Stable theories

Advanced Model Theory

March 3, 2022

Reference in the book: Theorem 11.4 in Section 11.1, and Section 11.4

1 Strong heirs from ultrapowers

Recall the structures (M, dp) from last week, where

$$(M, dp) \models d\varphi(\bar{b}) \iff \varphi(\bar{x}, \bar{b}) \in p(\bar{x}).$$

We showed that every elementary extension of (M, dp) has the form (N, dq) for some $N \succeq M$ and some heir $q \supseteq p$. We say that q is a *strong heir* of p if $(N, dq) \succeq (M, dp)$.

Definition 1. Suppose $p \in S_n(M)$, I is a set, and \mathcal{U} is an ultrafilter on I. Let $M^{\mathcal{U}}$ be the ultrapower. Then the ultrapower type $p^{\mathcal{U}} \in S_n(M^{\mathcal{U}})$ is the strong heir of p such that $(M^{\mathcal{U}}, dp^{\mathcal{U}}) = (M, dp)^{\mathcal{U}}$.

Here is a more explicit description of $p^{\mathcal{U}}$. If $\varphi(\bar{x}, \bar{y})$ is a formula and $\bar{b} \in M^{\mathcal{U}}$ is the class of $(\bar{b}_i : i \in I)$, then

$$\varphi(\bar{x}, \bar{b}) \in p^{\mathcal{U}} \iff (M, dp)^{\mathcal{U}} \models d\varphi(\bar{b})$$

$$\iff \{i \in I : (M, dp) \models d\varphi(\bar{b}_i)\} \in \mathcal{U}$$

$$\iff \{i \in I : \varphi(\bar{x}, \bar{b}_i) \in p(\bar{x})\} \in \mathcal{U}.$$

Proposition 2. Suppose $M \leq N$, $p \in S_n(M)$, and $q \in S_n(N)$ is an heir of p. Then there is (a copy of) an ultrapower M^U such that $M \leq N \leq M^U$ and $p \subseteq q \subseteq p^U$.

Proof. Let I be the set of functions from N to M extending $\mathrm{id}_M: M \to M$. Note that if $\varphi(\bar{x}, \bar{b}) \in q(\bar{x})$ for some $\bar{b} \in N$, then there is $f \in I$ such that $\varphi(\bar{x}, f(\bar{b})) \in p(\bar{x})$, because $q \supseteq p$. For each L-formula $\varphi(\bar{x}, \bar{y})$ and $\bar{b} \in N$, let

$$S_{\varphi,\bar{b}} = \{ f \in I : \varphi(\bar{x}, f(\bar{b})) \in p(\bar{x}) \}.$$

Let
$$\mathcal{F} = \{ S_{\varphi,\bar{b}} : \varphi(\bar{x},\bar{b}) \in q(\bar{x}) \}.$$

¹Something subtle is going on here, but this really does work if you think about it. The reason is that any formula $\varphi(\bar{x}, \bar{b})$ with $\bar{b} \in N$ can be written as $\varphi'(\bar{x}, \bar{b}', \bar{c})$ for some formula φ' , where \bar{b}' is a tuple of distinct elements in M, and \bar{c} is a tuple of distinct elements in $N \setminus M$. As $q \supseteq p$, there is $\bar{c}' \in M$ such that $\varphi'(\bar{x}, \bar{b}', \bar{c}') \in p(\bar{x})$. Then we can choose $f \in I$ such that $f(\bar{c}) = \bar{c}'$, because \bar{c} is a tuple of distinct elements

Claim. \mathcal{F} has FIP.

Proof. Suppose $\varphi_i(\bar{x}, \bar{b}_i) \in q(\bar{x})$ for $1 \leq i \leq n$. Then $\bigwedge_{i=1}^n \varphi_i(\bar{x}, \bar{b}_i) \in q(\bar{x})$. Take $f \in I$ such that $\bigwedge_{i=1}^n \varphi_i(\bar{x}, f(\bar{b}_i)) \in p(\bar{x})$. Then $f \in \bigcap_{i=1}^n S_{\varphi_i, \bar{b}_i}$.

Take \mathcal{U} an ultrafilter on I extending \mathcal{F} . Form $M^{\mathcal{U}}$ and $p^{\mathcal{U}}$, and take \bar{a}' realizing $M^{\mathcal{U}}$ in some elementary extension.

Let $g: N \to M^{\mathcal{U}}$ be the function which sends $c \in N$ to the class of $(f(c): f \in I)$. Note if $c \in M$, then f(c) = c for all f, and so g(c) is the class of the constant tuple $(c: f \in I)$, which we identify with c.

For any L-formula $\varphi(\bar{x}, \bar{y})$ and $\bar{b} \in N$,

$$\varphi(\bar{x}, \bar{b}) \in q(\bar{x}) \implies S_{\varphi, \bar{b}} \in \mathcal{F} \subseteq \mathcal{U}$$

$$\implies \{ f \in I : \varphi(\bar{x}, f(\bar{b})) \in p(\bar{x}) \} \in \mathcal{U}$$

$$\iff \varphi(\bar{x}, g(\bar{b})) \in p^{\mathcal{U}}.$$

Restricting to formulas that don't involve \bar{x} , we see

$$N \models \varphi(\bar{b}) \implies M^{\mathcal{U}} \models \varphi(g(\bar{b})),$$

so $g: N \to M^{\mathcal{U}}$ is an elementary embedding. Replacing $M^{\mathcal{U}}$ by an isomorphic copy, we may assume $M \preceq N \preceq M^{\mathcal{U}}$ and g is the inclusion. Then

$$\varphi(\bar{x}, \bar{b}) \in q(\bar{x}) \implies \varphi(\bar{x}, \bar{b}) \in p^{\mathcal{U}}$$

for L(N)-formulas $\varphi(\bar{x}, \bar{b})$, and so $p^{\mathcal{U}}$ extends q.

Corollary 3. Every heir of p extends to a strong heir of p.

2 Stability

Let T be a complete L-theory and \mathbb{M} be a monster model.

If α is an ordinal, then 2^{α} denotes the set of strings of length α in the alphabet $\{0,1\}$, or equivalently, functions from α to 2. Additionally, $2^{<\alpha}$ denotes $\bigcup_{\beta<\alpha} 2^{\beta}$.

Definition 4. Fix a formula $\varphi(\bar{x}, \bar{y})$ and an ordinal α . Take a collection of variables \bar{x}_{σ} where $\sigma \in 2^{\alpha}$ and \bar{y}_{τ} where $\tau \in 2^{<\alpha}$. Let D_{α} be the following set of formulas

$$D_{\alpha} = \{ \varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \text{ extends } \tau 0 \}$$
$$\cup \{ \neg \varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \text{ extends } \tau 1 \}.$$

Thus D_{α} is a partial type in the variables $(\bar{x}_{\sigma}: \sigma \in 2^{\alpha})$ and $(\bar{y}_{\tau}: \tau \in 2^{<\alpha})$.

not in M. Then $\varphi'(\bar{x}, \bar{b}', \bar{c}')$ is $\varphi'(\bar{x}, f(\bar{b}'), f(\bar{c}'))$ which is equivalent to $\varphi(\bar{x}, f(\bar{b}))$.

For example, if $M=\mathbb{Q}^{alg}$ and $N=\mathbb{C}$ and $\varphi(x;y_1,y_2,y_3)$ is the formula $(y_1x^2+y_2x+y_3\neq 0)$ and $\bar{b}=(\pi,2,\pi)$, then the formula $\varphi(x;\bar{b})$ is $(\pi x^2+2x+\pi\neq 0)$. This formula is equivalent to $\varphi'(x;b';c)$ where $\varphi'(x;y;z)$ is $(zx^2+yx+z\neq 0)$, b'=2, and $c=\pi$. Perhaps c'=1000, so that $\varphi'(x;b',c')$ is $(1000x^2+2x+1000\neq 0)$. The function $f:\mathbb{C}\to\mathbb{Q}^{alg}$ would then be any function on \mathbb{C} such that f(x)=x for $x\in\mathbb{Q}^{alg}$, and $f(\pi)=1000$. Then $\varphi(x;f(\bar{b}))$ is $\varphi(x,1000,2,1000)$ which is $(1000x^2+2x+1000\neq 0)$ as claimed.

Example. D_2 consists of the formulas

$$\varphi(x_{00}, y), \varphi(x_{00}, y_0)$$

$$\varphi(x_{01}, y), \neg \varphi(x_{01}, y_0)$$

$$\neg \varphi(x_{10}, y), \varphi(x_{10}, y_1)$$

$$\neg \varphi(x_{10}, y), \neg \varphi(x_{11}, y_1)$$

We say D_{α} is "consistent" if it is realized in a model of the complete theory T.

Proposition 5. For a formula $\varphi(\bar{x}, \bar{y})$, the following are equivalent:

- 1. D_{α} is consistent for any α .
- 2. D_{ω} is consistent.
- 3. D_n is consistent for all $n < \omega$.

Proof. (1) \Longrightarrow (2) is trivial, (2) \Longrightarrow (3) is easy, and (3) \Longrightarrow (1) is by compactness, supposedly².

Definition 6. A formula $\varphi(\bar{x}, \bar{y})$ has the *dichotomy property* if the equivalent conditions of Proposition 5 hold.

Remark 7. In other words, $\varphi(\bar{x}, \bar{y})$ has the dichotomy property if there are \bar{a}_{σ} for $\sigma \in 2^{\omega}$ and \bar{b}_{τ} for $\tau \in 2^{<\omega}$ such that for any $\tau \in 2^{<\omega}$ and any σ extending τ ,

$$\sigma \text{ extends } \tau 0 \implies \mathbb{M} \models \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$$
 $\sigma \text{ extends } \tau 1 \implies \mathbb{M} \models \neg \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$

(This is what it means for D_{ω} to be consistent.)

Proposition 8. Fix T, \mathbb{M} , and an integer $n < \omega$. Suppose there is a small model $M \leq \mathbb{M}$ and a type $p \in S_n(M)$ that is not definable. Then some formula $\varphi(x_1, \ldots, x_n; \bar{y})$ has the dichotomy property.

Proof. Because p is non-definable, there is $N \succeq M$ such that p has two distinct heirs $q_1, q_2 \in S_n(N)$. Take a formula $\varphi(x_1, \ldots, x_n; \bar{b})$ in $q_1(\bar{x}) \setminus q_2(\bar{x})$. Then $\neg \varphi(\bar{x}, \bar{b}) \in q_2(\bar{x})$.

Claim. If $M' \succeq M$ and $p' \in S_n(M')$ is an heir of p, then there is $N' \succeq M'$, $q'_1, q'_2 \in S_n(N')$ extending p', and $\bar{b}' \in N'$ such that $q'_1, q'_2 \supseteq p$ and $\varphi(\bar{x}, \bar{b}') \in q'_1$ but $\neg \varphi(\bar{x}, \bar{b}') \in q'_2$.

Proof. By Proposition 2, there is an ultrafilter $M \leq M' \leq M^{\mathcal{U}}$ with $p \subseteq p' \subseteq p^{\mathcal{U}}$. Then $M' \leq M^{\mathcal{U}} \leq N^{\mathcal{U}}$, and $p \sqsubseteq p^{\mathcal{U}} \sqsubseteq q_i^{\mathcal{U}}$ for i = 1, 2. Take $N' = N^{\mathcal{U}}$, $q_i' = q_i^{\mathcal{U}}$, and \bar{b}' to be the image of \bar{b} under the elementary embedding $N \to N^{\mathcal{U}}$.

²This makes intuitive sense, but the details seem very confusing to write out. We'll see a different proof of things in a future class.

Using this we can build a tree of small models M_{τ} and types $p_{\tau} \in S_n(M_{\tau})$ for $\tau \in 2^{<\omega}$ and parameters $\bar{b}_{\tau} \in M_{\tau}$ such that $p_{\tau} \supseteq p$, $M_{\tau 0} = M_{\tau 1} \succeq M_{\tau}$ and

$$\varphi(\bar{x}, \bar{b}_{\tau}) \in p_{\tau 0}$$
$$\neg \varphi(\bar{x}, \bar{b}_{\tau}) \in p_{\tau 1}$$

As each p_{τ} is consistent, this shows D_n holds for each n, so $\varphi(\bar{x}, \bar{y})$ has the dichotomy property.

Lemma 9. For any infinite cardinal λ , there is a cardinal μ such that $|2^{<\mu}| \leq \lambda$ and $2^{\mu} > \lambda$.

Proof. Let S be the class of cardinals μ such that $2^{\mu} > \lambda$. Then $\lambda \in S$, so S is non-empty. Take $\mu = \min(S)$. Then $\mu \leq \lambda$ and $2^{\mu} > \lambda$. Note for ordinals α ,

$$\alpha < \mu \implies |\alpha| < \mu \implies 2^{|\alpha|} < \lambda$$

by choice of μ . As $2^{<\mu} = \bigcup_{\alpha<\mu} 2^{\alpha}$, we have $|2^{<\mu}| \le \mu \cdot \lambda = \lambda$.

Proposition 10. Suppose some formula $\varphi(x_1, \ldots, x_n; \bar{y})$ has the dichotomy property. For any λ , there is $A \subseteq \mathbb{M}$ with $|A| \leq \lambda$ and $|S_n(A)| > \lambda$.

Proof. By Lemma 9, there is a cardinal μ with $|2^{<\mu}| \leq \lambda$ and $2^{\mu} > \lambda$.

Because φ has the dichotomy property, D_{μ} is consistent. So there are a_{σ} for $\sigma \in 2^{\mu}$ and b_{τ} for $\tau \in 2^{<\mu}$ such that

$$\mathbb{M} \models \varphi(a_{\sigma}, b_{\tau}) \text{ if } \sigma \text{ extends } \tau 0$$

 $\mathbb{M} \models \neg \varphi(a_{\sigma}, b_{\tau}) \text{ if } \sigma \text{ extends } \tau 1$

Let $A = \{b_{\tau} : \tau \in 2^{<\mu}\}$. Then $|A| \leq \lambda$ by choice of λ . But the a_{σ} have pairwise distinct types over A: if $\sigma \neq \sigma'$, then there is some $\tau \in 2^{<\mu}$ such that σ extends $\tau 0$ and σ' extends $\tau 1$, or vice versa. Then $\mathbb{M} \models \varphi(a_{\sigma}, b_{\tau}) \land \neg \varphi(a_{\sigma'}, b_{\tau})$, so $\operatorname{tp}(a_{\sigma}/A) \neq \operatorname{tp}(a_{\sigma'}/A)$. Therefore $|S_n(A)| \geq 2^{\mu} > \lambda$.

Lemma 11. Let λ be an infinite small cardinal. The following are equivalent:

- 1. If $A \subseteq \mathbb{M}$ and $|A| \leq \lambda$, then $|S_1(A)| \leq \lambda$.
- 2. If $A \subseteq \mathbb{M}$ and $|A| \leq \lambda$, then $|S_n(A)| \leq \lambda$ for all $n < \omega$.

(We didn't discuss the proof in class, but we'll discuss it in more detail next week.)

Proof. (2) \Longrightarrow (1) is trivial. Assume (1). By induction on n, $|S_{n-1}(A)| \leq \lambda$. Then we can find $\bar{b}_{\alpha} \in \mathbb{M}^{n-1}$ for $\alpha < \lambda$ such that

$$S_{n-1}(A) = \{ \operatorname{tp}(\bar{b}_{\alpha}/A) : \alpha < \lambda \}.$$

For each α , $|A\bar{b}_{\alpha}| \leq \lambda \implies |S_1(A\bar{b}_{\alpha})| \leq \lambda$ by (1). So we can find $c_{\alpha,\beta} \in \mathbb{M}$ for $\beta < \lambda$ such that

$$S_1(A\bar{b}_{\alpha}) = \{ \operatorname{tp}(c_{\alpha,\beta}/A\bar{b}_{\alpha}) : \beta < \lambda \} \text{ (for } \alpha < \lambda).$$

Claim. If $p \in S_n(A)$ then $p = \operatorname{tp}(\bar{b}_{\alpha}c_{\alpha,\beta}/A)$ for some $\alpha, \beta < \lambda$.

Proof. Take $(\bar{b}',c') \in \mathbb{M}^n$ realizing p. Then $\operatorname{tp}(\bar{b}'/A) = \operatorname{tp}(\bar{b}_{\alpha}/A)$ for some $\alpha < \lambda$. Moving (\bar{b}',c') by an automorphism in $\operatorname{Aut}(\mathbb{M}/A)$, we may assume $\bar{b}' = \bar{b}_{\alpha}$. Then $\operatorname{tp}(c/A\bar{b}_{\alpha}) = \operatorname{tp}(c_{\alpha,\beta}/A\bar{b}_{\alpha})$ for some $\beta < \lambda$. Moving c' by an automorphism in $\operatorname{Aut}(\mathbb{M}/A\bar{b}_{\alpha})$, we may assume $c' = c_{\alpha,\beta}$. Then $p = \operatorname{tp}(\bar{b}_{\alpha}c_{\alpha,\beta}/A)$.

By the claim,
$$|S_n(A)| \leq \lambda^2 = \lambda$$
.

Definition 12. The complete theory T is λ -stable if the equivalent conditions of Lemma 11 hold, i.e., $|A| \leq \lambda \implies |S_n(A)| \leq \lambda$.

Example. Suppose T is strongly minimal. Then T is λ -stable for any $\lambda \geq |L|$. To see this, take $A \subseteq \mathbb{M}$ with $|A| \leq \lambda$. By Löwenheim-Skolem there is $A \subseteq M \preceq \mathbb{M}$ with $|M| \leq \lambda$. Every type in $S_1(A)$ extends to a type in $S_1(M)$, so $|S_1(M)| \geq |S_1(A)|$. Finally, $S_1(M)$ only contains $\operatorname{tp}(a/M)$ for $a \in M$ plus the transcendental 1-type, so

$$|S_1(A)| \le |S_1(M)| \le \lambda + 1 = \lambda.$$

Theorem 13. Fix a complete theory T with monster model \mathbb{M} , and a positive integer n. The following are equivalent:

- 1. T is λ -stable for some λ .
- 2. No formula $\varphi(x_1,\ldots,x_n;\bar{y})$ has the dichotomy property.
- 3. All n-types over models are definable.

Proof. $(1) \Longrightarrow (2)$: Proposition 10.

 $(2) \Longrightarrow (3)$: Proposition 8.

It remains to prove $(3) \Longrightarrow (1)$. (We didn't get to this part of the proof in class, and we'll discuss it in more details next week.) Let $\lambda = 2^{|L|}$. Note $\lambda^{|L|} = (2^{|L|})^{|L|} = 2^{|L|^2} = 2^{|L|} = \lambda$. Take $A \subseteq \mathbb{M}$ with $|A| \le \lambda$. By Downward Löwenheim-Skolem, there is a small model $M \preceq \mathbb{M}$ with $A \subseteq M$ and $|M| \le \lambda$. Every n-type over A extends to an n-type over M, so $|S_n(A)| \le |S_0(M)|$. It remains to show $|M| \le \lambda \implies |S_n(M)| \le \lambda$. (That is, we may assume A is a small model M.) By (3), every n-type over M is definable. A definable type is determined by the map $\varphi \mapsto d\varphi$, which is a function from L-formulas to L(M)-formulas. So the number of (definable) types over M is at most $|L(M)|^{|L|} \le \lambda^{|L|} = \lambda$.

Remark 14. The third condition of Theorem 13 doesn't depend on n (essentially by Lemma 11), so the first and second conditions don't either. In particular, we get the following implications:

- If all 1-types over models are definable, then all *n*-types over models are definable.
- If no formula $\varphi(x; \bar{y})$ has the dichotomy property, then no formula $\varphi(\bar{x}; \bar{y})$ has the dichotomy property.

Example. Suppose T is strongly minimal. Then T is λ -stable for any $\lambda \geq |L|$. To see this, take $A \subseteq \mathbb{M}$ with $|A| \leq \lambda$. By Löwenheim-Skolem there is $A \subseteq M \preceq \mathbb{M}$ with $|M| \leq \lambda$. Every type in $S_1(A)$ extends to a type in $S_1(M)$, so $|S_1(M)| \geq |S_1(A)|$. Finally, $S_1(M)$ only contains $\operatorname{tp}(a/M)$ for $a \in M$ plus the transcendental 1-type, so

$$|S_1(A)| \le |S_1(M)| \le \lambda + 1 = \lambda.$$

Using only the $(1) \Longrightarrow (2) \Longrightarrow (3)$ parts of Theorem 13, we see that the following hold in a strongly minimal theory:

- No formula $\varphi(\bar{x}, \bar{y})$ has the dichotomy property.
- Every n-type over a model is definable. (Previously we only knew this for n = 1.)