Unitats de mesura

Magnitud	Unitat a SI	Símbol SI	Unitat a CGS	Símbol CGS	Dimensió
Longitud	metre	m	centímetre	cm	
Volum	litre	${f L}$			
Massa	kilogram	kg	gram	g	
Temperatura	kelvin	K			
mol^{-}	mol	mol			
temps	segon	\mathbf{s}	segon	S	
Freqüència	hertz	Hz			s^{-1}
Inductància	henry	H			
Energia	joule	J			
Força	newton	N	dines	dynes	
Pressió	pascal	Pa		v	
Potencial elèctric	volt	V			
Potència	watt	W			

Taula 1: Algunes unitats del SI rellevants per a aquest curs

Magnitud	Unitat (EUA)	Equivalència en SI
Volum	$1 \mathrm{in}^3$	$16.387\mathrm{cm}^3$
Volum	$1\mathrm{ft}^3$	$28.317\mathrm{L}$
Volum	$1\mathrm{gal}\;(\mathrm{US})$	$3.785\mathrm{L}$
Pressió	1 psi	$6.895\mathrm{kPa}$
Pressió	$1\mathrm{atm}$	$101.325\mathrm{kPa}$
Pressió	$1\mathrm{inHg}$	$3.386\mathrm{kPa}$
Temperatura	1 F	$T_C = (T_F - 32) \times \frac{5}{9}$
Massa	1 oz	$28.35\mathrm{g}$
Massa	$1 \mathrm{lb}$	$0.4536\mathrm{kg}$
Massa	1 t (US)	$907.184\mathrm{kg}$

Taula 2: Conversió d'unitats del sistema americà al SI

Unitat de Pressió	Pressió (en relació a 1 atm)
Atmosfera (atm)	1 atm
Pascal (Pa)	$101325\mathrm{Pa}$
Bar	$1.01325\mathrm{bar}$
Mil·límetre de mercuri (mmHg)	$760\mathrm{mmHg}$
Torra (Torr)	$760\mathrm{Torr}$
Pounds per square inch (psi)	$14.696\mathrm{psi}$
Kilopascal (kPa)	$101.325\mathrm{kPa}$

Taula 3: Comparació de les unitats de pressió amb 1 atmosfera

Valor de la constant dels gasos R	Unitats
0.082	$\mathrm{atm}\mathrm{L}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
8.3145	${ m m}^3{ m Pa}{ m K}^{-1}{ m mol}^{-1}$
8.3145	$\mathrm{JK^{-1}mol^{-1}}$
62.363	$L \operatorname{Torr} K^{-1} \operatorname{mol}^{-1}$
1.9872×10^{-3}	$\operatorname{kcal} K^{-1} \operatorname{mol}^{-1}$
8.205×10^{-5}	${ m m}^3{ m atm}{ m K}^{-1}{ m mol}^{-1}$

Taula 4: Conversió de la constant dels gasos en diferents unitats

Dades termodinàmiques

Substància	Calor de Fusió		Calor de	Vaporització
	$\Delta H_{\rm fus} \; ({\rm J/g})$	$\Delta H_{\rm fus}~({\rm kJ/mol})$	$\Delta H_{\mathrm{vap}} \; (\mathrm{J/g})$	$\Delta H_{\rm vap}~({\rm kJ/mol})$
Alumini	321	8.66	11400	307.6
Benzè	127.4	10.0	390	30.5
Coure	207	13.2	5069	322.1
Or	67	13.2	1578	310.9
Ferro	209	11.7	6340	354.1
Plom	22.4	4.64	871	180.5
Metà	59	0.946	537	8.61
Mercuri	11.6	2.33	295	5.92
Metanol	98.8	3.17	1100	35.2
Nitrogen	25.5	0.715	200	5.60
Sodi	113	2.60	4237	97.42
Aigua	334	6.02	2260	40.7

Taula 5: Calor de Fusió i Vaporització d'algunes substàncies pures (específic ΔH en J/g i Molar ΔH en kJ/mol)

Valors Clau de Termodinàmica

La taula següent mostra els valors clau de termodinàmica per a diverses substàncies, extrets de la taula ÇODATA KEY VALUES FOR THERMODYNAMICS" a [1]. La taula inclou l'entalpia estàndard de formació a 298.15 K, l'entropia a 298.15 K i la quantitat H° (298.15 K)- H° (0 K). Un valor de 0 a la columna $\Delta_f H^{\circ}$ per a un element indica l'estat de referència per a aquest element. La pressió de l'estat estàndard és 100 000 Pa (1 bar).

Substància	$\Delta_f H^{\circ} \ (298.15 \ {\rm K})$	$S^{\circ} (298.15 \text{ K})$	$H^{\circ} (298.15 \text{ K}) - H^{\circ} (0)$
	(kJ/mol)	(J/K/mol)	(kJ/mol)
Ar (g)	0	154.846 ± 0.003	6.197 ± 0.001
C (cr, graphite)	0	5.74 ± 0.10	1.050 ± 0.020
C(g)	716.68 ± 0.45	158.100 ± 0.003	6.536 ± 0.001
CO(g)	-110.53 ± 0.17	197.660 ± 0.004	8.671 ± 0.001
CO_2 (aq, undissoc.)	-413.26 ± 0.20	119.36 ± 0.60	
CO_2 (g)	-393.51 ± 0.13	213.785 ± 0.010	9.365 ± 0.003
CO_3^{2-} (aq)	-675.23 ± 0.25	-50.0 ± 1.0	
$H_2(g)$	0	130.680 ± 0.003	8.468 ± 0.001
$H_2O(g)$	-241.826 ± 0.040	188.835 ± 0.010	9.905 ± 0.005
$H_2O(1)$	-285.830 ± 0.040	69.95 ± 0.03	13.273 ± 0.020
$H_2PO_4^-$ (aq)	-1302.6 ± 1.5	92.5 ± 1.5	
H_2S (aq, undissoc.)	-38.6 ± 1.5	126 ± 5	

Substància	$\Delta_f H^{\circ} (298.15 \text{ K})$	S° (298.15 K)	<i>H</i> ° (298.15 K)− <i>H</i> ° (0)
	(kJ/mol)	(J/K/mol)	(kJ/mol)
H_2S (g)	-20.6 ± 0.5	205.81 ± 0.05	9.957 ± 0.010
N(g)	472.68 ± 0.40	153.301 ± 0.003	6.197 ± 0.001
NH_3 (g)	-45.94 ± 0.35	192.77 ± 0.05	10.043 ± 0.010
NH_4^+ (aq)	-133.26 ± 0.25	111.17 ± 0.40	
NO_3^- (aq)	-206.85 ± 0.40	146.70 ± 0.40	
N_2 (g)	0	191.609 ± 0.004	8.670 ± 0.001
S(g)	277.17 ± 0.15	167.829 ± 0.006	6.657 ± 0.001
$SO_2(g)$	-296.81 ± 0.20	248.223 ± 0.050	10.549 ± 0.010
SO_4^{2-} (aq)	-909.34 ± 0.40	18.50 ± 0.40	
$C_3H_8(g)$	-104.7 ± 0.4	269.91 ± 0.10	14.66 ± 0.05
$H_2(g)$	0	130.680 ± 0.003	8.468 ± 0.001
$H_2O(g)$	-241.826 ± 0.040	188.835 ± 0.010	9.905 ± 0.005
$H_2O(l)$	-285.830 ± 0.040	69.95 ± 0.03	13.273 ± 0.020
$\mathrm{H_2PO_4^-}\left(\mathrm{aq}\right)$	-1302.6 ± 1.5	92.5 ± 1.5	
H_2S (aq, undissoc.)	-38.6 ± 1.5	126 ± 5	
$H_2S(g)$	-20.6 ± 0.5	205.81 ± 0.05	9.957 ± 0.010
N(g)	472.68 ± 0.40	153.301 ± 0.003	6.197 ± 0.001
$NH_3(g)$	-45.94 ± 0.35	192.77 ± 0.05	10.043 ± 0.010
NH_4^+ (aq)	-133.26 ± 0.25	111.17 ± 0.40	
NO_3^- (aq)	-206.85 ± 0.40	146.70 ± 0.40	
N_2 (g)	0	191.609 ± 0.004	8.670 ± 0.001
S(g)	277.17 ± 0.15	167.829 ± 0.006	6.657 ± 0.001
$SO_2(g)$	-296.81 ± 0.20	248.223 ± 0.050	10.549 ± 0.010
SO_4^{2-} (aq)	-909.34 ± 0.40	18.50 ± 0.40	

Taula 6: Valors clau de termodinàmica per a diverses substàncies [wagman'codata'1989]

Calor de Combustió

El calor de combustió d'una substància a 25°C es pot calcular a partir de les dades d'entalpia de formació ($\Delta_f H^{\circ}$). Podem escriure la reacció general de combustió com:

$$X + O_2 \longrightarrow CO_2(g) + H_2O(l) + Y$$

Per a un compost que conté només carboni, hidrogen i oxigen, la reacció és simplement:

$$\mathrm{C_aH_bO_c} + \left(a + \frac{b}{4} - \frac{c}{2}\right)\mathrm{O_2} \, \longrightarrow \, \mathrm{aCO_2(g)} + \frac{b}{2}\,\mathrm{H_2O(l)}$$

i la calor estàndard de combustió $\Delta_c H^{\circ}$, que es defineix com el negatiu del canvi d'entalpia per a la reacció (és a dir, el calor alliberat en el procés de combustió),

es dóna per:

$$\Delta_c H^{\circ} = -a\Delta_f H^{\circ}(CO_2, g) - \frac{b}{2}\Delta_f H^{\circ}(H_2O, l) + \Delta_f H^{\circ}(C_a H_b O_c)$$
$$= 393.51a + 142.915b + \Delta_f H^{\circ}(C_a H_b O_c)$$

Aquesta equació s'aplica si els reactius comencen en els seus estats estàndard (25°C i una atmosfera de pressió) i els productes tornen a les mateixes condicions. La mateixa equació s'aplica a un compost que conté un altre element si aquest element acaba en el seu estat de referència estàndard (per exemple, nitrogen, si el producte és N_2); en general, però, els productes exactes que contenen els altres elements han de ser coneguts per calcular el calor de combustió.

La taula següent dóna la calor estàndard de combustió calculat d'aquesta manera per a algunes substàncies representatives (adaptat de la taula "Heat of Combustion" a [1]).

Fórmula Molecular	Nom	$\Delta_c H^{\circ} \text{ (kJ/mol)}$
C_3H_8O	1-Propanol (l)	2021.3
$C_3H_8O_3$	Glicerol (l)	1655.4
$C_4H_{10}O$	Èter dietílic (l)	2723.9
$C_5H_{12}O$	1-Pentanol (l)	3330.9
C_6H_6	Fenol (s)	3053.5
Substàncies Inorgàniques		
\mathbf{C}	Carboni (grafit)	393.5
CO	Monòxid de carboni (g)	283.0
H_2	Hidrogen (g)	285.8
$\mathrm{H_{3}N}$	Amoníac (g)	382.8
$\mathrm{H_4N_2}$	Hidrazina (g)	667.1
N_2O	Òxid nitrós (g)	82.1
Compostos de Carbonil		
$\mathrm{CH_{2}O}$	Formaldehid (g)	726.1
C_2H_2O	Cetè (g)	1366.8
$\mathrm{C_2H_4O}$	Acetaldehid (l)	1460.4
C_3H_6O	Acetona (l)	1189.2
C_3H_6O	Propanal (l)	1822.7
C_4H_8O	2-Butanona (l)	2444.1
Hidrocarburs		
CH_4	Metà (g)	890.8
C_2H_2	Acetilè (g)	1301.1
$\mathrm{C_2H_4}$	Etilè (g)	1411.2
$\mathrm{C_2H_6}$	Età (g)	1560.7
C_3H_6	Propilè (g)	2058.0
C_3H_6	Ciclopropà (g)	2091.3
C_3H_8	Propà (g)	2219.2

Fórmula Molecular	Nom	$\Delta_c H^{\circ} \text{ (kJ/mol)}$
C_4H_6	1,3-Butadiè (g)	2541.5
C_4H_{10}	Butà (g)	2877.6
$\mathrm{C_{5}H_{12}}$	Pentà (l)	3509.0
C_6H_6	Benzè (l)	3267.6
C_6H_{12}	Ciclohexà (l)	3919.6
C_6H_{14}	Hexà (l)	4163.2
C_7H_8	Toluè (l)	3910.3
C_7H_{16}	Heptà (l)	4817.0
$C_{10}H_{8}$	Naftalè (s)	5156.3
Alcohols i Èters		
$\mathrm{CH_{4}O}$	Metanol (l)	570.7
C_2H_6O	Etanol (1)	1025.4
C_2H_6O	Èter dimetílic (g)	1166.9
$C_2H_6O_2$	Etilè glicol (l)	1789.9
Àcids i Èsters		
$\mathrm{CH_2O_2}$	Àcid fòrmic (1)	254.6
$C_2H_4O_2$	Àcid acètic (1)	874.2
$C_2H_4O_2$	Formiat de metil (1)	972.6
$C_3H_6O_2$	Acetat de metil (l)	1592.2
$C_4H_8O_2$	Acetat d'etil (l)	2238.1
$C_7H_6O_2$	Àcid benzoic (s)	3226.9
Compostos de Nitrogen		
CHN	Cianur d'hidrogen (g)	671.5
$\mathrm{CH_{3}NO_{2}}$	Nitrometà (l)	709.2
$\mathrm{CH_5N}$	Metilamina (g)	1085.6
C_2H_3N	Acetonitril (l)	1247.2
C_2H_5NO	Acetamida (s)	1184.6
C_3H_9N	Trimetilamina (g)	2443.1
C_5H_5N	Piridina (l)	2782.3
$\mathrm{C_6H_7N}$	Anilina (l)	3392.8

Taula 7: Calor estàndard de combustió de diverses substàncies. Adaptat de la taula "Heat of Combustion" a [1]

Bibliografia

[1] David R Lide et al. *CRC Handbook of Chemistry and Physics*. en. Boca Raton, FL: CRC Press, 2005.