Geometriai optika

THE ELECTROMAGNETIC SPECTRUM

A fény forrása

Nap:

A fény forrása

Izzó:

4000K

5500K

8000K

12000K

16000K

Pontforrás

- Huld pyrion to Save My Exals. All Rights Reserved
- Sugár

Reflexió - (fény)visszaverődés

Refrakció - (fény)törés

Diffrakció - elhajlás

Michelson-interferométer

A fény hullámjelenségei Doppler-effektus

Huygens-elv

- A hullámfront minden pontja maga is gömbhullámok forrása.
- A különböző pontokból kiinduló másodlagos hullámok kölcsönösen interferálnak egymással.
- E gömbhullámok összege egy új hullámfrontot alkot.

Refelxió

36-6 ábra

Diffúz visszaverődés esetén a párhuzamosan érkező sugarak a felület egyenetlenségei miatt különböző irányokban verődnek vissza.

Refrakció

VIDEÓ

Diffrakció

Fermat-elv

A fény két pont között azon az úton halad, amely a legkevesebb időt

igényli a többi úthoz képest.

36-7 ábra

Fermat elve: a fénysugár úgy verődik vissza, hogy a fényforrás és a megfigyelő közti teljes utat minimális idő alatt tegye meg.

$$L = \sqrt{a^2 + x^2} + \sqrt{b^2 + (d - x)^2}$$

$$\frac{dL}{dx} = \frac{1}{2} \frac{2x}{\sqrt{a^2 + x^2}} + \frac{1}{2} \frac{2(d - x)(-1)}{\sqrt{b^2 + (d - x)^2}} = 0$$

$$\frac{x}{\sqrt{a^2 + x^2}} = \frac{(d - x)}{\sqrt{b^2 + (d - x)^2}}$$

$$\sin \theta_i = \sin \theta_r$$

A fény sebessége anyagban

$$c = c_{v\acute{a}kuum} = 299\,792\,458\,\frac{m}{s}$$

$$c_{leveg\"{o}} = 299\,702\,547\,\frac{m}{s}$$

$$n = \frac{c}{c_{leveg\"o}} = 1.0003$$

Az anyag neve	Az n törésmutató a λ≈ 550 nm hullámhosszon
evegő (0°C, 1 atm)	1,00029
hidrogén (0°C, 1 atm)	1,00013
jég	1,31
víz	1,333 (= 4/3)
kvarcolvadék	1,46
koronaüveg	1,52
polisztirén	1,59
flintüveg	1,66
dijodometán	1,75
gyémánt	2,42
tallium-jodid	2,76

Közeghatár → refrakció

Közeghatár → refrakció → Snellius-Descartes-törvény

$$\frac{\sin \alpha}{\sin \beta} = \frac{n_2}{n_1} = n_{2,1}$$

Teljes visszaverődés

coating

Diszperzió

Tükrök - síktükör

Tükrök - síktükör

36-10 ábra

A síktükör alkotta képen a jobb és a bal oldal felcserélődik. A jobbsodrású koordinátarendszer a tükörben balsodrásúvá válik.

36-11 ábra

Az O-ban lévő tárgyról az egymásra merőlegesen állított két síktükör három képet alkot. (Segíteni fog, ha berajzoljuk azokat az O-ból induló sugarakat, melyek az I_1 és I_3 képeket alkotják. Mindegyik csak egy visszaverődést szenved.)