Deadline: 2024/4/29, 17:00.

1. If \mathcal{X} and \mathcal{Y} are normed vector space, we denote the space of all bounded linear maps from \mathcal{X} to \mathcal{Y} by $L(\mathcal{X}, \mathcal{Y})$. Show that if \mathcal{Y} is complete, then so is $L(\mathcal{X}, \mathcal{Y})$.

- 2. Let \mathcal{X} and \mathcal{Y} be normed vector space and $T: \mathcal{X} \to \mathcal{Y}$ be a linear map. Then show that T is bounded if and only if it is continuous.
- 3. (Refer problem 10 of ch6) Let $1 \le p, q \le +\infty$ such that 1/p + 1/q = 1. For $f \in \mathcal{R}[a, b]$, we define

$$||f||_p = \left\{ \int_a^b |f(x)|^p dx \right\}^{1/p}, ||f||_\infty = \sup_{x \in [a,b]} |f(x)|$$

You may assume Young's inequality $ab \leq a^p/p + b^q/q$ is true, where $a, b \geq 0$. Then show that $\forall f, g \in \mathcal{R}[a, b]$, we have

- (a) Holder's inequality: $||fg||_1 \le ||f||_p ||g||_q$
- (b) Minkowski inequality : $||f + g||_p \le ||f||_p + ||g||_p$.
- 4. Let E be a compact set and K be a real valued function continuous on E. Define a linear map $A: \mathcal{R}(E) \to \mathcal{R}(E)$ by $(Af)(t) = K(t)f(t), \forall t \in E$. Show that
 - (a) A is bounded, i.e. $\exists M \geq 0$ such that $||Af||_2 \leq M ||f||_2$, $\forall f \in \mathcal{R}(E)$
 - (b) If we define operator norm $||A|| = \sup\{||Af||_2 : ||f||_2 = 1\}$, then $||A|| = ||a||_{\infty}$.
- 5. Let $\mathcal{C}[0,1]$ be a normed vector space with sup-norm. Define $T:\mathcal{C}[0,1]\to\mathcal{C}[0,1]$ by

$$(Tf)(x) = \int_0^x f(t) dt.$$

Show that T is linear, continuous, and find ||T||

- 6. Let T(x,y)=(2x+y,x+2y) be a map on \mathbb{R}^2 . Show T linear, bounded, and find ||T||.
- 7. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator with ||T|| < 1. Show that $T_k = 1 + T + ... + T^{k-1}$ converges to a linear operator S and $S \circ (1 T) = (1 T) \circ S = 1$.
- 8. Two norms $\|\cdot\|$ and $\|\cdot\|'$ on \mathcal{X} are said to be equivalent if $\exists c_1, c_2 > 0$ such that $c_1 \|x\| \le \|x\|' \le c_2 \|x\|$, $\forall x \in X$. Show that if \mathcal{X} is a finite-dimensional vector space, then all norm on \mathcal{X} are equivalent. Hint: Use basis, and the fact that unit ball in \mathcal{X} isometric to unit ball in \mathbb{R}^n .