

CD4095BMS CD4096BMS

CMOS Gated J-K Master-Slave Flip-Flops

December 1992

Features

- · Set-Reset Capability
- . High Voltage Types (20V Rating)
- CD4095BMS Non-Inverting J and K Inputs
- CD4096BMS Inverting and Non-Inverting J and K Inputs
- 16MHz Toggle Rate (Typ.) at VDD VSS = 10V
- · Gated Inputs
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Registers
- Counters
- Control Circuits

Description

CD4095BMS and CD4096BMS are J-K Master-Slave Flip-Flops featuring separate AND gating of multiple J and K inputs. The gated J-K inputs control transfer of information into the master section during clocked operation. Information on the J-K inputs is transferred to the Q and $\overline{\rm Q}$ outputs on the positive edge of the clock pulse. SET and RESET inputs (active high) are provided for asynchronous operation.

The CD4095BMS and CD4096BMS are supplied in these 14 lead outline packages:

Braze Seal DIP H4Q Frit Seal DIP H1A

Pinouts CD4095BMS TOP VIEW 14 VDD NC 1 13 SET RESET 2 12 CLOCK J1 3 11 K1 J2 4 10 K2 J3 5 Q 6 9 K3 vss 7 8 Q **CD4096BMS** TOP VIEW 14 VDD NC 1 RESET 2 13 SET 12 CLOCK J1 3 11 K1 J2 4 J3 5 10 K2 Q 6 9 K3 8 Q vss 7 NC = NO CONNECTION

Functional Diagrams

CD4096BMS

Absolute Maximum Ratings Reliability Information Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V $^{\theta_{jc}}_{20^{o}\text{C/W}}$ (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Flatpack Package 70°C/W 20°C/W Maximum Package Power Dissipation (PD) at +125°C DC Input Current, Any One Input±10mA Operating Temperature Range.....-55°C to +125°C For TA = -55° C to $+100^{\circ}$ C (Package Type D, F, K).....500mW For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) Derate Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW For TA = Full Package Temperature Range (All Package Types) At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (1	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	2	μΑ
				2	+125°C	-	200	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
					+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	VDD = 15V, No Load (Note 3)		+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V		1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	VDD = 15V, VOUT = 1.5V		+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V		1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Clock to Output	TPLH1		10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	300	ns
Set or Reset to Output	TPLH2		10, 11	+125°C, -55°C	-	405	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	3.5	-	MHz
Frequency			10, 11	+125°C, -55°C	2.59	-	MHz

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μΑ
				+125°C	-	30	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μА
				+125°C	-	60	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μА
				+125°C	-	120	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	200	ns
Clock to Output	TPLH	VDD = 15V	1, 2, 3	+25°C	-	150	ns
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	150	ns
Set or Reset to Output	TPLH	VDD = 15V	1, 2, 3	+25°C	-	100	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input	FCL	VDD = 10V	1, 2, 3	+25°C	8	-	MHz
Frequency		VDD = 15V	1, 2, 3	+25°C	12	-	MHz
Minimum Set or Reset	TW	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Pulse Width		VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	400	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	160	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	140	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	60	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Maximum Clock Input	TRCL	VDD = 5V	1, 2, 3	+25°C	-	15	μs
Rise or Fall Time	TFCL	VDD = 10V	1, 2, 3	+25°C	-	5	μs
		VDD = 15V	1, 2, 3	+25°C	-	5	μs
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	٧
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	± 0.2μΑ
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1	Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	D-883		READ AND RECORD	
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9 Table 4		1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz
CD4095BMS		•				
Static Burn-In 1 Note 1	1, 6, 8	2-5, 7, 9-13	14			
Static Burn-In 2 Note 1	1, 6, 8	7	2-5, 9-14			
Dynamic Burn- In Note 1	1	2, 7, 13	3-5, 9-11, 14	6, 8	-	12
Irradiation Note 2	1, 6, 8	7	2-5, 9-14			
CD4096BMS		•	•			•
Static Burn-In 1 Note 1	1, 6, 8	2-5, 7, 9-13	14			
Static Burn-In 2 Note 1	1, 6, 8	7	2-5, 9-14			
Dynamic Burn- In Note 1	1	2, 5, 7, 9, 13	3, 4, 10, 11, 14	6, 8	12	
Irradiation Note 2	1, 6, 8	7	2-5, 9-14			

NOTES:

^{1.} Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V

^{2.} Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

FIGURE 1. CD4095BMS AND CD4096BMS LOGIC DIAGRAM

TRUTH TABLES

		JS OPERATION R = 0)				US OPERATION Don't Care)	
	ORE POSITIVE RANSITION				RE POSITIVE	OUTPUTS AFTER POSITIVE CLOCK TRANSITION	
J*	K*	Q	Q Q		R	Q	Q
0 0 1 1	0 1 0 1	No Change 0 1 Toggles	No Change 1 0 Toggles	0 0 1 1	0 1 0 1	No Change 0 1	No Change 1 0

* For CD4095BMS J = J1 • J2 • J3 K = K1 • K2 • K3 For CD4096BMS $J = J1 \cdot J2 \cdot \overline{J3}$ $K = K1 \cdot K2 \cdot \overline{K3}$

7-1101

Typical Performance Characteristics

FIGURE 7. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 9. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 11. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 8. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 10. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 12. TYPICAL TRANSITION TIME vs LOAD CAPACITANCE

Typical Performance Characteristics (Continued)

FIGURE 13. TYPICAL CLOCK FREQUENCY vs SUPPLY VOLTAGE (TOGGLE MODE - SEE FIGURE 4)

FIGURE 14. TYPICAL POWER DISSIPATION vs INPUT CLOCK FREQUENCY

Chip Dimensions and Pad Layouts

CD4095BHMS

CD4096BHMS

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com