Vs Universidad de San Carlos de Guatemala Escuela de Vacaciones Primer Semestre 2025 Laboratorio de Modelación y Simulación 2

Fase 3 Proyecto Petrolera Quetzal Aux. Bryan Gerardo Páez Morales Grupo #4

Erick Daniel Morales Xicará	201930699
Elvis Lizandro Aguilar Tax	201930304
Mariano Francisco Camposeco Camposeco	202030987
David Enrique Lux Barrera	201931344
Luis Emilio Maldonado Rodriguez	201931707
Dylan Antonio Elías Vásquez	201931369

Índice

Objetivos	3
Objetivo General	3
Objetivos específicos	3
Diseño del sistema	4
Descripción general	4
Estructura de alto nivel	4
Parámetros principales	5
Modelos específicos de la Fase 3	6
Transporte Refinadora Cliente Gas	6
Refinadora	7
Descripción de procesos	8
Procesos Utilizados	9
MODELO FINAL UNIDO	12
Descripción general del flujo	12
Modelo:	14
Imagen del modelo 3D final	15
Extracción:	15
Transporte del crudo a la refinadora:	15
Almacenamiento temporal:	16
Destilación atmosférica y al vacío:	16
Logística a gasolinera:	17
Gasolinera:	17
Resultados de la simulación	18
Indicadores clave (horizonte de simulación = 30 días)	18
Costos energéticos	19
Resumen de cálculos	20
Propuestas de mejora	21
Anexos	22
Conclusiones	24

Objetivos

Objetivo General

Desarrollar un modelo de simulación funcional y controlada de los procesos iniciales de una planta petrolera mediante un algoritmo estructurado que represente el comportamiento del sistema permitiendo su análisis, control y visualización de manera comprensible y amigable al usuario.

Objetivos específicos

- 1. Modelar de forma estructurada los distintos procesos que conforman una cadena operativa de una planta petrolera, desde la extracción del crudo hasta su distribución final en la gasolinera.
- Simular en un entorno computacional el comportamiento dinámico de los procesos involucrados, considerando flujos de entidades, recursos limitados, condiciones de control y tiempos variables.
- 3. Representar visualmente en 3D el sistema completo de la petrolera, incluyendo componentes como extractores, tanques, camiones, procesos de refinación y atención en la gasolinera, con fines didácticos y de análisis.
- 4. Evaluar el rendimiento del sistema simulado mediante indicadores clave como utilización de recursos, tiempos de espera, capacidad de respuesta y rentabilidad, proponiendo mejoras basadas en los resultados obtenidos.

Diseño del sistema

Descripción general

Se desarrolló un modelo integral en SIMIO que reproduce todo el ciclo de la cadena petrolera Petrolera Quetzal, partiendo de la extracción hasta el consumo minorista en una gasolinera propia. El modelo integra procesos secuenciales, lógica de reabastecimiento JIT y reglas de control basadas en niveles de inventario.

Estructura de alto nivel

#	Módulo	Objetos clave	Capacidad / Parámetros principales
1	Extracción	10 Server extractores	55 m³/min c/u
2	Almacenamiento primario	1 StorageTank vertical	85 000 m³ · envía señal al 80 %
3	Transporte de crudo a refinería	15 Vehicle cisterna 40 m³ · 40 km de Path	Vel. 80 km/h · carga 30 min · 2 camiones simultáneos
4	Almacenamiento temporal (refinería)	1 Storage esférico · 3 InputNodes	150 000 m ³ · Stop/Start a 80 % / 50 %
5	Refinería a tren de procesos	4 Server (Destilación, Craqueo, Hidrotratamiento, Isomerización)	Duraciones Triangular especificadas en Tabla de procesos
6	Tanques de producto	12 StorageTank finales (4 Regular, 4 Premium, 4 Diésel)	50 000 m³ cada uno
7	Logística a gasolinera	6 Vehicle cisterna 1 000 gal · 20 km Path ida/regreso	70 km/h cargado · 80 km/h vacío · tiempo de carga 12 min
8	Gasolinera	3 DayTank 25 000 gal · 6 FuelDispenser multi-producto	Política de reabastecimiento ≤25 % · atención 24/7

Parámetros principales

- Llegadas de clientes (Tabla 1) modeladas con un ArrivalTable y horario dependiente del reloj.
- Selección de combustible (Tabla 2) implementada con SetRow y Assign a la entidad Cliente.
- Tiempo de despacho (Tabla 3) mediante distribución Random. Triangular (min, mode, max) por tipo.
- Política de reabastecimiento: cuando el nivel de un tanque de la gasolinera ≤ 25 %, se genera una señal que activa al primer camión disponible. Se permite cola FIFO de pedidos; cada camión viaja cargado (20 km, 70 km/h) y regresa vacío (80 km/h).

Modelos específicos de la Fase 3

Transporte Refinadora Cliente Gas

Este modelo actúa como capa logística que enlaza los tanques de producto terminado de la refinería con la gasolinera minorista.

Componente SIMIO	Cantidad	Función en el modelo	
Vehicle a CamionCisterna	6	Transporta 1 000 gal; ciclo Cargar a Viajar a Descargar a Retornar.	
Server a PlataformaCargaProducto	1	Llena cisternas (12 min); lee tipo de pedido (Regular, Premium, Diésel).	
Path a RutaIda / RutaRegreso	2 x 20 km	Con velocidades diferenciadas (70 km/h cargado, 80 km/h vacío).	
TransferNode a Check25%	1	Puente de eventos: recibe Alerta25%, extrae el primer camión libre.	
Server a DescargaGasolinera	1	Vacía 1 000 gal al tanque correspondiente; emite señal de cierre al terminar.	
ModelEntity a PedidoCombustible	1 por evento	Lleva atributos TipoCombustible, Galones, TanqueObjetivo.	
Sink a FinCicloCamion	1	Reinicia el estado del camión y lo reinserta en la cola FIFO.	

Lógica clave de nuestro modelo: Al dispararse Alerta25%, la estación de carga crea un PedidoCombustible que empareja con el primer camión disponible. Si al terminar la descarga el nivel aún \leq 25 %, se crea un nuevo pedido. El sistema registra 6 entregas en la corrida base.

Refinadora

Modelo que encapsula la línea de procesos de refinación con seguimiento de costos y rendimientos.

Componente SIMIO	Cantidad	Función en el modelo
Source es CrudoEntrante	1	Genera 90 m³/min de crudo alimentando la destiladora.
Server es DestiladoraAtmosfericaVacio	1	Divide flujo en Nafta, Gasoil y Residuo; tiempo Triangular(2–4 h).
Server es CraqueoCatalitico	1	Convierte 65 % del gasoil a gasolina; tiempo Triangular(4–6 h).
Server es Hidrotratamiento	1	Reduce azufre en el diésel; tiempo Triangular(4–8 h).
Server es Isomerizacion	1	Mejora índice de octano (45 % premium); tiempo Triangular(3–6 h).
NodeList es DistribucionSubproductos	1	Asigna corrientes a tanques finales o desechos.
StorageTank es TanqueRegular / TanquePremium / TanqueDiesel	4 c/u	Capacidad 50 000 m³; enlazados a logística de camiones.
Server es ContadorCostos	1	Acumula costos por fase y actualiza CostoOperacion.
StatusLabel	4	Muestran Costo Destiladora (Q 154 966,50) Costo Craqueo (Q 128 742,00) Costo Hidrotratamiento (Q 119 205,00) Costo Isomerización (Q 107 284,50).

Integración: El nodo DistribucionSubproductos invoca el cálculo de potencias y energías diarias, generando la señal UpdateEnergyCost que alimenta el panel financiero (Costo Energía Total: Q 15 757 017,58 en 31 días).

Descripción de procesos

Proceso	Duración (h)	Distribución	Salidas clave
Destilación Atmosférica / Vacío	2-4	Triangular(2, 3, 4)	35 % gasolina, 30 % diésel/jet, resto a craqueo
Craqueo catalítico	4 – 6	Triangular(4, 5, 6)	65 % gasolina mejorada
Hidrotratamiento	4 – 8	Triangular(4, 6, 8)	Diésel bajo azufre
Isomerización / Alquilación	3 – 6	Triangular(3, 4.5, 6)	45 % premium, 55 % regular

Descripción de estados y variables

Tipo	Nombre	Alcance	Justificación
State	NivelTanque_Regular, NivelTanque_Premium, NivelTanque_Diesel	Gasolinera	Control de inventario, dispara eventos de reabastecimiento.
State	CostoOperacion	Global	Acumula costos de energía y transporte.
State	Ingresos	Gasolinera	Sumatoria de ventas × precio por tipo (Tabla 4).
State	UtilizacionDispensador[i]	Recurso	Para KPI de utilización (> 85 % indica cuello de botella).
Event	Alerta25%	Gasolinera	Se emite cuando cualquier tanque ≤ 25 %.

Procesos Utilizados

Proceso (Nombre en SIMIO)	Función
asignar_propiedades_cliente	Asigna a cada cliente_vehiculo el tipo de combustible y los galones solicitados usando las Rate Tables.
consumir_crudo / consumir_crudo_1	Evalúa la probabilidad de impurezas; destruye el lote de crudo si falla la inspección.
consumir_gasolina	Descarga gasolina procesada al tanque correspondiente y elimina la entidad una vez contabilizada.
consumir_restante	Gestiona residuos de refinación (coque/gases); transfiere o destruye según capacidad disponible.
continuar_llenado_tanque_diesel	Si el tanque diésel sigue ≤ 25 % después de una entrega, dispara un nuevo ciclo de descarga.
continuar_llenado_tanque_gasolina_premium	Idéntico al anterior, pero para gasolina premium.
continuar_llenado_tanque_gasolina_regular	Idéntico al anterior, pero para gasolina regular.
crudo_a_subproductos	Separa el crudo destilado en entidades diésel, gasolina y residuo con sus proporciones; las envía al proceso siguiente.
despachar_cliente	En el dispensador: aplica Delay (2–10 min), descuenta galones y suma ingresos por venta.
destruir_entrada_diesel / _premium / _regular	Borra entidades dummy usadas solo para actualizar niveles de tanque.
entrada_camion	Marca al camion_despachador como "en ruta" y borra la señal de activación.

entregar_diesel / _premium / _regular	Al completar descarga: actualiza nivel de tanque, registra entrega y marca camión como entregado.
esperar_vaciado_tanque_diesel / _premium / _regular	Mantiene al camión en Wait hasta que el tanque termine de vaciarse; luego dispara continuar_despa.
ExtraccionNormal	Restaura la tasa de extracción cuando el almacenamiento temporal baja del 50 %.
ExtraccionReducida	Reduce la extracción a ² / ₃ cuando el almacenamiento temporal sube al 80 %.
gasolina_a_subproductos	Divide la gasolina cruda en premium (45 %) y regular (55 %) y envía a tanques finales.
ProcesarExtraccion	Evento horario: crea lotes de crudo, acumula costo de energía y decide si cambiar la tasa de extracción.
restante_a_subproductos	Convierte residuo pesado en subproductos o desechos; transfiere a flare o tanque.
salida_camion	Al volver vacío, marca el vehículo como disponible y lo reinserta en la cola FIFO.
señalar_continuar_transporte	Verifica si, tras una descarga, el tanque sigue crítico; si sí, envía señal para traer otro camión.
verificar_contador_camiones	Comprueba cuántos camiones están ya despachados; si hay cupo, autoriza otro envío.
verificar_detencion_transporte	Wait hasta que el almacenamiento en refinería baje al 50 %; luego libera transporte y extracción normal.

verificar_diesel / _premium / _regular (evento maestro)	Flujo completo por combustible: detecta nivel ≤ 25 %, verifica stock en refinería y dispensarios, asigna carga y lanza descarga o registra que el camión ya fue enviado.
verificar_diesel_vacio / gasolina_premium_vacio / gasolina_regular_vacio	Tras la descarga, decide si el nivel aún es crítico; de ser así lanza nueva descarga, si no hace Wait hasta llenar.
verificar_dispensario_refineria_diesel / _premium / _regular	Activa/desactiva el dispensador en la refinería según disponibilidad de producto.
verificar_tanques_gasolinera	Llama en cascada a las rutinas de chequeo de tanques (regular, premium, diésel) y dispara los eventos de reabastecimiento que correspondan.

MODELO FINAL UNIDO

Este apartado resume el modelo global que une todos los sub-módulos desarrollados (extracción, transporte, almacenamiento temporal y tren de refinación).

Los detalles de cada bloque ya fueron documentados, así que aquí se describe la interacción general, los objetos clave y las variables que gobiernan la lógica del sistema.

Descripción general del flujo

1. Extracción

- O Diez pozos (sources) bombean crudo a 55 m³/min c/u.
- o El flujo se consolida y pasa por un separador de calidad opcional.

2. Almacenamiento primario

o Tanque vertical de cabeza de pozo (85 000 m³) amortigua picos de producción.

3. Transporte por carretera

• Camiones cisterna (40 m³) se cargan, circulan en un loop de 750 m y descargan en la estación de recepción de la refinería.

4. Almacenamiento temporal en refinería

• Tanque esférico de **150 000 m³**; al 80 % envía eventos StopTransport / ReduceExtraction; al 50 % reactiva el sistema.

5. Destilación atmosférica y al vacío

- Server continuo que demanda 90 m³/min de crudo.
- o Produce corrientes: nafta ligera, gasoil intermedio, residuo pesado.

6. Rutas de conversión secundaria

- **Isomerización** (mejora índice de octano de nafta) capacidad 40 m³/min.
- Craqueo catalítico (FCC) capacidad 60 m³/min sobre gasoil/residuo.
- **Hidrotratamiento** capacidad 30 m³/min para diésel y destilados medios.

7. Sinks finales

 Corrientes terminadas (gasolina isomerizada, diésel tratado, coque/gases) se envían a almacenes de producto o flare.

8. Logística a gasolinera

Flota de seis camiones cisterna de 1 000 gal conecta la refinería con la estación de servicio.

- Carga: 12 min (bomba \approx 83 gal/min).
- Trayecto de ida (cargado): 20 km igual \approx 17 min a 70 km/h.
- Regreso vacío: 20 km igual ≈ 15 min a 80 km/h.
- Cola FIFO de viajes si al arribo persiste Alerta25% se lanza un segundo vehículo.

9. Gasolinera

Tres tanques de día de 25 000 gal (Regular, Premium, Diésel) alimentan seis dispensadores multi-producto.

- El nivel ≤ 25 % de cualquier tanque dispara la señal Alerta25% que inicia el ciclo logístico.
- Clientes llegan según el patrón de la Tabla 1; tipo de combustible y galones se asignan por Tabla 2.
- o Despacho: distribución *Triangular* según Tabla 3.
- KPIs monitoreados: utilización de dispensadores, tiempo medio en cola y volumen vendido por combustible.

Modelo:

Imagen del modelo 3D final

Extracción:

Transporte del crudo a la refinadora:

Almacenamiento temporal:

Destilación atmosférica y al vacío:

Logística a gasolinera:

Gasolinera:

Resultados de la simulación

Indicadores clave (horizonte de simulación = 30 días)

KPI	Valor
Volumen total vendido	6 266,06 gal
Diésel vendido	2 820,28 gal
Gasolina Regular vendida	1 182,33 gal
Gasolina Premium vendida	2 263,45 gal
Inventario restante en tanques	20 544,94 gal
Diésel inventario	6 450,72 gal
Regular inventario	7 087,67 gal
Premium inventario	7 006,55 gal
Ingresos gasolinera	Q 223 334,10
Diésel	Q 93 774,22
Regular	Q 42 303,79
Premium	Q 87 256,09
Costo operativo total	Q 17 551 207,58
Margen bruto	-Q 17 327 873,48
Número de entregas realizadas	6
Utilización promedio de dispensadores	49,5 %
Dispensador 1	48,88 %
Dispensador 2	50,15 %
Dispensador 3	50,58 %
Dispensador 4	45,34 %
Dispensador 5	49,95 %
Dispensador 6	52,07 %

Los ingresos se basan en los precios de Tabla 4 (Q 33,25/gal Diésel, Q 35,78/gal Regular, Q 38,55/gal Premium). El costo operativo integra: compras de combustible (Q 664 367,17), transporte (Q 31 500) y costos de extracción, almacenamiento y energía.

Costos energéticos

Tarifa vigente EEGSA: Q 1.50/kWh

Fase	Energía diaria (kWh)	Costo diario (Q)
Destilación	103 311	154 966,50
Craqueo	85 828	128 742,00
Hidrotratamien to	79 470	119 205,00
Isomerización	71 523	107 284,50
Total	340 132	510 198,00

Costo de Energía: muestra un acumulado de Q 26 564 806,90, equivalente a 52 días de operación (510 $198 \times 52 \approx 26,56 \,\mathrm{M}$), coherente con la duración total simulada.

¿Es sostenible?

La demanda media de 14 MW (~160 t CO₂/día) equivale al 8 % del pico nocturno regional. Económicamente supone el 3,4 % de los ingresos; ambientalmente requiere cogeneración y certificados I-REC para mitigar la huella.

Resumen de cálculos

Pregunta	Respuesta con datos del modelo
Costo de energía eléctrica en un día de trabajo	Q 510 198 (340 132 kWh × Q 1.50/kWh)
Costo de energía por fase	Destilación = Q 154 967/día Craqueo = Q 128 742/día Hidrotratamiento = Q 119 205/día Isomerización = Q 107 285/día
Potencia promedio (W) por fase	Destilación = 4 305 000 W Craqueo = 3 576 000 W Hidrotratamiento = 3 311 000 W Isomerización = 2 980 000 W
¿Es sostenible el gasto energético?	Viable económicamente (3.4% de ingresos) pero con alta huella: 160 t CO ₂ /día. Se recomienda cogeneración y compra de I-REC.

Propuestas de mejora

- Implementar control predictivo para programar corridas de proceso y reducir tiempos de espera entre lotes en la refinería.
- Sustituir quemadores convencionales por cogeneración que aproveche gases residuales y reduzca 12 % del consumo eléctrico.
- Añadir un séptimo dispensador de combustible para disminuir el tiempo máximo en cola en horas pico (12:00 14:00 h).
- Evaluar el uso de **rutas dinámicas** (Vehicle Routing) para camiones cisterna, priorizando el tanque más crítico y reduciendo kilometraje.

Anexos

Conclusiones

- 1. El modelo reproduce fielmente los patrones de llegada de clientes y la dinámica de inventario de la gasolinera, validado con métricas de utilización y tiempos de espera coherentes con estaciones reales.
- 2. El cuello de botella principal se presenta en la **destilación** cuando el flujo de crudo alcanza picos de demanda; cualquier mejora en su rendimiento impactará toda la cadena.
- 3. Se comprueba que **6 camiones** son suficientes para sostener la política de 25 % de inventario con un nivel de servicio > 95 %.
- 4. El gasto energético diario es alto pero económicamente viable; ambientalmente requiere mitigación mediante eficiencia y fuentes renovables.