High-Dimensional Vector Autoregressive Time Series Modeling via Tensor Decomposition

Ilia Lomasov

UIUC

11/28/2023

Ilia Lomasov (UIUC)

Outline

- Introduction
- 2 Tensor
- MLR VAR
- 4 Low-dim. TS
- 6 High-dim. TS
- 6 Simulation
- Conclusion

Ilia Lomasov (UIUC)

Table of Contents

- Introduction

•00

VAR model (Lütkepohl 2005; Tsay 2010)

Consider the VAR model of the form:

Introduction

000

$$y_{t} = A_{1}y_{t-1} + \ldots + A_{P}y_{t-P} + \epsilon_{t}$$

$$\{y_{t}\}_{t=1}^{T} \in \mathbb{R}^{N}, \quad \{A_{j}\}_{j=1}^{P} \in \mathbb{R}^{N \times N}$$

$$\epsilon_{t} \in \mathbb{R}^{N} \stackrel{iid}{\sim} (0, \Sigma_{\epsilon}), \Sigma_{\epsilon} \succ 0, \Sigma_{\epsilon} < \inf$$

$$(1)$$

- Difficult to perform estimation as number of parameters is N^2P very large.
- Even in low-dimensional setting: $N = 5, P = 2 \Rightarrow npar = 50$

Ilia Lomasov (UIUC) 11/28/2023

Alternatives to estimating N^2P parameters:

- PCA & Factor Models in the STAT556 course
- **Approach:** Assume sparsity of A_j and apply regularization (e.g., ℓ_1 , LASSO or Dantzig selector)
 - Papers: Basu & Michailidis 2015; Han, Lu & Liu 2015 etc.
 - Drawbacks:

Introduction

- Sacrifices temporal and cross-sectional dependencies
- Average magnitude of parameters is bounded by $O(N^{-1/2})$, which limits sparsity-inducing regularization
- **Approach:** Reduced-rank regression $(A^{(C)} low-rank)$:

$$y_t = (A_1 ... A_P) (y'_{t-1} ... y'_{t-P})' + \epsilon_t =: A^{(C)} x_t + \epsilon_t$$
 (2)

5 / 40

- Papers: Velu & Reinsel 2013; Carriero, Kapetanios, & Marcellino 2011 (Bayesian extension) etc.
- Limitation: Allows for only 1 type of low-rank structure

Ilia Lomasov (UIUC) 11/28/2023

Table of Contents

- Introduction
- 2 Tensor
- MLR VAR
- 4 Low-dim. TS
- 5 High-dim. TS
- 6 Simulation
- Conclusion

3-Dimensional Tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times I_3}$

Figure 1: Fibers (top) and Slices (bottom) of \mathcal{X} (Kolda, 2006)

llia Lomasov (UIUC) 11/28/2023 7 / 40

Visualization 1

Let's consider a simple tensor $\mathcal{X} \in \mathbb{R}^{2 \times 3 \times 2}$ defined by $x_{ijk} = 100i + 10j + k$

Figure 2: Tensor ${\mathcal X}$

Ilia Lomasov (UIUC) 11/28/2023

9 / 40

Matricization

Tensor

Introduction

 $\{\mathcal{X}_{(n)}\}_{n=1}^3$ – mode-n matricization of \mathcal{X} – rearrangement of mode-n fibers into a matrix. $\mathcal{X}_{(n)} \in \mathbb{R}^{I_n \times (I_1 I_2 I_3 / I_n)}$.

•
$$\mathcal{X}_{(1)} = (X_{::1} \ X_{::2}) = \begin{pmatrix} 111 & 121 & 131 & 112 & 122 & 132 \\ 211 & 221 & 231 & 212 & 222 & 232 \end{pmatrix}$$

•
$$\mathcal{X}_{(2)} = (X'_{::1} \ X'_{::2}) = \begin{pmatrix} 111 & 211 & 112 & 212 \\ 121 & 221 & 122 & 222 \\ 131 & 231 & 132 & 232 \end{pmatrix}$$

•
$$\mathcal{X}_{(3)} = (vec(X_{::1}) \ vec(X_{::2}))' = \begin{pmatrix} 111 & 211 & 121 & 221 & 131 & 231 \\ 112 & 212 & 122 & 222 & 132 & 232 \end{pmatrix}$$

• $r_n = rank_n(\mathcal{X}) = rank(\mathcal{X}_{(n)}) \leq I_n$

Ilia Lomasov (UIUC) 11/28/2023

Mode-n multiplication

Introduction

Mode-n multiplication:

$$\mathcal{X}_{l_1 \times l_2 \times l_3} \times_n \bigcup_{J \times l_n} = \sum_{i_n = 1}^{l_n} x_{i_1 i_2 i_3} y_{j i_n} , \quad n \in \{1, 2, 3\}$$

Simulation

Conclusion

10 / 40

ullet Let's take $U=egin{pmatrix} 1 & 0 \ 0 & 1 \ 1 & 1 \end{pmatrix}$, ${\mathcal X}$ defined by $x_{ijk}=100i+10j+k$

$$\underbrace{\mathcal{Y}}_{2\times 3\times 3} = \underbrace{\mathcal{X}}_{2\times 3\times 2} \times_3 \underbrace{U}_{3\times 2} \Rightarrow y_{ijl} = \sum_{k=1}^{3} x_{ijk} u_{lk}$$

- $l \in \{1, 2\} \Rightarrow u_{lk} = \mathbb{1}(l = k) \Rightarrow y_{ijl} = x_{ijk}$
- $I = 3 \Rightarrow u_{lk} = 1 \Rightarrow y_{ii3} = x_{ii1} + x_{ii2}$

llia Lomasov (UIUC) 11/28/2023

Visualization 2

Introduction

Figure 3: Tensor \mathcal{Y}

$$\mathcal{Y}_{(3)} = (vec(Y_{::1}) \ vec(Y_{::2}) \ vec(Y_{::3}))'$$

$$= (vec(X_{::1}) \ vec(X_{::2}) \ \ vec(X_{::1}) + vec(X_{::2}))'$$

$$= U(vec(X_{::1}) \ vec(X_{::2}))' = U\mathcal{X}_{(3)}$$
In general, $\mathcal{Y} = \mathcal{X} \times_n U \Rightarrow \mathcal{Y}_{(n)} = U\mathcal{X}_{(n)}$

llia Lomasov (UIUC) 11/28/2023 11 / 40

Some facts

Introduction

1 For $m \neq n$, $\mathcal{X} \times_m A \times_n B = \mathcal{X} \times_n B \times_m A$

Proof:
$$[\mathcal{X} \times_m A \times_m B]_{i_{-n,-m}jk} = \sum_{i_n=1}^{l_n} \left[\sum_{i_m=1}^{l_m} x_{i_1 i_2 i_3} a_{j i_m} \right] b_{k i_n} =$$

$$= \sum_{i_m=1}^{l_m} \left[\sum_{i_n=1}^{l_n} x_{i_1 i_2 i_3} b_{k i_n} \right] a_{j i_m} = [\mathcal{X} \times_n B \times_m A]_{i_{-n,-m}jk}$$

2
$$\mathcal{X} \times_n A \times_n B = \mathcal{X} \times_n (BA)$$

Proof:
$$[\mathcal{X} \times_n A \times_n B]_{i_{-n},k} = \sum_{j=1}^k \left[\sum_{i_n=1}^{l_n} x_{i_1 i_2 i_3} a_{j i_n} \right] b_{kj} =$$

$$= \sum_{i_n=1}^{l_n} x_{i_1 i_2 i_3} \sum_{i_n=1}^k b_{kj} a_{j i_n} = \sum_{i_n=1}^{l_n} x_{i_1 i_2 i_3} (BA)_{k i_n} = [\mathcal{X} \times_n (BA)]_{i_{-n},k}$$

llia Lomasov (UIUC) 11/28/2023

Some facts 2

Introduction

- 3 If $rank_n(\mathcal{Y}) < I_n$ for some $n \in \{1, 2, 3\}$, then there exists a Tucker decomposition $\mathcal{Y} = \mathcal{G} \times_1 U_1 \times_2 U_2 \times_3 U_3$. (Notation: $[\![\mathcal{G}; U_1, U_2, U_3]\!]$) Here, one option is $\mathcal{G} = \mathcal{X}$, $U_1 = \mathbb{I}_2$, $U_2 = \mathbb{I}_3$, $U_3 = U$
- 4 (Following from 1 & 2): Tucker decomposition is not unique: for any non-singular matrices $\{O_n \in \mathbb{R}^{I_n \times I_n}\}_{n=1}^3$

$$G \times_1 U_1 \times_2 U_2 \times_3 U_3 =$$

$$= (G \times_1 O_1 \times_2 O_2 \times_3 O_3) \times_1 U_1 O_1^{-1} \times_2 U_2 O_2^{-1} \times_3 U_3 O_3^{-1}$$

5 (Kolda, 2006)

$$(\mathcal{G} \times_1 U_1 \times_2 U_2 \times_3 U_3)_{(1)} = U_1 \mathcal{G}_{(1)} (U_3 \otimes U_2)'$$

13 / 40

llia Lomasov (UIUC) 11/28/2023

Table of Contents

- Introduction
- 2 Tenso
- MLR VAR
- 4 Low-dim. TS
- 6 High-dim. TS
- 6 Simulation
- Conclusion

Setup

Introduction

• We can rearrange transition matrices A_1, \ldots, A_P into a tensor $\mathcal{A} \in \mathbb{R}^{N \times N \times P}$, assuming those are its frontal slices (as we can see in Figure 4):

Figure 4: Tensorization from A_1, \ldots, A_P to \mathcal{A}

• Recall representation (2): $y_t = (A_1, ..., A_P) x_t + \epsilon_t$. It's equivalent to $y_t = \mathcal{A}_{(1)} x_t + \epsilon_t$

15 / 40

• Key idea: assume $\mathcal{A} = \mathcal{C} \times_1 U_1 \times_2 U_2 \times_3 U_3$

Ilia Lomasov (UIUC) 11/28/2023

Some equivalent representations (under certain assumptions)

$$y_t = (G \times_1 U_1 \times_2 U_2 \times_3 U_3)_{(1)} x_t + \epsilon_t$$
 (3)

16 / 40

$$y_t = U_1 G_{(1)} (U_3 \otimes U_2)' x_t + \epsilon_t = U_1 G_{(1)} vec(U_2' X_t U_3) + \epsilon_t$$
 (4)

Where $X_t = (y_{t-1} ... y_{t-P})$

Introduction

Furthermore, consider a special Tucker decomposition – high-order SVD (HOSVD) (De Lathauwer, DeMoor & Vandewalle 2000):

Given $n \in \{1, 2, 3\}$ and $r_n = rank_n(\mathcal{A}) \leq I_n$, construct $U_n \in \mathbb{R}^{I_n \times r_n}$ as a matrix of top- r_n left singular vectors of $\mathcal{A}_{(n)}$ (i.e., eigenvectors of $\mathcal{A}_{(n)}\mathcal{A}_{(n)}'$). $\mathcal{A}_{(n)}\mathcal{A}_{(n)}'$ – symmetric $\Rightarrow U'_nU_n = \mathbb{I}_{I_n}$, $U_nU'_n = \mathbb{I}_{r_n}$

Ilia Lomasov (UIUC) 11/28/2023

17 / 40

Number of parameters comparison

Model	Number of parameters
VAR	N^2P
RRR	$(NP+N-r_1)r_1$ $(r_1$ independent rows with NP elements each plus $N-r_1$ dependent rows, with r_1 dependency coefficients each)
MLR	$r_1r_2r_3 + (N-r_1)r_1 + (N-r_2)r_2 + (P-r_3)r_3$

* – Since \mathcal{A} is to be estimated, r_n has to be assumed?

Ilia Lomasov (UIUC) 11/28/2023

Connection with Factor Models

Introduction

- Recall unknown factor model with r_1 common factors: $Y = F\Lambda' + E$ Where $Y = (y_1, \dots, y_T)'$, $X = (x_1, \dots, x_T)'$, $E = (e_1, \dots, e_T)'$, $E'F/T = \mathbb{I}_{r_1}$, $\Lambda'\Lambda \in \mathbb{R}^{r_1 \times r_1}$ – full-rank and diagonal.
- Rewrite $y_t = U_1 \mathcal{G}_{(1)} (U_3 \otimes U_2)' x_t + \epsilon_t$ in matrix form:

$$Y = X (U_3 \otimes U_2) G'_{(1)} U'_1 + E$$
 (5)

18 / 40

- Consider SVD: $\left(X\left(U_3\otimes U_2\right)\mathcal{G}'_{(1)}\right)=U_xD_xV'_x$, where $D_x\in\mathbb{R}^{r_1\times r_1}$ is diagonal, and U_x and V_x are orthonormal.
- Define $F = \sqrt{T}U_x$ and $\Lambda = U_1V_xD_x/\sqrt{T}$. Note that $F'F/T = \mathbb{I}_{r_1}$ and that $\Lambda'\Lambda$ is diagonal.
- Thus, $Y = X(U_3 \otimes U_2) G'_{(1)} U'_1 + E = F\Lambda' + E$

Key difference: MLR can be used directly for predictions

llia Lomasov (UIUC) 11/28/2023

Table of Contents

- Introduction
- 2 Tensor
- MLR VAF
- 4 Low-dim. TS
- 5 High-dim. TS
- 6 Simulation
- Conclusion

Ilia Lomasov (UIUC)

20 / 40

$\widehat{\widehat{\mathcal{A}}_{\mathrm{MLR}}},\widehat{\widehat{A}_{\mathrm{RRR}}},\widehat{\widehat{A}_{\mathrm{OLS}}}$

Introduction

$$\widehat{\mathcal{A}}_{\mathrm{MLR}}=\widehat{\mathcal{G}} imes_1 \ \widehat{U}_1 imes_2 \ \widehat{U}_2 imes_3 \ \widehat{U}_3=\mathsf{arg\,min}\, \mathit{L}\left(\mathcal{G},\, \mathit{U}_1,\, \mathit{U}_2,\, \mathit{U}_3
ight)$$
 , where

$$L(\mathcal{G}, U_1, U_2, U_3) = \frac{1}{T} \sum_{t=1}^{T} \left\| y_t - (\mathcal{G} \times_1 U_1 \times_2 U_2 \times_3 U_3)_{(1)} x_t \right\|_2^2$$

$$(\widehat{\mathcal{A}}_{\mathrm{OLS}})_{(1)} = \widehat{A}_{\mathrm{OLS}} = \arg\min_{B \in \mathbb{R}^{N \times NP}} \sum_{t=1}^{I} \|y_t - Bx_t\|_2^2$$

$$\left(\widehat{\mathcal{A}}_{\mathrm{RRR}}\right)_{(1)} = \widehat{A}_{\mathrm{RRR}} = \arg \min_{B \in \mathbb{R}^{N \times NP}, \mathrm{rank}(B) \le r_1} \sum_{t=1}^{T} \|y_t - Bx_t\|_2^2$$

Ilia Lomasov (UIUC) 11/28/2023

Asymptotic Properties of $\widehat{\mathcal{A}}_{MLR}, \widehat{\mathcal{A}}_{RRR}, \widehat{\mathcal{A}}_{OLS}$

- Assume true (r_1, r_2, r_3) are known, N, P fixed (low-dim. setup)
- Also assume $\mathbb{E} \|\epsilon_t\|_2^4 < \inf$, and that all roots of the matrix polynomial $A(z) = \mathbb{I}_N A_1 z \ldots A_P z^P, z \in \mathbb{C}$ lie outside unit circle. Then for method $\in \{\text{"MLR"}, \text{"RRR"}, \text{"OLS"}\}$

$$\sqrt{T}\left\{\mathsf{vec}\left(\left(\widehat{\boldsymbol{\mathcal{A}}}_{\mathrm{method}}\right)_{(1)}\right) - \mathsf{vec}\left(\boldsymbol{\mathcal{A}}_{(1)}\right)\right\} \overset{D}{\underset{T \to \infty}{\longrightarrow}} N\left(0, \boldsymbol{\Sigma}_{\mathrm{method}}\right)$$

Where $\Sigma_{\rm MLR}$ is a function of $\mathcal{G}, U_1, U_2, U_3, \Sigma_{\rm OLS}, \Sigma_{\rm RRR}$ - of A_1, \ldots, A_P Moreover, $\Sigma_{\rm MLR} \preceq \Sigma_{\rm RRR} \preceq \Sigma_{\rm OLS}$

Ilia Lomasov (UIUC) 11/28/2023

Alternating Least Squares Estimation

- $L(\mathcal{G}, U_1, U_2, U_3) = \frac{1}{T} \sum_{t=1}^{T} \left\| y_t (\mathcal{G} \times_1 U_1 \times_2 U_2 \times_3 U_3)_{(1)} x_t \right\|_2^2$
- L convex w.r.t any of G, U_1 , U_2 , and U_3 when the other three are fixed
- Hence, an ALS algorithm can be implemented. Idea:
 - Initialize $\mathcal{A}^{(0)}$

Introduction

- Perform HOSVD to obtain $U_1^{(0)}, U_2^{(0)}, U_3^{(0)}, \mathcal{G}^{(0)}$
- **1** Update individually $U_1^{(k+1)}$, $U_2^{(k+1)}$, $U_3^{(k+1)}$, $\mathcal{G}^{(k+1)}$ (in that order), other 3 fixed
- 4 When convergence reached, obtain $\widehat{\mathcal{A}}$
- Authors recommend to initialize $\mathcal{A}^{(0)} = \widehat{\mathcal{A}}_{\text{prelim}} + \mathcal{T}^{-1/2}\mathcal{T}$, where $\widehat{\mathcal{A}}_{\text{prelim}}$ is $\widehat{\mathcal{A}}_{\text{OLS}}$ for large T, $\widehat{\mathcal{A}}_{\text{RRR}}$ for small T, and $vec(\mathcal{T}) \sim \mathcal{N}(0, \mathbb{I}_{NNP})$. Global minimum is not guaranteed

Ilia Lomasov (UIUC) 11/28/2023

ALS update equations

Tensor

Introduction

$$\begin{split} &U_{1}^{(k+1)} \leftarrow \arg\min_{U_{1}} \sum_{t=1}^{T} \|y_{t} - \left(\left(x_{t}' \left(U_{3}^{(k)} \otimes U_{2}^{(k)} \right) \mathcal{G}_{(1)}^{(k)} \right) \otimes I_{N} \right) \operatorname{vec}\left(U_{1} \right) \|_{2}^{2} \\ &U_{2}^{(k+1)} \leftarrow \arg\min_{U_{2}} \sum_{t=1}^{T} \|y_{t} - U_{1}^{(k+1)} \mathcal{G}_{(1)}^{(k)} \left(\left(X_{t} U_{3}^{(k)} \right)' \otimes I_{r_{2}} \right) \operatorname{vec}\left(U_{2}' \right) \|_{2}^{2} \\ &U_{3}^{(k+1)} \leftarrow \arg\min_{U_{3}} \sum_{t=1}^{T} \|y_{t} - U_{1}^{(k+1)} \mathcal{G}_{(1)}^{(k)} \left(I_{r_{3}} \otimes \left(U_{2}^{(k+1)'} X_{t} \right) \right) \operatorname{vec}\left(U_{3} \right) \|_{2}^{2} \\ &\mathcal{G}^{(k+1)} \leftarrow \arg\min_{\mathcal{G}} \sum_{t=1}^{T} \|y_{t} - \left(\left(\left(U_{3}^{(k+1)} \otimes U_{2}^{(k+1)} \right)' x_{t} \right)' \otimes U_{1}^{(k+1)} \right) \operatorname{vec}\left(\mathcal{G}_{(1)} \right) \|_{2}^{2} \end{split}$$

• Remark: Let $h(U_1, U_2, U_3, \mathcal{G}) = \text{vec}\left((\mathcal{G} \times_1 U_1 \times_2 U_2 \times_3 U_3)_{(1)} x_t\right) =$ = vec $(U_1\mathcal{G}_{(1)}(U_3\otimes U_2)'x_t)$. Consider $\partial h/\partial vec(U_i)$, $\partial h/\partial vec(\mathcal{G})$.

Ilia Lomasov (UIUC)

Table of Contents

- Introduction
- 2 Tenso
- MLR VAR
- 4 Low-dim. TS
- 6 High-dim. TS
- 6 Simulation
- Conclusion

Sparse Higher-Order Reduced-Rank VAR (SHORR)

Introduction

- Same $L = \frac{1}{T} \sum_{t=1}^{T} \left\| y_t (\mathcal{G} \times_1 U_1 \times_2 U_2 \times_3 U_3)_{(1)} x_t \right\|_2^2$
- Introduce regularization and all-orthogonality constraint:

$$\begin{split} \widehat{\mathcal{A}}_{\mathrm{SHORR}} &\equiv \ \llbracket \widehat{\mathcal{G}} ; \widehat{U}_1, \widehat{U}_2, \widehat{U}_3 \rrbracket = \underset{\mathcal{G}, U_1, U_2, U_3}{\mathrm{arg\,min}} \left\{ L \left(\mathcal{G}, U_1, U_2, U_3 \right) \right. \\ &\left. + \lambda \left\| U_3 \otimes U_2 \otimes U_1 \right\|_1 \right\} \quad \text{subject to} \ U_i' U_i = \mathbb{I}_{r_i} \text{ and} \\ \left. \mathcal{G} \in \left\{ \mathcal{G} \in \mathbb{R}^{r_1 \times r_2 \times r_3} : \left(\mathcal{G}_{(i)} \right)_{i=1}^3 - \text{row-orthogonal} \right\} \end{split}$$

- Sparsity assumption: each column of U_i has at most s_i nonzero entries
- Under these and certain extra assumptions, non-asymptotic UB's for

$$\left\|\widehat{\mathcal{A}}_{\mathrm{SHORR}} - \mathcal{A}\right\|_{\mathrm{F}}$$
 and $T^{-1} \sum_{t=1}^{T} \left\|\left(\widehat{\mathcal{A}}_{\mathrm{SHORR}} - \mathcal{A}\right)_{(1)} \mathbf{x}_{t}\right\|_{2}^{2}$ were derived by the authors

• Difference with LASSO: \mathcal{A} – not necessarily sparse

llia Lomasov (UIUC) 11/28/2023

Developing an algorithm

Introduction

- Issue: ℓ_1 regularization non-smooth, orthogonality constraint non-convex
- **Solution**: alternating direction method of multipliers (ADMM) algorithm (Boyd et al. 2011)
- Idea: assume a decomposition $G_{(i)} = D_i V_i'$ exists, where $D_i \in \mathbb{R}^{r_i \times r_i}$, $V_i \in \mathbb{R}^{(r_1 r_2 r_3/r_i) \times r_i}$, $V_i' V_i = \mathbb{I}_{r_i}$
- Augmented Lagrangian:

$$\mathcal{L}_{\varrho}(G, \{U_{i}\}, \{D_{i}\}, \{V_{i}\}; \{C_{i}\}) = L(G, U_{1}, U_{2}, U_{3}) + \lambda \|U_{3} \otimes U_{2} \otimes U_{1}\|_{1}$$

$$+ 2 \sum_{i=1}^{3} \varrho_{i} \left\langle (C_{i})_{(i)}, G_{(i)} - D_{i}V_{i}' \right\rangle + \sum_{i=1}^{3} \varrho_{i} \|G_{(i)} - D_{i}V_{i}'\|_{F}^{2}$$

Where ρ_i – regularization constants, $C_i \in \mathbb{R}^{r_1 \times r_2 \times r_3}$ – dual variables.

Ilia Lomasov (UIUC) 11/28/2023

27 / 40

Introduction

```
1: Initialize: A (0)
  2: HOSVD: \mathcal{A}^{(0)} \approx \mathcal{G}^{(0)} \times_1 U_1^{(0)} \times_2 U_2^{(0)} \times_3 U_3^{(0)} with multilinear ranks (r_1, r_2, r_3).
  3: repeat
                     \boldsymbol{U}_{1}^{(k+1)} \leftarrow \underset{\boldsymbol{U}_{1}^{\prime}\boldsymbol{U}_{1} = \boldsymbol{I}_{r_{1}}}{\arg\min} \left\{ L(\boldsymbol{G}^{(k)}, \boldsymbol{U}_{1}, \boldsymbol{U}_{2}^{(k)}, \boldsymbol{U}_{3}^{(k)}) + \lambda \|\boldsymbol{U}_{1}\|_{1} \|\boldsymbol{U}_{2}^{(k)}\|_{1} \|\boldsymbol{U}_{3}^{(k)}\|_{1} \right\}
 4:
                     U_2^{(k+1)} \leftarrow \underset{\leftarrow}{\arg\min} \left\{ L(\mathbf{G}^{(k)}, U_1^{(k+1)}, U_2, U_3^{(k)}) + \lambda \|U_1^{(k+1)}\|_1 \|U_2\|_1 \|U_3^{(k)}\|_1 \right\}
 5:
                     U_3^{(k+1)} \leftarrow \underset{\sim}{\arg\min} \left\{ L(\mathcal{G}^{(k)}, U_1^{(k+1)}, U_2^{(k+1)}, U_3) + \lambda \|U_1^{(k+1)}\|_1 \|U_2^{(k+1)}\|_1 \|U_3\|_1 \right\}
  6.
                    \mathbf{G}^{(k+1)} \leftarrow \arg\min \left\{ L(\mathbf{G}, \mathbf{U}_{1}^{(k+1)}, \mathbf{U}_{2}^{(k+1)}, \mathbf{U}_{3}^{(k+1)}) + \sum_{i=1}^{3} \varrho_{i} \|\mathbf{G}_{(i)} - \mathbf{D}_{i}^{(k)} \mathbf{V}_{i}^{(k)'} + (\mathbf{C}_{i}^{(k)})_{(i)} \|_{\mathbf{F}}^{2} \right\}
 7.
                     for i \in \{1, 2, 3\} do
  8:
                                 \mathbf{D}_{i}^{(k+1)} \leftarrow \arg \min \|\mathbf{\mathcal{G}}_{(i)}^{(k+1)} - \mathbf{D}_{i} \mathbf{V}_{i}^{(k)'} + (\mathbf{\mathcal{C}}_{i}^{(k)})_{(i)}\|_{\mathbf{F}}^{2}
  9:
                                  V_i^{(k+1)} \leftarrow \arg\min \|\mathbf{G}_{(i)}^{(k+1)} - \mathbf{D}_i^{(k+1)} V_i' + (\mathbf{C}_i^{(k)})_{(i)}\|_{\mathbf{F}}^2
10:
                                 (\mathbf{C}_{i}^{(k+1)})_{(i)} \leftarrow (\mathbf{C}_{i}^{(k)})_{(i)} + \mathbf{S}_{(i)}^{(k+1)} - \mathbf{D}_{i}^{(k+1)} \mathbf{V}_{i}^{(k+1)'}
11:
12:
                     A^{(k+1)} \leftarrow S^{(k+1)} \times_1 U_1^{(k+1)} \times_2 U_2^{(k+1)} \times_3 U_2^{(k+1)}
13:
14: until convergence
```

Updating G, D_i, V_i – LS problem, updating U_i – very complicated

Ilia Lomasov (UIUC) 11/28/2023

Updating U_i

Introduction

Original problem:

$$U_i = \arg\min_{B} \left\{ n^{-1} \| y - X \operatorname{vec}(B) \|_2^2 + \lambda \| B \|_1
ight\} \quad \text{s.t.} \quad B'B = \mathbb{I}$$

• Idea: separate orthogonality and regularization

$$\min_{B} \left\{ n^{-1} \| y - X \operatorname{vec}(B) \|_{2}^{2} + \lambda \| W \|_{1} \right\} \quad \text{s.t.} \quad B'B = \mathbb{I}, \ B = W$$

Augmented Lagrangian (M – dual variable)

$$n^{-1} \|y - X \operatorname{vec}(B)\|_{2}^{2} + \lambda \|W\|_{1} + 2\kappa \langle M, B - W \rangle + \kappa \|B - W\|_{F}^{2}$$

• Apply ADMM to find $B = W = U_i$:

```
1: Initialize: B^{(0)} = W^{(0)}, M^{(0)} = 0

2: repeat

3: B^{(k+1)} \leftarrow \arg\min_{B'B=I} \left\{ n^{-1} \| y - X \operatorname{vec}(B) \|_2^2 + \kappa \| B - W^{(k)} + M^{(k)} \|_F^2 \right\}

4: W^{(k+1)} \leftarrow \arg\min_{W} \left\{ \kappa \| B^{(k+1)} - W + M^{(k)} \|_F^2 + \lambda \| W \|_1 \right\}

5: M^{(k+1)} \leftarrow M^{(k)} + B^{(k+1)} - W^{(k+1)}

6: until convergence
```

Ilia Lomasov (UIUC)

Convergence and initialization

Introduction

• Under certain conditions on \mathcal{L}_{ϱ} , algorithm converges to local minimum of our objective function:

$$L(G, U_1, U_2, U_3) + \lambda \|U_3 \otimes U_2 \otimes U_1\|_{1}$$

- ullet Authors recommend to choose $\mathcal{A}^{(0)}=\widehat{\mathcal{A}}_{\mathrm{NN}}+(\mathit{NP}/\mathit{T})^{1/2}\mathcal{T}$, where:
 - $vec(\mathcal{T}) \sim N(0, \mathbb{I}_{NNP}), \ \|\mathcal{T}\|_{\mathrm{F}} = O_p(1)$
 - $\widehat{\mathcal{A}}_{\mathrm{NN}} = \arg\min \frac{1}{T} \sum_{t=1}^{T} \left\| y_t \mathcal{A}_{(1)} x_t \right\|_2^2 + \lambda \left\| \mathcal{A}_{(1)} \right\|_*$
 - $\|\mathcal{A}_{(1)}\|_{\star}$ nuclear norm, or sum of all singular values of $\mathcal{A}_{(1)}$

Ilia Lomasov (UIUC)

Rank selection

Introduction

- ullet Let $\widehat{\mathcal{A}}$ be a consistent initial estimator of \mathcal{A} (e.g., $\widehat{\mathcal{A}}_{\mathrm{NN}}$)
- Ridge-type ratio estimator (Xia, Xu, and Zhu 2015):

$$\widehat{r_i} = \arg\min_{1 \leq j \leq p_i - 1} rac{\sigma_{j+1}\left(\widehat{\mathcal{A}}_{(i)}
ight) + c}{\sigma_{j}\left(\widehat{\mathcal{A}}_{(i)}
ight) + c} \quad ext{where } p_1 = p_2 = N, p_3 = P$$

- Denote $\zeta_i = \frac{1}{\sigma_{r_i}\left(\mathcal{A}_{(i)}\right)} \cdot \mathsf{max}_{1 \leq j < r_i} \, \frac{\sigma_j\left(\mathcal{A}_{(i)}\right)}{\sigma_{j+1}\left(\mathcal{A}_{(i)}\right)}$
- c > 0 is chosen such that:

 - 2 $\max_{1 \le i \le 3} \zeta_i = o(1/c)$
- Authors recommend $c = \sqrt{NP \ln(T)/(10T)}$

Ilia Lomasov (UIUC) 11/28/2023

Table of Contents

- Introduction
- 2 Tensor
- MLR VAR
- 4 Low-dim. TS
- 5 High-dim. TS
- 6 Simulation
- Conclusion

Rank selection consistency – simulation setup

- $(N, P) = (10, 5), (r_1, r_2, r_3) = (3, 3, 3), \text{ and } \epsilon_t \stackrel{\text{iid}}{\sim} N(0, \mathbb{I}_N)$
- G a diagonal cube with $(G_{111}, G_{222}, G_{333}) = (2, 2, 2)$ (case a), (4, 3, 2) (case b), (1, 1, 1) (case c), or (2, 1, 0.5) (case d).
- ullet Then nonzero singular values of $\mathcal{A}_{(i)}$ are $\mathcal{G}_{111},\mathcal{G}_{222}$, and \mathcal{G}_{333}
- Generate U_i 's as the first r_i left singular vectors of Gaussian random matrices while ensuring the stationarity.
- $c = \sqrt{NP \ln(T)/(10T)}$ was used

Introduction

• 1000 replications for each $T \in \{50, 100, ..., 400\}$

Ilia Lomasov (UIUC) 11/28/2023

luction Tensor MLR VAR Low-dim. TS High-dim. TS Simulation Conclusion

Rank selection consistency – simulation results

1.00 -

Figure 5: Proportion of correct rank selection when the nonzero singular values of each $\mathcal{A}_{(i)}$ are (2,2,2) (case a), (4,3,2) (case b), (1,1,1) (case c), or (2,1,0.5) (case d)

Ilia Lomasov (UIUC) 11/28/2023 33 / 40

OLS vs. RRR vs. MLR - setup

Introduction

- N, P, U_i same. Number of replications same
- $r_1 = r_2 = 3$, and $r_3 \in \{2, 3, 4\}$
- Generate G by scaling a random iid Gaussian tensor s.t. $\min_{1 \le i \le 3} \sigma_{r_i} \left(\mathcal{G}_{(i)} \right) = 1$

llia Lomasov (UIUC) 11/28/2023

OLS vs. RRR vs. MLR - results

Introduction

Figure 6: Squared bias, empirical variance (EVar) and asymptotic variance (AVar) for $\widehat{\mathcal{A}}_{OLS}\widehat{\mathcal{A}}_{RRR}$, and $\widehat{\mathcal{A}}_{MLR}$ under various multilinear ranks.

Ilia Lomasov (UIUC) 11/28/2023 35 / 40

Comparison with existing methods – setup

Introduction

- (N, P) = (10, 5) (case a), (15, 8) (case b)
- $(r_1, r_2, r_3) = (3, 3, 3), (s_1, s_2, s_3) = (3, 3, 2)$
- For case a, \mathcal{G} and U_i 's are generated by the same methods as in RRR vs. MLR vs. OLS
- For case b, zeros rows are added below the U_i 's in case a
- In both cases, $\|\mathcal{A}\|_0 = 500$. Hence, \mathcal{A} is not sparse in case a, but is sparse in case b

llia Lomasov (UIUC) 11/28/2023

Comparison with existing methods - results

Figure 7: Plots of the estimation error $\|\widehat{\mathcal{A}} - \mathcal{A}\|_{\mathrm{F}}$ against T for six estimation methods under two settings of (N, P).

• Issue: NN performes the worst in the sparse case

Ilia Lomasov (UIUC) 11/28/2023

Modeling real data

- Data: *N* = 40 quarterly macroeconomic sequences of the United States from 1959 to 2007 (from Koop, 2013)
- Lag P=4 for the VAR model is suggested by Koop (2013). $N>>P\Rightarrow$ penalty on U_3 is not needed. New penalty $-\parallel U_2\otimes U_1\parallel_1$
- $(r_1, r_2, r_3) = (4, 3, 2)$ are selected by the ridge-type ratio estimator
- ullet Tuning parameter λ is selected by BIC

	Unregularized methods				Regularized methods				
Criterion	OLS	RRR	DFM	MLR	SHORR	LASSO	NN	RSSVD	SOFAR
ℓ_2 norm	20.16	13.31	6.36	5.81	5.35	6.72	8.16	6.33	6.28
ℓ_{∞} norm	8.32	4.55	2.85	2.56	2.44	3.06	3.36	3.02	3.02

Figure 8: Forecasting errors for different methods

Again, NN performs the worst

Ilia Lomasov (UIUC) 11/28/2023

Table of Contents

- Introduction
- 2 Tensoi
- MLR VAR
- 4 Low-dim. TS
- 6 High-dim. TS
- 6 Simulation
- Conclusion

Ilia Lomasov (UIUC)

Introduction Tensor MLR VAR Low-dim. TS High-dim. TS Simulation Conclusion

Conclusions, issues and improvements

- The novelty of the approach is in its ability to jointly enforce three different reduced-rank structures at the same time
- order P of VAR is not estimated. Possible solution: IC-based selection
- Selecting r_i is dependent on initialization $\widehat{\mathcal{A}}_0$, derived from other methods and which can even be consistent but biased/inefficient and hence make low-T estimation incorrect. IC-based selection or hypothesis testing problematic (3 parameters, too many combinations)
- NN estimator perform the worst in both simulations and real data Possible solution: use other estimators at initialization $\widehat{\mathcal{A}}_0$ (e.g., SOFAR or RSSVD)
- Despite those limitations, MLR and SHORR perform the best on real macroeconomic data

40 / 40

Ilia Lomasov (UIUC) 11/28/2023