Nagyenergiás nehézion-ütközések numerikus hidrodinamikai modellezése

Bagoly Attila

Témavezető: Csanád Máté

ELTE TTK Atomfizikai tanszék

Tudományos Diákköri Konferencia 2014.12.13.

Motiváció

Kvark-gluon plazma folyadékszerű viselkedésének következtében:

- hogyan hatnak különböző effektusok az aszimmetriák időfejlődésére
- olyan effektusok amelyek nem kezelhetőek analitikusan

Motiváció

Kvark-gluon plazma folyadékszerű viselkedésének következtében:

- hogyan hatnak különböző effektusok az aszimmetriák időfejlődésére
- olyan effektusok amelyek nem kezelhetőek analitikusan
- Numerikus hidrodinamika: realisztikus modell QGP-re (kf. pl. Monte-Carlo szimulációból): ekkor minden effektus hatása keveredik

Motiváció

Kvark-gluon plazma folyadékszerű viselkedésének következtében:

- hogyan hatnak különböző effektusok az aszimmetriák időfejlődésére
- olyan effektusok amelyek nem kezelhetőek analitikusan
- Numerikus hidrodinamika: realisztikus modell QGP-re (kf. pl. Monte-Carlo szimulációból): ekkor minden effektus hatása keveredik
- Kezdőfeltétel: legyen közel létező analitikus megoldásokhoz, de realisztikusabb modellt adjon

Tartalom

- Bevezető
- Midrodinamika egyenletei
- Numerikus módszer
- Mód tesztelése
- 5 Nemrelativisztikus eredmények
- Relativisztikus eredmények
- Kifagyás
- Összegzés

Nehézion ütközések: nagy energiasűrűség
 kvark szabadsági fokok

- Nehézion ütközések: nagy energiasűrűség
 kvark szabadsági fokok
- Ősrobbanás: univerzum kvarkok és gluonok "őslevese"
 - Új ismeretek: kvark-gluon plazma vizsgálata

- Nehézion ütközések: nagy energiasűrűség
 kvark szabadsági fokok
- Ősrobbanás: univerzum kvarkok és gluonok "őslevese"
 - Új ismeretek: kvark-gluon plazma vizsgálata
 - Kísérleti tapasztalat (2005): tökéletes folyadék

- Nehézion ütközések: nagy energiasűrűség
 → kvark szabadsági fokok
- Ősrobbanás: univerzum kvarkok és gluonok "őslevese"
- Új ismeretek: kvark-gluon plazma vizsgálata
- Kísérleti tapasztalat (2005): tökéletes folyadék
- Nagy hatáskeresztmetszetek, rövid szabad úthossz, gyors termalizáció: statisztikus fizika

- Nehézion ütközések: nagy energiasűrűség
 → kvark szabadsági fokok
- Ösrobbanás: univerzum kvarkok és gluonok "öslevese"
- Új ismeretek: kvark-gluon plazma vizsgálata
- Kísérleti tapasztalat (2005): tökéletes folyadék
- Nagy hatáskeresztmetszetek, rövid szabad úthossz, gyors termalizáció: statisztikus fizika
- Kezdeti eloszlás: aszimmetriák a kezdeti eloszlásban

- Nehézion ütközések: nagy energiasűrűség
 → kvark szabadsági fokok
- Ősrobbanás: univerzum kvarkok és gluonok "őslevese"
- Új ismeretek: kvark-gluon plazma vizsgálata
- Kísérleti tapasztalat (2005): tökéletes folyadék
- Nagy hatáskeresztmetszetek, rövid szabad úthossz, gyors termalizáció: statisztikus fizika
- Kezdeti eloszlás: aszimmetriák a kezdeti eloszlásban
- Aszimmetriák: kifagynak a részecskék eloszlásában

• Nemrelativisztikus hidrodinamika:

Nemrelativisztikus hidrodinamika:

emrelativisztikus hidrodinamika:

• Anyagmegmaradás:
$$rac{\partial
ho}{\partial t} + oldsymbol{
abla}
ho oldsymbol{ ext{v}} = 0$$

- Nemrelativisztikus hidrodinamika:
 - $oldsymbol{eta}$ Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ extbf{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- Nemrelativisztikus hidrodinamika:
 - $oldsymbol{eta}$ Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ extsf{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- ullet Energiamegmaradás: $rac{\partial arepsilon}{\partial t} + oldsymbol{
 abla} arepsilon {f v} = p oldsymbol{
 abla} {f v} + oldsymbol{
 abla} (\sigma {f v})$
- $m{\circ}$ ho anyagsűrűség, $m{v}$ sebességmező, arepsilon energiasűrűség, p nyomáseloszlás

- Nemrelativisztikus hidrodinamika:
 - $oldsymbol{eta}$ Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ extsf{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- $m{ ilde{ heta}}$ Energiamegmaradás: $rac{\partial arepsilon}{\partial t} + m{
 abla} arepsilon m{ ilde{ heta}} = -p m{
 abla} m{ ilde{ heta}} + m{
 abla} (\sigma m{ ilde{ heta}})$
- ρ anyagsűrűség, ${\bf v}$ sebességmező, ε energiasűrűség, p nyomáseloszlás
- Állapotegyenlet: $\varepsilon = \kappa(T)p$ $(\kappa = 1/c_s^2, \kappa = 3/2 \text{ id. gáz})$

- Nemrelativisztikus hidrodinamika:
 - $oldsymbol{eta}$ Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ extsf{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- ullet Energiamegmaradás: $rac{\partial arepsilon}{\partial t} + oldsymbol{
 abla} arepsilon {f v} = p oldsymbol{
 abla} {f v} + oldsymbol{
 abla} (\sigma {f v})$
- ρ anyagsűrűség, ${f v}$ sebességmező, ε energiasűrűség, p nyomáseloszlás
- Állapotegyenlet: $\varepsilon = \kappa(T)p$ $(\kappa = 1/c_s^2, \kappa = 3/2 \text{ id. gáz})$
- Relativisztikus hidrodinamika:

$$T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu}, \quad \partial_{\mu} T^{\mu\nu} = 0$$

ullet $T^{\mu
u}$ energia-impulzus tenzor, u^μ négyes-sebesség, $g^{\mu
u}$ metrikus tenzor

- Nemrelativisztikus hidrodinamika:
 - $oldsymbol{eta}$ Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ extsf{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- $oldsymbol{eta}$ Energiamegmaradás: $rac{\partial arepsilon}{\partial t} + oldsymbol{
 abla} arepsilon oldsymbol{ extbf{v}} = p oldsymbol{
 abla} oldsymbol{ extbf{v}} + oldsymbol{
 abla} (\sigma oldsymbol{ extbf{v}})$
- ρ anyagsűrűség, ${f v}$ sebességmező, ε energiasűrűség, p nyomáseloszlás
- Állapotegyenlet: $\varepsilon = \kappa(T)p$ $(\kappa = 1/c_s^2, \kappa = 3/2 \text{ id. gáz})$
- Relativisztikus hidrodinamika:

$$T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu}, \quad \partial_{\mu} T^{\mu\nu} = 0$$

- ullet $T^{\mu
 u}$ energia-impulzus tenzor, u^μ négyes-sebesség, $g^{\mu
 u}$ metrikus tenzor
- ullet Advekciós forma: $\partial_t Q_i + \partial_x F_i(Q) + \partial_y G_i(Q) + \partial_z K_i(Q) = 0$

ullet Midrapiditás: eloszlások maximuma, sőt "plató" ightarrow 2+1 dimenzió

- ullet Midrapiditás: eloszlások maximuma, sőt "plató" ightarrow 2+1 dimenzió
- Numerikus megoldás: diszkretizáció

- ullet Midrapiditás: eloszlások maximuma, sőt "plató" ightarrow 2+1 dimenzió
- Numerikus megoldás: diszkretizáció
- Véges térfogat módszer: mennyiségek átlaga rácspont körül

- ullet Midrapiditás: eloszlások maximuma, sőt "plató" ightarrow 2+1 dimenzió
- Numerikus megoldás: diszkretizáció
- Véges térfogat módszer: mennyiségek átlaga rácspont körül
- Probléma: fluxusok értéke a rácspontok között, egzaktul nem lehet

- ullet Midrapiditás: eloszlások maximuma, sőt "plató" ightarrow 2+1 dimenzió
- Numerikus megoldás: diszkretizáció
- Véges térfogat módszer: mennyiségek átlaga rácspont körül
- Probléma: fluxusok értéke a rácspontok között, egzaktul nem lehet
- Instabilitás: $Q_i + Ae^{-i\mathbf{k}\Delta\mathbf{x}} \rightarrow \mathsf{CFL}$ feltétel (pl. $C = u\Delta t/\Delta x < 1$)

- ullet Midrapiditás: eloszlások maximuma, sőt "plató" ightarrow 2+1 dimenzió
- Numerikus megoldás: diszkretizáció
- Véges térfogat módszer: mennyiségek átlaga rácspont körül
- Probléma: fluxusok értéke a rácspontok között, egzaktul nem lehet
- Instabilitás: $Q_i + Ae^{-i\mathbf{k}\Delta\mathbf{x}} \rightarrow \mathsf{CFL}$ feltétel (pl. $C = u\Delta t/\Delta x < 1$)
- ullet 2 térdimenziót bonyolult kezelni o operátor szétválasztás

- ullet Midrapiditás: eloszlások maximuma, sőt "plató" ightarrow 2+1 dimenzió
- Numerikus megoldás: diszkretizáció
- Véges térfogat módszer: mennyiségek átlaga rácspont körül
- Probléma: fluxusok értéke a rácspontok között, egzaktul nem lehet
- Instabilitás: $Q_i + Ae^{-i\mathbf{k}\Delta\mathbf{x}} \rightarrow \mathsf{CFL}$ feltétel (pl. $C = u\Delta t/\Delta x < 1$)
- ullet 2 térdimenziót bonyolult kezelni ightarrow operátor szétválasztás
- Viszkozitás: ideális lépés + csak viszkózus fluxussal lépés

ullet Az / előrejelzett értékek: $Q_{i/(i+1)}^{(I)}$, $F_{i/(i+1)}^{(I)} \equiv Fig(Q_{i/(i+1)}^{(I)}ig)$

- ullet Az / előrejelzett értékek: $Q_{i/(i+1)}^{(I)}$, $F_{i/(i+1)}^{(I)} \equiv Fig(Q_{i/(i+1)}^{(I)}ig)$
- ullet Kezdetben: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$

- ullet Az / előrejelzett értékek: $Q_{i/(i+1)}^{(I)},\,F_{i/(i+1)}^{(I)}\equiv Fig(Q_{i/(i+1)}^{(I)}ig)$
- Kezdetben: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$
- Köztes érték és fluxus:

$$Q_{i+\frac{1}{2}}^{(I)} = \frac{1}{2} \left[Q_i^{(I)} + Q_{i+1}^{(I)} \right] - \frac{1}{2} \frac{\Delta t}{\Delta x} \left[F_{i+1}^{(I)} - F_i^{(I)} \right], \quad F_M^{(I)} \equiv F(Q_{i+\frac{1}{2}}^{(I)})$$

Korrigált cellaközi fluxus:

$$F_{i+\frac{1}{2}}^{(I)} = \frac{1}{4} \left[F_{i+1}^{(I)} + 2F_M^{(I)} + F_i^{(I)} - \frac{\Delta x}{\Delta t} \left(Q_{i+1}^{(I)} - Q_i^{(I)} \right) \right]$$

- Az / előrejelzett értékek: $Q_{i/(i+1)}^{(I)}$, $F_{i/(i+1)}^{(I)} \equiv F(Q_{i/(i+1)}^{(I)})$
- Kezdetben: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$
- Köztes érték és fluxus:

$$Q_{i+\frac{1}{2}}^{(I)} = \frac{1}{2} \left[Q_i^{(I)} + Q_{i+1}^{(I)} \right] - \frac{1}{2} \frac{\Delta t}{\Delta x} \left[F_{i+1}^{(I)} - F_i^{(I)} \right], \quad F_M^{(I)} \equiv F\left(Q_{i+\frac{1}{2}}^{(I)} \right)$$

Korrigált cellaközi fluxus:

$$F_{i+\frac{1}{2}}^{(l)} = \frac{1}{4} \left[F_{i+1}^{(l)} + 2F_M^{(l)} + F_i^{(l)} - \frac{\Delta x}{\Delta t} \left(Q_{i+1}^{(l)} - Q_i^{(l)} \right) \right]$$

Következő előrejelzés a korrigált fluxusok meghatározásához:

$$Q_{i}^{(l+1)} = Q_{i}^{(l)} - \frac{\Delta t}{\Delta x} \left[F_{i+\frac{1}{2}}^{(l)} - F_{i}^{(l)} \right]$$

$$Q_{i+1}^{(l+1)} = Q_{i+1}^{(l)} - \frac{\Delta t}{\Delta x} \left[F_{i+1}^{(l)} - F_{i+\frac{1}{2}}^{(l)} \right]$$

• A módszer publikálva: E. F. Toro et al, 2006, J. Comp. Phys

Kód tesztelése

• A kódot meglévő egzakt megoldásokkal teszteltük (Csörgő et al, PhysRevC67): $s=\frac{x^2}{X^2(t)}+\frac{y^2}{Y^2(t)}$, $\rho=\rho_0\frac{V_0}{V}e^{-s}$, $p=p_0\big(\frac{V_0}{V}\big)^{1+\frac{1}{\kappa}}$, $\mathbf{v}(t,\mathbf{r})=\big(\frac{\dot{X}}{X}x,\frac{\dot{Y}}{Y}y\big)$, $\ddot{X}X=\ddot{Y}Y=\frac{T_i}{m}\big(\frac{V_0}{V}\big)^{\frac{1}{\kappa}}$, V=X(t)Y(t)

Kód tesztelése

- A kódot meglévő egzakt megoldásokkal teszteltük (Csörgő et al, PhysRevC67): $s=\frac{x^2}{X^2(t)}+\frac{y^2}{Y^2(t)},~\rho=\rho_0\frac{V_0}{V}e^{-s},~p=p_0\big(\frac{V_0}{V}\big)^{1+\frac{1}{\kappa}},$ $\mathbf{v}(t,\mathbf{r})=\big(\frac{\dot{X}}{X}x,\frac{\dot{Y}}{Y}y\big),~\ddot{X}X=\ddot{Y}Y=\frac{T_i}{m}\big(\frac{V_0}{V}\big)^{\frac{1}{\kappa}},~V=X(t)Y(t)$
- Relatív hiba a numerikus és analitikus megoldás közt

Kezdőfeltétel

Skálaváltozó:

$$s = \frac{r^2}{R^2} \Big(1 + \epsilon_2 \cos(2\phi) + \epsilon_3 \cos(3\phi) + \epsilon_4 \cos(4\phi) \Big)$$

Kezdőfeltétel

Skálaváltozó:

$$s = \frac{r^2}{R^2} \Big(1 + \epsilon_2 \cos(2\phi) + \epsilon_3 \cos(3\phi) + \epsilon_4 \cos(4\phi) \Big)$$

- Sebesség: nemrelativisztikus estben 0, relativisztikus esetben Hubble-sebességmező
- ullet Anyagűrűség/számsűrűség és nyomás $pprox \exp\left(-s
 ight)$

Kezdőfeltétel

Skálaváltozó:

$$s = \frac{r^2}{R^2} \Big(1 + \epsilon_2 \cos(2\phi) + \epsilon_3 \cos(3\phi) + \epsilon_4 \cos(4\phi) \Big)$$

- Sebesség: nemrelativisztikus estben 0, relativisztikus esetben Hubble-sebességmező
- Anyagűrűség/számsűrűség és nyomás $\propto \exp(-s)$
- Konstans nyomással analitikus megoldás: Csanád és Szabó, Phys.Rev. C90 (2014) 054911

• Nyomásgradiens vizsgálata: $p \propto \exp(-pc \cdot s)$

Aszimmetriák jellemzése

• Aszimmetriát jellemző paraméterre: $\varepsilon_n = \langle \cos(n\phi) \rangle_{
ho/\mathbf{v}/
ho}$

Aszimmetriák jellemzése

- Aszimmetriát jellemző paraméterre: $\varepsilon_n = \langle \cos(n\phi) \rangle_{
 ho/\mathbf{v}/
 ho}$
- $oldsymbol{\epsilon}_n$ (most bevezetett) $eq \epsilon_m$ (kezdőfeltétel skálaváltozójában)

Aszimmetriák jellemzése

- Aszimmetriát jellemző paraméterre: $\varepsilon_n = \langle \cos(n\phi) \rangle_{
 ho/\mathbf{v}/
 ho}$
- $oldsymbol{\epsilon}_n$ (most bevezetett) $eq \epsilon_m$ (kezdőfeltétel skálaváltozójában)
- Kezdetben a ε_n és ε_m közti kapcsolatot becsülhetjük Taylor-sorfejtéssel:
 - Legyen: $\chi = 2 + \sum_{n=2}^{4} \epsilon_n^2$
 - Megjelenik: $\varepsilon_1 = (\epsilon_2 + \epsilon_4)\epsilon_3/\chi$
 - ϵ_4 befolyásolja: $\epsilon_2 = \epsilon_2 (\epsilon_4 1)/\chi$
 - $\varepsilon_3 = -\epsilon_3/\chi$
 - ϵ_2 is létrehoz: $\epsilon_4 = (-\epsilon_4 + \frac{1}{2}\epsilon_2^2)/\chi$

Viszkozitás hatása

- Energiasűrűségben és anyagsűrűségben: lassít
 - Viszkozitás: lassítja az áramlást

• Ábra: ε_1 piros, ε_2 zöld, ε_3 kék, ε_4 magenta

Viszkozitás hatása

- Energiasűrűségben és anyagsűrűségben: lassít
 - Viszkozitás: lassítja az áramlást
- Sebességeloszlásban: gyorsít
 - Nagyobb,kisebb aszimmetriájú részek más erőt éreznek: különbségek gyorsan eltűnnek
- Ábra: ε_1 piros, ε_2 zöld, ε_3 kék, ε_4 magenta

Viszkozitás hatása: energiasűrűség időfejlődése

Viszkozitás hatása: sebességeloszlás időfejlődése

Hangsebesség hatása

- Minden eloszlásban: aszimmetriák eltűnése lassul
 - ullet Nyomáshullámok sebessége csökken o kiegyenlítődés tovább tart
- Hangsebességek: $c_s^2 = 1$ vagy 0, 4 vagy 0, 33 vagy 0, 25

2014.12.13.

Nyomásgradiens hatása

- Minden eloszlásban: aszimmetriák gyorsabban eltűnnek
 - Nagyobb gradiens: gyorsabb áramlás
- Anyagsűrűség $\propto \exp(-s)$
- Energiasűrűség $\propto \exp(-ec \cdot s)$

Hangsebesség hatása

- Minden eloszlásban: aszimmetriák eltűnése lassul
 - ullet Nyomáshullámok sebessége csökken o kiegyenlítődés tovább tart

Hangsebesség hatása

- Minden eloszlásban: aszimmetriák eltűnése lassul
 - ullet Nyomáshullámok sebessége csökken o kiegyenlítődés tovább tart
- Kifagyás máskor történik!

Nyomásgradiens hatása

- Minden eloszlásban: aszimmetriák gyorsabban eltűnnek
 - Nagyobb gradiens: gyorsabb áramlás
- Számsűrűség $\propto \exp(-s)$
- Nyomás $\propto \exp(-pc \cdot s)$

Kifagyás

• Maxwell-Jüttner típusú forrásfüggvény:

$$S(x,p)d^4x = \mathcal{N}n(x) \exp\left(-\frac{p_\mu u^\mu}{T(x)}\right) H(\tau) p_\mu d^3 \frac{u_\mu d^3 x}{u^0} d\tau$$

Kifagyás

• Maxwell-Jüttner típusú forrásfüggvény:

$$S(x,p)d^4x = \mathcal{N}n(x) \exp\left(-\frac{p_\mu u^\mu}{T(x)}\right) H(\tau) p_\mu d^3 \frac{u_\mu d^3 x}{u^0} d\tau$$

• Mérhető mennyiségek:

$$v_n(p_t) = \langle \cos(n\varphi) \rangle_N = \frac{1}{N(p_t)} \int_0^{2\pi} N(p_t, \varphi) \cos(n\varphi) d\varphi$$

- Impulzustérbeli aszimmetriák: erősen függés a hangsebességtől
- Hangsebességre érzékeny: kifagyás ideje

 Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk
- Kezdőfeltétel hasonló a már létező analitikus megoldásokhoz, de realisztikusabb

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk
- Kezdőfeltétel hasonló a már létező analitikus megoldásokhoz, de realisztikusabb
- A viszkozitás lassabbá teszi az anyag- és energiasűrűségben számolt aszimmetriák időfejlődését, sebességeloszlásban gyorsabbá

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk
- Kezdőfeltétel hasonló a már létező analitikus megoldásokhoz, de realisztikusabb
- A viszkozitás lassabbá teszi az anyag- és energiasűrűségben számolt aszimmetriák időfejlődését, sebességeloszlásban gyorsabbá
- Hangsebesség csökkentése lassítja az aszimmetriák időfejlődését, kifagyás később következik be

Köszönöm a figyelmet!

Viszkozitás hatása: ε_n anyag- és energiasűrűségben

Hangsebesség hatása: ε_n anyag- és energiasűrűségben

Nyomásgradiens hatása: ε_n anyag- és energiasűrűségben

Operátorok felbontása

$$\partial_t u = Au + Bu$$

$$u(t + \Delta t) = e^{\Delta t(A+B)}u(t)$$

$$u_{\rm Lie}(t + \Delta t) = e^{\Delta tA}e^{\Delta tB}u(t)$$

$$u_{\rm Strang}(t + \Delta t) = e^{\frac{1}{2}\Delta tA}e^{\Delta tB}e^{\frac{1}{2}\Delta tA}e^{\Delta tB}u(t)$$