0.1 矩阵的迹

命题 0.1 (矩阵迹的性质)

设A,B是n阶矩阵,则有:

- 1. (线性)tr(A+B) = tr(A) + tr(B), tr(kA) = ktr(A);
- 2. (对称性)tr(A') = tr(A);
- 3. (交换性)tr(AB) = tr(BA).

证明 根据矩阵迹的定义及矩阵乘法的定义容易验证.

命题 0.2 (矩阵迹的刻画)

设 K 为数域, $f: M_n(K) \to K$ 为一个映射, 且满足

- (1) $\forall A, B \in M_n(K), f(A + B) = f(A) + f(B);$
- $(2) \ \forall k \in K, A \in M_n(K), f(kA) = kf(A);$
- (3) $\forall A, B \in M_n(K), f(AB) = f(BA);$
- (4) $f(I_n) = n$.

求证:f 就是迹映射,即 f(A) = tr(A) 对一切 $\mathbb{F} \perp n$ 阶矩阵 A 成立.

室记 这个命题给出了迹的刻画,它告诉我们迹函数由线性、交换性和正规性(即单位矩阵处的取值为其阶数)唯一决定。

证明 设 E_{ii} 是 n 阶基础矩阵. 由 (1) 和 (4), 有

$$n = f(I_n) = f(E_{11} + E_{22} + \dots + E_{nn}) = f(E_{11}) + f(E_{22}) + \dots + f(E_{nn}).$$

又由 (3), 有

$$f(E_{ii}) = f(E_{ii}E_{ii}) = f(E_{ii}E_{ii}) = f(E_{ii}),$$

所以 $f(E_{ii}) = 1(1 \le i \le n)$. 另一方面, 若 $i \ne j$, 则

$$f(E_{ij}) = f(E_{i1}E_{1j}) = f(E_{1j}E_{i1}) = f(O) = f(O \cdot I_n) = 0 \cdot f(I_n) = 0.$$

设n 阶矩阵 $A = (a_{ij})$,则

$$f(A) = f\left(\sum_{i,j=1}^{n} a_{ij} E_{ij}\right) = \sum_{i,j=1}^{n} a_{ij} f(E_{ij}) = \sum_{i=1}^{n} a_{ii} = \text{tr}(A).$$

例题 **0.1** 求证: 不存在 n 阶矩阵 A, B, 使得 $AB - BA = kI_n(k \neq 0)$.

证明 用反证法证明. 若存在 n 阶矩阵 A, B 满足条件 $AB - BA = kI_n(k \neq 0)$, 则

$$kn = \operatorname{tr}(kI_n) = \operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = 0$$

矛盾.

命题 0.3

设 $A \neq n$ 阶矩阵,P 是同阶可逆阵, 求证: $tr(P^{-1}AP) = tr(A)$, 即相似矩阵具有相同的迹.

证明 因为 tr(AB) = tr(BA), 故 $tr(P^{-1}AP) = tr(APP^{-1}) = tr(A)$.

命题 0.4

- 1. 设 n 阶实矩阵 A 适合 A' = -A, 如果存在同阶实矩阵 B, 使得 AB = B, 则 B = O;
- 2. 设 n 阶复矩阵 A 适合 $\overline{A}' = -A$, 如果存在同阶复矩阵 B, 使得 AB = B, 则 B = O.

证明

1. 在等式 AB = B 两边同时左乘 B' 可得

$$B'AB = B'B$$
.

上式两边同时转置并注意到 A' = -A, 可得

$$B'B = (B'B)' = (B'AB)' = B'A'B = -B'AB = -B'B,$$

从而有 B'B = O. 两边同时取迹, 由零矩阵的充要条件可得 B = O.

2. 证明与1类似.

命题 0.5

- 1. 设 $A = (a_{ij})$ 为 $m \times n$ 实矩阵, 则 $tr(AA') \ge 0$, 等号成立当且仅当 A = O.
- 2. 设 $A = (a_{ii})$ 为 $m \times n$ 复矩阵, 则 $tr(A\overline{A}') \ge 0$, 等号成立当且仅当 A = O.

证明 1. 设 $A = (a_{ij})$ 为 $m \times n$ 实矩阵, 则通过计算可得

$$tr(AA') = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2 \ge 0,$$

等号成立当且仅当 $a_{ij}=0$ ($1\leqslant i\leqslant m,1\leqslant j\leqslant n$), 即 A=O.

2. 设 $A = (a_{ij})$ 为 $m \times n$ 复矩阵, 则通过计算可得

$$\operatorname{tr}(A\overline{A}') = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \geqslant 0,$$

等号成立当且仅当 $a_{ij} = 0 (1 \leq i \leq m, 1 \leq j \leq n)$, 即 A = O.

例题 **0.2** 已知 A, B 均为 n 阶实矩阵, 且 $AB - BA = A^{T} + B^{T}$, 求 A + B.

证明 由条件可得

$$\operatorname{tr}\left[(A+B)(A+B)^{T}\right] = \operatorname{tr}\left(A^{2}B - ABA + BAB - B^{2}A\right) = 0,$$

故由命题 0.5知 A + B = O.

命题 0.6

设 A 为 n 阶实矩阵, 求证: $tr(A^2) \leq tr(AA')$, 等号成立当且仅当 A 是对称阵.

证明 根据命题 0.5, 再由迹的线性、对称性、交换性和正定性可得

$$0 \le \operatorname{tr}((A - A')(A - A')')$$

=\text{tr}((A - A')(A' - A)) = \text{tr}(AA' - A^2 - (A')^2 + A'A)
=2\text{tr}(AA') - 2\text{tr}(A^2),

故要证的不等式成立. 若上述不等式的等号成立,则由迹的正定性可知 A - A' = O,即 A 为对称阵. 若已知 A 为对称阵,则 $\operatorname{tr}(AA') = \operatorname{tr}(A^2)$ 显然成立.

例题 0.3 设 A_1, A_2, \dots, A_k 是实对称阵且 $A_1^2 + A_2^2 + \dots + A_k^2 = O$, 证明: 每个 $A_i = O$.

证明 对题设中的等式两边同时取迹,可得

$$0 = \operatorname{tr}(O) = \operatorname{tr}(A_1^2 + A_2^2 + \dots + A_k^2) = \operatorname{tr}(A_1 A_1') + \operatorname{tr}(A_2 A_2') + \dots + \operatorname{tr}(A_k A_k').$$

又由于 $\operatorname{tr}(A_i A_i') \ge 0$,从而只可能是 $\operatorname{tr}(A_i A_i') = 0$ (1 $\le i \le k$),再次由零矩阵的充要条件可得 $A_i = O$ (1 $\le i \le k$).

命题 0.7

设 A, B 是两个 n 阶矩阵, 使得 tr(ABC) = tr(CBA) 对任意 n 阶矩阵 C 成立, 求证: AB = BA.

注 根据矩阵迹的性质不能得到 tr(ABC) = tr(BAC), 只能得到 tr(ABC) = tr(CAB).

证明 设 $AB = (d_{ij}), BA = (e_{ij}), 令 C = E_{kl} (1 \leq k, l \leq n), 则$

$$tr(ABC) = d_{lk}, tr(CBA) = e_{lk},$$

因此 $d_{lk} = e_{lk} (1 \leq k, l \leq n)$, 即有 AB = BA.

 $\dot{\mathbf{z}}$ 注若 A,B 是实 (复) 矩阵, 我们还可以通过迹的正定性来证明结论. 事实上, 由迹的交换性和线性可得 $\operatorname{tr}((AB-BA)C)=0$, 令 C 为 AB-BA 的转置 (共轭转置), 再由零矩阵的充要条件即得结论.

例题 0.4 若 n 阶实方阵 A 满足 $AA' = I_n$, 则称为正交矩阵. 证明: 不存在 n 阶正交矩阵 A, B 满足 $A^2 = cAB + B^2$, 其中 c 是非零常数.

证明 用反证法, 设存在 n 阶正交阵 A, B, 使得 $A^2 = cAB + B^2(c \neq 0)$. 在等式两边同时左乘 A', 右乘 B', 可得 $AB' = cI_n + A'B$, 从而 $cI_n = A'B - AB'$. 两边同时取迹, 可得 $0 \neq nc = tr(cI_n) = tr(A'B) - tr(AB') = tr((A'B)') - tr(AB') = 0$, 矛盾.

例题 **0.5** 设 A, B 为 n 阶实对称阵, 证明: $tr((AB)^2) \le tr(A^2B^2)$, 并求等号成立的充要条件.

证明 证法一: 由命题 0.6, 再结合 A,B 的对称性可得

$$\operatorname{tr}\left((AB)^2\right) \leqslant \operatorname{tr}\left((AB)\left(AB\right)'\right) = \operatorname{tr}\left(ABBA\right) = \operatorname{tr}\left(A^2B^2\right).$$

等号成立当且仅当 AB 也为实对称矩阵, 即 AB = B'A' = BA.

证法二:设 P 为正交矩阵, 使得 $P'AP=\operatorname{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}$. 注意到问题的条件和结论在同时正交相似变换 $A\mapsto P'AP,B\mapsto P'BP$ 下不改变, 故不妨从一开始就假设 A 为正交相似标准型 $\operatorname{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}$. 设 $B=(b_{ij})$, 则经计算可知

$$\begin{split} &\operatorname{tr}(A^2B^2) - \operatorname{tr}((AB)^2) = \sum_{i,j=1}^n \lambda_i^2 b_{ij}^2 - \sum_{i,j=1}^n \lambda_i \lambda_j b_{ij}^2 \\ &= \sum_{1 \leqslant i < j \leqslant n} (\lambda_i^2 + \lambda_j^2 - 2\lambda_i \lambda_j) b_{ij}^2 = \sum_{1 \leqslant i < j \leqslant n} (\lambda_i - \lambda_j)^2 b_{ij}^2 \geqslant 0, \end{split}$$

且等号成立当且仅当 $\lambda_i b_{ij} = \lambda_j b_{ij} (1 \leq i < j \leq n)$, 这也当且仅当 $\lambda_i b_{ij} = \lambda_j b_{ij} (1 \leq i, j \leq n)$, 即当且仅当 AB = BA成立.