a) Calculate the relative error

Absolute error = Measured reading - True reading

Absolute error = 1.46 - 1.5

Absolute error = -0.04 V

Thus,

$$Relative error = \frac{Absolute error}{true \ value}$$

$$Relative \, error = -\frac{0.04}{1.5}$$

Relative error
$$= -0.026$$

Relative error = 2.67%

<u>Sensitivity:-</u>

- It is defined as the ratio of the changes in the output of an instrument to a change in the value of the quantity being measured.
- It denotes the smallest change in the measured variable to which the instrument responds.

Sensitivity = change in output/unit change in input = Δ output/ Δ input

Given :- linear relationship between temperature and resistance

For a change in temperature of 30° C, the change in resistance is 7 ohm. Hence the measurement sensitivity is equal to 7/ 30 = 0.233 ohms/°C

Answer:

Given that:

-> The temperature Tx at an attitude

of a meter and relation Tx=To-0.01

U)

· We know that

-> Relation for temperature is:

 $T_Y = \frac{T_X}{1+TB}$

= To-0.01x

Tr = 10-0.012

→At a=st

Tr = 10-0.01(st)

-Now, by solving, the get

-> complementary function:

particular integral:

thus,

Evaluate the value of it, by Applying the boundary conditions.

7 510

-> substitute the c' value in above

- a) Given that:
 - → The balloon is released at time zero, and thereafter rises upwards at a velocity = 5 metres/second.
 - → Tabulated the value of temperature
 for different values of t'

Time	Altitude	Temperature reading	Temperature error
ง	0	10	0
lo	50	9.86	0.36
20	७०)	9.55	0.22
30	150	9.15	0.62
५०	200	of 1.8	O-FO
50	250	8.27	0,42

b) Einen that:

-> The temperature does the balloon report an altitude = 5000 metres.

-> Where, sooom, t=1000s.