THE STELLAR POPULATIONS OF PRAESEPE AND COMA BERENICES

ADAM L. KRAUS, LYNNE A. HILLENBRAND California Institute of Technology, Department of Astrophysics, MC 105-24, Pasadena, CA 91125 Draft version February 1, 2008

ABSTRACT

We present the results of a stellar membership survey of the nearby open clusters Praesepe and Coma Berenices. We have combined archival survey data from the SDSS, 2MASS, USNOB1.0, and UCAC-2.0 surveys to compile proper motions and photometry for ~ 5 million sources over 300 deg². Of these sources, 1010 stars in Praesepe and 98 stars in Coma Ber are identified as candidate members with probability >80%; 442 and 61 are identified as high-probability candidates for the first time. We estimate that this survey is >90% complete across a wide range of spectral types (F0 to M5 in Praesepe, F5 to M6 in Coma Ber). We have also investigated the stellar mass dependence of each cluster's mass and radius in order to quantify the role of mass segregation and tidal stripping in shaping the present-day mass function and spatial distribution of stars. Praesepe shows clear evidence of mass segregation across the full stellar mass range; Coma Ber does not show any clear trend, but low number statistics would mask a trend of the same magnitude as in Praesepe. The mass function for Praesepe ($\tau \sim 600 \text{ Myr}$; $M \sim 500 M_{\odot}$) follows a power law consistent with that of the field presentday mass function, suggesting that any mass-dependent tidal stripping could have removed only the lowest-mass members ($<0.15~M_{\odot}$). Coma Ber, which is younger but much less massive ($\tau \sim 400~{\rm Myr}$; $M \sim 100 \ M_{\odot}$), follows a significantly shallower power law. This suggests that some tidal stripping has occurred, but the low-mass stellar population has not been strongly depleted down to the survey completeness limit ($\sim 0.12 M_{\odot}$).

Subject headings: open clusters and associations: individual (Praesepe, Coma Berenices), stars: mass function, stars: evolution, stars: fundamental parameters

1. INTRODUCTION

Star clusters are among the most powerful and versatile tools available to stellar astronomy. Nearby clusters serve as prototypical populations for studying many diverse topics of stellar astrophysics, including star formation, stellar structure, stellar multiplicity, and circumstellar processes like planet formation (e.g. Patience et al. 2002; Bouy et al. 2006; Muench et al. 2007; Stauffer et al. 2007; Siegler et al. 2007); star clusters are uniquely sensitive to the physics of these processes due to their uniform and well-constrained age, distance, and metallicity. Open clusters are also thought to be the birthplaces of most stars, so the formation, evolution, and disruption of clusters establish the environment of star formation and early stellar evolution. Two of the nearest open clusters are Praesepe and Coma Berenices. Praesepe is a rich ($N \sim 1000$ known or suspected members), intermediate age ($\sim 600 \text{ Myr}$) cluster at a distance of 170 pc (Hambly et al. 1995a), while Coma Ber is younger and closer (~400 Myr; 90 pc) and much sparser $(N \sim 150; \text{Casewell et al. } 2006).$

Praesepe has been the target of numerous photometric and astrometric membership surveys over the past century; part of the reason for its popularity is that its proper motion is relatively distinct from that of field stars (-36.5,-13.5 mas yr⁻¹), simplifying the identification of new members. Its high-mass stellar population was identified early in the last century by Klein-Wassink (1927), and subsequent surveys extended the cluster census to intermediate-mass stars (Artyukhina 1966; Jones

Electronic address: (alk@astro.caltech.edu) Electronic address: (lah@astro.caltech.edu) & Cudworth 1983). The M dwarf stellar population was first identified by Jones & Stauffer (1991). A later survey by Hambly et al. (1995a) extended this work to a fainter limit and a larger fraction of the cluster, producing a cluster census that is still used for most applications (e.g. Allen & Strom 1995; Holland et al. 2000; Kafka & Honeycutt 2006). There have been additional surveys to identify cluster members, but they have been prone to contamination from field stars (Adams et al. 2002) or based purely on photometry with no astrometric component (Pinfield et al. 1997; Chappelle et al. 2005).

Coma Ber, in contrast, has been largely neglected in surveys of nearby open clusters. The cluster would be an ideal population for many studies due to its proximity (second only to the Hyades) and intermediate age between the Pleiades (125 Myr) and Hyades or Praesepe $(\sim 600 \text{ Myr})$, but its members are difficult to distinguish from field stars because it has a proper motion (-11.5, -9.5 mas yr⁻¹) which is significantly lower than that of Praesepe. It is also a much sparser cluster than Praesepe, and its few members are projected over a much larger area of the sky. Its high-mass stellar population has been known for many decades (Trumpler 1937), but only a handful of additional members have been confirmed (Artyunkhin 1966; Argue & Kenworthy 1969; Bounatiro 1993; Odenkirchen et al. 1998); many candidate members have been identified, but a large fraction of them have been shown to be unrelated field stars (e.g. Jeffries 1999; Ford et al. 2001). One survey for low-mass stars was conducted recently by Casewell et al. (2006), who used 2MASS photometry and USNO-B1.0 astrometry to identify 60 candidate members extending well into the M dwarf regime ($\sim 0.30 \ M_{\odot}$). This survey discovered many

candidate members with spectral types of late G and early M, but as we will discuss later, significant contamination from field stars rendered it completely insensitive to K dwarf members and diluted its other discoveries with a significant number of nonmembers.

In this paper, we combine the photometric and astrometric results of several wide-field imaging surveys to compile a full stellar census of Praesepe and Coma Ber. This census is both wider and deeper than any previous proper motion survey, extending to near the substellar boundary. Our results for Praesepe allow us to fully characterize the structure and dynamical evolution of this prototypical cluster, while our results for Coma Ber unveil a new benchmark stellar population that is closer than any cluster except the Hyades and that fills a poorly-studied age range. In Section 2, we describe the all-sky surveys that contribute to our cluster census, and in Section 3, we describe the photometric and astrometric analysis techniques that we used to identify new members. We summarize our new catalog of cluster members in Section 4. Finally, in Section 5, we analyze the structure and properties of each cluster.

2. DATA SOURCES

In this survey, we worked with archival data from several publicly-available surveys: SDSS, 2MASS, USNO-B1.0, and UCAC2. In each case, we extracted a portion of the source catalogue from the data access websites. We worked with circular areas of radius 7° centered on the core of each cluster (8h40m, +20° and 11h24m,+26°, respectively); for both clusters, this radius is approximately twice the estimated tidal radius (Hambly et al. 1995a; Casewell et al. 2006).

2.1. SDSS

The Sloan Digital Sky Survey (SDSS; York et al. 2000) is an ongoing deep optical imaging and spectroscopic survey of the northern galactic cap. The most recent data release (DR5; Adelman-McCarthy et al. 2007) reported imaging results in five filters (ugriz) for 8000 deg², including the full areas of Praesepe and Coma Ber. The 10σ detection limits in each filter are $u=22.0,\,g=22.2,\,r=22.2,\,i=21.3,$ and z=20.5; the saturation limit in all filters is $m\sim14$. The typical absolute astrometric accuracy is $\sim\!45$ mas rms for sources brighter than r=20, declining to 100 mas at r=22 (Pier et al. 2003); absolute astrometry was calibrated with respect to stars from UCAC2, which is calibrated to the Inertial Coordinate Reference Frame (ICRS).

The default astrometry reported by the SDSS catalog is the r band measurement, not the average of all five filters. However, the residuals for each filter (with respect to the default value) are available, so we used these residuals to construct a weighted mean value for our analysis. We adopted a conservative saturation limit of $m \sim 15$ in all filters, even though the nominal saturation limit is $m \sim 14$, because we found that many photometric measurements were mildly saturated for 14 < m < 14.5. We also neglect measurements which are flagged by the SDSS database as having one or more saturated pixels. Finally, we removed all sources which did not have at least one measurement above the nominal 10σ detection limits. Any cluster members fainter than this limit will not have counterparts in other catalogs, and the pres-

ence of excess sources can complicate attempts to match counterparts between datasets.

2.2. USNO-B1.0

The USNO-B1.0 survey (USNOB; Monet et al. 2003) is a catalogue based on the digitization of photographic survey plates from five epochs. For fields in the north, including both Praesepe and Coma Ber, these plates are drawn from the two Palomar Observatory Sky Surveys, which observed the entire northern sky in the 1950s with photographic B and R plates and the 1990s with photographic B, R, and I plates; we follow standard USNOB nomenclature in designating these observations B1, R1, B2, R2, and I2.

The approximate detection limits of the USNOB catalog are $B\sim\!20,\ R\sim\!20,$ and $I\sim\!19,$ and the observations saturate for stars brighter than $V\sim\!11.$ The typical astrometric accuracy at each epoch is $\sim\!120$ mas, albeit with a significant systematic uncertainty (up to 200 mas) due to its uncertain calibration into the the ICRS via the unpublished USNO YS4.0 catalog. As we describe in Section 3.2, we have recalibrated the USNOB astrometry at each epoch using UCAC2 astrometry; this step reduces the systematic uncertainty.

2.3. *2MASS*

The Two-Micron All-Sky Survey (2MASS; Skrutskie et al. 2006) observed the entire sky in the J, H, and K_s bands over the interval of 1998-2002. Each point on the sky was imaged six times and the coadded total integration time was 7.8s, yielding 10σ detection limits of K = 14.3, H = 15.1, and J = 15.8. The saturation levels depend on the seeing and sky background for each image, but are typically J < 9, H < 8.5, and $K_s < 8$. However, the NIR photometry is typically accurate to well above these saturation limits since it was extrapolated from the unsaturated PSF wings. The typical astrometric accuracy attained for the brightest unsaturated sources $(K \sim 8)$ is ~ 70 mas. The absolute astrometry calibration was calculated with respect to stars from Tycho-2; subsequent tests have shown that systematic errors are typically $\lesssim 30 \text{ mas}$ (Zacharias et al. 2003).

2.4. UCA C2

The astrometric quality of all three of the above surveys could be compromised for bright, saturated stars, so proper motions calculated from those observations could be unreliable. Many of the brightest stars are saturated in all epochs, so we have no astrometry with which to compute proper motions. We have addressed this problem by adopting proper motions for bright stars as measured by the Second USNO CCD Astrograph Catalog (UCAC2; Zacharias et al. 2004).

UCAC2 was compiled from a large number of photographic sky surveys and a complete re-imaging of the sky south of $\delta \sim 40^{\circ}$. UCAC2 is not complete since many resolved sources (double stars and galaxies) were rejected. However, most sources between R=8 and R=16 should be included. The typical errors in the reported proper motions are $\sim 1\text{-}3$ mas yr $^{-1}$ down to R=12 and ~ 6 mas yr $^{-1}$ to R=16. We have adopted UCAC2 proper motions in cases where we were unable to calculate new values or where the UCAC2 uncertainties are lower than the uncertainties for our values.

2.5. Known Members of Praesepe

There have been many previous surveys to identify members of Praesepe, so we have compiled a list of high-confidence cluster members that can be used to test our survey procedures (Section 3) and determine the completeness of our survey (Section 4.2). We have not done the same for Coma Ber since there are far fewer high-confidence members (<50). However, the brightness ranges are similar enough that the detection efficiencies should be similar for both clusters.

We drew our high-confidence Praesepe sample from the proper motion surveys of Jones & Cudworth (1983), Jones & Stauffer (1991), and Hambly et al. (1995a). We also included the high-mass stars identified by Klein-Wassink (1927) which possessed updated astrometry in the survey by Wang et al. (1995). We required each member of our high-confidence sample to have been identified with $\geq 95\%$ probability of membership by at least one survey, and to not have been identified with < 80% probability by any other survey; a total of 381 sources met these requirements.

3. DATA ANALYSIS

Cluster surveys typically identify candidate members using a combination of photometric and astrometric data. All cluster members have the same age, distance, and 3-D spatial velocity, so they follow the same color-magnitude sequence and have the same proper motion. This allows for the efficient rejection of all nonmembers which do not meet both criteria.

In the following subsections, we describe our procedure for applying these tests. First, we use SED fitting for our photometric data (spanning 0.3-2.3 μ m) to estimate the temperatures and luminosities of all \sim 5 million sources, and then we calculate a weighted least-squares fit of our time-series astrometric data to calculate the corresponding proper motions. After deriving both sets of results, we then cut the overwhelming majority of sources which do not follow the cluster photometric sequence. Finally, we examine the (much smaller) list of remaining sources and determine membership probabilities based on the level of agreement between individual candidate astrometry (proper motion and radius from cluster center) and the corresponding distributions for the cluster and for background stars.

We chose to apply the cuts in this order specifically because the final membership probabilities are based on the astrometric properties and not the photometric properties, but inverting the order of the cuts would not affect our final results. Both sets of tests were crucial in narrowing the list of candidates. Of the $\sim\!10^6$ sources in each cluster for which we measured proper motions, $\sim 10^5$ would have been selected by a purely kinematic test and $\sim 10^4$ would have been selected by a purely photometric test.

3.1. SED Fitting

We base our photometric analysis on the merged results from 2MASS and SDSS, which yield measurements in 8 filters (ugrizJHK) for each source. We do not use the photometric results reported by USNOB because they are much more uncertain (\sim 0.25 mag) and do not introduce any new information beyond that reported by

SDSS. We also note that many high-mass sources were saturated in one or more filters, so they had fewer than 8 photometric measurements available; the highest-mass stars were saturated in all five SDSS filters, leaving only JHK photometry.

Candidate cluster members traditionally have been selected by photometric surveys which measure magnitudes in several bandpasses and then estimate each star's intrinsic properties (bolometric flux and temperature) using its observed properties (magnitudes and colors). Candidate members are then selected from those stars which fall along the cluster sequence (as defined by known members and by theoretical models) on colormagnitude diagrams. However, this method suffers from serious flaws. A single magnitude is typically taken as a proxy for flux, which places excessive weight on that bandpass and underweights other bandpass(es) in the survey. If there are more than two bandpasses, motivating the use of multiple CMDs, then color-magnitude selection also neglects the covariance between measurements, artificially inflating the uncertainty in an object's intrinsic properties. Finally, the use of many CMDs introduces significant complexity in the interpretation and communication of results.

We have addressed these challenges by developing a new method for photometric selection of candidate members. Instead of using many different combinations of color and magnitude as proxies for stellar flux and temperature, we have used an SED fitting routine to estimate directly each star's intrinsic properties, then selected candidate members based on their positions in the resulting HR diagram. This method is not vulnerable to the flaws of individual color-magnitude selection since it uses all data simultaneously and uniformly, and since we can implement it as a least-squares minimization, it significantly reduces the uncertainty in the final results.

Specifically, for each star we calculated the χ^2 goodness of fit for the system of eight equations:

$$M_i - m_i = DM$$

where m_i is the observed magnitude in filter i, M_i is the absolute magnitude in filter i for the SED model being tested, and DM is the distance modulus, which was estimated from a weighted least-squares fit across all filters. This system ignores the effects of reddening, but this should be minimal for both clusters. Taylor et al. (2006) found a reddening value for Praesepe of $E(B-V) = 27 \pm 4$ mmag, while Feltz (1972) found a value for the Coma Ber region of $E(B-V) = 0\pm 2$ mmag.

We tested a library of 491 stellar SEDs which spanned a wide range of spectral types: B8 to L0, in steps of 0.1 subclasses. We describe the SED library and its construction in more detail in Appendix A. We rejected potentially erroneous observations by rejecting any measurement that disagreed with the best-fit SED by more than 3σ , where σ is the photometric error reported by the SDSS or 2MASS, and then calculating a new fit. The model which produced the best χ^2 fit over the 8 filters was adopted as the object spectral type, and the corresponding value of DM was added to the model's absolute bolometric magnitude to estimate the apparent bolometric flux. The uncertainties in the spectral type and distance modulus were estimated from the 1σ interval of the χ^2 fit for each object.

Fig. 1.— HR and proper motion diagrams for our high-confidence sample of Praesepe members. For the HR diagram, we plot the cluster single-star sequence (red) and the selection range for identifying new members (blue). In the proper motion diagram, we plot a circle of radius 8 mas yr⁻¹ (approximately 2σ for a typical M4 member) centered at the mean cluster proper motion.

Fig. 2.— A comparison of our photometric spectral type determinations to spectroscopic determinations for 632 candidate Praesepe members in the literature. The small excess of points below the relation at spectral type K3 are all drawn from the spectroscopic survey of Adams et al. (2002), which observed spectra in a red wavelength range that contained no diagnostics for distinguishing FGK stars. The A0 star that we misclassified (KW 552) is an Algol-type eclipsing binary, so the 2MASS photometry may have been obtained during primary eclipse; we did not use any SDSS photometry in its SED fit because it was all saturated. If this is the case, our derived spectral type corresponds to an unknown combination of light from the primary and secondary. The K2 star that we misclassified (KW 572) was biased by saturated SDSS photometry which was not flagged.

In the left panel of Figure 1, we plot an H-R diagram for our high-confidence sample of Praesepe members. The red line shows the field main sequence at the distance of Praesepe (Appendix A), and the blue lines show the upper and lower limits that we use for identifying cluster members. For stars earlier than M2, these limits are set 0.5 magnitudes below and 1.5 magnitudes above the main sequence to allow for the width of the cluster sequence (due to errors, the finite depth of the

cluster, and the existence of a multiple-star sequence). The late main sequence is nearly vertical in the HR diagram, which suggests that uncertainties in spectral type will be more important than uncertainties in flux for broadening the cluster sequence. We account for this by extending the selection range for spectral types \geq M2 to 0.7 magnitudes below and 1.7 magnitudes above the field main sequence. Most of the 15 outliers have fluxes or spectral types that are biased by one or more photometric measurements which appear to be erroneous by less than 3σ , causing them to fall just outside our selection range. However, four sources appear to have colors and magnitudes that are genuinely inconsistent with the cluster sequence.

In Figure 2, we plot our photometric spectral type against previously-measured spectroscopic spectral types for 632 candidate Praesepe members (Ramberg 1938; Bidelman 1956; Corbally & Garrison 1986; Abt 1986; Williams et al. 1994; Allen & Strom 1995; Adams et al. 2002; Kafka & Honeycutt 2006). The two sets of spectral types agree systematically to within <2 subclasses; the dispersion in the relation is ~ 3 subclasses for early-type stars (A0-G0) and $\lesssim 1$ subclass for later-type stars (G0-M6). This dispersion represents the combined dispersions of both our measurements and those in the literature, so it represents an upper limit on the statistical uncertainties in our spectral type estimate. Most of the early-type stars were classified by Ramberg and Bidelman, so the larger scatter could be a result of their older, less precise observing techniques. However, our SED-fitting routine rejected most of the SDSS photometry for these sources since it was saturated, so some of the uncertainty may be a result of using only 2MASS JHK photometry.

When applied to our full source list, our photometric selection criteria identify 11,999 candidate members of Praesepe and 2,034 candidate members of Coma Ber. As we demonstrate in the Section 3.2 and 3.3, the vast

TABLE 1 ASTROMETRIC RECALIBRATION OFFSETS

Cluster/Epoch	Δ_{lpha}	Δ_{δ}
Praesepe B1	+42	+97
Praesepe R1	+49	+104
Praesepe B2	+10	-75
Praesepe R2	-2	-78
Praesepe I2	-11	-119
Coma Ber B1	-16	+55
Coma Ber R1	-21	+80
Coma Ber B2	-132	-58
Coma Ber R2	-96	-64
Coma Ber I2	-118	-93

NOTE. — Offsets are measured in mas. The typical uncertainty for each offset, as estimated from the standard deviation of the mean, is $\sim 3-5$ mas.

majority of these sources are probably background stars since they have proper motions inconsistent with cluster membership.

3.2. Proper Motions

Kinematic measurements are a key tool in identifying members of stellar populations. Internal cluster velocity dispersions are typically much lower than the dispersion of field star velocities, so stellar populations generally can be distinguished from the field star population by their uniform kinematics. The measurement of tangential kinematics, via proper motions, is also an efficient method since it can be applied to many cluster members simultaneously using wide-field imaging. Many recent efforts have employed various combinations of all-sky surveys in order to systematically measure proper motions of both clusters and field stars; USNOB is itself a product of such analysis, and Gould & Kohlmeier (2004) produced an astrometric catalog for the overlap between USNOB and SDSS Data Release 1. However, there has been no systematic attempt to combine all available catalogs using a single algorithm to produce a single unified set of kinematic measurements.

Before calculating proper motions for our survey, our first step was to recalibrate the five epochs of USNOB astrometry into the ICRS. The densest reference system that is directly tied to the ICRS is UCAC2, which we already cross-referenced with our dataset, so we used all of its sources with high-precision astrometry ($\sigma_{\mu} \lesssim 4$ mas yr^{-1}) as calibrators. For each USNOB epoch, we projected the simultaneous UCAC2 positions of all calibrators using modern (epoch 2000) UCAC2 astrometry and proper motions, then determined the median offset between the predicted UCAC2 values and the observed USNOB values. These offsets were then added to each USNOB source to bring its astrometry into the ICRS. We list these mean offsets in Table 1; each offset was typically calculated from ~ 3000 sources, and the standard deviation of the mean for each offset was \sim 3-5 mas. The median offsets were small (<150 mas), so the net change in our calculated final proper motions is $\lesssim 3$ mas vr^{-1} .

After we recalibrated all surveys into the same reference system, we used a weighted least-squares fit routine to calculate the proper motion of each object based on all available astrometry for unsaturated detections. Our algorithm tested the goodness of each fit and rejected all

outliers at $> 3\sigma$; most of these outliers were found in the photographic survey data, not in 2MASS or SDSS.

In the right panel of Figure 1, we plot a proper motion diagram for our high-confidence sample of Praesepe members. The mean cluster proper motion (-36.5,-13.5 mas yr⁻¹) is denoted by a red circle with a radius of 8 mas yr⁻¹ (twice the typical 1σ uncertainty for the M4 members in our high-confidence sample). We found that 326 of our 381 high-confidence members fall within this limit, and most of the early-type stars (which have much smaller errors) form a much tighter distribution. Most of the outliers appear to be biased by erroneous first-epoch positions that can not be rejected at a 3σ level by our fitting routine. These early epochs are not significantly more prone to erroneous measurements than later photographic measurements, but they change the resulting proper motion by a larger amount since their time baseline with respect to all other measurements is so long.

Our subsequent kinematic analysis (Section 3.3) has retained all photometric candidates with proper motions within 20 mas ${\rm yr}^{-1}$ (5 σ for low-mass candidates) of each cluster's mean proper motion; we set this limit to be much larger than the cluster distribution so that we would also retain enough field stars to determine their density in proper motion space. We found that 2611 of our 11999 photometric candidates in Praesepe and 645 of our 2034 photometric candidates in Coma Ber fell within this limit.

We removed a small number of sources (44 from Praesepe and 4 from Coma Ber) that had highly uncertain proper motions (σ >10 mas yr⁻¹) because we could not have accurately assessed their membership. The astrometry was typically more uncertain for these few sources because there were few or no detections in USNOB. We also visually inspected the SED for any source with a poor photometric fit (χ^2_{ν} > 10) and rejected two sources near Coma Ber which were only selected due to saturated SDSS photometry that had not been flagged.

Finally, we visually inspected the color-composite SDSS image of each source using the SDSS batch image service¹. We found that 8 sources in Praesepe and 31 sources in Coma Ber were resolved background galaxies, so we removed them from further consideration. These galaxies were split roughly evenly between bright $(r \sim 14-16)$ sources with K star colors and faint $(r \sim 19)$ galaxies with red riz colors and no ug or JHK detections; in all cases, the apparent proper motion was caused by a large scatter in the photometric centroids. The SDSS database also includes a morphological classification of whether each object is a star or galaxy that is likely to be more sensitive than visual inspection, but we have

found that saturated stars and marginally resolved binaries are often classified as galaxies by the SDSS pipeline, so we chose not to use this parameter in rejecting likely galaxies.

3.3. Identification of Cluster Members

Our photometric and astrometric selection criteria do not perfectly reject field stars, so we expect that some fraction of our candidates will actually be interlopers and not cluster members. Many surveys quantify the

¹ http://cas.sdss.org/dr5/

level of contamination by studying one or more control populations, selected from a nearby volume of kinematic or spatial parameter space. The membership probability for a set of stars is then represented by the fractional excess in the candidate population with respect to the control population. However, this choice ignores all information about the spatial or proper motion distribution of the candidates, treating these distributions as constant within the selection limits. A more rigorous approach should take these non-constant probability density functions into account, giving highest membership probability to those candidates that are closest to the cluster center and have proper motions closest to the mean cluster value.

To this end, we have adopted the maximum likelihood method of Sanders (1971) and Francic (1989) to distinguish cluster members and field stars among the candidates that meet our photometric and kinematic selection criteria. This method explicitly fits the spatial and kinematic distributions of all candidates with two separate probability density functions, $\Phi = \Phi_c + \Phi_f$, corresponding to cluster members and field interlopers. The method then assigns a membership probability to each star based on the values of each distribution for that location in parameter space, $P_{mem} = \Phi_c/(\Phi_c + \Phi_f)$.

Following some of the refinements of Francic (1989), we chose to fit the cluster spatial distribution with an exponential function and the cluster proper motion distribution with a gaussian function:

$$\Phi_c(\mu_\alpha,\mu_\delta,r) = \frac{N_c e^{-r/r_0}}{2\pi^2 r_0^2 \sigma^2} e^{\frac{1}{2\sigma^2}((\mu_\alpha - \mu_{\alpha,m})^2 + (\mu_\delta - \mu_{\delta,m})^2)}$$

Where the quantities N_c (the total number of cluster stars), r_0 (the scale radius), and σ (the standard deviation of the cluster proper motion distribution) were determined from the fit. We adopted the mean proper motions of each cluster, $(\mu_{\alpha,m}, \mu_{\delta,m}) = (-36.5, -13.5)$ mas yr⁻¹ (Praesepe) and (-11.5, -9.5) mas yr⁻¹ (Coma Ber), from the literature; these results match UCAC2 values for known high-mass cluster members.

We evaluated the option of fitting the cluster spatial distribution with a mass-dependent King profile (King 1962), but we found that the function produced a poor fit at large separations. High-mass stars in particular are more centrally concentrated than a King profile would predict. By contrast, an exponential radial density profile can accurately match the outer density profile at the cost of moderately overestimating the central density. We decided that it is more important to accurately predict the spatial structure of the outer cluster, where cluster members are less numerous and harder to distinguish from field stars, so we chose to use the exponential profile.

We chose to fit the field spatial distribution with a constant function since the density of field stars does not vary significantly at these high galactic latitudes. In a departure from previous convention, we also chose to fit the field proper motion distribution with a constant function. As we show in Figures 4 and 5, the proper motion distribution of field stars is not easily parametrized with a single function. However, the distribution varies only on scales much larger than the astrometric precision for typical mid-M candidates ($\sim 4 \text{ mas yr}^{-1}$). If we consider a small region of parameter space, then the distribution

should be roughly constant. Thus, the field probability density function we have adopted is:

$$\Phi_f = \frac{N_{total} - N_c}{A_{SP} A_{PM}}$$

Where N_{total} is the total number of stars (field and cluster), N_c is the number of cluster stars, A_{SP} represents the total spatial area of our survey on the sky (a circle with radius 7^o), and A_{PM} represents the total area of proper motion parameter space from which we selected candidates (a circle with radius 20 mas yr⁻¹). The proper motion criterion was chosen to be much larger than the typical uncertainty in cluster proper motions ($\sim 5\sigma$ for the faintest stars) while being small enough that an assumption of a constant field distribution is approximately valid.

Both clusters are old enough for mass segregation to have occurred, plus the astrometric uncertainties depend significantly on brightness, so we expect that the spatial and kinematic distributions will show a significant mass dependence. We have accounted for this by dividing each cluster sample into spectral type bins and fitting these bins independently. As we describe in Section 5, this choice also offers a natural system for quantifying the mass-dependent properties of each cluster. Our parametrization of the cluster spatial and proper motion distributions provides direct measurements of the cluster mass function (via N_c), the astrometric precision (via σ), and the effects of mass segregation (via r_0).

Finally, we determined confidence intervals for each value via a bootstrap Monte Carlo routine. This method creates synthetic datasets by drawing with replacement from the original dataset; for each bin we constructed 100 synthetic datasets with the same number of total members, re-ran our analysis for each set, and used the distribution of results to estimate the standard deviations of the fit parameters.

In Table 2, we summarize the parameter fits. We found in both clusters that the fits for spectral types >M6 predicted marginally significant values of N_c , a result we attribute to our nondetection of most late-type members. We therefore will not use those parameters in our analysis of the mass-dependent cluster properties. However, in the interest of completeness, we will still report any candidates which have high membership probabilities. Some of these stars have already been identified as candidates by previous surveys (e.g. IZ072; Pinfield et al. 2003), so they may be worthy of consideration in future studies. We also found extremely high contamination rates for K stars in Coma Ber; this is a natural result of its low proper motion, which causes confusion with background K giants. There are few high-probability K-type members identified for Coma Ber, but the fits for bulk properties $(N_c, r_0, \text{ and } \sigma)$ are statistically significant.

4. RESULTS

4.1. New Cluster Members

Based on our kinematic and photometric selection procedures, we identified 1130 candidate members of Praesepe and 149 candidate members of Coma Ber with membership probabilities of $\geq 50\%$; 1010 and 98 of these candidates have membership probabilities of > 80%. Of these high-probability candidates, 76 and 50 are newly-identified as proper-motion candidates, while 568 and 37

TABLE 2 Cluster Fit Parameters

SpT	N_c	N_{tot}	r_0 (deg)	$\sigma \; ({\rm mas \; yr^{-1}}$
A-F	89±9	248	0.45 ± 0.04	1.36 ± 0.10
G	69 ± 8	236	0.49 ± 0.05	1.65 ± 0.14
K0.0-K3.9	72 ± 9	212	0.66 ± 0.09	3.44 ± 0.36
K4.0-K7.9	102 ± 9	247	0.71 ± 0.06	3.34 ± 0.16
M0.0-M1.9	127 ± 9	283	0.71 ± 0.04	2.85 ± 0.16
M2.0-M2.9	90 ± 10	243	0.92 ± 0.10	3.03 ± 0.23
M3.0-M3.9	202 ± 12	440	0.71 ± 0.03	3.01 ± 0.17
M4.0-M4.9	249 ± 15	514	0.87 ± 0.04	4.69 ± 0.28
M5.0-M5.9	40 ± 6	94	0.80 ± 0.10	6.30 ± 0.66
M6.0-M6.9	15 ± 6	42	0.98 ± 0.38	7.00 ± 1.93
		Coma	Ber	
A-F	17 ± 3	25	1.19 ± 0.24	1.22 ± 0.19
G	13 ± 3	31	1.06 ± 0.16	1.19 ± 0.18
K	40 ± 13	413	1.58 ± 0.17	3.91 ± 0.89
M0.0-M2.9	24 ± 5	50	1.33 ± 0.12	4.58 ± 0.58
M3.0-M5.9	36 ± 6	78	1.46 ± 0.12	5.07 ± 0.58
M6.0-M8.9	3 ± 2	15	1.62 ± 0.55	4.63 ± 1.26

have been classified as high-probability (>80%) candidates in at least one previous survey and 366 and 11 were previously identified with lower probability (references in Section 1). In Tables 3 and 4, we list all candidate members with $P_{mem}>50\%$. We also list their derived stellar properties, proper motions, membership probabilities, cross-identifications with previous surveys, and spectroscopically-determined spectral types. In Figure 3, we plot a histogram of the number of candidates as a function of P_{mem} for each cluster; a majority of candidates have membership probabilities of >90% or <10%, suggesting that most of these candidates are being unambiguously identified.

To demonstrate the impact of our selection techniques, in Figure 4 we plot an HR diagram for all stars near Praesepe which fall within 2σ of the mean cluster proper motion (left) and a proper motion diagram for all stars which passed our photometric selection criteria (right). In both cases, the distribution of cluster members can be visually distinguished from the underlying distribution of field stars. However, there is also significant overlap between cluster members and field stars, indicating that both tests were necessary. The proper motion test was a far better discriminant against field stars, a result of Praesepe's high and distinct proper motion; the photometric criteria accepted 11,999 sources, but only 1,932 stars fell within 2σ of the cluster's mean proper motion.

Based on the HR diagram, it appears that most field stars with consistent proper motions are nearby dwarfs; this is not surprising since few distant stars will have the large transverse velocities required to match the angular velocity of Praesepe. Based on the proper motion diagram, it appears that the interlopers which pass our photometric criteria are split evenly between stationary sources (such as halo giants) and moving sources with larger, randomly distributed proper motions (disk dwarfs that occupy the same physical volume as Praesepe). We also note that a clear binary sequence can be seen for early-type stars in the HR diagram, but it blends with the sigle-star sequence for late-type stars (\gtrsim M0).

In Figure 5, we plot similar HR and proper motion diagrams for the stars of Coma Ber. The cluster's HR sequence and proper motion distribution are not as vi-

FIG. 3.— The number of candidate members with membership probability P_{mem} for Praesepe (top) and Coma Ber (bottom). Most of the Coma Ber candidates with 20% $< P_{mem} < 80\%$ are K stars, corresponding to the large number of candidates which we cannot conclusively distinguish as either K dwarf members or background K giant contaminants. The vertical dashed line denotes our suggested limit ($P_{mem} > 80\%$) for identifying high-confidence cluster members.

sually distinctive since the cluster population is smaller, but the combination of kinematics and photometry still allow for the efficient identification of candidate members. Unlike for Praesepe, the photometric test was a better discriminant (accepting 2,034 sources) than the proper motion test (21,264 sources); this is a result of the cluster's lower distance (which places it higher in the HR diagram relative to the field star population) and much smaller proper motion (which allows more contamination from nonmoving background sources).

The HR diagram for Coma Ber (which shows kinematically selected sources) includes a recognizeable giant branch and many faint (distant) early-type stars, both classes which typically have small proper motions. The proper motion diagram, which shows photometrically selected stars, includes far fewer sources than Praesepe; again, these are split between nonmoving background giants and nearby disk dwarfs. A probable binary sequence can also be seen for Coma Ber, though it is not as visually distinctive as for Praesepe.

$4.2. \ \ Completeness$

As we describe in Section 2.5, there have been several previous surveys which identified a large number of high-confidence Praesepe members. The resulting sample of 381 members, comprising all stars which have been identified at $\geq 95\%$ confidence in one survey and at no lower than <80% confidence by any others, can test the completeness of our proposed member list.

Of the 381 known member stars, 22 were too bright to have proper motions in UCAC2, so they were immediately excluded from our cluster survey. This suggests that most of the brightest, highest-mass stars in either cluster would not have been identified with our technique. Of the 359 stars which were not rejected due to

	TABLE 3	
CANDIDATE	MEMBERS OF	PRAESEPE

ID	SpT	$m_{bol} \pmod{1}$	μ_{α} (r	$\max_{\mathrm{mas yr}^{-1}}^{\mu_{\delta}}$	σ_{μ}	P_{mem} (%)	Previous ID ^a
2MASS J08374071+1931064	$A8.0\pm3.2$	8.17 ± 0.02	-34.8	-12.5	0.7	99.9	KW 45 (A9; Abt 1986)
2MASS J08430594+1926153	$F9.5 \pm 3.2$	9.74 ± 0.01	-36.6	-13.8	0.9	99.9	KW495 (F8; Ramberg 1938)
2MASS J08393837+1926272	$K1.5\pm1.0$	12.10 ± 0.01	-33.0	-9.6	1.9	99.2	KW198 (K3; Allen & Strom 1995)
2MASS J08325566+1843582	$K3.3 \pm 0.5$	12.63 ± 0.01	-38.1	-12.1	3.0	97.1	JS 17
2MASS J08380730+2026557	$M1.5 \pm 0.1$	14.59 ± 0.01	-41.4	-13.2	3.0	99.5	
2MASS J08455917+1915127	$M3.5 \pm 0.1$	15.56 ± 0.01	-41.8	-11.0	2.7	96.6	AD 3470 (M4; Adams et al. 2002)
2MASS J08410334+1837159	$\rm M6.8{\pm}0.2$	17.47 ± 0.01	-37.3	-14.2	4.0	96.5	IZ072 (M4.5; Adams et al. 2002)

NOTE. — The full version of Table 3 will be published as an online-only table in AJ, and is included at the end of this document.

ID	SpT	m_{bol} (mag)	μ_{α} (1	μ_{δ} mas yr ⁻¹)	σ_{μ}	P_{mem} (%)	Previous ID ^a
2MASS J12230841+2551049 2MASS J12272068+2319475 2MASS J12262402+2515430 2MASS J12225942+2458584 2MASS J12241088+2359362 2MASS J12163730+2653582	F9.7±2.9 G7.9±1.5 K2.8±0.5 K5.4±0.7 M2.2±0.1 M2.6±0.1	$\begin{array}{c} 8.97 {\pm} 0.01 \\ 9.91 {\pm} 0.01 \\ 11.55 {\pm} 0.02 \\ 10.86 {\pm} 0.02 \\ 14.03 {\pm} 0.01 \\ 14.04 {\pm} 0.01 \end{array}$	-10.0 -11.6 -15.9 -8.7 -9.9 -7.8	-8.5 -8.8 -6.1 -12.3 -9.4 -10.9	0.7 0.7 1.7 0.9 2.7 3.0	100.0 99.6 84.9 89.5 98.1 97.6	Tr 97 (F8; Abt & Levato 1977) CJD 6 (K0; SIMBAD) CJD 46 CJD 45

Note. — The full version of Table 4 will be published as an online-only table in AJ, and is included at the end of this document.

^a The survey by Casewell et al. (2006) did not give explicit names for their sources, so we have labelled the sources as CJD NN (where NN represents the number of the entry in their results table).

Fig. 4.— Left: An HR diagram for all objects which have proper motions within 8 mas yr⁻¹ of the mean value for Praesepe. The field main sequence at the distance of Praesepe is shown with a red line; the blue lines outline our photometric selection limits. We identified few candidate members of Praesepe fainter than $m_{bol} = 17.5$. The possible sequence below and blueward of this point is not a genuine feature, but is instead a result of the large number of background early-mid M dwarfs with similar proper motions. These stars are spatially uniformly distributed, which also argues that they are not associated with the cluster. Right: A proper motion diagram for all objects which fall within our photometric selection limits. The red circle outlines the 2σ limit for a low-mass (M5) Praesepe member.

^a The survey by Adams et al. (2002) used standard 2MASS names for their sources. We already provide these names in the first column, so we have labelled the sources as AD NNNN (where NNNN represents the number of the entry in their results table) in the interest of brevity.

Fig. 5.— As in Figure 4, but for Coma Ber.

lack of data, 330 were identified as members with >80% confidence; the corresponding total completeness is 87%. We found that 15 stars were rejected for having inconsistent photometry and 24 were rejected for having inconsistent proper motions. Of the 15 stars rejected based on their photometry, 10 also possessed discrepant proper motions, suggesting that these sources are probably not genuine members of Praesepe and raising our completeness above 90%.

In Figure 6, we plot the completeness as a function of spectral type for members of Praesepe. We project that our survey is $\geq 90\%$ complete for spectral types F0 to M5, declining to 0% completeness for spectral types < A5 and >M7. The incompleteness for early-type stars is a result of the bright limit of UCAC2 data, while the incompleteness for late-type stars is a result of the detection limits for USNOB and 2MASS, which are reached nearly simultaneously for stars on the Praesepe and Coma Ber cluster sequences. The low-mass limit is also consistent with the results we summarize in Table 2 since we found no members with late M spectral types. We project that the 90% completeness limits should be marginally later (F5 and M6) for Coma Ber since it is closer and its members are brighter; the completeness is also lower for K stars due to contamination from background K giants.

These results are mostly consistent with our comparison to individual surveys. In Praesepe, we find excellent agreement in comparing our list of high-probability candidates with those of Jones & Stauffer (1991) and Hambly et al. (1995a); approximately 90% of each survey's high-confidence $(P_{mem} > 80\%)$ candidates were also identified as high-confidence candidates by our survey. We find less overlap with the Praesepe survey of Adams et al. (2002) and the Coma Ber survey of Casewell et al. (2006). Of the candidates which Adams et al. identify as "high-confidence" ($P_{mem} > 20\%$ and $r < 4^{\circ}$), we only recovered 483 of 724 in our list of high-probability candidates. Casewell et al. used a moderately mass-dependent threshold, varying between $60\% < P_{mem} < 90\%$, to identify 60 new candidate members. Of these stars, we only recover 22.

For both of these surveys, much of the contamination can be traced to the use of 2MASS JHK photometry in the color-selection procedures. The K,J-K colormagnitude sequence for dwarfs is nearly vertical for spectral types M0-M6, so it is difficult to distinguish a moderately brighter foreground star or moderately fainter background star from a genuine cluster member. We found that most of the unrecovered candidates were background M0-M2 stars that fall below the cluster sequence in our HR diagrams. For the survey by Casewell et al., we also found that the recovery fraction was exceptionally low ($\sim 20\%$) among K stars. We attribute this to contamination from background K giants, which affected both their survey and ours. We were able to identify only 13 of the ~ 40 estimated K star members with high (>80%) confidence (Tables 4 and 2, respectively), suggesting that there should be only marginal overlap. Many of the candidates from the survey by Casewell et al. appear to be likely cluster members that were only identified at lower confidence ($50\% < P_{mem} < 80\%$) by our survey. However, most of their remaining candidates appear to have proper motions more consistent with nonmovement than comovement, suggesting that they are background

Fig. 6.— Completeness as a function of spectral type for our high-confidence sample of Praesepe members. The high-mass cutoff is a result of image saturation, while the low-mass cutoff is a result of nondetection by 2MASS and USNOB. We expect similar results for Coma Ber, but given that its members are ~ 1.5 magnitudes brighter, the 90% completeness range will shift to later spectral types (F5-M6).

Fig. 7.— The spatial distribution of high-probability ($P_{mem} > 80\%$) members of Praesepe. The points are scaled to decreasing size for A-F, G, K, and M stars. giants.

5. THE STRUCTURE AND EVOLUTION OF PRAESEPE AND COMA BER

Open clusters are thought to be the birthplaces of most stars, so cluster evolution plays a key role in setting the environment for early stellar evolution. Present-day cluster properties can be used to determine their past history and extrapolate their future lifetime; the three most important sets of properties are the spatial structure (as inferred from mass segregation), the cluster's stellar mass function, and the total cluster mass.

5.1. Radial Distributions and Mass Segregation

In Figures 7 and 8, we plot the spatial distribution of all high-probability candidate members of Praesepe and Coma Ber. In each plot, we have scaled the points to decreasing sizes for A-F, G, K, and M stars. These figures clearly illustrate the radial density profile of each cluster. However, it is perilous to infer cluster properties directly from the distribution of individual stars. The surface density as a function of radius, $\Sigma(r)$, is biased in our sample because each star's radial distance is factored into its membership probability.

Fig. 8.— As in Figure 6, but for Coma Ber.

Ideally, cluster properties should be estimated using an unbiased method. Our parametric determination of the e-folding scale radius r_0 provides a natural diagnostic for quantifying the radial distribution and mass segregation of each cluster. This quantity allows us to study these properties without dependence on potentially biased measurements for individual stars, plus we can avoid arbitrary choices like the selection of a cutoff in P_{Mem} .

In Figure 9, we plot the mass-dependent function $r_0(M)$ for Praesepe (top) and Coma Ber (bottom). The uncertainties and upper limits were derived using the Monte Carlo methods described in Section 3.3. As we described in Section 4.2, the completeness of our sample drops for spectral types later than M5 in Praesepe and M6 in Coma Ber, so we do not plot results below these limit. In Praesepe, the scale radius increases significantly across the full mass range, following the power law $r_0 \propto M^{-0.25 \pm 0.06}$, which indicates the clear presence of mass segregation. Coma Ber shows no clear trend to indicate mass segregation, but the result is more uncertain: $r_0 \propto M^{-0.10 \pm 0.09}$. We expect Coma Ber to be less segregated than Praesepe due to its younger age and lower stellar density, but a trend with the same slope as in Praesepe is inconsistent by only $<2\sigma$.

5.2. Mass Functions

The present-day mass function provides an important test of the evolutionary state of each cluster, assuming clusters form with a common initial mass function. Dynamical evolution (mass segregation and tidal stripping) will preferentially remove low-mass cluster members, so evolved clusters should show large deficits of low-mass stars. The mass function is defined as $\Psi(M) = dN/dM$, such that $\Psi(M)$ is the number of stars with masses in the interval (m, m + dm). We have constructed mass functions using the spectral type intervals defined in Section 3.3, where the number of stars is the quantity N_c determined in our fitting routine. These mass bins have uneven width, so we normalized each value to represent the number of stars per interval $0.1 M_{\odot}$.

In Figure 10, we plot the cluster mass functions for Praesepe (top) and Coma Ber (bottom). Each function

Fig. 9.— Scale radius $r_0(M)$ for each cluster. The scale radius in Praesepe clearly increases with decreasing mass, indicating the presence of mass segregation. The corresponding trend for Coma Ber is inconclusive due to low number statistics.

can be fit with a single power law, $\Psi \propto M^{-\alpha}$, where $\alpha = 1.4 \pm 0.2$ for Praesepe and $\alpha = 0.6 \pm 0.3$ in Coma Ber. Both power laws are significantly shallower than a Salpeter IMF ($\alpha = 2.35$), but the Praesepe power law agrees well with the present-day mass function for nearby field stars ($\alpha = 1.35 \pm 0.2$ for 1.0-0.1 M_{\odot} ; Reid et al. 2002). Previous studies of the mass function for young clusters and unbound associations have also found similar slopes in this mass range ($\alpha \sim 1.25 \pm 0.25$; Hillenbrand 2004 and references therein).

Neither cluster has a sharp decline in the number of low-mass members within the mass range of our sample. Chappelle et al. (2005) found that the Praesepe mass function may drop sharply just below the limit of our survey ($\lesssim 0.12~M_{\odot}$), which could denote the effect of tidal stripping of low-mass members, but we can not confirm or disprove this result. The shallower power law of the Coma Ber mass function suggests that some of its low-mass members may have been removed, but it appears that any limit for the total depletion of cluster members must lie below $\sim 0.12~M_{\odot}$ as well.

5.3. Cluster Masses and Tidal Radii

We have derived the total masses of each cluster by integrating the mass functions that we described in the previous section. Since these mass functions do not include high-mass stars, we have manually added the masses of known high-mass cluster members which were not identified in our survey, comprising $\sim 1/3$ of the total mass. We identified the missing Praesepe members using our high-confidence cluster sample (Section 2.5), plus the five evolved giant members identified by Klein-Wassink (1927), while the corresponding members of Coma Ber were identified from the original member list of Trumpler et al. (1937).

We have not included any of the candidate Coma Ber members suggested by subsequent surveys (Bounatiro 1993; Odenkirchen et al. 1998) since it has been suggested that a significant fraction of these candidates may be spurious (Ford et al. 2001). We also did not attempt

Fig. 10.— Mass functions, $\Psi(M)=dN/dM$, for Praesepe and Coma Ber. We derived these results from our best-fit values for $N_c(M)$, as described in Section 3.3 and Table 2; each spectral type bin corresponds to a different width in mass, so we normalized all bins to report the number of stars per 0.1 M_{\odot} .

to include any substellar or near-substellar members of Praesepe or Coma Ber since they are not thought to comprise a significant fraction of the cluster mass (e.g. Chappelle et al. 2005).

Based on this analysis, we estimate that the total stellar populations for Praesepe and Coma Ber consist of 1050 ± 30 stars earlier than M5 and 145 ± 15 stars earlier than M6, respectively. The corresponding total masses are $550\pm40~M_{\odot}$ and $112\pm16~M_{\odot}$. Given these cluster masses, we can also estimate the tidal radius of each cluster:

$$r_t = \left[\frac{GM_c}{4A(A-B)}\right]^{1/3}$$

(King 1962), where A and B are the Oort constants $(A=14.4~{\rm km~s^{-1}~kpc^{-1}};~B=-12.0~{\rm km~s^{-1}~kpc^{-1}};~Kerr & Lynden-Bell 1986).$ We derive estimated tidal radii of $11.5\pm0.3~{\rm pc}~(3.5\pm0.1^o)$ for Praesepe and $6.8\pm0.3~{\rm pc}~(4.3\pm0.2^o)$ for Coma Ber. In both cases, these radii are approximately half the radius of our search area (7^o) . This suggests that our survey should be spatially complete for all bound members.

Finally, we note that all of these results are likely to be marginally underestimated due to unresolved stellar multiplicity. Given the typical binary frequency found for open clusters ($\sim 30\%$; Patience et al. 2002) and the mean mass ratio for binaries ($\sim 0.3\text{-}0.7$), the magnitude of this mass underestimate should be $\sim 20\%$. We will address this problem in a future publication that specifically studies stellar multiplicity in both clusters.

6. SUMMARY

We have combined archival survey data from the SDSS, 2MASS, USNOB1.0, and UCAC-2.0 surveys to calculate proper motions and photometry for \sim 5 million sources in the fields of the open clusters Praesepe and Coma Ber. Of these sources, 1010 stars in Praesepe and 98 stars in Coma Ber have been identified as candidate members with probability >80%; 442 and 61, respectively, are newly identified as high-probability candidates for the first time. We estimate that this survey is >90% complete across a wide range of spectral types (F0 to M5 in Praesepe, F5 to M6 in Coma Ber).

We have also investigated each cluster's mass function and the stellar mass dependence of their radii in order to quantify the role of mass segregation and tidal stripping in shaping the present-day mass function and spatial distribution. Praesepe shows clear evidence of mass segregation, but if significant tidal stripping has occurred, it has affected only members near and below the substellar boundary ($\lesssim 0.15~M_{\odot}$). Low number statistics make it difficult to quantify the level of mass segregation in Coma Ber. The shallower slope of its mass function suggests that some mass loss has occurred, but any mass limit for total depletion of the cluster population must fall below the limit of our survey.

The authors thank John Stauffer for providing helpful feedback on the manuscript. This work makes use of data products from 2MASS, a joint project of the University of Massachusetts and IPAC/Caltech, funded by NASA and the NSF. Our research has also made use of the USNOFS Image and Catalogue Archive operated by the USNO, Flagstaff Station (http://www.nofs.navy.mil/data/fchpix/). Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, the U.S. DoE, NASA, the Japanese Monbukagakusho, and the Max Planck Society, and the Higher Education Funding Council for England. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions.

APPENDIX

STELLAR SED LIBRARY

There is no single source in the literature that describes all of the SED data that we require, so we compiled a preliminary set of models from a heterogeneous set of empirical observations. We then optimized these models by comparing the color-magnitude sequences to the single-star sequence of our high-confidence Praesepe sample (Section 2.5).

Luminosities and optical colors for our high-mass and intermediate-mass stellar models (spectral types B8 to K7) were based on the absolute UBV magnitudes of Schmidt-Kaler (1982), which we converted to SDSS absolute magnitudes using the color transformations of Jester et al. (2005). We then used the optical-NIR colors (V-K, J-K, and H-K) of Bessell and Brett (1988) to estimate JHK absolute magnitudes, and converted these values to the 2MASS filter system using the NIR color transformations of Carpenter et al. (2001). We estimated absolute bolometric magnitudes for each model using the bolometric corrections of Masana et al. (2005).

For M dwarfs (M0-L0), we based our models on the fourth-order polynomial relation of absolute JHK vs spectral

TABLE 5 STELLAR SEDS

SpT	M_u	M_g	M_r	M_i	M_z	M_J	M_H	M_K	M_{bol}	T_{eff}	$M~(M_{\odot})$
B8	0.32	-0.39	-0.04	0.34	0.62	0.01	0.10	0.11	-1.00	11900	3.8
A0	1.58	0.47	0.72	1.04	1.28	0.54	0.58	0.56	0.30	9520	2.9
A2	2.41	1.22	1.39	1.65	1.87	1.12	1.15	1.12	1.10	8970	2.4
A5	3.14	1.88	1.95	2.15	2.32	1.53	1.52	1.48	1.75	8200	2.0
A7	3.47	2.21	2.23	2.40	2.55	1.75	1.71	1.66	2.08	7580	1.8
F0	3.94	2.77	2.68	2.79	2.90	2.10	2.01	1.96	2.61	7200	1.6
F2	4.23	3.10	2.96	3.04	3.13	2.32	2.20	2.14	2.89	6890	1.5
F5	5.01	3.90	3.68	3.69	3.74	2.85	2.67	2.61	3.61	6440	1.25
F8	5.76	4.60	4.29	4.26	4.28	3.31	3.08	3.01	4.24	6200	1.17
G0	6.09	4.89	4.52	4.44	4.44	3.53	3.27	3.20	4.47	6030	1.11
G2	6.35	5.07	4.65	4.54	4.51	3.64	3.38	3.30	4.60	5860	1.06
G5	6.78	5.40	4.92	4.79	4.74	3.86	3.56	3.48	4.89	5770	1.04
G8	7.55	6.03	5.50	5.32	5.25	4.31	3.95	3.86	5.30	5570	0.98
K0	8.08	6.38	5.77	5.55	5.45	4.49	4.10	4.00	5.69	5250	0.90
K2	8.89	6.94	6.23	5.94	5.80	4.80	4.35	4.24	6.08	4900	0.82
K4	9.90	7.62	6.77	6.40	6.20	5.08	4.56	4.43	6.55	4590	0.75
K5	10.36	7.98	7.03	6.59	6.35	5.20	4.64	4.51	6.68	4350	0.70
K7	11.27	8.59	7.45	6.90	6.58	5.46	4.85	4.70	6.89	4060	0.63
M0	12.46	9.90	8.50	7.83	7.46	6.04	5.37	5.18	7.60	3850	0.59
M1	13.00	10.47	9.00	8.12	7.64	6.33	5.68	5.47	7.97	3680	0.54
M2	13.66	11.36	9.76	8.73	8.15	6.73	6.09	5.86	8.44	3510	0.42
M3	14.55	12.37	10.77	9.44	8.74	7.31	6.68	6.44	9.09	3350	0.29
M4	15.83	13.55	11.99	10.48	9.64	8.10	7.49	7.22	9.92	3180	0.20
M5	17.38	15.22	13.67	11.76	10.71	9.08	8.47	8.16	11.01	3010	0.15
M6	18.71	16.56	14.99	12.98	11.88	10.15	9.50	9.16	12.06	2840	0.12
M7	19.74	17.82	16.21	13.94	12.68	10.76	10.08	9.69	12.70	2720	0.11
M8	21.05	19.40	17.60	14.83	13.21	11.19	10.46	10.03	13.13	2600	0.102
M9	21.72	19.93	18.19	15.38	13.69	11.49	10.73	10.26	13.43	2400	0.088
L0	22.33	20.98	18.48	15.85	14.01	11.76	10.96	10.44	13.69	2200	0.078

type described by Cruz et al. (2007); they only explicitly defined this relation for spectral types later than M6, so we used 2MASS observations of stars in the CNS3 catalog (Gliese & Jahreiss 1991) and the 8 pc sample (Reid et al. 2002) to estimate the appropriate polynomial relation for M0-M5 stars. We combined these results with the r-i, i-z, and z-J colors of West et al. (2005) and the u-g and g-r colors of Bochanski et al. (2007). We estimated absolute bolometric magnitudes using the bolometric corrections of Leggett (1992) and Leggett et al. (2002).

Finally, we optimized our set of spectral type models by comparing theoretical color-color and color-magnitude sequences to the empirical color-color and color-magnitude sequences of our sample of high-confidence Praesepe members. We found that the absolute magnitudes of our models differed from the empirical sequence at spectral types F2-F8 and at the K/M boundary, so we adjusted these absolute magnitudes to match the empirical sequences. We did not find any need to adjust the colors of any model, which suggests that any discrepancies are a result of the bolometric corrections.

In Table 5, we list our final set of spectral type models. Our fitting routine subsamples this model grid by linearly interpolating to predict values for intermediate spectral types; our final grid of models (491 in all) proceeds from B8 to L0 in steps of 0.1 subclasses, following the recent nomenclature trend to proceed directly from K5 to K7 to M0, not using subclasses K6, K8, or K9.

For high-mass stars (\leq F2), we directly adopted masses from the models of Schmidt-Kaler (1982). For lower-mass stars, we adopted effective temperatures for each model using the dwarf temperature scales of Schmidt-Kaler (1982) (for spectral types \leq M0) and Luhman (1999) (for spectral types >M0). We then combined these T_{eff} values with the 500 Myr isochrones of Baraffe et al. (1998) to estimate stellar masses. The appropriate mixing length has been found to change with mass (Yildiz et al. 2006), so for masses >0.6 M_{\odot} , we used the models with a mixing length of H_P . For masses <0.6 M_{\odot} , we used the models with a mixing length of 1.9 H_P .

Several studies (e.g. Hillenbrand & White 2004; Lopez-Morales 2007) have found that theoretical models can underpredict masses, so these values should be considered with some caution. The most uncertain mass range is <0.5 M_{\odot} . Observational calibrations suggest that the models underpredict masses by $\sim 10\text{-}20\%$ in the mass range of 0.2-0.5 M_{\odot} , and the models are almost completely uncalibrated for lower masses. We have addressed this problem by increases the masses of M1 stars by 5%, M2 stars by 10%, and later-type stars by 20%; these adopted values are more consistent with the observations (e.g. Lacy 1977; Delfosse et al. 1999; Creevy et al. 2005; Lopez-Morales & Ribas 2005).

We list all of the adopted values of M and T_{eff} in Table 5.

REFERENCES

Abt, H. 1986, PASP, 98, 307
Abt, H. & Levato, H. 1977, PASP, 89, 29
Adams, J., Stauffer, J., Monet, D., Skrutskie, M., & Beichman, C. 2001, AJ, 121, 2053

Adams, J., Stauffer, J., Skrutskie, M., Monet, D., Portegies Zwart, S., Janes, K., & Beichman, C. 2002, AJ, 124, 1570
Adelman-McCarthy, J. et al. 2006, ApJS, 162, 38
Allen, L. & Strom, K. 1995, AJ, 109, 1379
Argue, A. & Kenworthy, C. 1969, MNRAS, 146, 479

Artyukhina, N. 1955, TrSht, 26, 3

Artyukhina, N. 1966, TrSht, 34, 181

Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. 1998, A&A, 337, 403

Bessell, M. & Brett, J. 1988, PASP, 100, 1134

Bidelman, W. 1956, PASP, 68, 318

Bochanski, J., West, A., Hawley, S., & Covey, K. 2007, AJ, 133,

Bounatiro, L. 1993, A&AS, 100, 531

Bouy, H. et al. 2006, ApJ, 637, 1056

Carpenter, J. 2001, AJ, 121, 3160

Casewell, S., Jameson, R., & Dobbie, P. 2006, MNRAS, 365, 447 Chappelle, R., Pinfield, D., Steele, I., Dobbie, P., & Magazzu, A. 2005, MNRAS, 361, 1323

Corbally, C., & Garrison, R. 1986, AJ, 92, 90

Creevey, O. et al. 2005, ApJ, 625, 127

Cruz, K. et al. 2007, AJ, 133, 439

Delfosse, X., Forveille, T., Mayor, M., Burnet, M., & Perrier, C. 1999, A&A, 344, 897

Ford, A., Jeffries, R., James, D., & Barnes, J. 2001, A&A, 369, 871 Francic, S. 1989, AJ, 98, 888 Gliese, W. & Jahreiss, H. 1991, Astronomical Data Center CD-

ROM: Selected Astronomical Catalogs, Vol. I, Preliminary Version of the Third Catalogue of Nearby Stars (Greenbelt: NASA)

Gould, A. & Kohlmeier, J. 2004, ApJS, 152, 103

Hambly, N., Steele, I., Hawkins, M., & Jameson, R. 1995, A&AS,

Hambly, N., Steele, I., Hawkins, M., & Jameson, R. 1995, MNRAS, 273, 505

Hillenbrand, L. 2004, in The Dense Interstellar Medium in Galaxies, ed. S. Pfalzner et al. (Berlin: Springer), 601

Hillenbrand, L. & White, R. 2004, ApJ, 604, 741

Holland, K., Jameson, R., Hodgkin, S., Davies, M., & Pinfield, D. 2000, MNRAS, 319, 956

Jeffries, R. 1999, MNRAS, 304, 821

Jester, S. et al. 2005, AJ, 130, 873

Jones, B. & Cudworth, K. 1983, AJ, 88, 215

Jones, B. & Stauffer, J. 1991, AJ, 102, 1080

Kafka, S. & Honeycutt, R. 2006, AJ, 132, 1517

King, I. 1962, AJ, 67, 471

Klein-Wassink, W. 1927, Publ. Kapteyn Astron. Lab. Groningen,

Lacy, C. 1977, ApJ, 218, 444

Leggett, S. 1992, ApJS, 82, 351

Leggett, S. et al. 2002, ApJ, 564, 452

Lopez-Morales, M. & Ribas, I. 2005, ApJ, 631, 1120

Lopez-Morales, M. 2007, ApJ, 660, 732

Luhman, K. 1999, ApJ, 525, 466

Masana, E. et al. 2006, A&A, 450, 735

Monet, D. et al. 2003, AJ, 135, 984

Muench, A., Lada, C., Luhman, K., Muzerolle, J., & Young, E. 2007, AJ, in press (arXiv/0704.0203)

Odenkirchen, M., Soubiran, C., & Colin, J. 1998, New Astronomy,

Patience, J., Ghez, A., Reid, I., & Matthews, K. 2002, AJ, 123, 1570

Pier, J., Munn, J., Hindsley, R., Hennessy, G., Kent, S., Lupton, R., Ivezic, Z. 2003, AJ, 125, 1559

Pinfield, D., Hodgkin, S., Jameson, R., Cossburn, M., & von Hippel, T. 1997, MNRAS, 287, 180

Pinfield, D., Dobbie, P., Jameson, R., Steele, I., Jones, H., & Katsiyannis, A. 2003, MNRAS, 342, 1241

Ramberg, J. 1938, StoAn, 13, 9

Reid, I.N., Gizis, J., Hawley, S. 2002, AJ, 124, 2721

Sanders, W. 1971, A&A, 14, 226

Schmidt-Kaler, Th., "Physical Parameters of the Stars", Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group VI, Volume 2b, Springer-Verlag, Berlin, 1982

Siegler, N. et al. 2007, ApJ, 654, 580

Skrutskie, M. et al. 2006, AJ, 131, 1163

Stauffer, J. et al. 2007, ApJS, in press (arXiv/0704.1832)

Stephenson, C.B. 1986, AJ, 91, 144

Trumpler, R. 1938, LicOB, 18, 167

Upgren, A. 1962, AJ, 67, 37

Upgren, A. 1963, AJ, 68, 194

Wang, J., Chen, L., Zhao, J., & Jiang, P. 1995, A&AS, 113, 419

West, A., Walkowicz, L., & Hawley, S. 2005, PASP, 117, 706 Williams, S., Stauffer, J., Prosser, C., & Herter, T. 1994, PASP,

106, 817 Yildiz, M., Yakut, K., Bakis, H., & Noels, A. 2006, MNRAS, 368,

1941

York, D. et al. 2000, AJ, 120, 1579

Zacharias, N., McCallon, H., Kopan, E., Cutri, R. 1993, IAUJD, 16, 43

Zacharias, N., Urban, S., Zacharias, M., Wycoff, G., Hall, D., Monet, D., & Rafferty, T. 2004, AJ, 127, 3043

TABLE 3 CANDIDATE MEMBERS OF PRAESEPE

ID	SpT	m_{bol}	μ_{α}	μ_{δ} as yr ⁻¹	σ_{μ}	P_{mem}	Previous ID
		(mag)	(11)	ias yr)	(%)	
2MASS J08401535+1959394	$A4.6\pm 4.9$	8.37 ± 0.02	-35.8	-12.3	0.7	100.0	KW271 (F1; Abt 1986)
2MASS J08405693+1956055 2MASS J08462889+2221079	$A5.7\pm2.1 A6.1\pm2.3$	8.38 ± 0.02 8.00 ± 0.02	-36.1 -38.3	-15.4 -14.8	$\frac{1.2}{0.5}$	100.0 88.7	KW350 (A8; Abt 1986)
2MASS J08402889+2221079 2MASS J08383786+1959231	$A6.1\pm2.3$ $A6.2\pm2.0$	7.99 ± 0.01	-36.3 -37.4	-14.6	$0.5 \\ 0.7$	100.0	KW114 (A8; Abt 1986)
2MASS J08390359+1959591	$A6.2\pm2.0$	8.15 ± 0.01	-34.2	-13.3	0.6	100.0	KW143 (A8; Abt 1986)
$2MASS\ J08421080+1856037$	$A6.3\pm1.9$	7.74 ± 0.01	-34.1	-12.1	1.1	99.2	KW449 (A7; Abt 1986)
2MASS J08411377+1955191	$A6.7\pm1.9$	8.19 ± 0.01	-36.9	-12.6	0.6	100.0	KW375 (A7; Abt 1986)
2MASS J08364800+1852580	$A7.2\pm2.3$	8.38 ± 0.01	-35.4	-13.6	0.9	99.8	KW538 (A9; Abt 1986)
2MASS J08405247+2015594 2MASS J08420650+1924405	$A7.4\pm2.2 A7.6\pm2.1$	8.26 ± 0.02 7.91 ± 0.01	-34.6 -38.4	-12.7 -12.1	$0.7 \\ 0.9$	100.0 99.8	KW340 (F0; Abt 1986) KW445 (A8; Abt 1986)
2MASS J08420030+1924403 2MASS J08390909+1935327	$A7.0\pm 2.1$ $A7.7\pm 2.2$	8.38 ± 0.02	-35.3	-12.1 -12.0	$0.5 \\ 0.5$	99.9	KW154 (A9; Abt 1986)
2MASS J08374070+1931063	$A8.0\pm3.2$	8.17 ± 0.02	-34.8	-12.5	0.7	99.9	KW 45 (A9; Abt 1986)
2MASS J08384695+1930033	$A8.2\pm 2.3$	8.75 ± 0.02	-34.8	-12.6	0.7	99.9	KW124 (F1; Allen & Strom 1995)
2MASS J08403296+1911395	$A8.3 \pm 2.7$	8.49 ± 0.02	-37.4	-14.2	0.7	99.9	KW318 (A9; Abt 1986)
2MASS J08411840+1915394	$A8.9\pm2.3$	7.87 ± 0.02	-37.4	-12.9	0.7	99.9	KW385 (A8; Abt 1986)
2MASS J08395838+2009298 2MASS J08415314+2009340	$A9.5\pm2.2 A9.6\pm2.3$	8.76 ± 0.01 8.42 ± 0.01	-36.0 -38.2	-13.8 -13.7	$\frac{1.6}{0.7}$	100.0 100.0	KW226 (F1; Abt 1986)
2MASS J08413314+2009340 2MASS J08452825+2023435	$A9.0\pm 2.3$ $A9.8\pm 2.2$	8.52 ± 0.01	-38.5	-13.1 -13.1	0.6	99.6	KW429 (A9; Abt 1986) A1501
2MASS J08425307+2049092	$A9.8\pm2.7$	8.71 ± 0.02	-38.9	-14.4	0.7	99.6	A1196
2MASS J08413620+1908335	$F0.1\pm2.1$	9.04 ± 0.01	-36.0	-14.3	0.7	99.9	KW411 (F2; Allen & Strom 1995)
$2MASS\ J08373381+2000492$	$F0.2\pm2.8$	$8.62 {\pm} 0.02$	-35.7	-13.1	0.6	100.0	KW 38 (A9; Abt 1986)
2MASS J08493389+2030290	$F0.5\pm2.0$	9.06 ± 0.02	-38.8	-13.0	0.6	95.2	INVESTO (DO DILL 1070)
2MASS J08395432+2033368	$F1.0\pm1.7$	9.08 ± 0.01	-35.6	-14.0	0.6	100.0	KW218 (F6; Bidelman 1956)
2MASS J08411067+1949465 2MASS J08394960+1820506	$F1.1\pm1.9$ $F1.1\pm2.2$	8.91 ± 0.01 8.98 ± 0.02	-37.8 -34.1	-13.7 -16.2	$0.6 \\ 1.1$	100.0 91.6	KW370 (F3; Corbally & Garrison 1986) JS320
2MASS J08422162+2010539	$F1.1\pm2.2$ $F1.4\pm1.9$	9.00 ± 0.02	-36.8	-14.4	0.7	100.0	KW459 (F3; Bidelman 1956)
2MASS J08463327+1845394	$F2.0\pm1.8$	9.02 ± 0.02	-36.9	-11.0	1.1	96.9	JS632
2MASS J08402614+1941111	$F2.0\pm1.7$	9.14 ± 0.02	-37.2	-11.9	0.6	100.0	KW295 (F5; Corbally & Garrison 1986)
2MASS J08390523+2007018	$F2.1\pm2.1$	9.19 ± 0.02	-35.7	-12.1	0.6	100.0	KW146 (F5; Bidelman 1956)
2MASS J08400771+2103458	$F2.3\pm1.6$	9.13 ± 0.01	-38.5	-15.3	0.6	99.5	JS335
2MASS J08275813+2206074 2MASS J08415782+1854422	$F2.4\pm1.7$ $F2.5\pm2.5$	9.42 ± 0.01 9.25 ± 0.02	-36.1 -34.3	-15.8 -11.1	$0.6 \\ 0.9$	$58.9 \\ 98.4$	II 490 KW439 (F5; Bidelman 1956)
2MASS J08413762+1634422 2MASS J08414229+1939379	$F2.5\pm 1.9$	9.30 ± 0.02 9.30 ± 0.02	-34.3	-13.8	0.6	100.0	KW416 (F5; Corbally & Garrison 1986)
2MASS J08451801+1853254	$F2.7\pm1.6$	9.42 ± 0.01	-36.9	-14.1	1.1	99.7	1111 (10, corpuly & duribon 1000)
2MASS J08362985+1857570	$F2.8 \pm 1.6$	9.14 ± 0.01	-34.6	-12.6	1.2	99.6	KW536 (F6; Bidelman 1956)
2MASS J08414001+2040199	$F2.8 \pm 1.7$	$9.42 {\pm} 0.01$	-37.8	-14.1	0.7	99.9	JS446 (F6; Bidelman 1956)
2MASS J08404608+1918346	$F2.9\pm1.8$	9.36 ± 0.02	-37.1	-13.2	0.9	100.0	KW332 (F4; Allen & Strom 1995)
2MASS J08412698+1932329 2MASS J08395807+1912058	$F2.9\pm1.4$ $F3.3\pm1.5$	9.57 ± 0.01 9.35 ± 0.01	-37.3 -37.4	-12.4 -12.5	$0.7 \\ 0.8$	100.0 99.9	KW396 (F5; Ramberg 1938) KW227 (F3; Allen & Strom 1995)
2MASS J08393807+1912038 2MASS J08453049+2035245	$F3.3\pm1.5$ $F3.4\pm1.7$	9.64 ± 0.02	-37.4	-12.3 -14.7	0.6	99.9 99.7	JS600
2MASS J08400130+2008082	$F3.5\pm2.0$	9.52 ± 0.02	-36.0	-14.5	0.6	100.0	KW239 (F6; Corbally & Garrison 1986)
2MASS J08391014+1940423	$F3.7 \pm 1.7$	9.34 ± 0.01	-36.1	-13.7	0.8	100.0	KW155 (F4; Corbally & Garrison 1986)
2MASS J08451468+2059512	$F3.7 \pm 1.7$	9.40 ± 0.01	-38.2	-15.9	0.6	97.7	JS589
2MASS J08424441+1934479	$F3.7\pm2.3$	9.54 ± 0.02	-38.2	-13.5	0.6	99.9	KW478 (F6; Bidelman 1956)
2MASS J08380772+1703024	$F3.9\pm2.3$	9.63 ± 0.02	-35.6 -36.6	-10.9 -13.2	1.4	71.4 100.0	KW 31 (F8; Ramberg 1938)
2MASS J08372793+1933451 2MASS J08424071+1932354	$F4.0\pm1.6$ $F4.1\pm2.5$	$9.41{\pm}0.01$ $9.65{\pm}0.02$	-30.0 -38.4	-13.2 -12.7	$0.7 \\ 0.6$	99.9	KW 472 (F5; Ramberg 1938)
2MASS J08370203+1936171	$F4.2\pm1.6$	9.02 ± 0.02	-34.3	-13.0	0.6	99.8	KW 16 (F6; Bidelman 1956)
2MASS J08430705+1904060	$F4.3\pm1.8$	9.31 ± 0.02	-39.4	-10.2	0.7	85.0	KW496 (F8; Bidelman 1956)
$2MASS\ J08400062+1948235$	$F4.3\pm1.6$	10.04 ± 0.01	-36.3	-13.1	0.6	100.0	KW238 (F8; Ramberg 1938)
2MASS J08395908+2001532	$F4.5\pm1.9$	9.18 ± 0.01	-36.4	-16.2	0.7	99.9	KW232 (F5; Bidelman 1956)
2MASS J08395506+2003541	$F4.5\pm1.6$	9.93 ± 0.01	-37.5	-13.9	1.2	100.0	KW222 (F8; Ramberg 1938) KW454 (F5; Ramberg 1938)
2MASS J08421549+1941156 2MASS J08402554+1928328	$F4.7\pm1.7$ $F4.8\pm2.1$	9.77 ± 0.01 9.75 ± 0.02	-37.6 -36.8	-15.0 -13.3	$\frac{1.1}{0.8}$	99.9 100.0	KW454 (F5; Ramberg 1938) KW293 (F5; Allen & Strom 1995)
2MASS J08472819+1926328	$F4.9\pm2.3$	9.41 ± 0.02	-36.2	-13.4	0.8	99.9	KW 34 (F6; Bidelman 1956)
2MASS J08401231+1938222	$F5.1\pm1.7$	9.69 ± 0.01	-36.9	-14.5	0.7	100.0	KW268 (F5; Allen & Strom 1995)
$2MASS\ J08390283+1943289$	$F5.2 \pm 1.8$	9.13 ± 0.01	-35.8	-11.2	0.7	99.9	KW142 (F7; Corbally & Garrison 1986)
2MASS J08400491+1943452	$F5.2 \pm 1.6$	9.68 ± 0.01	-36.1	-12.5	0.7	100.0	KW250 (F5; Allen & Strom 1995)
2MASS J08395234+1918455	$F5.3\pm1.7$	10.06 ± 0.01	-34.8	-14.3	0.7	99.9	KW217 (F7; Allen & Strom 1995)
2MASS J08450422+2021278 2MASS J08413154+1830021	$F5.3\pm1.6$ $F5.4\pm1.7$	10.16 ± 0.01 10.14 ± 0.01	-39.4 -35.3	-14.8 -14.6	$0.6 \\ 1.2$	98.4 99.6	JS587 JS437
2MASS J08413134+1830021 2MASS J08405252+1928595	$F5.4\pm1.7$ $F5.6\pm1.8$	10.14 ± 0.01 10.13 ± 0.01	-35.3 -37.0	-14.6	0.7	100.0	KW341 (F8; Ramberg 1938)
2MASS J08423681+1823199	$F5.7\pm1.8$	9.96 ± 0.01	-34.5	-15.0	1.6	98.3	JS495
2MASS J08434815+1848028	$F5.7 \pm 1.9$	9.99 ± 0.02	-35.2	-9.5	1.2	81.4	KW549 (F8; Ramberg 1938)
2MASS J08352805+2011467	$F5.7 \pm 2.1$	9.99 ± 0.02	-35.7	-15.1	0.7	99.8	JS 88
2MASS J08414549+1916023	$F5.7 \pm 1.6$	10.02 ± 0.01	-38.1	-13.2	0.7	99.9	KW421 (F7; Allen & Strom 1995)
2MASS J08471411+1623473	$F5.7\pm1.7$	10.36 ± 0.01	-37.7	-12.6	1.2	52.4	WW459 (E9. Deml 1099)
2MASS J08422012+2002117 2MASS J08464732+1938410	$F5.9\pm2.2 F5.9\pm1.9$	9.48 ± 0.02 10.43 ± 0.02	-35.7 -36.5	-15.6 -13.9	$0.6 \\ 0.6$	$99.9 \\ 99.7$	KW458 (F8; Ramberg 1938) JS638
2MASS J08404732+1938410 2MASS J08441195+1754079	$F6.0\pm 2.1$	9.86 ± 0.02	-36.4	-13.9 -10.5	1.3	88.0	00000
2MASS J08441193+1794079 2MASS J08411002+1930322	$F6.0\pm2.1$ $F6.1\pm1.8$	10.00 ± 0.01	-36.9	-10.5	0.8	100.0	KW371 (F7; Allen & Strom 1995)
2MASS J08402231+2006243	$F6.2 \pm 1.8$	9.96 ± 0.01	-36.6	-12.2	0.7	100.0	KW282 (F8; Ramberg 1938)
2MASS J08382429+2006217	$F6.2\pm2.0$	10.29 ± 0.02	-36.3	-13.1	0.7	100.0	KW100 (G0; Ramberg 1938)
2MASS J08311296+1809132	$F6.3\pm2.4$	9.85 ± 0.02	-34.6	-12.1	1.1	86.9	A 70

		CANDIDA	ATE ME	MBERS O	F PRAI	ESEPE	
2MASS J08452794+2139128	$F6.6 \pm 2.0$	10.40 ± 0.01	-36.2	-15.2	0.6	98.5	JS596
2MASS J08394575+1922011	$F6.6\pm1.9$	10.41 ± 0.01	-35.4	-12.8	0.9	100.0	KW208 (G1; Corbally & Garrison 1986)
2MASS J08391217+1906561	$F6.9\pm1.9$	10.42 ± 0.01	-37.0	-13.4	0.7	99.9	KW162 (F9; Allen & Strom 1995)
2MASS J08432019+1946086	$F7.1\pm2.2$	10.54 ± 0.01	-39.4	-13.4	0.6	99.6	KW508 (G0; Allen & Strom 1995)
2MASS J08432013+1340080 2MASS J08433553+2011225	$F7.2\pm2.6$	10.34 ± 0.01 10.11 ± 0.02	-39.3	-13.4 -14.7	0.6	99.4	KW515 (F8; Ramberg 1938)
2MASS J08402271+1927531	$F7.2\pm2.1$	10.52 ± 0.01	-37.8	-13.3	1.0	100.0	KW288 (G0; Corbally & Garrison 1986)
2MASS J08452271+1327531 2MASS J08355455+1808577	$F7.2\pm2.5$	10.64 ± 0.02	-33.8	-10.5	1.1	63.3	JS103
•	$F7.2\pm2.3$ $F7.5\pm3.2$						JS276
2MASS J08391096+1810335 2MASS J08414382+2013368		10.21 ± 0.02	-37.8	-14.8	1.3	99.0	
	$F7.5\pm2.6$	10.36 ± 0.01	-37.4	-15.7	0.9	99.9	KW418 (G0; Ramberg 1938)
2MASS J08362782+1754535	$F7.5\pm2.3$	10.62 ± 0.01	-36.5	-11.4	1.1	96.8	JS134 VW275 (C1. Conholler & Connigon 1086)
2MASS J08401762+1947152	$F7.8\pm2.9$	9.80 ± 0.02	-35.5	-13.6	1.0	100.0	KW275 (G1; Corbally & Garrison 1986)
2MASS J08374660+1926181	F8.3±3.3	10.52 ± 0.02	-36.1	-13.4	0.7	100.0	KW 49 (F9; Allen & Strom 1995)
2MASS J08415587+1941229	F8.5±3.0	10.81 ± 0.01	-37.6	-12.1	1.2	99.9	KW432 (G2; Allen & Strom 1995)
2MASS J08345963+2105492	F8.9±3.2	10.95 ± 0.02	-34.6	-16.0	0.6	96.7	JS 76
2MASS J08412584+1956369	F9.1±2.9	10.60 ± 0.01	-36.3	-13.7	0.8	$100.0 \\ 100.0$	KW392 (G0; Allen & Strom 1995)
2MASS J08385001+2004035	F9.1±3.0	10.64 ± 0.01	-36.6	-15.4	0.7		KW127 (G0; Ramberg 1938)
2MASS J08393553+1852367	F9.3±2.9	10.60 ± 0.01	-37.4	-13.1	1.2	99.9	KW196 (G0; Ramberg 1938)
2MASS J08430593+1926152	F9.5±3.2	9.74 ± 0.01	-36.6	-13.8	0.9	99.9	KW495 (F8; Ramberg 1938)
2MASS J08412869+1944481	F9.9±3.0	10.76 ± 0.01	-39.0	-13.5	0.6	99.9	KW399 (G1; Allen & Strom 1995)
2MASS J08373307+1839156	$G0.0\pm3.5$	10.57 ± 0.02	-37.5	-14.3	1.2	99.6	KW541 (G0; Ramberg 1938)
2MASS J08393042+2004087	$G0.3\pm4.1$	10.08 ± 0.02	-35.8	-13.4	0.8	100.0	KW182 (F8; Ramberg 1938)
2MASS J08374235+1908015	$G0.4\pm4.3$	9.86 ± 0.02	-36.6	-13.5	0.7	99.9	KW 47 (F8; Ramberg 1938)
2MASS J08305546+1933197	$G0.6\pm3.2$	10.67 ± 0.01	-33.5	-15.2	0.7	89.0	
2MASS J08282095+1950386	$G0.9\pm3.2$	10.73 ± 0.01	-33.2	-12.1	0.7	68.4	WW191 (CO. Cook all a for Coming 1096)
2MASS J08392498+1927336	$G1.2\pm3.3$	10.31 ± 0.01	-37.0	-14.9	0.7	99.9	KW181 (G0; Corbally & Garrison 1986)
2MASS J08404832+1955189	$G1.2\pm3.3$	10.82 ± 0.01	-35.5	-13.0	1.2	100.0	KW335 (G2; Allen & Strom 1995)
2MASS J08400171+1859595	$G1.7\pm3.2$	10.01 ± 0.01	-36.5	-11.7	1.1	99.8	KW244 (F6; Allen & Strom 1995)
2MASS J08424525+1851362	$G2.6\pm3.1$	10.50 ± 0.01	-34.4	-10.5	1.3	97.3	JS738
2MASS J08402327+1940236	$G2.7\pm3.7$	10.34 ± 0.02	-37.0	-11.8	0.7	99.9	KW287 (G0; Ramberg 1938)
2MASS J08402743+1916409	$G2.7\pm3.1$	10.99 ± 0.01	-33.3	-12.1	1.2	99.3	KW301 (G3; Allen & Strom 1995)
2MASS J08415924+2055072	$G2.7\pm3.1$	11.04 ± 0.01	-38.0	-14.9	1.0	99.7	JS465
2MASS J08495998+1821541	$G3.0\pm3.2$	11.00 ± 0.02	-35.9	-12.4	1.3	92.8	A1951
2MASS J08410737+1904164	$G3.1\pm2.9$	9.98 ± 0.01	-39.9	-14.1	0.6	99.0	KW365 (F7; Allen & Strom 1995)
2MASS J08403357+2118547	$G3.3\pm2.9$	11.46 ± 0.01	-37.2	-10.9	0.7	99.1	JS368
2MASS J08443703+1942390 2MASS J08423225+1923463	$G3.4\pm3.1$ $G3.6\pm2.9$	10.41 ± 0.01 10.83 ± 0.01	-34.6 -36.5	-14.6 -12.5	$\frac{1.2}{0.9}$	$99.6 \\ 99.9$	KW556 (G0; Ramberg 1938) KW466 (G2; Allen & Strom 1995)
2MASS J08423223+1923403 2MASS J08372222+2010373	$G3.6\pm 3.0$	11.19 ± 0.01	-36.0	-12.5 -14.5	$0.9 \\ 0.7$	99.9	KW 30 (G5; Ramberg 1938)
2MASS J08372222+2010373 2MASS J08432257+2140181	$G3.7\pm2.6$	10.32 ± 0.01	-38.8	-14.6	0.6	97.7	JS532
2MASS J08452237+2140161 2MASS J08415437+1915266	$G3.9\pm2.8$	11.03 ± 0.01	-34.8	-13.2	1.6	99.8	KW434 (G5; Allen & Strom 1995)
2MASS J08391499+2012388	$G3.9\pm2.9$	11.06 ± 0.01	-35.2	-13.2	1.1	99.9	KW164 (G5; Ramberg 1938)
2MASS J08371829+1941564	$G3.9\pm2.7$	11.18 ± 0.01	-37.2	-15.2	1.9	99.9	KW 27 (G5; Allen & Strom 1995)
2MASS J08384447+1748294	$G3.9\pm2.8$	11.52 ± 0.01	-36.2	-15.9	1.3	95.9	1111 21 (Go, 111ch & Strom 1999)
2MASS J08371148+1948132	$G4.2\pm2.5$	11.09 ± 0.01	-35.5	-12.8	0.7	99.9	KW 23 (G0; Ramberg 1938)
2MASS J08404248+1933576	$G4.2\pm2.7$	11.10 ± 0.01	-36.7	-13.8	0.7	100.0	KW326 (G4; Allen & Strom 1995)
2MASS J08403169+1951010	$G4.2\pm 2.7$	11.31 ± 0.01	-35.6	-12.9	0.7	100.0	KW309 (K3; Adams et al. 2002)
2MASS J08375208+1959138	$G4.5\pm2.8$	11.10 ± 0.02	-38.8	-14.6	0.7	99.9	KW 58 (G5; Ramberg 1938)
2MASS J08381497+2034041	$G4.5\pm2.4$	11.12 ± 0.02	-35.4	-15.0	0.7	99.9	KW543 (G5; Ramberg 1938)
2MASS J08450106+2026319	$G4.7\pm2.4$	11.54 ± 0.01	-35.6	-15.0	0.7	99.6	JS585
2MASS J08404189+1913255	$G4.8\pm2.2$	10.49 ± 0.01	-35.9	-13.0	1.4	99.9	KW325 (F9; Allen & Strom 1995)
2MASS J08451310+1941127	$G5.0\pm 2.1$	10.60 ± 0.01	-36.7	-14.2	1.0	99.8	JS588
2MASS J08364572+2007262	$G5.0\pm2.1$	11.37 ± 0.01	-36.0	-10.8	1.3	99.7	KW537 (G5; Ramberg 1938)
$2MASS\ J08364896+1915265$	$G5.3 \pm 2.3$	11.11 ± 0.02	-36.3	-12.8	2.3	99.8	KW539 (G4; Allen & Strom 1995)
2MASS J08482783+1820439	$G5.3 \pm 2.1$	11.19 ± 0.01	-35.9	-9.3	1.9	52.9	JS660
2MASS J08403360+1840282	$G5.4 \pm 1.9$	11.28 ± 0.01	-34.9	-11.9	1.3	99.4	KW546 (G8; Ramberg 1938)
2MASS J08403992+1940092	$G5.5 \pm 2.0$	10.64 ± 0.01	-35.5	-11.3	2.2	99.9	KW322 (G2; Corbally & Garrison 1986)
2MASS J08430055+2020161	$G5.6 \pm 1.9$	11.21 ± 0.01	-37.3	-16.0	1.1	99.7	KW488 (G5; Ramberg 1938)
2MASS J08480173+1840376	$G5.8 \pm 2.0$	10.25 ± 0.02	-36.4	-13.6	1.4	98.2	JS655
2MASS J08424250+1905589	$G5.8 \pm 1.8$	11.33 ± 0.01	-37.4	-13.5	1.1	99.8	KW476 (G8; Ramberg 1938)
2MASS J08364003+2036352	$G5.8 \pm 1.8$	11.51 ± 0.01	-35.9	-15.3	1.3	99.8	JS142
2MASS J08400968+1937170	$G5.8 \pm 1.7$	11.58 ± 0.01	-33.9	-10.5	1.9	99.4	KW263 (G9; Allen & Strom 1995)
2MASS J08395084+1933020	$G6.1\pm1.8$	11.44 ± 0.01	-36.1	-13.9	2.0	100.0	KW213
2MASS J08403623+2133421	$G6.2\pm1.6$	11.40 ± 0.01	-36.8	-14.2	1.1	99.6	
2MASS J08403184+2012060	$G6.5\pm1.6$	11.27 ± 0.01	-36.4	-13.9	1.3	100.0	KW304 (K3; Adams et al. 2002)
$2MASS\ J08380808+2026223$	$G6.5\pm1.9$	11.37 ± 0.02	-36.4	-14.4	1.6	99.9	KW542 (G8; Ramberg 1938)
2MASS J08411031+1949071	$G6.6\pm1.5$	11.19 ± 0.01	-36.5	-13.2	0.7	100.0	KW368 (K3; Adams et al. 2002)
2MASS J08413384+1958087	$G6.7\pm1.6$	11.41 ± 0.01	-39.4	-14.4	0.7	99.8	KW403 (K3; Adams et al. 2002)
2MASS J08375703+1914103	$G6.7\pm1.9$	11.48 ± 0.02	-35.4	-13.7	1.3	99.9	KW 70 (K0; Ramberg 1938)
2MASS J08404798+1939321	$G6.8 \pm 1.7$	10.70 ± 0.01	-37.6	-14.5	0.9	99.9	KW334 (G2; Allen & Strom 1995)
2MASS J08404761+1854119	$G6.8 \pm 1.5$	11.13 ± 0.01	-36.2	-14.9	1.2	99.8	KW336 (G5; Ramberg 1938)
2MASS J08431076+1931346	$G6.8 \pm 1.6$	11.45 ± 0.01	-38.5	-17.5	1.9	96.3	KW498 (G8; Ramberg 1938)
2MASS J08372755+1937033	$G7.3\pm1.8$	11.25 ± 0.02	-34.1	-12.6	1.9	99.8	KW 32 (G8; Ramberg 1938)
2MASS J08430241+1910031	$G7.5 \pm 1.5$	11.61 ± 0.01	-37.7	-11.8	1.9	99.7	KW492 (K0; Ramberg 1938)
2MASS J08410961+1951186	$G7.6 \pm 1.5$	$10.41 {\pm} 0.01$	-36.7	-13.9	2.3	100.0	KW367
$2MASS\ J08392155+2045293$	$G7.6 \pm 1.5$	$11.47 {\pm} 0.01$	-35.1	-14.4	1.3	99.9	JS286 (K3; Adams et al. 2002)
$2MASS\ J08323946+1957223$	$G7.9 \pm 1.6$	11.81 ± 0.01	-33.7	-15.8	2.4	94.3	JC 10
2MASS J08381427+1921552	$G8.1\pm1.8$	10.65 ± 0.02	-35.0	-13.7	1.0	99.9	KW 90 (G0; Ramberg 1938)
2MASS J08400635+1918264	$G8.2\pm1.5$	10.71 ± 0.01	-34.3	-14.7	0.8	99.8	KW257 (K3; Adams et al. 2002)
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					

 $\begin{array}{c} \text{TABLE 3} \\ \text{Candidate Members of Praesepe} \end{array}$

			CANDIDA	ATE ME	MBERS (OF PRA	ESEPE	
2	MASS J08473577+2155364	$G8.2 \pm 0.9$	11.78 ± 0.02	-35.8	-10.2	1.1	78.8	
2	MASS J08405487+1956067	$G8.5 \pm 1.6$	11.64 ± 0.01	-37.2	-14.9	1.6	100.0	KW344 (K1; Corbally & Garrison 1986)
	MASS J08410262+2027278	$G8.5 \pm 1.5$	11.82 ± 0.01	-38.7	-12.1	3.0	99.8	
	MASS J08374739+1906247	$G8.6\pm1.6$	11.72 ± 0.02	-35.6	-15.1	2.0	99.8	KW 52 (K2; Corbally & Garrison 1986)
	MASS J08351780+1938101	$G8.7\pm1.5$	11.56 ± 0.01	-35.6	-12.3	1.9	99.7	JS 85
	MASS J08374640+1935575	$G8.7\pm1.7$	11.79 ± 0.02	-37.8	-9.4	3.0	98.2	KW 48 (K1; Allen & Strom 1995) KW448 (K1; Allen & Strom 1995)
	MASS J08421149+1916373 MASS J08490670+1941113	$G9.3\pm1.3$ $G9.4\pm0.2$	11.78 ± 0.01 11.69 ± 0.01	-37.6 -34.5	-10.0 -12.8	$\frac{1.9}{2.0}$	$98.8 \\ 97.0$	A1903
	MASS J08392858+1928251	$G9.4\pm0.2$ $G9.6\pm1.4$	11.19 ± 0.01	-34.3	-10.8	$\frac{2.0}{2.6}$	99.8	KW184 (K3; Adams et al. 2002)
	MASS J08402440+1827137	$G9.6\pm1.4$	11.26 ± 0.01	-32.3	-10.6	1.9	68.7	JS356
	MASS J08361639+1932313	$G9.7\pm1.6$	11.20 ± 0.01 11.20 ± 0.01	-35.3	-17.6	1.9	96.6	KW533
	MASS J08362269+1911293	$G9.9 \pm 1.4$	11.95 ± 0.01	-38.4	-11.4	3.0	99.2	JS127 (K2; Allen & Strom 1995)
2	MASS J08441706+1844119	$G9.9 \pm 1.3$	11.95 ± 0.01	-34.7	-12.1	2.0	98.9	JS563
2	MASS J08415199+2010013	$K0.0\pm0.2$	11.80 ± 0.01	-40.6	-15.7	1.8	99.5	KW430 (K0; Ramberg 1938)
	MASS J08433880+2216093	$K0.0\pm1.4$	11.94 ± 0.01	-39.6	-13.5	2.2	94.3	AD 3228
	MASS J08392185+1951402	$K0.0\pm1.3$	12.07 ± 0.01	-36.4	-8.8	3.0	99.6	KW172 (K3; Adams et al. 2002)
	MASS J08424021+1907590	$K0.1\pm0.1$	11.90 ± 0.01	-35.3	-10.9	1.3	99.3	KW471 (K0; Ramberg 1938)
	MASS J08384610+2034363 MASS J08414776+1924439	$K0.2\pm1.3$ $K0.3\pm1.0$	12.03 ± 0.01 11.82 ± 0.02	-39.2 -30.3	-11.8 -9.5	$\frac{3.0}{0.7}$	$99.6 \\ 97.0$	KW544 (K3; Adams et al. 2002) KW425
	MASS J08400416+1947039	$K0.5\pm1.0$ $K0.5\pm0.1$	11.75 ± 0.02	-33.0	-13.7	1.3	99.8	KW246 (K0; Allen & Strom 1995)
	MASS J08405669+1944052	$K0.5\pm0.1$ $K0.5\pm0.2$	11.95 ± 0.01	-36.1	-11.1	2.0	99.8	KW349 (K3; Adams et al. 2002)
	MASS J08384973+1815571	$K0.6\pm1.2$	12.15 ± 0.01	-37.8	-9.3	3.0	96.8	JS252
	MASS J08370037+2232470	$K0.7\pm1.4$	12.22 ± 0.02	-37.8	-13.8	3.0	94.3	AD 2251
	MASS J08223394+1903520	$K0.8\pm1.3$	$10.84 {\pm} 0.01$	-36.2	-12.5	1.2	60.8	AD 0487
2	MASS J08374998+1953287	$K0.8\pm1.4$	11.10 ± 0.02	-31.8	-19.2	1.1	97.8	KW 55 (G8; Ramberg 1938)
2	MASS J08403347+1938009	$K0.8 \pm 0.1$	11.94 ± 0.01	-38.9	-10.6	3.0	99.7	KW313 (K3; Adams et al. 2002)
	MASS J08424847+2034244	$K0.8\pm1.1$	12.03 ± 0.01	-35.3	-13.1	2.0	99.6	JS503
	MASS J08364711+1834468	K0.8±1.1	12.35 ± 0.01	-31.5	-6.6	3.0	79.8	JS147
	MASS J08283495+2147423	$K0.8\pm0.1$	12.50 ± 0.01	-31.8	-18.0	1.9	56.1	AD 1135
	MASS J08294438+2040232	$K0.9\pm0.1$ $K1.0\pm1.2$	11.58 ± 0.01	-38.7	-12.9	0.6	94.7	AD 1268
	MASS J08431784+2030373 MASS J08393752+1810134	$K1.0\pm1.2$ $K1.0\pm0.1$	11.56 ± 0.01 12.01 ± 0.01	-37.4 -35.0	-14.2 -15.2	$\frac{1.3}{1.9}$	$99.6 \\ 98.0$	JS529 JC169
	MASS J08333732+1810134 MASS J08414368+1957437	$K1.0\pm0.1$ $K1.1\pm0.1$	12.01 ± 0.01 12.04 ± 0.01	-40.5	-13.1	1.9	99.6	KW417 (K1; Allen & Strom 1995)
	MASS J08301213+2313370	$K1.1\pm0.1$ $K1.1\pm0.1$	12.05 ± 0.01	-38.8	-13.9	$\frac{1.3}{2.3}$	66.7	AD 1336
	MASS J08365411+1845247	$K1.1\pm1.1$	12.25 ± 0.01	-35.8	-7.3	3.0	95.5	JS155
	MASS J08380758+1959163	$K1.2 \pm 0.1$	11.69 ± 0.01	-38.1	-13.5	1.9	99.8	KW 79 (K0; Ramberg 1938)
2	MASS J08435467+1853369	$K1.3\pm1.1$	12.22 ± 0.01	-34.7	-11.8	3.0	98.8	KW551
	MASS J08362830+2013429	$K1.3\pm0.8$	12.24 ± 0.01	-37.8	-6.9	3.0	97.5	KW535 (K0; Ramberg 1938)
	MASS J08433239+1944378	$K1.5\pm0.1$	12.03 ± 0.01	-40.1	-16.5	2.0	99.0	KW514 (K0; Ramberg 1938)
	MASS J08393836+1926272	$K1.5\pm1.0$	12.10 ± 0.01	-33.0	-9.6	1.9	99.2	KW198 (K3; Allen & Strom 1995)
	MASS J08390228+1919343	$K1.6\pm0.1$	12.10 ± 0.01	-36.6	-10.5	3.0	99.6	KW141 (K1; Allen & Strom 1995)
	MASS J08410725+1926489 MASS J08355696+2049346	$K1.6\pm0.2 K1.7\pm1.1$	12.12 ± 0.01 11.65 ± 0.01	-43.7 -33.4	-8.1 -19.7	$\frac{3.0}{2.0}$	$92.6 \\ 95.0$	KW363 (K1; Allen & Strom 1995) JS102
	MASS J08425708+1855275	$K1.8\pm0.8$	12.05 ± 0.01	-26.5	-17.2	3.0	53.5	JS508
	MASS J08322347+2059449	$K1.9\pm0.9$	12.33 ± 0.01	-38.1	-14.3	3.1	97.5	JS 8
	MASS J08501855+1925427	$K1.9\pm0.1$	12.38 ± 0.01	-36.9	-11.6	2.7	95.0	AD 3767
	MASS J08502215+2250271	$K1.9 \pm 0.5$	12.75 ± 0.02	-34.8	-9.4	3.1	60.6	AD 3770
2	MASS J08375180+1924537	$K2.0\pm0.9$	12.46 ± 0.02	-36.1	-8.2	3.0	98.9	KW 60
	MASS J08342121+2152438	$K2.0\pm0.9$	12.46 ± 0.01	-28.3	-13.8	3.1	63.9	AD 1889
	MASS J08402863+2018449	$K2.1\pm0.9$	11.34 ± 0.01	-37.4	-15.9	0.8	99.8	KW297 (K3; Adams et al. 2002)
	MASS J08361410+1937174	$K2.1\pm0.1$	12.23 ± 0.01	-31.1	-10.2	2.0	97.7	KW532 (K2; Ramberg 1938)
	MASS J08331542+2042089	$K2.1\pm0.5$	12.31 ± 0.01	-33.5	-19.4	3.1	91.8	JS 25
	MASS J08373821+1828570 MASS J08280099+1954172	$K2.1\pm1.1 K2.1\pm0.6$	12.31 ± 0.02 12.36 ± 0.01	-34.0 -38.3	-10.3 -17.7	$\frac{3.0}{3.1}$	$97.7 \\ 85.0$	JS194 AD 1050
	MASS J08325223+1958359	$K2.1\pm0.0$ $K2.1\pm0.9$	12.44 ± 0.01	-37.0	-15.8	3.0	98.4	JS 15
	MASS J08405967+1822044	$K2.2\pm0.6$	11.56 ± 0.01	-41.5	-12.5	5.2	96.4	JS402
	MASS J08444870+2017259	$K2.3\pm0.9$	12.39 ± 0.01	-36.7	-13.0	3.0	99.4	JS576
	MASS J08395998+1934405	$K2.3\pm0.5$	12.45 ± 0.01	-39.4	-4.2	3.0	90.3	KW237 (K3; Adams et al. 2002)
2	MASS J08465012+2101129	$K2.5\pm0.8$	12.47 ± 0.01	-36.1	-16.0	2.0	97.7	JS639
	MASS J08424372+1937234	$K2.6\pm0.1$	11.73 ± 0.01	-36.4	-14.2	1.9	99.7	KW474 (K0; Ramberg 1938)
	MASS J08394707+1949395	$K2.6\pm0.1$	12.37 ± 0.01	-40.8	-12.1	3.0	99.7	KW209 (K3; Adams et al. 2002)
	MASS J08393203+2039203	$K2.7\pm0.1$	11.73 ± 0.01	-35.6	-13.1	1.9	99.7	JS297
	MASS J08402751+1939197	$K2.9\pm0.7$	12.67 ± 0.01	-33.4	-12.2	3.0	99.7	KW299 (K3; Adams et al. 2002)
	MASS J08392940+1947118	$K3.0\pm0.1$ $K3.0\pm0.1$	12.10 ± 0.01	-38.9	-9.0	3.0	99.6	KW183 (K4; Adams et al. 2002) JS 51
	MASS J08340436+2034303 MASS J08354516+1938262	$K3.0\pm0.1$ $K3.0\pm0.1$	12.44 ± 0.01 12.52 ± 0.01	-34.8 -36.1	-13.4 -9.8	$\frac{3.1}{3.0}$	$98.9 \\ 99.1$	JS 96
	MASS J08395983+1934003	$K3.1\pm0.1$	11.50 ± 0.01	-33.8	-12.2	$\frac{3.0}{2.0}$	99.7	KW236
	MASS J08413070+1852188	$K3.1\pm0.1$	12.17 ± 0.01	-34.0	-10.7	3.0	98.9	KW401
	MASS J08402624+1913099	$K3.1\pm0.1$	12.48 ± 0.01	-38.4	-7.0	3.0	97.7	JS359 (K3; Allen & Strom 1995)
	MASS J08404439+1839235	$K3.1\pm0.1$	12.53 ± 0.01	-34.0	-10.4	3.0	98.5	JS383
	MASS J08400571+1901307	$K3.2 \pm 0.1$	12.05 ± 0.01	-35.7	-12.2	3.0	99.5	KW256 (K1; Allen & Strom 1995)
	MASS J08520345+2121370	$K3.2 \pm 0.1$	12.19 ± 0.01	-31.0	-9.8	1.9	57.5	AD 3937
	MASS J08452570+1842480	$K3.2 \pm 0.1$	12.47 ± 0.01	-39.6	-9.1	2.8	94.8	JS598
	MASS J08412258+1856020	K3.2±0.1	12.56 ± 0.01	-34.0	-9.9	3.0	98.8	KW390 (K3; Allen & Strom 1995)
	MASS J08461307+2043432	$K3.3\pm0.1$	12.54 ± 0.01	-33.8	-19.1	3.0	94.2	AD 3492
	MASS J08325566+1843582 MASS J08430822+1942475	$K3.3\pm0.5 K3.3\pm0.8$	12.63 ± 0.01 12.70 ± 0.01	-38.1 -33.7	-12.1 -11.6	$\frac{3.0}{3.0}$	$97.1 \\ 99.5$	JS 17 JS520 (K4; Allen & Strom 1995)
	VIIIIOO 000400044T1744410	170.010.0	12.10±0.01	-00.1	-11.0	5.0	33.0	00020 (114, Alien & Diloin 1990)

		_					
2MASS J08442031+1802595	$K3.4 \pm 0.1$	12.55 ± 0.01	-39.9	-15.2	3.0	94.9	JS565
2MASS J08413902+1915568	$K3.4 \pm 0.5$	12.62 ± 0.01	-42.9	-5.6	3.0	77.9	KW415 (K4; Allen & Strom 1995)
2MASS J08373576+2059275	$K3.5 \pm 0.4$	12.31 ± 0.02	-33.8	-13.2	3.0	99.2	JS190
2MASS J08415884+2006272	$K3.5 \pm 0.5$	12.67 ± 0.01	-40.3	-11.8	3.0	99.6	JS466 (K5.4; Kafka & Honeycutt 2006)
2MASS J08355988+1931320	$K3.6\pm0.7$	12.64 ± 0.01	-38.5	-10.4	3.0	99.1	JS104
2MASS J08401345+1946436	$K3.6\pm0.4$	12.71 ± 0.01	-31.5	-14.4	3.0	99.6	KW267 (K4; Adams et al. 2002)
2MASS J08463355+1814096	K3.7±0.5	12.69 ± 0.01	-35.1	-9.1	2.7	91.8	JS633
2MASS J08401571+1954542	$K3.8 \pm 0.2$	12.13 ± 0.01	-38.0	-13.2	3.0	99.9	KW272 (K4; Adams et al. 2002)
2MASS J08323341+2004483	$K3.8\pm0.4$	12.73 ± 0.01	-39.0	-12.0	3.0	98.0	JS 12
2MASS J08434356+1904332	$K3.8 \pm 0.5$	12.89 ± 0.01	-32.5	-16.6	3.0	98.0	JS547
2MASS J08342412+1947362	$K3.9 \pm 0.1$	12.77 ± 0.01	-36.2	-12.7	3.0	99.2	JS 60
2MASS J08385833+1936497	$K3.9 \pm 0.7$	13.16 ± 0.01	-29.0	-22.3	3.0	63.3	JS261 (K3; Adams et al. 2002)
2MASS J08411944+2006183	$K3.9 \pm 0.3$	13.25 ± 0.01	-28.0	-21.2	3.0	69.6	AD 2932 (K4; Adams et al. 2002)
2MASS J08433463+1837199	$K4.0\pm0.6$	11.73 ± 0.01	-37.9	-13.1	2.7	99.1	()
2MASS J08324972+1842062	$K4.0\pm0.7$	12.17 ± 0.01	-34.3	-10.9	3.0	97.3	JS 14
2MASS J08364182+2024399	K4.1±0.9	12.65 ± 0.01	-35.9	-13.0	3.0	99.7	JS143
		12.77 ± 0.01	-34.1	-14.3	$\frac{3.0}{2.7}$	98.5	JS631
2MASS J08463304+1854242	$K4.1\pm0.1$						
2MASS J08435672+1943323	K4.3±0.1	12.70 ± 0.01	-36.7	-12.2	3.0	99.7	JS556 (K4; Allen & Strom 1995)
2MASS J08431522+2003560	$K4.3\pm0.7$	12.83 ± 0.01	-36.1	-11.8	3.0	99.7	JS526 (K5; Allen & Strom 1995)
2MASS J08411922+2046392	$K4.3\pm0.2$	12.86 ± 0.01	-38.0	-16.1	3.0	99.6	JS424
2MASS J08340356+1947429	$K4.5\pm0.1$	12.83 ± 0.01	-45.1	-11.7	3.0	84.1	JS 52
2MASS J08330289+1840575	$K4.5\pm0.1$	12.85 ± 0.01	-35.4	-14.7	3.0	98.2	JS 21
2MASS J08373624+1915542	$K4.5\pm0.1$	12.91 ± 0.01	-35.3	-11.2	3.0	99.6	
2MASS J08422008+1909057	$K4.6 \pm 0.1$	12.88 ± 0.01	-33.2	-10.1	3.0	99.1	JS482 (K5.6; Kafka & Honeycutt 2006)
2MASS J08401893+2011307	$K4.7 \pm 0.7$	12.21 ± 0.01	-37.4	-14.0	3.0	99.9	JS350 (K4; Allen & Strom 1995)
2MASS J08400984+1805502	$K4.7\pm0.4$	12.85 ± 0.01	-32.3	-14.2	3.0	97.4	JS343
2MASS J08393445+2057206	$K4.7\pm0.1$	12.93 ± 0.01	-35.9	-15.6	3.0	99.6	JS299
2MASS J08333440+2037200 2MASS J08413741+1931140		12.92 ± 0.01					
	K4.8±0.2		-40.9	-12.0	3.0	99.5	JS445 (K5.8; Kafka & Honeycutt 2006)
2MASS J08411992+1938047	K4.9±0.1	12.95 ± 0.01	-36.3	-12.0	3.0	99.8	A 575 (K5; Allen & Strom 1995)
2MASS J08430670+1947297	$K4.9\pm0.5$	12.95 ± 0.01	-36.2	-14.8	3.0	99.7	JS516 (K5.8; Kafka & Honeycutt 2006)
2MASS J08421233+1912488	$K5.0\pm0.1$	13.02 ± 0.01	-33.5	-9.6	3.0	99.1	JS473 (K5.6; Kafka & Honeycutt 2006)
2MASS J08311044+2135224	$K5.0\pm0.1$	13.40 ± 0.01	-35.9	-18.0	3.1	92.6	AD 1459
2MASS J08344714+1801162	$K5.1\pm0.1$	13.02 ± 0.01	-34.9	-9.5	3.0	95.2	JS 70
2MASS J08390411+1931216	$K5.1\pm0.1$	13.05 ± 0.01	-37.0	-14.6	3.0	99.8	JS267 (K4; Adams et al. 2002)
2MASS J08414818+1927312	$K5.2 \pm 0.1$	12.92 ± 0.01	-40.8	-9.8	3.0	99.1	JS455 (K4; Adams et al. 2002)
2MASS J08220218+1959592	$K5.3\pm0.3$	12.12 ± 0.01	-39.5	-17.3	3.1	52.9	AD 0432
2MASS J08421285+1916040	$K5.3\pm0.1$	12.68 ± 0.01	-33.0	-11.7	3.0	99.4	JS474 (K7.2; Kafka & Honeycutt 2006)
2MASS J08370345+1910412	$K5.3\pm0.3$	12.91 ± 0.01	-41.1	-9.8	3.0	98.3	JC 85
	$K5.3\pm0.2$	13.13 ± 0.01	-40.1	-13.2	3.0	99.8	
2MASS J08382963+1951450							KW559 (K4; Adams et al. 2002)
2MASS J08491476+2043009	K5.4±0.3	13.01 ± 0.02	-43.4	-14.4	3.0	85.0	ICEO1
2MASS J08451918+1900107	K5.4±0.1	13.11 ± 0.01	-31.4	-14.3	3.0	97.5	JS591
2MASS J08282969+2015323	$K5.4\pm0.3$	13.40 ± 0.01	-30.7	-7.4	3.1	52.9	AD 1128
2MASS J08364269+1853428	$K5.5\pm0.2$	13.04 ± 0.01	-36.2	-12.8	3.0	99.4	JS145
2MASS J08380262+2112197	$K5.5 \pm 0.2$	13.34 ± 0.02	-32.9	-10.6	3.0	98.7	
2MASS J08350805+1959253	$K5.6 \pm 0.2$	12.62 ± 0.01	-37.2	-10.2	3.0	99.3	JS 79 (K5.8; Kafka & Honeycutt 2006)
2MASS J08401549+1927310	$K5.6 \pm 0.3$	12.90 ± 0.01	-36.3	-8.5	3.0	99.5	JS349 (K7.2; Kafka & Honeycutt 2006)
2MASS J08485034+2225320	$K5.6 \pm 0.1$	12.92 ± 0.01	-34.4	-12.1	3.1	91.4	HSHJ506
2MASS J08410979+1956072	$K5.6 \pm 0.3$	12.96 ± 0.01	-42.4	-15.1	3.0	99.4	KW574 (K4; Adams et al. 2002)
2MASS J08372638+1929128	$K5.6\pm0.1$	12.99 ± 0.01	-42.7	-14.4	3.0	98.6	JS179 (K5.8; Kafka & Honeycutt 2006)
2MASS J08365163+1904350	$K5.6\pm0.2$	13.04 ± 0.01	-34.6	-7.9	3.0	98.0	JS152 (K5; Allen & Strom 1995)
			-40.9			99.4	
2MASS J08423700+2008318	K5.6±0.1	13.09 ± 0.01		-15.8	3.0		JS493 (K5; Allen & Strom 1995)
2MASS J08365374+1829451	K5.6±0.1	13.13 ± 0.01	-34.2	-9.0	3.0	97.4	JS154
2MASS J08550224+2023540	$K5.6\pm0.1$	13.14 ± 0.01	-32.7	-14.6	3.0	80.5	AD 4269
2MASS J08341024+1948177	$K5.6 \pm 0.1$	13.18 ± 0.01	-38.2	-12.8	3.0	99.3	JS 56
2MASS J08373105+1906142	$K5.7 \pm 0.1$	12.96 ± 0.01	-38.6	-12.1	3.0	99.5	JS186 (K5.9; Kafka & Honeycutt 2006)
2MASS J08331762+1925505	$K5.7 \pm 0.2$	13.05 ± 0.01	-38.6	-9.1	3.0	97.5	JS 31
2MASS J08405865+1840303	$K5.8 \pm 0.1$	12.71 ± 0.01	-34.5	-15.0	3.0	99.3	JS401 (K7.2; Kafka & Honeycutt 2006)
2MASS J08273065+2013059	$K5.8 \pm 0.1$	13.11 ± 0.01	-42.2	-18.3	3.1	61.9	AD 0982
2MASS J08421664+2005325	$K5.8 \pm 0.2$	13.20 ± 0.01	-38.2	-18.2	3.0	99.5	JS478 (K7.4; Kafka & Honeycutt 2006)
2MASS J08285400+2034416	$K5.9\pm0.3$	12.01 ± 0.01	-41.2	-16.6	3.1	87.5	AD 1180
2MASS J08383723+1901161	$K5.9\pm0.1$	12.81 ± 0.01	-37.7	-6.8	3.0	97.3	JS242 (K5; Allen & Strom 1995)
2MASS J08362786+2107161	$K5.9\pm0.1$	13.16 ± 0.01	-38.0	-21.8	3.0	87.7	JS131
2MASS J08385354+1934170	$K5.9\pm0.2$	13.17 ± 0.01	-40.9	-21.3	3.0	94.3	JC 137
2MASS J08330745+2007482	K7.0±0.1	13.12 ± 0.01	-38.5	-8.4	3.0	97.0	JS 23
2MASS J08403952+1849057	K7.0±0.1	13.21 ± 0.01	-34.4	-7.1	3.0	96.8	IC1 00
2MASS J08371261+2032414	$K7.0\pm0.3$	13.56 ± 0.02	-40.4	-9.2	3.0	98.8	JS169
2MASS J08382166+1836400	$K7.1\pm0.3$	12.41 ± 0.02	-33.5	-8.6	3.0	97.3	JC123
2MASS J08461381+2051247	$K7.1\pm0.1$	13.10 ± 0.01	-38.0	-19.0	3.0	96.4	JS623
2MASS J08441324+1849114	$K7.1\pm0.3$	13.18 ± 0.01	-39.9	-13.7	2.8	98.8	JS561
2MASS J08413599+1906255	$K7.1 \pm 0.2$	13.20 ± 0.01	-31.1	-9.6	3.0	97.7	JC259 (K5.9; Kafka & Honeycutt 2006)
2MASS J08391017+2024301	$K7.1\pm0.1$	13.24 ± 0.01	-36.9	-11.2	3.0	99.8	JS273 (K5; Allen & Strom 1995)
2MASS J08275060+2014363	$K7.1\pm0.1$	13.31 ± 0.01	-37.9	-18.5	3.1	86.7	AD 1025
2MASS J08213000+2014303 2MASS J08313281+2101280	$K7.1\pm0.1$ $K7.1\pm0.3$	13.34 ± 0.01	-38.5	-19.0	3.1	92.0	AD 1512
							KW560 (K7; Kafka & Honeycutt 2006)
2MASS J08385722+2010536	$K7.2\pm0.2$	12.96 ± 0.01	-43.3	-14.0	$\frac{3.0}{3.0}$	99.0	
2MASS J08433105+1832547	$K7.2\pm0.2$	13.00 ± 0.01	-34.1	-15.1	3.0	98.8	JS536 (K7; Kafka & Honeycutt 2006)
2MASS J08442652+1947359	K7.2±0.1	13.15 ± 0.01	-43.0	-15.9	3.0	97.0	JS566
2MASS J08363642+1911068	$K7.2\pm0.1$	13.48 ± 0.01	-38.0	-10.9	3.0	99.4	JS140 (K7; Allen & Strom 1995)

		0					
2MASS J08382386+2043409	$K7.2 \pm 0.4$	13.54 ± 0.02	-31.7	-17.2	3.0	98.7	JS227
2MASS J08255438+2258522	K7.2±0.1	13.54 ± 0.01	-35.1	-16.8	3.1	58.2	AD 0795
2MASS J08381365+1715158	$K7.2 \pm 0.2$	13.55 ± 0.01	-40.1	-9.2	3.0	85.7	AD 2380
2MASS J08424208+1917323	$K7.3 \pm 0.3$	13.34 ± 0.01	-36.6	-5.4	3.0	94.4	JS497 (K7.9; Kafka & Honeycutt 2006)
2MASS J08382819+2132460	$K7.4 \pm 0.2$	12.49 ± 0.01	-39.9	-17.9	3.0	97.0	JS231
2MASS J08452598+2025385	$K7.4 \pm 0.2$	13.17 ± 0.01	-41.0	-15.3	3.0	98.5	JS594
2MASS J08370374+1840025	$K7.4\pm0.3$	13.18 ± 0.01	-31.6	-11.8	3.0	97.8	JS165 (M3.8; Kafka & Honeycutt 2006)
2MASS J08354678+1952153	$K7.4\pm0.1$	13.39 ± 0.01	-42.3	-12.0	3.0	98.4	JS 97 (K7.9; Kafka & Honeycutt 2006)
2MASS J08405531+1834592	$K7.4 \pm 0.1$	13.41 ± 0.01	-37.6	-13.8	3.0	99.4	JS398
2MASS J08305102+1921088	$K7.4 \pm 0.1$	13.50 ± 0.01	-37.7	-14.7	3.0	97.8	HSHJ 7
2MASS J08372639+1907557	$K7.4\pm0.2$	13.51 ± 0.01	-37.6	-12.3	3.0	99.6	JS180 (K7.7; Kafka & Honeycutt 2006)
2MASS J08360865+1844509	K7.4±0.1	13.58 ± 0.01	-38.6	-11.2	3.0	98.9	JS112
2MASS J08263520+2010567	$K7.5\pm0.1$	12.88 ± 0.01	-31.6	-8.7	3.1	63.7	AD 0868
2MASS J08424596+2116163	$K7.5 \pm 0.4$	13.24 ± 0.01	-42.7	-11.9	3.0	96.3	AD 3128
2MASS J08321067+2120296	$K7.5 \pm 0.2$	13.27 ± 0.01	-34.8	-12.6	3.1	97.7	AD 1594
2MASS J08393643+1915378	$K7.5\pm0.1$	13.33 ± 0.01	-33.3	-24.6	3.0	52.0	JS302 (K5; Adams et al. 2002)
	$K7.5\pm0.1$ $K7.5\pm0.3$					99.7	KW561 (K5; Adams et al. 2002)
2MASS J08390321+2002376		13.37 ± 0.01	-40.7	-14.3	3.0		
2MASS J08444075+2011371	$K7.5\pm0.2$	13.38 ± 0.01	-35.3	-16.4	3.0	99.4	JS572
2MASS J08360444+1955130	$K7.5 \pm 0.1$	13.48 ± 0.01	-41.8	-15.6	3.0	98.7	JS107 (K7.5; Kafka & Honeycutt 2006)
2MASS J08384146+1925181	$K7.5\pm0.1$	13.49 ± 0.01	-38.8	-11.0	3.0	99.7	JS244 (K7.5; Kafka & Honeycutt 2006)
2MASS J08544811+2048201	$K7.5\pm0.1$	13.56 ± 0.01	-40.1	-16.0	3.0	77.7	AD 4242
2MASS J08414934+1911471	K7.6±0.1	13.19 ± 0.01	-33.9	-10.8	3.0	99.5	JS456 (K7.7; Kafka & Honeycutt 2006)
2MASS J08411541+2002160	$K7.6\pm0.4$	13.35 ± 0.01	-37.3	-11.9	3.0	99.9	KW575 (K5; Adams et al. 2002)
2MASS J08361598+2033112	$K7.6\pm0.1$	13.57 ± 0.01	-40.2	-17.9	3.0	98.5	JS118
2MASS J08415228+1803067	$K7.6 \pm 0.1$	13.68 ± 0.01	-35.8	-12.4	3.0	98.6	JS462
2MASS J08403789+2020178	$K7.6 \pm 0.1$	13.71 ± 0.01	-37.9	-15.2	3.0	99.8	JS373 (M0; Adams et al. 2002)
2MASS J08393645+1929079	$K7.6\pm0.1$	13.76 ± 0.01	-34.3	-11.1	3.0	99.7	JS301 (M0.1; Kafka & Honeycutt 2006)
							10270 (IZE Aller & Character 1007)
2MASS J08404426+2028187	$K7.7\pm0.1$	12.77 ± 0.01	-37.1	-12.3	3.0	99.8	JS379 (K5; Allen & Strom 1995)
2MASS J08371635+1929103	$K7.7 \pm 0.1$	12.82 ± 0.01	-34.7	-15.4	3.0	99.6	JS172 (K7.5; Kafka & Honeycutt 2006)
2MASS J08365783+2133556	$K7.7 \pm 1.3$	13.48 ± 0.01	-35.3	-18.2	3.0	97.4	JS156
2MASS J08334697+2126276	$K7.7 \pm 0.1$	13.50 ± 0.01	-38.8	-11.8	3.1	98.0	JS 45
2MASS J08534667+1918142	$K7.7\pm0.1$	13.50 ± 0.01	-35.4	-9.7	2.7	84.9	AD 4129
2MASS J08365989+2024234	K7.7±0.1	13.68 ± 0.01	-40.2	-9.5	3.0	99.0	AD 2250
The state of the s	$K7.7\pm0.1$ $K7.7\pm0.1$	13.77 ± 0.01		-12.2	3.0	99.3	
2MASS J08410532+2028245			-41.8				JS405 (M0; Allen & Strom 1995)
2MASS J08270678+1719213	$K7.7\pm0.1$	13.81 ± 0.01	-33.8	-8.8	3.0	51.3	AD 0934
2MASS J08470424+2216256	$K7.8\pm0.1$	13.66 ± 0.01	-41.4	-14.4	3.1	88.6	
$2MASS\ J08432501+2033552$	$K7.8 \pm 0.1$	13.78 ± 0.01	-39.0	-11.7	3.0	99.5	JS533
2MASS J08393715+1948580	$K7.8 \pm 0.1$	13.82 ± 0.01	-35.3	-11.9	3.0	99.9	KW569 (M0.4; Kafka & Honeycutt 2006)
2MASS J08402823+1856090	$K7.8 \pm 0.1$	14.12 ± 0.01	-32.4	-12.4	3.0	99.2	JS364 (M1.3; Kafka & Honeycutt 2006)
2MASS J08435181+1954490	$K7.9 \pm 0.6$	13.36 ± 0.01	-37.8	-18.1	3.0	99.2	JS554 (K7; Allen & Strom 1995)
2MASS J08365680+1905280	$K7.9\pm0.1$	13.36 ± 0.01	-36.8	-12.7	3.0	99.6	JS160
2MASS J08430528+1927546	K7.9±0.1	13.92 ± 0.01	-33.7	-15.1	3.0	99.5	JS513 (M0.4; Kafka & Honeycutt 2006)
2MASS J08353571+1859445	K7.9±0.1	14.02 ± 0.01	-36.6	-10.8	3.0	99.1	JS 92
2MASS J08305760+2039448	$K7.9\pm0.1$	14.13 ± 0.01	-34.4	-15.7	3.1	97.3	AD 1423
2MASS J08363256+1623024	$M0.0\pm0.1$	13.92 ± 0.01	-33.7	-8.3	3.0	55.0	AD 2182
2MASS J08414388+1918082	$M0.0 \pm 0.1$	14.05 ± 0.01	-35.9	-8.1	3.0	99.0	JS452 (M0.8; Kafka & Honeycutt 2006)
2MASS J08361143+1952403	$M0.0 \pm 0.1$	14.10 ± 0.01	-41.0	-11.6	3.0	99.2	JS113 (M0.5; Kafka & Honeycutt 2006)
2MASS J08312987+2024374	$M0.1 \pm 0.1$	13.22 ± 0.01	-37.3	-16.7	3.1	98.3	AD 1508
2MASS J08522025+1822174	$M0.1\pm0.2$	14.01 ± 0.01	-35.4	-12.9	9.6	94.0	AD 3962
2MASS J08353387+1855474	$M0.2 \pm 0.2$	13.86 ± 0.01	-36.2	-11.8	3.0	99.5	JS 91 (M1.8; Kafka & Honeycutt 2006)
2MASS J08393704+1747198	$M0.2 \pm 0.1$	14.05 ± 0.01	-33.2	-9.0	3.0	92.7	AD 2595
2MASS J08361553+2041098	$M0.2 \pm 0.1$	14.10 ± 0.01	-37.5	-17.8	3.0	99.2	JS117
2MASS J08335924+1921454	$M0.3 \pm 0.2$	13.45 ± 0.01	-39.5	-10.9	3.0	98.8	JS 48
2MASS J08434306+1754298	$M0.3 \pm 0.1$	13.78 ± 0.01	-33.4	-12.6	3.0	97.7	JS548
2MASS J08305892+1841410	$M0.3 \pm 0.1$	14.04 ± 0.01	-35.2	-14.5	3.0	98.0	AD 1427
2MASS J08394103+1959288	$M0.4 \pm 0.2$	13.79 ± 0.01	-33.7	-11.3	3.0	99.9	KW570 (M0; Adams et al. 2002)
2MASS J08413848+1738240	$M0.4\pm0.1$	13.88 ± 0.01	-37.1	-10.4	3.0	97.3	HSHJ385
2MASS J08360631+2040599	$M0.4\pm0.1$	13.91 ± 0.01	-38.6	-14.7	3.0	99.6	JS109
2MASS J08383435+1811171	$M0.4 \pm 0.2$	14.09 ± 0.01	-34.6	-9.7	3.0	98.0	JS240
2MASS J08492676+1831195	$M0.5 \pm 0.1$	13.86 ± 0.01	-36.2	-13.3	2.7	97.8	
2MASS J08394656+1913041	$M0.5 \pm 0.1$	13.96 ± 0.01	-38.0	-11.0	3.0	99.7	JS317 (M0.7; Kafka & Honeycutt 2006)
2MASS J08335077+1946586	$M0.5 \pm 0.2$	14.20 ± 0.01	-35.0	-15.0	3.0	99.5	JS 46
2MASS J08394174+2001415	$M0.5 \pm 0.1$	14.23 ± 0.01	-34.5	-12.2	3.0	99.9	KW571 (M1; Kafka & Honeycutt 2006)
2MASS J08411319+1932349	$M0.6\pm 1.0$	12.82 ± 0.01	-37.6	-9.7	3.0	99.7	JS418 (M0; Adams et al. 2002)
2MASS J08441313+1332543 2MASS J08443613+1835570	$M0.6\pm1.1$	13.12 ± 0.01	-35.6	-9.2	3.0	98.0	JS571 (M0.4; Kafka & Honeycutt 2006)
2MASS J08521452+1903391	$M0.7\pm0.1$	13.56 ± 0.01	-37.9	-8.6	2.7	84.5	AD 3954
2MASS J08343646+1823530	$M0.7\pm1.6$	13.91 ± 0.01	-32.9	-12.0	3.0	97.7	JS 65
2MASS J08402217+1807248	$M0.7 \pm 0.2$	14.00 ± 0.01	-35.7	-11.2	3.0	99.0	JS355
2MASS J08435085+2021567	$M0.7 \pm 0.1$	14.02 ± 0.01	-37.5	-9.8	3.0	99.5	JS552
2MASS J08380711+1718381	$M0.7 \pm 0.1$	14.29 ± 0.01	-37.9	-11.1	3.0	96.3	AD 2371
2MASS J08434474+2112343	$M0.8 \pm 0.1$	13.86 ± 0.01	-39.9	-17.7	3.0	97.5	JS545
2MASS J08374912+1715180	$M0.8 \pm 0.2$	13.89 ± 0.01	-36.4	-13.8	3.0	97.4	AD 2354
2MASS J08372845+2036286	$M0.8\pm0.1$	13.95 ± 0.01	-41.7	-14.3	3.0	99.1	JS181
					3.0		00101
2MASS J08381578+2123083	$M0.8\pm0.1$	14.11 ± 0.01	-37.5	-19.0		97.4	
2MASS J08481476+2233323	$M0.8\pm0.1$	14.16 ± 0.01	-40.5	-16.2	$\frac{3.1}{2.7}$	83.9	
2MASS J08484913+2013271	$M0.8\pm0.1$	14.34 ± 0.01	-39.1	-12.9	2.7	98.5	10150
2MASS J08365626+1857480	$M0.9 \pm 0.1$	13.42 ± 0.01	-36.8	-11.9	3.0	99.6	JS159

		CANDIDA	ATE ME	MBERS C	F PRAE	ESEPE	
2MASS J08461010+1931438	$M0.9 \pm 1.6$	13.87 ± 0.01	-36.7	-18.3	2.7	98.2	JS620
2MASS J08361590+2007129	$M0.9\pm0.1$	14.21 ± 0.01	-43.8	-13.5	3.0	95.5	JS119 (M0.9; Kafka & Honeycutt 2006)
2MASS J08385527+1917017	$M0.9\pm0.1$	14.26 ± 0.01	-40.1	-14.5	3.0	99.6	JS256 (M1.8; Kafka & Honeycutt 2006)
2MASS J08362342+1824210	$M0.9\pm0.1$	14.42 ± 0.01	-34.0	-11.8	3.0	98.9	JS129
2MASS J08364957+1933230	$M1.0\pm1.4$	12.78 ± 0.01	-39.8	-15.7	3.0	99.5	JS150 (M0.2; Kafka & Honeycutt 2006)
2MASS J08412417+1814026	$M1.0\pm0.1$	13.94 ± 0.01	-35.1	-12.9	3.0	99.3	JS432
2MASS J08423486+2059408	$M1.0\pm0.1$ $M1.0\pm0.1$	14.25 ± 0.01	-41.9	-17.5	3.0	95.9	JS489
2MASS J08423480+2039408 2MASS J08412044+1937224	$M1.0\pm0.1$ $M1.0\pm0.1$	14.28 ± 0.01 14.28 ± 0.01	-37.8	-17.5	3.0	99.9	JS427 (M1.4; Kafka & Honeycutt 2006)
2MASS J08423205+1835281	$M1.0\pm0.1$	14.32 ± 0.01	-31.0	-10.3	3.0	94.9	JS488
2MASS J08484997+2026359	$M1.0\pm0.1$	14.37 ± 0.01	-34.2	-16.6	3.0	97.5	IC 75
2MASS J08345513+2006198	$M1.0\pm0.1$	14.39 ± 0.01	-34.3	-10.2	3.0	99.3	JS 75
2MASS J08450264+2030438	$M1.1\pm0.1$	13.63 ± 0.01	-29.4	-12.4	3.0	93.0	JS586
2MASS J08452599+2025225	$M1.1\pm1.8$	13.71 ± 0.01	-33.8	-13.6	3.0	99.5	JS595
2MASS J08390185+1751208	$M1.1\pm0.1$	14.29 ± 0.01	-33.1	-13.2	3.0	97.9	AD 2496
2MASS J08292796+2108383	$M1.1\pm0.1$	14.30 ± 0.01	-33.5	-16.1	3.1	94.2	AD 1240
2MASS J08472162+2039220	$M1.1\pm0.1$	14.31 ± 0.01	-37.6	-18.6	3.0	96.5	JS647
2MASS J08303865+1728194	$M1.1\pm0.1$	14.35 ± 0.01	-39.6	-14.6	3.0	89.7	HSHJ 6
2MASS J08434473+1903588	$M1.1\pm0.1$	14.40 ± 0.01	-35.1	-13.1	3.0	99.6	JS550 (M1.6; Kafka & Honeycutt 2006)
2MASS J08240933+2001249	$M1.1\pm0.2$	14.71 ± 0.01	-38.6	-9.8	3.0	77.2	AD 0632
2MASS J08391887+2027521	$M1.1\pm0.1$	14.75 ± 0.01	-26.8	-10.5	3.0	63.1	JS285 (M1.5; Adams et al. 2002)
2MASS J08401002+2025083	$M1.2 \pm 0.1$	13.83 ± 0.01	-36.6	-12.9	3.0	99.9	JS340 (M1; Allen & Strom 1995)
2MASS J08391453+2001191	$M1.2 \pm 0.1$	14.25 ± 0.01	-35.7	-12.4	3.0	99.9	KW564 (M1; Adams et al. 2002)
$2MASS\ J08404692+2028291$	$M1.2 \pm 0.2$	14.30 ± 0.01	-35.9	-17.0	3.0	99.8	JS384 (M2; Allen & Strom 1995)
2MASS J08275096+1948207	$M1.2 \pm 0.2$	14.32 ± 0.01	-38.7	-16.2	3.0	94.2	AD 1026
2MASS J08401378+1944559	$M1.2 \pm 0.3$	14.38 ± 0.01	-36.9	-11.1	3.0	99.9	KW573 (M2; Adams et al. 2002)
2MASS J08415935+1944452	$M1.2 \pm 0.1$	14.40 ± 0.01	-37.6	-10.9	3.0	99.8	JS468 (M2; Adams et al. 2002)
2MASS J08362515+2108565	$M1.2\pm0.1$	14.52 ± 0.01	-37.1	-16.2	3.0	99.4	JS128
2MASS J08383283+1946256	$M1.2 \pm 0.1$	14.54 ± 0.01	-36.6	-11.7	3.0	99.9	JS237 (M2.1; Kafka & Honeycutt 2006)
2MASS J08373505+2013265	$M1.3 \pm 0.1$	13.87 ± 0.01	-41.2	-12.3	3.0	99.5	JS191
2MASS J08473468+1908179	$M1.3 \pm 0.1$	13.97 ± 0.01	-35.0	-12.7	2.7	99.0	JS649
2MASS J08445643+1822171	$M1.3 \pm 0.1$	14.14 ± 0.01	-34.9	-7.5	3.0	91.5	JS582
2MASS J08405382+1922440	$M1.3 \pm 0.2$	14.16 ± 0.01	-38.0	-13.0	3.0	99.8	JS394 (M1.3; Kafka & Honeycutt 2006)
2MASS J08375456+2008123	$M1.3 \pm 0.1$	14.34 ± 0.01	-36.3	-14.4	3.0	99.9	JS206 (M1.8; Kafka & Honeycutt 2006)
2MASS J08411106+2022384	$M1.3 \pm 0.1$	14.35 ± 0.01	-36.1	-20.6	3.0	97.8	JS411 (M2; Adams et al. 2002)
2MASS J08433689+2032140	$M1.3 \pm 0.2$	14.49 ± 0.01	-39.8	-16.7	3.0	99.2	JS542
2MASS J08380817+2026461	$M1.3 \pm 0.1$	14.57 ± 0.01	-36.5	-10.1	3.0	99.7	
2MASS J08391805+2044214	$M1.3 \pm 0.1$	14.57 ± 0.01	-35.4	-9.6	3.0	99.6	JS284 (M2; Adams et al. 2002)
2MASS J08360898+1913481	$M1.3 \pm 0.1$	14.59 ± 0.01	-35.3	-13.1	3.0	99.7	JS110 (M2.3; Kafka & Honeycutt 2006)
2MASS J08400070+1918347	$M1.4\pm1.8$	13.44 ± 0.01	-39.0	-10.2	3.0	99.6	JS329 (K7; Adams et al. 2002)
2MASS J08362712+1951546	$M1.4 \pm 0.1$	13.78 ± 0.01	-35.0	-13.5	3.0	99.8	JS132 (M2; Kafka & Honeycutt 2006)
2MASS J08332700+1920288	$M1.4\pm0.1$	13.88 ± 0.01	-38.6	-10.0	3.0	98.5	JS 35
2MASS J08374982+1930508	$M1.4 \pm 0.2$	14.31 ± 0.01	-34.7	-9.2	3.0	99.5	JS200 (M1.3; Kafka & Honeycutt 2006)
2MASS J08415005+1939347	$M1.4\pm0.1$	14.39 ± 0.01	-33.5	-11.0	3.0	99.7	JS457 (M2; Adams et al. 2002)
2MASS J08390688+2020542	$M1.4 \pm 0.3$	14.46 ± 0.01	-36.3	-15.9	3.0	99.9	JS270 (M2; Allen & Strom 1995)
2MASS J08475472+2003428	$M1.4\pm0.1$	14.50 ± 0.01	-41.7	-8.1	2.7	81.7	JS653
2MASS J08373222+1853023	$M1.4\pm0.1$	14.58 ± 0.01	-34.6	-14.1	3.0	99.6	JS188 (M2.3; Kafka & Honeycutt 2006)
2MASS J08421364+1950086	$M1.4\pm0.1$	14.60 ± 0.01	-41.0	-15.2	3.0	99.5	JS475 (M2.5; Adams et al. 2002)
2MASS J08331440+1904364	$M1.4\pm0.1$	14.62 ± 0.01	-33.3	-15.1	3.0	98.5	JS 27
2MASS J08391679+1947426	$M1.4\pm0.1$	14.63 ± 0.01	-37.4	-9.9	3.0	99.8	JS283 (M1; Adams et al. 2002)
2MASS J08483271+1656236	$M1.5 \pm 0.1$	14.03 ± 0.01	-36.5	-11.0	2.7	88.2	AD 3663
2MASS J08420517+2057565	$M1.5\pm0.1$	14.06 ± 0.01	-37.2	-16.0	3.0	99.6	JS470
2MASS J08372419+1925012	$M1.5 \pm 0.1$	14.06 ± 0.01	-35.7	-12.8	3.0	99.8	JS178
2MASS J08424968+1851351	$M1.5\pm0.1$	14.28 ± 0.01	-30.2	-16.2	3.0	94.4	JS505 (M1.5; Adams et al. 2002)
2MASS J08344967+1847040	$M1.5\pm0.1$	14.50 ± 0.01	-35.2	-10.0	3.0	98.6	JS 72
2MASS J08380730+2026556	$M1.5 \pm 0.1$	14.59 ± 0.01	-41.4	-13.2	3.0	99.5	
2MASS J08432392+1840451	$M1.5\pm0.1$	14.68 ± 0.01	-29.2	-13.1	3.0	89.1	JS534
2MASS J08412086+2020476	$M1.5 \pm 0.1$	14.82 ± 0.01	-34.7	-17.1	3.0	99.7	JS426 (M2.5; Adams et al. 2002)
2MASS J08365659+2019101	$M1.6 \pm 0.1$	13.78 ± 0.01	-36.5	-8.8	3.0	99.4	JS157
2MASS J08395128+2034499	$M1.6\pm0.1$	14.15 ± 0.01	-40.6	-12.9	3.0	99.7	JS318 (M2; Allen & Strom 1995)
2MASS J08382772+1945556	$M1.6\pm0.1$	14.31 ± 0.01	-36.4	-10.6	3.0	99.8	JS232 (M2; Adams et al. 2002)
2MASS J08252503+2013177	$M1.6\pm0.1$	14.50 ± 0.01 14.50 ± 0.01	-35.1	-17.5	3.0	83.8	AD 0738
2MASS J08445387+2137065	$M1.6\pm0.1$	14.57 ± 0.01	-39.5	-17.3	3.0	96.6	AD 3349
2MASS J08370352+1932096	$M1.6\pm0.1$	14.62 ± 0.01	-37.6	-11.6	3.0	99.8	JS164 (M2.6; Kafka & Honeycutt 2006)
2MASS J08452605+1941544	$M1.6\pm0.1$	14.73 ± 0.01	-34.5	-15.0	$\frac{3.0}{2.8}$	99.5	JS597 (M2.5; Adams et al. 2002)
	$M1.6\pm0.1$	14.76 ± 0.01 14.76 ± 0.01	-35.2		$\frac{2.0}{3.0}$	62.7	JS645
2MASS J08471812+2029091				-22.0			
2MASS J08325309+1830293	$M1.6\pm0.1$	14.83 ± 0.01	-36.1	-13.4 -12.6	$\frac{3.0}{3.0}$	98.8	JS 16 (M2; Williams et al. 1994) JS415
2MASS J08411052+1816070	$M1.7\pm0.1$	14.53 ± 0.01	-35.7 -40.9	-12.6	3.0	$99.3 \\ 95.4$	JS604
2MASS J08453624+2115211	$M1.7\pm0.1$	14.61 ± 0.01	-40.9 -40.7	-17.1	$\frac{3.0}{2.7}$		AD 3461 (M3; Adams et al. 2002)
2MASS J08455280+1919006	$M1.7\pm0.1$	14.67 ± 0.01	-40.7	-15.3	2.7	98.4	
2MASS J08391526+1917114	$M1.7\pm0.1$	14.74 ± 0.01	-34.9	-11.8	3.0	99.8	JS281 (M2.5; Kafka & Honeycutt 2006)
2MASS J08381391+2109262	$M1.7\pm0.1$	14.77 ± 0.01	-36.8	-17.0	3.0	99.4	JS216
2MASS J08361453+1555115	$M1.7\pm0.1$	14.97 ± 0.01	-38.0	-18.2	$\frac{3.0}{3.0}$	54.8	AD 2136 KW566 (Mo. Allon & Strom 1905)
2MASS J08391580+2004141	$M1.8\pm1.2$	13.43 ± 0.01	-35.4	-8.6	3.0	99.7	KW566 (M0; Allen & Strom 1995)
2MASS J08295706+1834000	$M1.8\pm0.1$	13.85 ± 0.01	-38.5	-14.0	3.0	96.8	AD 1296 IS410 (M2: Voftee & Honovertt 2006)
2MASS J08411392+1858090	$M1.8\pm0.1$	14.33 ± 0.01	-38.3	-12.2	3.0	99.7	JS419 (M3; Kafka & Honeycutt 2006)
2MASS J08364895+1918593	$M1.8\pm0.1$	14.52 ± 0.01	-37.6	-14.1	3.0	99.8	JS148 (M2.9; Kafka & Honeycutt 2006) JS136 (M2.2; Kafka & Honeycutt 2006)
2MASS J08363338+1954544	$M1.8\pm0.1$	14.56 ± 0.01	-37.3	-13.5	3.0	99.8	55190 (M2.2, Ivaina & Holleycutt 2000)

 $\begin{array}{c} \text{TABLE 3} \\ \text{Candidate Members of Praesepe} \end{array}$

		CANDIDA	ATE ME	MBERS O	F Prae	SEPE	
2MASS J08454589+2029410	$M1.8 \pm 0.1$	14.64 ± 0.01	-36.7	-16.6	3.0	99.3	JS609
2MASS J08363491+2016307	$M1.8 \pm 0.1$	14.72 ± 0.01	-39.5	-13.0	3.0	99.7	JS139
2MASS J08351695+1954534	$M1.8\pm0.1$	14.85 ± 0.01	-32.2	-13.6	3.0	99.2	JS 84 (M3; Adams et al. 2002)
2MASS J08352169+1829342	M1.8±0.1	14.86 ± 0.01	-35.6	-15.5	3.0	99.1	JS 87
2MASS J08482253+1836448	$M1.8\pm0.1$	14.88 ± 0.01	-34.5	-7.1	2.7	80.2	IC197 (M2.1. Volley & Hammer # 2006)
2MASS J08373242+1931180 2MASS J08483450+1955575	$M1.9\pm0.2 M1.9\pm0.1$	14.32 ± 0.01 14.48 ± 0.01	-39.7 -38.9	-18.0 -11.5	$\frac{3.0}{2.7}$	$99.0 \\ 98.4$	JS187 (M2.1; Kafka & Honeycutt 2006)
2MASS J08360048+1758333	$M1.9\pm0.1$	14.56 ± 0.01	-32.4	-11.6	3.0	96.0	JS105
2MASS J08364107+1818262	$M1.9\pm0.1$	14.62 ± 0.01	-36.5	-15.7	3.0	99.1	JS144
2MASS J08362182+2012197	$M1.9 \pm 0.1$	14.75 ± 0.01	-41.7	-13.7	3.0	99.1	JS126 (M3; Adams et al. 2002)
2MASS J08415192+2020479	$M1.9 \pm 0.1$	14.76 ± 0.01	-39.3	-17.4	3.0	99.5	JS459 `
2MASS J08455142+1925272	$M1.9 \pm 0.1$	14.76 ± 0.01	-37.2	-17.4	2.7	98.9	JS613 (M3; Adams et al. 2002)
2MASS J08402657+2015132	$M1.9\pm0.1$	14.79 ± 0.01	-35.7	-14.0	3.0	99.9	AD 2759 (M2.5; Adams et al. 2002)
2MASS J08411543+1905104	$M1.9\pm0.1$	14.82 ± 0.01	-32.3	-10.9	3.0	99.1	JS726 (M3; Adams et al. 2002)
2MASS J08355919+1818296 2MASS J08355289+1818510	$M1.9\pm0.1$ $M1.9\pm0.2$	14.84 ± 0.01 14.85 ± 0.01	-31.2 -36.4	-10.7 -11.9	$\frac{3.0}{3.0}$	$93.3 \\ 99.1$	HSHJ 94 JS686
2MASS J08333289+1818310 2MASS J08431292+1831509	$M1.9\pm0.2$ $M1.9\pm0.1$	14.85 ± 0.01 14.85 ± 0.01	-35.1	-11.3	3.0	99.2	JS525 (M2.7; Kafka & Honeycutt 2006)
2MASS J08371189+2040473	$M1.9\pm0.1$	14.90 ± 0.01	-32.7	-17.3	3.0	98.9	JS166
2MASS J08382489+1658360	$M1.9\pm0.1$	14.92 ± 0.01	-34.4	-8.6	3.0	82.3	AD 2396
2MASS J08405187+1956302	$M1.9 \pm 0.1$	14.98 ± 0.01	-35.8	-14.5	3.0	99.9	JS390 (M3; Adams et al. 2002)
2MASS J08441755+2245041	$M1.9\pm0.1$	15.04 ± 0.01	-30.3	-11.3	3.1	68.8	AD 3297
2MASS J08392244+2004548	$M1.9\pm0.1$	15.07 ± 0.01	-34.8	-10.7	3.0	99.9	AD 2552 (M3; Adams et al. 2002)
2MASS J08333802+1857175	$M1.9\pm0.1$	15.07 ± 0.01	-37.6	-12.4	3.0	99.2	JS 41
2MASS J08401909+1821429 2MASS J08314045+1947541	$M1.9\pm0.1 M2.0\pm1.4$	15.11 ± 0.01 13.62 ± 0.01	-32.5 -36.3	-11.4 -8.3	$\frac{3.0}{3.0}$	$98.2 \\ 95.2$	JS351 HSHJ 15
2MASS J08314043+1947341 2MASS J08325690+2520585	$M2.0\pm1.4$ $M2.0\pm0.1$	13.69 ± 0.01	-30.3 -34.8	-0.3 -15.6	3.0	53.6	AD 1690
2MASS J08390986+1946589	$M2.0\pm0.1$	13.92 ± 0.01	-37.0	-12.2	3.0	99.8	KW563 (M2.5; Adams et al. 2002)
2MASS J08401982+1855382	$M2.0\pm0.1$	14.12 ± 0.01	-36.5	-7.2	3.0	96.4	JS352 (M2.9; Kafka & Honeycutt 2006)
2MASS J08411130+1931467	$M2.0 \pm 0.1$	14.48 ± 0.01	-37.6	-9.0	3.0	99.2	JS414 (M3; Adams et al. 2002)
2MASS J08372705+1858360	$M2.0\pm0.1$	15.04 ± 0.01	-36.7	-15.1	3.0	99.4	JS183 (M3.5; Adams et al. 2002)
2MASS J08480495+1928137	$M2.0\pm0.1$	15.11 ± 0.01	-38.1	-17.4	2.7	97.0	JS656
2MASS J08284992+1959203	$M2.1\pm0.1$	14.07 ± 0.01	-39.4	-16.1	3.0	94.9	AD 1166
2MASS J08373371+1918396 2MASS J08370267+1919424	$M2.1\pm0.2 M2.1\pm0.1$	14.59 ± 0.01 14.78 ± 0.01	-39.9 -34.9	-15.4 -10.6	$\frac{3.0}{3.0}$	$99.2 \\ 99.3$	JC105 JS163
2MASS J08385072+1919424 2MASS J08385072+1924541	$M2.1\pm0.1$ $M2.1\pm0.1$	14.90 ± 0.01 14.90 ± 0.01	-34.9	-13.3	3.0	99.6	JS251 (M3.5; Adams et al. 2002)
2MASS J08453893+2229557	$M2.1\pm0.1$ $M2.1\pm0.1$	15.03 ± 0.01	-29.8	-17.1	3.1	59.7	AD 3433
2MASS J08350789+2020232	$M2.1\pm0.1$	15.33 ± 0.01	-35.7	-13.3	3.0	99.5	AD 1978 (M3.5; Adams et al. 2002)
2MASS J08220182+2019363	$M2.1 \pm 0.1$	15.46 ± 0.01	-31.1	-13.6	3.0	60.5	AD 0431
2MASS J08452630+1947040	$M2.2 \pm 0.1$	14.36 ± 0.01	-33.6	-13.9	2.8	99.1	AD 3411
2MASS J08374494+1940290	M2.2±0.1	14.57 ± 0.01	-33.7	-11.4	3.0	99.5	JS195
2MASS J08390394+2034023	$M2.2\pm0.1$	14.85 ± 0.01	-37.7	-9.6	$\frac{3.0}{2.1}$	99.4	JS266 (M3.5; Adams et al. 2002)
2MASS J08332628+2331122 2MASS J08365598+1935570	$M2.2\pm0.1 M2.2\pm0.1$	14.96 ± 0.01 15.01 ± 0.01	-37.6 -36.4	-11.3 -11.0	$\frac{3.1}{3.0}$	$89.3 \\ 99.5$	AD 1757 JS158 (M3.5; Adams et al. 2002)
2MASS J08380371+1941512	$M2.2\pm0.1$	15.10 ± 0.01	-37.1	-9.0	3.0	99.3	HSHJ192 (M3.1; Kafka & Honeycutt 2006)
2MASS J08340246+1919219	$M2.3\pm0.1$	14.34 ± 0.01	-37.3	-12.0	3.0	99.1	JS 50
2MASS J08474511+1821239	$M2.3\pm0.1$	14.36 ± 0.01	-37.3	-15.0	2.7	97.7	JS651
2MASS J08373155+2251596	$M2.3\pm0.1$	14.58 ± 0.01	-34.8	-15.8	3.1	95.2	
2MASS J08361902+1855084	$M2.3\pm0.1$	14.95 ± 0.01	-38.5	-15.3	3.0	99.1	JS124
2MASS J08444049+2145537	$M2.3\pm0.1$	14.96 ± 0.01	-37.9	-20.3	3.1	85.0	AD 3337
2MASS J08333394+2004256 2MASS J08454049+2010255	$M2.3\pm0.1 M2.3\pm0.1$	15.14 ± 0.01 15.20 ± 0.01	-39.5 -36.4	-12.4 -18.4	$\frac{3.0}{2.8}$	$98.8 \\ 97.9$	HSHJ 43 JS607
2MASS J08434049+2010253 2MASS J08320795+1844267	$M2.3\pm0.1$ $M2.3\pm0.1$	15.20 ± 0.01 15.21 ± 0.01	-27.9	-13.2	$\frac{2.0}{3.0}$	53.3	AD 1588
2MASS J08431843+1931078	$M2.3\pm0.1$	15.28 ± 0.01	-38.7	-6.8	3.0	94.8	JS530 (M3.5; Adams et al. 2002)
2MASS J08343073+1906003	$M2.3 \pm 0.1$	15.33 ± 0.01	-39.2	-7.2	3.0	91.2	JS675 (M3.6; Kafka & Honeycutt 2006)
2MASS J08325808+2212203	$M2.3\pm0.1$	15.47 ± 0.01	-40.2	-16.3	3.1	92.1	AD 1693
2MASS J08353851+1821321	$M2.3\pm0.1$	15.57 ± 0.01	-42.9	-17.3	3.0	81.5	JS 93
2MASS J08411162+2215516	$M2.4\pm0.1$	14.66 ± 0.01	-37.1	-18.2	3.1	94.8	HSHJ350
2MASS J09014517+2100228 2MASS J08435926+1918581	$M2.4\pm0.1$	14.74 ± 0.01	-35.9 -30.8	-14.0 -13.7	$\frac{2.9}{3.0}$	$72.1 \\ 97.3$	AD 4798 JS557 (M3; Adams et al. 2002)
2MASS J08433920+1916381 2MASS J08330557+1855487	$M2.4\pm0.1 M2.4\pm0.1$	14.76 ± 0.01 14.80 ± 0.01	-30.8 -35.7	-15.7	3.0	98.7	JS 22
2MASS J08263483+1933590	$M2.4\pm0.1$ $M2.4\pm0.1$	15.10 ± 0.01	-36.6	-13.5	3.0	95.9	AD 0867
2MASS J08405397+2005243	$M2.4\pm0.1$	15.51 ± 0.01	-37.1	-14.5	3.0	99.8	HSHJ333 (M3.5; Adams et al. 2002)
$2MASS\ J08463821+1952448$	$M2.5 \pm 0.1$	14.14 ± 0.01	-27.6	-14.8	2.7	62.3	JS634
2MASS J08412446+2007495	$M2.5 \pm 0.1$	14.29 ± 0.01	-36.1	-16.9	3.0	99.6	JS430 (M3.5; Adams et al. 2002)
2MASS J08425228+1951460	$M2.5\pm0.1$	14.79 ± 0.01	-37.7	-9.9	3.0	99.4	JS506 (M3.5; Adams et al. 2002)
2MASS J08403106+1825562 2MASS J08334395+1847508	$M2.5\pm0.1$	14.95 ± 0.01 15.20 ± 0.01	-30.6 -32.8	-11.0	3.0	93.5	HSHJ322 JS 44
2MASS J08534595+1847508 2MASS J08505687+1936578	$M2.5\pm0.1 M2.5\pm0.1$	15.20 ± 0.01 15.31 ± 0.01	-32.8 -37.9	-12.2 -11.8	$\frac{3.0}{2.7}$	$97.6 \\ 97.1$	JS 44
2MASS J08303087+1930378 2MASS J08323244+2050410	$M2.5\pm0.1$ $M2.5\pm0.1$	15.31 ± 0.01 15.34 ± 0.01	-37.9	-11.8	3.1	90.9	JS 10
2MASS J08551045+1904117	$M2.5\pm0.1$	15.37 ± 0.01	-31.5	-12.6	$\frac{3.1}{2.7}$	76.4	AD 4285
2MASS J08383067+1807182	$M2.6\pm0.1$	13.92 ± 0.01	-35.9	-5.9	3.0	79.7	JS236
$2MASS\ J08411052+1956067$	$M2.6 \pm 0.1$	14.62 ± 0.01	-31.1	-10.4	3.0	98.5	AD 2902 (M4; Adams et al. 2002)
2MASS J08423402+1936123	$M2.6\pm0.1$	14.71 ± 0.01	-39.1	-14.3	3.0	99.6	JS490 (M3.5; Adams et al. 2002)
2MASS J08412881+1958322	$M2.6\pm0.1$	14.73 ± 0.01	-38.9	-15.4	3.0	99.7	JS434 (M3.5; Adams et al. 2002)
2MASS J08325907+1718235	$M2.6\pm0.1$	14.80 ± 0.01	-38.2 -36.4	-10.8 -9.6	3.0	93.1 76.7	AD 1695 AD 0864
2MASS J08263330+1715390 2MASS J08305580+1708223	$M2.6\pm0.1 M2.6\pm0.2$	14.91 ± 0.01 15.10 ± 0.01	-36.4 -36.7	-9.6 -9.3	$\frac{3.0}{3.0}$	$76.7 \\ 85.1$	AD 0804 AD 1421
21111DD 900909000T1100229	1112.0 10.2	10.10±0.01	-00.1	-9.0	5.0	00.1	11L/ 1721

		CANDIDA	AIE ME	MDERS C	r i nai	ESEFE	
2MASS J08383233+1846528	$M2.6 \pm 0.1$	15.12 ± 0.01	-38.9	-9.8	3.0	98.5	AD 2413 (M3.5; Adams et al. 2002)
2MASS J08531665+1710100	$M2.6 \pm 0.1$	15.13 ± 0.01	-31.5	-15.3	2.7	61.1	AD 4062
2MASS J08421923+1902148	$M2.6 \pm 0.1$	15.13 ± 0.01	-31.0	-7.8	3.0	88.0	HSHJ417 (M3.5; Adams et al. 2002)
2MASS J08303516+1619173	$M2.6 \pm 0.2$	15.15 ± 0.01	-32.5	-9.5	2.9	54.4	AD 1383
2MASS J08425050+1955038	$M2.6 \pm 0.1$	15.28 ± 0.01	-38.1	-11.9	3.0	99.6	JS504 (M4; Adams et al. 2002)
2MASS J08372941+1841355	$M2.6 \pm 0.1$	15.73 ± 0.01	-31.1	-17.2	3.0	93.8	HSHJ165
2MASS J08385694+1851293	$M2.7 \pm 0.1$	14.79 ± 0.01	-39.6	-15.0	3.0	99.1	JS260 (M4; Adams et al. 2002)
2MASS J08413569+1844350	$M2.7 \pm 0.2$	14.92 ± 0.01	-33.0	-13.2	3.0	98.9	JS441 (M3.5; Adams et al. 2002)
2MASS J08470910+1811372	$M2.7 \pm 0.1$	15.01 ± 0.01	-35.1	-11.5	2.7	97.3	JS644
2MASS J08403058+1955588	$M2.7 \pm 0.1$	15.02 ± 0.01	-38.9	-12.6	3.0	99.8	JS365 (M2.5; Adams et al. 2002)
2MASS J08362156+2053506	$M2.7 \pm 0.1$	15.05 ± 0.01	-39.2	-16.9	3.0	98.6	JS125
2MASS J08421550+1948576	$M2.7 \pm 0.1$	15.24 ± 0.01	-38.3	-12.2	3.0	99.7	JS476 (M3.5; Adams et al. 2002)
2MASS J08432240+1912007	$M2.7 \pm 0.1$	15.32 ± 0.01	-36.1	-13.0	3.0	99.5	AD 3196 (M4; Adams et al. 2002)
2MASS J08385084+1800525	$M2.7 \pm 0.1$	15.65 ± 0.01	-35.5	-10.9	3.0	98.2	HSHJ230
2MASS J08475073+2227038	$M2.7 \pm 0.1$	15.78 ± 0.01	-37.3	-13.2	3.1	96.3	
2MASS J08460273+1701176	$M2.7 \pm 0.1$	15.81 ± 0.01	-36.7	-11.5	2.7	94.2	AD 3477
2MASS J08380716+1746566	$M2.8 \pm 0.1$	14.75 ± 0.01	-36.8	-14.7	3.0	98.3	HSHJ197
$2MASS\ J08404779 + 2028479$	$M2.8 \pm 0.1$	14.90 ± 0.01	-39.5	-14.3	3.0	99.6	AD 2825 (M3; Adams et al. 2002)
2MASS J08444480+1924221	$M2.8\pm0.1$	15.00 ± 0.01	-32.2	-13.7	3.0	98.6	JS574 (M4; Adams et al. 2002)
2MASS J08403626+1757003	$M2.8\pm0.1$	15.23 ± 0.01	-33.8	-11.3	3.0	97.6	AD 2795
2MASS J08393175+1924176	$M2.8\pm0.1$	15.35 ± 0.01	-34.0	-9.7	3.0	99.2	JS298 (M3; Adams et al. 2002)
$2MASS\ J08374060+1933032$	$M2.8 \pm 0.1$	15.46 ± 0.01	-38.9	-15.5	3.0	99.5	
2MASS J08301410+1825199	$M2.8\pm0.1$	15.49 ± 0.01	-38.9	-19.8	3.0	74.8	HSHJ 4
2MASS J08421833+1823320	$M2.8\pm0.1$	15.57 ± 0.01	-29.3	-13.7	3.0	87.4	JS735
2MASS J08354589+2230425	$M2.8 \pm 0.1$	15.59 ± 0.01	-36.7	-20.5	3.1	73.3	AD 2057
2MASS J08580519+2152462	$M2.8\pm0.1$	15.63 ± 0.01	-36.8	-12.1	3.0	81.8	AD 4529
2MASS J08314090+1829429	$M2.8\pm0.1$	15.76 ± 0.01	-36.7	-15.9	3.0	97.3	HSHJ 16
2MASS J08373074+2107402	$M2.8\pm0.1$	15.81 ± 0.01	-38.4	-14.8	3.0	99.3	**************************************
2MASS J08365106+1904185	$M2.8\pm0.1$	15.85 ± 0.01	-33.8	-12.0	3.0	99.2	HSHJ136 (M3.5; Adams et al. 2002)
2MASS J08382537+1856300	$M2.9\pm0.1$	14.39 ± 0.01	-37.9	-12.5	3.0	99.5	JS230
2MASS J08351477+1916317	$M2.9\pm0.1$	14.69 ± 0.01	-35.2	-14.5	3.0	99.3	HSHJ 70 (M3.1; Kafka & Honeycutt 2006)
2MASS J08344931+1725480	$M2.9\pm0.1$	14.93 ± 0.01	-37.6	-11.7	3.0	96.3	AD 1940
2MASS J08413921+1940282	$M2.9\pm0.1$	14.95 ± 0.01	-36.2	-12.9	3.0	99.8	JS447 (M3.5; Adams et al. 2002)
2MASS J08343431+1847565	$M2.9\pm0.3$	15.00 ± 0.01	-33.1	-12.7	3.0	98.3	JS 62 (M3.5; Kafka & Honeycutt 2006)
2MASS J08512584+1918564	$M2.9\pm0.1$	15.08 ± 0.01	-38.6	-14.9	2.7	96.2	AD 3875
2MASS J08510040+1803038	$M2.9\pm0.1$	15.13 ± 0.01	-41.4	-12.7	2.7	84.8	AD 3840
2MASS J08460318+1931471	$M2.9\pm0.2$	15.19 ± 0.01	-37.5	-14.0	2.7	99.3	JS618 (M3.5; Adams et al. 2002)
2MASS J08451557+2103359	$M2.9\pm0.1$	15.32 ± 0.01	-40.3	-12.8	3.0	98.3	HSHJ496
2MASS J08395276+2001052	$M2.9\pm0.1$	15.32 ± 0.01	-35.8	-15.8	3.0	99.8	JS321 (M3; Allen & Strom 1995)
2MASS J08473450+1737507	$M2.9\pm0.1$	15.35 ± 0.01	-37.4	-19.4	2.7	80.7	AD 3595
2MASS J08441093+2147383	$M2.9\pm0.1$	15.38 ± 0.01	-38.5	-19.7	3.1	88.9	HSHJ475
2MASS J08532748+1758335	$M2.9\pm0.2$	15.48 ± 0.01	-33.0	-11.2	$\frac{2.7}{2.7}$	82.3	AD 4089
2MASS J08482357+1950117	$M2.9\pm0.1$	15.49 ± 0.01	-38.6	-12.9	2.7	98.5	IC720 (M4. Adams at al. 2002)
2MASS J08401690+2042422 2MASS J08443449+2020295	$M2.9\pm0.2$	15.66 ± 0.01	-38.9	-11.8	3.9	99.5	JS720 (M4; Adams et al. 2002)
2MASS J08443449+2020293 2MASS J08324481+1802101	$M2.9\pm0.2$	15.91 ± 0.01 14.42 ± 0.01	-31.2 -41.4	-15.8 -9.4	$\frac{3.0}{3.0}$	$97.3 \\ 82.8$	AD 3329
2MASS J08324481+1802101 2MASS J08371990+1903119	$M3.0\pm0.1 M3.0\pm0.1$	14.42 ± 0.01 14.51 ± 0.01	-37.5	-9.4 -14.3	3.0	99.7	AD 1660 JS174 (M3; Adams et al. 2002)
2MASS J08371330+1303113 2MASS J08492207+2216219	$M3.0\pm0.1$	14.91 ± 0.01 14.91 ± 0.01	-42.0	-14.5	3.0	52.2	HSHJ511
2MASS J08492207+2210219 2MASS J08385103+1951021	$M3.0\pm0.1$	15.03 ± 0.01	-42.0 -42.1	-13.1	3.0	99.5	JS250 (M4; Adams et al. 2002)
2MASS J08360896+1909309	$M3.0\pm0.1$ $M3.0\pm0.1$	15.04 ± 0.01	-37.5	-15.1	3.0	99.6	JS111
2MASS J08454448+1940324	$M3.0\pm0.1$ $M3.0\pm0.1$	15.04 ± 0.01 15.06 ± 0.01	-36.3	-17.2	$\frac{3.0}{2.7}$	99.2	JS608
2MASS J08443290+1857506	$M3.0\pm0.1$	15.07 ± 0.01	-37.9		3.0	99.4	
2MASS J08413662+1854155	$M3.0\pm0.1$ $M3.0\pm0.2$	15.13 ± 0.01	-33.2	-16.6	3.0	99.1	JS443 (M4; Adams et al. 2002)
2MASS J08554365+1937424	$M3.0\pm0.2$	15.13 ± 0.01 15.13 ± 0.01	-40.4	-13.0	$\frac{3.0}{2.7}$	80.4	35445 (M4, Adams et al. 2002)
2MASS J08395264+2030464	$M3.0\pm0.2$	15.18 ± 0.01	-30.3	-11.5	3.0	98.8	JS715 (M3.5; Adams et al. 2002)
2MASS J08394572+1858340	$M3.0\pm0.2$	15.22 ± 0.01	-39.8	-12.2	3.0	99.5	JS315 (M3.5; Adams et al. 2002)
2MASS J08361916+1953549	$M3.0\pm0.1$	15.25 ± 0.01	-37.9	-12.6	3.0	99.8	JS123 (M4; Adams et al. 2002)
2MASS J08321889+1903086	$M3.0\pm0.1$	15.48 ± 0.01	-37.1	-16.4	3.0	98.4	HSHJ 23
2MASS J08391889+1848365	$M3.0\pm0.1$	15.48 ± 0.01	-36.8	-14.0	3.0	99.7	JS708 (M4; Adams et al. 2002)
2MASS J08343970+1908126	$M3.0\pm0.1$	15.48 ± 0.01	-38.0	-14.6	3.0	99.4	HSHJ 60
2MASS J08375488+1929097	$M3.0\pm0.1$	15.55 ± 0.01	-38.2	-13.0	3.0	99.8	110110 00
2MASS J08413235+1840107	$M3.0\pm0.2$	15.58 ± 0.01	-28.0	-9.3	3.0	64.6	JS439 (M3.5; Adams et al. 2002)
2MASS J08340314+2020305	$M3.0\pm0.1$	15.65 ± 0.01	-34.7	-17.0	3.1	99.0	AD 1841
2MASS J08363122+1935334	$M3.0\pm0.1$	15.69 ± 0.01	-35.4	-13.2	3.0	99.8	JS693 (M4; Adams et al. 2002)
2MASS J08225141+1848025	$M3.0\pm0.1$	16.01 ± 0.01	-33.8	-9.7	3.0	58.6	AD 0520
2MASS J08243324+1917432	$M3.1\pm0.1$	14.89 ± 0.01	-34.8	-15.7	3.0	86.4	AD 0666
2MASS J08401310+2003281	$M3.1\pm0.1$	14.93 ± 0.01	-38.1	-11.5	3.0	99.9	HSHJ303 (M4; Adams et al. 2002)
2MASS J08353967+1907364	$M3.1\pm0.1$	14.97 ± 0.01	-34.5	-13.5	3.0	99.5	JS 94 (M3.2; Kafka & Honeycutt 2006)
2MASS J08340489+2040473	$M3.1\pm0.1$	15.05 ± 0.01	-35.8	-13.3	3.1	99.5	JS 53
2MASS J08385517+2013089	$M3.1\pm0.1$	15.23 ± 0.01	-40.9	-15.7	3.0	99.7	JS255 (M4; Adams et al. 2002)
2MASS J08433684+2032244	$M3.1\pm0.1$	15.26 ± 0.01	-34.5	-14.2	3.0	99.7	AD 3225 (M4; Adams et al. 2002)
2MASS J08385566+1715095	$M3.1\pm0.1$	15.39 ± 0.01	-34.7	-11.8	3.0	96.4	AD 2482
2MASS J08384798+2117544	$M3.1 \pm 0.2$	15.45 ± 0.01	-33.3	-19.1	3.0	96.6	HSHJ226
2MASS J08410689+1926370	$M3.1 \pm 0.1$	15.51 ± 0.01	-39.0	-15.9	3.0	99.7	AD 2885 (M4; Adams et al. 2002)
2MASS J08463894+1937088	$M3.1\pm0.3$	15.57 ± 0.01	-35.9	-14.8	2.7	99.4	AD 3547
2MASS J08412602+1959151	$M3.1 \pm 0.1$	15.70 ± 0.01	-36.7	-14.6	3.0	99.9	JS729 (M4; Adams et al. 2002)
2MASS J08422804+1714485	$M3.1 \pm 0.1$	15.75 ± 0.01	-36.3	-7.1	3.0	78.2	,
-							

TABLE 3 CANDIDATE MEMBERS OF PRAESEPE

2MASS J08362943+2103104 M3.1 \pm 0.1 15.85 \pm 0.01 -36.7 -14.2 3.0 99.6 HSHJ125 2MASS J08402241+2038271 M3.2 \pm 1.7 13.88 \pm 0.01 -38.4 -15.7 3.0 99.8 JS353 (K7; Adams 2MASS J08491651+2135121 M3.2 \pm 0.1 14.21 \pm 0.01 -37.1 -8.6 3.0 91.6 HSHJ510	
$2MASS\ J08402241 + 2038271 M3.2 \pm 1.7 13.88 \pm 0.01 -38.4 -15.7 3.0 99.8 JS353\ (K7;\ Adams + 1.00) M3.2 \pm 1.7 M3.2 $	
	set al. 2002)
	2002)
2MASS J08433536+1900141 M3.2±0.1 14.44±0.01 -33.2 -13.4 3.0 99.4 JS541 (M4; Adams	a et al. 2002)
2MASS J08361429+1925303 M3.2±0.1 14.55±0.01 -37.0 -13.7 3.0 99.8 JS689 (M3.5; Adam	
2MASS J08384393+1917383 M3.2±0.1 14.61±0.01 -38.2 -14.3 3.0 99.8 JS246 (M3.5; Adam	
	dome at al. 2002)
2MASS J08401085+1858570 M3.2±0.1 14.65±0.01 -35.1 -10.7 3.0 99.6 JS344 (M3.5; Adam 2MASS J08441013+1856000 M3.2+0.1 14.77+0.01 36.4 15.0 3.0 90.5 JCS64 (M4. Adam)	
2MASS J08441913+1856099 M3.2±0.1 14.77±0.01 -36.4 -15.0 3.0 99.5 JS564 (M4; Adams	s et al. 2002)
2MASS J08291780+1742115 M3.2±0.1 14.77±0.01 -36.5 -17.2 3.0 87.2 AD 1215	. 1 2000)
2MASS J08383748+1915286 M3.2 \pm 0.1 15.06 \pm 0.01 -37.9 -15.5 3.0 99.8 JS241 (M4; Adams 2003)	s et al. 2002)
2MASS J08443259+2140592 M3.2±0.1 15.12±0.01 -40.6 -17.6 3.0 94.6 AD 3327	. m. o
	afka & Honeycutt 2006)
$2MASS \ J08462388+1958043 \ M3.2\pm0.1 \ 15.26\pm0.01 \ -35.5 \ -13.1 \ 2.7 \ 99.5 \ AD \ 3511$	
2MASS J08354722+1808300 M3.2±0.1 15.38±0.01 -38.0 -12.9 3.0 98.8 HSHJ 87	
2MASS J08394360+2029395 M3.2±0.1 15.42±0.01 -34.6 -11.3 3.0 99.8 JS311 (M3.5; Aller	1 & Strom 1995)
$2MASS J08442259+1823093 M3.2\pm0.2 15.63\pm0.01 -34.1 -13.3 3.0 98.9 JS744$	
2MASS J08321786 $+$ 1932495 M3.2 \pm 0.2 15.69 \pm 0.01 -36.6 -15.5 3.0 99.1 HSHJ 22	
2MASS J08395316+1924037 M3.2±0.1 15.71±0.01 -32.8 -4.6 3.0 82.3 AD 2642 (M4; Ada	
2MASS J08390291+1931572 M3.3±0.1 14.62±0.01 -39.3 -14.9 3.0 99.8 JC143 (M3.5; Ada	ms et al. 2002)
2MASS J08330845+2026372 M3.3±0.1 14.64±0.01 -32.2 -17.1 3.1 96.8	
2MASS J08383906+2010148 M3.3±0.1 14.94±0.01 -38.7 -14.6 3.0 99.9 JS243 (M3.5; Ada	ns et al. 2002)
2MASS J08354015+1842283 M3.3±0.1 15.05±0.01 -35.3 -13.0 3.0 99.4 JS 95 (M3.8; Kafk	a & Honeycutt 2006)
2MASS J08393466+1948002 M3.3±0.1 15.07±0.01 -34.3 -17.6 9.6 99.8 HSHJ272 (M3.5; A	dams et al. 2002)
2MASS J08372789+1954126 M3.3±0.1 15.18±0.01 -36.3 -12.8 3.0 99.9 AD 2328 (M3.5; A	
2MASS J08474180+1856287 M3.3±0.1 15.21±0.01 -37.2 -13.9 2.7 98.9	,
2MASS J08311310+2054003 M 3.3 ± 0.2 15.47 ±0.01 -39.6 -12.9 3.1 97.8 AD 1465	
2MASS J08400249+1940353 M3.3±0.1 15.48±0.01 -35.8 -13.1 3.0 99.9 HSHJ293 (M4; Ad	ams et al. 2002)
2MASS J08463486+1915260 M3.3±0.1 15.55±0.01 -38.6 -17.3 2.7 98.3 AD 3534	
2MASS J08362039+2007003 M3.3±0.2 15.55±0.01 -42.8 -10.4 3.0 97.2 JS691 (M3.5; Ada	ms et al. 2002)
	a & Honeycutt 2006)
	a & Honeycutt 2006)
2MASS J08423077+1929310 M3.3±0.1 15.85±0.01 -37.0 -12.1 3.0 99.8 HSHJ424 (M3.5; A	
2MASS J08422111+2003208 M3.3±0.1 15.99±0.01 -35.7 -18.7 3.0 99.5 HSHJ419 (M4; Ad	
2MASS J08401146+2004032 M3.4±0.1 14.52±0.01 -44.7 -12.4 3.0 97.4 HSHJ300 (M4; Ad	
2MASS J08453685+1835553 M3.4±0.1 14.76±0.01 -33.3 -16.8 2.7 97.4 AD 3428	ams et al. 2002)
2MASS J08462006+1841007 M3.4±0.3 14.93±0.01 -30.4 -14.1 2.8 93.2 AD 3505	
	ome at al. 2002)
2MASS J08392667+2025523 $M3.4\pm0.1$ 15.27 ±0.01 -39.2 -10.9 3.0 99.8 AD 2562 (M4; Ada 2MASS J08504984+1948364 $M3.4\pm0.1$ 15.34 ±0.01 -37.5 -14.1 2.7 97.9 AD 3814	inis et al. 2002)
2MASS J08412614+1748127 M3.4±0.1 15.41±0.01 -33.6 -11.6 3.0 97.6 HSHJ372	
	ama et el 2002)
	ams et al. 2002)
2MASS J08324679+1959517 M3.4±0.1 15.60±0.01 -39.3 -17.6 3.0 97.7 HSHJ 25	
2MASS J08495937+1910010 M3.4±0.1 15.64±0.01 -39.1 -16.5 2.7 95.7	at al. 2002)
2MASS J08400416+1924502 M3.4±0.1 15.66±0.01 -33.2 -11.8 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 -35.6 16.4 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 -35.6 16.4 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 -35.6 16.4 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 -35.6 16.4 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 -35.6 16.4 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 -35.6 16.4 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 -35.6 16.4 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+1043357 M3.4±0.1 15.66±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+104357 M3.4±0.1 15.60±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+104357 M3.4±0.1 15.60±0.01 3.0 99.7 JS718 (M4.5; Adam 2MASS J08901745+104357 M3.4±0.1 15.0 99.7	ns et al. 2002)
2MASS J08261745+1943357 M3.4±0.1 15.68±0.01 -35.6 -16.4 3.0 92.0 AD 0839	
2MASS J08392131+2205207 M3.4±0.1 15.74±0.01 -39.6 -17.6 3.0 95.7 HSHJ259	. 1 2002)
2MASS J08410314+1855550 M3.4 \pm 0.2 15.74 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.2 15.74 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -7.6 3.0 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -36.3 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.01 -34.3 -36.3 97.8 JS724 (M4; Adams 2005) M3.4 \pm 0.0 97.8 JS724 (M4; Adams 2005) M3.4 M3.4 M3.4 M3.4 M3.4 M3.4 M3.4 M3.4	s et al. 2002)
2MASS J08533302 \pm 2014536 M3.4 \pm 0.1 15.76 \pm 0.01 -39.8 -9.0 2.7 78.6 AD 4098	
2MASS J08380462+2039352 M3.4±0.3 15.82±0.01 -35.1 -17.2 3.0 99.6 JS704	
2MASS J08285027+2107411 $M3.4\pm0.3$ 15.86 ±0.01 -32.5 -19.0 3.1 72.3 AD 1168	. 1 2222)
2MASS J08412034+1857430 M3.4±0.2 15.88±0.01 -31.3 -12.6 3.0 98.8 HSHJ364 (M4; Ad	
$2MASS J08394051+1918539 M3.4\pm0.1 15.91\pm0.01 -40.5 -9.6 3.0 99.2 HSHJ279 (M4; Advantage Matter Matter)$	
2MASS J08413737+2012368 M 3.4 ± 0.2 15.96 ±0.01 -38.0 -13.8 3.0 99.9 HSHJ381 (M4; Ad	
2MASS J08423495+1855458 M3.4 \pm 0.1 15.96 \pm 0.01 -26.7 -11.7 3.0 57.3 HSHJ426 (M4.5; A	
2MASS J08420159+1926461 M3.4±0.1 15.97±0.01 -41.8 -18.6 3.0 97.0 HSHJ404 (M4; Ad	ams et al. 2002)
2MASS J08305140+1853515 M3.4±0.1 16.06±0.01 -39.2 -14.3 3.0 97.5 HSHJ 8	
2MASS J08544575+2141579 M3.4±0.1 16.06±0.01 -40.8 -17.5 3.0 55.3 AD 4239	
2MASS J08282020+1915307 $M3.4\pm0.1$ 16.07 ± 0.01 -33.3 -15.5 3.0 93.7 AD 1098	
2MASS J08405572+1849343 M3.4±0.1 16.15±0.01 -32.3 -15.1 3.0 99.1 HSHJ338 (M4; Ad	
2MASS J08414174+1949575 $M3.4\pm0.1$ 16.29 ± 0.01 -37.0 -17.8 3.0 99.7 AD 3001 (M4.5; A	dams et al. 2002)
2MASS J08373305+2040100 M3.4±0.1 16.37±0.01 -35.7 -13.1 3.0 99.8 HSHJ167	
2MASS J08394521+2007274 M3.5±0.1 14.94±0.01 -35.0 -11.1 3.0 99.9 JS313 (M4; Adams	s et al. 2002)
2MASS J08331663+2120204 M3.5±0.2 14.97±0.01 -32.7 -17.0 3.1 95.8 AD 1737	•
2MASS J08331347+2033011 M3.5±0.1 15.13±0.01 -39.4 -16.4 3.1 98.5 AD 1727	
2MASS J08324877+1840407 $M3.5\pm0.1$ 15.19 ±0.01 -35.0 -13.9 3.0 98.7 HSHJ 26	ame at al. 2002)
2MASS J08324877+1840407 $M3.5\pm0.1$ 15.19 ±0.01 -35.0 -13.9 3.0 98.7 HSHJ 26	11115 Ct al. 2002)
2MASS J08324877+1840407 $M3.5\pm0.1$ 15.19 ± 0.01 -35.0 -13.9 3.0 98.7 HSHJ 26	inis et ai. 2002)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ta & Honeycutt 2006)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ta & Honeycutt 2006)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ta & Honeycutt 2006) ta & Honeycutt 2006)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ta & Honeycutt 2006) ta & Honeycutt 2006) tams et al. 2002)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ta & Honeycutt 2006) ta & Honeycutt 2006) tams et al. 2002)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ta & Honeycutt 2006) ta & Honeycutt 2006) tams et al. 2002)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ta & Honeycutt 2006) ta & Honeycutt 2006) tams et al. 2002) s et al. 2002)

			CANDIDA	ATE ME	MBERS O	F PRAE	ESEPE	
	2MASS J08420785+2211051	$M3.5 \pm 0.1$	15.68 ± 0.01	-40.7	-18.2	3.1	89.7	HSHJ406
	2MASS J08433659+2119097	$M3.5 \pm 0.1$	15.68 ± 0.01	-41.3	-18.3	3.0	94.1	JS539
	2MASS J08364118+2016399	$M3.5 \pm 0.1$	15.81 ± 0.01	-39.9	-13.9	3.0	99.7	AD 2205 (M4; Adams et al. 2002)
	2MASS J08411749+2032330	$M3.5 \pm 0.2$	15.82 ± 0.01	-43.1	-12.6	3.0	98.5	JS727 (M4; Adams et al. 2002)
	2MASS J08253573+2106085	$M3.5\pm0.1$	16.00 ± 0.01	-34.8	-16.5	3.1	86.7	AD 0755
	2MASS J08431586+1906331	$M3.5\pm0.1$	16.02 ± 0.01	-32.3	-14.0	3.0	99.2	AD 3187 (M4.5; Adams et al. 2002)
	2MASS J08282693+2006171	$M3.5\pm0.1$	16.06 ± 0.01	-39.1	-14.2	3.1	96.4	AD 1121
	2MASS J08423762+1959189 2MASS J08314297+1829064	$M3.5\pm0.2 M3.5\pm0.2$	16.06 ± 0.01 16.09 ± 0.01	-31.9 -38.2	-12.3 -17.1	$\frac{3.0}{3.0}$	$99.5 \\ 95.8$	HSHJ428 (M4.5; Adams et al. 2002) HSHJ 17
	2MASS J08314237+1823004 2MASS J08383412+2046292	$M3.5\pm0.2$ $M3.5\pm0.1$	16.09 ± 0.01 16.11 ± 0.01	-32.8	-9.0	3.0	98.8	AD 2420
	2MASS J08482603+2236312	$M3.5\pm0.1$	16.12 ± 0.01	-40.6	-17.9	3.1	71.6	HSHJ504
	2MASS J08380800+2003505	$M3.5\pm0.1$	16.19 ± 0.01	-37.3	-13.2	3.0	99.9	HSHJ195
	2MASS J08475052+1909110	$M3.5 \pm 0.1$	16.19 ± 0.01	-29.9	-15.7	2.7	87.7	
	2MASS J08330771+1845157	$M3.5 \pm 0.1$	16.25 ± 0.01	-35.6	-12.3	3.0	98.9	HSHJ 33
	2MASS J08273094+2209003	$M3.5 \pm 0.1$	16.33 ± 0.01	-32.0	-18.2	3.1	52.4	AD 0985
	2MASS J08330040+2043103	$M3.6 \pm 0.1$	14.64 ± 0.01	-40.3	-14.3	3.1	98.5	JS 19
	2MASS J08411405+2044297	$M3.6\pm0.1$	14.81 ± 0.01	-39.9	-15.2	3.0	99.6	JS416 (M4; Adams et al. 2002)
	2MASS J08405231+1910284	$M3.6\pm0.1$	14.82 ± 0.01	-34.1	-10.4	3.0	99.6	JS391 (M4.1; Kafka & Honeycutt 2006)
	2MASS J08380061+1857529	$M3.6\pm0.3$	15.02 ± 0.01	-34.7	-13.5	$\frac{3.0}{2.7}$	99.7	JS208 JS617 (M2.5, Adams et al. 2002)
	2MASS J08460223+1906595	$M3.6\pm0.1 M3.6\pm0.1$	15.07 ± 0.01	-32.8 -35.6	-14.5 -17.2	$\frac{2.7}{3.0}$	$98.7 \\ 97.9$	JS617 (M3.5; Adams et al. 2002) JS756
	2MASS J08454868+2131565 2MASS J08385776+1846309	$M3.6\pm0.1$	15.24 ± 0.01 15.37 ± 0.01	-34.6	-17.2 -11.5	3.0	99.5	HSHJ242 (M4; Adams et al. 2002)
	2MASS J08383770+1840309 2MASS J08430615+1924521	$M3.6\pm0.1$	15.46 ± 0.01	-34.5	-11.9	3.0	99.7	JS514 (M4.1; Kafka & Honeycutt 2006)
	2MASS J08425674+2004181	$M3.6\pm0.1$	15.52 ± 0.01	-36.0	-12.8	3.0	99.8	HSHJ436 (M4; Adams et al. 2002)
	2MASS J08432759+1949405	$M3.6\pm0.3$	15.57 ± 0.01	-37.1	-13.5	3.0	99.8	HSHJ455 (M4; Adams et al. 2002)
	2MASS J08443186+1933173	$M3.6\pm0.2$	15.65 ± 0.01	-35.4	-15.3	3.0	99.6	JS748 (M4; Adams et al. 2002)
	2MASS J08372283+1741152	$M3.6 \pm 0.1$	15.77 ± 0.01	-32.3	-9.4	3.0	90.3	AD 2306
	2MASS J08375727+2240554	$M3.6 \pm 0.1$	15.80 ± 0.01	-40.6	-19.8	3.1	63.5	HSHJ185
	2MASS J08461827+1843092	$M3.6 \pm 0.1$	15.90 ± 0.01	-33.2	-15.3	2.7	98.1	JS757
	2MASS J08320188+1958471	$M3.6 \pm 0.1$	15.91 ± 0.01	-37.6	-15.9	3.0	98.9	HSHJ 19
	2MASS J08413650+2034042	$M3.6 \pm 0.1$	15.91 ± 0.01	-43.0	-13.8	3.0	98.5	JS733 (M4; Adams et al. 2002)
	2MASS J08451494+1845399	$M3.6\pm0.2$	16.07 ± 0.01	-32.7	-10.5	3.0	97.7	AD 3392
	2MASS J08380676+1934178	$M3.6\pm0.2$	16.11 ± 0.01	-36.9	-14.3	3.0	99.9	HSHJ194 (M3.1; Kafka & Honeycutt 2006)
	2MASS J08333838+2028525	$M3.6\pm0.3$	16.12 ± 0.01 16.16 ± 0.01	-35.1 -35.8	-13.7 -15.0	$\frac{3.1}{3.0}$	$99.4 \\ 99.6$	AD 1786 HSH 71 (M2 0: Koffre & Hangyoutt 2006)
	2MASS J08351605+1912077 2MASS J08354730+1935227	$M3.6\pm0.1 M3.6\pm0.1$	16.18 ± 0.01	-35.6 -37.9	-17.3	3.0	99.0	HSHJ 71 (M3.9; Kafka & Honeycutt 2006) HSHJ 86 (M3.9; Kafka & Honeycutt 2006)
	2MASS J08354730+1935227 2MASS J08480129+1949391	$M3.6\pm0.1$	16.19 ± 0.01	-32.3	-20.2	$\frac{3.0}{2.7}$	80.0	115115 60 (M.S.9, Kaika & Holleycutt 2000)
	2MASS J08425668+2030422	$M3.6\pm0.1$	16.21 ± 0.01	-31.9	-7.5	3.0	95.9	AD 3148 (M4.5; Adams et al. 2002)
	2MASS J08385547+1950334	$M3.6 \pm 0.2$	16.22 ± 0.01	-37.5	-11.0	3.0	99.9	HSHJ235 (M4.5; Adams et al. 2002)
	2MASS J08372449+1947120	$M3.6 \pm 0.1$	16.29 ± 0.01	-39.4	-12.1	3.0	99.8	HSHJ158 (M4.5; Adams et al. 2002)
	2MASS J08413252+2006068	$M3.6 \pm 0.2$	16.39 ± 0.01	-31.5	-13.9	3.0	99.6	HSHJ376 (M4; Adams et al. 2002)
	2MASS J08405548+1817523	$M3.6 \pm 0.2$	16.50 ± 0.01	-39.9	-7.4	3.0	91.7	AD 2853
	2MASS J08460817+1802272	$M3.6 \pm 0.2$	16.57 ± 0.01	-36.5	-13.5	3.6	98.3	AD 3484
	2MASS J08422601+2113510	$M3.7 \pm 0.1$	14.58 ± 0.01	-43.5	-11.9	3.0	94.0	AD 3085
	2MASS J08391510+1943316	$M3.7\pm0.1$	14.71 ± 0.01	-37.1	-11.9	3.0	99.9	JS706 (M3.5; Adams et al. 2002)
	2MASS J08401158+1939118	$M3.7\pm0.2$	14.75 ± 0.01	-33.5	-11.9	3.0	99.8	HSHJ302 (M4; Adams et al. 2002)
	2MASS J08403937+1956238	$M3.7\pm0.1$	15.37 ± 0.01	-38.0	-11.0 -18.1	3.0	$99.9 \\ 99.4$	AD 2802 (M4; Adams et al. 2002)
	2MASS J08363947+2022339 2MASS J08332462+1952579	$M3.7\pm0.1 M3.7\pm0.1$	15.45 ± 0.01 15.48 ± 0.01	-36.5 -38.6	-14.4	$\frac{3.0}{3.0}$	99.4	JS141 JS669
	2MASS J08332402+1932379 2MASS J08331799+1916328	$M3.7\pm0.1$ $M3.7\pm0.1$	15.48 ± 0.01 15.52 ± 0.01	-37.6	-14.4 -16.4	3.0	98.9	JS667
	2MASS J08394730+1939344	$M3.7\pm0.3$	15.61 ± 0.01	-35.4	-11.5	3.0	99.9	0.0001
	2MASS J08292058+1810459	$M3.7\pm0.1$	15.70 ± 0.01	-34.6	-15.5	3.0	93.7	AD 1223
	2MASS J08355945+2004405	$M3.7 \pm 0.1$	15.70 ± 0.01	-37.5	-12.6	3.0	99.8	JS687 (M4; Adams et al. 2002)
	2MASS J08310663+2113463	$M3.7 \pm 0.1$	15.75 ± 0.01	-44.8	-14.0	4.2	57.4	AD 1448
	2MASS J08405844+1850463	$M3.7 \pm 0.1$	15.77 ± 0.01	-33.7	-16.5	3.0	99.3	JS723 (M4; Adams et al. 2002)
	2MASS J08471939+1912520	$M3.7 \pm 0.1$	15.84 ± 0.01	-30.3	-18.9	2.7	75.1	JS759
	2MASS J08390512+1945264	$M3.7 \pm 0.1$	15.84 ± 0.01	-35.7	-12.0	3.0	99.9	HSHJ248 (M4; Adams et al. 2002)
	2MASS J08260122+2215200	$M3.7\pm0.1$	15.86 ± 0.01	-36.3	-10.6	3.1	81.6	AD 0809
	2MASS J08413586+2117371	$M3.7\pm0.1$	16.08 ± 0.01	-40.2	-18.6	4.0	96.8	HSHJ378
	2MASS J08431265+1934290	$M3.7\pm0.1 M3.7\pm0.1$	16.11 ± 0.01 16.15 ± 0.01	-36.2	-19.7	$\frac{3.0}{2.7}$	$98.5 \\ 97.2$	HSHJ445 (M4.5; Adams et al. 2002)
	2MASS J08480745+1954592 2MASS J08372707+1848394	$M3.7\pm0.1$ $M3.7\pm0.1$	16.15 ± 0.01 16.16 ± 0.01	-37.4 -33.5	-18.2 -12.9	3.0	97.2	HSHJ164 (M4; Adams et al. 2002)
	2MASS J08421272+1841011	$M3.7\pm0.1$ $M3.7\pm0.1$	16.19 ± 0.01	-30.4	-12.3	3.0	96.7	AD 3061 (M4; Adams et al. 2002)
	2MASS J08393066+1758513	$M3.7\pm0.2$	16.21 ± 0.01	-35.1	-12.2	3.0	98.9	HSHJ271
	2MASS J08450590+1917575	$M3.7\pm0.1$	16.23 ± 0.01	-35.0	-14.1	3.0	99.6	AD 3369
	2MASS J08432029+2004456	$M3.7 \pm 0.1$	16.26 ± 0.01	-38.7	-9.7	3.0	99.5	HSHJ452 (M4.5; Adams et al. 2002)
	2MASS J08452116+1853035	$M3.7 \pm 0.1$	16.28 ± 0.01	-30.1	-18.4	4.0	82.4	AD 3401
	2MASS J08360333+1925288	$M3.7 \pm 0.1$	16.33 ± 0.01	-38.5	-9.5	3.0	99.2	HSHJ100 (M4; Adams et al. 2002)
	2MASS J08400367+1954595	$M3.8 \pm 0.1$	15.05 ± 0.01	-35.2	-14.1	3.0	99.9	AD 2676 (M4; Adams et al. 2002)
	2MASS J08430839+1928061	$M3.8 \pm 0.1$	15.08 ± 0.01	-34.4	-10.0	3.0	99.5	JS521 (M4.5; Adams et al. 2002)
	2MASS J08474886+1836195	$M3.8 \pm 0.1$	15.46 ± 0.01	-37.1	-15.6	2.7	98.2	JS761
	2MASS J08452240+1902082	$M3.8\pm0.1$	15.52 ± 0.01	-33.4	-12.0	2.8	99.0	AD 3403 (M4.5; Adams et al. 2002)
	2MASS J08351387+2311580	$M3.8\pm0.1$	15.56 ± 0.01	-42.6	-13.1	$\frac{3.1}{2.7}$	66.4	AD 1988
	2MASS J08460002+1749387	$M3.8\pm0.1$	15.86 ± 0.01	-39.5	-10.8	2.7	95.0 70.4	AD 3472
	2MASS J08391960+2017306 2MASS J08320273+2046207	$M3.8\pm0.2 M3.8\pm0.2$	15.91 ± 0.01 15.96 ± 0.01	-26.3 -37.9	-10.7 -13.4	$\frac{3.0}{3.1}$	$70.4 \\ 99.0$	AD 2545 (M4.5; Adams et al. 2002) AD 1572
	2MASS J08320273+2040207 2MASS J08392745+1814556	$M3.8\pm0.2$ $M3.8\pm0.2$	15.98 ± 0.01 15.98 ± 0.01	-37.9 -35.4	-13.4 -5.9	$\frac{3.1}{3.0}$	99.0 85.6	AD 1572 AD 2566
-			_0.00_0.01	55.1	5.0	5.0	23.0	

 $\begin{array}{c} \text{TABLE 3} \\ \text{Candidate Members of Praesepe} \end{array}$

		CANDIDA	ALE ME	MBERS U	F I KAL	SEPE	
2MASS J08433462+1845138	$M3.8 \pm 0.1$	16.00 ± 0.01	-31.0	-17.9	3.0	93.4	AD 3218
2MASS J08351934+1945412	$M3.8\pm0.1$	16.03 ± 0.01	-35.6	-14.1	3.0	99.7	HSHJ 75 (M4.5; Adams et al. 2002)
2MASS J08395441+1927372	$M3.8\pm0.1$	16.05 ± 0.01	-33.5	-13.3	3.0	99.8	HSHJ291 (M4; Adams et al. 2002)
2MASS J08401707+1836298	$M3.8\pm0.1$	16.05 ± 0.01 16.05 ± 0.01	-34.1	-10.5	3.0	99.1	
							HSHJ310 (M4; Adams et al. 2002)
2MASS J08365052+1840541	$M3.8 \pm 0.2$	16.06 ± 0.01	-33.2	-12.5	3.0	99.1	HSHJ135
2MASS J08345495+2138544	$M3.8 \pm 0.1$	16.06 ± 0.01	-34.4	-14.6	3.0	98.7	AD 1951
2MASS J08362241+2007070	$M3.8 \pm 0.2$	16.17 ± 0.01	-32.5	-8.8	3.0	98.5	AD 2155
2MASS J08475384+1907533	$M3.8 \pm 0.2$	16.18 ± 0.01	-28.8	-11.8	2.7	76.5	
2MASS J08383709+2114488	$M3.8 \pm 0.1$	16.27 ± 0.01	-33.4	-15.5	3.0	99.3	HSHJ210
2MASS J08413355+1933002	$M3.8 \pm 0.1$	16.39 ± 0.01	-37.7	-11.4	3.0	99.8	AD 2969 (M4; Adams et al. 2002)
2MASS J08393071+1856533	$M3.8 \pm 0.2$	16.55 ± 0.01	-32.1	-9.6	3.0	98.4	HSHJ269 (M4.5; Adams et al. 2002)
2MASS J08380809+1844300	$M3.8 \pm 0.1$	16.56 ± 0.01	-34.7	-19.1	3.0	97.6	HSHJ196
2MASS J08383349+2240350	$M3.8 \pm 0.1$	16.59 ± 0.01	-37.7	-11.9	4.2	97.0	HSHJ205
2MASS J08334526+1939160	$M3.9 \pm 0.1$	15.42 ± 0.01	-37.2	-13.6	3.0	99.5	JS672
2MASS J08405590+1814462	$M3.9 \pm 0.1$	15.50 ± 0.01	-33.4	-11.6	3.0	98.6	HSHJ341
2MASS J08331098+1929221	$M3.9\pm0.1$	15.63 ± 0.01	-37.3	-13.4	3.0	99.4	HSHJ 34
2MASS J08361207+1844077	$M3.9\pm0.1$	15.65 ± 0.01	-34.9	-14.6	3.0	99.4	JS688
2MASS J08444422+2107134	$M3.9\pm0.3$	15.89 ± 0.01	-35.1	-13.7	9.6	99.4	JS750
2MASS J08444422+2107134 2MASS J08341389+2123521	$M3.9\pm0.3$ $M3.9\pm0.1$	15.98 ± 0.01 15.98 ± 0.01	-33.6	-18.0	3.1	96.1	AD 1868
2MASS J08442321+2013557	$M3.9\pm0.1$	16.07 ± 0.01	-36.1	-17.2	3.0	99.5	AD 3312 (M4.5; Adams et al. 2002)
2MASS J08390308+1924155	$M3.9 \pm 0.2$	16.09 ± 0.01	-37.2	-11.4	3.0	99.8	HSHJ246 (M4.5; Adams et al. 2002)
2MASS J08423943+1924520	$M3.9 \pm 0.3$	16.17 ± 0.01	-37.5	-8.2	3.0	99.1	HSHJ430 (M4.5; Adams et al. 2002)
2MASS J08403416+1821331	$M3.9 \pm 0.1$	16.23 ± 0.01	-32.7	-13.0	3.0	98.8	HSHJ326
$2MASS\ J08394675+1944126$	$M3.9 \pm 0.2$	16.33 ± 0.01	-35.2	-9.7	3.0	99.8	JS713 (M4.5; Adams et al. 2002)
2MASS J08433550+1927234	$M3.9 \pm 0.1$	16.34 ± 0.01	-39.0	-14.3	2.9	99.7	AD 3221
2MASS J08415359+1936306	$M3.9 \pm 0.2$	16.36 ± 0.01	-36.2	-13.0	3.9	99.9	HSHJ397 (M4.5; Adams et al. 2002)
2MASS J08393244+2102526	$M3.9 \pm 0.1$	16.37 ± 0.01	-35.7	-15.3	4.0	99.7	HSHJ268
2MASS J08361616+1922407	$M3.9 \pm 0.2$	16.44 ± 0.01	-41.4	-14.4	3.9	99.0	HSHJ113 (M3.3; Kafka & Honeycutt 2006)
2MASS J08365404+1937018	$M3.9 \pm 0.2$	16.50 ± 0.01	-33.5	-15.5	3.0	99.6	HSHJ140 (M4; Adams et al. 2002)
2MASS J08593784+2149540	$M4.0\pm0.1$	14.79 ± 0.01	-39.9	-11.6	3.0	58.1	AD 4658
2MASS J08431012+1928360	$M4.0\pm0.1$	14.87 ± 0.01	-44.6	-20.0	3.0	94.4	JS523 (M4.4; Kafka & Honeycutt 2006)
2MASS J08372243+2202003	$M4.0\pm0.1$ $M4.0\pm0.1$	14.94 ± 0.01	-39.4		3.0	96.4	AD 2305
				-17.7			
2MASS J08403942+1942553	$M4.0\pm0.2$	15.32 ± 0.01	-38.2	-9.4	3.0	99.6	AD 2803 (M4; Adams et al. 2002)
2MASS J08394255+1918288	$M4.0\pm0.1$	15.38 ± 0.01	-36.9	-18.7	3.0	99.3	JS711 (M4.5; Adams et al. 2002)
2MASS J08393094+1958019	$M4.0\pm0.1$	15.39 ± 0.01	-38.5	-16.8	3.0	99.7	JS710 (M4.5; Adams et al. 2002)
2MASS J08444277+2057468	$M4.0\pm0.1$	15.55 ± 0.01	-41.6	-16.5	3.0	97.9	
2MASS J08530438+1744311	$M4.0\pm0.1$	15.56 ± 0.01	-38.9	-5.7	10.0	59.4	AD 4042
2MASS J08380113+1958430	$M4.0\pm0.1$	15.58 ± 0.01	-37.3	-14.3	3.0	99.7	JS703 (M4.4; Kafka & Honeycutt 2006)
2MASS J08464281+1925343	$M4.0\pm0.2$	15.73 ± 0.01	-40.5	-14.3	2.7	98.2	
2MASS J08452663+1914127	$M4.0\pm0.2$	15.74 ± 0.01	-35.9	-15.9	2.8	98.9	AD 3413 (M4.5; Adams et al. 2002)
2MASS J08394203+2017450	$M4.0\pm0.1$	15.81 ± 0.01	-39.3	-11.6	3.0	99.7	AD 2615 (M4; Adams et al. 2002)
2MASS J08343499+1904229	$M4.0\pm0.1$	16.08 ± 0.01	-39.7	-16.4	3.0	98.3	HSHJ 57 (M4.3; Kafka & Honeycutt 2006)
2MASS J08503527+2042376	$M4.0\pm0.1$	16.14 ± 0.01	-34.9	-15.2	4.0	96.2	AD 3788
2MASS J08314044+2116245	$M4.0\pm0.2$	16.28 ± 0.01	-32.8	-25.3	3.1	54.3	AD 1524
2MASS J08384569+2039439	$M4.0\pm0.2$	16.28 ± 0.01	-30.6	-6.5	3.0	97.3	AD 2452 (M4; Adams et al. 2002)
	$M4.0\pm0.2$ $M4.0\pm0.1$						
2MASS J08453688+1843251		16.37 ± 0.01	-34.8	-9.6	2.7	97.8	AD 3429
2MASS J08471907+2111021	$M4.0\pm0.1$	16.38 ± 0.01	-36.7	-17.4	3.9	97.3	AD 2040 (M4 A1 + 1 2002)
2MASS J08405326+1844540	$M4.0\pm0.2$	16.43 ± 0.01	-34.8	-15.5	3.0	99.1	AD 2840 (M4; Adams et al. 2002)
2MASS J08464032+1916304	$M4.0\pm0.1$, , , , , , , , , , , , , , , , , , , ,
2MASS J08345385+1801055		16.45 ± 0.01	-38.0	-19.1	2.7	97.2	,
	$M4.0 \pm 0.1$	16.49 ± 0.01	-38.2	-12.0	3.9	$97.2 \\ 97.1$	HSHJ 65
2MASS J08340669+2049468	$M4.0\pm0.1 \ M4.0\pm0.1$	16.49 ± 0.01 16.52 ± 0.01	-38.2 -34.6	-12.0 -16.5	$\frac{3.9}{4.1}$	97.2 97.1 98.5	HSHJ 65 AD 1852
	$M4.0 \pm 0.1$	16.49 ± 0.01	-38.2	-12.0	3.9	$97.2 \\ 97.1$	HSHJ 65
2MASS J08340669+2049468	$M4.0\pm0.1 \ M4.0\pm0.1$	16.49 ± 0.01 16.52 ± 0.01	-38.2 -34.6	-12.0 -16.5	$\frac{3.9}{4.1}$	97.2 97.1 98.5	HSHJ 65 AD 1852
2MASS J08340669+2049468 2MASS J08383995+1754210	$M4.0\pm0.1 \ M4.0\pm0.1 \ M4.0\pm0.1$	16.49 ± 0.01 16.52 ± 0.01 16.68 ± 0.01	-38.2 -34.6 -39.0	-12.0 -16.5 -8.7	3.9 4.1 3.0	97.2 97.1 98.5 96.1	HSHJ 65 AD 1852 HSHJ220
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401	$M4.0\pm0.1$ $M4.0\pm0.1$ $M4.0\pm0.1$ $M4.0\pm0.1$ $M4.1\pm0.1$	16.49 ± 0.01 16.52 ± 0.01 16.68 ± 0.01 16.79 ± 0.01 15.21 ± 0.01	-38.2 -34.6 -39.0 -35.3	-12.0 -16.5 -8.7 -13.7 -13.6	3.9 4.1 3.0 4.1 2.8	97.2 97.1 98.5 96.1 98.7 99.1	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1 M4.1±0.2	$\begin{array}{c} 16.49{\pm}0.01 \\ 16.52{\pm}0.01 \\ 16.68{\pm}0.01 \\ 16.79{\pm}0.01 \\ 15.21{\pm}0.01 \\ 15.42{\pm}0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5	3.9 4.1 3.0 4.1 2.8 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539	$\begin{array}{c} M4.0 \!\pm\! 0.1 \\ M4.0 \!\pm\! 0.1 \\ M4.0 \!\pm\! 0.1 \\ M4.0 \!\pm\! 0.1 \\ M4.1 \!\pm\! 0.1 \\ M4.1 \!\pm\! 0.1 \\ M4.1 \!\pm\! 0.2 \\ M4.1 \!\pm\! 0.1 \end{array}$	$\begin{array}{c} 16.49{\pm}0.01 \\ 16.52{\pm}0.01 \\ 16.68{\pm}0.01 \\ 16.79{\pm}0.01 \\ 15.21{\pm}0.01 \\ 15.42{\pm}0.01 \\ 15.55{\pm}0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7	3.9 4.1 3.0 4.1 2.8 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283	$\begin{array}{l} M4.0 {\pm} 0.1 \\ M4.0 {\pm} 0.1 \\ M4.0 {\pm} 0.1 \\ M4.0 {\pm} 0.1 \\ M4.1 {\pm} 0.1 \\ M4.1 {\pm} 0.2 \\ M4.1 {\pm} 0.1 \\ M4.1 {\pm} 0.1 \\ \end{array}$	$\begin{array}{c} 16.49{\pm}0.01\\ 16.52{\pm}0.01\\ 16.68{\pm}0.01\\ 16.79{\pm}0.01\\ 15.21{\pm}0.01\\ 15.42{\pm}0.01\\ 15.55{\pm}0.01\\ 15.70{\pm}0.01\\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1 M4.1±0.2 M4.1±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.42 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8	3.9 4.1 3.0 4.1 2.8 3.0 3.0 9.6	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.42 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -16.8	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 9.6 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117 2MASS J084411779+1703206	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1 M4.1±0.2 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.2	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.42 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0	3.9 4.1 3.0 4.1 2.8 3.0 3.0 9.6 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 87.9	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 39310 (M4.5; Adams et al. 2002) AD 2928
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117 2MASS J08411779+1703206 2MASS J08392215+2047584	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1 M4.1±0.2 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.42 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 9.6 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 87.9 99.2	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117 2MASS J084411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.42 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 9.6 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.1 75.1 99.2 87.9 99.2 98.8	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117 2MASS J08411779+1703206 2MASS J08411779+1703206 2MASS J0849215+2047584 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08340433+1658247	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.2 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -16.8 -12.0 -13.6 -16.3 -9.2	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 9.6 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 87.9 99.2 87.9 98.8	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08454796+1936187 2MASS J08411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08340433+1658247 2MASS J08470496+1855428	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1	3.9 4.1 3.0 4.1 2.8 3.0 3.0 9.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 87.9 99.2 87.9 98.8 85.7	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117 2MASS J084411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08340433+1658247 2MASS J08470496+1855428 2MASS J08355026+1951001	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.2 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 16.96 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6 -37.8	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -16.8 -12.0 -13.6 -16.3 -9.2	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 9.6 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 87.9 99.2 98.8 85.7 98.0	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08454796+1936187 2MASS J08411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08340433+1658247 2MASS J08470496+1855428	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1	3.9 4.1 3.0 4.1 2.8 3.0 3.0 9.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 87.9 99.2 87.9 98.8 85.7	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117 2MASS J084411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08340433+1658247 2MASS J08470496+1855428 2MASS J08355026+1951001	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 16.96 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6 -37.8	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 9.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 87.9 99.2 98.8 85.7 98.0	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08445223+1942283 2MASS J08442124+1956117 2MASS J08442124+1956117 2MASS J08362162+1850193 2MASS J08365162+1850193 2MASS J08340433+1658247 2MASS J08361204+1752467	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.42 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 16.99 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6 -37.8 -37.8	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 87.9 99.2 98.8 85.7 98.0 99.4 97.3	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08491520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J0844523+1942283 2MASS J08442124+1956117 2MASS J08411779+1703206 2MASS J08411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08370496+1855428 2MASS J08355026+1951001 2MASS J08361204+1752467 2MASS J08315427+1845361 2MASS J08315427+1845361	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.2 \\ \text{M4.1} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.2 \\ \text{M4.1} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.2 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ 16.31 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -34.1 -34.9	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.0 -11.7 -9.8	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 87.9 99.2 98.8 85.7 98.4 97.3 96.5	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 2928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J0842124+1956117 2MASS J08411779+1703206 2MASS J08411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+185428 2MASS J083651204+1752467 2MASS J08361204+1752467 2MASS J08315427+1845361 2MASS J08445702+2106481 2MASS J08424461+1828000	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.2 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.23 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6 -37.8 -37.8 -34.9 -26.3 -38.3	-12.0 -16.5 -8.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7 -9.8 -5.4 -12.1	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 87.9 98.8 85.7 98.0 99.4 97.3 96.5 64.9 98.6	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 2928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ110 HSHJ110
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J084124+1956117 2MASS J08411779+1703206 2MASS J08411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08370496+1855428 2MASS J08361204+1752467 2MASS J08315427+1845361 2MASS J08445702+2106481 2MASS J08424461+1828000 2MASS J08480023+2024068	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ 16.31 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.42 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6 -37.8 -37.8 -37.9 -26.3 -38.3 -36.0	-12.0 -16.5 -8.7 -13.6 -10.5 -9.7 -7.8 -16.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -17.9 -9.8 -5.4 -12.1 -19.6	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 87.9 99.2 88.6 99.4 97.4 97.5 98.6 98.6 96.3	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 2928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08454796+1936187 2MASS J08492215+2047584 2MASS J08392215+2047584 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08370496+1855428 2MASS J08375026+1951001 2MASS J08361204+1752467 2MASS J08445702+2106481 2MASS J08445702+2106481 2MASS J08480023+2024068 2MASS J084811445+2059463	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.31 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.42 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.1 -34.6 -37.8 -37.1 -34.6 -37.8 -37.1 -34.6 -37.8 -37.1	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7 -9.8 -5.4 -12.1 -19.6 -15.2	3.9 4.1 3.0 4.1 2.8 3.0 3.0 9.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.1 99.7 98.9 98.1 75.1 99.2 98.8 85.7 98.0 99.4 97.3 96.5 64.9 98.6 96.3	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127 HSHJ356 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J084415223+1942283 2MASS J08454796+1936187 2MASS J08442124+1956117 2MASS J08392215+2047584 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08340433+1658247 2MASS J08365162+1850193 2MASS J08365102+1850193 2MASS J08361204+1752467 2MASS J08361204+1752467 2MASS J08445702+2106481 2MASS J08445702+2106481 2MASS J084424461+1828000 2MASS J08480023+2024068 2MASS J08480023+2024068 2MASS J084811445+2059463 2MASS J0831576+2309433	$\begin{array}{c} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.46 {\pm} 0.01 \\ 16.46 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -34.1 -34.9 -26.3 -37.8 -37.1 -34.9 -26.3 -37.0 -37.0 -37.0 -37.0	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7 -9.8 -5.4 -12.1 -19.6 -15.2 -11.4	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 98.8 85.7 98.0 97.3 96.5 64.9 98.6 96.3 99.4 86.9	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127 HSHJ356 (M4.5; Adams et al. 2002) AD 1734
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08411520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J084415223+1942283 2MASS J08442124+1956117 2MASS J08442124+1956117 2MASS J08442124+1956117 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08470496+1855428 2MASS J08470496+1855428 2MASS J08455026+1951001 2MASS J08355026+1951001 2MASS J0845702+2106481 2MASS J08445702+2106481 2MASS J08480023+2024068 2MASS J08480023+2024068 2MASS J084811445+2059463 2MASS J0831576+2309433 2MASS J08421029+1846003	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1 M4.1±0.2 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.42 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.46 {\pm} 0.01 \\ 16.46 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -34.1 -34.9 -26.3 -37.8 -37.1 -34.9 -26.3 -37.0 -40.0 -29.8	-12.0 -16.5 -8.7 -13.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.0 -11.7 -9.8 -5.4 -12.1 -19.6 -15.0 -11.7 -19.8 -10.5 -	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 87.9 99.2 98.8 85.7 98.0 99.4 97.3 96.5 64.9 98.6 96.3 99.4 86.9 97.1	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127 HSHJ356 (M4.5; Adams et al. 2002) AD 1734 AD 3057 (M5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J084915203+1949401 2MASS J08411075+1901539 2MASS J08411075+1901539 2MASS J084415223+1942283 2MASS J08442124+1956117 2MASS J08441779+1703206 2MASS J0849215+2047584 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08355026+1951001 2MASS J08355026+1951001 2MASS J08315427+1845361 2MASS J08424461+1828000 2MASS J08480023+2024068 2MASS J08411445+2059463 2MASS J08411445+2059463 2MASS J08431576+2309433 2MASS J08421029+1846003 2MASS J08360325+2050157	$\begin{array}{l} \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.0} \!\pm\! 0.1 \\ \text{M4.1} \!\pm\! 0.1 \\ \end{array}$	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.42 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ 16.27 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -34.6 -37.1 -34.9 -26.3 -38.3 -37.0 -40.0 -29.8 -41.0	-12.0 -16.5 -8.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7 -9.8 -5.4 -12.1 -19.6 -15.2 -11.4 -16.8 -15.7	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 98.8 85.7 98.0 97.3 96.5 64.9 98.6 96.3 99.4 86.9 97.1 98.7	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 2928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127 HSHJ356 (M4.5; Adams et al. 2002) AD 1734 AD 3057 (M5; Adams et al. 2002) HSHJ 96
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08411779+1703206 2MASS J08411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08361204+1752467 2MASS J08361204+1752467 2MASS J08315427+1845361 2MASS J08421049+1845361 2MASS J08480023+2024068 2MASS J08480023+2024068 2MASS J08411445+2059463 2MASS J0831576+2309433 2MASS J08360325+2050157 2MASS J08422988+1958317	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.42 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.51 {\pm} 0.01 \\$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6 -37.8 -37.8 -37.8 -37.9 -26.3 -38.3 -36.0 -37.0 -40.0 -29.8 -41.0 -39.1	-12.0 -16.5 -8.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7 -9.8 -5.4 -12.1 -19.6 -15.2 -15.4 -16.8 -15.7 -15.0	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 87.9 90.2 98.8 85.7 98.0 99.4 96.3 99.4 86.9 97.1 98.7 99.7	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) AD 2928 HSHJ38 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127 HSHJ356 (M4.5; Adams et al. 2002) AD 1734 AD 3057 (M5; Adams et al. 2002) HSHJ 96 AD 3093 (M4.5; Adams et al. 2002)
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J084124+1956117 2MASS J084179+1703206 2MASS J084179+1703206 2MASS J084195+2047584 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850101 2MASS J08365162+1850101 2MASS J08365162+1850428 2MASS J08361204+1752467 2MASS J08315427+1845361 2MASS J08315427+1845361 2MASS J08445702+2106481 2MASS J08445702+2106481 2MASS J08424461+1828000 2MASS J08480023+2024068 2MASS J08411445+2059463 2MASS J08421029+1846003 2MASS J08421029+1846003 2MASS J08422988+1958317 2MASS J08422988+1958317	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.09 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.31 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.51 {\pm} 0.01 \\ 16.55 {\pm} 0.01 \\ \end{array}$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -34.1 -34.6 -37.8 -37.8 -37.8 -37.8 -37.0 -42.3 -38.3 -36.0 -39.1 -20.3	-12.0 -16.5 -8.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7 -9.8 -5.4 -12.1 -19.6 -15.2 -15.4 -16.5 -15.0 -10.5	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.9 98.1 75.1 99.2 87.9 99.2 98.8 85.7 98.0 99.4 97.3 96.5 64.9 98.6 96.3 99.4 86.9 97.1	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127 HSHJ356 (M4.5; Adams et al. 2002) AD 1734 AD 3057 (M5; Adams et al. 2002) HSHJ 96 AD 3093 (M4.5; Adams et al. 2002) AD 1221
2MASS J08340669+2049468 2MASS J08383995+1754210 2MASS J08341139+2104148 2MASS J08452235+1949401 2MASS J08401520+2005140 2MASS J08411075+1901539 2MASS J08415223+1942283 2MASS J08454796+1936187 2MASS J08411779+1703206 2MASS J08411779+1703206 2MASS J08392215+2047584 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08365162+1850193 2MASS J08361204+1752467 2MASS J08361204+1752467 2MASS J08315427+1845361 2MASS J08421049+1845361 2MASS J08480023+2024068 2MASS J08480023+2024068 2MASS J08411445+2059463 2MASS J0831576+2309433 2MASS J08360325+2050157 2MASS J08422988+1958317	M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.0±0.1 M4.1±0.1	$\begin{array}{c} 16.49 {\pm} 0.01 \\ 16.52 {\pm} 0.01 \\ 16.68 {\pm} 0.01 \\ 16.79 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.21 {\pm} 0.01 \\ 15.55 {\pm} 0.01 \\ 15.70 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.72 {\pm} 0.01 \\ 15.92 {\pm} 0.01 \\ 15.96 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.14 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.20 {\pm} 0.01 \\ 16.38 {\pm} 0.01 \\ 16.39 {\pm} 0.01 \\ 16.42 {\pm} 0.01 \\ 16.44 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.49 {\pm} 0.01 \\ 16.51 {\pm} 0.01 \\$	-38.2 -34.6 -39.0 -35.3 -38.6 -36.0 -32.7 -29.8 -24.4 -37.0 -42.7 -31.6 -34.1 -33.1 -34.6 -37.8 -37.8 -37.8 -37.9 -26.3 -38.3 -36.0 -37.0 -40.0 -29.8 -41.0 -39.1	-12.0 -16.5 -8.7 -13.6 -10.5 -9.7 -7.8 -16.8 -12.0 -13.6 -16.3 -9.2 -15.1 -15.0 -11.7 -9.8 -5.4 -12.1 -19.6 -15.2 -15.4 -16.8 -15.7 -15.0	3.9 4.1 3.0 4.1 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	97.2 97.1 98.5 96.1 98.7 99.7 98.9 98.1 75.1 99.2 87.9 90.2 98.8 85.7 98.0 99.4 96.3 99.4 86.9 97.1 98.7 99.7	HSHJ 65 AD 1852 HSHJ220 AD 1863 JS753 JS719 (M4.5; Adams et al. 2002) JS725 (M4.5; Adams et al. 2002) AD 3028 (M4; Adams et al. 2002) AD 3452 (M4.5; Adams et al. 2002) AD 3310 (M4.5; Adams et al. 2002) AD 3928 HSHJ261 (M4.5; Adams et al. 2002) AD 2928 HSHJ38 (M4.5; Adams et al. 2002) HSHJ138 (M4.5; Adams et al. 2002) AD 1844 HSHJ110 HSHJ 18 AD 3358 AD 3127 HSHJ356 (M4.5; Adams et al. 2002) AD 1734 AD 3057 (M5; Adams et al. 2002) HSHJ 96 AD 3093 (M4.5; Adams et al. 2002)

 $\begin{array}{c} {\rm TABLE~3} \\ {\rm Candidate~Members~of~Praesepe} \end{array}$

		CANDIDA	AIE ME	MDERS O	r i nar	SEFE	
2MASS J08381244+2008026	$M4.1 \pm 0.1$	16.75 ± 0.01	-42.7	-17.6	3.0	99.0	
2MASS J08424097+1931584	$M4.1\pm0.1$	16.77 ± 0.01	-32.0	-15.8	3.0	99.2	AD 3120 (M4.5; Adams et al. 2002)
2MASS J08411969+1905544	$M4.1\pm0.1$	16.78 ± 0.01	-33.0	-16.9	3.0	99.1	AD 2934
2MASS J08395862+1617464	$M4.1\pm0.2$	16.85 ± 0.01	-34.1	-8.5	3.0	79.6	AD 2655
2MASS J08254162+1930425	$M4.1\pm0.2$ $M4.1\pm0.1$	16.86 ± 0.01	-33.6	-14.4	3.1	89.9	AD 0769
2MASS J08361083+1941413	$M4.1\pm0.1$	16.95 ± 0.01	-37.3	-4.2	3.9	96.2	HSHJ106 (M4.5; Adams et al. 2002)
2MASS J08310759+1635041	$M4.2\pm0.1$	15.35 ± 0.01	-35.6	-13.1	3.0	84.1	AD 1452
2MASS J08441164+2013000	$M4.2 \pm 0.1$	15.59 ± 0.01	-33.2	-16.4	3.0	99.1	JS743 (M4.5; Adams et al. 2002)
2MASS J08394059+1836587	$M4.2 \pm 0.2$	15.74 ± 0.01	-33.3	-11.4	3.0	98.8	HSHJ282 (M4.5; Adams et al. 2002)
2MASS J08353928+2024099	$M4.2 \pm 0.1$	15.78 ± 0.01	-31.2	-16.1	3.0	98.6	AD 2042
2MASS J08351705+1736244	$M4.2 \pm 0.1$	15.93 ± 0.01	-33.7	-8.6	3.0	92.8	HSHJ 74
2MASS J08460919+2136288	$M4.2\pm0.1$	15.94 ± 0.01	-40.7	-17.9	3.0	95.3	HSHJ498
2MASS J08434736+1803001	$M4.2\pm0.2$	15.95 ± 0.01	-29.1	-9.8	3.0	90.8	HSHJ466
2MASS J08354461+1857382	$M4.2\pm0.2$	16.15 ± 0.01	-39.3	-10.3	3.0	98.6	HSHJ 84 (M4.2; Kafka & Honeycutt 2006)
2MASS J08410176+1748515	$M4.2\pm0.1$	16.22 ± 0.01	-35.5	-22.3	3.0	88.1	AD 2872
2MASS J08441172+1632324	$M4.2\pm0.1$	16.27 ± 0.01	-31.1	-7.5	3.0	66.7	AD arth
2MASS J08462632+1750445	$M4.2\pm0.1$	16.27 ± 0.01	-42.9	-12.8	2.7	91.2	AD 3517
2MASS J08511686+2214066	$M4.2 \pm 0.1$	16.30 ± 0.01	-44.2	-15.7	3.0	71.2	HSHJ515
2MASS J08423074+1906578	$M4.2 \pm 0.1$	16.32 ± 0.01	-35.5	-14.8	3.0	99.4	AD 3094 (M4.5; Adams et al. 2002)
2MASS J08370765+1957274	$M4.2 \pm 0.2$	16.32 ± 0.01	-27.6	-23.6	3.0	80.5	AD 2275 (M4.5; Adams et al. 2002)
2MASS J08450854+1909082	$M4.2 \pm 0.1$	16.36 ± 0.01	-36.1	-11.5	2.8	98.9	AD 3375 (M4; Adams et al. 2002)
2MASS J08442721+1852207	$M4.2 \pm 0.1$	16.39 ± 0.01	-33.7	-20.1	3.0	96.7	AD 3317 (M4.5; Adams et al. 2002)
2MASS J08364501+2008459	$M4.2\pm0.1$	16.45 ± 0.01	-33.5	-12.3	3.0	99.4	AD 2216 (M4.5; Adams et al. 2002)
2MASS J08304258+1922308	$M4.2\pm0.1$	16.49 ± 0.01	-28.1	-19.7	4.0	77.2	AD 1398
2MASS J08374984+2047407	$M4.2\pm0.1$	16.55 ± 0.01	-44.1	-14.9	4.0	98.0	ND 1000
							AD 2002 (MAE, Adams at al. 2002)
2MASS J08414206+2034079	$M4.2 \pm 0.2$	16.58 ± 0.01	-37.9	-11.3	3.9	99.5	AD 3003 (M4.5; Adams et al. 2002)
2MASS J08340155+2100390	$M4.2\pm0.1$	16.59 ± 0.01	-36.2	-16.5	4.1	98.4	AD 1837
2MASS J08384160+1934180	$M4.2\pm0.1$	16.67 ± 0.01	-36.1	-16.5	3.0	99.6	HSHJ218 (M4.5; Adams et al. 2002)
2MASS J08363734+1601205	$M4.2 \pm 0.1$	16.67 ± 0.01	-43.4	-9.8	3.0	56.4	AD 2192
2MASS J08332821+1843363	$M4.2 \pm 0.1$	16.71 ± 0.01	-37.9	-20.7	4.0	94.2	HSHJ 41
2MASS J08414334+2121422	$M4.2 \pm 0.1$	16.72 ± 0.01	-38.0	-19.3	4.0	98.0	AD 3005
2MASS J08472367+1624491	$M4.2 \pm 0.2$	16.75 ± 0.01	-39.2	-7.3	2.7	66.3	AD 3589
2MASS J08311399+2108149	$M4.2 \pm 0.1$	16.75 ± 0.01	-32.0	-21.4	3.1	85.2	AD 1467
2MASS J08454088+1834574	$M4.2\pm0.1$	16.80 ± 0.01	-24.8	-19.9	3.6	50.6	AD 3438
2MASS J08513391+1742243	$M4.2\pm0.2$	16.83 ± 0.02	-36.2	-12.3	3.6	89.7	AD 3886
2MASS J08422968+1919526	$M4.2\pm0.2$ $M4.2\pm0.1$	16.84 ± 0.01	-30.2	-12.3	3.0	98.9	HSHJ423 (M5; Adams et al. 2002)
2MASS J08362111+1850276	$M4.2\pm0.1$	17.03 ± 0.01	-32.8	-19.4	3.9	97.2	HSHJ118
2MASS J08385616+2156271	$M4.2\pm0.3$	17.05 ± 0.01	-44.7	-19.3	3.1	85.5	AD 2484
2MASS J09004466+1809458	$M4.3\pm0.1$	15.39 ± 0.01	-39.1	-13.4	2.7	52.9	AD 4739
2MASS J08360860+1957254	$M4.3\pm0.1$	15.96 ± 0.01	-32.1	-15.4	3.9	99.1	HSHJ102 (M4.5; Adams et al. 2002)
2MASS J08381695+2018353	$M4.3\pm0.1$	16.01 ± 0.01	-28.3	-15.7	3.9	98.4	***************************************
2MASS J08422382+1923124	$M4.3 \pm 0.1$	16.18 ± 0.01	-37.3	-18.1	3.0	99.2	HSHJ421 (M4.5; Adams et al. 2002)
2MASS J08415464+1818102	$M4.3\pm0.1$	16.25 ± 0.01	-27.2	-14.2	3.0	91.0	HSHJ399
2MASS J08341803+1828154	$M4.3 \pm 0.1$	16.33 ± 0.01	-33.9	-16.4	4.0	97.4	HSHJ 54
2MASS J08431467+1742301	$M4.3 \pm 0.1$	16.36 ± 0.01	-33.0	-11.5	2.8	96.0	HSHJ449
2MASS J08465370+1902569	$M4.3 \pm 0.1$	16.36 ± 0.01	-35.6	-16.2	3.6	98.1	
2MASS J08505988+1900355	$M4.3 \pm 0.1$	16.38 ± 0.01	-39.7	-19.7	2.7	88.2	AD 3836
2MASS J08331425+2036212	$M4.3 \pm 0.1$	16.44 ± 0.01	-43.5	-12.5	3.1	96.2	AD 1731
2MASS J08523967+1929285	$M4.3\pm0.1$	16.47 ± 0.01	-43.5	-20.3	2.7	66.2	AD 4005
		16.48 ± 0.01	-34.5	-9.2	3.0	99.5	
2MASS J08412680+1952367	$M4.3\pm0.1$						HSHJ370 (M5; Adams et al. 2002)
2MASS J08383287+1723380	$M4.3\pm0.1$	16.59 ± 0.01	-38.7	-12.0	3.0	95.8	AD 2415
2MASS J08325958+2007149	$M4.3\pm0.1$	16.64 ± 0.01	-40.7	-21.7	4.1		AD 1696
2MASS J08325011+2453166	$M4.3\pm0.1$	16.65 ± 0.02	-32.4	-13.1	4.1	50.2	AD 1675
2MASS J08412873+1942490	$M4.3\pm0.2$	16.67 ± 0.01	-34.0	-17.8	3.0	99.5	AD 2959 (M4.5; Adams et al. 2002)
2MASS J08403495+2036038	$M4.3\pm0.1$	16.70 ± 0.01	-39.7	-17.6	4.0	99.3	AD 2791 (M4.5; Adams et al. 2002)
2MASS J08431205+1841451	$M4.3\pm0.1$	16.71 ± 0.01	-35.3	-12.5	3.9	98.9	AD 3178
2MASS J08412602+2134253	$M4.3 \pm 0.1$	16.71 ± 0.01	-39.9	-26.4	4.0	60.4	HSHJ367
2MASS J08380672+2009445	$M4.3 \pm 0.1$	16.72 ± 0.01	-42.5	-9.8	3.9	99.0	HSHJ193
2MASS J08382537+2021210	$M4.3 \pm 0.1$	16.73 ± 0.01	-36.7	-18.9	3.0	99.4	
2MASS J08383915+1729485	$M4.3 \pm 0.1$	16.77 ± 0.01	-32.8	-14.6	3.0	95.6	HSHJ217
2MASS J08424538+2035336	$M4.3\pm0.2$	16.81 ± 0.01	-34.1	-13.9	4.0	99.4	110110211
			-26.7		3.0	92.3	HSHJ420 (M5; Adams et al. 2002)
2MASS J08422203+1846058	$M4.3\pm0.1$	16.81 ± 0.01		-15.5			
2MASS J08342092+2031444	$M4.3\pm0.1$	16.88 ± 0.01	-33.6	-20.5	4.2	96.7	AD 1887
2MASS J08440067+2038454	$M4.3\pm0.1$	16.96 ± 0.01	-44.0	-12.4	3.9	97.6	AD 3267 (M5; Adams et al. 2002)
2MASS J08333385+1824300	$M4.3\pm0.1$	16.97 ± 0.01	-37.0	-9.4	4.1	96.7	HSHJ 44
2MASS J08360242+1904265	$M4.3\pm0.1$	16.98 ± 0.01	-30.9	-5.9	3.9	94.1	HSHJ 99
2MASS J08251373+1736453	$M4.3 \pm 0.2$	16.99 ± 0.01	-35.0	-15.7	3.9	78.0	AD 0723
2MASS J08385420+1951446	$M4.3\pm0.1$	17.03 ± 0.02	-29.4	-9.3	9.6	98.8	HSHJ233
2MASS J08452106+1849327	$M4.3 \pm 0.1$	17.04 ± 0.01	-38.5	-11.6	3.9	98.5	AD 3400
2MASS J08313445+1718235	$M4.3 \pm 0.1$	17.07 ± 0.01	-33.0	-10.9	4.1	88.3	AD 1515
2MASS J08481155+2126351	$M4.3\pm0.1$	17.17 ± 0.02	-34.7	-8.3	3.9	94.7	
2MASS J08461572+1805500	$M4.3\pm0.1$	17.17 ± 0.01	-34.2	-15.7	3.6	96.5	AD 3497
2MASS J08345733+1729160	$M4.3\pm0.1$	17.25 ± 0.01	-38.5	-13.5	4.1	95.4	HSHJ 66
2MASS J08481148+1811280	$M4.4\pm0.2$	15.13 ± 0.01	-40.1	-15.2	$\frac{4.1}{2.7}$	94.8	110110 00
			-34.2	-13.2			JS694
2MASS J08363150+1818549	$M4.4\pm0.1$	15.72 ± 0.01			3.0	98.3	
2MASS J08385659+2051278	$M4.4\pm0.1$	15.90 ± 0.01	-29.9	-16.9	3.0	98.3	HSHJ236
2MASS J08384214+1822555	$M4.4 \pm 0.1$	15.94 ± 0.01	-33.8	-13.7	3.0	98.6	HSHJ222 (M4.5; Adams et al. 2002)

 $\begin{array}{c} {\rm TABLE~3} \\ {\rm Candidate~Members~of~Praesepe} \end{array}$

		CANDIDA	ATE MIE	MBERS O	F PRAE	ESEPE	
2MASS J08433375+1924247	$M4.4\pm0.1$	15.96 ± 0.01	-30.8	-11.0	3.0	98.6	HSHJ459 (M4.5; Adams et al. 2002)
2MASS J08365864+1849522	$M4.4\pm0.1$ $M4.4\pm0.1$	15.98 ± 0.01	-31.9	-14.8	3.0	98.6	AD 2248 (M4.5; Adams et al. 2002)
	$M4.4\pm0.1$ $M4.4\pm0.1$	16.07 ± 0.01				98.4	
2MASS J08463042+1938553			-36.3	-17.5	2.7		AD 3525
2MASS J08441232+2043010	$M4.4\pm0.2$	16.31 ± 0.01	-43.7	-13.2	3.9	97.7	AD 3283
2MASS J08471193+2107485	$M4.4\pm0.1$	16.50 ± 0.01	-37.3	-19.9	3.0	95.5	HSHJ501
2MASS J08462006+2100321	$M4.4\pm0.1$	16.54 ± 0.01	-32.1	-14.6	3.9	97.8	HSHJ499 (;)
2MASS J08415335+1915558	$M4.4 \pm 0.2$	16.62 ± 0.01	-31.7	-11.7	3.9	99.1	AD 3031 (M4.5; Adams et al. 2002)
2MASS J08432013+2004258	$M4.4 \pm 0.2$	16.63 ± 0.01	-40.3	-13.5	3.9	99.4	HSHJ451
2MASS J08410926+1734170	$M4.4 \pm 0.1$	16.63 ± 0.01	-32.2	-14.8	3.0	95.5	AD 2892
2MASS J08344851+1755588	$M4.4\pm0.1$	16.65 ± 0.01	-35.8	-15.2	3.0	97.0	HSHJ 62
2MASS J08310603+1807480	$M4.4\pm0.1$	16.66 ± 0.01	-41.6	-13.6	3.0	92.3	HSHJ 11
2MASS J08391538+1919284	$M4.4\pm0.1$	16.70 ± 0.01	-32.2	-14.0	4.0	99.4	AD 2527 (M4.5; Adams et al. 2002)
2MASS J08392614+1848170	$M4.4\pm0.1$ $M4.4\pm0.1$	16.78 ± 0.01	-34.3	-19.3	3.9	98.3	AD 2559 (M4.5; Adams et al. 2002)
2MASS J08310020+1924160	$M4.4\pm0.1$	16.78 ± 0.01	-40.8	-16.5	4.1	95.9	HSHJ 10
2MASS J08453429+1654396	$M4.4\pm0.1$	16.79 ± 0.01	-34.6	-8.6	3.6	86.1	AD 3423
2MASS J08394007+1850492	$M4.4\pm0.1$	16.81 ± 0.01	-36.2	-13.0	3.9	99.3	HSHJ280 (M4.5; Adams et al. 2002)
2MASS J08425052+2020039	$M4.4\pm0.1$	16.82 ± 0.01	-35.7	-15.9	3.9	99.5	AD 3140 (M4; Adams et al. 2002)
2MASS J08542881+2149061	$M4.4 \pm 0.1$	16.83 ± 0.01	-37.6	-19.4	4.0	75.1	AD 4207
2MASS J08415058+1929395	$M4.4 \pm 0.1$	16.85 ± 0.01	-32.2	-12.4	3.9	99.4	HSHJ396 (M4.5; Adams et al. 2002)
2MASS J08392655+2051446	$M4.4 \pm 0.1$	16.86 ± 0.01	-35.2	-13.8	3.9	99.5	HSHJ264
2MASS J08355721+1921064	$M4.4 \pm 0.1$	16.88 ± 0.01	-36.3	-15.4	3.9	99.3	HSHJ 90 (M4.5; Adams et al. 2002)
2MASS J08411024+2207453	$M4.4\pm0.1$	16.88 ± 0.01	-24.6	-11.8	4.1	63.7	HSHJ349
2MASS J08332522+1820465	$M4.4\pm0.1$	16.95 ± 0.01	-46.3	-7.0	3.0	63.6	HSHJ 39
2MASS J08414792+2023226	$M4.4\pm0.2$	16.97 ± 0.01	-39.5	-11.9	3.9	99.5	AD 3015 (M4.5; Adams et al. 2002)
2MASS J08382289+2126005	$M4.4\pm0.1$	16.97 ± 0.01	-44.3	-22.8	4.0	78.0	11D 9010 (111:0; 11dains et al. 2002)
2MASS J08485140+2054153	$M4.4\pm0.1$ $M4.4\pm0.1$	16.99 ± 0.01	-36.1	-11.2	3.9	97.3	HSHJ508
							AD 3366
2MASS J08450384+2128181	$M4.4\pm0.2$	17.00 ± 0.01	-28.5	-11.1	3.9	92.8	
2MASS J08401695+2042007	$M4.4\pm0.1$	17.01 ± 0.01	-34.3	-17.8	3.9	99.3	HSHJ309 (M4.5; Adams et al. 2002)
2MASS J08512322+1951183	$M4.4\pm0.3$	17.12 ± 0.01	-33.0	-21.5	3.6	81.8	AD 3873
2MASS J08432246+2054253	$M4.4\pm0.1$	17.16 ± 0.02	-38.8	-13.2	4.0	99.2	HSHJ453 (M5; Adams et al. 2002)
2MASS J08332193+2205344	$M4.4 \pm 0.1$	17.18 ± 0.01	-29.2	-19.8	4.1	77.2	AD 1747
2MASS J08460196+2032031	$M4.4 \pm 0.1$	17.22 ± 0.01	-38.2	-15.1	4.0	98.9	AD 3475
2MASS J08363855+2111300	$M4.4 \pm 0.1$	17.22 ± 0.01	-32.7	-13.5	4.1	98.7	AD 2196
2MASS J08465945+1954595	$M4.4 \pm 0.1$	17.31 ± 0.02	-34.8	-20.1	3.7	96.7	
2MASS J08411910+1905186	$M4.5 \pm 0.1$	15.63 ± 0.01	-36.9	-17.5	3.0	99.2	JS728 (M4.5; Adams et al. 2002)
2MASS J08385103+1918335	$M4.5 \pm 0.1$	15.81 ± 0.01	-34.3	-13.8	3.0	99.5	HSHJ229 (M4.5; Adams et al. 2002)
2MASS J08460851+1953527	$M4.5\pm0.1$	15.98 ± 0.01	-40.6	-20.2	2.7	96.3	AD 3485
2MASS J08400351+2317173	$M4.5\pm0.1$	16.13 ± 0.01	-37.3	-18.0	4.2	88.7	AD 2675
2MASS J08492404+2014065	$M4.5\pm0.1$	16.15 ± 0.01 16.15 ± 0.01	-41.4	-13.9	3.6	96.1	ND 2010
2MASS J08345927+2108373	$M4.5\pm0.1$	16.22 ± 0.01	-37.4	-7.6	$\frac{3.0}{4.0}$	97.4	AD 1962
	$M4.5\pm0.1$ $M4.5\pm0.2$	16.22 ± 0.01 16.31 ± 0.01	-35.9	-19.6	3.0	83.9	AD 1081
2MASS J08281588+1812280							
2MASS J08384788+2145334	$M4.5\pm0.1$	16.31 ± 0.01	-44.1	-16.4	4.0	94.1	HSHJ225
2MASS J08492037+1626543	$M4.5\pm0.1$	16.40 ± 0.01	-31.2	-9.6	3.6	62.4	AD 3703
2MASS J08485990+2041555	$M4.5\pm0.2$	16.48 ± 0.01	-40.0	-21.5	3.9	88.4	
2MASS J08420448+1932427	$M4.5\pm0.1$	16.52 ± 0.01	-45.3	-9.4	3.0	96.8	AD 3050 (M5; Adams et al. 2002)
2MASS J08451235+1918247	$M4.5 \pm 0.2$	16.54 ± 0.01	-27.3	-21.0	3.0	81.6	AD 3383 (M4.5; Adams et al. 2002)
2MASS J08383929+1941401	$M4.5 \pm 0.2$	16.61 ± 0.01	-36.5	-13.1	3.9	99.7	HSHJ215 (M4.5; Adams et al. 2002)
2MASS J08474029+2143248	$M4.5 \pm 0.1$	16.67 ± 0.01	-40.6	-18.9	3.0	91.8	HSHJ502
2MASS J08363050+1955139	$M4.5 \pm 0.1$	16.68 ± 0.01	-37.6	-17.3	3.9	99.3	AD 2179 (M4.5; Adams et al. 2002)
2MASS J08410264+1810067	$M4.5 \pm 0.1$	16.72 ± 0.01	-30.2	-9.6	3.0	95.0	HSHJ347
2MASS J08420327+2110215	$M4.5 \pm 0.1$	16.73 ± 0.01	-39.2	-15.9	3.9	99.0	HSHJ403
2MASS J08430186+1954046	$M4.5\pm0.2$	16.77 ± 0.01	-35.8	-20.0	3.9	98.9	AD 3156 (M4.5; Adams et al. 2002)
2MASS J08400006+1722060	$M4.5 \pm 0.3$	16.85 ± 0.01	-32.7	-12.4	3.9	95.0	AD 2662
2MASS J08391572+1920024	$M4.5\pm0.1$	16.89 ± 0.01	-32.9	-10.0	3.9	99.3	HSHJ256 (M4.6; Kafka & Honeycutt 2006)
2MASS J08391372+1920024 2MASS J08400134+2022225	$M4.5\pm0.1$ $M4.5\pm0.2$	16.95 ± 0.01 16.95 ± 0.01	-32.9 -24.2	-18.5	3.9	99.3 86.8	AD 2668 (M4.5; Adams et al. 2002)
2MASS J08400134+2022223 2MASS J08335224+1926118	$M4.5\pm0.2$ $M4.5\pm0.1$		-38.6	-16.5 -14.1	$\frac{3.9}{4.1}$	98.8	HSHJ 50
		16.98 ± 0.01					
2MASS J08360107+2117113	$M4.5\pm0.1$	16.99 ± 0.01	-36.4	-14.5	4.0	98.9	HSHJ 92
2MASS J08412899+1845351	$M4.5\pm0.1$	16.99 ± 0.01	-26.3	-10.6	3.9	90.7	AD 2961 (M5; Adams et al. 2002)
2MASS J08503613+1957067	$M4.5\pm0.1$	17.00 ± 0.01	-37.8	-16.0	3.7	96.3	AD 3792
2MASS J08300599+1816463	$M4.5\pm0.1$	17.02 ± 0.01	-36.7	-13.7	4.1	95.1	HSHJ 3
2MASS J08405751+2028414	$M4.5 \pm 0.1$	17.04 ± 0.01	-41.4	-10.1	3.9	99.3	AD 2859 (M4.5; Adams et al. 2002)
2MASS J08405784+2307169	$M4.5 \pm 0.1$	17.05 ± 0.01	-32.8	-14.3	4.2	91.6	AD 2860
2MASS J08430557+1855060	$M4.5 \pm 0.1$	17.06 ± 0.01	-28.2	-13.8	3.9	96.3	HSHJ439 (M5; Adams et al. 2002)
2MASS J08484324+2229589	$M4.5 \pm 0.1$	17.11 ± 0.01	-45.0	-19.3	4.1	55.4	
2MASS J08351521+1922315	$M4.5 \pm 0.1$	17.11 ± 0.01	-33.0	-17.5	3.9	98.5	AD 1994
2MASS J08560350+2057116	$M4.5 \pm 0.1$	17.45 ± 0.01	-30.6	-15.0	4.0	73.6	AD 4359
2MASS J08345539+2011040	$M4.6 \pm 0.2$	15.79 ± 0.01	-38.4	-18.9	3.0	98.5	HSHJ 64 (M4.5; Adams et al. 2002)
2MASS J08430289+2145136	$M4.6\pm0.1$	15.91 ± 0.01	-42.9	-15.5	3.1	95.8	AD 3161
2MASS J08300294+1757021	$M4.6\pm0.1$	16.54 ± 0.01	-28.4	-9.9	4.0	71.7	HSHJ 2
2MASS J08392108+1826121	$M4.6\pm0.1$	16.61 ± 0.01	-30.9	-12.5	3.9	97.8	HSHJ263 (M4.5; Adams et al. 2002)
2MASS J08392108+1820121 2MASS J08462741+1912325	$M4.6\pm0.1$	16.70 ± 0.01	-30.9	-12.5	3.6	97.8	AD 3518
2MASS J08402741+1912325 2MASS J08424023+1538255	$M4.6\pm0.1$	16.70 ± 0.01 16.70 ± 0.01	-31.7	-10.6	3.9	62.0	110 0010
			-36.3			99.2	
2MASS J08382186+2005356	$M4.6\pm0.1 M4.6\pm0.1$	16.77 ± 0.01		-6.7	3.0		AD 1407
2MASS J08304851+2136453	1V14 D±U 1	16.80 ± 0.01	-36.4	-22.8	4.1	78.1	AD 1407
2MASS J08485681+2350220			20 5	20.1			
	$M4.6 \pm 0.1$	16.81 ± 0.01	-38.5	-20.1	4.1	55.8	AD 2020
$2MASS\ J08404609+1649073$	$M4.6 \pm 0.1 M4.6 \pm 0.1$	16.81 ± 0.01 16.84 ± 0.01	-35.0	-6.0	3.9	79.0	AD 2820
	$M4.6 \pm 0.1$	16.81 ± 0.01					AD 2820 AD 3033 (M4.5; Adams et al. 2002)

$\begin{array}{c} {\rm TABLE~3} \\ {\rm Candidate~Members~of~Praesepe} \end{array}$

		CANDIDA	7 1 17 1V1151	MDERG ()r i itai	131111111111111111111111111111111111111	
2MASS J08393965+1906562	$M4.6 \pm 0.1$	16.88 ± 0.01	-34.1	-18.1	3.9	99.1	HSHJ277 (M5; Adams et al. 2002)
2MASS J08370146+2053479	$M4.6 \pm 0.1$	16.88 ± 0.01	-34.8	-14.6	4.0	99.3	HSHJ146
2MASS J08372040+2032079	$M4.6 \pm 0.1$	16.88 ± 0.01	-26.5	-11.0	3.9	95.1	AD 2302 (M4.5; Adams et al. 2002)
2MASS J08355651+2037070	$M4.6 \pm 0.1$	16.89 ± 0.01	-41.0	-16.3	4.1	98.8	AD 2082
2MASS J08385476+2047168	$M4.6 \pm 0.1$	16.89 ± 0.01	-27.5	-12.4	3.9	97.1	
2MASS J08343109+2037456	$M4.6 \pm 0.2$	16.89 ± 0.01	-41.9	-23.2	4.1	86.7	AD 1907
2MASS J08410314+1918093	$M4.6\pm0.1$	16.95 ± 0.01	-24.8	-14.9	3.9	91.0	AD 2878 (M5; Adams et al. 2002)
2MASS J08410646+1906106	$M4.6\pm0.1$	16.96 ± 0.01	-36.3	-15.0	3.9	99.4	HSHJ348 (M5; Adams et al. 2002)
2MASS J08385651+1812598	$M4.6 \pm 0.1$	16.98 ± 0.01	-42.5	-6.5	3.9	91.0	HSHJ240
2MASS J08400391+1855574	$M4.6\pm0.1$	16.99 ± 0.01	-40.6	-13.7	3.9	99.1	AD 2678 (M5; Adams et al. 2002)
2MASS J08481312+2126004	$M4.6\pm0.1$	17.04 ± 0.01	-27.1	-18.4	4.0	73.4	11D 2010 (1110, 11dains et al. 2002)
2MASS J08333450+1957059	$M4.6\pm0.2$	17.05 ± 0.01	-37.7	-20.8	4.1	96.6	AD 1775
2MASS J08331168+1615514	$M4.6\pm0.1$	17.00 ± 0.01 17.07 ± 0.01	-33.7	-6.2	3.9	56.0	AD 1724
2MASS J08470524+1902099	$M4.6\pm0.2$	17.07 ± 0.01 17.07 ± 0.01	-33.7	-12.7	3.6	98.0	AD 1124
2MASS J08384128+1959471	$M4.6\pm0.6$	17.10 ± 0.01 17.10 ± 0.02	-37.3	-20.8	4.1	99.1	AD 2440 (M2.5; Adams et al. 2002)
2MASS J08334128+1333471 2MASS J08435674+1821216	$M4.6\pm0.1$		-24.4	-15.8	3.9	66.7	AD 3260
	$M4.6\pm0.1$ $M4.6\pm0.3$	17.13 ± 0.01 17.16 ± 0.01	-24.4 -39.5	-15.6 -15.1	$\frac{3.9}{4.0}$	99.1	HSHJ 78 (M3.2; Kafka & Honeycutt 2006)
2MASS J08353613+1931583	$M4.6\pm0.1$		-46.7	-8.2			HSHJ 21
2MASS J08320733+1936240		17.19 ± 0.01			3.0	75.6	
2MASS J08331393+2042483	$M4.6\pm0.1$	17.21 ± 0.01	-35.9	-5.9	4.1	95.3	AD 1728
2MASS J08412371+2056221	$M4.6\pm0.1$	17.22 ± 0.01	-39.1	-19.8	4.0	98.4	AD 2943
2MASS J08401923+1812410	$M4.6\pm0.1$	17.24 ± 0.01	-41.3	-17.7	3.0	96.6	AD 2740
2MASS J08282465+2027540	$M4.6\pm0.1$	17.24 ± 0.01	-27.6	-15.1	3.1	78.4	110111450 (145 4 1 1 0000)
2MASS J08435794+1930592	$M4.6\pm0.1$	17.29 ± 0.01	-26.8	-21.1	3.9	83.9	HSHJ472 (M5; Adams et al. 2002)
2MASS J08384582+2054599	$M4.6\pm0.1$	17.39 ± 0.02	-37.4	-26.0	4.0	83.8	AD 2453
2MASS J08295869+1928590	$M4.6 \pm 0.2$	17.45 ± 0.01	-38.2	-15.3	4.1	96.8	HSHJ 1
2MASS J08372285+1719597	$M4.7 \pm 0.1$	16.36 ± 0.01	-34.3	-6.3	4.1	86.7	AD 2307
2MASS J08284865+1858359	$M4.7 \pm 0.1$	16.58 ± 0.01	-31.0	-14.7	4.0	91.2	AD 1164
2MASS J08411016+1912133	$M4.7 \pm 0.1$	16.78 ± 0.01	-32.2	-18.7	4.0	98.7	HSHJ352 (M5; Adams et al. 2002)
2MASS J08393615+1840489	$M4.7 \pm 0.2$	16.79 ± 0.01	-32.0	-8.9	3.0	97.9	HSHJ276 (M4.5; Adams et al. 2002)
2MASS J08405807+2012503	$M4.7 \pm 0.1$	16.79 ± 0.01	-42.6	-18.2	3.9	99.0	HSHJ342 (M5; Adams et al. 2002)
2MASS J08391850+1922442	$M4.7 \pm 0.1$	16.86 ± 0.01	-37.6	-9.0	3.9	99.4	HSHJ258 (M4.5; Adams et al. 2002)
2MASS J08380247+2037164	$M4.7 \pm 0.1$	16.86 ± 0.01	-32.5	-17.3	3.9	99.1	,
2MASS J08332348+2018032	$M4.7 \pm 0.1$	16.98 ± 0.01	-37.3	-18.0	4.1	98.2	AD 1750
2MASS J08383564+2110381	$M4.7 \pm 0.1$	17.10 ± 0.01	-35.2	-18.9	4.0	98.5	HSHJ209
2MASS J08351703+2058108	$M4.7 \pm 0.1$	17.11 ± 0.01	-34.9	-6.4	4.1	96.8	AD 1999
2MASS J08414234+1812478	$M4.7\pm0.1$	17.17 ± 0.01	-37.7	-14.6	3.0	98.4	HSHJ389
2MASS J08371789+1929170	$M4.7\pm0.1$	17.17 ± 0.01	-37.2	-9.1	3.9	99.3	AD 2295 (M5; Adams et al. 2002)
2MASS J08421311+1918529	$M4.7\pm0.1$	17.24 ± 0.01	-24.5	-9.8	3.0	85.1	HSHJ412 (M5.5; Adams et al. 2002)
2MASS J08342738+1841501	$M4.7\pm0.2$	17.25 ± 0.01	-34.0	-17.0	4.1	97.7	AD 1904
2MASS J08481071+1937332	$M4.7\pm0.1$	17.34 ± 0.01	-32.8	-6.0	3.6	92.2	ND 1004
2MASS J08405249+1801012	$M4.7\pm0.1$	17.37 ± 0.01	-25.1	-14.7	4.0	73.8	AD 2837
2MASS J08422021+2144439	$M4.7\pm0.1$	17.37 ± 0.01 17.37 ± 0.01	-40.4	-13.9	4.0	97.9	AD 3077
2MASS J08443640+1917177	$M4.7\pm0.1$	17.39 ± 0.01	-40.6	-16.7	4.0	98.5	AD 3332 (M4.5; Adams et al. 2002)
2MASS J08435665+1916180	$M4.7\pm0.1$ $M4.7\pm0.1$	17.43 ± 0.01	-28.5	-14.5	4.0	97.0	HSHJ471 (M5; Adams et al. 2002)
2MASS J08433003+1310180 2MASS J08332341+1822586	$M4.8\pm0.1$		-31.7	-14.5		93.3	JS670
	$M4.8\pm0.2$	15.91 ± 0.01 16.18 ± 0.01	-33.9	-16.5	$\frac{3.0}{4.1}$	96.6	AD 1500
2MASS J08312690+1840564				-13.6			AD 4357
2MASS J08560173+1917155	$M4.8\pm0.1$	16.27 ± 0.01	-44.6 -33.2		3.7	59.9	HSHJ328 (M5; Adams et al. 2002)
2MASS J08404166+1930007	$M4.8\pm0.2$	16.27 ± 0.01		-11.1	3.9	99.5	115115526 (M5, Adams et al. 2002)
2MASS J08382150+2008145	$M4.8\pm0.1$	16.37 ± 0.01	-36.3	-14.6	4.0	99.7	
2MASS J08450450+1700170	$M4.8\pm0.1$	16.39 ± 0.01	-38.4	-9.2	9.6	89.1	AD 2200 (MF A1 + 1 2002)
2MASS J08451445+1933206	$M4.8\pm0.1$	16.69 ± 0.01	-25.9	-14.8	3.9	90.2	AD 3390 (M5; Adams et al. 2002)
2MASS J08380136+2032295	M4.8±0.1	16.73 ± 0.01	-32.5		4.0	99.2	A.D. 4500
2MASS J09001062+1907233	$M4.8\pm0.1$	16.83 ± 0.01	-39.8	-12.4	3.7	61.5	AD 4703
2MASS J08431326+2000160	$M4.8\pm0.1$	17.05 ± 0.01	-38.9	-18.5	3.6	99.1	HSHJ446 (M5; Adams et al. 2002)
2MASS J08390695+1947080	M4.8±0.1	17.06 ± 0.01	-32.2	-17.8	3.0	99.4	AD 2509 (M5; Adams et al. 2002)
2MASS J08413758+2032004	$M4.8\pm0.1$	17.11 ± 0.01	-39.3	-15.3	4.2	99.5	AD 2991
2MASS J08411631+2048548	$M4.8\pm0.1$	17.26 ± 0.01	-41.6	-18.8	4.0	98.4	AD 2925 (M5; Adams et al. 2002)
2MASS J08351587+1750446	$M4.8\pm0.1$	17.36 ± 0.01	-40.2	-14.0	3.9	96.1	HSHJ 73
2MASS J08374921+2047068	$M4.8\pm0.1$	17.36 ± 0.01	-32.8	-10.5	4.1	99.1	
2MASS J08415476+1937009	$M4.8\pm0.1$	17.39 ± 0.01	-38.4	-10.3	9.6	99.5	IZ080
2MASS J08360991+1917166	$M4.8 \pm 0.1$	17.49 ± 0.01	-29.5	-19.4	3.9	95.6	IZ031
2MASS J08401920+1838025	$M4.9 \pm 0.1$	17.06 ± 0.01	-40.5	-12.5	4.0	98.7	HSHJ312 (M5; Adams et al. 2002)
2MASS J08483007+1857034	$M4.9 \pm 0.1$	17.21 ± 0.01	-38.3	-10.7	3.7	96.9	
2MASS J08414793+1959500	$M4.9 \pm 0.2$	17.29 ± 0.01	-43.3	-23.3	4.0	93.1	AD 3016 (M5.5; Adams et al. 2002)
2MASS J08393572+2144214	$M4.9 \pm 0.1$	17.38 ± 0.01	-37.7	-16.4	4.0	98.4	AD 2587
2MASS J08463198+1858257	$M4.9 \pm 0.2$	17.49 ± 0.01	-38.9	-8.6	3.7	97.1	AD 3527
2MASS J08380453+1715234	$M4.9 \pm 0.1$	17.51 ± 0.01	-33.0	-4.4	4.0	72.3	AD 2368
2MASS J08405877+2228499	$M4.9 \pm 0.6$	17.73 ± 0.02	-38.5	-17.5	4.1	95.2	AD 2865
2MASS J08303665+1822380	$M5.0 \pm 0.1$	16.19 ± 0.01	-35.0	-15.4	4.0	89.4	HSHJ 5
2MASS J08460502+1647550	$M5.0\pm0.2$	16.56 ± 0.01	-36.0	-3.5	2.7	49.9	AD 3481
2MASS J08375755+1858232	$M5.0 \pm 0.1$	16.68 ± 0.01	-33.3	-8.6	3.9	97.8	HSHJ189 (M4.9; Kafka & Honeycutt 2006)
2MASS J08400815+2013066	$M5.0\pm0.1$	16.70 ± 0.01	-41.7	-11.2	3.9	99.3	HSHJ299 (M5; Adams et al. 2002)
2MASS J08405890+1914167	$M5.0\pm0.1$	16.84 ± 0.01	-33.7	-25.1	3.9	94.6	HSHJ344 (M5.5; Adams et al. 2002)
2MASS J08410746+2154566	$M5.0\pm0.2$	16.90 ± 0.01	-18.5	-18.7	4.1	100.0	. (,)
2MASS J08394166+1929004	$M5.0\pm0.2$	17.05 ± 0.02	-43.9	-7.9	4.1	98.1	HSHJ283 (M5.5; Adams et al. 2002)
2MASS J08360162+1957313	$M5.0\pm0.1$	17.11 ± 0.01	-37.3	-6.8	3.9	98.0	HSHJ 95 (M3.9; Kafka & Honeycutt 2006)
2MASS J08374932+1957464	$M5.0\pm0.2$	17.12 ± 0.01	-43.2	-16.0	4.0	98.8	HSHJ181 (M5.4; Kafka & Honeycutt 2006)
		0.01			0		(2.20.2, 2.20.20)

TABLE 3 CANDIDATE MEMBERS OF PRAESEPE

		CANDIDA	ALE MIE	MDERG C	'I' I IVAI	ESET E	
2MASS J08483057+1945072	$M5.0\pm0.1$	17.38 ± 0.01	-42.5	-8.3	3.7	91.2	
2MASS J08575230+1850070	$M5.0\pm0.2$	17.47 ± 0.01	-50.8	-27.0	3.7	100.0	
2MASS J08391937+1838224	$M5.0\pm0.2$ $M5.0\pm0.3$	17.53 ± 0.01	-41.3	-23.0	4.0	92.5	IZ063
2MASS J08352430+1925443	$M5.0\pm0.3$ $M5.0\pm0.2$	17.57 ± 0.01 17.57 ± 0.02	-36.9	-4.2	3.9	95.4	12000
	$M5.0\pm0.2$ $M5.0\pm0.2$		-29.3		$\frac{3.9}{4.1}$		
2MASS J08420732+1837169		17.57 ± 0.01		-10.6		95.5	
2MASS J08375494+1929369	$M5.0\pm0.2$	17.66 ± 0.01	-20.1	-10.7	4.0	78.4	AD 10FF
2MASS J08345583+1836354	$M5.0\pm0.3$	17.70 ± 0.01	-22.6	-18.8	3.0	63.9	AD 1955
2MASS J08440390+1901128	$M5.1 \pm 0.1$	16.62 ± 0.01	-28.9	-12.2	4.0	96.0	HSHJ474 (M5; Adams et al. 2002)
2MASS J08414342+2129504	$M5.1 \pm 0.1$	16.64 ± 0.01	-33.5	-18.1	4.0	96.6	HSHJ386
2MASS J08364943+2216062	$M5.1\pm0.2$	16.71 ± 0.01	-25.2	-22.4	4.0	51.7	HSHJ131
2MASS J08374154+1830478	$M5.1\pm0.2$	17.37 ± 0.01	-31.7	-21.9	4.0	92.4	IZ049
2MASS J08372526+2006350	$M5.1 \pm 0.3$	17.53 ± 0.02	-25.6	-17.7	3.0	96.0	AD 2314
2MASS J08423831+1832279	$M5.1\pm0.3$	17.64 ± 0.01	-37.1	-10.2	4.0	97.2	HSHJ429
2MASS J08294342+1833482	$M5.1 \pm 0.3$	17.75 ± 0.01	-44.5	-20.5	4.1	66.8	AD 1267
2MASS J08355207+2015588	$M5.2 \pm 0.1$	16.76 ± 0.01	-32.4	-10.6	3.9	98.3	AD 2075 (M5; Adams et al. 2002)
2MASS J08523339+2057452	$M5.2 \pm 0.3$	17.44 ± 0.01	-35.1	-21.0	4.0	74.4	AD 3996
2MASS J08501368+1941240	$M5.2 \pm 0.1$	17.48 ± 0.01	-29.9	-12.7	3.7	88.7	AD 3755
2MASS J08425512+2031144	$M5.2\pm0.3$	17.49 ± 0.01	-36.3	-12.5	4.0	99.0	AD 3145 (M5; Adams et al. 2002)
2MASS J08423366+1827290	$M5.2\pm0.3$	17.49 ± 0.01	-38.9	-10.9	4.0	96.9	AD 3101
2MASS J08353194+2101045	$M5.2\pm0.3$	17.50 ± 0.01	-42.6	-26.0	4.1	80.2	IZ024
2MASS J08450611+2027133	$M5.2\pm0.3$ $M5.2\pm0.2$	17.59 ± 0.01 17.59 ± 0.01	-36.8	-20.0 -17.2	4.0	98.0	AD 3370
	$M5.2\pm0.2$ $M5.4\pm0.2$	16.20 ± 0.01			$\frac{4.0}{3.0}$	98.6	HSHJ151 (M4.5; Adams et al. 2002)
2MASS J08370585+1916589			-36.7	-9.8			
2MASS J08365906+1742063	$M5.4\pm0.1$	17.28 ± 0.01	-35.1	-9.7	3.9	92.0	AD 2249
2MASS J08392727+2043591	$M5.4\pm0.4$	17.32 ± 0.01	-32.1	-13.6	4.0	98.9	AD 2565 (M5; Adams et al. 2002)
2MASS J08362327+1832422	$M5.4\pm0.4$	17.68 ± 0.01	-26.3	-6.6	4.0	83.7	AD 2159
2MASS J08350633+1956480	$M5.5 \pm 0.3$	16.86 ± 0.01	-34.7	-18.3	3.9	98.0	HSHJ 67 (M4.5; Adams et al. 2002)
2MASS J08313595+2024192	$M5.5 \pm 0.3$	16.99 ± 0.01	-26.6	-20.2	4.1	79.3	AD 1516
2MASS J08251613+1854388	$M5.5 \pm 0.3$	17.17 ± 0.01	-40.1	-11.1	4.1	70.2	AD 0726
2MASS J08295083+1823566	$M5.5 \pm 0.3$	17.41 ± 0.01	-33.6	-12.7	3.0	87.3	AD 1282
2MASS J08465563+1802010	$M5.5 \pm 0.4$	17.59 ± 0.01	-36.6	-7.7	3.6	88.3	IZ131
2MASS J08361936+2040467	$M5.6 \pm 0.1$	16.69 ± 0.01	-37.5	-22.2	4.1	96.5	AD 2148
2MASS J08430054+2123281	$M5.7 \pm 0.3$	16.93 ± 0.01	-44.0	-18.9	4.1	93.3	AD 3155
2MASS J08414175+2019084	$M5.7 \pm 0.1$	17.01 ± 0.01	-35.7	-22.1	3.9	98.3	AD 3002 (M5.5; Adams et al. 2002)
2MASS J08430905+1943119	$M5.8 \pm 0.1$	17.42 ± 0.01	-39.5	-15.2	3.9	98.9	
2MASS J08413275+1940138	$M5.8 \pm 0.5$	18.08 ± 0.03	-33.0	-3.1	4.1	97.1	
2MASS J08344871+2018404	$M5.8 \pm 0.6$	18.33 ± 0.02	-34.1	-28.4	4.1	77.1	
2MASS J08424654+1826189	$M5.9 \pm 0.3$	16.96 ± 0.01	-32.5	-8.4	4.0	95.3	AD 3130
2MASS J08312987+2126388	$M5.9 \pm 0.3$	17.75 ± 0.01	-25.2	-11.7	4.2	72.0	
2MASS J08401060+2020505	$M6.0 \pm 0.2$	17.31 ± 0.01	-38.9	-16.2	3.9	98.6	AD 2703 (M5; Adams et al. 2002)
2MASS J08380048+1940562	$M6.1 \pm 0.1$	16.86 ± 0.01	-35.8	-11.0	3.9	98.4	HSHJ190 (M3; Kafka & Honeycutt 2006)
2MASS J08481021+1908599	$M6.1\pm0.3$	17.63 ± 0.01	-40.2	-7.9	3.7	89.5	institution (into, frames as frame, sacre 2000)
2MASS J08420470+1938007	$M6.1\pm0.3$	17.84 ± 0.02	-44.5	-20.5	4.0	95.1	AD 3051
2MASS J08462594+1953356	$M6.1\pm0.3$	17.84 ± 0.02 17.84 ± 0.02	-33.2	-9.3	$\frac{4.0}{3.7}$	94.8	AD 3516
2MASS J08405443+1601007	$M6.2\pm0.1$	17.20 ± 0.02 17.20 ± 0.01	-37.2	-11.1	4.0	64.9	AD 2848
2MASS J08464001+2134295	$M6.2\pm0.1$ $M6.2\pm0.1$	17.51 ± 0.02	-39.7	-13.9	4.0	91.6	AD 3548
							AD 3546
2MASS J08384816+1631560	$M6.2\pm0.3 M6.3\pm0.2$	18.20 ± 0.02	-31.1 -26.2	-10.3	4.2	69.0	AD 2515
2MASS J08462499+2250329		16.89 ± 0.01		-19.1	3.0	52.0	AD 3515
2MASS J08300265+1956111	$M6.3\pm0.2$	17.15 ± 0.01	-26.8	-15.7	4.1	79.5	AD 1307
2MASS J08252223+2021567	$M6.3\pm0.1$	17.17 ± 0.01	-37.0	-16.5	4.1	75.7	AD 0733
2MASS J08391272+1930169	$M6.3\pm0.2$	17.27 ± 0.02	-25.4	-24.5	4.2	84.8	A.D. COM
2MASS J08395663+1710335	$M6.3\pm0.2$	17.69 ± 0.01	-32.8	-10.5	4.0	83.7	AD 2651
2MASS J08430637+1923388	$M6.3\pm0.2$	18.39 ± 0.03	-22.5	-10.6	4.1	84.5	
2MASS J08371143+2013459	$M6.4\pm0.1$	17.47 ± 0.01	-21.7	-21.7	4.0	75.4	
2MASS J08461030+2259448	$M6.4\pm0.3$	18.01 ± 0.02	-31.6	-15.3	4.2	74.8	TT0=0 (3.5.1 =
2MASS J08410333+1837158	$M6.8 \pm 0.2$	17.47 ± 0.01	-37.3	-14.2	4.0	96.5	IZ072 (M4.5; Adams et al. 2002)

Note. — The full version of Table 3 will be published as an online-only table in ApJ.

TABLE 4 CANDIDATE MEMBERS OF COMA BER

Charles Char	ID	SpT	P_{mem}	Previous ID				
2MASS J12122488+7272482		Sp1	$m_{bol} \pmod{1}$	μ_{α} (m	as yr^{-1}	σ_{μ}		1 tevious id
2MASS 11266837+2545373 F2.2±1.9 7.82±0.02 -1.09 -0.5 0.7 99.9 T. 36 (F3; Abt & Levato 1977) 2MASS 11234391+2253168 F2.8±1.9 7.84±0.02 -1.26 -9.4 0.6 99.6 Bou 38 (F5'); Bounstiro 1993) 2MASS 11234391+2253189 F3.0±1.7 8.85±0.02 -1.27 -7.6 0.7 99.9 T. 162 (F7; Abt & Levato 1977) 2MASS 11232477+227579 F3.0±1.7 8.35±0.02 -1.27 -7.6 0.7 99.8 T. 162 (F7; Abt & Levato 1977) 2MASS 1123502247-227533383 F3.5±1.7 7.83±0.01 -1.16 -8.3 0.6 0.9 0.7 0.0 T. 162 (F7; Abt & Levato 1977) 2MASS 112350224-2533383 F3.5±1.7 7.83±0.01 -1.16 -8.3 0.6 0.9 0.9 T. 162 (F7; Abt & Levato 1977) 2MASS 11235024-2545572 F7.8±2.9 8.60±0.01 -1.03 -8.4 0.6 99.9 T. 162 (F7; Abt & Levato 1977) 2MASS 11205047+245046 F7.9±1.6 8.60±0.01 -1.03 -8.4 0.6 99.9 T. 162 (F7; Abt & Levato 1977) 2MASS 11205047+245046 F7.9±1.6 8.60±0.01 -1.03 -8.4 0.6 99.9 T. 162 (F7; Abt & Levato 1977) 2MASS 11205047+245046 F7.9±1.6 8.60±0.01 -1.03 -8.4 0.6 99.9 T. 162 (G7; Abt & Levato 1977) 2MASS 112050491+2515572 F7.8±2.9 8.80±0.02 -1.07 -6.4 0.7 0.7 0.9 99.9 T. 162 (G7; Abt & Levato 1977) 2MASS 112050491+2515040 63.8±2.1 8.7±0.01 -1.5 -1.03 0.6 0.9 0.9 T. 162 (G7; Abt & Levato 1977) 2MASS 112050491+251040 63.6±2.1 8.8±0.01 -1.15 -1.03 0.6 0.9 0.9 T. 162 (G7; Abt & Levato 1977) 2MASS 112050491+251040 63.6±2.1 9.1±0.01 0.8±0.01 0.8±0.01 0.9 0.9 T. 162 (G7; Abt & Levato 1977) 2MASS 112050491+250640 63.6±2.1 9.1±0.01 0.8±0.01 0.8±0.01 0.9 0.9 T. 162 (G7; Abt & Levato 1977) 2MASS 112050491+250640 63.6±2.1 9.1±0.01 0.9 0.9 0.9 T. 162 (G7; Abt & Levato 1977) 2MASS 112050491+250640 63.6±2.1 9.1±0.01 0.9 0.9 0.9 0.9 T. 162 (G7; Abt & Levato 1977) 2MASS 1120506491+250640 63.6±2.1 9.1±0.01 0.9 0.9 0.9 0.9 0.9 T. 162 (G7; Abt & Levato 1977) 2MASS 1120								
2MASS 17255 195-7266359 P2-5±20 8.02±0.02 -12.9 -8.8 0.7								
2MASS J122341041-2658478 F3.0±1.8 S.0±0.02 -11.7 -8.1 0.6 100.0 Tr 101 (F6; Abt & Levato 1977) 2MASS J12222475492475497 F3.0±1.7 S.2±0.00 -9.6 0.7 9.9 F1 F0 (F6; Abt & Levato 1977) 2MASS J1222475492425494 F4.2±1.8 S.2±0.02 -10.0 -9.6 0.7 9.9 F1 F0 (F6; Abt & Levato 1977) 2MASS J122502264-2533838 F5.3±1.6 S.2±0.01 -10.4 -10.9 0.7 0.7 9.9 F1 F0 (F6; Abt & Levato 1977) 2MASS J122501604-2522246 F5.9±1.6 S.0±0.01 -10.4 -10.9 0.6 0.7 0.7 9.9 F1 F11 (F8; Abt & Levato 1977) 2MASS J12201604-2522245 F5.9±1.6 S.0±0.01 -10.3 S.4 0.6 0.5 0.6 0.5 0.6 0.7 0								
2MASS 1/21/2007-2743491 \$2.0±0.02 1.27 -7.6 0.7 99.6 The 1/27 2MASS 1/21/2016-14-2718342 \$4.2±1.8 \$8.2±0.02 -10.0 -9.6 0.7 99.9 The 50.77 3.4 3.								Bou 38 (F5V; Bounatiro 1993)
2MASS 112222475+227509								Tr 101 (F6; Abt & Levato 1977) Tr 162 (F7: Abt & Levato 1977)
2MASS J12260226-£53383								Tr 90 (F6; Abt & Levato 1977)
2MASS J123406464-3201367 F.53±16 8.65±0.01 -10.4 -10.9 0.7 93.9 (F); Upgren 1963) 2MASS J12190147-2450461 F.77±44 8.74±0.02 -11.2 -8.4 0.6 95.9 Th 56 (F7; Ford et al. 2001) 2MASS J12190147-2450461 F.77±44 8.74±0.02 -11.2 -8.4 0.6 95.9 Th 56 (F7; Ford et al. 2001) 2MASS J1210738-2559249 F8.2±3.0 9.32±0.02 -11.5 -10.3 0.6 99.9 Th 76 (G0; Rounatiro 1993) 2MASS J12110738-2559249 F8.2±3.0 9.32±0.02 -11.5 -10.3 0.6 99.9 Th 76 (G0; Bounatiro 1993) 2MASS J12230940-2551049 F9.7±2.9 8.97±0.01 -10.0 -8.5 0.7 99.9 Th 56 (G0; Bounatiro 1993) 2MASS J12129901+262568 G3.7±3.3 9.2±0.02 -12.1 -8.1 0.7 99.9 Th 56 (G0; Rounatiro 1997) 2MASS J12218901+262568 G3.7±3.3 9.2±0.02 -12.1 -8.1 0.7 99.7 Th 56 (G0; Rounatiro 1977) 2MASS J1224901+2625645 G4.8±3.8 8.75±0.02 -12.1 -8.1 0.7 99.7 Th 56 (G0; Rounatiro 1977) 2MASS J12248529+211373 G5.4±24.9 9.65±0.02 -11.1 -9.3 0.6 99.7 Th 192 (F9; Roth & Levato 1977) 2MASS J12243184-2936034 G5.6±2.1 9.10±0.02 -12.2 -9.6 0.7 99.5 Th 192 (F9; Roth & Levato 1977) 2MASS J12243184-2936034 G6.6±1.9 9.77±0.01 -12.2 -9.6 0.7 99.3 Th 192 (F9; Roth & Levato 1977) 2MASS J1224004-2421445 G5.6±1.9 9.77±0.01 -12.2 -9.6 0.7 99.3 Th 192 (F9; Roth & Levato 1977) 2MASS J1224004-1243147 G7.8±1.5 9.99±0.01 -12.2 -9.6 0.7 99.3 Th 192 (G0; Abt & Levato 1977) 2MASS J1224004-1243147 G7.8±1.5 9.99±0.01 -12.2 -9.6 0.7 99.3 C0.6 0.7								
2MASS J12201607+2524561								
2MASS J12204557+2545572 F7.8±2.9 8.89±0.02 -1.07 -6.4 0.7 99.4 Tr (GG; Abt & Levato 1977) 2MASS J12136317+2307123 F8.9±2.7 8.57±0.01 -1.3.7 -8.2 0.6 98.8 Tr 53 (F7. Abt & Levato 1977) 2MASS J12214901+2635568 G3.7±3.3 9.2±0.02 -1.1. -9.5 0.6 99.8 Tr 53 (F7. Abt & Levato 1977) 2MASS J12214901+2635568 G3.7±3.3 9.2±0.02 -1.2. -8.1 0.7 99.9 Tr 53 (F7. Abt & Levato 1977) 2MASS J12214901+2635668 G3.7±3.3 8.87±0.02 -1.2. -8.1 0.7 99.9 Tr 55 (GG; Abt & Levato 1977) 2MASS J122276627+2565445 G4.8±2.9 8.92±0.02 -1.1. -9.3 0.6 99.7 Tr 192 (F9; Trumpler 1938) 2MASS J122274829+2811397 G5.4±2.4 9.46±0.02 -1.3. -8.7 0.6 99.7 Tr 132 (GF; Trumpler 1938) 2MASS J12224182+28656054 G5.5±1.9 9.77±0.01 -1.22 -9.6 0.7 90.0 Tr 102 (GS; Upgren 1962) 2MASS J12323002+222434 G7.8±1.5 9.85±0.01 -1.27 -8.5 0.7 99.6 GG; Upgren 1962) 2MASS J12324091+243147 G8.3±1.8 9.2±2.02 -1.2 -7.4 0.7 99.9 GG; Upgren 1962) 2MASS J122240174+241938 G5.5±1.8 9.63±0.02 -1.6 -7.4 0.7 99.9 Tr 13 (GG; Upgren 1962) 2MASS J122241714+241938 K0.5±1.8 9.63±0.02 -1.6 -7.4 0.7 99.9 Tr 13 (GG; Upgren 1962) 2MASS J1222541744-241981 K0.5±1.8 9.63±0.02 -1.6 -7.4 0.7 99.9 Tr 13 (GG; Upgren 1962) 2MASS J122253414948 K0.5±1.8 9.63±0.01 -1.5 -7.6 0.6 9.8 Tr 10 (GG; Upgren 1962) 2MASS J1223646449485 K1.6±1.2 9.40±0.02 -1.3 -1.0 -1.5 -7.7 0.7 9.9 Tr 12 (GG; Upgren 1962) 2MASS J122564449444 K1.6±1.8 -1.2 -1.2 -1.0								
2MASS								
2MASS J1236040+255104								
2MASS J12214901+2632568 G3.7±3.3 9.21±0.02 12.1 -8.1 0.7 99.9 The S6 (Gc). Ab & Levato 1977) 2MASS J12245824+2727202 G4.8±2.9 8.92±0.02 -11.1 -9.3 0.6 99.8 The G6 (F5). Ab & Levato 1977) 2MASS J12247629+27811397 G5.4±2.4 9.46±0.02 -13.1 -8.7 0.6 99.8 The G6 (F5). Ab & Levato 1977) 2MASS J12241824+2863604 G5.6±2.4 9.46±0.02 -13.1 -8.7 0.6 99.8 The G6 (F5). Ab & Levato 1977) 2MASS J122434182+2863605 G5.6±2.4 9.46±0.02 -12.2 -9.6 0.7 0.7 0.0 The J2 (G6; Trumpler 1938) 2MASS J12233002+222434 G7.8±1.5 9.8±0.01 -12.7 -9.6 0.7 98.0 (G5; Upgren 1962) 2MASS J12279068+2319475 G7.9±1.5 9.91±0.01 -11.6 -8.8 0.7 99.5 (G5; Upgren 1962) 2MASS J12240691+2431147 G8.8±1.9 10.08±0.02 -11.6 -7.4 0.7 99.3 (G6; Upgren 1962) 2MASS J12247142+210311 G8.8±1.8 9.2±0.02 -10.7 -7.7 0.7 0.7 0.7 0.8								
2MASS J121928369+2417033 G3.8±3.1 8.87±0.02 -12.5 -9.5 0.6 99.8 Tr 65 (F5; Abt & Levato 1977) 2MASS J12270627+2650445 G4.8±3.8 9.67±0.02 -11.8 -7.4 0.7 99.7 Tr 132 (G5; Trumpler 1938) 2MASS J122274829+2811307 G5.4±2.4 9.46±0.02 -13.1 -8.7 0.6 0.7 100.0 Tr 102 (F9; Trumpler 1938) 2MASS J122431842+2636054 G5.5±2.1 9.16±0.02 -12.2 -9.6 0.7 100.0 Tr 102 (G9; Abt & Levato 1977) 2MASS J122320629+2214243 G7.8±1.5 9.98±0.01 -12.7 -8.5 0.7 97.3 2MASS J122240572+256340 G8.0±1.9 10.02±0.02 -10.7 -7.7 0.7 99.6 CJB 2MASS J12240572+256340 G8.0±1.9 10.02±0.02 -10.7 -7.7 0.7 99.9 Tr 150 (G6; Upgren 1962) 2MASS J12240672+250740 G8.1±1.9 10.08±0.02 -11.6 -7.4 0.7 99.9 Tr 150 (G9; Trumpler 1938) 2MASS J12240672+250740 G8.8±1.8 9.22±0.02 -9.2 -7.6 0.6 98.9 Tr 150 (G9; Trumpler 1938) 2MASS J12241714+2419221 K0.5±1.8 9.63±0.02 -15.3 -10.5 0.6 98.9 Tr 150 (G9; Trumpler 1938) 2MASS J12247114+2419221 K0.5±1.8 9.63±0.02 -15.3 -10.5 0.6 98.9 Tr 150 (G9; Trumpler 1938) 2MASS J12245354+250140 K2.2±0.9 10.68±0.01 -6.9 -5.3 0.8 64.5 CJD 11 2MASS J12232370+225059 K2.6±0.8 9.94±0.01 -13.0 -9.0 -1.1 K1.7 C.5 2MASS J1223437147 K2.5±1.0 I1.12±0.02 -6.8 -5.8 0.8 57.5 2MASS J1223457147 K2.5±1.0 I1.12±0.02 -6.8 -5.8 0.8 57.5 2MASS J12234504+254540 K2.8±0.7 I1.36±0.01 -1.5 -9.9 0.8 62.7 2MASS J12234504+254540 K2.8±0.7 I1.36±0.01 -1.5 -9.9 0.8 62.7 2MASS J12234504+275440 K2.8±0.8 10.93±0.02 -1.5 -7.7 1.2 CJD 3 2MASS J1224551+233614 K3.8±0.9 10.98±0.02 -1.5 -7.7 1.2 CJD 3 2MASS J1224551+236040 K3.8±0.7 I1.27±0.01 -1.5 -7.7 -7.7 -7.7 C.5 2MASS J1224504+253040 K3.8±0.7 I1.27±0.01 -1.5 -7.7 -7.7 -7.7 C.5 2MASS J1224504+253040 K3.8±0.7 I1.27±0.01 -1.5 -7.7 -7.7 -7.7 C.5 2MASS J12235042+2750047 K3.8±0.7 I1.27±0.01 -								Tr 97 (F8; Abt & Levato 1977)
2MASS 12247667+265045 G4-84-2.9 8.92±0.02 -11.1 -9.3 0.6 99.7 Th 192 (Fig. Trumpler 1938) 2MASS 122276629+2811397 G5-4±2.4 9.46±0.02 -13.1 -8.7 0.6 99.4 Th 141 (Gc; Abt & Levato 1977) 2MASS 122244829+2811397 G5-4±2.4 9.46±0.02 -12.2 -9.6 0.7 0.0 Th 100.0								
2MASS J1224382+281397	•	$G4.8 \pm 2.9$					99.7	Tr 192 (F9; Trumpler 1938)
2MASS J12234182+2636054 65.5±2.1 9.16±0.02 -12.2 -9.6 0.7 70.0 (G5; Upgren 1962)								
2MASS J12242264244								
2MASS J12240572+2667430 G8.01-19 10.02+0.02 -10.7 -7.7 -7.9 99.6 C.I.D6 C.I								(G5; Upgren 1962)
2MASS J12234212+2556340 G8.0±1.9 10.02±0.02 -10.7 -7.7 0.7 99.3 (G6; Upgren 1962) 2MASS J1224091+2431147 G8.3±1.8 9.2±0.02 -9.2 -7.6 0.6 96.8 Tr 150 (G9; Trumpler 1938) 2MASS J1228101+24802259 G9.8±1.7 10.12±0.02 -13.5 -10.5 0.6 98.9 TV 150 (G9; Trumpler 1938) 2MASS J1224175442419281 K0.5±1.8 9.63±0.02 -11.2 -10.6 0.7 93.2 Tr 120 (K0; Jeffries 1999) 2MASS J1227654742449281 K1.6±1.2 9.40±0.02 -11.2 -11.6 0.7 93.2 Tr 120 (K0; Jeffries 1999) 2MASS J122754542464983 K2.2±0.9 10.68±0.01 -6.9 -5.3 0.8 64.5 CJD 11 2MASS J12285264+26650308 K2.2±0.7 10.88±0.01 -1.0 -9.0 1.1 2.7 CJD 3 2MASS J122661394 K2.8±0.8 10.93±0.00 -1.2 -9.9 0.8 62.7 2MASS J1221656694 K2.8±0.8 10.93±0.00 -1.3 -1.0 9.0 1.0								CID c
2MASS J12240572+2607430 G8.1±1.9 9.22±0.02 -11.6 -7.4 0.7 99.9 Ta 13 (K0; Trumpler 1938) 2MASS J1224010+2802259 G9.8±1.7 10.12±0.02 -13.5 -10.5 0.6 98.9 TYC 1991-311-1 (G7; Upgren 1962) 2MASS J122260547+264385 K1.6±1.2 9.40±0.02 -11.6 -7.4 0.7 79.2 Ta 14 (G5; Trumpler 1938) 2MASS J12172544+2714323 K2.1±0.8 10.0±0.01 -15.9 -4.1 0.7 62.5 2MASS J12125324+2615014 K2.2±0.7 10.68±0.01 -6.9 -5.3 0.8 64.5 CJD 11 2MASS J12232870+2250559 K2.6±0.8 9.94±0.01 -13.0 -10.4 0.7 77.2 CJD 3 2MASS J122153694-260308 K2.7±0.8 11.3±0.02 -13.5 -13.9 1.0 86.3 2.7 CJD 3 2MASS J12262401+2515430 K2.8±0.8 11.3±0.02 -13.5 -13.9 1.0 86.3 2.7 CJD 3 2MASS J12330662+2753436 K2.8±0.5 11.5±0.02 -15.9 -6.1 -								
2MASS J12241014-2802259	$2MASS\ J12240572+2607430$		10.08 ± 0.02	-11.6			99.9	Ta 13 (K0; Trumpler 1938)
2MASS J1224714+2419281 K0.5±1.8 9.63±0.02 -15.3 -13.2 0.7 79.2 The 14 (G5; Trumpler 1938) 2MASS J122172544+2714323 K1.6±1.2 9.40±0.02 -11.2 -11.6 0.7 93.2 Tr 120 (K0; Jeffries 1999) 2MASS J12245349+24163014 K2.2±0.9 10.68±0.01 -6.9 -5.3 0.8 64.5 CJD 11 2MASS J12232870+2250559 K2.6±0.8 9.94±0.01 -11.0 -9.0 1.1 84.7 CJD 19 2MASS J12185869+2603308 K2.7±0.8 11.12±0.02 -6.8 -5.8 0.8 57.5 CJD 3 2MASS J12185869+2603308 K2.7±0.8 11.33±0.02 -12.5 -13.9 1.0 86.3 2 2MASS J1213516+2922444 K2.8±0.8 10.93±0.02 -12.5 -9.9 0.8 62.7 2 2 2 0.8 62.7 2 2 2 0.8 62.7 2 0.0 0.8 62.7 0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0								Tr 150 (G9; Trumpler 1938)
2MASS J122460547+2644385 K1.6±1.2 9.40±0.02 -11.2 -11.6 0.7 93.2 Tr 120 (K0; Jeffries 1999 2MASS J12172544+2714323 K2.1±0.8 1.01±0.01 -15.9 -4.1 0.7 62.5 2MASS J12245359+2343048 K2.2±0.9 10.68±0.01 -6.9 -5.3 0.8 64.5 CJD 11 2MASS J12245359+2343048 K2.2±0.7 10.88±0.01 -11.0 -9.0 1.1 84.7 CJD 19 2MASS J12232870+2250559 K2.6±0.8 9.94±0.01 -13.0 -10.4 0.7 77.2 CJD 3 2MASS J1213564922444 K2.8±0.8 10.93±0.02 -12.5 -9.9 0.8 62.7 2MASS J1213516+2922444 K2.8±0.8 10.93±0.02 -12.5 -9.9 0.8 62.7 2MASS J12263040+2515430 K2.8±0.7 11.36±0.01 -12.0 -6.3 0.7 60.0 2MASS J12262401+2515430 K2.8±0.7 11.56±0.02 -15.9 -6.1 1.7 84.9 2MASS J122424581+2136175 K2.9±0.7 10.76±0.01 -14.4 -9.9 0.9 56.3 2MASS J123406464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12340464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12310477+2415454 K3.1±0.9 10.19±0.02 -6.7 -4.2 0.7 53.7 CJD 4 2MASS J12235421+2708047 K3.3±0.7 10.99±0.01 -11.5 -7.7 1.2 71.3 2MASS J12235421+2708047 K3.3±0.7 10.99±0.01 -11.5 -7.7 1.2 71.3 2MASS J12335421+2708047 K3.3±0.8 11.04±0.01 -3.5 -0.9 1.2 52.8 CJD 15 2MASS J12235406+2555227 K3.6±0.8 11.04±0.01 -3.5 -0.9 1.2 52.8 CJD 15 2MASS J12333094-2555207 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333094-2555406 K3.5±0.1 11.04±0.01 -3.5 -0.9 1.0 1.0 9.9 0.9 76.2 CJD 8 2MASS J12333094-2555207 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333094-2555207 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333094-2555207 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333004-2555207 K3.6±0.4 11.59±0.01 -12.0 -11.8 1.3 58.4 2MASS J1223524425504700 K4.1±0.8 11.09±0.01 -12.0 -11.8 1.3 58.4 2MASS J122352424-2503400 K4.1±0.8 11.09±0.01 -12.0 -11.8 1.3 58.4 2MASS J1243507+2553400 K4.1±0.8 11.09±0.01 -12.0 -14.8 1.3 58.4 2MASS J1246844-250273 K4.1±0.8 11.09±0.01 -12.0 -14.9 0.8 61.6 CJD 24 2MASS J1243507+2553400 K4.1±0.8 11.09±0.01 -12.0 -14.7 9.0 0.7 62.7 2MASS J1240844-250273 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J1240644-25504000 K4.5±0.01 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD								
2MASS J12245359+2343048 K2.2±0.7 10.68±0.01 -6.9 -5.3 0.8 64.5 CJD 19 2MASS J12294216+2837147 K2.5±1.0 11.12±0.02 -6.8 -5.8 0.8 57.5 2MASS J12232870+2250559 K2.6±0.8 9.94±0.01 -13.0 -10.4 0.7 77.2 CJD 3 2MASS J123113516+2922444 K2.8±0.8 11.34±0.02 -13.5 -13.9 1.0 86.3 2MASS J12261393+2646503 K2.8±0.8 11.36±0.01 -12.0 -6.3 0.7 60.0 2MASS J12262401+2515490 K2.8±0.7 11.56±0.01 -14.4 -9.9 0.9 56.3 2MASS J12330062+2742447 K2.9±0.7 10.76±0.01 -14.4 -9.9 0.9 56.3 2MASS J12330464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12310477+2415454 K3.1±0.9 10.92±0.01 -11.5 -7.7 1.2 71.3 2MASS J12335211-2470847 K3.3±0.7 10.92±0.01 -15.5 -7.7 1.2 <								
2MASS J12125324+2615014 K2.2±0.7 10.88±0.01 -11.0 -9.0 1.1 84.7 CJD 19 2MASS J12232870+2250559 K2.6±0.8 9.94±0.01 -13.0 -10.4 0.7 77.2 CJD 3 2MASS J12185669+2603308 K2.7±0.8 11.34±0.02 -13.5 -13.9 1.0 86.3 2MASS J121051619-2922444 K2.8±0.8 10.93±0.02 -12.5 -9.9 0.8 62.7 2MASS J12262401+2515430 K2.8±0.7 11.36±0.01 -12.0 -6.3 0.7 60.0 2MASS J12236046+2757356 K2.9±0.9 10.66±0.01 -14.4 -9.9 9.5 66.3 2MASS J12330062+2742447 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12310477+2415454 K3.1±0.7 10.94±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J12235401+2780484 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J1233406+2555227 K3.6±0.4 11.04±0.01 -13.								CID 11
2MASS J12294216+2837147 K2.5±1.0 11.12±0.02 -6.8 -5.8 0.8 57.5 2MASS J1213232870+22250559 K2.6±0.8 9.94±0.01 -13.0 -10.4 0.7 77.2 CJD 3 2MASS J12113516+2922444 K2.8±0.8 10.93±0.02 -12.5 -9.9 0.8 62.7 2MASS J12262401+2515430 K2.8±0.8 10.93±0.02 -12.0 -6.3 0.7 60.0 2MASS J12242581+2136175 K2.9±0.7 10.76±0.01 -14.4 -9.9 0.9 56.3 2MASS J12360464+2757356 K2.9±0.7 10.76±0.01 -14.4 -9.9 0.9 56.3 2MASS J12310477+2415545 K3.9±0.7 9.64±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J1231047+2415454 K3.1±0.7 10.9±0.01 -15.4 -7.9 0.7 65.2 2MASS J12235014±2780847 K3.2±0.7 10.9±0.01 -15.5 -7.7 1.2 71.3 2MASS J1233049+24274084 K3.5±0.1 11.04±0.02 -8.1 -4.9 1.2								
2MASS J1215869+2603308 K2.7±0.8 11.34±0.02 -13.5 -13.9 1.0 86.3 2MASS J121613516+2922444 K2.8±0.8 10.93±0.02 -12.5 -9.9 0.8 62.7 2MASS J12262401+2515430 K2.8±0.5 11.56±0.02 -15.9 -6.1 1.7 84.9 2MASS J12230062+2742447 K2.9±0.9 10.83±0.02 -13.2 -11.8 1.5 79.8 CJD 13 2MASS J12360464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12210477+2415454 K3.0±0.7 9.64±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J1223541+273848 K3.2±0.7 10.92±0.01 -11.5 -7.7 1.2 71.3 2MASS J12235607+2854064 K3.3±0.7 11.42±0.01 -14.9 -4.7 0.7 64.8 2MASS J12235309+2610001 K3.5±0.1 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 17 (K4; Stephenson 1986) 2MASS J12235429+2872638243 K3.9±0.4 11.29±0.01 -12.1						0.8	57.5	
2MASS J12113516+2922444 K2.8+0.8 10.93±0.02 -12.5 -9.9 0.8 62.7 2MASS J12262401+2515430 K2.8±0.5 11.55±0.02 -15.9 -6.1 1.7 84.9 2MASS J12242581+2136175 K2.9±0.7 10.76±0.01 -14.4 -9.9 0.9 56.3 2MASS J12330062+2742447 K2.9±0.9 10.83±0.02 -13.2 -11.8 1.5 79.8 CJD 13 2MASS J12310477+2415454 K2.9±0.9 10.83±0.02 -13.2 -11.8 1.5 79.8 CJD 13 2MASS J12421455+2836128 K3.0±0.7 9.64±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J122510477+2415454 K3.1±0.9 10.19±0.02 -6.7 -4.2 0.7 53.7 CJD 4 2MASS J12251014+2739448 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J122354306+2255278 K3.46.0 K3.410.0 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J122354306+2555227 K3.6±0.4 11.04±0.01 -13.1 -9.2 1.4 94.4 CJD 17 (K4; St								CJD 3
2MASS J12261393+26464503 K2.8±0.7 11.36±0.01 -12.0 -6.3 0.7 60.0 2MASS J12242581+2136175 K2.8±0.5 11.55±0.02 -15.9 -6.1 1.7 84.9 2MASS J12330062+2742447 K2.9±0.7 10.76±0.01 -14.4 -9.9 0.9 56.3 2MASS J123306464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J1221455+2836128 K3.0±0.7 9.64±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J1227075772+2535112 K3.1±0.7 10.92±0.01 -11.5 -7.7 1.2 71.3 2MASS J12235104+2739448 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J123230807+2854064 K3.4±0.8 11.04±0.01 -14.9 -4.7 0.7 64.8 2MASS J123233019+2610001 K3.7±1.0 10.69±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J1223527+2638243 K3.9±0.1 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 2 2MASS J12135400+2615431 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
2MASS J12242581+2136175 K2.9±0.9 10.83±0.02 -13.2 -11.8 1.5 79.8 CJD 13 2MASS J12330062+2742447 K2.9±0.9 10.83±0.02 -13.2 -11.8 1.5 79.8 CJD 13 2MASS J1236464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12421455+2836128 K3.0±0.7 9.64±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J12310477+2415454 K3.1±0.9 10.19±0.02 -6.7 -4.2 0.7 53.7 CJD 4 2MASS J122310477+24535112 K3.1±0.7 10.92±0.01 -11.5 -7.7 1.2 71.3 2MASS J122351014+2739448 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J12335421+2708047 K3.3±0.7 11.42±0.01 -14.9 -4.7 0.7 64.8 2MASS J12335451+254064 K3.4±0.8 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J12354306+2555227 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12354306+2555227 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J1223527+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J122153400+2615431 K4.0±0.5 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J121354400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J121232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J1220524+2582419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J122434691+2450373 K4.4±0.9 10.12±0.02 -4.7 -9.0 0.7 62.7 2MASS J122434691+2450373 K4.4±0.9 10.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J122434422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12243409478 K4.3±0.1 10.79±0.01 -15.9 -10.2 1.0 59.3 2MASS J12243442+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12245103+2450400 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J1225524+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J1225524+2504000 K4.5±0.9 10.12±0.02 -15.8 -13.3 1.2 82.0 CJD 16	$2MASS\ J12061393 + 2646503$	$K2.8 \pm 0.7$		-12.0	-6.3	0.7	60.0	
2MASS J12330062+2742447 K2.9±0.9 10.83±0.02 -13.2 -11.8 1.5 79.8 CJD 13 2MASS J12360464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12421455+2836128 K3.0±0.7 9.64±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J12310477+2415454 K3.1±0.9 10.19±0.02 -6.7 -4.2 0.7 53.7 CJD 4 2MASS J12075772+2535112 K3.1±0.7 10.92±0.01 -11.5 -7.7 1.2 71.3 2MASS J12251014+2739448 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J12335421+2708047 K3.3±0.7 11.42±0.01 -14.9 -4.7 0.7 64.8 2MASS J12325007+2854064 K3.4±0.8 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J12354306+25552527 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333019+2610001 K3.7±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J122328237+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12135400+2615431 K4.0±0.5 11.60±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12161909+2655375 K4.3±0.4 11.55±0.01 -7.8 -6.1 1.4 60.0 2MASS J122325224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J122354691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12235726+2553109 K4.9±0.8 11.133±0.02 -15.8 -13.3 1.2 82.0 CJD 16								
2MASS J12360464+2757356 K2.9±0.1 11.27±0.01 -15.4 -7.9 0.7 65.2 2MASS J12421455+2836128 K3.0±0.7 9.64±0.01 -9.5 -9.1 0.8 53.3 (G9; Upgren 1962) 2MASS J123104777+2415454 K3.1±0.9 10.19±0.02 -6.7 -4.2 0.7 53.7 CJD 4 2MASS J12075772+2535112 K3.1±0.7 10.92±0.01 -11.5 -7.7 1.2 71.3 2MASS J12251014+2739448 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J12335421+2708047 K3.3±0.7 11.42±0.01 -14.9 -4.7 0.7 64.8 2MASS J123236067+2854064 K3.4±0.8 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J1232363067+2854064 K3.5±0.1 11.04±0.01 -13.1 -9.2 1.4 94.4 CJD 17 (K4; Stephenson 1986) 2MASS J12354306+255527 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J122354306+255524 K3.9±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J1225237+2638243 K3.9±1.0 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12341422+2822419 K4.3±0.4 11.59±0.02 -4.3 -6.7 0.7 53.2 (G8; Upgren 1962) 2MASS J12234691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J122344691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12234691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12255264+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16								CJD 13
2MASS J12310477+2415454 K3.1±0.9 10.19±0.02 -6.7 -4.2 0.7 53.7 CJD 4 2MASS J12075772+2535112 K3.1±0.7 10.99±0.01 -11.5 -7.7 1.2 71.3 2MASS J12251014+2739448 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J12335421+2708047 K3.3±0.7 11.42±0.01 -14.9 -4.7 0.7 64.8 2MASS J12320807+2854064 K3.4±0.8 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J12325406+2555227 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333019+2610001 K3.7±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J1223537+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12225203+240308 K4.6±0.1 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J122256103+2616018 K4.8±0.1 11.33±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16			11.27 ± 0.01					4
2MASS J122075772+2535112 K3.1±0.7 10.92±0.01 -11.5 -7.7 1.2 71.3 2MASS J12231014+2739448 K3.2±0.7 10.97±0.01 -3.5 -10.7 0.7 52.8 CJD 15 2MASS J12335421+2708047 K3.3±0.7 11.42±0.01 -14.9 -4.7 0.7 64.8 2MASS J12320807+2854064 K3.4±0.8 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J123254306+2555227 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333019+2610001 K3.7±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J12225237+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12341422+2822419 K4.3±0.4 11.59±0.01 -7.8 -6.1 1.4 60.0 2MASS J122161909+2655375 K4.4±1.2 9.96±0.02 -14.9 -7.8 -6.1 1.4 60.0 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J122256103+2616018 K4.8±0.1 11.35±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J122256103+2616018 K4.8±0.1 11.35±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J122265103+2616018 K4.8±0.1 11.35±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J122256103+2616018 K4.8±0.1 11.33±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999)								
2MASS J12335421+2708047 K3.3±0.7 11.42±0.01 -14.9 -4.7 0.7 64.8 2MASS J12320807+2854064 K3.4±0.8 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J12211561+2609140 K3.5±0.1 11.04±0.01 -13.1 -9.2 1.4 94.4 CJD 17 (K4; Stephenson 1986) 2MASS J12354306+2555227 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333019+2610001 K3.7±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J12225237+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12432507+2647077 K3.9±0.5 11.29±0.01 -12.0 -11.8 1.3 58.4 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -10.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12234691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J1223526+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16								00D 4
2MASS J12320807+2854064 K3.4±0.8 11.04±0.02 -8.1 -4.9 1.2 52.1 CJD 18 2MASS J12211561+2609140 K3.5±0.1 11.04±0.01 -13.1 -9.2 1.4 94.4 CJD 17 (K4; Stephenson 1986) 2MASS J12354306+2555227 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333019+2610001 K3.7±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J1223537+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12432507+2647077 K3.9±0.5 11.29±0.01 -12.0 -11.8 1.3 58.4 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J1223524+2504000 K4.5±0.9 10.12±0.02 -4.3 -6.7 0.7 53.2 (G8; Upgren 1962) 2MASS J12234691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J122365103+2616018 K4.8±0.1 11.33±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16								CJD 15
2MASS J12211561+2609140 K3.5±0.1 11.04±0.01 -13.1 -9.2 1.4 94.4 CJD 17 (K4; Stephenson 1986) 2MASS J12354306+2555227 K3.6±0.4 11.56±0.02 -15.1 -10.5 1.5 76.7 2MASS J12333019+2610001 K3.7±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J12225237+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12432507+2647077 K3.9±0.5 11.29±0.01 -12.0 -11.8 1.3 58.4 2MASS J12432507+2647077 K3.9±0.5 11.29±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12341422+2822419 K4.3±0.1 10.79±0.01 -15.9 -10.2 1.0 59.3 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12161909+2655375 K4.4±1.2 9.96±0.02 -4.3 -6.7 0.7 53.2 (G8; Upgren 1962) 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12234691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12285726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16								CID 18
2MASS J12333019+2610001 K3.7±1.0 10.69±0.02 -16.4 -10.1 0.9 76.2 CJD 8 2MASS J12225237+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12432507+2647077 K3.9±0.5 11.29±0.01 -12.0 -11.8 1.3 58.4 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J121540814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12075391+2555455 K4.3±0.1 10.79±0.01 -15.9 -10.2 1.0 59.3 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12161909+2655375 K4.4±1.2 9.96±0.02 -4.3 -6.7 0.7 53.2 (G8; Upgren 1962) 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12235103+2616018 K4.8±0.1 11.33±0.01 -3.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJĎ 16								
2MASS J1225237+2638243 K3.9±1.0 11.24±0.02 -8.0 -5.5 0.9 87.6 CJD 22 2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12432507+2647077 K3.9±0.5 11.29±0.01 -12.0 -11.8 1.3 58.4 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12075391+2555455 K4.3±0.1 10.79±0.01 -15.9 -10.2 1.0 59.3 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12161909+2655375 K4.4±1.2 9.96±0.02 -4.3 -6.7 0.7 53.2 (G8; Upgren 1962) 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12344691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12265103+2616018 K4.8±0.1 11.33±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJĎ 16								CID o
2MASS J12091244+2639390 K3.9±0.4 11.29±0.01 -12.1 -4.9 0.8 61.6 CJD 24 2MASS J12432507+2647077 K3.9±0.5 11.29±0.01 -12.0 -11.8 1.3 58.4 2MASS J12153400+2615431 K4.0±0.5 11.60±0.01 -9.1 -2.2 1.8 54.4 CJD 29 2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12075391+2555455 K4.3±0.1 10.79±0.01 -15.9 -10.2 1.0 59.3 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12161909+2655375 K4.4±1.2 9.96±0.02 -4.3 -6.7 0.7 53.2 (G8; Upgren 1962) 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12344691+2409378 K4.6±0.1 11.53±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12265103+2616018 K4.8±0.1 11.33±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
2MASS J12140814+2250273 K4.1±0.7 11.12±0.02 -14.7 -9.0 0.7 62.7 2MASS J12232820+2553400 K4.1±0.8 11.39±0.01 -10.4 -10.3 2.7 95.9 Arty 278 (K5; Jeffries 1999) 2MASS J12075391+2555455 K4.3±0.1 10.79±0.01 -15.9 -10.2 1.0 59.3 2MASS J12341422+2822419 K4.3±0.4 11.54±0.01 -7.8 -6.1 1.4 60.0 2MASS J12161909+2655375 K4.4±1.2 9.96±0.02 -4.3 -6.7 0.7 53.2 (G8; Upgren 1962) 2MASS J12225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12344691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12265103+2616018 K4.8±0.1 11.33±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16	2MASS J12432507+2647077							CID 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								CJD 29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2MASS\ J12232820+2553400$	$K4.1\pm0.8$		-10.4	-10.3		95.9	Arty 278 (K5; Jeffries 1999)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
2MASS J1225224+2504000 K4.5±0.9 10.12±0.02 -14.9 -14.0 0.8 84.1 (K0; Upgren 1962) 2MASS J12344691+2409378 K4.6±0.1 11.55±0.01 -8.2 -5.8 0.8 64.0 CJD 28 2MASS J12265103+2616018 K4.8±0.1 11.33±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16								(G8; Upgren 1962)
2MASS J12265103+2616018 $K4.8\pm0.1$ 11.33 ±0.01 -13.4 -4.4 1.3 87.1 Arty 537 (K5; Jeffries 1999) 2MASS J12185726+2553109 $K4.9\pm0.8$ 11.13 ±0.02 -15.8 -13.3 1.2 82.0 CJD 16	$2MASS\ J12225224+2504000$	$K4.5\pm0.9$	10.12 ± 0.02	-14.9	-14.0	0.8	84.1	(K0; Upgren 1962)
2MASS J12185726+2553109 K4.9±0.8 11.13±0.02 -15.8 -13.3 1.2 82.0 CJD 16								
	$2MASS\ J12285643+2632573$	$K5.3\pm0.2$	$10.84 {\pm} 0.02$	-12.6	-9.2	0.7	92.3	Ta 20 (G9; Upgren 1962)
2MASS J12225941+2458584 K5.4±0.7 10.86±0.02 -8.7 -12.3 0.9 89.5								•
$2MASS\ J12374817 + 2657472$ $K5.5 \pm 0.1$ 10.31 ± 0.01 -14.2 -5.5 0.9 62.4 $2MASS\ J12232153 + 2142452$ $K5.5 \pm 0.5$ 11.98 ± 0.01 -9.8 -8.6 1.9 61.8								
$2MASS\ J12191465 + 2755503\ K5.5 \pm 0.6\ 12.01 \pm 0.02\ -13.9\ -10.0\ 2.8\ 84.9$	2MASS J12191465+2755503	$K5.5\pm0.6$	12.01 ± 0.02	-13.9	-10.0		84.9	
2MASS J12074177+2412593 K7.2±0.3 11.43±0.01 -9.8 -6.4 1.8 57.7								CID 91
$2MASS\ J12285766 + 2746482\ K7.5 \pm 0.1\ 12.50 \pm 0.01\ -13.2\ -5.2\ 3.0\ 78.6\ CJD\ 31$ $2MASS\ J12211441 + 2110318\ M0.0 \pm 0.7\ 12.19 \pm 0.01\ -9.2\ -5.3\ 1.9\ 78.4$								O1D 31

TABLE 4 CANDIDATE MEMBERS OF COMA BER

		Candidate I	MEMBER	s of Co	OMA E	BER	
2MASS J12182670+2553008	$M0.5 \pm 1.7$	11.81 ± 0.02	-1.4	-6.7	2.7	87.5	
2MASS J12351745+2427540	$M0.9 \pm 0.1$	12.80 ± 0.01	-5.8	-4.8	3.0	87.5	
2MASS J12244354+3017502	$M1.4 \pm 0.1$	13.11 ± 0.01	-9.0	-12.2	3.0	87.5	
2MASS J12343139+2545001	$M1.5\pm1.6$	11.93 ± 0.01	-12.5	0.6	3.0	77.8	
2MASS J12234897+2407559	$M1.5 \pm 0.2$	12.20 ± 0.01	-6.7	-17.8	2.7	87.2	G I D 0 =
2MASS J12235553+2324521	$M1.5\pm0.1$	13.31 ± 0.01	-9.7	-8.0	2.7	96.8	CJD 37
2MASS J12375631+2551453	$M1.7\pm0.1$	13.22 ± 0.01	-7.6	-3.2	3.0	86.1	CID 24
2MASS J12315742+2508424 2MASS J12160085+2805480	$M2.0\pm0.1 M2.1\pm0.2$	13.14 ± 0.01 12.83 ± 0.01	-7.1 -13.6	-16.2 -5.5	$3.0 \\ 3.0$	$92.3 \\ 95.0$	CJD 34 CJD 32
2MASS J12305739+2246151	$M2.1\pm0.2$ $M2.2\pm0.1$	13.00 ± 0.01	-11.0	-8.2	3.0	93.9	CJD 32 CJD 33
2MASS J12265664+2240262	$M2.2\pm0.1$	13.31 ± 0.01	-6.3	-8.8	2.7	90.8	C0D 00
2MASS J12231200+2356148	$M2.2 \pm 0.1$	13.97 ± 0.01	-10.3	-8.8	2.7	98.0	CJD 42
2MASS J12241087+2359362	$M2.2 \pm 0.1$	14.03 ± 0.01	-9.9	-9.4	2.7	98.1	CJD 46
2MASS J12345230+2509243	$M2.3\pm0.1$	12.66 ± 0.01	-7.2	-3.8	3.0	91.1	
2MASS J12312773+2523396	$M2.3\pm0.1$	13.22 ± 0.01	-2.7	-12.5	3.0	89.0	CJD 35
2MASS J12250262+2642382	$M2.4\pm0.2$	13.40 ± 0.01	-7.5	-7.5	3.0	98.8	CJD 38
2MASS J11585412+2351087	$M2.4\pm0.1$	13.99 ± 0.01	-6.6	-11.1	2.7	57.2	
2MASS J12201448+2526072	$M2.5\pm0.1$	14.05 ± 0.01	-6.6	-5.6	$\frac{2.7}{2.8}$	97.8	CJD 50
2MASS J12280453+2421077 2MASS J12163730+2653582	$M2.5\pm0.1 M2.6\pm0.1$	14.18 ± 0.01 14.04 ± 0.01	-13.4 -7.8	-8.1 -10.9	$\frac{2.0}{3.0}$	$98.1 \\ 97.6$	CJD 30 CJD 45
2MASS J12103730+2033082 2MASS J12332070+2457173	$M2.7\pm1.0$	12.56 ± 0.02	-6.7	0.6	3.0	67.6	C3D 40
2MASS J12552676+2467176	$M2.7\pm0.1$	13.77 ± 0.01	-6.0	-5.2	3.0	97.3	
2MASS J12404588+2712215	$M2.8\pm0.1$	14.22 ± 0.01	-14.1	-7.1	2.7	90.4	
2MASS J12264027+2718434	$M2.8 \pm 0.1$	14.28 ± 0.01	-8.3	-11.7	3.0	98.3	
2MASS J12260025+2409208	$M2.9\pm0.1$	12.78 ± 0.01	-7.9	-6.0	2.7	97.0	CJD 30
2MASS J12300487+2402338	$M3.0\pm0.1$	13.60 ± 0.01	-8.6	-8.0	3.0	96.0	CJD 39
2MASS J12430658+2415172	$M3.0\pm0.2$	14.06 ± 0.01	-8.7	-9.7	3.0	84.3	
2MASS J12443091+2809492	$M3.1\pm0.1$	14.07 ± 0.01	-11.7	-2.4	2.7	64.6	
2MASS J12151637+2921026 2MASS J12252505+2350527	$M3.1\pm0.1$	14.34 ± 0.01 12.52 ± 0.01	-9.8	-11.5	$\frac{3.1}{2.7}$	90.4	
2MASS J12232303+2330327 2MASS J12242665+2545077	$M3.2\pm1.6$ $M3.2\pm0.1$	12.52 ± 0.01 12.56 ± 0.01	-9.1 -2.9	-7.6 -1.1	$\frac{2.7}{2.7}$	$96.6 \\ 88.5$	
2MASS J12242009+2343077 2MASS J12175369+2022360	$M3.2\pm0.1$ $M3.2\pm0.1$	12.30 ± 0.01 14.15 ± 0.01	-8.4	-11.1	$\frac{2.7}{2.7}$	69.5	
2MASS J12360880+2948106	$M3.2\pm0.1$	14.20 ± 0.01	-16.4	-6.5	$\frac{2.7}{2.7}$	77.0	
2MASS J12103091+3004292	$M3.2 \pm 0.1$	14.65 ± 0.01	-4.0	-13.6	3.0	53.9	
2MASS J11590521+2644346	$M3.4 \pm 1.4$	13.03 ± 0.01	-13.3	-15.0	3.0	62.8	
2MASS J12123506+2729387	$M3.4 \pm 0.1$	13.82 ± 0.01	-21.8	-13.6	4.2	65.1	
2MASS J12042256+2401172	$M3.4 \pm 0.1$	14.63 ± 0.01	-4.6	-4.3	2.8	56.0	
2MASS J12292038+2826038	$M3.4\pm0.2$	14.85 ± 0.01	-5.8	-5.0	3.0	89.5	
2MASS J12081946+2104578	$M3.4\pm0.1$	14.85 ± 0.01	-7.4	-7.6	$\frac{2.7}{2.7}$	61.3	
2MASS J12260848+2439315 2MASS J12153147+2504011	$M3.5\pm0.1 M3.5\pm0.3$	13.69 ± 0.01 14.84 ± 0.01	-2.2 -7.3	-8.0 -7.8	$\frac{2.7}{2.7}$	$91.3 \\ 96.0$	
2MASS J12133147+2304011 2MASS J12071199+2603402	$M3.5\pm0.1$	14.93 ± 0.01	-7.3 -7.1	-16.9	3.0	73.3	
2MASS J11571593+2439051	$M3.6\pm0.1$	13.88 ± 0.01	-17.4	-10.1	3.7	52.9	
2MASS J12384603+2618584	$M3.6 \pm 0.1$	15.08 ± 0.01	-10.6	-14.1	2.7	91.1	
2MASS J12164122+2646391	$M3.7 \pm 0.1$	14.93 ± 0.01	-4.6	-8.9	3.0	94.6	
2MASS J12282758+2833439	$M3.8 \pm 0.1$	14.13 ± 0.01	-5.2	-8.2	3.0	91.3	
2MASS J12172140+2528524	$M3.8 \pm 0.2$	15.09 ± 0.01	-8.1	-9.2	2.7	97.6	
2MASS J12231356+2602185 2MASS J12182193+2744423	$M3.9\pm0.1$	13.92 ± 0.01	-5.1	-12.1	3.0	98.1	
2MASS J12182193+2744423 2MASS J12423885+2509373	$M3.9\pm0.3 M4.0\pm0.7$	14.78 ± 0.01 13.15 ± 0.01	-4.5 -9.7	-14.3 -9.9	$\frac{3.0}{3.0}$	89.8 88.4	
2MASS J12224153+2714512	$M4.0\pm0.1$	14.95 ± 0.01	-13.3	-20.0	3.0	87.6	
2MASS J12193796+2634445	$M4.1\pm0.1$	14.58 ± 0.01	-14.7	-11.1	3.0	98.2	CJD 59
2MASS J12124277+2513422	$M4.1 \pm 0.1$	15.21 ± 0.01	-3.4	-7.6	2.8	86.7	
2MASS J12063313+2351523	$M4.1 \pm 0.1$	15.27 ± 0.01	-7.7	-10.0	2.7	84.2	
2MASS J12181277+2649154	$M4.2\pm0.1$	13.90 ± 0.01	-8.9	-4.9	3.0	96.9	CJD 40
2MASS J12353409+2501018	$M4.3\pm0.1$	15.25 ± 0.01	-6.6	-3.6	3.0	87.9	
2MASS J12292013+2444343	$M4.4\pm0.2$	15.42 ± 0.01	-10.1	-8.5	3.0	97.8	
2MASS J12402489+2755059 2MASS J12464254+2524004	$M4.4\pm0.1 M4.4\pm0.2$	15.72 ± 0.02 15.78 ± 0.01	-11.1 -12.1	-19.2 -7.6	$\frac{2.7}{3.0}$	$59.4 \\ 80.6$	
2MASS J12221448+2526563	$M4.4\pm0.2$ $M4.4\pm0.1$	15.78 ± 0.01 15.84 ± 0.01	-6.3	-5.2	$\frac{3.0}{2.7}$	97.5	
2MASS J12313652+2452273	$M4.5\pm0.1$	15.37 ± 0.01	-7.9	-10.8	3.0	96.6	
2MASS J12162346+2825101	$M4.5\pm0.1$	15.77 ± 0.01	-5.8	-3.8	4.0	84.9	
2MASS J12080921+2443301	$M4.7 \pm 0.2$	15.12 ± 0.01	-8.4	-6.5	2.8	88.7	
2MASS J12114756+2452168	$M4.8 \pm 0.1$	15.83 ± 0.01	-10.1	-11.1	3.7	94.8	
2MASS J12344549+2723127	$M4.8\pm0.1$	16.18 ± 0.01	-8.4	-4.8	3.6	92.5	
2MASS J12014176+2729114	$M4.9\pm0.1$	16.14 ± 0.01	-3.3	-9.2	3.0	53.8	
2MASS J12371743+2921116	$M4.9\pm0.2$	16.31 ± 0.01	-4.5	-10.9	2.7	73.1	
2MASS J12283462+2932420 2MASS J12243115+2505182	$M5.2\pm0.1 M5.3\pm0.4$	16.32 ± 0.01 16.77 ± 0.01	-6.8 -19.4	-3.2 -18.3	$\frac{4.0}{3.6}$	$78.6 \\ 84.4$	
2MASS J12243115+2503182 2MASS J12223895+2746432	$M5.5\pm0.4$ $M5.5\pm0.1$	16.77 ± 0.01 16.27 ± 0.01	-19.4 -18.1	-18.5 -12.6	3.0	94.0	
2MASS J12223895+2740432 2MASS J12232095+2855148	$M5.5\pm0.1$ $M5.5\pm0.3$	16.39 ± 0.01	-4.3	-14.8	4.1	81.5	
2MASS J12172675+2858114	$M5.7\pm0.3$	17.17 ± 0.01	-14.1	-20.1	4.1	60.9	
2MASS J12181481+2131588	$M6.3\pm0.1$	16.77 ± 0.01	-9.2	-10.4	3.7	68.2	
2MASS J12270429+2541012	$M6.4\pm0.1$	15.83 ± 0.01	-9.0	-15.3	3.7	91.4	
2MASS J12310816+2416351	$M7.3\pm0.1$	16.50 ± 0.02	-15.8	-16.5	4.0	67.8	