STT 861 Compendium - Part Two

Kenyon Cavender

November 6, 2019

1

Expected Values

<u>Def</u> The **expected value** of a random variable g(X):

$$\mathbb{E}(g(X)) = \begin{cases} \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum_{X} g(x) f_X(x) & \text{if } X \text{ is discrete} \end{cases}$$

Remark If $-\infty \leq \mathbb{E}(g(x)) \leq \infty$ we say the expectation of g(x) exists. Else it does not exist.

notation: $|\mathbb{E}(g(x))| \leq \infty$

In particular, if g(x) = x, then we get the expected value of X:

$$\mathbb{E}(g(X)) = \begin{cases} \int x f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum x f_X(x) & \text{if } X \text{ is discrete} \end{cases}$$

This is called the **mean** of r.v. X

Also denoted by μ or μ_X

Theorem Expectation

a. $\mathbb{E}(ag(x) + b) = a\mathbb{E}(g(x)) + ba,b$ real constants

b. If $g(x) \ge 0$ for all $x \in \mathbb{R}$, then $\mathbb{E}(g(x)) \ge 0$

c. If $g_1(x) \geq g_2(x)$ for all $x \in \mathbb{R}$, then $\mathbb{E}(g_1(x)) \geq \mathbb{E}(g_2(x))$

d. For any real constants a,b if $a \leq X \leq b$ then $a < \mathbb{E}(X) < b$

Remark Expectation

a. If g is a linear fn, $\mathbb{E}[g(x)] = g[\mathbb{E}(x)]$

b. g(x) has finite expectation if $0 \leq \mathbb{E}[|g(x)|] \leq \infty$

Moments

<u>Def</u> Moments For a r.v. X, we define the r^{th} raw moments by

$$\mu'_r = \begin{cases} \int x' f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum x' f_X(x) & \text{if } X \text{ is discrete} \end{cases}$$

$$\mu_1' = \mathbb{E}(x') = \mathbb{E}(x) = \mu$$

<u>Def</u> The r^{th} central moment is defined as $\mu_r = \mathbb{E}[(x-\mu)^r]$

<u>Def</u> Moment Generating Function: For a r.v. X, the mgf is defined as: $M_X(t) = \mathbb{E}(e^{tx})$ provided the expectation exists for all t in a neighborhood of 0.

I.e. $\mathbb{E} < \infty \ \forall \ t \in (-h, h)$ for some h > 0

Theorem 2.3.11a

Let $F_X(x)$ and $F_Y(y)$ be two cdfs all of whose moments exist. If X, Y have bounded support

(i.e. Support $(f_X) = \{x : f_X(x) = 0\}$)

Then $F_X(u) = F_Y(u) \ \forall \ u \ \text{iff} \ \mathbb{E}(x') = \mathbb{E}(y') \ \forall \ r \in \mathbb{Z}$

Example: P(Heads) for a coin flip and P(Even) for a die roll have the same distribution, but are different variables.

Theorem 2.3.11b

X and Y have identical distributions iff $M_x(t) = M_y(t)$ in some neighborhood of 0.

Theorem 2.3.12

Suppose $\{X_n : n \geq 1\}$ is a sequence of r.v.s with mgf $M_{x_n}(t)$. Then:

 $\lim_{n\to\infty} M_{x_n}(t) = M_y(t) \iff \lim_{n\to\infty} F_{x_n}(u) = F_y(u)$ for some r.v. Y for all continuity points u of $F_y(t)$ of $F_y(t)$ converges to Y in distribution

Remark Properties of MGF

a.
$$M_x(0) = 1$$

b.
$$M_{ax+b}(t) = e^{bt} M_x(at)$$

c.
$$\frac{d^n}{dt^n}M_x(t)|_{t=0} =: M_x^{(n)} = \mu'_n$$
 (nth raw moment of X)

Theorem Let f(x) be any pdf and let μ and $\sigma > 0$ be any given constants. The the function

$$g(x|\mu,\sigma) = \frac{1}{\sigma}f(\frac{x-\mu}{\sigma})$$

is a pdf.

a. $\mathscr{F} = \{f_0(x - \mu) : \mu \in \mathbb{R}\}\$ is called the location family of pdfs and μ is the location parameter

b. $\mathscr{F} = \{\frac{1}{\sigma}f_0(\frac{x}{\sigma}) : \sigma > 0\}$ is called the scale family of pdfs and σ is the scale parameter

c. $\mathscr{F} = \{\frac{1}{\sigma}f_0(\frac{x-\mu}{\sigma}) : \mu \in \mathbb{R}, \sigma > 0\}$ is called the scale family of pdfs where σ is the scale parameter and μ is the location parameter

Theorem 3.5.6

Let f_0 be a pdf and $\mu \in \mathbb{R}, \sigma > 0$ then a r.v. X has a pdf $f(x) = \frac{1}{\sigma} f_0(\frac{x-\mu}{\sigma})$ iff Z has pdf $f_0(.)$ and $x = \sigma z + \mu$

Theorem Let Z be r.v. w/ pdf $f_0(x)$. Suppose $\mathbb{E}(z) < \infty$ and $Var(z) < \infty$. Then there exists r.v X with pdf $f_0(x) = \frac{1}{\sigma} f_0(\frac{x-\mu}{\sigma})$ which satisfies:

a.
$$\mathbb{E}(x) = \sigma \mathbb{E}(z) + \mu$$

b.
$$Var(x) = \sigma^2 Var(z)$$

<u>Def</u> A pdf $f(x|\theta)$ is a member of the exponential family if we can write

$$f(x|\theta) = h(x)c(\theta)exp\left[\sum_{j=1}^{k} w_j(\theta)t_j(x)\right]$$

where

a. $h(x) \ge 0$ and does not depend on θ

b. $c(\theta) \geq 0$ and does not depend on x

c. $w_i(\theta)$ doesn't depend on $x \forall i$

d. $t_i(x)$ doesn't depend on $\theta \forall j$

Def

$$\mathbb{I}_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Remark Binomial(n,p) where n is also a parameter is not a member of the exponential class. But if n is known, then for the parameter p, binomial is a member of the exponential family.

Theorem 3.4.2

Suppose X has pmf or pdf which belongs to a exponential family. Then

a.

$$\mathbb{E}(\sum_{i=1}^{k} \frac{\delta}{\delta \theta_{j}} w_{i}(\theta) t_{i}(X)) = -\frac{\delta}{\delta \theta_{j}} log c(\theta)$$

b.

$$\mathbb{E}(\sum_{i=1}^{k} \frac{\delta}{\delta \theta_{j}} w_{i}(\theta) t_{i}(X)) = -\frac{\delta^{2}}{\delta \theta_{j}^{2}} - \mathbb{E}(\sum_{i=1}^{k} \frac{\delta^{2}}{\delta \theta_{j}^{2}} w_{i}(\theta) t_{i}(X)) log c(\theta)$$

Theorem 3.6.1

Let X be a r.v. and g is a non-negative function. Then for any r > 0

$$P(g(x) \ge r) \le \frac{\mathbb{E}[g(x)]}{r}$$

Def Markov's Inequality

Let X be r.v. then for every $\epsilon > 0$ and k > 0

$$P(|x| \ge \epsilon) \le \frac{\mathbb{E}(|x|^k)}{\epsilon^k}$$

Def Chebyshev's Inequality

Let X be r.v. with mean μ and variance σ^2 Then for any $\epsilon > 0$

$$P(|x - \mu| < \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$