	. .					
Consis	tente	\Rightarrow	Sat	isfa	acik	ole

única hipótesis

Sea L un lenguaje fijo. Sea l'EFORM(L) consistente. Vamos a construir un modelo canónico B y una valuación V de B tal que:

Demostración en 5 pasos:

- 1. Expandir L a L' con nuevas constantes. L'=LuC. En C hay una cantidad infinita numerable de nuevas constantes. Son "nuevas" porque no estaban en L.
- 2. Agregar testigos a Γ'. Trabajamos con Γυθ, donde θ es un conjunto de fórmulas especiales que usan a las constantes nuevas de L'.
- 3. Aplicar el Lema de Lindenbaum para l'u0. Así obtenemos D = l'u0 maximal consistente.
- 4. Construir el modelo canónico A y valuación v para el lenguaje L' tal que A = I[v] sii PEA.
- 5. Restringir A y v al lenguaje original & y obtener B.

Paso 1							
raso							
Teorema							
Sea r∈F	ORM(L)	consist	rente.	Sea C	on co	onjunto d	le nuevas
constante	es que	10 apa	recen	en 2	. Si L'	= LuC	entonces
Tes con:	sistente	en el	lengu	aje L'			
Demo							
for el abs	urdo. In	consist	ente	=> 17 h	7 , 4	+79. De	rivación
finita, en	umero la	s const	antes	usadas	, ροΓ	TGC las	reemplazo
por variab	iles fres	cas.					
Paso Z							
Sean 17 y	C como	en el p	sazo 1.	Sea	<91, x1>	, < Pz, xz>	una
enumeracio	ón de F	ORM(LI) × VAI	2.			
Definimos:	$\theta_n = 7$	(Axu)In	→ 7.	Pn[xn/c	-1]		
donde cn	es la pri	mera c	onsta	nte de	C que	:	
· No apa	rece en	1 Pn y			, i		
· No apar	ece en	01,,	Bn-1				
efinimos:	$\theta = \delta \theta_1$, Oz, Oz.	, }				
Teorena							
	RM(X')		4 1				

0 a	grego	ر او	estig	Zog	a	רן	. Si	oc	nllé	, 7	(Yx	() {	en	ton	ces	: <i>b</i>	ay	
una	COUS	itan	te	C	qv	e	ates	tigi)a	que	4	Λο	va	le	par	a	-odo	X.
	ecir				τ			,										
Paso	3																	
Teore	ema																	
Sean	Гу	0 0	LOM	0 6	en	los	pa	202	1.	y 2.	Ex	iste	2 l) / \	CON	Jun'	lo	
	7 v 0															٧		
			7															
Dem	0																	
	l de	Lin	den	bai	JM.													
Para	todo	r f	€ F	ORM	1(४):												
. 0	bien	₽ €	Σ.	6	bie	en	77	ε Δ										
	εД																	

Paso 4
Construimos el modelo canónico A en el universo A=TERM(X1).
Los términos de 21 son los elementos del universo, y así la
interpretación se define de manera natural:
$\cdot A = TERM(\mathcal{L}^1) \qquad \stackrel{\in A^{\circ}}{\longleftarrow}$
• $f \in \mathcal{L}' \Rightarrow f_{A}(t_{1}, \dots, t_{n}) = f(t_{1}, \dots, t_{n}) \in A$
$c \in \mathcal{L}' \Rightarrow c_A = c \in A$
$P \in \mathcal{X}^1 \Rightarrow (t_1,, t_n) \in P_A Sii P(t_1,, t_n) \in \Delta$
$\in A^n$
v: VAR→TERM(X') tal que v(x) = x
Lema: $V(t) = t$ para todo $t \in TERM(L^1)$
QYQ: A = PIVI sii P = A
Demo por inducción en la complejidad de las Fórmulas.
Paso 5
Definimos B como la restricción de A a L, ya no interpretamos
las nuevas constantes.
Por paso 4, para toda P∈FORM(21): A = P[v] sii P∈ A
Como rea, si Pereform(&): A = PIV] sii B = PIV]

Luego Tes satisfacible.

