Lecture 23: 3D Vision

Reminder: A5

Recurrent networks, attention, Transformers

Due on **Tuesday 4/12**, 11:59pm ET

A6

Will cover image generation and visualization:

Generative Models: GANs and VAEs

Network visualization: saliency maps, adversarial examples, class

visualizations

Style Transfer

Should be released tonight; due 2 weeks after release

YOU CANNOT USE LATE DAYS ON A6!!!!

Last Time: Self-Supervised Learning

Context Prediction

Contrastive Learning

Colorization

Justin Johnson Lecture 23 - 4 April 11, 2022

Previously: Predicting 2D Shapes of Objects

Instance **Semantic Object** Classification **Segmentation** Segmentation **Detection** GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT **CAT** SKY No spatial extent No objects, just pixels Multiple Objects

Justin Johnson Lecture 23 - 5 April 11, 2022

Today: Predicting 3D Shapes of Objects

Mask R-CNN:

2D Image -> 2D shapes

2D Image -> **3D** shapes

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN", ICCV 2017

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Focus on Two Problems today

Predicting 3D Shapes from single image

Processing 3D input data

Many more topics in 3D Vision!

Computing correspondences

Multi-view stereo

Structure from Motion

Simultaneous Localization and Mapping (SLAM)

Self-supervised learning

Differentiable graphics

3D Sensors

3D Shape Representations

Depth Map Voxel Grid

Pointcloud

Mesh

Implicit Surface

3D Shape Representations

Depth Map

Voxel Grid

Pointcloud

Mesh

Implicit Surface

3D Shape Representations: Depth Map

For each pixel, **depth map** gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

This type of data can be recorded directly for some types of 3D sensors (e.g. Microsoft Kinect)

RGB Image: 3 x H x W Depth Map: H x W

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Predicting Depth Maps

Predicted Depth Image:

 $1 \times H \times W$

RGB Input Image: 3 x H x W

Fully Convolutional network

Predicted Depth Image:

 $1 \times H \times W$

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014
Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson Lecture 23 - 13 April 11, 2022

Predicting Depth Maps

Predicted Depth Image:

 $1 \times H \times W$

Scale invariant loss

$$D(y, y^*) = \frac{1}{2n^2} \sum_{i,j} \left((\log y_i - \log y_j) - (\log y_i^* - \log y_j^*) \right)^2$$

$$= \frac{1}{n} \sum_i d_i^2 - \frac{1}{n^2} \sum_{i,j} d_i d_j = \frac{1}{n} \sum_i d_i^2 - \frac{1}{n^2} \left(\sum_i d_i \right)^2$$

Per-Pixel Loss

(Scale invariant)

RGB Input Image:

3xHxW

Fully Convolutional network

Predicted Depth Image:

 $1 \times H \times W$

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014
Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

3D Shape Representations: Surface Normals

For each pixel, surface normals give a vector giving the normal vector to the object in the world for that pixel

Normals: 3 x H x W

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Predicting Normals

RGB Input Image: $3 \times H \times W$

Fully Convolutional network

Ground-truth Normals:

 $3 \times H \times W$

Per-Pixel Loss: $(x \cdot y) / (|x||y|)$

Predicted Normals:

 $3 \times H \times W$

Recall: $x \cdot y$ $= |x| |y| \cos \theta$

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

3D Shape Representations

Depth Map

Voxel Grid

Pointcloud

Mesh

Implicit Surface

3D Shape Representations: Voxels

- Represent a shape with a V x V x V grid of occupancies
- Just like segmentation masks in Mask R-CNN, but in 3D!
- (+) Conceptually simple: just a 3D grid!
- (-) Need high spatial resolution to capture fine structures
- (-) Scaling to high resolutions is nontrivial!

Justin Johnson Lecture 23 - 18 April 11, 2022

Processing Voxel Inputs: 3D Convolution

Train with classification loss

Wu et al, "3D ShapeNets: A Deep Representation for Volumetric Shapes", CVPR 2015

Generating Voxel Shapes: 3D Convolution

Train with per-voxel cross-entropy loss

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Generating Voxel Shapes: "Voxel Tubes"

Final conv layer: V filters
Interpret as a "tube" of
voxel scores

Input image: 3 x 112 x 112

2D Features: C x H x W

3D Features: C' x D' x H' x W' Voxels: V x V x V

Train with per-voxel cross-entropy loss

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Voxel Problems: Memory Usage

Storing 1024³ voxel grid takes 4GB of memory!

Voxel memory usage (V x V x V float32 numbers)

Scaling Voxels: Oct-Trees

Use voxel grids with heterogenous resolution!

Tatarchenko et al, "Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs", ICCV 2017

3D Shape Representations

Depth Map

Voxel Grid

Pointcloud

Mesh

Implicit Surface

3D Shape Representations: Point Cloud

- Represent shape as a set of P points in 3D space
- (+) Can represent fine structures without huge numbers of points
- () Requires new architecture, losses, etc
- (-) Doesn't explicitly represent the surface of the shape: extracting a mesh for rendering or other applications requires post-processing

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Processing Pointcloud Inputs: PointNet_{Want to process}

Qi et al, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", CVPR 2017 Qi et al, "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space", NeurIPS 2017

Justin Johnson Lecture 23 - 26 April 11, 2022

Generating Pointcloud Outputs

We need a (differentiable) way to compare pointclouds as sets!

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson Lecture 23 - 28 April 11, 2022

We need a (differentiable) way to compare pointclouds as sets!

neighbor in the other set

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set
$$d_{CD}(S_1,S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x-y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x-y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson Lecture 23 - 29 April 11, 2022

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 neighbor in the other set

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set
$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson Lecture 23 - 30 April 11, 2022

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 neighbor in the other set

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set
$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson Lecture 23 - 31 April 11, 2022

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 neighbor in the other set

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set
$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{x \in S_1} \min_{x \in S_1} ||x - y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson Lecture 23 - 32 April 11, 2022

3D Shape Representations

Justin Johnson April 11, 2022 Lecture 23 - 33

Mesh

Pointcloud

Implicit Surface

Voxel

Grid

Depth

Map

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

Justin Johnson Lecture 23 - 34 April 11, 2022

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

- (+) Standard representation for graphics
- (+) Explicitly represents 3D shapes
- (+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

Dolphin image is in the public domain

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

- (+) Standard representation for graphics
- (+) Explicitly represents 3D shapes
- (+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail
- (+) Can attach data on verts and interpolate over the whole surface: RGB colors, texture coordinates, normal vectors, etc.

Justin Johnson Lecture 23 - 36 April 11, 2022

Predicting Meshes: Pixel2Mesh

Input: Single RGB

Image of an object

Output: Triangle mesh for the object

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Key ideas:

Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function

Output: Triangle mesh for the object

Predicting Triangle Meshes: Iterative Refinement

Idea #1: Iterative mesh refinement

Start from initial ellipsoid mesh
Network predicts offsets for each vertex
Repeat.

Predicting Triangle Meshes: Graph Convolution

$$f_i' = W_0 f_i + \sum_{j \in N(i)} W_1 f_j$$

Vertex v_i has feature f_i

New feature f_i' for vertex v_i depends on feature of neighboring vertices N(i)

Use same weights W_0 and W_1 to compute all outputs

Input: Graph with a feature vector at each vertex

Output: New feature vector for each vertex

Predicting Triangle Meshes: Graph Convolution

Each of these blocks consists of a stack of **graph convolution layers** operating on edges of the mesh

Predicting Triangle Meshes: Graph Convolution

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 42 April 11, 2022

Predicting Triangle Meshes: Vertex-Aligned Features

Idea #2: Aligned vertex features For each vertex of the mesh:

- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 43 April 11, 2022

Predicting Triangle Meshes: Vertex-Aligned Features

Idea #2: Aligned vertex features For each vertex of the mesh:

- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Similar to Rol-Align operation from detection: maintains alignment between input image and feature vectors

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 44 April 11, 2022

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 46 April 11, 2022

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 47 April 11, 2022

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Sample points from the surface of the ground-truth mesh (offline)

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 48 April 11, 2022

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Problem: Doesn't take the interior of predicted faces into account!

Sample points from the surface of the ground-truth mesh (offline)

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 49 April 11, 2022

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points from the surface of the predicted mesh (online!)

Sample points from the surface of the ground-truth mesh (offline)

Smith et al, "GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects", ICML 2019

Justin Johnson Lecture 23 - 50 April 11, 2022

Problem: Need to sample online! Must be efficient!

Problem: Need to backprop through sampling!

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points from the surface of the predicted mesh (online!)

Sample points from the surface of the ground-truth mesh (offline)

Smith et al, "GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects", ICML 2019

Justin Johnson Lecture 23 - 51 April 11, 2022

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Key ideas:

Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function

Output: Triangle mesh for the object

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson Lecture 23 - 52 April 11, 2022

3D Shape Prediction: Mesh R-CNN

Mask R-CNN:

2D Image -> 2D shapes

Mesh R-CNN:

2D Image -> Triangle Meshes

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN", ICCV 2017

Mesh R-CNN: Task

Input: Single RGB image

Output:

A set of detected objects For each object:

- Bounding box
- Category label
- Instance segmentation
- 3D triangle mesh

Mask R-CNN

Mesh head

Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

Our approach: Use voxel predictions to create initial mesh prediction!

Justin Johnson Lecture 23 - 56 April 11, 2022

Mesh R-CNN Pipeline Input image

Mesh R-CNN Pipeline

Input image

2D object recognition

Mesh R-CNN Pipeline Input image

2D object recognition

3D object voxels

Justin Johnson Lecture 23 - 59 April 11, 2022

Mesh R-CNN Pipeline

Input image

2D object recognition

3D object meshes

3D object voxels

Justin Johnson Lecture 23 - 60 April 11, 2022

Mesh R-CNN: ShapeNet Results

Justin Johnson Lecture 23 - 61 April 11, 2022

Justin Johnson Lecture 23 - 62 April 11, 2022

Predicting many objects per scene

Box & Mask Predictions

Mesh Predictions

Justin Johnson Lecture 23 - 63 April 11, 2022

Amodal completion: predict occluded parts of objects

Box & Mask Predictions

Mesh Predictions

Justin Johnson Lecture 23 - 64 April 11, 2022

Segmentation failures propagate to meshes

Box & Mask Predictions

Mesh Predictions

3D Shape Representations

Depth Map

Voxel Grid

Pointcloud

Mesh

Implicit Surface

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

$${x : o(x) = \frac{1}{2}}$$

Implicit function

Explicit Shape

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

$${x : o(x) = \frac{1}{2}}$$

Implicit function

Explicit Shape

Same idea: signed distance function (SDF) gives the Euclidean distance to the surface of the shape; sign gives inside / outside

Justin Johnson Lecture 23 - 68 April 11, 2022

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

$${x : o(x) = \frac{1}{2}}$$

Allows for multiscale outputs like Oct-Trees

Mescheder et al, "Occupancy Networks: Learning 3D Reconstruction in Function Space", CVPR 2019

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set $\{x : O(x) = \frac{1}{2}\}$

Mescheder et al, "Occupancy Networks: Learning 3D Reconstruction in Function Space", CVPR 2019

Extracting explicit shape outputs requires post-processing

Neural Radiance Fields (NeRF) for View Synthesis

View Synthesis

Input: Many images of the same scene (with known camera parameters)

Image source: Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

View Synthesis

Input: Many images of the same scene (with known camera parameters)

Output: Images showing the scene from novel viewpoints

Image source: Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson Lecture 23 - 73 April 11, 2022

Justin Johnson Lecture 23 - 76 April 11, 2022

Justin Johnson Lecture 23 - 77 April 11, 2022

Justin Johnson Lecture 23 - 78 April 11, 2022

Justin Johnson Lecture 23 - 79 April 11, 2022

Justin Johnson Lecture 23 - 80 April 11, 2022

Justin Johnson Lecture 23 - 81 April 11, 2022

Abstract away light sources, objects.
For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Justin Johnson Lecture 23 - 82 April 11, 2022

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Point on car:

- (1) Emits red light in hemisphere
- (2) Complete opaque $\sigma = 1$

Justin Johnson Lecture 23 - 83 April 11, 2022

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Point in empty space:

- (1) Emits no light (black)
- (2) Completely transparent $\sigma = 0$

Point on car:

- (1) Emits red light in hemisphere
- (2) Complete opaque $\sigma = 1$

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Ray origin

Parameterize each ray as origin plus

direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Abstract away light sources, objects. For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$$

Ray origin

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Color observed by the camera given by **volume rendering equation**:

$$C(r) = \int_{t_n}^{t_f} T(t)\sigma(r(t))c(r(t),d)dt$$

Ray origin

Near point: t_n

Current point: *t*

Far point: t_f

Parameterize each ray as origin plus

direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$

Ray origin

Near point: t_n

Current point: *t*

Far point: t_f

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Transmittance: How much light from the current point will reach the camera?

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$

Ray origin

Near point: t_n

Current point: *t*

Far point: t_f

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Transmittance: How much light from the current point will reach the camera?

Opacity: How opaque is the current point?

Justin Johnson Lecture 23 - 89 April 11, 2022

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Color observed by the camera given by **volume rendering equation**:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$

Ray origin

Near point: t_n

Current point: *t*

Far point: t_f

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Transmittance: How much light from the current point will reach the camera?

Opacity: How opaque is the current point?

Color: What color does the current point emit along the direction toward the camera?

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Ray origin

Near point: t_n

Color observed by the camera given by volume rendering equation:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$

$$T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$

Current point: *t*

Far point: t_f

Transmittance: How much light from the current point will reach the camera?

Compute transmittance by accumulating volume density up to current point

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point p emits in direction d is $c(p, d) \in [0,1]^3$

Abstract away light sources, objects. For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Parameterize each ray as origin plus

direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point p emits in direction d is $c(p, d) \in [0,1]^3$

Color observed by the camera given by volume rendering equation:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$

$$T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$

Approximate integrals with a set of samples:

Abstract away light sources, objects. For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point **p** emits in direction **d** is $c(p, d) \in [0,1]^3$

Color observed by the camera given by volume rendering equation:

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t) \sigma(\mathbf{r}(t)) c(\mathbf{r}(t), \mathbf{d}) dt$$

$$T(t) = \exp\left(-\int_{t_n}^t \sigma(\boldsymbol{r}(s))ds\right)$$

Approximate integrals with a set of samples:

$$C(\mathbf{r}) \approx \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$

$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Neural Radiance Fields (NeRF)

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Train a neural network to input position \mathbf{p} and direction \mathbf{d} , output $\sigma(\mathbf{p})$ and $c(\mathbf{p}, \mathbf{d})$

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Approximate integrals with a set of samples:

$$C(r) pprox \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) c_i$$
 $T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$ Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Neural Radiance Fields (NeRF)

Abstract away light sources, objects.

For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point \mathbf{p} emits in direction \mathbf{d} is $c(\mathbf{p}, \mathbf{d}) \in [0,1]^3$

Train a neural network to input position \mathbf{p} and direction \mathbf{d} , output $\sigma(\mathbf{p})$ and $c(\mathbf{p}, \mathbf{d})$

Training loss: Estimated pixel colors C(r) should match actual pixel colors from images

$$C(\mathbf{r}) \approx \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) c_i$$

$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Neural Radiance Fields (NeRF)

Abstract away light sources, objects. For each point in space, need to know:

- (1) How much light does it emit?
- (2) How opaque is it? $\sigma \in [0,1]$

Parameterize each ray as origin plus direction: r(t) = o + td

Volume Density is $\sigma(p) \in [0,1]$

Color that a point p emits in direction d is $c(p, d) \in [0,1]^3$

After training, can generate novel views of the scene by integrating along rays corresponding to new pixels

Train a neural network to input position **p**

and direction **d**, output $\sigma(p)$ and c(p,d)

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Neural Radiance Fields (NeRF): Network Architecture

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson Lecture 23 - 97 April 11, 2022

Neural Radiance Fields (NeRF): Network Architecture

 $\gamma(p) = (\sin(2^0\pi p), \cos(2^0\pi p), ..., \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p))$

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson Lecture 23 - 98 April 11, 2022

Neural Radiance Fields: Very Strong Results!

Justin Johnson Lecture 23 - 99 April 11, 2022

Neural Radiance Fields: Very Strong Results!

Neural Radiance Fields: Very Strong Results!

Neural Radiance Fields: Can extract 3D geometry!

Justin Johnson Lecture 23 - 102 April 11, 2022

Neural Radiance Fields

Main Problem: Very slow!

Training: 1-2 days on a V100 GPU, for just a single scene!

Inference: Sampling an image from a trained model:

(256 x 256 pixels) x (224 samples per pixel)

= 14.6M forward passes through MLP

Tons of follow-up work!

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Justin Johnson Lecture 23 - 103 April 11, 2022

Mip-NeRF: Model cones rather than rays

Barron et al, "Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields", ICCV 2021

Justin Johnson Lecture 23 - 104 April 11, 2022

Dynamic NeRF: Deformable Scenes

Park et al, "Nerfies: Deformable Neural Radiance Fields", ICCV 2021

Justin Johnson Lecture 23 - 105 April 11, 2022

RawNeRF: High-Dynamic Range Imagery

Mildenhall et al, "NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images", CVPR 2022

Justin Johnson Lecture 23 - 106 April 11, 2022

BlockNeRF: A Neighborhood of San Francisco

Tancik et al, "Block-NeRF: Scalable Large Scene Neural View Synthesis", arXiv 2022

Training NeRF models in minutes!

Yu et al, "Plenoxels: Radiance Fields without Neural Networks", CVPR 2022 Muller et al, "Instant Neural Graphics Primitives with a Multiresolution Hash Encoding", arXiv 2022 Chen et al, "TensoRF: Tensorial Radiance Fields", arXiv 2022

Justin Johnson Lecture 23 - 108 April 11, 2022

Generalizable NeRF: Same model for many scenes

Yu et al, "pixelNeRF: Neural Radiance Fields from One or Few Images", CVPR 2021 Wang et al, "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021

Summary: 3D Shape Representations

Depth Map Voxel Grid

Pointcloud

Mesh

Implicit Surface

Summary: Neural Radiance Fields

Represent neural radiance fields with neural networks

Train using posed RGB images of a scene

Render novel views, extract 3D scene representations

One of the hottest topics in computer vision for past few years

Justin Johnson Lecture 23 - 111 April 11, 2022

Next Time: Videos