

cíl projektu Endorse

Pravděpodobnostní charakterizace bezpečnosti EDZ v okolí konkrétního úložného místa založená na matematických modelech vzniku EDZ.

Endorse modely

Transportní model

Indikátory definovány pomocí transportního modelu podél díla. Hotova první verze transportu.

Pevné vstupy

- geometrie (3 úložné vrty)
- max. tloušťka EDZ
- tok koncentrace na vnitřní hranici
- tlak na vnější hranici (z regionálního modelu)

Náhodné vstupy

- polohy makro puklin (rozměr nad 10m)
- porozita, permeabilita, difúzní parametry v masivu

Vlastnosti EDZ - **z modelů mechaniky** porozita, **tenzor permeability**, difúzní parametry v masivu

Makro model EDZ

Pro modely predikce vodivosti a poruch:

- ▶ 2D nebo 3D řez úložným vrtem + okolí
- nelineární mechanika s plasticitou/poškozením
- pole posunutí
- micro model pro permeabilitu a další vlastnosti EDZ

Základní varianta: parametry modelů fitovány z měření in-situ.

Koncept predikce vlastností EDZ

Víceškálová představa:

Min, Jing: Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method, 2003

Permeabilita

Hotovo

- definice indikátorů, modely transportu
- dílčí HM modely (něco s puklinami, něco s plasticitou) s puklinami
- generování náhodných puklin,
- aplikace Bayesovské inverze na HM model

TODO:

- Dostatečně robustní simulátor pro mechaniku s plasticitou.
- Model pro experiment TSX. Aplikace Bayesovských metod na HM model s plasticitou.
- Model s kontakty na puklinách.

TSX

