机器智能实验7

群体智能实验-蚁群算法报告

实验步骤:

1. 物体建模

包括蚁穴 Home、蚂蚁 Ant、食物 Food、信息素 Phe、标识 Flag,如下图所示

2. 物体功能建模

蚁穴:按照一定速率释放蚂蚁,通过 touch_start 实现每 touch 一次释放 3 只蚂蚁食物:被蚂蚁寻找的目标,有一个初始食物数量 init_num,可以感知蚂蚁取走的食物数量并调整自身尺寸,直到被取走的食物与初始数量相等则消失

标识:蚂蚁取走食物时在食物周边放置一个标识,因此食物只需检测标识的个数即可知道被取走多少份

信息素: 蚂蚁寻找到食物后返回蚁穴时在沿途释放信息素,持续一定时间(20秒)后自动消除

蚂蚁: 觅食 Agent, 检测周围的食物和信息素并按照算法行动

3. 蚁群算法建模

每只蚂蚁的行动逻辑为先寻找食物,若找到则搬运一块食物回蚁穴,并沿途留下信息素;若未找到食物则寻找信息素,并向有信息素的方位前进;若未找到信息素则随机 移动后再次寻找

伪代码如下

Initialize	state Goto_Food:
state Find_Food:	Set_Flag()
Success:	state Go_Home
state Goto_Food	
Fail:	state Go_Home:
state Find_Phe	Step()
	Set_Phe()
state Find_Phe:	if (Get_Home()):
Success:	state Find_Food
Goto_Phe()	
Fail:	
Random_Move()	
state Find_Food	

4. 实验结果

按照"使用说明.txt"将代码运用于各个物体,实验效果如下,可以发现食物确实被搬运,并且蚂蚁沿途确实留下了信息素供其他蚂蚁寻找

