Decomposing the *d*-Cube into Simplices

Ben Storlie

Scripps College

April 18, 2013

$$1+2+3+\cdots+n$$

1

1 2 3

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Pascal's Triangle

```
2
   3 3 1
  4 6 4
 5 10 10 5 1
6 15 20 15 6 1
```

Pascal's Triangle

$$\frac{n(n+1)\cdots(n+k-1)}{k!} = \frac{(n+k-1)!}{(n-1)! \, k!}$$

The triangular numbers are when k = 2, so the *n*th triangular number is $\frac{n(n+1)}{2}$.

$$1 + (1+2) + (1+2+3) + \dots + (1+\dots+n)$$

$$= \frac{1 \cdot 2}{2} + \frac{2 \cdot 3}{2} + \frac{3 \cdot 4}{2} + \dots + \frac{n(n+1)}{2}$$

$$1 + (1+2) + (1+2+3) + \dots + (1+\dots+n)$$

$$= \frac{1 \cdot 2}{2} + \frac{2 \cdot 3}{2} + \frac{3 \cdot 4}{2} + \dots + \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(n+2)}{6}$$

$$1 + 3 + 6 + 10 = 20$$

► Triangle(
$$n$$
) = $\frac{n(n+1)}{2}$.

► Triangle(
$$n$$
) = $\frac{n(n+1)}{2}$.

 $Triangle(n) = \frac{n(n+1)}{2}.$

► Tetrahedron(n) = $\frac{n(n+1)(n+2)}{6}$

 $Triangle(n) = \frac{n(n+1)}{2}.$

► Tetrahedron(n) = $\frac{n(n+1)(n+2)}{6}$

There is more than one way to divide up the rectangular prism.

How many ways are there?

A Tetrahedron

B Tetrahedron

C Tetrahedron

D Tetrahedron

D Tetrahedron

Lemma

Lemma

- ► As and Cs always come together in pairs in the shape of a square pyramid like this.
- For any given tiling, every AC pair can be replaced with a pair of Bs, creating a tiling with only Bs.
- ► So, every tiling with only **B**s can be used to generate a set of tilings made of **A**s, **B**s, and **C**s.

Decompositions With Only B Tetrahedra

What's next?

What's next?

Four dimensions!

Hockeystick Theorem, Again

Hockeystick Theorem

Hockeystick Theorem

$$\frac{\frac{n(n+1)}{2!}}{\frac{n(n+1)(n+2)}{3!}}$$

$$\frac{n(n+1)(n+2)(n+3)}{4!}$$

Standard Decomposition

Standard Decomposition

$x_1 \ge x_2 \ge x_3$

$x_1 \ge x_3 \ge x_2$

$x_3 \ge x_1 \ge x_2$

$x_3 \ge x_2 \ge x_1$

$x_2 \ge x_3 \ge x_1$

$x_2 \ge x_1 \ge x_3$

$x_1 \ge \overline{x_2} \ge x_3 \ge x_4$

$x_1 \ge \overline{x_2} \ge x_4 \ge x_3$

$x_1 \ge \overline{x_3} \ge x_2 \ge x_4$

$x_1 \ge x_3 \ge x_4 \ge x_2$

$x_1 \ge \overline{x_4} \ge x_2 \ge x_3$

$x_1 \ge x_4 \ge x_3 \ge x_2$

$x_2 \ge \overline{x_1} \ge x_3 \ge x_4$

$x_2 \ge \overline{x_1} \ge x_4 \ge x_3$

$x_2 \geq x_3 \geq x_1 \geq x_4$

$x_2 \ge \overline{x_3} \ge x_4 \ge \overline{x_1}$

$x_2 \ge \overline{x_4} \ge x_1 \ge x_3$

$x_3 \ge x_1 \ge x_2 \ge x_4$

$x_3 \ge \overline{x_1} \ge x_4 \ge \overline{x_2}$

$x_3 \geq x_2 \geq x_1 \geq x_4$

$x_3 \ge \overline{x_2} \ge x_4 \ge x_1$

$x_3 \ge \overline{x_4} \ge x_1 \ge x_2$

$x_3 \ge \overline{x_4} \ge x_2 \ge x_1$

$x_4 \ge \overline{x_1} \ge x_2 \ge x_3$

$x_4 \ge x_1 \ge x_3 \ge x_2$

$x_4 \geq x_2 \geq x_1 \geq x_3$

$x_4 \ge \overline{x_2} \ge x_3 \ge x_1$

$x_4 \ge x_3 \ge x_1 \ge x_2$

$x_4 \ge \overline{x_3} \ge x_2 \ge x_1$

