Андрей Можаев

Разработка метода построения упрощенной динамической модели для задачи оптимального управления микроклиматом помещения

Выпускная квалификационная работа

Научный руководитель: Дмитрий Сергеевич Шалымов

Факультет математики и компьютерных наук СПбГУ Программа «Современное программирование»

Введение в предметную область

- На управление микроклиматом (системы отопления, вентиляции и кондиционирования) в зданиях общего пользования уходит до 70% всей потребляемой энергии.
- Для повышения качества регулирования необходимы модели предсказания температуры воздуха в помещениях

Метод вычислительной гидродинамики

- Задается геометрия помещения и граничные условия
- Уравнения Навье-Стокса
- Высокая точность
- Большие временные затраты

Метод сетевых воздушных потоков

- Здание задается в виде графа
- Уравнения сохранения энергии и массы
- Быстрый счет, годовой горизонт планирования
- Отсутствие детализации

Цель работы

- Одним из факторов, влияющих на предсказания, является расположение датчика температуры
- Цель найти оптимальное расположение, при котором предсказания будут наиболее точными
- Будем решать эту задачу численно

Постановка задачи

- 1. Построить модель помещения методами вычислительной гидродинамики, промоделировать некоторый промежуток времени с хорошей точностью
- 2. Анализируя накопленный массив данных, найти оптимальную точку для размещения датчика

Моделирование помещения

- ПО для моделирования COMSOL Multiphysics
- Помещение для моделирования "проект демонстрационного стенда Умного дома" (комната 10х6х3 с окном и внутренней стеной)
- Температура окружающей среды и скорость ветра взята из датасета с реальными температурами в августе 2020 года
- Также промоделирована солнечная радиация

Аналитическая часть

- Выбираем потенциальные точки размещения датчика температуры
- Разрабатываем критерий сравнения расположений
- Находим оптимальные точки

Результат моделирования

Time (s)	Point 1	Point 2	 Point 27	Ambient
0	20.0	19.4	20.8	17.9
300	19.9	19.4	20.7	17.9
600	19.9	19.4	20.6	17.9
			17	(()) 24 () 24 () 3
345600	21.2	21.5	20.8	19.9

Сдвиг температур

• Частоты колебаний внешней и внутренней температур совпадают, но существует сдвиг по фазе 1

¹Пащенко А.Ф., Рассадин Ю.М. Оценка взаимосвязи параметров микроклимата с учетом тепловой инерции внешних стен здания / Труды 15-й Международной конференции "Управление развитием крупномасштабных систем"(MLSD'2022). М.: ИПУ РАН, 2022. С. 1216-1224.

Критерий оптимальности

- Размер сдвига находим с помощью критерия корреляции
 Пирсона для временных рядов. Для каждой
 пространственной точки этот сдвиг может быть разным
- Затем для сдвинутого ряда температур считаем коэффициенты линейной регрессии
- Точки сравниваем по коэффициенту детерминации \mathbb{R}^2

Дальнейшая работа

- Градиентный поиск
- Учет разных времен года

Результаты работы

- 1. Промоделировано помещение с реальной внешней температурой и солнечной радиацией
- 2. Разработан алгоритм нахождения оптимальной точки расположения датчика

Андрей Можаев, email: mozhay2000@gmail.com https://github.com/mozhayka/microclimate

