SMAI Endsems

Mid 1

- Basics
 - Generalised Gradient Descent
 - Learning Rate Optimisation
 - Newton's Updates [Optimised Update Rule]
 - Proof that gradient Descent works
 - Pattern Recognition Flow Diagram (7+5)
 - Gaussian distribution Formula
- Linear Algebra
 - L-Norm
 - Span of set
 - Linear Independence
 - Rank of a matrix
 - Basis, orthonormal Basis
 - Eigen Values
 - Eigen Vectors
- Basics of ML
 - Regression
 - Classification
 - Discriminant Function
 - Probabilistic approach to classification
 - Multi-class Classification Problem
- Regression
 - Basics of Regression
 - Error and Update Functions
 - Derivation of Normal Form
 - Pseudo Inverse of a Matrix and why its Needed
 - PCA shit, and it's derivation of XtX = Lambda
- Linear Regression
 - Cost/Error/Loss Function
 - Hypothesis Function
 - Update Function
 - Learning Rate
 - Learning Rate Update Function
 - Theory
- Logistic Regression

- Cost/Error/Loss Function
- Hypothesis Function
- Why not linear classifiers
- Perceptron
 - Discriminative Classifier
 - Generative Classifier
 - Probability based classification.
 - The Perceptron Algorithm [net, sign, delta omega, omega]
- Bayes' Decision Theory
- Regularisation
- SoftMax

Mid 2

- PCA
 - Dimensionality Reduction
 - Feature extraction
 - Feature selection
 - Two points on PCA
 - Dimensionality reduction that retains maximum information
 - Reconstruction of original data with minimum error
 - Proof of mean projection
 - EIGEN VECTOR AND VALUE
 - Minimising Reconstruction Loss Proof
 - Retention of maximum information Proof
 - PCA Algorithm All Steps and Why
 - Deciding k
 - Eigen Faces
 - N and d value comparison and inter-change calculations
- SVM
 - Why SVM
 - Constraints for SVM
 - Primal problem equation
 - Dual problem equation
 - Support Vector
 - Number of Support Vectors and Error
 - Soft SVM and new constraint equation
 - Implementation Algorithm
 - Priman to Dual
- Kernels

- Why Kernel
- Feature Map
- Kernel
- Kernel Matrix and properties
- Non-linear, Kernel SVM
- Example Breakdown
- Popular Kernels
- Kernel to Feature Map [Always dot product of feature map]
- LDA and KPCA
 - LDA, FDA
 - Within Scatter, Between Scatter
 - New Objective Function and Minimisation
 - Generalised Eigen Value problem and Sw inversion
 - Sw defined wrt each component pair
 - KPCA equation
 - KPCA Calculations
 - Projection and Centring of Kernel
 - Steps
- MLE Bigs
 - Proof of mean estimator unbiased
 - Proof of variance estimator biased
 - Derivation of variance estimator modification for unbiase

Unsupervised Learning - Notes

- Clustering:

Broadly tree requirements.

- Proximity Measure
- Criterion Function
- Algorithm
- K-Means
- Distance Calculation
 - Euclidean
 - Manhattan
 - Minkowski
 - Mahalanobis Distance
- Gaussian Mixture Model
- Soft Clustering
- E-M Algorithm
- Cluster Validity
 - Stability

- Average Distance to Center
- Hierarchical Clustering
 - Top Down Clustering
 - Bottom Up Clustering
 - Single Link Clustering Algorithm
 - Complete Link Clustering
- Measuring How Good is Clustering:
 - Purity Metric
 - Rand Index and Table 2x2
- Semi-supervised Learning
- Bayes Rule
- Probabilistic Graphical Model
- Conditional Independence
- Inter Casual
- Hidden Markov Model
- Variable Scaling and it's importance

http://www.mit.edu/~9.54/fall14/slides/Class13.pdf

https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/unsupervised.pdf

https://www.andrew.cmu.edu/user/achoulde/95791/lectures/

lecture07/lecture07 95791.pdf

https://www.youtube.com/watch?v=REypj2sy_5U

- Cluster evaluation:
 - Intra Cluster Cohesion
 - Inter Cluster Separation
- Hierarchical Algorithms Using previously established clusters
 - Agglomerative : Bottom-up
 - Divisive : Top Down
- Partitional Determines all clusters at once.
- Bayesian Posteriori Distribution
 - Distance Calculation
 - Euclidean
 - Manhattan
 - Minkowski
 - Mahalanobis Distance
- K-Means (A partitional clustering Algorithm)
 - The Algorithm.
 - Stopping Point (3)

- Strengths:
 - Easy.
 - O(tkn)
- Weaknesses:
 - Requires Mean
 - Specification of k
 - Sensitive to outliers
 - Sensitive to Seeds
 - Special Data Structures
- Dealing with Outliers:
 - Remove datapoint
 - Random Sampling
- Proof of Convergence
- Hierarchical Clustering
 - Dendrogram
 - Divisive
 - Recursive K-means with k = 2
 - Agglomerate
 - Single Linkage: NN MST
 - Complete Linkage : FN
 - Divisive vs Agglomerative
 - Linkages:
 - Single
 - Complete
 - Average
 - Centroid
- Gaussian Mixture Model EM Clustering
 - Intuition
 - Algorithm
 - Steps:
 - Expectation
 - Maximisation
 - Perks
 - Updation through responsibility calculation
 - mu updation formula
 - Sigma updation formula

Supervised Learning - Lesson 17,18,19

- Single layer perceptron and Activation function
- Architecture and Non-Linearity
- Loss Functions:
 - MSE
 - Cross Entropy
 - Regularised Loss
- Activation Functions:
 - Sigmoid
 - Tanh
 - ReLu
 - Leaky RelU
- Implementations for OR/NOR/AND/NAND
- Implementation for EXOR
- Derivatives and updation in MLP
- Loss Layer Calculation in MLP
- Fully Connected Layers
- Forward Propagation
- Backward Propagation
 - Basic Intuition and Math
 - Algorithm (5)
 - Optimisations (4)
 - Stochastic Mini-Batch
 - Epoch
 - Sub-gradients
- Xavier's Initialisation
- Nesterov Momentum
- ADAM, AdaGrad, AdaDelta, RMSProp
- Termination Criteria
- Softmax
- KL Divergence
- Regularisation
- Hessian Methods (Newton's Method)
- Vanishing and Exploding Gradients

Supervised Learning - Notes

- Decision Trees
- Entropy
- Gini Impurity
 - Advantages
 - Limitations

- Overcoming Overfitting
 - Early Stop
 - Pruning
- Dealing with missing data
- Rain Forest Classifier
 - Majority Vote
 - Weighted Voting
- Feature Level Fusion
- Bagging Bootstrap Aggregation
- Boosting adding weights to samples
- Weakening Decision Trees:
 - Ignoring Features
 - Stumping
 - Bagging
 - 200 Averaging

Semi-Supervised Learning - Notes

- Constraints and Softening
- Probabilistic Graphical Model
- Hidden Markov Model