ML Classification

Agenda

- 1. Classification in ML
- 2. Maximum Likelihood
- 3. Cross Entropy

Classification Problems

We need to find a boundary Line

$$w_1 x_1 + w_2 x_2 + b = 0$$

So that we can **predict** the class of data points

$$\widehat{y} \begin{cases} 1 & \text{if } Wx + b \ge 0 \\ 0 & \text{if } Wx + b < 0 \end{cases}$$

Step Function

Perceptron

Discrete vs. Continuous

Discrete vs. Continuous

Step Function
$$y \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Sigmoid
$$\sigma = \frac{1}{1 + e^{-x}}$$

Maximum Likelihood

0.7 * 0.2 * 0.1 * 0.6 = 0.0084

0.8 * 0.7 * 0.6 * 0.6 = 0.2016

Products and Sums

The product of thousands of probabilities will create a tiny number.

Changing one of the probabilities will have a big effect on the product.

We want to work with sums instead.

Which function can we use to convert products into sums?

Logarithm Function

$$log(ab) = log(a) + log(b)$$

$$0.9 * 0.7 * 0.8$$

$$\log(0.9) + \log(0.7) + \log(0.8)$$

Negative Logarithm

$$log(ab) = log(a) + log(b)$$

log(0.9) + log(0.7) + log(0.8) -> negative number

Optimizers usually work with minimizing a function.

 $-\log(0.9) + -\log(0.7) + -\log(0.8) ->$ positive number

Negative Logarithm

$$log(ab) = log(a) + log(b)$$

$$0.9 * 0.7 * 0.8$$

log(0.9) + log(0.7) + log(0.8) -> negative number

Optimizers usually work with minimizing a function.

 $-\log(0.9) + -\log(0.7) + -\log(0.8) ->$ positive number

0.7 * 0.2 * 0.1 * 0.6 = 0.0084- log(0.7) - log(0.2) - log(0.1) - log(0.6) = 4.8

0.8 * 0.7 * 0.6 * 0.6 = 0.2016- log(0.8) - log(0.7) - log(0.6) - log(0.6) = 1.601

If y=1, P(blue) =
$$\widehat{y}$$

Error =
$$-\log(\widehat{y})$$

$$-\log(0.8) - \log(0.7) - \log(0.6) - \log(0.6) = 1.601^{x_1}$$

```
If y=1, P(blue) = \widehat{y}

Error = -\log(\widehat{y})

If y = 0, P(red) = 1 - P(blue) = 1 - \widehat{y}

Error = -\log(1 - \widehat{y})
```


 $-\log(0.8) - \log(0.7) - \log(0.6) - \log(0.6) = 1.601^{x_1}$

Error = -
$$(1 - y)\log(1 - \widehat{y}) - y \log(\widehat{y})$$

Error = $-\frac{1}{m} \sum_{i=1}^{m} -(1 - y)\log(1 - \widehat{y}) - y \log(\widehat{y})$
Error = $-\frac{1}{m} \sum_{i=1}^{m} -(1 - y)\log(1 - \sigma(Wx^{i} + b)) - y \log(\sigma(Wx^{i} + b))$