Съждителни тавтологии над крайно много променливи

Дефиниции. Heкa Vars = $\{x_1, \ldots, x_n\}$. Дефинираме множеството Form(Vars) индуктивно:

- за всяко $1 \le i \le n : x_i \in \text{Form}(\text{Vars})$
- $a\kappa o \varphi \in \text{Form}(\text{Vars}), mo \neg \varphi \in \text{Form}(\text{Vars})$
- $a\kappa o \varphi_1, \varphi_2 \in \text{Form}(\text{Vars}), mo (\varphi_1 \vee \varphi_2) \in \text{Form}(\text{Vars})$

 $Heka\ \mathcal{A}_n = \{\mathcal{V}\ |\ \mathcal{V}: \mathrm{Vars} \to \{\top, \bot\}\}.\ \exists a\ \mathcal{V} \in \mathcal{A}_n,\ \overline{\mathcal{V}}: \mathrm{Form}(\mathrm{Vars}) \to \{\top, \bot\}\$ ще бъде единствената функция със:

- $\overline{\mathcal{V}}(x_i) = \mathcal{V}(x_i)$ sa 1 < i < n
- $\overline{\mathcal{V}}(\neg \varphi) = \top \iff \overline{\mathcal{V}}(\varphi) = \bot$
- $\overline{\mathcal{V}}((\varphi_1 \vee \varphi_2)) = \top \iff \overline{\mathcal{V}}(\varphi_1) = \top \ unu \ \overline{\mathcal{V}}(\varphi_2) = \top$

 $\exists a\ A\subseteq\mathcal{A}_n$ казваме, че $A\models\varphi$, ако за всяко $\mathcal{V}\in\mathcal{A}, \overline{\mathcal{V}}(\varphi)=\top$. Накрая нека $\mathrm{Taut}(\mathrm{Vars})=\{\varphi\in\mathrm{Form}(\mathrm{Vars})\mid\mathcal{A}_n\models\varphi\}$.

Твърдение. Езикът Taut(Vars) е безконтекстен.

Доказателство. Нека $V = \{V_{A,B} \mid A, B \in \mathcal{P}(\mathcal{A}_n) \& A \cap B = \emptyset\}$, нека $S = V_{\mathcal{A}_n,\emptyset}$ и нека $\Sigma = \mathrm{Vars} \cup \{(,),\neg,\vee\}$. Правилата са следните:

- Нека $A,B\subseteq \mathcal{A}_n$ са такива, че за $A\models x_i$ и $B\models \neg x_i$. Тогава имаме правилото $V_{A,B}\to_G x_i$.
- Нека $A, B \subseteq \mathcal{A}_n$ и $A \cap B = \emptyset$. Тогава имаме правилото $V_{A,B} \to_G \neg V_{B,A}$.
- Нека $A_1, A_2, A, B \subseteq \mathcal{A}_n$ са такива, че $A_1 \cup A_2 = A$ и $A \cap B = \emptyset$. Тогава имаме правилото $V_{A,B} \to_G (V_{A_1,B} \vee V_{A_2,B})$.

За да докажем, че $\mathcal{L}(G) = \text{Taut}(\text{Vars})$, ще покажем, че за всяко A и B такива, че $A \cap B = \emptyset$:

$$V_{A,B} \stackrel{*}{\Rightarrow}_G \& \varphi \in \Sigma^* \iff \varphi \in \text{Form(Vars)} \& A \models \varphi \& B \models \neg \varphi$$

- (⇒) Правим индукция по дължината на извода:
 - $V_{A,B} \stackrel{0}{\Rightarrow}_G \varphi$: тогава $\varphi = V_{A,B} \notin \Sigma^*$
 - $V_{A,B} \stackrel{n+1}{\Rightarrow}_G \varphi$: тогава имаме три възможности за прилагане на първото правило:
 - 1 сл. $V_{A.B} \to_G x_i$: тогава $\varphi \equiv x_i$ и $A \models x_i$ и $B \models \neg x_i$ по дефиниция на граматиката
 - 2 сл. $V_{A,B} \to_G \neg V_{B,A}$: тогава $\varphi \equiv \neg \psi$ и $V_{B,A} \stackrel{n}{\Rightarrow}_G \psi$, и по (ИП) $B \models \psi$ (откъдето $B \models \neg \neg \psi \equiv \neg \varphi$) и $A \models \neg \psi \equiv \varphi$
 - 3 сл. $V_{A,B} \to_G (V_{A_1,B} \vee V_{A_2,B})$: тогава $\varphi \equiv (\varphi_1 \vee \varphi_2)$ и $V_{A_i,B} \stackrel{n_i}{\Rightarrow}_G \varphi_i$ за i=1,2, като $A_1 \cup A_2 = A$ и $n=n_1+n_2$. Тогава по (ИП) $A_i \models \varphi_i$ и $B \models \neg \varphi_i$ за i=1,2. Така $A_1 \cup A_2 \models (\varphi_1 \vee \varphi_2)$ и $B \models \neg (\varphi_1 \vee \varphi_2)$
- (⇐) Правим индукция по строенето на формулите:
 - $\varphi \equiv x_i$: ако A и B са такива, че $A \models \varphi$ и $B \models \neg \varphi$, то по дефиниция на граматиката, имаме правилото $V_{A,B} \to_G x_i$, откъдето $V_{A,B} \stackrel{*}{\Rightarrow}_G x_i$
 - $\varphi \equiv \neg \psi$: ако A и B са такива, че $A \models \varphi$ и $B \models \neg \varphi \equiv \neg \neg \psi$, то $B \models \psi$ и по (ИП) $V_{B,A} \stackrel{*}{\Rightarrow}_G \psi$. Строим следния извод за $\varphi : V_{A,B} \stackrel{*}{\Rightarrow}_G \neg V_{B,A} \stackrel{*}{\Rightarrow}_G \neg \psi$
 - $\varphi \equiv (\varphi_1 \vee \varphi_2)$: ако A и B са такива, че $A \models \varphi$ и $B \models \neg \varphi$, то за i = 1, 2 и $A_i = \{\mathcal{V} \in A \mid \overline{\mathcal{V}}(\varphi_i) = \top\}$, по (ИП) имаме, че $V_{A_i,B} \stackrel{*}{\Rightarrow}_G \varphi_i$. Очевидно $A_1 \cup A_2 = A$. Също така по дефиниция на граматиката, имаме правилото $V_{A,B} \rightarrow_G (V_{A_1,B} \vee V_{A_2,B})$. Строим следния извод за $\varphi : V_{A,B} \stackrel{*}{\Rightarrow}_G (V_{A_1,B} \vee V_{A_2,B}) \stackrel{*}{\Rightarrow}_G (\varphi_1 \vee V_{A_2,B}) \stackrel{*}{\Rightarrow}_G (\varphi_1 \vee \varphi_2)$

Накрая имаме следната еквивалентност:

$$\varphi \in \mathcal{L}(G) \iff S \stackrel{*}{\Rightarrow}_G \varphi \& \varphi \in \Sigma^* \iff \varphi \in \mathrm{Form}(\mathrm{Vars}) \& \mathcal{A}_n \models \varphi \& \varnothing \models \neg \varphi \iff \varphi \in \mathrm{Taut}(\mathrm{Vars})$$