Wenrong Wei

Wuhan, China | weiwenrong@hust.edu.cn | +86 198 012 31 05 | wenrongwei2000.github.io

Education

Huazhong University of Science and Technology, M.S. in electrical engineering Sep. 2022 – Jun. 2025

• GPA: 91.64/100 (TOP 25%)

• University Rankings (US News): 100th globally

North China Electric Power University, B.S. in electrical engineering Sep. 2018 – Jun. 2022

• GPA: 91.82/100 (TOP 2%)

Selective Publications

- Wenrong Wei, Shihong Miao*, et al. Optimal Distribution Method for Frequency Regulation Commands Considering the State of Charge Recovery and Adjustment, Proceedings of the CSEE, 2024. (EI Journal)
- Xin Sun, Wenrong Wei*, et al. Multi-Time Scale Market Participation Strategy of Wind-Energy Storage Combined System Considering Uncertainty, Electric Power Automation Equipment, 2024. (EI Journal)

Projects

Electrical Market Transactions and Command Allocation Strategies for Wind Farms and Energy Storage Plants Providing Frequency Regulation Services

Jun. 2022 - Jun. 2024

- Develop a Multi-Time Scale Market Bidding Model for Wind Farm Equipped with Storage
 - Model the uncertainty of wind power output with Copula Functions: Create day-ahead wind power uncertainty
 models with static copula functions and intraday models with dynamic copula functions.
 - Establish market bidding model for wind farm equipped with Energy Storage: Establish day-ahead and intraday energy-frequency regulation market bidding models.
 - **Multi-time scale market participation strategy:** With the updating of wind power forecast data, adjust day-ahead bidding decisions to reduce deviation penalties.
- Propose a Two-Level Command Allocation Model for Wind Farms, Energy Storage Plants in AGC
 - Upper-level: Coordinate SOC recovery of energy storage plants and utilization of wind power: 1.Distribute
 commands among wind farm clusters, energy storage plant clusters, and thermal power plant clusters; 2.During
 down-command, increase wind farm output and energy storage charging power simultaneously, reducing wind farm
 curtailment and improving storage SOC recovery speed.
 - Lower-level: Optimize energy distribution among energy storage plants: 1.Distribute commands within clusters, such as within the energy storage plant cluster; 2.Balance economic efficiency and energy storage plant's SOC during allocation, preventing overuse and energy depletion of highly economical plants.

State of Health Estimation of Electrochemical Energy Storage Plants

Jan. 2024 - Mar. 2024

- Establish an SVR model for predicting the remaining life of energy storage plants
 - o **Correlation analysis:** Compare the correlation strength between indirect indicators and the remaining lifespan of energy storage, then select the indicator with the highest correlation.
 - Establish predictive model: 1.Distribute commands within clusters, such as within the energy storage plant cluster; 2.Balance economic efficiency and energy storage plant's SOC during allocation, preventing overuse and energy depletion of highly economical plants.

Honors & Scholarships

- Outstanding Graduate of Hebei Province, 2022
- First Prize Scholarship of Huazhong University of Science and Technology, 2023, 2022
- First Prize Scholarship of North China Electric Power University, 2021, 2020, 2019

Additional Information

- Programmings & Tools: Matlab, C++, C, Simulink, Multisim, Latex
- Interest: Optimal Operation of Power System, Electrical Market, System Modeling, and Reinforcement Learning