BANK LOAN

CASE STUDY

PROJECT DESCRIPTION

This case study aims to give you an idea of applying EDA in a real business scenario. In this case study, apart from applying the techniques that you have learnt in the EDA module, you will also develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimize the risk of losing money while lending to customers.

Business Understanding:

The loan providing companies find it hard to give loans to the people due to their insufficient or non-existent credit history. Because of that, some consumers use it as their advantage by becoming a defaulter. Suppose you work for a consumer finance company which specialises in lending various types of loans to urban customers. You have to use EDA to analyse the patterns present in the data. This will ensure that the applicants capable of repaying the loan are not rejected.

When the company receives a loan application, the company has to decide for loan approval based on the applicant's profile. Two types of risks are associated with the bank's decision:

If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company.

If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company.

The data given below contains the information about the loan application at the time of applying for the loan. It contains two types of scenarios:

The client with payment difficulties: he/she had late payment more than X days on at least one of the first Y instalments of the loan in our sample

All other cases: All other cases when the payment is paid on time.

When a client applies for a loan, there are four types of decisions that could be taken by the client/company:

Approved: The company has approved loan application

<u>Cancelled:</u> The client cancelled the application sometime during approval. Either the client changed her/his mind about the loan or in some cases due to a higher risk of the client he received worse pricing which he did not want.

<u>Refused:</u> The company had rejected the loan (because the client does not meet their requirements etc.).

<u>Unused Offer:</u> Loan has been cancelled by the client but on different stages of the process.

In this case study, you will use EDA to understand how consumer attributes and loan attributes influence the tendency of default.

Business Objectives:

It aims to identify patterns which indicate if a client has difficulty paying their installments which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc. This will ensure that the consumers capable of repaying the loan are not rejected. Identification of such applicants using EDA is the aim of this case study.

In other words, the company wants to understand the driving factors (or driver variables) behind loan default, i.e. the variables which are strong indicators of default. The company can utilize this knowledge for its portfolio and risk assessment.

To develop your understanding of the domain, you are advised to independently research a little about risk analytics – understanding the types of variables and their significance should be enough).

Data Understanding:

Download the Dataset using the link given under dataset section on the right.

- 1. `application_data.csv` contains all the information of the client at the time of application.
 - The data is about wheather a client has payment difficulties.
- 2. 'previous_application.csv' contains information about the client's previous loan data. It contains the data whether the previous application had been Approved, Cancelled, Refused or Unused offer.
- 3. `columns_descrption.csv` is data dictionary which describes the meaning of the variables.

PROJECT APPROACH

Initially, my approach involved analyzing the dataset and identifying any missing values or blank entries. I then applied appropriate methods such as mean, median, or mode imputation to fill in these gaps. Additionally, I examined the dataset for outliers, including negative values, which required either deletion or standardization. To further understand the data, I employed Python libraries and basic charts for visualization. Subsequently, I drew insights based on my understanding of the data. Finally, I addressed any grammatical errors and rephrased the content while ensuring that the original meaning remained intact.

TECK STACK USED

Python is a high-level, interpreted programming language that was first released in 1991 by Guido van Rossum. It is known for its simplicity, ease of use, and readability. It is free to use, distribute, and modify. Python has a wide range of applications, including web development, data analysis, scientific computing, artificial intelligence, machine learning, and automation Python is one of the programming languages that can be used in Jupyter Notebook. This means that users can write Python code in a Jupyter Notebook cell, run the code, and see the output immediately in the notebook.

RESULTS AND INSIGHTS

1. Present the overall approach of the analysis. Mention the problem statement and the analysis approach briefly

Ans1.

♣ After downloading the CSV file, I used the Pandas and NumPy libraries to read the data from the CSV file and convert it into a DataFrame by using the following commands:

```
import pandas as pd
import numpy as np
app_df=pd.read_csv("F:\\Trainity\\Bank Loan Case
Study\\application_data.csv")
prev_df=pd.read_csv("F:\\Trainity\\Bank Loan Case
Study\\previous_application.csv")
```

- First, I will read the data and check if there are any null values or errors in the data. As it is raw data, it is very important to clean the data so that it does not cause errors in further analysis.
- ♣ After checking the data, I have analyzed that there are null values.
 Then, I will check if the percentage of null values is greater than 40%.

app_df.iloc[:,0:30].isnull().sum()/len(app_df)*100

 $app_df.iloc[:,30:60].isnull().sum()/len(app_df)*100$

SK_ID_CURR 0.			
SK_ID_COKK	. 000000 🦳	REGION_RATING_CLIENT	0.000000
TARGET 0.	.000000	REGION_RATING_CLIENT_W_CITY	
NAME_CONTRACT_TYPE 0.	.000000	WEEKDAY_APPR_PROCESS_START	0.000000
CODE_GENDER 0.	.000000	HOUR_APPR_PROCESS_START	0.000000
FLAG_OWN_CAR 0.	.000000	REG_REGION_NOT_LIVE_REGION	0.000000
FLAG_OWN_REALTY 0.	.000000	REG_REGION_NOT_WORK_REGION	0.000000
CNT_CHILDREN 0.	.000000	LIVE_REGION_NOT_WORK_REGION	0.000000
AMT_INCOME_TOTAL 0.	.000000	REG_CITY_NOT_LIVE_CITY	0.000000
AMT_CREDIT 0.	.000000	REG_CITY_NOT_WORK_CITY	0.000000
AMT ANNUITY 0.	.003902	LIVE_CITY_NOT_WORK_CITY	0.000000
AMT_GOODS_PRICE 0.	.090403	ORGANIZATION_TYPE	0.000000
NAME_TYPE_SUITE 0.	.420148	EXT_SOURCE_1	56.381073
NAME_INCOME_TYPE 0.	.000000	EXT_SOURCE_2	0.214626
NAME EDUCATION TYPE 0.	.000000	EX1_300KCE_3	19.825307
NAME FAMILY STATUS 0.	.000000	APARTMENTS_AVG	50.749729
NAME HOUSING TYPE 0.	.000000	BASEMENTAREA_AVG	58.515956
REGION_POPULATION_RELATIVE 0.	.000000	YEARS_BEGINEXPLUATATION_AVG	48.781019
	.000000	YEARS_BUILD_AVG	66.497784
_	.000000	COMMONAREA_AVG	69.872297
_	.000000	ELEVATORS_AVG	53.295980
_	.000000	ENTRANCES_AVG	50.348768
	.990810	FLOORSMAX_AVG	49.760822
	.000000	FLOORSMIN_AVG	67.848630 59.376738
_	.000000	LANDAREA_AVG	68.354953
	.000000	LIVINGAPARTMENTS_AVG LIVINGAREA_AVG	50.193326
	.000000	NONLIVINGAPARTMENTS_AVG	69.432963
	.000000	NONLIVINGAREA_AVG	55.179164
_	.000000	APARTMENTS_MODE	50.749729
_	345545	BASEMENTAREA_MODE	58.515956
_	.000650	dtype: float64	201223330

app_df.iloc[:,60:90].isnull().sum()/len(app_df)*100

app_df.iloc[:,90:122].isnull().sum()/len(app_df)*100

YEARS_BEGINEXPLUATATION_MODE	48.781019	EMERGENCYSTATE_MODE	47.398304
YEARS_BUILD_MODE	66.497784	OBS_30_CNT_SOCIAL_CIRCLE	0.332021
COMMONAREA_MODE	69.872297	DEF_30_CNT_SOCIAL_CIRCLE	0.332021
ELEVATORS_MODE	53.295980	OBS_60_CNT_SOCIAL_CIRCLE	0.332021
ENTRANCES_MODE	50.348768	DEF_60_CNT_SOCIAL_CIRCLE	0.332021
FLOORSMAX_MODE	49.760822	DAYS_LAST_PHONE_CHANGE	0.000325
FLOORSMIN MODE	67.848630	FLAG_DOCUMENT_2	0.000000
LANDAREA MODE	59.376738	FLAG_DOCUMENT_3	0.000000
LIVINGAPARTMENTS MODE	68.354953	FLAG_DOCUMENT_4	0.000000
LIVINGAREA MODE	50.193326	FLAG_DOCUMENT_5	0.000000
NONLIVINGAPARTMENTS MODE	69.432963	FLAG_DOCUMENT_6	0.000000
NONLIVINGAREA MODE	55,179164	FLAG_DOCUMENT_7	0.000000
APARTMENTS MEDI	50.749729	FLAG_DOCUMENT_8	0.000000
BASEMENTAREA MEDI	58.515956	FLAG_DOCUMENT_9	0.000000
_		FLAG_DOCUMENT_10	0.000000
YEARS_BEGINEXPLUATATION_MEDI	48.781019	FLAG_DOCUMENT_11	0.000000
YEARS_BUILD_MEDI	66.497784	FLAG_DOCUMENT_12	0.000000
COMMONAREA_MEDI	69.872297	FLAG_DOCUMENT_13	0.000000
ELEVATORS_MEDI	53.295980	FLAG_DOCUMENT_14	0.000000
ENTRANCES_MEDI	50.348768	FLAG_DOCUMENT_15	0.000000
FLOORSMAX_MEDI	49.760822	FLAG_DOCUMENT_16	0.000000
FLOORSMIN_MEDI	67.848630	FLAG_DOCUMENT_17	0.000000
LANDAREA_MEDI	59.376738	FLAG_DOCUMENT_18	0.000000
LIVINGAPARTMENTS_MEDI	68.354953	FLAG_DOCUMENT_19	0.000000
LIVINGAREA MEDI	50.193326	FLAG_DOCUMENT_20	
NONLIVINGAPARTMENTS MEDI	69.432963	FLAG_DOCUMENT_21 AMT REQ CREDIT BUREAU HOUR	0.000000 13.501631
NONLIVINGAREA MEDI	55,179164	AMT REO CREDIT BUREAU DAY	13.501631
FONDKAPREMONT MODE	68.386172	AMT REO CREDIT BUREAU WEEK	13.501631
HOUSETYPE MODE	50.176091	AMT_REQ_CREDIT_BUREAU_WEEK	13.501631
_	48.268517	AMT REQ CREDIT BUREAU ORT	13.501631
TOTALAREA_MODE WALLSMATERIAL MODE		AMT REQ CREDIT BUREAU YEAR	13.501631
<u>-</u>	50.840783	dtype: float64	13.301031
dtype: float64		desper 1100co+	

→ I will delete the rows where null values greater than 40% as if have more than sufficient data so it will not cause an problem for us further null values greater than 40% will not show us any analysis as it is already have null values more than the data.

```
null_perc=app_df.isnull().sum()/len(app_df)
null_cols = null_perc[null_perc > 0.4].index.tolist()
app_df.drop(labels=null_cols,axis=1,inplace=True)
```

♣ After that, I will delete the columns which are not necessary for our analysis. Hence, I found out that the following are irrelevant columns.
We will drop these columns and make our data cleaner.

app_df=app_df.drop(['Flag_Mobil','Flag_Emp_Phone','Flag_Work_Phone','Fl
ag_Cont_Mobile','Flag_Phone','Flag_Email','Region_Rating_Client','Cnt_Fam
_Members','Region_Rating_Client_W_City','Days_Last_Phone_Change','Flag
_Document_2','Flag_Document_3','Flag_Document_4','Flag_Document_5','F
lag_Document_6','Flag_Document_7','Flag_Document_8','Flag_Document_9
','Flag_Document_10','Flag_Document_11','Flag_Document_12','Flag_Document_9
','Flag_Document_14','Flag_Document_15','Flag_Document_16','Fl
ag_Document_17','Flag_Document_18','Flag_Document_19','Flag_Document_16','Fl
ag_Document_17','Flag_Document_18','Flag_Document_19','Flag_Document_19','Flag_Document_20','Amt_Req_Credit_Bureau_Hour','Amt_Req_Credit_Bureau_D
ay','Amt_Req_Credit_Bureau_Qrt','Amt_Req_Credit_Bureau_Mon'],axis=1)

Checking for undefined values

♣ After checking the undefined values, I have replaced them with proper values to make the data cleaner and avoid any errors in further analysis.

```
app_df.loc[app_df['CODE_GENDER']=='XNA','CODE_GENDER']='F'
app_df.NAME_FAMILY_STATUS=app_df.NAME_FAMILY_STATUS.apply(lamb
da x: x.replace('/','or'))
app_df.loc[app_df['NAME_FAMILY_STATUS']=='Unknown','NAME_FAMILY_
STATUS']='Widow'
app_df.NAME_HOUSING_TYPE=app_df.NAME_HOUSING_TYPE.apply(lamb
da x: x.replace('/','or'))
```

app_df=app_df[~(app_df.ORGANIZATION_TYPE=='XNA')]

```
app_df['DAYS_BIRTH'] = app_df['DAYS_BIRTH'].abs()
app_df['DAYS_EMPLOYED'] = app_df['DAYS_EMPLOYED'].abs()
app_df['DAYS_REGISTRATION'] = app_df['DAYS_REGISTRATION'].abs()
app_df['DAYS_ID_PUBLISH'] = app_df['DAYS_ID_PUBLISH'].abs()
```

♣ The values in these columns are in days, so I converted them into years to improve our analysis.

```
app_df.DAYS_BIRTH=app_df.DAYS_BIRTH.values/365
app_df.DAYS_EMPLOYED=app_df.DAYS_EMPLOYED.values/365
```

- → After deleting all the unnecessary columns and null value columns with greater than 40%, we are left with these values which are important for our analysis.
- So, we should replace these null values with mean, median, or mode.

SK ID CURR	0
TARGET	0
NAME CONTRACT TYPE	ø
CODE GENDER	a
FLAG_OWN_CAR	9
FLAG OWN REALTY	9
CNT_CHILDREN	9
	9
AMT_INCOME_TOTAL	9
AMT_CREDIT AMT ANNUITY	12
_	
AMT_GOODS_PRICE	256
NAME_TYPE_SUITE	1096
NAME_INCOME_TYPE	0
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
REGION_POPULATION_RELATIVE	0
DAYS_BIRTH	0
DAYS_EMPLOYED	0
DAYS_REGISTRATION	0
DAYS_ID_PUBLISH	0
OCCUPATION_TYPE	41019
WEEKDAY_APPR_PROCESS_START	0
HOUR_APPR_PROCESS_START	0
REG_REGION_NOT_LIVE_REGION	0
REG_REGION_NOT_WORK_REGION	0
LIVE_REGION_NOT_WORK_REGION	0
REG_CITY_NOT_LIVE_CITY	0
REG_CITY_NOT_WORK_CITY	0
LIVE_CITY_NOT_WORK_CITY	0
ORGANIZATION_TYPE	0
EXT SOURCE 2	504
EXT_SOURCE_3	49896
OBS_30_CNT_SOCIAL_CIRCLE	849
DEF_30_CNT_SOCIAL_CIRCLE	849
OBS_60_CNT_SOCIAL_CIRCLE	849
DEF_60_CNT_SOCIAL_CIRCLE	849
dtype: int64	

2. Indentify the missing data and use appropriate method to deal with it. (Remove columns/or replace it with an appropriate value)

Hint: Note that in EDA, since it is not necessary to replace the missing value, but if you have to replace the missing value, what should be the approach. Clearly mention the approach.

Ans 2.

 app_df.boxplot(column='AMT_ANNUITY', color='blue', flierprops=dict(marker='o', markerfacecolor='red', markersize=5))

→ Since the box plot shows a large number of outliers, we will consider the median as a measure of central tendency.

app_df['AMT_ANNUITY']=app_df['AMT_ANNUITY'].fillna(app_df['AMT_AN
NUITY'].median())

2. app_df.boxplot(column='AMT_GOODS_PRICE', color='blue', flierprops=dict(marker='o', markerfacecolor='green', markersize=5))

→ Since the box plot shows a large number of outliers, we will consider the median as a measure of central tendency.

app_df['AMT_GOODS_PRICE']=app_df['AMT_GOODS_PRICE'].fillna(app_df
['AMT_GOODS_PRICE'].median())

- 3. mode_value = app_df['NAME_TYPE_SUITE'].mode()[0]
- → Since it is a categorical value, considering mode measure to impute missing values.

app_df['NAME_TYPE_SUITE'].fillna(mode_value, inplace=True)

- 4. mode_value1 = app_df['OCCUPATION_TYPE'].mode()[0]

app_df['OCCUPATION_TYPE'].fillna(mode_value, inplace=True)

5. app_df.boxplot(column='EXT_SOURCE_2', color='purple')

- In a boxplot, the middle line in the box represents the median of the data. If the median is positioned exactly in the middle of the box, it means that the data is symmetrically distributed around the median.
- In a box plot, if the median is not centered in the box, it suggests that the data is skewed to one side, and the mean may not be the most appropriate measure of central tendency. In this case, it may be more appropriate to use the median as the measure of central tendency, as it is less sensitive to outliers than the mean.

app_df['EXT_SOURCE_2']=app_df['EXT_SOURCE_2'].fillna(app_df['EXT_SO
URCE_2'].median())

app_df['EXT_SOURCE_3']=app_df['EXT_SOURCE_3'].fillna(app_df['EXT_SOURCE_2'].median())

- 7. app_df['OBS_30_CNT_SOCIAL_CIRCLE']=app_df['OBS_30_CNT_SOCIAL_CIRCLE'].fillna(app_df['OBS_30_CNT_SOCIAL_CIRCLE'].median())
- 8. app_df['DEF_30_CNT_SOCIAL_CIRCLE']=app_df['DEF_30_CNT_SOCIAL_CIRCLE'].median())
- 9. app_df['OBS_60_CNT_SOCIAL_CIRCLE']=app_df['OBS_60_CNT_SOCIAL_CIRCLE'].fillna(app_df['OBS_60_CNT_SOCIAL_CIRCLE'].median())

```
10.app_df['DEF_60_CNT_SOCIAL_CIRCLE']=app_df['DEF_60_CNT_SOCIAL_CIRCLE'].median())
```

3. Identify if there are outliers in the dataset. Also, mention why do you think it is an outlier. Again, remember that for this exercise, it is not necessary to remove any data points.

Ans3. We have checked for outliers in the numerical columns and identified outliers for at least 5 variables. Values above the upper whisker and below the lower whisker are considered outliers. We observed that the outliers are only present above the upper whisker. Therefore, we will consider only those values as outliers.

```
    sns.boxplot(app_df.AMT_CREDIT)
    plt.xlabel("AMOUNT ", fontdict={'fontsize': 12, 'color': 'Red'})
    plt.ylabel("AMOUNT CREDIT", fontdict={'fontsize': 12, 'color': 'Red'})
    plt.title('AMOUNT CREDIT \n',fontdict={'fontsize': 15, 'color': 'Orange'})
    plt.show()
```


- 4 An outlier is a data point that is located outside the whiskers of a box plot. Any value that falls beyond the whiskers is considered an outlier.
- ➡ The amount credit greater than 1.6 can be considered as an outlier.
- 2. sns.boxplot(app_df.AMT_ANNUITY)
 plt.xlabel("AMOUNT ", fontdict={'fontsize': 12, 'color': 'Red'})
 plt.ylabel("AMOUNT ANNUITY", fontdict={'fontsize': 12, 'color': 'Red'})
 plt.title(' AMOUNT ANNUITY \n',fontdict={'fontsize': 15, 'color': 'Orange'})
 plt.show()
- ☐ The amount Annuity greater than 60000+ can be considered as an outlier.

3. sns.boxplot(app_df.CNT_CHILDREN)
 plt.title('Count of children in a family \n',fontdict={'fontsize': 15, 'color'
 : 'Orange'})
 plt.show()

- ↓ Values greater than 3 can be considered outliers since the count of children cannot be in decimals. Therefore, we can conclude that a count greater than 3 can be an outlier.
- 4. sns.boxplot(app_df.AMT_GOODS_PRICE)
 plt.xlabel("AMOUNT ", fontdict={'fontsize': 12, 'color' : 'Red'})
 plt.ylabel("AMOUNT GOODS PRICE", fontdict={'fontsize': 12, 'color' : 'Red'})
 plt.title(' AMOUNT GOODS PRICE \n',fontdict={'fontsize': 15, 'color' : 'Orange'})
 plt.show()

5. sns.boxplot(app_df.REGION_POPULATION_RELATIVE) plt.xlabel("AMOUNT ", fontdict={'fontsize': 12,'color': 'Red'}) plt.ylabel("REGION POPULATION RELATIVE", fontdict={'fontsize': 12, 'color': 'Red'}) plt.title('REGION POPULATION RELATIVE \n',fontdict={'fontsize': 15, 'color': 'Orange'}) plt.show()

♣ Population relative count greater than 0.0566 is considered to be an outlier

4. Identify if there is data imbalance in the data. Find the ratio of data imbalance.

Hint: Since there are a lot of columns, you can run your analysis in loops for the appropriate columns and find the insights.

Ans 4.

app_df['TARGET'].value_counts().plot(kind='bar')

- Target 0
- √ ratio=((val.TARGET[0])/ (val1.TARGET[0]+val.TARGET[0]))*100
- √ ratio=91.35%
- Target 1
- √ ratio=((val1.TARGET[0])/ (val1.TARGET[0]+val.TARGET[0]))*100
- ✓ ratio=8.65%

2. app_df['NAME_CONTRACT_TYPE'].value_counts().plot(kind='bar')

3. app_df['NAME_EDUCATION_TYPE'].value_counts().plot(kind='bar')

5. Explain the results of univariate, segmented univariate, bivariate analysis, etc. in business terms.

Ans 5.

- def_=app_df[app_df['TARGET']==1]
 def_['CODE_GENDER'].value_counts().plot(kind='bar')

DEFAULTER

ndef_=app_df[app_df['TARGET']==0]
ndef ['CODE_GENDER'].value counts().plot(kind='bar')

NON-DEAFULTER

def_=app_df[app_df['TARGET']==1]

def_['WEEKDAY_APPR_PROCESS_START'].value_counts().plot(kind='bar')

ndef_=app_df[app_df['TARGET']==0]
ndef_['WEEKDAY_APPR_PROCESS_START'].value_counts().plot(kind='
bar')

def_=app_df[app_df['TARGET']==1]
def_['NAME_EDUCATION_TYPE'].value_counts().plot(kind='bar')

ndef_=app_df[app_df['TARGET']==0]
ndef_['NAME_EDUCATION_TYPE'].value_counts().plot(kind='bar')

NON-DEFAULTER

ndef_=app_df[app_df['TARGET']==0]
ndef_['NAME_INCOME_TYPE'].value_counts().plot(kind='bar')

def_=app_df[app_df['TARGET']==1]
def_['NAME_HOUSING_TYPE'].value_counts().plot(kind='bar')

DEFAULTER

hndef_=app_df[app_df['TARGET']==0]
ndef_['NAME_HOUSING_TYPE'].value_counts().plot(kind='bar')

NON-DEFAULTER

2. Bivariate Analysis

```
1. grouped = app_df.groupby(['NAME_FAMILY_STATUS', 'TARGET']). size().unstack() fig, ax = plt.subplots(figsize=(10, 6)) grouped.plot ( kind = 'bar', width = 0.4, ax=ax)
```

ax.set_xlabel('Family')
ax.set_ylabel('Count')
ax.set_title('Target Count by Family')
plt.show()


```
2. grouped = app_df.groupby(['NAME_EDUCATION_TYPE', 'TARGET'])
.size().unstack()
fig, ax = plt.subplots(figsize=(6, 4))
grouped.plot(kind='bar', width=0.4, ax=ax)
```

ax.set_xlabel('Education')
ax.set_ylabel('Count')
ax.set_title('Target Count by Education')
plt.show()

grouped = app_df.groupby(['NAME_HOUSING_TYPE', 'TARGET'])
.size().unstack()

fig, ax = plt.subplots(figsize=(12, 5))
grouped.plot(kind='bar', width=0.4, ax=ax)

ax.set_xlabel('Housing')
ax.set_ylabel('Count')
ax.set_title('Target Count by Housing')
plt.show()

- ax.set_xlabel('Car')
 ax.set_ylabel('Count')
 ax.set_title('Target Count by Car')
 plt.show()

- ax.set_xlabel('Contract')
 ax.set_ylabel('Count')
 ax.set_title('Target Count by Contract')
 plt.show()

- ax.set_xlabel('Weekday')
 ax.set_ylabel('Count')
 ax.set_title('Target Count by Application')
 plt.show()

3. Segmented Analysis

1. AMT_CREDIT

- app_df['CREDIT'] = app_df['AMT_CREDIT'].apply(credit)
 plt.figure(figsize=(14,5))
- plt.subplot(1,2,1)
 ax = sns.countplot(x = 'CREDIT',data=df_target_1)
 plt.title('Defaulters')
- plt.subplot(1,2,2)
 ax = sns.countplot(x = 'CREDIT',data=df_target_0)
 plt.title('Non-Defaulters')

2. AMT_INCOME

```
def income(x):
    if (x < 100000):
        return 'Low'
    elif(x >= 100000 and x < 150000):
        return 'Medium'
    else:
        return 'High'</pre>
```

- app_df['INCOME'] = app_df['AMT_INCOME_TOTAL'].apply(income)
 plt.figure(figsize=(14,5))
- plt.subplot(1,2,1)
 ax = sns.countplot(x = 'INCOME',data=df_target_1)
 plt.title('Defaulters')
- plt.subplot(1,2,2)
 ax = sns.countplot(x = 'INCOME',data=df_target_0)
 plt.title('Non-Defaulters')

6. Find the top 10 correlation for the Client with payment difficulties and all other cases (Target variable). Note that you have to find the top correlation by segmenting the data frame w.r.t to the target variable and then find the top correlation for each of the segmented data and find if any insight is there. Say, there are 5+1(target) variables in a dataset: Var1, Var2, Var3, Var4, Var5, Target. And if you have to find top 3 correlation, it can be: Var1 & Var2, Var2 & Var3, Var1 & Var3. Target variable will not feature in this correlation as it is a categorical variable and not a continuous variable which is increasing or decreasing.

Ans 6.

```
↓ col = ['NAME_CONTRACT_TYPE', 'CODE_GENDER', 'FLAG_OWN_
REALTY', 'CNT_CHILDREN', 'AMT_INCOME_TOTAL', 'AMT_CREDIT',
'AMT_ANNUITY', 'AMT_GOODS_PRICE', 'NAME_TYPE_SUITE',
'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE',
'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE',
'REGION_POPULATION_RELATIVE', 'DAYS_BIRTH', 'DAYS_EMPLOYED',
'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH', 'OCCUPATION_TYPE',
'WEEKDAY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START',
'REG_REGION_NOT_LIVE_REGION',
'REG_REGION_NOT_WORK_REGION',
'LIVE_REGION_NOT_WORK_REGION','REG_CITY_NOT_LIVE_CITY',
'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY',
'ORGANIZATION_TYPE','OBS_60_CNT_SOCIAL_CIRCLE',
'DEF_60_CNT_SOCIAL_CIRCLE']
```

- Non_Deafulter = app_df.loc[app_df['TARGET']==0, col]
- **Defaulter** = app df.loc[app df['TARGET']==1, col]

1. TARGET 0

```
corr_non_deafulter = non_deafulter.corr()

corr_non_deafulter =
corr_non_deafulter.where(np.triu(np.ones(corr_non_deafulter.shape),k=1).a
stype(bool)).unstack().reset_index()

corr_non_deafulter.columns =['VAR1','VAR2','Correlation']

corr_non_deafulter.dropna(subset = ["Correlation"], inplace = True)

corr_non_deafulter["Correlation"]=corr_non_deafulter["Correlation"].abs()

corr_non_deafulter.sort_values(by='Correlation', ascending=False, inplace=True)
```

corr_non_deafulter.head(10)

Non-Deafulter

	VAR1	VAR2	Correlation
78	AMT_GOODS_PRICE	AMT_CREDIT	0.986471
259	LIVE_REGION_NOT_WORK_REGION	REG_REGION_NOT_WORK_REGION	0.860421
319	LIVE_CITY_NOT_WORK_CITY	REG_CITY_NOT_WORK_CITY	0.820828
79	AMT_GOODS_PRICE	AMT_ANNUITY	0.766655
59	AMT_ANNUITY	AMT_CREDIT	0.762103
239	REG_REGION_NOT_WORK_REGION	REG_REGION_NOT_LIVE_REGION	0.461596
299	REG_CITY_NOT_WORK_CITY	REG_CITY_NOT_LIVE_CITY	0.442640
58	AMT_ANNUITY	AMT_INCOME_TOTAL	0.400752
139	DAYS_EMPLOYED	DAYS_BIRTH	0.352662
277	REG_CITY_NOT_LIVE_CITY	REG_REGION_NOT_LIVE_REGION	0.342321

2. Target 1

```
corr_Defaulter = Defaulter.corr()

corr_Defaulter =
corr_Defaulter.where(np.triu(np.ones(corr_Defaulter.shape),k=1).astype(boo
l))

corr_df_Defaulter = corr_Defaulter.unstack().reset_index()

corr_df_Defaulter.columns =['VAR1','VAR2','Correlation']

corr_df_Defaulter.dropna(subset = ["Correlation"], inplace = True)

corr_df_Defaulter["Correlation"]=corr_df_Defaulter["Correlation"].abs()

corr_df_Defaulter.sort_values(by='Correlation', ascending=False, inplace=True)

corr_df_Defaulter.head(10)
```

Defaulter

	VAR1	VAR2	Correlation
78	AMT_GOODS_PRICE	AMT_CREDIT	0.982464
259	LIVE_REGION_NOT_WORK_REGION	REG_REGION_NOT_WORK_REGION	0.846872
319	LIVE_CITY_NOT_WORK_CITY	REG_CITY_NOT_WORK_CITY	0.768247
79	AMT_GOODS_PRICE	AMT_ANNUITY	0.748940
59	AMT_ANNUITY	AMT_CREDIT	0.748708
239	REG_REGION_NOT_WORK_REGION	REG_REGION_NOT_LIVE_REGION	0.506747
299	REG_CITY_NOT_WORK_CITY	REG_CITY_NOT_LIVE_CITY	0.478266
277	REG_CITY_NOT_LIVE_CITY	REG_REGION_NOT_LIVE_REGION	0.322030
139	DAYS_EMPLOYED	DAYS_BIRTH	0.307018
359	DEF_60_CNT_SOCIAL_CIRCLE	OBS_60_CNT_SOCIAL_CIRCLE	0.257773

7. Include visualizations and summarize the most important results in the presentation. You are free to choose the graphs which explain the numerical/categorical variables. Insights should explain why the variable is important for differentiating the clients with payment difficulties with all other cases.

Ans 7.

 sns.pointplot(data=com_df, x="NAME_CONTRACT_STATUS",y="AMT_INCOME_TOTAL",hue="TAR GET")

 ☐ The point plot indicates that individuals who did not use the offer previously defaulted despite having higher incomes than others.

com_df.pivot_table(values='TARGET',index='NAME_CONTRACT_STATU
 S',columns='NAME_CLIENT_TYPE',aggfunc='mean').plot.bar(figsize=(8,
 5),rot=45)
 plt.xlabel('Previous loan status')
 plt.ylabel('Current defaulters')

- We can see that the Defaulters are more for previously Unused offers loan status clients, who were New.
- For previously Approved status the New clients were more defaulted followed by Repeater.
- For previously Refused applicants the Defaulters are more Refreshed clients.
- For previously Canceled applicants the Defaulters are more New clients.

com_df.pivot_table(values='TARGET',index='NAME_CONTRACT_STATU S',columns='CODE_GENDER',aggfunc='mean').plot.bar(figsize=(8,5),rot =45)
 plt.xlabel('Previous loan status')

plt.ylabel('Current defaulters')

- We see that previously Refused client is more defaulted than previously Approved clients. Also, in all the cases the Males are more defaulted than Females.
- 4. sns.countplot(x='NAME_CONTRACT_STATUS', hue= 'NAME_EDUCATION_TYPE', data=com_df) plt.title('Count of Contract Types with respect to Education Type', fontsize=18, fontweight='bold') plt.xlabel('Contract Status', fontsize=12) plt.ylabel('Count (log scale)', fontsize=12 plt.yscale('log') plt.show()

- Most clients with all kinds of education types apply mostly for cash loans rather than revolving loans.
- 5. sns.countplot(data=com_df,y='NAME_INCOME_TYPE',order=com_df[' NAME_INCOME_TYPE'].value_counts().index,hue='NAME_CONTRACT_ STATUS')
 plt.title('Distribution of Income Types w.r.t Contract Status\n')
 plt.xlabel("count")
 plt.ylabel("NAME_INCOME_TYPE")
 plt.xscale('log')plt.show()
- There are no nused offers for students and pensioners
- The number of approved loans for state servants is almost equal to the refusal or canceled loans for Commercial associates
- Maximum unused offers is by working clients

PROJECT LINK

https://drive.google.com/file/d/1-yOW efKtTeejhGS7KpghsZUyxIUrMf/view?usp=share_link

INSIGHTS

- A. Decisive Factor whether an applicant will be Repayer:
 - 1. NAME_EDUCATION_TYPE: Academic degree has less defaults.
 - 2. **NAME INCOME TYPE:** Student and Businessmen have no defaults.
 - 3. **ORGANIZATION_TYPE:** Clients with Trade Type 4 and 5 and Industry type 8 have defaulted less than 3%
 - 4. **AMT_INCOME_TOTAL:** Applicant with Income more than 700,000 are less likely to default.
 - 5. **CNT_CHILDREN:** People with zero to two children tend to repay the loans.
- B. Decisive Factor whether an applicant will be **Defaulter:**
 - 1. **CODE_GENDER:** Men are at relatively higher default rate
 - 2. **NAME_FAMILY_STATUS:** People who have civil marriage or who are single default a lot.
 - 3. **NAME_EDUCATION_TYPE:** People with Lower Secondary & Secondary education.
 - 4. **NAME_INCOME_TYPE:** Clients who are either at Maternity leave OR Unemployed default a lot.
 - 5. <u>OCCUPATION_TYPE:</u> Avoid Low-skill Laborers, Drivers and Waiters/barmen staff, Security staff, Laborers and Cooking staff as their default rate is huge.
 - 6. **CNT_CHILDREN**: Client who have children equal to or more than 9 default 100% and hence their applications are to be rejected.
 - 7. <u>AMT_GOODS_PRICE:</u> When the credit amount goes beyond 3lakhs, there is an increase in defaulters.

SUGGESSTIONS

- 90% of the previously cancelled client have actually repayed the loan.
 Record the reason for cancellation which might help the bank to determine and negotiate terms with these repaying customers in future for increase business opportunity.
- 85% of the clients who were refused by bank for loan earlier have now turned into a repaying client. Hence documenting the reason for rejection could mitigate the business loss and these clients could be contacted for further loans.

RESULTS

- 1. <u>NAME_HOUSING_TYPE:</u> High number of loan applications are from the category of people who live in Rented apartments & living with parents and hence offering the loan would mitigate the loss if any of those default.
- 2. <u>AMT_CREDIT:</u> People who get loan for 3-6 Lakhs tend to default more than others and hence having higher interest specifically for this credit range would be ideal.
- 3. <u>AMT_INCOME</u>: Since 90% of the applications have Income total less than 3Lakhs and they have high probability of defaulting, they could be offered loan with higher interest compared to other income category.
- 4. <u>CNT_CHILDREN:</u> Clients who have 4 to 8 children has a very high default rate and hence higher interest should be imposed on their loans.

