## **Remarks**

Claims 1-15 are pending. Claims 3-15 have been withdrawn pursuant to a restriction requirement. Claim 1 has been amended to page 9, line 19 to page 10, line 21 of the Specification.

The Examiner rejects claims 1 and 2 under 35 U.S.C. 112(2) as being indefinite. The Examiner objects to the terms "5- or 6-membered heterocyclic ring", "heteroaryloxy" and "heteroaryl". The Examiner states that the ring structures and placement is indefinite. In response, Applicants have inserted specific structure names. The Examiner also objects to the reference to "substituted" without naming any substituents. The term "substituted" has been deleted. The Examiner objects to the use of "can be". The phrase has been eliminated throughout claims 1 and 2. Applicants submit that the above amendments address each of the Examiner's objections to claims 1 and 2.

The Examiner rejects claims 1 and 2 under 35 U.S.C. 102 as being anticipated by, or in the alternative, being unpatentable in view of published PCT application WO 00/24736 ("WO '736"). Applicants respectfully traverse this rejection. WO '736 was published in May 2000, whereas the instant application has a priority date of March 1999. Applicants enclose a certified translation of the priority document to overcome this rejection. Applicants submit that the instant application is now in condition for allowance.

Respectfully submitted,

DR. Cichton

Attorney for Applicants Reg. No. 37,300

Ciba Specialty **Chemicals Corporation** 540 White Plains Road P.O. Box 2005 Tarrytown, New York 10591-9005 Tel: (914) 785-7124

Fax: (914) 785-7102

SEP 21 2001

## Amended Claims with underlining and bracketing

1. (am nded) A compound of the formula A compound of the formula (Ia), (Ib) or (Ic)

$$Q_1 = X_1$$
  $Q_1 = X_2 = Q_1$   $Q_1 = X_2 = Q_2$ 
(Ia) (Ib) (Ic)

in which

 $Q_1$  is a benzofuran-2-one of the formula (IIa), and

Q2 is a benzofuran-2-one of the formula (IIb)

$$R_3$$
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_3$ 
 $R_4$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 

 $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_{100}$ ,  $R_{200}$ ,  $R_{300}$  or  $R_{400}$  independently of one another are hydrogen, halogen, hydroxyl, cyano, ether, nitro, an amine, amide, imine, urethane, sulfonamide, ester, carboxylic acid or sulfonic acid radical or carboxylic salt, sulfonic salt or [substituted or unsubstituted]- $C_1$ - $C_{24}$ alkyl,  $C_1$ - $C_{24}$ alkoxy,  $C_1-C_{24} \text{alkylthio, } C_5-C_{12} \text{cycloalkyl, } C_5-C_{12} \text{cycloalkoxy, } C_5-C_{12} \text{cycloalkylthio, } C_2-C_{24} \text{alkenyl, } C_5-C_{12} \text{cycloalkylthio, } C_5-C_{12} \text{cycl$  $C_6$ - $C_{24}$ aryl,  $C_7$ - $C_{25}$ aralkyl,  $C_6$ - $C_{24}$ aryloxy,  $C_6$ - $C_{24}$ arylthio,  $A_6$ - $A_{18}$ heteroaryl,  $A_6$ - $A_{18}$ heteroaryloxy or  $A_{18}$ - $A_{18}$ heteroaryloxy or  $A_{18}$ - $A_{18}$ heteroaryloxy or  $A_{18}$ - $A_$  $A_{s}$ - $A_{1s}$ heteroarylthio,  $\frac{1}{2}$  thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl,  $\frac{2H}{2}$ pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl, O-thienyl, O-benzo[b]thienyl, O-dibenzo[b,d]thienyl, Othianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, Oquinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, O-benzotriazolyl, O-

PL/2-21988/A -9-09/518,464

benzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-furazanyl or O-phenoxazinyl, S-thienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, S-isobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, S-imidazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, S-phenzotriazolyl, S-quinoxalinyl, S-quinazolinyl, S-cinnolinyl, S-perimidinyl, S-carbazolyl, S-carbazolyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, S-phenazinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or S-phenoxazinyl,

or

R<sub>1</sub> and R<sub>2</sub>, R<sub>2</sub> and R<sub>3</sub>, R<sub>3</sub> and R<sub>4</sub> or R<sub>100</sub> and R<sub>200</sub>, or R<sub>200</sub> and R<sub>300</sub>, R<sub>300</sub> and R<sub>400</sub>, independently of one another in each case together are divalent [, substituted or unsubstituted] radicals, such as polycyclic radicals or 1,3-butadien-1,4-ylene or -CH=CH-NH-, the two last radicals forming an additional fused-on 5- or 6-membered ring, and

 $X_1$  is a hydrazone or imine radical, with the proviso that, if  $R_1$ ,  $R_2$ ,  $R_3$  and  $R_4$  are hydrogen, or at least one  $R_1$ ,  $R_2$ ,  $R_3$  or  $R_4$  is methyl, the hydrazone radical is excluded, or, if  $R_1$ ,  $R_2$ ,  $R_3$  or  $R_4$  is hydrogen,  $X_1$  is not phenylimine- or 4-dimethylamine-phenylimine, or  $X_1$  is a methylene radical,

$$=c_{Q_{A}}^{Q_{3}}$$

in which

 $Q_3$  is a [substituted or unsubstituted] primary or secondary amine radical and  $Q_4$  is hydrogen or [a substituted or unsubstituted]  $C_1$ - $C_{24}$ alkyl,

-CO-(C<sub>1</sub>-C<sub>24</sub>alkyl), -CO-O-(C<sub>1</sub>-C<sub>24</sub>alkyl), C<sub>1</sub>-C<sub>24</sub>alkoxy, C<sub>1</sub>-C<sub>24</sub>alkylthio,

 $C_5$ - $C_{12}$ cycloalkyl,  $C_5$ - $C_{12}$ cycloalkoxy,  $C_5$ - $C_{12}$ cycloalkylthio,  $C_2$ - $C_{24}$  alkenyl,

 $C_6$ - $C_{24}$ aryl, -CO- $C_6$ - $C_{24}$ aryl), -CO- $C_6$ - $C_{24}$ aryl),  $C_6$ - $C_{24}$ aryloxy, a primary or secondary amine radical,  $C_6$ - $C_{12}$ arylthio,  $C_7$ - $C_{25}$ aralkyl,  $A_6$ - $A_{18}$ heteroaryl,  $A_6$ - $A_{18}$ heteroaryloxy or

A<sub>6</sub>-A<sub>18</sub>heteroarylthie,] thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl,

PL/2-21988/A

phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzo[b]thienyl, O-dibenzo[b,d]thienyl, Othianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, O-dibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, O-triazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, O-purinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, Oquinoxalinyl, O-quinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, O-benzotriazolyl, Obenzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, O-phenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl S-thienyl, S-benzo[b]thienyl, S-dibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, Sisobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, Simidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, Sphthalazinyl, S-naphthyridinyl, S-quinoxalinyl, S-quinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, Sphenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or Sphenoxazinyl,

or

 $Q_3$  and  $Q_4$  together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical, with the proviso that

 $Q_4$  is not hydrogen and  $Q_3$  is not a primary or secondary amine radical if  $R_3$  is hydrogen, methoxy or hydroxyl and  $R_1$ ,  $R_2$  and  $R_4$  are hydrogen,

[or  $Q_4$  is not hydrogen and  $Q_3$  is not a secondary amine radical if  $R_4$ ,  $R_2$ ,  $R_3$  and  $R_4$  are hydrogen,]

and

X<sub>2</sub> is <del>[a tetravalent 5- or 6-membered heterocyclic ring]</del> thienyl, furyl, 2H-pyranyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, triazinyl, pyrazinyl, pyridazinyl, morpholin, piperidyl, piperazinyl, or is

$$\begin{bmatrix}
Q_5 & Q_6 \\
C - X_3 - C
\end{bmatrix}$$

in which

09/518.464 - 11 - PL/2-21988/A

 $X_3$  is a single bond, {unsubstituted or substituted}  $C_6$ - $C_{24}$ arylene, { $A_6$ - $A_{18}$ heteroarylene,} thienylene, benzo[b]thienylene, dibenzo[b,d]thienylene, thianthrenylene, furylene, furfurylene, 2H-pyranylene, benzofuranylene, isobenzofuranylene, dibenzofuranylene, phenoxythinylene, pyrrolylene, imidazolylene, pyrazolylene, pyridylene, bipyridylene, benzimidazolylene, benzothiazolylene, triazinylene, pyrimidinylene, pyrazinylene, pyridazinylene, indolizinylene, isoindolylene, indolylene, indazolylene, purinylene, quinolizinylene, quinolylene, isoquinolylene, phthalazinylene, naphthyridinylene, quinoxalinylene, quinazolinylene, cinnolinylene, pteridinylene, carbazolylene, carbolinylene, benzotriazolylene, benzoxazolylene, phenanthridinylene, acridinylene, perimidinylene, phenanthrolinylene, phenazinylene, isothiazolylene, phenothiazinylene, isoxazolylene, furazanylene or phenoxazinylene 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene, or a tetravalent polyether, polyimine, polyamine radical, or bi( $C_6$ - $C_{24}$ )arylene,  $\frac{\text{[bi(A_6-A_{18})heteroarylene,]}}{\text{[bipyridylene,]}}$ bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and  $\underline{anthraquinoylfuranoylen},\ C_2\text{-}C_{24}\\ alkenylene,\ in\ which\ bi(C_6\text{-}C_{24})\\ arylene,\ \{\underline{bi(A_5\text{-}A_{18})}\\ heteroarylene\}\\ \underline{bipy-}$ ridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C2-C24alkenylene [can be] are optionally interrupted by one or more intermediate units [such as] selected from the group consisting of -CH=CH-, -CH=N-, -N=N-, -CR 44R <sub>42</sub>-, -CO-, -COO-, -OCO-, -NR<sub>42</sub>CO-, -CONR<sub>42</sub>-, -O-, -S-, -SO-, -SO<sub>2</sub>- or -NR<sub>42</sub>-,

R<sub>42</sub> and R<sub>44</sub> independently of one another are hydrogen, [substituted or unsubstituted] C<sub>1</sub>-C<sub>24</sub>alkyl, C<sub>5</sub>-C<sub>12</sub>cycloalkyl, C<sub>2</sub>-C<sub>24</sub>alkenyl, C<sub>6</sub>-C<sub>24</sub>aryl, C<sub>7</sub>-C<sub>25</sub>aralkyl or [A<sub>6</sub>-A<sub>18</sub>heteroaryl] thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, benzimidazolyl, benzothiazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl,

with the proviso that if  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_{100}$ ,  $R_{200}$ ,  $R_{300}$ ,  $R_{400}$  are all tert-butyl or all hydrogen,  $Q_5$  and  $Q_6$  are hydrogen,  $X_3$  is not 1,4-phenylene, and

 $Q_5$  and  $Q_6$  independently of one another are hydrogen,  $C_6$ - $C_{24}$ aryl,  $C_6$ - $C_{24}$ aryloxy,  $C_1$ - $C_{24}$ alkyl,  $C_1$ - $C_{24}$ alkylthio,  $C_5$ - $C_{12}$ cycloalkyl,  $C_5$ - $C_{12}$ cycloalkoxy,  $C_5$ - $C_{12}$ cycloalkylthio,  $C_2$ - $C_{24}$ alkenyl,  $C_6$ - $C_{24}$ aryloxy,  $C_6$ - $C_{24}$ arylthio [or  $A_5$ - $A_{18}$ heteroaryl,  $A_6$ - $A_{18}$ heteroaryloxy,  $A_5$ - $A_{18}$ heteroarylthio], thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isotenzofuranyl, benzofuranyl, benzofuranyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, benzofulazolyl, dibenzofuranyl, phenoxythiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl,

09/518,464 - 12 - PL/2-21988/A

indazolyl, purinyl, quinolizinyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl O-thienyl, O-benzo[b]thienyl, O-dibenzo[b,d]thienyl, O-thianthrenyl, O-furyl, O-furfuryl, O-2H-pyranyl, O-benzofuranyl, O-isobenzofuranyl, O-benzimidazolyl, O-benzothiazolyl, Odibenzofuranyl, O-phenoxythiinyl, O-pyrrolyl, O-imidazolyl, O-pyrazolyl, O-pyridyl, O-bipyridyl, Otriazinyl, O-pyrimidinyl, O-pyrazinyl, O-pyridazinyl, O-indolizinyl, O-isoindolyl, O-indolyl, O-indazolyl, Opurinyl, O-quinolizinyl, O-quinolyl, O-isoquinolyl, O-phthalazinyl, O-naphthyridinyl, O-quinoxalinyl, Oquinazolinyl, O-cinnolinyl, O-pteridinyl, O-carbazolyl, O-carbolinyl, O-benzotriazolyl, O-benzoxazolyl, O-phenanthridinyl, O-acridinyl, O-perimidinyl, O-phenanthrolinyl, O-phenazinyl, O-isothiazolyl, Ophenothiazinyl, O-isoxazolyl, O-furazanyl or O-phenoxazinyl S-thienyl, S-benzo[b]thienyl, Sdibenzo[b,d]thienyl, S-thianthrenyl, S-furyl, S-furfuryl, S-2H-pyranyl, S-benzofuranyl, Sisobenzofuranyl, S-benzimidazolyl, S-benzothiazolyl, S-dibenzofuranyl, S-phenoxythiinyl, S-pyrrolyl, Simidazolyl, S-pyrazolyl, S-pyridyl, S-bipyridyl, S-triazinyl, S-pyrimidinyl, S-pyrazinyl, S-pyridazinyl, S-indolizinyl, S-isoindolyl, S-indolyl, S-indazolyl, S-purinyl, S-quinolizinyl, S-quinolyl, S-isoquinolyl, Sphthalazinyl, S-naphthyridinyl, S-quinoxalinyl, S-quinazolinyl, S-cinnolinyl, S-pteridinyl, S-carbazolyl, S-carbolinyl, S-benzotriazolyl, S-benzoxazolyl, S-phenanthridinyl, S-acridinyl, S-perimidinyl, Sphenanthrolinyl, S-phenazinyl, S-isothiazolyl, S-phenothiazinyl, S-isoxazolyl, S-furazanyl or Sphenoxazinyl,

or

$$X_2$$
 is  $Q_7$   $Q_8$   $Q_8$ 

in which

 $Q_7$  and  $Q_8$  independently of one another are  $Q_5$  or  $Q_6$ , and

X<sub>4</sub> is C<sub>6</sub>-C<sub>24</sub>arylene, A<sub>5</sub>-A<sub>18</sub>heteroarylene,a polymethylidene or divalent polyether, polyimine, polyamine radical, or bi(C<sub>6</sub>-C<sub>24</sub>)arylene, [bi(A<sub>5</sub>-A<sub>18</sub>)heteroarylene,] bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen C<sub>2</sub>-C<sub>24</sub>alkenylene, in which bi(C<sub>6</sub>-C<sub>24</sub>)arylene[, bi(A<sub>5</sub>-A<sub>18</sub>)heteroarylene] bipyridylene, bipyrrolylen, piperazinedionylen, quinodimethylene, imidazolonylen, isoindolinylen, and anthraquinoylfuranoylen or C<sub>2</sub>-C<sub>24</sub>alkenylene [can be] are optionally interrupted by one or more intermediate units [such as] selected from the group consisting of

-CH=CH-, -CH=N-, -N=N-, -CR<sub>44</sub>R<sub>42</sub>-, -CO-, -COO-, -OCO-, -NR<sub>42</sub>CO-, -CONR<sub>42</sub>-, -O-, -S-, -SO-, -SO<sub>2</sub>- or -NR<sub>42</sub>-,

or

$$X_2$$
 is  $N-NH-X_4-HN-N$  or  $N-N=1$ .

## 2. (amended) A compound according to claim 1 of the formula (XVI)

$$\begin{bmatrix} R_{13} & X \\ R_{112} & O & O \\ R_{12} & & n \end{bmatrix}$$
 (XVI)

in which

n is 1 or 2, and

if n is 1

X is  $X_1$  as defined in claim 1, and

if n is 2

X is  $X_2$  as defined in claim 1, and

 $R_{12}$ ,  $R_{112}$ ,  $R_{13}$  and  $R_{113}$  independently of one another are hydrogen, halogen, OH, NO<sub>2</sub>,  $R_{14}$ , OR<sub>14</sub>, OC9-C18alkyl or SC9-C18alkyl, in which

 $R_{14}$  is  $C_1$ - $C_{24}$ alkyl which is unsubstituted or substituted one or more times by oxo or by  $COO^-X_5^+$ and which [can be] is uninterrupted or interrupted one or more times by O, N and/or S, or is  $C_7$ - $C_{18}$ aralkyl or  $C_6$ - $C_{12}$ aryl unsubstituted or substituted one or more times by halogen,  $OR_{16}$ ,  $NR_{16}R_{17},\,COOR_{16},\,CONR_{16}R_{17},\,NR_{18}COR_{16}\,or\,NR_{18}COOR_{16},$ 

 $X_5^+$  is a cation  $H^+$ ,  $Na^+$ ,  $K^+$ ,  $Mg^{++}_{1/2}$ ,  $Ca^{++}_{1/2}$ ,  $Zn^{++}_{1/2}$ ,  $Al^{+++}_{1/3}$ , or  $(NR_{16}R_{17}R_{18}R_{19})^+$ , and

R<sub>16</sub> and R<sub>17</sub> independently of one another are hydrogen, C<sub>6</sub>-C<sub>12</sub>aryl, C<sub>7</sub>-C<sub>10</sub>aralkyl, or C<sub>1</sub>-C<sub>8</sub>alkyl which is unsubstituted or substituted one or more times by halogen, hydroxyl or C₁-C₄alkoxy, or  $R_{16}$  and  $R_{17}$  in  $NR_{16}R_{17}$  or  $CONR_{16}R_{17}$ , together with the nitrogen atom connecting them, are pyrrolidine, piperidine, piperazine or morpholine each of which is unsubstituted or substituted

PL/2-21988/A - 14 -09/518,464

from one to four times by  $C_1$ - $C_4$ alkyl, and

 $R_{18}$  and  $R_{19}$  independently of one another are hydrogen,  $C_1$ - $C_8$ alkyl,  $C_6$ - $C_{10}$ aryl or  $C_6$ - $C_{12}$ aralkyl, or  $R_{12}$  and  $R_{112}$ ,  $R_{112}$  and  $R_{13}$ ,  $R_{13}$  and  $R_{113}$  [can also] independently of one another are each together [be] divalent [substituted or unsubstituted] radicals, such as polycyclic radicals.

09/518,464 - 15 - PL/2-21988/A