From PFT to traits

Improving the canopy radiative transfer in Earth system modeling

Caltech

1970s

1980s

Bucket model (not yet standalone) 1990 IPCC 1st assessment

Simple model (vegetation cover, stomatal model) 1995 IPCC 2nd assessment

More complicated model (carbon cycle) 2001 IPCC 3rd assessment

2007 IPCC 4th assessment

2014 IPCC 5th assessment

Increasing complexity (DGVM, nutrients, LUC, City, Agriculture)

2021 IPCC 6th assessment

1990s

2000s

2010s

2020s

LSM: Land Surface Model

CI MA A CLIMATE MODELING ALLIANCE

Caltech

1st Gen LSM

1960s Manabe (1969) 1970s 1980s 1990s 2000s 2010s

Cons:

Pros:

Bucket model

Energy budget

Water budget

Vegetation

2nd Gen LSM

1960s

Pros:

Vegetation

Cons:

Multiple soil layering

Carbon Cycle

1970s

Farquhar C3 Model 1980s

Ball Berry Stomatal Model

Collatz C4 Model 1990s

Leuning Stomatal Model

2000s

2010s

3rd Gen LSM

1960s

0

Pros:

Cons:

`

Photosynthesis

Too simplified

1970s

Dynamic Growth

Chemical processes

1980s

Photosynthesis Models

Stomatal Models 1990s

2000s

2010s

2020s

CLIMATE MODELING ALLIANCE

Caltech

4th? Gen LSM

1960s

1970s

1980s

1990s

2000s

2010s

CLM4.5

2020s

Pros:

- Nutrients
- Chemical processes
- River & Lake
- City & Agriculture
- Fire
- Methane
- etc

Pros:

- Simple processes
- Calibration

CIMATE MODELING ALLIANCE

LSMs

1960s

1970s

FvCB model

Norman model 1980s Sellers model

1990s

Collatz model

Leuning model

2000s

Carbon cycle

Ball Berry model

2010s

DGVM Medlyn model

Sperry model

2020s Johnson B6F model

Sources of Photosynthesis Bias

$$R_{\text{SW}} = \int_{\lambda_1}^{\lambda_2} E(\lambda) \cdot f_{\text{absorption}}(\lambda) \cdot d\lambda$$

C I MATE MODELING ALLIANCE

Caltech

CIMATE MODELING ALLIANCE

O LICHNOYOUTH

CIMATE MODELING ALLIANCE

O THICHNOSON THE OCT OF THE CHNOSOCY

Caltech

Take-home messages

- Move from PFT- to trait-based configurations
- Go hyperspectral
- More ecophysiology processes

Acknowledgments

GPS, Caltech:

Christian Frankenberg, Renato k. Braghiere, Woodward W. Fischer, Yitong Yao

CliMA, Caltech:

Tapio Schneider, Zhaoyi Shen

JPL, Caltech:

A. Anthony Bloom, David Schimel

Max-Planck-Institute for Biogeochemistry:

Alexander J. Winkler, Markus Reichstein

University of Sheffield

Holly Croft