Primjene Coq alata za dokazivanje u matematici i računarstvu

Logika prvog reda s induktivnim definicijama

Miho Hren

Mentori: Vedran Čačić, Marko Doko + Ante Đerek Fakultet Elektrotehnike i Računarstva

2023./2024.

Što je Coq?

- programski jezik
- interaktivni dokazivač teorema stroj provjerava dokaz
- temeljen na teoriji tipova

- u matematici: teorem o četiri boje, temelji matematike, obrazovanje
- u računarstvu: CompCert, VeLLVM, CertiKOS, certificirano programiranje

Zašto?

Kritična infrastruktura!

playgrounds - GNU Ensos at fer ... x
File Edit Options Buffers Tools Coop Proof-General Holes Optine Hole/Show VS/Srippet Help

1 Lemma add_assoc : ∀ (a b c : N), 1 goal (ID 2) a + (b + c) = (a + b) + c. 3 Proof. 4 $\forall a b c : N, a + (b + c) = a + b + c$ 4 intros a. induction a as [| a IH]. 6 - intros b c. cbn. rewrite IH. reflexi vity. 7 Oed. U:0%%- *goals* All (4.0) (Cog Goals +3) -: #**- playground.y All (3.0) (Cog Script(1-) +3 company- yas hs Ou U: #%- *response* All (1.0) (Cog Response +2 Wrap) Auto-saving...done

 $\forall b c : N. \theta + (b + c) = \theta + b + c$

7 Vbc; N, Sa+(b+c) = Sa+b+c

U:0%%- *goals* All (4.0) (Cog Goals)

6 goal 2 (ID 10) is:

3 intros a. induction a as [| a IH].

5 - intros b c. cbn. rewrite IH.

6 reflexivity.

File Edit Options Buffers Tools Cog Proof-General Holes Outline Hide/Show YASnippet Help

+ c) = (a + b) + c.

2 Proof.

7 Qed.

-:0--- playground.v All (4.0) (Cog Script(2-) +3 company- vas hs Ol U:0%5- *response* All (1.0) (Cog Response Wrap)

-:0--- playground.v All (4.16) (Cog Script(1-) +3 company- vas hs Ou U:0%5- *response* All (1.0) (Cog Response Wrap)

```
File Edit Options Buffers Tools Cog Proof-General Holes Outline Hide/Show YASnippet Help
  1 Lemma add_assoc : ∀ (a b c : N), a + (b
     + c) = (a + b) + c.
                                                            4 Vbc: N, Sa+(b+c) = Sa+b+c
  2 Proof.
  3 intros a. induction a as [| a IH].
  4 _ intros b c. cbn. reflexivity.
  5 - intros b c. cbn. rewrite IH.
  6 reflexivity.
  7 Qed.
                                                          U:0%%- *goals*
                                                                          All (4.0) (Cog Goals)
                                                           1 This subproof is complete, but there are some unfocused goals.
                                                           2 Focus next goal with bullet -.
```

-:0--- playground.v All (5.0) (Cog Script(1-) +3 company- vas hs Ou U:0%5- *response* All (1.0) (Cog Response Wrap)

```
1 1 goal (ID 16)
1 Lemma add_assoc : ∀ (a b c : N), a + (b
+ c) = (a + b) + c.
2 Proof.
3 intros a. induction a as [| a IH].
                                             7 Sa+(b+c) = Sa+b+c
4 _ intros b c. cbn. reflexivity.
5 _ intros b c. cbn. rewrite IH.
6 reflexivity.
7 Qed.
                                            U:0%%- *qoals* All (7.0) (Cog Goals)
```

-:0--- playground.v All (5.16) (Cog Script(1-) +3 company- vas hs Ou U:0%5- *response* All (1.0) (Cog Response Wrap)

File Edit Options Buffers Tools Cog Proof-General Holes Outline Hide/Show YASnippet Help

7 S (a + b + c) = S (a + b + c)

2 Proof.

4 _ intros b c. cbn. reflexivity.

5 - intros b c. cbn. rewrite IH.

6 reflexivity. 7 Oed.

3 intros a. induction a as [| a IH].

+ c) = (a + b) + c.

1 Lemma add_assoc : ∀ (a b c : N), a + (b

File Edit Options Buffers Tools Cog Proof-General Holes Outline Hide/Show YASnippet Help

U:0%%- *goals* All (7.0) (Cog Goals)

-:0--- playground.v All (6.0) (Cog Script(1-) +3 company- vas hs Ol U:0%5- *response* All (1.0) (Cog Response Wrap)

playground.y - GNU Emacs at fer

File Edit Options Buffers Tools Cog Proof-General Holes Outline Hide/Show YASnippet Help

3 intros a. induction a as [| a IH].

4 _ intros b c. cbn. reflexivity.

5 - intros b c. cbn. rewrite IH.

6 reflexivity.

7 Qed.

2 Proof.

U:0%%- *goals* All (1.0) (Cog Goals)

-:0--- playground.v All (8,0) (Coq Script(0-) +3 company- yas hs Ou U:0%%- *response* All (1,0) (Coq Response Wrap)

Proces

Sintaksa: signatura

Definition 2.1.1 (First-order language with inductive predicates). A (first-order) language with inductive predicates Σ is a set of symbols including:

- denumerably many constant symbols c₁,c₂,...;
- denumerably many function symbols f₁, f₂,..., each with associated arity k > 0;
- denumerably many ordinary predicate symbols Q_1,Q_2,\ldots , each with associated arity $k\geq 0;$
- finitely many inductive predicate symbols P₁,...,P_n, each with associated arity k ≥ 0.

```
Structure signature := {
   FuncS : Set;
   fun_ar : FuncS -> nat;
   PredS : Set;
   pred_ar : PredS -> nat;
   IndPredS : Set;
   indpred_ar : IndPredS -> nat;
}.
```

Primjer: Peanova signatura

$$\sigma_{PA} = \{ \{o^0, s^1, +^2, \cdot^2\}, \{=^2\}, \{\mathit{Nat}^1, \mathit{Even}^1, \mathit{Odd}^1\} \}$$

Sintaksa: termi

Definition 2.1.2 (Terms). The set of *terms* of a first-order language Σ , $Terms(\Sigma)$, is the smallest set of expressions of Σ closed under the following rules:

- 1. any variable $x \in \mathcal{V}$ is a term;
- 2. any constant symbol $c \in \Sigma$ is a term;
- 3. if $f \in \Sigma$ is a function symbol of arity k, and t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ is a term.

```
Inductive term : Set :=
| var_term : var -> term
| TFunc : forall (f : FuncS Σ),
    vec term (fun_ar f) -> term.
```

Primjeri terma

```
Example PA_one (* s(o) *): term \Sigma_PA := TFunc PA_succ [TFunc PA_zero []].
```

Sintaksa: formula

 $\label{eq:definition 2.1.6} \textbf{Definition 2.1.6} \ (Formulas). \ \ Given a first-order language \ \Sigma, the set of \ \Sigma-formulas of FOL_{ID} is the smallest set of expressions closed under the following rules:$

- 1. if t_1,\ldots,t_k are terms of Σ , and Q is a predicate symbol in Σ of arity k, then $Q(t_1,\ldots,t_k)$ is a formula;
- 2. if t and u are terms of Σ then t = u is a formula;
- 3. if F is a formula then so is $\neg F$;
- 4. if F_1 and F_2 are formulas then so are $F_1 \wedge F_2$, $F_1 \vee F_2$ and $F_1 \rightarrow F_2$;
- 5. if *F* is a formula and $x \in \mathcal{V}$ is a variable, then $\exists xF$ and $\forall xF$ are formulas.

Sintaksa: formula

Primjer formule

$$\forall x, \mathsf{Nat}(x) \to \mathsf{Even}(x) \lor \mathsf{Odd}(x)$$

```
Definition every_nat_is_even_or_odd

: formula \( \Sum_P A := \)
let \( x := \) var_term 0 in

FAll

(FImp

(FIndPred PA_Nat [x])

(FOr

(FIndPred PA_Even [x])

(FIndPred PA_Odd [x]))).
```

Sintaksa: produkcije

Definition 2.2.1 (Inductive definition set). An inductive definition set Φ for a language Σ is a finite set of productions, which are rules of the form:

$$\frac{\mathcal{Q}_1\mathbf{u}_1(\mathbf{x})\dots\mathcal{Q}_h\mathbf{u}_h(\mathbf{x}) \quad P_{j_1}\mathbf{t}_1(\mathbf{x})\dots P_{j_m}\mathbf{t}_m(\mathbf{x})}{P_t\mathbf{t}(\mathbf{x})} \qquad j_1,\dots,j_m,i\in\{1,\dots,n\}$$

i.e., Q_1,\ldots,Q_h are ordinary predicates and $P_{j_1},\ldots,P_{j_m},P_i$ are inductive predicates of Σ .

$$Q_1 u_1 \dots Q_n u_n \quad P_1 v_1 \dots P_m v_m$$
 $P t$

Biti prirodan broj.

$$\frac{\mathit{Nat}(x)}{\mathit{Nat}(s(x))}$$

Biti paran, odnosno neparan broj.

$$\frac{Odd(x)}{Even(s(x))}$$

$$\frac{Even(x)}{Odd(s(x))}$$

Semantika: struktura, okolina

```
Structure structure := {
    domain :> Set;
    interpF (f : FuncS \Sigma)
         : vec domain (fun_ar f) -> domain;
    interpP (P : PredS \Sigma)
         : vec domain (pred_ar P) -> Prop;
    interpIP (P : IndPredS \Sigma)
         : vec domain (indpred_ar P) -> Prop;
Definition env := var -> M.
```

Primjer: standardna Peanova struktura

$$M_{PA} = (\mathbb{N}, 0, S, +, \cdot, =, \mathbb{N}, \mathbb{E}, \mathbb{O})$$

Semantika: istinitost formule

```
Fixpoint Sat (\rho: env\ M) (F : formula \Sigma) : Prop := match F with 
 | FPred P args => interpP P (V.map (eval \rho) args) 
 | FIndPred P args => interpIP P (V.map (eval \rho) args) 
 | FNeg G => ~ Sat \rho G 
 | FImp F G => Sat \rho F -> Sat \rho G 
 | FAll G => forall d, Sat (d .: \rho) G end.
```

Primjer

$$(M_{PA}, \rho) \vDash \forall x, Nat(x) \rightarrow Even(x) \lor Odd(x)$$

Semantika: aproksimacije skupa produkcija

```
Definition InterpInd :=
     forall P : IndPredS \Sigma, vec M (indpred_ar P) -> Prop.
Fixpoint \varphi_{\Phi_n}(\alpha : nat) : InterpInd :=
  match \alpha with
  | 0 => fun _ => False
  \mid S \alpha \Rightarrow \varphi_{\Phi} (\varphi_{\Phi} \alpha \alpha)
  end.
(* aproksimacija beskonačne razine *)
Definition \varphi_{\Phi}: InterpInd :=
     fun P v => exists \alpha, \varphi_\Phi_n \alpha P v.
Lemma \varphi_{\Phi}_\omega_{\text{least\_prefixed}} : least prefixed \varphi_{\Phi}.
```

Semantika: standardni modeli

Sekvente

$\Gamma \vdash \Delta$

```
Definition Sat_sequent (s : sequent) : Prop := let '(\Gamma \vdash \Delta) := s in forall (M : structure \Sigma), standard_model \Phi M -> forall (\rho : env M), (forall \varphi, In \varphi \Gamma -> \rho \vDash \varphi) -> exists \psi, In \psi \Delta /\ \rho \vDash \psi.
```

$$\Gamma \models \Delta$$

Sistem sekvenata: "obična" pravila izvoda

$$\frac{\Gamma \cap \Delta \neq \varnothing}{\Gamma \vdash \Delta} (Ax) \quad \frac{\Gamma' \vdash \Delta'}{\Gamma \subseteq \Delta} \quad \frac{\Gamma' \subseteq \Gamma}{\Gamma \subseteq \Delta} \quad (Wk)$$

$$\frac{\Gamma \vdash \varphi, \Delta \quad \varphi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} (Cut) \quad \frac{\Gamma \vdash \Delta}{\Gamma[\sigma] \vdash \Delta[\sigma]} (Subst)$$

$$\frac{\frac{\Gamma \vdash \varphi, \Delta}{\neg \varphi, \Gamma \vdash \Delta} \, (\textit{NegL})}{\frac{\Gamma \vdash \varphi, \Delta}{\varphi \rightarrow \psi, \Gamma \vdash \Delta} \, (\textit{ImpL})} \frac{\frac{\varphi, \Gamma \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta} \, (\textit{NegR})}{\frac{\varphi, \Gamma \vdash \psi, \Delta}{\Gamma \vdash \varphi \rightarrow \psi, \Delta} \, (\textit{ImpR})}$$

$$\frac{\varphi[t \cdot \sigma_{id}], \Gamma \vdash \Delta}{\forall \varphi, \Gamma \vdash \Delta} (AIIL) \qquad \frac{\Gamma^{\uparrow} \vdash \varphi, \Delta^{\uparrow}}{\Gamma \vdash \forall \varphi, \Delta} (AIIR)$$

```
Inductive LKID : sequent \rightarrow \mathbb{P} :=
(* Structural rules. *)
| Ax : \forall \Gamma \Delta \phi, \text{ In } \phi \Gamma \rightarrow \text{ In } \phi \Delta \rightarrow \text{ LKID } (\Gamma \vdash \Delta)
I Wk : \forall \Gamma' \Delta' \Gamma \Delta.
      F' C F →
       \Delta' \subseteq \Delta \rightarrow
       LKID (\Gamma' \vdash \Delta') \rightarrow
       LKID (\Gamma \vdash \Delta)
I Cut : ∀ Γ Δ φ.
       LKID (\Gamma \vdash \phi :: \Delta) \rightarrow
       LKID (\phi :: \Gamma \vdash \Delta) \rightarrow
       LKID (\Gamma \vdash \Delta)
| Subst : ∀ Γ Δ,
       LKID (\Gamma \vdash \Delta) \rightarrow
       \forall \sigma, LKID (map (subst_formula \sigma) \Gamma \vdash map (subst_formula \sigma) \Delta)
(* Propositional rules. *)
| NegL : \forall \Gamma \Delta \phi, LKID (\Gamma \vdash \phi :: \Delta) \rightarrow LKID (FNeg \phi :: \Gamma \vdash \Delta)
| NegR : \forall \Gamma \Delta \varphi, LKID (\varphi :: \Gamma \vdash \Delta) \rightarrow LKID (\Gamma \vdash FNeg \varphi :: \Delta)
I ImpL : \forall \Gamma \Delta \phi \psi.
       LKID (\Gamma \vdash \phi :: \Delta) \rightarrow LKID (\psi :: \Gamma \vdash \Delta) \rightarrow
       LKID (FImp \phi \psi :: \Gamma \vdash \Delta)
| ImpR : ∀ Γ Δ φ ψ,
       LKID (\phi :: \Gamma \vdash \psi :: \Delta) \rightarrow LKID (\Gamma \vdash (FImp \phi \psi) :: \Delta)
(* Quantifier rules. *)
| AllL : \forall \Gamma \Delta \phi t,
       LKID (subst_formula (t .: ids) \varphi :: \Gamma \vdash \Delta) \rightarrow
       LKID (FAll \phi :: \Gamma \vdash \Delta)
I AllR : \forall \Gamma \Delta \varphi.
       LKID (shift_formulas \Gamma \vdash \varphi :: shift_formulas \Delta) \rightarrow
       LKID (\Gamma \vdash (FAll \ \phi) :: \Delta)
```

Sistem sekvenata: produkcijska pravila

Produkcija

$$\frac{Q_1\mathsf{u}_1\dots Q_n\mathsf{u}_n}{P\mathsf{t}}$$

Pravilo

$$\frac{\Gamma \vdash Q_1 \mathsf{u}_1[\sigma], \Delta \quad \dots \quad \Gamma \vdash Q_n \mathsf{u}_n[\sigma], \Delta \qquad \Gamma \vdash P_1 \mathsf{v}_1[\sigma], \Delta \quad \dots \quad \Gamma \vdash P_m \mathsf{v}_m[\sigma], \Delta}{\Gamma \vdash P \mathsf{t}[\sigma], \Delta}$$

Primjer

$$\frac{Odd(x)}{Even(s(x))}$$

$$\frac{\Gamma \vdash Odd(x), \Delta}{\Gamma \vdash Even(s(x)), \Delta}$$

(V.map (subst_term σ) (indargs pr))

LKID (Γ ⊢ FIndPred

∷ Δ).

(indcons pr)

```
| Ind : ∀ Γ Δ
            (Pi : IndPredS Σ) (u : vec (indpred ar Pi))
            (z_i : ∀ P, vec var (indpred_ar P))
            (z_i_nodup : \forall P, VecNoDup (z_i P))
            (G_i : IndPredS \Sigma \rightarrow formula \Sigma)
            (HG<sub>2</sub> : ∀ Pi, ~mutually_dependent Pi Pj →
                          G i Pi = FIndPred
                                      Ρi
                                      (V.map var_term (z_i Pi))),
    let max\Gamma := max\_fold (map some\_var\_not\_in\_formula \Gamma) in
    let maxΔ := max_fold (map some_var_not_in_formula Δ) in
    let maxP := some_var_not_in_formula (FIndPred Pj u) in
    let shift_factor := max maxP (max maxΓ maxΔ) in
    let Fi := subst_formula
                 (finite_subst (z_i Pj) u)
                 (G_i Pi) in
    let minor_premises :=
      (∀ pr (HΦ : Φ pr) (Hdep : mutually_dependent (indcons pr) Pj),
           let Os := shift formulas by
                        shift_factor
                        (FPreds_from_preds (preds pr)) in
           let Gs := map (\lambda '(P; args) \rightarrow
                             let shifted args :=
                                V.map
                                  (shift_term_by shift_factor)
                                  args in
                             let σ :=
                                finite subst
                                  (z_i P)
                                  (shifted_args) in
                             let G := G_i P in
                             subst formula \sigma G)
                        (indpreds pr) in
          let Pi := indcons pr in
          let ty := V.map
                        (shift_term_bv shift_factor)
                        (indargs pr) in
          let Fi := subst formula
                        (finite_subst (z_i Pi) ty)
                        (G_i Pi) in
          LKID (Os ++ Gs ++ \Gamma \vdash Fi :: \Delta))
    in
    minor_premises →
    LKID (Fi :: \Gamma \vdash \Delta) \rightarrow
    LKID (FIndPred Pi u :: Γ ⊢ Δ)
```

Sistem sekvenata: pravila indukcije

Primjer

$$\frac{\Gamma \vdash G(o), \Delta \qquad G(x), \Gamma \vdash G(s(x)), \Delta \qquad G(t), \Gamma \vdash \Delta}{\mathit{Nat}(t), \Gamma \vdash \Delta} \ (\mathit{NatInd})$$

Primjer primjene pravila Natlnd

Adekvatnost

Teorem

Ako je sekventa **dokaziva** u sustavu *LKID*, onda je **istinita** na standardnim modelima.

Dokaz

Indukcijom po strukturi dokaza sekvente $\Gamma \vdash \Delta$.

- u disertaciji: šest stranica teksta
- u našoj formalizaciji: oko 450 linija

Problemi kod formalizacije dokaza:

- što je pisac htio reći?
- implicitne pretpostavke
- implicitno domensko znanje

Zaključak

Formalizacija

- sintaksa i semantika logike prvog reda s induktivnim definicijama
- dokazni sustav LKID
- oko 140 lema i dokaza

Tekst

- osnovno o Coqu
- opis formalizacije
- ilustracija cikličkih dokaza

Što dalje?

- potpunost
- dokazni sustav CLKID^ω
- formalno verificirani dokazivač teorema

Hijerarhija tipova u Coqu

Curry–Howardova korespondencija

Dokazivanje	Programiranje
propozicija	tip
dokaz	program
laž	prazan tip
istina	nastanjen tip
konjunkcija	produktni tip
disjunkcija	zbrojni tip
implikacija	funkcijski tip
univerzalna kvantifikacija	zavisni produkt
egzistencijalna kvantifikacija	zavisna suma

Ograničenja Coqovog tipskog sustava

- uvjet pozitivnosti
- uvjet strukturalne rekurzije
- uvjet produktivnosti
- ograničenje na eliminaciju propozicije

Peanova signatura

```
Inductive Func__PA :=
| PA zero
| PA_succ
| PA_add
| PA mult.
Definition fun_ar__PA (s : Func__PA) : nat :=
  match s with
  | PA zero => 0
  | PA_succ => 1
  | PA add => 2
  | PA_mult => 2
  end.
Inductive Pred__PA := PA_eq.
Definition pred_ar__PA (s : Pred__PA) : nat := 2.
Inductive IndPred__PA :=
| PA Nat
| PA_Even
| PA_Odd.
Definition indpred_ar__PA (s : IndPred__PA) : nat := 1.
```

Peanova signatura

```
Definition \(\Sigma_PA\) : signature

:= {|
    FuncS := Func_PA;
    fun_ar := fun_ar_PA;
    PredS := Pred_PA;
    pred_ar := pred_ar_PA;
    IndPredS := IndPred_PA;
    indpred_ar := indpred_ar_PA;
}
```

Primjer skupa produkcija

```
Definition PA prod N zero : production Σ PA.
 refine (mkProd nil nil PA_Nat _).
 refine [TFunc PA zero []].
Defined.
Definition PA_prod_N_succ : production \Sigma_{-}PA.
 refine (mkProd nil PA Nat ).
 - refine (cons _ nil). exists PA_Nat; refine [var_term 0].
  - refine [TFunc PA_succ [var_term 0]].
Defined.
Definition PA_prod_E_zero : production \Sigma_{-}PA.
 refine (mkProd nil nil PA Even ).
 refine [ TFunc PA zero []].
Defined.
Definition PA_prod_E_succ : production \Sigma_{-}PA.
 refine (mkProd nil _ PA_Even _).
  - refine (cons _ nil). exists PA_Odd; refine [var_term 0].
  - refine [TFunc PA succ [var term 0]].
Defined.
Definition PA_prod_O_succ : production \Sigma_{-}PA.
 refine (mkProd nil PA Odd ).
  - refine (cons _ nil). exists PA_Even; refine [var_term 0].
  - refine [TFunc PA_succ [var_term 0]].
Defined.
```

Formalizacija standardne Peanove strukture

```
Inductive EVEN : nat -> Prop :=
LEO: EVEN O
| ES : forall n, ODD n -> EVEN (S n)
with ODD : nat -> Prop :=
| OS : forall n. EVEN n -> ODD (S n).
Definition M PA : structure \Sigma PA.
 refine (Build structure nat ).
 - intros f; destruct f.
   + intros. exact 0.
   + intros n. exact (S (V.hd n)).
   + intros xy. exact (V.hd xy + V.hd (V.tl xy)).
   + intros xy. exact (V.hd xy * V.hd (V.tl xy)).
 - intros P args; destruct P.
   exact (V.hd args = V.hd (V.tl args)).
  - intros P args; destruct P.
   + exact (NAT (V.hd args)).
   + exact (EVEN (V.hd args)).
   + exact (ODD (V.hd args)).
Defined.
```

Još jedna korisna lema

```
Lemma strong form subst sanitv2 :
  forall (\Sigma : signature) (\varphi : formula \Sigma) (\sigma : var -> term \Sigma)
     (M : structure \Sigma) (\rho : env M),
    \rho \models (\text{subst formula } \sigma \varphi) \iff (\sigma \implies \text{eval } \rho) \models \varphi.
Proof
  intros \Sigma \varphi; induction \varphi; intros \sigma M \rho; cbn; intuition.
  - erewrite <- vec_comp.
    + eauto
    + intros u; asimpl; now rewrite eval_comp.
  - erewrite vec_comp.
    + eapply H.
    + intros u; asimpl; now rewrite eval_comp.
  - erewrite <- vec_comp.
    + eapply H.
    + intros u; asimpl; now rewrite eval_comp.
  - erewrite vec_comp.
    + eapply H.
    + intros u: asimpl: now rewrite eval comp.
  - now apply H, IH\varphi.
  - now apply H, IH\varphi.
  - apply IH\varphi 2; apply H; apply IH\varphi 1; auto.
  - apply IH\varphi 2; apply H; apply IH\varphi 1; auto.
  - asimpl in H. specialize H with d.
    apply IH\varphi in H, asimpl in H, simpl in H.
    rewrite eval_shift in H. apply H.
  - rewrite IH\varphi. asimpl. simpl.
    rewrite eval_shift.
    apply H.
Qed.
```

Primjer aproksimiranja skupa produkcija

Aproksimiramo skup produkcija Φ_{PA} na strukturi M_{PA} .

Aproksimacije, formalno

```
\begin{array}{l} \text{Definition } \varphi\_\text{pr} \\ \text{(pr : production } \Sigma) \\ \text{(interp : InterpInd)} \\ \text{(ds : vec } \mathbb{M} \text{ (indpred\_ar (indcons pr)))} \\ \text{: Prop :=} \\ \text{exists } (\rho : \text{env } \mathbb{M}), \\ \text{(forall } \mathbb{Q} \text{ us, List.In } (\mathbb{Q}; \text{ us) (preds pr) } \text{->} \\ \text{interpP } \mathbb{Q} \text{ (V.map (eval } \rho) \text{ us)) } / \backslash \\ \text{(forall } \mathbb{P} \text{ ts, List.In } (\mathbb{P}; \text{ ts) (indpreds pr) } \text{->} \\ \text{interp } \mathbb{P} \text{ (V.map (eval } \rho) \text{ ts)) } / \backslash \\ \text{ds = V.map (eval } \rho) \text{ (indargs pr)}. \\ \end{array}
```

Aproksimacije, formalno

```
Definition \varphi_P
  (P : IndPredS \Sigma)
  (interp : InterpInd)
  : vec M (indpred_ar P) -> Prop.
  refine (fun ds => _).
  refine (@ex (production \Sigma) (fun pr => _)).
  refine (@ex (P = indcons pr / \ \Phi pr) (fun '(conj Heq H\Phi) => _)).
  rewrite Heq in ds.
  exact (\varphi_pr pr interp ds).
Defined.
Definition \varphi_{\Phi} (interp : InterpInd) : InterpInd :=
  fun P => \varphi_P P interp.
```

```
Lemma \varphi \Phi \omega least prefixed : least prefixed \varphi \Phi \omega.
Proof.
  split.
  - intros P v H.
    unfold \varphi_{-}\Phi, \varphi_{-}P, \varphi_{-}pr in H;
       destruct H as (pr & [Heq Hpr] & (\rho & Hpreds & Hindpreds & Heval)).
     unfold ed rect in Heval: subst P: subst v.
     enough (Hsup : exists \alpha, forall P ts,
       In (P; ts) (indpreds pr) -> \varphi_\Phin \alpha P (V.map (eval \rho) ts)).
     + destruct Hsup as [\kappa \text{ Hsup}].
       exists (S \kappa), pr, (conj eq_refl Hpr), \rho; split; auto.
     + induction (indpreds pr) as [| [P' v'] indpreds' IH].
       * exists 0: inversion 1.
       * pose proof (Hindpreds P' v').
         assert (Hin: In (P'; v') ((P'; v') :: indpreds')) by now left.
         apply H in Hin as \lceil \alpha \mid H\alpha \rceil.
         assert (IH_help : forall P ts,
           In (P; ts) indpreds' \rightarrow \varphi_{-}\Phi_{-}\omega P (V.map (eval \rho) ts)).
          { intros P ts Hin. apply Hindpreds. now right. }
          apply IH in IH help as \lceil \beta \mid H\beta \rceil.
         exists (S (max \alpha \beta)).
         intros P ts Hin; inversion Hin.
          -- apply \varphi_\Phi_n_monotone with \alpha; auto with arith.
             inversion HO: subst P.
             apply inj_pair2 in HO; now subst.
          -- apply \varphi \Phi n monotone with \beta; auto with arith.
  - intros interp Hprefixed P v H\omega.
    destruct H\omega as [\alpha \ H\varphi].
     enough (H: forall \beta, \varphi_{\Phi} (\varphi_{\Phi} \beta) P v \rightarrow \varphi_{\Phi} interp P v).
     + now apply Hprefixed, (H \alpha), \varphi_\Phi_nsucc.
     + intros \beta; apply \varphi_{\Phi}-monotone. induction \beta as [|\beta|].
       * inversion 1.
       * cbn: unfold prefixed in Hprefixed.
         apply \varphi_{\Phi}-monotone in IH. red; auto.
Qed.
```

Primjer dokaza u sustavu *LKID*

$$\frac{\frac{-\varphi \vdash \varphi}{\varphi \vdash \varphi} (Ax)}{\frac{\vdash \neg \varphi, \varphi}{\vdash \varphi, \neg \varphi} (Perm)} \frac{(Perm)}{\vdash \varphi \lor \neg \varphi} (OrR)$$

Primjer dokaza u sustavu *LKID*

$$\frac{\overline{\varphi \vdash \varphi, \Delta}}{\neg \varphi, \varphi \vdash \Delta} (Ax)$$

$$\frac{\neg \varphi, \varphi \vdash \Delta}{\varphi, \neg \varphi \vdash \Delta} (Perm)$$

$$\overline{\varphi, \neg \varphi \vdash \Delta} (AndL)$$

Primjer dokaza u sustavu *LKID*

$$\frac{\overline{Ex \vdash Ex, Essx}}{Ex \vdash Osx, Essx} (Prod) \qquad \frac{\overline{Ex, Osx \vdash Osx}}{Ex, Osx \vdash Essx} (Prod)$$

$$\frac{\overline{Ex \vdash Essx}}{F \vdash Ex \rightarrow Essx} (ImpR)$$

$$\frac{Fx \vdash Essx}{F \vdash Ex \rightarrow Essx} (AllR)$$

Primjer dokaza u sustavu $CLKID^{\omega}$

$$\frac{\frac{Nx \vdash Ex, Ox (\dagger)}{Ny \vdash Ey, Oy} (Subst)}{\frac{Ny \vdash Ey, Oy}{Ny \vdash Oy, Ey} (Perm)} \frac{\frac{Ny \vdash Oy, Osy}{Ny \vdash Oy, Osy} (Prod)}{\frac{Ny \vdash Esy, Osy}{x = sy, Ny \vdash Ex, Ox} (EqL)} \frac{\frac{Nx \vdash Ex, Ox (\dagger)}{Nx \vdash Ex \lor Ox} (OrR)}{\frac{Nx \vdash Ex \lor Ox}{\vdash Nx \to Ex \lor Ox} (ImpR)} \frac{(ImpR)}{\vdash \forall x, Nx \to Ex \lor Ox} (AllR)$$