

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Sommersemester 2021

Lineare Algebra II

Übungsblatt 10 28.06.21

Aufgabe 1 (10 Punkte)

Es sei $\mathbb K$ ein beliebiger Körper, V ein endlichdimensionaler $\mathbb K$ -Vektorraum und $\beta\colon V\times V\to \mathbb K$ eine symmetrische Bilinearform. Zu einem Untervektorraum $U\subseteq V$ definieren wir den zu U orthogonalen Raum

$$U^{\perp} := \{ w \in V \mid \forall v \in U : \beta(v, w) = 0 \}.$$

analog zu euklidischen Räumen, und den Nullraum

$$\mathrm{Null}(\beta) \coloneqq V^\perp = \left\{ \, w \in V \, | \, \forall v \in V : \beta(v,w) = 0 \, \right\}.$$

Sie können ohne Beweis verwenden, dass

$$\dim(U^{\perp}) = \dim(V) - \dim(U) + \dim(U \cap \text{Null}(\beta)) \tag{*}$$

gilt.

- a) Beweisen Sie: U^{\perp} ist tatsächlich ein Untervektorraum von V.
- b) Beweisen Sie: $\text{Null}(\beta) \subseteq U^{\perp}$.
- c) Beweisen Sie: Es gilt $U \oplus U^{\perp} = V$ genau dann, wenn die Einschränkung $\beta|_{U \times U}$ nicht entartet ist.
- d) Beweisen Sie: Es gilt $(U^{\perp})^{\perp} = U + \text{Null}(\beta)$. Hinweis: Zeigen Sie zunächst $U + \text{Null}(\beta) \subseteq (U^{\perp})^{\perp}$ und benutzen Sie dann die Formel (*).
- e) Nun sei $V = \mathbb{R}^3$ und

$$\beta \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$

$$\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right) \mapsto -x_1 y_1 + x_2 y_2 + x_3 y_3$$

Finden Sie einen Untervektorraum $U_1 \subseteq V$ der Dimension 1 und einen Untervektorraum $U_2 \subseteq V$ der Dimension 2, für die $U_1 \oplus U_1^{\perp} \neq V$ und $U_2 \oplus U_2^{\perp} \neq V$ gelten.

Aufgabe 2 (Die symplektische Normalform)

(10 Punkte)

Es sei die reelle 4×4 -Matrix

$$A := \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

gegeben.

a) Bestimmen Sie eine geordnete Basis B, bezüglich der die Bilinearform

$$\beta \colon \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$$

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \mapsto \begin{cases} x_1 y_3 - y_1 x_3 - 2(x_1 y_4 - y_1 x_4 + x_3 y_4 - y_3 x_4) \\ -3(x_2 y_3 - y_2 x_3) + 4(x_2 y_4 - y_2 x_4) \end{cases}$$

die Fundamentalmatrix $FM_B(\beta) = A$ hat.

Hinweis: Bestimmen Sie eine Fundamentalmatrix bezüglich einer Basis Ihrer Wahl und nutzen Sie simultane Zeilen- und Spaltenoperationen zum Basiswechsel. (Siehe auch Übung und Aufgabe 1 des Tutoriumsblattes.)

b) Beweisen Sie, dass es für jede nicht-entartete alternierende Bilinearform $\eta \colon \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$ eine geordnete Basis B gibt, bezüglich der die Bilinearform die Fundamentalmatrix $\mathrm{FM}_\mathsf{B}(\eta) = A$ hat.

Hinweis: Geben Sie einen Algorithmus an und beweisen Sie, dass dieser immer funktioniert und das gewünschte Ergebnis hat.

Die Bilinearform η ist genau dann nicht entartet, wenn die Fundamentalmatrix (bzgl. einer beliebigen Basis) invertierbar ist.

Fakultätslehrpreise

Einmal pro Jahr und Fakultät vergibt das KIT einen Fakultätslehrpreis für herausragende Lehre. Auf Bitte des Studiendekans weisen wir darauf hin, dass Sie – als Studierende – Kandidaten für diesen Preis nominieren können.

Weitere Informationen über die Fakultätslehrpreise finden Sie auf der Seite

http://www.math.kit.edu/fakmath/seite/fakultaetslehrpreis_2022/de

Vorschläge können bis zum 31.10.2021 an den Studiendekan gerichtet werden.

Abgabe bis Montag, den 05.07.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.