

Practice Exam Design Verification

Module ID: CX-301

Design Verification

Instructor: Dr. Abid Rafique

Version 1.0

Information contained within this document is for the sole readership of the recipient, without authorization of distribution to individuals and / or corporations without prior notification and approval.

CX-203 : Digital System Design

Document History

The changes and versions of the document are outlined below:

Version	State / Changes	Date	Author
1.0	Initial Draft	February, 2025	Dr. Abid Rafique

CX-203 : Digital System Design

Table of Contents

Document History	2
Table of Contents	3
Objectives	4
Deliverables	4
1. Micro-Circuits Verification	5
Task 1:	5
Task 2:	6
2. Mini-Circuits Design	7

CX-203: Digital System Design

Objectives

By the end of this practice exam, students will be able to:

 verify circuits (basic to medium difficulty level) from a given requirement specification

Required Files

The required files for this exam can be found on the shared folder at:

shared_folder/CX-301-DesignVerification/Exams/Practice-Exam/

Deliverables

Following are the deliverables to be uploaded on the lms:

- Verification Plan.
- Testbench

1. Micro-Circuits Verification

Task 1:

Write a testbench to verify a circuit which takes two inputs coming from the sensors **a** and **b**. If both of them are **ON**, the output will be '1' otherwise it will be '0'. The output should be registered using a flip flop with an **enable** signal. The flip flop has an active low **rst_n** as well.

S.No.	Signal	Number of Bits	Input/Output	Remarks
1.	clk	1	Input	
2.	rst_n	1	Input	Active Low
3.	enable	1	Input	Active High
4.	а	1	Input	
5.	b	1	Input	
6.	Z	1	Output	

CX-203: Digital System Design

You need to perform the following tasks.

- 1. Write a verification plan (see the example)
- 2. Write the testbench to test all the test cases mentioned in the verification plan

Task 2:

Write a testbench to verify a updown-counter circuit.

- If the load signal load = 1, the 8-bit value data_in is loaded into the counter.
- If the load signal is not active and enable signal en = 1:
 - The counter increments if the mode bit m = 0
 - The counter decrements if the mode bit m = 1.
- Active low rst_n signals will reset the count value asynchronously.

S.No.	Signal	Number of Bits	Input/Output	Remarks
1.	clk	1	Input	synchronous to posedge
2.	rst_n	1	Input	active low reset
3.	en	1	Input	counting enable
4.	m	1	Input	counting mode
5.	load	1	Input	load data_in
6.	data_in	8	Input	the data to be loaded
7.	count	8	Output	count value

You need to perform the following tasks.

- 3. Write a verification plan (see the example)
- 4. Write the testbench to test all the test cases mentioned in the verification plan

CX-203: Digital System Design

2. Mini-Circuits Design

Write a testbench to verify a Bit Serial Adder which takes two inputs 'A' and 'B' each 4-bit wide and performs addition using a multi-cycle single full-adder using following steps.

- The values will be loaded into the adder when the load signal is '1'.
- When the **start** signal is '1', the adder starts performing addition
- Once the addition is finished, it generates a **done** signal indicating the result is valid.

You need to perform the following tasks.

- 5. Write a verification plan (see the example)
- 6. Write the testbench to test all the test cases mentioned in the verification plan

CX-203: Digital System Design

CX-203 : Digital System Design

Good Luck 🙂