Feuille d'exercices : chapitre trigonométrie

S Exercice 1.

On considère, pour $n \in \mathbb{Z}$, les expressions suivantes :

 $1) \cos(n\pi),$

 $2) \sin\left(\frac{2n\pi}{3}\right),$

3) $\cos\left(\frac{n\pi}{2}\right)$.

Pour chacune de ces expressions,

- a) donner les valeurs prises par l'expression, pour $n = 0, 1, 2, 3, \ldots$ puis pour $n = -1, -2, -3, \ldots$, (vous vous arrêtez lorsque vous avez compris le fonctionnement de l'expression);
- b) donner alors une formulation condensée de l'expression.

Exercice 2.

Exprimer $\frac{\pi}{12}$ à l'aide de deux angles remarquables. En déduire :

$$\cos\left(\frac{\pi}{12}\right)$$
 et $\sin\left(\frac{\pi}{12}\right)$.

S Exercice 3.

- 1) Rappeler la relation fondamentale de trigonométrie entre $\cos^2 \alpha$ et $\sin^2 \alpha$.
- 2) Déterminez $\cos(\alpha)$ sachant que $\sin(\alpha) = -\frac{1}{5}$ et $\cos(\alpha) \ge 0$.
- 3) Déterminez $\cos(\alpha)$ sachant que $\sin(\alpha) = \frac{2}{5}$ et $\cos(\alpha) \ge 0$.
- 4) Déterminez $\cos(\alpha)$ sachant que $\sin(\alpha) = \frac{1}{10}$ et $\cos(\alpha) \le 0$.
- 5) Déterminez $\cos(\alpha)$ sachant que $\sin(\alpha) = -\frac{1}{5}$ et $\cos(\alpha) \le 0$.

S Exercice 4.

On a tracé la courbe représentative de la fonction sinus sur l'intervalle $[0; 4\pi]$.

- 1) a) Résoudre graphiquement l'équation $\sin(x) = 0$ sur l'intervalle $[0; 4\pi]$.
 - **b)** Résoudre graphiquement l'inéquation $\sin(x) \leq 0$ sur l'intervalle $[0; 4\pi]$.
- 2) On a tracé la droite d'équation : $y = \frac{1}{2}$.
 - a) Résoudre graphiquement l'équation $\sin(x) = 1$ sur l'intervalle $[0; 4\pi]$.
 - **b)** Résoudre graphiquement l'équation $\sin(x) = 1/2$ sur l'intervalle $[0; 4\pi]$.
 - c) Résoudre graphiquement l'inéquation $\sin(x) < 1/2$ sur l'intervalle $[0; 4\pi]$.

Exercice 5.

Résoudre les équations suivantes :

1)
$$\sin(3x) = -1$$
.

2)
$$\cos(x) = 1$$
.

3)
$$\tan(x) = -1$$
.

4)
$$\cos^2(x) = \frac{3}{4}$$
.

5)
$$\sin^2(x) = \frac{1}{2}$$

6)
$$\tan(x) = -\frac{\sqrt{3}}{3}$$
.

Exercice 6.

Résoudre l'équation suivante :

$$\cos(4x) + 2\sin(x)\cos(x) = 0.$$

Indication: transformer l'équation en une expression du type $\cos(\ldots) = \cos(\ldots)$ ou $\sin(\ldots) = \sin(\ldots)$, puis résoudre.

Exercice 7.

Montrer que

$$\cos(x+\pi)\sin\left(\frac{\pi}{2}-x\right) - \sin^2(-x) = -1.$$

Exercice 8.

Soit $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$. Simplifier l'expression

$$\tan(x-\pi) - \tan(x).$$

Exercice 9.

Soit $x \in \mathbb{R}$. Montrer l'égalité

$$\cos^4(x) - \sin^4(x) = \cos(2x).$$

S Exercice 10.

On veut résoudre l'équation suivante :

$$\sqrt{3}\cos x - \sin x - 1 = 0.$$

Indication : mettre l'équation sous la forme $\cos a\cos b - \sin a\sin b = \frac{1}{2}.$

Exercice 11.

Résoudre l'équation suivante :

$$\cos^2 x - \sin x \cos x + 2\sin^2 x - 2 = 0.$$

 $Indication: \cos^2 x + \sin^2 x = 1.$