AP Calculus Homework 6

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write π instead of 3.14.

Questions with a * are optional. Questions with ** are optional and more challenging.

- 1. Sketch the graph of a function f that is continuous on [1,5] and has the given proper-
- a) Absolute minimum at 1, absolute maximum at 5, local maximum at 2, local minimum
- b) f has no local maximum or minimum, but 2 and 4 are critical numbers.
- 2. Find the critical numbers of the functions (Choose any 5 problems).

a)
$$f(x) = x^3 + 3x^2 - 24x$$

b)
$$g(t) = |3t - 4|$$

a)
$$f(x) = x^3 + 3x^2 - 24x$$
 b) $g(t) = |3t - 4|$ c) $g(y) = \frac{y - 1}{y^2 - y + 1}$

d)
$$g(x) = \sqrt{1 - x^2}$$

d)
$$g(x) = \sqrt{1 - x^2}$$
 e) $g(x) = x^{1/3} - x^{-2/3}$ f) $g(\theta) = 4\theta - \tan \theta$

f)
$$g(\theta) = 4\theta - \tan \theta$$

g)
$$f(x) = x^2 e^{-3x}$$
 h) $f(x) = x^{-2} \ln x$

$$h) f(x) = x^{-2} \ln x$$

3. Find the absolute maximum and absolute minimum values of f on the given interval (Choose any 4 problems).

a)
$$f(x) = 3x^2 - 12x + 5$$
, $[0,3]$ b) $f(x) = (x^2 - 1)^3$, $[-1,2]$

b)
$$f(x) = (x^2 - 1)^3$$
, $[-1, 2]$

c)
$$f(x) = \frac{x}{x^2 + 1}$$
, $[0, 2]$

d)
$$f(t) = \sqrt[3]{t}(8-t)$$
, $[0,8]$

e)
$$f(t) = 2\cos t + \sin 2t$$
, $[0, \pi/2]$ f) $f(x) = xe^{-x^2/8}$, $[-1, 4]$

f)
$$f(x) = xe^{-x^2/8}$$
, $[-1, 4]$

g)
$$f(x) = \ln(x^2 + x + 1)$$
, $[-1, 1]$

- 4. Prove that the function $f(x) = x^{101} + x^{51} + x + 1$ has neither a local maximum nor a local minimum.
- 5. Verify that the function $f(x) = e^{-2x}$, [0,3] satisfies the hypotheses of the Mean Value Theorem on the given internal. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

1

- 6. If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, how small can f(4) possibly be?
- 7.* Show that the equation $1 + 2x + x^3 + 4x^5 = 0$ has exactly one real root.

- 8. Let f be a function defined for all real numbers x. If $f'(x) = \frac{|4-x^2|}{x-2}$, then f is decreasing on the interval
- A) $(-\infty, 2)$
- B) $(-\infty, \infty)$
- C) (-2,4) D) $(-2,\infty)$ E) $(2,\infty)$
- 9. What are all the values of x for which the function f defined by $f(x) = (x^2 3)e^{-x}$ is increasing?
- A) There are no such values of x.
- B) x < -1 and x > 3
- C) -3 < x < 1
- D) -1 < x < 3
- E) All values of x.
- 10. If the derivative of f is given by $f'(x) = e^x 3x^2$, at which of the following values of x does f have a relative maximum value?
- A) -0.46
- B) 0.20
- C) 0.91
- D) 0.95
- E) 3.73