봇나무혹버섯(Inonotus obliquus)면역다당체의 장내항상성보호작용에 대한 연구

원철진, 김동률

우리는 초파리내장손상모형을 리용하여 우리 나라 백두산지구와 로씨야 씨비리지방, 중 국동북일대를 포함한 일부 지역들에서 서식하는 희귀한 약용진균인 봇나무혹버섯으로부터 분리한 면역다당체가 장내항상성보호에 미치는 영향을 평가하였다.

재료와 방법

백두산지구에서 채집한 봇나무혹버섯(Inonotus obliquus)의 균핵덩어리(sclerotia)를 연구재료로 리용하였다.

생리활성평가를 위한 초파리그루로는 w¹¹¹⁸그루(표준형)와 esg-Gal4;UAS-GFP/CyO그루, Dipt-GFP그루들을 리용하였다. 초파리그루들은 항온빛배양기(《HPS-400》)를 리용하여 25°C, 65% 습도, 12h 밤/12h 낮의 주기로 강냉이가루-효모배지(corn meal-yeast medium)에서 배양하였다.

실험에서는 회전증발농축기(《RE-52A》), 감압뽐프(《SHB-III》), 다공성흡착수지탑(《D-101》), 원심분리기(《Eppendorf 5804R》), CHRIST동결건조기(《ALPHA 1-2/LD-Plus》), 형광현미경 (《ZEISS LSM510META》), 립체형광현미경(《LEICA M205FA》)을 리용하였다.

시료준비는 선행연구[1,2]에 준하여 다음과 같이 하였다.

우선 말리운 봇나무혹버섯균핵덩어리를 분쇄하여 얻은 분말 50g에 1L의 증류수를 넣고 60℃에서 4h씩 3차 역류추출을 진행한 다음 려파하여 얻은 용액을 감압농축하여 엑스를 얻고 세바그시약(클로로포름:n-부타놀=4:1)을 1:1의 체적비로 처리한 후 D-101수지탑으로 통과시켰다. 통과액을 다시 농축한 다음 95% 에타놀을 1:5의 체적비로 첨가하여 12h 동안 4℃에 방치하였다. 원심분리하여 얻은 침전물을 24h동안 투석하고 -50℃에서 24h동안 동결건조시켜 2.84g의 다당체를 얻었다.

초파리내장에 대한 7-AAD(7-amino-actinomycin D) 및 DHE(dihydroethidium)염색은 선행연구[3], 면역조직화학염색은 선행연구[4]에 준하여 진행하였다.

실험결과해석과 통계적검정은 ImageJ와 GraphPad Prism프로그람들을 리용하여 진행하였고 ns는 p값이 0.05보다 크다는것을, *, ****표기는 <math>p값이 각각 0.05, 0.000 1보다 작다는 것을 의미한다.

결과 및 론의

초파리(Drosophila melanogaster)의 내장조직은 병균과 독성물질에 대한 1차방어선을 형성하며 초파리장내항상성은 초파리장내면역의 기본부분으로서 크게 장내조직항상성과 장내미생물항상성으로 갈라볼수 있다.[5]

조직항상성은 내장줄기세포(intestinal stem cell: ISC)에 의하여 유지되며 미생물항상성

은 내장조직에서 분비되는 항균펩티드(antimicrobial peptide: AMP)와 활성산소종(reactive oxygen species: ROS)에 의하여 유지된다.[6]

1) 봇나무혹버섯면역다당체의 초파리장내조직항상성에 대한 보호효과

먼저 DSS(덱스트란류산나트리움: Dextran Sulfate Sodium)가 초파리장내조직항상성에 미치는 영향과 그에 대한 봇나무혹버섯다당체의 보호효과를 평가하였다.(그림 1) 50 『

그림 1에서 보는바와 같이 성충으로 된지 3~5일 되는 w¹¹¹⁸초파리그루에 6% DSS를 매일 1차씩 4일동안 처리한 후 내장을 해부하여 7-AAD염색을 진행한 결과 대조구에서는 많은 수의 7-AAD양성세포(죽은 세포)들이 나타났지만 다당체를 먹인 시험구에서는 죽은 세포들이 거의 나타나지 않았다.

이것은 봇나무혹버섯다당체가 DSS에 의하여 유도된 내 장조직손상에 대한 효과적인 보호작용을 한다는것을 보여 준다.

다음으로 esg-Gal4;UAS-GFP/CyO초파리그루에 3% DSS를 매일 1차씩 2일간 처리한 후 내장을 해부하여 면역조직화학염색(anti-GFP)을 진행하였는데 대조구에서는 esgGFP양성세포들의 수가 DSS를 먹이지 않은 경우에 비하여 명백히 증가하였으며 다당체를 먹인 시험구에서는 DSS를 처리한 경우와 처리하지 않은 경우에 차이가 거의 없었다.(그림 2)

그림 1. 봇나무혹버섯면역다당 체의 초파리장내조직손상에 대 한 보호작용

또한 분렬하는 세포들에서만 발현되는 PH3(phosphorylated histone H3 Ser 10)단백질에 대한 면역조직화학염색(anti-PH3)을 진행하였는데 대조구에서 DSS를 처리한 경우에 분렬 증식하는 세포들의 수가 명백히 증가하였지만 다당체를 먹인 시험구에서는 거의 변화가 없었다.(그림 3)

그림 2. DSS에 의하여 유도된 내장선구체 세포증식에 대한 봇나무혹버섯 면역다당체의 억제효과

■-공백구, □-DSS처리구

그림 3. PH3단백질에 대한 면역조직화학 염색(anti-PH3)결과 ■-공백구、□-DSS처리구

다음으로 EE세포에서만 특이적으로 발현되는 Prospero단백질에 대한 면역조직화학염 색(anti-Prospero)을 진행하였다.(그림 4)

그림 4에서 보는바와 같이 시험구에서는 대조구에서와 달리 DSS를 처리한 경우에 Pros

그림 4. DDS에 의하여 유도된 내장EE세포 과도분화에 대한 봇나무혹버섯면역 다당체의 억제효과 ■-처리전, □-DSS처리후

양성세포수가 증가되지 않았다. 이것은 봇나무 혹버섯다당체가 DSS에 의하여 산생된 내장조직 손상과 그로부터 유도되는 ISC세포의 과도한 증식과 분화를 억제하며 이로부터 초파리장내조 직항상성보호작용을 나타낸다는것을 뚜렷이 보여준다.

2) 봇나무혹버섯면역다당체의 초파리장내미 생물항상성에 대한 보호효과

일반적으로 초파리장내미생물항상성은 장내미생물군파 내장벽조직사이의 균형을 말하는데 이 균형은 내장조직에서 분비되는 AMP와 ROS에 의하여 유지된다. AMP와 ROS는 장내미생물군(microbiota)의 규모를 일정하게 유지하며병균이 장내에 침입하면 ROS의 발생이 강화되며 뒤따라 AMP의 발현도 강화된다.[6]

우리는 성충으로 된지 3~5일 되는 w^{1118} 초파리그루에 6% DSS를 매일 1차씩 2일동안처리한 후 내장을 해부하여 DHE염색을 진행한 다음 ROS발생정도를 관찰하였다. 결과 대조구에서는 명백한 ROS과도산생이 나타났지만 시험구에서는 나타나지 않았다.

또한 Dipt-GFP그루에 우와 같은 처리를 한 다음 면역조직화학염색(anti-GFP)을 진행한데 의하면 DSS처리를 하지 않은 공백구에서는 내장의 전위부위에서 Diptericin(항균펩티드(AMP)의 일종)의 현저한 발현이 나타난 외에 내장의 다른부위에서는 그 발현이 나타나지않았다.(그림 5)

그림 5. 봇나무혹버섯면역다당체의 내장Diptericin발현억제효과

이것은 정상조건에서 외부미생물의 침입에 대한 방어에서 초파리내장의 전위부위가 매우 중요한 역할을 한다는것을 의미한다.

더우기 DSS를 처리한 대조구에서는 전위부위뿐아니라 내장전반에 걸쳐 Diptericin의 현 저한 발현이 나타났지만 시험구에서는 나타나지 않았다. 대조구의 중장부위에서 Diptericin의 발현이 현저한것은 DSS의 조직손상작용에 의하여 내장조직의 완정성이 약해진 결과 장내미생물군의 규모가 증가한것과 관련된다.

이로부터 봇나무혹버섯다당체가 초파리내장조직—장내미생물균형에 대한 효과적인 보 호작용을 한다는것을 알수 있다.

맺 는 말

봇나무혹버섯(Inonotus obliquus)으로부터 분리한 면역다당체는 장내항상성에 대한 뚜렷한 보호작용을 나타낸다.

참 고 문 헌

- [1] 박영필 등; 고려약추출원리와 그 응용 2, 중앙과학기술통보사, 184~228, 주체100(2011).
- [2] XiuJu Du et al.; International Journal of Biological Macromolecules, 62, 691, 2013.
- [3] Caixia Zhu et al.; Phytotherapy Research, 28, 1861, 2014.
- [4] Xiaoyue Zhang et al.; Biochemical and Biophysical Research Communications, 487, 910, 2017.
- [5] Komal Panchal et al.; Biomedicine and Pharmacotherapy, 89, 1331, 2017.
- [6] K. A. Lee et al.; Cell, 153, 4, 797, 2013.

주체108(2019)년 10월 5일 원고접수

Protection Activity of Polysaccharides Extracted from Inonotus obliquus Sclerotia on Intestinal Homeostasis

Won Chol Jin, Kim Tong Ryul

The polysaccharides extracted from *Inonotus obliquus* sclerotia shows the obvious protection activity on intestinal homeostasis of *Drosophila melanogaster*.

Keywords: Inonotus obliquus, immunopolysaccharide, intestinal homeostasis