∨ Import libraries

```
#https://grouplens.org/datasets/movielens/

import pandas as pd
from pyspark.sql.functions import col, explode
from pyspark import SparkContext

v Initiate spark session

from pyspark.sql import SparkSession
sc = SparkContext
# sc.setCheckpointDir('checkpoint')
spark = SparkSession.builder.appName('Recommendations').getOrCreate()
Setting default log level to "WARN".
```

24/01/31 23:35:51 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classe

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).

1. Load data

```
movies = spark.read.csv("movies.csv",header=True)
ratings = spark.read.csv("ratings.csv",header=True)
```

ratings.show()

+	+		·+
userId	movieId	rating	timestamp
		4.0	964982703
j 1	j 3	4.0	964981247
1	6	4.0	964982224
j 1	47	5.0	964983815
j 1	50	5.0	964982931
j 1	70	3.0	964982400
j 1	101	5.0	964980868
1	110	4.0	964982176
1	151	5.0	964984041
1	157	5.0	964984100
1	163	5.0	964983650
1	216	5.0	964981208
j 1	223	3.0	964980985
1	231	5.0	964981179
1	235	4.0	964980908
1	260	5.0	964981680
1	296	3.0	964982967
j 1	316	3.0	964982310
j 1	333	5.0	964981179
1	349	4.0	964982563
+	+		++

only showing top 20 rows

ratings.printSchema()

```
root
    |-- userId: string (nullable = true)
    |-- movieId: string (nullable = true)
    |-- rating: string (nullable = true)
    |-- timestamp: string (nullable = true)

ratings = ratings.\
    withColumn('userId', col('userId').cast('integer')).\
    withColumn('movieId', col('movieId').cast('integer')).\
    withColumn('rating', col('rating').cast('float')).\
    drop('timestamp')
ratings.show()
```

+	+-	+-	+
user	·Id m	ovieId r	ating
+	+-	+-	+
	1	1	4.0
	1	3	4.0
	1	6	4.0
ĺ	1	47	5.0
	1	50	5.0
İ	1	70 j	3.0
İ	1	101	5.0
ĺ	1	110	4.0
İ	1	151	5.0
ĺ	1	157	5.0
ĺ	1	163	5.0
İ	1	216	5.0
İ	1	223	3.0
ĺ	1	231	5.0
İ	1	235	4.0
İ	1	260	5.0
İ	1	296	3.0
İ	1	316	3.0j
İ	1	333	5.0
İ	1	349	4.0 j
+	+-	-	-
only	show	ing top	20 rows

Calculate sparsity

```
# Count the total number of ratings in the dataset
numerator = ratings.select("rating").count()

# Count the number of distinct userIds and distinct movieIds
num_users = ratings.select("userId").distinct().count()
num_movies = ratings.select("movieId").distinct().count()

# Set the denominator equal to the number of users multiplied by the number of movies denominator = num_users * num_movies

# Divide the numerator by the denominator
sparsity = (1.0 - (numerator *1.0)/denominator)*100
print("The ratings dataframe is ", "%.2f" % sparsity + "% empty.")

The ratings dataframe is 98.30% empty.
```

Interpret ratings

Group data by userId, count ratings
userId_ratings = ratings.groupBy("userId").count().orderBy('count', ascending=False)
userId_ratings.show()

	++
userId	count
414	2698
599	2478
474	2108
448	1864
274	1346
610	
	1260
380	
606	1115
288	1055
	1046
387	1027
182	977
307	975
603	943
298	939
177	904
318	879
232	862
480	
·	++

only showing top 20 rows

```
# Group data by userId, count ratings
movieId_ratings = ratings.groupBy("movieId").count().orderBy('count', ascending=False)
movieId_ratings.show()
```

+	+	
movieId c	ount	
+	+	
356	329	
318	317	
296	307	
593	279	
2571	278	
260	251	
480	238	
110	237	
589	224	
527	220	
2959	218	
1	215	
1196	211	
50	204	
2858	204	
47	203	
780	202	
150	201	
1198	200	
4993	198	
++-	+	
only showi	ng top 20	rows

Build Out An ALS Model

Tell Spark how to tune your ALS model

Build your cross validation pipeline

Best Model and Best Model Parameters

```
#Fit cross validator to the 'train' dataset
model = cv.fit(train)
#Extract best model from the cv model above
best_model = model.bestModel
    24/01/31 23:35:56 WARN InstanceBuilder: Failed to load implementation from:dev.ludovic.netlib.blas.JNIBLAS
     24/01/31 23:35:56 WARN InstanceBuilder: Failed to load implementation from:dev.ludovic.netlib.blas.VectorBLAS
     24/01/31 23:36:05 WARN GarbageCollectionMetrics: To enable non-built-in garbage collector(s) List(G1 Concurrent GC), users s
# Print best_model
print(type(best_model))
# Complete the code below to extract the ALS model parameters
print("**Best Model**")
# # Print "Rank"
print(" Rank:", best_model._java_obj.parent().getRank())
# Print "MaxIter"
print(" MaxIter:", best_model._java_obj.parent().getMaxIter())
# Print "RegParam"
print(" RegParam:", best_model._java_obj.parent().getRegParam())
     <class 'pyspark.ml.recommendation.ALSModel'>
     **Best Model**
      Rank: 50
       MaxIter: 10
       RegParam: 0.15
# View the predictions
test_predictions = best_model.transform(test)
RMSE = evaluator.evaluate(test_predictions)
print(RMSE)
     0.8677116560030962
```

|userId|movieId|rating|prediction| 148 356 I 4.0| 3.4877493 148| 4896 4.0| 3.4659078 148 4993 3.0 3.506965 3.4264944 148 7153 3.01 148 8368 4.0| 3.5371032 148| 40629 5.0 | 3.2190442 148 50872 3.0 3.7063406 1481 60069 3.6646976 4.51 148| 69757 3.5| 3.4481666 148 72998 4.0 3.2189465 148 81847 4.51 3.517452 148| 98491 5.0| 3.741063 148 115617 3.5368829 3.5| 148 122886 3.5 3.4820495 463 296 4.184284 4.01 463 527 4.0| 3.820791

test_predictions.show()

463

2019

4.0| 3.962076|

	471	527	4.5	3.8060656
ĺ	471	6016	4.0	3.9264812
ĺ	471	6333	2.5	3.2160175
+	+	+	+	
on	ly show:	ing top 2	20 row	S

Make Recommendations

Generate n Recommendations for all users
nrecommendations = best_model.recommendForAllUsers(10)
nrecommendations.limit(10).show()

```
nrecommendations = nrecommendations\
   .withColumn("rec_exp", explode("recommendations"))\
   .select('userId', col("rec_exp.movieId"), col("rec_exp.rating"))
```

nrecommendations.limit(10).show()

+	++	+
userId	movieId	rating
+	·+	+
1	3379	5.7274647
1	5490	5.62538
1	33649	5.556481
1	5915	5.43931
1	171495	5.4147716
1	5416	5.395296
1	5328	5.395296
1	3951	5.395296
1	78836	5.368873
j 1	6460 j	5.349636
+	++	+

Do the recommendations make sense?

Lets merge movie name and genres to teh recommendation matrix for interpretability.

nrecommendations.join(movies, on='movieId').filter('userId = 100').show()

+		L		
movieId	userId	rating	title	genres
67618 3379 33649 42730 74282 171495 184245 179135 138966 117531	100 100 100 100 100 100 100	5.0430155 4.982005 4.981763 4.9055843 4.870512 4.8490896 4.8490896	On the Beach (1959) Saving Face (2004) Glory Road (2006) Anne of Green Gab	Comedy Drama Romance Drama Children Drama Ro (no genres listed) Documentary Documentary Animation
T		T	r	r -

ratings.join(movies, on='movieId').filter('userId = 100').sort('rating', ascending=False).limit(10).show() in the context of

4		·			+
	movieId	userId	rating	title	genres
+			+	·+	+
I	1101	100	5.0	Top Gun (1986)	Action Romance
ĺ	1958	100	5.0	Terms of Endearme	Comedy Drama
I	2423	100	5.0	Christmas Vacatio	Comedy
ĺ	4041	100	5.0	Officer and a Gen	Drama Romance
I	5620	100	5.0	Sweet Home Alabam	Comedy Romance
ĺ	368	100	4.5	Maverick (1994)	Adventure Comedy
	934	100	4.5	Father of the Bri	Comedy
I	539	100	4.5	Sleepless in Seat	Comedy Drama Romance
ĺ	16	100	4.5	Casino (1995)	Crime Drama
Ì	553	100	4.5	Tombstone (1993)	Action Drama Western
1				+	+