Modelos de Regresión Robustos

Radiación trás el accidente de la Central Nuclear Fukushima

Flavia Felicioni¹ Clara Villalba²

¹flaviafelicioni@gmail.com

²claraofvillalba@hotmail.com

Enfoque Estadístico del Aprendizaje - diciembre 2021

Contenido

- Resumen
- 2 Motivación
- 3 Métodos de regresión robustos
- 4 Referencias

- Resumen

Resumen

- El modelo de regresión lineal simple sirve para vincular 2 variables aleatorias. la variable predictora con la variable dependiente o de respuesta.
- La regresión múltiple se extiende a más variables explicativas o predictoras
- Variables predictoras pueden ser numéricas y/o categóricas
- Modelos requieren satisfacer supuestos
- Modelos simples pero poco flexibles
- Sensibles ante la presencia de datos atípicos (outliers).
- Los métodos robustos surgen como alternativa de solución.

- 2 Motivación

Ejemplo introductorio: 1

- Duración de una llamada al servicio técnico (a predecir)
- Cantidad de componentes electrónicos que deben ser reparados

¹datos originales tomados de [2]

Ejemplo introductorio: 1

- Duración de una llamada al servicio técnico (a predecir)
- Cantidad de componentes electrónicos que deben ser reparados

¹datos originales tomados de [2]

Motivación - Residuos

Diagnóstico de modelo

Se observan outliers

D3 es observación es muy influyente

Métodos de regresión robustos

•00000

- 1 Resumer
- 2 Motivación
- 3 Métodos de regresión robustos
- 4 Referencias

Regresión Lineal

Modelo lineal múltiple

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i \tag{1}$$

Métodos de regresión robustos

000000

y en forma matricial

$$Y = X\beta + \epsilon \tag{2}$$

donde $Y = [y_1, y_2...]^T$, β es el vector de parámetros (p*1) y $X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1,p-1} \\ 1 & x_{n1} & \dots & x_{n,p-1} \end{bmatrix}$

Ajuste de parámetros

OLS - Mínimos cuadrados a (1) es

$$g(\beta_0, ..., \beta_j) = \sum_{i=1}^n (y_i - \beta_0 - \sum_{i=1}^p \beta_i X_i)^2$$
 (3)

000000

Ecuaciones normales

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} \hat{\beta}_j x_{ij}) = 0$$
 (4)

Métodos de regresión robustos

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} \hat{\beta}_j x_{ij}) x_{ij} = 0$$
 (5)

OLS - Mínimos cuadrados a (1) es

$$g(\beta_0, ..., \beta_j) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{i=1}^{p} \beta_i X_i)^2$$
 (3)

Ecuaciones normales

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} \hat{\beta}_j x_{ij}) = 0$$
 (4)

$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} \hat{\beta}_j x_{ij}) x_{ij} = 0$$
 (5)

cuya solución

$$\hat{\beta} = (X^T X)^{-1} X^T Y \tag{6}$$

Ajuste robusto

M-Estimadores de Regresión

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} g(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_i)$$
 (7)

Métodos de regresión robustos

Ajuste robusto

M-Estimadores de Regresión

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} g(y_i - \beta_0 - \sum_{i=1}^{p} \beta_i X_i)$$
 (7)

y entonces

$$\sum_{i=1}^{n} W_i(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij}) X_i = 0$$
 (8)

donde $\psi = g'$

$$W_{i} = \frac{\psi(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij})}{(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij})}$$
(9)

Estimadores comúnmente utilizados [3]

Tipo	Función objetivo $f_{\phi}(x)$	Función de influencia $f'_{\phi}(x)$	Función de peso $g_{\phi}(x)$
L_2	$\frac{x^2}{2}$	x	1
L_1		sign(x)	$\frac{1}{ x }$
L_p	$\frac{ x ^v}{v}$	$\operatorname{sign}(x) x ^{v-1}$	$ x ^{v-2}$
$Huber \\ (L_1 - L_2)$	$\begin{cases} \frac{x^2}{2} & x \le \gamma \\ \gamma \left(x - \frac{\gamma}{2}\right) & x \ge \gamma \end{cases}$	$\begin{cases} x & x \le \gamma \\ \gamma \text{sign}(x) & x \ge \gamma \end{cases}$	$\begin{cases} \frac{1}{\gamma} & x \leq \gamma \\ \frac{\gamma}{ x } & x \geq \gamma \end{cases}$
Cauchy	$\frac{c^2}{2}\log(1+(x/c)^2)$	$\frac{x}{1 + (x/c)^2}$	$\frac{1}{1 + (x/c)^2}$
Gemay $McClure$	$\frac{x^2/2}{1+x^2}$	$\frac{x}{(1+x^2)^2}$	$\frac{1}{(1+x^2)^2}$
Welsch	$\frac{c^2}{2}\left(1 - e^{-(x/c)^2}\right)$	$xe^{-(x/c)^2}$	$e^{-(x/c)^2}$
Tukey	$\left \begin{cases} \frac{c^2}{2} (1 - (1 - (x/c)^2)^3) & x \le \\ \frac{c^2}{6} & x \ge \end{cases} \right $	{ ((((((((((((((((((($\begin{cases} (1-(x/c)^2)^2\\ 0 \end{cases}$

Métodos de regresión robustos

000000

Implementaciones en R

Función de Huber

Implementaciones en R

Función de Huber

- Paquete MASS rlm: iterated re-weighted least squares (IWLS)- psi functions are supplied for the Huber, Hampel and Tukey
- Paquete robustbase- Imrob: se propone estimador inicial, se calcula estimador de escala y finalmente se obtienen los estimadores de los parámetros, minimizando la función objetivo

2 Motivación

3 Métodos de regresión robustos

4 Referencias

Referencias

M. E. Szretter Noste

Apunte de Regresión Lineal

Carrera de Especialización en Estadística para Ciencias de la Salud. Universidad de Buenos Aires. 2017

Samprit Chatterjee, Ali S. Hadi.

Regression Analysis by Example.

Fourth Edition, ISBN:9780471746966

—DOI:10.1002/0470055464. 2006. John Wiley Sons, Inc.

훩 F. Parra Rodríguez

Estadística y Machine Learning con R: Ejercicios resueltos con R (Spanish Edition)

ISBN-10:6202252162-2017

