# Bioinformatics for Next-Generation Sequencing ICIPE, Nairobi, November 2014

# Evolutionary Genomics 2: Population Genomics



Department of Zoology University of Cambridge

### Outline

- Questions in population genomics
- Statistics, inference and examples
  - Genetic diversity and population size
  - Population subdivision and speciation
  - Selection
- Study design
  - Sampling and sequencing

# Questions in population genomics

- Diversity and population structure
  - How much genetic variation exists in a population?
  - How and why is a species subdivided into populations?
- Demographic history and gene flow
  - How has a population size and distribution changed over time?
  - How much migration and gene flow occurs between populations / species?

# Questions in population genomics

#### Speciation

- Which genes/events cause two species to become distinct and remain distinct?
- What are the relative roles of adaptive and neutral forces in speciation?
- What is a species?

#### Adaptation

- Where in the genome is natural selection acting?
- What is the source of beneficial genetic variation?

### Diversity and allele frequencies

Heterozygosity: Proportion of the genome that is heterozygous

TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGATCTCGTGCCTAAGTAGATCATGATACT
TAGGTCGTCGAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTAGATTATGATAAT

- Inbreeding
- Selection
- Population size
- Humans ~0.001, Fruit Flies ~0.01

- S: number of variable sites
- Π (nucleotide diversity): Average number of differences between any pair of sequences

TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGATCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTAGATCATGATAAT
TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTAGATCATGATAAT
TAGGTCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTAGATTATGATAAT

- Selection
- Population size
- If no inbreeding  $\Pi$  ~ heterozygosity

 Site frequency spectrum (SFS) number of occurances of variants at each frequency

TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGATCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTAGATCATGATAAT
TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTAGATCATGATAAT
TAGGTCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCCCTTTCGCTGAGCTCGTGCTTAAGTAGATTATGATAAT

- Selection
- Changes in population size
- Hybridisation









Sliding windows



## Inferring population size from diversity data

**Coalescence**: relatedness between individuals relates to population size



# Inferring population size from diversity data





### Population subdivision

- Differences in allele frequency between sub-populations
- We can use genetic data to identify boundaries between sub-populations

TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGATCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGGTCGTCCAGATCGATCTAGCCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCCTTTCGCTGAGCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCCGAGATCGATCTAGCCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATTATGATAAT

TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCTTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAACT

# Population subdivision – a genome-wide view

 F<sub>ST</sub> is a measure of differences in allele frequencies between populations



 $F_{\rm ST}$  between two marine populations (A) or between marine and freshwater populations (B) (Hohenlohe et al. 2010)



Population subdivision – a genome-wide view

Parapatric wing-pattern races of Heliconius melpomene are only strongly differentiated at two wing patterning loci.

 $F_{ST}$ 

(Martin et al. 2013 Genome Research)

10 Mb



# Population subdivision – identifying populations using genomic data

 Given a genetic dataset, can we infer whether there are distinct populations?

TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGATCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGGTCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGACCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGACCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAACT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCCTAAGTAGATTATGATAACT

# Population subdivision – identifying populations using genomic data

 PCA (Principle Components Analysis) simplifies huge genetic datasets into two (or more) dimensions





# Population subdivision – identifying populations using genomic data

• STRUCTURE (Pritchard et al. 2000) estimates the likelihood that each sample falls into each of *k* clusters



# Speciation and gene flow







evolution.berkeley.edu Wu 2001, JEB

# Speciation and gene flow





















#### Ab Allopatric races: H. m. rosina (Pan) versus H. m. melpomene (FG)



#### Ac Sympatric species: H. cydno (Pan) versus H. m. rosina (Pan)







# Detecting gene flow



# Detecting gene flow

Huge genomic data sets allow sensitive fitting of evolutionary models.

TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGATCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGATCGTCCAGATCGAACTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGGTCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCTTAAGTCGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCCTTTCGCTGAGCTCGTGCCTAAGTCGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCCAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGATCTCGTGCCTAAGTAGATCATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAAT
TAGATCGTCGAGATCGATCTAGCCCGTTTCGCTGAGCTCGTGCCTAAGTAGATTATGATAACT



- Strong selection rapidly fixes a benefical allele in the population
- Causes reduced diversity at the selected site and a change in the site frequency spectrum





Martin et al. 2013 eLS





**Figure 5.** Nucleotide diversity  $(\pi)$  along the *D. mauritiana* X chromosome. The location of genes potentially causing the two selective sweeps are indicated: (large red diamond) MDox/Dox; (large blue diamond) OdsH; (small red diamond) E(Dox). Nucleotide diversity  $(\pi)$  is plotted in nonoverlapping 10-kb windows.

 Sweepfinder (Nielsen et al. 2005) identifies regions showing a strong skew in the site frequency spectrum.

Figure 1:

Selective sweeps in *Anopheles gambiae* – Crawford et al. 2014







# Designing a population genomic study

Number of samples



Selection



10s - 100s











5-10











1-5











pools











# Designing a population genomic study

Type of sequencing







Whole Genome











**Targeted Capture** 











Sub-genomic (e.g. RADseq)









