Introduction to KRR Propositional Logic: Semantics

Objective

Explain the semantics of propositional logic

Interpretation

- A propositional signature is a set of symbols called atoms, such as p, q, r
- The symbols f and t are called truth values
- An interpretation of a propositional signature σ is a function from σ into $\{f, t\}$
- If σ is finite, an interpretation can be defined by the truth table

Q: How many interpretations for {p, q, r}?

Interpretation, cont'd

Tables associated with the propositional connectives

x	$\bigvee_{x}(x)$
f	t
t	f

x	y	(x,y)	$\lor(x,y)$	$\rightarrow (x,y)$	$\leftrightarrow (x,y)$
f	f	f	f	t	t
f	t	f	t	t	f
t	f	f	t	f	f
t	t	t	t	t	t

Evaluation of a Formula and Satisfaction

For any formula F and any interpretation I, the truth value F^I that is assigned to F by I is defined recursively, as follows:

$$p^r = I(p) = f$$

$$- \perp^{I} = f, T^{I} = t$$

$$- (\neg \mathsf{F})^{\mathsf{I}} = \underbrace{\neg \mathsf{F}}^{\mathsf{Neg}} (\mathsf{F}^{\mathsf{I}})$$

$$(\neg p)^T = \text{Neg}(p^T) = \text{Neg}(f) = f$$

- $(F \odot G)^I$ = $\odot (F^I, G^I)$ for every binary connective \odot

$$(p \wedge r)^{T} = \Lambda(p^{T}, r^{T}) = \Lambda(f, t) = f$$

If $F^I = t$ then we say that the interpretation I satisfies F (symbolically $I \models F$)

Example

Formula: $((\neg p \land q) \rightarrow (p \land (q \lor \neg r)))$

Q: The truth value of the formula

2. if I(p)=f, I(q)=t, I(r)=f?

Wrap-Up

