Основи_програмування – 1. Алгоритми та структури даних

Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант <u>11</u>

Виконав студент	<u>IП-13, Дем'янчук Олександр Петрович</u>	
	(шифр, прізвище, ім'я, по батькові)	
Перевірив	Вєчерковська А. С.	
	(прізвище ім'я по батькові)	

Основи програмування – 1. Алгоритми та структури даних

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета – дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання

Варіант 11

Завдання

Обчислити добуток 4 елементів геометричної прогресії, що зростає: початкове значення -5, крок -3

1. Постановка задачі

Методом рекурсивного алгоритму маємо обрахувати добуток 4 елементів геометричної прогресії, що зростає, для таких значень: b1 = 5, q = 3, n = 4;

2. Математична модель

Побудуємо таблицю імен змінних:

Змінна	Tun	Ім'я	Призначення
Початкове значення	Цілий	b1	Вхідні дані
Крок прогресії	Цілий	q	Вхідні дані
Степеневий параметр	Цілий	n	Вхідні дані
Функція степені	Цілий	pow()	Проміжні дані
Кінцеве значення	Цілий	progress	Вихідні дані

Рекурсивна функція **Mult_of_progression(b1, q, n)** матиме три параметри:

- **b1** перший член геометричної прогресії;
- **q** крок геометричної прогресії;
- ${\bf n}$ степеневий параметр прогресії

Умовою рекурсивної функції буде n > 1: поки виконується ця умова, призначаємо **progress** значення $b1*pow(q, n-1)*Mult_of_progression(b1, q, n-1)$.

Коли ж умова $\mathbf{n} > 1$ перестане виконуватись, тобто \mathbf{n} досягне значення 1, призначаємо **progress** значення $\mathbf{b1}$

Основи програмування – 1. Алгоритми та структури даних

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо дію опису рекурсивного алгоритму Mult_of_progression(b1, q, n-1)

```
Псевдокод
Крок 1
реалізація рекурсії
початок
       введення b1, q, n
       виклик функції Mult of progression(b1, q, n-1)
       виведення Mult of progression(b1, q, n-1)
кінець
Крок 2
функція Mult of progression(b1, q, n-1)
       якщо n > 1 то
              return b1 * pow(q, n-1) * Mult_of_progression(b1, q, n-1)
       інакше
              return b1
       все якщо
все функція
початок
       введення b1, q, n
       виклик функції Mult_of_progression(b1, q, n-1)
       виведення Mult_of_progression(b1, q, n-1)
кінець
```

Блок-схема

Основи_програмування – 1. Алгоритми та структури даних

Тестування

Блок	Дія		
	Початок		
1	введення $b1 = 5$, $q = 3$, $n = 4$		
2	виклик функції Mult_of_progression(5, 3, 4)		
3	4 > 1 = true		
4	progress = 5 * pow(3, 3) * Mult_of_progression(5, 3, 3) // виклик функції		
5	3 > 1 = true		
6	progress = 5 * pow(3, 2) * Mult_of_progression(5, 3, 2) // виклик функції		
7	2 > 1 = true		
8	progress = 5 * pow(3, 1) * Mult_of_progression(5, 3, 1) // виклик функції		
9	1 > 1 = false		
10	progress = 5		
11	return 5 // повернення до кроку 8		
12	return 75 // повернення до кроку 6		
13	return 3375 // повернення до кроку 4		
14	return 455625 // повернення до кроку 2		
15	виведення progress = 455625		
	Кінець		

Програмний код

```
#include <iostream>
      #include <math.h>
      using namespace std;
      int progress = 0;
      int Mult_of_progression(int b1, int q, int n)
          if(n>1)
               progress = b1 * pow(q, n-1) * Mult_of_progression(b1, q, n-1);
11
12
          else
13
          {
               progress = b1;
15
          return progress;
17
      int main()
20
          int b1 = 5;
21
          int q = 3;
22
          int n = 4;
23
          Mult_of_progression(b1, q, n);
          cout << progress << endl;</pre>
24
25
      }
ПРОБЛЕМЫ
            ВЫХОДНЫЕ ДАННЫЕ
                                КОНСОЛЬ ОТЛАДКИ
                                                    ТЕРМИНАЛ
MacBook-Pro-user:lab5 user$ cd "/Users/user/Documents/Лаби ОП/lab5/" && g++ tempCodeRunnerF
MacBook-Pro-user: lab5 user$ ■
```

Висновок

На лабораторній роботі дослідив особливості роботи рекурсивних алгоритмів, на практиці навчився складати та використовувати їх під час складання програмних специфікацій підпрограм.