Aprendizaje Profundo y Redes Neuronales

La primera RN – El Perceptrón

- Está formada por una única neurona.
- Utiliza aprendizaje supervisado.
- Su regla de aprendizaje es una modificación de la propuesta por Hebb.
- Se adapta teniendo en cuenta el error entre la salida que da la red y la salida esperada.
- Representa una única función discriminante que separa linealmente los ejemplos en dos clases.

Funcionamiento del perceptrón

Ejemplo: Perceptrón para decidir si debo ir o no a un evento

- \square Cada entrada x_i vale 1 si se cumple la condición y 0 si no.
- \square Si la salida y es 1 significa que debo ir al evento.

Umbral = 3

Ejemplo: Perceptrón para decidir si debo ir o no a un evento

- \square Cada entrada x_i vale 1 si se cumple la condición y 0 si no.
- \square Si la salida y es 1 significa que debo ir al evento.

¿ Qué pasa si cambiamos Umbral = 5?

Ejemplo: Perceptrón para decidir si debo ir o no a un evento

- \square Cada entrada x_i vale 1 si se cumple la condición y 0 si no.
- \square Si la salida y es 1 significa que debo ir al evento.

Umbral = 3

¿Qué pasa si W_1 =2?

El perceptrón

Función discriminante

$$x_1w_1 + x_2w_2 + \ldots + x_nw_n = umbral$$

El perceptrón

Función discriminante

$$x_1w_1 + x_2w_2 + \ldots + x_nw_n - umbral = 0$$

x_1	x_2	Σ	у
0	0		
0	1		
1	0		
1	1		

x_1	x_2	Σ	y
0	0		
0	1		
1	0		
1	1		

x_1	x_2	Σ	y
0	0	-1.5	0
0	1		
1	0		
1	1		

x_1	x_2	Σ	y
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

Entrenamiento del perceptrón

- Se busca una estrategia iterativa que permita adaptar los valores de las conexiones a medida que se presentan los datos de entrada.
- Ver que el estímulo de entrada se corresponde con el producto interior de los vectors X y W.

Producto interior

$$w.x = ||w||.||x||.\cos(\phi)$$

$$w.x = \sum_{i=1}^{n} w_i x_i$$

Vector de proyección

$$w_x = ||w|| .\cos(\phi)$$

$$w_x \cdot ||x|| = w \cdot x$$

Uso del vector de proyección

$$W_x ||X|| = 0$$
$$W.X = 0$$

Entrenamiento del Perceptrón

- Inicializar los pesos de las conexiones con valores random (vector W)
- Mientras no se clasifiquen todos los ejemplos correctamente
 - □ Ingresar un ejemplo a la red.
 - □ Si fue clasificado incorrectamente
 - Si esperaba obtener W.X > 0 y no lo logró, "acerque" el vector W al vector X.
 - Si esperaba obtener W.X < 0 y no lo logró, "aleje" el vector W al vector X.

Aprendizaje supervisado

Ajuste del vector de pesos

 \square Si W.X < 0 no es el valor esperado entonces acercar W a X de la siguiente forma

$$w' = w + \alpha x$$

$$w' = w - \alpha x$$

La velocidad de aprendizaje lpha es un valor real perteneciente a (0,1]

Ajuste del vector de pesos

- □ La salida del perceptrón es $y = \begin{cases} 1 & si & W.X \ge 0 \\ 0 & si & W.X < 0 \end{cases}$
- □ La actualización de los pesos puede calcularse como

$$w_{nuevo} = w + \alpha (t - y) x$$

donde

- t es valor esperado
- $\square y$ es valor obtenido

Ajuste del vector de pesos

- □ La salida del perceptrón es $y = \begin{cases} 1 & si & W.X \ge 0 \\ 0 & si & W.X < 0 \end{cases}$
- La actualización de los pesos puede calcularse como

$$w_{nuevo} = w + \alpha (t - y) x$$

donde

- lacktriangle t es valor esperado
- $\square y$ es valor obtenido

Entrenamiento del perceptrón

- \square Seleccionar el valor de α
- Inicializar los pesos de las conexiones con valores random (vector W)
- Mientras no se clasifiquen todos los ejemplos correctamente
 - □ Ingresar un ejemplo a la red.
 - □ Si fue clasificado incorrectamente

Ejemplo

 Entrenar un perceptrón para que se comporte como la función lógica AND.

Utilice

$$\alpha = 0.25$$
 W_0 , W_1 y W_2 comienzan con valores aleatorios

Ejemplo

 Entrenar un perceptrón para que se comporte como la función lógica AND.

Utilice

$$\alpha = 0.25$$
 b, W_1 y W_2 comienzan con valores aleatorios

ECUACIÓN EXPLÍCITA DE LA RECTA

$$\alpha = 0.25$$

W1	W2	b
-1	1	0.2

X1	X2	T	Neta	Y
0	0	0	0.2	1

W1 = W1 + alfa *
$$(T-Y)$$
 * X1 = -1 + 0.25* $(0-1)$ *0 = -1
W2 = W2 + alfa * $(T-Y)$ * X2 = 1 + 0.25* $(0-1)$ *0 = 1
b = b + alfa * $(T-Y)$ * 1 = 0.2 + 0.25* $(0-1)$ = -0.05

$$\alpha = 0.25$$

W1	W 2	b
-1	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa *
$$(T-Y)$$
 * X1 = -1 + 0.25* $(0-1)$ *0 = -1
W2 = W2 + alfa * $(T-Y)$ * X2 = 1 + 0.25* $(0-1)$ *1 = 0.75
b = b + alfa * $(T-Y)$ * 1 = -0.05 + 0.25* $(0-1)$ = -0.3

$$\alpha = 0.25$$

w1	W2	b
-1	0.75	-0.3

X1	X2	T	Neta	Y
1	0	0	-1.3	0

$$\alpha = 0.25$$

w1	W2	b
-1	0.75	-0.3

X1	X2	T	Neta	Y
1	1	1	-0.55	0

$$\alpha = 0.25$$

W1	W2	b
-0.75	1	-0.05

X1	X2	T	Neta	Y
0	0	0	-0.05	0

$$\alpha = 0.25$$

W1	W 2	b
-0.75	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa *
$$(T-Y)$$
 * X1 = -0.75 + 0.25* $(0-1)$ *0 = -0.75
W2 = W2 + alfa * $(T-Y)$ * X2 = 1 + 0.25* $(0-1)$ *1 = 0.75
b = b + alfa * $(T-Y)$ * 1 = -0.05 + 0.25* $(0-1)$ = -0.3

$$\alpha = 0.25$$

W1	W2	b
-0.75	0.75	-0.3

X1	X2	T	Neta	Y
1	0	0	-1.05	0

$$\alpha = 0.25$$

W1	W2	b
-0.75	0.75	-0.3

X1	X2	T	Neta	Y
1	1	1	-0.3	0

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.75 + 0.25*(1-0)*1 = -0.5$$

W2 = W2 + alfa * (T-Y) * X2 = $0.75 + 0.25*(1-0)*1 = 1$
b = b + alfa * (T-Y) * 1 = $-0.3 + 0.25*(1-0) = -0.05$

$$\alpha = 0.25$$

W1	W2	b
-0.5	1	-0.05

X1	X2	T	Neta	Y
0	0	0	-0.05	0

$$\alpha = 0.25$$

W1	W2	b
-0.5	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.5 + 0.25*(0-1)*0 = -0.5$$

W2 = W2 + alfa * (T-Y) * X2 = 1 + $0.25*(0-1)*1 = 0.75$
b = b + alfa * (T-Y) * 1 = $-0.05 + 0.25*(0-1) = -0.3$

$$\alpha = 0.25$$

W1	W2	b
-0.5	0.75	-0.3

X1	X2	T	Neta	Y
1	0	0	-0.8	0

$$\alpha = 0.25$$

W1	W 2	b
-0.5	0.75	-0.3

X1	X2	T	Neta	Y
1	1	1	-0.05	0

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.5 + 0.25*(1-0)*1 = -0.25$$

W2 = W2 + alfa * (T-Y) * X2 = $0.75 + 0.25*(1-0)*1 = 1$
b = b + alfa * (T-Y) * 1 = $-0.3 + 0.25*(1-0) = -0.05$

$$\alpha = 0.25$$

W1	W 2	b
-0.25	1	-0.05

X1	X2	T	Neta	Y
0	0	0	-0.05	0

$$\alpha = 0.25$$

W1	W 2	b
-0.25	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.25 + 0.25*(0-1)*0 = -0.25$$

W2 = W2 + alfa * (T-Y) * X2 = 1 + $0.25*(0-1)*1 = 0.75$
b = b + alfa * (T-Y) * 1 = $-0.05 + 0.25*(0-1) = -0.3$

$$\alpha = 0.25$$

W1 W2		b
-0.25	0.75	-0.3

X1	X2	T	Neta	Y
1	0	0	-0.55	0

 $\alpha = 0.25$

W1 W2		b
-0.25	0.75	-0.3

X1	X2	T	Neta	Y
1	1	1	0.2	1

$$\alpha = 0.25$$

W1	W2	b
0	0.75	-0.3

$$\alpha = 0.25$$

W1	W2	b
0.25	0.75	-0.3

$$\alpha = 0.25$$

W1	W2	b
0.25	0.5	-0.55

$$\alpha = 0.25$$

W1	W 2	b
0.25	0.5	-0.55

Veamos cómo implementar el algoritmo de entrenamiento del **Perceptrón**

```
import numpy as np
import grafica as gr
```

```
# ---- FUNCION AND -----
X = np.array([[0, 1], [1,0],[0,0],[1,1]])
T = np.array([0, 0, 0, 1])
```



```
import numpy as np
import grafica as gr
   --- FUNCION AND --
X = np.array([[0, 1], [1,0],[0,0],[1,1]])
T = np.array([0, 0, 0, 1])
  --- Pesos iniciales ---
W = np.array([-1.0, 1.0])
b = 0.2
# Recta --> w1*x1 + w2*x2 + b = 0
```

gr.dibuPtosRecta(X,T,W,b)

Entrenamiento del perceptrón

- \square Seleccionar el valor de α
- Inicializar los pesos de las conexiones con valores random (vector W y el bias b)
- Mientras no se clasifiquen todos los ejemplos correctamente
 - Ingresar uno a uno los ejemplos a la red.
 - Para cada ejemplo incorrectamente clasificado

$$W_{nuevo} = W + \alpha (t - y) X$$

$$b_{nuevo} = b + \alpha (t - y)$$

ClassPerceptron.py

- Parámetros de entrada
 - alpha: valor en el intervalo (0, 1) que representa la velocidad de aprendizaje.
 - n_iter: máxima cantidad de iteraciones a realizar.
 - draw: valor distinto de 0 si se desea ver el gráfico y 0 si no. Sólo si es 2D.
 - title: lista con los nombres de los ejes para el gráfico. Se usa sólo si draw no es cero.
 - random_state: None si los pesos se inicializan en forma aleatoria, un valor entero para fijar la semilla

ClassPerceptron.py

```
ppn = Perceptron(alpha=0.1, n_iter=30)
ppn.fit(X, T)
```

Parámetros de entrada

- X : arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.
- T : arreglo de N elementos siendo N la cantidad de ejemplos

Retorna

- □ w_: arreglo de M elementos siendo M la cantidad de atributos de entrada
- b_: valor numérico continuo correspondiente al bias.
- errors_: errores cometidos en cada iteración.

ClassPerceptron.py

Y = ppn.predict(X)

- Parámetros de entrada
 - X : arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.

- Retorna: un arreglo con el resultado de aplicar el perceptrón entrenado previamente con fit() a la matriz de ejemplos X.
 - Y : arreglo de N elementos siendo N la cantidad de ejemplos

1.0 -

import numpy as np
from ClassPerceptron import Perceptron

```
X = np.array([[0, 1], [1,0],[0,0],[1,1]])
                                                       0.8
T = np.array([0, 0, 0, 1])
                                                       0.6
                                                       0.4
#--- ENTRENAMIENTO ---
                                                       0.2 -
                                                       0.0
ppn = Perceptron(alpha=0.1, n iter=30,
                   draw=1, title=['X1', 'X2'])
                                                                1.0
ppn.fit(X, T)
                                                                0.8
                                           1.0 -
                                                                0.4
                                           0.8
#--- Uso del perceptrón ---
                                                                0.2
                                                                0.0
Y = ppn.predict(X)
                                                                     0.2
                                                                        0.4
                                                                          0.6
                                           0.2
aciertos = sum(Y == T)
                                                   0.4
                                                     0.6
print("aciertos = ", aciertos)
nAciertos = sum(Y==T)
print("%% de aciertos = %.2f %%" %(100*nAciertos/X.shape[0]))
```

Ejemplo 1

- Sobre una cinta transportadora circulan naranjas y melones. Se busca obtener un clasificador de frutas que facilite su almacenamiento. Para cada fruta se conoce su diámetro, en centímetros y su intensidad de color naranja, medida entre 0 y 255.
- Utilice la información del archivo FrutasTrain.csv para entrenar un perceptrón que permita resolver el problema.
- Analice la performance de la red obtenida utilizando las muestras del archivo FrutasTest.csv

Ejemplo 1

Perceptron_Frutas_RN.ipynb

```
titulos

['Diametro', 'Color']

W

array([ 3.51034542, -0.41478193])

b

0.2536257868554866
```

 El resultado es una función discriminante lineal (en este caso una recta) que separa los datos de entrada en dos clases

3.51034542 * diametro - 0.41478193 * color + 0.253625787

Diametro	Color	Clase	Neta	Predice	Corresponde a
10	200	Naranja	-47.5993	0	Naranja
20	30	Melon	58.0171	1	Melon
8	150	Naranja	-33.8809	0	Naranja
26	30	Melon	79.0791	1	Melon
7	170	Naranja	-45.6869	0	Naranja
24	32	Melon	71.2289	1	Melon
20	170	Naranja	-0.0524	0	Naranja
21	160	Melon	7.6058	1	Melon
21	180	Naranja	-0.6899	0	Naranja
23	160	Melon	14.6265	1	Melon
22	190	Naranja	-1.3273	0	Naranja
23	190	Melon	2.1830	1	Melon
24	250	Naranja	-19.1936	0	Naranja
15	31	Melon	40.0506	1	Melon
15	250	Naranja	-50.7867	0	Naranja
19	31	Melon	54.0919	1	Melon

Uso del perceptrón

□ Ejemplos del archivo FrutasTest.csv

3.51034542 * diametro - 0.41478193 * color + 0.253625787

Diametro	Color	Clase	Neta	Predice	Corresponde a
7	100	Naranja	-16.6521	0	Naranja
20	20	Melon	62.1649	1	Melon
25	70	Melon	58.9775	1	Melon
10	210	Naranja	-51.7471	0	Naranja

Normalización

- Es conveniente normalizar los valores de los atributos antes de comenzar a entrenar.
- La normalización permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto.
- □ Técnicas de normalización
 - Normalización lineal
 - Estandarización o normalización z-score (usando media y desvío)

Normalización

- □ Se aplica según el modelo que se va a construir.
- □ La más común es la normalización lineal uniforme

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- □ Es muy sensible a valores fuera de rango (outliers).
- \square Si se recortan los extremos se obtiene valor negativos y/o mayores a 1.

Normalización

 Existen otras transformaciones. Por ejemplo, si los datos tienen distribución normal se pueden tipificar

$$X' = \frac{X - media(X)}{desviacion(X)}$$

 De esta forma los datos se distribuyen normalmente alrededor de 0 con desviación 1.

Frutas_train.csv

Valores originales

ID	Diametro	Color
1	10	200
2	20	30
3	8	150
4	26	30
5	7	170
6	24	32
7	20	170
8	21	160
9	21	180
10	23	160
11	22	190
12	23	190
13	24	250
14	15	31
15	15	250
16	19	31

Normalización lineal en [0,1]

Valores originales

		•
ID	Diametro	Color
1	10	200
2	20	30
3	8	150
4	26	30
5	7	1 <i>7</i> 0
6	24	32
7	20	1 <i>7</i> 0
8	21	160
9	21	180
10	23	160
11	22	190
12	23	190
13	24	250
14	15	31
15	15	250
16	19	31
	<u> </u>	

Normalización lineal

Color
0.773
0.000
0.545
0.000
0.636
0.009
0.636
0.591
0.682
0.591
0.727
0.727
1.000
0.005
1.000
0.005

Minimo Máximo

Diametro	Color
7	30
26	250

Normalización lineal en [0,1]

Valores originales

ID	Diametro	Color
1	10	200
2	20	30
3	8	150
4	26	30
5	7	170
6	24	32
7	20	170
8	21	160
9	21	180
10	23	160
11	22	190
12	23	190
13	24	250
14	15	31
15	15	250
16	19	31

Normalización lineal

Color
0.773
0.000
0.545
0.000
0.636
0.009
0.636
0.591
0.682
0.591
0.727
0.727
1.000
0.005
1.000
0.005

Minimo Máximo

Diametro	Color
7	30
26	250

Estandarización

Valores originales

ID	Diametro	Color
1	10	200
2	20	30
3	8	150
4	26	30
5	7	170
6	24	32
7	20	170
8	21	160
9	21	180
10	23	160
11	22	190
12	23	190
13	24	250
14	15	31
15	15	250
16	19	31
	·	

Norm.con media y desvío

Diametro	Color
-1.457	0.760
0.232	-1.357
-1.795	0.137
1.246	-1.357
-1.964	0.386
0.908	-1.333
0.232	0.386
0.401	0.262
0.401	0.511
0.739	0.262
0.570	0.635
0.739	0.635
0.908	1.382
-0.612	-1.345
-0.612	1.382
0.063	-1.345

Media Desvío

Diametro	Color
18.625	139
5.920	80.295

Estandarización

Valores originales

ID	Diametro	Color
1	10	200
2	20	30
3	8	150
4	26	30
5	7	170
6	24	32
7	20	170
8	21	160
9	21	180
10	23	160
11	22	190
12	23	190
13	24	250
14	15	31
15	15	250
16	19	31

Norm.con media y desvío

Diametro	Color
-1.457	0.760
0.232	-1.357
-1.795	0.137
1.246	-1.357
-1.964	0.386
0.908	-1.333
0.232	0.386
0.401	0.262
0.401	0.511
0.739	0.262
0.570	0.635
0.739	0.635
0.908	1.382
-0.612	-1.345
-0.612	1.382
0.063	-1.345

Media Desvío

Diametro	Color
18.625	139
5.920	80.295

Resultado de la normalización

Comparación de atributos

Valores originales

ID	Diametro	Color
1	10	200
2	20	30
3	8	150
4	26	30
5	7	170
6	24	32
7	20	170
8	21	160
9	21	180
10	23	160
11	22	190
12	23	190
13	24	250
14	15	31
15	15	250
16	19	31

Normalización lineal

Diametro	Color
0.158	0.773
0.684	0.000
0.053	0.545
1.000	0.000
0.000	0.636
0.895	0.009
0.684	0.636
0.737	0.591
0.737	0.682
0.842	0.591
0.789	0.727
0.842	0.727
0.895	1.000
0.421	0.005
0.421	1.000
0.632	0.005

Norm.con media y desvío

Diametro	Color
-1.457	0.760
0.232	-1.3 <i>57</i>
-1.795	0.137
1.246	-1.3 <i>57</i>
-1.964	0.386
0.908	-1.333
0.232	0.386
0.401	0.262
0.401	0.511
0.739	0.262
0.570	0.635
0.739	0.635
0.908	1.382
-0.612	-1.345
-0.612	1.382
0.063	-1.345

Comparación de atributos

valores originales

ID	
5	
3	
1	
14	
15	
16	
2	
7	
8	
9	
11	
10	
12	
6	
13	
4	

Diametro	Color
7	170
8	150
10	200
15	31
1.5	250
19	31
20	30
20	170
21	160
21	180
22	190
23	160
23	190
24	32
24	250
26	30

Normalización lineal

Diametro	Color
0.000	0.636
0.053	0.545
0.158	0.773
0.421	0.005
0.421	1.000
0.632	0.005
0.684	0.000
0.684	0.636
0.737	0.591
0.737	0.682
0.789	0.727
0.842	0.591
0.842	0.727
0.895	0.009
0.895	1.000
1.000	0.000

Norm.con media y desvío

Diametro	Color
-1.964	0.386
-1 <i>.</i> 795	0.137
-1.4 <i>57</i>	0.760
-0.612	-1.345
-0.612	1.382
0.063	-1.345
0.232	-1.3 <i>57</i>
0.232	0.386
0.401	0.262
0.401	0.511
0.570	0.635
0.739	0.262
0.739	0.635
0.908	-1.333
0.908	1.382
1.246	-1.357

Comparación de atributos

Valores originas

ID	Diametro	Color	
2	20	30	
4	26	30	
14	15	31	
16	19	31	
6	24	32	
3	8	150	
8	21	160	
10	23	160	
5	7	1 <i>7</i> 0	
7	20	1 <i>7</i> 0	
9	21	180	
11	22	190	
12	23	190	
1	10	200	
15	15	250	
13	24	250	

Normalización lineal

Diametro	Color	
0.684	0.000	
1.000	0.000	
0.421	0.005	
0.632	0.005	
0.895	0.009	
0.053	0.545	
0.737	0.591	
0.842	0.591	
0.000	0.636	
0.684	0.636	
0.737	0.682	
0.789	0.727	
0.842	0.727	
0.158	0.773	
0.421	1.000	
0.895	1.000	

Norm.con media y desvío

Diametro	Color
0.232	-1.3 <i>57</i>
1.246	-1.3 <i>57</i>
-0.612	-1.345
0.063	-1.345
0.908	-1.333
-1 <i>.</i> 795	0.137
0.401	0.262
0.739	0.262
-1.964	0.386
0.232	0.386
0.401	0.511
0.570	0.635
0.739	0.635
-1.457	0.760
-0.612	1.382
0.908	1.382

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
datos = pd.read csv("../Datos/FrutasTrain.csv")
xTrain = np.array(datos.iloc[:,0:2])
datosTest = pd.read csv("../Datos/FrutasTest.csv")
xTest = np.array(datosTest.iloc[:,0:2])
#--- Escala los valores entre 0 y 1 ---
normalizador = preprocessing.MinMaxScaler()
xTrain = normalizador.fit transform(xTrain)
#--- normalizando los datos de testeo ---
xTest = normalizador.transform(xTest)
```

Ejemplo 1

- □ Entrene el perceptrón
 - Normalizando los ejemplos linealmente
 - Normalizando los ejemplos utilizando los valores de media y desvío
- Pruebe ingresando
 - Las frutas en orden aleatorio
 - Las naranjas primero
 - Los melones primero

Evaluación del modelo

- Matriz de confusión
- Métricas
 - Accuracy
 - Precisión
 - Recall
 - □ F1-score

Matriz de Confusión

	Predice Clase 1	Predice Clase 2	Recall
True Clase 1	A	В	A/(A+B)
True Clase 2	С	D	D/(C+D)
Precision	A/(A+C)	D/(B+D)	(A+D)/(A+B+C+D)

accuracy

- Los aciertos del modelo están sobre la diagonal de la matriz.
- □ **Precision**: la proporción de predicciones correctas sobre una clase.
- □ Recall: la proporción de ejemplos de una clase que son correctamente clasificados.
- Accuracy: la performance general del modelo, sobre todas las clases. Es la cantidad de aciertos sobre el total de ejemplos.

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_{pred} = [0,(2) 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y train,Y pred)
print ("Matriz de confusión: \n%s" % MM)
                  Matriz de confusión:
               0 [[3 0 0 0]
                                            Esperaba obtener 1
                                           como respuesta pero
                                            la red respondió 2
                  [1 0 0 2]]
                    PREDICE
```

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_{pred} = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y_train,Y_pred)
print ("Matriz de confusión: \n%s" % MM)
                 Matriz de confusión:
               0 [[3 0 0 0]
                                           La respuesta correcta
              1 [0 2 1 0]
                                             es 2 pero la red
                                              respondió 1
                   [1 0 0 2]]
                    PREDICE
```

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_{pred} = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y train,Y pred)
print ("Matriz de confusión: \n%s" % MM)
                 Matriz de confusión:
               0 [[3 0 0 0]
                                          Esperaba un 3 pero la
                                            red respondió 0
               2 [0 1 2 0]
                   (1)0 0 2]]
                    PREDICE
```

```
Y \text{ train} = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y \text{ pred} = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
MM = metrics.confusion matrix(Y train,Y pred)
print("Matriz de confusión:\n%s" % MM)
                 Matriz de confusión:
               0 [[3 0 0 0]
                                           Los valores fuera de
              1 [0 2 1 0]
                                           la diagonal principal
               2 [0 1 2 0]
                                              son errores
                  [1 0 0 2]]
                    0 1 2 3
                    PREDICE
```

Sklearn.metrics.accuracy_score

```
from sklearn import metrics

Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

Y_pred = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]

aciertos = metrics.accuracy_score(Y_train,Y_pred)

print("%% accuracy = %.3f" % aciertos)
```

Sklearn.metrics.accuracy_score

```
from sklearn import metrics

Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

Y_pred = [0, 2 1, 3, 0, 1, 2, 0) 0, 1, 2, 3]

Rtas esperadas

Rtas esperadas

Rtas esperadas

Rtas esperadas

Y_train = [0, 1, 2, 3, 0, 1, 2, 3]

Rtas obtenidas

aciertos = metrics.accuracy_score(Y_train,Y_pred)

print("%% accuracy = %.3f" % aciertos)
```

- De los 12 valores sólo 9 fueron identificados correctamente.
- \square La tasa de aciertos es 9/12 = 0.75

Sklearn.metrics.classification_report

```
Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_pred = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
report = metrics.classification_report(Y_train,Y_pred)
print("Resultado de la clasificación: \n%s" % report)
Resultado de la clasificación:
```

		acion:	Ta clasifica	Kesultado de
support	f1-score	recall	precision	
3	0.86	1.00	0.75	0
3	0.67	0.67	0.67	1
3	0.67	0.67	0.67	2
3	0.80	0.67	1.00	3
12	0.75			accuracy
12	0.75	0.75	0.77	macro avg
12	0.75	0.75	0.77	weighted avg

Matriz de confusión: [[3 0 0 0] [0 2 1 0] [0 1 2 0] [1 0 0 2]]

Sklearn.metrics.classification_report

```
Y_train = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
Y_pred = [0, 2, 1, 3, 0, 1, 2, 0, 0, 1, 2, 3]
report = metrics.classification_report(Y_train,Y_pred)
print("Resultado de la clasificación:\n%s" % report)
```

		icion:	resultado de	
support	f1-score	recall	precision	
3	0.86	1.00	0.75	0
3	0.67	0.67	0.67	1
3	0.67	0.67	0.67	2
3	0.80	0.67	1.00	3
12	0.75			accuracy
12	0.75	0.75	0.77	macro avg
12	0.75	0.75	0.77	weighted avg

Rocultado do la clasificación:

F1-score

$$F1 = 2 * \frac{precision * recall}{precisión + recall}$$

Se busca predecir si el tipo de fármaco que se debe administrar a un paciente afectado de rinitis alérgica es el habitual (DrugY) o no.

- Para ello se hará uso de la información disponible en las historias clínicos de pacientes atendidos previamente. Las variables relevadas son:
 - Age: Edad
 - Sex: Sexo
 - BP (Blood Pressure): Tensión sanguínea.
 - Cholesterol: nivel de colesterol.
 - Na: Nivel de sodio en la sangre.
 - K: Nivel de potasio en la sangre.
 - Cada paciente ha sido medicado con un único fármaco de entre cinco posibles: DrugA, DrugB, DrugC, DrugX, DrugY.

El archivo **DrugY.csv** contiene 200 muestras de pacientes atendidos previamente.

Nro.	Age	Sex	ВР	Colesterol	Na	К	Drug
1	23	F	HIGH	HIGH	0,792535	0,031258	drugY
2	47	М	LOW	HIGH	0,739309	0,056468	drugC
3	47	М	LOW	HIGH	0,697269	0,068944	drugC
4	28	F	NORMAL	HIGH	0,563682	0,072289	drugX
5	61	F	LOW	HIGH	0,559294	0,030998	drugY
				::			
197	16	М	LOW	HIGH	0,743021	0,061886	drugC
198	52	М	NORMAL	HIGH	0,549945	0,055581	drugX
199	23	М	NORMAL	NORMAL	0,78452	0,055959	drugX
200	40	F	LOW	NORMAL	0,683503	0,060226	drugX

- Entrene un perceptrón para predecir si el tipo de fármaco que se debe administrar a un paciente afectado de rinitis alérgica es el habitual (DrugY) o no. Utilice el 80% de los ejemplos para entrenar y el 20% para testear.
 - Pruebe ambas numerizaciones.
 - Pruebe resolver el problema
 - Sin normalizar los datos
 - Normalizando linealmente
 - Normalizando utilizando media y desvío