

Modifying the Synthetic Accessibility Score to Identify Undesirable Virtual Compounds

14.10.21 Mahendra Awale

De-novo compound optimization

	Atom based	Fragment based	Reaction based
Gradient free	GB-GA ²¹	MOARF ⁶	SYNOPSIS ²⁸
	$ChemGE^{22}$	CReM ²⁷	AutoGrow4 ²⁹
	MSO ²³	CoG ¹⁹	
Gradient based	Segler et al. ³²	Pogány et al. ⁴¹	DINGOS ⁴⁴
	REINVENT ³³	JT-VAE ⁴²	Molecule Chef ⁴⁵
	GraphVAE ³⁴	DeepFMPO ⁴³	ChemBO ⁴⁶
	MolGAN ³⁵		REACTOR ⁴⁷
	CG-VAE ³⁶		PGFS ⁴⁸
	Li et al. ³⁷		DoGs ⁴⁹
	MolDQN ³⁸		
	GraphINVENT ³⁹		
	Optimol ⁵¹		

^{*} **De novo molecular design and generative models**, Joshua Meyers *etal*, **2021**, Drug Discovery today

Drug Discovery Today: Technologies

Volumes 32–33, December 2019, Pages 55-63

On failure modes in molecule generation and optimization

Philipp Renz ¹, Dries Van Rompaey ², Jörg Kurt Wegner ², Sepp Hochreiter ¹, Günter Klambauer ¹ A

Drug Discovery Today: Technologies

$$0.88914$$

$$0.88914$$

$$0.88914$$

$$0.88914$$

$$0.88914$$

$$0.88914$$

$$0.88914$$

*https://www.benevolent.com/guacamol

Weeding out undesirable compounds

During Optimization: Introduce additional parameters in objective

- SA score (synthetic accessibility score)
- QED score (Quantitative estimation of druglikness)
- Descriptors
- Functional groups/Smarts filters
- RAscore

References:

Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions, Peter ertl, *J. Cheminfo*, **2009**

Quantifying the chemical beauty of drugs, Andrew Hopkins, Nat. Chem. 2012

Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from Al driven retrosynthetic planning, Chem. Sci. Amol Thakkar, **2021**

After Optimization/ filter or rank compounds

- SA score (synthetic accessibility score)
- QED score (Quantitative estimation of druglikness)
- Descriptors
- Functional groups/Smarts filters
- RAscore

Weeding out undesirable compounds

During Optimization: Introduce additional parameters in objective

- SA score (synthetic accessibility score)
- QED score (Quantitative estimation of druglikness)
- Descriptors
- Functional groups/Smarts filters
- RAscore

References:

Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions, Peter ertl, *J. Cheminfo*, **2009**

Quantifying the chemical beauty of drugs, Andrew Hopkins, Nat. Chem. 2012

Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from Al driven retrosynthetic planning, Chem. Sci. Amol Thakkar, **2021**

After Optimization/ filter or rank compounds

- SA score (synthetic accessibility score)
- QED score (Quantitative estimation of druglikness)
- Descriptors
- Functional groups/Smarts filters
- RAscore

Many undesirable compounds are not captured by SA-score and QED Roche

*https://www.benevolent.com/guacamol

Many undesirable compounds are not captured by SA-score and QED Roche

*https://www.benevolent.com/guacamol

SA score: How does it work?

SAscore = fragmentScore - complexityPenalty

Sum of contributions from different fragments present in a molecule

Fragments are defined as morgan fingerprint bits

Up to radius 2

*If a fragment not present in FCD penalty = -4

SA score: How does it work?

SAscore = fragmentScore - complexityPenalty

Sum of contributions from different fragments present in a molecule

Fragments are defined as morgan fingerprint bits

Up to radius 2

Modification 1: Change of Database

PubChem (1M cpds)

ZINC InStock (10M cpds)

Br Bi

1. CHEMBL3185714 (0.95/-1.80)

\si_0\si_0\si_1

2. CHEMBL2142985 (0.79/-2)

3. CHEMBL1966651 (0.68/-2.03)

4. CHEMBL2109882 (-0.84/-3.58)

5. CHEMBL3969996 (1.10/0.38)

6. CHEMBL3448799 (0.14/-0.49)

7. CHEMBL1984992 (-0.46/-1.20)

Modification 2: Change of log function

$$f_i = \log \left(\frac{frequency\ of\ fragment\ i}{no.\ of\ unique\ fragments\ in\ database\ *0.8} \right)$$

~1.7M ChEMBL compounds

Roche

Modification 2: Change of log function

8. CHEMBL2362016 (-4.91/-15.01)

9. CHEMBL3833410 (-3.99/-12.95)

(-5.40/-7.68)

Modification 3: remove radius 2 fragments from consideration

Overlap of ZINC InStock fragments with fragments from Original Publication

Modification 3: remove radius 2 fragments from consideration

16. CHEMBL345249 (-0.80/0.69)Total fragments: 10 Unique fragments: 8 R2 fragments: 0

17. CHEMBL2105030 (-1.98/-0.22)Total fragments: 15 Unique fragments: 11 R2 fragments: 1

18. CHEMBL153437 (0.02/2.87)Total fragments: 60 Unique fragments: 20 R2 fragments: 29

R2 fragments: 24

Unique fragments: 38 R2 fragments: 17

Modification 4: taking fragment frequency into account

On failure modes in molecule generation and optimization, Günter Klambauer etal, Drug Discovery Today, 2019

Modification 4: taking fragment frequency into account

On failure modes in molecule generation and optimization, Günter Klambauer etal, Drug Discovery Today, 2019

Original SA score: Fragments are defined as morgan fingerprint bitids

Modified SA score:

Fragment = string(bitid) + "-" + string(frequency within a molecule)

Modification 4: taking fragment frequency into account \mathbb{C}

12. CHEMBL2010315 (-0.37/-4.07)

13. CHEMBL103884 (-0.09/-4.10)

Roche

Other modifications tested

1) Morgan fingerprint Daylight type path based fingerprint

- 2) Increasing penalty for a fragment not present in fragment DB
- 3) Increasing penalty for a fragment not present in fragment DB: consider fragment size
- 4) Consider worst *n* number of fragments only
- 5) Inverse document frequency (from NLP approach)

Combining all modifications: new "SA-score"

21. CHEMBL11842 (0.91/0.6)

23. CHEMBL3184154 (0.14/-6.39)

24. CHEMBL4285683 (-1.11/-1.23)

25. CHEMBL3597039 (-2/-5.75)

26. CHEMBL1989831 (-2.74/-11.84)

https://www.benevolent.com/guacamol

Task	Best of Dataset	SMILES GA
Osimertinib_MPO	100	100
Ranolazine_MPO	100	100
Perindopril_MPO	100	100
Amlodipine_MPO	100	100
Sitagliptin_MPO	100	100

Best of Dataset = Flag as good

SMILES GA = Flag as Bad

Task	Evaluation set
Osimertinib_MPO	200
Ranolazine_MPO	200
Perindopril_MPO	200
Amlodipine_MPO	200
Sitagliptin_MPO	200

Osimertinib_MPO compounds from SMILES GA

Area under Receiver Operating Curve

task	Original SA-score	ZINC SA-score	QED	ZINC (log2; Radii 0,1; with frequency) SA-score
Osimertinib_MPO	0.99	0.99	0.86	0.99
Ranolazine_MPO	0.99	0.99	0.62	0.99
Perindopril_MPO	0.97	0.97	0.39	0.96
Amlodipine_MPO	0.98	0.98	0.95	0.98
Sitagliptin_MPO	0.99	0.99	0.97	0.99
average	0.98	0.98	0.76	0.98

https://www.benevolent.com/guacamol

Task	Graph GA	LSTM
Osimertinib_MPO	100	100
Fexofenadine_MPO	100	100
Ranolazine_MPO	100	100
Perindopril_MPO	100	100
Amlodipine_MPO	100	100
Sitagliptin_MPO	100	100
Zaleplon_MPO	100	100
Osimertinib_MPO	100	100

We ask medicinal chemists to flag bad compounds:

- Which compounds are undesirable from their structure
- Will never be interesting for drug discovery projects
- Ease of synthesis is not an important parameter
- Only spend few seconds/compound

https://www.benevolent.com/guacamol

Task	Graph GA	LSTM
Osimertinib_MPO	100	100
Fexofenadine_MPO	100	100
Ranolazine_MPO	100	100
Perindopril_MPO	100	100
Amlodipine_MPO	100	100
Sitagliptin_MPO	100	100
Zaleplon_MPO	100	100
Osimertinib_MPO	100	100

We ask medicinal chemists to flag bad compounds:

- Which compounds are undesirable from their structure
- Will never be interesting for drug discovery projects
- Ease of synthesis is not an important parameter
- Only spend few seconds/compound

https://www.benevolent.com/guacamol

Task	Graph GA	LSTM
Osimertinib_MPO	100	100
Fexofenadine_MPO	100	100
Ranolazine_MPO	100	100
Perindopril_MPO	100	100
Amlodipine_MPO	100	100
Sitagliptin_MPO	100	100
Zaleplon_MPO	100	100
Osimertinib_MPO	100	100

We ask medicinal chemists to flag bad compounds:

- Which compounds are undesirable from their structure
- Will never be interesting for drug discovery projects
- Ease of synthesis is not an important parameter
- Only spend few seconds/compound

We used majority vote to set a flag

Task	Graph GA	LSTM
Osimertinib_MPO	84	1
Fexofenadine_MPO	95	8
Ranolazine_MPO	98	2
Perindopril_MPO	22	5
Amlodipine_MPO	65	38
Sitagliptin_MPO	100	9
Zaleplon_MPO	61	0
Osimertinib_MPO	92	13

Area under Receiver Operating Curve, Graph GA

task	Original SA-score	ZINC SA-score	QED	ZINC (log2; Radii 0,1; with frequency) SA-score
Osimertinib_MPO	0.61	0.65	0.75	0.74
Fexofenadine_MPO	0.80	0.80	0.79	0.80
Ranolazine_MPO	0.70	0.73	0.58	0.74
Perindopril_MPO	0.92	0.93	0.90	0.95
Amlodipine_MPO	0.43	0.46	0.65	0.57
Sitagliptin_MPO	NA	NA	NA	NA NA
Zaleplon_MPO	0.76	0.74	0.65	0.79
Valsartan_SMARTS	0.53	0.53	0.83	0.67
average	0.68	0.69	0.73	0.75

Area under Receiver Operating Curve, LSTM

task	Original SA-score	ZINC SA-score	QED	ZINC (log2; Radii 0,1; with frequency) SA-score
Osimertinib_MPO	0.65	0.69	0.61	0.88
Fexofenadine_MPO	0.45	0.43	0.93	0.51
Ranolazine_MPO	0.68	0.70	0.77	0.79
Perindopril_MPO	0.97	0.98	0.73	0.98
Amlodipine_MPO	0.85	0.87	0.65	0.90
Sitagliptin_MPO	0.48	0.56	0.87	0.60
Zaleplon_MPO	NA	NA	NA	N/A
Valsartan_SMARTS	0.74	0.75	0.54	0.81
average	0.69	0.71	0.73	0.78

Take away

> Original SA score \times ZINC SA score with modifications

- Improved differentiation between good and bad compounds
- Not all bad cases are captured
- Use it along with QED or some other metrics

Modifications

- Changed compound database for FCD
- Dropped radius 2 fragments
- Introduced log2 function
- Modified definition of fragment (fragment + frequency in a molecule)

More ideas for modifications?

Please reach out to us

Manuscript in progress

Code and Data sharing

Benchmark datasets

Code to train SA score with your own database of choice

Code to calculate new SA score

Acknowledgement

- Jerome Hert (CADD, Roche)
- Christian Kramer (CADD, Roche)
- Sereina Riniker (ETH)
- Greg Landrum (ETH)

Log functions: dependency of score on number of fragments

Modification 3: remove radius 2 fragments from consideration

Overlap of ZINC InStock fragments with fragments from Original Publication

Doing now what patients need next