01 Definition of VR and AR

References

- [Jerald16] Jason Jerald, "The VR Book: Human-Centered Design for Virtual Reality," ACM Books, 2016.
- [Sherman19] William R. Sherman, and Alan B. Craig, "Understanding Virtual Reality," 2nd Edition, Elsevier, 2019.
- [Doerner22] Ralf Doerner, Wolfgang Broll, Paul Grimm, and Bernhard Jung, Eds., "Virtual a nd Augmented Reality (VR/AR), Foundations and Methods of Extended Realities (XR)," Springer, 2022.

3D Computer Graphics vs Virtual Reality

구분	3D Computer Graphics	Virtual Reality
Presentation	Visual only	Multimodal (visual, acoustic and haptic)
Real-time 여부	Non-necessarily in real-time	Real-time planning and rendering
Image generation	Viewer-independent	Viewer-dependent
Interaction	Static scene or precomputed animation	Real-time interaction and simulation
Input	2D interaction (mouse, keyboard)	3D interaction (body, hand and head movements and gestures) + speech input
Presentation	Non-immersive	Immersive

Definition: Virtual Reality (VR)

- Computer technology that
 - allows users to immerse themselves in a completely virtual environment
 - attempts to provide a life-like experience
 - $-\,$ by $\underline{\text{replacing the user's sight, hearing,}}$ and sometimes even $\underline{\text{touch }}\underline{\text{w}} \text{ith a virtual world}$
 - makes an user enter a virtual environment that is completely separate from the real world

Definition: Augmented Reality (AR)

- Superimposes virtual images / information on top of the real world
- Users can see additional digital information based on the real world
- Experienced through a <u>smartphone</u>, <u>tablet</u>, <u>or AR-specific glasses</u>
- · ex) Adding virtual directional markers to the distance viewed through a smartphone camera
- · ex) Displaying virtual information such as origin and price on top of real objects

https://dfreight.org/blog/the-power-of-augmented-reality-in-logistics/

5

증강 현실은 실제 환경 위에 가상의 이미지나 정보를 겹쳐서 보여주는 기술입니다.

사용자는 실제 세계를 바탕으로 추가적인 디지털 정보를 확인할 수 있으며, 이는 스마트폰이나 태블릿, AR 전용 안경을 통해 경험할 수 있습니다.

예를 들어, 스마트폰 카메라를 통해 보는 거리에 가상의 방향 표시를 추가하거나, 실제 물건 위에 가상의 정보를 표시하는 것 등이 있습니다.

Virtuality Continuum

• Virtuality Continuum (Milgram 등 1994) ≈ Reality-Virtuality Continuum (현실-가상 연속체) ≈ Mixed Reality (MR) Continuum (혼합현실 연속체)

MR, DR

- MR (Mediated Reality: 중재현실)
 - 실제 환경에 대한 인식이 실시간으로 증대, 강화, 감소, 또는 변경 됨
- DR (Diminished Reality: 축소현실)
 - 실제의 object 등이 의도적으로 제거 또는 축약

https://arpost.co/2 017/12/13/the-am azing-power-of-di minished-reality/

Diminished Reality + Augmented Reality = Mediated Reality

VR 과 AR 의 비교

가상현실 (VR)	증강현실 (AR)
다중 감각 (multimodal) 프레젠테이션	다중 감각 (multimodal) 프레젠테이션
실시간 프레젠테이션 기획 및 렌더링	실시간 프레젠테이션 기획 및 렌더링
뷰어 의존적 이미지생성 (1인칭, 자기중심적 관점)	뷰어 의존적 이미지생성 (1인칭, 자기중심적 관점)
실시간 상호작용 및 시뮬레이션	실시간 상호작용 및 시뮬레이션
가상 3D 객체 (objects) 사용	가상 3D 객체 (objects) 사용
모든 콘텐츠가 완전히 가상, 몰입감 (immersion)	현실과 가상 콘텐츠의 결합, 몰입감 없음
추적 (Tracking)	추적 및 기하학적(3D), 광학적 정렬 (registration)
암시적 (제한적) 및 명시적 환경 탐색 가능	암시적 (무제한) 환경 탐색 가능
변화 없는 고정식(stationary) 사용자	고정식(stationary) 또는 <mark>움직이는(mobile) 사용자</mark>
주로 실내에서 사용	실내 및 실외 사용 가능
가상 조명 이용	실제 조명과 가상 조명의 상호 영향
사용자 관점 (perspective)의 임의 확장 (1)	사용자 관점은 항상 확장되지 않음 (가상 모델의 확 장성이 (현실에 의해) 제한될 수 있음)

9

(1) VR에서는 콘텐츠의 크기를 원하는 대로 조정할 수 있습니다. 따라서 사용 자는 분자나 미생물 사이를 이동할 수 있을 뿐만 아니라 은하수 전체를 손에 쥐고 있을 수도 있습니다. 반면 AR에서는 실제 환경이 항상 참조 프레임을 제공하므로 가상 객체는 일반적으로 1:1의 축척을 유지해야 합니다.

VR과 AR 중 어느것이 나은가?

- VR과 AR의 단순 비교
 - Application 시나리오에 따라 선택되기 때문에 어느 것이 낫다고 할 수 없음
- VR과 AR의 상호 보완
 - VR
 - 복잡한 기계의 세부 사항을 교육생에게 설명 가능
 - 위험 시나리오를 시뮬레이션
 - 현실에 존재하지 않는 옵션 테스트 (ex. 우주 유영)
 - 콘텐츠나 물리법칙에 제한 없음
 - 사용시간을 길게 할 수 없음 (VR sickness)
 - _ ΔR
 - VR로 교육된 지식을 실제 환경에서 추가로 교육 가능
 - 물리법칙 등에서 현실을 벗어날 수 없음
 - 사용시간을 상대적으로 길게 하는 것이 가능

10

때때로 다음과 같은 질문을 들을 수 있습니다: "VR과 AR 중 어느 것이 더 낫습니까?"

VR과 AR은 서로 다른 응용 시나리오를 목표로 하기 때문에 이 질문에 답을 할수는 없습니다.

VR과 AR을 선택하여 구현할 여지가 있는 상황은 거의 없을 것입니다. 오히려 응용 시나리오는 일반적으로 사용할 시스템 유형을 결정합니다. 그러나 이것이 VR과 AR이 서로를 보완할 수 없다는 것을 의미하지는 않습니다.

사실 그 반대입니다!

따라서 예를 들어 순수 가상 환경(VR)에서 복잡한 기계의 세부 사항을 교육생에게 설명할 수 있고 문제 및 위험 시나리오를 시뮬레이션 할 수 있으며 현실에 존재하지 않는 옵션을 테스트할 수 있습니다 (적어도 현장에서는).

AR을 사용하면 획득한 지식을 테스트하고 가상 지원을 통해 실제 시스템에서 추가로 통합할 수 있습니다.

예를 들어, 가상 X선 비전 등을 사용하여 구성 요소를 조사하는 것이 가능합니다.

기본적으로 VR은 AR과 달리 콘텐츠나 물리 범칙에 제한이 없습니다.

심지어 VR에서는 그 자신만의 물리학을 정의할 수도 있습니다.

반면에 VR의 지속적인 사용은 적어도 현재로서는 다소 짧은 시간 (시간이 아

닌 분 단위) 으로 제한됩니다.

VR을 위해 항상 현실 세계를 떠나야 하기 때문에 이런 짧은 시간에 대한 제한은 근본적으로 변하지 않을 것입니다 (언젠가 우리가 매트릭스에서 살지 않는한).

반면 AR은 언제 어디서나 사용할 수 있는 잠재력이 있지만 현재 소프트웨어와 하드웨어의 한계로 인해 이 잠재력을 완전히 활용할 수는 없습니다.

VR as HCI

• VR은 인간에게 자연스럽고 직관적이며 몰입할 수 있는 상호작용을 제공 (Mine et al. 1997)

Apple Vision Pro UX/UI Design – Floating UI, Smart Interaction, Immersive UX https://youtu.be/Q9c1OmZoAus?si=TYgqe6dAukLJdKRR

WIMP HCI

- WIMP (Windows, Icons, Menus, Pointing) + GUI (Graphical User Interface)
 - 수십년 동안 UI를 지배
 - 2D 개념
 - 3D 콘텐츠 조작에 어려움

https://www.youtube.com/watch?v=elUJCEC06r8

VR: Post-WIMP

- VR/AR (Robert Stone, 1993)
 - Post-WIMP interface
 - 이미 몸으로 체득한 경험을 바탕으로 한 조작 방법 (보고, 잡고, 조작하고, 말하고, 듣고, 움직임)
 - 훈련이 거의 필요하지 않음

https://www.youtube.com/watch?v=e-cdwbZxtxs

https://www.3dnatives.com/en/grib3d-the-free-3d-modelling-app-based-ar/#!

VR as HCI: Metaphor (은유)

- Metaphor:
 - 사용자가 이미 알고 있는 경험이나 개념을 활용하여 상호작용을 디자인 하는 방식
 - ex) 데스크탑 환경의 "잘라 내기, 붙이기"
- VR Metaphor
 - VR은 그 자체로 현실을 그대로 은유하고 있음. 궁극적인 HCI 방식이 될 수 있음

Ralf Doerner etc., Virtual and Augmented Reality (VR/AR): Foun dations and Methods of Extended Realities (XR), Springer, 2022

Devices: Head-Mounted Displays (HMD)

- Stereo display
 Head tracking (현재 정면 방향)
 Eye tracking
 Motion sickness 측정 기능

Devices: HMD의 종류

- · Non-see-through HMD
 - 시야 완전 차단
 - 완전한 VR 경험 제공
 - 단점: 실세계와 단절
- Video-see-through HMD
 - 외부 카메라를 통해 캡처한 실세계 + 가상 object
 - AR 경험
 - 단점: 지연시간, 낮은 화질 우려
- Optical-see-through HMD
 - 투명 display 통한 실세계 + overlay된 가상 object
 - 자연스러운 AR 경험, 실제 시야와 일치도 높음
 - 단점: 가상 object와 실세계의 밝기 차 이 우려

https://www.slideshare.net/Yutaltoh1/introduction-to-optical-see through-hmds-in-arguments and the second second

Devices: CAVE

- CAVE (Cave Automatic Virtual Environment) VR Display System
 - 3개 이상의 projection screen (or flat panel), 3D stereo glasses, position/hand tracking, audio

Devices: Haptics

- Static Haptics
 - Static physical objects: 가상과 거의 똑같이 생긴 실제 object를 현실에서 제공.
 - 높은 비용. virtual의 의미 없음
- Passive vs Active Haptics
 - Passive Haptics
 - 낮은 비용으로 VR에 촉감 제공 (모양만 비슷한 간단한 현실 물체 props 사용)
 - Active Haptics
 - · Physical feedback controlled by computer
 - Tactile haptics: vibration, pressure, touch, texture 등 피부가 느낄 수 있는 작용을 가해주는 방법
 - Kinesthetic haptics: 근육, joint등에 느껴지는 힘을 가해주는 방법

Devices: Motion Platforms

- Moves entire body
 - Can reduce motion sickness
- Omnidirectional treadmills (무지향성)
 - 모든 방향으로 물리적 이동 가능

https://www.nimblechapps.com/virtual-reality/virtuix-omni-the-vr-motion-platform

19

left: 의자 아래 달아 앞뒤로 움직이게 함.

Devices: Smell and Taste

https://youtu.be/tNd0pWeIrEI

Birdly by Somniacs. In addition to providing visual, auditory, and motion cues, this VR experience provides a sense of taste and smell. (Courtesy of Swissnex San Francisco and Myleen Hollero)