Codeforces Round 915 (Div. 2)

B. Begginer's Zelda

1 second, 256 megabytes

You are given a tree[†]. In one *zelda-operation* you can do follows:

- Choose two vertices of the tree u and v;
- Compress all the vertices on the path from u to v into one vertex. In other words, all the vertices on path from u to v will be erased from the tree, a new vertex w will be created. Then every vertex s that had an edge to some vertex on the path from u to v will have an edge to the vertex w.

Illustration of a zelda-operation performed for vertices $\boldsymbol{1}$ and $\boldsymbol{5}$.

Determine the minimum number of zelda-operations required for the tree to have only one vertex.

Input

Each test consists of multiple test cases. The first line contains a single integer t ($1 \le t \le 10^4$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer n ($2 \le n \le 10^5$) — the number of vertices.

i-th of the next n-1 lines contains two integers u_i and v_i ($1 \leq u_i, v_i \leq n, u_i \neq v_i$) — the numbers of vertices connected by the i-th edge.

It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of n over all test cases does not exceed 10^5 .

Output

For each test case, output a single integer — the minimum number of zelda-operations required for the tree to have only one vertex.

[†]A tree is a connected acyclic undirected graph.

input	
4	
4	
1 2	
1 3	
3 4	
9	
3 1	
3 5	
3 2	
 3 4 9 3 1 3 5 3 2 5 6 6 7 	
6 /	
7 8 7 9	
6 4	
7	
1 2	
1 3	
2 4	
4 5	
3 6	
2 7	
6 1 2	
1 2	
1 3	
1 4 4 5	
4 5	
2 6	

output

3 2

In the first test case, it's enough to perform one zelda-operation for vertices 2 and 4.

In the second test case, we can perform the following zelda-operations:

- 1. u=2, v=1. Let the resulting added vertex be labeled as w=10;
- 2. u = 4, v = 9. Let the resulting added vertex be labeled as w = 11;
- 3. u=8, v=10. After this operation, the tree consists of a single vertex.