IIC3253

Implementación de funciones de hash

¿Cómo se construye una función de hash?

Los pasos de la construcción:

- Se define una función de hash para mensajes de largo fijo, la cual es llamada función de compresión
- Se define un método que permite utilizar de manera iterativa la función de compresión para construir una función de hash para mensajes de largo arbitrario

Una función de compresión

Queremos construir una función de hash de largo fijo:

$$h:\{0,1\}^{2n} o \{0,1\}^n$$

Para construir esta función suponemos que tenemos un esquema criptográfico (Gen, Enc, Dec) sobre los espacios $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0, 1\}^n$

ullet Tenemos que $Enc_k:\{0,1\}^n o \{0,1\}^n$ para cada $k\in\{0,1\}^n$

Un primer intento

Dados $u,v \in \{0,1\}^n$, defina $h(u||v) = Enc_u(v)$

• Recuerde que $u\|v$ es la concatenación de u con v

Este es nuestro primer intento para definir una función de hash $h:\{0,1\}^{2n} o \{0,1\}^n$

ullet Para ver si esta es una buena alternativa, vamos a considerar primero el caso n=128 y AES

AES en la práctica

```
from Crypto.Cipher import AES
   if name == " main ":
      k = b'Fqh64%djfg/fydhj'
      alg = AES.new(k, AES.MODE ECB)
 6
      m = b'Texto de prueba.'
      c = alg.encrypt(m)
      r = alq.decrypt(c)
                                     Electronic
10
11
      print(m)
                                  codebook (ECB)
12
      print(c)
13
      print(r)
```

b'Texto de prueba.'

b'\x0fK\x8ec+\xaa\xeb\xcbE\x04\xf5\xf9\xdf(\xa5\x11' b'Texto de prueba.'

Nuestra primera función de compresión

```
def compresion(m: str) -> str:
       Argumentos:
           m: str - mensaje
       Retorna:
           str: hash del mensaje usando AES
       11 11 11
       1 = m[0:16]
       r = m[16:32]
12
       h = AES.new(1, AES.MODE ECB)
       return h.encrypt(r)
13
```

Los resultados del intento

```
if
               == " main ":
        name
       m1 = b'Texto de prueba para compresion.'
       m2 = b'TeXto de prueba para compresion.'
       m3 = b'Texto de prueba para compresion?'
 6
       h1 = compresion(m1)
       h2 = compresion(m2)
       h3 = compresion(m3)
10
11
       print(h1.hex())
12
       print(h2.hex())
13
       print(h3.hex())
```

a4eb875d9a9e589d7dfaec66bb710441 98b1b377d5915e6a80a4db533fa416c7 bbb4aafcb004f5a4a5ede95da4f84395

Pero tenemos un problema

Existe un algoritmo eficiente, en términos del parámetro de seguridad 1^n , para construir preimagenes

• No solo para el caso de AES, sino que también para cualquier esquema criptográfico (Gen, Enc, Dec) sobre los espacios $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^n$

La relación entre Enc y Dec

Fije una llave $k \in \{0,1\}^n$, y defina las siguientes funciones de $\{0,1\}^n$ en $\{0,1\}^n$:

$$f(x) = Enc_k(x) \ g(x) = Dec_k(x)$$

Tenemos que:

$$\forall x \in \{0,1\}^n : g(f(x)) = x$$

¿También tenemos que f(g(x)) = x?

Cuidado con la respuesta

Pero
$$\mathcal{M} = \mathcal{C} = \{0,1\}^n$$

Tenemos que:

$$orall x \in \{0,1\}^n: f(g(x)) = x$$

Concluimos que:

$$orall k \in \mathcal{K} \, orall m \in \mathcal{M} : Enc_k(Dec_k(m)) = m$$

Ahora podemos demostrar que el primer intento no es resistente a preimagen

Dados $u,v\in\{0,1\}^n$, sea $x=h(u\|v)=Enc_u(v)$

Considere $u' \in \{0,1\}^n$ arbitrario, y defina $v' = Dec_{u'}(x)$

Tenemos que: $h(u'\|v')=Enc_{u'}(v')=Enc_{u'}(Dec_{u'}(x))=x$

En código ...

```
if name == " main ":
      m = b'Texto de prueba para compresion.'
      h = compresion(m)
      alg = AES.new(k, AES.MODE ECB)
      c = alg.decrypt(h)
      p = k + c
      print(m.hex())
10
11
      print(h.hex())
12
      print(p.hex())
13
      print(compresion(p).hex())
```

546578746f20646520707275656261207061726120636f6d70726573696f6e2e

a4eb875d9a9e589d7dfaec66bb710441

3131313131313131313131313131313117894bb10a97cd21175266d33b1c25b4

a4eb875d9a9e589d7dfaec66bb710441

Un segundo intento: la construcción de Davies-Meyer

$$h(u\|v) = Enc_u(v) \oplus v$$

Recuerde que el símbolo \oplus representa al XOR, o suma en módulo 2, dado que estamos operando con bits

La construcción de Davies-Meyer: formalización

Suponemos dado un esquema criptográfico $(\mathit{Gen}, \mathit{Enc}, \mathit{Dec})$ sobre $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^*$

Definimos una función de hash (Gen', h') de largo fijo:

- $Gen'(1^n) = n$ para un parámetro de seguridad 1^n
- $(h')^n:\{0,1\}^{2n} o \{0,1\}^n$ tal que para cada $u,v \in \{0,1\}^n$:

$$(h')^n(u\|v)=Enc_u(v)\oplus v$$

La propiedad fundamental de la construcción de Davies-Meyer

Si (Gen, Enc, Dec) es un esquema criptográfico *ideal*, entonces (Gen', h') es resistente a colisiones

 (Gen',h') es una buena alternativa para una función de compresión

La extensión a un largo arbitrario

Suponemos que tenemos una función de compresión $h':\{0,1\}^{256} o \{0,1\}^{128}$

m

La extensión a un largo arbitrario

bloque de 128 bits

¿Cuál es la intuición detrás de esta idea?

Queremos demostrar que si h' es resistente a colisiones y no se conoce una preimagen de H_0 , entonces h es resistente a colisiones

Piense en la idea de la demostración solo considerando mensajes cuyo largo es divisible por 128

 Y considere primero el caso donde los mensajes en una colisión tienen el mismo largo

¿Cómo podemos estar seguros que nadie conoce una preimagen de H_0 ?

¿Podríamos pedir que H_0 sea un número sacado al azar?

Nos pueden engañar: el adversario saca un mensaje $m_0 \in \{0,1\}^{256}$ al azar y nos dice que $H_0 = h'(m_0)$

• H_0 se ve como un número sacado al azar, pero el adversario conoce una preimagen m_0

¿Cómo podemos estar seguros que nadie conoce una preimagen de H_0 ?

Lo que necesitamos es un nothing-up-my-sleeve number

¿Cómo podemos estar seguros que nadie conoce una preimagen de H_0 ?

Lo que necesitamos es un *nothing-up-my-sleeve number*

Por ejemplo: considere los primeros 128 bits de la representación de π en binario

• ¿Cree que alguien conoce la preimagen de este valor de H_0 ?

Aún por responder: ¿Qué hacemos si el largo de m no es divisible por 128?

Tenemos que hacer padding

$m_1 \hspace{1cm} m_2$	m_3	m_4
------------------------	-------	-------

Aún por responder: ¿Qué hacemos si el largo de m no es divisible por 128?

Tenemos que hacer padding

m_1	m_2	m_3	$oxed{m_4\ 00\cdots 0}$
-------	-------	-------	-------------------------

Aunque esta no es una buena forma de hacer padding

• Es fácil encontrar colisiones: h(m) = h(m0) si |m| no es divisible por 128

¿Qué debe cumplir una buena función de padding?

Considere una función $Pad(\cdot)$ para bloques de largo n

• En el ejemplo anterior, n=128

Dado un mensaje $m \in \{0,1\}^*$, se debe tener que $|Pad(m)| \geq n$ y |Pad(m)| es divisible por n

Padding: los axiomas fundamentales

- m es un prefijo de Pad(m)
- ullet si $|m_1|=|m_2|$, entonces $|\mathit{Pad}(m_1)|=|\mathit{Pad}(m_2)|$
- si $|m_1| \neq |m_2|$, entonces el último bloque de $Pad(m_1)$ es distinto del último bloque de $Pad(m_2)$

Nota: Pad es una función inyectiva si satisface los axiomas fundamentales

Suponga que $m_1 \neq m_2$:

- Si $|m_1|
 eq |m_2|$, entonces $Pad(m_1)
 eq Pad(m_2)$ ya que el último bloque de $Pad(m_1)$ es distinto del último bloque de $Pad(m_2)$
- ullet Si $|m_1|=|m_2|$, entonces $Pad(m_1)
 eq Pad(m_2)$ ya que m_1 es prefijo de $Pad(m_1)$ y m_2 es prefijo de $Pad(m_2)$

Poniendo todo junto: la construcción de Merkle-Damgård

Suponga dados:

- La función de compresión (Gen', h') de Davies-Meyer
- Para cada $n \in \mathbb{N}$, una función de padding Pad_n que considera bloques con n elementos y satisface los axiomas fundamentales

Vamos a definir una función de hash (Gen, h) para mensajes de largo arbitrario

La construcción de Merkle-Damgård

Considere un parámetro de seguridad 1^n

Tenemos que
$$\mathit{Gen}(1^n) = s$$
, y $h^s: \{0,1\}^* o \{0,1\}^n$

El valor del vector de inicialización H_0 está contenido en s

• s puede ser definido como (n, H_0)

La construcción de Merkle-Damgård

Dado $m \in \{0,1\}^*$, calculamos $h^s(m)$ de la siguiente forma:

- 1. Suponga que $Pad_n(m) = m_1 m_2 \cdots m_\ell$, donde el largo de cada bloque m_i es n
- 2. Para cada $i \in \{1, \dots, \ell\}$:

$$H_i := (h')^n (m_i || H_{i-1})^n$$

3. $h^s(m) := H_\ell$

La construcción es resistente a colisiones

Demuestre que (Gen, h) es resistente a colisiones, dado que (Gen', h') es resistente a colisiones y cada función de padding Pad_n satisface los axiomas fundamentales

Algunos comentarios sobre la construcción

- Podemos reemplazar la construcción de Davies-Meyer por cualquier función de compresión resistente a colisiones
- Podemos considerar funciones de compresión de la forma $h':\{0,1\}^{p(n)} o \{0,1\}^n$ con p(n) un polinomio tal que p(n)>n

Consideramos bloques de largo n

m m_1 m_2 m_3

Consideramos bloques de largo n

 $Pad(m) \hspace{1cm} m_1 \hspace{1cm} m_2 \hspace{1cm} m_3$

Consideramos bloques de largo n

Pad(m) m_1 m_2 m_3 $10 \cdots 0$

Consideramos bloques de largo n

 $Pad(m) \hspace{0.5cm} |\hspace{0.5cm} m_1 \hspace{0.5cm} |\hspace{0.5cm} m_2 \hspace{0.5cm} |\hspace{0.5cm} m_3 \hspace{0.1cm} 10 \cdots 0 \hspace{0.1cm} |\hspace{0.5cm} |m| \hspace{0.1cm} \operatorname{mod} \hspace{0.1cm} 2^n$

¿Cuáles axiomas satisface esta función de padding?

Satisface los dos primeros axiomas fundamentales, pero pueden existir mensajes m_1 y m_2 tales que $|m_1| \neq |m_2|$ y los últimos bloques de m_1 y m_2 son iguales

Se debe tener que: $|m_1| \equiv |m_2| \mod 2^n$

• Si $|m_1| < |m_2|$, entonces $|m_2| > 2^n$

¿Cuáles axiomas satisface esta función de padding?

Si n=128, entonces $|m_2|>2^{128}$, y m_2 debe tener al menos 10^{38} caracteres

¿Es posible escribir un string de este tamaño?

• No: Se estima que la cantidad de datos digitales en 2025 es de 181 zettabytes, vale decir $181 \cdot 10^{21}$ bytes

Funciones de hash en la práctica: SHA-2

SHA-2

From Wikipedia, the free encyclopedia

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.

SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits:^[5] SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. SHA-256 and SHA-512 are novel hash functions computed with eight 32-bit and 64-bit words, respectively. They use different shift amounts and additive constants, but their structures are otherwise virtually identical, differing only in the number of rounds. SHA-224 and SHA-384 are truncated versions of SHA-256 and SHA-512 respectively, computed with different initial values. SHA-512/224 and SHA-512/256 are also truncated versions of SHA-512, but the initial values are generated using the method described in Federal Information Processing Standards (FIPS) PUB 180-4.

Funciones de hash en la práctica: SHA-2

SHA-2

From Wikipedia, the free encyclopedia

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. They are built using the Merkle-Damgård construction, from a one-way compression function itself built using the Davies-Meyer structure from a specialized block cipher.

SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits:^[5] SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. SHA-256 and SHA-512 are novel hash functions computed with eight 32-bit and 64-bit words, respectively. They use different shift amounts and additive constants, but their structures are otherwise virtually identical, differing only in the number of rounds. SHA-224 and SHA-384 are truncated versions of SHA-256 and SHA-512 respectively, computed with different initial values. SHA-512/224 and SHA-512/256 are also truncated versions of SHA-512, but the initial values are generated using the method described in Federal Information Processing Standards (FIPS) PUB 180-4.

Funciones de hash en la práctica: SHA-2

SHA-2 (Secure Hash Algorithm 2) es una familia de funciones de hash

- Se definen utilizando la construcción de Merkle– Damgård
- Las funciones de compresión son definidas utilizando la construcción de Davies-Meyer sobre un block cipher propio (no AES)

SHA-256

El número 256 se refiere al largo del hash

• SHA-256 es una función de $\{0,1\}^*$ en $\{0,1\}^{256}$

SHA-256 puede considerarse como el resultado de instanciar el parámetro de seguridad en el valor 256

 También son utilizadas las funciones de hash SHA-224, SHA-384 y SHA-512

SHA-256 es utilizada en Bitcoin

SHA-256: bloques y estados internos

SHA-256 considera bloques de 512 bits, y sus estados internos H_i son de 256 bits

La función de compresión es de la forma

$$h': \{0,1\}^{512} \times \{0,1\}^{256} \rightarrow \{0,1\}^{256}$$

SHA-256: función de padding

Se define utilizando las ideas descritas anteriormente, pero reservando los últimos 64 bits para el largo del mensaje m

SHA-256: función de padding

Se realiza los siguiente pasos sobre el mensaje m:

- 1. Se agrega un símbolo 1
- 2. Se agregan ℓ símbolos 0, donde ℓ es el menor número natural tal que $|m|+1+\ell\equiv 448\mod 512$
- 3. Se agrega $|m| \mod 2^{64}$

SHA-256: vector de inicialización

 H_0 se define como $H_0^1 H_0^2 H_0^3 H_0^4 H_0^5 H_0^6 H_0^7 H_0^8$, donde

• H_0^i tiene los primeros 32 bits de la parte decimal de la raíz cuadrada del i-ésimo número primo

Por ejemplo, H_0^1 tiene los primeros 32 bits de la parte decimal de $\sqrt{2}$:

 $H_0^1 = 01101010000010011110011001100111$