MODALITATEA DE DESFĂȘURARE A TESTULUI DE LABORATOR LA DISCIPLINA "PROGRAMAREA ALGORITMILOR"

- Testul de laborator la disciplina "Programarea algoritmilor" se va desfășura în ziua de **08.01.2022**, între orele 9³⁰ și 12⁰⁰, astfel:
 - **09**³⁰ **10**⁰⁰: efectuarea prezenței studenților
 - 10⁰⁰ 11³⁰: desfășurarea testului
 - 11³⁰ 12⁰⁰: verificarea faptului că sursele trimise de către studenți au fost salvate pe platformă
- Testul se va desfășura pe platforma MS Teams, iar pe tot parcursul desfășurării lui studenții trebuie să fie conectați pe canalul dedicat **cursului** de "Programarea algoritmilor" corespunzător seriei lor.
- În momentul efectuării prezenței, fiecare student trebuie să aibă pornită camera video în MS Teams și să prezinte buletinul sau cartea de identitate. Dacă dorește să-și protejeze datele personale, studentul poate să acopere codul numeric personal și/sau adresa!
- În timpul desfășurării testului studenții pot să închidă camera video, dar trebuie să o deschidă dacă li se solicită acest lucru de către un cadru didactic!
- Testul va conține **3 subiecte**, iar un subiect poate să aibă mai multe cerințe.
- Rezolvarea unui subiect se va realiza într-un singur fișier sursă Python (.py), indiferent de numărul de cerințe, care va fi încărcat/atașat ca răspuns pentru subiectul respectiv.
- Numele fișierului sursă Python trebuie să respecte următorul șablon: *grupa_nume_prenume_subiect.py*. De exemplu, un student cu numele Popescu Ion Mihai din grupa 131 trebuie să denumească fișierul care conține rezolvarea primului subiect astfel: 131_Popescu_Ion_Mihai_1.py.
- La începutul fiecărui fișier sursă Python se vor scrie, sub forma unor comentarii, următoarele informații: numele și prenumele studentului, grupa sa și enunțul subiectului rezolvat în fișierul sursă respectiv. Dacă un student nu reușește să rezolve deloc un anumit subiect, totuși va trebui să încarce/atașeze un fișier sursă Python cu informațiile menționate anterior!
- Toate rezolvările (fișierele sursă Python) trimise de către studenți vor fi verificate din punct de vedere al similarității folosind un software specializat, iar eventualele fraude vor fi sancționate conform Regulamentului de etică și profesionalism al FMI (http://old.fmi.unibuc.ro/ro/pdf/2015/consiliu/Regulament etica FMI.pdf).

Subject 1

[4 p.] Fișierul text *text.in* conține pe prima linie un cuvânt w nevid format din litere mici ale alfabetului englez, iar pe următoarele linii un text în care cuvintele sunt despărțite prin spații și semnele de punctuație uzuale. Să se scrie în fișierul text *text. out* toate cuvintele din fișierul *text. in* care au un prefix comun nevid cu w sau mesajul "*Imposibil*" dacă în fișierul de intrare nu există nici un cuvânt cu proprietatea cerută. Cuvintele vor fi scrise în ordinea descrescătoare a lungimilor prefixelor maximale pe care le au cu cuvântul w, iar în cazul unor lungimi egale vor fi ordonate alfabetic. Fiecare cuvânt va fi scris o singură dată și nu se va face distincție între litere mici și litere mari.

Exemplu:

text.in	text.out
masa	<u>masa</u>
Mama s-a gandit sa puna pe masa mai multe	<u>mas</u> inii
feluri de mancare,	<u>ma</u> i
dar zgomotul masinii de spalat a vecinilor	<u>ma</u> ma
a deranjat-o pe mama.	<u>ma</u> ncare
	multe

În exemplul dat, am subliniat prefixele maximale comune pe care cuvintele din fișierul text.out le au cu cuvântul "masa".

Subjectul 2

- a) [0,5p] Scrieți o funcție citire_matrice care primește un parametru reprezentând numele unui fișier care conține elementele unei matrice pătratice n x n de numere întregi cu următoarea structură:
 - pe prima linie a fișierului este n
- pe a doua linie sunt n * n numere separate prin câte un spațiu reprezentând elementele matricei transformate în vector prin concatenarea liniilor matricei de la prima la ultima; astfel primele n numere de pe linie sunt elementele primei linii din matrice, urmate de elementele celei de a doua linii etc.

Funcția citește elementele matricei din fișierul cu numele dat ca parametru și returnează matricea cu aceste elemente. Pentru fișierul **"matrice.in"** din exemplul de mai jos matricea este :

123

456

789

- **b)** [1,5p] Scrieți o funcție **duplicare** care primește ca parametri (în această ordine): o matrice (listă de liste) și un număr variabil de numere naturale reprezentând indici ai liniilor din matrice (indicele primei linii din matrice este 0) și **inserează după fiecare linie cu indicele dat ca parametru o copie a ei** (duplică linia). Funcția va modifica matricea primită ca parametru.
- c) [1p] Se dă fișierul "matrice.in" cu structura descrisă la punctul a). Folosind apeluri utile ale funcțiilor de la a) și b) să se citească matricea din fișierul "matrice.in", să se modifice această matrice duplicând prima și a doua linie (după prima linie se va insera o linie egală cu ea, la fel și după a doua) și adăugând apoi 1 la primul element de pe prima linie. Să se afișeze pe ecran matricea obținută.

matrice.in	Iesire pe ecran
3	2 2 3
1 2 3 4 5 6 7 8 9	1 2 3
	4 5 6
	4 5 6
	7 8 9

Subject 3

Alice și Bob comunică folosind următorul algoritm pentru a-și codifica mesajele:

Alice şi Bob cunosc amândoi o cheie secretă sub forma unui şir de caractere care este o
permutare a celor 26 de litere mici din alfabetul englez, astfel: literei 'a' îi corespunde prima
literă din cheia secretă, literei 'b' îi corespunde a doua literă din cheia secretă, ..., literei 'z' îi
corespunde ultima literă din cheia secretă, după cum se poate observa din următorul
exemplu:

Alfabetul englez = abcdefghijklmnopqrstuvwxyz Cheia secretă = obcgsefhizjklmnpqrdtuvawxy

- Codificarea unui mesaj presupune înlocuirea fiecărei litere din el cu litera corespunzătoare din cheia secretă. De exemplu, dacă Alice și Bob au cheia secretă "obcgsefhizjklmnpqrdtuvawxy", atunci cuvântul "astazi" se va codifica prin cuvântul "odtoyi", deoarece literei 'a' îi corespunde litera 'o', literei 's' îi corespunde litera 'd' ș.a.m.d.
- Decodificarea unui mesaj codificat presupune căutarea fiecărei litere din el în cheia secretă și înlocuirea ei cu litera corespunzătoare din alfabetul englez. De exemplu, dacă Alice și Bob au cheia secretă "obcgsefhizjklmnpqrdtuvawxy", atunci cuvântul codificat "endt" se va decodifica în cuvântul "fost", deoarece literei 'e' îi corespunde litera 'f', literei 'n' îi corespunde litera 'o' ș.a.m.d.

Mesajele sunt codificate și transmise cuvânt cu cuvânt. Toate literele din mesaje sunt litere mici din alfabetul englez și nu se folosesc semne de punctuație, cu excepția caracterului '-', care nu se criptează.

Eve este un hacker care interceptează traficul și reușește să găsească algoritmul de decodificare, precum și cheia secretă. Eve are dificultăți în reconstrucția propozițiilor deoarece nu salvează cuvintele în ordinea în care sunt trimise. Să se reconstruiască propozițiile trimise de Alice și Bob.

- a) [1 p.] Fisierul text comunicare.in are următoarea structură:
 - pe prima linie se găsește cheia secretă
 - pe fiecare dintre următoarele linii se găsesc informațiile despre un cuvânt (transmis la cel puțin un minut distanță), despărțite printr-un spațiu astfel:
 - primul caracter este A dacă cuvântul este trimis de Alice sau B dacă este trimis de Bob
 - separat printr-un spațiu se va găsi cuvântul în formă codificată
 - ultima informație va fi ora la care este trimis mesajul în format de 5 caractere și 24 de ore (de exemplu, 12:34 sau 21:03)

Să se scrie o funcție citire_date care să returneze o structură cu datele din fișier.

b) [1.5 p.] Să se scrie o funcție *decodificare* care primește ca parametri un cuvânt codificat și cheia secretă utilizată. Funcția trebuie să decodifice **eficient** cuvântul codificat și apoi să-l returneze.

[1.5 p.] Să se reconstituie propozițiile trimise de Bob și Alice astfel :

- se decodifică fiecare cuvânt folosind funcția definită la punctul b)
- se determină ordinea în care au fost trimise cuvintele
- se salvează în fișierul text *comunicare.out* propozițiile reconstituite, astfel:

comunicare.in	după decriptarea datelor	comunicare.out
obcgsefhizjklmnpqrdtuvawxy B cnlprnlido 13:20 A ko 12:00 A vnl 10:00 B o 10:20 A dug 12:30 B rstrofsti-vo 14:20 A odtoyi 09:00 B cnlumicorso 09:20 A otoco 11:00 B endt 12:20	B compromisa 13:20 A la 12:00 A vom 10:00 B a 10:20 A sud 12:30 B retrageti-va 14:20 A astazi 09:00 B comunicarea 09:20 A ataca 11:00 B fost 12:20	A : astazi vom ataca la sud B : comunicarea a fost compromisa retrageti-va