SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 18.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : CHE F342

Course Title : Process Dynamics and Control Instructor-in-Charge : HARE KRISHNA MOHANTA : Srinivas Appari, Venkata Vijayan S

1. Course Description:

Dynamic modeling and simulation of momentum, energy, mass transfer and reacting systems; analysis of the dynamic behaviour of lumped and distributed parameter systems; analysis and design of simple feedback and advanced control systems; design of control systems with multiple input and multiple output; introduction to computer control.

2. Scope and Objective of the Course:

This course deals with the design of the control systems for chemical processes, not as a mathematical problem, but as an engineering task with all its attractive challenges and practical shortcomings using the fundamental concepts of process dynamics as the basis. The course aims to help the student in the selection of the best among the several alternative control configurations usually possible for a given processing unit or a complete plant. Finally the course will familiarize the student with a plethora of analytical tools and design methodologies to be understood before attempting the process control problems.

3. Text Books:

• Seborg, D. E., Edgar, T. F. and Mellichamp, D.A., Doyle, F.J., "Process Dynamics and Control: An Indian Adaptation", 4th ed., (Feb., 2021), John Wiley and Sons.

4. Reference Books:

- Coughanowr, D.R., and LeBlanc S.E., "Process Systems Analysis and Control", 3rd Ed., McGraw-Hill Education (India), 2013.
- George Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice, Prentice Hall, 1984.

5. Course Plan:

Module No.	Lecture Session	Ref.	Learning outcomes	
1. Introduction to	L1.1 Need of process control, process control		Understanding of the need of	
Process Control	strategies, process control activities	Ch. 1	process control and overview of	
(1-2)	L1.2 An overview of control system design	CII. I	control system design.	
2.Theoretical	L2.1 Modeling principles,		Understanding the principles of	
Models of	L2.2 Degrees of freedom analysis		modeling a system.	
Chemical Processes	L2.3 Dynamic models of representative processes.	Ch. 2		
(3-5)				
3.Laplace	L3.1 The Laplace transform of representative		Understanding the use of Laplace	
Transforms	functions	Ch. 3	Transforms for simulating a	
(6-7)			dynamic system expressed with	
	L3.2. Solution of differential equation		transfer function models	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

4.Transfer Function Models	functions	Ch. 4	Transfer function models and State-Space Models	
(8-10)	L4.2. Linearization of non-linear models			
	L4.3. State-space and transfer function matrix models			
	L4.4 Poles and Zeros and their effect on process	1		
	response			
5.Dynamic	L5.1 Standard process inputs		Understanding the dynamic behavior of first and second order processes when subjected to	
Behavior of First-	L5.2. Response of first order processes	Ch. 5		
and Second-Order	L5.3. Response of second order processes			
Processes	T5. Exercise problems on First and Second Order	1	different inputs.	
(11-13)	processes			
6. Dynamics	L6.1. Effect of time delays		Understanding the importance of	
Behavior of	L6.2. Approximation of higher order systems		poles and zeros, approximation of	
Higher-Order	L6.3. Interacting and Non-interacting processes		higher order systems, state and	
Processes	L6.4. Multiple-Input, Multiple-Output (MIMO)		process transfer function	
(14-19)	Processes		matrices.	
	L6.5. Fitting First- and Second -Order Models	Ch. 6		
	using Step Tests.			
7.Feedback	L7.1. Basic Control Models		Understanding basics of classical	
Controllers	L7.2. Features of PID Controllers		feedback control systems – P, PI	
	L7.3. On-Off Controllers		and PID Controllers.	
(20-25)	L7.4. Typical Response of Feedback Control	Ch. 7		
	Systems			
	L7.5. Digital Versions of PID Controllers	1		
8.Control System	L8.1. Sensors, Transmitters and Transducers		Understanding how	
Instrumentation	L8.2. Final Control Elements and control valve		Instrumentation is important in	
(26-27)	characteristics	Ch. 8	process control.	
	L8.3. Piping and Instrumentation Diagrams			
9. Dynamic	L9.1. Block Diagram Representation and Closed-		Understanding closed-loop	
Behavior and	Loop Transfer Functions		response and stability of control	
Stability of Closed-	L9.2. Closed-Loop Response of Simple Control		systems.	
Loop Control	Systems	Ch. 9		
Systems	L9.3. Stability of Closed-Loop Control Systems			
(28-31)	L9.4. Root Locus Diagrams			
10.Frequency	L10.1. Sinusoidal Response of First- and nth-Order		Understanding Frequency	
Response Analysis	Process		Response Analysis of closed-	
and Control System	L10.2. Frequency Response Characteristics of	~·	loop control systems, their	
Design	Feedback Controllers	Ch.	design and stability analysis.	
(32-34)	L10.3. Bode Stability Criterion	10		
	L10.4. Controller Design using Gain and Phase			
11 DID C : "	Margins. Nyquist Plot.		YY 1	
11. PID Controller	L11.1. Performance Criteria for Closed-Loop	CI	Understanding various tuning	
Design, Tuning and	Systems L11.2 Model Board Controller Design Methods	Ch.	and designing methods for PID controllers	
Troubleshooting	L11.2. Model-Based Controller Design Methods	11		
(35-38)	L11.3. Controller Tuning		Hadaystandina da a a a a a a a a	
12. Enhanced	L12.1. Introduction to Feedforward Control	Ch	Understanding the concepts behind feedforward and ratio	
Single-loop control	L12.2 Ratio Control	Ch.		
strategies (39-40)	L12.3 Cascade Control	12	control	
(37-40)		<u> </u>		

After completing this course the students will be able to

- Perform the Degrees of Freedom Analysis for a System/Control System.
- Make the Time-Domain Dynamic Model of the System.
- Make the Transfer Function Model of the System.
- Design and Tune Classical PID Controllers for the System.
- Make the Stability Analysis of the System.
- Perform Frequency Response Analysis of the System
- Draw Bode and Nyquist Diagrams.
- Design Control Systems using Gain Margin and Phase Margin.
- Design Feedforward, Ratio and Cascade Controllers.

6. Evaluation Scheme:

EC	Component	Duration	Weightage (%)	Date & Time	Nature of
No.		(Minutes)			Component
1.	Mid-Semester Test	90	90 (30%)	-	CB/OB
2.	Tutorial Tests (Best 4 of 6)	-	60 (20%)	-	CB/OB
3.	Comprehensive Examination	120	120 (40%)	08/05 FN	CB/OB
4.	Home Assignments (Total 2)	-	30 (10%)	-	OB

- 7. Chamber Consultation Hour: (To be decided)
- **8. Notices:** All notices concerning this course will be shared in the Google Classroom for Process Dynamics and Control. All the students are required to join the Google Classroom.
- **9. Make-up Policy:** Make-up will be granted only for genuine cases.
- **10. Note (if any):** Contact No. +91-1596-255754.

(Hare Krishna Mohanta)
Instructor-in-charge
CHE F342