

RLG Docking Systems Incorporation

VDGS FEATURES

- Docking can be accomplished by either the pilot or the copilot.
- Alert is given if the aircraft approaching the gate is not the aircraft type set to be docking.
- Large 8 inch highly visible alphanumeric display for the pilot and the copilot.
- The familiar azimuth bar display format is used featuring large 12 inch high azimuth bars easily visible to the pilot or the copilot.
- The operator interface uses a full graphic display for the clarity of the information presentation.
- Optional multiple operator interface points per gate.
- Optional host computer communication options for reporting and control.
- Optional lockout input in the case that the passenger loading bridge is not parked.
- Optional lockout output to prevent the passenger loading bridge from moving until the aircraft is docked.
- Compliance to ICAO Annex 14 recommendations.

SYSTEM OVERVIEW

The only existing AVDGS Systems brand fully complies ICAO Annex 14@ Follows Chapter 5.3.25.12

EQUIPMENT OPERATOR PANEL

- · Industrial grade color touch panel.
- One touch aircraft model selection, fast and convenient.
- Can be connected to computers for data maintenance and program updates.
- With Emergency Stop function.
- With Dead Man Switch function (Optional).

LIFE TIME STORAGE FOR DOCKIN SYSTEM

- · New user friendly.
- · Windows Embedded PC Units.
- Be able to record real time log files.
- Be able to be supported thru internet.
- · Ease-controlled touch screen.
- Real time azimuth & speed display.
- Operators or ground staffs can focus on one panel only with correct docking information.
- · Easy steps for new aircraft model added.

^{*}Screen may be customized.

- Easy to monitor live time status of all & each gate.
- Integrate live time video of each gate.
- Integrate FOS or FIS Information for future billing system upgradable.
- Clear report system of all the status or events for management.
- Extremely accurate recording of every & each step by 10 mini-second timing.
- Ease for RLG technicians to diagnose the issues.
- Clarify the problem once it happened.
- Be able to report system self-checking.
- Optional interface with PBB, GPU, PCA, CCTV and Flight information system and lead in lights.
- Provide the information to GOS (Gate Operation System), can be linked online with SITA AMS and provides in billing information and RIDS support.

RLG Docking Systems Corporation is a manufacturer of Advanced Visual Docking Guidance Systems for Airports and have more than 1000 installations at various airports worldwide. RLG Docking Systems introduced the first automated guide-in system in the World in year 1969. It utilizes cutting-edge laser technology to reduce error margins and enhance ease-of-use and installation. All RLG docking systems fully comply with ICAO Annex 14 recommendations. RLG guide-in system can accommodate all aircraft types without the error factors resulting from variations in aircraft height and gross weight. The docking can be accomplished by either the pilot or the co-pilot.

CONCEPT DESIGN OF AVDGS SYSTEM

- A stand guidance system is a system which gives information to a pilot attempting to park an aircraft at an airport stand, usually via visual methods, leading to the term Visual Docking Guidance System (VDGS) and also A-VDGS (the A standing for advanced) This allows them to remain clear of obstructions and ensures that passenger boarding bridge (PBB) can reach the aircraft.
- The RLG GIS206-2 Laser Guided Docking System safely guides the parking aircraft to the precise
 parking position at an airport terminal. The use of a 2 axis scanning range finder laser allows the RLG
 GIS206-2 to present the parking information to both the pilot and the copilot simultaneously. Since the
 azimuth display is electronically controlled, the information gathered from the laser scanner is
 presented in a display console that can be easily read by either the pilot or the co-pilot such that
 either can dock the aircraft.
- Further, the RLG GIS-206-2 compares the features of the aircraft that is approaching the gate to a
 stored database of various aircraft types. The system is able to alert the pilot, the copilot and the ground
 staff when the aircraft approaching the gate is physically inconsistent with the selected aircraft type.
- The GIS206-2 main display console is attached to the terminal building or other support fixtures that
 precisely lined up with, and perpendicular to, the extension of the aircraft J-line or center line as that
 line would approach the terminal building or support fixtures
- This aligns the laser portion of the RLG GIS206-2 with the azimuth center of the parking aircraft. The
 height above the tarmac should be determined such that the 8 inch high alphanumeric display will
 be at a height for comfortable viewing by the pilot whether in the shortest or the tallest aircraft that
 will be parked.
- After the display console unit is physically secured, there is an electronic scanning and setup procedure
 to ensure that the system will give the best possible performance. This results in the RLG GIS206-2
 guiding the aircraft to a precise parking position at the terminal building

A COMPLETE AND SUCCESSFUL DOCKING PROCEDURE CONSISTS OF 6 STAGES.

a) System Standby

Turn ON the power from the Operator Panel, it will take less than 1 minute to complete the system boot-up. Upon completion, the system will go to Start-up screen and the system is ready for use.

b) Systemactivation

Key-in the user password on the screen to log-on and access to the operation mode. Select require aircraft information on the screen and move to docking page. The selected aircraft type will appear on both the LED Display Console and Operator panel screen. The laser scanner is active now and the system is activated for aircraft docking.

c) Aircraft detected

When the aircraft approaching to the gate is detected, usually more than 40 meter from the stopping position, the azimuth green bar will display on the LED Display Console to alert the pilot.

d) Aircraft Guide-in

Aircraft guide-in information such as continuous closing distance and azimuth guidance will display on the LED Display when aircraft proceed slowly forward from the starting point of the centerline to the preprogrammed stopping position.

e) Aircraft checking & verification (OPTIONAL)

For Aircraft type ID verification features, When the aircraft slowly approaching to the stopping position, it must be identified and verified at least 12 meters before the correct stopping position.

If this does not occur, the system will display "ID FAIL" followed by "STOP".

At this point, the aircraft must be manually guided in by a mashaller.

f) Aircraft parked.

When the incoming aircraft reaches the preprogrammed stopping position, the LED Display will show 'STOP' followed by 'OK'. If the aircraft has moved beyond the designated docking position and exceeded the preconfigured value, the LED Display will indicate 'TOO FAR'.

LIST OF SOME OF THE **GLOBAL REFERENCES**

NO.	YEAR	LOCATION	UNIT SUPPLIED
1	2016	Yanyon	4
2	2014	C.K.S Taiwan	63
3	2012	Kuala Lumpur	78
4	2011	Taichung, Taiwan	5
5	2010	Saipan	6
6	2007	Phuket, Thailand	4
7	2004	Cusco, Peru	4
8	2004	Taipei, Taiwan	10
9	2004	Jakarta, Indonesia	24
10	2003	Changsha, China	10
11	2002	Belem, Brazil	5
12	2001	Guilin, China	1
13	2001	Batam, Indonesia	4
14	2001	Rio De Janero, Brazil	27
15	2000	Anchorage	1
16	2000	Beirut, Lebanon	5
17	1999	Taipei, Taiwan	2
18	1999	Manila, Philippines	7
19	1998	Chicago	1
20	1998	Ho Chi Min City, Vietnam	2
21	1998	Baku. Azerbaijan	2
22	1998	Denver	8
23	1997	Memphis	1
24	1997	Yichang, China	2
25	1997	Sao Luis, Brazil	3
26	1997	Hyderbad, India	4
27	1997	Haikou, China	4
28	1997	Calgary, Canada	4
29	1997	Beirut, Lebanon	5
30	1997	Taipei, Taiwan	10
31	1997	JFK, New York	11
32	1996	Quebec City, Canada	2
33	1996	Guilin, China	7
34	1996	Edmonton, Canada	1
35	1996	Los Angeles	5
36	1996	Saipan	4
37	1996	Xiamen, China	5
38	1996	Los Angeles	5
39	1996	Denver	7
40	1996	Louisville	1
41	1995	Vancouver, Canada	11
42	1995	Brisbane, Australia	8
43	1995	Shun San, Taiwan	8
44	1995	Johannesburg, RSA	12
45	1995	Kaohsiung, Taiwan	12
46	1995	Calgary, Canada	1
47	1995	Colorado Springs	1
48	1995	San Francisco	4
49	1995	Xiamen, China	6

			-
NO.	YEAR	LOCATION	UNIT SUPPLIED
50	1995	Saipan	2
51	1995	Ubon, Thailand	2
52	1995	Fuzhou, China	7
53	1995	Penang, Malaysia	8
54	1995	Curitiba, Brazil	6
55	1995	Cebu, Philippines	1
56	1994	Wuhan, China	3
57	1994	Cebu, Philippines	2
58	1994	Nashville	1
59	1994	Chiang Rai, Thailand	1
60	1994	Edmonton, Canada	4
61	1994	Brazilia, Brazil	10
62	1994	Jin Mien, Taiwan	3
63	1994	Singapore	5
64	1994	Kwang-Ju, Korea	2
65	1993	Bangkok. Thailand	8
66	1993	Chiang Mai, Thailand	2
67	1993	Chicago	27
68	1993	Saipan	2
69	1993	Denver	13
70	1993	St. Petersburg, Russia	3
71	1993	San Francisco	1
72	1993	Johannesburg, RSA	1
73	1993	Singapore	17
74	1993	Calgary, Canada	2
75	1992	Adelaide, Australia	1
76	1992	Phuket, Thailand	1
77	1992	Saipan	2
78 79	1992	Honolulu	4
80	1992	Baku, Azerbaijan	3
81	1992	Wuhan, China Taipei, Taiwan	11
82	1991	Bali, Indonesia	4
83	1991	Shanghai, China	8
84	1991	Taipei, Taiwan	1
85	1991	Maui, Hawaii	18
86	1991	Nassau, Bahamas	6
87	1991	Phoenix	1
88	1991	Warsaw, Poland	8
89	1991	Lisbon, Portugal	6
90	1991	Montreal, Canada	1
91	1991	Seoul, Korea	2
92	1990	Saipan	2
93	1990	Maui, Hawaii	1
94	1990	Kuala Lumpur	2
95	1990	Vancouver, Canada	2
96	1990	Montreal, Canada	1
97	1990	Guangzhou, China	4
98	1990	Las Vegas	1
		-	

LIST OF SOME OF THE

GLOBAL REFERENCES

NO.	YEAR	LOCATION	UNIT SUPPLIED
99	1990	Phoenix	37
100	1990	Philadelphia	12
101	1989	Edmonton, Canada	1
102	1989	Phoenix	1
103	1989	San Francisco	
104	1989	Toronto, Canada	18
105	1989	Las Vegas	1
106	1989	Phuket, Thailand	2
107	1989	Hat Yai, Thailand	2
108	1989	Xian, China	3
109	1989	Calgary, Canada	2
110	1988	Sao Paula, Brazil	35
111	1988	Vancouver, Canada	1
112	1988	Honolulu	4
113	1988	Calgary, Canada	1
114	1988	Taipei, Taiwan	8
115	1988	Guangzhou, China	3
116	1987	Miami	19
117	1987	Singapore	14
118	1986	Manaus, Brasil	5
119	1986	Bangkok, Thailand	25
120	1986	Omaha	1
121	1986	Salt lake City	5
122	1985	Sao Paula, Brazil	22
123	1985	Halifax, Canada	4
124	1985	Salt Lake City	4
125	1984	Los Angeles	2
126	1984	Philadelphia	1
127	1984	Los Angeles	11
128	1984	Taipei, Taiwan	2
129	1983	Denver	3
130	1983		8
131	1982	Taipei, Taiwan Anchorage	8
132	1982	Kuala Lumpur	14
133	1981	Ketchikan	1
134	1980	Manila, Philippines	14
135	1980	Dallas	1
136	1980	Jeddah, Saudi Arabia	
137	1980	Seoul, Korea	8
138	1980	New York	11
	1980		
139	1980	Portland	1 22
140		Singapore	
141	1980	Denver	1
142	1980	Helsinki, Finland	5
143	1980	Guam	4
144	1979	Portland	2
145	1977	Penang, Malaysia	6
146	1976	San Francisco	2
147	1976	Boise	1

NO.	YEAR	LOCATION	UNIT SUPPLIED
148	1976	Juneau	1
149	1976	Anchorage	2
150	1976	Portland	2
151	1975	Los Angeles	2
152	1975	Seattle	2
153	1975	San Francisco	9
154	1975	Vancouver, Canada	1
155	1974	Denver	3
156	1974	Las Vegas	3
157	1974	Los Angeles	5
158	1974	Seattle	2
159	1974	San Francisco	2
160	1974	Calgary, Canada	1
161	1973	Los Angeles	1
162	1973	Dallas	4
163	1973	Houston	6
164	1973	Anchorage	3
165	1973	Seattle	1
166	1973	Fairbanks	1
167	1973	Ketchikan	2
168	1973	Portland	2
169	1973	Seattle	3
170	1973	Denver	3
171	1973	Minneapolis	3
172	1972	Portland	2
173	1972	Kansas City	3
174	1972	Phoenix	1
175	1971	Honolulu	21
176	1971	Seattle	3
177	1968	Los Angeles	6

Operator Panel	
Operator Panel Display Type	Color LCD Touch Panel
Operator Panel Interface	Serial Communication RS 422/485
PC connectivity for maintenance	TCP/IP 10/100/1000 Base T
Operator Panel IP level	IP 65
Operator Panel Operation Temperature	-25 ° C~ +55 ° C
USB	USB 3.0 X1, USB 2.0 X1
Memory	SO-DIMM 4GB
Display Type	7.0" TFT-LCD
Power Input	24V DC (±20%)
IP Rating	IP65 front bezel
Net Weight	2.3kgs
Certification	CE/FCC
Wireless Support	Yes, External USB Dongle, support 802.11n Wi-Fi
Operator Panel Dimensions	"300 mm(W) x 350 mm(H) x 130 mm (D) (Inner box)
	370mm(W) x 460mm(H) x230mm(D) (Carton)"

ADVGS Display System GIS-206-2	
System Power	AC Input: 85~240V, 50Hz~60Hz, Auto Select<210 Watts
Laser Category	Class 1, Eye Safe, 905nm
Horizontal Scan	± 15 degrees
Vertical Scan	+5 (up) / -25 (down) degrees
Range	150 meters
Range Accuracy	0.1m at <50 meters
Azimuth Accuracy	O.2 degrees
Stop Position Accuracy	O.1 meters
Stop Position Distance	2-65 meters
Maximum Centerline supported	3
Display Character Height	202 mm
Display Visibility Distance	> 120 meters
Display Type	LED (3 colours)
Pilot Display Panel Material	Aluminum
Pilot Display Console WeightApp	70kg (including Laser Unit)
IP level	IP54
System Operation Temperature	-25 ° C~ +55 ° C
System Operation Humidity	5% - 95% (non condensing)
Pilot Display Console	"1012mm(W)x1105mm(H)x650mm(D) (Carton and fixed with ear)940
	mm(W)x1072 mm(H)x289 mm(D) (No housing)"

Worldwide Office

RLG Docking Systems Corporation

4F, No. 132, Ming-Chuan Road, Shing-Tien Dist., New Taipei City, Taiwan 231, R. O. C.

Tel: +886-2-22188268 | Fax: +886-2-8667-3959

Email: rlgdockingsystemscorp@gmail.com

james@rlgdockingsystems.com

Authorised Partner

Vardhman Airport Solutions Pvt. Ltd.

First & Second Floor, 13/C &13/3, Plot no 13, Rama Road Side, Industrial

Area, Najafgarh Road, New Delhi, India-110015

Mobile (91)9818295444 | Tel: +91 011 25193236

anshul@vardhmanairports.com | contact@vardhmanairports.com