Advanced Time Series

Lecture 4:
Forecasting III
Classification I

Gleb Ivashkevich

Today

Time series forecasting → classification:

- N-BEATS model
- multi-head attention and transformers
- time series classification problem: setup
- convolutions

N-BEATS: Neural basis expansion analysis for interpretable time series forecasting

- an interesting approach, leveraging FC layers, residual connections and stack
- expansion basis can be learned
- no convolutions, no RNN blocks
- not an encoder-decoder

N-BEATS: Neural basis expansion analysis for interpretable time series forecasting

- each block learns the **representation** of it's input given block's **"expressivity"**
- next block learns **residual**
- blocks are joined into **stacks**, stacks into an **ensemble**
- expansion basis can be learned or predefined (seasonality)

Transformer architectures for time series

Transformers

Why?

- typical sequential models (RNNs) may still **not catch** temporal dynamics well
- attention layer may fix this
- but they are still **sequential**

Transformers are still encoder-decoder.

Attention

Multi-head attention

Positional encoding

- allows to attend both absolute and relative positions
- additive!

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Image: <u>Attention Is All You Need</u>

Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting

- innovation: **convolutional attention** (queries, keys and values are computed by conv layer)
- very good performance compared to other architectures

Enhancing the Locality and Breaking the Memory
Bottleneck of Transformer on Time Series Forecasting

- innovation: **convolutional attention** (queries, keys and values are computed by conv layer)
- attention memory bottleneck: use smart masking
- learnable positional encodings
- simpler attention

Enhancing the Locality and Breaking the Memory
Bottleneck of Transformer on Time Series Forecasting

- decoder-only mode: similar to DeepAR
- probabilistic forecasts (DeepAR inspired)
- causal convolutions
- hourly power consumption dataset

Other papers

Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting

Dilated and causal convolutions

Convolution

No padding

Padding

Dilated convolution

No padding

Padding

Why dilated convolutions

- fast extension of receptive field
- no additional computational costs
- high resolution input is manageable (high-frequency t. s.)

Causal convolution

No padding

Padding

Causal convolutions impl.

not available in PyTorch

Causal convolutions impl.

Transformers

Benefits:

- allow for parallelization
- do not limit other architectural ideas
- add interpretability proxy
- much easier to reason about

Time series classification

Classification

Setup:

- given a **slice** of (usually multivariate) time series, get it's **category**
- wide variety of slice duration and typical time scales
- patterns, not long-term dependencies
- hence, convolutions
- generally, conceptually simpler compared to forecasting

Patterns

Setup:

- given a **slice** of (usually multivariate) time series, get it's **category**
- wide variety of slice duration and typical time scales
- **patterns**, not long-term dependencies
- hence, convolutions

Patterns

There are **no categories** if changes are **too gradual** and can be modeled with recurrent networks

Training setup

Inference setup

Switch time

Switch time is about the size of the **classification window**. Must be **aligned** carefully to category duration time.

Classical

A lot of approaches:

- manually created windowed features + classical models
- **DTW** (dynamic time warping) as a distance measure
- etc.

Classification architectures

Fully convolutional

Pictures: <u>Deep learning for time series classification: a review</u>

Residual

Pictures: <u>Deep learning for time series classification: a review</u>

InceptionTime

Picture: <u>InceptionTime</u>: <u>Finding AlexNet for Time Series Classification</u>

Next time

- InceptionTime implementation
- classification for t. s. segmentation

questions?