Nota. В строгом определении интегральная сумма строится так:

 $M_{i-1}M_i$ - элементарная дуга

 Δl_i - длина элемента

 Δs_i - длина стягивающей дуги

 $\Delta l_i \approx \Delta s_i$

 $M_{\rm cp.}(\xi_i,\eta_i)$ - ср. точка элемента

$$\sigma_n = \sum_{i=1}^n f(\xi_i, \eta_i) \Delta s_i$$

II рода. Задача (вычисление работы силы вдоль пути)

Вдоль пути \overrightarrow{AB} действует сила $\overrightarrow{F} = (P(x,y), Q(x,y))$

Найдем элементарную работу $dA = \overrightarrow{F}_{cp.} d\overrightarrow{s}$, где $d\overrightarrow{s}$ - элементарное приращение

 $\overrightarrow{ds} = (dx, dy) = (\cos \alpha ds, \sin \alpha ds)$

 $\overrightarrow{F}_{ ext{cp.}}$ - значение силы на эл. участке в какой-либо его точке

Тогда. $dA = (P(x, y), Q(x, y)) \cdot (dx, dy) = P(x, y)dx + Q(x, y)dy$

$$A = \int_{AB} dA = \int_{AB} P dx + Q dy$$
 - интеграл II рода (в проекциях)

Nota. В проекциях, потому что $F_x = P, F_y = Q$, таким образом скалярное произведение записано в проекциях

При этом часто рассматривают по отдельности

$$\int_{AB} f(x,y) dx$$
 и $\int_{AB} g(x,y) dy$

Nota. Связь интегралов I и II рода

$$\int_{L} P dx + Q dy = \int_{L} (P, Q)(dx, dy) = \int_{L} (P, Q)(\cos \alpha, \cos \beta) \underbrace{ds}_{\approx dl} = \int_{L} (P \cos \alpha + Q \cos \beta) dl$$

Обозначим $\overrightarrow{\tau} = (\cos \alpha, \cos \beta)$

По теореме Лагранжа $\exists (\xi, \eta) \in \mathfrak{I}$ элементарной дуге, касательная которой параллельна ds

Тогда
$$\overrightarrow{ds} = \overrightarrow{\tau} ds \approx \overrightarrow{\tau} dl$$
, где $\overrightarrow{\tau}$ - единичный вектор, касательной в (ξ, η) Тогда $\int_{L} P dx + Q dy$ $\stackrel{\text{пред. в вект. форме}}{=} \int_{L} \overrightarrow{F} \overrightarrow{\tau} dl = \int_{L} \overrightarrow{F} \underbrace{\overrightarrow{dl}}_{\text{ориент. эл. дуги}}$

Свойства:

Nota. Свойства, не зависящие от прохода дуги, аналогичны свойствам определенного интеграла Направление обхода.

I рода
$$\int_{AB} f(x,y) dl = \int_{BA} f(x,y) dl \qquad \qquad \int_{AB} P dx + Q dy = - \int_{BA} P dx + Q dy$$

Def. Часто рассматривают замкнутую дугу, называемую контур. Тогда интегралы обознача-

$$\oint_K f dl \, \coprod \oint_K P dx + Q dy.$$

Если K (контур) обходят против ч. с., то обозн. \oint_{V^+}

Вычисление. (Сведение к $\int_a^b dx$ или $\int_a^\beta dy$ или $\int_{\tau}^T dt$)

1) Параметризация дуги L:

$$\begin{cases} x = \varphi(t) & A(x_A, y_A) = (\varphi(\tau), \psi(\tau)) \\ y = \psi(t) & B(x_B, y_B) = (\varphi(T), \psi(T)) \end{cases}$$

I рода
$$\int_{L} f(x,y)dl = \left[dl = \sqrt{\varphi_t'^2 + \psi_t'^2}|dt|\right] = \int_{T}^{T} f(t)\sqrt{\varphi_t'^2 + \psi_t'^2}|dt|$$
 II рода
$$\int_{L=\widetilde{AB}} Pdx + Qdy = \left[dx = \varphi_t'dt, dy = \psi_t'dt\right] = \int_{T}^{T} (P\varphi' + Q\psi')dt$$

 $\it Ex.$ Дуга $\it L$ - отрезок прямой от $\it A(1,1)$ до $\it B(3,5)$

$$1) \int_{AB} (x+y)dl = \begin{vmatrix} AB : \frac{x-1}{2} = \frac{y-1}{4} \\ \text{или}y = 2x - 1, x \in [1,3] \\ f(x,y) = x + 2x - 1 = 3x - 1 \\ dl = \sqrt{1 + y'^2} dx = \sqrt{5} dx \end{vmatrix} = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5} \left(\frac{3x^2}{2} - x\right) \Big|_1^3 = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \int_1^3 (3x - 1)\sqrt{5} dx = \sqrt{5}(12 - 2) = \sqrt{5}(12$$

 $10\sqrt{5}$

$$2) \int_{AB} (x+y)dx + (x+y)dy = \begin{bmatrix} x \uparrow_1^3, y \uparrow_1^5 \\ y = 2x - 1, x = \frac{y+1}{2} \\ dx = dx, dy = dy \end{bmatrix} = \int_1^3 (x+2x-1)dx + \int_1^5 \left(\frac{y+1}{2} + y\right)dy = \left(\frac{3x^2}{2} - x\right)\Big|_1^3 + \frac{1}{2}\left(\frac{3y^2}{2} + y\right)\Big|_1^5 = 10 + 20 = 30$$

Th. Формула Грина

$$D \subset \mathbb{R}^2$$
 - прав. $\uparrow Ox, \uparrow Oy$

K - гладкая замкнутая кривая (контур), которая ограничивает D

В области D действует $\overrightarrow{F} = (P(x,y),Q(x,y))$ - непрерывные дифференциалы

Тогда
$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{K^{+}} P dx + Q dy$$

$$\Box \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy - \iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{\alpha}^{\beta} dy \int_{x=x_{1}(y)}^{x=x_{2}(y)} \frac{\partial Q}{\partial x} dx - \int_{a}^{b} dx \int_{y=y_{1}(x)}^{y=y_{2}(x)} \frac{\partial P}{\partial y} dy = \int_{\alpha}^{\beta} \left(Q(x,y) \Big|_{x=x_{1}(y)}^{x=x_{2}(y)} \right) dy - \int_{a}^{b} \left(P(x,y) \Big|_{y=y_{1}(x)}^{y=y_{2}(x)} \right) dx =$$

$$\int_{\alpha}^{\beta} (Q(x_2(y), y) - Q(x_1(y), y)) dy - \int_{a}^{b} (P(x, y_2(x)) - P(x, y_1(x))) dx = \int_{NST} Q dy - \int_{NMT} Q dy - \int_{NMT} Q dy - \int_{MNS} P dx + \int_{MNS} P dx = \underbrace{\int_{NST} Q dy + \int_{TMN} Q dy}_{\oint_{K^+} Q dy} + \underbrace{\int_{STM} Q dy + \int_{MNS} Q dy}_{\oint_{K^+} P dx} = \underbrace{\int_{NST} Q dy + \int_{NMT} Q dy}_{\oint_{K^+} P dx}$$