1) Select all edges that are present in the above schedule's dependency graph.

T1	R(A)		W(A)			R(B)			W(B)	
T2		R(A)						W(A)		R(C)
Т3				R(A)	R(B)		R(C)			

(T1, T2) (T1, T3) (T2, T1) (T3, T1) (T3, T2)

2) This schedule is:

Serial

Serializable

Conflict Serializable

None of the above.

3)

T 1		R(A)		W(A)					R(B)	W(B)
T2			R(A)				W(A)	R(C)		
Т3	R(B)				R(C)	R(A)				

This schedule is conflict equivalent

True

4) True or False: Every serializable schedule is also conflict serializable. False

5) True or False: If its dependency graph has no cycles, a schedule is always conflict serializable.

True

Lock_X(A)	
Lock S(B)	
	Lock_S(B)
Read(A)	
	Read(B)
	Lock_S(A)
Read(B)	
A := B+A	
Write(A)	
Lock_X(C)	
Read(C)	
C := A+C	
Write(C)	
Unlock(A)	
	Read(A)
	Lock_S(C)
Unlock(C)	
	Read(C)
Unlock(B)	
	print(C+B)
	Unlock(B)
	Unlock(C)
	Unlock(A)

If the initial values of A, B, and C are 10, 50, 75 respectively, what is printed by print(C+B)? 185

7) The given schedule follows:

2PL

Strict 2PL