Name: Prince Okumo

Q 1. Two carriers are 10 MHz apart with C1 at 895 MHz IM3_1 is at 885 MHz and IM3_2 is at 915 MHz what is the frequency of C2?

Ans: Since Intermodulation Carrier Frequency propagates and defined integer multiple of each other, In the given scenario were:

Q 2. In the diagram below, the PA has a gain of 50 dB and a 1dB compression point of 52 dBm. The attenuator at the input of the PA provides 20 dB of attenuation. Assuming lossless cables and ideal instruments/components, how much input power does the source need to achieve an output power of 52 dBm?

Ans: At the attenuator:

At the Amplifier:

But dB = dBm + 10
$$\log_{10}$$
 (10⁻³)
=52 dBm + (-30)
=22 dB

So;

$$22 dB = ((S-20) + 50-1)$$

$$S = -7dB$$

$$-7dB = (-7+30) dBm = 23dBm$$

So, to achieve an output power of 52 dBm, the source needs an input power of about 23dBm.

3. A signal of 100 watts (50 dBm) is sent through a lossless coaxial cable to an antenna with a return loss of 10 dB. How much power is radiated by the antenna? How much power will be radiated if the return Loss is 3 dB? How much power will be radiated if the return Loss is 7 dB?

$$RL = 10log_{10} \frac{P_f}{P_r}$$

For a return loss of 10 dB:

$$10 = 10log_{10} \frac{P_f}{P_r}$$

Where: P_f = 100 W; P_f = forward Power; P_r = radiated Power $10 = 10log_{10} \frac{100}{P_r}$

$$log^{-1}(\frac{10}{10}) = \frac{100}{P_r}$$
s

$$10 = \frac{100}{P_r}$$

$$P_{r} = 10 \text{ W}$$

 \div Power transmitted by the antenna @ 3dB = $\,P_f - P_r = 100 - 10 = 90$ watts

For a return loss of 3 dB:

$$3 = 10log_{10} \frac{P_f}{P_r}$$

Where: $P_f = 100 \text{ W}$; $P_f = \text{forward Power}$; $P_r = \text{radiated Power}$

$$3 = 10log_{10} \frac{100}{P_r}$$
$$log^{-1} \left(\frac{3}{10}\right) = \frac{100}{P_r}$$
$$1.9953 = \frac{100}{P_r}$$

$$P_r = 50.11 \text{ W} \approx 50 \text{ W}$$

 \div Power transmitted by the antenna @ 3dB = $\,P_f - P_r = 100 - 50 = 50$ watts

For a return loss of 7 dB:

$$7 = 10log_{10} \frac{P_f}{P_r}$$
 Where: P_f = 100 W; P_f = forward Power; P_r = radiated Power
$$7 = 10log_{10} \frac{100}{P_r}$$

$$log^{-1} \left(\frac{7}{10}\right) = \frac{100}{P_r}$$

$$5.012 = \frac{100}{P_r}$$
 P_r = 19.95 W ≈ 20 W

 \therefore Power transmitted by the antenna @ 3dB = $P_f - P_r = 100 - 20 = 80$ watts

Q 4. Perform a program that adds two vectors (magnitude and phase) and stores them in a third vector, Use the next libraries: System; System.Collections.Generic; System.Linq; System.Text;