NON SELF-SIMILAR SETS IN $[0,1]^N$ OF ARBITRARY DIMENSION

EMMA D'ANIELLO

ABSTRACT. We consider $[0,1]^N$, the unit cube of \mathbb{R}^N , $N \geqslant 1$. Let $\mathbb{S} = \{S_1, \ldots, S_M\}$ be a finite set of contraction maps from X to itself. A non-empty subset E of X is an attractor (or an invariant set) for the iterated function system (IFS) \mathbb{S} if $E = \bigcup_{i=1}^M S_i(E)$.

We construct, for each $s \in]0, N]$, a nowhere dense perfect set E contained in $[0,1]^N$, with Hausdorff dimension s, which is not an attractor for any iterated function system composed of weak contractions from $[0,1]^N$ to itself.

1. Introduction

Let X = (X, d) be a complete metric space. Let $S = \{S_1, \ldots, S_M\}$ be a finite set of contraction maps from X to itself. A subset E of X is an attractor (or an invariant set) for the iterated function system (IFS) S if $E = \bigcup_{i=1}^{M} S_i(E)$ ([11], [14]). Following [14] we write $\bigcup_{i=1}^{M} S_i(E) = S(E)$. By $(\mathcal{K}(X), \mathcal{H}) = \mathcal{K}(X)$ we denote the metric space comprised of the non-empty compact subsets of X endowed with the Hausdorff metric. It turns out that, for any given IFS S, there exists a unique non-empty compact set $E \subseteq X$ such that E = S(E).

This study is motivated by recent research concerning Cantor sets, iterated functions systems and the structure of attractors ([1], [4], [5], [6], [10], [11], [12], [13], [14], [17], [18], [19]). Let

$$\mathfrak{T} = \{ E \in \mathfrak{K}(X) : E = \mathfrak{S}(E); \mathfrak{S} \text{ a finite collection of contraction maps} \}$$

to be the set of attractors for contractive systems defined on X. It turns out that, in the case when X is compact, \mathcal{T} is always an F_{σ} subset of $\mathcal{K}(X)$ ([8] and [9]). The space $\mathcal{K}(X)$ is complete [3], so it is appropriate to use Baire Category Theorem and to investigate typical (or generic) properties (with respect to Baire Category). The term typical (or generic) indicates

Date: July 17, 2017.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 26A18, 28A78; Secondary 28A80. Key words and phrases. iterated function system; attractor; self-similar set; Cantor set.

This research has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

that the collection of sets having the property under consideration has first category complement in the complete metric space $\mathcal{K}(X)$, hence it is "large" with respect to Baire classification.

In the case that $X = [0,1]^N$, $N \ge 1$, the set \mathcal{T} is a (Baire) first category set, that is the typical (or generic) compact subset of $[0,1]^N$ is not an attractor for any system of contractions [9]. More precisely, the typical $E \in \mathcal{K}([0,1]^N)$ has the following properties

- (1) E is perfect, nowhere dense and totally disconnected, that is E is a Cantor space,
- (2) $E \subset \mathbb{IR}$, where $\mathbb{IR} = \{(a_1, \dots, a_N) \in X : a_i \in [0, 1] \setminus \mathbb{Q}, \text{ for all } 1 \leq i \leq N\}$, that is E consists of points whose coordinates are irrational,
- (3) for each s > 0, $\mathcal{H}^s(E) = 0$, and
- (4) E is not invariant with respect to any iterated function system comprised of contractions.

In [7] it is given, for each $s \in]0,1]$, an example of a nowhere dense perfect set E contained in the unit interval with $dim_{\mathcal{H}}(E) = s$, which is not an attractor for any iterated function system composed of weak contractions. This result answers, in the case when N = 1, a problem posed by Zoltán Buczolich at the Summer Symposium in Real Analysis XXXIX (June 8-13), 2015, St. Olaf College, Northfield, MN). In this note, we give a general construction, in any dimension N, $N \geq 1$. For any $N \geq 1$, for each $s \in]0, N]$, we give a construction of a nowhere dense perfect set contained in $[0, 1]^N$, with Hausdorff dimension s, and such that $E \neq S(E)$ whenever $S = \{S_1, \ldots, S_M\}$, and $d(S_i(x), S_i(y)) < d(x, y)$, for $i = 1, \ldots, M$.

2. Notations and Preliminary results

Let (X,d) = X be a metric space.

Let A and B be subsets of X. We let $d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}$, and by |A| we denote the diameter of A.

Let (X, d) = X be a complete metric space. As in [14], let $\mathcal{B}(X)$ be the class of non-empty closed and bounded subsets of X. We endow $\mathcal{B}(X)$ with the Hausdorff metric \mathcal{H} given by $\mathcal{H}(E, F) = \inf\{\delta > 0 : E \subset B_{\delta}(F), F \subset B_{\delta}(E)\}$. This space is complete. In the case that X is also compact, then $\mathcal{B}(X) = \mathcal{K}(X)$, where $\mathcal{K}(X) = (\mathcal{K}(X), \mathcal{H})$ is the class of non-empty compact subsets of X, and $\mathcal{K}(X)$ is also compact [3].

Contractions and weak contractions

Let (X,d)=X be a metric space. Let $f:X\to X$. We define the *Lipschitz* constant of f

$$Lipf := \sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)} < 1.$$

If Lipf < 1, then we say that $f: X \to X$ is a contraction.

We say that $f: X \to X$ is a weak contraction if, for each x, y in $X, x \neq y$,

$$d(f(x), f(y)) < d(x, y).$$

Of course, each contraction is a weak contraction but the converse is not, in general, true.

Hausdorff measure and Hausdorff dimension

Let $N \in \mathbb{N}$. Suppose F is a subset of \mathbb{R}^N and s is a non-negative number. For any $\delta > 0$, set

$$\mathcal{H}_{\delta}^{s}(F) = \inf\{\sum_{i=1}^{\infty} |U_{i}|^{s} : \{U_{i}\} \text{ is a δ-cover of } F\}.$$

Then $\mathcal{H}^s = \lim_{\delta \to \infty} \mathcal{H}^s_{\delta}$ defines a measure on the Borel sets in \mathbb{R}^N , generally referred to as the s-dimensional Hausdorff measure ([11], [15]). (We say that $\{U_i\}$ is a δ -cover of F if: $(i)F \subseteq \bigcup_{i=1}^{\infty} U_i$ and $(ii)\ 0 \leqslant |U_i| \leqslant \delta$.)

The Hausdorff dimension, $dim_{\mathcal{H}}(F)$, is defined as

$$dim_{\mathcal{H}}(F) = \inf\{s \geqslant 0 : \mathcal{H}^s(F) = 0\} = \sup\{s : \mathcal{H}^s(F) = \infty\}$$

(taking the supremum of the empty set to be 0).

General Cantor sets

We recall that a topological space is a *Cantor space* if it is homeomorphic to the Cantor ternary set. It follows that a topological space is a *Cantor space* if and only if it is non-empty, perfect, compact, totally disconnected, and metrizable.

General Cantor sets are all Cantor spaces. These sets are generalizations of the classical Cantor set. A precise definition follows.

Definition 1. ([2]; [20]) A set E is said to be a general Cantor set if and only if it can be expressed in the form

$$E = \bigcap_{n=1}^{\infty} \cup_{i_1,\dots,i_n=1}^K \Theta_{i_1\dots i_n},$$

where $K \ge 2$ is an integer and where the $\Theta_{i_1...i_n}$ are connected, compact sets satisfying

- $(1) \Theta_{i_1,\ldots,i_n} \supset \Theta_{i_1,\ldots,i_n i_{n+1}}$
- (2) $\Theta_1, \ldots, \Theta_K$ are mutually disjoint,
- (3) there exists a constant A, 0 < A < 1, such that

$$|\Theta_{i_1...,i_n i_{n+1}}| \geqslant A|\Theta_{i_1...i_n}| \quad (i_{n+1} = 1,...,K),$$

(4) there exists a constant B, 0 < B < 1, such that for $s \neq t$,

$$d(\Theta_{i_1...i_n s}, \Theta_{i_1...i_n t}) \geqslant B|\Theta_{i_1...i_n}|$$

.

[2] A general Cantor set is called a *spherical Cantor set* if and only if, for each choice of i_1, \ldots, i_n , Θ_{i_1,\ldots,i_n} is an N-dimensional sphere. Since we can approximate spheres by cubes and viceversa, we can replace in the above definition "N-dimensional sphere" with "N-dimensional cube". Clearly, in the case n=1, the two definitions, of a general Cantor and of a spherical Cantor set, coincide.

Theorem 2. ([16], [2]) Fix $N \in \mathbb{N}$. For each $s \in]0, N[$ there exists a general Cantor set in $[0,1]^N$ with $dim_{\mathcal{H}}(E) = s$ and $0 < \mathcal{H}^s(E) < \infty$.

Theorem 3. ([16], [2]) Let $N \ge 2$. For each $s \in]0, N[$ there exists a spherical Cantor set in $[0,1]^N$ with $dim_{\mathcal{H}}(E) = s$ and $0 < \mathcal{H}^s(E) < \infty$.

Dyadic Cubes

We recall that the *dyadic cubes* are a collection of cubes in \mathbb{R}^N of different sizes or scales such that the set of cubes of each scale partitions \mathbb{R}^N and each cube in one scale may be written as a union of cubes of a smaller scale. Dyadic cubes may be constructed as follows: for each $k = 0, \pm 1, \pm 2, \ldots$, let Δ_k be the set of cubes in \mathbb{R}^N of side-length $\frac{1}{2^k}$ and corners in the set

$$2^{-k}\mathbb{Z}^N = \{2^{-k}(v_1, \dots, v_N) : v_j \in \mathbb{Z}\}\$$

and let Δ be the union of all Δ_k .

The most important features of these cubes are the following:

- a. For each integer k, Δ_k partitions \mathbb{R}^N .
- b. All cubes in Δ_k have the same side-length, namely $\frac{1}{2^k}$.
- c. If the interior of two cubes Q and R in Δ_k have nonempty intersection, then either Q is contained in R or R is contained in Q.
- d. Each Q in Δ_k maybe written as a union of 2^N cubes in Δ_{k+1} with disjoint interiors.

Then, clearly, for each k = 0, 1, 2, ..., we have

$$[0,1]^N = \bigcup_{Q \in \Delta_k} Q \cap [0,1]^N,$$

where $Q \cap [0,1]^N \neq \emptyset$ if and only if Q has corners in the set

$$2^{-k} \{0, 1, \dots, 2^k\}^N = \{2^{-k} (v_1, \dots, v_N) : v_j \in \{0, 1, \dots, 2^k\}\}\$$

Remark 4. Clearly, in the case when N=1, we deal with dyadic intervals. Our construction works for the general case $N \ge 1$ so, even if we always use the word cube, for N=1 it is appropriate to talk about dyadic intervals.

3. Construction of non self-similar Cantor sets

Theorem 5. Let $N \in \mathbb{N}$. For each $s \in]0, N]$ there exists a subset E of $[0, 1]^N$, nowhere dense and perfect, with $\dim_{\mathfrak{H}}(E) = s$, that is not the attractor for any iterated function system composed of weak contractions from $[0, 1]^N$ to itself.

Proof. (\bullet) We start by defining the set E. We define E as

$$E = \{0\} \cup \{\cup_{k=1}^{\infty} E_k\},\$$

where the sets E_k are taken so that, for each k:

- (a) E_k is contained in $Q_k \in \Delta_k$, where $Q_k = \left[\frac{1}{2^k}, \frac{1}{2^{k-1}}\right]^N$,
- (b) $|E_k| = c_N \frac{1}{2^k}$, where c_N is any fixed constant with $0 < c_N < \frac{1}{2} \frac{\sqrt{N}}{1 + \sqrt{N}}$,
- (c) the point $\underline{x} = (x_1, \dots, x_n)$ with $x_i = \frac{1}{2^k}$, for each $k \in \mathbb{N}$, is in E_k , (d) $s_k = dim_H(E_k) = s \frac{s}{k+1}$; hence, $\{s_k\}$ is an increasing sequence with $\lim_k s_k = \sup_k s_k = s$, and
- (e) $0 < \mathcal{H}^{s_k}(E_k) < N$.

Figure: construction for N=2 (the E_k 's are contained in the small sub-boxes)

Clearly, from the construction above, it follows immediately that

- (i) $d(E_k, E \setminus E_k) > |E_k|$,
- (ii) $dim_{\mathcal{H}}(E) = s$ and $\mathcal{H}^s(E) = 0$, and

- (iii) if m > t, then $\mathcal{H}^{s_m}(f(E_t) \cap E_m) = 0$, for any Lipschitz map f.
- $(\bullet \bullet)$ We now show that E cannot be the attractor (invariant set) of any system of weak contractions from $[0,1]^N$ to itself.

Let $f: E \to E$ be a weak contraction. We distinguish two cases: 1) f(0) = 0 and 2) $f(0) \neq 0$.

<u>Case 1.</u> Suppose f(0) = 0. Then, it follows that, for any k, $f(E_k) \subset E \setminus \bigcup_{i=1}^k E_i$. In fact, there exists $x \in E_k$ such that $d(0,x) = d(0,E_k)$. Hence, as f is a week contraction, $d(0,f(x)) < d(0,x) = d(0,E_k)$. Therefore, $f(x) \in E \setminus \bigcup_{i=1}^k E_i$. The conclusion follows from the observation that

$$|f(E_k)| < |E_k| < d(E_k, E \setminus E_k).$$

Case 2. Suppose $f(0) \neq 0$. Then there exists $m_0 \in \mathbb{N}$ such that $\mathcal{H}^{s_m}(f(E) \cap E_m) = 0$ whenever $m > m_0$. In fact, there exist k and $x \in E_k$ with x = f(0). By the continuity of f, there exists $n_0 \in \mathbb{N}$ such that $f(E_m) \subseteq E_k$ whenever $m > n_0$.

Consider $L = \bigcup_{i=1}^{n_0} E_i$. Then $\mathcal{H}^{s_m}(f(L) \cap E_m) = 0$ for any $m > n_0$, and $\mathcal{H}^{s_m}(f(E) \cap E_m) = 0$ for any $m > m_0 = \max\{n_0, k\}$.

Let $S = \{S_1, \ldots, S_M\}$ be a finite collection of weak contractions from $[0,1]^N$ to itself. We write S as a disjoint union, $S = S_\star \cup S_{\star\star}$, where S_\star consists of the S_i 's in S with $S_i(0) = 0$ and, hence, $S_{\star\star}$ consists of the S_i 's in S with $S_i(0) \neq 0$.

If $S_i \in \mathcal{S}_{\star}$, then, for each k, $S_i^{-1}(E_k) \subseteq \bigcup_{j=1}^{k-1} E_j$. Thus, $\mathcal{H}^{s_k}(S_i(E) \cap E_k) = 0$. If $S_i \in \mathcal{S}_{\star\star}$, there exists m_i such that $\mathcal{H}^{s_m}(S_i(E) \cap E_m) = 0$ for any $m > m_i$. Let $\overline{n} = \max\{m_i : S_i \in \mathcal{S}_{\star\star}\}$. If we fix any E_k , $k > \overline{n}$, then, for each $S_i \in \mathcal{S}_{\star\star}$, $\mathcal{H}^{s_k}(S_i(E) \cap E_k) = 0$. Hence, if it was $E = \bigcup_{i=1}^{M} S_i(E)$, we would have

$$\begin{array}{lcl} 0 & < & \mathcal{H}^{s_k}(E_k) = \mathcal{H}^{s_k}(E \cap E_k) \\ & = & \mathcal{H}^{s_k}((\cup_{i=1}^M S_i(E)) \cap E_k) \\ & \leq & \sum_{i=1}^t \mathcal{H}^{s_k}(S_i(E) \cap E_k) = 0. \end{array}$$

Hence it must be $S(E) \neq E$.

References

- [1] T. Banakh, M. Nowak, F. Strobin, Detecting topological and Banach fractals among zero-dimensional spaces, Topology Appl. 196 (2015), part A, 22-30.
- [2] A.F. Beardon, On the Hausdorff dimension of general Cantor sets, Proc. Cambridge Philos. Soc. 61 (1965), 679-694.
- [3] A.M.Bruckner, J.B.Bruckner, B.S.Thomson, Real Analysis, Prentice-Hall, New Jersey, 1997.
- [4] A.M. Bruckner, T.H. Steele, The Lipschitz Structure of Continuous Self-Maps of Generic Compact Sets, J. Math, Anal. Appl. 188 (1994), 798-808.
- [5] Z. Buczolich, Cantor type sets of positive measure and Lipschitz mappings, Real Anal. Exchange 17 (1991/92), no. 2, 702-705.

- [6] S. Crovisier, M. Rams, IFS attractors and Cantor sets, Topology Appl. 153 (2006), no. 11, 1849-1859.
- [7] E. D'Aniello, T.H. Steele, A non self-similar set, Real Anal. Exchange 41 (2016), no. 2, 247-250.
- [8] E. D'Aniello, T.H. Steele, Attractors for iterated function systems, J. Fractal Geom. 3 (2016), 95-117.
- [9] E. D'Aniello, T.H. Steele, Attractors for iterated function schemes on [0,1]^N are exceptional, J. Math. Anal. Appl. 424 (2015), no. 1, 537-541.
- [10] P.F. Duvall, L.S. Husch, Attractors of iterated function systems, Proc. Amer. Math. Soc. 116 (1992), no. 1, 279-284.
- [11] K. Falconer, Fractal Geometry: Mathematimathcal Foundations and Applications, John Wiley and Sons, 1990.
- [12] D.-J. Feng, H. Rao, Y. Wang, Self-similar subsets of the Cantor set, Adv. Math. 281 (2015), 857-885.
- [13] D.-J. Feng, Y. Wang, On the structures of generating iterated function systems of Cantor sets, Adv. Math. 222 (2009), no. 6, 1964-1981.
- [14] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
- [15] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, 1995.
- [16] P.A.P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42, (1946), 15-23.
- [17] M. Nowak, Topological classification of scattered IFS-attractors, Topology Appl. 160 (2013), no. 14, 1889-1901.
- [18] M.J. Sanders, Non-attractors of iterated function systems, Texas Project NexT e-Journal 1 (2003), 1-9.
- [19] H. Rao, H.-J. Ruan, Y. Wang, Lipschitz equivalence of Cantor sets and algebraic properties of contraction ratios, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1109-1126.
- [20] M. Tsuji, On the capacity of general Cantor sets, J. Math. Soc. Japan 5, (1953), 235-252.

DIPARTIMENTO DI MATEMATICA E FISICA, SCUOLA POLITECNICA E DELLE SCIENZE DI BASE, UNIVERSITÀ DEGLI STUDI DELLA CAMPANIA "LUIGI VANVITELLI", VIALE LINCOLN N.5, 81100 CASERTA, ITALIA

E-mail address: emma.daniello@unicampania.it