Atividade AA-18

Nesta tarefa deve-se selecionar uma das linguagens listadas na descrição da AA-18na disciplina INF0333A da plataforma Turing e demonstrar formalmente (com o auxílio do *Pumping Lemma* para linguagens livres de contexto) que a linguagem escolhida não é livre de contexto. A descrição da linguagem está disponível no arquivo "Lista de linguagens que não são livres de contexto" (vide Seção "Coletânea de exercícios", na disciplina INF0333A da plataforma Turing).

Rafael Nunes Moreira Costa (202107855)

 $\mathcal{L}_{17} = \{ w \in \{0, 1\}^* \mid w = 0^l 1^m 0^n, \ l, m, n \in \mathbb{Z}, l = m * n + 1 \}.$

A linguagem \mathcal{L}_{17} não é livre de contexto.

Suponha que \mathcal{L}_{17} seja livre de contexto. O *Pumping Lemma* para linguagens livres de contexto garante a existência de $p \in \mathbb{Z}^+$ (pumping length), tal que qualquer cadeia $w \in \mathcal{L}_{17}$, com $|w| \geqslant p$, pode ser subdividida em subcadeias u, v, x, y e z (w = uvxyz) satisfazendo $|vxy| \leqslant p$, |vy| > 0 ($v \neq \varepsilon$ e/ou $y \neq \varepsilon$) e $uv^ixy^iz \in \mathcal{L}_{17}$, para $i \geqslant 0$.

Contudo, assumindo a possibilidade de que m=n, e considerando a cadeia $w=uvxyz=0^{p^2+1}1^p0^p\in\mathcal{L}_{17}.$

Se v ou y possuírem mais de um símbolo distinto em \sum , o $Pumping\ Lemma$ não será capaz de manter a regra $0^l1^m0^n$ por não seguir a sequência ncessária de 0 e 1, independente da posição variável de v ou y, gerando cadeias com "101010..." ou "010101..." a cada bombeamento, por exemplo.

Considerando que v e y possuem apenas um único símbolo:

Caso v esteja na cadeia inicial de 0 e seja elevado a qualquer i genérico, independente de y estar na cadeia final de 0 ou na cadeia de 1, o bombeamento ferirá a regra estabelecida para a cadeia $0^{p^2+1}1^p0^p$, por permitir que a cada bombeamento a quantidade de 1^p ou 0^p cresça na mesma frequência que 0^{p^2+1} , o que é claramente incorreto.

Caso v esteja na cadeia de 1 e seja elevado a qualquer i genérico, independente de y estar na cadeia final de 0 ou na cadeia de 1, o bombeamento ferirá a regra estabelecida para a cadeia $0^{p^2+1}1^p0^p$, por permitir que a cada bombeamento a quantidade de 1^p cresça enquanto $0p^2+1$ permanece constante, algo claramente incorreto também.

Da mesma forma, tanto quando $v \neq \varepsilon$ e $y = \varepsilon$ quanto $v = \varepsilon$ e $y \neq \varepsilon$, a regra estabelecida não será seguida por permitir que 0^{p^2+1} cresça enquanto 1^p ou 0^p permanecerão constantes, ou vice versa, o que é impossível.

Logo, dadas as contradições ao *Pumping Lemma*, é falsa a suposição de que \mathcal{L}_{17} é livre de contexto.