PRINTABLE VERSION

Quiz 13

Question 1

Describe the concavity of the graph of $f(x) = x^3 - 2x + 6$ and find the Number line of points of inflection (if any). $f(x) = 3x^2 - 2$; f'(x) = 6x, $f'(x) = 0 \Rightarrow x = 0$; f'(x) = 6x; None

- a) Concave down on $\left(-\infty, \frac{1}{3}\right)$; concave up on $\left(\frac{1}{3}, \infty\right)$; pt of $\left(-\infty, -\frac{\sqrt{3}}{3}\right)$ and $\left(\frac{\sqrt{3}}{3}, \infty\right)$; concave up on concave down (f'<0): (->0,0) concare up (f'>0): (0,00)
- **b)** concave down on $(-\infty, \infty)$; no points of inflection
- c) \bigcirc concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection =(0,6) (0,6).
- d) \bigcirc concave down on $(-\infty,0)$; concave up on $(0,\infty)$; pt of inflection (0,6).
- e) concave up on $(-\infty, \infty)$; no points of inflection

e) Concave up on $(-\infty, \infty)$; no points of infection.

Question 2 $f(x) = 7x^3 - 7x$ $f(x) = 2x^2 - 7 = 7(3x^2 - 1) = 2(x^2 - \frac{1}{3})$ $f(x) = 7x^3 - 7x$ $f(x) = 2x^2 - 7 = 7(3x^2 - 1) = 2(x^2 - \frac{1}{3})$ $f(x) = 7x^3 - 7x$ $f(x) = 2x^2 - 7 = 7(3x^2 - 1) = 2(x^2 - \frac{1}{3})$ $f(x) = 7x^3 - 7x$ $f(x) = 2x^3 - 7x$ f(xpoints of inflection (if any). $X = -\frac{\sqrt{3}}{3}$ or $\frac{4\sqrt{3}}{3}$ Number line of f'

- \bigcirc concave down on $(-\infty,\infty)$; no points of inflection
- b) concave down on $(-\infty,0)$; concave up on $(0,\infty)$; pt of inflection 2(0,0).

concare up (f'>0): (-10,-13) U (13,10)

concave down ($f(z_0)$: $(-\frac{13}{3}, \frac{13}{3})^{\frac{03/01/20150152 \text{ PM}}{2}}$ points of Inflection: $(\frac{13}{3}, f(\frac{13}{3})) = (\frac{3}{3}, -\frac{35}{36})$ (一等、斤一等))=(一些,一35)

- c) concave up on $\left(-\infty, -\frac{\sqrt{3}}{3}\right)$ and $\left(\frac{\sqrt{3}}{3}, \infty\right)$; concave down on $\left(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}\right)$; pts of inflection $\left(\frac{\sqrt{3}}{3},-\frac{35}{36}\right)$ and $\left(-\frac{\sqrt{3}}{3},-\frac{35}{36}\right)$.
- d) concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection

 $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right); \text{ pts of inflection } \left(\frac{\sqrt{3}}{3}, -\frac{35}{36}\right) \text{ and } \left(-\frac{\sqrt{3}}{3}, -\frac{35}{36}\right).$ Question 3 $9x^2 - (1 = 0) \Rightarrow 9(x^2 - \frac{\alpha}{3}) \Rightarrow 9(x - \frac{2}{3})(x + \frac{2}{3}) \Rightarrow 0$

Describe the concavity of the graph of $f(x) = \frac{2x}{3(x^2 - 4)}$ and find the points

of inflection (if any), $f(x) = \frac{-2(qx+4)}{(qx^2+y^2)}, f'(x) = \frac{108x(3x^2+4)}{(qx^2+4)^3}, f'(x) = 0$ a) Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection = x = 0

b) Concave down on $\left(-\infty, -\frac{2}{3}\right)$ and $\left(0, \frac{2}{3}\right)$; concave up on $\Rightarrow x \Rightarrow \frac{2}{3}$

BOMAIN' c) concave down on $\left(-\infty,\frac{2}{3}\right)$; concave up on $\left(\frac{2}{3},\infty\right)$; pt of

inflection $\left(\frac{2}{3},0\right)$

Concave down (f'' > 0): $(-\frac{2}{3}, 0) \cup (\frac{2}{3}, \infty)$ Concave down $(f'' > 0) \cdot (-\infty, -\frac{2}{3}) \cup (0, \frac{2}{3})$

4.
$$f(x) = 2(x-3)^{\frac{3}{3}}$$
. $p(f) = 1R$. $f(x) = 2\frac{5}{3}(x-3)^{\frac{3}{3}}$
 $f'(x) = \frac{20}{9}(x-3)^{\frac{1}{3}} = \frac{20}{9}\frac{1}{31x3}$
Print Test

Print Test

Print Test

Print Test

https://assessment.casa.uh.edu/Assessment/Print...

T'(N=0: NONE: T'(X) DNE: X=3

- d) \bigcirc concave down on $(-\infty, \infty)$; no points of inflection
- e) concave up on $\left(-\frac{2}{3}, \frac{2}{3}\right)$; concave down on $\left(-\infty, -\frac{2}{3}\right)$ and

 $\left(\frac{2}{3},\infty\right)$; pts of inflection $\left(-\frac{2}{3},0\right)$ and $\left(\frac{2}{3},0\right)$.

Question 4 Concave up $\left(f(x)>0\right)$: (3,10)Describe the concavity of the graph of $f(x)=2(x-3)^{0/3}$ and find the =(3,0)

- a) concave up on $(-\infty,0)$; concave down on $(0,\infty)$; pt of inflection (0, 0.
- **b)** Concave down on $(-\infty, \infty)$; no points of inflection
- c) concave up on $(-\infty, \infty)$; no points of inflection
- d) concave down on $(-\infty, 3)$; concave up on $(3, \infty)$; pt of inflection (3,0).
- e) concave up on $(-\infty, -3)$; concave down on $(-3, \infty)$; pt of inflection

(-3.0). $f'(x) = 16x - 16\cos(2x)$, $f''(x) = [6+32\sin(2x)]$ Question 5 $f'(x) = 16x - 16\cos(2x)$, $f''(x) = [6+32\sin(2x)]$ Describe the concavity of the graph of $f(x) = 8x^2 - 8\sin(2x)$ on the f'(x) = 0 on t

a) Concave up on $\left(0, \frac{\pi}{12}\right)$; concave down on $\left(\frac{\pi}{12}, \pi\right)$. $\Rightarrow 2 \times = \frac{7\pi}{6}$ or $\frac{117}{6}$

4 F(X) DNE: NONE.

X= 1 0 0 1

- **b)** concave up on $\left(0, \frac{7\pi}{12}\right)$; concave down on $\left(\frac{7\pi}{12}, \pi\right)$.
- c) concave up on $\left(0, \frac{7\pi}{12}\right)$ and on $\left(\frac{11\pi}{12}, \pi\right)$; concave down on
- d) concave up on $\left(\frac{7\pi}{12}, \frac{11\pi}{12}\right)$; concave down on $\left(0, \frac{7\pi}{12}\right)$ and on
- e) concave down on $(0, \pi)$

Question 6 D(+)= 3 X = 03

Find c so that the graph of $f(x) = cx^2 + x^{-2}$ has a point of inflection at (4, f(4)). f'(4)=0 or f'(4) DNE and 4 is in DIF)

a)
$$c = -\frac{3}{128}$$
 $f'(x) = z(x-2x^{-3})$

b)
$$c = -\frac{3}{256}$$
 $f'(x) = 2C + 6x^4 = 2C + \frac{6}{x^4}$

c)
$$c = \frac{3}{128}$$
 $\Rightarrow f'(4) = 0 \Rightarrow 2C + \frac{6}{44} = 0$

d)
$$C = \frac{3}{256}$$
 $C = -\frac{5}{256}$

e)
$$c = 0$$

Ouestion 7

The graph of f'(x) is shown below. Give the interval(s) where the graph of

Number the of f" Concave up: (0,201501:52 PM)

Concave down: (1)

03/01/2015 01:52 PM

f(x) has a local minimum at the point $\left(\frac{1}{3}, -\frac{55}{9}\right)$.

c) f(x) has a local maximum at the point (1, -7). \times \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

point of f(x)=36x-24=12(3x-2)

concave down / concave up

d) $\mathcal{I}(x)$ is increasing on the interval $\left(\frac{2}{3},\infty\right)$. $\left(\infty,\frac{1}{3}\right)\cup\left(1,\infty\right)$. e) f(x) has a point of inflection at the point (1,-7). $\left(\frac{2}{3},\frac{1}{3},\frac{2}{3}\right)$ Question 9 p(f)=1R, $f(x)=651h(x) \cos(x)+3\cos(x)$ Which of the following is true about the graph of $f(x) = 2\sin^3(x) + 3\sin(x) + 1$ on the interval $[0, \pi]$? $f(x) \text{ has a local minimum at the point } \left(\frac{\pi}{2}, 6\right). \Rightarrow \text{COSXX} > 0.$ f(x) is increasing on the interval $\frac{\pi}{2}$, π f(x) is concave down on the interval $(0,\pi)$ (1) f(x) has points of inflection at the points $\left(\frac{\pi}{4}, 2\sqrt{2} + 1\right)$ and $\left(\frac{3\pi}{4}, 2\sqrt{2} + 1\right)$ $f(x) = |2\sin(x)\cos(x) - 6\sin(x) - 3\sin(x)$ f(x) is concave up on the interval $(0,\pi)$. (-sh(x)) - 6sh(x) - 3sh(x)Given the graph of f'(x) below, where is f(x) decreasing? = -(85in'(x) +95in(x) 03/01/2015 01:52 PM 03/01/2015 01:52 PM = 9sin (x) Esiria) -1] point of inflection $f(x)=0, \text{ or sin}(x)=0 \implies x=0, \\ f(x)=0, \text{ or sin}(x)=1 \implies \text{ sin}(x)=1 \text{ for } x=\frac{\pi}{4}$

b) $\bigcirc f(x)$ is decreasing on the interval $(\frac{1}{3},1)$.

https://assessment.casa.uh.edu/Assessment/Print...

Dereasing Intervals: (-6,3)U(7,0).

- a) $\bigcirc f(x)$ is decreasing on the interval (-6,7).
- **b)** $\bigcirc f(x)$ is decreasing on the intervals (-6,3) and $(7,\infty)$.
- d) f(x) is decreasing on the intervals $(-\infty, -6)$ and (3, 7).
- e) $\bigcirc f(x)$ is decreasing on the interval $(-\infty, 7)$.