Работа 5.2.2(3)

Изучение спектров атомов водорода и йода

Колесников Иван, Шарапов Денис, Б05-004

Содержание

1	Аннотация	2
2	Теоретические сведения	2
3	Результаты измерений и обработка данных 3.1 Калибровочные измерения 3.2 Исследование спектров водорода и йода	2 2 3
4	Вывод	4
5	Приложение	4

1 Аннотация

Цель работы: исследовать спектральные закономерности в оптических спектрах водорода и дейтерия, вычислить постоянные Ридберга, потенциалы ионизации и изотопические сдвиги линий для этих изотопов водорода; исследовать спектр поглощения паров йода в видимой области, вычислить энергию колебательного кванта молекулы йода и энергию её диссоциации в основном и возбужденном состоянии.

В работе используются: призменный монохроматор; неоновая, ртутная, водородная лампы; кювета с парами йода; лампа накаливания.

2 Теоретические сведения

В первом приближении энергия молекулы может быть представлена в виде

$$E = E_{\text{эл}} + E_{\text{колеб}} + E_{\text{враш}}. \tag{1}$$

На языке волновых функций это приближение выглядит как

$$\psi = \psi_{\text{эл}} \cdot \psi_{\text{колеб}} \cdot \psi_{\text{вращ}}. \tag{2}$$

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{3}$$

где R — постоянная Ридберга, m,n — целые числа.

Энергия колебательного кванта возбужденного состояния молекулы йода выражается формулой

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5}. (4)$$

3 Результаты измерений и обработка данных

3.1 Калибровочные измерения

Используя неоновую и ртутную лампы, проведём градуировочные измерения. Результаты представлены в таблице 1. По этим данным построим градуировочную кривую (рис. 1). Погрешность измерения угла барабана составляет $\approx 1^{\circ}$. Погрешность определения длины волны равна ± 5 Å.

Неон			Ртуть		
Угол барабана, °	λ , Å	Полоса	Угол барабана, °	λ , Å	Полоса
2008	5852	22	2612	6907	K1
1947	5401	23	2380	6234	K2
1912	5341	24	2175	5791	1
2260	5945	20	2164	5770	2
2314	6074	17	1988	5461	3
2326	6096	16	1578	4916	4
2344	6143	15	908	4358	5
2354	6164	14	366	4047	6
2396	6267	12			
2422	6334	10			
2448	6402	8			
2486	6507	7			
2544	6678	4			
2622	6929	2			

Таблица 1: Градуировка угла барабана по спектрам неона и ртути

Рис. 1: График калибровки барабана

3.2 Исследование спектров водорода и йода

Водород			Йод		
Угол барабана, °	λ , Å	Полоса	Угол барабана, °	λ , Å	Полоса
2499	6550	H_{α}	2338	6140	$h\nu_{1,0}$
1514	4860	H_{β}	2243	5920	$h\nu_{1,5}$
879	4340	H_{γ}	1840	5245	$h\nu_{\mathrm{rp}}$
464	4095	H_{δ}	1718	5090	$h\nu_{ m rp}$

Таблица 2: Результаты измерений спектров водорода и йода

В работе исследуется серия Бальмера: n=2, m=3,4,5,6 для $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}$ соответственно. Найдём значения R для различных линий водорода. Результаты представлены в таблице 3.

λ , Å	Полоса	$R, \mathrm{\mathring{A}^{-1}}$	$\sigma_R, \mathrm{\AA}^{-1}$
6550	H_{α}	$1.099 \cdot 10^{-3}$	$8.4 \cdot 10^{-7}$
4860	H_{β}	$1.097 \cdot 10^{-3}$	$1.13 \cdot 10^{-6}$
4340	H_{γ}	$1.097 \cdot 10^{-3}$	$1.26 \cdot 10^{-6}$
4095	H_{δ}	$1.099 \cdot 10^{-3}$	$1.34 \cdot 10^{-6}$

Таблица 3: Результаты измерения постоянной Ридберга

Таким образом, получим

$$R = (1.0980 \pm 0.0006) \cdot 10^{-3} \text{ Å}^{-1}.$$
 (5)

Используя калибровочный график (рис. 1), вычислим энергии для йода. Результаты представлены в таблице 4.

λ , Å	Полоса	E, эВ	σ_E , эВ
6140	$h\nu_{1,0}$	2.020	$1.6 \cdot 10^{-3}$
5920	$h\nu_{1,5}$	2.095	$1.8 \cdot 10^{-3}$
5245	$h\nu_{ m rp}$	2.365	$2.3 \cdot 10^{-3}$
5090	$h\nu_{\mathrm{rp}}$	2.437	$2.4 \cdot 10^{-3}$

Таблица 4: Результаты измерения энергий кванта йода для различных спектральных линий

Произведём рассчёты:

- 1. $h\nu_2 = 0.015 \pm 0.002~{
 m 3B}$ энергия колебательного кванта возбужденного состояния молекулы йода.
- 2. $h\nu_{\text{эл}} = h\nu_{1,5} \frac{h\nu_1}{2} = 2.081 \pm 0.002 \text{ эВ}.$
- 3. $D_1 = h\nu_{\rm rp} E = 1.496 \pm 0.002$ эВ энергия диссоциации молекулы в основном состоянии (E = 0.94 эВ).
- 4. $D_2 = h\nu_{\rm rp} h\nu_{\rm эл} + 5.5h\nu_2 = 0.4375~{\rm эB}$ энергия диссоциации молекулы в возбужденном состоянии.

4 Вывод

В работе были изучены спектры водорода и йода; экспериментально проверена справедливость формулы Бальмера и найдена постоянная Ридберга, которая хорошо приближает табличное значение ($R=10967758,341~{\rm M}^{-1}$); оценены энергии квантов возбужденного состояния молекулы, энергия диссоциации частиц и энергия электронного перехода.

5 Приложение

Рис. 2: Подсчёт величин и их погрешностей

```
E := \frac{3 \cdot 10^8}{\text{lambda}} \cdot 4.135 \cdot 10^{-15} \cdot 10^{10}
                                                                                                                                                                                                                                                                                                                                                                                                                         1.24050000 × 10<sup>4</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (11)
                                                                                                                                                                                                                                                                                                                                                                                                                           2.02035831 × 10<sup>0</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (12)
 E_15 := evalf(subs(lambda = 5920, E))
                                                                                                                                                                                                                                                                                                                                                                                                                           2.09543919 × 10<sup>0</sup>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (13)
 E\_border\_1 := evalf(subs(lambda = 5245, E))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (14)
E\_border\_2 := evalf(subs(lambda = 5090, E))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (15)
 E\_10\_sigma := evalf(subs(\{x = 6140, sigma\_x = 5, sigma\_y = 0, val = E\_10\}, sigma))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (16)
 E_15_sigma := evalf(subs({x = 5920, sigma_x = 5, sigma_y = 0, val = E_15}, sigma))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (17)
 E\_border\_1\_sigma := evalf(subs(\{x = 5245, sigma\_x = 5, sigma\_y = 0, val = E\_border\_1\}, sigma))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (18)
E\_border\_2\_sigma := evalf(subs(\{x = 5090, sigma\_x = 5, sigma\_y = 0, val = E\_border\_2, sigma)) \\ 2.39403893 \times 10^{-3} \\ 2.3940389 \times 10^{-3} \\ 2.394038 \times 10^
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (19)
```

Рис. 3: Подсчёт величин и их погрешностей