

Knowledge-Based Agents

Wumpus World

- The wumpus world is a cave consisting of rooms connected by passageways.
- Lurking somewhere in the cave is the terrible wumpus, a beast that eats anyone who enters its room.
- The wumpus can be shot by an agent, but the agent has only one arrow.
- Some rooms contain bottomless pits that will trap anyone who wanders into these rooms (except for the wumpus, which is too big to fall in).
- The only redeeming feature of this bleak environment is the possibility of finding a heap of gold.

Wumpus World

Performance measure

Environment

Actuators

Sensors

Performance measure

- +1000 for climbing out of the cave with the gold
- -1000 for falling into a pit or being eaten by the Wumpus
- -1 for each action taken, and
- -10 for using up the arrow.

• The game ends either when the agent dies or when the agent climbs out of the cave.

Environment

- A 4*4 grid of rooms, with walls surrounding the grid.
- The agent always starts in the square labeled [1,1], facing to the east.
- The locations of the gold and the wumpus are chosen randomly, with a uniform distribution, from the squares other than the start square.
- In addition, each square other than the start can be a pit, with probability 0.2.

Actuators

- The agent can move Forward, TurnLeft by 90, or TurnRight by 90.
- The agent dies a miserable death if it enters a square containing a pit or a live wumpus.
- If an agent tries to move forward and bumps into a wall, then the agent does not move.
- The action Grab can be used to pick up the gold if it is in the same square as the agent.
- The action Shoot can be used to fire an arrow in a straight line in the direction the agent is facing. The arrow continues until it either hits (and hence kills) the wumpus or hits a wall.
- The agent has only one arrow, so only the first Shoot action has any effect.
- Finally, the action Climb can be used to climb out of the cave, but only from square [1,1].

Sensors

- In the squares directly (not diagonally) adjacent to the wumpus, the agent will perceive a *Stench*.
- In the squares directly adjacent to a pit, the agent will perceive a **Breeze**.
- In the square where the gold is, the agent will perceive a *Glitter*.
- When an agent walks into a wall, it will perceive a *Bump*.
- When the wumpus is killed, it emits a woeful *Scream* that can be perceived anywhere in the cave.

Playing the game – the basic approach

- The agent knows its goal
 - getting the gold without falling in a pit or getting killed by Wumpus
- Agent knows that the layout is a rectangular grid of rooms
- Agent can sense breeze and stench
- infers that neighboring room has pit or Wumpus
- The agent needs to build a map of its world
- based on the inputs it receives from its sensors it has to infer
 - which rooms are safe
 - which rooms have pit
 - which room has Wumpus
 - which room has gold
 - return path from room with gold to the Start node
- Building of map requires inferencing

Playing the game – some details

- The agent starts with some knowledge
 - about gold, Wumpus, pits, breeze, stench etc.
- The agent starts from Start node and knows that node is safe
- Knows nothing about the state of other rooms
- Can sense breeze, stench or nothing in a given room
- This gives some information about adjacent rooms
 - e.g. if agent is in room (i, j) and feels a breeze then at least one of the 4-neighbors has a pit
 - how can the agent know which neighbor has a pit?
- Based on this type of information, it has to build a map of its world

The ingredients

Knowledge base

- need a representation
- a matrix of room numbers
- info about the room i.e. world view

• The inferencing system

- uses the prior knowledge
- uses the percept sequence
- infers new knowledge
- adds it to the prior knowledge

After each step

- Inputs from sensors collected
- Inferencing system uses these inputs and the KB to infer something about neighboring rooms
- Adds this information to the KB
- Agent takes next step by querying KB

The knowledge base for Wumpus World

- The Wumpus world is defined by
 - the rooms labelled as (x, y)
 - the state of the rooms
- What are the possible states of any room?
 - Not Known (NK)
 - Safe (S)
 - Wumpus in neighborhood(WN)
 - Pit in neighborhood (PN)
 - Goal (G)

- Initially, all rooms except Start, are NK
- As the agent progresses, the states of rooms will change based on
 - inputs from sensors
 - current knowledge of the world

Understanding the Knowledge Base

- Knowledge base has to
 - store the knowledge relevant for the specific problem
 - allow the inferencing system to interact with it
 - allow new knowledge to be added by inferencing system
- How do we represent knowledge?
- For the Wumpus world it was sufficient to store current information about each room

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square
1,3	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
1,2 OK	2,2	3,2	4,2	D D
1,1 A OK	2,1 OK	3,1	4,1	

2,2 P? OK 2,1 A 3,1 P? 1,1 4,1 B V OK OK

3,4

3,3

3,2

4,4

4,3

4,2

1,4

1,3

1,2

2,4

2,3

None, None, None, None,

None, Breeze, None, None, None,

2.4	3.4	4,4
_,,		
2,3	3,3	4,3
2,2 OK	3,2	4,2
	la constant	10.0
V	3,1 P!	4,1
	2,2 OK ^{2,1} B	2,3 3,3 2,2 3,2 OK 2,1 B V 3,1 P!

= Agent = Breeze = Glitter, Gold OK = Safe square = Pit= Stench = Visited = Wumpus

1,4	2,4 P ?	3,4	4,4
^{1,3} w!	2,3 A S G B	3,3 P?	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

Stench, None, None, None, None,

Stench, Breeze, Glitter, None, None,