Principal Component Analysis

Machine Learning 1 — Lecture 6 23th April 2024

Robert Peharz Institute of Theoretical Computer Science Graz University of Technology

- So far, we considered linear models for supervised learning
- That is, we predicted some **target** y from an **input vector** x:
 - linear regression (for regression)
 - logistic regression (for classification)
 - both can be made non-linear, by replacing x with a non-linear transformation $\phi(x) \colon \mathbb{R}^D \mapsto \mathbb{R}^K$
- Today, we will use a linear model for an unsupervised learning technique: principal component analysis (PCA)
- Thus, we will have a data set

$$\mathcal{D} = \left\{ \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)} \right\}$$

of input vectors, but no target

 Goal of unsupervised learning: find "interesting structure" in the data PCA is a technique for **dimensionality reduction**.

Generally, dimensionality reduction means that we replace our data

$$\mathcal{D} = \left\{ \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)} \right\}$$

containing D-dimensional vectors with a new dataset

$$\mathcal{D}' = \left\{ \boldsymbol{z^{(1)}}, \boldsymbol{z^{(2)}}, \dots, \boldsymbol{z^{(N)}} \right\}$$

of K-dimensional vectors, $K \ll D$, where \mathcal{D}' captures "certain characteristics" of \mathcal{D} .

Replace
$$\mathcal{D} = \{ \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N)} \}$$
 with $\mathcal{D}' = \{ \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N)} \}$.

Potential target characteristics (qualitative):

- if $x^{(i)}$ and $x^{(j)}$ are close, then also $z^{(i)}$ and $z^{(j)}$ should be close (locality preserving)
- $z^{(i)}$ should allow for a good reconstruction of $x^{(i)}$, i.e. there is some decoder function $g(z^{(i)}) \approx x^{(i)}$
- \mathcal{D}' captures as much variance or information as possible of \mathcal{D}

Dimensionality Reduction cont'd

Applications of dimensionality reduction:

- lossy compression
- feature extraction (as input for other ML models)
- data visualization

The Iris Dataset

Recall the Iris dataset, containing 4 features:

```
"sepallength", "sepalwidth", "petallength", "petalwidth", "class" 5.1,\,3.5,\,1.4,\,0.2, Iris-setosa 4.9,\,3.0,\,1.4,\,0.2, Iris-setosa
```

7.0, 3.2, 4.7, 1.4, Iris-versicolor 6.4, 3.2, 4.5, 1.5, Iris-versicolor

6.3, 3.3, 6.0, 2.5, Iris-virginica 5.8, 2.7, 5.1, 1.9, Iris-virginica

5

The Iris Dataset

Example

How to simultaneously plot 4 input features?

Computing the **first two principal components** transforms the data into a 2-dimensional space, which can be nicely visualized:

Overview

Principal Component Analysis: Formulation

Computing the PCA

Example: MNIST Digits

Linear Discriminant Analysis

Linear Independence

Vectors $x_1, x_2, ..., x_K$ are called **linearly independent**, when none of them can be expressed as a linear combination of the other vectors. That is, for each $1 \le i \le K$ and any coefficients z_k

$$\mathbf{x}_i \neq \sum_{k=1, k \neq i}^K z_k \mathbf{x}_k$$

Linearly dependent vectors

Linearly independent vectors

Let $B = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_K)$ be a $D \times K$ -matrix with orthonormal vectors as columns, where K < D. The **linear subspace** spanned by B is defined as all possible linear combinations of B's columns:

$$oldsymbol{V} = \left\{ oldsymbol{v} = oldsymbol{B} oldsymbol{z} \mid oldsymbol{z} = (z_1, \dots, z_K)^T \in \mathbb{R}^K
ight\}$$

Let $B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_K)$ be a matrix with K orthonormal vectors as columns, spanning a K-dimensional subspace \boldsymbol{V} of \mathbb{R}^D .

We can **project** an arbitrary vector $\mathbf{x} \in \mathbb{R}^D$ onto \mathbf{V} by

- computing the projection coefficients $B^T x =: z \in \mathbb{R}^K$
- computing the **projection**/reconstruction $Bz =: \hat{x} \in V$
- thus, $\hat{\mathbf{x}} = \underbrace{\mathbf{B}\mathbf{B}^T}_{\text{projection matrix}} \mathbf{x}$
- \hat{x} is the **closest point** in V (in Euclidean distance) to x
- the **residual** $r = x \hat{x}$ is always orthogonal to \hat{x}

Idea of PCA: Learn an "interesting" subspace ${m V}$.

Equivalently, learn a $D \times K$ -matrix B of orthonormal vectors capturing K "interesting directions."

Principal Component Analysis:

Formulation

Data

PCA is an **unsupervised** technique, i.e. we have a training dataset of feature vectors

$$\mathcal{D} = \{ \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)} \}$$

We can interpret the data as a "point cloud" in \mathbb{R}^D :

Step 1: Centering the Data

For PCA we assume that the average of the data is $\bar{x} = 0$:

$$\bar{\mathbf{x}} := \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} = 0$$

If not, we simply remove the average from each training example:

$$\mathbf{x}^{(i)} \leftarrow \mathbf{x}^{(i)} - \bar{\mathbf{x}}$$

This effectively moves the center of the point cloud to the origin.

Thus, we will w.l.o.g. assume that $\bar{x} = 0$.

Goal of PCA

- Find an "interesting subspace" **V** of the data
- This amounts to finding a matrix $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_K)$ of K orthonormal basis vectors
- The basis vectors \boldsymbol{b}_k define K "interesting directions"
- K is a hyper-parameter selected by the user
- For now, let's consider the special case K=1, i.e. we want to find the "most interesting direction" in the data
- How to define "interestingness"?

Which of the three directions \boldsymbol{b} , \boldsymbol{b}' , \boldsymbol{b}'' is the most "interesting" one? Why?

Interesting Directions?

b' is the direction where

- 1. the variance of the projected data is maximal
- 2. the sum of squared projection errors is minimal

Let $\mathcal{D} = \{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)} \}$ be a centered training set of D-dimensional vectors.

Among all unit vectors, let b_1 be the unit vector where

• the variance of the projected data $\text{var}\left(\left\{z_1^{(1)}, z_1^{(2)}, \dots, z_1^{(N)}\right\}\right) \text{ is maximal, where }$ $z_1^{(i)} = \boldsymbol{b}_1^T \boldsymbol{x}^{(i)}$

or, equivalently, where

• the sum of squared projection errors

$$\sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \hat{\boldsymbol{x}}^{(i)}\|_{2}^{2} = \sum_{i=1}^{N} \|\boldsymbol{x}^{(i)} - \boldsymbol{b}_{1} z_{1}^{(i)}\|_{2}^{2}$$

is minimal.

The vector \mathbf{b}_1 is called the **first principal direction** of dataset \mathcal{D} .

The values $\left\{z_1^{(1)}, z_1^{(2)}, \dots, z_1^{(N)}\right\}$ are called the **first principal component** (scores) of \mathcal{D} .

- the scores $z_1^{(1)}, z_1^{(2)}, \dots, z_1^{(N)}$ are a 1-dimensional representation of the original samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}$
- the vector $\hat{\mathbf{x}}^{(i)} = \mathbf{b}_1 z_1^{(i)} = \mathbf{b}_1 \mathbf{b}_1^T \mathbf{x}^{(i)}$ is the projection of $\mathbf{x}^{(i)}$ onto \mathbf{b}_1 (or, the best reconstruction of $\mathbf{x}^{(i)}$ given $z_1^{(i)}$)
- b₁ is the direction in which the data varies the most, or the direction of highest energy – often, although not always, this direction carries the "most useful information" in the data

- the equivalence between maximal variance and minimal projection/reconstruction error (not proven here) is an example of duality, which occurs often in optimization
- by subtracting the projections $\hat{x}^{(i)}$ from the original samples $x^{(i)}$ and finding the principal component in the **residual** vectors $r^{(i)} = x^{(i)} \hat{x}^{(i)}$, one finds the second principal component, and so forth
- we will see in the following, however, that is is actually quite simple to find the first K principal components in one step

Computing the PCA

- Assume that the dataset $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$ is already centered, i.e. $\bar{\mathbf{x}} = \mathbf{0}$
- We want to find the first principal direction b₁
- To simplify notation, we denote it by **b**, dropping the subscript

Problem Setup

The PCA scores are given as

$$z^{(i)} = \boldsymbol{b}^T \boldsymbol{x}^{(i)}$$

• We wish to maximize the **empirical variance**

$$var(z^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} (z^{(i)})^2 = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{b}^T \boldsymbol{x}^{(i)}) (\boldsymbol{x}^{(i)}^T \boldsymbol{b})$$

• We require that **b** is a **unit vector**, i.e.

$$b^T b = 1, \qquad \sum_{i=1}^{D} b_i^2 = 1$$

(note that if b was not constrained to be a unit vector, $var(z^{(i)})$) would grow to infinity with the norm of b)

Problem Setup

We can transform the problem as follows:

$$\max_{\boldsymbol{b}^{T}\boldsymbol{b}=1} \operatorname{var}(z^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} z^{(i)} z^{(i)}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{b}^{T} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)}^{T} \boldsymbol{b}$$

$$= \boldsymbol{b}^{T} \underbrace{\left(\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)}^{T}\right)}_{=:\text{covariance matrix } C} \boldsymbol{b}$$

Covariance Matrix

The (empirical) **covariance matrix** C is a $D \times D$ matrix containing all empirical (co-)variances in the data:

$$C = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)^{T}} = \frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X}.$$

(Recall that X is the design matrix, whose rows are the N training examples).

- the diagonal element C_{dd} is the **empirical variance** of the d^{th} dimension: $\frac{1}{N} \sum_{i} x_{d}^{(i)} x_{d}^{(i)}$
- the off-diagonal element C_{de} is the **empirical co-variance** between d^{th} and e^{th} dimension: $\frac{1}{N} \sum_{i} x_{d}^{(i)} x_{e}^{(i)}$
- C is always a symmetric matrix

PCA: Optimization Problem

With the covariance matrix, the PCA problem can compactly be written as

$$\max_{\boldsymbol{b}^{\mathsf{T}}\boldsymbol{b}=1} \; \boldsymbol{b}^{\mathsf{T}} C \, \boldsymbol{b}$$

What is the optimal \boldsymbol{b} here? Evidently, \boldsymbol{b} must be a vector somehow connected with C.

- Key and solution to the PCA problem: eigen decomposition of C
- For any matrix C, when it holds for some vector \mathbf{v} and a scalar λ that

$$C\mathbf{v} = \lambda \mathbf{v}$$

then we call ${\bf v}$ an eigen vector of ${\bf C}$ and ${\bf \lambda}$ its corresponding eigen value

 Without loss of generality, we assume that eigen vectors are normalized

Eigen Decomposition of Symmetric Matrix

For any **symmetric** $D \times D$ -matrix C, there are D **orthonormal** eigen vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_D$ and D sorted eigen values $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_D$, such that C can be written as

$$C = VEV^T$$

where $V = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_D)$ is an **orthonormal matrix** and E is diagonal:

$$E = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_D \end{pmatrix}$$

For covariance matrices it further holds that all $\lambda_i \geq 0$; they are so-called **positive definite matrices**.

PCA Solution

Using the eigen decomposition we can write the PCA problem as

$$\max_{\boldsymbol{b}^T \boldsymbol{b} = 1} \; \boldsymbol{b}^T C \, \boldsymbol{b} = \underbrace{\boldsymbol{b}^T V}_{\boldsymbol{a}^T} \; E \; \underbrace{V^T \, \boldsymbol{b}}_{\boldsymbol{a}} = \sum_{i=1}^D \lambda_i a_i^2$$

- Since **b** is a unit vector and V is orthonormal, also **a** is a unit vector, i.e. $\sum_{i=1}^{D} a_i^2 = 1$
- Evidently, $a_i^2 = (\mathbf{v}_i^T \mathbf{b})^2 \ge 0$
- Thus, the values a_i^2 are **non-negative** and **sum to one**
- The variance is

$$\lambda_1 a_1^2 + \lambda_2 a_2^2 + \dots + \lambda_D a_D^2$$

When is this maximal?

PCA Solution cont'd

• The variance becomes maximal when $a_1^2 = 1$:

$$\lambda_1 1 + \lambda_2 0 + \cdots + \lambda_D 0$$

- Since $a_i = (\mathbf{v}_i^T \mathbf{b})$, this exactly happens if $\mathbf{b} = \mathbf{v}_1!$
- Thus, the first eigen vector v₁ of the covariance matrix is the first principal direction b₁
- The corresponding eigen value λ_1 is the variance which is "captured" in this direction (explained variance)

PCA Solution cont'd

- More generally, the first K eigen vectors v₁, v₂,..., v_K are the the first K principal directions
- The sum of their corresponding eigen values is the variance explained by the first *K* principal components:

"explained variance"
$$=\sum_{i=1}^K \lambda_i$$

Example: MNIST Digits

- collection of 60,000 images of handwritten digits
- ullet images are 28 imes 28 pixels, with 256 gray scales
- white = 0, black = 255

Example

By following a fixed pixel order (e.g. row-wise) we can convert each image into a vector. By "uprolling" the vector, we get back an image.

The first step is the center the data, i.e. subtract the average vector (image) from each sample:

$$\bar{\mathbf{x}} = \frac{1}{60,000} \sum_{i=1}^{60,000} \mathbf{x}^{(i)}, \quad \forall i: \mathbf{x}^{(i)} \leftarrow \mathbf{x}^{(i)} - \bar{\mathbf{x}}$$

Step 2: Computing the Covariance Matrix

Step 3: Compute the Eigen Decomposition

$$V, E = eigen(C)$$

The first K columns of V contain the first K principal directions. We store them in a 784 \times K matrix B.

Note: Some implementations return the eigenvalues in arbitrary order. In this case, sort them in descending order and sort the columns of V correspondingly.

The first few principal directions

black pixels correspond to positive values, white pixels correspond to negative values

The matrix B projects the data into a K-dimensional subspace:

$$Z = XB$$

$$K = 2$$

$$K = 3$$

Reconstructions of four samples (first column) with 1, 10, 50, 100, 200 and 500 PCA components:

Computing Reconstructions

Example

Reconstruction error (measured in mean squared error) and explained variance $(\sum_i \lambda_i)$ over K:

 \rightarrow can be used to select K

Given: dataset $\mathcal{D} = \{ \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)} \}$, parameter K

- 1. Center data
 - $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$
 - for all $i: \mathbf{x}^{(i)} \leftarrow \mathbf{x}^{(i)} \bar{\mathbf{x}}$
- 2. Compute covariance matrix

$$C = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} \boldsymbol{x}^{(i)}^{T} = \frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X}$$

- 3. Compute eigen decomposition: $V, E \leftarrow eigen(C)$
- 4. Let B be the matrix consisting of the first K columns of V
- 5. return B
- The principal component scores (low-dimensional features) are then given as Z = XB (N × K-matrix)
- Projections/reconstructions are given as $\hat{\mathbf{X}} = \mathbf{Z}B^T$
- Add \bar{x} again to the reconstructions

Linear Discriminant Analysis

Supervised Dimensionality Reduction

- PCA is unsupervised, i.e. there are no targets
- If one additionally has target values, one might use them to guide dimensionality reduction
- A classical method is Fisher's linear discriminant analysis (LDA), using class information

Separating Classes

- Let $\mathcal{D}=\left\{(\mathbf{x}^{(i)},y^{(i)})\right\}_{i=1}^N$ be a binary classification dataset, i.e. each $y^{(i)}\in\{-1,1\}$
- We want to learn a linear function $z = f(x) = w^T x$ projecting *D*-dimensional vectors onto the real line
- This function should allow us to separate the two classes well
- How to select w?

Note: $\|\mathbf{w}\|$ is an arbitrary scaling, hence we can assume $\|\mathbf{w}\| = 1$.

Separating the Means?

First idea: Maximize the distance between projected means

 Let m⁻ and m⁺ be the means of the negative and positive classes, respectively:

$$m^- = \frac{1}{N^-} \sum_{i: y^{(i)} = -1} \mathbf{x}^{(i)} \qquad m^+ = \frac{1}{N^+} \sum_{i: y^{(i)} = +1} \mathbf{x}^{(i)}$$

Here N^- and N^+ are the number of positive and negative samples, respectively.

• Let m^- and m^+ be the projected means, i.e.

$$m^- = \boldsymbol{w}^T \boldsymbol{m}^- \qquad m^+ = \boldsymbol{w}^T \boldsymbol{m}^+$$

• It can be shown, that $\mathbf{w} \propto \mathbf{m}^- - \mathbf{m}^+$, i.e. the vector pointing from one mean to the other, maximizes the distance between the projected means \mathbf{m}^- and \mathbf{m}^+

Separating the Means?

- The idea works to a certain extent, but apparently we are not doing a perfect job
- Considerable overlap between the classes in projected space
- The problem is that we ignored the covariance structure of the point clouds

- Let $z^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)}$ be the i^{th} projected sample
- Let again m^- and m^+ be the projected means
- Further, let v⁻ and v⁺ be the within-class variances of the projected data:

$$v^{-} = \frac{1}{N^{-}} \sum_{i: y^{(i)} = -1} \left(z^{(i)} - m^{-} \right)^{2} \quad v^{+} = \frac{1}{N^{+}} \sum_{i: y^{(i)} = +1} \left(z^{(i)} - m^{+} \right)^{2}$$

• The Fisher criterion is

$$J(\mathbf{w}) = \frac{(m^- - m^+)^2}{v^- + v^+}$$

- Increasing J(w)
 - increases the quadratic distance between m^- and m^+
 - and/or decreases variance (spread) within each class

Linear Discriminant Analysis (LDA)

- Fisher criterion J(w) has an analytic maximum, denoted as linear discriminant analysis (LDA)
- Let C⁻ and C⁺ be the covariance matrices of the negative and positive class in the original space

$$C^{-} = \frac{1}{N^{-}} \sum_{i: y^{(i)} = -1} (\mathbf{x}^{(i)} - \mathbf{m}^{-}) (\mathbf{x}^{(i)} - \mathbf{m}^{-})^{T}$$

$$C^{+} = \frac{1}{N^{+}} \sum_{i: y^{(i)} = +1} (\mathbf{x}^{(i)} - \mathbf{m}^{+}) (\mathbf{x}^{(i)} - \mathbf{m}^{+})^{T}$$

• Then the maximum of J(w) is

$$\mathbf{w}_{LDA} \propto (C^- + C^+)^{-1} (\mathbf{m}^- - \mathbf{m}^+)$$

In contrast to the previous solution, LDA perfectly separates the two classes in this example:

Linear Discriminant Analysis (LDA)

- Similar to PCA, LDA uses covariance structure to determine a linear subspace
- Main difference is that PCA is unsupervised, while LDA is supervised
- ullet LDA can be generalized to many classes as well, yielding a $(|\mathcal{C}|-1)$ -dimensional subspace