Betriebssysteme (BS)

10. Eingabe und Ausgabe

https://sys.cs.tu-dortmund.de/de/lehre/bs/

08.06.2022

Peter Ulbrich

peter.ulbrich@tu-dortmund.de bs-problems@ls12.cs.tu-dortmund.de https://sys.cs.tu-dortmund.de/de/lehre/kummerkasten

Basierend auf Betriebssysteme von Olaf Spinczyk, Universität Osnabrück

Wiederholung: Betriebsmittel

- Das Betriebssystem hat folgende Aufgaben:
 - Verwaltung der Betriebsmittel des Rechners
 - Schaffung von Abstraktionen, die Anwendungen einen einfachen und effizienten Umgang mit Betriebsmitteln erlauben

Bisher:

- Prozesse
- Arbeitsspeicher
- Heute: E/A-Geräte
 - Verwaltung von Peripheriegeräten

- Ein-/Ausgabe-Hardware
- Geräteprogrammierung
- Aufgaben des Betriebssystems
- Zusammenfassung

- Ein-/Ausgabe-Hardware
- Geräteprogrammierung
- Aufgaben des Betriebssystems
- Zusammenfassung

Tanenbaum

5: Ein-Ausgabe

Silberschatz

13: I/O-Systems

- Ein-/Ausgabe-Hardware
- Geräteprogrammierung
- Aufgaben des Betriebssystems
- Zusammenfassung

Tanenbaum

5: Ein-Ausgabe

Silberschatz

13: I/O-Systems

Anbindung von E/A-Geräten

Anbindung von E/A-Geräten

Beispiel: PC-Tastatur

- serielle zeichenweise Kommunikation
 - Tastatur ist "intelligent" (besitzt eigenen Prozessor)

Make- und *Break*-Codes für gedrückte Tasten

Beispiel: PC-Tastatur

- serielle zeichenweise Kommunikation
 - Tastatur ist "intelligent" (besitzt eigenen Prozessor)

Make- und *Break*-Codes für gedrückte Tasten

Steuercodes z.B. LEDs an/aus

Tastaturcontroller

Sobald ein Zeichen abholbereit ist, löst der *Controller* eine **Unterbrechung** aus.

Aufgaben der Software

- Initialisierung des Controllers
- Abholen der Zeichen von der Tastatur
- Abbildung der Make- und Break-Codes auf ASCII
- Senden von Kommandos

Beispiel: CGA-Videocontroller

- Kommunikation über Videosignal
 - Umwandlung des Bildschirmspeicherinhalts in ein Bild (80x25 Z.)

Beispiel: CGA-Videocontroller

- Kommunikation über Videosignal
 - Umwandlung des Bildschirmspeicherinhalts in ein Bild (80x25 Z.)

Aufgaben der Software

- Initialisierung des Controllers
- Bildschirmspeicher mit den gewünschten Zeichencodes füllen
- Steuerung der Position des Cursors
- Cursor an- und abschalten

Beispiel: IDE-Plattencontroller

- Kommunikation über AT-Befehle
 - blockweiser wahlfreier Zugriff auf Datenblöcke

Sobald der Sektorpuffer ausgelesen bzw. vollgeschrieben wurde, löst der Controller eine Unterbrechung aus.

Beispiel: IDE-Plattencontroller

- Kommunikation über AT-Befehle
 - blockweiser wahlfreier Zugriff auf Datenblöcke

Beispiel: Ethernet-Controller

- serielle paketbasierte Buskommunikation
 - Pakete haben eine variable Größe und enthalten Adressen.

Beispiel: Ethernet-Controller

- serielle paketbasierte Buskommunikation
 - Pakete haben eine variable Größe und enthalten Adressen

Beispiel: Ethernet-Controller

- serielle paketbasierte Buskommunikation
 - Pakete haben eine variable Größe und enthalten Adressen

Geräteklassen

zeichenorientierte Geräte

- Tastatur, Drucker, Modem, Maus, ...
- meist rein sequentieller Zugriff, selten wahlfreie Positionierung

blockorientierte Geräte

- Festplatte, Diskette, CD-ROM, DVD, Bandlaufwerke, ...
- meist wahlfreier blockweiser Zugriff (random access)

Andere Geräte passen weniger gut in dieses Schema:

- Grafikkarten (insbesondere 3D-Beschleunigung)
- Netzwerkkarten (Protokolle, Adressierung, Broadcast/Multicast, Nachrichtenfilterung, ...)
- Zeitgeberbaustein (einmalige oder periodische Unterbrechungen)
- ...

signalisieren, dass die Software aktiv werden muss

signalisieren, dass die Software aktiv werden muss

Unterbrechung mit ("interrupt vector")

signalisieren, dass die Software aktiv werden muss

Ablauf einer Unterbrechungsbehandlung auf der Hardwareebene Software kann IRQ-Behandlung unterdrücken. x86: 1. Gerät hat Operation beendet 3. CPU bestätigt → erlauben → ("interrupt request", IRQ) Beginn der → unterdrücken Interrupt-Unterbrechungsbehandlung controller ("acknowledge") eth **CPU** 2. Controller signalisiert Unterbrechungsanforderung Bus 4. Controller teilt der

CPU die Nummer der Unterbrechung mit

("interrupt vector")

 … wird von komplexen Controllern benutzt, um Daten unabhängig von der CPU in den bzw. aus dem Hauptspeicher zu transferieren.

 … wird von komplexen Controllern benutzt, um Daten unabhängig von der CPU in den bzw. aus dem Hauptspeicher zu transferieren.

 … wird von komplexen Controllern benutzt, um Daten unabhängig von der CPU in den bzw. aus dem Hauptspeicher zu transferieren.

 … wird von komplexen Controllern benutzt, um Daten unabhängig von der CPU in den bzw. aus dem Hauptspeicher zu transferieren.

 … wird von komplexen Controllern benutzt, um Daten unabhängig von der CPU in den bzw. aus dem Hauptspeicher zu transferieren.

• ... wird von komplexen Controllern benutzt, um Daten unabhängig von der CPU in den bzw. aus dem Hauptspeicher zu transferieren.

 … wird von komplexen Controllern benutzt, um Daten unabhängig von der CPU in den bzw. aus dem Hauptspeicher zu transferieren.

Durchführung eines DMA-Transfers

2., 3. und 4. wird in Abhängigkeit von **count** wiederholt durchgeführt

- Ein-/Ausgabe-Hardware
- Geräteprogrammierung
- Aufgaben des Betriebssystems
- Zusammenfassung

Ein-/Ausgabeadressraum

 Zugriff auf Controller-Register und Controller-Speicher erfolgt je nach Systemarchitektur ...

- (a) separater E/A-Adressraum
 - anzusprechen über spezielle Maschineninstruktionen
- (b) gemeinsamer Adressraum (*Memory-Mapped I/O*)
- (c) hybride Architektur

Arbeitsweise von Gerätetreibern

- Je nach Fähigkeiten des Geräts erfolgt E/A mittels ...
 - Polling (oder "Programmierte E/A"),
 - Unterbrechungen oder
 - DMA
- Beispiel: Drucken einer Textzeile

Polling (oder "Programmierte E/A")

... bedeutet aktives Warten auf ein Ein-/Ausgabegerät.

```
/* Zeichen in Kern-Puffer p kopieren */
copy_from_user (buffer, p, count);
/* Schleife über alle Zeichen */
for (i = 0; i < count; i++) {
 /* Warte "aktiv" bis Drucker bereit */
 while (*printer_status_reg != READY)
 /* Ein Zeichen ausgeben */
  *printer_data_reg = p[i];
return_to_user ();
```

Pseudo-Code einer Betriebssystemfunktion zum Drucken von Text im *Polling*-**Betrieb**

Unterbrechungsgetriebene E/A

... bedeutet, dass die CPU während der Wartezeit einem anderen Prozess zugeteilt werden kann.

Code, der die E/A-Operation initiiert

```
copy_from_user (buffer, p, count);

/* Druckerunterbrechungen erlauben */
enable_interrupts ();

/* Warte bis Drucker bereit */
while (*printer_status_reg != READY);

/* Erstes Zeichen ausgeben */
*printer_data_reg = p[i++];

scheduler ();
return_to_user ();
```

Unterbrechungsbehandlungsroutine

```
if (count > 0) {
    *printer_data_reg = p[i];
    count--;
    i++;
}
else
    unblock_user ();
acknowledge_interrupt ();
return_from_interrupt ();
```


DMA-getriebene E/A

... bedeutet, dass die Software nicht mehr für den Datentransfer zwischen Controller und Hauptspeicher zuständig ist.

Die CPU wird weiter entlastet.

```
copy_from_user (buffer, p, count);
set_up_DMA_controller (p, count);
scheduler ();
return_to_user ();
```

acknowledge_interrupt ();
unblock_user ();
return_from_interrupt ();

Code, der die E/A-Operation initiiert

Unterbrechungsbehandlungsroutine

Diskussion: Unterbrechungen

Kontextsicherung

- Wird teilweise von der CPU selbst erledigt.
 - z.B. Statusregister und Rücksprungadresse, aber nur das Minimum.
- **Alle veränderten Register** müssen gesichert und am Ende der Behandlung wiederhergestellt werden.

Behandlungsroutine möglichst kurz

- Während der Unterbrechungsbehandlung werden i.d.R. weitere Unterbrechungen unterdrückt.
 - Es droht der Verlust von Unterbrechungen
- Möglichst nur den Prozess wecken, der auf E/A-Beendigung wartet.

Diskussion: Unterbrechungen (2)

- Unterbrechungen sind die Quelle der Asynchronität
 - Ursache f
 ür Race Conditions im Betriebssystemkern
- Unterbrechungssynchronisation:
 - einfachste Möglichkeit: Unterbrechungsbehandlung durch die CPU zeitweise hart verbieten, während kritische Abschnitte durchlaufen werden.
 - x86: sti, cli
 - wieder Gefahr des Unterbrechungsverlusts
 - BS gängig: mehrstufige Behandlungen, durch die das harte Sperren von Unterbrechungen minimiert wird
 - Abstrakt: **Prolog** (asynchron) und **Epilog** (synchron zum BS)
 - UNIX: Top Half, Bottom Half
 - Linux: Tasklets
 - Windows: Deferred Procedures

Diskussion: Direct Memory Access

Caches

- Heutige Prozessoren arbeiten mit Daten-Caches;
 DMA läuft am Cache vorbei!
- Vor dem Aufsetzen eines DMA-Vorgangs muss der Cache-Inhalt in den Hauptspeicher zurückgeschrieben und invalidiert werden bzw. der Cache darf für die entsprechende Speicherregion nicht eingesetzt werden.

Speicherschutz

- Heutige Prozessoren verwenden eine MMU zur Isolation von Prozessen und zum Schutz des Betriebssystems;
 - DMA läuft am Speicherschutz vorbei!
- Fehler beim Aufsetzen von DMA-Vorgängen sind extrem kritisch.
- Anwendungsprozesse dürfen DMA-Controller nie direkt programmieren!

Inhalt

- Ein-/Ausgabe-Hardware
- Geräteprogrammierung
- Aufgaben des Betriebssystems
- Zusammenfassung

Aufgaben des Betriebssystems

- Geräteabstraktionen schaffen
 - einheitlich, einfach, aber vielseitig
- Ein-/Ausgabenprimitiven bereitstellen
 - synchron und/oder asynchron
- Pufferung
 - falls das Gerät bzw. der Empfängerprozess noch nicht bereit ist
- Geräteansteuerung
 - möglichst effizient unter Beachtung mechanischer Eigenschaften
- Ressourcenzuordnung verwalten
 - bei teilbaren Geräten: Welcher Prozess darf wo lesen/schreiben?
 - bei **unteilbaren** Geräten: zeitweise Reservierungen
- Stromsparzustände verwalten
- Plug&Play unterstützen
- **-** ...

Aufgaben des Betriebssystems

- Geräteabstraktionen schaffen
 - einheitlich, einfach, aber vielseitig
- Ein-/Ausgabenprimitiven bereitstellen
 - synchron und/oder asynchron
- Pufferung
 - falls das Gerät bzw. der Empfängerprozess noch nicht bereit ist
- Geräteansteuerung
 - möglichst effizient unter Beachtung mechanischer Eigenschaften
- Ressourcenzuordnung verwalten
 - bei teilbaren Geräten: Welcher Prozess darf wo lesen/schreiben?
 - bei **unteilbaren** Geräten: zeitweise Reservierungen
- Stromsparzustände verwalten
- Plug&Play unterstützen
- **.**...

Schichten des E/A-Subsystems

Quelle: Tanenbaum, "Modern Operating Systems"

UNIX: Geräteabstraktionen

- Periphere Geräte werden als Spezialdateien repräsentiert:
 - Geräte können wie Dateien mit Lese- und Schreiboperationen angesprochen werden.
 - Öffnen der Spezialdateien schafft eine Verbindung zum Gerät, die durch einen Treiber hergestellt wird.
 - direkter Durchgriff vom Anwender auf den Treiber
- blockorientierte Spezialdateien (block devices)
 - Plattenlaufwerke, Bandlaufwerke, Floppy Disks, CD-ROMs
- zeichenorientierte Spezialdateien (character devices)
 - serielle Schnittstellen, Drucker, Audiokanäle etc.

UNIX: Geräteabstraktionen (2)

- Eindeutige Beschreibung der Geräte durch ein 3-Tupel: (Gerätetyp, Major Number, Minor Number)
- Gerätetyp: Block Device, Character Device
- Major Number: Auswahlnummer für einen Treiber
- Minor Number: Auswahl eines Gerätes innerhalb eines Treibers

UNIX: Geräteabstraktionen (3)

Auszug aus dem Listing des /dev-Verzeichnisses

```
brw-rw---- ulbr disk 3, 0 2008-06-15 14:14 /dev/hda
brw-rw---- ulbr disk 3, 64 2008-06-15 14:14 /dev/hdb
brw-r---- root disk 8, 0 2008-06-15 14:13 /dev/sda
brw-r--- root disk 8, 1 2008-06-15 14:13 /dev/sda1
crw-rw---- root uucp 4, 64 2006-05-02 08:45 /dev/ttyS0
crw-rw---- root lp 6, 0 2008-06-15 14:13 /dev/lp0
crw-rw-rw- root root 1, 3 2006-05-02 08:45 /dev/null
lrwxrwxrwx root root 3 2008-06-15 14:14 /dev/cdrecorder -> hdb
1rwxrwxrwx root root 3 2008-06-15 14:14 /dev/cdrom -> hda
                                 Erstellungs-
                                              Name der
    Zugriffs-
              Eigen-
                       Major und
                                 zeitpunkt der
                                              Spezialdatei
     rechte
               tümer
                       Minor No.
                                 Spezialdatei
```

c: character device

b: block device

l: link

UNIX: Zugriffsprimitiven

Das Wichtigste in Kürze ... (siehe man 2 ...)

- int open(const char *devname, int flags)
 - Öffnen eines Geräts. Liefert Dateideskriptor als Rückgabewert.
- off_t lseek(int fd, off_t offset, int whence)
 - Positioniert den Schreib-/Lesezeiger
 - nur bei Geräten mit wahlfreiem Zugriff
- ssize_t read(int fd, void *buf, size_t count)
 - Einlesen von max. count Bytes in Puffer buf von Deskriptor fd
- ssize_t write(int fd, const void *buf, size_t count)
 - Schreiben von count Bytes aus Puffer buf auf Deskriptor fd
- int close(int fd)
 - Schließen eines Geräts: Dateideskriptor fd kann danach nicht mehr benutzt werden.

UNIX: Gerätespezifische Funktionen

Spezielle Geräteeigenschaften werden über ioctl angesprochen:

```
IOCTL(2) Linux Programmer's Manual IOCTL(2)

NAME
    ioctl - control device

SYNOPSIS
    #include <sys/ioctl.h>
    int ioctl(int d, int request, ...);
```

Schnittstelle generisch, Semantik gerätespezifisch:

```
CONFORMING TO

No single standard. Arguments, returns, and semantics of ioctl(2) vary according to the device driver in question (the call is used as a catch-all for operations that don't cleanly fit the Unix stream I/O model). The ioctl function call appeared in Version 7 AT&T Unix.
```


UNIX: Warten auf mehrere Geräte

- bisher: Lese- oder Schreibaufrufe blockieren
 - Was tun beim Lesen von mehreren Quellen?
- Alternative 1: nichtblockierende Ein-/Ausgabe
 - O_NDELAY beim open()
 - **Polling-Betrieb**: Prozess muss immer wieder **read()** aufrufen
 - unbefriedigend, da Verschwendung von CPU-Zeit bis etwas vorliegt

UNIX: Warten auf mehrere Geräte (2)

- Alternative 2: Blockieren an mehreren Dateideskriptoren
 - Systemaufruf:

- nfds legt fest, bis zu welchem Dateideskriptor select wirken soll.
- ...fds sind Dateideskriptoren, auf die gewartet werden soll:
 - readfds bis etwas zum Lesen vorhanden ist
 - writefds bis man schreiben kann
 - **errorfds** bis ein Fehler aufgetreten ist
- *Timeout* legt fest, wann der Aufruf spätestens deblockiert.
- Makros zum Erzeugen der Dateideskriptormengen
- **Ergebnis:** In den Dateideskriptormengen sind nur noch die Dateideskriptoren vorhanden, die zur <u>De</u>blockade führten.

Pufferung bei E/A-Operationen

- Probleme ohne Datenpuffer im Betriebssystem:
 - Daten, die eintreffen, bevor read ausgeführt wurde (z.B. von der Tastatur), müssten verloren gehen.
 - Wenn ein Ausgabegerät beschäftigt ist, müsste write scheitern oder den Prozess blockieren, bis das Gerät wieder bereit ist.
 - Ein Prozess, der eine E/A-Operation durchführt, kann nicht ausgelagert werden.

(a) Leseoperation ohne Puffer

E/A-Einzelpuffer

Einlesen:

- Daten können vom System entgegengenommen werden, auch wenn der Leserprozess noch nicht read aufgerufen hat.
- Bei Blockgeräten kann der nächste Block vorausschauend gelesen werden, während der vorherige verarbeitet wird.
- Prozess kann problemlos ausgelagert werden. DMA erfolgt in Puffer.

Schreiben:

 Daten werden kopiert. Aufrufer blockiert nicht. Datenpuffer im Benutzeradressraum kann sofort wiederverwendet werden.

E/A-Einzelpuffer

Leistungsabschätzung

Eine einfache Rechnung zeigt den Leistungsgewinn beim wiederholten blockweisen Lesen mit anschließender Verarbeitung:

T: Dauer der Leseoperation

C: Rechenzeit für die Verarbeitung

M: Dauer des Kopiervorgang (Systempuffer→Benutzerprozess)

G: Gesamtdauer für Lesen und Verarbeiten eines Blocks

ohne Puffer: $G_0 = T + C$

mit Puffer: $G_E = max(T, C) + M$

Mit T \approx C und M \approx 0 wäre $G_0 \approx 2 \cdot G_E$. Leider ist M > 0.

Einlesen:

 Während Daten vom E/A-Gerät in den einen Puffer transferiert werden, kann der andere Pufferinhalt in den Empfängeradressraum kopiert werden.

Schreiben:

 Während Daten aus einem Puffer zum E/A-Gerät transferiert werden, kann der andere Puffer bereits mit neuen Daten aus dem Senderadressraum gefüllt werden.

(c) Leseoperation mit Wechselpuffer

Einlesen:

 Während Daten vom E/A-Gerät in den einen Puffer transferiert werden, kann der andere Pufferinhalt in den Empfängeradressraum kopiert werden.

Schreiben:

 Während Daten aus einem Puffer zum E/A-Gerät transferiert werden, kann der andere Puffer bereits mit neuen Daten aus dem Senderadressraum gefüllt werden.

(c) Leseoperation mit Wechselpuffer

Einlesen:

 Während Daten vom E/A-Gerät in den einen Puffer transferiert werden, kann der andere Pufferinhalt in den Empfängeradressraum kopiert werden.

Schreiben:

 Während Daten aus einem Puffer zum E/A-Gerät transferiert werden, kann der andere Puffer bereits mit neuen Daten aus dem Senderadressraum gefüllt werden.

(c) Leseoperation mit Wechselpuffer

Einlesen:

Leistungsabschätzung

Mit einem Wechselpuffer kann ein Leseoperation parallel zur Kopieroperation und Verarbeitung erfolgen.

ohne Puffer: $G_0 = T + C$

mit Puffer: $G_E = max(T, C) + M$

mit Wechselpuffer: $G_W = max(T, C + M)$

Mit C + M ≤ T könnte das Gerät zu 100% ausgelastet werden.

E/A-Ringpuffer

Einlesen:

 Viele Daten können gepuffert werden, auch wenn der Leserprozess nicht schnell genug read-Aufrufe tätigt.

Schreiben:

 Ein Schreiberprozess kann mehrfach write-Aufrufe tätigen, ohne blockiert werden zu müssen.

(d) Leseoperation mit Ringpuffer

Diskussion: E/A-Puffer

- E/A-Puffer entkoppeln die E/A-Operationen der Nutzerprozesse vom Gerätetreiber
 - Kurzfristig lässt sich eine erhöhte Ankunftsrate an E/A-Aufträgen bewältigen.
 - Langfristig bleibt auch bei noch so vielen Puffern ein Blockieren von Prozessen (oder Verlust von Daten) nicht aus.
- Puffer haben ihren Preis:
 - Verwaltung der Pufferstruktur
 - Speicherplatz
 - Zeit für das Kopieren
- In komplexen Systemen wird teilweise <u>mehrfach</u> gepuffert.
 - **Beispiel**: Schichten von Netzwerkprotokollen
 - Nach Möglichkeit vermeiden!

Geräteansteuerung: Beispiel Festplatte

- Treiber muss mechanische Eigenschaften beachten!
- Plattentreiber hat in der Regel mehrere Aufträge in Warteschlange
 - Eine bestimmte Ordnung der Ausführung kann Effizienz steigern.
 - Zusammensetzung der Bearbeitungszeit eines Auftrags:
 - **Positionierungszeit**: abhängig von akt. Stellung des Plattenarms
 - Rotationsverzögerung: Zeit bis der Magnetkopf den Sektor bestreicht
 - Übertragungszeit: Zeit zur Übertragung der eigentlichen Daten
- Ansatzpunkt: Positionierungszeit

E/A-Scheduling: FIFO

- Bearbeitung gemäß Ankunft des Auftrags (First In First Out)
 - Referenzfolge (Folge von Spurnummern):
 98, 183, 37, 122, 14, 124, 65, 67
 - Aktuelle Spur: 53

E/A-Scheduling: FIFO

- Bearbeitung gemäß Ankunft des Auftrags (First In First Out)
 - Referenzfolge (Folge von Spurnummern):
 98, 183, 37, 122, 14, 124, 65, 67
 - Aktuelle Spur: 53

- Gesamtzahl der Spurwechsel: 640
- Weite Bewegungen des Schwenkarms: mittlere Bearbeitungsdauer lang!

E/A-Scheduling: SSTF

- Es wird der Auftrag mit der kürzesten Positionierzeit vorgezogen (Shortest Seek Time First)
 - dieselbe Referenzfolge: 98, 183, 37, 122, 14, 124, 65, 67
 - (Annahme: Positionierungszeit proportional zum Spurabstand)

E/A-Scheduling: SSTF

- Es wird der Auftrag mit der kürzesten Positionierzeit vorgezogen (Shortest Seek Time First)
 - dieselbe Referenzfolge: 98, 183, 37, 122, 14, 124, 65, 67
 - (Annahme: Positionierungszeit proportional zum Spurabstand)

- Gesamtzahl der **Spurwechsel: 236**

E/A-Scheduling: SSTF

- Es wird der Auftrag mit der kürzesten Positionierzeit vorgezogen (Shortest Seek Time First)
 - dieselbe Referenzfolge: 98, 183, 37, 122, 14, 124, 65, 67
 - (Annahme: Positionierungszeit proportional zum Spurabstand)

- Gesamtzahl der Spurwechsel: 236
- ähnlich wie SJF kann auch SSTF zur Aushungerung führen!
- noch nicht optimal

E/A-Scheduling: Elevator

- Bewegung des Plattenarms in eine Richtung bis keine Aufträge mehr vorhanden sind (Fahrstuhlstrategie)
 - Gleiche Referenzfolge (Annahme: bisherige Kopfbewegung Richtung 0)

E/A-Scheduling: Elevator

- Bewegung des Plattenarms in eine Richtung bis keine Aufträge mehr vorhanden sind (Fahrstuhlstrategie)
 - Gleiche Referenzfolge (Annahme: bisherige Kopfbewegung Richtung 0)

- Gesamtzahl der Spurwechsel: 208
- Neue Aufträge werden miterledigt ohne zusätzliche Positionierungszeit
- Keine Aushungerung, lange Wartezeiten aber nicht ausgeschlossen

Diskussion: E/A-Scheduling heute

- Platten sind intelligente Geräte
 - Physikalische Eigenschaften werden verborgen (Logische Blöcke)
 - Platten weisen riesige Caches auf
 - Solid State Disks enthalten keine Mechanik mehr
- → E/A-Scheduling verliert langsam an Bedeutung
- Erfolg einer Strategie ist schwerer vorherzusagen
- Trotzdem ist E/A-Scheduling noch immer sehr wichtig:
 - CPUs werden immer schneller, Platten kaum
 - Linux implementiert zur Zeit zwei verschiedene Varianten der Fahrstuhlstrategie (+ FIFO für "Platten" ohne Positionierungszeit):
 - **DEADLINE**: Bevorzugung von Leseanforderungen (kürzere Deadlines)
 - **COMPLETELY FAIR**: Prozesse erhalten gleichen Anteil an E/A-Bandbreite

Inhalt

- Ein-/Ausgabe-Hardware
- Geräteprogrammierung
- Aufgaben des Betriebssystems
- Zusammenfassung

Zusammenfassung

- E/A-Hardware ist sehr unterschiedlich
 - teilweise auch "hässlich" zu programmieren
- Die Kunst des Betriebssystembaus besteht darin, ...
 - trotzdem einheitliche und einfache Schnittstellen zu definieren
 - effizient mit der Hardware umzugehen
 - CPU und E/A-Geräteauslastung zu maximieren.
- Gerätetreibervielfalt ist für den Erfolg eines Betriebssystems extrem wichtig.
 - Bei Systemen wie Linux und Windows sind die Gerätetreiber das weitaus größte Subsystem.