物理量 (状態量、遷移量、経路量) の関係

大上由人

2024年12月12日

1 物理量の分類

ゆらぐ系の熱力学においては、基本的に以下の三種類の物理量が考えられる。

Def.state quantity/jump quantity/path quantity -

state quantity \hat{f} は、状態 j に対して、値 f_j をとる物理量である。また、この期待値は、

$$\left\langle \hat{f} \right\rangle_{\mathbf{p}} = \sum_{j} f_{j} p_{j} \tag{1.1}$$

で定義される。

jump quantity \hat{g} は、状態 j から状態 k に遷移するとき、値 $g_{j\to k}$ をとる物理量である。また、この期待値は、

$$\langle \hat{g} \rangle_{\mathbf{p},R} = \sum_{j,k} R_{kj} p_j g_{j \to k}$$
 (1.2)

で定義される。

path quantity $\hat{\hat{F}}$ は、経路 Γ に対して、値 $F(\Gamma)$ をとる物理量である。また、この期待値は、

$$\left\langle \left\langle \hat{\hat{F}} \right\rangle \right\rangle_{\Gamma} = \int d\Gamma P(\Gamma) F(\Gamma)$$
 (1.3)

で定義される。

2 物理量の関係

2.1 state quantity と path quantity の関係

時間に依存する state quantity $\hat{f}(t)$ について、対応する path quantity を考えることができる。 対応する path quantity $\hat{f}(t)$ は、経路 Γ に対して、値

$$f(\Gamma, t) = f_{\Gamma(t)} = \sum_{m=0}^{n} f_{j_m}(t) \chi[t \in [t_m, t_{m+1}]]$$
(2.1)

をとる物理量である。このとき、以下が成り立つ。

Prop.state quantity と path quantity の関係 -

state quantity $\hat{f}(t)$ と対応する path quantity $\hat{f}(t)$ について、以下が成り立つ。

$$\left\langle \hat{f}(t) \right\rangle_{\mathbf{p}(t)} = \left\langle \left\langle \hat{\hat{f}}(t) \right\rangle_{\Gamma} \right\rangle$$
 (2.2)

Prf.

2.2 jump quantity と path quantity の関係

時間に依存する jump quantity $\hat{g}(t)$ について、対応する path quantity を考えることができる。 対応する path quantity $\hat{g}(t)$ は、経路 Γ に対して、値

$$g(\Gamma, t) = \sum_{m=1}^{n} g_{j_{m-1} \to j_m}(t)\delta(t - t_m)$$
(2.3)

をとる物理量である。このとき、以下が成り立つ。

Prop.jump quantity と path quantity の関係

jump quantity $\hat{g}(t)$ と対応する path quantity $\hat{\hat{g}}(t)$ について、以下が成り立つ。

$$\langle \hat{g}(t) \rangle_{\mathbf{p}(t),R(t)} = \left\langle \left\langle \hat{\hat{g}}(t) \right\rangle \right\rangle_{\Gamma}$$
 (2.4)

Prf.

離散のほうがやりやすいので、離散の場合を考える。右辺は以下のように書ける。

$$\int d\Gamma P(\Gamma) \sum_{m=1}^{n} g_{j_{m-1} \to j_m}(t) \delta_{t,t_m} = \sum_{j_0, \dots, j_N} \prod_{n=1}^{N} T^{j^n j^{n-1}} p_{j^0}^0 \sum_{m=1}^{n} g_{j_{m-1} \to j_m}(t_m)$$
(2.5)

一番最後の Σ について考える。和のk番目の項について、

(第 k 項) =
$$\sum_{j_0,\dots,j_N} \prod_{n=1}^N T^{j^n j^{n-1}} p_{j^0}^0 g_{j_{m-1} \to j_m}(t_m)$$
 (2.6)

 $(j^0$ から j^{k-2} まで計算して、)

$$= \sum_{j_{k-1}, j_k, \dots, j_N} \prod_{n=k-1}^N T^{j^n j^{n-1}} p_{j^{k-1}}^{k-1} g_{j_{m-1} \to j_m}(t_m)$$
 (2.7)

 $(j^{k+1}$ から j^N まで計算すると、規格化条件より)

$$= \sum_{j_{k-1},j_k} T^{j^k j^{k-1}} p_{j^{k-1}}^{k-1} g_{j_{m-1} \to j_m}(t_m)$$
(2.8)

となる。これを連続極限に持っていくことで、

$$\int d\Gamma P(\Gamma) \sum_{m=1}^{n} g_{j_{m-1} \to j_m}(t) \delta_{t,t_m} = \sum_{j \neq k} p_j R_{kj} g_{j \to k}(t)$$
(2.9)

$$= \langle \hat{g}(t) \rangle_{\mathbf{p}(t), R(t)} \tag{2.10}$$

また、path quantity の積分量

$$\hat{\hat{G}} = \int_0^\tau \mathrm{d}t \,\hat{\hat{g}}(t) \tag{2.11}$$

は、path に対して値

$$G(\Gamma) = \int_0^{\tau} dt \, g(\Gamma, t) = \sum_{m=1}^n g_{j_{m-1} \to j_m}(t_m)$$
(2.12)

をとる物理量である。このとき、以下が成り立つ。

$$\left\langle \left\langle \hat{\hat{G}} \right\rangle \right\rangle_{\Gamma} = \int dt \left\langle \left\langle \hat{\hat{g}}(t) \right\rangle \right\rangle_{\Gamma} = \int dt \left\langle \hat{g}(t) \right\rangle_{\mathbf{p}(t), R(t)}$$
 (2.13)