2.5 Υπόχωροι

Ορισμός

Αν V είναι ένας διανυσματικός χώρος και $W\subseteq V$ τότε το W λέγεται υπόχωρος του V αν περιέχει το $\mathbb O$ του V και η πρόσθεση κι ο βαθμωτός πολλαπλασιασμός του V κάνουν το W διανυσματικό χώρο.

Σ. Δημόπουλος ΜΑΣ029 1 /

Αντί να ελέγξουμε όλα τα αξιώματα των διανυσματικών χώρων, χρησιμοποιούμε το παρακάτω θεώρημα.

Θεώρημα

Αν V είναι διανυσματικός χώρος και $W\subseteq V$ τότε το W είναι υπόχωρος του V αν ισχύουν οι παρακάτω συνθήκες.

- $\bigcirc \bigcirc \in W$
- ② $Av u, v \in W$ τότε $u + v \in W$.
- **3** Av $\lambda \in \mathbb{R}$ kai $u \in W$, tóte $\lambda u \in W$.

Τα υποσύνολα $W_1=\{\mathbb{O}\}$ και $W_2=\mathbb{R}^n$ του \mathbb{R}^n είναι υπόχωροι του \mathbb{R}^n .

Σ. Δημόπουλος ΜΑΣ029 3 / 8

Στον \mathbb{R}^3 , κάθε ευθεία είναι ένα υποσύνολο του \mathbb{R}^3 . Αν μια ευθεία διέρχεται από την αρχή των αξόνων, τότε είναι υπόχωρος του \mathbb{R}^3 .

Σ. Δημόπουλος ΜΑΣ029 4 /

Στον \mathbb{R}^3 , κάθε επίπεδο είναι ένα υποσύνολο του \mathbb{R}^3 . Αν το επίπεδο διέρχεται από την αρχή των αξόνων, τότε είναι υπόχωρος του \mathbb{R}^3 .

Σ. Δημόπουλος ΜΑΣ029 5 /

Aν $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$ τότε το σύνολο $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ είναι υπόχωρος του \mathbb{R}^n .

Σ. Δημόπουλος ΜΑΣ029 6 / 8

Αν ο A είναι $m \times n$ πίνακας, τότε ο χώρος στηλών του A, $\mathrm{Col}(A)$, είναι υπόχωρος του \mathbb{R}^m .

Σ. Δημόπουλος ΜΑΣ029 7 / 8

Το σύνολο λύσεων ενός ομογενούς γραμμικού συστήματος $A\mathbf{x}=\mathbb{O}$ είναι υπόχωρος του \mathbb{R}^n . Δηλαδή, αν ο A είναι $m\times n$ πίνακας, τότε ο μηδενικός χώρος του A, $\mathrm{Nul}(A)$, είναι υπόχωρος του \mathbb{R}^n .

Σ. Δημόπουλος ΜΑΣ029 8 / 8