

REGRESSION TUTORIAL

1. The following table relates to the price of a recharge coupon of a mobile service provider & its demand (in thousands) in NCR region in 2007.

Price (in Rs Hundreds)	100	150	200	300	400	500	600
Demand (in thousands)	20	18	15	1 2	09	05	02

Fit a linear regression line of demand for top ups on price.

Ans: 81=7a+2250b, 18600=2250a+932500b, Regression line: Y=22.99-0.035X

2. The following data refer to the weekly consumption expenditure (C) and disposable income (I) of 7 families. Use the OLS method to predict the weekly expenditure of a family with a weekly income of \$300. Also calculate the Coefficient of Determination and interpret the results.

•								
	C (\$)	150	70	155	65	110	115	95
	I (\$)	260	80	240	100	160	180	140

Ans: 760=7a+1160b, 139900=1160a+219200b, Regression Line: Y=22.81 + 0.52X, R square = 0.974

3. Consider the following set of data:

X	13	6	14	11	17	9	13	17	18	12
Υ	6.2	8.6	7.2	4.5	9.0	3.5	6.5	9.3	9.5	5.7
			-						3.3	5.,

Estimate the regression line and state whether the relationship is significant?

Given
$$\diamondsuit \diamondsuit \diamondsuit \diamondsuit = 130$$
, $\diamondsuit \diamondsuit \diamondsuit \diamondsuit = 70$, $X^2 = 1818$, $\diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit = 949$, $(Yi - Yi)^2 = 27.34$, $(Xi - Yi)^2 = 1818$, $(Yi - Yi)^2 = 1818$

$$Xi)^2 = 128$$
, $t_{0.05,8} = 2.306$

Ans: Regression Line: Y=3.04+0.304X, Sb=0.163, t=1.860, tcal < tab, Relationship between x and y is not

4. The attendance (x) in hundreds at a race track and the amount (y) in millions of dollars was bet on six selected days is given in the following table:

Γ	X	117	128	127	119	131	135
1	Υ	2.07	2.80	3.14	2.26	3.40	3.89

Find 90% prediction interval for the amount bet when the attendance is 120.

Given Y = -9.32 + 0.09X, t table value = 2.132,
$$\sum$$
 (Yi -Y)² = 2.39