CS2040S Data Structures and Algorithms

Union-Find

Today

Disjoint Set Data Structure

- Problem: Dynamic Connectivity
- Algorithm: Union-Find
- Applications
- Revisiting Kruskals

Is there any route from y to z?

Best way to find if there is a route from Y to Z?

Breadth-first search

Depth-first search

How do you pre-process?

Z

Two steps:

- 1. Pre-process maze
- 2. Answer queries

isConnected(y,z) :

Returns true if there is a path from A to B, and false otherwise.

Mazes

Preprocess:

Identify connected components. Label each location with its component number.

isConnected(y,z) :

Returns true if A and B are in the same connected component.

Mazes

Preprocess:

Prepare to answer queries.

destroyWall(x):

Remove walls from the maze using your superpowers.

isConnected(y, z): Answer connectivity queries.

Mazes

Preprocess:

Prepare to answer queries.

destroyWall(x):

Remove walls from the maze using your superpowers.

isConnected(y, z): Answer connectivity queries.

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

- Union: connect two objects
- Find: is there a path connecting the two objects?

Given a set of objects:

- Union: connect two objects
- Find: is there a path connecting the two objects?

Transitivity

If p is connected to q and if q is connected to r, then p is connected to r.

Connected components:

Maximal set of mutually connected objects.

Given a set of objects:

- Union: connect two objects
- Find: is there a path connecting the two objects?

Given a set of objects:

- Union: connect two objects
- Find: is there a path connecting the two objects?

Given a set of objects:

- Union: connect two objects
- Find: is there a path connecting the two objects?

Given a set of objects:

- Union: connect two objects
- Find: is there a path connecting the two objects?

Given a set of objects:

- Union: connect two objects
- Find: is there a path connecting the two objects?

Given a set of objects:

- Union: connect two objects
- Find: is there a path connecting the two objects?

Abstract Data Type

Disjoint Set (Union-Find)

public interface	DisjointSet <key></key>								
	DisjointSet(int N)	constructor: N objects							
boolean	find(Key p, Key q)	are p and q in the same set?							
void	union(Key p, Key q)	replace sets containing p and q with their union							

Initial state of data structure:

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	3	4	5	6	7	8

Initially, every object is its own component.

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	3	4	5	6	7	8

Initially, every object is its own component.

Component identifier tells us which component it belongs to.

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	3	4	5	6	7	8

Initial Idea:

How about, to union two components a, b:

Run through all objects, if their identifier is b: set it to a.

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	3	4	5	6	7	8


```
union(int p, int q)
for (int i=0; i<componentId.length; i++)
   if (componentId[i] == componentId[q])
      componentId[i] = componentId[p];</pre>
```

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	3	4	5	6	7	8

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	3	4	5	6	7	8

4 1

Example:

union(1,4)

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	3	1	5	6	7	8

5

Example:

union(1,4)

3

2

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	2	1	1	5	6	7	8

Flat trees:

object	0	1	2	3	4	5	6	7	8
component identifier	0	2	2	2	2	5	6	7	8

Flat trees:

object	0	1	2	3	4	5	6	7	8
component identifier	0	2	2	2	2	5	7	7	8

Flat trees:

object	0	1	2	3	4	5	6	7	8
component identifier	0	2	2	2	2	5	2	2	8


```
find(int p, int q)
return(componentId[p] == componentId[q]);
```

```
        object
        0
        1
        2
        3
        4
        5
        6
        7
        8

        component identifier
        0
        1
        1
        3
        0
        1
        0
        1
        3
```


Running time of (Find, Union):

- 1. O(1), O(1)
- \checkmark 2. O(1), O(n)
 - 3. O(n), O(1)
 - 4. O(n), O(n)
 - 5. O(log n), O(log n)
 - 6. None of the above.

Doing Better:

Union takes too long. Reason being that we are too aggressively updating the component identifier.

Doing Better:

Union takes too long. Reason being that we are too aggressively updating the component identifier.

Let's try to see what happens if we were a little lazier.

object	0	1	2	3	4	5	6	7	8
component identifier	0	1	1	3	0	1	0	1	3

Using Parent Pointers Instead

Data structure:

- Integer array: int[] parent
- Two objects are connected if they are part of the same tree.

object	0	1	2	3	4	5	6	7	8
parent	6	2	7	3	6	1	6	7	7

Data structure:

- Integer array: int[] parent
- Two objects are connected if they are part of the same tree.

Data structure:

- Integer array: int[] parent
- Two objects are connected if they are part of the same tree.

Data structure:

- Integer array: int[] parent
- Two objects are connected if they are part of the same tree.

Data structure:

- Integer array: int[] parent
- Two objects are connected if they are part of the same tree.

How do we tell if two objects are in the same component?

- 1. When they have the same component identifier.
- 2. When they have the same parent.
- When they have the same root


```
find(int p, int q)
  traverse up the tree to obtain p's root p_root
  traverse up the tree to obtain q's root q_root
  return p_root == q_root
```



```
find(int p, int q)
while (parent[p] != p) p = parent[p];
while (parent[q] != q) q = parent[q];
return (p == q);
```

```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```



```
find(int p, int q)

while (parent[p] != p) p = parent[p];
while (parent[q] != q) q = parent[q];
return (p == q);
```

```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```



```
find(int p, int q)
  while (parent[p] != p) p = parent[p];
  while (parent[q] != q) q = parent[q];
  return (p == q);
```

```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```



```
Example: find(4, 1)
```

```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```



```
Example: find(4, 1)
4 \Box 6 \Box 6;
```

```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```



```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```


But what about union?


```
union(int p, int q)
```

traverse up the tree to obtain p's root p_root
traverse up the tree to obtain q's root q_root
set p root's parent == q root

3


```
union(int p, int q)
while (parent[p] != p) p = parent[p];
while (parent[q] != q) q = parent[q];
parent[p] = q;
```



```
Example: union(1, 4)
```

```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```



```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      7
      7
```


3


```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      6
      7
```



```
      object
      0
      1
      2
      3
      4
      5
      6
      7
      8

      parent
      6
      2
      7
      3
      6
      1
      6
      6
      7
```


Example:

Example:

P 0 1 2 3 4 5 6 7 8 9

3-4 0 1 2 **4** 4 5 6 7 8

Example:

Ver 2

```
union(int p, int q)
while (parent[p] != p) p = parent[p];
while (parent[q] != q) q = parent[q];
parent[p] = q;
```


Running time of (Find, Union):

- 1. O(1), O(1)
- 2. O(1), O(n)
- 3. O(n), O(1)
- \checkmark 4. O(n), O(n)
 - 5. O(log n), O(log n)
 - 6. None of the above.

Running time of (Find, Union):

- 1. O(1), O(1)
- 2. O(1), O(n)
- 3. O(n), O(1)
- \checkmark 4. O(n), O(n)
 - 5. O(log n), O(log n)
 - 6. None of the above.

Somehow even slower than before!

Ver 2

```
find(int p, int q)
while (parent[p] != p) p = parent[p];
while (parent[q] != q) q = parent[q];
return (p == q);
```


Ver 2

```
union(int p, int q)
while (parent[p] != p) p = parent[p];
while (parent[q] != q) q = parent[q];
parent[p] = q;
```


Union-Find Summary

Ver 1 is slow:

- Union is expensive
- Tree is flat

Ver 2 is slow:

- Trees too tall (i.e., unbalanced)
- Union and find are expensive.

	find	union
Ver 1	O(1)	O(n)
Ver 2	O(n)	O(n)

Question: which tree should you make the root?

Two possible alternatives:

- 1. The one that has larger size
- 2. The one that has larger height

Question: which tree should you make the root?


```
union(int p, int q)
  while (parent[p] !=p) p = parent[p];
  while (parent[q] !=q) q = parent[q];
  if (size[p] > size[q] {
       parent[q] = p; // Link q to p
       size[p] = size[p] + size[q];
  else {
       parent[p] = q; // Link p to q
       size[q] = size[p] + size[q];
```

```
union(int p, int q)
  while (parent[p] !=p) p = parent[p];
  while (parent[q] !=q) q = parent[q];
  if (size[p] > size[q] {
       parent[q] = p; // Link q to p
      size[p] = size[p] + size[q];
  else {
       parent[p] = q; // Link p to q
       size[q] = size[p] + size[q];
```

union(1, 4)

object	0	1	2	3	4	5	6	7	8
size	1	1	2	1	1	1	3	4	1
parent	6	2	7	3	6	1	6	7	7

3

union(1, 4)

object	0	1	2	3	4	5	6	7	8
size	1	1	2	1	1	1	3	4	1
parent	6	2	7	3	6	1	6	7	7

3

Which one should be the new root? union (1, 4)

- 1. 1
- 2. 4
- **3**. 7
- 4. 6

union(1, 4)

object	0	1	2	3	4	5	6	7	8
size	1	1	2	1	1	1	3	4	1
parent	6	2	7	3	6	1	6	7	7

3

union(1, 4)

object	0	1	2	3	4	5	6	7	8
size	1	1	2	1	1	1	3	4	1
parent	6	2	7	3	6	1	6	7	7

union(1, 4)

object	0	1	2	3	4	5	6	7	8 1 7
size	1	1	2	1	1	1	3	7	1
parent	6	2	7	3	6	1	6	7	7

P 0 1 2 3 4 5 6 7 8 9

- **3-4** 0 1 2 **4** 4 5 6 7 8 9
- **4-9 0 1 2 4 4 5 6 7 8 4**
- 8-0 0 1 2 4 4 5 6 7 0 4
- 2-3 0 1 4 4 4 5 6 7 0 4
- **5-6 0 1 4 4 4 6 6 7 0 4**

Example: (Unweighted) Quick Union

Example: Weighted Union

Maximum depth of tree?

- 1. O(1)
- \checkmark 2. O(log n)
 - 3. O(n)
 - 4. O(n log n)
 - 5. $O(n^2)$
 - 6. None of the above.

Key idea:

height only increases when total size doubles

Analysis:

Base case: tree of height 0 contains 1 object.

Claim:

A tree of height k has size at least 2^k.

 \square height of tree of size n is at most log(n)

Analysis:

Base case: tree of height 0 contains 1 object.

Induction:

- Assume: A tree of height k-1 has size at least 2^{k-1}.
- Show: A tree of height k has size at least 2^k.

How do you get a tree of height k?

Make tree of height (k-1) the child of another tree.

How do you get a tree of height k?

Make tree of height (k-1) the child of another tree.

Tree T2 has size at least 2^{k-1} by induction.

How do you get a tree of height k?

Tree T2 has size at least 2^{k-1} by induction.

 \rightarrow size[T1] \geq size[T2] \geq 2^{k-1} by union-by-weight-rule

How do you get a tree of height k?

Tree T2 has size at least 2^{k-1} by induction.

- \rightarrow size[T1] \geq size[T2] \geq 2^{k-1} by union-by-weight-rule
- \rightarrow size[T1 + T2] $\geq 2^{k-1} + 2^{k-1} \geq 2^k$

≥ 2^k items

Claim:

A tree of height k has size at least 2^k.

 \square height of tree of size n is at most log(n)

 $\geq 2^k$ items

Running time of (Find, Union):

- 1. O(1), O(1)
- 2. O(1), O(n)
- 3. O(n), O(1)
- 4. O(n), O(n)
- $\sqrt{5}$. O(log n), O(log n)
 - 6. None of the above.

```
union(int p, int q) {
  while (parent[p] !=p) p = parent[p];
  while (parent[q] !=q) q = parent[q];
  if (size[p] > size[q] {
       parent[q] = p; // Link q to p
       size[p] = size[p] + size[q];
  else {
       parent[p] = q; // Link p to q
       size[q] = size[p] + size[q];
```

Ver 1 and Ver 2 are slow:

- Union and/or find is expensive
- Quick-union: tree is too deep

Weighted-union is faster:

- Trees too balanced: O(log n)
- Union and find are O(log n)

	find	union
Ver 1	O(1)	O(n)
Ver 2	O(n)	O(n)
Ver 2	O(log n)	O(log n)

Notes:

- Some prefer union-by-rank (where rank = log(size))
- Some prefer union-by-height (same idea)

Important property:

- weight/rank/size/height of subtree does not change except at root (so only update root on union).
- weight/rank/size/height only increases when tree size doubles.

Path Compression: Old Algorithm

```
findRoot(int p) {
  root = p;
  while (parent[root] != root) root = parent[root];
  return root;
}
```

```
findRoot(int p) {
  root = p;
 while (parent[root] != root) root = parent[root];
 while (parent[p] != p) {
       temp = parent[p];
       parent[p] = root;
       p = temp;
  return root;
```

Alternative Path Compression

```
findRoot(int p) {
  root = p;
 while (parent[root] != root) {
       parent[root] = parent[parent[root]];
       root = parent[root];
  return root;
```

Make every other node in the path point to its grandparent!

- Simple
- Works as well!

After finding the root: set the parent of each traversed node to the root.

How fast does it run now?

Theorem:

[Tarjan 1975]

Starting from empty, any sequence of m union/find operations on n objects takes: $O(n + m\alpha(m, n))$ time.

Theorem:

[Tarjan 1975]

Starting from empty, any sequence of m union/find operations on n objects takes: $O(n + m\alpha(m, n))$ time.

Inverse Ackermann function: always ≤ 5 in this universe.

n	a(n, n)
4	0
8	1
32	2
8,192	3
2 ⁶⁵⁵³³	4

Theorem:

[Tarjan 1975]

Starting from empty, any sequence of m union/find operations on n objects takes: $O(n + m\alpha(m, n))$ time.

Proof:

Theorem:

[Tarjan 1975]

Starting from empty, any sequence of m union/find operations on n objects takes: $O(n + m\alpha(m, n))$ time.

Proof:

- Very difficult.
- Algorithm: very simple to implement.

Theorem:

[Tarjan 1975]

Starting from empty, any sequence of m union/find operations on n objects takes: $O(n + m\alpha(m, n))$ time.

Proof:

- Very difficult.
- Algorithm: very simple to implement.

Can we do better?

Theorem:

[Tarjan 1975]

Starting from empty, any sequence of m union/find operations on n objects takes: $O(n + m\alpha(m, n))$ time.

Proof:

- Very difficult.
- Algorithm: very simple to implement.

Can we do better? No!

Proof: Fredman and Saks 1989

Weighted-union is faster:

- Trees are flat: O(log n)
- Union and find are O(log n)

Weighted Union + Path Compression is very fast:

- Trees very flat.
- On average, almost linear performance per operation.

	find	union
quick-find	O(1)	O(n)
quick-union	O(n)	O(n)
weighted-union	O(log n)	O(log n)
weighted-union with path-compression	a(m, n)	a(m, n)

Path Compression without weighted union?

	find	union
quick-find	O(1)	O(n)
quick-union	O(n)	O(n)
weighted-union	O(log n)	O(log n)
path compression	O(log n)	O(log n)
weighted-union with path-compression	a(m, n)	a(m, n)

Path Compression without weighted union?

	find	union
quick-find	O(1)	O(n)
quick-union	O(n)	O(n)
weighted-union	O(log n)	O(log n)
path compression	O(log n)	O(log n)
weighted-union with path-compression	a(m, n)	a(m, n)

Why Union Find?

What's the point of union find? What if I don't care about breaking walls in mazes?

Why Union Find?

What's the point of union find? What if I don't care about breaking walls in mazes?

Remember MST and Kruskal's from CS1231?

Spanning Tree

Weighted, undirected graph:

To think about:
Why is this more complicated with directed graphs?

Spanning Tree

Definition: a spanning tree is an acyclic subset of the edges that connects all nodes

Definition: a spanning tree with minimum weight

Definition: a spanning tree with minimum weight

Note: no cycles

Why? If there were cycles, we could remove one edge and reduce the weight!

Can we use MST to find shortest paths?

- 1. Yes
- 2. Only on connected graphs.
- 3. Only on dense graphs.
- 4. No.
- 5. I need to see a picture.

Not the same a shortest paths:

Kruskal's Algorithm. (Kruskal 1956)

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

Initially each node is disconnected and their own component.

Kruskal's Algorithm. (Kruskal 1956)

Basic idea:

- Sort edges by weight from smallest to biggest.
- Consider edges in ascending order:

• If edge is joining two disconnected subgraphs, include the edge. Union the two subgraphs.

• Else, ignore the edge.


```
// Sort edges and initialize
```

1. Initialise a UFDS for n nodes, all initially disjoint.

```
// Sort edges and initialize
```

- 1. Initialise a UFDS for n nodes, all initially disjoint.
- 2. Sort the edges by their weights, in ascending order.

```
// Sort edges and initialize
```

- 1. Initialise a UFDS for n nodes, all initially disjoint.
- 2. Sort the edges by their weights, in ascending order.
- 3. For each edge e = (u, v)

```
// Sort edges and initialize
```

- 1. Initialise a UFDS for n nodes, all initially disjoint.
- 2. Sort the edges by their weights, in ascending order.
- 3. For each edge e = (u, v)
 - a. If u and v belong to the same component:
 - i. Skip!

```
// Sort edges and initialize
```

- 1. Initialise a UFDS for n nodes, all initially disjoint.
- 2. Sort the edges by their weights, in ascending order.
- 3. For each edge e = (u, v)
 - a. If u and v belong to the same component:
 - i. Skip!
 - b. Otherwise, add the edge in, union u and v's component.

```
// Sort edges and initialize
Edge[] sortedEdges = sort(G.E());
ArrayList<Edge> mstEdges = new ArrayList<Edge>();
UnionFind uf = new UnionFind(G.V());
// Iterate through all the edges, in order
for (int i=0; i<sortedEdges.length; i++) {
      Edge e = sortedEdges[i]; // get edge
      Node v = e.one(); // get node endpoints
      Node w = e.two();
      if (!uf.find(v,w)) { // in the same tree?
         mstEdges.add(e); // save edge
         uf.union(v,w); // combine trees
      }
```


Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

Weight	Edge
1	(E,B)
2	(C,F)
3	(A,G)
4	(D,G)
5	(C,F)
6	(E,G)
7	(B,G)
8	(G,H)
9	(D,G)
10	(B,C)
11	(B,F)
12	(A,B)
13	(E,F)
15	(A,C)
16	(D,E)
20	(D,F)

What is the running time of Kruskal's Algorithm on a connected graph?

- 1. O(V)
- 2. O(E)
- 3. O(E a)
- 4. O(V a)
- **√**5. O(E log V)
 - 6. O(V log E)

```
// Sort edges and initialize
```

- 1. Initialise a UFDS for n nodes, all initially disjoint.
- 2. Sort the edges by their weights, in ascending order.
- 3. For each edge $e = (u_{k}v)$
 - a. If u and v belong to the same component:
 - i. Skip!
 - b. Otherwise, add the edge in, union u and v's component.

O(E log E)

```
// Sort edges and initialize
```

- 1. Initialise a UFDS for n nodes, all initially disjoint.
- 2. Sort the edges by their weights, in ascending order.
- 3. For each edge $e = (u_{k}v)$
 - a. If u and v belong to the same component:
 - i. Skip!
 - b. Otherwise, add the edge in, union u and v's component.

$$O(E a(E))$$
 $O(E log E)$ $O(E a(E) + E log (E)) = O(E log E)$

Correctness?

Deferred until next Monday!

(Also Prim's algorithm)