Java

제 2 장

변수(Variable)

- 1. 변수(Variable)란?
- 2. 변수의 타입(Type)
- 3. 변수의 선언방법
- 4. 명명규칙(Naming Convention)
- 5. 변수, 상수, 리터럴
- 6. 리터럴과 접미사
- 7. 변수의 기본값과 초기화
- 8. 문자와 문자열
- 9. 정수의 오버플로우(Overflow)
- 10. 형변환(Casting)

1. 변수(Variable)란?

변하는 수?

하나의 값을 저장할 수 있는 기억공간

2. 변수의 타입(Data type)

논리 - boolean

2. 변수의 타입(Data type)

- ▶ 기본형(Primitive type)
 - 8개 (boolean, char, byte, short, int, long, float, double)
 - 실제 값을 저장
- ▶ 참조형(Reference type)
 - 기본형을 제외한 나머지(String, System 등)
 - 객체의 주소를 저장(4 byte, 0x0000000~0xffffffff)

기본형(Primitive type)

- ▶ 논리형 true와 false중 하나를 값으로 갖으며, 조건식과 논리적 계산에 사용된다.
- ▶ 문자형 문자를 저장하는데 사용되며, 변수 당 하나의 문자만을 저장할 수 있다.
- ► 정수형 정수 값을 저장하는데 사용된다. 주로 사용하는 것은 int와 long이며, byte는 이진데이터를 다루는데 사용되며, short은 c언어와의 호환을 위해 추가되었다.
- ▶ 실수형 실수 값을 저장하는데 사용된다. float와 double이 있다.

크기 종류	1	2	4	8
논리형	boolean			
문자형		char		
정수형	byte	short	int	long
실수형			float	double

2강 변수

byte $-2^7 \sim 2^7 - 1$

S 7 bit

short $-2^{15} \sim 2^{15}-1$

S 15 bit

char $0 \sim 2^{16}-1$

16 bit

int $-2^{31} \sim 2^{31}-1$

S

31 bit

long $-2^{63} \sim 2^{63}-1$

S

63 bit

float 1+8+23=32 bit = 4 byte

S E(8)

M(23)

double 1+11+52=64 bit = 8 byte

S E(11)

M(52)

3. 변수의 선언방법

```
타입 변수명;
int score;
score = 100;
int score = 100;
String str = new String("abc");
     str = null;
```

4. 명명규칙(Naming convention)

- 1. 대소문자가 구분되며 길이에 제한이 없다.
 - True와 true는 서로 다른 것으로 간주된다.
- 2. 예약어(Reserved word)를 사용해서는 안 된다.
 - true는 예약어라 사용할 수 없지만, True는 가능하다.
- 3. 숫자로 시작해서는 안 된다.
 - top10은 허용하지만, 7up은 허용되지 않는다.
- 4. 특수문자는 ''와 '\$'만을 허용한다.
 - \$harp은 허용되지만 S#arp는 허용되지 않는다.

4. 명명규칙 - 권장사항

- 1. 클래스 이름의 첫 글자는 항상 대문자로 한다.
 - 변수와 메서드 이름의 첫 글자는 항상 소문자로 한다.
- 2. 여러 단어 이름은 단어의 첫 글자를 대문자로 한다.
 - lastIndexOf, StringBuffer
- 3. 상수의 이름은 대문자로 한다. 단어는 '_'로 구분한다.
 - PI, MAX_NUMBER

5. 변수, 상수, 리터럴

- ▶ 변수(variable) 하나의 값을 저장하기 위한 공간
- ▶ 상수(constant) 한 번만 값을 저장할 수 있는 공간
- ▶ 리터럴(literal) 그 자체로 값을 의미하는 것 int score = 100;

 score = 200;

 char ch = 'A';

 String str = "abc";

 final int MAX = 100;

MAX = 200; // 에러

6. 리터럴과 접미사

```
boolean power = true;
                            long I = 1000000000L;
char ch = 'A';
                            float f = 3.14f
char ch = ' \u0041';
                            double d = 3.14d
char tab = '\t';
                            float f = 100f;
byte b = 127;
                                 → 10.0
                            10.
short s = 32767;
                            .10 --- 0.10
int i = 100;
                            10f
                                 → 10.0f
                            3.14e3f → 3140.0f
int oct = 0100;
                            1e1 → 10.0
int hex = 0x100;
```

7. 변수의 기본값과 초기화

변수의 초기화 : 변수에 처음으로 값을 저장하는 것 * 지역변수는 사용되기 전에 반드시 초기화해주어야 한다.

자료형	기본값
boolean	false
char	' \u0000'
byte	0
short	0
int	0
long	OL
float	0.0f
double	0.0d 또는 0.0
참조형 변수	null

```
boolean isGood = false;
char grade = ' '; // 공백
byte b = 0;
short s = 0;
int i = 0;
long I = 0; // 0L로 자동변환
float f = 0; // 0.0f로 자동변환
double d = 0; // 0.0로 자동변환
String s1 = null;
String s2 = ""; // 빈 문자열
```

8. 문자와 문자열

```
char ch = 'A'; String s1 = "A" + "B"; // "AB" char ch = 'AB'; // 에러 "" + 7 \longrightarrow "" + "7" \longrightarrow "7" String s1 = "AB"; char ch = "; // 에러 "" + 7 + 7 \longrightarrow "7" + 7" \longrightarrow "7" + 7" \longrightarrow "7" \longrightarrow "7" \longrightarrow "7" \longrightarrow "7" \longrightarrow "14" \longrightarrow "1
```

문자열 + any type → 문자열 any type + 문자열 → 문자열

9. 정수의 오버플로우(Overflow)

byte b = 127; byte b = 128; //에러 b = b + 1; // b에 저장된 값을 1증가

1. 부호가 없는 정수

2. 부호가 있는 정수

1씩 증가하는 2진 카운터

1씩 감소하는 2진 카운터

10. 형변환(Casting)

형변환이란?

- 값의 타입을 다른 타입으로 변환하는 것이다.
- boolean을 제외한 7개의 기본형은 서로 형변환이 가능하다.

float
$$f = 1.6f$$
;
int $i = (int)f$;

변 환	수 식	결 과	
$int \rightarrow char$	(char) 65	'A'	
char → int	(int) 'A'	65	
float → int	(int)1.6f	1	
int → float	(float)10	10.0f	

1. byte \rightarrow int

byte b = 10;

int i =(int)b; // 생략가능

2. int \rightarrow byte

int i2 = 300;

byte b2 = (byte)i2; // 생략불가

변환	2진수	10진수	값손실
byte	0 0 0 0 1 0 1 0	10	
↓ int	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	없음
int			
1		300	있음
byte	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	44	

키보드입력을 받는 방법

```
import java.util.Scanner;
2
3
    public class KeyInput {
4
        public static void main(String[] args) {
6
            Scanner scan = new Scanner(System.in);
            System.out.print("이름을 입력하세요: ");
            String name = scan.nextLine();
9
10
            System.out.print("정수를 입력하세요?");
11
            int number = scan.nextInt();
12
13
            System.out.print("실수를 입력하세요?");
14
15
            double real = scan.nextDouble();
16
            System.out.println("이름은 " + name);
17
            System.out.println("정수는 " + number);
18
            System.out.println("실수는 " + real);
19
20
21
22
23
```

감사합니다.