-8-

CLAIMS

1. A layered filtering structure (10) comprising at least a first layer (12) and a second layer (13) each layer comprising a web of metal fibers which has been sintered, said two layers (12, 13) being in contact with each other, wherein said first layer, most close to the filter inlet side has a porosity below 55 %, and wherein said second layer, closer to the filter outlet side has a porosity which is at least 20 % greater than the porosity of said first layer.

10

5

A structure according to claim 1, wherein said second layer has a porosity of at least 80 %.

15

3. A structure according to any one of the preceding claims, wherein said first layer comprises metal fibers with a diameter of less than 3 μm and wherein said second layer comprises metal fibers with a diameter of at least three times the diameter of the fibers in the first layer.

20

 A structure according to any one of the preceding claims, wherein said first layer has a weight ranging between 300 g/m² and 600 g/m².

25

A structure according to any one of the preceding claims, wherein the first layer has at least one even surface.

30

- A structure according to any one of the preceding claims, wherein said structure further comprises a wire net which is fixed to the first layer or to the second layer.
- A structure according to any one of claims 1 to 5, wherein said structure is sandwiched between a first wire net (14) and a second wire net (15), said first net (14) being located at the inlet side, said

-9-

second wire net (15) being located at the outlet side, said first wire net having meshes which are smaller than the second wire net and having wires with a diameter which is thicker than the diameter of the wires in the second wire mesh.

5

10

A structure according to claim 7, wherein said first wire net (14) is a calandered wire net.

A structure according to any one of the preceding claims, wherein said first layer is obtainable by means of a cold isostatic pressing operation.

. .

10. A method of manufacturing a layered filtering structure (10), said method comprising the following steps:

15

(a) sintering a web of metal fibers to form a first layer (12);

1.

(b) compacting said first layer (12) to a porosity below 55 %;

(c) providing a web of metal fibers to form a second layer (13);(d) bringing said first compacted layer (12) and said second layer

(13) in contact with each other to form a layered assembly;(e) sintering said layered assembly to form a coherent entity wherein said second layer has a porosity which is at least 20 % higher

20

25

11. A method according to claim 10 wherein said compacting is done by means of a cold isostatic pressing operation.

than the porosity of the first layer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	H	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
1							