Huggett (1993) - The Risk-Free Rate in Heterogeneous Agent Incomplete Insurance Economies

The model of Huggett (1993) is a heterogeneous agent model with idiosyncratic but no aggregate risk. The household problem has one exogenous state, a, and one exogenous state e, and is given the value function problem,

$$V(a, e) = \max_{c, a'} \frac{c^{1-\mu}}{1-\mu} + \beta E[V(a', e')|e]$$

s.t. $c + qa' = a + e$
 $a' > a$

where e follows a markov process with two states, $e \in \{e_l, e_h\}$, and transition matrix $\pi(e) = [\pi_{e_l,e_l}, \pi_{e_h,e_l}; \pi_{e_l,e_h}, \pi_{e_h,e_h}]$.

The households choices of a' together with the exogenous markov process e imply a transition function P on the state (a, e). Let $\Psi(a, e)$ denote a distribution of agents over (a, e) in the state space $A \times E$.

Definition 1. A stationary equilibrium for this economy is c(a, e), a'(a, e), q, Φ satisfying

- c(a,e) & a'(a,e) are optimal decision rules given q.
- Market clear: (i) $\int_{A\times E} c(a,e)d\Psi = \int_{A\times E} ed\Psi$, and (ii) $\int_{A\times E} a'(a,e)d\Psi = 0$.
- Agent distribution is stationary: $\Psi(a',e') = \int_{A\times E} P((a,e),(a',e'))d\Psi(a,e)$.

Note: this definition is lazy on notation; both Φ and P should be defined on the σ -algebra, not on specific points.

So the market clearance (general equilibrium) requirement is for price q to balance borrowing and lending (ie. that integral of a over the stationary agent distribution is zero).¹ Baseline parameter values are given by: $\beta = 0.99322$, $\mu = 1.5$, $\underline{\mathbf{a}} = -2$, $e_h = 1$, $e_l = 0.1$, $\pi_{e_h,e_h} = 0.925$, $\pi_{e_h,e_l} = 0.5$.

Replication involves two Figures, 1 & 2, and two Tables, 1 & 2. Everything replicates pretty accurately (minor numerical differences). The general equilibrium is almost certainly unique (graphs of market clearance condition not shown).

References

Mark Huggett. The risk-free rate in heterogeneous agent incomplete insurance economies. <u>Journal</u> of Economic Dynamics and Control, 17:953–969, 1993.

¹The second clearance condition in the definition of stationary equilibrium will follow by Walras' law).

Table 1: Table 1 of Huggett (1993) Coefficient of Relative Risk Aversion μ =1.5

Credit Limit	Interest Rate	Price
$(-\underline{\mathbf{a}})$	(r)	(q)
-2	-7.3 %	1.0128
-4	1.2~%	0.9981
-6	3.1~%	0.9950
-8	3.8~%	0.9938

Replication of Table 1 of Huggett (1993) using grid sizes $n_a=1024,\;n_e=2,\;n_q=1551$

Table 2: Table 2 of Huggett (1993)

Coefficient of Relative Risk Aversion μ =3.0

Credit Limit	Interest Rate	Price
$(-\underline{\mathbf{a}})$	(r)	(q)
-2	-23.6 %	1.0459
-4	-4.4 %	1.0075
-6	0.8~%	0.9987
-8	2.8~%	0.9955

Replication of Table 2 of Huggett (1993) using grid sizes $n_a=1024,\;n_e=2,\;n_q=1551$

Credit limit	Interest rate (r)	Price (q)
- 2	- 7.1%	1.0124
- 4	2.3%	0.9962
- 6	3.4%	0.9944
- 8	4.0%	0.9935

6 1: 1: :			
Credit limit	Interest rate	Price	
(<u>a</u>)	(r)	(4)	
- 2	- 23 %	1.0448	
- 4	- 2.6%	1.0045	
- 6	1.8%	0.9970	
- 8	3.7%	0.9940	

Table 3: Original Tables of Huggett (1993)

Figure 1: Figure 1 of Huggett (1993)

Figure 2: Figure 2 of Huggett (1993)

Figure 3: Original Figures of Huggett (1993)