EE724 Tutorial

Shubham Patil, Ph.D. Electrical Engineering (EE7), IIT Bombay

Group details

Group							
No	Member 1	Roll number 1	Member 2	Roll number 2	Member 3	Roll number 3	TCAD server
					Kartik Utkarsh		
1	Tanveer Molla	22m1138	Kulkarni Atharva	210070047	Chikkanagoudar	21d170023	EE724_1
2	Anirudh Kansal	20d070013	Jahnavi Devangula	20d070025	Saima Faiyaz Patharwat	22B1244	EE724_2
3	Chinmay Moorjani	22B1212	Sravan K Suresh	22B3936	Sachi Deshmukh	22B1213	EE724_3
4	Anupam Sardar	21D070015	Kamalesh Barman	21D070034	Runal Kumar Panja	23D0518	EE724_4
	Shobhit						
5	Maheshwari	210070081	Kushal Gajbe	210070048	Sanket Kothawade	210070044	EE724_5
					Rajput Nilkhileshsing		
6	Anubhav Bhatla	200070008	Hemant Hajare	20D070037	Kailassing	200070067	EE724_6
7	Siddharth Solanki	21d070072	Nabeel Ahmed	19B030016	Abhinav Paul	23M1136	EE724_7
8	Abhishek Mallik	23d0533	Aakash Deshpande	23d0529	Indrajit Maity	23d0531	EE724_8
9	Harsh Pujare	21d180015	Kushagra Gehlot	21D070041	Abhineet Agarwal	22b1219	EE724_9
10	Debankita	23d0527	Kavin Dave	23d0528	Rahul Awale	22d2018	EE724_10

Content

- Introduction FinFET
- TCAD?
 - Why and how to use
 - 3D and 2D FinFET analysis
- FinFET designing for performance improvement
- Takeaways

Introduction to FinFET

FinFET TEM

Planar MOSFET

FinFET schematic and cross-section

FinFET with variability

How do you simulate?

LER: Line Edge Roughness

LWR: Line Width Roughness

GER: Gate Edge Roughness MGG: Metal Gate Granularity

Simulate real-world device → TCAD

TCAD: Why, What, How

- TCAD: Enables R&D for upcoming technology
- Solves fundamental, physical, and partial differential equations (Drift-Diffusion, Poisson, etc.) for discretized geometries

Process simulation

Create mesh

Run simulation

Sentaurus Process (SPROCESS) or Structure Editor (SDE)

Sentaurus Mesh (SNMesh)

Sentaurus Device (SDEVICE)

Sentaurus Visualization (SVISUAL)

- Define equation: Physics to solve
- Boundary condition: Electrode potential
- Solve equation at each mech point
- Files
 - .tdr Structural information
 - plt Device characteristic information

View results

How to start TCAD

- Download and install MobaXterm
- Start new session
 - Write command: ssh -XY username@10.107.106.22
 - Press enter
 - Usernames: Find in the sheet
 - Password: Same as username

```
Last login: Tue Jan 23 10:24:36 2024 from 10.107.102.112
-bash: /usr/local/softwares/synopsys/SentaurusL2016/sentaurus/L_2016.03/bin:/usr/synopsys/Trus_vL_2016.03/bin/:/usr/local/Softwares/Qtiplot/qtiplot-0.9.8.7:/usr/local/Softwares/ICCAPcal/Softwares/Sentaurus/Sentaurus_vG_2012.06/bin:/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:[patilshubham@mcl22 ~]$
```


- Write: swb & Press enter
- Set working directory

23-02-2024 Shubham Patil, IIT Bombay

SWB environment

One project: FinFET

• In home, you will find the **0._I_FinDEmo** project. Double click to open

\[S\] /home/users/patilshubham/0._1_FinDEmo (Runtime Mode: Editable, Organization: Traditional) - SWB@mcl18 vT-2022.03 Project Edit Scheduler View Scenario Tool Parameter Experiments Nodes Variables Extensions Help 🗎 🔻 🧗 🍉 🎧 😂 🙆 🗶 🐰 😘 🌇 🖈 Scenario: all Projects Project Scheduler 🖈 🧰 /home/users/patilshubham -€ 0. 1 FinDEmo 🗧 O. FinDEmo No Variables 0._NSDEMO - 1.2_DGFET_II 1.2 Tr SOI D -**€** 1.3_Tr_SOL [n2]: --[n1]: 1 [n4]: --[n3]: 2 -**€** 1.4_Tr_SOi - Tr_SOLIDVG -<mark>=</mark> 1.6_STL_TR_SOI_Ram -**€** 1.7_STL_2 - 🔁 1. Ckt_simulation -🗲 1. DG Rekib 由— in 1. EDTM Ckt simulation - E 1._EE724_FInFET_3D_SProces - **毛** 1.__EE7274__7nmFIn -<mark>€</mark> 1. Ge BG FET - E 1. GE DG FET - 🔁 1. GE MOS pip Check -**毛** 1. GIF SOI - 🔁 1._non_local_SOI 1. PN junction PI

Open TDR

FinFET in TCAD

FinFET: Fabrication steps

Device Research: Virtual Fab solution

- 1. Take cutlines
 - 2. Analyse structure

FinFET structure

■ 3D → 2D FinFET

FinFET: Is something weird?

FinFET: 2D view

FinFET: 2D view

17

- 1. Is it something you expected?
- 2. If yes, why?
- 3. If no, what changes are needed?

FinFET: Simulation questions

Think:

- Owhat are the two types of boundary conditions?
- o In the half-fin model, what are the boundary condition

• Pair:

- Owhy are the advantage/disadvantage of the half fin model?
 - Simulation cheaper
 - Spatial design variations can't be captured
 - Design with maybe different doping profiles, and workfunction
- For a case where S/D is at zero bias, can a smaller simulation space suffice e.g. quarter fin model?
 - No, can't replicate

2D FinFET: Potential profile comparison vs. MATLAB

0.04

2D FinFET: Potential profile comparison vs. MATLAB

With proper scaling the dimension we can achieve this

FinFET design: Designer perspective

$$I_{D} = \mu * C_{ox} * \frac{W}{L} * (V_{GS} - V_{T})$$

$$V_{T} = f(N_{channel})$$

- Now you understand the FinFET
- Suppose you are a device engineer, how will you improve the FinFET performance?
 - 1. What are the parameters to be considered for performance improvement?
 - On-current, OFF current, SS, DIBI
 - What about parasitic capacitance?

2. How to do it?

- L_G scaling: is it only enough?
 - Draw EBD for long and short LG
- L_G and W: Will the performance improve
- What about T_{OX}?
 - Can you keep on scaling it?
 - What about the gate leakage current>
- L_G, W, H, and Tox

FinFET design: Designer perspective

22

2D FinFET

Draw conduction band profiles?

FinFET: EBD

FinFET: L_G scaling impact

FinFET: L_G scaling impact

TCAD SDE: Commands

MOSFET: Sde file for reference

- Define BOX
- (sdegeo:create-rectangle (position 0 0 0) (position L W 0) "Germanium" "R.Sub")
 - Germanium: Replace your material (Silicon, Oxide, HfO2, Nitride...)
 - o R.Sub: Dummy name for the box, works as its identity
- Define doping in BOX (sdedr:define-constant-profile "Const.Sub" "BoronActiveConcentration" 1e16) (sdedr:define-constant-profile-region "PlaceCD.Sub" "Const.Sub" "R.Sub")

Si (P, le16 cm⁻³

Si

 Meshing in BOX (sdedr:define-refinement-size "size_R.Sub2 " 0.01 0.01 00.01 0.002 0.005 0.005) (sdedr:define-refinement-placement "Place_R.Sub" " size_R.Sub2 " " R.Sub ")

Contact
 (sdegeo:set-contact (find-edge-id (position (/ L 2) W 0.0)) "drain")

Save TDR: (sde:build-mesh "SOI_n@node@")

TCAD Sdevice File

Syntax: ____.cmd

- Section
 - File: I/p and o/p files
 - Electrode: All the contacts (Source, Drain, Gate ...)
 - Physics: All models for simulation (Transport, Fermi, Recombination/Generation, Mobility models)
 - Plot: Variables to be visualized (V, E, I, n_e, n_h)
 - Math: Control for the solver (Iterations, accuracy, method...)
 - Solve: Simulation condition (Ramping of voltages)

TCAD Sentaurus Hands-on Tutorial: Sentaurus Workbench and Structure Editor and SVisual

MOSFET: Sdevice File for reference

Learnings

- Working with TCAD
- Visualize TDR and analyze 3D and 2D structure
 - Electrostatic profiles
- FinFET Device designing
 - Scaling
 - o EBD

Thank You

Stay cool