2020 北京朝阳初三二模

学 数

2020.6

- 1. 本试卷共 8 页, 共三道大题, 28 道小题, 满分 100 分。考试时间 120 分钟。
- 2. 在试卷和答题卡上认真填写学校名称、班级、姓名和考号。 生
- 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须
- 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题川黑色字迹签字笔作答。
 - 5. 考试结束,请将本试卷、答题卡和草稿纸一并交回。
- 一、选择题(本题共16分,每小题2分)

下面 1-8 题均有四个选项,符合题意的选项只有一个.

- 1.3 的相反数是
- (A) $\frac{1}{3}$ (B) 3 (C) $-\frac{1}{3}$
- (D) -3

2. 如图,直线 l_1/l_2 ,它们之间的距离是

- (B) 线段 PB 的长度
- (C) 线段 PC 的长度
- (D) 线段 PD 的长度

- 3. 方程组 $\begin{cases} x y = 1, \\ 2x + y = 5 \end{cases}$ 的解为
- (A) $\begin{cases} x = 2 \\ v = 1 \end{cases}$ (B) $\begin{cases} x = 1 \\ v = -2 \end{cases}$ (C) $\begin{cases} x = -1 \\ v = 2 \end{cases}$ (D) $\begin{cases} x = -2 \\ v = 1 \end{cases}$

- 4. 五边形的内角和为
 - (A) 360° (B) 540° (C) 720° (D) 900°

- 5. 如果 $x^2 + x = 3$,那么代数式(x+1)(x-1) + x(x+2)的值是

 - (A) 2 (B) 3
- (C)5
- (D)6
- 6. 下列图形中, 是中心对称图形而不是轴对称图形的是

7. 某便利店的咖啡单价为 10 元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:

会员卡类型	办卡费用/元	有效期	优惠方式
A 类	40	1年	每杯打九折
B类	80	1年	每杯打八折
C类	130	1年	一次性购买2杯,第二杯半价

例如,购买 A 类会员卡,1 年内购买 50 次咖啡,每次购买 2 杯,则消费 $40+2\times50\times(0.9\times10)=940$ 元. 若小玲 1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为

- (A)购买 A 类会员卡
- (B) 购买 B 类会员卡
- (C)购买 C 类会员卡
- (D) 不购买会员卡
- 8. 在一次生活垃圾分类知识竞赛中,某校七、八年级各有100名学生参加,已知七年级男生成绩的优秀率为40%, 女生成绩的优秀率为60%;八年级男生成绩的优秀率为50%,女生成绩的优秀率为70%,对于此次竞赛的成绩,下 面有三个推断:
 - ①七年级男生成绩的优秀率小于八年级男生成绩的优秀率;
 - ②七年级学生成绩的优秀率一定小于八年级学生成绩的优秀率;
 - ③七、八年级所有男生成绩的优秀率一定小于七、八年级所有女生成绩的优秀率.

所有合理推断的序号是

- (A)(1)(2)
- (B) (1)(3) (C) (2)(3)
- (D)(1)(2)(3)

- 二、填空题(本题共16分,每小题2分)
- 9. 若分式 $\frac{1-x}{x}$ 的值为 0,则 x ___
- 10. 在某一时刻,测得一根高为2m 的竹竿的影长为3m,同时测得一根旗杆的影长为21m,那么这根旗杆的高度为

_____m

- 11. 右图中的四边形都是矩形,根据图形,写出一个正确的等式:
- 12. 下表显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.

抛掷次数 n	300	500	700	900	1100	1300	1500	1700	1900	2000
"正面向上"的次数 m	137	233	335	441	544	650	749	852	946	1004
"正面向上"的频率 $\frac{m}{n}$	0. 457	0.466	0. 479	0.490	0. 495	0.500	0. 499	0. 501	0. 498	0. 502

估计此次实验硬币"正面向上"的概率是 .

- 13. 若点 A(4,-3), B(2,m) 在同一个反比例函数的图象上,则 m 的值为_______
- 14. 如图 1,将矩形 ABCD 和正方形 EFGH 分别沿对角线 AC 和 EG 剪开,拼成如图 2 所示的平行四边形 PQMN,中间空白部分的四边形 KRST 是正方形. 如果正方形 EFGH 和正方形 KRST 的面积分别是 16 和 1,则矩形 ABCD 的面积为_____.

15. 甲、乙两个芭蕾舞团演员的身高(单位: cm)如下表:

甲	164	164	165	165	166	166	167	167
Z	163	163	165	165	166	166	168	168

两组芭蕾舞团演员身高的方差较小的是_____.(填"甲"或"乙")

- 16. 正方形 ABCD 的边长为 4,点 M , N 在对角线 AC 上(可与点 A , C 重合), MN=2 , 点 P , Q 在正方形的边上. 下面四个结论中,
 - ①存在无数个四边形 PMQN 是平行四边形;
 - ②存在无数个四边形 PMQN 是菱形;
 - ③存在无数个四边形 PMQN 是矩形;
 - ④至少存在一个四边形 PMQN 是正方形_____.

所有正确结论的序号是_____.

三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)

17. 计算:
$$4\cos 45^{\circ} + (\sqrt{3} - 1)^{0} - \sqrt{8} + |-2|$$
.

18. 解不等式组
$$\begin{cases} 4(x+1) \le 2x+6, \\ x-3 < \frac{x-5}{3}, \end{cases}$$
 并写出它的所有非负整数解.

19. 下面是小东设计的"过直线外一点作这条直线的平行线"的尺规作图过程.

已知:直线l及直线l外一点P.

P

求作:直线PQ,使得PQ//l.

作法:如图,

①任意取一点K, 使点K和点P在直线l的两旁;

②以P为圆心,PK长为半径画弧,交l于点A,B,连接AP;

③分别以点P,B为圆心,以AB,PA长为半径画弧,两弧相交于点P(点Q和点A在直线PB的两旁);

④作直线PQ.

所以直线PQ就是所求作的直线.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:连接BQ,

- $\therefore PQ = \underline{\hspace{1cm}}, BQ = \underline{\hspace{1cm}},$
- ∴四边形 *PABQ* 是平行四边形 (______) (填推理依据)
- $\therefore PQ//l$.
- 20. 关于x的一元二次方程 $x^2 + bx + c = 0$ 有两个相等的实数根,写出一组满足条件的b,c的值,并求此时方程的根.

21. 如图,点 E,F 分别在矩形 ABCD 的边 AB,CD 上,且 $\angle DAF = \angle BCE$.

C

- (1) 求证: AF = CE;
- (2) 连接 AC ,若 AC 平分 $\angle FAE$, $\angle DAF = 30^\circ$, CE = 4

求CD的长.

- 22. 为了解某地区企业信息化发展水平,从该地区中随机抽取 50 家企业调研,针对体现企业信息化发展水平的 A 和 B 两项指标进行评估,获得了它们的成绩(十分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
 - a. A 项指标成绩的频数分布直方图如下

(数据分成6组:4 \leq x<5,5 \leq x<6,6 \leq x<7,7 \leq x<8,8 \leq x<9,9 \leq x \leq 10):

- b. A 项指标成绩在 $7 \le x < 8$ 这一组的是:
- $7.2 \quad 7.3 \quad 7.5 \quad 7.67 \quad 7.71 \quad 7.75 \quad 7.82 \quad 7.86 \quad 7.9 \quad 7.92 \quad 7.93 \quad 7.97$
- c. A, B 两项指标成绩的平均数、中位数、众数如下:

	平均数	中位数	众数
A 项指标成绩	7. 37	m	8. 2
B 项指标成绩	7. 21	7.3	8

根据以上信息,回答下列问题:

- (1)写出表中m的值;
- (2) 在此次调研评估中,某企业 A 项指标成绩和 B 项指标成绩都是 7.5 分,该企业成绩排名更靠前的指标是(填" A " 或" B "),理由是______;
- (3) 如果该地区有500家企业,估计A项指标成绩超过7.68分的企业数量.

23. 如图,四边形 ABCD 内接于 $\odot O$, AD = CD ,对角线 AC 经过点 O ,过点 D

作 $\odot O$ 的切线 DE , 交 BC 的延长线于点 E

(1) 求证: DE / /AC;

(2) 若 AB = 8, $tanE = \frac{4}{3}$, 求 CD 的长.

24. 如图,AB 是半圆的直径,P 是半圆与直径 AB 所围成的图形的外部的一定点,D 是直径 AB 上一动点,连接 PD 并延长,交半圆于点 C ,连接 AC ,BC .已知 AB = 6cm ,设 A ,D 两点之间的距离为 xcm ,A ,C 两点之间的距离为 y_1cm ,B ,C 两点之间的距离为 y_2cm .

小明根据学习函数的经验,分别对函数 y_1, y_2 随自变量x的变化而变化的规律进行了探究.

下面是小明的探究过程,请补充完整:

(1)按照下表自变量x的值进行取点、画图、测量,分别得到 y_1,y_2 与x的几组对应值;

x/cm	0	1	2	3	4	5	6
y_1 / cm	0	0. 47	1.31		5. 02	5. 91	6
y_2 / cm	6	5. 98	5. 86	5. 26	3. 29	1.06	0

(2) 在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点 (x,y_1) , (x,y_2) ,并画出函数 y_1,y_2 的图象;

(3) 结合函数图象,解决问题: 当 $\triangle ABC$ 有一个角的正弦值为 $\frac{1}{3}$ 时, AD 的长约为_____cm.

- 25. 在平面直角坐标系 xOy中,直线 $l_1: y = kx + 2(k > 0)$ 与 x轴交于点 A,与 y轴交于点 B,直线 $l_2: y = -\frac{1}{2}kx + 2$ 与 x轴交于点 C.
 - (1) 求点 B 的坐标;
 - (2) 横、纵坐标都是整数的点叫做整点. 记线段 AB,AC,BC 围成的区域 (不含边界) 为 G .
 - ①当k=2时,结合函数图象,求区域G内整点的个数;
 - ②若区域G内恰有2个整点,直接写出k的取值范围.

- 26. 在平面直角坐标系 xOy 中,抛物线 $y = ax^2 + a^2x + c$ 与 y 轴交于点 (0,2).
 - (1)求c的值;
 - (2) 当 a = 2 时,求抛物线顶点的坐标;
 - (3) 已知点 A(-2,0), B(1,0), 若抛物线 $y = ax^2 + a^2x + c$ 与线段 AB 有两个公共点,结合函数图象. 求 a 的取值范围.

- 27. 已知 $\angle AOB = 40^\circ, M$ 为射线 OB 上一定点, OM = 1, P 为射线 OA 上一动点 (不与点 O 重合), OP < 1,连接 PM,以点 P 为中心,将线段 PM 顺时针旋转 40° ,得到线段 PN,连接 MN.
 - (1)依题意补全图 1;
 - (2) 求证: $\angle APN = \angle OMP$;
 - (3) H 为射线 OA 上一点,连接 NH . 写出一个 OH 的值,使得对于任意的点 P 总有 $\angle OHN$ 为定值,并求出此定值.

28. 对于平面直角坐标系 xOy 中的点 P 和图形 M ,给出如下定义: Q 为图形 M 上任意一点,如果 P,Q 两点间的距离有最大值,那么称这个最大值为点 P 与图形 M 间的开距离,记作 d(P,M).

已知直线
$$y = \frac{\sqrt{3}}{3}x + b(b \neq 0)$$
 与 x 轴交于点 A ,与 y 轴交于点 B , \odot O 的半径为 1

- (1) 若 b = 2,
- ①求 $d(B, \odot O)$ 的值;
- ②若点C在直线AB上,求 $d(C, \bigcirc O)$ 的最小值;
- (2) 以点 A 为中心,将线段 AB 顺时针旋转 120° 得到 AD ,点 E 在线段 AB ,AD 组成的图形上,若对于任意点 E ,总有 $2 \le d(E, \bigcirc O) < 6$,直接写出 B 的取值范围.

2020 北京朝阳初三二模数学

参考答案

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	D	В	А	В	С	D	С	В

二、填空题(本题共16分,每小题2分)

题号	9	10	11	12
答案	1	14	答案不唯一,如 $m(a+b) = ma + mb$	答案不唯一,如 0.500
题号	13	14	15	16
答案	-6	15	甲	1 24

三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)

17. **F**:
$$\mathbb{R}$$
: \mathbb{R} : \mathbb{R} : \mathbb{R} = $4 \times \frac{\sqrt{2}}{2} + 1 - 2\sqrt{2} + 2$

= 3.

18. 解: 原不等式组为
$$\begin{cases} 4(x+1) \leq 2x+6, & ① \\ x-3 < \frac{x-5}{3}. & ② \end{cases}$$

解不等式①,得 $x \le 1$.

解不等式②,得x < 2.

- ∴原不等式组的解集为 $x \le 1$.
- ∴原不等式组的所有非负整数解为 0, 1.
- 19. (1) 补全的图形如图所示:

- (2) AB, PA, 两组对边分别相等的四边形是平行四边形.
- 20. 解: 答案不唯一,如: b=2, c=1.

此时, 方程为 $x^2 + 2x + 1 = 0$.

解得 $x_1 = x_2 = -1$.

21. (1) 证明: : 四边形 *ABCD* 是矩形,

 $\therefore AD=BC$, $\angle D=\angle B=90^{\circ}$.

 \therefore \angle DAF = \angle BCE,

 $\therefore \triangle DAF \cong \triangle BCE.$

 $\therefore AF = CE$.

(2)解: : 四边形 ABCD 是矩形,

∴AB // CD.

 \therefore \angle CAB= \angle DCA.

∵*CE*=4,

∴*AF*= 4.

∵AC 平分∠FAE,

 $\therefore \angle FAC = \angle CAB$.

 $\therefore \angle FAC = \angle DCA$.

∴ *FC =AF=*4.

在Rt△ADF中,∠DAF=30°,

∴ *DF=*2.

∴*CD*=6.

22. 解: (1) 7.84;

- (2) 在此次调研评估中,该企业成绩排名更靠前的指标是 B, 理由是<u>该企业 A 项指标成绩是 7.5 分,小于 A 项指标成绩的中位数,说明该企业 A 项指标成绩的排名在后 25 名; B 项指标成绩是 7.5 分,大于 B 项指标成绩的中位数,说明该企业 B 项指标成绩的排名在前 25 名.</u>
- (3) 根据题意可知,在样本中,A项指标成绩超过7.68分的企业数量是29.

所以估计该地区 A 项指标成绩超过 7.68 分的企业数量为 $\frac{29}{50} \times 500 = 290$.

- 23. (1) 证明:如图,连接 OD,
 - **∵***AC* 为⊙*O* 的直径,
 - ∴ $\angle ADC$ =90 $^{\circ}$.
 - :AD=CD,
 - ∴∠*DOC*=90°.
 - **∵***DE* 是⊙*O* 的切线,
 - \therefore OD \perp DE.
 - :.DE // AC.
 - (2)解: ∵DE//AC.
 - $\therefore \angle E = \angle ACB$.
 - **∵***AC* 为 ⊙ *O* 的 直径,
 - *∴∠ABC*=90°.

在 Rt $\triangle ABC$ 中, AB=8, $\tan \angle ACB = \frac{4}{3}$.

 $\therefore AC=10, \therefore CD=5\sqrt{2}$.

24. 解: (1)

x/cm	0	1	2	3	4	5	6
<i>y</i> ₁ /cm	0	0.47	1.31	2.88	5.02	5.91	6
y ₂ /cm	6	5.98	5.86	5.26	3.29	1.06	0

(2)

(3) 2.52 或 4.51.

∴点 B 坐标为 (0,2).

(2) ①当 k=2 时,直线 I_1 , I_2 分别为 y=2x+2,

y = -x + 2.

∴点 A (-1,0), 点 C (2,0).

② $1 \le k < 2$.

∴*c*=2.

- (2) 当 a=2 时,抛物线为 $y=2x^2+4x+2$,
- ∴顶点坐标为 (-1,0).
- (3) 当a > 0时,
- ①当 a=2 时,如图 1,抛物线与线段 AB 只有一个公共点.
- ②当 $a=1+\sqrt{2}$ 时,如图 2,抛物线与线段 AB 有两个公共点.

结合函数图象可得 $2 < a \le 1 + \sqrt{2}$.

当a<0时,抛物线与线段AB只有一个或没有公共点.

综上所述,a的取值范围是 $2 < a \le 1 + \sqrt{2}$.

27. 解: (1) 补全图形,如图所示.

- (2) 证明:根据题意可知, *∠MPN=∠AOB* =40°,
- \therefore \angle MPA = \angle AOB + \angle OMP= \angle MPN + \angle APN,
- ∴ ∠APN=∠OMP.
- (3)解: OH 的值为 1.

在射线 PA 上取一点 G,使得 PG=OM,连接 GN.

根据题意可知,MP=NP.

 $\therefore \triangle OMP \cong \triangle GPN.$

∴PG=OH.

∴NG=HG.

∴ ∠OHN=110°.

28. 解: (1) ①根据题意可知 B (0,2).

∴ $d(B, \odot O)=3$.

∵直线
$$y = \frac{\sqrt{3}}{3}x + 2$$
 与 x 轴交于点 A ,

 $\therefore A(-2\sqrt{3}, 0).$

∴ ∠*OAB*=30°.

$$\therefore OC = \sqrt{3}$$
.

∴ $d(C, \bigcirc O)$ 的最小值为 $\sqrt{3}+1$.

(2)
$$-\frac{5\sqrt{7}}{7} < b \le -\frac{2\sqrt{3}}{3}$$
 $\overrightarrow{x} \frac{2\sqrt{3}}{3} \le b < \frac{5\sqrt{7}}{7}$.

