Forecasting: Principles and Practice

Manuel Rain

07-11-2020

Contents

Chapter 2	1
 Utilice la función de ayuda para explorar lo que la serie gold, woolyrnqy gasrepresentar. Descargue el archivo tute1.csvdel sitio web del libro, ábralo en Excel (o alguna otra aplicación de hoja de cálculo) y revise su contenido. Debería encontrar cuatro columnas de información. Cada una de las columnas B a D contiene una serie trimestral, denominada Sales, AdBudget y GDP. Ventas contiene las ventas trimestrales de una pequeña empresa durante el período 1981-2005. AdBudget es el presupuesto publicitario y el PIB es el producto interno bruto. 	1
Todas las series se han ajustado por inflación	5
en un archivo MS-Excel	7
4. Crear gráficos de tiempo de la siguiente serie de tiempo: bicoal, chicken, dole, usdeaths, lynx, goog, writing, fancy, a10, h02	12
5. Utilice los ggseasonplot() y ggsubseriesplot() las funciones para explorar los patrones estacionales en las siguientes series de tiempo:	13
6. Utilizar las funciones siguientes gráficos: autoplot(), ggseasonplot(), ggsubseriesplot(), gglagplot(), ggAcf()y explorar las características de las siguientes series de tiempo: hsales, usdeaths, bricksq,	21
sunspotarea, gasoline	43
8. Las siguientes gráficas de tiempo y gráficas de ACF corresponden a cuatro series de tiempo diferentes. Su tarea es hacer coincidir cada gráfico de tiempo en la primera fila con uno de los	40
gráficos de ACF en la segunda fila	52
desde enero de 1980 hasta agosto de 1995. Utilice mypigs <- window(pigs, start=1990)para seleccionar los datos a partir de 1990. Utilice autoploty ggAcfpara las mypigsseries y compárelas con los gráficos de ruido blanco de las Figuras 2.17 y 2.18	60
10. dj contiene 292 días de negociación consecutivos del índice Dow Jones. Úselo ddj <- diff(dj)para calcular los cambios diarios en el índice. Parcela ddjy su ACF. ¿Los cambios en el índice Dow	
Jones parecen ruido blanco?	62
Chapter 2	
•	
1. Utilice la función de ayuda para explorar lo que la serie gold, woolyrn	$\mathbf{q}\mathbf{y}$

\mathbf{C}

gasrepresentar.

```
library(fpp2)
str(gold)
```

```
## Time-Series [1:1108] from 1 to 1108: 306 300 303 297 304 ...

str(woolyrnq)

## Time-Series [1:119] from 1965 to 1994: 6172 6709 6633 6660 6786 ...

str(gas)

## Time-Series [1:476] from 1956 to 1996: 1709 1646 1794 1878 2173 ...

# a. Use autoplot para trazar cada uno de estos en gráficos separados.

autoplot(gold)
```


autoplot(woolyrnq)

autoplot(gas)


```
frequency(gold)
## [1] 1
frequency(woolyrnq)
## [1] 4
frequency(gas)
## [1] 12
# C. Utilice which.max () para detectar el valor atípico en la serie
print("¿Cuándo el oro (gold) alcanzó el valor máximo?")
## [1] "¿Cuándo el oro (gold) alcanzó el valor máximo?"
which.max(gold)
## [1] 770
print("¿Cuál fue el valor máximo del oro (gold) ? ")
```

[1] "¿Cuál fue el valor máximo del oro (gold) ? "

```
gold[which.max(gold)]
## [1] 593.7
```

2. Descargue el archivo tute1.csvdel sitio web del libro , ábralo en Excel (o alguna otra aplicación de hoja de cálculo) y revise su contenido. Debería encontrar cuatro columnas de información. Cada una de las columnas B a D contiene una serie trimestral, denominada Sales, AdBudget y GDP. Ventas contiene las ventas trimestrales de una pequeña empresa durante el período 1981-2005. AdBudget es el presupuesto publicitario y el PIB es el producto interno bruto. Todas las series se han ajustado por inflación.

```
# a.Puede leer los datos en R con el siguiente script:
tute1 <- read.csv("tute1.csv", header=TRUE)

# b. Convierta los datos en series de tiempo

mytimeseries <- ts(tute1[,-1], start=1981, frequency=4)

# (El [,-1] elimina la primera columna que contiene los cuartos, ya que no los necesitamos ahora).
# c. Construya gráficas de series de tiempo de cada una de las tres series
autoplot(mytimeseries, facets=TRUE)</pre>
```


autoplot(mytimeseries)

3.Descargue algunos datos minoristas australianos mensuales del sitio web del libro . Estos representan ventas minoristas en varias categorías para diferentes estados australianos y se almacenan en un archivo MS-Excel

```
# a. Puede leer los datos en R con el siguiente script:
retaildata <- xlsx::read.xlsx("retail.xlsx", sheetIndex = 1, startRow = 2)

# b. Seleccione una de las series de tiempo de la siguiente manera (pero reemplace el nombre de la columyts <- ts(retaildata[,"A3349873A"], frequency=12, start=c(1982,4))

# c. Explore la serie de tiempo minorista elegida mediante las siguientes funciones:
autoplot(myts)</pre>
```


ggseasonplot(myts)

ggsubseriesplot(myts)

gglagplot(myts, lags = 12)

ggAcf(myts)

Series: myts

4. Crear gráficos de tiempo de la siguiente serie de tiempo: bicoal, chicken, dole, usdeaths, lynx, goog, writing, fancy, a10, h02.

```
# - Úselo help()para conocer los datos de cada serie.
help(bicoal)
help(chicken)
help(dole)
help(usdeaths)
help(lynx)
help(goog)
help(writing)
help(fancy)
help(a10)
help(h02)
\# - Para el googgráfico, modifique las etiquetas y el título del eje.
autoplot(goog) +
  ggtitle("Precios de cierre diarios de las acciones de Google Inc.") +
  xlab("Tiempo") +
  ylab("Precio(Unit: US$)")
```

Precios de cierre diarios de las acciones de Google Inc.

5. Utilice los ggseasonplot() y ggsubseriesplot()las funciones para explorar los patrones estacionales en las siguientes series de tiempo:

```
# - ¿Qué puedes decir sobre los patrones estacionales?
# - ¿Puedes identificar algunos años inusuales?
ggseasonplot(writing)
```


ggsubseriesplot(writing)

La cantidad de papel vendido cae anualmente en agosto
ggseasonplot(fancy)

ggsubseriesplot(fancy)

En diciembre de 1992, las ventas mensuales de una tienda de souvenirs aumentaron drásticamente en co ggseasonplot(a10)

ggsubseriesplot(a10)

La cantidad mensual de antidiabetes cae anualmente en febrero
ggseasonplot(h02)

La cantidad mensual de corticosteroides disminuye anualmente en febrero

6. Utilizar las funciones siguientes gráficos: autoplot(), ggseasonplot(), ggsubseriesplot(), gglagplot(), ggAcf()y explorar las características de las siguientes series de tiempo: hsales, usdeaths, bricksq, sunspotarea, gasoline.

```
# - ¿Puedes detectar alguna estacionalidad, ciclicidad y tendencia?
# - ¿Qué aprendes sobre la serie?
autoplot(hsales)
```


ggseasonplot(hsales)

Seasonal plot: hsales

ggsubseriesplot(hsales)

gglagplot(hsales)

ggAcf(hsales, lag.max = 400)

puede detectar la estacionalidad y la ciclicidad. El período del ciclo es de aproximadamente 4 años # autoplot(usdeaths)

ggseasonplot(usdeaths)

Seasonal plot: usdeaths

ggsubseriesplot(usdeaths)

gglagplot(usdeaths)

ggAcf(usdeaths, lag.max = 60)

Series: usdeaths

puede detectar la estacionalidad
autoplot(bricksq)

ggseasonplot(bricksq)

gglagplot(bricksq)

ggAcf(bricksq, lag.max = 200)

Series: bricksq

puede detectar poca estacionalidad y una fuerte tendencia
autoplot(sunspotarea)


```
# ggseasonplot (sunspotarea)
# no estacional, no puedo dibujarlo
# ggsubseriesplot (sunspotarea)
# no estacional, inútil dibujarlo
gglagplot(sunspotarea)
```


ggAcf(sunspotarea, lag.max = 50)

Series: sunspotarea

puede detectar una ciclicidad fuerte
autoplot(gasoline)

ggseasonplot(gasoline)

Seasonal plot: gasoline

ggsubseriesplot(gasoline)
La cantidad de semanas es 52 y parece que es demasiado para la trama de la subserie.
gglagplot(gasoline)

ggAcf(gasoline, lag.max = 1000)

Series: gasoline

puede detectar la estacionalidad y la tendencia

7. El arrivalsconjunto de datos comprende llegadas internacionales trimestrales (en miles) a Australia desde Japón, Nueva Zelanda, Reino Unido y Estados Unidos.

```
# ver estructura
str(arrivals)

## Time-Series [1:127, 1:4] from 1981 to 2012: 14.76 9.32 10.17 19.51 17.12 ...

## - attr(*, "dimnames")=List of 2

## ..$: NULL

## ..$: chr [1:4] "Japan" "NZ" "UK" "US"

# - Use autoplot, ggseasonplot and ggsubseriesplot to compare the differences between the arrivals from

# - ¿Puede identificar alguna observación inusual?

autoplot(arrivals)
```


El mayor número de llegadas provino de Nueva Zelanda en la década de 1980. Y el país propietario del # Los datos de llegada de Reino Unido muestran la mayor fluctuación trimestral.

ggseasonplot(arrivals[, "Japan"])

ggseasonplot(arrivals[, "NZ"])

ggseasonplot(arrivals[, "UK"])

ggseasonplot(arrivals[, "US"])

ggsubseriesplot(arrivals[, "Japan"])

ggsubseriesplot(arrivals[, "NZ"])

ggsubseriesplot(arrivals[, "UK"])

ggsubseriesplot(arrivals[, "US"])


```
# Las llegadas de Japón disminuyen mucho en el 2^{\circ} trimestre en comparación con los otros cuartos.
# Las llegadas de Nueva Zelanda son más altas en el tercer trimestre y más bajas en el primer trimestre
# Las llegadas de Reino Unido y EE. UU. Son bajas en el 2^{\circ} y 3^{\circ} trimestres y altas en el 1^{\circ} y 4^{\circ} trimes
```

8. Las siguientes gráficas de tiempo y gráficas de ACF corresponden a cuatro series de tiempo diferentes. Su tarea es hacer coincidir cada gráfico de tiempo en la primera fila con uno de los gráficos de ACF en la segunda fila.

```
autoplot(cowtemp)+
ggtitle("Daily temperature of cow.")
```

Daily temperature of cow.

acf(cowtemp)

Series cowtemp

autoplot(usdeaths)+ggtitle("Month accidental deaths.")

Month accidental deaths.

acf(usdeaths)

Series usdeaths

autoplot(airpass)+ggtitle("Month air passengers.")

Month air passengers.

acf(airpass)

Series airpass

autoplot(mink)+ggtitle("Annual number of minks trapped in McKenzie river district of northwest Canada:

Annual number of minks trapped in McKenzie river district of northwest C

acf(mink)

Series mink

9. Los pigs datos muestran el número total mensual de cerdos sacrificados en Victoria, Australia, desde enero de 1980 hasta agosto de 1995. Utilice mypigs <- window(pigs, start=1990)para seleccionar los datos a partir de 1990. Utilice autoploty ggAcfpara las mypigsseries y compárelas con los gráficos de ruido blanco de las Figuras 2.17 y 2.18.

```
mypigs <- window(pigs, start=1990)
str(mypigs)

## Time-Series [1:68] from 1990 to 1996: 75982 78074 77588 84100 97966 ...
autoplot(mypigs)</pre>
```


ggAcf(mypigs)

 ${\it \# puede encontrar que 3 valores de autocorrelaci\'on estaban fuera de los l\'imites. Por lo tanto, {\it mypigs pour le la contrar que 3 valores de autocorrelaci\'on estaban fuera de los l\'imites. Por lo tanto, {\it mypigs pour le la contrar que 3 valores de autocorrelaci\'on estaban fuera de los l\'imites. Por lo tanto, {\it mypigs pour le la contrar que 3 valores de autocorrelaci\'on estaban fuera de los l\'imites. Por lo tanto, {\it mypigs pour le la contrar que 3 valores de autocorrelaci\'on estaban fuera de los l\'imites. Por lo tanto, {\it mypigs pour le la contrar que 3 valores de autocorrelaci\'on estaban fuera de los l\'imites. Por lo tanto, {\it mypigs pour le la contrar que 3 valores de autocorrelaci\'on estaban fuera de los limites.}$

18

24

10. dj
contiene 292 días de negociación consecutivos del índice Dow Jones. Úselo
 ddj <- diff(dj)para calcular los cambios diarios en el índice. Parcela ddjy su
 ACF. ¿Los cambios en el índice Dow Jones parecen ruido blanco?

12

Lag

6

```
ddj <- diff(dj)
str(ddj)

## Time-Series [1:291] from 2 to 292: -6 -19 8 -13.5 -13.5 -18 1 32 12 -18 ...
autoplot(ddj)</pre>
```


ggAcf(ddj)

 $\textit{\#puede encontrar que sustancialmente menos del 5\% de los valores de autocorrelación estaban fuera de los valores de los valores de los valores de autocorrelación estaban fuera de los valores de los valor$