

Superposition Theorem

Course Instructors:

Manav Bhatnagar, Subashish Dutta, Debanjan Bhaumik, Harshan
Jagadeesh
Department of Electrical Engineering, IITD

1

Linearity

A mathematical equation is said to be linear if the following properties hold.

- Homogeneity
- Additivity

Homogeneity (Scaling)

Homogeneity exists if input of a system is multiplied by a constant, then the output should also be multiplying by the same constant.

3

Homogeneity (Scaling)

Check the following equation for homogeneity.

$$y = 7x$$

$$x = 1 \rightarrow y = 7$$

$$x = 2 \rightarrow y = 14$$

Now for homogenity to hold, scaling should hold for y, that is, y has a value of 7 when x = 1. If we increase x by a factor of 2 when we should be able to multiply y by the same factor and get the same answer when we substitute into the right side of the equation for x = 2.

$$ny = 7(nx)$$
$$nx \to ny$$

Homogeneity (Scaling)

Check homogenity for the following equation.

$$y = 5x + 2$$

Solution

$$nx \rightarrow ny$$

Does not follow the property of homogeneity

5

Additivity

The additivity property is equivalent to the statement that the response of a system to a sum of inputs is the same as the responses of the system when each input is applied separately and the individual responses summed (added together).

Additivity

Let us check the additivity for y = 7x.

$$x = x_1 \to y = 7x_1 = y_1$$

$$x = x_2 \to y = 7x_2 = y_2$$

$$x = x_1 + x_2 \to y = 7(x_1 + x_2)$$

$$x = x_1 + x_2 \to y = 7x_1 + 7x_2 = y_1 + y_2$$

The equation follows the property of additivity.

7

Additivity

Let us check the additivity for y = 5x+2.

$$x = x_1 \to y = 5x_1 + 2 = y_1$$

$$x = x_2 \to y = 5x_2 + 2 = y_2$$

$$x = x_1 + x_2 \to y = 5(x_1 + x_2) + 2$$

$$x = x_1 + x_2 \to y = 5x_1 + 5x_2 + 2 \neq y_1 + y_2 = 5x_1 + 5x_2 + 2 + 2$$

The equation does not follow the property of additivity.

Example: For the given circuit, use the concept of linearity (homogeneity or scaling) to find the current I_0 .

- Let $I_0 = 1A$
- Then voltage drop across 122 resistance is 12 V.
- As 122 and 62 resistances are in parallel, 12 V is also the voltage drop for 62 resistance.
- Hence, the current in 62 resistance is 2A
- So, total current in 112 resistance will be 1A+2A (by KCL)
- Voltage drop at 112 resistance will be 11x3=33 V
- By KVL $V_s = 33 + 12 = 45 V$
- However, $V_s = 90$ V is given.
- So from linearity $I_0 = 2A$

 $V_{S} = 90 \text{ V} \stackrel{+}{\stackrel{+}{\bigcirc}} \qquad \qquad 6 \Omega \stackrel{>}{\stackrel{>}{\stackrel{>}{\bigcirc}}} \qquad 12 \Omega \stackrel{>}{\stackrel{>}{\stackrel{>}{\bigcirc}}} \qquad \qquad 12 \Omega \stackrel{>}{\stackrel{>}{\stackrel{>}{\stackrel{>}{\bigcirc}}} \qquad \qquad 12 \Omega \stackrel{>}{\stackrel{>}{\stackrel{>}{\stackrel{>}{\longrightarrow}}} \qquad \qquad 12 \Omega \stackrel{>}{\stackrel{>}{\stackrel{>}{\stackrel{>}{\longrightarrow}}} \qquad \qquad 12 \Omega \stackrel{>}{\stackrel{>}{\stackrel{>}{\longrightarrow}} \qquad \qquad 12 \Omega \stackrel{>}{\stackrel{>}{\longrightarrow}} \qquad \qquad 1$

Check:

Using KVL in the first mesh:

$$11I_1 + 6(I_1 - I_0) = V_s$$

Using KVL in the second mesh:

$$12I_0 + 6(I_0 - I_1) = 0$$

Solving:

$$I_0 = \frac{V_s \times 6}{18 \times 17 - 6 \times 6} = \frac{V_s}{45}$$
 For $V_s = 90$, $I_0 = 2$ A

Since

$$V_s = 45I_0$$

It is a linear relation between V_s and I_0 .

9

Example: In the circuit shown below it is known that $I_0 = 4$ A when $I_S = 6$ A. Find I_0 when $I_S = 18$ A.

As $I_{S \text{ NEW}} = 3xI_{S \text{ OLD}}$ we conclude $I_{0 \text{ NEW}} = 3xI_{0 \text{ OLD.}}$ Thus, $I_{0 \text{ NEW}} = 3x4 = 12$ A.

11

Let us use the current splitting rule (current division) to write the following equation:

$$I_0 = \frac{(I_s)(R_1)}{(R_1 + R_2)} = (K)(I_s)$$

The relation between I₀ and I_s is linear.

Superposition

Let inputs f_1 and f_2 be applied to a system y such that,

$$y = k_1 f_1 + k_2 f_2$$

Where k_1 and k_2 are constants of the systems.

Let f_1 act alone so that, $y = y_1 = k_1 f_1$ Let f_2 act alone so that, $y = y_2 = k_2 f_2$

The property of superposition states that if f_1 and f_2 Are applied together, the output y will be,

$$y = y_1 + y_2 = k_1 f_1 + k_2 f_2$$

13

Example

Consider the circuit below that contains two voltage sources.

Use principle of superposition for finding the value of I

Let us excite the circuit by a single voltage source at a time. Other source remains inactive, i.e., produces 0 V, means short circuit.

Source V1 active, V2 inactive

Current I₁ is produced by V₁

Observe that:

$$V_1 = (R_1 + R_2 + R_3)I_1$$

15

Source V2 active, V1 inactive

Current I2 is produced by V2

Observe that:

$$V_2 = (R_1 + R_2 + R_3)I_2$$

Let us calculate the circuit current by both voltage sources jointly.

Applying KVL:
$$V_1 + V_2 = (R_1 + R_2 + R_3)I$$

We have observed that: $V_1 = (R_1 + R_2 + R_3)I_1$ $V_2 = (R_1 + R_2 + R_3)I_2$ $V_1 + V_2 = (R_1 + R_2 + R_3)\underbrace{(I_1 + I_2)}_{I}$

Superposition is applicable!

$$\begin{split} I_1 &= V_1/(R_1 + R_2 + R_3) \\ I_2 &= V_2/(R_1 + R_2 + R_3) \\ I &= I_1 + I_2 \end{split}$$

17

Superposition Theorem

- Definition: The current or voltage of an element in a linear bilateral circuit is equal to the algebraic sum of the currents and voltages produced independently by each source.
- This principle applies because of the linear relationship between current and voltage.
- · Conditions to be met for applying superposition theorem
 - · All the elements must be linear
 - All the components must be bilateral
 - · Passive components must be used
 - Active components must not be there

Superposition Theorem

Procedure to apply Superposition theorem

- Consider only one source to be active at a time
- Remove ideal voltage source with short-circuit, and ideal current source with open-circuit

 Remove practical voltage source with short-circuit with internal resistance in series, and practical current source with open-circuit with internal resistance in parallel

 R_{int} R_{int} R_{int} R_{int}

19

Example

Compute the current in the 23 Ω resistor by applying the superposition principle.

Make the current source inactive

$$R_{\rm eq} = 47 + \frac{(27)(4+23)}{54} = 60.5 \ \Omega$$

$$I_T = \frac{200}{60.5} = 3.31 \,\mathrm{A}$$

$$I_{23\Omega}' = \left(\frac{27}{54}\right)\!(3.31) = 1.65~A~\text{Current division}$$

21

Make the voltage source inactive

$$R_{\rm eq} = 4 + \frac{(27)(47)}{74} = 21.15\,\Omega$$

$$\begin{split} I_{23\Omega}'' &= \left(\frac{21.15}{21.15+23}\right)\!(20) = 9.58 \; \text{A} \quad \text{Current division} \\ I_{23\Omega} &= I_{23\Omega}' + I_{23\Omega}'' = 11.23 \; \text{A} \end{split}$$

Make the current source inactive

$$R_{\rm eq} = 47 + \frac{(27)(4+23)}{54} = 60.5 \ \Omega$$

$$I_T = \frac{200}{60.5} = 3.31 \,\mathrm{A}$$

$$I_{23\Omega}' = \left(\frac{27}{54}\right)\!(3.31) = 1.65~A~\text{Current division}$$

Make the voltage source inactive

$$R_{\rm eq} = 4 + \frac{(27)(47)}{74} = 21.15 \, \Omega$$

$$I_{23\Omega}'' = \left(\frac{21.15}{21.15 + 23}\right)(20) = 9.58 \text{ A}$$
 Current division

$$I_{23\Omega} = I'_{23\Omega} + I''_{23\Omega} = 11.23 \text{ A}$$

23

When there is Dependent source in the circuit

Example 3: Find the current i₀ in the given circuit

Solution: Part 1: Short ckt 20V voltage source

In loop 1

$$i_1 = 4A$$
In loop 2, apply KVL
 $3(i_2 - i_1) + 2i_2 - 5i_0' + 1(i_2 - i_3) = 0$
In loop3, apply KVL
 $5(i_3 - i_1) + 1(i_3 - i_2) + 5i_0' + 4i_3 = 0$
Also, $i_0' = i_1 - i_3$
Solving above equations we get
 $i_0' = 52/17 A$

25

Solution: Part 2: Open ckt 4A current source

In loop 4, apply KVL

$$3i_4 + 2i_4 - 5i_0'' + 1(i_4 - i_5) = 0$$

In loop 5, apply KVL

$$5 i_5 + 4 i_5 + 5 i_0^{"} + 1 (i_5 - i_4) = 20$$

Also, $i_0^{"} = -i_5$

Solving these equations, we get

$$i_0'' = -60/17A$$

Applying superposition theorem,

$$i_0 = i_0'' + i_0'' = 52/17-60/17 A$$

=-8/17

Note: Superposition theorem is not applicable in case of power calculation

Proof of Delta-Star Conversion

UNDER NO LOAD SCENARIO:

For Delta resistance between nodes 1 and 2 will be: $R_{12}||(R_{31}+R_{23})|$

For Star resistance between nodes 1 and 2 will be: $R_1 + R_2$

So
$$R_1 + R_2 = R_{12} || (R_{31} + R_{23}) = \frac{R_{12}(R_{31} + R_{23})}{R_{12} + R_{31} + R_{23}}$$
 (i)

Similarly:

$$\begin{split} R_2 + R_3 = & R_{23} || (R_{31} + R_{12}) = \frac{R_{23} (R_{31} + R_{12})}{R_{12} + R_{31} + R_{23}} \\ R_1 + R_3 = & R_{31} || (R_{12} + R_{23}) = \frac{R_{31} (R_{12} + R_{23})}{R_{12} + R_{31} + R_{23}} \end{split}$$

(ii) (between nodes 2 and 3 for Delta and Star)

$$R_1 + R_3 = R_{31} || (R_{12} + R_{23}) = \frac{R_{31}(R_{12} + R_{23})}{R_{12} + R_{31} + R_{23}}$$

(iii) (between nodes 1 and 3 for Delta and Star)

Now, subtracting (ii) from (i) and adding the result to (iii), we get: $R_1 = \frac{R_{12}R_{31}}{R_{12}+R_{31}+R_{23}}$

Subtracting (iii) from (ii) and adding the result to (i), we get: $R_2=\frac{R_{12}R_{23}}{R_{12}+R_{31}+R_{23}}$

Subtracting (i) from (iii) and adding the result to (ii), we get: $R_3 = \frac{R_{31}R_{23}}{R_{12}+R_{31}+R_{23}}$

27

Proof of Star-Delta Conversion

$$R_1R_2 + R_2R_3 + R_1R_3 = \frac{R_{12}^2R_{31}R_{23} + R_{12}R_{23}^2R_{31} + R_{12}R_{23}R_{31}^2}{(R_{12} + R_{31} + R_{23})(R_{12} + R_{31} + R_{23})}$$

$$R_1 = \frac{R_{12} R_{31}}{R_{12} + R_{23} + R_{31}}; R_2 = \frac{R_{23} R_{12}}{R_{12} + R_{23} + R_{31}} \text{ and } R_3 = \frac{R_{31} R_{23}}{R_{12} + R_{23} + R_{31}}$$

$$R_1R_2 + R_2R_3 + R_1R_3 = \frac{R_{12}R_{31}R_{23}}{(R_{12} + R_{31} + R_{23})} \frac{(R_{12} + R_{23} + R_{31})}{(R_{12} + R_{31} + R_{23})}$$

$$R_1R_2 + R_2R_3 + R_1R_3 = R_3 R_{12}$$

$$R_{12} = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_3}$$

 $R_1 R_2 + R_2 R_3 + R_1 R_3 = R_2 R_{31}$ Similarly,

$$R_{31} = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2}$$

$$R_1 R_2 + R_2 R_3 + R_1 R_3 = R_3 R_{12}$$

$$R_{12} = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_3}$$

28