

Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа № 3.4.5

Общая физика: электричество и магнетизм

Петля гистерезиса (динамический метод)

Работу выполнил:

Милославов Глеб, группа Б01-103

Цель работы: изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование: автотрансформатор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллогра, тороидальные образцы с двумя обмотками..

1 Теоретическое введение

Рис. 1: Петля гистерезиса ферромагнетика

Магнитная индукция \vec{B} и напряженность магнитного поля \vec{H} в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца. Связь между индукцией и напряженностью поля типичного ферромагнетика иллюстрирует рис. 1. Если к размагниченному образцу начинают прикладывать магнитное поле, то его намагничивание следует кривой OACD, выходящей из

начала координат. Эту кривую называют *основной кривой намагничивания*. Индукция \vec{B} в образце состоит из индукции, связанной с намагничивающим полем \vec{B} , и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\vec{B} = \mu_0(\vec{H} + \vec{M}),$$

где \vec{M} - намагниченность - магнитный момент единичного объема образца, а μ_0 - магнитная постоянная.

Намагнитим образец до насыщения - до точки D. Соответствующее значение индукции B_s называют индукцией насыщения. При уменьшении поля H до нуля зависимость B(H) имеет вид кривой DCE, и при нулевом поле индукция имеет конечное ненулевое значение. Это остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить "обратное" магнитное поле H_c , которое называют коэрцитивной силой.

Замкнутая кривая DEFD'E'F'D, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется npedenbhoŭ nemneŭ eucmepesuca.

1.1 Измерение магнитной индукции в образцах.

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Ф в катушке, намотанной на образец:

$$\mathscr{E} = -\frac{d\Phi}{dt}.$$

Тогда отсюда и из формулы $\Phi = BSN_{\rm u}$ получаем:

$$|B| = \frac{1}{SN_{\rm M}} \int \mathcal{E}dt.$$

Для интегрирования сигнала применяют интегрирующие схемы (рис. 2).

Рис. 2: Интегрирующая RC-цепь

Если выходной сигнал намного меньше входного ($U_{\rm вых} \ll U_{\rm вx}$,) ток в цепи пропорционален входному напряжению: $I \simeq \frac{U_{\rm вx}}{R}$, а напряжение на емкости С

$$U_{\scriptscriptstyle
m BMX} \simeq rac{1}{R{
m C}} \int U_{\scriptscriptstyle
m BX} dt.$$

Этот вывод тем ближе к ис-

тине, чем больше постоянная $\tau = RC$ превосходит характерное время процесса (например, его период). Для синусоидальных напряжений

$$U_{ ext{\tiny BMX}} = rac{U_{ ext{\tiny BX}}}{RC\Omega},$$

где Ω - частота сигнала.

В итоге, обозначив параметры интегрирующей цепи через $R_{\mathtt{u}}$ и $C_{\mathtt{u}}$, получаем

$$|B| = \frac{1}{SN_{\text{\tiny M}}} \int U_{\text{\tiny BX}} dt = \frac{R_{\text{\tiny M}} C_{\text{\tiny M}}}{SN_{\text{\tiny M}}} U_{\text{\tiny BbIX}}.$$

2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 3.

Действующее значение переменного тока в обмотке N0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции В с измерительной обмотки $N_{\rm II}$ на вход интегрирующей RC -цепочки подается напряжение $U_{\rm II}$ (UBX), пропорциональное

производной \dot{B} , а с выхода снимается напряжение $U_C(U_{\rm BMX})$, пропорциональное величине B, и подается на вход Y осциллограа. Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, каким значениям B и H соответствуют эти напряжения (или токи).

Рис. 3: Схема установки для исследования намагничивания образцов

Кривая, возникающая на экране, воспроизводит петлю гистерезиса. По формулам

$$H = \frac{IN_0}{2\pi R} \quad ; \quad B = \frac{R_{\scriptscriptstyle \rm H} C_{\scriptscriptstyle \rm H} U_{\scriptscriptstyle \rm BMX}}{SN_{\scriptscriptstyle \rm H}}$$

где $I = K_X/R_0$, $U_{\text{вых}} = K_Y$, а K_X, K_Y – чувствительность усилителя ЭФ соответствующих шкал, полученные по результатам калибровки ЭО:

$$K_x = 2\sqrt{2}R_0I_{s\phi}/2x \; ; \; K_y = 2\sqrt{2}U_{s\phi}/2y$$

3 Ход работы

3.1 Параметры установки и образцов

- 1. Параметры установки: $R_{\rm m}=20\,\,{\rm кОм}, C_{\rm m}=20\,\,{\rm мк\Phi}, R_0=0.3\,\,{\rm Ом}$
- 2. Погрешности измерений: $\sigma_V=0.005\cdot V+15$ единиц младшего разряда $\sigma_{\Theta O}=0.1$ дел; $\sigma_I=0.005\cdot I+15$ единиц младшего разряда
- 3. Параметры образцов:

	Феррит 1000нм	Пермаллой	Кремнистое железо
N_0	40	40	40
$N_{\scriptscriptstyle m M}$	400	200	400
S, cm^2	3.0	3.8	1.2
$2\pi R$, cm	25	24	10

3.2 Кремнистое железо

Занесём данные прямых измерений для кремниестого железа:

- $2X_s = 7,1$ дел
- $2Y_s = 6,2$ дел
- $2X_c = 1,0$ дел
- $2Y_r = 3.0$ дел
- $I_{\text{sd}} = 0.310 \text{ A}$
- $U_{9\Phi} = 0.0564 \text{ B}$
- 2x = 9.0 дел
- 2y = 3,4 дел

Рассчитаем K_x и K_y и абсолютные погрешности для них:

$$K_x = 0.029 \pm 0.002 \,\,\mathrm{Om/дел}$$
 ; $K_y = 0.047 \pm 0.003 \,\,\mathrm{Om/дел}$

$$\sigma_{K_x} = K_x \sqrt{\left(\frac{\sigma_{I_{\text{a}\phi}}}{I_{\text{a}\phi}}\right)^2 + \left(\frac{\sigma_{2x}}{2x}\right)^2} \quad ; \quad \sigma_{K_y} = K_y \sqrt{\left(\frac{\sigma_{U_{\text{a}\phi}}}{U_{\text{a}\phi}}\right)^2 + \left(\frac{\sigma_{2y}}{2y}\right)^2}$$

По полученным коэффициентам рассчитаем H и B:

$$H = 38.9 \pm 2.3 \; \mathrm{A/M}$$
 ; $B = 0.39 \pm 0.02 \; \mathrm{T}$ л

А также коэрцетивное поле H_c и остаточную намагниченность B_r :

$$H_c = 19.5 \pm 1.2 \; \mathrm{A/M}$$
 ; $B_r = 0.59 \pm 0.03 \; \mathrm{Tm}$

Оценим $\mu_{\text{нач}}$ и μ_{max} по начальным кривым намагничивания:

$$\mu_{\text{\tiny HAH}} \approx 900$$
 ; $\mu_{max} \approx 2800$

3.3 Пермаллой

Занесём данные прямых измерений для пермаллоя:

- $2X_s = 6.9$ дел
- $2Y_s = 6,3$ дел
- $2X_c = 5,3$ дел
- $2Y_r = 5.6$ дел
- $I_{9\phi} = 0.143 \text{ A}$
- $U_{9\Phi} = 0.0800 \text{ B}$
- 2x = 3.2 дел
- 2y = 4.8 дел

Рассчитаем K_x и K_y :

$$K_x = 0.038 \pm 0.005 \; \mathrm{Om/дел}$$
 ; $K_y = 0.047 \pm 0.002 \; \mathrm{Om/дел}$

По полученным коэффициентам рассчитаем цену деления H и B:

$$H=55.9~\pm~2.7~{
m A/m}~~;~~B=0.25~\pm~0.01~{
m T}$$
л

А также коэрцитивное поле H_c и остаточную намагниченность B_r :

$$H_c = 6.1 \pm 1.2 \; \mathrm{A/M}$$
 ; $B_r = 0.70 \pm 0.03 \; \mathrm{T}$ л

Оценим $\mu_{\text{нач}}$ и μ_{max} по начальным кривым намагничивания:

$$\mu_{\text{\tiny HAY}} \approx 600 \; ; \; \mu_{max} \approx 17 \cdot 10^3$$

3.4 Феррит

Занесём данные прямых измерений для феррита:

- $2X_s = 3.6$ дел
- $2Y_s = 5,6$ дел
- $2X_c = 2.5$ дел
- $2Y_r = 2,3$ дел
- $I_{9\Phi} = 0.078 \text{ A}$
- $U_{9\Phi} = 0.0098 \text{ B}$
- 2x = 8.8 дел
- 2y = 5.0 дел

Рассчитаем K_x и K_y :

ем
$$K_x$$
 и K_y :
$$K_x = 0{,}008 \ \pm \ 0{,}001 \ \mathrm{Om/дел} \quad ; \quad K_y = 0{,}006 \ \pm \ 0{,}001 \ \mathrm{Om/дел}$$

По полученным коэффициентам рассчитаем цену деления H и B:

$$H=4.3~\pm~0.5~{\rm A/M}~$$
; $B=0.018~\pm~0.003~{\rm T}$ л

А также коэрцитивное поле H_c и остаточную намагниченность B_r :

$$H_c = 5.4 \pm 0.7 \; \mathrm{A/M}$$
 ; $B_r = 0.021 \pm 0.003 \; \mathrm{T}_{\mathrm{I}}$

Оценим $\mu_{\text{нач}}$ и μ_{max} по начальным кривым намагничивания:

$$\mu_{\text{\tiny HAY}} \approx 2300$$
 ; $\mu_{max} \approx 8 \cdot 10^3$

3.5 Вывод

Подведём итоги в таблице ниже:

	Кремнистое железо		Пермаллой		Феррит 1000нм	
	Значение	σ	Значение	σ	Значение	σ
H_c , A/M	19,5	1,2	6,1	1,2	5,4	0,7
Табличное	12-40		4-5,6		4-1600	
B_r , Тл	0,59	0,03	0,7	0,03	0,021	0,003
Табличное	1,95-2,01		1,05-1,6		0,1-0,4	