臺灣空氣污染排放量[TEDS12] 生物源 - 排放量推估手冊

版本:112年8月7日版

目錄

<u> </u>	·台灣生物源排放量推估模式(TBEIS-2)介紹	3
_,	· 工作方法	11
三、	·臺灣地區 2021 年全年排放量推估結果分析	. 20
	圖目錄	
	圖 1 台灣生物源排放量推估模式之系統組成與輸出及輸入資料	3
	圖 2 闊葉林所佔網格面積比例之分佈圖	8
	圖 3 針葉林所佔網格面積比例之分佈圖	8
	圖 4 台灣 695 個氣象測站之分佈圖	. 12
	圖 5 台灣 2021 年各月份生物源各種類 VOCs 排放量	. 22
	圖 6 臺灣 2021 年逐月平均溫度與雲冪比例	. 22
	圖 7 台灣 2021 年全年各小時之累積 VOCs 排放量分布圖	. 23
	圖 8 台灣 2021 年全年生物源 VOCs 排放總量空間分佈圖(公斤/平方	ī公
	里/年)	. 24
	圖 9 台灣 2021 年全年生物源 isoprene、monoterpenes、other VOCs 及	
	MBO 排放總量空間分佈圖(公斤/平方公里/年)	. 25
	圖 10 台灣 2021 年各季生物源排放總量空間分佈圖(公斤/平方公里))
		. 28
	圖 11 台灣 2021 年各空氣品質區之生物源 VOCs 排放總量	
	圖 12 台灣 2021 年各空氣品質區之生物源 VOCs 排放通量	
	圖 13 台灣 2021 年各縣市之生物源 VOCs 排放總量	
	圖 14 台灣 2021 年各縣市之生物源 VOCs 排放通量	

表目錄

表 1 葉溫能量平衡模式輸入參數	6
表 2 土地利用資料庫中各種土地利用型所佔面積表	7
表 3 TBEIS-2 之排放係數因子(μg m ⁻² h ⁻¹)	9
表 4 中央氣象局 31 個地面氣象站基本資料	. 13
表 5 中央氣象局 589 個自動氣象站基本資料	. 14
表 6 環境部空氣品質測站基本資料	. 17
表 7 台灣 2021 年各季生物源各種類 VOCs 排放量	. 21
表 8 台灣 2021 年各月份生物源各種類 VOCs 排放量	. 21
表 9 台灣 2021 年各空氣品質區及各縣市之生物源 VOCs 排放總量	. 29
表 10 台灣 2021 年各空氣品質區各季之生物源 VOCs 排放量	. 30

一、台灣生物源排放量推估模式(TBEIS-2)介紹

臺灣地區生物源排放推估,基本上乃根據生物源推估模式(TBEIS-2)之推估方法。TBEIS-2 是以溫度與光合輻射通量(Photosythetically Active Radiation flux, PAR)之經驗方程式去估算各種植物各種 VOC 的排放量(即生物源排放量)。模式之輸入、輸出以及系統構成,如圖 1 所示。模擬方式為首先利用土地利用資料與排放係數資料計算各網格在標準情況(葉溫為攝氏 30 度、PAR 為 1000 μE m⁻² sec⁻¹)下各種 VOC 之排放量。然後以輸入的資料(環境溫度、PAR、相對濕度、風速)先透過葉溫能量平衡模組計算葉溫,再計算出各種 VOC 之環境校正因子(葉溫校正因子與光校正因子),之後以標準情況下之排放量乘上環境校正因子,計算出當時情境下異戊二烯(isoprene)、單帖類(monoterpenes)、MBO (Methyl-Buten-Ol)以及其他 VOCs (OVOCs)之排放量。

圖 1 台灣生物源排放量推估模式之系統組成與輸出及輸入資料

(一)排放量之推估與校正因子之計算

1. Isoprene 與 MBO 排放量推估

根據 Geron 等人(1994)之研究, isoprene 排放速率可以下式估計之:

$$I = I_s * C_L * C_T$$

其中,I 是 isoprene 在葉溫為 T 以及光合輻射通量(PAR)為 L 時之排放速率, I_s 是 isoprene 在標準溫度(30°C)和光合輻射通量(1000 μE m^{-2} s^{-1})之排放速率, C_L 為光校 正因子, C_T 為葉溫校正因子。MBO 使用與 isoprene 相同的推估公式(Baker et al., 1999; Schade et al., 2000; Chang et al., 2009)。

(1) 光校正因子(CL)可以下式推估:

$$\mathbf{C}_{L} = \frac{\alpha * C_{L1} * \mathbf{L}}{\sqrt{1 + \alpha^2 * \mathbf{L}^2}}$$

其中,L 是光合輻射通量, α (=0.0027)與 C_{L1} (=1.066)為經驗係數(Guenther et al., 1993)。

(2) 葉溫校正因子(C_T)可由下式求得:

$$C_{T} = \frac{exp(C_{T1}*\frac{T - T_{s}}{R*T_{s}*T})}{1 + exp(C_{T2}*\frac{T - T_{M}}{R*T_{s}*T})}$$

其中,R 是理想氣體常數 (8.314 J/(K mol)),T 是葉溫, T_s (=303 K)是標準溫度,而 T_M (=314 K)、 C_{T1} (=95,000 J/mol)與 C_{T2} (=230,000 J/mol)是經驗係數。

2. 帖類(monoterpenes)與其他 VOCs (OVOCs) 排放量推估

單帖類和其他 VOCs 排放速率之短期(小時或每日)變動,排放速率可以下式求得:

$$M = M_S * exp[\beta(T - T_S)]$$

其中,M 是單帖類在葉溫 T 時之排放速率, M_s 是在 T_s (=303 K)時之排放速率,而 β (=0.09)是經驗係數(Guenther et al., 1993)。

(二)葉溫能量平衡模組

TBEIS-2 所使用的葉溫能量平衡模組是採用 Nikolov et al. (1995)所發展的光合作用平衡模式,其主要輸入參數為環境溫度、相對濕度、風速及葉子雙向吸收到的長波輻射與短波輻射。葉溫能量平衡模式之輸入參數如表 1 所示。公式敘述如下:

$$R_{i} = \frac{\rho c_{p}}{\gamma} \left[e_{s}(T_{1}) - e_{a} \right] g_{tv} + \rho c_{p} (T_{1} - T_{a}) g_{bv} + 2\varepsilon \sigma (T_{1} + 273.16)^{4} + M_{e}$$

其中, R_i :葉子吸收到的長波輻射與短波輻射(w/m^2); ρ :乾空氣密度(kg/m^3); c_p :乾空氣熱($1010J\ kg^{-1}\ K^{-1}$); γ :psychrometric constant; $e_s(T_1)$:葉片的飽和水蒸汽壓(Pa); e_a :大氣中的飽和水蒸汽壓(Pa); g_{tv} :葉片的水蒸汽傳導(m/s); g_{bv} :單邊葉子的水蒸汽傳導(m/s); T_a :環境溫度(\mathbb{C}); T_1 :葉溫(\mathbb{C}); ϵ :葉片的熱量發射率(0.975); σ :Stefan-Boltzmann constant (5.67×10⁻⁸W $m^{-2}\ K^{-4}$); M_e :生物化學反應的能量儲存(w/m^2)。

(三)土地利用資料庫

TBEIS-2 所使用的 landuse 資料庫為以 TBEIS-2 原來的 landuse 資料庫為基礎,並根據 106~108 年度內政部國土利用調查資料以及林務局最新森林土地利用調查資料(2020 年基準)進行更新。TBEIS-2 原來的 landuse 資料庫是用 1995 年林務局第 3 次臺灣森林資源及土地利用調查資料與中鼎顧問公司土地利用面積調查兩個資料合併而成 (Chang et al., 2005),並以中央大學太空遙測中心 (Center for Space and Remote Sensing Research National Central University, CSRSR) 2005~2006 年臺灣地區植生面積遙測資料對 landuse 做修正。106~108 內政部國土利用調查資料可參閱https://www2.nlsc.gov.tw/LUI/Home/Content_Home.aspx。林務局最新森林土地利用調查資料(2020 年基準),則是 2022 年版國家溫室氣體排放清冊所使用之資料。

表 2 為 TBEIS-2 的土地利用資料庫中各種土地利用型所佔面積表。臺灣土地利用資料庫總面積約為 37077 平方公里, 非植生土地利用佔其中的 22%, 在剩餘的植生土地利用面積中,以天然闊葉混合林所佔總面積比例為最大(22%),其次為人造闊葉混合林(8%),旱田(私)再次之(8%),其餘土地利用型所佔比例則

均低於 7%。整體而言,具較大 isoprene 排放係數的闊葉林,加總所有純闊葉林相關土地利用型面積佔總面積比例約 40%;而具較大 monoterpenes 排放係數的針葉林,加總所有純針葉林相關土地利用型面積佔總面積比例約 8%。圖 2 與圖 3 各別為闊葉林與針葉林佔網格面積比例之空間分佈圖,由圖得知闊葉林大多集中在中低海拔山區,而在高海拔山區則是有較多之針葉林。

表 1 葉溫能量平衡模式輸入參數

	大・		
一、樹種	這參數		
V_{m25}	carboxylation 速度最大值	μ mol m ⁻²	V_{m25}
J_{m25}	在 25℃電子傳遞的飽和光電位率 (Light-saturated potential rate of electron transport at 25℃)		$ m J_{m25}$
K _{C25}	在 25℃下 CO ₂ 之動力學參數	mol/mol	K _{C25}
K _{O25}	在 25°C下 O₂之動力學參數	mol/mol	K _{O25}
f	PPFD 損失因子		f
m	混合物(植物)的氣孔敏感度		m
Bs	實驗之氣孔傳導常數	Mol m ⁻² s ⁻¹	$b_{ m sv}$
Dleaf	葉子的寬(或針葉的直徑)	m	d
Dshoot	放射直徑(只針對闊葉)	m	d _o
Pcr		-MP _a	$\Psi_{ m crit}$
N_{pw}			n
二、環境	乱上的參數		
Plw		-MPa	Ψ
Pa	大氣壓力	Pa	P
Ca	環境之 CO2 濃度	mol/mol	Ca
Oa	環境之 O ₂ 濃度	mol/mol	
Ta	環境溫度	$^{\circ}\mathbb{C}$	Ta
R_{H}	環境之相對濕度	%	
R_i	葉子雙向吸收到的長波輻射與短波輻射	W/m^2	R_{i}
PPFD	光核輻射通量	μ mol m ⁻² s ⁻¹	Q
W_{speed}	風速	m/s	u
W_{stat}	葉子的溼潤狀態	0-dry,1-wet	
三、輸出	d值		
An	淨 CO2 吸收率	μ mol m ⁻² s ⁻¹	An
Gs	水蒸氣之氣孔傳導	μ mol m ⁻² s ⁻¹	g_{sv}
G_b	葉子在邊界層的水蒸氣傳導	μ mol m ⁻² s ⁻¹	$g_{ m bv}$
T1	葉溫	$^{\circ}\mathbb{C}$	

LHeat	潛熱通量	W/m^2	

表 2 土地利用資料庫中各種土地利用型所佔面積表

/ D. H. E.		面積	面積	15 H h		面積	面積
代號	土地利用型	(km ²)	<u>%</u>	代號	土地利用型	(km^2)	<u>%</u>
50	天然闊葉混合林	8020.5	21.63	142	楓香人造林	56.7	0.15
150	人造闊葉混合林	3010.5	8.12	15	雲杉天然針葉林	53.9	0.15
812	旱田(私)	2965.0	8.00	161	桂竹人造林	50.7	0.14
817	闊葉林(私)	2483.9	6.70	633	柑橘園	45.8	0.12
639	其他果園	2048.6	5.53	634	桃李梅	44.5	0.12
811	水田(私)	1465.0	3.95	629	其他旱作地	37.8	0.10
30	天然針葉闊葉混合林	1123.8	3.03	162	孟宗竹人造林	29.3	0.08
180	人造竹林闊葉混合林	779.6	2.10	818	竹林(私)	29.1	0.08
169	其他人造竹林	738.2	1.99	163	麻竹人造林	25.3	0.07
14	松類天然針葉林	633.7	1.71	635	蘋果梨	23.2	0.06
130	人造針葉闊葉混合林	559.2	1.51	114	台灣杉人造林	19.4	0.05
12	鐵杉天然針葉林	505.0	1.36	620	茶園	18.6	0.05
814	草地(私)	460.0	1.24	170	人造竹林針葉混合林	15.7	0.04
141	相思樹人造林	371.1	1.00	62	孟宗竹林	14.6	0.04
80	天然竹林闊葉混合林	336.1	0.91	64	莿竹林	14.5	0.04
13	檜木天然針葉林	307.5	0.83	190	人造竹林針葉闊葉混合林	9.4	0.03
40	天然闊葉純林	284.5	0.77	165	綠竹人造林	7.3	0.02
11	冷杉天然針葉林	246.9	0.67	622	蔬菜地	5.9	0.02
119	其他針葉人造林	223.5	0.60	631	香蕉園	4.0	0.01
115	柳杉人造林	222.6	0.60	600	灌木林	3.1	0.01
112	松類人造林	221.4	0.60	621	甘蔗地	2.9	0.01
120	人造針葉混合林	217.8	0.59	116	肖楠人造林	2.7	0.01
19	其他天然針葉林	197.0	0.53	65	綠竹林	1.5	0.00
149	其他闊葉人造林	154.9	0.42	815	針葉林(私)	1.1	0.00
111	檜木人造林	142.0	0.38	730	水田	0.5	0.00
144	光臘樹人造林	133.2	0.36	69	其他竹林	0.4	0.00
146	桐類人造林	103.0	0.28	90	天然竹林針葉闊葉混合林	0.3	0.00
61	桂竹林	86.5	0.23	632	鳳梨園	0.2	0.00
636	檳榔園	81.1	0.22	70	天然竹林針葉混合林	0.2	0.00
113	杉木類人造林	80.8	0.22	612	箭竹林	0.2	0.00
164	莿竹人造林	77.5	0.21	613	牧草地	0.1	0.00
611	天然草生地	71.5	0.19	816	針闊混(私)	0.1	0.00
145	台灣櫸樹人造林	70.3	0.19		非植生地	8015	21.62
63	麻竹林	61.3	0.17		TOTAL	37077	100
143	樟樹人造林	59.4	0.16				

圖 2 闊葉林所佔網格面積比例之分佈圖

圖 3 針葉林所佔網格面積比例之分佈圖

[TEDS11 版] 8

(四)排放係數資料庫

生物源排放量推估模式之排放因子資料庫是利用植物分類學法(Benjamin, 1996),並參考國外之排放係數資料(Guenther et al., 1994)認定國內林務局 60 餘種土地利用型態排放係數(Chang et al., 2005),其中,檳榔園、樟樹、甘蔗及草地之樹種排放係數是採用謝等(2000)與游(2001)針對國內部份特定樹種進行實驗所得之樹種排放係數。其中,闊葉林主要排放 isoprene,而針葉林則排放較多之 monoterpenes,排放係數資料如表 3 所示。

表 3 TBEIS-2 之排放係數因子(µg m⁻² h⁻¹)

代號	異戊二烯 (Isoprene)	單帖類(Mono- terpenes)	其他VOCs	MBO	葉面積指標 (LAI)	土地利用型		
11	170.0	29444.0	4964.7	0.0	7	冷杉天然針葉林		
12	70.0	4515.0	581.0	0.0	7	鐵杉天然針葉林		
13	150.0	3675.0	2775.0	7087.4	7	檜木天然針葉林		
14	79.3	7402.5	7005.1	300.0	3	松類天然針葉林		
15	28800.0	71632.5	1987.5	2471.6	7	雲杉天針		
19	943.2	10183.9	4044.0	608.9	7	其他天然針葉林		
30	12051.0	4613.9	1986.0	0.0	6	天然針葉闊葉混合林		
40	15682.0	2793.0	1313.3	0.0	5	天然闊葉純林		
50	15682.0	2793.0	1313.3	0.0	5	天然闊葉混合林		
61	20.3	39.0	249.0	0.0	7	桂竹林		
62	20.3	39.0	249.0	0.0	7	孟宗竹林		
63	20.3	39.0	249.0	0.0	7	麻竹林		
64	20.3	39.0	249.0	0.0	7	莿竹林		
65	20.3	39.0	249.0	0.0	7	綠竹林		
69	39.4	39.0	249.0	0.0	7	其他竹林		
70	826.1	7419.1	3009.7	1798.0	7	天然竹林針葉混合林		
80	13973.3	2492.5	1197.7	0.0	6	天然竹林闊葉混合林		
90	11034.4	4227.3	1839.2	557.5	6	天竹針闊混		
111	150.0	3675.0	2775.0	0.0	7	檜木人造林		
112	79.3	7402.5	7005.1	7087.4	3	松類人造林		
113	38.0	637.5	344.8	344.9	5	杉木類人造林		
114	42.5	637.5	344.8	344.9	5	台灣杉人造林		
115	42.5	637.5	344.8	344.9	5	柳杉人造林		
116	150.0	9679.1	623.7	0.0	7	肖楠人造林		
119	77.9	3307.8	2799.5	2313.5	7	其他針葉人造林		
120	77.9	3307.8	2799.5	2313.5	7	人造針葉混合林		
130	1572.7	2600.9	1953.8	457.2	6	人造針葉闊葉混合林		
141	70.0	2377.6	1295.0	0.0	5	相思樹人造林		
142	29750.0	1281.4	4181.3	0.0	5	楓香人造林		

代號	異戊二烯 (Isoprene)	單帖類(Monoterpenes)	其他VOCs	MBO	葉面積指標 (LAI)	土地利用型
143	42.5	150.0	5081.3	0.0	5	樟樹人造林
144	42.5	6037.5	609.9	0.0	5	光臘樹人造林
145	42.5	63.8	1950.0	0.0	5	台灣櫸樹人造林
146	42.5	63.8	1950.0	0.0	5	桐類人造林
149	2031.6	1179.2	1745.5	0.0	5	其他闊葉人造林
150	2031.6	2426.9	1745.5	0.0	5	人造闊葉混合林
161	20.3	39.0	249.0	0.0	7	桂竹人造林
162	20.3	39.0	249.0	0.0	7	孟宗竹人造林
163	20.3	39.0	249.0	0.0	7	麻竹人造林
164	20.3	39.0	249.0	0.0	7	莿竹人造林
165	20.3	39.0	249.0	0.0	7	綠竹人造林
169	39.4	39.0	249.0	0.0	7	其他竹人造林
170	70.8	2889.2	2472.9	2017.2	7	人造竹林針葉混合林
180	1901.9	2343.5	1693.3	0.0	6	人造竹林闊葉混合林
190	1495.1	2528.7	1905.7	444.3	6	人造竹林針葉闊葉混合林
600	37.8	39.0	249.0	0.0	0	灌木林
611	390.0	1049.0	6452.7	0.0	0	天然草生地
612	20.3	1049.0	249.0	0.0	7	箭竹林
613	390.0	1049.0	6452.7	0.0	0	牧草地
620	42.5	42.5	6452.7	0.0	5	茶園
621	3330.0	39.0	249.0	0.0	7	甘蔗地
622	39.4	43.5	61.2	0.0	0	蔬菜地
629	3330.0	39.0	249.0	0.0	0	其他旱作地
631	42.5	1547.1	10816.0	0.0	5	香蕉園
632	42.5	1547.1	10816.0	0.0	5	鳳梨園
633	42.5	1547.1	10816.0	0.0	5	柑橘園
634	38.0	3831.4	1593.8	0.0	5	桃李梅
635	42.5	1547.1	10816.0	0.0	5	蘋果梨
636	15840.0	1547.1	10816.0	0.0	5	檳榔園
639	4148.2	2369.0	7496.0	0.0	5	其他果園
730	90.0	250.0	249.0	0.0	0	水田
811	90.0	250.0	249.0	0.0	0	水田(私)
812	370.3	39.0	249.0	0.0	7	旱田(私)
814	390.0	1049.0	1024.5	0.0	0	草地(私)
815	77.9	3307.8	2799.5	2313.5	7	針葉林(私)
816	1572.7	2600.9	1664.2	457.2	6	針葉闊葉混合林(私)
817	2031.6	2426.9	1745.5	0.0	5	闊葉林(私)
818	39.4	39.0	1745.5	0.0	7	竹林(私)

二、工作方法

(一) 收集氣象資料

模擬全臺灣 2021 全年之生物源排放量所需之氣象資料包括有逐時環境溫度、逐時風速、逐時相對溼度以及逐時雲幕資料,而這些氣象資料來自中央氣象局與環境部觀測資料。氣象資料的收集包括中央氣象局在全臺灣各地所架設之 31 個地面氣象站以及 589 個自動氣象站或自動氣象雨量站,再加上 75 個環境部空氣品質測站,總數 695 個測站之監測資料(如圖 4 所示)。所有測站之基本資料如表 4、表 5 以及表 6 所示。此外,在此次全年的排放量推估中,水田與甘蔗田會因季節不同而有採收與種植,因此需在不同季節作不同假設。

1. 雲冪資料

模式以模擬所在位置之經緯度與日期計算光合輻射通量理論值,透過雲冪資料校正光合輻射通量。在上述 695 個測站中,僅中央氣象局的 27 個地面氣象站有雲冪觀測資料。

2. 環境溫度、風速及相對溼度

上述 695 個測站大多都有環境溫度與風場觀測資料,相對濕度資料則是在中央氣象局 31 個地面氣象站、75 個環境部測站以及部分氣象局自動測站有觀測數據。

3. 十地利用假設

在此次全年的排放量推估中,水田一年有兩期收成,因此季節不同會有採收與種植,且臺灣南北之種植情形亦不同。因此在此假設南臺灣大約 4-7 月及 9-12 月為稻米收割期而無排放量或排放量減半,其他月份則假設為已成長為完全;中臺灣則是大約 5-8 月及 11-1 月為稻米收割期而無排放量或排放量減半,其他月份則假設為已成長為完全;北臺灣則是大約 6-9 月及 11-1 月為稻米收割期而無排放量或排放量減半,其他月份則假設為已成長為完全;依此假設概估全臺灣生物源之排放量。

[TEDS11 版]

表 4 中央氣象局 31 個地面氣象站基本資料

	I	T		-	T
站碼	站名	經度	緯度	海拔高度(M)	使用資料
466880	板橋	121.4420	24.9976	10	T,W,R,C
466900	淡水	121.4489	25.1649	19	T,W,R
466910	鞍部	121.5297	25.1826	838	T,W,R,C
466920	臺北	121.5149	25.0377	5	T,W,R,C
466930	竹子湖	121.5445	25.1621	607	T,W,R,C
466940	基隆	121.7405	25.1333	27	T,W,R,C
466950	彭佳嶼	122.0797	25.6280	102	T,W,R,C
466990	花蓮	121.6133	23.9751	16	T,W,R,C
467050	新屋	121.0475	25.0067	21	T,W,R,C
467060	蘇澳	121.8574	24.5967	25	T,W,R,C
467080	宜蘭	121.7565	24.7640	7	T,W,R,C
467110	金門	118.28928	24.40731	48	T,W,R,C
467270	田中	120.58129	23.87380	49	T,W,R,C
467300	東吉島	119.6675	23.2570	43	T,W,R,C
467350	澎湖	119.5631	23.5655	11	T,W,R,C
467410	臺南	120.2048	22.9932	41	T,W,R,C
467420	永康	120.2367	23.0384	8	T,W,R
467440	高雄	120.3157	22.5660	3	T,W,R,C
467480	嘉義	120.4329	23.4959	27	T,W,R,C
467490	臺中	120.6841	24.1457	85	T,W,R,C
467530	阿里山	120.8132	23.5082	2413	T,W,R,C
467540	大武	120.9038	22.3557	8	T,W,R,C
467550	正山	120.9595	23.4876	3845	T,W,R,C
467571	新竹	121.0142	24.8279	27	T,W,R,C
467590	恆春	120.7463	22.0039	22	T,W,R,C
467610	成功	121.3734	23.0975	34	T,W,R
467620	蘭嶼	121.5583	22.0370	324	T,W,R,C
467650	日月潭	120.9081	23.8813	1018	T,W,R,C
467660	臺東	121.1546	22.7522	9	T,W,R,C
467770	梧棲	120.5234	24.2560	32	T,W,R
467990	馬祖	119.923419	26.169269	98	T,W,R,C
77 · TT · \III		· · · · · · · · · · · · · · · · · · ·	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	r	•

註:T:溫度,W:風速,R:相對溼度,C:雲冪比例。

表 5 中央氣象局 589 個自動氣象站基本資料

站碼	經度	緯度	海拔高度(m)	站碼	經度	緯度	海拔高度(m)	站碼	經度	緯度	海拔高度(m)
C0A520	121.4020	24.9749	50	C0C670	121.2214	24.8701	252	C0F9U0	120.6380	24.1370	76
C0A530	121.7097	24.9382		C0C680	121.3866	25.0285		C0F9V0	120.8158	24.2002	527
C0A540	121.7457	24.8926		C0C700	121.2564	24.9777		C0F9X0	120.6245	24.2153	168
C0A550	121.8237	24.9712		C0C710	121.3250	24.8929		C0F9Y0	121.3038	24.4327	3315
	121.5028	24.7762		C0D360	121.2086	24.6784		C0F9Z0	121.2687	24.3888	3195
C0A570	121.5980	24.8482		C0D390	121.1740	24.7982		C0FA00	120.9476	24.2735	985
C0A640	121.6629	24.9940		C0D430	121.0172	24.6905	89	C0G620	120.6213	24.0157	112
C0A650	121.7429	25.0027		C1Z120	121.5081	23.8709		C0G640	120.4305	24.0753	19
C0A660	121.8011	25.1132		C0D480	121.1508	24.8497	225		120.5856	23.9465	36
C0A860	121.6330	25.1659		C0D540	121.1169	24.7112		C0G660	120.4791	23.9484	29
C0A870	121.6087	25.1322		C0D550	121.1161	24.5270		C0G720	120.4991	23.8516	52
C0A880	121.9421	25.0178		C0D560	121.0579	24.7672		C0G730	120.3761	23.9033	29
C0A890	121.8642	25.0360		C0D570	120.9055	24.7469		C0G740	120.3209	23.8525	26
C0A920	121.5653	25.2638		C0D580	121.0252	24.7350			120.3825	23.8466	
	121.5952	25.2332		C0D590	120.9772	24.8707		C0G760	120.5746	23.8753	55
C0A940	121.6440	25.2236		C0D650	121.0436	24.9048		C1Z140	121.4596	23.8906	952
C0A950	121.9234	25.1290		C0D660	120.9869	24.7987		C0G770	120.4377	24.0413	17
C0A970	122.0021	25.0076		C0E420	120.8889	24.7090	21	C0G780	120.5039	24.0341	29
C0A980	121.4697	25.1095		C0E430	121.0002	24.6018		C0G800	120.4317	24.0004	17
	121.5372	25.1175		C0E520	120.8709	24.4149		C0G810	120.5255	23.9476	
	121.5030	25.0903		C0E540	120.7839	24.6065		C0G820	120.5094	23.9017	31
	121.5754	25.0794		C0E550	120.8854	24.5835		C0G830	120.4528	23.8660	
	121.5224	25.1757		C0E590	120.7046	24.4719		C0G840	120.5142	23.8776	
C0AC60	121.3697	24.9390		C0E610	120.9302	24.4513		C0G860	120.5862	23.8977	47
	121.5646	25.0378		C0E730	120.9122	24.6883		C0G870	120.3200	23.9223	14
	121.5757	25.0024		C0E740	120.8648	24.6371		C0G880	120.6173	23.8107	94
C0ACA0		25.0515		C0E750	120.8246	24.5646		C0G890	120.4844	24.1489	26
	121.5019	25.2581		C0E780	120.7908	24.4897		C0G900	120.4435	24.1434	22
	121.4040	25.1502		C0E790	120.8248	24.3128		C0G910	120.5495	24.0321	44
	121.4723	25.0866		C0E810	120.7485	24.5630	55		120.9524	23.9722	442
	121.4452	24.9732		C0E820	120.9200	24.5391	222		120.7664	23.8845	
	121.3463	24.9515		C0E830	120.6531	24.4397		C0H960	120.6808	23.9737	122
C1Z110	121.6050	24.1156		C0E850	120.9486	24.6181		C0H990	121.2736	24.1213	
C0AG90	121.4904	24.9927		C0E870	120.8261	24.6073		C0H9A0	120.8437	23.5327	1597
	121.6588	25.0669		C0E880	120.7498	24.4055		C0H9C0	121.2726	24.1434	
	121.5081	25.0113		C0F000	120.5721	24.1530			121.1818	24.0333	1564
	121.7808	25.0713		C0F0A0	121.2363	24.3886		C0I080	120.8510	23.6897	538
C0AH40	121.5771	25.1291		C0F0B0	120.7776	24.2761			120.7874	23.7281	912
	121.3808 121.5504	25.0722		C0F0C0	120.9033	24.2485		C0I110	120.6882	23.7612	163
- 01 , 0		25.0487		C0F0D0	121.4203	24.3817		C0I360	120.8498	23.8126	
COAH80		25.0027		C1Z130	121.4928	23.9657 24.3637		C01370	120.9414	23.8957 23.8282	673
C0AH90 C0AI00		24.7607		C0F0E0 C0F850	121.4447			C0I380 C0I390	120.8015	24.0221	260
	121.4273	25.0745			120.8331	24.2464		C01390 C0I410	121.1322		
	121.5447 121.5191	24.9218		C0F861 C0F930	121.2437 120.6404	24.2475		C01410 C0I420	120.7014 120.8551	23.8371 24.0378	
		25.2831 25.0573		C0F930 C0F970	120.6404	24.3477 24.1731		C01420	120.8331	23.9115	
	121.5006 121.5131	25.1156		C0F970 C0F9A0	120.7223	24.1/31		C01480	121.1736		
	121.7171	25.0948		C0F9I0	120.7511	24.1036		C01480	121.1730	23.9282	
	121.7171	25.1914		C0F9I0 C0F9K0	120.6383	24.2723		C1Z240	121.0914	23.4212	
					120.3880						
C0C460 C0C480	121.3523 121.3232	24.8202 24.9924		C0F9L0 C0F9M0	120.7297	24.3104 24.2543		C0I520 C0I530	120.9560 121.2957	23.4705 24.1318	
	121.3232	24.9924		C0F9M0	120.7207	24.2343		C0I540	121.2937	24.1318	3346
	121.2833	25.0478		C0F9N0 C0F9O0	120.7014	24.0923		C0K240	120.6935	23.5956	
	121.2260	25.0478		C0F9O0 C0F9P0	120.7039	24.2131		C0K240	120.6933	23.7556	
				C0F9P0 C0F9Q0	120.3622	24.3123		C0K280	120.3189	23.6304	
	121.2658	25.0843		C0F9Q0 C0F9R0							
	121.2655	24.8829			120.5290	24.1845		C0K291	120.1693	23.5363	
	121.2146	24.8975		COF9S0	120.6241	24.1071		C0K330	120.4420	23.7192	40
C0C660	121.1431	24.9124	178	C0F9T0	120.6413	24.1795	113	C0K390	120.3956	23.6790	33

[TEDS11 版] 14

→ F.Z.EE	4冊 庄	/	海出古座(***)	→ F.Z.EE	經度	/告庇	海出宣鹿(ma)	→ F-ZEE	經度	/告庇	海出古座(***)
站碼 COV 400	經度	緯度	海拔高度(m)	站碼 COD 160		緯度	海拔高度(m)	<u>站碼</u>		緯度	海拔高度(m)
C0K400	120.5411	23.7206		C0R160	120.5308	22.7396 22.6603		C0S810	121.3040	22.9727	67
C0K410	120.2928	23.5740		C0R170	120.4941				121.4120	23.2868	290
C0K420	120.4674	23.8004		C0R190	120.6143	22.5923			120.8892	22.2797 23.0395	24
C0K430	120.3036	23.6909		C0R220 C0R240	120.5400	22.5344		C0S890	121.1750		240
C0K440	120.4089	23.7728			120.6251	22.5273		C0S900	121.5121	22.0491	29
C0K450	120.4315	23.6461		C0R260	120.6283	22.3704		C0S910	121.5031	22.0812	214
C0K460	120.4784	23.6787		C0R270	120.3622	22.3322		C1E900	120.8442	24.5610	82
C0K470	120.6096	23.7487		C0R280	120.8368	22.0761		C0S920	120.9608	22.5948	135
C0K480 C0K490	120.5024 120.5598	23.7612 23.6543		C0R320 C0R341	120.7162 120.7926	22.0744 22.1300		C0S930 C0S940	121.0841 121.4066	22.9026 23.2238	250 152
C0K490	120.3398	23.6498		C0R341 C0R350	120.7926	21.9218		C0S940 C0S950	121.4000	22.9545	417
C0K510	120.2460	23.5729		C0R330	120.7532	22.4053		C0S950	120.9934	22.5876	34
C0K510	120.1548	23.6745		C0R470	120.6008	22.8264		C0S970	120.9269	22.4162	21
C0K530	120.1976	23.7016		C0R480	120.5426	22.6931		C0S980	120.8938	22.4304	905
C0K550	120.2297	23.5143		C0R490	120.4905	22.7405		C0S990	120.8574	22.3186	411
C0K560	120.6034	23.6865		C0R510	120.4904	22.5878		C0SA00	120.8919	22.5210	468
C0K580	120.4179	23.7375		C0R520	120.5069	22.5148		C0SA10	121.1093	22.8100	413
C0M410	120.5820	23.3244		C0R530	120.5100	22.4308		C0SA20	120.9597	22.5674	859
C0M520	120.2481	23.3699		C0R540	120.5524	22.4195		C0SA30	121.3236		95
C0M530	120.6992	23.4939		C0R550	120.5829	22.4680		C0SA40	121.1567	22.9744	202
C0M640	120.5229	23.4254		C0R560	120.4616	22.5434		C0SA60	121.0828	22.7024	13
C0M650	120.2390	23.4346	22	C0R570	120.5272	22.6508		C0SA80	120.8876	22.4531	138
C0M660	120.4036	23.6041	42	C0R580	120.5027	22.4859		C0SA90	120.8240	22.2644	499
C0AG80	121.4918	24.9916	50	C0R590	120.4946	22.7792	74	C0T790	121.3161	24.1861	2832
C0M670	120.4584	23.6006	45	C0R600	120.6649	22.5882	768	C0T820	121.4956	24.1796	552
C0M680	120.3315	23.4551	39	C0R620	120.8553	21.9008	36	C0T870	121.5089	23.9356	137
C0M690	120.3889	23.4197	35	C0R640	120.4407	22.4625	23	C0T900	121.4415	23.8119	162
C0M700	120.5555	23.5262		C0R650	120.5434	22.5849	31	C0T960	121.4250	23.6607	122
C0M710	120.1538	23.4589	17	C0R660	120.5907	22.3677	22	C0T9A0	121.5398	23.8099	500
C0M720	120.5542	23.4647	227	C0R670	120.6922	22.1901		C0T9B0	121.5372	23.9919	560
C0M730	120.4605	23.4577		C0R680	120.8616	21.9936		C0T9D0	121.7410		10
C0M740	120.2906	23.4929		C1A760	121.7134	24.9428		C0T9E0	121.5820		417
C0M750	120.1678	23.3809		C0R690	120.8103	21.9668		C0T9F0	121.5425	23.7971	253
C0M760	120.4285	23.5518		C0R700	120.6611	22.2468		C0T9G0	121.4201	23.7353	607
C0M770	120.5556	23.5854		C0R710	120.8389	21.9317		С0Т9Н0	121.5274	23.6830	727
C0M780	120.3083	23.4113		C0R720	120.8876	22.2054		C0T9I0	121.5148	23.5839	154
C0M790	120.3457	23.5533		C0R730	120.6936	22.0246		C0T9M0			94
C0M800	120.6648	23.2991		C0R740	120.7053	22.2016		C0T9N0	121.2494	23.1716	263
C0M810	120.7167	23.3891		C0R750	120.8024	22.0770		C0U520	121.6413	24.7530	519
	120.7495				120.8633	22.0847		C1G9D0			32
C0M850		23.2419		C0R770	120.7641 120.8399	22.0711 22.0244		C0U600 C0U650	121.7656		12
C0M860 C0O810		23.3380		C0R780	120.8399			C0U630 C0U710	121.5871 121.5257	24.6753	444 1944
C0O810	120.4973 120.4950	23.2197 23.0796		C0R790 C0R800	120.8893	22.1420 22.2045		C0U710	121.3237	24.5055 24.4374	1262
C0O840	120.4930	23.2221		C0R810	120.7310	22.3051		C0U750	121.9531	24.4374	400
C0O840	120.4008	23.1189		C0R810	120.6430	22.4543		C0U760	121.9331	24.8417	24
C0O900	120.2972	23.1129		C0R830	120.8368	22.1218		C0U770	121.8332		7
C0O930	120.4605	23.1260		C0R840	120.8412	22.1684		C0U780	121.7979		17
C0O950	120.1449	23.0767		C0S660	121.0703	23.1504		C0U860	121.8308		7
C0O960	120.3693	22.9596		C0S690	120.9853	22.6090		C0U870	121.6750		476
C0O970	120.3479	23.0214		C0S700	121.0056	22.6849		C0U890	121.6530		118
C0O980	120.2982	23.0616		C0S710	121.1230	22.9177		C0U900	121.6877	24.7181	65
C0O990	120.2935	22.9918		C0S730	121.4753	22.6672		C0U910	121.7937	24.6337	19
C0R100	120.6839	22.8331		C0S740	121.2095	23.1196		C0U940	121.7493	24.6818	27
C0R130	120.7437	22.7429		C0S750	120.9861	23.2484		C0U950	121.7924	24.8975	1014
C0R140	120.6866	22.6829		C0S760	121.1262	23.0691	1623	C0U960	121.6080		1887
C1A750	121.6462	25.0087		C0S770	120.9433	22.4785		C0U970	121.8139		9
C0R150	120.6399	22.7099		C0S790	120.9669	22.5381		C0U980	121.7740		575

→ F.ΣEE	經度	/告床	海出古座(***)	→ F.Z.EE	經度	/告床	海出京庄(***)	→ F.ΣEE	<i>₩</i> 🖮	冶帝	海出古庇(***)
站碼 C0U990		緯度	海拔高度(m)	站碼 COV120		緯度	海拔高度(m)	站碼 C1E511	經度	緯度	海拔高度(m)
	121.7225	24.7444		C0X130 C0X140	120.3154	23.1932		C1E511 C1E601	120.8270	24.3477	328 127
COLLA 10	121.4953	24.5765			120.2031	23.1256			120.7348	24.5725	
COUA10	121.4122	24.5903		C0X150	120.2278	23.1026		C1E670	121.0028	24.5383	1211
	121.3732	24.3686		C0X160	120.2577	22.9683			120.9238	24.4217	979
	121.5190	24.5278		C0X170	120.3278	22.9630		C1E691	120.8375	24.4014	788
C0UA40	121.7526	24.5607		C0X180	120.3633	23.0757		C1E701	120.9276	24.4918	739
	121.8026	24.5554		C0X190	120.1522	22.9932		C1E711	120.9017	24.3673	992
	121.7832	24.4139		C0X200	120.4085	23.0568			120.9680	24.4890	1411
	121.8889	24.9626		C0X210	120.4144	23.3475		C1E770	120.8308	24.5269	85
C0V210	120.8061	23.2224		C0X220	120.1822	23.2304		C1E890	120.6800	24.4634	55
C0V250	120.5918	23.0801		C0X230	120.2476	23.2726		C1F871	121.0186	24.2035	1002
C0V260	120.5398	22.9710		C0X240	120.5080	23.3312		C1F891	121.0011	24.2657	2207
C0V310	120.5191	22.8987		C0X250	120.3167	23.3107		C1F911	120.8411	24.2214	419
C0V350	120.4468	22.7386		C0X260	120.3623	23.3664		C1F941	121.0266	24.2806	2622
C1H840	120.7077	23.8410		C0X280	120.1358	23.2150		C1F9B1	120.7352	24.0662	132
C0V360	120.4668	22.9755		C0X290	120.1255	23.2678		C1F9C1	120.9299	24.1828	612
C0V370	120.4019	22.8932		C0X300	120.4773	23.3861		C1F9D1	120.8869	24.1583	641
C0V400	120.3555	22.8042		C0X310	120.0863	23.1473	11		120.8320	24.1605	565
C0V440	120.3561	22.6467		C0X320	120.3753	23.2533		C1F9F1	120.8491	24.2724	502
C0V450	120.3926	22.5451		C0Z020	121.2623	23.2087		C1F9G1	120.8484	24.1809	812
C0V490	120.2988	22.6274		C0Z050	121.2132	23.3457		C1F9J1	120.8204	24.0712	725
C0V500	120.2859	22.5886		C0Z061	121.3397	23.3215		C1F9W0		24.2548	1972
C0V530	120.3275	22.8832		C0A770	121.5165	25.0964		C1G691	120.5676	23.8161	112
C0V610	120.2672	22.7606		C0Z070	121.3741	23.4681		C1H000	121.2052	24.1094	2456
C0V620	120.2369	22.8232		C0Z080	121.3782	23.5876		C1H860	121.1834	24.1238	1842
C0V630	120.1826	22.9066		C0Z100	121.5498	23.8953		C1H900	120.9630	24.0808	936
C0V640	120.2445	22.8871		C0Z150	121.5952	23.9309		C1H920	120.8799	24.1020	738
C0V650	120.2464	22.7838		C0Z160	121.4534	23.7461		C1H941	120.8022	23.9674	632
C0V660	120.2950	22.7971		C0Z170	121.3033	23.3443			120.6378	23.9251	430
C0V670	120.2860	22.7198		C0Z180	121.6045	24.0395		C1H9B1	120.9947	24.1263	1712
C0V680	120.3477	22.7011		C0Z190	121.6297	24.1474		C1I020	121.1323	23.9798	1122
C0V690	120.2756	22.6233		C0Z200	121.4201	23.7092		C1I030	121.0525	23.9132	950
C0V700	120.3112	22.6450		C0Z210	121.3902	23.5239		C11050	121.1412	23.7538	2570
C0V710	120.3307	22.6227		C0Z220	121.6563	24.3439 24.3072		C1I1070	120.8889	23.5911	827
C0V720 C0V730	120.3945 120.3957	22.5078 22.6056		C0Z230 C0Z250	121.7701 121.3069	23.4928		C1I101 C1I121	120.8076 120.7600	23.6618 23.6784	1812 1517
C0V730		22.8886		C0Z270	121.5401	23.7384					313
C0V740 C0V750	120.4836 120.2594	22.8550		C0Z270 C0Z280	121.3401	23.4743		C11131 C1I140	120.6541 121.0879	23.6419	1702
C0V760	120.2394	22.7578		C0Z280	121.4107	23.3689		C11140 C1I150	120.9494	23.7934	395
	120.3037				121.3829	23.2685		C11130	120.9494		679
	120.6881	22.7303		C0Z310	121.6891	24.2183		C1I201	120.7121	23.9340	531
	120.6336	22.9039		C0Z310	121.1883	23.2713		C11211	120.8120	23.9053	1100
	120.0330	22.6749		C0Z320	121.1885	23.2907		C11220	120.8470	23.9619	839
	120.2849	23.1484		C1A630	121.5386	24.7710		C11230	120.8430	23.9519	727
	119.9807	25.9652		C1A030 C1A9N0	121.5933	24.7710		C11240	120.9179	23.9619	734
C0W110		23.5626		C1AC50	121.3933	25.1335		C11250	121.0069	23.9246	603
	119.3228	23.4001		C1AI50	121.6197	25.0342		C1I280	120.6426	23.8208	441
	120.3985	23.2860		C1AI50	121.3838	25.0644		C11280	120.8874	23.6682	1153
	118.4088	24.4883		C1C510	121.3838	24.9401		C11290	120.8840	23.7545	1035
	118.3290	24.4577		C1D380	121.0372	24.9401		C11310	121.1786	23.9530	1033
	119.4496	24.4377		C1D380	121.0383	24.7191		C11320	121.1760	23.9868	1277
	120.4836	26.3588		C1D400 C1D410	121.2839	24.7191		C11340	120.8687	23.5633	899
	120.4836	23.2966		C1D410 C1D420	121.1606	24.6328		C11340 C1I400	120.8687	24.0188	1401
	120.2563	23.2270		C1D420	121.1192	24.0328		C1I400	121.2243	24.1920	2417
	120.2363	23.1730		C1D630	121.1192	24.7663		C11430	120.8789	23.4787	2542
	120.1431	23.0104		C1D640 C1E451	120.9402	24.0443		C11440 C1I450	120.8789	23.5942	3027
	120.1942	22.9612		C1E451 C1E461	120.9402	24.3980		C11430 C1I470	120.9443	23.6395	1682
	120.1884			C1E480	120.9860	24.3980		C11470 C1I500	120.7864	23.8586	2019
CUA12U	120.2480	23.1833	30	C1E480	141.0348	44.3348	3/8	C11300	120.9949	∠٥.٥٥٥٥	2019

站碼	經度	緯度	海拔高度(m)	站碼	經度	緯度	海拔高度(m)	站碼	經度	緯度	海拔高度(m)
C1I510	120.8330	23.7615	1210	C1S800	121.0232	22.6579	82	C1U850	121.7786	24.3832	667
C1I550	120.8677	23.9791	375	C1S820	120.9332	22.5910	179	C1U880	121.8719	24.9065	10
C1K540	120.1805	23.5853	17	C1S850	121.2624	23.1221	491	C1U920	121.3472	24.3931	2087
C1M390	120.6544	23.4067	1092	C1S860	121.0505	22.8094	518	C1V160	120.7053	23.2798	1042
C1M400	120.5761	23.2519	371	C1S870	121.3823	23.1503	224	C1V170	120.9541	23.4636	3692
C1M480	120.6078	23.5370	842	C1S880	120.8589	22.2389	476	C1V190	120.9118	23.2740	2702
C1M600	120.6033	23.4064	988	C1SA50	121.0094	22.8233	1237	C1V200	120.8236	23.2685	872
C1M610	120.6635	23.4966	1085	C1SA70	121.2269	22.8779	64	C1V220	120.8136	23.1542	1783
C1M620	120.6752	23.5451	1254	C1T800	121.4540	24.2046	1262	C1V231	120.7167	23.1349	733
C1M640	120.7537	23.4922	1569	C1T810	121.3884	24.1920	2051	C1V300	120.7154	23.0020	1639
C1M870	120.5058	23.5503	123	C1T830	121.5713	24.1718	677	C1V340	120.6460	22.8883	192
C1N001	120.3094	22.9355	26	C1T920	121.4986	23.7695	70	C1V390	120.3678	22.8132	62
C1O850	120.4186	23.1486	46	C1T940	121.3731	23.7142	541	C1V570	120.5454	22.8542	84
C1O870	120.5223	23.3116	1251	C1T950	121.3701	23.6667	1052	C1V580	120.7885	23.0850	1658
C1O880	120.5941	23.1734	225	C1T970	121.4133	23.6152	185	C1V590	120.6461	23.0570	743
C1O921	120.4841	23.1835	117	C1T980	121.4113	24.0233	1308	C1V600	120.7570	23.0720	1563
C1R110	120.6452	22.7701	112	C1T990	121.3568	23.3942	130	C1V780	120.7379	22.8880	1052
C1R120	120.7044	22.7633	822	C1TA00	121.6236	24.1577	96	C1V830	120.4265	22.7820	116
C1R250	120.6292	22.4281	94	C1U501	121.5737	24.6378	282	C1X040	120.4638	23.2916	234
C1R290	120.7566	22.1126	262	C1U670	121.7169	24.6340	107	C1Z030	121.3388	23.4931	220
C1R610	120.7322	22.6177	1830	C1U690	121.7513	24.6256	103	C1Z040	121.3274	23.4434	436
C1R630	120.5909	22.6670	62	C1U830	121.8394	24.4827	620				
C1S670	121.0270	23.1995	1582	C1U840	121.8485	24.5378	752				

表 6 環境部空氣品質測站基本資料

站名	經度	緯度	使用資料	站名	經度	緯度	使用資料	站名	經度	緯度	使用資料
基隆站	121.7601	25.1292	T,W,R	三義站	120.7588	24.3829	T,W,R	林園站	120.4118	22.4795	T,W,R
汐止站	121.6409	25.0660	T,W,R	豐原站	120.7417	24.2566	T,W,R	楠梓站	120.3283	22.7337	T,W,R
萬里站	121.6899	25.1797	T,W,R	沙鹿站	120.5688	24.2256	T,W,R	左營站	120.2929	22.6749	T,W,R
新店站	121.5378	24.9772	T,W,R	大里站	120.6777	24.0996	T,W,R	前金站	120.2881	22.6326	T,W,R
土城站	121.4519	24.9825	T,W,R	忠明站	120.6411	24.1520	T,W,R	前鎮站	120.3076	22.6054	T,W,R
板橋站	121.4587	25.0130	T,W,R	西屯站	120.6169	24.1622	T,W,R	小港站	120.3377	22.5658	T,W,R
新莊站	121.4325	25.0380	T,W,R	彰化站	120.5415	24.0660	T,W,R	屏東站	120.4880	22.6731	T,W,R
菜寮站	121.4810	25.0690	T,W,R	線西站	120.4691	24.1317	T,W,R	潮州站	120.5612	22.5231	T,W,R
林口站	121.3657	25.0786	T,W,R	二林站	120.4097	23.9252	T,W,R	恆春站	120.7889	21.9581	T,W,R
淡水站	121.4492	25.1645	T,W,R	南投站	120.6853	23.9130	T,W,R	台東站	121.1505	22.7554	T,W,R
士林站	121.5145	25.1059	T,W,R	斗六站	120.5450	23.7119	T,W,R	花蓮站	121.5998	23.9713	T,W,R
中山站	121.5265	25.0624	T,W,R	崙背站	120.3487	23.7575	T,W,R	陽明站	121.5296	25.1827	T,W,R
萬華站	121.5080	25.0465	T,W,R	新港站	120.3455	23.5548	T,W,R	宜蘭站	121.7464	24.7479	T,W,R
古亭站	121.5296	25.0206	T,W,R	朴子站	120.2474	23.4670	T,W,R	冬山站	121.7929	24.6322	T,W,R
松山站	121.5786	25.0500	T,W,R	台西站	120.2028	23.7175	T,W,R	三重站	121.4938	25.0726	T,W,R
桃園站	121.3044	24.9957	T,W,R	嘉義站	120.4408	23.4628	T,W,R	中壢站	121.2217	24.9533	T,W,R
大園站	121.2018	25.0603	T,W,R	新營站	120.3173	23.3056	T,W,R	竹山站	120.6773	23.7564	T,W,R
觀音站	121.0828	25.0355	T,W,R	善化站	120.2971	23.1151	T,W,R	永和站	121.5163	25.0170	T,W,R
五權站	121.2050	24.9542	T,W,R	安南站	120.2183	23.0483	T,W,R	復興站	120.3120	22.6087	T,W,R
龍潭站	121.2164	24.8639	T,W,R	後甲站	120.2026	22.9846	T,W,R	大同站	121.5133	25.0632	T,W,R
湖口站	121.0387	24.9001	T,W,R	美濃站	120.5305	22.8836	T,W,R	埔里站	120.9679	23.9688	T,W,R
竹東站	121.0889	24.7406	T,W,R	橋頭站	120.3057	22.7575	T,W,R	馬公站	119.5662	23.5690	T,W,R
新竹站	120.9721	24.8056	T,W,R	仁武站	120.3326	22.6891	T,W,R	關山站	121.1619	23.0451	T,W,R
頭份站	120.8986	24.6970	T,W,R	鳳山站	120.3581	22.6274	T,W,R	麥寮站	120.2518	23.7535	T,W,R
苗栗站	120.8202	24.5653	T,W,R	大寮站	120.4253	22.5641	T,W,R	富貴角	121.5380	25.2974	T,W,R

(二) 氣象資料前處理

氣象資料前處理是將上節所有測站之逐時氣象資料內插臺灣地區各網格之逐 時氣象資料,而須處理的氣象資料包括有逐時環境溫度、逐時風速、逐時相對溼 度以及逐時雲幕資料。以下說明各種氣象資料之內插方法:

1. 環境溫度

首先,以各網格為中心,再以適當半徑分別畫圓,然後,以所有在搜尋半徑內 之測站資料依據各測站所在高度與網格點高度內插該網格。內插作法為:

(1) 將搜尋半徑內測站溫度修正為網格點高度之溫度(如下式),

$$TEMP_i = TEMP_j + \frac{(H_i - H)}{100} \cdot (0.6)$$

上式為修正高度對溫度之影響,當高度上升 100 公尺時溫度則下降 0.6 度,其中,TEMPj 為搜尋半徑各測站之原始溫度;TEMPi 為經高度修正後之溫度;Hi 為搜尋半徑各測站之海拔高度;H 為網格點之海拔高度;

(2) 再假設網格點溫度與搜尋半徑內測站溫度(高度修正後溫度)為與兩者之距離 成反比,可以下式計算內插值。

$$TEMP = \sum_{i=1}^{n} \left(\frac{\frac{1}{L_i}}{\sum_{i=1}^{n} (\frac{1}{L_i})} \cdot TEMP_i \right)$$

其中,TEMP 為網格點溫度; L_i 為搜尋半徑各測站與網格點之距離; $TEMP_i$ 為搜尋半徑各測站之溫度經高度修正後值;n 為搜尋半徑測站總數。

2. 雲冪、相對濕度、風速

雲冪、相對濕度、風速之內插方法相同,均僅考慮測站與網格點之距離因素。 內插方法同樣以各網格為中心,再以適當半徑分別畫圓,以所有在搜尋半徑內之測 站氣象資料依據下式計算:

$$MET = \sum_{i=1}^{n} \left(\frac{\left(\frac{1}{L_i}\right)^2}{\sum_{i=1}^{n} \left(\frac{1}{L_i}\right)^2} \cdot MET_i \right)$$

其中,MET 為網格點氣象資料;Li 為搜尋半徑各測站與網格點之距離;METi 為搜尋半徑各測站之氣象資料;n 為搜尋半徑測站總數。此外,在風速之內插,需先經由風向資料轉換為水平橫向風速(U)與水平縱向風速(V)再各別依上述內插方式進行內插,最後再將內插過後網格點的 U 與 V 計算該網格點風速。

(三) 2021 年台灣生物源 VOCs 排放量推估與分析

由前節之逐時氣象資料作為輸入資料,經由 TBEIS-2 模擬可得到逐時之 1 km × 1 km 網格排放量資料,經統計分析後,將結果繪於台灣底圖上,探討物種排放量之空間以及時間分佈情形及特徵。

- 1. 空間分佈分析
- 整年各物種排放量空間分佈情形。
- 各季排放總量空間分佈情形。
- 2. 時間分佈分析
- ◆ 各季各物種排放量分佈情形。
- 各月各物種排放量分佈情形。
- 各小時(0~23點)各物種排放量分佈情形
- 3. 空品區之比較

以排放量及排放通量進行各空品區之比較。

4. 各縣市之比較

以排放量及排放通量進行各縣市之比較。

三、臺灣地區 2021 年全年排放量推估結果分析

(一)模擬結果之時間分佈

1. 年排放量推估結果

臺灣地區 2021 年生物源模擬排放總量約為 58.1 萬公噸(如表 7 所示),其中 isoprene 排放量約為 19.9 萬公噸,佔排放總量的 34.2%; monoterpenes 排放量約為 16.9 萬公噸,約佔排放總量的 29.1%; OVOCs 排放量約為 20.9 萬公噸,約佔排放總量的 36.0%, MBO 排放量約為 0.4 萬公噸,僅佔排放總量的 0.7%。

2. 季排放量推估結果

台灣地區 2021 年各季生物源模擬排放量如表 7 所示。其中,以夏季(6-8 月) 之排放量最大,約為 21.1 萬公噸,佔年排放總量的 36.4%;春季(3-5 月)與秋季 (9-11 月)排放量近似,各約 14.7 (25.3%)與 15.3 萬公噸(26.4%);而冬季(12, 1,2 月)最小,約為 7.0 萬公噸,佔 12.0%。夏季排放最大之原因即在於夏季溫度 較高且光合輻射通量較大,因此使得此季之生物源排放量無論是 isoprene、 monoterpenes、OVOCs 抑或 MBO 皆較其他季節為高。

3. 月排放量推估結果

台灣地區 2021 年各月份生物源各種 VOC 排放推估量如表 8 及圖 5 所示。從表中可以看出,在 7 月之生物源 VOCs 排放總量最大,約為 7.6 萬公噸,佔年排放總量的 13.0%;而以 1 月的排放總量最小,約佔年排放總量的 3.5%。從圖 5 可看出,在 1 月及 12 月,isoprene 明顯少於 monoterpenes 和 OVOCs 之排放量,僅佔當月生物源 VOCs 總量的 25%,其原因應在於該年 1 月及 12 月的溫度較低(圖 6)且光合輻射通量不強烈(雲冪比例亦高),使得 isoprene 之排放較少。然而,隨著季節之變化,使得光合輻射通量日趨強烈,連帶亦使得 isoprene 之排放量快速增加,最大可達當月 (7 月)生物源 VOCs 總量的 38%左右。臺灣 2021 年逐月平均溫度與雲冪比例如圖 6。

4. 小時排放量推估結果

圖 7 為 2021 年在 0-23 點各個小時之累積排放總量分佈圖。從圖 7 可以看出,isoprene 與 MBO 在夜間(0-4 點以及 20-23 點)並沒有排放量產生,在 5 點開始產生排放量,之後並迅速增加,在 12 點達到最大量。其原因在於,isoprene 排放受光合輻射通量之影響,因此夜晚沒有排放量產生,而在白天由於光合輻射量持續增加,也使得 isoprene 與 MBO 排放量迅速增加。Monoterpenes 與 OVOCs 排放量幾乎不受光合輻射通量影響,且強烈受溫度之影響,因此 monoterpenes 與 OVOCs 之排放量的日夜變化便不如 isoprene 來得劇烈。也因此,總生物源排放量在夜間是由monoterpenes 與 OVOCs 所貢獻,而在日間,則是 isoprene 為主要貢獻來源。

表 7 台灣 2021 年各季生物源各種類 VOCs 排放量

單位:萬公噸

	異戊二烯 (isoprene)	單帖類 (monoterpenes)	其他 VOCs	МВО	合計	%
春季(3-5月)	5.17	4.21	5.18	0.10	14.67	25.25
夏季(6-8月)	7.77	5.99	7.21	0.16	21.14	36.39
秋季(9-11月)	5.10	4.49	5.62	0.10	15.31	26.35
冬季(12, 1, 2 月)	1.85	2.20	2.89	0.04	6.97	12.00
Total	19.88	16.89	20.90	0.41	58.08	100.00
%	34.23	29.09	35.98	0.70	100.00	

表 8 台灣 2021 年各月份生物源各種類 VOCs 排放量

單位:萬公噸

	異戊二烯 (isoprene)	單帖類 (monoterpenes)	其他 VOCs	МВО	合計	%
1	0.51	0.66	0.86	0.01	2.04	3.51
2	0.74	0.76	0.98	0.01	2.49	4.29
3	1.22	1.10	1.38	0.02	3.72	6.41
4	1.42	1.23	1.54	0.03	4.22	7.27
5	2.53	1.88	2.26	0.05	6.72	11.57
6	2.38	1.89	2.30	0.05	6.63	11.41
7	2.88	2.11	2.51	0.06	7.56	13.01
8	2.51	1.99	2.41	0.05	6.95	11.97
9	2.61	1.95	2.34	0.06	6.95	11.97
10	1.59	1.51	1.93	0.03	5.05	8.70
11	0.90	1.03	1.36	0.02	3.30	5.69

12	0.60	0.79	1.05	0.01	2.44	4.21
Total	19.88	16.89	20.90	0.41	58.08	100.00

圖 5 台灣 2021 年各月份生物源各種類 VOCs 排放量

圖 6 臺灣 2021 年逐月平均溫度與雲冪比例

圖 7 台灣 2021 年全年各小時之累積 VOCs 排放量分布圖

(二)模擬結果之空間分佈分析

1. 整年各物種排放量空間分佈情形

圖 8~圖 9 為推估台灣地區 2021 年生物源 VOCs 排放總量空間分佈及各 VOC 物種排放總量空間分佈圖。從圖 8 可以看出,所推估之全年單位網格生物源排放總量,最高(60 公噸/km2 以上)出現在少部分的高海拔網格,但較多高海拔網格排放量約在 6-15 公噸/km2 之間;中低海拔網格排放量大多約在 15-60 公噸/km2;而平地之排放量則相對較少,大都在 6 公噸/km2 以下。

從圖 9 可以看出,isoprene 排放量大多集中在中低海拔山區,此為闊葉林之最主要分布地區,且闊葉林排放較高之 isoprene,因此,中低海拔山區之生物源 VOCs 以 isoprene 為主要排放,在高海拔山區與平地部份排放則較少。因此,圖中以南部中低海拔山區以及花東縱谷之排放量較大,大約在 10-25 公噸/km2 範圍。 Monoterpenes 排放量在高海拔山區之排放量相較於 isoprene 是比較大的,主要是因為針葉林大部分分布於高海拔山區,因此有較高之排放量,而在中低海拔則比 isoprene 排放量少。以臺灣整體看來,在高海拔山區是 monoterpenes 高排放量的主

要範圍,約在 2-15 公噸/km2,最大可達 25 公噸/km2以上,平地地區網格排放量皆在 2 公噸/km2以下。OVOCs 排放量則可很明顯看出,大多是集中於低海拔山區以及部分高海拔山區網格,排放量多介於 2-10 公噸/km2,部分地區最高網格亦可達 25 公噸/km2以上,其餘平地網格之排放量則大多低於 2 公噸/km2。MBO 主要排放量分佈於高海拔山區,其排放量大多介於 0.1-3 公噸/km2 之範圍,在平地則皆低於 0.1 公噸/km2。

圖 8 台灣 2021 年全年生物源 VOCs 排放總量空間分佈圖(公斤/平方公里/年)

圖 9 台灣 2021 年全年生物源 isoprene、monoterpenes、other VOCs 及 MBO 排放 總量空間分佈圖(公斤/平方公里/年)

2. 各季生物源 VOCs 排放總量空間分佈情形。

圖 10 為各季生物源 VOCs 排放總量空間分佈情形。從圖中可以明顯看出生物源 VOCs 排放總量隨季節變化之情形,春季(3-5月)在低海拔區域之排放量約在3-10 公噸/km²範圍,而部分高海拔山區網格具有較顯著排放量;到夏季(6-8月),中低海拔區域之排放量有更明顯的上升,一般約在5-20 公噸/km²範圍,而宜蘭山區與花東縱谷網格最大更可達20 公噸/km²以上;秋季(9-11月)之排放量則是快速下降,其空間分佈與春季相似;到冬季(1,2,12月),排放量下降更為顯著,幾乎所有網格排放量皆低於7公噸/km²,只有少部分地區排放量高於10公噸/km²。

(三)模擬結果之行政區分析

1. 各空品區各物種排放量

(1) 年排放量及排放通量

圖 11 與表 9 為台灣地區 2021 年各空品區之生物源排放總量。從圖表之中,我們可以看到,生物源排放總量以花東空品區為最大,約 15.8 萬公噸,佔全台灣排放總量的 27.2%;其次為中部空品區,約佔 18.5%;排放最少之空品區為竹苗空品區,約佔 8.1%,約為 4.7 萬公噸。各空品區主要排放生物源 VOC 物種,竹苗、中部、雲嘉南與高屏空品區是以 OVOCs 排放量最顯著,北部、宜蘭、花東等空品區則是以 isoprene 排放量最顯著。以各空品區之排放通量而言(如圖 12 所示),以花東空品區最大,約 18.9 公噸/km²/yr;宜蘭空品區次之,約 18.4 公噸/km²/yr;雲嘉南空品區最小,約 12.9 公噸/km²/yr。此外,monoterpenes 及 OVOCs 均是以高屏空品區為最大,isoprene 則是宜蘭空品區最大。

(2) 季排放量

表 10 為台灣地區 2021 年各季各空品區之生物源排放量。從表中,我們可以看出,在春季(3-5 月),以花東空品區之排放量最大,約為 4.2 萬公噸,佔當季總量約 28.3%,依次為高屏、中部、雲嘉南、北部、竹苗、宜蘭空品區;在夏季(6-8 月),仍舊以花東空品區之排放量最大,約 5.7 萬公噸,佔當季總量約 26.9%,依次為中部、高屏、雲嘉南、北部、竹苗、宜蘭空品區;在秋季(9-11 月),還是以花東空品區之排放量最大,約為 4.1 萬公噸,佔當季總量約 26.6%,依次為中部、

高屏、雲嘉南、北部、竹苗、宜蘭空品區;在冬季(1,2,12月),仍舊以花東空品區之排放量最大,約1.9萬公噸,佔當季總量的27.0%,依次為高屏、中部、雲嘉南、北部、竹苗、宜蘭空品區。由上可知,各空品區生物源排放量在四季的大小排序有相似性,均是以花東排放量最大,其次為高屏或中部,而宜蘭空品區最低。

2. 各縣市各物種排放量

圖 13 與表 9 為台灣地區 2021 年各縣市之生物源排放量。從圖表之中,我們可以看到,生物源排放總量以花蓮縣以及臺東縣為最大,各別為 8.5 及 7.3 萬公噸,各佔全臺灣排放總量的 14.7 及 12.5%;其次為南投縣與屏東縣,排放量各為 6.7、6.2 萬公噸,佔 11.5、10.6%,其餘各縣市則皆低於 10 %以下,其中臺北市、基隆市、新竹市與嘉義市的排放量皆佔不到 1%。以各縣市之排放通量而言(如圖 14 所示),則是以屏東縣最大,約 22.4 公噸/km²/yr;臺東縣、花蓮縣與宜蘭縣次之,約 18-20 公噸/km²/yr;新竹市最小,約 7.4 公噸/km²/yr。比較各縣市各種 VOC 排放通量,isoprene 之排放通量以宜蘭縣最大,約 8.9 公噸/km²/yr;臺東縣次之,約 8.6 公噸/km²/yr;臺北市最小只有 1.2 公噸/km²/yr。Monoterpenes 之排放通量明顯以基隆市為最大,約 7.2 公噸/km²/yr;屏東縣次之,約 6.2 公噸/km²/年;雲林縣最小,只有 1.9 公噸/km²/yr。OVOCs 之排放通量以屏東縣最大,約 9.0 公噸/km²/yr;臺南市次之,約 7.9 公噸/km²/yr;桃園市最小,只有 2.6 公噸/km²/yr。

圖 10 台灣 2021 年各季生物源排放總量空間分佈圖(公斤/平方公里)

表 9 台灣 2021 年各空氣品質區及各縣市之生物源 VOCs 排放總量

單位:萬公噸

		異戊二烯 (isoprene)	單帖類 (mono- terpenes)	其他 VOCs	МВО	合計	佔空品區 排放量 百分比	佔全台灣 排放總量 百分比
	臺北市	0.033	0.108	0.096	0.000	0.24	4.67	0.41
11 245	基隆市	0.028	0.106	0.080	0.000	0.21	4.24	0.37
北部 空品區	新北市	1.316	1.179	1.085	0.014	3.59	70.96	6.19
1110	桃園市	0.408	0.292	0.317	0.002	1.02	20.13	1.76
	Total	1.785	1.686	1.577	0.016	5.06	100.00	8.72
	新竹市	0.014	0.035	0.031	0.000	0.08	1.70	0.14
竹苗	新竹縣	0.550	0.682	0.670	0.017	1.92	40.68	3.30
空品區	苗栗縣	0.797	0.953	0.947	0.021	2.72	57.62	4.68
	Total	1.361	1.669	1.648	0.039	4.72	100.00	8.12
	臺中市	0.604	1.131	1.285	0.063	3.08	28.73	5.31
中部	彰化縣	0.203	0.249	0.491	0.000	0.94	8.79	1.62
空品區	南投縣	1.805	2.252	2.556	0.092	6.71	62.47	11.54
	Total	2.613	3.633	4.332	0.155	10.73	100.00	18.48
	臺南市	0.785	0.737	1.598	0.001	3.12	43.89	5.37
丰 丰士	嘉義市	0.010	0.014	0.027	0.000	0.05	0.71	0.09
雲嘉南 空品區	雲林縣	0.294	0.247	0.540	0.000	1.08	15.20	1.86
1110	嘉義縣	0.931	0.615	1.307	0.008	2.86	40.21	4.92
	Total	2.020	1.613	3.472	0.009	7.11	100.00	12.25
ή Π	高雄市	1.402	1.342	1.705	0.031	4.48	42.13	7.71
高屏 空品區	屏東縣	1.967	1.706	2.477	0.002	6.15	57.87	10.59
	Total	3.369	3.048	4.183	0.033	10.63	100.00	18.31
宜蘭	宜蘭縣	1.973	1.002	1.039	0.022	4.04	25.57	6.95
空品區	Total	1.973	1.002	1.039	0.022	4.04	100.00	6.95
+#-#-	花蓮縣	3.654	2.317	2.457	0.092	8.52	53.96	14.67
花東 空品區	臺東縣	3.107	1.926	2.194	0.041	7.27	46.04	12.51
	Total	6.761	4.243	4.651	0.133	15.79	100.00	27.18
年終	總量	19.88	16.89	20.90	0.41	58.08		

表 10 台灣 2021 年各空氣品質區各季之生物源 VOCs 排放量

單位:萬公噸

_		-		-	-		世・南谷鴨
		異戊二烯 (isoprene)	單帖類 (mono- terpenes)	其他 VOCs	МВО	合計	%
	北部空品區	0.43	0.40	0.38	0.004	1.22	8.31
	竹苗空品區	0.33	0.40	0.40	0.009	1.13	7.71
春季(3	中部空品區	0.67	0.89	1.06	0.039	2.66	18.16
李(3	雲嘉南空品區	0.53	0.40	0.86	0.002	1.79	12.23
- 5 1	高屏空品區	0.90	0.77	1.05	0.009	2.73	18.61
月	宜蘭空品區	0.48	0.24	0.25	0.005	0.98	6.66
	花東空品區	1.83	1.10	1.19	0.036	4.15	28.31
	Total	5.17	4.21	5.18	0.104	14.67	100.00
	北部空品區	0.78	0.63	0.58	0.007	1.99	9.43
	竹苗空品區	0.57	0.61	0.59	0.016	1.78	8.44
夏	中部空品區	1.01	1.28	1.51	0.062	3.87	18.28
夏季(6	雲嘉南空品區	0.74	0.55	1.18	0.003	2.48	11.73
- 8	高屏空品區	1.24	1.04	1.40	0.012	3.69	17.45
月	宜蘭空品區	0.86	0.39	0.38	0.010	1.64	7.76
	花東空品區	2.58	1.49	1.57	0.051	5.69	26.90
	Total	7.77	5.99	7.21	0.162	21.14	100.00
	北部空品區	0.44	0.44	0.42	0.004	1.30	8.46
	竹苗空品區	0.36	0.45	0.44	0.010	1.26	8.21
秋季(9 - 11	中部空品區	0.69	0.97	1.17	0.040	2.88	18.80
∮ (9 .	雲嘉南空品區	0.55	0.44	0.95	0.002	1.94	12.69
- 11	高屏空品區	0.89	0.82	1.14	0.009	2.86	18.66
月	宜蘭空品區	0.48	0.26	0.27	0.005	1.01	6.61
	花東空品區	1.70	1.11	1.23	0.034	4.07	26.57
	Total	5.10	4.49	5.62	0.105	15.31	100.00
	北部空品區	0.14	0.21	0.21	0.001	0.56	7.98
Ħ	竹苗空品區	0.11	0.21	0.22	0.003	0.55	7.82
冬季	中部空品區	0.25	0.48	0.59	0.014	1.33	19.02
(12,	雲嘉南空品區	0.20	0.22	0.48	0.001	0.90	12.86
冬季(12, 1, 2	高屏空品區	0.34	0.42	0.60	0.003	1.36	19.47
2月	宜蘭空品區	0.15	0.11	0.14	0.002	0.41	5.84
$\lfloor \hspace{0.5pt} \hspace{0.5pt} \rfloor$	花東空品區	0.65	0.55	0.66	0.013	1.88	27.01
	Total	1.85	2.20	2.89	0.036	6.97	100.00

圖 11 台灣 2021 年各空氣品質區之生物源 VOCs 排放總量

圖 12 台灣 2021 年各空氣品質區之生物源 VOCs 排放通量

圖 13 台灣 2021 年各縣市之生物源 VOCs 排放總量

圖 14 台灣 2021 年各縣市之生物源 VOCs 排放通量