PROGRAMAÇÃO PARALELA T8

Natan Luiz Paetzhold Berwaldt

```
global
void CalcFrame(unsigned char* pic, int width)
                                                                  Parte 1
    int frame = threadIdx.x;
    printf("%d\n",frame);
    for (int row = 0; row < width; row++) {
        for (int col = 0; col < width; col++) {
            float fx = col - 1024/2;
            float fy = row - 1024/2;
            float d = sqrtf( fx * fx + fy * fy );
            unsigned char color = (unsigned char) (160.0f + 127.0f *
                                                cos(d/10.0f - frame/7.0f) /
                                                (d/50.0f + 1.0f));
            pic[frame * width * width + row * width + col] = (unsigned char) color;
}}}
```

```
unsigned char* pic;
cudaMallocManaged(&pic, frames * width * width * sizeof(char));

CalcFrame<<<1,frames>>>(pic,width);

cudaDeviceSynchronize();
```

```
global
void CalcPixel(unsigned char* pic, int width, int frame)
                                                             Parte 2
   int row = blockIdx.x;
   int col = threadIdx.x;
   float fx = col - 1024/2;
   float fy = row - 1024/2;
   float d = sqrtf( fx * fx + fy * fy );
   unsigned char color = (unsigned char) (160.0f + 127.0f *
                                                cos(d/10.0f - frame/7.0f) /
                                                (d/50.0f + 1.0f));
   pic[frame * width * width + row * width + col] = (unsigned char) color;
       // allocate picture array
      unsigned char* pic;
      cudaMallocManaged(&pic, frames * width * width * sizeof(char));
      for(int i = 0; i < frames; i++){
          int b_size = num_b = width;
          CalcPixel<<<num b,b size>>>(pic,width,i);
```

cudaDeviceSynchronize();

TESTES EFETUADOS

Para cada caso foram efetuados 4 testes na máquina do google Colab:

- Tamanho 1024 x 1024 e 100 Frames
- Tamanho 1024 x 1024 e 200 Frames
- Tamanho 1024 x 1024 e 1000 Frames
- Tamanho 256 x 256 e 500 Frames

(Nota-se que testes maiores podem ou Passar do número máximo de threads/blocos disponíveis ou Estourar o tamanho máximo do buffer de memória).

1	EXEMPLO	-
2	Execução(Resolucao-Frames)	Tempo(ms)
3	1024-100	5321.0
4	1024-200	10629.8
5	1024-1000	53020.0
6	256-500	1680.5
7		•
8		-
9	PARTE 1	•
10	Execução(Resolucao-Frames)	Tempo(ms)
1	1024-100	635.0
12	1024-200	666.5
3	1024-1000	2906.9
14	256-500	55.5
5	-	-
16		-
7	PARTE 2	-
8	Execução(Resolucao-Frames)	Tempo(ms)
19	1024-100	35.5
20	1024-200	82.3
1	1024-1000	438.6
22	256-500	5.672

Tempos de Execução

Tipos de Execução (Tamanho Imagem / Numero de Frames)

Escalas Logarítmica e Reduzida para melhor visualização dos resultados

