$D(3000)^0$

$$I(J^P) = \frac{1}{2}(?^?)$$

OMITTED FROM SUMMARY TABLE

Both natural- and unnatural-parity components observed depending on the decay mode (AAIJ 13CC).

$D(3000)^{0}$ MASS

TECN <u>COMMENT</u> VALUE (MeV) DOCUMENT ID 16AH LHCB $B^- \rightarrow D^+ \pi^- \pi$ ¹ AAIJ 28k $3214 \pm 29 \pm 49$ • • • We do not use the following data for averages, fits, limits, etc. • • 2,3 AAIJ 13CC LHCB $pp \rightarrow D^{*+}\pi^{-}X$ 9.5k 2971.8 ± 8.7 2,4 AAIJ 3008.1 ± 4.0 13CC LHCB $pp \rightarrow D^+\pi^-X$ 17.6k

$D(3000)^{0}$ WIDTH

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT186 ± 38 ± 72 28k5 AAIJ16AH LHCB $B^- \rightarrow D^+ \pi^- \pi^-$ • • • We do not use the following data for averages, fits, limits, etc. • •188.1 ± 44.8 9.5k6,7 AAIJ13CC LHCB $pp \rightarrow D^{*+} \pi^- X$ 110.5 ± 11.5 17.6k6,8 AAIJ13CC LHCB $pp \rightarrow D^+ \pi^- X$

D(3000)⁰ DECAY MODES

 $\frac{\text{Mode}}{\Gamma_1 \quad D^{*+}\pi^-} \qquad \qquad \text{seen}$

Created: 5/30/2017 17:22

¹ From the amplitude analysis in the model describing the $D^+\pi^-$ wave together with virtual contributions from the $D^*(2007)^0$ and B^{*0} states, and components corresponding to the $D_2^*(2460)^0$, $D_1^*(2680)^0$, $D_3^*(2760)^0$, and $D_2^*(3000)^0$ resonances.

² Systematic uncertainty not estimated.

³Unnatural parity preferred.

⁴ Natural parity state. A state $D(3000)^+$ is possibly seen in $D^0\pi^+$ final state.

⁵ From the amplitude analysis in the model describing the $D^+\pi^-$ wave together with virtual contributions from the $D^*(2007)^0$ and B^{*0} states, and components corresponding to the $D_2^*(2460)^0$, $D_1^*(2680)^0$, $D_3^*(2760)^0$, and $D_2^*(3000)^0$ resonances.

⁶ Systematic uncertainty not estimated.

⁷ Unnatural parity preferred.

⁸ Natural parity state. A state $D(3000)^+$ is possibly seen in $D^0\pi^+$ final state.

$D(3000)^0$ POLARIZATION AMPLITUDE A_D,

A polarization amplitude A_{D_J} is a parameter that depends on the initial polarization of the D_J . For D_J decays the helicity angle, θ_H , distribution varies like $1+A_{D_J}\cos^2(\theta_H)$, where θ_H is the angle in the D_J rest frame between the two pions emitted in the $D_J \to D^*\pi$ and $D^* \to D\pi$ decays.

 VALUE
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 1.5±0.9
 9.5k
 9 AAIJ
 13CC LHCB
 $pp → D^{*+}π^-X$

 9 Systematic uncertainty not estimated.

D(3000)⁰ REFERENCES

AAIJ 16AH PR D94 072001 AAIJ 13CC JHEP 1309 145 R. Aaij *et al.* R. Aaij *et al.*

(LHCb Collab.) (LHCb Collab.)

Created: 5/30/2017 17:22