Workshop: Dealing with Data in R

Loading & Cleaning Data in R

I know the file exists, why doesn't R?

Steffilazerte

@ @steffilazerte@fosstodon.org

y @steffilazerte

steffilazerte.ca

	⊋ ¬ Filter				
_	River	Site ‡	Ele [‡]	Amo	Wea 💠
1	Grasse	Up stream	Al	0.6055555555556	sunny
2	Grasse	Mid stream	Al	0.425	snowy
3	Grase	Down stream	Al	0.19444444444444	wet
4	Oswegatchie	Up stream	Al	1	cloudy
5	Oswegatchie	Mid stream	Al	0.161111111111111	cloudy
6	Oswegatchie	Down stream	Al	0.0333333333333333	sunny
7	Raquette	Up stream	Al	0.291666666666667	sunny
8	Raquette	Mid stream	Al	0.038888888888889	cloudy
9	Raquette	Down stream	Al	0	sunny
10	St. Regis	Up stream	Al	0.6805555555556	sunny
11	St. Regis	Mid stream	Al	0.45	snowy
12	St. Regis	Down stream	Al	0.286111111111111	cloudy
13	Grasse	Up stream	Ва	0.505283381364073	wet
14	Grasse	Mid stream	Ва	0.564841498559078	snowy
15	Grasse	Down stream	Ва	0.523535062439962	cloudy
16	Oswegatchie	Up stream	Ва	0.357348703170029	snowy
17	Oswegatchie	Mid stream	Ва	0.560038424591739	sunny
18	Oswegatchie	Down stream	Ва	1	wet
19	Raquette	Up stream	Ва	0	cloudy
20	Raquette	Mid stream	Ba	0.22478386167147	sunny
21	Raquette	Dow stream	Ва	0.364073006724304	cloudy
22	St. Regis	Up stream	Ва	0.379442843419789	wet
23	St. Regis	Mid stream	Ва	0.296829971181556	snowy
24	St. Regis	Down stream	Ba	0.577329490874159 Compiled: 2025	Snowy
25	Grasse	Up stream	Br	0.107142857142857	snowy

First things first

- **■** Save previous script
- Open New File

 (make sure you're in the RStudio Project)
- Write library(tidyverse) at the top
- **■** Save this new script

(consider names like cleaning.R or 3_loading_and_cleaning.R)

Download the data we'll use in this workshop

- 1. Create a 'data' folder in your RStudio project
 - In the "Files" pane click on the folder icon **OR**
 - Navigate to your project folder via your computer's file browser

Click on "New Folder"

- 2. Right-click "Save Link As.." and download these files to your **data** folder
 - water_cleaned.xlsx
 - water_raw.csv
 - master_moch.txt
 - geolocators.csv
 - grain_size.txt
 - grain_size2.csv
 - grain_meta.csv
 - Sta A Data 2006-11-07.dmp

Side Note

R base vs. tidyverse

R base vs. tidyverse

R base

- Basic R
- Packages are installed and loaded by default
- Base pipe |> *

tidyverse

- Collection of 'new' packages developed by a team closely affiliated with RStudio
 - e.g., ggplot2, dplyr, tidyr, readr
 - Packages designed to work well together
- Use a slightly different syntax
- tidyverse pipe %>% or base pipe |> *

Useful to know if functions are tidyverse or R base

Dealing with data

1. Loading data

• Get your data into R

2. Looking for problems

- Typos
- Incorrectly loaded data

3. Fixing problems

- Corrections
- Renaming
- Dealing with NA's

4. Setting formats

- Text,
- Numbers
- Factors
- Dates

5. Saving your data

Loading Data

Data types: What kind of data do you have?

Specific program files

Туре	Extension	R Package	R function	
Excel	.xls, .xlsx	readxl*	read_excel()	
Open Document	.ods	readODS	read_ods()	
SPSS	.sav, .zsav, .por	haven	read_spss()	
SAS	.sas7bdat	haven	read_sas()	
Stata	.dta	haven	read_dta()	
Database Files	.dbf	foreign	read.dbf()	

- Can be unreliable
- Can take longer

For files that don't change, better to save as a * . csv

Data types: What kind of data do you have?

General text files

Туре	R base	readr package *
Comma separated	read.csv()	<pre>read_csv(), read_csv2()</pre>
Tab separated	read.delim()	read_tsv()
Space separated	read.table()	read_table()
Fixed-width	read.fwf()	read_fwf()

- readr package especially useful for big data sets (fast!)
- Error/warnings from readr are a bit more helpful

We'll focus on

readxl package → read excel()

Common error

```
1 my_data <- read_csv("weather.csv")
Error: 'weather.csv' does not exist in current working directory ('/home/steffi/Projects/Workshops/workshop-dealing-with-data').</pre>
```

With no folder (just file name) R expects file to be in Working directory

Working directory is:

- Where your RStudio project is
- Your home directory (My Documents, etc.) [If not using RStudio Projects]
- Where you've set it (using setwd() or RStudio's Session > Set Working Directory)

A note on file paths (file locations)

```
1 /home
```

- folders separated by /
- home is a folder

A note on file paths (file locations)

```
1 /home/steffi/
```

- folders separated by /
- home and steffi are folders
- steffi is a folder inside of home

A note on file paths (file locations)

- 1 /home/steffi/Documents/R Projects/mydata.csv
- folders separated by /
- home, steffi, Documents, R Projects are folders
- steffi is inside of home, Documents is inside of steffi, etc.
- mydata.csv is a data file inside R Projects folder

RStudio Files Pane

Absolute Paths

os	Path
LINUX	/home/steffi/Documents/R Projects/mydata.csv
WINDOWS	C:/Users/steffi/My Documents/R Projects/mydata.csv
MAC	/users/steffi/Documents/R Projects/mydata.csv

Relative Paths

Path	Where to look
mydata.csv	Here (current directory)
/mydata.csv	Go up one directory (/)
data/mydata.csv	Stay here, go into "data" folder (data/)
/data/mydata.csv	Go up one directory (/), then into "data" folder (data/)

Full location, folders and filename

Only *relative* info
Use relative symbols (e.g.,

Keep yourself organized

For simple projects

- Create an 'RStudio Project' for each Project
- Create a specific "data" folder within each project (one per project)

```
- Prospect Lake Quality # Project Folder
- prospect_analysis.R
- data # Data Folder
- prospect_data_2017-01-01.csv
- prospect_data_2017-02-01.csv
```

• Use **relative** paths to refer to this folder

```
1 d <- read_csv("data/prospect_data_2017-01-01.csv")
```

Let's Load Some Data!

Your turn: Load some data

Working with water_cleaned.xlsx

1. Load the package

```
1 library(readxl)
```

2. Read in the Excel file and assign to object water

```
1 water <- read_excel("data/water_cleaned.xlsx")</pre>
```

- 3. Use head() and tail() functions to look at the data e.g., head(water) and tail(water)
- 4. Click on the water object in your "Environment" pane to look at the whole data set

Use the 'tab' key in RStudio when typing in the file name for auto-complete

How do I know which function to use?

Program-specific files

- Files which only normally open in a particular program (e.g., Excel)
- Load with function from specific package (e.g. read_excel from readxl package)

Text files

- Files which open in notepad
- Files which open in RStudio when you click on them in the Files Pane
- Load with function from readr package (e.g. read_csv(), read_tsv(), etc.)

Look at the file extension:

- water_cleaned.xlsx → Excel file → read_excel()
- water_raw.csv → Comma-separated-variables → read_csv()

But sometimes not clear...

How do I know which function to use?

Working with: master_moch.txt

- In lower right-hand pane, click on **Files**
- Click on data folder
- Click on master_moch.txt
- Click "View File" (if asked)

```
region hab freq
                        freq.sd p.notes
MCB02
        kam 0.5266879074
                            3,9806600009
                                             3.9806600009
                                                             0.4592592593
MCB03
        kam -0.9707703735
                            4.1090031783
                                             4.1090031783
                                                             0.5
MCB04
        kam -0.9707703735
                            4.2463067674
                                             4.2463067674
                                                             0.5151515152
```

This **does not** read the file into R, but only shows you the contents as text.

How do I know which function to use?

Peak:

- Pick a read function with your best guess (read_csv() is a good start)
- Use n_max to read only first few rows

\t means tab, so this is tab-separated data

How do I know what to use?

Peak:

Try again with read_tsv()

Excellent!

Specifics of loading functions

col_names

Working with Geolocator data

```
1 my_data <- read_csv("data/geolocators.csv")</pre>
  2 my_data
# A tibble: 20 × 2
   `02/05/11 22:29:59` `64`
   <chr>
                        <dbl>
 1 02/05/11 22:31:59
                           64
 2 02/05/11 22:33:59
                           38
 3 02/05/11 22:35:59
                           38
 4 02/05/11 22:37:59
                           34
 5 02/05/11 22:39:59
                           30
 6 02/05/11 22:41:59
                           34
 7 02/05/11 22:43:59
                           40
 8 02/05/11 22:45:59
                           46
 9 02/05/11 22:47:59
                           48
10 02/05/11 22:49:59
                           46
# i 10 more rows
```

- read_csv, read_tsv, etc. assume that the first row contains the column names
- This file doesn't have headers

Oops?

col_names

Working with Geolocator data

Declare no headings

```
1 my_data <- read_csv("data/geolocators.csv",</pre>
                         col names = FALSE)
  3 my_data
# A tibble: 21 × 2
   X1
                         X2
   <chr>
                      <dbl>
 1 02/05/11 22:29:59
 2 02/05/11 22:31:59
                         64
 3 02/05/11 22:33:59
                         38
 4 02/05/11 22:35:59
                         38
 5 02/05/11 22:37:59
                         34
 6 02/05/11 22:39:59
                         30
 7 02/05/11 22:41:59
                         34
 8 02/05/11 22:43:59
                         40
 9 02/05/11 22:45:59
                         46
10 02/05/11 22:47:59
                         48
# i 11 more rows
```

Name headings

```
1 my_data <- read_csv("data/geolocators.csv",</pre>
                         col_names = c("date", "light"))
 3 my_data
# A tibble: 21 × 2
                      light
   date
   <chr>
                      <dbl>
 1 02/05/11 22:29:59
 2 02/05/11 22:31:59
                         64
 3 02/05/11 22:33:59
                         38
 4 02/05/11 22:35:59
                         38
 5 02/05/11 22:37:59
                         34
 6 02/05/11 22:39:59
                         30
 7 02/05/11 22:41:59
                         34
 8 02/05/11 22:43:59
                         40
 9 02/05/11 22:45:59
                         46
10 02/05/11 22:47:59
                         48
# i 11 more rows
```

skip info rows before data

Working with Grain size data

```
1 my_data <- read_tsv("data/grain_size.txt")</pre>
 2 my_data
# A tibble: 36 × 7
   `DATA DOWNLOAD: 2015-09-23` ...2 ...3 ...4 ...5 ...6 ...7
  <chr>
                            <chr> <chr>
                                       <chr>
                                                     <chr> <chr> <chr>
                                        <NA>
1 SYSTEM 001
                            <NA> <NA>
                                                     <NA> <NA> <NA>
                                                     <NA> <NA> <NA>
 2 LOGGER X
                            <NA> <NA>
                                            <NA>
 3 lab_num
                            CSP
                                  sample_num depth_lb csa msa
                                                               fsa
                            CSP01 CSP01-P-1-1 4
 4 3177
                                                     13.04 17.37 8.19
 5 3178
                            CSP01 CSP01-P-1-2 12
                                                     10.74 16.9 7.92
                                                12.11 17.75 6.99
 6 3179
                            CSP01 CSP01-P-1-3 35
                            CSP01 CSP01-P-1-4 53 17.61 18.16 6.29
 7 3180
                                                  21.05 18.38 6.26
 8 3181
                            CSP01 CSP01-P-1-5 83
 9 3182
                            CSP01 CSP01-P-1-6 105
                                                     19.02 18.43 6.28
10 3183
                            CSP08 CSP08-P-1-1 10
                                                     11.6 17.14 8.18
# i 26 more rows
```

skip info rows before data

Working with Grain size data

```
1 my_data <- read_tsv("data/grain_size.txt")
2 my_data</pre>
```

Look at the file:

- Click on Files tab
- Click on data folder
- Click on grain_size.txt
- Click "View file" (if asked)

```
DATA DOWNLOAD: 2015-09-23
SYSTEM 001
LOGGER X
lab_num CSP sample_num depth_lb
                                   csa msa fsa
3177
       CSP01
               CSP01-P-1-1 4
                               13.04
                                       17.37
                                               8.19
3178
       CSP01
               CSP01-P-1-2 12 10.74
                                       16.9
                                               7.92
3179
       CSP01
               CSP01-P-1-3 35 12.11
                                       17.75
                                               6.99
                                               6.29
3180
       CSP01
               CSP01-P-1-4 53 17.61
                                       18.16
               CSP01-P-1-5 83 21.05
3181
       CSP01
                                       18.38
                                               6.26
```

Ah ha!

Metadata was stored at the top of the file

skip info rows before data

Working with Grain size data

• Add skip = 3 to skip the first three rows

```
1 my data <- read tsv("data/grain size.txt", skip = 3)</pre>
 2 my_data
# A tibble: 33 \times 7
   lab num CSP sample num depth lb
                                                   fsa
                                       csa
                                             msa
     <dbl> <chr> <chr>
                               <dbl> <dbl> <dbl> <dbl>
     3177 CSP01 CSP01-P-1-1
                                   4 13.0 17.4
                                                  8.19
     3178 CSP01 CSP01-P-1-2
                                  12 10.7 16.9
                                                  7.92
     3179 CSP01 CSP01-P-1-3
                                  35 12.1 17.8
                                                  6.99
     3180 CSP01 CSP01-P-1-4
                                  53 17.6 18.2
                                                  6.29
     3181 CSP01 CSP01-P-1-5
                                  83 21.0 18.4
                                                  6.26
                                                                        Much better!
     3182 CSP01 CSP01-P-1-6
                                 105 19.0 18.4
                                                  6.28
     3183 CSP08 CSP08-P-1-1
                                  10 11.6 17.1
                                                  8.18
     3184 CSP08 CSP08-P-1-2
                                  27 15.4 16.2
                                                  6.76
     3185 CSP08 CSP08-P-1-3
                                  90 14.9 15.8
                                                  7.12
      3186 CSP02 CSP02-P-1-1
                                   5 8.75 8.64 3.41
# i 23 more rows
```

Your turn: Load this data set

Load Data: Sta A Data 2006-11-07.dmp

- 1. Look at the file
- 2. Decide which R function to use based on delimiter (comma, space, or tab?)
- 3. Any other options need to be specified?

It should look like this:

# /	A tibble:	19 × 7						
(StartDate	Time	Frequency	`Rate/Temp`	Pwr	Ant	SD	
		<time></time>	<dbl></dbl>	•	<dbl></dbl>	<chr></chr>	<dbl></dbl>	
1	39022	17:15:36	150.	34.8	175	MΘ	0	
2		17:19:14	148.	19.2		MO	0	
3		17:19:25	148.	19.7	194	_	0	
4		17:20:04	149.	33.8	_		0	
5		17:20:17	149.	33.7		_	0	
6		17:20:57	150.	34.2			0	
7		17:22:50		9.8			0	
# i			2.0.	0.0			ŭ	
,, 1	1 12 11010	. 0110						

Load some of your own tricky data

Looking for problems

Look at the data

- Make sure columns as expected (correctly assigned file format)
- Make sure no extra lines above the data (should we have used a skip?)
- Make sure column names look appropriate

```
1 library(palmerpenguins)
  2 penguins
# A tibble: 344 × 8
                     bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
   species island
                                                                                          year
   <fct>
           <fct>
                               <dbl>
                                             <dbl>
                                                                <int>
                                                                            <int> <fct>
                                                                                         <int>
 1 Adelie
           Torgersen
                                39.1
                                              18.7
                                                                  181
                                                                             3750 male
                                                                                          2007
 2 Adelie
           Torgersen
                               39.5
                                              17.4
                                                                  186
                                                                             3800 female
                                                                                          2007
 3 Adelie
          Torgersen
                               40.3
                                              18
                                                                  195
                                                                             3250 female
                                                                                          2007
 4 Adelie
          Torgersen
                                              NA
                                                                  NA
                                                                               NA <NA>
                                                                                          2007
                               NA
 5 Adelie
           Torgersen
                               36.7
                                              19.3
                                                                  193
                                                                             3450 female
                                                                                          2007
 6 Adelie
           Torgersen
                               39.3
                                              20.6
                                                                  190
                                                                             3650 male
                                                                                          2007
 7 Adelie
          Torgersen
                               38.9
                                              17.8
                                                                  181
                                                                             3625 female
                                                                                          2007
 8 Adelie
          Torgersen
                               39.2
                                              19.6
                                                                  195
                                                                             4675 male
                                                                                          2007
 9 Adelie
          Torgersen
                               34.1
                                              18.1
                                                                  193
                                                                             3475 <NA>
                                                                                          2007
10 Adelie
          Torgersen
                                              20.2
                                                                  190
                                                                             4250 <NA>
                                                                                          2007
                                42
# i 334 more rows
```

Look at the data

- Did the whole data set load?
- Are there extra blank lines at the end of the data?

1 tail(pe	nguins)						
# A tibble: species		oill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	year
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<int></int>
1 Chinstrap	Dream	45.7	17	195	3650	female	2009
2 Chinstrap	Dream	55.8	19.8	207	4000	male	2009
3 Chinstrap	Dream	43.5	18.1	202	3400	female	2009
4 Chinstrap	Dream	49.6	18.2	193	3775	male	2009
5 Chinstrap	Dream	50.8	19	210	4100	male	2009
6 Chinstrap	Dream	50.2	18.7	198	3775	female	2009

skim() the data

skim() is from skimr

- Are the formats correct?
 - numbers (numeric),
 - text (character)
 - date (date, POSIXct, datetime)
 - categories (factor)
- Are values appropriate?
 - Should there be NAs?
- Are there any typos?
- Number of rows expected?

count() categories

count() is from dplyr*

- Check for sample sizes and potential typos in categorical columns
- Assess missing values

Plot categories

```
# Replace COLUMN with the column name to explore
ggplot(data = penguins, aes(x = COLUMN)) +
geom_bar()
```


Plot numbers

```
1 # Replace COLUMN with the column name to explore
2 ggplot(data = penguins, aes(x = COLUMN)) +
3 geom_histogram()
```


Example of problematic data

Look at the data

Working with: water_raw.csv

```
1 water <- read_csv("data/water_raw.csv")</pre>
 2 water
# A tibble: 300 × 7
   `River Name` Site
                           Ele
                                    Amo `Temperature C°` Year Wea
  <chr>
               <chr>
                          <chr>
                                  <dbl>
                                                   <dbl> <dbl> <chr>
 1 Grasse
              Up stream
                          Αl
                                 0.606
                                                  10.9
                                                         2019 snowy
          Mid stream Al
 2 Grasse
                                 0.425
                                                   8.68
                                                         2020 cloudy
 3 Grase
               Down stream Al
                                 0.194
                                                   8.75
                                                         2021 cloudy
 4 Oswegatchie Up stream
                                                   0.791 2022 sunny
 5 Oswegatchie Mid stream Al
                                 0.161
                                                   9.32
                                                         2023 snowy
 6 Oswegatchie Down stream Al
                                0.0333
                                                  10.6
                                                         2019 wet
 7 Raquette
               Up stream Al
                                0.292
                                                  4.01
                                                         2020 snowy
 8 Raquette
           Mid stream Al
                                 0.0389
                                                   5.96
                                                         2021 sunny
 9 Raquette
               Down stream Al
                                                   6.21
                                                         2022 cloudy
                                NA
               Up stream Al
10 St. Regis
                                 0.681
                                                   8.02
                                                          2023 wet
# i 290 more rows
```

- Column names are not R-friendly (River Name and Temperature C°) or obvious (what is Ele?)
- At least one typo in River (Grase should be Grasse)

Looking for problems

Your Turn!

```
1 water <- read_csv("data/water_raw.csv")</pre>
 2 water
# A tibble: 300 × 7
   `River Name` Site
                            Ele
                                          `Temperature C°` Year Wea
                            <chr>
                                  <dbl>
                                                     <dbl> <dbl> <chr>
   <chr>
                <chr>
 1 Grasse
               Up stream
                                   0.606
                                                    10.9
                                                            2019 snowy
 2 Grasse
               Mid stream Al
                                   0.425
                                                     8.68
                                                            2020 cloudy
 3 Grase
               Down stream Al
                                   0.194
                                                     8.75
                                                            2021 cloudy
 4 Oswegatchie Up stream
                                                     0.791
                                                            2022 sunny
 5 Oswegatchie
               Mid stream Al
                                   0.161
                                                     9.32
                                                            2023 snowy
 6 Oswegatchie Down stream Al
                                   0.0333
                                                            2019 wet
                                                    10.6
 7 Raquette
                Up stream
                                   0.292
                                                     4.01
                                                            2020 snowy
 8 Raquette
                Mid stream Al
                                   0.0389
                                                     5.96
                                                            2021 sunny
 9 Raquette
                Down stream Al
                                                            2022 cloudy
                                                     6.21
                                  NA
10 St. Regis
                                   0.681
                                                     8.02
                                                            2023 wet
                Up stream
# i 290 more rows
```

- skim() the data
- count() some columns
- Perhaps make some ggplot()s

Find any problems?

Fixing problems

Cleaning column names

janitor

clean_names() is from janitor*

```
1 library(janitor)
2 water <- clean names(water)</pre>
3 water
 1 # A tibble: 300 × 7
      river name site
                              ele
                                        amo temperature c year wea
      <chr>
                              <chr>
                                      <dbl>
                                                    <dbl> <dbl> <chr>
                  <chr>
    1 Grasse
                 Up stream
                                     0.606
                                                   10.9
                                                           2019 snowy
                  Mid stream Al
                                     0.425
                                                    8.68
                                                         2020 cloudy
    2 Grasse
    3 Grase
                  Down stream Al
                                     0.194
                                                    8.75
                                                           2021 cloudy
    4 Oswegatchie Up stream
                                                    0.791 2022 sunny
    5 Oswegatchie Mid stream Al
                                     0.161
                                                    9.32
                                                           2023 snowy
    6 Oswegatchie Down stream Al
                                     0.0333
                                                   10.6
                                                           2019 wet
    7 Raquette
                  Up stream
                                     0.292
                                                    4.01
                                                           2020 snowy
    8 Raquette
                  Mid stream Al
                                     0.0389
                                                    5.96
                                                           2021 sunny
11
                                                           2022 cloudy
    9 Raquette
                  Down stream Al
                                                    6.21
                                    NA
   10 St. Regis
                  Up stream
                                     0.681
                                                    8.02
                                                           2023 wet
14 # i 290 more rows
```

Side Note: Naming conventions

Side Note: Naming conventions

Cleaning column names

rename() is from dplyr*

rename() columns

```
1 water <- rename(water, element = ele, amount = amo, temperature = temperature c)
 2 water
# A tibble: 300 × 7
                        element amount temperature year wea
  river name site
  <chr>
             <chr>
                        <chr>
                                 <dbl>
                                            <dbl> <dbl> <chr>
 1 Grasse Up stream
                                0.606
                                           10.9
                                                   2019 snowy
 2 Grasse Mid stream Al
                                       8.68
                                0.425
                                                   2020 cloudy
 3 Grase
             Down stream Al
                            0.194
                                      8.75
                                                   2021 cloudy
 4 Oswegatchie Up stream Al
                                        0.791 2022 sunny
 5 Oswegatchie Mid stream Al
                                0.161
                                            9.32
                                                   2023 snowy
 6 Oswegatchie Down stream Al
                               0.0333
                                           10.6
                                                   2019 wet
                              0.292
 7 Raquette
             Up stream
                                            4.01
                                                   2020 snowy
 8 Raquette Mid stream Al
                               0.0389
                                            5.96
                                                   2021 sunny
 9 Raquette
             Down stream Al
                                            6.21
                                                 2022 cloudy
                                NA
                                                   2023 wet
10 St. Regis
             Up stream Al
                                0.681
                                            8.02
# i 290 more rows
```

Subsetting columns

select() is from dplyr*

select() columns you want

```
1 water <- select(water, river_name, site, element, amount)</pre>
```


OR, unselect() columns you don't want

```
1 water <- select(water, -wea)</pre>
 2 water
# A tibble: 300 \times 6
   river name site
                          element
                                   amount temperature
                                                       year
   <chr>
               <chr>
                          <chr>
                                     <dbl>
                                                 <dbl> <dbl>
 1 Grasse Up stream
                                    0.606
                                               10.9
                                                        2019
 2 Grasse Mid stream Al
                                   0.425
                                                8.68
                                                       2020
 3 Grase
              Down stream Al
                                   0.194
                                                8.75
                                                       2021
 4 Oswegatchie Up stream
                                                0.791 2022
 5 Oswegatchie Mid stream Al
                                   0.161
                                                9.32
                                                        2023
 6 Oswegatchie Down stream Al
                                   0.0333
                                               10.6
                                                        2019
                                   0.292
 7 Raquette
              Up stream
                                                4.01
                                                       2020
 8 Raquette
              Mid stream Al
                                   0.0389
                                                5.96
                                                       2021
 9 Raquette
                                                6.21
                                                        2022
              Down stream Al
                                   NA
10 St. Regis
              Up stream
                                   0.681
                                                 8.02
                                                        2023
# i 290 more rows
```

Cleaning columns

Put it all together

```
1 water <- read_csv("data/water_raw.csv")</pre>
 2 water <- clean_names(water)</pre>
 3 water <- rename(water, element = ele, amount = amo, temperature = temperature_c)</pre>
 4 water <- select(water, -wea)</pre>
 5 water
# A tibble: 300 × 6
                           element amount temperature year
   river_name site
   <chr>
                           <chr>
                                     <dbl>
                                                 <dbl> <dbl>
               <chr>
           Up stream
 1 Grasse
                          Αl
                                    0.606
                                                10.9
                                                        2019
           Mid stream Al
 2 Grasse
                                    0.425
                                                8.68
                                                        2020
              Down stream Al
                                    0.194
                                                8.75
                                                        2021
 3 Grase
 4 Oswegatchie Up stream
                                                 0.791 2022
 5 Oswegatchie Mid stream Al
                                    0.161
                                                 9.32
                                                        2023
 6 Oswegatchie Down stream Al
                                    0.0333
                                                        2019
                                                10.6
 7 Raquette
              Up stream
                                    0.292
                                                 4.01
                                                        2020
 8 Raquette Mid stream Al
                                    0.0389
                                                 5.96
                                                        2021
 9 Raquette
              Down stream Al
                                                 6.21
                                                        2022
                                   NA
10 St. Regis
              Up stream Al
                                    0.681
                                                 8.02
                                                        2023
# i 290 more rows
```

Fixing typos

Remember the typos...

```
1 count(water, river_name)
# A tibble: 7 × 2
  river_name
 <chr>
             <int>
1 Grase
                73
2 Grasse
3 Oswegatchie
               75
4 Raquette
                74
5 St. Regis
                75
6 grasse
7 raquette
                 1
```

Fixing typos

Replace typos

Combine the if_else function with the mutate() function

```
1 water <- mutate(water, river_name = if_else(river_name == "Grase", "Grasse", river_name))</pre>
```

Check that it's gone:

Fixing typos

if_else() and mutate() from dplyr package*

mutate() creates or changes columns in a data frame:

```
1 mutate(dataframe, column = new_values)
```

if_else() tests for a condition, and returns one value if FALSE and another if TRUE

```
1 if_else(condition, value_if_true, value_if_false)
```

Iterative process

- Make some corrections
- Check the data
- Make some more corrections (either add to or modify existing code)

Many corrections?

Try case_when() from dplyr package*

case_when() tests for multiple conditions, and returns different values depending

```
case_when(condition1 ~ value_if_true1,
condition2 ~ value_if_true2,
condition3 ~ value_if_true3,
TRUE ~ default_value)
```

Your Turn: Fix another "Grasse" typo

- 1. Check the data with count()
- 2. Use mutate() and if_else() to fix the typo

```
water <- read_csv("data/water_raw.csv")
water <- clean_names(water)
water <- rename(water, element = ele, amount = amo, temperature = temperature_c)
water <- select(water, -wea)
water <- mutate(water, river_name = if_else(river_name == "Grase", "Grasse", river_name))
water <- mutate(???, ??? = ???)</pre>
```

Too Easy?

Examine and fix problems in your own data

Tangent: tidyverse functions

tidyverse functions

rename(), select(), mutate()

- tidyverse functions always start with the data, followed by other arguments
- you can reference any column from 'data'

```
water <- read_csv("data/water_raw.csv")
water <- clean_names(water)
water <- rename(water, element = ele, amount = amo, temperature = temperature_c)
water <- select(water, -wea)
water <- mutate(water, river_name = if_else(river_name %in% c("Grase", "grasse"), "Grasse", river_name))</pre>
```

- rename() changes column names
- select() chooses columns to keep or to remove (with -)
- mutate() changes column contents

Why use tidyverse functions?

Pipes! | >* Allow you to string commands together

Instead of:

We have:

```
water <- read_csv("data/water_raw.csv") |>
clean_names() |>
rename(element = ele, amount = amo, temperature = temperature_c) |>
select(-wea) |>
mutate(river_name = case_when(river_name %in% c("Grase", "grasse") ~ "Grasse",
river_name == "raquette" ~ "Raquette",
TRUE ~ river_name))
```

Play around

Take a moment to play with this code in your console

Convert this:

To this:

Dealing with NAs

Data that *is* missing Data that *should* be missing

Exploring NAs

- We saw missing values in amount
- Use filter() to take a closer look

```
1 filter(water, is.na(amount))
# A tibble: 39 × 6
                          element amount temperature year
   river_name site
   <chr>
              <chr>
                          <chr>
                                   <dbl>
                                              <dbl> <dbl>
                                               6.21 2022
 1 Raquette
              Down stream Al
 2 Raquette Up stream
                                     NA
                                               5.23 2022
                          Ba
 3 Raquette
                                                     2019
              Up stream
                                     NA
                                             -99
                          Br
 4 Oswegatchie Up stream
                                               4.76 2023
 5 Raquette
                                                     2020
              Down stream Ce
                                     NA
                                              13.9
 6 Grasse
              Up stream Cu
                                     NA
                                               9.13 2019
 7 Raquette
              Down stream Dy
                                     NA
                                               4.98
                                                    2019
 8 Raquette
              Down stream Er
                                     NA
                                               3.07 2021
 9 Raquette
              Down stream Fe
                                                    2023
                                     NA
                                               7.20
10 Raquette
              Down stream Gd
                                      NA
                                               4.73 2020
# i 29 more rows
```

Omitting NAs

drop_na() is from tidyr*

Omit NAs from the amount column only (drop those rows)

```
1 water_no_na <- drop_na(water, amount)</pre>
```

Omit **all** NAs from **all** columns (drop those rows)

```
1 water_no_na <- drop_na(water)</pre>
```

Check...

Side Note: filter() also omits NAs 😱

If we filter by the column with NAs, they are silently dropped

```
1 filter(water, amount < 0.05)</pre>
# A tibble: 15 × 6
   river_name site
                           element amount temperature year
   <chr>
               <chr>
                           <chr>
                                     <dbl>
                                                 <dbl> <dbl>
 1 Oswegatchie Down stream Al
                                   0.0333
                                                10.6
                                                        2019
                                   0.0389
                                                        2021
 2 Raquette
               Mid stream Al
                                                 5.96
               Mid stream Br
 3 Grasse
                                   0.0357
                                                12.4
                                                        2019
 4 St. Regis
              Up stream
                                   0.0357
                                               3.52
                                                       2022
 5 St. Regis
               Mid stream Br
                                   0.0357
                                                 0.936 2023
                                   0.0116
 6 Raquette
               Mid stream Ce
                                                 6.61
                                                        2019
 7 Raquette
                                                        2022
               Mid stream Fe
                                   0.00656
                                                10.8
 8 Grasse
               Up stream
                                   0.0313
                                                 3.61
                                                        2021
 9 Raquette
               Mid stream La
                                   0.0275
                                                 2.50
                                                        2020
10 Oswegatchie Down stream Mn
                                   0.00672
                                                 8.89
                                                        2019
# i 5 more rows
```

We need to be explicit if we want to keep them

```
1 filter(water, amount < 0.05 | is.na(amount))</pre>
# A tibble: 54 × 6
                                    amount temperature year
   river name site
                           element
   <chr>
                                     <dbl>
               <chr>
                           <chr>
                                                  <dbl> <dbl>
 1 Oswegatchie Down stream Al
                                    0.0333
                                                10.6
                                                         2019
2 Raquette
               Mid stream Al
                                    0.0389
                                                  5.96
                                                         2021
 3 Raquette
               Down stream Al
                                   NA
                                                  6.21
                                                         2022
 4 Raquette
               Up stream
                                   NA
                                                  5.23
                                                         2022
 5 Grasse
               Mid stream Br
                                    0.0357
                                                12.4
                                                         2019
6 Raquette
               Up stream
                                   NA
                                                -99
                                                         2019
                                                  3.52
 7 St. Regis
               Up stream
                                    0.0357
                                                         2022
                                    0.0357
 8 St. Regis
               Mid stream Br
                                                  0.936 2023
 9 Oswegatchie Up stream
                                                  4.76
                                                         2023
                                   NA
10 Raquette
                                                  6.61
                                                         2019
               Mid stream Ce
                                    0.0116
# i 44 more rows
```

Replacing NAs

replace_na() is from tidyr*

```
1 water_no_na <- mutate(water, amount = replace_na(amount, 0))</pre>
```


Check...

```
1 filter(water_no_na, is.na(amount))
# A tibble: 0 × 6
# i 6 variables: river_name <chr>, site <chr>, element <chr>, amount <dbl>, temperature <dbl>, year <dbl>
 1 nrow(water_no_na)
[1] 300
```

No more NAs!

(If you want to do a more complex replacement, you'll have number of rows_when() like we did for typos.)

Converting to NA

Remember the problem with temperature?

```
1 filter(water, temperature < -10)</pre>
# A tibble: 3 \times 6
  river name site
                      element amount temperature year
        <chr>
                  <chr>
                               <dbl>
                                          <dbl> <dbl>
 <chr>
1 Raquette Up stream Br
                                            -99 2019
                              NA
2 Oswegatchie Mid stream K 0.426
                                           -99 2020
3 St. Regis Mid stream La
                               0.367
                                           -99 2023
```


na_if() is from dplyr*

```
1 water <- mutate(water, temperature = na_if(temperature, -99))</pre>
```

Check...

```
1 filter(water, is.na(temperature))
# A tibble: 3 \times 6
  river_name site element amount temperature year
  <chr>
             <chr>
                       <chr>
                                <dbl>
                                           <dbl> <dbl>
1 Raquette
                                             NA 2019
           Up stream Br
                              NA
2 Oswegatchie Mid stream K
                         0.426
                                             NA 2020
3 St. Regis Mid stream La
                               0.367
                                             NA 2023
```

Fixing formats

Fixing formats

Basic data types

- Text (Characters or Strings)
- Numbers (Doubles, Integers)
- Logical (TRUE or FALSE)
- Factor (Categories)
- Dates
- Date/Times

Look for problems

```
1 water
# A tibble: 300 × 6
                          element amount temperature
   river_name site
                                                      year
   <chr>
                          <chr>
                                    <dbl>
                                                <dbl> <dbl>
              <chr>
 1 Grasse
              Up stream
                          Αl
                                   0.606
                                               10.9
                                                       2019
 2 Grasse
              Mid stream Al
                                   0.425
                                                8.68
                                                       2020
              Down stream Al
                                   0.194
                                                       2021
 3 Grasse
                                                8.75
 4 Oswegatchie Up stream
                                                0.791
                                                      2022
 5 Oswegatchie Mid stream Al
                                   0.161
                                                9.32
                                                       2023
 6 Oswegatchie Down stream Al
                                                       2019
                                   0.0333
                                               10.6
 7 Raquette
              Up stream
                                   0.292
                                                4.01
                                                       2020
 8 Raquette
              Mid stream Al
                                   0.0389
                                                5.96
                                                       2021
 9 Raquette
              Down stream Al
                                                6.21
                                                       2022
                                  NA
10 St. Regis
              Up stream
                                   0.681
                                                8.02
                                                       2023
# i 290 more rows
```

Convert to categorical

```
1 water <- mutate(water, year = as.factor(year))</pre>
 2 water
# A tibble: 300 × 6
  river_name site
                        element amount temperature year
  <chr>
                        <chr>
                                 <dbl>
                                           <dbl> <fct>
             <chr>
                                0.606
                                          10.9
 1 Grasse Up stream Al
                                                 2019
         Mid stream Al
                                      8.68 2020
 2 Grasse
                                0.425
 3 Grasse
         Down stream Al
                           0.194
                                      8.75 2021
 4 Oswegatchie Up stream Al
                                       0.791 2022
                                1
 5 Oswegatchie Mid stream Al
                                0.161
                                       9.32 2023
 6 Oswegatchie Down stream Al
                                0.0333
                                          10.6
                                                 2019
 7 Raquette
             Up stream Al
                              0.292
                                           4.01 2020
 8 Raquette Mid stream Al
                              0.0389
                                           5.96 2021
 9 Raquette Down stream Al
                                           6.21 2022
                               NA
10 St. Regis Up stream Al
                                0.681
                                           8.02 2023
# i 290 more rows
```

Changing classes

Function	Input	Output
as.character()	Any vector	Text (Characters)
as.numeric()	Any vector (but returns NAs if not numbers)	Numbers
as.logical()	TRUE, FALSE, T, F, 0 (FALSE), any other number (all TRUE or FALSE TRUE)	
as.factor()	Any vector	Categories

We'll deal with dates and times later...

Put it all together...

And you have a clean, corrected data frame ready to use

- You have not changed the original data
- You have a **reproducible** record of all corrections
- You can alter these corrections at any time
- You have formatted your data for use in R
- Read these steps line by line to remind yourself what you did

Put it all together...

Feel free to annotate within a pipe

```
1 water <- read_csv("data/water_raw.csv") |>
     # Fix column names
    clean_names() |>
    rename(element = ele, amount = amo, temperature = temperature_c) |>
     select(-wea) |>
     mutate(
       # Correct typos
       river_name = case_when(river_name %in% c("Grase", "grasse") ~ "Grasse",
8
                              river name == "raquette" ~ "Raquette",
9
                              TRUE ~ river_name),
10
11
       # Missing amounts should be 0
12
       amount = replace na(amount, 0),
       # Problems with temperature logger, -99 is a mistake
13
       temperature = na_if(temperature, -99),
14
15
       # Convert for plotting
       year = as.factor(year))
16
```

Dates and Times

(Or why does R hate me?)

Dates and Times

Working with Geolocator data

Date/times aren't always recognized as date/times

```
1 geolocators <- read csv("data/geolocators.csv", col names = c("time", "light"))</pre>
  2 geolocators
# A tibble: 21 \times 2
  time
                     light
  <chr>
                     <dbl>
1 02/05/11 22:29:59
                        64
2 02/05/11 22:31:59
3 02/05/11 22:33:59
4 02/05/11 22:35:59
5 02/05/11 22:37:59
                        34
6 02/05/11 22:39:59
                        30
# i 15 more rows
```

Here time column is considered chr (character/text)

You may know it's a date, but R does not

lubridate package*

- Part of tidyverse, but needs to be loaded separately
- Great for converting date/times (i.e. telling R this is a date/time)

```
1 library(lubridate)
    geolocators <- mutate(geolocators, time_fixed = dmy_hms(time))</pre>
    geolocators
# A tibble: 21 × 3
  time
                    light time fixed
  <chr>
                    <dbl> <dttm>
1 02/05/11 22:29:59
                       64 2011-05-02 22:29:59
2 02/05/11 22:31:59
                       64 2011-05-02 22:31:59
3 02/05/11 22:33:59
                       38 2011-05-02 22:33:59
4 02/05/11 22:35:59
                       38 2011-05-02 22:35:59
5 02/05/11 22:37:59
                       34 2011-05-02 22:37:59
6 02/05/11 22:39:59
                       30 2011-05-02 22:39:59
# i 15 more rows
```

Now time_fixed column is considered dttm (Date/Time)

So You know it's a Date/Time and now R knows too

lubridate package*

Generally, only the order of the year, month, day, hour, minute, or second matters.

For example

date/time format	function	output class
2018-01-01 13:09:11	ymd_hms()	dttm (POSIXct/POSIXt)
12/20/2019 10:00 PM	<pre>mdy_hm()</pre>	dttm (POSIXct/POSIXt)
31/01/2000 10 AM	dmy_h()	dttm (POSIXct/POSIXt)
31-01/2000	dmy()	Date

lubridate is smart enough to detect AMs and PMs

Saving data

(For the love of all that is good don't *lose* that data!!!)*

* but if you've been paying attention, you know that you only need the script 😉

Saving data

Keep yourself organized

- Keep your R-created data in a **different** folder from your 'raw' data*
- If you have a lot going on, split your work into several scripts, and number the both the scripts AND the data sets produced:
- 1_cleaned.csv
- 2_summarized.csv
- 3_graphing.csv

Save your data to file:

• First create the *datasets* folder

```
1 write_csv(water, "datasets/water_cleaned.csv")
```


Dealing with data

1. Loading data

• Get your data into R

2. Looking for problems

- Typos
- Incorrectly loaded data

3. Fixing problems

- Corrections
- Renaming
- Dealing with NA's

4. Setting formats

- Text
- Numbers
- Factors
- Dates

5. Saving your data

Wrapping up: Common mistakes

Assuming your data is in one format when it's not

- Print your data to the console and use skim() to explore the format of your data
- Use skim(), count(), filter(), select(), ggplot() to explore the content of your data

Wrapping up: Common mistakes

Confusing pipes with function arguments

Pipes (|> or %>%) pass the output from one function as input to the next function:

• Arguments may be on different lines, but all part of *one* function

Wrapping up: Further reading

- R for Data Science
 - Chapter 3: Data transformation
 - Chapter 6: Workflow: scripts and projects
 - Chapter 14: Strings
 - Chapter 16: Factors
 - Chapter 4.3: Workflow: code style > Pipes