Chess Extension Testing Unit

December 2023

1 DataTypes

1.1 chessboard Datatype

To check the size of chessboard datatype

Figure 1: Size of chessboard datatype

1.2 chessgame Datatype

To check the size of chessgame datatype

```
SELECT text_to_chessgame
('1.e4 c5 2.Nf3 d6 3.Bb5+ Nd7 4.d4 Nf6 5.Nc3 cxd4 6.Qxd4 e5 7.Qd3
h6 8.Be3 Be7 9.O-O O-O 10.Rad1 a6');
```

```
postgres=# SELECT text_to_chessgame('1.e4 c5 2.Nf3 d6 3.8b5+ Nd7 4.d4 Nf6 5.Nc3 cxd4 6.Qxd4 e5 7.Qd3 h6 8.Be3 Be7 9.O-0 O-0 10.Rad1 a6');
INFO: Size of chessgame datatype: 44 bytes
text_to_chessgame

1. e4 c5 2. Nf3 d6 3. Bb5+ Nd7 4. d4 Nf6 5. Nc3 cxd4 6. Qxd4 e5 7. Qd3 h6 8. Be3 Be7 9. O-0 O-0 10. Rad1 a6
(1 row)
```

Figure 2: Size of chessgame Datatype

2 Functions

2.1 getBoard

1. The initial state of the chessboard

```
SELECT getBoard(game, 0) as initial_board FROM chessgames;
```

Figure 3: Initial Board State

2. Displaying the initial position in the table and the board states after the first moves by white and black.

```
SELECT

id,

getBoard(game, 0) as initial_position,

getBoard(game, 1) as after_white_first_move,

getBoard(game, 2) as after_black_first_move

FROM chessgames LIMIT 5;
```


Figure 4: Initial position, position after white and black first moves in the board

3. After the first 10 half-moves in games, what are the popular board states that start with the King's Pawn opening?

```
SELECT
getBoard(game, 10) AS board_state_after_10_moves,
COUNT(*) AS number_of_games
FROM chessgames
WHERE getFirstMoves(game, 1) = '1.e4 '::chessgame
GROUP BY board_state_after_10_moves
ORDER BY number_of_games DESC
LIMIT 5;
```

board_state_after_10_moves	number_of_games
rnbqkb1r/1p2pppp/p2p1n2/8/3NP3/2N5/PPP2PPP/R1BQKB1R w KQkq - 0 6	465
r1bqk2r/1pppbppp/p1n2n2/4p3/B3P3/5N2/PPPP1PPP/RNBQ1RK1 w kq - 4 6	129
rnbqkb1r/pp3ppp/3ppn2/8/3NP3/2N5/PPP2PPP/R1BQKB1R w KQkq - 0 6	66
rnbqkb1r/ppp2ppp/8/3p4/3Pn3/5N2/PPP2PPP/RNBQKB1R w KQkq - 0 6	45
r1bqkbnr/pp3ppp/2npp3/8/3NP3/2N5/PPP2PPP/R1BQKB1R w KQkq - 0 6	36
(5 rows)	

Figure 5: Distribution of Board States in a Popular Opening

2.2 getFirstMoves

1. Displaying common openings by categorizing and counting the number of chess games by their opening sequence

```
SELECT getFirstMoves(game, 6) as opening_sequence,

COUNT(*) as number_of_games
FROM chessgames
GROUP BY opening_sequence
ORDER BY number_of_games DESC LIMIT 5;
```

opening_sequence	number_of_games
1. e4 c5 2. Nf3 d6 3. d4 cxd4	531
1. d4 Nf6 2. c4 g6 3. Nc3 Bg7 1. d4 Nf6 2. c4 e6 3. Nc3 Bb4	255 228
1. d4 Nf6 2. c4 g6 3. Nc3 d5 1. d4 Nf6 2. c4 e6 3. Nf3 b6	216 198
(5 rows)	

Figure 6: Common Openings

2. What are the most common board states after 8 moves between the Queen's Gambit and the Sicilian Defense?

```
SELECT
getFirstMoves(game, 2) AS opening,
getBoard(game, 8) AS board_state,
COUNT(*) AS frequency
FROM chessgames
WHERE getFirstMoves(game, 2) IN ('1.d4 d5 2.c4 '::chessgame, '
1.e4 c5 '::chessgame)
GROUP BY opening, board_state
ORDER BY opening, frequency DESC
LIMIT 5;
```

opening	board_state	frequency
1. e4 c5 1. e4 c5	rnbqkb1r/pp2pppp/3p1n2/8/3NP3/8/PPP2PPP/RNBQKB1R w KQkq - 1 5 rnbqkb1r/pp1p1ppp/4pn2/8/3NP3/8/PPP2PPP/RNBQKB1R w KQkq - 1 5 r1bqkbnr/pp1p1ppp/2n1p3/8/3NP3/8/PPP2PPP/RNBQKB1R w KQkq - 1 5 r1bqkb1r/pp1ppppp/2n2n2/8/3NP3/8/PPP2PPP/RNBQKB1R w KQkq - 1 5 rn2kbnr/pp1qpppp/3p4/2p5/4P3/5N2/PPPP1PPP/RNBQK2R w KQkq - 0 5	522 72 69 45 30

Figure 7: Most Common Board States for Specific Openings

3. How popular are the Italian Game (1.e4 e5) and the Sicilian Defense (1.e4 c5) compared to each other?

```
SELECT
getFirstMoves(game, 2) AS opening,
COUNT(*) AS frequency
FROM chessgames
WHERE getFirstMoves(game, 2)
IN ('1.e4 e5 '::chessgame, '1.e4 c5 '::chessgame)
GROUP BY opening;
```

```
opening | frequency

1. e4 e5 | 447

1. e4 c5 | 1080

(2 rows)
```

Figure 8: Popularity of Certain Openings

4. Get game at invalid half moves (negative half moves)

```
SELECT id, getFirstMoves(game, -1) as move_zero FROM chessgames LIMIT 5;
```

```
postgres=# SELECT id, getFirstMoves(game, -1) as move_zero
FROM chessgames LIMIT 5;
   id | move_zero
----+------
1861 |
1862 |
1863 |
1864 |
1865 |
(5 rows)
```

Figure 9: Invalid half moves

5. Compare opening sequences in games and favoritegames

```
SELECT
g.opening_sequence,
g.count AS games_count,
COALESCE(fg.count, 0) AS favorite_games_count
FROM
(SELECT getFirstMoves(game, 2) AS opening_sequence, COUNT(*) AS
count FROM chessgames GROUP BY opening_sequence) g
LEFT JOIN
(SELECT getFirstMoves(game, 2) AS opening_sequence, COUNT(*) AS
count FROM favoritegames GROUP BY opening_sequence) fg
ON g.opening_sequence = fg.opening_sequence;
```

opening_sequence	games_count	favorite_games_count
1. d4 Nf6	7686	 0
1. e4 e5	2086	j 0
1. d4 e6	210	1
1. e4 c6	504	0
1. Nf3 f5	42	0
1. c4 g6	434	0
1. d4 g6	56	0
1. Nf3 g6	70	0
1. d4 c6	14	0
1. e4 Nf6	70	0
1. d4 d5	2282	0

Figure 10: Comparing opening sequences

2.3 hasBoard

1. How many games contain the given board state at any time during the game?

```
SELECT count(*)
FROM chessgames WHERE hasboard(game,
'rnbqkb1r/pp1ppppp/5n2/2p1P3/8/2P5/PP1P1PPP/RNBQKBNR b KQkq - 0
3', 5);
```

```
postgres=# SELECT count(*)
FROM chessgames
WHERE hasboard(game,
'rnbqkb1r/pp1ppppp/5n2/2p1P3/8/2P5/PP1P1PPP/RNBQKBNR b KQkq - 0 3', 5);
count
-----
12
(1 row)
```

Figure 11: Board state during the game

2. How many games have the initial board state but with an invalid number of moves?

Figure 12: Number of initial board state with an invalid move

2.4 hasOpening

1. How many games started with the given sequence of moves?

```
SELECT count(*)
FROM chessgames
WHERE hasopening(game, '1.d4 Nf6 2.Nf3 g6');
```

Figure 13: games starting with '1.d4 Nf6 2.Nf3 g6'

2. Which games have the same 10 first half-moves as any of the games stored in Table favoriteGames?

```
SELECT count(*)
FROM chessgames g, favoritegames f
WHERE hasopening(g.game, getFirstMoves(f.game, 10));
```

Figure 14: Comparison between chessgames and favoritegames table

3. How many games started with the given sequence of moves (Complete match)?

```
SELECT count(*)
FROM chessgames
WHERE hasopening(game, '1.d4 Nf6 2.Nf3 g6 3.Bg5 Bg7 4.Nbd2 0-0
5.c3 d6 6.e4 c5 7.dxc5 dxc5 8.Be2 Nc6 9.0-0 b6 10.Qc2 Bb7 11.
Bh4 Nh5 12.Rfd1 Qc7 13.Nc4 Bf6 14.Ne3 e6 1/2-1/2');
```

3 Indexes

3.1 B-tree Index

Before creating the B-Tree Index:

```
EXPLAIN ANALYZE SELECT * FROM chessgames
WHERE hasOpening(game, '1.e4 c5 2.Nf3 Nc6 3.d4 cxd4');
```

```
postgres=# \COPY chessgames(game) FROM '/mrt/c/Users/Konok/Desktop/ULB-H417-PGchess-main/tests/chessgames_data.csv' DELIMITER ',' CSV; COPY 1695
postgres=# EXPLAIN ANALYZE SELECT * FROM chessgames WHERE hasOpening(game, '1.e4 c5 2.Nf3 Nc6 3.d4 cxd4');

QUERY PLAN

Seq Scan on chessgames (cost=0.00..1817.49 rows=358 width=36) (actual time=1.055..5899.606 rows=322 loops=1)
Filter: ((game)::text ~ '1. e4 c5 2. Nf3 Nc6 3. d4 cxd4%'::text)
Rows Romoved by Filter: 23408
Planning Time: 0.136 ms
Execution Time: 5899.699 ms
(5 rows)
```

Figure 15: Without B-Tree Index

1. Creating a B-tree index name **chessgames_idx** on the *game* column of *chessgame* table using **chessgame_ops** operator class. The below index is intended to optimize searching and sorting based on the *game* column.

```
CREATE INDEX hasOpening_idx ON chessgames
(CAST(game as TEXT) text_pattern_ops);
```

2. Performing cleanup of the 'chessgames' table to recover space and update its statistical data for query optimization.

```
VACUUM ANALYZE chessgames;
```

After creating B-tree index:

```
EXPLAIN ANALYZE SELECT * FROM chessgames
WHERE hasOpening(game, '1.e4 c5 2.Nf3 Nc6 3.d4 cxd4');
```

```
postgres=# EXPLAIN ANALYZE SELECT * FROM chessgames WHERE hasOpening(game, '1.ed c5 2.Nf3 Nc6 3.dd cxd4');

QUERY PLAN

Bitmap Heap Scan on chessgames (cost-18.80.444.81 rows=225 width=161) (actual time=0.297.83.332 rows=322 loops=1)

Filter: ((game)::text ~ '1. ed c5 2. Nf3 Nc6 3. dd cxdd%'::text)

Heap Blocks: exact-183

> Bitmap Index Scan on hasopening idx (cost-0.00.18.75 rows=221 width=0) (actual time=0.140..0.140 rows=322 loops=1)

Index Cond: (([game]::text ~>~ '1. ed c5 2. Nf3 Nc6 3. dd cxdd'::text) ANO (([game]::text ~~ '1. ed c5 2. Nf3 Nc6 3. dd cxd5'::text))

Planning Time: 1.082 ns

Execution Time: 83.419 ms
(7 rows)
```

Figure 16: With B-Tree Index

3.2 Gin Index

Before creating the GIN Index:

```
EXPLAIN ANALYZE SELECT COUNT(*) FROM chessgames
WHERE hasBoard(game, 'r1bqkbnr/pppp1ppp/2n5/4p3/4P3/5N2/
PPPP1PPP/RNBQKB1R w KQkq - 2 3', 4);
```

```
QUERY PLNI

Aggregate (cost-660.71.460.72 row-1 width-s) (actual time-983.558.082.559 rows-1 loops-1)

- S (cost-660.71.460.72 row-1 width-s) (actual time-983.558.082.559 rows-1 loops-1)

- S (cost-660.71.460.72 row-1 width-s) (actual time-1231.460.72 row-1 width-s) (actual time-1231.4
```

Figure 17: Without GIN Index

Creating a GIN index named ' fen_idx ' on the 'chessgames' table to improve query performance, based on the output of the 'getAllStates' function applied to the 'game' column.

```
CREATE INDEX fen_idx ON chessgames
USING GIN(getAllStates(game));
```

After creating GIN Index:

```
EXPLAIN ANALYZE SELECT COUNT(*) FROM chessgames
WHERE hasBoard(game, 'r1bqkbnr/pppp1ppp/2n5/4p3/4P3/5N2/
PPPP1PPP/RNBQKB1R w KQkq - 2 3', 4);
```

```
- Aggregate (cost-275.64.175.05 roas-21 width-5) (actual time-0.489.A.040 roas-21 loops-1)

>> 81tmap imps Carn on the segment (cost-17.15.176.33 roas-222 width-0) (cutual time-0.54.6.365 roas-885 loops-1)

Recheck (cost: (getallstates(game) && '('0:rlbqdm/pppp1pp/?n/4/p3/487)20/PPPPIPP9/ReQQGIR w (KQq - 2 3', "1:rlbqdm//pppp1pp/?n/4/p3/487)20/PPPPIPP9/ReQQGIR w (KQq - 2 3', "4:rlbqdm//pppp1pp/?n/4/p3/487)20/PPPPIPP9/ReQQGIR w (KQq - 2 3', "4:rlbqdm//pppp1pp/?n/4/p3/487)20/PPPPPP9/ReQQGIR w (KQq - 2 3', "4:rlbqdm//pppp1pp/?n/4/p3/487)20/PPPPPPP/ReQQGIR w (KQq - 2 3', "4:rlbqdm//pppp1pp/?n/4/p3/487)20/PPPPPPP/ReQQGIR w (KQq - 2 3', "4:rlbqdm//pppp1pp/?n/4/p3/487)20/PPPPPPP/ReQQGIR w (KQq - 2 3', "4:rlbqdm//ppp1pp/?n/4/pa/487)20/PPPPPPP/ReQQGIR w (KQq - 2 3', "4:rlbqdm//ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp/?n/4/ppp1pp
```

Figure 18: With GIN Index