Handschrifterkennung mit CUDA und C++

Christopher Haug, Dominik Walter

University of Augsburg Systems and Networking

21. Juli 2017

Aufgabe

- Erkennung von handgeschriebenen Zahlen
- ► Neuronales Netz
- ► CUDA und C++

Training/Testing Dataset

THE MNIST DATABASE of handwritten digits

- 60.000 Trainings-Bilder
- 10.000 Test-Bilder
- Auflösung: 28x28
- IDX-Format
- Source: http://yann.lecun.com/exdb/mnist/

Feed-Forward / Back-Propagation

CUDA-Implementierung

Feed-Forward:

- ► Eingabe-Kanten (edges)
 - ► Thread
 - ► Berechnet Kanten-Wert
 - ► Speichert in SharedMemory
- Knoten (nodes)
 - ▶ Thread-Block
 - Summiert alle Kanten-Werte
 - Berechnet Knoten-Wert (Sigmoid)
- ► Ausgabe
 - ► Index des höhsten Knoten im *OutputLayer*

CUDA-Implementierung

Back-Propagation:

- ► Ausgehende-Kanten (edges)
 - ► Thread
 - ► Berechnet Kanten-Fehler
 - ► Speichert in SharedMemory
 - Aktualisiert
 Kanten-Gewichte
- ► Knoten (nodes)
 - ► Thread-Block
 - Summiert alle Kanten-Fehler
 - ► Berechnet Knoten-Fehler

C++-Implementierung

- Aufteilung der Knoten auf n Threads
- ► Jeder Thread berechnet k Knoten-Werte/-Fehler
- ► Bulk-Synchronisation zwischen den Ebenen

Auswertung-Generic TODO

