

School of Business

Department of Management Information Systems

BMIS360: Operations Management

Chapter 3 | Part 1

Project Management

Learning Objectives

- ☐ Project Management concepts
- □PERT & CP
- ☐ Project variance of activity times
- ☐Crash a project

Outline

- ☐Create a work breakdown structure
- □Draw AON networks
- ☐Complete both forward and backward passes for a project
- □Determine a critical path
- ☐ Calculate the variance of activity times
- ☐Crash a project

Project Characteristics

Examples of Projects

Building Construction

Research Project

Management of Projects

PLANNING - GOAL SETTING, DEFINING THE PROJECT, TEAM ORGANIZATION SCHEDULING - RELATE PEOPLE, MONEY, AND SUPPLIES TO SPECIFIC ACTIVITIES AND ACTIVITIES TO EACH OTHER CONTROLLING - MONITOR
RESOURCES, COSTS, QUALITY,
AND BUDGETS; REVISE PLANS
AND SHIFT RESOURCES TO MEET
TIME AND COST DEMANDS

Project Management Activities

Planning

- Objectives
- Resources
- Work break-down structure
- Organization

Scheduling

- Project activities
- Start & end times
- Network

Controlling

Monitor, compare, revise, action

Figure 3.1

Figure 3.1

Figure 3.1

Time/cost estimates

Project Planning

- Establishing objectives
- •01
- Defining project
- •02
- Creating work breakdown structure
- •03
- Determining resources
- •04
- Forming organization
- •05

A Sample Project Organization

Figure 3.2

Project managers should be:

- Good coaches
- Good communicators
- Able to organize activities from a variety of disciplines

The Role of the Project Manager

Responsible for making sure that:

- 1. All necessary activities are finished in order and on time
- 2. The project comes in within budget
- 3. The project meets quality goals
- **4.** The people assigned to the project receive motivation, direction, and information

Work Breakdown Structure

Level

- 1. Project
 - **2.** Major tasks in the project
 - **3.** Subtasks in the major tasks
 - **4.** Activities (or "work packages") to be completed

Work Breakdown Structure

Project Scheduling

- 1. Identifying precedence relationships
- 2. Sequencing activities
- 3. Determining activity times & costs
- 4. Estimating material & worker requirements
- 5. Determining critical activities

Purpose of Project Scheduling

- ☐Shows the relationship of each activity to others and to the whole project
- ☐ Identifies the precedence relationships among activities
- ☐ Encourages the setting of realistic time and cost estimates for each activity
- ☐Helps make better use of people, money, and material resources by identifying critical bottlenecks in the project

Scheduling Techniques

- Ensure that all activities are planned for
- ❖Their order of performance is accounted for
- **♦** The activity time estimates are recorded
- **♦** The overall project time is developed

Project Management Techniques

- A. Gantt chart
- B. Critical Path Method (CPM)
- C. Program Evaluation and Review Technique (PERT)

A Sample Gantt Chart

Project Control Report

- Detailed cost breakdowns for each task
- Total program labor curves
- Cost distribution tables
- •Functional cost and hour summaries
- •Raw materials and expenditure forecasts
- Variance reports
- Time analysis reports
- Work status reports

PERT & CPM

- Network techniques
- Developed in 1950's
 - CPM by DuPont for chemical plants (1957)
 - PERT by Booz, Allen & Hamilton with the U.S. Navy, for Polaris missile (1958)
- Consider precedence relationships and interdependencies
- Each uses a different estimate of activity times

Six Steps PERT & CPM

- 1. Define the project and prepare the work breakdown structure
- 2. Develop relationships among the activities decide which activities must precede and which must follow others
- 3. Draw the network connecting all of the activities

Six Steps PERT & CPM

- 4. Assign time and/or cost estimates to each activity
- 5. Compute the longest time path through the network this is called the critical path
- 6. Use the network to help plan, schedule, monitor, and control the project

Questions PERT & CPM Can Answer

- When will the entire project be completed?
- What are the critical activities or tasks in the project?
- Which are the noncritical activities?
- What is the probability the project will be completed by a specific date?

Questions PERT & CPM Can Answer

- Is the project on schedule, behind schedule, or ahead of schedule?
- Is the money spent equal to, less than, or greater than the budget?
- Are there enough resources available to finish the project on time?
- If the project must be finished in a shorter time, what is the way to accomplish this at least cost?

AON Network Conventions

AON Network Conventions

Activity on Node (AON)

Activity Meaning

C and D cannot begin until both A and B are completed

C cannot begin until both A and B are completed; D cannot begin until B is completed. A dummy activity is introduced in AOA

AON Network Conventions

Activity on Node (AON)

Activity
Meaning

B and C cannot begin until A is completed. D cannot begin until both B and C are completed. A dummy activity is again introduced in AOA.

AON Example

ACTIVITY	DESCRIPTION	IMMEDIATE PREDECESSORS
А	Build internal components	_
В	Modify roof and floor	_
С	Construct collection stack	Α
D	Pour concrete and install frame	A, B
E	Build high-temperature burner	С
F	Install pollution control system	С
G	Install air pollution device	D, E
Н	Inspect and test	F, G

AON Network for Milwaukee Paper

Figure 3.5

AON Network for Milwaukee Paper

Activity A Precedes Activity

Activities A and B Precede Activity D

Figure 3.6

AON Network for Milwaukee Paper

Determining the Project Schedule

Perform a Critical Path Analysis:

- ► The critical path is the longest path through the network
- ▶ The critical path is the shortest time in which the project can be completed
- ► Any delay in critical path activities delays the project
- ► Critical path activities have no slack time

Determining the Project Schedule

Table 3.2 Time Estimates for Milwaukee Paper Manufacturing					
ACTIVITY	DESCRIPTION	TIME (WEEKS)			
Α	Build internal components 2				
В	Modify roof and floor 3				
С	Construct collection stack 2				
D	Pour concrete and install frame	4			
E	Build high-temperature burner	4			
F	Install pollution control system	3			
G	Install air pollution device 5				
Н	Inspect and test 2				
	Total time (weeks)	25			

Determining the Project Schedule

Perform a Critical Path Analysis:

- *Earliest start (ES)* = earliest time at which an activity can start, assuming all predecessors have been completed
- *Earliest finish (EF)* = earliest time at which an activity can be finished
- Latest start (LS) = latest time at which an activity can start so as to not delay the completion time of the entire project
- Latest finish (LF) = latest time by which an activity has to be finished so as to not delay the completion time of the entire project

Determining the Project Schedule

Activity Format Figure 3.9

Forward Pass

Begin at starting event and work forward

□ Earliest Start Time Rule:

- ▶ If an activity has only a single immediate predecessor, its ES equals the EF of the predecessor
- ▶ If an activity has multiple immediate predecessors, its ES is the maximum of all the EF values of its predecessors
 - ES = Max {EF of all immediate predecessors}

Forward Pass

Begin at starting event and work forward

□ Earliest Finish Time Rule:

► The earliest finish time (EF) of an activity is the sum of its earliest start time (ES) and its activity time

$$\circ$$
 EF = *ES* + *Activity time*

Backward Pass

Begin with the last event and work backwards

□Latest Start Time Rule:

- The latest start time (LS) of an activity is the difference of its latest finish time (LF) and its activity time
 - \circ *LS* = *LF Activity time*

LS/LF - Times for Milwaukee Paper

LS/LF - Times for Milwaukee Paper

LS/LF - Times for Milwaukee Paper

Computing Slack Time

☐ After computing the ES, EF, LS, and LF times for all activities, *compute the slack or free time for each activity*.

DSlack is the length of time an activity can be delayed without delaying the entire project.

$$Slack = LS - ES$$
 or $Slack = LF - EF$

Computing Slack Time

TABLE 3.3	Milwaukee Paper's Schedule and Slack Times						
ACTIVITY	EARLIEST START ES	EARLIEST FINISH EF	LATEST START LS	LATEST FINISH LF	SLACK LS – ES	ON CRITICAL PATH	
Α	0	2	0	2	0	Yes	
В	0	3	1	4	1	No	
С	2	4	2	4	0	Yes	
D	3	7	4	8	1	No	
E	4	8	4	8	0	Yes	
F	4	7	10	13	6	No	
G	8	13	8	13	0	Yes	
Н	13	15	13	15	0	Yes	

Critical Path for Milwaukee Paper

- ▶ CPM assumes we know a fixed time estimate for each activity and there is no variability in activity times
- ▶ PERT uses a probability distribution for activity times to allow for variability

- ► Three-time estimates are required
 - ► *Optimistic time (a)* if everything goes according to plan
 - ► **Pessimistic time (b)** assuming very unfavorable conditions
 - ► *Most likely time (m)* most realistic estimate

Estimate follows beta distribution Expected time:

$$t = (a + 4m + b)/6$$

Variance of times:

$$v = [(b-a)/6]^2$$

Estimate follows beta distribution

Computing Variance

TABLE 3.4	Time Estimate	Time Estimates (in weeks) for Milwaukee Paper's Project			
ACTIVITY	OPTIMISTIC a	MOST LIKELY m	PESSIMISTIC b	EXPECTED TIME t = (a + 4m + b)/6	VARIANCE [(<i>b</i> – <i>a</i>)/6] ²
А	1	2	3	2	.11
В	2	3	4	3	.11
С	1	2	3	2	.11
D	2	4	6	4	.44
E	1	4	7	4	1.00
F	1	2	9	3	1.78
G	3	4	11	5	1.78
Н	1	2	3	2	.11

Critical Path : A - C - E - G - H

Project variance is computed by summing the variances of critical activities

```
s_p^2 = Project \ variance
= \sum (variances of activities on critical path)
```

Project variance is computed by

Project variance

$$s_p^2 = .11 + .11 + 1.00 + 1.78 + .11 = 3.11$$

Project standard deviation

$$s_p = \sqrt{\text{Project variance}}$$

$$= \sqrt{3.11} = 1.76 \text{ weeks}$$

PERT makes two more assumptions:

- Total project completion times follow a normal probability distribution
- Activity times are statistically independent

Cost-Time Trade-Offs and Project Crashing

It is not uncommon to face the following situations:

- ► The project is behind schedule
- The completion time has been moved forward

Shortening the duration of the project is called project crashing

Factors to Consider When Crashing a Project

- 1. The amount by which an activity is crashed is, in fact, permissible
- 2. Taken together, the shortened activity durations will enable us to finish the project by the due date
- 3. The total cost of crashing is as small as possible

Steps in Project Crashing

1. Compute the crash cost per time period. If crash costs are linear over time:

2. Using current activity times, find the critical path and identify the critical activities.

Steps in Project Crashing

- 3. If there is *only one critical path*, then select the activity on this critical path that:
 - a) can still be crashed, and
 - b) has the smallest crash cost per period.
- 4. If there is *more than one critical path*, then *select one activity from each critical path* such that
 - a) each selected activity can still be crashed
 - b) the total crash cost of all selected activities is the smallest.
 - Note that the same activity may be common to more than one critical path.

Steps in Project Crashing

4. Update all activity times. If the desired due date has been reached, stop. If not, return to Step 2.

Crashing The Project

TABLE 3.5	5 Norr	Normal and Crash Data for Milwaukee Paper Manufacturing				
	TIMI	E (WEEKS)	COST (\$)		CRASH COST	CRITICAL
ACTIVITY	NORMA	AL CRASH	NORMAL	CRASH	PER WEEK (\$)	PATH?
Α	2	1	22,000	22,750	750	Yes
В	3	1	30,000	34,000	2,000	No
С	2	1	26,000	27,000	1,000	Yes
D	4	2	48,000	49,000	1,000	No
E	4	2	56,000	58,000	1,000	Yes
F	3	2	30,000	30,500	500	No
G	5	2	80,000	84,500	1,500	Yes
Н	2	1	16,000	19,000	3,000	Yes

Crash and Normal Times and Costs for Activity B

Critical Path and Slack Times for Milwaukee Paper

Advantages of PERT/CPM

- 1. Especially useful when scheduling and controlling large projects
- 2. Straightforward concept and not mathematically complex
- 3. Graphical networks help highlight relationships among project activities
- 4. Critical path and slack time analyses help pinpoint activities that need to be closely watched

Advantages of PERT/CPM

- 5. Project documentation and graphics point out who is responsible for various activities
- 6. Applicable to a wide variety of projects
- 7. Useful in monitoring not only schedules but costs as well

Limitations of PERT/CPM

- 1. Project activities must be clearly defined, independent, and stable in their relationships
- 2. Precedence relationships must be specified and networked together
- 3. Time estimates tend to be subjective and are subject to fudging by managers
- 4. There is an inherent danger of too much emphasis being placed on the longest, or critical, path

Using Microsoft Project

Program 3.2

Thank you!