# TEAM REFERENCE UNIVERSIDAD DE LA HABANA : UH\_CLASS\_ZERO



# ACM-ICPC Caribbean Finals 2017

Team Members: Denis Gómez Cruz, Ernesto Navarro Díaz, Kedir Enrique Lluch Developed by: José Carlos Gutiérrez Pérez

| Contents                      |     | 3.17. RectilinearMst                       | 33 |
|-------------------------------|-----|--------------------------------------------|----|
| 1. Data Structures            | 4   | 3.18. Triangles                            | 34 |
| 1.1. Abi                      | 4   | 4. Graph                                   | 36 |
| 1.1. Abi<br>1.2. AVL          | 4   | 4.1. Aborescense                           | 36 |
|                               | 6   | 4.2. Aborescense 2                         | 37 |
| 0                             | 7   | 4.3. ArticulationPoints                    | 38 |
|                               | ( ) | 4.4. BellmanFord                           | 39 |
| 1.5. Monotonic Queue          | 8   | $4.5.  {\bf Biconnected Component Blocks}$ | 40 |
| 1.6. OrderStatistic           | 8   | 4.6. Biconnected Component Edges           | 40 |
| 1.7. RandomizedKdTree         | 9   | 4.7. BiconnectedComponent                  | 41 |
| 1.8. Rmq                      | 12  | 4.8. BipartiteMatching                     | 42 |
| 1.9. SegmentTree              | 13  | 4.9. Bridges                               | 45 |
| 1.10. Treap                   | 13  | 4.10. CentroidDescomposition               | 43 |
| 1.11. UnionFind               | 15  | 4.11. Dinic                                | 44 |
| 1.12. VantagePointTree        | 15  | 4.12. DominatorTree                        | 45 |
| 1.13. WaveletTree             | 16  | 4.13. Euleriangraph                        | 47 |
| 2. Dynamic Programming        | 18  | 4.14. FloydWarshall                        | 48 |
| 2.1. Convex Hull Trick        | 18  | 4.15. GabowEdmonds                         | 48 |
| 2.2. Divide And Conquer Opt   | 18  | 4.16. GomoryHuTree                         | 5( |
| 3. Geometry                   | 20  | 4.17. HeavyLightDescomposition             | 51 |
| 3.1. AntipodalPoints          | 20  | 4.18. HopcroftKarpMcbm                     | 52 |
| 3.2. BasicsComplex            | 20  | 4.19. IsGraphic                            | 5; |
| 3.3. Basics                   | 21  | 4.20. LcaEulerTour                         | 54 |
| 3.4. Centroid                 | 24  | 4.21. Lca                                  | 58 |
| 3.5. Circle                   | 24  | 4.22. MinCostFlow(BellmanFord)             | 56 |
| 3.6. ClosestPairPoints        | 26  | 4.23. Min-costFlow(Dijkstra)               | 58 |
| 3.7. ConvexCut                | 27  | 4.24. MinCostFlow3                         | 59 |
| 3.8. ConvexHull               | 27  | 4.25. PushRelabel                          | 61 |
| 3.9. LineSegmentIntersections | 28  | 4.26. StoerWagner                          | 62 |
| 3.10. Minkowski               | 29  | 4.27. StronglyConnectedComponent           | 65 |
| 3.11. PickTheorem             | 29  | 4.28. TreeIsomorphism                      | 64 |
| 3.12. Points3D                | 30  | 5. Math                                    | 60 |
| 3.13. PointsinPolygon         | 31  | 5.1. 2-SAT                                 | 66 |
| 3.14. PolygonArea             | 31  | 5.2. FastFourierTransform                  | 66 |
| 3.15. PolygonWidth            | 32  | 5.3. FastModuloTransform                   | 6' |
| 3.16. RectangleUnion          | 32  | 5.4. Gauss                                 | 69 |

| 5.5. GoldsectionSearch                         | 70 | 6.9. MillerRabin          | 88  |
|------------------------------------------------|----|---------------------------|-----|
| 5.6. Hungarian                                 | 70 | 6.10. MobiusMu            | 88  |
| 5.7. Integrate                                 | 71 | 6.11.  ModFact            | 89  |
| 5.8. LinearRecursion                           | 72 | 6.12. Modular Arithmetics | 89  |
| 5.9. MatrixComputationAlgorithms               | 73 | 6.13. PollardRho          | 91  |
| 5.10. Minimumassignment(Jonker-Volgenant)      | 76 | 6.14. PrimitiveRoot       | 92  |
| 5.11. RootsNewton                              | 77 | 6.15. Sieve               | 93  |
| 5.12. Simplex                                  | 77 | 7. String                 | 95  |
| 5.13. Simpson                                  | 79 | 7.1. AhoCorasik           | 95  |
| 5.14. StableMarriageProblem                    | 80 | 7.2. Hash                 | 95  |
| 6. Number Theory                               | 81 | 7.3. Manacher             | 96  |
| 6.1. BigInteger                                | 81 | 7.4. MaximalSuffix        | 96  |
| 6.2. CarmichaelLambda                          | 83 | 7.5. MinimumRotation      | 97  |
| 6.3. ChineseRemainderTheorem                   | 84 | 7.6. PalindromicTree      | 97  |
| 6.4. DiscreteLogarithm                         | 85 | 7.7. PiFunction           | 98  |
| 6.5. DiscreteRoots                             | 85 | 7.8. SuffixArray          | 99  |
| 6.6. DivisorSigma                              | 86 | 7.9. SuffixAutomaton      | 100 |
| 6.7. EulerPhi                                  | 87 | 7.10. ZAlgorithm          | 101 |
| 6.8.  Extended Euclid And Diophantine Equation | 87 | -                         |     |

# 1. Data Structures

#### 1.1. **Abi.**

```
template<typename T>
struct ABI
   int n;
    vector < T > f;
    ABI(int n): n(n), f(n+1) \{\}
   T query(int b)
       T ret = 0;
       for (; b; b -= b & -b)
1.2. AVL.
template<typename T>
struct avl
       struct node
                T key;
               int h, sz;
               node* ch[2];
               int bf() { return ch[1]->h - ch[0]->h; };
               void update()
                       h = 1 + \max(ch[0] -> h, ch[1] -> h);
                        sz = 1 + ch[0] -> sz + ch[1] -> sz;
                }
       }*root, *null;
       node* new node(const T &key)
```

```
ret += f[b];
        return ret;
    void update(int b, T c)
        for (; b \le n; b += b \& -b)
            f[b] += c;
};
                node* u = new node();
                u-> key = key;
                u->h = u->sz = 1;
                u -> ch[0] = u -> ch[1] = null;
                return u;
        node* rotate(node* u, bool d)
                if (u == null \mid\mid u -> ch[!d] == null)
                        return u;
                node* t = u -> ch[!d];
                u->ch[!d]=t->ch[d];
                t->ch[d] = u;
                u->update();
```

t->update();

return t;

```
node* balance(node* u)
        u->update();
       if (u->bf()>1)
                if (u->ch[1]->bf() <= 0) // Right on left
                        u->ch[1] = rotate(u->ch[1], 1);
                u = rotate(u, 0); // Left
        else if (u->bf()<-1)
                if (u->ch[0]->bf()>=0) // Left on right
                    child
                        u->ch[0] = rotate(u->ch[0], 0);
                u = rotate(u, 1); // Right
        }
       u->update();
        return u;
node* insert(node* u, const T & key)
       if (u == null)
                return u = new node(key);
       if (u->key == key)
                return u;
       bool d = (key < u - > key);
        u \rightarrow ch[!d] = insert(u \rightarrow ch[!d], key);
       return u = balance(u);
}
node* erase(node* u, T key)
```

```
{
        if (u == null)
                 return u;
        int tmp = u->key;
        if (u->key == key)
        {
                 if (u->ch[0] == null \mid\mid u->ch[1] == null)
                         return u \rightarrow ch[u \rightarrow ch[0] == null];
                 else
                 {
                         node*t = u - > ch[0];
                         while (t->ch[1] != null)
                                  t = t - > ch[1];
                         key = u -> key = t -> key;
                 }
        }
        bool d = (key < tmp);
        u->ch[!d] = erase(u->ch[!d], key);
        return u = balance(u);
}
void insert (T key)
        root = insert(root, key);
void erase(T key)
        root = erase(root, key);
bool find (const T & key)
        node* u = root;
        while (true)
```

```
if (u == null)
                            return false;
                   if (u->key == key)
                            return true;
                   u = u - \operatorname{ch}[!(\ker < u - \operatorname{key})];
int order of key(const T & key)
         int r = 0;
         node* u = root;
         while (true)
                   if (u == null)
                            return r;
                   if (\text{key} \leq \text{u} + \text{key})
                            u = u - > ch[0];
                   else
                            r += u->sz - u->ch[1]->sz, u = u
                                 ->ch[1];
T kth(int k)
         assert(k \le root -> sz);
         node* u = root;
         while (true)
```

#### 1.3 BooleanRange.

```
\label{eq:condition} $$ bool find(set < pair < int, int >> &S, int x, int y) $$ \{ $$ auto it = S.lower_bound({ x, y }); $$ return (it != S.end() && it -> first <= x && it -> second >= y) $$ $$ $$
```

```
{
                       if (u->sz - u->ch[1]->sz == k)
                               return u->key;
                        if (k \le u -> ch[0] -> sz)
                               u = u - > ch[0];
                        else
                               k = u - sz - u - ch[1] - sz, u = u
                                    -> ch[1];
        void in_order(node* u)
               if (u == null)
                       return;
               in order (u->ch[0]);
                cout << u-> key.first << "\n";
               in order (u->ch[1]);
       avl()
                null = new node();
                null->h = null->sz = 0;
                null -> ch[0] = null -> ch[1] = 0;
               root = null;
};
                        || (it != S.begin() && (--it)->first <= x &&
                             it->second>=y);
```

void insert(set<pair<int, int>> &S, int x, int y)

```
if (find(S, x, y))
        return;
auto it = S.lower bound(\{x, y\});
while (it != S.end() && it->first >= x && it->second \leq y
        it = S.erase(it);
it = S.insert(\{ x, y \}).first;
if (++it != S.end() \&\& y + 1 >= it -> first)
        int t = it -> second;
        S.erase(\{x, y\});
        S.erase(it);
        it = S.insert(\{ x, y = t \}).first;
else --it;
if (it != S.begin() && (--it)->second + 1 >= x)
        int t = it - > first;
        S.erase(\{ x, y \});
        S.erase(it);
        S.insert(\{x = t, y\});
}
```

#### 1.4. HashTable.

```
template<typename H, typename T>
struct hash_table
{
         static const int n = 5000010, mod = 5000007;

         H h[n];
         T val[n];
         int f, p, c, link[n], last[mod];
```

```
}
void erase(set<pair<int, int>> &S, int x, int y)
        auto it = S.lower bound(\{x, y\});
        while (it != S.end() && it->first >= x && it->second \leq y
                it = S.erase(it);
        it = S.lower bound(\{x, y\});
        if (it != S.end() && y >= it -> first)
                int t = it -> second;
                it = S.erase(it);
                if (y < t) it = S.insert({ y + 1, t }).first;
        }
        if (it != S.begin() && (--it)->second >= x)
                 auto t = *it;
                S.erase(it);
                if (t.first < x) S.insert(\{t.first, x - 1\});
                if (y < t.second) S.insert(\{y + 1, t.second\});
}
```

```
}
void set(H hash, T num)
{
    if (find(hash) != NULL)
        val[p] = num;
    else
    {
        h[c] = hash;
        val[c] = num;
        hash %= mod;
        link[c] = last[hash];
        last[hash] = c++;
}
```

# 1.5. MonotonicQueue.

```
\label{eq:struct_monotonic_queue} $$ \{$ & deque<pair<int, ll>> deq; $$ void add(int k, ll v) $$ \{$ & while (!deq.empty() && deq.back().second <= v) $$ deq.pop_back(); $$ deq.push_back(\{k, v\}); $$ $$ $$ $$ $$
```

## 1.6. OrderStatistic.

```
    void erase(H hash)
    {
        if (find(hash) == NULL)
            return;

        if (f == -1)
            last[hash % mod] = link[p];
        else
            link[f] = link[p];
    }
};
```

```
\begin{array}{l} \text{int main() \{} \\ \text{ordered\_set X;} \\ \text{for(int i = 1; i <= 16; i *= 2)} \\ \text{X.insert(i);} \\ \text{cout << *X.find\_by\_order(1) << endl; // 2} \\ \text{cout << *X.find\_by\_order(2) << endl; // 4} \\ \text{cout << *X.find\_by\_order(4) << endl; // 16} \\ \text{cout << (X.end()==X.find\_by\_order(6)) << endl; // true} \end{array}
```

#### 1.7. RandomizedKdTree.

```
typedef complex<double> point;
struct randomized kd tree
       struct node
               point p;
               int d, s;
               node *l, *r;
               bool is left of(node *x)
                       if (x->d)
                               return real(p) < real(x->p);
                       else
                               return imag(p) < imag(x->p);
       }*root;
       randomized kd tree():root(0) {}
       int size(node *t)
               return t? t->s:0;
       node *update(node *t)
```

```
cout << X.order of key(-5) << endl; // 0
cout << X.order of key(1) << endl; // 0
cout << X.order of key(3) << endl; // 2
cout << X.order of key(4) << endl; // 2
cout << X.order of key(400) << endl; // 5
           t->s = 1 + size(t->l) + size(t->r);
           return t;
   }
   node* build(vector<point> &p, int lo, int hi, bool d)
           if (lo >= hi)
                   return NULL;
           int m = (lo + hi) / 2;
           nth element (p.begin() + lo, p.begin() + m, p.begin()
                + hi,
                            [&] (const point &a, const point &b)
                                    { return d? a.real() < b.real
                                        (): a.imag() < b.imag();
                                        });
           node *t = new node(\{ p[m], d \});
           t->l = build(p, lo, m, !d);
           t->r = build(p, m + 1, hi, !d);
           return update(t);
   node* build2(vector<point> &p, int lo, int hi, bool d)
           if (lo >= hi)
```

```
return NULL;
        swap(p[lo], p[lo + rand() % (hi - lo)]);
        int m = partition(p.begin() + lo + 1, p.begin() + hi,
                         [&] (const point &a)
                                  \{ \text{ return d ? a.real()} < p[lo]. 
                                      real(): a.imag() < p[lo].
                                      imag(); \}) - p.begin();
        node *t = \text{new node}(\{ p[lo], d \});
        t->l = build2(p, lo + 1, m, !d);
        t->r = build2(p, m, hi, !d);
        return update(t);
}
void build(vector<point> &p)
        root = build(p, 0, p.size(), true);
pair < node*, node*> split(node *t, node *x)
        if (!t)
                 return {0, 0};
        if (t->d == x->d)
                if (t->is left of(x))
                         auto p = split(t->r, x);
                         t->r = p.first;
                         return {update(t), p.second};
                 else
                         auto p = split(t->l, x);
                         t->l = p.second;
                         return {p.first, update(t)};
```

```
}
        }
        else
                auto l = split(t->l, x);
                auto r = split(t->r, x);
                if (t->is left of(x))
                         t->l = l.first;
                         t->r = r.first;
                         return {update(t), join(l.second, r.
                              second, t->d);
                }
                else
                {
                         t->l = l.second;
                         t->r = r.second;
                         return \{join(l.first, r.first, t->d),
                              update(t)};
                }
        }
}
node *join(node *l, node *r, int d)
        if (!1)
                return r;
        if (!r)
                return l;
        if (rand() \% (size(l) + size(r)) < size(l))
                if (l->d==d)
                {
                         l->r = join(l->r, r, d);
                         return update(l);
                }
                else
                {
                         auto p = split(r, l);
```

```
l->l = join(l->l, p.first, d);
                        l->r = join(l->r, p.second, d);
                        return update(l);
        }
        else
                if (r->d == d)
                        r->l = join(l, r->l, d);
                        return update(r);
                else
                        auto p = split(l, r);
                        r->l = join(p.first, r->l, d);
                        r->r = join(p.second, r->r, d);
                        return update(r);
                }
        }
}
node *insert(node *t, node *x)
        if (rand() % (size(t) + 1) == 0)
                auto p = split(t, x);
                x->l = p.first;
                x->r = p.second;
                return update(x);
        else
                if (x->is left of(t))
                        t->l = insert(t->l, x);
                else
                        t->r = insert(t->r, x);
                return update(t);
        }
```

```
}
void insert(point p)
        root = insert(root, new node(\{ p, rand() \% 2 \}));
node *remove(node *t, node *x)
       if (!t)
                return t;
       if (t->p == x->p)
                return join(t->l, t->r, t->d);
       if (x-) is left of(t))
                t->l = remove(t->l, x);
        else
                t->r = remove(t->r, x);
        return update(t);
void remove(point p)
        node n = \{ p \};
       root = remove(root, &n);
void closest(node *t, point p, pair < double, node *> &ub)
       if (!t)
                return;
        double r = norm(t->p-p);
       if (r < ub.first)
                ub = \{r, t\};
        node *first = t->r, *second = t->l;
        double w = t->d? real(p - t->p): imag(p - t->p);
       if (w < 0)
                swap(first, second);
        closest(first, p, ub);
       if (ub.first > w * w)
```

```
}
                        closest(second, p, ub);
       }
                                                                                                int size rec()
       point closest (point p)
                                                                                                        return size rec(root);
                pair<double, node*> ub(1.0 / 0.0, 0);
                closest(root, p, ub);
                return ub.second->p;
                                                                                                void display(node *n, int tab = 0)
       }
                                                                                                        if (!n)
       // verification
                                                                                                                return;
                                                                                                        display(n->l, tab + 2);
       int height (node *n)
                                                                                                        for (int i = 0; i < tab; ++i)
                return n ? 1 + \max(\text{height}(n->l), \text{height}(n->r)) : 0;
                                                                                                                cout << " ";
                                                                                                        cout << n->p << " (" << n->d << ")" << endl;
                                                                                                        display(n->r, tab + 2);
                                                                                                }
       int height()
                return height(root);
                                                                                                void display()
                                                                                                        display(root);
       int size rec(node *n)
                                                                                        };
               return n ? 1 + size rec(n->l) + size rec(n->r) : 0;
1.8. Rmq.
template<typename T>min
                                                                                                        for (int i = 1; i <= lg; i++)
struct RMQ
                                                                                                                 for (int j = 1; j \le n - (1 \le i) + 1; j++)
                                                                                                                         dp[j][i] = min(dp[j][i-1], dp[j+(1
                                                                                                                              <<(i - 1))[i - 1];
       int n, lg;
       vector<vector<T>> dp;
                                                                                                }
       RMQ(vector < T > \&a) : n(a.size()), lg(log2(n)), dp(n + 1,
                                                                                                T query(int a, int b)
            vector < T > (lg + 1, 1 < < 30))
       {
                                                                                                        int l = log 2(b - a + 1);
                for (int j = 1; j <= n; j++)
                                                                                                        return min(dp[a][l], dp[b - (1 << l) + 1[l]);
                        dp[j][0]=a[j-1];\\
```

**}**;

#### 1.9. SegmentTree.

```
struct segment _ tree
{
    int n;
    vector < ll > a;

    segment _ tree(int n) : n(n), a(2 * n) {}

    void update(int p, ll v)
    {
        for (a[p += n] = v; p /= 2;)
            a[p] = __gcd(a[2 * p], a[2 * p + 1]);
    }
}
```

#### 1.10. **Treap.**

```
{
               swap(u->ch[0], u->ch[1]);
               for (int i = 0; i < 2; ++i)
                       if (u->ch[i])
                               u->ch[i]->rev = true;
       }
       if (u-> lazy != -1)
               for (int i = 0; i < 2; ++i)
                       if (u->ch[i])
                       {
                               memset(u->ch[i]->acum, 0,
                                   sizeof u -> ch[i] -> acum);
                               u->ch[i]->acum[u->lazy] =
                                   u->ch[i]->sz;
                               u->ch[i]->lazy = u->ch[i]
                                   1->key = u->lazy;
                       }
       u->lazy = -1;
       u->rev = false;
}
node* update(node *u)
       if (u)
       {
               u->sz = size(u->ch[0]) + size(u->ch[1]) +
                   1;
               for (int i = 0; i < 26; ++i)
                       u->acum[i] = getC(u->ch[0], i) +
                           getC(u->ch[1], i);
               ++u->acum[u->key];
       }
       return u;
}
```

```
pair < node*, node*> split(node* u, int k)
{// split for the kth first elements
        push(u);
        if (!u)
                return { u, u };
        if (size(u->ch[0])>=k)
        {
                 auto s = split(u->ch[0], k);
                 u->ch[0] = s.second;
                 return { s.first, update(u) };
        }
        auto s = \text{split}(u - > \text{ch}[1], k - \text{size}(u - > \text{ch}[0]) - 1);
        u->ch[1] = s.first;
        return { update(u), s.second };
node* merge(node *u, node *v)
        push(u), push(v);
        if (!u || !v)
                 return u?u:v;
        if (u->prio > v->prio)
                 u->ch[1] = merge(u->ch[1], v);
                 return update(u);
        v->ch[0] = merge(u, v->ch[0]);
        return update(v);
Treap() : root(NULL) {}
```

**}**;

#### 1.11. UnionFind.

```
\begin{split} & \text{struct union\_find} \\ \{ & & \text{vector}{<} \text{int}{>} \text{ p}; \\ & & \text{union\_find}(\text{int n}) : p(n,-1) \text{ } \{ \} \\ & & \text{bool join}(\text{int u, int v}) \\ & \{ & & \text{if } ((u = \text{root}(u)) == (v = \text{root}(v))) \\ & & \text{return false}; \\ & & \text{if } (p[u] > p[v]) \end{split}
```

#### 1.12. VantagePointTree.

bool operator <(point p, point q)

```
swap(u, v);
                p[u] += p[v];
                p[v] = u;
                return true;
        int root(int u)
                return p[u] < 0? u : p[u] = root(p[u]);
};
                if (real(p) != real(q))
                        return real(p) < real(q);
                return imag(p) < imag(q);
        }
struct vantage point tree
        struct node
                point p;
                double th;
                node *l, *r;
        }*root;
        vector<pair<double, point>> aux;
        vantage point tree(vector<point> ps)
                for (int i = 0; i < ps.size(); ++i)
```

aux.push back( $\{0, ps[i]\}$ );

```
root = build(0, ps.size());
}
node *build(int l, int r)
        if (l == r)
                return 0;
        swap(aux[l], aux[l + rand() % (r - l)]);
        point p = aux[l++].second;
        if (l == r)
                return new node({ p });
        for (int i = l; i < r; ++i)
                aux[i].first = norm(p - aux[i].second);
        int m = (l + r) / 2;
        nth element (aux.begin() + 1, aux.begin() + m, aux.
            begin() + r);
        return new node({ p, sqrt(aux[m].first), build(l, m),
             build(m, r) });
}
priority queue<pair<double, node*>> que;
void k nn(node *t, point p, int k)
        if (!t)
                return;
        double d = abs(p - t -> p);
        if (que.size() < k)
                que.push(\{d, t\});
        else if (que.top().first > d)
```

#### 1.13. WaveletTree.

```
template<typename T>
struct wavelet_tree
{
         struct node
         {
```

```
{
                        que.pop();
                        que.push(\{d, t\});
                if (!t->1 && !t->r)
                        return;
                if (d < t->th)
                {
                        k nn(t->l, p, k);
                        if (t->th - d \le que.top().first)
                                k nn(t->r, p, k);
                }
                else
                {
                        k nn(t->r, p, k);
                        if (d - t - > th \le que.top().first)
                                k nn(t->l, p, k);
                }
        }
        vector<point> k nn(point p, int k)
                k nn(root, p, k);
                vector<point> ans;
                for (; !que.empty(); que.pop())
                        ans.push back(que.top().second->p);
                reverse(ans.begin(), ans.end());
                return ans;
        }
};
```

```
T lo, hi;
vector<int> a;
node *l, *r;
node(T x, T y, int sz):
```

```
lo(x), hi(y), a(1, 0), l(NULL), r(NULL
                              ) { a.reserve(sz); }
}*root;
wavelet tree(vector<T> &a, T MAX) // 1-based
        root = build(a, 1, a.size(), 0, MAX);
node* build(vector<T> &a, int l, int r, T lo, T hi)
        node *cur = new node(lo, hi, r - l + 1);
        if (lo == hi || l >= r) return cur;
        T md = (lo + hi) / 2;
        for (int i = l; i < r; ++i)
                 cur -> a.push back(cur -> a.back() + (a[i] <=
                      md));
        auto p = \text{stable partition}(a.\text{begin}() + l, a.\text{begin}() + r,
              [md](int lo)\{ return lo <= md; \});
        cur->l = build(a, l, p - a.begin(), lo, md);
        cur->r = build(a, p - a.begin(), r, md + 1, hi);
        return cur;
}
T kth(node *cur, int l, int r, int k)
```

```
{
                  if (1 > r) return 0;
                  if (cur -> lo == cur -> hi) return cur -> lo;
                  int al = \operatorname{cur} -> a[l-1], ar = \operatorname{cur} -> a[r];
                  if (k \le ar - al) return kth(cur > l, al + 1, ar, k);
                  return kth(cur->r, l - al, r - ar, k - ar + al);
         int less equal(node *cur, int l, int r, T k)
                  if (1 > r \mid\mid k < cur -> lo) return 0;
                  if (cur->hi <= k) return r-l+1;
                  int al = \operatorname{cur} -> a[l-1], ar = \operatorname{cur} -> a[r];
                  return less equal(cur->l, al + 1, ar, k) + less equal(
                       cur->r, l-al, r-ar, k);
         int equal(node *cur, int l, int r, T k)
                  if (l > r \mid\mid k < cur -> lo \mid\mid k > cur -> hi) return 0;
                  if (cur -> lo == cur -> hi) return r - l + 1;
                  int al = cur->a[l - 1], ar = cur->a[r], md = (cur->
                       lo + cur -> hi) / 2;
                  if (k \le md) return equal(cur->1, al + 1, ar, k);
                  return equal(cur->r, l - al, r - ar, k);
        }
};
```

>= hull[p].y \* (x hull[p-1].x)

hull.pop back();

#### 2. Dynamic Programming

#### 2.1. Convex Hull Trick.

```
struct convex hull trick // upper hull
        typedef long long ll;
        struct point { ll x, y; };
                                                                                                            last = min(last, (int) hull.size());
        vector<point> hull;
                                                                                                            hull.push back({ x, y });
        int last;
        convex hull trick()
                                                                                                    inline ll f(int i, ll x)
                last = 0;
                                                                                                            return hull[i].x * x + hull[i].y;
                hull.clear();
                hull.push back(\{0,0\});
        }
                                                                                                    ll query(ll x)
        void add(ll x, ll y)
                                                                                                             while (last +1 < (int) hull.size() && f(last +1, x)
                                                                                                                 >= f(last, x)) ++ last;
                int p = hull.size();
                                                                                                            return f(last, x);
                while (--p \&\& (y - hull[p - 1].y) * (hull[p].x - x) +
                                                                                                    }
                     y * (x - hull[p - 1].x)
                                                                                           };
```

# 2.2. Divide And Conquer Opt.

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n, k, x[1005], w[1005], dp[1005][1005], cost[1005][1005];
                                                                                                            }
void solve(int lo, int hi, int optL, int optR, int k)
        if (lo > hi)
                return;
                                                                                           }
```

```
int m = (lo + hi) / 2, opt;
for (int i = optL; i \le min(optR, m); ++i)
        if (dp[k-1][i] + cost[i+1][m] < dp[k][m])
                dp[k][m] = dp[k - 1][i] + cost[i + 1][m];
                opt = i;
solve(lo, m - 1, optL, opt, k);
solve(m + 1, hi, opt, optR, k);
```

```
\label{eq:continuous_problem} $$\inf \ main() $$ $$ ios_base::sync_with_stdio(0), cin.tie(0); $$ $$ while (cin >> n >> k) $$ $$ $$ $$ for (int i = 1; i <= n; ++i) $$ $$ $$ cin >> x[i] >> w[i]; $$ $$ $$ memset(cost, 0, sizeof cost); $$ $$ memset(dp, 63, sizeof dp); $$ $$ for (int i = 1; i <= n; ++i) $$ $$ $$
```

```
 \begin{array}{c} & \text{for (int } j=i-1; \, j; \, --j) \\ & \text{cost}[j][i] = \text{cost}[j+1][i] + (x[i]-x[j]) \\ & * w[j]; \\ & \text{dp}[1][i] = \text{cost}[1][i]; \\ \} \\ & \text{for (int } i=2; \, i <=k; \, ++i) \\ & \text{solve}(1, \, n, \, 1, \, n, \, i); \\ & \text{cout} << \, \text{dp}[k][n] << \, "\setminus n"; \\ \} \\ & \text{return 0;} \\ \} \end{array}
```

# 3. Geometry

# 3.1. AntipodalPoints.

```
/*
       Antipodal points
       Tested: AIZU(judge.u-aizu.ac.jp) CGL.4B
       Complexity: O(n)
*/
vector<pair<int, int>> antipodal(const polygon &P)
       vector<pair<int, int>> ans;
       int n = P.size();
       if (P.size() == 2)
               ans.push back({0, 1});
       if (P.size() < 3)
               return ans;
       int q0 = 0;
       while (abs(area2(P[n-1], P[0], P[NEXT(q0)]))
                       > abs(area2(P[n-1], P[0], P[q0])))
               ++q0;
       for (int q = q0, p = 0; q != 0 && p <= q0; ++p)
```

# 3.2. BasicsComplex.

```
typedef complex<double> point;
typedef vector<point> polygon;
#define NEXT(i) (((i) + 1) % n)
```

```
ans.push back({ p, q });
        while (abs(area2(P[p], P[NEXT(p)], P[NEXT(q)]))
                       > abs(area2(P[p], P[NEXT(p)], P[q]))
        {
                q = NEXT(q);
                if (p != q0 || q != 0)
                       ans.push back(\{p, q\});
                else
                       return ans;
        }
       if (abs(area2(P[p], P[NEXT(p)], P[NEXT(q)]))
                       == abs(area2(P[p], P[NEXT(p)], P[q
                            ])))
        {
               if (p != q0 || q != n - 1)
                       ans.push back({ p, NEXT(q) });
                else
                       ans.push back({ NEXT(p), q });
        }
return ans;
```

```
struct circle { point p; double r; };
struct line { point p, q; };
using segment = line;
```

```
const double eps = 1e-9;
// fix comparations on doubles with this two functions
int sign(double x) { return x < -eps ? -1 : x > eps; }
int dblcmp(double x, double y) { return sign(x - y); }
double dot(point a, point b) { return real(conj(a) * b); }
double cross(point a, point b) { return imag(conj(a) * b); }
double area2(point a, point b, point c) { return cross(b - a, c - a); }
    // cross
int ccw(point a, point b, point c)
       b = a; c = a;
       if (cross(b, c) > 0) return +1; // counter clockwise
       if (cross(b, c) < 0) return -1; // clockwise
       if (dot(b, c) < 0) return +2; // c--a--b on line
       if (dot(b, b) < dot(c, c)) return -2; // a--b--c on line
       return 0;
}
namespace std
       bool operator < (point a, point b)
3.3. Basics.
double INF = 1e100;
double EPS = 1e-12;
struct PT {
 double x, y;
 PT() {}
 PT(double x, double y) : x(x), y(y) {}
```

```
if (a.real() != b.real())
                                                                             return a.real() < b.real();
                                                   return a.imag() < b.imag();
}
double angle (point a, point b, point c) // returns the angle abc (cos(x)
                 = Va * Vb / |Va| * |Vb|
             a = b, c = b;
             return acos((a.X * c.X + a.Y * c.Y) / (sqrt((double) sqr(a.X) +
                           sqr(a.Y)) * sqrt((double) sqr(c.X) + sqr(c.Y)));
// contrary clock side direction
pair < double, double > rotacion(double x, double y, double ang)
                          ang = (acos(-1.0) * ang) / 180.0;
                          return { x * cos(ang) - y * sin(ang), x * sin(ang) + y * cos(ang) + y * cos(ang
                                        ang) };
// contrary clock side direction
point rotacion (point x, ld ang)
                          ang = (acos(-1.0) * ang) / 180.0;
                          return x * polar(1.0, ang); //ang en radianes...
      PT(const PT \&p) : x(p.x), y(p.y) \{ \}
      PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
      PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }
      PT operator * (double c) const { return PT(x*c, y*c); }
      PT operator / (double c) const { return PT(x/c, y/c); }
};
```

```
double dot(PT p, PT q) { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
ostream & operator << (ostream & os, const PT & p) {
 os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y,p.x); }
PT RotateCW90(PT p) { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
 return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
 return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
// project point c onto line segment through a and b
PT ProjectPointSegment(PT a, PT b, PT c) {
 double r = dot(b-a,b-a);
 if (fabs(r) < EPS) return a;
 r = dot(c-a, b-a)/r;
 if (r < 0) return a;
 if (r > 1) return b;
 return a + (b-a)*r;
// compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
 return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// compute distance between point (x,y,z) and plane ax+by+cz=d
double DistancePointPlane(double x, double y, double z,
                         double a, double b, double c, double d)
```

```
return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
}
// determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
 return fabs(cross(b-a, c-d)) < EPS;
bool LinesCollinear(PT a, PT b, PT c, PT d) {
 return LinesParallel(a, b, c, d)
      && fabs(cross(a-b, a-c)) < EPS
      && fabs(cross(c-d, c-a)) < EPS;
}
// determine if line segment from a to b intersects with
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
 if (LinesCollinear(a, b, c, d)) {
    if (dist2(a, c) < EPS \mid\mid dist2(a, d) < EPS \mid\mid
      dist2(b, c) < EPS | dist2(b, d) < EPS) return true;
    if (dot(c-a, c-b) > 0 \&\& dot(d-a, d-b) > 0 \&\& dot(c-b, d-b) >
         0)
      return false:
    return true:
 if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
 if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
  return true;
}
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
 b=b-a; d=c-d; c=c-a;
 assert(dot(b, b) > EPS && dot(d, d) > EPS);
 return a + b*cross(c, d)/cross(b, d);
```

```
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
 b=(a+b)/2;
 c = (a+c)/2;
 return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+
      RotateCW90(a-c));
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
// strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon(const vector < PT > &p, PT q) {
 bool c = 0:
 for (int i = 0; i < p.size(); i++)
   int j = (i+1)\% p.size();
   if ((p[i].y \le q.y \&\& q.y < p[j].y ||
      p[j].y \le q.y \&\& q.y \le p[i].y) \&\&
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
      c = !c:
 }
 return c;
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector < PT > &p, PT q) {
 for (int i = 0; i < p.size(); i++)
    if (dist2(ProjectPointSegment(p[i], p[(i+1)\%p.size()], q), q) < EPS
      return true;
    return false;
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
```

```
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
 vector<PT> ret;
 b = b-a;
 a = a-c;
 double A = dot(b, b);
 double B = dot(a, b);
 double C = dot(a, a) - r * r;
 double D = B*B - A*C;
 if (D < -EPS) return ret;
 ret.push back(c+a+b*(-B+sqrt(D+EPS))/A);
 if (D > EPS)
    ret.push back(c+a+b*(-B-sqrt(D))/A);
 return ret:
}
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R)
 vector<PT> ret;
 double d = \operatorname{sqrt}(\operatorname{dist2}(a, b));
 if (d > r+R \mid\mid d+\min(r, R) < \max(r, R)) return ret;
 double x = (d*d-R*R+r*r)/(2*d);
 double y = \operatorname{sqrt}(r*r-x*x);
 PT v = (b-a)/d;
 ret.push back(a+v*x + RotateCCW90(v)*y);
 if (y > 0)
    ret.push back(a+v*x - RotateCCW90(v)*y);
  return ret;
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as
// the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector < PT > &p) {
 double area = 0:
 for (int i = 0; i < p.size(); i++) {
   int j = (i+1) \% p.size();
```

```
area += p[i].x*p[j].y - p[j].x*p[i].y;
 return area / 2.0;
double ComputeArea(const vector < PT > &p) {
 return fabs(ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p) {
 PT c(0,0);
 double scale = 6.0 * ComputeSignedArea(p);
 for (int i = 0; i < p.size(); i++){
   int j = (i+1) \% p.size();
   c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
 return c / scale;
3.4. Centroid.
/*
       Centroid of a (possibly nonconvex) polygon
       Coordinates must be listed in a cw or ccw.
       Tested: SPOJ STONE
       Complexity: O(n)
*/
point centroid(const polygon &P)
3.5. Circle.
/*
       Circles
       Tested: AIZU
```

```
}
// tests whether or not a given polygon (in CW or CCW order) is
     simple
bool IsSimple(const vector < PT > &p) {
  for (int i = 0; i < p.size(); i++) {
    for (int k = i+1; k < p.size(); k++) {
      int j = (i+1) \% p.size();
      int l = (k+1) \% p.size();
      if (i == l || j == k) continue;
      if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
        return false;
    }
  return true;
{
        point c(0, 0);
        double scale = 3.0 * area2(P); // area2 = 2 * polygon area
        for (int i = 0, n = P.size(); i < n; ++i)
                int j = NEXT(i);
                c = c + (P[i] + P[j]) * (cross(P[i], P[j]));
        return c / scale;
}
*/
// circle-circle intersection
vector<point> intersect(circle C, circle D)
```

```
{
        double d = abs(C.p - D.p);
        if (sign(d - C.r - D.r) > 0) return \{\}; // too far
        if (sign(d - abs(C.r - D.r)) < 0) return \{\}; // too close
        double a = (C.r*C.r - D.r*D.r + d*d) / (2*d);
        double h = \operatorname{sqrt}(C.r*C.r - a*a);
        point v = (D.p - C.p) / d;
        if (sign(h) == 0) return \{C.p + v*a\}; // touch
        return \{C.p + v*a + point(0,1)*v*h, // intersect\}
                         C.p + v*a - point(0,1)*v*h;
}
// circle-line intersection
vector<point> intersect(line L, circle C)
        point u = L.p - L.q, v = L.p - C.p;
        double a = dot(u, u), b = dot(u, v), c = dot(v, v) - C.r*C.r;
        double det = b*b - a*c;
        if (sign(det) < 0) return \{\}; // no solution
        if (sign(det) == 0) return \{L.p - b/a*u\}; // touch
        return \{L.p + (-b + sqrt(det))/a*u,
                        L.p + (-b - sqrt(det))/a*u;
}
// circle tangents through point
vector<point> tangent(point p, circle C)
        double \sin 2 = C.r*C.r/norm(p - C.p);
        if (sign(1 - sin 2) < 0) return \{\};
        if (sign(1 - sin 2) == 0) return \{p\};
        point z(sqrt(1 - sin2), sqrt(sin2));
        return \{p + (C.p - p)*conj(z), p + (C.p - p)*z\};
}
bool incircle(point a, point b, point c, point p)
        a = p; b = p; c = p;
        return norm(a) * cross(b, c)
                         + \text{ norm(b)} * \text{cross(c, a)}
```

```
+ \operatorname{norm}(c) * \operatorname{cross}(a, b) >= 0;
                         //<: inside, = cocircular, > outside
}
point three point circle(point a, point b, point c)
        point x = 1.0 / conj(b - a), y = 1.0 / conj(c - a);
        return (y - x) / (conj(x) * y - x * conj(y)) + a;
    Get the center of the circles that pass through p0 and p1
    and has ratio r.
    Be careful with epsilon.
vector<point> two point ratio circle(point p0, point p1, double r){
    if (abs(p1 - p0) > 2 * r + eps) // Points are too far.
        return {};
    point pm = (p1 + p0) / 2.01;
    point pv = p1 - p0;
    pv = point(-pv.imag(), pv.real());
    double x1 = p1.real(), y1 = p1.imag();
    double xm = pm.real(), ym = pm.imag();
    double xv = pv.real(), yv = pv.imag();
    double A = (sqr(xv) + sqr(yv));
    double C = sqr(xm - x1) + sqr(ym - y1) - sqr(r);
    double D = \operatorname{sqrt}(-4 * A * C);
    double t = D / 2.0 / A;
    if (abs(t) \le eps)
        return {pm};
    return {c1, c2};
```

```
/*
       Area of the intersection of a circle with a polygon
       Circle's center lies in (0, 0)
       Polygon must be given counterclockwise
       Tested: LightOJ 1358
       Complexity: O(n)
*/
\#define x(t) (xa + (t) * a)
\#define y(t) (ya + (t) * b)
double radian(double xa, double ya, double xb, double yb)
       return atan2(xa * yb - xb * ya, xa * xb + ya * yb);
double part(double xa, double ya, double xb, double yb, double r)
       double l = \operatorname{sqrt}((xa - xb) * (xa - xb) + (ya - yb) * (ya - yb)
       double a = (xb - xa) / l, b = (yb - ya) / l, c = a * xa + b *
       double d = 4.0 * (c * c - xa * xa - ya * ya + r * r);
       if (d < eps)
```

#### 3.6. ClosestPairPoints.

```
/*
Compute distance between closest points.

Tested: AIZU(judge.u-aizu.ac.jp) CGL.5A
Complexity: O(n log n)

*/
double closest_pair_points(vector<point> &P)
{
```

```
return radian(xa, ya, xb, yb) * r * r * 0.5;
         else
                 d = \operatorname{sqrt}(d) * 0.5;
                 double s = -c - d, t = -c + d;
                 if (s < 0.0) s = 0.0;
                 else if (s > l) s = l;
                 if (t < 0.0) t = 0.0;
                 else if (t > l) t = l;
                 return (x(s) * y(t) - x(t) * y(s)
                                  + (radian(xa, ya, x(s), y(s)))
                                  + radian(x(t), y(t), xb, yb)) * r * r) *
                                        0.5:
double intersection circle polygon (const polygon &P, double r)
         double s = 0.0;
        int n = P.size();;
        for (int i = 0; i < n; i++)
                 s += part(P[i].real(), P[i].imag(),
                          P[NEXT(i)].real(), P[NEXT(i)].imag(), r);
        return fabs(s);
}
        auto cmp = [](point a, point b)
                 return make pair(a.imag(), a.real())
                                  < make pair(b.imag(), b.real());
        };
        int n = P.size();
        sort(P.begin(), P.end());
```

```
set<point, decltype(cmp)> S(cmp);
                                                                                                      auto hi = S.upper bound(point(-oo, P[i].imag() +
       const double oo = 1e9; // adjust
                                                                                                           ans + eps);
       double ans = oo;
                                                                                                      for (decltype(lo) it = lo; it != hi; ++it)
       for (int i = 0, ptr = 0; i < n; ++i)
                                                                                                              ans = min(ans, abs(P[i] - *it));
                while (ptr < i \&\& abs(P[i].real() - P[ptr].real()) >=
                                                                                                      S.insert(P[i]);
                    ans)
                        S.erase(P[ptr++]);
                                                                                              return ans;
               auto lo = S.lower bound(point(-oo, P[i].imag() - ans
                                                                                      }
                     - eps));
3.7. ConvexCut.
                                                                                              polygon Q;
       Cut a convex polygon by a line and
       return the part to the left of the line
       Tested: AIZU(judge.u-aizu.ac.jp) CGL.4C
       Complexity: O(n)
```

#### 3.8. ConvexHull.

/\*

\*/

```
vector<point> convex hull(vector<point> v)
       int n = v.size(), k = 0;
       vector < point > ch(2 * n);
       sort(v.begin(), v.end(), cmp);
    for (ll i = k = 0; i < n; ch[k++] = v[i++])
```

polygon convex cut(const polygon &P, const line &l)

```
for (int i = 0, n = P.size(); i < n; ++i)
        point A = P[i], B = P[(i + 1) \% n];
        if (ccw(l.p, l.q, A) != -1) Q.push back(A);
        if (ccw(l.p, l.q, A) * ccw(l.p, l.q, B) < 0)
                Q.push back(crosspoint((line){ A, B }, l));
}
return Q;
```

```
while (k > 1 \&\& \operatorname{cross}(\operatorname{ch}[k-2], \operatorname{ch}[k-1], v[i]) \le 0) --k;
      for (ll i = n - 2, t = k; i >= 0; ch[k++] = v[i--])
            while (k > t \&\& \operatorname{cross}(\operatorname{ch}[k-2], \operatorname{ch}[k-1], v[i]) <= 0) --k;
      ch.resize(k - (k > 1));
           return ch;
}
```

# 3.9. LineSegmentIntersections.

```
/*
        Line and segments predicates
        Tested: AIZU(judge.u-aizu.ac.jp) CGL
*/
bool intersectLL(const line &l, const line &m)
        return abs(cross(l.q - l.p, m.q - m.p)) > eps || // non-
             parallel
                         abs(cross(l.q - l.p, m.p - l.p)) < eps; // same
                              line
bool intersectLS(const line &l, const segment &s)
        return cross(l.q - l.p, s.p - l.p) * // s[0] is left of l
                         cross(l.q - l.p, s.q - l.p) < eps; // s[1] is right
}
bool intersectLP(const line &l, const point &p)
        return abs(cross(l.q - p, l.p - p)) < eps;
bool intersectSS(const segment &s, const segment &t)
        return ccw(s.p, s.q, t.p) * ccw(s.p, s.q, t.q) \le 0
                         && ccw(t.p, t.q, s.p) * ccw(t.p, t.q, s.q) <= 0;
bool intersectSP(const segment &s, const point &p)
        return abs(s.p - p) + abs(s.q - p) - abs(s.q - s.p) < eps;
        // triangle inequality
        return min(real(s.p), real(s.q)) \leq real(p)
```

```
&& real(p) \leq max(real(s.p), real(s.q))
                          && \min(\operatorname{imag}(s.p), \operatorname{imag}(s.q)) \le \operatorname{imag}(p)
                          && imag(p) \le max(imag(s.p), imag(s.q))
                          && cross(s.p - p, s.q - p) == 0;
}
point projection (const line &l, const point &p)
        double t = dot(p - l.p, l.p - l.q) / norm(l.p - l.q);
        return l.p + t * (l.p - l.q);
point reflection(const line &l, const point &p)
        return p + 2.0 * (projection(l, p) - p);
double distanceLP(const line &l, const point &p)
        return abs(p - projection(l, p));
double distanceLL(const line &l, const line &m)
        return intersectLL(l, m) ? 0 : distanceLP(l, m.p);
double distanceLS (const line &l, const line &s)
        if (intersectLS(l, s)) return 0;
        return min(distanceLP(l, s.p), distanceLP(l, s.q));
double distanceSP(const segment &s, const point &p)
        const point r = projection(s, p);
```

if (intersect SP(s, r)) return abs(r - p);

```
return min(abs(s.p - p), abs(s.q - p));
                                                                                    {
                                                                                             double A = cross(l.q - l.p, m.q - m.p);
                                                                                            double B = cross(l.q - l.p, l.q - m.p);
double distanceSS (const segment &s, const segment &t)
                                                                                            if (abs(A) < eps && abs(B) < eps)
                                                                                                    return m.p; // same line
       if (intersectSS(s, t)) return 0;
                                                                                            if (abs(A) < eps)
       return min(min(distanceSP(s, t.p), distanceSP(s, t.q)),
                                                                                                    assert(false); // !!!PRECONDITION NOT
                       min(distanceSP(t, s.p), distanceSP(t, s.q)));
                                                                                                         SATISFIED!!!
}
                                                                                             return m.p + B / A * (m.q - m.p);
                                                                                    }
point crosspoint (const line &l, const line &m)
3.10. Minkowski.
                                                                                             polygon M;
    Minkowski sum of two convex polygons. O(n + m)
                                                                                             while (pa < na \&\& pb < nb)
    Note: Polygons MUST be counterclockwise
                                                                                                    M.push back(A[pa] + B[pb]);
                                                                                                    double x = cross(A[(pa + 1) \% na] - A[pa], B[(pb +
*/
                                                                                                         1) \% nb] - B[pb]);
polygon minkowski(polygon & A, polygon & B){
                                                                                                    if (x \le eps) pb++;
       int na = (int)A.size(), nb = (int)B.size();
                                                                                                    if (-eps \le x) pa++;
       if (A.empty() || B.empty()) return polygon();
                                                                                             while (pa < na) M.push back(A[pa++] + B[0]);
                                                                                             while (pb < nb) M.push back(B[pb++] + A[0]);
       rotate(A.begin(), min element(A.begin(), A.end()), A.end());
       rotate(B.begin(), min element(B.begin(), B.end()), B.end());
                                                                                             return M;
       int pa = 0, pb = 0;
                                                                                    }
3.11. PickTheorem.
                                                                                            B = Number of integer coordinates points on the boundary
       Pick's theorem
       A = I + B/2 - 1:
                                                                                            Polygon's vertex must have integer coordinates
       A = Area of the polygon
       I = Number of integer coordinates points inside
                                                                                            Tested: LightOJ 1418
```

Complexity: O(n)

```
*/
typedef long long ll;
typedef complex<ll> point;
struct segment { point p, q; };
Il points on segment (const segment &s)
        point p = s.p - s.q;
        return gcd(abs(p.real()), abs(p.imag()));
3.12. Points3D.
const double pi = acos(-1.0);
// Construct a point on a sphere with center on the origin and radius
    \mathbf{R}
// TESTED [COJ-1436]
struct point3d
        double x, y, z;
        point3d(double x = 0, double y = 0, double z = 0): x(x), y(y)
            , z(z) \{ \}
        double operator*(const point3d &p) const
                return x * p.x + y * p.y + z * p.z;
        point3d operator-(const point3d &p) const
                return point3d(x - p.x, y - p.y, z - p.z);
};
```

```
// <Lattice points (not in boundary), Lattice points on boundary>
pair < ll, ll > pick theorem (polygon & P)
        ll A = area2(P), B = 0, I = 0;
        for (int i = 0, n = P.size(); i < n; ++i)
                 B += points on segment(\{P[i], P[NEXT(i)]\});
        A = abs(A);
        I = (A - B) / 2 + 1;
        return {I, B};
}
double abs(point3d p)
        return sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
point3d from polar (double lat, double lon, double R)
        lat = lat / 180.0 * pi;
        lon = lon / 180.0 * pi;
        return point3d(R * \cos(\text{lat}) * \sin(\text{lon}), R * \cos(\text{lat}) * \cos(\text{lon}),
             R * \sin(lat);
struct plane
        double A, B, C, D;
};
double euclideanDistance(point3d p, point3d q)
```

return abs(p - q);

```
{
                                                                                             if (abs(p.C * q.B - q.C * p.B) < eps)
 Geodisic distance between points in a sphere
                                                                                                     return; // Planes are parallel
R is the radius of the sphere
                                                                                             double mz = (q.A * p.B - p.A * q.B) / (p.C * q.B - q.C * p.
*/
double geodesic distance(point3d p, point3d q, double r)
                                                                                              double nz = (q.D * p.B - p.D * q.B) / (p.C * q.B - q.C * p.B
       return r * acos(p * q / r / r);
                                                                                                  );
                                                                                             double my = (q.A * p.C - p.A * q.C) / (p.B * q.C - p.C * q.
const double eps = 1e-9;
                                                                                              double ny = (q.D * p.C - p.D * q.C) / (p.B * q.C - p.C * q.
// Find the rect of intersection of two planes on the space
// The rect is given parametrical
// TESTED [TIMUS 1239]
                                                                                             // parametric rect: (x, my * x + ny, mz * x * nz)
void planePlaneIntersection(plane p, plane q)
                                                                                     }
3.13. PointsinPolygon.
/*
                                                                                              for (int i = 0, n = P.size(); i < n; ++i)
       Determine the position of a point relative
       to a polygon.
                                                                                                     point a = P[i] - p, b = P[NEXT(i)] - p;
                                                                                                     if (imag(a) > imag(b)) swap(a, b);
       Tested: AIZU(judge.u-aizu.ac.jp) CGL.3C
                                                                                                     if (imag(a) \le 0 \&\& 0 < imag(b))
       Complexity: O(n)
                                                                                                             if (cross(a, b) < 0) in = !in;
                                                                                                     if (cross(a, b) == 0 \&\& dot(a, b) <= 0)
*/
                                                                                                             return ON;
enum { OUT, ON, IN };
int contains (const polygon &P, const point &p)
                                                                                             return in ? IN : OUT;
                                                                                     }
       bool in = false;
3.14. PolygonArea.
/*
                                                                                     */
       Tested: AIZU(judge.u-aizu.ac.jp) CGL.3A
       Complexity: O(n)
                                                                                     double area2(const polygon &P)
```

```
A += cross(P[i], P[NEXT(i)]);
        double A = 0;
                                                                                               return A;
        for (int i = 0, n = P.size(); i < n; ++i)
                                                                                       }
3.15. PolygonWidth.
/*
        Compute the width of a convex polygon
                                                                                               return oo;
                                                                                       }
        Tested: LiveArchive 5138
        Complexity: O(n)
                                                                                       double polygon width(const polygon &P)
*/
                                                                                               if (P.size() < 3)
const int oo = 1e9; // adjust
                                                                                                       return 0;
                                                                                               auto pairs = antipodal(P);
double check(int a, int b, int c, int d, const polygon &P)
                                                                                               double best = oo;
        for (int i = 0; i < 4 && a != c; ++i)
                                                                                               int n = pairs.size();
                if (i == 1) swap (a, b);
                                                                                               for (int i = 0; i < n; ++i)
                else swap(c, d);
                                                                                                        double tmp = check(pairs[i].first, pairs[i].second,
        if (a == c) // a admits a support line parallel to bd
                                                                                                                        pairs[NEXT(i)].first, pairs[NEXT(i)].
                                                                                                                             second, P);
                double A = abs(area2(P[a], P[b], P[d]));
                                                                                                       best = min(best, tmp);
                // double of the triangle area
                double base = abs(P[b] - P[d]);
                // base of the triangle abd
                                                                                               return best;
                return A / base;
3.16. RectangleUnion.
/*
                                                                                       typedef long long ll;
        Tested: MIT 2008 Team Contest 1 (Rectangles)
        Complexity: O(n log n)
                                                                                       struct rectangle
                                                                                               ll xl, yl, xh, yh;
```

```
};
ll rectangle area(vector<rectangle> &rs)
        vector<ll> ys; // coordinate compression
        for (auto r : rs)
                 ys.push back(r.yl);
                 ys.push back(r.yh);
        sort(ys.begin(), ys.end());
        ys.erase(unique(ys.begin(), ys.end()), ys.end());
        int n = ys.size(); // measure tree
        vector\langle 11 \rangle C(8 * n), A(8 * n);
        function < void (int, int, int, int, int, int) > aux =
                          [&] (int a, int b, int c, int l, int r, int k)
                                  if ((a = max(a,l)) > = (b = min(b,r)))
                                        return;
                                  if (a == 1 \&\& b == r) C[k] += c;
                                           aux(a, b, c, l, (l+r)/2, 2*k+1)
                                           aux(a, b, c, (l+r)/2, r, 2*k
                                                +2);
                                  if (C[k]) A[k] = ys[r] - ys[l];
```

#### 3.17. RectilinearMst.

```
/*
    Tested: USACO OPEN08 (Cow Neighborhoods)
    Complexity: O(n log n)
*/
typedef long long ll;
```

```
else A[k] = A[2*k+1] + A[2*k+2];
                         };
        struct event
                 ll x, l, h, c;
        };
        // plane sweep
        vector<event> es;
        for (auto r:rs)
                 int l = lower bound(ys.begin(), ys.end(), r.yl) - ys.
                      begin();
                int h = lower bound(ys.begin(), ys.end(), r.yh) - ys.
                     begin();
                 es.push back(\{ r.xl, l, h, +1 \});
                 es.push back(\{ r.xh, l, h, -1 \});
        sort(es.begin(), es.end(), [](event a, event b)
                         \{\text{return a.x != b.x ? a.x < b.x : a.c > b.c;}\};
        ll area = 0, prev = 0;
        for (auto &e: es)
                 area += (e.x - prev) * A[0];
                 prev = e.x;
                 aux(e.l, e.h, e.c, 0, n, 0);
        return area;
}
```

```
typedef complex<ll> point;

ll rectilinear_mst(vector<point> ps)
{
    vector<int> id(ps.size());
    iota(id.begin(), id.end(), 0);
}
```

```
struct edge
        int src, dst;
        ll weight;
};
vector<edge> edges;
for (int s = 0; s < 2; ++s)
        for (int t = 0; t < 2; ++t)
                 sort(id.begin(), id.end(), [&](int i, int j)
                         return real(ps[i] - ps[j]) < imag(ps[j])
                              - ps[i]);
                 });
                 map<ll, int> sweep;
                 for (int i : id)
                         for (auto it = sweep.lower bound(-
                              imag(ps[i]));
                                           it != sweep.end();
                                               sweep.erase(it
                                               ++))
                         {
                                  int j = it -> second;
                                  if (imag(ps[j] - ps[i]) < real(
                                       ps[j] - ps[i])
```

# 3.18. Triangles.

```
double area_heron(double const &a, double const &b, double const &c )  \{ \\ double \ s{=}(a{+}b{+}c)/2;
```

```
break;
                                         ll d = abs(real(ps[i] - ps[j]))
                                                         + abs(imag(
                                                              ps[i] - ps
                                                              [j]));
                                         edges.push back({ i, j, d });
                                 sweep[-imag(ps[i])] = i;
                        }
                         for (auto &p:ps)
                                 p = point(imag(p), real(p));
                }
                for (auto &p:ps)
                         p = point(-real(p), imag(p));
        ll cost = 0;
        sort(edges.begin(), edges.end(), [](edge a, edge b)
                return a.weight < b.weight;
        });
        union find uf(ps.size());
        for (edge e : edges)
                if (uf.join(e.src, e.dst))
                         cost += e.weight;
        return cost;
        return sqrt(s*(s-a)*(s-b)*(s-c));
double circumradius(const double &a, const double &b, const double
    &c)
```

```
{
       return a*b*c/4/AreaHeron(a,b,c);
double inradius (const double &a, const double &b, const double &c)
       return 2*AreaHeron(a,b,c)/(a+b+c);
/*
       Center of the circumference of a triangle
       [Tested COJ 1572 - Joining the Centers]
point circunference center(point a, point b, point c)
       point x = 1.0 / conj(b - a), y = 1.0 / conj(c - a);
       return (y - x) / (conj(x) * y - x * conj(y)) + a;
bool circunference center (point &a,point &b,point &c,point &r)
       double d=(a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y))*2.0;
       if(fabs(d)<EPS) return false;
       r.x = ((a.x*a.x+a.y*a.y)*(b.y-c.y)+(b.x*b.x+b.y*b.y)*(c.y-a.y)
               +(c.x*c.x+c.y*c.y)*(a.y-b.y))/d;
       r.y = -((a.x*a.x+a.y*a.y)*(b.x-c.x)+(b.x*b.x+b.y*b.y)*(c.x-a.
            x)
                +(c.x*c.x+c.y*c.y)*(a.x-b.x))/d;
       return true;
```

```
double incenter (vect &a, vect &b, vect &c, vect &r)
        double u=(b-c).length(),v=(c-a).length(),w=(a-b).length(),s
            =u+v+w;
        if(s < EPS) {r=a;return 0.0;}
        r.x=(a.x*u+b.x*v+c.x*w)/s;
        r.y=(a.y*u+b.y*v+c.y*w)/s;
        return sqrt((v+w-u)*(w+u-v)*(u+v-w)/s)*0.5;
bool orthocenter (vect & a, vect & b, vect & c, vect & r)
        double d=a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
        if(fabs(d) < EPS) return false;
        r.x = ((c.x*b.x+c.y*b.y)*(c.y-b.y)+(a.x*c.x+a.y*c.y)*(a.y-c.y)
                +(b.x*a.x+b.y*a.y)*(b.y-a.y))/d;
        r.y = -((c.x*b.x+c.y*b.y)*(c.x-b.x)+(a.x*c.x+a.y*c.y)*(a.x-c.
                +(b.x*a.x+b.y*a.y)*(b.x-a.x))/d;
        return true;
double signed area(const point &p1, const point &p2, const point &
        return cross(p2-p1,p3-p1);
double triangle area (const point &a, const point &b, const point &c)
        return 0.5* abs( cross(b-a,c-a));
```

## 4. Graph

#### 4.1. Aborescense.

```
template<typename T>
struct minimum aborescense
                                                                                                                {
       struct edge { int src, dst; T weight; };
       vector<edge> edges;
       void add edge(int u, int v, T w)
                edges.push back({ u, v, w });
       T solve(int n, int r)
                                                                                                                }
                for (T res = 0;;)
                        vector < edge > in(n, \{ -1, -1, numeric limits \})
                             <T>::max() \});
                        for (auto e : edges) // cheapest comming
                            edges
                                if (in[e.dst].weight > e.weight)
                                        in[e.dst] = e;
                        in[r] = \{r, r, 0\};
                        for (int u = 0; u < n; res += in[u].weight, ++
                            u)
                                if (in[u].src < 0) return
                                     numeric limits<T>::max(); //
                                     no comming edge => no
                                     aborescense
                                                                                                       }
                        int index = 0, sz = 0;
                                                                                               }
                        vector<int> C(n, -1), mark(n, -1);
                                                                                       };
```

```
for (int i = 0, u = 0; i < n; u = ++i) //
    contract cycles
        if (mark[i] != -1) continue;
        while (mark[u] == -1)
                mark[u] = i, u = in[u].src;
        if (mark[u] != i || u == r) continue;
        for (int v = in[u].src; u != v; C[v] =
            index, v = in[v].src);
        C[u] = index++;
if (index == 0) return res; // found
    arborescence
for (int i = 0; i < n; ++i) // contract
        if (C[i] == -1) C[i] = index++;
for (auto &e: edges)
        if (C[e.src] != C[e.dst] && C[e.dst] !=
             C[r]
                edges[sz++] = \{ C[e.src], C[e.
                     dst, e.weight – in[e.dst].
                     weight }:
edges.resize(sz), n = index, r = C[r];
```

#### 4.2. Aborescense 2.

```
template<typename T>
struct edge
       int src, dst;
       T weight;
};
template<typename T>
struct skew heap
       struct node
                node *ch[2];
                edge<T> key;
                T delta;
       }*root;
       skew heap():root(NULL) {}
       void propagate(node *a)
                a->key.weight += a->delta;
               if (a->ch[0])
                        a \rightarrow ch[0] \rightarrow delta += a \rightarrow delta;
               if (a->ch[1])
                        a->ch[1]->delta+=a->delta;
                a->delta=0;
       }
       node* merge(node *a, node *b)
               if (!a || !b)
                        return a? a: b;
                propagate(a);
                propagate(b);
               if (a->key.weight > b->key.weight)
                        swap(a, b);
```

```
a->ch[1] = merge(b, a->ch[1]);
       swap(a->ch[0], a->ch[1]);
       return a;
void push(edge<T> key)
       node *n = new node();
       n->ch[0] = n->ch[1] = 0;
       n->key = key;
       n->delta=0;
       root = merge(root, n);
}
void pop()
       propagate(root);
       node *t = root;
       root = merge(root -> ch[0], root -> ch[1]);
       delete t;
edge<T> top()
       propagate(root);
       return root->key;
bool empty()
       return !root;
void add(T delta)
       root->delta += delta;
```

```
void merge(skew heap x)
               root = merge(root, x.root);
};
template<typename T>
struct minimum aborescense
       vector<edge<T>> edges;
       void add edge(int src, int dst, T weight)
                edges.push back({ src, dst, weight });
       T solve(int n, int r)
                union find uf(n);
                vector<skew heap<T>> heap(n);
                for (auto e : edges)
                       heap[e.dst].push(e);
                T score = 0;
                vector < int > seen(n, -1);
                seen[r] = r;
                for (int s = 0; s < n; ++s)
                        vector<int> path;
                        for (int u = s; seen[u] < 0;)
                               path.push back(u);
```

#### 4.3. ArticulationPoints.

```
struct articulation_points
{
```

```
seen[u] = s;
                                    if (heap[u].empty())
                                             \mathbf{return}\ \mathbf{numeric}\quad \mathbf{limits}{<}\mathbf{T}{>}\mathbf{::}
                                                  \max();
                                    edge < T > min e = heap[u].top();
                                    score += min e.weight;
                                    heap[u].add(-min e.weight);
                                    heap[u].pop();
                                    int v = uf.root(min e.src);
                                    if (seen[v] == s)
                                             skew heap<T> new heap;
                                             while (true)
                                                      int w = path.back();
                                                      path.pop back();
                                                      new heap.merge(
                                                          heap[w]);
                                                      if (!uf.join(v, w))
                                                              break;
                                             heap[uf.root(v)] = new heap;
                                             seen[uf.root(v)] = -1;
                                    u = uf.root(v);
                  }
                 return score;
};
```

```
\operatorname{int} V, \operatorname{dt}; \\ \operatorname{vector} < \operatorname{bool} > \operatorname{ap};
```

#### 4.4. BellmanFord.

```
 \begin{array}{c} & \text{ if } (!dfsnum[v]) \\ \{ & & \text{ } dfs(v), \, low[u] = min(low[u], \, low[v]); \\ & & \text{ } if \, ((dfsnum[u] == 1 \, \&\& \, dfsnum[v] > 2) \, || \, (dfsnum[u] \\ & & != 1 \, \&\& \, low[v] >= \, dfsnum[u])) \, \, ap[u] = true; \\ \} & & \text{ } else \, low[u] = min(low[u], \, dfsnum[v]); \\ \} & & \text{ } vector < bool > \, solve() \\ \{ & & \text{ } for \, (int \, i = 0; \, i < V; \, ++i) \\ & & & \text{ } if \, (!dfsnum[i]) \, \, dt = 0, \, dfs(i); \\ & & \text{ } return \, ap; \\ \} \\ \}; \end{array}
```

```
 \begin{array}{c} \mbox{for (int $i=0$; $i<V$; $++i$)} \\ \mbox{$u=parent[u]$;} \\ \mbox{$cycle.push\_back(u)$;} \\ \mbox{for (int $v=parent[u]$; $v$!= $u$; $v=parent[v]$)} \\ \mbox{$cycle.push\_back(v)$;} \\ \mbox{$\}$} \\ \mbox{bool solve(int source} = 0) \\ \mbox{$\{$d[source]=0$;} \\ \mbox{$E=G.size()$;} \\ \mbox{bool $r=true$;} \\ \mbox{for (int $i=1$; $i<=V \&\& r$; $++i$)} \\ \mbox{$\{$r=false$;} \\ \mbox{for (auto $e$ : $G$)} \\ \end{array}
```

```
\begin{array}{l} \mbox{if } (d[e.u] \; != \; oo \; \&\& \; d[e.u] \; + \; e.w \; < \; d[e \\ .v]) \\ \{ \\ r = \; true; \\ parent[e.v] = \; e.u; \\ d[e.v] = \; d[e.u] \; + \; e.w; \\ \\ \mbox{if } (i == V) \\ \{ \end{array}
```

```
negative_cycle(e.v);
return true;
}

return false;
}
;
```

## 4.5. BiconnectedComponentBlocks.

```
int num[N], low[N], timer;
bool artP[N];
vector<int> G[N],Stack;

void dfs(int u, vector<vector<int> > &cmps)
{
    Stack.push_back(u);
    num[u]=low[u]=timer++;

    for(int i=0;i<G[u].size();++i)
    {
        int v=G[u][i];
        if(!num[v])
        {
            dfs(v, cmps);
            low[u]=min(low[v], low[u]);
            if(low[v]>=num[u])
```

```
{
    if(u!=0||num[v]>2)
        artP[u]=1;

    cmps.push_back(vector<int>(1,u));
    do
    {
        cmps.back().push_back(Stack.back());
        Stack.pop_back();
    } while (cmps.back().back()!=v);

}
else
    low[u]=min(low[u], num[v]);
}
```

# $4.6. \ {\bf Biconnected Component Edges.}$

```
vector<int> num(n), low(n), stk;
vector<vector<int>> comps;
int timer = 0;
```

```
function<void(int, int)> dfs = [&](int u, int p)
{
    num[u] = low[u] = ++timer;
    stk.push_back(u);
```

## 4.7. BiconnectedComponent.

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

## 4.8. BipartiteMatching.

```
/*
       Tested: AIZU(judge.u-aizu.ac.jp) GRL 7 A
       Complexity: O(nm)
*/
struct graph
       int L, R;
       vector<vector<int>> adj;
       graph(int L, int R) : L(L), R(R), adj(L + R)  {}
       void add edge(int u, int v)
               adj[u].push back(v + L);
                adj[v + L].push back(u);
       }
       int maximum matching()
                vector < int > visited(L), mate(L + R, -1);
                function < bool(int) > augment = [&](int u)
                        if (visited[u]) return false;
```

```
vector<vector<ii>>> solve()
                 usd.resize(E, false);
                 for (int i = 0; i < V; ++i)
                         if (!dfsnum[i]) dfs(i);
                 return BCC;
        }
};
                         visited[u] = true;
                         for (int w : adj[u])
                                  int v = mate[w];
                                  if (v < 0 \mid | augment(v))
                                          mate[u] = w;
                                          mate[w] = u;
                                          return true;
                         return false;
                 };
                 int match = 0;
                 for (int u = 0; u < L; ++u)
```

fill(visited.begin(), visited.end(), 0);

++match;

if (augment(u))

}

**}**;

return match;

#### 4.9. Bridges.

## 4.10. CentroidDescomposition.

```
struct centroid_descomposition
{
    int n;
        vector<bool> del;
    vector<vector<int>> adj;
        vector<vector<pair<int, int>>> anc;

    centroid_descomposition(int n) : n(n), del(n), adj(n), size(n),
        parent(n), anc(n) {};

    void add_edge(int u, int v)
    {
        adj[u].push_back(v);
    }
}
```

```
for (int v : G[u])
            if (!dfsnum[v])
                 parent[v] = u, dfs(v), low[u] = min(low[u], low[v]);
                if (dfsnum[u] < low[v]) bridges.push back(make pair(
                      u, v));
            else if (v != parent[u])
                low[u] = min(low[u], dfsnum[v]);
    vector<pair<int, int>> solve()
        for (int i = 0; i < V; ++i)
            if (!dfsnum[i]) dfs(i);
        return bridges;
    }
};
        adj[v].push back(u);
    int centroid(int u)
        vector < int > seen = \{u\};
        parent[u] = -1;
        for (size t i = 0; i < seen.size(); ++i)
            u = seen[i];
            for (int v : adj[u])
                if (!del[v] \&\& v != parent[u])
```

parent[v] = u, seen.push back(v);

```
}
                                                                                              void rootify(int r)
        for (int sz = seen.size(), i = sz - 1, mx = 0; i >= 0; --i, mx
             = 0)
                                                                                                  int c = centroid(r);
            size[u = seen[i]] = 1;
            for (int v : adj[u])
                if (!del[v] && v != parent[u])
                    size[u] += size[v], mx = max(mx, size[v]);
            if (\max(sz - size[u], mx) \le sz / 2)
                return u;
                                                                                              }
        }
        return -1;
    void dfs(int u, int p, int d, int c)
        anc[u].push back({c, d});
        for (int v : adj[u])
            if (!del[v] \&\& v != p)
                dfs(v, u, d + 1, c);
                                                                                          };
    }
4.11 Dinic.
template<typename T>
struct dinic
    struct edge
        int src, dst;
        T flow, cap;
        int rev;
   };
                                                                                              }
   int n;
    vector<vector<edge>> adj;
```

```
assert(c !=-1);
    del[c] = true;
    dfs(c, -1, 0, c);
    for (int v : adj[c])
        if (!del[v]) rootify(v);
void update(int u)
    for(auto p : anc[u]);
void query(int u)
    for(auto p : anc[u]);
vector<int> level, que, iter;
dinic(int n) : n(n), adj(n), level(n), que(n), iter(n) {}
void add edge(int u, int v, T cuv, T cvu = 0)
    adj[u].push back({u, v, 0, cuv, (int) adj[v].size()});
    if (u == v) ++adj[u].back().rev;
    adj[v].push back(\{v, u, 0, cvu, (int) adj[u].size() - 1\});
bool bfs(int source, int sink)
```

```
{
    level.assign(n, -1);
    que[0] = sink;
    level[sink] = 0;
    for (int qf = 0, qb = 1; qf < qb; ++qf)
        sink = que[qf];
        for (edge &e : adj[sink])
             edge & erev = adj[e.dst][e.rev];
            if (level[erev.src] == -1 \&\& erev.flow < erev.cap)
                 level[que[qb++] = erev.src] = 1 + level[sink];
    return level[source] >= 0;
T dfs(int source, int sink, T flow)
    if (source == sink) return flow;
    for (; iter[source] < (int) adj[source].size(); ++iter[source])
        edge &e = adj[source][iter[source]];
        if (e.flow < e.cap && level[e.dst] + 1 == level[source])
            T \text{ delta} = dfs(e.dst, sink, min(flow, e.cap - e.flow));
            if (delta > 0)
```

#### 4.12. DominatorTree.

```
/*
Dominator Tree (Lengauer-Tarjan)
Tested: SPOJ EN
```

```
e.flow += delta;
                     adj[e.dst][e.rev].flow -= delta;
                    return delta;
        return 0;
    static const T oo = numeric limits<T>::max();
    T max flow(int source, int sink)
        T flow = 0;
        for (int u = 0; u < n; ++u)
            for (edge &e : adj[u]) e.flow = 0;
        while (bfs(source, sink))
            iter.assign(n, 0);
            for (T cur; (cur = dfs(source, sink, oo)) > 0;)
                 flow += cur;
        return flow;
};
```

#### Complexity: O(m log n)

in control flow graphs, a node d dominates a node n if every path from the entry node to n must go through d

```
*/
struct graph
        int n;
        vector<vector<int>> adj, radj;
        graph(int n) : n(n), adj(n), radj(n) \{ \}
        void add edge(int src, int dst)
                 adj[src].push back(dst);
                radj[dst].push back(src);
        }
        vector<int> rank, semi, low, anc;
        int eval(int v)
                if (anc[v] < n \&\& anc[anc[v]] < n)
                         int x = eval(anc[v]);
                         if (rank[semi[low[v]]] > rank[semi[x]])
                                 low[v] = x;
                         anc[v] = anc[anc[v]];
                }
                return low[v];
        }
        vector<int> prev, ord;
        void dfs(int u)
                rank[u] = ord.size();
                ord.push back(u);
                for (auto v : adj[u])
                         if (rank[v] < n)
                                 continue;
```

```
dfs(v);
                prev[v] = u;
        }
vector{<}int{>}\ idom;\ //\ idom[u]\ is\ an\ immediate\ dominator\ of\ u
void dominator tree(int r)
        idom.assign(n, n);
        prev = rank = anc = idom;
        semi.resize(n);
        iota(semi.begin(), semi.end(), 0);
        low = semi;
        ord.clear();
        dfs(r);
        vector < vector < int >> dom(n);
        for (int i = (int) ord.size() -1; i >= 1; --i)
        {
                int w = ord[i];
                for (auto v : radj[w])
                         int u = eval(v);
                         if (rank[semi[w]] > rank[semi[u]])
                                 semi[w] = semi[u];
                dom[semi[w]].push back(w);
                anc[w] = prev[w];
                for (int v : dom[prev[w]])
                         int u = eval(v);
                         idom[v] = (rank[prev[w]] > rank[semi]
                                 ? u : prev[w]);
                dom[prev[w]].clear();
        }
```

```
\label{eq:for_state} \begin{cases} & \text{for (int } i=1; \, i < (int) \, \, \text{ord.size(); } ++i) \\ & \{ & \text{int } w = \text{ord[i];} \\ & \text{if (idom[w] != semi[w])} \\ & & \text{idom[w] = idom[idom[w]];} \\ & \} \end{cases}
```

#### 4.13. Euleriangraph.

```
typedef vector < vector < int >> vvi;
/*
        Euler path undirected (path to use once all edges)
        the degree of all nodes must be even (euler cycle)
        or only exists two odd nodes (euler path)
*/
void visit(const vvi &G, vvi &adj, int s, vector<int> &path)
        for (auto v : G[s])
                if (adj[s][v])
                        --adj[s][v], --adj[v][s];
                        visit(G, adj, v, path);
        path.push back(s);
}
bool euler path(const vvi &G, int s, vector<int> &path)
        int n = G.size(), odd = 0, m = 0;
        for (int i = 0; i < n; ++i)
                odd += G[i].size() & 1;
                m += G[i].size();
        }
```

```
vector<int> dominators(int u)
                 vector<int> S;
                 for (; u < n; u = idom[u])
                         S.push back(u);
                 return S;
        }
};
        if (odd == 0 || (odd == 2 \&\& G[s].size() \% 2 == 0))
                 vvi adj(n, \text{vector} < \text{int} > (n));
                 for (int u = 0; u < n; ++u)
                         for (auto v: G[u])
                                 ++adj[u][v];
                 visit(G, adj, s, path);
                 reverse(path.begin(), path.end());
                 return path.size() == m / 2 + 1;
        }
        return false;
}
        Euler path directed (path to use once all edges)
        the in-degree - out-degree == 0 for all nodes (euler cycle)
        or only exists two nodes with |in-degree - out-degree| == 1
             (euler path)
void visit(vvi &G, int u, vector<int>& path)
        while (!G[u].empty())
                int v = G[u].back();
```

G[u].pop\_back(); visit(G, v, path);

```
\label{eq:continuous_path} \left. \begin{array}{l} \\ \text{path.push\_back(u);} \\ \\ \\ \text{bool euler\_path(vvi G, int s, vector<int> & path)} \\ \\ \\ \text{int n = G.size(), m = 0;} \\ \text{vector<int> deg(n);} \\ \text{for (int u = 0; u < n; ++u)} \\ \\ \\ \\ \\ m \ += \ G[u].size(); \\ \\ \text{for (auto v : G[u])} \\ \\ \\ \qquad --\text{deg[v];} \ \ // \ in-\text{deg} \\ \end{array} \right.
```

#### 4.14. FloydWarshall.

```
for (int k = 0; k < V; ++k)

for (int i = 0; i < V; ++i)

if (c[i][k] < oo)
```

### 4.15. GabowEdmonds.

```
deg[u] += G[u].size(); // out-deg
        }
        int k = n - count(deg.begin(), deg.end(), 0);
        if (k == 0 || (k == 2 \&\& deg[s] == 1))
                visit(G, s, path);
                reverse(path.begin(), path.end());
                return path.size() == m + 1;
        }
        return false;
}
                         for (int j = 0, w; j < V; ++j)
                                 if ((w = c[i][k] + c[k][j]) < c[i][j])
                                         c[i][j] = w;
                adj[v].push back(u);
        queue<int> q;
        vector<int> label, mate, cycle;
        void rematch(int x, int y)
                int m = mate[x];
```

if (label[x] < n)

rematch(mate[m] = label[x], m);

mate[x] = y;if (mate[m] == x)

else

```
{
                         int s = (label[x] - n) / n, t = (label[x]
                              - n) \% n;
                         rematch(s, t);
                         rematch(t, s);
                 }
        }
}
void traverse(int x)
        vector < int > save = mate;
        rematch(x, x);
        for (int u = 0; u < n; ++u)
                if (mate[u] != save[u])
                         cycle[u] = 1;
        save.swap(mate);
}
void relabel(int x, int y)
        cycle = vector < int > (n, 0);
        traverse(x);
        traverse(y);
        for (int u = 0; u < n; ++u)
                 if (!cycle[u] || label[u] >= 0)
                         continue;
                label[u] = n + x + y * n;
                 q.push(u);
int augment(int r)
```

```
label.assign(n, -2);
                label[r] = -1;
                q = queue < int > ();
                for (q.push(r); !q.empty(); q.pop())
                        int x = q.front();
                        for (int y : adj[x])
                                 if (mate[y] < 0 \&\& r != y)
                                         rematch(mate[y] = x, y);
                                         return 1;
                                 else if (label[y] > = -1)
                                         relabel(x, y);
                                 else if (label[mate[y]] < -1)
                                         label[mate[y]] = x;
                                         q.push(mate[y]);
                                 }
                        }
                return 0;
        int maximum matching()
                mate.assign(n, -2);
                int matching = 0;
                for (int u = 0; u < n; ++u)
                        if (mate[u] < 0)
                                 matching += augment(u);
                return matching;
        }
};
```

## 4.16. GomoryHuTree.

```
/*
        Gomory-Hu tree
        Tested: SPOj MCQUERY
        Complexity: O(n-1) max-flow call
*/
template<typename T>
struct graph
        struct edge
                int src, dst;
                T cap, flow;
                int rev;
        };
        int n;
        vector<vector<edge>> adj;
        graph(int n) : n(n), adj(n) \{ \}
        void add edge(int src, int dst, T cap)
                adj[src].push back({ src, dst, cap, 0, (int) adj[dst].size
                     () });
                if (src == dst)
                        adj[src].back().rev++;
                adj[dst].push back({ dst, src, cap, 0, (int) adj[src].size
                     () - 1 \});
        vector<int> level, iter;
        T augment (int u, int t, T cur)
                if (u == t)
                        return cur;
```

```
for (int &i = iter[u]; i < (int) adj[u].size(); ++i)
                 edge &e = adj[u][i];
                 if (e.cap - e.flow > 0 \&\& level[u] < level[e.dst]
                 {
                         T f = augment(e.dst, t, min(cur, e.cap
                               – e.flow));
                         if (f > 0)
                                  e.flow += f;
                                  adj[e.dst][e.rev].flow -= f;
                                  return f;
                         }
                 }
        }
        return 0;
int bfs(int s, int t)
        level.assign(n, -1);
        level[s] = 0;
        queue<int> Q;
        for (Q.push(s); !Q.empty(); Q.pop())
                 int u = Q.front();
                 if (u == t)
                         break:
                 for (auto &e: adj[u])
                         if (e.cap - e.flow > 0 \&\& level[e.dst]
                              < 0)
                                  Q.push(e.dst);
                                  level[e.dst] = level[u] + 1;
```

## 4.17. HeavyLightDescomposition.

```
u = Q[i];
         for (auto v: G[u])
             if (parent[u] != v)
                  size[u] += size[v];
                  if (\text{heavy}[u] == -1 \mid | \text{size}[v] > \text{size}[\text{heavy}[u]])
                      heavy[u] = v;
             }
    }
    for (int u = 0, pos = 0; u < n; u++)
        if (u == r || heavy[parent[u]]!= u)
             for (int v = u; v != -1; v = heavy[v])
                 head[v] = u, position[v] = ++pos;
int LCA(int u, int v)
    while (head[u] != head[v])
        if (depth[head[u]] < depth[head[v]])
             swap(u, v);
        u = parent[head[u]];
    return (depth[u] < depth[v] ? u : v);
```

## 4.18. HopcroftKarpMcbm.

```
struct hopcroft_karp
{
    int N, M;
    vector<vector<int> > G;
    vector<int> match, d, q;
    hopcroft_karp(int n, int m) :
```

```
int query up(int u, int v)
            int ans = 0;
            while (head[u] != head[v])
                ans += abi.query(position[u]) - abi.query(position[
                     head[u]] - 1);
                u = parent[head[u]];
            return (ans + abi.query(position[u]) - abi.query(position[v
                 ]-1));
        int query(int u, int v)
            int L = LCA(u, v);
            return query up(u, L) + query up(v, L) - query up(L,
        void update(int u, int c)
            abi.update(position[u], c - (abi.query(position[u]) - abi.
                 query(position[u] - 1)));
        }
};
```

```
N(n),\,M(m),\,G(n,\,vector{<}int{>}(0)),\,match(n\\ +\,m,\,-1)\,\,\{\} void\,\,add\_edge(int\,\,u,\,int\,\,v)\\ \{\\ G[u].push\_back(v);\\ \}
```

```
bool bfs()
                                                                                                         for (auto v : G[u])
                                                                                                                 if (d[N + v] == d[u] + 1)
        {
                d.assign(N + M, 0), q.clear(), q.reserve(N);
                for (int i = 0; i < N; ++i)
                                                                                                                         d[N + v] = 0;
                        if (match[i] == -1) q.push back(i);
                                                                                                                         if (match[N + v] == -1 || dfs(match[
                                                                                                                              N + v
                bool f = false;
                for (size t i = 0; i < q.size(); ++i)
                                                                                                                                  match[u] = v, match[N + v]
                        for (auto v : G[q[i]])
                                if (!d[N + v])
                                                                                                                                  return true;
                                {
                                                                                                                         }
                                                                                                                 }
                                         d[N + v] = d[q[i]] + 1;
                                         if (match[N + v] != -1)
                                                 d[match[N + v]] = d[
                                                                                                         return false;
                                                      N + v + 1, q.
                                                      push back(
                                                      match[N + v]);
                                                                                                int solve()
                                         else
                                                 f = true;
                                                                                                        int flow = 0;
                                }
                                                                                                         while (bfs())
                                                                                                                 for (int i = 0; i < N; ++i)
                                                                                                                         flow += (match[i] == -1 \&\& dfs(i));
                return f;
        }
                                                                                                         return flow;
                                                                                                }
        bool dfs(int u)
                                                                                        };
4.19. IsGraphic.
/*
                                                                                                sort(d.rbegin(), d.rend());
        Grappic sequence recognition
                                                                                                vector < int > s(n + 1);
                                                                                                for (int i = 0; i < n; ++i)
        Tested: UVA 11414, 10720
                                                                                                         s[i+1] = s[i] + d[i];
                                                                                                if (s[n] % 2)
// Receives a sorted degree sequence (non ascending)
                                                                                                        return false;
                                                                                                for (int k = 1; k <= n; ++k)
bool is graphic (vector < int > d)
        int n = d.size();
```

])

```
\begin{split} &\inf \ p = lower\_bound(d.begin() + k, \ d.end(), \ k, \\ &\operatorname{greater} < \operatorname{int} > ()) \\ &- d.begin(); \\ &\operatorname{if} \ (s[k] > k * (p-1) + s[n] - s[p]) \end{split}
```

#### 4.20. LcaEulerTour.

```
struct tree
        int n;
        vector<vector<int>> adj;
        tree(int n) : n(n), adj(n) \{ \}
        void add edge(int s, int t)
                  adj[s].push back(t);
                  adj[t].push back(s);
        }
        vector<int> pos, tour, depth;
        vector<vector<int>> table;
        int argmin(int i, int j)
                  return depth[i] < depth[j] ? i : j;
        void rootify(int r)
                  function \langle \text{void}(\text{int, int, int}) \rangle dfs = [\&](\text{int u, int p, int})
                        d)
                  {
                           pos[u] = depth.size();
                           tour.push back(u);
                           depth.push back(d);
```

```
return false;
}
return true;
}
```

```
for (int v : adj[u])
                if (v != p)
                         dfs(v, u, d+1);
                         tour.push back(u);
                         depth push back(d);
};
dfs(r, r, 0);
int logn = lg(tour.size()); // log2
table.resize(logn + 1, vector<int>(tour.size()));
iota(table[0].begin(), table[0].end(), 0);
for (int h = 0; h < logn; ++h)
        for (int i = 0; i + (1 << h) < (int) tour.size()
             ; ++i)
                 table[h + 1][i] = argmin(table[h][i],
                                                   table
                                                       h
                                                       \Pi
                                                       (1
                                                       <<
```

```
}
                                                                                                                                                         table
                                                                                                                                                             h
        int lca(int u, int v)
                                                                                                                                                             ][
                int i = pos[u], j = pos[v];
               if (i > j) swap(i, j);
               int h = _- lg(j - i); // = log2
                return i == j? u: tour[argmin(table[h][i],
                                                                                                                                                             (1
                                                                                                                                                             <<
                                                                                                                                                             h
                                                                                                                                                             ])
                                                                                               }
                                                                                       };
4.21. Lca.
template < typename T >
                                                                                                       adj[u].push back(\{v, w\});
struct LCA
                                                                                                       adj[v].push back({u, w});
        int n;
        vector<vector<pair<int, T>>> adj;
                                                                                               void buildlea(int r = 1)
        vector<vector<int>> lca;
        vector<vector<T>> dist;
                                                                                                        queue<int> q;
        vector<int> p, lvl;
                                                                                                       q.push(r);
                                                                                                       p[r] = -1;
       LCA(int n) : n(n), adj(n + 1), lca( lg(n) + 1, vector < int > (
                                                                                                       lvl[r] = 0;
            n + 1))
                                         , dist( lg(n) + 1, vector<T
                                                                                                        while (!q.empty())
                                             >(n + 1)), p(n + 1), lvl(
                                             n + 1) \{ \}
                                                                                                                int u = q.front();
                                                                                                                q.pop();
                                                                                                                for (auto i : adj[u])
        void add edge(int u, int v, T w)
```

```
int v = i.first, w = i.second;
                          if (v == p[u]) continue;
                          q.push(v);
                          p[v] = u;
                          lca[0][v] = u;
                          dist[0][v] = w;
                          lvl[v] = lvl[u] + 1;
                          for (int i = 1, lg = __lg(lvl[v]); i <=
                               \lg; i++)
                          {
                                  lca[i][v] = lca[i-1][lca[i-1][
                                   dist[i][v] = dist[i - 1][lca[i -
                                       1|[v]| + dist[i - 1][v];
                          }
                 }
        }
T query(int u, int v)
        if (lvl[v] > lvl[u])
                 swap(u, v);
```

## 4.22. MinCostFlow(BellmanFord).

```
/*
     Tested: ZOJ 3885
*/
template<typename T, typename C = T>
struct min_cost_flow
{
     struct edge
     {
          int src, dst;
}
```

```
TD = 0;
                    \label{eq:continuous_section} \text{for (int } i = \quad \lg(lvl[u]); \, i > = 0; \, i--)
                             if (lvl[u] - (1 \ll i) > \equiv lvl[v])
                                       D += dist[i][u];
                                       u = lca[i][u];
                             }
                   if (u == v)
                             return D; //u;
                   for (int i = lg(lvl[u]); i >= 0; i--)
                             if ((1 << i) <= lvl[u] && lca[i][u] != lca[i][v])
                                       D += dist[i][v] + dist[i][u];
                                       u = lca[i][u];
                                       v = lca[i][v];
                             }
                   D += dist[0][u] + dist[0][v];
                   return D; //p[u];
          }
};
```

```
T cap, flow;
C cost;
int rev;
};
int n;
vector<vector<edge>> adj;
min cost flow(int n) : n(n), adj(n) {}
```

```
void add edge(int src, int dst, T cap, C cost)
        adj[src].push back({ src, dst, cap, 0, cost, (int) adj[dst
             |.size() });
        if (src == dst)
                adj[src].back().rev++;
        adj[dst].push back({ dst, src, 0, 0, -cost, (int) adj[src
             |.size() - 1 \});
}
const C oo = numeric limits<C>::max();
vector < C > dist;
vector<edge*> prev;
vector<T> curflow;
bool bellman ford(int s, int t)
        dist.assign(n, oo);
        prev.assign(n, nullptr);
        curflow.assign(n, 0);
        dist[s] = 0;
        curflow[s] = numeric limits<T>::max();
        for (int it = 0, change = true; it < n && change; ++
             it)
        {
                change = false;
                for (int u = 0; u < n; ++u)
                        if (dist[u] != oo)
                                 for (auto &e: adj[u])
                                         if (e.flow < e.cap &&
                                              dist[e.dst] > dist[
                                              u + e.cost
                                                  dist[e.dst] =
                                                       dist[u] +
                                                       e.cost;
```

```
prev[e.dst] =
                                                       &е;
                                                  curflow[e.dst]
                                                       = \min(
                                                       curflow u
                                                       , e.cap
                                                       - e.flow)
                                                  change =
                                                       true;
                                          }
        }
        return dist[t] < oo;
pair < T, C > max flow(int s, int t)
        T \text{ flow} = 0;
        C \cos t = 0;
        while (bellman ford(s, t))
                T delta = curflow[t];
                flow += delta;
                cost += delta * dist[t];
                for (edge *e = prev[t]; e != nullptr; e = prev[
                     e->src
                         e->flow += delta;
                         adj[e->dst][e->rev].flow -= delta;
        }
        return {flow, cost};
```

};

## 4.23. Min-costFlow(Dijkstra).

```
/*
        Tested: ZOJ 3885
*/
template<typename T, typename C = T
struct min cost flow
        struct edge
                int src, dst;
                T cap, flow;
                C cost;
                int rev;
        };
        int n;
        vector<vector<edge>> adj;
        min cost flow(int n): n(n), adj(n) {}
        void add edge(int src, int dst, T cap, C cost)
                adj[src].push back({ src, dst, cap, 0, cost, (int) adj[dst
                    |.size() });
                if (src == dst)
                        adj[src].back().rev++;
                adj[dst].push back({ dst, src, 0, 0, -cost, (int) adj[src
                    |.size() - 1 \});
        }
        const C oo = numeric limits<C>::max();
        vector < C > dist, pot;
        vector<edge*> prev;
        bool dijkstra(int s, int t)
```

```
dist.assign(n, oo);
         prev.assign(n, nullptr);
         dist[s] = 0;
         using pci = pair < C, int >;
         priority queue<pci, vector<pci>, greater<pci>> pq;
         pq.push({ 0, s });
         while (!pq.empty())
                  C d; int u;
                  tie(d, u) = pq.top();
                  pq.pop();
                  if (d != dist[u])
                           continue;
                  for (auto &e: adj[u])
                           if (e.flow < e.cap
                                             && dist[e.dst] > dist[
                                                  |\mathbf{u}| + \mathbf{e.cost} + \mathbf{pot}
                                                  [u] - pot[e.dst]
                                    dist[e.dst] = dist[u] + e.cost
                                         + pot[u] - pot[e.dst];
                                    prev[e.dst] = \&e;
                                    pq.push({ dist[e.dst], e.dst });
                           }
         }
         return dist[t] < oo;
pair < T, C > max flow(int s, int t)
         T \text{ flow} = 0;
         C \cos t = 0;
```

```
\begin{split} & \text{pot.assign}(n,\,0); \\ & \text{while } (\text{dijkstra}(s,\,t)) \\ \{ & \text{for } (\text{int } u = 0;\, u < n;\, +\! +\! u) \\ & \text{if } (\text{dist}[u] < \text{oo}) \\ & \text{pot}[u] \, +\! = \, \text{dist}[u]; \\ & \text{T } \text{delta} = \text{numeric\_limits} <\! \text{T}\! >\! :\! :\! \text{max}(); \\ & \text{for } (\text{edge *e} = \text{prev}[t];\, e \, !\! = \, \text{nullptr};\, e = \text{prev}[\\ & e -\! >\! \text{src}]) \\ & \text{delta} = \min(\text{delta},\, e -\! >\! \text{cap} - e -\! >\! \text{flow} \\ & ); \end{split}
```

#### 4.24. MinCostFlow3.

```
/*
       Maximum flow of minimum cost with potentials
       Tested: ZOJ 3885
       Complexity: O(\min(m^2 n \log n, m \log n \text{ flow}))
*/
template<typename T, typename C = T>
struct min cost flow
       struct edge
               int src, dst;
               T cap, flow;
               C cost;
               int rev;
       };
       int n;
       vector<vector<edge>> adj;
       min cost flow(int n): n(n), adj(n) {}
```

```
flow += delta;
                        for (edge *e = prev[t]; e != nullptr; e = prev[
                             e->src
                                e->flow += delta;
                                adj[e->dst][e->rev].flow -= delta;
                                cost += delta * e-> cost;
                        }
                }
                return {flow, cost};
};
        void add edge(int src, int dst, T cap, C cost)
                adj[src].push back({src, dst, cap, 0, cost, (int)adj[dst].
                     size()});
                if (src == dst)
                        adj[src].back().rev++;
                adj[dst].push back({dst, src, 0, 0, -cost, (int)adj[src].
                     size() - 1);
        }
        const C oo = numeric limits<C>::max();
        vector < C > dist, pot;
        vector<edge*> prev;
        vector<T> curflow;
```

void bellman ford(int s, int t)

pot.assign(n, oo);pot[s] = 0;

```
for (int it = 0, change = true; it < n && change; ++
        {
                change = false;
                for (int u = 0; u < n; ++u)
                        if (pot[u] != oo)
                        {
                                 for (auto &e : adj[u])
                                         if (e.flow < e.cap
                                                 && pot[e.dst]
                                                       > pot[u]
                                                       + e.cost
                                         {
                                                 pot[e.dst] =
                                                      pot[u] +
                                                      e.cost;
                                                 change =
                                                      true;
                                         }
                        }
        }
}
bool dijkstra(int s, int t)
        dist.assign(n, oo);
        prev.assign(n, nullptr);
        dist[s] = 0;
        curflow[s] = numeric limits<T>::max();
        using pci = pair < C, int >;
        priority queue<pci, vector<pci>, greater<pci>> pq;
        pq.push({ 0, s });
        while (!pq.empty())
                C d; int u;
```

```
tie(d, u) = pq.top();
                 pq.pop();
                 if (d != dist[u])
                         continue;
                 for (auto &e: adj[u])
                         if (e.flow < e.cap
                         && dist[e.dst] > dist[u] + e.cost +
                              pot[u] - pot[e.dst])
                                  dist[e.dst] = dist[u] + e.cost
                                                  + pot[u] -
                                                       pot e.dst
                                                       1;
                                  prev[e.dst] = \&e;
                                  curflow[e.dst] = min(curflow[u
                                      ], e.cap – e.flow);
                                 pq.push({ dist[e.dst], e.dst });
                         }
        }
        return dist[t] < oo;
pair < T, C > max flow(int s, int t)
        T flow = 0;
        C \cos t = 0;
        // can be safely commented if
        // edges costs are non-negative
        bellman ford(s, t);
        curflow.assign(n, 0);
        while (dijkstra(s, t))
                 for (int u = 0; u < n; ++u)
                         if (dist[u] < oo)
```

adj[e->dst][e->rev].flow -= delta;

cost += delta \* e->cost;

#### 4.25. PushRelabel.

```
template<typename T>
struct push relabel
{
       struct edge { int v, next; T w, f; };
       int n;
       queue<int> q;
       vector < bool > m;
       vector<T> e;
       vector<int> h, p, c;
       vector<edge> G;
       push relabel(int n):
                        n(n), p(n, -1) \{ \}
       void add edge(int u, int v, T w)
                G.push back(\{v, p[u], w, 0\});
               p[u] = G.size() - 1;
               G.push back(\{u, p[v], 0, 0\});
               p[v] = G.size() - 1;
       }
       inline void enqueue(int u)
               if (!m[u] && e[u])
```

```
}
                 m[u] = true;
                 q.push(u);
        }
void push (int u, int i)
        T mf = min(e[u], G[i].w - G[i].f);
        if (mf \&\& h[u] > h[G[i].v])
                 G[i].f += mf;
                 e[G[i].v] += mf;
                 G[i \ \hat{} \ 1].f = mf;
                 e[u] -= mf;
                 enqueue(G[i].v);
        }
void relabel(int u)
        --c[h[u]];
        h[u] = 2 * n;
        for (int i = p[u]; i != -1; i = G[i].next)
                 if (G[i].w - G[i].f \&\& h[G[i].v] < h[u])
                          h[u] = h[G[i].v];
        ++c[++h[u]];
        enqueue(u);
```

}

return {flow, cost};

}

**}**;

push(u, i);

```
}
        T max flow(int s, int t)
                                                                                                                 if (e[u])
                                                                                                                 {
                                                                                                                         if (c[h[u]] == 1)
                e.assign(n, 0);
                h.assign(n, 0);
                c.assign(2 * n, 0);
                                                                                                                                  for (int i = 0; i < n; ++i)
                m.assign(n, false);
                                                                                                                                          if (h[i] >= h[u])
                                                                                                                                          {
                for (auto &e: G)
                                                                                                                                                  --c[h[i]];
                        e.f = 0;
                                                                                                                                                  h[i] = max(h[
                c[0] = n - 1;
                                                                                                                                                       i], n + 1)
                c[n] = 1;
                h[s] = n;
                                                                                                                                                  ++c[h[i]];
                m[s] = m[t] = true;
                                                                                                                                                  enqueue(i);
                for (int i = p[s]; i != -1; i = G[i].next)
                                                                                                                                          }
                                                                                                                         }
                        e[s] += G[i].w;
                                                                                                                         else
                        push(s, i);
                                                                                                                                  relabel(u);
                }
                                                                                                                 }
                                                                                                         }
                for (int u; !q.empty(); q.pop())
                                                                                                         T flow = 0;
                        u = q.front();
                                                                                                         for (int i = p[s]; i!=-1; i = G[i].next)
                        m[u] = false;
                                                                                                                 flow += G[i].f;
                                                                                                         return flow;
                        for (int i = p[u]; e[u] \&\& i != -1; i = G[i].
                                                                                                }
                                                                                        };
4.26. StoerWagner.
/*
                                                                                        {
        Tested: ZOJ 2753
                                                                                                int n = weights.size();
        Complexity: O(n^3)
                                                                                                 vector<int> used(n), cut, best cut;
*/
                                                                                                 T best weight = -1;
template<typename T>
                                                                                                 for (int phase = n - 1; phase >= 0; --phase)
pair<T, vector<int>> stoer wagner(vector<vector<T>> &weights)
```

```
vector < T > w = weights[0];
vector < int > added = used;
int prev, last = 0;
for (int i = 0; i < phase; ++i)
        prev = last;
        last = -1;
        for (int j = 1; j < n; ++j)
                 if (!added[j] && (last == -1 || w[j] >
                      w[last]))
                         last = j;
        if (i == phase - 1)
                 for (int j = 0; j < n; ++j)
                          weights[prev][j] += weights[
                              last[j];
                 for (int j = 0; j < n; ++j)
                          weights[j][prev] = weights[
                              prev[[j];
```

### 4.27. StronglyConnectedComponent.

```
 \begin{array}{l} struct\ strongly\_connected\_component \\ \{ \\ int\ V,\ dt; \\ vector < bool >\ del; \\ vector < int >\ dfsnum,\ low,\ S; \\ vector < vector < int > >\ G,\ SCC; \\ strongly\_connected\_component(int\ n): \\ V(n),\ dt(0),\ del(n,\ 0),\ dfsnum(n,\ 0),\ low(n,\ 0), \\ S(0),\ G(n,\ vector < int > (0)),\ SCC(0)\ \{ \} \\ \end{array}   \begin{array}{l} void\ add\_edge(int\ u,\ int\ v) \\ \{ \end{array}
```

### 4.28. TreeIsomorphism.

```
/*
       Tested: SPOJ TREEISO
       Complexity: O(n log n)
*/
#define all(c) (c).begin(), (c).end()
struct tree
       int n;
       vector<vector<int>> adj;
       tree(int n) : n(n), adj(n) \{ \}
       void add edge(int src, int dst)
                adj[src].push back(dst);
                adj[dst].push back(src);
       }
       vector<int> centers()
                vector<int> prev;
               int u = 0;
                for (int k = 0; k < 2; ++k)
```

```
queue<int> q;
        prev.assign(n, -1);
        for (q.push(prev[u] = u); !q.empty(); q.pop())
                u = q.front();
                for (auto v : adj[u])
                         if (prev[v] >= 0)
                                 continue;
                         q.push(v);
                         prev[v] = u;
        }
}
vector < int > path = \{ u \};
while (u != prev[u])
        path.push back(u = prev[u]);
int m = path.size();
if (m \% 2 == 0)
        return \{path[m/2-1], path[m/2]\};
else
        return \{path[m/2]\};
```

```
vector < vector < int >> layer;
        vector<int> prev;
        int levelize(int r)
                 prev.assign(n, -1);
                prev[r] = n;
                layer = \{\{r\}\};
                 while (1)
                 {
                         vector<int> next;
                         for (int u : layer.back())
                                  for (int v : adj[u])
                                          if (prev[v] >= 0)
                                                   continue;
                                          prev[v] = u;
                                          next.push back(v);
                                  }
                         if (next.empty())
                                 break;
                         layer.push back(next);
                return layer.size();
        }
};
bool isomorphic(tree S, int s, tree T, int t)
        if (S.n != T.n)
                 return false;
        if (S.levelize(s) != T.levelize(t))
                 return false;
        vector < vector < int >> longcodeS(S.n + 1), longcodeT(T.n + 1)
        vector < int > codeS(S.n), codeT(T.n);
        for (int h = (int) S.layer.size() -1; h >= 0; --h)
```

```
map<vector<int>, int> bucket;
                 for (int u : S.layer[h])
                         sort(all(longcodeS[u]));
                         bucket[longcodeS[u]] = 0;
                 for (int u : T.layer[h])
                         sort(all(longcodeT[u]));
                         bucket[longcodeT[u]] = 0;
                 }
                int id = 0;
                 for (auto &p: bucket)
                         p.second = id++;
                 for (int u : S.layer[h])
                 {
                         codeS[u] = bucket[longcodeS[u]];
                         longcodeS[S.prev[u]].push\_back(codeS[u]);\\
                 for (int u : T.layer[h])
                         codeT[u] = bucket[longcodeT[u]];
                         longcodeT[T.prev[u]].push \ back(codeT[u]);\\
                 }
        return codeS[s] == codeT[t];
bool isomorphic (tree S, tree T)
        auto x = S.centers(), y = T.centers();
        if (x.size() != y.size())
                 return false;
        if (isomorphic(S, x[0], T, y[0]))
                return true;
        return x.size() > 1 && isomorphic(S, x[1], T, y[0]);
}
```

#### MATH

#### 5.1. **2-SAT.**

```
struct two satisfability // 0-based
       int V, dt, k;
       vector<bool> del, usd;
       vector<int> dfsnum, low, scc, ord, S;
       vector<vector<int>> G, iG;
       two satisfability(int n):
                V(2 * n), dt(0), k(0), del(V, 0), usd(V, 0), dfsnum(V, 0)
                    0), low(V, 0), scc(V), ord(0), S(0), G(V, vector <
                    int>(0), iG(V, vector< int>(0)) {}
       void add or (int u, int v)
                G[u ^ 1].push back(v), G[v ^ 1].push back(u);
                iG[u].push back(v ^ 1), iG[v].push back(u ^ 1);
       }
       void top sort(int u)
                usd[u] = true;
                for (int i = 0, sz = G[u].size(); i < sz; i++)
                        if (!usd[G[u][i]]) top sort(G[u][i]);
                ord.push back(u);
       }
       void dfs(int u)
        {
```

#### 5.2. FastFourierTransform.

```
typedef complex<double> point;
void fft(point a[], size_t n, int sign)
{
```

```
S.push back(u), dfsnum[u] = low[u] = ++dt;
                   for (int v: iG[u])
                            low[u] = min(low[u], !dfsnum[v] ? dfs(v), low[v]
                                 ] : !del[v] ? dfsnum[v] : low[u]);
                  if (low[u] == dfsnum[u] \&\& ++k)
                            while (!del[u]) \operatorname{scc}[S.\operatorname{back}()] = k, \operatorname{del}[S.\operatorname{back}()]
                                 = true, S.pop back();
         bool solve(vector<bool> &out)
                   for (int i = 0; i < V; ++i)
                            if (!usd[i]) top sort(i);
                   for (int i = V - 1; i >= 0; --i)
                            if (!dfsnum[ord[i]]) dfs(ord[i]);
                   for (int i = 0; i < V; i += 2)
                   {
                            if (scc[i] == scc[i ^ 1]) return false;
                            out.push back(scc[i] > scc[i ^ 1]);
                   }
                  return true;
};
```

for (size t i = 1, j = 0; i + 1 < n; ++i)

if (i < j) swap(a[i], a[j]);

for (size t k = n >> 1; (j ^= k) < k; k >>= 1);

```
}
const double theta = 2 * acos(-1) * sign;
for (size_t m, mh = 1; (m = mh << 1) <= n; mh = m)
{
    point wm = polar(1.0, theta / m);
    for (size_t i = 0; i < n; i += m)
    {
        point w(1.0);
        for (size_t j = i; j < i + mh; ++j)
        {
            point u = a[j], v = a[j + mh] * w;
            a[j] = u + v;
            a[j + mh] = u - v;
            w *= wm;
        }
    }
}
if (sign == -1)
</pre>
```

#### 5.3. FastModuloTransform.

```
/*
    Fast Modulo Transform and Fast Convolution in any Modulo

Note:
    - We assume n is a power of 2 and n < 2^23 (>= 8*10^6)

Tested: SPOJ VFMUL Complexity: O(n log n)

*/

typedef long long ll;

ll inv(ll b, ll M)

{
    ll u = 1, x = 0, s = b, t = M; while (s)
```

```
for (size t i = 0; i < n; ++i) a[i] /= n;
}
vector<ll> convolve(const vector<ll> &a, const vector<ll> &b)
        int n = a.size() + b.size() - 1, size = 1;
        while (size < n) size *= 2;
        vector<point> pa(size), pb(size);
        for (int i = 0; i < a.size(); ++i) pa[i] = a[i];
        for (int i = 0; i < b.size(); ++i) pb[i] = b[i];
        fft(pa.data(), pa.size(), +1);
        fft(pb.data(), pb.size(), +1);
        for (int i = 0; i < size; ++i) pa[i] *= pb[i];
                 fft(pa.data(), pa.size(), -1);
         vector < ll > ans(n);
        for (int i = 0; i < n; ++i) ans[i] = round(real(pa[i]));
        return ans;
}
```

```
 \{ & \text{ } & \text{
```

```
return x;
}
// fast modulo transform
// (1) n = 2^k < 2^23
// (2) only predetermined mod can be used
void fmt(vector<ll> &x, ll mod, int sign = +1)
        int n = x.size();
        ll h = pow(3, (mod - 1) / n, mod);
        if (sign < 0) h = inv(h, mod);
        for (int i = 0, j = 1; j < n - 1; ++j)
                for (int k = n >> 1; k > (i \hat{k} > k >> 1);
                if (j < i) swap(x[i], x[j]);
        for (int m = 1; m < n; m *= 2)
                ll w = 1, wk = pow(h, n / (2 * m), mod);
                for (int i = 0; i < m; ++i)
                        for (int j = i; j < n; j += 2 * m)
                                ll u = x[j], d = x[j + m] * w \% mod;
                                if ((x[j] = u + d) > = mod)
                                        x[j] -= mod;
                                if ((x[j + m] = u - d) < 0)
                                        x[j + m] += mod;
                        w = w * wk \% mod;
                }
        if (sign < 0)
                ll \ n \ inv = inv(n, mod);
                for (auto &a:x)
                        a = (a * n inv) \% mod;
}
```

```
// convolution via fast modulo transform
vector<ll> conv(vector<ll> x, vector<ll> y, ll mod)
        fmt(x, mod, +1);
        fmt(y, mod, +1);
        for (int i = 0; i < x.size(); ++i)
                x[i] = (x[i] * y[i]) \% mod;
        fmt(x, mod, -1);
        return x;
}
// general convolution by using fmts with chinese remainder thm.
vector<ll> convolution(vector<ll> x, vector<ll> y, ll mod)
        for (auto &a : x) a \% = mod;
        for (auto &b: y) b \% = \text{mod};
        int n = x.size() + y.size() - 1, size = n - 1;
        for (int s : { 1, 2, 4, 8, 16 })
                size = (size >> s);
        size += 1;
        x.resize(size);
        y.resize(size);
        ll A = 167772161, B = 469762049, C = 1224736769, D = (A *
              B % mod);
        vector < ll > z(n), a = conv(x, y, A), b = conv(x, y, B), c =
             conv(x, y, C);
        for (int i = 0; i < n; ++i)
                z[i] = A * (104391568 * (b[i] - a[i]) \% B);
                z[i] += D * (721017874 * (c[i] - (a[i] + z[i]) \% C) \% C
                     );
                if ((z[i] = (z[i] + a[i]) \% \text{ mod}) < 0)
                         z[i] += mod;
        return z;
}
const int WIDTH = 5:
```

```
const ll RADIX = 100000; // = 10^WIDTH
vector<ll> parse(const char s[])
       int n = strlen(s);
       int m = (n + WIDTH - 1) / WIDTH;
       vector < ll > v(m);
       for (int i = 0; i < m; ++i)
               int b = n - WIDTH * i, x = 0;
               for (int a = max(0, b - WIDTH); a < b; ++a)
                       x = x * 10 + s[a] - 0;
               v[i] = x;
       v.push back(0);
       return v;
}
void print(const vector<ll> &v)
5.4. Gauss.
/*
       Tested: SPOJ GS
       Complexity: O(n^3)
*/
const int oo = 0x3f3f3f3f3f;
const double eps = 1e-9;
int gauss(vector<vector<double>> a, vector<double> &ans)
       int n = (int) a.size();
       int m = (int) a[0].size() - 1;
       vector < int > where(m, -1);
       for (int col = 0, row = 0; col < m && row < n; ++col)
```

```
{
        int i, N = v.size();
        vector < ll > digits(N + 1, 0);
        for (i = 0; i < N; ++i)
                 digits[i] = v[i];
        ll c = 0:
        for (i = 0; i < N; ++i)
                 c += digits[i];
                 digits[i] = c % RADIX;
                 c /= RADIX;
        for (i = N - 1; i > 0 \&\& digits[i] == 0; --i);
        printf("%lld", digits[i]);
        for (--i; i >= 0; --i)
                 printf("%.*lld", WIDTH, digits[i]);
        printf("\n");
}
                 int sel = row;
                 for (int i = row; i < n; ++i)
                          if (abs(a[i][col]) > abs(a[sel][col]))
                                  sel = i;
                 if (abs(a[sel][col]) < eps)
                         continue;
                 for (int i = col; i \le m; ++i)
                          swap(a[sel][i], a[row][i]);
                 where[col] = row;
                 for (int i = 0; i < n; ++i)
                         if (i != row)
                         {
                                  double c = a[i][col] / a[row][col];
                                  for (int j = col; j \le m; ++j)
```

a[i][j] -= a[row][j] \* c;

```
}
                                                                                                          double sum = 0;
                                                                                                          for (int j = 0; j < m; ++j)
                ++row;
                                                                                                                  sum += ans[j] * a[i][j];
        }
                                                                                                         if (abs(sum - a[i][m]) > eps)
                                                                                                                  return 0;
        ans.assign(m, 0);
        for (int i = 0; i < m; ++i)
                                                                                                 for (int i = 0; i < m; ++i)
                if (where [i] != -1)
                                                                                                         if (where [i] == -1)
                        ans[i] = a[where[i]][m] / a[where[i]][i];
                                                                                                                  return oo;
                                                                                                 return 1;
        for (int i = 0; i < n; ++i)
5.5. GoldsectionSearch.
/*
                                                                                                                  a = b;
                                                                                                                  b = c;
        Minimum of unimodal function (goldsection search)
                                                                                                                  c = d - r * (d - a);
        Tested: COJ 2890:(
                                                                                                                  fb = fc;
*/
                                                                                                                  fc = f(c);
                                                                                                         }
                                                                                                         else
template<class F>
double find min(F f, double a, double d, double eps = 1e-9)
                                                                                                                  d = c;
        const int iter = 150;
                                                                                                                  c = b;
        const double r = 2 / (3 + \operatorname{sqrt}(5.));
                                                                                                                  b = a + r * (d - a);
        double b = a + r * (d - a), c = d - r * (d - a), fb = f(b), fc
                                                                                                                  fc = fb;
                                                                                                                  fb = f(b);
        for (int it = 0; it < iter && d - a > eps; ++it)
                                                                                                         }
                // '<': maximum, '>': minimum
                                                                                                 return c;
                if (fb > fc)
                                                                                         }
5.6. Hungarian.
```

#### J.U. Hungarian.

// max weight matching

template<typename T>

```
T hungarian(const vector<vector<T>> &cost)
        int n = cost.size(), p, q;
        vector < T > fx(n, numeric limits < T > ::min()), fy(n, 0);
        vector < int > x(n, -1), y(n, -1);
        for (int i = 0; i < n; ++i)
                 for (int j = 0; j < n; ++j)
                         fx[i] = max(fx[i], cost[i][j]);
        for (int i = 0; i < n;)
                 vector < int > t(n, -1), s(n + 1, i);
                 for (p = q = 0; p \le q \&\& x[i] \le 0; ++p)
                         for (int k = s[p], j = 0; j < n && x[i] < 0; ++
                                  if (fx[k] + fy[j] == cost[k][j] \&\& t[j] <
                                  {
                                           s[++q] = y[j], t[j] = k;
                                           if (s[q] < 0)
                                                   for (p = j; p >= 0; j
                                                        = p)
                                                            y[j] = k = t[j]
                                                                 ], p = x[
                                                                 k], x[k]
                                                                 = j;
```

```
}
                 if (x[i] < 0)
                          T d = numeric limits < T > :: max();
                          for (int k = 0; k <= q; ++k)
                                  for (int j = 0; j < n; ++j)
                                           if (t[j] < 0)
                                                    d = \min(d, fx[s[k]] +
                                                        fy[j] - cost[s[k]][j]
                                                        1);
                          for (int j = 0; j < n; ++j)
                                  fy[j] += (t[j] < 0 ? 0 : d);
                          for (int k = 0; k <= q; ++k)
                                  fx[s[k]] = d;
                 }
                 else
                          ++i;
        T ret = 0;
         for (int i = 0; i < n; ++i)
                 ret += cost[i][x[i]];
        return ret;
}
```

#### 5.7. Integrate.

```
//
// Numerical Integration (Adaptive Gauss--Lobatto formula)
//
// Description:
// Gauss--Lobatto formula is a numerical integrator
// that is exact for polynomials of degree <= 2n+1.
// Adaptive Gauss--Lobatto recursively decomposes the
// domain and computes integral by using G-L formula.
//
// Algorithm:
```

```
// Above.
//
// Complexity:
// O(#pieces) for a piecewise polynomials.
// In general, it converges in O(1/n^6) for smooth functions.
// For (possibly) non-smooth functions, this is the best integrator.
//
// Verified:
// AOJ 2034
```

```
// References:
// W. Gander and W. Gautschi (2000):
// Adaptive quadrature - revisited.
// BIT Numerical Mathematics, vol.40, no.1, pp.84--101.
//

template<class F>
double integrate(F f, double lo, double hi, double eps = 1e-9)
{
            const double th = eps / 1e-14; // (= eps / machine_epsilon) function<double(double, double, double, double, int)> rec = [&](double x0, double x6, double y0, double y6, int d) {
            const double a = sqrt(2.0/3.0), b = 1.0 / sqrt(5.0); double x3 = (x0 + x6)/2, y3 = f(x3), h = (x6 - x0)/2; double x1 = x3-a*h, x2 = x3-b*h, x4 = x3+b*h, x5 = x3+a*h;
```

#### 5.8. Linear Recursion.

```
/*
    Linear Recurrence Solver

Description: Consider
    x[i+n] = a[0] \ x[i] + a[1] \ x[i+1] + \dots + a[n-1] \ x[i+n-1]
    with initial solution x[0], \ x[1], \dots, \ x[n-1]
    We compute k-th term of x in O(n^2 \log k) time.

Tested: SPOJ REC
    Complexity: O(n^2 \log k) time, O(n \log k) space

*/

typedef long long ll;

Il linear_recurrence(vector<ll> a, vector<ll> x, ll k)
{
    int n = a.size();
```

```
double y1 = f(x1), y2 = f(x2), y4 = f(x4), y5 = f(x5);
                                                                                                                  double I1 = (y0+y6 + 5*(y2+y4)) * (h/6);
                                                                                                                  double I2 = (77*(y0+y6) + 432*(y1+y5) + 625*(y2+y6) + 432*(y1+y5) + 625*(y2+y6) + 62
                                                                                                                                                  y4) + 672*y3) * (h/1470);
                                                                                                                if (x3 + h == x3 || d > 50) return 0.0;
                                                                                                                if (d > 4 \&\& th + (I1-I2) == th) return I2; // avoid
                                                                                                                                                   degeneracy
                                                                                                                return (double) (rec(x0, x1, y0, y1, d+1) + rec(x1, x2, y0, y1, d+1))
                                                                                                                                                  y1, y2, d+1)
                                                                                                                                                                                                                                   + \operatorname{rec}(x2, x3, y2, y3, d+1) + \operatorname{rec}(x3, y2, y3, d+1) + \operatorname{rec}(x3, y3, y3, d+1) + \operatorname{rec}
                                                                                                                                                                                                                                                                    x4, y3, y4, d+1
                                                                                                                                                                                                                                   + \operatorname{rec}(x4, x5, y4, y5, d+1) + \operatorname{rec}(x5,
                                                                                                                                                                                                                                                                     x6, y5, y6, d+1);
                                                          };
                                                           return rec(lo, hi, f(lo), f(hi), 0);
}
                                                           vector < ll > t(2 * n + 1);
                                                          function < vector < ll > (ll) > rec = [\&](ll k)
                                                                                                                  vector < ll > c(n);
                                                                                                                if (k < n) c[k] = 1;
                                                                                                                  else
                                                                                                                  {
                                                                                                                                                                           vector < ll > b = rec(k / 2);
                                                                                                                                                                           fill(t.begin(), t.end(), 0);
                                                                                                                                                                           for (int i = 0; i < n; ++i)
                                                                                                                                                                                                                                  for (int j = 0; j < n; ++j)
                                                                                                                                                                                                                                                                                             t[i+j+(k\&1)] += b[i]*b[j];
                                                                                                                                                                           for (int i = 2*n-1; i >= n; --i)
                                                                                                                                                                                                                                   for (int j = 0; j < n; ++j)
                                                                                                                                                                                                                                                                                             t[i-n+j] += a[j]*t[i];
                                                                                                                                                                           for (int i = 0; i < n; ++i)
```

c[i] = t[i];

```
\label{eq:continuous} \begin{cases} & \text{return } c; \\ \text{}; \\ & \text{vector} < ll > c = rec(k); \\ & ll \ ans = 0; \end{cases}
```

## 5.9. MatrixComputationAlgorithms.

```
Matrix Computation Algorithms (double)
*/
typedef vector<double> vec;
typedef vector < vec > mat;
int sign(double x)
        return x < 0 ? -1 : 1;
mat eye(int n)
        mat I(n, vec(n));
        for (int i = 0; i < n; ++i)
                I[i][i] = 1;
        return I;
}
mat add(mat A, const mat &B)
        for (int i = 0; i < A.size(); ++i)
                for (int j = 0; j < A[0].size(); ++j)
                        A[i][j] += B[i][j];
        return A;
}
mat mul(mat A, const mat &B)
```

```
for (int i = 0; i < x.size(); ++i)
                 ans += c[i] * x[i];
        return ans;
}
        for (int i = 0; i < A.size(); ++i)
                 vec x(A[0].size());
                 for (int k = 0; k < B.size(); ++k)
                         for (int j = 0; j < B[0].size(); ++j)
                                  x[j] += A[i][k] * B[k][j];
                 A[i].swap(x);
        return A;
mat pow(mat A, int k)
{
        mat X = eye(A.size());
        for (; k > 0; k \neq 2)
                if (k & 1)
                         X = mul(X, A);
                 A = mul(A, A);
        return X;
}
double diff(vec a, vec b)
        double S = 0;
        for (int i = 0; i < a.size(); ++i)
                S += (a[i] - b[i]) * (a[i] - b[i]);
        return sqrt(S);
}
```

```
double diff(mat A, mat B)
        double S = 0;
        for (int i = 0; i < A.size(); ++i)
                 for (int j = 0; j < A[0].size(); ++j)
                         S += (A[i][j] - B[i][j]) * (A[i][j] - B[i][j]);
        return sqrt(S);
}
vec mul(mat A, vec b)
        vec x(A.size());
        for (int i = 0; i < A.size(); ++i)
                 for (int j = 0; j < A[0].size(); ++j)
                         x[i] += A[i][j] * b[j];
        return x;
}
mat transpose(mat A)
        for (int i = 0; i < A.size(); ++i)
                 for (int j = 0; j < i; ++j)
                         swap(A[i][j], A[j][i]);
        return A:
}
double det(mat A)
        double D = 1:
        for (int i = 0; i < A.size(); ++i)
                 int p = i;
                 for (int j = i + 1; j < A.size(); ++j)
                         if (fabs(A[p][i]) < fabs(A[j][i]))
                                  p = j;
                 swap(A[p], A[i]);
                 for (int j = i + 1; j < A.size(); ++j)
                         for (int k = i + 1; k < A.size(); ++k)
```

```
A[j][k] -= A[i][k] * A[j][i] / A[i][i];
                 D = A[i][i];
                if (p!=i)
                         D = -D;
        return D;
// assume: A is non-singular
vec solve(mat A, vec b)
        for (int i = 0; i < A.size(); ++i)
                int p = i;
                 for (int j = i + 1; j < A.size(); ++j)
                         if (fabs(A[p][i]) < fabs(A[j][i]))
                                  p = j;
                 swap(A[p], A[i]);
                 swap(b[p], b[i]);
                 for (int j = i + 1; j < A.size(); ++j)
                 {
                         for (int k = i + 1; k < A.size(); ++k)
                                  A[j][k] -= A[i][k] * A[j][i] / A[i][i];
                         b[j] = b[i] * A[j][i] / A[i][i];
                 }
        for (int i = A.size() - 1; i >= 0; --i)
                 for (int j = i + 1; j < A.size(); ++j)
                         b[i] -= A[i][j] * b[j];
                 b[i] /= A[i][i];
        return b;
}
// TODO: verify
mat solve(mat A, mat B)
        // A^{-1} B
```

```
for (int i = 0; i < A.size(); ++i)
                 // forward elimination
                int p = i;
                 for (int j = i + 1; j < A.size(); ++j)
                         if (fabs(A[p][i]) < fabs(A[j][i]))
                                  p = j;
                 swap(A[p], A[i]);
                 swap(B[p], B[i]);
                 for (int j = i + 1; j < A.size(); ++j)
                         double coef = A[j][i] / A[i][i];
                         for (int k = i; k < A.size(); ++k)
                                  A[j][k] -= A[i][k] * coef;
                         for (int k = 0; k < B[0].size(); ++k)
                                  B[j][k] -= B[i][k] * coef;
                 }
        for (int i = A.size() - 1; i >= 0; --i)
                 // backward substitution
                 for (int j = i + 1; j < A.size(); ++j)
                         for (int k = 0; k < 0; ++k)
                                  B[i][k] -= A[i][j] * B[j][k];
                 for (int k = 0; k < B[0].size(); ++k)
                         B[i][k] /= A[i][i];
        return B;
}
// LU factorization
struct lu data
{
        mat A;
        vector<int> pi;
};
lu data lu(mat A)
```

```
{
         vector<int> pi;
         for (int i = 0; i < A.size(); ++i)
                 int p = i;
                 for (int j = i + 1; j < A.size(); ++j)
                          if (fabs(A[p][i]) < fabs(A[j][i]))
                                  p = j;
                 pi.push back(p);
                 swap(A[p], A[i]);
                 for (int j = i + 1; j < A.size(); ++j)
                          for (int k = i + 1; k < A.size(); ++k)
                                  A[j][k] -= A[i][k] * A[j][i] / A[i][i];
                          A[j][i] /= A[i][i];
                 }
        return {A, pi};
}
vec solve(lu data LU, vec b)
         mat & A = LU.A;
        vector<int> &pi = LU.pi;
         for (int i = 0; i < pi.size(); ++i)
                 swap(b[i], b[pi[i]]);
        for (int i = 0; i < A.size(); ++i)
                 for (int j = 0; j < i; ++j)
                          b[i] -= A[i][j] * b[j];
         for (int i = A.size() - 1; i >= 0; --i)
                 for (int j = i + 1; j < A.size(); ++j)
                          b[i] -= A[i][j] * b[j];
                 b[i] /= A[i][i];
        return b;
}
```

### 5.10. Minimumassignment(Jonker-Volgenant).

```
/*
       Minimum assignment (simplified Jonker-Volgenant)
       Description:
        We are given a cost table of size n times m with n \le m.
       It finds a minimum cost assignment, i.e.,
                min sum \{ij\} c(i,j) x(i,j)
                where sum \{i \text{ in } [n]\} \ x(i,j) = 1,
                sum \{j \text{ in } [m]\} \ x(i,j) <= 1.
       Tested: SPOJ SCITIES
       Complexity: O(n^3)
       Note:
       - It finds minimum cost maximal matching.
       - To find the minimum cost non-maximal matching,
                we add n dummy vertices to the right side.
*/
template<typename T>
T min assignment(const vector<vector<T>> &c)
       const int n = c.size(), m = c[0].size(); // assert(n <= m);
       vector < T > v(m), dist(m); // v: potential
       vector<int> matchL(n, -1), matchR(m, -1); // matching
       vector<int> index(m), prev(m);
       iota(index.begin(), index.end(), 0);
       auto residue = [&](int i, int j)
                return c[i][j] - v[j];
       };
       for (int f = 0; f < n; ++f)
                for (int j = 0; j < m; ++j)
```

```
{
        dist[j] = residue(f, j);
        prev[j] = f;
}
T w;
int j, l;
for (int s = 0, t = 0;;)
        if (s == t)
                 l = s;
                 w = dist[index[t++]];
                 for (int k = t; k < m; ++k)
                         j = index[k];
                         T h = dist[j];
                         if (h \ll w)
                         {
                                 if (h < w)
                                          t = s;
                                          w = h;
                                  index[k] = index[t];
                                 index[t++] = j;
                 for (int k = s; k < t; ++k)
                         j = index[k];
                         if (matchR[j] < 0)
                                  goto aug;
        int q = index[s++], i = matchR[q];
        for (int k = t; k < m; ++k)
```

```
}
                                j = index[k];
                                T h = residue(i, j) - residue(i, q) + w
                                                                                                        aug: for (int k = 0; k < l; ++k)
                                                                                                                v[index[k]] += dist[index[k]] - w;
                                if (h < dist[j])
                                                                                                        int i;
                                                                                                        do
                                         dist[j] = h;
                                                                                                        {
                                        prev[j] = i;
                                                                                                                matchR[j] = i = prev[j];
                                        if (h == w)
                                                                                                                swap(j, matchL[i]);
                                                                                                        } while (i != f);
                                                 if (matchR[j] < 0)
                                                                                                }
                                                         goto aug;
                                                                                                T opt = 0;
                                                 index[k] = index[t];
                                                                                                for (int i = 0; i < n; ++i)
                                                 index[t++] = j;
                                                                                                        opt += c[i][matchL[i]]; // (i, matchL[i]) is a solution
                                         }
                                                                                                return opt;
                        }
5.11. RootsNewton.
                                                                                                        x = fx / dfx;
template < class F, class G>
                                                                                                        if (fabs(fx) < 1e-12)
double find root(F f, G df, double x)
                                                                                                                break;
        for (int iter = 0; iter < 100; ++iter)
                                                                                                return x;
                double fx = f(x), dfx = df(x);
5.12. Simplex.
/*
                                                                                        */
        Description:
                Solve a canonical LP:
                                                                                        const double eps = 1e-9, oo = numeric limits < double > ::infinity();
                        min. c x
                        s.t. A \times = b
                                                                                        typedef vector<double> vec;
                             x > = 0
                                                                                        typedef vector < vec > mat;
        Tested: http://codeforces.com/contest/375/problem/E
                                                                                        double simplexMethodPD(mat &A, vec &b, vec &c)
        Complexity: O(n+m) iterations on average
```

```
int n = c.size(), m = b.size();
mat T(m + 1, vec(n + m + 1));
vector < int > base(n + m), row(m);
for(int j = 0; j < m; ++j)
{
        for (int i = 0; i < n; ++i)
                 T[j][i] = A[j][i];
        T[j][n+j]=1;
        base[row[j] = n + j] = 1;
        T[j][n + m] = b[j];
for (int i = 0; i < n; ++i)
        T[m][i] = c[i];
while (1)
        int p = 0, q = 0;
        for (int i = 0; i < n + m; ++i)
                if (T[m][i] \leq T[m][p])
                         p = i;
        for (int j = 0; j < m; ++j)
                 if (T[j][n + m] \le T[q][n + m])
                         q = j
        double t = min(T[m][p], T[q][n + m]);
        if (t \ge -eps)
                 vec x(n);
                 for (int i = 0; i < m; ++i)
                         if (row[i] < n) \times [row[i]] = T[i][n + m];
                 // x is the solution
                 return - T[m][n + m]; // optimal
        }
        if (t < T[q][n + m])
                 // tight on c -> primal update
                 for (int j = 0; j < m; ++j)
                         if (T[j][p] > = eps)
```

```
if (T[j][p] * (T[q][n + m] - t)
                                                   >\equiv T[q][p] *
                                                        (T[j][n +
                                                        m] - t)
                                          q = j;
                 if (T[q][p] \le eps)
                         return oo; // primal infeasible
        }
        else
        {
                 // tight on b -> dual update
                 for (int i = 0; i < n + m + 1; ++i)
                         T[q][i] = -T[q][i];
                 for (int i = 0; i < n + m; ++i)
                         if (T[q][i] > = eps)
                                  if (T[q][i] * (T[m][p] - t)
                                          >= T[q][p] * (T[m][i]
                                               - t))
                                          p = i;
                 if (T[q][p] \le eps)
                         return -oo; // dual infeasible
        }
        for (int i = 0; i < m + n + 1; ++i)
                if (i!= p)
                         T[q][i] /= T[q][p];
        T[q][p] = 1; // pivot(q, p)
        base[p] = 1;
        base[row[q]] = 0;
        row[q] = p;
        for (int j = 0; j < m + 1; ++j)
                if (j != q)
                {
                         double alpha = T[j][p];
                         for (int i = 0; i < n + m + 1; ++i)
                                  T[j][i] -= T[q][i] * alpha;
                }
}
return oo;
```

}

```
vec nv(vars);
                                                                                                  nv[i] = -1;
/*
       Solve the linear programming problem (in integers)
       \max: C * x
                                                                                                  NA.push back(nv);
       sa: A * x <= B
                                                                                                  NB.push back(-b);
       Answer is stored in best
                                                                                                  bool ok = SolveInteger(NA, NB, C, best, solution);
       IMPORTANT: best must be initialized on INFINITY
                                                                                                  NA.pop back();
       [UNTESTED YET]
                                                                                                  NB.pop back();
*/
bool SolveInteger (mat &A, vec &B, vec &C, int64 &best, vector < int64
                                                                                                  nv[i] = 1;
    > &solution)
                                                                                                  NA.push back(nv);
                                                                                                  NB.push back(a);
                                                                                                  ok |= SolveInteger(NA, NB, C, best, solution);
    vec x;
    double v = simplexMethodPD(A, B, C, x);
                                                                                                  return ok;
    // Infeasible
                                                                                          }
   if (v == oo || v == -oo) return false;
                                                                                          // Solution is stored in x.
   if ((int64)ceil(v) >= best) return true;
                                                                                          // You may safely assume that it will be integer.
    for (int i = 0; i < (int)x.size(); ++i)
                                                                                          int64 cur value = (int64) round(v);
       double a = floor(x[i]);
                                                                                          if (cur value < best) {
       double b = ceil(x[i]);
                                                                                              best = cur value;
                                                                                              solution = vector<int64>(x.begin(), x.end());
       if (\min(x[i] - a, b - x[i]) > = eps)
                                                                                          }
               mat NA = A;
                                                                                          return true;
               vec NB = B;
           int vars = C.size();
5.13. Simpson.
                                                                                      double simpson (F f, double a, double b, int n = 2000)
template < class F>
```

```
\begin{array}{l} \mbox{double $h=(b-a)$/ $(2*n)$, $fa=f(a)$, $nfa$, $res=0$;} \\ \mbox{for (int $i=0$; $i<n$; $++i$, $fa=nfa$)} \\ \mbox{} \{ \\ \mbox{} \mbox{nfa}=f(a+2*h); \\ \mbox{} \mbox{res}+=(fa+4*f(a+h)+nfa); \end{array}
```

# 5.14. StableMarriageProblem.

#### 6. Number Theory

## 6.1. BigInteger.

```
#define iszero(t) (t.len==1\&\&t.s[0]==0)
\#define setlen(l,t) t.len=l; while(t.len>1&&t.s[t.len-1]==0) t.len--;
const int maxlen=100;
struct bigint
        int len, s[maxlen];
        bigint() \{ *this = 0; \}
        bigint(int a) { *this = a; }
        bigint(const char *a) { *this = a; }
        bigint operator=(int);
        bigint operator=(const char*);
        bigint operator=(const bigint&); //Optional
        friend ostream& operator << (ostream&, const bigint&);
        bigint operator+(const bigint&);
        bigint operator-(const bigint&);
        bigint operator*(const bigint&);
        bigint operator/(const bigint&); //Require - cmp
        bigint operator%(const bigint&); //Require - cmp
        static int cmp(const bigint&, const bigint&);
        static bigint sqrt(const bigint&); //Require - * cmp
};
bigint bigint::operator=(int a)
        len = 0;
        do
        {
                s[len++] = a \% 10;
                a /= 10;
        } while (a > 0);
        return *this;
}
bigint bigint::operator=(const char *a)
```

```
len = strlen(a);
        for (int i = 0; i < len; i++)
                 s[i] = a[len - i - 1] - '0';
        return *this;
}
bigint bigint::operator=(const bigint &a)
        len = a.len;
        memcpy(s, a.s, sizeof(*s) * len);
        return *this;
}
ostream& operator<<(ostream &os, const bigint &a)
        for (int i = a.len - 1; i >= 0; i--)
                os << a.s[i];
        return os;
bigint bigint::operator+(const bigint &a)
{
        bigint b;
        b.s[b.len = max(len, a.len)] = 0;
        for (int i = 0; i < b.len; i++)
                 b.s[i] = (i < len ? s[i] : 0) + (i < a.len ? a.s[i] : 0);
        for (int i = 0; i < b.len; i++)
                if (b.s[i] >= 10)
                 {
                         b.s[i] -= 10;
                         b.s[i + 1]++;
        if (b.s[b.len])
                b.len++;
        return b;
```

```
}
//Make sure *this>=a
bigint bigint::operator-(const bigint &a)
        bigint b;
        for (int i = 0; i < len; i++)
                b.s[i] = s[i] - (i < a.len ? a.s[i] : 0);
        for (int i = 0; i < len; i++)
                if (b.s[i] < 0)
                 {
                         b.s[i] += 10;
                         b.s[i + 1] --;
        setlen(len, b);
        return b;
}
bigint bigint::operator*(const bigint &a)
        bigint b;
        memset(b.s, 0, sizeof(*s) * (len + a.len + 1));
        for (int i = 0; i < len; i++)
                 for (int j = 0; j < a.len; j++)
                         b.s[i + j] += s[i] * a.s[j];
        for (int i = 0; i < len + a.len; i++)
                b.s[i + 1] += b.s[i] / 10;
                b.s[i] \% = 10;
        setlen(len + a.len + 1, b);
        return b;
}
bigint bigint::operator/(const bigint &a)
        bigint b, c;
        for (int i = len - 1; i >= 0; i--)
```

```
if (!iszero(b))
                         for (int j = b.len; j > 0; j--)
                                  b.s[j] = b.s[j-1];
                         b.len++;
                 b.s[0] = s[i];
                 c.s[i] = 0;
                 while (cmp(b, a) >= 0)
                         b = b - a;
                         c.s[i]++;
                 }
        setlen(len, c);
        return c;
}
bigint bigint::operator%(const bigint &a)
        bigint b;
        for (int i = len - 1; i >= 0; i--)
                if (!iszero(b))
                         for (int j = b.len; j > 0; j--)
                                  b.s[j] = b.s[j - 1];
                         b.len++;
                 b.s[0] = s[i];
                 while (cmp(b, a) >= 0)
                         b = b - a;
        return b;
}
int bigint::cmp(const bigint &a, const bigint &b)
        if (a.len < b.len)
```

```
return -1;
        else if (a.len > b.len)
                 return 1;
        for (int i = a.len - 1; i >= 0; i--)
                 if (a.s[i] != b.s[i])
                         return a.s[i] - b.s[i];
        return 0;
}
bigint bigint::sqrt(const bigint &a)
        int n = (a.len - 1) / 2, p;
        bigint b, d;
        b.len = n + 1;
        for (int i = n; i >= 0; i--)
                 if (!iszero(d))
                          for (int j = d.len + 1; j > 1; j--)
                                  d.s[j] = d.s[j - 2];
                          d.s[0] = a.s[i * 2];
                          d.s[1] = a.s[i * 2 + 1];
                          d.len += 2;
                 }
                 else
                          d = a.s[i * 2] + (i * 2 + 1 < a.len ? a.s[i * 2 +
                               1] * 10 : 0);
```

```
bigint c;
                 c.s[1] = 0;
                 for (int j = 1; j <= n - i; j++)
                         c.s[j] += b.s[i + j] << 1;
                         if (c.s[j] >= 10)
                         {
                                  c.s[j + 1] = 1;
                                  c.s[j] = 10;
                         }
                         else
                                  c.s[j + 1] = 0;
                 }
                 c.len = n - i + 1 + c.s[n - i + 1];
                 for (p = 1;; p++)
                         c.s[0] = p;
                         if (cmp(d, c * p) < 0)
                                  break;
                 b.s[i] = c.s[0] = p - 1;
                d = d - c * (p - 1);
        }
        return b;
}
```

#### 6.2. CarmichaelLambda.

```
/*
Carmichael Lambda (Universal Totient Function)

Description:
lambda(n) is a smallest number that satisfies
a^lambda(n) = 1 (mod n) for all integer a that is coprime
with n.
This is also known as an universal totien function psi(n).
```

```
*/

typedef long long ll;

ll gcd(ll a, ll b)
{

while (a) swap(a, b %= a);
return b;
```

```
}
Il lcm(ll a, ll b)
        return a * (b / gcd(a, b));
ll carmichael lambda(ll n)
        ll\ lambda = 1;
        if (n \% 8 == 0)
                n \neq 2;
        for (ll d = 2; d * d <= n; ++d)
                if (n \% d == 0)
                        n \neq d;
                        ll y = d - 1;
                        while (n \% d == 0)
                                 n \neq d;
                                y *= d;
                        lambda = lcm(lambda, y);
        if (n > 1)
                lambda = lcm(lambda, n - 1);
        return lambda;
```

### 6.3. ChineseRemainderTheorem.

```
// return min x such that x % m[i] == a[i] int chinese_remainder_theorem(vector<int> a, vector<int> m) { int n = a.size(), s = 1, t, ans = 0, p, q; for (auto i : m) s *= i; for (int i = 0; i < n; i++)
```

```
// lambda(n) for all n in [lo, hi)
vector<ll> carmichael lambda(ll lo, ll hi)
        vector < ll > ps = primes(sqrt(hi) + 1);
        vector<ll> res(hi - lo), lambda(hi - lo, 1);
        iota(res.begin(), res.end(), lo);
        for (ll k = ((lo + 7) / 8) * 8; k < hi; k += 8)
                 res[k - lo] /= 2;
        for (ll p : ps)
                 for (ll \ k = ((lo + (p - 1)) / p) * p; k < hi; k += p)
                 {
                         if (res[k - lo] < p)
                                  continue;
                         ll t = p - 1;
                         res[k - lo] /= p;
                         while (res[k - lo] > 1 \&\& res[k - lo] \% p ==
                              0)
                                  t *= p;
                                  res[k - lo] /= p;
                         lambda[k - lo] = lcm(lambda[k - lo], t);
        for (ll k = lo; k < hi; ++k)
                if (res[k - lo] > 1)
                         lambda[k - lo] = lcm(lambda[k - lo], res[k -
                              lo] - 1);
        return lambda; // lambda[k-lo] = lambda(k)
}
                t = s / m[i];
                 extended euclid(t, m[i], p, q);
                 ans = (ans + t * p * a[i]) \% s;
        if (ans < 0) ans += s;
```

```
ll\ u = a[0],\ v = m[0],\ p,\ q;
        return ans;
}
                                                                                               for (int i = 1; i < n; ++i)
/*
                                                                                                       ll r = \gcd(v, m[i], p, q);
        Solve x=ai(mod mi), for any i and j, (mi,mj)|ai-aj
                                                                                                       ll t = v;
        Return (x0,M) M=[m1..mn]. All solutions are x=x0+t*M
                                                                                                       if ((a[i] - u) % r)
                                                                                                               return \{-1, 0\}; // no solution
        Note: be carful with the overflow in the multiplication
                                                                                                       v = v / r * m[i];
        Tested: LIGHTOJ 1319
                                                                                                       u = ((a[i] - u) / r * p * t + u) \% v;
                                                                                               }
*/
                                                                                               if (u < 0)
pair<ll, ll> linear congruences(const vector<ll> &a, const vector<ll>
                                                                                                        u += v;
     &m)
                                                                                               return {u, v};
                                                                                       }
        int n = a.size();
6.4. DiscreteLogarithm.
                                                                                                       t = mul(t, a, M);
/*
        Solve a^x=b (mod M)
        Tested: LIGHTOJ 1325
                                                                                               ll c = pow(a, n - k, M);
                                                                                                for(ll i = 0; i * k < n; i++)
*/
ll dlog(ll a, ll b, ll M)
                                                                                                       if( hash.find(b) != hash.end())
                                                                                                               return i * k + hash[b];
        map<ll, ll> hash;
                                                                                                       b = mul(b, c, M);
        ll n = euler phi(M), k = sqrt(n);
                                                                                               }
        for(ll i = 0, t = 1; i < k; ++i)
                                                                                               return -1;
                                                                                       }
                hash[t] = i;
6.5. DiscreteRoots.
                                                                                       {
        Solve x^k=a \pmod{n}
                                                                                               if (a == 0)
*/
                                                                                                       return {0};
vector<ll> discrete root(ll k, ll a, ll n)
                                                                                               ll g = primitive root(n);
```

```
\begin{split} &\text{ll sq} = (\text{ll) sqrt}(n+.0) + 1; \\ &\text{vector} < \text{pair} < \text{ll, ll} >> \text{dec}(\text{sq}); \\ &\text{for (ll i = 1; i <= sq; ++i)} \\ &\text{dec}[i-1] = \{\text{pow}(\text{g, ll}(i*\text{sq * 1ll * k \% (n-1)), n}), i \\ &\text{}; \\ &\text{sort}(\text{dec.begin}(), \text{dec.end}()); \\ &\text{ll any\_ans} = -1; \\ &\text{for (int i = 0; i < sq; ++i)} \\ &\{ \\ &\text{ll my} = \text{ll}(\text{pow}(\text{g, ll}(i*\text{1ll * k \% (n-1)), n})*\text{1ll * a} \\ &\text{\% n}); \\ &\text{auto it = lower\_bound}(\text{dec.begin}(), \text{dec.end}(), \\ &\text{make\_pair}(\text{my, 0ll})); \\ &\text{if (it != dec.end}() &\& \text{it->first} == \text{my}) \end{split}
```

## 6.6. DivisorSigma.

}

}

```
\begin{tabular}{l} vector &< ll> res(hi-lo), sigma(hi-lo,1); \\ iota(res.begin(), res.end(), lo); \\ for (ll p: ps) & for (ll k = ((lo + (p-1)) / p) * p; k < hi; k += p) \\ & \{ & ll b = 1; \\ & while (res[k-lo] > 1 && res[k-lo] \% p == 0) \\ & \{ & res[k-lo] /= p; \\ & b = 1 + b * p; \\ & \} \\ & sigma[k-lo] *= b; \\ & \} \\ for (ll k = lo; k < hi; ++k) \\ & if (res[k-lo] > 1) \\ & sigma[k-lo] *= (1 + res[k-lo]); \\ return sigma; // sigma[k-lo] = sigma(k) \\ \end{tabular}
```

#### 6.7. EulerPhi.

```
typedef long long ll;
ll euler phi(ll n)
        if (n == 0)
                return 0;
        ll ans = n;
        for (ll x = 2; x * x <= n; ++x)
                if (n \% x == 0)
                         ans -= ans / x;
                         while (n \% x == 0)
                                 n /= x;
                }
        if (n > 1)
                ans = ans / n;
        return ans;
// phi(n) for all n in [lo, hi)
vector<ll> euler phi(ll lo, ll hi)
```

### 6.8. ExtendedEuclidAndDiophantineEquation.

```
// returns (d, x, y) such that d = \gcd(a, b) = ax + by
int extended euclid(int a, int b, int &x, int &y)
        if (b == 0) \{ x = 1, y = 0; return a; \}
        int r = \text{extended euclid}(b, a \% b, y, x);
        y = a / b * x;
        return r;
```

```
vector < ll > ps = primes(sqrt(hi) + 1);
        vector < ll > res(hi - lo), phi(hi - lo, 1);
        iota(res.begin(), res.end(), lo);
        for (ll p : ps)
                 for (ll \ k = ((lo + (p - 1)) / p) * p; k < hi; k += p)
                 {
                         if (res[k - lo] < p)
                                  continue;
                         phi[k - lo] *= (p - 1);
                         res[k - lo] /= p;
                         while (res[k - lo] > 1 \&\& res[k - lo] \% p ==
                              0)
                                  phi[k - lo] *= p;
                                  res[k - lo] /= p;
                 }
        for (ll k = lo; k < hi; ++k)
                 if (res[k - lo] > 1)
                         phi[k - lo] *= (res[k - lo] - 1);
        return phi; // phi[k-lo] = phi(k)
}
// returns (x, y) such that c = ax + by
pair<int, int> diophantine equation(int a, int b, int c)
        int g, x, y;
        g = extended euclid(a, b, x, y);
        int k = 0; // k e Z
        return { x * c / g + (k * b / g), y * c / g - (k * a / g) };
}
```

#### 6.9. MillerRabin.

```
bool witness(ll a, ll s, ll d, ll n)
        ll x = pow(a, d, n);
        if (x == 1 || x == n - 1)
                return 0;
        for (int i = 0; i < s - 1; i++)
                x = mul(x, x, n);
                if (x == 1)
                         return 1;
                if (x == n - 1)
                         return 0;
        }
        return 1;
                                                                                                 return 1;
// return n is possible prime
                                                                                         }
bool miller rabin(ll n)
6.10. MobiusMu.
/*
For any positive integer n, define (n) as the sum of the primitive n-th
    roots of unity
    (n) = 1 if n is a square-free positive integer with an even number
        of prime factors.
    (n) = 1 if n is a square-free positive integer with an odd number
        of prime factors.
    (n) = 0 if n has a squared prime factor.
typedef long long ll;
                                                                                         }
ll mobius mu(ll n)
                                                                                         // phi(n) for all n in [lo, hi)
                                                                                         vector<ll> mobius mu(ll lo, ll hi)
        if (n == 0)
```

```
{
        if (n < 2)
                return 0;
        if (n == 2)
                return 1;
        if (n \% 2 == 0)
                return 0;
        ll d = n - 1, s = 0;
        while (d % 2 == 0)
                ++s, d /= 2;
        vector < ll > test = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\};
        for (ll p : test)
                if (p >= n) break;
                else if (witness(p, s, d, n))
                         return 0;
                return 0;
        ll mu = 1;
        for (ll x = 2; x * x <= n; ++x)
                if (n \% x == 0)
                         mu = -mu;
                         n /= x;
                         if (n \% x == 0)
                                 return 0;
        return n > 1? -mu: mu;
```

```
{
                                                                                                                        {
        vector < ll > ps = primes(sqrt(hi) + 1);
                                                                                                                                mu[k - lo] = 0;
        vector < ll > res(hi - lo), mu(hi - lo, 1);
                                                                                                                                res[k - lo] = 1;
        iota(res.begin(), res.end(), lo);
        for (ll p : ps)
                for (ll \ k = ((lo + (p - 1)) / p) * p; k < hi; k += p)
                                                                                               for (ll k = lo; k < hi; ++k)
                                                                                                       if (res[k - lo] > 1)
                        mu[k - lo] = -mu[k - lo];
                        if (res[k - lo] \% p == 0)
                                                                                                                mu[k - lo] = -mu[k - lo];
                                                                                               return mu; // mu[k-lo] = mu(k)
                                res[k - lo] /= p;
                                                                                       }
                                if (res[k - lo] \% p == 0)
6.11. ModFact.
/*
        Return a (mod p) where n != a*p^k
                                                                                                       for (ll i = 1, m = n \% p; i <= m; ++i)
                                                                                                                res = res * i \% p;
        Complexity: O(p log n)
                                                                                                       if ((n /= p) \% 2 > 0)
*/
                                                                                                                res = p - res;
ll mod fact (ll n, ll p)
                                                                                               }
                                                                                               return res;
        ll res = 1;
        while (n > 0)
6.12. Modular Arithmetics.
/*
                                                                                       typedef long long ll;
        Modular arithmetics (long long)
                                                                                       typedef vector<ll> vec;
                                                                                       typedef vector<vec> mat;
        Note:
                int < 2^31 < 10^9
                                                                                       ll add(ll a, ll b, ll M)
                long long < 2^63 < 10^18
        feasible for M < 2^62 (10^18 < 2^62 < 10^19)
                                                                                               a += b;
                                                                                               if (a >= M) a -= M;
        Tested: SPOJ
                                                                                               return a;
                                                                                       }
*/
```

```
ll sub(ll a, ll b, ll M)
        if (a < b) a += M;
        return a - b;
ll mul(ll a, ll b, ll M)
        ll q = (long double) a * (long double) b / (long double) M;
        ll r = a * b - q * M;
        return (r + 5 * M) \% M;
ll pow(ll a, ll b, ll M)
        ll x = 1;
        for (; b > 0; b > = 1)
                if (b & 1) x = mul(x, a, M);
                a = mul(a, a, M);
        return x;
}
ll inv(ll b, ll M)
        ll u = 1, x = 0, s = b, t = M;
        while (s)
                ll q = t / s;
                swap(x -= u * q, u);
                swap(t -= s * q, s);
        return (x \% = M) > = 0 ? x : x + M;
}
// solve a * x = b (M)
ll div(ll a, ll b, ll M)
```

```
ll u = 1, x = 0, s = b, t = M;
        while (s)
                ll q = t / s;
                swap(x -= u * q, u);
                swap(t -= s * q, s);
        if (a \% t) return -1; // infeasible
        return mul(x < 0? x + M : x, a / t, M);
}
// Modular Matrix
mat eye(int n)
        mat I(n, vec(n));
        for (int i = 0; i < n; ++i)
                I[i][i] = 1;
        return I;
}
mat zeros(int n)
        return mat(n, vec(n));
mat mul(mat A, mat B, ll M)
        int l = A.size(), m = B.size(), n = B[0].size();
        mat C(l, vec(n));
        for (int i = 0; i < l; ++l)
                for (int k = 0; k < m; ++k)
                         for (int j = 0; j < n; ++j)
                                 C[i][j] = add(C[i][j], mul(A[i][k], B[k][j])
                                      ], M), M);
        return C;
}
mat pow(mat A, ll b, ll M)
```

```
mat X = eye(A.size());
       for (; b > 0; b > = 1)
               if (b & 1) X = mul(X, A, M);
                A = mul(A, A, M);
       return X;
}
// assume: M is prime (singular ==>
// verify: SPOJ9832
mat inv(mat A, ll M)
       int n = A.size();
       mat B(n, vec(n));
       for (int i = 0; i < n; ++i)
                B[i][i] = 1;
       for (int i = 0; i < n; ++i)
                int j = i;
                while (j < n \&\& A[j][i] == 0) ++j;
               if (j == n)
                        return {};
```

#### 6.13. PollardRho.

```
\begin{tabular}{l} // \ return \ not \ trivial \ divisor \ of \ n \\ ll \ pollard\_rho(ll \ n) \\ \{ & \ if \ (!(n \ \& \ 1)) \\ & \ return \ \ 2; \\ while \ (1) \\ \{ & \ ll \ x = \ (ll) \ rand() \ \% \ n, \ y = \ x; \\ ll \ c = \ rand() \ \% \ n; \\ if \ (c == 0 \ || \ c == \ 2) \ c = \ 1; \\ for \ (int \ i = \ 1, \ k = \ 2;; \ i++) \end{tabular}
```

```
swap(A[i], A[j]);
                 swap(B[i], B[j]);
                 ll inv = div(1, A[i][i], M);
                 for (int k = i; k < n; ++k)
                          A[i][k] = mul(A[i][k], inv, M);
                 for (int k = 0; k < n; ++k)
                          B[i][k] = mul(B[i][k], inv, M);
                 for (int j = 0; j < n; ++j)
                          if (i == j || A[j][i] == 0)
                                  continue;
                          ll cor = A[j][i];
                          for (int k = i; k < n; ++k)
                                  A[j][k] = sub(A[j][k], mul(cor, A[i][k],
                                       M), M);
                          for (int k = 0; k < n; ++k)
                                  B[j][k] = sub(B[j][k], mul(cor, B[i][k],
                                       M), M);
                 }
        return B;
}
```

```
 \begin{cases} x = mul(x, x, n); \\ if (x >= c) x -= c; \\ else x += n - c; \\ if (x == n) x = 0; \\ if (x == 0) x = n - 1; \\ else x --; \\ ll d = \_gcd(x > y ? x - y : y - x, n); \\ if (d == n) \\ break; \\ if (d != 1) return d;
```

```
 \begin{cases} \text{if (i == k)} \\ \\ \text{y = x;} \\ \text{k <<= 1;} \end{cases}
```

#### 6.14. PrimitiveRoot.

```
/*
       Find a primitive root of m
       Note: Only 2, 4, p^n, 2p^n have primitive roots
       Tested: http://codeforces.com/contest/488/problem/E
*/
ll primitive root(ll m)
       if (m == 1)
               return 0;
       if (m == 2)
               return 1;
       if (m == 4)
               return 3;
       auto pr = primes(0, sqrt(m) + 1); // fix upper bound
       ll t = m;
       if (!(t & 1))
               t >> = 1;
       for (ll p : pr)
               if(p > t)
                        break;
               if (t % p)
                        continue;
                do
                        t /= p;
                while (t % p == 0);
               if (t > 1 || p == 2)
                        return 0;
```

```
ll x = euler phi(m), y = x, n = 0;
vector < ll > f(32);
for (ll p : pr)
{
        if (p > y)
                break;
        if (y % p)
                continue;
        do
                y \neq p;
        while (y \% p == 0);
        f[n++] = p;
if (y > 1)
        f[n++] = y;
for (ll i = 1; i < m; ++i)
        if (\gcd(i, m) > 1)
                continue;
        bool flag = 1;
        for (ll j = 0; j < n; ++j)
                if (pow(i, x / f[j], m) == 1)
                         flag = 0;
                         break;
        if (flag)
```

}

return 0;

}

```
return i;
                                                                                                   return 0;
        }
                                                                                          }
6.15. Sieve.
for (int i = 3; i * i <= n; i += 2)
                                                                                           // primes in [lo, hi)
   if (!p[i])
        for (int j = i * i; j <= n; j += 2 * i)
            p[j] = i;
vector<int> line of assambly(int N) // generate primes numbers O(
    N log N), sqrt(N) in memory
    vector < int > p(1, 2);
                                                                                                           {
    set<pair<int, int>> S;
   S.insert(\{4, 2\});
    for (int i = 3; i < N; ++i)
        auto it = S.lower bound(\{i, 0\});
        if (it->first > i)
                                                                                                   if (lo <= 2)
            p.push back(i);
            if (i * i < N)
                S.insert( { i * i, 2LL * i });
        }
        else
            do
                S.insert(\{ it -> first + it -> second, it -> second \});
                S.erase(it);
                it = S.lower bound(\{i, 0\});
            } while (it->first == i);
    }
    return p;
                                                                                                   return ps;
```

```
vector<ll> primes(ll lo, ll hi)
        const ll M = 1 << 14, SQR = 1 << 16;
        vector < bool > composite(M), small composite(SQR);
        vector<pair<ll, ll>> sieve;
        for (II i = 3; i < SQR; i += 2)
                if (!small composite[i])
                         ll k = i * i + 2 * i * max(0.0, ceil((lo - i*i)))
                             /(2.0*i)));
                         sieve.push back(\{2 * i, k\});
                         for (ll j = i * i; j < SQR; j += 2 * i)
                                 small composite[j] = 1;
        vector<ll> ps;
                ps.push back(2);
                lo = 3;
        for (ll k = lo \mid 1, low = lo; low < hi; low += M)
                ll\ high = min(low + M, hi);
                fill(composite.begin(), composite.end(), 0);
                for (auto &z: sieve)
                         for (; z.second < high; z.second += z.first)
                                 composite[z.second - low] = 1;
                for (; k < high; k += 2)
                        if (!composite[k - low])
                                 ps.push back(k);
```

## 7.1. AhoCorasik.

```
struct aho corasick
        static const int alpha = 26;
        vector<array<int, alpha>> go;
        vector<int> fail;
        vector<int> endpos;
        aho corasick() { add node(); }
        int add string(const string &str)
                 int e = 0;
                 for (char c : str)
                         if (!go[e][c-'a'])
                                  int nn = add node();
                                  go[e][c-'a'] = nn;
                         e = go[e][c-\hbox{\rm{'}}\hbox{\rm{a'}}];
                 ++endpos[e];
                 return e;
        }
        void build()
                 queue<int> que;
7.2. Hash.
struct Hash
```

```
struct Hash
{
    typedef unsigned long long ull;
```

## 7. String

```
for (int c = 0; c < alpha; ++c)
                           if (go[0][c]) que.push(go[0][c]);
                  for (; !que.empty(); que.pop())
                           int e = que.front();
                           int f = fail[e];
                           for (int c = 0; c < alpha; ++c)
                                    \quad \text{if } (!go[e][c]) \ go[e][c] = go[f][c]; \\
                                    else
                                             fail[go[e][c]] = go[f][c];
                                             endpos[go[e][c]] \mathrel{+}= endpos[go
                                                  [f][c]];
                                             que.push(go[e][c]);
                  }
private:
         int add node()
                  int pos = go.size();
                  go.emplace back(array<int, alpha>());
                  fail.emplace_back(0);
                  endpos.emplace back(0);
                  return pos;
};
         int n;
```

vector<ull> h, p;

#### 7.3. Manacher.

#### 7.4. MaximalSuffix.

```
\label{eq:constant} \begin{tabular}{ll} \beg
```

```
bool equal(int a, int b, int k)
                return (h[a + k] - h[a]) * p[b - a] == h[b + k] - h[b]
                     ];
};
                         rad[i] >= k \&\& rad[i - k] != rad[i] - k; ++k)
                         rad[i + k] = min(rad[i - k], rad[i] - k);
        }
        return rad;
bool is pal(const vector<int> &rad, int b, int e)
        int n = rad.size() / 2;
        return b >= 0 \&\& e < n \&\& rad[b + e] >= e - b + 1;
                        i += (k / (j - i) + 1) * (j - i);
                         j = i + 1;
                else j += k + 1;
        return i;
```

#### 7.5. MinimumRotation.

#### 7.6. PalindromicTree.

```
/*
    at each step when add a character:
    suf->len is the length of longest suffix palindrome
    suf->suf is the next node with longest suffix palindrome

    Tested: SPOJ LPS, APIO14_A
    Complexity: O(n)
*/

template<typename T>
struct palindromic_tree
{
    struct node
    {
        int len;
        map<T, node*> next;
        node *suf;
    };
```

```
i = j + 1; } else if (a < b) {  j += k + 1; \\ k = 0; \\ if (j <= i) \\ j = i + 1;  } else ++k; } return min(i, j); }
```

```
vector<T> s;
vector<node*> nodes;
node *neg, *zero, *suf;

node* new_node()
{
         nodes.push_back(new node());
         return nodes.back();
}

palindromic_tree()
{
         (neg = new_node())->len = -1;
         suf = zero = new_node();
         neg->suf = zero->suf = neg;
}
```

### 7.7. PiFunction.

```
suf->suf=zero;\\ else\\ \{\\ p=p->suf;\\ for\ (;\ i-1-p->len<0\ ||\\ s[i-1-p->len] != c;\ p=p->suf);\\ suf->suf=p->next[c];\\ \}\\ \}\\ \\ \tilde{palindromic\_tree}()\\ \{\\ for\ (auto\ p:\ nodes)\\ delete\ p;\\ \}\\ \};
```

```
// minimum length l that s can be represented as a concatenation of
     copies 1
int compression line(const string &s)
        int l = pi function(s).last();
        return s.length() \% l == 0 ? l : s.length();
}
// counting the number of occurrences of each prefix
vector<int> prefix occurrences(const string &s)
7.8. SuffixArray.
struct suffix array
        int n;
        vector<int> sa, lcp, rank;
        suffix array(const string &s): n(s.length() + 1), sa(n), lcp(n),
              rank(n)
        {
                 vector < int > top(max(256, n));
                 for (int i = 0; i < n; ++i)
                         top[rank[i] = s[i] \& 0xff]++;
                partial sum(top.begin(), top.end(), top.begin());
                 for (int i = 0; i < n; ++i)
                         sa[-top[rank[i]]] = i;
                 vector < int > tmp(n);
                 for (int len = 1, j; len \langle n; len \langle = 1)
                         for (int i = 0; i < n; ++i)
                                 j = sa[i] - len;
                                 if (j < 0) j += n;
```

```
{
        int n = s.length();
        vector < int > ans(n + 1), pi = pi function(s);
        for (int p : pi)
                ++ans[p];
        for (int i = n - 1; i; --i)
                ans[pi[i-1]] += ans[i];
        ans.erase(ans.begin());
        return ans;
                                 tmp[top[rank[j]]++] = j;
                         }
                         sa[tmp[top[0] = 0]] = j = 0;
                         for (int i = 1, j = 0; i < n; ++i)
                                 if (rank[tmp[i]] != rank[tmp[i-1]]
                                                  || rank[tmp[i] + len]|
                                                      != rank[tmp[i -
                                                      1 + len
                                          top[++j] = i;
                                 sa[tmp[i]] = j;
                         }
                         copy(sa.begin(), sa.end(), rank.begin());
                         copy(tmp.begin(), tmp.end(), sa.begin());
                         if (j >= n - 1) break;
                }
                int i, j, k;
                for (j = rank[lcp[i = k = 0] = 0]; i < n - 1; ++i, ++k
```

{

```
while (k >= 0 \&\& s[i] != s[sa[j-1] + k])
lcp[j] = k--, j = rank[sa[j] + 1];
```

#### 7.9. SuffixAutomaton.

}

```
/*
       Tested: SPOJ LCS
       COmplexity: O(n)
*/
template<typename T>
struct suffix automata
       struct state
               int len;
               state *link;
               map<T, state*> next;
       };
       vector < state* > states;
       state *last;
       suffix automata()
                states.push back(new state{ 0, nullptr });
               last = states.front();
       }
       void extend(T c)
                state *nlast = new state{ last->len + 1 }, *p;
               states.push back(nlast);
                for (p = last; p != nullptr && !p->next.count(c); p =
                     p->link)
```

```
p->next[c] = nlast;
       if (p == nullptr)
                nlast->link = states.front();
        else
        {
                state *q = p -> next[c];
               if (p->len + 1 == q->len)
                       nlast->link = q;
               else
               {
                       state *clone = new state{ p->len +
                                q->link, q->next };
                       states.push back(clone);
                       for (; p != nullptr && p->next[c] ==
                             q; p = p - > link)
                                p->next[c] = clone;
                       q->link = nlast->link = clone;
               }
       last = nlast;
~suffix automata()
        for (state *e: states)
                delete e;
}
```

}

**}**;

**}**;

# 7.10. ZAlgorithm.