International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia Day 2 tasks

Polish — 1.1

Bazza i Shazza grają w grę. Plansza do gry jest prostokątem podzielonym na $R \times C$ kwadratowych pól ułożonych w R wierszy po C kolumn. Wiersze są ponumerowane [0, ..., R-1], zaś kolumny - [0, ..., C-1]. Przez [P, Q] oznaczamy pole w wierszu [P] i kolumnie [Q]. Każde pole zawiera nieujemną liczbę całkowitą. Na początku gry wszystkie te liczby są równe zeru.

Gra przebiega następująco. W każdym momencie Bazza może albo

- zaktualizować wartość w komórce (P,Q), albo
- poprosić Shazzę o obliczenie największego wspólnego dzielnika (NWD) wszystkich liczb w prostokątnym fragmencie planszy, którego skrajne pola, położone w przeciwległych rogach, to (P,Q) i (U,V).

Bazza wykona $N_0 + N_0$ czynności (dokona N_0 aktualizacji i zada N_0 pytań), zanim znudzi się i pójdzie pograć w krykieta.

Twoim zadaniem jest udzielenie poprawnych odpowiedzi na pytania Bazzy.

Przykład

Przyjmijmy R=2 i C=3. Bazza wykonuje najpierw następujące aktualizacje:

- zmienia wartość pola (0,0) na 20;
- zmienia wartość pola (0,2) na 15;
- zmienia wartość pola (1, 1) na 12.

20	0	15
0	12	0

Wynikowa plansza została pokazana na powyższym rysunku. Bazza zadaje następnie pytania o NWD liczb z prostokątnych fragmentów wyznaczonych przez pola:

- (0,0) i (0,2): w tym prostokącie znajdują się trzy liczby: 20, 0 i 15; ich NWD wynosi 5.
- (0,0) i (1,1): w tym prostokącie znajdują się cztery liczby: 20, 0, 0 i 12; ich NWD wynosi 4.

Przyjmijmy teraz, że Bazza wykonuje następujące aktualizacje:

- zmienia wartość pola (0,1) na 6;
- zmienia wartość pola (1,1) na 14.

Nowa plansza została pokazana na powyższym rysunku. Bazza zadaje następnie pytania o NWD liczb z prostokątnych fragmentów wyznaczonych przez pola:

- (0,0) i (0,2): trzy liczby w tym prostokącie to teraz 20, 6 i 15, a ich NWD wynosi 1.
- (0,0) i (1,1): cztery liczby w tym prostokącie to teraz 20, 6, 0 i 14, a ich NWD wynosi 2.

Bazza wykonał $N_0=5$ aktualizacji i zadał $N_0=4$ pytania.

Implementacja

Powinieneś zgłosić plik z implementacją funkcji (init(), update() i calculate() opisanych poniżej.

Aby Ci pomóc, szablony rozwiązań umieszczone na Twoim komputerze (game.c, game.cpp i game.pas) zawierają funkcję gcd2(X, Y), która oblicza największy wspólny dzielnik dwóch nieujemnych liczb całkowitych X i Y. Jeśli X=Y=0, gcd2(X, Y) zwraca 0.

Funkcja ta działa na tyle szybko, że za jej pomocą można napisać rozwiązanie uzyskujące maksymalną punktację. W szczególności, jej czas działania jest w najgorszym razie proporcjonalny do $\log(X+Y)$.

Twoja funkcja: init()

```
(/(++ void init(int R, int C);
Pascal procedure init(R, C : LongInt);
```

Opis

Twoje rozwiązanie powinno zawierać implementację tej funkcji.

Ta funkcja podaje Ci wymiary planszy i pozwala Ci na zainicjowanie zmiennych globalnych i struktur danych. Zostanie ona wywołana dokładnie raz, przed wszystkimi wywołaniami funkcji update() i calculate().

Argumenty

- R : liczba wierszy.
- C: liczba kolumn.

Twoja funkcja: update()

```
(/(++ void update(int P, int Q, long long K);

Pascal procedure update(P, Q : LongInt; K : Int64);
```

Opis

Twoje rozwiązanie powinno zawierać implementację tej funkcji.

Ta funkcja zostaje wywołana, gdy Bazza zmienia jakąś liczbę na planszy.

Argumenty

- P: numer wiersza ($0 \le P \le R-1$).
- Q: numer kolumny ($0 \le Q \le (-1)$).
- K: nowa liczba całkowita, którą należy wpisać w podane pole (0≤K≤10¹⁸). Może być ona równa poprzedniej wartości na tym polu.

Twoja funkcja: calculate()

```
(/(++ long long calculate(int P, int Q, int U, int V);
Pascal function calculate(P, Q, U, V : LongInt) : Int64;
```

Opis

Twoje rozwiązanie powinno zawierać implementację tej funkcji.

Ta funkcja powinna obliczyć największy wspólny dzielnik wszystkich liczb zawartych w prostokącie, którego skrajne pola położone w przeciwległych rogach to (P, Q) oraz (U, V).

Jeśli wszystkie liczby w prostokątnym fragmencie są zerami, wynikiem funkcji także powinno być zero.

Argumenty

- P: górny wiersz prostokąta (0≤P≤R-1).
- Q: lewa kolumna prostokąta (0≤Q≤C-1).
- U: dolny wiersz prostokąta (P≤U≤R-1).
- V: prawa kolumna prostokąta (0 ≤ V ≤ C-1).
- Wynik funkcji: NWD wszystkich liczb znajdujących się w prostokącie lub 0, jeśli wszystkie te liczby są zerami.

Przykład

Oto przykładowe argumenty funkcji oraz prawidłowy wynik.

Wywołar	Wynik	
init(2, 3)		
update(0, 0,	20)	
update(0, 2,	15)	
update(1, 1,	12)	
calculate(0,	0, 0, 2)	5
calculate(0,	0, 1, 1)	4
update(0, 1,	6)	
update(1, 1,	14)	
calculate(0,	0, 0, 2)	1
calculate(0,	0, 1, 1)	2

Ograniczenia

- Maksymalny czas działania: podany w sekcji Podzadania
- Limit pamięci: podany w sekcji Podzadania
- $\blacksquare 1 \le R, C \le 10^9$
- liczby zapisywane przez Bazzę na planszy należą do przedziału [0, 10¹⁸].

Podzadania

Wypełnioną tabelkę znajdziesz w angielskiej wersji językowej zadania.

Podzadanie	Punkty	R	С	N _U	N _Q	Maksymalny czas działania	Limit pamięci

Uruchamianie lokalne

Przykładowy moduł oceniający na Twoim komputerze wczytuje dane z pliku (game.in) w następującym formacie:

- wiersz 1: R C N
- kolejne N wierszy: opis zdarzeń w kolejności chronologicznej, po jednym zdarzeniu w wierszu

Wiersz opisujący pojedyncze zdarzenie musi być w następującym formacie:

- dla zdarzenia update(P, Q, K): 1 P Q K
- dla zdarzenia calculate(P, Q, U, V): 2 P Q U V

Dane z powyższego przykładu powinny być więc podane w następującym formacie:

```
2 3 9

1 0 0 20

1 0 2 15

1 1 1 12

2 0 0 0 2

2 0 0 1 1

1 0 1 6

1 1 1 14

2 0 0 0 2

2 0 0 1 1
```

Uwagi natury językowej

```
(/(++ Użyj dyrektywy #include "game.h").

Musisz zdefiniować unit Game Wszystkie tablice s
```

Pascal Musisz zdefiniować unit Game. Wszystkie tablice są indeksowane od 0 (a nie od 1).

Liczby wpisywane na pola planszy mogą być dosyć duże, więc użytkowników C/C++ uprasza się o używanie typu long long, a użytkowników Pascala uprasza się o używanie typu Int64.