Table of Contents

oblem 1	- 1
	. 1
Eigen value decomposition	
Cayley-Hamilton	
Find the state transfer function G(s)	

Problem 1

```
x_dot = Ax + Bu y = Cx + Du

A = [1 0; 4 -1];

B = [-1;2];

C = [3 0];

D = 5;
```

a)

b) Eigen value decomposition

```
[V,J] = jordan(A);
% Compute the state stransition matrix
syms t;
V*expm(J*t)*inv(V);
```

c) Cayley-Hamilton

```
A^2 - eye(2)

ans =

0  0 0
0 0
```

d) Find the state transfer function G(s)

```
G(s) = C*inv(SI-A)*B + D
syms s;
C*inv(s*eye(2)-A)*B + D
ans =
5 - 3/(s - 1)
```

