Datasets

Prof.Dr. Bahadır AKTUĞ Machine Learning with Python

Datasets

- Sci-kit Learn provides built-in datasets called «toy datasets»
- Sci-kit Learn also provides utility functions to retrieve several popular datasets.

Toy Datasets

<pre>load_iris(*[, return_X_y, as_frame])</pre>	Load and return the iris dataset (classification).
<pre>load_diabetes(*[, return_X_y, as_frame])</pre>	Load and return the diabetes dataset (regression).
<pre>load_digits(*[, n_class, return_X_y, as_fra me])</pre>	Load and return the digits dataset (classification).
<pre>load_linnerud(*[, return_X_y, as_frame])</pre>	Load and return the physical excercise linnerud dataset.
<pre>load_wine(*[, return_X_y, as_frame])</pre>	Load and return the wine dataset (classification).
<pre>load_breast_cancer(*[, return_X_y, as_fra me])</pre>	Load and return the breast cancer wisconsin dataset (classification).

Load and return the boston house-prices dataset (regression).

- ▶ The Iris flower data set or Fisher's Iris data set is a multivariate data set.
- This data sets consist of the attributes of 3 different types of irises

Iris setosa

Iris versicolor

Iris virginica

- ▶ The data consists of 150x5 numpy.ndarray
- ▶ The rows being the samples and the columns being:
 - Sepal Length,
 - Sepal Width,
 - Petal Length
 - Petal Width
 - Species

Iris Plants

Number of Instances:	150 (50 in each of three classes)
Number of Attributes:	4 numeric, predictive attributes and the class
Attribute Information:	 sepal length in cm sepal width in cm petal length in cm petal width in cm class: Iris-Setosa Iris-Versicolour Iris-Virginica
Summary Statistics:	
•	
sepal length: sepal width: petal length: petal width:	4.3 7.9 5.84 0.83 0.7826 2.0 4.4 3.05 0.43 -0.4194 1.0 6.9 3.76 1.76 0.9490 (high!) 0.1 2.5 1.20 0.76 0.9565 (high!)
Missing Attribute Values:	None
Class Distribution:	33.3% for each of 3 classes.
Creator:	R.A. Fisher
Donor:	Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
Date:	July, 1988

- We can download and examine the data set from numerous sources.
- Since the dataset is highly popular for taxonomy problems, several python libraries (e.g. sklearn, seaborn) have it already built-in.
- We'll learn about sklearn later in this class. Seaborn can also be used to load iris dataset.

```
import seaborn as sns
iris = sns.load_dataset('iris')
iris.head()

from sklearn.datasets import load_iris
dataLoaded = load iris()
```

- The seaborn will load iris data as a Pandas dataframe.
- ▶ The dataframe consists of 150 rows x 5 columns
- We can check the data size and content by typing:

```
>>> iris.shape
(150, 5)
>>> type(iris)
<class 'pandas.core.frame.DataFrame'>
```

Showing the first five rows:

Handwritten Digits

Number of Instances:	1797
Number of Attributes:	64
Attribute Information:	8x8 image of integer pixels in the range 016.
Missing Attribute Values:	None
Creator:	5. Alpaydin (alpaydin '@' boun.edu.tr)
Date:	July; 1998

Handwritten Digits

This dataset is made up of 1797 8x8 images. Each image, like the one shown next, is of a hand-written digit.

```
import matplotlib.pyplot as plt

# Load the digits dataset
digits = datasets.load_digits()

# Display the last digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation="nearest")
plt.show()
```

1

3

4

5

Handwritten Digits


```
>>> digits.target array([0, 1, 2, ..., 8, 9, 8])
```

Wine recognition dataset

Number of Instances:	178 (50 in each of three classes)
Number of Attributes:	13 numeric, predictive attributes and the class
Attribute Information:	 Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue OD280/OD315 of diluted wines Proline
4	

•	cl	a	s	S	

- o class_0
- o class_1
- o class_2

11.0	14.8	13.0	0.8
0.74	5.80	2.34	1.12
1.36	3.23	2.36	0.27
10.6	30.0	19.5	3.3
70.0	162.0	99.7	14.3
0.98	3.88	2.29	0.63
0.34	5.08	2.03	1.00
0.13	0.66	0.36	0.12
0.41	3.58	1.59	0.57
1.3	13.0	5.1	2.3
0.48	1.71	0.96	0.23
1.27	4.00	2.61	0.71
278	1680	746	315
	0.74 1.36 10.6 70.0 0.98 0.34 0.13 0.41 1.3 0.48 1.27	0.74 5.80 1.36 3.23 10.6 30.0 70.0 162.0 0.98 3.88 0.34 5.08 0.13 0.66 0.41 3.58 1.3 13.0 0.48 1.71 1.27 4.00	0.74 5.80 2.34 1.36 3.23 2.36 10.6 30.0 19.5 70.0 162.0 99.7 0.98 3.88 2.29 0.34 5.08 2.03 0.13 0.66 0.36 0.41 3.58 1.59 1.3 13.0 5.1 0.48 1.71 0.96 1.27 4.00 2.61

Attribute Values:	None
Class Distribution:	class_0 (59), class_1 (71), class_2 (48)
Creator:	R.A. Fisher
Donor:	Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
Date:	July, 1988

Missing None

Wine recognition dataset

RangeIndex: 178 entries, 0 to 177 Data columns (total 14 columns):

	20241113 (20242 21 20241113)1		
#	Column	Non-Null Count	Dtype
0	alcohol	178 non-null	float64
1	malic_acid	178 non-null	float64
2	ash	178 non-null	float64
3	alcalinity_of_ash	178 non-null	float64
4	magnesium	178 non-null	float64
5	total_phenols	178 non-null	float64
6	flavanoids	178 non-null	float64
7	nonflavanoid_phenols	178 non-null	float64
8	proanthocyanins	178 non-null	float64
9	color_intensity	178 non-null	float64
10	hue	178 non-null	float64
11	od280/od315_of_diluted_wines	178 non-null	float64
12	proline	178 non-null	float64
13	target	178 non-null	float64
4.0	63		

dtypes: float64(14) memory usage: 19.6 KB

Breast cancer Wisconsin (diagnostic) dataset

Number of Instances:	569
Number of Attributes:	30 numeric, predictive attributes and the class
Attribute Information:	 radius (mean of distances from center to points on the perimeter) texture (standard deviation of gray-scale values) perimeter area smoothness (local variation in radius lengths) compactness (perimeter^2 / area - 1.0) concavity (severity of concave portions of the contour) concave points (number of concave portions of the contour) symmetry fractal dimension ("coastline approximation" - 1)

•	c	a	S	S	

- WDBC-Malignant
- o WDBC-Benign

radius (mean):	6.981	28.11
texture (mean):	9.71	39.28
perimeter (mean):	43.79	188.5
area (mean):	143.5	2501.0
smoothness (mean):	0.053	0.163
compactness (mean):	0.019	0.345
concavity (mean):	0.0	0.427
concave points (mean):	0.0	0.201
symmetry (mean):	0.106	0.304
fractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
texture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
smoothness (standard error):	0.002	0.031
compactness (standard error):	0.002	0.135
concavity (standard error):	0.0	0.396
concave points (standard error):	0.0	0.053
symmetry (standard error):	0.008	0.079
fractal dimension (standard error):	0.001	0.03
radius (worst):	7.93	36.04
texture (worst):	12.02	49.54
perimeter (worst):	50.41	251.2
area (worst):	185.2	
smoothness (worst):	0.071	0.223
compactness (worst):	0.027	1.058
concavity (worst):	0.0	1.252
concave points (worst):	0.0	0.291
symmetry (worst):	0.156	0.664
fractal dimension (worst):	0.055	0.208

Missing Attribute Values:	None
Class Distribution: Creator:	212 - Malignant, 357 - Benign Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian
Donor:	Nick Street
Date:	November, 1995

Breast cancer Wisconsin (diagnostic) dataset

	COLUMN	INFORMATION		
	1	ID		
	2	Radius		
	3	Texture		
	4	Perimeter		
	5	Area		
Mean	6	Smoothness		
Mean	7	Compactness		
	8	Concavity		
	9	Concave_points		
	10	Symmetry		
	11	Fractal_dimension		
	12	Radius_SE		
	13	Texture_SE		
	14	Perimeter_SE		
	15	Area_SE		
Standard Error	16	Smoothness_SE		
Standard Error	17	Compactness_SE		
	18	Concavity_SE		
	19	Concave_points_SE		
	20	Symmetry_SE		
	21	Fractal_dimension_SE		
	22	W_Radius		
	23	W_Texture		
Worst or	24	W_Perimeter		
	25	W_Area		
largest (mean	26	W_Smoothness		
of the three	27	W_Compactness		
largest values)	28	W_Concavity		
	29	W_Concave_points		
	30	W_Symmetry		
	31	W_fractal_dimension		
	32	Diagnosis: Bening/Malignant		

Breast cancer wisconsin (diagnostic) dataset

0.163

Describe dataframe, first 6 columns:						
	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness
count	569.0000	569.0000	569.000	569.0000	569.0000	569.0000
mean	14.1273	19.2896	91.969	654.8891	0.0964	0.1043
std	3.5240	4.3010	24.299	351.9141	0.0141	0.0528
min	6.9810	9.7100	43.790	143.5000	0.0526	0.0194
25%	11.7000	16.1700	75.170	420.3000	0.0864	0.0649
50%	13.3700	18.8400	86.240	551.1000	0.095	
75%	15.7800	21.8000	104.100	782.7000	0.105	TARGET

188.500

2501.0000

```
>>> from sklearn.datasets import load breast cancer
>>> data = load breast cancer()
>>> data.target[[10, 50, 85]]
array([0, 1, 0])
>>> list(data.target names)
['malignant', 'benign']
```

39.2800

max

28.1100

Diabetes dataset

Number of Instances:	442
Number of Attributes:	First 10 columns are numeric predictive values
Target:	Column 11 is a quantitative measure of disease progression one year after baseline
Attribute Information:	 age age in years sex bmi body mass index bp average blood pressure s1 tc, T-Cells (a type of white blood cells) s2 ldl, low-density lipoproteins s3 hdl, high-density lipoproteins s4 tch, thyroid stimulating hormone s5 ltg, lamotrigine s6 glu, blood sugar level

Diabetes dataset

Diabetes dataset

```
# Load the dataset
diabetes = datasets.load_diabetes(as_frame=True)
# Names of the 10 groups of data
 print(diabetes['feature names'])
# The 442 data points in each of the 10 groups of data, formatted as a 442x10 array
print(diabetes['data'])
                            bmi ...
##
           age
       0.038076 0.050680 0.061696 ... -0.002592 0.019908 -0.017646
## 0
      -0.001882 -0.044642 -0.051474 ... -0.039493 -0.068330 -0.092204
## 1
## 2
       0.085299 0.050680 0.044451 ... -0.002592 0.002864 -0.025930
      -0.089063 -0.044642 -0.011595 ... 0.034309 0.022692 -0.009362
## 3
## 4
       0.005383 -0.044642 -0.036385
                               ... -0.002592 -0.031991 -0.046641
## ..
      0.041708 0.050680 0.019662 ... -0.002592 0.031193 0.007207
## 438 -0.005515 0.050680 -0.015906 ... 0.034309 -0.018118 0.044485
      0.041708 0.050680 -0.015906 ... -0.011080 -0.046879 0.015491
## 440 -0.045472 -0.044642 0.039062 ... 0.026560 0.044528 -0.025930
## 441 -0.045472 -0.044642 -0.073030 ... -0.039493 -0.004220 0.003064
##
## [442 rows x 10 columns]
```

Diabetes Dataset

```
# The target data, namely a quantitative measure of disease progression one
```

151.0

0

```
# year after baseline
print(diabetes['target'][:20])
```



```
## 1
          75.0
## 2
         141.0
## 3
         206.0
         135.0
## 4
          97.0
## 5
## 6
         138.0
          63.0
## 7
## 8
         110.0
         310.0
## 9
         101.0
## 10
## 11
         69.0
## 12
         179.0
         185.0
## 13
         118.0
## 14
## 15
         171.0
## 16
         166.0
## 17
         144.0
## 18
         97.0
## 19
         168.0
```

Name: target, dtype: float64

Linnerrud Dataset

Number of	20
Instances:	
Number of	3
Attributes:	
Missing	None
Missing Attribute	
Values:	
4	

The Linnerud dataset is a multi-output regression dataset. It consists of three excercise (data) and three physiological (target) variables collected from twenty middle-aged men in a fitness club:

- physiological CSV containing 20 observations on 3 physiological variables:
 Weight, Waist and Pulse.
- exercise CSV containing 20 observations on 3 exercise variables:
 Chins, Situps and Jumps.

Boston House Prices

Data Set Characteristics:

Number of Instances:	506
Number of Attributes:	13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
Attribute Information (in order):	 CRIM per capita crime rate by town ZN proportion of residential land zoned for lots over 25,000 sq.ft. INDUS proportion of non-retail business acres per town CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) NOX nitric oxides concentration (parts per 10 million) RM average number of rooms per dwelling AGE proportion of owner-occupied units built prior to 1940 DIS weighted distances to five Boston employment centres RAD index of accessibility to radial highways TAX full-value property-tax rate per \$10,000 PTRATIO pupil-teacher ratio by town B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town LSTAT % lower status of the population MEDV Median value of owner-occupied homes in \$1000's
Missing Attribute Values:	None
Creator:	Harrison, D. and Rubinfeld, D.L.

<pre>fetch_olivetti_faces(*[, data_home,])</pre>	Load the Olivetti faces data-set from AT&T (classification).
<pre>fetch_20newsgroups(*[, data_home, subset,])</pre>	Load the filenames and data from the 20 newsgroups dataset (classification).
<pre>fetch_20newsgroups_vectorized(*[, subset,])</pre>	Load and vectorize the 20 newsgroups dataset (classification).
<pre>fetch_lfw_people(*[, data_home, funneled,])</pre>	Load the Labeled Faces in the Wild (LFW) people dataset (classification).
<pre>fetch_lfw_pairs(*[, subset, data_home,])</pre>	Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
<pre>fetch_covtype(*[, data_home,])</pre>	Load the covertype dataset (classification).
<pre>fetch_rcvl(*[, data_home, subset,])</pre>	Load the RCVI multilabel dataset (classification).
<pre>fetch_kddcup99(*[, subset, data_home,])</pre>	Load the kddcup99 dataset (classification).
<pre>fetch_california_housing(*[, data_home,])</pre>	Load the California housing dataset (regression).

- Information about data can be examined through several utility commands
- The utility «load» functions do not return data in tabular format as expected. Instead, they return data as a «bunch» (in sklearn terminology).
- Bunch object is basically a dictionary having keys as follows:
- dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])

- ▶ The most import ones are the «data» and «target»
- Data is the feature data which comprises the the attributes for each sample
- Target is dependent output variable consisting of values we want to predict
- Apart from these two, there are metadata which serve to describe the properties of the dataset
- «feature_names» are the names of the features (attributed)
- «target_names» is the name(s) of the target variable(s), in other words name(s) of the target column(s)
- «DESCR» is a description of the dataset
- «filename» is the path to the actual file of the data in CSV format. Loading data from For instance, the toy dataset Breast cancer Wisconsin can be inspected as:

Loading data from For instance, the toy dataset Breast cancer Wisconsin can be loaded and inspected as:

```
from sklearn import datasets
data = datasets.load_breast_cancer()
print(data.keys())
print(data.feature names)
```

Output:

```
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR',
   'feature_names', 'filename'])
['mean radius' 'mean texture' 'mean perimeter' 'mean area'
   'mean smoothness' 'mean compactness' 'mean concavity'
   'mean concave points' 'mean symmetry' 'mean fractal dimension'
   'radius error' 'texture error' 'perimeter error' 'area error'
   'smoothness error' 'compactness error' 'concavity error'
   'concave points error' 'symmetry error' 'fractal dimension error'
   'worst radius' 'worst texture' 'worst perimeter' 'worst area'
   'worst smoothness' 'worst compactness' 'worst concavity'
   'worst concave points' 'worst symmetry' 'worst fractal dimension']
```

Dataset Breast cancer Wisconsin

- :Number of Instances: 569
- :Number of Attributes: 30 numeric, predictive attributes and the class
- :Attribute Information:
 - radius (mean of distances from center to points on the perimeter)
 - texture (standard deviation of gray-scale values)
 - perimeter
 - area
 - smoothness (local variation in radius lengths)
 - compactness (perimeter^2 / area 1.0)
 - concavity (severity of concave portions of the contour)
 - concave points (number of concave portions of the contour)
 - symmetry
 - fractal dimension ("coastline approximation" 1)
 - class:
 - WDBC-Malignant
 - WDBC-Benign

If we prefer to convert sklearn bunch object into a dataframe (we usually do), a Pandas dataframe can be formed from a bunch as follows:

```
from sklearn import datasets
data = datasets.load_breast_cancer()
print(data.keys())
print(data.feature_names)
import pandas as pd
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
```

This approach still requires original load data utility function

References

- I https://scikit-learn.org/
- 2 https://towardsdatascience.com/
- 3 McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython 2nd Edition.
- 4 Albon, C. (2018). Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning
- <u>Géron</u>, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 1st Edition
- 6 Müller, A. C., Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists
- 7 Burkov, A. (2019). The Hundred-Page Machine Learning Book.
- 8 Burkov, A. (2020). Machine Learning Engineering.
- 9 Goodrich, M.T., Tamassia, R., Goldwasser, M.H. (2013). Data Structures and Algorithms in Python, Wiley.
- 10 https://towardsdatascience.com
- II https://docs.python.org/3/tutorial/
- 12 http://www.python-course.eu
- 13 https://developers.google.com/edu/python/
- 14 http://learnpythonthehardway.org/book/