Near-Field to Far-Field Transformations for Metasurfaces

Matthew Parry

2018

We wish to determine the scattering amplitude [1] of an infinite metasurface illuminated with an infinite plane wave. The scattering amplitude from such a structure would itself be infinite and so we define the normalised scattering amplitude as

$$E_{sca} = \lim_{N \to \infty} \frac{E_0^{sca}}{NE_{inc}},\tag{1}$$

where N is the number of resonators and E_{inc} is the electric field incident on the unit cell.

We take as our starting point the Stratton-Chu formula, [3, 4] which gives the electric field at some observation point ρ (not necessarily in the far-field) which lies within some closed surface S, which is in the near-field above the metasurface. If the vector field over the surface S is known then we can calculate the field at ρ by integrating over S:

$$\vec{\mathbf{E}}(\vec{\rho}) = \frac{-1}{4\pi} \iint_{S} \left[i\omega \mu(\hat{n} \times \vec{\mathbf{H}})G + (\hat{n} \times \vec{\mathbf{E}}) \times \vec{\nabla}G + (\hat{n} \cdot \vec{\mathbf{E}})\vec{\nabla}G \right] dS, \quad (2)$$

where

$$G = \frac{\exp(ik\rho)}{\rho}. (3)$$

 $\vec{\rho}$ is the vector from the observation point to the calcuclation point on S. \hat{n} is the unit normal vector on S pointing outwards.

Stratton and Chu note in their paper that the closed surface S can be closed at infinity and we take this to be the case by making S a sphere whose center moves to infinity while its radius increases correspondingly. That is, S becomes a flat, infinite plane above the metasurface. In this case \hat{n} points towards the metasurface and the observation point ρ is on the opposite side of S to the metasurface. We then need to calculate the integral in (2) over an infinite surface.

In the case of a metasurface this can be acheived by noting that, because of the Floquet boundaries of the unit cell, the integral, if S is in the near-field, can be broken up into sub-integrals - one for each cell of the metasurface. By the indistinguishability of the cells we can see that each of these sub-integrals

will have the same value. In the light of (1) we can then conclude that the normalised field at ρ is

$$\vec{\mathbf{E}}_{norm}(\vec{\rho}) = \frac{-1}{4\pi E_0} \iint_{S'} \left[i\omega \mu(\hat{n} \times \vec{\mathbf{H}}) G + (\hat{n} \times \vec{\mathbf{E}}) \times \vec{\nabla} G + (\hat{n} \cdot \vec{\mathbf{E}}) \vec{\nabla} G \right] dA, \quad (4)$$

where S' is the finite segment of S within the unit cell.

To take the observation point to the far-field we first substitute (3) into (4) and note that The $1/\rho^2$ terms vanish in the far-field and also that the far-field conditions [2] require that the field at ρ be perpendicular to the radial vector. Equation (4) thus becomes

$$\vec{\mathbf{E}}_{norm}(\vec{\rho}) = \frac{-ik}{4\pi E_0} \iint_{S'} \left[-\eta \hat{\rho} \times \hat{\rho} \times (\hat{n} \times \vec{\mathbf{H}}) - \hat{\rho} \times (\hat{n} \times \vec{\mathbf{E}}) \right] \frac{\exp(ik\rho)}{\rho} dA,$$

where we have taken the projection of the $\vec{\mathbf{H}}$ field onto the plane perpendicular to $\hat{\rho}$.

Now, the far-field conditions also require that $\vec{\rho}$ is invariant across the resonator, except with respect to phase. This can be taken into account with the substitution

$$\frac{\exp(ik\rho)}{\rho} \to \frac{\exp(ik\rho)}{\rho} \exp(ik\hat{\rho} \cdot \vec{\rho}_s),$$

where $\vec{\rho}_s$ is the vector from the origin to the calculation point on S. Because we are in the far field we have reversed the vector $\hat{\rho}$ for convenience and taken it to be the unit vector from the origin pointing in the direction of the observation point.

By making this substitution and reversing the direction of \hat{n} we find that the normalised scattering amplitude is

$$\vec{\mathbf{E}}_{sca}(\vec{\rho}) = \frac{ik}{4\pi E_0} \hat{\rho} \times \iint_{S'} \left\{ (\hat{n} \times \vec{\mathbf{E}}) - \eta \hat{\rho} \times (\hat{n} \times \vec{\mathbf{H}}) \right\} \exp(ik\hat{\rho} \cdot \vec{\rho}_s) dA, \quad (5)$$

where \hat{n} now points away from the metasurface.

References

- [1] Matthew J. Berg, Christopher M. Sorensen, and Amitabha Chakrabarti. Extinction and the optical theorem. part i. single particles. *JOSA A*, 2008.
- [2] Michael I. Mishchenko. Far-field approximation in electromagnetic scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 100(1-3):268–276, 2006.
- [3] J. A. Stratton and L. J. Chu. Diffraction theory of electromagnetic waves. *Physical Review*, 56(1):99–107, 1939.
- [4] Peter Török, Peter R. T. Munro, and Emmanouil E. Kriezis. Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation. *JOSA A*, 2006.