SDSS-IV/eBOSS LRGs Clustering Using Photo-z

Abhishek Prakash, SDSS-IV/eBOSS Collaboration University of Pittsburgh, PITT PACC

SDSS-IV/eBOSS LRG sample

- Probing the redshift range 0.6 < z < 1.0
- 60 targets deg⁻², aiming for ~1% BAO measurement.
- Color selected combining SDSS and WISE (Infrared) photometry
- Flux limited in z-band and i-band
- 600,000 LRGs over 10,000 deg² of SDSS-III/BOSS footprint.
- Targets over 7,500 deg² to be observed in SDSS-IV.

Wise Systematics maps

SDSS Systematics maps

Density of LRG targets

Photo-z estimations

Further improvements possible!

Current eBOSS spectroscopic data used for training(80%) and validation(20%).

LRGs survey binary mask

Areas showing >15% variation in target density are rejected.

Predicted density maps at different redshifts

Linear multivariate regression predicts density using SDSS/WISE systematics maps

Randoms Reflect Systematics Variation

Predicted density maps are normalized on the same scale to sample randoms

LRGs post-masking

LRG sample and randoms masked same way.

3D correlation (CUTE)

3D correlation

3D correlation

Next, modeling as power-law in bins of sigma