TP: Utilisation de l'ordinateur (Sage?)

Les exercices suivants servent à expérimenter avec l'outil informatique, par exemple avec SageMath, qui est open source et gratuit.

La manière la plus simple d'utiliser Sage est https://sagecell.sagemath.org/, qui fonctionne entièrement en ligne et fournit directement une petite console (parfait pour quelques lignes). Pour les choses moins simples, on peut utiliser https://cocalc.com/ (en ligne, nécessité de créer un compte), ou bien simplement on peut l'installer sur sa machine (voir sagemath.org). La doc de Sage pour les courbes elliptiques est ici :

https://doc.sagemath.org/html/en/reference/arithmetic_curves/sage/schemes/elliptic_curves/ell_field.html

Aucune compétence en Sage n'est nécessaire pour l'évaluation de cette partie de l'UE. C'est juste pour expérimenter et ça peut être utile pour vérifier ses résultats sur les exercices « classiques », ou éventuellement pour la troisième partie de l'UE (?)

Attention cependant, habituez-vous à faire des calculs simples à la main, car vous n'aurez pas l'outil informatique à l'examen de cette partie du cours.

Exercice 1. (Faisable à la main) On considère la courbe projective d'équation affine $y^2 = x^3 - x$, sur le corps \mathbb{F}_9 . Combien y a-t-il de points?

Exercice 2. (Faisable à la main) On considère, sur \mathbb{F}_{11} , la courbe elliptique $y^2 = x^3 + x + 3$. Calculer le nombre de points sur \mathbb{F}_{11} , montrer que le groupe $E(\mathbb{F}_{11})$ est cyclique et déterminer un générateur.

Exercice 3. On considère, sur \mathbb{F}_{101} , la courbe elliptique $y^2 = x^3 + 7x + 1$. Calculer l'ordre du point (0,1) et en déduire $|E(\mathbb{F}_{101})|$.

Exercice 4. On considère, sur \mathbb{F}_{557} , la courbe elliptique $y^2 = x^3 - 10x + 21$. Calculer l'ordre du point (2,3) et en déduire $|E(\mathbb{F}_{557})|$.

Exercice 5.

Exercice 6. 1. Soit p = 1000033. Vérifier que p est premier puis que 69 est un carré dans \mathbb{F}_p et en trouver une racine carrée dans \mathbb{F}_p .

2. En déduire un point de la courbe elliptique $y^2 = x^3 + 33x + 69$ sur \mathbb{F}_p . Quel est l'ordre de ce point?

Exercice 7. On considère sur \mathbb{F}_{2011} la courbe $y^2 + xy + 3y = x^3 + 2x^2 + 4x + 5$.

- 1. Calculer le discriminant et le *j*-invariant de *E*.
- 2. Montrer que les points P = (1,2) et Q = (2,470) sont sur la courbe.
- 3. Calculer le nombre de points sur \mathbb{F}_{2011} .
- 4. Déterminer une formule pour la loi de groupe sur la courbe. Calculer 2P. Trouver un entier N tel que Q = NP.

Exercice 8. Montrer que la courbe elliptique $y^2 = x^3 + 4x + 1$ définie sur \mathbb{F}_5 a un groupe de 5-torsion non trivial, en trouvant de la 5-torsion sur \mathbb{F}_{5^8} .

Exercice 9. Sur \mathbb{F}_7 on considère la courbe elliptique E d'équation $y^2 = x^3 - x - 2$. Combien de points possède-t-elle sur \mathbb{F}_7 ? La courbe est-elle supersingulière? Quelle est la plus petite extension sur laquelle E possède de la 7-torsion?

Exercice 10. Soit p=100003. Pour $b\in\{5,9,11,12,13,16,25,33\}$, on considère sur \mathbb{F}_p la courbe elliptique

$$E_b$$
: $y^2 = x^3 + x + b$.

- 1. Écrire un programme pour calculer le nombre de points.
- 2. Montrer à chaque fois que le groupe $E(\mathbb{F}_p)$ est cyclique et exhiber un générateur.