Digital Logic COMBINATIONAL CIRCUIT

DPP - 02

1. The logic realized by the circuit shown in figure is

- (a) $F = A \odot C$
- (b) $F = A \oplus C$
- (c) $F = B \odot C$
- (d) $F = B \oplus C$
- **2.** The minimum number of 2-to-1 multiplexers required to realize a 4-to-1 multiplexer is
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 3. The Boolean function f implemented in the figure using two input multiplexers is

- (a) $A\overline{B}C + AB\overline{C}$
- (b) $ABC + A\overline{B}\overline{C}$
- (c) $\overline{A}BC + \overline{A}\overline{B}\overline{C}$
- (d) $\overline{ABC} + \overline{ABC}$

- **4.** A designer has multiplexer units of size 2×1 and multiplexer of size 16×1 is to be realized. The number of units of 2×1 MUXs required, will be
 - (a) 30
- (b) 7
- (c) 15
- (d) 11
- 5. The logic function implemented by 4×1 MUX, is

- (a) Z = xy
- (b) Z = x + y
- (c) $Z = \overline{x + y}$
- (d) $x \oplus y$
- **6.** The minimum number of multiplexers of size 2×1 required to implement a 2-input XNOR gate and 2-input AND gate, are
 - (a) 1 and 1
- (b) 2 and 1
- (c) 2 and 2
- (d) 3 and 1

Answer Key

(b) 1.

2. **(c)**

3. (a)

(c) (d) (b)

Hints and solutions

1.
$$F = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C}$$
$$F = \overline{A}C(B + \overline{B}) + A\overline{C}(B + \overline{B})$$
$$F = \overline{A}C + A\overline{C}$$
$$F = A \oplus C$$

2.

3.
$$E = \overline{B}C + B\overline{C}$$

 $f = AE$
 $f = A(\overline{B}C + B\overline{C})$
 $f = A\overline{B}C + AB\overline{C}$

4.
$$\frac{16}{2} = 8$$

 $\frac{8}{2} = 4$
 $\frac{4}{2} = 2$

$$\frac{2}{2} = 1$$

$$\boxed{15}$$

Total 15 2×1 MUX required to implemented 16×1 MUX.

5.
$$z = \overline{x} yx + \overline{x} yy + x\overline{y}x + xy \cdot 0$$

 $z = \overline{x} y + x\overline{y} x$
 $z = \overline{x} y + x\overline{y}$
 $z = x \oplus y$

6. X-NOR gate implementation

Two 2×1 MUX required to implementation X-NOR gate.

One 2×1 MUX required to implementation AND gate.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if