Probabilidade e Estatística

Matheus Pimenta

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio

> Agosto de 2020 ADNP 2020

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X?

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X? Solução:

$$\Omega = \{(c, c, c), (c, c, k), (c, k, c), (c, k, k), (k, c, c), (k, c, k), (k, k, c), (k, k, k)\}$$

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X? Solução:

 $\Omega = \{(c,c,c),(c,c,k),(c,k,c),(c,k,k),(k,c,c),(k,c,k),(k,k,c),(k,k,k)\}$ Se X é o número de "cara" que pode-se ter então X tem os seguintes valores: 0,1,2 e 3. Associando os valores a Ω , segue:

X Evento Associado

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X? Solução:

 $\Omega = \{(c,c,c),(c,c,k),(c,k,c),(c,k,k),(k,c,c),(k,c,k),(k,k,c),(k,k,k)\}$ Se X é o número de "cara" que pode-se ter então X tem os seguintes valores: 0,1,2 e 3. Associando os valores a Ω , segue:

X	Evento Associado
0	$A_1 = \{(k, k, k)\}$

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X? Solução:

$$\Omega = \{(c,c,c),(c,c,k),(c,k,c),(c,k,k),(k,c,c),(k,c,k),(k,k,c),(k,k,k)\}$$
 Se X é o número de "cara" que pode-se ter então X tem os seguintes valores: $0,1,2$ e 3 . Associando os valores a Ω , segue:

X	Evento Associado
0	$A_1 = \{(k,k,k)\}$
1	$A_2 = \{(c, k, k), (k, c, k), (k, k, c)\}$

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X? Solução:

$$\Omega = \{(c,c,c),(c,c,k),(c,k,c),(c,k,k),(k,c,c),(k,c,k),(k,k,c),(k,k,k)\}$$
 Se X é o número de "cara" que pode-se ter então X tem os seguintes valores: $0,1,2$ e 3 . Associando os valores a Ω , segue:

X	Evento Associado
0	$A_1 = \{(k,k,k)\}$
1	$A_2 = \{(c, k, k), (k, c, k), (k, k, c)\}$
2	$A_3 = \{(c, c, k), (c, k, c), (k, c, c)\}$

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X? Solução:

$$\Omega = \{(c,c,c),(c,c,k),(c,k,c),(c,k,k),(k,c,c),(k,c,k),(k,k,c),(k,k,k)\}$$
 Se X é o número de "cara" que pode-se ter então X tem os seguintes valores: $0,1,2$ e 3 . Associando os valores a Ω , segue:

X	Evento Associado
0	$A_1 = \{(k,k,k)\}$
1	$A_2 = \{(c, k, k), (k, c, k), (k, k, c)\}$
2	$A_3 = \{(c, c, k), (c, k, c), (k, c, c)\}$
3	$A_4 = \{(c,c,c)\}$

Tabela: Resolução do Exemplo 01.

São lançadas três moedas. Seja X o número de ocorrências de "cara". Qual a distribuição de probabilidade de X? Solução:

$$\Omega = \{(c,c,c),(c,c,k),(c,k,c),(c,k,k),(k,c,c),(k,c,k),(k,k,c),(k,k,k)\}$$
 Se X é o número de "cara" que pode-se ter então X tem os seguintes valores: $0,1,2$ e 3 . Associando os valores a Ω , segue:

X	Evento Associado
0	$A_1 = \{(k,k,k)\}$
1	$A_2 = \{(c, k, k), (k, c, k), (k, k, c)\}$
2	$A_3 = \{(c, c, k), (c, k, c), (k, c, c)\}$
3	$A_4 = \{(c,c,c)\}$

Tabela: Resolução do Exemplo 01.

Associando a cada evento uma probabilidade temos que:

$$P(X = 0) = P(A_1) = \frac{1}{8}$$

Associando a cada evento uma probabilidade temos que:

$$P(X = 0) = P(A_1) = \frac{1}{8}$$

 $P(X = 1) = P(A_2) = \frac{3}{8} = P(X = 2) = P(A_3)$

Associando a cada evento uma probabilidade temos que:

$$P(X = 0) = P(A_1) = \frac{1}{8}$$

$$P(X = 1) = P(A_2) = \frac{3}{8} = P(X = 2) = P(A_3)$$

$$P(X = 3) = P(A_4) = \frac{1}{8}$$

Dessa maneira:

X Evento Associado

X	Evento Associado
0	$\frac{1}{8}$
	<u> </u>

X	Evento Associado
0	$\frac{1}{8}$
1	3 - 8

X	Evento Associado
0	$\frac{1}{8}$
1	$\frac{3}{8}$
2	3 - 8

X	Evento Associado
0	1 8
1	3 - 8
2	3 - 8
3	$\frac{1}{8}$
	1

Tabela: Resolução do Exemplo 01.

Dessa maneira:

X	Evento Associado
0	1 8
1	3 - 8 - 3
2	3 - 8
3	$\frac{1}{8}$
	1

Tabela: Resolução do Exemplo 01.

Através do Gráfico e Diagrama

Definição de Variável Aleatória:

É a função que associa a todo evento pertencente a uma partição do espaço amostral um único valor real.

No caso discreto, a variável deve assumir valores em um conjunto finito ou em um conjunto infinito, porém enumerável.

No caso finito, será indicado por:

$$X: x_1, x_2, \ldots, x_n$$

Definição Função de Probabilidade:

É a função que associa a cada valor assumido pela variável aleatória a probabilidade do evento correspondente, isto é:

$$P(X = x_i) = P(A_i), i = 1, 2, ..., n$$

Definição Distribuição de Probabilidades da Variável Aleatória X: É o conjunto $\{x_i, p(x_i), i = 1, 2, ..., n\}$.

Definição Distribuição de Probabilidades da Variável Aleatória X:

É o conjunto $\{x_i, p(x_i), i = 1, 2, ..., n\}$.

Observação: Para que faça sentido uma distribuição de probabilidades de uma variável aleatória X, é necessário que:

$$\sum_{i=1}^n p(x_i) = 1$$

Esperança Matemática

Quando trabalhamos com distribuições de probabilidades de uma variável aleatória discreta, os parâmetros da distribuição são características numéricas de grande importância.

Esperança Matemática

Quando trabalhamos com distribuições de probabilidades de uma variável aleatória discreta, os parâmetros da distribuição são características numéricas de grande importância.

O primeiro parâmetro é a *esperança matemática* (ou simplesmente média) de uma variável aleatória.

Esperança Matemática

Quando trabalhamos com distribuições de probabilidades de uma variável aleatória discreta, os parâmetros da distribuição são características numéricas de grande importância.

O primeiro parâmetro é a *esperança matemática* (ou simplesmente média) de uma variável aleatória.

Definição Esperança Matemática:

$$E(X) = \sum_{i=1}^{n} x_i \cdot p(x_i)$$

A esperança matemática é um número real. É também uma média aritmética ponderada.

Notação: E(X), $\mu(x)$, μ_x , μ .

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado? *Solução:*

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Solução:

Suponha que em 100 carros, 97 dão lucro de R\$1.000,00 e 3 dão prejuízo de R\$29.000,00 (R\$30.000,00 - R\$1.000,00).

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Solução:

Suponha que em 100 carros, 97 dão lucro de R\$1.000,00 e 3 dão prejuízo de R\$29.000,00 (R\$30.000,00 - R\$1.000,00).

Lucro total:

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Solução:

Suponha que em 100 carros, 97 dão lucro de R\$1.000,00 e 3 dão prejuízo de R\$29.000,00 (R\$30.000,00 - R\$1.000,00).

Lucro total: $97 \cdot 1.000 - 3 \cdot 29.000 = R$10.000,00$

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Solução:

Suponha que em 100 carros, 97 dão lucro de R\$1.000,00 e 3 dão prejuízo de R\$29.000,00 (R\$30.000,00 - R\$1.000,00).

Lucro total: $97 \cdot 1.000 - 3 \cdot 29.000 = R$10.000,00$

Lucro médio por carro:

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Solução:

Suponha que em 100 carros, 97 dão lucro de R\$1.000,00 e 3 dão prejuízo de R\$29.000,00 (R\$30.000,00 - R\$1.000,00).

Lucro total: $97 \cdot 1.000 - 3 \cdot 29.000 = R$10.000,00$

Lucro médio por carro: R\$10.000, 00/100 = R\$100, 00

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000,00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Solução:

Suponha que em 100 carros, 97 dão lucro de R\$1.000,00 e 3 dão prejuízo de R\$29.000,00 (R\$30.000,00 - R\$1.000,00).

Lucro total: $97 \cdot 1.000 - 3 \cdot 29.000 = R$10.000,00$

Lucro médio por carro: R\$10.000,00/100 = R\$100,00

Se chamarmos de X o lucro por carro, e o lucro médio por carro de E(X), teremos:

Exemplo 01: Uma seguradora paga R\$30.000,00 em caso de acidente de carro e cobra uma taxa de R\$1.000, 00. Sabe-se que a probabilidade de que um carro sofra acidente é de 3%. Quanto espera a seguradora ganhar por carro segurado?

Solução:

Suponha que em 100 carros, 97 dão lucro de R\$1.000,00 e 3 dão prejuízo de R\$29.000,00 (R\$30.000,00 - R\$1.000,00).

Lucro total: $97 \cdot 1.000 - 3 \cdot 29.000 = R$10.000, 00$

Lucro médio por carro: R\$10.000,00/100 = R\$100,00

Se chamarmos de X o lucro por carro, e o lucro médio por carro de E(X), teremos:

$$E(X) = \frac{0.97 \cdot 1.000}{0.03 \cdot 29.000} = 100$$

Propriedades da Esperança Matemática

• E(k) = k, onde k é uma constante;

Propriedades da Esperança Matemática

- **1** E(k) = k, onde k é uma constante;

- **1** E(k) = k, onde k é uma constante;
- **3** $E(X \pm Y) = E(X) \pm E(Y)$;

- E(k) = k, onde k é uma constante;
- **3** $E(X \pm Y) = E(X) \pm E(Y);$
- $E\left\{\sum_{i=1}^{n} X_{i}\right\} = \sum_{i=1}^{n} \{E(X_{i})\};$

- \bullet E(k) = k, onde k é uma constante;
- **3** $E(X \pm Y) = E(X) \pm E(Y);$
- $E\left\{\sum_{i=1}^{n} X_{i}\right\} = \sum_{i=1}^{n} \{E(X_{i})\};$
- **5** $E(aX \pm b) = aE(X) \pm b$, onde $a \in b$ são constantes;

- E(k) = k, onde k é uma constante;
- **3** $E(X \pm Y) = E(X) \pm E(Y);$
- $E\left\{\sum_{i=1}^{n} X_{i}\right\} = \sum_{i=1}^{n} \{E(X_{i})\};$
- **5** $E(aX \pm b) = aE(X) \pm b$, onde $a \in b$ são constantes;
- **6** $E(X \mu_X) = 0.$

- E(k) = k, onde k é uma constante;
- **3** $E(X \pm Y) = E(X) \pm E(Y);$
- $E\left\{\sum_{i=1}^{n} X_{i}\right\} = \sum_{i=1}^{n} \{E(X_{i})\};$
- **5** $E(aX \pm b) = aE(X) \pm b$, onde $a \in b$ são constantes;
- **6** $E(X \mu_X) = 0.$

Variância

A medida que dá o grau de dispersão (ou concentração) de probabilidade em torno da média é a *variância*.

Variância

A medida que dá o grau de dispersão (ou concentração) de probabilidade em torno da média é a *variância*.

Definição Variância:

$$VAR(X) = \sum_{i=1}^{n} (x_i - \mu_x)^2 \cdot p(x_i)$$

Notação: VAR(X), V(X), $\sigma^2(X)$, σ^2_X , σ^2 .

Variância

A medida que dá o grau de dispersão (ou concentração) de probabilidade em torno da média é a *variância*.

Definição Variância:

$$VAR(X) = \sum_{i=1}^{n} (x_i - \mu_x)^2 \cdot p(x_i)$$

Notação: VAR(X), V(X), $\sigma^2(X)$, σ^2_X , σ^2 .

Observação: Quanto menor a variância, menor o grau de dispersão de probabilidades em torno da média e vice-versa; quanto maior a variância, maior e grau de dispersão da probabilidade em torno da média.

Definição Desvio Padrão:

É a raiz quadrada da variância de X, isto é:

$$\sigma_{\mathsf{X}} = \sqrt{\mathsf{VAR}(\mathsf{X})}$$

Definição Desvio Padrão:

É a raiz quadrada da variância de X, isto é:

$$\sigma_{X} = \sqrt{VAR(X)}$$

Propriedades da Variância

• VAR(k) = 0, onde k é constante;

Definição Desvio Padrão:

É a raiz quadrada da variância de X, isto é:

$$\sigma_{\mathsf{X}} = \sqrt{\mathsf{VAR}(\mathsf{X})}$$

Propriedades da Variância

- VAR(k) = 0, onde k é constante;

Definição Desvio Padrão:

É a raiz quadrada da variância de X, isto é:

$$\sigma_{\mathsf{X}} = \sqrt{\mathsf{VAR}(\mathsf{X})}$$

Propriedades da Variância

- VAR(k) = 0, onde k é constante;
- $2 VAR(k \cdot X) = k^2 \cdot VAR(X);$

Definição Desvio Padrão:

É a raiz quadrada da variância de X, isto é:

$$\sigma_{\mathsf{X}} = \sqrt{\mathsf{VAR}(\mathsf{X})}$$

Propriedades da Variância

- VAR(k) = 0, onde k é constante;
- **3** $VAR(X \pm Y) = VAR(X) + VAR(Y) \pm 2cov(X, Y)$ Definição Covariância entre X e Y:

$$cov(X, Y) = E\{[X - E(X)] \cdot [Y - E(Y)]\}$$

A covariância mede o grau de dependência entre as duas variáveis X e Y.

1
$$VAR\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} VAR(X_{i}) + 2\sum_{i< j}^{n} cov(X_{i}, Y_{j})$$

Definição Desvio Padrão:

É a raiz quadrada da variância de X, isto é:

$$\sigma_{\mathsf{X}} = \sqrt{\mathsf{VAR}(\mathsf{X})}$$

Propriedades da Variância

- VAR(k) = 0, onde k é constante;
- **3** $VAR(X \pm Y) = VAR(X) + VAR(Y) \pm 2cov(X, Y)$ Definição Covariância entre X e Y:

$$cov(X, Y) = E\{[X - E(X)] \cdot [Y - E(Y)]\}$$

A covariância mede o grau de dependência entre as duas variáveis X e Y.

- $VAR\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} VAR(X_i) + 2\sum_{i< j}^{n} cov(X_i, Y_j)$
- **5** $VAR(aX \pm b) = a^2 VAR(X)$, $a \in b$ constantes.

Definição Função de Distribuição:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

Definição Função de Distribuição:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

Definição Função de Distribuição:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

1
$$0 \le F(x) \le 1$$
;

Definição Função de Distribuição:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

- **1** $0 \le F(x) \le 1$;
- ② $(F \infty) = 0$;

Definição Função de Distribuição:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

- **1** $0 \le F(x) \le 1$;
- **2** $(F-\infty)=0$;
- **③** F(+∞) = 1;

Definição Função de Distribuição:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

Propriedades de F(x)

- **1** $0 \le F(x) \le 1$;
- **2** $(F-\infty)=0$;
- **3** $F(+\infty) = 1$;

As demais propriedades requer conhecimentos prévios de cálculo.

Suponha que uma variável aleatória X tenha a seguinte distribuição de probabilidades:

Suponha que uma variável aleatória X tenha a seguinte distribuição de probabilidades:

X	P(X)
1	0, 1
2	0, 2
3	0, 4
4	0, 2
5	0, 1

Tabela: Resolução do Exemplo 01.

Dessa maneira:

Dessa maneira:

$$F(1) = P(X \le 1) = P(X = 1) = 0, 1$$

$$F(2) = P(X \le 2) = P(X = 1) + P(X = 2) = 0, 3$$

$$F(3) = P(X \le 3) = P(X = 1) + P(X = 2) + P(X = 3)$$

$$= F(2) + P(X = 3) = 0, 3 + 0, 4 = 0, 7$$

$$\vdots$$

$$F(5) = P(X \le 4) + P(X = 5) = F(4) + P(X = 5) = 0, 9 + 0, 1 = 1$$

Dessa maneira:

$$F(1) = P(X \le 1) = P(X = 1) = 0, 1$$

$$F(2) = P(X \le 2) = P(X = 1) + P(X = 2) = 0, 3$$

$$F(3) = P(X \le 3) = P(X = 1) + P(X = 2) + P(X = 3)$$

$$= F(2) + P(X = 3) = 0, 3 + 0, 4 = 0, 7$$

$$\vdots$$

$$F(5) = P(X \le 4) + P(X = 5) = F(4) + P(X = 5) = 0, 9 + 0, 1 = 1$$

Pode-se utilizar valores contínuos também.

Dessa maneira pode-se resumir através de:

$$F(x) = \begin{cases} 0 & \text{,se } X < 1 \\ 0, 1 & \text{,se } 1 \le X < 2 \\ 0, 3 & \text{,se } 2 \le X < 3 \\ 0, 7 & \text{,se } 3 \le X < 4 \\ 0, 9 & \text{,se } 4 \le X < 5 \\ 1 & \text{,se } X \ge 5 \end{cases}$$

Dessa maneira pode-se resumir através de:

$$F(x) = \begin{cases} 0 & \text{,se } X < 1 \\ 0, 1 & \text{,se } 1 \le X < 2 \\ 0, 3 & \text{,se } 2 \le X < 3 \\ 0, 7 & \text{,se } 3 \le X < 4 \\ 0, 9 & \text{,se } 4 \le X < 5 \\ 1 & \text{,se } X \ge 5 \end{cases}$$

O domínio de F(x) será $D = \{\mathbb{R}\}$ e o contradomínio será o conjunto $\{0,1;0,3;0,7;0,9;1\}$.