Traditional Language Models

Traditional Language Models

N-grams

$$P(w_2|w_1) = \frac{\operatorname{count}(w_1, w_2)}{\operatorname{count}(w_1)} \longrightarrow \text{Bigrams}$$

$$P(w_3|w_1, w_2) = \frac{\operatorname{count}(w_1, w_2, w_3)}{\operatorname{count}(w_1, w_2)} \longrightarrow \text{Trigrams}$$

N-grams

$$P(w_2|w_1) = \frac{\operatorname{count}(w_1, w_2)}{\operatorname{count}(w_1)} \longrightarrow \text{Bigrams}$$

$$P(w_3|w_1, w_2) = \frac{\operatorname{count}(w_1, w_2, w_3)}{\operatorname{count}(w_1, w_2)} \longrightarrow \text{Trigrams}$$

$$P(w_1, w_2, w_3) = P(w_1) \times P(w_2|w_1) \times P(w_3|w_2)$$

- Large N-grams to capture dependencies between distant words
- Need a lot of space and RAM

Advantages of RNNs

Nour was supposed to study with me. I called her but she did not ______

Advantages of RNNs

Nour was supposed to study with me. I called her but she did not have

Advantages of RNNs

Nour was supposed to study with me. I called her but she did not

answer

Learnable parameters

Summary

- RNNs model relationships among distant words
- In RNNs a lot of computations share parameters

One to One

One to Many

Caption generation

Many to One

Sentiment analysis

Positive

Tweet: I am very happy !

Many to One

J' ai faim

Machine Translation

Summary

- RNNs can be implemented for a variety of NLP tasks
- Applications include Machine translation and caption generation

A Vanilla RNN

A Vanilla RNN

Summary

- Hidden states propagate information through time
- Basic recurrent units have two inputs at each time: $h^{< t-1>}$, $x^{< t>}$

