Assignment 2

This article evaluates novel approaches to do some really important things.

Table of contents

1	Adjust the output text below and insert at a appropriate place in the document below	2
2	Data	2
3	Results 3.1 Estimations 3.2 Predictions	
4	Inroduction	4
5	Data	4
6	Results 6.1 Estimations	4
7	Conclusions	5
8	Appendix	5

List of Figures

1	Model1																								5
2	Model1																								5

List of Tables

[1] "R commands read into memory"

1 Adjust the output text below and insert at a appropriate place in the document below

Would like to refer to (Wickham, Çetinkaya-Rundel, and Grolemund 2023) and (Karlsen Kivedal 2023)

Model 1: One variable and linear

$$price_i = \beta_0 + \beta_1 mileage_i + u_i$$

Model 2: Two variables and non-linear

$$price_i = \beta_0 + \beta_1 mileage_i + \beta_2 mileage_i^2 + u_i$$

2 Data

summary statistics

descsum

model	price	transmission	mileage
Min. : 1.000	Min. : 6038	Min. :1	Min. : 50
1st Qu.: 2.000	1st Qu.:10950	1st Qu.:2	1st Qu.: 6345
Median : 4.000	Median :15499	Median :2	Median : 15096
Mean : 4.317	Mean :15849	Mean :2	Mean : 21975
3rd Qu.: 5.000	3rd Qu.:17998	3rd Qu.:2	3rd Qu.: 31558
Max. :11.000	Max. :39923	Max. :3	Max. :130400
${\tt fuelType}$	age		
Min. :1.000	Min. :4.000		
1st Qu.:1.000	1st Qu.:5.000		
Median :1.000	Median :7.000		
Mean :1.317	Mean :6.585		

3rd Qu.:2.000 3rd Qu.:8.000 Max. :2.000 Max. :9.000

correlation matrix

kable(desccor)

	model	price	transmission	mileage	fuelType	age
model	1.0000000	0.2541991	-0.1549412	-0.0641297	0.2282952	-0.0485343
price	0.2541991	1.0000000	-0.1367121	-0.3818590	0.3048657	-0.5510241
transmission	-0.1549412	-0.1367121	1.0000000	-0.0655195	-0.1678075	-0.1332874
mileage	-0.0641297	-0.3818590	-0.0655195	1.0000000	0.4411576	0.6423262
fuelType	0.2282952	0.3048657	-0.1678075	0.4411576	1.0000000	0.3718314
age	-0.0485343	-0.5510241	-0.1332874	0.6423262	0.3718314	1.0000000

3 Results

3.1 Estimations

tidres1

```
# A tibble: 2 x 5
```

glares1

```
# A tibble: 1 x 12
```

3.2 Predictions

pred_1

1 2 3 4 18220.743 16593.372 15849.341 4122.125

- The first predicted value equal to 18220.743
- The second predicted value equal to 16593.372

4 Inroduction

We are going to take a look at a data analysis assignment.we are going to look at different factors and see how they affect the price of a car.

According to (Knuth 1984)

5 Data

6 Results

6.1 Estimations

6.2 Chapter A

We can separate them as b2 for age, b3 for model, b4 for transmission, b5 for mileage and b6 for fuel type. If we are describing b3 we can say that if b3 increases with one then b1(price) increases with 129,750 if everything else stays the same. We can describe the rest of the coefficient using the same method.

6.3 Chapter B

2) Comapred to the model in task B we can se that the age of the car has more effect on the price this is probably caused by the fact that now we have many more variables that effect the scale of how each variable effects the price."

6.4 Chapter C

3) The final model is more accurate because it contains multiple different values that effect the price of the car instead of just using age. Because as we know the price of the car is not just chosen by the age but many different factors and that's why i think this is a better model.

6.5 Predictions

7 Conclusions

We see that the final model is better suited for calculating the estimated price of the car. because it includes multiple different factors.

Number of words in the assignment is: 410

8 Appendix

	Model 2: OL Deper	S, using ident var				
	Coefficient	Std. E	ror	t-ratio •	p-value	
const	26467,2	4612.	99	5,738	<0,0001	***
age	-2775,40	569,0	05	-4.878	< 0,0001	***
model	129,750	292,8	02	0,4431	0,6604	
transmission	-1300,10	1035.	10	-1,256	0,2174	
mileage	-0.0720754	0,0381	195	-1,891	0,0670	*
fuelType	8566,78	1595	05	5,371	<0,0001	***
Mean dependent va	r 1584	19,34	S.D.	dependent var	650	00,945
Sum squared resid	5,68	e+08	S.E. o	of regression	402	27,254
R-squared	0,66	4206	Adjus	sted R-squared	0,6	16235
F(5, 35)	13,8	4611	P-val	ue(F)	1,7	75e-07
Log-likelihood	-395,	2673	Akail	ce criterion	802	2,5347
Schwarz criterion	812.	8161	Hann	an-Ouinn	806	5.2786

Figure 1: Model1

Figure 1 shows GRETL output ...

Model 1: OLS, using Dependent variable:		ns 1-41			
coeffi	cient sto	l. error	t-ratio	p-value	
const 31758	.1 39	52.19	8,036	8.49e-010	***
age -2415	,77 5	85,833	-4,124	0,0002	***
Mean dependent var	15849,34	S.D. d	ependent v	ar 6500,9	45
Sum squared resid	1,18e+09	S.E. o	f regressi	on 5494,0	80
R-squared	0,303628	Adjust	ed R-square	ed 0,2857	72
F(1, 39)	17,00451	P-valu	e (F)	0,0001	89
Log-likelihood	-410,2197	Akaike	criterion	824,43	95
Schwarz criterion	827,8666	Hannan	-Quinn	825,68	75

Figure 2: Model1

Figure 1 shows GRETL output ...

- Karlsen Kivedal, Bjornar. 2023. "Anvendt Statistikk Og Okonometri" 1 (212): 1–304. https://www.universitetsforlaget.no/avendt-statistikk-og-okonometri.
- Knuth, Donald E. 1984. "Literate Programming." Comput. J. 27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.
- Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023. *R for Data Science*. "O'Reilly Media, Inc.".