Autonomous Systems – Lab 1

Christoph Killing

In todays lab ...

... penguins and fireworks

Preliminaries – Lab Sessions

- Tools necessary for course (i.e. Linux, git, ROS, Unity ...)
- Introduction of homework assignments

Preliminaries – Course Organisation

- HW 1, 2
 - independent work to get going and check setup
- From HW 3 onwards
 - group projects
 - Each group is required to submit every homework to be eligible to take part in the project
 - Final grade: 100% final project (in groups; this will be big!)
 - More details to follow

Please use the Moodle Forum if you want help fast

Linux

- Family of open-source operating systems
- Most devloper-friendly OS
- Ubuntu is most commonly used distribution
 - Stable Ubuntu 18.04 LTS "long-term support"
- Full ROS-compatibility
 - Robot Operating System

"A computer is like air conditioning: it becomes useless when you open Windows'

Linus Torvalds

Linux vs. Windows

Linux – sudo command

HOME C:\Users\<username>

ROOT C:\

USER PRIVILEGES

"Run as Administrator"

The "sudo" command (a.k.a. SUperuser DO)

Linux – Terminal

<UserName>@<PCname>:<WorkingDir>\$

Open a Terminal window CTRL + T

Print Working Directory: pwd

Change directory: cd, cd ..., cd <path>

Make directory: mkdir <dir name>

Create file: touch <file name>

Move/rename file: mv <file name>

Edit text file: gedit <file name>

List dir contents:

1s, 1s -a (for hidden files)

Delete file / dir: rm <file name>,

rm -r <dir name>

Autocompletion: <TAB key>

Install from package manager: apt-get

Quick reference / manual pages: whatis <cmd>, man <cmd>

Run an executable: ./<executable_name>

Git – Version Control

Git – Version Control

Git – Version Control

Git – Basic Commands

- Setup:
 - git clone [link to your repo]
 - git status
- Most basic commands:
 - git pull
 - git add [i.e. file.txt]
 - git commit -m "[your commit message]"
 - git push

Git - Branching

- Git allows you to keep several branches of your code
- Branch-out from master
- Merge back into master
- Careful! Merge-Conflicts can arise at points A, B

WORK FAST WORK SMART THE GITHUB FLOW

The GitHub Flow is a lightweight, branch-based workflow that's great for teams and projects with regular deployments. Find this and other guides at http://guides.github.com/.

CREATE A BRANCH

Create a branch in your project where you can safely experiment and make changes.

OPEN A PULL REQUEST

Use a pull request to get feedback on your changes from people down the hall or ten time zones away.

MERGE AND DEPLOY

Merge your changes into your master branch and deploy your code.

Linux kernel development 1991 - 2017, Gource

Homework

- 1. Create your own GitLab Repo
- 2. Clone the course GitLab
 - a) Code templates
 - b) Slides
 - c) Scripts
- 3. Solve simple C++ exercise
- 4. Start forming groups
 - a) Use Moodle to find teammates
 - b) Details can be found in Homework description

