METAHEURISTICS

INF273

#3: MetaHeuristics Components

AHMAD HEMMATI

Optimization Group
Dept. of Informatics
University of Bergen

Spring Semester 2022

AGENDA

Metaheuristics components:

- Solution representation
- Intensification
- Diversification
- Termination (Stopping Criteria)

METAHEURISTICS

- Meta-heuristics can be considered as an efficient way to produce acceptable solutions by trial and error/learn to a complex problem in a reasonably practical time.
- The complexity of the problem of interest makes it impossible to search every possible solution or combination
- The aim is to find a good feasible solution in an acceptable time scale.
- There is no guarantee that the global best solutions can be found

METAHEURISTICS

- The idea is to have an efficient and practical algorithm that works most of the time and is able to produce good quality solutions.
- Using smart components increase the chance of getting good quality solutions.
- Among the found quality solutions, it is expected that some of them are nearly optimal, though there is often no guarantee for such optimality

- In order to tackle a problem using a Metaheuristic, candidate solutions must be encoded in a suitable form
- Representation of complex objects by a vector (or more) of simple components
 - Binary bit strings
 - Ordered lists (permutation)
 - Continuous variables

TSP (Binary)

Binary Matrix

	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	0	1	0	0
3	1	0	0	0	0	0
4	0	0	0	0	1	0
5	0	0	0	0	0	1
6	0	0	1	0	0	0

Ahmad Hemmati

TSP (Binary)

- Binary Matrix
- Easy to violate the legality

	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	0	1	0	0
3	0	0	0	0	1	0
4	1	0	0	0	0	0
5	0	0	0	0	0	1
6	0	0	1	0	0	0

TSP (Permutation)

TSP (Permutation)

1 2 5 4 6 3

Knapsack

Ahmad Hemmati Page 1

N queens

- No two queens threaten each other.
- Thus, a solution requires
 that no two queens share
 the same row, column, or
 diagonal

N queens

	a	b	c	d	e	f	g	h
8	0	0	0	0	1	0	0	0
7	0	1	0	0	0	0	0	0
6	0	0	0	1	0	0	0	0
5	0	0	0	0	0	0	1	0
4	0	0	1	0	0	0	0	0
3	0	0	0	0	0	0	0	1
2	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0

Ahmad Hemmati

N queens

a	b	c	d	e	f	g	h
1	7	4	6	8	2	5	3

Ahmad Hemmati Page 13

SINGLE MACHINE

- ATM queue
- Small shops with one cashier

Page 14

Single machine

2 4 1 5 3

PARALLEL MACHINES

Machines in parallel

- There are several machines in parallel.
- Shops with multiple cashier
- Check-in at airport
- Bank services

Page 16

Parallel machines

Parallel machines

Vehicle Routing Problem (VRP)

Vehicle Routing Problem (VRP)

Vehicle Routing Problem (VRP)

4	3	6	9	0	7	5	2	1	0	10	12	14	16	15	13	11	8
---	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	---

Pickup and delivery

Request: Origin, Destination, Size, Time windows at origin and destination

Pickup and delivery

Ahmad Hemmati Page

Pickup and delivery

Pickup and delivery

University of Bergen

Ahmad Hemmati Page

Page 26

INITIAL SOLUTION

- Random solution
- Construction algorithms
- Most of the time a good feasible solution helps
- Sometimes we get into trouble at the beginning
 - ➤ Hard to find a feasible solution
 - Premature convergence

DIVERSIFICATION AND INTENSIFICATION

In principle, for a metaheuristic algorithm to be efficient, it has to have some special capabilities:

- Be able to generate new solutions that can usually be more likely to improve the previous/existing solutions
- Be able to cover most important search areas where the global optimum may lie.
- Be able to escape any local optimum

DIVERSIFICATION AND INTENSIFICATION

- Two major components of any metaheuristic algorithms are: intensification and diversification, or exploitation and exploration
- Diversification means to generate diverse solutions so as to explore the search space on a global scale
- Intensification means to focus the search in a local region knowing that a current good solution is found in this region.
- A good balance between intensification and diversification will usually ensure that global optimality is achievable.
- The selection of the best (~intensification) ensures that solutions will converge to the optimum, while diversification via randomization allows the search to escape from local optima and, at the same time, increases the diversity of solutions.

DIVERSIFICATION AND INTENSIFICATION

Intensification

Ahmad Hemmati

DIVERSIFICATION VS. INTENSIFICATION

- The fine balance between these two components is very important to the overall efficiency and performance of an algorithm.
 - Too little exploration and too much exploitation could cause the system to be trapped in local optima, which makes it very difficult or even impossible to find the global optimum. → Local search
 - Too much exploration but too little exploitation, it may be difficult for the system to converge and thus slows down the overall search performance → Blind random search
 - Too much exploration and too much exploitation → Full search, time consuming
 - Too little exploration and too little exploitation \rightarrow Algorithm is lazy!

TERMINATION

The algorithm ends when it satisfies the stopping criteria

- Fixed number of iterations reached
- Allocated budget (computation time/money) reached
- After some non-improving iterations
- Manual inspection
- •
- Combinations of the above

NEXT LECTURE

LECTURE #4:

Introducing Some COPs

Ahmad Hemmati Page 33