COTTON FIBER TRANSCRIPTIONAL FACTORS

INTRODUCTION

Technical Field

This invention relates to methods of using in vitro constructed DNA transcription or expression cassettes capable of directing fiber-tissue transcription of a DNA sequence of interest in plants to produce fiber cells having an altered phenotype, and to methods of providing for or modifying various characteristics of cotton fiber. The invention is exemplified by methods of using cotton fiber promoters for altering the a phenotype of cotton fiber, and cotton fibers produced by the method.

Background

In general, genetic engineering techniques have been directed to modifying the phenotype of individual prokaryotic and eukaryotic cells, especially in culture. Plant cells have proven more intransigent than other eukaryotic cells, due not only to a lack of suitable vector systems but also as a result of the different goals involved. For many applications, it is desirable to be able to control gene expression at a particular stage in the growth of a plant or in a particular plant part. For this purpose, regulatory sequences are required which afford the desired initiation of transcription in the appropriate cell types and/or at the appropriate time in the plant's development without

having serious detrimental effects on plant development and productivity. It is therefore of interest to be able to isolate sequences which can be used to provide the desired regulation of transcription in a plant cell during the growing cycle of the host plant.

One aspect of this interest is the ability to change the phenotype of particular cell types, such as differentiated epidermal cells that originate in fiber tissue, *i.e.* cotton fiber cells, so as to provide for altered or improved aspects of the mature cell type. Cotton is a plant of great commercial significance. In addition to the use of cotton fiber in the production of textiles, other uses of cotton include food preparation with cotton seed oil and animal feed derived from cotton seed husks.

Despite the importance of cotton as a crop, the breeding and genetic engineering of cotton fiber phenotypes has taken place at a relatively slow rate because of the absence of reliable promoters for use in selectively effecting changes in the phenotype of the fiber. In order to effect the desired phenotypic changes, transcription initiation regions capable of initiating transcription in fiber cells during development are desired. Thus, an important goal of cotton bioengineering research is the acquisition of a reliable promoter which would permit expression of a protein selectively in cotton fiber to affect such qualities as fiber strength, length or color.

Relevant Literature

publications WO 94/12014 and WO 95/08914, and John and Crow, Proc. No. 1. Acrol. Sci. USA, 89:5769-5773, 1992. cDNA clones that are preferentially expressed in cotton fiber have been isolated. One of the clones isolated corresponds to mRNA and protein that are highest during the late primary cell wall and early secondary cell wall synthesis stages. John and Crow, supra.

U.S. Patent No. 5,175,095 describes tomato transcriptional factors which can be used to direct the transciption of DNA in ovary tissue. The factors are expressed immediately prior to anthesis and through flowering.

A class of fruit-specific promoters expressed at or during anthesis through fruit development, at least until the beginning of ripening, is discussed in European Application 88.906296.4, the disclosure of which is hereby incorporated by reference. cDNA clones from tomato displaying differential expression during fruit development have been isolated and characterized (Mansson et al., Mol. Gen. Genet. (1985) 200:356-361; Slater et al., Plant Mol. Biol. (1985) 5:137-147). These studies have focused primarily on mRNAs which accumulate during fruit ripening. One of the proteins encoded-by the ripening-specific cDNAs has been identified as polygalacturonase (Slater et al., Plant Mol. Biol. (1985) 5:137-147).

A cDNA clone which encodes tomato polygalacturonase has been sequenced (Grierson et al., Nucleic Acids Research (1986)

14:8395-8603). Improvements in aspects of tomato fruit storage

and handling through transcriptional manipulation of expression of the polygalacturonase gene have been reported (Sheehy et al., Proc. Natl. Acad. Sci. USA (1988) 85:8805-8809; Smith et al., Nature (1988) 334: 724-726).

Mature plastid mRNA for psbA (one of the components of photosystem II) reaches its highest level late in fruit development, whereas after the onset of ripening, plastid mRNAs for other components of photosystem I and II decline to nondetectable levels in chromoplasts (Piechulla et al., Plant Molec. Biol. (1986) 7:367-376). Recently, cDNA clones representing genes apparently involved in tomato pollen (McCormick et al., Tomato Biotechnology (1987) Alan R. Liss, Inc., NY) and pistil (Gasser et al., Plant Cell (1989), 1:15-24) interactions have also been isolated and characterized.

Other studies have focused on genes inducibly regulated, 2.5. genes encoding serine proteinase inhibitors, which are expressed in response to wounding in tomato (Graham et al., J. Biol. Chem. (1985) 260:6555-6560: Graham et al., J. Biol. Chem. (1985) 260:6561-6554) and on mRNAs correlated with ethylene synthesis in ripening fruit and leaves after wounding (Smith et al., Planta (1986) 168: 94-100). Accumulation of a metallocarboxypeptidase inhibitor protein has been reported in leaves of wounded potato plants (Graham et al., Biochem & BioPhys. Res Comm. (1981) 101: 1164-1170).

Genes which are expressed preferentially in plant seed tissues, such as in embryos or seed coats, have also been reported. See, for example, European Patent Application

15

87306739.1 (published as 0 255 378 on February 3, 1988) and Kridl et al. (Seed Science Research (1991) 1:209-219).

In animals, the ras superfamily is subdivided into the subfamilies ras which is involved in controlling cell growth and division, rab/YPT members which control secretory processes, and rho which is involved in control of cytoskeletal organization (Bourne et al., (1991) Nature 349: 117-127), and number of homologous genes have now been identified in plants (for a review, see Terryn et al., (1993) Plant Mol. Biol. 22: 143-152). None have been found for the important ras subfamily, all but one of the genes identified have been members of the rab/YPT1 subfamily, and there is only one recent report of the cloning of a rho gene in pea (Yang and Watson(1993) Proc. Natl. Acad. Sci.

Little work has been done to characterize the functions of these genes in plants, although one recent report has shown that a small G protein from Arabidopsis can functionally complement a mutant form in yeast involved in vesicle trafficking, suggesting a similar function for the plant gene (Bednarek et al., (1994) Plant Physiol 104: 591-596).

In animals, two members of the *rho* subfamily, called Rac and Rho, have been shown to be involved in the regulation of actin organization (for a review, see Downward, (1992) Nature 359: 273-274).

Rac1 has been shown to mediate growth factor-induced membrane ruffling by influencing microfilament alignment on the plasma membrane (Ridley et al, (1992) Cell 70: 401-410), whereas

15

RhoA regulates the formation of actin stress fibers associated with focal adhesions (Ridley and Hall, (1992) Cell 70: 389-399).

In yeast, the CDC42 gene codes for a rho-type protein which also regulates actin organization involved in the establishment of cell polarity required for the localized deposition of chitin in the bud scar (Adams et al., (1990) J Cell Biol 111: 131-143.

Disruption of gene function, either by temperature shifts with a CDC42-temperature-sensitive mutant in yeast (Adams et al., 1990), or by micro-injection into fibroblasts of mutant Rac or Rho proteins exibiting a dominant negative phenotype (Ridley et al., 1992; Ridley and Hall, 1992), leads to disorganization of the actin network.

In plants, control of cytoskeletal organization is poorly understood in spite of its importance for the regulation of patterns of cell division, expansion, and subsequent deposition of secondary cell wall polymers. The cotton fiber represents an excellent system for studying cytoskeletal organization. Cotton fibers are single cells in which cell elongation and secondary wall deposition can be studied as distinct events. These fibers develop synchronously within the boll following anthesis, and each fiber cell elongates for about 3 weeks, depositing a thin primary wall (Meinert and Delmer, (1984) Plant Physiol. 59: 1088-1097; Basra and Malik, (1984) Int Rev of Cytol 89: 65-113). At the time of transition to secondary wall cellulose synthesis, the fiber cells undergo a synchronous shift in the pattern of cortical microtubule and cell wall microfibril alignments, events which may be regulated upstream by the organization of actin

M

צא

17

(Seagull, (1990) Protoplasma 159: 44-59; and (1992) In:

Proceedings of the Cotton Fiber Celluluse conference, National Cotton Council of America, Memphis, RN, pp 171-192.

Agrobacterium-mediated cotton transformation is described in Umbeck, United States Patents Nos. 5,004,863 and 5,159,135 and cotton transformation by particle bombardment is reported in WO 92/15675, published September 17, 1992. Transformation of Brassica has been described by Radke et al. (Theor. Appl. Genet. Plant Cell Meports (1992) 11:499-505.

SUMMARY OF THE INVENTION

Novel DNA constructs and methods for their use are described which are capable of directing transcription of a gene of interest in cotton fiber, particularly early in fiber development and during secondary cell wall development. The novel constructs include a vector comprising a transcriptional and translational initiation region obtainable from a gene expressed in cotton fiber and methods of using constructs including the vector for altering fiber phenotype.

Two promoters, are provided from genes involved in the regulation of cotton fiber development. One, Rac13, is from a protein in cotton which codes for an animal Rac protein homolog.

Rac13, shows highly-enhanced expression during fiber development.

This pattern of expression correlates well with the timing of

70

reorganization of the cytoskeleton, suggesting that the Rac13 cotton gene may, like its animal counterpart, be involved in the signal transduction pathway for cytoskeletal organization.

The other is a promoter from a cotton protein which is unrelated to published proteins, designated 4-4. 4-4 mRNA accumulates in fiber cells at day 17 post anthesis and continues to fiber maturity at days 35 post anthesis.

The methods of the present invention include transfecting a host plant cell of interest with a transcription or expression cassette comprising a cotton fiber promoter and generating a plant which is grown to produce fiber having the desired phenotype. Constructs and methods of the subject invention thus find use in modulation of endogenous fiber products, as well as production of exogenous products and in modifying the phenotype of fiber and fiber products. The constructs also find use as molecular probes. In particular, constructs and methods for use in gene expression in cotton embryo tissues are considered herein. By these methods, novel cotton plants and cotton plant parts, such as modified cotton fibers, may be obtained.

Also provided in the instant application are constructs and methods of use relating to modification of color phenotype in fiber tissues. Such constructs contain sequences for expression of genes involved in the production of colored compounds, such as anthocyanins, melanin or indigo, and also may contain sequences which provide for targeting of the gene products to particular locations in the plant cell, such as plastid organelles, or vacuoles. Plastid targeting is of particular interest for

expression of genes involved in aromatic amino acid biosynthesis pathways, while vacuolar targeting is of particular interest where the precursors required in synthesis of the pigment are present in vacuoles. Production of melanin, for example, may be enhanced by vacuolar targeting in plant tissues which accumulate tyrosine in vacuoles. Transcriptional initiation regions for expression of color-related genes will be selected on the basis of the tissue for which color modification is desired.

SCRIPTION OF THE DRAWINGS

(560 TO NO.1)
(SEO TO NO.1)
(Shows the DNA sequence encoding the structural (569 FD NO:3 -JED FD NO:6)

protein from cDNA 4-4.

Figures 2 shows the sequence to the promoter construct

pCGN5606 made using genomic DNA from 4-4-6 genomic clone.

Figures 3 shows the sequence to the 4-4 promoter construct pcgn5610. (SEQ FU NO:11)

THA-4B (SEY FO NO:13) (SEY FO NO:12) product (SEY FO NO:14)

Figures & shows the CDNA sequence encoding the Rac13 gene

expressed in cotton fiber.

Figures $\mathcal B$ shows the sequence the promoter region from the (SEY ID NO! (S) rac13 gene.

Figure 6 shows a restriction map for pCGN4735.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the subject invention, novel constructs and methods for their use are described which may be used as molecular probes or inserted into a plant host to provide for transcription of a nucleotide sequence of interest in fiber cells

as compared with other plant cells, generally preferentially in fiber cells to produce cells and plant parts having an altered phenotype. Of particular interest is the period of at least one to three days prior to anthesis through flower senescence. promoter was derived from the characterization of two distinct rac cDNA clones isolated from a cotton fiber cDNA library which code for homologs of animal Rac proteins. Using gene-specific probes, it was determined that amphidiploid cotton contains two genes that code for each of the two rac proteins, designated Rac13 and Rac9 respectively. The gene for Rac13 shows highlyenhanced expression in developing cotton fibers, with maximal expression occuring at the time of transition between primary and secondary wall synthesis. This is also the time at which reorganization of the cytoskeleton occurs, and thus the pattern of expression of Rac13 is consistent with its possible role, analogous to animal Rac, in the signal transduction pathway for cytoskeletal organization.

The constructs may include several forms, depending upon the intended use of the construct. Thus, the constructs include vectors, transcriptional cassettes, expression cassettes and plasmids. The transcriptional and translational initiation region (also sometimes referred to as a "promoter,"), preferably comprises a transcriptional initiation regulatory region and a translational initiation regulatory region of untranslated 5' sequences, "ribosome binding sites," responsible for binding mRNA to ribosomes and translational initiation. It is preferred that all of the transcriptional and translational functional elements

of the initiation control region are derived from or obtainable from the same gene. In some embodiments, the promoter will be modified by the addition of sequences, such as enhancers, or deletions of nonessential and/or undesired sequences. By "obtainable" is intended a promoter having a DNA sequence sufficiently similar to that of a native promoter to provide for the desired specificity of transcription of a DNA sequence of interest. It includes natural and synthetic sequences as well as sequences which may be a combination of synthetic and natural sequences.

The vectors will comprise a nucleotide sequence comprising the transcriptional initiation regulatory regions of this invention associated. A transcriptional cassette for transcription of a nucleotide sequence of interest in cotton fiber will include in the direction of transcription, the cotton fiber transcriptional initiation region, a DNA sequence of interest, and a transcriptional termination region functional in the plant cell. When the cassette provides for the transcription and translation of a DNA sequence of interest it is considered an expression cassette. One or more introns may be also be present.

Other sequences may also be present, including those encoding transit peptides and secretory leader sequences as desired. The regulatory regions are capable of directing transcription in fiber cells from anthesis through flowering but direct little or no expression after the initial changes which occur at the time surrounding pollination and/or fertilization;

transcription from these regulatory regions is not detectable at about three weeks after anthesis. Further, fiber-tissue transcription initiation regions of this invention are typically not readily detectable in other plant tissues. Transcription initiation regions from cotton fiber that are not fiber specific may find special application. Especially preferred are transcription initiation regions which are not found at stages of fiber development other than pre-anthesis through flowering. Transcription initiation regions capable of initiating transcription in other plant tissues and/or at other stages of fiber development, in addition to the foregoing, are acceptable insofar as such regions provide a significant expression level in cotton fiber at the defined periods of interest and do not negatively interfere with the plant as a whole, and, in particular, do not interfere with the development of fiber and/or fiber-related parts. Also of interest are cotton fiber promoters and/or promoter elements which are capable of directing transcription in specific cotton fibers such as outer pericarp tissue, inner core tissues, integuments, and the like.

The term "fiber" as used herein refers to the mature organ formed as the result of the development of the fiber wall of a flower and any other closely associated parts. See Weirer, T.E.,

1, ed., Botany A Introduction to Plant Biology (6th ed.) (John Wiley & Sons, 1982); Tootill & Backmore, The Facts on File Dictionary of Botany (Market Home Books Ltd., 1984). By

"modified fiber" is meant fiber having a detectably different phenotype from a nontransformed plant of the same species, for

りら

example, one not having the transcriptional cassette in question in its genome. The term "anthesis" refers herein to the period associated with flower opening and flowering. The term "flower senescence" refers herein to the period associated with flower death, including the loss of the (flower) petals, etc. Abercrombie, M., et al., A Dictionary of Biology (6th ed) (Penguin Books, 1973). Unopened flowers, or buds, are considered "pre-anthesis." Anthesis begins with the opening of the flower petals, which represents asexually receptive portion of the reproductive cycle of the plant. Typically, flowering lasts approximately one week in the tested UCB82 tomato variety. In a plant like cotton, flowering lasts approximately two weeks and the fiber develops from the seed coat tissue. It is preferred that the transcriptional initiation regions of this invention do not initiate transcription for a significant time or to a significant degree prior to plant flower budding. Ideally, the level of transcription will be high for at least approximately one to three days and encompass the onset of anthesis ("preanthesis").

Cotton fiber is a differentiated single epidermal cell of the outer integument of the ovule. It has four distinct growth phases; initiation, elongation (primary cell wall synthesis), secondary cell wall synthesis, and maturation. Initiation of fiber development appears to be triggered by hormones. The primary cell wall is laid down during the elongation phase, lasting up to 25 days postanthesis (DPA). Synthesis of the secondary wall commences prior to the cessation of the elongation

phase and continues to approximately 40 DPA, forming a wall of almost pure cellulose. In addition to cotton fiber promoters, transcriptional initiation regions from genes expressed preferentially in seed tissues, and in particular seed coat tissues, are also of interest for applications where modification of cotton fiber cells is considered.

Downstream from, and under the regulatory control of, the cotton fiber transcriptional/translational initiation control region is a nucleotide sequence of interest which provides for modification of the phenotype of fiber. The nucleotide sequence may be any open reading frame encoding a polypeptide of interest, for example, an enzyme, or a sequence complementary to a genomic sequence, where the genomic sequence may be an open reading frame, an intron, a noncoding leader sequence, or any other sequence where the complementary sequence inhibits transcription, messenger RNA processing, for example, splicing, or translation. The nucleotide sequences of this invention may be synthetic, naturally derived, or combinations thereof. Depending upon the nature of the DNA sequence of interest, it may be desirable to synthesize the sequence with plant preferred codons. The plant preferred codons may be determined from the codons of highest frequency in the proteins expressed in the largest amount in the particular plant species of interest. Phenotypic modification can be achieved by modulating production either of an endogenous transcription or translation product, for example as to the amount, relative distribution, or the like, or an exogenous transcription or translation product, for example to provide for

a novel function or products in a transgenic host cell or tissue. Of particular interest are DNA sequences encoding expression products associated with the development of plant fiber, including genes involved in metabolism of cytokinins, auxins, ethylene, abscissic acid, and the like. Methods and compositions for modulating cytokinin expression are described in United States Patent No. 5,177,307, which disclosure is hereby incorporated by reference. Alternatively, various genes, from sources including other eukaryotic or prokaryotic cells, including bacteria, such as those from Agrobacterium tumefaciens T-DNA auxin and cytokinin biosynthetic gene products, for example, and mammals, for example interferons, may be used.

Other phenotypic modifications include modification of the color of plant parts developing from fiber integuments and/or core tissue, for example seed coat hairs, such as cotton fibers. Of interest are genes involved in production of melanin and genes involved in the production of indigo. Melanins are dark brown pigments found in animals, plants and microorganisms, any of which may serve as a source for sequences for insertion into the constructs of the present invention. Specific examples include the tyrosinase gene which can be cloned from Streptomyces antibioticus. The ORF438 encoded protein in S. antibioticus also is necessary for melanin production, and may provide a copper donor function. In addition, a tyrosinase gene can be isolated from any organism which makes melanin. The gene can be isolated from human hair, melanocytes or melanomas, cuttle fish and red roosters, among others. See, for example, EP Application No.

89118346.9 which discloses a process for producing melanins, their precursors and derivatives in microorganisms. Also, <u>See</u>, Bernan *et al.* Gene (1985) 37:101-110; and della-Cioppa *et al.* Bio/Technology (1990) 8:634-638.

Indigo may be obtained by use of genes encoding a monooxygenase such as xylene oxygenase which oxidizes toluene and xylene to (methyl) benzyl alcohol and also transforms indole to indigo. Cloning of the xylene oxygenase gene and the nucleotide and amino acid sequences are described in unexamined Japanese Patent Application Kokai:2-119777, published May 7, 1990. dioxygenase such as naphthalene dioxygenase which also converts indole to indigo finds use; the naphthalene dioxygenase gene nahA is described in Science (1983) 222: 167. For cloning, nucleotide sequence in characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida. See, Kurkela et al. Gene (1988) 73:355-362. A tryptophanase gene sequence can be used in conjunction with an oxygenase to increase the amount of indole available for conversion to indigo. Sources of tryptophanase gene sequences include E. coli (see, for example, Deeley et al. (1982) J. Bacteriol. 151 :942-951).

As demonstrated in the eopending application to McBride et al., entitled "Use of Ovary Tissue Transcriptional Factors", serial no. 08/480,178, filed on June 7, 1995, the teachings of which are incorporated herein by reference, expression of ORF438 and tyrosinase genes from Streptomyces in transgenic tobacco plants using a 4-4 and rac promoter, and targeting the gene products to plastids by the action of transit peptides resulted

in phenotypic modification of ovary derived and meristem derived tissues, including modification of color in meristematic regions and basal flower buds. A similar set of experiments in which no plastid targeting sequences were used in conjunction with the ORF438 and tyrosinase genes, no alteration of phenotype was observed. Presumably, the plants were not able to produce melanin due to deficiency of the required substrates in the plant cell cytosol.

Plastid targeting sequences (transit peptides) are available from a number of plant nuclear-encoded plastid proteins, such as the small subunit (SSU) of ribulose bisphosphate carboxylase, plant fatty acid biosynthesis related genes including acyl carrier protein (ACP), stearoyl-ACP desaturase, ß-ketoacyl-ACP synthase and acyl-ACP thioesterase, or LHCPII genes. encoding sequence for a transit peptide which provides for transport to plastids may include all or a portion of the encoding sequence for a particular transit peptide, and may also contain portions of the mature protein encoding sequence associated with a particular transit peptide. There are numerous examples in the art of transit peptides which may be used to deliver a target protein into a plastid organelle. particular transit peptide encoding sequence used in the instant invention is not critical, as long as delivery to the plastid is obtained.

As an alternative to using transit peptides to target pigment synthesis proteins to plastid organelles, the desired constructs may be used to transform the plastid genome directly.

In this instance, promoters capable of providing for transcription of genes in plant plastids are desired. particular interest is the use of a T7 promoter to provide for high levels of transcription. Since plastids do not contain an appropriate polymerase for transcription from the T7 promoter, T7 polymerase may be expressed from a nuclear construct and targeted to plastids using transit peptides as described above. McBride et al. (1994) Proc. Nat. Acad. Sci. 91:7301-7305; see ding US patent application entitled "Controlled Expression of Transgenic Constructs in Plant Plastids", serial no. 08/472,719 filed June 6, 1995, and cop application SN 08/167,638, filed December 14, 1993 and PCT/US94/14574 filed December 12, 1994.) Tissue specific or developmentally regulated promoters may be useful for expression of the T7 polymerase in order to limit expression to the appropriate tissue or stage of development. For example, for flower color modification, the T7 polymerase may be expressed from a petal specific promoter to limit effects to the desired tissue.

Targeting of melanin synthesis genes to vacuoles is also of interest in plant tissues which accumulate the tyrosine substrate involved in melanin synthesis in vacuoles. The protein signal for targeting to vacuoles may be provided from a plant gene which is normally transported across the rough endoplasmic reticulum, such as the 32 amino acid N-terminal region of the metallocarboxypeptidase inhibitor gene from tomato (Martineau et al. (1991) Mol. Gen. Genet. 228:281-286). In addition to the

1

M

vacuolar localization signal (VLS) positioned at the carboxy______
terminus of the encoded protein. Appropriate signal sequences
and VLS regions may be obtained from various other plant genes
and may be similarly used in the constructs of this invention.

Numerous vacuolar targetting peptides are known to the art, as

Ce((
are reviewed in Chrispeels et al., Cell (1992) 68:613-616.

Thus, it is recognized that constructs of the instant invention which provide sequences encoding genes involved in color production and sequences which provide for targeting of the gene products to appropriate cellular locations have broad application to modification of color in various plant tissues. Plant transcriptional initiation regions for use with these color modification constructs will depend upon the particular plant tissue to be modified. For cotton fiber modification the 4-4 and rac13 cotton fiber promoters may find use.

Also of interest are genes involved in production of colored pigments in plant tissues. The Maize Al gene which encodes a dihydroflavonol reductase, an enzyme of the anthocyanin pigmentation pathway is one such gene. In cells that express the Al gene, dihydrokempferol is converted to 2-8 alkylleucopelargonidin, which may be further metabolized to pelargonidin pigment by endogenous plant enzymes. Other anthocyanin or flavonoid type pigments may also be of interest for modification of cotton cell fibers, and have been suggested for use in plant flowers (for a review of plant flower color, see that the ottom of plant flower color, see the flower biotechnology Series, Volume 2 (1990)

Developmental Regulation of Plant Gene Expression, D. Grierson ed.). Anthocyanin is produced by a progression of steps from cellular phenylalanine pools. The R anc C1 genes are maize regulatory proteins which are active by positively affecting upstream steps in the anthocyanin biosynthesis from these pools.

The R gene is described in Perot and Cone (1989) Nucl. Ac. Is the R gene is described in Perot and Cone (1989) Nucl. Acids Ac. Is the R gene is described in Paz-Ares et at C1987) EMBO, 6:3553-3558. Lloyd et al. (1992) Science, 258:1773-1775 discussed both genes.

Although cotton fibers in commercially grown varieties are primarily white in color, other naturally occurring cotton varieties have brown or reddish-brown fibers. Also a cotton line containing green colored fibers has been identified. The existence of these colored cotton lines suggests that the precursors required for the anthocyanin pigment pathways are present in cotton fibers cells, thus allowing further color phenotype modifications. Thus, the maize R and Cl genes could be used in enhancing the levels of of anthocyanin produced in fiber cells. As the R and Cl proteins are proteins with a positive control at the regulatory level on anthocyanin pigment precursor biosynthesis, these proteins are expressed in the nucleus, and targetted to plastids or vacuoles.

For some applications, it is of interest to modify other aspects of structures developing from the fiber integument and related structures. For example, it is of interest to modify various aspects of cotton fibers, such as strength or texture of a fiber. Thus, the appropriate gene may be inserted in the

17

constructs of the invention, including genes for PHB biosynthesis (see, Peoples et al. J. Biol. Chem. (1989) 264: 15298-15303 and Ibid. 15293-15397; Saxena, Plant Molecular Biology (1990) 15:673-683, which discloses cloning and sequencing of the cellulose synthase catalytic subunit gene; and Bowen et al. PNAS (1992) 89:519-523 which discloses chitin synthase genes of Saccharomyces cerevisiae and Candida albicans. Various constructs and methods are disclosed for the use of hormones to effect changes to fiber quality in copending US patent application entitled "Cotton Modification Using Ovary-Tissue Transcriptional factors", serial no. 08/397,652 filed February 2, 1995, the teachings of which are incorporated herein by reference.

Transcriptional cassettes may be used when the transcription of an anti-sense sequence is desired. When the expression of a polypeptide is desired, expression cassettes providing for transcription and translation of the DNA sequence of interest will be used. Various changes are of interest; these changes may include modulation (increase or decrease) of formation of particular saccharides, hormones, enzymes, or other biological parameters. These also include modifying the composition of the final fiber or fiber, that is changing the ratio and/or amounts of water, solids, fiber or sugars. Other phenotypic properties of interest for modification include response to stress, organisms, herbicides, brushing, growth regulators, and the like. These results can be achieved by providing for reduction of expression of one or more endogenous products, particularly an enzyme or cofactor, either by producing a transcription product which is

complementary (anti-sense) to the transcription product of a native gene, so as to inhibit the maturation and/or expression of the transcription product, or by providing for expression of a gene, either endogenous or exogenous, to be associated with the development of a plant fiber.

The termination region which is employed in the expression cassette will be primarily one of convenience, since the termination regions appear to be relatively interchangeable. The termination region may be native with the transcriptional initiation region, may be native with the DNA sequence of interest, may be derived from another source. The termination region may be naturally occurring, or wholly or partially synthetic. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. In some embodiments, it may be desired to use the 3' termination region native to the cotton fiber transcription initiation region used in a particular construct.

As described herein, in some instances additional nucleotide sequences will be present in the constructs to provide for targeting of a particular gene product to specific cellular locations. For example, where coding sequences for synthesis of aromatic colored pigments are used in a construct, particularly coding sequences for enzymes which have as their substrates aromatic compounds such tyrosine and indole, it is preferable to include sequences which provide for delivery of the enzyme into plastids, such as an SSU transit peptide sequence. Also, for

synthesis of pigments derived from tyrosine, such as melanin, targeting to the vacuole may provide for enhanced color modifications.

For melanin production, the tyrosinase and ORF438 genes from Streptomyces antibioticus (Berman et al. (1985) 37:101-110) are provided in cotton fiber cells for expression from a 4-4 and Rac13 promoter. In Streptomyces, the ORF438 and tyrosinase proteins are expressed from the same promoter region. expression from constructs in a transgenic plant genome, the coding regions may be provided under the regulatory control of separate promoter regions. The promoter regions may be the same or different for the two genes. Alternatively, coordinate expression of the two genes from a single plant promoter may be desired. Constructs for expression of the tyrosinase and ORF438 gene products from 4-4 and rac promoter regions are described in detail in the following examples. Additional promoters may also be desired, for example plant viral promoters, such as CaMV 35S, can be used for constitutive expression of one of the desired gene products, with the other gene product being expressed in In addition. cotton fiber tissues from the 4-4 and rac promoter. the use of other plant promoters for expression of genes in cotton fibers is also considered, such as the Brassica seed promoters and the E6 gene promoter discussed above. Similarly, other constitutive promoters may also be useful in certain applications, for example the mas, Mac or DoubleMac, promoters described in United States Patent No. 5,106,739 and by Comai et al., Plant Mol. Biol. (1990) 15:373-381/. When plants comprising

15

multiple gene constructs are desired, for example plants expressing the melanin genes, ORF438 and tyrosinase, the plants may be obtained by co-transformation with both constructs, or by transformation with individual constructs followed by plant breeding methods to obtain plants expressing both of the desired genes.

Color constructs which may find use in the methods of the instant application are described in copending US patent application to McBride et al., supra. Constructs for melanin and indigo expression are described therein, as well as results showing melanin expression in plant cells.

A variety of techniques are available and known to those skilled in the art for introduction of constructs into a plant cell host. These techniques include transfection with DNA employing A. tumefaciens or A. rhizogenes as the transfecting agent, protoplast fusion, injection, electroporation, particle acceleration, etc. For transformation with Agrobacterium, plasmids can be prepared in E. coli which contain DNA homologous with the Ti-plasmid, particularly T-DNA. The plasmid may or may not be capable of replication in Agrobacterium, that is, it may or may not have a broad spectrum prokaryotic replication system such as does, for example, pRK290, depending in part upon whether the transcription cassette is to be integrated into the Tiplasmid or to be retained on an independent plasmid. Agrobacterium host will contain a plasmid having the vir genes necessary for transfer of the T-DNA to the plant cell and may or may not have the complete TDNA. At least the right border and

frequently both the right and left borders of the T-DNA of the Ti- or Ri-plasmids will be joined as flanking regions to the transcription construct. The use of T-DNA for transformation of plant cells has received extensive study and is amply described in EPA Serial No. 120,516, Hoekema, In: The Binary Plant Vector System Offset-drukkerij Kanters B.V., Alblasserdam, 1985. Chapter V, Knauf, et al., Genetic Analysis of Host Range Expression by Agrobacterium, In: Molecular Genetics of the Bacteria-Plant Interaction, Puhler, A. ed., Springer-Verlag, NY, 1983, p. 245, and An, et al., EMBO J. (1985) 4:277-284.

For infection, particle acceleration and electroporation, a disarmed Ti-plasmid lacking particularly the tumor genes found in the T-DNA region) may be introduced into the plant cell. By means of a helper plasmid, the construct may be transferred to the A. tumefaciens and the resulting transfected organism used for transfecting a plant cell; explants may be cultivated with transformed A. tumefaciens or A. rhizogenes to allow for transfer of the transcription cassette to the plant cells. Alternatively, to enhance integration into the plant genome, terminal repeats of transposons may be used as borders in conjunction with a In this situation, expression of the transposase should be inducible, so that once the transcription construct is integrated into the genome, it should be relatively stably integrated. Transgenic plant cells are then placed in an appropriate selective medium for selection of transgenic cells which are then grown to callus, shoots grown and plantlets generated from the shoot by growing in rooting medium.

To confirm the presence of the transgenes in transgenic cells and plants, a Southern blot analysis can be performed using methods known to those skilled in the art. Expression products of the transgenes can be detected in any of a variety of ways, depending upon the nature of the product, and include immune assay, enzyme assay or visual inspection, for example to detect pigment formation in the appropriate plant part or cells. Once transgenic plants have been obtained, they may be grown to produce fiber having the desired phenotype. The fiber or fiber parts, such as cotton fibers may be harvested, and/or the seed collected. The seed may serve as a source for growing additional plants having the desired characteristics. The terms transgenic plants and transgenic cells include plants and cells derived from either transgenic plants or transgenic cells.

The various sequences provided herein may be used as molecular probes for the isolation of other sequences which may be useful in the present invention, for example, to obtain related transcriptional initiation regions from the same or different plant sources. Related transcriptional initiation regions obtainable from the sequences provided in this invention will show at least about 60% homology, and more preferred regions will demonstrate an even greater percentage of homology with the probes. Of particular importance is the ability to obtain related transcription initiation control regions having the timing and tissue parameters described herein. For example, using the probe 4-4 and rac, at least 7 additional clones, have been identified, but not further characterized. Thus, by employing the techniques

described in this application, and other techniques known in the art (such as Maniatis, et al., Molecular Cloning, - A Laboratory Manual (Cold Spring Harbor, New York) 1982), other transcription initiation regions capable of directing cotton fiber transcription as described in this invention may be determined. The constructs can also be used in conjunction with plant regeneration systems to obtain plant cells and plants; the constructs may also be used to modify the phenotype of a fiber and fibers produced thereby.

Various varieties and lines of cotton may find use in the described methods. Cultivated cotton species include *Gossypium hirsutum* and *G. babadense* (extra-long stable, or Pima cotton), which evolved in the New World, and the Old World crops G. herbaceum and *G. arboreum*.

The following examples are offered by way of illustration and not by limitation.

EXPERIMENTAL

Example 1

cDNA libraries

Tissue preparation for cDNA synthesis

Leaf and root tissue were isolated from 8 inch tall
greenhouse grown seedlings and immediately frozen in liquid
nitrogen. Flowers were collected at the rapidly expanding 3 day
preanthesis stage and also frozen. Seed was collected from 21

prof - allein
day postanthesis locules which had been removed from the boll and

frozen entire in liquid nitrogen. Once frozen, the fiber was removed from the seed and the denuded seed used for RNA isolation. All fibers were removed from the seed under liquid nitrogen and the fiber was ground to a powder prior to RNA isolation. Fibers were from bolls which had been tagged at anthesis.

DNA and RNA Manipulations

The ZapII cDNA library used for screening was prepared from cDNA derived from poly-A+ mRNA isolated from fibers of Gossypium hirsutum cultivar Acala SJ-2. The fibers were isolated from bolls harvested at approximately 21 dpa using field-grown plants in Israel.

Total RNA was isolated from 21 dpa seeds (G. hirsutum cv Coker 130 from which the fiber had been removed) using the method of Hughes and Galau ((1988) Plant Mol Biol Reporter, All other RNAs were prepared according to Hall et al. ((1978), 75: 3196-3200), with the following modifications. After the second 2M LiCl wash, the pellet was dissolved in 1/10 original volume of 10 mM Tris pH7.5 and brought to 35mM potassium acetate pH6.5 and 1/2 volume EtOH was added slowly. The mixture was placed on ice for 15 minutes and then centrifuged at 20,000 x g for 15 minutes at 4acetate concentration was brought to 0.2M, 2 1/2 volumes EtOH added and the RNA placed at -90% for several hours. The precipitate was centrifuged at 12,000 x g for 30 minutes at and the pellet was resuspended in diethylpyrocarbonate-treated water. Poly-A+ RNA was prepared from total mRNA utilizing an

oligo(dT)-cellulose kit (Becton Dickenson) and following the manufacturer's protocol.

Cotton genomic DNA was prepared as follows. Four grams of young cotton leaf tissue (cv Coker 130) was ground to a powder in N2 and placed in an Oak Ridge tube with 0.4g polyvinylpyrolidone and 20mls extraction buffer (200mM Ches/NaOH ph9.1, 200mM NaCl, 100mMEDTA/NaOH pH9.0, 2% SDS, 0.5% Na deoxycholate, 2% Nonidet NP-40, 20mM B-mercaptoethanol) was added to sample, gently mixed and incubated at 65% in a shaking water bath for 10 minutes. 7.0 mlg of 5M potassium acetate pH6.5 was added and carefully Incubation was carried out on ice for 30 minutes with mixed. gentle mixing every 5 minutes. The sample was centrifuged for 20 minutes at 21,000 x g and the supernatant was filtered through Miracloth into another tube and centrifuged as before. supernatant was again filtered through Miracloth into 15 ml f of room temperature isopropanol in an Oak Ridge tube. After gentle mixing, the sample was incubated at room temperature for 10-60 minutes until the DNA precipitated. The DNA was spooled and allowed to air dry before being resuspended in 4 mls of TE on ice for 1 hour. CsCl was added to 0.97g/ml final concentration and 300 ul 10mg/ml ethidium bromide was also added before filling VTi80 quick seal tubes. The sample was centrifuged overnight at 225,000 x g overnight. The DNA was extracted with water saturated butanol and enough water was added to bring the volume to 4 mls before adding 2 volumes EtOH. The DNA was spooled, dried and resuspended in 200 ul sterile water.

Northern and Southern Analysis

Œ

For Northerns, 10ug of total RNA was isolated from various tissues, separated by electrophoresis in 1.2% agarose-formaldehyde gels and transfered onto Nytran Plus membranes (Schleicher and Schuell). Hybridization conditions consisted of a solution containing 50% formamide(v/v), 5xSSC, 0.1% SDS, 5mM EDTA, 10X Denhardts solution, 25mM sodium phosphate pH6.5 and 250 ug/ml carrier DNA. Washes were performed in 2xSSC, 0.1% SDS at

Cotton genomic DNA (12ug) was digested with various restriction endonucleases, electrophoresed in 0.9% agarose gels and blotted onto Nytran Plus membranes. Hybridization and filter washing conditions for both the 3' specific and full-length cDNA insert probes were as described for Northern analysis.

Probes derived from 3'-untranslated regions were synthesized via oligonucleotide primers from the Rac13 cDNA, corresponding to (SPATDNO)2) bases 600-619 and 843-864 (Figure 4). Each set of primers was used in a polymerase chain reaction to synthesize copies of 3'-specific DNA sequences. These sequences were used as templates in the generation of single-stranded, ³²P-labeled probes off the antisense strand in a polymerase chain reaction. The full-length cDNA inserts for Rac13 were used as templates for double stranded, random primed probes using the Prime-It kit (Stratagene).

Example 2

Isolation of cDNA Clones from Cotton

cDNA to the 4-4 clone was isolated from the cotton fiber library described above, and shown to express in fiber but not other tissues. This sequence was not related to any known protein. Only 400 kb of encoding sequence was present in this clone, so the library was rescreened using the cDNA to obtain full-length clones. The full-length encoding sequence is provided in Figure 1.

Another clone was sequenced which showed high homology to animal Rac proteins. This clone, designated Rac13, was not quite full-length, and the library was re-screened using this initial Rac13 DNA segment as probe. Of approximately 130,000 primary plagues screened, 56 screened positive; of these, 14 clones were isolated and sequenced. Of these 14 clones, 12 showed identical sequence homology to the original Rac13 clone and one of these cDNA clones encoded a full length Rac13. One other partial-length cDNA clone, designated Rac9, was clearly related, but distinct in DNA and amino acid sequence from Rac13. screening of 150,000 plaques resulted in the isolation of 36 positive clones of which only two clones corresponded to the Rac9 sequence (both full-length clones), the remainder being Rac13. These results suggest that cotton contains genes for at least two distinct Rac proteins. Based upon the frequency of clone isolation, Rac13 is relatively highly-expressed and Rac9 less so in cotton fibers at 21 days post-anthesis (dpa), the age at which polyA+ mRNA was isolated for library construction.

Figure 4 shows the DNA and deduced amino acid sequences for Rac13 full length. Comparisons of the deduced amino acid

31

37

1

sequence of Rac13 with other small G-proteins showed that the cotton Rac proteins are very closely related to the Rho1 protein sequence deduced from a cDNA clone isolated recently from pea (Yang and Watson, supra). After the pea Rho1, mammalian Rac proteins show the highest homology with the cotton Rac proteins. Other proteins of the rho subfamily, such as the yeast CDC42 and human RhoA, are also clearly related to the cotton Rac genes. By contrast, the other small G-proteins of the Rab/YPT subfamily isolated from plants such as the example shown of the tobacco RAB5 protein, as well as the human Ras proteins, are least homologous to the cotton Rac proteins of all the small G-proteins compared. The cotton and pea proteins, as well as the mammalian Racs, all have pI's above 9, whereas those of other rho and ras proteins are in the range of 5.0-6.5.

Example 3

Expression of Cotton Fiber Genes in Developing Fibers
Expression of the Rac13 and 4-4 genes was assessed using
mRNA prepared from various cotton tissues and from fibers at
different stages of development. Blots were hybridized with
probes derived from 3'-untranslated regions of either the Rac13
or 4-4 genes. The gene for Rac13 exhibits highly-enhanced
expression in fibers; virtually no detectable mRNA is present in
leaves, roots, or flower parts, even under conditions of extended
development time. Rac13 expression is detected in seeds at an
age that corresponds to the highest expression levels observed in
fiber tissue derived from seeds of this same age. The pattern of

Rac13 expression in fibers is very dependent upon the developmental stage. Expression is very low during the stage of primary wall synthesis (0-14 dpa, see Meinert and Delmer, 1977), reaches a maximum during the transition to secondary wall synthesis (about 15-18 dpa), and declining during the stage of maximal secondary wall cellulose synthesis (about 24-28 dpa).

4-4 mRNA is begins to accumulate in fiber cells only at day 17 post anthesis and continues through fiber maturity at day 35 post anthesis. Levels peak at day 21 and remain high throughout fiber maturation to 35 days post anthesis. 4-4 mRNA is not detected in other cotton tissues, and is not detected in fiber tissue before onset at 17 days post anthesis.

Example 4

Genomic DNA

cDNA for both the 4-4 and Rac13 was used to probe for genomic clones. For both, full length genomic DNA was obtained from a library made using the lambda dash 2 vector from Stratagene™, which was used to construct a genomic DNA library from cotton variety Coker 130 (Gossypium hirsutum cv. coker 130), using DNA obtained from germinating seedlings.

17

B

Example 5

Preparation of 4-4 Promoter Constructs

pCGN5606

The pCGN5606 promoter construct comprises the 4-4 cotton fiber expression cassette in a first version, version I (Figure (SCOTONO:7)

2). The sequences from nt1 to 65 and nt 5,494 to 5,547 correspond to fragments of the pBluescriptII polylinker where this cassette is cloned. Unique restriction enzyme sites present in these regions flanking the cassette allow the cloning of the fiber expression cassette into binary vectors including the pCGN 5138 and 1547 series.

The sequences from nt57 to 5,494 are contained in a lambda phage clone of a cotton Coker 130 genomic library. This clone is described in my notebook as lambda genomic clone 4-4(6). P462003 page 18 and following.

The region from nt 65 to nt 4,163 corresponds to the 5' flanking region of the 4-4(6) gene. At nt 4,163 there is a NcoI restriction site sequence that corresponds to the first codon of (we 560 T) NO.8-10) the 4-4 (6) ORF.

The region from nucleotide 4,163 to 4,502 corresponds to part of the 4-4 (6)ORF. The sequence from nt 4,502 to 4,555 is a synthetic polylinker oligonucleotide that contains unique target sites for the restriction enzymes EcoRI, SmaI, SalI, NheI and BglII. This fragment from nt4,163 to 4,555 is a stuffer fragment and is left in place to facilitate the monitoring of cloning manipulations.

The genes to be expressed in cotton fiber cells using this cassette can be cloned between the NcoI restriction site and any of the polylinker sites. This operation will replace the stuffer fragment with the gene of interest. The region from nt 4,555to 5,494 corresponds to the 940 nucleotides downstream of the stop codon and constitute the 3' flanking region of the 4-4 (6) gene. There is a unique AscI restriction enzyme site at nt 5483.

The pCGN5610 construct is a second version of a 4-4 cotton fiber expression cassette, version II, which is a modified version of pCGN5606. The two versions of the 4-4 cotton fiber expression cassette are designed to allow the cloning of tandem arrays of two fiber cassettes in one binary plasmid. The differences with respect to pCGN5606 are very minor and described below.

The XbaI restriction site in the region of nt 1 to 65 has been deleted by standard cloning manipulations.

The polylinker region is in the reverse orientation of pCGN5606.

There is a unique XbaI restriction enzyme site at nt5484. The sequences from nt1 to 57 and nt 5,494 to 5,518 of pCGN5610 correspond to fragments of the pBluescriptII polylinker where this cassette is cloned. Unique restriction enzyme sites present in these regions allow the cloning of the fiber expression cassette into binary vectors of the pCGN 5138 and 1547 series.

The sequences from nt57 to 5,494 are contained a lambda phage clone of a Coker 130 genomic library. This clone is described in my notebook as lambda genomic clone 4-4(6). The

0

30

region from nt 57 to nt 4,155 corresponds to the 5' flanking region. At nt 4,155 there is a NcoI restriction site sequence that corresponds to the first codon of the 4-4 ORF.

The region from nucleotide 4,156 to 4,500 corresponds to part of the 4-4 ORF. This fragment from nt4,156 to 4,550 is a stuffer fragment and is left in place to facilitate the monitoring of cloning manipulations. The sequence from nt 4,500 to 4,550 is a synthetic polylinker oligonucleotide containing unique target sites for the restriction enzymes BglII, NheI, SalI, SmaI and EcoRI.

The genes to be expressed in cotton fiber cells using this cassette can be cloned between the NcoI restriction site and any of the polylinker sites. This operation will replace the stuffer fragment with the gene of interest. The region from nt 4,550 to 5,494 corresponds to the 940 nucleotides downstream of the stop codon and constitute the 3' flanking region of the 4-4 (6) gene.

M

B

り

Example 6

Preparation of Rac13 Promoter Constructs

Genomic clone

From a genomic clone designated 15-1, mapping was done with restriction endonucleases. The largest fragment with the Rac13 coding region was identified. Theis was a Pst fragment, and when subcloned in the Bluescript KS+ vector (BSKS+; Stratagene) was named pCGN4722. The insert had a length of 9.2 kb.

The region of the Pst fragment with the Rac13 coding sequence was identified. DNA sequence was determined for approximately 1.7 kb 5' of the start codon and approximately 1.2 kb 3' of the stop codon. The entire Rac coding region (exons and introns) was conveniently flanked by Nde1 sites.

pCGN4722 was digested with Xbal, and a 2.7 kb fragment was ne-lipsing removed. Religation gave pCGN4730, which was then digested with Ndel, dropping out a 1.7 kb fragment containing the entire Rac coding region. Religation yielded pCGN4731.

A polylinker region was created using overlapping synthetic light oligonucleotides which were PCR edusing primers homologous to the 5' and 3' ends of the resynthesized section. The resulting EcoK1 product was digested with EcoCR1 and Hind III and ligated into BSKS+ at eht EcoR1 and Hind III sites. The resulting plasmid was designated pCGN4733.

pCGN4731 and pCGN4633 were digested with Nde! and the Nde1 fragment containing the synthesized polylinker region from pCGN4733 was dropped in the Nde1 site of 4731, giveing pCGN4734. This last plasmid was digested with Sal and Xba, and so was

19

pCGN5133. pCGN5133 was the 9.2 kb pst fragment in BSKS+ where the polylinker sites flanking the insert were altered to different sites for ease of manipulation. The fragment from 4734 was then placed into the equivalent site of pCGN5143, giving pCGN4735.

A sequence for approximately 3 kb of the promoter construct pCGN4735 is provided in Figure 5. The resynthesized sequence falls between the Ndel sites located at bases 1706 and 1898 of the sequences. Thus, the sequence in Figure 5 includes approximately 1.7 kb 5' to the Ndel site 5' to the resynthesized polylinker region. There is a roughly 2.5 kb sequence 5' from this sequence which is not provided in Figure 5, relative to the total 9.2 kb insert. The sequence of Figure 5 also includes approximately 1.1 kb 3' to the 3' Ndel site. Approximately 3 kb which is most 3' in the Rac13 insert is not provided in Figure 5. A map for pCGN4735 is provided in Figure 6.

Example 7

Constructs for Pigment Synthesis Genes

bacterial genes involved in biosynthesis of pigmented compounds, as well as sequences for directing transport of the encoded proteins into plastids or vacuoles are described in eopending US patent application to McBride et al., entitled "Use of Ovary Tissue Transcriptional Factors", serial no. 08/480,178 filed on June 7, 1995, the teachings of which are incorporated herein by reference. The targetting sequences are manipulated to be

M

present on an NcoI/EcoRI fragment and may easily introduced into the 4-4 and rac transcriptional initiation regions for providing transcription in cotton fibers.

D7

Example 8

Cotton Transformation

Explant Preparation

Coker 315 seeds are surface disinfected by placing in 50% Clorox (2.5% sodium hypochlorite solution) for 20 minutes and rinsing 3 times in sterile distilled water. Following surface sterilization, seeds are germinated in 25 x 150 sterile tubes containing 25 mls 1/2 x MS salts: 1/2 x MS vitamins: 1.5% glucose: 0.3% gelrite. Seedlings are germinated in the dark at 28°C for 7 days. On the seventh day seedlings are placed in the light at 28±2°C.

Co-culturation and Plant Regeneration

Single colonies of A. tumefaciens strain 2760 containing binary plasmids pCGN2917 and pCGN2926 are transferred to 5 ml of MG/L broth and grown overnight at 30°C. Bacteria cultures are diluted to 1 x 10⁸ cells/ml with MG/L just prior to cocultivation. Hypocotyls are excised from eight day old seedlings, cut into 0.5-0.7 cm sections and placed onto tobacco feeder plates (Horsch et al. 1985). Feeder plates are prepared one day before use by plating 1.0 ml tobacco suspension culture onto a petri plate containing Callus Initiation Medium(CIM) without antibiotics (MS salts: 25 vitamins: 3 % glucose: 0.1 mg/L 2,4-D: 0.1 mg/L kinetin: 0.3% gelrite, pH adjusted to 5.8 prior

Ø

B

19

to autoclaving). A sterile filter paper disc (Whatman #1) was placed on top of the feeder cells prior to use. After all sections are prepared, each section was dipped into an A. tumefacions culture, blotted on sterile paper towels and returned to the tobacco feeder plates.

Following two days of cocultivation on the feeder plates, hypocotyl sections are placed on fresh Callus Initiation Medium containing 75 mg/L kanamycin and 500 mg/L carbenicillin. Tissue 30 pt - 30 p

Embryogenic callus was identified 2-6 months following initiation and was subcultured onto fresh regeneration medium. Embryos are selected for germination, placed in static liquid Embryo Pulsing Medium (Stewart and Hsu medium: 0.01 mg/l NAA: 0.01 mg/L kinetin: 0.2 mg/L GA3) and incubated overnight at 30°C. The embryos are blotted on paper towels and placed into Magenta boxes containing 40 mls of Stewart and Hsu medium solidified with Gelrite. Germinating embryos are maintained at 28±2°C 50 uE m⁻²s⁻¹ 16:8 photoperiod. Rooted plantlets are transferred to soil and established in the greenhouse.

Cotton growth conditions in growth chambers are as follows:

16 hour photoperiod, temperature of approximately 80-85% light

intensity of approximately 500µEinsteins. Cotton growth conditions in greenhouses are as follows: 14-16 hour photoperiod with light intensity of at least 400µEinsteins, day temperature 90-95°F, night temperature 70-75°F, relative humidity to approximately 80%.

Plant Analysis

Flowers from greenhouse grown Tl plants are tagged at anthesis in the greenhouse. Squares (cotton flower buds), flowers, bolls etc. are harvested from these plants at various stages of development and assayed for enzyme activity. fluorometric and histochemical assays are performed on hand cut sections as described in co-pending application filed for Martineau et al., supra. For fiber color characteristics, plants are visually inspected, or northern or western analysis can be performed, if necessary.

As shown by the above results, expression of a gene of interest can be obtained in cells derived from fiber cells, including tomato fiber and cotton fibers, and expression of genes involved in synthesis of pigments combined with appropriate targeting sequences results in modification of color phenotype in the selected plant tissue.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application are specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail, by way of illustration and example for purposes of clarity and understanding, it will be readily apparent to those of ordinary skill in the art that certain changes and modifications may be made thereto, without departing from the spirit or scope of the appended claims.