Ω

Конспект лекций

Математическое и компьютерное моделирование

Лектор: Колобов А. Г.

Курс: 4

Семестр: 1

Нашли ошибку?

Если вы заметили ошибку или хотите добавить замечание:

Репозиторий этой книги: https://github.com/motattack/mcs_24_2

Телеграм: https://t.me/motattack

В данном конспекте могут быть опечатки

Содержание

I	Метод Сплайн-Коллокации	2
1	Метод Коллокации	2
1.1	Общие положения	2
2	Сплайн по моментам	3
2.1	Сплайн-разностная схема	3
2.2	Теорема о сходимости	۷
3	Использование В-сплайнов	5
4	Основные свойства схем Сплайн-коллокаций	7
5	Уравнение Пуассона в прямоугольной области	7
5.1	Метод матричной прогонки	8
5.2	Схема переменных направлений	8
II	Методы решения интегральных уравнений	10
6	Линейные интегральные уравнения	10
6.1	Типы уравнений и их классификация	10
7	Методы	11
7.1	Методы решения уравнения Вольтерра 2-го рода	12
7.2	Методы решения уравнений Фредгольма 2-го рода	14
7.3	Уравнение Вольтерра 1-го рода	17
8	Решение ур-в. Фредгольма	18
8.1	Методы Регуляризации	19
8.2	Задача минимизации сглаживающего функционала	21
8.3	Метод регуляризации для решения инт. ур-в. Фредгольма 1 рода	22

Часть І

Метод Сплайн-Коллокации

Запись от: 30.09.2024

1. Метод Коллокации

$$Lu = f$$
,

Условия:

$$Lu|_{x=\xi_k} = f(\xi_k), \quad \Phi(x, \alpha_1, \alpha_2, \dots, \alpha_n)$$

КРН - только в узлах сетки. В аналитическом виде - сплайны.

1.1. Общие положения

ОДУ второго порядка:

$$L[y(x)] = y''(x) + p(x)y'(x) + q(x)y(x) = r(x), \quad x \in [a, b].$$

Смешанные граничные условия:

$$\alpha_1 y(a) + \beta_1 y'(a) = \gamma_1,$$

$$\alpha_2 y(b) + \beta_2 y'(b) = \gamma_2.$$

Пусть ∃! реш.

Условие гладкости для каждой задачи оговаривается отдельно.

Пусть $\Delta: a = x_0 < x_1 < \dots < x_N = b$ - сетка для построения сплайна $S(x) \in C^2 \left[a, b \right].$

На [a,b] выбираем точки $\xi_k \in [a,b]\,, k=\overline{0,N}$ - узлы коллокации.

Требуем:

$$L[S(x)]|_{x=\xi_k} = r(\xi_k).$$

И для граничных условий:

$$\alpha_1 S(a) + \beta_1 S'(a) = \gamma_1,$$

$$\alpha_2 S(b) + \beta_2 S'(b) = \gamma_2.$$

Размерность пространства =N+3 - уравнения.

p,q - могут быть разрывными. узлы не брать разрывные.

 $[x_i, x_{i+1}] =$ нельзя брать больше 3-х точек. Если взять 4 - замкнется, не будет граничных условий.

2. Сплайн по моментам

$$S\left(x
ight)=u_{i}\left(1-t
ight)+u_{i+1}t-rac{h_{i}^{2}}{6}\left(1-t
ight)\left[\left(2-t
ight)M_{i}+\left(1+t
ight)M_{i+1}
ight],$$
 где $h_{i}=x_{i+1}-x_{i},\quad t=rac{x-x_{i}}{h_{i}},\quad \xi_{k}=x_{k}$ (узлы совпадают).

$$M_i = S''(x_i)$$
 (моменты), $m_i = S'(x_i)$ (касательные).

 $\triangleleft P(x) \equiv 0$, только 2-я производная

Условия коллокации:

$$M_i + q_i u_i = r_i, \quad i = \overline{0, N}, \quad q_i = q(x_i), \quad r_i = r(x_i).$$

 M_i, u_i неизвестны. Как связать моменты и значения?

2.1. Сплайн-разностная схема

Система для нахождения моментов:

$$(\star) \quad \mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = \frac{6}{h_{i-1} + h_i} \left(\frac{u_{i+1} - u_i}{h_i} - \frac{u_i - u_{i-1}}{h_{i-1}} \right),$$

$$i = \overline{1, N-1}.$$

(во внутренних точках, но не граничных). $[x_i, x_{i+1}]$

$$\mu_i = \frac{h_{i-1}}{h_{i-1} + h_i}, \quad \lambda_i = 1 - \mu_i.$$

Связь есть, но M_i и u_i не знаем. (прогонка будет устойчива)

Из усл. коллокации: $M_i = r_i - q_i u_i$ подставляем в (\star).

После подстановки получаем:

$$\lambda_i \left(1 + \frac{h_{i-1}^2}{6} q_{i-1} \right) u_{i-1} - \left(1 - \frac{h_i h_{i-1}}{3} q_i \right) u_i + \mu_i \left(1 + \frac{h_i^2}{6} q_{i+1} \right) u_{i+1} =$$

$$= \frac{h_{i-1} h_i}{6} \left(\mu_i r_{i-1} + 2r_i + \lambda_i r_{i+1} \right), \quad i = \overline{1, N}.$$

Будет ли диагональное преобразование? - Прогока.

Условие для диагонального преобладания и для второго порядка:

$$\beta_1 \le 0$$
, $\beta_2, \alpha_j \ge 0$, $|\alpha_j| + |\beta_j| \ge 0$, $j = 1, 2$.

 $q(x) \le q < 0$, —условие существования решения.

 $h_{i-1}^2 \max\{|q_{i-1}|,|q_i|\} \le 6.$ (если не выполняется - уменьшаем h).

→ это сплайн-разностная схема.

2.2. Теорема о сходимости

Пусть выполняются условия (диагонального преобладания) и $p\left(x\right)\equiv0.$ Если точное решение $y\left(x\right)\in C^{2}W_{\Delta,\infty}^{4}\left[a,b\right]$ то $\left\|S\left(x\right)-y\left(x\right)\right\|=o\left(\bar{h}^{2}\right)$

$$\bar{h} = \max_i h_i$$
.

Любая сетка.

На всем отрезке $y\left(x\right)\in C^{2}\left[a,b\right]$, а на маленьких $y\left(x\right)\in W_{\Delta,\infty}^{4}\left[x_{i},x_{i+1}\right]$ - 3 непрерывна, 4 может иметь разрыв.

3. Использование В-сплайнов

$$S(x) = \sum_{i=1}^{N+1} b_i B_i(x),$$

где $B_i(x)$ - нормализованный финитный (не всюду, а на отрезке $[x_{i-2}, x_{i+2}]$) сплайн, по центральному узлу. b_i - неизвестные.

$$\Delta : a = x_0 < x_1 < \dots < x_N = b$$
. - не хватает.

$$B_{-1}(x) \quad x_{-1}.$$

Добавляют x_{-3}, x_{-2}, x_{-1} и $x_{N+1}, x_{N+2}, x_{N+3}$ - равномерно. Это расширенная сетка. Узлы коллокации совпадают с узлами сетки: $x_i = \xi_i$.

$$L[y(x)] = y''(x) + p(x)y'(x) + q(x)y(x) - r(x),$$

$$L\left[S\left(x\right)\right] = r\left(x\right).$$

Решая систему $\Rightarrow b_{-1}, b_0, \dots, b_N, b_{N+1}$.

$$S\left(x_{k}\right) = \sum_{i=-1}^{N+1} b_{i} B_{i}\left(x_{k}\right)$$

Выберем x_k --- три сплайна не 0:

$$B_k(x_k), B_{k-1}(x_k), B_{k+1}(x_k).$$

$$= b_{i-1}L[B_{i-1}(x_i)] + b_iL[B_i(x_i)] + b_{i+1}L[B_{i+1}(x_i)] = r(x_i), \quad i = \overline{0, N}.$$

→ условие коллокации.

$$b_{i-1}A_i + b_iC_i + b_{i+1}B_i = D_i$$
 (тут B_i не В-сплайн).

$$A_i = \frac{1}{x_{i+1} - x_{i-2}} \left(1 - \frac{1}{2} p_i h_i + \frac{1}{6} q_i h_i^2 \right),$$

$$B_{i} = \frac{1}{x_{i+2} - x_{i-1}} \left(1 + \frac{1}{2} p_{i} h_{i-1} + \frac{1}{6} q_{i} h_{i-1}^{2} \right),$$

$$C_{i} = -A_{i} - B_{i} + \frac{1}{6} q_{i} \left(h_{i} + h_{i-1} \right),$$

$$D_{i} = \frac{1}{6} r_{i} \left(h_{i} + h_{i-1} \right).$$

(N+1) + граничные условия:

$$b_{-1}A_{-1} + b_0C_{-1} + b_1B_{-1} = D_{-1} \mid S(x_0),$$

$$b_{N-1}A_{N+1} + b_NC_{N+1} + b_{N+1}B_{N+1} = D_{N+1} \mid S(x_N).$$

Не выйдет прогонкой из-за краевых. Исключают эти элементы.

Выражаем и подставляем

(1)
$$b_{-1}A_{-1} + b_0C_{-1} + b_1B_{-1} = D_{-1},$$

 $b_{-1}A_0 + b_0C_0 + b_1B_0 = D_0.$

$$b_0\tilde{C}_0 + b_1\tilde{B}_0 = \tilde{D}_0$$

i=N и граничное - аналогично.

$$b_0, b_1, \dots, b_N$$
 — находим. Из них $b_{-1}, b_{N+1}.$

Диагональное преобладание \Rightarrow устойчивость \Rightarrow монотонная прогонка.

Условия:

$$1 - \frac{1}{2}p_ih_i + \frac{1}{6}q_ih_i^2 \ge 0, \quad 1 + \frac{1}{2}p_ih_{i-1} + \frac{1}{6}q_ih_{i-1}^2 \ge 0. \quad + \text{усл. существования}$$

$$\|S\left(x\right) - y\left(x\right)\| = o\left(\bar{h}^2\right).$$

Любые уравнения 2-го порядка.

$$\triangleleft \xi_i = x_i$$
.

Сетка: $x_0, (x_i, (xx), x_{i+1}), (x_{i+2}, (xx), x_N)$. - через 1 выбираем узлы.

Пусть равномерная сетка $h = h_i$.

$$x_{2i}, \xi_{2i}, \xi_{2i+1}, x_{2i+1}$$

Гауссовские точки: $\xi_{2i}=x_{2i}+vh$, $\xi_{2i+1}=x_{2i+1}-vh$, $v=\frac{1}{2}-\frac{\sqrt{3}}{6}$. 5 диагональная, $o\left(h^3\right)$

На равномерное сетке нет 1 производной.

$$\frac{f_{i-1} - 2f_i + f_{i+1}}{h^2} = f_i'' + \frac{h^2}{12}f_i^{(IV)} + O\left(h^4\right)$$

$$M_i = f_i'' + \frac{h^2}{12} f_i^{(IV)} + O(h^4)$$

Если взять полусумму:

$$\frac{1}{2}\left(M_i + \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2}\right) = f_i''(x) + O\left(h^4\right)$$

4. Основные свойства схем Сплайн-коллокаций

- 1. Одинаковая эффективность на любых сетках.
- 2. Высокая точность аппроксимации 1-й производной
- 3. Простота построения схем повышенной точности, в том числе для уравнений с переменными коэффициентами.
- 4. Решение и её производную можно вычислить в любых точках области.

5. Уравнение Пуассона в прямоугольной области

 \sphericalangle Уравнение Пуассона в прямоугольной области $\Omega = [a,b] \times [c,d]$

$$Lu = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -f(x, y), \quad u|_{\Gamma} = g(x, y)$$

Базис уже 2-х мерный.

Сетка:

$$\Delta_x : a = x_0 < x_1 < \dots < x_N = b, \quad \Delta_y : c = y_0 < y_1 < \dots < y_M = d$$

$$x_i : i = -1, -2, -3, N + 1, N + 2, N + 3 \quad B_i$$

$$y_j: j = -1, -2, -3, M+1, M+2, M+3$$
 \bar{B}_j

$$B_{i}\left(x
ight),\; ar{B}_{j}\left(y
ight) \;\;\;\;\;\;$$
 — базисы в 2-х мерном

 $\Delta = \Delta_x \otimes \Delta_y$ — тензорное произведение двумерных сплайнов.

В-кубический сплайн:

$$S(x,y) = \sum_{i} \sum_{j} b_{ij} B_i(x) \bar{B}_j(y).$$

5.1. Метод матричной прогонки

$$S(x,y) = \sum_{i=-1}^{N+1} \sum_{j=-1}^{M+1} b_{ij} B_i(x) \bar{B}_j(y).$$

Будем искать в виде:

$$S\left(x,y
ight)=\sum_{i=-1}^{N+1}ar{lpha}_{i}\left(y
ight)B_{i}\left(x
ight),\quad$$
где $ar{lpha}_{i}\left(y
ight)=\sum_{j=-1}^{M+1}b_{ij}ar{B}_{j}\left(y
ight).$

Или:

$$S\left(x,y
ight)=\sum_{i=-1}^{M+1}lpha_{j}\left(x
ight)ar{B}_{j}\left(y
ight),\quad$$
где $lpha_{j}\left(x
ight)=\sum_{i=-1}^{N+1}b_{ij}B_{i}\left(x
ight).$

Вместо $\Delta u=-f$, решаем: $\frac{\partial V}{\partial t}+\Delta V=-f$. $v\xrightarrow{t\to\infty}u$ - метод установления.

5.2. Схема переменных направлений

Имеет вид:

$$u_{ij}^{v+1/2} = u_{ij}^v + \frac{\Delta \tau}{2} \left[(u_{xx})_{ij}^v + (u_{yy})_{ij}^{v+1/2} + f_{ij}^v \right].$$

$$u_{ij}^{v+1} = u_{ij}^{v+1/2} + \frac{\Delta \tau}{2} \left[(u_{xx})_{ij}^{v+1} + (u_{yy})_{ij}^{v+1/2} + f_{ij} \right].$$

 u^v t_j - фиктивное.

По х, хотим по у:

$$\bar{\alpha}_{i}\left(y\right)||\alpha_{j}\left(x\right)|$$
 — найдем на слое по j .

Матрицы 3-х диагональные.

Комбинация коллокации и конечной разности.

Где остановится? - Смотрим соседние значения коэффициентов:

$$\max_{i,j}\|\alpha_{ij}^v-\alpha_{ij}^{v+1}\|<\varepsilon \text{ или }\max_{i,j}\|\bar{\alpha}_{ij}^v-\bar{\alpha}_{ij}^{v+1}\|<\varepsilon$$

Аппроксимация + устойчивость \Rightarrow сходимость.

Доказательство есть для N=M,

$$S-y \quad \left|S-\bar{S}+\bar{S}-y\right|$$

 \bar{S} - интерполяция.

Устойчивость из методов расщепления.

Часть II

Методы решения интегральных уравнений

Запись от: 28.10.2024

6. Линейные интегральные уравнения

Линейное интегральное уравнение:

$$g(x) y(x) - \lambda \int_{\Omega} K(x, s) y(s) ds = f(x), \quad x \in Q$$

где:

- λ некоторый параметр,
- K(x,s) ядро оператора (самоопределеный),
- Ω область интегрирования:
 - область постоянная уравнение Фредгольма,
 - область переменная (от а до х) уравнение Вольтерра.

6.1. Типы уравнений и их классификация

- 1. Уравнение 1 рода: $g(x) \equiv 0$.
- 2. Уравнение 2 рода: $g(x) \not\equiv 0$.
- 3. Уравнение 3 рода: где-то в Ω $g(x) \neq 0$, а где-то $g(x) \equiv 0$.

$$f(x) = 0$$
 - однородное.

$$y(x) - \lambda \int_{\Omega} K(x,s) y(s) \, ds = 0$$
 — собственное значение и собственная функция.

Операторный вид

Ay = f — уравнение 1 рода.

 $y = \lambda Ay = f$ — уравнение 2 рода.

$$y(x) \in Y, f(x) \in F, g(x) \in G$$

Y, F, G функциональные метрические пространства.

$$Ay = \int_{\Omega} K(x,s)y(s)\,ds$$
 - интегральный оператор (линейный).

$$A_1 y = f - 1$$
 рода $y = A_2 y + f - 2$ рода.

$$A := (I - \lambda A_2)$$

 $(I - \lambda A_2)y = f$ — уравнение 1 рода - это формально Фридгольма 1-го рода.

Но $y = (I - A_2)^{-1} f$ - имеет, так как огр. $(I - A_2)$ - непрерывный.

Уравнение 1-го рода - существенно некорректна.

7. Методы

/I/ Прямой метод (аппроксимация - функция или оператор) переход от ∞ мерного к конечно-мерному.

/II/ Проекционные методы: $\tilde{y} = \sum_{i=1}^m c_i \varphi_i$.

Невязка:

$$\varepsilon_m = \sum_{i=1}^m c_i(\varphi_i - A_2\varphi_i) - f.$$

Ритца (мин), Галеркина (орт. базис), наим. квадратов.

/ІІІ/ Итерационные методы:

Основное требование $\|A_2\| < 1$ - присутствует сжимающее отображение.

Метод последовательных приближений:

$$y_k = A_2 y_k + f, \quad k = 1, 2, \dots$$

Общее решение:

$$y = (I - A_2)^{-1} f = \sum_{k=0}^{\infty} A_2^k f.$$

Приближение:

$$y_n = \sum_{k=0}^n A_2^k f.$$

 \bar{y} - точное.

Оценка погрешности:

$$\|\bar{y} - y_k\| = \sum_{k=n+1}^{\infty} \|A_2^k f\| \le \sum_{k=n+1}^{\infty} \|A_2\|^k \|f\|.$$

7.1. Методы решения уравнения Вольтерра 2-го рода

P.s: Все методы сходятся. Считаем что $\exists !$ решение.

$$y(x) - \int_{a}^{x} K(x,s) y(s) ds = f(x), \quad x \in (a,b).$$

7.1.1. Метод квадратуры для уравнений Вольтерра 2-го рода

Квадратурное представление:

$$\int_{a}^{b} \varphi(x) dx = \sum_{i=1}^{m} A_{i} \varphi(x_{i}) + R[\varphi],$$

Здесь $R\left[\varphi \right]$ - остаточный член.

//симпсона, гауса, трапеций//

Ограничение: $A_i \ge 0$, $\sum_{i=1}^m A_i = b - a$.

Работаете с трапецией - качество сохраняется, точность хуже.

Нужно выбрать точку x_i и записать:

$$y(x_i) - \int_a^x K(x_i, s)y(s) ds = f(x_i), \quad i = \overline{1, n}$$

Взять можно в зависимости от K,f - равномерные или не равномерные. k,f могут быть таблично заданными - тогда в них.

Система:

$$y(x_i) - \sum_{j=1}^{n} A_j K(x_i, x_j) y(x_j) = f(x_i) + \mathbb{R}[\varphi]$$

Погрешность опустим:

$$y_i - \sum_{j=1}^{n} A_j K_{ij} y_j = f_i, \quad i = \overline{1, n}.$$

Треугольная формула:

$$-\sum_{j=1}^{n} A_j K_{ij} y_j + (1 - A_i K_{ii}) y_i = f_i$$

$$y_i = rac{f_i + \sum_{j=1}^{i-1} A_j K_{ij} y_j}{1 - A_i K_{ii}},$$
 ограничение: $1 - A_i K_{ii} \neq 0$

→ Метод квадратур

Запись от: 11.11.2024

$$y_i = \left(1 - \frac{h}{2}K_{ij}\right)^{-1} \left(f_i - \frac{h}{2}K_{i1}y_1 + h\sum_{j=2}^{i-1}K_{ij}y_j\right)$$

7.1.2. Итерационные методы для уравнений Вольтерра 2-го рода

$$y_k(x) = f(x) + \int_a^x K(x, s) y_{k-1}(s) ds, \quad k = 0, 1, \dots$$

→ простой итерации.

Есть ли сходимость? Какая скорость сходимости?

Чтобы увидеть как накапливаются:

Пусть
$$\varphi_{0}\left(x\right)=f\left(x\right)$$
, а $\varphi\left(x\right)=\int_{a}^{x}K\left(x,s\right)\varphi_{k}\left(x\right)\,ds.$

Тогда общее решение:

$$y(x) = \sum_{k=0}^{\infty} \varphi_k(x)$$

$$y = f + Ay$$
 $y = (I - A)^{-1}f = \sum_{k=0}^{\infty} A^k f = A + Af + A^2 f + \dots = 0$
= $\varphi_0 + \varphi_1 + \varphi_2 + \dots$

Мы берем $y_n(x) = \sum_{k=0}^n \varphi_k(x)$.

Пример (когда есть сходимость): Пусть f(x) и K(x,s) - непрерывное по обоим аргументам \Rightarrow будет сходимость.

Пусть
$$N = \max_{x \in [a,b]} |f(x)|$$
, $M = \max_{a \le x,s \le b} |k(x,s)|$ (некая теорема)

$$|\varphi_k(x)| \leq \frac{NM(b-a)^k}{k!}$$
 (факториальная сходимость)

7.2. Методы решения уравнений Фредгольма 2-го рода

Уравнение Фредгольма II рода:

$$y(x) - \lambda \int_{a}^{b} k(x, s) y(s) ds = f(x), \quad x \in [a, b], \quad f(x) \in C[a, b].$$
 (f1)
$$v = \{[a, b] \times [a, b]\}$$

Минимальное требование: K непрерывно или разрыв 1 рода, т. е.:

$$\int_{a}^{b} \int_{a}^{b} \left| K(x,s) \right|^{2} dx ds = B < +\infty$$

Если $f\left(x\right)\equiv0$ - задача на собственные значения. Найти λ , когда $y\left(x\right)$ $\!\!\!>\!\!\!\!>\!\!\!\!>\!\!\!0.$ λ - характеристические значения, а $\mu=\frac{1}{\lambda}$ - собственные значения.

7.2.1. Метод квадратур для (f1)

 $\int_{a}^{b} \varphi\left(x\right) \, dx = \sum_{j=1}^{m} A_{j} \varphi\left(x_{j}\right) + R[\varphi]$ (ошибку учитывать не будем).

Берём для конкретности $x_i \in [a, b]$, возьмем их n штук:

$$y(x_i) - \lambda \int_a^b k(x_i, s) y(s) ds = f(x_i),$$

$$x_i, i = \overline{1, n}.$$

Заменяем суммой:

$$y(x) - \lambda \sum_{j=1}^{n} A_j K(x_i, s_j) y(x_j) = f(x_i), \quad i = \overline{1, n}.$$

$$y_i - \lambda \sum_{j=1}^n A_j K_{ij} y_j = f_i$$
 СЛАУ, полная матрица - методом Гаусса

Найдем y_1, y_2, \dots, y_n (значения в точках).

Интерполяция: [a,b] или сглаживание.

Пусть f(x) задана таблично, можно восстановить квадратуры гаусса - большие N не брать (лучше 6, 7 точек).

Если большой отрезок, разбиваем на:

$$\int_{a}^{b} = \int_{a}^{b_{1}} + \int_{b_{1}}^{b_{2}} + \dots + \int_{b_{m-1}}^{b_{m}=b} (m \cdot n)$$

Каждый считаем гауссом.

7.2.2. Метод взвешенных невязок

 $K\left(s,x
ight)=\sum_{i=1}^{m}lpha_{i}\left(x
ight)eta_{i}\left(s
ight),\quadlpha_{i},eta_{i}$ – лин. независимые функции.

Если разбивается, то вырожденное.

Подставим:

$$y(x) - \lambda \int_{a}^{b} \left[\sum_{i=1}^{m} \alpha_{i}(x) \beta_{i}(s) \right] y(s) ds = f(x)$$

Cумма не зависит от s:

$$y(x) - \lambda \sum_{i=1}^{m} \alpha_i(x) \int_a^b \beta_i(s) y(s) ds = f(x)$$

$$c_i = \int_a^b \beta_i\left(s\right)y\left(s\right)\,ds$$
 — пусть мы их нашли.

Тогда получили решение в аналитическом виде:

$$y(x) = f(x) + \lambda \sum_{i=1}^{m} \alpha_i(x) c_i$$

Подставим в уравнение:

$$f(x) + \lambda \sum_{i=1}^{m} c_{i}\alpha_{i}\left(x\right) - \lambda \sum_{i=1}^{m} \alpha_{i}\left(x\right) \int_{a}^{b} \beta_{i}\left(s\right) \left[f\left(s\right) + \lambda \sum_{j=1}^{m} c_{j}\alpha_{j}\left(s\right)\right] ds = f(x)$$

$$\sum_{i=1}^{m} \alpha_i\left(x\right) \left[c_i - \int_a^b \left(\beta_i\left(s\right) f\left(s\right) + \lambda \sum_{j=1}^{m} c_j \alpha_j\left(s\right) \beta_i\left(s\right)\right) \, ds\right] = 0.$$

$$\left//\sum a_i \alpha_i = 0 \quad \Rightarrow \quad a_i = 0, \quad \alpha_i - \text{лин. независимыe}\right//$$

$$c_i - \int_a^b \beta_i(s) f(s) \, ds - \lambda \sum_{i=1}^{m} c_j \int_a^b \alpha_j\left(s\right) \beta_i\left(s\right) \, ds = 0$$

Более приличный вид:

$$\beta_i(s)$$
 — известно, $f(s)$ — тоже.

$$f_i = \int_a^b \beta_i\left(s\right) f\left(s\right) \, ds$$
 — предварительно считаем.

$$a_{ij} = \int_{a_{ij}}^{b} \alpha_{i}\left(s\right) \beta_{j}\left(s\right) ds$$
 — легко аналитически/квадратуры.

$$c_i - \lambda \sum_{i=1}^m c_j a_{ij} = f_i, \quad i = \overline{1, m}.$$

 c_i - найдем.

Потом решение в аналитическом виде:

$$y(x) = f(x) + \lambda \sum_{i=1}^{m} c_i \alpha_i(x)$$

Иногда $K\left(x,s\right)$ - невырожденное. Берут $\tilde{K}\left(x,s\right)$ - вырожденное (близкое) ядро. В ряд Тейлора, если x и s разделяются или метод наименьших квадратов, метод Бэтмена.

7.3. Уравнение Вольтерра 1-го рода

Пусть $y(s) \in C[a,b]$ - непрерывная, $f(x) \in C^1[a,b], K(x,s) \in C^1[a,b] \times [a,b],$

ightharpoonup устойчивая, f и K ограничены:

$$||f(x)||_{C^1} \le K_1, \quad ||K(x,s)||_{C^1} \le K_2.$$

Если ослабим $f(x) \in C[a, b]$, то уже некорректно.

Сведение к уравнению второго рода:

$$\int_{a}^{x} K(x,s) y(s) ds = f(x)$$
 — уравнение первого рода.

Дифференцируем по x:

(1):
$$K(x,x)y(x) + \int_{a}^{b} K'_{x}(x,s)y(s) ds = f'(x).$$

Поделим на K(x,x):

$$y(x)+\int_a^b rac{K_x'(x,s)}{K(x,x)}y(s)\,ds=rac{f'(x)}{K(x,x)},$$
 —второго рода.

Только если $K(x,x) \neq 0$. Если = 0, то 1-го рода pекомендация - ещё раз дифференцируем по x:

$$K'_{x}(x,x)y(x) + \int_{a}^{b} K''_{xx}(x,s)y(s) ds = f''(x).$$

Делим на $K_x'(x,x)$... Если $K_x'(x,x) \neq 0$, то 2-го. Если нет ещё раз дифференцируем . . .

Интегрирование по частям (2) :
$$\int_a^b u \, dv = uv \Big|_a^b - \int_a^b v \, du$$
,

Пусть
$$Y(x) = \int_a^b y(s) \, ds$$
, $u = K(x, s)$, $dv = y(s) \, ds$.

$$K(x,s)Y(x)\Big|_a^x$$
 (B $a=0$)

$$K(x,x)Y(x) - \int_a^x K_x'(x,s)Y(s) ds = f(x)$$

ightharpoonup ур-в. Вольтерры 2-го рода ($K(x,x) \neq 0$ делим)

Решение этого ур-в. найдем Y(x), потом

$$y(s) = \frac{dY}{ds}.$$

7.3.1. Метод Квадратур - плох

 $\int \to \sum_{j=1}^i$, но 2-го рода по рекуррентной формуле, а тут x=a - интеграл схлопнется - нет начала, но можно продифференцировать: $k\left(x,x\right)y\left(x\right)+...=f'\left(x\right)$

$$y(a) = \frac{f'(a)}{K(a,a)}.$$

Если f таблично задана - 2 курс (полином Лагранжа).

8. Решение ур-в. Фредгольма

Корректность по (Адамару): Пусть AY = F - задача, является корректной на паре метрических пространств (Y,F), если:

- 1. Любому $f \in F$ соответствует решение $y \in Y$.
- 2. Из $Ay_1 = Ay_2 \Rightarrow y_1 = y_2$ (единственность решения).
- 3. $\forall \varepsilon>0; \delta(\varepsilon)>0$ при условии $\rho_F(f_1,f_2)\leq \delta(\varepsilon)$, то $\rho_Y(A^{-1}f_1,A^{-1}f_2)<\varepsilon$

(условие сходимости) непрерывности оператора ${\cal A}.$

Чаще нарушается третье условие.

Оператор Фредгольма:

$$Ay = \int_a^b K(x,s)y(s)\,ds$$
 — вполне непрерывный для не $\left(A^{-1}\right)$

Четвертая теорема Фредгольма: $\lambda_{\min} = 0$ — корень зла

n = 5 спектр сместился, 0 - не будет.

n - увеличиваем, тем ближе к 0, опр. ближе к 0. Любые (старые) методы ничего не дадут.

8.1. Методы Регуляризации

8.1.1. Условная корректность

Условная корректность (по Тихонову):

Ay = f, —называется условно корректной, если:.

- 1. Априори известно, что решение \exists и принадлежит некоторому замкнутому множеству M.
- 2. Решение! в классе функций.
- 3. Бесконечно малым вариациям параметра f, на выходящим y за пределы M соответствуют бесконечно малые вариации решения.

Самое распространенное M - компакт/компактное множество (вообще говоря не одно и тоже, но будем считать одно и тоже :D). Если из всякой бесконечной последовательности можно выделить сходящуюся подпоследовательность. (замкнутое и ограниченное).

Иногда M - не компакт; f - пошевелим, вышли из компакта AY - существенно некорректные.

РО - Регуляризирующий Оператор.

$$Ay = f$$

Вся входная информация с погрешностью.

$$ilde{A}y = ilde{f}$$
 - можем решать

$$\tilde{A}y = \tilde{f}$$

Три варианта определения: A точно \tilde{f} , \tilde{A} и f или \tilde{A} и \tilde{f} . Мы рассмотрим A точное, а \tilde{f} с погрешностью.

Запись от: 09.12.2024

8.1.2. Регуляризирующий оператор

$$Au = f$$

$$\tilde{A}u = \tilde{f}$$

Будем считать A точно, f с погрешностью \bar{f} - точная правая часть, \tilde{f}_{δ} - приближенная правая часть (δ знаем).

Будем считать расстояние $\rho_F(\bar{f}, \tilde{f}_{\delta}) \leq \delta$.

Оператор $R(f,\tilde{f})$ называется регуляризирующим для уравнения в окрестности \bar{f} если:

1. Оператор R определён $\forall \tilde{f}_{\delta} \in F$, где δ лежит:

 $0 \le \delta \le \delta_0$, δ_0 предельное значение, $a \le \alpha \le \alpha_0$ некий параметр α .

2. \exists такая зависимость $\alpha=\alpha\left(x\right)$, что $\forall \varepsilon>0 \quad \exists \delta\left(x\right)$ как расстояние $\rho_{F}\left(\tilde{f}_{\delta},\bar{f}\right)\leq\delta\left(\varepsilon\right), \rho_{Y}\left(\tilde{y}_{\alpha},\bar{y}\right)<\varepsilon.$

 $\tilde{y}_{\alpha}=R\quad (f_{\delta},\alpha\left(\delta\right)).$ Некоторая устойчивость. Когда $\delta\to0$, то и $\alpha\to0$ и $\varepsilon\to0$.

 α - параметр регуляризации. С чего $\alpha=\alpha\left(\delta\right)$? - Ищите сами. Это общее определение. Иногда R нельзя построить.

8.1.3. Основные определения: псевдорешение, нормальное решение, сглаживающий функционал

1. Классическое (точное) решение Au=f называется такое \tilde{y} , что $\|A\tilde{y}-f\|_F=0$ (невязка равна 0).

- 2. Псевдо решение наз-ся y_1 , когда оно $||Ay_1 f||_F$ минимизирует невязку. (их может быть много).
- 3. Нормальное решение наз-ся y_0 , которое минимизирует ещё и $||y||_Y$.

⊲ случай метода регуляризации Тихонова.

$$\sphericalangle Ay = f, y \in F, f \in F, Y, F$$
 - гильбертовы.

A - оператор вполне непрерывный.

Вместо точного решения A и точного f, известно \tilde{A}, \tilde{f} - приближенные.

Но мы знаем норму: $\|\tilde{f} - f\| \leq \delta$

$$\|\tilde{A} - A\| \le \varepsilon$$

- $ext{\o} \ \tilde{A}u = \tilde{f}$ появилась некорректность.
- ∢ Сглаживающий функионал Тихонова:

$$\Phi_{\alpha}[y, \tilde{f}] = \|\tilde{A}y - \tilde{f}\|_F^2 + \alpha\Omega(y),$$

 Ω - неотрицательный стабилизирующий функционал.

Чаще всего берут $\Omega\left[y\right] = \|y\|_Y^2$

8.2. Задача минимизации сглаживающего функционала

Задача: минимизировать функционала Тихонова.

$$\Phi_{\alpha}\left[y,\tilde{f}\right] = \|\tilde{A}y - \tilde{f}\|_F^2 + \alpha \|y\|_Y^2.$$

Найти такой y_{α} , что:

$$\Phi_{\alpha}\left[y_{\alpha}, f\right] = \inf_{y \in Y} \Phi_{\alpha}\left[y, \tilde{f}\right].$$

Эта задача имеет! решение этого функционала.

Как решать?

Любые способы: множители Лагранжа, численно минимизировать функционал (градиентные методы).

8.2.1. Уравнение Эйлера

Когда мы « метод Ритца вместо Ay=f находили минимум

$$J\left(y
ight) = \left(Ay,y
ight) - 2\left(f,y
ight) -$$
 это уравнение Эйлера.

8.3. Метод регуляризации для решения инт. ур-в. Фредгольма 1 рода

По аналогии с тем для функционала Тихонова:

$$\Phi_{\alpha} \left[y, \tilde{f} \right] = \left(\tilde{A}y - \tilde{f}, \tilde{A}y - \tilde{f} \right) + \alpha \left(y, y \right) =
= \left(\tilde{A}y, \tilde{A}y \right) - \left(\tilde{A}y, \tilde{f} \right) - \left(\tilde{f}, \tilde{A}y \right) + \left(\tilde{f}, \tilde{f} \right) + \alpha \left(y, y \right) =
= \left(\tilde{A}^* \tilde{A}y, y \right) - 2 \left(\tilde{A}y, \tilde{y} \right) + \left(\tilde{f}, \tilde{f} \right) + \alpha \left(y, y \right) =
= \left(\tilde{A}^* \tilde{A}y, y \right) - 2 \left(\tilde{A}^* \tilde{f}, y \right) + \left(\tilde{f}, \tilde{f} \right) + \alpha \left(y, y \right) =
= \left(\tilde{A}^* \tilde{A}y + \alpha y, y \right) - 2 \left(\tilde{A}^* \tilde{f}, y \right) + \left(\tilde{f}, \tilde{f} \right) \quad (\star)
Ay = f.$$

Было: J(y) = (Ay, y) - 2(f, y).

Попробуем для ⋆

$$\left(ilde{f}, ilde{f}
ight) - ext{(const.)}$$
 пропадёт.

Сравним:

$$ilde{A}^* ilde{A}y+lpha y= ilde{A}^* ilde{f}$$
 — уравнение Эйлера.

Вместо min, ур-в Эйлера. В литературе

$$\alpha y + \tilde{A}^* \tilde{A} y = \tilde{A}^* \tilde{f}$$
. (A - оператор Фредгольма.)

Это уже уравнение 2-го рода Фредгольма. Сведение 1-го к уравнению рода 2-го - их умеем. Можно показать, что решение y_{α} ещё и будет нормальным.

 $\|\tilde{A}y - \tilde{f}\|_F^2 + \alpha \|y\|_Y^2$ — условно min невязку при min нормального решения.

$$\alpha y_{\alpha} + \tilde{A}^* \tilde{A} y_{\alpha} = \tilde{A}^* \tilde{f}.$$

Компакты берут монотонные \nearrow , \searrow функции.

Как искать α ?

Есть связь $\alpha = \alpha(\delta)$.

8.4. Определение параметра регуляризации по невязке

 $exttt{ leq}$ Определение по невязке. $Au = ilde{f}_{\delta}$

Мы знаем ограничение δ - это данные о погрешности пробора.

Задача: Найти $\alpha=\alpha\left(\delta_{0}\right)$, которую так, чтобы $R\left[f,a\left(\delta\right)\right]$ - был регуляризирующий.

Считаем вместо f есть \tilde{f}_{δ}

$$\|\tilde{f}_{\delta} - f\|_F \le \delta.$$

Опр. параметр α по невязке. Главное уравнение для поры:

 $\|Ay_{lpha}- ilde{f}_{\delta}\|=\delta$ — это нелинейное уравнение.

Можно решать метод Ньютона, скорость сходимости - секунды.

Строится некоторая монотонная последовательность чисел: $\alpha_0, \alpha_1, \dots, \alpha_n, \dots$

Например: $\alpha_k = \alpha_0 q^k$, q > 0.

Для каждого α_k ищется решение y_{α_k} задачи min функционала $\Phi_{\alpha_k}\left[y, \tilde{f}_\delta\right]$

Наименьший α_k - ставим в $||Ay_{\alpha} - \tilde{f}_{\delta}|| = \delta$.

Считаем саму невязку:

$$\|Ay_{\alpha_k}- ilde{f}_\delta\|$$
 для каждого.

В качестве искомого $y_{\alpha_{k0}}$ при котором $\|Ay_{\alpha_{k0}}\| \approx \delta$ ближе всего к δ .

Не так для интегральных уравнений, но и для плохо обусловленных матриц. A - плохая.

$$Ay=f$$
. Домножаем на A^{*}

$$A^*Ay = A^*y$$
 – симметрич. > 0 .

$$(*)\left[\alpha y + A^*Ay = A^*f\right]$$

Так же $\alpha_1, \alpha_2, \dots$

(*) - любым методом, а останавливаемся на лучшем min.