An Introduction to Random Forests

November 28, 2024

Figure: A forest... but not a random one.

🚴 Refresher: Decision Trees

Example: Howell data (783 observations).

Figure: Regression tree on Howell data. Age is predicted based on sex, height (cm) & weight (cm)

CARTs (Classification And Regression Trees) are very powerful but:

- They are prone to overfitting.
- They are unstable.
- They are noisy.
- They may struggle to detect complex and often non-linear patterns.

→ **Random Forests** address the above shortcomings!

Random Forests: Definition

Definition

A Random Forest (RF) is an **ensemble learning** algorithm for regression and classification tasks. It is based on the concept of **bootstrap aggregation (bagging)** applied on decision trees.

Figure: Illustration of a random forest as a collection of decision trees.

Bagging consists of 2 main steps:

- **9 Bootstrapping:** For given training data $\mathbf{Z} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, draw B samples $\mathbf{Z}_1, \dots, \mathbf{Z}_B$ with replacement and obtain predictions $\hat{f}_1(\mathbf{x}), \dots, \hat{f}_B(\mathbf{x})$ (regression) or $\hat{C}_1(\mathbf{x}), \dots, \hat{C}_B(\mathbf{x})$ (classification).
- Aggregating: Aggregate bootstrap predictions to obtain the bagging estimate.
 - For regression:

$$\hat{f}_{\mathsf{bag}}(\boldsymbol{x}) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(\boldsymbol{x}).$$

• For classification:

$$\hat{C}_{\mathsf{bag}}(\mathbf{x}) = \mathsf{majority} \ \mathsf{vote} \{\hat{C}_b(\mathbf{x})\}_{b=1}^B.$$

Why does bagging work?

Bagging aims to **reduce the variance** of the predictions.

- For B identically distributed (**not** independent) random variables with positive pairwise correlation ρ and common variance σ^2 , the variance of their sample average is given by $\rho\sigma^2 + \sigma^2(1-\rho)/B$. (Exercise)
- When $B \to \infty$, the above Expression depends only on the pairwise correlation and the variance.
- Random forests make use of this result by reducing ρ , without increasing σ^2 too much.

- Decision trees are known to be highly correlated.
- Dominant variables for the regression/classification problem are a main source of this issue.
- Growing decorrelated trees involves an extra step of random variable selection for splitting.

💺 Training a Random Forest: Out-Of-Bag Samples

- Hyperparameter tuning and training a RF is done using Out-Of-Bag (OOB) samples:
 - For each bootstrap sample \mathbf{Z}_b , compute the error of the predictions using data not in \mathbf{Z}_b and then average over all B samples.
 - This is very similar to Cross Validation!

Figure: Illustration of OOB sampling.

Example: Howell data revisited

Training a Random Forest on Howell data

Figure: Training a Random Forest on the Howell data

% Summary

Random Forest Algorithm:

- **1** For b = 1, ..., B:
 - **1** Draw a bootstrap sample \mathbf{Z}_b of size n from the training data.
 - **9** Grow a tree T_b using \mathbf{Z}_b by repeating the following three steps until minimum node size of maximum tree depth is reached:
 - Select m variables randomly from the p predictors.
 - 2 Pick the best variable & splitting point among the m.
 - 3 Split the node into two daughter nodes.
- 2 Output the tree ensemble $\{T_b\}_{b=1}^B$.

Given a new vector of predictors x^* , make a prediction by averaging (regression) or taking the majority vote (classification) of tree predictions.

Useful Resources

- R package randomForest provides a good implementation of Random Forests.
- Code to reproduce plots in earlier slides can be found in: https://github.com/EfthymiosCosta/Example-Lecture-RandomForests.