CS3243: Introduction to Artificial Intelligence

Fall 2020

Lecture 12: November 11

Lecturer: Prof. Kuldeep S. Meel Scribe: Ang Zheng Yong

12.1 Propositional Logic

In the last lecture, we have discussed the idea of a knowledge base, which can be seen as a database of everything that the agent knows. In this lecture, we will be representing the knowledge base as KB.

We would want every statement $\alpha \in KB$ to also be in FORM. In other words, we do not want to deal with sentences which are not in FORM, such as ()pq.

12.1.1 Truth assignments

A truth assignment τ is defined as $\tau: PROP \to \{0,1\}$. For each statement, there are $2^{|PROP|}$ possible truth assignments, where |PROP| represents the number of distinct propositions in the statement.

We say τ models ϕ , or $\tau \models \phi$, if:

- ϕ holds at τ , or
- ϕ is true at τ , or
- τ satisfies ϕ .

Hence, if we are given the statement $p \vee q$, we can construct the following truth table:

p	q	$p \lor q$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

and we see that $\tau \models \phi$ when τ has either of the following assignments: $(p \to 0, q \to 1)$, $(p \to 1, q \to 0)$, or $(p \to 1, q \to 1)$. We notice that $\tau \models \phi$ if and only if $\phi(\tau) = 1$.

Another example given in lecture is the statement $\phi = ((p \lor q) \land (\neg r))$. For this statement, if we were given the following two truth assignments:

$$au_1: egin{cases} p o 1 \\ q o 1 \\ r o 1 \end{cases} ext{ and } au_2: egin{cases} p o 1 \\ q o 0 \\ r o 0 \end{cases}$$

we notice that $\phi(\tau_1) = 0$ and $\phi(\tau_2) = 1$, so we conclude that $\tau_1 \models \phi$ and $\tau_2 \nvDash \phi$.

12-2 Lecture 12: November 11

12.1.2 Satisfiability

In this section, we began with the following definitions:

- 1. ϕ is SAT (satisfiable) if $\exists \tau$ such that $\tau \models \phi$.
- 2. ϕ is VALID if $\forall \tau$, $\tau \models \phi$.
- 3. ϕ is *UNSAT* (unsatisfiable) if $\forall \tau, \tau \nvDash \phi$.
 - In other words, there does not exist τ such that $\tau \models \phi$.

Notice that ϕ is VALID implies that ϕ is a tautology, and thus a statement that is VALID will also be SAT (i.e. $VALID \implies SAT$). An example of a statement that is VALID is $(p \lor \neg p)$, and an example of a statement that is SAT but not VALID is $(p \lor q)$. On the other hand, examples of statements that are UNSAT include $(p \land \neg p)$ and $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$.

We also define the following:

- $\phi \models \psi$ if and only if $\phi \rightarrow \psi$ is *VALID*.
- $\phi \equiv \psi$ if and only if $\phi \leftrightarrow \psi$ is *VALID*.
- $\phi \leftrightarrow \psi$ is VALID if $\forall \tau$, $\phi(\tau) = \psi(\tau)$.
 - This is equivalent to saying that ϕ and ψ are semantically equivalent.

12.1.3 Conjunctive Normal Form (CNF)

Suppose we have $C_1, C_2, C_3, C_4 \in FORM$. Then, we can see that

$$C_1 \wedge C_2 \wedge C_3 \wedge C_4 \Leftrightarrow (C_1 \wedge (C_2 \wedge (C_3 \wedge C_4))) \Leftrightarrow (((C_1 \wedge C_2) \wedge C_3) \wedge C_4)$$

In fact, the order of the bracketing would not matter, if all the operators in between the clauses C_i are \land (note that if the operators consist of \lor and \land , then it may no longer be the case). We say that such a statement has a **Conjunctive Normal Form** (CNF).

More formally, we say that a statement is a CNF if that statement has the form

$$C_1 \wedge C_2 \wedge \ldots \wedge C_n$$

and every **clause** C_i is of the form

$$C_i = (l_1 \vee l_2 \vee \ldots \vee l_k)$$

and each **literal** l_j is of the form

$$l_j \in \{p \mid p \in PROP\} \cup \{\neg p \mid p \in PROP\}$$

An example of a CNF consisting of the literals p, q, r, s is $(p \lor q \lor r) \land (q \lor \neg s \lor r) \land (p \lor \neg q \lor s)$.

Lecture 12: November 11 12-3

Theorem 12.1. Every formula ϕ can be converted into a CNF.

This theorem states that we can assume that $KB \in CNF$. This is essential for our subsequent discussion on resolution.

For example, if we were given the statement $\phi = ((p \land q) \lor (r \land s))$, we can convert it to its CNF:

$$\phi = ((p \land q) \lor (r \land s))$$

$$= (p \lor (r \land s)) \land (q \lor (r \land s))$$

$$= ((p \lor r) \land (p \lor s)) \land ((q \lor r) \land (q \lor s))$$

$$\equiv (p \lor r) \land (p \lor s) \land (q \lor r) \land (q \lor s)$$

$$\therefore \text{CNF}$$

12.1.4 Resolution

We are interested to know if $KB \to \alpha$ is VALID, and we say $KB \models \alpha$ (i.e. KB entails α) if and only if $KB \to \alpha$ is VALID. Observe that ϕ is VALID if and only if $\neg \phi$ is UNSAT. Thus, we can determine whether ϕ is VALID by checking whether $\neg \phi$ is UNSAT. How could we check if ϕ is SAT or UNSAT?

One way to do so is by checking the value $\phi(\tau)$ for all τ . However, recall that there are many possible truth assignments τ , on the scale of $2^{|PROP|}$.

Another way to check if ϕ is SAT or UNSAT is by checking whether there exists a contradiction in the statement. In other words, if we find a clause C_i in the CNF such that C_i and $\neg C_i$ coexist, then we can immediately conclude that the CNF is UNSAT.

• For example, if we are given a statement $\phi = (p_1) \wedge (\neg p_1) \wedge (p_2 \vee p_3 \vee p_4) \wedge \dots$ where $PROP = \{p_1, p_2, \dots, p_{100}\}$, we can immediately conclude that ϕ is UNSAT because $p_1 \wedge \neg p_1$ is UNSAT.

By generalizing the above idea, suppose now that we are given $\phi = (\alpha \lor p) \land (\neg p \lor \beta)$. We can construct the truth table for this statement

α	β	p	ϕ	$\alpha \vee \beta$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

and from the truth table, we can derive that $\phi \to (\alpha \vee \beta)$. This step is also known as a **resolution**. Another important observation is that if $C_1 \wedge C_2 \to C_3$ is VALID, then $(C_1 \wedge C_2) \leftrightarrow (C_1 \wedge C_2 \wedge C_3)$. By riding on this observation and the idea of resolutions, we can solve a CNF by repeatedly applying resolution, and if we encounter $(C_i \wedge \neg C_i)$ at any point in time, we can then conclude that the formula is UNSAT.

12-4 Lecture 12: November 11

For example, for the question posed in tutorial, we can solve it using the resolution approach in the following manner:

```
Given (p \lor q \lor r) \land (\neg p \lor q \lor s) \land (\neg s \lor r) \land (\neg q \lor r) \land (\neg q \lor \neg r) \land (q \lor \neg r), Assuming C_1, C_2, \ldots, C_6 are assigned to each of the above clauses, C_7(resolution over C_1 \land C_2): (q \lor r \lor s)
C_8(resolution over C_7 \land C_3): (q \lor r)
C_9(resolution over C_8 \land C_4): r
C_{10}(resolution over C_5 \land C_6): \neg r
C_{11}(resolution over C_9 \land C_{10}): UNSAT
```

Recall from last week that we have discussed the problem posed by Greek philosophers, and modelled it using propositions:

```
All Greeks are human : g \to h \equiv (\neg g \lor h)
All humans are mortal : h \to m \equiv (\neg h \lor m)
```

How could we determine if $(g \to m)$ is SAT? We could also use the resolution approach to determine whether $(\neg g \lor h) \land (\neg h \lor m)$ entails $g \to m \equiv (\neg g \lor m)$.

Previously, we have mentioned that $KB \models \alpha$ if and only if $KB \rightarrow \alpha$ is VALID. So,

$$(KB \to \alpha)$$
 is $VALID \leftrightarrow (\neg KB \lor \alpha)$ is $VALID \leftrightarrow (KB \land \neg \alpha)$ is $UNSAT$

and thus we can determine if $(g \to m)$ is SAT by checking if $(\neg g \lor h) \land (\neg h \lor m) \land g \land (\neg m)$ is UNSAT. Using the resolution approach,

```
Let C_1 = (\neg g \lor h), C_2 = (\neg h \lor m), C_3 = g, C_4 = \neg m, then C_5 (resolution over C_1 \land C_3): h
C_6 (resolution over C_2 \land C_4): \neg h
C_7 (resolution over C_5 \land C_6): UNSAT
```

Thus, we can conclude that $(g \to m)$ is VALID.

12.1.5 Resolution refutation

We define that resolution refutation of ϕ (given in CNF) to be a list of clauses C_1, C_2, \ldots, C_t such that either $C_i \in \phi$ or C_i is derived from C_a, C_b such that a, b < i, and $C_i = UNSAT$.

So, for our example from the tutorial, the resolution refutation would be $C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9, C_{10}, C_{11}$.

Theorem 12.2. ϕ is UNSAT if and only if there exists a resolution refutation of ϕ .

Thus, if we can find a resolution refutation for a statement ϕ , we would have proven that ϕ is *UNSAT*.

Remark: However, note that we still need to find a way of applying resolution between clauses, and this step is hard and may take an exponential amount of time. In fact, the brute force approach may have a better performance than the resolution approach in some circumstances. Given ϕ , checking if ϕ is SAT is NP-complete.