COFFEE RUST DETECTION FOR CATURRA VARIETY USING DECISION TREES

Paulina Pérez Garcés Santiago Cartagena Agudelo Medellín, sept 29th

Designed Data Structures

Data Structure Operations

METHOD	COMPLEXITY
Search	O(log(n))
Insertion	O(log(n))
Removal	O(log(n))

Design Criteria of the Data Structure

- Black-red trees allow us to insert, delete, and search in a complexity time O(log(n)).
- We can easily find a corresponding Black-red tree for any tree of the form 2-3-4.
- The longest path from the root node to the last leaf node cannot be greater than twice the shortest path, this means a big advantage for us, because this characteristic produces a well balanced tree.
- Black-red trees follow an easy way to work: right if data is bigger, left in other case.

Time and Memory Consumption

OPERATION	TIME FOR TRAINING DATASET	TIME FOR TESTING DATASET
Creation	23.5 ms	17.3 ms
Insertion	9.8 ms	10.6 ms
Removal	4.5 ms	6.4 ms
Search	3.2 ms	5.4 ms

	MEMORY	MEMORY
	USAGE FOR	USAGE FOR
	TRAINING	TESTING
	DATASET	DATASET
Creation	84.2MB	82.7MB

