COVID Vaccination Project

Adrian Cornejo and Victor Guillera

11/4/2021

#Milestone 2

Section 1

This data set will relate to our question if being a homeowner status and available housing impacts vaccination rates per CA county. While not a perfect representation of SES of cases, this data set will help us elucidate if there is a trend via linear regression between the homeowner-related to renter rates and the vaccination rate per county.

We have two data sets, one is of COVID-19 vaccination progress throughout CA provided by the CDPH following vaccine dosage by zip code from 1/5/21 to about present 9/14/21, and the other is demographic info in CA across all counties from the US census data for 2014 to 2019. Below, we read in our libraries, data sets, explore our data sets, and then proceed to clean the data sets.

```
library(readr)
library(knitr)
library(tibble)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(stringr)
countydem <- read.csv("ca_county_demographics.csv")</pre>
covidvax <- read.csv("cov_vax_admin.csv")</pre>
```

To import the csv files, we used read_csv from base R and will inspect our imported files first before we clean our data set. Libraries we loaded in were readr, dplyr, and tibble. We are going to pull variables "persons_fully_vaccinated", "persons_partially_vaccinated", "zip_code_tabulation_area", "age12_plus_population", and "county" from the covidvax csv file. We will pull "name", "renter_occ", "owner_occ", "hse units" and "vacant" variables.

```
str(covidvax)
head(covidvax)
nrow(covidvax)
ncol(covidvax)
typeof(covidvax)
class(covidvax)
```

```
distinct(covidvax, as_of_date, .keep_all = F)
```

The structure of the "cov_vax_admin" file is a data frame with 11 columns and 65,268 rows. The data frame contains integer, number, and character data types and contains a redacted column that is inaccessible. There are also a total of 27 unique dates, each 7 weeks apart (weekly results).

```
str(countydem)
head(countydem)
nrow(countydem)
ncol(countydem)
typeof(countydem)
class(countydem)
```

The structure of "countydem" reveals a data frame containing 23 columns and 58 rows with integer, character and number data types.

```
#Cleaning the data by removing unnecessary columns, rearranging the data,
#and removing "N/A" data points.
#COVID Vaccination Rates
covidvax2 <- select(covidvax, "county", "zip_code_tabulation_area", "as_of_date",</pre>
                     "age12_plus_population", "persons_fully_vaccinated",
                    "persons partially vaccinated")
names(covidvax2) <- c("county", "zip_code", "date", "total_pop_over_12",</pre>
                       "fully_vaccinated", "partially_vaccinated")
covidvax2[is.na(covidvax2)] <- 0</pre>
#Using the function str() we see that the selected varibales in covidvax2
#are chr, int, chr, num, num
#We may need to convert the dates to numeric using the as.numeric() function
#to determine and compare vaccination rate. All other column types should be
#fine as is.
#Converting NA cells to 0 we allow ourselves to manipulate and describe entire
#numeric columns.
#Descriptions
distinct(covidvax2, county, .keep_all = F)
distinct(covidvax2, date, .keep_all = F)
distinct(covidvax2, zip code, .keep all = F)
covidvax2 %>% group_by(zip_code) %>%
  summarise(fullyvax_range = range(fully_vaccinated), partiallyvax_range = range(partially_vaccinated))
covidvax2 %>%
  summarise(total_pop_range = range(total_pop_over_12), total_pop_median = median(total_pop_over_12))
#County Data
countydem2 <- select(countydem, "name", "renter_occ", "owner_occ",</pre>
                      "vacant", "hse_units")
names(countydem2) <-c("county_name", "renters", "owners",</pre>
                       "vacant_housing", "total_housing_units")
countydem2[is.na(countydem2)] <- 0</pre>
```

Using the function str() we see that the selected varibales in countydem2 are chr, int, int, int, int, int. All column types should be fine as is for our study question. Converting NA cells to 0 we allow ourselves to manipulate and describe entire numeric columns. We also changed column names to allow for easier/obvious verbiage.

```
#Descriptions
distinct(covidvax2, county, .keep_all = F)
distinct(covidvax2, date, .keep_all = F)
distinct(covidvax2, zip_code, .keep_all = F)
covidvax2 %>% group by(zip code) %>%
  summarise(fullyvax_range = range(fully_vaccinated), partiallyvax_range = range(partially_vaccinated))
Population Range and Median for COVID vaccinations for those over 12 years old.
covidvax2 %>% summarise(total_pop_range = range(total_pop_over_12),
                         total_pop_median = median(total_pop_over_12))
#Using the function str() we see that the selected variables
#in countydem2 are chr, int, int, int, int
#All column types should be fine as is for our study question
\# Converting \ NA \ cells \ to \ O \ we \ allow \ ourselves \ to \ manipulate \ and \ describe
#entire numeric columns.
#Changed column names to easier/obvious verbiage
#Descriptions
distinct(countydem2, county_name, .keep_all = F)
##
          county_name
## 1
                 Kern
## 2
                Kings
## 3
                 Lake
## 4
               Lassen
## 5
          Los Angeles
## 6
               Madera
## 7
                Marin
## 8
             Mariposa
## 9
            Mendocino
## 10
               Merced
## 11
                Modoc
## 12
                 Mono
## 13
             Monterey
## 14
                 Napa
## 15
               Nevada
## 16
               Orange
## 17
               Placer
## 18
               Plumas
## 19
            Riverside
## 20
           Sacramento
## 21
           San Benito
## 22 San Bernardino
## 23
            San Diego
## 24
        San Francisco
## 25
          San Joaquin
## 26 San Luis Obispo
## 27
            San Mateo
## 28
        Santa Barbara
## 29
          Santa Clara
```

```
## 30
           Santa Cruz
## 31
               Shasta
## 32
               Sierra
## 33
             Siskiyou
## 34
               Solano
## 35
              Alameda
## 36
               Alpine
## 37
               Sonoma
## 38
               Amador
## 39
           Stanislaus
## 40
               Sutter
## 41
                Butte
## 42
            Calaveras
## 43
               Tehama
## 44
               Colusa
## 45
              Trinity
## 46
               Tulare
## 47
         Contra Costa
## 48
            Del Norte
## 49
             Tuolumne
## 50
              Ventura
## 51
            El Dorado
## 52
                 Yolo
## 53
               Fresno
## 54
                Glenn
## 55
                 Yuba
## 56
             Humboldt
## 57
             Imperial
## 58
                  Inyo
countydem2 %>% summarise(renters_mean = mean(renters),
                          owners_mean = mean(owners),
                          vacant_mean = mean(vacant_housing), total_mean = mean(total_housing_units))
##
     renters_mean owners_mean vacant_mean total_mean
## 1
         95553.91
                      121299.5
                                   19010.05
                                              235863.5
countydem2 %>% summarise(renters_range = range(renters),
                          owners_range = range(owners),
                          vacant_range = range(vacant_housing), total_range = range(total_housing_units)
##
     renters_range owners_range vacant_range total_range
## 1
               140
                             357
                                           827
                                                       1760
                         1544749
## 2
           1696455
                                        203872
                                                    3445076
#Below, is the minimum, first quartile, median, third quartile, and max values.
fivenum(covidvax2$total_pop_over_12)
## [1]
           0.00 1346.80 13685.10 31762.15 88556.70
fivenum(covidvax2$fully_vaccinated)
## [1]
               189 1867 11637 67594
fivenum(covidvax2$partially_vaccinated)
## [1]
                 93 1033 3028 23195
```

```
#Descriptions
#We get the mean & range for all numeric and integer vectors in countydem2 below
distinct(countydem2, county_name, .keep_all = F)
countydem2 %>%
  summarise(renters_mean = mean(renters),
            owners_mean = mean(owners),
            vacant_mean = mean(vacant_housing),
            total_mean = mean(total_housing_units))
     renters_mean owners_mean vacant_mean total_mean
                     121299.5
                                  19010.05
## 1
         95553.91
                                             235863.5
countydem2 %>%
  summarise(renters_range = range(renters),
                         owners_range = range(owners),
                         vacant_range = range(vacant_housing),
                         total_range = range(total_housing_units))
     renters_range owners_range vacant_range total_range
##
## 1
               140
                             357
                                          827
                                                      1760
           1696455
                                       203872
## 2
                        1544749
                                                  3445076
Below, we get the five number summary for data of interest in countydem2.
fivenum(countydem2$renters)
## [1]
           140
                  5878
                         25140
                                  87737 1696455
fivenum(countydem2$owners)
## [1]
           357
                 12629
                         39306 123646 1544749
fivenum(countydem2$vacant_housing)
                  3328.0
                           8580.5 18747.0 203872.0
## [1]
          827.0
fivenum(countydem2$total_housing_units)
## [1]
          1760.0
                   23910.0
                             76183.5 233755.0 3445076.0
##Milestone 3
#Covid Vaccination by County data manipulation (covidvax files)
unique(covidvax2$county)
  [1] "ORANGE"
                           "SAN BERNARDINO"
                                             "IMPERIAL"
                                                                "RIVERSIDE"
  [5] "LOS ANGELES"
                           "SAN DIEGO"
                                             "TRINITY"
                                                                "SAN FRANCISCO"
##
   [9] "TULARE"
                           "MARIN"
                                             "CONTRA COSTA"
                                                                "KERN"
                           "SANTA BARBARA"
                                             "SAN MATEO"
                                                                "SOLANO"
## [13] "VENTURA"
## [17] "FRESNO"
                           "MONTEREY"
                                             "SONOMA"
                                                                "NAPA"
## [21] "ALAMEDA"
                           "MADERA"
                                             "KINGS"
                                                                "INYO"
                           "SAN LUIS OBISPO" "SANTA CLARA"
## [25] "SACRAMENTO"
                                                                "EL DORADO"
## [29] "GLENN"
                           "YUBA"
                                             "BUTTE"
                                                                "PLACER"
## [33] "AMADOR"
                           "SUTTER"
                                             "MONO"
                                                                "LAKE"
## [37] "YOLO"
                                                                "TUOLUMNE"
                           "HUMBOLDT"
                                             "SAN JOAQUIN"
```

```
## [41] "CALAVERAS"
                                                               "SISKIYOU"
                          "SHASTA"
                                            "0"
                          "MERCED"
## [45] "LASSEN"
                                                               "SAN BENITO"
                                            "SANTA CRUZ"
## [49] "MODOC"
                          "STANISLAUS"
                                            "MENDOCINO"
                                                               "SIERRA"
## [53] "TEHAMA"
                          "PLUMAS"
                                            "MARIPOSA"
                                                               "DEL NORTE"
## [57] "NEVADA"
                          "ALPINE"
                                            "COLUSA"
covidvax2 <- covidvax2 %>% filter(county!="0")
unique(covidvax2$date)
  [1] "2021-01-05" "2021-01-12" "2021-01-19" "2021-01-26" "2021-02-02"
  [6] "2021-02-09" "2021-02-16" "2021-02-23" "2021-03-02" "2021-03-09"
## [11] "2021-03-16" "2021-03-23" "2021-03-30" "2021-04-06" "2021-04-13"
## [16] "2021-04-20" "2021-04-27" "2021-05-04" "2021-05-11" "2021-05-18"
## [21] "2021-05-25" "2021-06-01" "2021-06-08" "2021-06-15" "2021-06-22"
## [26] "2021-06-29" "2021-07-06" "2021-07-13" "2021-07-20" "2021-07-27"
## [31] "2021-08-03" "2021-08-10" "2021-08-17" "2021-08-24" "2021-08-31"
## [36] "2021-09-07" "2021-09-14"
covidvax3 <- covidvax2 %>%
  mutate(month = case_when(
    str_detect(date, "-01-") == T ~ "January",
    str_detect(date, "-02-") == T ~ "February",
    str_detect(date, "-03-") == T ~ "March",
   str_detect(date, "-04-") == T ~ "April",
   str_detect(date, "-05-") == T ~ "May",
   str_detect(date, "-06-") == T ~ "June",
   str_detect(date, "-07-") == T ~ "July",
   str_detect(date, "-08-") == T ~ "August",
    str detect(date, "-09-") == T ~ "September"
  ))
unique(covidvax3$month)
## [1] "January"
                   "February"
                               "March"
                                            "April"
                                                        "May"
                                                                    "June"
## [7] "July"
                   "August"
                               "September"
covidvax4 <- covidvax3 %>%
  group_by(county,month)%>%
  mutate(county_total_pop_over12 = sum(total_pop_over_12)) %>%
  mutate(county_fully_vaccinated = sum(fully_vaccinated)) %>%
  mutate(county_partially_vaccinated = sum(partially_vaccinated))
covidvax4 <- covidvax4 %>%
  select(-"zip_code",-"total_pop_over_12",-"fully_vaccinated",
         -"partially_vaccinated")
#Removing duplicate columns after combining the zip codes for each county
#and making column totals for each . Then we check to ensure we have 58 counties
#for each month.
covidvax5 <- covidvax4 %>% distinct(county,month, .keep_all=T)
covidvax5 %>% group_by(month) %>% summarise(n())
```

```
## # A tibble: 9 x 2
## month
             'n()'
## <chr>
              <int>
## 1 April
                 58
## 2 August
                 58
## 3 February
                 58
## 4 January
                 58
## 5 July
                 58
## 6 June
                 58
## 7 March
                 58
## 8 May
                 58
## 9 September
covidvax5 <- covidvax5 %>%
mutate(county_percent_fullvax =
(county_fully_vaccinated)/(county_total_pop_over12)) %>%
mutate(county_percent_partialvax =
(county_partially_vaccinated)/(county_total_pop_over12))
#Checking that our percentages make sense.
summary(covidvax5$county_percent_fullvax)
      Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
## 0.0000 0.1246 0.3662 0.3440 0.5118 0.8609
summary(covidvax5$county_percent_partialvax)
      Min. 1st Qu. Median
                             Mean 3rd Qu.
## 0.00000 0.06396 0.08420 0.09282 0.12036 0.24445
County Demographic Data Editing
countydem3 <- countydem2 %>%
  mutate(total_in_use_housing = total_housing_units - vacant_housing) %>%
  mutate(renter_housing_prop = (renters/(total_in_use_housing))) %>%
  mutate(owner_housing_prop = (owners/(total_in_use_housing))) %>%
  mutate(renter_owner_ratio = renters/owners)
```

#Data Dictionary

str(countydem3)

str(covidvax5)

#County Demographics Data Set

Name: county_name Data type: character Description: A list of all 58 counties in California.

Name:renters Data type: integer Description: Number of renters in each county in California.

Name: owners Data type: integer Description: Number of owners in each county in California.

Name:vacant housing Data type: integer Description: Number of empty homes in each county in California.

Name:total_housing_units Data type: integer Description: Number of total homes in each county in California.

Name:total_in_use_housing Data type: integer Description: Number of total homes currently in use in each county in California.

Name:renter_housing_prop Data type: number Description: Proportion of renters living in occupied homes in each county in California.

Name:owner_housing_prop Data type: number Description: Proportion of home owners living in occupied homes in each county in California.

Name:renter_owner_ratio Data type: number Description: Renter to Home owner ratio for each county in California.

#Covid Vaccination Rate Data Set

Name: county Data type: character Description: A list containing the 58 counties in California.

Name:date Data type: character Description:The dates when the data was compiled, ranging from January 5, 2021 to September 14, 2021.

Name:month Data type: character Description: The month in which the testing took place. Created to more easily combine data from specific dates into monthly variables for each county in the future.

Name:county_total_pop_over12 Data type: number Description: Total population over the age of 12 years old in each county in California for a specific month.

Name:county_fully_vaccinated Data type: number Description: Total number of people fully vaccinated over the age of 12 in each county in California for a specific month.

Name:county_fully_vaccinated Data type: number Description: Total number of people fully vaccinated over the age of 12 in each county in California for a specific month.

Name:county_partially_vaccinated Data type: number Description: Total number of people partially vaccinated over the age of 12 in each county in California for a specific month.

Name:county_percent_fullvax Data type: number Description: Percentage of people fully vaccinated over the age of 12 over the total population over 12 years old in each county in California for a specific month.

Name:county_percent_partialvax Data type: number Description: Percentage of people partially vaccinated over the age of 12 over the total population over 12 years old in each county in California for a specific month.

Descriptive Statistics Tables

```
countydem4 <- countydem3 %>%
  summarise(total_in_use_housing_range = summary(total_in_use_housing),
            renter housing ratio range = summary(renter housing prop),
            owner_housing_ratio_range = summary(owner_housing_prop),
            renter owner ratio range = summary(renter owner ratio))
rownames(countydem4) <- c("Min", "1st Quartile", "Median", "Mean", "3rd Quartile", "Max")</pre>
countydem5 <- countydem3 %>%
  summarise(total renters = sum(renters),
            total owners = sum(owners))
rownames(countydem5) <- c("Total Count")</pre>
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
countydem_kable <- kable(countydem4,longtable=T,booktabs=T,</pre>
                         col.names = c("Total in Use Housing", "Renter/Housing Ratio",
                                        "Owner/Housing Ratio", "Renter/Owner Ratio"),
                          caption = "Summary of CA Housing Across All Counties in 2021")
countydem_kable
```

Table 1: Summary of CA Housing Across All Counties in 2021

	Total in Use Housing	Renter/Housing Ratio	Owner/Housing Ratio	Renter/Owner Ratio
Min	497.00	0.2311765	0.3575537	0.3006887
1st Quartile	19040.75	0.3426035	0.5753113	0.5211578
Median	70284.50	0.3854496	0.6145504	0.6272347
Mean	216853.41	0.3833366	0.6166634	0.6472471
3rd Quartile	207711.50	0.4246887	0.6573965	0.7381916
Max	3241204.00	0.6424463	0.7688235	1.7967828

Table 2: Total Number of Renters and Owners in CA in 2021

	Renters	Owners
Total Count	5542127	7035371

#does not make sense to visualize covidvax dataset in a kable, will update visualization #with graph using ggplot in milestone 4