Journal Report 4 9/23/19-9/30/19 Michael Huang Computer Systems Research Lab Period 1, White

Daily Log

Monday September 23

Looked into Mathematica's graph features and started implementing weighted graphs.

Tuesday September 24

Finished my implementation of weighted graphs and plugged it into Mathematica. It didn't work for FindMaximumIndependentVertexSet. Looked into more specfic methods for FindMaximumIndependentVertexSet.

Thursday September 26

Found a solution by specifying the exact number of vertices that are needed in Mathematica's function. Finalizes a proof for .316 for symetric cases on -1,0,1

Timeline

Date	Goal	Met
9/16	Find a lower bound for $\{-1,0,1\}^3$ with	Yes, I found that of the $6n^2 + 12n +$
	varying amounts of 0s	8 terms (n being the number of 0s), I
		can always make $2n^2 + 4n + 2$
9/23	Find a lower bound for $\{-1,0,1\}^3$ with	Sorta. I found a conjecture for a
	varying amounts of 1s and -1s as well	lower bound which seems to be cor-
		rect, however the dataset is too big for
		Mathematica to verify.
9/30	Find a way to make Mathematica	Yes, by specifying the exact number
	work with weighted vertices in or-	of vertices required by Mathematica.
	der to finalize the $\{-1,0,1\}^3$ case with	This shows 100/316 to be a minimum
	varying amounts of 1s and -1s	for symmetric cases.
10/7	Find an answer for asymmetric	
	amounts of 1s and -1s.	
10/14	Find a proof showing that symme-	
	try is optimal, or find a more optimal	
	construction,	

Reflection

This week, I worked on finishing my proof from last week. This involved getting Mathematica to show that the MIS of $\{-1, -1, 0, 0, 0, 1, 1\}^3$ was 100. I originally tried using weighted graphs. I was able to create the weighted graphs, but Mathematica's MIS method did not take into account the weighted vertices.

After studying more of Wolfram's doccumentation, I tried looking for specific values and seeing if they could find the set. This allowed me to show that the MIS was 100. This proves that with symmetric amounts of 1s and -1s, which is intuitively optimal, the lower bound we create is 0.316. This is very close to the literature.

Next week, I want to formally look at the case with asymmetric amounts of 1s and -1s to finalize my study with -1s, 0s and 1s. After that, I want to move on and analyze the situation when I add in 2s and -2s as well.