model predictions of B/B_{msy} of fisheries matched to exploitation statuses defined by the FAO.

Figure S8. Width of 95% confidence intervals around the median as a function of the number of fisheries for which the median is predicted.

Figure S9. Effect of CV on predicted B/B_{msy} . Each red diamond represents the mean change in CV and B/B_{msy} for one fishery over 100 simulations at a given level of introduced variance. The x-axis is the change in CV introduced to a fishery during a simulation, relative to its true CV. The y-axis is the change in B/B_{msy} resulting from a change in CV, relative to the true B/B_{msy} . The blue line shows a linear fit to the data.

Figure S10. Change in B/B_{msy} as a result of underreporting. The y axis shows the change in B/B_{msy} predicted using catch multiplied by the catch increase factor (x axis) relative to the B/B_{msy} predicted using the original catch values.

Figure S11. Change in B/B_{msy} as a function of errors in life history parameters. The y axis shows distributions of changes in B/B_{msy} predicted with life history parameters with log-normal error with standard deviation phi introduced relative to the B/B_{msy} predicted using the original life history parameters.

Figure S12. Change in median B/B_{msy} as a function of assumptions of increased variance in the unassessed fisheries.

Figure S13. Median B/B_{msy} of species groups from 1975 to 2009.

Table S1. Description of variables available for inclusion in the panel regression model.

Variable	Description
Current year	Current year
Inverse age of fishery	Age of fishery in year t, such that variable is largest at a fishery's
	start and 1 in the current year
Scaled harvest 4 years	Scaled harvest 4 years before present
ago	
Scaled harvest 3 years	Scaled harvest 3 years before present
ago	
Scaled harvest 2 years	Scaled harvest 2 years before present
ago	
Scaled harvest 1 year ago	Scaled harvest 1 year before present
Scaled harvest in current	Scaled harvest in current year
year	
Years to max harvest	Number of years from the start of the fishery until the maximum
	recorded harvest occurs
Initial slope of harvest	Slope of harvest over the fishery's first 6 years
Maximum harvest	Maximum recorded harvest for the fishery
Running harvest ratio	Ratio of harvest in the current year to the maximum harvest to have
	occurred prior to the current year
Mean scaled harvest	Mean scaled harvest for the fishery
Von Bertalanffy K	Von Bertalanffy growth rate parameter
Temperature	Mean preferred temperature of the species
Geographic distribution	Area of the biologic range of the species
of species	
Maximum length	Maximum recorded length for the species
Age at maturity	Age at which 50% of the individuals are sexually mature for the
	species
Cods hakes and	Fixed effect for the species group cods hakes and haddocks
haddocks	
Misc. coastal fish	Fixed effect for the species group misc. coastal fish
Misc. demersal fish	Fixed effect for the species group misc. demersal fish
Herrings, sardines,	Fixed effect for the species group herrings, sardines, anchovies
anchovies	
Tuna, bonito, billfish	Fixed effect for the species group tuna, bonito, billfish
Misc. pelagic fish	Fixed effect for the species group misc. pelagic fish
Constant	Constant term

Table S2. Coefficients and significance levels of variables in models 1 through 6 of the PRM. Cof indicates the variable coefficient, p>|t| indicates the significance level.

						Model	del					
	1		2		3		4	-	5		6	
Variable	cof	p >ltl	cof	t < d	cof	t < d	cof	p >ltl	cof	p >ltl	cof	t < d
Inverse age of fishery	-0.057	0.145	-0.037	0.329	0.055	0.439	0.041	0.519	0.049	0.460	0.018	0.765
Scaled harvest 4 years ago	-0.139	0.040	-0.130	0.055	-0.056	0.504	-0.096	0.193	-0.101	0.165	-0.118	0.148
Scaled harvest 3 years ago	-0.055	0.135	-0.057	0.110	0.006	0.924	-0.004	0.932	-0.003	0.952	-0.020	0.675
Scaled harvest 2 years ago	0.034	0.507	0.044	0.377	0.153	0.056	0.136	0.066	0.136	0.067	0.136	0.049
Scaled harvest 1 year ago	0.253	0.001	0.287	0.000	0.426	0.000	0.416	0.000	0.426	0.000	0.437	0.000
Scaled harvest in current year	0.255	0.310	0.137	0.598	-0.474	0.288	-0.372	0.338	-0.393	0.327	-0.475	0.174
Years to max harvest	0.011	0.025	0.011	0.010	0.007	0.340	0.008	0.240	0.007	0.288	0.005	0.371
Initial slope of harvest	-0.039	0.691	0.021	0.829	0.128	0.321	0.108	0.321	0.106	0.332	0.171	0.144
Maximum harvest	0.000	0.532	0.000	0.071	0.000	0.093	0.000	0.096	0.000	0.174	0.000	0.392
Mean scaled harvest	0.978	0.013	0.763	0.053	-0.473	0.581	-0.263	0.738	-0.357	0.669	-0.240	0.783
Von. Bert. K	0.378	0.641	0.818	0.287	1.292	0.124	0.984	0.241	NaN	NaN	NaN	NaN
Temperature	0.002	0.769	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Geographic distribution of species	0.000	0.392	0.000	0.847	0.000	0.766	NaN	NaN	NaN	NaN	NaN	NaN
Max length	-0.003	0.035	-0.003	0.100	-0.003	0.107	-0.003	0.086	-0.003	0.024	NaN	NaN
Age at maturity	-0.025	0.108	-0.003	0.856	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Running harvest ratio	0.705	0.000	0.794	0.000	1.231	0.000	1.165	0.000	1.184	0.000	1.167	0.000
Current year	-0.062	0.104	-0.041	0.272	0.056	0.446	0.039	0.546	0.047	0.482	0.016	0.798
Cods hakes and haddocks	0.242	0.224	0.297	0.165	0.331	0.178	0.390	0.076	0.379	0.076	0.100	0.627
Misc. coastal fish	0.124	0.557	0.153	0.437	-0.951	0.211	-0.710	0.295	-0.618	0.335	-0.476	0.301
Misc. demersal fish	1.015	0.000	0.932	0.001	0.815	0.003	0.796	0.000	0.755	0.001	0.671	0.004
Herrings, sardines, anchovies	-0.106	0.633	-0.075	0.732	-0.238	0.383	-0.102	0.713	0.058	0.770	0.093	0.706
Tuna, bonito, billfish	0.314	0.557	0.641	0.259	0.818	0.202	0.785	0.083	0.943	0.027	0.255	0.195
Misc. pelagic fish	-0.003	0.994	0.395	0.282	0.288	0.438	0.437	0.169	0.492	0.085	0.402	0.144
Constant	123.799	0.107	80.707	0.281	-112.955	0.440	-78.581	0.539	-95.563	0.477	-32.489	0.790

 Table S3. Legend of FAO major fishing statistical region codes.

Marine Areas	Zone	Code
Atlantic Ocean and adjacent seas		
	Arctic Sea	18
	Atlantic, Northwest	21
	Atlantic, Northeast	27
	Atlantic, Western Central	31
	Atlantic, Eastern Central	34
	Mediterranean and Black Sea	37
	Atlantic, Southwest	41
	Atlantic, Southeast	47
Indian Ocean		
	Indian Ocean, Western	51
	Indian Ocean, Eastern	57
Pacific Ocean		
	Pacific, Northwest	61
	Pacific, Northeast	67
	Pacific, Western Central	71
	Pacific, Eastern Central	77
	Pacific, Southwest	81
	Pacific, Southeast	87
Southern Ocean		
	Atlantic, Antarctic	48
	Indian Ocean, Antarctic	58
	Pacific, Antarctic	88

Table S4. Grouping of ISSCAAP species categories. "Yes" indicates that species within that category are aggregated by FAO region, while "no" indicates that species within that category are left un-grouped.

Species Category	Grouped (Yes,No)
Freshwater fishes	No
Carps, barbels and other cyprinids	No
Tilapias and other cichlids	No
Miscellaneous freshwater fishes	No
Diadromous fishes	No
Sturgeons, paddlefishes	No
River eels	No
Salmons, trouts, smelts	No
Shads	No
Miscellaneous diadromous fishes	No
Marine fishes	Yes
Flounders, halibuts, soles	No
Cods, hakes, haddocks	Yes
Miscellaneous coastal fishes	No
Miscellaneous demersal fishes	No
Herrings, sardines, anchovies	No
Tunas, bonitos, billfishes	Yes
Miscellaneous pelagic fishes	Yes
Sharks, rays, chimaeras	No

Table S5. Complete list of species within our database of unassessed fisheries. The frequency column indicates the number of fisheries for each species present in the database.

Common Name	Scientific Name	Frequency
African moonfish	Selene dorsalis	1
African sicklefish	Drepane africana	10
Alaska plaice	Pleuronectes quadrituberculat.	1
Albacore	Thunnus alalunga	7
Alewife	Alosa pseudoharengus	3
Alexandria pompano	Alectis alexandrinus	1
Allis shad	Alosa alosa	1
Amer. plaice(=Long rough dab)	Hippoglossoides platessoides	5
American angler	Lophius americanus	1
American conger	Conger oceanicus	1
American eel	Anguilla rostrata	1
American harvestfish	Peprilus paru	2
American shad	Alosa sapidissima	3
Anchoveta(=Peruvian anchovy)	Engraulis ringens	1
Angelshark	Squatina squatina	2
Angler(=Monk)	Lophius piscatorius	10
Angular roughshark	Oxynotus centrina	2
Antarctic starry skate	Raja georgiana	1
Araucanian herring	Strangomera bentincki	1
Arctic char	Salvelinus alpinus	2
Argentine anchovy	Engraulis anchoita	1
Argentine angelshark	Squatina argentina	3
Argentine conger	Conger orbignyanus	3
Argentine croaker	Umbrina canosai	3
Argentine goatfish	Mullus argentinae	1
Argentine hake	Merluccius hubbsi	1
Argentine menhaden	Brevoortia pectinata	1
Argentine seabass	Acanthistius brasilianus	2
Argentines	Argentina spp	8
Argentinian sandperch	Pseudopercis semifasciata	2
Atlantic anchoveta	Cetengraulis edentulus	1
Atlantic bonito	Sarda sarda	7
Atlantic bumper	Chloroscombrus chrysurus	3
Atlantic butterfish	Peprilus triacanthus	1
Atlantic halibut	Hippoglossus hippoglossus	10
Atlantic horse mackerel	Trachurus trachurus	3
Atlantic mackerel	Scomber scombrus	2
Atlantic moonfish	Selene setapinnis	2

Atlantic pomfret	Brama brama	3
Atlantic sailfish	Istiophorus albicans	4
Atlantic salmon	Salmo salar	14
Atlantic saury	Scomberesox saurus	1
Atlantic searobins	Prionotus spp	2
Atlantic silverside	Menidia menidia	1
Atlantic Spanish mackerel	Scomberomorus maculatus	2
Atlantic thread herring	Opisthonema oglinum	6
Atlantic tomcod	Microgadus tomcod	1
Atlantic white marlin	Tetrapturus albidus	4
Atlantic wolffish	Anarhichas lupus	10
Australian pilchard	Sardinops neopilchardus	1
Australian salmon	Arripis trutta	2
Axillary seabream	Pagellus acarne	5
Baird's slickhead	Alepocephalus bairdii	1
Bali sardinella	Sardinella lemuru	2
Ballyhoo halfbeak	Hemiramphus brasiliensis	2
Banded yellowfish	Centriscops humerosus	1
Barramundi(=Giant seaperch)	Lates calcarifer	11
Barred grunt	Conodon nobilis	1
Bartail flathead	Platycephalus indicus	2
Basking shark	Cetorhinus maximus	4
Bastard halibut	Paralichthys olivaceus	2
Batfishes	Platax spp	1
Beaked redfish	Sebastes mentella	2
Bearded brotula	Brotula barbata	2
Beluga	Huso huso	1
Benguela hake	Merluccius polli	1
Big-scale sand smelt	Atherina boyeri	1
Bigeye croaker	Pennahia anea	1
Bigeye grunt	Brachydeuterus auritus	6
Bigeye scad	Selar crumenophthalmus	3
Bigeye thresher	Alopias superciliosus	4
Bigeye tuna	Thunnus obesus	3
Birdbeak dogfish	Deania calcea	2
Black and Caspian Sea sprat	Clupeonella cultriventris	2
Black cardinal fish	Epigonus telescopus	3
Black cusk-eel	Genypterus maculatus	1
Black drum	Pogonias cromis	5
Black marlin	Makaira indica	6
Black pomfret	Parastromateus niger	4

Black scabbardfish	Aphanopus carbo	6
Black seabass	Centropristis striata	1
Black seabream	Spondyliosoma cantharus	11
Black skipjack	Euthynnus lineatus	1
Blackbanded trevally	Seriolina nigrofasciata	2
Blackbelly rosefish	Helicolenus dactylopterus	5
Blackfin goosefish	Lophius gastrophysus	1
Blackfin tuna	Thunnus atlanticus	3
Blackhead seabream	Acanthopagrus schlegeli	1
Blackmouth catshark	Galeus melastomus	2
Blackmouth croaker	Atrobucca nibe	1
Blackspot(=red) seabream	Pagellus bogaraveo	4
Blacktip grouper	Epinephelus fasciatus	1
Blacktip shark	Carcharhinus limbatus	2
Blotched picarel	Spicara maena	1
Blue antimora	Antimora rostrata	1
Blue butterfish	Stromateus fiatola	1
Blue grenadier	Macruronus novaezelandiae	2
Blue jack mackerel	Trachurus picturatus	1
Blue ling	Molva dypterygia	1
Blue mackerel	Scomber australasicus	1
Blue marlin	Makaira nigricans	12
Blue runner	Caranx crysos	3
Blue shark	Prionace glauca	17
Blue skate	Raja batis	3
Blue whiting(=Poutassou)	Micromesistius poutassou	1
Bluefin gurnard	Chelidonichthys kumu	5
Bluefish	Pomatomus saltatrix	7
Bluenose warehou	Hyperoglyphe antarctica	1
Bluespot mullet	Valamugil seheli	2
Bluestripe herring	Herklotsichthys quadrimaculat.	1
Bobo croaker	Pseudotolithus elongatus	7
Bobo mullet	Joturus pichardi	2
Bocaccio rockfish	Sebastes paucispinis	1
Boe drum	Pteroscion peli	2
Bogue	Boops boops	22
Bombay-duck	Harpadon nehereus	5
Bonefish	Albula vulpes	3
Bonga shad	Ethmalosa fimbriata	10
Brazilian codling	Urophycis brasiliensis	1
Brazilian flathead	Percophis brasiliensis	2

Brazilian menhaden	Brevoortia aurea	2
Brazilian sardinella	Sardinella brasiliensis	2
Brill	Scophthalmus rhombus	11
Broadnose sevengill shark	Notorynchus cepedianus	2
Broomtail grouper	Mycteroperca xenarcha	1
Brown smooth-hound	Mustelus henlei	2
Brushtooth lizardfish	Saurida undosquamis	3
Burbot	Lota lota	4
Cabezon	Scorpaenichthys marmoratus	1
Cabinza grunt	Isacia conceptionis	2
California flounder	Paralichthys californicus	2
California pilchard	Sardinops caeruleus	3
California sheephead	Semicossyphus pulcher	1
Californian anchovy	Engraulis mordax	3
Canary drum (=Baardman)	Umbrina canariensis	1
Canary rockfish	Sebastes pinniger	1
Cape bonnetmouth	Emmelichthys nitidus	2
Cape elephantfish	Callorhinchus capensis	2
Cape hakes	Merluccius capensis, M. paradox.	2
Cape horse mackerel	Trachurus capensis	1
Capelin	Mallotus villosus	2
Cassava croaker	Pseudotolithus senegalensis	4
Castaneta	Cheilodactylus bergi	2
Cero	Scomberomorus regalis	1
Chacunda gizzard shad	Anodontostoma chacunda	2
Chilean silverside	Odontesthes regia	1
Chilipepper rockfish	Sebastes goodei	1
Chinese gizzard shad	Clupanodon thrissa	2
Chinook(=Spring=King)salmon	Oncorhynchus tshawytscha	5
Chocolate hind	Cephalopholis boenak	2
Choicy ruff	Seriolella porosa	1
Chola guitarfish	Rhinobatos percellens	2
Chub mackerel	Scomber japonicus	12
Chum(=Keta=Dog)salmon	Oncorhynchus keta	4
Cobia	Rachycentron canadum	7
Coho(=Silver)salmon	Oncorhynchus kisutch	5
Common dab	Limanda limanda	8
Common dentex	Dentex dentex	11
Common dolphinfish	Coryphaena hippurus	11
Common mora	Mora moro	1
Common pandora	Pagellus erythrinus	7

Common snook	Centropomus undecimalis	2
Common sole	Solea solea	21
Common warehou	Seriolella brama	1
Congo dentex	Dentex congoensis	1
Copper shark	Carcharhinus brachyurus	2
Corvina drum	Cilus gilberti	2
Crevalle jack	Caranx hippos	2
Crucian carp	Carassius carassius	1
Cuckoo ray	Raja naevus	2
Cunene horse mackerel	Trachurus trecae	2
Cunner	Tautogolabrus adspersus	1
Daggertooth pike conger	Muraenesox cinereus	8
Danube sturgeon(=Osetr)	Acipenser gueldenstaedtii	1
Dark ghost shark	Hydrolagus novaezealandiae	2
Dealfishes	Trachipterus spp	1
Deep-sea smelt	Glossanodon semifasciatus	1
Devil anglerfish	Lophius vomerinus	2
Dogtooth tuna	Gymnosarda unicolor	1
Dorab wolf-herring	Chirocentrus dorab	5
Dotted gizzard shad	Konosirus punctatus	1
Dungat grouper	Epinephelus goreensis	1
Dusky grouper	Epinephelus marginatus	5
Dusky smooth-hound	Mustelus canis	2
Eastern Pacific bonito	Sarda chiliensis	2
Eelpout	Zoarces viviparus	4
Eelpouts	Lycodes spp	1
Eeltail catfishes	Plotosus spp	2
Elongate ilisha	Ilisha elongata	1
English sole	Pleuronectes vetulus	2
Escolar	Lepidocybium flavobrunneum	5
European anchovy	Engraulis encrasicolus	19
European barracuda	Sphyraena sphyraena	1
European conger	Conger conger	17
European eel	Anguilla anguilla	18
European flounder	Platichthys flesus	12
European hake	Merluccius merluccius	2
European perch	Perca fluviatilis	6
European pilchard(=Sardine)	Sardina pilchardus	14
European seabass	Dicentrarchus labrax	10
European smelt	Osmerus eperlanus	8
European sprat	Sprattus sprattus	6

European whitefish	Coregonus lavaretus	4
False scad	Caranx rhonchus	1
False trevally	Lactarius lactarius	3
Flathead grey mullet	Mugil cephalus	13
Flathead sole	Hippoglossoides elassodon	1
Fourfinger threadfin	Eleutheronema tetradactylum	3
Freshwater bream	Abramis brama	7
Frigate and bullet tunas	Auxis thazard, A. rochei	11
Frigate tuna	Auxis thazard	1
Garfish	Belone belone	2
Geelbek croaker	Atractoscion aequidens	2
Ghost shark	Callorhinchus milii	4
Giant African threadfin	Polydactylus quadrifilis	5
Giant boarfish	Paristiopterus labiosus	1
Giant catfish	Arius thalassinus	1
Giant guitarfish	Rhynchobatus djiddensis	2
Giant seabass	Stereolepis gigas	1
Giant stargazer	Kathetostoma giganteum	1
Giant trevally	Caranx ignobilis	1
Gilthead seabream	Sparus aurata	9
Goatfishes	Upeneus spp	11
Golden redfish	Sebastes marinus	3
Golden threadfin bream	Nemipterus virgatus	1
Golden trevally	Gnathanodon speciosus	1
Goldstripe sardinella	Sardinella gibbosa	2
Great barracuda	Sphyraena barracuda	2
Great Northern tilefish	Lopholatilus chamaeleonticeps	1
Greater amberjack	Seriola dumerili	2
Greater forkbeard	Phycis blennoides	2
Greater lizardfish	Saurida tumbil	7
Greater weever	Trachinus draco	4
Greenback horse mackerel	Trachurus declivis	1
Greenland cod	Gadus ogac	1
Greenland shark	Somniosus microcephalus	2
Grey gurnard	Eutrigla gurnardus	4
Grey rockcod	Notothenia squamifrons	1
Grey triggerfish	Balistes carolinensis	2
Gulf kingcroaker	Menticirrhus littoralis	1
Gulf parrotfish	Scarus persicus	1
Gulper shark	Centrophorus granulosus	4
Haddock	Melanogrammus aeglefinus	1

Hapuku wreckfish	Polyprion oxygeneios	2
Hilsa shad	Tenualosa ilisha	4
Honnibe croaker	Nibea mitsukurii	1
Hound needlefish	Tylosurus crocodilus	1
Indian driftfish	Ariomma indica	1
Indian halibut	Psettodes erumei	7
Indian mackerel	Rastrelliger kanagurta	3
Indian oil sardine	Sardinella longiceps	5
Indian pellona	Pellona ditchela	3
Indian pompano	Trachinotus mookalee	1
Indian scad	Decapterus russelli	3
Indo-Pacific king mackerel	Scomberomorus guttatus	4
Indo-Pacific sailfish	Istiophorus platypterus	7
Indo-Pacific tarpon	Megalops cyprinoides	1
Japanese anchovy	Engraulis japonicus	4
Japanese flyingfish	Cypselurus agoo	1
Japanese halfbeak	Hyporhamphus sajori	1
Japanese jack mackerel	Trachurus japonicus	1
Japanese pilchard	Sardinops melanostictus	2
Japanese sandfish	Arctoscopus japonicus	2
Japanese sardinella	Sardinella zunasi	1
Japanese scad	Decapterus maruadsi	1
Japanese seabass	Lateolabrax japonicus	2
Japanese Spanish mackerel	Scomberomorus niphonius	1
Japanese threadfin bream	Nemipterus japonicus	1
Javelin grunter	Pomadasys kaakan	1
John dory	Zeus faber	14
John's snapper	Lutjanus johnii	1
Kamchatka flounder	Atheresthes evermanni	2
Kawakawa	Euthynnus affinis	4
Kelee shad	Hilsa kelee	2
King mackerel	Scomberomorus cavalla	3
King of herrings	Regalecus glesne	1
King soldier bream	Argyrops spinifer	2
King weakfish	Macrodon ancylodon	2
Kingklip	Genypterus capensis	1
Kitefin shark	Dalatias licha	4
Korean sandlance	Hypoptychus dybowskii	1
Ladyfish	Elops saurus	2
Lane snapper	Lutjanus synagris	5
Large yellow croaker	Larimichthys croceus	1

Large-eye dentex	Dentex macrophthalmus	4
Largeeye breams	Gymnocranius spp	2
Largehead hairtail	Trichiurus lepturus	23
Latchet(=Sharpbeak gurnard)	Pterygotrigla polyommata	1
Law croaker	Pseudotolithus brachygnathus	1
Leafscale gulper shark	Centrophorus squamosus	3
Leaping mullet	Liza saliens	1
Lebranche mullet	Mugil liza	1
Leerfish	Lichia amia	2
Lemon sole	Microstomus kitt	12
Leopard flounder	Bothus pantherinus	1
Lesser African threadfin	Galeoides decadactylus	11
Ling	Molva molva	1
Lingcod	Ophiodon elongatus	1
Little tunny(=Atl.black skipj)	Euthynnus alletteratus	6
Longbill spearfish	Tetrapturus pfluegeri	1
Longnosed skate	Raja oxyrinchus	2
Longtail tuna	Thunnus tonggol	3
Lumpfish(=Lumpsucker)	Cyclopterus lumpus	6
Madeiran sardinella	Sardinella maderensis	6
Malabar blood snapper	Lutjanus malabaricus	1
Mangrove red snapper	Lutjanus argentimaculatus	3
Masu(=Cherry) salmon	Oncorhynchus masou	1
Meagre	Argyrosomus regius	6
Mediterranean horse mackerel	Trachurus mediterraneus	1
Megrim	Lepidorhombus whiffiagonis	1
Milkfish	Chanos chanos	9
Mirror dory	Zenopsis nebulosus	2
Monocle breams	Scolopsis spp	3
Moonfish	Mene maculata	2
Morays	Muraenidae	2
Morwongs	Nemadactylus spp	3
Mud sole	Austroglossus pectoralis	1
Mutton snapper	Lutjanus analis	1
Narrow-barred Spanish		
mackerel	Scomberomorus commerson	5
Narrownose smooth-hound	Mustelus schmitti	3
Nassau grouper	Epinephelus striatus	3
Navaga(=Wachna cod)	Eleginus navaga	1
North Pacific hake	Merluccius productus	1
Northern kingfish	Menticirrhus saxatilis	1

Northern pike	Esox lucius	5
Northern puffer	Sphoeroides maculatus	1
Northern red snapper	Lutjanus campechanus	2
Nursehound	Scyliorhinus stellaris	3
Ocean whitefish	Caulolatilus princeps	2
Offshore silver hake	Merluccius albidus	1
Oilfish	Ruvettus pretiosus	3
Okhotsk atka mackerel	Pleurogrammus azonus	2
Opah	Lampris guttatus	3
Orange perch	Lepidoperca pulchella	1
Orange roughy	Hoplostethus atlanticus	5
Orange-spotted grouper	Epinephelus coioides	1
Orfe(=Ide)	Leuciscus idus	3
Pacific anchoveta	Cetengraulis mysticetus	3
Pacific angelshark	Squatina californica	2
Pacific bluefin tuna	Thunnus orientalis	6
Pacific bumper	Chloroscombrus orqueta	1
Pacific cod	Gadus macrocephalus	1
Pacific guitarfish	Rhinobatos planiceps	2
Pacific herring	Clupea pallasii	5
Pacific jack mackerel	Trachurus symmetricus	2
Pacific menhaden	Ethmidium maculatum	2
Pacific ocean perch	Sebastes alutus	3
Pacific pompano	Peprilus simillimus	1
Pacific rudderfish	Psenopsis anomala	3
Pacific sand sole	Psettichthys melanostictus	2
Pacific sandlance	Ammodytes personatus	1
Pacific sandperch	Prolatilus jugularis	1
Pacific saury	Cololabis saira	1
Pacific sierra	Scomberomorus sierra	2
Pacific thread herring	Opisthonema libertate	2
Panga seabream	Pterogymnus laniarius	2
Parona leatherjacket	Parona signata	1
Parore	Girella tricuspidata	2
Parrotfish	Sparisoma cretense	1
Patagonian blennie	Eleginops maclovinus	2
Patagonian grenadier	Macruronus magellanicus	2
Patagonian toothfish	Dissostichus eleginoides	3
Pelagic armourhead	Pseudopentaceros richardsoni	1
Peruvian banded croaker	Paralonchurus peruanus	1
Peruvian morwong	Cheilodactylus variegatus	2

Peruvian rock seabass	Paralabrax humeralis	1
Peruvian weakfish	Cynoscion analis	3
Picked dogfish	Squalus acanthias	21
Pike-perch	Sander lucioperca	8
Pink cusk-eel	Genypterus blacodes	3
Pink(=Humpback)salmon	Oncorhynchus gorbuscha	4
Plain bonito	Orcynopsis unicolor	1
Plownose chimaera	Callorhinchus callorynchus	5
Polar cod	Boreogadus saida	1
Pollack	Pollachius pollachius	1
Pontic shad	Alosa pontica	2
Ponyfishes(=Slipmouths)	Leiognathus spp	3
Poor cod	Trisopterus minutus	1
Porbeagle	Lamna nasus	12
Porgies	Calamus spp	3
Portuguese dogfish	Centroscymnus coelolepis	3
Pouting(=Bib)	Trisopterus luscus	2
Queenfishes	Scomberoides spp	3
Rainbow runner	Elagatis bipinnulata	3
Rainbow sardine	Dussumieria acuta	3
Rainbow smelt	Osmerus mordax	2
Rainbow trout	Oncorhynchus mykiss	2
Red bigeye	Priacanthus macracanthus	1
Red codling	Pseudophycis bachus	1
Red cusk-eel	Genypterus chilensis	1
Red grouper	Epinephelus morio	3
Red gurnard	Aspitrigla cuculus	1
Red hake	Urophycis chuss	1
Red hind	Epinephelus guttatus	2
Red mullet	Mullus barbatus	6
Red pandora	Pagellus bellottii	5
Red porgy	Pagrus pagrus	11
Red scorpionfish	Scorpaena scrofa	1
Red-eye round herring	Etrumeus teres	3
Redfish	Centroberyx affinis	2
Rex sole	Glyptocephalus zachirus	1
Ridge scaled rattail	Macrourus carinatus	1
Roach	Rutilus rutilus	7
Rock sole	Lepidopsetta bilineata	2
Rough scad	Trachurus lathami	1
Roughhead grenadier	Macrourus berglax	2

Round sardinella	Sardinella aurita	10
Roundnose grenadier	Coryphaenoides rupestris	2
Royal threadfin	Pentanemus quinquarius	4
Rubberlip grunt	Plectorhinchus mediterraneus	4
Rubyfish	Plagiogeneion rubiginosum	1
Ruff	Arripis georgianus	1
Sablefish	Anoplopoma fimbria	2
Sabre squirrelfish	Sargocentron spiniferum	1
Saddled seabream	Oblada melanura	7
Saffron cod	Eleginus gracilis	1
Saithe(=Pollock)	Pollachius virens	1
Salema	Sarpa salpa	9
Sand sole	Solea lascaris	3
Sand steenbras	Lithognathus mormyrus	5
Sand tiger shark	Carcharias taurus	2
Sandy ray	Raja circularis	2
Santer seabream	Cheimerius nufar	1
Sawfishes	Pristidae	4
Scaled sardines	Harengula spp	3
Scalloped hammerhead	Sphyrna lewini	2
Scamp	Mycteroperca phenax	1
Scats	Scatophagus spp	1
Sea lamprey	Petromyzon marinus	2
Sea trout	Salmo trutta	8
Senegalese hake	Merluccius senegalensis	1
Serra Spanish mackerel	Scomberomorus brasiliensis	2
Shagreen ray	Raja fullonica	3
Sheepshead	Archosargus probatocephalus	2
Shi drum	Umbrina cirrosa	3
Short mackerel	Rastrelliger brachysoma	2
Short-finned eel	Anguilla australis	1
Shortfin mako	Isurus oxyrinchus	22
Sichel	Pelecus cultratus	1
Silk snapper	Lutjanus vivanus	1
Silky shark	Carcharhinus falciformis	6
Sillago-whitings	Sillaginidae	10
Silver croaker	Pennahia argentata	1
Silver grunt	Pomadasys argenteus	1
Silver hake	Merluccius bilinearis	1
Silver pomfret	Pampus argenteus	4
Silver scabbardfish	Lepidopus caudatus	7

Silver seabream	Pagrus auratus	6
Silver warehou	Seriolella punctata	1
Silver-stripe round herring	Spratelloides gracilis	2
Silvery John dory	Zenopsis conchifer	2
Skipjack tuna	Katsuwonus pelamis	10
Small-spotted catshark	Scyliorhinus canicula	3
Smooth hammerhead	Sphyrna zygaena	4
Snoek	Thyrsites atun	6
Snubnose pompano	Trachinotus blochii	1
So-iuy mullet	Mugil soiuy	1
Sockeye(=Red)salmon	Oncorhynchus nerka	4
Sompat grunt	Pomadasys jubelini	4
South American pilchard	Sardinops sagax	3
South American silver porgy	Diplodus argenteus	2
South Pacific hake	Merluccius gayi	1
Southern African anchovy	Engraulis capensis	2
Southern African pilchard	Sardinops ocellatus	2
Southern blue whiting	Micromesistius australis	3
Southern bluefin tuna	Thunnus maccoyii	4
Southern hake	Merluccius australis	3
Southern meagre(=Mulloway)	Argyrosomus hololepidotus	5
Southern rays bream	Brama australis	1
Southern red snapper	Lutjanus purpureus	3
Spangled emperor	Lethrinus nebulosus	1
Splendid alfonsino	Beryx splendens	1
Spot croaker	Leiostomus xanthurus	2
Spot-tail shark	Carcharhinus sorrah	2
Spotfin flathead	Grammoplites suppositus	1
Spottail spiny turbot	Psettodes belcheri	1
Spotted estuary smooth-hound	Mustelus lenticulatus	2
Spotted gurnard	Pterygotrigla picta	1
Spotted ray	Raja montagui	2
Spotted seabass	Dicentrarchus punctatus	3
Spotted sicklefish	Drepane punctata	2
Spotted weakfish	Cynoscion nebulosus	2
Spotted wolffish	Anarhichas minor	1
Stargazer	Uranoscopus scaber	1
Starry ray	Raja radiata	2
Striped bass	Morone saxatilis	1
Striped bonito	Sarda orientalis	1
Striped marlin	Tetrapturus audax	7

Striped weakfish	Cynoscion striatus	2
Summer flounder	Paralichthys dentatus	1
Surf smelt	Hypomesus pretiosus	1
Surmullet	Mullus surmuletus	11
Swordfish	Xiphias gladius	7
Tadpole codling	Salilota australis	2
Talang queenfish	Scomberoides commersonnianus	1
Tarakihi	Nemadactylus macropterus	1
Tarpon	Megalops atlanticus	2
Tench	Tinca tinca	1
Thornback ray	Raja clavata	5
Thorntooth grenadier	Lepidorhynchus denticulatus	1
Threadsail filefish	Stephanolepis cirrhifer	1
Three-spined stickleback	Gasterosteus aculeatus	1
Thresher	Alopias vulpinus	11
Tigertooth croaker	Otolithes ruber	1
Toli shad	Tenualosa toli	2
Tonguefishes	Cynoglossidae	14
Tope shark	Galeorhinus galeus	11
Torpedo rays	Torpedo spp	3
Torpedo scad	Megalaspis cordyla	4
Tub gurnard	Chelidonichthys lucerna	1
Turbot	Psetta maxima	18
Tusk(=Cusk)	Brosme brosme	2
Twobar seabream	Acanthopagrus bifasciatus	1
Unicorn cod	Bregmaceros mcclellandi	2
Velvet leatherjacket	Parika scaber	1
Vendace	Coregonus albula	2
Vimba bream	Vimba vimba	2
Wahoo	Acanthocybium solandri	10
Wedge sole	Dicologlossa cuneata	3
West African goatfish	Pseudupeneus prayensis	3
West African ilisha	Ilisha africana	4
West African ladyfish	Elops lacerta	1
West African Spanish mackerel	Scomberomorus tritor	1
West coast sole	Austroglossus microlepis	2
Whip stingray	Dasyatis akajei	2
White croaker	Genyonemus lineatus	1
White grouper	Epinephelus aeneus	1
White hake	Urophycis tenuis	3
White seabream	Diplodus sargus	4

White steenbras	Lithognathus lithognathus	1
White stumpnose	Rhabdosargus globiceps	1
White trevally	Pseudocaranx dentex	1
White warehou	Seriolella caerulea	1
White weakfish	Atractoscion nobilis	1
Whitefin wolf-herring	Chirocentrus nudus	1
Whitehead's round herring	Etrumeus whiteheadi	2
Whitemouth croaker	Micropogonias furnieri	4
Whitespotted conger	Conger myriaster	1
Whiting	Merlangius merlangus	1
Widow rockfish	Sebastes entomelas	1
Winter flounder	Pseudopleuronectes americanus	1
Witch flounder	Glyptocephalus cynoglossus	12
Wreckfish	Polyprion americanus	6
Yellow croaker	Larimichthys polyactis	4
Yellow snapper	Lutjanus argentiventris	2
Yellow striped flounder	Pseudopleuronectes herzenst.	1
Yellowbar angelfish	Pomacanthus maculosus	1
Yellowfin seabream	Acanthopagrus latus	1
Yellowfin tuna	Thunnus albacares	8
Yellowstripe goatfish	Mulloidichthys flavolineatus	1
Yellowstripe scad	Selaroides leptolepis	3
Yellowtail amberjack	Seriola lalandi	2
Yellowtail rockfish	Sebastes flavidus	1
Yellowtail snapper	Ocyurus chrysurus	6

Table S6. Percentage of 2009 landings reported by the FAO accounted for by our model in each FAO region. The percentage of all landings reflects the total landings included in our model relative to the total landings reported in an FAO region. The percentage of unassessed landings reflects the total landings in our model relative to the landings reported by the FAO, excluding stock assessed fisheries.

FAO	FAO Region	% Coverage of	% Coverage of
Region		All Landings	Unassessed
Number			Landings
21	Atlantic, Northwest	6%	8%
27	Atlantic, Northeast	7%	24%
31	Atlantic, Western Central	8%	13%
34	Atlantic, Eastern Central	48%	51%
37	Mediterranean and Black Sea	57%	58%
41	Atlantic, Southwest	27%	36%
47	Atlantic, Southeast	68%	71%
51	Indian Ocean, Western	33%	33%
57	Indian Ocean, Eastern	20%	21%
58	Indian Ocean, Antarctic and Southern	0%	1%
61	Pacific, Northwest	34%	37%
67	Pacific, Northeast	27%	76%
71	Pacific, Western Central	18%	21%
77	Pacific, Eastern Central	51%	58%
81	Pacific, Southwest	21%	25%
87	Pacific, Southeast	24%	57%
88	Pacific, Antarctic	0%	0%

Table S7. Breakdown of median predicted B/B_{msy} in 2009 and number of fisheries predicted by each model.

Model	Median B/B _{msy}	Number of Fisheries
1	0.36	225
2	0.70	422
3	0.93	356
4	0.62	115
5	0.67	182
6	0.57	364

Table S8. Time series of estimated B/B_{msy} for unassessed fisheries.

Year	Median B/B _{msy}	Number of Fisheries	2.5% CI	97.5% CI
1979	0.89	877	0.83	0.95
1980	0.83	905	0.76	0.90
1981	0.88	932	0.81	0.95
1982	0.86	970	0.79	0.93
1983	0.86	1007	0.80	0.92
1984	0.85	1020	0.79	0.90
1985	0.85	1050	0.79	0.91
1986	0.88	1073	0.81	0.95
1987	0.89	1098	0.83	0.96
1988	0.89	1113	0.83	0.95
1989	0.88	1142	0.81	0.94
1990	0.84	1165	0.79	0.90
1991	0.83	1196	0.78	0.90
1992	0.83	1258	0.78	0.89
1993	0.84	1276	0.79	0.90
1994	0.84	1307	0.78	0.89
1995	0.84	1327	0.78	0.90
1996	0.81	1374	0.76	0.86
1997	0.80	1395	0.75	0.86
1998	0.79	1433	0.74	0.84
1999	0.78	1484	0.73	0.83
2000	0.77	1513	0.72	0.82
2001	0.75	1583	0.71	0.80
2002	0.75	1641	0.70	0.80
2003	0.75	1705	0.70	0.79
2004	0.71	1715	0.67	0.75
2005	0.68	1712	0.64	0.71
2006	0.67	1698	0.63	0.71
2007	0.65	1678	0.61	0.69
2008	0.64	1664	0.60	0.68
2009	0.64	1634	0.61	0.69

Table S9. Median 2009 $B/B_{\mbox{\scriptsize msy}}$ by species category.

Species Category	Median B/B _{msy}	Number	2.5% CI	97.5% CI
	·	of Fisheries		
Sharks and cartilaginous fishes	0.37	112	0.28	0.48
Miscellaneous coastal fishes	0.44	436	0.39	0.49
Miscellaneous freshwater fishes	0.49	58	0.35	0.65
Salmons and diadromous fishes	0.53	76	0.39	0.69
Cods, hakes, haddocks	0.73	54	0.53	0.98
Tunas and billfishes	0.80	149	0.66	0.97
Herrings, sardines and pelagic fishes	0.81	358	0.71	0.91
Flounders and groundfishes	0.90	359	0.80	1.01
Shads	1.19	31	0.74	1.75

Table S10. Median 2009 B/B $_{msy}$ by FAO region.

FAO	FAO Region	Median	Number of	2.5%	97.5%
Region		B/B _{msy}	Fisheries	CI	CI
Number		-			
21	Atlantic, Northwest	0.53	58	0.38	0.76
27	Atlantic, Northeast	0.58	362	0.50	0.66
31	Atlantic, Western Central	0.50	80	0.37	0.66
34	Atlantic, Eastern Central	0.64	165	0.53	0.77
37	Mediterranean and Black Sea	0.58	223	0.49	0.69
41	Atlantic, Southwest	0.73	101	0.57	0.92
47	Atlantic, Southeast	0.63	43	0.42	0.89
51	Indian Ocean, Western	0.83	99	0.64	1.05
57	Indian Ocean, Eastern	1.20	77	0.92	1.57
58	Indian Ocean, Antarctic and Southern	1.03	2	0.18	3.47
61	Pacific, Northwest	0.72	112	0.56	0.90
67	Pacific, Northeast	0.56	33	0.35	0.85
71	Pacific, Western Central	0.97	76	0.72	1.29
77	Pacific, Eastern Central	0.43	50	0.29	0.63
81	Pacific, Southwest	0.72	91	0.53	0.94
87	Pacific, Southeast	0.62	61	0.43	0.85
88	Pacific, Antarctic	0.99	1	0.09	4.12

Table S11. Time series of median $B/B_{\mbox{\scriptsize msy}}$ for small unassessed fisheries.

Year	Median B/B _{msy}	Number of Fisheries	2.5% CI	97.5% CI
1979	0.71	393	0.64	0.80
1980	0.68	407	0.61	0.79
1981	0.72	424	0.66	0.82
1982	0.70	455	0.64	0.79
1983	0.71	482	0.65	0.80
1984	0.69	488	0.63	0.79
1985	0.67	503	0.62	0.76
1986	0.71	520	0.65	0.81
1987	0.72	542	0.67	0.83
1988	0.72	559	0.67	0.82
1989	0.72	583	0.66	0.81
1990	0.71	604	0.64	0.79
1991	0.70	626	0.65	0.79
1992	0.70	667	0.64	0.78
1993	0.70	685	0.64	0.78
1994	0.70	703	0.64	0.79
1995	0.68	728	0.63	0.76
1996	0.66	769	0.61	0.73
1997	0.65	790	0.62	0.73
1998	0.64	825	0.60	0.72
1999	0.65	870	0.60	0.73
2000	0.65	901	0.61	0.72
2001	0.64	964	0.60	0.71
2002	0.63	1021	0.59	0.70
2003	0.63	1084	0.60	0.70
2004	0.60	1096	0.57	0.66
2005	0.57	1094	0.55	0.63
2006	0.57	1080	0.54	0.62
2007	0.55	1072	0.52	0.61
2008	0.54	1060	0.51	0.59
2009	0.55	1033	0.51	0.60

Table S12. Time series of median $B/B_{\mbox{\scriptsize msy}}$ for large unassessed fisheries.

Year	Median B/B _{msy}	Number of Fisheries	2.5% CI	97.5% CI
1979	1.05	525	1.00	1.19
1980	0.97	540	0.89	1.12
1981	1.01	550	0.95	1.15
1982	1.01	557	0.94	1.14
1983	1.02	567	0.95	1.14
1984	1.00	574	0.93	1.13
1985	1.03	590	0.96	1.14
1986	1.05	598	0.98	1.17
1987	1.06	601	0.99	1.19
1988	1.07	598	1.00	1.20
1989	1.05	603	0.98	1.17
1990	1.00	605	0.94	1.13
1991	0.99	615	0.92	1.12
1992	1.00	635	0.93	1.11
1993	1.02	637	0.95	1.14
1994	1.01	650	0.95	1.13
1995	1.04	649	0.97	1.16
1996	1.00	655	0.95	1.13
1997	1.00	656	0.94	1.11
1998	1.00	661	0.93	1.11
1999	0.98	669	0.91	1.08
2000	0.95	668	0.90	1.06
2001	0.94	676	0.88	1.05
2002	0.94	677	0.88	1.04
2003	0.95	680	0.89	1.06
2004	0.90	680	0.85	1.00
2005	0.88	679	0.82	0.97
2006	0.86	679	0.80	0.95
2007	0.85	667	0.79	0.94
2008	0.84	665	0.78	0.94
2009	0.83	661	0.77	0.92

References and Notes

- 1. R. Arnason, K. Kelleher, R. Willmann, *The Sunken Billions: The Economic Justification for Fisheries Reform* (The World Bank, Washington, DC, 2009).
- 2. D. Pauly, R. Watson, J. Alder, Global trends in world fisheries: Impacts on marine ecosystems and food security. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **360**, 5 (2005). doi:10.1098/rstb.2004.1574 Medline
- 3. B. Worm *et al.*, Rebuilding global fisheries. *Science* **325**, 578 (2009). doi:10.1126/science.1173146 Medline
- 4. FAO, *The state of world fisheries and aquaculture 2010* (Food and Agriculture Organization of the United Nations, Rome, 2010).
- 5. D. Ricard, C. Minto, O. Jensen, J. Baum, Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. *Fish Fish.* 10.1111/j.1467-2979.2011.00435.x (2011).
- 6. FAO, FAO Statistics and Information Service of the Fisheries and Aquaculture Department. Total fishery production 1950-2009. FISHSTAT Plus (Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/fishery/statistics/software/fishstat/en, Rome, 2011).
- 7. B. Worm *et al.*, Impacts of biodiversity loss on ocean ecosystem services. *Science* **314**, 787 (2006). doi:10.1126/science.1132294 Medline
- 8. U. T. Srinivasan, W. W. L. Cheung, R. Watson, U. R. Sumaila, Food security implications of global marine catch losses due to overfishing. *J. Bioecon.* **12**, 183 (2010). doi:10.1007/s10818-010-9090-9
- 9. W. Swartz, E. Sala, S. Tracey, R. Watson, D. Pauly, The spatial expansion and ecological footprint of fisheries (1950 to present). *PLoS ONE* **5**, e15143 (2010). doi:10.1371/journal.pone.0015143 Medline
- 10. E. Chassot *et al.*, Global marine primary production constrains fisheries catches. *Ecol. Lett.* **13**, 495 (2010). doi:10.1111/j.1461-0248.2010.01443.x Medline
- 11. T. A. Branch *et al.*, The trophic fingerprint of marine fisheries. *Nature* **468**, 431 (2010). doi:10.1038/nature09528 Medline
- 12. D. Pauly, V. Christensen, J. Dalsgaard, R. Froese, F. Torres Jr., Fishing down marine food webs. *Science* **279**, 860 (1998). doi:10.1126/science.279.5352.860 Medline
- 13. T. A. Branch, O. P. Jensen, D. Ricard, Y. M. Ye, R. Hilborn, Contrasting global trends in marine fishery status obtained from catches and from stock assessments. *Conserv. Biol.* **25**, 777 (2011). doi:10.1111/j.1523-1739.2011.01687.x Medline
- 14. Materials and methods are available as supplementary material on *Science* Online.
- 15. R. Froese, D. Pauly, FishBase (2010); http://www.fishbase.org.
- 16. M. L. Pinsky, O. P. Jensen, D. Ricard, S. R. Palumbi, Unexpected patterns of fisheries collapse in the world's oceans. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 8317 (2011). doi:10.1073/pnas.1015313108 Medline

- 17. J. T. Thorson, T. A. Branch, O. P. Jensen, T. Quinn, Using model-based inference to evaluate global fisheries status from landings, location, and life history data. *Can. J. Fish. Aquat. Sci.* **69**, 645 (2012). doi:10.1139/f2012-016
- 18. T. R. McClanahan, J. O. Omukoto, Comparison of modern and historical fish catches (AD 750-1400) to inform goals for marine protected areas and sustainable fisheries. *Conserv. Biol.* **25**, 945 (2011). doi:10.1111/j.1523-1739.2011.01694.x Medline
- 19. L. Garibaldi, The FAO global capture production database: A six-decade effort to catch the trend. *Mar. Policy* **36**, 760 (2012). doi:10.1016/j.marpol.2011.10.024
- 20. S. C. Anderson, J. M. Flemming, R. Watson, H. K. Lotze, Rapid global expansion of invertebrate fisheries: Trends, drivers, and ecosystem effects. *PLoS ONE* **6**, e14735 (2011). doi:10.1371/journal.pone.0014735 Medline
- 21. D. Tilman, C. Balzer, J. Hill, B. L. Befort, Global food demand and the sustainable intensification of agriculture. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 20260 (2011). doi:10.1073/pnas.1116437108 Medline
- 22. C. Costello, S. D. Gaines, J. Lynham, Can catch shares prevent fisheries collapse? *Science* **321**, 1678 (2008). doi:10.1126/science.1159478 Medline
- 23. J. Cancino, H. Uchida, J. E. Wilen, TURFs and ITQs: Coordinated vs. decentralized decision making. *Mar. Resour. Econ.* 22, 391 (2007).
- 24. D. Ovando *et al.*, Conservation incentives and collective choices in cooperative fisheries. *Mar. Policy* (2012). doi:10.1016/j.marpol.2012.03.012
- 25. C. Costello, D. Kaffine, Marine protected areas in spatial property rights fisheries. *Aust. J. Agric. Resour. Econ.* **54**, 321 (2010). doi:10.1111/j.1467-8489.2010.00495.x
- 26. N. L. Gutiérrez, R. Hilborn, O. Defeo, Leadership, social capital and incentives promote successful fisheries. *Nature* **470**, 386 (2011). doi:10.1038/nature09689 Medline
- 27. J. R. Wilson, J. D. Prince, H. S. Lenihan, A management strategy for sedentary nearshore species that uses marine protected areas as a reference. *Mar. Coast. Fish.* **2**, 14 (2010). doi:10.1577/C08-026.1
- 28. N. Duan, Smearing estimate: A nonparametric retransformation method. *J. Am. Stat. Assoc.* **78**, 605 (1983). doi:10.1080/01621459.1983.10478017
- 29. FAO, *Review of the state of world marine fishery resources* (Food and Agriculture Organization of the United Nations, Rome, Italy, 2005).
- 30. S. E. Lester *et al.*, Biological effects within no-take marine reserves: A global synthesis. *Mar. Ecol. Prog. Ser.* **384**, 33 (2009). doi:10.3354/meps08029
- 31. R. C. Babcock *et al.*, Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 18256 (2010). doi:10.1073/pnas.0908012107 Medline
- 32. W. G. Clark, F 35% revised ten years later. *N. Am. J. Fish. Manage.* **22**, 251 (2002). doi:10.1577/1548-8675(2002)022<0251:FRTYL>2.0.CO;2