Classifier-Free Diffusion Guidance

NeurlPS 2021 Workshop

Jonathan Ho, Tim Salimans

Contents

I. Introduction

II. Background

III. Guidance

IV. Experiments

☐ Fidelity vs Diversity

Trade-off

Diversity **↓**Sample Quality **↑**

Diversity **↑**Sample Quality **↓**

☐ Fidelity vs Diversity

Truncation Trick (GAN)

Fidelity vs Diversity

Low Temperature Sampling

au: Temperature ParameterX

☐ Truncation-like effect on Diffusion

Truncation Trick (GAN)

Low Temperature Sampling

Not applicable directly to the diffusion models

Classifier-guidedDiffusion Model

□ Drawbacks of Classifier Guidance

Overhead to train the extra classifier

Must be trained with noisy data at every training procedure

Complicate Diffusion Model Training Pipeline

□ Drawbacks of Classifier Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do  \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) \\ x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma)  end for return x_0
```

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model $\epsilon_{\theta}(x_t)$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) for all t from T to 1 do \hat{\epsilon} \leftarrow \epsilon_{\theta}(x_t) - \sqrt{1 - \bar{\alpha}_t} \, \nabla_{x_t} \log p_{\phi}(y|x_t) x_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \left( \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \hat{\epsilon}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\epsilon}
```

end for

Sampling

→ Mixture of score estimate& classifier gradient

□ Drawbacks of Classifier Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do  \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t)  x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0
```

Image classifier might be confused as adversarial attack on sampling

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model $\epsilon_{\theta}(x_t)$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

Input: class label y, gradient scale s $x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I})$ for all t from T to 1 do $\hat{\epsilon} \leftarrow \epsilon_{\theta}(x_t) - \sqrt{1 - \bar{\alpha}_t} \, \nabla_{x_t} \log p_{\phi}(y|x_t)$ $x_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \hat{\epsilon}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\epsilon}$

Whether this method is eligible for classifier-based metrics is **questionable**

end for

☐ Classifier-Free Guidance (CFG) Diffusion

Not much overhead for training extra classifier

Extreme Simplicity (Only a change of one line)

Similar FID/IS tradeoff to that of classifier guidance diffusion

Notation

Forward Process

$$q(\mathbf{z}_{\lambda}|\mathbf{x}) = \mathcal{N}(\alpha_{\lambda}\mathbf{x}, \sigma_{\lambda}^{2}\mathbf{I}), \text{ where } \alpha_{\lambda}^{2} = 1/(1+e^{-\lambda}), \ \sigma_{\lambda}^{2} = 1-\alpha_{\lambda}^{2}$$

$$q(\mathbf{z}_{\lambda}|\mathbf{z}_{\lambda'}) = \mathcal{N}((\alpha_{\lambda}/\alpha_{\lambda'})\mathbf{z}_{\lambda'}, \sigma_{\lambda|\lambda'}^{2}\mathbf{I}), \text{ where } \lambda < \lambda', \ \sigma_{\lambda|\lambda'}^{2} = (1-e^{\lambda-\lambda'})\sigma_{\lambda}^{2}$$

$$\mathbf{z} = \{\mathbf{z}_{\lambda} \mid \lambda \in [\lambda_{\min}, \lambda_{\max}]\} \qquad \lambda_{\min} < \lambda_{\max} \in \mathbb{R}$$
Noisy Data

Hyperparameter for variance scheduling

Notation

Forward Process

$$q(\mathbf{z}_{\lambda}|\mathbf{x}) = \mathcal{N}(\alpha_{\lambda}\mathbf{x}, \sigma_{\lambda}^{2}\mathbf{I}), \text{ where } \alpha_{\lambda}^{2} = 1/(1 + e^{-\lambda}), \ \sigma_{\lambda}^{2} = 1 - \alpha_{\lambda}^{2}$$
$$q(\mathbf{z}_{\lambda}|\mathbf{z}_{\lambda'}) = \mathcal{N}((\alpha_{\lambda}/\alpha_{\lambda'})\mathbf{z}_{\lambda'}, \sigma_{\lambda|\lambda'}^{2}\mathbf{I}), \text{ where } \lambda < \lambda', \ \sigma_{\lambda|\lambda'}^{2} = (1 - e^{\lambda - \lambda'})\sigma_{\lambda}^{2}$$

$$\lambda = \log(\alpha_{\lambda}^{2}/\sigma_{\lambda}^{2})$$
: log SNR of \mathbf{z}_{λ}

Formularization of forward process feature

Notation

Notation

$$p_{\theta}(\mathbf{z}_{\lambda'}|\mathbf{z}_{\lambda}) = \mathcal{N}(\tilde{\boldsymbol{\mu}}_{\lambda'|\lambda}(\mathbf{z}_{\lambda}, \mathbf{x}_{\theta}(\mathbf{z}_{\lambda})), (\tilde{\sigma}_{\lambda'|\lambda}^2)^{1-v}(\sigma_{\lambda|\lambda'}^2)^v)$$

DDPM

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)) \text{ for } 1 < t \leq T$$

$$oldsymbol{\Sigma}_{ heta}(\mathbf{x}_t,t) igg\{ egin{array}{ll} \sigma_t^2 = eta_t \ \sigma_t^2 = ilde{eta}_t = rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t}eta_t \end{array} igg\}$$
 Similar Results (1st option is adopted for this experiment)

$$ilde{eta}_t ag{eta}_t ag{eta}_t$$

 $(ilde{\sigma}^2_{\lambda'|\lambda})^{1-v}(\sigma^2_{\lambda|\lambda'})^v)$: log-space linear interpolation

v: constant hyperparameter controlling posterior variance

Training Objective

$$\mathbb{E}_{oldsymbol{\epsilon},\lambda}ig[\|oldsymbol{\epsilon}_{ heta}(\mathbf{z}_{\lambda}) - oldsymbol{\epsilon}\|_2^2ig]$$

 $\mathbb{E}_{m{\epsilon}, \lambda} \left[\left\| m{\epsilon}_{ heta} (\mathbf{z}_{\lambda}) - m{\epsilon} \right\|_2^2
ight]$ where $m{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $\mathbf{z}_{\lambda} = lpha_{\lambda} \mathbf{x} + \sigma_{\lambda} m{\epsilon}$, $\lambda \sim p(\lambda)$ over $[\lambda_{min}, \lambda_{max}]$

Denoising score matching for all λ (noise)

Denoising Score Matching
$$\frac{1}{2}\mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}\mid\mathbf{x})p_{\text{data}}(\mathbf{x})}[\|\mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}}\log q_{\sigma}(\tilde{\mathbf{x}}\mid\mathbf{x})\|_{2}^{2}]$$

resemblance..

 $\Longrightarrow \boldsymbol{\epsilon}_{ heta}(\mathbf{z}_{\lambda}) pprox -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda})$

☐ Training Objective

$$\mathbb{E}_{\boldsymbol{\epsilon},\lambda} \left[\left\| \boldsymbol{\epsilon}_{\theta} (\mathbf{z}_{\lambda}) - \boldsymbol{\epsilon} \right\|_{2}^{2} \right]$$
 where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$, $\mathbf{z}_{\lambda} = \alpha_{\lambda} \mathbf{x} + \sigma_{\lambda} \boldsymbol{\epsilon}$, $\lambda \sim p(\lambda)$ over $[\lambda_{min}, \lambda_{max}]$

Training Objective

 $\mathbb{E}_{\boldsymbol{\epsilon},\lambda} \left[\left\| \boldsymbol{\epsilon}_{\theta} (\mathbf{z}_{\lambda}) - \boldsymbol{\epsilon} \right\|_{2}^{2} \right]$ where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$, $\mathbf{z}_{\lambda} = \alpha_{\lambda} \mathbf{x} + \sigma_{\lambda} \boldsymbol{\epsilon}$, $\lambda \sim p(\lambda)$ over $[\lambda_{min}, \lambda_{max}]$ 1.0 linear $u = 0 \ u = 1$ cosine 0.8 0.6 0.4 0.3 0.4 Λ_{min} 0.2 0.1 0.0 0.0 0.2 0.6 0.8 1.0 0.4

Weighted variational lower bound

More sophisticated variance scheduling

→ Improve sample quality

diffusion step (t/T)

□ Sampling Procedure

$$oldsymbol{\epsilon}_{ heta}(\mathbf{z}_{\lambda}) pprox -\sigma_{\lambda}
abla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda})$$
 Score

Learned noise \approx Estimation of $\nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda})$

Correlation between sampling from learned diffusion model and sampling with Langevin Dynamics

□ Classifier Guidance

Truncation-like effect in diffusion models

Conditional generative modeling

Conditions have impacts during training and sampling

□ Classifier Guidance

Classifier-guided distribution (model)

□ Classifier Guidance

$$\tilde{p}_{ heta}(\mathbf{z}_{\lambda}|\mathbf{c}) \propto p_{ heta}(\mathbf{z}_{\lambda}|\mathbf{c}) p_{ heta}(\mathbf{c}|\mathbf{z}_{\lambda})^w$$

Up-weighting the effect of classifier

Higher likelihood to the correct label

Improve IS/FID trade-off by setting w > 0

☐ Simple Classifier Guidance Experiment

Classifier Guidance with unconditional model

$$p_{\theta}(\mathbf{z}_{\lambda}|\mathbf{c})p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})^{w} \propto p_{\theta}(\mathbf{z}_{\lambda})p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})^{w+1}$$

$$\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}) - (w+1)\sigma_{\lambda}\nabla_{\mathbf{z}_{\lambda}}\log p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda}) \approx -\sigma_{\lambda}\nabla_{\mathbf{z}_{\lambda}}[\log p(\mathbf{z}_{\lambda}) + (w+1)\log p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})]$$

$$= -\sigma_{\lambda}\nabla_{\mathbf{z}_{\lambda}}[\log p(\mathbf{z}_{\lambda}|\mathbf{c}) + w\log p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})]$$

Same Diffusion score

□ Classifier Guidance

Conditional Model

Better Performance

$$ilde{p}_{ heta}(\mathbf{z}_{\lambda}|\mathbf{c}) \propto p_{ heta}(\mathbf{z}_{\lambda}|\mathbf{c})p_{ heta}(\mathbf{c}|\mathbf{z}_{\lambda})^w$$

Unconditional Model

$$p_{\theta}(\mathbf{z}_{\lambda}|\mathbf{c})p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})^{w} \propto p_{\theta}(\mathbf{z}_{\lambda})p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})^{w+1}$$

Classifier-guided conditional model is used for comparison

☐ Classifier-Free Guidance (CFG)

Much simpler implementation

Classifier-guided effect without extra classifier

Training Classifier-Free Guidance (CFG) diffusion model

Algorithm 1 Joint training a diffusion model with classifier-free guidance

```
Require: p_{\text{uncond}}: probability of unconditional training
```

- 1: repeat
- 2: $(\mathbf{x}, \mathbf{c}) \sim p(\mathbf{x}, \mathbf{c})$
- 3: $\mathbf{c} \leftarrow \emptyset$ with probability p_{uncond}
- 4: $\lambda \sim p(\lambda)$
- 5: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: $\mathbf{z}_{\lambda} = \alpha_{\lambda} \mathbf{x} + \sigma_{\lambda} \boldsymbol{\epsilon}$
- 7: Take gradient step on $\nabla_{\theta} \| \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \boldsymbol{\epsilon} \|^2$
- 8: **until** converged

Similar training process to that of DDPM

☐ Training Classifier-Free Guidance (CFG) diffusion model

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: p_{uncond} : probability of unconditional training

- 1: repeat
- 2: $(\mathbf{x}, \mathbf{c}) \sim p(\mathbf{x}, \mathbf{c})$
- 3: $\mathbf{c} \leftarrow \emptyset$ with probability p_{uncond}
- 4: $\lambda \sim p(\lambda)$
- 5: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: $\mathbf{z}_{\lambda} = \alpha_{\lambda} \mathbf{x} + \sigma_{\lambda} \boldsymbol{\epsilon}$
- 7: Take gradient step on $\nabla_{\theta} \| \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \boldsymbol{\epsilon} \|^2$
- 8: **until** converged

Unconditional model & Conditional model is being trained with 1 neural network

Hyperparameter p_{uncond} decides which model to train during the current iteration

Training Classifier-Free Guidance (CFG) diffusion model

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: p_{uncond} : probability of unconditional training

1: repeat

2: $(\mathbf{x}, \mathbf{c}) \sim p(\mathbf{x}, \mathbf{c})$ 3: $\mathbf{c} \leftarrow \varnothing$ with probability p_{uncond} 4: $\lambda \sim p(\lambda)$ 5: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 6: $\mathbf{z}_{\lambda} = \alpha_{\lambda}\mathbf{x} + \sigma_{\lambda}\epsilon$ 7: Take gradient step on $\nabla_{\theta} \|\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - \epsilon\|^2$ Assign null token \emptyset for c (class identifier)

8: until converged

Training Classifier-Free Guidance (CFG) diffusion model

Algorithm 1 Joint training a diffusion model with classifier-free guidance

```
Require: p_{\text{uncond}}: probability of unconditional training

1: repeat

2: (\mathbf{x}, \mathbf{c}) \sim p(\mathbf{x}, \mathbf{c})

3: \mathbf{c} \leftarrow \varnothing with probability p_{\text{uncond}}

4: \lambda \sim p(\lambda)

5: \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})

6: \mathbf{z}_{\lambda} = \alpha_{\lambda}\mathbf{x} + \sigma_{\lambda}\epsilon

7: Take gradient step on \nabla_{\theta} \| \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - \boldsymbol{\epsilon} \|^{2}

8: until converged
```

☐ Sampling from Classifier-Free Guidance (CFG) diffusion model

Algorithm 2 Conditional sampling with classifier-free guidance

```
Require: w: guidance strength

Require: \mathbf{c}: conditioning information for conditional sampling \Rightarrow conditions utilized during training

Require: \lambda_1, \ldots, \lambda_T: increasing log SNR sequence with \lambda_1 = \lambda_{\min}, \lambda_T = \lambda_{\max}

1: \mathbf{z}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})

2: for t = 1, \ldots, T do

\Rightarrow \text{Form the classifier-free guided score at log SNR } \lambda_t

3: \tilde{\epsilon}_t = (1+w)\epsilon_{\theta}(\mathbf{z}_t, \mathbf{c}) - w\epsilon_{\theta}(\mathbf{z}_t) Main point
\Rightarrow \text{Sampling step (could be replaced by another sampler, e.g. DDIM)}

Also
```

 $\mathbf{z}_{t+1} \sim \mathcal{N}(\tilde{\boldsymbol{\mu}}_{\lambda_{t+1}|\lambda_t}(\mathbf{z}_t, \tilde{\mathbf{x}}_t), (\tilde{\sigma}_{\lambda_{t+1}|\lambda_t}^2)^{1-v}(\sigma_{\lambda_t|\lambda_{t+1}}^2)^v) \text{ if } t < T \text{ else } \mathbf{z}_{t+1} = \tilde{\mathbf{x}}_t$

Also resemble DDPM sampling procedure

- 6: end for
- 7: return \mathbf{z}_{T+1}

 $\tilde{\mathbf{x}}_t = (\mathbf{z}_t - \sigma_{\lambda_t} \tilde{\boldsymbol{\epsilon}}_t) / \alpha_{\lambda_t}$

☐ Suggested score from Classifier-Free Guidance

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda},\mathbf{c}) = (1+w)\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda},\mathbf{c}) - w\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda})$$

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda},\boldsymbol{c}) = w\left(\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda},\boldsymbol{c}) - \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda})\right) + \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda},\boldsymbol{c})$$
Parameter determines
the strength

□ Classifier-guided Effect

$$(\epsilon_{\theta}(\mathbf{z}_{\lambda},\mathbf{c})-\epsilon_{\theta}(\mathbf{z}_{\lambda}))$$

Implicit classifier guidance

Recap – Classifier-guided Score

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w \sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda})$$
Score
Score
(Conditional generative model) (Classifier)

☐ Classifier-guided Effect

$$(\epsilon_{ heta}(\mathbf{z}_{\lambda}, \mathbf{c}) - \epsilon_{ heta}(\mathbf{z}_{\lambda}))$$

Implicit classifier guidance

Just estimation, not actual classifier gradient
$$\widetilde{\epsilon}_{ heta}(z_{\lambda},c)=wig(\epsilon_{ heta}(z_{\lambda},c)-\epsilon_{ heta}(z_{\lambda})ig)+\epsilon_{ heta}(z_{\lambda},c)$$

Classifier Guidance

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w \sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda})$$

Score Score (Conditional generative model) (Classifier)

☐ Experiment

Main Purpose

Demonstrating attaining IS/FID trade-off similar to that of classifier guidance

Same model architecture & hyperparameter settings from classifier guidance

Suboptimal for classifier-free guidance diffusion model

☐ Experiment Settings

IS/FID score calculation with 50K Samples

$$\lambda_{min} = -20$$
, $\lambda_{max} = 20$

64 X 64

Conditional ImageNet Model

Sampler noise interpolation coefficient v = 0.3, 400K Training steps

128 X 128

Conditional ImageNet Model

Sampler noise interpolation coefficient v = 0.2, **2.7M** Training steps

☐ Varying Classifier-Free Guidance Strength

	Model		FID (↓)	IS (†)	
A	ADM (Dhariwal & Nichol, 2021) CDM (Ho et al., 2021)		2.07 1.48	- 67.95	
	Ours $w = 0.0$		$p_{\text{uncond}} = 0.1/0.2/0.5$ $1.8/1.8/2.21 $		
		w = 0.1	1.55 / 1.62 / 1.91 2.04 / 2.1 / 2.08	66.11 / 64.58 / 56.1	
w ↑	•	w = 0.2 $w = 0.3$	3.03 / 2.93 / 2.65	78.91 / 76.99 / 65.6 92.8 / 88.64 / 74.92	
		w = 0.4 $w = 0.5$	4.3 / 4 / 3.44 5.74 / 5.19 / 4.34	106.2 / 101.11 / 84.27 119.3 / 112.15 / 92.95	
FID 1 & I	S 🕇	$egin{aligned} w &= 0.6 \ w &= 0.7 \end{aligned}$	7.19 / 6.48 / 5.27 8.62 / 7.73 / 6.23	131.1 / 122.13 / 102 141.8 / 131.6 / 109.8	
		w = 0.8 $w = 0.9$	10.08 / 8.9 / 7.25 11.41 / 10.09 / 8.21	151.6 / 140.82 / 116.9 161 / 150.26 / 124.6	
		w = 1.0 $w = 2.0$	12.6 / 11.21 / 9.13 21.03 / 18.79 / 16.16	170.1 / 158.29 / 131.1 225.5 / 212.98 / 183	
	Į	w = 2.0 $w = 3.0$ $w = 4.0$	24.83 / 22.36 / 19.75 26.22 / 23.84 / 21.48	250.4 / 237.65 / 208.9 260.2 / 248.97 / 225.1	
		w = 4.0	20.22 / 23.04 / 21.48	200.2/ 240.9/ / 223.1	

Table 1: ImageNet 64x64 results (w = 0.0 refers to non-guided models).

☐ Varying Classifier-Free Guidance Strength

☐ Varying Unconditional Training Probability

□ Varying Sampling Steps

Model	FID (↓)	IS (†)
BigGAN-deep, max IS (Brock et al., 2019)	25	253
BigGAN-deep (Brock et al., 2019)	5.7	124.5
CDM (Ho et al., 2021)	3.52	128.8
LOGAN (Wu et al., 2019)	3.36	148.2
ADM-G (Dhariwal & Nichol, 2021)	2.97	-

TIBILI S (BILLITWICH CO T (TOHIO), 2021)	,,		
Ours	T = 128/256/1024		
w = 0.0	8.11 / 7.27 / 7.22	81.46 / 82.45 / 81.54	
w = 0.1	5.31 / 4.53 / 4.5	105.01 / 106.12 / 104.67	
w = 0.2	3.7 / 3.03 / 3	130.79 / 132.54 / 130.09	
w = 0.3	3.04 / 2.43 / 2.43	156.09 / 158.47 / 156	
w = 0.4	3.02 / 2.49 / 2.48	183.01 / 183.41 / 180.88	
w = 0.5	3.43 / 2.98 / 2.96	206.94 / 207.98 / 204.31	
w = 0.6	4.09 / 3.76 / 3.73	227.72 / 228.83 / 226.76	
w = 0.7	4.96 / 4.67 / 4.69	247.92 / 249.25 / 247.89	
w = 0.8	5.93 / 5.74 / 5.71	265.54 / 267.99 / 265.52	
w = 0.9	6.89 / 6.8 / 6.81	280.19 / 283.41 / 281.14	
w = 1.0	7.88 / 7.86 / 7.8	295.29 / 297.98 / 294.56	
w = 2.0	15.9 / 15.93 / 15.75	378.56 / 377.37 / 373.18	
w = 3.0	19.77 / 19.77 / 19.56	409.16 / 407.44 / 405.68	
w = 4.0	21.55 / 21.53 / 21.45	422.29 / 421.03 / 419.06	

Table 2: ImageNet 128x128 results (w = 0.0 refers to non-guided models).

□ Varying Sampling Steps

	Model	FID (↓)	IS (†)
В	igGAN-deep, max IS (Brock et al., 2019)	25	253
	BigGAN-deep (Brock et al., 2019)	5.7	124.5
	CDM (Ho et al., 2021)	3.52	128.8
	LOGAN (Wu et al., 2019)	3.36	148.2
n	ADM-G (Dhariwal & Nichol, 2021)	2.97	-

Classifier-Guidance Diffusion

$$T = 256$$

Best balance

between sample quality & sampling speed

CFG Diffusion model should go through **2 times of forward process**

(Conditional & Unconditional Model Training)

ibivi o (bitariwar & rvicitor, 2021)	2.71		
Ours		T = 128	8/256/1024
w = 0.0	8.11 / 7.27 / 7	7.22	81.46 / 82.45 / 81.54
w = 0.1	5.31 / 4.53 /	4.5	105.01 / 106.12 / 104.67
w = 0.2	3.7 / 3.03 /		130.79 / 132.54 / 130.09
w = 0.3	3.04 2.43 / 2	2.43	156.09 / 158.47 / 156
w = 0.4	3.02 / 2.49 / 2	2.48	183.01 / 183.41 / 180.88
w = 0.5	3.43 / 2.98 / 2	2.96	206.94 / 207.98 / 204.31
w = 0.6	4.09 / 3.76 / 3	3.73	227.72 / 228.83 / 226.76
w = 0.7	4.96 / 4.67 / 4	4.69	247.92 / 249.25 / 247.89
w = 0.8	5.93 / 5.74 / 5	5.71	265.54 / 267.99 / 265.52
w = 0.9	6.89 / 6.8 / 6	.81	280.19 / 283.41 / 281.14
w = 1.0	7.88 / 7.86 /	7.8	295.29 / 297.98 / 294.56
w = 2.0	15.9 / 15.93 / 1	15.75	378.56 / 377.37 / 373.18
w = 3.0	19.77 / 19.77 /	19.56	409.16 / 407.44 / 405.68
w = 4.0	21.55 / 21.53 /	21.45	422.29 / 421.03 / 419.06

Leading to Slow Sampling Speed

Table 2: ImageNet 128x128 results (w = 0.0 refers to non-guided models).

Thank you