MATA64 - Inteligência Artificial - Atividade Avaliativa 2021.1

Vacinação contra a Covid-19

Descrição

Suponha que você desenvolverá um código que ajudará na distribuição de vacinas contra a Covid-19 nos estados brasileiros. Para isso, será desenvolvido um sistema que utilizará o espaço para cargas de aviões, que já têm viagens pré-determinadas entre estados brasileiros, para distribuir doses de vacinas durante o percurso. O avião parte de um determinado estado até um destino e pode mudar sua rota para cumprir essa missão de distribuição de vacinas, desde que não se afaste demais do destino. Seja v a quantidade de vacinas que serão transportadas pelo avião e p_i ($0 \le p_i \le 1$) a taxa de pessoas vacinadas no estado i, a quantidade ideal de vacinas a ser distribuída no estado i é a quantidade inicial v de vacinas transportadas no avião ponderada por 0,2 (um quinto) da taxa de pessoas não-vacinadas, $0 \le \overline{p_i} \le 1$, naquele estado i, ou seja, $0 \le \overline{p_i} \le 1$ (a função

 $(0 \le \overline{p_i} \le 1)$, naquele estado i, ou seja, $qtd_vacinas_i = floor \left(v \times (0, 2 \times \overline{p_i})\right)$ (a função floor retorna a parte inteira de um número decimal).

Por exemplo, seja v igual a 100.000 e a taxa $\overline{p_i}$ de não-vacinados no estado i de 0,9, a quantidade de vacinas distribuídas nesse estado será determinada por $qtd_vacinas_i = floor(100.000 \times (0,2 \times 0,9)) = 18.000$.

O custo associado a escolher o estado i para o percurso está relacionado à sua distância em linha reta até o destino t ponderada pela taxa de vacinados: $h(i) = distancia(i, t) \times p$.

Para facilitar, o mapa será composto de apenas 12 estados, de acordo com a **Imagem 1** e a **Tabela 1** que contém as distâncias entre os estados que são vizinhos. A **Tabela 2** mostra as distâncias em linha reta entre cada estado i e os possíveis destinos t. Ambas as tabelas são simétricas.

Sua tarefa é desenvolver um algoritmo que irá determinar o trajeto que o avião deverá tomar saindo do estado inicial *s* indo até o estado *t* deixando doses de vacinas durante o percurso.

Formule este problema em termos de estado inicial, estado final, operadores e função de avaliação para Busca heurística com A*.

Entrada

A entrada do seu código terá a seguinte estrutura:

- Dois números inteiros (entre 1 e 12), separados por um espaço, representando o estado inicial s e o estado final t.
- Um número inteiro representando a quantidade v ($0 \le v \le 1000000$) de vacinas que serão transportadas pelo avião.
- Nas próximas 12 linhas serão informados dois números em cada linha: o primeiro número identifica o estado i ($1 \le i \le 12$) e o segundo a taxa p_i ($0 \le p_i \le 1$) de indivíduos vacinados naquele estado.

Saída

A saída do seu código deverá ter a seguinte estrutura:

- Na primeira linha deverá ser exibido o caminho que o avião deverá percorrer, utilizando o caractere `-` (sinal de menos) como separador do identificador do estado. Ex: 1-2-3-4
- Na segunda linha deverá ser exibido um número inteiro que indica a quantidade de doses de vacinas restantes ao final da viagem (estará negativo caso tenha faltado vacinas).

Exemplo

Entrada

2 4

100000

1 0.1127

2 0.0828

3 0.0759

4 0.0919

5 0.1023

- - - - -

6 0.0875

7 0.0952

8 0.0829

9 0.0573

10 0.0613

11 0.0720

12 0.0541

Saída

2-3-4 45012

Imagem 1: Mapa dos estados com as distâncias para os vizinhos nas arestas.

Tabela 1: Distâncias entre os estados vizinhos (em km)

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	270	475	675				980		1093		
2	-	0	225									
3	-	-	0	205								
4	-	-	-	0	99		623	933				
5	-	-	-	-	0	152	551					
6	-	-	-	-	-	0	430					
7	-	-	-	-	-	-	0	493				
8	-	-	-	-	-	-	-	0	325	845		
9	-	-	-	-	-	-	-	-	0	957	488	
10	_	-	-	-	-	-	-	-	-	0	965	1032
11	-	-	-	-	-	-	-	-	-	-	0	1787
12	-	-	-	-	-	-	-	-	-	-	-	0

Tabela 2: Distâncias em linha reta entre os estados (em km)

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	270	475	675	749	828	1017	980	1318	1093	1664	1924
2	-	0	225	394	484	612	837	938	1236	1238	1646	2128
3	-	-	0	205	290	426	712	933	1230	1376	1683	2343
4	-	-	-	0	99	247	623	933	1190	1508	1673	2457
5	-	-	-	-	0	152	551	902	1158	1524	1632	2508
6	-	-	-	-	-	0	430	846	1078	1545	1553	2533
7	-	-	-	-	-	-	0	493	657	1298	1227	2334
8	-	-	-	-	-	-	-	0	325	845	746	1860
9	-	-	-	-	-	-	-	-	0	957	488	1938
10	-	-	-	-	-	-	-	-	-	0	965	1032
11	-	-	-	-	-	-	-	-	-	-	0	1787
12	-	-	_	-	_	-	-	_	-	-	-	0

Atenção: Cuidado com espaços em excesso ou quebras de linhas ao final da saída do seu código pois o sistema de submissão dos códigos pode acusar a saída obtida diferente da esperada.