Домашнее Задание по ТРЯПу №6

Павливский Сергей Алексеевич , 873 17.10.2019

Задание 1.

- 1. Пусть A полный ДКА, распознающий язык L. Докажите, что
- а) каждый левый язык Lq является подмножеством некоторого класса L-эквивалентности: $x \in Lq \Rightarrow Lq \subseteq [x]$.
- б) для каждого класса эквивалентности [x] существует такое подмножество состояний $Q_x \subseteq Q_A$, что [x] = $\bigcup L_q$, q $\in Q_x$
- в) если $x \in Lq$, то $Lp \subseteq [x]$ тогда и только тогда, когда Rq = Rp (когда правые языки для состояний p и q совпадают).

Решение

1.a)

 L_q это все слова приходящие в состояние ${\bf q}$, тогда после приписывания слова ${\bf z}$ к слову из L_q будет приводить в одно и то же принимающее или не принимающее состояние . Тогда все слова из L_q при дописывании произвольного слова ${\bf z}$ принимаются ${\bf A}$ или не принимаются одновременно , то есть принадлежат одному некоторому классу ${\bf L}$ эквивалентности ч.т.д.

1.б)

Так как число состояний конечно , то для каждого состояния определим L_q . Рассмотрим некоторый класс эквивалентности $[\mathbf{x}]$. Его слова оказываеются в некотором наборе состояний Q_x

. Объединение L_q по этим состояниям будет принадлежать [x], из-за достижимости состояний словами из [x]. Если некоторый элемент, не принадлежащий объединению, пришедший в состояние q_1 . Тогда, по-факту, мы включили q_1 в Q_x и включили в объединение L_{q_1} , то есть на самом деле этот элемент входил в объединение ч.т.д.

1.B

Возьмем у $\in L_p \subseteq [x]$, тогда $x \sim y$, а значит , т.к. \forall $z:xz \in L \Leftrightarrow yz \in L$, то $\Rightarrow R_p = R_q$.

В обратную сторону : если $R_p=R_q$, то берем у $\in L_p$ и х $\in L_q$, тогда $R_p=R_q\Rightarrow$ х \sim у . Значит , $L_p\subseteq [{\bf x}]$.

Задание 2.

K языку L_1 добавили конечный язык R и получили язык L ($L = L_1 \bigcup R$). Язык L оказался регулярным. Верно ли, что язык L_1 мог быть нерегулярным?

Решение

1.

Пусть L_1 не регулярный . Тогда для некоторого р для \forall w : $|\mathbf{w}| \geqslant \mathbf{p}$ выполняется леммы о накачке . Тогда при объединении L_1 с конечным R возьмем $p_1 = \max(\mathbf{p}, \max(|w_1, \mathbf{w} \in \mathbf{R}))$. Тогда для любого $w_2 : |w_2| \geqslant \mathbf{p}1$ будет выполняться отрицание леммы о накачке . Значит L_1 не не регулярный , то есть L_1 регулярный

Задание 3.

Является ли регулярным язык L всех слов в алфавите $\{0,1\}$, которые представляют числа в двоичной записи, дающие остаток два при делении на три (слово читается со старших разря-

дов)? Например, 001010 (1010 $_2=10_{10}=3\times 3+1)\notin L$, а 10001 (10001 $_2=17_{10}=5\times 3+2)\in L$.

Решение

Да . Докажем , что число классов эквивалентности конечно

Остатки по модулю 3 будут классами эквивалентности . Пусть мы дописали слово z к слову x . Пусть $|z|=k\Rightarrow$ остаток по модулю 3 слова xz будет $x_1*2^k+z_1$; x_1,z_1 остатки по модулю 3 у чисел x, z соответственно . Тогда если x \equiv y (mod 3) , to \forall z : xz \in L \Leftrightarrow yz \in L, т.к. $x_1*2^k+z_1\equiv y_1*2^k+z_1\pmod 3$, в случае не сравнимости их по модулю приписывание z приведет их в разные остатки . Ясно , что любое число принадлежит какомуто нашему классу L-эквивалентности , поскольку для каждого числа мы можем найти остаток по модулю 3 . Количество классов эквивалентности конечно \Rightarrow по теореме Майхилла-Нероуда L регулярен .

Задание 4.

Опишите классы эквивалентности Майхилла-Нероуда для языка L. В случае конечности множества классов, постройте минимальный полный ДКА, распознающий L. L = a) $SQ = \{ww \mid w \in \Sigma*\}; \delta$) $\Sigma*a\Sigma*$.

Решение

a)

Каждый класс эквивалентности состоит из одного слова . Пусть класс эквивалентности состоит из двух слов $w_1 \neq w_2$. Тогда при $z=w_2 \Rightarrow w_2w_2 \in L$, $w_1w_2 \in L$. А так как число слов в алфавите количество , то число классов эквивалентности бесконечное количество \Rightarrow по критерию регулярности L не

регулярный.

б)

Скажем, что язык L разбивает на три класса эквивалентности : [a] = b^*a^n , [b] = b^* , [ab] = $\Sigma^*ab\Sigma^*$. Если к слову [ab] приписать какое-то слово z, то полученное слово будет принадлежать языку L , потому что исходное слово из $|ab| \in L$. Если к словам x, y из |a| приписать слово z, которое $\in L$, то и х и у у будут принадлежать языку . Если приписать слово z, которое не принадлежит языку и начинается на а, то оба слова хz, уz не будут принадлежать языку, если z начинается с b, то оба слова хz, уz будут принадлежать языку (на стыке слов образуется пара ab). Берем два слова x, y из |b|, тогда при приписывании слова z , только от принадлежности этого слова языку L, зависит принадлежность слов xz, yz языку L. Возьмем z = a, приписываем к $ab \in [ab]$, $ba \in [a]$ и $b \in [b]$, aba \in L, aa \notin L, bb \notin L . z = b приписываем к ba \in [a] и b \in [b], тогда $bab \in L$, $bb \notin [b]$. Также ясно, что мы каждое слово можем поместить в какой-либо класс эквивалентности, потому что если слово не содержит подслово ab, то оно имеет вид b^*a^* , а это описывается объединением множеств b^* и b^*a^n . Тогда ДКА :

Задание 5.

Автомат А заданн диаграммой:

- 1. Постройте праволинейную грамматику для языка L(A).
- 2. Постройте регулярное выражение для языка L(A).

Решение

```
2. Воспользуемся методом Бржозовского : Система : 1. R_0 = aR_1 + bR_3 R_1 = bR_2 + \varepsilon R_2 = aR_1 + bR_3 R_3 = \varepsilon 2. R_2 = aR_1 + b R_1 = b(aR_1 + b) + \varepsilon = baR_1 + bab + \varepsilon Тогда по теореме Ардена : R_1 = (ba)^*(bab + \varepsilon) R_0 = a(ba)^*(bab \mid \varepsilon) \mid b - требуемое P.B.
```