V FERNANDE

GLIOMA

CASO

- La Paciente do sexo feminino, 32A, C71, lesão invasiva do encéfalo
- Prescrição: 6000 cGy (30 \times 200 cGy) em leito / lesão residual e 4600 cGy (30 \times 160 cGy) em infiltração no tronco

SIMULAÇÃO E ACESSÓRIOS

- L Decúbito dorsal, head first
- Ly Máscara termoplástica + apoio de joelhos + braços sobre o tórax
- Ly Slice da CT: 2,5 mm

STRUCTURE SET EM ORDEM DE IMPORTÂNCIA

PTV, Tronco, Cristalino (D/E), Olho (D/E), Cóclea (D/E), Nervo Óptico (D/E), Quiasma, Medula

PRIORIDADES

Les Em função da proximidade com nervos ópticos e quiasma, foi pedido para descobrir localmente, além de preservar o tronco.

DEFINIÇÃO DOS PONTOS

MARCADOR CT \rightarrow X: -0.07 Y: 7.03 Z: 0.04

ISOCENTRO → X: -0.07 Y: 7.03 Z: 3.04

Pontos escolhidos de modo a minimizar o deslocamento da paciente no primeiro dia de seção (deslocamento de 3 cm para anterior)

CONFIGURAÇÃO DE CAMPOS

ACELERADOR → Synergy

ENERGIA → 6 MV

GEOMETRIA → 2 arcos anteriores

CAMPO	1_CCW	2_CCW
Gantry	0° ⇄ 120°	0° ⇄ 120°
Incremento	15°	10°
Colimador	10°	350°
Mesa	O°	0°

* Ângulo de gantry escolhido para começar em 0º e terminar em 0º para permitir mais graus de liberdade de otimização, além de agilizar o início e o término do tratamento.

PROPRIEDADES DE CÁLCULO E SEGMENTAÇÃO

MoDO → Dose to medium

GRADE DE CÁLCULO \rightarrow 0.25

INCERTEZA DE DOSE → 1% por cálculo

CONTROL POINTS → 180 *control points* a cada 2°

ESTRATÉGIAS DE OTIMIZAÇÃO

- Ly Modo → Otimização por restrição nas duas fases. Todas as CF biológicas usaram multicritério.
- Ly Os PRVs das vias ópticas e do Tronco foram colocados em primeiro na lista de prioridades do Mônaco para garantir a descobertura local pedida pelo médico.

QOD (5250 cGy, RMS = 2.0, SM = 0, p = 1)

Max Dose (5400 cGy, Opt. Over All Voxels, p = 1)

QOD (5400 cGy, RMS = 2.0, SM = 0, p = 1)

Max Dose (5900 cGy, Opt. Over All Voxels, p = 1)

L PTV 30x200

Target Penalty (6060 cGy, 98% do volume, p = 50)

L PTV 30x160

Target Penalty (4800 cGy, 98% do volume, p = 1) QOD (6060 cGy, RMS = 6.0, SM = 0.2, p = 1)

Max Dose (5300 cGy, Opt. Over All Voxels, p = 2)

L Quiasma

Max Dose (5000 cGy, Opt. Over All Voxels, p = 2)

L NOD / NOE

Max Dose (5000 cGy, Opt. Over All Voxels, p = 2)

L Cristalino D / Cristalino E

Max Dose (500 cGy, Opt. Over All Voxels, p = 2)

L Olho D/ Olho E

QOD (3000 cGy, RMS = 2, SM = 0.0, p = 1)

L Cóclea D/ Cóclea E

QOD (3000 cGy, RMS = 2, SM = 0.0 p = 1)

L Patient

QOD (6000 cGy, RMS = 2.0, SM = 0, p = 1) I QOD (5400 cGy, RMS = 2.0, SM = 0.5, p = 1) QOD (4800 cGy, RMS = 2.0, SM = 1.0, p = 1) I Max Dose (2400 cGy, SM = 1.8, p = 1) Max Dose (6270 cGy, Opt. Over All Voxels, p = 20)

NORMALIZAÇÃO

- La Foi criado um zPTV de normalização, cropado dos PRVs de tronco e aparato óptico com uma margem de 2 mm.
- 👃 O planejamento foi normalizado para que a dose de 6000 cGy cubra 95% do zPTV de normalização.

V FERNANDEZ

DISTRIBUIÇÃO DE ISODOSES

ESTATÍSTICAS DO DVH

ESTRUTURA	DESCRITOR DVH	IDEAL	ACEITÁVEL	RESULTADO	VALOR
ZPTV 30x200 CGY	D95% [Gy]	>= 60.00 (100%)	>= 58.80 (98%)		60.00 Gy
(NORM)	D0.03% [Gy]	<= 66.00 (110%)	-		63.71 Gy
PTV 30x160 CGY	D95% [Gy]	>= 48.00 (100%)	>= 47.04 (98%)		51.36 Gy
	D0.03% [Gy]	<= 52.48 (110%)	<= 55.20 (115%)		63.71 Gy
TRONCO	Máx [Gy]	54 Gy	-		52.17 Gy
TRONCO PRV	Máx [Gy]	59 Gy	-		56.99 Gy
QUIASMA	Máx [Gy]	50 Gy	54 Gy		50.94 Gy
VIAS ÓPTICAS PRV	Máx [Gy]	60 Gy	63 Gy		53.34 Gy
NERVO ÓPTICO D	Máx [Gy]	50 Gy	54 Gy		49.47 Gy
NERVO ÓPTICO E	Máx [Gy]	50 Gy	54 Gy		48.68 Gy
CÓCLEA D	Mean [Gy]	50 Gy	52.5 Gy		10.21 Gy
CÓCLEA E	Mean (Gy)	50 Gy	52.5 Gy		8.40 Gy
OLHO D	Máx [Gy]	50 Gy	52.5 Gy		31.44 Gy
	Mean [Gy]	35 Gy	36.8 Gy		9.06 Gy
OLHO E	Máx [Gy]	50 Gy	52.5 Gy		25.17 Gy
	Mean (Gy)	35 Gy	36.8 Gy		7.16 Gy
CRISTALINO D	Máx [Gy]	<= 7 Gy	<= 10 Gy		5.34 Gy
CRISTALINO E	Máx [Gy]	<= 7 Gy	<= 10 Gy		6.12 Gy

NOTAS

ly Neste caso a violação do constraint de ponto quente do PTV de menor dose (4800 cGy) foi considerada aceitável, uma vez que ele engloba o PTV de maior dose (6000 cGy)

REFERÊNCIAS

WOLFF, Dirk. *Monaco TPS Advanced Workshop*, Istanbul. 2019.

PRAH, Douglas. *Guidelines for Monaco VMAT/IMRT Optimization*. Wisconsin. 2022