CITOPLASMA

AULA 1- VISÃO GERAL

Características gerais do citoplasma

- Porção gelatinosa que preenche o interior da célula;
- Localização:
 - Células procarióticas: representa todo o material que preenche o interior da célula;
 - Células eucarióticas: representa a porção localizada entre a membrana plasmática o núcleo.

Componentes do citoplasma em células eucarióticas

- Hialoplasma ou citosol: água, íons e moléculas orgânicas;
- Citoesqueleto: proteínas estruturais;
- Orgânulos ou organelas: estruturas com forma e função específicas;
- Inclusões citoplasmáticas: gotículas e grãos de substâncias.

AULA 2 – RIBOSSOMOS, CITOESQUELETO E CENTRÍOLOS

Ribossomos

- Presente no citoplasma de todas as células;
- Apresenta forma de pequenos grãos;
- Formados por RNAr + proteínas associadas, possuindo duas subunidades;
- Origem nos eucariontes: no nucléolo (interior do núcleo);
- Podem ser encontrados:
 - Dispersos no citoplasma;
 - Aderidos ao Retículo Endoplasmático Rugoso ou Granuloso (apenas em eucariontes);
 - Presos na face interna da carioteca (apenas em eucariontes).
- Função dos ribossomos: síntese proteica (produção de proteínas).

Citoesqueleto

- Rede de filamentos proteicos;
- Presente apenas em células eucarióticas;
- Componentes formadores do citoesqueleto:
 - Microfilamentos; feitos de proteína actina. Confere consistência ao hialoplasma. É responsável pela formação dos pseudópodes;
 - Microtúbulos: feitos de proteína tubulina.
 Origina os centríolos;

 Filamentos intermediários: feitos de proteína queratina. Forma os desmossomos (reforços entre células epiteliais).

Centríolos

- Estrutura citoplasmática organizada a partir das proteínas dos microtúbulos;
- Originados no centrossomo;
- São duplicados na interfase celular (período G2);
- Presentes apenas em eucariontes;
- Originam os cílios e os flagelos:
 - Cílios: são curtos e numerosos. Exemplo: cílios dos paramécios;
 - Flagelos: s\u00e3o longos e pouco numerosos.
 Exemplo: flagelo dos espermatozoides.

AULA 3 – RETÍCULO ENDOPLASMÁTICO E COMPLEXO GOLGIENSE

Retículo endoplasmático

- Organela membranosa. Apresenta-se como um conjunto de canais interligados;
- Presente apenas em células eucarióticas;
- Encontra-se ligado à carioteca;
- Função geral: transporte de substâncias;
- Tipos de Retículo endoplasmático:
 - R. E. Liso ou Agranular: não apresenta ribossomos aderidos. Funções: metabolismo de lipídios e armazenamento de íons cálcio;
 - R. E. Rugoso ou Granular: possui ribossomos aderidos. Funções: síntese proteica e metabolismo de carboidratos.

Complexo golgiense

- Organela membranosa;
- Apresenta-se como um conjunto de sacos interligados e empilhados;
- Presente apenas em células eucarióticas;
- Localiza-se próximo ao retículo endoplasmático;
- Funções:
 - Armazenamento e maturação de produtos originados no retículo endoplasmático;
 - Formação de vesículas: secreção celular, lisossomos, peroxissomos, acrossomo dos espermatozoides e fragmoplastos.

AULA 4 – LISOSSOMOS, PEROXISSOMOS, GLIOXISSOMOS E VACÚOLO

CITOPLASMA

Lisossomos

- Organelas membranosas;
- Apresentam-se como pequenas vesículas ricas em enzimas digestivas;
- Presentes apenas em células eucarióticas;
- Função: digestão celular.
 - Autofágica: digestão de estruturas internas da célula com objetivo de promover a renovação da célula;
 - Heterofágica: digestão de substâncias obtidas após uma endocitose.

Peroxissomos

- Organelas membranosas;
- Apresentam-se como pequenas vesículas ricas em enzimas oxidativas;
- Presentes apenas em células eucarióticas;
- Função: oxidação de substâncias nocivas como álcool e água oxigenada.

 $2 H_2O_2 \longrightarrow 2 H_2O + 1/2 O_2$ Água oxigenada água oxigênio (tóxica) (produtos atóxicos)

Glioxissomos

- · Organelas membranosas;
- Apresentam-se como pequenas vesículas ricas em enzimas que oxidam lipídios no interior das sementes, convertendo-os em carboidratos;
- · Presentes apenas em células vegetais.

Vacúolos

- · Organelas membranosas;
- · Apresentam-se como grandes bolsas;
- · Presentes apenas em células eucarióticas;
- Função:
 - Em vegetais: armazenamento de água e minerais (eletrólitos);
 - Em protozoários de água doce (exemplo: paramécio): vacúolo pulsátil (osmorregulação).

AULA 5 – MITOCÔNDRIAS E CLOROPLASTOS

<u>Mitocôndrias</u>

- Organelas membranosas. S\u00e3o dotadas de dupla membrana envolvente;
- Presente apenas em células eucarióticas;

- Apresenta DNA e ribossomos próprios;
- Função: respiração celular aeróbica;
- Morfologia de uma mitocôndria (ver esquema abaixo):

Fonte:

http://www.centrocienciajunior.com/miudos_graudos/vamo sfalar01.asp?id=905

- A respiração celular:
 - Oxidação completa da glicose com produção de ATP;
 - Consumo de gás oxigênio (O2);
 - Liberação de água (H₂O) e gás carbônico (CO₂).

Cloroplastos

- Organelas membranosas;
- São dotadas de dupla membrana envolvente;
- Presente apenas em células eucarióticas;
- Apresenta DNA e ribossomos próprios;
- Função: fotossíntese;
- Morfologia de um cloroplasto (ver esquema abaixo):

Fonte: http://www.alunosonline.com.br/biologia/oscloroplastos.html

- A fotossíntese:
 - Produção de matéria orgânica a partir de matéria inorgânica na presença de luz;
 - Depende de pigmentos fotossintéticos como a clorofila.

CITOPLASMA

<u>Hipótese simbiótica para a origem de mitocôndrias e cloroplastos</u>

Fonte: http://www.vestibulandoweb.com.br/biologia/teoria/teoriaendossimbiotica.asp