

Lecture 8 — Boolean functions

Dr. Aftab M. Hussain,
Assistant Professor, PATRIOT Lab, CVEST

Complement of a function

- The complement of a function F is F' and is obtained from an interchange of 0's for 1's and 1's for 0's in the value of F (truth table method)
- The complement of a function may be derived algebraically through DeMorgan's theorems
- Example: F = x + y'z what is F'?
- But what if the function has more terms?
- DeMorgan's theorems can be extended to three or more variables
- The three-variable form of the first DeMorgan's theorem:

$$(x + y + z)' = x'y'z'$$

 $(xyz)' = x' + y' + z'$

 The generalized form of DeMorgan's theorems states that the complement of a function is obtained by interchanging AND and OR operators and complementing each literal

Minterms

- A binary variable may appear either in its normal form (x) or in its complement form (x)
- Now consider two binary variables x and y combined with an AND operation
- Since each variable may appear in either form, there are four possible combinations: xy, x'y, xy', x'y'
- Each of these four AND terms is called a *minterm*, or a *standard product*
- In a similar manner, n variables can be combined to form 2^n minterms
- The binary numbers from 0 to 2^n 1 are listed under the n variables. Each minterm is obtained from an AND term of the n variables, with each variable being primed if the corresponding bit of the binary number is a 0 and unprimed if a 1
- A symbol for each minterm is m_j , where the subscript j denotes the decimal equivalent of the binary number of the minterm designated

Maxterms

- In a similar fashion, *n* variables forming an OR term, with each variable being primed or unprimed, provide 2ⁿ possible combinations, called *maxterms*, or *standard sums*
- Each maxterm is obtained from an OR term of the n variables, with each variable being unprimed if the corresponding bit is a 0 and primed if a 1, and
- Maxterms are denoted by M_i

Minterms and Maxterms

Minterms and Maxterms for Three Binary Variables

			М	interms	Maxterms					
X	y	z	Term	Designation	Term	Designation				
0	0	0	x'y'z'	m_0	x + y + z	M_0				
0	0	1	x'y'z	m_1	x + y + z'	M_1				
0	1	0	x'yz'	m_2	x + y' + z	M_2				
0	1	1	x'yz	m_3	x + y' + z'	M_3				
1	0	0	xy'z'	m_4	x' + y + z	M_4				
1	0	1	xy'z	m_5	x' + y + z'	M_5				
1	1	0	xyz'	m_6	x' + y' + z	M_6				
1	1	1	xyz	m_7	x' + y' + z'	M_7				

It is important to note that:

- 1. Each maxterm is the complement of its corresponding minterm and vice versa
- 2. Minterms are 1 for a unique combination of the variables, ie, x'y is only one when x is 0 and y is 1, in all other cases, it is zero
- 3. Maxterms are 0 for a single unique combination of variables

- Any Boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms
- Example: $f_1 = m_1 + m_4 + m_7$ $f_1 = x'y'z + xy'z' + xyz$
- Thus, any Boolean function can be expressed as a sum of minterms (with "sum" meaning the ORing of terms)

X	y	Z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Now consider the complement of a Boolean function
- It may be read from the truth table by forming a minterm for each combination that produces a 0 in the function and then ORing those terms

$$f_1' = m_0 + m_2 + m_3 + m_5 + m_6$$

• If we again take a complement, we get f₁ back:

$$f_1 = (m_0 + m_2 + m_3 + m_5 + m_6)'$$

$$f_1 = m'_0 m'_2 m'_3 m'_5 m'_6$$

$$f_1 = M_0 M_2 M_3 M_5 M_6$$

X	y	Z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- This shows a second property of Boolean algebra: Any Boolean function can be expressed as a product of maxterms (with "product" meaning the ANDing of terms)
- The procedure for obtaining the product of maxterms directly from the truth table is as follows: Form a maxterm for each combination of the variables that produces a 0 in the function, and then form the AND of all those maxterms

X	y	Z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Are there infinitely many Boolean functions for two independent variables, x and y?
- What are the total number of functions possible for two variables?
- For n variables?
- We can have 2^{2^n} functions for n binary variables!
- Thus, for two variables, n = 2, and the number of possible Boolean functions is 16
- Therefore, the AND and OR functions are only 2 of a total of 16 possible functions formed with two binary variables
- Let us find the other 14 functions and investigate their properties

X	у	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0 0 1 0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Constant functions: 0 and 1
- AND and OR –the well-known logic functions
- Transfer functions: x and y
- Complement functions: x' and y'

X	У	Fo	F ₁	F₂ 0 0 1 0	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- NAND and NOR –these are complementary functions to the usual AND and OR functions
- Take the AND/OR and then take the complement
- ullet NAND is represented by ullet and NOR is represented by ullet
- $x \uparrow y = (x, y)'$ and $x \downarrow y = (x + y)'$

X	y 0 1 0 1	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
			_								-					\vdash	_

- Exclusive OR (XOR) returns 1 only if one of x or y is 1, it is 0 if both are one
- This is represented by the symbol ⊕
- $x \oplus y = x'y + y'x$
- The complement of this is XNOR or Equivalence (is x=y?)

X	y	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	y 0 1 0 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Inhibition function: x but not y (F2), and y but not x (F4)
- x but not y: If y is LOW then what is x?
- It is represented by a /
- *x*/*y*=*xy*′

X Y Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F 0 0 0 0 0 0 0 0 1	X	y	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>	0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Implications: x implies y (F13), or y implies x (F11)
- This tells us whether the variables x and y are following the *given* implication rule
- It is not for determining whether the two variables form an implication rule between them

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y'</i>	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1