SenseMyHeart

A Validated Cloud Web-Service

Motivation

Necessity: Ambulatory monitoring of stress and fatigue!

(through cardiovascular assessment)

- Policemen (SCOPE)
- Bus-Drivers (Vital-Driver)
- First-Responders (Vital-responder)

Heart rate variability and cardiovascular intensity are useful tools! [1,2]

But also for citizens of a 'Future City'

R-R interval

[1] - Nickel, P.; F. Nachreiner (2003). "Sensitivity and Diagnostics of the 0.1-Hz Component of Heart Rate Variability as an Indicator of Mental Workload". *Human Factors* **45** (4): 575–590.

[2] - Jönsson, P. (2007). "Respiratory sinus arrhythmia as a function of state anxiety in healthy individuals". *International Journal of Psycho-physiology* **63** (1): 48–54.

HRV Measures

Relative measure of data quality: [3]

NN/RR — fraction of total RR intervals that are classified as normal-to-normal

Commonly used time-domain short-term measures:* [3]

AVNN Average of all NN intervals

SDNN † Standard deviation of all NN intervals

rMSSD † Square root of the mean of the squares of differences between adjacent NN intervals

pNN50 Percentage of differences between adjacent NN intervals that are greater than 50 ms

- † Links to stress have been reported in Literature.
- * Presented as last seen at http://www.physionet.org/tutorials/hrv-toolkit/, of 11th November 2014

[3] - Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. *Circulation* 101(23):e215-e220 [Circulation Electronic Pages;http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 13).

HRV Measures

<u>Commonly used frequency-domain short-term measures</u>:*[3]

TOTPWR	Total spectral	power of all NN in	ntervals up to 0.04 Hz
---------------	----------------	--------------------	------------------------

VLF Total spectral power of all NN intervals between 0.003 and 0.04 Hz

LF † Total spectral power of all NN intervals between 0.04 and 0.15 Hz.

HF Total spectral power of all NN intervals between 0.15 and 0.4 Hz

LF/HF † Ratio of low to high frequency power

- † Links to stress have been reported in Literature.
- * Presented as last seen at http://www.physionet.org/tutorials/hrv-toolkit/, of 11th November 2014

[3] - Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. *Circulation* 101(23):e215-e220 [Circulation Electronic Pages;http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 13).

SMH Pipeline

- Uses PhysioNet HRV algorithm (to expedite deployment) [3].
- Designed to offer flexibility to clients (multiple entry and exit points).

Basis for a Stress Assessment Methodology

Validation: Motivation

Issue: PhysioNet algorithms were designed for 12-bit ECG.

Question: What is the impact of using **8-bit** ECG? Is it considerable?

<u>Hint</u>: It depends on the QRS detector used.

Validation

Convert to 8-bit ECG

MIT-BIH
Normal
Sinus
Rhythm
Database
[3]

- 18 cases
- 24h duration each
- 12-bit ECG
- Non-ambulatory
- RR annotations

COMPARE using % error

Get HRV Get HRV

Apply a QRS detector

SQRS

WQRS

GQRS

BIOQRS

Human-approved RR annotations (Ground Truth)

Validation: Results

BIOqrsMore stability in exchange for some error %.

WHY?

It was designed for 8-bit ECG in contrary to other detectors.

	Sqrs	Wqrs	Gqrs	BIOqrs
HRV Average error *	4.2%	3.0%	2.8%	3.4%
Maximum error	HF pwr	pNN50	pNN50	pNN50
Minimum error	avnn	avnn	avnn	avnn
# NN/RR < 80% **	1	2	3	0

^{* -} Percentage of error in relation to HRV acquired from human approved RR annotations

^{** -} Out of 18 cases total, each with 24h of duration, taken from the MIT-BIH NSR Database [3].

Application Scenario

Service Address

http://avenue.fe.up.pt

- Try it on your browser!
- You will get the service's interface description file (WSDL file).

Aimed at short term recordings.

Schema Data Model (not the best naming strategy...):

RRAnalysis: function to perform analysis of a RR Exam

Schema Data Model (not the best naming strategy...):

AnalysisResponse: wrapper for returned data

Schema Data Model (not the best naming strategy...):

BddAnalysis: function to perform analysis of a Bdd Exam

Schema Data Model (not the best naming strategy...):

EcgAnalysis: function to perform analysis of a Ecg Exam

Android App

2 Activities:

Calibration

 Parameters for computing Cardiovascular Intensity (CI)

Monitor

- Cl and HRV time series graphs
- Instantaneous heart rate
- Push-Button events

Android Demo

http://youtu.be/cikNlXsdrHs

Future Directions

- New API (REST?) for long exams (≈ 24h).
- SMH database?
- Session-based Android App with connection to DBs and user history.
- Stress dataset based on the Stroop word-color test for training "stress" algorithm.
- Write Paper(s).

[5] - Brosschot, J.F.; E. Van Dijk, J.F. Thayer (2007). "Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period". *International Journal of Psychophysiology* **63**

Thank you!

Pedro Manuel Pinto da Silva João Paulo da Silva Cunha

Contacts: ppintodasilva@fe.up.pt / jpcunha@fe.up.pt

