Ponto Extra 2: 09/12/2024 - Divide-andconquer: Quiz 5 - Mediana das medianas para uma divisão por 7

Suppose that we divide n elements into $\lfloor n/5 \rfloor$ groups of r elements each, and use the median-of-medians of these $\lceil n/r \rceil$ groups as the pivot. For which r is the worst-case running time of select O(n)?

- a. r=3
- b. r=7
- c. Both a and b
- d. Neither a nor b

$$C(n) \leq C(\lfloor n/5
floor) + C(n-3 \lfloor n/10
floor) + rac{11}{5}n$$

Achar a constante que dá certo para R=7

Quando consideramos 5 elementos, temos as seguintes 3 partes: $C(n) \leq X_5 + Y_5 + Z_5$

- $X_5 = C(|n/5|)$
 - \circ Onde $\lfloor n/5
 floor$ é o número de grupos de 5 elementos que serão comparados
- $Y_5 = C(n-3\lfloor n/10 \rfloor)$
 - $\circ~$ Onde $n-3\lfloor n/10
 floor$ é o número de elementos que não são a mediana
 - Ele também pode ser escrito como:
 - n |3n/10| =
 - n |3/5 * n/2| =
 - Onde $\lfloor 3/5*n/2 \rfloor$ é o número de elementos que são definitivamente menores, ou definitivamente maiores que a mediana das medianas
 - que representa a quantidade total de elementos removidos os elementos explicados acima.
- $Z_5 = \frac{11}{5}n$

- \circ Onde $rac{11}{5}n$ é o número de comparações que serão feitas para encontrar a mediana das medianas
- o Também pode ser reescrito como $6 \cdot (n/5) + n$ que representa a quantidade de comparações que serão feitas para encontrar a mediana nos grupos de 5 elementos.

Então, se considerarmos r=7, teremos que:

- $X_7 = C(|n/7|)$
 - \circ Onde $\lfloor n/7
 floor$ é o número de grupos de 7 elementos que serão comparados
- \bullet $Y_7=\ldots$
 - o Para calcularmos este valor, seguiremos o caminho inverso:
 - Considerando que ao invés de 5 elementos, temos 7 elementos; e que, ao invés de 3 elementos garantidamente menores, temos 4 elementos garantidamente menores, teremos que:
 - $n \lfloor (4/7) * (n/2) \rfloor =$
 - Que no formato original seria:
 - n-4|n/14|
 - Assim, concluindo que
 - $\circ \ Y_7 = C(n-4\lfloor n/14
 floor)$

- $Z_7 = \dots$
 - o Também fazendo o caminho inverso, teremos que:

- $\#Comp \cdot (n/7) + n$
- Onde, #Comp é a quantidade de comparações que serão feitas para encontrar a mediana nos grupos de 7 elementos.
 - Segundo Donald Knuth:

Table 1											
	VALUES OF $V_t(n)$ FOR SMALL n										
n	$V_1(n)$	$V_2(n)$	$V_3(n)$	$V_4(n)$	$V_5(n)$	$V_6(n)$	$V_7(n)$	$V_8(n)$	$V_9(n)$	$V_{10}(n)$	
1	0										
2	1	1									
3	2	3	2								
4	3	4	4	3							
5	4	6	6	6	4						
6	5	7	8	8	7	5					
7	6	8	10	10*	10	8	6				
8	7	. 9	11	12	12	11	9	7			
9	8	11	12	14	$\mathbf{14^*}$	14	12	11	8		
10	9	12	14^*	15	16**	16**	15	14^*	12	9	

^{*} Exercises 10-12 give constructions that improve on Eq. (11) in these cases.

- ullet O 4° menor elemento de um conjunto de 7 elementos pode ser encontrado com no máximo 10 comparações, então: #Comp=10
- Assim, concluindo que

$$\circ \ Z_7 = 10 \cdot (n/7) + n$$

$$Z_7 = 10n/7 + n$$

$$Z_7 = 10n/7 + 7n/7$$

•
$$Z_7 = 17n/7$$

Com isso, conclui-se que a recorrência para $r=7\,$ é:

$$C(n) \le C(\lfloor n/7 \rfloor) + C(n-4 \lfloor n/14 \rfloor) + 17n/7$$

Ou, mais objetivamente, a constante da parte linear é: 17/7

^{**} See K. Noshita, Trans. of the IECE of Japan E59, 12 (December 1976), 17-18.