Keynotes on Data Structure

Instructor: Shizhe Zhou

Course Code:00125401

tree

Populate Alphabet

Binary representation

2pointers for each node:

1st points to its first child;2nd points to its sibling(if any).

Implicit representation

Linear storage in an array!

heap

Every subtree of a heap is also a heap.

also a heap. Priority-queue -insert(x) -remove() top 两种: 最大堆和最小堆

Heap adjustment *for 最大堆*

```
算法 Remove_Max_from_Heap(A, n)
输入:A(用来表示堆的大小为n的数组)
输出: Top\_of\_the\_Heap(堆中最大的元素 )、A(调整后的堆)和 n(调整后
     堆的大小; 若 n=0, 则堆为空)
begin
   if n = 0 then print "the heap is empty"
   else
      Top of the Heap := A[1];
     A[1] := A[n]:
     n = n - 1:
     parent := 1;
                                     Max(left child, right child)
     child := 2;
      while chil_i \leq n - 1 do
        if A[child] < A[child+1] then
                                     比较A[n]与Max(left child,
           child := child + 1 :
                                     right child)
        if A[child] > A[parent] then
           swap(A[parent], A[child]);
                                                   2.5 \log_2 n
           parent := child;
           child := 2*child :
        else child := n {终止循环}
                                                 堆排序适合较大的n
end
```

图 4.7 算法 Remove_Max_from_Heap

insert(x) for 最大堆

```
算法 Insert_to_Heap(A, n, x)
输入: A ( 用来表示堆的大小为 <math>n 的数组 ) 以及 x ( 某个数 )
输出: A(调整后的堆)以及n(调整后堆的大小)
begin
   n := n + 1; {假设数组不会越界}
  A[n] := x;
   child := n;
  parent := n div 2;
   while parent \ge 1 do
     if A[parent] < A[child] then
        swap(A[parent], A[child]); {参见习题 4.6}
        child := parent;
        parent := parent div 2;
     else parent := 0 {终止循环}
                图 4.8
                      算法 Insert_to_Heap
                                  A[n]
```

BST: Binary Search Tree

- 左小右大.
- 右左子树都是BST树.
- 无重节点.
- 表示的是record,存储的是key.
- 支持快速Sorting和Searching.
- Base DS for set, multisets, associative arrays

BST search

Simple recursive compare

```
算法 BST_Search (root, x)
输入: root(指向二叉搜索树根节点的指针)以及x(某个数)
输出: node (指向含有关键字 x 的节点的指针,如果上述节点
     不存在,则指向 nil)
begin
   if root = nil or root^.key = x then node := root
   {root^是 root 的指针所指向的记录}
   else
     if x < root^{\cdot}.key then BST_Search(root^{\cdot}.left, x)
     else BST_Search(root^.right, x)
end
                   图 4.9 算法 BST_Search
```

BST insert

Always inserted on as leaf node.

```
算法 BST Insert (root, x)
输入:root(指向二叉搜索树根节点的指针)以及x(某个数)
输出:通过插入由指针 child 指向的、关键字为 x 的节点而被改变了的树。
      如果已有节点关键字为 x, 那么 child = nil
begin
   if root = nil then
      create a new node pointed to by child;
      root := child :
      root^*.key := x
   else
      node := root :
      child := root; {初始化 child 使其不为 nil }
      while node ≠ nil and child ≠ nil do ←
                                                       Leaf's children ==nil.
         if node^*.key = x then child := nil
                                                       stops the while
         else
            parent := node;
            if x < node^.key then node := node^.left
            else node := node^.right;
      if child ≠ nil then
         create a new node pointed to by child;
         child^*.key := x;
         child^.left := nil ; child^right := nil ;
         if x < parent^.key then parent^left := child
            else parent^.right := child
```

end

Sort

• Insertion, then traverse <u>in-order</u>

BST delete

Say delete node *p

- A. p has no children
 - simple deletion
- B. p has only one children
 - simple deletion and concatenantaion
- C. p has two children
 - two methods

C: p has 2 children

:Arbitrary size sub-tree, whose leftmost(9) and rightmost(6) are shown here.

We need pop a node larger than whole left subtree,
or
Pop a node smaller than whole right subtree

```
算法 BST Delete (root, x)
输入: root(指向二叉搜索树根节点的指针)以及x(某个数)
输出:如果存在关键字为 x 的节点,则将其删除从而改变这棵树
 {假设永远不会删除根节点,且任意两个节点都不相同。}
begin
   node := root :
   while node \neq nil and node^.key \neq x do
      parent := node;
      if x < node^*.key then node := node^.left
      else node := node^.right;
   if node = nil then print("x is not in the tree"); halt;
                                                                  Method 1
   if node ≠ root then
      if node^.left = nil then
         if x \le parent^*.key then
            parent^.left := node^.right
         else parent^.right := node^.right
      else if node^.right = nil then
         if x \le parent^*.key then
            parent^.left := node^.left
         else parent^.right := node^.left
                                      找left subtree中最右
      else {两个子节点的情况}
         node1 := node^.left;
                                      下的节点(key最大者)
         parentl := node;
         while node1^.right ≠ nil do
            parentl := nodel;
            nodel := nodel^.right;
          {下面开始做真正的删除}
         parentl^.right := nodel^.left;
         node^.key := nodel ^.key <
end
```

complexity

Search, insertion and deletion

Time complexity in big O notation			
	Average	Worst case	
Space	O(n)	O(n)	
Search	O(log n)	O(n)	
Insert	O(log n)	O(n)	
Delete	O(log n)	O(n)	

Depth of the tree depends on the balance of the tree. Induction to self-balancing tree

AVL and Red-Black

Self-balancing tree

Time complexity in big O notation		
	Average	Worst case
Space	O(n)	O(n)
Search	O(log n)	O(log n)
Insert	O(log n)	O(log n)
Delete	O(log n)	O(log n)

Red-Black tree for sorting(红黑树)

Self-balancing tree algorithm: AVL and Red-Black tree; The key operation: rotating the node.