Math 402/502 Homework 1 – due Friday, January 24

Nat Steven

- (1) Let variables range over the natural numbers \mathbb{N} , and let P(n) be the relation that n is prime, L(n,m) the relation that n < m, and E(n) the relation that n is even.
 - (a) Express the following symbolic statement as an English sentence:

$$\forall n \exists m (L(n,m) \land P(m))$$

For all natural numbers n, there exists a natural number m such that n is less than m and m is prime. Alternatively, there always exists a prime natural number greater than any given natural number.

(b) Express the following English sentence as a symbolic statement. Do not use the $\exists!$ abbreviation.

"There is a unique natural number n which is both even and prime."

$$\exists n((E(n) \land P(n)) \land (\forall m(E(m) \land P(m)) \implies m = n))$$

(2) Let \oplus be a new connective representing exclusive or (XOR), so that $P \oplus Q$ is true precisely when exactly one of P and Q is true. Write a truth table for \oplus .

P	Q	$P\oplus Q$
T	Т	F
\mathbf{T}	F	${ m T}$
F	Т	${ m T}$
F	F	\mathbf{F}

(3) Consider the following three statements, where $P,\ Q,$ and R are three predicates:

• Statement 1: $(P \rightarrow Q) \rightarrow R$

• Statement 2: $P \rightarrow (Q \rightarrow R)$

• Statement 3: $(P \wedge Q) \rightarrow R$

(a) Show Statement 2 is logically equivalent to Statement 3.

P	Q	R	$P \to (Q \to R)$	P	Q	R	$(P \wedge Q) \to R$
Т	Т	Т	T	$\overline{\mathrm{T}}$	Т	Т	T
\mathbf{T}	Т	F	\mathbf{F}	${ m T}$	Γ	F	F
\mathbf{T}	F	Т	${ m T}$	${ m T}$	F	Т	${ m T}$
${\rm T}$	F	F	m T	${ m T}$	F	F	${f T}$
\mathbf{F}	Т	Т	${ m T}$	\mathbf{F}	Γ	Т	${ m T}$
\mathbf{F}	Т	F	${ m T}$	\mathbf{F}	$\mid T \mid$	F	${ m T}$
\mathbf{F}	F	Т	${ m T}$	\mathbf{F}	F	Т	${f T}$
F	F	F	T	\mathbf{F}	F	F	Т

The above truth tables show that the Statement 2 & 3 are equivalent as for each permuation of P, Q, and R the two statements have the same truth value.

(b) Show Statement 1 is not logically equivalent to Statement 2.

P	Q	R	$(P \to Q) \to R$	P	Q	R	$P \to (Q \to R)$
\overline{T}	Т	Т	T	$\overline{\mathrm{T}}$	Т	Т	T
\mathbf{T}	Т	F	F	${ m T}$	Т	F	F
${\bf T}$	F	Т	T	${ m T}$	F	Т	T
${\bf T}$	F	F	T	${ m T}$	F	F	T
\mathbf{F}	Т	Т	T	\mathbf{F}	T	Т	ight]
\mathbf{F}	Т	F	F	\mathbf{F}	T	F	T
\mathbf{F}	F	Т	T	\mathbf{F}	F	Γ	T
\mathbf{F}	F	F	F	\mathbf{F}	F	F	T

The above truth tables show that the Statement 1 & 2 are not equivalent as there are some permuations of P, Q, and R where the two statements have different truth values.

(4) The symmetric difference of two sets, $X\Delta Y$, is defined to consist of those sets which are elements of exactly one of the two sets.

Write a formula in the language of set theory which expresses the statement $Z=X\Delta Y.$

$$Z = (m \in X : m \not\in Y) \land (m \in Y : m \not\in X)$$

or

$$Z = X \cup Y - X \cap Y$$