Importing all the necessary modules

In [62]:

```
#data analysis
import pandas as pd
import numpy as np
import random as rnd
#data visualization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
#machine learning
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
#pickling
import pickle
```

Reading the datasets

In [2]:

```
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
combine = [train, test]
```

In [3]:

train.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	e SibSp Parch		Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

In [4]:

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)
memory usage: 66.2+ KB

In [5]:

train.describe()

Out[5]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [6]:

train.describe(include=['0'])

Out[6]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Braund, Mr. Owen Harris	male	347082	B96 B98	S
freq	1	577	7	4	644

We are checking if there is any correlation between Pclass and Survival

In [7]:

train[['Pclass','Survived']].groupby(['Pclass'] , as_index=True).mean().sort_values(by='Sur

Out[7]:

Survived

Pclass

- 1 0.629630
- 2 0.472826
- 3 0.242363

We can observe that 62% of the people from the first class survived , and 47% of the people survived from the second class , while only 24% of the people from the third class survived , **hence Pclass is an influential factor**

We observe that only 18% of the males survived whereas 74% of the females survived .**So Sex is an important factor to be considered**

Sex	Pclass	
	1	0.968085
female	2	0.921053
	3	0.500000
	1	0.368852
male	2	0.157407
	3	0.135447

We notice a decline in survival rate down the classes, so a female in 1st class will be guaranteed to survive whereas a man in the lower classes are doomed!

```
In [10]:
```

```
train[['Embarked','Survived']].groupby(['Embarked'] , as_index=True).mean().sort_values(by=
Out[10]:
```

Survived

Embarked

- C 0.553571
- Q 0.389610
- **S** 0.336957

There are 3 stations for embarking namingly Cherbourg(C), Queenstown(Q) and Southampton(S), we observe that embarking at cherbourg gives a 50-50 chance of survival, while the others are slightly slim

```
In [11]:
```

```
train[['Pclass','Embarked','Survived']].groupby(['Embarked','Pclass'] , as_index=True).mean
```

Out[11]:

Survived

Embarked	Pclass	
С	1	0.694118
Q	2	0.666667
s	1	0.582677
С	2	0.529412
Q	1	0.500000
s	2	0.463415
С	3	0.378788
Q	3	0.375000
S	3	0.189802

We find the count of number of passengers in each class

In [12]:

```
train[['Pclass','Embarked','PassengerId']].groupby(['Embarked','Pclass'] , as_index=True).c
```

Out[12]:

PassengerId

Embarked	Pclass	
	1	85
С	2	17
	3	66
	1	2
Q	2	3
	3	72
	1	127
s	2	164
	3	353

We find the split up between male & female in the population respective to Pclass

In [13]:

```
train[['Sex','Embarked','PassengerId']].groupby(['Embarked','Sex'] , as_index=True).count()
```

Out[13]:

PassengerId

Embarked	Sex	
С	female	73
C	male	95
0	female	36
Q	male	41
c	female	203
S	male	441

We find the split up between male & female in the population with respect to their embarked station

In [14]:

```
train[['Sex','Embarked','Survived']].groupby(['Embarked','Sex'] , as_index=True).mean().sor
```

Out[14]:

Survived

Embarked	Sex	
С	female	0.876712
Q	female	0.750000
s	female	0.689655
С	male	0.305263
s	male	0.174603
O	male	0.073171

In [15]:

```
sibsp = train[['SibSp','Survived']].groupby(['SibSp'] , as_index=True).mean().sort_values(b
sns.lineplot(data=sibsp ,x='SibSp',y='Survived')
```

Out[15]:

<AxesSubplot: xlabel='SibSp', ylabel='Survived'>

We observe that having a sibling and survival doesnt correlate well, having 0-2 siblings have a good survival chance, but it steeps down rapidly

In [16]:

```
parch = train[['Parch','Survived']].groupby(['Parch'] , as_index=True).mean().sort_values(b
sns.lineplot(data=parch ,x='Parch',y='Survived')
```

Out[16]:

<AxesSubplot: xlabel='Parch', ylabel='Survived'>

Similiar to SibSp , Parch also doesnt have a steady curve , so we exclude these factors by replacing them with 'FamilySize'

In [17]:

```
for i in combine:
    i['FamilySize'] = i['SibSp'] + i['Parch'] + 1
familysize = train[['FamilySize','Sex','Survived']].groupby(['Sex','FamilySize'], as_index
#familysize
sns.lineplot(data=familysize ,x='FamilySize',y='Survived')
```

Out[17]:

<AxesSubplot: xlabel='FamilySize', ylabel='Survived'>

In [18]:

```
sns.lineplot(data=familysize,x='FamilySize',y='Survived',hue='Sex')
```

Out[18]:

<AxesSubplot: xlabel='FamilySize', ylabel='Survived'>

We observe that survival decreases with increase in FamilySize with few deviations in the curve

We find the count of passengers in each FamilySize

In [19]:

```
train[['FamilySize','PassengerId']].groupby(['FamilySize'],as_index=True).count()
```

Out[19]:

PassengerId

FamilySize					
1	537				
2	161				
3	102				
4	29				
5	15				
6	22				
7	12				
8	6				
11	7				

Since there a substantial amount of people being alone, we use another factor 'IsAlone'

In [20]:

```
for i in combine:
    i['IsAlone'] = 0
    i.loc[i['FamilySize']==1,'IsAlone'] = 1
train[['IsAlone','Survived']].groupby(['IsAlone'] , as_index=True).mean()
#sns.lineplot(data=familysize ,x='FamilySize',y='Survived')
```

Out[20]:

Survived

IsAlone

- 0 0.505650
- 1 0.303538

We observe that being alone gives you a 50% chance of survival

In [21]:

```
train[['IsAlone','Sex','Survived']].groupby(['Sex','IsAlone'] , as_index=True).mean()
```

Out[21]:

		Survived
Sex	IsAlone	
female	0	0.712766
iemaie	1	0.785714
	0	0.271084
male	1	0.155718

Since we can include being alone in the family size itself we can drop IsAlone and also SibSp & Parch

In [22]:

```
train = train.drop(['Parch','SibSp','IsAlone'], axis=1)
test = test.drop(['Parch','SibSp','IsAlone'], axis=1)
combine = [train,test]
train.head()
```

Out[22]:

	Passengerld	Survived	Pclass	Name	Sex	Age	Ticket	Fare	Cabin	Embarke
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	373450	8.0500	NaN	
4										•

Age is a broad category to correlate, so we split age into small sub categories 'CategoricalAge'

In [23]:

```
for i in combine:
    i['CategoricalAge'] = pd.qcut(train['Age'],15)
categoricalage = train[['CategoricalAge','Survived']].groupby(['CategoricalAge'] , as_index
categoricalage
```

Out[23]:

Survived

CategoricalAge

(0.419, 7.0]	0.680000
(7.0, 16.0]	0.420000
(16.0, 19.0]	0.375000
(19.0, 21.0]	0.200000
(21.0, 23.0]	0.380952
(23.0, 25.0]	0.381818
(25.0, 27.0]	0.472222
(27.0, 29.0]	0.319149
(29.0, 31.8]	0.409091
(31.8, 34.0]	0.440000
(34.0, 37.0]	0.479167
(37.0, 41.0]	0.391304
(41.0, 47.0]	0.301887
(47.0, 54.0]	0.510638
(54.0, 80.0]	0.309524

In [24]:

categoricalage = train[['CategoricalAge','Survived']].groupby(['CategoricalAge'] , as_index
sns.lineplot(data=categoricalage)

Out[24]:

<AxesSubplot: >

We can observe that children have a high survival rate as compared to adults

We check the relationship between CategoricalAge and Sex in survival

```
In [25]:
```

train[['CategoricalAge','Sex','Survived']].groupby(['Sex','CategoricalAge'] , as_index=True
Out[25]:

Survived

Sex	CategoricalAge	
	(0.419, 7.0]	0.750000
	(7.0, 16.0]	0.600000
	(16.0, 19.0]	0.769231
	(19.0, 21.0]	0.44444
	(21.0, 23.0]	0.823529
	(23.0, 25.0]	0.761905
	(25.0, 27.0]	0.727273
female	(27.0, 29.0]	0.714286
	(29.0, 31.8]	0.736842
	(31.8, 34.0]	0.928571
	(34.0, 37.0]	0.937500
	(37.0, 41.0]	0.714286
	(41.0, 47.0]	0.625000
	(47.0, 54.0]	0.888889
	(54.0, 80.0]	0.900000
	(0.419, 7.0]	0.615385
	(7.0, 16.0]	0.240000
	(16.0, 19.0]	0.105263
	(19.0, 21.0]	0.129032
	(21.0, 23.0]	0.080000
	(23.0, 25.0]	0.147059
	(25.0, 27.0]	0.360000
male	(27.0, 29.0]	0.151515
	(29.0, 31.8]	0.160000
	(31.8, 34.0]	0.250000
	(34.0, 37.0]	0.250000
	(37.0, 41.0]	0.120000
	(41.0, 47.0]	0.162162
	(47.0, 54.0]	0.275862
	(54.0, 80.0]	0.125000

In [26]:

```
sns.barplot(data=train , x='CategoricalAge' , y='Survived',hue='Sex')
```

Out[26]:

<AxesSubplot: xlabel='CategoricalAge', ylabel='Survived'>

We include a factor 'IsKid'

In [27]:

```
for i in combine:
    i['IsKid'] = 0
    i.loc[i['Age'] <= 7 , 'IsKid'] = 1
train[['IsKid', 'Survived']].groupby(['IsKid'] , as_index=False).mean()</pre>
```

Out[27]:

	IsKid	Survived
0	0	0.366231
1	1	0.680000

We observe that being a child increases your chance by double!

Ticket has nothing to do with the survival rates so we drop ticket from the data

In [28]:

```
train = train.drop(['Ticket'], axis=1)
test = test.drop(['Ticket'], axis=1)
combine = [train,test]
train.head()
```

Out[28]:

	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Cabin	Embarked	FamilyS
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	7.2500	NaN	S	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	71.2833	C85	С	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	7.9250	NaN	S	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	53.1000	C123	S	
4	5	0	3	Allen, Mr. William Henry	male	35.0	8.0500	NaN	S	
4										>

In [29]:

```
train['Cabin'].unique()
```

Out[29]:

We can infere that most of them doesnt have a cabin and the name of the cabin is not of use to us, So we

include a factor 'HasCabin' where all the null values of Cabin are designated as having no cabin

In [30]:

```
for i in combine:
    i['HasCabin'] = 1
    i.loc[i['Cabin'].isnull(), 'HasCabin'] = 0
train[['HasCabin','Survived']].groupby(['HasCabin'], as_index=True).mean()
```

Out[30]:

Survived

HasCabin

- 0.299854
- 1 0.666667

There's a significant difference in the survival rates between having and not having a cabin , **Hence HasCabin** is an influential factor

In [31]:

```
train = train.drop(['Cabin'], axis=1)
test = test.drop(['Cabin'], axis=1)
combine = [train,test]
train.head()
```

Out[31]:

	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize	Cat
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	7.2500	S	2	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	71.2833	С	2	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	7.9250	S	1	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	53.1000	S	2	
4	5	0	3	Allen, Mr. William Henry	male	35.0	8.0500	S	1	
4										•

In [32]:

sns.boxplot(data=train,x='Pclass',y='Fare',hue='Survived')

Out[32]:

<AxesSubplot: xlabel='Pclass', ylabel='Fare'>

We observe that fare value doesnt have any influence on the survival in 2 of the 3 Pclasses and slight correlation in the first class

In [33]:

```
for i in combine:
    i['Title'] = i.Name.str.extract('([A-Za-z]+)\.',expand=False)
pd.crosstab(train['Title'],train['Sex'])
```

Out[33]:

Sex	female	male		
Title				
Capt	0	1		
Col	0	2		
Countess	1	0		
Don	0	1		
Dr	1	6		
Jonkheer	0	1		
Lady	1	0		
Major	0	2		
Master	0	40		
Miss	182	0		
MIIe	2	0		
Mme	1	0		
Mr	0	517		
Mrs	125	0		
Ms	1	0		
Rev	0	6		
Sir	0	1		

We have classified the names into titles to check for any possible correlations

In [34]:

```
for dataset in combine:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
    'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')

    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')

train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()
```

Out[34]:

	Title	Survived
0	Master	0.575000
1	Miss	0.702703
2	Mr	0.156673
3	Mrs	0.793651
4	Rare	0.347826

In [35]:

```
train[['Title','Pclass','Survived']].groupby(['Title','Pclass'],as_index=False).mean()
```

Out[35]:

	Title	Pclass	Survived
0	Master	1	1.000000
1	Master	2	1.000000
2	Master	3	0.392857
3	Miss	1	0.958333
4	Miss	2	0.942857
5	Miss	3	0.500000
6	Mr	1	0.345794
7	Mr	2	0.087912
8	Mr	3	0.112853
9	Mrs	1	0.976744
10	Mrs	2	0.902439
11	Mrs	3	0.500000
12	Rare	1	0.533333
13	Rare	2	0.000000

In [36]:

train.loc[train['Age'].isnull()].groupby(['Title'], as_index=False).count()

Out[36]:

	Title	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize	Cate
0	Master	4	4	4	4	4	0	4	4	4	
1	Miss	36	36	36	36	36	0	36	36	36	
2	Mr	119	119	119	119	119	0	119	119	119	
3	Mrs	17	17	17	17	17	0	17	17	17	
4	Rare	1	1	1	1	1	0	1	1	1	

We observe that there are few missing values in the age field

In [37]:

pd.crosstab(train['Title'],train['CategoricalAge'])

Out[37]:

	CategoricalAge	(0.419, 7.0]	(7.0, 16.0]	(16.0, 19.0]	(19.0, 21.0]	(21.0, 23.0]		(25.0, 27.0]	(27.0, 29.0]	(29.0, 31.8]	(31.8, 34.0]	(34.0, 37.0]	(37 41
	Title												
-	Master	26	10	0	0	0	0	0	0	0	0	0	
	Miss	24	23	19	9	13	11	6	4	13	4	7	
	Mr	0	15	38	31	24	34	24	32	25	35	32	
	Mrs	0	2	7	0	4	10	5	10	6	9	9	
	Rare	0	0	0	0	1	0	1	1	0	2	0	
	1												•

In [38]:

train.groupby(['Title'], as_index=False).count()

Out[38]:

	Title	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize	Cate
0	Master	40	40	40	40	40	36	40	40	40	
1	Miss	185	185	185	185	185	149	185	184	185	
2	Mr	517	517	517	517	517	398	517	517	517	
3	Mrs	126	126	126	126	126	109	126	125	126	
4	Rare	23	23	23	23	23	22	23	23	23	
4											•

In [39]:

train.loc[train['Title'] == 'Master']

Out[39]:

	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.00	21.0750	S	5
16	17	0	3	Rice, Master. Eugene	male	2.00	29.1250	Q	6
50	51	0	3	Panula, Master. Juha Niilo	male	7.00	39.6875	S	6
59	60	0	3	Goodwin, Master. William Frederick	male	11.00	46.9000	S	8
63	64	0	3	Skoog, Master. Harald	male	4.00	27.9000	S	6
65	66	1	3	Moubarek, Master. Gerios	male	NaN	15.2458	С	3
78	79	1	2	Caldwell, Master. Alden Gates	male	0.83	29.0000	S	3
125	126	1	3	Nicola- Yarred, Master. Elias	male	12.00	11.2417	С	2
159	160	0	3	Sage, Master. Thomas Henry	male	NaN	69.5500	S	11
164	165	0	3	Panula, Master. Eino Viljami	male	1.00	39.6875	S	6
165	166	1	3	Goldsmith, Master. Frank John William "Frankie"	male	9.00	20.5250	S	3
171	172	0	3	Rice, Master. Arthur	male	4.00	29.1250	Q	6
176	177	0	3	Lefebre, Master. Henry Forbes	male	NaN	25.4667	S	5
182	183	0	3	Asplund, Master. Clarence Gustaf Hugo	male	9.00	31.3875	S	7

,	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize
183	184	1	2	Becker, Master. Richard F	male	1.00	39.0000	S	4
193	194	1	2	Navratil, Master. Michel M	male	3.00	26.0000	S	3
261	262	1	3	Asplund, Master. Edvin Rojj Felix	male	3.00	31.3875	S	7
278	279	0	3	Rice, Master. Eric	male	7.00	29.1250	Q	6
305	306	1	1	Allison, Master. Hudson Trevor	male	0.92	151.5500	S	4
340	341	1	2	Navratil, Master. Edmond Roger	male	2.00	26.0000	S	3
348	349	1	3	Coutts, Master. William Loch "William"	male	3.00	15.9000	S	3
386	387	0	3	Goodwin, Master. Sidney Leonard	male	1.00	46.9000	S	8
407	408	1	2	Richards, Master. William Rowe	male	3.00	18.7500	S	3
445	446	1	1	Dodge, Master. Washington	male	4.00	81.8583	S	3
480	481	0	3	Goodwin, Master. Harold Victor	male	9.00	46.9000	S	8
489	490	1	3	Coutts, Master. Eden Leslie "Neville"	male	9.00	15.9000	S	3
549	550	1	2	Davies, Master. John Morgan Jr	male	8.00	36.7500	S	3
709	710	1	3	Moubarek, Master. Halim Gonios ("William George")	male	NaN	15.2458	С	3
751	752	1	3	Moor, Master. Meier	male	6.00	12.4750	S	2
755	756	1	2	Hamalainen, Master. Viljo	male	0.67	14.5000	S	3

	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize
787	788	0	3	Rice, Master. George Hugh	male	8.00	29.1250	Q	6
788	789	1	3	Dean, Master. Bertram Vere	male	1.00	20.5750	S	4
802	803	1	1	Carter, Master. William Thornton II	male	11.00	120.0000	S	4
803	804	1	3	Thomas, Master. Assad Alexander	male	0.42	8.5167	С	2
819	820	0	3	Skoog, Master. Karl Thorsten	male	10.00	27.9000	S	6
824	825	0	3	Panula, Master. Urho Abraham	male	2.00	39.6875	S	6
827	828	1	2	Mallet, Master. Andre	male	1.00	37.0042	С	3
831	832	1	2	Richards, Master. George Sibley	male	0.83	18.7500	S	3
850	851	0	3	Andersson, Master. Sigvard Harald Elias	male	4.00	31.2750	S	7
869	870	1	3	Johnson, Master. Harold Theodor	male	4.00	11.1333	S	3
4									

In [40]:

```
for i in combine:
    i.loc[i['Title'] == 'Master' , 'IsKid'] = 1
train.loc[train['Title'] == 'Master']
```

Out[40]:

	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.00	21.0750	S	5
16	17	0	3	Rice, Master. Eugene	male	2.00	29.1250	Q	6
50	51	0	3	Panula, Master. Juha Niilo	male	7.00	39.6875	S	6
59	60	0	3	Goodwin, Master. William Frederick	male	11.00	46.9000	S	8
63	64	0	3	Skoog, Master. Harald	male	4.00	27.9000	S	6
65	66	1	3	Moubarek, Master. Gerios	male	NaN	15.2458	С	3
78	79	1	2	Caldwell, Master. Alden Gates	male	0.83	29.0000	S	3
125	126	1	3	Nicola- Yarred, Master. Elias	male	12.00	11.2417	С	2
159	160	0	3	Sage, Master. Thomas Henry	male	NaN	69.5500	S	11
164	165	0	3	Panula, Master. Eino Viljami	male	1.00	39.6875	S	6
165	166	1	3	Goldsmith, Master. Frank John William "Frankie"	male	9.00	20.5250	S	3
171	172	0	3	Rice, Master. Arthur	male	4.00	29.1250	Q	6
176	177	0	3	Lefebre, Master. Henry Forbes	male	NaN	25.4667	S	5
182	183	0	3	Asplund, Master. Clarence Gustaf Hugo	male	9.00	31.3875	S	7

	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize
183	184	1	2	Becker, Master. Richard F	male	1.00	39.0000	S	4
193	194	1	2	Navratil, Master. Michel M	male	3.00	26.0000	S	3
261	262	1	3	Asplund, Master. Edvin Rojj Felix	male	3.00	31.3875	S	7
278	279	0	3	Rice, Master. Eric	male	7.00	29.1250	Q	6
305	306	1	1	Allison, Master. Hudson Trevor	male	0.92	151.5500	S	4
340	341	1	2	Navratil, Master. Edmond Roger	male	2.00	26.0000	S	3
348	349	1	3	Coutts, Master. William Loch "William"	male	3.00	15.9000	S	3
386	387	0	3	Goodwin, Master. Sidney Leonard	male	1.00	46.9000	S	8
407	408	1	2	Richards, Master. William Rowe	male	3.00	18.7500	S	3
445	446	1	1	Dodge, Master. Washington	male	4.00	81.8583	S	3
480	481	0	3	Goodwin, Master. Harold Victor	male	9.00	46.9000	S	8
489	490	1	3	Coutts, Master. Eden Leslie "Neville"	male	9.00	15.9000	S	3
549	550	1	2	Davies, Master. John Morgan Jr	male	8.00	36.7500	S	3
709	710	1	3	Moubarek, Master. Halim Gonios ("William George")	male	NaN	15.2458	С	3
751	752	1	3	Moor, Master. Meier	male	6.00	12.4750	S	2
755	756	1	2	Hamalainen, Master. Viljo	male	0.67	14.5000	S	3

						·	•		
	Passengerld	Survived	Pclass	Name	Sex	Age	Fare	Embarked	FamilySize
787	788	0	3	Rice, Master. George Hugh	male	8.00	29.1250	Q	6
788	789	1	3	Dean, Master. Bertram Vere	male	1.00	20.5750	S	4
802	803	1	1	Carter, Master. William Thornton II	male	11.00	120.0000	S	4
803	804	1	3	Thomas, Master. Assad Alexander	male	0.42	8.5167	С	2
819	820	0	3	Skoog, Master. Karl Thorsten	male	10.00	27.9000	S	6
824	825	0	3	Panula, Master. Urho Abraham	male	2.00	39.6875	S	6
827	828	1	2	Mallet, Master. Andre	male	1.00	37.0042	С	3
831	832	1	2	Richards, Master. George Sibley	male	0.83	18.7500	S	3
850	851	0	3	Andersson, Master. Sigvard Harald Elias	male	4.00	31.2750	S	7
869	870	1	3	Johnson, Master. Harold Theodor	male	4.00	11.1333	S	3
4									

Since name and passengerid pose us no use , we drop those

In [41]:

```
train = train.drop(['Name', 'PassengerId'], axis=1)
test = test.drop(['Name'], axis=1)
combine = [train, test]
train.shape, test.shape
```

Out[41]:

```
((891, 11), (418, 11))
```

In [42]:

```
train.shape , test.shape
```

Out[42]:

```
((891, 11), (418, 11))
```

For computational reasons we assign females as 1 and males as 0

In [43]:

```
for i in combine:
    i['Sex'] = i['Sex'].map({'female':1 , 'male':0}).astype(int)
train.head()
```

Out[43]:

	Survived	Pclass	Sex	Age	Fare	Embarked	FamilySize	CategoricalAge	IsKid	HasCab
0	0	3	0	22.0	7.2500	S	2	(21.0, 23.0]	0	
1	1	1	1	38.0	71.2833	С	2	(37.0, 41.0]	0	
2	1	3	1	26.0	7.9250	S	1	(25.0, 27.0]	0	
3	1	1	1	35.0	53.1000	S	2	(34.0, 37.0]	0	
4	0	3	0	35.0	8.0500	S	1	(34.0, 37.0]	0	
4										>

In [44]:

```
freqport = train.Embarked.dropna().mode()[0]
for i in combine:
    i['Embarked'] = i['Embarked'].fillna(freqport)
train.head()
```

Out[44]:

	Survived	Pclass	Sex	Age	Fare	Embarked	FamilySize	CategoricalAge	IsKid	HasCab
0	0	3	0	22.0	7.2500	S	2	(21.0, 23.0]	0	
1	1	1	1	38.0	71.2833	С	2	(37.0, 41.0]	0	
2	1	3	1	26.0	7.9250	S	1	(25.0, 27.0]	0	
3	1	1	1	35.0	53.1000	S	2	(34.0, 37.0]	0	
4	0	3	0	35.0	8.0500	S	1	(34.0, 37.0]	0	
4										•

For computational purposes we assign the embarked stations (S-0, C-1, Q-2)

In [45]:

```
for i in combine:
    i['Embarked'] = i['Embarked'].map({'S':0,'C':1,'Q':2}).astype(int)
train.head()
```

Out[45]:

	Survived	Pclass	Sex	Age	Fare	Embarked	FamilySize	CategoricalAge	IsKid	HasCab
0	0	3	0	22.0	7.2500	0	2	(21.0, 23.0]	0	
1	1	1	1	38.0	71.2833	1	2	(37.0, 41.0]	0	
2	1	3	1	26.0	7.9250	0	1	(25.0, 27.0]	0	
3	1	1	1	35.0	53.1000	0	2	(34.0, 37.0]	0	
4	0	3	0	35.0	8.0500	0	1	(34.0, 37.0]	0	
4										•

We drop all the unrequired fields

In [46]:

```
train = train.drop(['Age', 'Fare', 'CategoricalAge', 'Title'], axis=1)
test = test.drop(['Age', 'Fare', 'CategoricalAge', 'Title'], axis=1)
combine = [train, test]
train.shape, test.shape
```

Out[46]:

((891, 7), (418, 7))

In [47]:

```
train.head()
```

Out[47]:

	Survived	Pclass	Sex	Embarked	FamilySize	IsKid	HasCabin
0	0	3	0	0	2	0	0
1	1	1	1	1	2	0	1
2	1	3	1	0	1	0	0
3	1	1	1	0	2	0	1
4	0	3	0	0	1	0	0

In [48]:

```
test.head()
```

Out[48]:

	Passengerld	Pclass	Sex	Embarked	FamilySize	IsKid	HasCabin
0	892	3	0	2	1	0	0
1	893	3	1	0	2	0	0
2	894	2	0	2	1	0	0
3	895	3	0	0	1	0	0
4	896	3	1	0	3	0	0

Preparation of data is over

MACHINE LEARNING ALGORITHM IMPLEMENTATION

In [49]:

```
X_train = train.drop('Survived',axis=1)
Y_train = train['Survived']
X_test = test.drop('PassengerId',axis=1).copy()
X_train.shape,Y_train.shape,X_test.shape
```

Out[49]:

```
((891, 6), (891,), (418, 6))
```

LOGISTIC REGRESSION

In [50]:

```
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_train, Y_train) * 100, 2)
acc_log
```

Out[50]:

82.38

In [51]:

```
coeff_df = pd.DataFrame(train.columns.delete(0))
coeff_df.columns = ['Feature']
coeff_df["Correlation"] = pd.Series(logreg.coef_[0])
coeff_df.sort_values(by='Correlation', ascending=False)
```

Out[51]:

	Feature	Correlation
1	Sex	2.875768
4	IsKid	2.604359
5	HasCabin	0.575597
2	Embarked	0.235839
3	FamilySize	-0.332492
0	Pclass	-0.818679

SUPPORT VECTOR MACHINES

In [52]:

```
svc = SVC()
svc.fit(X_train, Y_train)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(X_train, Y_train) * 100, 2)
acc_svc
```

Out[52]:

83.28

KNEIGHBORS CLASSIFIER

In [53]:

```
knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
acc_knn
```

Out[53]:

84.51

GAUSSIAN NAIVE BAYES

```
In [54]:
```

```
gaussian = GaussianNB()
gaussian.fit(X_train, Y_train)
Y_pred = gaussian.predict(X_test)
acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)
acc_gaussian
```

Out[54]:

79.35

PERCEPTRON

In [55]:

```
perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
Y_pred = perceptron.predict(X_test)
acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2)
acc_perceptron
```

Out[55]:

55.22

LINEAR SVC

In [56]:

```
linear_svc = LinearSVC()
linear_svc.fit(X_train, Y_train)
Y_pred = linear_svc.predict(X_test)
acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)
acc_linear_svc
```

c:\Users\aravind\AppData\Local\Programs\Python\Python38-32\lib\site-packages
\sklearn\svm_base.py:1225: ConvergenceWarning: Liblinear failed to converg
e, increase the number of iterations.
 warnings.warn(

Out[56]:

82.27

STOCHASTIC GRADIENT DESCENT

In [57]:

```
sgd = SGDClassifier()
sgd.fit(X_train, Y_train)
Y_pred = sgd.predict(X_test)
acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2)
acc_sgd
```

Out[57]:

82.6

DECISION TREE

In [58]:

```
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
Y_pred = decision_tree.predict(X_test)
acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)
acc_decision_tree
```

Out[58]:

85.52

RANDOM FOREST

In [59]:

```
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest
```

Out[59]:

85.52

ACCURACY OF ALL MODELS

In [60]:

Out[60]:

	Model	Score
3	Random Forest	85.52
8	Decision Tree	85.52
1	KNN	84.51
0	Support Vector Machines	83.28
6	Stochastic Gradient Decent	82.60
2	Logistic Regression	82.38
7	Linear SVC	82.27
4	Naive Bayes	79.35
5	Perceptron	55.22

```
In [61]:
```

```
output = pd.DataFrame({
          "PassengerId": test["PassengerId"],
          "Survived": Y_pred
     })
output.to_csv('submission.csv', index=False)
```

PREDICTION

In [80]:

```
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
#acc_random_forest
pickle.dump(random_forest , open('model.pkl','wb'))
model=pickle.load(open('model.pkl','rb'))
model.predict([[1,2,0,1,2,0]])
```

c:\Users\aravind\AppData\Local\Programs\Python\Python38-32\lib\site-packages
\sklearn\base.py:450: UserWarning: X does not have valid feature names, but
RandomForestClassifier was fitted with feature names
warnings.warn(

Out[80]:

array([1], dtype=int64)

In [76]:

#X_test

In [75]:

#Y_pred

In [74]:

```
random_forest.predict([[1,2,0,1,2,0]])
```

c:\Users\aravind\AppData\Local\Programs\Python\Python38-32\lib\site-packages
\sklearn\base.py:450: UserWarning: X does not have valid feature names, but
RandomForestClassifier was fitted with feature names
warnings.warn(

Out[74]:

array([1], dtype=int64)