1 Buckets

review shortest path algorithm.

In shortest paths, often have edge lengths small integers (say max C). Observe heap behavior:

- heap min increasing (monotone property)
- \bullet max C distinct values
- (because don't insert k + C until delete k).

Idea: lots of things have same value. Keep in buckets. How to exploit?

- standard heaps of buckets. $O(m \log C)$ (slow) or $O(m + n \log C)$ with Fib (messy).
- Dial's algorithm: O(m + nC).

space?

- use array of size C+1
- wrap around

2-level buckets.

- \bullet make blocks of size b
- add layer on top: nC/b block summaries
- in each summary, keep count of items in block
- insert updates block and summary: O(1)
- ditto decrease key
- delete min scans summaries, then scans one block
 - over whole algorithm, nC/b scanning summaries
 - also, scan one block per delete min: b work
 - over n delete mins, work nb + nC/b
 - clearly, optimize with $b = \sqrt{C}$
- result: SP in $O(m + n\sqrt{C})$
- ullet as before "space trick" to keep array sizes to C
- Generalize: 3 tiers?
 - blocks, superblocks, and summary

- block size $C^{1/3}$
- runtime $O(m + nC^{1/3})$
- how far can this go? To m + n? no, because insert cost rises.

Tries.

- depth k tree over array of size Δ
- \bullet depth k
- expansion factor $\Delta = (C+1)^{1/k}$ (power of 2 simplifies)
- insert: O(k) (also find, delete-non-min, decrease-key)
- delete-min: $O(k\Delta) = O(kC^{1/k})$ to find next element
- Shortest paths: $O(km + knC^{1/k})$
- Balance: $nC^{1/k} = m$ so $C = (m/n)^k$ so $k = \log(C)/\log(m/n)$
- Runtime: $m \log_{m/n}(C)$
- Space: $\Delta^k = C$ using circular array trick.

Problems: space and time

Idea: be lazy! (Denardo and Fox 1979)

- unique array on each level active
- keep other stuff piled up in list
- keep count of items in each block (not counting below)
- expand bucket when reach (and update block count)
- note: items descend once per touch, but never rise, so O(k) expansion per item
- Insert
 - walk item down tree till stop in bucket
 - increment block count
 - real cost O(k)
 - also covers k cost of future expansions
- Decrease key
 - Remove from current bucket (decrement block count)
 - maybe descend (paid for already)
 - put in proper bucket (increment block count)

- O(1)
- Delete-min
 - remove item, advance to next
 - if no more items in block
 - rise to first nonempty block
 - traverse to first nonempty bucket
 - expand till find min
 - (may do pushdowns, but those are paid for)
 - (and identifying min happens during pushdowns)
 - so, scan only one block
 - $\cot C^{1/k}$
- space to linear
- New time analysis:
 - -O(k) insert (charge expansions to insert)
 - -O(1) decrease key
 - $-O(C^{1/k})$ delete-min
- paths runtime: $O(m + n(k + C^{1/k}))$, choose $k = 2 \log C / \log \log C$: $O(m + n(\log C) / \log \log C)$
- Further improvement: heap on top (HOT) queues get $O(m + n(\log C)^{1/3})$ time. Cherkassky, Goldberg, and Silverstein. SODA 97.
- Implementation experiments—good model for project

2 VEB

Van Emde Boas, "Design and Implementation of an efficient priority queue" Math Syst. Th. $10\ (1977)$

Thorup, "On RAM priority queues" SODA 1996. Idea

- idea: in bucket heaps, problem of finding next empty bucket was heap problem. Recurse!
- ullet b-bit words
- $\log b$ running times
- \bullet thorup paper improves to $\log\log n$
- consequence for sorting.

Algorithm.

- need constant time hash table. non-trivial complexity theory, but can manage with randomization or slight time loss.
- \bullet queue Q on b bits is struct
 - Q. min is current min, not stored recursively
 - Array Q.low[] of \sqrt{U} queues on low order bits in bucket
 - $-\ Q.high,$ vEB queue on high order bits of elements other than current min in queue

• Insert x:

- $\text{ if } x < Q. \min, \text{ swap}$
- now insert x in recursive structs
- expand $x = (x_h, x_l)$ high and low half words
- If $Q.low[x_h]$ nonempty, then insert x_l in it
- else, make new queue holding x_l at $Q.low[x_h]$, and insert x_h in Q.high
- note two inserts, but one to an empty queue, so constant time

• Delete-min:

- need to replace Q. min
- Look in Q.high. min. if null, queue is empty.
- else, gives first nonempty bucket x_h
- Delete min from $Q.low[x_h]$ to finish finding Q.min
- If results in empty queue, Delete-min from Q.high to remove that bucket from consideration
- Note two delete mins, but second only happens when first was constant time.