HW 1.1 1.1.2,4,7,14

1.1.2. Consider the set of real numbers \mathbb{R} and the function $d(x,y)=(x-y)^2$ where $x,y\in\mathbb{R}$. We show that d is not a metric on \mathbb{R} . Assume that d is a metric on \mathbb{R} . Then for all $x,y,z\in\mathbb{R}$, $d(x,y)\leq d(x,z)+d(z,y)$ by the triangle inequality property of metrics. Let x=-1,y=1, and z=0. Then

$$d(-1,1) \le d(-1,0) + d(0,1) \tag{1}$$

$$4 \le 1 + 1 \tag{2}$$

$$4 \le 2. \tag{3}$$

This is a contradiction. Hence, d is not a metric on \mathbb{R} .

1.1.4. Let the set X be a set with 2 points α, β . Let r be a positive real-number. We define a function d_r on X by

$$d_r(x,y) = \begin{cases} 0 & x = y \\ r & x \neq y \end{cases}.$$

Thus, d_r is clearly real-valued since $r, 0 \in \mathbb{R}$, clearly nonnegative since 0 = 0 and r > 0, and is clearly finite since $r, 0 \in \mathbb{R}$. Note that if d(x, y) = 0, then x = y by definition. Further, if x = y, then d(x, y) = 0. Next, if x = y, then d(x, y) = 0 = d(y, x) and if $x \neq y$, then d(x, y) = r = d(y, x). So d is symmetric. Lastly, we see that d(x, y) = 0 + d(x, y) = d(x, x) + d(x, y) and d(x, y) = d(x, y) + 0 = d(x, y) + d(y, y). So the triangle inequality holds. Thus d_r is a metric.

It suffices to show that d_r is the only possible metric on X. Assume another metric exists on X that is not d_r . Then d(x,y)=r for some positive real-valued number r when $x \neq y$. This is because d(x,y)=0 if and only if x=y and d is nonnegative. Thus, $d=d_r$ since there are only two elements in X, and so d can only take on the values 0 and r. This is a contradiction. So every metric on X can be expressed as a metric d_r where r is any positive real-valued number.

Now let Y be the set with 1 point. We denote this point as α . Let d be a metric defined on Y. So d is only defined for $d(\alpha, \alpha)$. Since d is a metric, $d(\alpha, \alpha) = 0$. So any metric on Y is the 0 metric (i.e., d(x, y) = 0 for all $x, y \in Y$).

1.1.7. Let A be a subspace of l^{∞} consisting of all sequences of zeros and ones. Recall the metric defined in example 6 (i.e., $d(x,y) = \sup_{j \in \mathbb{N}} |\xi_i - \eta_i|$). Now let $x, y \in A$ where $x = (\xi_1, \xi_2, ...)$ and $y = (\eta_1, \eta_2, ...)$. If x and y distinct, then for all j where $\xi_j \neq \eta_j$, $|\xi_j - \eta_j| = 1$. For all k where $\xi_k = \eta_k$, $|\xi_k - \eta_k| = 0$. So d(x,y) = 1.

If x = y, then d(x, y) = 0 since d is a metric. So the induced metric on A is $d \mid_A (x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$. This is the discrete metric.

1.1.14. Let d be a metric on X. We want to show that $d(x_1, x_n) \leq d(x_1, x_2) + d(x_2, x_3) + \cdots + d(x_{n-1}, x_n)$ for all $n \in \mathbb{Z}$ where $n \geq 2$ (since if n = 1, this pattern does not make sense). Let n = 2. Then $d(x_1, x_2) \leq d(x_1, x_2)$ (in fact they are equal). Then for n = 3, let $x_1, x_2, x_3 \in X$. We get that $d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3)$ since d is a metric.

Now assume by induction that $d(x_1, x_n) \leq d(x_1, x_2) + d(x_2, x_3) + \cdots + d(x_{n-1}, x_n)$ for some $n \geq 3$. Then we see that $d(x_1, x_{n+1}) \leq d(x_1, x_n) + d(x_n, x_{n+1})$ by the triangle inequality since d is a metric. Then by the inductive hypothesis,

$$d(x_1, x_{n+1}) \le d(x_1, x_2) + \dots + d(x_{n-1}, x_n) + d(x_n, x_{n+1}).$$

Hence for all $n \in \mathbb{Z}$ where $n \geq 2$, $d(x_1, x_n) \leq d(x_1, x_2) + d(x_2, x_3) + \cdots + d(x_{n-1}, x_n)$.