МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

з дисципліни «Дискретна математика»

Виконав: студент групи КН-113

Добосевич Данило

Викладач:

Мельникова Н.І.

Тема: Моделювання основних логічних операцій

Мета роботи: Ознайомитись із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Постановка завдання:

Варіант № 12

- 1. Формалізувати речення. Якщо сьогодні буде багато людей на концерті, то можемо вважати що ввечір вдався, якщо не буде багато людей, то можемо вважати що організатор не допрацював.
- 2. Побудувати таблицю істинності для висловлювань:

$$\left((x \Leftrightarrow y) \Leftrightarrow \left(\left(z \Rightarrow \left(\overline{x} \vee \overline{y} \right) \right) \Rightarrow \overline{z} \right) \right) \Leftrightarrow (x \vee y);$$

- 3. Побудовою таблиць істинності вияснити, чи висловлювання є тавтологією або протиріччям: $(\overline{(p \lor q)} \land (q \to r)) \leftrightarrow (\bar{p} \to r)$
- 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання: $((p \to q) \land (p \to q)) \to (p \to q)$.
- 5. Довести, що формули еквівалентні: $p \oplus (q \leftrightarrow r)$ та $p \to (q \land r)$.

Додаток 2 до лабораторної роботи з розділу 1

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступних формул:

12.
$$((x \Leftrightarrow y) \Leftrightarrow ((z \Rightarrow (\bar{x} \vee \bar{y})) \Rightarrow \bar{z})) \Leftrightarrow (x \vee y);$$

Розв'язок задачі № 1

Позначимо логічні висловлювання через змінні

р – буде багато людей

q – вечір вдався

r – організатор допрацював

$$(p{\rightarrow}q)\;\Box(\;\neg p{\rightarrow}\neg r)$$

Розв'язок задачі № 2

$$((x \Leftrightarrow y) \Leftrightarrow ((z \Rightarrow (\bar{x} \vee \bar{y})) \Rightarrow \bar{z})) \Leftrightarrow (x \vee y);$$

						1	2	3	4	5	6	
X	у	Z	⊢ X	-у	$\neg_{\mathbf{Z}}$	(XvY)	(¬Xv¬Y)	$(x \leftrightarrow y)$	(z→2)	(4→¬z)	(3↔5)	(6↔1)
0	0	0	1	1	1	0	1	1	1	1	1	0
0	0	1	1	1	0	0	1	1	1	1	1	1
0	1	0	1	0	1	1	1	0	1	1	1	1
0	1	1	1	0	0	1	1	0	1	0	0	0
1	0	0	0	1	1	1	1	0	1	1	1	1
1	0	1	0	1	0	1	1	0	1	0	0	0
1	1	0	0	0	1	1	0	1	1	1	1	1
1	1	1	0	0	0	1	0	1	0	1	1	1

2

3

4

Розв'язок задачі № 3

Визначити чи висловлювання ϵ тавтологією, чи протиріччям

$$(\overline{(p \lor q)} \land (q \to r)) \leftrightarrow (\bar{p} \to r)$$

p	q	r	- р	(PvQ)	¬(PvQ)	$(Q \rightarrow R)$	(1□2)	(¬p→r)	(3↔4)
0	0	0	1	0	1	1	1	0	0
0	0	1	1	0	1	1	1	1	1
0	1	0	1	1	0	0	0	0	1
0	1	1	1	1	0	1	0	1	0
1	0	0	0	1	0	1	0	1	0
1	0	1	0	1	0	1	0	1	0
1	1	0	0	1	0	0	0	1	0
1	1	1	0	1	0	1	0	1	0

1

Задане висловлювання не ϵ ні тавтологією, ні протиріччям.

Розв'язок задачі №4

Припустимо що висловлювання ((p ightarrow q) Λ (p ightarrow q)) ightarrow (-pightarrow q) ϵ протиріччям, тоді:

$$((\mathbf{p}
ightarrow \mathbf{q}) \ \mathbf{\Lambda} \ (\mathbf{p}
ightarrow \mathbf{q}))$$
 - правда $(\mathbf{-p}
ightarrow \mathbf{q})$ – не правда

Оскільки
$$((p \to q) \ \Lambda \ (p \to q))$$
 - правда , то $(p \to q)$ = 1 і $(q \to q)$ - правда

Так як ($-p \rightarrow q$) ϵ не правда , то ($p \rightarrow q$) ϵ правда і оскільки ($p \rightarrow q$) завжди правда, тоді значення висловлювання ϵ не правда, отже, якщо хоча б в одному можливому випадку значення висловлювання ϵ не правдою, то це висловлювання не ϵ тавтологі ϵ ю.

Розв'язок задачі №5

p	q	r	q↔r	p□q	p⊕(q↔r)	$p \rightarrow (q \leftrightarrow r)$
0	0	0	1	0	1	1
0	0	1	0	0	0	1
0	1	0	0	0	0	1
0	1	1	1	0	1	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	1	0
1	1	1	1	1	0	1

Ці формули не еквівалентні, оскільки їх значення відрізняться.

Розв'язок задачі №1(Дод.2)

Використовуючи таблицю істинності, пишемо програму на мові (С).

Результат програми співпадає з результатом таблички істинності (Дод.1 завд. 2)

Висновок: Виконуючи лабораторну роботу ми ознайомились з основними поняттями логіки, навчились будувати таблиці істинності та доводити тотожність за допомогою таблиць істиності