		当设置 WDIE 位为"0"时,WDT 中新被禁止。							
		WDIE 位和 WDE 位一起决定看门狗的工作模式,如下表所示。							
		WDE	WDIE	模式	溢出后动作				
		0	0	停止	无				
		0	1	中断模式	中断				
		1	0	复位模式	复位				
		1	1	中断复位模式	中断后复位				
		WDT 预分频因子选择控制第 3 位。							
[5]	WDP3	WDP[3]和 WDP[2:0]组成 WDT 预分频因子选择位 WDP[3:0], 用来							
		设置 WDT 的溢出周期。							
		WDT 关闭使能控制位。							
[4]	WDTOE	当要把 WDE 位清零时, WDTOE 位须置位, 否则 WDT 不会被关闭。							
		当 WDTOE 位被置位后,硬件会在 4 个时钟周期后清零 WDTOE 位。							
[3]	WDE	WDT 使能控制位。							
		当设置 WDE 位为"1"时,WDT 被使能。当设置 WDE 位为"0"时,							
		WDT 被禁止。							
		只有在 WDTOE 位置位时 WDE 才能被清零。要关闭已经使能了的							
		WDT,必须按照下列时序操作:							
		1. 同时置位 WDTOE 和 WDE 位,即使 WDE 已经被置位,在关闭							
		操作开始之前也必须对 WDE 位写入"1";							
		2. 在接下来的 4 个时钟周期内,对 WDE 位写入"0"。这将关闭 WDT。							
		当 WDE 位为"1"且 WDT 溢出复位系统后会置位 WDT 复位系统标							
		□ S WDRF (位于 MCUSR 寄存器)。当 WDRF 位处于置位状态时会置							
		位 WDE 位。因此要清零 WDE 位,必须先清零 WDRF 位。							
[2:0]	WDP	WDT 预分频因子选择控制。							
[]		用来设置 WDT 的溢出周期。建议在 WDT 未计数时改变 WDP 的							
		值,在计数过程中改变 WDP 的值就会产生不可预期的 WDT 溢出。							

看门狗预分频选择列表:

WDP3	WDP2	WDP1	WDP0	看门狗定时器 溢出周期数	32KHz 时钟	2MHz 时钟
0	0	0	0	2K cycles	64ms	1ms
0	0	0	1	4K cycles	128ms	2ms
0	0	1	0	8K cycles	256ms	4ms
0	0	1	1	16K cycles	512ms	8ms
0	1	0	0	32K cycles	1 s	16ms
0	1	0	1	64K cycles	2s	32ms
0	1	1	0	128K cycles	4s	64ms
0	1	1	1	256K cycles	8s	128ms
1	0	0	0	512K cycles	16s	256ms
1	0	0	1	1024K cycles	32s	512ms