提示: 本试题中默认 z = x + iy, $x \times y$ 为实数.

- 一. (20 分) 判断命题正确与否(正确打√,错误打×) 2'×10
 - ()1. 旋度为0的矢量场叫做无旋场
 - () 2. 无旋场的散度处处为 0
 - () 3. 对于复数 z_1 , z_2 , $Arg(z_1z_2) = Argz_1 + Argz_2$ 成立
 - () 4. 关于复数 2*i* < 3*i*
 - () 5. f(z)在 z_0 点可微,则f(z)在 z_0 解析
 - () 6. 每一个幂函数在它的收敛圆周上处处收敛
 - ()7. 设级数 $\sum_{n=0}^{\infty} c_n$ 收敛,而 $\sum_{n=0}^{\infty} \left| c_n \right|$ 发散,则 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 1
 - () 8. $z = \pi$ 是 $\frac{\sin z}{z \pi}$ 的本质奇点
 - () 9. 若函数 f(z) 在 z_0 处解析,则它在该点的某个领域内可以展开为幂级数
 - () 10. 函数 u = y x 是 v = y + x 的共轭调和函数
- 二. (10 分) 填空 2'×5
 - 1. 3ⁱ=____

2. 幂级数 $\sum_{n=0}^{\infty} \frac{nz^n}{2^n}$ 的收敛半径 R =______

3.
$$\operatorname{Re} s \left[\sin \frac{1}{z-1}, 1 \right] = \underline{\hspace{1cm}}$$

4. 已知分式线性映射 w=L(z) 将单位圆 $\{z||z|<1\}$ 映射为单位圆 $\{w||w|<1\}$,且

$$L\left(\frac{1}{2}i\right)=0$$
 , $\mathfrak{M}L\left(2i\right)=$

- 5. 求数量场 $u = x^2 yz^3$ 在M(2,1,-1) 处最大导数的方向为______,其最大值为_____
- 三. (70分) 简答或计算题
 - 1.(10分) 计算下列各值

(1)
$$(\sqrt{3} + i)^4$$

(2)
$$(1-i)^{\frac{1}{3}}$$

2. (10 分) 设 $f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$,求 a,b,c,d 的值,使得 f(z) 在 复平面处处解析。

3. (10 分) 将函数 $z^2e^{\frac{1}{z}}$ 在 $0<|z|<\infty$ 的圆环内展开成洛朗级数

4. (10 分) 利用留数定理求积分 $\int_{|z|=2} \frac{e^{2z}}{\left(z-1\right)^2} dz$ (圆周取正向)

5. (10 分) 分式线性映射 $w = \frac{z}{z-1}$ 将单位圆盘 $|z| \le 1$ 映射成 w 平面上的什么区域?

6. (10 分) 求平面数量场 $u(x,y) = (x+1)^2 + y^2$, 沿曲线 $y = x^2$ 过点 M(2,4) 的切线方向的方向导数及梯度

7. (10 分) 求矢量场 $A = x(z-y)\mathbf{i} + y(x-z)\mathbf{j} + z(y-x)\mathbf{k}$ 在点 M(1,2,3) 处沿方向 $\mathbf{n} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ 的环量面密度