VV186 RC Part III

Convergence

"Find the problem, understand it, then explore more."

Pingbang Hu

University of Michigan-Shanghai Jiao Tong University Joint Institute

August 30, 2021

Overview

- 1. Review
- 2. Metric Space
- 3. Cauchy Sequence
- 4. Generalization of Convergence
- 5. Completeness
- 6. Construct Real Numbers
- 7. Real Functions
- 8. Exercise
- 9. More about Cauchy Sequence

Review

Let first look at the Exercise 7 from last time.

Let (x_n) be a bounded real sequence. Then define

$$a_n := \sup_{m \geq n} (x_m), \quad b_n := \inf_{m \geq n} (x_m)$$

- 1. Prove that (a_n) is decreasing, while (b_n) is increasing.
- 2. Since both (a_n) , (b_n) are monotonic and bounded, they are convergent. We denote $\underline{\lim} x_n = \overline{\lim} b_n$; $\overline{\lim} x_n = \overline{\lim} a_n$. Show that:

$$\underline{\lim} y_n + \underline{\lim} z_n \leq \underline{\lim} (y_n + z_n) \leq \overline{\lim} y_n + \underline{\lim} z_n \leq \overline{\lim} y_n + \overline{\lim} z_n$$

This is a title!

Any Questions?

Metric Space

- What is the definition of a metric?
- Why we want to introduce the idea of Metric Space?
- What new results can we explore from this new idea?

Metric Space

We want to generalize the idea of *convergence*, we want to define the most essential thing of convergence by ourselves, namely the **Length Function**.

What properties a usual length function should have?

- 1. Always positive.
- 2. Symmetric.
- 3. Followed *Triangle Inequality*.

Transform these into mathematical language. . .

Metric Space

A two variables functions

$$\rho(\cdot,\cdot):M\times M\to\mathbb{R}$$

is called a metric if it satisfies:

- 1. $\forall x, y \in M$, $\rho(x, y) \ge 0$ and $\rho(x, y) = 0$ if and only if x = y.
- 2. $\forall x, y \in M, \ \rho(x, y) = \rho(y, x).$
- 3. $\forall x, y, z \in M$, $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$.

Examples

 $ightharpoonup M=\mathbb{R}^n$, the usual metric is given by

$$\rho((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n)) = \sqrt{\sum_{i=k}^n (x_i - y_i)^2}$$

and this is so-called *Euclidean distance*.

- ► $M = \mathbb{N}, \rho(x, y) = \#\{a : a \in [\min\{x, y\}, \max\{x, y\}]\}$
- $M = \mathbb{R}, \rho(x, y) = 1 \text{ if } x \neq y; \ \rho(x, y) = 0 \text{ if } x = y$

A simple question arise, is any metric well-defined?

Generalization of Convergence

Then, by replacing the usual matric $\rho(x,y)=|x-y|$ and choosing our universal set M, we get the natural definition for generalize convergence in metric space (M,ρ) for a sequence $(a_n): \mathbb{N} \to M$, which is given by:

$$\lim_{n\to\infty}a_n=a\quad :\Leftrightarrow\quad \forall \ \exists_{N\in\mathbb{N}}\ \forall_{n>\mathbb{N}}a_n\in B_\epsilon(a)$$

where

$$B_{\epsilon}(a) = \{x \in M : \rho(x, a) < \epsilon\}, \quad \epsilon > 0, \quad a \in M.$$

Cauchy Sequence

- ▶ What is the definition of Cauchy Sequence?
- ► How to understand Cauchy Sequence?
- Why we want to introduce the idea of Cauchy Sequence?
- What new results can we explore from this new idea?

Cauchy Sequence

The fundamental reason why we want to introduce Cauchy Sequence is because we want to *further generalize* the idea of convergence.

Now, we are not only free to choose the metric we like, additionally, we remove the constraint which requires a sequence to converge to a *specific point*.

Cauchy Sequence

We list some important results and theorems for Cauchy Sequence.

- ► Every convergent sequence is a Cauchy sequence.
- **E** Every Cauchy sequence in a metric space (M, ρ) is bounded.
- lacktriangle Every Cauchy sequence in $\mathbb R$ with the usual metric is convergent.

Digest...

We now take a deep breath, and look back what we have introduced. Where does all these new definitions lead us to?

Completeness

The problem is, a Cauchy Sequence can simply not "converge" to anywhere anymore if we generalize the idea of convergence.

Then, after generalizing the idea of convergence, if **every** Cauchy sequence still converge, we say this metric space is *complete*.

We now take a look at some examples for a Cauchy sequence failed to converge.

Completeness

For a metric space (\mathbb{Q}, ρ) , where $\rho(x, y)$ is analogous to our usual metric. Then, a sequence

$$(a_n)_{n\in\mathbb{N}}:=1,1.4,1.41,1.414,\ldots$$

is a Cauchy sequence but failed to converge in $\mathbb Q$ if we choose the following terms appropriately and let it *converge to* $\sqrt{2}$ *in* $\mathbb R$ eventually.

From here, it seems we somehow find a good way to *construct* Real Numbers.

Construct Real Numbers

The main idea to $complete \mathbb{Q}$ is to consider the following

Every Cauchy sequence can *represent* a number in \mathbb{R} .

For example, from the last slide, we can view the sequence

$$(a_n)_{n\in\mathbb{N}}=1,1.4,1.41,1.414,\ldots$$

as $\sqrt{2}$ by defining a *(equivalence) class* for each number in \mathbb{R} , and in this case, we define the sequence (a_n) as $\sqrt{2}$.

Then, from now on, the number defined through the Cauchy sequence which is given by

is equal to 1, namely 0.999999 = 1.

Real Functions

We already know how to describe a function, so we list some *elementary functions* and some categories of functions which you will encounter a lot in the future.

- ▶ Polynomial Function : $f(x) = \sum_{k=0}^{n} c_k x^k$, $n \in \mathbb{N}$. $\forall c_i \in \mathbb{R}$
- ▶ Power Function : $f(x) = x^n$, $n \in \mathbb{N}$
- ▶ Rational Function : $f(x) = \frac{p(x)}{q(x)}, \ p, q \in \mathbb{P}(\mathbb{R})$
- Periodic Function : $\forall_{x \in \mathbb{R}} f(x + T) = f(x)$, where T is *period*.
- ▶ Piecewise Function

(What is the domain of each kind of function?)

Real Functions

Then, we can do some basic manipulation to a function, including:

- 1. Translation in different directions
- 2. Multiplying a function's argument
- 3. Multiplying a function's values

Exercise

1. Suppose the function which is given by

$$f:[2,+\infty)\to\mathbb{R}$$

and satisfies

$$x^2f(x) - f(1-x) = x$$

Please calculate the value of

$$\lim_{x\to\infty}\frac{f(x)}{3}$$

(Can we further expand the domain of f?)

Exercise

2. Please construct a metric that makes $\mathbb R$ incomplete with regard to this metric. You can use the method given in Horst's slides.

More About Cauchy Sequence

Let us take a look at some tricky examples of Cauchy sequence.

In class demonstration!

Have Fun and Learn Well!