CLASSIFICATION AUTOMATIQUE

PLACE DE MARCHÉ

SOMMAIRE

- I) Contexte du projet
- 2) Etude de faisabilité de classification automatique
- 3) Classification supervisées des produits
- 4) Test de collecte de données

1) CONTEXTE DU PROJET

Key Features of Elegance Polyester Multicolor Abstract Eyelet Door Curtain Floral...

Specifications of Sathiyas Cotton Bath Towel (3 Bath Towel, Red, Yellow, Blue)...

Home Furnishing

Baby Care


```
const options = {
   method: 'GET',
   url: 'https://edamam-food-and-grocery-database.p.rapidapi.com/a
pi/food-database/v2/parser',
   params: {
      'utrition-type': 'cooking',
      'category(0)!: 'generic-foods',
      'health[0]': 'alcohol-free'
      ),
      headers: {
            'X-RapidAPI-Key': '7f7a73e0c7msh3a250c73c1e427cp179969jsn791f
f966f28f',
      'X-RapidAPI-Host': 'edamam-food-and-grocery-database.p.rapida
pi.com'
```

Edamam Food and Grocery Database

1) CONTEXTE DU PROJET

Les données :

1050 images

description

Key Features of El...

Nom image

55b85ea15a1536d46b7190ad6fff8ce7.jpg

<u>catégorie</u>

Home Furnishing (150)
Baby Care (150)
Watches (150)
Home Decor & Festive Needs (150)
Kitchen & Dining (150)
Beauty and Personal Care (150)
Computers (150)

1050 lignes – 7 catégories

A partir des descriptions

Pré-traitement du texte

Mots de liaison (stopwords)

Ponctuation

Fréquences, taille...

```
texte initial :

Key Features of Elegance Polyester Multicolor Abstract Eyelet I

texte stemmé :

key featur eleg polyest multicolor abstract eyelet door curtain
temps pour stemmer : 0.00836 s.

texte lemmé :

key feature elegance polyester multicolor abstract eyelet door
temps pour lemmer : 2.36476 s.
```

	words	occurency	characters	contains_digit	nbr_descriptions
0	key	223	3	False	202
1	feature	404	7	False	267
2	elegance	11	8	False	6
3	polyester	68	9	False	28
4	multicolor	160	10	False	87

- +200 descriptions
- taille < 2
- chiffres

stop_words.update(stop_words_update)

A partir des descriptions

Méthodes basiques

- Comptage de mot
- Tf-IDF

Comptage de mot

	back	change	give	life	mine	money	rich	time	world
0	0	0	0	0	1	0	1	0	1
1	0	1	0	1	0	0	1	0	0
2	1	0	1	0	0	2	0	2	0

Tf-IDF

back	change	give	life	mine	money	rich	time	world
0.000000	0.000000	0.000000	0.000000	0.622766	0.000000	0.47363	0.000000	0.622766
0.000000	0.622766	0.000000	0.622766	0.000000	0.000000	0.47363	0.000000	0.000000
0.316228	0.000000	0.316228	0.000000	0.000000	0.632456	0.00000	0.632456	0.000000

$$w_{x,y} = tf_{x,y} \times log \left(\frac{N}{df_x}\right)$$

A partir des descriptions

Méthodes basiques

- Comptage de mot
- Tf-IDF

A partir des descriptions

Méthodes plongement de mots (Word Embedding)

- Word2vec
- BERT
- USE

Réseau peu profond

```
Représentation vectorielle de
                                                                                           chaque mot dim(nb mots, 300)
Window = 3
                   Skip-gram
                                                                                            [Vecteur mot 1
                                                                                             Vecteur mot 2
input data = ['I am rich, and the world is mine !',
                                                                               Train
                                                                                                                             Moyenne pour chaque
                                                                                             Vecteur mot 3
              'I will be rich, because I have to change my life.',
                                                                                                                             phrase
              'Time is money, but money does not give you back time.'
                                                                                             Vecteur mot 4
                                                                                             Vecteur mot 5
      Vector size = 300
                            Dim([0.23, 0.04, ..., 0.78]) = (300,)
                                                                                             Vecteur mot nb mots]
```


A partir des descriptions

Méthodes plongement de mots (Word Embedding)

- Word2vec
- BERT
- USE

Transformer, Réseau profond avec attention

A partir des descriptions

Méthodes plongement de mots (Word Embedding)

- Word2vec
- BERT
- **USE**

Réseau profond

Représentation vectorielle de chaque phrase : shape(512,)

[Vecteur_phrase_1
Vecteur_phrase_2
Vecteur_phrase_3]

A partir des descriptions

Méthodes plongement de mots (Word Embedding)

- Word2vec
- BERT
- USE

A partir des images

VGG16

<u>A partir des images</u>

SIFT

VGG16

(4096,)

<u>A partir des images</u>

- SIFT
- · VGG16

SIFT

ARI: 0.071

VGG16

ARI: 0.452

Kitchen dans

4 approches

Approche I : préparation amont des images

- Array
- Normalisation
- Reshape(224, 224, 3)

Approche 2 : préparation amont des images et data augmentation

Approche 3 : image dataset

Approche 4 : image dataset avec data augmentation intégrée

model = Sequential([

data_augmentation,

Rescaling(1./127.5, offset=-1),

model_base,

GlobalAveragePooling2D(),

Approche 2 : préparation amont des images et data augmentation

<u>Evaluation accuracy test set</u>: 0.8762

4) TEST DE COLLECTE DE DONNÉES

4) TEST DE COLLECTE DE DONNÉES

Nous obtenons 20 produits.

Merci de votre attention

