	_					The	eory		
Name of	Paper	Paper Code		Credi	t		Marks		
Data Min			L	T	J	EST	CAT	To	otal
Transacti Processin	ion	MAI-301	3	1	0	80	20	10	00
Cou Objec						nt data mining tece ecision making.	hniques and enab	ole them	to draw
Units		Contents (Theory) Hours /week							Hours /week
I	Data V applica Associ Analys	Motivation, importance, Data type for Data Mining: relation Databases, Data Warehouses, Transactional databases, advanced database system and its applications, Data mining Functionalities: Concept/Class description, Association Analysis classification & Prediction, Cluster Analysis, Outlier Analysis, Evolution Analysis, Classification of Data Mining Systems, Major assues in Data Mining.							
п	betwee multid Wareh	ata Warehouse and OLAP Technology for Data Mining: Differences						8	
Ш	Data I Mining	Data Preprocessing: Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and Concept Hierarchy Generation. Data Mining Primitives, Languages, and System Architectures, Concept Description: Characterization and Comparison, Analytical Characterization.						8	
IV	Market Boolea algorit efficien	t Basket Ana an Association hm, Generating ncy of Ap	lysis, Ru g Ass priory	Basiles fi sociati	ic Corom 'on ru' Mining	Databases: As oncepts, Mining Γransactional D les from frequer Multilevel Constraint -Based	Single -Dime Patabases: the A at items, improv Association	nsional Apriori ing the Rules,	8

V	Classification & Prediction and Cluster Analysis: Issues regarding classification & prediction, Different Classification Methods, Prediction, Cluster Analysis, Major Clustering Methods, and Applications & Trends in Data Mining: Data Mining Applications, currently available tools.	
---	--	--

Text Bo	ooks/ Reference	es Book:-					
Name o	f Authors	Titles of the Book	Edition	Name of the Publisher			
J. Ha	an and M.	Data Mining: Concepts and		Morgan Kaufmann			
Kambe	r	Techniques	Publication				
Berson		Dataware housing, Data Mining &		TMH			
		DLAP					
W.H. In	nmon	Building the Dataware house	3 ed	Wiley India			
Anahor	у	Data Warehousing in Real World	Pearson Education				
Adriaar	ıs	Data Mining		Pearson Education			
S.K. Pu	ijari	Data Mining Techniques		University Press,			
				Hyderabad			
COURS	SE OUTCOMES	S: Students will be able to					
CO1		erstand standard data mining methods an	d techniqu	ues such as association			
	rules, data clu	stering and classification.	_				
CO2	<u>r</u>						
GO2		Data Warehouse	A 1 .				
CO3	Mining Asso	ciation Rules in Large Databases, Cluster	Analysis				

NT.	c D	D C I				The	eory		
Name	of Paper	Paper Code		Credi	t		Marks		
Neural			L	Т	J	EST	CAT	To	otal
Netword Deep Land (Vision NLP)	earning	MAI-302	3	1	0	80	20	1	00
Co	ourse	The objective	e of t	his co	ourse	is to teach stude	nts the basic con	cepts of	f neural
Obj	ective	networks, ne							
Units	(ontonic (I noory)							Hours /week	
I	The neural network: The neuron, linear perceptron, feed-forward neural network, limitations of linear neurons, sigmoid, tanh, relu neurons, softmax output layer, information theory, cross entropy, Kullback-Leibler divergence								
П	learning algorithn	rates, gradient	desc	ent w	ith si tch gi	gmoidal neurons	scent, delta rules, the back-propa test sets, validati	agation	8
Ш	and man shapes,	aging graph, f	lowir bles,	ng ten plac	isors, ehold	sessions, data ty	nd fetches, construyes, tensor arra	ys and	8
IV	Implement Neural Network: Introduction to Keras, Build neural network using Keras,						8		
V	Evaluating models, data preprocessing, feature engineering, feature learning, overfitting, underfitting, weight regularization, dropout, universal workflow of deep learning							8	

Text Boo	Text Books/ References Book:-									
Name of	Authors	Titles of the Book	Edition		Name of the Publisher					
Francois	Chollet	Deep Learning with Python	1 edition		Manning Publications					
Tensor Deep Lea Ian C Yoshua Aaron Co	Goodfellow, Bengio,	Reza Zadeh, Bharath Ramsundar - Shroff/ Deep Learning	First (2018) MIT Press	edition	O'Reilly					
COURSE CO1	COURSE OUTCOMES: Students will be able to CO1 Neural Network, Feed Forward and Backpropagation									
CO2	Tensorflow									
CO3	RNN, CNN	, Autoencoders								

N T	c D	D C 1				The	eory		
Name (of Paper	Paper Code	(Credi	t		Marks		
Machin			L	Т	J	EST	CAT	To	otal
Learni Patteri Recogn		MAI-303	3	1	0	80	20	1	00
	ourse ective					o provide the studend Pattern Recogn		tions in t	he basic
Units		(Contents (Theory)						Hours /week	
I	preprocessing, data augmentation, normalizing data sets, machine learning models, supervised and unsupervised learning.								8
II	Linearity vs non linearity, activation functions like sigmoid, ReLU, etc., weights and bias, loss function, gradient descent, multilayer network, back-							8	
III	convolution	tion layer, poo n network, in	oling put	layer chann	, loss els,	ening, sub-samp s layer, dance l transfer learning of CNN like tenso	ayer 1x1 conve g, one shot le	olution, earning,	8
IV	Recurrent neural network, Long short-term memory, gated recurrent unit, translation, beam search and width, Bleu score, attention model, Reinforcement Learning, RL -framework, MDP, Bellman equations, Value Iteration and Policy Iteration. Actor-critic model, O-learning, SARSA							8	
V	Iteration, , Actor-critic model, Q-learning, SARSA. Support Vector Machines, Bayesian learning, application of machine learning in computer vision, speech processing, natural language processing etc, Case Study: Image Net Competition.								8

Text Books/ Reference	es Book:-							
Name of Authors	Titles of the Book	Edition	Name of the Publisher					
Christopher M.	Pattern Recognition and Machine	2nd Edition,	Springer -Verlag					
Bishop	Learning	2011	New York Inc.					
Tom M. Mitchell	Machine Learning	First edition,	McGraw Hill					
		2017	Education					
Ian Goodfellow and	Deep Learning		MIT Press, 2016					
Yoshua Bengio and								
Aaron Courville								
Aurelien Geon	Hands -On Machine Learning	First edition	Shroff/O'Reilly					
	with Scikit-Learn and							
	Tensorflow: Concepts, Tools, and							
	Techniques to Build Intelligent							
	Systems							
Francois Chollet	Deep Learning with Python	1 edition	Manning					
			Publications					
Andreas Muller	Introduction to Machine Learning	First edition	Shroff/O'Reilly					
	with Python: A Guide for Data							
	Scientists							
			•					
	S: Students will be able to							
-	hine Learning concepts, classificatio		rning					
	pervised and unsupervised Learning of	concepts.						
CO3 Understand	Understand neural network							
CO4 Explain appl	ication of machine learning in compu	iter vision						

		Theory								
Name	of Paper	Paper Code		Credi	t		Marks			
Compil	er	MAI-304	L T J EST CAT				Т	Total		
Design		(E-I(1))	3	1	0	80	20	1	100	
	ourse ective	principles of	com	piler	desig	-	rse is to underst enstituent parts, a eiler.		nms and	
Units	Contents (Theory)							Hours /week		
I	Introduction: Objective, Compiler, Translator, Interpreter definition, Phase of compiler. Bootstrapping, Review of Finite automata lexical analyzer, Input, Recognition of tokens, Idea about LEX: A lexical analyzer generator, Error handling								8	
п	Review of CFG Ambiguity of grammars: Introduction to parsing, Top down parsing, LL grammars & passers error handling of LL parser, Recursive descent parsing predictive parsers, Bottom up parsing, Shift reduce parsing, LR parsers, Construction of SLR, Conical LR & LALR parsing tables, parsing with ambiguous grammar. Operator precedence parsing, Introduction of							8		
III	automatic parser generator: YACC error handling in LR parsers Syntax directed definitions; Construction of syntax trees, S Attributed Definition, L-attributed definitions, Top down translation. Intermediate code forms using postfix notation, DAG, Three address code, TAC for various control structures, Representing TAC using triples and quadruples, Boolean expression and control structures							8		
IV	Storage organization; Storage allocation, Strategies, Activation records, Accessing local and non-local names in a block structured language, Parameters passing, Symbol table organization, Data structures used in symbol tables							8		
V							presentation of boop optimization,		8	

about global data flow analysis, Loop invariant computation, Peephole	
optimization, Issues in design of code generator, A simple code generator,	
Code generation from DAG.	

Text Books/ References Book:-								
Name o	f Authors	Titles of the Book	Edition	Name of the				
				Publisher				
Mishra a	and	Theory of Computer Science –	II	PHI				
Chandra	shekaran	Automata languages and computation						
John C Martin		Introduction to Languages and The		TMH				
		Theory of Computation						
Tremblay		Theory and Practice of compiler		Mc Graw Hill				
		writing						
Holuv		Compiler Design in C		PHI				
COURS	SE OUTCOMES:	: Students will be able to						
CO1	Use compiler c	onstruction tools and describes the Fu	ınctionality	y of each stage of				
	compilation prod	cess						
CO2	Analyze differen	nt representations of intermediate code.						
CO3	Construct new co	ompiler for new languages						
CO4	Design and impl	ement LL and LR parsers						

Name	of					The	eory			
Paper		Paper Code	Credit Marks							
			L	T	J	EST			Fotal	
Web		IAI-304		-	J	EST	CAI		<u> </u>	
1 ecnnoi	Technology (E-I(2))			1	0	80	20	-	100	
Cou	rco	To provide k	1011	ladga	of Io	vascript and HT	MI to use it w	zeh en	nlication	
Objec		designing.	IOW.	icuge	OI Ja	ivascript and 111	IVIL to use it w	veo apj	Jiication	
		designing.								
									Hours	
Units				Co	ntents	s (Theory)			/week	
	Conce	pt of Internet: Cl	lient	/Serv	er mo	del, Internet and	WWW, IP, URL	, ISP,		
	DNS;	Web Design: I	Princ	cipals	of ef	fective Web De	sign, Page layou	it and		
I	linking, designing effective navigation for your website, planning and								8	
	publishing websites, Responsive web design : Responsive vs adaptive web									
	design	l								
	HTMI	and Style She	ets:	Wor	king	with HTML - F	Formatting and	Fonts,		
					_	ges, Forms, XHT	_	•		
II	Sheets	(CSS): Introdu	ictic	n, N	eed, 1	basic syntax and	d structure, clas	ss, id,	8	
	_	•	Colo	rs and	d Pro	perties, Manipul	ating Texts, Ma	rgins,		
	Positio	oning.								
		-				JavaScript, Data	• •			
III	-	-				ents, Objects an	•	ctions,	8	
		•				s and Validations				
	XML					Anatomy, Decl		Key		
IV	_					arkup Elements			8	
	_	-	_	_		with application	•	XML		
						plate Based Tran				
					-	onents, The XML		•		
V	_					ervices : Web			8	
	introduction to web services, Web Services VS other technologies, Web									
	Services Benefits.									

Text Bo	Text Books/ References Book:-								
Name of	Authors	Titles of the Book	Edition	Name of the					
				Publisher					
Jeffrey C. Jackson		Web Technologies A Computer		Pearson					
		Science Perspective		Education, 2006					
Developing Web		Ralph Moseley and M. T. Savaliya		Wiley -India					
Applications									
Web Technologies		Black Book		dreamtech Press					
Web De	sign	Joel Sklar		Joel Sklar					
			•						
COURS	E OUTCOME	S: Students will be able to							
CO1	Develop a Dyn	amic webpage by the use of java script an	d HTML.						
CO2	Gain knowledg	ge of client side scripting, validation of for	ms.						
CO3	write a well formed / valid XML document.								
CO4	Use AJAX programming and Web Services.								

Name of Paper	Domon Codo				Th	eory				
Name	n Paper	Paper Code		Cred	it		Marks			
	iction to	MAI-304	L	Т	J	EST	CAT	T	'otal	
	Science ig Data	(E-I(3))	3	1	0	80	20	1	100	
Co	urse	To make stude	ents 1	earn	about	t big data and the	eir analysis techn	igues t	to use in	
	ective	decision makir				_	in unary sis tooms	iiques t	.0 450 111	
						<u> </u>				
Units				Con	tents	(Theory)			Hours /week	
	INTRODUCTION TO DATA SCIENCE AND BIG DATA								/WEEK	
						Science Process		Data		
I										
	analysis – Big data: Definition, Risks of Big Data, Structure of Big Data – Web Data: The Original Big Data – Evolution Of Analytic Scalability –									
	Analytic Processes and Tools – Analysis versus Reporting – Core Analytics									
	versus Advanced Analytics - Modern Data Analytic Tools - Statistical									
	Concepts: Sampling Distributions - Re-Sampling - Statistical Inference -									
	Introduction to Data Visualization.									
	DATA ANALYSIS USING R									
	Univariate Analysis: Frequency, Mean, Media n, Mode, Variance, Standard									
						– Bivariate An	•		_	
II	_	_			_	stic Regression –		•	8	
	- Graphical representation of Univariate, Bivariate and Multivariate Analysis									
		_				Line Plot, Scat	ter Plot, Lattice	Plot,		
		ion Line, Two-W					t Vactor and L	Zamal		
						eling – Suppor g – Principal Co				
III			-		_	, Mongo DB: R	-		8	
111						_	_		O	
	_	Mongo DB Database Model, Data Types and Sharding – Data Modeling in HBase: Defining Schema – CRUD Operations								
	DATA ANALYTICAL FRAMEWORKS : Introduction to Hadoop: Hadoop									
IV						– HDFS (Had			8	
	System)	: Components ar	nd B	lock	Repli	cation – Introduc	ction to MapRed	luce –		

	Running Algorithms Using Map Reduce – Introduction to HBase: HBase							
	Architecture, HL	og and HFile, Data Replication - Introd	uction to H	live, Spark				
	and Apache Sqoo	op.						
	STREAM ANA	LYTICS :Introduction To Streams Con	cepts - St	ream Data				
V	Model and Arch	itecture - Stream Computing - Samplin	g Data in	a Stream – 8				
•	Filtering Stream	s - Counting Distinct Elements in a	Stream –	Estimating				
	Moments – Cour	nting Oneness in a Window – Decaying V	Vindow.					
Text B	ooks/ Reference	s Book:-						
Name o	of Authors	Titles of the Book	Edition	Name of the				
			Publisher					
Bill Fra	ınks	Taming the Big Data Tidal Wave:		John Wiley &				
		Finding Opportunities in Huge Data		sons				
		Streams with Advanced Analytics						
Rachel	Schutt, Cathy	Doing Data Science		O'Reilly				
O'Neil,								
COUR	SE OUTCOMES	: Students will be able to						
CO1	Understand data	science and Modern Data Analytic Too	ls					
CO2	Understand DA	TA MODELING and DATA ANALYTI	ICAL FRA	MEWORKS				
	Describe Big Data and its importance with its applications							
CO3	Describe Big Da	ata and its importance with its application	ıs					

Nome of	Domon	Doman Codo				Tl	neory	
Name of	Paper	Paper Code		Credi	t		Marks	
Intern	et of	MAI-304	L	T	J	EST	CAT T	'otal
Thin	ngs	(E-I(4))	3	1	0	80	20	100
	Course Objective The course enables student to understand the basics of Internet of this protocols. It introduces some of the application areas where Internet of can be applied.							•
Units	Contents (Theory)							Hours /week
I	Introduction: Definition, Characteristics of IOT, IOT Conceptual framework, IOT Architectural view, Physical design of IOT, Logical design of IOT, Application of IOT.							8
II	Machine-to-machine (M2M), SDN (software defined networking) and NFV (network function virtualization) for IOT, data storage in IOT, IOT Cloud Based Services.							8
Ш	Design Principles for Web Connectivity: Web Communication Protocols for connected devices, Message Communication Protocols for connected device s, SOAP, REST, HTTP Restful and Web Sockets. Internet Connectivity Principles: Internet Connectivity, Internet based communication, IP addressing in IOT, Media Access control.							8
IV	Sensor Technology, Participatory Sensing, Industrial IOT and Automotive IOT, Actuator, Sensor data Communication Protocols, Radio Frequency							
V	Identification Technology, Wireless Sensor Network Technology. IOT Design methodology: Specification -Requirement, process, model, service, functional & operational view.IOT Priva cy and security solutions, Raspberry Pi & arduino devices. IOT Case studies: smart city streetlights control & monitoring.						and security solutions,	8

Text Books/ References Book:-									
Name of Authors	Titles of the Book	Edition	Name of the						
			Publisher						
Rajkamal	Internet of Things		Tata McGraw Hill						
Vijay Madisetti and	Internet of things (A - Hand-on-	1st	Universal Press						
ArshdeepBahga	Approach) Edition								
Hakima Chaouchi	The Internet of Things:		Wiley publication.						
	Connecting Objects								
Charless Bell	MySQL for the Internet of things		A press publications						
Francis dacosta	Rethinking the Internet of	1st	Apress						
	things: A scalable Approach to	edition	publications2013						
	connecting everything								
Donald Norris	The Internet of Things: Do – It -		McGraw Hill						
	Yourself at Home Projects for		publication.						
	Arduino, Raspberry Pi and								
	BeagleBone Black								
COURSE OUTCOMES	S: Students will be able to								
CO1 Describe what	IoT is and how it works								
CO2 Use real IoT pr	otocols for communication								
CO3 Evaluate the w	Evaluate the wireless technologies for IoT.								
CO4 Implement bas	sic IoT applications on embedded p	latform							

Name of	f Danan	Danor Cada				Th	eory		
Name of	Paper	Paper Code	(Credi	t		Marks		
Mac	hine	MAI-305	L	Т	J	EST	CAT	To	
Lear	ning	(E-II(1))	3	1	1 0 80 20		1	00	
Course Objectiv	ve	machine lear	ning	appro	aches		and various key parize with the math		_
Units	Contents (Theory)								Hours /week
I	Introduction to machine learning, scope and limitations, regression, probability, statistics and linear algebra for machine learning, convex optimization, data visualization, hypothesis function and testing, data distributions, data preprocessing, data augmentation, normalizing data sets, machine learning models, supervised and unsupervised learning.								8
II	weights propaga auto e	s and bias, loss ation, weight in	s fund nitializ	ction, zation maliza	gradi , trair ation,	ient descent, mu ning, testing, uns	sigmoid, ReLU, ltilayer network, b table gradient prob and L2 regulariza	ack- lem,	8
III	Convolution neural network, flattening, sub-sampling, padding, stride, convolution layer, pooling layer, loss layer, dance layer 1x1 convolution, inception network, input channels, transfer learning, one shot learning, dimension reductions, implementation of CNN like tensor flow, keras etc.								8
IV	Recurrent neural network, Long short-term memory, gated recurrent unit, translation, beam search and width, Bleu score, attention model, Reinforcement Learning, RL -framework, MDP, Bellman equations, Value Iteration and Policy Iteration, , Actor-critic model, Q-learning, SARSA.								8
v	Support Vector Machines, Bayesian learning, application of machine learning in computer vision, speech processing, natural language processing etc, Case Study: Image Net Competition.							8	

Text Bo	oks/ Reference	s Book:-								
Name of	f Authors	Titles of the Book	Edition	Name of the Publisher						
Christop	oher M. Bishop	Pattern Recognition and Machine	2nd Edition,	Springer -Verlag						
		Learning	2011	New York Inc.						
Tom M.	Mitchell	Machine Learning	First edition, 2017	McGraw Hill Education						
Ian Goo	dfellow,Yoshua	Deep Learning		MIT Press, 2016						
Bengio,	Aaron									
Courvill	e									
Aurelien	Geon	Hands -On Machine Learning	First edition	Shroff/O'Reilly						
		with Scikit-Learn and								
		Tensorflow: Concepts, Tools, and								
		Techniques to Build Intelligent								
		Systems								
Francois	Chollet	Deep Learning with Python	1 edition	Manning						
				Publications						
Andreas	Muller	Introduction to Machine Learning	First edition	Shroff/O'Reilly						
		with Python: A Guide for Data								
		Scientists								
Russell,	S. and Norvig,	Artificial Intelligence: A Modern		Prentice Hall						
N		Approach		Series in Artificial						
				Intelligence. 2003						
COURS	SE OUTCOMES	S: Students will be able to								
CO1	Explain Machin	ne Learning concepts, classifications	of Machine Lea	rning						
CO2	Describe Super	vised and unsupervised Learning cor	icepts.							
CO3	Understand neu	ral network								
CO4	Explain applica	tion of machine learning in compute	r vision							
	I .	Explain application of machine learning in compact.								

Name	f Domar	Daman Cada				The	eory		
Name o	i Paper	Paper Code		Credi	t		Marks		
so	FT	MAI-305	L	Т	J	EST	CAT	To	otal
COMP	UTING	(E-II (2))	3	1	0	80	20	1	00
	ırse ective					to expose the stu			
Units	Contents (Theory)							Hours /week	
I	Overview of Soft Computing, Difference between Soft and Hard computing, Brief descriptions of different components of soft computing including Artificial intelligence systems Neural networks, fuzzy logic, genetic algorithms. Artificial neural networks Vs Biological neural networks, ANN architecture, Basic building block of an artificial neuron, Activation functions, Introduction to Early ANN architectures (basics only) -McCulloch & Pitts model, Perceptron, ADALINE, MADALINE								8
II	Artificial Neural Networks: Supervised Learning: Introduction and how brain works, Neuron as a simple computing element, The perceptron, Backpropagation networks: architecture, multilayer perceptron, back-propagation learning-input layer, accelerated learning in multilayer perceptron, The Hopfield network, Bidirectional associative memories (BAM), RBF Neural Network.							8	
III	Artificial Neural Networks: Unsupervised Learning: Hebbian Learning, Generalized Hebbian learning algorithm, Competitive learning, Self-Organizing Computational Maps: Kohonen Network.								8
IV	Fuzzy Logic Crisp & fuzzy sets fuzzy relations fuzzy conditional statements fuzzy rules fuzzy algorithm. Fuzzy logic controller.							8	
V		•		-		ncoding, fitness ent, rank, and s	•		8

Convergence of GA, Applications of GA case studies. Introduction to genetic	
programming- basic concepts.	

Text Books/ Reference	es Book:-				
Name of Authors	Titles of the Book	Edition	Name of the		
			Publisher		
R. Rajasekaran and G. A	Neural Networks, Fuzzy Logic, and		Prentice Hall of		
and Vijayalakshmi Pa	Genetic Algorithms		India		
D. E. Goldberg	Genetic Algorithms in Search,		Prentice Hall		
	Optimization, and Machine Learning				
	,Addison-Wesley supplementary				
	reading G . L. Fausett, Fundamentals				
	of Neural Networks				
T. Ross,	Fuzzy Logic with Engineering		Tata McGraw Hill		
	Applications				
COURSE OUTCOME	S: Students will be able to				
CO1 Learn about so	ft computing techniques and their applica	ations			
CO2 To understand	the fundamental theory and concept	s of neura	al networks, Identify		
different neura	l network architectures, algorithms, appli	cations and	I their limitations		
CO3 Fuzzy logic an	d its applications.				
CO4 Apply genetic	algorithms to combinatorial optimization	problems			

Name (of Paper	Paper Code				The	eory			
Name	л т арст	Taper code	(Credi	t		Marks			
Com	puter	MAI-305	L	T	J	EST	CAT	Tot	tal	
	phics	(E-II(3))	3	1	0	80	20	10	100	
	ourse ective	graphics. it pr	esents	the i	mport	to introduce to the ant drawing algor introduction to 31	ithm, polygon fitt	•	•	
Units	(ontents (Theory)								Hours /week	
I	Introduction to Computer Graphics and its applications, Components and working of Interactive Graphics; Video Display Devices: Raster scan and Random Scan displays, Display Processors; Resolution, Aspect Ratio, Refresh CRT, interlacing; Color CRT monitors, LookUp tables, Plasma Panel and LCD monitors, Interactive Input and Output Devices: keyboard, mouse, trackball, joystick, light pen, digitizers; image scanners, Touch Panels; Voice systems; printers, plotters; Graphics Software; Coordinate Representations;									
II	Drawing Geometry: Symmetrical and Simple DDA line drawing algorithm, Bresenham's line Algorithm; loading frame buffer; Symmetrical DDA for drawing circle, Polynomial method for circle drawing; circle drawing using polar coordinates, Bresenham's circle drawing; Generation of ellipse; parametric representation of cubic curves, drawing Bezier curves; Filled-Area Primitives: Flood fill algorithm, Boundary fill algorithm, Scan-line polygon fill algorithm								8	
ш	2-D Transformations: translation, rotation, scaling, matrix representations and homogeneous coordinates, composite transformations, general pivot point rotation, general fixed point scaling, Shearing; Reflection; Reflection about an arbitrary line; 2-D Viewing: window, viewport;								8	
IV	arbitrary line; 2-D Viewing: window, viewport; 2-D viewing transformation, zooming, panning; Clipping operations: point and line clipping, Cohen-Sutherland line clipping, mid-point subdivision line clipping, Liang-Barsky line clipping, Sutherland-Hodgman polygon clipping; Weiler-Atherton polygon Clipping Pointing and positioning techniques; rubber									

	band technique;	dragging;							
V	translation, scal projection; pers sorting, area su light intensities	3-D Graphics: 3-D modeling of objects, 3D transformation matrices for translation, scaling and rotation, parallel projection: Orthographic and oblique projection; perspective projection; Hidden surface removal: Zbuffer, depthsorting, area subdivision, BSP-Tree method; Ray casting; Shading: Modelling light intensities, Gouraud shading, Phong shading; Introduction to Animation, Tweening, Morphing, Fractals;							
Text Bo	ooks/ References	s Book:-							
Name (of Authors	Titles of the Book	Edition	Name of Publisher	the				
D.P. M	ukherjee	Fundamentals of Computer Graphics and Multimedia		РНІ					
Newma	nn & Sproull, ,	Principles of Interactive Computer Graphics		McGraw Hill					
Apurva	A. Desai,	Computer Graphics		PHI					
Rogersl	[Procedural Elements of Computer Graphics		McGraw Hill					
COUR	SE OUTCOME	S: Students will be able to							
CO1	Understand the	basics of computer graphics, differe	nt graphics	systems and applic	ations				
	of computer gr	aphics							
CO2	Discuss variou comparative an	s algorithms for scan conversion ar alysis	nd filling of	f basic objects and	l their				
CO3	Extract scene v device	with different clipping methods and i	ts transform	ation to graphics d	isplay				
CO4	Explore projec 2D screen	tions and visible surface detection te	chniques fo	r display of 3D sce	ene on				

Name of	Danan	Paper Code	Theory							
Name of	raper	raper Code		Credi	t		Marks			
Distrib	uted	MAI-305	L	Т	J	EST	CAT	Т	otal	
Syste		(E-II(4))	3	1	0	80	80 20		100	
	Course Objective							itecture,		
Units	Conte	Contents (Theory)								
I	Introduction to Distributed Systems: Goals of Distributed Systems, Hardware and Software concepts, the client server model, Remote procedure call, remote object invocation, message and stream oriented communications								8	
II	Process and synchronization in Distributed Systems: Threads, clients, servers, code migration, clock synchronization, mutual exclusion, Bully and Ring Algorithm, Distributed transactions.								8	
III	Consistency, Replication, fault tolerance and security: Object replication, Data centric consistency model, client-centric consistency models, Introduction to fault tolerance, process resilience, recovery, distributed security architecture, security management, KERBEROS, secure socket layer, cryptography.								8	
IV	Goals	Distributed Object Based and File Systems : CORBA, Distributed COM, Goals a nd Design Issues of Distributed file system, types of distributed file system, sun network file system,.								
v	Distributed shared memory, DSM servers, shared memory consistency model, distributed document based systems: the world wide web, distributed co-ordination based systems: JINI Implementation: JAVA RMI, OLE,									

ActiveX, Orbix, Visbrokes, Object oriented programming with SOM	
---	--

Text Books/ References Book:-								
Name of Authors	Titles of the Book	Edition	Name of the Publisher					
Andrew S. Tanenbaum, Maarten Van Steen	Distributed Systems Principles and Paradigms	Pearson Education Inc. 2002.						
Lui	Distributed Computing Principles and Applications							
Harry Singh	Progressing to Distributed Multiprocessing		Prentice -Hall Inc					
B.W. Lampson	Distributed Systems Architecture Design & Implementation	1985 Springer Varlag.						
Parker Y. Verjies J. P.	Distributed computing Systems, Synchronization, control & Communications		PHI					
Robert J. & Thieranf	Distributed Processing Systems		Prentice Hall					
George Coulios	Distribute System: Design and Concepts	Pearson Education						
COURSE OUTCOMES	: Students will be able to							
CO1 To provide hard	To provide hardware and software issues in modern distributed systems.							
CO2 Explain Process	Explain Process and synchronization in Distributed Systems							
	To get knowledge in distributed architecture, naming, synchronization, consistency and replication, fault tolerance, security, and distributed file systems.							
CO4 Understand How	Understand How Distributed Shared Memory is managed.							

Programme:- MCA (AI/ML) Semester - III wef: July 2021

		Practical				
Name of Paper Paper Code		Credit		Marks		
Minor Project	MAT 206	P	J	ESP	CAP	Total
	MAI-306	4	4	120	80	200

A complete application is to be designed using front end and back end.

		Practical				
Name of Paper	Paper Code	Credit		Marks		
Elective -I Lab	MAI-307	P	J	ESP	CAP	Total
		2	0	30	20	50

Programs are to be implemented based on the elective subject chosen.