ten Mengen besitzt. Zeige die folgende Version des Satzes von Baire: Sei (X,\mathcal{T}) ein lokalkompakter Hausdorff-Raum, und seien V_n , $n \in \mathbb{N}$, offene dichte Teilmengen von X. Dann ist auch $\bigcap_{n \in \mathbb{N}} V_n$ dicht in Orienfrerung am Beweis von Sals 4.1.1. Sei W eine middlere, offene Teilmenge von X instablin: ·) Ix & Wn V1 , weil V diche in X ret also V1 n W 7 0 weiley if Wn V, als Schnight were offen Menger offen also Ungelring von x, es gild also Umgelring K, van x, mil Kn = Wn Vy und K 1 brompolet, weil ja (X, T) lokalhampolet ist ·) La mm n > 1 und seien Xn-2, Kn-2 lereits definient de Kn-, Umgelung van Xn-, if gill es Un-, Ekn-, aften min Xn-, EUn-, da Vnolich in X in gill Vn n Un- n # O offen => 3 × n & Vn n Un- 1 wol Kn hompolike Ungeling von Xn wit Kn E Vn n Kn-1 Also ist (Xn)neN enie Folge in K1, olas kommaltist. Nun gibt es eine Teilfolge (Xi)ieI mit I = N, Sie gegen en x & K, howeverer (vgl. Kallenlick Progr. 12. 11.2) Se men het N bel. dann il (xi) i EI enie Tolge in Ke unol da (X, T) havardorff il, zil Ku algentrlogen (vol. Kollenbäck Lemma 12.11.2). Die Folge (Xi) iet honvergier gegen X olso ich nich Kallenläche Ergs. 12.2.7. XEKR = KR dale EN bel. was will × E M Kn & Wn M Vn also Wn M Vn # O

03/1: Ein topologischer Raum heißt lokalkompakt, wenn jeder Punkt eine Umgebungsbasis aus kompak-

Vektorraum entweder endlich oder überabzählbar ist. *Hinweis.* Zeige, dass ein linearer Teilraum $Y \subseteq X$ keinen inneren Punkt hat. Sei also V = X linearer Teilraum und sei (bj) jej Bass van V und (bi) i Et die Erwiterung In ener Bours von X, wobei & EI & bas es silver gill weil Y & X Weible nun beliebige Willemgebung U in X. Da U Willemgebung ist folgs, dass ex abortioned ist, ols will es t ∈ IR+ mit t b & ∈ U , when t b & # V olso U & V cond da U bel. wor in O nicht ninerer Runket von V. Da Translovhien ein Honnoonophienry ist hat I keine mineren Runket Nehmen wir run on X had eine alrählbore Basis (bn), w Si (Ma) yen eine Alrählung aller endl. Telmengen von N und sei Va := span (b. lie M& und Va:= Vac Lei $x \in X$ bel. mil $x = \sum_{n \in N} \alpha_n b_n$, wobin $\forall x \in N : \alpha_n = 0$ also Jec N; x e le = x & Ve = x & Nu unol weil x bel. was 1 Vn = 8 ·) l & N bol. und W bel. Affene nichtleere Teilmenge von X, Da Ke heine mineren Pumble beeith gill 8 + YenW = VenW und da Whel war ill Ve olich also VneN: Vn = X ·) Fin alle ne V ist Vn als endlichding, Teilraum, nach Sal 2.2.1 (2) obg. ola Vn offen Noch dem Sols von Baire Br. Korollon 4.1.2 il No + D 4

03/2: Sei $(X, \|.\|)$ ein Banachraum. Zeige, dass die Mächtigkeit einer algebraischen Basis von X als \mathbb{C} -

03/3: Eine Menge heisst G_{δ} -Menge, wenn sie der abzählbare Durchschnitt offener Mengen ist. Zeige, dass der Durchschnitt von abzählbar vielen dichten G_{δ} -Mengen eines vollständigen metrischen Raumes wied eine dichte G_{δ} -Menge ist. (X, d) volld. meh. Raum und sei Vne N: Mn eine G_{δ} -Menge mit $M_{n} = \bigcap_{k \in \mathbb{N}} P_{nk}$ und seien																																								
	<u></u>		/ 1		00.	,								_	12		Α/	_	14			(_	11	,		-	,	11			2					+	+		
_	(/	× ,	a()	100	uq	. n	nes	2.	Rau	m	N	md	ser		7	ne	ΛV	= ,	Mn	e	ml	U	б	JV 4	ing	l	m	. ,	v_{l_n}	= e	()	Pne	2	-	und	tein	en	+	+	
			. /		11.	Л	1	1.	M	1	λ.																			1/2	e W						-	+		
																															-						+	+		
		\cap	M			1	\wedge	P	h =	_ /	\wedge	P			,		, ,		·	1		D	_	L			./.	1	,		. ,	1	0		110		+	+		
_		l 1 he (y	'n		/ h∈	N 1	(1 RGA	1 1	r -	· (n	ilse X	ر ا /ه×۷	1 K	Ų	Ln	~W	h d	lm	ba	4 1	nen	Ιά	Иl	4,	7,1	,	θU	vw	/	w	n	vie	r _n .	h t	Men		+	+		
			1 100	امرا	1.	0	0 -		ż			d	/	10	/	1.		1/	1	~ Y)	_	, -	11													+	+		
		m	7(-0-1	,	aus .	Ų	ver	mer	rgl	U	m	, ju	wi	un	JU	Un	fin	JV	h -	۱ ک	Nn	U	N	WL	•												+	+		
																															+						+	+		
																																					+	+		
																																					1	\top		
																																					\top	\top		
																															_						_	_		
																															_						_	_		
																															_						_	_		
																															_						_	_		
																															_						+	+		
																															\dashv						+	+		
																															+						+	+		
																															+						+	+		
																																						T		
																															_						_	_		
																															_						+	+		
									-	\vdash																					\dashv	_	-				+	+	-	
									-	\dashv																					\dashv		+				+	+	+	
																															+						+	+		
																															+						+	+		
																															+						+	+		
																															_						_	_		
																															_						_	_		
																															_						+	+		
									-	\dashv																				+	\dashv		+				+	+		
																															+		+				+	+		
																															+		+				+	+		
																																						+		
																															+		+				+	+		

03/4:*Sei $f: \mathbb{R} \to \mathbb{R}$. Zeige, dass die Menge aller Punkte $x \in \mathbb{R}$ an denen f stetig ist eine G_{δ} -Menge ist. $M:=\{x\in\mathbb{R}\mid \forall \xi\in\mathbb{R}^+\mid \exists\,\delta\in\mathbb{R}^+:\ \forall\,\xi\in\mathbb{R}:\ |\xi-x|<\delta=\}\ |\{(\xi)-\xi(x)|<\varepsilon\}$ Sin (En) new eine Mulloye aus R+ VNE N: Un: = 6×6 R | 30 € R+ : FE € R: 16-×1<0 => 10(E)-1(X) < En} ε < 1 + lel., do εn > 0 = 3 le < N: εle ≤ ε mo 3 σ6 ∈ R+: 4 t ∈ R: 1t - x < σ1 => 1/(ε) - 1/(ε) < ε = ε =) VEER+; 3 deR+. YEER: 1+x < 0 => 1/16)-1(x)(28 => ye M ·) ser ungekehrt y & M lel- und k & N bel 35 € R+: YE € R; E-4 (5=) 11(E)-1(x) (< 2 withle z & W:= &x & N: |x-4 (4 5 3 bel. ∀t ∈ {x∈M: |x-2| < \frac{\display}{2} \display \dinploy \dinploy \display \display \display \display \display \display \display $|f(t) - f(t)| \le |f(t) - f(y)| + |f(y) - f(t)| < \frac{\xi_u}{t} + \frac{\xi_u}{t} = \xi_k =) \ge \epsilon U_b$ und dri 2 € Whel. wor will W € U & mol Will offer mil y € W also y € U is and wed be Whel win gill y & now moldonial ME new Un Insgesomt: M= NVn was date in Neine Go Menge.

03/5:*Zeige, dass es keine Funktion $f: \mathbb{R} \to \mathbb{R}$ gibt die an allen rationalen Punkten stetig aber an allen irrationalen Punkten unstetig ist. Finde eine Funktion $f:\mathbb{R}\to\mathbb{R}$ die an allen irrationalen Punkten stetig aber an allen rationalen Punkten unstetig ist.

Hinweis. Ist die Teilmenge \mathbb{Q} von \mathbb{R} (welche ja dicht liegt) eine G_{δ} -Menge?

Ang. Q ist Go - Mange RIQ = 1 R1693 ist Go - Menge uno Cichel . Q ist of the now suppose 3/3 ist Qn(RQ) olichle Gr-Minge, ober Qn(RQ) = 0 3 Also ist Q keine Gg - Menge Ang. 3 f: 1R -> 1R: first delig suf R und undelig out IR Q wach Augabe 3/4 ist Q Gg - Minge & Also gill er so ein f nicht $f: \mathbb{R} \to \mathbb{R}: \begin{cases} \frac{p}{q} \mapsto \frac{1}{q}, \text{ falls } f \in \mathbb{R} \\ \times \mapsto O, \text{ falls } \times \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ ·1×c/R\Q bel Vx∈R Vε∈R+: | { q ∈ Q: f ∈ U_ε(x) } / (∞ wegen | q - p+1 | = 1/9 An gill dann ∀y∈ (10 (x) 1 f(y) - f(x) = 1/(y) (€ ·) x e Q X = 19 04/1: Sei X ein Banachraum, und seien M,N zwei abgeschlossene lineare Teilräume von X mit

$$M + N = X, \ M \cap N = \{0\}.$$

Es sind M und N mit der von X vererbten Norm selbst normierte Räume, also können wir den Produktraum $M \times N$ mit der Summennorm betrachten. Zeige, dass die Abbildung

$$\varphi: \left\{ \begin{array}{ccc} M\times N & \to & X \\ (m,n) & \mapsto & m+n \end{array} \right.$$

$\varphi \cdot (m,n) \mapsto m+n$	
ein linearer Homöomorphismus ist.	
1), Injektivital": $Q(m,n) = Q(p,q) = m+n = p+q = m-p = q-n$, wolei $m-p \in M$ und $q-n \in N$, we	eil
M, N lineare Teileourne sinot. Also gill $m-p=q-n \in N \Rightarrow m-p \in N \cap M \Rightarrow m-p=0 \Rightarrow m-p$	
$q-n = m-p \in M = $ $q-n \in M \cap N = $ $q-n = 0 = $ $q = n$	
2) Sovjektivith'': $x \in X$ belowegen $M + N = X = 3$ me M , $n \in N$: $m + n = x \Rightarrow Q(m, n) = x$	
3) " dineonity " $\varphi((m,n) + \alpha(p,q)) = \varphi(m+\alpha p, n+\alpha q) = m+\alpha p + n+\alpha q = (m+n) + \alpha(p+q) = \varphi(m,n) + \alpha(p,q)$	
4), Steligheil": Noch Proposition 7.45-6) in die von der Summermorm ereugte Topologie gleich der	
Produke Moralogice There X There (MXN, There X There XXX, There XIII)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
und The of the stelling (X, H. H)	
The ol = le v Tin sleling was in a Steling wood old X als Banachaum inder. TVR ist, willin wi	in
Y:X×X →X: (x,y) → x+y cresis also auch 4 of rund es iff y = 4 of also in auch y stelis	
Do M, N aly. brieve TR von X sind und X Barrachraum, said and (N, 11.11m) und (N, 11.11n)	
nach Prop. 2. 4.4. (ii) Bonachianne und nach Prop. 2.4.5 also auch MXN.	
Eusansonenfassend sind also MXN unol X Banadránume soure Q: MXN -> X luien, bijethlir unol	
Alling, with thorollar 4.3.4. in and 4.7 delig also 4 ein lineares Horndonnaryshinning.	
your water and the second of the most to make the second of the second o	
	_
	+

04/2: Sei Ω eine Menge, und X ein linearer Raum dessen Elemente Funktionen von Ω nach $\mathbb C$ sind und dessen lineare Operationen durch punktweise Addition und skalare Multiplikation gegeben sind. Für $w \in \Omega$ bezeichne mit $\chi_w : X \to \mathbb C$ das Punktauswertungsfunktional

$$\chi_w(f) := f(w), \quad f \in X.$$

Dann ist χ_w linear. Zeige, dass es (bis auf Äquivalenz der Normen) höchstens eine Norm $\|.\|$ auf X geben kann, sodass $(X, \|.\|)$ ein Banachraum ist und alle Punktauswertungsfunktionale bzgl. $\|.\|$ stetig sind.

				E	Iin	wei	s.	We	nde	e de	en S	Sat	Z	vor	n a	ıbg	esc	hlo	ssei	ner	ı G	raj	phe	n aı	ıf c	lie i	der	tisc	he .	Ab	bild	un	g aı	n.						
	X	1-	q	f:_	Ω-	-)	C .	}																																
	Az	y.	e,	r 9	·W	2	wei	N	on	nen	1	1.1	(,	, /	1.1	12	80	, a	las	′	(;	Χ,	[(-]	(₁)	m	nt/	(X	, /(·	(Iz)		Bor	æ	hro	" Lelm	e s	mil	m	w l		
	all	e	Pus	M	aul	ner	4u	ngs	fur	leh	on	ali	e	χ	·w		briej	V.	/(.	119	, 1	s Sw	r.	11.	11/2	D	lel	ý	Erna	,(.										
	Be	ha	eM	ί.	de	'n	Gri	apri	ren	,	מסט	1	i u	d :	X		>	X	,	7	<u>- اه</u>	- 6	{ (j	-, f)	εχ	ί×Χ	}	, w	sber	ι	vi	X	× /	Χ.	mil	,				
																							na														bi			
	hn	1	T_{μ}	1/p	=	$\widehat{\mathcal{I}}_{\mu}$	-11	× (11-11	, 2	vs	ro((X	××	(,	1(-	/(p)	R	ma	él	, vra	um		Sei	: n	ın	(£ ,	() ·	€ .	io('H· II _P	l	el.				
	(Œ,	<i> .,</i>	\leftarrow						,	Xw		-	-						T ₁		7	(>	۲, ۱,	1.11)															
	(a,ı	·()	ς .		7 - ((x (, [₁	,xT,	,)	+	Ψ	w	_	(Χx	X,	(•	(p)				/ [\	<i>(</i>																
	Yw																					(X	711.	111																
										' ·									'																					
4	w	1	€c:	;,2)	12	€ ([},			'	1												Xu																	
								=	-{	1,8) ∈	Χ,	_× ×		ł	₹ €	C	, 1	l (n	′) -	= 8	(w) = 3	<u> </u>	= q	- (f	, g)	$\epsilon \lambda$	×Χ	16	(w)	-,	g(w) }						
,	Kν	ОП	1	u	ro(χı	r 0	Tz	Į,	ino	.(na	rs (1	Vo	rou	щe	lu	rof	, 8	ler	liģ	als	o a	ueh		17,	0	Ψ.	ı =	χ	w (OIT 1	lin	آ او	10	Yu	= Xu	0717
																																			x (al	lrgg	Sh	lgge	η
																'							bá'c																	
																							N																	
											'												'} =																	
																							mde																	
																							5																	7
	7																						11 24										/(7	ea	11	1	1 ^ (7	// x/	7
	-									7 = Li									7			74.	14	rje	nv	aci	_	Jun	, ,											
			,				Ľ,	Ĺ	6				'	/																										

04/4:*Betrachte $L^2(0,1)$ als Teilmenge von $L^1(0,1)$ und zeige auf drei verschiedene Arten, dass $L^2(0,1)$ von 1.Kategorie (für die Terminologie siehe Bemerkung 4.1.4 im Skriptum) in $L^1(0,1)$ ist:

- (i) Zeige $\{f \in L^2 : \int_0^1 |f(t)|^2 dt \le n\}$ ist abgeschlossen (in L^1) und hat leeres Inneres.
- (ii) Setze

$$g_n(t) := \begin{cases} n & , & 0 \le t \le \frac{1}{n^3} \\ 0 & , & \frac{1}{n^3} < t \le 1 \end{cases}$$

und zeige, dass

$$\int_{0}^{1} f(t)g_n(t) \to 0$$

für jedes $f \in L^2$, aber nicht für jedes $f \in L^1$.

(iii) Bemerke, dass die identische Abbildung

$$\iota: \left\{ \begin{array}{ccc} L^2 & \to & L^1 \\ f & \mapsto & f \end{array} \right.$$

stetig, aber nicht surjektiv ist.

Und argumentiere warum jede dieser Aussagen (i), (ii), (iii), tatsächlich die gewünschte Aussage impliziert!

·) f & Mn bel., dann gibt es ein Neh (filiEI aus Mn mit fi) Nach Knotinch Sah 13. 15 will dawn fi > f im Mays Mid Knewlitach sah 7.88 erhallen wir ein Teilnet (fij) jeg mit fij > f 2-f. ii Also such $f_{ij}^2 \rightarrow f^2 \lambda - f_{ii}$. $und damit auch <math>|f_{ij}|^2 \rightarrow f_{ii}^2 \lambda - f_{ii}$. $\forall j \in j : |f_{ij}|^2 \geq 0 \lambda - f_{ii}$. $\lambda = \int_{0,13}^{0} 0(\lambda = 0) - \infty$ Nach dem Lemmo van Folon (Kucolikuh Folgerung 9.32) gill solvo $\int_{[0,1]} |f|^2 d\lambda = \int_{[0,1]} \lim_{i \in J} |f_{ij}|^2 d\lambda = \int_{[0,1]} \lim_{i \in J} |f_{ij}|^2 d\lambda \leq \lim_{i \in J} \inf_{[0,1]} |f_{ij}|^2 d\lambda \leq h$ also f \in Mn uno! damin Mn = Mn also abgeschlossen ·) Sei g & L1 L2 unol f & Mn sourie HkeN hu:= f+2 g V & € N: ha ∈ L⁷ , ha ∉ L² (weil || ha ||2 ≥ ||1 f||2 - to ||g||2 | = 0 augusten gill lim 11 hh- f1/1 = lin i 1/9/1 = 0, ode hh) f along My = My = 8 Unol 12 = U Mr. silv (2 va, 7. Kalegorie

```
ii) q, (t):= { n, 0 \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \
                                                                                                                                                                        Mit der Ungleichung von Hölder (vegl. Kurditach Sals 13,4) gill
                        ·) f ∈ l2 bel.
                                |\int_{C_{1}/2}^{\infty} fg_{n} \theta(\lambda)| \leq ||fg_{n}||_{2}^{2} \leq ||f||_{2}^{2} ||g_{n}||_{2}^{2} = ||f||_{2}^{2} \int_{C_{1}/2}^{\infty} |fg_{n}||_{2}^{2} \leq ||f||_{2}^{2} ||g_{n}||_{2}^{2} = ||f||_{2}^{2} \int_{C_{1}/2}^{\infty} |fg_{n}||_{2}^{2} \leq ||f||_{2}^{2} ||g_{n}||_{2}^{2} = ||f||_{2}^{2} \int_{C_{1}/2}^{\infty} |fg_{n}||_{2}^{2} \leq ||f||_{2}^{2} ||g_{n}||_{2}^{2} = ||f|||_{2}^{2} ||g_{n}||_{2}^{2} = ||f|
                                   also lin $ 1(E19n(4) o( = 0
                       .) f(\xi) := \xi^{-\frac{\pi}{2}} \int_{0}^{\pi} \xi^{-\frac{\pi}{2}} g(\xi) = 2 \xi^{\frac{\pi}{2}} \int_{0}^{\pi} = 2 \xi^{\frac{\pi}{2}} = 2 \xi^{\frac{\pi}{
                                                       \int_{0}^{2} f(t) g_{n}(t) dt = \int_{0}^{2\pi/3} t^{-\frac{1}{2}} n dt = n 2 e^{\frac{\pi}{2}} \Big|_{0}^{n-3} = n 2 n^{-\frac{3}{2}} = 2 n^{-\frac{1}{2}} \xrightarrow{n \to \infty} \infty
                        L' Barrachraum, C normerles Roum Roil 1-> C: f +> S fqn 0/2
                         beschröndele lineare Operatoren, weil gn & La (vgl., Kugolikul hal 13.38)
                        mil ||Rn || = | | gn || 0 = n , sho syx ||Rn || = 0
                        Nach tak 4.2.1. gibtes also eme dible Go - Menge Mc L' mil
                           M = Mh mil Mh effen (2 = M c = (Mh) = W Mh
                                     The N il Mx = Mix and Min = Win = 0, weil somet worse Muith decht
                                     L2=L2n / mpc = (L2nMmc)
(iii) 6: L2 -> L1 - { 1-> f
                                         ε∈R+bel. f∈ L²bel. σ:= ε unol g∈ Lz mil 11/- p1/2 < σ down in
                                                          11/-8/11 = /1/4-9/11/1 = 11/-8/12 / 0 = 2
                                   also il U Stolig, anterdem linear, L7 ist normielle Raum und L2 Barrachraum
                                       (- It with surjetchin, olem f(t)=t-1 & L7 n & L2 reclined man nach:
                                                               \int_{0}^{2} e^{-12} o(t = 2 e^{-12} \int_{0}^{1} = 2 = ) \quad f \in L^{1}
                                                     \int_{0}^{\infty} \left(t^{-\frac{2}{3}}\right)^{2} dt = \int_{0}^{\infty} t^{-\frac{1}{3}} dt = \ln\left(t\right) \Big|_{0}^{\infty} = \ln\left(1\right) - \lim_{\varepsilon \downarrow 0} \ln\left(\varepsilon\right) = \infty \Rightarrow \int_{0}^{\infty} \int_{0}^{\infty} t^{-\frac{1}{3}} dt = \ln\left(t\right) \Big|_{0}^{\infty} = \ln\left(1\right) - \lim_{\varepsilon \downarrow 0} \ln\left(\varepsilon\right) = \infty
                          Nach Aufgabe 4/3 ist also (ll2) von 1. Kalegorie (deum wire er von 2. Kalegorie so wine f(l2)-12/3)
```