Лекция 4.3.2021

1 Условия за колинеарност и компланарност на вектори чрез линейна зависимост

Определение 1 1. Казваме, че векторът v е *колинеарен* с правата l, и пишем $v \parallel l$, ако v има представител, лежащ на l.

Еквивалентна дефиниция е всеки представител на v да е успореден на l.

- 2. Казваме, че векторите v_1, \ldots, v_k са *колинеарни*, ако съществува права l, такава че v_1, \ldots, v_k са колинеарни с l. При два вектора пишем $v_1 \parallel v_2$.
- 3. Казваме, че векторът v е *компланарен* с равнината π , и пишем $v \parallel \pi$, ако v има представител, лежащ в π .

Еквивалентна дефиниция е всеки представител на v да е успореден на π .

4. Казваме, че векторите v_1, \dots, v_k са *компланарни*, ако съществува равнина π , такава че v_1, \dots, v_k са компланарни с π .

Определение 2 Нека е фиксирана единична отсечка за измерване. Дължина на вектора v е дължината на произволен негов представител. Означава се с |v|.

Коректност: Трябва да се провери, че дължината на v не зависи от избора на представителя на v, чрез която тя се дефинира. Но това е ясно, защото всички представители на v са равни и следователно имат една и съща дължина.

Определение 3 Казваме, че векторите u и v са $e\partial$ нопосочни (съответно npomusono-counu) и пишем $u \uparrow \uparrow v$ (съответно $u \uparrow \downarrow v$), ако един представител на u е еднопосочен (съответно противопосочен) с един представител на v.

Еквивалентна дефиниция е всеки представител на u да е еднопосочен (съответно противопосочен) с всеки представител на v.

Припомняне от алгебрата

По-долу ще използваме следните линейно-алгебрични факти, които са ви известни от курса по алгебра.

Нека V е реално линейно пространство.

Твърдение 1 Един вектор $v \in V$ е линейно зависим $\Leftrightarrow v = 0$.

Твърдение 2 При n > 1: Векторите $v_1, \ldots, v_n \in V$ са линейно зависими \Leftrightarrow някой от тях е линейна комбинация на останалите. При това, ако някои n-1 от тях са линейно независими, то останалият вектор е линейна комбинация на тия n-1 вектора, тоест, ако например v_1, \ldots, v_{n-1} са линейно независими, то v_1, \ldots, v_n са линейно зависими v_n е линейна комбинация на v_1, \ldots, v_{n-1} . (Това твърдение всъщност важи и при v_n на комбинация да считаме, че по дефиниция линейна комбинация на нула на брой вектора е v_n е v_n остана върдение всъщност важи и при v_n на брой вектора е v_n е v_n

Твърдение 3 Ако векторите $v_1, \ldots, v_n \in V$ са линейно независими и векторът $u \in V$ е тяхна линейна комбинация, то тая линейна комбинация е единствена, тоест коефициентите в нея са единствени.

Твърдение 4 Линейното пространство V е n-мерно, ако в него съществуват n линейно независими вектора, но всеки n+1 вектора са линейно зависими.

Всъщност горното твърдение е една от възможните дефиниции на размерност на линейно пространство. Другата често срещана (вероятно и при вас е била дадена тя) е: размерността е броят на векторите в един (а следователно и във всеки) базис.

С това завършва припомнянето от алгебрата.

Условия за колинеарност и компланарност на вектори чрез линейна зависимост

Теорема 1 Нека и и v са вектори и $u \neq 0$. Тогава и и v са колинеарни \Leftrightarrow съществува $\lambda \in \mathbb{R}$ такова, че $v = \lambda u$.

Числото λ в това равенство е единствено.

Доказателство: Трябва да се докажат три неща: права посока на еквивалентността, обратна посока на еквивалентността и единственост на λ . Ще ги доказваме в следния ред: обратна посока, единственост, права посока.

1. Обратна посока.

Нека $v = \lambda u$. Тогава от самата дефиниция на умножение на вектор с число следва, че $u \parallel v$: При $\lambda \neq 0$ се конструираше представител на v върху правата, определена от представител на u, а при $\lambda = 0$ имаме v = 0 и той също има представител върху тая права (и дори върху всяка права).

2. Единственост.

Ще дадем две доказателства на единствеността на λ . Първото е чисто линейноалгебрично, като използва вече известния ни факт, че векторите образуват линейно пространство, и е съвсем кратко. Второто използва конкретната дефиниция на умножение на вектор с число и е по-дълго, но затова пък в него се получава формула за λ , която можем да използваме при доказателството на съществуването, тоест на правата посока.

(а) Първо доказателство.

Тъй като $u \neq 0$, то по Твърдение 1 той е линейно независим. Тогава от Твърдение 3 получаваме, че ако $v = \lambda.u$, тоест v е линейна комбинация на линейно независимия u, то това става по единствен начин, тоест за единствено λ .

(б) Второ доказателство.

Нека $v=\lambda.u$. Нека сме фиксирали единична отсечка. От дефиницията на умножение на вектор с число следва: Ако v=0, то $\lambda=0$, защото $u\neq 0$. А ако $v\neq 0$, то $|v|=|\lambda|.|u|$ и тъй като $|u|\neq 0$, защото $u\neq 0$, то $|\lambda|=\frac{|v|}{|u|}$. При това, ако $v\uparrow\uparrow u$, то $\lambda>0$, а ако $v\uparrow\downarrow u$, то $\lambda<0$. Следователно

(1)
$$\lambda = \begin{cases} 0, & \text{alo } v = 0\\ \frac{|v|}{|u|}, & \text{alo } v \neq 0, \ v \uparrow \downarrow u\\ -\frac{|v|}{|u|}, & \text{alo } v \neq 0, \ v \uparrow \downarrow u \end{cases}.$$

Това показва, че λ еднозначно се определя от u и v и следователно е единствено.

3. Права посока.

Нека $u\parallel v$. Дефинираме λ чрез формулата (1) от второто доказателство на единствеността. Тогава, ако v=0, то $\lambda=0$ и следователно $v=0=0.u=\lambda.u$. А ако $v\neq 0$, то $|\lambda|=\frac{|v|}{|u|}$, тоест $|v|=|\lambda|.|u|=|\lambda.u|$, и $v\uparrow\uparrow\lambda.u$, защото при $\lambda>0$ имаме $v\uparrow\uparrow u\uparrow\uparrow\lambda.u$, а при $\lambda<0$ имаме $v\uparrow\downarrow u\uparrow\downarrow\lambda.u$. Така че и при $v\neq 0$ също $v=\lambda.u$.

Следствие 1 Два вектора са колинеарни \Leftrightarrow са линейно зависими.

Доказателство: Нека двата вектора са u и v.

Ако u = 0, то и двете страни на еквивалентността са изпълнени.

Нека $u \neq 0$. Следователно u е линейно независим (по Твърдение 1). Тогава от Твърдение 2 получаваме

u и v са линейно зависими $\Leftrightarrow v$ е линейна комбинация на u, тоест v е число по u \Leftrightarrow (от Теорема 1) $u \parallel v.$

С това следствието е доказано.

Забележка 1 Горното следствие е условието за колинеарност на вектори от заглавието. Както се вижда от доказателството му, то представлява малко по-обща версия на Теорема 1 (защото в него не се иска единият от векторите да е ненулев).

Следствие 2 Векторите, колинеарни с дадена права, образуват едномерно реално линейно пространство.

Доказателство: Това, че векторите, колинеарни с дадена права, образуват реално линейно пространство, вече го знаем от предишния въпрос. Така че трябва само да докажем, че размерността му е 1.

Тъй като по Твърдение 1 един вектор е линейно независим ⇔ е ненулев, а очевидно съществува ненулев вектор, който е колинеарен с дадената права, то съществува един линейно независим вектор, колинеарен с дадената права. Освен това всеки два вектора, които са колинеарни с правата, са колинеарни и значи са линейно зависими по Следствие 1. Така от Твърдение 4 получаваме, че размерността на линейното пространство на векторите, колинеарни с дадената права, е 1. □

Теорема 2 Нека u, v, w са вектори, като u u v не са колинеарни. Тогава u, v, w са компланарни \Leftrightarrow съществуват $\lambda, \mu \in \mathbb{R}$ такива, че $w = \lambda u + \mu v$. Числата λ u μ ϵ това равенство са единствени.

Доказателство: Трябва да се докажат три неща: права посока на еквивалентността, обратна посока на еквивалентността и единственост на λ и μ . Ще ги доказваме в следния ред: обратна посока, единственост, права посока.

Нека O е произволна точка, а точките P, Q, R са такива, че $\overrightarrow{OP} = u$, $\overrightarrow{OQ} = v$, $\overrightarrow{OR} = w$. Тъй като u и v не са колинеарни, то точките O, P, Q не са на една права и следователно задават равнина.

1. Обратна посока.

Нека $w = \lambda u + \mu v$. Тогава от дефинициите на умножение на вектор с число и събиране на вектори следва, че R лежи в равнината OPQ.

Значи u, v, w имат представители в равнината OPQ, тоест компланарни са с нея. Следователно u, v, w са компланарни.

2. Единственост.

Тъй като u и v не са колинеарни, то по Следствие 1 те са линейно независими. Тогава от Твърдение 3 получаваме, че ако $w=\lambda u+\mu v$, тоест w е линейна комбинация на линейно независимите u и v, то това става по единствен начин, тоест за единствени λ и μ .

3. Права посока.

Нека u, v, w са компланарни. Тъй като равнините, с които u и v са компланарни, са равнините, които са успоредни на равнината \overrightarrow{OPQ} , то и w е компланарен с тях. Следователно представителя \overrightarrow{OR} на w е успореден на равнината \overrightarrow{OPQ} и тъй като началото му O лежи в нея, то и краят му R лежи в нея.

Нека R' е пресечната точка на правата OP с правата през R, която е успоредна на правата OQ. Означаваме векторите с представители $\overrightarrow{OR'}$ и $\overrightarrow{R'R}$ съответно с w' и w''. Следователно w=w'+w''.

Имаме, че u и w' са колинеарни (защото имат представители върху правата OP) и $u \neq 0$ (защото иначе u и v биха били колинеарни), така че по Теорема 1 съществува $\lambda \in \mathbb{R}$ такова, че $w' = \lambda.u$.

Също така имаме, че v и w'' са колинеарни (защото имат представители съответно върху правата OQ и върху успоредната на нея права през R) и $v \neq 0$ (защото иначе u и v биха били колинеарни), така че по Теорема 1 съществува $\mu \in \mathbb{R}$ такова, че $w'' = \mu.v$.

Следователно
$$w = w' + w'' = \lambda . u + \mu . v$$
.

Следствие 3 Три вектора са компланарни \Leftrightarrow са линейно зависими.

Доказателство: Нека трите вектора са u, v, w.

Ако u и v са колинеарни, то u, v, w са компланарни, а освен това u и v са линейно зависими (по Следствие 1), така че и u, v, w са линейно зависими. Значи в тоя случай и двете страни на еквивалентността са изпълнени.

Нека u и v не са колинеарни. Следователно u и v са линейно независими (по Следствие 1). Тогава от Твърдение 2 получаваме

u, v, w са линейно зависими

- $\Leftrightarrow w$ е линейна комбинация на u и v, тоест $w = \lambda u + \mu v$ за някои $\lambda, \mu \in \mathbb{R}$
- \Leftrightarrow (от Теорема 2) u, v, w са компланарни.

С това следствието е доказано.

Забележка 2 Горното следствие е условието за компланарност на вектори от заглавието. Както се вижда от доказателството му, то представлява малко по-обща версия на Теорема 2 (защото в него не се иска два от векторите да са неколинеарни).

Следствие 4 Векторите, компланарни с дадена равнина, образуват двумерно реално линейно пространство.

Доказателство: Това, че векторите, компланарни с дадена равнина, образуват реално линейно пространство, вече го знаем от предишния въпрос. Така че трябва само да докажем, че размерността му е 2.

Тъй като по Следствие 1 два вектора са линейно независими ⇔ са неколинеарни, а очевидно съществуват два неколинеарни вектора, които са компланарни с дадената равнина, то съществуват два линейно независими вектора, компланарни с дадената равнина. Освен това всеки три вектора, които са компланарни с равнината, са компланарни и значи са линейно зависими по Следствие 3. Така от Твърдение 4 получаваме, че размерността на линейното пространство на векторите, компланарни с дадената равнина, е 2. □

Теорема 3 Нека u, v, w са некомпланарни вектори. Тогава за всеки вектор t съществуват единствени $\lambda, \mu, \nu \in \mathbb{R}$ такива, че $t = \lambda u + \mu v + \nu w$.

 $\overrightarrow{OP} = u, \overrightarrow{OQ} = v, \overrightarrow{OR} = w, \overrightarrow{OS} = t.$ Тъй като u, v, w не са компланарни, то точките O, P, Q, R не лежат в една равнина.

Нека S' е пресечната точка на равнината OPQ с правата през S, която е успоредна на правата OR. Означаваме векторите с представители $\overrightarrow{OS'}$ и $\overrightarrow{S'S}$ съответно с t' и t''. Следователно t=t'+t''.

Имаме, че u, v, t' са компланарни (защото имат представители в равнината OPQ) и u и v са неколинеарни (защото иначе u, v, w биха били компланарни), така че по Теорема 2 съществуват $\lambda, \mu \in \mathbb{R}$ такива, че $t' = \lambda.u + \mu.v$.

Също така имаме, че w и t'' са колинеарни (защото имат представители съответно върху правата OR и върху успоредната на нея права през S) и $w \neq 0$ (защото иначе u, v, w биха били компланарни), така че по Теорема 1 съществува $v \in \mathbb{R}$ такова, че t'' = v.w.

Следователно $t = t' + t'' = \lambda . u + \mu . v + \nu . w$. С това съществуването е доказано.

Единственост: Тъй като u, v, w не са компланарни, то по Следствие 3 те са линейно независими. Тогава от Твърдение 3 получаваме, че ако $t = \lambda.u + \mu.v + \nu.w$, тоест t е линейна комбинация на линейно независимите u, v, w, то това става по единствен начин, тоест за единствени λ, μ, ν .

Следствие 5 Всеки четири вектора в пространството са линейно зависими.

Доказателство: Нека четирите вектора са u, v, w, t.

Ако u, v, w са компланарни, то u, v, w са линейно зависими (по Следствие 3), така че и u, v, w, t са линейно зависими.

Нека u, v, w не са компланарни. Тогава от Теорема 3 следва, че $t = \lambda.u + \mu.v + \nu.w$ за някои $\lambda, \mu, \nu \in \mathbb{R}$, тоест t е линейна комбинация на u, v, w, и значи от Твърдение 2 получаваме, че u, v, w, t са линейно зависими.

С това следствието е доказано.

Забележка 3 Както се вижда от доказателството на горното следствие, то представлява малко по-обща версия на Теорема 3 (защото в него не се иска три от векторите да са некомпланарни).

Следствие 6 Векторите в пространството образуват тримерно реално линейно пространство.

Доказателство: Това, че векторите в пространството образуват реално линейно пространство, вече го знаем от предишния въпрос. Така че трябва само да докажем, че размерността му е 3.

Тъй като по Следствие 3 три вектора са линейно независими ⇔ са некомпланарни, а очевидно в пространството съществуват три некомпланарни вектора, то в пространството съществуват три линейно независими вектора. Освен това всеки четири вектора в пространството са линейно зависими по Следствие 5. Така от Твърдение 4 получаваме, че размерността на линейното пространство на векторите в пространството е 3.

2 Колинеарност и компланарност на вектори чрез координати

Координати спрямо базис в линейно пространство (припомняне)

Нека V е n-мерно реално линейно пространство и $e=(e_1,\ldots,e_n)$ е базис на V.

Определение 4 Нека $v \in V$. Тогава v се представя по единствен начин като линейна комбинация на базисните вектори: $v = x_1 e_1 + \dots + x_n e_n$. Коефициентите $x_1, \dots, x_n \in \mathbb{R}$ в тая линейна комбинация се наричат координати на v спрямо базиса $e = (e_1, \ldots, e_n)$. Пишем $v(x_1,\ldots,x_n)$.

Пишем
$$v(x_1, \dots, x_n)$$
.

Векторът $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ се нарича $кoop dunamen$ вектор на v спрямо e .

$$\varkappa_e:V\to\mathbb{R}^n: v\mapsto x$$

се нарича координатно изображение съответно на базиса е.

Забележка 4 Разглеждайки
$$e=(e_1,\dots,e_n)$$
 като вектор-ред, а $x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$ като вектор-

стълб и считайки, че вектор може да се умножава с число отдясно, получаваме, че равенството $v = x_1 e_1 + \dots + x_n e_n$ може да се запише в матричен вид като

$$v = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, тоест $v = e.x$. Следователно координатното изображение се задава с $\varkappa_e(e.x) = x$.

Пример 1 $\varkappa_e(0) = 0 \in \mathbb{R}^n$.

Пример 2 Нека $e^0 = (e_1^0, \dots, e_n^0)$ е стандартният базис на \mathbb{R}^n , тоест

$$e_i^0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i , \quad i = 1, \dots, n$$

 $(i\text{-тата компонента на }e_i^0$ е 1, всички останали са 0). Тогава за $x=\begin{pmatrix}x_1\\ \vdots\\ x_n\end{pmatrix}\in\mathbb{R}^n$ имаме

 $x = x_1 e_1^0 + \dots + x_n e_n^0$. Следователно координатите спрямо стандартния базис са си компонентите на вектора. В частност, координатното изображение $\varkappa_{e^0} : \mathbb{R}^n \to \mathbb{R}^n$ е $\varkappa_{e^0}(x) = x$, тоест \varkappa_{e^0} е тъждественото изображение на \mathbb{R}^n .

Твърдение 5 Ако координатните вектори спрямо базиса е на $u, v \in V$ са съответно $x, y \in \mathbb{R}^n$, то $u = v \Leftrightarrow x = y$.

Следствие 7 Координатното изображение $\varkappa_e: V \to \mathbb{R}^n$ е биекция.

Твърдение 6 Нека координатните вектори спрямо базиса е на $u_1, \ldots, u_k, v \in V$ са съответно $x_1, \ldots, x_k, y \in \mathbb{R}^n$ и нека $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. Тогава $v = \sum_{i=1}^k \lambda_i u_i \Leftrightarrow y = \sum_{i=1}^k \lambda_i x_i$.

Следствие 8 Координатното изображение $\varkappa_e: V \to \mathbb{R}^n$ е линеен изоморфизъм.

Следствие 9 Нека координатните вектори спрямо базиса е на $u_1, \ldots, u_k \in V$ са съответно $x_1, \ldots, x_k \in \mathbb{R}^n$. Тогава u_1, \ldots, u_k са линейно зависими $\Leftrightarrow x_1, \ldots, x_k$ са линейно зависими \Leftrightarrow рангът на матрицата $X = (x_1 \ldots x_k)$ (със стълбове x_1, \ldots, x_k) е строго по-малък от k.

Забележка 5 В направеното по-горе не се използват никакви специфични свойства на полето на реалните числа, така че то важи и за линейни пространства над произволно поле F — навсякъде вместо $\mathbb R$ се пише F, тоест вместо реални числа се взимат елементи на F.

Колинеарност и компланарност чрез координати

Теорема 4 Нека векторите и и v в геометричната равнина имат спрямо даден базис координати $u(x_1, x_2)$ и $v(y_1, y_2)$. Тогава и и v са колинеарни \Leftrightarrow рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$.

Доказателство: u и v са колинеарни \Leftrightarrow (от предишния въпрос) са линейно зависими \Leftrightarrow (от Следствие 9) рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от 2. С това е доказана първата еквивалентност.

Рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow$ всичките ѝ минори от ред 2 са 0. Тъй като матрицата е 2×2 , то тя има единствена подматрица 2×2 , а именно цялата матрица, и следователно единствен минор от ред 2, а именно детерминантата на цялата матрица. Значи рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$. С това е доказана и втората еквивалентност.

Теорема 5 Нека векторите и и v в геометричното пространство имат спрямо даден базис координати $u(x_1, x_2, x_3)$ и $v(y_1, y_2, y_3)$. Тогава и и v са колинеарни \Leftrightarrow рангът на

базис координати $u(x_1, x_2, x_3)$ и $v(y_1, y_2, y_3)$. Гозина матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow \det \begin{pmatrix} x_2 & y_2 \\ x_2 & y_2 \end{pmatrix} = 0$, $\det \begin{pmatrix} x_3 & y_3 \\ x_1 & y_1 \end{pmatrix} = 0$, $\det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$.

Доказателство: u и v са колинеарни \Leftrightarrow (от предишния въпрос) са линейно зависими \Leftrightarrow (от Следствие 9) рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго по-малък от 2. С това е доказана първата еквивалентност.

Рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow$ всичките ѝ минори от ред 2 са 0.

Тъй като матрицата е 3×2 , то за да получим подматрица 2×2 , трябва да вземем и двата стълба, а от редовете да махнем един. Следователно има три подматрици 2×2 , а именно получените чрез махането съответно на първи, втори и трети ред, така че и

минорите от ред 2 са три — техните детерминанти. Значи рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго

по-малък от
$$2 \Leftrightarrow \det \begin{pmatrix} x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} = 0$$
, $\det \begin{pmatrix} x_3 & y_3 \\ x_1 & y_1 \end{pmatrix} = 0$, $\det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$.

(Тук във втората матрица съм написал първо третия ред, а след това първия, а не първо първия ред, а след това третия, както се получава при махането на втория ред. Това в случая няма значение, защото при размяна на двата реда знакът на детерминтата се сменя, а тук ни интересува условието детерминантата да е 0, за което смяната на знака не играе роля. Направил съм го за да тренираме за в бъдеще, където координатите на векторното произведение са тия три детерминанти, написани точно по тоя начин.) С това е доказана и втората еквивалентност. □

Теорема 6 Нека векторите u, v, w в геометричното пространство имат спрямо даден базис координати $u(x_1,x_2,x_3),\,v(y_1,y_2,y_3),\,w(z_1,z_2,z_3).$ Тогава $u,\,v,\,w$ са компла-

даден базис координати $u(x_1, x_2, x_3)$, $v(y_1, y_2, y_3)$, $w(z_1, z_2, z_3)$ нарни \Leftrightarrow рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$ е строго по-малък

om
$$3 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} = 0.$$

Доказателство: u, v, w са компланарни \Leftrightarrow (от предишния въпрос) са линейно зависими \Leftrightarrow (от Следствие 9) рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$ е строго

по-малък от 3. С това е доказана първата еквивалентност.

Рангът на
$$\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$$
 е строго по-малък от $3 \Leftrightarrow$ всичките ѝ минори от ред 3 са 0 .

Тъй като матрицата е 3×3 , то тя има единствена подматрица 3×3 , а именно цялата матрица, и следователно единствен минор от ред 3, а именно детерминантата на цялата

матрица. Значи рангът на
$$\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$$
 е строго по-малък от $3 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} = 0$. С това е доказана и втората еквивалентност.

3 Скаларно произведение в геометричното пространство

Работим в геометричното пространство.

Определение 5 Вгъл между ненулевите вектори и и v е ъгълът между произволни техни представители с общо начало. Означава се с $\not \lt (u, v)$.

Коректност: Трябва да се провери, че ъгълът не зависи от това коя точка сме взели за общо начало на представителите. Но това е ясно: Ако вземем представители с начало \overrightarrow{O} , а именно $\overrightarrow{OP} = u$ и $\overrightarrow{OQ} = v$, и с начало $\overrightarrow{O'}$, а именно $\overrightarrow{O'P'} = u$ и $\overrightarrow{O'Q'} = v$, то $\overrightarrow{OP} = \overrightarrow{O'P'}$ и $\overrightarrow{OQ} = \overrightarrow{O'Q'}$. В частност, $\overrightarrow{OP} \uparrow \uparrow \overrightarrow{O'P'}$ и $\overrightarrow{OQ} \uparrow \uparrow \overrightarrow{O'Q'}$ и следователно $\not \prec \left(\overrightarrow{OP}, \overrightarrow{OQ}\right) = \not \prec \left(\overrightarrow{O'P'}, \overrightarrow{O'Q'}\right)$.

Пример 3 При $u \neq 0$ имаме $\sphericalangle(u, u) = 0$.

Пример 4 При $u \neq 0$, $v \neq 0$ имаме $\triangleleft(v, u) = \triangleleft(u, v)$.

Оттук нататък считаме, че е фиксирана единична отсечка за измерване на дължини.

Определение 6 Базисът $e=(e_1,e_2,e_3)$ на линейното пространство на векторите в пространството се нарича *ортонормиран*, ако векторите e_1,e_2,e_3 са единични и взаимно перпендикулярни, тоест $|e_i|=1,\,i=1,2,3,\,$ и $\sphericalangle(e_i,e_j)=\frac{\pi}{2}$ при $i\neq j.$

Забележка 6 Ясно е, че съществуват ортонормирани базиси, защото съществуват три взаимно перпендикулярни прави и върху всяка от тях можем да вземем по един единичен вектор.

Теорема 7 Нека базистт $e=(e_1,e_2,e_3)$ на линейното пространство на векторите в пространството е ортонормиран и спрямо него вектортт и има координати (x_1,x_2,x_3) . Тогава $|u|=\sqrt{x_1^2+x_2^2+x_3^2}$.

Доказателство: Нека O е произволна точка, точката P' е такава, че $\overrightarrow{OP'}=x_1e_1$, точката P'' е такава, че $\overrightarrow{P'P''}=x_2e_2$ и точката P е такава, че $\overrightarrow{P''P}=x_3e_3$. Тогава $\overrightarrow{OP}=x_1e_1+x_2e_2+x_3e_3=u$ и следователно |u|=|OP|.

Имаме $\overrightarrow{OP'}=x_1e_1\parallel\underline{e_1}$ и значи точката P' е върху правата през O, която е колинеарна с e_1 . Също така $\overrightarrow{P'P''}=x_2e_2\parallel e_2$ и значи точката P'' е върху правата през P', която е колинеарна с e_2 . Следователно P'' е в равнината през O, която е компланарна с e_1 и e_2 . Тъй като $\overrightarrow{P''P}=x_3e_3\parallel e_3$, то точката P е върху правата през P'', която е колинеарна с e_3 . Но e_3 е перпендикулярен на e_1 и e_2 , така че правата през P'', която е колинеарна с e_3 , е перпендикулярна на равнината през O, която е компланарна с e_1 и e_2 . Следователно триъгълникът OP''P е правоъгълен с прав ъгъл при върха P'' и по теоремата на Питагор получаваме $|OP|^2 = |OP''|^2 + |P''P|^2$.

Тъй като e_1 и e_2 са перпендикулярни, то правата през O, която е колинеарна с e_1 , и правата през P', която е колинеарна с e_2 , са перпендикулярни. Следователно триъ-гълникът OP'P'' е правоъгълен с прав ъгъл при върха P' и по теоремата на Питагор получаваме $|OP''|^2 = |OP'|^2 + |P'P''|^2$.

Значи

$$|u|^2 = |OP|^2 = |OP'|^2 + |P'P''|^2 + |P''P|^2 = |x_1e_1|^2 + |x_2e_2|^2 + |x_3e_3|^2$$

$$= |x_1|^2 |e_1|^2 + |x_2|^2 |e_2|^2 + |x_3|^2 |e_3|^2 = x_1^2 \cdot 1^2 + x_2^2 \cdot 1^2 + x_3^2 \cdot 1^2 = x_1^2 + x_2^2 + x_3^2,$$

$$\text{TOECT } |u| = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

Определение 7 Скаларно произведение на векторите u u v е числото $\langle u,v\rangle\in\mathbb{R},$ дефинирано по следния начин:

- а) Ако u=0 или v=0, то $\langle u,v\rangle=0$.
- б) Ако $u \neq 0$ и $v \neq 0$, то $\langle u, v \rangle = |u||v|\cos \sphericalangle (u, v)$.

Забележка 7 Срещат се и други означения за скаларното произведение. Например $uv,\,u.v,\,(u,v).$

Забележка 8 Ако u=0 или v=0, то (u,v) не е дефиниран. Но тъй като дължината на нулевия вектор е 0, то в тоя случай $(u,v)=0=|u||v|\cos\varphi$ каквото и да е φ . Следователно, ако се уговорим да считаме, че нулевият вектор и другите вектори сключват произволен ъгъл, то тогава $(u,v)=|u||v|\cos\langle (u,v)$ за всички вектори u и v.

Пример 5 При $u \neq 0$ имаме $\langle u,u \rangle = |u||u|\cos \sphericalangle(u,u) = |u||u|\cos 0 = |u|^2$, а също и при u=0 имаме $\langle u,u \rangle = 0 = |u|^2$.

Теорема 8 (критерий за перпендикулярност на вектори)

Ненулевите вектори и и v са перпендикулярни $\Leftrightarrow \langle u, v \rangle = 0$.

Доказателство:
$$\langle u, v \rangle = 0 \Leftrightarrow |u||v|\cos \sphericalangle(u, v) = 0$$

 $\Leftrightarrow \cos \sphericalangle(u, v) = 0$ (защото $|u| \neq 0, |v| \neq 0$) $\Leftrightarrow \sphericalangle(u, v) = \frac{\pi}{2} \Leftrightarrow u \perp v$.

Забележка 9 Ако приемем, че нулевият вектор е перпендикулярен на всеки вектор (което е в унисон с приемането, че сключва произволен ъгъл с всеки вектор — щом сключва произволен ъгъл значи сключва и прав ъгъл), то горната теорема е вярна и без изискването u и v да са ненулеви.

Теорема 9 Нека базисът $e = (e_1, e_2, e_3)$ на линейното пространство на векторите в пространството е ортонормиран и спрямо него векторите и и и имат координати $u(x_1, x_2, x_3)$ и $v(y_1, y_2, y_3)$. Тогава $\langle u, v \rangle = x_1y_1 + x_2y_2 + x_3y_3$.

Доказателство: Ако u=0 или v=0, то всички x-ове са 0 или всички y-ци са 0 и следователно $\langle u,v\rangle=0=x_1y_1+x_2y_2+x_3y_3.$

Нека $u \neq 0$ и $v \neq 0$. Нека O е произволна точка, а точките P и Q са такива, че $\overrightarrow{OP} = u$ и $\overrightarrow{OQ} = v$.

По косинусовата теорема за триъгълника OPQ (която важи и за изродени триъгълници, тоест когато O, P, Q са на една права — виж по-долу Забележка 10) имаме

$$|PQ|^2 = |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \triangleleft POQ.$$

Тъй като $|OP|=|u|,\ |OQ|=|v|$ и $\sphericalangle POQ=\sphericalangle(u,v),$ то

$$|OP||OQ|\cos \sphericalangle POQ = |u||v|\cos \sphericalangle (u,v) = \langle u,v \rangle.$$

Освен това $\overrightarrow{PQ} = v - u$. Следователно $|v - u|^2 = |PQ|^2 = |u|^2 + |v|^2 - 2\langle u, v \rangle$, откъдето получаваме

$$\langle u, v \rangle = \frac{1}{2} \left(|u|^2 + |v|^2 - |v - u|^2 \right).$$

Тъй като координатите на v-u спрямо базиса e са $(y_1-x_1,y_2-x_2,y_3-x_3)$, по Теорема 7 имаме

$$|u|^2 = x_1^2 + x_2^2 + x_3^2$$
, $|v|^2 = y_1^2 + y_2^2 + y_3^2$, $|v - u|^2 = (y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2$.

Следователно

$$\langle u, v \rangle = \frac{1}{2} \left(\left(x_1^2 + x_2^2 + x_3^2 \right) + \left(y_1^2 + y_2^2 + y_3^2 \right) - \left((y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2 \right) \right)$$

$$= \frac{1}{2} \left(2x_1y_1 + 2x_2y_2 + 2x_3y_3 \right) = x_1y_1 + x_2y_2 + x_3y_3.$$

Забележка 10 В училището косинусовата теорема вероятно е формулирана само за истински триъгълници. Тя обаче важи и за изродени триъгълници OPQ, тоест когато $O,\ P,\ Q$ са на една права, и доказателството в тоя случай е много просто: Ако O е между P и Q, то |PQ|=|OP|+|OQ| и $\sphericalangle POQ=\pi$.

Следователно

$$|PQ|^2 = (|OP| + |OQ|)^2 = |OP|^2 + |OQ|^2 + 2|OP||OQ|$$

$$= |OP|^2 + |OQ|^2 - 2|OP||OQ|.(-1) = |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \pi$$

$$= |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \angle POQ.$$

Ако O не е между P и Q, тоест P и Q са от една и съща страна на O, то |PQ| = |OP| - |OQ| или |PQ| = |OQ| - |OP|, тоест |PQ| = ||OP| - |OQ||, и $\sphericalangle POQ = 0$.

Следователно

$$|PQ|^2 = ||OP| - |OQ||^2 = (|OP| - |OQ|)^2 = |OP|^2 + |OQ|^2 - 2|OP||OQ|$$

$$= |OP|^2 + |OQ|^2 - 2|OP||OQ|.1 = |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos 0$$

$$= |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \triangleleft POQ.$$