

Self-Training with Weak Supervision

Giannis Karamanolakis, Subhabrata Mukherjee, Guoqing Zheng, Ahmed Hassan Awadallah

Columbia University gkaraman@cs.columbia.edu

Microsoft Research {submukhe, zheng, hassanam}@microsoft.com

Task Specification

(e.g., document-level, binary sentiment classification)

Task Specification

(e.g., document-level, binary sentiment classification)

Standard Benchmarks

- Fixed task specifications
- Large-scale labeled data

Task Specification

(e.g., document-level, binary sentiment classification)

Standard Benchmarks

- Fixed task specifications
- Large-scale labeled data

Real-World Applications

- Dynamic task specifications
- Limited or no labeled data

Task Specification

(e.g., document-level, binary sentiment classification)

"labeled data bottleneck"

Standard Benchmarks

- Fixed task specifications
- Large-scale labeled data

- Dynamic task specifications
- Limited or no labeled data

Real-World Applications

Addressing the Labeled Data Bottleneck with Weak Supervision

Our Goal:

leverage domain expertise in absence of large-scale labeled data

leverage generalization power of deep neural networks

Weak Supervision Via Domain-Specific Rules

- Rules: heuristic labeling functions written by domain experts
- Rules are used to automatically annotate unlabeled data

Example: regular expression patterns

```
Spam classification
```

```
def regex_check_out(x):
    return SPAM if re.search("check.*out", x) else ABSTAIN
```

Question type classification

```
def numeric_question(x):
    return NUMERIC if x.startswith("when") else ABSTAIN
```

Weak Supervision Via Domain-Specific Rules

- Rules: heuristic labeling functions written by domain experts
- Rules are used to automatically annotate unlabeled data

Example: regular expression patterns

```
Spam
classification

def regex_check_out(x):
    return SPAM if re.search("check.*out", x) else ABSTAIN

Question type
classification

def numeric_question(x):
    return NUMERIC if x.startswith("when") else ABSTAIN
```

Example: heuristic functions based on lexicons / models / knowledge bases

Sentiment classification

```
def sentiment_lexicon_score(x, sentiwordnet):
    if sentiwordnet(x) > 0.8:
        return POSITIVE
    elif sentiwordnet(x) < 0.2:
        return NEGATIVE
    else:
        ABSTAIN</pre>
```

Challenges in Learning with Weak Rules

(1) Noise

$$rule(x_i) \rightarrow SPAM \times$$

True label: HAM

(2) Coverage

$$rule(x_i) \rightarrow ABSTAIN$$

(3) Conflicts

rule1
$$\rightarrow$$
 SPAM
rule2 \rightarrow HAM
rule3 \rightarrow SPAM
rule4 \rightarrow HAM

Our ASTRA Framework for Weak Supervision

Our ASTRA Framework for Weak Supervision

Our Contributions:

- 1. Present an **iterative self-training** mechanism for training deep neural networks (Student) with weak supervision
- 2. Present a **rule attention network** (RAN Teacher) for aggregating multiple weak sources with instance-specific weights and construct an **SSL objective**
- 3. Show the effectiveness of ASTRA on six benchmarks for text classification

Outline

1. Learning with Domain-Specific Rules

2. ASTRA: weAkly-supervised Self-TRAining

3. Experiments

4. Conclusions

How to Train Robust Classifiers with Weak Rules?

(1) Noise

(2) Low Coverage

(3) Conflicts

• Previous work ignore unlabeled instances that are not covered by rules [Ratner et al., 2017; Bach et al., 2019; Awasthi et al., 2020]

Previous work ignore unlabeled instances that are not covered by rules
 [Ratner et al., 2017; Bach et al., 2019; Awasthi et al., 2020]

Expert-defined rules are usually sparse:

6 real-world datasets
45 rules / dataset

- just 33% of instances covered by > 1 rule
- 40% of instances are not covered by any rules

• Previous work ignore unlabeled instances that are not covered by rules [Ratner et al., 2017; Bach et al., 2019; Awasthi et al., 2020]

Expert-defined rules are usually sparse:

6 real-world datasets
45 rules / dataset

- just 33% of instances covered by > 1 rule
- 40% of instances are not covered by any rules

Filtered-out

• Previous work ignore unlabeled instances that are not covered by rules [Ratner et al., 2017; Bach et al., 2019; Awasthi et al., 2020]

Expert-defined rules are usually sparse:

6 real-world datasets 45 rules / dataset

- just 33% of instances covered by > 1 rule
 - 40% of instances are not covered by any rules

Filtered-out

Don't throw them away!

Previous work ignore unlabeled instances that are not covered by rules
 [Ratner et al., 2017; Bach et al., 2019; Awasthi et al., 2020]

Expert-defined rules are usually sparse:

· We leverage all unlabeled instances for weak supervision via self-training

ASTRA: Weakly-Supervised Self-Training

- 1. Student
- 2. Teacher

ASTRA: Weakly-Supervised Self-Training

- 1. Student
- 2. Teacher

Represents input x using contextualized representations

Example: Question Type Classification (in TREC)

Question type y = "NUMERIC"

Student p_{θ}

- 2. classification
- 1. embedding (e.g., BERT)

input x: "What is the percentage of water content in the human body?"

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

Self-Training Paradigm

Few Labeled Data D_L

Student p_{θ}

Unlabeled Data $D_{\cal U}$

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

Self-Training Paradigm

$$\min_{\theta} \ \mathbb{E}_{x,y \in D_L} - \log \ p_{\theta}(y \mid x)$$

Unlabeled Data D_U

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

Self-Training Paradigm

$$\min_{\theta} \ \mathbb{E}_{x,y \in D_L} - \log \ p_{\theta}(y \mid x) \qquad \mathbb{E}_{x \in D_U} \ \mathbb{E}_{y \sim p_{\theta^*}(y \mid x)}$$

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

Self-Training Paradigm

$$\min_{\theta} \ \mathbb{E}_{x,y \in D_L} - \log \ p_{\theta}(y \mid x) \ + \ \lambda \mathbb{E}_{x \in D_U} \ \mathbb{E}_{y \sim p_{\theta^*}(y \mid x)} - \log \ p_{\theta}(y \mid x)$$

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

Self-Training Paradigm

$$\min_{\theta} \ \mathbb{E}_{x,y \in D_L} - \log \ p_{\theta}(y \mid x) + \lambda \mathbb{E}_{x \in D_U} \ \mathbb{E}_{y \sim p_{\theta^*}(y \mid x)} - \log \ p_{\theta}(y \mid x)$$

(-) Prone to error propagation

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain
- We train Student using Teacher's labels

Weakly-Supervised Self-Training

$$\min_{\theta} \ \mathbb{E}_{x,y \in D_L} - \log \ p_{\theta}(y \mid x) + \lambda \mathbb{E}_{x \in D_U} \ \mathbb{E}_{y \sim q_{\phi}*(y \mid x)} - \log \ p_{\theta}(y \mid x)$$

$$\mathbb{E}_{y \sim q_{\phi}*(y \mid x)}$$

ASTRA: Weakly-Supervised Self-Training

- 1. Student
- 2. Teacher: a Rule Attention Network (RAN)

Teacher (RAN)

Student (NN)

RAN aggregates weak labels predicted by rules and Student

input: "What is the percentage of water content in the human body?"

- RAN aggregates weak labels predicted by rules and Student
 - Heuristic rules cover only a subset of the data
 - Student covers more data via contextualized embeddings

input: "What is the percentage of water content in the human body?"

- RAN aggregates weak labels predicted by rules and Student
 - Heuristic rules cover only a subset of the data
 - Student covers more data via contextualized embeddings

- RAN aggregates weak labels predicted by rules and Student
- · RAN learns to predict instance-specific weights using rule attention

- RAN aggregates weak labels predicted by rules and Student
- RAN learns to predict instance-specific weights using rule attention
- RAN does not require rule supervision: we employ a SSL objective

RAN label

$$q_{i} = \frac{1}{Z} \sum_{j \in R} a_{i}^{j} q_{i}^{j} + (1 - a_{i}^{j}) u$$

Semi-Supervised Training Objective: $\mathcal{L}^{RAN} = -\sum_{(x_i, y_i) \in D_L} y_i \log q_i - \sum_{x_i \in D_U} q_i \log q_i$.

Cross-Entropy Min-Entropy (labeled data) (unlabeled data)

- RAN aggregates weak labels predicted by rules and Student
- RAN learns to predict instance-specific weights using rule attention
- RAN does not require rule supervision: we employ a SSL objective

RAN label

$$q_{i} = \frac{1}{Z} \sum_{j \in R} a_{i}^{j} q_{i}^{j} + (1 - a_{i}^{j})u$$

Semi-Supervised Training Objective: $\mathcal{L}^{RAN} = -\sum_{(x_i, y_i) \in D_L} y_i \log q_i - \sum_{x_i \in D_U} q_i \log q_i$.

Cross-Entropy Min-Entropy (labeled data) (unlabeled data)

high weights $a^j=1$ for rules j that agree in predictions q^j

more details in our paper!

Summary of our ASTRA Framework

- 1. Train **Student** using few labeled data
- 2. Iterate:
 - 1. Train RAN Teacher to aggregate weak rules and Student
 - 2. Train **Student** using Teacher's labels

Summary of our ASTRA Framework

- 1. Train **Student** using few labeled data
- 2. Iterate:
 - 1. Train RAN Teacher to aggregate weak rules and Student
 - 2. Train **Student** using Teacher's labels

Access to rules during test time?

- YES -> use Teacher (Student + Rules)
- NO -> use Student

Outline

1. Learning with Domain-Specific Rules

2. ASTRA: weAkly-supervised Self-TRAining

3. Experiments on 6 classification benchmarks

4. Conclusions

Experiments: Learning with Weak Supervision

Benchmark	# Rules	Rule Coverage
TREC (question classification)	68	46%
SMS (spam classification)	73	9%
YouTube (spam classification)	10	48%
CENSUS (income classification)	83	94%
MIT-R (slot filling)	15	1%
Spouse (relation classification)	9	8%

• Rule types: keywords, regular expressions, lexicons, knowledge bases

Experiments: Learning with Weak Supervision

Benchmark	# Rules	Rule Coverage
TREC (question classification)	68	46%
SMS (spam classification)	73	9%
YouTube (spam classification)	10	48%
CENSUS (income classification)	83	94%
MIT-R (slot filling)	15	1%
Spouse (relation classification)	9	8%

- Rule types: keywords, regular expressions, lexicons, knowledge bases
- Rules are sparse:
 - 66% of the examples are covered by **fewer than 2 rules**
 - 40% of the examples are **not covered** by any rule

	Learning to Weight		Unlabeled	Average
Method	Rules	Instances	(no rules)	Accuracy
PosteriorReg (Hu et al., 2016)	\checkmark	-	-	82.6
Snorkel (Ratner et al., 2017)	\checkmark	-	-	82.9
L2R (Ren et al., 2018a)	-	\checkmark	_	82.8
Standard self-training	-	-	\checkmark	83.5 (+0

• Self-training outperforms weak supervision approaches...

... using unlabeled data and no rules!

	Learning to Weight		Unlabeled	Average
Method	Rules	Instances	(no rules)	Accuracy
PosteriorReg (Hu et al., 2016)	√	-	-	82.6
Snorkel (Ratner et al., 2017)	\checkmark	-	_	82.9
L2R (Ren et al., 2018a)	-	\checkmark	_	82.8
Standard self-training	-	-	\checkmark	83.5
ImplyLoss (Awasthi et al., 2020)	\checkmark	\checkmark	-	85.2
ASTRA	\checkmark	\checkmark	\checkmark	88.0 (+3.

- Self-training outperforms weak supervision approaches
- ASTRA outperforms all previous approaches:

	Learning to Weight		Unlabeled	Average
Method	Rules	Instances	(no rules)	Accuracy
PosteriorReg (Hu et al., 2016)	√	-	-	82.6
Snorkel (Ratner et al., 2017)	\checkmark	-	_	82.9
L2R (Ren et al., 2018a)	-	\checkmark	_	82.8
Standard self-training	-	-	\checkmark	83.5
ImplyLoss (Awasthi et al., 2020)	\checkmark	\checkmark	-	85.2
ASTRA	\checkmark	\checkmark	\checkmark	88.0 (+3.

- Self-training outperforms weak supervision approaches
- ASTRA outperforms all previous approaches:
 - (+) Learns instance-specific rule weights
 - (+) Leverages all unlabeled data

	Learning to Weight		Unlabeled	Average
Method	Rules	Instances	(no rules)	Accuracy
PosteriorReg (Hu et al., 2016)	√	-	_	82.6
Snorkel (Ratner et al., 2017)	\checkmark	-	_	82.9
L2R (Ren et al., 2018a)	-	\checkmark	-	82.8
Standard self-training	-	-	\checkmark	83.5
ImplyLoss (Awasthi et al., 2020)	\checkmark	\checkmark	-	85.2
ASTRA	\checkmark	\checkmark	\checkmark	88.0 (+3.3

- Self-training outperforms weak supervision approaches
- ASTRA outperforms all previous approaches:
 - (+) Learns instance-specific rule weights
 - (+) Leverages all unlabeled data
 - (+) Does **not** require rule supervision ("rule exemplars" in Awasthi et al., 2020)

	Learning to Weight		Unlabeled	Average
Method	Rules	Instances	(no rules)	Accuracy
PosteriorReg (Hu et al., 2016)	√	-	-	82.6
Snorkel (Ratner et al., 2017)	\checkmark	-	_	82.9
L2R (Ren et al., 2018a)	-	\checkmark	-	82.8
Standard self-training	-	-	\checkmark	83.5
ImplyLoss (Awasthi et al., 2020)	\checkmark	\checkmark	-	85.2
ASTRA	\checkmark	\checkmark	\checkmark	88.0 (+3.3

- Self-training outperforms weak supervision approaches
- ASTRA outperforms all previous approaches:
- ASTRA shows strongest improvements under high rule sparsity

Outline

1. Learning with Domain-Specific Rules

2. ASTRA: weAkly Supervised self-TRAining

3. Experiments

4. Conclusions

Our ASTRA Framework for Weak Supervision

ASTRA: weAkly-supervised Self-TRAining

- 1. Iterative self-training framework for weak supervision
- 2. Rule attention network (RAN) for combining weak rules and Student
- 3. Effectiveness on six benchmark datasets

Thank you!

Contact
Giannis Karamanolakis
gkaraman@cs.columbia.edu

Our code is available at https://github.com/microsoft/ASTRA