2.10 Pour montrer que la suite $\left(\frac{n^2}{n^2+1}\right)_{n\in\mathbb{N}}$ est minorée par $\frac{1}{2}$, il faut prouver que, pour tout $n\in\mathbb{N}$, on a $\frac{n^2}{n^2+1}\geqslant \frac{1}{2}$, c'est-à-dire $\frac{n^2}{n^2+1}-\frac{1}{2}\geqslant 0$.

$$\frac{n^2}{n^2+1} - \frac{1}{2} = \frac{2n^2 - (n^2+1)}{2(n^2+1)} = \frac{n^2-1}{2(n^2+1)} = \frac{(n+1)(n-1)}{2(n^2+1)} \geqslant 0$$

En effet, pour tout $n \in \mathbb{N}$, on a

- 1) $n+1 \ge 2 > 0$
- 2) $n-1 \ge 0$
- 3) $n^2 \ge 1$ et $n^2 + 1 \ge 2 > 0$