Mode of this problem

Maximize
$$Z = x_1 + 4x_2$$
 (objective function)
$$\begin{cases}
 6x_1 + 4x_2 \le 24 \\
 x_1 + 2x_2 \le 6 \\
 -x_1 + x_2 \le 1 \\
 x_2 \le 2
 \end{cases}$$
Constraints (or, Restriction)

 $x_1, x_2 \ge 0$ Non-negativity restriction on decision variable

Maximize
$$Z = 5x_1 + 4x_2$$
 (objective function)

Subject to $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$

Constraints (or, Restriction)

Maximize
$$Z = 5x_1 + 4x_2$$
 (objective function)
Subject to $6x_1 + 4x_2 \le 24$
 $x_1 + 2x_2 \le 6$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$ Constraints (or, Restriction)

 $x_1, x_2 \ge 0$ Non-negativity restriction on decision variable

		$c_j \rightarrow$	3	2	0	0	0	Constant/
Tab	C_B	basis	$\overline{x_1}$	x_2	S_1	S_2	S_3	Solution
	0	S_1	-1	2	1	0	0	4
	0	S_2	3	2	0	1	0	14
Ι	0	S_3	1	-1	0	0	1	3
		c_j row	3	2	0	0	0	Z=0
	0	S_1	0	1	1	0	1	7
	0	S_2	0	5	0	1	-3	5
II	3	x_1	1	-1	0	0	1	3
		c_j row	0	5	0	0	-3	Z=9
	0	S_1	0	0	1	-1/5	8/5	6
	2	x_2	0	1	0	1/5	-3/5	1
III	3	x_1	1	0	0	1/5	2/5	4
		c_j row	0	0	0	-1	0	Z=14
	0	S_1	0	0	5/8	-1/8	1	15/4
	2	x_2	0	1	3/8	1/8	0	13/4
IV	3	x_1	1	0	-1/4	1/4	0	5/2
		c_j row	0	0	0	-1	0	Z=14

$$\max / \min Z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
subject to $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n (\le or = or \ge) b_1$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n (\le or = or \ge) b_2$$

$$\dots \qquad \dots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n (\le or = or \ge) b_m$$

$$x_j \ge 0 (j = 1, 2, \dots, n)$$

$$\max / \min Z = \sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum a_{ij} x_j (\leq or = or \geq) b_i (i = 1, 2, m)$$
$$x_j \geq 0 (j = 1, 2, ...n)$$

		$c_j \rightarrow$	3	2	0	0	0	Constant/
Tab	c_B	basis	$\overline{x_1}$	x_2	S_1	S_2	S_3	Solution
	0	S_1	-1	2	1	0	0	4
	0	S_2	3	2	0	1	0	14
Ι	0	S_3	1	-1	0	0	1	3
		$\bar{c_j}$ row	3	2	0	0	0	Z=0
	0	S_1	0	1	1	0	1	7
	0	S_2	0	5	0	1	-3	5
II	3	x_1	1	-1	0	0	1	3
		$\bar{c_j}$ row	0	5	0	0	-3	Z=9
	0	S_1	0	0	1	-1/5	8/5	6
	2	x_2	0	1	0	1/5	-3/5	1
III	3	x_1	1	0	0	1/5	2/5	4
		$\bar{c_j}$ row	0	0	0	-1	0	Z=14
	0	S_1	0	0	5/8	-1/8	1	15/4
	2	x_2	0	1	3/8	1/8	0	13/4
IV	3	x_1	1	0	-1/4	1/4	0	5/2
		$\bar{c_j}$ row	0	0	0	-1	0	Z=14

		$c_j \rightarrow$	5	4	0	0	0	0	Constant/
Tab	c_B	basis	$\overline{x_1}$	x_2	S_1	S_2	S_3	$\overline{S_4}$	Solution
	0	S_1	6	4	1	0	0	0	24
	0	S_2	1	2	0	1	0	0	6
Ι	0	S_3	-1	1	0	0	1	0	1
1	0	S_4	0	1	0	0	0	1	2
		$\bar{c_j}$ row	5	4	0	0	0	0	Z=0
	5	x_1	1	2/3	1/6	0	0	0	4
	0	S_2	0	4/3	-1/6	1	0	0	2
II	0	S_3	0	5/3	1/6	0	1	0	5
11	0	S_4	0	1	0	0	0	1	2
		$\bar{c_j}$ row	0	2/3	-5/6	0	0	0	Z=20
	5	x_1	1	0	1/4	1/2	0	0	3
	4	x_2	0	1	-1/8	3/4	0	0	3/2
III	0	S_3	0	0	3/8	-5/4	1	0	5/2
111	0	S_4	0	0	1/8	-3/4	0	1	1/2
		$\bar{c_j}$ row	0	0	-3/4	-11/2	0	0	Z=21

PRimal Dual
Minimize
$$Z = 12x_1 + 20x_2$$
 Maximimize $W = 100y_1 + 120y_2$
subject to subjeccy to
$$6x_1 + 8x_2 \ge 100 \qquad 6x_1 + 8x_2 \ge 100$$

$$7x_1 + 12x_2 \ge 120 \qquad 7x_1 + 12x_2 \ge 120$$

$$x_1, x_2 \ge 0 \qquad x_1, x_2 \ge 0$$

	M1	M2	M3	M4	
W1	3	0	0	0	3
	2	2			
W2	1	3	3		7
V V 2	10) 8	3 5	4	
W3			1	4	5
	7	(6	8	

	N	I_1	Λ	I_2	Λ	I_3	Supply				
1	x_{11}		x_{12}		• • •		• • •		x_{1n}		a_1
		c_{11}		c_{12}		• • • •		<u> </u>		c_{1n}	
2	x_{21}		x_{22}		• • •		• • •		x_{2n}		a_2
		c_{21}		c_{22}		• • • •		<u> </u>		c_{2n}	
3	• • •				• • •						a_3
		• • •		• • • •		• • • •				• • •	
•	• • •				• • •		• • •		• • •		
•				• • •		• • • •					•
•	x_{m1}		x_{m2}		• • •		• • •		x_{mn}		
m		c_{m1}		x_{m2}		•••		•••		c_{mn}	a_m
Demand	b	1	b	2	• •	•		•	b	n	_

	M_1		M_2		M_3		M_4		Supply
W1	3	2		2		2		1	3
W2	1	10	3	8	3	5		4	7 Ø 3
W3		7		6	1	6	4	8	5
Demand	4		3		4		4		

		Marl	cets				_
		M_1	M_2	M_3	M_4	Supply	
nse	W_1	2	2	2	1	3	
oye	W_2	10	8	5	4	7	
Varel	W_3	7	6	6	8	5	
	emand	4	3	4	4	\bigcirc_{15}	Supply=Demand Standard TP
							Standard IP