Co-evolution of house mouse and an intracellular parasite, Eimeria spp.

Alice Balard, Victor Jarquin, Francisca Böhning, Mert Dikmen, Stuart J.E. Baird, (D.T?), Emanuel Heitlinger

Ecology and Evolution of molecular Parasite-Host Interactions (HU/IZW) Humboldt University Berlin & Leibniz-Institut für Zoo- und Wildtierforschung Berlin, Germany

Website: http://www.ecoevolpara.hu-berlin.de/, E-mail: alice.balard@fu-berlin.de

Context

• House Mouse Hybrid Zone, 20km wide, formed by hybrids of *Mus musculus domesticus* and *Mus musculus musculus*. After 500,000 years in isolation, secondary contact 5000 years ago (Macholán *et al.* 2012; Boursot *et al.* 1993)

• Eimeria spp., obligate intracellular apicomplexan parasite. Two major clades (A & B) of Eimeria spp. identified (3 markers) in the mice of the hybrid zone (Jost 2016).

Aims of the study

- 1. Investigating the **vigor/resistance of hybrids of house mouse** to their parasite *Eimeria* spp. using prevalence and intensity data for parasite strains throughout the House Mouse Hybrid Zone.
- 2. Looking for evidence of **local adaptation** between the murine host and its Eimerian parasite (coevolution?)

Material & Methods

• Field sampling: 110 mice, in Brandenburg area (Germany)

- Cross infection pilote experiment :
- Host strains :
- 1. Eimeria haplotype A laboratory strain Eimeria falciformis REFFFFF
- 2. Eimeria haplotype B strain isolated in the wild
- Parasite strains :
- 1. **WSB** Wild-derived inbred strain. Derived from wild *Mus musculus domesticus* Region of capture : Eastern Shore, Maryland
- 2. **PWD** Wild-derived inbred strain. Derived from wild *Mus musculus musculus* Region of capture: near Prague, Czech Republic
- 3. **WP** Hybrids between the 2 previous commercial strains

Statistical model: glm.hybrid

 $Parasite\ load \sim mouse\ heterozygosity\ level*parasite\ strain$

- Adaptation of the method of Stuart J.E. Baird (Baird *et al.* 2012): Maximum likelihood analysis explicitly linking parasite abundance to a gradient along the hybrid index (as a proxy of host heterozygosity), generalized linear model with negative binomial distribution
- R package: https://github.com/alicebalard/Parasite_Load

Evidence (?) of hybrid vigor/resistance

Evidence of local adaptation

Results of the infection experiment :

- Eimeria strain haplotype A killed wild-derived mice at the beginning of the shedding period, regardless of mouse strain -> MORE?
- *Eimeria* strain haplotype B has **lowest parasite shedding** in mice strains WSB compared to PWD, for a **highest relative weight loss**: evidence of **local adaptation**
- Mice hybrids lost less weight and were less infected than the pure strains **Possible hybrid vigor** (limitation : unknow effect of heterosis)

Perspective

- Next cross infection experiment: verify our hypotheses (hybrid vigor, local adaptation), measure the effect of heterosis, add one parasite strains (another haplotype A, collected in the field)
- Analyse of divergence scenarios for *Eimeria* spp. based on whole genomes and comparison of models of coalescence and cospeciations with their murine hosts (beyond the house mouse).
- Investigation of loci of coevolution, identifying parasite genes under divergent selection in the two house mouse subspecies. The coevolving loci corresponding on the host side will be investigated.

References

Baird et al. (2012) Where Are the Wormy Mice? A Reexamination of Hybrid Parasitism in the European House Mouse Hybrid Zone Evolution 66 (9): 2757–72.

Jost (2016) Improvement of Genetic Markers and Phylogenetics of Eimeria Spp. from House Mouse Edited by Emanuel Heitlinger. Humboldt University

Heitlinger et al. (2014) The genome of Eimeria falciformis-reduction and specialization in a single host apicomplexan parasite.

BMC genomics 15 (1), 696 Macholán et al. (2012) Evolution of the House Mouse Cambridge University Press

Funding: This research has received funding from the DFG, and is part of a IZW/HU project. A. Balard is part of the Dahlem Research School.

