INTRODUCTION TO WIRELESS AND MOBILE NETWORKS

CHAPTER 9: GSM Security

GSM Security Concerns

Operators

- Bills right people
- Avoid fraud
- Protect Services
- Customers
 - Anonymity and privacy, no profiles of the movements of the users
 - Confidentiality of communication (voice and data)
 - Correct billing
- Make a system at least secure as PSTN

GSM Security Goals

- Confidentiality and Anonymity on the radio path
- Strong client authentication to protect the operator against the billing fraud
- Prevention of operators from compromising of each others' security

GSM Security Design Requirements

- The security mechanism
 - MUST NOT
 - Add significant overhead on call set up
 - Increase bandwidth of the channel
 - Increase error rate
 - Add expensive complexity to the system
 - MUST
 - Be cost effective scheme
 - Define security procedures
 - Generation and distribution of keys
 - Exchange information between operators

GSM Security Features

Key management is independent of equipment

Subscribers can change handsets without compromising security

Subscriber identity protection

 not easy to identify the user of the system by intercepting a user data

Detection of compromised equipment

 Detection mechanism whether a mobile device was compromised or not

Subscriber authentication

The operator knows for billing purposes who is using the system

Signaling and user data protection

Signaling and data channels are protected over the radio path

Security in GSM

- 3 algorithms specified in GSM for security
 - A3 for authentication
 - A5 for encryption
 - A8 for key generation

GSM Mobile Station

- Mobile Station
 - Mobile Equipment (ME)
 - Physical mobile device
 - Identifiers
 - IMEI International Mobile Equipment Identity
 - Subscriber Identity Module (SIM)
 - Smart Card containing keys, identifiers and algorithms
 - Identifiers

- K_i Subscriber Authentication Key
- IMSI International Mobile Subscriber Identity
- TMSI Temporary Mobile Subscriber Identity
- MSISDN Mobile Station International Service Digital Network
- PIN Personal Identity Number protecting a SIM
- LAI location area identity

Subscriber Identity Protection

- TMSI Temporary Mobile Subscriber Identity
 - Goals
 - TMSI is used instead of IMSI as an a temporary subscriber identifier
 - TMSI prevents an eavesdropper from identifying of subscriber
 - Usage
 - TMSI is assigned when IMSI is transmitted to AuC on the first phone switch on
 - Every time a location update (new MSC) occur the network assigns a new TMSI
 - TMSI is used by the MS to report to the network or during a call initialization
 - Network uses TMSI to communicate with MS
 - On MS switch off TMSI is stored on SIM card to be reused next time
 - The Visitor Location Register (VLR) performs assignment, administration and update of the TMSI

Key Management Scheme

- K_i Subscriber Authentication Key
 - Shared 128 bit key used for authentication of subscriber by the operator
 - Key Storage
 - Subscriber's SIM (owned by operator, i.e. trusted)
 - Operator's Home Locator Register (HLR) of the subscriber's home network
- SIM can be used with different equipment

Detection of Compromised Equipment

- International Mobile Equipment Identifier (IMEI)
 - Identifier allowing to identify mobiles
 - IMEI is independent of SIM
 - Used to identify stolen or compromised equipment
- Equipment Identity Register (EIR)
 - Black list stolen or non-type mobiles
 - White list valid mobiles
 - Gray list local tracking mobiles
- Central Equipment Identity Register (CEIR)
 - Approved mobile type (type approval authorities)
 - Consolidated black list (posted by operators)

Authentication

- Authentication Goals
 - Subscriber (SIM holder) authentication
 - Protection of the network against unauthorized use
 - Create a session key
- Authentication Scheme
 - Subscriber identification: IMSI or TMSI
 - Challenge-Response authentication of the subscriber by the operator

Authentication and Encryption Scheme

Authentication

- AuC Authentication Center
 - Provides parameters for authentication and encryption functions (RAND, SRES, K_c)
- HLR Home Location Register
 - Provides MSC (Mobile Switching Center) with triples (RAND, SRES, K_c)
 - Handles MS location
- VLR Visitor Location Register
 - Stores generated triples by the HLR when a subscriber is not in his home network
 - One operator doesn't have access to subscriber keys of the another operator.

A3 – MS Authentication Algorithm

- Goal
- Generation of SRES response to MSC's random challenge RAND

GSM - authentication

K_i: individual subscriber authentication key

SRES: signed response

A8 – Voice Privacy Key Generation Algorithm

- Goal
 - Generation of session key K_s
 - A8 specification was never made public

GSM - key generation and encryption

Logical Implementation of A3 and A8

- Both A3 and A8 algorithms are implemented on the SIM
 - Operator can decide, which algorithm to use.
 - Algorithms implementation is independent of hardware manufacturers and network operators.

Logical Implementation of A3 and A8

- COMP128 is used for both A3 and A8 in most GSM networks.
 - COMP128 is a keyed hash function

A5 – Encryption Algorithm

- A5 is a stream cipher
- Implemented very efficiently on hardware
- Design was never made public
- Leaked to Ross Anderson and Bruce Schneier
 - Variants
- A5/1 the strong version
- A5/2 the weak version
- A5/3
- GSM Association Security Group and 3GPP (3rd Generation
 Partnership Project) design
- Based on Kasumi algorithm used in 3G mobile systems

Logical A5 Implementation

A5 Encryption

Attacks on GSM

- 1991
 - First GSM implementation.
- April 1998
 - The Smartcard Developer Association (SDA) together with U.C.
 Berkeley researches cracked the COMP128 algorithm stored in SIM and succeeded to get K_i within several hours. They discovered that Kc uses only 54 bits.
- August 1999
 - A5/2 was cracked using a single PC within seconds.
- December 1999
 - Alex Biryukov, Adi Shamir and David Wagner have published the scheme breaking the strong A5/1 algorithm. Within two minutes of intercepted call the attack time was only 1 second.
- May 2002
 - The IBM Research group discovered a new way to quickly extract the COMP128 keys.