一、填空题(共 6 题, 每题 3 分, 共 18分)

1. 计算
$$\begin{vmatrix} 0 & a & b & 0 \\ a & 0 & 0 & b \\ 0 & c & d & 0 \\ c & 0 & 0 & d \end{vmatrix} = \underline{\qquad}$$

2. 设 $A = (a_{ij})$ 是三阶可逆矩阵,|A|为其行列式, A_{ij} 为元素 a_{ij} 的代数余子式,且满足

$$A_{ij} + a_{ij} = 0 (i, j = 1, 2, 3), \quad \mathbb{Q} |A| = \underline{\hspace{1cm}}.$$

- 3. 设 α 为 3×1 矩阵,若 $\alpha \alpha^T = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$,则 $\alpha^T \alpha = \underline{\qquad}$.
- 4. 若线性方程组 $\begin{cases} x_1+x_2=-a_1\\ x_2+x_3=a_2\\ x_3+x_4=-a_3\\ x_4+x_1=a_4 \end{cases}$ 有解,则常数 a_1,a_2,a_3,a_4 应满足条件_____。
- 5. 设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3 + 4x_1x_3$, 则二次型 $f(x_1, x_2, x_3)$ 的规范型为_
- 6. 设 3 阶矩阵 \boldsymbol{A} 的特征值为 2,-2,1, $\boldsymbol{B} = \boldsymbol{A}^2 \boldsymbol{A} + \boldsymbol{I}$, 其中 \boldsymbol{I} 为 3 阶单位阵,则行列式

$$|B| = \underline{\hspace{1cm}}$$

二、选择题

- 1. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关的充要条件是()
- (A) $\alpha_1, \alpha_2, \cdots, \alpha_m$ 均不为零向量
- (B) $\alpha_1, \alpha_2, \dots, \alpha_m$ 中任意两个向量的分量不成比例
- (C) $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中任意向量不能由其余m-1 向量线性表示
- (D) $\alpha_1, \alpha_2, \dots, \alpha_m$ 有一部分向量线性无关.
- 2. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶方阵,若 $(1,0,1,0)^T$ 是齐次线性方程组 Ax = 0 的一个基础解系,则

 $A^*x = 0$ 的基础解系可为(

$$\text{(A) }\alpha_1,\alpha_2 \quad \text{(B) }\alpha_1,\alpha_3 \quad \text{(C) }\alpha_1,\alpha_2,\alpha_3 \quad \text{(D) }\alpha_2,\alpha_3,\alpha_4$$

3. 设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C

的可逆矩阵Q为()

(A)
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. (B) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. (C) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. (D) $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- 4. 设A为 $m \times n$ 矩阵,则线性方程组为Ax = b有解的充分条件是()
 - (A) A 的秩小于 A 的行数 (B) A 是列满秩的
- - (C) A 是行满秩的
- (D) A 的秩小于 A 的列数
- 5. $\forall \lambda_1, \lambda_2$, $\exists \lambda_1, \lambda_2$, $\exists \lambda_1, \lambda_2$, $\exists \lambda_1, \lambda_2$, $\exists \lambda_2, \lambda_3$, $\exists \lambda_1, \lambda_2$, $\exists \lambda_2, \lambda_2$, $\exists \lambda_1, \lambda_2$, $\exists \lambda_1, \lambda_2$, $\exists \lambda_2, \lambda_2$, $\exists \lambda_2, \lambda_2$, $\exists \lambda_1, \lambda_2$, $\exists \lambda_2, \lambda_2$
 - (A) 对任意 $k_1 \neq 0, k_2 \neq 0$, $k_1 \xi + k_2 \eta$ 都是 A 的特征向量
 - (B) 存在常数 $k_1 \neq 0, k_2 \neq 0$,使得 $k_1 \xi + k_2 \eta$ 是 A 的特征向量
 - (C) 当 $k_1 \neq 0, k_2 \neq 0$ 时, $k_1 \xi + k_2 \eta$ 不可能是 A 的特征向量
 - (D) 存在唯一的一组常数 $k_1 \neq 0, k_2 \neq 0$,使得 $k_1 \xi + k_2 \eta$ 是 A 的特征向量
- 6. 设二次型 $f(x_1, x_2, x_3)$ 在正交变换 x = Py 下的标准型为 $2y_1^2 + y_2^2 y_3^2$, 其中

 $P = (e_1, e_2, e_3)$ 若 $Q = (e_1, -e_3, e_2)$,则 $f(x_1, x_2, x_3)$ 在正交变换 x = Qy 下的标准型 为

(A)
$$2y_1^2 - y_2^2 + y_3^2$$
 (B) $2y_1^2 + y_2^2 - y_3^2$

(C)
$$2y_1^2 - y_2^2 - y_3^2$$
 (D) $2y_1^2 + y_2^2 + y_3^2$

下列两题为多选题

- 线性方程组AX = b 的系数矩阵是 4×5 矩阵,且A 的行向量组线性无关,则下列正确的是(
- (A) 齐次线性方程组 $A^TX=0$ 只有零解;
- (B) 齐次线性方程组 $A^TAX=0$ 必有非零解:

- (C) 任意b ,线性方程组AX = b 必有无穷多解;
- (D) 任意 \boldsymbol{b} , 线性方程组 $\boldsymbol{A}\boldsymbol{X} = \boldsymbol{b}$ 必有唯一解;
- (E) 线性方程组AX = b有解,且有无穷多解.
- 8. 设 \boldsymbol{A} 和 \boldsymbol{B} 是可逆矩阵,且 \boldsymbol{A} 与 \boldsymbol{B} 相似,则下列正确的是()
 - (A) \boldsymbol{A}^T 与 \boldsymbol{B}^T 相似

(B) A^{-1} 与 B^{-1} 相似

(C) \boldsymbol{A}^2 与 \boldsymbol{B}^2 相似

- (D) $A + A^T$ 与 $B + B^T$ 相似
- (E) $A + A^{-1} = B + B^{-1}$ 相似

三、计算题

1. (6 分) 设|
$$\mathbf{D}_n$$
|= $\begin{vmatrix} \mathbf{a} & 1 \\ & \ddots \\ 1 & \mathbf{a} \end{vmatrix}$, 其中对角线上元素都是 \mathbf{a} , 未写出的元素都是 $\mathbf{0}$; 计算 $|\mathbf{D}_n|$

- 2. (4 分) 设方阵 A 满足 $A^2 A 2I = 0$, 证明 A + 2I 可逆, 并求 $(A + 2I)^{-1}$.
- 3. (6 分) 求向量组 $\alpha_1 = (1,0,1,0)^T$, $\alpha_2 = (2,1,-3,7)^T$, $\alpha_3 = (4,1,-1,7)^T$,

 $\alpha_4 = (3,1,0,3)^T, \alpha_5 = (4,1,3,-1)^T$ 的秩及其一个极大线性无关组,并用它们表示其余向量。

4. (8 分) 已知
$$R^3$$
 的两组基为 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (0,0,1)^T$; $\beta_1 = (1,0,1)^T$, $\beta_2 = (0,1,-1)^T$, $\beta_3 = (1,2,0)^T$

求基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵; 若 γ 在基 α_1 , α_2 , α_3 下的坐标为

 $(1, 2, T, \bar{x}\gamma$ 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标.

四、证明题

设 $\xi_1,\xi_2,...,\xi_p$ 是齐次线性方程组 Ax=0 的一个基础解系,向量 β 满足 $A\beta\neq 0$, 证明: 向量组

 β , ξ_1 + β , ξ_2 + β ,..., ξ_p + β 线性无关。

五、解方程组

已知方程组
$$\begin{cases} 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \\ x_1 + x_2 + x_3 + x_4 = -1 \end{cases}$$
 其系数矩阵的秩为 2,
$$ax_1 + x_2 + 3x_3 + bx_4 = 1$$

求:

- (1) *a*,*b* 的值;
- (2) 这个方程组的一个基础解系及其一般解。

六、化二次型为标准型

已知实二次型 $f(x_1,x_2,x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的秩为 2.

(1). 求实数a的值; (2). 利用正交变换法将二次型变成标准型,并写出相应的正交矩阵.