SEQUENCE LISTING

```
<110> BioteCon Diagnostics GmbH
```

<120> Nucleic acid molecules for the detection of bacteria and phylogenetic units of bacteria

<130> 216180

<140> US 10/88,966

<141> 2002-03-22

<150> PCT/EP00/08813

<151> 2000-09-08

<150> DE 19945916.9

<151> 1999-09-24

<160> 530

<170> PatentIn Ver. 2.1

<210> 1

<211> 3118

<212> DNA

<213> Escherichia coli

<400> 1

ggttaagcga ctaagcgtac acggtggatg ccctggcagt cagaggcgat gaaggacgtg 60 ctaatctgcg ataagcgtcg gtaaggtgat atgaaccgtt ataaccggcg atttccgaat 120 ggggaaaccc agtgtgtttc gacacactat cattaactga atccataggt taatgaggcg 180 aaccggggga actgaaacat ctaagtaccc cgaggaaaag aaatcaaccg agattccccc 240 agtagcggcg agcgaacggg gagcagccca gagcctgaat cagtgtgtgt gttagtggaa 300 gcgtctggaa aggcgtgcga tacagggtga cagccccgta cacaaaaatg cacatgctgt 360 gagetegatg agtagggegg gacacgtggt atcetgtetg aatatggggg gaccatecte 420 caaggctaaa tactcctgac tgaccgatag tgaaccagta ccgtgaggga aaggcgaaaa 480 gaaccccggc gaggggagtg aaaaagaacc tgaaaccgtg tacgtacaag cagtgggagc 540 acgettagge gtgtgactge gtacettttg tataatgggt caqegactta tattetgtaq 600 caaggttaac cgaatagggg agccgaaggg aaaccgagtc ttaactgggc gttaagttgc 660 aqqqtataqa cccqaaaccc qgtgatctag ccatgggcag gttgaaggtt gggtaacact 720 aactggagga ccgaaccgac taatgttgaa aaattagcgg atgacttgtg gctgggggtg 780 aaaggccaat caaaccggga gatagctggt tctccccgaa agctatttag gtagcgcctc 840 gtgaattcat ctccgggggt agagcactgt ttcggcaagg gggtcatccc gacttaccaa 900 cccgatgcaa actgcgaata ccggagaatg ttatcacggg agacacacgg cgggtgctaa 960 cgtccgtcgt gaagagggaa acaacccaga ccgccagcta aggtcccaaa gtcatggtta 1020 aqtqqqaaac qatqtqqqaa qqcccagaca gccaggatgt tggcttagaa gcagccatca 1080 tttaaaqaaa qcgtaatagc tcactggtcg agtcggcctg cgcggaagat gtaacggggc 1140 taaaccatgc accgaagctg cggcagcgac actatgtgtt gttgggtagg ggagcgttct 1200 gtaagcctgt gaaggtgtgc tgtgaggcat gctggaggta tcagaagtgc gaatgctgac 1260 ataagtaacg ataaagcggg tgaaaagccc gctcgccgga agaccaaggg ttcctgtcca 1320 acgttaatcg gggcagggtg agtcgacccc taaggcgagg ccgaaaggcg tagtcgatgg 1380 qaaacaqqtt aatattcctq tacttggtgt tactgcgaag gggggacgga gaaggctatg 1440 ttqqccqqqc qacqqttqtc ccqqtttaaq cqtqtaqqct qqttttccaq qcaaatccqq 1500 aaaatcaagg ctgaggcgtg atgacgaggc actacggtgc tgaagcaaca aatgccctgc 1560 ttccaggaaa agcctctaag catcaggtaa catcaaatcg taccccaaac cgacacaggt 1620 ggtcaggtag agaataccaa ggcgcttgag agaactcggg tgaaggaact aggcaaaatg 1680 gtgccgtaac ttcgggagaa ggcacgctga tatgtaggtg aagcgacttg ctcgtggagc 1740 tgaaatcagt cgaagatacc agctggctgc aactgtttat taaaaacaca gcactgtgca 1800 aacacgaaag tggacgtata cggtgtgacg cctgcccggt gccggaaggt taattgatgg 1860 ggttagccgc aaggcgaagc tcttgatcga agccccggta aacggcggcc gtaactataa 1920 cggtcctaag gtagcgaaat tccttgtcgg gtaagttccg acctgcacga atggcgtaat 1980

```
gatggccagg ctgtctccac ccgagactca gtgaaattga actcgctgtg aagatgcagt 2040
qtacccqcqq caaqacqqaa agaccccqtg aacctttact atagcttgac actgaacatt 2100
gagccttgat gtgtaggata ggtgggaggc tttgaagtgt ggacgccagt ctgcatggag 2160
ccgaccttga aataccaccc tttaatgttt gatgttctaa cgttgacccg taatccgggt 2220
tgcggacagt gtctggtggg tagtttgact ggggcggtct cctcctaaag agtaacggag 2280
gagcacgaag gttggctaat cctggtcgga catcaggagg ttagtgcaat ggcataagcc 2340
agettgactg egagegtgae ggegegagea ggtgegaaag eaggteatag tgateeggtg 2400
gttctgaatg gaagggccat cgctcaacgg ataaaaggta ctccggggat aacaggctga 2460
taccgcccaa gagttcatat cgacggcggt gtttggcacc tcgatgtcgg ctcatcacat 2520
cctggggctg aagtaggtcc caagggtatg gctgttcgcc atttaaagtg gtacgcgagc 2580
tqqqtttaga acqtcqtqaq acaqttcqqt ccctatctqc cqtqqqcct qgaqaactqa 2640
ggggggctgc tcctagtacg agaggaccgg agtggacgca tcactggtgt tcgggttgtc 2700
atgccaatgg cactgcccgg tagctaaatg cggaagagat aagtgctgaa agcatctaag 2760
cacgaaactt gccccgagat gagttctccc tgactccttg agagtcctga aggaacgttg 2820
aagacgacga cgttgatagg ccgggtgtgt aagcgcagcg atgcgttgag ctaaccggta 2880
ctaatgaacc gtgaggctta accttacaac gccgaaggtg ttttggcgga ttgagagaag 2940
attttcagcc tgatacagat taaatcagaa cgcagaagcg gtctgataaa acagaatttg 3000
cctggcggca gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc 3060
cgtagcgccg atggtagtgt ggggtctcct catgcgagag tagggaactg ccaggcat 3118
<210> 2
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from genera of enterobacteria
<400> 2
ttcgggttgt catgccaatg
                                                                  20
<210> 3
<211> 26
<212> DNA
<213> Artificial sequence
<223> Description of the artificial sequence: derived
      from genera of enterobacteria
                                                                  26
ctgaaagcat ctaagcgcga aacttg
<210> 4
<211> 26
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from genera of enterobacteria
<400> 4
                                                                  26
ctgaaagcat ctaagcggga aacttg
```

<210> 5

<211> <212> <213>		
<220> <223>	Description of the artificial sequence: derived from genera of enterobacteria	
<400> ctgaaa	5 agcat ctaagcacga aacttg	26
<210><211><211><212><213>	26	
<220> <223>	Description of the artificial sequence: derived from genera of enterobacteria	
<400> ctgaa	6 agcat ctaagcagga aacttg	26
<210> <211> <212> <213>	25	
<220> <223>	Description of the artificial sequence: derived from genera of enterobacteria	
<400> gggag	7 gactc atctcgaggc aagtt	25
<210><211><211><212><213>	25	
<220> <223>	Description of the artificial sequence: derived from genera of enterobacteria	
<400>	8 gactc atctcggggc aagtt	25
<210><211><211><212><213>	25	
<220> <223>	Description of the artificial sequence: derived from genera of enterobacteria	
<400>	9	

gggaggactc atctcaaggc aagtt	25
<210> 10 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 10 gggaggactc atctcagggc aagtt	25
<210> 11 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 11 gggaggactc atcttgaggc aagtt	25
<210> 12 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 12 gggaggactc atcttggggc aagtt	25
<210> 13 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 13 gggaggactc atcttaaggc aagtt	25
<210> 14 <211> 25 <212> DNA <213> Artificial sequence	
<220>	

216180.ST25	
<223> Description of the artificial sequence: derived from genera of enterobacteria	25
<400> 14 gggaggactc atcttagggc aagtt	23
<210> 15 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	25
<400> 15 gggagaactc atctcgaggc aagtt	23
<210> 16 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	25
<400> 16 gggagaactc atctcggggc aagtt	-
<210> 17 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 17 gggagaactc atctcaaggc aagtt	25
<210> 18 <211> 25 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	0.5
<400> 18 gggagaactc atctcagggc aagtt	25
<210> 19 <211> 25	

<212> DNA <213> Artificial sequence		
<220> <223> Description of the artification from genera of enterobacted		
<400> 19 gggagaactc atcttgaggc aagtt	2	:5
<210> 20 <211> 25 <212> DNA <213> Artificial sequence		
<220> <223> Description of the artific from genera of enterobacte.		
<400> 20 gggagaactc atcttggggc aagtt	2	25
<210> 21 <211> 25 <212> DNA <213> Artificial sequence		
<220> <223> Description of the artification genera of enterobacte		
<400> 21 gggagaactc atcttaaggc aagtt	2	:5
<210> 22 <211> 25 <212> DNA <213> Artificial sequence		
<220> <223> Description of the artific from genera of enterobacte		
<400> 22 gggagaactc atcttagggc aagtt	2	:5
<210> 23 <211> 18 <212> DNA <213> Artificial sequence		
<220> <223> Description of the artification genera of enterobacters		
<400> 23 ccgccaggca aattcggt	1	.8

```
<210> 24
<211> 17
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from genera of enterobacteria
<400> 24
                                                                   17
tcaggtggga ccaccgc
<210> 25
<211> 18
<212> DNA
<213> Artificial sequence
<223> Description of the artificial sequence: derived
      from genera of enterobacteria
<400> 25
                                                                   18
ccgccaggca aattctgt
<210> 26
<211> 54
<212> DNA
<213> Artificial sequence
<223> Description of the artificial sequence: derived
      from species of the genus enterobacteria
ccggagtgga cgcaccactg gtgttcgggt tgtcatgcca atggcattgc ccgg
                                                                   54
<210> 27
<211> 54
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Acinetobacter
<400> 27
ccagagtgga cgaacctctg gtgtaccggt tgtgacgcca gtcgcatcgc cggg
                                                                   54
<210> 28
<211> 54
<212> DNA
<213> Artificial sequence
<223> Description of the artificial sequence:derived
```

von from species of the genus Aeromonas

<400> 28 ccggagtgaa cgaacctctg gtgttcgggt tgtcacgcca gtggcactgc ccgg	54
<210> 29 <211> 54 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence:derived from species of the genus Haemophilus	
<400> 29 ccggagtgga cgcatcactg gtgttccggt tgtgtcgcca gacgcattgc cggg	54
<210> 30 <211> 54 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence:derived from species of the genus Moraxella	
<400> 30 ccggagtgga cgcatcactg gtgttccggt tgtgtcgcca gacgcattgc cggg	54
<210> 31 <211> 54 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence:derived from species of the genus Pasteurella	
<400> 31 ccgggatgga cacaccgctg gtgtaccagt tgttctgcca agagcatcgc tggg	54
<210> 32 <211> 54 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Stenotrophomonas	
<400> 32 ccggagtgga cgaacctctg gtgtaccggt tgtcacgcca gtggcattgc cggg	54
<210> 33 <211> 54	

<212> <213>	DNA Artificial sequence	
<220> <223>	Description of the artificial sequence: derived from species of the genus Vibrio	
<400> ccggaq	33 gtgga cgaacctctg gtgttcgggt tgtgtcgcca gacgcattgc ccgg	54
<210> <211> <212> <213>	41	
<220> <223>	Description of the artificial sequence: derived from genera of enterobacteria	
<400> gagata	34 aaccg ctgaaagcat ctaagcggga aacttgcctc g	41
<210><211><211><212><213>	41	
<220> <223>	Description of the artificial sequence: derived from species of the genus Acinetobacter	
<400> gggata	35 aaccg ctgaaagcat ctaagcggga agcctacctc a	41
<210><211><211><212><213>	41	
<220> <223>	Description of the artificial sequence:derived from species of the genus Aeromonas	
<400> tcgata	36 accg ctgaaagcat ctaagcggga agcgagccct g	41
<210> <211> <212> <213>	41	
<220> <223>	Description of the artificial sequence:derived from species of the genus Haemophilus	
<400>	37	13

<210> <211> <212> <213>	42	
<220> <223>	Description of the artificial sequence:derived from species of the genus Moraxella	
<400> gggata		42
<210> <211> <212> <213>	42	
<220> <223>	Description of the artificial sequence:derived from species of the genus Pasteurella	
<400> gggata		42
<210> <211> <212> <213>	42	
<220> <223>	Description of the artificial sequence: derived from species of the genus Stenotrophomonas	
<400> gagata	40 aaccg ctgaaagcat ctaagcggga aacttgcctt ga	42
<210><211><212><213>	42	
<220> <223>	Description of the artificial sequence: derived from species of the genus Vibrio	
<400> tcgata	41 aaccg ctgaaagcat ctaagcggga agcgagcctt ga	42
<210> <211> <212> <213>	24	
<220>		

	Description of the artificial sequence: derived from genera of enterobacteria	
<400> 4	42 gtct tccctgggcc ttta	24
<210> 4 <211> 2 <212> I <213> A	24	
	Description of the artificial sequence: derived from species of the genus Acinetobacter	
<400> 4	43 gatt teeetaggae ttta	24
<210> 4 <211> 2 <212> I <213> F	24	
	Description of the artificial sequence:derived from species of the genus Aeromonas	
<400> 4		24
<210> 4 <211> 2 <212> E <213> F	21	
	Description of the artificial sequence:derived from species of the genus Haemophilus	
<400> 4		21
<210> 4 <211> 1 <212> E <213> P	13	
	Description of the artificial sequence:derived from species of the genus Moraxella	
<400> 4 agataag		13
<210> 4 <211> 2		

<212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence:derived from species of the genus Pasteurella	
<400> 47 agatgagatt tcccattacg c	21
<210> 48 <211> 23 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Stenotrophomonas	
<400> 48 agatgagatt tcccggagcc ttg	23
<210> 49 <211> 24 <212> DNA <213> Vibrio alginolyticus	
<400> 49 agatgagttc tccctgatac ttta	24
<210> 50 <211> 13 <212> DNA <213> Vibrio fisheri	
<400> 50 agattagatt tcc	13
<210> 51 <211> 24 <212> DNA <213> Vibrio harbeyi	
<400> 51 agatgagtct tccctgggcc ttta	24
<210> 52 <211> 24 <212> DNA <213> Vibrio parahaemolyticus	
<400> 52 agatgagtct tccctgatac ttta	24

<210> 53 <211> 24 <212> DNA	
<213> Vibrio proteolyticus	
<400> 53 agatgagtct tccctggcac ttta	24
<210> 54 <211> 32 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 54 agggtcctga agggacgttg aagactacga cg	32
<210> 55 <211> 32 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Acinetobacter	
<400> 55 tgtcctctaa agagccgttc gagactagga cg	32
<210> 56 <211> 32 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence:derived from species of the genus Aeromonas	
<400> 56 tgtcctctaa agagccgttc gagactagga cg	32
<210> 57 <211> 31 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence:derived from species of the genus Haemophilus	
<400> 57 aagtcagtaa gggttgttgt agactacgac g	31

<210> <211> <212> <213>	26	
<220> <223>	Description of the artificial sequence:derived from species of the genus Moraxella	
<400> ctaaaq	58 gagee gttgtagaeg aegaeg	26
<210> <211> <212> <213>	31	
<220> <223>	Description of the artificial sequence:derived from species of the genus Pasteurella	
<400> aagtaa	59 agtaa gatccctcaa agacgatgag g	31
<210> <211> <212> <213>	32	
<220> <223>	Description of the artificial sequence: derived from species of the genus Stenotrophomonas	
<400> agctc	60 cttga agggtcgttc gagaccagga cg	32
<210> <211> <212> <213>	32	
<400> agtat	61 cctaa agggttgtcg tagmtacgac gt	32
<210><211><211><212><213>	27	
<400> ctaaa	62 gagcc gttcaagact aggacgt	27
<210> <211> <212>	33	

<213> Vibrio harbeyi	
<400> 63	22
agtatcctaa agggttgttc gagactagaa cgt	33
<210> 64	
<211> 33	
<212> DNA	
<213> Vibrio parahaemolyticus	
<400> 64	2.2
agtatoctaa agggttgtto gagactagaa ogt	33
<210> 65 <211> 33	
<212> DNA	
<213> Vibrio proteolyticus	
<400> 65	
agtgtcctga agggttgttc gagactagaa cgt	33
<210> 66	
<211> 40	
<212> DNA <213> Artificial sequence	
\213\times Altificial Sequence	
<220>	
<223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 66	40
agcgatgcgt tgagctaacc agtactaatg acccgtgagg	40
<210> 67	
<211> 40	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Description of the artificial sequence: derived	
from species of the genus Acinetobacter	
<400> 67	
agtgatatgt gaagctgacc aatactaatt gctcgtgagg	40
<210> 68	
<211> 40 <212> DNA	
<213> Artificial sequence	
<220>	
<pre><220> <223> Description of the artificial sequence: derived</pre>	
from species of the genus Aeromonas	
<400> 68	
ggcgacgtgt tgagctaacc catactaatt acccgtgagg	40

<210><211><211><212><213>	40	
	Description of the artificial sequence:derived from species of the genus Haemophilus	
<400> tgtgag		40
<210> <211> <212> <213>	40	
	Description of the artificial sequence: derived from species of the genus Moraxella	
<400> agtgat		40
<210> <211> <212> <213>	47	
<400> tggcga	71 acacg tgcagctgac gaatactaat cgatcgagga cttaacc	47
<210> <211> <212> <213>	40	
<220> <223>	Description of the artificial sequence: derived from species of the genus Stenotrophomonas	
<400> agtaat	72 egcat taagetaace agtactaatt geeegtaegg	40
<210> <211> <212> <213>	40	
<400> tgtgag	73 ggcgt tgagctaacc tgtactaatt gcccgtgagg	40
<210>	74	

<211> 40 <212> DNA <213> Vibrio fisheri	
<400> 74 agtgatgcgt gtagctaacc tgtactaatt gctcgtttgg	40
<210> 75 <211> 40 <212> DNA <213> Vibrio harveyi	
<400> 75 tgtgaggcgt tgagctaacc tgtactaatt gcccgtgagg	40
<210> 76 <211> 40 <212> DNA <213> Vibrio paramaemolyticus	
<400> 76 tgtgaggcat tgagctaact gatactaatt gcccgtgagg	40
<210> 77 <211> 40 <212> DNA <213> Vibrio proteolyticus	
<400> 77 tgtgaggcgt tgagctaacc tgtactaatt gcccgtgagg	40
<210> 78 <211> 30 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 78 acccgtgagg cttaacctta caacaccgaa	30
<210> 79 <211> 30 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Acinetobacter	
<400> 79 gctcgtgagg cttgactata caacacccaa	30

<210> 80 <211> 30 <212> DN <213> An	0	
	escription of the artificial sequence: derivéd rom species of the genus Aeromonas	
<400> 80 acccgtga		30
<210> 83 <211> 30 <212> DN <213> An	0	
	escription of the artificial sequence:derived rom species of the genus Haemophilus	
<400> 83 gcccgaga		30
<210> 82 <211> 30 <212> Di <213> A	0	
	escription of the artificial sequence:derived rom species of the genus Moraxella	
<400> 82 gctcgtti		30
<210> 83 <211> 33 <212> DN <213> Pa	3	
<400> 83 gctgacga		33
<210> 84 <211> 30 <212> DN <213> An	0	
	escription of the artificial sequence: derived rom species of the genus Stenotrophomonas	
<400> 84		30

<210> <211> <212> <213>	27	
<220> <223>	Description of the artificial sequence: derived from genera of enterobacteria	
<400>	85	
caacao	cgaa ggtgttttgg aggaatc	27
<210>		
<211>		
<212>	Acinetobacter calcoaceticus	
(210)		
<400>		^7
caacac	ccaa gcagttgtat ataaagc	27
<210>	87	
<211>		
<212>		
\ 2132	Artificial sequence	
<220>		
<223>	Description of the artificial sequence: derived from species of the genus Aeromonas	
<400>	87	
caacao	cccaa gaagtgttct aaggctt	27
<210>	88	
<211>	27	
<212>		
<213>	Haemophilus influenzae	
<400>	88	
caacgo	ctcaa gtgtttttgg gagctaa	27
<210>	89	
<211>		
<212>		
<213>	Moraxella catarrhalis	
<400>	89	
	89 cccaa gtggtttacc actgact	27
		27
caaca	cccaa gtggtttacc actgact	27
	90	27
<210>	90 27	27
<210><211><212>	90 27	27
<210><211><212><213>	90 27 DNA	27
<210><211><212><213><223>	90 27 DNA	27

Page 19

Stenotrophomonas

<400> 90 taaccttggt agtccaaggt cgagtac	27
<210> 91 <211> 27 <212> DNA <213> Vibrio alginolyticus	
<400> 91 caacacccaa ggggttttga tggactc	27
<210> 92 <211> 27 <212> DNA <213> Vibrio fisheri	
<400> 92 caacacccaa gtggtttgta tcaagca	27
<210> 93 <211> 27 <212> DNA <213> Vibrio harveyi	
<400> 93 caacacccaa ggggttttga tggactc	27
<210> 94 <211> 27 <212> DNA <213> Vibrio paramaemolyticus	
<400> 94 caacacccaa ggggttttga tggactc	27
<210> 95 <211> 36 <212> DNA <213> Vibrio proteolyticus	
<400> 95 caacacccaa ggggttttga tggactcaat gaaaga	36
<210> 96 <211> 118 <212> DNA <213> Budvicia aquatica	
<400> 96 caacatccga ggtgttttaa ggaaagttga agagacgaaa gaataagtag aattccagct	

Page 20

<210> 97 <211> 111 <212> DNA <213> Butt	iauxella agı	cestis				
	ggtgttttgg atggttgtgt					60 111
<210> 98 <211> 193 <212> DNA <213> Ente	robacter agl	omerans				
gaacgaaaga	gatgttttgg ttttacgctg tgactttgcg ttt	aggcaaggcg	gcaaatgaag	taaaggaagg	agcatacatg	120
<210> 99 <211> 123 <212> DNA <213> Erwi	nia carotovo	ora				
	ggtgttttga atggttatgc					
<210> 100 <211> 101 <212> DNA <213> Erwi	nia chrysant	chemi				
	ggtgttttag acggagtagc				cgagattggt	60 101
<210> 101 <211> 92 <212> DNA <213> Esch	erichia coli					
	gctgttttgg gcggtctgat			gcctgataca	gattaaatca	60 92
<210> 102 <211> 104 <212> DNA <213> Esch	erichia herr	nannii				
	gtggttttgg cggcgcgcga				gaccggatag	60 104

```
<210> 103
<211> 92
<212> DNA
<213> Escherichia vulneris
<400> 103
caacqccqaa qatqttttgg cggatttgaa agacgatttt.cagctgatac agattaagtc 60
tgccgcctga cggcgtcaga cagacagaat tt
<210> 104
<211> 119
<212> DNA
<213> Hafnia alvei
<400> 104
caacaccgaa ggtgttttaa gacgcagaga cgcgaaaaca caaagagtaa gcttgttgaa 60
cagattggtt tgtatggcta gctgtagaaa tacagaaagc ggtacaaata acagaatat 119
<210> 105
<211> 195
<212> DNA
<213> Klebsiella oxytoca
<400> 105
cgccgaagat gttttggcga tttgagaaga caacaatttc agcattgatt acagattttc 60
gaagtatgtg actgacttta cgaatgcagc caacgcagca tcggtgtaaa agattcgttt 180
ctgacaacag aattt
<210> 106
<211> 90
<212> DNA
<213> Kluyvera cryoescens
<400> 106
cgccaaagat gttttggtga aaagagacat caataatcag cttgatacag ataaattaac 60
tggccgaaag gcgggttaat aacagaattt
<210> 107
<211> 105
<212> DNA
<213> Morganella morganii
<400> 107
caccgaaggt gttttgagtt gagagacgat taaagagatt tttcagcaca gtgaagaggc 60
agaagtcatt cactgtgaaa gcttattttg gattgaaatg aattt
<210> 108
<211> 192
<212> DNA
<213> Pantoea dispersa
<220>
<221> misc feature
```

```
<222> (61)..(61)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
<220>
<221> misc feature
<222> (29)..(29)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
<220>
<221> misc_feature
<222> (179)..(179)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 108
cgccagaggc gttttggtct gagagaccna aagaattttc agcattgttc accggattac 60
ntccagtgga ttttgtgctg tgacaaggcg gcacgcgaga cgacgggaag gagcatacac 120
gagtatgtga ctgagcggcg cgagcggggc aacgcagtca gagcgcaaaa gacgcggtnt 180
aaaacaaaat tt
<210> 109
<211> 190
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Pantoea
<400> 109
cgccgaagat gttttggcgg aatgagaaga ttttcagcat tgattacaga ttttcgggaa 60
cqaaaqattt tacqctqaqq caaqqcqqca aatqaaqtaa aggaaggagc atacatgagt 120
atgtgactga ctttkcggat gcagccaacg cagccacagt gaaaaagatt cgtttctggc 180
aacagaattt
<210> 110
<211> 111
<212> DNA
<213> Proteus mirabilis
<220>
<221> misc feature
<222> (65)..(65)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 110
caacaccgaa agtgttttgt cagagagacg aaacgatgaa gtcagcttgt tcaanattga 60
attactggcg acttaccgaa aggaaagaag cgagtgatta aaaccgaatt t
<210> 111
<211> 139
<212> DNA
<213> Proteus rettgeri
```

<400> 111						
caacaccgaa	ggtgttttag acgcagcttg acagaattt					
<210> 112 <211> 137 <212> DNA <213> Prov	idencia stua	artii				
<400> 112 caacaccgaa tggtgcgaaa gggaacgaac	ggtgttttag aaatcagctt cgaattt	agagacgaag gttcaagatt	agacgaattg gcagttctgg	ttgaagcgca tttgcggtgt	cgagatagag agacgcgaac	60 120 137
<210> 113 <211> 135 <212> DNA <213> Rahne	ella aquatil	lis				
	ggtgtttttg ttggttcgta aattt					
<210> 114 <211> 100 <212> DNA <213> Serra	atia ficaria	a				
	ggtgttttag cgagtaacgg			gaagttetta	gattggttct	60 100
<210> 115 <211> 106 <212> DNA <213> Serra	atia fontico	ola				
	ggtgttttga acacgagagt				cgagattggt	60 106
<210> 116 <211> 97 <212> DNA <213> Serra	atia marceso	cens				
	ggtgttttta tgaagcggtt			ccgagattgg	ttctgatggc	60 97
<210> 117 <211> 99						

```
<212> DNA
<213> Serratia plymuthica
<400> 117
caacaccgaa ggtgttttag agagattaca gtagattttc agcgacgttc cgagattggt 60
ttcaatggcc caaaaggcgg ttggaatgaa acagaattt
<210> 118
<211> 100
<212> DNA
<213> Serratia proteamaculans
<220>
<221> misc feature
<222> (95)..(95)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 118
caacaccaaa ggtgttttag agagattgta gagattttca gcgagttccg agattggttt 60
                                                                   100
caatggctgc gagagtagcg gttggaatga aacanaattt
<210> 119
<211> 101
<212> DNA
<213> Serratia rubidea
<400> 119
caacaccgaa ggtgttttag agagattggt ttgaattttc agtgaagttc cgagattggt 60
tctgatggct acggagtagc ggtcgggatg aaacagaatt t
<210> 120
<211> 116
<212> DNA
<213> Yersinia enterolytica
<400> 120
caacaccaaa ggtgttttgt atttgagaga tagatattga ttttcagcga atgttccgag 60
attgggctgg ctggctgtgt gaaagattgc atagcgggtt agtttagaca gaattt
<210> 121
<211> 104
<212> DNA
<213> Yersinia pseudotuberculosis
<400> 121
caacaccqaa gtcttgaatt qaqaqagatt ttcaqcqtcg ttccqaqatt ggattgactg 60
gcgtcacaag cgctgtttgt gtgcgggtta attaaaacag attt
                                                                   1.04
<210> 122
<211> 179
<212> DNA
<213> Acinetobacter calcoaceticus
<400> 122
caacacccaa gcagttgtat ataaagcatc aatcgattca ttaatatgca aagcaacttg 60
```

```
atttaqttat acqcttaqct aaaatgaaca aaatatagta agactcaatc agcccatctg 120
taaagatttg gaaaacgcat cggcaaccaa taagaccaat gcaagtatcc ataccagtt 179
<210> 123
<211> 118
<212> DNA
<213> Aeromonas enteropelogenes
<220>
<221> misc feature
<222> (20)..(20)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 123
caacacccaa gaagtgtttn tggtgcttgt agcgaatgaa cgaactacgc attcagtgat 60
aacgacaagc cacgagcaac atcgttattc acgtcagctt tccaagattg aagatttt
<210> 124
<211> 81
<212> DNA
<213> Aeromonas hydrophila
<400> 124
caacacccaa gaagtgttct aaggcttgta gcagataccg agaacgaaca acaaaatcag 60
ctttctcaga ttgaagaatt t
<210> 125
<211> 96
<212> DNA
<213> Cedecea davisae
<400> 125
caacaccaaa ggtgttttgc gagacgcaat tttaattttc agcgaagttc aggattagac 60
tgatggtcac aaagtgacgg tcagtaaaca gaattt
<210> 126
<211> 217
<212> DNA
<213> Haemophilus influenzae
<400> 126
caacgctcaa gtgtttttgg gagctaagtg aagtaagaga tgaaaagcga agcaaataaa 60
agcagagcga aagagaagta aaagactaaa caaagaaaag taaatataga agacttaata 120
gaaagaaaat cggattcagc ttgtgaccaa taagaacgag tgaaaggtag aggaaagact 180
                                                                   217
gagtaacgag agataaaaga gacgagagat aaaagag
<210> 127
<211> 90
<212> DNA
<213> Moraxella catarrhalis
<400> 127
caacacccaa gtggtttacc actgactgtg ttgattggta atatataaga tgaaccttaa 60
tcttgatttg gtaataaaca gactcataca
```

```
<210> 128
<211> 134
<212> DNA
<213> Pasteurella pneumotropica
<400> 128
cqaqqactta accaaatttg tttatcgtaa caatgtcgtt tatccagttt tgaaagaata 60
aatttttatt aaataactct tgcattattc tacagagttg ttataataaa acatgtcctt 120
caaaagtatt caag
<210> 129
<211> 141
<212> DNA
<213> Stenotrophomonas multophila
<220>
<221> misc_feature
<222>
      (55)..(55)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<220>
<221> misc feature
<222> (112)..(112)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 129
taaccttggt agtccaaggt cgagtacaac tgctcgatac aaaagctaca acccnactta 60
cttcttccag attcatggcc acgctgaaca aagcgtaggg tgggcggctg tnccgcccac 120
gcgtaactca agcgtagcca g
                                                                   141
<210> 130
<211> 100
<212> DNA
<213> Vibrio alginolyticus
<400> 130
caacacccaa qqqqttttqa tqqactcaat gaaagaacat tgaatgtgta agaacgagaa 60
                                                                   100
ttaaaaaaca gctttccaga ttaaagaatt tgcttggcga
<210> 131
<211> 122
<212> DNA
<213> Vibrio fisheri
<400> 131
caacaccaa gtggtttgta tcaagcatta tatcgatatc accgttatcc ttgattcagt 60
taggataagt gatacttaag tcattaagta aaacaaacac agactcatat ctaacccct 120
<210> 132
<211> 122
<212> DNA
<213> Vibrio harveyi
```

<400> 132 caacacccaa gtggtttgta tcaagcatta tatcgatatc accgttatcc ttgattcag taggataagt gatacttaag tcattaagta aaacaaacac agactcatat ctaaccccc tt	t 60 t 120 122
<210> 133 <211> 89 <212> DNA <213> Vibrio paramaemolyticus	
<400> 133 caacacccaa ggggttttga tggactcgaa gcaagaacag aattgaatgt gtagagaaccaaaaacagc tttccgaatt aaagaattt	a 60 89
<210> 134 <211> 169 <212> DNA <213> Vibrio proteolyticus	
<400> 134 caacacccaa ggggttttga tggactcaat gaaagaacat tgaatgtgta agaacgaga ttaaaaaaca gctttccgaa tttaggaatt gaatttatta acgacatcca tgtcgttaa ccttcgggcc gcactgaagt gcgttaaatt ttgttccaga caaaatttt	a 60 c 120 169
<210> 135 <211> 33 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from genera of enterobacteria	
<400> 135 gcctggcggc actagcgcgg tggtcccacc tga	33
<210> 136 <211> 33 <212> DNA <213> Buttiauxella agrestis	
<400> 136 gcctggcggc agtagcgcgg tggtcccacc tga	33
<210> 137 <211> 33 <212> DNA <213> Enterobacter agglomerans	
<400> 137 gcctggcggc tttagcgcgg tggtcccacc tga	33
<210> 138 <211> 33 <212> DNA	

<213> Erwinia carotovora	
<400> 138 gcctggcggc gatagcgcgg tggtcccacc tga	33
<210> 139 <211> 33 <212> DNA <213> Erwinia chrysanthemi	
<400> 139 gcctggcggc ggtagcgcgg tggtcccacc tga	33
<210> 140 <211> 33 <212> DNA <213> Escherichia coli	
<400> 140 gcctggcggc agtagcgcgg tggtcccacc tga	33
<210> 141 <211> 33 <212> DNA <213> Escherichia hermannii	
<400> 141 gcctggcggc aagagcgcgg tggtcccacc tga	33
<210> 142 <211> 33 <212> DNA <213> Escherichia vulneris	
<400> 142 gcctggcggc actagcgcgg tggtcccacc tga	33
<210> 143 <211> 33 <212> DNA <213> Hafnia alvei	
<400> 143 gcctggcggc gatagcgcgg tggtcccacc tga	33
<210> 144 <211> 32 <212> DNA <213> Klebsiella oxytoca	
<400> 144 gcctggcggc actagcgcgg tggtccacct ga	32
<210> 145	

<212> DNA	
<213> Kluyvera cryoescens	
<400> 145	
gcctggcggc aacagcgcgg tggtcccacc tga	33
<210> 146	
<211> 33	
<212> DNA	
<213> Morganella morganii	
<400> 146	
gcctggcggc cgtagcgcgg tggtcccacc tga	33
<210> 147	
<211> 31	
<212> DNA	
<213> Pantoea dispersa	
VZION Tancoca atopersa	
<400> 147	
	31
geetggegge aacageegeg gtggteecae e	31
(010) 140	
<210> 148	
<211> 33	
<212> DNA	
<213> Proteus mirabilis	
<400> 148	
gcttggtggc catagcgcgg tggtcccacc tga	
gereggegge earagegg eggeeeade ega	33
goolggegge caeagogogg eggeocoaeo ega	33
	33
<210> 149	33
<210> 149 <211> 33	33
<210> 149	33
<210> 149 <211> 33	33
<210> 149 <211> 33 <212> DNA	33
<210> 149 <211> 33 <212> DNA	33
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220>	33
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived	33
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220>	33
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia	33
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149	
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia	33
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149	
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga	
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga <210> 150	
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga <210> 150 <211> 33	
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga <210> 150 <211> 33 <212> DNA	
<210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga <210> 150 <211> 33	
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived</pre>	
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga </pre> <pre><210> 150 <211> 33 <212> DNA <213> Rahnella aquatilis</pre> <400> 150	33
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived</pre>	
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga </pre> <pre><210> 150 <211> 33 <212> DNA <213> Rahnella aquatilis</pre> <400> 150	33
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived</pre>	33
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga </pre> <pre><210> 150 <211> 33 <212> DNA <213> Rahnella aquatilis <400> 150 gcctggcggc agtagcgcgg tggtcccacc tga</pre> <pre><210> 150 <211> 33</pre>	33
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived</pre>	33
<pre><210> 149 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Description of the artificial sequence: derived from species of the genera Proteus, Providencia <400> 149 gtctggcggc aatagcacgg tggtcccacc tga </pre> <pre><210> 150 <211> 33 <212> DNA <213> Rahnella aquatilis <400> 150 gcctggcggc agtagcgcgg tggtcccacc tga</pre> <pre><210> 150 <211> 33</pre>	33

<220> <223> Description of the artificial sequence: derived from species of the genus Serratia	
<400> 151 gcctggcggc aatagcgcgg tggtcccacc tga	33
<210> 152 <211> 33 <212> DNA <213> Yersinia enterolytica	
<400> 152 gcctggcggc catagcgcgg tggacccacc tga	33
<210> 153 <211> 33 <212> DNA <213> Yersinia pseudotuberculosis	
<pre><400> 153 gtctggcggc catagcgcgg tggtcycacc tga</pre>	33
<pre></pre>	
<212> DNA <213> Acinetobacter calcoaceticus	
<400> 154 aagtatccat accagttgtg ctggcgacca tagcaagagt gaaccacctg a	51
<210> 155 <211> 33 <212> DNA	
<213> Artificial sequence	
<pre><220> <223> Description of the artificial sequence: derived from species of the genus Aeromonas</pre>	
<400> 155 gcctggcggc catagcgccg tggaaccacc tga	33
<210> 156 <211> 51 <212> DNA <213> Haemophilus influenzae	
<400> 156	
aaaagacgag ttatcaaaga attatcctgg cggcgatagt gcggtggacc c	51
<210> 157 <211> 54 <212> DNA	

<213> Moraxella catarrhalis	
<400> 157 acagcgttgt taatcctttt acgctgacga caatagcaag atggaaccac ctga	54
<210> 158 <211> 43 <212> DNA <213> Pasteurella pneumotropica	
<400> 158 tctagtgatg atggcgaaga ggtcacaccc gttcccatac cga	43
<210> 159 <211> 54 <212> DNA <213> Stenotrophomonas multophila	
<400> 159 acaagtcaaa gcctgatgac catagcaagt cggtcccacc ccttcccatc ccga	54
<210> 160 <211> 33 <212> DNA <213> Vibrio alginolyticus	
<400> 160 gcttggcgac catagcgttt tggacccacc tga	33
<210> 161 <211> 51 <212> DNA	
<213> Vibrio fisheri <400> 161 ctcatatcta accccctttg ctgacgacaa tagcacgatg gcaccacctg a	51
<210> 162 <211> 45 <212> DNA	•
<213> Vibrio harveyi <400> 162	4 5
gcttggcgac catagcgatt tggacccacc tgacttccat tccga <210> 163	45
<211> 33 <212> DNA <213> Vibrio proteolyticus	
<400> 163 gcttggcgac catagcgttt tggacccacc tga	33
<210> 164	

<211> <212> <213>		
<220> <223>	Description of the artificial sequence: derived from species of the genera Rahnella, Serratia, Yersinia	
<400> agattt	164 tcag cgaagttccg agattggttt caatggc	37
<210> <211> <212> <213>	21	
<220> <223>	Description of the artificial sequence: derived from species of the genera Enterobacter, Escherichia, Klebsiella, Pantoea	
<222>	<pre>misc_feature (14)(16) I = Inosine (I)</pre>	
<400> ggaagg	165 gagca tacnnnagtat	21
<210> <211> <212> <213>	32	
<400> aggtco	166 cctga aggaacgttt gagactaaga cg	32
<210><211><211><212><213>	32	
<400> agggto	167 cctga aggaacgttg aagactacga cg	32
<210><211><211><212><213>	32	
<400> aggaca	168 actaa aggaacgttg aagacgacga cg	32
<210> <211>		

<212> DNA <213> Erwinia carotovora	
<400> 169 atgcccctga agggccgttg aagactacga cg	32
<210> 170 <211> 32 <212> DNA <213> Erwinia chrysanthemi	
<400> 170	32
<210> 171 <211> 29 <212> DNA	
<213> Escherichia coli <400> 171 agggtcctga aggaacgttg aagacgacg	29
<210> 172	2,7
<211> 32 <212> DNA <213> Escherichia hermannii	
<400> 172 agagtcctga aggaacgttg aagacgacga cg	32
<210> 173 <211> 32 <212> DNA <213> Escherichia vulneris	
<400> 173 agteteetga aggaacgttg aagacgaega eg	32
<210> 174 <211> 32 <212> DNA <213> Hafnia alvei	
<400> 174 agtctcctaa aggaacgttt aagactaaga cg	32
<210> 175 <211> 32 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genera Klebsiella, Kuyvera	

<400> 175 agggtcctga aggaacgttg aagacgacga cg	32
<210> 176 <211> 32 <212> DNA <213> Morganella morganii	
<400> 176 agggtcctga aggaacgttt gagactaaga cg	32
<210> 177 <211> 32 <212> DNA <213> Pantoea dispersa	
<400> 177 agggtcctga agggacgctg aagacgacga cg	32
<210> 178 <211> 32 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Pantoea	
<400> 178 aggacactaa aggaacgtta aagacgatga cg	32
<210> 179 <211> 32 <212> DNA <213> Proteus mirabilis	
<400> 179 agtgacctaa aggaacgttt aagactaaga cg	32
<210> 180 <211> 32 <212> DNA <213> Proteus rettgeri	
<400> 180 agggtcctaa aggaacgttt aagactaaga cg	32
<210> 181 <211> 32 <212> DNA <213> Providencia stuartii	
<400> 181 agggtcctaa aggaacgttt aagacgaaga cg	32

```
<210> 182
<211> 32
<212> DNA
<213> Rahnella aquatilis
<400> 182
agccacctga agggacgttt aagactaaga cg
                                                                   32
<210> 183
<211> 32
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Serratia
<400> 183
                                                                    32
aggcccctga aggaacgttt aagactaaga cg
<210> 184
<211> 32
<212> DNA
<213> Yersinia enterolytica
<400> 184
                                                                    32
agccccctga aggaacgtta aagactatga cg
<210> 185
<211> 32
<212> DNA
<213> Yersinia pseudotuberculosis
<400> 185
                                                                    32
agcccctga gggaacgtta aagactatga cg
<210> 186
<211> 32
<212> DNA
<213> Cedecea davisae
<400> 186
agacccctga agggacgttg aagactacga cg
                                                                    32
<210> 187
<211> 24
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genera Buttiauxella, Escherichia,
      Klebsiella, Kluyvera, Pantoea
<400> 187
```

agatgagttc tccctgaccc ttta	24
<210> 188 <211> 24 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genera Enterobacter, Pantoea	
<400> 188 agatgagttc tcccttgtcc ttta	24
<210> 189 <211> 24 <212> DNA <213> Erwinia carotovora	
<400> 189 agatgagtet teeetgggea ceag	24
<210> 190 <211> 24 <212> DNA <213> Erwinia chrysanthemi	
<400> 190 agatgagtct teeetgggcc cttg	24
<210> 191 <211> 24 <212> DNA <213> Escherichia hermannii	
<400> 191 agatgagttc tccctgactc cttg	24
<210> 192 <211> 24 <212> DNA <213> Escherichia vulneris	
<400> 192 agatgagttc tccctgagac ttta	24
<210> 193 <211> 24 <212> DNA <213> Hafnia alvei	
<400> 193 agatgagtct tccctgagac cttg	24

<210> 194	
<211> 24 <212> DNA	
<213> Morganella morganii	
.100. 104	
<pre><400> 194 agatgagtct tccctgaccc ttta</pre>	24
agacyaycoc coccigacoc coca	
<210> 195	
<211> 24 <212> DNA	
<213> Proteus mirabilis	
.100. 105	
<pre><400> 195 agatgagtct tccctgtcac ttta</pre>	24
agatyaytee teeetytede teed	
<210> 196	
<211> 24 <212> DNA	
<213> Proteus rettgeri	
<pre><400> 196 agatgagtct tccctgaccc ttta</pre>	24
agacyagece eccegacee ecca	24
<210> 197	
<211> 24 <212> DNA	
<213> Providencia stuartii	
<400> 197	24
agatgagtct tecetgacte ttta	24
<210> 198	
<211> 24 <212> DNA	
<213> Rahnella aquatilis	
•	
<400> 198	2.4
agatgagtct tccctgtggc ttta	24
<210> 199	
<211> 24 <212> DNA	
<213> Yersinia enterolytica	
<400> 199	
agatgagtct tccctggggc ttta	24
<210> 200	
<211> 24	
<212> DNA <213> Yersinia pseudotuberculosis	
Productorrorro	
<400> 200	
agatgagtct tccctggggc ttaa	24

```
<210> 201
<211> 24
<212> DNA
<213> Cedecea davisae
<400> 201
                                                                   24
agatgaattc tccctgggtc cttg
<210> 202
<211> 199
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Citrobacter
<400> 202
caacgccgaa gatgttttgg cggaattgag aagattttca gcattgattc agagtccgaa 60
ggattttgcg ctgagacaag gcggcawccc caccacggaa ggagcataca aaagtatgtg 120
actgaggttc gcaagcgcag ccaacgcagt atcagcacaa aagacacagg acagagcaca 180
                                                                   199
aagaatttct ggcggccgt
<210> 203
<211> 199
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Citrobacter
<400> 203
caacqccqaa qatqttttqq cqqattqaqa aqattttcag tattqattac agattttqcg 60
aaaacgaaag attttacgct gaggcaaggc ggcaagtgaa gcgacggaag kggcatacaa 120
aagtatgtga ctgaggttcg caggcgcagc caacgcagca tcagtggaaa agattcgttt 180
taagagcaca aagaatttc
<210> 204
<211> 199
<212> DNA
<213> Artificial sequence
<220>
<223> artificial sequence: derived
      from species of the genus Salmonella
<400> 204
caacsccsaa gatgttttgg csgatsagag argattttca gcactgattc ckgattttcg 60
vgaacgaaag attttacgct gaggcaaggc rgcaavcgaa ggaaaggaag gagcatactg 120
aagtatgtga ctgactttac gagcgcagcc aacgctagca tcsgtgtaaa agattcgttt 180
ctggcaacag aatttcctg
<210> 205
```

<211> 201

```
<212> DNA
<213> derived from species of the genus Salmonella
<220>
<221> misc_feature
<222> (28)...(28) <223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
<400> 205
caacgccgaa gctgttttgg cggatranaa sacgaacaat tttcagcact gattcagagt 60
aqaaqtatqt qactqacttt acqaqcqcaq ccaacqccqc tqatqcqata aagaattqcq 180
tacagagcac aaaagaatat t
<210> 206
<211> 193
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
     from species of the genus Salmonella
<400> 206
caacgccgaa gatgttttgg csgttgagaa gacgattttc agcagtgatt ccgrgttgag 60
trogomrtaa tttkogomgo wgoarggogg cargogaagg arrggaggga goatcowgaa 120
gtatktgact gagttttcgr gcgcwggcam cgccgctgat gcgataaaga attgcgtach 180
gmgcacamag aat
<210> 207
<211> 199
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
     from species of the genus Salmonella
<400> 207
caacgccgaa gatgttttgg cggattgaga gacgattttc agcactgatt ccggattttc 60
gggaacgaaa gattttacgc tgaggcaaagg cggcaaatgr aggaaaggaa ggagcatact 120
gaagtatgtg actgactttt cgaatgcagc cgacgcagca tcggtgtaaa agattcgttt 180
ccggcaacag aattgtcct
<210> 208
<211> 189
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
     from species of the genus Salmonella
<400> 208
caacgccgaa gatgttttgg cggatgagag acgattttca gcactgattc agagttgagt 60
```

tatgtgactg agtttacgag cgcaggcaac gccgctgatg cgataaagaa ttgcgtactg agcataaaa	180 189
<210> 209 <211> 196 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Salmonella	
<400> 209 caacgccgaa gatgttttgg cggattgaga agacaacaat tttcagcyca gattcagagt ccgaaggatt ttacgctgag acaaggcggc aaacgcagcs mcsgaaggas cmycacagaa gtatgtgact gacgctcgca agagcagcca acgccgtatc agtgtaaaag acacaggacg grgcacaaag aaattt	120
<210> 210 <211> 77 <212> DNA <213> Artificial sequence	
<220> <223> artificial sequence: derived from species of the genus Salmonella	
<400> 210 gagagacgat tttcagcact gattccggat tttcgggaac gaaagataaa agattcgttt ccggcaacag aatttcc	60 77
<210> 211 <211> 24 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species and genera of eubacteria	
<400> 211 ggtacgcgag ctgggtttag aacg	24
<210> 212 <211> 19 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species and genera of eubacteria	
<400> 212 gbgagagtag gdmayygcc	19

<210> 213

```
<211> 54
<212> DNA
<213> Pseudomonas stutzeri
<400> 213
ccggagtgga cgaacctctg gtgttccggt tgtcacgcca gtggcattgc cggg
                                                                54
<210> 214
<211> 53
<212> DNA
<213> Thiobacilluc ferrooxidans
<400> 214
                                                                  53
ccqqaqtqqa cqtactctqq tqttccqqtt qttctqccaa gggcattqcc ggg
<210> 215
<211> 54
<212> DNA
<213> Agrobacterium vitis
<400> 215
                                                                  54
ccgggatgga catatetetg gtggacetgt tgtcgtgcca acggcatage aggg
<210> 216
<211> 54
<212> DNA
<213> Adalia bipunctata
<400> 216
ccgaggtgga cgtacctctg gtggaccagt tgtcatgcca atggcacagc tggg
<210> 217
<211> 54
<212> DNA
<213> Amycolatopsis orientalis
<400> 217
ccgggacgga cgaacctctg gtgtgccagt tgtcctgcca agggcatggc tggt
<210> 218
<211> 54
<212> DNA
<213> Brucella ovis
<220>
<221> misc feature
<222> (18)..(18)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
<400> 218
ccgggatgga cgtatctntg gtggacctgt tgtggcgcca gccgcatagc aggg
                                                                  54
<210> 219
<211> 54
```

<212> DNA <213> Bradyrhizobium japonicum	
<400> 219 ccggggtgaa cgtacctctg gtggagctgt tgtcgcgcca gcggcagtgc agca	54
<210> 220 <211> 54 <212> DNA <213> Pseudomonas paucimobilis	
<400> 220 ccgggatgga cgcaccgctg gtgtaccagt tgttctgcca agggcatcgc tggg	54
<210> 221 <211> 54 <212> DNA	
<213> Rhodobacter sphaeroides <400> 221 ccgggatgga cgcaccgctg gtgtaccagt tgttctgcca agggcatcgc tggg	54
<210> 222 <211> 57 <212> DNA	
<213> Rickettsia prowazekii	
<400> 222 ccgaggtgga cgtacccctg gtggaccagt tgtcgtgcca acggcaaget gggtagc	57
<210> 223 <211> 54 <212> DNA <213> Sphingomonas paucimobilis	
<400> 223 ccggagtgga cgaacctctg gtgtaccggt tgtcacgcca gtggcattgc cggg	54
<210> 224 <211> 54 <212> DNA	
<213> Zymomonas mobilis <400> 224 ccggggtgaa catgcctctg gtggacctgt cgtggcgcca gccgcgcagc aggg	54
<210> 225 <211> 54 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Alcaligenes	

<400> 225 ccagagtgga cgaacctctg gtgtaccggt tgtgacgcca gtcgcatcgc cggg	54
<210> 226 <211> 53 <212> DNA <213> Pseudomonas cepacia	
<400> 226 : ccgggacgac gaacctctgg tgtgtcagtt gtactgccaa gtgcaccgct gat	53
<210> 227 <211> 54 <212> DNA <213> Ralstonia pickettii	
<400> 227 ccggagtgga cgaacctctg gtgttccggt tgtcacgcca gtggcattgc cggg	54
<210> 228 <211> 54 <212> DNA <213> Campylobacter jejuni	
<400> 228 ccgggttgaa caaaccactg gtgtagctgt tgttctgcca agagcatcgc agcg	54
<210> 229 <211> 53 <212> DNA <213> Helicobacter pylori	
<400> 229 ccgggatgga cgtgtcactg gtgcaccagt tgtctgccaa gagcatcgct ggg	53
<210> 230 <211> 53 <212> DNA <213> Actinoplanes utahensis	
<400> 230 ccgggacgga cgaacetetg gtgtgccagt tgttetgcca agagcacgge tgg	53
<210> 231 <211> 54 <212> DNA <213> Bacillus halodurans	
<400> 231 ccgggatgga cacaccgctg gtgtaccagt tgttccgcca ggagcatcgc tggg	54
<210> 232 <211> 54 <212> DNA	

<213> Bacillus subtilis	
<400> 232 ccgggatgga cgcaccgctg gtgtaccagt tgttctgcca agggcatcgc tggg	54
<210> 233 <211> 54 <212> DNA <213> Clostridium tyrobutyricum	
<400> 233 ccgggatgga ctgacctctg gtgtaccagt tgttccgcca ggagcatggc tggg	54
<210> 234 <211> 54 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Frankia	
<400> 234 ccgggacgga cgaacctctg gtgtgccagt tgttctgcca agggcatggc tggt	54
<210> 235 <211> 54 <212> DNA <213> Microbispora bispora	
<400> 235 ccggaacgga cgaacctctg gtgtgccagt tgtgccgcca ggtgcacggc tggt	54
<210> 236 <211> 54 <212> DNA <213> Mycobacterium leprae	
<400> 236 ccgggacgga cgaacctctg gtataccagt tgtctcacca ggggcaccgc tgga	54
<210> 237 <211> 54 <212> DNA <213> Mycobacterium smegmatis	
<400> 237 ccgggacgga cgaacctctg gtataccagt tgtcccacca ggggcacggc tgga	54
<210> 238 <211> 54 <212> DNA <213> Mycobacterium tuberculosis	
<400> 238	

```
54
ccgggacgga cgaacctctg gtgcaccagt tgtcccgcca ggggcaccgc tgga
<210> 239
<211> 54
<212> DNA
<213> Mycobacterium gallisepticum
<400> 239
ccggagtgaa gacacctctt gtgctccagt tgtagcgcca actgcaccgc tggg
<210> 240
<211> 58
<212> DNA
<213> Propionibacterium freudenreichii
<400> 240
ccgggacgga ccaacctctg gtgtgccagt tgttccacca ggagcatggc tggttggc
<210> 241
<211> 54
<212> DNA
<213> Rhodococcus erythropolis
<400> 241
                                                                  54
ccgggacgga cgaacctctg gtgtgccagt tgttccgcca ggagcaccgc tggt
<210> 242
<211> 57
<212> DNA
<213> Rhodococcus fascians
<400> 242
ccgggacgac gaacctctgg tgtgccagtt gttccaccag gagcaccgct ggttggc
<210> 243
<211> 58
<212> DNA
<213> Staphylococcus aureus
<400> 243
ccgggatgga catacctctg gtgtaccagt tgtcgtgcca acggcatagc tgggtagc 58
<210> 244
<211> 54
<212> DNA
<213> Streptococcus faecalis
<220>
<221> misc feature
<222> (14)..(14)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 244
ccgggatgga cttnccgctg gtgtaccagt tgttctgcca agggcattgc tggg
                                                                  54
```

```
<210> 245
<211> 54
<212> DNA
<213> Streptomyces ambifaciens
<220>
<221> misc feature
<222> (14)..(14)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
<400> 245
                                                                   54
ccqqqatqqa cttnccqctq gtgtaccagt tgttctgcca agggcattgc tggg
<210> 246
<211> 54
<212> DNA
<213> Flavobacterium resinovorum
<400> 246
                                                                  54
ccqqaqtqqa cqtaccqctq qtgtacctgt tgtctcgcca gaggcatcgc aggg
<210> 247
<211> 54
<212> DNA
<213> Sphingobacterium multivorans
<220>
<221> misc feature
<222> (34)..(34)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
<400> 247
ccgggttgga cagacctctg gtgaacctgt catnccgcca ggtgtacggc aggg
                                                                  54
<210> 248
<211> 54
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Synechococcus
<400> 248
ccggaggaac gcaccgctgg tgtaccagtt atcgtgccaa cggtaaacgc tggg
                                                                   54
<210> 249
<211> 55
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
```

from species of the genus Synechocystis

<400> ccggga		cgcacctctg	gtgtacctgt	tatcgtgcca	acggtaaacg	caggg	55
<210> <211> <212> <213>	59 DNA	elia burgdo:	feri				
<400> ccgaga		cgaacctcta	gtgtaccagt	tatcctgcca	agggtaagtg	ctgggtagc	59
<210> <211> <212> <213>	58 DNA	nydia tracho	omatis				
<400> ccggaa		cgaaccaatg	gtgtgtcggt	tgttttgcca	agggcatagc	cgagtagc	58
<210> <211> <212> <213>	42 DNA	domonas stut	czeri				
<400> gagata		ctgaaagcat	ctaagcggga	aacttgcctc	aa		42
<210> <211> <212> <213>	41 DNA	pacilluc fe	rrooxidans				
<400> gggata		ctgaaagcat	ctaagcggaa	gccatcctaa	g		41
<210> <211> <212> <213>	41 DNA	oacterium vi	itis				
<400> tggata		ctgaaggcat	ctaagcggga	aaccaacctg	a		41
<210> <211> <212> <213>	41 DNA	ia bipunctat	ca				
<400> gggata		ctgaatgcat	ctaagcagga	aactcacctc	a		41

<210> 256

```
<211> 41
<212> DNA
<213> Amycolatopsis orientalis
<400> 256
                                                                    41
aggataaccg ctgaaagcat ctaagcggga agcctgcttc g
<210> 257
<211> 42
<212> DNA
<213> Brucella ovis
<220>
<221> misc_feature
<222> (21)..(21)
<223> n \approx Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
                                                                    42
gggataaccg ctgaaggcat ntaagcggga aacccacctg aa
<210> 258
<211> 41
<212> DNA
<213> Bradyrhizobium japonicum
<400> 258
                                                                    41
gggataaccg ctgaaagcat ctaagcggga aacccacctc a
<210> 259
<211> 41
<212> DNA
<213> Pseudomonas paucimobilis
                                                                    41
gggataagtg ctgaaagcat ctaagcatga agcccccctc a
<210> 260
<211> 41
<212> DNA
<213> Rhodobacter sphaeroides
<400> 260
                                                                    41
aggataaccg ctgaaggcat ctaagcggga agcccccttc a
<210> 261
<211> 40
<212> DNA
<213> Rickettsia prowazekii
<400> 261
                                                                    40
gggataactg ctgaatgcat ctaagcagga aacccacctc
<210> 262
<211> 41
```

<212> DNA <213> Sphingomonas paucimobilis	
<400> 262 gagataaccg ctgaaagcat ctaagcggga aacttgcctt g 4	1
<210> 263 <211> 41 <212> DNA	
<213> Zymomonas mobilis	
<400> 263 gggataaccg ctgaaagcat ctaagcggga agcctccctc a 4	1
<210> 264 <211> 41 <212> DNA	
<213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Alcaligenes	
<400> 264 gggataaccg ctgaaagcat ctaagcggga agcctacctc a 4	1
<210> 265 <211> 41 <212> DNA <213> Pseudomonas cepacia	
<400> 265 gggataaccg ctgaaagcat ctaagcggga agctcgcttc a 4	1
<210> 266 <211> 41 <212> DNA <213> Ralstonia pickettii	
<400> 266 gagataaccg ctgaaagcat ctaagcggaa aacttgcctc a 4	1
<210> 267 <211> 41 <212> DNA <213> Campylobacter jejuni	
<400> 267	1
<210> 268 <211> 42 <212> DNA <213> Helicobacter pylori	

<400> 268 tgtgataact gctgaaagca tctaagcagg aaccaactcc aa	42
<210> 269 <211> 41 <212> DNA <213> Actinoplanes utahensis	
<400> 269 gggataaccg ctgaaagcat ctaagcggga agctcgcttc g	41
<210> 270 <211> 41 <212> DNA <213> Bacillus halodurans	
<400> 270 gggataagtg ctgaaagcat ctaagcatga agcccccctc a	41
<210> 271 <211> 40 <212> DNA <213> Clostridium tyrobutyricum	
<400> 271 gggataaacg ctgaaagcat ctaagcgtga agcccacctc	40
<210> 272 <211> 41 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Frankia	
<400> 272 gggataaccg ctgaaagcat ctaagcggga agcctgcttc g	41
<210> 273 <211> 41 <212> DNA <213> Microbispora bispora	
<400> 273 gggataaccg ctgaaagcat ctaagcggga agcccgcccc g	41
<210> 274 <211> 41 <212> DNA <213> Mycobacterium leprae	
. <400> 274 aagataaccg ctgaaagcat ctaagcggga aaccttctcc a	41

<210> 275 <211> 41 <212> DNA	
<213> Mycobacterium smegmatis	
<400> 275 aggataaccg ctgaaagcat ctaagcggga aacctcttcc a	41
<210> 276 <211> 41 <212> DNA <213> Mycobacterium tuberculosis	
<400> 276 aggataaccg ctgaaagcat ctaagcggga aaccttctcc a	41
<210> 277 <211> 41 <212> DNA <213> Mycobacterium gallisepticum	
<400> 277 cggataaacg ctgaaagcat ctaagtgtga aaccgacttt a	41
<210> 278 <211> 43 <212> DNA <213> Propionibacterium freudenreichii	
<400> 278 agtgataacc gctgaaagca tctaagtggg aagcacgctt caa	43
<210> 279 <211> 41 <212> DNA <213> Rhodococcus erythropolis	
<400> 279 gggataaccg ctgaaagcat ctaagcggga agcctgttcc a	41
<210> 280 <211> 41 <212> DNA <213> Staphylococcus aureus	
<400> 280 gggataagtg ctgaaagcat ctaagcatga agccccctc a	41
<210> 281 <211> 41 <212> DNA <213> Streptococcus faecalis	
<220>	

```
<221> misc_feature
<222> (36)..(36)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 281
                                                                   41
gggataaacg ctgaaagcat ctaagtgtga agcccncctc a
<210> 282
<211> 41
<212> DNA
<213> Streptomyces ambifaciens
<400> 282
                                                                   41
gggataaccg ctgaaagcat ctaagcggga agcctgcttc g
<210> 283
<211> 41
<212> DNA
<213> Flavobacterium resinovorum
<400> 283
                                                                   41
gagataaccg ctgaaagcat ctaagcggga aactcgcctg a
<210> 284
<211> 41
<212> DNA
<213> Sphingobacterium multivorans
<400> 284
tagataagcg ctgaaagcat ctaagtgcga aactagccac g
                                                                   41
<210> 285
<211> 43
<212> DNA
<213> Artificial sequence
<223> Description of the artificial sequence: derived
      from species of the genus Synechococcus
<400> 285
gtggataacc gctgaaagca tctaagtggg aagcccacct caa
                                                                   43
<210> 286
<211> 43
<212> DNA
<213> Artificial sequence
<223> Description of the artificial sequence: derived
      from species of the genus Synechocystis
gtggataacc gctgaaagca tctaagtggg aagcccacct caa
                                                                   43
```

<210> 287 <211> 41 <212> DNA <213> Borrelia burgdorferi <400> 287 aggataaccg ctgaaagcat ctaagtggga agccttcctc a	41
<210> 288 <211> 41 <212> DNA <213> Chlamydia trachomatis <400> 288 aggataagca ttgaaagcat ctaaatgcca agcctccctc a	41
<210> 289 <211> 24 <212> DNA <213> Pseudomonas stutzeri <400> 289 agatgagatc tcactggagc cttg	24
<210> 290 <211> 19 <212> DNA <213> Thiobacillus ferrooxidans <400> 290 atgagatctc ccgggcata	19
<210> 291 <211> 18 <212> DNA <213> Agrobacterium vitis <400> 291 aaacgagtat tccctatc	18
<210> 292 <211> 18 <212> DNA <213> Adalia bipunctata <400> 292 aaactagact tececate	18
<210> 293 <211> 23 <212> DNA <213> Amycolatopsis orientalis <400> 293	

agatgagggc teceacetee ttg	23
<210> 294	
<211> 18	
<212> DNA <213> Brucella ovis	
<213> Bidgelia Ovis	
<400> 294	
aaacgagtat tccctatc	18
<210> 295	
<211> 17	
<212> DNA	
<213> Bradyrhizobium japonicum	
<400> 295	
aaacgagcat tcccttg	17
<210> 296	
<211> 22	
<212> DNA	
<213> Pseudomonas paucimobilis	
<400> 296	
agatgagatt teceatteeg ca	22
agacgagaca coccaccog on	
<210> 297	
<211> 22	
<212> DNA <213> Rhodobacter sphaeroides	
12132 Miodobacter Spinaerordes	
<400> 297	
agatgagatt tcccattccg ca	22
<210> 298	
<211> 18	
<212> DNA	
<213> Rickettsia prowazekii	
<400> 298	
aaactagact tccccatt	18
<210> 299	
<211> 23	
<212> DNA	
<213> Sphingomonas paucimobilis	
<400> 299	
agatgagatt tcccggagcc ttg	23
<210> 300	
<211> 14	
<212> DNA	
<213> Zymomonas mobilis	

<400> 300 agataagata tctc	14
<210> 301 <211> 24 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Alcaligenes	
<400> 301 agataagatt tccctaggac ttta	24
<210> 302 <211> 23 <212> DNA <213> Pseudomonas cepacia	
<400> 302 agatgagatt tccatacacc ttg	23
<210> 303 <211> 24 <212> DNA <213> Ralstonia pickettii	
<400> 303 agatgagatc tcactggaac cttg	24
<210> 304 <211> 24 <212> DNA <213> Campylobacter jejuni	
<400> 304 agatgaatct tctctaagct ctct	24
<210> 305 <211> 13 <212> DNA <213> Helicobacter pylori	
<400> 305 gataaacttt ccc	13
<210> 306 <211> 23 <212> DNA <213> Actinoplanes utahensis	
<400> 306 agatgaggta tcccaccacc ttg	23

<210> 307 <211> 22	
<212> DNA	
<213> Bacillus halodurans	
<213> Bacilius nalodurans	
<400> 307	
agatgagatt tcccatggag ta	22
<210> 308	
<211> 22	
<212> DNA	
<213> Clostridium tyrobutyricum	
<400> 308	
agattagatt tcccacagcg ta	22
<210> 309	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Description of the artificial sequence: derived	Į
from species of the genus Frankia	
<400> 309	
	23
agatgaggtc tcccacaggg tag	23
010. 010	
<210> 310	
<211> 23	
<212> DNA	
<213> Microbispora bispora	
<400> 310	
agatgaggtc tccctccggg tta	23
<210> 311	
<211> 22	
<212> DNA	
<213> Mycobacterium leprae	
<213> Mycobacterium Teprae	
<400> 311	
agatcaggtt tcttacccac tt	22
<210> 312	
<211> 22	
<212> DNA	
<213> Mycobacterium smegmatis	
<400> 312	
agaccagget teteaceete ta	22
<210> 313	

<211> 22 <212> DNA <213> Mycobacterium tuberculosis	
<400> 313 agatcaggtt tctcacccac tt	22
<210> 314 <211> 30 <212> DNA	
<213> Mycobacterium gallisepticum	
<400> 314 agaataatct tcccttccag caatggagta	30
<210> 315 <211> 21 <212> DNA <213> Propionibacterium freudenreichii	
<400> 315	
gatgagggtt cctgcacagt t	21
<210> 316 <211> 22 <212> DNA <213> Rhodococcus erythropolis	
<400> 316 agatgaggtt tetcacecec te	22
<210> 317 <211> 20 <212> DNA <213> Staphylococcus aureus	
<400> 317	
agatgagatt tcccaacttc	20
<210> 318 <211> 22 <212> DNA <213> Streptococcus faecalis	
<400> 318 agatgagatt tcccatttct tt	22
<210> 319 <211> 23 <212> DNA	
<213> Streptomyces ambifaciens	
<400> 319	

<210> 320 <211> 24 <212> DNA <213> Flavobacterium resinovorum	
<400> 320 agatgaggat tccctggcgg cttg	24
<210> 321 <211> 17 <212> DNA <213> Sphingobacterium multivorans	
<400> 321 agatgagact tccttat	17
<210> 322 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Synechococcus	
<400> 322 gatgagtact ctcatggcat	20
<210> 323 <211> 21 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Synechocystis	
<400> 323 gatgagtact ctcatggtgt t	21
<210> 324 <211> 16 <212> DNA <213> Borrelia burgdorferi	
<400> 324 agatgagata tccttt	16
<210> 325 <211> 14 <212> DNA (212> Chlamydia trachomatis	
<213> Chlamydia trachomatis <400> 325 agataaggta tccc	14

<210> 326 <211> 32 <212> DNA <213> Pseudomonas stutzeri	
<400> 326 agctccctga agggccgtcg aagactacga cg	32
<210> 327 <211> 32 <212> DNA <213> Thiobacillus ferrooxidans	
<400> 327 agccccctga agggacgtgg aagactacca cg	32
<210> 328 <211> 22 <212> DNA <213> Agrobacterium vitis	
<400> 328 agagccgtgg aagacgacca cg	22
<210> 329 <211> 22 <212> DNA <213> Adalia bipunctata	
<400> 329 agagecgtgg aagaecacea eg	22
<210> 330 <211> 30 <212> DNA <213> Amycolatopsis orientalis	
<400> 330 aggggttaag gctcccagta gacgactggg	30
<210> 331 <211> 22 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genera Brucella, Bradyrhizobium	
<400> 331 agagccgtgg aagaccacca cg	22

<210> 332

<211> 30 <212> DNA <213> Pseudomonas paucimobilis	
<400> 332 aggaagtaag atccctgaaa gatgatcagg	30
<210> 333 <211> 22	
<212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived	d
from species of the genera Rhodobacter, Ricket	
<400> 333 agggccgtgg aagaccacca cg	22
<210> 334 <211> 26	
<212> DNA <213> Sphingomonas paucimobilis	
<400> 334	
agctccttga agggtcgttc gagacc	26
<210> 335	
<211> 22 <212> DNA	
<213> Zymomonas mobilis	
<400> 335 agagccgtcg aagactacga cg	22
<210> 336 <211> 26	
<212> DNA <213> Artificial sequence	
<220>	
<pre><223> Description of the artificial sequence: derived from species of the genus Alcaligenes</pre>	Ė
<400> 336 tgtcctctaa agagccgttc gagact	26
agaaaaaaa agagaagaaa gagaaa	20
<210> 337 <211> 25	
<212> DNA	
<213> Pseudomonas cepacia	
<400> 337 tqtqtqaqaq qcccccaqcc agacc	25

<210> 338 <211> 26 <212> DNA <213> Ralstonia pickettii	
<400> 338 agttccctga agggccgtcg aagact	26
<210> 339 <211> 14 <212> DNA	
<213> Campylobacter jejuni <400> 339 agaagactac tagt	14
<210> 340 <211> 25	
<212> DNA <213> Helicobacter pylori <400> 340	
tgaagctcgc acaaagacta tgtgc <210> 341	25
<211> 28 <212> DNA <213> Actinoplanes utahensis	
<400> 341 agtgggtaag gctcccagct agactact	28
<210> 342 <211> 31 <212> DNA <213> Bacillus halodurans	
<400> 342 aatccagtaa gaccccttag agatgatgag g	31
<210> 343 <211> 30 <212> DNA <213> Bacillus subtilis	
<400> 343 aggaagtaag atccctgaaa gatgatcagg	30
<210> 344 <211> 32 <212> DNA <213> Clostridium tyrobutyricum	
<400> 344 agctggtaag gccccttgaa gaacacaagg tg	32

<210> 345 <211> 30 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Frankia	
<400> 345 cctggtaagg cccccgacta gatgatcggg	30
<210> 346 <211> 30 <212> DNA <213> Microbispora bispora	
<400> 346 accgggtaag geteceagta gatgaetggg	30
<210> 347 <211> 31 <212> DNA <213> Mycobacterium leprae	
<400> 347 ggtgggataa ggccccccgc agaacacggg a	31
<210> 348 <211> 31 <212> DNA <213> Mycobacterium smegmatis	
<400> 348 ggagggataa ggcccccgc agaccacggg a	31
<210> 349 <211> 31 <212> DNA <213> Mycobacterium tuberculosis	
<400> 349 ggtgggataa ggcccccgc agaacacggg t	31
<210> 350 <211> 30 <212> DNA <213> Propionibacterium freudenreichii	
<400> 350 aatgtggtaa ggcccccggt agaccaccgg	30
<210> 351	

```
<211> 31
<212> DNA
<213> Rhodococcus erythropolis
<400> 351
                                                                   31
gaggggtaa ggcccccggc agaccaccgg g
<210> 352
<211> 29
<212> DNA
<213> Staphylococcus aureus
<400> 352
                                                                   29
ggttataaga tccctcaaag atgatgagg
<210> 353
<211> 31
<212> DNA
<213> Streptococcus faecalis
<220>
<221> misc_feature
<222> (20)..(20)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
      T) or Inosine (I)
<400> 353
                                                                   31
aagaaagtaa gacccctnan agatgatcag g
<210> 354
<211> 30
<212> DNA
<213> Streptomyces ambifaciens
<400> 354
                                                                   30
aggggttaag gctcccagta gacgactggg
<210> 355
<211> 32
<212> DNA
<213> Flavobacterium resinovorum
<400> 355
                                                                   32
accgccttga agggtcgttc gagaccagga cg
<210> 356
<211> 22
<212> DNA
<213> Sphingobacterium multivorans
<400> 356
                                                                    22
agggtcgtag aagatgacta cg
<210> 357
<211> 30
```

<212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Synechococcus	
<400> 357 aagccagtaa ggtcacgggt agaacacccg	30
<210> 358 . <211> 30 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Synechocystis	
<400> 358 aagccagtaa ggtcacggga agactacccg	30
<210> 359 <211> 23 <212> DNA <213> Borrelia burgdorferi	
<400> 359 aagggtcctg gaagaatacc agg	23
<210> 360 <211> 26 <212> DNA <213> Chlamydia trachomatis	
<400> 360 aatgagactc catgtagact acgtgg	26
<210> 361 <211> 40 <212> DNA <213> Pseudomonas stutzeri	
<400> 361 agtaatgcat taagctaacc agtactaatt gcccgtacgg	40
<210> 362 <211> 40 <212> DNA	
<213> Thiobacillus ferrooxidans <400> 362 agcaatgcgt gcagctaagg agtactaatc ggccgtgcgg	40
<210> 363	

<211> 40 <212> DNA <213> Agrobacterium vitis	
<400> 363 ggtaacctgc gaagcttacc gttactaata gctcgattgg	40
<210> 364 <211> 40 <212> DNA <213> Adalia bipunctata	
<400> 364 agtaatgcgt gtagctaacc gatactaata gctcgattga	40
<210> 365 <211> 40 <212> DNA <213> Brucella ovis	
<400> 365 ggcaacgcat gcagcttacc ggtactaata gctcgatcga	40
<210> 366 <211> 40 <212> DNA <213> Bradyrhizobium japonicum	
<400> 366 agtaatgcat gcagcttacc ggtactaatc gttcgattgg	40
<210> 367 <211> 40 <212> DNA <213> Pseudomonas paucimobilis	
<400> 367 ggcgacacat ggagctgaca gatactaatc gatcgaggac	40
<210> 368 <211> 40 <212> DNA <213> Rhodobacter sphaeroides	
<400> 368 agcaatgcgt tcagctgact ggtactaatt gcccgatagg	40
<210> 369 <211> 40 <212> DNA <213> Rickettsia prowazekii	
<400> 369 agtaatgtgt gtagctaacc gatactaata gctcgattga	40

```
<210> 370
<211> 40
<212> DNA
<213> Sphingomonas paucimobilis
<220>
<221> misc_feature
<222> (37)..(37)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
agtaatgcat taagctaacc agtactaatt gcccgtncgg
                                                                   40
<210> 371
<211> 40
<212> DNA
<213> Zymomonas mobilis
<400> 371
                                                                   40
ggtaacacat gtagctaact ggtcctaatt gctctattca
<210> 372
<211> 40
<212> DNA
<213> Artificial sequence
<223> Description of the artificial sequence: derived
      from species of the genus Alcaligenes
                                                                   40
agtgatatgt gaagctgacc aatactaatt gctcgtgagg
<210> 373
<211> 40
<212> DNA
<213> Ralstonia pickettii
<400> 373
tgtgaggcgt tgagctaacc aatactaatt gcccgtgagg
                                                                   40
<210> 374
<211> 40
<212> DNA
<213> Campylobacter jejuni
tgaaagtcct ttagctgacc agtactaata gagcgtttgg
                                                                   40
<210> 375
<211> 40
<212> DNA
<213> Helicobacter pylori
```

<400> 375 agtaatgcgt ttagctgact actactaata gagcgtttgg	40
<210> 376 <211> 40 <212> DNA <213> Bacillus halodurans	
<400> 376 ggcgacacgt gaagetgaca gatactaatc ggtcgaggac	40
<210> 377 <211> 40 <212> DNA <213> Bacillus subtilis	
<400> 377 ggcgacacat ggagctgaca gatactaatc gatcgaggac	40
<210> 378 <211> 40 <212> DNA <213> Clostridium tyrobutyricum	
<400> 378 ggcaacatgt tcagctgact gatactaata ggccgagggc	40
<210> 379 <211> 41 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Frankia	
<400> 379 cggtgacgca tggagctgac cggtactaat aggccgaggg c	41
<210> 380 <211> 42 <212> DNA <213> Microbispora bispora	
<400> 380 cggtaacgtg tggagccgac cggtactaat aagccgagag gc	42
<210> 381 <211> 41 <212> DNA <213> Mycobacterium leprae	
<400> 381 cagtaatgag tgtagggaac tggcactaac tggccgaaag c	41

<210> 382 <211> 41 <212> DNA	
<213> Mycobacterium smegmatis	
<400> 382 tagtaatagg tgcaggaac tggcactaac cggccgaaaa c	41
<210> 383 <211> 41 <212> DNA <213> Mycobacterium tuberculosis	
<400> 383 cagtaatggg tgtagggaac tggtgctaac cggccgaaaa c	41
<210> 384 <211> 86 <212> DNA	
<213> Mycobacterium gallisepticum	
<400> 384 agaatcgttg tagactacga cgttgatagg ctaaaggtgt aagtgccgcg aggtatttag ctgattagta ctaataattc gaggac	60 86
<210> 385 <211> 27 <212> DNA <213> Propionibacterium freudenreichii	
<400> 385 gctgaccgat actaagtggc cgagggc	27
<210> 386 <211> 41 <212> DNA <213> Rhodococcus erythropolis	
<400> 386 cagtaatgca tgcaggtgac tggtactaat aggccgagga c	41
<210> 387 <211> 41 <212> DNA <213> Rhodococcus fascians	
<400> 387 cagcaatgta tgcaggtgac tggtactaat aggccgagga c	41
<210> 388 <211> 27 <212> DNA <213> Staphylococcus aureus	

<400> 388 gctgacgaat actaatcgat cgagggc	27
<210> 389	
<211> 27	
<212> DNA	
<213> Streptococcus faecalis	
<400> 389	27
gcggaccaat actaatcggt cgaggac	21
<210> 390	
<211> 51	
<212> DNA	
<213> Streptomyces ambifaciens	
<400> 390	
ccgcaaggtg tggaggtgac cggtactaat aggccgaggg cttgtcctca t	51
<210> 391	
<211> 51	
<212> DNA	
<213> Streptomyces galbus	
<400> 391	
cggtaacgtg tggaggtgac cggtactaat aggccgaggg cttgtcctca g	51
2010: 000	
<210> 392	
<211> 51	
<212> DNA	
<213> Streptomyces griseus	
<400> 392	
cggtaacggg tggagctgac tggtactaat aggccgaggg cttgtcctca g	51
<210	
<210> 393 <211> 51	
<212> DNA	
<213> Streptomyces lividans	
<pre><213/ Streptomyces Trvidans</pre>	
<400> 393	
ccgtgaggtg tggaggtgac cggtactaat aggccgaggg cttgtcctca g	51
<210> 394	
<211> 51	
<212> DNA	
<213> Streptomyces mashuensis	
··-· · · · · · · · · · · · · · · · ·	
<400> 394	
cggtaacggt tggagctgac tggtactaat aggccgaggg cttgtccata g	51
<210> 395	
<211> 28	
(212) DNA	

<213>	Flavobacterium resinovorum	
<400>	395	
gctaac	ccagt actaattgcc cgtaaggc	28
<210>		
<211>		
<212>	Sphingobacterium multivorans	
(210)	bpillingosuotottum marorvotanis	
<400>		
gccaag	gtggt actaatagec egaagett	28
<210>	397	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Description of the artificial sequence: derived ·	
	from species of the genus Synechococcus	
<400>	397	
	ggcgt actaatagac cgagggc	27
<210>	200	
<211>		
<212>		
<213>	Artificial sequence	
<220N		
<220> <223>	Description of the artificial sequence: derived	
	from species of the genus Synechocystis	
<400>		27
gregae	ggagt actaatagac cgagggc	21
<210>		
<211>		
<212> <213>	Borrelia burgdorferi	
<400>		
gctgad	ctaat actaattacc cgtatct	27
<210>	400	
<211>		
<212>		
~ ∠13>	Chlamyia trachomatis	
<400>	400	
gctaad	ccaat actaataagt ccaaagac	28
<210>	401	
<211>		

<212> DNA <213> Salmonella typhi	
<400> 401 cttaacctta caacgccgaa gatgttttgg cggatg	36
<210> 402	
<211> 35	
<212> DNA	
<213> Buchnera aphidocola	
<400> 402	
cttaacctta caacaccaga ggtgtttttt ataaa	35
<210> 403	
<211> 35 <212> DNA	
<213> Pseudomonas stutzeri	
<400> 403	
cttgaccata taacacccaa acaatttgat gtttg	35
<210> 404 <211> 35	
<212> DNA	
<213> Thiobacillus ferrooxidans	
<400> 404	
cttgaccata tatcaccaag cattaaagag cttcc	35
22105 AOE	
<210> 405 <211> 35	
<212> DNA	
<213> Sphingomonas paucimobilis	
<400> 405	0.5
cttgtcccta taaccttggt agtccaaggt cgagt	35
<210> 406	
<211> 35	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Description of the artificial sequence: derived from species of the genus Alcaligenes	
<400> 406	
cttgactata caacacccaa gcagttgtat ataaa	35
<210> 407 <211> 23	
<211> 23 <212> DNA	
<213> Pseudomonas cepacia	

<400> 407 aggactaacg actcgtgaag ctg	23
<210> 408 <211> 29 <212> DNA <213> Ralstonia pickettii	
<400> 408 cttgaccata taacacccaa gcaatttga	29
<210> 409 <211> 35 <212> DNA <213> Campylobacter jejuni	
<400> 409 cttatcttta ataaagcatc acttccttgt taagg	35
<210> 410 <211> 35 <212> DNA <213> Helicobacter pylori	
<400> 410 cttgtttttt gctttttgat aagataacgg caata	35
<210> 411 <211> 33 <212> DNA <213> Actinoplanes utahensis	
<400> 411 cggtaacgtg ttgagttgac cggtactaat agg	33
<210> 412 <211> 35 <212> DNA <213> Bacillus halodurans	
<400> 412 ttatccaaaa acaaatcaaa agcaacgtct cgaac	35
<210> 413 <211> 21 <212> DNA <213> Bacillus subtilis	
<400> 413 ttaaccacat tttgaatgat g	21
<210> 414 <211> 32 <212> DNA	

<213> Clostridium tyrobutyricum	
<400> 414 ttgaccaaat ttatcttact gtgcaatttt ca	32
<210> 415 <211> 56 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Frankia	
<400> 415 cggtgacgca tggagctgac cggtactaat aggccgaggg cttgtcttcg aaggtg	56
<210> 416 <211> 56 <212> DNA <213> Microbispora bispora	
<400> 416 cggtaacgtg tggagccgac cggtactaat aagccgagag gcttgacttc acatgc	56
<210> 417 <211> 56 <212> DNA <213> Mycobacterium leprae	
<400> 417 cagtaatgag tgtagggaac tggcactaac tggccgaaag cttacaaaac acacac	56
<210> 418 <211> 56 <212> DNA <213> Mycobacterium smegmatis	
<400> 418 tagtaatagg tgcaggaac tggcactaac cggccgaaaa cttacaacac cccata	56
<210> 419 <211> 56 <212> DNA <213> Mycobacterium tuberculosis	
<400> 419 cagtaatggg tgtagggaac tggtgctaac cggccgaaaa cttacaacac cctccc	56
<210> 420 <211> 39 <212> DNA <213> Mycobacterium gallisepticum	
<400> 420	

cgttgatagg ctaaaggtgt aagtgccgcg aggtattta	39
<210> 421 <211> 39 <212> DNA <213> Propionibacterium freudenreichii	
<400> 421 ttgtcccaca ctttaattct tgtagattgt tgtgaagag	39
<210> 422 <211> 41 <212> DNA <213> Rhodococcus erythropolis	
<400> 422 cagtaatgca tgcaggtgac tggtactaat aggccgagga c	41
<210> 423 <211> 41 <212> DNA <213> Rhodococcus fascians	
<400> 423 cagcaatgta tgcaggtgac tggtactaat aggccgagga c	41
<210> 424 <211> 33 <212> DNA <213> Staphylococcus aureus	
<400> 424 ttaaccaaaa taaatgtttt gcgaagcaaa atc	33
<210> 425 <211> 42 <212> DNA <213> Streptococcus faecalis	
<400> 425 ttaaccaaag aatggataag taaaagcaac ttggttattt tg	42
<210> 426 <211> 56 <212> DNA <213> Streptomyces lividans	
<400> 426 ccgcaaggtg tggaggtgac cggtactaat aggccgaggg cttgtcctca tttgct	56
<210> 427 <211> 56 <212> DNA <213> Streptomyces mashuensis	

<400> 427 cggtaacggt tggagctgac tggtactaat aggccgaggg cttgtccata gttgct	56
<210> 428 <211> 43 <212> DNA <213> Flavobacterium resinovorum	
<400> 428 cttgatccta taaccagtgt gttttgcctg gtgggtgatc gcg	43
<210> 429 <211> 28 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Synechococcus	
<400> 429 ttgacctcta acactttgat atcggcac	28
<210> 430 <211> 28 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Synechocystis	
<400> 430 ttgaccttta ttcttcattt ttctttct	28
<210> 431 <211> 34 <212> DNA <213> Chlamyia trachomatis	
<400> 431 cttggtcttt ttatgattgg aagagccgaa aggc	34
<210> 432 <211> 51 <212> DNA <213> Salmonella typhi	
<400> 432 cttaacctta caacaccgaa ggtgttttgg aggataaaag aaacagaatt t	51
<210> 433 <211> 117 <212> DNA	

<213> Buchnera aphidocola						
	caacaccaga tattaatata					60 117
<210> 434 <211> 233 <212> DNA <213> Pseud	domonas stut	zzeri				
acaaaccgaa ccaattaggg	taacacccaa agacgcaacg aagcgactca acctgatccc	ctcgcaaagc acaccgactc	gaaagcgata cccagttgaa	ccgaagcaac cttgcttgac	catcacatac gaccatagag	120
<210> 435 <211> 91 <212> DNA <213> Thiol	pacillus fe	crooxidans				
_	tatcaccaag cgggaccaga			gcaacacctc	gagggcggca	60 91
<210> 436 <211> 230 <212> DNA <213> Agrol	oacterium vi	itis				
cacgcatgag gcgccttgcg	ctcattgacc cggctcgtat cttgcggact aagaaaacgg	acgagcctat tcgtccgaaa	gctccgcgag gtgccaagca	ggcgccgaac aaacgtcgcg	gatcggcgac	120
<210> 437 <211> 162 <212> DNA <213> Adal:	ia bipunctat	:a				
aactcacaaa	tgtgagatta gttatcaggt gttgttcctg	taaattagct	ttatcaacca	ataaagatgt		
<210> 438 <211> 120 <212> DNA <213> Amyco	olatopsis on	rientalis				
	tggagttgac tagttctgaa					

<210> 439 <211> 189 <212> DNA <213> Arti:	ficial seque	ence				
	ription of t species of			e: derived	•	
aagtagggca	ataaggcaat	atgtttgccc	aaagccctca	accatcgcca	ggcaatatgg cgcagaaaaa ccctaatgcc	120
<210> 440 <211> 109 <212> DNA <213> Brady	yrhizobium]	japonicum				
	ctcattttca gtcgcccaac				gaatgaaatg	60 109
<210> 441 <211> 125 <212> DNA <213> Pseud	domonas paud	cimobilis				
					tctcaatggt gttaagctct	
<210> 442 <211> 100 <212> DNA <213> Rhodo	bacter spha	aeroides				
	cccggtaaca gaacaagcaa	2 22	-	ctctacccca	gatcagaagc	60 100
<210> 443 <211> 196 <212> DNA <213> Ricke	ettsia prowa	azekii				
aatttgtaaa	ttataatttt tgttacgatt	aatgttaaat	tagctttatc	aataaataaa	tttaagcatc aatgttattc tattgtagac	120

<210> 444

```
<211> 249
<212> DNA
<213> Pseudomonas cepacia
aggactaacg actcgtgaag ctgaccggta ctaataggcc gataacttac accacacac 60
cttttcqtga acggattcaa aagacgttca caccaggaga gggtaaaaaag aaaaaacaag 120
actgcttgcg tccactatgt ggttcccaac caacaaaccc gccacgggca cgttgcgaca 180
qqaacacaac tqaataacaa caccacaatg ttgtaaccac aaagacttcc caccccggc 240
atcagaccc
<210> 445
<211> 209
<212> DNA
<213> Ralstonia pickettii
<220>
<221> misc feature
<222>
      (202)..(202)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 445
cttgaccata taacacccaa gcaatttgag cgtaggcgcc aaattgtggt ggtgaagatg 60
atacquaccq aaaqttcqca acquaccaca acatcacata tccquattcq ctqqqctqtc 120
catctggaca ttctggctac agaatttctt gacgaccata gagcattgga accacctgat 180
cccatcccga actcagcagt gnaacgatg
<210> 446
<211> 271
<212> DNA
<213> Campylobacter jejuni
<400> 446
cttatcttta ataaagcatc acttccttgt taaggttttt aagaagactt tgaatataga 60
taatatttag agtttaatag aaatctttca agtaaagttt gtattagaac ttgctcttaa 120
cattgttttt taagtattct atataaaaac ttatcaaaga taaaagataa gaaaagaaga 180
aagagaataa aagattaagt tttattctta aattcaattt ttcaaagaat atttaaataa 240
caatgtccgt gattatacag atgtggaaac g
<210> 447
<211> 228
<212> DNA
<213> Helicobacter pylori
<400> 447
cttgtttttt gctttttgat aagataacgg caataagcgc gaatgggtta ccactgcctt 60
actgagtgta agagagttgg agttttatga agacttttat aagattaaac tttaatgagg 120
aatgagatac catctcaatg gtttaaagtt aaaggctatt aacgatcttc tttgttaaaa 180
acagctcccc tataaagaga aaggggagtt aagggtaaat gcgttttt
                                                                   228
<210> 448
<211> 155
<212> DNA
<213> Actinoplanes utahensis
<400> 448
```

tgcttgcgtc		ttcacagcaa	aggccgaggg acgaacaacc tcgat			
<210> 449 <211> 296 <212> DNA <213> Bacil	lus halodur	cans				
tttgagagaa gatcggaagc cgagcagttt	tcttgttctc cgtgatcaag taggaatcga	caaagaagcg agattattct gcgacgacag	tcgaactcga ctccgacgca cttaggtcca atcggagcgt tgttgatcgg	gcatcgcaag aagaaaaggg acacacggta	atgcgaagtt tttcgagaaa cgtgaggatc	120 180
<210> 450 <211> 122 <212> DNA <213> Bacil	.lus halodur	cans				
			gttatctagt gctctcacat			
<210> 451 <211> 209 <212> DNA <213> Clost	ridium tyrc	bbutyricum				
agaaatataa tagtacaagg	tgtttctatt	ttattataga cgaagagcgg	tcagagaata gaataaagta aatttactta	agtaaattga	taataaccat	120
<210> 452 <211> 100 <212> DNA <213> Artif	ficial seque	ence				
	ription of t species of		ial sequence Frankia	e: derived		
	tggagctgac tgcggttctc		aggccgaggg ccggttcggc	cttgtcttcg	aaggtgctac	60 100
<210> 453 <211> 85 <212> DNA <213> Micro	bispora bis	pora				
<400> 453						

	tggagccgac cgattctcga		aagccgagag	gcttgacttc	acatgcacgc	60 85
<210> 454 <211> 124 <212> DNA <213> Mycol	oacterium le	eprae				
<400> 454 cagtaatgag caaccacata ttta	tgtagggaac attcagatcc	tggcactaac actttgtcgt	tggccgaaag ggagcatcac	cttacaaaac acccccatc	acacacatcg agaacaaatt	60 120 124
<210> 455 <211> 146 <212> DNA <213> Mycol	bacterium sī	negmatis				
ttgtaagaag	tgcagggaac aaaacattga ctctccatgt	cgcaccgcgc	cggccgaaaa tcgcaaccac	cttacaacac actccacgga	cccataatcg tgatcaaacc	60 120 146
<210> 456 <211> 135 <212> DNA <213> Myco	bacterium tı	uberculosis				
<400> 456 cagtaatggg ggaaaaggga cacaccccc	tgtagggaac ggcaaaaaca accag	tggtgctaac aactcgcaac	cggccgaaaa cacatccgtt	cttacaacac cacggcgcta	cctccctttt gccgtgcgtc	60 120 135
<210> 457 <211> 169 <212> DNA <213> Myco	bacterium g	allisepticu	m			
gaggacttag	ctaaaggtgt atttgatcaa aagagcaatg	aaacattagc	tgttttttat	ctaatatgat	ctaataattc ttgttgtatt	60 120 169
<210> 458 <211> 43 <212> DNA <213> Prop	ionibacteri	um freudenr	eichii			
<400> 458 cttgtcccac	actttaattc	ttgtagattg	ttgtgaagag	ttt		43
<210> 459 <211> 182 <212> DNA <213> Rhod	ococcus ery	thropolis				

```
<400> 459
cagtaatgca tgcaggtgac tggtactaat aggccgagga cttaccacaa agaagctacg 60
cqtccactqt qcqqtatctq aaacaacaca cagatactqa tgagaaaccc tgttttctcc 120
atcccccaac accagaaact ggtgttgacg tggtgaaacc aggtgatcag aagaaggtta 180
                                                                   182
<210> 460
<211> 168
<212> DNA
<213> Rhodococcus fascians
<400> 460
cagcaatgta tgcaggtgac tggtactaat aggccgagga cttaccacaa agaagctacg 60
cqtccactqt qcaatatctq aaacaacaca cgagtagttg ttcgacaaca gaaccgaata 120
cacgaatccg ccacccacac gagtgtgggt gacaggttcg ctcgttga
<210> 461
<211> 64
<212> DNA
<213> Staphylococcus aureus
<400> 461
cttaaccaaa ataaatgttt tgcgaagcaa aatcactttt acttactatc tagttttgaa 60
tgta
<210> 462
<211> 87
<212> DNA
<213> Streptococcus faecalis
<220>
<221> misc feature
<222> (82)..(82)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 462
cttaaccaaa gaatggataa gtaaaagcaa cttggttatt ttgattcaaa cttcaatcca 60
                                                                   87
gttttgagtg aatnaagatt cnctcaa
<210> 463
<211> 123
<212> DNA
<213> Streptomyces ambifaciens
<400> 463
ccgcaaggtg tggaggtgac cggtactaat aggccgaggg cttgtcctca tttgctcgcg 60
tccactgtgt tggttctgaa accacgaaca accccatgtg ccacacatgg tgcggttgtc 120
                                                                   123
agt
<210> 464
<211> 134
<212> DNA
```

<213> Streptomyces galbus

<400> 464 cggtaacgtg tccactgtgt tcgacagttt	tggttctgaa	cggtactaat accacgaaca	aggccgaggg gccccatgct	cttgtcctca ctggcatggt	gttgctcgcg gcggcattgt	60 120 134
<210> 465 <211> 143 <212> DNA <213> Strep	otomyces gri	seus				
tccactgtgt	tggagetgae tgtteeeggg gtgtgettgt	ttgcgaacag	aggccgaggg ttatcgcacc	cttgtcctca ggttgaacag	gttgctcgcg tttcactact	60 120 143
<210> 466 <211> 137 <212> DNA <213> Stre	ptomyces liv	vidans				
<400> 466 ccgtgaggtg tccactgtgt agagtgtgct	tagttctgag	cggtactaat gcaacgaccg	aggccgaggg ttgccggatt	cttgtcctca tgagtagaac	gttgctcgcg gcacaattaa	60 120 137
<210> 467 <211> 135 <212> DNA <213> Stre	ptomyces ma	shuensis				
<400> 467 cggtaacggt ttcactgtgt tcatagtgtt	tggttctgaa	tggtactaat acaacaacca	aggccgaggg agaagcatac	cttgtccata gccgtgtgtg	gttgctcgcg gttgacagtt	60 120 135
<210> 468 <211> 114 <212> DNA <213> Flav	robacterium	resinovorum	ı			
<400> 468 cttgatccta gacacgcaca	taaccagtgt accccaacta	gttttgcctg catccctatt	gtgggtgatc cgcagcgttg	gcgactgtgc acctcaacct	cgaaacagtt cagc	60 114
<210> 469 <211> 126 <212> DNA <213> Sphi	.ngobacteriu	m multivora	ıns .			
<400> 469 ctttctcaag caaaaaagaa cataag	g cagataacac a acgaagctct	: tgttgtcttc : ttcaatagat	ctctttaatt atgtcagttg	tttagaaacg gcctgacgat	aaaagaataa gatatattat	60 120 126

<210> 470

<211> 63 <212> DNA <213> Artificial sequence
<220> <223> Description of the artificial sequence: derived from species of the genus Synechococcus
<400> 470 cttgacctct aacactttga tatcggcact ctcctctatg cagccttcaa ggctctaatc 60 tcc 63
<210> 471 <211> 67 <212> DNA <213> Artificial sequence
<220> <223> Description of the artificial sequence: derived from species of the genus Synechocystis
<400> 471 cttgaccttt attcttcatt tttcttctc ttttcttgtg cagtcttctg ggtttcttct 60 cagcaaa 67
<210> 472 <211> 17 <212> DNA <213> Borrelia burgdorferi
<400> 472 ctttggccat atttttg 17
<210> 473 <211> 111 <212> DNA <213> Chlamydia trachomatis
<400> 473 cttggtcttt ttatgattgg aagagccgaa aggcaaagac aataagaaaa agagtagaga 60 gtgcaagtac gtagaagaca agcttttaag cgtctattag tatacgtgag a 11
<210> 474 <211> 148 <212> DNA <213> Azotobacter vinelandii
<400> 474 aaacaatctg ttgccagccc cagcggggcg gcacggagag ggcgcagccg acaggccgaa 60 gatttggctg gaccgcacgc tgccggaaac aggctaccgc tatcacctac ccgattggct 12 gtcgtgtcat cgacacggcg gcaaccga 14
<210> 475 <211> 229 <212> DNA <213> Cowduria ruminantium

aatttgtaat agtttaattg	tatatgtagt	attaaaactg aatagcagaa	cagcttgtct gtgatacacc	ttttgcttat cagctacatt	tgatttactt tttgttttat tcgaacctgg	120
<210> 476 <211> 110 <212> DNA <213> Mycok	pacterium in	ntracellula	re			
	tcacacactc cccccacca				gctgaagcta	60 110
<210> 477 <211> 107 <212> DNA <213> Mycob	pacterium lu	ıfu				
	gaacacacaa cccaccaaac	-	-		tgccgcgaaa	60 107
<210> 478 <211> 120 <212> DNA <213> Mycob	pacterium si	.miae				
					cgccgaatgc cggcggccac	
<210> 479 <211> 149 <212> DNA <213> Mycob	pacterium sm	negmatis				
atgatcaaac		accaccaaaa			cactccacgg ccatgtgggt	
<210> 480 <211> 75 <212> DNA <213> Sacch	aromonospor	a azurea				
<400> 480 caaagatgct gggttgtttc		tctgcaactc	tgaaacacca	caccccggaa	acatgatcct	60 75
<210> 481 <211> 73						

```
<212> DNA
 <213> Saccharomonospora caesia
 caaagatgct acgcacccac tctgcaactc tgaaacacca caccccggaa acgatcctgg 60
 gttgtttcac agt
                                                                    73
<210> 482
<211> 75
<212> DNA
<213> Saccharomonospora cyanea
<400> 482
caaacatget acgcacccac tetgcaacte tgaaacacca ceeegggaac acaceeggeg 60
tgattgtttc ccaga
                                                                    75
<210> 483
<211> 69
<212> DNA
<213> Saccharomonospora glauca
<400> 483
caaagacgct acgcacccac tctgcgactc tgaaacacca ccctggtgtg ccagtggttg 60
tttcacaga
<210> 484
<211> 74
<212> DNA
<213> Saccharomonospora viridis
<400> 484
caaaggtgct acgcacccac tctgcaactc tgaaacacca cacccccaca acaccgggct 60
ggttgtttca caga
                                                                    74
<210> 485
<211> 304
<212> DNA
<213> Wolbachia pipientis
<400> 485
taactggtac taatagcctg attgatttat ttgctttcta tatgtgcata tgcagtgtta 60
aatattaagt taaaatttat taagtcagaa atttttgttg acttggtggc tatagcaaaa 120
atgaaccacc cgatctcatt tcgaactcgg aagtgaaact ttttagcgcc gatgatactt 180
aaaaacccaa agtaggtcgt tgccaagttt ataaaaattt cttcttattt atatcttttc 240
agtagagcga tgaaacaagg taaacataga gtagctgtga ggtaatataa ctgatctttt 300
agaa
<210> 486
<211> 34
<212> DNA
<213> Salmonella typhi
<400> 486
ttcctggcgg cactagcgcg gtggtcccac ctga
                                                                   34
```

<210> 487 <211> 22 <212> DNA <213> Buchnera aphidocola	
<400> 487 atagtgtagt ggtaccacct ga	22
<210> 488 <211> 53 <212> DNA	
<213> Pseudomonas stutzeri <400> 488 catcgccgat ggtagctgtg gggtctcccc atgtgagagt aggtcatcgt caa	53
<210> 489 <211> 35 <212> DNA	
<213> Thiobacillus ferrooxidans	
<400> 489 cttgtctggc ggccatagcg cagtggaacc acccc	35
<210> 490 <211> 52 <212> DNA <213> Agrobacterium vitis	
<400> 490 atcaacattg cccttagctg acctggtggt catggcgggg cggccgcacc cg	52
<210> 491 <211> 38 <212> DNA <213> Adalia bipunctata	
<400> 491 gccatgcaac aatgttaaca gcagactaat acaaatct	38
<210> 492 <211> 52 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Brucella	
<400> 492 atgtttgtgt tcttcgccga cctggtggtt atggcggagc ggccgcaccc ga	52
<210> 493 <211> 40 <212> DNA	

<213> Bradyrhizobium japonicum	
<400> 493 ttcgccggcc tggtggtttt agcgaagagc ctcaacccga	40
<210> 494 <211> 36 <212> DNA <213> Pseudomonas paucimobilis	
<400> 494 tcttcagcgc cgatggtagt cggggttccc cctaat	36
<210> 495 <211> 40 <212> DNA	
<213> Rhodobacter sphaeroides	
<400> 495 ttctccggtc tggtggccat agcacgagca aaacacccga	40
<210> 496 <211> 53 <212> DNA <213> Rickettsia prowazekii	
<400> 496	
ccttgcttaa gaataatata atagcattaa cagcatatta taatacaacc tat	53
<210> 497 <211> 51 <212> DNA <213> Rickettsia bellii	
<400> 497 aaatttettt aagteetgea acaacactaa cagcaaacca atacaaatet a	51
<210> 498 <211> 53 <212> DNA <213> Rickettsia rickettsii	
<400> 498 gaattttttt gagtcgtgca acaacattaa cagtagacta taatacaaat cta	53
<210> 499 <211> 47 <212> DNA <213> Sphingomonas paucimobilis	
<400> 499 gccagacaag tcaaagcctg atgaccatag caagtcggtc ccacccc	47
<210> 500	

```
<211> 33
<212> DNA
<213> Zymomonas mobilis
<400> 500
                                                                    33
gcttggtggc tatagcgtca gtgacccacc cga
<210> 501
<211> 53
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Alcaligenes
<400> 501
                                                                   53
gcaagtatcc ataccagttg tgctggcgac catagcaaga gtgaaccacc tga
<210> 502
<211> 51
<212> DNA
<213> Pseudomonas cepacia
<400> 502
cgggcggacg ggtacaaggg ttacggcggt catagcgtgg gggaaacgcc c
                                                                   51
<210> 503
<211> 48
<212> DNA
<213> Ralstonia pickettii
<400> 503
                                                                    48
catcgccgat ggtagtgtgg ggtttcccca tgcgagagta ggacatag
<210> 504
<211> 51
<212> DNA
<213> Helicobacter pylori
<400> 504
ttatctttag ctcccttttc cttgtgcctt tagagaagag gaactaccca g
                                                                   51
<210> 505
<211> 52
<212> DNA
<213> Bacillus halodurans
<400> 505
caaagaggat caagagattt gcggaagcaa gcgagtgacg aactgagcgt at
                                                                   52
<210> 506
<211> 52
<212> DNA
<213> Bacillus halodurans
```

<400> 506 ccttcatcct gaaggcattt gtttggtggc gatagcgaag aggtcacacc cg	52
<210> 507 <211> 52 <212> DNA <213> Clostridium tyrobutyricum	
<400> 507 ttagcagcaa tttacggttg atctggtaac aatgacgtga aggtaacact cc	52
<210> 508 <211> 51 <212> DNA <213> Artificial sequence	
<220> <223> Description of the artificial sequence: derived from species of the genus Frankia	
<400> 508 ggttgtatag ttgaatagtg tttcggtggt tttggcgaag gggaaacgcc c	51
<210> 509 <211> 50 <212> DNA <213> Microbispora bispora	
<400> 509 gtcctcacct gaaggettge egetateeeg egtegageag gtgaatteeg	50
<210> 510 <211> 45 <212> DNA <213> Mycobacterium leprae	
<400> 510 aattttatag agttacggtg gccacagcga tagggaaacg cccgg	45
<210> 511 <211> 52 <212> DNA <213> Mycobacterium smegmatis	
<400> 511 accacataag agaatagagt tacggcggtc catagcggca gggaaacgcc cg	52
<210> 512 <211> 49 <212> DNA <213> Mycobacterium tuberculosis	
<400> 512 agaacaaatt tgcatagagt tacggcggcc acagcggcag ggaaacgcc	49

<210> 513	
<211> 51	
<212> DNA	
<213> Rhodococcus erythropolis	
<400> 513	
ctgtgacagt ttcatagagt tacggcggtc atagcgaagg ggaaacgccc g 5.	1
organization of the state of th	_
<210> 514	
<211> 52 <211> 52	
<212> DNA	
<213> Rhodococcus fascians	
<400> 514	_
ttgacactgt ttcgcagagt tacggcggcc atagcggagg ggaaaccgcc cg 52	2
<210> 515	
<211> 53	
<212> DNA	
<213> Staphylococcus aureus	
<400> 515	
tgtataaatt acattcatat gtctggtgac tatagcaagg aggtcacacc tgt 53	2
systematic acarecatar groupged catagorapy aggreeated by	,
(010) 516	
<210> 516	
<211> 50	
<212> DNA	
<213> Streptococcus faecalis	
<400> 516	
taagaaacaa cacccagtgt ggtggcgata gcgagaagga tacacctgtt 50	J
<210> 517	
<211> 47	
<212> DNA	
<213> Streptomyces ambifaciens	
<400> 517	
	7
tcagtttcat agtgtttcgg tggtcatagc gttagggaaa cgcccgg 4	′
<210× 510	
<210> 518	
<211> 53	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Description of the artificial sequence: derived	
from species of the genus Streptomyces	
- · · · · ·	
<400> 518	
ttogotagaa coogataggg tttoggtggt cattgogtta gggaaacgco ogg 53	3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
<210> 519	
-:	

<211>	47	
<212>	DNA	
<213>	Flavobacterium resinovorum	
<400>	519	
gctgca	aaccc ctcatgcctg gtgaccatag cgagctggaa ccacccc	47
<210>	520	
<211>	52	
<212>		
	Spingobacterium multivorans	
<400>	520	
	cagac caataaagat ttttaggtgc ctatatcggc ggtgtctacc tc	52
caaga	sagae caacaaagae coccaggege ccacacogge ggogeocaco co	92
<210>	E 2.1	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Description of the artificial sequence: derived	
	from species of the genus Synechococcus	
<400>	521	
ccatag	gagtc acaccettee tggtgtetat ggeggtatgg aaccaetetg acc	53
<210>	522	
<211>	60	
<212>	DNA	
	Artificial sequence	
<220>		
	Description of the artificial sequence: derived	
12207	from species of the genus Synechocystis	
	Tiom species of the genus synechocystis	
<400>	522	
		60
aycaaa	aaccc aaaaatcttt cttggtgtct ttagcgtcat ggaaccactc cgatcccatc	00
4010s	500	
<210>		
<211>		
<212>		
<213>	Borrelia burgdorferi	
<400>		
ttttgt	cttc cttgtaaaaa ccctggtggt taaagaaaag aggaaacacc tgt	53
<210>	524	
<211>	51	
<212>		
	Chlamydia trachomatis	
	•	
<400>	524	
		51
gugada	egae goodgared goodgagar aacagagaga gggaaacacc c	ŲΤ

```
<210> 525
<211> 138
<212> DNA
<213> Sphingomonas paucimobilis
<220>
<221> misc feature
<222> (114)..(114)
<223> n = Adenosine (A) or Guanosine (G) or Cytosine (C) or Thymidine (
       T) or Inosine (I)
<400> 525
ctataacctt ggtagtccaa ggtcgagtac aactgctcga tacaagctac aacccaacaa 60
tacttettee agatteatgg ceaegetgaa caaagegtag ggtgggegge tgtneegee 120
acgcgtaact caagcgta
<210> 526
<211> 107
<212> DNA
<213> Zymomonas mobilis
<400> 526
ttttgagaac tccactgtca atgtcagcat tgctgacctg ataatgtttt ctcttagctc 60
ttttgaatat cttcgatttt caattaactt cacgcacagg tgtcata
<210> 527
<211> 167
<212> DNA
<213> Artificial sequence
<220>
<223> Description of the artificial sequence: derived
      from species of the genus Alcaligenes
<400> 527
atacaacacc caagcagttg tatataaagc atcaatcgat tcattaatat gcaaagcaac 60
ttgatttagt tatacgctta gctaaaatga acaaaatata gtaagactca atcagcccat 120
ctgtaaagat ttggaaaacg catcggcaac caataagacc aatgcaa
<210> 528
<211> 225
<212> DNA
<213> Borrelia burgdorferi
<400> 528
ctgcgagttc gcgggagagt aagttattgc cagggttttt tattttttt tagtttttat 60
gttatttaaa tggcttattc aaacaacata aaaaagaaaa tagatattga catggattaa 120
acaaaagata tatattatto tatgttgcat aaacaaattg gcaaagtaga gatggaagat 180
aaaaatatgg tcaaagtaat aagagtctat ggtgaatgcc tagga
<210> 529
<211> 681
<212> DNA
<213> Xanthomonas campestris
<400> 529
tggagcaaga cgtcattcgt cctagtcggg cgtcctcaca aattacctgc attcagagat 60
```

g g t g a g t	acctgcttt aaaagactt gtagttcga ggatcagcg atatctatc gtcgtatgt gcaacttgg tggcgatgt ccggcaata	acaggtcggt gcaagcaggg cgggtctgta gtctacccag ttgaggctga taaacgtgtc tcgcgttggg ggttatatgg aggacgtggt tccgaatggg gcgaaccccg	ggtcgtcggt gctcaggtgg acccaccact gacatgttct gttgaagcta tggctttgtt tcaagcgaat agcctgcgaa gaaacccact	tcgatcccga ttagagcgca ctgaatgtag tttataactt aggcggggac acccacacaa aagcgcacac aagtgtcggg	caggetecae cecetgataa tgcacaetta gtgacgtage ttegagtece caegtacatg ggtggatgee gagetggeaa	catattgagt gggtgaggtc agaatttata gagcgtttga taaataattg ttagctccga taggcggtca caagctttga	180 240 300 360 420 480 540 600
< <	210> 530 211> 229 212> DNA 213> Cowdu	uria ruminar	ntium				

ggtgtgtaag	tatggtaaca	tatgtagcta	accagtacta	atagcccgat	tgatttactt	60
aatttgtaat	tatatgtagt	attaaaactg	cagcttgtct	ttttgcttat	tttgttttat	120
agtttaattg	ggttggtggt	aatagcagaa	gtgatacacc	cagctacatt	tcgaacctgg	180
aagttaagcc	ttctagcgct	tatggtactt	tgtcttaagg	cacgggaga		229