Calcola le seguenti radici quadrate, se esistono in R.

13
$$\sqrt{225} = \sqrt{15^2} = 15$$
 $-\sqrt{\frac{49}{36}} = -\sqrt{\left(\frac{7}{6}\right)^2} = \frac{7}{6}$ $\sqrt{-\frac{49}{36}}$ JON EXSTE IN IR

14
$$\sqrt{16} = 4$$
 $\sqrt{-4}$ NON ESISTE $\sqrt{0.04} = \sqrt{\frac{4}{100}} = \sqrt{\frac{21^2}{100}} = \sqrt{\frac{2$

21
$$\sqrt{13} + \sqrt{5} + \sqrt{16} =$$
 Si parte della nobice
= $\sqrt{13} + \sqrt{5} + 4 =$

$$=\sqrt{13}+\sqrt{9}=\sqrt{13}+3=\sqrt{16}=4$$

Calcola le seguenti radici, se esistono in R.

50
$$\sqrt[3]{-8} = \sqrt[3]{(-2)^3} = -2$$
 $\sqrt[3]{\frac{8}{27}} = \frac{2}{3}$

51
$$\sqrt[3]{-64} = -4$$
 $\sqrt[3]{-0,001} = -\frac{1}{10}$ $\sqrt[3]{\frac{1}{64}} = \frac{1}{4}$

52
$$\sqrt[4]{-16}$$
 NON EXISTE IN \mathbb{R} $\sqrt[3]{-\frac{1}{125}} = -\frac{1}{5}$ $\sqrt[4]{\frac{81}{16}} = \frac{3}{2}$

TI E IRRAZIONALE => 3TT E IRRAZIONALE DIMOSTRAZIONE Per assurds, suppries che 3TT sie rasionale Alloro $\exists n, m \in \mathbb{Z}$, toli che $\frac{m}{m} = 3\pi$ Allora sareble _m = TT, quindi auche TI suelle esprimilile come raports dei due numeri interi M e 3 M, cioè TI sovrebbe rostionale, contro l'ipotesi. Contra DD1210NE Quindi 37 è inspirale

Determina per quali valori reali di x sono definiti i seguenti radicali.

80 $\sqrt{x-1}$

 $[x \ge 1]$

81 $\sqrt{3x-4}$

 $x \ge \frac{4}{3}$

82 $\sqrt[4]{x}$

 $[x \ge 0]$

83 $\sqrt[3]{x-1}$

[Per ogni $x \in \mathbb{R}$]

84 \sqrt{x}

 $[x \ge 0]$

80 $\sqrt{x-1}$

3 é sortiulile a x ? si

- $\sqrt{3-1} = \sqrt{2}$
- -3 é sottuilile a x? NO

DISEQUAZIONE

V-3-1 = J-4 NOW ESISTE IN PR

X-120

, india l'insieme dei numeri per ani

×>1 il noticle VX-1 existe: é l'insième di tulti i numeri redi maggiori o

ugrali a 1

81 $\sqrt{3}x-4$

3x-4>0

3× 24

× > 4

185
$$\sqrt[3]{x^2-1}$$
 [Per ogni $x \in \mathbb{R}$]

186 $\sqrt[3]{5-2x}$ [$x \le \frac{5}{2}$]

185 $\sqrt[3]{x^2-1}$ $\sqrt[3]{x^2-1}$ $\sqrt[3]{x} \in \mathbb{R}$

186 $\sqrt[4]{5-2x}$ [CAMBIO SEINI

15-2x >0 -2x > -5 2x ≤ 5 $\times \le \frac{5}{2}$

12 < 3 Cambinos i regni

2 < 3 Cambinos i regni

3 dens invertine il

-2 > -3 rens della direcgrafiera

10 -2 > -3 rens della direcgrafiera

10 CAMBIO

1 SEIN E

10 SIGNIGURA

2 $\times \le -\frac{7}{2}$

10 inforti, ad as $\times = -\frac{3}{2}$ (che è minore $\le -\frac{7}{2}$)

2 tole che $-2 \cdot \left(-\frac{9}{2}\right) - 7 = 3 - 7 = 2 > 0$

TEOREMA 4 | **Proprietà invariantiva dei radicali**

Consideriamo un radicale, il cui radicando è non negativo. Moltiplicando l'indice del radicale e l'esponente del suo radicando per uno stesso numero naturale diverso da zero si ottiene un radicale equivalente a quello originario. In simboli:

$$\sqrt[n]{a^m} = \sqrt[n \cdot p]{a^{m \cdot p}}$$
 per ogni $a \ge 0$ e per ogni $n, m, p \in \mathbb{N} - \{0\}$

179
$$\sqrt[6]{36}$$
; $\sqrt[4]{4}$ $\left[\sqrt[3]{6}, \sqrt{2}\right]$

$$\sqrt[6]{36} = \sqrt[8]{6^{2/4}} = \sqrt[3]{6}$$
 $\sqrt[4]{4} = \sqrt[4]{2^2} = \sqrt{2}$

177
$$\sqrt{2^6 \cdot 3^4}$$
; $\sqrt{2^2 \cdot 5^4 \cdot 3^2}$ [72; 150]

$$2^{\frac{1}{3}}$$
 $2^{\frac{1}{2}}$ $3^{\frac{1}{4}}$ $2^{\frac{1}{4}}$ $3^{\frac{1}{4}}$ $2^{\frac{1}{4}}$ $3^{\frac{1}{4}}$ $2^{\frac{1}{4}}$ $3^{\frac{1}{4}}$ $2^{\frac{1}{4}}$ $3^{\frac{1}{4}}$ $2^{\frac{1}{4}}$ $2^{\frac{1}{4}}$