Model diagnostics and remedies. II

Miaoyan Wang

Department of Statistics UW Madison

Model Assumptions

• The relationship between the response variable Y and the explanatory variables $X_1, X_2, \ldots, X_{p-1}$ is

$$E(Y_i|X_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1}$$
 $E(\varepsilon_i) = 0$

• Equal variance:

$$Var(Y_i|\mathbf{X}_i) = Var(\varepsilon_i) = \sigma^2.$$

• Independence:

$$Cov(Y_i, Y_{i'}|\mathbf{X}_i, \mathbf{X}_{i'}) = Cov(\varepsilon_i, \varepsilon_{i'}) = 0$$
 for $i \neq i'$.

Normal distribution:

$$Y_i|X_i \sim N(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1}, \sigma^2)$$
 $\varepsilon_i \sim \text{i.i.d. } N(0, \sigma)$

Remedial Measures

Basic approaches: replace with a more complex model or transform so that the model is appropriate.

- Nonlinearity of regression function:
 - Transformation.
 - Polynomial regression, nonlinear regression.
- Nonequal error variance:
 - Transformation.
 - Weighted least squares.
- Nonindependence of error terms:
 - Models with correlated error terms (STAT 850).
- Nonnormality of error terms.
 - Transformation.
 - Nonparametric methods.
 - Generalized linear models (STAT 850).
- Presence of outliers:
 - Removal of outliers (with caution).
 - Detection. Robust estimation.

Data consist of number of surviving bacteria after exposure to X-rays for different periods of time.

- Let *t* denote time (in number of 6-minute intervals)
- let n denote number of surviving bacteria after exposure to X-rays for t time.

t	1	2	3	4	5	6	7	8
n	355	211	197	166	142	166	104	60
t	9	10	11	12	13	14	15	
n	56	38	36	32	21	19	15	

	Estimate	Std. Error	t value	$Pr(\geq t)$
(Intercept)	267.010	22.170	12.044	2.0e-08 ***
t	-19.893	2.438	-8.158	1.8e-06 ***

Residual standard error: 40.8 on 13 degrees of freedom Multiple R-squared: 0.8366, Adjusted R-squared: 0.824 F-statistic: 66.56 on 1 and 13 DF, p-value: 1.804e-06

• Here there is a theoretical model:

$$n_t = n_0 e^{\beta t},$$

where

- t is time,
- \triangleright n_t is the number of bacteria at time t,
- $ightharpoonup n_0$ is the number of bacteria at the start (t=0), and
- β is a decay rate with $\beta < 0$.
- Consider a log transformation:

$$\ln(n_t) = \ln(n_0) + \beta t = \alpha + \beta t,$$

by setting $\alpha = \ln(n_0)$.

That is, we log-transformed n_t and the result is a linear model.

The transformed data are as follows.

t	1	2	3	4	5	6	7	8
ln(n)	5.87	5.35	5.28	5.11	4.96	5.11	4.64	4.09
t	9	10	11	12	13	14	15	
$\overline{\ln(n)}$	4.03	3.64	3.58	3.47	3.04	2.94	2.71	

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	6.028695	0.088259	68.31	< 2e-16 ***
t	-0.221629	0.009707	-22.83	7.1e-12 ***

Residual standard error: 0.1624 on 13 degrees of freedom Multiple R-squared: 0.9757, Adjusted R-squared: 0.9738 F-statistic: 521.3 on 1 and 13 DF, p-value: 7.103e-12

How to interpret β ? linear time trend in log count How to interpret α ? expected log count at the start Inference for n_0 is not straightforward.

$$\hat{n}_0 = e^{\hat{\alpha}} = 415.30$$
 but $E(\hat{n}_0) \neq n_0$.

Transformation: Remarks

- Ideally, theory should dictate what transformation to use.
- In practice, transformation is usually chosen empirically based on data analysis.
- Usually it is best to start with a simple transformation and experiment.
 - ➤ To meet the linearity assumption, transformation could be that of X, or Y, or both.
 - ▶ Common transformations are \log_{10} , \ln , $\sqrt{\cdot}$. Less common transformations are Y^2 , 1/Y, $1/Y^2$, arcsin \sqrt{Y} .
- Another advantage of transformation is to control unequal variance.

Transformation: Remarks

• Consider a transformation ladder for Z = X or Y.

- Transforming *Y* can affect both linearity and equal variance, but transforming *X* can affect only linearity.
- Sometimes solving one problem can create another.

Box-Cox Transformation

- Box-Cox method is a formal approach to selecting λ to transform Y.
- The idea is to consider

$$Y_i^{\lambda} = \beta_0 + \beta_1 X_i + \epsilon_i.$$

- Estimate λ (along with $\beta_0, \beta_1, \sigma^2$) using ML.
- Choose an interpretable $\hat{\lambda}$ within a 95% CI. In the surviving bacteria example, the Box-Cox method gives $\hat{\lambda}=-0.0202$.

Implication: ____

• R command: boxcox(object, ...) in the MASS library