Определение вязкости воздуха по скорости течения через тонкие трубки

Цель работы

Экспериментально выявить участок сформированного течения; определить режимы ламинарного и турбулентного течения; определить число Рейнольдса.

Оборудование

Металлические трубки, укреплённые на горизонтальной подставке; газовый счётчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер.

Экспериментальная установка

Рис. 1: Схема установки

Рис. 2: Подробная схема микроманометра

Теоретическая часть

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости. Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{n},$$

где v — скорость потока, r — радиус трубки, ρ — плотность движущейся среды, η — её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$. При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Qv = \frac{\pi r^4}{8ln}(P_1 - P_2). \tag{1}$$

В этой формуле P_1-P_2 — разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно *l.* Величину *Q* обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу. Отметим условия, при которых справедлива формула (1). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

Рис. 3: Формирование потока газа в трубке круглого сечения

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0.2r \cdot Re.$$
 (2)

Градиент давления на участке формирования потока оказывается бо́льшим, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить дину участка формирования.

Обработка результатов измерений

Оценим расстояние, на котором происходит формирование потока при ламинарном течении:

$$a \approx 0.2r \cdot Re = 41 \, \mathrm{cm}$$

Давление, измеряемое микроманометром, определяется по формуле:

$$P = K \cdot l \cdot 9,80665 \,\Pi a,$$

где P — давление в Паскалях, l — отчет по шкале, K=0,2 — постоянная угла наклона. Таблица измерений:

A T 7	A 7	7		,	,		О 10-3 п	A D 10=3 H
ΔV , л	N	l, MM	t_1, c	t_2, c	t_3, c	t_4, c	$Q, 10^{-3} \frac{\pi}{c}$	$\Delta P, 10^{-3} \Pi a$
0.5	1	10	42.85	42.12	42.19	41.92	11.83	19.61
0.5	2	15	26.12	25.80	26.03	25.79	19.28	29.42
1.0	3	20	37.69	36.44	37.78	36.25	27.00	39.23
1.0	4	25	29.12	28.32	28.25	29.07	34.86	49.03
1.5	5	30	35.69	35.29	35.81	35.63	42.13	58.84
1.5	6	35	30.28	29.62	29.41	29.96	50.31	68.65
2.0	7	40	35.09	35.25	35.22	35.28	56.80	78.45
2.0	8	45	30.59	30.75	30.71	30.41	65.33	88.26
2.5	9	50	34.78	34.55	34.52	34.49	72.29	98.07
2.5	10	60	30.02	30.08	29.45	29.92	83.70	117.68
3.0	11	65	33.56	33.72	33.49	33.49	89.38	127.49
3.0	12	70	32.25	32.10	32.12	32.17	93.28	137.29
3.0	13	75	31.55	31.29	31.36	31.30	95.62	147.10

Таблица 1: Измерения на первой трубке

Построим график зависимости давления от расхода:

Рис. 4: Зависимость расхода от разности давлений

Коэффициент угла наклона графика: $k=1.293\cdot 10^3 \frac{\Pi a\cdot c}{^{\text{M}^3}}$ Искомая вязкость:

$$\eta = \frac{\pi r^4 k}{8l} = (17.6 \pm 0.9) \cdot 10^{-6} \Pi a \cdot c$$

Из графика видно, что ламинарный режим переходит в турбулентный на значениях $Q\approx 80\cdot 10^{-6}\frac{\rm M^3}{c}$ Посчитаем число Рейнольдса:

$$Re = \frac{vr\rho}{\eta} = \frac{Q\rho}{\pi r\eta} \approx 850$$

Построим график зависимости отношения давления от расстояния:

Из графика видно, что установление потока происходит примерно на расстоянии 15 см. Теоретическое значение $a\approx 0.2rRe\approx 35$ см. То есть оценка, полученная по формуле, гораздо более грубая, чем результат, который мы наблюдаем в эксперименте.

Оценим показатель степени радиуса в формуле Пуазейля:

ΔV , л	N	l, mm	t_1, c	t_2, c	t_3, c	t_4, c	$Q, 10^{-3} \frac{\pi}{c}$	$\Delta P, 10^{-3} \Pi a$
2	1	10	31.90	32.00	32.00	31.98	62.56	19.61
2	2	15	21.32	21.42	21.38	21.23	93.73	29.42
5	3	20	40.44	40.69	40.41	40.57	123.37	39.23
5	4	25	34.91	35.19	35.09	35.02	142.64	49.03
5	5	30	32.91	32.97	33.06	32.95	151.64	58.84
5	6	35	31.38	31.40	31.47	31.47	159.08	68.65

Таблица 2: Измерения по второй трубке

Рис. 5: Зависимость расхода от разности давлений

Коэффициент угла наклона графика: $k=0.622\cdot 10^3 \frac{\Pi a\cdot c}{^{\rm M}^3}$ Построим график зависимости $\ln(8l\eta Q/\pi\Delta P)$ от $\ln(r)$):

n = 4.64

Мы получили значение, которое немного отличается от теоретического из формулы Пуазейля, потому что для его нахождения было использовано всего 2 точки.

Вывод

Полученным методом с использованием формулы Пуазейля мы получили значение вязкости $\eta=(17.6\pm0.9)\cdot10^{-6}~\Pi a\cdot c,$ которое совпадает с учетом погрешности с табличным при этой температуре: $\eta_{\rm табл}=18.4\cdot10^{-6}~\Pi a\cdot c$