Computer Science for Practicing Engineers

Phương pháp tham lam

TS. Huỳnh Bá Diệu

Email: dieuhb@gmail.com

Phone: 0914146868

Phương pháp tham lam (greedy)

Nội dung:

- Tại sao phải dùng thuật toán tham lam?
- 2. Ưu điểm của thuật toán tham lam
- 3. Hạn chế
- 4. Một số bài toán sử dụng thuật toán tham lam

Cho n thành phố, giữa các thành phố có các chuyển bay nối với nhau.

Một người du lịch xuất phát từ thành phố A, ông ta muốn qua tất cả các thành phố, mỗi thành phố chỉ qua 1 lần, rồi quay lại nơi xuất phát, sao cho tổng chi phí là ít nhất.

Oabcda: (17)
2 acaba: 108

3 a b d ca: 108, acoda 141

A 20 B 34 C D D

, acobda gadeba. (3) enhocas 141

Phương pháp tham lam: Bài toán người du lịch

Giả sử có các thành phố là: Hà Nội, Băng Cốc, Kualalumpur, Singapore, Đài Bắc.

Có bao nhiêu cách để đi???

- Hà Nội, Băng Cốc, Kualalumpur, Singapore, Đài Bắc, Hà Nôi
- Hà Nội, Băng Cốc, Kualalumpur, Đài Bắc, Singapore, Hà Nội
- 3. Hà Nội, Băng Cốc, Đài Bắc, Singapore,, Kualalumpur, Hà Nội
- 4. Hà Nội, Băng Cốc, Đài Bắc, Kualalumpur, Singapore, Hà Nôi
- 5. Hà Nội, Băng Cốc, Singapore, Kualalumpur, Đài Bắc, Hà Nôi

.....và nhiều cách khác

Phương pháp tham lam: Bài toán người du lịch

Giả sử có 100 thành phố thì có bao nhiêu cách???

Phương pháp vét cạn:

Liệt kê tất cả các chu trình xuất phát từ A sau đó kiểm tra.

Độ phức tạp cho cách này là (n-1)!

Nếu n lớn thì không giải quyết được.

Giải pháp:

Dùng phương pháp tham lam

Phương pháp tham lam: Bài toán người du lịch

Tại mỗi đỉnh, chọn đỉnh có chi phí nhỏ nhất để đi đến!

$$A \rightarrow B \rightarrow D \rightarrow E \rightarrow C \rightarrow H \rightarrow F \rightarrow G \rightarrow A$$

Độ phức tạp là O(n²)

Chọn đường đi có chi phí nhỏ nhất để đi!!!

→Giải pháp không tối ưu

Cho biết trường hợp tối Ưu cho bài toán này???

Phương pháp tham lam :Tô màu đồ thị

Cho đồ thị gồm có n đỉnh và m cạnh. Hãy tô các đỉnh đồ thị bằng số màu ít nhất, sao cho hai đỉnh kề nhau thì màu không được giống nhau

Bai and tinh

deg(A)=3 deg(B) = 5 deg(P) = 2

Thuật toán tô màu Welsh – Powell

- 1. Find the valence for each vertex.
- List the vertices in order of descending valence (you can break ties any way you wish).
- 3. Color the first vertex in the list (the vertex with the highest valence) with color 1.
- 4. Go down the list and color every vertex not connected to the colored vertices above the same color. Then cross out all colored vertices in the list.
- Repeat the process on the uncolored vertices with a new color always working
 in descending order of valence until all the vertices have been colored.

Phương pháp tham lam: Tô màu đồ thị

Thuật toán

- 1. Sắp xếp các đỉnh theo bậc giảm dần
- 2. Mau=0;
- 3. Trong khi các đỉnh chưa được tô màu hết
 - mau++;
- Chọn đỉnh chưa được tô màu trong danh sách đỉnh theo thứ tự bậc từ cao đến thấp.
- Tô bằng màu hiện tại cho các đỉnh chưa được tô màu sao cho các đỉnh được chọn tô không kề nhau.

Problem 1

Given an array F with size n. Assume the array content F[i] indicates the length of the i_{th} file and we want to merge all these files into one single file. Check whether the following algorithm gives the best solution for this problem or not?

8	7	3	5	11	9	4	2	7	6

Greedy Method Examples

Algorithm 1: Merge the files contiguously. That means select the first two files and merge them. Then select the output of the previous merge and merge with the third file, and keep going...

Cho biết số lần đọc ghi file theo thuật toán này???

Algorithm 2: Merge the files in pairs. That means after the first step, the algorithm produces the n/2 intermediate files. For the next step, we need to consider these intermediate files and merge them in pairs and keep going.

Cho biết số lần đọc ghi file theo thuật toán này???

Greedy Method Examples

Problem 2

In Problem-1, what is the best way to merge all the files into a single file?

Solution: Using the Greedy algorithm we can reduce the total time for merging the given files.

8 7 3 5 11 9 4 2 7 6

Algorithm (Using the Greedy)

- 1. Store file sizes in a priority queue. The key of elements are file lengths.
- 2. Repeat the following until there is only one file:
- a. Extract two smallest elements X and Y.
- b. Merge X and Y and insert this new file in the priority queue.

Greedy Method Examples

Problem 2

The given array is: $F = \{10,5,100,50,20,15\}$ After sorting $\{5,10,15,20,50,100\}$.

Cho biết chi phí khi trộn là bao nhiêu?

Problem 2

Ex: The given array is: $F = \{10,5,100,50,20,15\}$

After sorting {5,10,15,20,50,100}.

We need to merge the two smallest files (5 and 10 size files) and as a result we get the following list of files: {15,15,20,50,100}

Similarly \rightarrow {20,30,50,100} \rightarrow {50,50,100} \rightarrow {100,100} \rightarrow {200}

The total cost of merging = Cost of all merging operations = 15 + 30 + 50 + 100 + 200 = 395.

Bài tập về nhà

Viết chương trình trộn n file số nguyên đã được sắp xếp tăng dần thành một file theo định dạng kiểu tham số dòng lệnh:

merge input1 input2 ... inputn output

Ví dụ:

merge ip1.txt ip2.txt ip3.txt out.txt

Bài tập về nhà

```
int main() {
  priority_queue<int, vector<int>, greater<int> > mypq;
  int stt=0, x,y;
  cout<<" nhap kich thuoc cac file, dung bam so 0:";
  while(1) {
     cout<<"\n nhap kich thuoc file thu "<<++stt<<":";     cin>>x;
     if(x==0) break; else mypq.push(x);
}
  // code thứ tự trộn các file
}
```

```
std::cout <<"\n Tron cac file...\n";
int d=0;
while (!mypq.empty())
{
    x=mypq.top(); mypq.pop();
    if(mypq.empty())
    {
        cout<<"\n Da tron xong cac file!!!";
        cout<<"\n ======== Tong so lan doc file la : "<<d<<" ========";
    }
    else
    {
        y=mypq.top(); mypq.pop();
        cout<<"\n Tron hai file co kich thuoc la "<<x<<" va "<<y;
        cout<<"\n ------ so lan doc file la "<< (x+y);
        mypq.push(x+y);
        d= d+ x+y;
    }
}
return 0;</pre>
```

Bài tập nhóm 3

Cho biết số lần dịch chuyển viên bi ít nhất khi đảo chiều 2 loại bi trên khay.

Bài tập nhóm 3

Cho biết số lần dịch chuyển viên bi ít nhất trong các trường hợp dưới đây???

Bài tập nhóm 3

Cho biết số lần dịch chuyển viên bi ít nhất trong các trường hợp dưới đây???

Bài tập nhóm 3

Nhập n, cho biết số lần di chuyển ít nhất là bao nhiêu? Minh hoạ các bước di chuyển.

Tài liệu đọc thêm

- https://brilliant.org/wiki/greedy-algorithm/
- https://www.guru99.com/greedy-algorithm.html
- https://www.researchgate.net/publication/315849808 The Application of Greedy Algorithm in Real Life

Link YouTube

- https://www.youtube.com/watch?v=ARvQcqJ -NY
- https://www.youtube.com/watch?v=tKwnms5iRBU

