Design and Analysis of Algorithms: Lecture 4

Ben Chaplin

Contents

1	Van	Emde Boas Trees
	1.1	Operations
	1.2	Problem
	1.3	Recurrences

1 Van Emde Boas Trees

1.1 Operations

We want to maintain n elements from the set $\{0, 1, \dots, u-1\}$, and support the following operations:

- insert (V, x): insert x into V
- delete(V, x): delete x from V
- successor(V,x): return the smallest element in V which is larger than x

1.2 Problem

Balanced binary search trees support all three of the above operations in $O(\log n)$ time. The goal of van **Emde Boas trees** is to support operations in $O(\log \log n)$ time.

Let n and u be defined as they were above. If $u = n^{O(1)}$, then $\log \log u = O(\log \log n)$.

1.3 Recurrences

Recall the binary search recurrence:

$$T(k) = T\left(\frac{k}{2}\right) + O(1) \tag{1}$$

$$= O(\log k) \tag{2}$$

So we're seeking:

$$T(\log u) = T\left(\frac{\log u}{2}\right) + O(1) \tag{3}$$

$$= O(\log \log u) \tag{4}$$

Which can be written:

$$T'(u) = T'(\sqrt{u}) + O(1)$$
 (5)

$$= O(\log \log u) \tag{6}$$