·针YUNDAI Semiconductor

HY6264A 8K×8-Bit CMOS SRAM

M261201B-MAY92

DESCRIPTION

The HY6264A is a high speed, low power 8,192 words by 8-bit CMOS static RAM fabricated using a twin tub CMOS process technology. This high reliability process coupled with innovative circuit design techniques, yields maximum access time of 70ns.

The HY6264A has a data retention mode that guarantees data to remain valid at a minimum power supply voltage of 2.0 volt.

Using CMOS technology, supply voltage from 2.0 to 5.5 volt have little effect on supply current in data retention mode. Reducing the supply voltage to minimize current drain is unnecessary with the HY6264A family.

FEATURES

- High speed 70/85/100/120/150ns (max.)
- Low power consumption
- -200 mW typical operating
- $-10 \mu W$ typical standby (L/LL-version)
- Battery back up (L/LI_version)
 - -2 volt data retention
- Fully static operation
 - -No clock or refresh required
- All inputs and outputs directly TTL compatible
- Tri-state output
- High reliability 28 pin 600 mil P-DIP and 330 mil SOP

337		HY6264A-70	HY6264A-85	HY6264A-10	HY6264A-12	HY6264A-15
Maximum Access Time(ns)		70	85	100	120	150
Maximum Operating Current(mA))	50	50 50 50		50	
		2	2	2	2	2
Maximum Standby Current(mA)	L	0.1	0.1	0.1	0.1	0.1
	LL	0.05	0.05	0.05	0.05	0.05

BLOCK DIAGRAM

PIN CONNECTIONS

PIN NAMES

A ₀ -A ₁₂	ADDRESS INPUT
1/00-1/07	DATA INPUT/OUTPUT
CS ₁	CHIP SELECT ONE
CS ₂	CHIP SELECT TWO
₩Ĕ	WRITE ENABLE
ŌĒ	OUTPUT ENABLE
V _{cc}	POWER
GND	GROUND

ABSOLUTE MAXIMUM RATINGS(1)

SYMBOL	PARAMETER	RATING	UNIT
V_{DD} , V_{IN} , $V_{I/O}$	Power Supply, Input, Input/Output Voltage	-0.5 ⁽²⁾ to 7.0	V
T _{BIAS}	Temperature Under Bias	-10 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
P_D	Power Dissipation	1.0	W
I _{OUT}	Data Output Current	50	mA

RECOMMENDED DC OPERATING CONDITIONS

 $(T_A=0^{\circ}C \text{ to } 70^{\circ}C)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vcc	Supply Voltage	4.5	5.0	5.5	v
V_{IH}	Input High Voltage	2.2	3.5	6.0	v
V _{IL}	Input Low Voltage	-0.5(1)	0	0.8	v

TRUTH TABLE

MODE	₹ CS i	CS ₂	WE	ŌĒ	I/O OPERATION
Standby	Н	X	X	X	High-Z
Standby	X	L	X	х	High-Z
Output Disabled	L	Н	Н	Н	High-Z
Read	L	Н	Н	L	Dout
Write	L	Н	I.	x	D _{IN}

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. -3.5V for 20ns pulse.

NOTES: 1. -3.5V for 20ns pulse.

DC CHARACTERISTICS

 $(V_{CC}=5V\pm 10\%, T_A=0^{\circ}C \text{ to } 70^{\circ}C)$

					HY6264A	The same of the last		
SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. ⁽¹⁾	MAX.	UNIT		
I _{LI}	Input Leakage Current	V _{IN} =GND to V _{CC}			_	1	μΑ	
I _{LO}	Output Leakage Current	$\overline{CS}_1 = V_{IH}$, $CS_2 = \overline{V}_{IL}$ or $\overline{OE} = V_{I/O} = GND$ to V_{CC}		_	1	μ Α		
I _{CC}	Operating Power Supply Current	$\overline{CS}_1 = V_{IL}$, $CS_2 = V_{IH}$, $I_{I/O} = 0$ n	ıA	-	7	15	mA	
			70	_	30	50	mA	
	Average Operating Current	 	85		27	50	mA	
I_{CC1}		$\overline{CS}_1 = V_{IL}, CS_2 = V_{IH},$	100		24	50	mA	
		Min, Duty Cycle=100%.	120	_	21	50	mA	
			150	_	18	50	mA	
I _{SB}		CS ₁ =V _{IH} or CS ₂ =V _{IL}		_	0.4	2	mA	
	Standby Power Supply				20	1000		
$I_{SB1}^{(2)}$	Current	$\overline{\text{CS}}_1 \geq \text{V}_{\text{CC}} - 0.2\text{V},$	L		- 2 100		μА	
-02.		$CS_2 \le 0.2V \text{ or } \ge V_{CC} - 0.2V$	LL	_	2	50	1	
	1		_	_	20	1000		
I_{SB2}		$\overline{\text{CS}}_1 \leq 0.2\text{V or} \geq \text{V}_{\text{CC}} - 0.2\text{V},$ $\text{CS}_2 \leq 0.2\text{V}$		_	2	100	μА	
-302				_	2	50		
V _{OL}	Output Low Voltage	I _{OL} =2.1mA		<u> </u>	_	0.4	V	
V _{OH}	Output High Voltage	I _{OH} =-1.0mA		2.4	_	_	v	

AC CHARACTERISTICS

 $(V_{CC}=5V\pm 10\%, T_{A}=0^{\circ}C \text{ to } 70^{\circ}C)$

READ CYCLE

			HY62	64A-70	HY62	64A-85	HY62	64A-10	HY62	64A-12	HY62	64A-15	UNIT
SYMBOL	BOL PARAMETER		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
trc	Read Cycle Time		70		85		100	_	120	_	150		ns
t _{AA}	Address Access Time		-	70	-	85	_	100		120		150	ns
tacsi	\overline{CS}_1		-	70	_	85	_	100	_	120		150	ns
t _{ACS2}	Chip Select Access Time	CS ₂	_	70		85		100	-	120	_	150	ns
toE	Output Enable to Output Valid		_	45	_	50	-	55	_	60		70	ns
t _{CLZ1}		\overline{CS}_1	10	T-	10		10		10		15		ns
t _{CLZ2}	Chip Select to Output in Low-Z	CS ₂	10	_	10		10		10		15		ns
toLZ	Output Enable to Output in Low	-Z	5	T -	5	_	5		5		5		ns
tcHZI		ĊŜı	0	30	0	35	0	35	0	40	0	50	ns
t _{CHZ2}	Chip Deselect to Output in High-Z	CS ₂	0	30	0	35	0	35	0	40	0	50	ns
toHZ	Output Disable to Output in High-Z		0	30	0	35	0	35	0	40	0	50	ns
tон	Output Hold from Address Chan	ge	5	—	5	-	10		10	-	10	_	ns

^{1.} Typical values are at VCC=5V, TA=25°C and specified loading. 2. V_{IL} min=-0.5V

WRITE CYCLE

SYMBOL	PARAMETER		HY62	64A-70	HY62	64A-85	HY6264A-10		HY6264A-12		HY6264A-15		
SINDOL	FARAVIETER		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
twc	Write Cycle Time		70	_	85	-	100	_	120	_	150	<u> </u>	ns
t _{CW}	Chip Select to End of Wr	ite	55	_	60	_	70		85		100		ns
t _{AS}	Address Setup Time		0	_	0		0	_	0		0		ns
t _{AW}	Address Valid to End of Write		55	_	60	_	70	_	85	_	100		ns
twp	Write Pulse Width		50	_	55		60	_	70	_	90		ns
twRi	Write Recovery Time	CS ₁ ,WE	0		0		0	_	0	_	0	_	ns
twR2	write Recovery Time	CS ₂	0	_	0	_	0	_	0		0	_	ns
twHz	Write to Output in High-7		0	30	0	35	0	35	0	40	0	50	ns
tow	Data to Write Time Overl	ap	35	_	35	_	40		50		60	_	ns
t _{DH}	Data Hold from Write Time		0	_	0	_	0	_	0	-	0		ns
t _{OHZ}	Output Disable to Output	in High-Z	0	30	0	35	0	35	0	40	0	50	ns
tow	Output Active from End of	of Write	5		5		5	_	5	_	10		ns

AC TEST CONDITIONS

 $(T_A=0^{\circ}C \text{ to } 70^{\circ}C)$

Input Pulse Level	0.8V to 2.4V
Input Rise and Fall Time	5ns
Input and Output Timing Reference Level	1.5V

OUTPUT LOAD

NOTE:

1. Including scope and the jig.

CAPACITANCE⁽¹⁾

 $(T_A=25^{\circ}C, f=1.0MHz)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C _{IN}	Input Capacitance	V _{IN} =0V	6	pF
C _{I/O}	Input/Output Capacitance	V _{I/O} =0V	8	pF

NOTE:

TIMING DIAGRAMS

READ CYCLE 1(1,2,4)

^{1.} This parameter is sampled and not 100% tested.

READ CYCLE 2(1,3,4,6) CS₁ VALID DATA OUT DOUT READ CYCLE 3(1,4,7) CS₂ VOH VALID DATA OUT DOUT V_{OL} READ CYCLE 4(1,2) A₀-A₁₂ ŀ ŌĒ $\overline{\text{CS}_1}$ CS2 V_{OH}-VALID DATA OUT HIGH-Z Dour V_{OL}

- NOTES:

 1. WE is high for read cycle.

 2. Device is continuously selected $\overline{CS_1} = V_{1L}$ and $\overline{CS_2} = V_{1H}$.

 3. Addresses are valid prior to or coincident with $\overline{CS_1}$ transition low.

 4. $\overline{OE} = V_{1L}$ 5. Transition is measured $\pm 500 \text{mV}$ from steady state. This parameter is sampled and not 100% tested.

 6. $\overline{CS_2}$ is high.

 7. $\overline{CS_1}$ is 60W,

WRITE CYCLE 1(1)

WRITE CYCLE 2(1,6)

- NOTES:

 1. WE must be high during address transitions.

 2. A write occurs during the overlap(twp) of low CS₁ high CS₂ and low WE.

 3. twp is measured from the earlier of CS₁ or WE going high or CS₂ going low to the end of write cycle.

 4. During this period, I/O pins are in output state so that the input signals of opposite phase to the output must not be applied.

 5. If the CS₁ low transition or the CS₂ high transition occurs simultaneously with the WE low transition or after the WE transition, outputs remain in a high impedance

- state.

 6. OE is continuously low(OE=V_{IL}).

 7. D_{OUT} is the same phase of write data of this write cycle.

 8. D_{OUT} is the read data of next address.

 9. If CS₁ is low and CS₂ is high during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the output must not be applied to the output.
- to them.

 10. Transition is measured \pm 500mV from steady state.

 11. t_{CW} is measured from the later of $\overline{CS_1}$ going low or CS_2 going high to the end of write.

DATA RETENTION CHARACTERISTICS(1)

 $(T_A=0$ °C to 70°C)

PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Data Retention	$\overline{CS}_1 \ge V_{CC} - 0.2V$, $CS_2 \ge V_{CC} - 0.2V$ or $CS_2 \le 0.2V$	2.0		_	V	
Supply Voltage	$CS_2 \le 0.2V$, $\overline{CS}_1 \ge V_{CC} - 0.2V$ or $\overline{CS}_1 \le 0.2V$	2.0		_	v	
	$V_{CC}=3V$, $V_{IN}=0V$ to V_{CC}	L	-	1	50	
ICCDRI Data Retantion Current	$\overline{CS}_1 \ge V_{CC} = 0.2V$, $CS_2 \ge V_{CC} = 0.2V$ or $CS_2 \le 0.2V$	LL	_	1	5 ⁽²⁾	μA
Data Retention Current	V_{CC} =3V, V_{IN} = 0V to V_{CC}	L	- 1	1	50	
	$CS_2 \le 0.2V$, $\overline{CS}_1 \ge V_{CC} - 0.2V$ or $\overline{CS}_1 \le 0.2V$	-	1	5(2)	μA	
Chip Deselect to						
Data Retention Time			0	-	-	ns
Operation Recovery Time	See Data Retention Timing Diagram		tec (3)			ns
	Data Retention Supply Voltage Data Retention Current Chip Deselect to Data Retention Time	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

DATA RETENTION TIMING DIAGRAM 1 (\overline{CS}_1 Controlled)

DATA RETENTION TIMING DIAGRAM 2 (CS₂ Controlled)

^{1.} These characteristics are guaranteed for L and LL-version.

^{2. 3}µA max. at T_A=0°C to 40°C 3. t_{RC}=Read Cycle Time

ELECTRICAL CHARACTERISTIC CURVES

($V_{CC}=5V$, $T_A=25$ °C, unless otherwise noted)

Supply Voltage $V_{CC}(V)$

PACKAGE INFORMATION

• 28 PIN PLASTIC DUAL IN LINE PACKAGE-600MIL

• 28 PIN SMALL OUTLINE PACKAGE-330MIL

