Lab 1 - Exercise 6

Andrei Cristian mailto:andrei.cristian1@info.uaic.ro

February 21, 2021

1 Definition of bisimulation

A relation $Z \subseteq W \times W'$ is said to be *bisimulation* between M and M' if the following conditions are satisfied:

- 1. For all $w \in W$ and $w' \in W'$ such that $(w, w') \in Z$ and each $p \in AP$, it holds $p \in L(w)$ if and only if $p \in L'(w')$;
- 2. If $(w, w') \in Z$ and $(w, v) \in R$, then there exists $v' \in W'$ such that $(v, v') \in Z$ and $(w', v') \in R'$ (forth condition);
- 3. If $(w, w') \in Z$ and $(w', v') \in R$, then there exists $v \in W$ such that $(v, v') \in Z$ and $(w, v) \in R$ (back condition).

Two worlds w and w' are called bisimilar, $w \iff_{M,M'} w'$, if there is a bisimulation Z between M and M' with $(w,w') \in Z$.

2 Proposition 1

Let M=< W, R, L> and M'=< W', R', L'> be two Kripke structures. Let $w\in W'$ such as $w \longleftrightarrow_{M,M'} w'$. Then w and w' are modally equivalent, i.e., for each formula Modal Logic φ ,

$$M, w \models \varphi \text{ iff. } M', w' \models \varphi$$

3 Structural induction proof

Demonstration using structural induction:

•
$$\varphi = p \in AP$$
, $M, w \models p$ iff. $p \in L(w)$

$$w \iff_{M,M'} w' \xrightarrow{1} L(w) = L(w') \Rightarrow p \in L(w') \Rightarrow M', w' \models p; \textbf{(a)}$$

$$M', w' \models p \text{ iff. } p \in L(w')$$

$$w \iff_{M,M'} w' \xrightarrow{1} L(w') = L(w) \Rightarrow p \in L(w) \Rightarrow M, w \models p; \textbf{(b)}$$

$$(a), (b) \Rightarrow M, w \models p \text{ iff. } M, w' \models p.$$

$$\Rightarrow M, w \models p \text{ iff. } M', w' \models p.$$

```
• \varphi = \neg \varphi_1, \ M, w \models \neg \varphi_1 \text{ iff. } M, w \not\models \varphi_1;  (a)
M, w \models \varphi_1 \text{ iff. } M', w' \models \varphi_1;  (b) – demonstrated previously
(a), (b) \Rightarrow M', w' \not\models \varphi_1 \Rightarrow M', w' \models \neg \varphi_1.
M', w' \models \neg \varphi_1 \text{ iff. } M', w' \not\models \varphi_1;  (c)
M', w' \models \varphi_1 \text{ iff. } M, w \models \varphi_1;  (d) – demonstrated previously
(c), (d) \Rightarrow M, w \not\models \varphi_1 \Rightarrow M, w \models \neg \varphi_1.
\Rightarrow M, w \models \varphi \text{ iff. } M', w' \models \varphi.
```

- $\varphi = \Diamond \varphi_1, \ M, w \models \Diamond \varphi_1 \text{ iff. } \exists t \in W, (w, t) \in R, M, t \models \varphi_1; \mathbf{(a)}$ $w \leftrightsquigarrow_{M,M'} w' \xrightarrow{2} \text{ if exists } (w, t) \in R, \text{ then } \exists t' \in W', (w', t') \in R'$ and $t \leftrightsquigarrow_{M,M'} t'; \mathbf{(b)}$ $(a), (b) \xrightarrow{IH} \exists t', (w', t') \in R', M', t' \models \varphi_1 \Rightarrow M', w' \models \Diamond \varphi_1;$ $M', w' \models \Diamond \varphi_1 \text{ iff. } \exists t' \in W', (w', t') \in R', M', t' \models \varphi_1; \mathbf{(c)}$ $w \leftrightsquigarrow_{M,M'} w' \xrightarrow{3} \text{ if exists } (w', t') \in R', \text{ then } \exists t \in W, (w, t) \in R$ and $t \leftrightsquigarrow_{M,M'} t'; \mathbf{(d)}$ $(c), (d) \xrightarrow{IH} \exists t, (w, t) \in R, M, t \models \varphi_1 \Rightarrow M, w \models \Diamond \varphi_1.$ $\Rightarrow M, w \models \varphi \text{ iff. } M', w' \models \varphi.$
- $\varphi = \Box \varphi_1$, $M, w \models \Box \varphi_1$ iff. $\forall t \in W, (w, t) \in R, M, t \models \varphi_1$; (a) $w \iff_{M,M'} w' \xrightarrow{2}$ if exists $(w, t) \in R$, then $\exists t' \in W', (w', t') \in R'$ and $t \iff_{M,M'} t'$; (b) $(a), (b) \xrightarrow{IH} \forall t', (w', t') \in R', M', t' \models \varphi_1 \Rightarrow M', w' \models \Box \varphi_1$; $M', w' \models \Box \varphi_1$ iff. $\forall t' \in W', (w', t') \in R', M', t' \models \varphi_1$; (c) $w \iff_{M,M'} w' \xrightarrow{3}$ if exists $(w', t') \in R'$, then $\exists t \in W, (w, t) \in R$ and $t \iff_{M,M'} t'$; (d) $(c), (d) \xrightarrow{IH} \forall t, (w, t) \in R, M, t \models \varphi_1 \Rightarrow M, w \models \Box \varphi_1$. $\Rightarrow M, w \models \varphi$ iff. $M', w' \models \varphi$.

In conclusion, $\forall \varphi \in BML, M, w \models \varphi \text{ iff. } M', w' \models \varphi$