NỘI SUY TRUNG TÂM

Hà Thị Ngọc Yến Hà nội, 9/2019

Ý TƯỞNG

- Phép nội suy có sai số nhỏ nhất khi x ở khoảng trung tâm của đoạn nội suy
- Đa thức nội suy Newton có thể kết nạp mốc nội suy theo thứ tự bất kỳ
- Trích xuất mốc nội suy gần nhất với giá trị cần tính, kết nạp dần mộc nội suy về cả hai phía

- Mốc cách đều $x_k = x_0 + kh, \ k \in \mathbb{Z}$
- Số mốc lẻ, xuất phát từ mốc chính giữa
- Kết nạp bên phải trước, xen kẽ P,T,P,T,....

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

$$+ a_2(x - x_0)(x - x_1)(x - x_{-1})$$

$$+ a_2(x - x_0)(x - x_1)(x - x_{-1})(x - x_2) \cdots$$

Xây dựng công thức

$$P(x_0) = a_0 = y_0$$

$$P(x_1) = y_1 = y_0 + a_1 h \Rightarrow a_1 = \frac{\Delta y_0}{h}$$

$$P(x_{-1}) = y_{-1} = y_0 + \frac{\Delta y_0}{h}(-h) + a_2(-h)(2h) \Rightarrow a_2 = \frac{\Delta^2 y_{-1}}{2h^2}$$

5	x_{-2}	y_{-2}	?	?	?	?		
3	x_{-1}	y_{-1}	Δy_{-1}	$\Delta^2 y_{-1}$	$\Delta^3 y_{-1}$			
1	x_0	y_0	Δy_0	$\Delta^2 y_0$				
2	x_1	y_1	Δy_1	Ü				
4	x_2	y_2						

Xây dựng công thức

$$y_0 \to \Delta y_0 \to \Delta^2 y_{-1} \to \Delta^3 y_{-1} \to \Delta^4 y_{-2} \to \Delta^5 y_{-2} \to \cdots \to \Delta^{2i} y_{-i} \to \Delta^{2i+1} y_{-i} \to \cdots$$

$$a_{2i} = \frac{\Delta^{2i} y_{-i}}{(2i)!h^{2i}} \qquad a_{2i+1} = \frac{\Delta^{2i+1} y_{-i}}{(2i+1)!h^{2i+1}}$$

$$P(x) = P(x_0 + th) = y_0 + t\Delta y_0 + \frac{\Delta^2 y_{-1}}{2!} t(t-1) + \frac{\Delta^3 y_{-1}}{3!} (t+1) t(t-1) + \frac{\Delta^4 y_{-2}}{4!} (t+1) t(t-1) (t-2) + \cdots$$

Ý tưởng thuật toán

$a_0 \times$			1	$a_0 \times$						1
$a_1 \times$			t	$a_1 \times$					1	0
$a_2 \times$		t	(t-1)	$a_2 \times$				1	-1	0
$a_3 \times$	t	(t-1)	(t+1)	$a_3 \times$			1	0	-1	0
$a_4 \times$	$t \qquad (t-1)$	(t+1)	(t-2)	$a_4 \times$		1	-2	-1	2	0
$a_5 \times$	t (t-1) (t+1)	(t-2)	(t+2)	$a_5 \times$	1	0	- 5	0	4	0
•••				•••						

- Mốc cách đều $x_k = x_0 + kh, \ k \in \mathbb{Z}$
- Số mốc lẻ, xuất phát từ mốc chính giữa
- Kết nạp bên trái trước, xen kẽ T, P, T, P,....

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_{-1})$$

$$+ a_2(x - x_0)(x - x_{-1})(x - x_1)$$

$$+ a_2(x - x_0)(x - x_1)(x - x_{-1})(x - x_{-2}) \cdots$$

Xây dựng công thức

$$P(x_0) = a_0 = y_0$$

$$P(x_{-1}) = y_{-1} = y_0 + a_1(-h) \Rightarrow a_1 = \frac{\Delta y_{-1}}{h}$$

$$P(x_1) = y_1 = y_0 + \frac{\Delta y_{-1}}{h}(h) + a_2(h)(2h) \Rightarrow a_2 = \frac{\Delta^2 y_{-1}}{2h^2}$$

4	x_{-2}	y_{-2}	Δy_{-2}	$\Delta^2 y_{-2}$	$\Delta^3 y_{-2}$?		
2	x_{-1}	y_{-1}	Δy_{-1}	$\Delta^2 y_{-1}$?			
1	x_0	y_0	Δy_0	?				
3	x_1	y_1	?					
5	x_2	y_2						

Xây dựng công thức

$$y_0 \to \Delta y_{-1} \to \Delta^2 y_{-1} \to \Delta^3 y_{-2} \to \Delta^4 y_{-2} \to \Delta^5 y_{-3} \to \cdots \to \Delta^{2i-1} y_{-i} \to \Delta^{2i} y_{-i} \to \cdots$$

$$a_{2i-1} = \frac{\Delta^{2i-1} y_{-i}}{(2i-1)!h^{2i-1}} \qquad a_{2i} = \frac{\Delta^{2i} y_{-i}}{(2i)!h^{2i}}$$

$$P(x) = P(x_0 + th) = y_0 + t\Delta y_{-1} + \frac{\Delta^2 y_{-1}}{2!}(t+1)t + \frac{\Delta^3 y_{-2}}{3!}(t+1)t(t-1) + \frac{\Delta^4 y_{-2}}{4!}(t+2)(t+1)t(t-1) + \cdots$$

Ý tưởng thuật toán

$a_0 \times$					1	$a_0 \times$						1
$a_1 \times$					t	$a_1 \times$					1	0
$a_2 \times$				t	(t+1)	$a_2 \times$				1	1	0
$a_3 \times$			t	(t+1)	(t-1)	$a_3 \times$			1	0	-1	0
$a_4 \times$		t	(t+1)	(t-1)	(t+2)	$a_4 \times$		1	2	-1	-2	0
$a_5 \times$	t	(t+1)	(t-1)	(t+2)	(t-2)	$a_5 \times$	1	0	- 5	0	4	0
•••						•••						

Gauss I và Gauss II

•

$a_0 \times$	1	1
$a_1 \times$	t	t
$a_2 \times$	$t \qquad (t-1)$	$t \qquad (t+1)$
$a_3 \times$	$t \qquad (t-1) (t+1)$	$t \qquad (t+1) (t-1)$
$a_4 \times$	$t \qquad (t-1) (t+1) (t-2)$	$t \qquad (t+1) (t-1) (t+2)$
$a_5 \times$	t (t-1) (t+1) (t-2) (t+2)	t (t+1) (t-1) (t+2) (t-2)
• • •		

Gauss I và Gauss II

$a_0 \times$						1						1
$a_1 \times$					1	0					1	0
$a_2 \times$				1	-1	0				1	1	0
$a_3 \times$			1	0	-1	0			1	0	-1	0
$a_4 \times$		1	-2	-1	2	0		1	2	-1	-2	0
$a_5 \times$	1	0	- 5	0	4	0	1	0	- 5	0	4	0
•••												

Công thức Sterling

 Ý tưởng: thác triển đồng thời về cả hai phía.

$$Sterlin = \frac{Gauss I + Gauss II}{2}$$

$$y_0 + t\Delta y_0 + \frac{\Delta^2 y_{-1}}{2!} t(t-1) + \frac{\Delta^3 y_{-1}}{3!} (t+1) t(t-1) + \frac{\Delta^4 y_{-2}}{4!} (t+1) t(t-1) (t-2) + \cdots$$

$$y_0 + t\Delta y_{-1} + \frac{\Delta^2 y_{-1}}{2!} (t+1)t + \frac{\Delta^3 y_{-2}}{3!} (t+1)t(t-1) + \frac{\Delta^4 y_{-2}}{4!} (t+2)(t+1)t(t-1) + \cdots$$

Công thức Sterling

Cộng từng cặp số hạng:

$$y_{0} \qquad \Delta y_{0}t \qquad \frac{\Delta^{2}y_{-1}}{2!}t(t-1) \qquad \frac{\Delta^{3}y_{-1}}{3!}t(t^{2}-1) \qquad \cdots$$

$$y_{0} \qquad \Delta y_{-1}t \qquad \frac{\Delta^{2}y_{-1}}{2!}t(t+1) \qquad \frac{\Delta^{3}y_{-2}}{3!}t(t^{2}-1) \qquad \cdots$$

$$y_{0} \qquad \frac{\Delta y_{0} + \Delta y_{-1}}{2}t \qquad \frac{\Delta^{2}y_{-1}}{2!}t^{2} \qquad \frac{\Delta^{3}y_{-1} + \Delta^{3}y_{-2}}{2 \times 3!}t(t^{2}-1) \qquad \cdots$$

$$x_{-n} ... x_{-1} x_0 x_1 ... x_n x_{n+1}$$

$$GaussI : x_0 \to x_1 \to x_{-1} \to x_2 \to \cdots \to x_n \to x_{-n} \to x_{n+1}$$

$$GaussII : x_1 \to x_0 \to x_2 \to x_{-1} \to \cdots \to x_{-n+1} \to x_{n+1} \to x_{-n}$$

$$Bessel = \frac{GaussI + GaussII}{2}$$

$$P_{GI}(x_0 + th)$$

$$= y_0 + t\Delta y_0 + \frac{\Delta^2 y_{-1}}{2!} t(t-1) + \frac{\Delta^3 y_{-1}}{3!} (t+1) t(t-1) + \cdots$$

$$+\frac{\Delta^{2n+1}y_{-n}}{(2n+1)!}t(t^2-1)....(t^2-n^2)$$

$$P_{GII}(x_0 + th)$$

$$= y_1 + (t-1)\Delta y_0 + \frac{\Delta^2 y_0}{2!} (t-1)t + \frac{\Delta^3 y_{-1}}{3!} t (t-1)(t-2) + \cdots$$

$$+\frac{\Delta^{2n+1}y_{-n}}{(2n+1)!}t(t^2-1)....(t^2-(n-1)^2)(t-n)$$

$$\begin{split} &P_{GII}\left(x_{0}+th\right) \\ &= y_{1}+\left(t-1\right)\Delta y_{0}+\frac{\Delta^{2}y_{0}}{2!}\left(t-1\right)t+\frac{\Delta^{3}y_{-1}}{3!}t\left(t-1\right)\left(t-2\right)+\cdots \\ &+\frac{\Delta^{2n+1}y_{-n}}{\left(2n+1\right)!}t\left(t^{2}-1\right).....\left(t^{2}-\left(n-2\right)^{2}\right)\left(t-n+1\right)\left(t-n\right) \\ &P\left(x_{0}+th\right)=\frac{y_{0}+y_{1}}{2}+\frac{\Delta y_{0}}{2}\left(t-\frac{1}{2}\right)+\frac{\Delta^{2}y_{0}+\Delta^{2}y_{-1}}{2\times2!}t\left(t-1\right)+\frac{\Delta^{3}y_{-1}}{2\times3!}t\left(t-1\right)\left(t-\frac{1}{2}\right) \end{split}$$

Các vấn đề cần giải quyết

- Mốc cách đều
 - Bảng sai phân
 - Thêm mốc nội suy
 - Đa thức nội suy
 - Trích xuất dữ liệu phù hợp yêu cầu