What would the enclosed mass $M_r(r)$ and the grave guess for how the density varies inside of the star.	vitational acceleration $g(r)$ look like if we made a
1. If the density is $\rho_r=\rho_o$ (if $r\leq R_\star$), what is a. The density at the center of the star:	
b. The density at the surface of the star:	
2. Our differential equation can be integrated on both sides:	We need a boundary condition (a location r in the star at which we know the value of M_r). Which of these two possibility is the most useful?
$\int_{M_r}^{M_r} dM_r = \int_{r'=}^{r=r'} 4\pi \rho(r') r'^2 dr'$	[] At the center: $M_r(r=0)=0$ [] At the surface: $M_r(r=R_\star)=M_\star$
3. Fill in the left side, and on the right-side (1) repla variable for $x=r/R_{\star}$.	ce $ ho(r)$ with its equation and (2) make a change of
4. Now pull all of the constants in front of the integr	ral
4b. Parenthesis: What are the units of the combine	d bunch of constant in front? Does it make sense?
5. Now integrate (and evaluate at the bounds!)	
$M_r(r) =$ $ -$	

6. According to the equation above, what is the expression for M_r when $r=R_\star$ (or in other words, what is the value of M_\star ?)
$M_r(r=R_\star)$ aka $M_\star=$
7. Parenthesis: in the notebook, we will calculate the value for ρ_o that would be implies by our choice of density variation for a star that has a mass of $1M_\odot$ and a radius of $1R_\odot$. So take a minute here to isolate ρ_o in the equation above, for safekeeping $\rho_o =$
8. As we will see later on, it is actually useful to use the change of variable $x=r/R_\star$ when we compare e.g. the density/temperature/pressure/etc variation in stars of different size. This means that all of our graph are contained between $x=0$ and $x=1$. It is also very useful for computational work to have quantities that are unit-less.
So now, let's make the left side of our equation (which will be the y-axis in our graphs) also unit less, by dividing the equation for M_r in #5 with the equation for M_\star in #6.
$\frac{M_r}{M_{\star}} =$
9. Finally, we can use this result to compute $g(r)$. We know that $g(r) = \frac{GM_r(r)}{r^2}$. We can scale this
equation to make computation easy. What is the expression for the gravitational acceleration at the <i>surface</i> of the star?
$g_{\star} = g(r = R_{\star}) =$
10. Now write down an expression for:
$\frac{g(r)}{g_{\star}} =$