

Biometrics Classification

Two types of biometrics

- Physiological: fingerprint, iris, hand geometrics, palmprint, etc
- Behavioral: voice, signature, etc
- Selection of biometrics technology is Application dependent
- Different technologies may be appropriate for different applications, depending on perceived user profiles, the need to interface with other systems or databases, environmental conditions, and a host of other application-specific parameters

Evaluation Method Decision Introduction

- No single metric is sufficient to give a reliable and convincing indication of the identification accuracy of a biometric system.
- Let's first look at describing the decision outcomes from a biometric system.
 - This is under normal operating conditions
 - No spoofing of the system considered.

Decision: Types & Outcomes

- A decision made by a biometric system is either a genuine individual type of decision or an imposter individual type of decision.
- There are two types of decision outcomes: true or false. Given these two types of decisions and the two decision outcomes, there are 4 possible combined outcomes
 - 1. A genuine individual is accepted.
 - 2. A genuine individual is rejected.
 - 3. An imposter is rejected.
 - 4. An imposter is accepted.
- Outcomes 1 & 3 are correct, whereas outcomes 2 & 4 are incorrect.

Lecture 2 - 15

Biometrics Research Centre (UGC/CRC)

Evaluation Method (1)

- In principle we can use the following to assess systems
 - * False (genuine individual) Rejection Rate (FRR) (also called Type I error)
 - * The False (imposter) Acceptance Rate (FAR) (also called Type II error)
 - * The equal error rate (rate where FAR and FRR are equal)
- These are test population and system configuration dependent and can not be generalized even for the same system under different populations or test conditions!
- Statistical methods are used to assess system performance

Evaluation Method (4)

What?

 Receiver Operating Characteristic (ROC) curve is a plot of FRR (or the genuine acceptance rate, 100-FRR) against FAR for all possible operating points.

Biometrics Research Centre (UGC/CRC)

Requirement for an Ideal Biometric

- An automated biometric system uses biological, physiological or behavioral characteristics to automatically authenticate the identity of an individual based on a previous enrollment event.
- If a biological, physiological, or behavioral characteristic has the following properties...
 - ⇒ Universality (Every person should possess this characteristic)
 - ⇒ Uniqueness (No two persons possess the same characteristic)
 - ⇒ Permanence (Does not change in time, i.e., it is time invariant)
 - ⇒ Collectability (Can be quantitatively measured)

.... then it can potentially serve as a biometric for a given application.

Biometric Characteristics (1)

Universality

(Every person should possess this characteristic)

- ⇒ In practice, this may not be the case
 ⇒ Otherwise, population of non-universality mu
 - ⇒ Otherwise, population of non-universality must be small < 1%

Uniqueness

(No two persons possess the same characteristic)

- Genotypical Genetically linked
 (e.g. identical twins will have same biometric)
- -- Phenotypical Non-genetically linked different perhaps even on same individual
- ⇒ Establishing uniqueness is difficult to prove analytically

Lecture 2 - 21

Biometrics Research Centre (UGC/CRC) '

Biometric Characteristics (2)

Permanence

(Does not change in time, i.e., it is time invariant)

- -- At best this is an approximation
- -- Degree of permanence has a major impact on the system design and long term operation of biometrics. (e.g. enrollment, adaptive matching design, etc.)
- -- Long vs. short-term stability

Collectability

(Can be quantitatively measured)

- ⇒ In practice, the biometric collection must be:
 - -- Non-intrusive
 - -- Reliable and robust
 - -- Cost effective for a given application

Issues in Practical Biometrics

- These four criteria were for evaluation of the viability of a chosen characteristic for use as a biometric
- Once incorporated within a system the following criteria are key to assessment of a given biometric for a specific application:
 - -Performance

(achievable identification accuracy resource requirements, robustness)

- -User Acceptance (to what extent people are willing to accept it?)
- Resistance to Circumvention (how easy it is to fool the system?)

Lecture 2 - 27

Biometrics Research Centre (UGC/CRC)

Important Factors

- The overall performance of a biometric system is assessed in terms of its accuracy, speed, and storage
- Factors like cost and ease of use also affect efficacy
- Biometric systems are not perfect, and will sometimes mistakenly accept an impostor as a valid individual (a false match) or conversely, reject a valid individual (a false non-match)

Best Practices: www.cesg.gov.uk/technology/biometrics
FRVT2000: www.cesg.gov.uk/technology/biometrics
FRVT2000: www.cesg.gov.uk/technology/biometrics
FRVT2000: www.dodcounterdrug.com/facialrecognition/FRVT2000/documents.htm

FVC 2000: bias.csr.unibo.it/fvc2002 NIST SV: www.nist.gov/speech/tests/spk

Comparison of Biometrics						New	
Biometric identifier	Universality	Distinctiveness	Permanence	Collectability	Performance	Acceptability	Circumvention
DNA	H	H	H	L	H	L	L
Ear	M	M	H	M	M	H	\mathbf{M}
Face	H	L	M	H	L	H	H
Facial thermogram	H	H	L	H	M	H	L
Fingerprint	M	H	H	M	H	M	M
Gait	M	L	L	H	L	H	M
Hand geometry	\mathbf{M}	M	M	H	M	M	\mathbf{M}
Hand vein	M	M	M	\mathbf{M}	\mathbf{M}	M	L
Tris	H	H	H	M	H	L	L
Keystroke	L	L	L	M	L	\mathbf{M}	M
Odor	H	H	H	L	L	M	L
Palmprint	M	H	H	M	H	M	M
Retina	H	H	M	L	H	L	L
Signature	L	L	L	H	L	H	H
Veice	M	L	L	M	L	H	H

Four Stage Procedure

- All biometric technology systems operate using the following four-stage procedures:
 - Capture a physical or behavioral sample is captured during enrollment, identification or verification process
 - Extraction unique data is extracted from the sample and a template is created
 - Comparison the template is compared to new sample
 - Match/Non-Match system then decides if the features extracted from the new sample are a match or non-match

Architecture Dependent on Application: Marchitecture

- - One to Many (millions) match (1:Many) One to "Few" (less than 500) (1:Few) Who does this fingerprint belong to?
 - □ Verification: Are you who you say you are? One to One Match (1:1) Does this fingerprint belong to Joe Smith?

Identification is a much harder problem than verification because an identification system must perform a large number of comparisons.

When the database size increases, the accuracy of the system decreases and computation time increases.

Two Types of **Biometric Systems**

Biometrics Research Centre (UGC/CRC)

Verification & Identification

Identification:

Some systems use hierarchical or

classification methods to speed up the searching.

- Identification Verification ۷s. One-to-Many One-to-One
- Hierarchical approach uses some simple features and fast matching algorithm to retrieve a small set of templates for further recognition by using complex algorithm.
- Classification approach cuts down the database in several (fuzzy/ nonfuzzy) groups. The input feature is classified to one/several group(s).
- Hierarchical/classification would introduce errors.

Questions?

- 1. Given both FRR and FAR, how to change these two curves into one in ROC?
- 2. Data collection is the first part in a biometrics system. Do you have any idea how to capture some useful data from human body? What kind of methods could you adopt?
- 3. Do you think what main problems are happened in the current biometrics system? For your opinion, which one is more serious?
- 4. Which difference between Verification & Identification? How about their applications?

