What we claim is:

1. Compound of formula

$$R_4$$
 $(O)_q$ R_3 $(I)_m$ $(I)_m$

wherein

 R_1 and R_2 , independently of one another, are halogen, $C_1\text{-}C_6\text{-}alkyl$, $C_3\text{-}C_6\text{-}cycloalkyl$, halogen- $C_1\text{-}C_6\text{-}alkyl$, halogen- $C_3\text{-}C_6\text{-}cycloalkyl$, $C_2\text{-}C_4\text{-}alkenyl$, $C_2\text{-}C_4\text{-}alkinyl$, halogen- $C_2\text{-}C_4\text{-}alkinyl$, $C_1\text{-}C_6\text{-}alkoxy$, halogen- $C_1\text{-}C_6\text{-}alkoxy$, $C_2\text{-}C_6\text{-}alkenyloxy$, $C_2\text{-}C_6\text{-}alkinyloxy$, halogen- $C_2\text{-}C_6\text{-}alkinyloxy$, halogen- $C_2\text{-}C_6\text{-}alkinyloxy$, halogen- $C_2\text{-}C_6\text{-}alkinyloxy$, -SF $_5$, -C(=O)N(R_5) $_2$, -O-C(=O)N(R_5) $_2$, -CN, -NO $_2$, -S(=O) $_2$ N(R_5) $_2$, -S(=O) $_p$ -C1- $C_6\text{-}alkyl$, -S(=O) $_p$ -halogen- $C_1\text{-}C_6$ -alkyl, phenyl, benzyl, phenoxy or benzyloxy, wherein each of the phenyl, benzyl, phenoxy or benzyloxy radicals is either unsubstituted or mono- to penta-substituted in the aromatic ring, independently of each other, by substituents selected from the group consisting of halogen, cyano, NO $_2$, $C_1\text{-}C_6\text{-}alkyl$, halogen- $C_1\text{-}C_6\text{-}alkyl$, $C_1\text{-}C_6\text{-}alkoxy$ and halogen- $C_1\text{-}C_6\text{-}alkoxy$;

 R_3 is hydrogen, OH, halogen, C_1 - C_6 -alkoxy, or -O-C(=O)- C_1 - C_6 -alkyl;

 R_4 is C_1 - C_6 -alkyl, halogen- C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, halogen- C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkoxy, halogen- C_1 - C_6 -alkoxy, C_2 - C_4 -alkenyl, C_2 - C_4 -alkinyl, halogen- C_2 - C_4 -alkenyl, halogen- C_2 - C_4 -alkinyl, C_1 - C_6 -alkoxy, halogen- C_1 - C_6 -alkoxy, C_2 - C_6 -alkenyloxy, C_2 - C_6 -alkinyloxy, halogen- C_2 - C_6 -alkenyloxy, halogen- C_2 - C_6 -alkinyloxy, halogen- C_1 - C_6 -alkyl, -C(=O)-O-halogen- C_1 - C_6 -alkyl, -C(=O)- C_1 - C_1 - C_1 - C_1 -alkyl, -C(=O)- C_1 - C_1 -alkyl, -C(= C_1 - C_1 -C

 $C_2\text{-}C_4\text{-alkenyl}, \text{ halogen-}C_2\text{-}C_4\text{-alkinyl}, C_2\text{-}C_6\text{-alkenyloxy}, C_2\text{-}C_6\text{-alkinyloxy}, \text{ halogen-}C_2\text{-}C_6\text{-alkenyloxy}, \text{ halogen-}C_2\text{-}C_6\text{-alkinyloxy}, -NR_6\text{-}C(=O)\text{-}O\text{-}C_1\text{-}C_6\text{-alkyl}, -NR_6\text{-}C(=O)\text{-}O\text{-}C_2\text{-}C_6\text{-alkenyl}, -NR_6\text{-}C(=O)\text{-}O\text{-}C_2\text{-}C_6\text{-alkenyl}, -C(R_7)\text{=}N\text{-}W\text{-}R_8, \text{ phenyl}, \text{ benzyl}, \text{ phenoxy}, \text{ benzyloxy}, \text{ heterocyclyl and heterocyclyloxy}, \text{ wherein, depending on the substitution possibility on the ring, the heterocyclyl and heterocyclyloxy radicals are optionally mono- to trisubstituted by substituents selected from the group consisting of halogen, <math>C_1\text{-}C_6\text{-alkyl}, \text{ halogen-}C_1\text{-}C_6\text{-alkyl}, \text{ }C_1\text{-}C_6\text{-alkoxy}, \text{ halogen-}C_1\text{-}C_6\text{-alkoxy}, \text{ }C_3\text{-}C_6\text{-alkoxy}, \text{ }C_3\text{-}C_6\text{-alkyl}, \text{ }C_3\text{-}C_6\text{-alkinyl}, \text{ }C_3\text{-}C_6\text{-alkinyl}, \text{ }phenyl \text{ or benzyl}; }$

the two R₅ independently of one another, are hydrogen or C₁-C₆-alkyl;

R₆ is hydrogen, C₁-C₆-alkyl or benzyl;

 R_7 is halogen, C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkyl- C_1 - C_6 -alkyl, halogen- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkoxy, C_3 - C_8 -cycloalkoxy- C_1 - C_6 -alkyl, halogen- C_1 - C_6 -alkyl, C_1 - C_6 -alkyl) or -N(C_1 - C_6 -alkyl);

 R_8 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkyl- C_1 - C_6 -alkyl, halogen- C_1 - C_6 -alkyl or -C(=O)- C_1 - C_6 -alkyl;

m is 0, 1, 2, 3, 4 or 5;

n is 0, 1, 2, 3, 4 or 5;

p is 0, 1 or 2;

q is 0 or 1

W is O or NH or N- C_1 - C_6 -alkyl;

and, if appropriate, the E/Z isomers, E/Z isomeric mixtures and/or tautomers thereof, each in free form or in salt form;

- 2. A compound of formula (I) according to claim 1, in free form.
- 3. A compound of formula (I) according to one of claims 1 or 2, wherein R_1 and R_2 , independently of each other, are halogen, C_1 - C_2 -alkyl, C_3 - C_6 -cycloalkyl, halogen- C_1 - C_2 -alkoxy, halogen- C_1 - C_2 -alkoxy, -C(=O)N(CH₃)₂, -CN or -NO₂
- 4. A compound of formula (I) according to one of claims 1 to 3, in which R_3 is hydrogen, OH, halogen or C_1 - C_6 -alkoxy.

- 5. A compound of formula (I) according to one of claims 1 to 4, wherein R_4 is C_1 - C_2 -Alkyl, halogen- C_1 - C_2 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkoxy, halogen- C_1 - C_2 -alkoxy, C_2 - C_4 -alkenyl, C_2 - C_4 -alkinyl, C_1 - C_2 -alkoxy, halogen- C_1 - C_2 -alkoxy, -C(=O)- C_3 - C_6 -alkyl, -C(=O)-halogen- C_1 - C_2 -alkyl, -C(=O)- O_1 - C_2 -alkyl, -C(=O)- O_1 -halogen- C_1 - C_2 -alkyl, -NH-C(=O)- O_1 - C_2 -alkyl, -NH-C(=O)- O_1 - O_2 -alkyl, $-O_1$ - O_1 - O_2 -alkyl, $-O_1$ - O_2 -alkyl, $-O_1$ - O_2 -alkyl, $-O_1$ - O_2 -alkyl, $-O_2$ - O_1 - O_2 -alkyl, $-O_1$ - O_2 -alkyl, $-O_2$ - O_1 - O_2 -alkyl, $-O_1$ - O_2 -alkyl, $-O_1$ - O_2 -alkyl, $-O_2$ - O_1 - O_2 -alkyl, $-O_2$ - O_2 -alkyl, $-O_2$ - O_2 -alkyl, $-O_2$ -alkoxy, $-O_2$ -alkoxy, $-O_2$ -alkoxy, $-O_2$ -alkenyl, $-O_2$ -alkyl, $-O_$
- 6. A pesticidal composition comprising at least one compound of formula (I) according to claim 1 as active ingredient, either in free form or in the form of an agrochemically acceptable salt, and at least one adjuvant.
- 7. Method of producing a composition as described in claim 6, in which the active ingredient is intimately mixed with the adjuvant(s).
- 8. A method for the control of pests in which a compound of formula (I) according to one of claims 1 to 4 as the active ingredient is applied, in free form or optionally in the form of an agrochemically acceptable salt, to pests or their habitat.
- 9. Use of a compound of formula (I) according to one of claims 1 to 4, in free form or optionally in the form of an agrochemically acceptable salt, in the preparation of a composition as described in claim 5.