Adversarial Search

Instructors: David Suter

Course Delivered for Xidian

[Many slides adapted from those created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. Some others from colleagues at Adelaide University.]

Adversarial Games

Types of Games

Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?

 Want algorithms for calculating a strategy (policy) which recommends a move from each state

Deterministic Games

Many possible formalizations, one is:

States: S (start at s₀)

Players: P={1...N} (usually take turns)

Actions: A (may depend on player / state)

■ Transition Function: SxA → S

■ Terminal Test: $S \rightarrow \{t,f\}$

■ Terminal Utilities: $SxP \rightarrow R$

■ Solution for a player is a policy: S → A

Zero-Sum Games

Zero-Sum Games

- Agents have opposite utilities (values on outcomes)
- Lets us think of a single value that one maximizes and the other minimizes
- Adversarial, pure competition

General Games

- Agents have independent utilities (values on outcomes)
- Cooperation, indifference, competition, and more are all possible

Adversarial Search

Single-Agent Trees

Value of a State

Adversarial Game Trees

Minimax Values

Terminal States:

$$V(s) = \text{known}$$

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Implementation

def max-value(state):

initialize $v = -\infty$

for each successor of state:

v = max(v, minvalue(successor))

return v

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

def min-value(state):

initialize $v = +\infty$

for each successor of state:

v = min(v, maxvalue(successor))

return v

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Minimax Implementation (Dispatch)

```
def value(state):
                  if the state is a terminal state: return the state's
                     utility
                  if the next agent is MAX: return max-value(state)
                  if the next agent is MIN: return min-value(state)
def max-value(state):
                                                def min-value(state):
   initialize v = -\infty
                                                    initialize v = +\infty
   for each successor of state;
                                                    for each successor of state:
       v = max(v,
                                                        v = min(v,
         value(successor))
                                                          value(successor))
   return v
                                                    return v
```

Minimax Example

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, b ≈ 35, m≈ 100
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

[Demo: depth limited (L6D4,

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Game Tree Pruning

Minimax Example

Minimax Pruning

Alpha-Beta Pruning

- General configuration (MIN version)
 - We're computing the MIN-VALUE at some node n
 - We're looping over n's children
 - n's estimate of the childrens' min is dropping
 - Who cares about n's value? MAX
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, MAX will avoid it, so we can stop considering n's other children (it's already bad enough that it won't be played)

Alpha-Beta Implementation

```
α: MAX's best option on path to rootβ: MIN's best option on path to root
```

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
    v = \max(v, v, value(successor, \alpha, \beta))
    if v \ge \beta return v
    \alpha = \max(\alpha, v)
    return v
```

```
def min-value(state , \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
    v = \min(v, v_{\text{value}}(successor, \alpha, \beta))
    if v \le \alpha return v_{\text{constant}}(\beta, v_{\text{
```


Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta

Step-By-Step Examples

