Álgebra Relacional

Bancos de Dados I
Altigran Soares da Silva
IComp/UFAM - 2018/02
Adaptado do Material do Professor Jeffrey Ullman

O que éAlgebra Relacional?

- Um Álgebra cujos operandos são relações ou variáveis que representam relações
- Os operandos foram projetados de forma a cobrir operações comuns sobre relações em um Banco de dados

O que é uma "Álgebra"

- Sistema mátemático que consiste de:
 - Operandos: variáveis or valores a partir dos quais novos valores podem ser gerados
 - Operadores --- símbolos que denotam operações que geram novos valores a partir de valores existentes

2

Por que Álgebra Relacional?

- Não é usada hoje como linguagem de consulta em SGBDs comerciais
 - Embora alguns dos primeiros protótipos tenham usado.
- Em vez disso, a linguagem de consulta "real", a SQL, incorpora a AR em seu cerne
 - Muitos comandos em SQL são na realidade expressões sintaticamente "açucaradas" da AR
- No processamento de consultas em um SGBD, a primeira coisa que acontece a uma consulta SQL é sua tradução em AR ou em uma representação interna muito semelhante.

Operações Básicas

- União, Intersecção e Diferença
 - Operações usuais sobre conjuntos, mas os dois operandos devem ter um mesmo esquema
- Seleção: filtra um subconjunto das linhas
- Projeção: filtra um subconjunto das colunas
- Produtos e Junções: combina dados de tabelas diferentes
- Renomeação de relações e atributos

Seleção

- R1 := $\sigma_c(R2)$
 - C é uma condição que se refere aos atributos de R2.
 - R1 é formada pelas tuplas de R2 que satisfazem C.
 - R1 tem o mesmo esquema de R2

Exemplo: Seleção

Tabela Vendas

Bud	2,50
Miller	2,75
Bud	2,50
Miller	3,00
	Miller Bud

ZecaMenu := $\mathbf{O}_{bar="Zeca's"}$ (Vendas):

bar	cerveja	valor
Zeca's	Bud	2,50
Zeca's	Miller	2,75

Projeção

- R1 := Π_L (R2)
 - □ L é uma lista de atributos de R2.
 - R1 é construída tomando cada tupla de R2, e extraindo somente os atributos da lista L, na ordem specificada
 - Se houverem tuplas duplicadas, estas são eliminadas

Exemplo: Projeção

Tabela Vendas

s	bar	cerveja	valor
7	Zeca's	Bud	2,50
7	Zeca's	Miller	2,75
(Coroado	Bud	2,50
(Coroado	Miller	3,00
4			

valores := $\Pi_{cerveja,valor}$ (Vendas):

cerveja	valor
Bud	2.50
Miller	2.75
Miller	3.00

 Usando o mesmo operador π_L, a lista L pode conter expressões arbitrárias sobre os atributos:

- 1. Aritmética sobre os atributos
 - Ex: A+B->C.

Projeção Extendida

2. Vária ocorrências do mesmo atributo

9

Exemplo: Projeção Estendida

R = (A B) 1 2 3 4

$$\pi_{A+B->C,A,A}$$
 (R) =

	-	
0	► A1 ^{<}	A2
3	1	1
7	3	3

Produto Cartesiano

- R3 := R1 X R2
 - Emparelha cada tupla t1 de R1 com cada tupla t2 de R2.
 - Cada tupla de R3 é um concatenação t1t2
 - O esquema de R3 é composto por todos os atributos de R1 e R2, na ordem.
 - □ Se houver um atributo com o mesmo nome A em R1 e R2: usar R1.A e R2.A.

10

Exemplo: R3 := R1 **X** R2

R1(A, B)
1 2
3 4

R2(B, C 5 6 7 8 9 10

R3(Α,	R1.B,	R2.B,	C)
	1	2	5	6 8 10
	1	2	7	8
	1	2 2 2 4 4	9 5	10
	3	4	5	6
	3 3 3	4	7	8
	3	4	9	6 8 10

Junção Theta

- R3 := R1 \bowtie_{c} R2
 - □ Toma o R1 X R2.
 - \Box Aplica \mathbf{O}_C ao resulta
- Em σ, C pode ser qualquer condição booleana
 - Versões históricos só permitiam operadores θ =,
 , etc.; por isso o nome "junção theta"

1.

Exemplo: Junção Theta

Vendas

3	bar	cerveja	valor
	Zeca's	Bud	2.50
	Zeca's	Miller	2.75
	Coroado	Bud	2.50
	Coroado	Coors	3.00

Bares

nome	endereço
Zeca's	R.Octávio
Coroado	Beira Rio

BarInfo := Vendas

→ Vendas.bar = Bares.nome Bares

BarInfo

bar	cerveja	valor	nome	endereço
Zeca's	Bud	2.50	Zeca's	R. Octávio
Zeca's	Miller	2.75	Zeca's	R. Octávio
Coroado	Bud	2.50	Coroado	Beira Rio
Coroado	Coors	3.00	Coroado	Beira Rio

Junção Natural

- Junção com atributos de mesmo nome
 - Aplica comparação de igualdade entre atributos de mesmo nome
 - Somente um dos atributos de mesmo nome é mantido.
- Denotada por R3 := R1 M R2.

Exemplo: Junção Natural

Vendas

s	bar	cerveja	valor
	Zeca's	Bud	2.50
	Zeca's	Miller	2.75
	Coroado	Bud	2.50
	Coroado	Coors	3.00

Bares

bar	endereço
Zeca's	R.Octávio
Coroado	Beira Rio

BarInfo := Vendas ⋈ Bares

BarInfo

bar	cerveja	valor	endereço
Zeca's	Bud	2.50	R. Octávio
Zeca's	Miller	2.75	R. Octávio
Coroado	Bud	2.50	Beira Rio
Coroado	Coors	3.00	Beira Rio

Exemplo: Renomeação

Bares

nome	endereço
Zeca's	R. Octávio
Coroado	Beira Rio

Onde(bar, local) := Bares

Onde

bar	local
Zeca's	R. Octávio
Coroado	Beira Rio

Renomeação

- Operador ρ
 - modifica o esquema da relação
- R1 := $\rho_{R1(A1,...,An)}(R2)$
 - □ cria R1 com os atributos A1,...,An
 - □ R1 tem as mesmas tuplas de R2.
- Notação Simplificada: R1(A1,...,An) := R2.

Construindo Expressões Complexas

- Operadores podem ser combinados
 - Regras Precedência e Parênteses
- Três notações, como em aritmética
 - 1. Sequências de comandos de atribuição
 - 2. Expressões com múltiplos operadores.
 - 3. Árvores de Expressão

Sequencias de Atribuições

- Utiliza nomes de relações temporárias
- Pode ocorrer renomeação implícita de atributos
- Exemplo: R3 := R1 ⋈_C R2 pode ser escrita:

R4 := R1 X R2

 $R3 := \mathbf{O}_C(R4)$

Expressões com Múltiplos Operadores

- Exemplo: R3 := R1 ⋈_C R2
- R3 := $\sigma_{\rm C}$ (R1 X R2)
- Precedência de Operadores:
 - [σ, π, ρ] (maior).
 - [X, ⋈].
 - \(\)
 - [U, —]

21

Arvores de Expressão

- Folhas são operandos
 - Variables representando relações ou as próprias relações
- Nodos internos são operadores aplicados aos nó(s) filho(s)

Exemplo: Árvores de Expressão

- Sejam as relações Bares(nome, endereço) e Vendas(bar, cerveja, valor)
- Defina uma expressão para encontrar os nomes dos bares que se encontram na "R.Octávio" ou que vendem Bud por menos de R\$3,00.

Árvore de Expressão

Exemplo: Auto-Junção

- Considere Vendas(bar, cerveja, valor)
- Quais os bares que vendem duas cervejas diferentes pelo mesmo preço?

25

Exemplo: Auto-Junção

Estratégia:

- Defina, usando renomeação, uma cópia de Vendas da seguinte forma S(bar, cerveja1, valor)
- A junção natural de Vendas com S contêm quádruplas (bar, cerveja, cerveja1, valor) tal que o bar vende as duas cervejas pelo mesmo preço

Árvore de Expressão

Esquema dos Resultados

- União, interseção e diferença:
 - Os esquemas dos dois operandos devem ser os mesmas. Esse esquema será o do resultado.
- Seleção:
 - esquema do resultado é o mesmo que o esquema do operando.
- Projeção:
 - lista de atributos define o esquema

Álgebra Relacional sobre Bags

- Bags (ou multi-conjuntos) são conjuntos onde um mesmo elemento pode ocorrer mas de uma vez
 - □ {1,2,1,3} é um bag mas não é um conjunto.
 - □ {1,2,3} é um bag que também é um conjunto.

Esquema dos Resultados

- Produto e Junção-Theta:
 - esquema contêm todos os atributos de ambas as relações
 - Atributos com o mesmo nome podem ser usados com prefixos, ex., R.A
- Junção natural:
 - união dos atributos das duas relações.
- Renomear:
 - o operador detemina o esquema

3

Por que Bags?

- A SQL, linguagem mais importante para BDs relacionais, atua na realidade sobre Bags.
- Alguns operadores, como a projeção, são mais efetivos sobre bags que sobre conjuntos.

Operações sobre Bags

- Seleção: se aplica a cada tupla, por isso seu efeito sobre bags é o mesmo que sobre conjuntos.
- Projeções quando aplicadao sobre bags não elimina duplicatas.
- Produtos e Junções são aplicadas sobre pares de tuplas. Portanto duplicatas em bags não trazem efeitos.

Exemplo: Seleção em Bags

$$\mathbf{O}_{A+B<5}(R) = A B$$
1 2
1 2

33

Exemplo: Projeção em Bags

R(A, B) 1 2 5 6 1 2

Exemplo: Produto em Bags

R(A, B 1 2 5 6 1 2

B, C) 3 4 7 8

R X S = A R.B S.B 0

1 2 3 4

1 2 7 8

5 6 3 4

5 6 7 8

1 2 3 4

Exemplo: Junção-Theta em Bags

R(A,	В)
	1	2	
	5	6	A
	1	2	

União em Bags

- O número de vezes que um elemento aparecerá na união dos Bags é igual a soma do número de vezes que ele aparece nas duas Bags
- Exemplo:

$$\square$$
 {1,2,1} \cup {1,1,2,3,1} = {1,1,1,1,1,2,2,3}

Interseção em Bags

- O número de vezes que um elemento aparecerá na intersecção dos Bags é igual ao mínimo entre o número de vezes que ele aparece nas duas Bags
- Example:

Diferença em Bags

- O nr. de vezes que um elemento aparecerá na em A – B é igual ao nr. de vezes que ele aparece em A menos o nr. de vezes que aparece em B
- Mas nunca é menor que 0!
- Exemplo:

$$\square$$
 {1,2,1,1} $-$ {1,2,3} = {1,1}.

Cuidados!

- Leis de Bags <> Leis de Conjuntos
- Nem todas as leis algebricas de conjuntos se aplicam!

Exemplo

A união de conjuntos é idempotente

$$\square$$
 S \cup S = S.

Em Bags isso nem sem se aplica

$$\square$$
 {1} \cup {1} = {1,1} != {1}.

41

Algebra Extendida

 δ = elimina duplicados de *bags*.

T = ordena tuplas.

Y = agrupamento e agregação.

M = Junção Externa ou Outerjoin : evita "dangling tuples" (tuplas pendentes) = tuplas que não são associadas

Eliminar Duplicidade

- R1 := δ (R2).
- R1 consiste de uma cópia de cada tupla que aparece em R2 uma ou mais vezes.

Exemplo: Eliminando Duplicidade

$$R = \begin{pmatrix} A & B \\ 1 & 2 \\ 3 & 4 \\ 1 & 2 \end{pmatrix}$$

$$\delta(R) = \begin{array}{c|c} A & B \\ \hline 1 & 2 \\ 3 & 4 \end{array}$$

Ordenando

- R1 := **T**_L (R2).
 - □ L é uma lista de alguns atributos de R2.
- R1 é uma lista de tuplas de R2 ordenada primeiramente usando o valor do primeiro atributo de L, então o segundo atributo de L é usado, e assim sucessivament.
- T é somente um operador que resulta um conjunto e não uma *bag*.

45

Exemplo: Ordenando

$$R = \begin{pmatrix} A & B \\ 1 & 2 \\ 3 & 4 \\ 5 & 2 \end{pmatrix}$$

$$T_B(R) = [(5,2), (1,2), (3,4)]$$

Operação de Agregação

- Operadores de Agregação não são operadores da Algebra Relacional.
- Na verdade, eles se aplicam para uma coluna inteira de uma tabela, e produzem um resultado único.
- Operadores importantes: SUM, AVG, COUNT, MIN, e MAX.

46

Exemplo: Agregação

$$R = \begin{pmatrix} A & B \\ 1 & 3 \\ 3 & 4 \\ 3 & 2 \end{pmatrix}$$

$$SUM(A) = 7$$

 $COUNT(A) = 3$
 $MAX(B) = 4$
 $AVG(B) = 3$

49

Aplicando $\mathbf{Y}_{L}(\mathbf{R})$

- Agrupa R de acordo com todos os atributos contidos na lista L.
 - Isto é: forma um grupo para cada lista de valores para estes atributos em R.
- Dentre cada grupo, computa AGG(A) para cada agregação da lista L.
- O resultado tem uma tupla para cada grupo:
 - 1. Os atributos agrupados e
 - seu atributo devidamente computado, conforme operador de agregação.

Operadores para Agrupamento

- R1 := Y_L (R2). L é uma lista de elementos que são:
 - 1. Atributo Individual (grouping).
 - 2. AGG(A), onde AGG é um dos operadores de agregação e A é um atributo.
 - Uma seta e um novo nome de atributo renomeia o componente.

Exemplo: Agrupamento/Agregação

$$R = \begin{pmatrix} A & B & C \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 5 \end{pmatrix}$$

 $Y_{A,B,AVG(C)->X}(R) = ??$

Então, média de *C* Com os grupos:

Primeiro, agrupa R usando A e B:

Α	В	C	
1 1	2 2	3 5	AVG operador de
4	5	6	agregação

	Α	В	Χ
	1	2	4
Ì	4	5	6

Exemplo: Junção Externa (Outerjoin)

$$R = \begin{array}{|c|c|} \hline (A & B) \\ \hline 1 & 2 \\ 4 & 5 \end{array}$$

$$S = \begin{array}{|c|c|} \hline (B & C) \\ \hline 2 & 3 \\ 6 & 7 \\ \hline \end{array}$$

(1,2) e associada (2,3), mas as outras duas tuples ficam pendentes

$$RMS =$$

	A	В	C	
	1	2	3	
` 	4	5	NULL	
	NULL	6	7	