Krishna Mallik Nanduri

Bridgewater, NJ | (617)-595-8107 | nanduri.k@northeastern.edu | LinkedIn | Portfolio | GitHub

EDUCATION

Northeastern University, Boston, MA

Sept 2021 - Aug 2023

Master of Science in Data Science, CGPA: 3.8/4.0

Gandhi Institute of Technology and Management (GITAM) University, India

Jun 2017 – Jun 2021

Bachelor of Technology in Computer Science and Engineering, CGPA: 3.75/4.0

PROFESSIONAL EXPERIENCE

Via Separations, Watertown, MA USA

May 2022 - Dec 2022

Machine Learning Engineer Co-op | "Neural Networks, Predictive Modeling"

- Developed a powerful **ML pipeline** on **AWS Sagemaker**, employing TCN, LSTM for **deep learning** and **Time Series Analysis** (ARIMA, SARIMA) on temporal sensor data, resulting in a 60% accuracy boost for product durability forecasts
- Collaborated with cross-functional teams to **migrate 1 TB** of diverse Excel-based data to an optimized **AWS RDS Relational database** on AWS EC2, utilizing **MySQL**, resulting in a 35% reduction in product experimentation data retrieval time
- Spearheaded front-end development with Retool and JavaScript, achieving a 40% reduction in data analysis time, seamlessly integrated the front-end system with AWS database using SQL Queries, stored procedures, views, functions.
- Employed SAS JMP for statistical analysis to optimize **data normalization** for membrane form factor experiments, facilitating precise cross-comparisons and improving experimentation efficiency, resulting in a 20% reduction in analysis time
- Enhanced data integrity and data quality by 40% through automated vendor purchase order processing using Google Cloud APIs, optimizing data ingestion with **Python-based Bash scripts**.
- Developed **A/B tests and experiments** to assess the effects of varied product testing parameters. Utilized statistical analysis to drive data-informed process improvements in the product performance

Bluebonnet Data, Minneapolis, MN, USA

Jan 2022 – May 2022

Data Analyst Intern | "Complex Visualizations, Clustering, Geospatial Analysis"

- Engineered automated data pipelines using Databricks to extract, transform and load (ETL) USA census data with Minneapolis' 159 precincts voter data for voter behavior analysis, resulted in 70% reduction in data processing time
- Utilized ArcGIS and QGIS, Geopandas for **geospatial analysis**, creating plots to visualize voter sentiment metrics in various precincts. Analyzed voter behavior patterns and preferences, optimizing campaign strategies.
- Employed **K-means clustering** for cluster analysis to identify five distinct behavior groups, effectively categorizing voter demographics, optimizing outreach methods, resulting in a 20% increase in voter engagement effectiveness
- Developed **Tableau** and **Power BI** dashboards integrating trends and patterns from behavior analysis, providing stakeholders with real-time insights, improving the accuracy of decision-making by 30%, streamlining campaign strategies

Verzeo (Microsoft Authorized Education Partner), Hyderabad, India

Jan 2021 – Jun 2021

Data Science Intern | "PySpark, Parallel Processing"

- Employed **Apache Spark**, along with MapReduce and Hadoop, to streamline big data processing and conduct exploratory data analysis (**EDA**), achieving a significant 65% decrease in processing time compared to traditional Python methods
- Implemented **feature engineering** techniques (lag features, rolling statistics, exponential smoothing) and performed Principal Component Analysis (**PCA**) for dimensionality reduction, resulting in a reduction of data noise by 10%
- Utilized a diverse range of machine learning and deep learning models, including the Random Forest Regressor, XGBoost for ensemble learning, and LSTM as a recurrent neural network (RNN), for accurate time series forecasting
- Optimized LSTM model for a significant 45% reduction in SMAPE, improving microbusiness density forecasting performance

ACADEMIC PROJECTS

Energy Consumption Prediction | "Boosting Techniques, Feature Engineering"

- Designed a scalable system for HVAC energy consumption prediction, analyzing a vast 40M-record weather and building dataset.
- Achieved an exceptional 1.27 RMSLE score by leveraging XGBoost, LGBM, and CATBoost ensemble models, along with advanced feature engineering, Bayesian Optimization, and Halving Grid Search for strategic hyperparameter tuning

Diabetic Retinopathy Identification | "OpenCV, CNN using Keras, Image Processing"

• Developed a robust Convolutional Neural Network (CNN) with OpenCV and Gaussian smoothing to accurately assess diabetic retinopathy severity in 5,000 Eye Fundus clinical images, achieving an impressive 80% accuracy

Mental Health Analysis on Social Media Posts | "Natural Language Processing"

• Leveraged NLP techniques (lemmatization, POS tagging), deep learning models (Perceptron, LSTM), PCA for dimensionality reduction, and LDA for topic modeling to cluster Reddit posts and predict suicide risk with 80% accuracy. Applied Natural Language Processing methods (TF-IDF, GloVe, Word2Vec) for feature extraction in mental health-related posts

SKILLS

- Programming: Python, SQL, Pyspark, R, C, C++, Java, JavaScript
- Libraries: Pandas, NumPy, Scikit-learn, Seaborn, Matplotlib, NLTK, ggplot, dplyr, gensim, spaCy, media pipe, OpenCV
- Software/Tools: Tableau, PowerBI, Microsoft Office, Docker, Git, Unix, JMP, SAS, AWS (EC2, RDS, SageMaker, Athena)
- Database Systems: AWS RDS, MySQL, IBM DB2, OracleDB, MongoDB
- Big Data Technologies: Hadoop, Hive, Apache Kafka, Airflow, Apache Spark, MapReduce
- Cloud Technologies: GCP (Vertex AI, Tensorflow on GCP), AWS (Quicksight, Amazon SageMaker, Athena, Glue), Azure Databricks