In the Specification:

Please replace paragraph [0017] with the following amended paragraph:

[0017] Figs, 1 and 2 show a perspective view of a device that serves to align the optical axes of a first shell mold (see ref. no. 27 in Fig. 9) and a second shell mold (also see ref. no. 27 in Fig. 9) relative to each other and to position them at a predetermined distance and then to join them together into a composite by means of sticking a tape along the edge of the two shell molds. Fig. I shows the entire device with the device for applying the tape. Fig. 2 shows the same device for reasons of illustrative clarity without the device for applying the tape. The device comprises a gripper 1 for holding the first shell mold, a gripper 2 for holding the second shell mold, a centering station 3 and a device 4 for feeding and applying the tape 5. The two grippers 1 and 2 can be moved along a predetermined axis 6 and can be rotated on the axis 6 individually as well as together. The two grippers 1 and 2 preferably bear on a common guide rail 7. The axis 6 runs parallel to the guide rail 7. A first motor 8 serves to move the first gripper 1 along the guide rail 7, a second motor 9 serves to move the second gripper 2 along the guide rail 7, a third motor 10 serves to rotate the first gripper 1 on the axis 6, a fourth motor 11 serves to rotate the second gripper 2 on the axis 6. The centering station 3 that is arranged stationary in this example serves to align the axis of symmetry or the optical axis of a shell mold so that it coincides with the axis 6. Each of the two shell molds has a marking (a so-called tabo marking) on its edge that characterises the rotational position of the shell mold. The motors 8 to 11 and the device 4 for applying the tape 5 are controlled by a control device.

Please replace paragraph [0028] with the following amended paragraph:

[0028] The two grippers 1 and 2 are constructed the same. The construction of the grippers is described in more detail based on Fig. 9. The gripper contains a support 25 on which the passive side 26 of the shell mold 27 comes to rest, as well as a circular, deformable sealing element 28 arranged within the support 25 in order to seal a cavity 29 formed between the shell mold 27 and the gripper to which vacuum can be applied. The support 25 is located in a plane running perpendicular to an axis of symmetry 30. The surface of the support 25 facing towards the shell mold 27 is toroidal. The sealing element 28 is secured to a plate 31 that is connected by means of a path absorbing element, preferably a bellows 32, to a platform 33 carrying the support 25. The bellows 32 enables a relatively large deflection of the sealing element along the axis of symmetry 30 of the gripper as well as a shifting within the interior bordered by the torus of the support 25, in order to be able to grasp shell molds of different geometry. The axis of symmetry 30 corresponds to the axis of rotation of the gripper and therefore the axis 6 (Fig. 1). When the gripper has not grasped a shell mold, then the bellows 32 assumes its neutral position and the sealing element 28 protrudes typically by several millimetres above the edge of the support 25.