Estadística y modelación de sistemas socioecológicos en R

Laboratorio Nacional de Ciencias

Dra. Yosune Miquelajauregui Graf

Plan del día

1. Manipulación de datos: match values

2. Markdowns en R

3. Introducción a la estadística

4. Estadística descriptiva

Manipulación de datos: match

En ocasiones necesitamos identificar los atributos que coinciden entre dos o más hojas de datos.

head(HD1)	head(HD2)		
ID V1 V2	ID D1 D2		
1 1 0.31561892	1 3.867982 52		
2 11 0.64778713	2 7.241679 43		
3 21 0.35609124	3 6.434363 34		
4 31 0.82515905	4 9.706802 85		
5 41 0.49330436	5 7.612441 66		
6 51 0.8434979	6 6.010280 8		
length(HD1[,1]) 1000	length(HD2[,1]) 72		

Manipulación de datos: match

Encontrar los elementos de HD1 que coincidan con los elementos de HD2 con base en una variable en común, en este caso la variable ID.

HDMatch <- HD1[HD1\$ID %in% HD2\$ID,]

```
head(HDMatch)
ID V1 V2
    1 0.31561892
  11 0.64778713
3 21 0.35609124
4 31 0.82515905
  41 0.49330436
   51 0.8434979
length(HDMatch[,1])
72
```

Manipulación de datos: match

Todo <- merge(HDMatch,HD2, by="ID")

head(Todo)					
ID	V1	V2	D1	D2	
1	1	0.3156189	3.867982	5	
2	11	0.6477871	7.241679	43	
3	21	0.3560912	6.434363	34	
4	31	0.8251590	9.706802	85	
5	41	0.4933043	7.612441	66	
6	51	0.8434979	6.010280	8	

length(Todo[,1])
72

Los Markdowns en R son un formato para escribir reportes reproducibles y dinámicos en R. Se pueden utilizar para introducir código escrito en R, resultados de análisis y gráficas en diapositivas, pdfs, documentos html, documentos word y más. Permite además llevar un historial de los análisis realizados.

file://localhost/Users/Yos/Desktop/ClaseEstadisticaModelacion/Prueba.html

Introducción a la estadística

¿Para qué hacer estadística?

1. Estimar parámetros

¿Cuál es la densidad del ocelote en el Área Natural Protegida, Reserva de la Biósfera Janos, en Chihuahua?

2. Hacer pruebas de hipótesis

¿Las diferencias de crecimiento entre los niños que viven en zonas urbanas y los que viven en zonas rurales se debe al azar o es resultado de un efecto del tipo de alimentación?

3. Hacer inferencias

Cerca del 20% de la población mexicana votará por Morena en las próximas elecciones del 2018.

Introducción a la estadística

Población y muestra

La población estadística es el conjunto de elementos sobre el cual basamos nuestras conclusiones. Desconocido.

(hombres de 20 a 35 años en la UNAM)

Sin embargo no conocemos los parámetros que caracterizan a la población (e.x. la altura)

Estrategia 1 : Medir la altura de todos los hombres de la UNAM (poco práctico logísticamente)

Estrategia 2 : Utilizar una muestra de 50 hombres de 20 a 35 años seleccionados aleatoriamente.

Introducción a la estadística

Población y muestra

Se puede inferir sobre la población a partir de la muestra:

Si $\bar{x} = 1.7$ m; podríamos decir que la media de la muestra \bar{x} es un estimador de la media de la población y que 1.7 es un estimado de ese valor (el estimador produce un estimado).

Característica de la población : PARÁMETRO (e.x. la media poblacional μ)

Característica de la muestra : ESTIMADOR O ESTADÍSTICO (e.x. la media muestral \bar{x})

Medidas de tendencia central

Distintos estadísticos permiten caracterizar una muestra y de estimar los parámetros de la población:

Medidas de tendencia central (posición):

- 1. Media mean ()
- 2. Mediana median ()
- 3. Moda mode ()

Medidas de dispersión

- 1. Varianza var ()
- 2. Desviación estándar sd ()
- 3. Rango range ()
- 4. Suma de cuadrados del error (SCE)

Medidas de precisión

1. Error tipo o error estándar del estimador (SE) – una medida de la imprecisión de los valores estimados. El SE mide la variabilidad de las diferentes estimaciones, si el muestreo se repite un gran número de veces.

Preciso y exacto

Preciso pero no exacto

No preciso pero exacto

Ni preciso ni exacto

Sesgo

- 1. Diferencia entre el valor esperado del estimador y el valor real del parámetro a estimar. Es deseable que un estimador sea insesgado.
- 2. El sesgo representa la tendencia de los estimadores de un parámetro a diferir sistemáticamente.

$$Sesgo = E(\widehat{\theta}) - \theta$$

donde $\hat{\theta}$ es el estimador de un parámetro, $E(\hat{\theta})$ es el valor esperado del estimador del parámetro y θ es el valor del parámetro.

Variables aleatorias

- 1. Una variable cuyos valores observados son resultado de un proceso aleatorio (experimento aleatorio).
- 2. Las variables aleatorias pueden ser discretas o continuas:

Discretas: Toma únicamente valores enteros:

- a) Binarias (e.x. presencia/ausencia, muerto/vivo)
- b) Categóricas y ordinales (e.x. pequeño, mediano, grande)
- c) Número de individuos (e.x. 0, 1, 23, 54)

Continuas: Toma un número infinito de valores dentro del intervalo dado (e.x. distancia, temperatura, largo).

Distribuciones estadísticas

La mayor parte de los análisis estadísticos dependen de una distribución estadística (análisis paramétricos tales como prueba T, ANOVA, regresión lineal y múltiple).

Los análisis paramétricos involucran una serie de supuestos asociados a los parámetros de la distribución.

Por ejemplo, la prueba de T para dos grupos independientes supone que las muestras son aleatorias y que provienen de poblaciones normales cuyas varianzas son iguales.

Distribución normal

Características:

- Distribución continua
- La suma del área bajo la curva es 1
- Distribución simétrica
- 90% de las observaciones se encuentran a 1.64σ de μ
- 95% de las observaciones se encuentran a 1.96σ de μ
- 99% de las observaciones se encuentran a 2.58σ de μ

Distribución normal: la media determina la posición

Distribución normal: la varianza determina la forma

Distribución Poisson

Características:

- Se aplica a fenómenos discretos de la naturaleza
- Definida por el parámetro lambda, que representa el número de veces que se espera que ocurra el fenómeno.

Distribución Binomial

Características:

Discreta que cuenta el número de éxitos x en una secuencia de *n* ensayos independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos.

Ejercicio

- 1. Generar un markdown en R para los ejercicios 1,2,3,4 y 5
- 2. Documentar apropiadamente cada paso
- 3. Generar un .pdf con las porciones de código evaluadas