Задания по дисциплине «КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВА ЭВМ»

Направление подготовки **09.03.01 «Информатика и вычислительная техника»**

Направленность подготовки «Вычислительные машины, комплексы, системы и сети»

Квалификация выпускника **бакалавр**

Формы промежуточной аттестации Дифференцированный зачёт

г. Мытищи, 2019 г.

ВОПРОСЫ

к дифференцированному зачету по дисциплине

«Конструкторско-технологическое обеспечение производства ЭВМ»

Раздел 1. Организация проектирования средств вычислительной техники.

- 1. Этапы разработки конструкций электронной аппаратуры.
- 2. Поколения ЭВМ с точки зрения технологии.
- 3. Основные понятия в области производственных и технологических процессов.
- 4. Виды работ конструктора.

Раздел 2. Основные нормы ЕСКД и ЕСТД.

- 1. Основные стадии разработки конструкторской и технологической документации.
- 2. Примерный состав конструкторской и технологической документации при проектировании вычислительных средств.
- 3. Оформление технической документации по ЕСКД и ЕСТД.
- 4. Показатели конструкции электронной аппаратуры.

Раздел 3. Конструирование элементов, узлов и устройств электронной аппаратуры.

- 1. Иерархический принцип конструирования и метод базовых несущих конструкций в проектировании ЭВМ. Оценка сложности конструкции электронной аппаратуры.
- 2. Характеристика видов электрических соединений ЭА.
- 3. Системный подход при конструировании ЭА. Функциональная математическая модель конструкции.
- 4. Моделирование конструкций ЭВМ.
- 5. Типовые задачи размещения и компоновки.
- 6. Задачи расчёта теплового режима блока.
- 7. Защита ЭВМ от внутренних и внешних воздействий.

Раздел 4. Технологические процессы производства ЭВМ. Отработка конструкций на технологичность.

- 1. Характеристика типов производства. Виды и структура технологических процессов производства изделий.
- 2. Понятие о технологичности ЭВМ. ЕСТПП.
- 3. Технологические процессы изготовления деталей и элементов ЭВМ.
- 4. Методы обработки и формообразования материалов при производстве электронной аппаратуры. Качество поверхности изделий.
- 5. Количественная оценка технологичности электронных узлов при производстве изделия. Комплексный показатель технологичности.
- 6. Печатный монтаж. Виды и материалы печатных плат.
- 7. Основы технологии изготовления печатных плат. Трафаретная печать. Фотопечать.

Раздел 5. Основы технологий изготовления интегральных микросхем.

- 1. Основы конструктивно-технологической микроминиатюризации ЭВМ на примере элементов биполярных ИМС.
- 2. Технология полупроводниковых ИМС.

- 3. Методы получений тонких пленок (вакуумное напыление, катодное и ионно-плазменное напыление, магнетронное напыления).
- 4. Технология изготовления тонкопленочных ИМС.
- 5. Технология толстопленочных ГИС.
- 6. Функциональные ИМС.

Раздел 6. Технология сборочно-монтажных работ на производстве ЭВМ.

- 1. Технология сборочно-монтажных работ. Схемы и виды сборки. Подвижные и неподвижные соединения.
- 2. Основные этапы сборки типовых элементов замены и внутриблочный монтаж.
- 3. Сборка навесных ЭРЭ и ИМС на печатные платы. Пайка погружением. Пайка волной припоя.
- 4. Технология поверхностного монтажа элементов.
- 5. Особенности технологии изготовления многослойных ПП и печатных плат для поверхностного монтажа.

Раздел 7. Методы анализа точности производств и обеспечения стабильности технологических процессов.

- 1. Основы теории точности производства изделий.
- 2. Методы анализа точности производства: статистический метод.
- 3. Методы анализа точности производства: расчетно-аналитический метод.
- 4. Методы анализа точности производства: метод многофакторного планируемого эксперимента.
- 5. Обеспечение стабильности технологических процессов. Надежность, ориентировочный расчет надежности, технологические пути обеспечения надежности.
- 6. Основы оптимизации технологических процессов, методы крутого восхождения и симплекспланирование.
- 7. Основные направления автоматизации технологических процессов. Промышленные роботы, роботизированные технологические комплексы и гибкие производственные системы.

Раздел 8. Оптимизация технологических процессов и использование САПР в проектировании печатных плат.

- 1. Основные направления автоматизации конструкторско-технологического проектирования ЭВМ
- 2. Использование САПР для трассировки проводников и изготовления полупроводниковых приборов на примере современных программных пакетов.
- 3. Использование программного пакета KiCAD для трассировки и конструирования ПП.

Раздел 9. Приемочный контроль и испытание ЭВМ.

- 1. Приемочный контроль, диагностика и испытания приборов.
- 2. Виды испытаний и их характеристики.

домашние задания

по дисциплине

«Конструкторско-технологическое обеспечение производства ЭВМ»

Раздел 1. Организация проектирования средств вычислительной техники.

Раздел 2. Основные нормы ЕСКД и ЕСТД.

Раздел 3. Конструирование элементов, узлов и устройств электронной аппаратуры.

Домашнее задание № 1. «Конструирование приборов управления» Варианты 1-15.

Расчёт габаритных размеров печатной платы (ПП). Расчёт габаритов блока электронного изделия.

Задача №1. Рассчитать ориентировочную площадь ПП и выбрать рекомендуемые линейные размеры ПП. Варианты заданий приведены в таблице 1.

Задача №2. Рассчитать площадь ПП, скомпоновать конструкторско-технологические зоны для размещения на ПП ячейки электронного компонента (ЭК), элементов контроля функционирования электрического соединения, крепления и фиксации ячейки, а также выбрать линейные размеры ПП и оценить возможность размещения микросхем на плате. Варианты заданий приведены в таблице 1.

Таблица 1. Варианты задачи №1.

	ЭК,		Коэффи	Зазор	Расстояние			
№	Разъёмы		Микросхемы		циент дезинте	между ЭК,	по торцу,	d_{nn} , мм
	Тип корпуса	Кол-во	Тип корпуса	Кол-во	грации	MM	MM	
1	BH-10	5	DIP16	8	1,5	7,5	2	1,5
2	IDC-10MS	3	QFP-44	6	1,6	8,75	3	1,5
3	ГРПМШ2- 30ГО2-В	2	SO14	14	1,7	10	4	1,5
4	ОНП-ВГ-1-18	2	SO16	10	1,8	11,25	5	1,5
5	ГРПМ2- 46ШО2-В	3	SOIC14	18	1,9	12,5	6	1,5
6	СНП58- 16/94x9B-20	2	QFP-28	20	2,0	7,5	7	1,5
7	CHO63- 32/95x9B-20	1	TSOP24	10	2,1	8,75	8	1,5
8	ППИС (РШ2H-2)	3	SOT523-1-9	12	2,2	10	9	1,5
9	ОНП-ВГ-1- 32/46х11-В21	1	DIP32	3	2,3	11,25	10	2,0
10	CHO53- 60/93×9P-23	2	SDIP32	4	2,4	12,5	2	2,0
11	СНП59- 32/95×11P-20- 2	1	SIP8	20	2,5	7,5	3	2,0

	ЭК,	ЭК, размещаемые на плате					Расстояние	
№	Разъёмы		Микросхемы		циент дезинте	между ЭК,	по торцу,	d_{nn} , мм
	Тип корпуса Кол-во		Тип корпуса Кол-во		грации	MM	MM	
12	ГРПМ1- 31ШП2-К	3	SOT243-1-17	8	2,6	8,75	4	2,0
13	BH2-34 (DS1014-34, IDC2-34MS)	3	ZIP-24	10	2,7	10	5	2,0
14	BH-24 (DS1013-24S, IDC-24MS)	4	QFP-32	14	2,8	11,25	6	2,0
15	CHO48- 108/62x40B- 6M-B	1	TSOP28	6	2,9	12,5	7	2,0

Задача №3. Рассчитать ориентировочные габариты и выбрать типоразмер блока электронного изделия. Размеры печатной платы и электронных компонентов взять из задачи №1. Остальные значения выбрать из таблицы 2 в соответствии с полученным вариантом. Примечание: ФЯ – «функциональная ячейка».

Таблица 2.Варианты задачи №2.

Nº	Тип конструкции блока	Толщина платы <i>d_{nл}</i> , мм	Ширина панели <i>Нк</i> , мм	Зазор между ФЯ <i>Дh</i> _я , мм	Кол-во ФЯ в блоке $n_{\phi s},$ шт.	Высота пайки <i>Нм</i> , мм
1	Разъёмный	1,5	10	9	5	1,5
2	Книжный	1,6	12	10	6	1,5
3	Разъёмный	1,7	14	7	7	1,5
4	Книжный	1,8	16	8	5	1,5
5	Разъёмный	1,9	18	9	3	1,5
6	Книжный	2	20	10	4	1,5
7	Разъёмный	2,1	10	5	5	1,5
8	Книжный	2,2	12	6	6	1,5
9	Разъёмный	2,3	14	7	3	1,5
10	Книжный	2,4	16	8	8	1,5
11	Разъёмный	2,5	18	9	5	1,5
12	Книжный	1,5	20	10	6	1,5
13	Разъёмный	1,6	10	5	7	1,5
14	Книжный	1,7	12	6	4	1,5
15	Разъёмный	1,8	14	7	5	1,5

Раздел 4. Технологические процессы производства ЭВМ. Отработка конструкций на технологичность.

Раздел 5. Основы технологий изготовления интегральных микросхем.

Раздел 6. Технология сборочно-монтажных работ на производстве ЭВМ.

Домашнее задание № 2. «Технология производства приборов управления» Варианты 1-15.

Расчёт печатной платы на действие вибрации. Расчёт толщины печатной платы. Расчёт печатной платы на действие удара.

Задача №1. Провести расчёт печатной платы на действие вибрации и сделать выводы по полученным результатам. В качестве размеров ПП взять размеры, полученные при решении задачи №1 задания №1. Диапазон действующих вибраций Δf взять из таблицы 1 согласно полученному варианту. Способ закрепления платы взять из таблицы 2 согласно полученному варианту. Виброускорение принять за a_0 =19,6 м/с².

Таблица 1. Условия задачи №1. Материалы и внешние воздействия.

№	Материал ПП	Диапазон вибраций ${\it \Delta}f$, Γ ц	Способ закрепления платы	Толщина платы, мм
1	СФ	от 1 до 200 (аппаратура, транспортируемая на	1	1,5
		автомобильном, дорожном транспорте, и на морских		
		и речных судах)		
2	СТЭФ	от 1 до 300 (аппаратура, транспортируемая на	2	1,6
		железнодорожном транспорте)		
3	СТЭ	от 1 до 500 (аппаратура, транспортируемая на	3	1,7
		самолёте)		
4	НФД	от 1 до 700 (аппаратура, транспортируемая на	4	1,8
		гусеничном транспорте)		
5	СФ	от 1 до 200 (аппаратура, транспортируемая на	5	1,9
		автомобильном, дорожном транспорте, и на морских		
		и речных судах)		
6	СТЭФ	от 1 до 300 (аппаратура, транспортируемая на	6	2,0
		железнодорожном транспорте)		
7	СТЭ	от 1 до 500 (аппаратура, транспортируемая на	7	1,5
		самолёте)		
8	НФД	от 1 до 700 (аппаратура, транспортируемая на	1	1,6
-	G.F.	гусеничном транспорте)		1.5
9	СФ	от 1 до 200 (аппаратура, транспортируемая на	2	1,7
		автомобильном, дорожном транспорте, и на морских		
10	OTED #	и речных судах)	2	1.0
10	СТЭФ	от 1 до 300 (аппаратура, транспортируемая на	3	1,8
11	OTD	железнодорожном транспорте)	4	1.0
11	СТЭ	от 1 до 500 (аппаратура, транспортируемая на	4	1,9
10	ПФП	самолете)	5	2.0
12	НФД	от 1 до 700 (аппаратура, транспортируемая на	3	2,0
13	СФ	гусеничном транспорте) от 1 до 200 (аппаратура, транспортируемая на	6	1,5
13	CΨ		0	1,5
		автомобильном, дорожном транспорте, и на морских		
14	СТЭФ	и речных судах) от 1 до 300 (аппаратура, транспортируемая на	7	1,6
14	(1)4	железнодорожном транспорте)	/	1,0
15	СТЭ	от 1 до 500 (аппаратура, транспортируемая на	1	1,7
13		самолёте)	1	1,/
		Camone 15)		

Таблица 2. Условия задачи №1. Способы закрепления печатной платы.

№	Эскиз закрепления платы	Формула для определения K_a .
1	Эскиз закрепления платы	Ψ ормула для определения Λ_a .
		$9,87 \cdot \sqrt{1+2,33 \cdot \gamma^2 + 2,44 \cdot \gamma^4}$
2		$9,87 \cdot \sqrt{1+2,57 \cdot \gamma^2 + 5,14 \cdot \gamma^4}$
3		$22,37 \cdot \sqrt{1+0,48 \cdot \gamma^2 + 0,19 \cdot \gamma^4}$
4		$15,42\cdot\sqrt{1+1,11\cdot\gamma^2+\gamma^4}$
5		$22,37 \cdot \sqrt{1+0,57 \cdot \gamma^2 + 0,47 \cdot \gamma^4}$
6		$22,37\cdot\sqrt{1+0,61\cdot\gamma^2+\gamma^4}$
7		$22,37 \cdot \sqrt{1+0,14 \cdot \gamma^2 + 0,02 \cdot \gamma^4}$
Прим	иечание: $m{\gamma} = rac{a}{b}$, где a — большая сторона b — меньшая сторона	

Задача №2. Выполнить расчёт толщины печатной платы. Способ закрепления платы выбрать из таблицы 2 согласно полученному варианту. Остальные данные задачи взять из таблицы 3 согласно полученному варианту.

№	Материал ПП	Диапазон вибраций, Гц	Способ закреплени я платы	Размеры платы, мм	Масса ЭК, гр.
1	НФД	от 1 до 700 (аппаратура, транспортируемая на гусеничном транспорте)	1	120x200	36
2	СТЭ	от 1 до 500 (аппаратура, транспортируемая на самолете)	2	80x100	22
3	СТЭФ	от 1 до 300 (аппаратура, транспортируемая на железнодорожном транспорте)	3	120x180	32
4	СФ	от 1 до 200 (аппаратура, транспортируемая на автомобильном, дорожном транспорте, и на морских и речных судах)	4	80x140	28
5	НФД	от 1 до 700 (аппаратура, транспортируемая на гусеничном транспорте)	5	60x100	30
6	СТЭ	от 1 до 500 (аппаратура, транспортируемая на самолете)	6	160x200	44
7	СТЭФ	от 1 до 300 (аппаратура, транспортируемая на железнодорожном транспорте)	7	75x90	26
8	СФ	от 1 до 200 (аппаратура, транспортируемая на автомобильном, дорожном транспорте, и на морских и речных судах)	1	110x150	30
9	НФД	от 1 до 700 (аппаратура, транспортируемая на гусеничном транспорте)	2	80x130	24
10	СТЭ	от 1 до 500 (аппаратура, транспортируемая на самолете)	3	60x140	40
11	СТЭФ	от 1 до 300 (аппаратура, транспортируемая на железнодорожном транспорте)	4	50x100	25
12	СФ	от 1 до 200 (аппаратура, транспортируемая на автомобильном, дорожном транспорте, и на морских и речных судах)	5	80x140	31
13	НФД	от 1 до 700 (аппаратура, транспортируемая на гусеничном транспорте)	6	100x130	37
14	СТЭ	от 1 до 500 (аппаратура, транспортируемая на самолете)	7	150x180	49
15	СТЭФ	от 1 до 300 (аппаратура, транспортируемая на железнодорожном транспорте)	1	40x60	18

Задача №3. Оценить, возможно ли использование рассчитанной в задаче №2 толщины ПП при заданных наименьшем диаметре отверстия, классе точности и типе разъёма (данные выбрать из таблицы 4 согласно полученному варианту). Рассчитать:

- отношение заданного диаметра металлизированного отверстия к толщине ПП;
- отношение диаметра металлизированного отверстия по заданному классу точности в соответствии с ГОСТ к толщине ПП.

Оценить возможность пайки разъёма. Сделать выводы.

Таблица 4. Условия задачи №3.

№	Наименьший диаметр отверстия, мм	Класс точности	Тип разъёма
1	0,6	1	DS1021-1x10 SF16
2	0,5	2	DS1021-1x10 SF116
3	0,4	3	DS1021-1x10 SF149
4	0,3	4	DS1021-1x10 SF11
5	0,2	5	DS1021-1x10 SF149
6	0,6	1	DS1021-1x10 SF16
7	0,5	2	DS1021-1x10 SF116
8	0,4	3	DS1021-1x10 SF11
9	0,3	4	DS1021-1x10 SF16
10	0,2	5	DS1021-1x10 SF116

№	Наименьший диаметр отверстия, мм	Класс точности	Тип разъёма
11	0,6	1	DS1021-1x10 SF149
12	0,5	2	DS1021-1x10 SF11
13	0,4	3	DS1021-1x10 SF149
14	0,3	4	DS1021-1x10 SF16
15	0,2	5	DS1021-1x10 SF116

Задача №4. Определить число слоев и толщину многослойной печатной платы (МПП). Данные задачи выбрать из таблицы 5 согласно полученному варианту.

Таблица 5. Условия задачи №4.

№	Габарит ные размеры МПП, мм	Кол-во задействован ных выводов ИМС, шт.	Кол-во ИМС, шт.	Коэффицие ит пропорцион альности	Толщин а экранног о слоя, мм	Число сигнал ьных слоёв, шт.	Материал МПП	Толщина прокладки стеклоткани , мм
1	120x200	18	60	0,06	1	3	ФТС-1-35А	0,1
2	80x100	16	40	0,07	1,05	4	ФДМЭ-2А	0,105
3	120x180	22	45	0,06	1,1	3	ФДМ-1А	0,11
4	80x140	16	40	0,07	1,15	4	СТФ-1-35	0,115
5	60x100	18	50	0,06	1,2	3	ДФО-1	0,12
6	160x200	24	70	0,07	1,25	4	ДФС-1	0,125
7	75x90	14	35	0,05	1,2	3	СТНФ-1-35	0,1
8	110x150	22	54	0,06	1,15	4	ФТС-1-35А	0,105
9	80x130	20	42	0,07	1,1	3	ФДМЭ-2А	0,11
10	60x140	18	60	0,05	1,05	4	ФДМ-1А	0,115
11	50x100	20	38	0,06	1	3	СТФ-1-35	0,12
12	80x140	24	44	0,07	1,25	4	ДФО-1	0,125
13	100x130	22	52	0,06	1,2	3	ДФС-1	0,1
14	150x180	24	68	0,07	1,15	4	СТНФ-1-35	0,105
15	40x60	14	30	0,05	1,1	3	ФТС-1-35А	0,11

Задача №5. Проверить условие ударопрочности конструкции. Условия задачи выбрать из таблицы 6 согласно полученному варианту.

Таблица 6. Условия задачи №5.

№	Масса ПП, гр	Масса ЭК, <i>гр</i>	Размеры ПП, <i>мм</i>	Материал ПП	Длительно сть удара, мс	Ускоре ние, <i>м/с</i> ²	Частота ударов, <i>Гц</i>	Частота собственных колебаний платы f_0 , Γu
1	117	36	120x200	СФ	5	92	40	290
2	123	22	80x100	СТЭФ	5,5	94	50	297

Nº	Масса ПП, гр	Масса ЭК, гр	Размеры ПП, <i>мм</i>	Материал ПП	Длительно сть удара, мс	Ускоре ние, <i>м/с</i> ²	Частота ударов, <i>Гц</i>	Частота собственных колебаний платы f_0 , Γu
3	124	32	120x180	СТЭ	6	96	60	314
4	125	28	80x140	НФД	6,5	98	70	321
5	134	30	60x100	ФТС-1-35А	7	100	80	328
6	146	44	160x200	ФДМЭ-2А	7,5	102	90	335
7	162	26	75x90	ФДМ-1А	8	104	100	342
8	147	30	110x150	СТФ-1-35	8,5	103	110	349
9	139	24	80x130	ДФО-1	9	101	120	356
10	121	40	60x140	ДФС-1	9,5	99	115	363
11	111	25	50x100	СТНФ-1-35	10	97	105	370
12	109	31	80x140	СТЭ	9,75	95	95	377
13	86	37	100x130	НФД	8,75	93	85	384
14	94	49	150x180	СТНФ-1-35	7,75	98,5	75	391
15	85	18	40x60	ФТС-1-35А	6,75	99	65	398

Раздел 7. Методы анализа точности производства и стабильности технологических процессов. Раздел 8. Оптимизация технологических процессов и использование САПР. Раздел 9. Приемочный контроль и испытания ЭВМ.

Домашнее задание № 3. «Анализ параметров производства радиоэлектронной аппаратуры» Варианты 1-15.

Расчёт температуры поверхности электронного изделия. Тепловой расчет блока электронного изделия в герметизированном корпусе. Расчет надежности блока электронного изделия.

Задача №1. Провести тепловой расчет для функциональной ячейки, подобной представленной на рисунке 1, сделать выводы о наличии или отсутствии необходимости применения искусственного охлаждения.

Рис. 1. Функциональная ячейка. Примерное изображение (см. примечание ниже).

В табл. 1 приведены варианты, различные по материалу ПП, размерам корпуса ИМС ДД4 (c_1 , c_2 , мм), зазору между микросхемой и ПП (δ_{3i} , мм), перегреву корпуса блока во втором приближении относительно окружающей среды (из расчета 1-го этапа, $\Delta t_{\kappa.o.}$, 0 С), нагреву нагретой зоны во втором приближении относительно окружающей среды (из расчета 2-го этапа, $\Delta t_{3.o.}$, 0 С), толщине ПП (h_{nn} , мм), температуре окружающей среды (t_0 , 0 С), λ_3 — теплопроводность воздуха в зазоре.

Дополнительные общие условия: расположение электронных компонент (ЭК) на печатной плате (ПП) одностороннее; коэффициент теплоотдачи от корпусов микросхем k_a =30 Bt/(м² ·K); мощность, рассеиваемая i-ой микросхемой, для всех интегральных микросхем (ИМС) одинаковая Q_{uci} = 0,004 Bt.

Таблица	. 1. 3	/слови	ія задачи	NoI

№	Материал ПП	<i>c</i> ₁ , <i>c</i> ₂ , MM	$\Delta t_{\kappa.o.}$, 0 C	$\Delta t_{3.0}$, 0 C	δ_{3i} , mm	$h_{n\pi}$, MM	<i>t₀</i> , ⁰C	λ_3
1	НФД	19,5x7,5	1,787	3,885	0,8	1,6	67	2,836·10 ⁻²
2	СТЭ	20,5x9,5	1,777	3,886	0,85	2,0	68	2,788 · 10-2
3	СТЭФ	22,5x12,5	1,767	3,887	0,9	2,5	69	2,736·10-2
4	СФ	18,5x6,5	1,757	3,888	0,95	3,0	70	2,888 · 10-2
5	НФД	19,5x7,5	1,747	3,889	1	1,6	71	$2,776 \cdot 10^{-2}$
6	СТЭ	20,5x9,5	1,737	3,883	1,05	2,0	72	$2,798 \cdot 10^{-2}$
7	СТЭФ	22,5x12,5	1,727	3,882	1,1	2,5	73	2,816·10-2
8	СФ	18,5x6,5	1,717	3,881	0,8	1,5	74	2,828 · 10-2
9	НФД	19,5x7,5	1,798	3,894	0,85	1,6	75	2,856·10 ⁻²
10	СТЭ	20,5x9,5	1,799	3,874	0,9	2,0	76	$2,778 \cdot 10^{-2}$
11	СТЭФ	22,5x12,5	1,796	3,864	0,95	2,5	77	2,899·10 ⁻²
12	СФ	18,5x6,5	1,795	3,854	1	3,0	78	$2,794 \cdot 10^{-2}$
13	НФД	19,5x7,5	1,794	3,844	1,05	1,6	75	2,869·10-2
14	СТЭ	20,5x9,5	1,793	3,834	1,1	2,0	71	2,818·10-2
15	СТЭФ	22,5x12,5	1,792	3,824	0,8	2,5	68	2,866·10-2

Примечание к условиям задачи №1. Рисунок 1 не имеет отношения к производимому расчёту. Сопутствующие в источниках объяснения относятся к ситуации, примерно соответствующей схеме, изображённой на рис. 2.

Рис. 2. Примерная схема для задачи №1 задания 3.

Все элементы DD4-DD6 нагреваются, но сильнее всех нагревается DD4, потому что его ещё греют соседи, находящиеся достаточно близко. У DD5 на рисунке может быть больше соседей со своей стороны, чем у DD6, и поэтому даже если сами микросхемы идентичны, температуры у всех будут разными. Если рассчитать температуру для наихудшего случая DD4 и показать, что она не выходит за пределы разрешённой, то можно утверждать, что вся схема на печатной плате не перегревается и не нуждается в дополнительном охлаждении.

Задача №2. Провести тепловой расчёт блока электронного изделия в герметизированном корпусе, сделать выводы о наличии или отсутствии необходимости применения вентиляции.

Рис. 3. Геометрические параметры корпуса блока электронного изделия.

В табл. 2 приведены варианты, различные по габаритным размерам корпуса (рисунок 3), виду материала поверхности корпуса, максимальной температуре внутри блока T_{max} , 0 С, максимальной рассеиваемой мощности внутри блока P, Вт, коэффициенту заполнения корпуса блока модулями K_{3} , эмпирическому коэффициенту A_{2} , который зависит от физических свойств теплоносителя, его температуры и характера движения.

Таблица 2. Условия задачи №2.

	Ширина	Глубина	Высота	Материал				
№	корпуса,	корпуса,	корпуса,	поверхности	T_{max} , ${}^{0}C$	<i>P</i> , B _T	K_3	A_2
	MM	MM	MM	корпуса				
1	240	230	70	Алюминиевая краска	61	15	0,8	1,35
2	245	220	80	Бронзовая краска	62	14	0,82	1,37
3	250	215	85	Дюралюминий Д-16	63	13	0,84	1,38
4	255	210	90	Железо	64	12	0,86	1,39
5	260	205	95	Ковар	65	11	0,88	1,41
6	265	200	100	Лак белый	61	15	0,90	1,43
7	270	235	65	Лак черный	62	14	0,92	1,45
8	275	245	60	Латунь листовая	63	13	0,94	1,49
				прокатанная				
9	280	250	55	Медь окисленная	64	12	0,96	1,51
10	285	255	50	Медь полированная	65	11	0,93	1,53
11	290	260	80	Муар черный	61	15	0,91	1,55
12	295	265	85	Олово (луженое	62	14	0,89	1,57
				железо)				
13	300	270	90	Силумин	63	13	0,87	1,60
14	235	275	95	Сталь окисленная	64	12	0,85	1,62
15	230	280	100	Цинк полированный	65	11	0,83	1,36

Дополнительные общие условия: максимальная температура окружающей среды T_{oc} =313 К. Значения степени черноты поверхности корпуса ε приведены в табл. 3.

Таблица 3. Степени черноты различных поверхностей.

Материал	Степень черноты	Материал	Степень черноты
Алюминиевая краска	0,28	Латунь матовая тусклая	0,22
Алюминиевая фольга	0,09	Медь окисленная	0,60 - 0,70
Алюминий грубополированный	0,18	Медь полированная	0,02
Алюминий полированный	0,04 - 0,06	Шеллак черно-матовый	0,91
Бронза полированная	0,16	Олово (луженое железо)	0,07 - 0,09
Бронзовая краска	0,51	Резина	0,86 - 0,95
Дюралюминий Д-16	0,37 - 0,41	Окиси металлов	0,40 - 0,80
Железо	0,14 - 0,38	Стальное литье полированное	0,52 - 0,56
Ковар	0,80 - 0,85	Сталь окисленная	0,80
Краски эмалевые	0,92	Стекло	0,90 - 0,94
Лак белый	0,80 - 0,98	Титан	0,63
Лак черный	0,80 - 0,96	Фарфор глазурованный	0,92
Латунь листовая прокатанная	0,06	Цинк	0,23 - 0,27

Задача №3. Провести расчёт надёжности функциональной ячейки (ФЯ) и сделать вывод, удовлетворяет ли ФЯ требованиям технического задания.

В табл. 4 приведены варианты задания, различные по ожидаемому сроку наработки на отказ T_{cp} , часов, номиналу и количеству элементов Φ Я и условиям эксплуатации.

На рис. рис. 4-7 приведены графики для расчёта поправочного коэффициента $\alpha_i(T, k_H)$ в зависимости от температуры T и коэффициента нагрузки k_H . Напоминание: при уже известной форме графического отображения функции её можно (и нужно) использовать для нахождения ординаты точки по известной абсциссе и наоборот.

Nº	Т _{ср.} час	Сери	я м-	Температура для	Кол-во металл-ых	Разъем, н	кол-во, кол-в	o	Условия	Отн. влажность, %	, высота над уров.
142	,	схем		всех ЭК,	отверстий, шт.	контактов, шт.			эксплуатации	моря, км.	
1.	55 000	K555, 1		47	49	СНП17, 1,52			Лабораторные	68, 1	
2.	56 000	K101, 8	3	48	48	ГРПМШ1, 2,46		Стационарные	70, 2		
3.	57 000	KP127,	6	49	47	CHO, 1, 64			Полевые	90, 3	
4.	58 000	K580, 4	ļ	50	46	РПН10, 2,36			Корабельные	94, 2	
5.	59 000	K145, 5	5	51	45	ГРПМ, 1,32			Автомо-ные	69, 7	
6.	60 000	KP140,	7	47	44	PCTB, 4, 10			Железно-ные	92, 9	
7.	61 000	K174, 9)	48	43	СШР, 3, 60			Самолетные	88, 15	
8.	62 000	K124, 1	12	49	42	РПС, 4, 15			Лабораторные	64, 2	
9.	63 000	K237, 1	11	50	41	РПН7, 4,15			Стационарные	60, 1	
10.	74 000	K224, 1	10	51	40	ГРППЗ, 2, 46	ГРППЗ, 2, 46		Полевые	75, 3	
11.	75 000	K538, 9)	47	39	PTF, 2, 14			Корабельные	90, 2	
12.	76 000	K161, 8	3	48	38	СНП, 2, 58			Автомо-ные	73,4	
13.	67000	KP513,	7	49	37	РППМ17, 3, 52	2		Железно-ные	78, 6	
14.	68 000	K155, 1	L6	50	36 СНЦ22, 4, 22			Самолетные	86, 8		
15.	69 000	KP521,	9	51	35	СНП, 2, 60			Лабораторные	61, 1	
Nº	Конденсато	р, шт.	Г	lаяное соединение, шт.	Печ-ый проводник, шт.	Плата, ш	г. Диод	ы, шт.	Переключатель, шт.	Резистор, шт.	Реле, шт.
1.	K10-17, 10	0	с печа	атным монтажом, 171	250	2	2Д1	02, 1	ПДМ1, 2	МЛТ, 8	РБП
2.	K50-35, 1	1	с объе	емным монтажом, 190	310	1	2Д:	.03,2	ПГ39, 1	MT, 9	PHE
3.	K10-19, 12	2	с печа	атным монтажом, 125	266	3	2Д:	.04,3	ПП9, 2	ОМЛТ, 11	РКМП
4.	K10-26, 13	3	с объе	емным монтажом, 175	278	2	кд:	.05,4	11ΠKM49-1, 2	ПЭ, 12	РМУГ
5.	K10-38, 14	4	с печа	атным монтажом, 163	299	1 2Д123,5		23,5	ВДМ3, 2	ПЭВТ, 14	РПА
6.	K15-4, 15	;	с объе	емным монтажом, 144	246	3	2Д2	04, 1	ВДМ5, 2	P1-4, 16	РПВ2
7.	K15-13, 10	6	с печа	атным монтажом, 210	268	2	2Д2	10, 2	МПН-1, 3	РП1-46, 8	РЭН29
8.	К21-7, 18 с объ		с объе	емным монтажом, 189	286	1	2Д	212,3	МПВ-1-1	C2, 15	РЭС9
9.	K26-4, 20)	с печа	атным монтажом, 211	301	3	2Д	213,4	П2Г3, 2	СП, 14	P9C15
10.	K31-14, 2:	1	с объе	емным монтажом, 150	317	2	кд:	26,5	ПГ2, 2	МЛТ, 11	PЭC22
11.	K42-18, 23	3	с печа	атным монтажом, 233	296	1	2Д	19,1	ПГ43, 3	MT, 13	РЭС32
12.	К70-6, 24 с объ		с объе	емным монтажом, 189	275	3	2Д	245,2	ПКИ, 2	ОМЛТ, 7	РЭС39
13.	,		с печа	атным монтажом, 222	268	2	кд:	209,3	ПП11, 1	ПЭ, 15	PЭC43
14.	K77-4, 26	5	с объе	емным монтажом, 186	254	1	2Д	231,4	ПП21, 1	пэвт, 9	РЭС49
15.	K75-54, 18	8	с печа	атным монтажом, 169	288	3	2Д	251,5	ПР2, 2	P1-4, 16	P9C55

Таблица 4. Условия задачи №3.

Рисунок 4 – Обобщенные зависимости поправочного коэффициента от температуры и коэффициента нагрузки: *а*) для контактных элементов (разъемов, реле, переключателей и т.п.); *б*) для соединений пайкой; *в*) для резисторов типов МЛТ и ОМЛТ; *г*) для переменных проволочных резисторов

Рисунок 5 — Обобщённые зависимости поправочного коэффициента от температуры и коэффициента нагрузки: *а)* для резисторов; б) - для неполярных конденсаторов; в) для изделий, имеющих обмотки; г) для электролитических конденсаторов

Рисунок 6 – Обобщённые зависимости поправочного коэффициента от температуры и коэффициента нагрузки для полупроводниковых приборов: a) германиевых диодов; б) кремниевых диодов; в) германиевых

Рисунок 7 — Обобщённые зависимости поправочного коэффициента от температуры и коэффициента нагрузки: а) для кремниевых высокочастотных транзисторов; б) для германиевых высокочастотных транзисторов; в) для полупроводниковых цифровых интегральных микросхем; г) для полупроводниковых линейно-импульсных интегральных микросхем

В табл. 5 приведены значения поправочных коэффициентов для других случаев.

Таблица 5. Значения поправочных коэффициентов.

	таолица э. эначения поправочных коэффициентов							
Значени	Значения поправочных коэффициентов, учитывающих влияние механических воздействий							
Услові	ия эксплуатации	Значение коэффициента						
Лабораторнь	bie	1,00						
Стационарнь	ole .		1,07					
Полевые			1,07					
Корабельны	e		1,37					
Автомобилы	ные		1,46					
Железнодор	ожные		1,57					
Самолетные			1,65					
	Значения поправочных коэффициентов, учитывающих влияние							
	относительной	і влажности						
Относите	льная влажность	Зна	эчение коэффициента					
6070% при	t = 2040 °C		1,00					
9098% при	t = 2025 °C	2,00						
9098% при	t = 3040 °C	2,50						
	Значения поправочных коэффицие	нтов, учитываі	ощих атмосферное					
	давление (высоту на	ад уровнем мо	рря)					
Высота, км	Значение коэффициента	Высота, км	Значение коэффициента					
01	1,00	56	1,16					
12	12 1,05		1,20					
23	1,10	810	1,25					
35	1,14	1015	1,30					

Некоторые значения интенсивности отказов для различных типов элементов можно увидеть в таблице 6.

Таблица 6. Интенсивность отказов по типам элементов.

Nº	Элемент	Обозначение	λ _{0t·} 10 ⁻⁶ , 1/ч	Кол-во, шт.	
1	Резисторы: C2-33H-0,25; C2-33H-0,5; C2-33H-2	λ _{0.R1;} λ _{0.R2;} λ _{0.R3}	0,087	25; 12; 3	
2	Диоды: 2Д522Б; 2Д106А	λ _{0.vd1} ; λ _{0.vd2}	0,2	7; 3	
3	Конденсаторы: К10-17	λ0.oc1	0,04	8	
4	Реле РЭС80	λ0.ок1	2	13	
5	Печатная плата	λ0.пп	0,7	1	
6	Паяное соединение	λ0.ом	0,01	300	
7	Микросхемы	λ0.имс	0,013	3	
8	Соединитель	λ0.соед	0,062x96	1	

ЛАБОРАТОРНЫЕ РАБОТЫ

по дисциплине

«Конструкторско-технологическое обеспечение производства ЭВМ»

Раздел 1. Организация проектирования средств вычислительной техники. Раздел 2. Основные нормы ЕСКД и ЕСТД.

Лабораторная работа № 1. «Создание библиотек электрических компонентов и посадочных мест в среде проектирования KiCAD».

Вопросы к лабораторной работе:

- 1. Поясните назначение САПР KiCAD. Назовите её аналоги. Какое место САПР KiCAD и её аналоги занимают в процессе разработки радиоэлектронной аппаратуры?
- 2. Что такое «электрический компонент»? Что такое «электрическая схема» и каково её место в процессе разработки радиоэлектронной аппаратуры? Какие документы задают правила изображения электрических компонентов в Российской Федерации и за рубежом? Приведите пример различия (можно бывшего).
- 3. Что такое «посадочное место»? Как посадочные места отображают на чертеже печатной платы? Какие документы задают правила изображения посадочных мест в Российской Федерации и за рубежом? Приведите пример различия (можно бывшего).
- 4. Что такое «библиотека» электрических компонентов или посадочных мест в среде проектирования KiCAD? Почему такие библиотеки необходимы в процессе проектирования радиоэлектронной аппаратуры? В чем состоит отличие подхода к библиотекам электрических компонентов и посадочных мест в САПР KiCAD и Altium Designer?
- 5. Как задать библиотеку электрических компонентов в среде проектирования KiCAD? Поясните процедуру по шагам.
- 6. Как перенести изображение электрического компонента в среде проектирования KiCAD из одной библиотеки в другую? Поясните процедуру по шагам.
- 7. Как задать библиотеку посадочных мест в среде проектирования KiCAD? Поясните процедуру по шагам.
- 8. Как перенести изображение посадочного места в среде проектирования KiCAD из одной библиотеки в другую? Поясните процедуру по шагам.

Раздел 3. Конструирование элементов, узлов и устройств электронной аппаратуры.

Лабораторная работа № 2. «Создание изображения электрического элемента и посадочного места к нему в среде проектирования KiCAD».

Вопросы к лабораторной работе:

- 1. Как приступить к созданию нового изображения электрического элемента в среде проектирования KiCAD в новой библиотеке электрических компонентов для отдельно взятого проекта? Поясните процедуру по шагам.
- 2. Какие графические примитивы доступны пользователю при рисовании изображения нового электрического компонента?
- 3. Какие свойства вывода электрического компонента доступны к отображению в среде проектирования KiCAD?
- 4. Какие свойства электрического компонента доступны для редактуры в среде проектирования KiCAD?
- 5. Как приступить к созданию нового изображения посадочного места в среде проектирования KiCAD в новой библиотеке посадочных мест для отдельно взятого проекта? Поясните процедуру по шагам.
- 6. Какие графические примитивы доступны пользователю при рисовании изображения нового посадочного места?

- 7. Какие свойства посадочного места доступны для редактуры в среде проектирования KiCAD?
- 8. Как создать посадочное место для микросхемы с помощью мастера в среде проектирования KiCAD? Поясните процедуру по шагам.

Раздел 6. Технология сборочно-монтажных работ на производстве ЭВМ.

Лабораторная работа № 3. ««Построение изображения электрической схемы согласно требованиям ГОСТ в среде проектирования KiCAD»»

Вопросы к лабораторной работе:

- 1. Как объявить новую электрическую схему в выполняемом проекте в среде проектирования KiCAD? Поясните процедуру по шагам.
- 2. Как задать нужную основную надпись согласно правилам ГОСТ для чертежа электрической схемы в выполняемом проекте в среде проектирования KiCAD? Поясните процедуру по шагам, как в случае импорта, так и в случае самостоятельного рисования.
- 3. Как установить единичный электрический компонент на электрической схеме в среде проектирования KiCAD? Поясните процедуру по шагам.
- 4. Как соединить два электрических компонента на электрической схеме в среде проектирования KiCAD? Поясните процедуру по шагам?
- 5. Каких правил надо придерживаться при ручной расстановке электрических компонентов на электрической схеме в среде проектирования KiCAD?
- 6. Как проверить введённую электрическую схему на ошибки в среде проектирования KiCAD? Что такое Electrical Rules Check? Как читать отчётный файл ERC в среде проектирования KiCAD?
- 7. Что такое Netlist в среде проектирования KiCAD, когда и зачем его надо создавать? Поясните процедуру создания Netlist по шагам. В каких форматах может присутствовать Netlist, зачем они нужны?
- 8. Как сохранить полученную электрическую схему в среде проектирования KiCAD? В каких форматах её можно экспортировать из среды проектирования KiCAD? Поясните процедуру экспорта электрической схемы в формате .pdf по шагам.

Раздел 8. Оптимизация технологических процессов и использование САПР в проектировании печатных плат.

Лабораторная работа № 4. ««Построение изображения печатной платы согласно требованиям ГОСТ в среде проектирования KiCAD».

Вопросы к лабораторной работе:

- 1. Как объявить новый чертёж печатной платы в выполняемом проекте в среде проектирования KiCAD? Поясните процедуру по шагам.
- 2. Как сопоставить изображениям электрических компонентов изображения посадочных мест в среде проектирования KiCAD?
- 3. Назовите основные правила размещения посадочных мест на печатной плате?
- 4. Как разработать контур печатной платы?
- 5. Как выполняется трассировка печатной платы?
- 6. Как разрабатывается печатная зона?
- 7. Что такое DRC?
- 8. Как формируется визуальное представление и фотошаблон?
- 9. Как сохранить полученный чертёж печатной платы в среде проектирования KiCAD?
- В каких форматах его можно экспортировать из среды проектирования KiCAD? Поясните процедуру чертежа печатной платы в формате .pdf по шагам.