العلامة		عناصر الإجابة على الموضوع الأول					
مجموع	مجزأة	055-25-3-6-1-2					
	0,25x3	103,5 ($103,5$) التمرين الأول: $103,5$ ($103,5$) المعادلة $103,5$ $103,5$ ($103,5$) المعادلة $103,5$ ($103,5$) $103,5$ ($103,5$) المعادلة $103,5$ ($103,5$) $103,5$ (103					
	0,25	: تحديد المتفاعل المحد : $n_{01} - x_{\max} = 0 \Rightarrow x_{\max} = n_{01} = c_1 v_1 = 0,5 \times 0,480 = 0,24 mol$					
	0,25	$n_{02} - 2x_{\text{max}} = 0 \Rightarrow x_{\text{max}} = \frac{n_{02}}{2} = \frac{c_2 v_2}{2} = \frac{5 \times 0,02}{2} = 0,05 \text{mol}$					
3,5	0,25	$x_{max} = 0.05$ ومنه المتفاعل المحد هو $H_3O^+_{(aq)}$ و					
	0,25	H_3O^+ ، $S_2O_3^{2}$: منتباقص المناقلية بسبب اختفاء شوارد $S_2O_3^{2}$ المناقلية بسبب اختفاء $S_2O_3^{2}$					
	0,25	4- أ- تعريف السرعة الحجمية للتفاعل : هي مقدار تغير تقدم النفاعل بدلالة الزمن في وحدة الحجوم وتعطى بالعلاقة : $v_{vol} = \frac{1}{V} \times \frac{dx}{dt}$					
	0,25x2	$v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt} \Leftarrow \frac{dx}{dt} = -\frac{1}{170} \times \frac{d\sigma(t)}{dt} \Leftarrow x = \frac{20.6 - \sigma(t)}{170}$ برد البرهان: $\sigma(t) = 20.6 - 170x$ ومنه $\sigma(t) = 170 \times \frac{d\sigma(t)}{dt} = -170 \times \frac{d\sigma(t)}{dt} = -$					
i i	0,25	$v_{vol} = -\frac{1}{170 \times 0.5 \times 10^{-3}} \times \frac{0 - 5 \times 4.12}{158,7 - 0} = 1,53 mol \cdot m^{-3} \cdot s^{-1} = 1,53 \times 10^{-3} mol \cdot L^{-1} \cdot s^{-1}$					
	0,25	د- تعريف زمن نصف التفاعل: هو الزمن اللازم لبلوغ نقدم التفاعل نصف تيمته النهائية.					
	0,25 0.25	$\sigma(t_{1/2}) = 20,6 - 170 \times 0,025 = 16,35(S/m)$ قيمته: $t_{1/2} = 48,3s$ ومن البيان نجد: $t_{1/2} = 48,3s$ ملحظة: تقبل القيم القريبة من هذه القيمة					

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

مة	العلا	عناصر الإجابة على الموضوع الأول				
مجموع	مجزاة					
	0,25×2	التمرين الثاني: (03 نقاط) 1- معادلة التفكك: $a = \frac{14}{6} C \rightarrow \frac{A}{2} X + \frac{0}{1} e$ حيث: $A = 14 - 0 = 14$				
	0,25	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$				
	0,25×2	:- أ- طاقة الربط: $E_l(^{14}_6C) = (6m_p + 8m_n - m(^{14}_6C)).c^2$				
3,0	0,25	$=(6\times1,00728+8\times1,00866-13,99995)\times931,5=105,268815 MeV$ $=\frac{E_{I(\frac{NC}{6}C)}}{14}=\frac{105,27}{14}=7,52 MeV/nuc:14$ الكربون 14				
		3- أ- عدد أنوية الكربون 12 و الكربون 14.				
	0,25	$N(^{12}C) = \frac{0.15 \times 6.02 \times 10^{23}}{12} = 7.525 \times 10^{21} noyaux$				
	0,25	$N_0(^{14}C) = 7,525 \times 10^{21} \times 1,2 \times 10^{-12} = 9,03 \times 10^9 $ noyaux				
	0,25×2	: A_0 ب- النشاط الإبتدائي A_0 : A_0 ب- النشاط الإبتدائي $A_0 = \lambda N_0 = \frac{\ln(2) \times N_0}{t_{1/2}} = \frac{9,03 \times 10^9 \times \ln 2}{5730 \times 31536 \times 10^3} = 0,0346 Bq$				
	0,25×2	$t = \frac{t_{1/2} \times \ln \frac{A_0}{A(t)}}{\ln 2} = \frac{5730 \times \ln \frac{0,0346}{0,023}}{\ln 2} = \frac{3375,76ans}{3200}$ عمر الخشبة:				
3,0	الرسم 0,25 0,25×2 0,25×2 0,25×2 0,25×2 0,25 0,25	$V_{lim} = V_{lim} = \frac{2}{g} = 0.2$ $V(m/s)$ $V_{lim} = \frac{2}{g} = 0.2$ $V_{lim} = 0.2$ $V_{lim} = 0.2$ $V_{lim} = 0.3$				

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول
مجموع	مجزاة	
	0,25×2	التمرين الرابع: (3,5 نقطة)
	0,25×2	$eta = rac{E}{L}$ بالمطابقة نجد: $lpha = rac{R+r}{L}$: بالمطابقة من الحل: $lpha = rac{R+r}{L}$ عند التحقق من الحل:
	0,25×2	$eta = eta \Leftarrow eta e^{-lpha t} + lpha rac{eta}{lpha} - lpha rac{eta}{lpha} e^{-lpha t} = eta \Leftarrow rac{di}{dt} = eta e^{-lpha t} \leftarrow i(t) = rac{eta}{lpha} (1 - e^{-lpha t})$ ومنه العبارة السابقة خلا للمعادلة التفاضلية. $: u_b(t) \stackrel{?}{=} u_b(t)$
	0,25	$u_{b}(t) = L\frac{di}{dt} + ri = L\frac{E}{L}e^{-x\frac{R+r}{L}t} + r\frac{E}{R+r} - r\frac{E}{R+r}e^{-x\frac{R+r}{L}t}$ $= Ee^{-\frac{R+r}{L}t}(1 - \frac{r}{R+r}) + \frac{rE}{R+r} = \frac{R+r-r}{R+r}Ee^{-\frac{R-r}{L}t} + \frac{rE}{R+r} = \frac{E}{R+r}(r + Re^{-\frac{R+r}{L}t})$
3,5	0,25	$u_{b}(t) = E - u_{R} = E - RI(1 - e^{\frac{R+r}{L}t}) = (R+r)I - RI + RIe^{\frac{R+r}{L}t} = rI + RIe^{\frac{R+r}{L}t} = \frac{E}{R+r}(r + Re^{\frac{R+r}{L}t})$ U_{R} U_{B}
	0,25	E = 6V : القوة المحركة الكهريائية للمولد: $E = 6V$. $E = 6V$
	0,25	$r = \frac{1,5R}{E-1,5} = \frac{1,5 \times 15}{6-1,5} = 5\Omega \leftarrow \frac{Er}{R+r} = 1,5$ مقاومة الوشيعة: $\tau = 25ms$ الزمن: $\tau = 25ms$
	0,25 0,25	$L = \tau(R+r) = 0,025 \times 20 = 0,5H$ - الذائية:
	0,25	$E_{(L)}=rac{1}{2}L\cdot i^2=rac{1}{2}L(rac{E}{R+r})^2(1-e^{-rac{R+r}{L}t})^2$: عبارة الطاقة اللحظية $E_{l}=Li^2/2$ عبارة الطاقة اللحظية عبارة اللحقاء عبارة الطاقة اللحظية عبارة الطاقة الطا
	0,25	: قيمة الطاقة في النظام الدائم: $E_{(L)} = \frac{1}{2}L \cdot I_0^2 = \frac{1}{2}L \left(\frac{E}{R+r}\right)^2 = \frac{1}{2} \times 0.5 \left(\frac{6}{15+5}\right)^2 = 2.25 \times 10^{-2} J$

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

العلامة		عناصر الإجابة على الموضوع الأول
مجموع	مجزاة	
		التمرين الخامس: (3,5 نقطة)
	0,25	1- أ- نطبق م إ الطاقة على المتزلج بين A و B.
	0,25	$Epp_A + Ec_A - W_{(AB)}(f) = Epp_B + Ec_B$
		$h_A - h_B = AB \times \sin \alpha mg(h_A - h_B) - \frac{1}{2}mv_B^2 = f \times AB$
	0,25	$f = \frac{m(g \times AB \times \sin \alpha - 0, 5 \cdot v_B^2)}{AB} = \frac{80(10 \times 50 \times 0, 5 - 0, 5 \times 20^2)}{50} = 80N$
		ومنه: ' AB 50 ومنه: ' ماه =
	0,25	$X'X$ بالإسقاط على $\sum \overline{F_{ext}} = m a \Rightarrow \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m a$
		$mg \sin \alpha - f = ma \Rightarrow a = g \sin \alpha - \frac{f}{m} = C^{te}$
	0,25	m ومنه الحركة م م بانتظام معادلتها:
	0.05	$a = \frac{v^2}{2x} = \frac{400}{100} = 4m/s^2$
	0,25	يمكن استعمال طرق أخرى
		$a=g \Leftarrow \sum_{i} F_{ext} = P = ma$ عادلة المسار : بتطبيق القانون الثاني لنيوتن : $a=g \Leftarrow \sum_{i} F_{ext} = P = ma$
3,5		V_C : XX' : نجد XX' نجد XX'
	0,25	$a_x = 0 \Rightarrow V_x = V_C \Rightarrow x(t) = V_C \cdot t$ يالإسقاط على 'yy' نجد : بالإسقاط على 'yy'
	0,25	$c = 0 \leftarrow t = 0 : \text{if } V_y = -gt + c = -gt \Leftarrow \frac{dV_y}{dt} = -g \Leftarrow a_y = -g$
		aı
		$y = -\frac{1}{2}gt^2 + c' \leftarrow V_y = \frac{dy}{dt} = -gt$
	0,25	$c' = h \leftarrow t = 0 : 0 \forall y = -\frac{1}{2}gt^2 + h$
	0,25	$y = -\frac{g}{2V_c^2}x^2 + h \leftarrow t = \frac{x}{V_c}$
		$V^2 = V_x^2 + V_y^2 = V_C^2 + (-gt)^2$ أ- العبارة: $V^2 = V_x^2 + V_y^2 = V_C^2 + (-gt)^2$
	0,25	$V^2 = g^2 t^2 + V_C^2$ - العلاقة النظرية: $V^2 = g^2 t^2 + V_C^2$
	0,25	$V_C = 10m/s \Leftarrow V_C^2 = 100m^2/s^2$ ب- بیانیا: $V_C = 10m/s \Leftarrow V_C^2 = 100m^2/s^2$
	0,25	$V_E = 15m/s \Leftarrow V_E^2 = 225m^2/s^2$
	0.35	جــ الإرتفاع h : بتطبيق م إ الطاقة بين C و E نجد: 225 - 100 - 225 - 100
	0,25	$h = \frac{V_E^2 - V_c^2}{2 \cdot g} = \frac{225 - 100}{20} = 6,25m$
		t_{E} تقبل طريقة استعمال المعادلة الزمنية بعد حساب
	<u> </u>	

العلامة		عناصر الإجابة على الموضوع الأول						
مجموع	مجزاة	عاصر الإجابة على الموضوع الاول						
	0,25	C_3	$H_6O_{3(\varrho q)}+H$	$T_2 O_{(I)} = C_3 H_5 O$	•	التمرين التجريبي: (5 المادلة التفاعل: (و		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	0.50	المعادلة $C_3H_6O_{3(aq)}+H_2O_{(I)}=C_3H_5O_{3(aq)}^-+H_3O^+$ المعادلة كميات المادة بالمول						
	0,50	التقدم هاله الجمله ا		عده بعمون بوفرة	0	0		
		x انتقالیة	n ₀ -x		X	X		
		Xéq نهائية	n ₀ -x _{éq}		Xéq	Xéq		
		$\left[H_3O^+\right]_{\epsilon q} = 10^{-2.4}$	$=3,98\times1$	$0^{-3} m o l / L$	ائية :	جــ تراكيز الأفراد الكيميـ		
	0,25×3	$\left[C_3H_5O_3^-\right]_{\ell q} = \left[H\right]$	4	•				
		$\left[C_3H_6O_3\right]_{eq}=C-$						
	0,25	$pka = pH - \log \frac{C}{C}$	$\frac{{}_{3}H_{5}O_{3}}{{}_{3}H_{6}O_{3}}\Big]_{eq} =$	$2, 4 - \log 0, 0$	4145 = 3,78:	د- ثابت الحموضة pka: . 4]		
3,5	0,50	$C_{\underline{z}}$	$O_{3(aq)}^- + H_2 O_{(l)}$	2-أ- معادلة المعايرة: ﴿				
						$:C_a$ ببه التركيز عند التكافؤ $:$		
	0,25×2	$C_a = \frac{C}{a}$	$\frac{V_b \cdot V_{bE}}{V_a} = \frac{2 \times 1}{2 \times 1}$	$\frac{0^{-2} \times 28,3}{10} = 0$,0566mol/L	$\Leftarrow C_a \cdot V_a = C_b \cdot V_{bE}$		
	0,25				$C_0 = 100C_a$	=5,66mol/L ومنه:		
	0,25	$p = \frac{MC_0}{10d} =$	45,08 = 45	جـ النسبة المنوية: %				
		وذلك بأخذ الحجم 1L	$p = \frac{m'}{m} = \frac{5}{1}$	$\frac{09,4}{130} = 0,45$	08 = 45%	أو حساب p من العلاقة		
	0,25					نستنتج أن ما كتب على ال		
	A manufacture of the control of the							

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

	العلامة	عناصر الإجابة على الموضوع الثاني
مجموع	مجزأة	
		التمرين الأول: (03 نقاط)
	0,25×2	$1-1 - معادلة التفكك: Re o rac{186}{75} Re o rac{186}{75} Os + rac{4}{7} X التفكك: 186$
	0,20 2	$^{186}_{75}Re \rightarrow ^{186}_{76}Os + ^{0}_{-1}e$ ومنه $Z = 75 - 76 = -1$; $A = 186 - 186 = 0$
	0.25	
	0,25	eta^- : eta
	0,25	تعريف β^* : يحدث في الأنوية التي بها فائض في عدد النيترونات حيث يتحول نيترون إلى β^*
		$_0^1 n ightarrow \frac{1}{1} p + \frac{0}{1} e = \frac{1}{1} n ightarrow \frac{1}{1} p + \frac{0}{1} e$ پروتون مع إصدار إلكترون وفق المعادلة
	0,25	$A_0 = 4 \times 10^9 Bq$: من البيان نجد : A_0 استنتاج قيمة A_0
	-,	$A_0 = 4 \times 10^{\circ} \text{ By}$. $A_0 = 4 \times 10^{\circ} \text{ By}$
	0.25	ب- تعريف £1/2: هو الزمن اللازم لتفكك نصف عدد أنويه العيّنة (أو تناقص نشاط العيّنة إلى
3,0	0,25	النصف)
3,0	0,25	بیانیا نجد : t _{1/2} =3,5jours.
	0,25	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{3.5} = 0.198 j^{-1} = 2.3 \times 10^{-6} s^{-1}$: $\lambda = \frac{1 \ln 2}{3.5} = 0.198 j^{-1} = 2.3 \times 10^{-6} s^{-1}$
	",="	$t_{1/2} = 3.5$
		196 n f
		3- عدد أنوية Re عند الله الله الله الله الله الله الله الل
	1	0 0100
	0,25×2	$N(t_1) = \frac{A_0 \times e^{-\lambda t_1}}{\lambda} = \frac{4 \times 10^9 e^{-0.198 \times 10}}{2.3 \times 10^{-6}} = 2.4 \times 10^{14} noyaux$
		$\lambda = 2,3 \times 10^{-3}$
		·V حساب ۲
	0,25×2	
	0,23^2	$V = \frac{1,2 \times 10^{14} \times 10}{2,4 \times 10^{14}} = 5,0 ml \Leftarrow \begin{cases} 2,4 \times 10^{14} \to 10 mL \\ 1,2 \times 10^{14} \to V \end{cases}$
! : [=, · · · · · · · · · · · · · · · · · · ·
1	!	
	•	
	; }	

العلامة		عناصر الإجابة على الموضوع الثاني				
مجموع	مجزأة					
	0,25	التمرين الثاني: (3.5 نقطة) - رسم الدارة: - رسم الدارة: - بتطبيق قانون جمع التوترات نجد:				
	0,25×2	$RC\frac{du_{C}}{dt} + u_{C} = E \Leftarrow u_{C} + u_{R} = E$ $\frac{E}{dt}$ $\frac{du_{C}}{dt} + \frac{u_{C}}{RC} = \frac{E}{RC}$ $\frac{du_{C}}{dt} - \frac{1}{C}$				
2.5	0,25×2	$\frac{du_C}{dt} = \frac{A}{\tau}e^{-\frac{t}{\tau}} \Leftarrow u_C(t) = A(1 - e^{-\frac{t}{\tau}}) : البرهان -3$ وبالتعويض في المعادلة التفاضلية: $Ae^{-\frac{t}{\tau}}(\frac{1}{\tau} - \frac{1}{RC}) + \frac{A}{RC} - \frac{E}{RC} = 0 \Leftarrow \frac{A}{\tau}e^{-\frac{t}{\tau}} + \frac{A}{RC} - \frac{A}{RC}e^{-\frac{t}{\tau}} = \frac{E}{RC}$ $Ae^{-\frac{t}{\tau}}(\frac{1}{\tau} - \frac{1}{RC}) + \frac{A}{RC}e^{-\frac{t}{\tau}} = 0$ $Ae^{-\frac{t}{\tau}}(\frac{1}{\tau} - \frac{1}{RC}) = 0$ $A = E \Leftarrow \frac{A}{RC} = \frac{E}{RC} \Leftarrow \frac{A}{RC} - \frac{E}{RC} = 0$ $\tau = RC \Leftarrow \frac{1}{\tau} - \frac{1}{RC} = 0$ $e_{aib} = u_C(t) = E(1 - e^{-\frac{t}{RC}})$ $e_{aib} = u_C(t) = E(1 - e^{-\frac{t}{RC}})$				
3,5	0,25	$\ln(E-u_c) = -\frac{t}{\tau} + \ln E \iff E-u_C = Ee^{-\frac{t}{\tau}} \iff u_C = E - Ee^{-\frac{t}{\tau}}$: البانيا:				
	0,25	$ln(E-u_C)=at+b$: عيث: E عيم العبارة البيانية : E $ln(E-u_C)=-1000t+1.5 \Leftrightarrow a=\frac{0-1.5}{(1.5-0)\times 10^{-3}}=-1000$; $b=1.5$				
1	0,25	$\ln E=1,5\Rightarrow E=4,5V$: وبالمطابقة نجد $C=rac{ au}{R}=rac{0,001}{100}=10,0 \mu F \Leftarrow au=rac{1}{1000}=0,001s$: $C=\frac{ au}{R}=rac{0,001}{100}=10,0 \mu F$				
	0,25×2	$R = 100$ $E_{C}(t) = \frac{1}{2}Cu_{C}^{2} = \frac{1}{2}CE^{2}(1-e^{-\frac{t}{RC}})^{2}$: delia il la				
	0,25	ب- حساب النسبة:				
	0,25	$\frac{E_C(\tau)}{E_C(\infty)} = \frac{\frac{1}{2}CE^2(1 - e^{-1})^2}{\frac{1}{2}CE^2} = (1 - e^{-1})^2 \approx 0.4$				
	0,25	$C_{eq} = \frac{C}{4} \Leftarrow C_{eq} \times R = \frac{RC}{4} \Leftarrow \tau' = \frac{\tau}{4} : C'$ حساب قیمهٔ '-7 حساب قیمهٔ '-7777777777				
	0,25	$C' = \frac{C}{3} = \frac{10}{3} = 3,33 \mu F \iff \frac{1}{C'} = \frac{1}{C_{eq}} - \frac{1}{C} = \frac{4}{C} - \frac{1}{C} = \frac{3}{C} \iff \frac{1}{C_{eq}} = \frac{1}{C} + \frac{1}{C'}$				

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

مة	العلا	عناصر الإجابة على الموضوع الثاني
مجموع	مجزاة	
	0,25	$NH_{4(aq)}^{+} = NH_{3(aq)}^{+} + H_{(aq)}^{+}$ $NH_{4(aq)}^{+} = NH_{3(aq)}^{+} + H_{(aq)}^{+}$ $H_{(aq)}^{+} + HO_{(aq)}^{-} = H_{2}O_{(l)}^{-}$ ومنه التفاعل حمض- أساس
	0,25×2	ب- جدول التقدم NH + Ho (aq) + HO (aq) = NH (aq) + H 2O (l) Daylor llates (llates) Daylor llates (lla
3,5	0,25 0,25×2	$\begin{aligned} x_{max} &= C_1 V_1 = n_0 = 0.15 \times 20 \times 10^{-3} = 3 \times 10^{-3} mol \Leftarrow C_1 V_1 - x_{max} = 0 \\ x_{max} &= C_2 V_2 = n_0' = 0.15 \times 10 \times 10^{-3} = 1.5 \times 10^{-3} mol \Leftarrow C_2 V_2 - x_{max} = 0 \\ . & x_{max} &= 1.5 \times 10^{-3} mol \end{cases} $
	0,25×2	$n_{\ell q(HO^{-})} = n_{0}^{1} - x_{\ell q} \Rightarrow x_{\ell q} = n_{0}^{1} - n_{\ell q(HO^{-})} = n_{0}^{1} - \left[HO_{(aq)}^{-}\right]_{eq} \times V_{T} = n_{0}^{1} - 10^{-144pH} \times V_{T}$ $x_{\ell q} = 1,5 \times 10^{-3} - 10^{-14+9.2} \times 30 \times 10^{-3} \approx 1,5 \times 10^{-3} mol$
	0,25×2	رد النسبة النهائية لتقدم التفاعل: $ au_f = rac{x_{eq}}{x_{max}} \simeq 1$ $ au_f = 1$ $ au_f = 1$
	0,25×2	$C_a = rac{C_b \cdot V_{bE}}{V_a} = rac{0,2 \! imes \! 14}{10} = 0,28 mol / L$ حساب كتلة الأزوت في العينة:
	0,25	$m_{(N)} = 1,96g \iff \begin{cases} 1 m o l \to 28 g \\ 0,28 \times 250 \times 10^{-3} m o l \to m_N \end{cases}$
	0,25	$N = \frac{m_N}{m} = \frac{1,96}{6} \simeq 0.33 = 33\%$ وهذا يطابق ما كتب على اللاصعة.

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

لامة	العا	عناصر الإجابة عنى الموضوع الثاني
مجموع	مجزأة	
	0,25	التمرين الرابع: (03 نقاط) ملاحظة: تبدو المنطقة التي تنتمي إليها النقطة B صغيرة نسبيا لأن الشبكة تخفي جزءا منها أمام اللاعب الموجود في النقطة O. 1- تمثيل القوة:
	0,25	~ 1 المعادلات الزمنية : $\sum \overline{F_{ext}} = \overline{P} = m\overline{a}$: المعادلات الثاني لنيوتن $\overline{F_{ext}} = \overline{P} = m\overline{a}$
	0,25	$a_x=0 \Leftarrow 0=ma_x:(ox)$ - بالإسقاط على (ox) مستقيمة منتظمة معادلتها $x(t)=v_0t:$ - بالإسقاط على (oy) :
	0,25	$v_y = -gt + c \Leftarrow a_y = \frac{dv_y}{dt} = -g \Leftarrow -mg = ma_y$
3,0	0,25	$v_y = -gt = \frac{dy}{dt} \Leftarrow v_{0y} = c = 0 \leftarrow t = 0$ و $y = -\frac{1}{2}gt^2 + c' \Leftarrow \frac{dy}{dt} = -gt$ ومنه:
	0,25	$y(t) = -\frac{1}{2}gt^2 + h \iff y = c' = h \iff t = 0$
	0,25×2	$y = -\frac{g}{2v_0^2} \cdot x^2 + h = -4 \cdot 10^{-3} \cdot x^2 + 2, 2 \leftarrow t = \frac{x}{v_0}$
	0,25×2	$x=12,2m$: نعوض في معادلة المسار بـ: $x=12,2m$ $y_F=-4\cdot 10^{-3} imes(12,2)^2+2$, $y_F=-4\cdot 10^{-3} imes(12,2)^2+2$, $y_F=-4\cdot 10^{-3}$ ومنه الكرة تمر فوق الشبكة .
1		$y_{B}=0$: عند الموضع B فإن $y_{B}=0$ ومنه:
	0,25×2	$x_B = \sqrt{\frac{2,2}{0,004}} = 23,45m > 18,7m \Leftarrow -4\cdot10^{-3}\cdot x_B^2 + 2,2 = 0$ ومنه الإرسال خاطئ.

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي دورة: جوان 2015

	العلا	عناصر الإجابة على الموضوع الثاني					
مجموع	مجزأة						
To compare of the com	0,25×2	X' T_A Y' X T_B					
	0,25	بتطبیق القانون الثانی لنیوتن :					
	0,25	$m_{_B}gsinlpha-T_{_B}=m_{_B}a$ (2) $(Y'Y)$ بالإسقاط على					
3,5	0,25	$m_B g \sin lpha - f = a(m_A + m_B)$ ومنه : $T_A = T_B$ ومنه البكرة مهملة الكتلة:					
,	0,25	$(I)\frac{dv}{dt} + \frac{f - m_B g \sin \alpha}{m_A + m_B} = 0$ $(I)dv$ $f = m_B g \sin \alpha$ dv dt					
	0,25	$eta=rac{f-m_B g \sin lpha}{m_A+m_B}$ خهي من الشكل: $eta=rac{dv}{dt}+eta=0$					
		2					
	0,25 0,25	- البيان (1) يوافق العربة (B) لأنه بعد انقطاع الخيط تزداد سرعتها البيان (2) يوافق العربة (A) لأنه بعد انقطاع الخيط تتناقص سرعتها بسبب قوة الاحتكاك حتى تتوقف البيان (2) عربة بيانيا : - بسارع كل عربة بيانيا :					
	0,25×2	$a'_{\beta} = \frac{\Delta v}{\Delta t} = \frac{4,5-2}{0,5-0} = 5,0m/s^2$ o $a'_{A} = \frac{\Delta v}{\Delta t} = \frac{0-2}{2-0} = -1,0m/s^2$					
<u> </u>	0,25	$d=rac{1}{2} imes2 imes2=2$ رالمسافة المقطوعة من طرف العربة A -المسافة المقطوعة من طرف العربة					
		حـ استنتاج شدة قوة الاحتكاك : العربة (A) : من المعادلة التفاضلية رقم (I) :					
	0,25	$f = -m_A a'_A = -0.3 \times (-1.0) = 0.3 N \iff a'_A + \frac{f}{m_A} = 0$					
	0,25	$\alpha = 30^{\circ} \Leftarrow \sin \alpha = \frac{a_B}{g} = \frac{5}{10} = 0,5 \Leftarrow a_B - g \sin \alpha = 0$: (B) العربة					
	<u> </u>						

العلامة		عناصر الإجابة على الموضوع الثاني							
مجموع	مجزأة			<u> </u>	ى الموصوح المام	, , , , , , , , , , , , , , , , , , ,			
	0,25×2	عادلة حالة الجملة	الم	21 - Zi	$n = Zn^{2+} + 2\dot{e}$ $H_3O^+ + 2\dot{e} = H_2$ $$	$=H_{2(aq)}+Zn_{(a}^{2+}$	$\frac{1}{(q_1)^2 + 2H_2O_{(l)}} = \frac{2H_2O_{(l)}}{2n^{-2} + (aq_1)^{-2}}$	التمرين التجريبي -1 معادلة التفاعل -2 جدول التقدم: + 2 H ₂ O (1)	
	,,23 2	ابتدائية	0	n ₀₁	n ₀₂	0	0	بوفرة	
ĺ		انتقالية	Х	n ₀₁ -x	n ₀₂ -2x	х	Х		
3,5	E.	نهائية	X _{max}	n ₀₁ -x _{max}	n ₀₂ -2x _{max}	X _{max}	X _{max}		
	0,25 0,25 0,25	نجوم،	$x_{max} = n_{01} = \frac{m}{M} = \frac{0.654}{65.4} = 10^{-2} mol \Leftarrow n_{01} - x_{max} = 0$ $x_{max} = \frac{n_{02}}{2} = \frac{C \cdot V}{2} = \frac{10^{-2} \times 0.1}{2} = 5 \times 10^{-4} mol \Leftarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol = 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol = 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - 2x_{max} = 0$ $x_{max} = 5 \times 10^{-4} mol \Leftrightarrow n_{02} - $						
	0,25×2	$v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt}$ ومنه: $\frac{dx}{dt} = \frac{P}{RT} \times \frac{dV_{H_2}}{dt} \Leftarrow x = \frac{PV_{H_2}}{RT} \Leftarrow PV_{H_2} = xRT \Leftarrow n_{H_2} = xRT$. $t = 0$ عند السرعة الحجمية التفاعل عند $v_{vol} = \frac{1,013 \times 10^5}{0,1 \times 8,314 \times 293} \times \frac{(12-0) \times 10^{-6}}{(6-0)} = 8,32 \times 10^{-4} mol \times L^{-1} \times min$. $t = 0$ حساب سرعة اختفاء شوارد: $t = 0$ عند نفس اللحظة: $t = 0$							
	0,25								
	0,25		$v_{H_{3}O^{+}} = -\frac{dn_{H_{3}O^{+}}}{dt} = -\frac{d(n_{02} - 2x)}{dt} = 2 \times \frac{dx}{dt} = 2 \times V \times v_{vol}$: لدينا: $v_{H_{3}O^{+}} = 2 \times 0.1 \times 8.32 \times 10^{-4} = 16.64 \times 10^{-5} mol / min$						
!	0,25 0,25		त्र ज्ञा <u>स</u>	ا د الله الله	1130				
	0,23				, –	'		4- تعریف زمن ن	
	0,25	<i>t</i> ₁	$\frac{1}{1/2} = 4$	$2 \min \leftarrow V$	$Y_{H_2}(t_{1/2}) = \frac{8,3}{2}$	$\frac{14 \times 293 \times 2}{1,013 \times 10}$	$\frac{.5 \times 10^{-5}}{0^5} = 6$	- قیمته بیانیا: ml	