Class Piggybank 1

โจทย์ข้อนี้ให้สร้างคลาส piggybank เพื่อผลิตอ็อบเจกต์กระปุกออมสิน ที่สามารถหยอดเหรียญ 1, 2, 5, และ 10 ได้ไม่จำกัด ผ่านเมท็อด add1, add2, add5, และ add10 สามารถใช้ int() ที่คืนมูลค่ารวมของเงินในกระปุก และสามารถเปรียบเทียบมูลค่าสองกระปุกด้วย < ได้ ตาม โครงของคลาสและตัวอย่างการใช้งานข้างล่างนี้ จงเขียนคลาสนี้ให้สมบูรณ์

โครงของคลาส piggybank	ตัวอย่างการใช้งาน piggybank	
class piggybank: definit(self): # มีตัวแปร 4 ตัวเก็บจำนวนเหรียญของเหรียญแต่ละแบบ	<pre>p1 = piggybank() print(int(p1))</pre>	# 0
def add1(self, n): # ເพิ่ม n ในตัวแปรที่เก็บจำนวนเหรียญบาท	p1.add1(10) print(int(p1))	# เพิ่มเหรียญ 1 บาท 10 เหรียญ # 10
def add2 (self, n) : # เพิ่ม n ในตัวแปรที่เก็บจำนวนเหรียญสองบาท	p1.add2(5) print(int(p1))	# เพิ่มเหรียญ 2 บาท 5 เหรียญ # 20
def add5 (self, n) : # เพิ่ม n ในตัวแปรที่เก็บจำนวนเหรียญห้าบาท	p1.add5(2) print(int(p1))	# เพิ่มเหรียญ 5 บาท 2 เหรียญ # 30
def add10(self, n): # เพิ่ม n ในตัวแปรที่เก็บจำนวนเหรียญสิบบาท	p1.add10(1) print(int(p1))	# เพิ่มเหรียญ 10 บาท 1 เหรียญ # 40
defint(self): # คืนมูลค่ารวม = ค่าของเหรียญคูณกับจำนวนเหรียญ	p2 = piggybank() p2.add10(5)	# เพิ่มเหรียญ 10 บาท 5 เหรียญ
deflt(self, rhs): # เปรียบเทียบจำนวนเงินใน self กับจำนวนเงินใน rhs	print(p1 < p2)	# True
defstr(self): # คืนสตริงที่แสดงจำนวนเหรียญแต่ละแบบตามตัวอย่าง	<pre>print(str(p1)) print(p2)</pre>	# {1:10, 2:5, 5:2, 10:1} # {1:0, 2:0, 5:0, 10:5}

เมท็อด __it__ ถูกเรียกเมื่อเราใช้ตัวปฏิบัติการ < กับ piggybank สองตัว เพื่อเปรียบเทียบว่าตัวซ้ายน้อยกว่าตัวขวาหรือไม่ เมท็อด __int__ ถูกเรียกเมื่อ int(p) ทำงาน โดยที่ p เป็น piggybank ได้ผลลัพธ์เป็น int แทนค่าของ p เมท็อด __str__ ถูกเรียกเมื่อ str(p) ทำงาน โดยที่ p เป็น piggybank ได้ผลลัพธ์เป็นสตริงแทนค่าของ p

การส่งตรวจ

ให้นำโปรแกรมข้างล่างนี้ ต่อท้าย class piggybank ที่เขียนข้างบนนี้ แล้วจึงส่งให้ grader ตรวจ

```
cmd1 = input().split(';')
cmd2 = input().split(';')
p1 = piggybank(); p2 = piggybank()
for c in cmd1: eval(c)
for c in cmd2: eval(c)
```

ข้อมูลนำเข้า

คำสั่งต่าง ๆ เพื่อการทดสอบคลาส

ข้อมูลส่งออก

ผลการทำงานของโปรแกรมข้างบนที่อาศัยคลาส piggybank

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
p1.add1(1);p1.add2(2);p1.add5(3);p1.add10(4) print(int(p1), str(p1))	60 {1:1, 2:2, 5:3, 10:4}
p1.add1(1);p1.add2(2);p1.add5(3);p1.add10(4) p2.add1(61); print(p1 < p2)	True