Working Space

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder

Question 1 (4 marks)

Use De Morgan's Laws to prove that $\neg((P \land Q) \land (\neg P \land \neg Q))$ is a tautology.

You may use other principles of propositional logic too, if you wish. But your proof must make significant use of De Morgan's Laws.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Official use only

Question 2 (6 marks)

Suppose you have predicates algorithm and TuringMachine with the following meanings, where variable X represents an arbitrary function:

algorithm(X): there is an algorithm for X.

TuringMachine(X): there is a Turing machine for computing X.

(a) Write a universal statement in predicate logic with the meaning:

"Every function with an algorithm can be computed by a Turing machine."

(b) By what name is this assertion usually known?

Assignment Project Exam Help

(c) What reasons are there for believing that this assertion is true? $\frac{\text{NTLPS:}}{\text{POWCOGEr.com}}$

Add WeChat powcoder

Question 3 (3 marks)

Give a regular expression for the language of all strings over alphabet {a,b} whose first and last letters are different.

Official use only

Question 4 (4 marks)

Let L be the language of nonempty strings over $\{a,b\}$ that can start and finish with any letter but all other letters must be a. Draw a Finite Automaton to recognise L.

Assignment Project Exam Help (3 marks)

When converting a Nondeterministic Finite Automaton (NFA) to an equivalent Finite Automaton (FA), how do you determine which states in the NFA are combined to form the single Start state in hettps://powcoder.com

Add WeChat powcoder

Official use only

Question 6 (4 marks)

The following table describes a Finite Automaton with three states.

Find another FA that is equivalent to this one and has only two states.

Write your two-state FA in the second table below.

state	a	Ъ
Start 1	2	3
2	1	3
Final 3	1	2

YOUR ANSWER:

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Official use only

Question 7 (4 marks)

Explain why the class of regular languages over the alphabet $\{a,b\}$ is closed under interchange of a and b.

Definition:

If L is any language over the alphabet $\{a,b\}$, then the *interchange of a and b* forms a new language as follows: take every string in L, and replace every a by b and every b by a, simultaneously. So, for example, the string abb becomes baa.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Official use only

Question 8 (7 marks)

Consider the following Context-Free Grammar. Its non-terminals are S and L.

$$S \rightarrow L \tag{1}$$

$$L \rightarrow haL$$
 (2)

$$L \rightarrow aL$$
 (3)

$$L \rightarrow h$$
 (4)

Give

- (a) a derivation, and
- (b) a parse tree,

for the string ahahaah .

Label each step in the derivation on its right by the rule used. Use the spaces below for your answers.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

(b)

Official use only

Working Space

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder

Question 9 (3 marks)

Give a regular grammar for the language of positive integers represented in binary with leading bit 1. (The *leading* bit is the most significant bit, i.e., the leftmost bit.)

Question 10 (6 marks)

Given the following Context-Free Grammar:

$$S \rightarrow T$$
 (2)

https://powcoder.com
$$T \rightarrow b$$
(2)
(3)
(4)
(5)

$$T \rightarrow b \tag{5}$$

complete the following dar m Wgie a Figultwp Otwo to 16 th language generated by the grammar.

Official use only

Question 11 (10 marks)

This question uses the same grammar as the previous question.

Let L be the language generated by this grammar.

(a) Prove by induction that every string of the form $\mathtt{a}^m\mathtt{b}^n$, where $m\geq n-1$ and $n\geq 1$, belongs to L.

Assignment Project Exam Help https://powcoder.com

Add WeChat powcoder

(b) Prove or disprove: some string in L has a derivation, using this grammar, that is neither a leftmost derivation nor a rightmost derivation.

Official use only

Working Space

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder

Question 12 (7 marks)

Recall that the **Fibonacci numbers**, F_n , are defined recursively as follows:

$$F_1 = 1,$$

 $F_2 = 1,$
 $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.

The first few numbers in the sequence are

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

Note that the Fibonacci numbers are (after the first term) an *increasing* sequence of positive integers.

The language FIBONACCI is defined to be the set of all strings of the letter **a** whose length is a Fibonacci number. So,

$$FIBONACCI = \{ a^{F_n} : n \in \mathbb{N} \}.$$

Assignment Project Exam Help (a) Prove that the difference, $F_n - F_{n-1}$ between two consecutive Fiboracci numbers increases as n increases, i.e., $F_n - F_{n-1} > F_{n-1} - F_{n-2}$ for all $n \ge 5$.

https://powcoder.com

(b) Using (a), proved the three general NOOW COOK free.

Official use only

Question 13
Consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following Thring early needs to be a consider the following through the following through the considering through the consi

Trace the execution of this Turing machine, writing your answer in the spaces provided on the next page.

The lines show the configuration of the Turing machine at the start of each step. For each line, fill in the state and the contents of the tape. On the tape, you should indicate the currently-scanned character by underlining it, and you should show the first blank character as Δ (but there is no need to show subsequent blank characters).

To get you started, the first line has been filled in already.

At start of step	1:	State: _	1	Tape:	<u>a</u>	a	b	Δ		
At start of step	2:	State: _		Tape:						
At start of step	3:	State: _		Tape:						
At start of step	4:	State: _		Tape:						
At start of step	5:	State: _		Tape:						
At start of step	6:. 5 S12	State:	ent i	Projec	t E	xa	m .	He	lp	
At start of step	7:	State:		Tape:						
At start of step		State:	://p	OWCOC Tape:	ler.	CO				
The start of step		_	We	Chat p		VCC	\ \de	r		
At start of step			***	Tape:		VCC	Jac			
At start of step	10:	State:		Tape:						
At start of step	11:	State:		Tape:						
At start of step	12:	State:		Tape:						

Official	use	only
9)	

Question 14 (5 marks)

For each of the following decision problems, indicate whether or not it is decidable.

You may assume that, when Turing machines are encoded as strings, this is done using the Code-Word Language (CWL).

Decision Problem	your a	answer
	(tick one box	k in each row)
Input: a Turing machine M , and a positive integer k . Question: Does M accept some input string of at most k letters?	Decidable	Undecidable
Input: a Turing machine M , and a positive integer k . Question: Does the encoding of M have at least k letters?	Decidable	Undecidable
Input: a Turing machine M , and a positive integer k . Question: When M is given an encoding of itself as input, does the computation go for at least k steps? Assignment Project Examine M .	 Decidable	Undecidable
Input: a Turing machine M . Question: Does M eventually print an encoding of M on the tape and then halt? powcoder.com		Undecidable
Input: a Turing machine M , and a string w . Question: Does M reject w ? Add WeChat powco		Undecidable

Official use only

Working Space

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder

Question 15 (12 marks)

The Venn diagram on the right shows several classes of languages. For each language (a)–(l) in the list below, indicate which classes it belongs to, and which it doesn't belong to, by placing its corresponding letter in the correct region of the diagram.

If a language does not belong to any of these classes, then place its letter above the top of the diagram.

You may assume that, when Turing machines are encoded as strings, this is done using the Code-Word Language (CWL).

- (a) The set of all graphs, encoded as adjacency matrices.
- (b) The set of all 2-colourable graphs. (A graph is 2-colourable if each vertex can be coloured Black or White in such a way that adjacent vertices receive different colours.)
- (c) The set of all 3-colourable graphs. (Definition is like 2-colourable, except now the available colours are Red, White and Black.)
- (d) The set of all satisfiable Boolean expressions in Conjunctive Normal Form with at least two literals in each clause.
- (e) EQUAL, the segretary strings over alphabet {a,b} with an equal number pt a's and b's.
- (f) The set of all strings of parentheses such that the parentheses are correctly matched.
- (g) The set of all shifts in Sylven in the set of all shifts in th
- (h) The set of all Finite Automata that define the empty language.
- (i) The set of all Traine Machines with polynomial time completity
- (j) The set of all Turing machines which, when given themselves as input, eventually either reject or loop forever.
- (k) The set of all Turing machines whose language of accepted strings is regular.
- (l) The set of all Turing machines that have ever been written.

Official	use	only	
19			

Question 16 (7 marks)

Prove that the following problem is undecidable.

Input: a Turing machine M and a positive integer t.

Question: Is there a string x which, if given as input to M, causes it to eventually erase everything on the tape (i.e., overwrite every letter by Blank), after which it never writes any other symbol?

You may use the fact that the halting problem is undecidable.

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Question 17 (3 marks)

Explain how to obtain, from any language that is recursively enumerable but not decidable, another closely related language that is not recursively enumerable. (Proof is not required.)

Official use only

Question 18 (15 marks)

Consider the language 3-EDGE-COLOURABILITY, which consists of all graphs G such that we can assign colours to the edges of the graph so that (i) each edge is Red, White or Black, and (ii) any two edges that are incident at a common vertex must get different colours.

Let H be the following graph.

(a) Construct a Boolean expression E_H in Conjunctive Normal Form such that the satisfying truth assignments for Europe to colourings of the above graph H (i.e. they correspond to colourings of the edges of H, using at most three colours and which give different colours to incident edges).

To do this, use variable parts a_{W} and a_{W} and a_{W} are a_{W} and a_{W} and a_{W} are a_{W} are a_{W} and a_{W} are a_{W} and a_{W} are a_{W} and a_{W} are a_{W} are a_{W} and a_{W} are a_{W} are a_{W} and a_{W} are a_{W} an

(b) Give a polynomial-time reduction from 3-EDGE-COLOURABILITY to SATISFIABILITY.

Assignment Project Exam Help https://powcoder.com

Add WeChat powcoder

Official use only

Question 19 (8 marks)

Prove that the HAMILTONIAN CIRCUIT problem is NP-complete, by reduction from HAMILTONIAN PATH. You may assume that HAMILTONIAN PATH is NP-complete.

Definitions:

A **Hamiltonian path** in a graph G is a path that includes every vertex of G. All the vertices on the path must be distinct.

A **Hamiltonian circuit** in a graph G is a circuit that includes every vertex of G. All the vertices on the circuit must be distinct.

HAMILTONIAN PATH

Input: Graph G.

Question: Does G have a Hamiltonian path?

намито Assignment Project Exam Help

Input: Graph G.

Question: Does G have a Hamiltonian circuit?

https://powcoder.com

Add WeChat powcoder

Official use only

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

END OF EXAMINATION