Методы оптимизации. Семинар 8. Разные конусы.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

24 октября 2016 г.

Напоминание

- Субдифференциал
- Условный субдифференциал
- Нормальный конус

Конус возможных направлений

Определение

Конусом возможных направдений для множества $G \subset \mathbb{R}^n$ в точке $\mathbf{x}_0 \in G$ будем называть такое множество $\Gamma(\mathbf{x}_0|G) = \{\mathbf{s} \in \mathbb{R}^n | \mathbf{x}_0 + \alpha \mathbf{s} \in G, \ 0 \leq \alpha \leq \overline{\alpha}(\mathbf{s})\}.$

Определение для выпуклого множества

Конусом возможных направдений для выпуклого множества $X \subset \mathbb{R}^n$ в точке $\mathbf{x}_0 \in X$ будем называть такое множество

$$\Gamma(\mathbf{x}_0|X) = \{\mathbf{s} \in \mathbb{R}^n | \mathbf{s} = \lambda(\mathbf{x} - \mathbf{x}_0), \ \lambda > 0, \forall x \in X\}.$$

Какая связь между нормальным конусом и конусом возможных направлений?

Пример

Полезный факт

Пусть
$$G = \{\mathbf{x} \in \mathbb{R}^n | \varphi_i(\mathbf{x}) \leq 0, \ i = \overline{0, n-1}; \ \varphi_i(\mathbf{x}) = \mathbf{a}_i^\mathsf{T} \mathbf{x} - b_i = 0, \ i = \overline{n, m} \}.$$
 Тогда если $\varphi_i(\mathbf{x})$ выпуклы и множество G регулярно, то
$$\Gamma(\mathbf{x}_0|G) = \{\mathbf{s} \in \mathbb{R}^n | \nabla \varphi_i(\mathbf{x}_0)^\mathsf{T} \mathbf{s} \leq 0, i \in I, \mathbf{a}_i^\mathsf{T} \mathbf{s} = 0, i = \overline{n, m} \}$$
 и
$$\Gamma^*(\mathbf{x}_0|G) = \left\{ \mathbf{p} \in \mathbb{R}^n | \mathbf{p} = \sum_{i=n}^m \lambda_i \mathbf{a}_i - \sum_{i \in I} \mu_i \nabla \varphi_i(\mathbf{x}_0) \right\},$$
 где $\lambda_i \in \mathbb{R}, \ \mu_i \geq 0, \ \mathbf{x}_0 \in G \ \mathsf{M}$ $I = \{i : \varphi_i(\mathbf{x}_0) = 0, \ i = \overline{0, n-1} \}.$

Найти $\Gamma(\mathbf{x}_0|X)$ и $\Gamma^*(\mathbf{x}_0|X)$ следующих множества: $X = \{\mathbf{x} \in \mathbb{R}^2 | x_1^2 + 2x_2^2 \le 3, \ x_1 + x_2 = 0\}.$

Касательный конус

Определение

Касательным конусом к множеству G в точке $\mathbf{x}_0 \in \overline{G}$ называется следующее множество $T(\mathbf{x}_0|G) = \{\lambda \mathbf{z}|\lambda > 0, \ \exists \{\mathbf{x}_k\} \subset G, \ \mathbf{x}_k \to \mathbf{x}_0, \mathbf{x}_k \neq \mathbf{x}_0, \ \lim_{k \to \infty} \frac{\mathbf{x}_0 - \mathbf{x}_k}{\|\mathbf{x}_0 - \mathbf{x}_k\|_2} = \mathbf{z}\}$

Пояснение

Касательный конус состоит из всех направлений, по которым можно сходиться к точке \mathbf{x}_0 по последовательностям из множества G.

Лемма

Если G — выпуклое множество, то $T(\mathbf{x}_0|G) = \Gamma(\mathbf{x}_0|G)$.

Полезный факт

Пусть множество
$$G = \{\mathbf{x} \in \mathbb{R}^n | \varphi_i(\mathbf{x}) \leq 0, i = \overline{0, n-1} \ \varphi_i(\mathbf{x}) = 0, i = \overline{n, m} \}$$
 регулярно, тогда $T(\mathbf{x}_0|G) = \{\mathbf{z} \in \mathbb{R}^n | \nabla \varphi_i^\mathsf{T}(\mathbf{x}_0)\mathbf{z} \leq 0, i \in I, \ \nabla \varphi_i^\mathsf{T}(\mathbf{x}_0)\mathbf{z} = 0, i = \overline{n, m} \}$ и $T^*(\mathbf{x}_0|G) = \left\{ \mathbf{p} \in \mathbb{R}^n | \mathbf{p} = \sum_{i=n}^m \lambda_i \nabla \varphi_i(\mathbf{x}_0) - \sum_{i \in I} \mu_i \nabla \varphi_i(\mathbf{x}_0) \right\},$ где $\mu_i \geq 0, \ \lambda_i \in \mathbb{R}, \ I = \{i | \varphi_i(\mathbf{x}_0) = 0, i = \overline{0, n-1} \}$ Пример: найти $T(\mathbf{x}_0|G)$ и $T^*(\mathbf{x}_0|G)$ для множества

 $G = \{ \mathbf{x} \in \mathbb{R}^2 | x_1 + x_2 < 1, \ x_1^2 + 2x_2^2 = 1 \}$

Острый экстремум

Резюме

- Конус возможных направлений
- Касательный конус
- Острый экстремум