; 	

И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

10 класс

В двух частях **Часть 2**

Задачник

для учащихся общеобразовательных учреждений (профильный уровень)

Под редакцией А.Г. Мордковича

Рекомендовано Министерством образования и науки Российской Федерации

6-е издание, стереотипное

Москва 2009

УДК 373.167.1:[512+517] ВБК 22.14я721+22.161я721.6 A45

На учебник получены положительные заключения Российской академии наук (№ 10106-5215/9 от 31.10.2007) и Российской академии образования (№ 01-667/5/7д от 29.10.2007)

Авторы:

А. Г. Мордкович, Л. О. Денищева, Л. И. Звавич, Т. А. Коренкова, Т. Н. Мишустина, А. Р. Рязановский, П. В. Семенов

Алгебра и начала математического анализа. 10 класс A45 В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (профильный уровень) / [А. Г. Мордкович и др.] под ред. А. Г. Мордковича. — 6-е изд., стер. — М.: Мнемозина, 2009. — 343 с.: ил.

ISBN 978-5-346-01202-3

Задачник представляет собой вторую часть комплекта из двух книг предназначенных для изучения курса алгебры и начал математического ана лиза в 10-м классе с профильной подготовкой по математике (первая часть — учебник).

УДК 373.167.1:[512+517 ББК 22.14я721+22.161я721.6

^{© «}Мнемозина», 2005

^{© «}Мнемозина», 2009

[©] Оформление. «Мнемозина», 2009 Все права защищены

ПРЕДИСЛОВИЕ ДЛЯ УЧИТЕЛЯ

Издательство «Мнемозина» выпускает учебно-методический комплект для изучения курса алгебры и начал математического анализа в 10-м классе профильной школы, состоящий из следующих книг:

- А. Г. Мордкович, П. В. Семенов. Алгебра и начала математического анализа. Часть 1. Учебник.
- А. Г. Мордкович и др. Алгебра и начала математического анализа, Часть 2. Задачник.
- $A.\ \Gamma.\ Мордкович,\ \Pi.\ B.\ Семенов.$ Алгебра и начала математического анализа. Методическое пособие для учителя.
- В. И. Глизбург. Алгебра и начала математического анализа. Контрольные работы / Под ред. А. Г. Мордковича.

У вас в руках вторая книга комплекта — задачник.

Наличие отдельного задачника позволило авторам выстроить в нем полноценную (как по объему, так и по содержанию) систему упражнений, достаточную для работы в классе, для домашних заданий, для повторения (без привлечения других источников). В каждом параграфе представлены упражнения трех уровней сложности: простые, средние (слева от номера такого упражнения помещен знак «О») и трудные (со знаком «Ф»).

В конце книги приведены ответы к большинству заданий второго и третьего уровней. Нумерация упражнений своя в каждом параграфе.

Число заданий в каждом номере — одно, два (а) и б)) или четыре (а)—г)). Все они в пределах конкретного номера однотипны, поэтому советуем вам разбирать в классе пункт а) (или пункты а) и б)), а на дом задавать пункт б) (или, соответственно, пункты в) и г)).

Данная книга естественным образом соотносится с известным задачником «Алгебра и начала анализа, 10—11» (издательство «Мнемозина», авторы — А. Г. Мордкович и др.),

который с 2000 года используется в общеобразовательных школах России: значительная часть материала, имеющаяся в упомянутом действующем задачнике, содержится и в настоящем задачнике. Это даст учителю, работавшему ранее по задачнику для общеобразовательной школы, возможность более комфортно работать по задачнику для профильной школы.

Количество упражнений в данном задачнике таково, что его достаточно для учащихся профильных классов различной математической направленности: и при четырех, и при пяти, и при шести часах в неделю на изучение курса алгебры и начал анализа. В дальнейшем предполагается выпуск методического пособия с комментариями к параграфам учебника, с решениями трудных упражнений из задачника, с разными вариантами поурочного планирования. Пока же, для удобства учителя, мы приводим три варианта примерного тематического планирования (из расчета 4, 5, 6 часов в неделю) в первой части комплекта — в учебнике.

В конце задачника появился новый (относительно предыдущих изданий) сравнительно небольшой раздел «Дополнительные задачи». В него мы включили задания с нестандартными формулировками, идеи которых навеяны материалами Единого государственного экзамена по математике. Распределение их по параграфам задачника потребовало бы переверстки всей книги, что неудобно ни нам, ни вам. Нумерация заданий в этом дополнительном разделе двойная: первые цифры указывают, к какому параграфу относится задание, а вторые продолжают нумерацию упомянутого параграфа. Так что при желании (и при возможности) дополните материалы того или иного параграфа заданиями из нового раздела.

Авторы

Задачи на повторение

п.1. Сократите дробь и найдите ее значение при заданных значениях переменных:

a)
$$\frac{9ab-3b^2}{12a^2-4ab}$$
, если $a=\frac{1}{3}$; $b=\frac{3}{5}$;

$$6)\frac{m^4-1}{m^8-1}, \text{ если } m=\frac{1}{2};$$

в)
$$\frac{24t^2 + 8st}{5s^2 + 15st}$$
, если $t = \frac{1}{4}$; $s = \frac{5}{12}$;

$$r)\frac{x^3+y^3}{x^6-y^6}$$
, если $x=2$; $y=3$.

П.2. Сократите дробь:

a)
$$\frac{3x^2-10x+3}{x^2-3x}$$
;

B)
$$\frac{2x^2-9x+4}{x^2-16}$$
;

$$6) \ \frac{5x^2 + x - 4}{x^2 + x};$$

$$\Gamma) \frac{2x^2 + 5x - 3}{x^2 - 9}.$$

П.З. Докажите, что заданная функция является линейной, и найдите ее область определения:

a)
$$y = \frac{x^4 - 5x^3 + 3x - 15}{x^3 + 3}$$
; B) $z = \frac{p^3 - 4p^2 - 5p + 20}{p^2 - 5}$;

B)
$$z = \frac{p^3 - 4p^2 - 5p + 20}{p^2 - 5}$$
;

6)
$$u = \frac{t^4 - 8t^2 + 16}{(t + 2)(t^2 - 4)}$$
;

$$r) \ s = \frac{m^6 - 16m^3 + 64}{(m^2 + 2m + 4)(m^3 - 8)}.$$

П.4. Докажите, что график данной функции принадлежит прямой, параллельной оси абсцисс; найдите область определения этой функции:

a)
$$y = \frac{4x-5}{7x-21} - \frac{x-1}{2x-6}$$
;

B)
$$y = \frac{3x+4}{5x-10} - \frac{x+4}{3x-6}$$
;

$$y = \frac{x-5}{3x+3} - \frac{3x-1}{2x+2}.$$

П.5. Докажите, что график данной функции принадлежит прямой; найдите область определения этой функции:

a)
$$y = \frac{x^3 + 5x^2 - 4x - 20}{x^2 + 3x - 10}$$
;

B)
$$y = \frac{x^3 - 4x^2 - 9x + 36}{x^2 - 7x + 12}$$
;

6)
$$y = \frac{x^3 - 2x^2 - 16x + 32}{x^2 - 6x + 8}$$
; $y = \frac{x^3 + x^2 - 4x - 4}{x^3 + 3x + 2}$.

$$\mathbf{r}) \ y = \frac{x^3 + x^2 - 4x - 4}{x^3 + 3x + 2}$$

П.6. Выразите переменную x через переменную y:

a)
$$y = \frac{3}{x-2} + 4;$$

B)
$$y = \frac{7}{r+3} - 1$$
;

6)
$$y = \frac{4}{1-x} - 2;$$

r)
$$y = \frac{2}{3-x} + 5$$
.

Упростите выражение:

II.7. a)
$$\left(\frac{10}{25-b^2} - \frac{1}{5+b} + \frac{1}{5-b}\right)(25-10b+b^2);$$

6)
$$\left(\frac{2}{m-2}-\frac{8}{m^2-4}-\frac{1}{m+2}\right)(m^2+4m+4);$$

B)
$$\left(\frac{4}{a+1} + \frac{2a}{a^2-1} - \frac{1}{a-1}\right)(a^2 + 2a + 1);$$

r)
$$\left(\frac{2}{3-x} - \frac{4x}{9-x^2} - \frac{1}{3+x}\right) (9 + 6x + x^2)$$
.

II.8. a)
$$\frac{2m}{m^2-4} - \frac{2}{m^2-4} : \left(\frac{m+1}{2m-2} - \frac{1}{m-1}\right);$$

6)
$$\left(\frac{1}{b-1} - \frac{1}{b^2-b}\right) \cdot \frac{b}{b+2} - \frac{2b}{b^2-4}$$
;

B)
$$\frac{1}{a-2} - \frac{4a}{a^2-4} \cdot \left(\frac{1}{a-1} - \frac{1}{a^2-a}\right)$$
;

r)
$$\left(\frac{c+4}{3c+3} - \frac{1}{c+1}\right)$$
: $\frac{c+1}{3} + \frac{2}{c^2-1}$.

11.9. a)
$$\left(a-1+\frac{2}{a+1}\right)$$
: $\frac{a^2+1}{a^2+2a+1}$;

6)
$$\left(b+3+\frac{18}{b-3}\right)\cdot\frac{b^2-6b+9}{b^2+9}$$
;

B)
$$\left(p-4+\frac{32}{p+4}\right)\cdot\frac{p^2+8p+16}{p^2+16};$$

r)
$$\left(x+5+\frac{50}{x-5}\right)$$
: $\frac{x^2+25}{x^2-10x+25}$.

$$\Pi.10.$$
 a) $\frac{3-x^2}{x^2-1}+\frac{3x}{x^2-1}:\frac{x}{x-1}+\frac{x-1}{x+1}$;

6)
$$\frac{5a-6}{a+2} + \frac{a}{a+2} \cdot \frac{a^2-4}{a} + \frac{10-3a}{a+2}$$
;

B)
$$\frac{3y-4}{y+1} + \frac{y}{y+1} : \frac{y}{y^2-1} + \frac{5-2y}{y+1}$$
;

r)
$$\frac{3b-2}{b^2-4} + \frac{3}{b^2-4} \cdot \frac{b+2}{3} + \frac{b}{b+2}$$
.

II.11. a)
$$\left(\frac{1}{x+2} + \frac{5}{x^2 - x - 6} + \frac{2x}{x-3}\right) \cdot \frac{x}{2x+1}$$
;

6)
$$\left(\frac{2}{x+1} + \frac{10}{x^2 - 3x - 4} + \frac{3x}{x-4}\right) : \frac{3x+2}{3};$$

B)
$$\left(\frac{3}{x-3} + \frac{4}{x^2-5x+6} + \frac{2x}{x-2}\right) : \frac{2x+1}{3};$$

r)
$$\left(\frac{2x}{x+3} + \frac{1}{x-1} - \frac{4}{x^2+2x-3}\right) \cdot \frac{x}{2x+1}$$
.

II.12. Упростите выражение и найдите его значение при указанных значениях переменной:

a)
$$\left(x - \frac{x}{1-x}\right)$$
: $\frac{3x^4}{x^2 - 2x + 1}$ при $x = \frac{1}{6}$;

б)
$$\left(m - \frac{4mn}{m+n}\right)$$
: $\left(\frac{m}{n+m} + \frac{n}{m-n} + \frac{2mn}{n^2 - m^2}\right)$ при $m = \frac{1}{5}$; $n = -\frac{4}{5}$.

П.13. Докажите, что при всех допустимых значениях переменных значение выражения не зависит от значений входящих в него переменных:

$$\frac{1}{b(abc+a+c)} - \frac{1}{a+\frac{1}{b+\frac{1}{c}}} : \frac{1}{a+\frac{1}{b}}.$$

Упростите выражение:

II.14. a)
$$10\sqrt{\frac{2}{5}} - 0.5\sqrt{160} + \sqrt{1\frac{1}{9}};$$
 B) $15\sqrt{\frac{3}{5}} - 0.5\sqrt{60} + 2\sqrt{3\frac{3}{4}};$

6)
$$4\sqrt{3\frac{1}{2}} - 0.5\sqrt{56} - \sqrt{1\frac{5}{9}};$$

r)
$$3\sqrt{2\frac{1}{3}} - \sqrt{84} - \sqrt{5\frac{1}{4}}$$
.

II.15. a)
$$\frac{3-\sqrt{5}}{3+\sqrt{5}} + \frac{3+\sqrt{5}}{3-\sqrt{5}}$$
;

B)
$$\sqrt{12\sqrt{2}} \cdot \sqrt{3\sqrt{8}}$$
;

6)
$$\sqrt{8\sqrt{3}} \cdot \sqrt{3\sqrt{12}}$$
;

r)
$$\frac{4-\sqrt{6}}{4+\sqrt{6}} + \frac{4+\sqrt{6}}{4-\sqrt{6}}$$
.

II.16. a)
$$\sqrt{2} \left(\sqrt{8 + \sqrt{2} \cdot \sqrt{9 + \sqrt{17}}} + \sqrt{8 - \sqrt{2} \cdot \sqrt{9 - \sqrt{17}}} \right)$$

6)
$$\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}} + \frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}$$
.

П.17. Докажите, что

$$\frac{\sqrt{5}-3}{2}\left(\frac{\sqrt{5}-3}{2}+1\right)\left(\frac{\sqrt{5}-3}{2}+2\right)\left(\frac{\sqrt{5}-3}{2}+3\right)=-1.$$

 $\Pi.18$. Сравните числа A и B, если:

a)
$$A = \frac{5}{3 - \sqrt{2}} + \frac{5}{3 + \sqrt{2}}$$
, $B = \sqrt{1000}$;

6)
$$A = \frac{7}{5 - 4\sqrt{2}} + \frac{7}{5 + 4\sqrt{2}}, B = -\sqrt{90}.$$

П.19. а) Известно, что $f(x) = \sqrt{x}$. Найдите, при каких значениях переменной выполняется равенство f(x + 2) = f(2x+6).

б) Известно, что $f(x) = \sqrt{x}$. Найдите, при каких значениях переменной выполняется равенство f(5x-1) - f(3x+17) = 0.

11.20. Сократите дробь:

a)
$$\frac{4\sqrt{x} - 3\sqrt{y}}{9y - 16x}$$
;

B)
$$\frac{25p-49q}{5\sqrt{p}+7\sqrt{q}}$$
;

$$6) \ \frac{196m^2 - 169n}{13\sqrt{n} + 14m};$$

$$\mathbf{r}) \ \frac{6\sqrt{ab} - 9\sqrt{c}}{81c - 36ab}.$$

п.21. Избавьтесь от иррациональности в знаменателе дроби:

a)
$$\frac{p-\sqrt{pq}+q}{\sqrt{p}-\sqrt{q}};$$

B)
$$\frac{x-3\sqrt{x}+9}{\sqrt{x}-3}$$
;

6)
$$\frac{4+2\sqrt{t}+t}{2+\sqrt{t}}$$
;

$$r) \frac{a + 2\sqrt{ab} + 4b}{\sqrt{a} + 2\sqrt{b}}.$$

Упростите выражение:

II.22. a)
$$\frac{\sqrt{x}-2}{4\sqrt{x}} + \frac{2\sqrt{x}+5}{4\sqrt{x}} - \frac{3\sqrt{x}}{4\sqrt{x}}$$
;

6)
$$\frac{11\sqrt{m}-2\sqrt{n}}{3\sqrt{m}} - \frac{2\sqrt{m}-3\sqrt{n}}{3\sqrt{m}} + \frac{\sqrt{m}-\sqrt{n}}{3\sqrt{m}};$$

$$_{B)}\ \frac{4\sqrt{p}\ -2}{2\sqrt{p}}-\frac{2\sqrt{p}\ -1}{2\sqrt{p}}+\frac{1}{2\sqrt{p}};$$

r)
$$\frac{2\sqrt{c}-\sqrt{d}}{5\sqrt{c}}+\frac{2\sqrt{c}+\sqrt{d}}{5\sqrt{c}}+\frac{\sqrt{c}-5\sqrt{d}}{5\sqrt{c}}.$$

11.23. a)
$$\left((a-b)\sqrt{\frac{a+b}{a-b}}+a-b\right)\left((a-b)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\right)$$

6)
$$\left(\sqrt{ab} - \frac{ab}{a + \sqrt{ab}}\right) : \frac{\sqrt{ab} - b}{a - b};$$

B)
$$\left(\frac{\sqrt{m}}{2} - \frac{1}{2\sqrt{m}}\right)^2 \left(\frac{\sqrt{m}-1}{\sqrt{m}+1} - \frac{\sqrt{m}+1}{\sqrt{m}-1}\right)$$
;

$$\Gamma) \quad \frac{\sqrt{(a+\sqrt{ab})(\sqrt{ab}+b)}+\sqrt{(a-\sqrt{ab})(\sqrt{ab}-b)}}{\sqrt{(a+\sqrt{ab})(\sqrt{ab}+b)}-\sqrt{(a-\sqrt{ab})(\sqrt{ab}-b)}}.$$

Решите уравнение:

$$\Pi.24. \ a) \ \frac{1}{x+2} + \frac{1}{x^2 - 2x} = \frac{8}{x^3 - 4x};$$

6)
$$\frac{x}{x+1} - \frac{1}{x-1} - \frac{2}{x^2-1} = 0;$$

B)
$$\frac{2x}{x+2} + \frac{1}{x-2} - \frac{4}{x^2-4} = 0$$
;

$$\mathbf{r}) \ \frac{2}{x^2 + 5x} + \frac{3}{2x - 10} = \frac{15}{x^2 - 25}.$$

11.25. a)
$$\frac{2x-7}{x^2-9x+14} - \frac{1}{x^2-3x+2} = \frac{1}{x-1}$$
;

6)
$$\frac{3}{x^2-9} = \frac{1}{9-6x+x^2} + \frac{3}{2x^2+6x}$$
;

B)
$$\frac{3x}{x^3-1} - \frac{5}{4x^2+4x+4} - \frac{1}{2(1-x)} = 0;$$

$$\mathbf{r}) \ 1 + \frac{4x^2}{2x^2 + 8x} + \frac{27}{2x^2 + 7x - 4} = \frac{6}{2x - 1}.$$

- **П.26.** Не решая уравнения $x^2 + 4x 2 = 0$, найдите значение выражения:
 - a) $x_1^2 + x_2^2$; 6) $\frac{1}{x_1} + \frac{1}{x_2}$; B) $\frac{x_1}{x_2} + \frac{x_2}{x_1}$; r) $x_1^3 + x_2^3$,

где x_1 , x_2 — корни заданного уравнения.

- $\Pi.27$. При каком значении m сумма квадратов корней уравнения $x^2 + (m-2)x - (m+3) = 0$ будет наименьшей?
- П.28. При каких значениях параметра а квадратный трехчлен $(2a-2)x^{2}+(a+1)x+1$ имеет отрицательные корни больше, чем -2?
- **П.29.** Известно, что корни x_1 , x_2 уравнения $x^2 3ax + a^2 = 0$ удовлетворяют соотношению $x_1^2 + x_2^2 = 1.75$. Найдите значение параметра a.
- П.30. Решите неравенство:
 - a) -2x + 3(x 2) < 5x:
- B) $8(x+1) + 3x \le 4x + 15$;
- 6) $7x + 1 \ge 12(x 2)$;
- r) 5x 4(x + 3) > 7x.

решите неравенство:

$$\Pi.31. a) \frac{2x-5}{x+4} > 0;$$

$$\mathbf{B}) \ \frac{4+3x}{1-x} \leq 0;$$

6)
$$\frac{12-4x}{2x+5} \ge 0$$
;

$$r) \; \frac{2-x}{3-4x} > 0.$$

II.32. a)
$$x^2 - 5x + 15 > 0$$
;
6) $x^2 - 12x + 27 \le 0$;

B)
$$x^2 + 5x - 36 \ge 0$$
;
F) $x^2 - 7x + 20 < 0$.

11.33. a)
$$\frac{(1+x)(2+x)}{x^2-x-2} \ge 0$$
;

B)
$$\frac{(x-2)(2x-1)}{2x^2+7x+3} > 0$$
;

6)
$$\frac{-2}{2r^2-11r+12} \le 0$$
;

r)
$$\frac{x^2-4x+3}{x^2-6x+5} \ge 0$$
.

11.34. a)
$$\frac{(1+x)(2+x)}{(1-x)(2-x)} \ge 1$$
;

B)
$$\frac{(x-3)(2-x)}{(3+x)(x+2)} < -1;$$

6)
$$\frac{2}{x} - \frac{3}{x-4} < \frac{5}{2}$$
;

r)
$$\frac{6}{x-1} - \frac{13}{x-2} \le 2$$
.

- П.35. При каких значениях параметра a любое решение неравенства $x^2 3x + 2 < 0$ будет решением неравенства $ax^2 (3a + 1)x + 3 < 0$?
- П.36. Найдите все значения параметра a, при которых неравенство $(a^2-5a+6)x^2-2(a-3)x+1>0$ выполняется при всех действительных значениях x. Существуют ли такие значения a, при которых решением неравенства является пустое множество?

Решите систему неравенств:

II.37. a)
$$\begin{cases} 3x - 1 > 2(x + 5), \\ 7x - 1 < 3(3x - 11); \end{cases}$$

B)
$$\begin{cases} 2x + 3 \le 4(x - 1) + 13, \\ x - 1 < 2(3x - 16); \end{cases}$$

6)
$$\begin{cases} 2x + 5 \ge 4 - 3x, \\ 4x - 7 < 2(4 - x); \end{cases}$$

$$(x + 5 \le 12 - 3(x - 4), \\ 8x - 3 \ge 4(x - 5).$$

§ 1. Натуральные и целые числа

- 1.1. а) Сколько существует натуральных чисел, меньших 100. и делящихся на 2?
 - б) Сколько существует натуральных чисел, меньших 100 и делящихся на 3?
 - в) Сколько существует натуральных чисел, меньших 100 и делящихся на 6?
 - г) Сколько существует натуральных чисел, меньших 100 и делящихся на 27?
- 1.2. Может ли из 101 идущих подряд натуральных чисел быть ровно одно делящееся:
 - а) на 50;
- б) на 51:
- в) на 101; г) на 10001?
- 01.3. Найдите какие-нибудь 36 идущих подряд трехзначных чисел, среди которых нет ни одного кратного 37. Какое наименьшее и какое наибольшее значение может принимать наименьшее из этих 36 трехзначных чисел?
 - 1.4. Может ли произведение 101 идущих подряд натуральных чисел не делиться:
 - а) на 51;
- б) на 101:
- в) на 606;
- г) на 4386?

Докажите утверждение:

- 01.5. а) Если каждое из натуральных чисел п и т делится на натуральное число p, то (n + m) : p и (n - m) : p.*
 - б) Если каждое из натуральных чисел п и т делится на натуральное число p, а x, y — произвольные натуральные числа, то $(nx \pm my) \vdots p$.
 - в) Если натуральное число n делится на натуральное число p, а натуральное m не делится на p, то ни сумма n + m, ни разность n-m не делятся на p.

^{*} Если натуральное число n делится на натуральное число p, то принято писать n : p.

- г) Если сумма натуральных чисел и каждое ее слагаемое, кроме последнего, делятся на некоторое натуральное чиспо р, то и это последнее слагаемое делится на р.
- $_{0.1.6.}$ а) Если n:p, то $(n\cdot m):p$ для любого натурального m.
 - б) Если x : 5, то 3x : 15.
 - в) Если x : 7 и y : 3, то (xy + 14y) : 21.
 - г) Если x : 17 и y : 23, то $(x^3 + y^3) : 40$.

Докажите, что:

- 1.7. а) Сумма двух четных чисел есть четное число;
 - б) сумма двух нечетных чисел есть четное число;
 - в) сумма четного и нечетного числа есть нечетное число;
 - г) если x, y произвольные натуральные числа, то xy(x + y)u xy(x-y) — четные числа.
- 1.8. а) Разность квадратов любых натуральных различных чисел делится на их сумму и на их разность;
 - б) разность любых натуральных различных чисел является делителем разности их кубов.
- 01.9. а) Если a + b делится на c, а a b не делится на c, то ни a, ни b не делятся на c;
 - 6) ad + bc + ac + bd делится на a + b;
 - в) если ad + bc делится на a + b, то и ac + bd делится на a+b:
 - r) если ad + bc не делится на a + b, то и ac + bd не делится $\operatorname{Ha} a + b$.
- 1.10. Объясните, почему не существует натуральных чисел a и bтаких, что:
 - a) 152a + 134b = 12345; 6) 150a + 135b = 1234.
- 1.11. Найдите все натуральные числа x и y такие, что:
 - a) 7x + 12y = 50;
- B) 5x y = 17;
- 6) 11x + 18y = 98;
- r) 5x 11y = 137.
- 01.12. Докажите, что:
 - а) $72^3 + 34^3$ делится на 106;
 - б) $(1^3 + 2^3 + 3^3 + ... + 181^3 + 182^3)$ делится на 183;
 - в) $18^3 + 26^3$ делится на 176;
 - г) $(2^3 + 3^3 + ... + 196^3 + 197^3)$ делится на 199.
- \circ 1.13. а) Число 14a + 11b не делится на 5; докажите, что и 9a + bне делится на 5.
 - б) Число 17a + 29b не делится на 13; докажите, что и 4a + 3bне делится на 13.

- 01.14. Найдите все такие натуральные числа n, при которых:
 - а) выражение $\frac{5n+4}{n}$ является натуральным числом;
 - б) выражение $\frac{5n+4}{n+3}$ является натуральным числом;
 - в) выражение $\frac{7n+12}{n}$ является натуральным числом;
 - г) выражение $\frac{7n+11}{n-5}$ является натуральным числом.
- 01.15. Найдите все такие натуральные числа n, при которыж заданное выражение является натуральным числом:
 - a) $\frac{5n^2 + 7n 12}{n}$; 6) $\frac{n^7 + 3n^2 + 36}{n^2}$.
 - 1.16. На графике заданной функции найдите все точки, обе координаты которых - целые числа:
 - a) $y = 2 + \frac{4}{x+3}$; 6) $y = \frac{5x+17}{x+7}$.
- 01.17. При каком наименьшем натуральном значении параметра а на графике заданной функции есть ровно одна точка, координатами которой являются натуральные числа? Найдите координаты этой точки:
 - a) $y = \frac{a}{x + 1}$;
- $6) y = \frac{a}{r+112}.$
- 01.18. Известно, что при некотором значении a число $b = a + \frac{2}{a}$ целое. Будет ли целым число:
 - a) $a^2 + \frac{4}{2}$;
- 6) $a^3 + \frac{8}{3}$?
- 01.19. Найдите все значения a, при которых x и y являются натуральными числами:

 - a) $x = \frac{4}{a} + 3$, $y = \frac{8}{a} + a$; 6) $x = \frac{3}{a} + 3$, $y = \frac{9}{a} + 2a$.
- 01.20. При каких значениях параметра a уравнение имеет два различных натуральных корня:
 - a) $ax^2 (2a^2 + 5)x + 10a = 0$;
 - 6) $ax^2 (a^2 + 5)x + 3a 5 = 0$?
- ●1.21. Найдите все целочисленные значения параметра а, при которых оба корня уравнения — целые числа:
 - a) $x^2 + ax + \frac{4}{a 4} = 0$;
 - 6) $(a + 2)x^2 + (2a 1)x + a^2 5a 4 = 0$.

- 1.22. Найдите последнюю цифру числа:
 a) 2¹⁰⁴⁷;
 b) 3¹⁶⁴¹;
 b) 7¹⁷⁹⁹;
 г) 9¹⁸⁶¹.
 c) 1.23. Найдите последнюю цифру числа:
 a) 2001^{2002²⁰⁰³};
 b) 1345^{67891²³⁴⁵};
 c) 23 456^{78901²³⁴⁵}.
- 01.24. Существуют ли такие натуральные числа n и k, что последняя цифра разности указанных двух степеней равна нулю: a) $627^n 833^k$; 6) $834^n 626^k$?
- •1.25. а) Докажите, что если при некотором натуральном значении n число $n^3 n$ делится на 6, то и число $(n+1)^3 (n+1)$ также делится на 6. Проверьте наличие делимости для n=1 и подумайте, для каких еще значений n имеет место делимость.
 - 6) Докажите, что если при некотором натуральном значении n число $n^3 + 5n$ делится на 6, то и число $(n+1)^3 + 5(n+1)$ также делится на 6. Проверьте наличие делимости для n=1 и подумайте, для каких еще значений n имеет место делимость.
 - в) Докажите, что если при некотором натуральном значении n число $7^n + 3n 1$ делится на 9, то и число $7^{n+1} + 3(n+1) 1$ также делится на 9. Проверьте наличие делимости для n = 1 и подумайте, для каких еще значений n имеет место делимость.
 - г) Докажите, что если при некотором натуральном значении n число $3^{2n+2}-8n-9$ делится на 64, то и число $3^{2n+4}-8(n+1)-9$ также делится на 64. Проверьте наличие делимости для n=1 и подумайте, для каких еще значений n имеет место делимость.

Найдите НОД и НОК чисел:

- 1.26. a) 154 u 210; B) 255 u 510; 6)120 u 144; C) 105 u 165.
- 1.27. a) $2^{32} \cdot 3^4 \cdot 11^{31} \text{ in } 2^{23} \cdot 3^7 \cdot 11^{14};$ 6) $4^{24} \cdot 6^{14} \cdot 9^8 \text{ in } 8^{18} \cdot 10^{17} \cdot 12^{16}.$
- 1.28. Не пользуясь калькулятором, определите, является ли данное число квадратом или кубом некоторого натурального числа: a) 75 625; б) 614 656; в) 31 104; г) 45 212 176.
- 1.29. Найдите все простые числа, меньшие: а) 50; б) 100.
- 1.30. Найдите все составные числа, меньшие: а) 50; б) 100.

- 1.31. Выпишите все пары взаимно простых составных чисел, из отрезка натурального ряда 1, 2, 3, ..., 20.
- 01.32. Докажите, что: а) наименьший отличный от 1 делитель натурального числа n, большего 1, есть простое число;
 - б) наименьший отличный от 1 делитель составного числа п не больше \sqrt{n} :
 - в) если $p_1 < p_2 < ... < p_n$ простые числа, то число $p_1 p_2 ... p_n + 1$ является либо простым числом, либо делится на простое число p, большее, чем p;
 - г) простых чисел бесконечно много.
- О1.33. Докажите, что:
 - а) любое натуральное число либо взаимно просто с заданным простым числом р, либо делится на р;
 - б) если произведение нескольких множителей делится на простое число р, то хотя бы один из множителей делится на р.
 - 1.34. Составьте разложение на простые множители числа: a) 504: б) 8281; в) 108 000; r) 12 321.
- 01.35. Найдите число делителей числа:
 - б) 504: a) 24;
- в) 180; r) 60.
- 01.36. Полагают, по определению, что $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot ... \cdot (n-1) \cdot n!$ (символ n! читают n-факториал), а 1! = 1. С каким показателем входит число 2 в разложение на простые множители числа:
 - a) 10!;
- б) 20!;
- в) 40!;
- r) 100!?
- 01.37. С каким показателем входит число 5 в разложение на простые множители числа:
 - a) 10!;
- б) 20!; в) 40!;
- r) 100!?
- 01.38. Сколькими нулями оканчивается число:
 - a) 10!:
- б) 20!:
- в) 40!;
- r) 100!?
- 01.39. Докажите, что среди данных последовательных натуральных чисел нет ни одного простого числа:
 - a) 23! + 2, 23! + 3; 23! + 4, ..., 23! + 23;
 - 6) 101! + 2, 101! + 3; 101! + 4, ..., 101! + 101.
 - в) Сколько составных чисел в каждой серии а) и б)?
 - г) Выпишите 1 000 000 последовательных натуральных чисел, среди которых нет ни одного простого.
- 01.40. Докажите, что:
 - а) произведение двух идущих подряд натуральных чисел делится на 2;

- б) произведение трех идущих подряд натуральных чисел делится на 3 и на 6;
- в) произведение четырех идущих подряд натуральных чисел делится на 4, на 12 и на 24;
- г) произведение пяти идущих подряд натуральных чисел делится на 5, на 20 и на 120.
- $_{O1.41}$. Найдите простые числа p и q, если известно, что корни уравнения $x^2 - px + q = 0$ — натуральные числа.
- $_{O1.42}$. Найдите все простые числа p и q такие, что: a) 5p + 17q = 140; 6) 7p + 3q = 86.
 - 1.43. Составьте формулу натурального числа, которое:
 - а) при делении на 5 дает остаток 4;
 - б) при делении на 11 дает остаток 7;
 - в) при делении на 7 дает остаток 2;
 - г) оканчивается числом, делящимся на 15.
 - 1.44. Найдите остаток от деления на 10 числа:
 - a) 1234;
- б) 43 215 432.
- 1.45. Число x при делении на 8 дает остаток 5. Чему может быть равен остаток от деления числа х:
 - а) на 2;
- б) на 3;
- в) на 4; г) на 6?
- 1.46. Докажите, что:
 - а) остаток от деления натурального числа на 2 равен остатку от деления его последней цифры на 2;
 - б) остаток от деления натурального числа на 5 равен остатку от деления его последней цифры на 5.
- 1.47. Докажите, что:
 - а) остаток от деления натурального числа на 4 равен остатку от деления на 4 числа, образованного его двумя последними цифрами:
 - б) остаток от деления натурального числа на 25 равен остатку от деления на 25 числа, образованного его двумя последними цифрами.
- 1.48. Найдите остаток от деления на 3 числа:
 - a) 1 234 321;
- 6) 55 555 155 555.
- 1.49. Найдите остаток от деления на 9 числа:
 - a) 1 234 567;
- б) 55 555 155 555.
- $^{\circ}$ 1.50. Докажите, что произведение $1\cdot 2\cdot 3\cdot ...\cdot 13$ делится на (1+2+3+...+13), а произведение $1\cdot 2\cdot 3\cdot ...\cdot 16$ не делится на (1+2+3+...+16).

- 1.51. В числе 23 7 47 заполните пропуск такой цифрой, чтобы: а) число делилось на 3; б) число делилось на 9.
- 1.52. В числе 233 7 4 заподните пропуск такой цифрой, чтобы:
 - а) число делилось на 4; б) число делилось на 12.
- 1.53. В числе 735 7 4 заполните пропуск такой цифрой, чтобы:
 - а) число при делении на 3 давало в остатке 2;
 - б) число при делении на 4 давало в остатке 2.
- 1.54. В числе 7345 🗌 заполните пропуск такой цифрой, чтобы:
 - а) число при делении на 9 давало в остатке 2;
 - б) число при делении на 25 давало в остатке 7.
- 01.55. Рассмотрите два предложения:
 - а) сумма квадратов двух натуральных чисел делится на 3 тогда и только тогда, когда каждое из этих чисел делится
 - б) сумма квадратов двух натуральных чисел делится на 5 тогда и только тогда, когда каждое из этих чисел делится на 5.

Докажите, что из этих утверждений верно только одно.

Найдите все пары целых чисел (x; y), удовлетворяющих уравнению:

- **01.56.a)**<math>2y x = 15;
- B) 7x + 4y = 123;
- 6) 6x y = 25; r) 5x 7y = 23.

- О1.58. Сколько делителей имеет данное число:
 - a) 315;

в) 250 000;

б) 9450;

г) 623 700?

§ 2. Рациональные числа

- 2.1. Между рациональными числами a и b поместите 5 рациональных чисел:

 - a) a = 1,1, b = 1,2; B) a = 11,0001, b = 11,0002;

 - 6) $a = \frac{11}{12}$, $b = \frac{10}{11}$; r) $a = \frac{12221}{12222}$, $b = \frac{122221}{122222}$.
- 2.2. Сколько целых чисел заключено между числами:
 - a) $\frac{1111}{37}$ u $\frac{11512}{381}$;
- б) $\frac{1234}{56}$ и $\frac{78910}{789}$?

2.4.	Среди пр	авильных д	робей вида	$\frac{n}{12}$, где n —	натуральное
			айшую к чи		
	a) $\frac{2}{7}$;	6) $\frac{3}{7}$;	B) $\frac{4}{7}$;	r) $\frac{6}{7}$.	
2.5.	Среди все	ех дробей вид	да $\frac{n}{17}$, где n –	— натурально	е число, най-
		жайшую к ч			
	a) $\frac{2}{7}$;	6) $\frac{3}{7}$;	B) $\frac{4}{7}$;	r) 5 .	
02.6.				атуральные н	
	ловой пр	ямой между		нателем, лежа	ащее на чис-
	а) $\frac{1}{3}$ и $\frac{2}{3}$;	B) $\frac{3}{4}$ M $\frac{4}{5}$	1 ;	
	б) $\frac{2}{9}$ и $\frac{2}{7}$;	r) $\frac{121}{323}$ и	$\frac{101}{232}$.	
2.7.	Найдите	число, равн	оудаленное с	от чисел:	
	a) $\frac{5}{6}$ и $\frac{6}{5}$		6) $\frac{171}{363}$ E		
2.8.	Известно	о, что 0 < а	< в. Какое	из двух чисе	$\frac{a}{b}$ или $\frac{b}{a}$
	лежит бл	лиже к 1?			
2.9.	периодич	ческой дроби	1:	йонгономоб	десятичной
	a) 1;	б) 20;	в) –4 ;	r) -111.	
2.10.		ге обыкнове: териодическ		в виде бескоя	ечной деся-
_	•	•	B) $\frac{8}{11}$;	10	
02.11.	Использ указання числа:	уя калькул: ым номером	ятор, опреде после запят	лите десятич гой в десятич	иный знак с иной записи
		01-й знак;	B) $\frac{6}{19}$, 2000-й знаг	τ;
	6) $\frac{4}{17}$, 13	23-й энак;	r) $\frac{7}{23}$, 78-й знак.	
					19

2.3. Сколько существует обыкновенных правильных несокра-

Выпишите наибольшую из этих дробей в каждом случае.

тимых дробей со знаменателем, равным:

6) 236?

a) 17;

	ческой дроби а) 10,1;		в) 4,023;	n) _0 0101
			,	,
2.15.	дробей, име	ющих одно и период каждо	ные периодическ то же число циф й из этих дробеі б) 3,(15) и 59	рр в периоде, и й в полученной
2.16.	в виде смеш	анных период	ные чисто перио ических десятич иственно ли такое	ных дробей, оп-
			в) 6,(543);	
02.17.			дставьте результа ятичной дроби:	ат в виде беско-
	a) $\sqrt{0,(4)}$;	6) $\sqrt{3,48(4)}$;	B) $\sqrt{1,(7)}$;	r) $\sqrt{4,3402(7)}$.
02.18.	мощью цирі	суля и линейк	чены точки $A(-5)$ и отметьте точку в) $D(1);$	7:
	ş	3. Иррацион	альные числа	
03.1.	Докажите и	ррационально	сть числа:	
	a) √2;	б) √3;	B) $1 - \sqrt{3}$;	r) $\sqrt{3} - \sqrt{15}$.
03.2.			окажите иррацио	
	a) $5\sqrt{2}$;	б) -7√3;	B) $5(1-\sqrt{3});$	$\Gamma) \ \frac{\left(\sqrt{3} + \sqrt{15}\right)}{12}.$
03.3.	a) Пусть $\frac{p}{q}$	— несократим	ая дробь и $q>1$. Докажите, что
	натуральная	и степень $\left(\frac{p}{q}\right)^n$,	$n \in N$, есть таки	ке несократимая
	дробь.			
20				

Запишите число в виде обыкновенной несократимой дроби:

2.14. Запишите число в виде бесконечной десятичной периоди-

б) -123;

02.13. a) 0,(36); 6) 12,0(006);

в) 12,0006;

r) 0,00123.

B) -1,2(3); r) -0,01(234).

2.12. a) 0;

- б) Пусть a^n , $n \in \mathbb{N}$ целое число. Докажите, что a либо целое, либо иррациональное число.
- в) Опираясь на утверждения а) и б), докажите иррациональность числа $\sqrt[3]{21}$.
- 03.4. Каким числом, рациональным или иррациональным, яв
 - а) сумма рационального и иррационального чисел;
 - б) разность рационального и иррационального чисел;
 - в) произведение не равного нулю рационального числа и иррационального числа;
 - г) частное рационального, не равного нулю числа, и иррационального числа?

Какое из данных чисел является иррациональным:

3.5. a) 2,(2345); 6)
$$\sqrt{0,(4)}$$
; B) $\sqrt{1,96}$; r) $\sqrt{19,6}$?

6)
$$\sqrt{0,(4)}$$
;

в)
$$\sqrt{1,96}$$

r)
$$\sqrt{19,6}$$
?

o3.6. a)
$$1 + \sqrt{12} - 2\sqrt{3}$$
; b) $2\sqrt{3} - 3\sqrt{2}$;

B)
$$2\sqrt{3} - 3\sqrt{2}$$

6)
$$(7-\sqrt{11})\cdot(7+\sqrt{11});$$

6)
$$(7-\sqrt{11})\cdot(7+\sqrt{11});$$
 r) $1+\sqrt{2}-\sqrt{3-2\sqrt{2}}$?

- 03.7. Приведите пример двух различных иррациональных чисел, таких, что:
 - а) их сумма рациональное число;
 - б) их разность рациональное число;
 - в) их произведение рациональное число;
 - г) их частное иррациональное число.
- 03.8. Приведите пример, если это возможно, двух иррациональных различных чисел, таких, что одновременно:
 - а) их сумма и разность рациональные числа;
 - б) их произведение и частное рациональные числа.
- 03.9. Составьте квадратное уравнение с целыми коэффициентами, у которого один из корней равен:

6)
$$\sqrt{3} = 5$$

6)
$$\sqrt{3} - 5$$
; B) $\sqrt{5} - 2$; r) $\sqrt{3} - \sqrt{8}$.

- 03.10. Докажите, что пайдется пара иррациональных чисел lpha и etaтаких, что:
 - а) $\alpha^2 \beta$ натуральное число;
 - б) $2\alpha^2 + 3\beta$ целое отрицательное число.
- $^{\circ 3.11}$. Докажите, что существует такое иррациональное число a, что число с является натуральным:

a)
$$c = a + \frac{1}{a}$$
;

$$6) c = a^2 + a.$$

03.12	. а) Докажите, что для любого иррационального числа α , найдется такое рациональное число β , что произведение $\alpha\beta$ — рациональное число. б) Докажите, что если точка $(x; y)$ лежит на прямой $y = kx + b$,
	где $k \neq 0, b$ — рациональные числа, то числа x и y или оба рациональные, или оба иррациональные.
03.13	. Найдите хотя бы одно рациональное число, расположенное на отрезке: а) $\lceil \sqrt{2}; \sqrt{3} \rceil$; в) $\lceil \sqrt{5} - 2; 2,236 \rceil$;
	a) $[\sqrt{2}; \sqrt{3}];$ b) $ \sqrt{5}-2; 2,236];$

noe na orpeake.	
a) $\left[\sqrt{2};\sqrt{3}\right];$	в) [√5 –

6)
$$[\sqrt{3} - \sqrt{2}; \sqrt{3} + \sqrt{2}];$$
 r) $[\sqrt{3} + \sqrt{5}; 3,(9)].$

03.14. Найдите хотя бы одно иррациональное число, расположенное на отрезке:

03.15. Найдите хотя бы одно рациональное число, расположенное на полуинтервале:

a)
$$(1,5; \sqrt{3}];$$

6)
$$[\sqrt{3} - \sqrt{2}; 0,5]$$
.

03.16. Найдите хотя бы одно иррациональное число, расположенное на полуинтервале:

a)
$$[0; \sqrt{2});$$

6)
$$(\sqrt{3} - \sqrt{2}; 0.5]$$
.

03.17. Найдите хотя бы одну точку (x; y), имеющую рациональные координаты, лежащую на прямой:

a)
$$y = x(\sqrt{2} + 1) - 2$$
;

6)
$$y = \frac{x}{3\sqrt{2}} - 2$$
.

03.18. Найдите хотя бы одну точку (x; y), имеющую иррациональные координаты, лежащую на прямой:

a)
$$u = 5x - 2$$
:

6)
$$y = \frac{x}{7} + 2$$
.

03.19. Могут ли длины сторон треугольника выражаться числами:

a)
$$\sqrt{3}$$
, $\sqrt{2}$, 1;

6)
$$\sqrt{3}$$
, $\sqrt{5}$, 4?

ullet3.20. Отметьте на числовой прямой точки A(1) и B(4). С помощью циркуля и линейки постройте точку:

a)
$$C(\sqrt{7})$$
;

6)
$$D(1-\sqrt{7})$$
;

B)
$$E\left(\frac{2}{\sqrt{7}}\right)$$

a)
$$C(\sqrt{7});$$
 6) $D(1-\sqrt{7});$ B) $E\left(\frac{2}{\sqrt{7}}\right);$ r) $G(2-\sqrt{5}).$

§ 4. Множество действительных чисел

- 4.1. На числовой прямой отмечены точки A(-2) и B(17). Найдите координаты:
 - а) середины отрезка AB;
 - б) точки M, если B середина отрезка AM;
 - в) точки M, делящей отрезок AB в отношении AM: MB = 2:3:
 - Γ) точки C числовой прямой, такой, что AC=3CB.
- 4.2. а) Отметъте на числовой прямой нули функции $y = (x-1)^2(31x-37)(41x-49);$
 - б) определите промежутки знакопостоянства функции $y = (x-1)^2(31x-37)(41x-49);$
 - в) отметьте на числовой прямой нули функции $y = (49x + 59)^2(31x + 37)^3(41x + 49);$
 - г) определите промежутки знакопостоянства функции $y = (49x + 59)^2(31x + 37)^3(41x + 49)$.
- 4.3. а) Отметьте на числовой прямой нули функции

$$y=\frac{(4x-7)^2}{(19x-43)^3(17x-39)};$$

б) определите промежутки знакопостоянства функции

$$y=\frac{(4x-7)^2}{(19x-43)^8(17x-39)};$$

в) отметьте на числовой прямой нули функции

$$y = \frac{(8x+17)^4}{(59x+69)^2(51x+73)};$$

г) определите промежутки знакопостоянства функции

$$y = \frac{(8x+17)^4}{(59x+69)^2(51x+73)}.$$

- 4.4. Укажите два рациональных и два иррациональных числа, принадлежащих данному промежутку:
 - a) $\left(0,2; \frac{1}{\sqrt{2}}\right);$ B) (0,21; 51);
 - 6) $\left(\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{2}}\right)$; r) (0,21; 0,22).

04.5. Существует ли геометрическая прогрессия, все члены которой различны и расположены на отрезке:

6) [1; 1,2]?

a) [1: 2]:

Если существует, то приведите соответствующий пример, если не существует, то докажите это.

4.6. Используя калькулятор, расположите в порядке возрастания числа:

 π , $\frac{22}{7}$, $\frac{355}{113}$, 3,14; 3,1415; $\sqrt[3]{31}$ и $\sqrt{9,91}$.

4.7. Выпишите 10 различных чисел, расположенных между числами:

в) 0,123 и 0,124;

a) 0,123 и 0,456; b) 0,123 и 0,124 б) -0,123 и -0,132; г) -1,9999 и -2.

04.8. На числовой прямой отмечены точки 0 и 1. При помощи циркуля и линейки постройте точки:

a) 1.4:

6) $\sqrt{2}$; B) $-\sqrt{10}$; F) $\sqrt{2} - \sqrt{3}$.

04.9. а) На числовой прямой отмечены точки -3 и 1. При помощи циркуля и линейки постройте точки 0 и 5.

б) На числовой прямой отмечены точки $-\sqrt{2}$ и 3. При помощи циркуля и линейки постройте точку 0.

4.10. Найдите расстояние между точками числовой прямой:

а) 2,4 и 17,9;

в) 12,14 и 18,92;

б) -4,27 и 5,03;

г) -4.27 и -5.03.

04.11. а) Докажите, что в интервале (8; 9) нет ни наименьшего ни наибольшего числа;

> б) докажите, что среди чисел, удовлетворяющих неравенству $x^2 < 5$, нет ни наименьшего ни наибольшего числа.

О4.12. Число т называют точной верхней границей числового множества X, если для любого числа $x \in X$ сираведливо неравенство $x \le m$ и для любого числа $\varepsilon > 0$ (ε — буква греческого алфавита эпсилон) существует такое число $x_i \in X$, что $x_{\varepsilon} > m - \varepsilon$. Найдите точную верхнюю границу множества X_1 если:

a) X = [0; 1];

$$\mathbf{B}) \ X = \left\{ x | x = \frac{1}{n}, \ n \in \mathbf{N} \right\};$$

r)
$$X = \left\{ x | x = \frac{1+5n}{n}, n \in N \right\}.$$

- $_{O4.13}$. Число m называют точной нижней границей числового множества X, если для любого числа $x \in X$ справедливо неравенство $x \ge m$ и для любого числа $\varepsilon > 0$ существует такое число $x_{\varepsilon} \in X$, что $x_{\varepsilon} < m + \varepsilon$. Найдите точную нижнюю границу множества X, если:
 - a) X = [0; 1]; B) $X = \left\{x | x = \frac{1}{n}, n \in N\right\};$
 - 6) X = [0; 1); $Y = \left\{x | x = \frac{1+5n}{n}, n \in N\right\}.$
- $_{
 m O4.14.}$ а) Найдите все такие значения параметра b, при которых в промежутке (-5; b] содержится ровно 8 целых чисел.
 - б) Найдите все такие значения параметра *b*, при которых в промежутке (-5; *b*) содержится ровно 8 целых чисел.
 - в) Найдите все такие значения параметра b, при которых в промежутке [b; 8] находится ровно 8 целых чисел.
 - г) Найдите все такие значения параметра b, при которых в промежутке (b; b+4] находится ровно 5 целых чисел.
- 04.15. а) Найдите отрезок наименьшей длины, содержащий 33 целых числа, большее из которых есть 12.
 - б) Найдите промежуток наибольшей длины, содержащий не более четырех целых чисел, меньшее из которых есть 18.
- 04.16. На числовой прямой отмечены точки $A(2a-6a^2)$ и B(2a-3). При каких значениях a точка C лежит между A и B, если: a) C(2); б) C(-1)?
- **О4.17.** На числовой прямой отмечены точки $A(12a + 6a^2)$ и B(-2a + 3). При каких значениях a точка C лежит между A и B, если: a) C(-2); 6) C(a)?
- 04.18. При каких значениях p числа $\frac{p}{2-p}$ и $\sqrt{2p-4}$ принадлежат отрезку [-3; 2]?
 - 4.19. Расположите на числовой прямой числа а, b, 0, если:

a)
$$\begin{cases} ab < 0, \\ a + b < 0; \end{cases}$$
 B) $\begin{cases} ab < 0, \\ a + b > 0; \end{cases}$

6)
$$\begin{cases} ab > 0, \\ a + b > 0; \end{cases}$$
 r)
$$\begin{cases} ab > 0, \\ a + b < 0. \end{cases}$$

4.20. I	Іусть $arepsilon > 0$. Множество всех точек x числовой прямой,
y	удовлетворяющих неравенству $a-\varepsilon < x < a+ \varepsilon$, называют
8	-окрестностью точки a , при этом точки a – ϵ и a + ϵ назы-
В	вают граничными точками є-окрестности точки а. При ка-
к	tих $\varepsilon > 0$ точка 12,35 дежит в ε -окрестности точки:

a) 12.5; 5) 12.2?

4.21. Точки х и у являются граничными точками некоторой ε-окрестности. Найдите ε, если:

a)
$$x=12,5, y=12,7;$$

B)
$$x = -2.9$$
, $y = 3.3$;

6)
$$x = 32,31, y = 31,32;$$
 r) $x = -31, y = -29,8.$

r)
$$x = -31$$
, $y = -29.8$.

04.22. Дано множество $P = \left\{ x | x = \frac{1}{n}, n \in N \right\}$. Определите, при каких натуральных значениях n числа из P будут лежать в є-окрестности точки 0, если:

a)
$$\varepsilon = 1$$
:

$$δ$$
) $ε = 0,1$;

6) ε = 0,1; B) ε = 0,0001; r) ε =
$$\frac{1}{-5}$$
.

$$\Gamma) \ \varepsilon = \frac{1}{\pi^5}.$$

4.23. Целой частью действительного числа х называют наибольшее целое число, не превосходящее числа х, и обозначают [x]. Найдите целую часть числа:

04.24. Докажите:

а) если [x] = k, то для любого натурального числа n верно равенство [x+n]=k+n;

б) если [x] = k, то для любого числа y справедливо неравенство $[x+y] \le k+y$.

Решите уравнение:

O4.25. a)
$$[x] = 1$$
; 6) $[x] = -11$; B) $[x] = -1$; F) $[x] = 11$.

6)
$$[x] = -11$$
:

B)
$$[x] = -1$$
:

r)
$$[x] = 11$$
.

•4.26. a)
$$[x] = x$$
;

$$\mathbf{B}) [x] = \frac{x}{2};$$

6)
$$[x + 5] = 1 - x$$
;

$$\mathbf{r})\left[\frac{x+1}{4}\right]=x+2.$$

●4.27. Постройте на координатной плоскости xOy график соотношения:

a)
$$[x] = [y];$$

B)
$$[x] < [y];$$

6)
$$[x] > [y]$$
;

r)
$$[x-1] > [y+1]$$
.

 $_{4.28}$. Дробной частью действительного числа x называют разность x - [x]; дробную часть числа x обозначают символом $\{x\}$. Вычислите:

a) {2}:

6) $\{12,81\};$ B) $\{1,08\};$ P) $\{\sqrt{2}\}.$

д. 29. Вычислите:

a) $\{-2\}$; 6) $\{-12,81\}$; B) $\{-1,08\}$; r) $\{-\sqrt{2}\}$.

 $_{04.30}$. Пусть $\omega \in [0; 1)$. Докажите, что для любого натурального aверно равенство:

a) $\{a + \omega\} = \omega$;

6) $\{a - \omega\} = 1 - \omega$.

- 04.31. a) Найдите все числа x, для которых $\{x\} = 0,123$;
 - б) найдите наибольшее целое число, не превосходящее 1000, дробная часть которого равна 0,123.
- •4.32. Постройте график заданной функции на отрезке [-4; 4]:

a) y = [x]:

B) u = [x + 4]:

6) y = [1 - x];

$$\mathbf{r)} \ y = \left\lceil \frac{1-x}{2} \right\rceil.$$

●4.33. Постройте график заданной функции на отрезке [-4; 4]:

a) $y = \{x\};$

B) $y = \{x + 4\};$

6) $y = \{1 - x\}$;

 $y = \{\frac{1-x}{2}\}.$

•4.34. Пусть $\alpha \in [-4; 0]$. Найдите отрезок наименьшей длины, содержащей все числа вида:

a) 1 + $2\alpha^2$:

B) $5\alpha^3$:

6) $5\alpha + \alpha^2$;

r) $\frac{2\alpha+1}{3\alpha-1}$.

§ 5. Модуль действительного числа

5.1. Найдите модуль числа:

a) $|1 - \sqrt{2}|$:

B) $|2,2-\sqrt{5}|$;

6) $|\sqrt{3} - \sqrt{2}|$: P) $|\sqrt{6} - 2.5|$.

5.2. Используя определение модуля, запишите выражение без знака модуля:

a)
$$|x-5|$$
;

B)
$$|x-5|-|4x-5|$$
;

6)
$$|x-5|+|x+8|$$
;

$$|x-5|\cdot(x+3)$$
.

 \circ 5.3. При каких значениях x верно равенство:

a)
$$|x|=x$$
;

B)
$$|x| = -x$$
;

6)
$$|x-7| = x-7$$
;

$$\mathbf{r}) |x^2 - 7x + 12| = 7x - x^2 - 12?$$

5.4. Найдите расстояние между точками A и B числовой прямой:

- a) A(7) u B(12);
- в) A(-7) и B(12);
- 6) A(-17) $\bowtie B(-62)$;
- г) O(0) и B(-12).

На числовой прямой отметьте все такие точки x, которые удовлетворяют заданному соотношению:

5.5. a)
$$|x| = -x$$
;

B)
$$|x| = x$$
;

6)
$$|x+2|=x+2$$
;

$$\mathbf{r}) |x-2| = 2 - x.$$

5.6. a)
$$|x| \le x$$
;

B)
$$|x+2| \le x+2$$
;

6)
$$|x| \leq -x$$
;

F)
$$|x-2| \le 2-x$$
.

5.7. a)
$$|x| \ge x$$
;

B)
$$|x + 2| \ge x + 2$$
;

6)
$$|x| \ge -x$$
:

$$\Gamma) |x-2| \geq 2-x.$$

5.8. Докажите свойства модуля действительного числа:

a)
$$|a| \ge a$$
;

B)
$$|a| > a \Leftrightarrow a < 0$$
;

6)
$$-|a| \leq a \leq |a|$$
;

r)
$$|a| + |b| + |c| = 0 \Leftrightarrow a = b = c = 0$$
.

Упростите выражение:

5.9. a)
$$|a-b|-|b-a|$$
;

6)
$$|a-c|-|a+c|-|c-a|+|-c-a|$$
.

05.10. a) $\sqrt{\pi^2 - 8\pi + 16}$;

6)
$$\sqrt{(2-\sqrt{5})^2} + \sqrt{(3-\sqrt{5})^2}$$
;

B)
$$\sqrt{4\pi^2-28\pi+49}$$
;

P)
$$\sqrt{(2.7-\sqrt{7})^2} - \sqrt{(2.6-\sqrt{7})^2}$$
.

05.11. a) $|\sqrt{51} - 7| + |\sqrt{51} - 5\sqrt{3}| + |\sqrt{75} - 11|$;

6)
$$|1 - \sqrt{2}| + |\sqrt{2} - 2\sqrt{2}| + |2\sqrt{2} - 3\sqrt{2}| + \dots + |5\sqrt{2} - 6\sqrt{2}| + |6\sqrt{2} - 9|$$
;

B)
$$|1 - \sqrt{37}| + |2 - \sqrt{37}| + |3 - \sqrt{37}| + ... +$$

$$+ |6 - \sqrt{37}| + 6 \cdot |7 - \sqrt{37}|;$$

r)
$$\left| 1 - \sqrt{137} \right| + \left| 2 - \sqrt{137} \right| + \left| 3 - \sqrt{137} \right| + \dots +$$

$$+ |11 - \sqrt{137}| + 11 \cdot |\sqrt{137} - 12|.$$

$$_{0}$$
5.12. а) Пусть $a_{1} < a_{2} < ... < a_{n}$. Докажите, что $\left|a_{1} - a_{2}\right| + \left|a_{2} - a_{3}\right| + \left|a_{8} - a_{4}\right| + ... +$

$$+ |a_{n-1} - a_n| = |a_1 - a_n|.$$

б) Пусть
$$n < \sqrt{a} < n + 1$$
. Докажите, что

$$|1-\sqrt{a}|+|2-\sqrt{a}|+|3-\sqrt{a}|+...+$$

$$+\left|n-\sqrt{a}\right|+n\cdot\left|\sqrt{a}-n-1\right|=\frac{n(n+1)}{2}.$$

Репите уравнение:

$$05.13$$
. a) $|x + 4| = 5$;

6)
$$|x-4| = |10-x|$$
;

B)
$$|x-4|=15$$
;

$$\mathbf{r}) |x-4| = |5x|.$$

05.14. a)
$$|x + 4| = -5$$
;

6)
$$|x-4|=15-\sqrt{227}$$
;

B)
$$|x-4| = \sqrt{20} - 2\sqrt{5}$$
;

r)
$$|x+4| = 3\sqrt{12} - 6\sqrt{3}$$
.

$$05.15. a) |x + 4| = 2x;$$

6)
$$|x-14| = 8 + 2x$$
:

B)
$$|x^2-4x|=3x$$
;

$$\Gamma) |x^2 + 7x| = 4x + 10.$$

Решите неравенство:

•5.16. a)
$$|x + 4| < 2x$$
;

6)
$$|x^2-4x|<3x$$
;

B)
$$|x-14| \leq 8+2x$$
;

$$|x^2 + 7x| \le 4x + 10.$$

•5.17. a)
$$|x+5| > 5x-7$$
;

B)
$$|7x+4| \ge 6+5x;$$

6)
$$|x^2+x-5|>3x$$
;

$$|-x^2-x| \geq 4x-2.$$

$$^{\circ}$$
5.18. а) Какие значения может принимать $|x-7|$, если $|x-4|=6$;

б) какие значения может принимать
$$|x+5|$$
, если $|x-2|=16$?

- **•5.19.** а) Найдите все значения a, при которых |x-2|=a, если |x - a| = 1:
 - б) найдите все значения a, при которых $|x-2a+a^2|=a$, если |x-a|=2-a.
- **•5.20.** а) Какие значения может принимать |x y|, если |x a| = 7. |y-a|=16:
 - б) какие значения может принимать |a-b|, если |x-a|=7. |x-b|=16?
- •5.21. а) Пусть |x-1|=5. Найдите все возможные значения выражения $\sqrt{\frac{2|x+4|}{x^2-x-10}}$.
 - б) Пусть |x-1| < 5. Найдите все возможные значения выражения $\sqrt{\frac{x^2 - 2x + 5}{20}}$.

Постройте график функции. Для каждой функции укажите область определения, множество значений, промежутки монотонности, нули функции:

05.22. a)
$$y = |x - 5|$$
;

B)
$$y = 2 - |1 - x|$$
;

6)
$$y = |x + 3| + |1 - x|$$
;

r)
$$y = |x + 3| - |1 - x|$$
.

05.23. a)
$$u = |x - 5| \cdot (x + 3)$$
:

6)
$$y = |x + 3| \cdot |1 - x|$$
.

•5.24. a)
$$y = |2 - \sqrt{5 - x}|$$
;

B)
$$y = |2 - \sqrt{5 + x}|;$$

6)
$$y = 2 - \sqrt{5 - |x|}$$
;

$$\mathbf{r}) \ y = \left| 2 - \sqrt{5 + |x|} \right|.$$

●5.25. Найдите наименьшее значение функции:

a)
$$y = 2 + |x + 5|$$
;

B)
$$y = |x - 2| - |x + 5|$$
;

6)
$$y = |x-2| + |x+5|$$
; r) $y = |x-2| \cdot |x+5|$.

r)
$$y = |x - 2| \cdot |x + 5|$$
.

•5.26. На рисунке 1 изображен график функции y = f(x). Постройте график уравнения:

$$\mathbf{a}) \ y = |f(x)|$$

6)
$$u = f(|x|)$$
:

$$\mathbf{B}) |u| = f(x);$$

a)
$$y = |f(x)|$$
; 6) $y = f(|x|)$; B) $|y| = f(x)$; r) $|y| = f(|x|)$.

Выполните аналогичные задания для функций y = g(x) (рис. 2), y = h(x) (рис. 3) и $y = \varphi(x)$ (рис. 4).

Puc. 1

Puc. 2

Puc. 3

Puc. 4

•5.27. Постройте график уравнения:

a) |x + 2y| = 4;

B) x + 2|y| = 4;

6) |x| + 2y = 4;

 $\mathbf{r}) |x| + 2|y| = 4.$

§ 6. Метод математической индукции

06.1. Методом математической индукции докажите:

- а) формулу общего члена арифметической прогресси $a_n = a_1 + d(n-1);$
- б) формулу суммы первых n членов арифметической при грессии $S_n = \frac{(2a_1 + d(n-1))n}{2};$
- в) формулу общего члена геометрической прогресси $b_n = b_1 q^{n-1}$;
- г) формулу суммы первых n членов геометрической при грессии $S_n = \frac{b_1(1-q^n)}{1-q}$ при $q \neq 1$.

Вычислите сумму:

06.2. a) $7 + 8 + 9 \dots + (n + 6)$;

6)
$$2 + 11 + 20 + ... + (9n - 7)$$
;

B)
$$1,35+1,4+1,45+...+(0,05n+1,3)$$
;

r)
$$0,(3) + 0,(5) + 0,(7) + ... + (0,(2)n + 0,(1))$$
.

06.3. a) $1-2+3-4+5-6...+n(-1)^{n+1}$;

6)
$$-1^2 + 2^2 - 3^2 + 4^2 - 5^2 + ... + (-1)^n n^2$$
;

B)
$$0+3+2+5+4+7+6+...+(n+(-1)^n)$$
;

r)
$$2-6+12-20+...+(-1)^{n+1}(n^2+n)$$
.

Докажите, что при любом натуральном значении n выполняется равенство:

$$06.4$$
, a) $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$;

6)
$$1+4+7+...+(3n-2)=\frac{n(3n-1)}{2}$$
;

B)
$$5+6+7+...+(n+4)=\frac{n(n+9)}{2}$$
;

r)
$$1,6+3,1+4,6+...+(1,5n+0,1)=\frac{n(3n+3,4)}{4}$$
.

$$06.5$$
. a) $1 + 2 + 4 + 8 + ... + 2^{n-1} = 2^n - 1$;

6)
$$1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} = 1,5 - \frac{1,5}{3^n}$$
;

B)
$$3-9+27-81+...+(-3)^n=\frac{3}{4}(1-(-3)^n)$$
;

r) 1 + 0,1 + 0,01 + ... +
$$0,000...01_{n-1} = 1,(1) \cdot (1 - 1)$$

06.6. a)
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

6)
$$1^2 + 4^2 + 7^2 + ... + (3n - 2)^2 = \frac{n(6n^2 - 3n - 1)}{2}$$
;

B)
$$1^2 + 3^2 + 5^2 + ... + (2n - 1)^2 = \frac{n(4n^2 - 1)}{3}$$
;

r)
$$3^2 + 7^2 + 10^2 + ... + (4n - 1)^2 = \frac{n(16n^2 + 12n - 1)}{3}$$
.

06.7. a)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
;

6)
$$1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2-1)$$
.

O6.8, a)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
;

6)
$$\frac{1}{2 \cdot 7} + \frac{1}{7 \cdot 12} + \dots + \frac{1}{(5n-3)(5n+2)} = \frac{n}{10n+4}$$
.

•6.9. Докажите, что

$$\frac{1}{a \cdot (a+d)} + \frac{1}{(a+d) \cdot (a+2d)} + \frac{1}{(a+2d) \cdot (a+3d)} + \dots + \frac{1}{(a+d(n-1))(a+dn)} = \frac{n}{a(a+dn)},$$

где $a \neq 0$, $d \neq 0$, $n \in N$:

- а) методом математической индукции;
- б) без использования метода математической индукции.

о6.10. Используя тождество из № 6.9, вычислите сумму:

a)
$$\frac{1}{4 \cdot 9} + \frac{1}{9 \cdot 14} + \frac{1}{14 \cdot 19} + \dots + \frac{1}{144 \cdot 149}$$
;

6)
$$\frac{1}{1,5\cdot 2,5} + \frac{1}{2,5\cdot 3,5} + \frac{1}{3,5\cdot 4,5} + \dots + \frac{1}{73,5\cdot 74,5}$$
.

06.11. Используя тождество из № 6.9, докажите неравенство:

a)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} < 1;$$

6)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{98 \cdot 99} < 0.99;$$

B)
$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} < 0.5;$$

r)
$$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{997 \cdot 999} < 0,4996.$$

Докажите, что при любом натуральном значении n выполняется равенство:

06.12. a)
$$1 \cdot 4 + 2 \cdot 7 + 3 \cdot 10 + ... + n(3n + 1) = n(n + 1)^2$$
;

6)
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + ... + n(n+1) = \frac{n(n+1)(n+2)}{3}$$
;

B)
$$1 \cdot 3 + 3 \cdot 5 + ... + (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$$
;

r)
$$2 \cdot 5 + 5 \cdot 8 + 8 \cdot 11 + ... + (3n - 1)(3n + 2) = n(3n^2 + 6n + 1)$$
.

06.13. a)
$$4 \cdot 2 + 7 \cdot 2^{3} + 10 \cdot 2^{5} + \dots + (3n + 1)2^{2n-1} = n \cdot 2^{2n+1}$$
;

6)
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$$
;

B)
$$1 \cdot 2^2 + 2 \cdot 3^2 + ... + (n-1)n^2 = \frac{n(n^2-1)(3n+2)}{12}$$
;

r)
$$\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n}{3^n} = \frac{3}{4} \left(1 - \frac{2n+3}{3^{n+1}} \right)$$

6)
$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right);$$

B)
$$\frac{1\cdot 4}{2\cdot 3} + \frac{2\cdot 5}{3\cdot 4} + \dots + \frac{n\cdot (n+3)}{(n+1)(n+2)} = \frac{n(n+1)}{n+2}$$
;

$$\frac{1}{1 \cdot 3 \cdot 5} + \frac{2}{3 \cdot 5 \cdot 7} + \frac{3}{5 \cdot 7 \cdot 9} + \dots + \frac{1}{(2n-1)(2n+1)(2n+3)} = \frac{n(n+1)}{2(2n+1)(2n+3)}.$$

6.15. Докажите, что для любого
$$n \in N$$
 выполняется равенство:

a)
$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + ... + n \cdot n! = (n+1)! - 1;$$

6)
$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$$
 (cm. No 1.36).

•6.16. Рассмотрите три утверждения, начните их доказывать в указанном порядке методом математической индукции и определите, какое из них является верным для любого натурального значения n, а какие нет:

a)
$$2+7+14+...+(n^2+2n-1)=\frac{n(2n^2+9n+2)}{6}$$
,

$$2+7+14+...+(n^2+2n-1)=\frac{n(2n^2+7n+3)}{6}$$

$$2+7+14+...+(n^2+2n-1)=\frac{n(2n^2+9n+1)}{6};$$

6)
$$1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \dots + \frac{2^{n} - 1}{2^{n-1}} = 2^{1-n} + 2n$$
,

$$1 + \frac{3}{2} + \frac{7}{4} + \frac{15}{8} + \dots + \frac{2^{n} - 1}{2^{n-1}} = 3^{1-n} + 3(n-1),$$

$$1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\ldots+\frac{2^{n}-1}{2^{n-1}}=2^{4-n}+2(n-1).$$

•6.17. Докажите неравенство:

а)
$$5^n > 3n - 1$$
, где $n \in N$;

6)
$$3^n > 2n^2 + 3n$$
, rge $n \in \mathbb{N}$, $n \ge 4$;

в)
$$2^n > 5n + 1$$
, где $n \in N$, $n \ge 5$;

г)
$$5^n > 3n^2 + 10n$$
, где $n \in N$, $n \ge 3$.

•6.18. Докажите методом математической индукции неравенство. Бернулли* $(1 + \alpha)^n \ge 1 + n \cdot \alpha$ при $\alpha > -1$.

Докажите, что для любого натурального n выполняется $\mathbf{n}_{\mathbf{e}}$ равенство:

•6.19. a)
$$\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{(n+1)^2} < 1;$$

6)
$$\frac{1}{5^2} + \frac{1}{9^2} + \frac{1}{13^2} + \dots + \frac{1}{(4n+1)^2} < \frac{1}{4}$$
.

•6.20. a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n+1}} > \sqrt{n+1} - 1;$$

6)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n+1}} < 2\sqrt{n+1} - 1$$
.

Докажите, что для любого натурального значения п справедливо утверждение:

$$06.21. a) (n^3 + 35n) : 6;$$

B)
$$(n^5 - n) : 30$$
:

6)
$$(n^3 + 3n^2 + 8n)$$
 : 3;

r)
$$(2n^3 + 3n^2 + 7n)$$
: 6.

$$06.22$$
. a) $(7^n - 1) : 6$;

B)
$$(17^n - 1) : 16;$$

6)
$$(2^{2n+1}+1)$$
: 3;

r)
$$(13^{2n+1}+1)$$
: 14.

•6.23. a)
$$(11^{6n+3} + 1) : 148;$$

6) $(7^{2n} - 4^{2n}) : 33;$

B)
$$(13^{4n+2}+1)$$
 : 85;
r) $(5^{n+3}+11^{3n+1})$: 17.

66.24. a)
$$(6^{2n} + 3^{n+2} + 3^n) : 11$$
:

B)
$$(5^{2+n} + 26 \cdot 5^n + 8^{2n+1}) : 59$$

•6.24. a)
$$(6^{2n} + 3^{n+2} + 3^n) : 11;$$

6) $(5^{2n+1} + 3^{n+2}2^{n-1}) : 19;$

r)
$$(5^{n+3}2^n - 125) : 45$$
.

•6.25. a)
$$(6^n + 20n + 24)$$
 : 25;

6)
$$(7^n + 12n + 17) : 18$$
.

ullet6.26. Выведите формулу n-го члена последовательности (a_n) , за данной рекуррентным соотношением:

a)
$$a_1 = 0$$
, $a_{n+1} = a_n + n$; докажите, что $a_n = \frac{(n-1)n}{2}$;

6)
$$a_1 = 0$$
, $a_{n+1} = a_n + n^2$; докажите, что $a_n = \frac{(n-1)n(2n-1)}{6}$;

в)
$$a_1 = -13$$
, $a_{n+1} = a_n + 3n$; докажите, что $a_n = \frac{(3n-29)n}{2}$;

г)
$$a_1 = 0$$
, $a_{n+1} = a_n + n^3$; докажите, что $a_n = \frac{(n-1)^2 n^2}{4}$.

^{*} Якоб Бернулли (1654—1705) — швейцарский математик.

- c_0 . a) Докажите, что количество разных наборов по два предмета, которые можно сделать из n различных предметов $(n \ge 2)$, равно $\frac{n \cdot (n-1)}{2}$.
 - б) Докажите, что количество разных наборов по три предмета, которые можно сделать из n различных предметов $(n \ge 3)$, равно $\frac{n \cdot (n-1) \cdot (n-2)}{6}$.
- $_{
 m O6.28.}$ а) Докажите, что количество разных непустых наборов, которые можно сделать из n различных предметов, равно 2^n-1 .
 - б) Докажите, что n различных предметов можно расставить в ряд n! способами (см. № 1.36).
- •6.29. Докажите, что любое натуральное число h > 4 можно представить в виде h = 3m + 5n, где m и n целые числа.
- 06.30. Докажите методом математической индукции, что у выпуклого n-угольника ($n \ge 3$):
 - а) сумма внутренних углов равна $180^{\circ}(n-2)$;
 - б) число диагоналей равно $\frac{n(n-3)}{2}$.

§ 7. Определение числовой функции и способы ее задания

7.1. На рисунке 5 изображен шестиугольник ABCDEF, составленный из двух прямоугольников, причем AB=10, BC=CD=3, DE=2.

Найдите:

- а) периметр шестиугольника АВСDEF;
- б) площадь шестиугольника АВСDEF;
- в) площадь прямоугольника AM_1M_2F , если $AM_1=x$, $0 \le x \le 7$;
- г) площадь шестиугольника AM_1M_2DEF , если $M_1M_2\|AF$ и $AM_1=x,\ 7\leqslant x\leqslant 10.$
- 7.2. Используя условие задания 7.1, выразите площадь S(x) части многоугольника *ABCDEF*, расположенной слева от прямой M_1M_2 , как функцию от длины отрезка $AM_1=x$.
- 7.3. Выполните рисунок 5 в тетради и совместите ось Ox с прямой AB, а ось Oy с прямой AF. Определите координаты точек A, M_1 , B, C, D, E, M_2 , F в полученной прямоугольной системе координат. Задайте функцию, графиком которой является:
 - а) прямая DC;
- в) отрезок DC;
- б) прямая FE;
- Γ) отрезок FE.

- 7.4. На рисунке 6 изображен сектор круга, радиус которого равен 1, а центральный угол равен ϕ , причем $\phi \in (0; 2\pi)$.
 - a) Выразите площадь S этого сектора как функцию угла $\omega: S = S(\varphi).$

Постройте график функции $S = S(\varphi)$.

- б) Вычислите значение функции $S = S(\phi)$ при $\phi = \frac{\pi}{2}$.
- в) Найдите S(2) S(1).
- r) Найдите $S(\phi + \delta) S(\phi)$.
- 7.5. Площадь треугольника со стороной a и высотой h, опущенной на эту сторону, равна 20. Выразите длину стороны а, как функцию длины высоты h и найдите область определения и множество значений этой функции.
- 7.6. Перед вами известные физические формулы, связывающие несколько переменных величин. Выразите указанную величину как функцию от величины, записанной в скобках.

a)
$$s = vt$$
, $t(s)$;

$$\mathbf{B}) \ v = v_0 + at, \ a(v);$$

6)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
, $R_1(R)$; r) $P = I^2Rt$, $I(t)$.

$$\mathbf{r}) \ P = I^2 R t, \ I(t).$$

7.7. Выясните, при каких значениях переменных х и у линии, представленные на рисунках 7—10, задают функции вида y = f(x) или/и вида $x = \phi(y)$ (за единицу масштаба принят размер одной клетки).

Puc. 7

Puc. 9

Puc. 8

Puc. 10

7.8. Из прямоугольного листа жести размером 30×50 см по углам вырезали квадраты со стороной х см и из полученной заготовки в форме «креста» согнули коробку прямоугольной формы высотой, равной x см (см. рис.11). Выразить объем полученной коробки как функцию от x.

Puc. 11

- 7.9. На рисунке представлен график функции, определенной на отрезке [a; b]; S(x) — площадь «подграфика» на отрезке $[a; x], a \le x \le b$. Выразите величину S(x) через x и постройте график функции y = S(x). По этому графику найдите область значений функции y = S(x):
 - a) puc. 12 (a = 0, b = 2); 6) puc. 13 (a = -4, b = 8).

Puc. 12

Puc. 13

Решите данное уравнение относительно y и относительно xИсходя из полученных решений и допустимых значений переменных, выясните, можно ли говорить, что данное уравнение задает функцию вида y = f(x) или/и вида $x = \phi(y)$:

- **7.10.** a) 2x + 3y = 24;
- B) 7x 5y = 35;
- 6) $\frac{x-y}{x+2u} = 2;$
- Γ) $\frac{2x+y}{x-4y}=-2$.
- - 7.12. Постройте график функции:
 - a) y = 2x 3;
- B) y = 0.5x + 1;
- 6) y = 6 3x;
- $\mathbf{r}) \ y = -2 \frac{1}{3}x.$

Постройте график функции:

7.13. a)
$$y = 2x^2$$
;

6)
$$y = -\frac{3}{r}$$
;

B)
$$y = -0.5x^2$$
; P) $y = \frac{2}{x}$.

r)
$$y = \frac{2}{r}$$
.

7.14. a)
$$y = x^2 - 4$$
;

6)
$$y = (x - 1)^2$$
;

B)
$$y = 2x^2 + 1$$
;
F) $y = -(x + 2)^2$.

7.15. a)
$$y = x^2 - 6x + 8$$
;

6)
$$y = -x^2 + 2x + 3$$
;

B)
$$y = x^2 + 4x + 7$$
;
F) $y = -2x^2 - 6x + 1$.

7.16. a)
$$y = \sqrt{x}$$
;

$$y = \sqrt{x}$$

$$\mathbf{B}) \ y = \sqrt{x-1};$$

$$6) y = \sqrt{x} + 2;$$

$$\mathbf{r)} \ y = \sqrt{x+2} - 4.$$

$$_{0}7.17. a) y = \frac{2}{x-1};$$

6)
$$y = \frac{2}{x} + 3$$
;

B)
$$y = \frac{2}{x-1} + 3$$
;

$$(5) y = \frac{2}{x} + 3;$$

$$\mathbf{r}) \ y = \frac{3x-1}{x-1}.$$

7.18. a)
$$y = |x|$$
;

6)
$$y = |x + 2|$$
;

B)
$$y = |x| - 3$$
;

 \mathbf{r}) y = |x - 1| + 2.

7.19. a)
$$y = 3 - x$$
;

6)
$$y = 4 - |x|$$
.

07.20. а) Воспользовавшись тем, что

$$\frac{x-5}{2x+2} = \frac{1}{2} \cdot \frac{(x+1)-6}{x+1} = \frac{1}{2} \left(1 - \frac{6}{x+1} \right) = \frac{-3}{x+1} + \frac{1}{2},$$

постройте график функции $y = \frac{x-5}{2x+2}$. Напишите уравнения асимптот полученной гиперболы.

б) Функцию $y = \frac{ax+b}{cx+d}$, где $c \neq 0$, $\frac{a}{c} \neq \frac{b}{d}$ называют $\partial poбно-$

линейной функцией. Докажите, что графиком дробнолинейной функции является гипербола с асимптотами $x=-\frac{d}{a}, y=\frac{a}{a}$

07.21. Постройте график функции и найдите область ее значений:

a)
$$y = 2x^2 - 1$$
, $x \in (-2; 1]$;

6)
$$y = \frac{x+1}{x-1}, x \in [0; +\infty);$$

B)
$$y = \sqrt{x+3} - 1$$
, $x \in (-2; 1]$;

P)
$$y = 2x^2 + 2x - 1$$
, $x \in [-1; 2]$.

07.22. Постройте график функции y = f(x) и найдите область ее определения и область ее значений:

a)
$$f(x) = \begin{cases} 2 - x, & -3 \le x \le 1, \\ x^2, & 1 < x \le 2; \end{cases}$$
 6) $f(x) = \begin{cases} x^2, & -3 \le x \le 1, \\ 2 - x, & 1 < x \le 2. \end{cases}$

Найдите область определения функции:

7.23. a)
$$y = \frac{1}{x^2 - 1}$$
; B) $y = \frac{x - 2}{x^2 - x - 12}$;

6)
$$y = \frac{1}{x^2 + 1}$$
; r) $y = \frac{x + 2}{x^2 + x + 12}$.

O7.24. a)
$$y = \frac{\sqrt{x-12}}{x^2-1}$$
; B) $y = \frac{\sqrt{x+12}}{x^2-1}$; c) $y = \frac{1-\sqrt{-x^2-7x+8}}{1+\sqrt{x+9}}$; r) $y = \frac{x-\sqrt{-x^2-7x+8}}{1+\sqrt{x+3}}$.

7.25. Пусть
$$f(x) = -3x + 2$$
. Найдите:
a) $f(-x)$; b) $f(x + 5)$; в) $f(f(1))$; г) $f(f(x))$.

7.26. Пусть
$$f(x) = x^2$$
. Найдите:
a) $f(2x)$; 6) $f(x-5)$; B) $f(f(3))$; г) $f(f(x))$.

07.27. Пусть $f(x) = \frac{3x+2}{x-2}$. Найдите:

a)
$$f(\frac{1}{x})$$
; 6) $f(2x-1)$; B) $f(f(5))$; r) $f(f(x))$.

07.28. a) Пусть $f(x) = x^2 + 2$. Докажите, что f(x) = f(-x).

6) Пусть
$$f(x) = -x^3 + 2x$$
. Докажите, что $f(x) = -f(-x)$.

в) Пусть
$$f(x) = \frac{1}{x}$$
. Докажите, что $(f(x))^{-1} = f\left(\frac{1}{x}\right)$.

г) Пусть
$$f(x) = x^2 + 2$$
. Докажите, что $f(|x|) = f(x)$, а $|f(x)| = f(x)$.

©7.29. Найдите область определения функции, учитывая все возможные значения параметра a:

a)
$$y = \frac{\sqrt{x-a}}{x^2-1}$$
; B) $y = \frac{\sqrt{x^2-7x+12}}{x-a}$;

6)
$$y = \sqrt{1-a \cdot |x|};$$
 $r) y = \frac{a \cdot x^3 - \sqrt{-x^2 - 7x + 8}}{1 + \sqrt{x - a}}.$

 $_{\text{O7.30.}}$ Пусть $f(x)=2-\sqrt{1-x};\ g(x)=rac{1+2x}{3+x}.$ Найдите область определения функции:

a)
$$y = f(x) + g(x);$$
 B) $y = \frac{f(x)}{g(x)};$

 $_{\text{O}}$ 7.31. Пусть $f(x) = x^2 - 3x - 4$; $g(x) = 5x - x^2$. Найдите область определения функции:

a)
$$y = \sqrt{f(x)} \cdot \sqrt{g(x)};$$
 B) $y = \frac{\sqrt{f(x)}}{\sqrt{g(x)}};$

6)
$$y = \sqrt{f(x) \cdot g(x)};$$
 $r) y = \sqrt{\frac{g(x)}{f(x)}}.$

07.32. Пусть D(f) = [-4; 1] — область определения функции y = f(x). Найдите область определения функции:

a)
$$y = 15x - f(x);$$
 B) $y = \frac{7 + 4f(x)}{4 + x};$

6)
$$y = \frac{7 + 4f(x)}{2 - x}$$
; r) $y = \frac{x - 3f(x)}{4 - x^2}$.

07.33. Пусть D(f) = [-5; 10]. Найдите область определения функ-

a)
$$y = f(-x);$$

b) $y = f(|-x|);$
c) $y = f(-x);$
d) $y = f(-x);$
e) $y = f(-x);$

6)
$$y = |f(-x)|;$$
 $y = f(-|x|).$

07.34. Пусть D(f) = [-2; 9]. Найдите область определения функции:

a)
$$y = 4f(x - 1);$$

b) $y = 4 \cdot f(x) - 1;$
6) $y = -4f(x + 11);$
r) $y = -4 \cdot f(x) + 1$

a)
$$y = 4f(x - 1);$$

b) $y = 4 \cdot f(x) - 1;$
c) $y = -4 \cdot f(x) + 11.$

 $\circ 7.35$. a) При каких значениях параметра a функция $y = 3 - \sqrt{x-a}$ определена во всех точках отрезка [-11; 7]?

> б) При каких значениях параметра a функция $y = 3 - \sqrt{x-3}$ определена во всех точках отрезка [a-1; a+1]?

●7.36. Найдите все значения параметра a, при которых областью определения функции $y = \sqrt{x-3} + \sqrt{ax+4}$ булет:

- а) луч;
- б) отрезок;
- в) единственное число (единственная точка);
- г) пустое множество.

- 07.37. а) Докажите, что, если число b принадлежит области определения функции $y = \sqrt{x^4 7x + 3} \sqrt{x^4 + 7x + 3}$, то в число (-b) принадлежит этой области.
 - 6) Докажите, что, если число b не принадлежит области определения функции $y = \sqrt{x^5 x + 3} + 3\sqrt{-x^5 + x + 3}$, то и число (-b) не принадлежит этой области.
- •7.38. Найдите все такие числа b, принадлежащие области определения D(f) функции $y=\frac{1-\sqrt{2x^2-7x-22}}{x+30}$, для которых:
 - а) число b+1 не принадлежит D(f);
 - б) число b-1 не принадлежит D(f);
 - в) оба числа b + 1 и b 1 принадлежат D(f);
 - г) отрезок [b+1; b+2] принадлежит D(f).
- **07.39.** а) Докажите, что все значения функции y = 5x + 3 положительны в окрестности точки 0 радиуса 0,2.
 - 6) Докажите, что в 0,5-окрестности точки -1 найдутся как положительные, так и отрицательные значения функции y=5x+3.
- 07.40. Пусть область значений функции y = f(x) есть отрезок [-3; 5]. Найдите множество значений функции:
 - a) $y = (f(x))^2$;

 $\mathbf{B}) \ y = (f(x))^3;$

6) y = |f(x)|;

- $\Gamma) \ u = \sqrt{4 + f(x)}.$
- 07.41. Пусть область значений функции y = f(x) есть отрезок [-3; 5]. Найдите множество значений функции:
 - $\mathbf{a)} \ y = f(x+5);$

- B) y = 5 f(x);
- 6) y = 5 f(x + 5);
- $\mathbf{r}) \ y = a f(x+b).$
- 07.42. Пусть область значений функции y = f(x-5) есть отрезок [-3; 5]. Найдите множество значений функции:
 - a) y = f(x);

- $\mathbf{B}) \ y = 5 f(x);$
- 6) y = 5 f(x + 5);
- $\Gamma) y = a f(x + b).$

•7.43. Пусть область значений функции y = f(x) есть отрезок [-3; 5]. Найдите все целочисленные значения функции:

a)
$$y = \frac{7}{5 + f(x)}$$
; B) $y = \frac{15}{7 - f(x)}$;

6)
$$y = \frac{8 + f(x)}{7 + f(x)}$$
; $r) y = \frac{f(x)}{6 - f(x)}$.

•7.44. Найдите область значений функции:

a)
$$y = |x| \cdot (x - 6) - 2$$
;

6)
$$y = x \cdot |x - 6| - 2$$
.

- •7.45. Выполните в указанном порядке задания а) и б), и, обобщив их результаты, предложите алгоритм нахождения множества E(f) значений функции y = f(x), исследуя вопрос существования корней уравнения f(x) = a, а также предложите алгоритм исследования существования корней уравнения f(x) = a, если известно E(f).
 - а) Найдите область значений функции $y = x^2 4x 1$ и определите, при каких значениях параметра b уравнение $b = x^2 4x 1$ имеет хотя бы один корень.
 - б) Определите, при каких значениях параметра a уравнение $x^2 + 4x 3 = a$ имеет котя бы один корень и найдите область значений функции $y = x^2 + 4x 3$.
- •7.46. а) Определите, при каких значениях параметра a уравнение $x^2-ax+3=0$ имеет корни, и найдите область E(f) значений функции $y=\frac{x^2+3}{x}$;
 - б) определите, при каких значениях параметра a уравнение $ax^2-4x+a=0$ имеет корни, и найдите область E(f) значений функции $y=\frac{4x}{x^2+1}$.

•7.47. Найдите область значений функции y = f(x):

a)
$$f(x) = \frac{x^2 + 3}{x}$$
;

$$\mathbf{B})\ f(x)=\frac{x^2-4}{x};$$

6)
$$f(x) = \frac{x^2 + 8}{x + 1}$$
;

$$r) \ f(x) = \frac{x^2 - 4}{x - 1}.$$

§ 8. Свойства функций

- 8.1. Найдите область определения функции, заданной графически:
 - а) рис. 14;
- б) рис. 15;
- в) рис. 16;
- r) puc. 17.

Puc. 14

Puc. 15

Puc. 17

Найдите область определения функции:

8.2. a)
$$y = \frac{x+1}{x^2-16}$$
;

B)
$$y = \frac{x^2 - 1}{x^2 - 10x}$$
;

6)
$$y = \frac{x}{x(x+5)+6}$$
;

$$\mathbf{r)} \ y = \frac{x^2 - 1}{(x - 10)x - 24}.$$

8.3. a)
$$y = \sqrt{\frac{x}{x-1}}$$
;

$$y = \sqrt{\frac{-4x}{-10-x}};$$

6)
$$y = \sqrt{\frac{x-12}{x^2-16x+48}}$$
;

6)
$$y = \sqrt{\frac{x-12}{x^2-16x+48}}$$
; $y = \sqrt{\frac{x+11}{x^2+14x+33}}$.

08.4. a)
$$y = \begin{cases} \frac{1}{x}, & x > 1, \\ x^3, & x \leq 1; \end{cases}$$

B)
$$y = \begin{cases} \frac{1}{x}, & x < 1, \\ x^3, & x \ge 1; \end{cases}$$

6)
$$y = \begin{cases} \frac{6x}{x+7}, & x \ge -1, \\ \frac{18}{2-x}, & x < -1; \end{cases}$$
 r) $y = \begin{cases} \frac{6x}{x+7}, & x < -1, \\ \frac{18}{2-x}, & x \ge -1. \end{cases}$

$$\mathbf{r}) \ y = \begin{cases} \frac{6x}{x+7}, & x < -1, \\ \frac{18}{2-x}, & x \ge -1. \end{cases}$$

Придумайте выражение, задающее функцию, определенную только при всех тех значениях х, для которых выполнено условие:

08.5. a) $x \neq 100$;

- a) $x \neq 100$; B) $x \leq 100$; 6) $100 \leq x \leq 101$; r) x = 100.
- O8.6. a) $x \ne 1$ if $x \ne 10$; b) $x \le 1$ if $x \ge 2$; c) $0 < |x| \le 1$; f) $0 < |x 2| \le 5$. 6) $0 < |x| \le 1$:

Найдите область значений функции, заданной графически:

- 8.7. а) рис. 14; б) рис. 15; в) рис. 16; г) рис. 17.

- 8.8. а) рис. 18; б) рис. 19; в) рис. 20; г) рис. 21.

Puc. 18

Puc. 19

Puc. 20

Puc. 21

Найдите область значений функции:

8.9. a)
$$y = 1 - 2x$$
;

6)
$$y = 1 - 2x^2$$
;

$$\mathbf{B}) \ y = 3x^2 - 12x + 1;$$

r)
$$y = -3x^2 - 12x + 1$$
, $x \in [-6, 1)$.

08.10. a)
$$y = 1 - \frac{2}{x}$$
;

B)
$$y = \frac{3}{x} - 12;$$

6)
$$y = \frac{x-1}{x+1}$$
;

$$\mathbf{r)} \ y = \frac{4x}{12x + 5}.$$

08.11. a)
$$y = \sqrt{x} + 5$$
;

B)
$$y = 2 - \sqrt{x+3}$$
;

6)
$$y = 1 - 2\sqrt{3 - x}$$
:

r)
$$y = -1 + 2\sqrt{-5 - 10x}$$
.

08.12. a)
$$y = 2 + \frac{x}{|x|}$$
;

$$\mathbf{B}) \ y = \ 2x - \frac{x}{|x|};$$

6)
$$y = x^2 + 2x - \frac{x}{|x|}$$
;

r)
$$y = x^2 - 2x + \frac{x+1}{|x+1|}$$
.

ullet8.13. Найдите область значений функции y = f(x), если:

a)
$$f(x) = \frac{|x|}{x} + \frac{|x-1|}{x-1} + \frac{|x-2|}{x-2} + \frac{|x-3|}{x-3}$$
;

6)
$$f(x) = \frac{|x|}{x} - \frac{|x-1|}{x-1} + \frac{|x-2|}{x-2} - \frac{|x-3|}{x-3}$$
.

Найдите все значения параметра a, при которых уравнение имеет решение:

08.14. a)
$$x^2 + 3 = a$$
;

B)
$$x^2 - 36 = -a$$
;

6)
$$\frac{1}{2-x} = a;$$

r)
$$\frac{1}{2+x} = 1-a$$
.

08.15. a)
$$x^2 + 5x + 3 = a$$
;

6)
$$2x^2 + 5x - 3 = 7 - a$$
.

68.16. a)
$$x + |x + 2| - 2 = a$$
;

6)
$$5x + |x - 7| - 2 = 3a$$
.

8.17. Используя условия заданий 8.7 и 8.8, определите промежутки монотонности функций, заданных графически.

08.18. Найдите промежутки монотонности функции:

a)
$$u = 2x^2 - 3x + 4$$
:

a)
$$y = 2x^2 - 3x + 4$$
; B) $y = 5x^2 + 6x - 11$;

6)
$$y = \sqrt{1-x}$$
; $y = \sqrt{3+5x}$.

$$\mathbf{r})\ y = \sqrt{3} + 5x$$

_{08.19}. Докажите:

- а) если функция y = f(x) возрастает на промежутке X и a > 0, то при любом значении b функция $y = a \cdot f(x) + b$ возрастает на X;
- б) если функция y = f(x) убывает на промежутке X и a < 0, то при любом значении b функция $y = a \cdot f(x) + b$ возрастает на X;
- в) если функция y = f(x) убывает на промежутке X и a > 0, то при любом значении b функция $y = a \cdot f(x) + b$ убывает на X:
- r) если функция y = f(x) возрастает на промежутке X и a < 0, то при любом значении b функция $y = a \cdot f(x) + b$ убывает на X.

о8.20. Докажите:

- а) если каждая из двух функций возрастает на промежутке X, то их сумма также возрастает на этом промежутке:
- 6) если каждая из двух функций убывает на промежутке X, то их сумма также убывает на этом промежутке.
- 08.21. Определите промежутки монотонности функции:

a)
$$y = 4 - 3\sqrt{x - 5}$$
;

B)
$$y = -3 + 5\sqrt{2 - x}$$
;

6)
$$y = \sqrt{x+1} + \sqrt{2x-3}$$
;

6)
$$y = \sqrt{x+1} + \sqrt{2x-3}$$
; $y = \sqrt{1-x} + \sqrt{3-4x}$.

- 08.22. a) Пусть функция y = f(x) возрастает и принимает только положительные значения на промежутке X. Докажите, что функция $y = (f(x))^2$ возрастает на промежутке X.
 - б) Пусть функция y = f(x) убывает и принимает только положительные значения на промежутке Х. Докажите, что функция $y = (f(x))^2$ убывает на промежутке X.
 - в) Пусть функция y = f(x) возрастает и принимает только отрицательные значения на промежутке X. Докажите, что функция $y = (f(x))^2$ убывает на промежутке X.
 - \mathbf{r}) Пусть функция y = f(x) убывает и принимает только отрицательные значения на промежутке Х. Докажите, что функция $y = (f(x))^2$ возрастает на промежутке X.

Найдите промежутки монотонности функции:

$$^{\circ}8.23.$$
 a) $y = (x^2 + 1)^2;$

B)
$$y = (x^2 - 3x + 10)^2$$
;
r) $y = (x^2 + 2)^2 - 2x^2 - 3$.

5)
$$y = (x^4 + 1)^2$$
,
 $y = x^4 + 6x^2 + 15$;

$$\mathbf{r}) \ y = (x + 2) - 2x - 3$$

O8.24. a)
$$y = (x^2 - 1)^2$$
;
6) $y = (x^2 - 9)^2 + 6$;

$$y = (x^2 - 3x - 10)^2;$$

6)
$$u = (x^2 - 9)^2 + 6$$

B)
$$y = (x^2 - 3x - 10)^2$$
;
r) $y = (x^2 - x - 20)^2 - 18$.

8.25. На рисунке изображен график функции y = f(x). Найдите промежутки монотонности функции $y = (f(x))^2$:

а) рис. 22;

б) рис. 23;

в) рис. 24;

г) рис. 25.

Рис. 22

Puc. 23

Puc. 24

Puc. 25

- **08.26.** а) Пусть функция y = f(x) возрастает на X и принимает на X только положительные значения. Докажите, что функция $y = \frac{1}{f(x)}$ убывает на X.
 - б) Пусть функции y = f(x) возрастает на X и принимает на X только отрицательные значения. Докажите, что функция $y = \frac{1}{f(x)}$ возрастает на X.
 - в) Пусть функция y = f(x) убывает на X и принимает на X только положительные значения. Докажите, что функция $y = \frac{1}{f(x)}$ возрастает на X.
 - г) Пусть функция y = f(x) убывает на X и принимает на X только отрицательные значения. Докажите, что функция $y = \frac{1}{f(x)}$ убывает на X.

08.27. Найдите промежутки монотонности функции:

a)
$$y = \frac{1}{x^4 + 1}$$
;

B)
$$y = \frac{1}{x^2 - 1}$$
;

6)
$$y = \frac{1}{x^2 + 6x + 10}$$
; r) $y = \frac{1}{x^2 - 4x - 12}$.

$$y = \frac{1}{x^2 - 4x - 12}$$

 $_{08.28}$. На рисунке изображен график функции y=f(x). Найдите промежутки монотонности функции $y = \frac{1}{f(x)}$:

- а) рис. 26;
- б) рис. 27; в) рис. 28; г) рис. 29.

Puc. 26

Puc. 27

Puc. 28

Puc. 29

08.29. Пусть функция y = f(x) возрастает на R. Решите:

- a) уравнение $f(3x + 2) = f(4x^2 + x)$;
- б) неравенство $f(3x + 2) < f(4x^2 + x)$;
- B) уравнение $f(3x 48) = f(-x^2 + x)$;
- г) неравенство $f(3x 48) \le f(-x^2 + x)$.

08.30. Пусть функция y = f(x) убывает на **R.** Решите:

a) уравнение
$$f\left(\frac{1}{3x^2+4x-7}\right) = f\left(\frac{1}{2x^2+3x-5}\right);$$

6) неравенство
$$f\left(\frac{1}{3x^2 + 4x - 7}\right) \ge f\left(\frac{1}{2x^2 + 3x - 5}\right)$$
.

- **•8.31.** Пусть функция y = f(x) определена на интервале (-1; 1) и возрастает на нем. Решите:

 - а) уравнение $f(3x + 2) = f(4x^2 + x)$; 6) неравенство $f(3x + 2) < f(4x^2 + x)$.
- **•8.32.** Пусть функция y = f(x) определена на отрезке [-1; 1] и убывает на нем. Решите:
 - a) уравнение $f(3x + 2) = f(4x^2 + x)$;
 - б) неравенство $f(3x + 2) < f(4x^2 + x)$.
- **08.33.** Докажите:
 - а) если функция y = f(x) возрастает или убывает на промежутке X, то уравнение f(x) = a не может иметь более одного корня на X;
 - б) если функция y = f(x) возрастает на промежутке X, а функция y = g(x) убывает на промежутке X, то уравнение f(x) = g(x) не может иметь более одного корня на X.

Решите уравнение:

08.34. a)
$$x^3 = 2 - x$$
;

$$\mathbf{B}) \sqrt{x+1} = 5 - x;$$

6)
$$x^3 = 10 - x$$
;

r)
$$3x = \sqrt{10 - x}$$
.

•8.35. a)
$$\sqrt{x} + \sqrt{x-5} = 23 - 2x$$
;

$$6) \frac{5}{x+1} = 8\sqrt{x};$$

B)
$$\sqrt{x} + \sqrt{x-3} = 43 - 6x - x^2$$
;

$$\mathbf{r}) \ (x^2 + 4x + 9)\sqrt{4x + 1} = 9.$$

- 8.36. Для функций, графики которых изображены на рисунках к упражнениям 8.7, 8.8, найдите экстремумы, а также наибольшие и наименьшие значения.
- 8.37. а) Докажите, что функции, графики которых изображены на рисунках к упражнениям 8.7, 8.8, ограничены в области их определения.
 - б) Докажите: если функция имеет наибольшее и наименьшее значение на множестве M, то она ограничена на этом множестве.

- 38. Убедитесь, что функция, график которой изображен на заданном рисунке, не имеет ни наибольшего, ни наименьшего значений; задайте эту функцию аналитически:
 - а) рис. 30;

б) рис. 31.

Puc. 30

Puc. 31

- 8.39. а) Приведите пример функции, определенной во всех точках отрезка [a, b], ограниченной на этом отрезке, но не имеющей ни наибольшего, ни наименьшего значений на отрезке [a, b].
 - б) Приведите пример функции, определенной и ограниченной на R, но не имеющей ни наибольшего, ни наименьшего значений на R.
- 08.40. Докажите: если функция y = f(x) имеет наибольшее и наименьшее значения на отрезке [a, b], а отрезок $[a_1, b_1]$ является частью отрезка [a, b], то:
 - а) $y_{\text{вам6}}$ на [a, b] не меньше $y_{\text{вам6}}$ на $[a_1, b_1]$;
 - а) $y_{\text{наим}}$ на [a, b] не больше $y_{\text{наим}}$ на $[a_1, b_1]$.
- 08.41. Докажите: если функция y = f(x) имеет наибольшее и наименьшее значения на отрезке [a, b], причем $y_{\text{нам}} = y_{\text{нам}}$, то функция является постоянной на отрезке [a, b].
- $^{\circ}$ 8.42. Докажите, что если $y = x + \frac{1}{x}$, то:
 - а) при x < 0 $y_{\text{mann}} = -2$; б) при x > 0 $y_{\text{mann}} = 2$.
- ОВ.43. Найдите наибольшее и/или наименьшее значение функции $y = 3x^2 - 24x - 100$:
 - а) на отрезке [-1; 5]; в) на луче $[0; +\infty);$
- - б) на луче ($-\infty$; 0];
- г) на **R**.

- 08.44. Найдите наибольшее и/или наименьшее значение функции $y = -2x^2 12x + 3$:
 - а) на отрезке [-1; 3]; в) на луче [-4; +∞);
 - б) на луче $(-\infty; -4];$ г) на R.
- 08.45. Найдите наибольшее значение функции:
 - a) $y = \frac{2}{x^2 + 1}$;
- B) $y = \frac{2}{x^2 4x + 10}$;
- $6) \ y = \frac{2}{x^4 + 8x^2 + 1};$
- $\mathbf{r)} \ y = \frac{2}{x^4 8x^2 + 17}.$
- ●8.46. Используя результаты упражнения 8.42, найдите наибольшее и наименьшее значения функции:
 - a) $y = \frac{2x}{r^2 + 1}$;

- B) $y = \frac{10x}{x^2 + 4}$;
- $6) \ y = \frac{4x 4}{x^2 2x + 17};$
- $\Gamma) \ y = \frac{49(x-2)}{x^2-4x+53}.$
- •8.47. Найдите наименьшее значение функции:
 - a) y = |x| + |x 2|;
 - 6) y = |x 1| + |x 3| + |x 5|;
 - B) u = |x| + |x 2| + |x 4|:
 - $\mathbf{r}) \ y = |x| + |x 1| + \dots + |x n|, \ n \in \mathbb{N}.$
- **08.48.** Найдите наибольшее и наименьшее значения функции для каждого значения параметра *a*:
 - a) $y = x^2 + 4x + 5a$ на отрежке [-1; 1];
 - б) $y = -x^2 + 4x a$ на отрезке [-1: 3].
- ●8.49. Найдите наибольшее и наименьшее значение функции для каждого значения параметра a:
 - a) $y = x^2 4x$ на отрезке [-1; a];
 - б) $y = -x^2 + 2x 3$ на отрезке [a; 3].
- **•8.50.** а) Функция $y = \frac{15x^2 + 60}{x^4 16}$ определена только для допустимых целых значений x; найдите ее наибольшее значение.
 - 6) Функция $y = \frac{14x^2 + 126}{81 x^4}$ определена только для допустимых целых значений x; найдите ее наименьшее значение.

8.51. Докажите теорему: если функции y = f(x), y = g(x) опредедены на множестве X и наибольшее значение одной из этих функций на X, равное A, совпадает с наименьшим значением другой функции на том же множестве, то уравнение f(x) = g(x) равносильно на X системе уравнений $\begin{cases} f(x) = A, \\ \vdots \end{cases}$

48.52. Опираясь на теорему из упражнения 8.51, решите уравнение:

a)
$$\sqrt{x^{100} + 49} = 7 - x^4$$
;

6)
$$\sqrt{x^2-2x+5}=1+2x-x^2$$
:

B)
$$\sqrt{x^{22}+64}=8-x^{12}-x^{14}$$
;

$$\Gamma) \sqrt{-x^2 - 4x - 1} = x^2 + 4x + 7.$$

§ 9. Периодические функции

- 9.1. Функция y = f(x) периодическая, с периодом T = 2. Известно, что f(0). Вычислите:
 - a) f(2):
 - 6) f(-22);
 - в) f(12k + 8), где k некоторое целое число;
 - г) f(4-8k), где k некоторое целое число.
- 9.2. Функция y = f(x) периодическая, с периодом $T = \sqrt{5}$. Известно, что f(1) = 1, f(-1) = 7. Вычислите:

 - a) $f(1+8\sqrt{5})$; 6) $f(-1-22\sqrt{5})$.
- 9.3. Может ли областью определения периодической функции быть:
 - а) отрезок;
- в) луч;
- б) интервал;
- г) множество целых чисел?
- 9.4. На рисунке изображена часть графика периодической функции с периодом T на промежутке I. Постройте график этой функции на промежутке I_1 :
 - a) (puc. 32) T = 2, $I = \{-1, 2\}$; $I_1 = \{-4, 8\}$;
 - 6) (puc. 33) T = 3, I = [1; 4); $I_1 = [-3; 10, 5)$;
 - B) (pic. 34) T = 4, I = (-3; 1]; $I_1 = (-5; 11]$;
 - г) (рис. 35) T = 1.5; I = (0; 1.5); $I_1 = (-3; 6)$.

Puc. 32

Puc. 33

Puc. 35

- **09.5.** Пусть y = f(x) периодическая функция с периодом 3, определенная для всех действительных значений х, причем f(3) = 7, f(4) = 11, f(17) = 13 и f(0,1) = 0. Вычислите:
 - a) f(141); f(-134); f(332) f(-8,9);
 - 6) f(17,3) f(20,3); f(32,(3)) f(332,(3)); f(0,(1)) f(-2,(8));
 - в) f(10); f(100); f(111111);
 - r) $f(13,1) \cdot f(14,1) \cdot f(15,1) \cdot f(16,1)$; f(8888...88) - f(22222...22).

- $\mathbf{09.6.}$ Пусть y = f(x) периодическая функция с периодом 4, определенная для всех действительных значений х, причем f(3) = 5; f(4) = 11; f(5) = 9 и f(6) = 0. Сравните:
 - a) f(1) n f(31);

- B) f(-17) is f(831);
- б) f(11) и f(110);
- r) $f(6 + \sqrt[3]{3})$ u $f(\sqrt[3]{3} 6)$.

 $_{\rm O}$ 9.7. Является ли функция y = f(x) периодической:

a)
$$f(x) = 2;$$

B)
$$f(x) = \frac{x^2 - 9}{x - 3} - 3;$$

6)
$$f(x) = \frac{1-x^4}{1-x^2} - \sqrt{x^4}$$
;

r)
$$f(x) = \frac{1-x^4}{1+x^2} + \sqrt{x^4}$$
?

о9.8. Докажите:

- а) если 3 период функции y = f(x), то 6 также период данной функции;
- 6) если 9 период функции y = f(x), то 9 период функции y = 5f(x + 2) 1;
- в) если 2 период функции y = f(x), то 8 также период данной функции;
- г) если 5 период функции y = f(x), то 5 период функции y = -3f(2-x) + 25.

09.9. Докажите:

- а) если 3 период функции y = f(x), то 6 период функции y = 5f(0.5x + 2) 1;
- б) если 9 период функции y = f(x), то 3 период функции y = 3 1.4f(3x 7);
- в) если 2 период функции y=f(x), то 3 период функции $y=100f\Big(\frac{2x-11}{3}\Big)+7;$
- г) если 5 период функции y = f(x), то 1 период функции y = 81 3f(0.7 5x).
- 09.10. Докажите, что если период функции y = f(x) равен T, то а) период функции $y = k \cdot f(x + a) + b \ (k \neq 0)$ равен T;
 - 6) период функции $y = kf(px + a) + b \ (pk \neq 0)$ равен $\frac{T}{|p|}$.
- 09.11. Пусть период функции y = f(x) равен T_1 , а период функции y = g(x) равен T_2 . Докажите, что период функции y = h(x) равен T_3 :
 - a) $T_1 = 2$, $T_2 = 7$, h(x) = 5f(x) 3g(x), $T_3 = 14$;
 - 6) $T_1 = 15$, $T_2 = 10$, h(x) = 8f(x) + 5g(x), $T_3 = 30$;
 - B) $T_1 = 3$, $T_2 = 13$, h(x) = 0.2f(x-3) g(x+11), $T_3 = 26$;
 - r) $T_1 = \frac{\sqrt{13}}{15}$, $T_2 = \frac{\sqrt{13}}{10}$, h(x) = 5f(x) 3 g(x), $T_3 = \frac{\sqrt{13}}{5}$.
- 09.12. Пусть для любого x из области определения функции y = f(x) выполняется равенство f(x 0.1) = f(x + 0.1) = f(x). Докажите, что тогда для любого x из области определения функции выполняется равенство f(x 2) = f(x + 2) = f(x).

- 09.13. Пусть для любого x из области определения функции y = f(x) выполняются равенства f(x 3) = f(x + 3) = f(x) и f(x 5) = f(x + 5) = f(x). Докажите, что для любого x из области определения функции выполняется равенство f(x 2) = f(x + 2) = f(x).
 - **9.14.** Пусть [x] целая часть действительного числа x, а $\{x\}$ дробная часть этого числа (напомним, что, согласно определению, $[x] \in Z$, $x \le [x] < x + 1$, $\{x\} = x [x]$).

а) Найдите целую и дробную часть числа: 6; -3; 5,3; -5,3; 35; 35; 535; 535

 $\frac{35}{53}$; $-\frac{35}{53}$; $\frac{535}{353}$; $-\frac{535}{353}$.

- б) Найдите целую и дробную часть числа: $\sqrt{11}$; $\sqrt{11} 2$; $3 \sqrt{11}$; π ; 0,(4); -2,(3); -7,(1).
- 09.15. а) Докажите, что для любого значения x выполняются равенства [x+1]=[x]+1, [x-1]=[x].
 - б) Докажите, что для любого значения x выполняются равенства $\{x+1\} = \{x\} = \{x-1\}.$
 - в) Докажите, что функция y = [x] не является периодической.
 - г) Докажите, что функция $y = \{x\}$ является периодической с периодом 1.
- **09.16.** Докажите, что 1 наименьший период функции $y = \{x\}$. Постройте график функции и определите, является ли функции периодической:
- **•9.17.** a) y = [x]; B) y = [2x]; 6) y = [x 2.5]; P) y = [|x|].
- **•9.18.** a) y = |[x]|; B) $y = \{x\} + [x];$
 - 6) y = x + [x]; r) $y = [\{x\}].$
- **•9.19.** a) $y = \{x\};$ B) $y = \{2x\};$ 6) $y = \{x 2, 5\};$ r) $y = \{|x|\}.$
- **•9.20.** a) $y = |\{x\}|;$ B) $y = x \{x\};$
 - 6) $y = x + \{x\};$ r) $y = \{[x]\}.$

Найдите основной период функции:

09.21. a)
$$y = \{x + 2\}; \ y = \{x - 3, 7\}; \ y = 2\{x + 1, 1\} - 14; \ y = 13 - 5\{x - 0, (3)\};$$

6)
$$y = \{2x\}; y = 3\{2x - 2,5\}; y = \{2x - 2,5\};$$

 $y = 4 - 0,5\{2x - 2,5\};$

B)
$$y = \{0,5x\}; y = 3\{0,5x\}; y = 7\{0,5x\} + 6; y = 9 - 1,1\{0,5x\};$$

r)
$$y = \left\{\frac{3x}{4}\right\}$$
; $y = \left\{\frac{3x+2}{4}\right\}$; $y = \left\{\frac{3x}{4} + 0.3\right\}$; $y = \left\{\frac{3x+2}{4} + x\right\}$.

•9.22. a)
$$y = \{x - 3, 7\} + 3\{2x - 2, 5\}; y = \left\{\frac{3x}{4} + 0, 3\right\} + 5\{x - 11\};$$

6)
$$y = \{2x\} + \{3x - 2, 5\}; y = 4 - \{12x - 2, 5\} + \{18x\};$$

B)
$$y = \{0,3x\} + 5\{0,25x\}; y = 7\{0,15x\} + 1,1\{0,25x\};$$

r)
$$y = \left\{\frac{3x}{4}\right\} - \left\{\frac{5x+2}{3}\right\}$$
; $y = \left\{6 - \frac{10x}{11}\right\} + 3 \cdot \left\{\frac{15x+2}{22}\right\}$.

•9,23. Постройте график функции:

a)
$$y = (\{x\})^2$$
; B) $y = \sqrt{\{x\}}$;

6)
$$y = \frac{1}{\{x\}}$$
; $y = \frac{\{x\} - 1}{1 - 2\{x\}}$.

Выясните, может ли функция быть периодической, если она обладает указанным свойством; если может, то приведите пример, если не может, — объясните почему:

- 09.24. a) Областью определения функции является отрезок или луч;
 - б) областью определения функции является объединение бесконечного множества отрезков, но не прямая;
 - в) функция определена на всей числовой прямой, кроме одной точки;
 - г) функция определена на всей числовой прямой, кроме бесконечного числа точек.
- 09.25. а) Функция имеет шесть нулей;
 - б) функция не имеет нулей;
 - в) функция положительна при x>3 и отрицательна при $x\leqslant 3;$
 - г) при x > 3 функция принимает положительные значения.
- 09.26. а) Функция убывает на всей области своего определения;
 - б) функция имеет бесконечно много промежутков убывания;
 - в) функция имеет наименьшее значение, но не имеет наибольшего;
 - г) функция убывает на интервале (3; 11).

Постройте график данной периодической функции y = f(x) и укажите область ее определения, область значений, промежутки монотонности, точки экстремума, наибольшее и наименьшее значения, нули функции, промежутки знакопостоянства; исследуйте функцию на четность-нечетность:

- 09.27. а) Период функции равен 2 и f(x) = 3x на промежутке (-1; 1];
 - б) период функции равен 4 и $f(x) = 4 x^2$ на отрезке [-2; 2];
 - в) период функции равен 3 и f(x) = 2 x на промежутке [0; 3);
 - г) период функции равен 1 и $f(x) = 2x^2 1$ на промежутке (0; 1).
- 09.28. а) Период функции равен 2 и f(x) = |x| на отрезке [-1; 1];
 - б) период функции равен 4 и $f(x) = 3\sqrt{x+2}$ на промежутке [-2; 2);
 - в) период функции равен 3 и f(x) = 3 |2 x| на промежутке [0; 3);
 - г) период функции равен 1 и $f(x) = 3 \sqrt{4 3x}$ на промежутке (0; 1).
- 09.29. а) Период функции равен 2 и $f(x) = \frac{1}{x+2}$ на промежутке (-1; 1];
 - б) период функции равен 4 и $f(x) = \frac{1}{x}$ на промежутке (-2; 2];
 - в) период функции равен 3 и $f(x) = \frac{x}{x+2}$ на промежутке [0; 3);
 - г) период функции равен 5 и $f(x) = \frac{|x|}{|x|-1}$ на промежутке [-2; 3).
- О9.30. Наибольшее значение периодической функции с периодом 3 на отрезке [-1; 2] равно 5, а наименьшее значение равно -2. Найдите, если это возможно:
 - а) наибольшее и наименьшее значения функции на промежутке (-2; 11];
 - б) наибольшее и наименьшее значения функции на промежутке (-5; 8];
 - в) наибольшее и наименьшее значения функции на промежутке (-2; 1];
 - г) наибольшее и наименьшее значения функции на промежутке ($-\infty$;1).

ŧ

 $_{\text{CO}}$ 31. Пусть y = f(x) — периодическая функция с периодом 4 и f(x) = 5x + 2 на интервале (0; 4). Решите:

а) vравнение f(x) = 7:

- б) неравенство f(x) > 7.
- $\mathbf{a}9.32$. Пусть y = f(x) периодическая функция с периодом 5 и $f(x) = x^2 + 2x$ на полуинтервале (-3; 2]. Решите:

- а) уравнение f(x) = 0; в) уравнение f(x) = 8; б) неравенство f(x) > 3; г) неравенство f(x) < 0.
- **49.33.** Пусть y = f(x) периодическая функция с периодом 4 и $f(x) = x^2 + 8x + 5$ на отрезке [-6; -2]. Решите:

 - а) уравнение f(x) = -11; в) уравнение f(x) = -10;

 - б) неравенство $f(x) \le 11$; г) неравенство f(x) > -10.
- •9.34. a) Существует ли такая функция y = f(x), что для любого х из области ее определения выполняется равенство f(x) = f(x + 2), а функция не является периодической? Если существует, приведите пример такой функции.
 - б) Существует ли такая функция y = f(x), что для любого х из области ее определения выполняется равенство f(x) = f(x - 3), а функция не является периодической? Если существует, приведите пример такой функции.
- **•9.35.** a) Существует ли такая функция y = f(x), что для любого х из области ее определения выполняется равенство f(2x) = f(x), а функция является периодической? Если существует, приведите пример такой функции.
 - б) Существует ли такая функция y = f(x), что для любого х из области ее определения выполняется неравенство f(2x) > f(x), а функция является периодической? Если существует, приведите пример такой функции.

§ 10. Обратная функция

10.1. Дано равенство $y = \frac{x^2}{x^2 + 1}$. Выразите из этого равенства xчерез у, если:

- a) $x \ge 0$; 6) $x \le 0$; B) $x \ge 2$; c) $x \le -0.21$.
- 10.2. Дано равенство $\rho = \frac{st^3}{2-s}$, связывающее три величины: ρ , s, t.
 - а) Выразите из этого равенства s через ρ и t;
 - б) выразите из этого равенства t через s и ρ .

- 10.3. Для функции, заданной графически, укажите область определения и выясните, имеет эта функция в своей области определения обратную функцию или нет; в случае положительного ответа постройте эскиз графика обратной функции:
 - а) рис. 36;
- б) рис. 37;
- в) рис. 38;
- г) рис. 39.

Puc. 36

Puc. 37

rat. J

Puc. 39

10.4. Для функции, заданной табличным способом, укажите ее область определения и выясните, имеет эта функция в своей области определения обратную функцию или нет; в случае положительного ответа постройте график обратной функции:

a)	х	1	2	5	7
	u	3	4	7	3

в)	x	1	2	3	7
	y	5	8	9	1

б)	x	1 3	1 8	5	7
	y	1 5	ଥାଞ	0,(6)	1,(4)

г)	x	-1	1	2	5
	y	4	1,(7)	12/3	1

- 10.5. Найдите область определения и множество значений функции y = g(x), обратной для функции y = f(x), если:
 - a) D(f) = R, $E(f) = (3; +\infty)$;
 - 6) $D(f) = (2; 3) \cup [5; 6), E(f) = (3; 4) \cup (7; +\infty);$
 - B) $D(f) = [-5; 6), E(f) = (-\infty; 11];$
 - r) $D(f) = E(f) = \{-3; 4; 7\} \cup (10; +\infty).$
- 10.6. Найдите множество значений каждой из взаимно-обратных функций y = f(x) и y = g(x), если указаны их области определения:
 - a) D(f) = R, $D(g) = \{-2; +\infty\}$;
 - 6) D(f) = [-3; 4], D(g) = [4; 11];
 - B) $D(f) = (0; +\infty), D(g) = (-\infty; 7);$
 - r) $D(f) = \{-1; 2; 4\}, D(g) = \{-2; 78; 123\}.$
- 010.7. Являются ли функции y = f(x) и y = g(x) взаимно-обратными, если:
 - a) f(x) = 3x + 5, $g(x) = \frac{1}{9}x \frac{5}{9}$;
 - 6) $f(x) = \frac{3}{\kappa} 6x$, $g(x) = 0.1 \frac{1}{\kappa}x$;
 - B) $f(x) = \frac{1}{7}x 3$, g(x) = 7x + 3;
 - r) $f(x) = \frac{7}{3}x + \frac{3}{7}$, $g(x) = \frac{3}{7}x + \frac{7}{3}$?

Найдите функцию, обратную данной. Постройте на одном чертеже графики этих взаимно-обратных функций:

10.8. a) y = 3x;

B) y = x - 7;

6) y = 5x + 2:

r) $y = \frac{1}{2}x - 4$.

010.9. a) $y = \frac{3}{x-1}$;

B) $y = \frac{2}{r + 4}$;

6) $y = \frac{x+7}{2x-5}$;

- $\mathbf{r}) \ y = \frac{2x-1}{x+3}.$
- 010.10. Является ли данная функция обратной по отношению к самой себе:
 - a) v = x:

6) u = 3x:

B) y = -x; r) y = -x + 1?

010.11. Совпадает ли данная функция со своей обратной:

a)
$$y = \frac{7}{r}$$
;

B)
$$y = -\frac{8}{x}$$
;

6)
$$y = \frac{7}{x-2}$$
;

r)
$$y = 5 - \frac{8}{x}$$
?

010.12. Задайте функцию, обратную данной; постройте ее график:

a)
$$y = \begin{cases} 2x, \text{ если } x \leq 0, \\ 3x, \text{ если } x > 0; \end{cases}$$

6)
$$y = \begin{cases} -5x - 3, \text{ если } x \leq -1, \\ -1 - 3x, \text{ если } x > -1; \end{cases}$$

в)
$$y = \begin{cases} -x, \text{ если } x < 0, \\ 3x, \text{ если } x \ge 0; \end{cases}$$

г)
$$y = \begin{cases} 2x + 1, \text{ если } x \leq 2, \\ \frac{1}{2}x + 4, \text{ если } x \geq 2. \end{cases}$$

О10.13. Задайте функцию, обратную данной; постройте графики заданной и обратной функций:

a)
$$y = \sqrt{x + 3}$$
;

B)
$$y = \sqrt{2x - 1}$$
;

6)
$$y = -\sqrt{2-x}$$
:

r)
$$y = -\sqrt{3 - 5x}$$
.

010.14. Может ли функция иметь обратную, если она:

а) линейная;

- в) дробно-линейная;
- б) квадратичная:
- \mathbf{r}) вида $y = \sqrt{x + a}$?

010.15. Обязательно ли функция имеет обратную, если она:

а) линейная;

- в) вида $y = \sqrt{x + a}$;
- б) дробно-линейная;
- r) вида $y = x^3 + a$?

010.16. Может ли функция иметь обратную, если она:

а) четная;

в) периодическая;

б) нечетная;

г) непериодическая?

010.17. Может ли функция иметь обратную, если она:

- а) возрастающая;
- в) имеет три нуля;
- б) убывающая;
- г) не имеет нулей?

- а) рис. 40;
- б) рис. 41;
- в) рис. 42;
- г) рис. 43.

Puc. 40

Puc. 41

Puc. 42

Puc. 43

Рассмотрите данную функцию на каждом из указанных промежутков; если она на этом промежутке имеет обратную функцию, то задайте обратную функцию аналитически, укажите ее область определения и область значений, постройте ее график;

- $010.19. y = x^2$:
 - а) на R:

- в) на (-1; 5];
- б) на $[1; +\infty);$
- r) на (-∞; 0].
- $010.20, u = x^2 2$:
 - а) на **R**;

- в) на (-1; 5];
- б) на [1; 2);
- r) на [-2; 0].
- $010.21. y = (x + 3)^2 2$:
 - а) на R;

- в) на (-∞; -3];
- б) на $[-3; +\infty);$
- г) на [-4; 4].

- **010.22.** (См. задание на с. 65.) $y = x^2 4x + 18$:
 - а) на *R*;

в) на (-∞; 0];

б) на [2; +∞);

г) на [-∞; 3).

●10.23. На каждом из указанных промежутков найдите, если это возможно, функцию, обратную данной:

а)
$$y=egin{cases} 2x-5, \ {
m ec}$$
ли $x\leqslant 1, \ x-6, \ {
m ec}$ ли $x>1 \end{cases}$ на $(-\infty;\ 1]$, на $(1;+\infty)$, на $R;$

б)
$$y = \begin{cases} 5 - x, \text{ если } x \leq 2, \\ 7 - 2x, \text{ если } x > 2 \end{cases}$$
 на $(-\infty; 2]$, на $(2; +\infty)$, на R ;

в)
$$y = \begin{cases} 3x + 5, \text{ если } x \leq 0, \\ x^2, \text{ если } x > 0 \end{cases}$$
 на $(-\infty; 0]$, на $(0 + \infty)$, на $(0 + \infty)$

г)
$$y = \begin{cases} 3-x, \text{ если } x \leq 0, \\ 2-7x, \text{ если } x>0 \end{cases}$$
 на $(-\infty; 0]$, на $(0; +\infty)$, на \mathbb{R} .

- •10.24. Постройте на одном чертеже какие-нибудь графики двух взаимно-обратных непрерывных на (-5; 10) функций y = f(x) и y = g(x), для которых:
 - a) f(3) = 3, g(5) = 5;
 - 6) f(3) = 7, f(7) = 8, g(9) = 9;
 - B) f(-1) = -1, g(3) = 3;
 - r) f(1) = 9, f(2) = 7, g(4) = 4.
- **•10.25.** y = f(x) и y = g(x) взаимно-обратные функции.
 - а) f(3) = 5 и g(7) = 1. Решите уравнения f(x) = 7 и g(x) = 3.
 - б) f(4) = 4 и g(25) = 9. Решите уравнения $f(x^2) = 25$ и $g(x^2) = 4$.
 - в) f(15) = -3 и g(-7) = 1. Решите уравнения f(t) = -7 и g(t) = 15.
 - г) f(7) = 5 и g(7) = 1. Решите уравнения f(3x) = 7 и g(5-x) = 5.

Постройте график функции y = f(g(x)), если:

010.26. a)
$$f(x) = 4x$$
, $g(x) = 0.25x$;

6)
$$f(x) = x - 3$$
, $g(x) = x + 3$;

B)
$$f(x) = -2x$$
, $g(x) = -05x$;

r)
$$f(x) = -5x + 5$$
, $g(x) = -0.2x - 1$.

$$O10.27$$
. a) $f(x) = \frac{3}{x}$, $g(x) = \frac{3}{x}$;

6)
$$f(x) = \frac{3}{x+1}$$
, $g(x) = \frac{3-x}{x}$;

B)
$$f(x) = \frac{1}{2x}$$
, $g(x) = \frac{1}{2x}$;

$$f(x) = \frac{x-1}{x+1}, g(x) = \frac{x+1}{1-x}.$$

010.28. a)
$$f(x) = x^2$$
, $g(x) = \sqrt{x}$;

B)
$$f(x) = x^2$$
, $g(x) = -\sqrt{x}$;

6)
$$f(x) = -x^2$$
, $g(x) = \sqrt{-x}$;

$$\Gamma$$
) $f(x) = -x^2$, $g(x) = -\sqrt{-x}$.

010.29. a)
$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{x - 1}$;

6)
$$f(x) = 3 - 0.5x^2$$
, $g(x) = \sqrt{6 - 2x}$;

B)
$$f(x) = x^2 - 2$$
, $g(x) = \sqrt{x+2}$;

r)
$$f(x) = 8 - 2x^2$$
, $g(x) = -\sqrt{4 - 0.5x}$.

•10.30. Пусть y = f(x) и y = g(x) — взаимно-обратные функции. Постройте на двух различных чертежах графики функций y = f(g(x)) и y = g(f(x)), если:

a)
$$D(f) = E(f) = R$$
;

B)
$$D(f) = [1; 3]; E(f) = R;$$

6)
$$D(f) = E(f) = (0; 3];$$

6)
$$D(f) = E(f) = (0; 3];$$
 r) $D(f) = [-2; 3]; E(f) = [-3; 2].$

•10.31. Постройте на одном чертеже графики таких двух взаимно-обратных функций y = f(x) и y = g(x), чтобы уравнение f(x) = x:

- а) имело один корень;
- б) имело три корня;
- в) имело бесконечно много корней;
- г) не имело корней.

•10.32. Постройте на одном чертеже графики таких двух взаимно-обратных функций y = f(x) и y = g(x), чтобы уравнение f(x) = g(x):

- а) имело один корень;
- б) имело три корня;
- в) имело бесконечно много корней;
- г) не имело корней.

•10.33. Пусть y = f(x) и y = g(x) — некоторые взаимно-обратные функции. Являются ли равносильными следующие уравнения:

a)
$$f(x) = x$$
 и $g(x) = x$;

a)
$$f(x) = x u g(x) = x$$
; 6) $f(g(x)) = x u g(f(x)) = x$?

Постройте график функции и определите, существует ли для нее обратная функция. Если да, то на том же чертеже постройте график обратной функции и задайте ее аналитически:

•10.34. a)
$$y = 3x + |x|$$
;

B)
$$y = 2|x| - 5x$$
;

$$6) y = x + 2|x|;$$

$$\mathbf{r)} \ y = 2x - 5|x|.$$

•10.35. a)
$$y = x|x|$$
;

$$\mathbf{B}) \ y = 2 - x|x|;$$

6)
$$y = x^2 + 2|x|$$
;

$$\Gamma) \ y = x|x-2|.$$

§ 11. Числовая окружность

Горизонтальный диаметр CA и вертикальный диаметр DB разбивают единичную окружность на четыре четверти: AB — первая, BC — вторая, CD — третья, DA — четвертая (рис. 44).

11.1. Вторая четверть разделена на две равные части точкой M, а третья— на три равные части точками K и P. Найдите длину дуги:

a) AM:

б) *ВК*;

в) *РМ*;

г) *РК*.

11.2. Первая четверть разделена на две равные части точкой M, а четвертая — на три равные части точками K и P. Найдите длину дуги:

a) *DM*;

6) BK;

в) *РМ*;

r) PC.

11.3. Третья четверть разделена точкой M в отношении 2:3, первая — точкой P в отношении 1:5. Найдите длину дуги: a) CM; b) PM; г) MP.

11.4. Можно ли найти на единичной окружности точку E с указанной ниже длиной дуги AE? Если да, то укажите четверть, в которой расположена точка E:

a) AE = 2;

B) AE = 6.3;

6) $AE = \sqrt{8\pi}$;

 $r) AE = \frac{\sqrt{3} + 1}{\sqrt{3} \cdot - 1}.$

- 11.5. а) К радиусам ОА и ОС проведены серединные перпендикуляры, соответственно, MN и PQ (рис. 44). Чему равен центральный угол AOM? Найдите длину хорды MN. Найдите длину дуги QN. Докажите, что точки A, M, P, C, Q, N делят окружность на шесть равных частей.
 - б) К радиусам OB и OD проведены серединные перпендикуляры LK и TS, соответственно (рис. 45). Чему равен центральный угол KOB? Найдите длину хорды KL. Найдите длину дуги TL. Докажите, что точки K, B, L, T, D, S делят окружность на шесть равных частей.

Puc. 44

PUC. 45

Найдите на числовой окружности точку, которая соответствует заданному числу:

11.6. a)
$$\frac{\pi}{2}$$
;

$$r) -\frac{3\pi}{2}$$
.

11.7. a)
$$\frac{\pi}{6}$$
; 6) $-\frac{\pi}{3}$;

6)
$$-\frac{\pi}{3}$$
;

$$_{\rm B})~\frac{7\pi}{4};$$

r)
$$-\frac{3\pi}{4}$$
.

11.8. a)
$$\frac{10\pi}{3}$$
; 6) $-\frac{17\pi}{4}$;

6)
$$-\frac{17\pi}{4}$$
;

B)
$$\frac{31\pi}{6}$$
;

$$r) - \frac{19\pi}{3}$$
.

11.9. a)
$$\frac{\pi}{8}$$
; 6) $-\frac{\pi}{12}$; b) $\frac{7\pi}{12}$;

6)
$$-\frac{\pi}{12}$$
;

B)
$$\frac{7\pi}{12}$$

r)
$$-\frac{11\pi}{8}$$
.

Какой четверти числовой окружности принадлежит точка, соответствующая заданному числу?

$$6) -4,5;$$

$$6) -17$$

011.13. Укажите однозначное натуральное число, которому на числовой окружности (рис. 44) соответствует точка, наиболее близкая:

а) к точке
$$A$$
;

в) к точке
$$C$$
;

$$\mathfrak{G}$$
) к точке B ;

$$\mathbf{r}$$
) к точке D .

- 11.14. Как расположены на числовой прямой и на числовой окружности точки, соответствующие числам:
 - a) $t \, \mathbf{u} t$:

- B) $t \times t + \pi$:
- б) t и $t + 2\pi k$, $k \in \mathbb{Z}$;
- \mathbf{r}) $t + \pi \mathbf{n} t \pi$?

Найдите на числовой окружности все точки M(t), соответствующие заданной формуле (во всех формулах предполаraercs, to $n \in \mathbb{Z}$):

11.15. a) $t = 2\pi n$;

B) $t = \pi n$:

 $6) t = \frac{\pi}{2} + \pi n;$

- r) $t = \pm \frac{\pi}{2} + 2\pi n$.
- 11.16. a) $t = \pm \frac{\pi}{6} + 2\pi n$;
- $\mathbf{B})\ t=\pm\frac{\pi}{3}+\pi n;$

 $6) t = \frac{2\pi n}{3};$

- \mathbf{r}) $t=\frac{\pi n}{2}$.
- 11.17. a) $t = (-1)^n \frac{\pi}{6} + \pi n$;
- B) $t=(-1)^{n+1}\frac{\pi}{3}+\pi n;$
- 6) $t = \frac{\pi}{4} + \frac{\pi n}{2}$;

 $\mathbf{r})\ t=-\frac{\pi}{6}+\frac{2\pi n}{3}.$

Числовая окружность разделена точками на восемь равных частей (рис. 46). Составьте формулу для всех чисел, которым соответствуют точки:

- 011.18. a) A и C;

- б) B и D; в) M и P; г) N и Q.
- 011.19. a) M, N, P, Q;
- 6) A, M, B, N, C, P, D, Q.

Puc. 46

Puc. 47

Числовая окружность разделена точками на 12 равных частей (рис. 47). Составьте формулу для всех чисел, которым соответствуют точки:

r) M и F.

6)
$$B, K, F;$$

$$\Gamma$$
) A , N , P , C , L , E .

Найдите все числа t, которым на числовой окружности соответствуют точки, принадлежащие указанной открытой дуге или объединению дуг (рис. 46):

6)
$$AB \cup CD$$
:

r)
$$BC \cup DA$$
.

011.24. a)
$$QA \cup NC$$
;

B)
$$MN \cup PQ$$
;

$$\begin{array}{c}
\text{5) } \stackrel{\longleftarrow}{AN} \stackrel{\longleftarrow}{\cup} \stackrel{\longleftarrow}{CQ};
\end{array}$$

r)
$$AM \cup BN \cup CP \cup DQ$$
.

Найдите все числа t, которым на числовой окружности соответствуют точки, принадлежащие указанной дуге (рис. 47):

B)
$$BL$$
;

r)
$$DF$$
.

Выделите на числовой окружности дугу, точки которой удовлетворяют заданному неравенству (во всех формулах предполагается, что $n \in \mathbb{Z}$):

11.27. a)
$$\frac{\pi}{6} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n;$$
 B) $\frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n;$

$$(3) \frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n;$$

6)
$$2\pi n < t < \frac{5\pi}{4} + 2\pi n;$$

$$\Gamma$$
 $\pi + 2\pi n < t < \frac{5\pi}{3} + 2\pi n$.

11.28. a)
$$-\frac{\pi}{2} + 2\pi n < t < \frac{\pi}{2} + 2\pi n$$
;

6)
$$-\frac{\pi}{6} + 2\pi n < t < \frac{7\pi}{6} + 2\pi n$$
;

B)
$$-\frac{3\pi}{4} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$$
;

$$\Gamma$$
 $-\frac{\pi}{6} + 2\pi n < t < \frac{5\pi}{4} + 2\pi n$.

Найдите на числовой окружности все точки M(t), соответствующие заданным формулам; составьте общую формулу для всех чисел, которым соответствуют найденные точки:

O11.29. a)
$$t = 2\pi n$$
, $t = \pi + 2\pi n$;

B)
$$t = \frac{\pi}{2} + 2\pi n$$
, $t = \frac{3\pi}{2} + 2\pi n$;

6)
$$t = \pi n, \ t = \frac{\pi}{2} + \pi n;$$

$$\mathbf{r})\ t=\pi n,\ t=\frac{\pi n}{2}.$$

011.30. a)
$$t = \pm \frac{\pi}{3} + \pi n$$
, $t = \frac{\pi n}{3}$;

6)
$$t = (-1)^n \frac{\pi}{4} + \pi n$$
, $t = (-1)^{n+1} \frac{\pi}{4} + \pi n$;

B)
$$t = \pm \frac{2\pi}{3} + 2\pi n$$
, $t = 2\pi n$;

r)
$$t = (-1)^n \frac{\pi}{6} + \pi n$$
, $t = (-1)^{n+1} \frac{\pi}{6} + \pi n$.

•11.31. a)
$$t = -\frac{\pi}{6} + \pi(2n+1), t = \frac{\pi}{30} + \frac{2\pi n}{5}$$
;

6)
$$t = (-1)^n \frac{\pi}{3} + \pi n$$
, $t = (-1)^{n+1} \frac{\pi}{3} + \pi n$, $t = \pi n$;

B)
$$t = -\frac{\pi}{4} + \pi n$$
, $t = \frac{\pi}{4} \pm \frac{\pi}{6} + \pi n$;

r)
$$t = \pm \frac{\pi}{4} + \pi n$$
, $t = \frac{\pi}{2} + \pi n$, $t = \pi n$.

о11.32. На числовой прямой и числовой окружности отметьте все точки M(t), заданные формулой и принадлежащие отрез-

$$\text{ky}\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$
:

a)
$$t = (-1)^n \frac{\pi}{15} + \frac{\pi n}{3}$$
;

B)
$$t = (-1)^{n+1} \frac{\pi}{8} + \frac{\pi n}{4}$$
;

6)
$$t = \pm \frac{\pi}{8} + \frac{\pi n}{4}$$
;

$$\mathbf{r}) \ t = \pm \frac{3\pi}{7} + \frac{\pi n}{3}.$$

011.33. На числовой прямой и числовой окружности отметьте все точки M(t), заданные формулой и принадлежащие отрезку [-2; 4]:

a)
$$t=\pm\frac{\pi}{6}+\pi n,$$

B)
$$t = \pm \frac{3\pi}{4} + \frac{\pi n}{2}$$
;

6)
$$t = (-1)^n \frac{\pi}{4} + \frac{\pi n}{2}$$
;

r)
$$t = (-1)^{n+1} \frac{\pi}{3} + \frac{\pi n}{4}$$
.

011.34. На числовой прямой и числовой окружности отметьте все точки M(t), заданные формулой и принадлежащие отрезку $[-\pi; 2\pi]$:

a)
$$t = n$$
;

B)
$$t = 2n + 1$$
;

6)
$$t = \frac{1}{2} + 2n$$
;

r)
$$t = \frac{1}{3} + \frac{3n}{2}$$
.

§ 12. Числовая окружность на координатной плоскости

Всюду в этом параграфе предполагается, что центр числовой окружности совпадает с началом координат плоскости хОу.

Найдите декартовы координаты заданной точки:

12.1. a)
$$M\left(\frac{\pi}{6}\right)$$
; 6) $M\left(\frac{\pi}{4}\right)$; B) $M\left(\frac{\pi}{3}\right)$; Γ) $M\left(\frac{3\pi}{2}\right)$.

6)
$$M\left(\frac{\pi}{4}\right)$$

B)
$$M\left(\frac{\pi}{3}\right)$$

$$\Gamma$$
) $M\left(\frac{3\pi}{2}\right)$

12.2. a)
$$M(-3\pi)$$
; 6) $M\left(\frac{11\pi}{4}\right)$; B) $M\left(-\frac{5\pi}{3}\right)$; r) $M\left(\frac{31\pi}{2}\right)$.

6)
$$M\left(\frac{11\pi}{4}\right)$$

B)
$$M\left(-\frac{5\pi}{3}\right)$$

r)
$$M\left(\frac{31\pi}{2}\right)$$

12.3. a)
$$M\left(-\frac{41\pi}{6}\right)$$
; 6) $M(117\pi)$; B) $M\left(-\frac{13\pi}{3}\right)$; r) $M(126\pi)$.

B)
$$M\left(-\frac{13\pi}{3}\right)$$

12.4. Найдите наименьшее положительное и наибольшее отрицательное числа, которым на числовой окружности соответствует заданная точка:

a)
$$M\left(\frac{\sqrt{3}}{2}; \frac{1}{2}\right)$$

B)
$$M\left(-\frac{\sqrt{3}}{2}; \frac{1}{2}\right)$$

6)
$$M\left(\frac{1}{2}; -\frac{\sqrt{3}}{2}\right)$$
;

$$\Gamma) M\left(-\frac{1}{2}; -\frac{\sqrt{3}}{2}\right).$$

12.5. Каким числам из заданного отрезка соответствует точка $M\left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$ числовой окружности:

a)
$$[-4\pi; \pi];$$

$$6) \left[-\frac{3\pi}{2}; \frac{7\pi}{2} \right];$$

$$\mathbf{r}) \left[\frac{\pi}{2}; \frac{9\pi}{2} \right]?$$

 \circ 12.6. На отрезке $\left[-\frac{3\pi}{8}; \frac{17\pi}{6}\right]$ укажите числа, которым на числовой окружности соответствует заданная точка:

a)
$$M\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$$

B)
$$M\left(-\frac{\sqrt{3}}{2}; -\frac{1}{2}\right)$$
;

6)
$$M\left(-\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$$

$$\mathbf{r)}\ M\left(\frac{\sqrt{2}}{2};\ -\frac{\sqrt{2}}{2}\right)$$

012.9.	a) E(12);	б) <i>K</i> (-15);	в) P(49);	r) M(100).
12.10.	Что больше, а вой окружное	TH:	рдината заданно	
	a) $E(1)$;	б) <i>K</i> (-2,5);	B) $P(7)$;	г) M(-4)?
12.11.	Что больше, заданной точна) $F(2,8)$;			
12.12.	•	между собо \mathbf{B}) t и	й абсциссы то	, , , ,
12.13.		между собо в) <i>t</i> и	й ординаты то	чек числовой
	На числовой окружности укажите все точки, координаты которых удовлетворяют данным условиям, и составьте формулы для всех чисел, которым соответствуют эти точки:			
12.14.	a) $x = 0$;	6) $x = \frac{1}{2}$;	$B) x = -\frac{\sqrt{3}}{2};$	r) $x = 1$.
12.15.	a) $x = \frac{\sqrt{3}}{2}$;	6) $x = -\frac{\sqrt{2}}{2}$;	$\mathbf{B}) \ x = \frac{\sqrt{2}}{2};$	r) $x = -1$.
12.16.	a) $y = 0$;	6) $y = \frac{1}{2}$;	$\mathbf{B}) \ y = -\frac{\sqrt{3}}{2};$	r) $y = 1$.
12.17.	a) $y=\frac{\sqrt{3}}{2}$;	6) $y = \frac{\sqrt{2}}{2}$;	$\mathbf{B}) \ y = -\frac{\sqrt{2}}{2};$	r) $y = -1$.
12.18.	a) $x = \frac{\sqrt{3}}{2}, y < \frac{\sqrt{3}}{2}$		B) $x = -\frac{\sqrt{2}}{2}, y < $	0;
	6) $x = \frac{\sqrt{2}}{2}, y > 0$	> 0;	$x = -\frac{1}{2}, \ y > 0$	
				75

12.7. Имеется ли на числовой окружности точка, абсцисса или

Укажите знаки абсциссы и ординаты заданной точки число-

r) $\sqrt{17} - \sqrt{26}$?

B) P(3,2); r) M(-4,8).

6) $\frac{\pi}{3}$; B) $\frac{\pi}{4}$;

б) *K*(-4);

ордината которой равна:

вой окружности:

a) 0,7;

O12.8. a) E(2);

12.19. (См. задание к упражнениям 12.14-12.18.)

a)
$$y = \frac{\sqrt{3}}{2}, x > 0;$$

B)
$$y = \frac{\sqrt{2}}{2}, x < 0;$$

6)
$$y = -\frac{\sqrt{2}}{2}, x < 0;$$

r)
$$y = -\frac{1}{2}, x > 0.$$

012.20. (См. задание к упражнениям 12.14-12.18.)

a)
$$y = x$$
;

$$\mathbf{B}) x + y = 0;$$

$$6) y = -x\sqrt{3};$$

$$r) \frac{x}{u} = \sqrt{3}.$$

Найдите на числовой окружности все точки с абсциссов или ординатой, удовлетворяющей заданному неравенству или системе неравенств, и запишите (с помощью двойного неравенства), каким числам t они соответствуют:

012.21. a)
$$x > 0$$
;

6)
$$x < \frac{1}{2}$$
; B) $x > \frac{1}{2}$;

B)
$$x > \frac{1}{2}$$
;

$$_{\Gamma}) \ x < 0.$$

o12.22. a)
$$x > -\frac{\sqrt{3}}{2}$$
; 6) $x < \frac{\sqrt{2}}{2}$; b) $x < -\frac{\sqrt{2}}{2}$; r) $x > -\frac{1}{2}$.

5)
$$x < \frac{\sqrt{2}}{2}$$

B)
$$x < -\frac{\sqrt{2}}{2};$$

$$\mathbf{r}) \; x > -\frac{1}{2}.$$

012.23. a)
$$y > 0$$
;

6)
$$y < \frac{1}{2}$$
; B) $y > \frac{1}{2}$; r) $y < 0$.

B)
$$y > \frac{1}{2}$$

$$\Gamma) y < 0.$$

O12.24. a)
$$y > -\frac{\sqrt{3}}{2}$$
; 6) $y < \frac{\sqrt{2}}{2}$; B) $y < -\frac{\sqrt{2}}{2}$; $y > -\frac{1}{2}$.

6)
$$y < \frac{\sqrt{2}}{2}$$
;

B)
$$y < -\frac{\sqrt{2}}{2}$$

$$\Gamma y > -\frac{1}{2}$$
.

o12.25. a)
$$\begin{cases} x > 0, \\ y < 0; \end{cases}$$

$$\begin{cases} x > -\frac{\sqrt{2}}{2}, \\ y > \frac{1}{2}; \end{cases}$$

$$6) \begin{cases} x < 0, \\ y > -\frac{1}{2}; \end{cases}$$

$$\mathbf{F} \begin{cases} x < \frac{1}{2}, \\ y < \frac{\sqrt{3}}{2}. \end{cases}$$

O12.26. a)
$$x - y > 0$$
; 6) $xy > 0$; B) $x + y < 0$; r) $xy < 0$.

$$6) xu > 0$$

s)
$$x + u < 0$$
:

r)
$$xy < 0$$
.

$$012.27$$
, a) $x + y \le 1$:

012.27. a)
$$x + y \le 1$$
; 6) $x - y > -1$; B) $x + y > -1$; r) $x - y \le 1$

$$012.28. a) 2x^2 - x < 0;$$

B)
$$y + 2y^2 > 0$$
;

$$0.19.99 \text{ a) } 4x^2 - 1 < 0.9$$

a)
$$2x^2 - x < 0;$$
 B) $y + 2y^2 > 0;$ 6) $(2x - 1)(y - 3) > 0;$ r) $(2y - \sqrt{2})(x + 2) \le 0.$

012.29. a)
$$4x^2 - 1 \le 0$$
;
6) $1 - 2y^2 < 0$;

B)
$$3 - 4u^2 > 0$$
:

6)
$$1-2y^2<0$$
;

B)
$$3-4y^2>0$$
;
F) $2x^2-1\geqslant 0$.

§ 13. Синус и косинус. Тангенс и котангенс

Вычислите $\sin t$ и $\cos t$, если:

$$6) t = \frac{\pi}{2}$$

$$\mathbf{B})\ t=\frac{3\pi}{2};$$

$$\mathbf{r)} \ t = \pi.$$

13.2. a)
$$t = \frac{5\pi}{6}$$
; 6) $t = \frac{5\pi}{4}$; B) $t = \frac{7\pi}{6}$; r) $t = \frac{9\pi}{4}$.

$$6) t = \frac{5\pi}{4};$$

$$\mathbf{B}) \ t = \frac{7\pi}{6};$$

$$r) t = \frac{9\pi}{4}.$$

13.3. a)
$$t = \frac{13\pi}{6}$$
; 6) $t = -\frac{8\pi}{3}$; B) $t = \frac{23\pi}{6}$; r) $t = -\frac{11\pi}{3}$.

б)
$$t=-\frac{8\pi}{3}$$
;

$$\mathbf{B}) \ t = \frac{23\pi}{6}$$

$$\mathbf{r})\ t=-\frac{11\pi}{3}.$$

Вычислите:

13.4. a)
$$\sin\left(-\frac{\pi}{4}\right) + \cos\frac{\pi}{3} + \cos\left(-\frac{\pi}{6}\right)$$
;

6)
$$\cos \frac{\pi}{6} \cdot \cos \frac{\pi}{4} \cdot \cos \frac{\pi}{3} \cdot \cos \frac{\pi}{2}$$
;

$$B) \sin\left(-\frac{\pi}{2}\right) - \cos\left(-\pi\right) + \sin\left(-\frac{3\pi}{2}\right);$$

r)
$$\sin \frac{\pi}{6} \cdot \sin \frac{\pi}{4} \cdot \sin \frac{\pi}{3} \cdot \sin \frac{\pi}{2}$$
.

13.5. a)
$$\sin\left(-\frac{3\pi}{4}\right) + \cos\left(-\frac{\pi}{4}\right) + \sin\frac{\pi}{4} \cdot \cos\frac{\pi}{2} + \cos 0 \cdot \sin\frac{\pi}{2};$$

6)
$$\cos\frac{5\pi}{3} + \cos\frac{4\pi}{3} + \sin\frac{3\pi}{2} \cdot \sin\frac{5\pi}{8} \cdot \cos\frac{3\pi}{2}$$
.

Найдите значение выражения:

13.6. a)
$$\cos 2t$$
, если $t = \frac{\pi}{2}$;

б)
$$\sin\frac{t}{2}$$
, если $t=-\frac{\pi}{3}$;

$$B) \sin^2 t - \cos^2 t, ech t = \frac{\pi}{4};$$

$$r) \sin^2 t + \cos^2 t, ecли t = \frac{\pi}{6}.$$

13.7. Вычислите:

a)
$$tg\frac{5\pi}{4}$$
;

B)
$$tg\frac{5\pi}{6}$$
;

6)
$$ctg \frac{4\pi}{3}$$
;

r)
$$\operatorname{ctg} \frac{7\pi}{4}$$
.

Вычислите:

13.8. a)
$$\operatorname{tg}\left(-\frac{5\pi}{4}\right)$$
;

B)
$$\operatorname{tg}\left(-\frac{\pi}{6}\right)$$
;

6)
$$\operatorname{ctg}\left(-\frac{\pi}{3}\right)$$
;

r)
$$\operatorname{ctg}\left(-\frac{2\pi}{3}\right)$$

13.9. a)
$$tg\frac{\pi}{4} \cdot \sin\frac{\pi}{3} \cdot ctg\frac{\pi}{6}$$
;

6)
$$2 \sin \pi + 3 \cos \pi + \cot \frac{\pi}{2}$$
;

B)
$$2 \sin \frac{\pi}{3} \cdot \cos \frac{\pi}{6} - \frac{1}{2} tg \frac{\pi}{3}$$
;

r) 2 tg 0 + 8 cos
$$\frac{3\pi}{2}$$
 - 6 sin $\frac{\pi}{3}$.

13.10. a)
$$tg \frac{\pi}{5} \cdot ctg \frac{\pi}{5}$$
;

B)
$$\operatorname{tg} \frac{\pi}{7} \cdot \operatorname{ctg} \frac{\pi}{7}$$
;

r)
$$7 \operatorname{tg} \frac{\pi}{12} \cdot \operatorname{ctg} \frac{\pi}{12}$$
.

13.11. a)
$$\sin^2(1.5 + 32\pi) + \cos^2(1.5 + \cos\left(-\frac{\pi}{4}\right) + \sin\left(-\frac{\pi}{6}\right)$$

6)
$$\cos^2\left(\frac{\pi}{8} + 4\pi\right) + \sin^2\left(\frac{\pi}{8} - 44\pi\right)$$

13.12. a) tg 2,5 · ctg 2,5 +
$$\cos^2 \pi - \sin^2 \frac{\pi}{8} - \cos^2 \frac{\pi}{8}$$
;

6)
$$\sin^2 \frac{3\pi}{7} - 2 \operatorname{tg} 1 \cdot \operatorname{ctg} 1 + \cos^2 \left(-\frac{3\pi}{7} \right) + \sin^2 \frac{5\pi}{2}$$
.

13.13. a)
$$\cos 1 + \cos (1 + \pi) + \sin \left(-\frac{\pi}{3}\right) + \cos \left(-\frac{\pi}{6}\right)$$
;

6)
$$\sin 2 + \sin (2 + \pi) + \cos^2 \left(-\frac{\pi}{12}\right) + \sin^2 \frac{\pi}{12}$$
.

013.14. Докажите равенство:

a)
$$\frac{\sin\frac{\pi}{4} - \cos\pi - tg\frac{\pi}{4}}{2\sin\frac{\pi}{6} - \sin\frac{3\pi}{2}} = \frac{\sqrt{2}}{4};$$

$$6) \frac{\cot \frac{5\pi}{4} + \sin \frac{3\pi}{2} \, tg \, (-\frac{5\pi}{4})}{2 \cos \frac{11\pi}{6} + 2 \sin^2 \frac{11\pi}{4}} = \sqrt{3} - 1.$$

13.15. Упростите выражение: a) $\sin t \cdot \cos t \cdot \operatorname{tg} t$;

a)
$$\sin t \cdot \cos t \cdot \lg t$$
;

tg t; B)
$$\sin^2 t - \operatorname{tg} t \cdot \operatorname{ctg} t$$
;
 $1 - \cos^2 t$

6) $\sin t \cdot \cos t \cdot \cot t - 1$;

 $\Gamma) \frac{1-\cos^2 t}{\sin^2 t}.$

Докажите тождество:

13.16. a)
$$1 + tg^2 t = \cos^{-2} t$$
;
6) $1 + ctg^2 t = \sin^{-2} t$;

a)
$$1 + tg^2 t = \cos^{-2} t;$$

b) $\sin^2 t (1 + ctg^2 t) = 1;$
6) $1 + ctg^2 t = \sin^{-2} t;$
r) $\cos^2 t (1 + tg^2 t) = 1.$

13.17. a)
$$tg(\pi - t) = -tg t$$
;
6) $tg(2\pi + t) = tg t$;

B)
$$\operatorname{ctg}(\pi - t) = -\operatorname{ctg} t$$
;
r) $\operatorname{ctg}(2\pi + t) = \operatorname{ctg} t$.

Найдите наименьшее и наибольшее значения выражения:

6)
$$3 + 4 \cos t$$
;

B)
$$-3\cos t$$
;
r) $3-5\sin t$.

O13.19. a)
$$\frac{15}{2|\sin t| + 3}$$
;

B)
$$\frac{1}{3\sin^2 t + 4\cos^2 t}$$
;

6)
$$\sqrt{7\cos^2 t + 9}$$
;

$$r) \; \frac{5 \sin^2 t + 5 \cos^2 t}{3|\cos t| + 2}.$$

Определите знак числа:

13.20. a)
$$\sin \frac{4\pi}{7}$$
; 6) $\cos \left(-\frac{5\pi}{7}\right)$; B) $\sin \frac{9\pi}{8}$; r) $\sin \left(-\frac{3\pi}{8}\right)$.

6)
$$\cos\left(-\frac{5\pi}{7}\right)$$

B)
$$\sin \frac{9\pi}{8}$$

r)
$$\sin\left(-\frac{3\pi}{8}\right)$$

б)
$$\cos 3$$
; в) $\sin 5$; г) $\cos (-6)$.

Определите знак выражения:

013.23. a) sin 1 · cos 2;

B) $\cos 2 \cdot \sin (-3)$; $\mathbf{r)}\,\cos\left(-\frac{14\pi}{9}\right)\,\,\sin\left(-\frac{4\pi}{9}\right).$

013.24. a) $\cos \frac{5\pi}{9} - \lg \frac{25\pi}{19}$;

B)
$$\sin \frac{7\pi}{10} - \operatorname{ctg} \frac{3\pi}{5}$$
;

6) tg 1 - cos 2;

r) $\sin 2 - \cot 5.5$.

013.25. a) $\sin 1 \cdot \cos 2 \cdot \tan 3 \cdot \cot 4$;

6) $\sin \frac{\pi}{7} \cdot \cos \left(-\frac{7\pi}{5}\right)$;

6)
$$\sin(-5) \cdot \cot(-6) \cdot \tan(-7) \cdot \cot(-8)$$
.

•13.26. Вычислите:

a)
$$\sin 4 + |\sin 4| + 2 \cos 13 - 2|\cos 13|$$
;

6)
$$\frac{\text{tg } 11 + |\text{tg } 11|}{|\text{ctg } 12| - \text{ctg } 12|}$$
.

Решите уравнение:

13.27. a)
$$\cos t = \frac{\sqrt{2}}{2}$$
;

$$\mathbf{B})\cos t=-\frac{1}{2};$$

6)
$$\sin t = -\frac{1}{2}$$
;

$$\mathbf{r)}\,\sin\,t=\,\frac{\sqrt{2}}{2}.$$

13.28. a)
$$\sin t = -\frac{\sqrt{3}}{2}$$
;

$$\mathbf{B)} \cos t = -\frac{\sqrt{3}}{2};$$

6)
$$\cos t = \sqrt{3}$$
;

$$r) \sin t = -\frac{\pi}{3}.$$

13.29. a)
$$10 \sin t = \sqrt{75}$$
;

B)
$$8\cos t - \sqrt{32} = 0$$
;

6)
$$\sqrt{8} \sin t + 2 = 0$$
;

r)
$$8\cos t = -\sqrt{48}$$
.

13.30. a)
$$\sin^2 \frac{\pi}{8} + \cos^2 \frac{\pi}{8} - \sqrt{2} \sin t = 0$$
;

6)
$$\sqrt{\frac{4}{3}}\cos t = \cos^2 1 + \sin^2 1$$
.

013.31. a)
$$|\sin t| = 1$$
;

$$\mathbf{B}) |\cos t| = 1;$$

6)
$$\sqrt{1-\sin^2 t} = \frac{1}{2}$$
;

$$\Gamma) \sqrt{1-\cos^2 t} = \frac{\sqrt{2}}{2}.$$

013.32. Имеет ли смысл выражение:

a)
$$\sqrt{\sin 10.2\pi}$$
;

B)
$$\sqrt{\sin(-3,4\pi)}$$
;

6)
$$\sqrt{\cos 1.3\pi}$$
;

r)
$$\sqrt{\cos{(-6.9\pi)}}$$
?

Решите неравенство (относительно переменной x):

013.33. a)
$$\cos 2 \cdot (2x - 1) < 0$$
;

$$6) \cos 3 \cdot \cos 5 \cdot (x^2 - 4) < 0.$$

$$013.34.$$
 a) $(\cos t - 5)(3x - 1) \ge 0$;

6)
$$(2 + \sin t)(9 - x^2) \ge 0$$
.

013.35. a) ctg $5 \cdot (x-1) \ge 0$;

6)
$$\frac{\text{tg } 7 \cdot \cos 1}{\sin 1} (2x^2 - 72) < 0;$$

B)
$$(\text{tg } 2 \cdot \sin 5) \cdot (7 - 5x) \leq 0;$$

r)
$$\operatorname{tg} 1 \cdot \operatorname{ctg} 2 \cdot \operatorname{tg} 3 \cdot \operatorname{ctg} 4 \cdot (x^2 + 2) > 0$$
.

Сравните числа а и b:

O13.36. a)
$$a = \sin 1$$
, $b = \cos 1$; B) $a = \sin 2$, $b = \cos 2$; 6) $a = \sin 4$, $b = \cos 4$; r) $a = \sin 7$, $b = \cos 7$.

•13.37. a)
$$a = \sin 1$$
, $b = \cos 6$; B) $a = \sin 4$, $b = \cos 2$; c) $a = \sin 2$, $b = \cos 4$; r) $a = \sin 3$, $b = \cos 5$.

Расположите в порядке возрастания числа:

013.38. a)
$$\sin \frac{\pi}{7}$$
; $\sin \frac{\pi}{5}$; $\sin \frac{2\pi}{3}$; $\sin \frac{7\pi}{6}$; $\sin \frac{4\pi}{3}$;

6)
$$\cos \frac{\pi}{8}$$
; $\cos \frac{\pi}{3}$; $\cos \frac{5\pi}{6}$; $\cos \frac{5\pi}{4}$; $\cos \frac{7\pi}{4}$.

6)
$$\cos 3$$
, $\cos 4$, $\cos 6$, $\cos 7$;

Вычислите:

•13.41. a)
$$\sqrt{\sin^2 1 + \sin^2 2 - 2 \sin 1 \cdot \sin 2} + \sqrt{\frac{1}{4} - \sin 1 + \sin^2 1} + \sqrt{1 + \sin^2 2 - 2 \sin 2}$$
;

6)
$$\sqrt{\cos^2 6 + \cos^2 7 - 2\cos 6 \cdot \cos 7} + \sqrt{\frac{1}{4} - \cos 7 + \cos^2 7} + \sqrt{1 + \cos^2 6 - 2\cos 6}$$
.

•13.42. a)
$$\sqrt{\sin^2 5 - 2 \sin 5 \cdot \sin \frac{11\pi}{6} + \sin^2 \frac{11\pi}{6}} - \sqrt{\sin^2 \frac{5\pi}{6} - 2 \sin \frac{5\pi}{6} \cdot \sin 5 + \sin^2 5};$$

6)
$$\sqrt{\cos^2 4 - 2 \cos 4 \cdot \cos \frac{2\pi}{3} + \cos^2 \frac{2\pi}{3}} + \sqrt{\cos^2 4 - 2 \cos 4 \cdot \cos \frac{\pi}{3} + \cos^2 \frac{\pi}{3}}$$

Решите неравенство:

013.43. a)
$$\sin t > 0$$
;

6)
$$\sin t < \frac{\sqrt{3}}{2}$$
;

$$\mathbf{B}) \sin t < 0;$$

$$0) \sin t < \frac{1}{2}$$

r)
$$\sin t > \frac{\sqrt{3}}{2}$$
.

$$013.44$$
. a) $\cos t > 0$;

B)
$$\cos t < 0$$
;

6)
$$\cos t < \frac{\sqrt{2}}{2}$$
;

r)
$$\cos t > \frac{\sqrt{2}}{2}$$
.

013.45. a)
$$\sin t < -\frac{1}{2}$$
;

B)
$$\sin t > -\frac{1}{2}$$
;

$$6) \sin t > -\frac{\sqrt{2}}{2};$$

$$\mathbf{r)}\,\sin\,t<\,-\frac{\sqrt{2}}{2}.$$

013.46. a)
$$\cos t > -\frac{\sqrt{3}}{2}$$
;

B)
$$\cos t < -\frac{\sqrt{3}}{2};$$

6)
$$\cos t < -\frac{1}{2}$$
;

r)
$$\cos t > -\frac{1}{2}$$
.

013.47. a)
$$\sin t \le \frac{1}{2}$$
;

$$\mathbf{B})\sin t \geq -\frac{1}{2};$$

6)
$$\cos t \ge -\frac{\sqrt{2}}{2}$$
;

r)
$$\cos t \leq \frac{\sqrt{2}}{2}$$
.

Решите систему неравенств:

013.48. a)
$$\begin{cases} \sin t > 0, \\ \sin t < \frac{1}{2}; \end{cases}$$

$$\mathbf{B}) \begin{cases} \sin t > -\frac{\sqrt{2}}{2}, \\ \sin t < \frac{\sqrt{3}}{2}; \end{cases}$$

$$\begin{cases}
\cos t < 0, \\
\cos t > -\frac{1}{2};
\end{cases}$$

$$(r) \begin{cases} \cos t > \frac{1}{2}, \\ \cos t < \frac{\sqrt{2}}{2}. \end{cases}$$

013.49. a)
$$\begin{cases} \sin t > 0, \\ \cos t < \frac{1}{2}; \end{cases}$$

$$\text{B)}\begin{cases} \sin t > -\frac{\sqrt{2}}{2}, \\ \cos t < \frac{\sqrt{3}}{2}; \end{cases}$$

$$\begin{cases} \cos t < 0, \\ \sin t > -\frac{1}{2}; \end{cases}$$

$$\begin{cases} \cos t > \frac{1}{2}, \\ \sin t < \frac{\sqrt{2}}{2}. \end{cases}$$

₀₁3.50. Решите неравенство:

a)
$$\sin t \cdot \cos t > 0$$
;

B) ctg
$$t \cdot \cos t < 0$$
;

б)
$$\sin t \cdot \lg t \leq 0$$
;

r)
$$tg t \cdot ctg t \ge 0$$
.

Докажите неравенство:

$$_{\mathcal{O}13.51.}$$
 a) $\sin t < \operatorname{tg} t$, если $0 < t < \frac{\pi}{2}$;

б)
$$\cos t < \cot t$$
, если $0 < t < \frac{\pi}{2}$.

$$\bullet 13.52.$$
 a) $1 < \sin 1 + \cos^2 1 < 1.25;$

6)
$$2 < 2 \sin^2 1, 2 + \cos 1, 2 < \frac{17}{8}$$
.

•13.53. a)
$$0 < tg \frac{17}{7} + cos^{-2} \frac{17}{7} < 1;$$

6)
$$-1 < \sin^{-2} 4 + \text{ctg } 4 < 1$$
.

§ 14. Тригонометрические функции числового аргумента

Упростите выражение:

14.1. a)
$$1 - \sin^2 t$$
;

B)
$$1 - \cos^2 t$$
;

$$6) \cos^2 t - 1;$$

$$r) \sin^2 t - 1.$$

14.2. a)
$$(1 - \sin t)(1 + \sin t)$$
;
6) $\cos^2 t + 1 - \sin^2 t$;

B)
$$(1 - \cos t)(1 + \cos t)$$
;
r) $\sin^2 t + 2\cos^2 t - 1$.

14.3. a)
$$\frac{1}{\cos^2 t} - 1$$
;

B)
$$1 - \frac{1}{\sin^2 t}$$
;

$$6) \ \frac{1-\sin^2 t}{\cos^2 t};$$

$$\Gamma) \frac{1-\cos^2 t}{1-\sin^2 t}.$$

14.4. a)
$$\frac{(\sin t + \cos t)^2}{1 + 2\sin t \cos t}$$
;

$$6) \frac{1-2\sin t\cos t}{(\cos t-\sin t)^2}.$$

14.5. Докажите тождество:

a)
$$\frac{\cos^2 t}{1 - \sin t} - \sin t = 1$$
;

$$6) \frac{\sin^2 t}{1+\cos t} + \cos t = 1.$$

14.6. Докажите, что при всех допустимых значениях t выражение принимает одно и то же значение:

a)
$$(\sin t + \cos t)^2 - 2\sin t \cos t$$
;

6)
$$\frac{2-\sin^2 t - \cos^2 t}{3\sin^2 t + 3\cos^2 t};$$

B)
$$\sin^4 t + \cos^4 t + 2 \sin^2 t \cos^2 t$$
;

r)
$$\frac{\sin^4 t - \cos^4 t}{\sin^2 t - \cos^2 t}$$

14.7. Найдите наименьшее и наибольшее значения функции

$$s=f(t)$$
, если:

a)
$$f(t) = 1 - (\cos^2 t - \sin^2 t);$$

$$6) f(t) = 1 - \sin t \cos t \, \operatorname{tg} t;$$

6)
$$f(t) = 1 - \sin t \cos t \operatorname{tg} t;$$

B) $f(t) = \cos^2 t \operatorname{tg}^2 t + 5 \cos^2 t - 1;$

r)
$$f(t) = \sin t + 3\sin^2 t + 3\cos^2 t$$
.

Упростите выражение:

14.8. a)
$$\frac{\cos^2 t - \cot^2 t}{\sin^2 t - \cot^2 t}$$
;

B)
$$\cos^2 t - \sin^2 t (\cot^2 t + 1)$$
;

$$6) \operatorname{ctg}^2 t - (\sin^{-2} t - 1);$$

r)
$$\frac{\sin^2 t - 1}{\cos^2 t - 1} + \text{tg } t \text{ ctg } t$$
.

14.9. a)
$$\frac{\sin t}{1 + \cos t} + \frac{\sin t}{1 - \cos t}$$
;

$$\mathbf{B}) \ \frac{\cos t}{1+\sin t} + \frac{\cos t}{1-\sin t};$$

6)
$$\operatorname{ctg}^2 t (\cos^2 t - 1) + 1$$
;

$$\mathbf{r}) \ \frac{\mathbf{t}\mathbf{g} \ t + \mathbf{1}}{1 + \mathbf{c} \mathbf{t} \mathbf{g} \ t}.$$

14.10. a) $(3 \sin t + 4 \cos t)^2 + (4 \sin t - 3 \cos t)^2$;

6)
$$(\operatorname{tg} t + \operatorname{ctg} t)^2 - (\operatorname{tg} t - \operatorname{ctg} t)^2$$
;

B)
$$\sin t \cos t (\operatorname{tg} t + \operatorname{ctg} t)$$
;

r)
$$\sin^2 t \cos^2 t (tg^2 t + ctg^2 t + 2)$$
.

Докажите тождество:

014.11. a)
$$\frac{\operatorname{tg} t}{\operatorname{tg} t + \operatorname{ctg} t} = \sin^2 t;$$

B)
$$\frac{\operatorname{ctg} t}{\operatorname{tg} t + \operatorname{ctg} t} = \cos^2 t;$$

6)
$$\frac{1+\operatorname{tg} t}{1+\operatorname{ctg} t}=\operatorname{tg} t;$$

$$\mathbf{r}) \ \frac{1-\operatorname{ctg} t}{1-\operatorname{tg} t} = -\operatorname{ctg} t.$$

014.12. a)
$$1 + \sin t = \frac{\cos t + \cot t}{\cot t}$$
;

$$\mathbf{B}) \; \frac{1-\sin t}{\cos t} = \frac{\cos t}{1+\sin t};$$

6)
$$\frac{\sin t + \operatorname{tg} t}{\operatorname{tg} t} = 1 + \cos t; \qquad \text{r) } \frac{\sin t}{1 - \cos t} = \frac{1 + \cos t}{\sin t}.$$

$$\mathbf{r}) \, \, \frac{\sin t}{1 - \cos t} = \frac{1 + \cos t}{\sin t}.$$

014.13. Докажите тождество:

a)
$$\frac{(\sin t + \cos t)^2 - 1}{\cot t - \sin t \cos t} = 2 \operatorname{tg}^2 t;$$

6)
$$\sin^3 t(1 + \cot t) + \cos^3 t(1 + \cot t) = \sin t + \cos t$$
;

B)
$$\frac{(\sin t + \cos t)^2 - 1}{\operatorname{tg} t - \sin t \cos t} = 2 \operatorname{ctg}^2 t;$$

r)
$$\frac{1-4\sin^2 t \cos^2 t}{(\sin t + \cos t)^2} + 2\sin t \cos t = 1.$$

По заданному значению функции найдите значения остальных тригонометрических функций:

14.14. a)
$$\sin t = \frac{4}{5}, \frac{\pi}{2} < t < \pi;$$

6)
$$\sin t = \frac{5}{13}, \ 0 < t < \frac{\pi}{2};$$

B)
$$\sin t = -0.6, -\frac{\pi}{2} < t < 0;$$

r)
$$\sin t = -0.28$$
, $\pi < t < \frac{3\pi}{2}$.

14.15. a)
$$\cos t = 0.8, \ 0 < t < \frac{\pi}{2};$$

B)
$$\cos t = 0.6, \frac{3\pi}{2} < t < 2\pi;$$

6)
$$\cos t = -\frac{5}{13}, \ \frac{\pi}{2} < t < \pi;$$

r)
$$\cos t = -\frac{24}{25}$$
, $\pi < t < \frac{3\pi}{2}$.

14.16. a) tg
$$t = \frac{3}{4}$$
, $0 < t < \frac{\pi}{2}$;

B)
$$tg t = -\frac{3}{4}, \frac{\pi}{2} < t < \pi;$$

6) tg
$$t = 2,4$$
, $\pi < t < \frac{3\pi}{2}$;

r) tg
$$t = -\frac{1}{3}$$
, $\frac{3\pi}{2} < t < 2\pi$.

014.17. a) ctg
$$t = \frac{12}{5}$$
, $3\pi < t < \frac{7\pi}{2}$;

6) etg
$$t = \frac{7}{24}$$
, $2\pi < t < \frac{5\pi}{2}$;

B) etg
$$t = -\frac{5}{12}$$
, $\frac{7\pi}{2} < t < 4\pi$;

r) ctg
$$t = -\frac{8}{15}$$
, $\frac{5\pi}{2} < t < 3\pi$.

 \circ 14.18. a) Дано: $\sin (4\pi + t) = \frac{3}{5}, \ 0 < t < \frac{\pi}{2}$. Вычислите: $\operatorname{tg}(\pi - t)$.

6) Дано:
$$\cos (2\pi + t) = \frac{12}{13}$$
, $\frac{3\pi}{2} < t < 2\pi$. Вычислите: $\cot g (\pi - t)$.

- 014.19. a) Дано: $\cos t = -\frac{5}{13}$, $8.5\pi < t < 9\pi$. Вычислите: $\sin (-t)$.
 - 6) Дано: $\sin t = \frac{4}{5}$, $\frac{9\pi}{2} < t < 5\pi$. Вычислите: $\cos (-t) + \sin (-t)$,
- 014.20. a) Известно, что $\sin t + \cos t = 0.8$. Вычислите: $\sin t \cos t$.
 - б) Известно, что $\sin t \cos t = \frac{1}{3}$. Вычислите: $9 \sin t \cos t$.
- **•14.21.** Известно, что $\sin t + \cos t = 0.6$. Вычислите: a) $\sin^3 t + \cos^3 t$; 6) tg $t \sin t + \cot t$

- 6) $tg t \sin t + ctg t \cos t$.
- •14.22. Известно, что tg t + ctg t = 2,3. Вычислите:
 a) $\text{tg}^2 t + \text{ctg}^2 t$;
 б) $\text{tg}^3 t + \text{ctg}^3 t$.

- •14.23. Известно, $\sin t \cos t = -0.5$. Вычислите: a) $\sin^2 t + \cos^2 t$; b) $\sin^6 t + \cos^6 t$; б) $\sin^4 t + \cos^4 t$; г) $\sin^8 t + \cos^8 t$.
- •14.24. Известно, что $\sin t \cos t = -\frac{12}{49}$. Вычислите:

a) tg t + ctg t:

 $6) tg^2 t + ctg^2 t.$

- ●14.25. Вычислите:
 - a) $\sin t + \cos t$, ecan $tg t \frac{1}{tgt} = -\frac{7}{12}$ if $0 < t < \frac{\pi}{2}$;
 - б) $2 \sin t + \cos t$, если $4 \cot t + 6 \cot t + 11 = 0$ и $\frac{5\pi}{2} < t < \frac{11\pi}{4}$.
- 014.26. а) Вычислите tg t, если известно, что $\frac{\sin t + 3\cos t}{\sin t 3\cos t} = 4$.
 - б) Вычислите ctg t, если известно, что $\frac{2\sin t 3\cos t}{2\cos t 3\sin t} = 3.$
- 014.27. a) Вычислите tg t, если известно, что $5 \sin t \cos^2 t = 2,36$ и $\frac{5\pi}{2}$ < t < 3π .
 - б) Вычислите ctg t, если известно, что $\sin^2 t + 2\cos t +$ $+0.56 = 0 \text{ и } -\frac{7\pi}{2} < t < -3\pi.$
- •14.28. а) Вычислите ctg t, если известно, что $\frac{2\sin t \cos t}{\cos^2 t \sin^2 t} = \frac{3}{4}$ и $\frac{\pi}{4} < t < \pi$.
 - б) Вычислите tg t, если известно, что

$$\frac{2\sin^2 t + 3\sin t\cos t - \cos^2 t}{2\cos^2 t - \sin^2 t} = -\frac{1}{2} \text{ M } -\frac{\pi}{4} < t < \frac{\pi}{2}.$$

- $a_{14.29}$. Зная, что tg t=a, найдите:
 - a) $\cos^4 t$:
- B) $\sin^4 t$;
- \mathfrak{b}) $\sin t \cos t$;
- r) $\sin^3 t \cos t$.
- $_{-14.30}$. Зная, что ctg t=a, найдите:

 - a) $2\sin^2 t + 3\cos^2 t$; 6) $2\sin^2 t 3\sin t\cos t 5\cos^2 t$.

Упростите выражение:

$$_{\mathrm{O}14.31.}$$
 а) $\sqrt{rac{1+\cos t}{1-\cos t}}+\sqrt{rac{1-\cos t}{1+\cos t}}+rac{2}{\sin t}$, если $3\pi < t < rac{7\pi}{2}$;

6)
$$\sqrt{\frac{1-\sin t}{1+\sin t}}$$
 + tg t, если $2\pi < t < \frac{5\pi}{2}$.

•14.32. a)
$$\sqrt{\sin^{-2} t - \cot^2 t + \cos^2 t - 1}$$
 +

$$+\sqrt{\cos^{-2}t- ext{tg}^2t+ \sin^2t-1}+2\sin t-\cos t$$
, если

$$t \in (13; 14);$$

6)
$$\sqrt{\sin^2 t(1-2\operatorname{ctg} t)+4\cos^2 t(1-0.5\operatorname{tg} t)}$$
 +

$$+ \sin t + \cos t$$
, если $t \in (0; 1)$.

- •14.33. Расположите в порядке возрастания числа:

 - a) $\frac{1}{2}$, $\sin \frac{1}{2}$, $\sin \frac{13}{24}$; 6) $\frac{1}{2}$, $\cos 1$, $\cos 1$, 1.
- •14.34. Найдите наименьшее и наибольшее значения функции:
 - a) $y = \sin^2 x + 2 \sin x 5$:
 - $5) y = \sin^2 x 3 \cos^2 x + 2 \cos x;$
 - B) $u = 4 \cos^2 x 4 \cos x 2$:
 - r) $u = \cos^2 x 3\sin^2 x 4\sin x$.

Постройте график функции:

014.35. a)
$$y = \cos^2 x + \sin^2 x$$
; B) $y = \sin^2 \sqrt{x} + \cos^2 \sqrt{x}$;

B)
$$u = \sin^2 \sqrt{x} + \cos^2 \sqrt{x}$$
:

6)
$$y = \cos^2 \frac{1}{x} + \sin^2 \frac{1}{x}$$

6)
$$y = \cos^2 \frac{1}{x} + \sin^2 \frac{1}{x}$$
; r) $y = \sin^2 \frac{1}{x^2 - 4} + \cos^2 \frac{1}{x^2 - 4}$.

$$^{\circ}14.36$$
. a) $y = \lg x \, \operatorname{ctg} x$;

6)
$$y = 3\cos^2 x + 2 \operatorname{tg} x \operatorname{ctg} x + 3 \sin^2 x$$
.

§ 15. Тригонометрические функции углового аргумента

Переведите из градусной меры в радианную:

15.1. a) 120°:

б) 220°:

в) 300°:

r) 765°.

15.2. a) 210°;

б) 150°;

в) 330°:

г) 675°.

Переведите из радианной меры в градусную:

15.3. a) $\frac{3\pi}{4}$; 6) $\frac{11\pi}{3}$; B) $\frac{6\pi}{5}$;

r) $\frac{46\pi}{9}$.

15.4. a) $\frac{5\pi}{8}$; 6) $\frac{7\pi}{12}$; B) $\frac{11\pi}{12}$; r) $\frac{47\pi}{9}$.

Вычислите $\sin \alpha$, $\cos \alpha$, $tg \alpha$, $ctg \alpha$ для заданного значения угла α:

15.5. a) 90°:

б) 180°:

в) 270°:

r) 360°.

15.6. a) 30°:

б) 150°; в) 210°:

r) 240°.

Расположите в порядке воз

015.7. a) sin 40°, sin 80°, sin 120°,

δ) cos 40°, cos 80°, cos 120°,

015.8. a) sin 380°, sin 830°, sin 210

б) cos 390°, cos 460°, cos 920

015.9. a) sin 22.5°, cos 37.4°, cos 990°, sin 990°;

6) tg 100°, ctg 225°, cos 94,3°, sin 77°.

15.10. В прямоугольном треугольнике известны гипотенуза с и острый угол а. Найдите катеты, площадь и радиус описанной окружности, если:

a) c = 12, $\alpha = 60^{\circ}$;

B) c = 4, $\alpha = 30^{\circ}$;

β) c = 6, α = 45°;

r) c = 60, $\alpha = 60^{\circ}$.

15.11. Хорда AB образует с диаметром AC окружности угод α° . Найдите длину хорды AB, если радиус окружности равен R

015.12. Докажите, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.

O15.13. B $\triangle ABC$ известно, что $AB = 4\sqrt{2}$ cm, $\angle A = 45^{\circ}$, $\angle C = 30^{\circ}$. Найдите BC, AC и площадь $\triangle ABC$.

- 015.14. Высота треугольника равна 5 см, а углы, прилегающие к основанию, равны 60° и 45°. Найдите площадь треугольника.
- •15.15. Использовав геометрические соображения, вычислите: а) sin 15° и cos 15°; б) sin 22,5° и cos 22,5°.

Вычислите:

- $_{015.16}$. a) $\sin^2 733^\circ + \cos^2 347^\circ$;
 - 6) $2\cos^2 395^\circ + \sin^2 1000^\circ + 2\sin^2 755^\circ + \cos^2 800^\circ$.
- 015.17. a) tg 1° tg 2° tg 3° · ... · tg 89°;
 - 6) ctg 2° ctg 4° ctg 6° · ... · ctg 178°.
- •15.18. a) $\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 90^\circ$; 6) $\cos^2 1^\circ + \cos^2 2^\circ + \cos^2 3^\circ + \dots + \cos^2 180^\circ$.
- 015.19. Докажите, что верно равенство:

a)
$$(4 \sin 30^{\circ} + tg 60^{\circ}) \left(\frac{1}{\cos (-60^{\circ})} + ctg 150^{\circ} \right) = 2 \sin 150^{\circ};$$

- 6) $(\text{ctg } 210^{\circ} + 2 \cos 120^{\circ})(\text{tg } 420^{\circ} 2 \sin 330^{\circ}) = 4 \cos^{2} 315^{\circ}.$
- •15.20. Дано выражение $\sin 1^{\circ} \sin 2^{\circ} \sin 3^{\circ} \cdot ... \cdot \sin n^{\circ}$.
 - а) При каких натуральных значениях n это выражение положительно?
 - б) При каких натуральных значениях n это выражение отрицательно?
 - в) При каких натуральных значениях n это выражение равно нулю?
- ullet15.21. Дано выражение $\cos 1^\circ \cos 2^\circ \cos 3^\circ \cdot \ldots \cdot \cos n^\circ$.
 - а) При каких натуральных значениях n это выражение положительно?
 - б) При каких натуральных значениях n это выражение отрицательно?
 - в) При каких натуральных значениях n это выражение равно нулю?
- •15.22. Дано выражение $\sin 1^{\circ} + \sin 2^{\circ} + \sin 3^{\circ} + ... + \sin n^{\circ}$.
 - а) При каких натуральных значениях n это выражение положительно?
 - б) При каких натуральных значениях n это выражение отрицательно?
 - в) При каких натуральных значениях n это выражение равно нулю?

- **•15.23.** Дано выражение $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos n^{\circ}$.
 - а) При каких натуральных значениях $n \le 360$ это выражение положительно?
 - б) При каких натуральных значениях $n \le 360$ это выра. жение отрицательно?
 - в) При каких натуральных значениях п это выражение равно нулю?
- ●15.24. Использовав равнобедренный треугольник с углом 36° прм вершине, вычислите sin 18°, cos 18°, sin 36°, cos 36°.

Указание. Проведите биссектрису угла при основании треугольника.

§ 16. Функции $y = \sin x$, $y = \cos x$, их свойства и графики

Найдите значение функции:

16.1. a)
$$y = 2 \sin\left(x - \frac{\pi}{6}\right) + 1$$
 при $x = \frac{4\pi}{3}$;

6)
$$y = -\sin\left(x + \frac{\pi}{4}\right) \pi p x \ x = -\frac{\pi}{2};$$

B)
$$y = 2 \sin \left(x - \frac{\pi}{6}\right) + 1 \pi p x = \frac{7\pi}{6}$$
;

г)
$$y = -\sin\left(x + \frac{\pi}{4}\right)$$
при $x = -\frac{15\pi}{4}$.

16.2.
$$y = \frac{1}{\cos x}$$
 если:

a)
$$x = \frac{2\pi}{3}$$
; 6) $x = \frac{11\pi}{6}$.

$$6) x = \frac{11\pi}{6}.$$

16.3.
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 1$$
, если:

a)
$$x = -\frac{\pi}{2}$$
; 6) $x = \frac{\pi}{4}$.

$$6) x = \frac{\pi}{4}.$$

16.4. Не выполняя построения, ответьте на вопрос, принадлежит ли графику функции $y = \sin x$ точка с координатами:

a)
$$\left(-\frac{\pi}{2}; -1\right)$$

6)
$$\left(\frac{\pi}{2}; \frac{1}{2}\right)$$

a)
$$\left(-\frac{\pi}{2}; -1\right);$$
 6) $\left(\frac{\pi}{2}; \frac{1}{2}\right);$ B) $(\pi; 1);$ $\Gamma\left(\frac{3\pi}{2}; -1\right)$?

16.5. Принадлежит ли графику функции $y=-\sin\left(x+rac{\pi}{6}
ight)+2$ точка:

a)
$$\left(0, \frac{3}{2}\right)$$

$$\mathbf{B})\ \left(\frac{2\pi}{3};\ \frac{3}{2}\right);$$

$$6) \left(\frac{\pi}{6}; -\frac{\sqrt{3}}{2} + 2\right)$$

16.6. Принадлежит ли графику функции $y = \cos x$ точка с координатами:

a)
$$\left(\frac{\pi}{3}; \frac{1}{2}\right)$$
;

B)
$$\left(\frac{2\pi}{3}; -\frac{1}{2}\right);$$

6)
$$\left(\frac{\pi}{6}; \frac{1}{2}\right)$$
;

$$_{\Gamma)}\left(\frac{5\pi}{6};\ -\frac{\sqrt{3}}{2}\right) ?$$

16.7. Принадлежит ли графику функции $y = 2\cos\left(x - \frac{\pi}{6}\right) + 1$ точка с координатами:

a)
$$(0; \sqrt{3} + 1);$$

B)
$$\left(\frac{\pi}{2}; 2\right)$$
;

6)
$$\left(\frac{\pi}{6}; 1\right)$$

r)
$$\left(\frac{\pi}{6}; 3\right)$$
?

16.8. Найдите наименьшее и наибольшее значения функции $u = \sin x$:

а) на отрезке
$$\left[\frac{\pi}{4}; \frac{2\pi}{3}\right];$$

в) на интервале
$$\left(-\frac{3\pi}{2}; \frac{3\pi}{4}\right)$$
;

б) на луче
$$\left[\frac{\pi}{4}; +\infty\right]$$
;

г) на полуинтервале
$$\left(-\pi; \frac{\pi}{3}\right]$$
.

16.9. Найдите наименьшее и наибольшее значения функции $u = \cos x$:

а) на отрезке
$$\left[\frac{\pi}{6}; \frac{2\pi}{3}\right];$$

в) на луче
$$\left[-\frac{\pi}{4}; +\infty\right];$$

б) на интервале
$$\left(-\pi; \frac{\pi}{4}\right)$$

б) на интервале
$$\left(-\pi; \frac{\pi}{4}\right)$$
; г) на полуинтервале $\left[-\frac{\pi}{3}; \frac{3\pi}{2}\right]$.

 $^{\circ}16.10$. Исследуйте функцию y = f(x) на четность:

a)
$$f(x) = x^5 \sin \frac{x}{2}$$
;

$$B) f(x) = \frac{2\sin\frac{x}{2}}{x^3};$$

$$6) f(x) = x^3 \sin x^2;$$

$$\mathbf{r}) \ f(x) = x^3 - \sin x.$$

Исследуйте функцию на четность:

016.11. a)
$$f(x) = x + \sin x$$
;

B)
$$f(x) = \frac{x^2 \sin x}{x^2 - 9}$$
;

6)
$$f(x) = \frac{\sin^2 x}{x^2 - 1}$$
;

$$\mathbf{r}) \ f(x) = \sin^2 x - x^4.$$

$$016.12. a) f(x) = \sin x \cos x;$$

B)
$$f(x) = \frac{\cos x^3}{x(25 - x^2)};$$

6)
$$f(x) = \frac{\cos x^3}{4 - x^2}$$
;

r)
$$f(x) = (4 + \cos x)(\sin^6 x - 1)$$
.

O16.13. a)
$$f(x) = x^2 \cos x$$
;

$$\mathbf{B})\ f(x) = \frac{\cos 5x + 1}{|x|};$$

$$f(x) = x^5 \cos 3x;$$

$$\mathbf{r}) \ f(x) = x^{11} \cos x + \sin x.$$

016.14. Найдите область значений заданной функции на заданном промежутке:

a)
$$y = \sin x$$
, $x \in \left[\frac{\pi}{3}; \frac{7\pi}{3}\right]$;

B)
$$y = \sin x, x \in (-1; 6);$$

6)
$$y = \cos x$$
, $x \in (1; +\infty)$;

r)
$$y = \cos x$$
, $x \in [1,2; 7,5]$.

Вычислите, преобразовав заданное выражение (sin t или $\cos t$) к виду $\sin t_0$ или $\cos t_0$ так, чтобы выполнялось соотношение $0 < t_0 < 2\pi$ или $0^\circ < t_0 < 360^\circ$:

16.15. a) $\sin 50.5\pi$;

в) $\sin 25.25\pi$:

6) $\cos 51.75\pi$:

r) $\sin 30.5\pi$.

16.16. a) sin 390°;

в) sin 540°;

б) cos 750°:

r) cos 930°.

16.17. Докажите тождество:

- a) $\sin^2(x 8\pi) = 1 \cos^2(16\pi x)$;
- 6) $\cos^2(4\pi + x) = 1 \sin^2(22\pi x)$.

016.18. Найдите основной период функции:

a) $y = \sin 2x$;

 $\mathbf{B}) \ y = \sin \frac{x}{2};$

 $6) y = \cos 3x;$

 $\mathbf{r)} \ y = \cos \frac{3x}{4}.$

016.19. Преобразуйте заданное выражение (sin t или $\cos t$) к виду $\sin t_0$ или $\cos t_0$ так, чтобы выполнялось соотношение $0 < t_0 < 2\pi$:

- a) sin 8:
- б) $\cos{(-10)}$; B) $\sin{(-25)}$;
- r) cos 35.

16.20. Вычислите:

a)
$$\cos (t + 4\pi)$$
, если $\cos (2\pi - t) = -\frac{3}{5}$;

6)
$$\sin (32\pi - t)$$
, если $\sin (2\pi - t) = \frac{5}{13}$.

16.21. Решите уравнение:

a)
$$\sin(t + 2\pi) + \sin(t - 4\pi) = 1$$
;

6)
$$3\cos(2\pi+t)+\cos(t-2\pi)+2=0$$
;

B)
$$\sin(t+4\pi) + \sin(t-6\pi) = \sqrt{3}$$
;

r)
$$\cos(t + 2\pi) + \cos(t - 8\pi) = \sqrt{2}$$
.

Найдите область значений функции:

$$_{016,22.}$$
 a) $y = 2 \sin x$;

B)
$$y = -3\cos x + 2$$
;

6)
$$y=(3\cos x-2)^4$$
;

r)
$$y=(1+4\sin x)^2$$
.

016.23. a)
$$y = \frac{1}{\sin x + 2}$$
;

$$\mathbf{B}) \ y = \frac{2}{\sin x - 3};$$

$$6) \ y = \frac{8}{3\cos x - 5};$$

$$\mathbf{r)} \ y = \frac{15}{4 + \cos x}.$$

$$016.24. a) y = \sin^2 x - 6 \sin x + 8;$$

$$B) y = \cos^2 x + \cos x + 2;$$

6)
$$y = \sqrt{2 - \cos x};$$

$$\mathbf{r)} \ \ y = \sqrt{8\sin x - 4}.$$

016.25. Найдите все целочисленные значения функции:

a)
$$y = 5 + 4 \cos x$$
;

$$\mathbf{B}) \ y = 3 - 2\sin x;$$

6)
$$y = \sqrt{2 - 7\cos x}$$
;

$$\mathbf{r}) \ y = \sqrt{11 + 2\sin x}.$$

16.26. Найдите все значения x, при которых заданному промежутку принадлежит только одно целое число; укажите это число:

a)
$$(5-2\sin x; 5+2\sin x);$$

6)
$$[4 + 2\cos x; 4 - 2\cos x]$$
.

Постройте график функции:

16.27. a)
$$y = \sin\left(x - \frac{\pi}{3}\right)$$
;

$$\mathbf{B})\ y=\sin\left(x-\pi\right);$$

$$6) y = \sin\left(x + \frac{\pi}{4}\right)$$

$$\mathbf{r}) \ y = \sin\left(x + \frac{\pi}{3}\right).$$

16.28. a)
$$y = \sin x - 2$$
;

$$\mathbf{B})\ y=\sin x+2;$$

6)
$$y = \sin x + 1$$
:

r)
$$y = \sin x - 3$$
.

Постройте график функции:

016.29. a)
$$y = \sin\left(x - \frac{\pi}{4}\right) + 1;$$

$$6) y = \sin\left(x + \frac{\pi}{3}\right) - 1.$$

016.30. a)
$$y = -\sin\left(x + \frac{\pi}{6}\right)$$
;

$$6) y = -\sin x + 3.$$

016.31. a)
$$y = \sin\left(x + \frac{2\pi}{3}\right) + \frac{1}{2}$$
;

$$\mathbf{B})\ y=\sin\left(x-\pi\right)-1;$$

6)
$$y = -\sin\left(x - \frac{\pi}{6}\right) + 2;$$

$$\mathbf{r)} \ y = -\sin\left(x + \frac{\pi}{2}\right) - 2.$$

016.32. Найдите наименьшее и наибольшее значения функции $y = \sin\left(x - \frac{\pi}{4}\right) + 0,5$ на промежутке:

a)
$$\left[\frac{\pi}{4}; \frac{3\pi}{4}\right];$$

6)
$$\left(\frac{3\pi}{4}; \frac{9\pi}{4}\right)$$

r)
$$\left[\frac{\pi}{4}; +\infty\right]$$

Постройте график функции:

16.33. a)
$$y = \cos\left(x + \frac{\pi}{6}\right)$$

$$\mathbf{B}) \ \mathbf{y} = \cos\left(\mathbf{x} - \frac{\pi}{3}\right);$$

$$6) \ y = \cos x - 2;$$

$$\mathbf{r}) \ y = \cos x + 1.5.$$

016.34. a)
$$y = \cos\left(x + \frac{\pi}{2}\right) + 1;$$
 b) $y = \cos\left(x - \frac{\pi}{2}\right) + \frac{1}{2};$

$$\mathbf{B}) \ y = \cos\left(x - \frac{\pi}{2}\right) + \frac{1}{2};$$

$$6) y = \cos\left(x - \frac{\pi}{3}\right) - 2;$$

6)
$$y = \cos\left(x - \frac{\pi}{3}\right) - 2$$
; r) $y = \cos\left(x + \frac{\pi}{6}\right) - 3$.

•16.35. Найдите наименьшее и наибольшее значения функция $y = -\cos\left(x + \frac{\pi}{3}\right) + 1,5$ на промежутке:

a)
$$\left[\frac{\pi}{6}; \pi\right];$$

$$\Gamma$$
) $\left[0; \frac{\pi}{2}\right)$

16.36. Известно, что $f(x) = 3 \sin x$. Найдите:

a)
$$f(-x)$$
;

B)
$$2f(x) + 1$$
:

6)
$$2f(x)$$
;

B)
$$2f(x) + 1$$
;
r) $f(-x) + f(x)$.

16.37. Известно, что $f(x) = -\frac{1}{2}\cos x$. Найдите:

- - a) f(-x); B) $f(x + 2\pi)$;

 - 6) 2f(x); r) f(-x) f(x).

16.38. Известно, что $f(x) = \cos \frac{x}{2}$. Найдите:

- a) f(-x);
- B) f(-3x):
- 6) 3f(x):
- $\mathbf{r})\ f(-x)-f(x).$

16.39. Известно, что $f(x) = \sin 2x$. Найдите:

- a) f(-x);
- B) $f\left(-\frac{x}{2}\right)$;
- б) 2f(x):
- $\mathbf{r})\ f(-x)+f(x).$

016.40. a) Дано: $f(x) = 2x^2 - x + 1$. Докажите, что $f(\sin x) =$ $=3-2\cos^2x-\sin x.$

6) Дано: $f(x) = 3x^2 + 2x - 7$. Докажите, что $f(\sin x) = 2 \sin x - 6$ $-3\cos^2 x - 4$.

016.41. a) Дано: $f(x) = 2x^2 - 3x - 2$. Докажите, что $-f(\cos x) =$ $= 2\sin^2 x + 3\cos x.$

> б) Дано: $f(x) = 5x^2 + x + 4$. Докажите, что $f(\cos x) =$ $= 9 + \cos x - 5 \sin^2 x.$

16.42. Исследуйте функцию $y = \sin x$ на монотонность на заданном промежутке:

- a) $\left[\frac{5\pi}{2}; \frac{7\pi}{2}\right];$
- $\mathbf{B})\left\{\frac{11\pi}{3};\,\frac{25\pi}{6}\right\}$
- 6) $\left[-\frac{7\pi}{6}; \frac{\pi}{6}\right]$;
- Γ) $\left(\frac{\pi}{3}; \frac{7\pi}{3}\right)$

16.43. Исследуйте функцию $y = \cos x$ на монотонность на заданном промежутке:

- a) $[3\pi; 4\pi];$
- $\mathbf{B}) \left(\frac{7\pi}{3}; \, \frac{17\pi}{6} \right);$
- 6) $\left[-\frac{\pi}{3}; \frac{\pi}{3}\right];$
- Γ) $\left(\frac{\pi}{6}; \frac{11\pi}{6}\right)$.

016.44. На каких промежутках функция $y = \sin\left(x - \frac{\pi}{3}\right)$:

- а) возрастает;
- б) убывает?

 \circ 16.45. На каких промежутках функция $y = \cos\left(x + \frac{\pi}{6}\right)$

а) возрастает; б) убывает?

•16.46. Докажите, что функция $u = \sin x$:

- а) возрастает на отрезке [12; 13];
- б) убывает на интервале (8; 10);
- в) достигает на интервале (7; 12) наименьшего и наиболь. шего значений:
- Γ) не достигает на интервале (-1; 1) ни наименьшего, ни наибольшего значений.

•16.47. Докажите, что функция $y = \cos x$:

- а) возрастает на отрезке [-3; -0.5];
- б) убывает на интервале (7; 9);
- в) достигает на интервале (3; 7) наименьшего и наибольшего значений:
- г) не достигает на интервале (-3; -0,5) ни наименьшего. ни наибольшего значений.

Решите графически уравнение:

016.48. a) $\sin x = x + \pi$;

 $\mathbf{B)}\,\sin\,x+x=0;$

 $6) \sin x = 2x;$

 $\mathbf{r)}\,\sin\,x=2x-2\pi.$

016.49. a) $\sin x = \frac{2}{\pi}x$;

B) $\sin x = -\frac{4}{5}x + 3$;

6)
$$\sin x + \left(x + \frac{\pi}{2}\right)^2 + 1 = 0;$$

 $\mathbf{r)}\,\sin\,x=x^2+1.$

016.50. a) $\sin\left(x-\frac{\pi}{3}\right)=\pi-3x;$

$$6) \sin x - \sqrt{x - \pi} = 0;$$

B)
$$\sin\left(x + \frac{\pi}{6}\right) = \left(x - \frac{\pi}{3}\right)^2 + 1;$$

r) $-\sin x = \sqrt{x}$.

016.51. a) $\cos x = x + \frac{\pi}{2}$;

 $\mathbf{B)}\,\cos\,x=2x+1;$

6) $-\cos x = 3x - 1$;

 $\mathbf{r})\cos x = -x + \frac{\pi}{2}.$

016.52. a) $\cos x = \sqrt{x} + 1$;

B) $\cos x = -(x - \pi)^2 - 1$;

 $6) \cos x = \sqrt{x - \frac{\pi}{2}};$

r) $\cos x = |x| + 1$.

 $_{016.53}$. Сколько решений имеет система уравнений:
a) $\begin{cases} y = \sin x, & y = \sin x, \\ y = x^2 + 4x - 1; & y = -3x^2 - 2; \end{cases}$

a)
$$\begin{cases} y = \sin x, \\ y = x^2 + 4x - 1; \end{cases}$$

$$\begin{cases} y = \sin x, \\ y = -3x^2 - 2; \end{cases}$$

$$\begin{cases} y = \sin x, \\ y = \frac{1}{x}; \end{cases}$$

$$\begin{array}{l}
y = \sin x, \\
|x| - y = 0?
\end{array}$$

016.54. Сколько решений имеет система уравнений:

a)
$$\begin{cases} y = \cos x, \\ y = -x^2 + 2x - 3; \end{cases}$$

$$\begin{cases}
 y = \cos x, \\
 y = x^2 - 3;
 \end{cases}$$

$$\begin{cases} y = \cos x, \\ y = \frac{2}{x}; \end{cases}$$

$$\mathbf{r}) \begin{cases} y = \cos x, \\ |x| - y = 0? \end{cases}$$

о16.55. Решите графически уравнение:

a)
$$\sin x = \cos x$$
;

6)
$$\sin x + \cos x = 0.$$

•16.56. Решите уравнение:

a)
$$\sin x = \left| \frac{3x}{2\pi} - \frac{3}{4} \right|$$
;

6)
$$\cos x + \left| \frac{3x}{5\pi} - \frac{3}{10} \right| = 0, \ x \ge 0.$$

Решите неравенство:

016.57. a)
$$\cos x \ge 1 + |x|$$
;

6)
$$\sin x \leqslant -\left(x-\frac{3\pi}{2}\right)^2-1$$
.

•16.58. a)
$$\sin x > \frac{3x}{5\pi}$$
;

$$6)\cos x \leqslant \frac{9x}{2\pi} - 1.$$

Постройте график функции:

016.59. a)
$$y = |\sin x|$$
;

B)
$$y = |\cos x|$$
;

$$6) y = \left|\cos x - \frac{1}{2}\right|;$$

$$\mathbf{r}) \ y = \left| \sin x + \frac{1}{2} \right|.$$

•16.60. a)
$$y = \sin |x|$$
;

$$\mathbf{B}) \ y = \cos |x|;$$

$$6) y = \sin \left| x - \frac{\pi}{3} \right|;$$

$$\mathbf{r}) \ y = \cos \left| x + \frac{2\pi}{3} \right|.$$

016.61. Постройте и прочитайте график функции

a)
$$y = \begin{cases} x^2, \text{ если } x < 0, \\ \sin x, \text{ если } x \ge 0; \end{cases}$$

$$6) y = \begin{cases} \sin x, \text{ если } x < 0, \\ x^2, \text{ если } x \ge 0. \end{cases}$$

016.62. Дана функция
$$y=f(x)$$
, где $f(x)=\begin{cases} \sin x,\ \operatorname{если} -\pi \leqslant x \leqslant 0 \end{cases}$

а) Вычислите:
$$f\left(-\frac{\pi}{2}\right)$$
, $f(0)$, $f(1)$, $f(\pi^2)$;

б) постройте график функции y = f(x);

в) прочитайте график функции y = f(x).

016.63. Дана функция
$$y=f(x)$$
, где $f(x)=\begin{cases} \frac{1}{x}, \text{ если } x<0,\\ \sin x, \text{ если } 0\leqslant x\leqslant\pi. \end{cases}$

а) Вычислите: f(-2), f(0), f(1);

б) постройте график функции y = f(x);

в) прочитайте график функции y = f(x).

Постройте и прочитайте график функции:

016.64. a)
$$y = \begin{cases} x + 2, \text{ если } x < 0, \\ \cos x, \text{ если } x \ge 0; \end{cases}$$
 6) $y = \begin{cases} -\frac{2}{x}, \text{ если } x < 0, \\ -\cos x, \text{ если } x \ge 0. \end{cases}$

016.65. а)
$$y = \begin{cases} \cos x, \text{ если } x \leqslant \frac{\pi}{2}, \\ \sin x, \text{ если } x > \frac{\pi}{2}; \end{cases}$$
 б) $y = \begin{cases} -\cos x, \text{ если } x < 0, \\ 2x^2 - 1, \text{ если } x \ge 0. \end{cases}$

●16.66. Постройте график функции:

a)
$$y = \frac{|\sin x|}{\sin x}$$
; B) $y = \frac{2\cos x}{|\cos x|}$;
6) $y = \operatorname{tg} x \cdot |\cos x|$; $y = \operatorname{ctg} x \cdot |\sin x|$.

016.67. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} 2x - \pi, \text{ если } x < \frac{\pi}{2}, \\ \cos x, \text{ если } \frac{\pi}{2} \le x \le \frac{3\pi}{2}, \\ \frac{3\pi}{2} - x, \text{ если } x > \frac{3\pi}{2}; \end{cases}$$

$$6) y = \begin{cases} \sin x, \text{ если } x \le 0, \\ x^2, \text{ если } 0 < x < \frac{\pi}{2}, \\ \cos x, \text{ если } x \ge \frac{\pi}{2}. \end{cases}$$

$$_{\bigcirc 16.68}$$
. Дана функция $y=f(x)$, где $f(x)=egin{cases} 2x+2\pi, \ \text{если}\ x\leqslant -\pi, \ \sin x, \ \text{если}\ -\pi < x\leqslant 0, \ -2x, \ \text{если}\ x>0. \end{cases}$

а) Вычислите:
$$f(-\pi - 2)$$
, $f\left(-\frac{\pi}{6}\right)$, $f(2)$;

- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

$$_{\text{O}16.69}.$$
 Дана функция $y=f(x),$ где $f(x)=egin{cases} -x^2, \ \text{если} \ x<0, \ \sin x, \ \text{если} \ 0\leqslant x\leqslant\pi, \ -(x-\pi)^2, \ \text{если} \ x>\pi. \end{cases}$

- а) Вычислите: f(-3), $f(\frac{\pi}{2})$, $f(2\pi 3)$;
- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

016.70. Дана функция y = f(x), где

$$f(x) = \begin{cases} \sin\left(x + \frac{\pi}{2}\right), & \text{если } -\frac{3\pi}{2} \le x \le 0, \\ x + 1, & \text{если } 0 < x < 2; \\ -\sqrt{x - 2} + 3, & \text{если } x \ge 2. \end{cases}$$

- а) Вычислите: f(0), f(6), $f(-\pi 2)$;
- б) постройте график функции y = f(x);
- в) прочитайте график функции y = f(x).

Постройте график функции:

•16.71. a)
$$y = \frac{1}{\sin x}$$
;

$$6) y = \frac{1}{\cos x}.$$

•16.72. a)
$$y = \sin(\sin x)$$
;

$$\mathbf{B})\ y=\cos\left(\cos x\right);$$

$$6) y = \sin(\cos x);$$

r)
$$y = \cos(\sin x)$$
.

§ 17. Построение графика функции y = mf(x)

Постройте график функции:

17.1. a)
$$y = 3\sqrt{x}$$
;

B)
$$y = \frac{1}{3}x^4$$
;

6)
$$y = -2|x|$$
;

$$\mathbf{r}) \ y = -\frac{2}{x^2}.$$

17.2. a)
$$y = -2(x-1)^3$$
;

B)
$$y = -2\sqrt{x-3}$$
;

6)
$$y = 3|x + 2|$$
;

r)
$$y = 0.5x^{-3}$$
.

17.3. a)
$$y = 2 \sin x$$
;

$$\mathbf{B}) \ y = -\sin x;$$

$$6) \ y = 3 \cos x;$$

$$\mathbf{r)} \ y = -\mathbf{cos} \ x.$$

17.4. a)
$$y = -2 \sin x$$
;
6) $y = -3 \cos x$;

B)
$$y = 1.5 \sin x$$
;
r) $y = -1.5 \cos x$.

17.5. Найдите наибольшее и наименьшее значения функцив
$$y=2\cos x$$
:
а) на отрезке $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$; в) на полуинтервале $\left[\frac{\pi}{3};\frac{3\pi}{2}\right]$;

в) на полуинтервале
$$\left[\frac{\pi}{3}; \frac{3\pi}{2}\right]$$

б) на интервале
$$\left(0; \frac{3\pi}{2}\right)$$

б) на интервале
$$\left(0; \frac{3\pi}{2}; \right)$$
; г) на отрезке $\left[-\frac{3\pi}{2}; -\frac{\pi}{4}\right]$.

17.6. Найдите наибольшее и наименьшее значения функции $y = -3 \sin x$:

а) на луче [0; +∞);

б) на открытом луче
$$\left(-\infty; \frac{\pi}{2}\right)$$

в) на луче
$$\left[\frac{\pi}{4}; +\infty\right]$$

г) на открытом луче ($-\infty$; 0).

017.7. Постройте график функции:

a)
$$y=2\sin x-1;$$

B)
$$y = -\frac{3}{2} \sin x + 3;$$

6)
$$y = -\frac{1}{2}\cos x + 2;$$

$$\mathbf{r)} \ y = 3 \cos x - 2.$$

Постройте график функции:

$$017.8$$
, a) $y = 2 \sin \left(x - \frac{\pi}{3}\right)$;

$$\mathbf{B}) \ y = -\sin\left(x + \frac{2\pi}{3}\right);$$

$$6) y = -3 \cos \left(x + \frac{\pi}{6}\right)$$

6)
$$y = -3\cos\left(x + \frac{\pi}{6}\right)$$
; r) $y = 1.5\cos\left(x - \frac{2\pi}{3}\right)$

O17.9. a)
$$y = 2 \sin\left(x + \frac{\pi}{3}\right) + 1;$$

6)
$$y = -3\cos\left(x - \frac{5\pi}{6}\right) - 2;$$

B)
$$y = -1.5 \sin \left(x - \frac{2\pi}{3}\right) + 2;$$

r)
$$y = 2.5 \cos \left(x + \frac{2\pi}{3}\right) - 1.5$$
.

•17.10. a)
$$y = 2|\cos x|$$
;

$$\mathbf{B}) \ y = 3 \sin |x|;$$

$$6) y = -3 \cos \left| x + \frac{\pi}{6} \right|;$$

6)
$$y = -3\cos\left|x + \frac{\pi}{6}\right|$$
; r) $y = -2\left|\sin\left(x - \frac{\pi}{3}\right)\right|$.

- 017.11. Подберите коэффициенты а и в так, чтобы на данном рисунке был изображен график функции $y = a \sin x + b$ или $y = a \cos x + b$:
 - а) рис. 48;
- б) рис. 49;
- в) рис. 50;
- г) рис. 51.

Puc. 48

Puc. 49

Puc. 50

Puc. 51

017.12. Подберите коэффициенты a и b так, чтобы на данном рисунке был изображен график функции $y = a \sin(x + b)$ или $y = a \cos(x + b)$:

а) рис. 52;

б) рис. 53;

в) рис. 54;

г) рис. 55.

Puc. 52

Puc. 53

Puc. 54

Puc. 55

О17.13. Составьте возможную аналитическую запись функции по ее графику, изображенному:

а) на рис. 56;

б) на рис. 57.

Puc. 56

Puc. 57

017.14. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} 3 \sin x, \text{ если } x < \frac{\pi}{2}; \\ 3x^3, \text{ если } x > \frac{\pi}{2}; \end{cases}$$

$$6) \ y = \begin{cases} -2\cos x, \text{ если } x < 0; \\ \frac{1}{2}x^4, \text{ если } x \ge 0. \end{cases}$$

■17.15. Решите уравнение:

a)
$$2 \sin x - 1 = \left(x - \frac{\pi}{2}\right)^2 - \frac{\pi^2}{9}$$
;

6)
$$2\cos x = \frac{9x^2}{\pi^2}$$
.

17.16. Решите неравенство:

a)
$$2\cos x < 2 + x^4$$
;

6)
$$-2\sin x > \frac{9}{\pi^2} \left(x + \frac{\pi}{2}\right)^2$$
.

Постройте график функции:

•17.17. a)
$$y = \frac{3 \sin^3 x}{1 - \cos^2 x}$$
;

$$6) \ y = \frac{\cos^3 x}{2\sin^2 x - 2}.$$

e17.18. a)
$$y = 3 \sin x + |\sin x|$$
; 6) $y = \cos x - 3|\cos x|$.

$$6) y = \cos x - 3|\cos x|$$

•17.19. a)
$$y = \frac{1}{\sin x} + \frac{1}{|\sin x|}$$
;

$$6) y = \frac{2}{\cos x} + \frac{1}{|\cos x|}.$$

•17.20. a)
$$y = \frac{|\sin x|}{\sin x}(x - \pi);$$

6)
$$y = \frac{\cos x}{|\cos x|}(x + \pi).$$

•17.21. a)
$$y = \sin x + \sin |x| + |\sin x|$$
;
6) $y = \cos x + \cos |x| - |\cos x|$.

•17.22. a)
$$y = \cos x + \cos \frac{x - |x|}{2} + |\cos x|$$
;

6)
$$y = \sin x - \sin \frac{x + |x|}{2} + |\sin x|$$
.

§ 18. Построение графика функции y = f(kx)

Постройте график функции:

18.1. a)
$$y = \sqrt{2x}$$
; 6) $y = \sqrt{\frac{x}{2}}$; B) $y = (2x)^4$; P) $y = \left|\frac{x}{3}\right|$.

$$6) y = \sqrt{\frac{x}{2}}$$

$$\mathbf{B})\ y=(2x)^4;$$

$$\mathbf{r}) \ y = \left| \frac{x}{3} \right|.$$

18.2. a)
$$y = \sin \frac{x}{3}$$
;

$$\mathbf{B}) \ y = \cos \frac{x}{2};$$

6)
$$y = \cos 2x$$
;

r)
$$y = \sin 3x$$
.

Постройте график функции:

018.3. a)
$$y = 3 \sin \frac{x}{2}$$
;

B) $y = -3 \sin 2x$;

6)
$$y = 2.5 \cos 2x$$
;

 $\mathbf{r}) \ y = 2 \cos \frac{x}{2}.$

018.4. a)
$$y = 3 \sin(-x)$$
;
6) $y = -2 \cos(-3x)$;

B) $y = 2 \sin(-2x)$; F) $y = -3 \cos(-x)$.

6)
$$y = -2 \cos(-3x)$$

18.5. Найдите наименьшее и наибольшее значения функции: $y = \sin 2x$:

а) на отрезке
$$\left[-\frac{\pi}{2}; 0\right];$$

в) на отрезке $\left| -\frac{\pi}{4}; \frac{\pi}{4} \right|$;

б) на интервале
$$\left(-\frac{\pi}{4}; \frac{\pi}{2}\right)$$
; г) на полуинтервале (0; π]

18.6. Найдите наименьшее и наибольшее значения функции:

$$y = \cos \frac{x}{8}$$
:

а) на луче $[0; +\infty);$

б) на открытом луче ($-\infty$; π):

в) на луче
$$\left(-\infty; \frac{\pi}{2}\right]$$
;

г) на открытом луче $\left(\frac{\pi}{3}; +\infty\right)$

018.7. Постройте график функции:

a)
$$y = \sin 2x - 1$$
;

B) $u = \cos 2x + 3$:

$$6) y = \cos\frac{x}{2} + 1;$$

 $\mathbf{r}) \ y = \sin \frac{x}{2} - 2.$

Постройте и прочитайте график функции:

018.8. а)
$$y = \begin{cases} \cos 2x, \text{ если } x \leq \pi; \\ -\frac{1}{2}, \text{ если } x > \pi; \end{cases}$$

6)
$$y = \begin{cases} -\sin 3x, \text{ если } x < 0; \\ \sqrt{x}, \text{ если } x \ge 0. \end{cases}$$

018.9. a)
$$y = \begin{cases} -2\sin x, \text{ если } x < 0; \\ \sqrt{2x}, \text{ если } x \ge 0; \end{cases}$$

6)
$$y = \begin{cases} \sqrt{-x}, & \text{если } x \leq 0; \\ 3\cos x - 3, & \text{если } x > 0. \end{cases}$$

018.10. Составьте возможную аналитическую запись функции по ее графику, изображенному:

а) на рис. 58;

в) рис. 60;

б) на рис. 59;

г) рис. 61.

Puc. 58

Puc. 60

Puc. 61

018.11. Исследуйте функцию	y =	2	$\sin 3x$	на	монотонность	на	3a-
данном промежутке:							

a)
$$\left[0, \frac{\pi}{2}\right]$$

a)
$$\left[0; \frac{\pi}{2}\right]$$
; 6) (-1; 0); b) $\left(\frac{2\pi}{3}; \frac{5\pi}{3}\right)$; r) (3; 4),

 \circ 18.12. Исследуйте функцию $y=-2\cosrac{x}{2}$ на монотонность на заданном промежутке:

a)
$$\left[0; \frac{5\pi}{2}\right]$$
;

a)
$$\left[0; \frac{5\pi}{2}\right]$$
; 6) (-3; 2); b) $\left(-\frac{2\pi}{3}; \frac{5\pi}{3}\right)$; r) (3; 9).

018.13. На каких промежутках функция $y = -0.5 \sin \frac{2x}{2}$:

а) возрастает;

б) убывает?

018.14. На каких промежутках функция $y = 1.5 \cos \frac{3x}{2}$:

а) возрастает;

б) убывает?

Постройте график функции:

018.15. a)
$$y = \sin \pi x$$
;

B)
$$y = -2 \sin \frac{2\pi x}{3}$$
;

6)
$$y = -2\cos\frac{\pi x}{2};$$

$$r) y = 3 \cos \frac{3\pi x}{4}.$$

018.16. a)
$$y = \frac{1}{2} \cos 3 \left(x - \frac{\pi}{3} \right)$$
;

6)
$$y = -1.5 \sin \frac{2}{3} \left(x + \frac{\pi}{2} \right)$$

•18.17. a)
$$y = \sin{(x + |x|)}$$
;

$$\mathbf{B}) \ y = \cos\left(x + |x|\right);$$

$$6) y = \cos \frac{x-2|x|}{2};$$

$$\Gamma) y = \sin \frac{x + 3|x|}{2}.$$

●18.18. Решите уравнение:

a)
$$\sin \pi x = 2x - 4$$
;

$$6) \cos \frac{\pi x}{3} = \sqrt{1.5x}.$$

§ 19. График гармонического колебания

019.1. Постройте график функции:

a)
$$y = 3 \sin\left(x + \frac{\pi}{2}\right)$$
;

$$6) y = \cos \frac{1}{2} \left(x + \frac{\pi}{3} \right).$$

Постройте график функции:

$$019.2.$$
 a) $y = -2\cos 2\left(x + \frac{\pi}{3}\right)$;

$$6) y = -2 \sin 3 \left(x + \frac{\pi}{2} \right).$$

019.3. a)
$$y = 2 \sin \left(3x - \frac{3\pi}{4}\right)$$
; 6) $y = -3 \cos \left(2x + \frac{\pi}{3}\right)$

$$6) y = -3 \cos \left(2x + \frac{\pi}{3}\right)$$

019.4. a)
$$y = \frac{1}{2} \sin \left(\frac{x}{2} + \frac{\pi}{6} \right)$$
;

$$6) \ y = -\frac{3}{2} \cos \left(\frac{x}{2} - \frac{\pi}{3}\right)$$

■19.5. Подберите коэффициенты a, b и c так, чтобы на данном рисунке был изображен график функции $y = a \sin(bx + c)$: а) рис. 62; б) рис. 63.

Puc. 62

Puc. 63

- **•19.6.** Подберите коэффициенты a, b и c так, чтобы на данном рисунке был изображен график функции $y = a \cos(bx + c)$:
 - а) рис. 64;

б) рис. 65.

Рис. 64

Puc. 65

- $_{O1}9.7$. На каких промежутках функция $y=-1.5\sin\left(\frac{x}{2}-\frac{\pi}{4}\right)$: а) возрастает: б) убывает?
- O19.8. На каких промежутках функция $y=3\cos\left(2x+\frac{2\pi}{3}\right)$ б) убывает? а) возрастает;
- 019.9. Чему равен основной период функции:

a)
$$y = -1.5 \sin\left(\frac{x}{2} - \frac{\pi}{4}\right)$$
; 6) $y = 3 \cos\left(2x + \frac{2\pi}{3}\right)$?

- $_{0}$ 19.10. Исследуйте функцию $y=-1.5\sin\left(\frac{x}{2}-\frac{\pi}{4}\right)$ на монотонность на заданном промежутке:
 - a) $[0; 2\pi];$
- 6) (2; 4); B) $\left[-\frac{4\pi}{3}; 0\right]$; r) (-1; 2).
- o19.11. Исследуйте функцию $y=3\cos\left(2x+rac{2\pi}{3}
 ight)$ на монотонность на заданном промежутке:
 - a) $0; \frac{2\pi}{2}$;
- 6) (1; 2); B) $\left[-\frac{7\pi}{12}; 0\right]$; r) (-1; 1).
- ullet19.12. При каких значениях параметра a функция $y=2\sin\left(\frac{x}{2}+\frac{\pi}{6}\right)$:
 - a) возрастает на $\left(a-\frac{2\pi}{3}; a+\frac{2\pi}{3}\right)$;
 - б) убывает на $a; a + \frac{\pi}{2}$?
- •19.13. При каких положительных значениях параметра а функция $y = -3\cos\left(3x - \frac{\pi}{2}\right)$:
 - а) возрастает на (а; 2а);
 - б) убывает на $a; a + \frac{\pi}{3}$?

§ 20. Функции $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$, их свойства и графики

- 20.1. Найдите наименьшее и наибольшее значения функции y = tg x на заданном промежутке:
 - a) на интервале $\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$
 - б) на полуинтервале $\left(\frac{3\pi}{4}; \pi\right];$
 - B) на отрезке $\left|-\frac{\pi}{4}; \frac{\pi}{6}\right|$;
 - г) на полуинтервале π ; $\frac{3\pi}{2}$.
- 20.2. Найдите наименьшее и наибольшее значения функции y = ctg x на заданном промежутке:
 - a) на отрезке $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$;
- в) на интервале (-л; 0);
- б) на полуинтервале $\left|\frac{\pi}{2}; \pi\right|$; г) на отрезке $\left|\frac{\pi}{6}; \frac{3\pi}{4}\right|$.
- 20.3. Найдите область значений заданной функции:

a)
$$y = \operatorname{tg} x$$
, $x \in \left[0; \frac{\pi}{2}\right]$;

6)
$$y = \operatorname{ctg} x, \ x \in \left[-\frac{5\pi}{6}; \ -\frac{\pi}{3} \right];$$

B)
$$y = \operatorname{tg} x, \ x \in \left(\frac{3\pi}{4}; \ \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}; \ \frac{7\pi}{4}\right);$$

r)
$$y = \operatorname{ctg} x$$
, $x \in \left(\frac{\pi}{2}; \pi\right) \cup \left(\pi; \frac{3\pi}{2}\right)$

- 20.4. Решите графически уравнение:
 - a) tg $x = -\sqrt{3}$:

B) tg x = -1;

6) tg x = 1:

- r) tg x=0.
- 20.5. Решите графически уравнение:
 - a) ctg x = 1;

B) ctg $x = -\frac{\sqrt{3}}{2}$;

6) etg $x = \frac{\sqrt{3}}{2}$;

r) ctg x = 0.

Исследуйте функцию y = f(x) на четность, если:

$$_{0}20.6$$
. a) $f(x) = \operatorname{tg} x - \cos x$;

$$6) \ f(x) = \operatorname{tg} x + x;$$

B)
$$f(x) = \operatorname{ctg}^2 x - x^4$$
;
F) $f(x) = x^3 - \operatorname{ctg} x$.

$$_{O}20.7.$$
 a) $f(x) = \operatorname{tg} x \sin^2 x;$

$$\mathbf{B}) \ f(\mathbf{x}) = \mathbf{x}^5 \ \mathbf{t} \mathbf{g} \ \mathbf{x};$$

$$O(20.7. \text{ a}) f(x) = \text{tg } x \text{ sin}$$

6)
$$f(x) = \frac{\text{tg}^2 x}{x^2 - 1}$$
;

$$\mathbf{r}) f(x) = x^2 + \sin x + \mathbf{tg} x.$$

$$O20.8.$$
 a) $f(x) = \sin x + \operatorname{ctg} x$;

B)
$$f(x) = \frac{x^4 \cot x}{x^2 - 4}$$
;

$$6) f(x) = \frac{2 \operatorname{ctg} x}{x^3};$$

$$\mathbf{r}) \ f(x) = \operatorname{ctg} x - x \cos x.$$

020.9. Дана функция y = f(x), где $f(x) = \operatorname{tg} x$. Докажите, что:

a)
$$f(2x + 2\pi) + f(7\pi - 2x) = 0$$
;

6)
$$f(\pi - x) + f(5\pi + x) = 0$$
.

020.10. Дана функция y = f(x), где $f(x) = x^2 + 1$. Докажите, что:

a)
$$f(\mathbf{t}\mathbf{g} \ \mathbf{x}) = \frac{1}{\cos^2 x}$$
;

$$6) \ f(\operatorname{ctg} x) = \frac{1}{\sin^2 x}.$$

Найдите основной период функции:

$$020.11. a) y = tg 2x;$$

B)
$$y = \operatorname{tg} 5x$$
;

6)
$$y = \operatorname{tg} \frac{x}{3}$$
;

$$\mathbf{r}) \ y = \mathbf{tg} \ \frac{2x}{5}.$$

020.12. a) $y = \operatorname{tg} x + \sin 2x - \operatorname{tg} 3x - \cos 4x$;

6)
$$y = \sin 3x + \cos 5x + \cot x - 2 \tan 2x$$
.

20.13. Известно, что tg $(9\pi - x) = -\frac{3}{4}$. Найдите: tg x, ctg x.

20.14. Известно, что ctg $(7\pi - x) = \frac{5}{7}$. Найдите: tg x, ctg x.

○20.15. Определите знак разности:

a)
$$tg 200^{\circ} - tg 201^{\circ}$$
:

B)
$$tg 2,2 - tg 2,1;$$

r) tg
$$\frac{3\pi}{5}$$
 - tg $\frac{6\pi}{5}$.

Постройте график функции:

20.16. a)
$$y = \operatorname{tg}\left(x + \frac{\pi}{2}\right)$$
;

$$\mathbf{B}) \ y = \mathbf{t}\mathbf{g}\left(x - \frac{\pi}{4}\right);$$

6)
$$y = \text{tg } x + 1;$$

r)
$$y = tg x - 2$$
.

Постройте график функции:

020.17. a)
$$y = \operatorname{tg}\left(x + \frac{\pi}{6}\right) + 1;$$

B)
$$y = \operatorname{tg}\left(x - \frac{\pi}{2}\right) - 1;$$

6)
$$y = tg\left(x - \frac{2\pi}{3}\right) + \frac{1}{2}$$
; r) $y = tg\left(x + \frac{\pi}{3}\right) - 2$.

$$y = \operatorname{tg}\left(x + \frac{\pi}{3}\right) - 2.$$

$$020.18. a) y = -tg x;$$

$$\mathbf{B}) \ y = -\mathbf{t}\mathbf{g}\left(x - \frac{\pi}{2}\right);$$

б)
$$y = -\mathbf{t}\mathbf{g} \ x + 1;$$

$$\mathbf{r}) \ y = -\mathbf{t}\mathbf{g}\left(x + \frac{\pi}{3}\right) - 2.$$

020.19. a)
$$y = \text{ctg}\left(x + \frac{\pi}{2}\right)$$
;

$$\mathbf{B}) \ y = \mathbf{ctg}\left(x - \frac{\pi}{3}\right);$$

$$6) y = \operatorname{ctg} x + 1;$$

$$\mathbf{r}) \ y = \operatorname{ctg} \ x - 2.$$

$$020.20.$$
 a) $y = 2 \text{ tg } x$;

B)
$$y = \operatorname{tg} 2x$$
;

6)
$$y = -0.5 \text{ ctg } x$$
;

r)
$$y = \operatorname{ctg} \frac{x}{2}$$
.

020.21. Исследуйте заданную функцию на монотонность:

a)
$$y = 2 \operatorname{tg} \left(x - \frac{\pi}{3} \right) + 1;$$

$$\mathbf{B}) \ y = -\mathbf{t}\mathbf{g}\left(x + \frac{\pi}{4}\right) - 3;$$

6)
$$y = \text{ctg}\left(x + \frac{\pi}{3}\right) - 2;$$

r)
$$y = -2 \operatorname{ctg} \left(x - \frac{\pi}{6} \right) + 1.5.$$

Постройте график функции:

020.22. a)
$$y = |\operatorname{tg} x|$$
;

B)
$$u = |\cot x|$$
;

6)
$$y = \operatorname{tg} |x|$$
;

r)
$$y = \operatorname{ctg} |x|$$
.

020.23. a)
$$y = \operatorname{tg} x + |\operatorname{tg} x|$$
;

$$6) y = |\cot x| - \cot x.$$

020.24. a)
$$y = \operatorname{tg} x |\operatorname{ctg} x|$$
;

6)
$$y = |\operatorname{tg} x| \operatorname{ctg} x$$
.

020.25. a)
$$y = 2 \operatorname{tg} x \operatorname{etg} x + |x|;$$

$$6) y = \operatorname{tg} x \operatorname{ctg} x + \sqrt{x}.$$

020.26. a)
$$y = \sin^2(tg x) + \cos^2(tg x)$$
;

6)
$$y = 3\cos^2(\cot x) + 3\sin^2(\cot x)$$
.

•20.27. a)
$$y = -\text{tg}(\cos x) \cdot \text{ctg}(\cos x)$$
;

6)
$$y = -2 \operatorname{tg} (\sin x) \cdot \operatorname{ctg} (\sin x)$$
.

020.28. Решите неравенство:

a) tg
$$x \leq 1$$
;

B) tg
$$x > -\frac{\sqrt{3}}{3}$$
;

6) ctg
$$x > \sqrt{3}$$
;

r) ctg
$$x \leq -1$$
.

о20.29. Решите систему неравенств:

a)
$$\begin{cases} \operatorname{tg} x > 0, \\ \sin x > -\frac{1}{2}; \end{cases}$$

$$\mathbf{B} \begin{cases} \operatorname{tg} x < \frac{\sqrt{3}}{3}, \\ \cos x < 0; \end{cases}$$

$$\begin{cases}
\cot x < 1, \\
\cos x > -\frac{\sqrt{3}}{2};
\end{cases}$$

(F)
$$\begin{cases} \operatorname{ctg} x > -\sqrt{3}, \\ \sin x < \frac{\sqrt{2}}{2}. \end{cases}$$

§ 21. Обратные тригонометрические функции

Вычислите:

21.1. a)
$$\arcsin \frac{\sqrt{3}}{2}$$
;

B) arcsin
$$\frac{\sqrt{2}}{2}$$
;

21.2. a)
$$\arcsin\left(-\frac{\sqrt{3}}{2}\right)$$
;

6)
$$\arcsin\left(-\frac{1}{2}\right)$$
;

r)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right)$$

021.3. Найдите область определения функции:

a)
$$y = \arcsin x$$
;

B)
$$y = \arcsin \frac{x}{2}$$
;

$$6) y = \arcsin(5-2x);$$

$$\mathbf{r}) \ y = \arcsin (x^2 - 3).$$

○21.4. Имеет ли смысл выражение:

a)
$$\arcsin\left(-\frac{2}{3}\right)$$
;

B)
$$\arcsin (3 - \sqrt{20});$$

r)
$$\arcsin (4 - \sqrt{20})$$
?

021.5. Найдите область значений функции:

a)
$$y = 2 \arcsin x$$
;

B)
$$y = \arcsin x + \frac{\pi}{2}$$
;

б)
$$y = -4 \arcsin x$$
;

r)
$$y = \pi - 2 \arcsin x$$
.

О21.6. Исследуйте функцию на четность:

a)
$$y = \frac{\arcsin x}{x^4}$$
;

$$6) y = \sin^2 x + x \arcsin x;$$

$$y = \arcsin x^3 + 3\cos 2x;$$

r)
$$y = 2 \text{ tg } x + x^5 - 3 \arcsin 2x$$
.

Постройте график функции:

021.7. a)
$$y = \arcsin x$$
;

$$\mathbf{B}) \ y = -\arcsin x;$$

6)
$$y = \arcsin(-x)$$
;

B)
$$y = -\arcsin x$$
;
r) $y = -\arcsin (-x)$.

021.8. a)
$$y = \arcsin(x-1) + \frac{\pi}{2}$$
;

$$6) y = -\arcsin(x+2) - \frac{\pi}{3}.$$

021.9. a)
$$y = 2 \arcsin x$$
;

$$\mathbf{B}) \ y = -\frac{1}{3} \ \arcsin x;$$

6)
$$y = \frac{\pi}{3} - \arcsin x$$
;

$$r) y = -2 \arcsin{(x-3)}.$$

021.10. a)
$$y = \arcsin 2x$$
;

B)
$$y = \arcsin \frac{x}{3}$$
;

$$6) y = \arcsin \frac{x}{2} + \frac{\pi}{6};$$

6)
$$y = \arcsin \frac{x}{2} + \frac{\pi}{6}$$
; r) $y = \arcsin 2(x-1) + \frac{\pi}{2}$.

О21.11. Постройте и прочитайте график функции:

a)
$$y=egin{array}{l} \dfrac{\pi x}{2}, \ \mathrm{ec} \pi x < -1; \\ \mathrm{arcsin} \ x, \ \mathrm{ec} \pi u \ -1 \leqslant x \leqslant 1; \\ \dfrac{\pi}{2}, \ \mathrm{ec} \pi u \ x > 1. \end{array}$$

$$6) \ y = \begin{cases} \arcsin x, \ \text{если} \ -1 \leqslant x \leqslant 0; \\ -\arcsin x, \ \text{если} \ 0 < x \leqslant 1; \\ (x-1)^2 - \frac{\pi}{2}, \ \text{если} \ 1 < x \leqslant 3. \end{cases}$$

021.12. Постройте график функции:

a)
$$y = 3|\arcsin x| - \arcsin x$$
;

6)
$$y = \arcsin x + |\arcsin x|$$
;

$$\mathbf{B}) \ y = \left| \arcsin x - \frac{\pi}{3} \right|;$$

$$\mathbf{r}) \ y = -\arcsin|x-2|.$$

Вычислите:

21,13. a) arccos 0;

B) $\arccos \frac{\sqrt{3}}{2}$;

б) arccos 1;

r) arccos $\frac{1}{2}$.

21.14. a) $\arccos\left(-\frac{\sqrt{2}}{2}\right)$;

в) arccos (-1);

6) $\arccos\left(-\frac{\sqrt{3}}{2}\right)$

r) $arccos\left(-\frac{1}{2}\right)$

 $21.15. a) \arccos (-1) + \arccos 0;$

6) $\arccos \frac{1}{2} - \arccos \frac{\sqrt{3}}{2}$;

B) $\arccos\left(-\frac{\sqrt{2}}{2}\right) + \arccos\frac{\sqrt{2}}{2}$;

 Γ) $\arccos\left(-\frac{1}{2}\right) - \arccos\frac{1}{2}$.

021.16. a) $\arcsin\left(-\frac{1}{2}\right) + \arcsin\left(-\frac{1}{2}\right)$

6) $\arcsin\left(-\frac{\sqrt{2}}{2}\right) - \arcsin\left(-1\right)$;

B) $\arccos\left(-\frac{\sqrt{3}}{2}\right) + \arcsin\left(-\frac{\sqrt{3}}{2}\right)$;

r) $\arcsin \left(-\frac{\sqrt{3}}{2}\right)$

 $\circ 21.17.$ a) $\cos \left(2\arccos\frac{1}{2} - 3\arccos0 - \arccos\left(-\frac{1}{2}\right)\right);$

6) $\frac{1}{3} \left(\arccos \frac{1}{3} + \arccos \left(-\frac{1}{3} \right) \right)$

 $\bigcirc 21.18. \text{ a) } \sin\left(\arccos\left(-\frac{1}{2}\right)\right);$

в) ctg (arccos 0);

6) tg $\left(\arccos\frac{\sqrt{3}}{2}\right)$;

r) $\sin\left(\arccos\frac{\sqrt{2}}{2}\right)$

Вычислите:

021.19. a)
$$\sin \left(2 \arcsin \frac{1}{2} - 3 \arccos \left(-\frac{1}{2} \right) \right)$$
;

6)
$$\cos\left(\frac{1}{2}\arcsin 1 + \arcsin\left(-\frac{\sqrt{2}}{2}\right)\right)$$
;

B)
$$\operatorname{tg}\left(\arcsin\frac{\sqrt{3}}{2}+2\arccos\frac{\sqrt{2}}{2}\right)$$
;

r) ctg
$$\left(3 \arccos \left(-1\right) - \arcsin \left(-\frac{1}{2}\right)\right)$$

21.20. Докажите тождество:

a)
$$\sin (\arccos x + \arccos (-x)) = 0$$
;

6)
$$\cos (\arcsin x + \arcsin (-x)) = 1$$
.

021.21. Найдите область определения функции:

a)
$$y = \arccos x$$
;

B)
$$y = \arccos 2x$$
;

$$6) y = \arccos(x-1);$$

$$\mathbf{r}) \ y = \arccos\left(3 - 2x\right)$$

21.22. Имеет ли смысл выражение:

B)
$$\arccos \frac{\pi}{5}$$
;

6)
$$\arcsin \sqrt{\frac{2}{3}}$$
;

r)
$$arccos(-\sqrt{3})$$
?

021.23. Найдите область значений функции:

a)
$$y = 2 \arccos x$$
;

B)
$$y = -\frac{1}{2} \arccos x$$
;

6)
$$y = 1.5 \arccos x - \frac{\pi}{2}$$
; r) $y = \pi - 2 \arccos x$.

$$\mathbf{r}) \ y = \pi - 2 \arccos x.$$

021.24. Исследуйте на четность функцию:

a)
$$y = \arccos x^2 + \frac{\pi}{8}$$
;

$$y = \frac{x^4}{\arccos x};$$

$$6) y = \frac{\arccos x^2}{x^3};$$

$$\mathbf{r)} \ y = 2x^3 \arccos x^6.$$

021.25. Постройте график функции:

a)
$$y = \arccos x$$
;

B)
$$y = -\arccos x$$
;

$$6) \ u = \arccos(-x)$$

6)
$$y = \arccos(-x)$$
; $r) y = -\arccos(-x)$.

Постройте и прочитайте график функции:

$$_{0}21.26.$$
 a) $y = \arccos(x-1) - \frac{\pi}{2}$;

6)
$$y = \arccos(x + 2) + \frac{\pi}{3}$$

$$_{O21.27.}$$
 a) $y = -3 \arccos x$;

$$\mathbf{B}) \ y = \frac{1}{2} \ \arccos x;$$

6)
$$y = \frac{3\pi}{4} - \arccos x$$
;

6)
$$y = \frac{3\pi}{4} - \arccos x$$
; r) $y = \frac{2}{3} \arccos (x + 1.5)$.

$$021.28.$$
 a) $y = \arccos 2x$;

$$\mathbf{B}) \ y = -\arccos \frac{x}{3};$$

$$6) \ y = \arccos \frac{x}{2} - \frac{5\pi}{6}$$

6)
$$y = \arccos \frac{x}{2} - \frac{5\pi}{6}$$
; r) $y = \arccos 2(x - 1) - \frac{\pi}{2}$.

o21.29. a)
$$y = \begin{cases} \pi, \text{ если } x < -1; \\ \arccos x, \text{ если } -1 \leqslant x \leqslant 1; \\ \sqrt{x-1}, \text{ если } x > 1. \end{cases}$$

$$6) \ y = \begin{cases} \arccos x, \ \operatorname{если} \ -1 \leqslant x \leqslant 0,5; \\ \frac{\pi}{3}, \ \operatorname{если} \ 0,5 < x \leqslant \frac{\pi}{3}; \\ x, \ \operatorname{если} \ \frac{\pi}{3} < x \leqslant 3. \end{cases}$$

•21.30. Постройте график функции:

a)
$$y = \left| \arccos x - \frac{2\pi}{3} \right|$$
; B) $y = -2 \arccos |x|$;

B)
$$y = -2 \arccos |x|$$
;

6)
$$y = \arccos |x|$$
;

$$\mathbf{r}) \ y = \arccos |x-2|.$$

Вычислите:

B) arctg
$$\sqrt{3}$$
;

r)
$$\arctan\left(-\frac{1}{\sqrt{3}}\right)$$

21.32. a) arcctg
$$\frac{\sqrt{3}}{3}$$
;

B)
$$\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right)$$
;

Вычислите:

021.33. a) arcetg (-1) + arctg (-1);

6)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right) + \operatorname{arcctg}\left(-\sqrt{3}\right);$$

B)
$$\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right) - \operatorname{arctg}\left(\frac{\sqrt{3}}{3}\right)$$
;

r)
$$\arctan\left(-\frac{1}{2}\right) - \arctan\left(-\sqrt{3}\right)$$
.

021.34. a) 2 arcsin $\left(-\frac{\sqrt{3}}{2}\right)$ + arctg (-1) + arccos $\frac{\sqrt{2}}{2}$;

6)
$$3 \arcsin \frac{1}{2} + 4 \arccos \left(-\frac{\sqrt{2}}{2}\right) - \arctan \left(-\frac{\sqrt{3}}{3}\right)$$

B)
$$\arctan\left(-\sqrt{3}\right) + \arccos\left(-\frac{\sqrt{3}}{2}\right) + \arcsin 1;$$

r)
$$\arcsin (-1) - \frac{3}{2} \arccos \frac{1}{2} + 3 \operatorname{arcctg} \left(-\frac{\sqrt{3}}{3} \right)$$

021.35. a) $\sin (\arctan (-\sqrt{3}));$

B) cos (arctg 0);

6) tg
$$\left(\operatorname{arctg}\left(-\frac{\sqrt{3}}{3}\right)\right)$$
;

r) ctg (arctg (-1)).

021.36. a) tg (arcctg 1);

в) cos (arcctg (-1));

6)
$$\sin \left(\operatorname{arcctg} \sqrt{3}\right)$$
;

r) ctg $\left(2 \operatorname{arcctg}\left(-\frac{1}{\sqrt{3}}\right)\right)$.

021.37. Найдите область определения функции:

a)
$$y = \arcsin x + \arctan x$$
;

6)
$$y = \operatorname{arcctg} \sqrt{x} + \operatorname{arccos} \frac{x}{2}$$
;

B)
$$y = \arctan \frac{1}{x} - \arccos (2x - 0.5);$$

r)
$$y = \arcsin(x^2 - 1) + \arctan 2x + \arctan(x - 1)$$
.

 $_{
m o21.38}$. Исследуйте функцию на четность:

a)
$$y = \frac{\arctan x}{x^4}$$
;

6)
$$y = \sin^2 x + x \arctan x$$
;

B)
$$y = \arcsin x + \operatorname{arcctg} x$$
;

r)
$$y = 2 \operatorname{arcctg} x + x^5 - 3 \operatorname{arcsin} 2x$$
.

021.39. Найдите область значений функции:

a)
$$y = 2 \operatorname{arctg} x$$
;

B)
$$y = 1.5 \operatorname{arcctg} x - \frac{\pi}{2}$$
;

6)
$$y = -\frac{1}{2} \operatorname{arcctg} x$$
;

r)
$$y = \pi - 2 \operatorname{arctg} x$$
.

Постройте график функции:

$$021.40.$$
 a) $y = arctg(-x)$;

$$\mathbf{B}) \ y = -\operatorname{arcctg} \ x;$$

$$6) y = \operatorname{arcctg}(-x);$$

$$y = -\operatorname{arctg}(-x).$$

$$021.41.$$
 a) $y = arctg(x-1) - \frac{\pi}{2}$;

6)
$$y = \operatorname{arcctg}(x + 2) + \frac{\pi}{3}$$
.

$$021.42.$$
 a) $y = 0.5 \operatorname{arctg} x$;

$$\mathbf{B}) \ y = -\frac{1}{3} \ \operatorname{arcctg} \ x;$$

6)
$$y = \frac{2\pi}{3} - \operatorname{arcctg} x$$
;

r)
$$y = 1.5 \arctan (x + 2)$$
.

$$021.43. a) y = arctg 3x;$$

B)
$$y = \operatorname{arcctg} \frac{3x}{4}$$
;

6)
$$y = \arctan \frac{x}{2} - \frac{\pi}{6}$$
;

$$r) y = \operatorname{arcctg} 2(x-1).$$

021.44. Постройте и прочитайте график функции:

a)
$$y = \begin{cases} \operatorname{arctg} x, \operatorname{если} x \leq 0; \\ \sqrt{x}, \operatorname{если} x > 0. \end{cases}$$

б)
$$y = \begin{cases} \operatorname{arcctg} x, \operatorname{если} x \leq 1; \\ \operatorname{arctg} x, \operatorname{если} x > 1. \end{cases}$$

$$^{\circ 21.45.}$$
 a) $y = |\arctan x|$;

B)
$$y = -2 \operatorname{arcctg} |x|$$
;

6)
$$y = \operatorname{arcctg} |x|$$
;

$$\mathbf{r}) \ y = \left| \arctan x + \frac{\pi}{6} \right|.$$

Вычислите:

021.46. a)
$$\cos\left(\arcsin\left(-\frac{5}{13}\right)\right)$$
;

B) $\cos \left(\arcsin \frac{8}{17} \right)$;

δ) tg (arcsin 0,6):

r) ctg (arcsin (-0,8)).

O21.47. a) $\sin\left(\arccos\frac{3}{5}\right)$;

B) $\sin(\arccos(-0.8))$.

6) tg
$$\left(\arccos\left(-\frac{5}{13}\right)\right)$$
;

r) etg $\left(\arccos\frac{4}{5}\right)$.

O21.48. a)
$$\sin\left(\arctan\frac{3}{4}\right)$$
;

B)
$$\sin\left(\operatorname{arcctg}\left(-\frac{4}{3}\right)\right)$$
;

6)
$$\cos\left(\operatorname{arcctg}\frac{12}{5}\right)$$
;

r)
$$\cos\left(\arctan\left(-\frac{5}{12}\right)\right)$$
.

●21.49. Докажите, что

a)
$$\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}};$$

6) tg (arcsin
$$x$$
) = $\frac{x}{\sqrt{1-x^2}}$;

B)
$$\sin(\operatorname{arcctg} x) = \frac{1}{\sqrt{1+x^2}};$$

r) tg (arccos x) =
$$\frac{\sqrt{1-x^2}}{x}$$
.

Постройте график функции:

•21.50. a) $y = \cos(\arccos x)$;

6)
$$y = \operatorname{arctg} x + \operatorname{arctg} (-x);$$

B)
$$y = \operatorname{tg} (\operatorname{arctg} x);$$

r)
$$y = \arcsin x + \arcsin (-x)$$
.

•21.51. a) $y = \arccos x + \arccos (-x)$;

$$6) y = \arccos \frac{1}{x} + \arccos \left(-\frac{1}{x} \right);$$

B)
$$y = \operatorname{arcctg} x + \operatorname{arcctg} (-x);$$

r)
$$y = \operatorname{arcctg} \sqrt{x} + \operatorname{arcctg} (-\sqrt{x})$$
.

•21.52. a) $y = \sin(\arccos x)$;

B) $y = \cos(\arcsin x)$;

6) $y = \operatorname{tg} (\operatorname{arcctg} x)$;

r) $y = \operatorname{ctg}(\operatorname{arctg} x)$.

21.53. a) $y = \arccos(\cos x)$;

6) y = arctg(tg x).

Решите уравнение:

$$_{O21.54.}$$
 a) arcsin $2x = \frac{\pi}{3}$;

B)
$$\arccos(3x-3.5)=\frac{2\pi}{3};$$

6)
$$arctg(4x+1) = \frac{7\pi}{12}$$
;

$$\mathbf{r}) \ \operatorname{arcctg} \left(4x + 1 \right) = \frac{3\pi}{4}.$$

$$_{0}21.55$$
. a) arcsin $(3x^{2}-5x+1)=\frac{\pi}{2}$;

6) arctg
$$(x^3 - 27 - \sqrt{3}) = -\frac{\pi}{3}$$
;

B)
$$\arccos (3x^2 - 10x + 2.5) = \frac{2\pi}{3}$$
;

r)
$$arcetg(x^3 - 8x^2 + 15x + 1) = \frac{\pi}{4}$$
.

O21.56. a)
$$\arcsin\left(\operatorname{tg}\frac{\pi}{4}\right) - \arcsin\sqrt{\frac{3}{x}} - \frac{\pi}{6} = 0;$$

6)
$$\arccos\left(\operatorname{ctg}\frac{3\pi}{4}\right) + \operatorname{arctg}\sqrt{2x-1} - \frac{7\pi}{6} = 0.$$

o21.57. a)
$$8 \arcsin^2 x + 2\pi \arcsin x = \pi^2$$
;
6) $18 \arctan^2 x - 3\pi \arctan x = \pi^2$;

6)
$$18 \arctan^2 x - 3\pi \arctan x = \pi^2$$
;

B)
$$18 \arccos^2 x = 3\pi \arccos x + \pi^2$$
;

r) 16
$$\operatorname{arcctg}^2 x + 3\pi^2 = 16\pi \operatorname{arcctg} x$$
.

021.58. a)
$$\arcsin\left(2x+3\frac{1}{3}\right)=\arcsin\left(-\frac{2x}{9}\right)$$
;

6)
$$arctg(x^2 - 9) = arctg 8x$$
;

B)
$$\arccos(3x+1) = \arccos(2x+5)$$
;

r)
$$\operatorname{arcctg}(x^2 - x) = \operatorname{arcctg}(4x - 6)$$
.

•21.59. a)
$$\arccos x = \arctan x$$
;

B)
$$\operatorname{arcctg} x = \operatorname{arctg} x$$
;

6)
$$\arccos x = \arcsin x$$
;

r)
$$\arcsin x = \operatorname{arcctg} x$$
.

Решите неравенство:

$$021.60. a) \arccos x > \frac{3\pi}{4};$$

B)
$$\arcsin x < \frac{3\pi}{4}$$
;

6) arctg
$$x > -\frac{\pi}{4}$$
;

F) arcetg
$$x \leq \frac{5\pi}{6}$$
.

•21.61. a)
$$9 \arcsin^2 x \le \pi^2$$
;
6) $36 \arctan^2 x > \pi^2$;

B) 16
$$\arccos^2 x > \pi^2$$
; r) 9 $\operatorname{arcctg}^2 x \le \pi^2$.

6) 36
$$arctg^2 x > \pi^2$$
;

r) 9 arceto²
$$x \leq \pi^2$$
.

•21.62. a)
$$8 \arcsin^2 x + 2\pi \arcsin x < \pi^2$$
;
6) $18 \arctan^2 x - 3\pi \arctan x > \pi^2$;
B) $9 \arccos^2 x < 9\pi \arccos x - 2\pi^2$;

6) 18
$$\operatorname{arctg}^2 x - 3\pi \operatorname{arctg} x \ge \pi^2$$
;

B) 9
$$\arccos^2 x \leq 9\pi \arccos x - 2\pi^2$$
;

r)
$$16 \operatorname{arcctg}^2 x + 3\pi^2 > 16\pi \operatorname{arcctg} x$$
.

Тригонометрические уравнения

§ 22. Простейшие тригонометрические уравнения и неравенства

Решите уравнение:

22.1. a)
$$\cos x = \frac{1}{2}$$
;

B)
$$\cos x = -\frac{\sqrt{3}}{2}$$
;

6)
$$\cos x = -\frac{\sqrt{2}}{2};$$

$$\mathbf{r)}\,\cos\,x=\frac{\sqrt{2}}{2}.$$

22.2. a)
$$\cos x = \frac{1}{3}$$
;

B)
$$\cos x = -\frac{\sqrt{5}}{3}$$
;

$$6)\cos x = -1,1$$

$$\mathbf{r)}\,\cos\,x=\frac{\sqrt{5}}{2}.$$

022.3. Найдите корни уравнения на заданном промежутке:

a)
$$\cos x = \frac{\sqrt{3}}{2}, x \in [0; 2\pi];$$

6)
$$\cos x = -\frac{1}{2}, x \in [2\pi; 4\pi];$$

B)
$$\cos x = \frac{\sqrt{2}}{2}, x \in [-\pi; 3\pi];$$

r)
$$\cos x = -1, x \in \left[-\frac{3\pi}{2}; 2\pi \right].$$

Решите уравнение:

22.4. a)
$$\frac{8\cos x - 3}{3\cos x + 2} = 1$$
;

6)
$$\frac{3\cos x + 1}{2} + \frac{5\cos x - 1}{3} = 1,75$$
.

O22.5. a)
$$6\cos^2 x + 5\cos x + 1 = 0$$
;
6) $3 + 9\cos x = 5\sin^2 x$.

6)
$$3 + 9 \cos x = 5 \sin^2 x$$
.

022.6. Найдите корни уравнения на заданном промежутке:

a)
$$\cos x = \frac{1}{2}, x \in [1; 6];$$

6)
$$\cos x = \frac{\sqrt{2}}{2}, \ x \in \left[-\frac{\pi}{4}; \ 12 \right];$$

B)
$$\cos x = -\frac{1}{2}, x \in [2; 10];$$

r)
$$\cos x = -\frac{\sqrt{2}}{2}$$
, $x \in \left[-4; \frac{5\pi}{4}\right]$.

о22.7. Сколько корней имеет заданное уравнение на заданном промежутке:

a)
$$\cos x = \frac{1}{2}, x \in [1; 6];$$

6)
$$\cos x = -0.4$$
, $x \in [3; 11]$?

Решите уравнение:

22.8. a)
$$\sin x = \frac{\sqrt{3}}{2}$$
;

$$\mathbf{B)}\,\sin\,x=\mathbf{1};$$

$$6) \sin x = \frac{\sqrt{2}}{2};$$

r)
$$\sin x = \frac{1}{2}$$
.

22.9. a)
$$\sin x = -\frac{\sqrt{3}}{2}$$
;

$$\mathbf{B)}\,\sin\,x=-\mathbf{1};$$

$$6) \sin x = -\frac{\sqrt{2}}{2};$$

$$\mathbf{r})\,\sin\,x\,=\,-\frac{1}{2}.$$

22.10. a)
$$\sin x = \frac{1}{4}$$
;

$$\mathrm{B)}\,\sin\,x=\,-\frac{1}{7};$$

$$6) \sin x = \frac{\pi}{4};$$

$$\mathbf{r)}\,\sin\,x=\frac{\pi}{3}.$$

 $022.11. a) (2 \cos x + 1)(2 \sin x - \sqrt{3}) = 0;$

6)
$$2\cos x - 3\sin x \cos x = 0$$
;

B)
$$4\sin^2 x - 3\sin x = 0$$
;

r)
$$2\sin^2 x - 1 = 0$$
.

$$^{\circ}22.12.$$
 a) $6\sin^2 x + \sin x = 2$;

6)
$$3\cos^2 x = 7(\sin x + 1)$$
.

022.13. Решите уравнение:

a)
$$\sin^2 \frac{3x}{4} - \frac{\sqrt{2}}{2} = \sin x - \cos^2 \frac{3x}{4} + 1;$$

6)
$$\cos^2 2x - 1 - \cos x = \frac{\sqrt{3}}{2} - \sin^2 2x$$
.

Найдите корни уравнения на заданном промежутке:

22.14. a) $\sin x = \frac{1}{2}, x \in [0; \pi];$

6)
$$\cos x = -\frac{1}{2}, x \in [-\pi; \pi];$$

B)
$$\sin x = -\frac{\sqrt{2}}{2}, x \in [-\pi; 2\pi];$$

r)
$$\cos x = \frac{\sqrt{3}}{2}, x \in [-2\pi; \pi].$$

022.15. a) $\sin x = \frac{1}{2}, x \in \left(\frac{1}{2}; \frac{11\pi}{4}\right);$

6)
$$\sin x = -\frac{1}{2}, x \in \left(-\frac{5\pi}{6}; 6\right)$$

B)
$$\sin x = \frac{\sqrt{2}}{2}, x \in (-4; 3);$$

r)
$$\sin x = -\frac{\sqrt{2}}{2}$$
, $x \in (-3; 6)$.

022.16. Сколько корней имеет заданное уравнение на заданном промежутке:

a)
$$\sin x = 0.6, x \in \left(\frac{\pi}{4}; 3\pi\right)$$

6)
$$\sin x = -\frac{2}{3}, x \in (2; 7)$$
?

Решите уравнение:

22.17. a)
$$tg x = 1$$
;

$$B) tg x = -1;$$

6) tg
$$x = -\frac{\sqrt{3}}{3}$$
;

$$\mathbf{r)} \ \mathbf{tg} \ x = \frac{\sqrt{3}}{3}.$$

22.18. a)
$$tg x = 0$$
;

B)
$$tg x = -3$$
:

6)
$$tg x = -2;$$

r) tg
$$x = \frac{1}{2}$$
.

$$22.19$$
. a) ctg $x = 1$;

6) etg
$$x = \sqrt{3}$$
;

$$\mathbf{B)}\ \mathrm{ctg}\ x=\mathbf{0};$$

$$\mathbf{r)} \ \mathrm{ctg} \ x = \frac{\sqrt{3}}{3}.$$

B) ctg $x = -\frac{\sqrt{3}}{2}$;

22.20. a) ctg
$$x = -\sqrt{3}$$
;

6) etg
$$x = -1$$
;

r) etg
$$x = -5$$
.

22.21. a)
$$tg^2 x - 3 = 0$$
;
6) $2 tg^2 x + 3 tg x = 0$;

6)
$$2 ext{ tg}^2 x + 3 ext{ tg } x = 0;$$

B)
$$4 ext{ tg}^2 x - 9 = 0$$
;
r) $3 ext{ tg}^2 x - 2 ext{ tg} x = 0$.

22.22. a)
$$tg^2 x - 6 tg x + 5 = 0$$
;

6)
$$tg^2 x - 2 tg x - 3 = 0$$
.

22.23. a)
$$\sin 2x = \frac{\sqrt{2}}{2}$$
;

$$\mathbf{B})\,\sin\,\frac{x}{4}=\frac{1}{2};$$

6)
$$\cos \frac{x}{3} = -\frac{1}{2}$$
;

$$\mathbf{r)}\,\cos\,4x=0.$$

22.24. a)
$$\sin\left(-\frac{x}{3}\right) = \frac{\sqrt{2}}{2}$$
;

B)
$$tg(-4x) = \frac{1}{\sqrt{3}};$$

6)
$$\cos{(-2x)} = -\frac{\sqrt{3}}{2}$$
;

r) etg
$$\left(-\frac{x}{2}\right) = 1$$
.

022.25. a)
$$2\cos\left(\frac{x}{2} - \frac{\pi}{6}\right) = \sqrt{3}$$
;

$$B) \ 2 \sin \left(3x - \frac{\pi}{4}\right) = -\sqrt{2};$$

6)
$$\sqrt{3} \operatorname{tg} \left(\frac{x}{3} + \frac{\pi}{6} \right) = 3;$$

$$r) \sin \left(\frac{x}{2} - \frac{\pi}{6}\right) + 1 = 0.$$

$$022.26. a) \cos \left(\frac{\pi}{6} - 2x\right) = -1;$$

$$\mathbf{B)} \ 2\sin\left(\frac{\pi}{3}-\frac{x}{4}\right)=\sqrt{3};$$

6)
$$\operatorname{tg}\left(\frac{\pi}{4}-\frac{x}{2}\right)=-1;$$

$$\mathbf{r})\ 2\cos\left(\frac{\pi}{4}-3x\right)=\sqrt{2}.$$

⁰²2.27. Найдите корни уравнения на заданном промежутке:

a)
$$\sin 3x = \frac{\sqrt{2}}{2}$$
, [0; 2π];

a)
$$\sin 3x = \frac{\sqrt{2}}{2}$$
, [0; 2π]; B) $\operatorname{tg} \frac{x}{2} = \frac{\sqrt{3}}{3}$, [-3 π ; 3π];

6)
$$\cos 3x = \frac{\sqrt{3}}{2}$$
, $[-\pi; \pi]$; r) $\cot 4x = -1$, $[0; \pi]$.

r) ctg
$$4x = -1$$
, [0; π].

Найдите корни уравнения на заданном промежутке:

022.28. a)
$$\sin x = -\frac{1}{2}$$
, [-4; 4];

6)
$$\cos x = 1$$
, [-6; 16].

022.29. a)
$$\sin \frac{x}{2} = 0$$
, [-12; 18]; 6) $\cos 3x = -\frac{\sqrt{2}}{2}$, [1; 7].

5)
$$\cos 3x = -\frac{\sqrt{2}}{2}$$
, [1; 7].

022.30. Решите уравнение $\sin \left(2x - \frac{\pi}{4}\right) = -1$ и найдите:

- а) наименьший положительный корень;
- б) корни, принадлежащие отрезку $\left|-\frac{\pi}{2}; \frac{3\pi}{2}\right|$;
- в) наибольший отрицательный корень:
- г) корни, принадлежащие интервалу $\left[-\pi; \frac{\pi}{2}\right]$.

022.31. Решите уравнение $\cos \left(\frac{\pi}{3} - 2x \right) = \frac{1}{2}$ и найдите:

- а) наименьший положительный корень;
- б) корни, принадлежащие отрезку $\left|-\frac{\pi}{2}; \frac{3\pi}{2}\right|$;
- в) наибольший отрицательный корень;
- г) корни, принадлежащие интервалу $\left(-\pi; \frac{\pi}{2}\right)$

Решите уравнение:

22.32. a)
$$|x+3| \sin x = x+3$$
; 6) $2|x-6| \cos x = x-6$.

6)
$$2|x-6|\cos x = x-6$$
.

•22.33. a)
$$\sqrt{16-x^2} \sin x = 0$$
;

6)
$$(\sqrt{2}\cos x - 1)\sqrt{4x^2 - 7x + 3} = 0$$
;

B)
$$\sqrt{7x-x^2}(2\cos x-1)=0$$
;

r)
$$(2 \sin x - \sqrt{3})\sqrt{3x^2 - 7x + 4} = 0.$$

022.34. Найдите область определения функции:

a)
$$y = \frac{\sin x}{2\cos x - 1};$$

$$\mathbf{B}) \ y = \frac{\sqrt{x}}{\sin x};$$

6)
$$y = \frac{\operatorname{ctg} x}{\pi - 3 \cos x}$$
; $y = \frac{\operatorname{tg} x}{\sqrt{x - 5}}$.

$$\mathbf{r}) \ y = \frac{\mathbf{t} \mathbf{g} \ \mathbf{x}}{\sqrt{\mathbf{r} - \mathbf{5}}}.$$

Найдите область значений функции:

22.35. a)
$$y = \sin x + \sqrt{-\cos^2 x}$$
;

$$6) y = \cos x + \sqrt{-\sin^2 x}.$$

22.36. a)
$$y = \cos 3x + \sqrt{\cos^2 3x - 1}$$
;

6)
$$y = \sin 2x + \sqrt{\sin^2 4x - 1}$$
.

Решите уравнение:

$$=22.37$$
. a) $|\sin x| = |\cos x|$;

$$\mathbf{B}) \left| \sin 2x \right| = \left| \sqrt{3} \cos 2x \right|;$$

6)
$$\sqrt{3}$$
 ctg $x = 2|\cos x|$;

r)
$$\sqrt{2} |\tan x + 2|\sin x| = 0$$
.

a22.38. a)
$$(2x - 3) |\sin x| = \sin x$$
;

6)
$$(3x - 7)\cos x = 5|\cos x|$$
.

•22.39. a)
$$x^2 | \operatorname{tg} x | + 9 \operatorname{tg} x = 0$$
;

6)
$$x^2 \cot x - 4 |\cot x| = 0$$
.

•22.40. a)
$$(2x^2 - 12x + 13) \sin x = 3 |\sin x|$$
;

6)
$$(x^2 + 8x + 11) |\cos 2x| = 4 \cos 2x$$
.

●22.41. Сколько корней имеет уравнение:

a)
$$\sin \left(3x - \frac{\pi}{4}\right)\sqrt{8x - x^2 - 7} = 0;$$

6)
$$\cos\left(2x+\frac{\pi}{3}\right)\sqrt{10-x^2-3x}=0$$
?

Решите неравенство:

22.42. a)
$$\cos t > \frac{1}{2}$$
;

$$\mathbf{B})\cos\,t\,\geq\,\,-\frac{\sqrt{2}}{2};$$

6)
$$\cos t \leq -\frac{\sqrt{2}}{2}$$
;

$$\mathbf{r})\cos t<\frac{1}{2}.$$

$$022.43.$$
 a) $\cos t < \frac{2}{3}$;

$$\mathbf{B})\cos t>\frac{2}{3};$$

6)
$$\cos t > -\frac{1}{7}$$
;

$$\mathbf{r}) \cos t < -\frac{1}{7}.$$

•22.44. a)
$$3\cos^2 t - 4\cos t \ge 4$$
;

B)
$$3\cos^2 t - 4\cos t < 4$$
;

6)
$$6\cos^2 t + 1 > 5\cos t$$
;

$$\Gamma) 6 \cos^2 t + 1 \leq 5 \cos t.$$

Решите неравенство:

$$022.45.$$
 a) $4\cos^2 t < 1$;

6)
$$3\cos^2 t < \cos t$$
:

B)
$$9\cos^2 t > 1$$
;
F) $3\cos^2 t > \cos t$.

22.46. a)
$$\sin t > \frac{\sqrt{3}}{2}$$
;

B)
$$\sin t < \frac{\sqrt{3}}{2}$$
;

6)
$$\sin t > -\frac{1}{2}$$
;

r)
$$\sin t \leqslant -\frac{1}{2}$$
.

022.47. a)
$$\sin t < \frac{1}{2}$$
;

B)
$$\sin t \ge \frac{1}{3}$$
;

6)
$$\sin t \ge -0.6$$
;

r)
$$\sin t < -0.6$$
.

•22.48. a)
$$5 \sin^2 t > 11 \sin t + 12$$
; 6) $5 \sin^2 t \le 11 \sin t + 12$.

Q22.49. a)
$$6 \cos^2 t + \sin t > 4$$
;

$$6) 6 \cos^2 t + \sin t \leq 4.$$

022.50. a) tg
$$x < \sqrt{3}$$
;

B)
$$tg x < 0$$
;
r) $ctg x > -1$.

$$6) \operatorname{ctg} x > 0;$$

O22.51. a)
$$tg x < 3$$
;
6) $3 ctg x - 1 > 0$;

в)
$$\operatorname{ctg} x \leq 2$$
; г) $2 \operatorname{tg} x + 1 \geq 0$.

022.52. a)
$$tg^2 x > 9$$
;

a)
$$tg^{-}x > 9$$
;
6) $tg^{2}x > tgx$:

B)
$$tg^2 x < 9$$
;
r) $tg^2 x < 2 tg x$.

22.53. a)
$$\sin 2x < \frac{1}{2}$$
;

$$\mathbf{B})\,\cos\,3x>\,\frac{\sqrt{3}}{2};$$

6)
$$3\cos 4x < 1$$
;

r)
$$7 \sin \frac{x}{2} > -1$$
.

$$022.54.$$
 a) $\sin\left(2x-\frac{\pi}{3}\right) > \frac{1}{3};$

$$\mathrm{B)}\,\cos\left(3x-\frac{\pi}{6}\right)>-\frac{1}{4};$$

$$6) \cos\left(\frac{\pi}{4}-x\right) < \frac{\sqrt{2}}{2};$$

r)
$$\sin\left(\frac{3\pi}{4}-x\right)<\frac{\sqrt{3}}{2}$$
.

Найдите область определения функции:

•22.55. a)
$$y = \sqrt{\sin x} + \frac{1}{\sqrt{\cos x}}$$
;

6)
$$y = \sqrt{\cos x - \frac{1}{2}} + \operatorname{ctg} 2x;$$

B)
$$y = \text{tg } 2x - \frac{1}{\sqrt{1 - 2\sin x}};$$

r)
$$y = \frac{1}{\sin 4x} - \sqrt{\cos x - \frac{1}{\sqrt{2}}}$$
.

•22.56. a)
$$y = \arcsin \frac{x}{2} + \sqrt{\sin x + \frac{1}{2}}$$
;

6)
$$y = \arccos(2x - 1) + \sqrt{\frac{1}{\sqrt{2}} - \cos x}$$
.

Решите уравнение:

$$e22.57$$
. a) $\sin^2 x + \sin^2 3x = 0$;

6)
$$\cos^4 2x + 1 = \cos^2 \left(x - \frac{\pi}{4} \right)$$

$$=22.58$$
. a) $\sin 4x + \cos 2x = 2$;

$$6) \sin 5x + \cos 3x = -2.$$

При каких значениях параметра а множество корней заданного уравнения не пусто:

O22.59. a)
$$\sin x = 2a - 1;$$
 B) $\cos x = 3a - 2;$ 6) $\cos x = 2a^2 - 5a + 1;$ r) $\sin x = a^2 - 3?$

B)
$$\cos x = 3a - 2$$
;

$$6) \cos x = 2a^2 - 5a + 1;$$

$$\mathbf{r})\sin x = a^2 - 3$$

•22.60. a)
$$\frac{a \cos x}{2 \cos x + a} = 5$$
;

6)
$$\frac{a \sin x + 1}{2a - 3 \sin x} = 2$$
.

●22.61. Решите уравнение с параметром а:

a)
$$\sin\left(2x-\frac{\pi}{3}\right)=\frac{a-1}{a+1}$$
;

6)
$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{2a-1}{a-2}$$
.

◆22.62. Решите уравнение:

a) ctg
$$\left(\frac{\pi}{3}\cos 2\pi x\right) = \sqrt{3}$$
;

6)
$$\sin(2\pi\cos x) = \frac{1}{2}$$
.

^{●22}.63. Решите неравенство:

a)
$$\sin x \sqrt{4-x^2} \le 0$$
:

$$6)\cos x\sqrt{x+2-x^2} \geq 0.$$

 $^{f e}2$ 2.64. При каких значениях параметра a решением заданного неравенства служит любое действительное число:

a)
$$a \cos x - 2 < 0$$
;

6)
$$(2a - 3) \sin x + 1 \ge 0$$
?

Решите систему неравенств:

•22.65. a)
$$\begin{cases} \sin x > -\frac{4}{5}, \\ \cos x > -\frac{1}{3}; \end{cases}$$

$$\begin{cases}
\sin x < \frac{2}{7}, \\
\cos x < 0.6.
\end{cases}$$

•22.66. a)
$$\begin{cases} \sin x < \frac{\sqrt{3}}{2}, \\ \tan x > 1.5; \end{cases}$$

6)
$$\begin{cases} \cos x > -\frac{3}{7}, \\ \log x < -0.1. \end{cases}$$

•22.67. a)
$$\begin{cases} \cot x < -\frac{\sqrt{3}}{3}, \\ \sin x > -0.8; \end{cases}$$

6)
$$\begin{cases} \cos x < \frac{4}{9}, \\ \cot x > -3. \end{cases}$$

•22.68. a)
$$\begin{cases} \sin 2x < \frac{1}{2}, \\ 25 - x^2 \ge 0; \end{cases}$$

6)
$$\begin{cases} \cos\left(3x + \frac{\pi}{4}\right) < \frac{\sqrt{2}}{2}, \\ |x + 2| < 3. \end{cases}$$

§ 23. Методы решения тригонометрических уравнений

Решите уравнение:

023.1. a)
$$3\sin^2 x - 5\sin x - 2 = 0$$
;

6)
$$3\sin^2 2x + 10\sin 2x + 3 = 0$$
;

B)
$$4 \sin^2 x + 11 \sin x - 3 = 0$$
;

r)
$$2\sin^2\frac{x}{2} - 3\sin\frac{x}{2} + 1 = 0$$
.

$$\mathbf{023.2.\ a)\ 6\ \cos^2 x + \cos x - 1 = 0;}$$

6)
$$2\cos^2 3x - 5\cos 3x - 3 = 0$$
;

B)
$$2\cos^2 x - \cos x - 3 = 0$$
;

r)
$$2\cos^2\frac{x}{3} + 3\cos\frac{x}{3} - 2 = 0$$
.

$$\mathbf{023.3.\ a)}\ 2\sin^2 x + 3\cos x = 0;$$

6)
$$8\sin^2 2x + \cos 2x + 1 = 0$$
;

B)
$$5\cos^2 x + 6\sin x - 6 = 0$$
;

r)
$$4 \sin 3x + \cos^2 3x = 4$$
.

$$023.4.$$
 a) $3 ext{ tg}^2 x + 2 ext{ tg } x - 1 = 0;$
6) $0 ext{ctg}^2 2x - 6 ext{ ctg } 2x + 5 = 0;$

6)
$$\cot g^2 2x - 6 \cot 2x + 5 = 0$$

B)
$$2 \operatorname{tg}^2 x + 3 \operatorname{tg} x - 2 = 0$$
;

F)
$$7 \cot^2 \frac{x}{2} + 2 \cot \frac{x}{2} = 5$$
.

$$_{0}23.5.$$
 a) tg $x-2$ etg $x+1=0$;

B)
$$2 \cot x - 3 \cot x + 5 = 0$$
;

6)
$$\frac{\lg x + 5}{2} = \frac{1}{\cos^2 x}$$
;

$$r) \frac{7 - \operatorname{ctg} x}{4} = \frac{1}{\sin^2 x}.$$

$$\bigcirc 23.6.$$
 a) $2\cos^2\frac{x}{2} + \sqrt{3}\cos\frac{x}{2} = 0;$

6)
$$4\cos^2\left(x-\frac{\pi}{6}\right)-3=0$$
;

B)
$$\sqrt{3} \operatorname{tg}^2 3x - 3 \operatorname{tg} 3x = 0$$
;

r)
$$4 \sin^2 \left(2x + \frac{\pi}{3}\right) - 1 = 0$$
.

023.7. a)
$$\sin^2 x - \frac{12 - \sqrt{2}}{2} \sin x - 3\sqrt{2} = 0$$
;

6)
$$\cos^2 x - \frac{8 - \sqrt{3}}{2} \cos x - 2\sqrt{3} = 0.$$

023.8. a)
$$tg^3 x + tg^2 x - 3 tg x = 3$$
;

6)
$$\operatorname{etg}^4 2x - 4 \operatorname{etg}^2 2x + 3 = 0$$
.

023.9. a)
$$\left(\sin^2\left(x-\frac{\pi}{4}\right)-\frac{1}{2}\right)(\cos 2x+1)=0;$$

6)
$$\left(\cos^2\left(2x+\frac{\pi}{6}\right)-\frac{3}{4}\right)\sin\frac{x}{2}=0.$$

$$023.10$$
. a) tg $x \sin 2x = 0$;

B)
$$\cos x \operatorname{tg} 3x = 0$$
;

6)
$$(1 + \cos x) \left(\frac{1}{\sin x} - 1 \right) = 0;$$

r)
$$(1 + \cos x) \lg \frac{x}{2} = 0$$
.

$$023.11. a) \sin x = \frac{3}{4} \cos x;$$

$$\mathbf{B)}\ 2\sin x + 5\cos x = 0;$$

$$6) 3 \sin x = 2 \cos x;$$

$$\mathbf{r})\sin x\cos x - 3\cos^2 x = 0.$$

Решите уравнение:

023.12. a)
$$\sin x + \sqrt{3} \cos x = 0$$
;

 $\mathrm{B)}\,\sin\,x-3\,\cos\,x=0;$

$$6) \sin x + \cos x = 0;$$

 $\mathbf{r}) \sqrt{3} \sin x + \cos x = 0.$

023.13. a)
$$\sin^2 x + \sin x \cos x = 0$$
;

6) $\sqrt{3} \sin x \cos x + \cos^2 x = 0$;

- $\mathbf{B})\,\sin^2x=3\sin x\,\cos x;$
- $r) \sqrt{3} \cos^2 x = \sin x \cos x.$

023.14. a)
$$\sin^2 x + 2 \sin x \cos x - 3 \cos^2 x = 0$$
;

- 6) $\sin^2 x 4 \sin x \cos x + 3 \cos^2 x = 0$;
- B) $\sin^2 x + \sin x \cos x 2 \cos^2 x = 0$;
- r) $3 \sin^2 x + \sin x \cos x 2 \cos^2 x = 0$.

$$023.15$$
. a) $\sin 2x = \cos 2x$;

$$\mathbf{B})\,\sin\,\frac{x}{2}\,=\,\sqrt{3}\,\cos\,\frac{x}{2};$$

6)
$$\sqrt{3}\sin 3x = \cos 3x;$$

r)
$$\sqrt{2} \sin 17x = \sqrt{6} \cos 17x$$
.

023.16. a)
$$2 \sin^2 2x - 5 \sin 2x \cos 2x + 2 \cos^2 2x = 0$$
;

6) $3\sin^2 3x + 10\sin 3x\cos 3x + 3\cos^2 3x = 0$.

023.17. a)
$$\sin^2 \frac{x}{2} = 3 \cos^2 \frac{x}{2}$$
;

 $6) \sin^2 4x = \cos^2 4x.$

023.18. a)
$$5 \sin^2 x - 14 \sin x \cos x - 3 \cos^2 x = 2$$
;

- 6) $3\sin^2 x \sin x \cos x = 2$;
- B) $2\cos^2 x \sin x \cos x + 5\sin^2 x = 3$;
- r) $4 \sin^2 x 2 \sin x \cos x = 3$.

023.19. a)
$$5 \sin^2 x + \sqrt{3} \sin x \cos x + 6 \cos^2 x = 5$$
;

6) $2\sin^2 x - 3\sin x \cos x + 4\cos^2 x = 4$.

$$023.20$$
, a) $3 \sin^2 2x - 2 = \sin 2x \cos 2x$;

6) $2\sin^2 4x - 4 = 3\sin 4x \cos 4x - 4\cos^2 4x$.

023.21. a)
$$4 \sin^2 \frac{x}{2} - 3 = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$
;

6)
$$3\sin^2\frac{x}{3} + 4\cos^2\frac{x}{3} = 3 + \sqrt{3}\sin\frac{x}{3}\cos\frac{x}{3}$$
.

$$023.22$$
, a) $\sin^2 x - 5 \cos x = \sin x \cos x - 5 \sin x$;

6) $\cos^2 x - 7 \sin x + \sin x \cos x = 7 \cos x$.

023.23. a)
$$\sin^6 x + \sin^4 x \cos^2 x = \sin^3 x \cos^3 x + \sin x \cos^5 x$$
;

6) $\sin^2 x \cos^2 x - 10 \sin x \cos^3 x + 21 \cos^4 x = 0$.

$$-23.24.$$
 a) $\cos^6 x + \sin^6 x = \frac{7}{16}$;

6)
$$\cos^{-4}\frac{x}{2}\left(2\sin^4\frac{x}{2}-1\right)=2.$$

Решите систему уравнений:

$$o23.25. a) \begin{cases} 2 \sin x - 5 \cos y = 7, \\ 5 \sin x + \cos y = 4; \end{cases}$$

6)
$$\begin{cases} 5 \sin 2x + 3 \cos 3y = 1, \\ 8 \sin 2x - 6 \cos 3y = 7. \end{cases}$$

O23.26. a)
$$\begin{cases} \sin x + \cos y = -\frac{1}{2}, \\ \sin x \cos y = -\frac{1}{2}; \end{cases}$$

6)
$$\begin{cases} \sin\frac{x}{2} - \cos 2y = 1, \\ 2\sin^2\frac{x}{2} - 3\cos 2y = 2. \end{cases}$$

Решите уравнение:

•23.27. a)
$$|\cot x| = \cot x + \frac{1}{\sin x}$$
;

6)
$$\operatorname{tg} x + \frac{1}{9} \operatorname{ctg} x = \sqrt{\frac{1}{\cos^2 x} - 1} - 1$$
.

e23.28. a)
$$|\cos x| = 2\cos x - \sqrt{3}\sin x$$
;

6)
$$\sin x = \sqrt{3}\cos x + 2|\sin x|.$$

$$023.29. a) \frac{\sin x + \cos x}{\cos 2x} = 0;$$

$$\mathrm{B)} \ \frac{\cos^2 x + \cos x}{\sin x} = 0;$$

$$6) \operatorname{etg} x + \frac{\sin x}{1 + \cos x} = 2;$$

$$r) \frac{\operatorname{tg} x}{1 + \operatorname{tg}^2 x} = \cos x.$$

•23.30. a)
$$\frac{2\sin^2 x - 3\sin x + 1}{\cos^2 x - \cos x} = 0;$$

$$6) \ \frac{4 \sin^3 2x - 3 \sin 2x}{\cos 3x} = 0.$$

 $\bullet 23.31$. Для каждого значения a решите уравнение:

a)
$$\frac{a\sin x - 1}{\sin x + \cos x} = 0;$$

$$6) \frac{a\cos x - 1}{\sin x - \cos x} = 0.$$

Решите уравнение:

•23.32. a)
$$x^2 - 2x \cos \pi x + 1 = 0$$
;

6)
$$x^2 - 2x \sin \frac{\pi x}{2} + 1 = 0$$
.

•23.33. a)
$$\cos^5 x + \sin^4 x = 1$$
:

6)
$$\cos^8 x + \sin^3 x = 1$$
.

•23.34. a)
$$3\sin^2\frac{x}{3} + 5\sin^2 x = 8$$
;

6)
$$\cos^2 2x - 2\cos^3 3x = 3$$
.

Решите уравнение:

•23.35. a)
$$2 \sin \left(\frac{2}{3}x - \frac{\pi}{6}\right) - 3 \cos \left(2x + \frac{\pi}{3}\right) = 5;$$

6)
$$\sin \frac{x}{4} + 2 \cos \frac{x-2\pi}{3} = 3$$
.

23.36. a)
$$\sqrt{5-2\sin x}=6\sin x-1$$
;

6)
$$\sqrt{2+4\cos x} = 3\cos x + 0.5$$
.

•23.37. a)
$$\sqrt{3} \sin x - \sqrt{2 \sin^2 x - 2 \sin x \cos x + 3 \cos^2 x} = 0$$
;

6)
$$\cos x + \sqrt{\sin^2 x - 4 \sin x \cos x + 4 \cos^2 x} = 0$$
.

•23.38. a)
$$\sqrt{3\sin 5x - \cos^2 x - 3} = 1 - \sin x$$
;

6)
$$\sqrt{2\cos 4x - \sin^2 x - 2} = 1 + \cos x$$
.

Решите неравенство:

23.39. a)
$$4 \sin x \cos x - 1 > 2 \sin x - 2 \cos x$$
;

6)
$$1 + 2 \sin x \ge 4 \sin x \cos x + 2 \cos x$$
.

•23.40. a)
$$4 \sin^2 x - 2(\sqrt{3} - 1) \sin x - \sqrt{3} < 0$$
;

6)
$$4\cos^2 x - 2(\sqrt{3} + 1)\cos x + \sqrt{3} \ge 0$$
.

•23.41. a)
$$\sin x - \cos x > 0$$
; b) $\sin x + \cos x < 0$;

6)
$$\sin x - \sqrt{3} \cos x \le 0$$
; r) $\sqrt{3} \sin x + \cos x \ge 0$.

23.42. a)
$$\sin^2 x - 6 \sin x \cos x + 5 \cos^2 x > 0$$
;

6)
$$\sin^2 x - 6 \sin x \cos x + 5 \cos^2 x < 0$$
;

B)
$$\sin^2 x - 3 \sin x \cos x + 2 \cos^2 x \le 0$$
;

r)
$$\sin^2 x - 2 \sin x \cos x - 3 \cos^2 x \ge 0$$
.

Преобразование тригонометрических выражений

§ 24. Синус и косинус суммы и разности аргументов

- 24.1. Представив 105° как сумму $60^{\circ} + 45^{\circ}$, вычислите: a) $\sin 105^{\circ}$; 6) $\cos 105^{\circ}$.
- 24.2. Вычислите:
 - a) sin 15°;

в) sin 15° cos 15°;

б) cos 15°;

г) $\cos^2 15^\circ - \sin^2 15^\circ$.

Унростите выражение:

24.3. a) $\sin (\alpha + \beta) - \sin \alpha \cos \beta$;

6)
$$\sin\left(\frac{\pi}{3} + \alpha\right) - \frac{1}{2}\sin\alpha$$
;

B) $\sin \alpha \sin \beta + \cos (\alpha + \beta)$;

r)
$$\cos\left(\alpha + \frac{\pi}{4}\right) + \frac{\sqrt{2}}{2} \sin\alpha$$
.

24.4. a) $\sin\left(\frac{5\pi}{6} - \alpha\right) - \frac{1}{2}\cos\alpha$;

6)
$$\sqrt{3}\cos\alpha - 2\cos\left(\alpha - \frac{\pi}{6}\right)$$

B)
$$\frac{\sqrt{3}}{2} \sin \alpha + \cos \left(\alpha - \frac{5\pi}{3}\right)$$
;

r)
$$\sqrt{2} \sin \left(\alpha - \frac{\pi}{4}\right) - \sin \alpha$$
.

24.5. a)
$$\cos (\alpha - \beta) - \cos \alpha \cos \beta$$
;

6)
$$\sin (\alpha + \beta) + \sin (\alpha - \beta)$$
;

24.6. a)
$$\frac{\sin{(\alpha + \beta)} - \cos{\alpha}\sin{\beta}}{\sin{(\alpha - \beta)} + \cos{\alpha}\sin{\beta}};$$

6)
$$\frac{\sin{(\alpha - \beta)} + 2\cos{\alpha}\sin{\beta}}{2\cos{\alpha}\cos{\beta} - \cos{(\alpha - \beta)}};$$

B)
$$\sin \alpha \cos \beta - \sin (\alpha - \beta)$$
;

r)
$$\cos (\alpha - \beta) - \cos (\alpha + \beta)$$
.

B)
$$\frac{\cos{(\alpha + \beta)} + \sin{\alpha}\sin{\beta}}{\cos{(\alpha - \beta)} - \sin{\alpha}\sin{\beta}};$$

$$\mathbf{r}) \ \frac{\cos{(\alpha-\beta)} - 2\sin{\alpha}\sin{\beta}}{2\sin{\alpha}\cos{\beta} - \sin{(\alpha-\beta)}}.$$

24.7. Представив 2x в виде x + x, докажите тождество:

a) $\sin 2x = 2 \sin x \cos x$;

 $6) \cos 2x = \cos^2 x - \sin^2 x$

Докажите тождество:

24.8. a) $\sin (\alpha + \beta) + \sin (-\alpha) \cos (-\beta) = \sin \alpha \cos \beta$;

6)
$$\cos(\alpha + \beta) + \sin(-\alpha)\sin(-\beta) = \sin\alpha\cos\beta$$
.

24.9. a)
$$\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x = \sin \left(\frac{\pi}{3} + x \right)$$
;

6)
$$\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x = \cos \left(\frac{\pi}{3} + x \right)$$

$$\mathbf{B}) \ \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x = \sin \left(\frac{\pi}{3} - x \right);$$

r)
$$\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = \cos\left(\frac{\pi}{3} - x\right)$$

24.10. a) $\sin 5x \cos 3x + \cos 5x \sin 3x = \sin 8x$;

6) $\cos 5x \cos 3x - \sin 5x \sin 3x = \cos 8x$;

B) $\sin 7x \cos 4x - \cos 7x \sin 4x = \sin 3x$;

r) $\cos 2x \cos 12x + \sin 2x \sin 12x = \cos 10x$.

24.11. a) $\cos (\alpha - \beta) + \sin (-\alpha) \sin \beta = \cos \alpha \cos \beta$;

6) $\sin (30^\circ - \alpha) - \cos (60^\circ - \alpha) = -\sqrt{3} \sin \alpha$;

B) $\sin (\alpha - \beta) - \cos \alpha \sin (-\beta) = \sin \alpha \cos \beta$;

r) $\sin (30^{\circ} - \alpha) + \sin (30^{\circ} + \alpha) = \cos \alpha$.

o24.12. a)
$$\frac{\sqrt{2}\cos\alpha - 2\cos\left(\frac{\pi}{4} - \alpha\right)}{2\sin\left(\frac{\pi}{6} + \alpha\right) - \sqrt{3}\sin\alpha} = -\sqrt{2}\operatorname{tg}\alpha;$$

6)
$$\frac{\cos \alpha - 2\cos\left(\frac{\pi}{3} + \alpha\right)}{2\sin\left(\alpha - \frac{\pi}{6}\right) - \sqrt{3}\sin \alpha} = -\sqrt{3} \operatorname{tg} \alpha.$$

Используя формулы сложения, выведите следующие фор мулы (их называют формулами приведения):

24.13. a)
$$\sin (\pi - x) = \sin x$$
;

B)
$$\operatorname{tg}(2\pi - x) = -\operatorname{tg} x$$
;
r) $\operatorname{ctg}(\pi - x) = -\operatorname{ctg} x$.

 $6) \cos (\pi + x) = -\cos x;$

24.14. a) $\sin\left(\frac{\pi}{2} + x\right) = \cos x;$

B)
$$\operatorname{tg}\left(\frac{\pi}{2}-x\right)=\operatorname{ctg}x;$$

6)
$$\cos\left(\frac{3\pi}{2}-x\right)=-\sin x;$$
 r) $\cot\left(\frac{3\pi}{2}+x\right)=-\tan x.$

$$\mathbf{r)} \ \mathbf{ctg} \left(\frac{3\pi}{2} + x \right) = -\mathbf{tg} \ x.$$

Вычислите:

$$_{24.15}$$
. a) $\sin 74^{\circ} \cos 16^{\circ} + \cos 74^{\circ} \sin 16^{\circ}$;

B)
$$\sin 89^{\circ} \cos 1^{\circ} + \cos 89^{\circ} \sin 1^{\circ}$$
;

24.16. a)
$$\sin \frac{\pi}{5} \cos \frac{\pi}{20} + \cos \frac{\pi}{5} \sin \frac{\pi}{20}$$
;

6)
$$\cos \frac{2\pi}{7} \cos \frac{5\pi}{7} - \sin \frac{2\pi}{7} \sin \frac{5\pi}{7}$$
;

B)
$$\sin \frac{\pi}{12} \cos \frac{11\pi}{12} + \cos \frac{\pi}{12} \sin \frac{11\pi}{12}$$
;

r)
$$\cos \frac{2\pi}{15} \cos \frac{\pi}{5} - \sin \frac{2\pi}{15} \sin \frac{\pi}{5}$$
.

24.17. a)
$$\cos 107^{\circ} \cos 17^{\circ} + \sin 107^{\circ} \sin 17^{\circ}$$
;

6)
$$\cos 36^{\circ} \cos 24^{\circ} - \sin 36^{\circ} \sin 24^{\circ}$$
;

B)
$$\sin 63^{\circ} \cos 27^{\circ} + \cos 63^{\circ} \sin 27^{\circ}$$

r)
$$\sin 51^{\circ} \cos 21^{\circ} - \cos 51^{\circ} \sin 21^{\circ}$$
.

24.18. a)
$$\cos \frac{5\pi}{8} \cos \frac{3\pi}{8} + \sin \frac{5\pi}{8} \sin \frac{3\pi}{8}$$
;

6)
$$\sin \frac{2\pi}{15} \cos \frac{\pi}{5} + \cos \frac{2\pi}{15} \sin \frac{\pi}{5}$$
;

B)
$$\cos \frac{\pi}{12} \cos \frac{\pi}{4} - \sin \frac{\pi}{12} \sin \frac{\pi}{4}$$
;

r)
$$\sin\frac{\pi}{12}\cos\frac{\pi}{4} - \cos\frac{\pi}{12}\sin\frac{\pi}{4}$$
.

024.19. Докажите равенство:

a)
$$\sin 75^{\circ} \cos 75^{\circ} = \frac{1}{4}$$
;

B)
$$\sin 105^{\circ} \cos 105^{\circ} = -\frac{1}{4}$$
;

6)
$$\cos^2 75^\circ - \sin^2 75^\circ = -\frac{\sqrt{3}}{2}$$
;

r)
$$\cos^2 75^\circ + \sin^2 75^\circ = 1$$
.

024.20. Решите уравнение:

a)
$$\sin 2x \cos x + \cos 2x \sin x = 1$$
;

$$6) \cos 3x \cos 5x = \sin 3x \sin 5x;$$

$$B) \sin 6x \cos x + \cos 6x \sin x = \frac{1}{2};$$

r)
$$\cos 5x \cos 7x - \sin 5x \sin 7x = -\frac{\sqrt{3}}{2}$$
.

024.21. Найдите наименьший (в градусах) положительный коревь уравнения:

- a) $\sin x \cos 45^\circ + \cos x \sin 45^\circ =$
- $= \cos 17^{\circ} \cos 13^{\circ} \sin 17^{\circ} \sin 13^{\circ};$
- 6) $\cos x \cos 45^{\circ} + \sin x \sin 45^{\circ} =$ $= \sin 200^{\circ} \cos 80^{\circ} - \cos 200^{\circ} \sin 80^{\circ}$.

024.22. Решите уравнение:

- a) $\cos 6x \cos 5x + \sin 6x \sin 5x = -1$;
- 6) $\sin 3x \cos 5x \sin 5x \cos 3x = 0.5$.

024.23. Найдите корни уравнения на заданном промежутке:

- a) $\sin 0.2x \cos 0.8x + \cos 0.2x \sin 0.8x = \cos 3x \cos 2x$ + $\sin 3x \sin 2x$, $x \in [0; 3\pi]$;
- 6) $\cos 0.7x \cos 1.3x \sin 0.7x \sin 1.3x = \sin 7x \cos 9x$ $-\sin 9x\cos 7x,\ x\in [-\pi;\,\pi].$

Решите уравнение:

024.24. a) $\sqrt{2} \cos \left(\frac{\pi}{4} - x \right) - \cos x = 0.5;$

6)
$$\sqrt{2} \sin\left(\frac{\pi}{4} - \frac{x}{2}\right) + \sin\frac{x}{2} = \frac{\sqrt{3}}{2}$$
.

024.25. a)
$$\frac{\sqrt{2}}{2}\sin x - \frac{\sqrt{2}}{2}\cos x = 1;$$
 b) $\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = 1;$

B)
$$\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x = 1;$$

$$6) \sin x - \cos x = 1;$$

$$\mathbf{r}) \sqrt{3} \cos x + \sin x = 1.$$

O24.26. a)
$$\frac{\sqrt{2}}{2}\sin x + \frac{\sqrt{2}}{2}\cos x = 1;$$
 B) $\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = 1;$

B)
$$\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = 1$$
;

$$6) \sin x + \cos x = 1;$$

$$\mathbf{r}) \ \sqrt{3} \cos x - \sin x = 1.$$

024.27. Зная, что $\sin t = \frac{3}{5}$, $0 < t < \frac{\pi}{2}$, вычислите:

a)
$$\sin\left(\frac{\pi}{3}+t\right)$$
;

$$\mathbf{B)}\,\sin\left(\frac{\pi}{2}+t\right);$$

6)
$$\cos\left(\frac{\pi}{2}+t\right)$$
; r) $\cos\left(\frac{\pi}{3}+t\right)$.

r)
$$\cos\left(\frac{\pi}{3}+t\right)$$

024.28. Зная, что $\cos t = -\frac{5}{13}, \ \frac{\pi}{2} < t < \pi$, вычислите:

a)
$$\sin\left(t+\frac{\pi}{6}\right)$$
;

B)
$$\cos\left(t+\frac{\pi}{6}\right)$$
;

6)
$$\cos\left(t+\frac{3\pi}{2}\right)$$
;

r)
$$\sin\left(t+\frac{3\pi}{2}\right)$$

$$024.29$$
. Зная, что $\sin\alpha=\frac{8}{17},\;\cos\beta=\frac{4}{5},\;0<\alpha<\frac{\pi}{2},\;0<\beta<\frac{\pi}{2},$ найдите значение выражения:

a) $\sin (\alpha + \beta)$;

6) $\cos (\alpha + \beta)$.

 $_{024.30}$. Зная, что $\sin \alpha = \frac{4}{5}, \; \cos \beta = -\frac{15}{17}, \; \frac{\pi}{2} < \alpha < \pi, \; \frac{\pi}{2} < \beta < \pi,$ найдите значение выражения:

a) $\sin (\alpha + \beta)$;

6) $\cos (\alpha + \beta)$.

 $_{024.31.}$ Зная, что $\sin \alpha = \frac{9}{41}, \ \sin \beta = -\frac{40}{41}, \ 0 < \alpha < \frac{\pi}{2}, \ \frac{3\pi}{2} < \beta < 2\pi,$ найдите значение выражения:

a) $\sin (\alpha + \beta)$;

σ) cos (α + β).

 $_{02}4.32.$ Зная, что $\sin t = \frac{5}{13}, \ \frac{\pi}{2} < t < \pi$, вычислите:

a) $\sin\left(\frac{\pi}{3}-t\right)$;

B) $\sin\left(\frac{\pi}{2}-t\right)$;

6) $\cos\left(t-\frac{\pi}{2}\right)$;

r) $\cos\left(\frac{\pi}{3}-t\right)$.

024.33. Зная, что $\cos t = \frac{3}{5}, \ \frac{3\pi}{2} < t < 2\pi$, вычислите:

a) $\sin\left(t-\frac{\pi}{6}\right)$

B) $\cos\left(t-\frac{3\pi}{2}\right)$

6) $\sin\left(t-\frac{3\pi}{2}\right)$;

r) $\cos\left(t-\frac{\pi}{6}\right)$

024.34. Зная, что $\sin\alpha=\frac{4}{5},\;\cos\beta=-\frac{15}{17},\;\frac{\pi}{2}<\alpha<\pi,\;\frac{\pi}{2}<\beta<\pi,$ вычислите:

a) $\sin (\alpha - \beta)$;

6) $\cos (\alpha - \beta)$.

 024 .35. Зная, что $\sin \beta = -\frac{12}{13}$, $\cos \alpha = -0.8$, $\pi < \beta < \frac{3\pi}{2}$, $\frac{\pi}{2} < \alpha < \pi$, вычислите:

a) $\sin (\alpha - \beta)$;

6) $\cos (\alpha - \beta)$.

Решите неравенство:

024.36. a) $\sin 5x \cos 3x - \cos 5x \sin 3x > \frac{1}{2}$;

6)
$$\cos x \cos \frac{x}{2} + \sin x \sin \frac{x}{2} < -\frac{2}{7}$$
;

B)
$$\sin \frac{x}{4} \cos \frac{x}{2} - \cos \frac{x}{4} \sin \frac{x}{2} < \frac{1}{3}$$
;

r)
$$\sin 2x \sin 5x + \cos 2x \cos 5x > -\frac{\sqrt{3}}{2}$$
.

024.37. a) $\sin x \cos 3x + \cos x \sin 3x > \frac{1}{2}$;

6)
$$\cos 2x \cos 5x - \sin 2x \sin 5x < -\frac{1}{3}$$
;

B)
$$\sin x \cos \frac{x}{2} + \cos x \sin \frac{x}{2} \leqslant -\frac{2}{7}$$
;

r)
$$\cos \frac{x}{2} \cos \frac{x}{4} - \sin \frac{x}{2} \sin \frac{x}{4} > \frac{\sqrt{2}}{2}$$
.

•24.38. Докажите, что для любого действительного значения : справедливо неравенство:

- a) $\sin (5 + x) \cos x < \cos (5 + x) \sin x$;
- 6) $\cos (7-2x)\cos 2x > \sin (7-2x)\sin 2x$.

024.39. a) Зная, что $\sin\left(x-\frac{\pi}{6}\right)=0.6$ и $\frac{2\pi}{3}< x<\frac{7\pi}{6}$, вычислите: $\sin x$.

6) Зная, что
$$\cos\left(x+\frac{2\pi}{3}\right) = -0.8$$
 и $\frac{\pi}{3} < x < \frac{5\pi}{6}$, вычислите: $\cos x$.

024.40. Определите знак числа а:

a)
$$a = (\cos 1 + \cos 2)^2 + (\sin 1 - \sin 2)^2 - 2$$
;

6)
$$a = (\sin 3 + \cos 4)^2 + (\cos 3 + \sin 4)^2 - 1$$
.

024.41. Сравните числа $a = \cos x \cos 2x$ и $b = \cos 3x$, если:

a)
$$0 < x < \frac{\pi}{2}$$
;

6)
$$\frac{\pi}{2} < x < \pi$$
.

024.42. Сравните числа $a = \sin x \cos 2x$ и $b = \sin 3x$, если:

a)
$$\frac{\pi}{2} < x < \pi;$$

б)
$$\pi < x < \frac{3\pi}{2}$$
.

$$e^{24.43}$$
. Сравните числа a и b , если:

a) $a = \frac{\sin 3}{\sin 4}$, $b = \frac{\cos 3}{\cos 4}$; 6) $a = \frac{\sin 4}{\cos 5}$, $b = \frac{\cos 4}{\sin 5}$.

 $a_{24.44.}$ а) Зная, что $\cos(x+y)=a$, $\cos(x-y)=b$, найдите tg x tg y.

6) Зная, что
$$\sin(x + y) = a$$
, $\sin(x - y) = b$, найдите $\frac{\operatorname{tg} x}{\operatorname{tg} y}$.

•24.45. Докажите, что не существует пары (x; y), такой, что: a) $\sin x \cos y = 0.7$; $\cos x \sin y = 0.4$;

a)
$$\sin x \cos y = 0.7$$
; $\cos x \sin y = 0.4$;

6)
$$\cos x \cos y = \frac{\sqrt{6}}{3}$$
; $\sin x \sin y = -\frac{\sqrt{2}}{2}$.

●24.46. а) Докажите, что если tg (
$$\alpha + \beta$$
) sin $\gamma = \cos \gamma$, то $\alpha + \beta + \gamma = \frac{\pi}{2} + \pi n$;

6) докажите, что если ctg
$$(\alpha + \beta) \sin \gamma = -\cos \gamma$$
, то $\alpha + \beta + \gamma = \pi n$;

024,47. Постройте график функции:

a)
$$y = \sin \frac{11x}{5} \cos \frac{x + 10\pi}{5} - \cos \frac{11x}{5} \sin \frac{x}{5}$$
;

6)
$$y = \cos\left(2x + \frac{7\pi}{12}\right)\cos\left(x + \frac{\pi}{4}\right) + \sin\left(2x + \frac{7\pi}{12}\right)\sin\left(x + \frac{9\pi}{4}\right)$$

Вычислите:

•24.48. a)
$$\sin\left(\frac{\pi}{3} + \arccos\frac{3}{5}\right)$$

B)
$$\sin\left(\frac{\pi}{4} - \arcsin\frac{3}{5}\right)$$
;

6)
$$\cos\left(\frac{\pi}{6} + \arccos\left(-\frac{3}{5}\right)\right)$$
; r) $\cos\left(\frac{\pi}{2} - \arcsin\frac{5}{13}\right)$.

r)
$$\cos\left(\frac{\pi}{2} - \arcsin\frac{5}{13}\right)$$

•24.49. a)
$$\sin\left(\arccos\left(-\frac{4}{5}\right) + \arcsin\frac{1}{3}\right)$$
;

6)
$$\cos \left(\arctan \left(-\frac{3}{5} \right) \right)$$

●24.50. Докажите равенство:

$$\arcsin\frac{4}{5}-\arccos\frac{2}{\sqrt{5}}=\arctan\frac{1}{2}.$$

Докажите равенство:

•24.51.
$$\arccos \frac{1}{2} + \arccos \left(-\frac{1}{7}\right) = \arccos \left(-\frac{13}{14}\right)$$

•24.52.
$$\arcsin \frac{4}{5} + \arcsin \frac{5}{13} + \arcsin \frac{16}{65} = \frac{\pi}{2}$$
.

§ 25. Тангенс суммы и разности аргументов

Вычислите:

25.2. a)
$$\frac{\text{tg } 25^{\circ} + \text{tg } 20^{\circ}}{1 - \text{tg } 25^{\circ} \text{ tg } 20^{\circ}};$$

B)
$$\frac{\text{tg } 9^{\circ} + \text{tg } 51^{\circ}}{1 - \text{tg } 9^{\circ} \text{ tg } 51^{\circ}};$$

6)
$$\frac{1 - \text{tg } 70^{\circ} \text{ tg } 65^{\circ}}{\text{tg } 70^{\circ} + \text{tg } 65^{\circ}};$$

r)
$$\frac{1 + tg \, 54^{\circ} \, tg \, 9^{\circ}}{tg \, 54^{\circ} - tg \, 9^{\circ}}$$
.

Упростите выражение:

25.3. a)
$$\frac{\text{tg } 2,22 + \text{tg } 0,92}{1 - \text{tg } 2,22 \text{ tg } 0,92}$$
;

6)
$$\frac{\text{tg } 1,47 - \text{tg } 0,69}{1 + \text{tg } 1,47 \text{ tg } 0.69}$$

25.4. a)
$$\frac{\operatorname{tg}\left(\frac{\pi}{8} + \alpha\right) + \operatorname{tg}\left(\frac{\pi}{8} - \alpha\right)}{1 - \operatorname{tg}\left(\frac{\pi}{8} + \alpha\right)\operatorname{tg}\left(\frac{\pi}{8} - \alpha\right)};$$

6)
$$\frac{\operatorname{tg}(45^{\circ} + \alpha) - \operatorname{tg}\alpha}{1 + \operatorname{tg}(45^{\circ} + \alpha)\operatorname{tg}\alpha}.$$

Докажите тождество:

025.5. a)
$$\frac{1-tg \alpha}{1+tg \alpha} = tg (45^{\circ} - \alpha);$$

6)
$$\operatorname{tg}\left(\frac{3\pi}{4}-x\right)+\operatorname{tg}x=\operatorname{tg}\left(\frac{3\pi}{4}-x\right)\operatorname{tg}x-1;$$

B)
$$\frac{\operatorname{tg} \alpha + \operatorname{tg} \beta}{\operatorname{tg} (\alpha + \beta)} + \frac{\operatorname{tg} \alpha - \operatorname{tg} \beta}{\operatorname{tg} (\alpha - \beta)} = 2;$$

r)
$$tg\left(\alpha + \frac{\pi}{4}\right) - tg \alpha = 1 + tg\left(\frac{\pi}{4} + \alpha\right) tg \alpha$$
.

025.6. a)
$$tg(\alpha + \beta) - (tg \alpha + tg \beta) = tg(\alpha + \beta) tg \alpha tg \beta$$
;

6)
$$tg(\alpha - \beta) - (tg\alpha - tg\beta) = tg(\beta - \alpha) tg\alpha tg\beta$$
.

$$O25.7.$$
 a) $\frac{\lg^2 2x - \lg^2 x}{1 - \lg^2 2x \lg^2 x} = \lg 3x \lg x;$

6)
$$\frac{tg^2 30^{\circ} - tg^2 15^{\circ}}{1 - tg^2 30^{\circ} tg^2 15^{\circ}} = tg 15^{\circ}.$$

25.8. Представив
$$2x$$
 в виде $x + x$, докажите тождество $\log 2x = \frac{2 \log x}{1 - \log^2 x}$.

025.9. Докажите, что значение выражения
$$\frac{tg \ (\alpha - \beta) - tg \ \alpha + tg \ \beta}{tg \ (\alpha - \beta) \ tg \ \beta}$$
 не зависит от значения β .

₀25.10. Вычислите:

a)
$$\operatorname{tg}\left(\frac{\pi}{4} - \alpha\right)$$
, $\operatorname{если} \operatorname{tg}\alpha = \frac{2}{3}$;

6)
$$\operatorname{tg}\left(\alpha + \frac{\pi}{3}\right)$$
, ecan $\operatorname{tg}\alpha = \frac{4}{5}$.

025.11. Известно, что tg
$$\alpha = \frac{1}{2}$$
, tg $\beta = \frac{1}{3}$. Вычислите:

a)
$$tg(\alpha + \beta)$$
;

6) tg
$$(\alpha - \beta)$$
.

025.12. a) Вычислите tg
$$\alpha$$
, если tg $\left(\alpha - \frac{\pi}{4}\right) = 3$;

б) вычислите ctg
$$\alpha$$
, если tg $\left(\alpha + \frac{\pi}{4}\right) = 0,2$.

$$\circ 25.13$$
. a) Зная, что tg $\alpha = 3$ и tg $(\alpha + \beta) = 1$, вычислите tg β ;

б) зная, что tg
$$\alpha = \frac{1}{4}$$
 и tg $(\alpha - \beta) = 2$, вычислите tg β .

025.14. Известно, что
$$\sin \alpha = -\frac{12}{13}, \ \pi < \alpha < \frac{3\pi}{2}.$$
 Вычислите:

a)
$$\operatorname{tg}\left(\alpha + \frac{\pi}{4}\right)$$
;

6)
$$\operatorname{tg}\left(\alpha-\frac{\pi}{4}\right)$$

$$^{\circ}25.15$$
. Известно, что $\cos\alpha=\frac{3}{5},\ 0<\alpha<\frac{\pi}{2}$. Вычислите:

a)
$$\operatorname{tg}\left(\alpha + \frac{\pi}{3}\right)$$
;

6) tg
$$\left(\alpha - \frac{5\pi}{4}\right)$$
.

025.16. Дано: $\alpha - \beta = \frac{\pi}{4}$. Докажите, что:

a)
$$\frac{1+tg\beta}{1-tg\beta}=tg\alpha$$
;

6)
$$\frac{\operatorname{tg}\alpha-1}{\operatorname{tg}\alpha+1}=\operatorname{tg}\beta$$
.

025.17. Решите уравнение:

a)
$$\frac{\lg x + \lg 3x}{1 - \lg x \lg 3x} = 1;$$

6)
$$\frac{\tan 5x - \tan 3x}{1 + \tan 3x \tan 5x} = \sqrt{3}.$$

025.18. Найдите корни уравнения, принадлежащие отрезку [-я; 2ль

a)
$$\frac{\sqrt{3} - \lg x}{1 + \sqrt{3} \lg x} = 1;$$

6)
$$\frac{\lg \frac{\pi}{5} - \lg 2x}{\lg \frac{\pi}{5} \lg 2x + 1} = \sqrt{3}.$$

025.19. Решите неравенство:

a)
$$\frac{\tan\frac{\pi}{5} + \tan x}{1 - \tan\frac{\pi}{5} \tan x} < 1;$$

6)
$$\frac{\tan 3x - 1}{\tan 3x + 1} > 1.$$

025.20. Решите систему уравнений:

a)
$$\begin{cases} \operatorname{tg}(x+y) = -3, \\ 2\operatorname{tg}x - \operatorname{tg}y = 0; \end{cases}$$

6)
$$\begin{cases} tg(x-y) = -\frac{1}{2}, \\ 2tg x + tg y = 5. \end{cases}$$

 \bullet 25.21. Вычислите β , если известно, что tg $(\alpha + \beta) = -3$, tg $(\alpha - \beta) =$ $=\frac{1}{2} \operatorname{id} \frac{\pi}{2} < \beta < \pi.$

●25.22. Вычислите:

a)
$$\operatorname{tg}\left(\frac{\pi}{4} + \operatorname{arctg}\frac{2}{7}\right)$$
;

B)
$$\operatorname{tg}\left(\frac{\pi}{3} - \operatorname{arcctg}\frac{1}{3}\right)$$

6)
$$\operatorname{tg}\left(\frac{3\pi}{4} - \arccos\left(-\frac{3}{5}\right)\right)$$

6)
$$\operatorname{tg}\left(\frac{3\pi}{4} - \operatorname{arccos}\left(-\frac{3}{5}\right)\right)$$
; r) $\operatorname{tg}\left(\operatorname{arcsin}\frac{4}{5} + \operatorname{arcctg}\frac{3}{4}\right)$

•25.23. Докажите, что прямые y = 3x + 1 и y = 6 - 2x пересекаются под углом 45°.

ullet25.24. Точка K — середина стороны CD квадрата ABCD. Чему равен тангенс острого угла между диагональю AC и от резком BK?

§ 26. Формулы приведения

Упростите выражение:

26.1. a)
$$\sin\left(\frac{\pi}{2}-t\right)$$
;

$$\mathbf{B})\,\cos\left(\frac{3\pi}{2}+t\right)$$

6)
$$\cos (2\pi - t)$$
;

r)
$$\sin (\pi + t)$$
.

26.2. a)
$$\sin (\pi - t)$$
;

B)
$$\cos(2\pi + t)$$
;

6)
$$\cos\left(\frac{\pi}{2}+t\right)$$
;

r)
$$\sin\left(\frac{3\pi}{2}-t\right)$$

26.3. a)
$$\cos (90^{\circ} - \alpha)$$
;

B)
$$\sin (270^{\circ} + \alpha)$$
;

6)
$$\sin (360^{\circ} - \alpha)$$
;

r)
$$\cos (180^{\circ} + \alpha)$$
.

26.4. a) tg
$$(90^{\circ} - \alpha)$$
;

B)
$$tg (270^{\circ} + \alpha);$$

6) etg
$$(180^{\circ} - \alpha)$$
;

r) etg
$$(360^{\circ} + \alpha)$$
.

Вычислите с помощью формул приведения:

26.6. a)
$$\cos \frac{5\pi}{3}$$
;

$$\mathbf{B}) \sin \frac{7\pi}{6};$$

6)
$$\sin\left(-\frac{11\pi}{6}\right)$$

r)
$$\cos\left(-\frac{7\pi}{3}\right)$$

в) cos 4650°;

r) ctg 4110°.

6)
$$\sin(-7\pi) + 2\cos\frac{31\pi}{3} - \tan\frac{7\pi}{4}$$
;

B)
$$tg 1800^{\circ} - \sin 495^{\circ} + \cos 945^{\circ}$$
;

r)
$$\cos(-9\pi) + 2\sin\left(-\frac{49\pi}{6}\right) - \cot\left(-\frac{21\pi}{4}\right)$$

026.9. Упростите выражение:

a)
$$\sin (90^{\circ} - \alpha) + \cos (180^{\circ} + \alpha) + tg (270^{\circ} + \alpha) + ctg (360^{\circ} + \alpha);$$

6)
$$\sin\left(\frac{\pi}{2}+t\right)-\cos\left(\pi-t\right)+\operatorname{tg}\left(\pi-t\right)+\operatorname{ctg}\left(\frac{5\pi}{2}-t\right)$$

Упростите выражение:

26.10. a)
$$\frac{\cos{(180^{\circ} + \alpha)}\cos{(-\alpha)}}{\sin{(-\alpha)}\sin{(90^{\circ} + \alpha)}};$$
 B)

B)
$$\frac{\sin(-\alpha)\cot(-\alpha)}{\cos(360^\circ - \alpha)\tan(180^\circ + \alpha)};$$

$$\delta) \; \frac{\sin \left(\pi - t\right) \cos \left(2\pi - t\right)}{\operatorname{tg} \left(\pi - t\right) \cos \left(\pi - t\right)};$$

$$\Gamma \frac{\sin (\pi + t) \sin (2\pi + t)}{\operatorname{tg} (\pi + t) \cos \left(\frac{3\pi}{2} + t\right)}.$$

O26.11. a)
$$\frac{\cos{(\pi-t)} + \cos{\left(\frac{\pi}{2} - t\right)}}{\sin{(2\pi-t)} - \sin{\left(\frac{3\pi}{2} - t\right)}};$$

6)
$$\frac{\sin^2(\pi-t)+\sin^2\left(\frac{\pi}{2}-t\right)}{\sin(\pi-t)}\cdot \operatorname{tg}(\pi-t).$$

C26.12. a)
$$\frac{\sin^{3}(\alpha - 270^{\circ})\cos(360^{\circ} - \alpha)}{tg^{3}(\alpha - 90^{\circ})\cos^{3}(\alpha - 270^{\circ})};$$

6)
$$\frac{\sin\left(\frac{3\pi}{2}+x\right)\operatorname{tg}\left(\frac{\pi}{2}+y\right)}{\cos\left(\pi-x\right)\operatorname{ctg}\left(\frac{3\pi}{2}-y\right)} - \frac{\sin\left(\frac{7\pi}{2}-y\right)\operatorname{ctg}\left(\frac{5\pi}{2}+x\right)}{\cos\left(2\pi-y\right)\operatorname{tg}\left(11\pi-x\right)}.$$

026.13. Докажите тождество:

a)
$$\frac{\operatorname{tg}(\pi-t)}{\cos(\pi+t)} \cdot \frac{\sin\left(\frac{3\pi}{2}+t\right)}{\operatorname{tg}\left(\frac{3\pi}{2}+t\right)} = \operatorname{tg}^{2}t;$$

6)
$$\frac{\sin (\pi - t)}{\operatorname{tg} (\pi + t)} \cdot \frac{\operatorname{ctg} \left(\frac{\pi}{2} - t\right)}{\operatorname{tg} \left(\frac{\pi}{2} + t\right)} \cdot \frac{\cos (2\pi - t)}{\sin (-t)} = \sin t;$$

B)
$$\frac{\cos^{2}(\pi - t) + \sin^{2}\left(\frac{\pi}{2} - t\right) + \cos(\pi + t)\cos(2\pi - t)}{tg^{2}\left(t - \frac{\pi}{2}\right)ctg^{2}\left(\frac{3\pi}{2} + t\right)} = \cos^{2}t;$$

r)
$$\frac{\sin^2\left(t-\frac{3\pi}{2}\right)\cos\left(2\pi-t\right)}{\operatorname{tg}^2\left(t-\frac{\pi}{2}\right)\cos^2\left(t-\frac{3\pi}{2}\right)}=\cos t.$$

Вычислите:

$$_{026.14.}$$
 a) $\frac{11\cos 287^{\circ} - 25\sin 557^{\circ}}{\sin 17^{\circ}}$;

6)
$$\frac{13\sin 469^{\circ} - 8\cos 341^{\circ}}{\cos 19^{\circ}}$$
.

$$_{O26.15. \ a)} \ \frac{2\cos\frac{11\pi}{5} + 8\sin\frac{13\pi}{10}}{\cos\frac{\pi}{5}}; \qquad \qquad 6) \ \frac{5\sin\frac{5\pi}{7} + 2\cos\frac{25\pi}{14}}{\sin\frac{2\pi}{7}}.$$

$$026.16$$
. a) $\sin 77^{\circ} \cos 17^{\circ} - \sin 13^{\circ} \cos 73^{\circ}$; 6) $\cos 125^{\circ} \cos 5^{\circ} + \sin 55^{\circ} \cos 85^{\circ}$.

026.17. a)
$$\sin\left(\frac{\pi}{6} + t\right)\cos\left(\frac{\pi}{3} - t\right) + \sin\left(\frac{2\pi}{3} + t\right)\sin\left(\frac{\pi}{3} - t\right);$$
6) $\cos\left(\frac{\pi}{4} + t\right)\cos\left(\frac{\pi}{12} - t\right) - \cos\left(\frac{\pi}{4} - t\right)\cos\left(\frac{5\pi}{12} + t\right).$

c26.18. a)
$$\frac{\cos 105^{\circ} \cos 5^{\circ} + \sin 105^{\circ} \cos 85^{\circ}}{\sin 195^{\circ} \cos 5^{\circ} + \cos 195^{\circ} \sin 185^{\circ}}$$

6)
$$\frac{\sin 75^{\circ} \cos 5^{\circ} - \cos 75^{\circ} \cos 85^{\circ}}{\cos 375^{\circ} \cos 5^{\circ} - \sin 15^{\circ} \sin 365^{\circ}}.$$

026.19. a)
$$\frac{\text{tg } 380^{\circ} + \text{tg } 25^{\circ}}{\text{tg } 225^{\circ} + \text{ctg } 290^{\circ} \text{ ctg } 65^{\circ}};$$
 6) $\frac{\text{tg } \frac{19\pi}{36} - \text{tg } \frac{7\pi}{36}}{\sqrt{3} \text{ ctg } \frac{7\pi}{3} - \text{ctg } \frac{\pi}{36} \text{ ctg } \frac{11\pi}{36}}.$

©26.20. Известно, что
$$\operatorname{ctg}\left(\frac{3\pi}{2}-x\right)=0,4,\ \operatorname{tg}\left(\frac{\pi}{2}+y\right)=-3.$$
 Вычислите: a) $\operatorname{tg}\left(x+y\right);$ б) $\operatorname{ctg}\left(x-y\right).$

$$^{\circ}26.21.$$
 a) $2\cos(2\pi+x)+\sin\left(\frac{\pi}{2}+x\right)=3;$

6)
$$\sin (\pi + x) + 2 \cos \left(\frac{\pi}{2} + x\right) = 3;$$

B)
$$2 \sin (\pi + x) + \cos \left(\frac{\pi}{2} - x\right) = -\frac{1}{2}$$
;

r)
$$3 \sin \left(\frac{\pi}{2} + x\right) - \cos (2\pi + x) = 1$$
.

026.22. a)
$$5 \sin \left(\frac{\pi}{2} + x\right) - \sin \left(\frac{3\pi}{2} + x\right) - 8 \cos (2\pi - x) = 1;$$

6) $\sin (2\pi + x) - \cos \left(\frac{\pi}{2} - x\right) + \sin (\pi - x) = 1.$

O26.23. a)
$$\sin^2(\pi + x) + \cos^2(2\pi - x) = 0$$
;
6) $\sin^2(\pi + x) + \cos^2(2\pi - x) = 1$.

026.24. a)
$$\sin\left(\frac{\pi}{2} + 2x\right) + \cos\left(\frac{\pi}{2} - 2x\right) = 0;$$

6)
$$2\sin(\pi-3x)+\cos(2\pi-3x)=0$$
.

26.25. a)
$$\cos\left(\frac{\pi}{2} - \frac{x}{2}\right) - 3\cos\left(\pi - \frac{x}{2}\right) = 0;$$

6)
$$\sqrt{3} \sin \left(\pi - \frac{x}{3}\right) + 3 \sin \left(\frac{\pi}{2} - \frac{x}{3}\right) = 0.$$

026.26. a)
$$\sin^2 x + \cos \left(\frac{\pi}{2} - x\right) \sin \left(\frac{\pi}{2} - x\right) - 2\cos^2 x = 0;$$

6)
$$\sin^2 3x + 3\cos^2 3x - 4\sin\left(\frac{\pi}{2} + 3x\right)\cos\left(\frac{\pi}{2} + 3x\right) = 0;$$

B)
$$\sin^2 x + 2 \sin (\pi - x) \cos x - 3 \cos^2 (2\pi - x) = 0$$
;

r)
$$\sin^2(2\pi - 3x) + 5\sin(\pi - 3x)\cos 3x + 4\sin^2\left(\frac{3\pi}{2} - 3x\right) = 0$$
.

026.27. a)
$$3 \sin^2 \frac{x}{2} + \sin \frac{x}{2} \sin \left(\frac{\pi}{2} - \frac{x}{2} \right) = 2;$$

6)
$$2\cos^2\frac{x}{2} - 3\sin\left(\pi - \frac{x}{2}\right)\cos\left(2\pi - \frac{x}{2}\right) + 7\sin^2\frac{x}{2} = 3;$$

B)
$$4\cos^2\left(\frac{\pi}{2} + x\right) + \sqrt{3}\sin\left(\frac{3\pi}{2} - x\right)\sin(\pi + x) +$$

$$+ 3 \cos^2 (\pi + x) = 3;$$

r)
$$3\sin^2\left(x-\frac{3\pi}{2}\right)-2\cos\left(\frac{3\pi}{2}+x\right)\cos(\pi+x)+$$

$$+ 2\sin^2(x-\pi) = 2.$$

$$0.26.28.$$
 a) $2\sin^2(\pi+x)-5\cos\left(\frac{\pi}{2}+x\right)+2=0$;

6)
$$2\cos^2 x + 5\cos\left(\frac{\pi}{2} - x\right) - 4 = 0;$$

B)
$$2\cos^2 x + \sin\left(\frac{\pi}{2} - x\right) - 1 = 0;$$

r)
$$5 - 5 \sin 3 (\pi - x) = \cos^2 (\pi - 3x)$$
.

$$026.29$$
. a) $2 ext{ tg}^2 2x + 3 ext{ tg} (\pi + 2x) = 0$;

6)
$$tg^2 3x - 6 ctg \left(\frac{\pi}{2} - 3x\right) = 0.$$

026.30. a)
$$3 ext{ tg}^2 \frac{x}{2} - 2 \operatorname{ctg} \left(\frac{3\pi}{2} + \frac{x}{2} \right) - 1 = 0;$$

6)
$$tg(\pi + x) + 2 tg(\frac{\pi}{2} + x) + 1 = 0;$$

B)
$$3 ext{ tg}^2 4x - 2 \operatorname{ctg} \left(\frac{\pi}{2} - 4x \right) = 1;$$

r)
$$2 \cot x - 3 \cot \left(\frac{\pi}{2} - x\right) + 5 = 0$$
.

$$026.31.$$
 a) $\sin^2 x + \cos^2 2x + \cos^2 \left(\frac{3\pi}{2} + 2x\right) + 2\cos x \text{ tg } x = 1;$

6)
$$2\cos^2 x - \sin\left(x - \frac{\pi}{2}\right) + \tan x \tan\left(x + \frac{\pi}{2}\right) = 0$$
.

026.32. Постройте график функции:

a)
$$y = \sin(3\pi + 3x) \sin\left(\frac{3\pi}{2} - x\right) + \sin\left(\frac{\pi}{2} + 3x\right) \sin(4\pi - x) + \sin\frac{99\pi}{2}$$
;

6)
$$y = \cos(\pi + x) \cos\left(3\pi - \frac{x}{2}\right) - \cos\left(\frac{\pi}{2} + x\right) \cos\frac{3\pi + x}{2} + \cos\frac{16\pi}{3}$$

•26.33. Докажите равенство:

a)
$$\frac{\sin 50^{\circ} + \cos 50^{\circ}}{\sqrt{2} \sin 85^{\circ}} = 1;$$
 6) $\frac{\cos 40^{\circ} - \sqrt{3} \sin 40^{\circ}}{\sin 190^{\circ}} = 2.$

●26.34. Докажите, что:

a)
$$\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1; 1];$$

6)
$$\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}, x \in \mathbb{R}.$$

Вычислите:

•26.35. a)
$$\arcsin\left(\sin\frac{2\pi}{5}\right)$$
;

B)
$$\arcsin\left(\sin\left(-\frac{2\pi}{5}\right)\right)$$
;

6)
$$\arcsin\left(\sin\frac{2\pi}{5}\right)$$

r)
$$\arccos\left(\cos\left(-\frac{2\pi}{5}\right)\right)$$

•26.36. a)
$$\arcsin\left(-\cos\frac{4\pi}{5}\right)$$
;

B) arctg
$$\left(\operatorname{ctg}\left(-\frac{21\pi}{5}\right)\right)$$
;

6)
$$\operatorname{arccos}\left(\cos\left(-\frac{24\pi}{5}\right)\right)$$
; r) $\operatorname{arcctg}\left(\operatorname{tg}\left(\frac{27\pi}{7}\right)\right)$.

r)
$$\operatorname{arcctg}\left(\operatorname{tg}\left(\frac{27\pi}{7}\right)\right)$$

◆26.37. Постройте график функции:

a)
$$y = \arcsin(\sin x)$$
;

6)
$$y = \arcsin(\cos x)$$
.

§ 27. Формулы двойного аргумента. Формулы понижения степени

Упростите выражение:

27.1. a)
$$\frac{\sin 2t}{\cos t} - \sin t$$
;

$$\mathbf{B})\,\cos^2t-\cos2t;$$

6)
$$\frac{\sin 6t}{\cos^2 3t}$$
;

r)
$$\frac{\cos 2t}{\cos t - \sin t} - \sin t$$
.

27.2. a)
$$\frac{\sin 40^{\circ}}{\sin 20^{\circ}}$$
;

$$B) \frac{\sin 100^{\circ}}{2\cos 50^{\circ}};$$

6)
$$\frac{\cos 80^{\circ}}{\cos 40^{\circ} + \sin 40^{\circ}}$$
;

r)
$$\frac{\cos 36^{\circ} + \sin^2 18^{\circ}}{\cos 18^{\circ}}$$
.

27.3. Вычислите:

B)
$$\cos^2 15^\circ - \sin^2 15^\circ$$
;

6)
$$(\cos 75^{\circ} - \sin 75^{\circ})^2$$
;

r)
$$(\cos 15^{\circ} + \sin 15^{\circ})^{2}$$
.

Вычислите:

27.4. a)
$$2\sin\frac{\pi}{8}\cos\frac{\pi}{8}$$
;

B)
$$\cos^2 \frac{\pi}{8} - \sin^2 \frac{\pi}{8}$$
;

6)
$$\sin \frac{\pi}{8} \cos \frac{\pi}{8} + \frac{1}{4}$$
;

$$\mathbf{r}) \ \frac{\sqrt{2}}{2} - \left(\cos\frac{\pi}{8} + \sin\frac{\pi}{8}\right)^2.$$

27.5. a)
$$\frac{\text{tg } 75^{\circ}}{1 - \text{tg}^2 75^{\circ}}$$
;

$$6) \ \frac{2 \operatorname{tg} \frac{5\pi}{12}}{\operatorname{tg}^2 \frac{5\pi}{12} - 1}.$$

27.6. a)
$$\frac{\sin 2t - 2\sin t}{\cos t - 1}$$
;

B)
$$\sin 2t \cot t - 1$$
;

6)
$$\frac{\cos 2t - \cos^2 t}{1 - \cos^2 t}$$
;

r)
$$2\cos^2\frac{\pi+t}{4}-2\sin^2\frac{\pi+t}{4}$$
.

27.7. a)
$$\frac{2}{\lg t + \deg t}$$
;

$$B) (1 - tg^2 t) \cos^2 t;$$

6)
$$\frac{2}{\operatorname{tg} t - \operatorname{ctg} t};$$

r) (tg t + ctg t) sin 2t.

Докажите тождество:

27.8. a) $(\sin t - \cos t)^2 = 1 - \sin 2t;$ 6) $\cos^4 t - \sin^4 t = \cos 2t;$ B) $(\sin t + \cos t)^2 = 1 + \sin 2t;$

 $r) \cos^4 t - \sin^4 t = 1 - \frac{1}{2} \sin^2 2t.$

27.9. a)
$$\sin^2 2t = \frac{1-\cos 4t}{2}$$
;

B)
$$2 \sin^2 2t = 1 + \sin \left(\frac{3\pi}{2} - 4t \right)$$

6)
$$2\sin^2\frac{t}{2} + \cos t = 1$$
;

r)
$$2\cos^2 t - \cos 2t = 1$$
.

027.10. a)
$$\cos^2 3t = \frac{1 + \sin\left(\frac{\pi}{2} - 6t\right)}{2}$$
; B) $\sin^2\left(\frac{3\pi}{4} + 2t\right) = \frac{1 - \sin 4t}{2}$;

B)
$$\sin^2\left(\frac{3\pi}{4} + 2t\right) = \frac{1 - \sin 4t}{2};$$

6)
$$\frac{1-\cos t}{1+\cos t} = tg^2 \frac{t}{2}$$
;

$$r) \frac{1-\cos t}{\sin t} = tg \frac{t}{2}.$$

$$^{\circ 27.11}$$
, a) $1 + \sin \alpha = 2 \cos^2 \left(45^{\circ} - \frac{\alpha}{2} \right)$

6)
$$2 \sin^2(45^\circ - \alpha) + \sin 2\alpha = 1$$
;

B)
$$1 - \sin \alpha = 2 \sin^2 \left(45^\circ - \frac{\alpha}{2} \right)$$

r)
$$2\cos^2(45^{\circ} + \alpha) + \sin 2\alpha = 1$$
.

Докажите тождество:

o27.12. a)
$$\frac{\cos 2t}{\sin t \cos t + \sin^2 t} = \text{ctg}(\pi + t) - 1;$$

6)
$$\frac{\sin 2t - 2\sin\left(\frac{\pi}{2} - t\right)}{\cos\left(\frac{\pi}{2} - t\right) - \sin^2 t} = -2\operatorname{ctg} t;$$

B)
$$(\operatorname{ctg} t - \operatorname{tg} t) \sin 2t = 2 \cos 2t$$
;

r)
$$\frac{1-\cos 2t + \sin 2t}{1+\cos 2t + \sin 2t} \cdot tg\left(\frac{\pi}{2} - t\right) = 1$$
.

027.13. a)
$$\frac{\sin 2t}{1 + \cos 2t} \cdot \frac{\cos t}{1 + \cos t} = \operatorname{tg} \frac{t}{2}$$
;

6)
$$\frac{\sin 2t}{1+\cos 2t} \cdot \frac{\cos t}{1+\cos t} \cdot \frac{\cos \frac{t}{2}}{1+\cos \frac{t}{2}} = \operatorname{tg} \frac{t}{4}.$$

027.14. a)
$$\frac{1 - \cos 2t + \sin 2t}{1 + \sin 2t + \cos 2t} = \operatorname{tg} t;$$

6)
$$\frac{1+\cos 2t-\sin 2t}{1+\sin 2t+\cos 2t} = tg(\frac{\pi}{4}-t)$$
.

027.15. a)
$$\cos^2 t - \cos^2 \left(\frac{\pi}{4} - t\right) = \frac{1}{\sqrt{2}} \sin \left(\frac{\pi}{4} - 2t\right)$$

6)
$$\sin^2 t - \sin^2 \left(\frac{\pi}{4} - t \right) = \frac{1}{\sqrt{2}} \sin \left(2t - \frac{\pi}{4} \right)$$

027.16. a)
$$\cos x \cos 2x = \frac{\sin 4x}{4 \sin x}$$
;

6)
$$\cos x \cos 2x \cos 4x = \frac{\sin 8x}{8 \sin x}$$
;

$$\mathbf{B})\,\sin\,x\,\cos\,2x=\frac{\sin\,4x}{4\cos\,x};$$

r)
$$\sin x \cos 2x \cos 4x = \frac{\sin 8x}{8 \cos x}$$
.

027.17. Проверьте числовое равенство:

a)
$$\sin 18^{\circ} \cos 18^{\circ} \cos 36^{\circ} = \frac{1}{4} \sin 72^{\circ}$$
;

6)
$$\sin 18^{\circ} \cos 36^{\circ} = \frac{1}{4}$$
.

 $_{027.18}$. Упростите выражение $\sqrt{1-\cos 2t}+\sqrt{1+\cos 2t}$, если:

a)
$$t \in \left[\frac{\pi}{2}; \pi\right];$$

B)
$$t \in \left[0; \frac{\pi}{2}\right];$$

6)
$$t \in \left[\frac{3\pi}{2}; 2\pi\right];$$

r)
$$t \in \left[\pi; \frac{3\pi}{2}\right]$$
.

27.19. Вычислите (с помощью формул понижения степени):

B)
$$\sin \frac{3\pi}{2}$$
; r) $\cos \frac{3\pi}{2}$.

r)
$$\cos \frac{3\pi}{2}$$

о27.20. Вычислите:

a) sin 11°15′ cos 11°15′ cos 22°30′ cos 45°;

6)
$$\sin\frac{\pi}{48}\cos\frac{\pi}{48}\cos\frac{\pi}{24}\cos\frac{\pi}{12}.$$

o27.21. a) $\frac{1 + \cos 40^{\circ} + \cos 80^{\circ}}{\sin 80^{\circ} + \sin 40^{\circ}} \cdot \text{tg } 40^{\circ};$

6)
$$\frac{1-\cos 25^{\circ}+\cos 50^{\circ}}{\sin 50^{\circ}-\sin 25^{\circ}}-\operatorname{tg} 65^{\circ}$$
.

o27.22. a)
$$\frac{\sin 125^{\circ}}{\sin 55^{\circ}} - \frac{\cos 125^{\circ}}{\cos 55^{\circ}}$$
; 6) $\frac{\cos 150^{\circ}}{\sin 40^{\circ}} - \frac{\sin 150^{\circ}}{\cos 40^{\circ}}$.

6)
$$\frac{\cos 150^{\circ}}{\sin 40^{\circ}} - \frac{\sin 150^{\circ}}{\cos 40^{\circ}}$$

•27.23. a)
$$\left(\cos\frac{\pi}{8} + \sin\frac{\pi}{8}\right) \left(\cos^3\frac{\pi}{8} - \sin^3\frac{\pi}{8}\right)$$

6)
$$\sin \frac{7\pi}{8} \left(\cos^4 \frac{7\pi}{16} - \sin^4 \frac{7\pi}{16} \right)$$

B)
$$\left(\cos\frac{\pi}{12} - \sin\frac{\pi}{12}\right) \left(\cos^3\frac{\pi}{12} + \sin^3\frac{\pi}{12}\right)$$

r)
$$\sin \frac{\pi}{12} \left(\cos^6 \frac{\pi}{24} - \sin^6 \frac{\pi}{24} \right)$$

•27.24. a)
$$\sin^2 \frac{3\pi}{8} + \cos^2 \frac{3\pi}{8} + \sin^4 \frac{3\pi}{8} + \cos^4 \frac{3\pi}{8} + \sin^6 \frac{3\pi}{8} + \cos^6 \frac{3\pi}{8}$$
;

6)
$$\cos^2 \frac{5\pi}{8} - \sin^2 \frac{5\pi}{8} + \cos^4 \frac{5\pi}{8} - \sin^4 \frac{5\pi}{8} + \cos^6 \frac{5\pi}{8} - \sin^6 \frac{5\pi}{8}$$
.

•27.25. a)
$$\cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33}$$
;

5)
$$\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}$$
.

•27.26. Докажите равенство:

- a) $8 \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} = \cot 10^{\circ}$; 6) $\sin 70^{\circ} + 8 \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = 2 \cos^2 10^{\circ}$.

027.27. Известно, что $\sin t = \frac{5}{13}, \ \frac{\pi}{2} < t < \pi$. Вычислите:

- a) $\sin 2t$;
- б) $\cos 2t$;
- в) tg 2t:
- r) ctg 2t.

027.28. Известно, что $\cos x = 0.8$, $0 < x < \frac{\pi}{2}$. Вычислите:

- a) $\sin 2x$;
- 6) $\cos 2x$;
- \mathbf{B}) tg 2x:
- r) ctg 2x.

027.29. Известно, что tg $x = \frac{3}{4}$, $180^{\circ} < x < 270^{\circ}$. Вычислите:

- a) $\sin 2x$;
- 6) $\cos 2x$; B) tg 2x;
- r) ctg 2x.

027.30. а) Известно, что $\cos t = \frac{3}{4}$, $0 < t < \frac{\pi}{2}$. Вычислите:

- $\cos\frac{t}{2}$, $\sin\frac{t}{2}$, $\tan\frac{t}{2}$, $\cot\frac{t}{2}$.
- б) Известно, что ctg $t = \frac{3}{4}$, $\pi < t < \frac{3\pi}{2}$. Вычислите: $\cos\frac{t}{2}$, $\sin\frac{t}{2}$, $\tan\frac{t}{2}$, $\cot\frac{t}{2}$.

027.31. a) Известно, что $\sin 2x = -\frac{3}{5}$, $\frac{\pi}{2} < x < \pi$. Вычислите: $\cos x$, $\sin x$, tg x, ctg x.

- б) Известно, что tg $2x = \frac{3}{4}$, $\pi < x < \frac{5\pi}{4}$. Вычислите: $\cos x$, $\sin x$, tg x, ctg x.
- 027.32. a) Зная, что tg $\frac{x}{2} = a$, найдите $\sin \frac{2x \pi}{2}$, $\cos \frac{2x + \pi}{2}$;
 - б) зная, что tg $\frac{x}{4} = a$, найдите $\sin \frac{x 3\pi}{2}$, $\cos \frac{x + 3\pi}{2}$.

ullet27.33. a) Зная, что $\cos 4x = -\frac{527}{625}, \ \frac{\pi}{4} < x < \frac{\pi}{2}, \$ вычислите $\sin \pi$

б) зная, что $\cos 4x = \frac{17}{81}$, $\frac{\pi}{2} < x < \frac{3\pi}{4}$, вычислите tg x.

027.34. Вычислите $\sin\left(x+\frac{\pi}{6}\right)$, если:

- a) $\sin\left(\frac{x}{2} \frac{\pi}{6}\right) = a;$ 6) $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = a.$

 $\alpha = \frac{1}{2}$. Вычислите $\sin^4 \alpha + \cos^4 \alpha$.

- 6) Известно, что $\sin^4 \alpha + \cos^4 \alpha = \frac{49}{50}$ и $\frac{\pi}{2} < \alpha < \pi$. Вычислите sin 2α.
- $_{02}7.36$. Известно, что $\cos 2x = \frac{5}{12}$. Вычислите:
 - a) $\sin^4 x + \cos^4 x$:
- 6) $\sin^8 x \cos^8 x$.
- $_{0}$ 27.37. Сравните числа a и b, если:

a)
$$a = \sin \frac{\pi}{12}$$
, $b = \frac{1}{4}$; 6) $a = \operatorname{tg} \frac{\pi}{8}$, $b = \frac{1}{2}$.

6)
$$a = \lg \frac{\pi}{8}, \ b = \frac{1}{2}$$

- 027.38. Выразите:
 - a) $\sin 3x$ upper $\sin x$;
- δ) cos 3x через cos x.
- 027.39. Опираясь на результаты № 27.38, сформулируйте необходимое и достаточное условие для выполнения равенства:
 - a) $\sin 3x = 3 \sin x$:
- 6) $\cos 3x + 3\cos x = 0$.
- 027.40. a) Зная, что $f(x) = \sin x$, f(a) = 0.1, вычислите f(3a);
 - б) зная, что $f(x) = \sin x$, f(a) = 0.25, вычислите f(4a);
 - в) зная, что $f(x) = \cos x$, f(a) = -0.1, вычислите f(3a);
 - г) зная, что $f(x) = \cos x$, $f(a) = \frac{2}{3}$, вычислите f(4a).
- ullet27.41. a) Зная, что 15 cos 2t + 8 sin t = 9 и 1 < t < 3, вычислите
 - б) зная, что $6 \cos 2t + 5 \cos t + 3 = 0$ и 4 < t < 6, вычислите ctg t.
- $\bullet 27.42$. a) Докажите, что если $\sin^2 x = \sin y \cos y$, то $\cos 2x = \cos y$ $=2\cos^2\left(\frac{\pi}{4}+y\right);$
 - б) докажите, что если $\cos^2 x = \sin y \cos y$, то $\cos (\pi + 2x) =$ $=2\sin^2\left(\frac{\pi}{4}-y\right).$

•27.43. a) Извество, что tg $x = \frac{1}{7}$, $\sin y = \frac{\sqrt{10}}{10}$, $0 < x < \frac{\pi}{2}$, $0 < y < \frac{\pi}{2}$

Докажите, что $x + 2y = \frac{\pi}{4}$.

6) Известно, что $\sin x = \frac{7}{25}$, $\cos y = \frac{7}{25}$, $\cos z = \frac{3}{5}$, $0 < x < \frac{\pi}{2}$,

$$0 < y < \frac{\pi}{2}, \ 0 < z < \frac{\pi}{2}$$
. Докажите, что $x + \frac{y}{2} = z$.

•27.44. а) Зная, что $t = 2 \arccos \frac{3}{5}$, вычислите $\sin t$, $\cos t$, $\log t$, $\cot g t$;

- б) зная, что $t=2\arctan\left(-\frac{3}{4}\right)$, вычислите $\sin t$, $\cos t$, $\log t$, $\cot t$;
- в) зная, что $t=2\arcsin\left(-\frac{5}{13}\right)$ вычислите $\sin t$, $\cos t$, $\operatorname{tg} t$, $\operatorname{ctg} t$;
- r) звая, что $t=2\arctan\frac{12}{5}$, вычислите $\sin t$, $\cos t$, $\log t$, $\cot t$.

•27.45. а) Зная, что $t = \arccos \frac{3}{5}$, вычислите $\sin \frac{t}{2}$, $\cos \frac{t}{2}$, $\tan \frac{t}{2}$;

- б) зная, что $t = \arctan\left(-\frac{3}{4}\right)$, вычислите $\sin\frac{t}{2}$, $\cos\frac{t}{2}$, $\tan\frac{t}{2}$;
- в) зная, что $t=\arcsin\left(-\frac{5}{13}\right)$, вычислите $\sin\frac{t}{2}$, $\cos\frac{t}{2}$, $\tan\frac{t}{2}$;
- r) зная, что $t = \operatorname{arcctg} \frac{12}{5}$, вычислите $\sin \frac{t}{2}$, $\cos \frac{t}{2}$, $\operatorname{tg} \frac{t}{2}$.

Решите уравнение:

27.46. a) $\sin 2x - 2\cos x = 0$;

 $\mathbf{B})\,\sin\,2x-\sin\,x=0;$

6) $2\sin x = \sin 2x$;

r) $\sin 2x - \cos x = 0$.

27.47. a) $\sin x \cos x = 1$;

B) $\cos^2 \frac{x}{3} - \sin^2 \frac{x}{3} = \frac{1}{2}$;

 $6) \sin 4x \cos 4x = \frac{1}{2};$

r) $\sin^2 x - \cos^2 x = \frac{1}{2}$.

 $_{02}$ 7.48. Найдите корни уравнения, принадлежащие отрезку $[0; 2\pi]$:

- a) $\cos 2x + 3 \sin x = 1$;
- $\mathbf{B})\cos 2x = \cos^2 x;$
- $6) \sin^2 x = -\cos 2x;$
- $\mathbf{r})\cos 2x = 2\sin^2 x.$

027.49. Решите уравнение:

- a) $2 \cos 2x + 3 \sin x = 0$;
- 6) $\cos 6x \cos 3x 2 = 0$;
- B) $26 \sin x \cos x \cos 4x + 7 = 0$;
- r) $\sin^4 x + \cos^4 x = \sin x \cos x$.

 $_{
m O27.50}$. Найдите (в градусах) наибольший отрицательный корень уравнения:

a)
$$\cos x = \frac{\sin 22.5^{\circ} \cos 22.5^{\circ}}{\cos^2 67.5^{\circ} - \sin^2 67.5^{\circ}};$$

6)
$$\sin x = \frac{\sin^2 75^\circ - \cos^2 75^\circ}{4 \sin 15^\circ \cos 15^\circ}$$

Решите уравнение:

027.51. a)
$$3 \sin 2x + \cos 2x = 1$$
; 6) $\cos 4x + 2 \sin 4x = 1$.

$$027.52$$
. a) $4 \sin x + \sin 2x = 0$, $x \in [0; 2\pi]$;

6)
$$\cos^2\left(3x+\frac{\pi}{4}\right)-\sin^2\left(3x+\frac{\pi}{4}\right)+\frac{\sqrt{3}}{2}=0, x\in\left[\frac{3\pi}{4};\pi\right]$$

027.53. Сколько корней имеет уравнение:

a)
$$(\cos x - \sin x)^2 = 1 - 2 \sin 2x$$
, на отрезке $\left[\frac{20\pi}{9}; \frac{28\pi}{9}\right]$;

б)
$$2\cos^2\left(2x-\frac{\pi}{4}\right)-2\sin^2\left(\frac{\pi}{4}-2x\right)+1=0$$
, на отрезке $\left[\frac{\pi}{2};\frac{3\pi}{2}\right]$?

$$027.54$$
. a) $1 - \cos x = 2 \sin \frac{x}{2}$;

$$\mathbf{B}) \ 1 + \cos x = 2 \cos \frac{x}{2};$$

6)
$$1-\cos x=\sin x\,\sin\,\frac{x}{2};$$

$$r) \sin x = tg^2 \frac{x}{2} (1 + \cos x).$$

$$^{\circ}27.55$$
. a) $\sin^2 2x = 1$;

$$\mathrm{B)}\,\sin^2\left(2x-\frac{\pi}{6}\right)=\frac{3}{4};$$

$$6) \cos^2\left(3x-\frac{\pi}{4}\right)=\frac{3}{4};$$

$$\mathbf{r)}\,\cos^2\left(x+\frac{\pi}{3}\right)=1.$$

027.56. Найдите корни уравнения, удовлетворяющие неравенству |x| < 4:

a)
$$4 \sin^2 x + \sin^2 2x = 3$$
;

6)
$$4\cos^2 2x + 8\cos^2 x = 7$$

•27.57. Решите уравнение:

a)
$$\sin 2x + 2 \sin x = 2 - 2 \cos x$$
;

6)
$$4 \sin 2x + 8 (\sin x - \cos x) = 7$$
.

027.58. Докажите тождество:

a)
$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}};$$

6)
$$\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}}$$

027.59. Используя замену $u=\lg\frac{x}{2}$ и тождества из упражне ния 27.58, решите уравнение:

a)
$$\sin x + 7\cos x = 5$$
;

6)
$$5 \sin x + 10 \cos x + 2 = 0$$
.

027.60. Вычислите $\frac{x}{2}$, если известно, что:

a)
$$\sin x + \cos x = 1.4$$
; $0 < x < \frac{\pi}{4}$;

6)
$$\sin x - \cos x = 0.2$$
; $\pi < x < \frac{3\pi}{2}$.

Решите неравенство:

$$027.61. a) 4 sin^2 3x < 3;$$

6)
$$4\cos^2\frac{x}{4} > 1$$
.

027.62. a)
$$\sin 2x \cos 2x < \frac{1}{4}$$
;

6)
$$\cos^2 \frac{x}{4} - \sin^2 \frac{x}{4} > \frac{1}{2}$$
.

$$027.63.$$
 a) $\cos^2 2x - \sin^2 2x \le -1;$

$$\mathbf{B})\,\sin^23x-\cos^23x\leqslant-1;$$

6)
$$\sin 5x \cos 5x \ge \frac{1}{2}$$
;

$$r) \sin \frac{2x}{3} \cos \frac{2x}{3} \le -\frac{1}{2}.$$

Найдите наименьшее и наибольшее значения функции:

027.64. a)
$$y = 2 \cos 2x + \sin^2 x$$
;

6)
$$y = 2 \sin^2 3x - \cos 6x$$
.

027.65. a)
$$y = 3 - \sin x + \cos 2x$$
;

6)
$$y = \cos 2x + 4\cos x - 1$$
.

•27.66. a)
$$y = \sin 3x + \cos 2x + 4 \sin^3 x$$
;
 6) $y = \cos 3x + \cos 2x - 4 \cos^3 x$.

a)
$$y = 4 \sin \frac{x}{4} \cos \frac{x}{4}$$
;

$$6) y = 2 \cos^2 x.$$

Постройте график функции:

$$_{0}27.68. a) y = \sqrt{\frac{1+\cos x}{1-\cos x}};$$

6)
$$y = -\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$$
.

$$_{O27.69.}$$
 a) $y = \frac{\sin 2x}{\sin x}$;

$$6) y = \frac{\sin 2x}{\cos x}.$$

$$_{02}7.70$$
. a) $y = \frac{\cos 2x}{\sin x - \cos x} + \sin x$; B) $y = \frac{\cos 2x}{\cos x + \sin x} + \sin x$;

$$\mathbf{B}) \ y = \frac{\cos 2x}{\cos x + \sin x} + \sin x;$$

6)
$$y = \frac{\cos 2x}{\cos x + \sin x} + \cos x$$
; $y = \frac{\cos 2x}{\cos x - \sin x} - \cos x$.

$$y = \frac{\cos 2x}{\cos x - \sin x} - \cos x.$$

$$6) \ y = \begin{cases} (\sin x + \cos x)^2, \text{ если } x \leq \frac{\pi}{4}, \\ 2 + \frac{\pi}{4} - x, \text{ если } x > \frac{\pi}{4}. \end{cases}$$

$$\bullet 27.72. a) y = \frac{\sin 2x}{|\sin x|};$$

$$y = \frac{\sin 2x}{-|\cos x|};$$

$$6) \ y = \frac{\sin 2x}{-2|\cos x|};$$

$$r) y = \frac{\sin 2x}{2|\sin x|}.$$

§ 28. Преобразование суммы тригонометрических функций в произведение

Представьте в виде произведения:

28.1. a)
$$\sin 40^{\circ} + \sin 16^{\circ}$$
;

B)
$$\sin 10^{\circ} + \sin 50^{\circ}$$
:

r)
$$\sin 52^{\circ} - \sin 36^{\circ}$$
.

28.2. a)
$$\cos 15^{\circ} + \cos 45^{\circ}$$
;

B)
$$\cos 20^{\circ} + \cos 40^{\circ}$$
;

6)
$$\cos 46^{\circ} - \cos 74^{\circ}$$
;

r)
$$\cos 75^{\circ} - \cos 15^{\circ}$$
.

28.3. a)
$$\sin \frac{\pi}{5} - \sin \frac{\pi}{10}$$
;

B)
$$\sin \frac{\pi}{6} + \sin \frac{\pi}{7}$$
;

6)
$$\sin \frac{\pi}{3} + \sin \frac{\pi}{4}$$
;

$$\mathbf{r})\,\sin\,\frac{\pi}{3}\,-\sin\,\frac{\pi}{11}.$$

Представьте в виде произведения:

28.4. a)
$$\cos \frac{\pi}{10} - \cos \frac{\pi}{20}$$
;

B)
$$\cos \frac{\pi}{5} - \cos \frac{\pi}{11}$$
;

6)
$$\cos \frac{11\pi}{12} + \cos \frac{3\pi}{4}$$
; r) $\cos \frac{3\pi}{8} + \cos \frac{5\pi}{4}$.

r)
$$\cos \frac{3\pi}{8} + \cos \frac{5\pi}{4}$$

28.5. a) $\sin 3t - \sin t$;

6)
$$\cos (\alpha - 2\beta) - \cos (\alpha + 2\beta)$$
;

B) $\cos 6t + \cos 4t$;

r)
$$\sin (\alpha - 2\beta) - \sin (\alpha + 2\beta)$$
.

28.6. a)
$$tg 25^{\circ} + tg 35^{\circ}$$
;

B)
$$tg 20^{\circ} + tg 40^{\circ}$$
;

6)
$$\operatorname{tg} \frac{\pi}{5} - \operatorname{tg} \frac{\pi}{10}$$
;

r) tg
$$\frac{\pi}{3}$$
 - tg $\frac{\pi}{4}$.

028.7. a)
$$\frac{1}{2} - \cos t$$
;

B)
$$1 + 2 \cos t$$
;

6)
$$\frac{\sqrt{3}}{2}$$
 + sin t;

r)
$$\cos t + \sin t$$
.

 $028.8. a) \sin 5x + 2 \sin 6x + \sin 7x;$

$$6) 2\cos x + \cos 2x + \cos 4x.$$

028.9. a) $\sin t + \sin 2t + \sin 3t + \sin 4t$;

$$6)\cos 2t - \cos 4t - \cos 6t + \cos 8t.$$

Докажите тождество:

28.10. a)
$$\frac{\sin 2\alpha + \sin 6\alpha}{\cos 2\alpha + \cos 6\alpha} = \operatorname{tg} 4\alpha;$$

6)
$$\frac{\cos 2\alpha - \cos 4\alpha}{\cos 2\alpha + \cos 4\alpha} = \text{tg } 3\alpha \text{ tg } \alpha$$
.

028.11. a)
$$\frac{\sin{(\alpha + \beta)} + \sin{(\alpha - \beta)}}{\cos{(\alpha + \beta)} + \cos{(\alpha - \beta)}} = tg \alpha;$$

6)
$$\frac{\cos{(\alpha-\beta)}-\cos{(\alpha+\beta)}}{\sin{(\alpha+\beta)}-\sin{(\alpha-\beta)}}=tg\ \alpha.$$

028.12. a)
$$\sin x + \sin y + \sin (x - y) = 4 \sin \frac{x}{2} \cos \frac{x}{2} \cos \frac{x - y}{2}$$
;

6)
$$\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x} = \text{tg } 2x$$
.

$$028.13. a) \sin^2(\alpha + \beta) - \sin^2(\alpha - \beta) = \sin 2\alpha \sin 2\beta;$$

6)
$$\cos^2(\alpha - \beta) - \cos^2(\alpha + \beta) = \sin 2\alpha \sin 2\beta$$
.

Вычислите:

$$cos 68^{\circ} - cos 22^{\circ}$$
; $cos 68^{\circ} - cos 22^{\circ}$; $cos 68^{\circ} - cos 22^{\circ}$;

B)
$$\frac{\sin 130^{\circ} + \sin 110^{\circ}}{\cos 130^{\circ} + \cos 110^{\circ}}$$
;

$$6)\frac{\sin\frac{7\pi}{18} - \sin\frac{\pi}{9}}{\cos\frac{7\pi}{18} - \cos\frac{\pi}{9}};$$

$$r) \ \frac{\sin \frac{5\pi}{18} + \sin \frac{11\pi}{9}}{\cos \frac{5\pi}{18} + \cos \frac{11\pi}{9}}.$$

$$\frac{\sin\alpha+\sin3\alpha+\sin5\alpha+\sin7\alpha}{\cos\alpha+\cos3\alpha+\cos5\alpha+\cos7\alpha}, \text{ если ctg } 4\alpha=0,2;$$

6)
$$\frac{\sin x - \sin 2x + \sin 3x - \sin 4x}{\cos x - \cos 2x + \cos 3x - \cos 4x}$$
, echa tg $\frac{5x}{4} = 2$.

$$\bullet 28.16.$$
 a) $\sin^2 10^\circ + \sin^2 130^\circ + \sin^2 110^\circ$;

6)
$$\cos^2 35^\circ + \cos^2 25^\circ - \cos^2 5^\circ$$
.

6)
$$tg 9^{\circ} - tg 63^{\circ} + tg 81^{\circ} - tg 27^{\circ}$$
.

Проверьте равенство:

28.18. a)
$$\sin 35^{\circ} + \sin 25^{\circ} = \cos 5^{\circ}$$
; b) $\cos 12^{\circ} - \cos 48^{\circ} = \sin 18^{\circ}$;

6)
$$\sin 40^{\circ} + \cos 70^{\circ} = \cos 10^{\circ}$$
; r) $\cos 20^{\circ} - \sin 50^{\circ} = \sin 10^{\circ}$.

$$028.19$$
. a) $\sin 20^{\circ} + \sin 40^{\circ} - \cos 10^{\circ} = 0$;

6)
$$\cos 85^{\circ} + \cos 35^{\circ} - \cos 25^{\circ} = 0$$
.

$$\circ 28.20.$$
 a) $\sin 87^{\circ} - \sin 59^{\circ} - \sin 93^{\circ} + \sin 61^{\circ} = \sin 1^{\circ}$;

6)
$$\cos 115^{\circ} - \cos 35^{\circ} + \cos 65^{\circ} + \cos 25^{\circ} = \sin 5^{\circ}$$
.

•28.21. a)
$$\sin 47^{\circ} + \sin 61^{\circ} - \sin 11^{\circ} - \sin 25^{\circ} = \cos 7^{\circ}$$
;

6)
$$tg 55^{\circ} - tg 35^{\circ} = 2 tg 20^{\circ}$$
.

•28.22. Докажите, что если $\alpha + \beta + \gamma = \pi$, то выполняется равенство:

a)
$$tg \alpha + tg \beta + tg \gamma = tg \alpha tg \beta tg \gamma$$
;

6)
$$\sin \alpha + \sin \beta + \sin \gamma = 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$
.

$$028.23.$$
 a) Зная, что $\sin 2x + \sin 2y = a$, $\cos 2x + \cos 2y = b$ ($a \neq 0$, $b \neq 0$), вычислите $\operatorname{tg}(x + y)$;

б) зная, что
$$\sin x - \sin y = a$$
, $\cos x - \cos y = b$ ($a \ne 0$, $b \ne 0$), вычислите $\cot \frac{x + y}{2}$.

- ●28.24. Докажите:
 - а) если $2 \sin x = \sin (x + 2y)$, то tg(x + y) = 3 tg y;
 - 6) если $2 \cos x = \cos (x + 2y)$, то $\cot (x + y) 2 \cot x =$ = $\tan x + \cot y$.
- •28.25. Докажите:
 - a) если $\cos^2 x + \cos^2 y = m$, то $\cos (x + y) \cos (x y) = m 1$.
 - 6) если $\cos^2(x+y) + \sin^2 x + \sin^2 y = m$, то
 - $\sin x \sin y \cos (x+y) = \frac{1-m}{2}.$

- O28.26. a) $\cos x + \cos 3x = 0$; B) $\cos x = \cos 5x$;
 - 6) $\sin 12x + \sin 4x = 0$; r) $\sin 3x = \sin 17x$.
- **028.27.** a) $\sin x + \sin 2x + \sin 3x = 0$;
 - $6) \cos 3x \cos 5x = \sin 4x.$
- 028.28. a) $\sin 3x = \cos 2x$;
 - 6) $\sin (5\pi x) = \cos (2x + 7\pi);$
 - $\mathbf{B)}\,\cos\,5x=\sin\,15x;$
 - r) $\sin (7\pi + x) = \cos (9\pi + 2x)$.
- O28.29. a) $1 + \cos 6x = 2 \sin^2 5x$ B) $\sin^2 \frac{x}{2} = \cos^2 \frac{7x}{2}$;
 - $6) \cos^2 2x = \cos^2 4x;$
- $r) \sin^2 x + \sin^2 3x = 1.$
- **028.30.** a) $2\sin^2 x + \cos 5x = 1$;
 - 6) $2\sin^2 3x 1 = \cos^2 4x \sin^2 4x$.
- O28.31. a) tg x + tg 5x = 0;
- $\mathbf{B)}\ \mathbf{tg}\ 2x = \mathbf{tg}\ 4x;$
- 6) $\operatorname{tg} 3x = \operatorname{ctg} x$;
- $\mathbf{r)} \operatorname{ctg} \frac{x}{2} + \operatorname{ctg} \frac{3x}{2} = \mathbf{0}.$
- **028.32.** a) $\sin x + \sin 3x + \cos x + \cos 3x = 0$;
 - 6) $\sin 5x + \sin x + 2\sin^2 x = 1$.
- 028.33. Сколько корней имеет заданное уравнение на отрезке $\left[0; \frac{\pi}{2}\right]$:
 - a) $\sin 2x + \sin 6x = \cos 2x$;
 - 6) $2\cos^2 x 1 = \sin 3x$?
- 028.34. Найдите корни уравнения, принадлежащие промежутку (0; 2,5):
 - a) $\cos 6x + \cos 8x = \cos 10x + \cos 12x$;
 - 6) $\sin 2x + 5 \sin 4x + \sin 6x = 0$.

028.35. При каких значениях x числа a, b, c образуют арифметическую прогрессию, если:

a)
$$a = \cos 7x$$
, $b = \cos 2x$, $c = \cos 11x$;

6)
$$a = \sin 3x$$
, $b = \cos x$, $c = \sin 5x$?

_{028.36}. Решите неравенство:

a)
$$\sin\left(x+\frac{\pi}{4}\right)+\sin\left(x-\frac{\pi}{4}\right)<1$$
;

6)
$$\cos\left(2x+\frac{\pi}{3}\right)+\cos\left(2x-\frac{\pi}{3}\right)>-\frac{1}{2}$$
.

028.37. Постройте график функции:

a)
$$y = 1.5 \left(\cos \frac{9x + 10\pi}{6} + \cos \frac{9x - 10\pi}{6} \right)$$
;

6)
$$y = 2 \left(\sin \frac{9x + 2\pi}{3} + \sin \frac{9x - 2\pi}{3} \right)$$

•28.38. Постройте график уравнения:

a)
$$\sin 2x = \sin 2y$$
;

$$6) \cos 2x = \cos 2y.$$

§ 29. Преобразование произведения тригонометрических функций в сумму

Представьте в виде суммы:

6)
$$\cos \frac{\pi}{12} \cos \frac{\pi}{8}$$

r)
$$2 \sin \frac{\pi}{8} \cos \frac{\pi}{5}$$
.

29.2. a)
$$\sin (\alpha + \beta) \sin (\alpha - \beta)$$
;

$$\mathbf{B}) \cos \left(\frac{\alpha}{2} + \frac{\beta}{2}\right) \cos \left(\frac{\alpha}{2} - \frac{\beta}{2}\right);$$

6)
$$\cos (\alpha + \beta) \cos (\alpha - \beta)$$
;

r)
$$2 \sin (\alpha + \beta) \cos (\alpha - \beta)$$
.

29.3. a) $\cos \alpha \sin (\alpha + \beta)$;

6)
$$\sin (60^{\circ} + \alpha) \sin (60^{\circ} - \alpha);$$

B)
$$\sin \beta \cos (\alpha + \beta)$$
;

r)
$$\cos\left(\alpha + \frac{\pi}{4}\right)\cos\left(\alpha - \frac{\pi}{4}\right)$$
.

$$^{\circ 29.5.}$$
 a) $\sin x \sin y \sin z$;

б)
$$\cos x \cos y \cos z$$
.

$$^{\circ 29.6}$$
. a) $\sin^2 x \cos 4x$;

6)
$$\cos^2 2x \sin 3x$$
.

Докажите тождество:

Q29.7. a) $2 \sin t \sin 2t + \cos 3t = \cos t$;

6)
$$\sin \alpha - 2 \sin \left(\frac{\alpha}{2} - 15^{\circ}\right) \cos \left(\frac{\alpha}{2} + 15^{\circ}\right) = \frac{1}{2}$$
.

029.8. a)
$$\sin^2 x + \cos \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} + x\right) = \frac{1}{4};$$

6)
$$4 \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right) = 3 - 4 \sin^2 x$$
.

029.9. a)
$$4 \sin x \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right) = \sin 3x;$$

6)
$$\operatorname{tg} x \operatorname{tg} \left(\frac{\pi}{3} - x \right) \operatorname{tg} \left(\frac{\pi}{3} + x \right) = \operatorname{tg} 3x.$$

•29.10.
$$\cos^2(45^\circ - \alpha) - \cos^2(60^\circ + \alpha) - \cos 75^\circ \sin (75^\circ - 2\alpha) = \sin 2\alpha$$

•29.11. a)
$$\sin x + \sin 2x + \sin 3x + \sin 4x + ... + \sin nx =$$

$$=\frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}};$$

6)
$$\cos x + \cos 2x + \cos 3x + \cos 4x + ... + \cos nx =$$

$$=\frac{\cos\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}.$$

Вычислите:

029.12. a)
$$\cos^2 3^\circ + \cos^2 1^\circ - \cos 4^\circ \cos 2^\circ$$
;

6)
$$\sin^2 10^\circ + \cos 50^\circ \cos 70^\circ$$
.

029.13. a)
$$\frac{1}{2\sin 10^{\circ}}$$
 - 2 sin 70°; 6) $\frac{\text{tg }60^{\circ}}{\sin 40^{\circ}}$ + 4 cos 100°.

$$029.14$$
. a) $2 \sin 87^{\circ} \cos 57^{\circ} - \sin 36^{\circ}$;

6)
$$2 \sin 59^{\circ} \sin 14^{\circ} + \sin 163^{\circ}$$
.

$$029.15$$
. a) $\sin 12^{\circ} \cos 72^{\circ} - \cos 33^{\circ} \cos 27^{\circ}$;

6)
$$2\cos 28^{\circ}\cos 17^{\circ} - 2\sin 31^{\circ}\sin 14^{\circ} - 2\sin 14^{\circ}\sin 3^{\circ}$$
.

_{029.17}. Сравните числа:

- a) $a = \sin 1 \cos 2$, $b = \sin 3 \cos 4$;
- 6) $a = \cos 2 \cos 4$, $b = -\sin 3.5 \sin 2.5$.

_29.18. Докажите неравенство:

- a) $\sin(x+2)\cos(x-2) < \sin(x+3)\cos(x-3)$;
- 6) $\cos(2x-3)\cos(2x+3) > \sin(1+2x)\sin(1-2x)$.
- $_{2}$ 9.19. a) Зная, что $\cos x = \frac{3}{4}$, вычислите $16 \sin \frac{x}{2} \sin \frac{3x}{2}$;
 - б) зная, что $\cos x = -\frac{3}{5}, \ \frac{\pi}{2} < x < \pi$, вычислите
 - $125\sin\frac{x}{2}\cos\frac{5x}{2}.$

029.20. a)
$$\cos\left(x+\frac{\pi}{3}\right)\cos\left(x-\frac{\pi}{3}\right)-0.25=0;$$

6)
$$\sin\left(x+\frac{\pi}{3}\right)\cos\left(x-\frac{\pi}{6}\right)=1$$
.

- 029.21. a) $2 \sin x \cos 3x + \sin 4x = 0$;
 - $\text{6) } \sin \frac{x}{2} \sin \frac{3x}{2} = \frac{1}{2}.$
- 029.22. a) $\sin 3x \cos x = \sin \frac{5x}{2} \cos \frac{3x}{2}$;

6)
$$2\sin\left(\frac{\pi}{4}+x\right)\sin\left(\frac{\pi}{4}-x\right)+\sin^2x=0$$
;

- B) $\sin 2x \cos x = \sin x \cos 2x$;
- r) $\cos 2x \cos x = \cos 2.5x \cos 0.5x$.
- О29.23. Найдите наименьший положительный и наибольший отрицательный корень уравнения:
 - a) $\sin x \sin 3x = 0.5$;
- $6)\cos x\cos 3x=0.5.$
- $^{\circ 29.24}$. При каких значениях x числа a, b, c образуют геометрическую прогрессию, если:
 - a) $a = \cos 6x$, $b = \cos 4x$, $c = \cos 2x$;
 - 6) $a = \sin 2x$, $b = \sin 3x$, $c = \sin 4x$?

029.25. Решите неравенство:

a)
$$\sin\left(\frac{\pi}{8}+x\right)\sin\left(\frac{\pi}{8}-x\right)<0$$
;

6)
$$\sin\left(\frac{\pi}{6} + \frac{x}{2}\right)\cos\left(\frac{\pi}{6} - \frac{x}{2}\right) > 0;$$

B)
$$\sin\left(x-\frac{5\pi}{12}\right)\cos\left(x+\frac{5\pi}{12}\right) \le 0;$$

$$r) \cos \frac{3x+\pi}{6} \cos \frac{3x-\pi}{6} > 0.$$

●29.26. Решите систему уравнений:

a)
$$\begin{cases} \sin\frac{x+y}{2}\cos\frac{x-y}{2} = \frac{1}{2}, \\ 2\sin\frac{x-y}{2}\cos\frac{x+y}{2} = \frac{1}{3}; \end{cases}$$
 6)
$$\begin{cases} \cos(x+y)\cos(x-y) = \frac{1}{4}, \\ \sin(x+y)\sin(x-y) = \frac{3}{4}, \end{cases}$$

029.27. Найдите наименьшее и наибольшее значения функции:

a)
$$y = \sin\left(x + \frac{\pi}{8}\right)\cos\left(x - \frac{\pi}{24}\right)$$
;

6)
$$y = \sin\left(x - \frac{\pi}{3}\right) \sin\left(x + \frac{\pi}{3}\right)$$

●29.28. Постройте график функции:

a)
$$y = 2 \left| \sin \left(x - \frac{5\pi}{12} \right) \cos \left(x + \frac{5\pi}{12} \right) \right|$$
;

6)
$$y = -3 \left| \cos \frac{3x + \pi}{6} \cos \frac{3x - \pi}{6} \right|$$
.

Постройте график уравнения:

29.29. a)
$$2 \sin(x + y) \cos y = \sin x$$
;

6)
$$2\cos(x+y)\cos x = \cos y$$
.

•29.30. a)
$$\cos \frac{x(y-1)}{2} \cos \frac{x(y+1)}{2} = \cos^2 \frac{x}{2}$$
;

6)
$$\sin \frac{y(x+1)}{2} \cos \frac{y(x-1)}{2} = \cos^2 \left(\frac{\pi}{4} - \frac{y}{2}\right)$$

$_{6}$ 30. Преобразование выражения $A \sin x + B \cos x$ K BUDY $C \sin (x+t)$

Преобразуйте данное выражение к виду $C \sin(x + t)$ или $C\cos(x+t)$:

30.1. a)
$$\sqrt{3} \sin x + \cos x$$
;

$$\mathbf{B}$$
) $\sin x - \cos x$;

6)
$$\sin x + \sqrt{3} \cos x$$
;

r)
$$2\sin x - \sqrt{12}\cos x$$
.

30.2. a)
$$3 \sin x + 4 \cos x$$
;

$$\mathbf{B)} \ 7 \sin x - 24 \cos x;$$

6)
$$5 \cos x - 12 \sin x$$
;

r)
$$8\cos x + 15\sin x$$
.

030.3. Докажите тождество:

a)
$$\sin x + \cos x + \sqrt{2} = 2\sqrt{2} \cos^2 \left(\frac{x}{2} - \frac{\pi}{8} \right)$$

6)
$$\cos 2x - \sin 2x - \sqrt{2} = -2\sqrt{2} \sin^2 \left(x + \frac{\pi}{8}\right)$$

030.4. Преобразуйте сумму в произведение:

a)
$$\sin t + \cos t + 5 \cos \left(t + \frac{\pi}{4}\right)$$
;

6)
$$\sin t - \cos t + \sqrt{34} \cos \left(\frac{\pi}{4} - t\right)$$

030.5. Вычислите:

a)
$$\frac{\sin 38^{\circ} - \cos 38^{\circ}}{\sqrt{2} \sin 7^{\circ}}$$
;

B)
$$\frac{\sin 17^{\circ} + \sqrt{3}\cos 17^{\circ}}{2\cos 347^{\circ}};$$

6)
$$\frac{\sin 377^{\circ} - \sqrt{3}\cos 17^{\circ}}{\cos 407^{\circ}}$$
; r) $\frac{\sin 752^{\circ} + \cos 328^{\circ}}{\sqrt{2}\sin 437^{\circ}}$.

r)
$$\frac{\sin 752^{\circ} + \cos 328^{\circ}}{\sqrt{2} \sin 437^{\circ}}$$
.

030.6. Найдите наименьшее и наибольшее значения функции:

a)
$$y = \sqrt{3} \sin x + \cos x$$
;

$$6) \ y = \sin x - \sqrt{3} \cos x;$$

$$\mathbf{B}) \ y = \sin x - \cos x;$$

$$\mathbf{r}) \ y = \sqrt{6} \sin x - \sqrt{2} \cos x.$$

030.7. Найдите область значений функции:

a)
$$y = 3 \sin 2x - 4 \cos 2x$$
;

6)
$$y = 5 \cos 3x + 12 \sin 3x$$
;

B)
$$y = 7 \sin \frac{x}{2} + 24 \cos \frac{x}{2}$$
;

r)
$$y = 8 \cos \frac{x}{3} - 15 \sin \frac{x}{3}$$

- 030.8. Существуют ли значения x, при которых выполняе $_{\text{тея}}$ равенство:
 - a) $\sin 5x + \cos 5x = 1.5$;
 - 6) $3 \sin 2x 4 \cos 2x = \sqrt{26}$:
 - $\text{B) } \sin 7x \sqrt{3}\cos 7x = \frac{\pi}{2};$
 - r) $5 \sin x + 12 \cos x = \sqrt{170}$?
- 030.9. Постройте график функции:
 - a) $y = \sqrt{2} (\sin x + \cos x)$;
- B) $u = \sin x \sqrt{3} \cos x$:
- $6) \ y = \sqrt{3} \sin x + \cos x$
- r) $u = \sin x \cos x$.

Найдите наименьшее и наибольшее значения функции:

- **030.10.** a) $y = \cos x 2 \sin x 1$;
 - 6) $y = |5 \sin x + 12 \cos x 17|$:
 - B) $y = 3\cos\frac{x}{2} + 4\sin\frac{x}{2} 5;$
 - $\mathbf{r}) \ y = |7 \sin 2x 24 \cos 2x| + 15.$
- •30.11. a) $y = \cos x \sqrt{3} \sin x + 2\sqrt{3} \cos \left(\frac{\pi}{6} x\right)$;
 - 6) $y = \cos 2x + \sin 2x \sqrt{7} \sin \left(\frac{\pi}{4} 2x\right)$
- $\circ 30.12$. При каком значении параметра a наибольшее значение заданной функции равно числу М:
 - a) $y = 6 \sin 1.5x 8 \cos 1.5x + a$, M = 17;
 - 6) $y = 7 \sin 0.3x + 24 \cos 0.3x + a$, M = -17?
- 030.13. При каком значении параметра a наименьшее значение заданной функции равно числу т:
 - a) $y = -9 \sin 1.4x 12 \cos 1.4x + a$, m = 1;
 - 6) $y = 3.5 \sin 0.2x 12 \cos 0.2x + a$, m = -1?
- ullet 30.14. При каком значении параметра a наибольшее значение функции y = f(x) равно наименьшему значению функции y = g(x):
 - a) $f(x) = 7 \sin 5x 24 \cos 5x + a 1$, $g(x) = 3 2 \cos 4x$;
 - 6) $f(x) = 9 \sin(x-2) + 12 \cos(x-2) 5 a$, $g(x) = 2 + 7\sin(2x + 1)?$
- 030.15. Решите уравнение:

 - a) $\sqrt{3} \sin x + \cos x = 1$; b) $\sin x \sqrt{3} \cos x = \sqrt{3}$;
 - 6) $\sin x + \cos x = \sqrt{2}$:
- $\mathbf{r})\sin x \cos x = 1.$

$$_{030.16.}$$
 a) $\cos 2x + \sqrt{3} \sin 2x = \sqrt{2}$;

$$6) \sin 5x - \cos 5x = \frac{\sqrt{6}}{2};$$

B)
$$\cos \frac{x}{2} - \sqrt{3} \sin \frac{x}{2} + 1 = 0;$$

$$\mathbf{r)}\,\sin\,\frac{x}{3}\,+\cos\,\frac{x}{3}\,=1.$$

 $_{030.17.}$ a) $4 \sin x - 3 \cos x = 5$;

6)
$$3\sin 2x + 4\cos 2x = 2.5$$
;

B)
$$12 \sin x + 5 \cos x + 13 = 0$$
;

r)
$$5\cos\frac{x}{2} - 12\sin\frac{x}{2} = 6.5$$
.

$$_{030.18.}$$
 a) $\sin 2x - \cos 2x = \sqrt{2} \sin 3x$;

6)
$$\sqrt{3} \sin x - \cos x = 2 \cos 3x$$
;

$$\mathbf{B})\,\sin\,5x+\cos\,5x=\sqrt{2}\,\cos\,x;$$

r)
$$\sin 2x + \sqrt{3} \cos 2x = 2 \sin 4x$$
.

•30.19. a)
$$2 \sin 17x + \sqrt{3} \cos 5x + \sin 5x = 0$$
;

6)
$$5 \sin x - 12 \cos x + 13 \sin 3x = 0$$
.

•30.20. a)
$$(\sin x + \sqrt{3}\cos x)^2 - 5 = \cos\left(\frac{\pi}{6} - x\right)$$
;

6)
$$(\sqrt{3}\sin x - \cos x)^2 + 1 = 4\cos\left(x + \frac{\pi}{3}\right)$$

•30.21. a)
$$\sqrt{3} \sin x + \cos x + 2 = \frac{12}{5\pi}x$$
;

6)
$$\sqrt{2} (\cos x - \sin x) = 2x - \frac{\pi}{2}$$
.

030.22. Решите неравенство:

a)
$$\sqrt{3} \sin x + \cos x > 1$$
;

6)
$$3 \sin x - 4 \cos x < 2.5$$
.

a)
$$5 \sin 2x + 12 \cos 2x = 2a - 1$$
;

6)
$$3\cos\frac{x}{2} - 4\sin\frac{x}{2} + 1 = a^2$$
?

Докажите, что при любых значениях x выполняется неравенство:

- **O30.24.** a) $2 \sin^2 x + \sin 2x < 2.5$;
 - 6) $16 \sin^2 3x + 15 \sin 6x \le 25$.
- **•30.25.** a) $3 \sin x + 5 \cos x < \sqrt[3]{210}$;
 - 6) $\sqrt{3} \sin x 7 \cos x > -\sqrt[3]{390}$.
- **030.26.** При каких значениях параметра a решением неравенства является любое действительное число x:
 - a) $12 \sin 2x 35 \cos 2x < 148a^2$;
 - 6) $35 \sin 3x + 12 \cos 3x \ge 18,5(a^3 10)$?

§ 31. Методы решения тригонометрических уравнений

(продолжение)

- **O31.1.** a) $\sin(x-1) = \cos(x+2)$;
 - 6) $\sin(3x+3) = \cos(x-1)$.
- **031.2.** a) $\sin x \sin 5x = \cos 4x$;
- 6) $\cos x \cos 5x = \cos 6x$.

031.3.
$$\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{3}\right) = 1 + \cos 2x$$
.

- **O31.4.** a) $2\cos^2 5x + \cos 3x = 1$;
 - 6) $\sin 5x + \sin x + 2\cos^2 x = 1$.
- **031.5.** a) $8 \sin^2 \frac{x}{2} 3 \sin x 4 = 0$;
 - 6) $4\sin^2\frac{x}{2} \cos^2\frac{x}{2} = 1.5 + \sin x$.
- **O31.6.** a) $\sin^2 x + \sin^2 2x + \sin^2 3x = 1.5$;
 - 6) $\cos^2 2x + \cos^2 4x + \cos^2 6x = 1.5$.
- **031.7.** a) $\sin^2 \frac{x}{2} + \sin^2 x + \sin^2 \frac{5x}{2} + \sin^2 2x = 2$;
 - 6) $\cos^2 x + \cos^2 2x + \cos^2 3x + \cos^2 4x = 2$.
- **031.8.** $\operatorname{tg}(x 15^{\circ}) \operatorname{ctg}(x + 15^{\circ}) = \frac{1}{3}$

31.9.
$$8\sin^6 x + 3\cos 2x + 2\cos 4x + 1 = 0$$
.

a31.10. a)
$$5 \sin 3x + 2 \sin x = 0$$
;

6)
$$7\cos 3x - 3\cos x = 0$$
.

31.11. a)
$$3|\cos x| + 2\cos x = 5|\sin x| - 3\sin x$$
;

6)
$$7|\cos x| - 4\cos x = 3|\sin x| + 2\sin x$$
.

031.12. a)
$$4\cos^3\frac{x}{2} + 3\sqrt{2}\sin x = 8\cos\frac{x}{2}$$
;

6)
$$\frac{7}{4} \cos \frac{x}{4} = \cos^8 \frac{x}{4} + \sin \frac{x}{2}$$
.

031.13.
$$\cos^4 x + \sin^4 x - \sin 2x + \frac{3}{4} \sin^2 2x = 0$$
.

$$031.14.$$
 a) $\cos 4x + 5 \cos^2 x = 0.75$;

6)
$$\cos 4x + 3\sin^2 x = 0.25$$
.

$$031.15. \ 2\sin^3 x - \cos 2x = \sin x.$$

•31.16.
$$\operatorname{tg} x + \operatorname{ctg} x = 3 + \cos 4x$$
.

031.17. Решите уравнение $2 \sin x - 3 \cos x = 3$ двумя способами:

- а) с помощью универсальной подстановки $u = \operatorname{tg} \frac{x}{2}$;
- б) сведя его к однородному уравнению второй степени относительно аргумента $\frac{x}{2}$.

Решите уравнение:

$$\circ 31.18. \ a) \ 3 \sin 2x + \cos 2x = 2;$$

6)
$$\cos 4x + 2 \sin 4x = 1$$
.

•31.19.
$$\sin 2x + \tan x = 2$$
.

O31.20. Применив подстановку
$$y = \cos x - \sin x$$
, решите уравнение $4 - 4(\cos x - \sin x) = \sin 2x$.

31.21. a)
$$\sin x \cos x + 6 \cos x + 6 = 6 \sin x$$
;

6)
$$5 \sin 2x - 11 \cos x = 11 \sin x - 7$$
.

431.22.
$$2(1 - \sin x - \cos x) + \operatorname{tg} x + \operatorname{ctg} x = 0$$
.

•31.23. a)
$$\cos \frac{4x}{3} = \cos^2 x$$
;

6)
$$32\cos^6 x - \cos 6x = 1$$
.

$$031.24. \sin 5x + \cos 5x = \sqrt{2} \cos 13x.$$

O31.25. a)
$$3 \cos(x+1) - 4 \sin(x+1) = 5$$
;
6) $15 \sin(2x-3) + 8 \cos(2x-3) = 8.5$.

•31.26.
$$3 \sin x - 5 \sin \left(7x + \frac{\pi}{6}\right) = 4 \cos x$$
.

•31.27.
$$\left(\sin 2x + \sqrt{3}\cos 2x\right)^2 = 2 + 2\cos\left(\frac{\pi}{6} - 2x\right)$$

$$\bullet 31.28. \ \frac{\cos^2 x - \cos x - \sin^2 x}{1 - \cos 2x - \sin x} = 0.$$

•31.29. Найдите корни уравнения
$$\cos 4x + \frac{10 \operatorname{tg} x}{1 + \operatorname{tg}^2 x} = 3$$
, принадлежащие отрезку [-2; 1,4].

•31.30. 3 tg
$$\frac{x}{2}$$
 + ctg $x = \frac{5}{\sin x}$.

•31.31.
$$\cos 2x - 3\cos x + 1 = \frac{1}{(\cot 2x - \cot x)\sin(x - \pi)}$$

031.32.
$$\frac{\cos^2 x (1 + \cot x)}{\sin x - \cos x} = 3 \cos x.$$

031.33. a)
$$\frac{2 - \sin x + \cos 2x}{6x^2 - \pi x - \pi^2} = 0;$$

6)
$$\frac{6\sin^2 x - 6\sin x + \cos 2x + 1}{12x^2 - 8\pi x + \pi^2} = 0.$$

•31.34. a)
$$2 \cot 3x - 2 \tan 3x - 4 \tan 6x = 1$$
;
6) $\cot x - \tan x - 2 \tan 2x - 4 \tan 4x = 8 \tan 8x$.

©31.35. 6 tg
$$x + 5$$
 ctg $3x = \text{tg } 2x$.

•31.36.
$$\sin 5x + \sin x = 2 + 2\cos^2 x$$
.

•31.37.
$$(\sin x + \sqrt{3}\cos x)\sin 3x = 2$$
.

•31.38.
$$\cos 2x \left(1 - \frac{3}{4}\sin^2 2x\right) = 1$$
.

$$_{-31.39.} \sin x + \cos x = \sqrt{2} + \sin^4 4x.$$

$$_{-31.40.}$$
 $\sqrt{9-x^2} (\sin 2x - 3\cos x) = 0.$

•31.41. a)
$$\sqrt{25-4x^2}$$
 (3 sin $2\pi x + 8 \sin \pi x$) = 0;

6)
$$\sqrt{49-4x^2}\left(\sin \pi x+3\cos \frac{\pi x}{2}\right)=0.$$

631.42. a)
$$\left(\operatorname{ctg} \frac{x}{2} - \frac{2}{3}\sin x\right)\sqrt{4x - x^2 + 5} = 0;$$

6) $(2\sin 2x - \operatorname{tg} x)\sqrt{2 - x - x^2} = 0.$

$$\bullet 31.43. \ \sqrt{\cos 2x} + \sqrt{1 + \sin 2x} = 2\sqrt{\sin x + \cos x}.$$

•31.44. a)
$$\sqrt{\sin 7x - \sin 5x} = \sqrt{\sin x}$$
;

6)
$$\sqrt{\cos 5x + \cos x - \sin 5x} = \sqrt{\sin x}.$$

•31.45. a)
$$\sin \left(\pi\sqrt{5-x^2}\right) = 0.5$$
; 6) $\cos \left(\pi\sqrt{7-x^2}\right) = -0.5$.

•31.46. tg
$$\frac{\pi x}{1+x^2} + \sin \frac{2\pi x}{1+x^2} = 2$$
.

- •31.47. а) Дано уравнение с параметром $a: \sqrt{a\cos 2x 3\sin 2x} = \cos x$. Известно, что x = 0 является корнем этого уравнения. Найлите остальные корни.
 - б) Дано уравнение с параметром $a: \sqrt{2\sin 2x a\cos 2x} + \sin x = 0$. Известно, что $x = -\frac{\pi}{2}$ является корнем этого уравнения. Найдите остальные корни.

§ 32. Комплексные числа и арифметические операции над ними

- 32.1. Приведите примеры линейных уравнений с действитель. ными коэффициентами, которые:
 - а) имеют целые корни, но не имеют натуральных корней:
 - б) имеют рациональные корни, но не имеют целых корней
 - в) имеют действительные корни, но не имеют рациональных корней;
 - г) не имеют действительных корней.
- 32.2. Приведите примеры квадратных уравнений с действительными коэффициентами, которые:
 - а) имеют целые корни, но не имеют натуральных корней;
 - б) имеют рациональные корни, но не имеют целых корней;
 - в) имеют действительные корни, но не имеют рациональных корней;
 - г) не имеют действительных корней.
- 32.3. Укажите хотя бы одно значение параметра a, при котором у уравнения $2x^2 + 4x + a = 0$:
 - а) оба корня целые, но не натуральные числа;
 - б) оба корня рациональные, но не целые числа;
 - в) оба корня действительные, но не рациональные числа;
 - \mathbf{r}) укажите все значения a, при которых действительных корней нет.
- 32.4. Укажите хотя бы одно значение параметра a, при кото ром у уравнения $3x^2 + ax + 6 = 0$:
 - а) оба корня целые, но не натуральные числа;
 - б) оба корня рациональные, но только один из них целое число:
 - в) оба корня действительные, но не рациональные числа
 - г) укажите все значения a, при которых действительных корней нет.

Вычислите:

- 6) i^5 ; B) i^{22} ; r) $i^{17} + i^{2005}$. 32.5. a) t^3 ;
- B) $-i^{22} (-i)^{22}$; F) $i^3 + i^5 + i^7 + \dots + i^{2005}$. $_{\odot}32.6.$ a) $(-i)^3$;
 - 32.7. Найдите значение многочлена $z^2 + 361$ при заданном значении переменной г:
 - a) z = i: B) z = -11i;
 - $r) z = -19(-i)^3.$ 6) z = -2i;
- $_{\odot}32.8$. Найдите значение многочлена z^3+3z при заданном значенни переменной г:
 - $\mathbf{B}) \ z = -3i;$ a) z = -i;
 - 6) $z = \sqrt{2}i$: r) $z = -\sqrt{3}i$.
- 032.9. Дана геометрическая прогрессия с первым членом, равным i, и знаменателем, равным -i.
 - а) Выпишите первые 7 членов этой прогрессии;
 - б) найдите значение 27-го члена прогрессии;
 - в) найдите сумму первых 2007 членов прогрессии;
 - г) найдите сумму членов прогрессии с 15-го по 30-й.

Для комплексных чисел z_1 и z_2 найдите их сумму $z_1 + z_2$ и разность $z_1 - z_2$, если:

- 32.10. a) $z_1 = 1 + i$, $z_2 = 1 i$; b) $z_1 = -i$, $z_2 = 1 i$;

 - 6) $z_1 = 1 + i$, $z_2 = -1 + 2i$;
- r) $z_1 = t^3 + 4t^4$, $z_2 = t^2 3(-t)^3$.
- 032.11. a) $z_1 = 1 + i$, $z_2 = 1 2i$;
 - 6) $z_1 = 2 + i$, $z_2 = -3 + 2i$;

 - B) $z_1 = i^{15}$, $z_2 = 15 + i$; r) $z_1 = i^{17} + 18i^{18}$, $z_2 = 15i^{15} 16(-i)^{16}$.
- 032.12. Дана арифметическая прогрессия с первым членом, равным 3 - 2i, и разностью, равной -1 + i.
 - а) Составьте формулу л-го члена прогрессии;
 - б) найдите значение 15-го члена прогрессни;
 - в) найдите сумму первых 20 членов этой прогрессии;
 - г) найдите сумму членов прогрессии с 10-го до 40-го.
 - 32.13. Докажите, что:
 - a) $z_1 + z_2 = z_2 + z_1$, $z_1 \in C$, $z_2 \in C$;
 - 6) (a + b)z = az + bz, $a \in \mathbb{R}$, $b \in \mathbb{R}$, $z \in \mathbb{C}$;
 - B) $(ab)z = a(bz), a \in \mathbb{R}, b \in \mathbb{R}, z \in \mathbb{C}$;
 - $\Gamma) \ a(z_1+z_2)=az_1+az_2, \ a\in \mathbb{R}, \ z_1\in \mathbb{C}, \ z_2\in \mathbb{C}.$

032.14.		действительной и мнимой част _{ей}
	комплексного числа аз	$a, a \in R$, равна 1. Найдите a есл a :
	a) $z = 1 + i$;	B) $z = 13 - 23i$;
	6) $z = 7 + 3i$;	$\Gamma) z = 1 - i.$

- O32.15. Вычислите $az_1 + bz_2$, если:
 - a) $z_1 = 1 + i$, $z_2 = 1 i$, a = 2, b = -1;
 - 6) $z_1 = 1 + i$, $z_2 = -1 + 2i$, a = -4, b = -5;
 - B) $z_1 = 1 + i$, $z_2 = 1 i$, a = -2, b = 3;
 - r) $z_1 = 1 + i$, $z_2 = -2 + 3i$, a = 12, b = -11.
- O32.16. Известно, что число $az_1 + z_2$, $a \in R$, является чисто мек. мым. Найдите а, если:
 - a) $z_1 = 3 + i$, $z_2 = 6 i$;
- B) $z_1 = 8 + 3i$, $z_2 = -1 2i$;
- 6) $z_1 = 12 13i$, $z_2 = 3i$;
- r) $z_1 = i$, $z_2 = -1 + 2i$.
- 032.17. Известно, что число $z_1 + az_2, a \in R$, является действительным. Найдите a, если:
 - a) $z_1 = 3 + i$, $z_2 = 6 i$;
 - 6) $z_1 = 12 13i$, $z_2 = (3 + i)^2$;
 - B) $z_1 = 8 + 3i$, $z_2 = -1 2i$;
 - $\mathbf{r}) \ z_1 = i, \ z_2 = (2 3i)^2.$
- 032.18. Найдите действительные числа a и b, для которых верно равенство $z = az_1 + bz_2$, если:
 - a) $z_1 = 1$, $z_2 = 1 + i$, z = 5 + 2i;
 - 6) $z_1 = -2 + i$, $z_2 = 3 i$, z = i;
 - B) $z_1 = 1 + i$, $z_2 = 1 i$, z = 3 + 5i;
 - r) $z_1 = 4 i$, $z_2 = -7 + 2i$, z = 1.

Вычислите:

32.19. a)
$$i(1+i)$$
;

B) (4-3i)i;

6) i(-3+2i);

- Γ) i(4-3i)i(4+3i).
- **32.20.** a) (1-2i)(1+i); 6) (1-i)(1+i);
- B) (4 3i)(-4 + 3i); r) (12 + 5i)(12 - 5i).

32.21. a) $(1+i)^2$;

6) $(1-i)^3$:

- B) $(2+i)^5$; r) $(1+i)^3+(1-i)^2$.
- 32.22. Решите уравнение:
 - a) iz = 1;

B) (1+i)z=i;

6) (1+i)z = 1;

- r) (1+i)z = 1-i.
- 032.23. Дана геометрическая прогрессия с первым членом, равным i, и знаменателем, равным 1 - i.
 - а) Найдите третий член прогрессии.
 - б) Найдите девятый член прогрессии.

- в) На каких местах в этой прогрессии расположены чисто мнимые числа?
- г) На каких местах в этой прогрессии расположены лействительные числя?

Вычислите:

O32.24. a)
$$\frac{1}{i}$$
; 6) $\frac{1-i}{i}$; B) $\frac{1-i}{1+i}$; r) $\frac{1+i}{1-i}$.

$$6) \ \frac{1-i}{i}$$

$$i) \frac{1-i}{1+i};$$

$$r) \, \frac{1+i}{1-i}.$$

O32.25. a)
$$i^2 + i^{-2}$$
; 6) $i^3 + i^{-3}$; B) $i^3 + i^{-5}$; r) $i^{-3} + i^{-5}$.

6)
$$i^3 + i^{-3}$$
;

B)
$$i^3 + i^{-5}$$

$$\Gamma$$
) $i-^{3}+i^{-5}$.

•32.26. a)
$$\frac{2i^4+3i^5}{(2+3i)(8+i)} + \frac{(2-i)^4}{(3-4i)(8-i)}i^6$$
;

6)
$$\frac{2i^{16}-3i^9}{(2-3i)^2}+\frac{(1+2i)^4}{(3-4i)(24-7i)}+\frac{93-36i}{325}$$
.

о32.27. Решите уравнение:

a)
$$iz = (1 - i);$$

$$\mathbf{B}) \ (1+i)z=i$$

a)
$$iz = (1-i);$$

6) $(1+i)z = (1-i);$

B)
$$(1 + i)z = i$$
;
r) $(1 + i)^2z = (1 - i)^3$.

 $_{0}$ 32.28. Найдите действительные числа a и b, для которых верно равенство $\frac{z_1}{z_2} = a \frac{z_2}{z_1} + bz_2$, если:

a)
$$z_1 = i$$
, $z_2 = 2$;

a)
$$z_1 = i$$
, $z_2 = 2$;
b) $z_1 = 1 + 2i$, $z_2 = 1 - 2i$;
c) $z_1 = 1 + i$, $z_2 = 1 - i$;
r) $z_1 = 1 + i$, $z_2 = 1 + 2i$.

6)
$$z_1 = 1 + i$$
, $z_2 = 1 - i$;

$$\mathbf{r}) \ z_1 = 1 + i, \ z_2 = 1 + 2i.$$

032.29. Найдите значение функции $w=rac{z^2+1}{z-t}$, если:

a)
$$z = 1 + i$$
;

$$\mathbf{B}) \ z = 2i$$

6)
$$z = 1 - i$$
;

B)
$$z = 2i$$
;
F) $z = 2 + i$.

- 032.30. а) Докажите, что число $\left(-b + i\sqrt{a}\right)^3 + \left(b i\sqrt{a}\right)^3$ при любых действительных значениях $a \geqslant 0$ и b является действительным.
 - 6) Вычислите $(2 + i\sqrt{5})^3 + (2 i\sqrt{5})^3$
- •32.31. При каких действительных значениях а число $z = (2 - ai)^3 - (3 - ai)^2 + 5 + a(1 - a^2i)$:
 - а) является действительным;
 - б) является чисто мнимым?
- $^{\circ 32.32}$. Для комплексного числа z найдите сопряженное число \overline{z} и вычислите произведение $z\overline{z}$ и частное $\frac{z}{z}$:

a)
$$z = i$$
;

B)
$$z = 3 - 7i$$
;

6)
$$z = -i;$$

r)
$$z = -5 - 6i$$
.

- 032.33. По заданному сопряженному числу \bar{z} восстановите ком плексное число z и вычислите произведение $z\overline{z}$ и частное $z: \bar{z}$.
 - a) $\overline{z} = 2i$:

B) $\overline{z} = 1 - i$;

6) $\overline{z} = -3i$:

- r) $\overline{z} = -1 + 3i$.
- 032.34. Дано: $z_1=1-i; \ z_2=4+i.$ Найдите: a) $\frac{z_1}{\overline{z}_2};$ b) $\frac{z_1}{(\overline{z}_2)^2};$ в) $\frac{\overline{z}_1}{z_2};$ г) $\frac{(\overline{z}_1)^2}{z_2}.$

- O32.35. Дано: $z_1 = 3 + 2i$; $z_2 = -2 + 3i$. Найдите:
 - a) $\frac{z_1-z_2}{\overline{z}}$;

B) $\frac{z_2}{z_1 + \overline{z_2}}$;

6) $\frac{(z_1+z_2)^2}{z_1-z_2}$;

- r) $\frac{z_2-2\bar{z}_1}{(\bar{z}_2+z_2)^3}$.
- 32.36. Решите систему уравнений:

 - a) $\begin{cases} 5z_1 3\overline{z}_2 = -9 + 5i, \\ 4\overline{z}_1 + z_2 = 3 4i; \end{cases}$ B) $\begin{cases} 4\overline{z}_1 + \overline{z}_2 = 7 6i, \\ 3z_1 2z_2 = -3 i; \end{cases}$
 - 6) $\begin{cases} 7z_1 + 2\overline{z}_2 = 7 4i, \\ 3\overline{z}_1 z_2 = 3 2i; \end{cases}$ r) $\begin{cases} i\overline{z}_1 + 2z_2 = 3 + 8i, \\ 2iz_1 \overline{z}_2 = 7i. \end{cases}$
- $c_{32.37}$. Среди корней уравнения $z^{2} + (\overline{z})^{2} = 8$ укажите все корни:
 - а) с нулевой мнимой частью;
 - б) с мнимой частью, равной 1:
 - в) у которых действительная часть равна миимой части;
 - г) у которых действительная часть в три раза больше положительной мнимой части.
- ullet 32.38. Среди корней уравнения $\overline{z} + 1 = \frac{1}{z+1}$ найдите корень:
 - а) у которого действительная часть наименьшая;
 - б) у которого мнимая часть наименьшая;
 - в) который ближе всего расположен к началу координат;
 - г) который ближе всего расположен к числу i.

§ 33. Комплексные числа и координатная плоскость

Для комплексного числа z=x+iy, его действительной части x и его мнимой части u используют следующие обот значения: x = Re z, y = Im z (от французских слов reelle действительный, imaginaire — мнимый).

- 33.1. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_1=1+2i, \quad z_2=2+3i, \quad z_3=-2+5i, \quad z_4=-9+i, \quad z_5=-3-2i.$
 - б) Укажите те точки, которые лежат левее оси ординат. Что можно сказать о знаке действительной части каждой из таких точек?
 - в) Укажите те точки, которые лежат выше оси абсцисс. Что можно сказать о знаке мнимой части каждой из таких точек?
 - г) Соедините данные точки последовательно отрезками. Сколько получилось точек пересечения замкнутой ломаной с осями координат? Запишите комплексные числа, которым соответствуют эти точки.
- 33.2. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_1 = -5 4i$, $z_2 = 1 + 8i$, $z_3 = -2 4i$, $z_4 = 8 + i$, $z_5 = -1 8i$.
 - б) Соедините заданные точки последовательно отрезками. Сколько получилось точек пересечения с осями координат? Запишите комплексные числа, которым соответствуют эти точки.
- 33.3. а) Отметьте на координатной плоскости точки \overline{z}_n (n=1, 2, 3, 4, 5), если $z_1 = -5 3i$, $z_2 = 1 + 6i$, $z_3 = -3 6i$, $z_4 = 9 + 2i$, $z_5 = 1 6i$.
 - б) Соедините отмеченные точки последовательно отрезками. Сколько чисто миимых чисел имеется на полученной ломаной? Назовите их.
 - в) Сколько на этой ломаной лежит чисел, для которых $\operatorname{Re} z = -3$? Назовите их.
 - г) Сколько на ломаной чисел, для которых ${\rm Im}\ z=3$? Назовите их.

Изобразите на координатной плоскости множество всех комплексных чисел z, удовлетворяющих заданному условию:

- ○33.4. а) Действительная часть равна -2;
 - б) мнимая часть равна 3 или 4;
 - в) Re z = Im z;
 - r) Re $z = (\operatorname{Im} z)^2$.
- \circ 33.5. a) Re z = 4 или Im z = 4;
 - 6) $|\operatorname{Re} z| = |\operatorname{Im} z|;$
 - в) Re z = 5 или Im z = 4;
 - r) Re $z = (\text{Im } z)^2$ или $(\text{Re } z)^2 = \text{Im } z$.

- 033.6. а) Действительная часть на 4 больше мнимой части;
 - б) сумма действительной и мнимой частей равна 4:
 - в) сумма квадратов действительной и мнимой частей рав-
 - г) квадрат суммы действительной и мнимой частей равен 4.
- •33.7. a) $|\operatorname{Re} z| |\operatorname{Im} z| = 1;$ B) $(\operatorname{Re} z)^2 = \operatorname{Im} z 1;$

 - 6) $(\text{Re }z)^2 = \text{Im }z + 1;$
- r) (Re z)(Im z) = 1.
- ОЗЗ.8. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_0 = 1$, $z_1 = 1 + i$, $z_2 =$ $=(1+i)^2, z_3=(1+i)^3, \ldots, z_7=(1+i)^7.$
 - б) Чему равна величина угла: $\angle z_0Oz_1, \angle z_1Oz_2, ..., \angle z_6Oz_7$ $\angle z_2Oz_0$?
 - в) Перечислите все пары точек, лежащие по разные стороны от оси абсцисс. Сколько таких пар?
 - г) Запишите все числа, у которых произведение действительной и мнимой частей отрицательно. Сколько таких чисел?
 - 33.9. а) Отметьте на координатной плоскости точки, соответствующие комплексным числам $z_0 = 1$, $z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z_2 = z_1^2$, $z_3 = z_1^3$, $z_4 = z_1^4$, $z_5 = z_1^5$.
 - б) Чему равна величина угла: $\angle z_0Oz_1, \ \angle z_1Oz_2, \ \dots, \ \angle z_5Oz_0$?
 - в) На каком расстоянии от начала координат находятся все эти точки?
 - г) Перечислите все нары точек, соответствующих сопряженным друг к другу числам. Сколько таких пар?

Изобразите на координатной плоскости множество всех комплексных чисел z, у которых:

- ОЗЗ.10. а) Действительная часть больше мнимой части;
 - б) мнимая часть не меньше действительной части;
 - в) мнимая часть больше 2, а действительная часть не боль-
 - г) мнимая часть не меньше 2, а действительная часть меньше 3.
- •33.11 a) Im $z \ge 2$ или Re z < 3;
 - б) Im z > 2 или Re $z \le 3$;
 - B) Re $z > (\text{Im } z)^2 \text{ M} (\text{Re } z)^2 > \text{Im } z$;
 - г) Im $z \ge 2$ Re z или Re z < 3 Im z.

- $_{0}33.12.$ a) Re $z + \text{Im } z \ge 0$;

 - 6) 1 < Re z + Im z < 2; B) $1 < (\text{Re } z)^2 + (\text{Im } z)^2 < 16$;
 - г) $(\text{Re }z)^2 + (\text{Im }z)^2 < 1$ или $16 < (\text{Re }z)^2 + (\text{Im }z)^2$.
 - 33.13. Изобразите на координатной плоскости числа $z_1 = 1 i$ и $z_2 = -1 + 3i$, а также числа:
 - a) $3z_1$;
- 6) $-2z_2$;
- B) $z_1 + z_2$;
- Γ) $3z_1 2z_2$.
- 33.14. Изобразите на координатной плоскости числа $z_1 = 2 3i$ и $z_2 = -5 + 2i$, а также числа:
 - a) 🔁:
- $6) -3z_2$;
- B) $\overline{z_1 + z_2}$;
- $r) \overline{z_1 3z_2}$
- $_{0}$ 33,15. a) Изобразите на координатной плоскости числа $z_{1}=-3+i$ $\mathbf{z}_2 = \mathbf{5} + 2i.$
 - б) Найдите действительный коэффициент а, при котором $z_1 + az_2$ — чисто мнимое число.
 - в) По правилу параллелограмма постройте сумму чисел z₁ и az₂ из пункта б).
 - г) Найдите действительный коэффициент а, при котором $z_1 + az_2$ — действительное число; по правилу параллелограмма постройте сумму чисел z_1 и az_2 .
- $\circ 33.16$. a) Изобразите на координатной плоскости числа $z_1 = -3 + i$ и $z_2 = 5 + 2i$.
 - б) Найдите действительный коэффициент а, при котором $az_1 + z_2$ — чисто мнимое число.
 - в) По правилу параллелограмма постройте сумму чисел az_1 и z_2 из пункта б).
 - г) Найдите действительный коэффициент а, при котором $az_1 + z_2$ — действительное число; по правилу параллелограмма постройте сумму чисел az_1 и z_2 .
- •33.17. а) Для n=1, 2, 3, 4 изобразите на координатной плоскости точки $z_n = (2n-1) + (5-n)i$;
 - б) докажите, что все эти точки лежат на одной прямой l; составьте уравнение прямой;
 - в) укажите число, лежащее на прямой l, у которого Re z = -5;
 - r) укажите число, лежащее на прямой l, у которого $\operatorname{Im} z = 8.$
- $^{ullet}33.18.$ а) Для $n=1,\ 2,\ 3,\ 4,\ 5,\ 6$ изобразите на координатной плоскости точки $z_n = (n-1) + (n^2 - 5n + 6)i$.
 - б) Докажите, что эти точки лежат на одной параболе; составьте уравнение параболы.
 - в) Найдите действительную часть суммы $z_1 + z_2 + ... + z_6$.
 - г) Укажите номер n, начиная с которого мнимая часть числа г. будет больше 100.

- ullet33.19. a) Для $n=1,\ 2,\ 3,\ 4,\ 5,\ 6$ изобразите на координатной плоскости точки $z_n = (n+1) + \frac{3}{n}i$.
 - б) Докажите, что все эти точки лежат на одной гиперба. ле; составьте уравнение гиперболы.
 - в) Укажите точку, наиболее близкую к оси абсцисс.
 - г) Укажите точку, наиболее близкую к началу координат.

Решите уравнение:

- \circ 33.20. a) $z \operatorname{Re} z = 1$;
 - 6) z Re z = -1:
- 033.21. a) z Im z = i;
 - 6) $z \operatorname{Im} z = -i$:
- \bigcirc 33.22. a) $z \operatorname{Re} z = \overline{z} \operatorname{Im} \overline{z}$;
 - 6) $z \operatorname{Re} \overline{z} = \overline{z} \operatorname{Im} z$:
- 033.23. a) $z \operatorname{Re}(z-4) = i-4;$
 - 6) $z \operatorname{Im} (z + 2i) = 7 i;$

- B) $z (\text{Re } z)^2 = 1$;
- r) $z (\text{Re } z)^2 = -1$.
- $\mathbf{B}) \ z \ (\mathrm{Im} \ z)^2 = i;$ r) $z (\text{Im } z)^2 = -i$;
- $\mathbf{B}) \ z \ \mathrm{Im} \ \overline{z} = \overline{z} \ \mathrm{Re} \ z;$ r) $z \operatorname{Re} z = \overline{z} \operatorname{Re} \overline{z}$.
- B) \overline{z} (Re z-6) = 21i-9;
- r) \bar{z} (Im z + 4) = 10 + 4*i*.

§ 34. Тригонометрическая форма записи комплексного числа

Найдите модуль комплексного числа:

- 34.1. a) 6 8i; B) i(2 + i); 6) 20 + 21i; r) (3 i)(2 + i).
- 34.2. a) $\frac{2}{i}$; b) $-\frac{3}{i}$; r) $\frac{i+1}{i+1}$; r) $\frac{i}{i+1}$.

- 034.3. Для комплексных чисел $z_1 = 12 5i$ и $z_2 = 3 + 4i$:
 - а) найдите $|z_1|$ и $|z_2|$;
 - б) вычислите z_1z_2 и проверьте равенство $|z_1z_2| = |z_1| \cdot |z_2|$;
 - в) вычислите $\frac{1}{z_1}$ и проверьте равенство $\left|\frac{1}{z_1}\right| = \frac{1}{|z_1|}$;
 - r) вычислите $\frac{z_1}{z_2}$ и проверьте равенство $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$.
 - 34.4. Для комплексных чисел $z_1 = 3 i$ и $z_2 = 1 + 2i$:
 - а) найдите $|\overline{z}|$ и $|\overline{z}_2|$ и проверьте равенства $|\overline{z}_1| = |z_1|$ в $|\overline{z}_2| = |z_2|$:

- 6) проверьте неравенство $|z_1 + z_2| < |z_1| + |z_2|$;
- в) вычислите $\overline{z_1z_2}$ и проверьте равенство $|\overline{z_1z_2}| = |\overline{z_1}| \cdot |\overline{z_2}|$;
- г) проверьте неравенство $|z_1 z_2| > |z_1| |z_2|$.
- 034.5. При каком положительном значении параметра а модуль данного числа равен 10:

a)
$$a + 8i$$
;

B)
$$(a + 1) + (a - 1)i$$
;

6)
$$2a + ai;$$

r)
$$a + \frac{50i}{a}$$
?

Изобразите на комплексной плоскости множество всех чисел г, удовлетворяющих заданному условию:

34.6. a)
$$|z| = 3$$
;

B)
$$|z + 2| = 3$$
;

6)
$$|z-1|=3$$
;

$$|z + 3i| = 3.$$

o34.7. a)
$$|z-i|=1$$
;

B)
$$|z-1-i|=\sqrt{2};$$

6)
$$|z+2i|=2$$
;

$$|z + 4 + 3i| = 5.$$

o34.8. Про комплексное число z известно, что Re z = 3 или Re z = 6. Сколько имеется таких чисел, если, кроме того, извест-HO, TTO:

a)
$$|z| = 3$$
;

6)
$$|z| = 4$$

6)
$$|z| = 4$$
; B) $|z| = 6$;

r)
$$|z| = 10$$
?

034.9. Про комплексное число z известно, что Re z = 3 или Im z = 4. Сколько имеется таких чисел, если, кроме того, известно. что:

a)
$$|z| = 3$$
;

6)
$$|z| = 4$$
;

B)
$$|z| = 5$$
;

$$|z| = 10$$
?

034.10. Изобразите на комплексной плоскости множество всех чисел г, удовлетворяющих уравнению:

a)
$$|z| = |z - 1|$$
;

B)
$$|z-1|=|z-i|;$$

$$|z-1|=|z-3|;$$

r)
$$|z + 3i| = |z + 4|$$
.

034.11. Число z задано в тригонометрической форме. Укажите его стандартную тригонометрическую форму:

a)
$$z = \cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4}$$
;

6)
$$z = \cos \frac{10\pi}{4} + i \sin \frac{10\pi}{4}$$
;

$$B) z = \cos \frac{9\pi}{4} + i \sin \frac{9\pi}{4};$$

r)
$$z = \cos \frac{101\pi}{4} + i \sin \frac{101\pi}{4}$$
.

Число г задано в тригонометрической форме. Укажите его стандартную тригонометрическую форму:

034.12. a)
$$z = \cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}$$
;

6)
$$z = \cos\left(-\frac{13\pi}{6}\right) + i\sin\left(-\frac{13\pi}{6}\right)$$
;

B)
$$z = \cos \frac{99\pi}{4} + i \sin \frac{99\pi}{4}$$
;

r)
$$z = \cos\left(-\frac{103\pi}{6}\right) + i\sin\left(-\frac{103\pi}{6}\right)$$

$$034.13. a) z = \cos(13.2\pi) + i \sin(13.2\pi);$$

6)
$$z = \cos(-12,3\pi) + i\sin(-12,3\pi);$$

B)
$$z = \cos(17\arccos(-1)) + i\sin(17\arccos(-1));$$

r)
$$z = \cos(2\arccos(-0.5)) + i\sin(2\arccos(-0.5))$$
.

Найдите аргумент комплексного числа:

B)
$$-5,5i$$
;

B)
$$-3 + 3i$$
;

 Γ) -5,555.

6) $(-\sqrt{3} + i)^2$: Γ) $(-3 + 3i)^2$.

Изобразите на комплексной плоскости множество всех тех чисел, аргумент которых равен:

34.16. a)
$$\frac{\pi}{4}$$
;

$$\frac{\pi}{4}$$
;

B)
$$-\frac{3\pi}{4}$$
;

$$6) \ \frac{3\pi}{4} \ или \ -\frac{\pi}{4};$$

$$\Gamma$$
) $-\frac{3\pi}{4}$ или $\frac{\pi}{4}$.

34.17. a)
$$\frac{2\pi}{2}$$
;

B)
$$-\frac{5\pi}{6}$$
;

б)
$$-\frac{\pi}{6}$$
 или $\frac{5\pi}{6}$;

r)
$$-\frac{2\pi}{3}$$
 или $\frac{\pi}{3}$.

ОЗ4.18. Изобразите на комплексной плоскости множество всех тех чисел, у которых аргумент:

а) положителен;

в) больше чем $\frac{\pi}{2}$;

б) отрицателен;

r) меньше чем $\frac{\pi}{4}$.

ОЗ4.19. Изобразите на комплексной плоскости множество всех тех чисел, у которых аргумент:

a) больше чем $\frac{\pi}{2}$, но меньше чем $\frac{3\pi}{4}$;

б) больше чем $-\frac{3\pi}{4}$, но меньше чем $\frac{\pi}{8}$;

в) больше чем $\frac{3\pi}{4}$, или меньше чем $\frac{\pi}{6}$;

г) отличается от $-\frac{2\pi}{3}$ не более чем на $\frac{\pi}{6}$.

оз4,20. Изобразите на комплексной плоскости множество всех тех чисел г, у которых:

a)
$$\frac{\pi}{2} < \arg(z) < \frac{3\pi}{4} \text{ if } |z| = 2;$$

6)
$$\frac{\pi}{2} < \arg(z) < \frac{3\pi}{4} \text{ if } 3 < |z| < 5;$$

B)
$$-\frac{3\pi}{4} < \arg(z) < \frac{\pi}{6} \text{ if } |z| = 8;$$

$$\Gamma$$
) $-\frac{5\pi}{6}$ < arg (z) < $\frac{2\pi}{3}$ или $1 < |z| < 2$.

Запишите комплексное число в стандартной тригонометрической форме:

r)
$$-0.5i$$
.

$$034.22. a) 4 + 4i;$$

6)
$$1 - i$$
;

$$-2+2i;$$

6)
$$1-i$$
; B) $-2+2i$; r) $-2-2i$.

34.23. a)
$$\sqrt{3} + i$$
; B) $3\sqrt{3} - 3i$;

B)
$$3\sqrt{3} - 3i$$
;

6)
$$-\sqrt{3}+i$$
;

r)
$$-2\sqrt{3}-2i$$
.

$$034.24. a) 4 - 4\sqrt{3}i;$$
 B) $-2 - 2\sqrt{3}i;$

$$\mathbf{B}) -2 - 2\sqrt{3}i;$$

6)
$$1 + \sqrt{3}i$$
;

r)
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
.

$$034.25$$
. a) $3-4i$;

6)
$$-5 + 12i$$
;

B)
$$6 + 8i$$
;

r)
$$-15 - 8i$$
.

434.26. a)
$$\sin 35^{\circ} - i \cos 35^{\circ}$$
; 6) $\sin (-23^{\circ}) + i \cos (-23^{\circ})$;

B)
$$-\sin 40^{\circ} + i \cos 40^{\circ}$$
;
r) $\sin (-20^{\circ}) - i \sin (-70^{\circ})$.

•34.27. a)
$$1 - \cos 100^{\circ} + i \sin 100^{\circ}$$
;

$$\text{B) } \sin \frac{6\pi}{11} + i \bigg(1 - \cos \frac{6\pi}{11} \bigg);$$

$$6) \sin \frac{4\pi}{7} + i \left(1 - \cos \frac{4\pi}{7}\right)$$

r)
$$1 - \cos 250^{\circ} + i \sin 610^{\circ}$$
.

034.28. Представьте в алгебраической форме комплексное число:

a)
$$5\left(\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)$$
;

$$\mathbf{B}) \ 5 \bigg(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \bigg);$$

$$6) \frac{1}{\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)};$$

$$r) \frac{1}{\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)}.$$

Выполните действия, используя правила умножения и деления комплексных чисел в тригонометрической форме:

034.29. a)
$$6\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)\cdot\frac{1}{3}\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right);$$

6)
$$(-5-5i)\cdot\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$$
;

B)
$$0.3\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right) \cdot 20\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

r)
$$\sqrt{3}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \cdot \left(2 + 2\sqrt{3}i\right)$$
.

034.30. a)
$$8\left(\cos\frac{7\pi}{12} + i\sin\frac{7}{12}\right) : 4\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$
;

6)
$$(10 + 10i) : \left(\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\right)$$

b)
$$12\left(\cos\left(\frac{5\pi}{6}\right)+i\sin\left(\frac{5\pi}{6}\right)\right)$$
: $0.3\left(\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right)$;

r)
$$16\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right)$$
: $(4-4\sqrt{3}i)$.

- 34.31. а) Зная, что z=i, изобразите на комплексной плоскости числа z, z^2, z^3, z^9, z^{99} и найдите их аргументы.
 - 6) Зная, что z=-i, изобразите на комплексной плоскости числа $z, z^5, z^{15}, z^{-25}, z^{-1001}$ и найдите их аргументы.
- 34.32. а) Зная, что $z = \sqrt{2} + \sqrt{2}i$, найдите z^2 , запишите числа z и z^2 в тригонометрической форме, сравните модули и аргументы этнх чисел, изобразите числа на комплексной плоскости.
 - 6) Зная, что $z = 2 2\sqrt{3}i$, найдите z^2 , запишите числа z и z^2 в тригонометрической форме, сравните модули и аргументы этих чисел, изобразите числа на комплексной плоскости.

Зная, что $z_1 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ и $z_2 = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, изобразите на комплексной плоскости числа z_1 , z_2 , z и найдите аргумент указанного числа z:

$$034.33.$$
 a) $z = z_1 z_2;$ B) $z = z_1 (z_2)^3;$

a)
$$z = z_1 z_2$$
; B) $z = z_1 (z_2)^2$;
b) $z = (z_1)^2 z_2$; r) $z = (z_1)^6 (z_2)^3$.

O34.34. a)
$$z = \frac{z_1}{z_2}$$
; b) $z = \frac{z_2}{z_1}$; c) $z = \frac{z_1^3}{z_2^5}$.

Зная, что $z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ и $z_2 = -\frac{\sqrt{3}}{2} + \frac{i}{2}$, изобразите на комплексной плоскости числа z_1 , z_2 , z и найдите аргумент указанного числа z:

•34.35. a)
$$z = z_1 z_2$$
; B) $z = z_1 (z_2)^5$;

6)
$$z = (z_1)^2 z_2;$$
 $r) z = (z_1)^{11} (z_2)^{10}.$

•34.36. a)
$$z = \frac{z_1}{z_2}$$
; 6) $z = z_1^3$; B) $z = \frac{z_1^4}{z_2^3}$; r) $z = \frac{z_1^{31}}{z_2^{33}}$.

о34.37. Каждое комплексное число, действительная часть которого равна —4, умножили на z. Изобразите на комплексной плоскости полученное множество чисел, если:

a)
$$z = i$$
; 6) $z = -3i$; B) $z = 1 - \sqrt{3}i$; r) $z = 3 - i$.

034.38. Зная, что $z_1 = 2 + i$, $z_2 = 4 + 3i$, $z_3 = -1 + 7i$, изобразите на комплексной плоскости треугольник с вершинами zz_1 , zz_2 , zz_3 , если:

a)
$$z = i;$$
 B) $z = -i;$

6)
$$z = 2i$$
; r) $z = 1 - i$.

 \circ 34.39. Зная, что $z_1=2-i$, $z_2=4+3i$, $z_3=-2+5i$, изобразите на комплексной плоскости треугольник с вершинами $\frac{z_1}{z}$, $\frac{z_2}{z}$,

$$\frac{z_3}{z}$$
, если:

a)
$$z = i$$
; 6) $z = 2i$; B) $z = -i$; c) $z = 1 - i$.

•34.40. Для числа $z = \cos(0.11\pi) + i \sin(0.11\pi)$ укажите наименьшее натуральное число n, при котором:

a)
$$\arg(z^n) > \frac{\pi}{4}$$
; B) $\arg(z^n) > \frac{5\pi}{6}$;

6)
$$\arg(z^n) > \frac{\pi}{2}$$
; r) $\arg(z^n) < 0$.

- ullet34.41. а) Среди корней z уравнения $\sqrt{3}(z+\overline{z})(z-\overline{z})=4i^9$ най дите число, аргумент которого равен $\frac{\pi}{a}$.
 - б) Среди корней z уравнения $\operatorname{Re} z \cdot \operatorname{Im} \overline{z} = \frac{\sqrt{3}}{z^6}$ найдите число, аргумент которого равен $\frac{\pi}{2}$.
- •34.42. а) Изобразите на комплексной плоскости множество чисел z, удовлетворяющих условию |zi-3i+4| <

$$\leq \left| \frac{1}{2} - \frac{\sqrt{3}}{2}i \right|$$
. Чему равно наибольшее значение $|z|$?

б) Изобразите на комплексной плоскости множество чисел z, удовлетворяющих условию $|zi-3-4i| \le$

$$|z| \le \left| \frac{1}{2} + \frac{\sqrt{3}}{2}i \right|$$
. Чему равно наименьшее значение $|z|$?

§ 35. Комплексные числа и квадратные уравнения

- 035.1. Найдите все действительные значения параметра а, при которых уравнение $z^2 - 4x + a = 0$:
 - а) имеет только один корень;
 - б) имеет два действительных корня;
 - в) не имеет действительных корней;
 - г) имеет два действительных корня разных знаков.
- 035.2. Найдите все действительные значения параметра а, при которых уравнение $x^2 + ax + 9 = 0$:
 - а) имеет хотя бы один действительный корень;
 - б) не имеет действительных корней;
 - в) имеет котя бы один отрицательный корень;
 - г) имеет два действительных корня, больших, чем 1.
- 035.3. Найдите все действительные значения параметра а. при которых уравнение $ax^2 + 8x + 16 = 0$:
 - а) имеет только один корень;
 - б) имеет действительный положительный корень;
 - в) имеет два действительных корня разных знаков;
 - г) имеет два действительных кория, сумма квадратов которых равна 1.
- 035.4. Решите уравнение:

a)
$$z^2 + 144 = 0$$
;

B)
$$z^2 + 441 = 0$$
:

6)
$$\frac{5z^2-29}{3+3\sqrt{5}}=z-\sqrt{45}$$
;

6)
$$\frac{5z^2 - 29}{z + 3\sqrt{5}} = z - \sqrt{45}$$
; r) $\frac{3z^2 + 2004}{z - \sqrt{44}} = z + 2\sqrt{11}$.

Составьте квадратное уравнение, корнями которого являются числа:

6)
$$7 + 2i \times 7 - 2i$$
;

r)
$$1 + i \times 1 - i$$
.

$$_{\text{O}}$$
35.6. а) $2i$ и $\frac{2}{i}$;

B)
$$-2^{-8}i$$
 $\frac{i}{8}$;

6)
$$1 + 3i \times \frac{10}{1 + 3i}$$
;

r)
$$(2^9 + 2^7 + 2^3)i \text{ in } (3^4 - 3^6)i$$
.

Решите уравнение:

35.7. a)
$$z^2 - 2z + 2 = 0$$
;

B)
$$z^2 - 6z + 25 = 0$$
;

6)
$$z^2 + 4z + 5 = 0$$
;

$$r) z^2 + 10z + 61 = 0.$$

O35.8. a)
$$z^2 - z + 2.5 = 0$$
; B) $z^2 - 5z + 6.5 = 0$;
6) $z^2 + 3z + 8.5 = 0$; P) $z^2 + 11z + 36.5 = 0$

B)
$$z^2 - 5z + 6,5 = 0$$
;
r) $z^2 + 11z + 36,5 = 0$.

035.9. При каких действительных значениях параметра а:

а) уравнение
$$z^2 - 2z + a = 0$$
 имеет корень $1 + i$;

б) уравнение
$$z^2 + 6z + a = 0$$
 имеет корень $i - 3$;

в) уравнение
$$z^2 - 8z + (a^2 + 9) = 0$$
 имеет корень $4 - 3i$;

г) уравнение
$$z^2 + 10z + (a^2 + 4a + 5) = 0$$
 имеет корень $-5 + i$?

035.10. При каких действительных значениях параметра а:

а) уравнение
$$z^2 + az + 5 = 0$$
 имеет корень $2 + i$;

б) уравнение
$$z^2 + az + 13 = 0$$
 имеет корень $-2 - 3i$;

в) уравнение
$$z^2 + (1 - a^2)z + 25 = 0$$
 имеет корень $4 + 3i$;

г) уравнение
$$z^2 + (a^2 + 2a + 2)z + 41 = 0$$
 имеет корень $-5 + 4i$?

035.11. Вычислите $\sqrt{a+bi}$, решив уравнение $(x+yi)^2 = a+bi$:

a)
$$\sqrt{4}$$
:

B)
$$\sqrt{9i}$$

a)
$$\sqrt{4}$$
; 6) $\sqrt{-4}$; B) $\sqrt{9i}$; r) $\sqrt{-25i}$.

035.12. Вычислите $\sqrt{a+bi}$, решив уравнение $(x+yi)^2 = a+bi$ или использовав формулу

$$\sqrt{a + bi} = \pm \left(\sqrt{\frac{\sqrt{a^2 + b^2} + a}{2}} + i \cdot \frac{b}{|b|} \cdot \sqrt{\frac{\sqrt{a^2 + b^2} - a}{2}} \right)$$

a)
$$\sqrt{3-4i}$$
;

a)
$$\sqrt{3-4i}$$
; B) $\sqrt{4-3i}$;

6)
$$\sqrt{3+4i}$$
;

r)
$$\sqrt{12+5i}$$
.

035.13. Вычислите:

a)
$$\sqrt{15 + 8i}$$
;

B)
$$\sqrt{24-7i}$$
;

6)
$$\sqrt{15-8i}$$
;

$$\Gamma) \sqrt{40 + 9i}.$$

35.14. Изобразите на комплексной плоскости число г и множе ство \sqrt{z} , если:

a)
$$|z| = 1$$
, arg $(z) = \frac{\pi}{2}$; B) $|z| = 9$, arg $(z) = \frac{\pi}{3}$;

B)
$$|z| = 9$$
, arg $(z) = \frac{\pi}{3}$

6)
$$|z| = 4$$
, arg $(z) = -\frac{\pi}{2}$

6)
$$|z| = 4$$
, arg $(z) = -\frac{\pi}{2}$; r) $|z| = 0.25$, arg $(z) = -\frac{2\pi}{3}$.

35.15. Изобразите на комплексной плоскости число г и множество \sqrt{z} , если:

a)
$$|z| = 1$$
, arg $(z) = \frac{\pi}{4}$;

B)
$$|z| = 9$$
, arg $(z) = -\frac{3\pi}{4}$;

6)
$$|z| = 4$$
, arg $(z) = -\frac{\pi}{4}$;

6)
$$|z| = 4$$
, arg $(z) = -\frac{\pi}{4}$; r) $|z| = 0.25$, arg $(z) = -\frac{9\pi}{10}$.

ullet 35.16. Изобразите на комплексной плоскости множество \sqrt{z} , если:

a)
$$|z| = 1$$
, $0 \le \arg(z) \le \frac{\pi}{2}$;

a)
$$|z| = 1$$
, $0 \le \arg(z) \le \frac{\pi}{2}$; B) $|z| = 1$, $-\frac{2\pi}{3} \le \arg(z) \le 0$;

$$|z| = 1, \ 0 < \arg(z) < \pi;$$

6)
$$|z| = 1$$
, $0 < \arg(z) < \pi$; r $|z| = 1$, $-\frac{\pi}{4} \le \arg(z) \le \pi$.

ОЗ5.17. Составьте квадратное уравнение, корнями которого являются числа:

a)
$$1 + i \times 2 - i$$
;

B)
$$1 + 2i \times 7 - 2i$$
;

6)
$$2 + i \pi 3 - 2i$$
;

r)
$$5 + 4i$$
 u $4 - 5i$.

035.18. Решите уравнение:

a)
$$z^2 - 2iz = 0$$
;

B)
$$z^2 - 3z + 3 + i = 0$$
;

6)
$$z^2 + 4iz = 0$$
;

r)
$$z^2 - 8z + 11 + 12i = 0$$
.

035.19. Найдите те значения параметра а, при которых:

- а) уравнение $z^2 2z + a = 0$ имеет корень z = i;
- б) уравнение $z^2 8iz + a = 0$ имеет корень 3 i;
- в) уравнение $z^2 + 6z + a = 0$ имеет корень -i;
- г) уравнение $z^2 + 10iz + a = 0$ имеет корень -10 + i.

- $_{035.20}$. Найдите те значения параметра a, при которых:
 - а) уравнение $z^2 + az + 5 = 0$ имеет корень i;
 - б) уравнение $z^{z} + az + 13 = 0$ имеет корень -2i;
 - в) уравнение $z^2 + az + 24i = 0$ имеет корень 1 + i;
 - г) уравнение $z^2 + az + 1 + i = 0$ имеет корень -3 + 2i.

§ 36. Возведение комплексного числа в степень. извлечение кубического корня из комплексного числа

- 36.1. Пусть z=2 (cos $0,2\pi+i\sin 0,2\pi$). Верно ли, что:
 - а) z4 принадлежит первой координатной четверти;
 - б) z^4 принадлежит второй координатной четверти, а его модуль меньше $\sqrt{300}$;
 - в) z^8 принадлежит третьей координатной четверти;
 - г) z^8 принадлежит четвертой координатной четверти, а его модуль больше 100?
- 036.2. Пусть $z = 3 (\cos 0.3\pi + i \sin 0.3\pi)$. Верно ли, что:
 - а) z^6 принадлежит первой координатной четверти;
 - б) z^6 принадлежит четвертой координатной четверти, а его модуль больше 1000;
 - в) z^6 принадлежит четвертой координатной четверти, а его модуль меньше 750;
 - г) z^{16} принадлежит второй координатной четверти?
- 036.3. Пусть $z = \cos 0.19\pi + i \sin 0.19\pi$. Какие числа из множества $\{z, z^2, z^3, \dots, z^9, z^{10}\}$:
 - а) расположены выше оси абсцисс;
 - б) расположены правее оси ординат;
 - в) расположены в первой координатной четверти;
 - г) расположены во второй или в четвертой координатной четверти?
- \bigcirc 36.4. Пусть z=2 (cos $0,21\pi+i\sin 0,21\pi$). Какие числа из множества $\{z,\,z^2,\,z^3,\,\ldots,\,z^9,\,z^{10}\}$:
 - а) расположены во второй координатной четверти;
 - б) расположены внутри круга радиуса 500 с центром в начале координат;
 - в) расположены в первой координатной четверти;
 - г) расположены правее оси ординат и вне круга радиуса 500
 - с центром в начале координат?

- 036.5. Пусть $z = \cos 0.17\pi + i \sin 0.17\pi$. Какие числа из множе-CTBA $\{z, z^2, z^3, \dots, z^9, z^{10}\}$:
 - а) расположены выше оси абсцисс;
 - б) расположены правее оси ординат;
 - в) расположены выше биссектрисы первой и третьев координатной четвертей;
 - г) расположены ниже биссектрисы второй и четвертов координатной четвертей?
- ullet36.6. Пусть $z=0.5(\cos 0.23\pi+i\sin 0.23\pi)$. Какие числа из мвожества $\{z, z^2, z^8, \dots, z^9, z^{10}\}$:
 - а) расположены во второй координатной четверти;
 - б) расположены вне круга радиуса 0,2 с центром в началь координат;
 - в) расположены в первой координатной четверти;
 - г) расположены правее оси ординат и внутри круга радиуса 0,001 с центром в начале координат?

Вычислите:

36.7. a)
$$(\cos 15^{\circ} + i \sin 15^{\circ})^{8}$$
; 6) $(\cos 15^{\circ} + i \sin 15^{\circ})^{18}$;

B)
$$(\cos 75^{\circ} + i \sin 75^{\circ})^{10}$$
;
r) $(\cos 75^{\circ} + i \sin 75^{\circ})^{100}$.

O36.8. a)
$$(1+i)^4$$
;
6) $(1+i)^6$;

B)
$$(1-i)^{10}$$
;
r) $(1-i)^{20}$.

036.9. a)
$$(1 + \sqrt{3}i)_{s}^{3}$$
;

B)
$$(\sqrt{3} + i)^7$$
;
F) $(\sqrt{3} - i)^9$.

6)
$$(1+\sqrt{3}i)^5$$
;

$$\mathbf{r}) \left(\sqrt{3}-i\right)^{9}.$$

036.10. a)
$$(\cos 10^{\circ} + i \sin 10^{\circ})^{-9}$$
;
6) $(\cos 10^{\circ} - i \sin 10^{\circ})^{-3}$;

B)
$$(\cos 10^{\circ} + i \sin 10^{\circ})^{-12}$$
;
r) $(\cos 80^{\circ} - i \sin 80^{\circ})^{-18}$.

©36.11. a)
$$(1+i)^{-4}$$
; 6) $(1+i)^{-6}$:

B)
$$(1-i)^{-10}$$
;
r) $(1-i)^{-20}$.

036.12. a)
$$(1 + \sqrt{3}i)^{-3}$$
;
6) $(1 + \sqrt{3}i)^{-5}$;

B)
$$(\sqrt{3} + i)^{-7}$$
;

0)
$$(1 + \sqrt{3}i)$$
;

r)
$$(\sqrt{3} - i)^{-9}$$
.

•36.13. a)
$$(1 + i\sqrt{3})^7 + (1 - i\sqrt{3})^7$$
;
6) $\frac{16i\left(\sin\frac{\pi}{3} - i\cos\frac{\pi}{3}\right)^2}{(\sqrt{5} + i)^4}$;

B)
$$(\sqrt{3} + i)^5 + (\sqrt{3} - i)^5$$
;
r) $\frac{32i \left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)^2}{(\sqrt{3} - i)^5}$.

•36.14. а) Вычислите
$$z^{12}$$
, если $z = 2\cos\frac{\pi}{8}\left(\sin\frac{3\pi}{4} + i + i\cos\frac{3\pi}{4}\right)$

$$(5)$$
 вычислите z^{30} , если $z = 2\sin\frac{\pi}{12}\left(1-\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right)$

- $_{0}$ 36.15. Пусть $\{z, z^2, z^3, \dots, z^n, z^{n+1}, \dots\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0.2\pi + i \sin 0.2\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти.
 - б) Укажите наименьшее натуральное значение n, при котором z^n принадлежит четвертой координатной четверти.
 - в) Укажите наименьшее натуральное значение n, при котором $z^n = 1$.
 - г) Сколько в этой прогрессии различных чисел?
- 036.16. Пусть $\{z, z^2, z^3, \dots, z^n, z^{n+1}, \dots\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0.03\pi + i \sin 0.03\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти.
 - б) Укажите наименьшее натуральное значение n, при котором z^n принадлежит третьей координатной четверти.
 - в) Укажите наименьшее натуральное значение n, при котором $z^n = -1$,
 - г) Сколько в этой прогрессии различных чисел?
- •36.17. Пусть $\{z, z^2, z^3, ..., z^n, z^{n+1}, ...\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0.1\pi i \sin 0.1\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит третьей координатной четверти (не на координатных осях).
 - б) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти (не на координатных осях).
 - в) Сколько в этой прогрессии различных чисел?
 - г) Найдите сумму этих различных чисел.
- **©36.18.** Пусть $\{z, z^2, z^3, ..., z^n, z^{n+1}, ...\}$ бесконечная геометрическая прогрессия со знаменателем $z = \cos 0.01\pi i \sin 0.01\pi$.
 - а) Укажите наименьшее натуральное значение n, при котором z^n принадлежит второй координатной четверти.
 - б) Сколько в этой прогрессии различных чисел?
 - в) Сколько из этих чисел лежат на осях координат?
 - г) Найдите сумму этих различных чисел.
- •36.19. Пусть z=1+i. Какие числа из множества $\{z,\ z^2,\ z^3,\ \dots,\ z^{11},\ z^{12}\}$:
 - а) лежат на оси абсцисс; в) лежат левее оси ординат;
 - x = 9; г) выше прямой y = 2?

036.20.	Вычислите в	и изоб	разите на	комплексной	плоскости:
~~~~	TANK JENOVIENTO 1	1 11000	DODRIC HE	i mominicacuon	TIME TO THE TENT

- a)  $\sqrt[3]{64}$ ; 6)  $\sqrt[3]{-27}$ ; B)  $\sqrt[3]{125i}$ ; r)  $\sqrt[3]{-512i}$ .

36.21. Произвольно отметьте на комплексной плоскости число  $z_0$ 

у которого 
$$|z_0| = 1$$
 и  $\frac{\pi}{2} < \arg(z_0) < \pi$ .

- а) Изобразите корень уравнения  $z^8 = z_0$ , принадлежащий первой координатной четверти.
- б) Изобразите корень уравнения  $z^3 = z_0$ , принадлежащий четвертой координатной четверти.
- в) Изобразите множество ∜го.
- г) Объясните, почему у уравнения  $z^3 = z_0$  нет корней, расположенных в третьей четверти.
- **36.22.** Произвольно отметьте на комплексной плоскости число  $z_0$ .

у которого 
$$|z_0| = 1$$
 и  $-\frac{\pi}{2}$  < arg  $(z_0)$  < 0.

- а) Изобразите корень уравнения  $z^3 = z_0$ , принадлежащий четвертой координатной четверти.
- б) Изобразите множество  $\sqrt[3]{z_0}$ .
- в) Объясните, почему у уравнения  $z^3 = z_0$  нет корней, расположенных в первой четверти.
- г) Найдите площадь треугольника с вершинами в точках из пункта б).

### ●36.23. Решите уравнение:

- a)  $z^6 + (8 i)z^3 + (1 + i)^6 = 0$ ;
- 6)  $z^4 + (2-4i)z^2 (1-i)^6 = 0$ .
- •36.24. а) При каком действительном значении а выражение  $\frac{a(\sin 75^\circ + i \cos 75^\circ)^{12}}{i(a+2i)^2 - (14-3ai) - 2}$  является действительным числом?
  - б) При каком действительном значении в выражение  $\frac{b:(\cos 22^{\circ}30'-i\sin 22^{\circ}30')^{16}}{i(3i-b)^2-(3-8bi)-3}$  является действительным чис-

лом?



### § 37. Числовые последовательности

37.1. Являются ли числовыми последовательностями следующие функции:

a) 
$$y = 3x^2 + 5$$
,  $x \in \mathbb{Z}$ ; B)  $y = 7 - x^2$ ,  $x \in \mathbb{Q}$ ;

B) 
$$y = 7 - x^2, x \in Q$$

6) 
$$y = \sin x$$
,  $x \in [0; 2\pi]$ ; r)  $y = \cos \frac{x}{2}$ ,  $x \in \mathbb{N}$ ?

$$\mathbf{r}) \ y = \cos \frac{x}{2}, \ x \in N^{*}$$

- 37.2. Приведите примеры последовательностей, заданных:
  - а) с помощью формулы n-го члена;
  - б) словесно;
  - в) рекуррентным способом.
- 37.3. Задайте последовательность аналитически и найдите ее первые пять членов, если:
  - а) каждому натуральному числу ставится в соответствие противоположное ему число;
  - б) каждому натуральному числу ставится в соответствие квадратный корень из этого числа;
  - в) каждому натуральному числу ставится в соответствие число -5:
  - г) каждому натуральному числу ставится в соответствие половина его квадрата.

По заданной формуле n-го члена вычислите первые пять членов последовательности  $(y_n)$ :

37.4. a) 
$$y_n = 2n^2 - n$$
;

$$\mathbf{B}) \ y_n = \frac{3n-1}{2n};$$

6) 
$$y_n = \frac{(-1)^n}{n^2 + 1}$$
;

r) 
$$y_n = \frac{(-1)^n + 2}{3n - 2}$$
.

37.5. a) 
$$y_n = 3 \cos \frac{2\pi}{n}$$
;

$$\mathbf{B}) \ y_n = 1 - \cos^2 \frac{\pi}{n};$$

6) 
$$y_n = \operatorname{tg}\left((-1)^n \frac{\pi}{4}\right)$$
;

$$\mathbf{r}) y_n = \sin n\pi - \cos n\pi.$$

По заданной формуле n-го члена вычислите первые парк членов последовательности  $(y_n)$ :

37.6. a) 
$$y_n = \sin \frac{n\pi}{2} - \operatorname{ctg} \frac{\pi}{4} (2n + 1);$$

6) 
$$y_n = \cos \frac{n\pi}{2} + \lg \frac{\pi}{4}(2n+1);$$

B) 
$$y_n = n \sin \frac{n\pi}{2} + n^2 \cos \frac{n\pi}{2}$$
;

$$\Gamma) y_n = \sin \frac{n\pi}{4} - n \cos \frac{n\pi}{4}.$$

**37.7.** a) 
$$y_n = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n^3 + 1}$$
; 6)  $y_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n - 1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}$ .

6) 
$$y_n = \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot 2n}$$

- 37.8. Выпишите первые четыре члена последовательности десятичных приближений числа  $\sqrt{2}$ :
  - а) по недостатку:
- б) по избытку.

Выпишите первые пять членов последовательности, заданной рекуррентно:

37.9. a) 
$$x_1 = 2$$
,  $x_n = 5 - x_{n-1}$ ;

B) 
$$x_1 = -1$$
,  $x_n = 2 + x_{n-1}$ ;

$$6) x_1 = 2, x_n = x_{n-1} + 10;$$

$$\mathbf{r}) \ x_1 = 4, \ x_2 = x_{2-1} - 3.$$

**37.10.** a) 
$$x_1 = 2$$
,  $x_n = nx_{n-1}$ ;

B) 
$$x_1 = -2$$
,  $x_n = -x_{n-1}$ ;

6) 
$$x_1 = -5$$
,  $x_n = -0.5 \cdot x_{n-1}$ ; r)  $x_1 = 1$ ,  $x_n = \frac{x_{n-1}}{0.1}$ .

$$\mathbf{r}) \ x_1 = 1, \ x_n = \frac{x_{n-1}}{0,1}.$$

- 37.11. a) Выпишите первые шесть членов последовательности  $(x_s)$ , у которой  $x_1 = 5$ ,  $x_2 = -3$  и каждый член, начиная с третьего, равен полусумме двух предыдущих членов. Составьте рекуррентное задание последовательности.
  - б) Выпишите первые шесть членов последовательности ( $y_a$ ). у которой  $y_1 = -1$ ,  $y_2 = 1$  и каждый член, начиная с третьего, равен утроенной сумме двух предыдущих членов. Составьте рекуррентное задание последовательности.
- 037.12. Определите значения первых пяти членов последовательности и составьте формулу ее п-го члена, если график последовательности представлен:
  - а) на рис. 66;

в) на рис. 68;

б) на рис. 67;

г) на рис. 69.









Puc. 67



Постройте график функции:

**37.13.** a) 
$$y = (x+1)^{-2}$$
,  $x \in N$ ; B)  $y = -\frac{18}{x+2}$ ,  $x \in N$ ;

B) 
$$y = -\frac{18}{x+2}, x \in N;$$

6) 
$$y = 3x - x^2, x \in N$$

6) 
$$y = 3x - x^2$$
,  $x \in N$ ; r)  $y = \sqrt{x+3}$ ,  $x \in N$ .

$$\circ 37.14. \ a) \ y = 2 - x, \ x \in N;$$

**37.14.** a) 
$$y = 2 - x$$
,  $x \in N$ ; B)  $y = \frac{x+5}{2}$ ,  $x \in N$ ;

$$6) y = 3x - x^2, x \in N;$$

6) 
$$y = 3x - x^2, x \in N;$$
  $y = x^2 - 4x, x \in N.$ 

$$037.15. a) y = \sin \frac{\pi}{6} x, x \in N;$$

B) 
$$y = \operatorname{tg} \frac{\pi}{3} x, \ x \in N;$$

6) 
$$y = \cot \frac{\pi}{4}(2x + 1), x \in N;$$
  $y = \cos \pi x, x \in N.$ 

r) 
$$y = \cos \pi x$$
,  $x \in N$ .

Постройте график последовательности:

- $\bigcirc$ 37.16. a)  $y_n = 10 n^3$ ;
- B)  $y_n = n^3 8$ ;
- 6)  $v_n = (-1)^n \sqrt{9n}$ :
- $\mathbf{r}) \ \mathbf{y}_n = 4 \sqrt{4n}.$
- **037.17.** a)  $y_n = 2 \sin \frac{\pi}{8} n$ ;
- 6)  $y_n = (-1)^n \operatorname{tg} \frac{\pi}{4} (2n 1).$
- 037.18. а) Все натуральные числа, кратные пяти, расположенные в порядке возрастания, образуют последовательность Укажите седьмой, девятый, двенадцатый, п-й члены последовательности.
  - б) Все натуральные числа, кратные семи, расположенные в порядке возрастания, образуют последовательность. Укажите шестой, десятый, тридцать первый, п-й члены последовательности.
- ОЗ7.19. а) Все натуральные числа, которые при делении на 5 дают. в остатке 2, расположены в порядке возрастания. Найдите первые пять членов этой последовательности.
  - б) Все натуральные числа, которые при делении на 4 дают в остатке 3, расположены в порядке возрастания. Найдите сумму первых шести членов этой последовательности.
- 037.20. а) Последовательность состоит из квадратов простых чисел, расположенных в порядке возрастания. Найдите сумму первых восьми членов этой последовательности. (Число 1 не считается ни простым, ни составным).
  - б) Известно, что  $(y_n)$  последовательность всех натуральных степеней числа 3, расположенных в порядке возрастания. Найдите:  $y_5$ ,  $y_8$ ,  $y_{37}$ ,  $y_{2n}$ ,  $y_{2n+1}$ ,  $y_{2n-3}$ .
- 037.21. Задайте формулой п-го члена и рекуррентным способом: а) возрастающую последовательность всех четных натуральных чисел, не делящихся на 4;
  - б) возрастающую последовательность всех натуральных чисел, которые при делении на 13 дают в остатке 5;
  - в) возрастающую последовательность всех натуральных чисел, делящихся на 3 и на 7 (одновременно);
  - г) возрастающую последовательность всех четных натуральных чисел, делящихся на 3 и на 5 (одновременно).

Составьте одну из возможных формул n-го члена последовательности по первым пяти ее членам:

- 037.22. a) -1, -2, -3, -4, -5, ...;
- B) 10, 9, 8, 7, 6, ...;
- 6) 6, 12, 18, 24, 30, ...;
- r) 4, 8, 12, 16, 20, ....

$$037.24. a) 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots;$$

6) 
$$\frac{3}{4}$$
,  $\frac{5}{6}$ ,  $\frac{7}{8}$ ,  $\frac{9}{10}$ ,  $\frac{11}{12}$ ,...;

B) 
$$1, \frac{1}{8}, \frac{1}{27}, \frac{1}{64}, \frac{1}{125}, \dots;$$

r) 
$$\frac{1}{3 \cdot 5}$$
,  $\frac{1}{5 \cdot 7}$ ,  $\frac{1}{7 \cdot 9}$ ,  $\frac{1}{9 \cdot 11}$ ,  $\frac{1}{11 \cdot 13}$ ,...

037.25. a) 
$$\frac{3}{4}$$
,  $\frac{9}{16}$ ,  $\frac{27}{64}$ ,  $\frac{81}{256}$ ,  $\frac{243}{1024}$ , ...;

6) 
$$\frac{1}{\sqrt{2}}$$
,  $\frac{3}{2}$ ,  $\frac{5}{2\sqrt{2}}$ ,  $\frac{7}{4}$ ,  $\frac{9}{4\sqrt{2}}$ , ...;

B) 
$$\frac{1}{\sqrt{1\cdot 2}}$$
,  $-\frac{4}{\sqrt{2\cdot 3}}$ ,  $\frac{9}{\sqrt{3\cdot 4}}$ ,  $-\frac{16}{\sqrt{4\cdot 5}}$ ,  $\frac{25}{\sqrt{5\cdot 6}}$ , ...;

r) 
$$\frac{4}{1\cdot 2\cdot 3}$$
,  $-\frac{9}{2\cdot 3\cdot 4}$ ,  $\frac{14}{3\cdot 4\cdot 5}$ ,  $-\frac{19}{4\cdot 5\cdot 6}$ ,  $\frac{24}{5\cdot 6\cdot 7}$ ,...

37.26. Какие члены последовательности (у,) расположены между членами:

в) 
$$y_{998}$$
 и  $y_{1003}$ ;

6) 
$$y_{n-1}$$
 и  $y_{n+2}$ ;

$$\Gamma$$
)  $y_{2n-2}$   $y_{2n+3}$ ?

037.27. Укажите номер члена последовательности  $y_n = \frac{2-n}{5-n-1}$ , равного:

6) 
$$\frac{-3}{26}$$

B) 
$$\frac{-1}{6}$$

6) 
$$\frac{-3}{26}$$
; B)  $\frac{-1}{6}$ ; r)  $-\frac{43}{226}$ .

- 037.28. Квадрат со стороной 1 см вписан во второй квадрат таким образом, что вершины первого квадрата являются серединами сторон второго. Второй квадрат, аналогично, вписан в третий квадрат и т. д. Получается последовательность вписанных друг в друга квадратов.
  - а) Составьте последовательность периметров полученных квадратов. Выпишите первые пять членов этой последовательности.
  - б) Составьте последовательность площадей полученных квадратов. Выпишите первые пять членов этой последовательности.
  - в) Чему равна длина стороны одиннадцатого квадрата?
  - г) Чему равна площадь семнадцатого квадрата?

037,29.	Сколько членов последовательности $y_n = 2n^2 - 7n + 5$ принадлежит:				
	а) отрезку [2; 5];	б) промежутку (-∞; 10)?			
	Начиная с какого номера все члены последовательности $(x_n)$ будут больше заданного числа $A$ ?				

- **O37.30.** a)  $x_n = 3n 2$ , A = 15; 6)  $x_n = 5^{n-1}$ , A = 125.
- **O37.31.** a)  $x_1 = 0$ ,  $x_n = x_{n-1} + 3$ , A = 28: 6)  $x_1 = 1$ ,  $x_2 = 7x_{2-1}$ , A = 285.
- 037.32. Сколько членов последовательности не превосходят 1:
  - a)  $\frac{1}{3125}$ ,  $\frac{1}{625}$ ,  $\frac{1}{125}$ , ...; B)  $\frac{2}{729}$ ,  $\frac{2}{243}$ ,  $\frac{2}{81}$ , ...;
- - 6)  $\frac{6}{377}$ ,  $\frac{11}{379}$ ,  $\frac{16}{381}$ , ...; r)  $\frac{2}{219}$ ,  $\frac{9}{229}$ ,  $\frac{16}{225}$ , ...?
- 037.33. Выпишите все отрицательные члены последовательности: a)  $y_n = n^2 - n - 6;$ B)  $y_n = n^* - 6n$   $x = \frac{-181}{2n};$ r)  $y_n = \frac{1 + 2n}{9n - 5}.$
- B)  $y_n = n^2 6n + 8$ ;

- 037.34. Найдите число положительных членов последовательности:
  - a)  $u_n = 4n n^2$ :
- B)  $y_n = -n^2 + 9n 14$ ;
- 6)  $y_n = \frac{140 n^2}{6\pi 11}$ ;
- $r) y_n = \frac{123}{147 5n}.$
- 037.35. Найдите наименьший член последовательности:

  - a)  $y_n = n^2 42n + 13$ ; 6)  $y_n = n^2 26n + 41$ .
- 037.36. Укажите номер наибольшего члена последовательности:
  - a)  $y_n = 303 + 38n n^2$ ; 6)  $y_n = 145 + 32n n^2$ .
- 037.37. Найдите номер члена последовательности  $\dot{y}_{\pi} = \frac{3n+191}{2n+2}$ , наиболее близкого к числу:
  - a) 25:
- б) 2:
- в) 5:
- r) 41.
- **©37.38.** Дана последовательность  $y_n = n^2 18n$ .
  - а) Установите, сколько в ней отрицательных членов;
  - б) найдите наименьший член последовательности;
  - в) укажите номер члена последовательности, который равен 19:
  - г) выясните, сколько членов последовательности принадлежит отрезку [-15; 2].

- •37.39. Найдите наименьший член последовательности:
  - a)  $y_n = 3n^2 10n + 3$ ;
- B)  $y_n = 2n^2 7n + 3$ ;

6)  $y_n = \frac{-3}{2n-5}$ ;

- $\mathbf{r}) \ y_n = \frac{-4}{n+4}.$
- •37.40. Найдите наибольший член последовательности:
  - a)  $y_n = -2n^2 + 11n 2;$
- B)  $y_n = 20 12n 3n^2$ ;

6)  $y_n = \frac{3}{2n-5}$ ;

- $\mathbf{r}) \ y_n = \frac{4}{n+4}.$
- 037.41. Является ли ограниченной снизу последовательность:
  - a) -1, 2, -3, 4, -5, ...;
- в) 5, 4, 3, 2, 1, 0, -1, ...;

6)  $y_n = \frac{n^2}{n+1}$ ;

- r)  $y_n = ((-1)^n + 1)n^2$ ?
- 037.42. Является ли ограничениой сверху последовательность:

a) 
$$x_n = \frac{(-1)^n + 1}{n}$$
;

B) 
$$x_n = \frac{n^2-1}{n^2+2};$$

r) 
$$\frac{1}{2}$$
,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ , ...?

037.43. Является ли ограниченной последовательность:

a) 
$$\frac{1}{2}$$
,  $\frac{1}{3}$ ,  $\frac{1}{4}$ , ...,  $\frac{1}{n}$ , ...;

6) 
$$-2$$
, 3,  $-4$ , 5, ...,  $(-1)^n(n+1)$ , ...;

B) 
$$\frac{\sin 1}{1}$$
,  $-\frac{\sin 2}{2}$ ,  $\frac{\sin 3}{3}$ , ...,  $\frac{(-1)^{n-1}\sin n}{n}$ , ...;

r) 
$$tg\frac{\pi}{4}$$
,  $tg\frac{3\pi}{4}$ ,  $tg\frac{5\pi}{4}$ , ...,  $tg\frac{\pi}{4}(2n-1)$ , ...?

- •37.44. Известно, что  $(x_n)$  ограниченная последовательность. Является ли ограниченной последовательность:
  - a)  $y_n = -5x_n + 2$ ;
- B)  $z_n = \frac{1}{2|x_n|+1}$ ;

6)  $p_n = \frac{x_n^2}{x_n^2 + 1}$ ;

- $\mathbf{r}) \ t_n = x_n \sin{(3n)}?$
- $\circ$ 37.45. При каких значениях параметра p заданная последовательность ограничена сверху числом 1:
  - a)  $y_n = \frac{2n+p}{2n+1}$ ;

- $6) z_n = \frac{n}{p^2 + n}?$
- **©37.46.** При каких значениях параметра *р* заданная последовательность ограничена снизу числом 1:
  - a)  $y_n = \frac{n-p}{n+2}$ ;

6)  $z_n = \frac{2n+9}{2n+p^2}$ ?

ullet37.47. При каких значениях параметра p последовательность:

а) 
$$y_n = \frac{2n+p}{3n-1}$$
 ограничена сверху числом 1;

б) 
$$y_n = \frac{p+5n}{3n+1}$$
 ограничена снизу числом 1?

**37.48.** Определите, является последовательность  $(x_n)$  убывающей или возрастающей:

a) 
$$x_n = 3n + 2$$
;

B) 
$$x_n = 6^1 - 7$$
;

6) 
$$x_n = \frac{5}{n+3}$$
;

$$\mathbf{r}) \ \mathbf{x}_n = \left(-\frac{1}{5}\right)^{2n-1}.$$

**37.49.** Объясните, является последовательность  $(y_n)$  убывающей или возрастающей, если для любого номера n выполняется неравенство:

. a) 
$$y_{n+1} - y_n > 0$$
;

B) 
$$y_{n+1} - y_n < 0$$
;

6) 
$$\frac{y_{n+1}}{y_n} < 1$$
;

r) 
$$\frac{y_{n+1}}{y_n} < 1 \ (y_n < 0)$$
.

ОЗ7.50. Выясните, какие из приведенных последовательностей являются монотонными; укажите характер монотонности;

a) 
$$y_n = 5^{-n}$$
;

B) 
$$y_n = \frac{2}{2n+1}$$
;

6) 
$$y_n = \cos \frac{\pi}{n+5}$$
;

$$\mathbf{r}) \ y_n = \sqrt{n+8}.$$

037.51. Исследуйте на монотонность последовательность:

a) 
$$y_n = -2n + 1$$
;

$$\mathbf{B}) \ y_n = \cos \frac{1}{n};$$

6) 
$$u_n = 3n^2 + n - 1$$
:

$$\mathbf{r}) \ y_n = \frac{n}{n^2 + 1}$$

•37.52. Докажите, что заданная последовательность возрастает:

a) 
$$y_n = n^3 + 2n$$
;

B) 
$$y_n = \frac{n+1}{n+7}$$
;

6) 
$$y_n = \frac{n^2}{n^2 + 10}$$
;

r) 
$$y_n = \frac{n^4 + 3n^2 + 1}{n^4 + 3n^2 + 6}$$
.

•37.53. Докажите, что заданная последовательность убывает:

a) 
$$y_n = \frac{3n+5}{3n-1}$$
;

B) 
$$y_n = \frac{n^2 + 15}{n^2 + 2}$$
;

$$6) y_n = \frac{1}{n^3 + 2n};$$

$$\Gamma) y_n = \frac{n^4 + 2n^2 + 7}{n^2 + 2n^2 - 1}.$$

- $_{\rm O}$ 37.54. Если  $(x_n)$  возрастающая последовательность с положительными членами, то что можно сказать о монотонности последовательности  $(y_n)$ :
  - a)  $y_n = 5x_n + 7$ ;
- $\mathbf{B}) y_n = 2 3x_n;$

- $6) y_n = \frac{7}{3+x_n};$
- r)  $y_n = (x_n)^2 + 2$ ?
- $\bigcirc$ 37.55. При каких значениях параметра p последовательность  $(y_n)$  будет возрастающей:
  - a)  $y_n = pn 5$ ;

- B)  $y_n = 2 pn;$
- $6) y_n = -\frac{p-1}{n};$
- $\mathbf{r}) \ y_n = \frac{p+2}{n+1}?$
- $\bigcirc 37.56.$  При каких значениях параметра p последовательность  $(y_n)$  будет убывающей:
  - a)  $y_n = \frac{2}{pn}$ ;

 $y_n = \frac{p}{\sin\frac{1}{n}};$ 

 $6) y_n = \frac{pn+2}{pn+3};$ 

- $r) y_n = \frac{5n^2 p}{n^2}?$
- 037.57. Дана последовательность  $x_n = n^2 1$ . Исследуйте на ограниченность и монотонность последовательность  $(y_n)$ :
  - a)  $y_n = x_n$ ;

- B)  $y_n = \frac{x_{n+2}}{x_{n+1}}$ ;
- 6)  $y_n = x_{n+1} x_n$ ;
- $\mathbf{r)} \ y_n = \frac{1}{x_{n+1}}.$
- $\circ$ 37.58. Исследуйте последовательность ( $x_n$ ) на ограниченность и монотонность:

a) 
$$x_n = \frac{n}{n+2}$$
;

$$6) x_n = \frac{n^2 + 1}{n^2}.$$

- 037.59. Приведите примеры последовательностей:
  - а) возрастающих и ограниченных снизу;
  - б) возрастающих и не ограниченных сверху;
  - в) убывающих и ограниченных снизу;
  - г) убывающих и не ограниченных снизу.
- ●37.60. Приведите пример последовательности:
  - возрастающей, ограниченной сверху, все члены которой положительные числа;
  - б) убывающей, все члены которой принадлежат интервалу
     (0; 7);
  - в) возрастающей, имеющей ровно три отрицательных члена;
  - г) неограниченной, немонотонной.

# § 38. Предел числовой последовательности

- **38.1.** Запишите окрестность точки a радиуса r в виде интервала, если:
  - a) a = 0, r = 0.1;
- B) a = 2, r = 1;
- 6) a = -3, r = 0.5;
- r) a = 0,2, r = 0,3.
- 38.2. Окрестностью какой точки и какого радиуса является интервал:
  - a) (1, 3);

B) (2,1, 2,3);

6) (-0,2, 0,2);

- $\mathbf{r}$ ) (-7, -5)?
- 38.3. Принадлежит ли точка  $x_1$  окрестности точки a радиуса  $r_*$  если:
  - a)  $x_1 = 1$ , a = 2, r = 0.5;
  - 6)  $x_1 = 1,1$ , a = 1, r = 0,2;
  - B)  $x_1 = -0.2$ , a = 0, r = 0.3;
  - r)  $x_1 = 2.75$ , a = 2.5, r = 0.3?
- **ОЗ8.4.** Существует ли номер  $n_0$ , начиная с которого все члены последовательности  $(x_n)$  попадают в окрестность точки a радиуса r = 0,1, если:
  - a)  $x_n = \frac{1}{n^2}$ , a = 0;
- B)  $x_n = \frac{n}{n+1}, \ a = 0;$
- 6)  $x_n = \frac{1}{n^2}, \ a = 1;$
- $\mathbf{r}) x_n = \frac{n}{n+1}, a = 1?$

Укажите номер  $n_0$  того члена последовательности  $(x_n)$ , начиная с которого все члены последовательности попадут в окрестность точки a радиуса r:

- O38.5. a)  $x_n = \frac{1}{2n}$ , a = 0, r = 0.1;
  - 6)  $x_n = 3 + \frac{1}{n^2}$ , a = 3, r = 0,2;
  - B)  $x_n = 1 + \frac{2}{n^2}$ , a = 1, r = 0.01;
  - r)  $x_n = -\frac{3}{n}$ , a = 0, r = 0,1.
- **038.6.** a)  $x_n = \left(\frac{1}{3}\right)^n$ , a = 0,  $r = \frac{1}{27}$ ;
  - 6)  $x_n = (-1)^n \frac{1}{2^n}$ , a = 0,  $r = \frac{1}{64}$ ;

B) 
$$x_n = 2 + \left(\frac{1}{2}\right)^n$$
,  $a = 2$ ,  $r = \frac{1}{128}$ ;

r) 
$$x_n = 3 - \left(\frac{1}{3}\right)^n$$
,  $a = 3$ ,  $r = \frac{1}{81}$ .

Постройте график последовательности  $(y_n)$ и составьте, если можно, уравнение горизонтальной асимптоты графика:

$$\bigcirc$$
38.7. a)  $y_n = \frac{2}{n}$ ;

$$\mathbf{B}) \ y_n = \frac{4}{n};$$

$$\mathbf{6)} \ \boldsymbol{y}_n = \left(\frac{1}{3}\right)^n;$$

$$\mathbf{r}) \ \boldsymbol{y}_n = \left(\frac{1}{2}\right)^{n-1}.$$

**038.8.** a) 
$$y_n = -1 + \frac{1}{n}$$
;

B) 
$$y_n = 2 - \frac{2}{n}$$
;

6) 
$$y_n = 2 - \frac{1}{n^2}$$
;

r) 
$$y_n = -3 + \frac{1}{n^2}$$
.

038.9. a) 
$$y_n = 2 + (-1)^n \frac{1}{n}$$
;

B) 
$$y_n = -3 + (-1)^n \frac{2}{n}$$
;

6) 
$$y_n = (-1)^n 2 + \frac{1}{n}$$
;

$$r) y_n = (-1)^{n+1} \cdot 3 - \frac{2}{n} \cdot 3 - \frac{$$

38.10. Верно ли утверждение:

- а) если последовательность имеет предел, то она монотонна;
- б) если последовательность монотонна, то она имеет предел:
- в) если последовательность ограничена, то она имеет предел;
- г) если последовательность не монотонна, то она не имеет предела?

Пользуясь теоремой о пределе монотонной ограниченной последовательности, докажите, что последовательность имеет предел:

**38.11.** a) 
$$x_n = \frac{3n^2 + 2}{n^2}$$
;

6) 
$$x_n = \frac{n^2 - 5}{n^2 + 5}$$

**438.12.** a) 
$$x_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$$
;

6) 
$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
.

Вычислите  $\lim_{n\to\infty} x_n$ :

38.13. a) 
$$x_n = \frac{5}{n^2}$$
;

**B)** 
$$x_n = \frac{-15}{n^2};$$

6) 
$$x_n = \frac{-17}{n^3}$$
;

$$\mathbf{r}) x_n = \frac{3}{\sqrt{n}}.$$

**038.14.** a) 
$$x_n = \frac{7}{n} + \frac{8}{\sqrt{n}} + \frac{9}{n^3}$$
;

B) 
$$x_n = \frac{3}{n} + \frac{7}{n^2} - \frac{5}{n^3} + \frac{13}{n^4}$$
;

6) 
$$x_n = 6 - \frac{7}{n^2} - \frac{3}{n} - \frac{3}{\sqrt{n}}$$
;

$$\Gamma$$
)  $x_n = \frac{1}{n} + \frac{3}{\sqrt{n}} - 4 + \frac{7}{n^2}$ .

**038.15.** a) 
$$x_n = \frac{5}{2^n}$$
;

B) 
$$x_n = 7 \cdot 3^{-n}$$
;

6) 
$$x_n = \frac{1}{2} \cdot 5^{-n}$$
;

$$\Gamma) x_n = \frac{4}{3^{n+1}}.$$

**038.16.** a) 
$$x_n = \frac{5n+3}{n+1}$$
;

B) 
$$x_n = \frac{3n+1}{n+2}$$
;

6) 
$$x_n = \frac{7n-5}{n+2}$$
;

r) 
$$x_n = \frac{2n+1}{3n-1}$$
.

**038.17.** a) 
$$x_n = \frac{2n^2 - 1}{n^2}$$
;

B) 
$$x_n = \frac{3-n^2}{n^2}$$
;

6) 
$$x_n = \frac{1+2n+n^2}{n^2}$$
;

r) 
$$x_n = \frac{3n-4-2n^2}{n^2}$$
.

**038.18.** a) 
$$x_n = \frac{(2n+1)(n-3)}{n^2}$$
;

B) 
$$x_n = \frac{(3n-2)(2n+3)}{n^2}$$
;

6) 
$$x_n = \frac{(3n+1)(4n-1)}{(n+1)^2}$$
;

r) 
$$x_n = \frac{(1-2n)(1+n)}{(n+2)^2}$$
.

O38.19. a) 
$$x_n = \frac{(2n+1)(3n-4)-6n^2+12n}{n+5}$$
;

6) 
$$x_n = \frac{n^2(2n+5)-2n^3+5n^2-13}{n(n+1)(n-7)+(1-n)};$$

B) 
$$x_n = \frac{(1-n)(n^2+1)+n^3}{n^2+2n}$$
;

$$\mathbf{r}) \ x_n = \frac{n(7-n^2) + n^3 - 3n - 1}{(n+1)(n+2) + (2n^2 + 1)}.$$

Вычислите:

•38.20. a) 
$$\lim_{n\to\infty} \left( \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} \right)$$

6) 
$$\lim_{n\to\infty} \left( \frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} \right)$$

**§38.21.** a) 
$$\lim_{n\to\infty} \frac{2\cdot 3^n + 3\cdot 4^n}{2^n - 6\cdot 4^n}$$
; 6)  $\lim_{n\to\infty} \frac{3\cdot 5^n - 7\cdot 4^n}{2^n + 6\cdot 5^n}$ .

6) 
$$\lim_{n\to\infty} \frac{3\cdot 5^n - 7\cdot 4^n}{2^n + 6\cdot 5^n}$$

38.22. Найдите сумму геометрической прогрессии  $(b_n)$  , если:

a) 
$$b_1 = 3$$
,  $q = \frac{1}{3}$ ;

B) 
$$b_1 = -1$$
,  $q = 0.2$ ;

6) 
$$b_1 = -5$$
,  $q = -0.1$ ; r)  $b_1 = 2$ ,  $q = -\frac{1}{2}$ .

r) 
$$b_1 = 2$$
,  $q = -\frac{1}{3}$ 

38.23. Найдите сумму геометрической прогрессии:

B) 27, 9, 3, 1, 
$$\frac{1}{3}$$
, ...;

6) 24, -8, 
$$\frac{8}{3}$$
,  $-\frac{8}{9}$ , ...;

r) 18, -6, 2, 
$$-\frac{2}{3}$$
, ....

38.24. Найдите знаменатель и сумму геометрической прогрессии  $(b_n)$ , если:

a) 
$$b_1 = -2$$
,  $b_2 = 1$ ;

B) 
$$b_1 = 7$$
,  $b_2 = -1$ ;

6) 
$$b_1 = 3$$
,  $b_2 = \frac{1}{3}$ ;

r) 
$$b_1 = -20$$
,  $b_2 = 4$ .

38.25. Найдите знаменатель геометрической прогрессии  $(b_n)$ , если:

a) 
$$S = 2$$
,  $b_1 = 3$ ;

B) 
$$S = -\frac{9}{4}$$
,  $b_1 = -3$ ;

6) 
$$S = -10$$
,  $b_1 = -5$ ;

r) 
$$S = 1,5$$
,  $b_1 = 2$ .

38.26. Найдите первый член геометрической прогрессии  $(b_n)$ , если:

a) 
$$S = 10$$
,  $q = 0,1$ ;

B) 
$$S = 6$$
,  $q = -0.5$ ;

6) 
$$S = -3$$
,  $q = -\frac{1}{3}$ ;

r) 
$$S = -21$$
,  $q = \frac{1}{7}$ .

 $^{\circ}38.27$ . Найдите n-й член геометрической прогрессии  $(b_n)$ , если:

a) 
$$S = 15$$
,  $q = -\frac{1}{3}$ ,  $n = 3$ ;

B) 
$$S = 20$$
,  $b_1 = 22$ ,  $n = 4$ ;

6) 
$$S = -20$$
,  $b_1 = -16$ ,  $n = 4$ ; r)  $S = 21$ ,  $q = \frac{2}{2}$ ,  $n = 3$ .

r) 
$$S = 21$$
,  $q = \frac{2}{3}$ ,  $n = 3$ .

O38.28. Найдите сумму геометрической прогрессии  $(b_n)$ , если:

a) 
$$b_n = \frac{25}{3^n}$$
;

$$\mathbf{B}) \ b_n = \frac{45}{3^n};$$

6) 
$$b_n = (-1)^n \frac{13}{2^{n-1}}$$
;

r) 
$$b_n = (-1)^{n-1} \frac{7}{6^{n-2}}$$
.

- ОЗ8.29. а) Найдите сумму геометрической прогрессии, если известно, что сумма первого и третьего ее членов равна 29, а второго и четвертого 11,6.
  - б) Чему равен пятый член геометрической прогрессии, если известно, что он в 4 раза меньше куба третьего члена прогрессии, а сумма прогрессии равна 4,5?
- ОЗ8.30. а) Найдите геометрическую прогрессию, если известно, что ее сумма равна 24, а сумма первых трех членов равна 21.
  - б) Найдите седьмой член геометрической прогрессии, если известно, что ее сумма равна 31,25, а сумма первых трех членов равна 31.
- СЗ8.31. а) Составьте геометрическую прогрессию, если известно, что ее сумма равна 18, а сумма квадратов ее членов равна 162. б) Найдите сумму квадратов членов геометрической прогрессии, если известно, что ее сумма равна 2, а сумма кубов ее членов равна  $1\frac{1}{7}$ .

Вычислите:

**038.32.** a) 
$$2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots$$
;

B) 
$$\frac{3}{2} - 1 + \frac{2}{3} - \frac{4}{9} + \dots;$$

6) 
$$49 + 7 + 1 + \frac{1}{7^2} + \dots$$
;

r) 
$$125 + 25 + 5 + 1 + \dots$$

038.33. a) 
$$-6 + \frac{2}{3} - \frac{2}{27} + \frac{2}{243} - \dots;$$

6) 
$$3+\sqrt{3}+1+\frac{1}{\sqrt{3}}+\dots$$
;

B) 
$$49 - 14 + 4 - \frac{8}{7} + \dots$$
;

r) 
$$4 + 2\sqrt{2} + 2 + \sqrt{2} + \dots$$

038.34. a) 
$$2 + 4 + 6 + ... + 20 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} ...$$
;

6) 
$$1+3+5+\ldots+99+\frac{2}{5}-\frac{4}{25}+\frac{8}{125}-\ldots$$
;

B) 
$$21 + 24 + 27 + \dots + 51 + \frac{1}{3} - \frac{1}{9} + \frac{1}{27} - \dots;$$

r) 
$$1 + 4 + 7 + ... + 100 + 0,1 + 0,01 + 0,001 + ...$$

$$\bigcirc$$
38.35. Упростите выражение  $\left(x \neq \frac{\pi n}{2}\right)$ 

- a)  $\sin x + \sin^2 x + \sin^3 x + \sin^4 x + \dots$ ; 6)  $\cos x \cos^2 x + \cos^3 x \cos^4 x + \dots$ ;
- B)  $\cos^2 x + \cos^4 x + \cos^6 x + \cos^8 x + \dots$ ;
- r)  $1 \sin^3 x + \sin^6 x \sin^9 x + \dots$

Решите уравнение, если известно, что |x| < 1:

**38.36.** a) 
$$x + x^2 + x^3 + x^4 + ... + x^n + ... = 4$$
;

6) 
$$2x - 4x^2 + 8x^3 - 16x^4 + \dots = \frac{3}{8}$$

**•38.37.** a) 
$$\frac{1}{x} + x + x^2 + x^3 + x^4 + \dots + x^n + \dots = \frac{7}{2}$$
;

6) 
$$2x + 1 + x^2 - x^3 + x^4 - x^5 + \dots = \frac{13}{6}$$
.

•38.38. Решите уравнение:

- a)  $\sin x + \sin^2 x + \sin^3 x + \dots + \sin^n x + \dots = 5;$ 6)  $\cos x \cos^2 x + \cos^3 x \dots + (-1)^{n-1} \cos^n x + \dots = 2;$

B) 
$$1 + \sin^2 x + \sin^4 x + ... + (\sin x)^{2n-2} + ... = \frac{4}{3}$$
;

r) 
$$7\cos^3 x + 7\cos^6 x + ... + 7(\cos x)^{3n} + ... = 1$$
.

# § 39. Предел функции

- 39.1. Какая из функций, графики которых изображены на рис. 70—73, имеет предел при  $x \to +\infty$ ? при  $x \to -\infty$ ? при  $x \to \infty$ ?
- 39.2. Выясните, имеет ли функция y = f(x) предел при  $x \to +\infty$ , при  $x \to -\infty$  или при  $x \to \infty$  и чему он равен, если:
  - а) прямая y = 3 является горизонтальной асимптотой графика функции на луче ( $-\infty$ ; 4];
  - б) прямая y = -2 является горизонтальной асимптотой графика функции на луче  $[-6; +\infty)$ ;
  - в) прямая y = -5 является горизонтальной асимптотой графика функции на луче ( $-\infty$ ; 3];
  - г) прямая y=5 является горизонтальной асимптотой графика функции на луче  $[4; +\infty)$ .



Puc. 70



Puc. 71



Puc. 72



Puc. 73

$$039.3$$
. Известно, что  $\lim_{x \to \infty} f(x) = 2$ ,  $\lim_{x \to \infty} g(x) = -3$ ,  $\lim_{x \to \infty} h(x) = 9$ .

Вычислите:

a) 
$$\lim_{x\to\infty} (f(x) + g(x) - h(x));$$

a) 
$$\lim_{x\to\infty} (f(x) + g(x) - h(x));$$
 B)  $\lim_{x\to\infty} (g(x) - f(x) + h(x));$ 

6) 
$$\lim_{x\to\infty}(g(x)\cdot(f(x))^2);$$

$$\Gamma) \lim_{x\to\infty} (f(x)\cdot g(x)\cdot h(x)).$$

039.4. Известно, что  $\lim_{x\to\infty} f(x) = -2$ ,  $\lim_{x\to\infty} g(x) = -10$ ,  $\lim_{x\to\infty} h(x) = 6$ . Вычислите:

a) 
$$\lim_{x\to+\infty}\frac{f(x)}{g(x)}$$
;

B) 
$$\lim_{x\to+\infty}\frac{f(x)h(x)}{g(x)}$$
;

6) 
$$\lim_{x \to +\infty} \frac{3f(x) + h(x)}{2g(x) + 15}$$
; r)  $\lim_{x \to +\infty} \frac{3g(x)}{5h(x)}$ .

$$\Gamma) \lim_{x\to +\infty} \frac{3g(x)}{5h(x)}.$$

Постройте график какой-либо функции y = f(x), обладающей указанными свойствами:

39.5. a) 
$$\lim_{x \to \infty} f(x) = 3;$$
  
6)  $\lim_{x \to \infty} f(x) = -2;$ 

$$\mathbf{B}) \lim_{x\to\infty} f(x) = -5;$$

$$6) \lim_{x \to \infty} f(x) = -2;$$

$$\mathbf{r}) \lim_{x \to \infty} f(x) = \mathbf{0}.$$

**39.6.** a) 
$$\lim_{x \to +\infty} f(x) = 4$$
,  $\lim_{x \to -\infty} f(x) = 0$ ;

6) 
$$\lim_{x\to +\infty} f(x) = 10$$
,  $\lim_{x\to -\infty} f(x) = -2$ ;

$$\text{B)} \lim_{x\to +\infty} f(x) = -2, \lim_{x\to -\infty} f(x) = 1;$$

r) 
$$\lim_{x\to +\infty} f(x) = 3$$
,  $\lim_{x\to -\infty} f(x) = -4$ .

39.7. a) 
$$\lim_{x\to +\infty} f(x) = 5 \text{ M } f(x) > 0 \text{ Ha } (-\infty; +\infty);$$

6) 
$$\lim_{x\to\infty} f(x) = -3 \text{ и } f(x) \ge 0$$
 на отрезке [-7; 3];

в) 
$$\lim_{x\to +\infty} f(x) = 0$$
 и  $f(x) > 0$  на  $[0, +\infty)$ ;

r) 
$$\lim_{x\to\infty} f(x) = 0$$
 m  $f(x) < 0$  Ha  $(-\infty; +\infty)$ .

Постройте график какой-нибудь функции  $y = h(x), x \in \mathbb{R}$ обладающей указанными свойствами:

039.8. a)  $\lim_{x\to \infty} h(x) = 4$  и функция возрастает;

- 6)  $\lim_{x \to \infty} h(x) = 5$  и функция убывает;
- в)  $\lim h(x) = -2$  и функция возрастает;
- г)  $\lim_{x\to\infty} h(x) = -3$  и функция убывает.

039.9. а)  $\lim_{x\to 0.07} h(x) = 1$  и функция ограничена сверху;

- б)  $\lim_{x\to\infty} h(x) = 1$  и функция ограничена снизу;
- в)  $\lim_{x\to\infty} h(x) = 1$  и функция ограничена сверху;
- г)  $\lim_{x \to \infty} h(x) = 1$  и функция ограничена снизу.
- ●39.10. Постройте график непрерывной на  $(-\infty; +\infty)$  функции y = f(x), обладающей следующими свойствами:
  - а)  $\lim_{x\to \infty} f(x) = 0$ ; f(x) > 0 на  $(-\infty, 0)$ ; E(f) = [-5; 5], функция убывает на [2; 7];
  - 6)  $\lim_{x\to -\infty} f(x) = 5$ ,  $\lim_{x\to +\infty} f(x) = 0$ , E(f) = [-3; 5), f(x) < 0 ma

 $(0; +\infty)$ , функция возрастает на  $[3; +\infty)$  и убывает на [0; 3].

Вычислите:

39.11. a) 
$$\lim_{x\to\infty} \left(\frac{1}{x^2} + \frac{3}{x^3}\right)$$

$$\text{B)} \lim_{x\to\infty}\left(\frac{2}{x^2}+\frac{8}{x^3}\right);$$

6) 
$$\lim_{x\to\infty} \left( \frac{7}{x^5} - \frac{2}{x^3} \right)$$

r) 
$$\lim_{x\to\infty} \left( \frac{9}{x^3} - \frac{5}{x^7} \right).$$

39.12. a) 
$$\lim_{x\to\infty} \left(\frac{2}{x^9} + 1\right)$$
;

B) 
$$\lim_{x\to\infty} \left( \frac{6}{x^5} + \frac{4}{x^2} + 9 \right)$$

6) 
$$\lim_{x\to\infty} \left(\frac{4}{x^3} - \frac{7}{x} - 21\right)$$
; r)  $\lim_{x\to\infty} \left(\frac{7}{x^2} - 7\right)$ .

$$\mathbf{r)} \lim_{x\to\infty} \left(\frac{7}{x^2} - 7\right)$$

039.13. a) 
$$\lim_{x\to\infty} \left(12 - \frac{1}{x^2}\right) \cdot \frac{16}{x^7}$$
;

6) 
$$\lim_{x\to\infty} \left(\frac{5}{x^3} + 1\right) \cdot \left(-\frac{8}{x^2} - 2\right)$$

B) 
$$\lim_{x\to\infty}\left(4+\frac{1}{x^3}\right)\cdot\frac{2}{x^5};$$

r) 
$$\lim_{x\to\infty}\left(\frac{7}{x^6}-2\right)\cdot\left(-\frac{6}{x^{10}}-3\right).$$

$$_{\text{O}}$$
39.14. a)  $\lim_{x\to\infty}\frac{x+1}{x-2}$ ;

$$\mathbf{B}) \lim_{x\to\infty}\frac{x-4}{x+3};$$

6) 
$$\lim_{x\to\infty} \frac{3x-4}{2x+7}$$
;

$$r) \lim_{x\to\infty} \frac{7x+9}{6x-1}.$$

039.15. a) 
$$\lim_{x\to\infty} \frac{3x-1}{x^2+7x+5}$$
;

B) 
$$\lim_{x\to\infty} \frac{-2x-1}{3x^2-4x+1}$$
;

6) 
$$\lim_{x\to\infty} \frac{5-5x}{2x^2-9x}$$
;

r) 
$$\lim_{x\to\infty} \frac{4x+3}{12x^2-6x}$$
.

o39.16. a) 
$$\lim_{x\to\infty} \frac{4x-x^2+1}{5x^2-2x}$$
;

B) 
$$\lim_{x\to\infty} \frac{3x-2x^2+4}{3x^2+2x}$$
;

6) 
$$\lim_{x\to\infty} \frac{x^3-8}{x^3+18}$$
;

r) 
$$\lim_{x\to\infty} \frac{x^3 - 3x^2}{x^4 + 2x + 1}$$
.

039.17. a) 
$$\lim_{x\to\infty} \frac{4x^2+9}{x^2+2}$$
;

B) 
$$\lim_{x\to\infty} \frac{3x^2-8}{x^2-1}$$
;

6) 
$$\lim_{x\to\infty} \frac{12x^2+5x+2}{6x^2+5x-1}$$
;

$$\Gamma) \lim_{x\to\infty} \frac{10x^2+4x-3}{5x^2+2x+1}.$$

39.18. Какая из функций, графики которых изображены на рис. 74—81, имеет предел при  $x \to 3$ ? Чему равен этот предел?



Puc. 74

Puc. 75



- 39.19. Постройте график какой-нибудь функции y = g(x), обладающей заданным свойством:
  - a)  $\lim_{x\to -1} g(x) = 2;$
- B)  $\lim_{x\to -7} g(x) = -4;$
- 6)  $\lim_{x\to 2} g(x) = -3;$
- r)  $\lim_{x\to 5} g(x) = 3.5$ .
- 39.20. Постройте график какой-нибудь функции y = f(x), обладающей заданными свойствами:
  - a)  $\lim_{x\to 2} f(x) = 3$  u f(2) = 3;
  - 6)  $\lim_{x \to \infty} f(x) = 4 \text{ n } \lim_{x \to \infty} f(x) = 0;$
  - в)  $\lim_{x\to -1} f(x) = 4$ , f(-1) не существует;
  - r)  $\lim_{x\to 2} f(x) = -1 \times \lim_{x\to +\infty} f(x) = -5$ .
- 39.21. На рис. 82 изображен график функции y = f(x). Найдите:
  - a)  $\lim_{x\to -\infty} f(x)$ ;
- 6)  $\lim_{x\to 0}f(x)$ ;
- B)  $\lim_{x\to 3} f(x)$ ; r)  $\lim_{x\to 10} f(x)$ .



Puc. 82

- $\circ 39.22$ . Постройте график функции y = f(x), обладающей следующими свойствами:
  - a)  $\lim_{x\to 2} f(x) = 5$ ; f(2) = 5;  $\lim_{x\to -3} f(x) = -1$ ; f(-3) = 1;  $\lim_{x\to \infty} f(x) = -2$ ; функция возрастает на  $(-\infty; 2]$ .
  - 6)  $\lim_{x\to -1} f(x) = -3$ ; f(-1) = 2;  $\lim_{x\to 0} f(x) = -2$ ; f(0) = -2;  $\lim_{x\to \infty} f(x) = 3$ ; E(f) = (-3; 5].

#### Вычислите:

39.23. a) 
$$\lim_{x\to 1}(x^2-3x+5)$$
;

6) 
$$\lim_{x \to \frac{1}{2}} \frac{2x+3}{4x+2}$$
; r)  $\lim_{x \to \frac{1}{2}} \frac{7x-14}{21x+2}$ .

**039.24.** a) 
$$\lim_{x \to 0} \sqrt{x+4}$$
;

B) 
$$\lim_{x\to 3,5} \sqrt{2x-6}$$
;

6) 
$$\lim_{x\to 0} \frac{2x-1}{x^2+3x-4}$$
;

$$\text{r) } \lim_{x \to -1} \frac{5 - 2x}{3x^2 - 2x + 4}.$$

B)  $\lim_{x \to 0} (x^2 + 6x - 8);$ 

039.25. a) 
$$\lim_{x\to 4} \frac{\sin \pi x}{x-1}$$
;

$$\mathrm{B)} \ \lim_{x\to 0} \frac{\cos \pi x}{x+2};$$

6) 
$$\lim_{x\to 2} \frac{\sin\frac{\pi}{x}}{2x+1};$$

r) 
$$\lim_{x\to 2} \frac{\cos\frac{2\pi}{x}}{3x-1}.$$

**•39.26.** a)  $\lim_{x\to 0.8} (2 \arcsin x + 3 \arccos x);$ 

6) 
$$\lim_{x \to -0.5} \frac{\arccos x + \pi \sin \pi x}{\pi \cos \pi x + 2 \arcsin x};$$

B) 
$$\lim_{x\to\sqrt{3}} (2 \operatorname{arctg} x - \operatorname{arcctg} x);$$

r) 
$$\lim_{x \to -1} \frac{2 \operatorname{arectg} x + \pi x}{\cos x - \cos (-x) + \operatorname{aretg} x}.$$

**039.27.** a) 
$$\lim_{x\to 0} \frac{x^2}{x^2-x}$$
;

B) 
$$\lim_{x\to 2} \frac{x^2-3x}{x-3}$$
;

6) 
$$\lim_{x\to -1} \frac{x+1}{x^2+x}$$
;

r) 
$$\lim_{x \to 5} \frac{x+5}{x^2+5x}$$
.

**039.28.** a) 
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$
;

B) 
$$\lim_{x\to 5} \frac{x^2-25}{x-5}$$
;

6) 
$$\lim_{x\to -2} \frac{x^2-4}{2+x}$$
;

$$\Gamma) \lim_{x \to -3} \frac{3+x}{x^2-9}.$$

**039.29.** a) 
$$\lim_{x\to 1} \frac{x^2+2x-3}{x-1}$$
;

B) 
$$\lim_{x\to -1} \frac{x+1}{x^2-2x-3}$$

6) 
$$\lim_{x\to 2} \frac{x-2}{2x^2-x-6}$$
;

r) 
$$\lim_{x\to 9} \frac{x^2-11x+18}{x-9}$$
.

$$039.30.$$
 a)  $\lim_{x\to -2} \frac{x+2}{x^3+8}$ ;

B)  $\lim_{x\to 3} \frac{x-3}{x^3-27}$ ;

6) 
$$\lim_{x\to -1}\frac{1+x^3}{1-x^2}$$
;

r)  $\lim_{x\to 4} \frac{16-x^2}{64-x^3}$ .

$$039.31.$$
 a)  $\lim_{x\to 0} \frac{\sin x}{\log x}$ ;

B)  $\lim_{x\to \frac{\pi}{2}}\frac{\cos x}{\cot x}$ ;

6) 
$$\lim_{x\to\frac{\pi}{9}}\frac{\sin 3x + \sin x}{\cos 3x + \cos x};$$

r)  $\lim_{x\to 0} \frac{\cos 5x - \cos 3x}{\sin 5x + \sin 3x}.$ 

•39.32. a) 
$$\lim_{x\to 3} \frac{\sqrt{x+6}-3}{x^2-3x}$$
;

6)  $\lim_{x \to +\infty} (\sqrt{2x+3} - \sqrt{2x-7});$ 

B) 
$$\lim_{x\to 2} \frac{x^2-4}{\sqrt{2x+5}-3}$$
;

$$r) \lim_{x\to\infty} (\sqrt{5-3x}-\sqrt{-3x}).$$

•39.33. a) 
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

6)  $\lim_{x\to 0} \frac{\sin 7x - \sin 8x}{\sin 8x - \sin 2x}$ .

39.34. Найдите приращение функции y = 2x - 3 при переходе от точки  $x_0 = 3$  к точке  $x_1$ , если:

a) 
$$x_1 = 3,2;$$

B)  $x_1 = 3.5$ ;

6) 
$$x_1 = 2.9$$
;

r)  $x_1 = 2.5$ .

39.35. Найдите приращение функции  $y = x^2 + 2x$  при переходе от точки  $x_0 = -2$  к точке  $x_1$ , если:

a) 
$$x_1 = -1.9$$
;

B)  $x_1 = -1.5$ ;

6) 
$$x_1 = -2,1$$
;

r)  $x_1 = -2.5$ .

39.36. Найдите приращение функции  $y = \sin x$  при переходе от точки  $x_0 = 0$  к точке  $x_1$ , если:

a) 
$$x_1 = \frac{\pi}{6}$$
;

 $B) x_1 = \frac{\pi}{4};$ 

6) 
$$x_1 = -\frac{\pi}{6}$$
;

F)  $x_1 = -\frac{\pi}{3}$ .

039.37. Найдите приращение функции  $y=2\sin x\cdot\cos x$  при переходе от точки  $x_0=0$  к точке  $x_1$ , если:

a) 
$$x_1 = -\frac{\pi}{8}$$
;

B) 
$$x_1 = \frac{\pi}{8}$$
;

$$6) x_1 = \frac{\pi}{12};$$

$$x_1 = -\frac{\pi}{12}$$
.

- 039.38. Найдите приращение функции  $y = \sqrt{x}$  при переходе от точки  $x_0 = 1$  к точке  $x_1 = x_0 + \Delta x$ , если:
  - a)  $\Delta x = 0.44$ ;

**B)**  $\triangle x = 0,21;$ 

6)  $\Delta x = -0.19$ ;

- r)  $\Delta x = 0.1025$ .
- **39.39.** По графику функции, представленному на рисунке, найдите приращение аргумента и приращение функции при переходе от точки  $x_0$  к точке  $x_1$ :
  - а) рис. 83;

б) рис. 84.



Puc. 83

Puc. 84

- **039.40.** Найдите приращение функции  $y = 4x^2 x$  при переходе от точки x к точке  $x + \Delta x$ :
  - a) x = 0,  $\triangle x = 0.5$ ;
- B) x = 0,  $\triangle x = -0.5$ ;
- 6) x = 1,  $\Delta x = -0.1$ ;
- r) x = 1,  $\triangle x = 0.1$ .
- 039.41. Найдите приращение функции y = f(x) при переходе от точки x к точке  $x + \Delta x$ , если:

a) 
$$f(x) = 3x + 5$$
;

$$\mathbf{B})\ f(x)=\mathbf{4}-2x;$$

$$6) f(x) = -x^2;$$

$$\mathbf{r}) \ f(x) = 2x^2.$$

- 039.42. Вычислите, чему равно отношение приращения функцим  $y = x^2 4x + 1$  к приращению аргумента при переходе от точки  $x_0 = 2$  к точке:
  - a) x = 2.1;

B) x = 2.5;

6) x = 1.9:

- r) x = 1.5.
- **39.43.** Для функции y = f(x) найдите  $\Delta f$  при переходе от точки x к точке  $x + \Delta x$ , если:
  - a) f(x) = kx + m;
- $\mathbf{B})\ f(x)=\frac{1}{x};$

6)  $f(x) = ax^2$ ;

 $\mathbf{r}) \ f(x) = \sqrt{x}.$ 

- $_{\text{O}}$ 39.44. Для функции y=f(x) найдите  $\frac{\Delta f}{\Delta x}$  при переходе от точки x к точке  $x+\Delta x$ , если:
  - a) f(x) = hx + b; 6)  $f(x) = ax^2$ ; B)  $f(x) = \frac{1}{x}$ ; r)  $f(x) = \sqrt{x}$ .
- $\bigcirc$ 39.45. Для функции y=f(x) найдите  $\lim_{\Delta x\to 0} \frac{\Delta f}{\Delta x}$  при переходе от точки x к точке  $x+\Delta x$ , если:
  - a) f(x) = kx + b; b)  $f(x) = ax^2$ ; b)  $f(x) = \frac{1}{x}$ ; r)  $f(x) = \sqrt{x}$ .

#### § 40. Определение производной

- 40.1. Закон движения точки по прямой задается формулой s(t) = 2t + 1, где t время (в секундах), s(t) отклонение точки в момент времени t (в метрах) от начального положения. Найдите среднюю скорость движения точки с момента  $t_1 = 2$  с до момента:
  - a)  $t_2 = 3 c$ ;

B)  $t_2 = 2.1 c$ ;

6)  $t_2 = 2.5 c$ ;

r)  $t_2 = 2.05$  c.

Вычислите мгновенную скорость точки в момент  $t=2\,\mathrm{c.}$ 

- 40.2. Закон движения точки по прямой задается формулой  $s(t) = t^2$ , где t время (в секундах), s(t) отклонение точки в момент времени t (в метрах) от начального положения. Найдите среднюю скорость движения точки с момента  $t_1 = 0$  с до момента:
  - a)  $t_2 = 0.1 c$ ;

- B)  $t_2 = 0.2 c$ ;
- 6)  $t_2 = 0.01 c$ ;
- r)  $t_2 = 0.001$  c.

Вычислите мгновенную скорость точки в момент  $t=1\,{\rm c.}$ 

- 40.3. Закон движения точки по прямой задается формулой  $s(t) = 2t^2 + t$ , где t время (в секундах), s(t) отклонение точки в момент времени t (в метрах) от начального положения. Найдите среднюю скорость движения точки с момента  $t_1$ = 0 с до момента:
  - a)  $t_2 = 0.6 c$ ;

B)  $t_2 = 0.5 c$ ;

6)  $t_2 = 0.2 c$ ;

r)  $t_2 = 0.1 c$ .

Вычислите мгновенную скорость точки в момент  $t=1\,\mathrm{c.}$ 

- $\circ$ 40.4. Закон движения точки по прямой задается формулой s=s(t), где t время (в секундах), s(t) отклонение точки в момент времени t (в метрах) от начального положения. Найдите мгновенную скорость движения точки, если:
  - a) s(t) = 4t + 1;
- $\mathbf{B}) \ s(t) = 3t + 2;$
- $6) \ s(t)=t^2-t;$
- $\mathbf{r}) \ s(t) = t^2 2t.$

- **40.5.** Функция y = f(x) задана своим графиком. Определите зна чения  $f'(x_1)$  и  $f'(x_2)$ , если график функции изображен:
  - а) на рис. 85;

в) на рис 87;

б) на рис. 86;

г) на рис. 88.





Puc. 85

Puc. 86





- **40.6.** Функция y = f(x) задана своим графиком (рис. 89). Сравните значения производной в указанных точках:
  - a) f'(-7)  $\mu f'(-2)$ ;
- в) f'(-9) и f'(0);
- б) f'(-4) и f'(2);
- г) f'(-1) и f'(5).



Puc. 89

- 40.7. Функция y = f(x) задана своим графиком (рис. 89). Укажите два значения аргумента  $x_1$  и  $x_2$ , при которых:
- a)  $f'(x_1) > 0$ ,  $f'(x_2) > 0$ ; B)  $f'(x_1) < 0$ ,  $f'(x_2) < 0$ ; 5)  $f'(x_1) < 0$ ,  $f'(x_2) < 0$ ; r)  $f'(x_1) > 0$ ,  $f'(x_2) < 0$ .
- 40.8. Функция  $y = \varphi(x)$  задана своим графиком (рис. 90). Укажите несколько значений аргумента, для которых:
  - a)  $\varphi'(x) > 0$ ;

- B)  $\varphi'(x) < 0$ ;
- б)  $\varphi'(x) < 0$  и x > 0:
- г)  $\varphi'(x) > 0$  и x < 0.



Puc. 90

Воспользовавшись определением, найдите производную функции в точке х:

**•40.9.** a) 
$$y = x^2 + 2x$$
;

B) 
$$3x^2 - 4x$$
:

6) 
$$y = \frac{1}{x}$$
;

$$\mathbf{r}) \ y = \frac{4}{x}.$$

**•40.10.** a) 
$$y = \sqrt{x}$$
;

$$\mathbf{B}) \ y = \sqrt{x} + 1;$$

6) 
$$y = \frac{1}{r^2}$$
;

$$\mathbf{r)} \ y = x^3.$$

Воспользовавшись определением, найдите производную функции в точке  $x_0$  или докажите, что она не существует:

●40.11. a) 
$$y = \begin{cases} 3x, \text{ если } x \ge 0, \\ -2x + 3, \text{ если } x < 0; \end{cases}$$
  $x_0 = 0.$ 

б) 
$$y = \begin{cases} 2x^2, \text{ если } x \ge 0, \\ -2x^2, \text{ если } x < 0; \end{cases} x_0 = 0.$$

в) 
$$y = \begin{cases} -4x + 2, \text{ если } x \ge 3, \\ 2x - 4, \text{ если } x < 3; \end{cases}$$
  $x_0 = 3.$ 

г) 
$$y = \begin{cases} x^2, \text{ если } x \leq 1, \\ 2x - 1, \text{ если } x > 1; \end{cases}$$
  $x_0 = 1.$ 

**•40.12.** a) 
$$y = |x + 4|, x_0 = -4;$$

6) 
$$y = -3x|x|$$
,  $x_0 = 0$ ;

B) 
$$y = 2x|x|, x_0 = 0$$
;

$$\Gamma) \ y = (x-1)|x-1|, \ x_0 = 1.$$

40.13. Найдите скорость изменения функции в точке х:

a) 
$$y = 9.5x - 3$$
;

B) 
$$y = 6.7x - 13$$
;

6) 
$$y = -16x + 3$$
;

r) 
$$u = -9x + 4$$
.

**040.14.** Найдите скорость изменения функции y = f(x) в указав. ной точке:

a) 
$$f(x) = x^2$$
,  $x_0 = 2$ ;

B) 
$$f(x) = x^2, x_0 = -2;$$

$$6) f(x) = \frac{1}{x}, x$$

040.15. Закон движения точки по прямой задается формулой  $s(t) = t^2$ , где t — время (в секундах), s(t) — отклонение точки в момент времени t (в метрах) от начального положения. Найдите скорость и ускорение (скорость изменения скорости) в момент времени t, если:

a) 
$$t = 1$$
 c;

6) 
$$t = 2.1 c$$
;

B) 
$$t = 2 c$$
;

r) 
$$t = 3.5$$
 c.

040.16. Закон движения некоторой точки по прямой задается формулой  $s(t) = t^2 + t$ , где t — время (в секундах), s(t) отклонение точки в момент времени t (в метрах) от начального положения. Найдите скорость и ускорение в момент времени t, если:

a) 
$$t = 1 c$$
;

6) 
$$t = 2,1$$
 c

$$\mathbf{B}) \ t = 2 \ \mathbf{c}$$

6) 
$$t = 2.1$$
 c; B)  $t = 2$  c; r)  $t = 3.5$  c.

#### § 41. Вычисление производных

Найдите производную функции:

**41.1.** a) 
$$y = 7x + 4$$
;

B) 
$$y = -6x + 1$$
;

6) 
$$y = x^2$$
;

$$\mathbf{r}) \ y = \frac{1}{x}.$$

**41.2.** a) 
$$y = x^5$$
;

B) 
$$y = x^4$$
;

6) 
$$y = x^{10}$$
;

r) 
$$y = x^{201}$$
.

**41.3.** a) 
$$y = \sin x$$
;

$$\mathbf{B}) \ y = \cos x;$$

6) 
$$y = \sqrt{x}$$
;

r) 
$$y = x^{10}$$
.

**41.4.** a) 
$$y = \operatorname{tg} x$$
;

$$\mathbf{B}) \ y = \mathbf{tg} \ x + \mathbf{4};$$

6) 
$$y = \operatorname{ctg} x$$
;

$$\mathbf{r}) \ y = \operatorname{ctg} x + 8.$$

**41.5.** a) 
$$y = x^2 - 7x$$
;

6) 
$$y = -3x^2 - 13x$$
:

**41.6.** a) 
$$y = x^3 + 2x^5$$
;

41.6. a) 
$$y = x^{\circ} + 2x^{\circ}$$
;

6) 
$$y = x^4 - x^9$$
;

41.7. a) 
$$y = 12x + \sqrt{x}$$
;

6) 
$$y = -2x^2 - \frac{1}{x}$$
;

41.8. a) 
$$y = 6\sqrt{x} + \frac{3}{x}$$
;

6) 
$$y = -2\sqrt{x} - \frac{1}{x}$$
;

41.9. a) 
$$y = \cos x + 2x$$
;

$$6) y = 3 \sin x + \cos x;$$

41.10. a) 
$$y = \frac{1}{3} \sin x - 3 \cot x$$
;

6) 
$$y = 2 \log x + \sqrt{3} \cos x$$
;

41.11. a) 
$$u = x^5 + 9x^{20} + 1$$
:

6) 
$$y = x^7 - 4x^{16} - 3$$
:

41.12. a) 
$$y = (x^2 - 1)(x^4 + 2)$$
;

6) 
$$y = (x^2 + 3)(x^6 - 1)$$
;

41.13. a) 
$$y = \sqrt{x}(2x-4)$$
;

6) 
$$y = (x^3 + 1) \cdot \sqrt{x}$$
;

**41.14.** a) 
$$y = x \cdot \sin x$$
;

6) 
$$y = \sqrt{x} \cdot \cos x$$
;

**041.15.** a) 
$$y = \left(\frac{1}{x} + 1\right)(2x - 3);$$

6) 
$$y = \left(7 - \frac{1}{x}\right)(6x + 1);$$

$$^{\circ}41.16$$
, a)  $y = x^8 \cdot tg x$ ;

6) 
$$y = \cos x \cdot \operatorname{ctg} x$$
;

B) 
$$y = 7x^2 + 3x$$
;

F) 
$$u = -x^2 + 8x$$
.

B) 
$$y = x^3 + 4x^{100}$$
;

$$\mathbf{r}) \ y = x^4 - 7x^9.$$

B) 
$$y = \sqrt{x} - 5x^2$$
;

$$\mathbf{r}) \ y = 10x^2 + \frac{1}{x}.$$

$$\mathbf{B}) \ y = 10\sqrt{x} + \frac{5}{x};$$

$$\mathbf{r}) y = -8\sqrt{x} - \frac{1}{x}.$$

$$\mathbf{B})\ y=\sin\,x-3x;$$

$$r) y = 2\cos x + \sin x.$$

$$B) y = \frac{\cos x}{5} + 1.4 \operatorname{ctg} x;$$

$$\mathbf{r}) \ y = 6 \ \mathbf{tg} \ x - \sin x.$$

B) 
$$y = x^6 + 13x^{10} + 12$$
:

r) 
$$y = x^9 - 6x^{21} - 36$$
.

B) 
$$y = (x^2 + 3)(x^4 - 1)$$
;

r) 
$$y = (x^2 - 2)(x^7 + 4)$$
.

B) 
$$y = \sqrt{x}(8x - 10);$$

$$\mathbf{r}) \ y = \sqrt{x} \cdot (x^4 + 2).$$

B) 
$$u = x \cdot \cos x$$
:

$$\mathbf{r}) \ y = \sqrt{x} \cdot \sin x.$$

B) 
$$y = \left(\frac{1}{x} + 8\right)(5x - 2);$$

r) 
$$y = \left(9 - \frac{1}{x}\right)(3x + 2)$$
.

$$\mathbf{B}) \ y = \frac{1}{x} \cdot \operatorname{ctg} x;$$

r) 
$$y = \sin x \cdot \log x$$
.

Найдите производную функции:

**041.17.** a) 
$$y = (x - 1)(x^2 + x + 1)$$
;

B) 
$$y = (x + 1)(x^2 - x + 1)$$
;  
F)  $y = (x^2 - 3x + 9)(x + 3)$ .

6) 
$$y = (x^2 + 2x + 4)(x - 2);$$

r) 
$$y = (x^2 - 3x + 9)(x + 3)$$

**041.18.** a) 
$$y = \frac{x^3}{2x+4}$$
;

$$\mathbf{B}) \ y = \frac{x^2}{3-4x};$$

$$6) \ y = \frac{x^2}{x^2 - 1};$$

$$\mathbf{r}) \ y = \frac{x}{x^2 + 1}.$$

**041.19.** a) 
$$y = \frac{3\sqrt{x}}{2x+9}$$
;

B) 
$$y = \frac{-2\sqrt{x}}{8-3x}$$
;

6) 
$$y = \frac{\sin x}{x}$$
;

$$\mathbf{r)} \ y = \frac{\cos x}{x}.$$

**041.20.** a) 
$$y = \frac{x^9 - 3}{x^3}$$
;

B) 
$$y = \frac{x^5 + x}{x^5 - 1}$$
;

6) 
$$y = \frac{x^{15}}{x^{10} + 1}$$
;

$$\mathbf{r)} \ y = \frac{x^{13}}{x^4 - 2}.$$

$$y = \cos^2 3x + \sin^2 3x$$

6) 
$$y = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$
;

$$\mathbf{r}) \ y = -\sin \frac{x}{2} \cos \frac{x}{2}.$$

 $041.22. a) y = \sin 2x \cos x - \cos 2x \sin x;$ 

6) 
$$y = \sin \frac{x}{3} \cos \frac{2x}{3} + \cos \frac{x}{3} \sin \frac{2x}{3}$$
;

B)  $y = \cos 3x \cos 2x + \sin 3x \sin 2x$ ;

r) 
$$y = \cos \frac{x}{5} \cos \frac{4x}{5} - \sin \frac{x}{5} \sin \frac{4x}{5}$$
.

Найдите значение производной заданной функции в точке 🗱

**41.23.** a) 
$$y = \sqrt{x}$$
,  $x_0 = 4$ ;

B) 
$$y = -3x - 11$$
,  $x_0 = -3$ ;

6) 
$$y = x^2$$
,  $x_0 = -7$ ;

r) 
$$y = \frac{1}{r}$$
,  $x_0 = 0.5$ .

**41.24.** a) 
$$y = \sin x$$
,  $x_0 = -\frac{\pi}{2}$ ;

B) 
$$y = \cos x$$
,  $x_0 = -3\pi$ ;

6) 
$$y = \cos x, \ x_0 = \frac{\pi}{6};$$

r) 
$$y = \sin x$$
,  $x_0 = 0$ .

**41.25.** a) 
$$y = 6x - 9$$
,  $x_0 = 3$ ;

B) 
$$y = 5x - 8$$
,  $x_0 = 2$ ;

6) 
$$y = x^3 - 3x + 2$$
,  $x_0 = -1$ ;

$$\mathbf{r}) y = x^2 + 3x - 4, x_0 = 1$$

41.26. a) 
$$y = \frac{2}{x} - \frac{x}{2}$$
,  $x_0 = 4$ ; b)  $y = \frac{8}{x} - \frac{x^3}{3}$ ,  $x_0 = 1$ ;

$$y = \frac{8}{x} - \frac{x^3}{3}, \ x_0 = 1;$$

$$y = \sqrt{x} + 5x, x_0 = 4.$$

41.27. a) 
$$y = 2 \sin x - 13 \cos x$$
,  $x_0 = \frac{\pi}{2}$ ;

6) 
$$y = -\cos x + \frac{1}{\pi}x^2$$
,  $x_0 = \frac{\pi}{6}$ ;

B) 
$$y = -\sin x - 3$$
,  $x_0 = \frac{\pi}{3}$ ;

r) 
$$y = 4 \cos x + x\sqrt{2}$$
,  $x_0 = \frac{\pi}{4}$ .

**41.28.** a) 
$$y = \operatorname{tg} x + \sqrt{\pi} \cdot \sqrt{x}$$
,  $x_0 = \frac{\pi}{4}$ ;

6) 
$$y = 2 \cot x - 3 \tan x$$
,  $x_0 = \frac{\pi}{3}$ ;

B) 
$$y = \operatorname{ctg} x + \frac{\pi^2}{x}$$
,  $x_0 = -\frac{\pi}{6}$ ;

r) 
$$y = (2x + 3)^2 - 4 \operatorname{tg} x$$
,  $x_0 = 0$ .

041.29. a) 
$$y = \frac{\sin x}{r}$$
,  $x_0 = \frac{\pi}{2}$ ;

$$B) y = \frac{\cos x}{x}, x_0 = \pi;$$

6) 
$$y = \frac{x+1}{x-1}$$
,  $x_0 = 2$ ;

6) 
$$y = \frac{x+1}{x-1}$$
,  $x_0 = 2$ ;  $y = \frac{2x}{x+1}$ ,  $x_0 = 0$ .

041.30. Докажите, что производная заданной функции принимает положительные значения при всех допустимых значениях аргумента:

a) 
$$y = 3x + 12$$
;

$$\mathbf{B}) \ y = -2\sin x + 4x;$$

6) 
$$y = 2x^3 + 15x$$
;

$$\mathbf{r}) \ y = 3x - 1.5 \cos x.$$

041.31. Докажите, что производная заданной функции принимает отрицательные значения при всех допустимых значениях аргумента:

a) 
$$y = \frac{1}{x^5} - 1.5x$$
;

$$\mathbf{B})\ y=1,4\cos x-3x;$$

6) 
$$y = -\sqrt{x} + 14$$
;

$$\mathbf{r)} \ y = \frac{12}{x^7} + 29.$$

- 041.32. а) Найдите те значения аргумента, при которых производная функции  $u = x^3 - 3x$  принимает положительные значения:
  - б) найдите те значения аргумента, при которых производная функции  $y = x^5 - \frac{5}{4}x^4$  принимает отрицательные значения;
  - в) найдите те значения аргумента, при которых производная функции  $y = \sqrt{x} + x$  принимает неотрицательные значения;
  - г) найдите те значения аргумента, при которых производная функции  $y = 7\cos x + 12$  принимает неположитель. ные значения.

Найдите скорость изменения функции в точке  $x_0$ :

**41.33.** a) 
$$y = x^2$$
,  $x_0 = -0.1$ ; B)  $y = \sqrt{x}$ ,  $x_0 = 9$ ;

B) 
$$y = \sqrt{x}, x_0 = 9$$

6) 
$$y = \frac{1}{x}$$
,  $x_0 = -2$ ;

$$\mathbf{r}) \ y = \cos x, \ x_0 = \pi.$$

**041.34.** a) 
$$y = x^3 + 2x$$
,  $x_0 = 2$ ;

B) 
$$y = \frac{1}{x} \left( \frac{4}{x} - 2 \right), x_0 = -0.5;$$

6) 
$$y = (\sqrt{x+1})\sqrt{x}, x_0 = 1$$

6) 
$$y = (\sqrt{x+1})\sqrt{x}$$
,  $x_0 = 1$ ;  $y = 2 \sin x - 4x$ ,  $x_0 = \frac{\pi}{4}$ .

**ullet41.35.** Существует ли производная заданной функции в точке  $x_0$ ? Если да, то вычислите ее:

a) 
$$y = |x - 2|(x - 2), x_0 = 2;$$

6) 
$$y = (x + 2)|x + 2|, x_0 = -2.$$

•41.36. Существует ли производная заданной функции в указавных точках? Если да, то найдите значения производных:

a) 
$$y = x^2 - 5|x| + 6$$
,  $x_0 = 2$ ,  $x_1 = 3$ ,  $x_2 = 0$ ;

6) 
$$y = |x^2 - 5|x| + 6|$$
,  $x_0 = -2$ ,  $x_1 = 0$ ,  $x_2 = 2.5$ .

Найдите угловой коэффициент касательной к графику функции y = f(x) в точке с абсциссой  $x_0$ :

**41.37.** a) 
$$f(x) = x^2$$
,  $x_0 = -4$ ; B)  $f(x) = \frac{1}{x}$ ,  $x_0 = \frac{1}{2}$ ;

B) 
$$f(x) = \frac{1}{x}$$
,  $x_0 = \frac{1}{2}$ ;

6) 
$$f(x) = \frac{1}{x}$$
,  $x_0 = -\frac{1}{3}$ ; r)  $f(x) = x^2$ ,  $x_0 = 2$ .

$$f(x) = x^2, \ x_0 = 2.$$

41.38. a) 
$$f(x) = \sin x$$
,  $x_0 = \frac{\pi}{3}$ ; B)  $f(x) = \cos x$ ,  $x_0 = \frac{\pi}{3}$ ;

6) 
$$f(x) = \cos x$$
,  $x_0 = -\frac{\pi}{4}$ ; r)  $f(x) = \sin x$ ,  $x_0 = -\frac{\pi}{6}$ .

Определите абсциссы точек, в которых угловой коэффициент касательной к графику функции y=f(x) равен k, если:

O41.39. a) 
$$f(x) = \sqrt{x} - x$$
,  $h = 1$ ;  
6)  $f(x) = \sqrt{x} + 3x$ ,  $k = 4$ .

041.40. a) 
$$f(x) = \sin \frac{x}{2} \cos \frac{x}{2}$$
,  $k = -\frac{\sqrt{2}}{4}$ ;

6) 
$$f(x) = \cos^2 \frac{x}{2}$$
,  $k = \frac{1}{2}$ .

Найдите тангенс угла между касательной к графику функции y = f(x) в точке с абсциссой  $x_0$  и осью x:

41.41. a) 
$$f(x) = x^6 - 4x$$
,  $x_0 = 1$ ;

6) 
$$f(x) = \sqrt{x} - 3$$
,  $x_0 = \frac{1}{4}$ ;

B) 
$$f(x) = -x^5 - 2x^2 + 2$$
,  $x_0 = -1$ ;

r) 
$$f(x) = \frac{25}{x} + 2$$
,  $x_0 = \frac{5}{4}$ .

$$941.42. a) f(x) = 10 - \cos x, x_0 = \frac{3\pi}{2};$$

6) 
$$f(x) = 2 \operatorname{tg} x$$
,  $x_0 = \frac{\pi}{4}$ ;

B) 
$$f(x) = 4 - \sin x$$
,  $x_0 = 6\pi$ ;

F) 
$$f(x) = -4 \operatorname{etg} x$$
,  $x_0 = -\frac{\pi}{4}$ .

**041.43.** a) 
$$f(x) = x^2 \sin x$$
,  $f\left(\frac{\pi}{2}\right) = ?$ 

6) 
$$f(x) = x(1 + \cos x)$$
,  $f'(\pi) = ?$ 

B) 
$$f(x) = \sqrt{3} \sin x + \frac{x^2}{\pi} + x \sin \frac{\pi}{6}$$
,  $f'(\frac{\pi}{6}) = ?$ 

r) 
$$f(x) = \sqrt{3} \cos x - x \cos \frac{\pi}{6} + \frac{x^2}{\pi}, \ f(\frac{\pi}{3}) = ?$$

- 041.44. Определите абсциссы точек, в которых касательная к гра. фику функции y = h(x) образует с положительным направ. лением оси абсцисс заданный угол а:
  - a)  $f(x) = x^2 3x + 19$ ,  $\alpha = 45^\circ$ ;
  - 6)  $f(x) = \frac{4}{x+2}$ ,  $\alpha = 135^{\circ}$ .
- О41.45. Определите абсциссы точек, в которых касательная к графику функции y = h(x) образует острый угол с положительным направлением оси х, если:
  - a)  $h(x) = x^3 3x^2 + 1$ ; B)  $h(x) = x^3 x^4 19$ ; 6)  $h(x) = 4\sqrt{x} x$ ; F) h(x) = tg x 4x.
  - 6)  $h(x) = 4\sqrt{x} x$ :
- 041.46. Определите абсциссы точек, в которых касательная к графику функции  $y = \phi(x)$  образует тупой угол с положительным направлением оси х, если:
  - a)  $\phi(x) = \sin x + 3$ ;
  - 6)  $\varphi(x) = 0.2x^5 3\frac{1}{2}x^3 + 9x$ ;
  - $\mathbf{B}) \ \mathbf{\Phi}(x) = \mathbf{ctg} \ x + 9x;$
  - r)  $\varphi(x) = x^4 \frac{1}{3}x^3 + 21$ .
- 041.47. При каких значениях а касательные к графикам функций y = f(x), y = h(x) в точке x = a не имеют общих точек:

  - a)  $f(x) = x^7$ ,  $h(x) = x^8$ ; 6)  $f(x) = x^2 + x + 3$ ,  $h(x) = x^8$ ?
- 041.48. a) При каких значениях x выполняется равенство f(x) = 2, если известно, что  $f(x) = 2\sqrt{x} - 5x + 3$ ?
  - б) При каких значениях x выполняется равенство f'(x) = 1, если известно, что  $f(x) = 3x - \sqrt{x} + 13$ ?

Решите неравенство f'(x) < 0:

**041.49.** a) 
$$f(x) = x^3 - 4^4$$
;

6) 
$$f(x) = \frac{1}{5}x^5 - \frac{5}{3}x^3 + 6x$$
.

**041.50.** a) 
$$f(x) = \sin 2x$$
;

$$6) f(x) = -4\cos x + 2x.$$

Решите неравенство f'(x) > 0:

**041.51.** a) 
$$f(x) = x^3 + x^4$$
;

$$6) f(x) = \frac{4}{2-5x}.$$

**C41.52.** a) 
$$f(x) = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
;

$$6) f(x) = \sin^2 \frac{x}{2}.$$

При каких значениях аргумента скорость изменения функции y = f(x) равна скорости изменения функции y = g(x):

$$\bigcirc 41.53.$$
 a)  $f(x) = \frac{1}{3}x^3 - x^2$ ,  $g(x) = 7.5x^2 - 16x$ ;

6) 
$$f(x) = \sqrt{x}, g(x) = \frac{-1}{x}$$
?

$$041.54$$
. a)  $f(x) = \cos x$ ,  $g(x) = \sin x$ ;

6) 
$$f(x) = \lg x$$
,  $g(x) = -\operatorname{ctg} x$ ?

041.55. При каких значениях аргумента скорость изменения функции y = g(x) больше скорости изменения функции y = h(x):

a) 
$$g(x) = x^3 - 3x^2$$
,  $h(x) = 1.5x^2 - 9$ ;

6) 
$$g(x) = \lg x$$
,  $h(x) = 4x - 81$ ?

041.56. Найдите значения аргумента, удовлетворяющие условию  $f'(x) \approx g'(x)$ , если:

a) 
$$f(x) = \frac{6}{5x - 9}$$
,  $g(x) = \frac{3}{7 - 5x}$ ;

6) 
$$f(x) = \operatorname{ctg} x$$
,  $g(x) = 2x + 15$ .

041.57. Найдите значения аргумента, удовлетворяющие условию  $f'(x) \leq g'(x)$ , если:

a) 
$$f(x) = \sin x \cdot \cos x$$
,  $g(x) = \frac{1}{2}x + 61$ ;

6) 
$$f(x) = x \cos x, g(x) = \sin x.$$

**41.58.** Укажите, какой формулой можно задать функцию y = f(x), если:

a) 
$$f'(x) = 2x$$
;

B) 
$$f'(x) = 3$$
;

$$6) f'(x) = \cos x;$$

$$\mathbf{r})\ f'(x) = -\sin x.$$

041.59. Известна производная функции y = f'(x). Укажите, какой формулой можно задать функцию y = f(x), если:

a) 
$$f'(x) = 3x^2 + 2x$$
;

B) 
$$f'(x) = 5x^4 - 1$$
;

6) 
$$f'(x) = -\frac{7}{x^2}$$
;

$$r) f'(x) = \frac{9}{2\sqrt{x}}?$$

- **•41.60.** Задайте аналитически функцию y = f(x), если графиком ее производной является:
  - а) парабола (рис. 100);
- б) ломанная (рис. 104).

- **041.61.** а) При каких значениях x верно равенство  $y' \cdot y + y^2 = 0$ , если  $y = 2 \sin x$ ?
  - б) При каких значениях x верно равенство  $y^2 + (y')^2 = 1$ , если  $y = \sqrt{x}$ ?
- •41.62. При каких значениях a и b функция

$$y = \begin{cases} 2x - 3, \text{ если } x \le 1, \\ x^2 + ax + b, \text{ если } x > 1 \end{cases}$$

- а) непрерывна на всей числовой прямой;
- б) дифференцируема на всей числовой прямой?
- •41.63. При каких значениях a и b функция

$$y = \begin{cases} \frac{x^2 + 3}{4}, \text{ если } x \leq -1, \\ ax^3 + bx, \text{ если } x > -1: \end{cases}$$

- а) непрерывна на всей числовой прямой;
- б) дифференцируема на всей числовой прямой?
- 041.64. Найдите вторую производную функции:
  - $a) y = x^4 + 2x;$

 $\mathbf{B})\ y = \sin x + 1;$ 

6)  $y = x^5 - 3x$ :

- $\mathbf{r}) \ y = 2\cos x 4.$
- 041.65. Найдите f'''(0), если:
  - a)  $y = 2x^3 x^2$ ;
- $\mathbf{B})\ y = 4\sin x \cos x;$
- $6) y = x + \cos x;$
- $\mathbf{r}) \ y = \sin x + \cos x.$
- 041.66. Тело движется по прямой согласно закону  $x(t) = \frac{t^4}{4} \frac{t^3}{3} 6t^2 + 2t + 1$  (где t время (в секундах), x(t) координата (в метрах)). Найдите:
  - а) ускорение движения в момент времени t = 3 c;
  - б) силу, действующую на тело массой 1 г в момент времени t=3 с.
- **041.67.** а) При каких значениях x верно равенство y'' + y' y = 0, если  $y = 3 \cos x$ ?
  - б) При каких значениях x верно равенство  $(y'')^2 + 2y' = y^2 + 1$ , если  $y = \sin x$ ?
- **041.68.** а) Докажите, что функция  $y = x \sin x$  удовлетворяет соотвот шению  $y'' + y \approx 2 \cos x$ ;
  - б) докажите, что при любых значениях a и b функция  $y = a \sin x + b \cos x$  удовлетворяет соотношению y'' + y = 0.

О41.69. Строится мост параболической формы, соединяющий пункты А и В, расстояние между которыми равно 200 м. Въезд на мост и съезд с моста должны быть прямолинейными участками пути, эти участки направлены к горизонту под углом 15°. Указанные прямые должны быть касательными к параболе. Составьте уравнение профиля моста в заданной системе координат (рис. 91).



Puc. 91

•41.70. а) При каких значениях параметра a касательные к графику функции  $y = 4x^2 - |a|x$ , проведенные в точках его пересечения с осью x, образуют между собой угол 60°? б) При каких значениях параметра a касательные к графику функции  $y = x^2 + |a|x$ , проведенные в точках его пересечения с осью x, образуют между собой угол 45°?

### § 42. Дифференцирование сложной функции. Дифференцирование обратной функции

Найдите производную функции:

Найдите производную функции:

**042.4.** a) 
$$y = \cos^2 x - \sin^2 x$$
;

B)  $y = 1 - 2\sin^2 3x$ ;

6) 
$$y = 2 \sin x \cdot \cos x$$
;

 $\mathbf{r}) \ u = \sin^2 3x + \cos^2 3x.$ 

**042.5.** a)  $y = \sin 3x \cos 5x + \cos 3x \sin 5x$ ;

6) 
$$y = \cos 4x \cos 6x - \sin 4x \sin 6x$$
;

B)  $y = \sin 7x \cos 3x - \cos 7x \sin 3x$ ;

r) 
$$y = \cos \frac{x}{3} \cdot \cos \frac{x}{6} + \sin \frac{x}{3} \cdot \sin \frac{x}{6}$$
.

**042.6.** a) 
$$y = (1 - x^3)^5$$
;

B) 
$$y = \frac{1}{(x^2 - 7x + 8)^2}$$
;

6) 
$$y = \sqrt{x^3 + 3x^2 - 2x + 1}$$
;

$$\mathbf{r)} \ y = \sqrt{\frac{x^2 - 1}{x^2 + 5}}.$$

**042.7.** a) 
$$y = \sin^3 x$$
;

$$\mathbf{B}) \ y = \mathbf{t}\mathbf{g}^5 \ x;$$

6) 
$$y = \sqrt{\operatorname{ctg} x}$$
;

$$\Gamma) y = \operatorname{tg}(x + x^3).$$

**42.8.** a) 
$$y = \sqrt{1-x^2} + \cos^3 x$$
;

$$\mathbf{B}) \ y = \sin^2 x \cdot \cos \sqrt{x};$$

6) 
$$y = \frac{\sqrt{\lg x}}{x^2 + 1}$$
;

$$\mathbf{r)} \ y = \frac{\sqrt{\cot x}}{x^3}.$$

Найдите значение производной функции в точке  $x_0$ :

**042.9.** a) 
$$y = (3x - 2)^7$$
,  $x_0 = 3$ ; b)  $y = (4 - 5x)^7$ ,  $x_0 = 1$ ;

B) 
$$y = (4 - 5x)^7$$
,  $x_0 = 1$ ;

6) 
$$y = \sqrt{25 - 9x}$$
,  $x_0 = 1$ ;  $y = \sqrt{7x + 4}$ ,  $x_0 = 3$ .

r) 
$$y = \sqrt{7}x + 4$$
,  $x_0 = 3$ .

**042.10.** a) 
$$y = \sin\left(2x - \frac{\pi}{3}\right), x_0 = \frac{\pi}{6}$$
;

6) 
$$y = \operatorname{etg}\left(\frac{\pi}{3} - x\right), x_0 = \frac{\pi}{6}$$
;

$$y = \cos\left(\frac{\pi}{3} - 4x\right), x_0 = \frac{\pi}{8};$$

r) 
$$y = \text{tg}\left(3x - \frac{\pi}{4}\right), \ x_0 = \frac{\pi}{12}.$$

**042.11.** a) 
$$y = (x^2 - 3x + 1)^7$$
,  $x_0 = 1$ ;

6) 
$$y = \sqrt{\frac{x+1}{x+4}}, x_0 = 0;$$

B) 
$$y = \sqrt{(x-1)(x-4)}, x_0 = 0;$$

$$\mathbf{r}) \ y = \left(\frac{x^2 + 1}{x^2 + 3}\right)^3, \ x_0 = 1.$$

$$_{O4}2.12.$$
 a)  $y = tg^3 x$ ,  $x_0 = \frac{\pi}{4}$ ;

B) 
$$y = \cos x^3$$
,  $x_0 = 0$ ;

6) 
$$y = \sin \sqrt{x}$$
,  $x_0 = \frac{\pi^2}{36}$ ;

r) 
$$y = \operatorname{ctg}^2 x - 1$$
,  $x_0 = \frac{\pi}{4}$ .

Вычислите скорость изменения функции в точке  $x_0$ :

$$_{04}2.13. a) y = (2x + 1)^{5}, x_{0} = -1;$$

B) 
$$y = \frac{4}{12x - 5}$$
,  $x_0 = 2$ ;

6) 
$$y = \sqrt{7x - 3}$$
,  $x_0 = 1$ ;

r) 
$$y = \sqrt{11 - 5x}$$
,  $x_0 = -1$ .

$$\bigcirc 42.14. \ a) \ y = \sin \left(3x - \frac{\pi}{4}\right), \ x_0 = \frac{\pi}{4};$$

6) 
$$y = \operatorname{tg} 6x$$
,  $x_0 = \frac{\pi}{24}$ ;

B) 
$$y = \cos\left(\frac{\pi}{3} - 2x\right), x_0 = \frac{\pi}{3};$$

$$\mathbf{r)} \ \ y = \operatorname{ctg} \ \frac{x}{3}, \ \ x_0 = \pi.$$

042.15. a) 
$$y = \sqrt{4x^2 - 20x + 25}$$
,  $x_0 = 3$ ;

6) 
$$y = \sqrt{\sin^2 x - 2\sin x + 1}$$
,  $x_0 = \frac{\pi}{3}$ ;

B) 
$$y = \sqrt{1 - 10x + 25x^2}$$
,  $x_0 = 1$ ;

r) 
$$y = \sqrt{1 - \cos x + \frac{1}{4} \cos^2 x}, \ x_0 = \frac{\pi}{4}.$$

**42.16.** a) 
$$y = (x - \sin x)^2$$
,  $x_0 = \pi$ ;

6) 
$$y = \sqrt{\frac{1 - \sin x}{\cos x}}, \ x_0 = \frac{\pi}{4};$$

B) 
$$y = \sqrt{(\sin x + 1)\cos x}, x_0 = \frac{\pi}{6}$$
;

r) 
$$y = (\operatorname{tg} x - 1)^4$$
,  $x_0 = \frac{\pi}{4}$ .

042.17. При каких значениях аргумента скорость изменения функции y = f(x) равна скорости изменения функции y = g(x):

a) 
$$f(x) = \cos 2x$$
,  $g(x) = \sin x$ ;

6) 
$$f(x) = \sin 6x$$
,  $g(x) = \cos 12x + 4$ ;

B) 
$$f(x) = \frac{2}{3} \sin 3x$$
,  $g(x) = \cos 2x$ ;

r) 
$$f(x) = \sqrt{x^2 - 2x}$$
;  $g(x) = 2\sqrt{x}$ ?

042.18. При каких значениях аргумента скорость изменения функ, пии y = g(x) больше скорости изменения функции y = h(x).

a) 
$$g(x) = \sin\left(3x - \frac{\pi}{6}\right) h(x) = 6x - 12;$$

6) 
$$g(x) = \cos\left(\frac{\pi}{4} - 2x\right), \ h(x) = 3 - \sqrt{2}x$$
?

042.19. Найдите тангенс угла между касательной к графику функции y = h(x) в точке с абсциссой  $x_0$  и осью x:

a) 
$$h(x) = \frac{18}{4x+1}$$
,  $x_0 = 0.5$ ;

B) 
$$h(x) = \sqrt{6-2x}, x_0 = 1;$$

6) 
$$h(x) = \cos^3 x$$
,  $x_0 = \frac{\pi}{6}$ ;

$$\mathbf{r})\ h(x)=\sqrt{\mathbf{tg}\ x},\ x_0=\frac{\pi}{4}.$$

042.20. Определите абсциссы точек, в которых угловой коэффициент касательной к графику функции y = f(x) равен a, если:

a) 
$$f(x) = \sin x \cdot \cos x$$
,  $h = -\frac{\sqrt{2}}{2}$ ;

6) 
$$f(x) = \cos^2 x$$
,  $k = \frac{1}{2}$ .

O42.21. Определите абсциссы точек, в которых угловой коэффициент касательной равен 0:

a) 
$$f(x) = tg^3 x$$
;

6) 
$$f(x) = \sin^2 x \cos 2x.$$

**042.22.** а) Найдите корни уравнения f'(x) = 0, принадлежащие отрезку [0, 2], если известно, что  $f(x) = \cos^2 x + 1 + \sin x$ .

б) Найдите корни уравнения f'(x) = 0, принадлежащие отрезку  $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ , если известно, что  $f(x) = \sin^2 x - \cos x - 1$ .

042.23. a) Дано:  $f(x) = a \sin 2x + b \cos x$ ,  $f'\left(\frac{\pi}{6}\right) = 2$ ,  $f'\left(\frac{9\pi}{2}\right) = -4$ . Чему равны a и b?

6) Дано:  $f(x) = a \cos 2x + b \sin 4x$ ,  $f'\left(\frac{7\pi}{12}\right) = 4$ ,  $f'\left(\frac{3\pi}{4}\right) = 2$ . Чему равны a + b?

042.24. Решите уравнение f'(x) = 0, если:

a) 
$$f(x) = \sqrt{\cos 2x}$$
;

$$\mathbf{B}) \ f(\mathbf{x}) = \sin^4 \mathbf{x};$$

6) 
$$f(x) = tg^2 x;$$

$$\mathbf{r}) \ f(x) = \cos^3 x - \sin^3 x.$$

**042.25.** Решите неравенство y' ≤ 0, если:

a) 
$$y = \frac{(1-3x)^3}{(2-7x)^5}$$
;

6) 
$$y = \frac{(2x+3)^4}{(2-5x)^6}$$
.

 $_{0}42.26$ . Решите неравенство g'(x) > 0, если:

a) 
$$g(x) = \frac{(2x-1)^4}{(3x+2)^5}$$
; 6)  $g(x) = \frac{(4-3x)^4}{(5x-4)^3}$ .

$$6) g(x) = \frac{(4-3x)^4}{(5x-4)^3}$$

 $_{\text{O}}42.27$ . Проверьте равенство g'(x) = f(x), если:

a) 
$$g(x) = (1 - x^2) \sin x^2 - \cos x^2$$
,  $f(x) = 2(x - x^3) \cos x^2$ ;

6) 
$$g(x) = (x^2 - 1.5) \cos 2x - x \sin 2x$$
,  $f(x) = (2 - 2x^2) \sin 2x$ .

о42.28. Найдите значения аргумента, удовлетворяющие условию f'(x) = g'(x), если:

a) 
$$f(x) = \sin(2x - 3)$$
,  $g(x) = \cos(2x - 3)$ ;

6) 
$$f(x) = \sqrt{3x - 10}$$
,  $g(x) = \sqrt{14 + 6x}$ .

042.29. Определите абсписсы точек, в которых касательные к графику функции y = h(x) образуют с положительным направлением оси абсцисс заданный угол ос:

a) 
$$h(x) = 2 \cdot \sqrt{2x - 4}$$
,  $\alpha = 60^{\circ}$ ;

6) 
$$h(x) = \sin\left(4x - \frac{\pi}{3}\right), \quad \alpha = 0^{\circ}.$$

Известна производная функции y = f'(x). Укажите, какой формулой можно задать функцию y = f(x):

**042.30.** a) 
$$f'(x) = 6(2x - 1)^2$$
;

6) 
$$f'(x) = -20(4 - 5x)^3$$
.

042.31. a) 
$$f'(x) = \frac{2}{(2x+3)^2}$$
;

6) 
$$f'(x) = \frac{5}{2\sqrt{5x-7}}$$
.

**042.32.** a) 
$$f'(x) = \sin\left(3x - \frac{\pi}{3}\right)$$
; 6)  $f'(x) = \frac{4}{\cos^2(5x - 1)}$ .

6) 
$$f'(x) = \frac{4}{\cos^2(5x-1)}$$

042.33. Найдите производную функции:

a) 
$$y = \arcsin 3x$$
;

B) 
$$y = (\arccos x)^3$$
;

6) 
$$y = \operatorname{arct} g x^2$$
;

$$\mathbf{r}) \ y = \mathbf{arcctg} \ \sqrt{x}.$$

**ullet42.34.** Найдите значение производной функции в точке  $x_0$ :

a) 
$$y = (\arccos x)^3$$
,  $x_0 = 0$ ;

6) 
$$y = \frac{2}{\sqrt{3}} \arctan \frac{2x+1}{\sqrt{3}}, x_0 = -1;$$

B) 
$$y = \arcsin \sqrt{x}, x_0 = \frac{1}{2};$$

r) 
$$y = \arccos \frac{2-x}{x\sqrt{2}}$$
,  $x_0 = 1$ .

042.35. Вычислите скорость изменения функции  $y={
m g}(x)$  в точке  $x_{
m c}$ 

a) 
$$g(x) = \arctan(1-3x), x_0 = \frac{1}{3}$$
;

6) 
$$g(x) = \arcsin \sqrt{x}$$
;  $x_0 = 0.25$ ;

B) 
$$g(x) = \arccos(2x - 3), x_0 = 1.5;$$

$$\Gamma) g(x) = \sqrt{\operatorname{arcctg} x}, \ x_0 = 0.$$

**042.36.** Найдите тангенс угла между касательной к графику функции y = h(x) в точке с абсциссой  $x_0$  и осью x:

a) 
$$h(x) = \arcsin(3x - 2), x_0 = \frac{2}{3}$$
;

6) 
$$h(x) = \arcsin x \cdot \arccos x$$
,  $x_0 = 0$ .

042.37. a) Решите уравнение f'(x) = 2, если  $f(x) = \arctan(2x)$ .

б) Найдите те значения x, при которых выполняется равенство  $(f'(x))^2 = \frac{1}{x}$ , где  $f(x) = 2 \arcsin \sqrt{x}$ .

•42.38. Решите неравенство  $(f'(x))^2 > 1$ , если:

a) 
$$f(x) = \arcsin 2x$$
;

6) 
$$f(x) = 2 \arccos \sqrt{x}$$
.

## § 43. Уравнение касательной к графику функции

43.1. Определите знак углового коэффициента касательной, проведенной к графику функции y = f(x), в точках с абсниссами a, b, c:

а) рис. 92;



Puc. 92

б) рис. 93;



Puc. 93

- 43.2. Укажите точки, в которых производная равна нулю и точки, в которых производная не существует, если график функции изображен на заданном рисунке:
  - а) рис. 94;
- б) рис. 95;
- в) рис. 96;
- г) рис. 97.





Puc. 94

Puc. 95





Puc. 96

Puc. 97

- 43.3. Найдите угловой коэффициент касательной, проведенной к графику функции y = f(x) в точке с абсциссой x = a, если:
  - a)  $f(x) = x^3 2x^2 + 3$ , a = -1;
  - 6)  $f(x) = \frac{x-1}{x+3}$ , a = 1;
  - B)  $f(x) = x^4 7x^3 + 12x 45$ , a = 0;
  - r)  $f(x) = \frac{2x-1}{x+1}$ , a = 1.

Найдите угловой коэффициент касательной, проведеннов к графику функции y = f(x) в точке с абсциссой x = aесли:

**43.4.** a) 
$$f(x) = \sqrt{x-7}$$
,  $a = 8$ ;

6) 
$$f(x) = \sqrt{4-5x}, \ a = 0;$$

B) 
$$f(x) = \sqrt{10 + x}$$
,  $a = -5$ ;

r) 
$$f(x) = \sqrt{3.5 - 0.5x}$$
,  $a = -1$ .

**43.5.** a) 
$$f(x) = \sin x$$
,  $a = 0$ ;

B) 
$$f(x) = \cos 3x$$
,  $a = \frac{\pi}{2}$ ;

6) 
$$f(x) = \lg 2x$$
,  $a = \frac{\pi}{8}$ ; r)  $f(x) = \operatorname{ctg} x$ ,  $a = \frac{\pi}{3}$ .

$$\mathbf{r}) \ f(x) = \mathbf{ctg} \ x, \ a = \frac{\pi}{3}$$

**043.6.** a) 
$$f(x) = \sqrt{\lg x}$$
,  $a = \frac{\pi}{4}$ ; B)  $f(x) = \operatorname{ctg}^4 x$ ,  $a = \frac{\pi}{4}$ ;

B) 
$$f(x) = \cot g^4 x$$
,  $a = \frac{\pi}{4}$ 

6) 
$$f(x) = \cos^2 x$$
,  $a = \frac{\pi}{12}$ ;

6) 
$$f(x) = \cos^2 x$$
,  $a = \frac{\pi}{12}$ ; r)  $f(x) = \sqrt{2 - \sin x}$ ,  $a = \frac{\pi}{2}$ .

Найдите тангенс угла наклона касательной, проведенной к графику функции y = f(x) в точке с абсциссой  $x_0$ :

**043.7.** a) 
$$f(x) = (x-2)(x^2+2x+4)$$
,  $x_0 = 3$ ;

6) 
$$f(x) = \cos^2 3x - \sin^2 3x$$
,  $x_0 = \frac{\pi}{6}$ ;

B) 
$$f(x) = (2x + 1)(4x^2 - 2x + 1), x_0 = -\frac{1}{2}$$
;

r) 
$$f(x) = \sin x \cdot \cos x \cdot \cos 2x$$
,  $x_0 = \frac{\pi}{4}$ .

**043.8.** a) 
$$f(x) = \frac{x^3 - 3x^2 + 3x - 1}{x - 1}$$
,  $x_0 = -1$ ;

6) 
$$f(x) = \sqrt{x^2 - 6x + 9}, x_0 = -2;$$

B) 
$$f(x) = \frac{x^4 - 3x^3 + x}{x^2}$$
,  $x_0 = -0,1$ ;

r) 
$$f(x) = \sqrt[3]{x^3 - 6x^2 + 12x - 8}$$
,  $x_0 = -5$ .

Найдите угловой коэффициент касательной, проведенной к графику функции y = f(x) в каждой из указанных то-

043.9. a) 
$$f(x) = \begin{cases} x^2 - 1, & \text{если } |x| \ge 1, \\ 1 - x^2, & \text{если } |x| < 1, \end{cases}$$
  $x_1 = -2, x_2 = 0, x_3 = 3;$ 

б) 
$$f(x) = \begin{cases} x^2 + 2, \text{ если } x \ge 0, \\ 2 - x^2, \text{ если } x < 0, \end{cases}$$
  $x_1 = -1, x_2 = 0, x_3 = 2;$ 

в) 
$$f(x) = \begin{cases} -3x, \text{ если } x \leq 0, \\ \sqrt{5x}, \text{ если } x > 0, \end{cases}$$
  $x_1 = -1, x_2 = 1, x_3 = 5;$ 

г) 
$$f(x) = \begin{cases} \sqrt{4-2x}, \text{ если } x \leqslant 2, \\ x-2, \text{ если } x > 2, \end{cases}$$
  $x_1 = -2, \ x_2 = 2, \ x_3 = 5.$ 

**043.10.** a) 
$$f(x) = x^2 - 9|x| + 14$$
,  $x_1 = -7$ ,  $x_2 = 4.5$ ,  $x_3 = 8$ ;

6) 
$$f(x) = x^2 - 4|x| - 12$$
,  $x_1 = -3$ ,  $x_2 = -2$ ,  $x_3 = 2$ .

043.11. a) 
$$f(x) = |x^2 - 5x + 6|$$
,  $x_1 = 0$ ,  $x_2 = 2.5$ ,  $x_3 = 4$ ;

6) 
$$f(x) = |-x^2 + 2x + 3|$$
,  $x_1 = -2$ ,  $x_2 = 1$ ,  $x_3 = 2$ .

Найдите ту точку графика функции y = f(x), в которой угловой коэффициент касательной равен k:

$$043.12. a) f(x) = 1.5x^2 - x + 1, k = 2;$$

6) 
$$f(x) = x + \frac{1}{x}$$
,  $k = 3$ ;

B) 
$$f(x) = x^3 - 2x^2 + x$$
,  $k = 1$ ;

r) 
$$f(x) = \frac{x}{2} + \frac{2}{x}$$
,  $k = -3$ .

$$\bigcirc 43.13.$$
 a)  $f(x) = \arcsin 2x$ ,  $k = 2$ ;

6) 
$$f(x) = x - \arccos x, \ k = 2;$$

B) 
$$f(x) = 3 + \arctan x$$
,  $k = \frac{1}{2}$ ;

r) 
$$f(x) = \operatorname{arcctg} 3x$$
,  $k = 3$ .

43.14. Какой угол образует с осью x касательная, проведенная к графику функции y = f(x) в точке с абсциссой x = a:

a) 
$$f(x) = 4 + x^2$$
,  $a = 2$ ; B)  $f(x) = (1 - x)^3$ ,  $a = -3$ ;

B) 
$$f(x) = (1-x)^3$$
,  $a = -3$ :

6) 
$$f(x) = 1 - \frac{1}{x}$$
,  $a = 3$ ; r)  $f(x) = 2x - x^3$ ,  $a = 1$ ?

r) 
$$f(x) = 2x - x^3$$
,  $a = 1$ ?

Какой угол образует с осью x касательная, проведенная  $\kappa$ графику функции y = f(x) в точке с абсписсой x = a:

**43.15.** a) 
$$f(x) = x^2$$
,  $a = 0.5$ ;

B) 
$$f(x) = 0.2x^5$$
,  $a = -1$ ;

6) 
$$f(x) = -3x^3$$
,  $a = \frac{1}{3}$ ;

r) 
$$f(x) = -0.25x^4$$
,  $a = 0$ .

**43.16.** a) 
$$f(x) = x^3 - 3x^2 + 2x - 7$$
,  $a = 1$ ;

6) 
$$f(x) = -7x^3 + 10x^2 + x - 12$$
,  $a = 0$ .

**43.17.** a) 
$$f(x) = \frac{2x-1}{3-2x}$$
,  $a = \frac{1}{2}$ ;

6) 
$$f(x) = \frac{x-1}{x-2}$$
,  $a = 1$ .

**43.18.** a) 
$$f(x) = \sqrt{6x+7}$$
,  $a = 3\frac{1}{3}$ ;

6) 
$$f(x) = \sqrt{5-2x}, \ a=2.$$

**43.19.** a) 
$$f(x) = \sqrt{3} \cos \frac{x}{3}$$
,  $a = \frac{3\pi}{2}$ ; 6)  $f(x) = \frac{1}{2} \sin 2x$ ,  $a = \frac{\pi}{2}$ .

6) 
$$f(x) = \frac{1}{2} \sin 2x$$
,  $a = \frac{\pi}{2}$ 

43.20. a) 
$$f(x) = \operatorname{tg} x + \sin \frac{x}{3}$$
,  $a = 3\pi$ ;

6) 
$$f(x) = \cos x + \cot \frac{x}{2}$$
,  $a = \frac{\pi}{3}$ .

**043.21.** a) 
$$f(x) = |2x - x^2|$$
,  $a = 1$ ;

6) 
$$f(x) = |x^2 - 3x - 4|, a = -2;$$

B) 
$$f(x) = |x^2 + 4x|$$
,  $a = -3$ :

r) 
$$f(x) = |x^2 - 3x - 4|, a = -1.$$

Составьте уравнение касательной к графику функции y = f(x) в точке с абсциссой x = a:

**43.22.** a) 
$$f(x) = x^2$$
,  $a = 3$ ;

6) 
$$f(x) = 2 - x - x^3$$
,  $a = 0$ ;

B) 
$$f(x) = x^3$$
,  $a = 1$ ;

$$\Gamma) \ f(x) = x^2 - 3x + 5, \ a = -1.$$

**043.23.** a) 
$$f(x) = \frac{3x-2}{3-x}$$
,  $a = 2$ ;

B) 
$$f(x) = \frac{2x-5}{5-x}$$
,  $a = 4$ ;

6) 
$$f(x) = \frac{1}{(x+2)^3}$$
,  $a = -3$ ; r)  $f(x) = \frac{1}{4(2x-1)^2}$ ,  $a = 1$ .

F) 
$$f(x) = \frac{1}{4(2x-1)^2}$$
,  $a = 1$ .

**043.24.** a) 
$$f(x) = 2\sqrt{3x-5}$$
,  $a = 2$ ;

6) 
$$f(x) = \sqrt{7-2x}, a = 3$$

$$_{O}43.25$$
. a)  $f(x) = \cos \frac{x}{3}$ ,  $a = 0$ ;

B)  $f(x) = \sin 2x, \ a = \frac{\pi}{4}$ ;

6) 
$$f(x) = \operatorname{ctg} 2x$$
,  $a = \frac{\pi}{4}$ ;

r)  $f(x) = 2 \text{ tg } \frac{x}{3}, \ a = 0.$ 

$$_{0}43.26.$$
 a)  $f(x) = \arccos 3x + 2x$ ,  $a = 0$ ;

6)  $f(x) = 3x^2 - 0.2 \arcsin 5x$ , a = 0;

B) 
$$f(x) = 2 \arctan x + 3\sqrt{x}, \ a = 1$$
;

r) 
$$f(x) = \frac{1}{x} - 5$$
 arcetg 2x,  $a = 1$ .

•43.27. a) 
$$f(x) = \sin^3 2x$$
,  $a = \frac{\pi}{12}$ ;

6) 
$$f(x) = \frac{4}{\sqrt{\pi}} \sqrt{\arctan 3x}, \ a = \frac{1}{3}$$
;

B) 
$$f(x) = \cos^2 2x$$
,  $a = \frac{\pi}{8}$ ;

F) 
$$f(x) = 2 \operatorname{arcctg}(3x^2) + 3 \operatorname{arctg}(2x^3), a = 0.$$

$$\circ$$
43.28. a)  $f(x) = \begin{cases} x^2 + 2x, \text{ если } x \ge -3, \\ -2x - 3, \text{ если } x < -3, \end{cases} a = -2;$ 

6) 
$$f(x) = |x^2 - 3x|, a = 4;$$

в) 
$$f(x) = \begin{cases} 4x - x^2, \text{ если } x \ge 0, \\ -4x, \text{ если } x < 0, \end{cases}$$
  $a = 1;$ 

r) 
$$f(x) = x^2 - 7|x| + 10$$
,  $a = -1$ .

043.29. Напишите уравнения касательных к графику функции y = f(x) в точках его пересечения с осью абсцисс, если:

a) 
$$f(x) = 9 - x^2$$
;

$$\mathbf{B}) \ f(x) = x^3 - 4x;$$

6) 
$$f(x) = x^3 - 27$$
;

$$\mathbf{r}) \ f(x) = x^3 - x^4.$$

○43.30. Напишите уравнения касательных к параболе:

а) 
$$y = x^2 - 3x$$
 в точках с ординатой 4;

б) 
$$y = -x^2 + 5x$$
 в точках с ординатой 6.

 $\circ$ 43.31. В какой точке касательная к графику функции  $y=x^2$  парадлельна заданной прямой:

a) 
$$y = 2x + 1$$
;

B) 
$$y = \frac{3}{4}x - 2;$$

$$5) \ y = -\frac{1}{2}x + 5;$$

$$\mathbf{r}) \ y = -x + 5?$$

043.32. Напишите уравнения тех касательных к графику функции  $y = \frac{x^3}{2} - 2$ , которые параллельны заданной прямой:

a) 
$$y = x - 3$$
;

$$6) y = 9x - 5.$$

043.33. Напишите уравнения тех касательных к графику функции  $y = \arcsin x$ , которые параллельны заданной прямой: 6) u = x + 2. a) u = 2x - 3:

В какой точке графика заданной функции y = f(x) каса-

043.34. a) 
$$y = 3 + x$$
,  $f(x) = \frac{x^3}{3} - 3x^2 + 10x - 4$ ;

6) 
$$y = 0$$
,  $f(x) = \frac{x^4}{4} - x^2 + 8$ ;

B) 
$$y = x - 3$$
,  $f(x) = \frac{x^3}{3} - x^2 + 2x - 7$ ;

тельная параллельна заданной прямой:

r) 
$$y = 2$$
,  $f(x) = \frac{5}{4}x^4 - x^3 + 6$ ?

**043.35.** a) 
$$f(x) = \sin x$$
,  $y = -x$ ; B)  $f(x) = \operatorname{tg} x$ ,  $y = x$ ;

$$\mathbf{B}) \ f(\mathbf{x}) = \mathbf{t}\mathbf{g} \ \mathbf{x}, \ \mathbf{y} = \mathbf{x};$$

6) 
$$f(x) = \cos 3x$$
,  $y = 0$ ; r)  $f(x) = \sin \frac{x}{2}$ ,  $y = -1$ ?

r) 
$$f(x) = \sin \frac{x}{2}, \ y = -1$$
?

**043.36.** a) 
$$f(x) = \cos^2 x$$
,  $y = -x + 3$ ;

6) 
$$f(x) = \operatorname{arcctg}(x^2), y = -3;$$

$$\mathbf{B}) \ f(x) = \sqrt{\sin x}, \ y = 5;$$

r) 
$$f(x) = (\arcsin x)^2$$
,  $y = -5$ .

К графику заданной функции проведите касательную так, чтобы она была параллельна прямой y = 2 - x:

**043.37.** a) 
$$y = \frac{x^3}{3} + \frac{5}{2}x^2 - x$$
;

6) 
$$y = \frac{x^3}{3} + x^2 - x$$
.

**043.38.** a) 
$$y = \frac{3x+7}{x-3}$$
;

6) 
$$y = \frac{x+9}{x+8}$$
.

**043.39.** a) 
$$y = -4\sqrt{x+7}$$
;

$$6) y = \sqrt{1-2x}.$$

**043.40.** a) 
$$y = \arccos x$$
;

6) 
$$y = \operatorname{arcctg} x$$
.

- $_{0}43.41$ . a) На графике функции  $y = x^{3} 3x^{2} + x + 1$  найдите точки, в которых касательная образует с положительным направлением оси абсцисс угол 45°. Составьте уравнения этих касательных.
  - б) На графике функции  $y = \frac{3x + 7}{x + 2}$  найдите точки, в которых касательная образует с положительным направлением оси абсцисс угол 135°. Составьте уравнения этих касательных.
- 043.42. Составьте уравнение той касательной к графику функции y = f(x), которая образует с осью x заданный угол  $\alpha$ , если:

a) 
$$f(x) = \frac{1}{\sqrt{3}}x^3 - 3\sqrt{3}x$$
,  $\alpha = 60^\circ$ ;

6) 
$$f(x) = \frac{4}{\sqrt{3}}x - \frac{\sqrt{3}}{3}x^3$$
,  $\alpha = 30^\circ$ .

- 043.43. а) Вычислите координаты точек пересечения с осью у тех касательных к графику функции  $y = \frac{3x-1}{x+9}$ , которые образуют угол  $45^{\circ}$  с осью x.
  - б) Вычислите координаты точек пересечения с осью у тех касательных к графику функции  $y = \frac{x+4}{x-5}$ , которые образуют угол  $135^{\circ}$  с осью x.
- **\bigcirc43.44.** Составьте уравнение параболы  $y = x^2 + bx + c$ , касающейся прямой y = -x в точке M(1; 1).
- $\circ 43.45$ . Проведите касательную к графику функции  $y = x^2 + 1$ , проходящую через точку A, не принадлежащую этому графику, если:
  - a) A(-1; -2); b) A(0; 0); b) A(0; -3); r) A(-1; 1).

- $\circ$ 43.46. Через данную точку B проведите касательную к графику функции y = f(x):

a) 
$$f(x) = -x^2 - 7x + 8$$
,  $B(1; 1)$ ;

6) 
$$f(x) = -x^2 - 7x + 8$$
,  $B(0; 9)$ .

Через данную точку B проведите касательную к графику функции y = f(x):

•43.47. a) 
$$f(x) = \sqrt{3-x}$$
,  $B(-2; 3)$ ;

6) 
$$f(x) = \sqrt{3-x}$$
,  $B(4; 0)$ .

•43.48. a) 
$$f(x) = \sqrt{4x-3}$$
,  $B(2; 3)$ ;

6) 
$$f(x) = \sqrt{2x+1}$$
,  $B(1; 2)$ .

- ${ t C43.49.}$  а) Найдите все значения x, при каждом из которых касательная к графику функции  $y = \cos 7x + 7\cos x$  в точках с абсциссой x параллельна касательной к этому же графику в точке с абсциссой  $\frac{\pi}{6}$ .
  - б) Найдите все значения a, при каждом из которых касательные к графикам функций  $y = 2 14 \sin 3x$  и  $y = 6 \sin 7x$  в точках с абсциссой x = a параллельны.
- •43.50. а) Составьте уравнение касательной к графику функции  $y=\frac{1}{x^2},\ x>0,$  отсекающей от осей координат треугольник, площадь которого равна 2,25.
  - б) Составьте уравнение касательной к графику функции  $y=\frac{1}{x^2},\ x<0,$  отсекающей от осей координат треугольник, площадь которого равна  $\frac{9}{8}.$
- •43.51. а) Составьте уравнение касательной к графику функции  $y=x^3,\ x>0,$  отсекающей от осей координат треугольник, площадь которого равна  $\frac{2}{3}$ .
  - б) Составьте уравнение касательной к графику функции  $y=x^3,\ x<0,$  отсекающей от осей координат треугольник, площадь которого равна  $\frac{27}{8}$ .
- •43.52. а) На оси y взята точка B, из нее проведены касательные к графику функции  $y=3-\frac{1}{2}\,x^2$ . Известно, что эти касательные образуют между собой угол  $90^\circ$ . Найдите координаты точки B.
  - б) Составьте уравнения тех касательных к графику функции  $y = 0.5x^2 2.5$ , которые пересекаются под углом  $90^\circ$  в точке, лежащей на оси y.

- ◆43.53. а) На оси у взята точка В, из нее проведены касательные к графику функции  $y = \frac{\sqrt{3}}{2} x^2 + \frac{\sqrt{3}}{2}$ . Известно, что эти касательные образуют между собой угол 60°. Найдите координаты точки В.
  - б) Составьте уравнения тех касательных к графику функции  $y = \frac{\sqrt{3}}{6}(1-x^2)$ , которые пересекаются под углом 120° в точке, лежащей на оси у.
- •43.54. а) Найдите точку пересечения касательных к графику функции  $y = x^2 - |2x - 6|$ , проведенных через точки с абсписсами x = 5, x = -5.
  - б) Найдите точку пересечения касательных к графику функции  $y = x^3 + |x - 1|$ , проведенных через точки с абсциссами x = 2, x = -2.
- •43.55. а) При каких значениях параметра р касательная к графику функции  $y = x^3 - px$  в точке x = 1 проходит через точку (2: 3)?
  - б) При каких значениях параметра р касательная к графику функции  $y = x^3 + px^2$  в точке x = 1 проходит через точку (3: 2)?
- ullet43.56. Является ли прямая y = 4x 5 касательной к графику заданной функции? Если да, то найдите координаты точки касания:

a) 
$$y = x^3 + x^2 - x - 2$$
;

a) 
$$y = x^3 + x^2 - x - 2$$
; 6)  $y = x^3 - 2x^2 - 7x - 13$ .

 $\circ$ 43.57. Найдите все такие значения параметра a, при которых касательные, проведенные к графикам функций y = f(x)в точке (a; f(a)) и y = g(x) в точке (a; g(a)), параллельны:

a) 
$$f(x) = x^6$$
;  $g(x) = x^7$ ; 6)  $f(x) = x^4$ ;  $g(x) = x^5$ .

6) 
$$f(x) = x^4$$
;  $g(x) = x^5$ .

- ullet 43.58. a) При каких значениях параметра a прямая y=ax+1является касательной к графику функции  $y = \sqrt{4x+1}$ ?
  - б) При каких значениях параметра a прямая y = 2x + aявляется касательной к графику функции  $u = \sqrt{4x-1}$ ?

ullet43.59. а) К графику функции  $y=2\sin^2 x+\sqrt{3}\sin 2x,\ x\in\left[0;\,rac{\pi}{2}
ight]$ 

проведена касательная, параллельная прямой y-4x-1=0. Найдите ординату точки касания.

6) К графику функции  $y=2\cos^2x+\sqrt{3}\sin\,2x,\ x\in\left[\frac{\pi}{2};\ \pi\right]$ 

проведена касательная, параллельная прямой 3y - 6x + 2 = 0. Найдите ординату точки касания.

•43.60. а) Найдите наименьшее положительное значение x, при котором касательные к графикам функций  $y=3\cos\frac{5x}{2}$ 

и  $y = 5\cos\frac{3x}{2} + 2$  параллельны.

- б) Найдите наибольшее отрицательное значение x, при котором касательные к графикам функций  $y=2-14 \sin 3x$  и  $y=6 \sin 7x$  параллельны.
- •43.61. а) Точка A с абсциссой -1 и точка B с абсциссой 1 принадлежат графику функции  $y=2x^3+3x^2-\frac{x}{2}+1$ . Найдите сумму абсцисс всех тех точек, в каждой из которых касательная к этому графику параллельна прямой AB.

6) Точка A с абсциссой -3 и точка B с абсциссой 3 принадлежат графику функции  $y = \frac{1}{3}x^3 - 2x^2 - 22x - 28$ . Найдите сумму абсцисс всех тех точек, в каждой из которых касательная к этому графику параллельна прямой AB.

- •43.62. а) Составьте уравнение общей касательной к графикам функций  $y = x^2 x + 1$  и  $y = x^2 + 5x + 4$ .
  - б) Найдите точку пересечения общих касательных к графикам функций  $y = x^2$  и  $y = -x^2 8$ .
- 43.63. Углом между кривыми называют угол между касательными к кривым в точке их пересечения. Под каким углом пересекаются кривые:

a) 
$$y = \frac{1}{x}$$
 if  $y = \sqrt{x}$ ; 6)  $y = x^2$  if  $y = \sqrt{x}$ ?

- •43.64. Докажите, что параболы  $y = \frac{(x-1)^2}{2}$  и  $y = \frac{(x+1)^2}{2}$  перпендикулярны в точке их пересечения.
- •43.65. а) Из какой точки оси у кривая  $y = \sqrt{1+x^2}$  видна под углом 120°?
  - б) Найдите множество точек координатной плоскости, из которых парабола  $y = x^2$  видна под прямым углом.
- •43.66. а) Найдите значение параметра a, при котором касательная к графику функции  $y = x^3 + a^2x a$  в точке x = -1 проходит через точку M(1; 7).
  - б) Найдите значение параметра a, при котором касательная к графику функции  $y = x^4 3x^3 + 2a$  в точке x = -2 проходит через точку M(-1; -8).
- •43.67. а) Найдите площадь треугольника, образованного биссектрисами координатных углов и касательной к графику функции  $y = \sqrt{x^2 5}$  в точке x = 3.
  - б) Найдите площадь треугольника, образованного биссектрисами координатных углов и касательной к графику функции  $y=\sqrt{x^2-9}$  в точке x=5.
- •43.68. а) Прямая y = 6x 7 касается параболы  $y = x^2 + bx + c$  в точке M(2; 5). Найдите значения коэффициентов b и c. б) Прямая y = 7x 10 касается параболы  $y = ax^2 + bx + c$  в точке x = 2. Найдите значения коэффициентов a, b и c, если известно, что парабола пересекает ось абсцисс в точке x = 1.
- •43.69. Докажите, что треугольник, образованный касательной к гиперболе у = a²/x и осями координат, имеет постоянную площадь, а точка касания является центром окружности, описанной около этого треугольника. Рассмотрев чертеж к задаче, придумайте геометрический способ построения касательной к гиперболе.
- •43.70. Докажите, что касательная к параболе  $y=x^2$  в точке x=a делит пополам отрезок [0; a] оси абсцисс. Рассмотрев чертеж к задаче, придумайте геометрический способ построения касательной к параболе. Обобщите этот результат и этот способ построения касательной на любую степенную функцию  $y=x^n$ , где n— натуральное число, большее 2.

# § 44. Применение производной для исследования функций на монотонность и экстремумы

44.1. Определите, какой знак имеет производная функции y = f(x) в точках с абсциссами a, b, c, d:

а) рис. 98;

б) рис. 99.

**44.2.** По графику производной функции y = f(x), представленному на заданном рисунке, определите, на каких промежутках функция y = f(x) возрастает, а на каких убывает: а) рис. 100; б) рис. 101; в) рис. 102; г) рис. 103.



Puc. 98



Puc. 99

- 44.3. На каком из указанных промежутков функция y = f(x) убывает, если график ее производной представлен на рис. 104:
  - a) (-2; 1);
- б) (–∞; 4);
- B) (4; +∞);
- r) (-∞; -2)?





Рис. 100

Puc. 101





Puc. 102

Puc. 103



**44.4.** Определите, для какой из функций y = f(x), y = g(x), y = h(x) отрезок [-1; 1] является промежутком возрастания, если на рис. 105, 106, 107 изображены графики производных этих функций.





Puc. 105

Puc. 106



Puc. 107

**44.5.** На рис. 108, 109, 110 изображены графики производных y = f'(x), y = g'(x), y = h'(x). Определите, какая из функций y = f(x), y = g(x), y = h(x):

а) возрастает на R;

б) убывает на R?







Puc. 109



Puc. 110





Puc. 111



Puc. 112



Puc. 114

На рис. 111—114 изображены графики функций y = f(x), y = g(x), y = h(x) и  $y = \phi(x)$ , определенных на всей числовой прямой. Используя их, решите неравенство:

- **44.6.** a) f'(x) > 0;
  - 6) g'(x) < 0;

B) h'(x) < 0;

 $\Gamma) \phi'(x) > 0.$ 

**44.7.** a)  $f'(x) \le 0$ ;

 $\mathbf{B})\ h'(x) \geq 0;$ 

 $6) g'(x) \ge 0;$ 

 $\mathbf{r}) \ \phi'(x) \leq 0.$ 

- **44.8.** а) Изобразите эскиз графика производной функции y = f(x)если известно, что данная функция возрастает на  $(-\infty; 1)$ и убывает на промежутке  $(1; +\infty)$ .
  - б) Изобразите эскиз графика производной функции y = f(x)если известно, что данная функция убывает на луче  $(-\infty; -1]$ , возрастает на отрезке [-1; 3], убывает на луче [3: +∞).
- **44.9.** Изобразите эскиз графика функции y = f(x), если промежутки постоянства знака производной f'(x) представлены на схеме:
  - а) рис. 115; в) рис. 117;
  - б) рис. 116;
- г) рис. 118.



044.10. Докажите, что заданная функция возрастает на R:

Puc. 118

- B)  $y = x^5 + 3x^3 + 7x + 4$ ;
- a)  $y = \cos x + 2x$ ; b)  $y = \sin x + x^3 + x$ ; 6)  $y = \sin x + x^8 + x$ ;
  - r)  $y = x^5 + 4x^3 + 8x 8$ .
- 044.11. Докажите, что заданная функция убывает на R:
  - a)  $y = \sin 2x 3x$ ;
- $6) y = \cos 3x + 4x.$

О44.12. Докажите, что функция монотонна на всей числовой прямой. Укажите характер монотонности.

a) 
$$y = x^5 + 6x^3 - 7$$
; B)  $y = \sin x - 2x - 15$ ;

6) 
$$y = x - \cos x + 8$$
;  $y = 11 - 5x - x^3$ .

Докажите, что заданная функция возрастает:

$$044.13.$$
 a)  $y = x^5 + 3x - 6$  Ha  $(-\infty; +\infty)$ ;

6) 
$$y = 15 - \frac{2}{x} - \frac{1}{x^3}$$
 Ha  $(-\infty, 0)$ ;

B) 
$$y = x^7 + 7x^3 + 2x - 42$$
 Ha  $(-\infty; +\infty)$ ;

r) 
$$y = 21x - \frac{1}{x^5}$$
 Ha  $(0, +\infty)$ .

$$044.14$$
. a)  $y = 7x - \cos 2x$  Ha  $(-\infty; +\infty)$ ;

6) 
$$y = 10x + \sin 3x \text{ Ha } (-\infty; +\infty).$$

$$044.15$$
. a)  $y = 2x^3 + 2x^2 + 11x - 35$  Ha  $(-\infty; +\infty)$ ;

6) 
$$y = 3x^3 - 6x^2 + 41x - 137$$
 Ha  $(-\infty; +\infty)$ .

**044.16.** a) 
$$y = \frac{4x}{4x+1}$$
 Ha  $\left(-\frac{1}{4}, +\infty\right)$ 

6) 
$$y = \frac{2x-13}{x-5}$$
 Ha  $(-\infty, 5)$ .

Докажите, что заданная функция убывает:

**044.17.** a) 
$$y = -x^3 - 5x + 3$$
 Ha  $(-\infty; +\infty)$ ;

6) 
$$y = -2x^5 - 7x^3 - x + 8$$
 Ha  $(-\infty; +\infty)$ ;

B) 
$$y = -x^3 + 3x^2 - 6x + 1$$
 Ha  $(-\infty; +\infty)$ ;

r) 
$$y = -4x^3 + 4x^2 - 2x + 9$$
 Ha  $(-\infty; +\infty)$ .

044.18. a) 
$$y = \frac{3x+7}{x+2}$$
 Ha  $(-2, +\infty)$ ;

6) 
$$y = \frac{-4x+1}{2x+1}$$
 Ha  $\left(-\infty, -\frac{1}{2}\right)$ 

044.19. a) 
$$y = 7 \cos x - 5 \sin 3x - 22x$$
 Ha  $(-\infty; +\infty)$ ;

6) 
$$y = 3 \cos 7x - 8 \sin \frac{x}{2} - 25x + 1$$
 Ha  $(-\infty; +\infty)$ .

044.20. Определите промежутки монотонности функции:

a) 
$$y = x^3 + 2x$$
;

6) 
$$y = 60 + 45x - 3x^2 - x^3$$
;

B) 
$$y = 2x^3 - 3x^2 - 36x + 40$$
;

$$\mathbf{r}) y = -x^5 + 5x.$$

Определите промежутки монотонности функции:

**044.21.** a) 
$$y = \frac{3x-1}{3x+1}$$
;

6) 
$$y = \frac{1-2x}{3+2x}$$
.

**044.22.** a) 
$$y = \sqrt{3x - 1}$$
;

B) 
$$y = \sqrt{1 - 2x}$$
;

6) 
$$y = \sqrt{1-x} + 2x$$
;

$$\mathbf{r}) \ y = \sqrt{2x-1} - x.$$

**044.23.** a) 
$$y = \frac{x^2}{x^2 + 2}$$
;

$$6) y = -\frac{3x^2}{x^2 + 4}.$$

**044.24.** a) 
$$y = \sin^2 x$$
;

B) 
$$u = \cos^2 x$$
:

$$6) y = \frac{1}{\cos^3 x};$$

$$\mathbf{r}) \ y = \frac{1}{\sin^5 x}.$$

**044.25.** a) 
$$y = \sqrt{x^2 - 6x + 8}$$
;

6) 
$$y = \sqrt{5x - 2 - 2x^2}$$
.

**•44.26.** a) 
$$y = \arcsin x^2$$
;

B) 
$$y = \arccos \sqrt{x}$$
;

6) 
$$y = \operatorname{arcctg} \sqrt{x}$$
;

r) 
$$y = \operatorname{arctg}^2 x$$
.

•44.27. a) 
$$y = \begin{cases} 2x^3 - 6x, \text{ если } x \ge -1, \\ x^2 + 2x + 3, \text{ если } x < -1; \end{cases}$$

6) 
$$y = \begin{cases} 3x^4 - 4x^3, \text{ если } x \leq 2, \\ -x^2 + 4x + 12, \text{ если } x > 2. \end{cases}$$

•44.28. a) 
$$y = \begin{cases} x^5 - 5x^4 + 1, \text{ если } x \ge 0, \\ (x + 2)^2 - 3, \text{ если } x < 0; \end{cases}$$

$$6) \ y = \begin{cases} -3x^5 + 5x^3 - 2, \text{ если } x \ge -1, \\ \frac{4}{x}, \text{ если } x < -1. \end{cases}$$

**044.29.** Исследуйте на монотонность функцию y = f(x) и постройте (схематически) ее график:

a) 
$$f(x) = x^3 - 3x + 2$$
;

a) 
$$f(x) = x^3 - 3x + 2$$
;  
b)  $f(x) = x^3 + 6x^2 - 15x + 8$ ;  
6)  $f(x) = x^4 - 2x^2 + 1$ ;  
r)  $f(x) = -x^4 + 8x^2 - 7$ .

6) 
$$f(x) = x^4 - 2x^2 + 1$$
:

$$\mathbf{r}) \ f(x) = -x^4 + 8x^2 - 7.$$

**044.30.** Постройте график функции  $y = f(x), x \in [0; 10],$  производ ная которой равна нулю на интервалах (0; 2); (2; 6); (6; 10), если известно, что f(1) = 0, f(5) = 3, f(8) = -2.

При каких значениях параметра а функция возрастает на всей числовой прямой:

$$0.44.31.$$
 a)  $y = x^3 + ax;$ 

6) 
$$y = \frac{x^3}{3} - ax^2 + 5x - 3$$
?

$$_{O44.32.}$$
 a)  $y = ax - \cos x$ ;

$$6) y = 2 \sin 2x - ax?$$

0.44.33. При каких значениях параметра b функция убывает на всей области определения:

a) 
$$y = 7 + bx - x^2 - x^3$$
;

a) 
$$y = 7 + bx - x^2 - x^3$$
; B)  $y = x^3 + bx^2 + 3x + 21$ ;

6) 
$$y = -2\sqrt{x+3} + bx$$
;  $y = -2bx + \sqrt{1-x}$ ?

$$\mathbf{r}) \ y = -2bx + \sqrt{1-x}$$

•44.34. При каких значениях параметра a функция  $y = x^3 - 3x$ :

а) убывает на отрезке 
$$[a + 1; a + 3];$$

6) возрастает на отрезке 
$$\left[a - \frac{1}{2}; \ 2a + 2\right];$$

в) убывает на отрезке 
$$\left[a - 3; \frac{1}{6}a + \frac{2}{3}\right];$$

г) возрастает на отрезке 
$$[a-2,5; a-0,5]$$
?

044.35. a) При каких значениях параметра a функция  $y = 2x^3 - 4x^3$  $-3x^{2}+7$  возрастает в интервале (a-1; a+1)?

б) При каких значениях параметра a функция  $y = -x^3 + x^3 + x^4 + x$ 

$$+3x + 5$$
 убывает в интервале  $(a; a + \frac{1}{2})$ ?

044.36. По графику функции  $y = f(x), x \in R$ , изображенному на заданном рисунке, определите точки, в которых ее производная обращается в 0:

- а) рис. 119:
- б) рис. 120;
- в) рис. 121;
- г) рис. 122.



Puc. 119



Рис. 120



Puc. 121



Puc. 122

- 044.37. По графику функции  $y = f(x), x \in R$ , изображенному на заданном рисунке, определите точки, в которых производная не существует:
  - а) рис. 119; б) рис. 120; в) рис. 121; г) рис. 122.

- О44.38. При каких значениях параметра а заданная функция имеет одну стационарную точку:

a) 
$$y = x^3 - 3ax^2 + 27x - 5$$
;

a) 
$$y = x^3 - 3ax^2 + 27x - 5$$
; 6)  $y = x^3 - 3ax^2 + 75x - 10$ ?

- 44.39. Сколько точек минимума имеет функция y = f(x), график которой изображен на заданном рисунке:
  - а) рис. 119;
- б) рис. 120:
- в) рис. 121; г) рис. 122?
- 44.40. Сколько точек максимума имеет функция y = f(x), график которой изображен на заданном рисунке:
  - а) рис. 119:
- б) рис. 120:
- в) рис. 121; г) рис. 122?
- 44.41. Используя данные о производной y = f'(x), приведенные в таблице.

x	(-∞, 5)	<b>-5</b>	(-5; -2)	-2	(-2; 8)	8	(8; +∞)
y = f'(x)	+	0	-	0	+	0	+

#### укажите:

- а) промежутки возрастания функции y = f(x);
- б) промежутки убывания функции y = f(x);
- в) точки максимума функции y = f(x);
- г) точки минимума функции y = f(x).
- 44.42. По графику y = f'(x), изображенному на заданном рисунке, определите, имеет ли функция y = f(x) точки экстремума:

  - а) рис. 100; б) рис. 101; в) рис. 102;
- г) рис. 103.
- 044.43. Постройте эскиз графика какой-нибудь функции, обладающей указанными свойствами:
  - а) функция имеет две точки максимума, одну точку минимума и является ограниченной;
  - б) функция возрастает при  $x \le 1$  и при  $x \ge 5$  и убывает на промежутке [1; 5], точка x = 1 является критической, а точка x = 5 — стационарной;
  - в) функция имеет разрыв в точке x = -2, максимум в точке x = -1 и минимум в точке x = 1;
  - r) функция имеет горизонтальную асимптоту y = 3 при  $x \to \infty$ , одну точку максимума и одну точку минимума.
- 044.44. а) Постройте эскиз графика функции, дифференцируемой на интервале (a, b), имеющей на этом интервале одну точку минимума, две точки максимума и не имеющей наименьшего значения.
  - б) Постройте эскиз графика функции, дифференцируемой на интервале (a, b), имеющей на нем две точки минимума, две точки максимума, но не имеющей ни наименьшего, ни наибольшего значений.

- 044.45. Может ли иметь только одну точку экстремума:
  - а) четная функция;
- в) периодическая функция;
- б) нечетная функция;
- г) монотонная функция?
- 044.46. По графику функции y = f(x),  $x \in \mathbb{R}$  изображенному на заданном рисунке, постройте эскиз графика ее производ ной:
  - а) рис. 123;
- б) рис. 124;
- в) рис. 125;
- г) рис. 126





Puc. 123

Puc. 124



Puc. 125



Puc. 126

O(44.47). Постройте эскиз графика функции y = f(x),  $x \in \mathbb{R}$  по графику производной, изображенному на заданном рисунке: а) рис. 127; б) рис. 128; в) рис. 129; г) рис. 130.



Puc. 127



Puc. 128



Puc. 129



Puc. 130

Найдите точки экстремума заданной функции и определите их характер:

**044.48.** a) 
$$y = 2x^2 - 7x + 1$$
;

6) 
$$y = 3 - 5x - x^2$$
:

B) 
$$y = 4x^2 - 6x - 7$$
;  
F)  $y = -3x^2 - 12x + 50$ .

**044.49.** a) 
$$y = \frac{x^3}{3} - \frac{5}{2}x^2 + 6x - 1$$
;

B) 
$$y = x^3 - 7x^2 - 5x + 11$$
;

6) 
$$u = x^3 - 27x + 26$$
:

$$\mathbf{r)} \ y = 2x^3 - 21x^2 + 19.$$

**044.50.** a) 
$$y = 5x^5 - 3x^3$$
;

6) 
$$y = 3x^{2} - 3x^{2}$$
,  
6)  $y = x^{4} - 4x^{3} - 8x^{2} + 13$ ;

B) 
$$u = x^4 - 50x^2$$
:

r) 
$$y = 2x^5 + 5x^4 - 10x^3 + 3$$
.

**044.51.** a) 
$$y = x + \frac{4}{x}$$
;

6) 
$$y = \frac{x^2 + 9}{x}$$
.

**044.52.** a) 
$$y = x - 2\sqrt{x-2}$$
;

6) 
$$y = \sqrt{x+1} + \sqrt{5-x}$$
:

B) 
$$y = 4\sqrt{2x - 1} - x$$
;  
F)  $y = \sqrt{x} + 2\sqrt{7 - x}$ .

6) 
$$y = \sqrt{x} + 1 + \sqrt{5} - x$$
;

044.53. a) 
$$y = x - 2\cos x$$
,  $x \in [-\pi, \pi]$ ;  
6)  $y = 2\sin x - x$ ,  $x \in [\pi, 3\pi]$ .

**044.54.** a) 
$$y = (x^3 - 27x)^3$$
;

B) 
$$y = (x^3 - 3x^2)^4$$
;  
F)  $y = \sqrt{x^3 - 3x^2}$ .

$$6) y = \sqrt{x^3 - 27x};$$

$$r) y = \sqrt{x^3 - 3x^2}.$$

**44.55.** a) 
$$y = \arcsin x^2$$
;

6) 
$$u = 3 \operatorname{arcctg} \sqrt{x}$$
:

$$\mathbf{B}) \ y = \arccos x^2;$$

r) 
$$y = \arctan \sqrt{2x}$$
.

044.56. Докажите, что заданная функция не имеет ни точек максимума, ни точек минимума:

a) 
$$y = \frac{1}{2}x^3 + 2x^2 + 4x - 12$$
:

a) 
$$y = \frac{1}{3}x^3 + 2x^2 + 4x - 12;$$
 B)  $y = \frac{1}{5}x^5 + \frac{1}{3}x^3 + x - 7;$ 

$$r) y = -x^3 - x^5 + 27.$$

044.57. Производная функции  $y = ax^2 + 7x + 1$  в точке  $x_0$  равна c. Найдите точку экстремума функции и определите, является она точкой максимума или точкой минимума, если:

a) 
$$x_0 = 0.5$$
,  $c = 15$ ;

B) 
$$x_0 = -1, c = 9;$$

6) 
$$x_0 = 3$$
,  $c = -5$ ;

r) 
$$x_0 = -0.5$$
,  $c = 7.1$ .

•44.58. Найдите точки экстремума заданной функции и определите их характер:

a) 
$$y = |x^4 + 1| + |x^4 - 1| + 2x^3$$
;

6) 
$$y = |x^3 - 8| + |x^3 - 1| - x^2$$
.

Исследуйте функцию на монотонность и экстремумы:

$$_{O44.59}$$
. a)  $y = \sin x - \frac{1}{2}x$ ;

$$\mathbf{B}) \ y = \frac{1}{\sqrt{2}} x + \cos x;$$

$$\text{ f) } y = \frac{x}{2} - \cos x;$$

$$r) y = x - \sin x.$$

$$_{044.60.}$$
 a)  $y = x - \sin 2x$ ;

$$6) \ y=x+4\cos\frac{x}{2}.$$

$$_{O}44.61.$$
 a)  $y = |x - 3| - 2;$ 

B) 
$$y = |(x-2)(x+3)|$$
;

$$6) y = \left| \frac{1}{x} - 1 \right|;$$

**F)** 
$$y = (|x| - 2)|x|$$
.

$$044.62.$$
 a)  $y = |x^3 - 3x|$ ;

6) 
$$y = |x - x^3|$$
.

Исследуйте функцию на монотонность и экстремумы и постройте ее график:

$$044.63. a) y = 3x^2 - 4x + 5;$$

B) 
$$y = 7 - x - 2x^2$$
;  
F)  $y = 5x^2 - 15x - 4$ .

6) 
$$y = 3 + 2x - x^2$$
;

$$\mathbf{r)} \ y = 5x^2 - 15x - 4$$

**6.** 
$$0.44.64$$
. a)  $y = 3x^2 - x^3$ ;  
b)  $y = 6x + x^3$ :

B) 
$$y = x^3 + 3x^2$$
;  
P)  $y = 3x - x^3$ .

044.65. a) 
$$y = x^3 - 3x^2 + 2$$
;  
6)  $y = -x^3 + 4x - 3$ ;

B) 
$$y = -x^3 + 4x^2 - 3$$
;

6) 
$$y = -x^3 + 4x - 3$$
;

r) 
$$y = x^3 - 3x + 2$$
.

$$\circ 44.66$$
. a)  $y = 2x^3 + x^2 - 2x - 1$ ;

6) 
$$y = -\frac{x^3}{3} + x^2 + 3x - \frac{11}{3}$$
;

B) 
$$y = x^3 + x^2 - x - 1$$
;

r) 
$$y = \frac{x^3}{3} + x^2 - 3x + \frac{5}{3}$$
.

$$^{044.67. a) y = -x^4 + 5x^2 - 4;$$

B) 
$$y = 2x^4 - 9x^2 + 7$$
;

6) 
$$y = x^{6} - 5x$$
;

r) 
$$y = 5x^3 - 3x^5$$
.

$$\circ 44.68$$
. a)  $y = (x-1)^2(x+2)$ ;

B) 
$$y = (x + 2)^2(x - 3)$$
;

6) 
$$y = \frac{256}{9}x(x-1)^3$$
;

r) 
$$y = x^3(2-x)$$
.

Решите уравнение:

$$^{\circ}44.69$$
. a)  $x^3 + 5 = 15 - x$ ;  
6)  $x^5 + 3x^3 + 7x - 11 = 0$ ;

B) 
$$2x^5 + 3x^3 = 17 - 12x$$
;  
F)  $x^5 + 4x^3 + 8x - 13 = 0$ .

6) 
$$x^3 + 3x^3 + 7x - 11 = 0$$
;

$$\mathbf{r}) \ x^5 + 4x^3 + 8x - 13 = 0.$$

•44.70. a) 
$$\sin 5x - 2\cos x - 8x = x^5 - 2$$
;

6) 
$$4\cos 3x + 5\sin \frac{x}{2} + 15 = 4 - x^3$$
.

•44.71. a) 
$$3\cos \pi x + 5\sin \frac{\pi x}{2} + 18x = 43 - x^5 - 22x^3$$
;

6) 
$$2\sin\frac{\pi}{2}x-2\cos\pi x-10x=x^5-54$$
.

Докажите тождество:

•44.72. a) 
$$\arcsin x = \frac{\pi}{2} - \arccos x$$
;

6) 
$$\arctan x + \arctan x = \frac{\pi}{2}$$
.

•44.73. a) 
$$\arctan \sqrt{1-x^2} = \begin{cases} \arcsin x, \ 0 \le x \le 1, \\ -\arcsin x, \ -1 \le x < 0; \end{cases}$$

6) 
$$\arctan x + \arctan \frac{1-x}{1+x} = \begin{cases} \frac{\pi}{4}, & x > -1, \\ -\frac{3\pi}{4}, & x < -1. \end{cases}$$

**•44.74.** Докажите, что функция y = f(x) постоянна на указанном промежутке и найдите значение этой постоянной:

a) 
$$f(x) = 2 \arctan x + \arcsin \frac{2x}{1+x^2} \text{ при } x \ge 1;$$

б) 
$$f(x) = \arccos \frac{1}{\sqrt{1+x^2}} + \operatorname{arctg} x$$
 при  $x < 0$ .

Докажите неравенство:

•44.75. a) 
$$x^2 - x^3 < \frac{1}{6}$$
, если  $x > \frac{2}{3}$ ;

6) 
$$2\sqrt{x} \ge 3 - \frac{1}{x}$$
, если  $x > 0$ .

**•44.76**. a) 
$$\arcsin x > x$$
, если  $0 < x < 1$ ;

б) 
$$\arctan x > x - \frac{x^3}{3}$$
, если  $x > 0$ .

# § 45. Построение графиков функций

Исследуйте функцию и постройте ее график:

**045.1.** a) 
$$y = \frac{1}{x^2 + 1}$$
;

6) 
$$y = \frac{-2}{x^2 + 4}$$
.

**045.2.** a) 
$$y = \frac{-1}{x^2 + 4x + 4}$$
;

$$6) \ y = \frac{1}{x^2 + 2x + 1}.$$

$$_{O}45.3.$$
 a)  $y=\frac{x}{2}+\frac{2}{x};$ 

 $6) y = \frac{x^2 + 4}{x}.$ 

$$045.4.$$
 a)  $y = \frac{2x+1}{x^2+2}$ ;

 $6) y = \frac{x-2}{x^2+5}.$ 

$$045.5.$$
 a)  $y = \frac{x}{x^2 - 4}$ ;

6)  $y = \frac{x-3}{x^2-8}$ .

$$\bigcirc 45.6.$$
 a)  $y = \frac{x^2 - 1}{x^2 + 1};$ 

 $6) \ y = \frac{x^2 - 4}{x^2 + 4}.$ 

**045.7.** a) 
$$y = \frac{x^2 + 4}{x^2 - 4}$$
;

6)  $y = \frac{x^2+1}{x^2-1}$ .

•45.8. a) 
$$y = 2\sqrt{x} - x$$
;

6)  $y = \sqrt{x+4} + \frac{2}{3}\sqrt{9-3x}$ .

•45.9. a) 
$$y = \sqrt{\frac{x-1}{x}}$$
;

6)  $y = (x - 3)\sqrt{x}$ .

**•45.10.** a) 
$$y = \frac{x}{\sqrt{1-x^2}}$$
;

 $6) \ y = \frac{x}{\sqrt{x^2 - 1}}.$ 

045.11. а) Постройте график функции  $y = x^4 - 2x^2 + 3$ .

б) При каких значениях параметра a уравнение  $x^4 - 2x^2 + + 3 = a$  имеет три корня?

 $\circ$ 45.12. a) Постройте график функции  $y = -x^4 + 2x^2 + 8$ .

б) При каких значениях параметра a уравнение  $-x^4 + 2x^2 + 8 = a$  не имеет корней?

 $\circ$ 45.13. Сколько корней имеет заданное уравнение при указанных ограничениях на параметр a:

a) 
$$x^3 - 3x^2 = a$$
,  $-4 < a < 0$ ;

6) 
$$-x^3 + 3x^2 - 2 = a$$
,  $a < -2$ :

B) 
$$3x^2 - x^3 = a$$
,  $0 < a < 4$ :

r) 
$$x^3 - 3x^2 + 2 = a$$
,  $a > 2$ ?

•45.14. Сколько корней имеет уравнение  $x^3 + ax + 2 = 0$  при различных значениях параметра a?

045.15. Решите уравнение:

a) 
$$3\sqrt{x+1} = -x^3 + 3x^2 + 6$$
;

$$6) x^3 - 3x = (x+1)^6 + 2.$$

## § 46. Применение производной для отыскания наибольших и наименьших значений величин

Найдите наибольшее и наименьшее значения заданнов функции на заданном отрезке без помощи производной:

**046.1.** a) 
$$y = x^8 - 1$$
, [-1; 2];

B) 
$$y = x^3 - 4$$
, [0; 3];

6) 
$$y = -x^5 + 2$$
, [-2; 1];

r) 
$$y = -2x^4 + 8$$
, [0; 3].

**046.2.** a) 
$$y = (x-1)^3 + 4$$
, [-2; 1];

6) 
$$y = 7 - (2x - 8)^4$$
, [-1; 3];

B) 
$$y = 5 - (3x + 6)$$
, [-2; 0];

$$y = 2(x + 3)^6 - 4$$
, [-1; 2].

**046.3.** a) 
$$y = \sin x - 3$$
,  $\left[\frac{\pi}{2}; 3\pi\right]$ ;

6) 
$$y = \cos x + 0.5, \left[ -\pi; \frac{\pi}{3} \right];$$

B) 
$$y = -2 \sin x + 1, \left[ \frac{\pi}{3}; \frac{5}{6} \pi \right];$$

r) 
$$y = 4 - 3 \cos x$$
,  $\left[ -\frac{\pi}{4}; \frac{7}{6}\pi \right]$ .

**046.4.** a) 
$$y = \sqrt{1 + \cos 2x}$$
,  $\left[ -\frac{\pi}{2}; \frac{\pi}{2} \right]$ ;

6) 
$$y = \sqrt{1 + \sin x}, \ [0; \frac{\pi}{2}];$$

B) 
$$y = \sqrt{1 - \sin 2x}$$
, [0;  $\pi$ ];

$$\mathbf{r}) \ y = \sqrt{1 + \cos 2x}, \ \left[ -\frac{\pi}{2}; \ 0 \right].$$

**•46.5.** a) 
$$y = ||x| - 4|$$
, [-3; 3];

6) 
$$y = |3 - |x||$$
, [-4; 4].

**046.6.** a) 
$$y = 2 - 3 \sin x + 4 \cos x$$
;

6) 
$$y = 3 \sin x - 4 \cos x + 1$$
.

046.7. Найдите наибольшее и наименьшее значения функции

$$y = \begin{cases} -4x + 12, \text{ если } x < 2, \\ x^2 - 2x + 2, \text{ если } x \ge 2 \end{cases}$$

на отрезке:

046.8. Найдите наибольшее и наименьшее значения функции

$$y = \begin{cases} (x+2)^2 - 3, \text{ если } x \leq -2, \\ x^2 - 4, \text{ если } x > -2. \end{cases}$$

на отрезке:

- a) [-4; -3];

- б) [0; 2]; в) [-2; 3]; г) [-3; 0].

о46.9. Найдите наибольшее и наименьшее значения заданной функции на заданном отрезке:

- a)  $y = x^2 8x + 19$ , [-1; 5];
- 6)  $y = x^2 + 4x 3$ , [0; 2];
- B)  $y = 2x^2 8x + 6$ , [-1; 4];
- r)  $y = -3x^2 + 6x 10$ , [-2; 9].

046.10. Найдите наибольшее и наименьшее значения функции  $y = x^3 - 9x^2 + 24x - 1$  на отрезке:

- a) [-1; 3]; 6) [3; 6];
- в) [-2; 3];
  - г) [3; 5].

046.11. Найдите наибольшее и наименьшее значения функции  $y = x^3 + 3x^2 - 45x - 2$  на отрезке:

- a) [-6: 0]:
- б) [1: 2]:
- в) [-6; -1]; r) [0; 2].

046.12. Найдите наибольшее и наименьшее значения функции  $y = x^3 - 9x^2 + 15x - 3$  на отрезке:

- a) [0: 2]; 6) [3: 6];
- в) [-1: 3]; г) [2: 7].

046.13. Найдите наибольшее и наименьшее значения функции  $y = x^4 - 8x^3 + 10x^2 + 1$  на отрезке:

- a) [-1: 2]:
- б) [1: 6]:
- в) [-2; 3]; r) [1; 7].

046.14. Найдите наибольшее и наименьшее значения функции  $y = x + \frac{4}{x-1}$  Ha orpeske:

- a) [2; 4];
- б) [-2; 0].

046.15. Найдите наименьшее и наибольшее значения заданной функции на заданном отрезке:

a) 
$$y = \operatorname{ctg} x + x$$
,  $\left[\frac{\pi}{4}; \frac{3\pi}{4}\right]$ ;

6)  $u = 2 \sin x - x$ , [0;  $\pi$ ];

B) 
$$y = 2 \cos x + x, \left[ -\frac{\pi}{2}; \frac{\pi}{2} \right];$$

$$\mathbf{r}) \ y = \mathbf{t}\mathbf{g} \ x - x, \ \left[ 0; \ \frac{\pi}{3} \right].$$

Найдите наименьшее и наибольшее значения заданнов функции на заданном промежутке:

**046.16.** a) 
$$y = x^3 - 2x^2 + 1$$
,  $[0,5; +\infty)$ ;

6) 
$$y = x - 2\sqrt{x}$$
,  $[0; +\infty)$ ;

B) 
$$y = \frac{1}{5}x^5 - x^2$$
,  $(-\infty; 1]$ ;

$$\Gamma) \ y = \frac{x^4}{x^4 + 1}, \ (-\infty; +\infty).$$

**046.17.** a) 
$$y = x + \frac{1}{x}$$
,  $(-\infty; 0)$ ;

6) 
$$y = \frac{3x}{x^2 + 3}$$
,  $[0; +\infty)$ ;

B) 
$$y = -2x - \frac{1}{2x}$$
, (0;  $+\infty$ );

r) 
$$y = \sqrt{2x + 6} - x$$
, [-3; +\infty).

**046.18.** a) 
$$y = (2x - 1)^2(x - 2)$$
, [-1; 2];  
6)  $y = \frac{x^2}{x^2 - 2x - 1}$ , [0; 2];

6) 
$$y = \frac{x^2}{x^2 - 2x - 1}$$
, [0; 2];

B) 
$$y = (x + 4)(3x + 1)^2, \left[-2; -\frac{1}{2}\right];$$

r) 
$$y = \frac{5x^3}{x^2 - 9}$$
, [-1; 1].

**C46.19.** a) 
$$y = x^4 + 8x^3 + 24x^2 + 32x + 21$$
, [-3; 0]; 6)  $y = x^4 - 4x^3 + 6x^2 - 4x - 9$ , [0; 4]; B)  $y = 4x^3 - 21x^2 + 36x - 2$ , [1; 2];

6) 
$$y = x^4 - 4x^3 + 6x^2 - 4x - 9$$
, [0; 4];

B) 
$$y = 4x^3 - 21x^2 + 36x - 2$$
, [1; 2];

r) 
$$y = 0.25x^4 - 2\frac{1}{3}x^3 + 3.5$$
, [-1; 2].

**046.20.** a) 
$$y = x^2 - 5|x| + 6$$
, [0; 4];

6) 
$$y = x^2 - 5|x| + 6$$
, [-5; 0];

B) 
$$y = x^2 + 8|x| + 7$$
, [1; 5];

r) 
$$y = x^2 + 8|x| + 7$$
, [-8; -2].

**•46.21.** a) 
$$y = x^3 - 2x|x - 2|$$
, [-1; 3];

6) 
$$y = 3x|x+1|-x^3$$
, [-1; 2].

•46.22. a) 
$$y = x^2 - 4x + 5 + |1 - x|$$
, [0; 4];  
6)  $y = |x^3 - 1| - 3x$ , [-1; 3].

6) 
$$y = |x^3 - 1| - 3x$$
, [-1; 3].

$$0.46.23.$$
 a)  $y = \sin^3 x + \cos^3 x$ ,  $\left[0; \frac{\pi}{2}\right]$ ;

6) 
$$y = \sin^5 x - \cos^6 x$$
,  $\left[ -\frac{\pi}{2}; \ 0 \right]$ .

$$046.24.$$
 a)  $y = \sin^2 \frac{x}{2} \cdot \sin x$ ,  $[-\pi; 0]$ ;

6) 
$$y = \cos^2 0.5x \cdot \cos x$$
, [0;  $\pi$ ].

046.25. a) 
$$y = x^3 - 3x$$
,  $(-\infty; 0]$ ; b)  $y = x^3 - 3x$ ,  $[0; +\infty)$ ;

6) 
$$y = \frac{x}{x^4 + 3}$$
, [0; +\infty]; r)  $y = \frac{x}{x^4 + 3}$ , (-\infty; 0].

046.26. Найдите сумму наибольшего и наименьшего значений функции:

a) 
$$y = x^4 - 2x^2 - 6$$
 на отрезке [-2; 2];

б) 
$$y = x^3 - 3x^2 + 2$$
 на отрезке [-1; 2].

Найдите те значения аргумента, при которых заданная функция достигает наибольшего значения:

**046.27.** a) 
$$y = \sqrt{(x-1)(10-x)}$$
; B)  $y = \sqrt{(2x-6)(7-x)}$ ;

B) 
$$y = \sqrt{(2x-6)(7-x)}$$

6) 
$$y = \sqrt{(x+2)(4-x)}$$
;  $y = \sqrt{(5-x)(x-3)}$ .

r) 
$$y = \sqrt{(5-x)(x-3)}$$

**046.28.** a) 
$$y = \sqrt{x-5} + \sqrt{9-x}$$
; B)  $y = \sqrt{10-2x} + \sqrt{3x}$ ;

B) 
$$y = \sqrt{10 - 2x} + \sqrt{3x}$$
;

6) 
$$y = 3\sqrt{x+1} + \sqrt{-x}$$
;  $y = \sqrt{8-3x} + \sqrt{x}$ .

r) 
$$y = \sqrt{8 - 3x} + \sqrt{x}$$
.

046.29. Найдите те значения аргумента, при которых заданная функция достигает наименьшего значения:

a) 
$$y = \sqrt{x^2 - 8x + 17}$$
; B)  $y = \sqrt{x^2 + 4x + 10}$ ;

B) 
$$y = \sqrt{x^2 + 4x + 10}$$
;

6) 
$$y = \sqrt{7(x+9)(x-6)}$$
; r)  $y = \sqrt{2(x-4)(x+8)}$ .

r) 
$$y = \sqrt{2(x-4)(x+8)}$$

Найдите наибольшее и наименьшее значения функции:

**46.30.** a) 
$$y = \sqrt{(x-5)(15-x)}$$
; B)  $y = \sqrt{(12-x)(x-4)}$ ;

B) 
$$y = \sqrt{(12 - x)(x - 4)}$$
:

6) 
$$y = \sqrt{(2x+4)(3-x)}$$
;  $y = \sqrt{(5-x)(3x+6)}$ .

r) 
$$y = \sqrt{(5-x)(3x+6)}$$
.

**46.31.** a) 
$$y = \sqrt{2x^2 - 5x + 2}$$
; B)  $y = \sqrt{x^2 + 6x - 7}$ ;

B) 
$$y = \sqrt{x^2 + 6x - 7}$$
:

6) 
$$y = \sqrt{3x^2 + 6x + 4}$$
;  $y = \sqrt{2x^2 - 2x + 1}$ .

$$\mathbf{r}) \ y = \sqrt{2x^2 - 2x + 1}$$

046.32. Найдите наибольшее значение функции:

a) 
$$u = -x^8 + 2x^4 + 1$$
:

a) 
$$y = -x^8 + 2x^4 + 1;$$
 6)  $y = -x^4 + \frac{4}{3}x^3 + \frac{2}{3}$ .

046.33. Найдите наибольшее значение функции:

a) 
$$y = \sqrt{5 - x^2} + \sqrt{x}$$
;

a) 
$$y = \sqrt{5 - x^2} + \sqrt{x}$$
; 6)  $y = \sqrt{-x} + \sqrt{5 - x^2}$ .

О46.34. Найдите наименьшее значение функции:

a) 
$$y = 2|x| - 4$$
;

B) 
$$y = 3|x| + 9$$
;

a) 
$$y = 2|x| - 4;$$
  
b)  $y = 3|x| + 9;$   
6)  $y = x^2 - 5|x| + 6;$   
r)  $y = x^2 - 6|x| - 7.$ 

$$\mathbf{r})\ y = x^2 - 6|x| - 7$$

Найдите область значений функции:

**046.35.** a) 
$$y = 2x - \sqrt{16x - 4}$$
,  $x \in \left[\frac{1}{4}; \frac{17}{4}\right]$ ;

6) 
$$y = 2\sqrt{x-1} - 0.5x$$
,  $x \in [1; 10]$ .

**•46.36.** a) 
$$y = x\sqrt{x+2}$$
;

$$6) y = x\sqrt{1-2x}.$$

$$\bullet 46.37. \ y = \frac{-2x^2 - 2x - 38}{x^2 + 6x + 34}.$$

- ullet46.38. a) При каком значении параметра a наименьшее значение функции  $y = x\sqrt{x+a}$  равно  $-6\sqrt{3}$ ?
  - б) При каком значении параметра а наибольшее значение функции  $y = (a - x)\sqrt{x}$  равно  $10\sqrt{5}$ ?
- ullet46.39. a) При каком значении параметра n сумма квадратов корней уравнения  $x^2 - 2nx + 4n^2 + 3n = 0$  будет наибольшей?
  - б) При каком значении параметра п сумма квадратов корней уравнения  $x^2 + nx + 2n - 1 = 0$  будет наименьшей?
- •46.40. Докажите, что при любых значениях х выполняется неравенство:

a) 
$$x^5 + (1-x)^5 \ge \frac{1}{16}$$
;

a) 
$$x^5 + (1-x)^5 \ge \frac{1}{16}$$
; 6)  $x^7 + (1-x)^7 > \frac{\sqrt{2}}{100}$ .

- 046.41. а) Сумма двух целых чисел равна 24. Найдите эти числа. если известно, что их произведение принимает наибольшее значение.
  - б) Произведение двух положительных чисел равно 484. Найдите эти числа, если известно, что их сумма принимает наименьшее значение.

- О46.42. а) Разность двух чисел равна 10. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
  - б) Разность двух чисел равна 98. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
- О46.43. а) Известно, что одно из двух чисел на 36 больше другого. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
  - б) Известно, что одно из двух чисел меньше другого на 28. Найдите эти числа, если известно, что их произведение принимает наименьшее значение.
- о46.44. а) Представьте число 3 в виде суммы двух положительных слагаемых так, чтобы сумма утроенного первого слагаемого и куба второго слагаемого была наименьшей.
  - б) Представьте число 5 в виде суммы двух положительных слагаемых так, чтобы произведение первого слагаемого и куба второго слагаемого было наибольшим.
- О46.45. а) Периметр прямоугольника составляет 56 см. Каковы его стороны, если этот прямоугольник имеет наибольшую площадь?
  - б) Периметр прямоугольника составляет 72 см. Каковы его стороны, если этот прямоугольник имеет наибольшую площадь?
- О46.46. а) Нужно огородить участок прямоугольной формы забором длиной 200 м. Каковы должны быть размеры этого прямоугольника, чтобы его площадь была наибольшей?
  - б) Нужно огородить участок прямоугольной формы забором длиной 240 м. Каковы должны быть размеры этого прямоугольника, чтобы его площадь была наибольшей?
- О46.47. а) Площадь прямоугольника составляет 16 см². Каковы должны быть его размеры, чтобы периметр прямоугольника был наименьшим?
  - б) Площадь прямоугольника составляет 64 см². Каковы должны быть его размеры, чтобы периметр прямоугольника был наименьшим?
- 046.48. Огораживают спортивную площадку прямоугольной фор-

мы площадью 2500 м². Каковы должны быть ее размеры, чтобы на забор ушло наименьшее количество сетки рабины?

- ${\tt O46.49.}$  Сторона квадрата  ${\tt ABCD}$  равна 8 см. На сторонах  ${\tt AB}$  и  ${\tt BC}$  взяты соответственно точки  ${\tt P}$  и  ${\tt E}$  так, что  ${\tt BP}={\tt BE}=3$  см. На сторонах  ${\tt AD}$  и  ${\tt CD}$  берутся точки соответственно  ${\tt K}$  и  ${\tt M}$  так, что четырехугольник  ${\tt KPEM}$  трапеция. Чему равна наибольшая площадь такой трапеции?
- О46.50. а) В арифметической прогрессии с разностью d девятый член равен 1. При каком значении d произведение четвертого, седьмого и восьмого членов прогрессии будет наибольшим?
  - б) В арифметической прогрессии с разностью d второй член равен 6. При каком значении d произведение первого, третьего и шестого членов будет наименьшим?
- $\circ$ 46.51. а) Найдите длину отрезка наибольшей длины, который заключен между графиками функций  $y=2x^2$  (снизу), y=4x (сверху) и параллелен оси y.
  - б) Найдите длину отрезка наибольшей длины, который заключен между графиками функций  $y = x^2$  (снизу), y = -2x (сверху) и параллелен оси y.
- 046.52. а) На графике функции  $y=x^2$  найдите точку M, ближайшую к точке  $A(0;\ 1,5)$ .
  - б) На графике функции  $y = \sqrt{x}$  найдите точку M, ближайшую к точке A(4,5;0).
- ●46.53. Воковые стороны и одно из оснований трапеции равны 15 см. При какой длине второго основания площадь трапеции будет наибольшей?
- ullet46.54. Из прямоугольной трапеции с основанием a и b и высотой h вырезают прямоугольник наибольшей площади. Чему равна эта площадь, если:
  - a) a = 80, b = 60, h = 100;
- 6) a = 24, b = 8, h = 12?
- •46.55. У пятиугольника ABCDE углы A, B и E прямые, AB = a, BC = b, AE = c, DE = m. Впишите в пятиугольник прямочугольник наибольшей площади, если:
  - a) a = 7, b = 9, c = 3, m = 5;
  - 6) a = 7, b = 18, c = 3, m = 1.
- •46.56. Памятник состоит из статуи и постамента. К памятнику подошел человек. Верхняя точка памятника находится

- выше уровня глаз человека на a м, а верхняя точка постамента на b м. На каком расстоянии от памятника должен стать человек, чтобы видеть статую под наибольшим углом?
- ◆46.57. База находится в лесу в 5 км от дороги, а в 13 км от базы на этой дороге есть железнодорожная станция. Пешеход но дороге идет со скоростью 5 км/ч, а по лесу — 3 км/ч. За какое минимальное время пешеход может добраться от базы до станции?
- о46.58. Открытый металлический бак с квадратным основанием должен вмещать 32 л воды. При каких размерах на его изготовление уйдет наименьшее количество материала?
- о46.59. Закрытый металлический бак с квадратным дном должен иметь объем 343 м³. При каких размерах на его изготовление пойдет наименьшее количество материала?
- О46.60. Для перевозки груза требуется изготовить закрытый короб в форме прямоугольного параллелепипеда, стороны основания которого относились бы как 2:3, а объем составлял 576 м³. Каковы должны быть размеры всех его сторон, чтобы полная поверхность была наименьшей?
- $\circ$ 46.61. Диагональ боковой грани правильной четырехугольной призмы равна d. При какой длине бокового ребра объем призмы будет наибольшим?
- О46.62. Апофема правильной четырехугольной пирамиды равна р. При какой высоте пирамиды ее объем будет наибольшим?
- О46.63. Периметр осевого сечения цилиндра равен р см. Какова должна быть высота цилиндра, чтобы его объем был наибольшим?
- $\circ$ 46.64. Объем цилиндра равен V м³. Каким должен быть его радиус, чтобы полная поверхность цилиндра была наименьшей?



# § 47. Правило умножения. Перестановки и факториалы

- O47.1. Двузначное число составляют из цифр 0, 1, 3, 4, 5, 6, 9 (повторения цифр допустимы).
  - а) Сколько всего можно составить чисел?
  - б) Сколько всего можно составить чисел, больших 50?
  - в) Сколько всего можно составить нечетных чисел?
  - г) Сколько всего можно составить нечетных чисел, меньших 55?
- О47.2. Двузначное число составляют из цифр 0, 1, 2, 4, 5, 6, 7 (повторения цифр допустимы).
  - а) Сколько всего можно составить чисел?
  - б) Сколько всего можно составить чисел, отличающихся от 40 менее чем на 10?
  - в) Сколько всего можно составить четных чисел?
  - г) Сколько можно составить чисел, отличающихся от 50 более чем на 20?
- ●47.3. a) Сколько имеется трехзначных чисел, составленных только из четных цифр?
  - б) Сколько имеется трехзначных чисел, которые не меняются при перемене местами первой и последней цифр?
  - в) Сколько имеется трехзначных чисел, кратных 5?
  - г) Сколько имеется трехзначных чисел, которые при перемене местами первой и второй цифр меняются менее чем на 90?
- О47.4. На кусок белого, черного или ржаного хлеба можно положить сыр, колбасу или масло. Бутерброд можно запить чаем, кофе, молоком или кефиром, а после этого или погулять, или пойти в гости, или остаться дома.
  - а) Найдите общее число вариантов начала выходного дня.
  - б) В скольких случаях будет выпит молочный напиток?
  - в) Каков будет ответ в пункте а), если в доме привыкли масло мазать только на белый хлеб?

- г) Каков будет ответ в пункте а), если хлеб надо сначала купить в одном из трех ближайших магазинов?
- •47.5. За четверть в классе прошли пять тем по алгебре. Контрольная работа будет состоять из няти задач: по одной задаче из каждой темы. К каждой теме заранее был составлен список из 10 задач, одна из которых будет входить в вариант контрольной. Ученик умеет решать только по 8 задач в каждой теме. Найдите:
  - а) общее число всех вариантов контрольной работы;
  - б) число тех вариантов, в которых ученик умеет решать все пять задач;
  - в) число тех вариантов, в которых ученик ничего не может решить;
  - г) число тех вариантов, в которых ученик умеет решать все задачи, кроме первой.
- •47.6. В каждую клетку квадратной таблицы  $3 \times 3$  произвольно ставят крестик или нолик.
  - а) Сколькими способами можно заполнить эту таблицу?
  - б) В скольких случаях в первом столбце будут одпи крестики?
  - в) В скольких случаях по диагоналям будут стоять одни нолики?
  - г) В скольких случаях во второй строке будет стоять ровно один крестик?
- О47.7. В один день происходят выборы мэра города и префекта округа. На нервую должность свои кандидатуры выставили Алкин, Балкин, Валкин, а на вторую — Эшкин, Юшкин, Яшкин.
  - а) Нарисуйте дерево возможных вариантов голосования на выборах.
  - б) В скольких вариантах будет кандидатура Эшкина?
  - в) В скольких вариантах фамилии кандидатов состоят из разпого числа букв?
  - г) Как изменятся ответы в пунктах а) и б), если учесть еще кандидата «против всех»?
- О47.8. Ученик помнит, что в формуле азотной кислоты подряд идут буквы H, N, O и что есть один нижний индекс — то ли двойка, то ли тройка.
  - а) Нарисуйте дерево возможных вариантов, из которых ученику придется выбирать ответ.

- б) Сколько среди них тех, в которых индекс стоит не на втором месте?
- в) Как изменится дерево вариантов, если ученик помнит что на первом месте точно стоит H, а порядок остальных букв забыл?
- г) Как изменится дерево вариантов, если буквы могут идти в любом порядке?
- О47.9. В урне лежат три неразличимых па ощупь шара, два белых и один черный. При вытаскивании черного шара его возвращают обратно, а вытащенный белый шар откладывают в сторону. Такую операцию производят два раза подряд.
  - а) Нарисуйте дерево возможных вариантов.
  - б) В скольких случаях оба вытащенных шара будут черными?
  - в) В скольких случаях вытащенные шары будут разного пвета?
  - г) Нарисуйте дерево возможных вариантов для трех вытаскиваний из двух черных и двух белых шаров.
- 047.10. Из пяти одноклассниц  $A, E, B, \Gamma, \Pi$  только B и  $\Pi$  дружат со всеми, B дружит, кроме B и  $\mathcal{I}$ , только с  $\Gamma$ , остальные не дружат между собой. Для проведения соревпования надо из этих одноклассниц выбрать капитапа и его заместителя, которые дружат между собой.
  - а) Нарисуйте дерево возможных вариантов выбора.
  - б) В скольких вариантах капитаном будет А?
  - в) В скольких вариантах выбора будет присутствовать В?
  - г) В скольких вариантах выбора Г будет заместителем?

#### Вычислите:

**047.11.** a) 
$$\frac{71+81}{51+61}$$
;

B) 
$$\frac{17 \cdot 6! + 8!}{7! + 9!}$$
;

6) 
$$\frac{7}{11} \cdot \frac{(10!)^2 - (9!)^2}{(8!)^2 - (7!)^2}$$
;

$$\Gamma) \ \frac{(7!)^2 \cdot (6!)^2}{4! \cdot 5! \cdot 8! \cdot 9!}.$$

047.12. a) 
$$\frac{1}{4!} + \frac{10}{5!} + \frac{630}{6!}$$
;

6) 
$$\frac{1}{6!} + \frac{1}{5!} - \frac{49}{7!}$$
.

047.13. Сколькими нулями оканчивается число:

- a) 10!; 6) 15!;
- в) 26!;
- r) 100!?

047.14. Укажите наибольшее натуральное число n, для которого:

- a) 10! кратно 2ⁿ;
- в) 26! кратно 5ⁿ;
- б) 16! кратно 2";
- г) 28! кратно 3ⁿ.

- 047.15. Докажите тождество:
  - a)  $(n + 1)! n! = n \cdot n!$ :
  - 6)  $(2n+1)! (2n-1)! \cdot 2n = 4n! \cdot (2n-1)!$ .
- 047.16. Решите уравнение:
  - a) n! = 42(n-2)!;

- B) 0.125n! = (n-1)! 90;
- 6) (k + 17)! = 420(k + 15)!;
- r) (3x)! = 504(3x 3)!.
- 047.17. При каких натуральных значениях n выполняется неравенство:
  - a) n! > (n+1)(n-2)!;
  - 6)  $7 \cdot (2n+1)! \cdot (2n-1)! < 8 \cdot ((2n)!)^2$ ?

Докажите неравенство:

- •47.18. a)  $n! > (n+3)^2$  при  $n \ge 5$ ; B)  $n! > 2^n$  при  $n \ge 4$ ; 6)  $n! > (n+2)^3$  при  $n \ge 6$ ; C)  $n! > 4^n$  при  $n \ge 9$ .
  - в)  $n! > 2^n$  при  $n \ge 4$ ;
- •47.19. a)  $2,66 < 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$  при всех  $n \ge 3$ ;
  - 6)  $\frac{1}{2^4} + \frac{1}{2^5} + \dots + \frac{1}{2^n} < 0,125 \text{ при всех } n \geqslant 4;$
  - в)  $1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!} < 3$  при всех n (используйте пункт
    - б) и номер 47.18 в));
  - r)  $1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} < 2.75$  при всех n.
- 047.20. У мамы и папы один сын. К ним в гости пришла другая семья — мама, папа и дочь. За круглым обеденным столом есть 6 мест. Сколькими способами можно рассадить людей за столом, если:
  - а) место хозяина дома неприкосновенно;
  - б) первыми садятся дети, и они садятся рядом;
  - в) первыми садятся дети, но не рядом друг с другом;
  - г) жены садятся рядом со своими мужьями?
- 047.21. а) В каждом из двух заплывов по шести дорожкам участвует по 6 пловцов. Дорожки между пловцами в каждом заплыве разыгрываются по жребию. Найдите число всех возможных распределений пловцов по дорожкам.
  - б) То же, но если в каждом заплыве один из пловцов победитель отборочных соревнований - плывет по четвертой дорожке.
  - в) То же, но если во втором заплыве участвуют 5 пловцов.
  - г) То же, но если в обоих заплывах участвует по 4 пловпа.

- О47.22. Две команды по 5 шахматистов проводят матч из пяти одновременно проходящих партий, в каждой из которых встречаются по одному из шахматистов каждой команды.
  - а) Найдите число всех возможных распределений встреч в матче.
  - б) То же, но для двух, независимо проводимых матчей.
  - в) То же, но если во втором матче участвует только по тра лучших шахматиста из каждой команды.
  - г) То же, что и в пункте б), но если во втором матче капитаны команд обязательно играют между собой.
- О47.23. Одинаковый текст приглашения напечатан на семи разных открытках. Их надо разослать директорам семи разных школ.
  - а) Найдите число всех возможных рассылок приглащений.
  - б) То же, что и в пункте а), но если самую красивую открытку послать директору школы № 1.
  - в) То же, что и в пункте а), но если в трех каких-либо приглашениях надо дописать и приглашения завучам по учебной работе.
  - г) То же, что и в пункте в), но если надо пригласить еще трех завучей по воспитательной работе из трех других школ.
- О47.24. В зоопарке пять львов надо распределить по одному но пяти клеткам, четырех тигров — по четырем другим клеткам и трех слонов — по трем вольерам.
  - а) Найдите число всех возможных распределений львов, тигров и слонов в зоопарке.
  - б) То же, но если есть четыре льва и львица и одного льва (известно какого именно) вместе с львицей надо посадить в одну клетку.
  - в) То же, что и в пункте а), но если у львов есть две семейные пары.
  - r) То же, что и в пункте а), но если между клетками для тигров и клетками для львов нет разницы.

# § 48. Выбор нескольких элементов. Биномиальные коэффициенты

- О48.1. Встретились несколько человек и стали здороваться друг с другом. Рукопожатий было от 60 до 70. Сколько человек встретилось, если известно, что:
  - а) каждый здоровался с каждым;
  - б) только один человек не здоровался ни с кем;

- в) только двое не поздоровались между собой;
- г) четверо поздоровались только между собой и остальные поздоровались только между собой.
- О48.2. Каждую из п точек, являющихся вершинами выпуклого п-угольника, соединили отрезками с каждой другой вершиной.
  - а) Сколько провели отрезков?
  - б) Сколько провели диагоналей?
  - в) Сколько есть двузвенных ломаных, соединяющих вершину A с вершиной B?
  - г) Сколько есть трехзвенных ломаных, соединяющих вершину A с вершиной B (самопересекающиеся ломаные допускаются)?
- о48.3. В футбольной команде 11 человек: вратарь, 4 защитника, 4 полузащитника и 2 нападающих. Команда выбирает капитана и его заместителя.
  - а) Найдите число всех возможных вариантов выбора.
  - б) Найдите число всех возможных вариантов, если в команде 3 новичка и они не могут быть капитаном или заместителем.
  - в) Найдите число всех возможных вариантов, если капитан точно не нападающий, а его заместитель точно не вратарь.
  - г) Найдите в пунктах а) и б), число всех возможных вариантов выбора пары кандидатов, из которых тренеры позже будут делать окончательный выбор.
- •48.4. Все станции пригородной железной дороги разделены на 10 зон, в каждой зоне более одной станции. В билете на проезд в одну сторону указывают номер зоны отправления и номер зоны прибытия.
  - а) Сколько существует различных типов билетов?
  - б) Сколько существует различных стоимостей билетов, если стоимость проезда из зоны x в зону y рассчитывается по формуле S = 7 + 6|x y|?
  - в) Сколько различных типов билетов можно купить не более чем за 50 руб.?
  - г) Сколько существует различных типов билетов по цепе, кратной 5 руб.?

#### Вычислите:

**48.5.** a)  $C_{17}^2$ :

6)  $C_{100}^2$ ; B)  $C_5^3$ ; r)  $C_8^4$ .

**48.6.** a)  $A_{10}^3$ ; 6)  $A_8^5$ ; B)  $A_{20}^2$ ; r)  $A_{100}^1$ .

**48.7.** a)  $C_{27}^2 - C_{26}^2$ ;

6)  $\frac{A_8^6}{A_{10}^2}$ ; B)  $C_{11}^5 + C_{11}^6$ ; r)  $\frac{A_{10}^3}{C_8^6}$ .

048.8. Упростите выражение:

a) 
$$\frac{P_n \cdot C_{n+1}^3}{A_n^{n-2}}$$
;

6)  $\frac{P_{n+1}\cdot C_n^{n-2}}{A^n}$ .

048.9. Составив частное двух чисел, выясните, какое из них больше:

а)  $C_{17}^3$  или  $C_{18}^4$ ;

в)  $C_{19}^5$  или  $C_{18}^6$ ;

б) C₁₀ или C₁₀:

г)  $C_{-}^{7}$  или  $C_{-,1}^{8}$ 

Решите уравнение:

**048.10.** a)  $C_r^3 = 2C_r^2$ ;

B) 
$$C_x^2 + C_{x+1}^2 = 49$$
;

6)  $C_x^{x-2} = 15$ :

r) 
$$C_8^x = 70$$
.

**048.11.** a)  $A_r^5 = 18A_{r-2}^4$ ;

6) 
$$A_{x-1}^2 - C_x^1 = 79$$
.

048.12. a)  $C^3 = A^2$ :

B) 
$$C_x^4 = A_x^3 + C_x^3$$
;

6) 
$$C_r^4 = A_r^3$$
;

r) 
$$0.5A_x^4 = 3(A_{x-1}^3 + C_{x-1}^3)$$
.

048.13. Решите неравенство:

a) 
$$120 < A_{k-3}^2 < 140$$
;

B) 
$$C_{10}^2 < A_x^2 < 60;$$

6) 
$$C_6^2 < A_n^2 < C_8^2$$
;

$$\Gamma) C_{10}^2 < A_x^2 + C_x^2 < 200.$$

О48.14. Три ноты из семи нот (до, ре, ми, фа, соль, ля, си) одной октавы можно нажать либо одновременно (аккорд), либо поочередно (трезвучие).

- а) Найдите число всех возможных трезвучий.
- б) Найдите число всех возможных аккордов.
- в) Найдите число всех возможных аккордов, содержащих поту «соль».
- г) Найдите число всех возможных трезвучий, в которых подряд не идут две соседние ноты (до и си — не соседние ноты).

О48.15. «Проказница Мартышка, Осел, Козел и косоланый Мишка. затеяли сыграть квартет». Сколькими способами они могут:

- а) выбрать каждый для себя по одному инструменту из 15 данных:
- б) выбрать набор из пяти инструментов из имеющихся 12 инструментов;

- в) сесть по одному за какие-то четыре из выбранных в пункте б) инструмента;
- г) выгнать одного из участников квартета, и потом сесть за какие-то три выбранных в пункте б) инструмента?
- о48.16. Из колоды в 36 карт выбирают 5 карт и потом одновременно открывают их. Найдите:
  - а) число всех возможных вариантов выбранных карт;
  - б) число вариантов, при которых среди полученных карт есть четыре туза;
  - в) число вариантов, при которых все полученные карты пики;
  - г) число вариантов, при которых все полученные карты одной масти.
- •48.17. По программе в концерте должен выступить кор из пяти певцов и трех певиц. Предварительное согласие на выступление дали 10 певцов и 8 певиц.
  - а) Сколько существует различных вариантов состава хора?
  - б) То же, но если известно, что певцы A и B ни за что не будут петь вместе.
  - в) То же, но если известно, что певец A будет петь тогда и только тогда, когда будет петь певица B.
  - г) То же, если 6 певцов накануне сорвали голос на футболе и вместо недостающего певца придется выступать одной певице.

•48.18. Пусть 
$$y(n) = \frac{C_n^3}{A_{n-1}^3}, \ n \ge 4.$$

- а) Укажите дробно-линейную функцию, на графике которой лежат все точки (n; y(n)).
- б) Постройте график этой функции.
- в) Укажите наибольшее n, при котором y(n) > 0.25.
- г) Укажите наименьшее n, при котором y(n) отличается от  $\frac{1}{6}$  менее чем на 0,01.

•48.19. Пусть 
$$y(n) = \frac{A_n^5}{C_{n-2}^8}, \ n \ge 4.$$

- а) Укажите многочлен, на графике которого лежат все точки (n; y(n)).
- б) Постройте график этого многочлена.
- в) Укажите наибольшее n, при котором y(n) < 600.
- г) Укажите наименьшее n, при котором y(n) > 6000.

048.20. а) Докажите, что последовательность  $\frac{A_{n+1}^4}{C_{n+1}^4}$ ,  $n=3,\,4,\,5,\,\dots$ монотонно возрастает.

б) Докажите, что все члены этой последовательности боль. ше числа 4.

- в) Укажите номер, начиная с которого члены этой послед довательности будут больше 20.
- г) Найдите предел этой последовательности при  $n \to \infty$

### О48.21. Найдите п, при котором:

- а) число  $C_{n+1}^2$  составляет 80% от числа  $C_n^3$ ;
- б) число  $C_{n+1}^3$  составляет 120% от числа  $C_n^4$ ;
- в) число  $C_{2n}^{n+1}$  составляет 56% от числа  $C_{2n+1}^{n-1}$ :
- г) число  $C_{2n+3}^n$  составляет 150% от числа  $C_{2n+2}^{n+2}$ .

#### •48.22. Докажите тождество:

- a)  $C_n^3 = C_{n-1}^2 + C_{n-1}^3$ ;
- B)  $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$ ;
- 6)  $C_n^{n-4} = C_{n-1}^3 + C_{n-2}^{n-4}$ ;  $\Gamma$ )  $C_n^k = C_{n-1}^{n-k} + C_{n-2}^{k-1} + C_{n-2}^{n-k-2}$ .

#### •48.23. Выпишите треугольник Паскаля до седьмой строки включительно.

- а) Найдите сумму всех чисел в третьей строке треугольника Паскаля.
- б) Найдите сумму всех чисел в четвертой строке треугольника Паскаля.
- в) Найдите сумму всех чисел в седьмой строке треугольника Паскаля.
- г) Методом математической индукции докажите, что сумма чисел в *п*-й строке треугольника Паскаля равна 2ⁿ.

## 48.24. Раскройте скобки в выражении:

- a)  $(x+1)^7$ ; 6)  $(2x-y)^6$ ; B)  $(x^2+2)^5$ ; F)  $(1-x^3)^4$ .

## $\circ$ 48.25. У многочлена P найдите коэффициент при $x^3$ :

- a)  $P(x) = (1 + 3x)^4$ ;
- 6)  $P(x) = (3 2x)^5$ ; B)  $P(x) = (x + 2)^5 (2x + 1)^4$ ;

r) 
$$P(x) = (x^2 - x)^4 + \left(3 - \frac{x}{3}\right)^4$$
.

048.26. В разложении 
$$\left(x + \frac{1}{x}\right)^{10}$$
 по степеням  $x$  укажите:

- а) член, содержащий  $x^8$ ;
- в) член, содержащий  $x^{-2}$ ;
- б) член, содержащий  $x^4$ ;
- г) член, не содержащий 🛪.

48.27. Найдите член разложения, не содержащий переменных:

a) 
$$\left(2x^2 + \frac{1}{x}\right)^6$$
; B)  $\left(3\sqrt[4]{a} + \frac{1}{\sqrt{a}}\right)^9$ ; 6)  $\left(x^{\frac{1}{3}} + x^{\frac{4}{3}}\right)^5$ ; r)  $\left(x^{0.75} + x^{\frac{2}{3}}\right)^{17}$ .

- 048.28. Известно, что сумма биномиальных коэффициентов разложения  $(a + b)^n$  равна 1024.
  - а) Найдите п.
  - б) Найдите наибольший биномиальный коэффициент этого разложения.
  - в) Сколько в разложении членов с этим наибольшим коэффициентом?
  - г) Дайте ответы на вопросы пунктов а), б), в), если сумма биномиальных коэффициентов разложения  $(a + b)^n$  равна 512.
- 048.29. Найдите k, при котором достигается наибольшее значение выражения:
  - a)  $C_5^k$ ;

- 6)  $C_{16}^k$ ; B)  $C_{61}^k$ ;  $\Gamma$ )  $C_{999}^{k-1} + C_{999}^k$ .
- ullet48.30. а) Докажите, что для любого натурального числа n>1 и любого x > 0 верно неравенство  $(1 + x)^n > 1 + nx$  (неравенство Бернулли).
  - б) Используя неравенство пункта а), укажите какое-нибудь решение неравенства  $1,001^n > 1000$ .
  - в) Используя неравенство пункта а), укажите какое-нибудь решение неравенства  $0.99^n < 0.01$ .
  - г) Докажите, что для любого 0 < q < 1 и любого a > 0неравенство  $q^n < a$  верно для всех натуральных n, начиная с некоторого номера.

# § 49. Случайные события и их вероятности

- 049.1. Случайным образом выбирают двузначное натуральное число. Найдите вероятность того, что оно:
  - а) делится на 5;
- в) делится или на 15, или на 25;
- б) делится на 13;
- г) не делится на 29.
- 049.2. Случайным образом выбирают нечетное двузначное натуральное число. Найдите вероятность того, что:
  - а) его квадрат меньше 1000;
  - б) его квадрат больше 9000;
  - в) сумма квадратов его цифр больше 140;
  - г) сумма квадратов его цифр не больше 10.

- 049.3. Два ученика независимо друг от друга написали по одвому двузначному натуральному числу. Найдите вероять ность того, что:
  - а) эти два числа различны между собой:
  - б) сумма чисел равна 100;
  - в) сумма чисел не больше 25;
  - г) сумма чисел больше 190.
- 049.4. Из набора домино случайно выбирают одну фишку. Най. дите вероятность того, что:
  - а) это дубль;
  - б) одна из ее половинок «пустышка»:
  - в) различие между очками на ней больше 4;
  - г) сумма очков на ней больше 7.
- 049.5. Из значений n! для  $n=1, 2, 3, \ldots, 25$  случайно выбирают одно число. Найдите вероятность того, что это число:
  - а) меньше миллиона;
- в) делится на миллион;
- б) больше миллиарда; г) не делится на тысячу.
- 049.6. Из чисел, расположенных в пяти первых строчках треугольника Паскаля случайно выбирают одно число. Найдите вероятность того, что это число:
  - а) двузначно:

в) кратно трем;

б) нечетно;

- г) не является простым числом.
- ●49.7. В круге с центром в начале координат и радиусом π случайно выбрали точку с целыми координатами. Найдите вероятность того, что:
  - а) сумма координат этой точки больше 3;
  - б) произведение координат этой точки меньше 4;
  - в) эта точка лежит в круге с центром в начале координат и радиусом  $\sqrt{3}$ ;
  - г) эта точка лежит вне треугольника с вершинами (0; 2), (-2; -2), (1; -2).
- ●49.8. Двузначное число составляют так. Его первая цифра получается в результате первого бросания игрального кубика, грани которого пронумерованы цифрами от 1 до 6, а вторая цифра — в результате второго бросания этого кубика. Найдите вероятность того, что это число:
  - а) состоит из разных цифр;
- в) кратно 7;

б) больше 20;

г) простое.

- О49.9. Красивых учеников в классе 22, а умных 18. Всего в классе 30 учеников и каждый из них умный или красивый, или и умный, и красивый.
  - а) Сколько учеников, которые и умны, и красивы?
  - б) Сколько учеников, которые умны, но не красивы?
  - в) Сколько учеников, которые красивы, но не умны?
  - г) Измените в условии общее число учеников так, чтобы ответы в пунктах а) и в) были одинаковы.
- О49.10. При подготовке к экзамену один ученик решил 44 задачи из общего списка в 50 задач, а второй ученик решил 26 задач из этого же списка. Известно, что каждую задачу из общего списка задач кто-то из учеников решил.
  - а) Сколько задач были решены и первым, и вторым учеником?
  - б) Сколько задач были решены первым, но не решены вторым учеником?
  - в) Сколько задач были решены вторым, но не решены первым учеником?
  - г) Измените в условии общее число задач так, чтобы ответы в пунктах а) и б) были одинаковы.
- •49.11. У каждого из туристов есть или тугрики, или «еврики». У 100 туристов есть только тугрики, у 38 туристов есть только «еврики», а у 31% туристов есть обе валюты.
  - а) Сколько всего было туристов?
  - б) Сколько туристов имеют тугрики?
  - в) Сколько туристов имеют «еврики»?
  - г) Измените в условии задачи 31% так, чтобы ответ в пункте а) стал наибольшим из всех возможных.
- •49.12. Каждый из 30 учеников умный или красивый. Красивых учеников всего 26, умных 24, а 14 учеников ростом выше 180 см.
  - а) Про скольких учеников гарантированно можно утверждать, что они и умиые, и красивые, и выше 180 см?
  - б) Каков ответ в пункте а), если известно, что все умные, но не красивые ростом ниже 180 см?
  - в) Каков ответ в пункте а), если известно, что все красивые, но не умные ростом выше 180 см?
  - г) Каков ответ в пункте а), если известно, что 12 умных ростом выше 180 см?

049.13.	бытия: A —	экзамен сдал	ровно один у	сматриваются со- ченик; В — хотя
	два ученика.	Опишите соб	ния:	ников; $D = \text{ров}_{\mathbf{R}0}$ г) $A + B + C + D$ .
049.14		ытия, против редыдущей за		обытиям из пунк.
<b>•49.15</b> .	. Из чисел 0,	1, 2,, 9 вы	бирают одно.	Рассматриваются

- события: A это четное число; B это число больше 7. C — это число кратно 3 и не равно 0; D — это или 1, или 4. или 9. Опищите события:
  - a) *AB*;
- б) *CD*;
- в) BC; г) ABCD.
- **49.16.** Опишите события, противоположные событиям A, B, CD из предыдущей задачи.
- 049.17. В темном ящике 5 выигрышных билетов и 4 проигрышных, Вы случайно вытаскиваете одновременно 3 билета. Найдите вероятность того, что:
  - а) все билеты выигрышные;
  - б) есть ровно один проигрышный билет;
  - в) есть ровно два выигрышных билета;
  - г) есть хотя бы один выигрышный билет.
- **ullet49.18.** В темном ящике *n* выигрышных билетов и *n* проигрышных, n > 2. Вы случайно вытаскиваете одновременно 3 билета.
  - а) Найдите вероятность того, что есть ровно один проигрышный билет.
  - б) Докажите, что эта вероятность убывает с ростом n.
  - в) К какому числу стремится эта вероятность при  $n \to \infty$ ?
  - г) Найдите п, начиная с которого эта вероятность будет меньше 0.4.
- •49.19. В темном ящике 5 выигрышных билетов и 4 проигрышных. Вы случайно вытаскиваете одновременно n билетов, n=1,  $2, 3, \ldots, 9$ . Найдите вероятность p(n) того, что у вас есть ровно один выигрышный билет. Численные результаты соберите в таблипу.

n	1	2	3	4	5	6	7	8	9
p(n)									

049.20. В темном ящике 6 билетов, из которых n билетов выигрышных и 6 - n проигрышных, n = 0, 1, 2, 3, ..., 6. Вы случайно вытаскиваете одновременно 2 билета. Найдите вероятность p(n) того, что у вас есть ровно один выигрышный билет. Численные результаты соберите в таблицу.

n	0	1	2	3	4	5	6
p(n)							

- 049.21. В темном ящике 8 белых и 7 черных шаров. Вы случайно вытаскиваете одновременно 4 шара. Найдите вероятность того, что:
  - а) все шары белые;
  - б) имеется, как минимум, три белых шара;
  - в) имеется, как минимум, два черных шара;
  - г) есть хотя бы один белый шар.
- ullet49.22. В темном ящике n белых и n-1 черных шаров. Вы случайно вытаскиваете одновременно 4 шара.
  - а) Найдите вероятность того, что имеется, как минимум, три белых шара.
  - б) Докажите, что эта вероятность убывает с ростом n.
  - в) К какому числу стремится эта вероятность при  $n \to \infty$ ?
  - n) Найдите n, начиная с которого эта вероятность будет меньше 0.35.
- 049.23. Какова вероятность того, что при трех бросаниях монеты:
  - а) ни разу не выпадет «орел»;
  - б) ни разу не выпадет «решка»;
  - в) «орел» выпадет ровно один раз;
  - г) «решка» выпадет хотя бы один раз?
- 049.24. Решите задачу 49.23 для четырех бросаний монеты.
- •49.25. а) Какова вероятность того, что при n бросаниях монеты «решка» выпадет хотя бы один раз?
  - б) Как меняется эта вероятность с изменением n?
  - в) Найдите предел этой вероятности при  $n \to \infty$ .
  - г) При каком наименьшем n вероятность появления хотя бы одной «решки» будет больше 0,999?
- О49.26. Три ученика независимо друг от друга написали по одной цифре от 0 до 9. Какова вероятность того, что среди написанных цифр:
  - а) не будет ни одной цифры 0;
  - б) будет хотя бы одна цифра 5;
  - в) не будет ни одной четной цифры;
  - г) будет котя бы одна нечетная цифра?

- 49.27. Каждый из п учеников независимо друг от друга написал по одной цифре от 0 до 9.
  - а) Какова вероятность того, что средн написанных цифр будет хотя бы одна цифра 5?
  - б) Как меняется эта вероятность с изменением n?
  - в) Найдите предел этой вероятности при  $n \to \infty$ .
  - г) При каком наименьшем n вероятность появления котя бы одной цифры 5 будет больше вероятности ее отсутствия?
- ◆49.28. Буквы русского алфавита написаны на карточках. Вы случайно вытаскиваете одну карточку, читаете букву, возвращаете карточку и повторяете выбор. Как только появится гласная буква процедура заканчивается. (В русском алфавите 33 буквы, из них 10 гласных.)
  - а) Какова вероятность того, что никаких повторений не потребуется?
  - б) Какова вероятность того, что хватит двух повторений?
  - в) Какова вероятность того, что хватит именно n повторений?
  - г) Найдите предел этой вероятности при  $n \to \infty$ .
- О49.29. Стрелок не очень меток: вероятность того, что он попадет в мишень одним выстрелом, равна всего 0,1. Независимо от предыдущих промахов он повторяет выстрелы до первого попадания и после этого прекращает стрельбу.
  - а) Какова вероятность p(n) того, что ему хватит n выстрелов?
  - б) Найдите предел этой вероятности при  $n o \infty$ .
  - в) Численные результаты для n=1, 2, 3, ..., 7 соберите в таблицу.

n	1	2	3	4	5	6	7
p(n)						,	

- г) Найдите предел суммы p(1) + p(2) + ... + p(n) при  $n \to \infty$ .
- ●49.30. Найдите вероятность р встречи с контролером при одной поездке, если известно, что вероятность хотя бы одной встречи:
  - а) при трех поездках равна 0,875;
  - б) при четырех поездках равна 0,9984;
  - в) при пяти поездках равна 0,98976;
  - г) при шести поездках равна 0,468559.

# Дополнительные задачи

67.48. Найдите наименьшее целое число, принадлежащее области значений функции:

a)  $y = \sqrt{x^2 - 7x - 3}$ ; 6)  $y = \sqrt{x^2 - 7x + 24}$ .

•8.53. а) Дана функция  $y \approx f(x)$ , где  $f(x) = 2x^2 - 5x + 3$ . Нечетная функция y = g(x) определена на всей числовой прямой, причем f(x) = g(x) при  $x \ge 0$ . Вычислите h(-2), где h(x) = f(x) + g(x).

6) Дана функция y = f(x), где  $f(x) = \frac{5x + 1}{r^2 + 1}$ . Четная функ-

ция y = g(x) определена на всей числовой прямой, причем f(x) = g(x) при  $x \le 0$ .

Вычислите h(1), где  $h(x) = \frac{2f(x) - g(x)}{f(x) + g(x)}$ .

•8.54. При каком значении параметра a функция  $y=x^2(ax+2a-6)$  является:

а) четной; б) нечетной?

•9.36. Известно, что y = f(x) — четная, периодическая функция с основным периодом, равным 8, и что на отрезке [0; 4] она задается формулой  $y = \sqrt{x+1}$ .

а) Решите уравнение f(x) = 0;

 $\mathbf{6}$ ) решите уравнение f(x) = 1;

в) решите неравенство  $f(x) \ge 0.97$ ;

- г) решите систему неравенств  $\begin{cases} f(x) \ge 2, \\ -4 \le x \le 8. \end{cases}$
- •9.37. Функция y = f(x) является периодической с периодом T = 8. На отрезке [-1; 8] она задана следующим образом:

$$f(x) = \begin{cases} -x, & \text{если } -1 \le x \le 1; \\ x - 2, & \text{если } 1 < x < 5; \\ 8 - x, & \text{если } 5 \le x \le 7. \end{cases}$$

а) Вычислите: f(40), f(50), f(-65).

- б) Сколько корней имеет уравнение f(x) = 0 на отрезке [-10; 10]?
- •13.54. Решите уравнение  $x^4 4x^3 + 4x^2 + \cos^2 \frac{3\pi x}{4} = 0$ .
- ●14.37. Сколько целых чисел содержится в области значений функции:

a) 
$$y = \sqrt{8 - 27 \sin x - 4 \sin^2 x}$$
;

6) 
$$y = \sqrt{4 + 24 \cos x - \sin^2 x}$$
?

О16.73. Укажите число четных и нечетных функций среди данных;

a) 
$$y_1 = 2 \sin x$$
,  $y_2 = \cos 2x$ ,  $y_3 = x \sin x$ ,  $y_4 = \sin (x^2 + 1)$ ,  $y_5 = \sin 0.25x^3$ ;

6) 
$$y_1 = \frac{\sin x}{\cos x}$$
,  $y_2 = \cos^3 3x$ ,  $y_3 = -x \sin x$ ,  $y_4 = \sin (x^4 - 1)$ ,

 $y_5 = x + \sin 0.5x;$ 

B) 
$$y_1 = 2 - \frac{\cos x}{\sin x}$$
,  $y_2 = x + \cos 0.5x$ ,  $y_3 = x^3 + x^2 \sin x$ ,

$$y_4 = \frac{\sin{(x^2+2)}}{2+\cos{(2-x^2)}}, \ y_5 = \frac{\sin{x}}{x};$$

r) 
$$y_1 = \sqrt{3 + \cos 3x}$$
,  $y_2 = \cos \sqrt{x}$ ,  $y_3 = x\sqrt{1 - \cos 2x}$ ,  $y_4 = \sin x + \cos x$ ,  $y_5 = \sin x \cos x$ .

016.74. Укажите число периодических функций среди данных:

a) 
$$y_1 = \cos^2 x$$
,  $y_2 = \cos x^2$ ,  $y_3 = \sin (x^2 + 1)$ ,  $y_4 = \sin (2x + 3)$ ,  $y_5 = \sqrt{1 + \sin^2 x}$ ;

6) 
$$y_1 = \frac{\cos x}{\sin x}$$
,  $y_2 = 5$ ,  $y_3 = \cos(\sqrt{x})$ ,  $y_4 = \sin\frac{x+1}{x}$ ,

$$y_5 = \sqrt{1 + \cos^2 x};$$

B) 
$$y_1 = \frac{\sin x}{\cos x}$$
,  $y_2 = \sin (x + 2)$ ,  $y_3 = \cos (x^2 + 2)$ ,  $y_4 = \cos (14x - 7)$ ,

$$y_5=\sqrt{2-\sin^2x};$$

r) 
$$y_1 = 2$$
,  $y_2 = x^2$ ,  $y_3 = 2 \sin x$ ,  $y_4 = \cos x^2$ ,  $y_5 = \frac{\sin 2x}{\cos 2x}$ ,

$$y_6 = \sin(\cos x), \ y_7 = \cos^2 x.$$

- •16.75. а) Функция y = g(x) четная и определена на всей числовой прямой, а f(x) = g(g(x) + 3) + g(8 + 2g(x)). Вычислите f(2), если известно, что g(2) = -5.
  - 6) Функция y = g(x) четная, периодическая с основным периодом T = 2 и определена на всей числовой прямой, а f(x) = g(g(x) + 1) + g(5 + 3g(x)). Вычислите f(3), если известно, что g(3) = -4.
  - в) Функция y = g(x) четная и определена на всей числовой прямой, а f(x) = g(g(x) + 2) + g(14 + 5g(x)). Вычислите f(1), если известно, что g(1) = -3.

г) Функция y = g(x) четная, определена на всей числовой прямой и периодическая с основным периодом, равным 5, а  $f(x) = 2g(13 - 2x) + \frac{1}{g(x^2 - 28)}$ . Вычислите f(10), если известно, что g(7) = -5.

- •20.30. Решите уравнение  $9x^2 6x + 6 = (\sqrt{5} \text{tg } 3\pi x)(\sqrt{5} + \text{tg } 3\pi x)$ .
- ullet 20.31. a) Сколько целочисленных решений неравенства  $\frac{4-x}{x+5} \ge 0$  удовлетворяют неравенству  $1+{
  m ctg}^2\,rac{\pi x}{2} \ge 0$ ?
  - б) Сколько целочисленных решений неравенства  $5x + 36 \ge x^2$  удовлетворяют неравенству  $4x^2 + 1 + tg^2 \frac{\pi x}{6} > 4x$ ?
- 021.63. На сколько процентов:
  - а) число  $\arccos (\sin 45^\circ + \cos 135^\circ)$  больше числа  $\arcsin \left(\cos \frac{7\pi}{3}\right)$ ;
  - б) число  $\arccos{(\sin{30^\circ}+\cos{120^\circ})}$  больше числа  $\arcsin{\left(\cos{\frac{9\pi}{3}}\right)};$
  - в) число  $\arcsin\left(\cos\frac{9\pi}{4}\right)$  меньше числа

 $\arccos (\sin 30^{\circ} + \cos 120^{\circ});$ 

г) число  $\arccos{(\sin{60^\circ}+\cos{150^\circ})}$  больше числа  $\arcsin{\left(\cos{\frac{13\pi}{6}}\right)}$ ?

## 021.64. На сколько:

- а) число ctg (arctg 4) меньше числа tg (arcctg (0,8));
- б) число  $tg^2$  (arccos (-0,25)) больше числа  $tg^2$  (arccos (-0,5));
- в) число  $tg^2$  (arccos 0,5) меньше числа  $ctg^2$  (arcsin  $\frac{1}{3}$ );
- г) число  $\operatorname{ctg}^2(\arcsin(-0,2))$  больше числа  $\operatorname{tg}^2(\arccos\frac{1}{3})$ ?

## ●21.65. Решите уравнение:

a) 
$$2x^3 - x + 4 = 10x^2 + 2\cos(\arccos(0.5x - 3));$$

6) 
$$\sin(\arcsin(5x-4)) = \sqrt{10x+16}$$
.

**022.69.** Сколько корней имеет данное уравнение на данном промежутке:

a) 
$$2 + \operatorname{ct} g^2 x = (\sin x)^{-2} + \cos 4x, \ x \in \left(-\pi; \frac{3\pi}{2}\right];$$

6) 
$$tg^2 x = (\cos x)^{-2} + \sin 3x$$
,  $x \in (-0.5\pi; 2\pi]$ ?

●23.43. Решите уравнение:

a) 
$$|\sin x|(\cos x + 2\sin x) = 2 - 2\cos^2 x$$
;

6) 
$$|\cos x| (2\cos x - 3\sin x) = 2$$
.

●23.44. Решите уравнение:

a) 
$$\frac{2\cos^2 x + 5|\cos x| - 3}{2\sin x + \sqrt{3}} = 0$$
; 6)  $\frac{2\sin^2 x + |\sin x| - 1}{4\cos^2 x - 3} = 0$ .

- **•23.45.** Решите уравнение  $\cos^2 3x 2 \cos 2x \cos 3x + 1 = 0$ .
- 024.53. Найдите значение выражения:
  - a)  $((1 + \cos 44^{\circ} \cos 1^{\circ} \sin 44^{\circ} \sin 1^{\circ})^2 1.5)^2$ ;
  - 6)  $((1 + \sin 57^{\circ} \cos 3^{\circ} + \cos 57^{\circ} \sin 3^{\circ})^{2} 1,75)^{2};$
  - B)  $((2 + \sin 41^{\circ} \cos 4^{\circ} + \cos 41^{\circ} \sin 4^{\circ})^{2} 4.5)^{2}$ ;
  - r)  $((2 + \cos 25^{\circ} \cos 5^{\circ} \sin 25^{\circ} \sin 5^{\circ})^2 4,75)^2$ .
- О27.73. Сколько корней имеет данное уравнение на данном промежутке:
  - a)  $2\cos^2 x \sin 2x = (\cos x \sin x)^2$ ,  $(-0.5\pi; 3\pi)$ ;
  - $6) 6 \cos^2 x + \sin 2x = (\cos x + \sin x)^2 + 2, (-\pi; 3.5\pi)?$

**028.39.** Во сколько раз:

- а) число  $(\sin 70^{\circ} + \sin 50^{\circ})^2$  больше числа  $\sin^2 80^{\circ}$ ;
- б) число  $(\cos 65^{\circ} + \sin 65^{\circ})^{2}$  больше числа  $\sin^{2} 50^{\circ}$ ;
- в) число  $(\cos 50^{\circ} + \cos 40^{\circ})^2$  больше числа  $\sin^2 85^{\circ}$ ;
- г) число  $(tg 57^{\circ} + tg 3^{\circ})^2$  больше числа  $(\cos 54^{\circ} + 0.5)^{-2}$ ?
- •30.27. Сколько целых чисел содержится в области значений функции  $y = \left(\sin x + \sqrt{3}\cos x\right)^2 + \sin\left(x + \frac{\pi}{3}\right) + 3?$
- •30.28. Решите уравнение  $\cos x \sin x \cos 4x = \sqrt{2}$ .
- **040.17.** а) Прямая, проходящая через начало координат, является касательной к графику функции y = f(x) в точке A(2; -4,5). Вычислите f'(2).
  - б) Прямая, проходящая через точку A(1; 1), является касательной к графику функции y = f(x) в точке B(3; 4). Вычислите f'(3).

- •45.16. Решите уравнение  $\sqrt{x}(4x^3 + 3x^2 6x + 2,75 \sin \pi x) = 0$ .
- •46.65. Сколько натуральных чисел принадлежит области значений функции  $y = \sqrt{(x^3 x^2)^3} + \sqrt{x^2 6x + 9}$ ,  $x \in [0; 5]$ ?
- •46.66. а) Найдите наибольшее и наименьшее значения функции  $y = \left|\sqrt{2-x^2} 2\right| + \sqrt{2-x^2} 2 + 2x x^2.$ 
  - б) Найдите область значений функции

$$y = \left| \sqrt{8 + 2x - x^2} - 4 \right| + \sqrt{8 + 2x - x^2} + x^3 - 3x^2 - 9x.$$

#### ОТВЕТЫ

#### Повторение

П.1. а) 1,35; б) 
$$\frac{16}{17}$$
; в)  $\frac{24}{25}$ ; г)  $-\frac{1}{19}$ . П.2. а)  $\frac{3x-1}{x}$ ; б)  $\frac{5x-4}{x}$ ; в)  $\frac{2x-1}{x+4}$ ; г)  $\frac{2x-1}{x-3}$ . П.3. а)  $y=x-5$ ,  $x$ — любое число; б)  $y=t-2$ ,  $t\neq\pm2$ ; в)  $y=p-4$ ,  $p\neq\pm\sqrt{5}$ ; г)  $y=m-2$ ,  $m\neq2$ . П.4. а)  $y=\frac{1}{14}$ ;  $x\neq3$ ; б)  $y=-\frac{3}{4}$ ;  $x\neq3$ ; в)  $y=\frac{4}{15}$ ;  $x\neq2$ ; г)  $y=-1\frac{1}{6}$ ;  $x\neq-1$ . П.5. а)  $y=x+2$ ,  $x\neq2$ ,  $x\neq-5$ ; б)  $y=x+4$ ,  $x\neq2$ ,  $x\neq4$ ; в)  $y=x+3$ ,  $x\neq3$ ,  $x\neq4$ ; г)  $y=x-2$ ,  $x\neq-2$ ,  $x\neq-1$ . П.6. а)  $x=\frac{3}{y-4}+2$ ; б)  $x=1-\frac{4}{y+2}$ ; в)  $x=\frac{7}{y+1}-3$ ; г)  $x=3-\frac{2}{y-5}$ . П.7. а)  $2(5-b)$ ; б)  $m+2$ ; в)  $5(a+1)$ ; г)  $3+x$ . П.8. а)  $\frac{2}{m+2}$ ; б)  $\frac{1}{2-b}$ ; в)  $\frac{1}{a+2}$ ; г)  $\frac{1}{c-1}$ . П.9. а)  $a+1$ ; б)  $b-3$ ; в)  $p+4$ ; г)  $x-5$ . П.10. а)  $\frac{1}{x-1}$ ; б)  $a$ ; в)  $y$ ; г)  $\frac{b}{b-2}$ . П.11. а)  $\frac{x}{x-3}$ ; 6)  $\frac{3}{x-4}$ ; в)  $\frac{3}{x-3}$ ; г)  $\frac{x}{x+3}$ . П.12. а)  $\frac{x-1}{3x^2}$ ; -10; б)  $\frac{m(m-3n)}{m-n}$ ;  $\frac{13}{25}$ . П.13. -1. П.14. а)  $\frac{\sqrt{10}}{3}$ ; б)  $\frac{2\sqrt{14}}{3}$ ; в)  $3\sqrt{15}$ ; г)  $-\frac{3\sqrt{21}}{2}$ . П.15. а) 7; б) 12; в) 12; г) 4,4. П.16. а) 1; б) 1; в)  $2\sqrt{17}$ ; г)  $\sqrt{2}$ . П.18. а)  $A < B$ ; б)  $A < B$ . П.19. а) Ни при каких; б) 9. П.20. а)  $-\frac{1}{3\sqrt{y}+4\sqrt{x}}$ ; б)  $14m-13\sqrt{n}$ ; в)  $5\sqrt{p}-7\sqrt{q}$ ; г)  $-\frac{1}{9\sqrt{c}+6\sqrt{ab}}$ . П.21. а)  $\frac{p\sqrt{p}+q\sqrt{q}}{p-q}$ ; б)  $\frac{8-t\sqrt{t}}{4-t}$ ; в)  $\frac{x\sqrt{x}+27}{x-9}$ ; г)  $\frac{a\sqrt{a}-8b\sqrt{b}}{a-4b}$ . П.22. а)  $\frac{3}{4\sqrt{x}}$ ; б)  $\frac{3}{3}$ ; в) 1; г)  $\frac{\sqrt{c}-\sqrt{d}}{\sqrt{c}}$ . П.23. а)  $2b(a-b)$ ; б)  $a$ ; в)  $-0.5$ ; г)  $-\frac{1}{3}$ . П.25. а) 0; б) 9; в) -1; -3.5; г)  $-\frac{1}{3}$ . П.26. а) 20; б) 2; в) -10; г) -88. П.27. При  $m=1$ . П.28.  $1$ 

П.29.  $a = \pm \frac{1}{2}$ . П.30. a) x > -1,5; б)  $x \le 5$ ; в)  $x \le 1$ ; г) x < -2. П.31. a) x < -4; x > 2,5; б)  $-2,5 < x \le 3$ ; в)  $x \le -1\frac{1}{3}$ ; x > 1; г)  $x < \frac{3}{4}$ ; x > 2. П.32. a) x — любое число; б)  $3 \le x \le 9$ ; в)  $x \le -9$ ;  $x \ge 4$ ; г) таких x нет. П.33. a)  $x \le -2$ ; x > 2; б) x < 1,5; x > 4; в) x < -3; -0,5 < x < 0,5; x > 2; г) x < 1;  $1 < x \le 3$ ; x > 5. П.34. a)  $0 \le x < 1$ ; x > 2; б) x < 0;  $1\frac{3}{5} < x < 2$ ; x > 4; в) x < -3; -2 < x < 0; г) x < 1; x > 2. П.35. При a < 0 и a > 1. П.36. a > 3; таких значений нет. П.37. a) x > 16; б)  $-0,2 \le x < 2,5$ ; в) x > 6,2; г)  $-4,25 \le x \le 4,75$ .

#### § 1

1.3. 112, 113, 114, ..., 147. Наименьшее 112, наибольшее 963. 1.14. а) 1; 2; 4; 6) 8; в) 1; 2; 3; 4; 6; 12; г) 6; 7; 28; 51. 1.15. а) 2; 3; 4; 6; 12. б) 1; 2; 3; 6. 1.17. а) 2; (1; 1); б) 114; (1; 1). 1.18. а) Да; б) да. 1.19. а) 1; 2; 4; б) 0,5; 1; 1,5; 3. 1.20. а) 0,5 и 1; б) таких значений нет. 1.21. а) 0; 3; 5; б) -1; 3. 1.23. а) 1; б) 1; в) 5; г) б. 1.24. а) Да, например 6 и 2; б) да, например 2 и 1. 1.35. а) 8; б) 24; в) 18; г) 16. 1.36. а) 8; б) 18; в) 38; г) 98. 1.37. а) 2; б) 4; в) 9; г) 24. 1.38. а) Двумя; б) четырьмя; в) девятью; г) двадцатью четырьмя. 1.39. а) 23! + 2 делится на 2, 23! + 3 делится на 3; 23! + 4 делится на 4, ..., 23! + 23 делится на 23; б) 101! + 2 делится на 2, 101! + 3 делится на 3; 101! + 4 делится на 4, ..., 101! + 101 делится на 101; в) 22, 100; г) 1000001! + 2; 10000001! + 3; 1000001! + 2; ...; 1000001! + 1000001. 1.41. p = 3; q = 2. 1.42. а) p = 11; q = 5; б) p = 11; q = 3 или

$$p = 5; q = 17. \ 1.56. \ a) \begin{cases} x = 1 + 2k; \\ y = 8 - k; \end{cases} k \in \mathbb{Z}; \ b) \begin{cases} x = 4 + k; \\ y = 6k - 1; \end{cases} k \in \mathbb{Z};$$

B) 
$$\begin{cases} x = 17 - 4k; \\ y = 1 + 7k; \end{cases} k \in \mathbb{Z}; \text{ r}) \begin{cases} x = 6 + 7k; \\ y = 1 + 5k; \end{cases} k \in \mathbb{Z}, 1.57. \text{ a) } (1; 15); (-1; -15);$$

(15; 1); (-15; -1); (3; 5); (-3; -5); (5; 3); (-5; -3); 6) (1; 3); (-1; -3); (1; -3); (-1; 3); в) (1; 1); (-1; -1); г) решений нет. 1.58. а) 12; б) 48; в) 35; г) 180.

**2.6.** a) 
$$\frac{1}{2}$$
; 6)  $\frac{1}{4}$ ; B) 1; r)  $\frac{2}{5}$ . **2.11.** a) 3; 6) 7; B) 1; r) 6. **2.13.** a)  $\frac{4}{11}$ ;

6) 
$$12\frac{1}{1665}$$
; b)  $-1\frac{7}{30}$ ; r)  $-\frac{137}{11100}$ . 2.17. a) 0,(6); 6) 1,8(6); b) 1,(3); r) 2,08(3).

3.4. а); б); г) Иррациональным. 3.6. а); б); г) — числа рациональные; в) — число иррациональное. 3.7. а)  $\sqrt{7}-3$  и  $1-\sqrt{7}$ ; б)  $\sqrt{7}-3$  и  $1+\sqrt{7}$ ; в)  $\sqrt{7}-3$  и  $\sqrt{7}+3$ ; г)  $\sqrt{2}$  и  $5\sqrt{2}$ . 3.8. а) Нет таких чисел; б)  $\sqrt{7}$  и  $\sqrt{28}$ . 3.9. а)  $x^2-2=0$ ; б)  $x^2+10x-22=0$ ; в)  $3x^2+12x-3=0$ ; г) составить такое уравнение невозможно. 3.10. а) Например,  $\alpha=2+\sqrt{3}$ ;  $\beta=4\sqrt{3}$ ; б) например,  $\alpha=3-\sqrt{2}$ ;  $\beta=4\sqrt{2}$ . 3.11. а) Сущестует, например, при  $\alpha=2+\sqrt{3}$  число  $\alpha=3$ 0; г) зуществует, например, при  $\alpha=\frac{\sqrt{13}-1}{2}$  число  $\alpha=3$ 1. 3.13. а) 1,5; б) 1; в) 2; г) 3,99. 3.14. а)  $\sqrt{0,7}$ ; б); в); г)  $\sqrt{1,44001}$ . 3.15. а) 1,6; б) 0,49. 3.16. а)  $\sqrt{1,7}$ ; б)  $\sqrt{3}-1,4$ . 3.17. а); б) Единственная точка (0;-2). 3.18. а)  $(\sqrt{3}; 5\sqrt{3}-2)$ ; б)  $(7\sqrt{2}; 2+\sqrt{2})$ . 3.19. а) Такой треугольник существует, так как  $\sqrt{2}+1>\sqrt{3}$ ; б) такого треугольника не существует, так как  $\sqrt{3}+\sqrt{5}<4$ .

#### § 4

г) 5. 4.14. а)  $3 \le b < 4$ ; б)  $3 < b \le 4$ ; в) 0 < b < 1; г) таких b не существует. 4.15. а) [-20; 12]; б) (17; 22). 4.16. а) a > 2,5; б)  $\frac{1-\sqrt{7}}{6} < a < 1$ ; a > 1. 4.17. а)  $\left(-1 - \frac{\sqrt{6}}{3}; -1 + \frac{\sqrt{6}}{3}\right)$ ; a > 2,5; б)  $\left(-\frac{11}{6}; 0\right)$ ; a > 1. 4.18.  $3 \le p \le 4$ . 4.22. а)  $n \ge 2$ ; б)  $n \ge 11$ ; в)  $n \ge 10\,001$ ; г)  $n \ge 307$ . 4.25. а)  $1 \le x < 2$ ; б)  $-11 \le x < -10$ ; в)  $-1 \le x < 0$ ; г)  $-11 \le x < 12$ . 4.26. а) x = nюбое целое число; б) -2; в) 0; г) -3. 4.31. а) x = k + 0,123, где k принимает любые целочисленные значения; б) 999,123. 4.34. а) [1; 33]; б) [-6,25; 0]; в) [-320; 0]; г)  $\left[-1; \frac{7}{13}\right]$ .

4.5. a), б) Не существует. 4.12. a) 1; б) 1; в) 1; г) 6. 4.13. a) 0; б) 0; в) 0;

### § 5

5.3. a)  $x \ge 0$ ; 6)  $x \ge 7$ ; B)  $x \le 0$ ; P)  $3 \le x \le 4$ . 5.10. a)  $4 - \pi$ ; 6) 1; B)  $7 - 2\pi$ ; P)  $5,3 - 2\sqrt{7}$ . 5.11. a) 4; 6) 8; B) 21; P) 66. 5.13. a) 1; -9; 6) 7; B) 19; -11; P) -1;  $\frac{2}{3}$ . 5.14. a); 6) Решений нег; B) 4; P) -4. 5.15. a) 4; 6) 2; B) 0; 7; 1; P) 2; -1. 5.16. a) x > 4; 6)  $x \ge 2$ ; B) 1 < x < 7; P) -1  $\le x \le 2$ . 5.17. a) x < 3; 6)  $(-\infty; 1) \cup (1 + \sqrt{6}; +\infty)$ ; B)  $\left(-\infty; -\frac{5}{6}\right] \cup [1; +\infty)$ ;

 $_{\Gamma}$  ( $-\infty$ ; 1]  $\cup$  [2;  $+\infty$ ). 5.18. a) 3 или 9; б) 9 или 23. 5.19. a) 0,5; 1,5; б) 1; 2. 5.20. a) 9 или 23; б) 9 или 23. 5.21. a) 0 или 1; б)  $\left(\frac{2\sqrt{29}}{29}; 1\right)$ . 5.25. a) 2; б) 7; в) -7; г) 0.

§ 6

6.2. а) 
$$\frac{(n+13)n}{2}$$
; 6)  $\frac{(9n-5)n}{2}$ ; в)  $0,025n(33+n)$ ; г)  $\frac{(n+2)n}{18}$ . 6.3. а)  $-k$  при  $n=2k$ ;  $k$  при  $n=2k-1$ ; б)  $k(2k+1)$  при  $n=2k$ ;  $k(1-2k)$  при  $n=2k-1$ ; в)  $\frac{n(n+1)}{2}$  при  $n=2k$ ;  $\frac{n(n+1)}{2}-1$  при  $n=2k-1$ ; г)  $-2k(k+1)$  при  $n=2k$ ;  $2k^2$  при  $n=2k-1$ . 6.10. а)  $\frac{29}{596}$ ; 6)  $\frac{292}{447}$ . 6.16. а); 6) Первое равенство неверно уже для  $n=1$ . Второе равенство верно для  $n=1$ , но не для всех  $k$  из  $A(k)$  следует  $A(k+1)$ . Таким образом, равенство неверно. Третье равенство верно.

§ 7

7.9. a) 
$$S(x) = \frac{(4-x)x}{2}$$
,  $0 \le x \le 2$ ; 6)  $S(x) = \begin{cases} 5(x+4), & -4 \le x \le 2; \\ 2x+26, & 2 < x \le 8. \end{cases}$ 

7.11. а)  $y=\pm\sqrt{\frac{2x+12}{3}}; \ x=\frac{3y^2-12}{2};$  уравнение задает функцию вида  $x=\varphi(y)$  и не задает функцию вида y=f(x); б) y=x или y=-x-1; x=y или x=-y-1 при  $x\neq 3, -4, \ y\neq 3, -4, \ 7.21.$  а)  $[-1;\ 7];$  б)  $(-\infty;\ -1]\cup(1;\ +\infty);$  в)  $(0;\ 1];$  г)  $[-1,5;\ 11].$  7.22. а)  $D(f)=[-3;\ 2],$   $E(f)=[1;\ 5];$  б)  $D(f)=[-3;\ 2],$   $E(f)=[0;\ 9].$  7.24. а)  $[12;\ +\infty);$  б)  $[-8;\ 1];$  в)  $[-12;\ -1)\cup(-1;\ 1)\cup(1;\ +\infty);$  г)  $[-3;\ 1].$  7.25. а) 3x+2; б) -3x-13; в) 5; г) f(f(x))=9x-4. 7.26. а)  $4x^2;$  б)  $(x-5)^2;$  в) 81; г)  $x^4.$  7.27. а)  $\frac{2x+3}{1-2x};$  б)  $\frac{6x-1}{2x-3};$  в)  $f(f(5))=5\frac{2}{11};$  г)  $\frac{11x+2}{x+6}.$  7.29. а) Если a>1, то  $[a;\ +\infty);$  если a=1, то  $(1;\ +\infty);$  если a<-1, то  $[a;\ -1)\cup(-1;\ 1)\cup(1;\ +\infty);$  б) если a<0, то R; если a>0, то R; если a>0, R0  $[-\frac{1}{4};\ \frac{1}{4}];$  в) если a>4, то  $[-\infty;\ 3]\cup(4;\ +\infty);$  если a<4, то  $[a;\ 4)\cup(4;\ +\infty);$  если a=4, то  $[a;\ 4)\cup(4;\ +\infty);$  если a>1, то  $[a;\ 4)\cup(4;\ +\infty);$  если a<1, то  $[a;\ 4]\cup(4;\ +\infty);$  если  $[a;\ 4]\cup(4;\ +\infty);$  если

 $\cup$   $(-3; -0.5] \cup (-0.5; 1]; r) <math>(-\infty; -3) \cup (-3; 1].$  7.31. a) [4; 5]; 6) [-1; 0]  $\cup$  [4; 5]; в) [4; 5); г) (-1; 0]  $\cup$  (4; 5]. 7.32. a) [-4; 1]; 6) [-4; 1]; 8) (-4; 1]; г) [-4; -2)  $\cup$  (-2; 1]. 7.33. a) [-10; 5]; 6) [-10; 5]; в) [-10; 10]; г) [-5; 5]. 7.34. a) [-1; 10]; 6) [-13; -2]; в) [-2; 9]; г) [-2; 9]. 7.35. a)  $a \le -11$ ; 6)  $a \ge 4$ . 7.36. a)  $a \ge 0$ ; 6)  $-\frac{4}{3} \le a \le 0$ ; в)  $a = -\frac{4}{3}$ ; г)  $a \le -\frac{4}{3}$ . 7.38. a) b = -31;  $-3 \le b \le -2$ ; 6) b = -29; 5.5  $\le b \le 6.5$ ; в)  $(-\infty; -31) \cup (-31; -30) \cup (-30; -29) \cup (-29; -3] \cup [6.5; +\infty)$ ; г)  $(-\infty; -32) \cup (-31; -4] \cup [4.5; +\infty)$ . 7.40. a) [0; 25]; 6) [0; 5]; в) [-27; 125]; г) [1; 3]. 7.41. a) [-3; 5]; 6) [0; 8]; в) [0; 8]; г) [a = 5; a + 3]. 7.42. a) [-3; 5]; 6) [0; 8]; в) [0; 8]; г) [a-5; a + 3]. 7.43. a) 1, 2, 3; 6) нет таких значений; в) 2, 3, 4, 5, 6, 7; г) 0, 1, 2, 3, 4, 5. 7.44. a)  $(-\infty; +\infty)$ ; 6)  $(-\infty; +\infty)$ . 7.45. a)  $E(f) = [-5; +\infty)$  при  $b \ge -5$ ; 6) при  $a \ge -7$ ;  $E(f) = [-7; +\infty)$ . 7.46. a) При  $|a| \ge 2\sqrt{3}$ ;  $E(f) = (-\infty, -2\sqrt{3}] \cup (-\infty; +\infty)$ ; 6) при  $|a| \le 2$ ; E(f) = [-2; 2]. 7.47. a)  $(-\infty; -4\sqrt{2}] \cup (-2\sqrt{3}; +\infty)$ ; 6) при  $|a| \le 2$ ; E(f) = [-2; 2]. 7.47. a)  $(-\infty; -4\sqrt{2}] \cup (-2\sqrt{3}; +\infty)$ ; 6)  $(-\infty; -8] \cup [4; +\infty)$ ; в)  $(-\infty; +\infty)$ ; г)  $(-\infty; +\infty)$ .

§ 8

8.4. a) 
$$(-\infty; +\infty)$$
; b)  $(-\infty; +\infty)$ ; b)  $(-\infty; 0) \cup (0; +\infty)$ ; r)  $(-\infty; -7) \cup (-7; 2) \cup (2; +\infty)$ . 8.5. a)  $y = \frac{1}{100 - x}$ ; b)  $\sqrt{(100 - x)(x - 101)}$ ;

B) 
$$y = \sqrt[4]{100 - x}$$
; r)  $y = \sqrt{-(100 - x)^2}$ . 8.6. a)  $y = \frac{1}{(1 - x)(10 - x)}$ ;

6) 
$$y = \frac{\sqrt{1-x^2}}{x}$$
; b)  $y = \sqrt{(x-1)(x-2)}$ ; r)  $y = \frac{\sqrt{21-x^2-4x}}{x-2}$ .

**8.10.** a)  $(-\infty; 1) \cup (1; +\infty)$ ; b)  $(-\infty; 1) \cup (1; +\infty)$ ; b)  $(-\infty; -12) \cup (-12; +\infty)$ ;

$$r) \left( -\infty; \, \frac{1}{3} \right) \cup \left( \frac{1}{3}; \, +\infty \right), \, 8.11. \, a) \, [5; \, +\infty); \, 6) \, (-\infty; \, 1]; \, a) \, (-\infty; \, 2]; \, r) \, [-1; \, +\infty).$$

**8.12.** a)  $\{1; 3\}; 6\}$   $(-1; +\infty); B)$   $(-\infty; +\infty); P)$   $[0; +\infty)$ . **8.13.** a)  $\{0; \pm 2; \pm 4\}; 6\}$   $\{0; 2\}$ . **8.14.** a)  $[3; +\infty); 6\}$   $(-\infty; 0) \cup (0; +\infty); B)$   $(-\infty; 36]; P)$   $(-\infty; 1) \cup (1; +\infty).$ 

8.15. a) 
$$[-3,25; +\infty)$$
; b)  $\left(-\infty; 13\frac{1}{8}\right]$ . 8.16. a)  $[-4; +\infty)$ ; b)  $(-\infty; +\infty)$ .

8.18. а) Убывает на ( $-\infty$ ; 0,75]; возрастает на [0,75;  $+\infty$ ); б) убывает на ( $-\infty$ ; 1]; в) убывает на ( $-\infty$ ; -0,6]; возрастает на [-0,6;  $+\infty$ ); г) возрастает на [-0,6;  $+\infty$ ). 8.21. а) Убывает на [5;  $+\infty$ ); б) возрастает на [1,5;  $+\infty$ ); в) убывает на ( $-\infty$ ; 2]; г) убывает на ( $-\infty$ ; 0,75]. 8.23. а) Убывает на ( $-\infty$ ; 0];

возрастает на  $[0; +\infty)$ ; б) убывает на  $(-\infty; 0]$ ; возрастает на  $[0; +\infty)$ ; в) убыва $e_T$  на  $(-\infty; 1,5]$ ; возрастает на  $[1.5; +\infty)$ ; г) убывает на  $(-\infty; 0]$ ; возрастает  $_{\rm H2}$  [0; +∞). 8.24. a) Убывает на (-∞; -1] и на [0; 1]; возрастает на [-1; 0] и на  $[1; +\infty)$ ; б) убывает на  $(-\infty; -3]$  и на [0; 3]; возрастает на [-3; 0] и на [3; +∞); в) убывает на (-∞; -2] и на [1,5; 5]; возрастает на [-2; 1,5] и на [5; +∞); г) убывает на (-∞; -4] и на [0,5; 5]; возрастает на [-4; 0,5] и на [5; +∞]. 8.27. а) Возрастает на  $(-\infty; 0]$ ; убывает на  $[0; +\infty)$ ; б) возрастает на ( $-\infty$ ; -3]; убывает на [-3;  $+\infty$ ); в) возрастает на ( $-\infty$ ; -1) и на (-1; 0]; убывает на [0; 1) и на  $(1; +\infty)$ ; г) возрастает на  $(-\infty; -2)$  и на (-2; 2]; убывает на [2; 6) и на (6;  $+\infty$ ). 8.28. а) Возрастает на [-3; -1] и на [0; 2]; убывает на [-1; 0] и на [2; 3]; 6) возрастает на [-2; -1] и на [1; 3]; убывает на [-1; 1];в) постоянна на [-3; -1); возрастает на [-1; 0) и на (0; 1]; убывает на [1; 2)и на (2; 3]; г) убывает на [-3; -2), (-2; -1], [1; 2) и (2; 3]; возрастает на [-1; 0) и на (0; 1]. 8.29. a) -0,5; 1; 6) (- $\infty$ ; -0,5)  $\cup$  (1; + $\infty$ ); в) -8; 6; r) [-8; 6]. 8.30. a) -2; 6) [- $\infty$ ; -2,5)  $\cup \left(-2\frac{1}{3}; -2\right] \cup (1; +\infty)$ . 8.31. a) -0,5; 6)  $\left(\frac{-1-\sqrt{17}}{8}; -0.5\right)$ . 8.32. a) -0.5; 6)  $\left(-0.5; -\frac{1}{3}\right]$ . 8.34. a) 1; 6) 2; b) 3;

6) 
$$\left(\frac{-1-\sqrt{17}}{8}; -0.5\right)$$
. 8.32. a) -0.5; 6)  $\left(-0.5; -\frac{1}{3}\right]$ . 8.34. a) 1; 6) 2; b) 3

r) 1. 8.35. a) 9; 6) 
$$\frac{1}{4}$$
; b) 4; r) 0. 8.38. a)  $y = \begin{cases} -\frac{4}{3}x - 3, -3 \le x < 0; \\ -\frac{4}{3}x + 2, 0 < x \le 3; \end{cases}$ 

6) 
$$y = \begin{cases} \frac{5}{9}(x-1)^2 - 2, -2 < x < 1; \\ \frac{5}{9}(x-1)^2 - 2, 1 < x < 4. \end{cases}$$
 8.43. a)  $y_{\text{mart}} = -73, y_{\text{mart}} = -148;$ 

б) наибольшего значения нет;  $y_{\text{вани}} = y(0) = -100$ ; в) наибольшего значения нет;  $y_{\text{наны}} = y(4) = -148$ ; г) наибольшего значения нет;  $y_{\text{наны}} = y(4) = -148$ . 8.44. a)  $y_{\text{mano}} = 13$ ;  $y_{\text{mano}} = -51$ ; 6)  $y_{\text{mano}} = 19$ ; наименьшего значения нет; в)  $y_{\text{мемб}} = 21$ ; наименьшего значения нет; г)  $y_{\text{мемб}} = y(-3) = 21$ ; наимень-

шего значения нет. 8.45. а) 2; б) 2; в)  $\frac{1}{3}$ ; г) 2. 8.46. а)  $y_{\text{main}} = 1$ ;  $y_{\text{main}} = -1$ ; 6)  $y_{\text{mand}} = 0.5$ ;  $y_{\text{manm}} = -0.5$ ; b)  $y_{\text{mand}} = 2.5$ ;  $y_{\text{manm}} = -2.5$ ; r)  $y_{\text{mand}} = 3.5$ ;  $y_{\text{manm}} = -3.5$ .

8.47. а) 2; б) 4; в) 4; г) если 
$$n$$
 – четное число, то  $y_{\text{ваних}} = \frac{n(n+2)}{4}$ ; если  $n$  —

вечетное число, то  $y_{\text{напок}} = \frac{(n+1)^2}{4}$ . 8.48. a)  $y_{\text{вано}} = y(1) = 5(a+1)$ ;  $y_{\text{напок}} = y(1)$ x=y(-1)=5a-3; б)  $y_{\text{вал6}}=y(2)=4-a$ ;  $y_{\text{валм}}=y(-1)=-5-a$ . 8.49. а) Если  $-1< a\leqslant 2$ , то  $y_{\text{вал6}}=y(-1)=5$ ,  $y_{\text{валм}}=y(a)=a^2-4a$ ; если  $2 < a \le 5$ , то  $y_{\text{вавь}} = y(-1) = 5$ ,  $y_{\text{вавь}} = y(2) = -4$ ; если a > 5, то  $y_{\text{вавь}} = y(a) = -a^2 - 4a$ ,  $y_{\text{вавь}} = y(2) = -4$ ; 6) если  $1 \le a < 3$ , то  $y_{\text{вавь}} = y(a) = -a^2 + 2a - 3$ ,  $y_{\text{нацы}} = y(3) = -6$ ; если  $-1 \le a < 1$ , то  $y_{\text{нашь}} = y(1) = -2$ ,  $y_{\text{нашь}} = y(-1) = -6$ ; если a < -1, то  $y_{\text{нашь}} = y(1) = -2$ ,  $y_{\text{вашь}} = y(a) = -a^2 + 2a - 3$ . 8.50. a) 3; 6) -2. 8.52. а) 0; б) 1; в) 0; г) корней нет.

**9.5.** a) 7; 11; 13; 0; 6) 0; 0; 0; B) 11; 11; 7; r) 0; 0. **9.6.** a) f(1) > f(31); 6) f(11) > f(110); B) f(-17) = f(831); P)  $f(6 + \sqrt[3]{3}) = f(\sqrt[3]{3} - 6)$ . 9.7. a)  $\Pi_{a}$ : б) нет; в) нет; г) да. 9.17. a) — г) Нет. 9.18. a) — в) Нет; г) да. 9.19. a) в) Да; г) нет. 9.20. а) Да; б) нет; в) нет; г) да. 9.21. а) 1; 1; 1; 6) 0.5. 0,5; 0,5; 0,5; B) 2; 2; 2; 2; r)  $\frac{4}{3}$ ;  $\frac{4}{3}$ ;  $\frac{4}{7}$ . 9.22. a) T = 1; T = 3; 6) T = 1;  $T=\frac{1}{R}$ ; в) T=20; T=20; г) T=12; T=4,4. 9.24. а) Нет; б) может, напрамер:  $y = \sqrt{1-2(x)}$ ; в) нет; г) может, например:  $y = \frac{1}{(x)}$ . 9.25. а) Нет; б)  $y = \{x\} + 6$ ; в) нет; г)  $y = \{x\} + 8$ . 9.26. а) Нет; б) может, например:  $y = \{-x\}$ ; в) может, например:  $y = \{x\}$ ; г) может, например:  $y = \left\{\frac{3-x}{8}\right\}$ . 9.30. а) Наибольшее значение 5; наименьшее -2; б) наибольшее 5; наименьшее -2; в) определить невозможно; г) наибольшее 5; наименьшее -2. 9.31. a) x = 1 + 4k,  $k \in \mathbb{Z}$ ; 6) (1 + 4l; 4 + 4l],  $l \in \mathbb{Z}$ . 9.32. a) x = -2 + 5k;  $x = 5l, k \in \mathbb{Z}; l \in \mathbb{Z}; 6$   $(1 + 5r; 2 + 5r], r \in \mathbb{Z}; B) <math>x = 2 + 5t, t \in \mathbb{Z}; \Gamma$   $(-2 + 5n; 5n), r \in \mathbb{Z}; C$  $n \in \mathbb{Z}$ . 9.33, a) x = 4k,  $k \in \mathbb{Z}$ ; b)  $x \in \mathbb{R}$ ; b) x = -3 + 2n,  $n \in \mathbb{Z}$ ; г) (-3 + 4l; -1 + 4l),  $l \in \mathbb{Z}$ . 9.34. а) Существует, например:  $f(x) = 3 + \sqrt{x} - \sqrt{x}$ ; б) существует, например:  $f(x) = 3 + \sqrt{-x} - \sqrt{-x}$ . 9.35. а) Существует, например: f(x) = 1; б) нет.

10.7. а) Да; б) да; в) нет; г) нет. 10.9. а) 
$$y = \frac{3+x}{x}$$
; б)  $y = \frac{7+5x}{2x-1}$ ; в)  $y = -\frac{2+4x}{x}$ ; г)  $y = \frac{3x+1}{2-x}$ . 10.10. а) Да; б) нет; в) да; г) да. 10.11. а) Да; б) нет; в) да; г) нет. 10.12. а)  $y = \begin{cases} 0.5x, \text{ если } x \leq 0, \\ \frac{1}{3}x, \text{ если } x > 0; \end{cases}$  б)  $y = \begin{cases} -\frac{x+3}{x}, \text{ если } x \geq 2; \end{cases}$  в)  $y = \begin{cases} \frac{1}{3}x, \text{ если } x \leq 0, \\ -x, \text{ если } x > 0; \end{cases}$ 

$$\mathbf{r}) \ y = \begin{cases} 0.5(x-1), \ \text{если} \ x \le 5, \\ 2x-8, \ \text{если} \ x \ge 5. \end{cases}$$

$$\mathbf{10.13.} \ \mathbf{a}) \ y = x^2-3, \ x \ge 0; \ \mathbf{6}) \ y = 2-x^3,$$

 $x \le 0$ ; в)  $y = \frac{x^2+1}{2}$ ,  $x \ge 0$ ; г)  $y = \frac{3-x^2}{5}$ ,  $x \le 0$ . 10.14. а) Может; б) не может; в) может; г) может. 10.15. а) — г) Да. 10.16. а) Нет, не может (если область ее определения не состоит из одного нуля); б) может; в) не может; г) может. 10.17. а) Да, может; б) может; в) не может; г) может. 10.19. а) Нет; б)  $y = \sqrt{x}$ ; в) нет; г)  $y = -\sqrt{x}$ . 10.20. а) Нет; б)  $y = \sqrt{x+2}$ ; D(f) = [-1; 2); E(f) = [1; 2); в) нет; г)  $y = -\sqrt{x+2}$ ; D(f) = [-2; 4]; E(f) = [-2; 0]. 10.21. а) Нет; б)  $y = \sqrt{x+2} - 3$ ;  $D(f) = [-2; +\infty)$ ;  $E(f) = [-3; +\infty)$ ; в)  $y = -\sqrt{x+2} - 3$ ;  $D(f) = [-2; +\infty)$ ;  $E(f) = [-3; +\infty)$ ;

$$y = x + 6$$
, на R обратной функции нет; б)  $y = 5 - x$ ,  $y = \frac{7 - x}{2}$ ,

нет; г) 
$$y = 3 - x$$
,  $y = \frac{2 - x}{7}$ ,  $y = \begin{cases} \frac{2 - x}{7}, & \text{если } x < 2; \\ 3 - x, & \text{если } x \ge 3. \end{cases}$  10.25. a)  $f(x) = 7$ ;

$$x=1$$
 и  $g(x)=3; x=5;$  6)  $f(x^2)=25;$  корни:  $-3;$  3 и  $g(x^2)=4;$  корни:  $-2;$  2;

B) 
$$f(t) = -7$$
;  $t = 1$  m  $g(t) = 15$ ;  $t = -3$ ; r)  $f(3x) = 7$ ;  $x = \frac{1}{3}$  m  $g(5 - x) = 7$ ;

$$x=0.$$
 10.33. a) Да; б) нет. 10.34. a)  $y=\begin{cases} \frac{x}{2}, \text{ если } x\leqslant 0, \\ \frac{x}{4}, \text{ если } x\geqslant 0; \end{cases}$  б) нет;

в) 
$$y = \begin{cases} -\frac{x}{3}, \text{ если } x \leq 0, \\ -\frac{x}{7}, \text{ если } x > 0; \end{cases}$$
 г) нет. 10.35. a)  $y = \begin{cases} -\sqrt{-x}, \text{ если } x \leq 0, \\ \sqrt{x}, \text{ если } x > 0; \end{cases}$  б) нет;

в) 
$$y = \begin{cases} -\sqrt{2-x}, \text{ если } x \le 2, \\ -\sqrt{x-2}, \text{ если } x > 2; \end{cases}$$
 г) нет.

11.11. a) IV; 6) II; b) III; r) I. 11.12. a) III; 6) II; b) IV; r) IV. 11.13. a) 6; 6) 8; b) 3; r) 5. 11.18. a) 
$$\pi n$$
; 6)  $\frac{\pi}{2} + \pi n$ ; b)  $\frac{\pi}{4} + \pi n$ ; r)  $-\frac{\pi}{4} + \pi n$ .

11.19. a) 
$$\frac{\pi}{4} + \frac{\pi n}{2}$$
; 6)  $\frac{\pi n}{4}$ . 11.20. a)  $\frac{\pi}{6} + \pi n$ ; 6)  $-\frac{\pi}{3} + \pi n$ ; b)  $\pm \frac{2\pi}{3} + 2\pi n$ ; r)  $\pm \frac{\pi}{6} + 2\pi n$ . 11.21. a)  $\frac{2\pi n}{3}$ ; 6)  $\frac{\pi}{2} + \frac{2\pi n}{3}$ ; b)  $\pm \frac{\pi}{6} + \pi n$ ; r)  $\frac{\pi n}{3}$ . 11.22. a)  $2\pi n < t < \frac{\pi}{2} + 2\pi n$ ; 6)  $\pi n < t < \frac{\pi}{2} + \pi n$ ; b)  $\frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n$ ; r)  $-\frac{\pi}{2} + \pi n < t < \pi n$ . 11.23. a)  $\frac{\pi}{4} + 2\pi n < t < \frac{3\pi}{4} + 2\pi n$ ; 6)  $-\frac{5\pi}{4} + 2\pi n < t < \frac{\pi}{2} + 2\pi n$ ; e)  $-\frac{\pi}{2} + \pi n < t < \pi n$ . 11.23. a)  $\frac{\pi}{4} + 2\pi n < t < \frac{3\pi}{4} + 2\pi n$ ; c)  $-\frac{5\pi}{4} + 2\pi n < t < \frac{\pi}{2} + 2\pi n$ . 11.24. a)  $-\frac{\pi}{4} + \pi n < t < \pi n$ ; 6)  $\pi n < t < \frac{3\pi}{4} + \pi n$ ; b)  $\frac{\pi}{4} + \pi n < t < \frac{3\pi}{4} + \pi n$ ; r)  $-\frac{3\pi}{4} + 2\pi n < t < \frac{3\pi}{4} + \pi n$ ; r)  $-\frac{\pi}{2} < t < \frac{\pi}{4} + \frac{\pi}{2}$ . 11.25. a)  $\frac{\pi}{6} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$ ; 6)  $2\pi n < t < \frac{5\pi}{6} + 2\pi n$ ; r)  $\frac{\pi n}{2} < t < \frac{\pi}{4} + \frac{\pi n}{2}$ . 11.25. a)  $\frac{\pi}{6} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$ ; 6)  $2\pi n < t < \frac{5\pi}{6} + 2\pi n$ ; a)  $-\frac{\pi}{2} + 2\pi n < t < \frac{4\pi}{3} + 2\pi n$ ; r)  $-\frac{\pi}{2} + 2\pi n < t < -\frac{\pi}{6} + 2\pi n$ . 11.26. a)  $-\frac{\pi}{3} + 2\pi n < t < \frac{\pi}{3} + 2\pi n$ ; 6)  $-\frac{7\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; a)  $-\frac{5\pi}{6} + 2\pi n < t < 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{\pi}{6} + 2\pi n$ ; r)  $-\frac{$ 

r)  $-2\frac{2}{3}$ ,  $-1\frac{1}{6}$ ,  $\frac{1}{3}$ ,  $1\frac{5}{6}$ ,  $3\frac{1}{3}$ ,  $4\frac{5}{6}$ ;

12.6. a)  $\frac{\pi}{3}$ ,  $\frac{7\pi}{3}$ ; 6)  $\frac{3\pi}{4}$ ,  $\frac{11\pi}{4}$ ; B)  $\frac{7\pi}{6}$ ; r)  $-\frac{\pi}{4}$ ,  $\frac{7\pi}{4}$ . 12.8. a) x < 0, y > 0; 6) x < 0, y > 0; B) x < 0, y < 0; r) x > 0, y > 0. 12.9. a) x > 0, y < 0; 6) x < 0, y < 0; B) x > 0, y < 0; r) x > 0, y < 0. 12.10. a) x < y; 6) x < y; B) x > y; r) x < y. 12.11. a) |x| > |y|; 6) |x| < |y|; B) |x| > |y|; r) |x| < |y|. 12.20. a)  $\frac{\pi}{4} + \pi n$ ; 6)  $-\frac{\pi}{3} + \pi n$ ; B)  $-\frac{\pi}{4} + \pi n$ ; r)  $\frac{\pi}{6} + \pi n$ . 12.21. a)  $-\frac{\pi}{2} + 2\pi n < 0$ . 12.21. a)  $-\frac{\pi}{2} + 2\pi n < 0$ .

$$\begin{array}{c} \frac{\pi}{2} + 2\pi n < t < \frac{3\pi}{2} + 2\pi n. \ \, \mathbf{12.22.} \ \, \mathbf{a}) - \frac{5\pi}{6} + 2\pi n < t < \frac{5\pi}{6} + 2\pi n; \, \mathbf{6}) \, \frac{\pi}{4} + \\ + 2\pi n < t < \frac{7\pi}{4} + 2\pi n; \, \mathbf{B}) \, \frac{3\pi}{4} + 2\pi n < t < \frac{5\pi}{4} + 2\pi n; \, \mathbf{r}) - \frac{2\pi}{3} + 2\pi n < t < \\ < \frac{2\pi}{3} + 2\pi n. \ \, \mathbf{12.23.} \, \mathbf{a}) \, 2\pi n < t < \pi + 2\pi n; \, \mathbf{6}) - \frac{7\pi}{6} + 2\pi n < t < \frac{\pi}{6} + 2\pi n; \\ \mathbf{B}) \, \frac{\pi}{6} + 2\pi n < t < \frac{5\pi}{6} + 2\pi n; \, \mathbf{r}) - \pi + 2\pi n < t < 2\pi n. \ \, \mathbf{12.24.} \, \mathbf{a}) - \frac{\pi}{3} + 2\pi n < \\ < t < \frac{4\pi}{3} + 2\pi n; \, \mathbf{6}) - \frac{5\pi}{4} + 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, \frac{5\pi}{4} + 2\pi n < t < \frac{7\pi}{4} + 2\pi n; \\ \mathbf{r}) - \frac{\pi}{6} + 2\pi n < t < \frac{7\pi}{6} + 2\pi n. \ \, \mathbf{12.25.} \, \mathbf{a}) - \frac{\pi}{2} + 2\pi n < t < 2\pi n; \, \mathbf{6}) \, \frac{\pi}{2} + 2\pi n < \\ < t < \frac{7\pi}{6} + 2\pi n; \, \mathbf{B}) \, \frac{\pi}{6} + 2\pi n. \, \mathbf{12.25.} \, \mathbf{a}) - \frac{\pi}{2} + 2\pi n < t < 2\pi n; \, \mathbf{6}) \, \frac{\pi}{2} + 2\pi n < \\ < t < \frac{7\pi}{6} + 2\pi n; \, \mathbf{B}) \, \frac{\pi}{6} + 2\pi n < t < \frac{3\pi}{4} + 2\pi n; \, \mathbf{r}) \, \frac{2\pi}{3} + 2\pi n < t < \frac{5\pi}{3} + 2\pi n. \\ 12.26. \, \mathbf{a}) - \frac{3\pi}{4} + 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{6}) \, 2\pi n < t < \frac{\pi}{2} + 2\pi n; \, \pi + 2\pi n < t < \\ < \frac{3\pi}{2} + 2\pi n; \, \mathbf{B}) \, \frac{3\pi}{4} + 2\pi n < t < \frac{7\pi}{4} + 2\pi n; \, \mathbf{r}) \, \frac{\pi}{2} + 2\pi n < t < \pi + 2\pi n; \, -\frac{\pi}{2} + \\ + 2\pi n < t < 2\pi n. \, \mathbf{12.27.} \, \mathbf{a}) \, \frac{\pi}{2} + 2\pi n < t < 2\pi + 2\pi n; \, \mathbf{6}) - \pi + 2\pi n < t < \frac{\pi}{2} + 2\pi n < t < \frac{\pi}{2} + 2\pi n; \, \mathbf{B}) - \frac{\pi}{2} + 2\pi n < t < \pi + 2\pi n; \, \mathbf{r}) \, 2\pi n < t < \frac{\pi}{3} + 2\pi n < t < \frac{\pi}{3} + 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{r}) \, 2\pi n < t < \frac{\pi}{3} + 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n; \, \mathbf{B}) \, 2\pi n < t < \frac{\pi}{4} + 2\pi n$$

13.19. а) 3; 5; б) 3; 4; в)  $\frac{1}{4}$ ;  $\frac{1}{3}$ ; г) 1; 2,5. 13.21. а); б); в) Минус; г) плюс. 13.22. а); в); г) Минус; б) плюс. 13.23. а); б); г) Минус; в) плюс. 13.24. а) Минус; б); в); г) плюс. 13.25. а) Плюс; б) минус. 13.26. а) 0; б) 0. 13.31. а)  $\frac{\pi}{2} + \pi n$ ; б)  $\pm \frac{\pi}{3} + \pi n$ ; в)  $\pi n$ ; г)  $\frac{\pi}{4} + \frac{\pi n}{2}$ . 13.32. а) Да; б) нет; в) да; г) нет. 13.33. а)  $x > \frac{1}{2}$ ; б) x < -2; x > 2. 13.34. а)  $x \leqslant \frac{1}{3}$ ; б)  $-3 \leqslant x \leqslant 3$ . 13.35. а)  $x \leqslant 1$ ; б)  $-6 \leqslant x \leqslant 6$ ; в)  $x \geqslant 1,4$ ; г)  $-\infty \leqslant x \leqslant +\infty$ . 13.36. а) a > b; б) a < b; г)  $a \leqslant b$ ; б)  $a \leqslant b$ ; в)  $a \leqslant b$ ; г)  $a \leqslant b$ .

13.38. a) 
$$\sin \frac{4\pi}{3}$$
,  $\sin \frac{7\pi}{6}$ ,  $\sin \frac{\pi}{7}$ ,  $\sin \frac{\pi}{5}$ ,  $\sin \frac{2\pi}{3}$ ; 6)  $\cos \frac{5\pi}{6}$ ,  $\cos \frac{\pi}{4}$ ,  $\cos \frac{\pi}{3}$ ,  $\cos \frac{7\pi}{4}$ ,  $\cos \frac{\pi}{6}$ ,  $\sin 3$ ,  $\sin 7$ ; r)  $\cos 3$ ,  $\sin 5$ ,  $\sin 2$ ; 6)  $\cos 3$ ,  $\cos 4$ ,  $\cos 7$ ,  $\cos 6$ ; B)  $\sin 4$ ,  $\sin 6$ ,  $\sin 3$ ,  $\sin 7$ ; r)  $\cos 3$ ,  $\sin 5$ ,  $\sin 4$ ,  $\cos 2$ . 13.40. a)  $\cos 1$ ,  $\sin 1$ , 1, 1; g1; 6)  $\cot 2$ ,  $\cos 2$ ,  $\sin 2$ , 2. 13.41. a) 0,5; 6) 0,5. 13.42. a) -1; 6) 1. 13.43. a)  $2\pi n < t < \pi + 2\pi n$ ; 6)  $-\frac{4\pi}{3} + 2\pi n < t < \frac{\pi}{3} + 2\pi n$ ; b)  $-\pi + 2\pi n < t < 2\pi n$ ; r)  $\frac{\pi}{3} + 2\pi n < t < \frac{2\pi}{3} + 2\pi n$ . 13.44. a)  $-\frac{\pi}{2} + 2\pi n$ ; c)  $-\frac{\pi}{4} + 2\pi n$ ; d)  $\frac{\pi}{4} + 2\pi n$  and  $t < \frac{7\pi}{6} + 2\pi n$ ; e)  $\frac{\pi}{6} + 2\pi n$ ; f)  $\frac{\pi}{6$ 

 $\frac{3\pi}{2} + 2\pi n < t < 2\pi + 2\pi n; \; \Gamma ) \; t \neq \frac{\pi n}{2} \; .$ 

14.17. a) 
$$\sin t = -\frac{5}{13}$$
,  $\cos t = -\frac{12}{13}$ ,  $\tan t = \frac{5}{12}$ ; 6)  $\sin t = \frac{24}{25}$ ,  $\cos t = \frac{7}{25}$ ,  $\tan t = \frac{24}{7}$ ; 8)  $\sin t = -\frac{12}{13}$ ,  $\cos t = \frac{5}{13}$ ,  $\tan t = -\frac{12}{5}$ ; r)  $\sin t = \frac{15}{17}$ ,  $\cos t = -\frac{8}{17}$ ,  $\tan t = \frac{15}{17}$ ,  $\tan t = \frac{15}{1$ 

6)  $\frac{1}{\cos t}$  14.32. a)  $3 \sin t$ ; 6)  $3 \cos t$ . 14.33. a)  $\sin \frac{1}{2}$ ;  $\frac{1}{2}$ ;  $\sin \frac{13}{24}$ ; 6)  $\cos 1,1$ ;

15.7. a) sin 160°, sin 40°, sin 120°, sin 80°; 6) cos 160°, cos 120°,

 $\frac{1}{2}$ ; cos 1. 14.34. a) -6; -2; 6) -5;  $1\frac{1}{4}$ ; B) -3; 6; r) -7; 2.

## § 15

 $\cos 80^\circ$ ,  $\cos 40^\circ$ . 15.8. a)  $\sin 1000^\circ$ ,  $\sin 210^\circ$ ,  $\sin 380^\circ$ ,  $\sin 830^\circ$ ; 6)  $\cos 920^\circ$ ,  $\cos 460^\circ$ ,  $\cos 650^\circ$ ,  $\cos 390^\circ$ . 15.9. a)  $\sin 990^\circ$ ,  $\cos 990^\circ$ ,  $\sin 22,5^\circ$ ,  $\cos 37,4^\circ$ ; 6)  $\tan 100^\circ$ ,  $\cos 94,3^\circ$ ,  $\sin 77^\circ$ ,  $\cot 225^\circ$ . 15.13. BC = 8 cm;  $AC = 4\left(\sqrt{3}+1\right)$  cm;  $S = 8\left(\sqrt{3}+1\right)$  cm². 15.14. a)  $\frac{25(3+\sqrt{3})}{6}$  cm². 15.15. a)  $\sin 15^\circ = \frac{\sqrt{6}-\sqrt{2}}{4}$ ,  $\cos 15^\circ = \frac{\sqrt{6}+\sqrt{2}}{4}$ ; 6)  $\sin 22,5^\circ = \frac{\sqrt{2-\sqrt{2}}}{2}$ ,  $\cos 22,5^\circ = \frac{\sqrt{2+\sqrt{2}}}{2}$ . 15.16. a) 1; 6) 3. 15.17. a) 1; 6) 0. 15.18. a) 45,5; 6) 90. 15.20. a) n = 1, 2, 3, ..., 179; 6) ни при каких; в) n > 180. 15.21. a) n = 1, 2, 3, ..., 89; 6) ни при каких; в) n > 90. 15.22. a) При любых  $n \in N$ , кроме чисел вида n = 360k, n = 360k - 1,  $k \in N$ . 15.23. a) n = 1, 2, 3, ..., 178; 6) n = 180, 181, ..., 359; в) n = 360k, n = 360k - 1,  $k \in N$ . 15.24.  $\sin 18^\circ = \frac{\sqrt{5}-1}{4}$ ;  $\cos 18^\circ = \frac{\sqrt{10+2\sqrt{5}}}{4}$ ;  $\sin 36^\circ = \frac{\sqrt{10-2\sqrt{5}}}{4}$ ;  $\cos 36^\circ = \frac{\sqrt{5}+1}{4}$ .

16.10. а) Четная; б) нечетная; в) четная; г) нечетная. 16.11. а) Нечетная; б) четная; в) нечетная; г) четная. 16.12. а) Нечетная; б) четная. в) нечетная; г) четная. 16.13. а) Четная; б) нечетная; в) четная; г) нечет-HAS. 16.14. a) [-1; 1]; 6) [-1; 1]; B) [-1; 1]; r) [-1; 1]. 16.18. a)  $\pi$ ; 6)  $\frac{2\pi}{2}$ ; B)  $4\pi$ ; r)  $\frac{8\pi}{3}$ . 16.19. a)  $\sin (8 - 2\pi)$ ; 6)  $\cos (-10 + 4\pi)$ ; B)  $\sin (-25 + 8\pi)$ ; r)  $\cos (35 - 10\pi)$ . 16.22. a) [-2; 2]; 6) [0; 625]; B) [-1; 5]; r) [0; 25] **16.23.** a)  $\left[\frac{1}{3}; 1\right]$ ; 6)  $\left[-4; -1\right]$ ; B)  $\left[-1; -\frac{1}{2}\right]$ ; r)  $\left[3; 5\right]$ . **16.24.** a)  $\left[3; 15\right]$ ; 6)  $\left[1; \sqrt{3}\right]$ ; B)  $\left[1\frac{3}{4}; 4\right]$ ; r)  $\left[0; 2\right]$ . 16.25. a) 1, 2, 3, 4, 5, 6, 7, 8, 9; 6) 0, 1, 2, 3; B) 1, 2, 3, 4, 5; r) 3. 16.26. a) 5;  $2\pi n < x \le \frac{\pi}{6} + 2\pi n$ ;  $\frac{5\pi}{6}$  +  $+2\pi n \le x < \pi + 2\pi n; n \in \mathbb{Z}; 6) 4; \frac{\pi}{2} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n; \frac{4\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n; \frac{4\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n; \frac{4\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n; \frac{4\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n; \frac{4\pi}{3} + 2\pi n < x < \frac{2\pi}{3} + 2\pi n <$  $< x < \frac{3\pi}{2} + 2\pi n; n \in \mathbb{Z}.$  16.32. a)  $\frac{1}{2}; \frac{3}{2};$  6)  $y_{\text{maxim}} = -\frac{1}{2}; y_{\text{maxim}}$  не существует; B)  $\frac{1-\sqrt{2}}{2}$ ;  $\frac{3}{2}$ ; r)  $\frac{3}{2}$ ;  $-\frac{1}{2}$ . 16.85. a) 1,5; 2,5; 6) 0,5; 2,5; B) 0,5; 2,5; r)  $y_{\text{mann}} = 1$ ;  $y_{\text{mann}}$  не существует. 16.44. a)  $-\frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{6} + 2\pi n$ ,  $n \in \mathbb{Z}$ ; 6)  $\frac{5\pi}{6} + 2\pi n \le x \le \frac{11\pi}{6} + 2\pi n, n \in \mathbb{Z}.$  16.45. a)  $\frac{5\pi}{6} + 2\pi n \le x \le \frac{11\pi}{6} + 2\pi n,$  $n \in \mathbb{Z}; \ 6) - \frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}. \ 16.48. \ a) -\pi; \ 6) \ 0; \ b) \ 0; \ r) \ \pi.$ 16.49. a)  $\pm \frac{\pi}{2}$ ; 0; 6)  $-\frac{\pi}{2}$ ; B)  $\frac{\pi}{2}$ ; r) нет корней. 16.50. a)  $\frac{\pi}{3}$ ; 6)  $\pi$ ; B)  $\frac{\pi}{3}$ ; r) 0. **16.51.** a)  $-\frac{\pi}{2}$ ; 6) 0; b) 0; r)  $\frac{\pi}{2}$ . **16.52.** a) 0; 6)  $\frac{\pi}{2}$ ; b)  $\pi$ ; r) 0. **16.53.** a) 2; б) бесконечное множество; в) 0; г) 1. 16.54. а) 0; б) бесконечное множество; B) 2; r) 2. 16.55. a)  $\frac{\pi}{4} + \pi n$ ; 6)  $-\frac{\pi}{4} + \pi n$ . 16.56. a)  $\frac{\pi}{6}$ ,  $\frac{5\pi}{6}$ ; 6)  $\frac{\pi}{2}$ ,  $\frac{4\pi}{3}$ . **16.57.** a) x = 0; 6)  $x = \frac{3\pi}{2}$ . **16.58.** a)  $x < -\frac{5\pi}{6}$ ;  $0 < x < \frac{5\pi}{6}$ ; 6)  $x > \frac{\pi}{3}$ .

306

17.11. a) 
$$y = 2 \sin x + 1$$
; 6)  $y = -1.5 \cos x + 2$ ; B)  $y = -0.5 \sin x - 2$ ;  
F)  $y = 3 \cos x - 0.5$ . 17.12. a)  $y = -\sin \left(x - \frac{\pi}{3}\right)$ ; 6)  $y = 2 \cos \left(x + \frac{\pi}{6}\right)$ ;

B) 
$$y = 1.5 \sin \left(x + \frac{5\pi}{6}\right)$$
; P)  $y = -3 \cos \left(x - \frac{2\pi}{3}\right)$ 

17.13. а) 
$$y = \begin{cases} x^2, & \text{если } x < 0, \\ \frac{1}{2} \sin x, & \text{если } 0 \le x \le \pi; \end{cases}$$
 б)  $y = \begin{cases} 1,5 \cos x, & \text{если } -\frac{\pi}{2} \le x \le \frac{\pi}{2}, \\ x - \frac{\pi}{2}, & \text{если } x > \frac{\pi}{2}. \end{cases}$ 

17.15. a) 
$$\frac{\pi}{6}$$
,  $\frac{5\pi}{6}$ ; 6)  $\pm \frac{\pi}{3}$ . 17.16. a)  $x < 0$ ;  $x > 0$ ; 6)  $-\frac{5\pi}{6} < x < -\frac{\pi}{6}$ .

§ 18.

18.10. a) 
$$y = \begin{cases} -x, & \text{если } x \leq 0, \\ \sin 2x, & \text{если } x > 0; \end{cases}$$
 б)  $y = \begin{cases} \cos 3x, & \text{если } -\frac{\pi}{6} \leq x \leq \frac{\pi}{3}, \\ -1, & \text{если } x > \frac{\pi}{3}; \end{cases}$ 

в) 
$$y = \begin{cases} \sin 2x, & \text{если } x < 0, \\ 2\cos x, & \text{если } x > 0; \end{cases}$$
 г)  $y = \begin{cases} -2\sin x, & \text{если } -2\pi \le x \le 0, \\ \cos \frac{x}{2}, & \text{если } x > 0. \end{cases}$ 

18.11. а) Возрастает на 
$$\left[0,\ \frac{\pi}{6}\right]$$
, убывает на  $\left[\frac{\pi}{6},\ \frac{\pi}{2}\right]$ ; 6) убывает на  $\left(-1,\ -\frac{\pi}{6}\right]$ ,

возрастает на 
$$\left[-\frac{\pi}{6},\ 0\right]$$
; в) возрастает на  $\left(\frac{2\pi}{3},\ \frac{5\pi}{6}\right]$ , убывает на  $\left[\frac{5\pi}{6},\ \frac{7\pi}{6}\right]$ ,

возрастает на 
$$\left[\frac{7\pi}{6},\,\frac{3\pi}{2}\right]$$
, убывает на  $\left[\frac{3\pi}{2},\,\frac{5\pi}{3}\right]$ ; г) убывает на  $\left(3,\,\frac{7\pi}{6}\right]$ ,

возрастает на 
$$\left\lceil \frac{7\pi}{6}, 4 \right\rceil$$
, 18.12. а) Возрастает на  $\left[ 0, 2\pi \right]$ , убывает на  $\left\lceil 2\pi, \frac{5\pi}{2} \right\rceil$ ;

б) убывает на (-3; 0], возрастает на [0; 2); в) убывает на 
$$\left(-\frac{2\pi}{3},\ 0\right]$$
,

возрастает на 
$$\left[0,\,\frac{5\pi}{3}\right]$$
; г) возрастает на  $(3,\,2\pi]$ , убывает на  $[2\pi,\,9)$ .

18.13. a) 
$$\frac{3\pi}{4} + 3\pi n \le x \le \frac{9\pi}{4} + 3\pi n, \ n \in \mathbb{Z}; \ 6) -\frac{3\pi}{4} + 3\pi n \le x \le \frac{3\pi}{4} + 3\pi n, \ n \in \mathbb{Z}.$$
 18.14. a)  $\frac{2\pi}{3} + \frac{4\pi n}{3} \le x \le \frac{4\pi}{3} + \frac{4\pi n}{3}, \ n \in \mathbb{Z}; \ 6) \frac{4\pi n}{3} \le x \le \frac{2\pi}{3} + \frac{4\pi n}{3}, \ n \in \mathbb{Z}.$  18.18. a)  $1\frac{1}{2}, 2, 2\frac{1}{2}; \ 6) \frac{1}{2}.$ 

19.5. а) 
$$y = 2 \sin\left(2x + \frac{\pi}{6}\right)$$
; б)  $y = -1.5 \sin\left(\frac{x}{2} - \frac{\pi}{4}\right)$  19.6. а)  $y = -2 \cos\frac{3x}{2}$ ; 6)  $y = 3 \cos\left(2x + \frac{2\pi}{3}\right)$ . 19.7. а)  $\frac{3\pi}{2} + 4\pi n \le x \le \frac{7\pi}{2} + 4\pi n$ ,  $n \in \mathbb{Z}$ ; б)  $-\frac{\pi}{2} + 4\pi n$ ,  $n \in \mathbb{Z}$ ; 6)  $-\frac{\pi}{3} + 4\pi n$ ,  $n \in \mathbb{Z}$ . 19.8. а)  $-\frac{5\pi}{6} + \pi n \le x \le -\frac{\pi}{3} + \pi n$ ,  $n \in \mathbb{Z}$ ; 6)  $-\frac{\pi}{3} + \pi n \le x \le \frac{\pi}{6} + \pi n$ ,  $n \in \mathbb{Z}$ . 19.9. а)  $4\pi$ ; 6)  $\pi$ . 19.10. а) Убывает на  $\left[0, \frac{3\pi}{2}\right]$ , возрастает на  $\left[\frac{3\pi}{2}, 2\pi\right]$ ; 6) убывает; в) возрастает на  $\left[-\frac{4\pi}{3}, -\frac{\pi}{2}\right]$ , убывает на  $\left[-\frac{\pi}{2}, 0\right]$ ; г) убывает. 19.11. а) Убывает на  $\left[0, \frac{\pi}{6}\right]$ , возрастает на  $\left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$ ; 6) возрастает; в) возрастает на  $\left[-\frac{7\pi}{12}, -\frac{\pi}{3}\right]$ ; убывает на  $\left[-\frac{\pi}{3}, 0\right]$ ; г) убывает на  $\left[-1, \frac{\pi}{6}\right]$ , возрастает на  $\left[\frac{\pi}{6}, 1\right]$ . 19.12. а)  $-\frac{2\pi}{3} + 4\pi n \le a \le 4\pi n$ ,  $n \in \mathbb{Z}$ ; 6)  $\frac{2\pi}{3} + 4\pi n \le a \le \frac{13\pi}{6} + 4\pi n$ ,  $n \in \mathbb{Z}$ . 19.13. а)  $\frac{\pi}{6} \le a \le \frac{\pi}{4}$ ; 6)  $a = -\frac{\pi}{6} + \frac{2\pi n}{3}$ ,  $n \in \mathbb{N}$ .

### § 20

20.6. а) Ни четная, ни нечетная; б) нечетная; в) четная; г) нечетная. 20.7. а) Нечетная; б) четная; в) четная; г) ни четная, ни нечетная. 20.8. а) Нечетная; б) четная; в) нечетная; г) нечетная. 20.11. а)  $\frac{\pi}{2}$ ; б)  $3\pi$ 

$$_{\rm B)}$$
  $\frac{\pi}{5}$ ; r)  $\frac{5\pi}{2}$ . 20.12. a)  $\pi$ ; б)  $2\pi$ . 20.15. a) Минус; б) минус; в) плюс; г) ми-

дус. 20.21. а) Возрастает на 
$$\left(-\frac{\pi}{6} + \pi n; \frac{5\pi}{6} + \pi n\right), n \in \mathbb{Z};$$

6) убывает на 
$$\left(-\frac{\pi}{3} + \pi n; \frac{2\pi}{3} + \pi n\right), n \in \mathbb{Z};$$

в) убывает на 
$$\left(-\frac{3\pi}{4} + \pi n; \frac{\pi}{4} + \pi n\right), n \in \mathbb{Z};$$

r) возрастает на 
$$\left(\frac{\pi}{6} + \pi n; \frac{7\pi}{6} + \pi n\right)$$
,  $n \in \mathbb{Z}$ .

20.28. a) 
$$-\frac{\pi}{2} + \pi n < x \leq \frac{\pi}{4} + \pi n$$
; 6)  $\pi n < x < \frac{\pi}{6} + \pi n$ ;

B) 
$$-\frac{\pi}{6} + \pi n < x < \frac{\pi}{2} + \pi n$$
; r)  $\frac{3\pi}{4} + \pi n \le x \le \pi + \pi n$ . 20.29. a)  $2\pi n < x < \pi$ 

$$<\frac{\pi}{2}+2\pi n; \ \pi+2\pi n < x < \frac{7\pi}{6}+2\pi n; \ 6)-\frac{3\pi}{4}+2\pi n < x < 2\pi n; \ \frac{\pi}{4}+2\pi n < x < 2\pi$$

$$< x < \frac{5\pi}{6} + 2\pi n; \text{ B}) \frac{\pi}{2} + 2\pi n < x < \frac{7\pi}{6} + 2\pi n; \text{ P}) 2\pi n < x < \frac{\pi}{4} + 2\pi n;$$

$$\frac{3\pi}{4} + 2\pi n < x < \frac{5\pi}{6} + 2\pi n; \ \pi + 2\pi n < x < \frac{11\pi}{6} + 2\pi n.$$

**21.3.** a) 
$$[-1; 1];$$
 6)  $[2; 3];$  B)  $[-2; 2];$  r)  $[-2; -\sqrt{2}] \cup [\sqrt{2}; 2].$ 

21.4. а) Да; б) нет; в) нет; г) да. 21.5. а) 
$$[-\pi; \pi]$$
; б)  $[-2\pi; 2\pi]$ ; в)  $[0; \pi]$ ;

г) [0; 
$$2\pi$$
]. 21.6. а) Нечетная; б) четная; в) ни четная, ни нечетная;

r) нечетная. 21.16. a) 
$$\frac{\pi}{2}$$
; 6)  $\frac{5\pi}{4}$ ; b)  $\frac{\pi}{2}$ ; r)  $\frac{7\pi}{12}$ . 21.17. a) 0; 6)  $\frac{\pi}{3}$ · 21.18. a)  $\frac{\sqrt{3}}{2}$ ;

6) 
$$\frac{\sqrt{3}}{3}$$
; B) 0; F)  $\frac{\sqrt{2}}{2}$ . 21.19. a)  $\frac{\sqrt{3}}{2}$ ; 6) 1; B)  $-\frac{\sqrt{3}}{3}$ ; F)  $\sqrt{3}$ . 21.21. a) [-1; 1];

6) [0; 2]; B) 
$$\left[-\frac{1}{2}; \frac{1}{2}\right]$$
; r) [1; 2]. 21.23. a) [0; 2 $\pi$ ]; 6)  $\left[-\frac{\pi}{2}; \pi\right]$ ; B)  $\left[-\frac{\pi}{2}; 0\right]$ ;

г) [
$$-\pi$$
;  $\pi$ ]. 21.24. а) Четная; б) нечетная; в) ни четная, ни нечетная; г) нечетная. 21.33. а)  $\frac{\pi}{2}$ ; б)  $\frac{7\pi}{12}$ ; в)  $\frac{\pi}{2}$ ; г)  $-\frac{\pi}{6}$ . 21.34. а)  $-\frac{2\pi}{3}$ ; б)  $\frac{11\pi}{3}$ ; в)  $\pi$ ; г)  $\pi$ .

**21.35.** a) 
$$-\frac{\sqrt{3}}{2}$$
; 6)  $-\frac{\sqrt{3}}{3}$ ; b) 1; r) -1. **21.36.** a) 1; 6)  $\frac{1}{2}$ ; b)  $-\frac{\sqrt{2}}{2}$ ; r)  $\frac{\sqrt{3}}{3}$ .

**21.37.** a) [-1; 1]; 6) [0; 2]; a) 
$$\left[-\frac{1}{4}; 0\right] \cup \left[0; \frac{3}{4}\right]$$
; r)  $\left[-\sqrt{2}; \sqrt{2}\right]$ , 21.38. a) Heyer.

ная; б) четная; в) ни четная, ни нечетная; г) ни четная, ни нечетная

**21.39.** a) 
$$(-\pi; \pi)$$
; б)  $\left(-\frac{\pi}{2}; 0\right)$ ; в)  $\left(-\frac{\pi}{2}; \pi\right)$ ; г)  $(0; 2\pi)$ . **21.46.** a)  $\frac{12}{13}$ ; б)  $\frac{3}{4}$ ;

B) 
$$\frac{15}{17}$$
; r)  $-\frac{3}{4}$ . 21.47. a)  $\frac{4}{5}$ ; 6)  $-\frac{12}{5}$ ; B)  $\frac{3}{5}$ ; r)  $\frac{4}{3}$ . 21.48. a)  $\frac{3}{5}$ ; 6)  $\frac{12}{13}$ ; B)  $\frac{3}{5}$ ;

r) 
$$\frac{12}{13}$$
. 21.54. a)  $\frac{\sqrt{3}}{4}$ ; 6) нет корней; в) 1; г)  $-\frac{1}{2}$ . 21.55. a) 0;  $1\frac{2}{3}$ ; 6) 3;

B) 
$$\frac{1}{3}$$
, 3; r) 0; 3; 5. 21.56. a) 4; 6)  $\frac{2}{3}$ . 21.57. a)  $\frac{\sqrt{2}}{2}$ , -1; 6)  $-\frac{\sqrt{3}}{3}$ ,  $\sqrt{3}$ ; B)  $\frac{1}{2}$ ;

г) ±1. 21.58. а) -1,5; 6) 9; -1; в) нет корней; г) 2; 3. 21.59. а) 
$$\sqrt{\frac{\sqrt{5}-1}{2}}$$
;

6) 
$$\frac{\sqrt{2}}{2}$$
; B) 1; r)  $\sqrt{\frac{\sqrt{5}-1}{2}}$ . 21.60. a)  $-1 \le x < -\frac{\sqrt{2}}{2}$ ; 6)  $x > -1$ ; B)  $-1 \le x \le 1$ ;

r) 
$$x \ge -\sqrt{3}$$
. 21.61. a)  $-\frac{\sqrt{3}}{2} \le x \le \frac{\sqrt{3}}{2}$ ; 6)  $x < -\frac{\sqrt{3}}{3}$ ,  $x > \frac{\sqrt{3}}{3}$ ; b)  $-1 \le x < \frac{\sqrt{2}}{2}$ ;

r) 
$$x \ge \frac{\sqrt{3}}{3}$$
. 21.62. a)  $-1 < x < \frac{\sqrt{2}}{2}$ ; 5)  $x \le -\frac{\sqrt{3}}{3}$ ;  $x \ge \sqrt{3}$ ; B)  $-\frac{1}{2} \le x \le \frac{1}{2}$ ; r)  $x < -1$ ;  $x > 1$ .

**22.3.** a) 
$$\frac{\pi}{6}$$
,  $\frac{11\pi}{6}$ ; 6)  $\frac{8\pi}{3}$ ,  $\frac{10\pi}{3}$ ; B)  $-\frac{\pi}{4}$ ,  $\frac{\pi}{4}$ ,  $\frac{7\pi}{4}$ ,  $\frac{9\pi}{4}$ ; r)  $\pm \pi$ . **22.5.** a)  $\pm \frac{2\pi}{3}$  +

+ 
$$2\pi n$$
,  $\pm \arccos\left(-\frac{1}{3}\right)$  +  $2\pi n$ ; 6)  $\pm \arccos\frac{1}{5}$  +  $2\pi n$ . 22.6. a)  $\frac{\pi}{3}$ ,  $\frac{5\pi}{3}$ ;

6) 
$$-\frac{\pi}{4}$$
,  $\frac{\pi}{4}$ ,  $\frac{7\pi}{4}$ ,  $\frac{9\pi}{4}$ ,  $\frac{15\pi}{4}$ ; B)  $\frac{2\pi}{3}$ ,  $\frac{4\pi}{3}$ ,  $\frac{8\pi}{3}$ ; r)  $\pm \frac{5\pi}{4}$ ,  $\pm \frac{3\pi}{4}$ . 22.7. a) 2; 6) 3.

22.11. a) 
$$(-1)^n \frac{\pi}{3} + \pi n$$
,  $\pm \frac{2\pi}{3} + 2\pi n$ ; 6)  $\frac{\pi}{2} + \pi n$ ,  $(-1)^n \arcsin \frac{2}{3} + \pi n$ ;

B) 
$$(-1)^n \arcsin \frac{3}{4} + \pi n$$
,  $\pi n$ ; r)  $\frac{\pi}{4} + \frac{\pi n}{2}$ . 22.12. a)  $(-1)^n \frac{\pi}{6} + \pi n$ ;

$$(-1)^{n+1} \arcsin \frac{2}{3} + \pi n$$
; 6)  $-\frac{\pi}{2} + 2\pi n$ . 22.13. a)  $(-1)^{n+1} \frac{\pi}{4} + \pi n$ ; 6)  $\pm \frac{5\pi}{6} + 2\pi n$ .

$$22.15. \ a) \ \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}; \ 6) - \frac{\pi}{6}, \ \frac{7\pi}{6}, \ \frac{11\pi}{6}; \ a) - \frac{5\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}; \ r) - \frac{3\pi}{4}, \ -\frac{\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}; \ r) - \frac{3\pi}{4}, \ -\frac{\pi}{4}, \ \frac{5\pi}{4}, \ \frac{7\pi}{4}, \ 22.16. \ a) \ 3; \ 6) \ 2. \ 22.25. \ a) \ \frac{2\pi}{3} + 4\pi\pi; \ 4\pi\pi; \ 6) \ \frac{\pi}{2} + 3\pi\pi; \ a) \ 8\pi\pi, -\frac{4\pi}{3}, \ \frac{2\pi\pi}{3}, \ 22.27. \ a) \ \frac{\pi}{12} + \pi\pi; \ 6) \ \pi + 2\pi\pi; \ a) \ 8\pi\pi, -\frac{4\pi}{3} + 8\pi\pi; \ r) \ \frac{\pi}{6} + \frac{2\pi\pi}{3}, \ \frac{2\pi\pi}{3}, \ 22.27. \ a) \ \frac{\pi}{12}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}, \ \frac{11\pi}{12}, \ \frac{17\pi}{12}, \ \frac{19\pi}{12}; \ 6) \pm \frac{\pi}{18}, \ \pm \frac{11\pi}{18}, \ \pm \frac{11\pi}{12}, \ \pm \frac{19\pi}{12}, \ \frac{5\pi}{12}, \ \frac{13\pi}{12}, \ \frac{7\pi}{4}, \ \pm \frac{12\pi}{12}, \ \frac{7\pi}{12}, \ \frac{13\pi}{12}, \ \frac{7\pi}{4}, \ \pm \frac{12\pi}{12}, \ \frac{13\pi}{12}, \ \frac{13\pi}{12}, \ \frac{2\pi}{12}, \ \frac{13\pi}{12}, \ \frac{13\pi}{12}, \ \frac{2\pi}{12}, \ \frac{13\pi}{12}, \ \frac{13\pi}{12}, \ \frac{2\pi}{12}, \ \frac{13\pi}{12}, \ \frac{$$

$$22.44. \ a) \arccos \left(-\frac{2}{3}\right) + 2\pi n \le t \le 2\pi - \arccos \left(-\frac{2}{3}\right) + 2\pi n; \ 6) - \frac{\pi}{3} + 2\pi n < < t < \frac{\pi}{3} + 2\pi n, \ \arccos \left(\frac{2}{3}\right) + 2\pi n; \ 6) - \frac{\pi}{3} + 2\pi n < < < \frac{\pi}{3} + 2\pi n, \ \arccos \left(\frac{2}{3}\right) + 2\pi n; \ 6) - \frac{\pi}{3} + 2\pi n; \ 6) - \frac{\pi}{3} + 2\pi n, \ \cot \left(\frac{2}{3}\right) + 2\pi n; \ 7) - \arccos \left(\frac{2}{3}\right) + 2\pi n; \ 7) - \arccos \left(\frac{2}{3}\right) + 2\pi n, \ 7 + 2\pi n < t < \arccos \left(\frac{2}{3}\right) + 2\pi n; \ 7) - \arccos \left(\frac{3}{3}\right) + 2\pi n, \ 7 + 2\pi n$$

 $\begin{array}{lll} \pi + 2\pi n < x < 2\pi - \arccos \frac{4}{9} + 2\pi n. & 22.68. \ a) - \frac{19\pi}{12} < x < -\frac{11\pi}{12}; \ -\frac{7\pi}{12} < x < \\ < \frac{\pi}{12}; \ \frac{5\pi}{12} < x < \frac{13\pi}{12}; \ \frac{17\pi}{12} < x \leqslant 5; \ 6) - 5 < x < -\frac{3\pi}{2}; \ -\frac{4\pi}{3} < x < -\frac{5\pi}{6}; \\ -\frac{2\pi}{3} < x < -\frac{\pi}{6}; \ 0 < x < 1. \end{array}$ 

$$23.1. a) (-1)^{n+1} \arcsin \frac{1}{3} + \pi n; 6) (-1)^{n+1} \frac{1}{2} \arcsin \frac{1}{3} + \frac{\pi n}{2};$$

$$B) (-1)^{n} \arcsin \frac{1}{4} + \pi n; r) \pi + 4\pi n; (-1)^{n} \frac{\pi}{3} + 2\pi n. 23.2. a) \pm \frac{2\pi}{3} + 2\pi n;$$

$$\pm \arccos \frac{1}{3} + 2\pi n; 6) \pm \frac{2\pi}{9} + \frac{2\pi k}{3}; B) \pi + 2\pi n; r) \pm \pi + 6\pi n. 23.3. a) \pm \frac{2\pi}{3} + 2\pi n;$$

$$\pm 2\pi n; 6) \frac{\pi}{2} + \pi n; B) \frac{\pi}{2} + 2\pi n; (-1)^{n} \arcsin \frac{1}{5} + \pi n; r) \frac{\pi}{6} + \frac{2\pi n}{3}.$$

$$23.4. a) -\frac{\pi}{4} + \pi n, \operatorname{arcetg} \frac{1}{3} + \pi n; 6) \frac{\pi}{8} + \frac{\pi n}{2}, \frac{1}{2} \operatorname{arcetg} 5 + \frac{\pi n}{2}; B) \operatorname{arctg} \frac{1}{2} + \pi n; -\operatorname{arctg} 2 + \pi n; r) \frac{3\pi}{2} + 2\pi n, 2 \operatorname{arcctg} \frac{5}{7} + 2\pi n. 23.6. a) \frac{\pi}{4} + \pi n, -\operatorname{arctg} 2 + \pi n; a) \operatorname{arcetg} \frac{3}{2} + \pi n; b) \operatorname{arctg} 2 + \pi n, -\operatorname{arctg} \frac{1}{3} + \pi n; r) \frac{3\pi}{4} + \pi n,$$

$$\operatorname{arccetg} \frac{3}{4} + \pi n. 23.6. a) \pi + 2\pi n, \pm \frac{5\pi}{3} + 4\pi n; 6) \frac{\pi}{3} + \pi n, \pi n; a) \frac{\pi n}{3}, \frac{\pi}{9} + \frac{\pi n}{3};$$

$$r) -\frac{\pi}{12} + \frac{\pi n}{2}, -\frac{\pi}{4} + \frac{\pi n}{2}. 23.7. a) (-1)^{n+1} \frac{\pi}{4} + \pi n; 6) \pm \frac{5\pi}{6} + 2\pi n.$$

$$23.8. a) -\frac{\pi}{4} + \pi n; \pm \frac{\pi}{3} + \pi n; 6) \frac{\pi}{8} + \frac{\pi n}{4}, \pm \frac{\pi}{12} + \frac{\pi n}{2}. 23.9. a) \frac{\pi n}{2}; 6) \frac{\pi n}{2},$$

$$-\frac{\pi}{6} + \frac{\pi n}{2}. 23.10. a) \pi n; 6) \frac{\pi}{2} + 2\pi n; a) \frac{\pi n}{3}; r) 2\pi n. 23.11. a) \operatorname{arctg} \frac{3}{4} + \pi n;$$

$$6) \operatorname{arctg} \frac{2}{3} + \pi n; a) -\operatorname{arctg} 2, 5 + \pi n; r) \frac{\pi}{2} + \pi n, \operatorname{arctg} 3 + \pi n. 23.12. a) -\frac{\pi}{3} + \pi n;$$

$$6) -\frac{\pi}{4} + \pi n; a) \operatorname{arctg} 3 + \pi n; r) -\frac{\pi}{6} + \pi n. 23.13. a) \pi n, -\frac{\pi}{4} + \pi n; 6) \frac{\pi}{2} + \pi n,$$

$$-\frac{\pi}{6} + \pi n; a) \pi n, \operatorname{arctg} 3 + \pi n; r) -\frac{\pi}{6} + \pi n, \frac{\pi}{3} + \pi n. 23.14. a) \frac{\pi}{4} + \pi n,$$

$$-\operatorname{arctg} 3 + \pi n; a) \pi n, \operatorname{arctg} 3 + \pi n; r) \frac{\pi}{2} + \pi n, -\operatorname{arctg} 2 + \pi n; r) -\frac{\pi}{4} + \pi n,$$

$$-\operatorname{arctg} 3 + \pi n; 6) \frac{\pi}{4} + \pi n, \operatorname{arctg} 3 + \pi n; r) \frac{\pi}{6} + \pi n, -\operatorname{arctg} 2 + \pi n; r) -\frac{\pi}{4} + \pi n,$$

$$-\operatorname{arctg} 3 + \pi n; 6) \frac{\pi}{4} + \pi n, \operatorname{arctg} 3 + \pi n; r) \frac{\pi}{6} + \pi n, -\operatorname{arctg} 2 + \pi n; r) -\frac{\pi}{4} + \pi n,$$

г) 
$$\frac{\pi}{51}$$
 +  $\frac{\pi n}{17}$  23.16. a)  $\frac{1}{2}$  arctg  $2 + \frac{\pi n}{2}$ ,  $\frac{1}{2}$  arctg  $\frac{1}{2} + \frac{\pi n}{2}$ ; 6)  $-\frac{1}{3}$  arctg  $3 + \frac{\pi n}{3}$ ,  $-\frac{1}{3}$  arctg  $\frac{1}{3} + \frac{\pi n}{3}$  23.17. a)  $\pm \frac{2\pi}{3} + 2\pi n$ ; 6)  $\pm \frac{\pi}{16} + \frac{\pi n}{4}$ .

23.18. a) arctg  $5 + \pi n$ ,  $-\arctan$ tg  $\frac{1}{3} + \pi n$ ; 6)  $-\frac{\pi}{4} + \pi n$ , arctg  $2 + \pi n$ ; B)  $\frac{\pi}{4} + \pi n$ ,  $-\arctan$ tg  $\frac{1}{2} + \pi n$ ; r)  $-\frac{\pi}{4} + \pi n$ , arctg  $3 + \pi n$ . 23.19. a)  $\frac{\pi}{2} + \pi n$ ,  $-\frac{\pi}{6} + \pi n$ ; 6)  $\pi n$ ,  $-\arctan$ tg  $1, 5 + \pi n$ . 23.20. a)  $-\frac{\pi}{8} + \frac{\pi n}{2}$ ,  $\frac{1}{2}$  arctg  $2 + \frac{\pi n}{2}$ ; 6)  $\frac{\pi n}{4}$ ,  $-\frac{1}{4}$  arctg  $1, 5 + \frac{\pi n}{4}$ . 23.21. a)  $-\frac{\pi}{2} + 2\pi n$ , 2 arctg  $3 + 2\pi n$ ; 6)  $\frac{3\pi}{2} + 3\pi n$ ,  $\frac{\pi}{2} + 3\pi n$ .

23.22. a)  $\frac{\pi}{4} + \pi n$ ; 6)  $-\frac{\pi}{4} + \pi n$ . 23.23. a)  $\pi n$ ,  $\frac{\pi}{4} + \pi n$ ; 6)  $\frac{\pi}{2} + \pi n$ , arctg  $7 + \pi n$ , arctg  $3 + \pi n$ . 23.24. a)  $\pm \frac{\pi}{6} + \frac{\pi}{2} n$ ; 6)  $\pm \frac{2\pi}{3} + 2\pi n$ . 23.25. a) 
$$\begin{cases} x = \frac{\pi}{2} + 2\pi n, \\ y = \frac{\pi}{2} + 2\pi n, \\ y = \frac{\pi}{4} + \frac{\pi k}{2}, \end{cases}$$
23.26. a) 
$$\begin{cases} x = -\frac{\pi}{2} + 2\pi n, \\ y = \pm \frac{\pi}{3} + 2\pi h, \end{cases}$$

$$\begin{cases} x = (-1)^n \frac{\pi}{6} + \pi n, \\ y = \pm \frac{\pi}{3} + \pi h. \end{cases}$$
23.27. a)  $\frac{2\pi}{3} + 2\pi n$ ; 6)  $-\arctan$ tg  $\frac{1}{3} + \pi n$ , arctg  $\frac{1}{6} + \pi n$ , 23.28. a)  $\frac{\pi}{6} + 2\pi n$ ,  $\frac{4\pi}{3} + 2\pi n$ ; 6)  $\frac{2\pi}{3} + 2\pi n$ ; 7 her pennehhh.

23.29. a) Her pennehhh, 6)  $(-1)^n \frac{\pi}{6} + \pi n$ ; b)  $\frac{\pi}{2} + \pi n$ ; r) Her pennehhh.

23.29. a) Her pennehhh, 6)  $(-1)^n \frac{\pi}{6} + \pi n$ ; b)  $\frac{\pi}{3} + 2\pi n$ ; c) Her pennehhh, 6.71  $\frac{\pi}{3} + 2\pi n$ , com  $a < -\sqrt{2}$ ,  $\frac{\pi}{4} + 2\pi n$ , com  $a < -\sqrt{2}$ ,  $\frac{\pi}{4} + 2\pi n$ , com  $a = \sqrt{2}$ ; 6) Her pennehhh, com  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{\pi}{4} + 2\pi n$ , echh  $a = \sqrt{2}$ ;  $\frac{$ 

 $\pm \arccos \frac{1}{a} + 2\pi n$ , если  $a < -\sqrt{2}$ ,  $-\sqrt{2} < a \le -1$ ;  $1 \le a < \sqrt{2}$ ;  $a > \sqrt{2}$ .

23.32. a) -1; 6) ±1. 23.33. a) 
$$\frac{\pi}{2} + \pi n$$
,  $2\pi n$ ; 6)  $\frac{\pi}{2} + 2\pi n$ ,  $\pi n$ . 23.34. a)  $\frac{3\pi}{2} + 3\pi n$ ; 6)  $\pi + 2\pi n$ . 23.35. a)  $\varnothing$ ; 6)  $2\pi + 24\pi n$ . 23.36. a)  $(-1)^n \frac{\pi}{6} + \pi n$ ; 6)  $\pm \frac{\pi}{3} + 2\pi n$ . 23.37. a)  $\frac{\pi}{4} + 2\pi n$ ; -arctg  $3 + n(2n + 1)$ ; 6)  $\frac{5\pi}{4} + 2\pi n$ ; arctg  $3 + n(2n + 1)$ . 23.38. a)  $\frac{\pi}{2} + 2\pi n$ ; 6)  $\pi + 2\pi n$ . 23.39. a)  $-\frac{\pi}{6} + 2\pi n < x < \frac{\pi}{3} + 2\pi n$ ;  $\frac{7\pi}{6} + 2\pi n < x < \frac{5\pi}{3} + 2\pi n$ ; 6)  $\frac{\pi}{3} + 2\pi n \le x \le \frac{7\pi}{6} + 2\pi n$ ;  $-\frac{\pi}{3} + 2\pi n \le x \le \frac{7\pi}{6} + 2\pi n$ . 23.40. a)  $-\frac{\pi}{6} + 2\pi n < x < \frac{\pi}{3} + 2\pi n$ ;  $\frac{2\pi}{3} + 2\pi n < x < \frac{7\pi}{6} + 2\pi n$ ; 6)  $\frac{\pi}{3} + 2\pi n \le x \le \frac{5\pi}{3} + 2\pi n$ ;  $-\frac{\pi}{6} + 2\pi n \le x \le \frac{\pi}{6} + 2\pi n$ . 23.41. a)  $\frac{\pi}{4} + 2\pi n < x < \frac{7\pi}{4} + 2\pi n$ ; c)  $-\frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{3} + 2\pi n \le x \le \frac{\pi}{3} + 2\pi n$ ; B)  $\frac{3\pi}{4} + 2\pi n < x < \frac{7\pi}{4} + 2\pi n$ ; c)  $-\frac{\pi}{6} + 2\pi n \le x \le \frac{5\pi}{6} + 2\pi n$ . 23.42. a) arctg  $5 + \pi n < x \le \frac{5\pi}{4} + \pi n$ ; 6)  $\frac{\pi}{4} + \pi n < x < \arctan 5 + \pi n$ ; B)  $\frac{\pi}{4} + \pi n \le x \le \arctan 5 + \pi n$ ; C)  $-\frac{\pi}{2} + \pi n \le x \le -\frac{\pi}{4} + \pi n$ ; arctg  $3 + \pi n \le x \le \frac{\pi}{2} + \pi n$ .

24.20. a) 
$$\frac{\pi}{6} + \frac{2\pi n}{3}$$
; 6)  $\frac{\pi}{16} + \frac{\pi n}{8}$ ; B)  $(-1)^n \frac{\pi}{42} + \frac{\pi n}{7}$ ; r)  $\pm \frac{5\pi}{72} + \frac{\pi n}{6}$ .

24.21. a) 15°; 6) 15°. 24.22. a)  $\pi + 2\pi n$ ; 6)  $(-1)^{n+1} \frac{\pi}{12} + \frac{\pi n}{2}$ . 24.23. a)  $\frac{\pi}{4}$ ,  $\frac{5\pi}{4}$ ,  $\frac{9\pi}{4}$ ; 6)  $-\frac{5\pi}{8}$ ,  $-\frac{\pi}{8}$ ,  $\frac{3\pi}{8}$ ,  $\frac{7\pi}{8}$ . 24.24. a)  $(-1)^n \frac{\pi}{6} + \pi n$ ; 6)  $\pm \frac{\pi}{3} + 4\pi n$ .

24.25. a)  $\frac{3\pi}{4} + 2\pi n$ ; 6)  $\frac{\pi}{2} + 2\pi n$ ,  $\pi + 2\pi n$ ; B)  $\frac{\pi}{6} + 2\pi n$ ; r)  $\frac{\pi}{2} + 2\pi n$ ,  $-\frac{\pi}{6} + 2\pi n$ . 24.26. a)  $\frac{\pi}{4} + 2\pi n$ ; 6)  $2\pi n$ ,  $\frac{\pi}{2} + 2\pi n$ ; B)  $-\frac{\pi}{6} + 2\pi n$ ; r)  $\frac{\pi}{6} + 2\pi n$ ,  $-\frac{\pi}{2} + 2\pi n$ . 24.26. a)  $\frac{4\sqrt{3} + 3}{10}$ ; 6)  $-\frac{3}{5}$ ; B)  $\frac{4}{5}$ ; r)  $\frac{4 - 3\sqrt{3}}{10}$ . 24.28. a)  $\frac{12\sqrt{3} - 5}{26}$ ; 6)  $\frac{12}{13}$ ; B)  $\frac{-5\sqrt{3} - 12}{26}$ ; r)  $\frac{5}{13}$ . 24.29. a)  $\frac{77}{85}$ ; 6)  $\frac{36}{85}$ . 24.30. a)  $-\frac{84}{85}$ ; 6)  $\frac{13}{85}$ .

24.31. a) 
$$-\frac{1519}{1681}$$
; 6)  $\frac{720}{1681}$ . 24.32. a)  $-\frac{12\sqrt{3}+5}{26}$ ; 6)  $\frac{5}{13}$ ; b)  $-\frac{12}{13}$ ; r)  $\frac{5\sqrt{3}-12}{26}$ . 24.33. a)  $-\frac{4\sqrt{3}+3}{10}$ ; 6)  $\frac{3}{5}$ ; b)  $\frac{4}{5}$ ; r)  $\frac{3\sqrt{3}-4}{10}$ . 24.34. a)  $-\frac{36}{85}$ ; 6)  $\frac{77}{85}$ . 24.35. a)  $-\frac{63}{65}$ ; 6)  $-\frac{16}{65}$ . 24.36. a)  $\frac{\pi}{12}+\pi n < x < \frac{5\pi}{12}+\pi n$ ; 6)  $2\arccos\left(-\frac{2}{7}\right)+4\pi n < x < 2\pi+2\arccos\frac{2}{7}+4\pi n$ ; B)  $-4\arcsin\frac{1}{3}+\frac{2\pi n}{3}$ . 24.37. a)  $\frac{\pi}{24}+\frac{\pi n}{2} < x < \frac{5\pi}{24}+\frac{\pi n}{2}$ ; 6)  $\frac{1}{7}\arccos\left(-\frac{1}{3}\right)+\frac{2\pi n}{7} < x < \frac{2\pi-\arccos\left(-\frac{1}{3}\right)}{7}+\frac{2\pi n}{7}$ ; B)  $\frac{2\pi}{3}+\frac{2}{3}\arcsin\frac{2}{7}+\frac{4\pi n}{3} < x < \frac{4\pi}{3}-\frac{2}{3}\arcsin\frac{2}{7}+\frac{4\pi n}{3}$ ; r)  $-\frac{\pi}{3}+\frac{8\pi n}{3} < x < \frac{\pi}{3}+\frac{8\pi n}{3}$ . 24.39. a)  $\frac{3\sqrt{3}-4}{10}$ ; 6)  $\frac{3\sqrt{3}+4}{10}$ . 24.40. a)  $a < 0$ ; 6)  $a > 0$ . 24.41. a)  $a > b$ ; 6)  $a < b$ . 24.42. a)  $a < b$ ;

6) a > b. 24.43. a) a < b; 6) a < b. 24.44. a)  $\frac{b-a}{b+a}$ ; 6)  $\frac{a+b}{a-b}$ . 24.48. a)  $\frac{3\sqrt{3}+4}{10}$ ;

6) 
$$-\frac{3\sqrt{3}+4}{10}$$
; B)  $\frac{\sqrt{2}}{10}$ ; r)  $\frac{5}{13}$ . 24.49. a)  $\frac{6\sqrt{2}-4}{15}$ ; 6) 1.

6 25

25.10. a) 
$$\frac{1}{5}$$
; 6)  $-\frac{41\sqrt{3}+80}{23}$ . 25.11. a) 1; 6)  $\frac{1}{7}$ . 25.12. a) -2; 6)  $-\frac{3}{2}$ . 25.13. a)  $-\frac{1}{2}$ ; 6)  $-1\frac{1}{6}$ . 25.14. a)  $-\frac{17}{7}$ ; 6)  $\frac{7}{17}$ . 25.15. a)  $-\frac{25\sqrt{3}+48}{39}$ ; 6)  $\frac{1}{7}$ . 25.17. a)  $\frac{\pi}{16} + \frac{\pi n}{4}$ ; 6)  $\frac{\pi}{6} + \frac{\pi n}{2}$ . 25.18. a)  $-\frac{11\pi}{12}$ ,  $\frac{\pi}{12}$ ,  $\frac{13\pi}{12}$ ; 6)  $-\frac{17\pi}{30}$ ,  $-\frac{\pi}{15}$ ,  $\frac{13\pi}{30}$ ,  $\frac{14\pi}{15}$ ,  $\frac{43\pi}{30}$ ,  $\frac{29\pi}{15}$ . 25.19. a)  $-\frac{7\pi}{10} + \pi n < x < \frac{\pi}{20} + \pi n$ ; 6)  $\frac{\pi}{6} + \frac{\pi n}{3} < x < \frac{\pi}{4} + \frac{\pi n}{3}$ . 25.20. a) 
$$\begin{cases} x = \frac{\pi}{4} + \pi n, \\ y = \arctan 2 + \pi k, \end{cases}$$

6) 
$$\begin{cases} x = \frac{\pi}{4} + \pi n, \\ y = \arctan 3 + \pi k, \end{cases} \begin{cases} x = \arctan 4.5 + \pi n, \\ y = -\arctan 4 + \pi k. \end{cases}$$
 25.21. a)  $\beta = \frac{3\pi}{4}$ . 25.22. a) 1.8;

6) 
$$\frac{1}{7}$$
; B)  $\frac{6-5\sqrt{3}}{13}$ ; r)  $-3\frac{3}{7}$ . 25.24. 3.

26.7. a) -0.5; 6) 1; b) 
$$\frac{\sqrt{3}}{2}$$
; r)  $-\sqrt{3}$ , 26.8. a) -1.5; 6) 2; b)  $-\sqrt{2}$ ; r) -1. 26.9. a) 0; 6) 2 cos t. 26.10. a) ctg  $\alpha$ ; 6) cos t; b) ctg  $\alpha$ ; r) -cos t. 26.11. a) -1; 6)  $-\frac{1}{\cos t}$ . 26.12. a)  $\cos \alpha$ ; 6)  $-\frac{\cos 2y}{\sin^2 y}$ . 26.14. a) 36; 6) 5. 26.15. a) -6; 6) 7. 26.16. a)  $\frac{\sqrt{3}}{2}$ ; 6)  $-\frac{1}{2}$ . 26.17. a) 1; 6)  $\frac{1}{2}$ . 26.18. a) 1; 6) 1. 26.19. a) 1; 6)  $\sqrt{3}$ , 26.20. a)  $\frac{11}{13}$ ; 6) 17. 26.21. a)  $2\pi n$ ; 6)  $-\frac{\pi}{2} + 2\pi n$ ; b)  $\frac{\pi}{6} + 2\pi n$ ,  $\frac{5\pi}{6} + 2\pi n$ ; r)  $\pm \frac{\pi}{3} + 2\pi n$ . 26.22. a)  $\pm \frac{2\pi}{3} + 2\pi n$ ; 6)  $\frac{\pi}{2} + 2\pi n$ . 26.23. a) Kopheň Her; 6) любое действительное число. 26.24. a)  $-\frac{\pi}{8} + \frac{\pi n}{2}$ ; 6)  $-\frac{1}{3}$  arctg  $\frac{1}{2} + \frac{\pi n}{3}$ . 26.25. a) -2 arctg  $3 + 2\pi n$ ; 6)  $-\pi + 3\pi n$ . 26.26. a)  $\frac{\pi}{4} + \pi n$ , -arctg  $2 + \pi n$ ; 6)  $-\frac{\pi}{12} + \frac{\pi n}{3}$ ,  $-\frac{1}{3}$  arctg  $3 + \frac{\pi n}{3}$ ; a)  $\frac{\pi}{4} + \pi n$ , -arctg  $3 + \pi n$ ; r)  $-\frac{1}{3}$  arctg  $4 + \frac{\pi n}{3}$ ,  $-\frac{\pi}{12} + \frac{\pi n}{3}$ . 26.27. a)  $\frac{\pi}{2} + 2\pi n$ , -2 arctg  $2 + 2\pi n$ ; 6)  $\frac{\pi}{2} + 2\pi n$ , 26.28. a)  $(-1)^{n+1} \frac{\pi}{6} + \pi n$ ; 6)  $(-1)^n \frac{\pi}{6} + \pi n$ ; r)  $\frac{\pi}{2} + \pi n$ , -arctg  $\frac{1}{2} + \pi n$ . 26.28. a)  $(-1)^{n+1} \frac{\pi}{6} + \pi n$ ; 6)  $(-1)^n \frac{\pi}{6} + \pi n$ ; a)  $\pi + 2\pi n$ ,  $\pm \frac{\pi}{3} + 2\pi n$ ; r)  $\frac{\pi}{6} + \frac{2\pi n}{3}$ . 26.29. a)  $\frac{\pi n}{2}$ ,  $-\frac{1}{2}$  arctg  $\frac{3}{2} + \frac{\pi n}{2}$ ; 6)  $\frac{\pi n}{3}$ ,  $\frac{1}{3}$  arctg  $2 + \pi n$ ; a)  $\frac{\pi n}{6} + \frac{2\pi n}{3}$ . 26.30. a)  $-\frac{\pi}{2} + 2\pi n$ , 2 arctg  $\frac{1}{3} + 2\pi n$ ; 6)  $\frac{\pi}{4} + \pi n$ , -arctg  $2 + \pi n$ ; b)  $\frac{\pi}{6} + \frac{2\pi n}{3}$ . 26.30. a)  $-\frac{\pi}{2} + 2\pi n$ ,  $\frac{\pi}{6} + 2\pi n$ ; 6)  $\frac{\pi}{6} + 2\pi n$ ; 7)  $\frac{\pi}{6} + 2\pi n$ ; 8)  $\frac{\pi}{16} + \frac{\pi n}{3}$ ; 9.  $\frac{\pi}{1} + \pi n$ ; 10 arctg  $2 + \pi n$ ; 11 arctg  $2 + \pi n$ ; 12 arctg  $2 + \pi n$ ; 2 arctg  $2 + \pi n$ ; 2 arctg  $2 + \pi n$ ; 2 arctg  $2 + \pi n$ ; 3. 3 arctg  $2 + \pi n$ ; 4 arctg  $2 + \pi n$ ; 5 arctg  $2 + \pi n$ ; 6 arctg  $2 + \pi n$ ; 7 arctg  $2 + \pi n$ ; 8 arctg  $2 + \pi n$ ; 9 arctg  $2 + \pi n$ ; 13 arctg  $2 + \pi n$ ; 14 arctg  $2 + \pi n$ ; 15 arctg  $2 + \pi n$ ; 16 ar

$$27.18. a) 2 \sin \left(t - \frac{\pi}{4}\right); 6) 2 \sin \left(\frac{\pi}{4} - t\right); a) 2 \sin \left(t + \frac{\pi}{4}\right); r) - 2 \sin \left(t + \frac{\pi}{4}\right).$$

$$27.20. a) \frac{1}{8}; 6) \frac{1}{16}. 27.21. a) 1; 6) 0. 27.22. a) 2; 6) -2. 27.23. a) \frac{1 + 2\sqrt{2}}{4};$$

$$6) -\frac{\sqrt{2}}{4}; a) \frac{3}{8}; r) \frac{14 + \sqrt{3}}{64}. 27.24. a) 2\frac{3}{8}; 6) -\frac{23\sqrt{2}}{16}. 27.25. a) \frac{1}{32};$$

$$6) \frac{1}{64}. 27.27. a) -\frac{120}{169}; 6) \frac{119}{169}; a) -\frac{120}{119}; r) -\frac{119}{120}. 27.28. a) \frac{24}{25}; 6) \frac{7}{25};$$

$$a) \frac{24}{7}; r) \frac{7}{24}. 27.29. a) \frac{24}{25}; 6) \frac{7}{25}; a) \frac{24}{7}; r) \frac{7}{24}. 27.30. a) \frac{\sqrt{2}}{4}, \frac{\sqrt{14}}{4},$$

$$\frac{\sqrt{7}}{7}, \sqrt{7}; 6) -\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, -2, -\frac{1}{2}. 27.31. a) -\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}, -3, -\frac{1}{3} \lim_{n \to 1} -\frac{3}{\sqrt{10}},$$

$$-\frac{1}{\sqrt{10}}, -\frac{1}{3}, -3; 6) -\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}}, \frac{1}{3}; 3. 27.32. a) \frac{a^2 - 1}{a^2 + 1}; -\frac{2a}{1 + a^2};$$

$$6) \frac{1 - a^2}{1 + a^2}; \frac{2a}{1 + a^2}. 27.33. a) \frac{4}{5}; 6) -2\sqrt{2}. 27.34. a) 1 - 2a^2; 6) 1 - 2a^2.$$

$$27.38. a) \sin 3x = 3 \sin x - 4 \sin^3 x; 6) \cos 3x = 4 \cos^3 x - 3 \cos x. 27.39. a) x = \pi\pi;$$

$$6) x = \frac{\pi}{2} + \pi n. 27.40. a) 0.296; 6) \pm \frac{7\sqrt{15}}{32}; a) 0.296; r) -\frac{79}{31}. 27.41. a) -\frac{3}{4};$$

$$6) -\frac{\sqrt{2}}{4}. 27.44. a) \frac{24}{25}, -\frac{7}{25}, -\frac{24}{27}, -\frac{7}{24}; 6) -\frac{24}{25}, \frac{7}{7}, -\frac{7}{24}; a) -\frac{120}{169},$$

$$\frac{119}{169}, -\frac{120}{119}, -\frac{119}{120}; r) \frac{120}{169}, \frac{119}{169}, \frac{120}{119}, \frac{119}{120}. 27.45. a) \frac{\sqrt{5}}{5}, \frac{\sqrt{5}}{5}, \frac{1}{2};$$

$$6) -\frac{\sqrt{10}}{10}, \frac{3\sqrt{10}}{10}, -\frac{1}{3}; a) -\frac{\sqrt{26}}{26}, \frac{5\sqrt{26}}{26}, -\frac{1}{5}; r) \frac{\sqrt{26}}{26}, \frac{5\sqrt{26}}{26}, \frac{1}{5}.$$

$$27.48. a) 0, \pi, 2\pi; 6) \frac{\pi}{2}, \frac{3\pi}{2}; a) 0, \pi, 2\pi; r) \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{1\pi}{6}. 27.49. a) -\frac{\pi}{2} +$$

$$27.50. a) -120°; 6) -240°. 27.51. a) \pi n, arctg 3 + \pi n; 6) \frac{\pi n}{2}, \frac{\pi}{4} + \pi n.$$

$$27.50. a) -120°; 6) -240°. 27.51. a) \pi n, arctg 3 + \pi n; 6) \frac{\pi n}{2}, \frac{\pi}{4} + \pi n.$$

$$27.50. a) -120°; 6) -240°. 27.53. a) 2; 6) 3. 27.54. a) 2\pi n, \pi + 4\pi n; 6) 2\pi n;$$

$$b) \pi + 2\pi n, 4\pi n; r) 2\pi n, \frac{\pi}{2} + 2\pi n. 27.55. a) \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{6}; \frac{\pi}{6};$$

$$b) \frac{\pi}{2} - \frac{\pi}{12}, \frac{\pi}{4}, \frac{\pi}{12}; r) -\frac{$$

$$\pm \frac{5\pi}{6}, \pm \frac{7\pi}{6}. \quad 27.57. \quad \text{a)} \quad 2\pi n, \quad \frac{\pi}{2} + 2\pi n; \quad \text{b)} \quad \frac{\pi}{4} + (-1)^n \arcsin \frac{\sqrt{2}}{4} + \pi n.$$

$$27.59. \quad \text{a)} \quad 2 \arctan \frac{1}{2} + 2\pi n; \quad -2 \arctan \frac{1}{3} + 2\pi n; \quad \text{b)} \quad 2 \arctan 2 + 2\pi n; \quad -2 \arctan \frac{3}{4} + 2\pi n.$$

$$27.60. \quad \text{a)} \quad \frac{1}{3}; \quad \text{b)} \quad -3. \quad 27.61. \quad \text{a)} \quad -\frac{\pi}{9} + \frac{\pi n}{3} < x < \frac{\pi}{9} + \frac{\pi n}{3}; \quad \text{b)} \quad -\frac{4\pi}{3} + 4\pi n < x < \frac{\pi}{3} + 4\pi n.$$

$$27.62. \quad \text{a)} \quad \frac{5\pi}{24} + \frac{\pi n}{2} < x < \frac{13\pi}{24} + \frac{\pi n}{2}; \quad \text{b)} \quad -\frac{2\pi}{3} + 4\pi n < x < \frac{2\pi}{3} + 4\pi n.$$

$$27.63. \quad \text{a)} \quad \frac{\pi}{4} + \frac{\pi n}{2}; \quad \text{b)} \quad \frac{\pi}{20} + \frac{\pi n}{5}; \quad \text{b)} \quad \frac{\pi n}{3}; \quad \text{r)} \quad -\frac{3\pi}{8} + \frac{3\pi n}{2}. \quad 27.64. \quad \text{a)} \quad 2; \quad -1;$$

$$\text{b)} \quad 3; \quad -1. \quad 27.65. \quad \text{a)} \quad 4\frac{1}{8}; \quad 1; \quad \text{b)} \quad 2; \quad -4. \quad 27.66. \quad \text{a)} \quad 2\frac{1}{8}; \quad -4; \quad \text{b)} \quad 4; \quad -2\frac{1}{8}.$$

$$28.7. \ a) \ 2 \sin \left(\frac{t}{2} - \frac{\pi}{6}\right) \cdot \sin \left(\frac{t}{2} + \frac{\pi}{6}\right); \ 6) \ 2 \sin \left(\frac{t}{2} + \frac{\pi}{6}\right) \cdot \cos \left(\frac{t}{2} - \frac{\pi}{6}\right);$$
 
$$ext{B} \ 4 \cos \left(\frac{t}{2} - \frac{\pi}{6}\right) \cdot \cos \left(\frac{t}{2} + \frac{\pi}{6}\right); \ r) \ \sqrt{2} \sin \left(t + \frac{\pi}{4}\right) \ 28.8. \ a) \ 4 \sin 6x \cos^2 \frac{x}{2};$$
 
$$6) \ 4 \cos x \cos^2 \frac{3x}{2} \cdot 28.9. \ a) \ 4 \cos t \cos \frac{t}{2} \sin \frac{5t}{2}; \ 6) \ -4 \sin t \sin 2t \cos 5t.$$
 
$$28.14. \ a) \ -1; \ 6) \ -1; \ b) \ -\sqrt{3}; \ r) \ -1. \ 28.15. \ a) \ 5; \ 6) \ -\frac{3}{4} \cdot 28.16. \ a) \ 1,5; \ 6) \ 0,5.$$
 
$$28.17. \ a) \ \frac{1}{2}; \ 6) \ 4. \ 28.23. \ a) \ \frac{a}{b}; \ 6) \ -\frac{a}{b} \cdot 28.26. \ a) \ \frac{\pi}{2} + \pi n, \ \frac{\pi}{4} + \frac{\pi n}{2};$$
 
$$6) \ \frac{\pi n}{8}; \ b) \ \frac{\pi n}{2}, \ \frac{\pi n}{3}; \ r) \ \frac{\pi n}{7}, \ \frac{\pi}{20} + \frac{\pi n}{10}. \ 28.27. \ a) \ \frac{\pi n}{2}, \ \pm \frac{2\pi}{3} + 2\pi n;$$
 
$$6) \ \frac{\pi n}{4}, \ (-1)^n \ \frac{\pi}{6} + \pi n. \ 28.28. \ a) \ \frac{\pi}{10} + \frac{2\pi n}{5}; \ 6) \ \frac{\pi}{2} + \frac{2\pi n}{3}; \ b) \ \frac{\pi}{40} + \frac{\pi n}{10};$$
 
$$\frac{\pi}{20} + \frac{\pi n}{5}; \ r) \ \frac{\pi}{6} + \frac{2\pi n}{3}. \ 28.29. \ a) \ \frac{\pi}{16} + \frac{\pi n}{8}, \ \frac{\pi}{4} + \frac{\pi n}{2}; \ 6) \ \frac{\pi}{6}; \ b) \ \frac{\pi}{8} + \frac{\pi n}{4},$$
 
$$\frac{\pi}{6} + \frac{\pi n}{3}; \ r) \ \frac{\pi}{4} + \frac{\pi n}{2}, \ \frac{\pi}{8} + \frac{\pi n}{4}. \ 28.30. \ a) \ \frac{2\pi n}{7}, \ \frac{2\pi n}{3}; \ 6) \ \frac{\pi}{14} + \frac{\pi n}{7}.$$
 
$$28.31. \ a) \ \frac{\pi n}{6}, \ n \ne 3 + 6k; \ 6) \ \frac{\pi}{8} + \frac{\pi n}{4}; \ b) \ \frac{\pi n}{2}; \ r) \ \frac{\pi}{2} + \pi n, \ \pi + 2\pi n.$$
 
$$28.32. \ a) \ \frac{\pi}{2} + \pi n, \ -\frac{\pi}{8} + \frac{\pi n}{2}; \ 6) \ \frac{\pi}{4} + \frac{\pi n}{2}; \ (-1)^n \ \frac{\pi}{18} + \frac{\pi n}{3}. \ 28.33. \ a) \ 3; \ 6) \ 2.$$
 
$$28.34. \ a) \ \frac{\pi}{2}, \ \frac{\pi}{9}, \ \frac{\pi}{4}. \ 28.35. \ a) \ \frac{\pi}{4} + \frac{\pi n}{2}.$$
 
$$28.36. \ a) \ -\frac{5\pi}{4} + 2\pi n < x < \frac{\pi}{4} + 2\pi n;$$
 
$$6) \ -\frac{\pi}{3} + \pi n < x < \frac{\pi}{3} + \pi n.$$

$$29.4. \ a) \ \frac{1}{4} (\sin 24^{\circ} - \sin 4^{\circ} + \sin 12^{\circ} + \sin 8^{\circ}); \ 6) \cos 35^{\circ} - \cos 45^{\circ} + \cos 5^{\circ} - \cos 15^{\circ}. \ 29.5. \ a) \ \frac{1}{4} (\sin (x + y - z) + \sin (x + z - y) + \sin (y + z - x) - \sin (x + y + z)); \ 6) \ \frac{1}{4} (\cos (x + y - z) + \cos (x + z - y) + \cos (y + z - x) + \cos (x + y + z)). \ 29.6. \ a) \ \frac{1}{4} (2 \cos 4x - \cos 2x - \cos 6x); \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.12. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \cos 4x - \cos 2x - \cos 6x); \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.12. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \cos 4x - \cos 2x - \cos 6x); \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.12. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \cos 4x - \cos 2x - \cos 6x); \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.12. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \cos 4x - \cos 2x - \cos 6x); \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.12. \ a) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.13. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.13. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.13. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin x). \ 29.13. \ a) \ 1; \ 6) \ \frac{1}{4} (2 \cos 4x - \cos 2x - \cos 6x); \ 6) \ \frac{1}{4} (2 \sin 3x + x) + \sin 7x - \sin 7x -$$

6) 
$$\begin{cases} x = \pm \frac{\pi}{3} + \pi n, \\ y = \pi k. \end{cases}$$
 29.27. a)  $y_{\text{man6}} = \frac{3}{4}$ ,  $y_{\text{manm}} = -\frac{1}{4}$ ; 6)  $y_{\text{man6}} = \frac{1}{4}$ ,  $y_{\text{mank}} = -\frac{3}{4}$ .

30.4. a) 
$$3\sqrt{3}\sin\left(t+\frac{\pi}{4}+\phi\right)$$
, rate  $\phi=\arcsin\frac{5\sqrt{3}}{9}$ ; 6)  $6\sin\left(t-\frac{\pi}{4}+\phi\right)$ , rate  $\phi=\arcsin\frac{\sqrt{34}}{6}$ . 30.5. a) -1; 6) -2; b) 1; r) 1. 30.6. a) -2; 2; 6) -2; 2; b)  $-\sqrt{2}$ ,  $\sqrt{2}$ ; r)  $-2\sqrt{2}$ ,  $2\sqrt{2}$ . 30.7. a) [-5; 5]; 6) [-13; 13]; b) [-25; 25]; r) [-17; 17]. 30.8. a) Het; 6) Het; b) a; r) Het. 30.10. a)  $-\sqrt{5}$  - 1,  $\sqrt{5}$  - 1; 6) 4; 30; b) -10; 0; r) 15; 40. 30.11. a) -4; 4; 6) -3; 3. 30.12. a) 7; 6) -42. 30.13. a) 16; 6) 11,5. 30.14. a) -23; 6) 15. 30.15. a)  $2\pi k$ ,  $\frac{2\pi}{3}$  +  $2\pi k$ ;

6) 
$$\frac{\pi}{4} + 2\pi k$$
; B)  $\frac{2\pi}{3} + 2\pi k$ ,  $\pi + 2\pi k$ ; r)  $\frac{\pi}{2} + 2\pi k$ ,  $\pi + 2\pi k$ . 30.16. a)  $(-1)^k \frac{\pi}{8} - \frac{\pi}{12} + \frac{\pi k}{2}$ ; 6)  $(-1)^k \frac{\pi}{15} + \frac{\pi}{20} + \frac{\pi k}{5}$ ; B)  $\frac{2\pi}{3} + 4\pi k$ ,  $-2\pi + 4\pi k$ ; r)  $6\pi k$ ,  $\frac{3\pi}{2} + 6\pi k$ . 30.17. a)  $\frac{\pi}{2} + \arccos \frac{4}{5} + 2\pi k$ ; 6)  $(-1)^k \frac{\pi}{12} - \frac{1}{2} \arccos \frac{3}{5} + \frac{\pi k}{2}$ ; B)  $\pi + \arccos \frac{5}{13} + 2\pi k$ ; r)  $\pm \frac{2\pi}{3} - 2 \arccos \frac{5}{13} + 4\pi k$ . 30.18. a)  $-\frac{\pi}{4} + 2\pi k$ ,  $\frac{\pi}{4} + \frac{2\pi k}{5}$ ; 6)  $\frac{\pi}{6} + \frac{\pi k}{2}$ ,  $\frac{2\pi}{3} + \pi k$ ; B)  $\frac{\pi}{16} + \frac{\pi k}{2}$ ,  $\frac{\pi}{24} + \frac{\pi k}{3}$ ; r)  $\frac{\pi}{6} + \pi k$ ,  $\frac{\pi}{9} + \frac{\pi k}{3}$ . 30.19. a)  $-\frac{\pi}{66} + \frac{\pi k}{11}$ ,  $\frac{\pi}{9} + \frac{\pi k}{6}$ ; 6)  $\frac{1}{4} \arccos \frac{5}{13} + \frac{\pi k}{2}$ ,  $\frac{\pi}{2} - \frac{1}{2} \arccos \frac{5}{13} + \pi k$ . 30.20. a)  $\frac{7\pi}{6} + 2\pi k$ ; 6)  $2\pi k$ ,  $-\frac{2\pi}{3} + 2\pi k$ . 30.21. a)  $\frac{5\pi}{6}$ ; 6)  $\frac{\pi}{4}$ . 30.22. a)  $2\pi k < x < \frac{2\pi}{3} + 2\pi k$ ; 6)  $\arcsin \frac{4}{5} - \frac{7\pi}{6} + 2\pi k < x < \arcsin \frac{4}{5} + \frac{\pi}{6} + 2\pi k$ . 30.23. a)  $a > 7$ ;  $a < -6$ ; 6)  $a > \sqrt{6}$ ;  $a < -\sqrt{6}$ . 30.26. a)  $a > \frac{1}{2}$ ;  $a < -\frac{1}{2}$ ; 6)  $a \le 2$ .

6 31

31.1. a) 
$$-\frac{1}{2} + \frac{\pi}{4} + \pi n$$
; 6)  $\frac{\pi}{4} - 2 + \pi n$ ,  $\frac{\pi}{8} - \frac{1}{2} + \frac{\pi n}{2}$ . 31.2. a)  $\frac{\pi}{10} (1 + 2n)$ ; 6)  $\frac{\pi n}{5}$ . 31.3. a)  $\frac{\pi}{2} + \pi n$ ;  $\pm \frac{\pi}{3} + 2\pi n$ . 31.4. a)  $\frac{\pi}{7} + \frac{2\pi}{7} n$ ,  $\frac{\pi}{13} + \frac{2\pi}{13} n$ ; 6)  $\frac{\pi}{4} + \frac{\pi n}{2}$ ,  $(-1)^n \frac{\pi}{18} + \frac{\pi n}{3}$ . 31.5. a)  $-\arctan \frac{4}{3} + \pi n$ ; 6)  $-\arctan \frac{2}{5} + \pi n$ . 31.6. a)  $\frac{\pi}{8} (1 + 2n)$ ,  $\pm \frac{\pi}{3} + \pi n$ ; 6)  $\frac{\pi}{16} + \frac{\pi n}{8}$ ;  $\pm \frac{\pi}{6} + \frac{\pi n}{2}$ . 31.7. a)  $\frac{\pi}{6} (1 + 2n)$ ,  $\frac{\pi}{3} + \frac{2\pi n}{3}$ ; 6)  $\frac{\pi}{4} (1 + 2n)$ ;  $\frac{\pi}{10} (1 + 2n)$ . 31.8. 45° + 180°n. 31.9.  $\frac{\pi}{4} + \frac{\pi n}{2}$ . 31.10. a)  $\pi n$ ;  $\pm \frac{1}{2} \arccos(-0,7) + \pi n$ ; 6)  $\frac{\pi}{2} + \pi n$ ;  $\pm \frac{1}{2} \arccos(\frac{5}{7} + \pi n)$ . 31.11. a)  $\arctan \frac{5}{8} + 2\pi n$ ; 6)  $\arctan \frac{5}{8} + 2\pi n$ ; 7)  $\arctan \frac{5}{8} + 2\pi n$ ; 8)  $\arctan \frac{5}{8} + 2\pi n$ ; 9)  $\arctan \frac{5}{8} + 2\pi n$ ; 9)  $\arctan \frac{5}{8} + 2\pi n$ ; 10)  $\arctan \frac{5}{8} + 2\pi n$ ; 11)  $\arctan \frac{5}{8} + 2\pi n$ ; 11)  $\arctan \frac{5}{8} + 2\pi n$ ; 12)  $\arctan \frac{5}{8} + 2\pi n$ ; 13)  $\arctan \frac{5}{8} + 2\pi n$ ; 13)  $\arctan \frac{5}{8} + 2\pi n$ ; 14)  $\arctan \frac{5}{8} + 2\pi n$ ; 15)  $\arctan \frac{5}{8} + 2\pi n$ ; 16)  $\arctan \frac{5}{8} + 2\pi n$ ; 17)  $\arctan \frac{5}{8} + 2\pi n$ ; 17)  $\arctan \frac{5}{8} + 2\pi n$ ; 18)  $\arctan \frac{5}{8} + 2\pi n$ ; 18)  $\arctan \frac{5}{8} + 2\pi n$ 

$$31.13. \varnothing. \ 31.14. \ a) \pm \frac{1}{2} \ \arccos \left(-\frac{3}{4}\right) + \pi n, \pm \frac{\pi}{3} + \pi n; \ b) \pm \frac{\pi}{6} + \pi n, \pm \frac{1}{2} \ \arccos \left(\frac{1}{4} + \pi n, 31.15. \ a) \frac{\pi}{4} + \frac{\pi}{2}n; -\frac{\pi}{2} + 2\pi n, 31.16. \ a) \frac{\pi}{4} + \pi n, \ (-1)^{*} \frac{1}{2} \ \arcsin \frac{\sqrt{5} - 1}{2} + \frac{\pi}{2}n, \ 31.17. \ a) \ \pi + 2\pi n, \ 2 \ \arctan \frac{3}{2} + 2\pi n, \ 31.18. \ a) \ \arctan \frac{3 \pm \sqrt{6}}{3} + \pi n; \ b) \frac{\pi}{2}n, \ \frac{1}{2} \ \arctan \frac{3 \pm \sqrt{6}}{3} + \pi n; \ a) \ \frac{\pi}{2}n, \ \frac{1}{2} \ \arctan \frac{2}{2} + \frac{\pi}{2}n, \ 31.19. \ \frac{\pi}{4} + \pi n, \ 31.20. \ a) \ 2\pi n, \ -\frac{\pi}{2} + 2\pi n, \ 31.21. \ a) \ \frac{\pi}{2} + 2\pi n, \ \pi + 2\pi n; \ b) \ \frac{\pi}{4} \pm \arccos \frac{\sqrt{2}}{10} + 2\pi n, \ 31.22. \ -\frac{\pi}{4} + \pi n, \ 31.22. \ -\frac{\pi}{4} + \pi n, \ \frac{\pi}{4} \pm \arccos \frac{\sqrt{2} - \sqrt{10}}{4} + 2\pi n, \ 31.23. \ a) \ 3\pi n, \ \pm \frac{\pi}{4} + \frac{3\pi}{2}n; \ b) \ \frac{\pi}{2} + \pi n; \ \pm \frac{1}{2} \ \arccos \left(-\frac{1}{4}\right) + \pi n, \ 31.24. \ a) \ \frac{\pi}{72} + \frac{\pi n}{9}, \ -\frac{\pi}{32} + \frac{\pi n}{4}, \ 31.25. \ a) -1 - \arctan \cos \frac{3}{5} + 2\pi n; \ b) \ 1,5 + \frac{1}{2} \ \arccos \frac{8}{17} \pm \frac{\pi}{6} + \pi n, \ 31.26. \ a) -\frac{\varphi}{6} - \frac{\pi}{36} + \frac{\pi}{3}n, \ 31.29. \ -\frac{\pi}{12}, \ \frac{\pi}{12}, \ \frac{5\pi}{12}, \ 31.30. \ \varnothing. \ 31.31. \ \varnothing. \ 31.32. \ \frac{\pi}{2} + \pi n, \ \arctan \frac{2 \pm \sqrt{7}}{3} + \pi n. \ 31.33. \ a) \ \frac{\pi}{2} + 2\pi n, \ rge \ n = \pm 1, \ \pm 2, \ \pm 3, \dots; \ b) \ \frac{\pi}{2} + 2\pi n, \ rge \ n = \pm 1, \ \pm 2, \ \pm 3, \dots; \ b) \ \frac{\pi}{2} + 2\pi n, \ rge \ n = \pm 1, \ \pm 2, \ \pm 3, \dots; \ b) \ \frac{\pi}{3} + \frac{\pi n}{3}, \ 31.34. \ a) \ \frac{\pi}{12} \ \arcsin \frac{\pi}{16}, \ 31.35. \ a) \pm \frac{1}{2} \ \arccos \frac{1}{3} + \pi n, \ \pm \frac{1}{2} \ \arccos \left(-\frac{1}{4}\right) + \pi n, \ 31.36. \ \frac{\pi}{2} + 2\pi n, \ 31.34. \ a) \ \frac{\pi}{6} + \pi n, \ 31.38. \ \pi n, \ 31.39. \ \frac{\pi}{4} + 2\pi n, \ 31.40. \ \pm \frac{\pi}{2}; \ \pm 3, \ 31.41. \ a) \ 0, \ \pm 1, \ \pm 2, \ \pm \frac{5}{2}; \ b) \ \pm 1, \ \pm 3, \ \pm \frac{7}{2}. \ 31.42. \ a) -1, \ 5, \ \pi, \ \frac{2\pi}{3}, \ \frac{4\pi}{3}; \ b) -2, \ 0, \ 1, \ -\frac{\pi}{3}. \ 31.43. \ 2\pi n, \ -\frac{\pi}{4} + \pi n, \ 31.44. \ a) \ (-1)^{n} \ \frac{\pi}{18} + \pi n, \ (-1)^{n} \ \frac{7\pi}{18} + \pi n, \ (-1)^{n} \ \frac{7\pi}{18} + \pi n, \ (-1)^{n} \ \frac{7\pi}{18} + \pi n, \ \pi, \pi; \ b) \ \frac{\sqrt{59}}{3}. \ 31.46. \ a) \ 2 \pm \sqrt{3}. \ 31.47. \ a) \ 2\pi n, \ -\arctan (1)^{n} \ \frac{\sqrt{59}}{3}. \ 31.48. \ a) \ \pm \sqrt{31.49}. \ a)$$

**32.6.** a) i; b) -32i; b) 2; r) 0. 32.8. a) -2i; b)  $\sqrt{2}i$ ; b) 18i; r) 0. 32.9. a) i1, -i, -1, i, 1, -i; 6) -i; B) 1; r) 0. 32.11. a)  $z_1 + z_2 = 2 - i$ ,  $z_1 - z_2 = 3i$ ; 6)  $z_1 + z_2 = -1 + 3i$ ,  $z_1 - z_2 = 5 - i$ ; B)  $z_1 + z_2 = 15$ ,  $z_1 - z_2 = -15 - 2i$ ; r)  $z_1 + z_2 = -34 - 14i$ ,  $z_1 - z_2 = -2 + 16i$ . 32.12. a) (4 - n) + (n - 3)i. 6) -11 + 12t; B) -130 + 150t; r) -651 + 682t. 32.14. a) 0.5; 6) 0.1; B) -0.1; г) таких a не существует. 32.15. a) 1+3i; б) 1-14i; в) 1-5i; г) 34-21i. **32.16.** a) -2; 6) 0; b) 0,125; r) таких a не существует. **32.17.** a) 1; 6)  $\frac{13}{6}$ ; B) 1,5; r)  $\frac{1}{12}$ . 32.18. a) a = 3, b = 2; 6) a = 3, b = 2; B) a = 4, b = -1; r) a = 2, b=1. 32.23. a) 2; 6) 16i; b) Ha 1-M, 5-M, 9-M, ... Mectax; r) Ha 3-M, 7-M. 11-м, ... местах. 32.24. a) -i; б) -1 - i; в) -i; г) i. 32.25. a) -2; б) 0; в) -2i; r) 0. 32.26. a)  $\frac{-20+28i}{65}$ ; 6) 0,6. 32.27. a) -1 - i; 6) -i; B) 0,5 + 0,5i; r) i - 1. 32.28. a) a = -0.25, b = 0; 6) a = -1, b = 0; B) a = 0.2, b = -0.48; r) a = 0.56, b = -0.24. 32.29. a) 1 + 2i; 6) 1; B) 3i; r) 2 + 2i. 32.30. 6) -44. **32.31.** a) 0; б) 1;  $-\frac{4}{5}$ : **32.32.** a)  $\overline{z} = -i$ ;  $z\overline{z} = 1$ ;  $\overline{z}$ ; z = -1; б)  $\overline{z} = i$ ;  $z\overline{z} = 1$ ;  $\overline{z}: z = -1; \ \mathbf{B}) \ \overline{z} = 3 + 7i; \ z\overline{z} = 58; \ \overline{z}: z = \frac{-20 + 21i}{29}; \ \mathbf{r}) \ \overline{z} = -5 + 6i; \ z\overline{z} = 61;$  $\overline{z}: z = \frac{-11-60i}{61}$ . 32.33. a) z = -2i;  $z\overline{z} = 4$ ;  $z: \overline{z} = -1$ ; 6) z = 3i;  $z\overline{z} = 9$ ;  $z:\overline{z}=-1; \ {}_{\mathbf{B}}) \ z=1+i; \ z\overline{z}=2; \ z:\overline{z}=i; \ {}_{\mathbf{C}}) \ z=-1-3i; \ z\overline{z}=10; \ z:\overline{z}=10; \$ = -0,8 + 0,6*i*. 32.34. a)  $\frac{5-3i}{17}$ ; 6)  $\frac{16-30i}{289}$ ; B)  $\frac{5+3i}{17}$ ; r)  $\frac{2+8i}{17}$ . **32.35.** a)  $\frac{17+7i}{13}$ ; 6)  $\frac{-55+37i}{13}$ ; B)  $\frac{1+5i}{2}$ ; r)  $-\frac{1-15i}{4}$ . **32.36.** a)  $z_1 = i$ ;  $z_2 = 3;$  6)  $z_1 = 1;$   $z_2 = 2i;$  b)  $z_1 = 1 + i;$   $z_2 = 3 + 2i;$  r)  $z_1 = 2 - i;$   $z_2 = 2 + 3i.$  32.37. a) 2; -2; 6)  $\sqrt{5} + i;$   $-\sqrt{5} + i;$  b) таких корней нет; г)  $\frac{3+i}{\sqrt{2}}$ . 32.38. a) -2;

6) -1 - i; B) 0; r)  $\frac{1 - \sqrt{2} + i}{\sqrt{2}}$ .

§ 33 33.8. б) 45°; в) 3·3 = 9; г)  $z^3$  и  $z^7$ . 33.15. б) 0,6; г) -0,5. 33.16. б)  $\frac{5}{3}$ ; г) -2. 33.17. б) y = 0.5(9-x); в) -5 + 7i; г) -7 + 8i. 33.18. б)  $y = x^2 - 3x + 2$ ; в) 15; г) 13. 33.19. б)  $y = \frac{3}{x-1}$ ; в)  $z_5 = 7 + 0.5i$ ; г)  $z_2 = 3 + 1.5i$ . 33.20. а)  $\pm 1$ ; б) нет решений; в) 1; г) -1. 33.21. а)  $\pm i$ ; б) нет решений; в) i; г) -i.

33.22. а) 0; б) 0; в) 0; г) любое действительное или чисто мнимное число. 33.23. а) 2-0.5i; б) 7-i; в) 3+7i; г) 5-2i.

## § 34

**34.3.** a) 
$$|z_1| = 13$$
,  $|z_2| = 5$ ; 6)  $z_1 z_2 = 56 + 33i$ ,  $|z_1 z_2| = 65$ ; b)  $\frac{1}{z_1} = \frac{12 + 5i}{169}$ ;

r) 
$$\frac{z_1}{z_2} = \frac{16 - 63i}{25}$$
 · 34.5. a) 6; 6)  $2\sqrt{5}$ ; b) 7; r)  $5\sqrt{2}$ . 34.8. a) 1; 6) 2; b) 3; r) 4.

**34.9.** a) 1; 6) 3; B) 3; P) 4. **34.11.** a) 
$$z = \cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)$$
; 6)  $z = \cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{\pi}{4}\right)$ 

+ 
$$i \sin \left(-\frac{2\pi}{3}\right)$$
; B)  $z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$ ; r)  $z = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}$ . 34.12. a);

6) 
$$z = \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)$$
; B)  $z = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}$ ; r)  $z = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$ .

34.13. a) 
$$z = \cos(-0.8\pi) + i\sin(-0.8\pi)$$
; b)  $z = \cos(-0.8\pi) + i\sin(-0.3\pi)$ ;

B) 
$$z = \cos \pi + i \sin \pi$$
; r)  $z = \cos \left(-\frac{2\pi}{3}\right) + i \sin \left(-\frac{2\pi}{3}\right)$ , 34.15. a)  $-\frac{\pi}{4}$ ; 6)  $-\frac{\pi}{3}$ ;

B) 
$$\frac{3\pi}{4}$$
; r)  $-\frac{\pi}{2}$ . 34.21. a) 5 (cos 0 + *i* sin 0); 6) 3  $\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$ ;

B) 
$$8(\cos \pi + i \sin \pi)$$
; r)  $0.5\left(\cos\left(-\frac{\pi}{2}\right) + i \sin\left(-\frac{\pi}{2}\right)\right)$ .

**34.22.** a) 
$$4\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$$
; 6)  $\sqrt{2} \left(\cos \left(-\frac{\pi}{4}\right) + i \sin \left(-\frac{\pi}{4}\right)\right)$ ;

B) 
$$2\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$$
; r)  $2\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right)+i\sin\left(-\frac{3\pi}{4}\right)\right)$ .

34.23. a) 
$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
; 6)  $2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$ ;

B) 
$$6\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$
; P)  $4\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right)$ 

**34.24.** a) 
$$8\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$
; 6)  $2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ ;

B) 
$$4\left(\cos\left(-\frac{2\pi}{3}\right)+i\sin\left(-\frac{2\pi}{3}\right)\right)$$
; r)  $\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)$ .

34.25. a) 
$$5(\cos(-\arccos 0.6) + i\sin(-\arccos 0.6))$$
;

6) 
$$13\left(\cos\left(\arccos\left(-\frac{5}{13}\right)\right) + i\sin\left(\arccos\left(-\frac{5}{13}\right)\right)\right)$$
;

B)  $10 (\cos (\arccos 0.6) + i \sin (\arccos 0.6));$ 

r) 
$$17\left(\cos\left(-\arccos\left(\frac{15}{17}\right)\right) + i\sin\left(-\arccos\left(\frac{15}{17}\right)\right)\right)$$
.

34.26. a)  $\cos{(-55^\circ)} + i \sin{(-55^\circ)};$  6)  $\cos{113^\circ} + i \sin{113^\circ};$  B)  $\cos{130^\circ} + i \sin{130^\circ};$  r)  $\cos{110^\circ} + i \sin{110^\circ}.$  34.27. a)  $2 \sin{50^\circ}(\cos{40^\circ} + i \sin{40^\circ});$  6)  $2 \sin{\frac{2\pi}{7}} \left(\cos{\frac{2\pi}{7}} + i \sin{\frac{2\pi}{7}}\right);$  B)  $2 \sin{\frac{3\pi}{11}} \left(\cos{\frac{3\pi}{11}} + i \sin{\frac{3\pi}{11}}\right);$ 

r)  $2 \sin 125^{\circ} (\cos (-35^{\circ}) + i \sin (-35^{\circ}))$ . 34.28. a)  $2.5(-\sqrt{3} + i)$ ; 6)  $0.5(1 + i\sqrt{3})$ ;

B) 
$$2.5(-1+i\sqrt{3})$$
; r)  $\frac{\sqrt{2}}{2}(-1+i)$ . 34.29. a)  $2i$ ; 6)  $-5i\sqrt{2}$ ; B)  $3(\sqrt{3}+i)$ ;

r) 
$$t\sqrt{3}$$
. 34.30. a)  $-\sqrt{3} + i$ ; 6)  $-5i$ ; B) 40 $i$ ; r)  $\sqrt{3} + i$ . 34.33. a)  $\pi$ ; 6)  $-\frac{3\pi}{4}$ ;

B) 
$$\frac{\pi}{2}$$
; r)  $-\frac{\pi}{2}$ . 34.34. a)  $-\frac{\pi}{2}$ ; 6)  $\frac{\pi}{2}$ ; B)  $-\frac{\pi}{4}$ ; r)  $\pi$ . 34.35. a)  $-\frac{5\pi}{6}$ ; 6)  $-\frac{\pi}{2}$ ; B)  $\frac{\pi}{2}$ ;

r) 0. 34.36. a) 
$$-\frac{\pi}{2}$$
; 6)  $\pi$ ; B)  $\frac{5\pi}{6}$ ; r)  $\frac{5\pi}{6}$ . 34.40. a) 3; 6) 5; B) 8; r) 10.

34.41. а)  $1 + \frac{1}{\sqrt{3}}i$ ; б)  $1 + i\sqrt{3}$ . 34.42. а) Круг радиуса 1 с центром в 3 + 4i, |z| = 6 — наибольшее значение; б) круг радиуса 1 с центром в 4 - 3i, |z| = 4 — наименьшее значение.

**35.1.** a) 4; 6) a < 4; B) a > 4; P) a < 0. **35.2.** a)  $|a| \ge 6$ ; 6) -6 < a < 6;

### § 35

в) a>6; г) -10<a<-6.35.3. а) a=1 или a=0; б) a<0; в) a<0; г)  $a=-16-8\sqrt{5}$ . 35.4. а)  $\pm 12i$ ; б)  $\pm 2i$ ; в)  $\pm 21i$ ; г)  $\pm 32i$ . 35.5. а)  $z^2+1=0$ ; б)  $z^2-14z+53=0$ ; в)  $z^2+49=0$ ; г)  $z^2-2z+2=0$ . 35.6. а)  $z^2+4=0$ ; б)  $z^2-2z+10=0$ ; в)  $64z^2+1=0$ ; г)  $z^2+648^2=0$ . 35.8. а)  $0.5\pm 1.5i$ ; б)  $-1.5\pm 2.5i$ ; в)  $2.5\pm 0.5i$ ; г)  $-5.5\pm 2.5i$ . 35.9. а) 2; б) 10; в)  $\pm 4$ ; г) -7; 3. 35.10. а) a=-4; б) a=4; в)  $a=\pm 3$ ; г) a=-4 или a=2. 35.11. а)  $\pm 2$ ; б)  $\pm 2i$ ; в)  $\pm \frac{3\sqrt{2}}{2}(1+i)$ ; г)  $\pm \frac{5\sqrt{2}}{2}(1-i)$ . 35.12. а)  $\pm (2-i)$ ; б)  $\pm (2+i)$ ; в)  $\pm \frac{3-i}{\sqrt{2}}$ ; г)  $\pm \frac{5+i}{\sqrt{2}}$ . 35.13. а)  $\pm (4+i)$ ; б)  $\pm (4-i)$ ; в)  $\pm \frac{7-i}{\sqrt{2}}$ ; г)  $\pm \frac{9+i}{\sqrt{2}}$ . 35.17. а)  $z^2-3z+4$  (3 + i) = 0; б)  $z^2+(i-5)z+(8-i)=0$ ; в)  $z^2-8z+4$  (11 + 12i) = 0; г)  $z^2+(i-9)z+(40-9i)=0$ . 35.18. а)  $z_1=0$ ,  $z_2=2i$ ; б)  $z_1=0$ ,  $z_2=-4i$ ; в)  $z_1=2-i$ ,  $z_2=1+i$ ; г)  $z_1=7-2i$ ,  $z_2=1+2i$ . 35.19. a) 1+2i; б) 30i; в) 1+6i; г) -89+120i. 35.20. a) a=4i; б) a=-4.5i; в) a=-13-13i; г)  $a=\frac{40-21i}{13}$ .

36.2. a) Her; 6) Her; B)  $\mu$ a; F)  $\mu$ a, 36.3. a)  $\mu$ 5.  $\mu$ 7.  $\mu$ 8.  $\mu$ 9.  $\mu$ 9  $z^{10}$ ; B) z,  $z^2$ ; r)  $z^3$ ,  $z^4$ ,  $z^5$ ,  $z^8$ ,  $z^9$ ,  $z^{10}$ . 36.4. a)  $z^3$ ,  $z^4$ ; 5) z,  $z^2$ ,  $z^3$ ,  $z^4$ ,  $z^5$ ,  $z^6$ ,  $z^7$ ,  $z^6$ ; B) z,  $z^2$ ,  $z^{10}$ ; r)  $z^9$ ,  $z^{10}$ . 36.5. a)  $z^1$ ,  $z^2$ ,  $z^3$ ,  $z^4$ ,  $z^5$ ; 6) z,  $z^2$ ,  $z^9$ ,  $z^{10}$ ; B)  $z^2$ ,  $z^3$ ,  $z^4$ ,  $z^5$ ,  $z^6$ ,  $z^7$ ; r)  $z^5$ ,  $z^6$ ,  $z^7$ ,  $z^8$ ,  $z^9$ ,  $z^{10}$ , 36.6, a)  $z^3$ ,  $z^4$ ; 5) z,  $z^2$ ; B) z,  $z^2$ ,  $z^9$ ,  $z^{10}$ ; r)  $z^{10}$ . **36.8.** a) -4; 6) -8*i*; B) -32*i*; r) -1024. **36.9.** a) -8; 6)  $16(1-i\sqrt{3})$ ; B)  $-64(\sqrt{3}+i)$ ; r) -512i. 36.10. a) -i; 6)  $0.5(\sqrt{3}+i)$ ; B)  $-0.5(1+i\sqrt{3})$ ; r) 1. 36.11. a)  $-\frac{1}{4}$ ; 6)  $\frac{1}{8}i$ ; B)  $\frac{1}{32}i$ ; r)  $-\frac{1}{1024}$ . 36.12. a) -0,125; 6)  $2^{-6}(1+i\sqrt{3})$ ; B)  $2^{-8}(-\sqrt{3}+i)$ ; r)  $2^{-9}i$ . 36.13. a) 128; 6) -i; B)  $-32\sqrt{3}$ ; r) 1. 36.14. a) -64i; 6) t. 36.15. a) 3; 5) 8; B) 10; r) 10. 36.16. a) 17; 6) 34; B) 100; r) 200. 36.17. a) 6; 6) 11; B) 20; r) 0. 36.18. a) 101; 6) 200; B) 4; r) 0. 36.19. a) z4, z8,  $z^{12}$ ; 6)  $z^{7}$ ,  $z^{8}$ ,  $z^{9}$ ; B)  $z^{3}$ ,  $z^{4}$ ,  $z^{5}$ ,  $z^{11}$ ,  $z^{12}$ ; r)  $z^{9}$ ,  $z^{10}$ ,  $z^{11}$ , 36.20. a)  $4.2(-1+\sqrt{3}i)$ ,  $-2(1+i\sqrt{3})$ ; 6) 1,5(1+ $i\sqrt{3}$ ), -3, 1,5(1- $i\sqrt{3}$ ); B) 2,5( $\sqrt{3}+i$ ), 2,5( $-\sqrt{3}+i$ ). -5i; r)  $4(\sqrt{3}-i)$ ,  $-4(\sqrt{3}+i)$ , 8i. 36.23. a) -i,  $0.5(\pm\sqrt{3}+i)$ ,  $-2.1\pm i\sqrt{3}$ ;

6)  $\pm\sqrt{2}(1+t)$ ,  $\pm i\sqrt{2}$ . 36.24. a) -4; 1; 6) -9; 1. § 37 **37.12.** a) 1,5; 3; 4,5; 6; 7,5; 9;  $a_n = 1,5n$ ; 6) -1; 1; -1; 1; -1;  $a_n = (-1)^n$ ; B) 8; 4;  $2\frac{2}{3}$ ; 2; 1,6;  $a_n = \frac{8}{n}$ ; r) 1; -2; 3; -4; 5;  $a_n = (-1)^{n+1} n$ . 37.19. a) 7, 12, 17, 22, 27; 6) 102. 37.20. a) 1027; 6)  $3^5$ ,  $3^8$ ,  $3^{87}$ ,  $3^{2n}$ ,  $3^{2n+1}$ ,  $3^{2n-3}$ . 37.21. a)  $a_n = 4n - 2$ ;  $a_1 = 2$ ,  $a_n = a_{n-1} + 4$ ; 6)  $a_n = 13n + 5$ ;  $a_1 = 18$ ;  $a_n = a_{n-1} + 13$ ; B)  $a_n = 21n$ ;  $a_1 = 21$ ,  $a_n = a_{n-1} + 21$ ; F)  $a_n = 30n$ ;  $a_1 = 30$ ,  $a_n = a_{n-1} + 30$ , 37.22, a)  $a_n = -n$ ; 6)  $a_n = 6n$ ; B)  $a_n = 11 - n$ ; P)  $a_n = 4n$ . 37.23. a)  $3^n$ ; 6)  $(n+2)^2$ ; B)  $n^3$ ; r)  $n^3+1$ . 37.24. a)  $\frac{1}{2^{n-1}}$ ; 6)  $\frac{2n+1}{2n+2}$ ; B)  $\frac{1}{n^3}$ ; r)  $\frac{1}{(2n+1)(2n+3)}$ : 37.25. a)  $a_n = \frac{3^n}{2^{2n}}$ ; 6)  $a_n = \frac{2n-1}{(\sqrt{2})^n}$ ; B)  $a_n = \frac{(-1)^{n+1}n^2}{\sqrt{n(n+1)}}$ ; r)  $a_n = \frac{(-1)^{n+1}(5n-1)}{n(n+1)(n+2)}$  · 37.27. a) 2; 6) 5; B) 13; r) 45. 37.28. a)  $P_n = (\sqrt{2})^{n-1}$  4; 4;  $4\sqrt{2}$ ; 8;  $8\sqrt{2}$ ; 16; 6)  $S_n = (\sqrt{2})^{2n-2}$ ; 1; 2; 4; 8; 16; B) 32; r) 65 536. 37.29. a) 1; 6) 4. 37.30. a) 6; 6) 5. 37.31. 6) 11; B) 4. 37.32. a) 6; 6) 124; B) 6; r) 55. 37.33. a) -6; -4; 6)  $-22\frac{5}{8}$ ; -181; B) -1; r) Het. 37.34. a) 3; 6) 10; B) 4; r) 29. 37.35. a) -428; 6) -128. 37.36. a) 19; 6) 16. 37.37. a) 2; 6) 62;

B) 15; r) 1. 37.38. a) 17; 6) -81; B) 19; r) 1. 37.39. a)  $y_2 = -5$ ; 6)  $y_3 = -3$ ;

B)  $y_2 = -3$ ; r)  $y_1 = -\frac{4}{5}$ . 37.40. a)  $y_3 = 13$ ; 6)  $y_3 = 3$ ; B)  $y_1 = 5$ ; r)  $y_1 = \frac{4}{5}$ .

37.41. а) Нет; б) да; в) нет; г) да. 37.42. а) Да; б) да; в) да; г) да. 37.43. а) Да; б) нет; в) да; г) да. 37.44. а) Да; б) да; в) да; г) да. 37.45. а)  $p \le 1$ ; б) p — любое. 37.46. а)  $p \le -2$ ; б)  $-3 \le p \le 3$ . 37.47. а)  $p \le 0$ ; б)  $p \ge -1$ . 37.50. а) Убывает; б) не является монотонной; в) убывает; г) возрастает. 37.51. а) Убывает; б) возрастает; в) не является монотонной; г) убывает. 37.54. а) Возрастает; б) убывает; в) убывает; г) возрастает. 37.55. а) p > 0; б) p > 1; в) p < 0; г) p < -2. 37.56. а) p > 0; б) p < 0; в) p < 0; г) p < 0. 37.57. а) Ограничена, возрастает; б) неограничена, возрастает; в) ограничена, убывает; г) ограничена, убывает. 37.58. а) Возрастает, ограничена;

б) убывает, ограничена. 37.59. a)  $y_n = n^2$ ; б)  $y_n = n^2 + 5$ ; в)  $y_n = \frac{n^2}{n^2 - 5}$ ;

 $\mathbf{r)} \ y_n = -n.$ 

#### § 38

38.4. а) Да; б) нет; в) нет; г) да. 38.5. а) 6; б) 3; в) 15; г) 31. 38.6. а) 4; б) 7; в) 8; г) 5. 38.7. а) y=0; б) y=0; в) y=0; г) y=0. 38.8. а) y=-1; б) y=2; в) y=2; г) y=-3. 38.9. а) y=2; в) y=-3. 38.10. а) Нет; б) нет; в) нет; г) нет. 38.14. а) 0; б) 6; в) 0; г) -4. 38.15. а) 0; б) 0; в) 0; г) 0. 38.16. а) 5; б) 7; в) 3; г)  $\frac{2}{3}$ . 38.17. а) 2; б) 1; в) -1; г) -2. 38.18. а) 2; б) 12;

B) 6; r) -2. 38.19. a) 7; 6) 0; B) 1; r) 0. 38.20. a) 1; 6)  $\frac{1}{2}$ . 38.21. a)  $-\frac{1}{2}$ ; 6)  $\frac{1}{2}$ .

**38.27.** a)  $2\frac{2}{9}$ ; 6) -0,128; b) -0,022; r)  $3\frac{1}{9}$ . **38.28.** a) 12,5; 6)  $-8\frac{2}{3}$ ; b) 22,5;

r) 36. 38.29. a) 41  $\frac{2}{3}$ ; 6)  $\frac{2}{27}$ . 38.30. a)  $b_1 = 12$ ; q = 0.5; 6)  $\frac{1}{625}$ . 38.31. a)  $b_1 = 12$ ;

 $q = \frac{1}{3}$ ; 6)  $1\frac{1}{3}$ . 38.32. a) 4; 6)  $57\frac{1}{6}$ ; B) 0,9; r) 156,25. 38.33. a) -5,4;

6)  $\frac{3}{2}\sqrt{3}(\sqrt{3}+1)$ ; B)  $38\frac{1}{9}$ ; P)  $4\sqrt{2}(\sqrt{2}+1)$ . 38.34. a) 111; 6) 2500 $\frac{2}{7}$ ;

B) 396,25; r) 1717  $\frac{1}{9}$ . 38.35. a)  $\frac{\sin x}{1-\sin x}$ ; 6)  $\frac{\cos x}{1+\cos x}$ ; B)  $\cot g^2 x$ ; r)  $\frac{1}{1+\sin^3 x}$ .

**38.36.** a) 0,8; 6) 0,3. **38.37.** a)  $\frac{1}{3}$ ;  $\frac{2}{3}$ ; 6)  $\frac{1}{2}$ ;  $-\frac{7}{9}$ . **38.38.** a)  $(-1)^k \arcsin \frac{5}{6} + \pi k$ ,

 $k \in Z$ ; б) нет корней; в)  $\pm \frac{\pi}{6} + \pi k$ ,  $k \in Z$ ; г)  $\pm \frac{\pi}{3} + 2\pi k$ ,  $k \in Z$ .

§ 39

39.3. a) -10; 6) -12; b) 4; r) -54. 39.4. a) 0,2; 6) 0; b) 1,2; r) -1.

39.13. a) 0; 6) -2; B) 0; r) 6. 39.14. a) 1; 6) 1,5; B) 1; r)  $1\frac{1}{6}$  39.15. a) 0;

6) 0; B) 0; r) 0. 39.16. a)  $-\frac{1}{5}$ ; 6) 1; B)  $-\frac{2}{3}$ ; r) 0. 39.17. a) 4; 6) 2; B) 3; r) 2.

39.24. a) 3; 6)  $\frac{1}{4}$ ; B) 1; r)  $\frac{7}{9}$ . 39.25. a) 0; 6) 0,2; B) 0,5; r) -0,2. 39.26. a)  $\frac{4}{3}\pi$ ;

6) 1; B)  $\frac{\pi}{2}$ ; r) -2. 39.27, a) 0; 6) -1; B) 3; r) 0,2. 39.28. a) 2; 6) -4; B) 10;

r)  $-\frac{1}{6}$ : 39.29, a) 4; 6)  $\frac{1}{7}$ ; b)  $-\frac{1}{4}$ ; r) 7, 39.30, a)  $\frac{1}{12}$ ; 6) 1,5; b)  $\frac{1}{27}$ ; r)  $\frac{1}{6}$ .

39.31. a) 1; 6) 0; B) 1; r) 0. 39.32. a)  $\frac{1}{18}$ ; 6) 0; B) 12; r) 0. 39.33. a)  $\frac{1}{2}$ ; 6)  $\frac{2}{3}$ .

39.37. a)  $-\frac{\sqrt{2}}{2}$ ; 6) 0,5; B)  $\frac{\sqrt{2}}{2}$ ; r) -0,5. 39.38. a) 0,2; 6) -0,1; B) 0,1; r) 0,05.

39.40. a) 0,5; 6) -0,66; B) 1,5; P) 0,74. 39.41. a)  $3\Delta x$ ; 6)  $-2x\Delta x - (\Delta x)^2$ ;

B)  $-2\Delta x$ ; r)  $4x\Delta x + 2(\Delta x)^2$ . 39.42. a) 0,1; 6) -0,1; B) 0,5; r) -0,5. 39.44. a) k;

6)  $2ax + a\Delta x$ ; B)  $\frac{-1}{x(x + \Delta x)}$ ; F)  $\frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$ . 39.45. a) k; 6) 2ax; B)  $-\frac{1}{x^2}$ ;

 $\mathbf{r}) \ \frac{1}{2\sqrt{x}}.$ 

§ 40

**40.4.** a) 4; 6) 2t - 1; B) 3; r) 2t - 2. **40.9.** a) 2x + 2; 6)  $-\frac{1}{x^2}$ ; B) 6x - 4;

r)  $-\frac{4}{x^2}$ . 40.10. a)  $\frac{1}{2\sqrt{x}}$ ; 5)  $\frac{-2}{x^3}$ ; B)  $\frac{1}{2\sqrt{x}}$ ; r)  $3x^2$ . 40.11. a) He существует;

б) 0; в) не существует; г) 2. 40.12. а) Не существует; б) 0; в) 0; г) 0. 40.14. а) 4;

6) -1; B) -4; r) -4. 40.15. a) 2 m/c, 2 m/c²; 6) 4,2 m/c, 2 m/c²; B) 4 m/c; 2 m/c²;

r) 7 m/c, 2 m/c². 40.16. a) 3 m/c, 2 m/c²; 6) 5,2 m/c; 2 m/c²; B) 5 m/c, 2 m/c²;

r)  $8 \text{ m/c}, 2 \text{ m/c}^2$ .

§ 41

**41.15.** a)  $2 + \frac{3}{x^2}$ ; 6)  $42 + \frac{1}{x^2}$ ; B)  $40 + \frac{2}{x^2}$ ; r)  $27 + \frac{2}{x^2}$ . **41.16.** a)  $3x^2 \cdot \lg x + \frac{1}{x^2}$ 

+ 
$$\frac{x^3}{\cos^2 x}$$
; 6)  $-\cos x - \frac{\cos x}{\sin^2 x}$ ; b)  $-\frac{\cot x}{x^2} - \frac{1}{x \sin^2 x}$ ; r)  $\sin x + \frac{\sin x}{\cos^2 x}$ .

41.17. a) 
$$3x^2$$
; b)  $3x^2$ ; r)  $3x^2$ ; r)  $3x^2$ , 41.18. a)  $\frac{x^2(x+3)}{(x+2)^2}$ ; b)  $-\frac{2x}{(x^2-1)^2}$ ; b)  $\frac{2x(3-2x)}{(3-4x)^2}$ ; r)  $\frac{1-x^2}{(x^2+1)^2}$ . 41.19. a)  $\frac{3(9-2x)}{2\sqrt{x}(2x+9)^2}$ ; b)  $\frac{x\cos x - \sin x}{x^2}$ ; r)  $\frac{-x\sin x - \cos x}{x^2}$ . 41.20. a)  $\frac{6x^9+9}{x^4}$ ; b)  $\frac{5x^{14}(x^{10}+3)}{(x^{10}+1)^2}$ ; b)  $-\frac{4x^5+5x^4+1}{(x^5-1)^2}$ ; r)  $\frac{x^{12}(9x^4-26)}{(x^4-2)^2}$ . 41.21. a)  $-\sin x$ ; b)  $\cos x$ ; b) 0; r)  $-\frac{1}{2}\cos x$ . 41.22. a)  $\cos x$ ; 6)  $\cos x$ ; b)  $-\sin x$ ; r)  $-\sin x$ . 41.29. a)  $-\frac{4}{\pi^2}$ ; 6)  $-2$ ; b)  $\frac{1}{\pi^2}$ ; r) 2. 41.32. a)  $x<-1$  if  $x>1$ ; 6)  $0< x<1$ ; if  $x>0$ ; r)  $2\pi x < x < \pi + 2\pi n$ . 41.34. a) 14; f)  $\frac{3\sqrt{2}}{4}$ ; if  $x=1$ ;

$$3, \ldots; k=0, -1, -2, -3, \ldots$$
 41.59. a)  $x^3+x^2;$  6)  $\frac{7}{x};$  в)  $x^5-x;$  г)  $9\sqrt{x}$ . 41.60. a)  $y=\frac{x^3}{3}-3x;$  6)  $y=\begin{cases} -x^2-4x, \text{ если } x<-2,5, \\ \frac{1}{7}x^2+\frac{12}{7}x, \text{ если } -2,5< x<1, \\ \frac{1}{3}x^2+\frac{8}{3}x, \text{ если } x>1 \end{cases}$ 

ломаной не учтены). 41.61. a)  $-\frac{\pi}{4} + \pi k$ ,  $\pi n$ ; б)  $\frac{1}{2}$ . 41.62. a) a + b = -2; б) a = 0, b = -2. 41.63. a) a + + b = -1; б)  $a = \frac{1}{4}$ ,  $b = -\frac{5}{4}$ . 41.64. a)  $12x^2$ ; б)  $20x^3$ ; в)  $-\sin x$ ; г)  $-2\cos x$ . 41.65. a) 12; б) 0; в) -4; г) -1. 41.66. a) 9 м/с²; б) 9 кгм/с². 41.67. a)  $-\arctan 2 + \pi n$ ; б)  $\pm \frac{\pi}{3} + 2\pi n$ . 41.68. a)  $y'' = 2\cos x - x\sin x$ ; 6)  $y'' = -a\sin x - b\cos x$ . 41.69. a)  $y = \tan x - b\cos x$ . 41.69. a)  $y = \tan x - b\cos x$ . 41.70. a)  $\pm \sqrt{3}$ ,  $\pm \frac{\sqrt{3}}{3}$ ; б)  $\pm \sqrt{2}$ ,  $\pm 1$ .

**42.4**: a)  $-2\sin 2x$ ; b)  $2\cos 2x$ ; b)  $-6\sin 6x$ ; r) 0. **42.5**. a)  $8\cos 8x$ ;

## § 42

6)  $-10 \sin 10x$ ; в)  $4 \cos 4x$ ; г)  $-\frac{1}{6} \sin \frac{x}{6}$ . 42.6. а)  $-15x^2(1-x^3)^4$ ; 6)  $\frac{3x^2+6x-2}{2\sqrt{x^3+3x^2-2x+1}}$ ; в)  $\frac{14-4x}{(x^2-7x+8)^8}$ ; г)  $\frac{6x}{(x^2+5)\sqrt{x^2+5}\cdot\sqrt{x^2-1}}$ . 42.7. а)  $3\sin^2 x \cos x$ ; б)  $-\frac{1}{2\sin^2 x \sqrt{\cot x}}$ ; в)  $\frac{5\tan^2 x}{\cos^2 x}$ ; г)  $\frac{1+3x^2}{\cos^2(x+x^3)}$ . 42.8. а)  $\frac{-x}{\sqrt{1-x^2}}-3\cos^2 x \sin x$ ; б)  $\frac{x^2+1-2x\sin 2x}{2(x^2+1)^2\sqrt{\tan x}\cos^2 x}$ ; в)  $\sin 2x\cos\sqrt{x}-\frac{\sin^2 x \sin\sqrt{x}}{2\sqrt{x}}$ ; г)  $-\frac{x\sqrt{\tan x}+6\sin^2 x \sqrt{\cot x}}{2x^4\sin^2 x}$ . 42.9. а)  $3\cdot7^7$ ; б)  $-1\frac{1}{8}$ ; в) -35; г) 0,7. 42.10. а) 2; б) 4; в) -2; г) 3. 42.11. а) -7; б)  $\frac{3}{16}$ ; в)  $-1\frac{1}{4}$ ; г)  $\frac{3}{16}$ . 42.12. а) 6; б)  $\frac{3\sqrt{3}}{2\pi}$ ; в) 0; г) -4. 42.13. а) 10; б) 1,75; в)  $-\frac{48}{361}$ ; г)  $-\frac{5}{8}$ . 42.14. а) 0; б) 12; в)  $-\sqrt{3}$ ; г)  $-\frac{4}{9}$ . 42.15. а) 2; б)  $-\frac{1}{2}$ ; в) 5; г)  $\frac{\sqrt{2}}{4}$ . 42.16. а)  $4\pi$ ; б)  $-\frac{1}{2}\sqrt{2(\sqrt{2}-1)}$ ; в) 0; г) 0. 42.17. а)  $\frac{\pi}{2}+\pi h$ ,  $(-1)^{n+1}\arcsin\frac{1}{4}+\pi h$ ; 6)  $\frac{\pi}{12}+\frac{\pi k}{6}$ ;  $(-1)^{n+1}\frac{1}{6}\arcsin\frac{1}{4}+\frac{\pi k}{6}$ ; в)  $\frac{\pi k}{2}$ ; г) таких значений нет. 42.18. а) Таких значений нет; б)  $-\frac{\pi}{2}+\pi n < x < \frac{\pi}{4}+\pi n$ . 42.19. а) -8; б)  $-1\frac{1}{8}$ ;

в) 
$$-0.5$$
; г) 1.  $42.20$ . а)  $\pm \frac{3}{8}\pi + \pi n$ ; б)  $(-1)^{n+1}\frac{\pi}{12} + \frac{\pi n}{2}$ .  $42.21$ . а)  $x = \pi n$ ; б)  $\frac{\pi}{2}n$ ;  $(-1)^n\frac{\pi}{6} + \pi n$ ,  $(-1)^{n+1}\frac{\pi}{6} + \pi n$ .  $42.22$ . а)  $\frac{\pi}{6}$ ,  $\frac{\pi}{2}$ ; б)  $\frac{2\pi}{3}$ ,  $\pi$ ,  $\frac{4\pi}{3}$ .  $42.23$ . а)  $a = 2$ ,  $b = 0$ ; б)  $a = 2.5$ ,  $b = 0.75$ .  $42.24$ . а)  $\frac{\pi n}{2}$ ; б)  $\pi n$ ; в)  $\frac{\pi n}{2}$ ; г)  $\frac{\pi n}{2}$ ,  $-\frac{\pi}{4} + \pi n$ .  $42.25$ . а)  $\frac{1}{3}$ ,  $x \ge \frac{17}{42}$ ; б)  $-9.1 \le x \le -1.5$ .  $42.26$ . а)  $\frac{1}{2} \le x \le \frac{1}{6}$ ; б)  $x \le -\frac{4}{5}$ ,  $x \ge \frac{4}{3}$ .  $42.28$ . а)  $\frac{12-\pi}{8} + \frac{\pi k}{2}$ ; б) 9.  $42.29$ . а)  $2\frac{2}{3}$ ; б)  $\frac{5\pi}{24} + \frac{\pi k}{4}$ .  $42.30$ . а)  $(2x-1)^8 + C$ ; б)  $(4-5x)^4 + C$ , где  $C$  — любое число.  $42.31$ . а)  $\frac{1}{2x+3} + C$ ; б)  $\frac{4}{5}$  tg  $(5x-1) + C$ , где  $C$  — любое число.  $42.32$ . а)  $-\frac{1}{3}$  cos  $\left(3x-\frac{\pi}{3}\right) + C$ ; б)  $\frac{4}{5}$  tg  $(5x-1) + C$ , где  $C$  — любое число.  $42.33$ . а)  $\frac{3}{\sqrt{1-9x^2}}$ ; б)  $\frac{2x}{1+x^4}$ ; в)  $\frac{-3(\arccos x)^2}{\sqrt{1-x^2}}$ ; г)  $-\frac{1}{2\sqrt{x}(1+x)}$ .  $42.34$ . а)  $-\frac{3\pi^2}{4}$ ; б) 1; в) 1; г) 2.  $42.35$ . а)  $-3$ ; б)  $\frac{2\sqrt{3}}{3}$ ; в)  $-2$ ; г)  $-\frac{1}{\sqrt{2\pi}}$ .  $42.36$ . а) 3; б)  $\frac{\pi}{2}$ .  $42.37$ . а) 0; б) нет таких значений.  $42.38$ . а)  $-\frac{1}{2} \le x \le \frac{1}{2}$ ; б)  $0 \le x \le 1$ .

## § 43

43.6. a) 1; 6) -0,5; в) -8; г) 0. 43.7. a) 27; 6) 0; в) 6; г) -1. 43.8. a) -4; 6) -1; в) -103,2; г) 1. 43.9. a) -4, 0, 6; 6) 2, 0, 4; в) -3,  $\frac{\sqrt{5}}{2}$ ,  $\frac{1}{2}$ ; г)  $-\frac{\sqrt{2}}{4}$ , нет, 1. 43.10. a) -5, 0, 7; 6) -2, 0, 0. 43.11. a) -5, 0, 3; 6) -6, 0, -2. 43.12. a) (1; 15); в) (0; 0),  $\left(\frac{4}{3}; \frac{4}{27}\right)$ ; г)  $\left(\frac{2\sqrt{7}}{7}; \frac{8\sqrt{7}}{7}\right)$ ,  $\left(-\frac{2\sqrt{7}}{7}; \frac{8\sqrt{7}}{7}\right)$ . 43.13. a) (0; 0); 6) (0; -1); в)  $\left(-1; 3 - \frac{\pi}{4}\right)$ ,  $\left(1; 3 + \frac{\pi}{4}\right)$ . 43.21. a) 0; 6)  $\pi$  — arctg 7; в) arctg 2; г) касательной не существует. 43.23. a) y = 7x - 10; 6) y = -3x - 10; в) y = 5x - 17; г)  $y = -x + \frac{5}{4}$ . 43.24. a) y = 3x - 4; 6) y = -x + 4. 43.25. a) y = 1; 6)  $y = \frac{\pi}{2} - 2x$ ; в) y = 1; г)  $y = \frac{2}{3}x$ . 43.26. a)  $y = \frac{\pi}{2} - x$ ; 6) y = -x; в)  $y = 2,5x + 0,5 + \frac{\pi}{2}$ ; г) y = x - 5 arctg 2. 43.27. a)  $y = \frac{3\sqrt{3}}{4}x + \frac{1}{8} - \frac{\pi\sqrt{3}}{16}$ ; 6)  $y = \frac{6}{\pi}x + 2 - \frac{2}{\pi}$ ; в)  $y = -2x + \frac{1}{2} + \frac{\pi}{4}$ ; г)  $y = \pi$ .

**43.28.** a) y = -2x - 4; b) y = 5x - 16; b) y = 2x + 1; r) y = 5x + 9. **43.29.** a) y = -6x + 18, y = 6x + 18; 6) y = 27x - 81; B) y = -4x, y = 8x + 16, y = 8x - 16; r) y = 0, y = -x + 1. 43.30. a) y = 5x - 16; y = -5x - 1; 6) y = x - 4, y = -x + 9. 43.31. a) x = 1; 6)  $x = -\frac{1}{4}$ ; B)  $x = \frac{3}{8}$ ; r) x = -0.5. **43.32.** a)  $y = x - \frac{8}{3}$ ,  $y = x - \frac{4}{3}$ ; 6) y = 9x - 20, y = 9x + 16. **43.33.** a) y = 2x + 16 $+\frac{\pi}{3}-\sqrt{3}$ ,  $y=2x-\frac{\pi}{3}+\sqrt{3}$ ; 6) y=x. 43.34. a) x=3; 6)  $x_1=0$ ,  $x_2=\sqrt{2}$ ,  $x_3 = -\sqrt{2}$ ; B) x = 1; r)  $x_1 = 0$ ,  $x_2 = 0.6$ . 43.35. a)  $x = \pi + 2\pi n$ ; 6)  $x = \frac{\pi}{3}n$ ; B)  $x = \pi n$ ; r)  $x = \pi + 2\pi n$ . 43.36. a)  $\frac{\pi}{4} + \pi n$ ; 6) 0; B)  $\frac{\pi}{2} + \pi n$ ; r) 0. 43.37. a) y = -x,  $y = 20\frac{5}{6} - x$ ; 6)  $y = 1\frac{1}{3} - x$ ; y = -x. 43.38. a) y = 14 - x, y = -x - 2; 6) y = -x - 5, y = -x - 9. 43.39. a) y = -x - 11; 6) y = 1 - x. **43.40.** a)  $y = \frac{\pi}{2} - x$ ; b)  $y = \frac{\pi}{2} - x$ . **43.41.** a)  $x_1 = 0$ , y = x + 1,  $x_2 = 2$ , y = x - 3; 6)  $x_1 = -3$ , y = -x - 1,  $x_2 = -1$ , y = -x + 3. 43.42. a)  $y = \sqrt{3}x - \frac{16\sqrt{3}}{2}$ ,  $y = \sqrt{3}x + \frac{16\sqrt{3}}{3}$ ; 6)  $y = \frac{\sqrt{3}}{3}x - \frac{2\sqrt{3}}{3}$ ,  $y = \frac{\sqrt{3}}{3}x + \frac{2\sqrt{3}}{3}$ . 43.43. a) (0; 1), -8, y = 2x; 6) y = 2x, y = -2x; 8) y = 4x - 3, y = -4x - 3; r) y = 1, y = -4x - 3. 43.46. a) y = 8 - 7x, y = -11x + 12; 6) y = -9x + 9, y = -5x + 9. **43.47.** a) y = -0.1x + 2.8, y = -0.5x + 2; 6) y = -0.5x + 2. **43.48.** a) y = 2x - 1, y = 0.4x + 2.2; 6) y = x + 1,  $y = \frac{1}{3}x + \frac{5}{3}$ . 43.49. a)  $a = \frac{\pi}{4}n$ ,  $a = \frac{\pi}{6} + \frac{\pi}{3}n$ ; 6)  $a = \frac{\pi}{10} + \frac{\pi n}{5}$ ,  $a = \frac{\pi}{4} + \frac{\pi}{2}n$ . 43.50. a) y = 3 - 2x; 6)  $y = \frac{1}{4}x + \frac{3}{4}$ . 43.51. a) y = 3x - 2; 6)  $y = \frac{27}{4}x + \frac{27}{4}$ . 43.52. a) B(0; 3.5); 6) y = x - 3, y = -x - 3. 43.53. a) B(0; 0); 6)  $y = -\frac{\sqrt{3}}{3}(x - 1)$ ,  $y = \frac{\sqrt{3}}{3}(x + 1)$ . **43.54.** a)  $\left(-\frac{3}{4}; -25\right)$ ; 6) (17; 204). **43.55.** a) p = 0.5; 6) p = -1. **43.56.** a) (1; -1); б) не является. 43.57. a)  $\frac{6}{7}$ ; б)  $\frac{4}{5}$ . 43.58. a) a = 2; б) a = 0. 43.59. a) 1; 6)  $1 + \sqrt{3}$ , 43.60. a)  $\frac{\pi}{4}$ ; 6)  $-\frac{\pi}{10}$ . 43.61. a) -1; 6) 4. 43.62. a) y = x; 6) (0; -4). **43.63.** a) arctg 3; 6)  $\frac{\pi}{2}$ , arctg  $\frac{3}{4}$ . **43.65.** a)  $\left(0; \frac{\sqrt{6}}{3}; 6\right) y = -\frac{1}{4}$ . **43.66.** a) -1; 2; 6) 10. 43.67. a) 5; б) 9. 43.68. a) b=2; c=-3; б) a=3; b=-5; c=2. 43.69.  $S=2a^2$ . 43.70.  $y=2ax-a^2$  — уравнение касательной,  $x=\frac{a}{2}$  — абсцисса точки пересечения.

### § 44

**44.31.** a) a > 0; b)  $-\sqrt{5} \le a \le \sqrt{5}$ . **44.32.** a) a > 1; b)  $a \le -4$ . 44.33. a)  $b \le -\frac{1}{3}$ ; б)  $b \le 0$ ; в) ни при каких b; г)  $b \ge 0$ . 44.34. a) -2; 6)  $-2.5 < a \le -1.5$ ;  $a \ge 1.5$ ; B) 2; r)  $a \le -0.5$ ;  $a \ge 3.5$ . 44.35. a)  $a \le -1$ ;  $a \ge 2$ ; б)  $a \le -1.5$ ;  $a \ge 1$ . 44.36. a) b, d; б) c; в) a, 0; г) нет таких точек. 44.37. a) e: б)  $a, b; в) b, c; r) a, b, c, d, e. 44.38, а) При <math>a = \pm 3;$  б) при  $a = \pm 5.44.45,$  а) Да; 6) HeT; B) HeT; Г) HET. 44.48. a)  $x = \frac{7}{4}$ , точка минимума; б) x = -2.5 точка максимума; в)  $x = \frac{3}{4}$  — точка минимума; г) x = -2 — точка максимума. 44.49. а) x=2 — точка максимума, x=3 — точка минимума: б) x = -3 — точка максимума, x = 3 — точка минимума; в)  $x = -\frac{1}{2}$  точка максимума, x = 5 — точка минимума; г) x = 7 — точка минимума. x = 0 — точка максимума. 44.50. a) x = -0.6 — точка максимума, x = 0.6 точка минимума; б) x = -1, x = 4 — точки минимума, x = 0 — точка максимума; в) x = -5, x = 5 — точки минимума, x = 0 — точка максимума; г) x = -3 — точка максимума, x = 1 — точка минимума. 44.51. a) x = -2 точка максимума, x = 2 — точка минимума; б) x = -3 — точка максимума, x = 3 — точка минимума. 44.52. a) x = 3 — точка минимума; б) x = 2 точка максимума; в) x = 8.5 — точка максимума; г) x = 1.4 — точка максимума. 44.53. a)  $x=-\frac{\pi}{6}$  — точка минимума,  $x=-\frac{5\pi}{6}$  — точка максимума; б)  $x \approx \frac{5\pi}{3}$  — точка минимума,  $x = \frac{7}{3}\pi$  — точка максимума. 44.54. а) x = -3 — точка максимума, x = 3 — точка минимума; б) x = -3 точка максимума; в) x = 0 и x = 3 — точка минимума; x = 2 — точка максимума; г) нет таких точек. 44.55. а) x = 0 — точка минимума; б) нет; в) x = 0 — точка максимума; г) нет. **44.56**. a)  $y' = (x + 2)^2 \ge 0$  при всех x; 6)  $y' = -x^2 + 3x - 3 < 0$  при всех x; в)  $y' = x^4 + x^2 + 1 > 0$  при всех x; г)  $y' = -5x^4 - 3x^2 \le 0$  при всех x. 44.57. a) 8;  $x = -\frac{7}{16}$  — точка минимума; 6) –2;  $x=\frac{7}{4}$  — точка максимума; в) –1; x=3,5 — точка максимума; г) a=-0.1; x = 35 — точка максимума. 44.58. а) Her; б) x = 0 — точка максимума;  $x = \frac{1}{3}$ 

x = 2 — точки минимума; x = 2 — точка минимума. 44.59. a) Возрастает на  $\left[-\frac{\pi}{3}+2\pi n; \frac{\pi}{3}+2\pi n\right]$ , убывает на  $\left[\frac{\pi}{3}+2\pi n; \frac{5\pi}{3}+2\pi n\right]$ ,  $x=-\frac{\pi}{3}+2\pi n$  $+2\pi n$  — точки минимума,  $x=\frac{\pi}{3}+2\pi n$  — точки максимума; б) убывает на  $\left[\frac{7\pi}{6} + 2\pi n; \frac{11\pi}{6} + 2\pi n\right]$ , возрастает на  $\left[-\frac{\pi}{6} + 2\pi n; \frac{7}{6}\pi + 2\pi n\right]$ ,  $x = -\frac{\pi}{6}$  +  $+2\pi n$  — точки минимума,  $x=\frac{7}{6}\pi+2\pi n$  — точки максимума; в) убывает на  $\left[\frac{\pi}{4} + 2\pi n; \frac{3\pi}{4} + 2\pi n\right]$ , возрастает на  $\left[-\frac{5\pi}{4} + 2\pi n; \frac{\pi}{4} + 2\pi n\right]$ ,  $x = \frac{\pi}{4}$  +  $+2\pi n$  — точки максимума,  $x=rac{3}{4}\pi+2\pi n$  — точки минимума; г) возрастает на R. 44.60. а) Убывает на  $\left[-\frac{\pi}{6} + \pi n; \frac{\pi}{6} + \pi n\right]$ , возрастает на  $\left[\frac{\pi}{6} + \pi n; \frac{5\pi}{6} + \pi n\right], \ x = \frac{\pi}{6} + \pi n - \text{точки минимума}, \ x = -\frac{\pi}{6} + \pi n - \text{точки}$ максимума; б) убывает на  $\left[\frac{\pi}{3} + 4\pi n; \frac{5\pi}{3} + 4\pi n\right]$ , возрастает  $\left[-\frac{7\pi}{3} + 4\pi n; \frac{\pi}{3} + 4\pi n\right], x = \frac{\pi}{3} + 4\pi n$  — точки максимума,  $x = \frac{5\pi}{3} + 4\pi n$  точки минимума. 44.61. a) Убывает на  $(-\infty; 3]$ , возрастает на  $[3; +\infty)$ , x=3 — точка минимума; б) возрастает на  $(-\infty;\ 0)$  и на  $[1;\ +\infty)$ , убывает на (0; 1], x = 1 — точка минимума; в) убывает на ( $-\infty$ ; -3] и на  $\left| -\frac{1}{2}; 2 \right|$ , возрастает на  $\left[-3; -\frac{1}{2}\right]$  и на  $[2; +\infty)$ , x=-3 и x=2 — точки минимума,  $x = -\frac{1}{2}$  — точка максимума; г) возрастает на  $\{-1; 0\}$  и на  $[1; +\infty)$ , убывает на ( $-\infty$ ; -1] и на [0; 1], x = -1, x = 1 — точки минимума, x = 0 — точка максимума. 44.62. а) Убывает на  $(-\infty; -\sqrt{3}]$ , на [-1; 0] и на  $[1; \sqrt{3}]$ , возрастает на  $\left[-\sqrt{3}; -1\right]$ , на  $\left[0; 1\right]$  и на  $\left[\sqrt{3}; +\infty\right]$ ,  $x=-\sqrt{3}$ , x=0,  $x=\sqrt{3}$ точки минимума, x = -1, x = 1 — точки максимума; б) возрастает на  $\left| -1; -\frac{1}{\sqrt{2}} \right|$ , на  $\left| 0; \frac{1}{\sqrt{2}} \right|$  и на  $[1; +\infty)$ , убывает на  $(-\infty; -1]$ , на  $\left| -\frac{1}{\sqrt{2}}; 0 \right|$ и на  $\left|\frac{1}{\sqrt{3}}; 1\right|$ , x = -1, x = 0, x = 1 — точки минимума,  $x = -\frac{1}{\sqrt{3}}$ ,  $x = \frac{1}{\sqrt{3}}$  —

точки максимума. 44.64. г) Возрастает на [-1; 1], убывает на  $(-\infty; -1]$  и на  $[1; +\infty)$ , x=-1 — точка минимума, x=1 — точка максимума. 44.65. г) Возрастает на  $(-\infty; -1]$  и на  $[1; +\infty)$ , убывает на [-1; 1], x=-1 — точка максимума, x=1 — точка минимума. 44.66. г) Возрастает на  $(-\infty; -3]$  и на  $[1; +\infty)$ , убывает на [-3; 1], x=-3 — точка максимума, x=1 — точка минимума. 44.67. г) Возрастает на [-1; 1], убывает на  $(-\infty; -1]$  и на  $[1; +\infty)$ , x=-1 — точка минимума, x=1 — точка максимума. 44.68. г) Возрастает на  $(-\infty; 1,5]$ , убывает на  $[1,5; +\infty)$ , x=1,5 — точка максимума. 44.69. а) 2; б) 1; в) 1; г) 1. 44.70. а) 0, б) 0. 44.71. а) 1; б) 2. 44.74. а)  $\frac{2\pi}{3}$ ; б) 0.

## § 45

45.13. а) 3; б) 1; в) 3; г) 1. 45.14. а) 1 корень, если a > -3; 2 корня, если a = -3; 3 корня, если a < -3. 45.15. а) 3; б) -1.

## § 46

**46.1.** a) 255; -1; 6) 34; 1; B) 23; -4; r) 8; -154. 46.2. a)  $y_{\text{mag6}} = 4$ ;  $y_{\text{manne}} = -23$ ; 6)  $y_{\text{manne}} = -9$ ;  $y_{\text{manne}} = -9993$ ; B)  $y_{\text{manne}} = 5$ ;  $y_{\text{manne}} = -1$ ; F)  $y_{\text{manne}} = 31246$ ;  $y_{\text{marm}} = 124.46.3.$  a)  $y_{\text{mar6}} = -2; y_{\text{marm}} = -4;$  b)  $y_{\text{mar6}} = 1.5; y_{\text{marm}} = -0.5;$  b)  $y_{\text{mar6}} = 0;$  $y_{\text{mann}} = -1$ ; r)  $y_{\text{mann}} = 7$ ;  $y_{\text{mann}} = 1$ . 46.4. a)  $y_{\text{mann}} = \sqrt{2}$ ;  $y_{\text{mann}} = 0$ ; 6)  $y_{\text{mann}} = \sqrt{2}$ ;  $y_{\text{mann}} = 1$ ; B)  $y_{\text{mann}} = \sqrt{2}$ ;  $y_{\text{mann}} = 0$ ; r)  $y_{\text{mann}} = \sqrt{2}$ ;  $y_{\text{mann}} = 1$ . 46.5. a)  $y_{\text{mann}} = 4$ ;  $y_{\text{marris}} = 1$ ; 6)  $y_{\text{marris}} = 0$ ,  $y_{\text{marris}} = 3$ . 46.6. a)  $y_{\text{marris}} = 7$ ;  $y_{\text{marris}} = -3$ ; 6)  $y_{\text{marris}} = 6$ ;  $y_{\text{marris}} = -4$ . **46.7.** a)  $y_{\text{mand}} = 24$ ;  $y_{\text{mann}} = 12$ ; b)  $y_{\text{mann}} = 10$ ;  $y_{\text{mann}} = 5$ ; b)  $y_{\text{mann}} = 16$ ;  $y_{\text{mann}} = 2$ ; r)  $y_{\text{mand}} = 10$ ;  $y_{\text{mann}} = 2$ . 46.8. a)  $y_{\text{mann}} = 1$ ;  $y_{\text{mann}} = -2$ ; b)  $y_{\text{mann}} = 0$ ;  $y_{\text{mann}} = -4$ ; в)  $y_{\text{man}} = 5$ ;  $y_{\text{man}} = -4$ ; г)  $y_{\text{band}}$  не существует;  $y_{\text{man}} = -4$ . 46.9. a)  $y_{\text{man}} = 28$ ;  $y_{\text{mass}} = 3$ ; 6)  $y_{\text{mass}} = 9$ ;  $y_{\text{mass}} = -3$ ; B)  $y_{\text{mass}} = 16$ ;  $y_{\text{mass}} = -2$ ; r)  $y_{\text{mass}} = -7$ ;  $y_{\text{mass}} = -199$ . **46.10.** a)  $y_{\text{main}} = 19$ ;  $y_{\text{main}} = -35$ ; 6)  $y_{\text{main}} = 35$ ;  $y_{\text{main}} = 15$ ; B)  $y_{\text{main}} = 19$ ;  $y_{\text{main}} = -93$ ; r)  $y_{\text{mand}} = 19$ ;  $y_{\text{mand}} = 15$ . 46.11. a)  $y_{\text{mand}} = 173$ ;  $y_{\text{mand}} = -2$ ; 6)  $y_{\text{mand}} = -43$ ;  $y_{\text{mand}} = -72$ ; B)  $y_{\text{main}} = 173$ ;  $y_{\text{main}} = 45$ ; г)  $y_{\text{main}} = -2$ ;  $y_{\text{main}} = -72$ . 46.12. a)  $y_{\text{main}} = 4$ ;  $y_{\text{main}} = -3$ ; 6)  $y_{\text{mano}} = -12$ ;  $y_{\text{mano}} = -28$ ; B)  $y_{\text{meno}} = 4$ ;  $y_{\text{mano}} = -28$ ; F)  $y_{\text{mano}} = 4$ ;  $y_{\text{mano}} = -28$ . **46.13.** a)  $y_{\text{mem6}} = 20$ ;  $y_{\text{mam6}} = -7$ ; b)  $y_{\text{mam6}} = 4$ ;  $y_{\text{mam6}} = -124$ ; b)  $y_{\text{mam6}} = 121$ ;  $y_{\text{mann}} = -44$ ; r)  $y_{\text{mann}} = 148$ ;  $y_{\text{mann}} = -124$ . 46.14. a)  $y_{\text{mann}} = 6$ ;  $y_{\text{mann}} = 5$ ; 6)  $y_{\text{mann}} = -3$ ;  $y_{\text{marm}} = -4.$  46.15. a)  $y_{\text{mar6}} = \frac{\pi}{4} + 1$ ;  $y_{\text{marm}} = \frac{3\pi}{4} - 1$ ; 6)  $y_{\text{mar6}} = \frac{3\sqrt{3} - \pi}{3}$ ;

$$y_{\text{mann}} = -\pi$$
; B)  $y_{\text{mann}} = \sqrt{3} + \frac{\pi}{6}$ ;  $y_{\text{mann}} = -\frac{\pi}{2}$ ; F)  $y_{\text{mann}} = \frac{3\sqrt{3} - \pi}{3}$ ;  $y_{\text{mann}} = 0$ .

46.16. а)  $y_{\text{мажь}}$  не существует;  $y_{\text{мажь}} = -\frac{5}{27}$ ; б)  $y_{\text{мажь}}$  не существует;  $y_{\text{мажь}} = -1$ ;

в)  $y_{\text{man}6} = 0$ ;  $y_{\text{man}M}$  не существует; г)  $y_{\text{man}6}$  не существует;  $y_{\text{man}M} = 0$ .

46.17. a)  $y_{\text{man6}} = -0$ ;  $y_{\text{man6}}$  He cymectbyer; 6)  $y_{\text{man6}} = \frac{\sqrt{3}}{2}$ ;  $y_{\text{man6}} = -2$ ; B)  $y_{\text{man6}} = -2$ ;  $y_{\text{mann}}$  не существует; г)  $y_{\text{mann}} = 3.5$ ;  $y_{\text{mann}}$  не существует. 46.18. а)  $y_{\text{mann}} = 0$ ;  $y_{\text{mann}} = -27$ ; 6)  $y_{\text{mann}} = 0$ ;  $y_{\text{mann}} = -4$ ; B)  $y_{\text{mann}} = 50$ ;  $y_{\text{mann}} = 0.875$ ; r)  $y_{\text{mann}} = \frac{3}{8}$ ;  $y_{\text{main}} = -\frac{5}{8}$ : 46.19. a)  $y_{\text{main}} = 21$ ;  $y_{\text{more}} = 5$ ; 6)  $y_{\text{main}} = 71$ ;  $y_{\text{main}} = -10$ ; B)  $y_{\text{main}} = 18,25$ ;  $y_{\text{mann}} = 17$ ; r)  $y_{\text{mann}} = 6\frac{1}{12}$ ;  $y_{\text{mann}} = -11\frac{1}{6}$ . 46.20. a) u 6)  $y_{\text{bont}} = 6$ ;  $y_{\text{mann}} = -0.25$ ; B)  $y_{\text{man6}} = 72$ ;  $y_{\text{man6}} = 16$ ; r)  $y_{\text{man6}} = 135$ ;  $y_{\text{mann}} = 27$ . 46.21. a)  $y_{\text{man6}} = 21$ ;  $y_{\text{mark}} = -\frac{40}{27}$ ; 6)  $y_{\text{mark}} = 10$ ;  $y_{\text{mark}} = 5 - 4\sqrt{2}$ . 46.22. a)  $y_{\text{mark}} = 8$ ;  $y_{\text{mark}} = 1\frac{3}{4}$ ;  $6)y_{\text{mass}} = 17; \ y_{\text{mass}} = -3. \ 46.23. \ a) \ y_{\text{mass}} = 1; \ y_{\text{mass}} = \frac{\sqrt{2}}{2}; \ 6) \ y_{\text{mass}} = -\frac{\sqrt{2}}{4}; \ y_{\text{mass}} = -1.$ **46.24.** a)  $y_{\text{mano}} = 0$ ;  $y_{\text{mano}} = -\frac{3\sqrt{3}}{8}$ ; 6)  $y_{\text{mano}} = 1$ ;  $y_{\text{mano}} = -\frac{1}{8}$ . **46.25.** a)  $y_{\text{mano}} = 2$ ;  $y_{\text{намы}}$  не существует; 6)  $y_{\text{намы}} = \frac{1}{4}$ ;  $y_{\text{намы}} = 0$ ; в)  $y_{\text{намы}}$  не существует;  $y_{\text{цамы}} = -2$ ; r)  $y_{\text{marg}} = 0$ ;  $y_{\text{marg}} = -\frac{1}{4}$ . 46.26. a) -5; 6) -9, 6; r) -8, 4. 46.27. a) 5,5; 6) 1; B) 5; r) 4. 46.28. a) 7; 6) -0,1; B) 3; r)  $\frac{2}{3}$ . 46.29. a) 4; 6) -1,5; B) -2; r) -2. **46.30.** a)  $y_{\text{HAMG}} = 5$ ;  $y_{\text{HAHM}} = 0$ ; b)  $y_{\text{HAMG}} = \frac{5}{9}\sqrt{2}$ ;  $y_{\text{HAMM}} = 0$ ; b)  $y_{\text{HAMG}} = 4$ ;  $y_{\text{mann}} = 0$ ; r)  $y_{\text{menf}} = 3.5\sqrt{3}$ ;  $y_{\text{mann}} = 0.46.31$ . a)  $y_{\text{manf}}$  he cymectryet;  $y_{\text{mann}} = 0$ ; 6)  $y_{\text{mand}}$  не существует;  $y_{\text{mand}} = 1$ ; в)  $y_{\text{mand}}$  не существует;  $y_{\text{mand}} = 0$ ; г)  $y_{\text{mand}}$  не существует;  $y_{\text{ваны}} = \frac{\sqrt{2}}{2}$ . 46.32. a) 2; б) 1. 46.33. a) 3; б) 3. 46.34. a) -4; 6) -0.25; B) 9; P) -16.46.35. A)  $\left[-\frac{3}{2}; \frac{1}{2}\right]$ ; 6)  $\left[-\frac{1}{2}; \frac{3}{2}\right]$ . 46.36. A)  $\left[-\frac{4\sqrt{6}}{9}, +\infty\right]$ ; 6)  $\left(-\infty, \frac{\sqrt{3}}{9}\right)$ . 46.37. [-3; -1]. 46.38. a) 9; 6) 15. 46.39. a)  $n = -\frac{3}{4}$ ; 6)  $n = 4 - 2\sqrt{3}$ . 46.41. a) 12; 12; 6) 22; 22. 46.42. a) -5; 5; 6) -49; 49. **46.43.** a) -18; 18; 6) -14; 14. 46.44. a) 2; 1; 6)  $1\frac{1}{4}$ ;  $3\frac{3}{4}$ . 46.45. a) 14 cm; 14 cm; 6) 18 cm, 18 cm. 46.46. a) 50 m  $\times$  50 m; 6) 60 m  $\times$  60 m. 46.47. a) 4 cm  $\times$  4 cm; 6) 8 cm  $\times$  8 cm. 46.48. a) 50 m  $\times$  50 m. 46.49. 32 cm². 46.50. a) 0,8; 6) -4. 46.51. a) 2; 6) 1. 46.52. a) (1; 1); (-1; 1); 6) (4; 2). 46.53. 30 cm. 46.54. a) 6000; б) 108. 46.55. a) 21; б) 32,4. 46.56.  $\sqrt{ab}$ . 46.57. 3 ч 44 мин. 46.58. 4 дм, 4 дм, 2 дм. 46.59. 7 м, 7 м, 7 м. 46.60.  $4\sqrt[3]{5}$  м,  $6\sqrt[3]{5}$  м,  $\frac{24\sqrt[3]{5}}{5}$  м. **46.61.**  $\frac{d\sqrt{3}}{3}$ . **46.62.**  $\frac{p\sqrt{3}}{3}$ . **46.63.**  $\frac{p}{6}$ . **46.64.**  $\sqrt[3]{\frac{v}{2\pi}}$ .

### § 47

47.1. a) 42; 6) 20; B) 24; r) 14. 47.2. a) 42; 6) 7; B) 24; r) 20. 47.3. a) 100. 6) 90; в) 180; г) 90. 47.4. a) 108; б) 54; в) 84; г) 324. 47.5. a) 100 000-6) 32 768; B) 32; r) 8192. 47.6. a) 512; 6) 64; B) 16; r) 192. 47.7. 6) 3; B) 6; г) Эшкин будет в 4 вариантах. 47.8. б) 4. 47.9. б) 1; в) 3. 47.10. б) 8; в) 3. 47.11. a) 54; 6) 5184; B)  $\frac{1}{7}$ ; r)  $\frac{5}{16}$ . 47.12. a) 1; 6) 0. 47.13. a) 2; 6) 3; B) 6; r) 24. 47.14. a) 8; 6) 15; B) 6; r) 13. 47.16. a) 7; 6) 4; B) 7; r) 3. 47.17. a)  $n \ge 3$ ; б)  $n \ge 4$ . 47.18. а); б); в); г) Начиная с указанного номера n, левая часть растет быстрее правой части. 47.20. а) 120; б) 288; в) 432; г) 72. 47.21. а) (61)2; 6)  $(51)^2$ ; B)  $(61)^2$ ; r)  $(6 \cdot 5 \cdot 4 \cdot 3)^2$ . 47.22. a) 120; 6) 14 400; B) 720; r) 2880. 47.23. a) 7!; 6) 61; B)  $7! \cdot C_7^3 = 176400$ ; r)  $7! \cdot C_7^3 \cdot C_7^4 = 529200$ . 47.24. a)5!  $\cdot$  4!  $\cdot$  3! = 17 280; 6) 17 280; B)  $(5 \cdot 4 \cdot 3) \cdot 4! \cdot 3! = 8640$ ; г) 2 177 280.

**§ 48 48.1.** a) 12; б) 13; в) 12; г) 15. **48.2.** a)  $\frac{n(n-1)}{2}$ ; б)  $\frac{n(n-3)}{2}$ ; в) n-2; r)  $\frac{(n-2)(n-3)}{2}$ . 48.3. a) 110; 6) 56; b) 82; r) 55; 28. 48.4. a) 100; 6) 10; в) 94; г) 18. 48.8. Упростите выражение: а)  $\frac{(n+1)n(n-1)}{2}$ ; б)  $\frac{n(n-1)}{2}$ . **48.9.** a)  $C_{17}^3 < C_{18}^4$ ; b)  $C_{18}^4 < C_{19}^5$ ; b)  $C_{19}^5 < C_{18}^6$ ; r)  $C_{n}^7 < C_{n+1}^8$  при n > 7,  $C_n^7 = C_{n+1}^8$  при n = 7. 48.10. a) 8; б) 6; в) 7; г) 4. 48.11. a) x = 9 или x = 10; 6) x = 11. 48.12. a) 8; 6) 27; B) 31; r) 7. 48.13. a) 15; 6) 5; B) 8; r) 12. 48.14. a) 210; 6) 35; B) 15; r) 100. 48.15. a) 32 760; 6) 792; B) 120; r) 240. 48.16. a) 376 992; б) 32; в) 126; г) 504. 48.17. a) 14 112; б) 10 976; в) 7056; r) 280, 48.18. a)  $y = \frac{x}{6(x-3)}$ ; B) 8; r) 54, 48.19. a) y = 6x(x-1); B) 10; r) 33. 48.20. a)  $y = 24\left(1 - \frac{4}{x+2}\right)$  — монотонно возрастает; в) 23; г) 24.

48.21. a) 7; 6) 8; B) 12; r) 3. 48.23. a) 8; 6) 16; B) 128. 48.25. a) 108; 6) -720;

B) 8; r)  $-\frac{4}{0}$ . 48.26. a)  $10x^8$ ; 6)  $120x^4$ ; B)  $210x^{-2}$ ; r) 252. 48.27. a) 60; 6) 5;

в) 61 236; г) 24 310. 48.28. а) 10; б) 252; в) один; г) 9; 126; два. 48.29. а) k=2

или k=3; б) 8; в) k=30 или k=31; г) 500. 48.30. б) 999 001; в) 9802; г) ука- $\frac{1}{3}$  ание: найти номер, начиная с которого  $\frac{1}{q^n}=\left(1+\frac{1-q}{q}\right)^n>\frac{1}{a}$ .

## § 49

49.1. а) 0,2; б) 0,077; в) 0,088; г) 0,966. 49.2. а) 0,244; б) 0,067; в) 0,044; г) 0,088. 49.3. а) 0,989; б) 0,01; в) 0,0026; г) 0,044. 49.4. а) 0,25; б) 0,25; в) 0,107; г) 0,321. 49.5. а) 0,36; б) 0,52; в) 0,04; г) 0,56. 49.6. а) 0,1; б) 0,7; в) 0,15; г) 0,75. 49.7. а) 0,04; б) 0,92; в) 0,36; г) 0,6. 49.8. а) 0,833; б) 0,833; в) 0,167; г) 0,222. 49.9. а) 10; б) 8; в) 12; г) 29. 49.10. а) 20; б) 24; в) 6; г) 48. 49.11. а) 200; б) 162; в) 100; г) 99. 49.12. а) 4; б) 8; в) 4; г) 8. 49.13. а) Это событие B; б) есть ученик, сдавший экзамен, но есть и ученик, не сдавщий экзамен; в) это событие B; г) это событие B. 49.14. а) Все трое не сдали экзамен; б) или все трое сдали экзамен, или все трое не сдали экзамен; в) никто не сдал экзамен; г) ни один ученик не сдал экзамен. 49.15. а) Это цифра 8; б) это цифра 9; в) это цифра 9; г) невозможное событие. 49.17. а) 0,119; б) 0,476; в) 0,476; г) 0,952. 49.18. а)  $\frac{3n}{4(2n-1)}$ ; б) указание: постройте график функции из а); в) 0,375; г) 9.

49.19.

n	1	2	3	4	5	6	7	8	9
p(n)	5 9	519	5 14	10 63	$\frac{5}{126}$	0	0	0	0

49.20.

n	0	1	2	3	4	5	6
p(n)	0	1/3	8 15	ಇಟ	8 15	1/3	0

**49.21.** a) 0,051; 6) 0,338; b) 0,662; r) 0,974. **49.22.** a) 
$$\frac{5n^2-7n}{4(2n-1)(2n-3)}$$
;

- б) указание: исследуйте функцию из а) на монотонность; в) 0,3125; г) 6. 49.23. а) 0,125; б) 0,125; в) 0,375; г) 0,875. 49.24. а) 0,0625; б) 0,0625;
- в) 0,25; г) 0, 9375. **49.25**. а) 1 2⁻¹; б) возрастает; в) 1; г) 10. **49.26**. а) 0,729;
- 6) 0,271; B) 0,125; r) 0,875. **49.27.** a)  $1 0,9^n$ ; 6) Bospactaet; B) 1; r) 7. **49.28.** a) 0,303; 6) 0,211; B)  $\left(\frac{23}{33}\right)^{n-1} \cdot \left(\frac{10}{33}\right)$ ; r) 0.

**49.29.** a)  $0.9^{n-1}0.1$ ; 6) 0;

1 2 3 4 5 6 7 n0,0729 0.0531441 p(n)0,1 0,09 0,081 0,06561 0.059049

r) 1. 49.30. a) 0,5; б) 0,8; в) 0,6; г) 0,1.

## дополнительные задачи

7.48. a) 0; б) 4. 8.53. a) 20; б) 8. 8.54. a) 0; б) 3. 9.36. a) Нет корней; б) x = 8n,  $n \in \mathbb{Z}$ ; в)  $-\infty < x < +\infty$ ; г)  $-4 \le x \le -3$ ;  $3 \le x \le 5$ . 9.37. a) 0, 0, 1; б) 6. 14.37. a) 6; б) 6. 16.73. a) 3 и 2; б) 3 и 2; в) 2 и 1; г) 1 и 2. 13.54. 2. 16.74. a) 3; б) 3; в) 4; г) 5. 16.75. a) -10; б) -8; в) -6; г) 9,8. 20.30.  $x = \frac{1}{3}$ . 20.31. a) 4; б) 10. 21.63. a) 200; б) 100; в) 50; г) 50. 21.64. a) 1; б) 12; в) 5; г) 16. 21.65. a) 5; б) нет корней. 22.69. a) 3; б) 3. 23.43. a)  $x = \pi n$ ,  $x = -\frac{\pi}{4} + 2\pi n$ ,  $x = -\arctan \frac{1}{3} + 2\pi n$ ; б)  $x = 2\pi n$ ,  $x = -\arctan \frac{3}{2} + 2\pi n$ .

23.44. a)  $x = \frac{\pi}{3} + 2\pi n$ ,  $x = \frac{2\pi}{3} + 2\pi n$ ; б) нет решений. 23.45.  $x = 2\pi n$ . 24.53. a) 2; б) 3; в) 8; г) 12. 27.73. a) 7; б) 9. 28.39. a) 3; б) 2; в) 2; г) 3. 30.27. б. 30.28.  $x = \frac{\pi}{4} + 2\pi n$ . 40.17. a) -2,25; б) 1,5. 45.16. 0,5. 46.65. 101. 46.66. a) 1,  $-2\sqrt{2} - 2$ ; б) [-23; 9].

# ОГЛАВЛЕНИЕ

П	реди	исловие для учителя	3
38	дач	и на повторение	5
		FRADA 1	
		глава 1. <b>действительные числа</b>	
§	1.	Натуральные и целые числа	12
§	2.	Рациональные числа	18
ş	3.	Иррациональные числа	20
§	4.	Множество действительных чисел	23
§	5.	Модуль действительного числа	27
§	6.	Метод математической индукции	32
		ГЛАВА 2. <b>Числовые функции</b>	
§	7.	Определение числовой функции и способы ее задания	38
§	8.	Свойства функций	46
ş	9.	Периодические функции	55
§		Обратная функция	61
		глава 3. <b>Тригонометрические функции</b>	
§	11.	Числовая окружность	69
§	12.	Числовая окружность на координатной плоскости	74
		Синус и косинус. Тангенс и котангенс	77
§	14.	Тригонометрические функции числового аргумента	83
§	15.	Тригонометрические функции углового аргумента	88
§	16.	Функции $y = \sin x$ , $y = \cos x$ , их свойства и графики	90
§	17.	Построение графика функции $y = mf(x)$	100
§	18.	Построение графика функции $y = f(kx)$	105
		График гармонического колебания	
		Функции $y = \operatorname{tg} x$ , $y = \operatorname{ctg} x$ , их свойства и графики	
		Обратные тригонометрические функции	

# ГЛАВА 4. Тригонометрические уравнения

§	22.	Простейшие тригонометрические уравнения				
		и неравенства				
§	23.	Методы решения тригонометрических уравнений 13	2			
	Ŋ	ПАВА 5. Преобразование тригонометрических выражений				
§	24.	Синус и косинус суммы и разности аргументов 13	7			
§	<b>25</b> .	Тангенс суммы и разности аргументов 14	4			
§	26.	Формулы приведения 14	.7			
§	§ 27. Формулы двойного аргумента.					
		Формулы понижения степени	2			
§	28.	Преобразование суммы тригонометрических функций				
		в произведение	1			
§	29.	Преобразование произведения тригонометрических				
		функций в сумму 16	5			
§	<b>30.</b>	Преобразование выражения $A \sin x + B \cos x$ к виду				
		$C\sin(x+t)$	9			
§	31.	Методы решения тригонометрических уравнений				
		(продолжение)	2			
		ГЛАВА 6. Комплексные числа				
§	32.	Комплексные числа и арифметические операции				
Ü		над ними	6			
8	33.	Комплексные числа и координатная плоскость 18				
		Тригонометрическая форма записи комплексного числа 18				
		Комплексные числа и квадратные уравнения 19				
		Возведение комплексного числа в степень.				
Ť		Извлечение кубического корня из комплексного числа 19	13			
			•			
			•			
		ГЛАВА 7. <b>Производная</b>				
		ГЛАВА 7. <b>Производная</b> Числовые последовательности	97			
§	38.	ГЛАВА 7. <b>Производная</b> Числовые последовательности	97			
8	38. 39.	ГЛАВА 7. <b>Производная</b> Числовые последовательности	)? )6			
888	38. 39. 40.	ГЛАВА 7. <b>Производная</b> Числовые последовательности	)7 )6   1   21			
888	38. 39. 40.	ГЛАВА 7. <b>Производная</b> Числовые последовательности	)7 )6   1   21			
8888	38. 39. 40. 41.	ГЛАВА 7. <b>Производная</b> Числовые последовательности 19 Предел числовой последовательности 20 Предел функции 21 Определение производной 22 Вычисление производных 22 Дифференцирование сложной функции.	)7 )6 11 21 24			
8888	38. 39. 40. 41.	ГЛАВА 7. Производная         Числовые последовательности       19         Предел числовой последовательности       20         Предел функции       21         Определение производной       22         Вычисление производных       22	)7 )6 11 21 24			

Ş	43.	Уравнение касательной к графику функции 238
§	44.	Применение производной для исследования функций
-		на монотонность и экстремумы
§	<b>45</b> .	Построение графиков функций
ş	46.	Применение производной для отыскания наибольших
		и наименьших значений величин
		ГЛАВА 8. Комбинаторика и вероятность
§	47.	Правило умножения. Перестановки и факториалы 274
§	48.	Выбор нескольких элементов.
		Биномиальные коэффициенты
§	49.	Случайные события и их вероятности 283
Д	опоз	пнительные задачи
o	твет	ъ

#### Учебное издание

Мордкович Александр Григорьевич, Денищева Лариса Олеговна, Звавич Леонид Исаакович и др.

#### АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

10 класс В двух частях Часть 2

ЗАДАЧНИК для учащихся общеобразовательных учреждений (профильный уровень)

Генеральный директор издательства М. И. Безвиконная Главный редактор К. И. Куровский. Редактор С. В. Бахтина Оформление и художественное редактирование: С. А. Сорока Технический редактор И. Л. Ткаченко. Корректор И. Н. Баханова Компьютерная верстка: А. А. Горкин

> Санитарно-эпидемиологическое заключение № 77.99.60.953. II.001625.02.08 от 29.02.2008.

Формат  $60 \times 90^4/_{16}$ . Вумага офсетная № 1. Гарпитура «Школьная». Печать офсетная. Усл. печ. л. 21,5. Тираж 30 000 экз. Заказ № 0901200.

Издательство «Мнемозина». 105043, Москва, ул. 6-я Парковая, 29 б.

Тел.: 8 (499) 367 5418, 367 5627, 367 6781; факс: 8 (499) 165 9218.

E-mail: ioc@mnemozina.ru www.mnemozina.ru

Магазин «Мнемозина» (розничная и мелкооптовая продажа книг). 105043, Москва, ул. 6-я Парковая, 29 б.

Тел.: 8 (495) 783 8284, 783 8285, 783 8286.

Торговый дом «Мнемозина» (оптовая продажа книг). Тел./факс: 8 (495) 665 6031 (многоканальный).

E-mail: td@mnemozina.ru



Отпечатано в полном соответствии с качеством предоставленного электронного оригинал-макета в ОАО «Ярославский полиграфкомбинат» 150049, Ярославль, ул. Свободы, 97

. SBN 978-5-346 01202-785346 012023

ı