Proofs Involving Similar Triangles

We all look the same, don't we?

Okay, so if you can do proofs involving congruent triangles, then proving triangles are similar will be a piece of cake. Why? Because they are basically the same except we are proving that the triangles are exactly the same shape but different sizes. Remember for similarity we have the SSS, SAS, and AA (and AAA) theorems. There is a notation thing with similarity. The way that most proofs demonstrate that two pairs of sides have the same ratio is to write them as in the following example...

Ready? Let's do some more analysis and then practice....

Prove: △ABC~△DEF

Statements	Reasons
$1. \frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{DF}$	1. Given
2. △ABC∼△DEF	2. SSS

Analysis:

Working backward we must ask the key question. "How can we show two triangles are similar?" The answer? Use a similarity property such as SSS, SAS, or AA (AAA). That leads us to B1: by one of these properties. But which one? We need to start working forward. We see we have given AB/DE, AC/DF, and BC/EF. This gives us \triangle ABC \sim \triangle DEF by SSS, which is B1, and the proof is complete!

AE. 2.

Given: JI||KH

Prove: $\triangle JGI \sim \triangle KGH$ Statements | Reasons

1. $JI \parallel KH$ | 1. Given

2. $\angle J \cong \angle GKH$ | 2. Corresponding Angles

3. $\angle I \cong \angle GHK$ | 3. Corresponding Angles

4. $\triangle JGI \sim \triangle KGH$ | 4. AA

Analysis:

Working backward we must ask the key question. "How can we show two triangles are similar?" The answer? Use a similarity property such as SSS, SAS, or AA (AAA). That leads us to B1: Δ JGI \sim Δ KGH by one of these properties. But which one? We need to start working forward. Parallel lines... and when we see parallel lines we should look for corresponding angles or alternate interior angles. We see we have the corresponding angles \angle J \cong \angle GKH, and \angle I \cong \angle GHK. This gives us Δ JGI \sim Δ KGH by AA, which is B1, and the proof is complete!

Write an analysis of each proof below.

1. Given:
$$\frac{MN}{PR} = \frac{ON}{QR}$$
, $\angle N \cong \angle R$

Analysis:

Prove: △MNO~△PQR

Statements	Reasons
$1. \frac{MN}{PR} = \frac{ON}{QR}$	1. Given
2. ∠N≅∠R 3. ∆MNO~∆PQR	2. Given 3. SAS

Analysis:

Prove: △SUV~△TUW

Statements	Reasons
1. ∠S≅∠W	1. Given
2. ∠SUV≅∠WUT	2. Vertical Angles
3. ∆SUV~∆TUW	3. AA

3.

Given: AB||DC

Analysis:

Prove: △ABE~△DCE

Statements	Reasons
1. AB DC	1. Given
2. ∠A≅∠CDE	2. Corresponding Angles
3. ∠B≅∠DCE	3. Corresponding Angles
4. △ABE∼△DCE	4. AA

4. Given: $\angle G \cong \angle K$, and $\angle I \cong \angle L$

Prove: △GHI~△KJL

Statements	Reasons
1. ∠G≅∠K	1.
2.	2. Given
3. ∆GHI∼∆KJL	3.

6. Given: $\frac{ST}{WV} = \frac{TU}{VX} = \frac{US}{XW}$

Prove: △STU~△WVX

Statements	Reasons
1.	1. Given
2.	2. SSS

8.

Given: $\overline{GK} \| \overline{HJ}$

Prove: △GIK~△HIJ

Statements	Reasons
,	
1.	1. Given
2.	2. Corresponding Angles
3.∠G≅∠JHI	3.
4. △GIK∼△HIJ	4.

5. Given: $\frac{MN}{PQ} = \frac{NO}{QR}$, $\angle N \cong \angle Q$

Prove: △MNO~△PQR

Statements	Reasons
$1. \ \frac{MN}{PQ} = \frac{NO}{QR}$	1.
2.3. ΔΜΝΟ~ΔPQR	2. Given 3.

7. Given: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

Prove: △ABC~△DEF

Statements	Reasons
1.	1. Given
2. ∧ABC~∧DEF	2. SSS

9.

Given: $\overline{MQ} \| \overline{OP}$

Prove: △MNQ~△PON

Statements	Reasons
 2. ∠QMN≅∠OPN 3. 4. ΔGIK~ΔHIJ 	 Given Sertical Angles Uertical Angles

Given: ∠S≅∠V

Prove: △STX~△VUT

Statements	Reasons
1.	1. Given
2. ∠STX≅∠UTV	2.
3. △GHI∼△KJL	3.

12. Given: $\frac{GH}{JK} = \frac{HI}{KL}$, $\angle H \cong \angle K$

Prove: △GHI~△IKL

Prove: \(\Delta\text{GHI}^2\Dikk)\)	
Statements	Reasons
1.	1. Given
 ΔMNO~ΔPQR 	2. Given 3.

14.

Given: \triangle STU and \triangle VWX are equilateral.

Prove: △STU~△VWX

Statements	Reasons
1. ∠S≅∠V 2. ∠T≅∠W 3. ∠U≅∠X 4.	1. Def of Equilateral Triangles 2. 3. 4. AAA

11.

Given: $\overline{AE} \parallel \overline{BD}$

Prove: △ACE~△BCD

1. $\overline{AE} \parallel \overline{BD}$ 1. 2. Corresponding Angles 3. 3.
4. 4. AA

13. Given: $\overline{MQ} \| \overline{OP}$

Prove: △MQN~△OPN

Statements	<u> Reasons</u>
1. MQ∥OP	1.
2.∠QMN≅∠OPN	2.
3.	3. Alternate Interior
4. △MQN~△OPN	4.
15	

Given: ∠A≅∠B

Prove: △ABE~△BCD

Statements	Reasons
1.	1. Given
2. ∠C≅∠C	2.
3. △GHI∼△KJL	3.

16.

Given: $\frac{GH}{KJ} = \frac{GI}{JL}$, $\angle G \cong \angle J$

Prove: △GHI~△JKL

17. Given: $\angle M \cong \angle P$, $\angle O \cong \angle Q$

Prove: △OMN~△DBC

Prove: △STU~△VWX

Prove: △ABC~△FDE

Prove: △GIK~△HIJ

21. Given: $\frac{NO}{QO} = \frac{PO}{MO}$

Prove: △MNO~△PQO

22.

Given: ∠S≅∠UTV

Prove: △SUW~△TUV

23.

Given: $\overline{AB} \parallel \overline{DC}$, $\angle ACB \cong \angle E$

Prove: △ABC~△DCE

24.

Given: $\overline{GH} \| \overline{JK}$

Prove: △GHI~△KJI

25.

Given: $\overline{MQ} \| \overline{NP}$

Prove: △QMO~△PNO

26.

Given: $\triangle ABD$ and $\triangle BCD$ are equilateral

Prove: △STU~△VWX

27.

Prove: $\triangle ABC \sim \triangle CDE$