

Elenco Esercizi Pratici e Domande Seminari

Prof. Filippo Milotta milotta@dmi.unict.it

Come leggere l'elenco

Parte 1 Acustica, Psicoacustica, Digitalizzazione

Esercizio pratico	Autov	Slide
Parametri fisici – Onda sinusoidale	1	1-29
RMS	2	2-6,7
Decibel Assoluti	2	2-18
Legge dell'inverso del quadrato	3	3-4
Velocità del suono	3	3-10
Riflessione del suono	4	4-9
Frequenza delle note	6	6-12
SQNR	11	11-7
Memoria necessaria per un file audio	11	11-14

Parametri fisici Onda sinusoidale

Data l'equazione sinusoidale

$$y(t) = 10\sin(4 * \pi * t + 4)$$

- Quanto vale l'ampiezza?
 - □ 10 •
- Quanto vale la frequenza?
 - □ 2 Diviso 2
- Quanto vale la fase?
 - **4**

RMS

- Dati i seguenti valori campionati di ampiezza:
- **-1**, 2, **-3**, 1, 0, 3
- Calcolare l'RMS

$$RMS = \sqrt{\frac{(-1^2) + 2^2 + (-3^2) + 1^2 + 0^2 + 3^2}{6}} = \sqrt{\frac{1 + 4 + 9 + 1 + 9}{6}} = \sqrt{\frac{24}{6}} = \sqrt{4} = 2$$

Decibel Assoluti

 Una zavorra per mongolfiere ha un peso di 5000Kg. Calcolare i dB assoluti rispetto al peso di riferimento standard di 5Kg.

$$P_{dB_{Kg}} = 10\log_{10} \frac{5000}{5} = 10\log_{10} 1000 = 10 * 3 = 30$$

Decibel Assoluti

 Una zavorra per mongolfiere ha un peso di 8Kg. Calcolare i dB assoluti rispetto al peso di riferimento standard di 800Kg.

$$P_{dB_{Kg}} = 10 \log_{10} \frac{8}{800} = 10 \log_{10} 0.01 = 10 * (-2) = -20$$

Legge dell'inverso del quadrato

Un suono viene percepito con intensità 90 W/m^2 a distanza 5 metri. Quale sarà la sua intensità percepita a distanza 15 metri?

$$r_0 = 5, r_1 = 15$$

$$r_1/r_0 = 15/5 = 3r_0$$

Il quadrato di 3 è 9

$$\rightarrow$$
 90/9 = 10 W/m²

Velocità del suono

- Calcolare la velocità del suono nell'aria a 42°C
 - Moltiplicare la temperatura per 0.62
 - 42*0.62 = 26.04
 - Sommare la velocità a 0 gradi (331.45 m/s)
 - **26.04 + 331.45 = 357.49 m/s**
- A che temperatura il suono viaggia nell'aria se ha una velocità di a 320 m/s?
 - Sottrarre la velocità a 0 gradi
 - 320 331.45 = -11.45
 - Dividere la velocità per 0.62
 - -11.45 / 0.62 = -19.03°C

Riflessione del suono

- Sapendo che un dispositivo nell'aria a 40°C emette un suono al tempo t e registra lo stesso suono tornare indietro dopo 5 secondi, calcolare la distanza dell'oggetto che ha riflesso il suono all'indietro.
 - Calcolare la velocità del suono misurato
 - 40*0,62 = 24.8 + 331,45 = 356,25 m/s
 - Moltiplicare per il tempo
 - **356,25 * 5 = 1781,25**
 - Dividere per 2 (Round Trip Time)
 - 1781,25 / 2 = 890 m

Frequenza delle note

- Fissata a 1397Hz la frequenza del Fa6 (cioè il Fa della 6[^] ottava, con ottave che iniziano e terminano con Do), calcolare quanto vale il Si6
 - □ Fra Fa6 e Si6 ci sono 6 incrementi tonali
 - □ L'incremento è dato da $2^{\frac{6}{12}} = 2^{\frac{1}{2}} = \sqrt{2} = 1,414$
 - 1397 * 1,414 = 1975

	6	
Do	1047	
Do#-Reb	1109	
Re	1175	
Re#-Mib	1245	
Mi	1319	
Fa	1397	่น₄
Fa#-Solb	1480	 - [
Sol	1568	
Sol#-Lab	1661	3
La	1760	4
La#-Sib	1865	5
Si	1976	} 6

Nota per i più furbi:

Non potete assumere che il sistema sia accordato a 440Hz (potrebbe non esserlo... \bigcirc), quindi non basatevi sulla tabella di riferimento, pensando di poter erroneamente copiare direttamente il risultato finale! Imparate il procedimento, che funziona a prescindere dall'accordatura

SQNR

(1 bit influisce con 6 dB)

- Dato N=10, quanto vale il SQNR?
 - □ 10 * 6 = 60 dB

- Dato un SQNR pari a 66, quanto vale N?
 - □ 66 / 6 = 11

Memoria necessaria per un file audio

Dato un tasso di campionamento pari a 44.1kHz e una PCM a 8bit, quanti byte servono per memorizzare un audio stereo di 2 secondi?

$$\frac{44100*8*2*2}{8} = 176400 = 176KB$$

Dividiamo per 8 perché consideriamo byte

PARTE 2

COMPRESSIONE, FORMATI AUDIO, LIBRERIE AUDIO UTILI E SCRIPT DI INTERESSE

Parte 2

Compressione, Formati Audio e Librerie Audio utili e script di interesse

Esercizio pratico	Autov	Slide
Bit-Rate e Spazio Occupato	14	14-6
Formule µ-Law e A-Law	14	14-varie
Codifica Trasparente	15	15-4
Durata Tick MIDI	17	17-14
Channel Message MIDI	17	17-varie
ffmpeg command	18	script

Bit-Rate e Spazio Occupato

- Qual è il bit-rate di una traccia audio di un segnale mono acquisito con tasso di campionamento pari a 44,1kHz e PCM lineare a 24bit?
 - $1 \cdot 44100 \cdot 24 = 1058400 \text{ bit/s} \cong 1058 \text{ kbps}$
- Quanto spazio occupa 1 minuto di registrazione? [Indicare l'unità di misura]
 - $\frac{(1.44100.24.60)}{8} = 7938000 \text{ byte } \approx 8 \text{ MB}$

Formule µ-Law e A-Law

Studiate le formule e capite bene i range!

Studente avvisato...

Codifica Trasparente

- Dato un tasso di campionamento pari a 22kHz e un bitrate (compresso) di 128kbps, dire se la codifica sia o meno trasparente, giustificando la risposta.
 - **128000 / 22000 = 5,81**
 - 5,81 > 2,1 ? Si → è trasparente perché la disuguaglianza è valida

Durata Tick MIDI

 Calcolare quanto dura 1 tick essendo BPM=240 e PPQ=48

- Durata di un beat
 - 60 secondi / 240 beat-per-minuto = 0,25 secondi
- Durata di un tick
 - 0,25 secondi-per-beat / 48 PPQ = 0,005 secondi

Channel Message MIDI

- MIDI: Che tipo di Channel Message è il seguente Status Byte? [1 0 0 1 | 1 0 0 1]
 - □ Si guarda il Nibble 1. Che channel message è 1001? → Note On

- MIDI: A che canale è indirizzato il seguente Status Byte? [1 0 0 1 | 1 0 0 1]
 - □ Si guarda il Nibble 2. Conversione da binario a decimale (si parte da 0) \rightarrow (1001)₂ = (9)₁₀

ffmpeg command

 Comporre il comando ffmpeg per convertire il file audio.mp3 in uno stereo wav con sample rate 22kHz e codec pcm_s16le

./ffmpeg –i audio.mp3 –vn –acodec pcm_s16le
 –ac 2 –ar 22000 –f wav audio.wav

2021222 Dana

COMING SOON

ID Prog.	Domanda	Vera 1	Vera 2	Falsa 1	Falsa 2
03	Cosa sono il nodo e l'antinodo di un'onda stazionaria?	Il nodo è una zona di equilibrio stabile e l'antinodo di equilibrio instabile	Il nodo è una zona a pressione minima e l'antinodo a pressione massima	Il nodo è una zona di equilibrio instabile e l'antinodo di equilibrio stabile	Il nodo è una zona a pressione massima e l'antinodo a pressione minima
04	Come fu sfruttato il "pop" anomalo del chip SID da parte dei musicisti ?	Per simulare un "quarto" canale	Per riprodurre delle note come se fossero suonate da degli strumenti a percussione	Per riprodurre frequenze non comprese nel range [16,4000] che aveva a disposizione il chip	Per segnalare errori hardware
05	Cos'è il T60?	Il tempo in cui l'energia del suono decade di 60 dB	Una unità temporale che ha a che fare con i deciBel	Il tempo occupato da 60 secondi	Il tempo in cui l'energia del suono passa dal 100 al 60% di intensità
06	Quali di questi sono gradi della scala diatonica?	Tonica	Dominante	Maggiore	Diminuita
08	Il sensore discusso nel progetto 08	è a ultrasuoni	lavora in un range di distanze [2- 400] cm	è a infrarossi	lavora in un range di distanze [2- 400] mm
09					
0B	Quale di questi formati audio è supportato dal tipo SoundFile di Processing?	MP3	AIF/AIFF	PCM	FLAC
0D	Cosa succede quando una traccia passa attraverso un filtro passa basso?	La traccia presenterà in uscita una attenuazione delle frequenze maggiori della frequenza di taglio	Il condensatore fornisce un percorso verso terra che provoca un'attenuazione dei segnali a bassa frequenza	La traccia presenterà in uscita una attenuazione delle frequenze minori della frequenza di Taglio	Non succede nulla

PARTE 3

DOMANDE SUI SEMINARI A CURA DEGLI STUDENTI (→ DOMANDA BONUS NEL COMPITO)