Nom:

Soit a, b deux réels. Développer les expressions suivantes :

$$(a+b)^2 =$$

$$(a-b)^2 =$$

Calculer les dérivées des fonctions suivantes

f(x)	f'(x)
x	
x^5	
3	
$\frac{1}{x^6}$	
ln(x)	
e^{5x}	
$x^3 + 3\ln(x)$	
$x^4 \ln(x)$	
$(2x+1) e^{3x}$	
e^{x^3+2x}	

Déterminer les limites suivantes :

$$\lim_{x \to +\infty} (x^3 + 2x^2 + \ln(x)) = \lim_{x \to +\infty} (x^3 + 2x^2 + 1) = \lim_{x \to +\infty} \frac{e^{-x}}{x^3} = \lim_{x \to +\infty} x \ln(x) = \lim_{x \to +\infty} \frac{\ln(x)}{x^3} = \lim_{x \to +\infty} x^3 e^{-x} = \lim_{x \to 0} (\ln(x) + 12x) = \lim_{x \to 0} (\ln(x^2 + x + 12))$$