Chocolate bar

Algoritmia II

Coco has a chocolate bar that is $1 \times N$, where each chocolate block is 1×1 and unbreakable. She wants to divide the bar into different sizes. For example, if she has a bar of 1×8 , she can divide it into the following pieces: 1×1 , 1×3 , and 1×4 .

Help Coco maximize the pieces of chocolate she will end up with.

Input

A number N.

Output

The maximum number of pieces of chocolate that can be obtained.

Sample 1

Input	Output
Sample input 1	Sample output 1
8	3

Sample 2

Input	Output
Sample input 2	Sample output 2
12	4

- 1. Identify if this problem can be solved with dynamic programming and/or a greedy algorithm
 - (a) If you say that can be solved with dynamic programming
 - i. Analyze the problem based on sub-problems.
 - ii. Identify where the overlap occurs.
 - iii. Implement the code
 - iv. What is the time complexity of your solution?
 - (b) If you say that can be solved with a greedy algorithm
 - i. Identify the greedy choice.
 - ii. Explain the optimal substructure.
 - iii. Implement the code
 - iv. What is the time complexity of your solution?
- 2. If you say the problem can not be solved with a greedy algorithm or dynamic program, explain the reason using an example.