

2025 여름 디지털 헬스케어 부트캠프 팀 프로젝트 발표

만성신장질환예측

2팀 백혜연, 양호헌, 윤혜원, 이정규, 전준서, 최지인

문제정의

- 만성 신장 질환은 증상이 늦게 나타나 조기 진단이 어려움
- 치료 지연 시 투석 또는 신장이식 등 고위험 치료 필요
- 혈액·소변 검사 등으로 조기 발견 가능하나, 전문가의 해석이 필요함
- AI 기반 예측 모델로 조기 선별 가능성 확인이 필요

프로젝트 필요성

AI 예측 모델 개발로 고위험 환자 스크리닝 가능

02

디지털 헬스케어와의 접목 가능성

03

프로젝트 목표

01 Kaggle 기반 공개 데이터셋을 활용한 CKD 예측 모델 개발

02 주요 생체징후 및 검사 수치를 바탕으로 CKD 여부를 분류

03 고위험군 조기 선별 및 예측 가능한 모델 확보

데이터셋소개

- -활용 데이터셋: Chronic Kidney Disease Prediction
- -출처: Kaggle
- -URL: https://www.kaggle.com/code/niteshyadav3103/chronic-kidney-disease-prediction-98-accuracy/input
- -인도에서 2개월간 수집된 데이터
- -적혈구, 부종, 당 수치 등 24개의 변수, 400명의 환자 데이터

주요변수 입력 변수 (Features)

Age	Blood Pressure (bp)	Specific Gravity (sg)	Albumin	Sugar
Red Blood Cells (rbc)	Pus Cell (pc)	Pus Cell Clumps (pcc)	Bacteria (ba)	Blood Glucose Random (bgr)
Blood Urea	Serum Creatinine	Sodium	Potassium	Hemoglobin
Packed Cell Volume	WBC	RBC	Hypertension	Diabetes Mellitus
Coronary Artery Disease	Appetite	Pedal Edema	Anemia	

타겟 변수 (Features)

classification (ckd or not ckd)

EDA

*ckd, not-ckd 그룹의 분포가 확연히 다른 feature

*not-ckd 그룹에서는 분산이 0인 feature

데이터전처리과정

01

범주형 변수 결측치 처리

• 각 feature의 최빈 비결측값으로 결측값을 대체한다

```
def impute_mode(feature):
    mode = df[feature].mode()[0]
    df[feature] = df[feature].fillna(mode)
```

```
for col in cat_cols:
   impute_mode(col)
```

03

범주형 변수 0, 1로 인코딩

- 모든 범주형 변수가 2가지 category를 지닌다
- 따라서 LabelEncoder를 사용하여 0, 1 로 변환한다

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

for col in cat_cols:
    df[col] = le.fit_transform(df[col])
```

02

수치형 변수 결측치 처리

- 각 feature의 비결측값 중 무작위로 중복없이 선별하여, 결측값을 대체한다
- 평균/중앙값을 활용하면 분산이 줄어들 수 있으므로, 비결측값 내 무작위 선 별을 통해 분산에 큰 영향이 가지 않도록 한다

```
vdef random_value_imputation(feature):
    random_sample = df[feature].dropna().sample(df[feature].isna().sum())
    random_sample.index = df[df[feature].isnull()].index
    df.loc[df[feature].isnull(), feature] = random_sample
```

```
for col in num_cols:
    random_value_imputation(col)
```

```
random_value_imputation('urine_RBC')
random_value_imputation('urine_pc')
```

04

Scaling

```
preprocessor = ColumnTransformer([
          ('num', StandardScaler(), numeric_features),
          ('bin', 'passthrough', binary_features),
])
```

모델링

목표

여러 머신러닝 모델을 비교하여 최적의 모델을 탐색한다

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
# AutoGluon
from autogluon.tabular import TabularPredictor
```

```
# 5. AutoGluon을 활용한 모델 학습

train_data = X_train.copy()

train_data['class'] = y_train

predictor = TabularPredictor(

    label='class',
    eval_metric='f1'
).fit(

    train_data,
    time_limit=300,
    presets='best_quality'
)
```

AutoGluon의 특징

- 자동 모델 탐색 (AutoML)
 - 다양한 알고리즘(KNN, RF, XGBoost, CatBoost, NeuralNet 등)을 시도하여
 - 각 모델 성능을 비교하고 최적 모델을 선택한다
- Stacking 기반 앙상블 지원
 - 모델들을 단순 비교만 하지 않고, 앙상블하여 성능 향상

결과

여러 머신러닝 모델을 비교하여 최적의 모델을 찾는다

```
# 7. 학습 결과 요약 (리더보드, 최적 모델 및 하이퍼파라미터)
leaderboard = predictor.leaderboard(df_test, silent=True)
print('=== Leaderboard ===')
print(leaderboard)

# 최적 모델 이름 (deprecation 해결: model_best 속성 사용)
best_model = predictor.model_best
print(f'Best model: {best_model}')
```

- Validation set에서의 f1-score를 기준으로 best model을 선정함 (결과: WeightedEnsemble_L2)
- Precision과 **recall** 모두 높아야 하기 때문에 f1-score를 사용함

=== Leaderboard ===

	model	score_test	score_val	eval_metric
0	CatBoost_r137_BAG_L1	0.983051	0.96748	f1
1	CatBoost_BAG_L1	0.983051	0.97541	f1
2	CatBoost_r177_BAG_L1	0.983051	0.963563	f1
3	RandomForestEntr_BAG_ L1	0.983051	0.974576	f1
4	CatBoost_r13_BAG_L1	0.983051	0.971429	f1
5	XGBoost_r89_BAG_L1	0.983051	0.983193	f1
6	ExtraTreesEntr_BAG_L1	0.983051	0.987448	f1
7	ExtraTrees_r42_BAG_L1	0.983051	0.987448	f1
8	ExtraTreesGini_BAG_L1	0.983051	0.991597	f1

Service

모델평가

01

평가 지표

- AutoGluon을 통해 얻은 대부분의 머신러닝 모델이 높은 정확도와 정밀도, 재현율을 보여주었다
- 예시로 몇 개 모델의 accuracy, precision, recall, f1-score, roc-auc를 첨부하였다

Metrics for Model: CatBoost_r13_BAG_L1			
Accuracy	0.9875		
Precision	1.0000		
Recall	0.9667		
F1 Score	0.9831		
ROC-AUC	1.0000		
Metrics for Model: RandomForest_r195_BAG_L1			
Accuracy	0.9875		
Precision	1.0000		
Recall	0.9667		
F1 Score	0.9831		
ROC-AUC	1.0000		

Metrics for Model: XGBoost_r89_BAG_L1			
Accuracy	0.9875		
Precision	1.0000		
Recall	0.9667		
F1 Score	0.9831		
ROC-AUC	1.0000		
Metrics for Model: WeightedEnsemble_L2			
Accuracy	0.9625		
Precision	0.9335		
Recall	0.9667		
F1 Score	0.9508		
ROC-AUC	0.9987		

01

모델 선정

- 의료분야: 단순 성능지표뿐 아니라 **설명 가능한** 모델을 찾음
 - leaderboard 모델 중 **Xgboost classifier** 선정(Feature importance 등)
 - Logistic regression
 - Decision tree

02

모델 평가

• Logistic Regression

Logistic Regression CV ROC-AUC: 0.998 ± 0.002

	precision	recall	f1-score	support
0	0.91	0.97	0.94	30
1	0.98	0.94	0.96	50
accuracy			0.95	80
macro avg	0.94	0.95	0.95	80
weighted avg	0.95	0.95	0.95	80

	accuracy	f1- score	roc-auc
Logistic Regression	0.95	0.9592	0.9967
Decision Tree	0.95	0.9592	0.9533
XGBoost	0.9625	0.9697	0.9967

Feature	Coefficients	Odds Ratios
SG	-1.926873	0.145603
appetite	1.754349	5.779686
DM	1.609054	4.998083
HTN	1.267148	3.55071
Hematocrit	-1.237264	0.290177
Hemoglobin	-1.21877	0.295594
Albumin	1.00697	2.737295
ВР	0.9206	2.510797
pedal_edema	0.830566	2.294618
Creatinine	0.659127	1.933104
anemia	0.654691	1.924548
blood_glucose	0.52042	1.682734

Feature	Coefficients	Odds Ratios
Sodium	-0.367152	0.692705
urine_sugar	0.363455	1.43829
RBC_count	-0.355607	0.700748
WBC_count	0.321659	1.379414
urine_pcc	0.262579	1.300279
blood_urea	-0.195366	0.822534
Potassium	-0.186803	0.829607
Age	-0.166124	0.846941
urine_pc	-0.123676	0.883666
urine_bacteria	0.077683	1.08078
CAD	0.039044	1.039816
urine_RBC	1.034229	2.812936

03

모델 평가

• Decision Tree (depth=4)

DecisionTree CV ROC-AUC: 0.952 ± 0.008

	precision	recall	f1-score	support
0	0.91	0.97	0.94	30
1	0.98	0.94	0.96	30
accuracy			0.96	80
macro avg	0.94	0.95	0.96	80
weighted avg	0.95	0.95	0.96	80

03

모델 평가

XGBoost Classifier

• XGBoost CV ROC-AUC: 0.998 ± 0.002

	precision	recall	f1-score	support
0	0.94	0.97	0.95	30
1	0.98	0.96	0.97	30
accuracy			0.96	80
macro avg	0.96	0.96	0.96	80
weighted avg	0.96	0.96	0.96	80

03

모델 평가

• XGBoost Classifier

임상시나리오

농어촌 지역의 CKD 조기 선별

- 배경: 농어촌 지역
 - 전문 인력이 부족, 정기적 신장 기능 검사 어려움
 - 고령 인구 수, 고혈압·당뇨병 유병률 높은 편임
- 시나리오
- : 농촌 지역 보건소와 협력하는 병원의 시스템에 CKD 선별 모델을 통합하여 주민 정기 건강검진 결과를 해석, CKD 선별

• 실제 상황

- 1.65세 농부 A모씨가 보건소에서 혈액검사와 소변검사를 받음
- 2. 검체는 분석 기기가 있는 주변 병원으로 24시간 내 이송
- 3. 검사 결과를 입력하여 CKD 여부를 0(정상), 1(CKD)으로 출력
- 4. 판정 결과는 보건소에 전달
- 5. 보건소는 A모씨에게 검사 결과 통지
 - → 1(CKD)인 경우: 진료 및 정밀검사를 병원에 의뢰

임팩트

고위험 환자 조기 발견 → 신속한 2차 진료 연결 자원 부족 지역에서도 CKD 1~2기 환자 조기 탐지 가능

한계점

단순 분류 모델

01 CKD 단계나 예후는 반영하지 않음

→ 병기(staging), 진행 위험도, 악화 속도 예측에는 한계

설명력 부족

03

임상의가 CKD 분류 이유의 직관적 파악 어려움

시계열 정보 미반영

02

단일 시점의 데이터만 사용함

→ 진행성 질환인 CKD는 연속적인 시계열 정보 반영이 중요 (Cr 변화, 혈압 추이 등)

일반화 어려움

04

샘플 수 400명

단일 기관 데이터

Future Work

다중 분류 모델 - 2가지

(1) 정상 / AKI / CKD 분류

0 = 정상, 1 = CKD, 2 = AKI

• AKI 환자 데이터셋 이용

(2) eGFR → CKD병기(stage 1~5) 분류

• 성별, 나이, 혈청 크레아티닌 이용하여 계산

CKD 위험도 산출 모델

고위험/중위험/저위험

- predict_proba()를 활용하여 위험도
 산출 (0~1)
- 위험 단계 분류 후 데이터셋을 참고하여 등급화

EMR 연동

환자의 신기능 실시간 분석 및 CKD 조기선별

- 입원 중 신기능 저하(약물, 수술, 장기간 부동 등)로 인한 CKD 감지
- 과거 기록을 고려하여 판단 가능
- 선별 시 EMR 팝업 메세지 설정

[참고문헌]

- 1.Trends in the Number of Chronic Kidney Disease Patients and Medical Expenses, During 2012–2022. Public Health Weekly Report 2024; 17(9): 381-382. https://doi.org/10.56786/PHWR.2024.17.9.3
- 2. Chan, M. R., Dall, A. T., Fletcher, K. E., Lu, N., & Trivedi, H. (2007). Outcomes in patients with chronic kidney disease referred late to nephrologists: A meta-analysis. The American Journal of Medicine, 120(12), 1063–1070. https://doi.org/10.1016/j.amjmed.2007.04.024
- 3. Tangri, N., Peach, E. J., Franzén, S., Barone, S., & Kushner, P. R. (2023). Patient management and clinical outcomes associated with a recorded diagnosis of stage 3 chronic kidney disease: The REVEAL-CKD study. Advances in Therapy, 40(6), 2869–2885. https://doi.org/10.1007/s12325-023-02482-5
- 4.Ominext. (2024, November 26). 전자 의무 기록 시스템 (EMR): 개요 및 특징. Ominext Blog. https://www.ominext.com/kr/our-new/what-is-emr-features-examples-and-use-cases
- 5. MyKidneyJourney. (n.d.). 만성 신장 질환(Chronic Kidney Disease). MyKidneyJourney. https://apac.mykidneyjourney.com/ko/chronic-kidney-disease

2025 여름 디지털 헬스케어 부트캠프 팀 프로젝트 발표

감사합니다

2팀 만성신장질환 예측

코딩: 양호헌, 이정규

ppt: 백혜연, 전준서, 최지인

발표: 양호헌, 윤혜원