

Exercise 11B

Question 12:

⇒ ∠OBC=∠OCB=55° [b]

[base angles in an isosceles triangle are equal]

Consider the triangle $\triangle BOC$.

By angle sum property, we have

$$\angle BOC = 180^{\circ} - (\angle OCB + \angle OBC)$$

= $180^{\circ} - (55^{\circ} + 55^{\circ})$
= $180^{\circ} - 110^{\circ} = 70^{\circ}$

∠OBA=∠OAB=20° [base angles in an isosceles

triangle are equal]

∠BOC=70°

Again,

$$OA = OB$$

consider the thange andb.

By angle sum property, we have

⇒
$$\angle AOB = 180^{\circ} - (\angle OAB + \angle OBA)$$

 $= 180^{\circ} - (20^{\circ} + 20^{\circ})$
 $= 180^{\circ} - 40^{\circ} = 140^{\circ}$
 $\angle AOC = \angle AOB - \angle BOC$
 $= 140^{\circ} - 70^{\circ} = 70^{\circ}$
 $\angle AOC = 70^{\circ}$

Question 13:

Join OB and OC.

The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference.

$$\angle BOC = 2\angle BAC$$

= $2 \times 30^{\circ}$ [$\because \angle BAC = 30^{\circ}$]
= 60° (1)

Now consider the triangle $\triangle BOC$.

are equal
Now, in ∆BOC, we have

$$\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$$

⇒ $60^{\circ} + \angle OCB + \angle OCB = 180^{\circ}$ [from (1) and (2)]

⇒ $2\angle OCB = 180^{\circ} - 60^{\circ}$

⇒ $= 120^{\circ}$

⇒ $\angle OCB = \frac{120^{\circ}}{2} = 60^{\circ}$

⇒ $\angle OBC = 60^{\circ}$ [from (2)]

Thus, we have, $\angle OBC = \angle OCB = \angle BOC = 60^{\circ}$

So, \(\Delta BOC is an equilateral triangle

.. BC is the radius of the circumference.

******* END ******