1.Классы усиления усилительных каскадов.

В зависимости от значения и знака напряжения смещения и напряжения сигнала в схеме транзисторного каскада возможны принципиально различные режимы его работы, называемых классами усиления. Для обозначения различных классов усиления используются прописные латинские буквы.

Класс усиления А

Режим работы транзисторного каскада, при котором ток в выходной цепи транзистора протекает в течение всего периода изменения напряжения входного сигнала. Рабочую точку выбирают в середина нагрузочной характеристики, поэтому всегда протекает ток смещения. Следовательно, КПД не превышает 50%. Маломощный усилитель.

Режим работы транзисторного каскада, при котором ток в выходной цепи транзистора протекает только в течение половины периода изменения напряжения входного сигнала. Состояние покоя рабочей точки находится в ниджнем участке линии нагрузки $R_{\rm K}$. Усилители большой мощности. Ограничения: пропускает только положительную составляющую волны.

Класс усиления АВ

Режим работы транзисторного каскада, при котором ток в выходной цепи транзистора протекает больше половины периода изменения напряжения входного сигнала. Транзистор начинает открываться при некотором пороговом напряжении. В отличии от класса Б, поднимает рабочую точку на уровень этого напряжения. Отличается высоким КПД. Это каскады усиления мощности.

Класс усиления С

Режим работы транзисторного каскада, при котором трк в выходной цепи транзистора протекает на интервал меньшем половины периода изменения напряжения входного сигнала, называется режимом усиления класса С. В режиме класса С транзистор больше

половины периода находится в состоянии отсечки. Мощные резонансные усилители.

Класс усиления Д

Режим работы транзисторного каскада, при котором в установившемся режиме усилительный элемент может находиться только в состоянии включено (режим насыщения) или выключено (режим отсечки). КПД близко к еденице.

Класс усиле- ния	Напряже- ние смеще- ния	Ток покоя транзисто ра / КП	Зависимость тока от времени	Примечание
A	>0	<i>I_{Б П h}</i> эээ	in Inn	I _{K m} <i<sub>Kn</i<sub>
АB	>0	/ _{6 Π} h ₂₁ ອ	In In In	I _{κ m} < I _{κπ} I _{κ m} < U _n /R _κ
В	-0	7 _{К нач}	" Man	I _{K m} ≤Uπ/Rκ
Ç	<0	I _{KD}	ίπ	l _{K m} ≪U _n /R _K
Q	≤ 0	I ***	I _K	$I_{K_{min}} = U_n/R_K$

2.Биполярные транзисторы. Основные схемы включения.

Биполярный транзистор трёхэлектродный полупроводниковый прибор, один из типов трём транзистора. Электроды подключены последовательно расположенным слоям полупроводника чередующимся типом примесной проводимости. По этому чередования различают прп и рпр транзисторы (п (negative) электронный тип примесной проводимости, (positive) дырочный). биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые называют внешним слоям, коллектором эмиттером. На простейшей схеме различия между коллектором эмиттером видны. действительности же коллектор отличается от эмиттера, главное отличие коллектора — большая площадь р — п-перехода. Кроме того, для работы транзистора абсолютно необходима толщина базы.

Принцип действия транзистора

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим прп транзистор, все рассуждения повторяются абсолютно аналогично для случая рпр транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В прп транзисторе электроны, основные

Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Іэ=Іб + Ік). Коэффициент а, связывающий ток эмиттера и ток коллектора ($IK = \alpha I$) называется коэффициентом передачи тока Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передает ток. Этот коэффициент мало зависит от напряжения коллектор-база и базаэмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = $\alpha / (1 - \alpha) = (10 - 1000)$. Таким образом, изменяя

Схемы включения

Схема включения с общей базой Любая схема включения транзистора характеризуется двумя основными показателями: коэффициент усиления по току $I_{\text{Вых}}/I_{\text{вх}}$. Для схемы с общей базой $I_{\text{вых}}/I_{\text{вx}}=I_{\text{к}}/I_{\text{э}}=\alpha$ [α <1]) входное сопротивление $R_{\text{вхб}}=U_{\text{вх}}/I_{\text{вx}}=U_{\text{бэ}}/I_{\text{э}}$. Входное сопротивление для схемы с общей базой мало и составляет десятки Ом, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Недостатки схемы с общей базой: Схема не усиливает ток, так как α < 1 Малое входное

Режимы работы биполярного транзистора

Нормальный активный режим Переход эмиттер — база включен в прямом направлении (открыт), а переход коллектор — база — в обратном (закрыт) Инверсный активный режим Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое. Режим насыщения Оба р-п перехода смещены в прямом направлении (оба открыты). Режим отсечки В данном режиме оба р-п перехода прибора смещены в обратном направлении (оба закрыты).

Основные параметры транзистора:

Коэфициенты усиления: по току $k_l = \Delta I_{\text{вых}}/\Delta I_{\text{вх}}$ по напряжению $k_U = \Delta U_{\text{вых}}/\Delta U_{\text{вх}}$ по мощности $k_P = \Delta P_{\text{вых}}/\Delta P_{\text{вх}}$

Сопротивления: входное $R_{\text{вх}} = U_{\text{вх}}/I_{\text{вх}}$ выходное $R_{\text{вых}} = U_{\text{вых}}/I_{\text{вых}}$

сопротивление Два разных источника напряжения для питания. **Достоинства:**

Хорошие температурные и частотные свойства.

Схема включения с общим эмиттером

 $I_{BHX} = I_K I_{BX} = I_G U_{BX} = U_{G9} U_{BHX} = U_{K9}$

Достоинства: Большой коэффициент усиления по току Большое входное сопротивление Можно обойтись одним источником питания

Недостатки: Худшие температурные и частотные свойства по сравнению со схемой с общей базой. Выходное переменное напряжение инвертируется

относительно входного.

Схема с общим коллектором

 $I_{\text{вых}} = I_{\text{9}} I_{\text{вх}} = I_{\text{6}} U_{\text{вх}} = U_{\text{6к}} U_{\text{вых}} = U_{\text{к9}}$

Достоинства: Большое входное сопротивление

Малое выходное

сопротивление

Недостатки: Не усиливает напряжение

Схему с таким включением также называют «эмиттерным повторителем»

Вка схемы I_{bx} I_{bx}

3. Ключи на полевых транзисторах

Ключ – полупроводниковый прибор, действие которого основано на его включении , переключении и выключении.

Существует несколько схем ключей на полевых транзисторах для:

-аналоговых переключателей

рис. 6.13. Конмплементарпый аналоговый переключатель.

Принцип работы

Если $U_{\text{управляющее}}$ находится в состоянии логической еденицы, то транзисторы открыты и следовательно на выходе будет $U_{\text{ВХОДА}}$ – ключ в открытом состоянии.

Если $U_{\text{управляющее}}$ находится в состоянии логического нуля, то транзисторы закрыты и следовательно на выходе будет 0-ключ в закрытом состоянии.

Следует отметить что ключ неинверирующий.

-цифровые переключателей

Схема цифрового ключа на полевом транзисторе с р-лпереходом

Принцип работы

Если $U_{\text{ВХОД}}$ в состоянии логической еденицы, то транзистор открыт следовательно $U_{\text{ВЫХ}}$ равно 0.

Если на входе напряжения нет, то транзистор в закрытом состоянии – напряжение питания пойдет на выход. То есть установится уровень логической единицы. Это инвертирующий ключ.

Схема ключа на МДП-трлшисторе с интуиированным каналом

В этой цепи конденсатор ограничивает ток стока.

МДП ключ с динамической нагрузкой В отличие от линейных или не линейных элементов динамическая нагрузка принимает два состояния: включено или выключено, то есть R_{MAX} или R_{MIN} .

Особенности ключей на полевых транзисторах:

- полевые транзисторы обладают исключительно малыми входными токами, а, значит, составляющая помехи, обусловленная входными токами (см. выше) будег минимальна;
- ◆ температурный коэффициент кругизны полевого транзистора меньше температурного коэффициента р билотирного транзистора;
- ♦ полевые транзисторы имеют принципиальную возможность управления со стороны подложки, что позволяет расширить их функциональные возможности.
- Возможность смены полярности (стапические характеристики расположены в двух квадрантах)
- lacktriangle Недостаток: изменение сопротивления транзистора при изменении U_{BX}
- ◆ Стапическое напряжение постоянно, влияет только динамическая составляющая.