MATH 104 - WEEKLY ASSIGNMENT 4

DUE 26 SEPTEMBER 2016, BY 16:00

- (1) Find a sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} , with $a_{n+1}-a_n\to 0$, but $(a_n)_{n\in\mathbb{N}}$ not Cauchy.
- (2) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Show that $(a_n)_{n\in\mathbb{N}}$ converges if and only if: $(a_{2n})_{n\in\mathbb{N}}$ and $(a_{2n-1})_{n\in\mathbb{N}}$ converge and have the same limit.
- (i) Show that $\sum_{k=1}^{+\infty} \frac{1}{k}$ diverges using the Cauchy condensation test.
 - (ii) Show that, if $a_k \geq 0$ for all $k \in \mathbb{N}$, then the series $\sum_{k=1}^{+\infty} \frac{a_k}{1+k^2 a_k}$ converges.
 - (iii) Test for convergence the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$
- (4) Test for convergence the following series: (i) $\sum_{k=1}^{+\infty} \frac{k^2-k}{k^2}$

(i)
$$\sum_{k=1}^{+\infty} \frac{k^2 - k}{k^2}$$

(ii)
$$\sum_{k=1}^{+\infty} \frac{k!}{k^k}$$

(iii)
$$\sum_{k=1}^{+\infty} \frac{(-1)^k \sin(k^{100})}{k^{\frac{3}{2}}}$$

(iv)
$$\sum_{k=5}^{+\infty} \frac{k+1}{k^4 - 5k^3 + 8}$$

(v)
$$\sum_{k=1}^{+\infty} \frac{3^{k+1}+k}{4^k-k}$$

(vi)
$$\sum_{k=1}^{+\infty} \frac{k+\sqrt{k}}{2k^3-1}$$

(vii)
$$\sum_{k=1}^{+\infty} \frac{\cos^k k}{k^{\frac{3}{2}}}$$

(viii)
$$\sum_{k=1}^{+\infty} \frac{1}{k^p - k^q}$$
, $0 < q < p$

(ix)
$$\sum_{k=1}^{+\infty} k(1+k^2)^p, p \in \mathbb{R}$$

(x)
$$\sum_{k=1}^{+\infty} \frac{k^2 x^k}{2^k}$$
, $x \in \mathbb{R}$

(i) Show that $\sum_{k=1}^{+\infty} (\sqrt[k]{k} - 1)$ diverges. (Maybe you can take some inspiration from the proof of $\sqrt[k]{k} \to 1$).

1

(ii) Show that $\sum_{k=1}^{+\infty} \frac{1}{k(k+1)(k+2)}$ converges. Find its limit.