Sample Midterm 2 for MATH 185

Problem 1

If the followings statements are true, answer "TRUE". If not, give a brief explanation why.

- (1) If f(z) is analytic on a domain $D \subseteq \mathbb{C}$, and α is aclosed path in D, then $\int_{\alpha} f(z)dz = 0$.
- (2) If f is analytic on the unit disk $\mathbb{E} = \{z : |z| < 1\}$, then there exists an $a \in \mathbb{E}$ such that $|f(a)| \ge |f(0)|$.
- (3) If $\sum_{n} a_n z^n$ has radius of convergence R, then $\sum_{n} \operatorname{Re}(a_n) z^n$ has radius of convergence $\geq R$.
- (4) If f and g are analytic on D, and if they agree on a non-empty set S which is closed in D, then f = g in D.

Problem 2

Compute the integral

$$\oint_{|z|=3} \frac{\cos(\pi z)}{z^2-1}.$$

Problem 3

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-comstant, entire function. Show that $f(\mathbb{C})$ is dense in \mathbb{C} , i.e. for every $\alpha \in \mathbb{C}$ and for every $\epsilon > 0$, $U_{\epsilon}(\alpha)$ contains a point from $f(\mathbb{C})$.

Problem 4

Expand $\frac{1}{z^2-1}$ in a Taylor series around z=0 and determine the radius of convergence.