

Description

The VSM90N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 68V, I_{D} = 90A$ $R_{DS(ON)} < 7.5mΩ @ V_{GS} = 10V$ (Typ:6.5mΩ)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM90N06-T2	VSM90N06	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	68	V	
Gate-Source Voltage	V _G s	±20	V A A	
Drain Current-Continuous	I _D	90		
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	63		
Pulsed Drain Current (Note 1)	I _{DM}	320	Α	
Maximum Power Dissipation	P _D	130	W	
Derating factor		0.86	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	380	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	R _{θJc}	1.15	°C/W
--	------------------	------	------

Electrical Characteristics (TC=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	68	73	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =68V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	6.5	7.5	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =20A	20	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =30V,V _{GS} =0V,	-	3300	-	PF
Output Capacitance	C _{oss}		-	450	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	170	-	PF
Switching Characteristics (Note 4)	•		•			•
Turn-on Delay Time	t _{d(on)}	V _{DD} =30V,I _D =20A	-	15	-	nS
Turn-on Rise Time	t _r		-	94	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10 V , R_{GEN} =6 Ω	-	46	-	nS
Turn-Off Fall Time	t _f		-	32	-	nS
Total Gate Charge	Qg	V _{DS} =30V,I _D =20A,	-	35	-	nC
Gate-Source Charge	Q _{gs}		-	11	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	9	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	90	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	78	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	51	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance