Kimera Core 二次开发手册 Ver1.0

雷恩(leon)

Kimera 玩耍群: 99434356

2015/7/13

Kimera Core (以下简称 Core) 是一款对二次开发非常友好的键盘控制器,不仅因为其行列引脚总数达到了 32 线,其行列信号种类可以任意转换,与以往的 6 行 18 列的行列控制器最多可以控制 108 个按键不同, Core 最多可以控制 16*16 共 256 个按键,可以满足绝大多数使用情况。

Kimera Core 的未焊接套装和成品都在 http://gotohell.taobao.com/ 进行购买。

本手册主要分为以下两个方面来进行介绍:

- 1. Kimera Core 的硬件二次开发
- 2. Kimera Core 的配列编辑

1. Kimera Core 二次开发硬件设计

1.1. 简介

以 Core 为主要部件开发的适配 PCB 都可以称为 Kimera Wing(以下简称 Wing),Wing 可以是包含一些外围电路和更大间距引脚口的飞线适配板;也可以是成品 PCB 的轴板电路,他们的共同特点就是可以将 Core 板安装在其上面,起到 Core 和成品键盘的桥梁作用。

1.2. Core 的硬件结构

Core 硬件原理图和印制板封装如图 1.1、1.2 所示:

图 1.1 Kimera Core 硬件原理示意图

图 1.2 Kimera Core 硬件印制板图

Core 共有 52 个引脚, 黄色框内的所有标记均为引脚功能标识, 黄框外均为引脚序号。

1.2.1. 引脚描述

1.2.1.1. VCC

电源正极,接+5V, pin9。

1.2.1.2. GND

电源负极,接 0V, pin12。

1.2.1.3. 1-32

键盘行列引脚, 默认 1-6 为行, 9-32 为列, pin45-52, pin1-8, pin19-26, pin27-34。

1.2.1.4. D1-D4

4 个键盘指示灯引脚,可自由配置为 NumLock、CapsLock、ScrLock、BackLight, pin40-44。

1.2.1.5. D-

USB 数据端负极接口, pin10。

1.2.1.6. D+

USB 数据端正极接口, pin11。

1.2.1.7. SCL

I2C 总线时钟(Clock)信号线, pin13。

1.2.1.8. SDA

I2C 总线数据(Data)信号线, pin14。

1.2.1.9. SCK

ISP 接口主机时钟输出(Master Clock output), 从机时钟输入口(Slave Clock input), pin15。

1.2.1.10. MOSI

ISP 接口主机数据输出(Master Data output), 从机数据输入口(Slave Data input) , pin16。

1.2.1.11. MISO

ISP 接口主机数据输入(Master Data input), 从机数据输出口(Slave Data output), pin17。

1.2.1.12. RST

复位信号,pin18。

1.2.1.13. TX

通用串口(USART)数据发送(Transmit)端, pin36。

1.2.1.14. RX

通用串口(USART)数据接收(Receive)端, pin37。

1.2.1.15. /CTS

UART 允许发送(Clear to send)端口, pin35。

1.2.1.16. /RTS

UART 请求发送(Request to send)端口, pin38。

1.2.1.17. A1

主控排位选择口,若只用一片主控,将A1连接至GND;若有两片主控,第一片将A1连接至GND,第二片将A1连接至VCC,pin39。

1.2.1.18. INT

外部中断输入端口, pin40。

1.2.2. 推荐设计

为了更方便的二次开发,本手册提供了一种 Wing 的参考设计,主要设计包

括: 为 1mm 间距半孔转接为 2.54 间距的排针接口; 为了方便插拔测试,添加了 USB 接口; 将 D1-D3 作为键盘指示灯, D4 作为背光灯,分别添加了限流电阻和扩流器件;为了方便程序烧写,添加了 reset 按钮;为了方便观察电路板是否正常上电,添加了电源指示灯。电路图原理图如图 1.3 所示。

图 1.3 参考设计原理图

图 1.4 参考设计 PCB 示意图

我们已经在 Altium Designer 软件下做好了可供设计者和玩家使用的元件库: Kimera_Core_DesignLib, 加入 QQ 群: 99434356 进行下载。

2. Kimera Core 特种配列 eep 设计

2.1. 预备知识

2.1.1. KLE

即布局编辑器 http://www.keyboard-layout-editor.com/

Keyboard_layout_editor 网站可以提供常用的按键配列图形化编写,数据容易修改、保存和分享,对开发一款新键盘有很大的帮助。

2.1.2. TKG

即配列生成器 http://www.enjoyclick.org/tkg/

TMK Keymap Generator, 一款生成 eep 的在线工具。

2.1.3. TKG-toolkit

TKG-toolkit 是由 kai 叔开发的一款线下烧写软件,主要分为 setup 和 reflash 两部分组成, setup 来选择你要烧写的设备种类和相关属性, reflash 来 执行固件烧写和 eep 配列烧录。

2.2. eep 配列制作

下面我们以 poker 布局的 60%键盘为例, 讲解一下如何生成一个在 Core 下可用的 eep 文件。

2.2.1. 矩阵设置

我们需要先把所有按键按照行列序号的表达方式画出来。

我们已经把poker的配列画好并保存为下面这个链接,可以直接打开网站:

http://www.keyboard-layout-editor.com/#/layouts/dbaa6049e4ca89ba6d787ec50a2b5e38

可以看到图 2.1 所示的行列序号配列。

图 2.1 行列序号配列图

在图里我们可以看到,每个按键都由一组(x,y)数字来表示,也就是最终用的矩阵,其中, x 表示行号,在同一行的按键的 x 数值都是一致的,这些按键最终也会连到 Core 的同一个引脚上; y 表示列号,在同一列的按键的 y 数值也是一样的,同样会连到 Core 的指定引脚上。

在这里需要注意的是 Core 给出的的二极管方向是列到行的顺序,即列线-二极管正极-二极管负极-轴-行线 (轴的位置也可以在二极管前)。

打开 TKG,选择键盘种类为"第一方-Kimera",然后点击设定按钮,在图 2.1 中,我们将键盘设定为 5 行 14 列的键盘,所以选择 Core 上的 1~5 号孔来 分别连接行线的第 1 到第 5 条信号线;同样的,将列的 14 条线依次连接到 Core 上的 9~22 号孔(列线 1 对应 9 号孔,以此类推)。在 TKG中,把行列映射改成图 2.2 所示的样子。

图 2.2 行列映射设置

然后,把我们在 KLE 中修改好的 RAW 数据或者另存的配列地址贴入矩阵 映射框中,如图 2.3 所示。

图 2.3 矩阵映射设置

工具会自动检测错误, 若矩阵映射外框为绿色, 说明没有错误发生, 若出现红色请检查行列映射设置或矩阵映射设置。

现在,我们已经完成了矩阵设置工作,可以点击图 2.2 中的关闭按钮,但是不要关闭 TKG 的网页。

2.2.2. 按键定义

再次打开 KLE, 编辑我们需要的按键实际定义设置好, 例如:

Image: control of the control of th

http://www.keyboard-layout-editor.com/#/layouts/40f1a033af02870696dfd06e8d3fe28d

图 2.4 实际按键配列设置

我们把保存好的 KLE 链接贴到 TKG 中,如图 2.5 所示,在层模式中可以选择为"简单"。

图 2.5 TKG 中按键定义导入

FN 和 LED 设置都很简单,也可以导入之前配置好的方案,此处不再赘述。 2.2.3. eep 生成

点击下载.eep 文件,就得到了我们做好的 eep 文件,至此 eep 配列制作全部结束。

2.3. eep 配列烧录

在《Kimera Core 使用手册》中,我们介绍过对主控的 setup 和 reflash 操作。eep 配列烧录需要将 Core 进入 DFU 状态,即短路 RST 和 GND 一秒左右,在设备与打印机中,我们可以看到下图设备即可:

图 2.6 设备与打印机中 DFU 图标

我们将做好的 eep 文件拖拽到 reflash.bat 程序上然后松手,最后提示 Success!,则说明烧写工作完成,在设备与打印机中可以重新看到下图设备:

图 2.7 设备与打印机中 Kimera 图标

至此,kimera 的固件烧写完毕,可以使用 AquaKeyTest.exe 等键盘设置软件进行测试,例如短接 1 和 9 引脚,会显示 \sim 键接下;短接 1 和 11 引脚,会显示 \sim 1 键按下,依次类推。

版本信息

版本号	说明	变更者	变更日期
v1.0	初稿	雷恩	15/07/13