

Práticas de Laboratório

ELE-08557

Experiência 7

Portas Lógicas e Flip-Flop Tipo D

Objetivo: Verificar o funcionamento de portas lógicas e flip-flop tipo D.

Teoria: Portas lógicas são os blocos básicos para a construção de circuitos digitais. Elas operam em dois níveis de tensão: baixo (nível lógico 0) e alto (nível lógico 1). Os valores das tensões dependem da tecnologia usada. Por apresentar somente dois valores de operação, elas funcionam usando a lógica booleana, e a relação entre as suas entradas e saídas é bem definida pelo o que chamamos de tabela verdade.

As portas lógicas básicas são NOT (Não / inversora), AND (E) e OR (OU). A partir destas portas podem ser obtidas outras portas lógicas. A saída da porta lógica NOT é o inverso da entrada. Assim, se a entrada é um nível alto (1) a saída será um nível baixo (0), e vice-versa. Essa porta possui somente uma entrada.

PORTA NÃO (NOT)

A saída da porta lógica AND é igual a 1 se todas as entradas forem 1, caso contrário é 0. O funcionamento desta porta é análogo a dois interruptores em série, em que a lâmpada só acende se os dois interruptores estiverem ligados.

A saída da porta lógica OR é igual a 1 se ao menos uma das entradas for 1, caso contrário é 0. O funcionamento desta porta é análogo a dois interruptores em paralelo, em que a lâmpada acende se um dos interruptores estiver ligado.

Com as portas lógicas é possível fazer funcionar diferentes lógicas. Por exemplo, um sistema de automóvel que acende uma lâmpada de alerta sempre que o cinto de segurança não estiver engatado, o motorista estiver no assento e a chave na ignição. Considere C o sensor que indica o cinto engatado (C = 1), M o sensor que indica o motorista no assento (M = 1) e C indique a chave

na ignição (I = 1) e S significa a lâmpada ligada (S = 1). A lógica deste sistema pode ser resumida pela tabela verdade a seguir.

С	М		S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Outro elemento de circuito lógico a ser visto nos experimentos é o flip-flop tipo D. A saída dos flip-flops estão em função das entradas e do estado atual de sua saída. No caso do flip-flop tipo D a ser testado ele possui uma entrada D e duas saídas: Q e Q' (cuja saída é o inverso de Q). Além disso, possui outra entrada que é o clock. A mudança de valores de saída em Q e Q' só acontece na transição de subida do clock, ou seja, quando o clock sai de 0 e sobe para 1. Se nesta transição o valor de D é igual a 1, Q = 1, mas se D for 0, Q = 0. Qualquer alteração em D fora da transição de subida do clock não altera o valor de Q.

Equipamentos: Um CI 7404, 7408, 7474, resistores, led, fonte de tensão CC, gerador de funções, osciloscópio, multímetro, um protoboard e cabos de ligação.

Procedimentos:

- 1) Montar o circuito da Figura 1. Use resistores de 1kΩ e ajuste a fonte de CC para fornecer uma tensão de 5 V ao circuito. Este circuito deve realizar a lógica apresentada no exemplo do automóvel. As chaves serão feitas com o uso dos jumpers, sendo que cada chave corresponde ao sinal de um sensor. Identifique que chave corresponde a que sensor. Verifique se o funcionamento do circuito está de acordo com o mostrado na tabela verdade. CH1 = CH2 = CH3 =
- 2) Monte o circuito da Figura 2 inicialmente sem o fio que conecta o pino 5 ao pino 2, e conectado no pino 5 um resistor de 1kΩ ligado ao terra. Ajustar a frequência de oscilação do gerador de funções para 1 Hz, e uma onda quadrada entre os valores 0 e 5 V. Conectar a saída do gerador de funções no clock. Com o auxílio de um jumper no pino 5 simule uma chave conectada em Vcc. Verifique o funcionamento do flip-flop tipo D.
- 3) Monte o circuito da Figura 2. Verifique o funcionamento do circuito. Com o auxílio do osciloscópio verifique as formas de onda no clock e em Q. Esboce essas ondas.

Figura 1: Circuito 1 do experimento

Figura 2: Circuito 2 do experimento

Questionário:

- 1) O circuito do passo 1) funcionou conforme esperado? Que sensor ficou conectado em CH3?
- 2) O funcionamento do circuito do passo 2) foi conforme o esperado?
- 3) Esboce os gráficos do passo 3) de cada forma de onda de forma não superposta (semelhante ao mostrado na explicação do flip-flop tipo D).
- 4) Explique o funcionamento do circuito do passo 3).

CÓDIGO DE CORES

Cores	1º anel	2º anel	3º anel	4º anel
Prateado	-	-	10 ⁻²	10%
Dourado	-	-	10 ⁻¹	5%
Preto	-	0	10 ⁰	-
Marrom	1	1	10 ¹	1%
Vermelho	2	2	10 ²	2%
Laranja	3	3	10 ³	-
Amarelo	4	4	10 ⁴	-
Verde	5	5	10 ⁵	-
Azul	6	6	10 ⁶	-
Violeta	7	7	10 ⁷	-
Cinza	8	8	10 ⁸	-
Branco	9	9	10 ⁹	-
Sem anel	-	-	-	20%