[AUTOMOTIVE DOOR CONTROL SYSTEM DESIGN]

Dynamic Design

ECU1

• A state machine diagram for each component:

• A state machine diagram for the ECU operation:

• A sequence diagram for the ECU:

• CPU load for the ECU:

Cpu load = total execution time / hyperperiod (assume 0.5 ms execution time for each task) = (.5*1)+(.5*2)+(.5*4)/20 = 0.175*100 = 17.5%

ECU2

• A state machine diagram for each component:

• A state machine diagram for the ECU operation:

• A sequence diagram for the ECU:

CPU load for the ECU:

Cpu load = total execution time / hyperperiod = (.5*4)+(.5*4)/20 = 0.2*100 = 20%

(assume 0.5 ms execution time for each task)

> Bus load

1 CAN fram contain approximately 125 bit.

bit time = 1/bit rate = 1/(500*1000s) = 2u

1 bit will take 2u o transfer

Time to transfer 1 frame = 2*125 = 250

1 frame every 5ms = 200 frame every 1000ms

1 frame every 10ms = 100 frame every 1000ms

1 frame every 20ms = 50 frame every 1000ms

Total 350 frame = ((350*250)u/(1000*1000))*100 = 8.75%