SEQUENCE LISTING

<110> Advisys, Inc. Codon optimized Synthetic Plasmid <120> 108328.00146 <130> <160> 21 <170> PatentIn version 3.1 <210> <211> 3534 <212> DNA <213> artificial sequence <220> <223> Plasmid vector having an analog GHRH sequence. <400> 1 gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc 60 accgeggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 120 gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt 180 tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240 aatátggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg 300 catteetggg ggeeggegg tgeteeegee egeetegata aaaggeteeg gggeeggegg 360 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa ggeccaacte ecegaaceae teagggteet gtggacaget cacetagetg ceatggtget 480 ctgggtgttc ttctttgtga tcctcaccct cagcaacagc tcccactgct ccccacctcc 540 ccctttgacc ctcaggatgc ggcggcacgt agatgccatc ttcaccaaca gctaccggaa 600 ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660 agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg 720 ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag 780 tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 840 tctataatat tatggggtgg agggggtgg tatggagcaa ggggcaagtt gggaagacaa 900 cctgtagggc ctgcggggtc tattgggaac caagctggag tgcagtggca caatcttggc 960 teactgeaat eteegectee tygytteaag egatteteet geeteageet eeegagttyt 1020 tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgg tagagacggg 1080 gtttcaccat attggccagg ctggtctcca actcctaatc tcaggtgatc tacccacctt 1140 1200 ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1260 cccaaccggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320 ctcagtagat gcctgttgaa ttcgataccg tcgacctcga gggggggccc ggtaccagct 1380 tttgttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgtttc 1440 ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 1500 gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 1560 ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1620

```
ggagaggegg tttgegtatt gggegetett cegetteete geteactgae tegetgeget
                                                                     1680
eggtegtteg getgeggega geggtateag eteaeteaaa ggeggtaata eggttateea
                                                                     1740
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga
                                                                     1800
accytaaaaa gyccycytty ctygcytttt tccatagyct ccyccccct gacgaycatc
                                                                     1860
acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg
                                                                     1920
egttteeece tggaagetee etegtgeget etectgttee gaeeetgeeg ettaceggat
                                                                     1980
acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt
                                                                     2040
atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc
                                                                     2100
agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg
                                                                     2160
acttategee actggeagea gecactggta acaggattag cagagegagg tatgtaggég
                                                                     2220
gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg
                                                                     2280
gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg
                                                                     2340
gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca
                                                                     2400
gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga
                                                                     2460
actogtoaag aaggogatag aaggogatgo gotgogaato gggagoggog atacogtaaa
                                                                     2520
gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca
                                                                     2580
acgetatgte etgatagegg teegecaeae ceageeggee acagtegatg aateeagaaa
                                                                     2640
ageggeeatt ttecaccatg atatteggea ageaggeate geeatgggte aegaegagat
                                                                     2700
cctcgccgtc gggcatgcgc gccttgagcc tggcgaacag ttcggctggc gcgagcccct
                                                                     2760
gatgetette gtecagatea teetgatega caagacegge ttecateega gtacgtgete
                                                                     2820
gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca
                                                                     2880
gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca
                                                                     2940
ggagateetg ceeeggcact tegeccaata geagecagte cetteeeget teagtgacaa
                                                                    3000
cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct
                                                                    3060
cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc
                                                                     3120
cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt
                                                                     3180
catagoogaa tagoototoo accoaagogg coggagaaco tgogtgcaat coatottgtt
                                                                    3240
caatcatgcg aaacgatcct catcctgtct cttgatcaga tcttgatccc ctgcgccatc
                                                                    3300
agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea aeettaeeag
                                                                     3360
agggcgcccc agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca
                                                                     3420
actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg
                                                                    3480
                                                                     3534
gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac
```

<210> 2

<211> 2739

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having an analog GHRH sequence.

						<400> 2	
60	atatggcgac	cgacacccaa	accatcctca	cgccctcggc	ggcggccgtc	ccaccgcggt	
120	ggcagcaggt	aaggtgggca	agcggtgagg	ttatttttag	tggtggggag	gggtgaggaa	
180	ggtggacacc	gcggaggaat	tatttttaga	tecegggagt	taaaaataac	gttggcgctc	
240	cggccggggc	tgtccgccct	catatttggg	cacccgtcgc	gacggttcct	caaatatggc	
300	cggggccggc	taaaaggctc	cccgcctcga	ggtgctcccg	ggggccgggc	cgcattcctg	
360	ggcccaactc	cggatcccaa	aggcgccaag	gaggagcggg	gagetacccg	ggcggcccac	
420	ctgggtgttc	ccatggtgct	cacctagctg	gtggacagct	tcagggtcct	cccgaaccac	
480	ccctttgacc	ccccacctcc	tcccactgct	cagcaacagc	tcctcaccct	ttctttgtga	
540	ggtgctgggc	gctaccggaa	ttcaccaaca	agatgccatc	ggcggtatgc	ctcaggatgc	
600	agagaggaac	ggcagcaggg	atcatgagca	gctccaggac	cccgcaagct	cagctgtccg	
660	ggtggcatcc	agcttat <i>c</i> gg	ttcgatatca	actgcaggaa	gagcataatg	caagagcaag	
720	tgcccaccag	gccactccag	cctggaagtt	ctctcctggc	tccccagtgc	ctgtgacccc	
780	tctataatat	taggtgtcct	tttgtctgac	gttgcatcat	ataaaattaa	ccttgtccta	
840	cctgtagggc	gggaagacaa	ggggcaagtt	tatggagcaa	aggggggtgg	tatggggtgg	
900	tcgagcttgg	agggttaatt	ccctttagtg	agcttttgtt	gcccggtacc	tcgaggggg	
960	gcgagcggta	ttcggctgcg	cgctcggtcg	tgactcgctg	cctcgctcac	tetteegett	
1020	cgcaggaaag	caggggataa	tccacagaat	aatacggtta	caaaggcggt	tcagctcact	
1080	gttgctggcg	aaaaggccgc	aggaaccgta	gcaaaaggcc	caaaaggcca	aacatgtgag	
1140	aagtcagagg	atcgacgctc	catcacaaaa	ccctgacgag	ggctccgccc	tttttccata	
1200	ctccctcgtg	cccctggaag	caggcgtttc	ataaagatac	cgacaggact	tggcgaaacc	
1260	cccttcggga	ccgcctttct	ggatacctgt	gccgcttacc	ttccgaccct	cgctctcctg	
1320	ggtcgttcgc	gttcggtgta	aggtatctca	ctcacgctgt	tttctcatag	agcgtggcgc	
1380	cttatccggt	accgctgcgc	gttcagcccg	cgaacccccc	gctgtgtgça	tccaagctgg	
1440	agcagccact	cgccactggc	cacgacttat	cccggtaaga	ttgagtccaa	aactatcgtc	
1500	gaagtggtgg	cagagttett	ggcggtgcta	gaggtatgta	ttagcagagc	ggtaacagga	
1560	gaagccagtt	gegetetget	tttggtatct	aagaacagta	gctacactag	cctaactacg	
1620	tggtagcggt	aaaccaccgc	tccggcaaac	tagctcttga	aaagagttgg	accttcggaa	
1680	agaagatcct	aaggatctca	cgcagaaaaa	gcagattacg	tttgcaagca	ggttttttg	
1740	tcaagaaggc	gaagaactcg	ctagcgctca	tgacgctcag	ctacggggtc	ttgatctttt	
1800	aggaagcggt	gtaaagcacg	cggcgatacc	gaatcgggag	gatgcgctgc	gatagaaggc	
1860	atgtcctgat	agccaacgct	tatcacgggt	tcttcagcaa	gccgccaagc	cagcccattc	
1920	ccattttcca	agaaaagcgg	cgatgaatcc	cggccacagt	cacacccagc	agcggtccgc	
1980	ccgtcgggca	gagatecteg	gagtcacgac	gcatcgccat	cggcaagcag	ccatgatatt	
2040	tettegteca	cccctgatgc	ctggcgcgag	aacagttcgg	gagcctggcg	tgcgcgcctt	
2100	atgcgatgtt	tgctcgctcg	tccgagtacg	ccggcttcca	atcgacaaga	gatcatcctg	
2160	cgcattgcat	atgcagccgc	gatcaagcgt	caggtagccg	gtcgaatggg	tcgcttggtg	
2220	tcctgccccg	tgacaggaga	caaggtgaga	teggeaggag	ggatactttc	cagccatgat	
		-3-					

gcacttegee	caatagcagc	cagtcccttc	ccgcttcagt	gacaacgtcg	agcacagctg	2280
cgcaaggaac	gcccgtcgtg	gccagccacg	atagccgcgc	tgcctcgtcc	tgcagttcat	2340
tcagggcacc	ggacaggtcg	gtcttgacaa	aaagaaccgg	gcgcccctgc	gctgacagcc	2400
ggaacacggc	ggcatcagag	cagccgattg	tctgttgtgc	ccagtcatag	ccgaatagcc	2460
tctccaccca	ageggeegga	gaacctgcgt	gcaatccatc	ttgttcaatc	atgcgaaacg	2520
atcctcatcc	tgtctcttga	tcagatcttg	atcccctgcg	ccatcagatc	cttggcggca	2580
agaaagccat	ccagtttact	ttgcagggct	toccaacctt	accagagggc	gccccagctg	2640
gcaattccgg	ttcgcttgct	gtccataaaa	ccgcccagtc	tagcaactgt	tgggaagggc	2700
gatcgtgtaa	tacgactcac	tatagggcga	attggagct			2739
	ificial sequ	lence				
<220> <223> Cod:	ing sequence	having an	antibiotic	resistance	gene Kanamyc	in.
<400> 3	aagatggatt	gcacgcaggt	tetecaacea	cttaggtaga	gaggetatte	- 60
	gggcacaaca					120
	geceggttet					180
	cagcgcggct					240
	tcactgaagc					300
	catctcacct					360
	atacgcttga					420
	cacgtactcg					480
	ggetegegee					540
ggcgaggatc	tegtegtgae	tcatggcgat	gcctgcttgc	cgaatatcat	ggtggaaaat	600
ggccgctttt	ctggattcat	cgactgtggc	cggctgggtg	tggcggaccg	ctatcaggac	660
atagcgttgg	ctacccgtga	tattgctgaa	gagcttggcg	gcgaatgggc	tgaccgcttc	720
ctcgtgcttt	acggtatcgc	cgctcccgat	tegeagegea	tegeetteta	tcgccttctt	780
gacgagttct	tctga					795
<210> 4 <211> 219						
<212> DNA <213> art:	ificial sequ	uence				
<220> <223> Seqn	uence for a	n analog por	rcine GHRH :	sequence.		
<400> 4 atggtgctct	gggtgttctt	ctttgtgatc	ctcaccctca	gcaacagctc	ccactgctcc	60
	ctttgaccct					120

taccggaagg tgctggccca gctgtccgcc cgcaagctgc tccaggacat cctgaacagg

cagcagggag agaggaacça agagcaagga gcataatga

180 219

<212> D	6 246 NNA artificial sequence	
<220> <223> S	Sequence for an analog mouse GHRH sequence.	
<400> 5 gccatggt	ge tetgggtget etttgtgate eteateetea eeageggeag eeactgeage	60
ctgcctcc	cea gecetecett caggatgeag aggeaegtgg aegecatett caccaccaae	120
tacaggaa	age tgetgageea getgtaegee aggaaggtga teeaggaeat catgaacaag	180
cagggcga	aga ggatccagga gcagagggcc aggctgagct gataagcttg cgatgagttc	240
ttctaa		246
<212> E	5 234 DNA artificial sequence	
<220> <223> S	Sequence for an analog porcine GHRH sequence.	
<400> 6 gccatggc	see tgtgggtgtt ettegtgetg etgaeeetga eeageggaag eeaetgeage	60
ctgcctcc	cea geeeteeett eagggtgege eggeaegeeg aegeeatett caecageage	120
tacaggag	gga teetgggeea getgtaeget aggaagetee tgeacgagat catgaacagg	180
cagcaggg	geg agaggaacca ggagcagagg agcaggttca actgataagc ttgc	234
<212> I	7 225 DNA artificial sequence	
<220> <223> S	Sequence for an analog bovine GHRH sequence.	
<400> 7 gccatggt	7 tgc tgtgggtgtt cttcctggtg accctgaccc tgagcagcgg ctcccacggc	60
tecetge	cet ceeageetet gegeateeet egetaegeeg aegeeatett caccaacage	120
taccgcaa	agg tgeteggeea geteagegee egeaagetee tgeaggaeat catgaacegg	180
cagcaggg	geg agegeaacca ggageaggga geetgataag ettge	225
<211> 2 <212> I	8 225 DNA artificial sequence	
<220> <223>	Sequence for an analog ovine GHRH sequence.	
	8 tgc tgtgggtgtt cttcctggtg accetgaccc tgagcagegg aagccaeggc	60
agcctgcc	cca gccagcccct gaggatccct aggtacgccg acgccatctt caccaacagc	120
taçaggaa	aga teetgggeea getgageget aggaagetee tgeaggaeat catgaacagg	180
cagcagg	nca anagnaacca gnagcagngc gcctnataan cttgc	225

.

```
<211> 246
<212> DNA
<213>
      artificial sequence
<220>
<223> Sequence for an analog chicken GHRH sequence.
<400> 9
gccatggtgc tctgggtgct ctttgtgatc ctcatcctca ccagcggcag ccactgcagc
ctgcctccca gccctccctt caggatgcag aggcacgtgg acgccatctt caccaccaac
                                                                     120
tacaggaagc tgctgagcca gctgtacgcc aggaaggtga tccaggacat catgaacaag
                                                                     180
                                                                     240
cagggcgaga ggatccagga gcagagggcc aggctgagct gataagcttg cgatgagttc
ttctaa
                                                                     246
<210> 10
<211> 190
<212>
      DNA
<213> artificial sequence
<220>
<223> Nucleic acid sequence of human growth hormone poly A tail.
<400> 10
gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca
                                                                      60
gtgcccacca gccttgtcct aataaaatta agttgcatca ttttgtctga ctaggtgtcc
                                                                     120
                                                                     180
ttctataata ttatggggtg gagggggtg gtatggagca aggggcaagt tgggaagaca
                                                                     190
acctgtaggg
<210> 11
<211> 55
<212> DNA
<213>
      artificial sequence
<220>
<223> Nucleic acid sequence of human growth hormone 5' untranslated reg
       ion
<400> 11
caaggeccaa eteceegaac caeteagggt eetgtggaca geteacetag etgee
<210> 12
<211>
      782
<212> DNA
<213>
      artificial sequence
<220>
<223> Nucleic acid sequence of a plasmid pUC-18 origin of replicaiton
<400> 12
tetteegett cetegeteac tgactegetg egeteggteg tteggetgeg gegageggta
                                                                      60
tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag
                                                                     120
aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg
                                                                     180
tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg
                                                                     240
tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg
                                                                     300
egeteteetg tteegaceet geegettace ggatacetgt cegeetttet ceetteggga
                                                                     360
```

<210>

```
agogtggcgc tttctcatag ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc
                                                                     420
tocaagetgg getgtgtgca egaaceeece gttcageceg acegetgege ettateeggt
                                                                     480
aactategte ttgagteeaa eeeggtaaga eaegaettat egecaetgge ageageeaet
ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg
                                                                     600
cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt
                                                                     660
acctteggaa aaagagttgg tagetettga teeggeaaac aaaccacege tggtageggt
                                                                     720
ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct
                                                                     780
                                                                     782
tt
<210>
      13
<211>
<212>
<213> artificial sequence
<220>
<223> This is a NEO ribosomal binding site
<400> 13
tcctc
                                                                       5
<210>
      14
<211>
<212>
      DNA
<213> artificial sequence
<220>
<223> Nucleic acid sequence of a prokaryotic PNEO promoter.
<400> 14
accttaccag agggcgcccc agctggcaa
                                                                      29
<210>
      15
<211>
      323
<212>
      DNA
<213> artificial sequence
<220>
<223> Nucleic acid sequence of a eukaryotic promoter c5-12.
<400> 15
eggeegteeg eecteggeac catecteacg acacecaaat atggegaegg gtgaggaatg
                                                                      60
gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt tggcgctcta
aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca aatatggcga
                                                                     180
eggtteetea eeegtegeea tatttgggtg teegeeeteg geeggggeeg catteetggg
                                                                     240
ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg cggcccacga
gctacccgga ggagcgggag gcg
                                                                     323
<210>
      16
<211>
<212>
      DNA
<213> artificial sequence
<220>
      Optimized nucleic acid sequence of a human growth hormone poly A
<223>
<400> 16
ttatoggggt ggcatccctg tgacccctcc ccagtgcctc tcctggccct ggaagttgcc
                                                                      60
```

actecagige	ccaccagect	tgtcctaata	adattaagtt	gcaccacccc	gcctgactag	120
gtgtccttct	ataatattat	ggggtggagg	ggggtggtat	ggagcaaggg	gcaagttggg	180
aagacaacct	gtagggctcg	agggggggcc				210
<210> 17 <211> 2722 <212> DNA <213> arts	2 ificial sequ	ience				
<220> <223> Plas	smid vector	having a co	odon optimi:	zed mouse GI	HRH sequence	
<400> 17	ggcggccgtç	cacceteaae	accatcctca	caacacccaa	atatogogac	60
	tggtggggag	•		_		120
•	taaaaataac					180
	gacggttcct					240
	ggggccgggc			_	*	300
	gagctacccg					360
	tcagggtcct					420
	tcatcctcac					480
	ggcacgtgga					540
	ggaaggtgat					600
	ggctgagctg					660
	ggccctggaa	•				720
	cattttgtct					780
	caaggggcaa					840
accagetttt	gttcccttta	gtgagggtta	atttcgagct	tggtcttccg	cttcctcgct	900
cactgactcg	ctgcgctcgg	tegttegget	gcggcgagcg	gtatcagctc	actcaaaggc	960
ggtaatacgg	ttatccacag	aatcagggga	taacgcagga	aagaacatgt	gagcaaaagg	1020
	gccaggaacc					1080
ccccctgac	gagcatcaca	aaaatcgacg	ctcaagtcag	aggtggcgaa	acccgacagg	1140
actataaaga	taccaggcgt	ttccccctgg	aagctccctc	gtgcgctctc	ctgttccgac	1200
cctgccgctt	accggatacc	tgtccgcctt	tetecetteg	ggaagcgtgg	cgctttctca	1260
tageteaege	tgtaggtatc	tcagttcggt	gtaggtcgtt	cgctccaagc	tgggctgtgt	1320
gcacgaaccc	cccgttcage	ccgaccgctg	cgccttatcc	ggtaactatc	gtcttgagtc	1380
caacccggta	agacacgact	tatcgccact	ggcagcagcc	actggtaaca	ggattagcag	1440
agcgaggtat	gtaggcggtg	ctacagagtt	cttgaagtgg	tggcctaact	acggctacac	1500
tagaagaaca	gtatttggta	tetgegetet	gctgaagcca	gttaccttcg	gaaaaagagt	1560
	tgatccggca					1620
gçagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	tttctacggg	1680
gtctgacgct	cagctagcgc	tcagaagaac	tcgtcaagaa	ggcgatagaa	ggcgatgcgc	1740

actocagtgo coaccagoot tgtoctaata aaattaagtt goatcatttt gtotgactag

120

tgcgaatcgg gagcggcgat accgtaaagc acgagg	aage ggteageeca ttegeegeea 1800
agetetteag caatateaeg ggtageeaae getatg	teet gatageggte egecacacee 1860
agccggccac agtcgatgaa tccagaaaag cggcca	tttt ccaccatgat attcggcaag 1920
caggcatege catgagteac gacgagatec tegeogr	tegg geatgegege ettgageetg 1980
gcgaacagtt cggctggcgc gagcccctga tgctct	tegt ccagateate etgategaea 2040
agaccggctt ccatccgagt acgtgctcgc tcgatg	cgat gtttcgcttg gtggtcgaat 2100
gggcaggtag ccggatcaag cgtatgcagc cgccgc	attg catcagccat gatggatact 2160
ttctcggcag gagcaaggtg agatgacagg agatcc	tgcc ceggcactte gcccaatage 2220
agccagtccc ttcccgcttc agtgacaacg tcgagc	acag ctgcgcaagg aacgcccgtc 2280
gtggccagcc acgatageeg egetgeeteg teetge	agtt cattcagggc accggacagg 2340
toggtottga caaaaagaac ogggogocco tgogot	gaca geeggaacae ggeggeatea 2400
gagcagccga ttgtctgttg tgcccagtca tagccg	aata geeteteeae eeaageggee 2460
ggagaacctg cgtgcaatcc atcttgttca atcatg	cgaa acgatcctca tcctgtctct 2520
tgatcagatc ttgatcccct gegccateag atcett	ggcg gcaagaaagc catccagttt 2580
actttgcagg gcttcccaac cttaccagag ggcgcc	ccag ctggcaattc cggttcgctt 2640
gctgtccata aaaccgccca gtctagcaac tgttgg	gaag ggcgatcgtg taatacgact 2700
cactataggg cgaattggag ct	2722

<210> 18

<211> 2725

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having a codon optimized rat GHRH sequence

<400> 18 ccaccgcggt ggcggccgtc cgccctcggc accatcctca cgacacccaa atatggcgac 60 120 gggtgaggaa tggtggggag ttatttttag agcggtgagg aaggtgggca ggcagcaggt gttggcgctc taaaaataac tcccgggagt tatttttaga gcggaggaat ggtggacacc 180 caaatatggc gacggttcct cacccgtcgc catatttggg tgtccgccct cggccggggc 240 cgcattcctg ggggccgggc ggtgctcccg cccgcctcga taaaaggctc cggggccggc 300 ggcggcccac gagctacccg gaggagcggg aggcgccaag cggatcccaa ggcccaactc 360 cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggccct gtgggtgttc ttegtgetge tgaccetgae cageggaage caetgeagee tgeeteeag ceeteeette 480 540 agggtgcgcc ggcacgccga cgccatcttc accagcagct acaggaggat cctgggccag ctgtacgcta ggaagctcct gcacgagatc atgaacaggc agcagggcga gaggaaccag 600 gagcagagga gcaggttcaa ctgataagct tatcggggtg gcatccctgt gacccctccc 660 cagtgcctct cctggccctg gaagttgcca ctccagtgcc caccagcctt gtcctaataa 720 78 Q aattaagttg catcattttg tctgactagg tgtccttcta taatattatg gggtggaggg gggtggtatg gagcaagggg caagttggga agacaacctg tagggctcga gggggggccc ggtaccaget tttgtteect ttagtgaggg ttaatttega gettggtett eegetteete 900

960 gctcactgac tegetgeget eggtegtteg getgeggega geggtateag etcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1020 aggecageaa aaggecagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1080 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1140 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1200 gaccetgeeg ettaceggat acctgteege ettteteect tegggaageg tggegettte 1260 tcatagetea egetgtaggt ateteagtte ggtgtaggte gttegeteea agetgggetg 1320 tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga 1380 gtccaacccg gtaagacacg acttategee actggcagea gccactggta acaggattag 1440 1500 cagagegagg tatgtaggeg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag 1560 1620 agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaaagg atctcaagaa gatcctttga tcttttctac 1680 ggggtetgac getcagetag egetcagaag aactegtcaa gaaggegata gaaggegatg 1740 cgctgcgaat cgggagcggc gataccgtaa agcacgagga agcggtcagc ccattcgccg 1800 ccaagetett cagcaatate aegggtagee aaegetatgt eetgatageg gteegeeaca 1860 cccagccggc cacagtcgat gaatccagaa aagcggccat tttccaccat gatattcggc 1920 aagcaggcat cgccatgagt cacgacgaga teetegeegt egggcatgeg egeettgage 1980 ctggcgaaca gttcggctgg cgcgagcccc tgatgctctt cgtccagatc atcctgatcg 2040 2100 acaagaccgg cttccatccg agtacgtgct cgctcgatgc gatgtttcgc ttggtggtcg aatgggcagg tagccggatc aagcgtatgc agccgccgca ttgcatcagc catgatggat 2160 actttctcgg caggagcaag gtgagatgac aggagatcct gccccggcac ttcgcccaat 2220 2280 agcagccagt cccttcccgc ttcagtgaca acgtcgagca cagctgcgca aggaacgccc gtcgtggcca gccacgatag ccgcgctgcc tcgtcctgca gttcattcag ggcaccggac 2340 aggteggtet tgacaaaaag aacegggege ceetgegetg acageeggaa caeggeggea 2400 teagageage egattgtetg ttgtgcccag teatageega atageetete cacecaageg 2460 gccggagaac ctgcgtgcaa tccatcttgt tcaatcatgc gaaacgatcc tcatcctgtc 2520 tettgateag atettgatee cetgegeeat cagateettg geggeaagaa ageeateeag 2580 tttactttgc agggettccc aaccttacca gagggegeec cagetggcaa tteeggtteg 2640 cttgctgtcc ataaaaccgc ccagtctagc aactgttggg aagggcgatc gtgtaatacg 2700 2725 actcactata gggcgaattg gagct

<210> 19

<211> 2716

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having a codon optimized bovine GHRH sequence

<400> 19

ccaccgcggt ggcggccgtc cgccctcggc accatcctca cgacacccaa atatggcgac

	gggtgaggaa	tggtggggag	ttatttttag	agcggtgagg	aaggtgggca	ggcagcaggt	120
	gttggcgctc	taaaaataac	tcccgggagt	tatttttaga	gcggaggaat	ggtggacacc	180
	caaatatggc	gacggttcct	cacccgtcgc	catatttggg	tgtccgccct	cggccggggc	240
	cgcattcctg	ggggccgggc	ggtgctcccg	cccgcctcga	taaaaggctc	cggggccggc	300
	ggcggcccac	gagetacccg	gaggagcggg	aggcgccaag	cggatcccaa	ggcccaactc	360
	cccgaaccac	tcagggtcct	gtggacagct	cacctagctg	ccatggtgct	gtgggtgttc	420
	ttcctggtga	ccctgaccct	gagcagcggc	tcccacggct	ccctgccctc	ccagcctctg	480
	cgcatccctc	gctacgccga	cgccatcttc	accaacagct	accgcaaggt	gctcggccag	540
	ctcagcgccc	gcaagctcct	gcaggacatc	atgaaccggc	agcagggcga	gcgcaaccag	600
	gagcagggag	cctgataagc	ttatcggggt	ggcatccctg	tgacccctcc	ccagtgcctc	660
	tectggccct	ggaagttgcc	actccagtgc	ccaccagcct	tgtcctaata	aaattaagtt	720
	gcatcatttt.	gtctgactag	gtgtccttct	ataatattat	ggggtggagg	ggggtggtat	780
	ggagcaaggg	gcaagttggg	aagacaacct	gtagggctcg	agggggggcc	cggtaccagc	840
,	tttgttccc	tttagtgagg	gttaatttcg	agcttggtct	teegetteet	cgctcactga	900
	ctcgctgcgc	teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	960
	acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	1020
	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeceeeç	1080
	tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	1140
	aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	1200
	gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagctc	1260
	acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	1320
	accccccgtt	cagcccgacc	getgegeett	atccggtaac	tatcgtcttg	agtccaaccc	1380
	ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	1440
	gtatgtaggc	ggtgctacag	agttettgaa	gtggtggcct	aactacggct	acactagaag	1500
	aacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	1560
	ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	1620
	gattacgcgc	agaaaaaaag	gatcţcaaga	agatcctttg	atcttttcta	cggggtctga	1680
	cgctcagcta	gcgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	1740
	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	1800
	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	1860
	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	1920
	tegecatgag	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	1980
	agttcggctg	gcgcgagccc	ctgatgctct	tegtecagat	catcctgatc	gacaagaccg	2040
	gcttccatcc	gagtacgtgc	tegetegatg	cgatgtttcg	cttggtggtc	gaatgggcag	2100
	gtagccggat	caagcgtatg	cageegeege	attgcatcag	ccatgatgga	tactttctcg	2160
	gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	2220
	tecetteceg	cttcagtgac	aacgtcgagc	acagctgcgc		cgtcgtggcc	2280
					11		

agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	2340
ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	2400
ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	2460
cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	ctcatcctgt	ctcttgatça	2520
gatcttgatc	ccctgcgcca	tcagatcctt	ggcggcaaga	aagccatcca	gtttactttg	2580
cagggcttcc	caaccttacc	agagggcgcc	ccagctggca	attccggttc	gcttgctgtc	2640
cataaaaccg	cccagtctag	caactgttgg	gaagggcgat	cgtgtaatac	gactcactat	2700
agggcgaatt	ggagct					2716
<210> 20 <211> 2710 <212> DNA <213> art	5 ificial sequ	lence				
<220> <223> Plas	smid vector	having a co	odon optimi:	zed ovine GF	HRH sequence	
<400> 20 ccaccgcggt	ggcggccgtc	cgccctcggc	accatcctca	cgacacccaa	atatggcgac	60
gggtgaggaa	tggtggggag	ttatttttag	agcggtgagg	aaggtgggca	ggcagcaggt	120
gttggcgctc	taaaaataac	tecegggagt	tatttttaga	gcggaggaat	ggtggacacc	180
caaatatggc	gacggttcct	cacccgtcgc	catatttggg	tgtccgccct	cggccggggc ,	240
cgcattcctg	ggggccgggc	ggtgctcccg	cccgcctcga	taaaaggctc	cggggccggc	300
ggcggcccac	gagctacccg	gaggagcggg	aggcgccaag	cggatcccaa	ggcccaactc	360
cccgaaccac	tcagggtcct	gtggacagct	cacctagctg	ccatggtgct	gtgggtgttc	420
ttçctggtga	ccctgaccct	gagcagcgga	agccacggca	gcctgcccag	ccagcccctg	480
aggatcccta	ggtacgccga	cgccatcttc	accaacagct	acaggaagat	cctgggccag	540
ctgagcgcta	ggaagctcct	gcaggacatc	atgaacaggc	agcagggcga	gaggaaccag	600
gagcagggcg	cctgataagc	ttatcggggt	ggcatccctg	tgacccctcc	ccagtgcctc	660
tectggeeet	ggaagttgcc	actccagtgc	ccaccagcct	tgtcctaata	aaattaagtt	720
gcatcatttt	gtctgactag	gtgtccttct	ataatattat	ggggtggagg	ggggtggtat	780
ggagcaaggg	gcaagttggg	aagacaacct	gtagggctcg	agggggggcc	cggtaccagc	840
ttttgttccc	tttagtgagg	gttaatttcg	agcttggtct	tccgcttcct	cgctcactga	900
ctcgctgcgc	teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	960
acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	1020
aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeeeee	1080
tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	1140
aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tetectgtte	cgaccctgcc	1200
gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagete	1260
acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	1320
acccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	1380

ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag

gtatgtaggc	ggtgctacag	agttettgaa	gtggtggcct	aactacggct	acactagaag.	1500
aacagtattt	ggtatetgeg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	1560
ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	1620
gattacgcgc	agaaaaaaag	gatctcaaga	agatcctttg	atcttttcta	cggggtctga	1680
cgctcagcta	gcgctçagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	1740
tegggagegg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	1800
tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	1860
ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	1920
tegecatgag	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	1980
agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	2040
gcttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	2100
gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	2160
gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	2220
tecetteceg	cttcagtgac	aacgtcgagc	acagetgege	aaggaacgcc	cgtcgtggcc	2280
agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	2340
ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	2400
ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaage	ggccggagaa	2460
cctgcgtgca	atccatcttg	ttcaatcatg	cgaaacgatc	ctcatcctgt	ctcttgatca	2520
gatcttgatc	ccctgcgcca	tcagatcctt	ggcggcaaga	aagccatcca	gtttactttg	2580
cagggcttcc	caaccttacc	agagggcgcc	ccagctggca	attccggttc	gcttgctgtc	2640
cataaaaccg	cccagtctag	caactgttgg	gaagggcgat	cgtgtaatac	gactcactat	2700
agggcgaatt	ggaget					2716

<210> 21

<211> 2725

<212> DNA

<213> artificial sequence

<220>

<223> Plasmid vector having a codon optimized chicken GHRH sequence

<400> 21 ceacegeggt ggeggeegte egecetegge accatectea egacaceeaa atatggegae 60 gggtgaggaa tggtggggag ttatttttag agcggtgagg aaggtgggca ggcagcaggt gttggcgctc taaaaataac tcccgggagt tatttttaga gcggaggaat ggtggacacc 180 caaatatggc gacggtteet caccegtege catatttggg tgteegeect eggeegggge 240 cgcattcctg ggggccgggc ggtgctcccg cccgcctcga taaaaggctc cggggccggc ggcggcccac gagctacccg gaggagcggg aggcgccaag cggatcccaa ggcccaactc 360 cccgaaccac tcagggtcct gtggacaget cacctagetg ccatggccct gtgggtgttc 420 tttgtgctgc tgaccctgac ctccggaagc cactgcagcc tgccacccag cccacccttc cgcgtcaggc gccacgccga cggcatcttc agcaaggcct accgcaagct cctgggccag 540 ctgagcgcac gcaactacct gcacagcetg atggccaagc gcgtgggcag cggactggga 600 gacgaggccg agcccctgag ctgataagct tatcggggtg gcatccctgt gacccctccc 660 cagtgeetet eetggeeetg gaagttgeea etceagtgee caecageett gteetaataa 720 aattaagttg catcattttg tctgactagg tgtccttcta taatattatg gggtggaggg 780 gggtggtatg gagcaagggg caagttggga agacaacctg tagggctcga gggggggccc 840 900 ggtaccaget tttgttccct ttagtgaggg ttaatttega gettggtett cegetteete gctcactgac tegetgeget eggtegtteg getgeggega geggtateag etcactcaaa 960 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1020 1080 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1140 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1200 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegettte 1260 tcatagetca egetgtaggt ateteagtte ggtgtaggte gttegeteca agetgggetg 1320 tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga 1380 gtecaacccg gtaagacacg acttatcgcc actggcagca gccactggta acaggattag 1440 cagagegagg tatgtaggeg gtgctacaga gttcttgaag tggtggccta actacggcta 1500 cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag 1560 agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg 1620 1680 caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac 1740 ggggtctgac gctcagctag cgctcagaag aactcgtcaa gaaggcgata gaaggcgatg 1800 cgctgcgaat cgggagcggc gataccgtaa agcacgagga agcggtcagc ccattcgccg ccaagetett cageaatate aegggtagee aaegetatgt eetgatageg gteegeeaca 1860 cccagccggc cacagtcgat gaatccagaa aagcggccat tttccaccat gatattcggc 1920 aagcaggcat cgccatgagt cacgacgaga tcctcgccgt cgggcatgcg cgccttgagc 1980 ctggcgaaca gttcggctgg cgcgagcccc tgatgctctt cgtccagatc atcctgatcg 2040 acaagaccgg cttccatccg agtacgtgct cgctcgatgc gatgtttcgc ttggtggtcg 2100 2160 aatgggcagg tagccggatc aagcgtatgc agccgccgca ttgcatcagc catgatggat actttctcgg caggagcaag gtgagatgac aggagatcct gccccggcac ttcgcccaat 2220 agcagccagt cccttcccgc ttcagtgaca acgtcgagca cagctgcgca aggaacgccc 2280 gtcgtggcca gccacgatag ccgcgctgcc tcgtcctgca gttcattcag ggcaccggac 2340 aggteggtet tgacaaaaag aacegggege eeetgegetg acageeggaa caeggeggca 2400 teagageage egattgtetg ttgtgeeeag teatageega atageetete cacceaageg 2460 gccggagaac ctgcgtgcaa tccatcttgt tcaatcatgc gaaacgatcc tcatcctgtc 2520 tottgatcag atottgatco cotgogocat cagatcottg goggoaagaa agcoatcoag 2580 tttactttgc agggcttccc aaccttacca gagggcgccc cagctggcaa ttccggttcg 2640 cttgctgtec ataaaaccgc ccagtctagc aactgttggg aagggcgatc gtgtaatacg 2700 actcactata gggcgaattg gagct 2725