

Métodos Numéricos para Ingeniería Método de Steffensen

Algoritmo del método de Steffensen

Para encontrar una solución para p=g(p) dada una aproximación p_0 [1]:

ENTRADA	aproximación inicial p_0 , tolerancia TOL , número máximo de iteraciones N_0 .
SALIDA	solución aproximada p o un mensaje de falla.
Paso 1	Determine $i = 1$.
Paso 2	Mientras $i \leq N_0$ haga los pasos 3-6 .
	Paso 3 Determine $p_1 = g(p_0)$; (Calcule $p_1^{(i-1)}$.)
	$p_2 = g(p_1); \text{ (Calcule } p_2^{(i-1)}.\text{)}$
	$p = p_0 - (p_1 - p_0)^2 / (p_2 - 2p_1 + p_0)$. (Calcule $p_0^{(i)}$.)
	Paso 4 Si $ p - p_0 < TOL$ entonces
	SALIDA (p) ; (El procedimiento fue exitoso.)
	PARE.
	Paso 5 Determine $i = i + 1$.
	Paso 6 Determine $p_0 = p$. (Actualize p_0 .)
Paso 7	SALIDA ('El método falló después de N_0 iteraciones, $N_0 = ', N_0$);
	(El procedimiento no fue exitoso.)
	PARE.

Problema

El balance de masa de un contaminante en un lago bien mezclado se expresa así [2]:

$$V\frac{dc}{dt} = W - Qc - kV\sqrt{c}$$

Dados los valores de los parámetros $V=1\times 10^6\,[m^3],\ Q=1\times 10^5\,[m^3/\text{año}],\ W=1\times 10^6\,[g/\text{año}]$ y $k=0.25\,[m^{0.5}/\text{año}]$, se puede determinar la concentración de estado estable, $\frac{dc}{dt}=0$, a partir de la ecuación no lineal:

$$W - Qc - kV\sqrt{c} = 0 (0.1)$$

Actividades

- (1) Escriba la ecuación (0.1) en la forma c = g(c).
- (2) Implemente en Python el algoritmo del método de Steffensen.
- (3) Encuentre el punto fijo de la función g del ítem (1):
 - (a) Gráficamente.
 - (b) Empleando el algoritmo del método de Steffensen, considerando una tolerancia de 10^{-10} y un máximo de 100 iteraciones.

Bibliografía

- 1. Richard L. Burden, Douglas J. Faires, Annette M. Burden. Análisis Numérico. 10a edición. Cengage Learning. 2017.
- 2. Steven C. Chapra, Raymond P. Canale. Métodos Numéricos para Ingenieros. 5a edición. McGraw-Hill, México. 2007.