

Translate the following to German:

1. Vectorize the data for ease of understanding

2. Vectorize the input and output using One-Hot Encoding

For the input X (English)

'How' \rightarrow **x1**: [1 0 0]

'are' \to **x2**: [0 1 0]

'you' \to **x3**: [0 0 1]

For the output y_true (German)

'<START> $' \rightarrow y0_{true}$: [1 0 0 0 0 0]

'Wie' \rightarrow **y1_true**: [0 1 0 0 0 0]

'geht' \rightarrow **y2_true**: $[0\ 0\ 1\ 0\ 0]$

'es' \rightarrow **y3_true**: [0 0 0 1 0 0]

'dir' \rightarrow **y4_true**: [0 0 0 0 1 0]

'<END>' → **y5_true**: [0 0 0 0 0 1]

• Decoders perform better when trained through "Teacher Forcing".

uses true previous outputs as current inputs

Decoders work differently in training and testing phase unlike an encoder

Teaching Force

✓ Analytics Vidhya

Backpropogation

- Loss is calculated on predicted outputs from each time step.
- Errors are backpropagated through time and the parameters are updated.
- CCE loss function is used between Y_true and Y_pred.

- Y_true = [y0_true, y1_true, y2_true, y3_true, y4_true, y5_true]
- Y_pred = ['<START>', y1_pred, y2_pred, y3_pred, y4_pred, y5_pred]

Up Next: Encoder-Decoder for Headline Extraction