孤立系统中单管引水的水轮机调节系统小波动特性分析

孤立系统中单管引水的水轮机调节系统框图见图 1,调节系统参数见表 1。

图 1 孤立系统中单管引水的水轮机调节系统框图

表 1 孤立系统中单管引水的水轮机调节参数表

e_y	$e_{_{x}}$	$e_{_h}$	$e_{_{qy}}$	e_{qx}	e_{qh}	$e_{_{ m g}}$
0.76	-1.23	1.665	0.685	-0. 263	0. 512	1.0
T_y^*	b_{p}	T_a	Q_r	L_r	H_r	A
0.1s	0.04	10.0s	$345\text{m}^3/\text{s}$	600.0m	99.3m	69. 2m ²
G	T_d	b_{t}	Δt	m	m_{g0}	
			(计算步长)	(计算步数)		
9.8m/s^2	5.0s	0.8	2.0s	100	0.1	

编制线性系统动态过程状态空间法计算程序,包括系统系数矩阵 AR 计算及 转移矩阵计算,要求:

- (1) 打印 AR 阵元素及转移矩阵元素,对给定的 T_d 、 b_t 、 Δt 、m 值进行小波 动过渡过程计算,打印转速n 的过渡过程曲线。
- (2) 改变 T_d 、 b_t 值进行计算,分析其对系统稳定性的影响。
- (3) 选择合适的 T_a 、 b_i 值进行计算,然后变动 T_a 值进行计算,分析 T_a 对系统稳定性及动态品质的影响。
- (4) T_d 、 b_t 、 T_a 不变,变动 T_w , 分析 T_w 对动态品质和稳定性的影响。
- (5) 改变机组的 6 个传递系数的值,分析机组运行工况点对系统稳定性的影响。
- (6) 结合控制原理的稳定性分析,分析 T_d 、 b_t 的稳定域(选做)。