CS 2500: Algorithms

Lecture 27: Dynamic Programming: DP for Graphs

Shubham Chatterjee

Missouri University of Science and Technology, Department of Computer Science

November 19, 2024

Problem Definition:

- Given a directed graph G = (V, E) with n vertices.
- Let cost(i, j) be the cost adjacency matrix where:
 - cost(i, i) = 0 for $1 \le i \le n$.
 - $cost(i,j) = \infty$ if $\langle i,j \rangle \notin E(G)$.
 - cost(i,j) is the length of edge $\langle i,j \rangle$ if $\langle i,j \rangle \in E(G)$ and $i \neq j$.
- The goal is to determine a matrix A such that A(i,j) represents the shortest path length from i to j.

Key Points:

- Compute A using $O(n^3)$ time with the principle of optimality.
- The graph G must not contain a cycle of negative length.

Dynamic Programming Principle:

- Consider a shortest path $i \rightarrow j$ passing through vertex k.
- ullet The subpaths i o k and k o j must also be shortest paths.
- Recursive definition:

$$A^{k}(i,j) = \min(A^{k-1}(i,j), A^{k-1}(i,k) + A^{k-1}(k,j))$$

• Base case:

$$A^0(i,j) = \cot(i,j)$$

Floyd-Warshall Be Calculated In-Place

• The computation of $A^k(i,j)$ only depends on values from A^{k-1} , specifically:

$$A^{k}(i,j) = \min \left(A^{k-1}(i,j), A^{k-1}(i,k) + A^{k-1}(k,j) \right).$$

- During the calculation of $A^k(i,j)$:
 - $A^k(i, k) = A^{k-1}(i, k)$,
 - $A^k(k,j) = A^{k-1}(k,j)$.
- Since $A^k(i,j)$ is calculated row by row and column by column:
 - The current row and column values for k do not change during the iteration.
 - This ensures the correctness of the updates for other entries.
- The algorithm reuses the same matrix A without needing an additional data structure:
- This optimization ensures a space complexity of $O(n^2)$, which is crucial for large graphs.

Algorithm 1 All-Pairs Shortest Paths (Floyd-Warshall Algorithm)

```
Require: cost[1...n,1...n]: cost adjacency matrix of the graph
Ensure: A[1 \dots n, 1 \dots n]: shortest path lengths between all pairs of vertices
 1: Initialize A[i,j] \leftarrow \cos[i,j] for all 1 \le i,j \le n
 2: for k = 1 to n do
       for i = 1 to n do
 3:
 4:
           for i = 1 to n do
               A[i, j] \leftarrow \min(A[i, j], A[i, k] + A[k, j])
 5:
           end for
 6:
       end for
 7:
 8: end for
                   ▶ Matrix containing shortest path lengths between all vertex
 9: return A
   pairs
```

Time Complexity: $O(n^3)$.

Example: Graph with Negative Cycle

• Adjacency matrix:

$$\begin{bmatrix} 0 & 1 & \infty \\ -2 & 0 & 1 \\ \infty & \infty & 0 \end{bmatrix}$$

• Negative cycle: $1 \rightarrow 2 \rightarrow 1$.

Consequence:

- Length of path $1, 2, 1, 2, 1, 2, \dots 1, 2, 3$ can become arbitrarily small.
- Shortest path computation fails.

Example: Directed Graph

Initial Cost Matrix (A^0) :

$$A^{0} = \begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & \infty & 0 \end{bmatrix}$$

All-Pairs Shortest Paths: First Iteration (k = 1)

Update Rule:

$$A^{1}(i,j) = \min(A^{0}(i,j), A^{0}(i,1) + A^{0}(1,j))$$

Matrix After Update (A^1) :

$$A^1 = \begin{bmatrix} 0 & 4 & 11 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

Steps:

• For i = 3, j = 2:

$$A^{1}(3,2) = \min(A^{0}(3,2), A^{0}(3,1) + A^{0}(1,2)) = \min(\infty, 3+4) = 7$$

 All other values remain the same as no shorter paths are found through vertex 1.

All-Pairs Shortest Paths: Second Iteration (k = 2)

Update Rule:

$$A^{2}(i,j) = \min(A^{1}(i,j), A^{1}(i,2) + A^{1}(2,j))$$

Matrix After Update (A^2) :

$$A^2 = \begin{bmatrix} 0 & 4 & 6 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

Steps:

• For i = 1, j = 3:

$$A^{2}(1,3) = \min(A^{1}(1,3), A^{1}(1,2) + A^{1}(2,3)) = \min(11,4+2) = 6$$

 All other values remain the same as no shorter paths are found through vertex 2.

All-Pairs Shortest Paths: Third Iteration (k = 3)

Update Rule:

$$A^{3}(i,j) = \min(A^{2}(i,j), A^{2}(i,3) + A^{2}(3,j))$$

Matrix After Update (A^3) :

$$A^3 = \begin{bmatrix} 0 & 4 & 6 \\ 5 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

Steps:

• For i = 2, j = 1:

$$A^{3}(2,1) = \min(A^{2}(2,1), A^{2}(2,3) + A^{2}(3,1)) = \min(6,2+3) = 5$$

 All other values remain the same as no shorter paths are found through vertex 3.

All-Pairs Shortest Paths: Final Result

Shortest Path Matrix (A^3) :

$$A^3 = \begin{bmatrix} 0 & 4 & 6 \\ 5 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix}$$

Interpretation:

- $A^3(1,3) = 6$: Shortest path from vertex 1 to 3.
- $A^3(2,1) = 5$: Shortest path from vertex 2 to 1.
- $A^3(3,2) = 7$: Shortest path from vertex 3 to 2.

Key Observations:

- The algorithm successfully computes all-pairs shortest paths.
- Negative weight cycles would make the result invalid, but none exist in this graph.

Single-Source Shortest Path

Goal:

- Compute the shortest paths from a source vertex s to all other vertices in a graph G = (V, E).
- Algorithm: Dijkstra

Problem:

- Graph G may have negative edge weights.
- Shortest path algorithms like Dijkstra's may not compute correct results.

Example:

• Algorithm terminates with:

$$path[2] = 7, path[3] = 5$$

• Actual shortest path: $1 \rightarrow 2 \rightarrow 3$, with length 2.

Key Features:

- Handles graphs with negative edge weights.
- Detects negative weight cycles.

Input:

Graph G (as an adjacency matrix or edge list), source node s.

Output:

- Shortest distance array path[]: Distance from s to every other vertex.
- Predecessor array *pred*[]: Helps reconstruct shortest paths.

Recursive Definition:

• Define $path^k[v]$ as the shortest distance from the source s to vertex v using at most k edges.

Base Case:

$$path^0[v] = egin{cases} 0, & ext{if } v = s, \ +\infty, & ext{if } v
eq s. \end{cases}$$

Recursive Case:

$$path^{k}[v] = \min\left(path^{k-1}[v], \min_{u \in V}\{path^{k-1}[u] + adj[u][v]\}\right)$$

Explanation:

- path^k[v] is the minimum of:
 - The shortest distance to v using at most k-1 edges $(path^{k-1}[v])$.
 - The distance to v via some neighbor u, considering one additional edge.

Initialization:

- Initialize path[] to $+\infty$ for all nodes, except path[s] = 0 for the source node s.
- ② Initialize pred[] to NIL for all nodes.

Relaxation:

- **1** For each of the n-1 iterations:
 - For each edge (u, v), update:

$$\label{eq:linear_path} \text{If } \textit{path}[\textit{u}] + \textit{adj}[\textit{u}][\textit{v}] < \textit{path}[\textit{v}] \text{ then:} \\ \underset{\textit{pred}[\textit{v}]}{\textit{path}[\textit{v}]} \leftarrow \textit{path}[\textit{u}] + \textit{adj}[\textit{u}][\textit{v}],$$

Negative Weight Cycle Detection:

• Check all edges (u, v) for further relaxation:

```
If path[u]+adj[u][v] < path[v], then report a negative weight cycle.
```

Output:

• Return path[] and pred[].


```
Algorithm 2 Bellman-Ford (Graph G, Adjacency Matrix adj, Source Node s)
Require: G: Graph, adj: Adjacency matrix representing edge weights, s:
   Source node
Ensure: path[]: Shortest distances from s to all other nodes
Ensure: pred[]: Predecessor array for shortest paths
 1: Initialize path[] with +\infty for all nodes except the source
 2: path[s] \leftarrow 0
                                         ▷ Distance from source to itself is zero
 3: Initialize pred[] with NIL for all nodes
 4: for k := 1 to n - 1 do
                                                \triangleright Relax edges up to n-1 times
       for each node u \in V do
           for each neighbor v of u such that adj[u][v] \neq 0 do
 6.
              if path[v] > path[u] + adj[u][v] then
                  path[v] \leftarrow path[u] + adj[u][v]
                  pred[v] \leftarrow u
 9:
              end if
10:
           end for
11.
12.
       end for
13: end for
                                              Check for negative weight cycles
14: for each edge (u, v) in G do
       if path[v] > path[u] + adj[u][v] then
15:
           Report: "Graph contains a negative weight cycle"
16.
17:
           return
       end if
19: end for
20: return path[], pred[]
```

Time Complexity:

- $O(n^3)$ using adjacency matrices.
- O(ne) using adjacency lists (e: number of edges).

Space Complexity:

• O(n) for path[] and pred[].

Example: Bellman-Ford Algorithm

Compute shortest paths from source vertex ${\bf 1}$ to all other vertices using the Bellman-Ford algorithm.

Example: Bellman-Ford Algorithm

Edge	Weight
(0 → 0)	0
(0 → 1)	6
(0 → 2)	5
(0 → 3)	5
(1 → 1)	0
(1 → 4)	-1
(2 → 1)	-2
(2 → 2)	0
(2 → 4)	1
(3 → 2)	-2
(3 → 3)	0
(3 → 5)	-1
(4 → 4)	0
(4 → 6)	3
(5 → 5)	0
(5 → 6)	3
(6 → 6)	0

Example: Bellman-Ford Algorithm-Initialization

```
Initial distances: [0, \infty, \infty, \infty, \infty, \infty, \infty]
Initial predecessors: [None, None, None, None, None, None]
```

Edge	Weight	Relaxed?	Reason/Details	Updated Distances
$(0 \rightarrow 0)$	0	No	Edge connects the node to itself, distance re-	$[0, \infty, \infty, \infty, \infty, \infty, \infty]$
			mains unchanged.	
$(0 \rightarrow 1)$	6	Yes	Updated dist[1] to 6, as $0 + 6 = 6 < \infty$. Pre-	$[0, 6, \infty, \infty, \infty, \infty, \infty, \infty]$
			decessor set to 0.	
$(0 \rightarrow 2)$	5	Yes	Updated dist[2] to 5, as $0 + 5 = 5 < \infty$. Pre-	$[0, 6, 5, \infty, \infty, \infty, \infty]$
			decessor set to 0.	
$(0 \rightarrow 3)$	5	Yes	Updated dist[3] to 5, as $0 + 5 = 5 < \infty$. Pre-	$[0, 6, 5, 5, \infty, \infty, \infty]$
			decessor set to 0.	
$(1 \rightarrow 1)$	0	No	Edge connects the node to itself, distance re-	$[0, 6, 5, 5, \infty, \infty, \infty]$
			mains unchanged.	
$(1 \rightarrow 4)$	-1	Yes	Updated dist[4] to 5, as $6 + (-1) = 5 < \infty$.	$[0, 6, 5, 5, 5, \infty, \infty]$
			Predecessor set to 1.	
$(2 \rightarrow 1)$	-2	Yes	Updated dist[1] to 3, as $5 + (-2) = 3 < 6$.	$[0, 3, 5, 5, 5, \infty, \infty]$
			Predecessor set to 2.	
$(2 \rightarrow 2)$	0	No	Edge connects the node to itself, distance re-	$[0, 3, 5, 5, 5, \infty, \infty]$
			mains unchanged.	
$(2 \rightarrow 4)$	1	No	New distance $5+1=6$, but $6 \ge \text{current dist}[4]$	$[0, 3, 5, 5, 5, \infty, \infty]$
			= 5.	
$(3 \rightarrow 2)$	-2	Yes	Updated dist[2] to 3, as $5 + (-2) = 3 < 5$.	$[0, 3, 3, 5, 5, \infty, \infty]$
			Predecessor set to 3.	
$(3 \rightarrow 3)$	0	No	Edge connects the node to itself, distance re-	$[0, 3, 3, 5, 5, \infty, \infty]$
			mains unchanged.	
$(3 \rightarrow 5)$	-1	Yes	Updated dist[5] to 4, as $5 + (-1) = 4 < \infty$.	$[0, 3, 3, 5, 5, 4, \infty]$
			Predecessor set to 3.	
$(4 \rightarrow 4)$	0	No	Edge connects the node to itself, distance re-	$[0, 3, 3, 5, 5, 4, \infty]$
			mains unchanged.	
$(4 \rightarrow 6)$	3	Yes	Updated dist[6] to 8, as $5 + 3 = 8 < \infty$. Pre-	[0, 3, 3, 5, 5, 4, 8]
			decessor set to 4.	
$(5 \rightarrow 5)$	0	No	Edge connects the node to itself, distance re-	[0, 3, 3, 5, 5, 4, 8]
			mains unchanged.	
$(5 \rightarrow 6)$	3	Yes	Updated dist[6] to 7, as $4+3=7 < 8$. Prede-	[0, 3, 3, 5, 5, 4, 7]
			cessor set to 5.	
$(6 \rightarrow 6)$	0	No	Edge connects the node to itself, distance re-	[0, 3, 3, 5, 5, 4, 7]
			mains unchanged.	

Table 1: Iteration 1: Edge Relaxations and Updated Distances

Distances after iteration 1: [0, 3, 3, 5, 5, 4, 7] **Predecessors after iteration 1:** [None, 2, 3, 0, 1, 3, 5]

Edge	Weight	Relaxed?	Reason/Details	Updated Distances
$(0 \rightarrow 0)$	0	No	Edge connects the node to itself, distance re-	[0, 3, 3, 5, 5, 4, 7]
			mains unchanged.	
$(0 \rightarrow 1)$	6	No	New distance $0+6=6$, but $6 \ge \text{current dist}[1]$	[0, 3, 3, 5, 5, 4, 7]
			= 3.	
(0 → 2)	5	No	New distance $0+5=5$, but $5 \ge \text{current dist}[2]$ = 3	[0, 3, 3, 5, 5, 4, 7]
(0 → 3)	5	No	New distance $0+5=5$, but $5 \ge \text{current dist}[3]$ = 5.	[0, 3, 3, 5, 5, 4, 7]
(1 → 1)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 3, 3, 5, 5, 4, 7]
(1 → 4)	-1	Yes	Updated dist[4] to 2, as $3 + (-1) = 2 < 5$. Predecessor set to 1.	[0, 3, 3, 5, 2, 4, 7]
(2 → 1)	-2	Yes	Updated dist[1] to 1, as $3 + (-2) = 1 < 3$. Predecessor set to 2.	[0, 1, 3, 5, 2, 4, 7]
(2 → 2)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 2, 4, 7]
(2 → 4)	1	No	New distance $3+1=4$, but $4 \ge \text{current dist}[4]$ = 2.	[0, 1, 3, 5, 2, 4, 7]
(3 → 2)	-2	No	New distance $5 + (-2) = 3$, but $3 \ge \text{current}$ dist $[2] = 3$.	[0, 1, 3, 5, 2, 4, 7]
(3 → 3)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 2, 4, 7]
(3 → 5)	-1	No	New distance $5 + (-1) = 4$, but $4 \ge \text{current}$ dist $[5] = 4$.	[0, 1, 3, 5, 2, 4, 7]
(4 → 4)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 2, 4, 7]
(4 → 6)	3	Yes	Updated dist[6] to 5, as $2+3=5 < 7$. Predecessor set to 4.	[0, 1, 3, 5, 2, 4, 5]
(5 → 5)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 2, 4, 5]
(5 → 6)	3	No	New distance $4+3=7$, but $7 \ge \text{current dist}[6] = 5$.	[0, 1, 3, 5, 2, 4, 5]
(6 → 6)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 2, 4, 5]

Table 2: Iteration 2: Edge Relaxations and Updated Distances

Distances after iteration 2: [0, 1, 3, 5, 2, 4, 5] Predecessors after iteration 2: [None, 2, 3, 0, 1, 3, 4]

Edge	Weight	Relaxed?	Reason/Details	Updated Distances
(0 → 0)	0	No	Edge connects the node to itself, distance re-	[0, 1, 3, 5, 2, 4, 5]
,			mains unchanged.	
$(0 \rightarrow 1)$	6	No	New distance $0+6=6$, but $6 \ge \text{current dist}[1]$	[0, 1, 3, 5, 2, 4, 5]
			= 1.	
$(0 \rightarrow 2)$	5	No	New distance $0+5=5$, but $5 \ge \text{current dist}[2]$	[0, 1, 3, 5, 2, 4, 5]
			= 3.	
(0 → 3)	5	No	New distance $0+5=5$, but $5 \ge \text{current dist}[3]$ = 5.	[0, 1, 3, 5, 2, 4, 5]
$(1 \rightarrow 1)$	0	No	Edge connects the node to itself, distance re-	[0, 1, 3, 5, 2, 4, 5]
			mains unchanged.	
$(1 \rightarrow 4)$	-1	Yes	Updated dist[4] to 0, as $1 + (-1) = 0 < 2$.	[0, 1, 3, 5, 0, 4, 5]
			Predecessor set to 1.	
$(2 \rightarrow 1)$	-2	No	New distance $3 + (-2) = 1$, but $1 \ge \text{current}$	[0, 1, 3, 5, 0, 4, 5]
			dist[1] = 1.	
(2 → 2)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 5]
$(2 \rightarrow 4)$	1	No	mains unchanged. New distance $3+1 = 4$, but $4 \ge \text{current dist}[4]$	[0, 1, 3, 5, 0, 4, 5]
$(2 \rightarrow 4)$	1	No	New distance $3+1=4$, but $4 \ge \text{current dist}[4]$ = 0.	[0, 1, 3, 5, 0, 4, 5]
(3 → 2)	-2	No	New distance $5 + (-2) = 3$, but $3 \ge \text{current}$	[0, 1, 3, 5, 0, 4, 5]
(0 , 2)	_		dist[2] = 3.	[0, 1, 0, 0, 0, 1, 0]
$(3 \rightarrow 3)$	0	No	Edge connects the node to itself, distance re-	[0, 1, 3, 5, 0, 4, 5]
			mains unchanged.	
$(3 \rightarrow 5)$	-1	No	New distance $5 + (-1) = 4$, but $4 \ge \text{current}$	[0, 1, 3, 5, 0, 4, 5]
			dist[5] = 4.	
$(4 \rightarrow 4)$	0	No	Edge connects the node to itself, distance re-	[0, 1, 3, 5, 0, 4, 5]
			mains unchanged.	(
$(4 \rightarrow 6)$	3	Yes	Updated dist[6] to 3, as $0+3=3<5$. Prede-	[0, 1, 3, 5, 0, 4, 3]
(5 → 5)	0	No	cessor set to 4. Edge connects the node to itself, distance re-	[0, 1, 3, 5, 0, 4, 3]
(a → 5)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 3]
(5 → 6)	3	No	mains unchanged. New distance $4+3=7$, but $7 \ge \text{current dist}[6]$	[0, 1, 3, 5, 0, 4, 3]
(a → b)	, ,	140	New distance $4+3=1$, but $1 \ge \text{current dist}[6]$ = 3.	[0, 1, 0, 0, 0, 4, 3]
(6 → 6)	0	No	Edge connects the node to itself, distance re-	[0, 1, 3, 5, 0, 4, 3]
			mains unchanged.	

Table 3: Iteration 3: Edge Relaxations and Updated Distances

Distances after iteration 3: [0, 1, 3, 5, 0, 4, 3] **Predecessors after iteration 3:** [None, 2, 3, 0, 1, 3, 4]

Edge	Weight	Relaxed?	Reason/Details	Updated Distances
$(0 \rightarrow 0)$	0	No	Edge connects the node to itself, distance re-	[0, 1, 3, 5, 0, 4, 3]
			mains unchanged.	
$(0 \rightarrow 1)$	6	No	New distance $0+6=6$, but $6 \ge \text{current dist}[1]$	[0, 1, 3, 5, 0, 4, 3]
			= 1.	
(0 → 2)	5	No	New distance $0+5=5$, but $5 \ge \text{current dist}[2]$ = 3.	[0, 1, 3, 5, 0, 4, 3]
(0 → 3)	5	No	New distance $0+5=5$, but $5 \ge \text{current dist}[3] = 5$.	[0, 1, 3, 5, 0, 4, 3]
(1 → 1)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 3]
(1 → 4)	-1	No	New distance $1 + (-1) = 0$, but $0 \ge \text{current}$ dist $[4] = 0$.	[0, 1, 3, 5, 0, 4, 3]
(2 → 1)	-2	No	New distance $3 + (-2) = 1$, but $1 \ge \text{current}$ dist $[1] = 1$.	[0, 1, 3, 5, 0, 4, 3]
(2 → 2)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 3]
(2 → 4)	1	No	New distance $3+1=4$, but $4 \ge \text{current dist}[4]$ = 0.	[0, 1, 3, 5, 0, 4, 3]
(3 → 2)	-2	No	New distance $5 + (-2) = 3$, but $3 \ge \text{current}$ dist $[2] = 3$.	[0, 1, 3, 5, 0, 4, 3]
(3 → 3)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 3]
(3 → 5)	-1	No	New distance $5 + (-1) = 4$, but $4 \ge \text{current}$ dist $[5] = 4$.	[0, 1, 3, 5, 0, 4, 3]
(4 → 4)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 3]
(4 → 6)	3	No	New distance $0+3=3$, but $3 \ge \text{current dist}[6] = 3$.	[0, 1, 3, 5, 0, 4, 3]
(5 → 5)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 3]
(5 → 6)	3	No	New distance $4+3=7$, but $7 \ge \text{current dist}[6] = 3$.	[0, 1, 3, 5, 0, 4, 3]
(6 → 6)	0	No	Edge connects the node to itself, distance re- mains unchanged.	[0, 1, 3, 5, 0, 4, 3]

Table 4: Iteration 4: Edge Relaxations and Updated Distances

Distances after iteration 4: [0, 1, 3, 5, 0, 4, 3] Predecessors after iteration 4: [None, 2, 3, 0, 1, 3, 4]

We must prove the following:

- 1: Bellman-Ford detects negative cycles:
 - This means: If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.
- Theorem 2: If the graph has no negative cycles then, the distance estimates on the last iteration are equal to the true shortest distances
 - This means: $d_{n-1}(v) = \delta(s, v)$ for all vertices v.

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

Why do we want to prove this?

- The Bellman-Ford algorithm performs n-1 iterations of edge relaxation, where n is the number of vertices in the graph.
- Why n-1 iterations?
 - The longest simple path in a graph (i.e., a path with no repeated vertices) can have at most n-1 edges.
 - Therefore, after n-1 iterations, the shortest-path information for all vertices should propagate fully if there are no negative cycles.

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

What happens in the presence of a negative cycle?

- If a negative cycle is reachable, the distance estimates d(v) for vertices in or reachable from the cycle will decrease indefinitely with each traversal of the cycle.
- Even after n-1 iterations, some edge (u, v) will satisfy:

$$d(v) > d(u) + w(u, v).$$

• This indicates that d(v) can still decrease further. Such behavior is only possible if the graph contains a negative-weight cycle.

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

- Consider the following graph with a negative cycle $1 \rightarrow 2 \rightarrow 1$ and an additional path $1 \rightarrow 2 \rightarrow 3$.
- The total weight of the cycle $1 \rightarrow 2 \rightarrow 1$ is:

$$w(1,2) + w(2,1) = 1 + (-2) = -1.$$

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

- Behavior of Bellman-Ford:
 - Start from 1 with initial distances:

$$d(1) = 0, d(2) = \infty, d(3) = \infty.$$

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

- Behavior of Bellman-Ford:
 - After relaxing edges once:

$$d(2) = 0 + 1 = 1$$
, $d(1) = 1 + (-2) = -1$, $d(3) = 1 + 1 = 2$.

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

- Behavior of Bellman-Ford:
 - After a second relaxation:

$$d(2) = -1 + 1 = 0, \ d(1) = 0 + (-2) = -2, \ d(3) = 0 + 1 = 1.$$

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

- Behavior of Bellman-Ford:
 - Repeating the cycle further decreases distances:

$$d(2) = -2+1 = -1, d(1) = -1+(-2) = -3, d(3) = -1+1 = 0.$$

Theorem 1: Bellman-Ford detects negative cycles:

• If there is a negative cycle reachable from the source s, then for some edge (u, v), $d_{n-1}(v) > d_{n-1}(u) + w(u, v)$.

Example:

Conclusion:

- Each traversal of the cycle $1 \rightarrow 2 \rightarrow 1$ reduces distances d(1) and d(2), causing d(v) > d(u) + w(u, v) to persist indefinitely.
- Thus, the condition d(v) > d(u) + w(u, v) demonstrates the presence of a negative cycle.

Proof: Bellman-Ford Detects Negative Cycles

- Suppose a negative cycle $v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_k$ exists and is reachable from the source s, where $v_0 = v_k$ (i.e., the cycle starts and ends at the same vertex).
- What does a negative cycle mean?
 - A negative cycle is a cycle for which the sum of edge weights is less than zero:

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$$

 If a negative cycle is reachable from the source, the distance estimates d(v) for vertices in or reachable from this cycle should keep decreasing indefinitely as the cycle is traversed repeatedly.

Proof: Bellman-Ford Detects Negative Cycles

- Assumption for Proof by Contradiction:
 - Assume Bellman-Ford's distance estimates after n-1 iterations satisfy:

$$d_{n-1}(v_i) \le d_{n-1}(v_{i-1}) + w(v_{i-1}, v_i)$$
 for all $i = 1, \dots, k$.

- This assumption means that Bellman-Ford would not further decrease any distances in the cycle after n-1 iterations.
- What happens if we sum up these inequalities?
 - Summing over all edges in the cycle gives:

$$\sum_{i=1}^k d_{n-1}(v_i) \leq \sum_{i=1}^k d_{n-1}(v_{i-1}) + \sum_{i=1}^k w(v_{i-1}, v_i).$$

• Rearrange terms:

$$\sum_{i=1}^k d_{n-1}(v_i) - \sum_{i=1}^k d_{n-1}(v_{i-1}) \le \sum_{i=1}^k w(v_{i-1}, v_i).$$

Proof: Bellman-Ford Detects Negative Cycles

- Observe the left-hand side of the summed inequality:
 - Rearranged sum:

$$\sum_{i=1}^k d_{n-1}(v_i) - \sum_{i=1}^k d_{n-1}(v_{i-1}) \le \sum_{i=1}^k w(v_{i-1}, v_i).$$

- The terms $\sum_{i=1}^k d_{n-1}(v_i)$ and $\sum_{i=1}^k d_{n-1}(v_{i-1})$ are identical because the cycle starts and ends at the same vertex $(v_0 = v_k)$.
 - Each vertex in the cycle is visited once in $\sum_{i=1}^k d_{n-1}(v_i)$ and once in $\sum_{i=1}^k d_{n-1}(v_{i-1})$.
 - Since $v_0 = v_k$, the summation over all v_i is circularly shifted, but the total remains the same.
- This simplifies the inequality to:

$$0\leq \sum_{i=1}^k w(v_{i-1},v_i).$$

Proof: Bellman-Ford Detects Negative Cycles

- Contradiction:
 - By definition of a negative cycle, $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.
 - This contradicts the inequality $0 \le \sum_{i=1}^k w(v_{i-1}, v_i)$, which means our assumption that Bellman-Ford stops updating distances is false.
 - Hence, Bellman-Ford correctly detects negative cycles if any edge (u, v) satisfies:

$$d_{n-1}(v) > d_{n-1}(u) + w(u, v).$$

Theorem 2: If the graph has no negative cycles then The distance estimates on the last iteration are equal to the true shortest distances

• $d_{n-1}(v) = \delta(s, v)$ for all vertices v.

Why this holds:

- Bellman-Ford guarantees that each relaxation step improves the shortest-path estimate for a vertex.
- After n-1 iterations, any path between two vertices will have been fully considered because the longest simple path in a graph can have at most n-1 edges.
- If there are no negative-weight cycles, these n-1 iterations suffice to propagate the shortest-path distances throughout the graph.
- Since distances no longer decrease after n-1 iterations, they represent the true shortest distances from s to all reachable

Proof: Bellman-Ford Correctly Computes Distances

- We want to show that if the graph has no negative cycles, then $d_{n-1}(v) = \delta(s, v)$ for all vertices v.
- We will prove by induction on k (the number of iterations of relaxation), that $d_k(v)$ is the minimum weight of a path from s to v that uses $\leq k$ edges.
- This shows that $d_{n-1}(v)$ is the minimum weight of a path from s to v that uses $\leq n-1$ edges.

Proof: Bellman-Ford Correctly Computes Distances

- Base Case (k = 0):
 - At the start of the algorithm:

$$d_0(s) = 0$$
, since the distance from the source s to itself is 0.

• For all $v \neq s$:

$$d_0(v) = \infty$$
, since no paths have been explored yet.

• This satisfies the definition: no path exists from s to v using 0 edges unless v = s.

Proof: Bellman-Ford Correctly Computes Distances Inductive Hypothesis:

- Suppose that after k-1 iterations: $d_{k-1}(u)$ is the minimum weight of any path from the source s to u that uses at most k-1 edges.
- This means that all shortest paths from s to any vertex u, which can be traversed with k-1 or fewer edges, have already been computed correctly by iteration k-1.

Goal for the k-th Iteration:

• Show that after k-th iteration, $d_k(v)$ is the minimum weight of any path from s to v that uses at most k edges.

Proof: Bellman-Ford Correctly Computes Distances Key Argument Using Path Structure:

- Let P be the shortest simple path from s to v that uses at most k edges.
- ② Since P is a simple path (no repeated vertices), it has at most n-1 edges, where n is the total number of vertices in the graph.
- 3 Break P into two parts:
 - Q: The path from s to u, which uses at most k-1 edges.
 - (u, v): The last edge on the path.
- **9** By the inductive hypothesis, the shortest path weight from s to u using at most k-1 edges is already stored in $d_{k-1}(u)$.
- **5** Therefore, the weight of Q is $d_{k-1}(u)$.

Proof: Bellman-Ford Correctly Computes Distances Relaxation in the *k***-th Iteration:**

- In iteration k, the algorithm considers all edges (u, v) in the graph.
- When processing (u, v), the distance to v is updated using the relaxation formula:

$$d_k(v) = \min(d_{k-1}(v), d_{k-1}(u) + w(u, v)),$$

where w(u, v) is the weight of the edge from u to v.

- This formula ensures:
 - Either the shortest path to v remains the same as in iteration k-1 (if adding (u,v) doesn't improve it).
 - Or the shortest path to v is updated to include the edge (u, v).

Proof: Bellman-Ford Correctly Computes Distances Why the Update Works:

- Case 1: The shortest path to v uses at most k-1 edges.
 - In this case, $d_{k-1}(v)$ is already correct because the shortest path from s to v doesn't need more than k-1 edges.
 - The relaxation step won't change $d_k(v)$ because:

$$d_{k-1}(v) \leq d_{k-1}(u) + w(u, v).$$

- Case 2: The shortest path to *v* uses exactly *k* edges.
 - In this case, the shortest path to v must include an edge (u,v), where the subpath to u is the shortest path using at most k-1 edges.
 - The relaxation step updates $d_k(v)$ to reflect this new shortest path:

$$d_k(v) = d_{k-1}(u) + w(u, v).$$

• Thus, $d_k(v)$ becomes the minimum weight of any path from s to v that uses at most k edges.

Proof: Bellman-Ford Correctly Computes Distances Conclusion of the Inductive Step:

- After the *k*-th iteration:
 - For all vertices v, $d_k(v)$ correctly represents the minimum weight of a path from s to v using at most k edges.
- By repeating this process up to n-1 iterations (where n is the number of vertices), the algorithm computes the shortest paths for all vertices, as the longest simple path can have at most n-1 edges.