

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Previously Presented) A process for the preparation of an, optionally hydrogenated, nitrile rubber comprising the steps of
 - a) reacting a nitrile rubber in the presence at least one compound selected from the group consisting of compounds of the general formula I,

wherein:

M¹ is Os or Ru;

R is hydrogen or a hydrocarbon selected from the group consisting of C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₁-C₂₀ alkyl, aryl, C₁-C₂₀ carboxylate, C₁-C₂₀ alkoxy, C₂-C₂₀ alkenyloxy, C₂-C₂₀ alkynyoxy, aryloxy, C₂-C₂₀ alkoxy carbonyl, C₁-C₂₀ alkylthio, C₁-C₂₀ alkylsulfonyl and C₁-C₂₀ alkylsulfanyl;

X is selected from any anionic ligand; and

L¹ is a neutral π-bonded ligand, preferably but not limited to arene, substituted arene, heteroarene, independent of whether they are mono- or polycyclic;

L is a ligand selected from the group consisting of phosphines, sulfonated phosphines, fluorinated phosphines, functionalized phosphines bearing up to three

aminoalkyl-, ammoniumalkyl-, alkoxyalkyl-,
alkoxycarbonylalkyl-, hydrocycarbonylalkyl-, hydroxyalkyl-
or ketoalkyl- groups, phosphites, phosphinites,
phosphonites, phosphinamines, arsines, stibenes, ethers,
amines, amides, imines, sulfoxides, thioethers and
pyridines;

Y' is a non-coordinating anion; and optionally further in the
presence of at least one co-olefin and

for the hydrogenated nitrile polymer

b) hydrogenating the product of step a).

2. (Original) A process according to claim 1 wherein the nitrile rubber is hydrogenated and the hydrogenation is performed under homogeneous catalytic conditions.
3. (Original) A process according to claim 2 wherein the hydrogenation is carried out *in situ*; that is, without first isolating the product of step a).
4. (Original) A process according to any of claims 1-3 wherein L is a trialkylphosphine, L¹ is 1-methyl-4-iso-propylphenyl, X is a chloride ion, R is phenyl and M is ruthenium.
5. (Previously Presented) A process according to claim 1 wherein the ratio of compound to nitrile rubber is in the range of from 0.005 to 5.
6. (Previously Presented) A process according to claim 1 when conducted in the presence of at least one co-olefin.
7. (Previously Presented) A process according to claim 1 wherein the process is carried out in an inert solvent selected from the group consisting of monochlorobenzene, dichloromethane, benzene, toluene, tetrahydrofuran and cyclohexane.

8. (Previously Presented) A process according to claim 1 wherein the nitrile rubber is hydrogenated and the hydrogenation is carried out using a catalyst of formula :

wherein each R^8 is independently selected from the group consisting of a C_1 - C_8 -alkyl group, a C_4 - C_8 -cycloalkyl group, a C_6 - C_{15} -aryl group and a C_7 - C_{15} -aralkyl group;

B is selected from the group consisting of phosphorus, arsenic, sulfur, and a sulphoxide group ($S=O$) ;

X^3 is selected from the group consisting of hydrogen and an anion; and

l is 2, 3 or 4, m is 2 or 3 and n is 1, 2 or 3.

9. (Original) A process according to claim 8 wherein the hydrogenation catalyst is $(PPh_3)_3 RhCl$.