Trabalho 1: Buscas

SCC0230 - Inteligência Artificial

Antonio Carrilho Neto - Aluno UATI Eduardo Souza Rocha - 11218692 Fábio Verardino de Oliveira - 12674547 Olavo Morais Borges Pereira - 11297792

Introdução

 A tarefa de encontrar o conjunto de jogadas ótimo para um jogo é uma das aplicações mais comuns dos algoritmos de busca.

 Para demonstrar esse aplicação, implementamos um solver para o videogame Bloxorz (https://bloxorz.io/)

• Utilizamos mais de uma estratégia de busca, a fim de compará-las.

O Problema

- O Bloxorz é um jogo simples, que consiste em tombar um paralelepípedo, levando ele até um ponto objetivo.
- O segredo são as manipulações da orientação do bloco (em pé ou deitado)

Modelagem

- A fase é representada por uma matriz, cujos elementos indicam o tipo daquela coordenada (chão, vazio, objetivo, etc...)
- O problema em si é representado por um grafo direcionado, no qual cada nó representa um possível estado do cubo (posição e orientação)
- As arestas do grafo representam o movimento necessário para ir de uma posição a outra (cima, baixo, direita, esquerda)
- Assim, para cada fase, geramos um grafo de todos os possíveis movimentos

Verde: objetivo Vermelho: início

Busca

As estratégias de busca escolhidas para serem implementadas pela equipe foram:

- Busca em profundidade
- Busca em largura
- Busca A*
 - Com algumas heurísticas diferentes

Resultados: Busca em Profundidade

- Amplamente utilizada
- Fácil implementação

- Nesse problema, costuma visitar muitos nós
- Não encontra, necessariamente, a solução ótima

Resultados: Busca em Largura

- Checa todos os caminhos de tamanho 1, depois 2, assim por diante.
 - Característica desejável para esse problema (uma pequena manipulação no ínicio pode mudar bastante os próximos passos)

- Visita aproximadamente o mesmo número de nós que a busca em profundidade
- Encontra a solução ótima!

Resultados: Busca A*

- Busca informada, leva em consideração uma função (heurística) de custo.
- Testamos com algumas heurísticas:
 - Distância de manhattan ao objetivo;
 - Metade da distância de manhattan ao objetivo;
 - Metade da distância euclidiana ao objetivo;
 - \circ h(n)=0.

- Em geral, tão boa quanto ou melhor que a busca em largura (em nós visitados)
- Também encontra a solução ótima

Busca em profundidade:

- 67 nós visitados
- 50 passos na solução

Verde: objetivo Vermelho: início Roxo: visitado Azul: não visitado

Busca em largura:

- 56 nós visitados
- 7 passos na solução (ótima)

Verde: objetivo Vermelho: início Roxo: visitado

Azul: não visitado

Busca A* (manhattan):

- 28 nós visitados
- 7 passos na solução (ótima)

Verde: objetivo Vermelho: início Roxo: visitado Azul: não visitado

Fase 3		
Algoritmo de Busca	Tamanho da Solução	Número de Nós Visitados
Busca em Profundidade	49	100
Busca em Largura	19	97
Busca A* (Manhattan/2)	19	82
Busca A* (Euclidiana/2)	19	85
Busca A* (Trivial)	19	91
Busca A* (Manhattan)	19	68

Fim