Machine Learning

Dia 10 - Aprendizado não-supervisionado

ImageU - Grupo de Pesquisa em Machine Learning e Visão Computacional https://imageu.github.io/

Curso de Verão 2022

Instituto de Matemática e Estatística - IME USP

Programa

1. Aprendizado Não-Supervisionado

Aprendizado Não-Supervisionado

Aprendizado Supervisionado \times Não-Supervisionado

- Supervisionado: rótulo de classe conhecido para cada item observado
- Não-supervisionado: rótulo de classe desconhecido; nenhuma informação sobre quantidade de classes

Aprendizado Supervisionado × Não-Supervisionado

Predição usando um classificador já treinado:

Fonte: https://learn.g2.com/supervised-vs-unsupervised-learning

Aprendizado Supervisionado × Não-Supervisionado

Clustering:

Fonte: https://learn.g2.com/supervised-vs-unsupervised-learning

Aprendizado Supervisionado \times Não-Supervisionado

Fonte: https://lawtomated.com/supervised-vs-unsupervised-learning-which-is-better/

Clustering

- Clustering ou cálculo de aglomerados/agrupamentos é a principal abordagem usada para classificação não-supervisionada.
- Nenhuma informação sobre classes é disponível (no máximo, número de classes)
- Objetivo: encontrar grupos ou estruturas naturais "escondidas" no conjunto de dados.
- O conceito de grupo é vagamente definido; em geral envolve conceitos como similaridade (itens similares, itens parecidos)
- Um bom agrupamento é aquele no qual itens de um mesmo grupo são "mais similares" entre si e ao mesmo tempo "menos similares" aos itens de outros grupos.

Clustering

- O princípio básico do clustering é agrupar os itens baseado em alguma noção de similaridade
- Essas definições dependem da natureza e tipo dos dados (nominal, numérico, binário, contínuo, série temporal, cadeia, grafo, etc)
- Em geral podemos pensar em similaridade como distância entre pontos

Clustering - Métricas

- Tipos de medidas:
 - Entre itens: $d(\mathbf{x}_i, \mathbf{x}_j)$ (proximidade entre os pontos $\mathbf{x}_i \in \mathbf{x}_j$)
 - Entre itens e conjunto de itens: $d(\mathbf{x}, C)$ (proximidade entre um ponto \mathbf{x} e um cluster C)
 - Entre dois conjuntos de itens: $d(C_i, C_j)$ (proximidade entre os clusters C_i e C_i)
 - Distância entre um item x e um cluster C:
 - Menor distância: $d(x, C) = \min_{y \in C} d(x, y)$
 - Maior distância: $d(x, C) = \max_{y \in C} d(x, y)$
 - Distância média: $d(x, C) = \frac{1}{|C|} \sum_{y \in C} d(x, y)$

Clustering - Métricas

- Escolher um representante para o grupo e calcular a distância ponto-a-ponto:
 - ponto (faz sentido em grupos esféricos)
 - ponto médio: $\mathbf{m}_p = \frac{1}{|C|} \sum_{\mathbf{y} \in C} \mathbf{y}$
 - ponto central: $\mathbf{m}_c \in C$ tal que $\sum_{\mathbf{y} \in C} d(\mathbf{y}, \mathbf{m}_c) \leq \sum_{\mathbf{y} \in C} d(\mathbf{y}, \mathbf{m}), \forall \mathbf{m} \in C$
 - ponto mediano : m_{med} tal que $med\{d(\mathbf{y}, \mathbf{m}_{med}), \mathbf{y} \in C\} \le med\{d(\mathbf{y}, \mathbf{m}), \mathbf{y} \in C\}, \forall \mathbf{m} \in C\}$
 - hiperplano, hipercírculo: a distância entre um item x e um cluster
 C, quando o cluster é representado por uma hipercurva pode ser simplesmente a distância do ponto à curva

Clustering - Abordagens

- Duas abordagens comuns:
 - Hierárquico: aglomerativo ou divisivo
 - Iterativo: ajuste iterativo de uma partição inicial, visando a minimização de algum custo

Clustering - Iterativo

- Ideia geral:
 - Inicializar o processo com uma partição qualquer (por exemplo, escolhida aleatoriamente)
 - Repetir até algum critério de parada ser satisfeito
 - Modificar ligeiramente a partição atual
 - Verificar se a nova partição tem custo menor (segundo a função critério). Se tiver, substituir a solução por essa.
 - Devolver a melhor partição que foi obtida

k-Means Clustering

- k-Means é um dos algoritmos mais conhecidos:
 - 1. Escolher *k* pontos no espaço onde estão os itens a serem agrupados. Esses pontos corresponderão aos centróides iniciais dos grupos.
 - 2. Associar cada item ao grupo cujo centróide está mais próximo.
 - 3. Após todos os itens terem sido associados a algum grupo, recalcular os centróides de cada grupo
 - 4. Repetir os passos 2 e 3 até os centróides não mudarem mais de posição, ou até algum outro critério de parada ser atingido.

k-Means Clustering - Inferência/Predição

Fonte: http://dendroid.sk/2011/05/09/k-means-clustering/

Fim!

