Sheafification in HoTT

Kevin Quirin and Nicolas Tabareau INRIA École des Mines de Nantes Nantes, France

Abstract—Abstract

I. Introduction

Plan of the paper:

- In section II, we define the foundations on which our worked is based.
- In section III, we explain the construction of the sheafification functor.
- Finally, we discuss related works and present future works.

II. HOMOTOPY TYPE THEORY

A. Homotopy Type Theory

We refer to [Uni13]. Truncation levels + Im?

If x is an object of a product or a sigma type, we denote the i-th projection of x by either $\pi_i x$ or x_i .

• We use the subobjects classification seen in [RS13]: for all type B, Type_n classifies subobjects of B with n-truncated fibers; we have an equivalence

$$\sum_{A: \mathrm{Type}} \sum_{f: A \to B} \prod_{b \in B} \mathrm{IsTrunc} \ n \ \mathrm{fib}_f(b) \simeq (B \to \mathrm{Type}_n)$$

and a pullback (with $\mathrm{Type}_n^{\bullet}$ the universe of pointed n-truncated types) :

$$\begin{array}{ccc}
A & \xrightarrow{t_f} & \text{Type}_n^{\bullet} \\
\downarrow^{\text{pr}_1} & & \downarrow^{\text{pr}_1} \\
B & \xrightarrow{\chi_f} & \text{Type}_n
\end{array}$$

for all f with n-truncated fibers, with

$$t_f = \lambda a$$
, (fib_f(f(a)), (a, idpath)).

B. Left exact Modalities

We use the following definition of truncated left exact modalities :

Definition 1. Let p be a truncation index. Then a left exact modality is the data of

- (i) A predicate $P: \mathrm{Type}_{p} \to \mathrm{HProp}$
- (ii) For every p-truncated type A, a p-truncated type $\bigcirc A$ such that $P(\bigcirc A)$
- (iii) For every p-truncated type A, a map $\eta_A:A\to \bigcirc A$ such that

(iv) For every p-truncated types A and B, if P(B) then

$$\left\{ \begin{array}{ccc} (\bigcirc A \to B) & \to & (A \to B) \\ f & \mapsto & f \circ \eta_A \end{array} \right.$$

is an equivalence.

- (v) For all $A : \mathrm{Type}_p$ and $B : A \to \mathrm{Type}_p$ such that P(A) and $\prod_{x:A} P(Bx)$, then $P(\sum_{x:A} B(x))$
- (vi) For all A: Type_p and x, y : A, if $\bigcirc A$ is contractible, then $\bigcirc (x = y)$ is contractible.

Conditions (i) to (iv) define a reflective subuniverse, (i) to (v) a modality.

The type of all p-types such that P will be noted $\operatorname{Type}_p^{\bigcirc}$ Since basic operations (dependent products, products, sigma types) are stable for truncation levels, all theorem in [Uni13], chapter 7.7 remains true.

Moreover, left exactness implies in particular fibers preservations :

$$\bigcirc \left(\sum_{x:X} (fx = y) \right) = \sum_{x:\cap X} (\bigcirc fx = \eta_Y y).$$

Moreover the following diagram commute

where $\pi_1 \circ \gamma = \eta_X$, and $\pi_2 \circ \gamma$ is the usual modalisation of paths.

C. Generalized pullbacks

Definition 3. Let $f: X \to Y$ be a map, and p: nat. The p-pullback of f, noted $X \times_Y \cdots \times_Y X$ is the limit of the diagram

with p copies of X. The 0-pullback of f is Unit.

In homotopy type theory, we have

$$X \times_Y \cdots \times_Y X = \sum_{x:X^n} (fx_1 = fx_2) \wedge \cdots \wedge (fx_{n-1} = fx_n).$$

Definition 4. If $f: X \to Y$ is a map, then the Čech nerve of f is the diagram

$$C(f) := \cdots X \times_Y X \times_Y X \xrightarrow{\longrightarrow} X \times_Y X \xrightarrow{\longrightarrow} X$$

with canonical projections.

The Giraud axiom asserts that, if $f: X \to Y$ is a surjection, then the colimit of C(f) is Y. See [HTT].

III. SHEAVES

We define sheaves by induction on the homotopical truncation level of types: we define sheaves in HProp as the classical types (ie implied by their double negation), and we define sheaves on Type_{n+1} via usual definition of sheaves, as seen in [MM92] and sheaves on Type_n . Of course, the definition must be cumulative.

We will call S_i the universe of sheaves on Type_i.

In this section, we suppose given a truncation index $n \ge -1$, and a left exact modality \bigcirc on Type_n.

Definition 5. Let E be a type. The closure of a subobject of E classified by χ is the subobject of E classified by $0 \circ \chi$.

The subobject of E classified by χ is said closed in E if its closure is itself: $\chi = \bigcirc \circ \chi$.

Definition 6. Let E be a type, and $\chi: E \to \operatorname{Type}_n$. The subobject A of E classified by χ is dense in E if its \bigcirc -closure is E seen as a subobject of E, ie

$$\forall e : E, \ \left(\sum_{e':E} e = e'\right) \simeq (\bigcirc(\chi\ e)).$$

Moreover, for all x:A we need the following coherence diagram to commute

$$\sum_{e':A} x = e' = (\chi x)$$

$$\downarrow \qquad \qquad \qquad \downarrow \eta_{(\chi x)}$$

$$\sum_{e':E} x = e' = (\chi x)$$

where $\iota: x \mapsto (x_{11}; x_2)$.

It follows from fibers preservation that any n-subobject of a type seen as a n-subobject of its closure is closed.

Definition 7 (Restriction). For any A, E: Type and F: Type $_{n+1}$, we define:

- if $A \hookrightarrow E$, M_E^{χ} is the map sending an arrow $f : E \to F$ to $\uparrow fA$ the restriction of f to A.
- if $A \to E$ with n-truncated fibers, Φ_E^{χ} is the map sending $f: E \to f$ to $\uparrow fA$.

Definition 8 (Separated Type). A type F in $\operatorname{Type}_{n+1}$ is separated if for all type E, and all dense subobject of E classified by $\chi: E \to \operatorname{Type}_n$, Φ_E^{χ} is a monomorphism. In other words, the dotted arrow, if exists, is unique.

Definition 9 (Sheaves). A type F of Type_{n+1} is a (n+1)-sheaf if it is separated, and for all type E and all dense subobject of E classified by $\chi: E \to \mathrm{Type}_{-1}, M_E^{\chi}$ is an equivalence. In other words, the dotted arrow exists and is unique.

From these definitions, one can show that

Proposition 10. • Type_n is a sheaf.

• If $A : \mathrm{Type}_{n+1}$ and $B : A \to \mathrm{Type}_{n+1}$ such that for all a : A, $(B \ a)$ is a sheaf, then $\prod_{a:A} B \ a$ is a sheaf.

IV. CONSTRUCTION OF SHEAFIFICATION

We mimic the construction in [MM92]

A. For h-propositions

For the case n=-1, one can take any left exact modality on HProp. Here we took the $\neg\neg$ modality :

$$\forall P : \text{HProp}, \ \bigcirc_j P = \neg \neg P.$$

One can easily show that it defines a left exact modality.

B. From Type to Separated Type

In this section, we suppose given a truncation index $n \ge -1$, and a left exact modality \bigcirc on Type_n , compatible with the modality on HProp .

Let T be in Type_{n+1} . We define $\Box T$ as the image of $\bigcirc^T \circ \{\cdot\}_T$, as in

$$T \xrightarrow{\{\cdot\}_T} \operatorname{Type}_n^T ,$$

$$\downarrow^{\bigcirc^T} \qquad \qquad \downarrow^{\bigcirc^T}$$

$$\Box T \longrightarrow \left(\operatorname{Type}_n^{\bigcirc}\right)^T$$

where $\{\cdot\}_T$ is the singleton map $\lambda(t:T),\ \lambda(t':T),\ t=t'.$ In type theory words,

$$\Box T = \operatorname{Im}(\lambda \ t : T, \ \lambda \ t', \ \bigcirc (t = t'))$$

$$= \sum_{u: T \to \operatorname{Type}_{\square}^{\square}} \left\| \sum_{a: X} (\lambda t, \ \bigcirc (a = t)) = u \right\|$$

Proposition 11. For all $T : \text{Type}_{n+1}$, $\Box T$ is separated.

Proof. We will use the following lemma:

Lemma 12. A (n+1)-truncated type T with an embedding $f: T \to U$ into a separated (n+1)-truncated type U is itself separated.

As $\Box T$ embeds in $\left(\mathrm{Type}_n^{\bigcirc}\right)^T$, we only have to show that the latter is separated. But it is the case with both parts proposition 10.

We now need to show that \square is universal. The following lemma is central in the proof :

Lemma 13. Let $T : \text{Type}_{n+1}$. Then $\Box T$ is the colimit of the closed diagonal diagram

$$\cdots \overline{\Delta_3} \stackrel{\longrightarrow}{\longrightarrow} \overline{\Delta_2} \stackrel{\longrightarrow}{\longrightarrow} \overline{\Delta_1},$$

where Δ_k is the k-pullback of id: $T \to T$.

Proof. As μ_T is an embedding, we know by Giraud axiom that $\Box T$ is the colimit of $C(\mu_T)$. If we can show that $C(\mu_T) = C(\mathrm{id})$, the the result will follow.

Let k: nat, let's show that

$$\sum_{t:T^k} (\mu_T t_1 = \mu_T t_2 \wedge \dots \wedge \mu_T t_{k-1}$$
$$= \mu_T t_k) = \sum_{t:T^k} \bigcirc (t_1 = t_2 \wedge \dots \wedge t_{k-1} = t_k)$$

By induction on k, and the preservation of products by \bigcirc , it suffices to show that for all a, b : T, $\bigcirc(a = b) = (\mu_T a = \mu_T b)$, which is true by univalence.

Now that $\Box T$ is a colimit, we can easily define an inverse to $\lambda(f:\Box T\to U),\ x\circ\mu_T$ for any separated type U, using the universal property of the colimit.

We now have to prove point (v) in the definition of modality. Let $A: \mathrm{Type}_{n+1}$ be a sheaf and $B: A \to \mathrm{Type}_{n+1}$ be a sheaf family. We want to show that $\sum_{x:A}(Bx)$ is separated. Let E be a type, and $\sum_{e:E}(\chi\,e)$ a dense subobject of E.

Let f, g be two maps from $\sum_{e:E} (\chi e)$ to $\sum_{x:A} (Bx)$, equal when precomposed with π_1 .

As A is separated, for any x:E, the first components of fx and gx are equal. For the second components, notice that for all x:E, $\sum_{y:E}x=y$ has a dense subobject, $\sum_{y:\sum_{e:E}(\chi\,e)}x=y_1$. Using the separation property with these type, one can show the second components of fx and gx are equals too, with respect to the first path.

C. From Separated Type to Sheaf

If T is already a separated type, the following lemma alllows us to build a sheaf:

Lemma 14. Let $T : \operatorname{Type}_{n+1}$ be separated, and U be a sheaf. If T embeds in U, and is closed in U, then T is a sheaf.

As any separated type T embeds in $\left(\operatorname{Type}_n^{\circlearrowleft}\right)^T$, it suffices to take the closure of T to get a sheaf.

D. Summary

If $T : \text{Type}_{n+1}$, the sheafification of T is

$$\star T = \sum_{u: T \to \text{Type}_n^{\bigcirc}} \neg \neg \left\| \sum_{a: X} (\lambda t, \bigcirc (a = t)) = u \right\|$$

We already know that \star defines a modality. It remains to show that this modality is left exact.

The last thing to prove is the cumulativity of our sheafifications :

Proposition 15. If $T : \text{Type}_n$, then $\bigcirc T = \star \widehat{T}$ (where \widehat{T} is T seen as a Type_{n+1} .

V. FUTURE WORKS

Prove that the Giraud axiom holds in homotopy type theory. Extend the sheafification to all types, even if non truncated.

VI. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[RS13] Egbert Rijke and Bas Spitters. Sets in homotopy type theory. 2013.[Uni13] Univalent Foundations Project. Homotopy Type Theory: Univalent Foundations for Mathematics. 2013.

[MM92] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer-Verlag, 1992.

[HTT] Jacob Lurie Higher Topos Theory

[lumsdaine] Lumsdaine Diagrams and limits