Mathematical and Logical Foundations of Computer Science

Lecture 12 - Predicate Logic (Natural Deduction Proofs)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- Symbolic logic
- Propositional logic
- ► Predicate logic
- ► Constructive vs. Classical logic
- Type theory

Today

- Natural Deduction proofs for Predicate Logic
- ▶ ∀/∃ rules
- substitution

Today

- Natural Deduction proofs for Predicate Logic
- ▶ ∀/∃ rules
- substitution

Further reading:

Chapter 8 of http://leanprover.github.io/logic_and_proof/

Famous derivation in logic:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Famous derivation in logic:

- All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

Famous derivation in logic:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

We introduced:

predicates, quantifiers, variables, functions, and constants

Famous derivation in logic:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

We introduced:

predicates, quantifiers, variables, functions, and constants

Famous derivation in logic:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

We introduced:

predicates, quantifiers, variables, functions, and constants

We can write this argument as $\forall x.(p(x) \rightarrow q(x)), p(s) \vdash q(s)$

Domain: people

Famous derivation in logic:

- ▶ All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

We introduced:

predicates, quantifiers, variables, functions, and constants

- Domain: people
- ▶ Predicates: p(x) = "x is a man"; q(x) = "x is mortal"

Famous derivation in logic:

- All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

We introduced:

predicates, quantifiers, variables, functions, and constants

- Domain: people
- ▶ Predicates: p(x) = "x is a man"; q(x) = "x is mortal"
- ▶ Quantifier: The "for all" symbol ∀

Famous derivation in logic:

- All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

We introduced:

predicates, quantifiers, variables, functions, and constants

- ▶ Domain: people
- ▶ Predicates: p(x) = "x is a man"; q(x) = "x is mortal"
- ▶ Quantifier: The "for all" symbol ∀
- Variable: x to denote an element of the domain

Famous derivation in logic:

- All men are mortal
- Socrates is a man
- ▶ Therefore, Socrates is mortal

Cannot be expressed in propositional logic

We introduced:

predicates, quantifiers, variables, functions, and constants

- Domain: people
- ▶ Predicates: p(x) = "x is a man"; q(x) = "x is mortal"
- ▶ Quantifier: The "for all" symbol ∀
- ▶ Variable: x to denote an element of the domain
- Constant: s which stands for Socrates

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The scope of a quantifier extends as far right as possible. E.g., $P \wedge \forall x. p(x) \vee q(x)$ is read as $P \wedge \forall x. (p(x) \vee q(x))$

Recap: Examples

Consider the following domain and signature:

- ▶ Domain: N
- Functions: $0, 1, 2, \ldots$ (arity 0); + (arity 2)
- ▶ Predicates: prime, even, odd (arity 1); =, >, \geqslant (arity 2)

Recap: Examples

Consider the following domain and signature:

- ▶ Domain: N
- Functions: $0, 1, 2, \ldots$ (arity 0); + (arity 2)
- Predicates: prime, even, odd (arity 1); =, >, ≥ (arity 2)

Express the following sentences in predicate logic

▶ All prime numbers are either 2 or odd.

$$\forall x. \mathtt{prime}(x) \to x = 2 \lor \mathtt{odd}(x)$$

Every even number is equal to the sum of two primes.

$$\forall x. \mathtt{even}(x) \rightarrow \exists y. \exists z. \mathtt{prime}(y) \land \mathtt{prime}(z) \land x = y + z$$

▶ There is no number greater than all numbers.

$$\neg \exists x. \forall y. x \geqslant y$$

All numbers have a number greater than them.

$$\forall x. \exists y. y > x$$

Domain is people, and we have 6 predicates

 $\mathsf{politician}(x) \hspace{0.2cm} \mathsf{rich}(x) \hspace{0.2cm} \mathsf{crazy}(x) \hspace{0.2cm} \mathsf{trusts}(x,y) \hspace{0.2cm} \mathsf{knows}(x,y) \hspace{0.2cm} \mathsf{related-to}(x,y)$

Domain is people, and we have 6 predicates

```
\mathsf{politician}(x) \; \mathsf{rich}(x) \; \mathsf{crazy}(x) \; \mathsf{trusts}(x,y) \; \mathsf{knows}(x,y) \; \mathsf{related-to}(x,y)
```

- Nobody trusts a politician.
- Anyone who trusts a politician is crazy.
- Everyone knows someone who is related to a politician.
- Everyone who is rich is either a politician or knows a politician.

Domain is people, and we have 6 predicates

```
\mathsf{politician}(x) \; \mathsf{rich}(x) \; \mathsf{crazy}(x) \; \mathsf{trusts}(x,y) \; \mathsf{knows}(x,y) \; \mathsf{related-to}(x,y)
```

- Nobody trusts a politician. ¬∃x.∃y.politician(y) ∧ trusts(x, y)
- Anyone who trusts a politician is crazy.
- Everyone knows someone who is related to a politician.
- Everyone who is rich is either a politician or knows a politician.

Domain is people, and we have 6 predicates

```
\mathsf{politician}(x) \; \mathsf{rich}(x) \; \mathsf{crazy}(x) \; \mathsf{trusts}(x,y) \; \mathsf{knows}(x,y) \; \mathsf{related-to}(x,y)
```

- Nobody trusts a politician. ¬∃x.∃y.politician(y) ∧ trusts(x, y)
- ▶ Anyone who trusts a politician is crazy. $\forall x.(\exists y. politician(y) \land trusts(x, y)) \rightarrow crazy(x)$
- Everyone knows someone who is related to a politician.
- Everyone who is rich is either a politician or knows a politician.

Domain is people, and we have 6 predicates

```
\mathsf{politician}(x) \; \mathsf{rich}(x) \; \mathsf{crazy}(x) \; \mathsf{trusts}(x,y) \; \mathsf{knows}(x,y) \; \mathsf{related-to}(x,y)
```

- Nobody trusts a politician. ¬∃x.∃y.politician(y) ∧ trusts(x, y)
- ▶ Anyone who trusts a politician is crazy. $\forall x.(\exists y. politician(y) \land trusts(x, y)) \rightarrow crazy(x)$
- ► Everyone knows someone who is related to a politician. $\forall x. \exists y. \text{knows}(x, y) \land \exists z. \text{politician}(z) \land \text{related-to}(y, z)$
- Everyone who is rich is either a politician or knows a politician.

Domain is people, and we have 6 predicates

```
\mathsf{politician}(x) \; \mathsf{rich}(x) \; \mathsf{crazy}(x) \; \mathsf{trusts}(x,y) \; \mathsf{knows}(x,y) \; \mathsf{related-to}(x,y)
```

- Nobody trusts a politician. ¬∃x.∃y.politician(y) ∧ trusts(x, y)
- ▶ Anyone who trusts a politician is crazy. $\forall x.(\exists y. politician(y) \land trusts(x, y)) \rightarrow crazy(x)$
- ▶ Everyone knows someone who is related to a politician. $\forall x. \exists y. \mathsf{knows}(x,y) \land \exists z. \mathsf{politician}(z) \land \mathsf{related-to}(y,z)$
- ▶ Everyone who is rich is either a politician or knows a politician. $\forall x. \text{rich}(x) \rightarrow \text{politician}(x) \lor \exists y. \text{knows}(x,y) \land \text{politician}(y)$

Propositional logic: Each connective has at least 2 inference rules

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Introduction and elimination rules for \forall and \exists ?

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Introduction and elimination rules for \forall and \exists ?

$$\begin{array}{ccc} \frac{?}{\forall y.P} & [\forall I] & & \frac{\forall x.P}{?} & [\forall E] \\ \\ \frac{?}{\exists y.P} & [\exists I] & & \frac{\exists x.P}{?} & [\exists E] \end{array}$$

Free variables and Bound variables:

Free variables and Bound variables:

Bound variables:

Free variables and Bound variables:

Bound variables:

▶ Consider the formula $\forall x.\text{even}(x) \lor \text{odd}(x)$

Free variables and Bound variables:

Bound variables:

Consider the formula ∀x.even(x) ∨ odd(x)
Here the variable x is bound by the quantifier ∀

Free variables and Bound variables:

Bound variables:

- Consider the formula ∀x.even(x) ∨ odd(x)
 Here the variable x is bound by the quantifier ∀
- $\forall x. \mathsf{even}(x) \lor \mathsf{odd}(x) \text{ is considered the same as } \\ \forall y. \mathsf{even}(y) \lor \mathsf{odd}(y)$

Free variables and **Bound** variables:

Bound variables:

- ▶ Consider the formula $\forall x. even(x) \lor odd(x)$ Here the variable x is **bound** by the quantifier \forall
- $\forall x. even(x) \lor odd(x)$ is considered the same as $\forall y.\mathsf{even}(y) \lor \mathsf{odd}(y)$

Renaming a **bound** variable **doesn't** change the meaning!

Free variables and Bound variables:

Bound variables:

- ▶ Consider the formula $\forall x. \mathsf{even}(x) \lor \mathsf{odd}(x)$ Here the variable x is **bound** by the quantifier \forall
- ▶ $\forall x. \text{even}(x) \lor \text{odd}(x)$ is considered the same as $\forall y. \text{even}(y) \lor \text{odd}(y)$ Renaming a **bound** variable **doesn't** change the meaning!

Free variables:

Free variables and Bound variables:

Bound variables:

- Consider the formula ∀x.even(x) ∨ odd(x)
 Here the variable x is bound by the quantifier ∀
- ▶ $\forall x. \text{even}(x) \lor \text{odd}(x)$ is considered the same as $\forall y. \text{even}(y) \lor \text{odd}(y)$ Renaming a **bound** variable **doesn't** change the meaning!

Free variables:

▶ Consider the formula $\forall y.x \leq y$

Free variables and Bound variables:

Bound variables:

- ► Consider the formula $\forall x. even(x) \lor odd(x)$ Here the variable x is **bound** by the quantifier \forall
- ▶ $\forall x. \text{even}(x) \lor \text{odd}(x)$ is considered the same as $\forall y. \text{even}(y) \lor \text{odd}(y)$ Renaming a **bound** variable **doesn't** change the meaning!

- ▶ Consider the formula $\forall y.x \leq y$
- ightharpoonup y is a **bound** variable and x is a **free** variable

Free variables and Bound variables:

Bound variables:

- Consider the formula ∀x.even(x) ∨ odd(x)
 Here the variable x is bound by the quantifier ∀
- $\forall x. \mathsf{even}(x) \lor \mathsf{odd}(x)$ is considered the same as $\forall y. \mathsf{even}(y) \lor \mathsf{odd}(y)$

Renaming a **bound** variable **doesn't** change the meaning!

- ▶ Consider the formula $\forall y.x \leq y$
- ▶ y is a **bound** variable and x is a **free** variable
- variables are free if they are not bound

Free variables and Bound variables:

Bound variables:

- ► Consider the formula $\forall x. even(x) \lor odd(x)$ Here the variable x is **bound** by the quantifier \forall
- $\forall x. \mathsf{even}(x) \lor \mathsf{odd}(x) \text{ is considered the same as } \\ \forall y. \mathsf{even}(y) \lor \mathsf{odd}(y)$

Renaming a **bound** variable **doesn't** change the meaning!

- ▶ Consider the formula $\forall y.x \leq y$
- ightharpoonup y is a **bound** variable and x is a **free** variable
- variables are free if they are not bound
- ▶ $\forall y.x \leq y$ is the same as $\forall z.x \leq z$

Free variables and Bound variables:

Bound variables:

- Consider the formula ∀x.even(x) ∨ odd(x)
 Here the variable x is bound by the quantifier ∀
- $\forall x. \mathsf{even}(x) \lor \mathsf{odd}(x) \text{ is considered the same as } \\ \forall y. \mathsf{even}(y) \lor \mathsf{odd}(y)$

Renaming a **bound** variable **doesn't** change the meaning!

- ▶ Consider the formula $\forall y.x \leq y$
- ▶ y is a **bound** variable and x is a **free** variable
- variables are free if they are not bound
- ▶ $\forall y.x \leq y$ is the same as $\forall z.x \leq z$
- ▶ $\forall y.x \leq y$ is not the same as $\forall y.w \leq y$

Free variables and Bound variables:

Bound variables:

- Consider the formula ∀x.even(x) ∨ odd(x)
 Here the variable x is bound by the quantifier ∀
- $\forall x. \mathsf{even}(x) \lor \mathsf{odd}(x) \text{ is considered the same as } \\ \forall y. \mathsf{even}(y) \lor \mathsf{odd}(y)$

Renaming a **bound** variable **doesn't** change the meaning!

- ▶ Consider the formula $\forall y.x \leq y$
- ▶ y is a **bound** variable and x is a **free** variable
- variables are free if they are not bound
- ▶ $\forall y.x \leq y$ is the same as $\forall z.x \leq z$
- $\forall y.x \leqslant y \text{ is not the same as } \forall y.w \leqslant y$
- Renaming a free variable changes the meaning!

The **scope** of a quantified formula of the form $\forall x.P$ or $\exists x.P$ is P. The quantifier are said to **bind** x.

The **scope** of a quantified formula of the form $\forall x.P$ or $\exists x.P$ is P. The quantifier are said to **bind** x.

Bound variables: a variable x occurs bound in a formula, if it occurs in the scope of a quantifier quantifying x

The **scope** of a quantified formula of the form $\forall x.P$ or $\exists x.P$ is P. The quantifier are said to **bind** x.

Bound variables: a variable \boldsymbol{x} occurs bound in a formula, if it occurs in the scope of a quantifier quantifying \boldsymbol{x}

Free variables: a variable x occurs free in a formula, if it does not occur in the scope of a quantifier quantifying x

The **scope** of a quantified formula of the form $\forall x.P$ or $\exists x.P$ is P. The quantifier are said to **bind** x.

Bound variables: a variable x occurs bound in a formula, if it occurs in the scope of a quantifier quantifying x

Free variables: a variable x occurs free in a formula, if it does not occur in the scope of a quantifier quantifying x

The set of variables occurring free/bound in a terms and formulas is recursively computed as follows:

fv(x)	=	$\{x\}$			
$fv(f(t_1,,t_n))$	=	$fv(t_1) \cup \cup fv(t_n)$			
$\mathtt{fv}(p(t_1,,t_n))$	=	$\mathtt{fv}(t_1) \cup \cup \mathtt{fv}(t_n)$	$\mathtt{bv}(p(t_1,,t_n))$	=	Ø
$fv(\neg P)$	=	fv(P)	$bv(\neg P)$	=	bv(P)
$fv(P_1 \wedge P_2)$	=	$fv(P_1) \cup fv(P_2)$	$bv(P_1 \wedge P_2)$	=	$bv(P_1) \cup bv(P_2)$
$fv(P_1 \vee P_2)$	=	$fv(P_1) \cup fv(P_2)$	$bv(P_1 \lor P_2)$	=	$\mathtt{bv}(P_1) \cup \mathtt{bv}(P_2)$
$fv(P_1 \rightarrow P_2)$	=	$fv(P_1) \cup fv(P_2)$	$bv(P_1 \rightarrow P_2)$	=	$\mathtt{bv}(P_1) \cup \mathtt{bv}(P_2)$
$fv(\forall x.P)$	=	$fv(P)\backslash\{x\}$	$bv(\forall x.P)$	=	$bv(P) \cup \{x\}$
$fv(\exists x.P)$	=	$fv(P)ackslash\{x\}$	$bv(\exists x.P)$	_	$bv(P) \cup \{x\}$

What are the free variables of the following formulas

$$P_1 = (\operatorname{odd}(x) \land \exists y.y < x \land \operatorname{odd}(y))$$

$$P_2 = (\operatorname{odd}(x) \land x > y \land \exists y.y < x \land \operatorname{odd}(y))$$

$$P_3 = (\forall x. \mathtt{odd}(x) \land x > y \land \exists y. y < x \land \mathtt{odd}(y))$$

What are the free variables of the following formulas

- $P_1 = (\operatorname{odd}(x) \land \exists y.y < x \land \operatorname{odd}(y))$ $\operatorname{fv}(P_1) = \{x\}$
- $P_2 = (\operatorname{odd}(x) \land x > y \land \exists y.y < x \land \operatorname{odd}(y))$ $\operatorname{fv}(P_2) = \{x, y\}$
- $P_3 = (\forall x. \mathtt{odd}(x) \land x > y \land \exists y. y < x \land \mathtt{odd}(y))$ $\mathtt{fv}(P_3) = \{y\}$

What are the free variables of the following formulas

- $P_1 = (\operatorname{odd}(x) \land \exists y.y < x \land \operatorname{odd}(y))$ $\operatorname{fv}(P_1) = \{x\}$
- $P_2 = (\operatorname{odd}(x) \land x > y \land \exists y.y < x \land \operatorname{odd}(y))$ $\operatorname{fv}(P_2) = \{x, y\}$
- $P_3 = (\forall x. \mathsf{odd}(x) \land x > y \land \exists y. y < x \land \mathsf{odd}(y))$ $\mathsf{fv}(P_3) = \{y\}$

Note: In $(odd(x) \land x > y \land \exists y.y < x \land odd(y))$ the green occurrence of y is **not** the same variable as the red occurrence of y.

What are the free variables of the following formulas

- $P_1 = (\operatorname{odd}(x) \land \exists y.y < x \land \operatorname{odd}(y))$ $\operatorname{fv}(P_1) = \{x\}$
- $P_2 = (\operatorname{odd}(x) \land x > y \land \exists y.y < x \land \operatorname{odd}(y))$ $\operatorname{fv}(P_2) = \{x, y\}$
- $P_3 = (\forall x. \mathsf{odd}(x) \land x > y \land \exists y. y < x \land \mathsf{odd}(y))$ $\mathsf{fv}(P_3) = \{y\}$

Note: In $(odd(x) \land x > y \land \exists y.y < x \land odd(y))$ the green occurrence of y is **not** the same variable as the red occurrence of y.

The formula $(\text{odd}(x) \land x > y \land \exists y.y < x \land \text{odd}(y))$ is considered the same as $(\text{odd}(x) \land x > y \land \exists z.z < x \land \text{odd}(z))$

Propositional logic: Each connective has at least 2 inference rules

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination.

Introduction and elimination rules for \forall and \exists ?

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Introduction and elimination rules for \forall and \exists ?

$$\begin{array}{ccc} \frac{?}{\forall y.P} & [\forall I] & & \frac{\forall x.P}{?} & [\forall E] \\ \\ \frac{?}{\exists u.P} & [\exists I] & & \frac{\exists x.P}{?} & [\exists E] \end{array}$$

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Introduction and elimination rules for \forall and \exists ?

$$\begin{array}{ccc} \frac{?}{\forall y.P} & [\forall I] & & \frac{\forall x.P}{?} & [\forall E] \\ \\ \frac{?}{\exists y.P} & [\exists I] & & \frac{\exists x.P}{?} & [\exists E] \end{array}$$

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Introduction and elimination rules for \forall and \exists ?

$$\begin{array}{ccc} \frac{?}{\forall y.P} & [\forall I] & & \frac{\forall x.P}{?} & [\forall E] \\ \\ \frac{?}{\exists u.P} & [\exists I] & & \frac{\exists x.P}{?} & [\exists E] \end{array}$$

WARNING A

Trickier than inference rules from propositional logic!

Propositional logic: Each connective has at least 2 inference rules

- At least 1 for introduction
- At least 1 for elimination

Introduction and elimination rules for \forall and \exists ?

$$\begin{array}{ccc} \frac{?}{\forall y.P} & [\forall I] & & \frac{\forall x.P}{?} & [\forall E] \\ \\ \frac{?}{\exists u.P} & [\exists I] & & \frac{\exists x.P}{?} & [\exists E] \end{array}$$

WARNING A

Trickier than inference rules from propositional logic!

We need to be careful with free and bound variables!

$$\frac{\forall x.P}{?}$$
 [$\forall E$]

$$\frac{\forall x.P}{?}$$
 [$\forall E$]

What can we conclude from the fact that P is true for all x?

$$\frac{\forall x.P}{?}$$
 $[\forall E]$

What can we conclude from the fact that P is true for all x? Predicate P is true for all elements x of the domain

$$\frac{\forall x.P}{?}$$
 $[\forall E]$

What can we conclude from the fact that P is true for all x?

Predicate P is true for all elements x of the domain

For any element of the domain t, we can deduce that P is true where x is replaced by t is true

$$\frac{\forall x.P}{?}$$
 $[\forall E]$

What can we conclude from the fact that P is true for all x?

Predicate P is true for all elements x of the domain

- ▶ For any element of the domain *t*, we can deduce that *P* is true where *x* is replaced by *t* is true
- ► This "replacing" operation is a **substitution** operation as seen in lecture 2.

$$\frac{\forall x.P}{?}$$
 $[\forall E]$

What can we conclude from the fact that P is true for all x?

Predicate P is true for all elements x of the domain

- ▶ For any element of the domain *t*, we can deduce that *P* is true where *x* is replaced by *t* is true
- ► This "replacing" operation is a **substitution** operation as seen in lecture 2.
- ▶ However, we now have to be careful with free/bound variables.

Substitution is defined recursively on terms and formulas: $P[x \backslash t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas:

 $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

1st attempt (WRONG)

$$\begin{array}{rclcrcl} x[x \backslash t] & = & t \\ x[y \backslash t] & = & x \\ (f(t_1, \ldots, t_n))[x \backslash t] & = & f(t_1[x \backslash t], \ldots, t_n[x \backslash t]) \\ (p(t_1, \ldots, t_n))[x \backslash t] & = & p(t_1[x \backslash t], \ldots, t_n[x \backslash t]) \\ \hline (-P)[x \backslash t] & = & -P[x \backslash t] \\ (P_1 \wedge P_2)[x \backslash t] & = & P_1[x \backslash t] \wedge P_2[x \backslash t] \\ (P_1 \vee P_2)[x \backslash t] & = & P_1[x \backslash t] \vee P_2[x \backslash t] \\ (P_1 \rightarrow P_2)[x \backslash t] & = & P_1[x \backslash t] \rightarrow P_2[x \backslash t] \\ \hline (\forall x.P)[x \backslash t] & = & \forall x.P \\ \hline (\exists x.P)[x \backslash t] & = & \exists x.P \\ (\forall y.P)[x \backslash t] & = & \forall y.P[x \backslash t] \\ \hline (\exists y.P)[x \backslash t] & = & \exists y.P[x \backslash t] \\ \hline \end{array}$$

Substitution is defined recursively on terms and formulas:

 $P[x \mid t]$ substitute all the free occurrences of x in P with t.

1st attempt (WRONG)

$$\begin{aligned} x[x \setminus t] &= t \\ x[y \setminus t] &= x \\ (f(t_1, \dots, t_n))[x \setminus t] &= f(t_1[x \setminus t], \dots, t_n[x \setminus t]) \\ (p(t_1, \dots, t_n))[x \setminus t] &= p(t_1[x \setminus t], \dots, t_n[x \setminus t]) \\ (-P)[x \setminus t] &= -P[x \setminus t] \\ (P_1 \wedge P_2)[x \setminus t] &= P_1[x \setminus t] \wedge P_2[x \setminus t] \\ (P_1 \vee P_2)[x \setminus t] &= P_1[x \setminus t] \vee P_2[x \setminus t] \\ (P_1 \rightarrow P_2)[x \setminus t] &= P_1[x \setminus t] \rightarrow P_2[x \setminus t] \\ (\forall x. P)[x \setminus t] &= \forall x. P \\ (\exists x. P)[x \setminus t] &= \exists x. P \\ (\forall y. P)[x \setminus t] &= \exists y. P[x \setminus t] \\ (\exists y. P)[x \setminus t] &= \exists y. P[x \setminus t] \end{aligned}$$

Why is this wrong?

Substitution is defined recursively on terms and formulas:

 $P[x \mid t]$ substitute all the free occurrences of x in P with t.

1st attempt (WRONG)

$$\begin{aligned} x[x \mid t] &= t \\ x[y \mid t] &= x \\ (f(t_1, \dots, t_n))[x \mid t] &= f(t_1[x \mid t], \dots, t_n[x \mid t]) \\ (p(t_1, \dots, t_n))[x \mid t] &= p(t_1[x \mid t], \dots, t_n[x \mid t]) \\ \hline (-P)[x \mid t] &= -P[x \mid t] \\ (P_1 \land P_2)[x \mid t] &= P_1[x \mid t] \land P_2[x \mid t] \\ (P_1 \lor P_2)[x \mid t] &= P_1[x \mid t] \lor P_2[x \mid t] \\ \hline (P_1 \to P_2)[x \mid t] &= P_1[x \mid t] \to P_2[x \mid t] \\ \hline (\forall x. P)[x \mid t] &= \forall x. P \\ \hline (\exists x. P)[x \mid t] &= \exists x. P \\ (\forall y. P)[x \mid t] &= \exists y. P[x \mid t] \\ \hline (\exists y. P)[x \mid t] &= \exists y. P[x \mid t] \end{aligned}$$

Why is this wrong? $(\forall y.y > x)[x \setminus y]$ would return $\forall y.y > y$, where the free y is now bound! The free y got captured! The red occurrences of y stand for different variables than the green ones.

Substitution is defined recursively on terms and formulas: $P[x \backslash t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas: $P[x \setminus t]$ substitute all the free occurrences of x in P with t. **2nd attempt (CORRECT)**

Substitution is defined recursively on terms and formulas:

 $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

2nd attempt (CORRECT)

$$\begin{aligned} x[x \setminus t] &= t \\ x[y \setminus t] &= x \\ (f(t_1, \dots, t_n))[x \setminus t] &= f(t_1[x \setminus t], \dots, t_n[x \setminus t]) \\ (p(t_1, \dots, t_n))[x \setminus t] &= p(t_1[x \setminus t], \dots, t_n[x \setminus t]) \\ (-P)[x \setminus t] &= -P[x \setminus t] \\ (P_1 \land P_2)[x \setminus t] &= P_1[x \setminus t] \land P_2[x \setminus t] \\ (P_1 \lor P_2)[x \setminus t] &= P_1[x \setminus t] \lor P_2[x \setminus t] \\ (P_1 \to P_2)[x \setminus t] &= P_1[x \setminus t] \lor P_2[x \setminus t] \\ (\forall x.P)[x \setminus t] &= \forall x.P \\ (\exists x.P)[x \setminus t] &= \exists x.P \\ (\forall y.P)[x \setminus t] &= \forall y.P[x \setminus t], \text{ if } y \notin \text{fv}(t) \\ (\exists y.P)[x \setminus t] &= \exists y.P[x \setminus t], \text{ if } y \notin \text{fv}(t) \end{aligned}$$

The additional conditions ensure that free variables do not get captured.

Substitution is defined recursively on terms and formulas:

 $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

2nd attempt (CORRECT)

$$\begin{aligned} x[x \setminus t] &= t \\ x[y \setminus t] &= x \\ (f(t_1, \dots, t_n))[x \setminus t] &= f(t_1[x \setminus t], \dots, t_n[x \setminus t]) \\ (p(t_1, \dots, t_n))[x \setminus t] &= p(t_1[x \setminus t], \dots, t_n[x \setminus t]) \\ (-P)[x \setminus t] &= -P[x \setminus t] \\ (P_1 \wedge P_2)[x \setminus t] &= P_1[x \setminus t] \wedge P_2[x \setminus t] \\ (P_1 \vee P_2)[x \setminus t] &= P_1[x \setminus t] \wedge P_2[x \setminus t] \\ (P_1 \rightarrow P_2)[x \setminus t] &= P_1[x \setminus t] \rightarrow P_2[x \setminus t] \\ (\forall x. P)[x \setminus t] &= \forall x. P \\ (\exists x. P)[x \setminus t] &= \exists x. P \\ (\forall y. P)[x \setminus t] &= \exists y. P[x \setminus t], \text{ if } y \notin \text{fv}(t) \\ (\exists y. P)[x \setminus t] &= \exists y. P[x \setminus t], \text{ if } y \notin \text{fv}(t) \end{aligned}$$

The additional conditions ensure that free variables do not get captured.

These conditions can always be met by silently renaming bound variables before substituting.

The correct rule is:

$$\frac{\forall x.P}{P[x \backslash t]} \quad [\forall E]$$

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

Example: consider the formula $\forall x. \exists y. y > x$

True over domain of natural numbers

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

- True over domain of natural numbers
- P is $\exists y.y > x$

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

- True over domain of natural numbers
- ightharpoonup P is $\exists y.y > x$
- ightharpoonup Let t be y

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

- True over domain of natural numbers
- ightharpoonup P is $\exists y.y > x$
- \blacktriangleright Let t be y
- ▶ This condition guarantees that we can do the substitution

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

- True over domain of natural numbers
- ightharpoonup P is $\exists y.y > x$
- \blacktriangleright Let t be y
- ▶ This condition guarantees that we can do the substitution
- Substituting x with y without renaming bound variables would give the wrong answer (see previous slide)

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

- True over domain of natural numbers
- $P \text{ is } \exists y.y > x$
- \blacktriangleright Let t be y
- ▶ This condition guarantees that we can do the substitution
- Substituting x with y without renaming bound variables would give the wrong answer (see previous slide)
- ▶ Therefore, we first rename bound variables that clash with fv(t), i.e., with y: $\exists z.z > x$

The correct rule is:

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with any bound variables of P

- True over domain of natural numbers
- $P \text{ is } \exists y.y > x$
- ▶ Let t be y
- ▶ This condition guarantees that we can do the substitution
- Substituting x with y without renaming bound variables would give the wrong answer (see previous slide)
- ▶ Therefore, we first rename bound variables that clash with fv(t), i.e., with y: $\exists z.z > x$
- ▶ Then, we substitute: $\exists z.z > y$

$$\frac{?}{\forall x.P}$$
 $[\forall I]$

$$\frac{?}{\forall x.P}$$
 [\forall I]

When can we conclude P is true for all x?

$$\frac{?}{\forall x.P}$$
 [\forall I]

When can we conclude P is true for all x?

If we have proved P for a "general/representative/typical" variable

$$\frac{?}{\forall x.P}$$
 [\forall I]

When can we conclude P is true for all x?

If we have proved P for a "general/representative/typical" variable

$$\frac{P[x \backslash y]}{\forall x. P} \quad [\forall I]$$

Condition: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$

$$\frac{?}{\forall x.P}$$
 [\forall I]

When can we conclude P is true for all x?

If we have proved P for a "general/representative/typical" variable

$$\frac{P[x \backslash y]}{\forall x. P} \quad [\forall I]$$

Condition: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$

What could go wrong without this condition?

$$\frac{?}{\forall x.P}$$
 [\forall I]

When can we conclude P is true for all x?

If we have proved P for a "general/representative/typical" variable

$$\frac{P[x \backslash y]}{\forall x. P} \quad [\forall I]$$

Condition: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$

What could go wrong without this condition?

Otherwise, given the assumption y > 2, we could derive $\forall x.x > 2$, which is clearly wrong.

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{P[x\backslash t]}{\exists x.P} \quad [\exists I]$$

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{P[x \backslash t]}{\exists x.P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{P[x\backslash t]}{\exists x.P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{P[x \backslash t]}{\exists x.P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

Example: Consider the predicate $P = (\forall y.y = x)$

• Without the substitution conditions $P[x \mid y]$ would be true

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{P[x \backslash t]}{\exists x. P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

- Without the substitution conditions $P[x \mid y]$ would be true
- ▶ We could then deduce $\exists x. \forall y. y = x$, i.e., numbers are all equal to each other obviously incorrect!

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{P[x \backslash t]}{\exists x.P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

- Without the substitution conditions $P[x \mid y]$ would be true
- ▶ We could then deduce $\exists x. \forall y. y = x$, i.e., numbers are all equal to each other obviously incorrect!
- The substitution conditions prevents such captures

$$\frac{?}{\exists x.P}$$
 [$\exists I$]

When can we conclude P is true for some x?

If we have proved predicate P for an element of the domain

$$\frac{P[x \backslash t]}{\exists x.P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

- Without the substitution conditions $P[x \mid y]$ would be true
- ▶ We could then deduce $\exists x. \forall y. y = x$, i.e., numbers are all equal to each other obviously incorrect!
- ► The substitution conditions prevents such captures
- ightharpoonup [31]'s condition guarantees that the substitution conditions hold

$$\frac{\exists x.P}{?}$$
 [$\exists E$]

$$\frac{\exists x.P}{?}$$
 [$\exists E$]

What can we conclude from the fact that P is true for some x?

$$\frac{\exists x.P}{?}$$
 [$\exists E$]

What can we conclude from the fact that P is true for some x? We know that it holds about some element of the domain, but we do not know which

$$\frac{\exists x.P}{?}$$
 [$\exists E$]

What can we conclude from the fact that P is true for some x? We know that it holds about some element of the domain, but we do not know which

$$\frac{\overline{P[x \backslash y]}}{P[x \backslash y]} \stackrel{1}{=} \frac{\exists x. P \qquad Q}{Q} \stackrel{1}{=} \exists E]$$

$$\frac{\exists x.P}{?}$$
 [$\exists E$]

What can we conclude from the fact that P is true for some x? We know that it holds about some element of the domain, but we do not know which

$$\frac{\overline{P[x \backslash y]}}{P[x \backslash y]} \stackrel{1}{=} \frac{1}{\sum_{Q \in \mathcal{Q}} 1} \stackrel{1}{=} \frac{1}{[\exists E]}$$

Condition: y must not be free in Q or in not-yet-discharged hypotheses or in $\exists x.P$

$$\frac{\exists x.P}{?}$$
 [$\exists E$]

What can we conclude from the fact that P is true for some x? We know that it holds about some element of the domain, but we do not know which

$$\frac{\overline{P[x \backslash y]}}{P[x \backslash y]} \stackrel{1}{=} \frac{1}{\underbrace{\exists x. P} \quad Q} \qquad 1 \quad [\exists E]$$

Condition: y must not be free in Q or in not-yet-discharged hypotheses or in $\exists x.P$

This rule is similar to OR-elimination!

All four inference rules in one slide

$$\frac{P[x \backslash y]}{\forall x. P} \quad [\forall I]$$

Condition: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$

$$\frac{\forall x.P}{P[x \backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with bv(P)

$$\frac{P[x \backslash t]}{\exists x. P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

$$\frac{P[x \setminus y]}{P[x \setminus y]} \quad 1$$

$$\vdots$$

$$\frac{\exists x.P \quad Q}{Q} \quad 1 \quad [\exists E]$$

Condition: y must not be free in Q or in not-yet-discharged hypotheses or in $\exists x.P$

Prove that $(\forall z.p(z)) \rightarrow \forall x.p(x) \lor q(x)$

Prove that
$$(\forall z.p(z)) \rightarrow \forall x.p(x) \lor q(x)$$

We use backward reasoning

$$(\forall z.p(z)) \to \forall x.p(x) \lor q(x)$$

Conditions:

Prove that
$$(\forall z.p(z)) \rightarrow \forall x.p(x) \lor q(x)$$

We use backward reasoning

$$\frac{\overline{\forall z.p(z)}}{\overline{\forall x.p(x) \lor q(x)}}$$

$$\frac{\overline{\forall x.p(x) \lor q(x)}}{(\forall z.p(z)) \to \forall x.p(x) \lor q(x)} \ 1 \ [\to I]$$

Conditions:

Prove that
$$(\forall z.p(z)) \rightarrow \forall x.p(x) \lor q(x)$$

We use backward reasoning

$$\frac{\overline{\forall z.p(z)}}{p(y) \lor q(y)} \frac{\overline{p(y) \lor q(y)}}{\forall x.p(x) \lor q(x)} [\forall I]$$

$$(\forall z.p(z)) \to \forall x.p(x) \lor q(x)$$
1 [\times I]

Conditions:

• y does not occur free in not-yet-discharged hypotheses or in $\forall x.p(x) \lor q(x)$

Prove that
$$(\forall z.p(z)) \rightarrow \forall x.p(x) \lor q(x)$$

We use backward reasoning

$$\frac{\frac{\overline{\forall z.p(z)}}{p(y)}}{\frac{\overline{p(y)} \vee q(y)}{\forall x.p(x) \vee q(x)}} [\forall I_L] \\ \frac{\overline{\forall x.p(x) \vee q(x)}}{(\forall z.p(z)) \rightarrow \forall x.p(x) \vee q(x)} 1 [\rightarrow I]$$

Conditions:

• y does not occur free in not-yet-discharged hypotheses or in $\forall x.p(x) \lor q(x)$

Prove that
$$(\forall z.p(z)) \rightarrow \forall x.p(x) \lor q(x)$$

We use backward reasoning

$$\frac{\frac{\overline{\forall z.p(z)}}{p(y)}}{\frac{\overline{p(y)}}{p(y) \vee q(y)}} [\forall E] \\ \frac{\overline{p(y) \vee q(y)}}{\forall x.p(x) \vee q(x)} [\forall I] \\ \overline{(\forall z.p(z)) \rightarrow \forall x.p(x) \vee q(x)} \ 1 \ [\rightarrow I]$$

Conditions:

- y does not occur free in not-yet-discharged hypotheses or in $\forall x.p(x) \lor q(x)$
- y does not clash with bound variables in p(z)

More generally, we can prove:

 $(\forall z.P) \to \forall x.P \lor Q$

More generally, we can prove:

 $(\forall z.P) \to \forall x.P \lor Q$

More generally, we can prove:

$$\frac{\overline{\forall z.P}^{1}}{ (\forall z.P) \rightarrow \forall x.P \lor Q} \stackrel{1}{} [\rightarrow I]$$

More generally, we can prove:

$$\frac{\overline{\forall z.P}^{1}}{P[x \setminus y] \vee Q[x \setminus y]}$$

$$\frac{\overline{P[x \setminus y] \vee Q[x \setminus y]}}{\forall x.P \vee Q} \text{ [$\forall I$]}$$

$$(\forall z.P) \rightarrow \forall x.P \vee Q$$

$$1 [\rightarrow I]$$

We assume that y does not occur in P or Q

More generally, we can prove:

$$\frac{\frac{\overline{\forall z.P}}{P[x \backslash y]}^{1}}{\frac{P[x \backslash y] \vee Q[x \backslash y]}{\forall x.P \vee Q}} [\forall I_{L}]$$

$$\frac{\overline{\forall x.P \vee Q}}{(\forall z.P) \rightarrow \forall x.P \vee Q}^{1} [\rightarrow I]$$

We assume that y does not occur in P or Q

More generally, we can prove:

$$\frac{\frac{\overline{\forall z.P}}{P[x \backslash y]}^{1} [\forall E]}{\frac{P[x \backslash y] \vee Q[x \backslash y]}{\forall x.P \vee Q}} [\forall I_{L}]$$

$$\frac{\overline{\forall x.P \vee Q}}{(\forall z.P) \rightarrow \forall x.P \vee Q}^{1} [\rightarrow I]$$

We assume that y does not occur in P or Q

Conclusion

What did we cover today?

- Natural Deduction proofs for Predicate Logic
- ► ∀/∃ rules
- substitution

Conclusion

What did we cover today?

- Natural Deduction proofs for Predicate Logic
- ▶ ∀/∃ rules
- substitution

Next time?

Natural Deduction proofs for Predicate Logic – continued