Data Science – Machine Learning – Multiple Linear Regression

11. Data Science – Machine Learning – Multiple Linear Regression

Contents

1.	Multiple Linear Regression	2			
	. Problem statement				
	Dataset				
	Machine learning Terminology				
	4.1. Features and label				
	4.2. Models				
	4.3. Prediction				
	4.4 Formula				

11. Data Science - Machine Learning - Multiple Linear Regression

1. Multiple Linear Regression

✓ Multiple Linear Regression explains the relationship between a single dependent continuous variable and more than one independent variable.

2. Problem statement

- ✓ Assuming that we are planning to buy a new house and need to predict the price of a house.
- ✓ Here price depends on area (square feet), bed rooms and age of the home (in years).
- ✓ Given these prices we have to predict prices of new homes based on area, bed rooms and age
- ✓ Given these home prices find out price of a home that has,
 - o 3000 sqr ft area, 3 bedrooms, 40 year old
 - o 2500 sqr ft area, 4 bedrooms, 5 year old

3. Dataset

- √ homeprices1.csv is dataset we are using in this example
- ✓ This dataset contains columns as,
 - o Area
 - o Bedrooms
 - o Age
 - o Price

Area	Bedrooms	Age	price
2600	3	20	550000
3000	4	15	565000
3200		18	610000
3600	3	30	595000
4000	5	8	760000
4100	6	8	810000

4. Machine learning Terminology

4.1. Features and label

✓ Here area, bedrooms, age are called independent variables
or features whereas price is a dependant variable

4.2. Models

- ✓ A machine learning model is simply a rule, or a formula, which predicts a label from the features.
- ✓ In this case, the model is the equation we found for the price.

4.3. Prediction

✓ The prediction is simply the output of the model.

4.4. Formula

$$y = m_1 x_1 + m_2 x_2 + m_3 x_3 + b$$

$$price = m_1 * area + m_2 * bedrooms + m_3 * age + b$$

Program Loading house prices dataset Name demo1.py

import pandas as pd

Loading the dataset

df = pd.read_csv("homeprices1.csv")

print(df)

Output

	area	bedrooms	age	price
0	2600	3.0	20	550000
1	3000	4.0	15	565000
2	3200	NaN	18	610000
3	3600	3.0	30	595000
4	4000	5.0	8	760000
5	4100	6.0	8	810000

Program Name

Data pre-processing – Finding mean of bedrooms column

demo2.py

import pandas as pd

df = pd.read_csv("homeprices1.csv")

Mean of the bedrooms
print("Mean of the bedrooms")
print(df.bedrooms.median())

Output

Mean of the bedrooms

4.0

Program Name

Data pre-processing - Fill NA values with median value of a column demo3.py

import pandas as pd

df = pd.read_csv("homeprices1.csv")

Data loading print("Filling missing value with mean\n")

Data preprocessing

m = df.bedrooms.median()
df.bedrooms = df.bedrooms.fillna(m)
print(df)

Output

```
Filling missing value with mean
   area
         bedrooms
                   age
                        price
  2600
              3.0
                    20
                       550000
             4.0
                   15
                       565000
  3000
   3200
             4.0
                   18 610000
  3600
             3.0
                       595000
                   30
   4000
                      760000
              5.0
                    8
   4100
              6.0
                       810000
```

```
Model training
Program
            demo4.py
Name
            import pandas as pd
            from sklearn.linear model import LinearRegression
            # Data loading
            df = pd.read_csv("homeprices1.csv")
            # Data preprocessing
            m = df.bedrooms.median()
            df.bedrooms = df.bedrooms.fillna(m)
            a = df.drop('price', axis = 'columns')
            # Model training
            reg = LinearRegression()
            reg.fit(a.values, df.price)
            print("Model trained")
Output
            Model trained
```

```
Finding intercept
Program
            demo5.py
Name
            import pandas as pd
            from sklearn.linear model import LinearRegression
            # Data loading
            df=pd.read_csv("homeprices1.csv")
            # Data preprocessing
            m = df.bedrooms.median()
            df.bedrooms = df.bedrooms.fillna(m)
            a = df.drop('price', axis = 'columns')
            # Model training
            reg = LinearRegression()
            reg.fit(a.values, df.price)
            print("Intercept is:")
            print(reg.intercept_)
Output
            Intercept is:
            221323.00186540408
```

```
Finding coefficients
Program
            demo6.py
Name
            import pandas as pd
            from sklearn.linear model import LinearRegression
            # Data loading
            df = pd.read_csv("homeprices1.csv")
            # Data preprocessing
            m = df.bedrooms.median()
            df.bedrooms = df.bedrooms.fillna(m)
            a = df.drop('price', axis = 'columns')
            # Model training
            reg =LinearRegression()
            reg.fit(a.vlaues, df.price)
            print("Coefficients are:")
            print(reg.coef_)
Output
            Coefficients are:
            [ 112.06244194 23388.88007794 -3231.71790863]
```

```
price of home with 3000 sqr ft area, 3 bedrooms, 40 year old
Program
Name
            demo7.py
            import pandas as pd
            from sklearn.linear_model import LinearRegression
            # Data loading
            df = pd.read csv("homeprices1.csv")
            # Data preprocessing
            m = df.bedrooms.median()
            df.bedrooms = df.bedrooms.fillna(m)
            a = df.drop('price', axis='columns')
            # Model training
            reg = LinearRegression()
            reg.fit(a.values, df.price)
            # Prediction
            print("price of home with 3000 sqr ft area, 3 bedrooms, 40 year
            old")
            print(reg.predict([[3000, 3, 40]]))
Output
            price of home with 3000 sqr ft area, 3 bedrooms, 40 year old
            [498408.25158031]
```

```
Program
            price of home with 3000 sqr ft area, 3 bedrooms, 40 year old
            demo8.py
Name
            import pandas as pd
            from sklearn.linear model import LinearRegression
            # Data loading
            df = pd.read_csv("homeprices1.csv")
            # Data preprocessing
            m = df.bedrooms.median()
            df.bedrooms = df.bedrooms.fillna(m)
            a = df.drop('price', axis = 'columns')
            # Model training
            reg = LinearRegression()
            reg.fit(a.values, df.price)
            # Prediction
            print("price of home with 3000 sqr ft area, 3 bedrooms, 40 year
            old")
            b = 112.06244194*3000 + 23388.88007794*3 + -
            3231.71790863*40 + 221323.00186540384
            print(b)
Output
            price of home with 3000 sqr ft area, 3 bedrooms, 40 year old
            [498408.25158031]
```

```
Program
            price of home with 2500 sqr ft area, 4 bedrooms, 5 year old
            demo9.py
Name
            import pandas as pd
            from sklearn.linear model import LinearRegression
            # Data loading
            df = pd.read_csv("homeprices1.csv")
            # Data preprocessing
            m = df.bedrooms.median()
            df.bedrooms = df.bedrooms.fillna(m)
            a = df.drop('price', axis = 'columns')
            # Model training
            reg = LinearRegression()
            reg.fit(a.values, df.price)
            # Prediction
            print("price of home with 2500 sqr ft area, 4 bedrooms, 5 year
            old")
            print(reg.predict([[2500, 4, 5]]))
Output
            price of home with 2500 sqr ft area, 4 bedrooms, 5 year old
            [578876.03748933]
```