

EXAMEN FINAL

Fecha de entrega 21 de mayo de 2020

Escoger 1 ejercicio dentro de los siguientes:

1. [1pt.] Suponga que $\Sigma = \{a, b\}$. El siguiente lenguaje está construido a partir de la intersección de dos lenguajes más simples. Presente los diagramas de transiciones de los respectivos DFAs que reconocen los lenguajes más simples, y luego combínelos mediante el "autómata producto". El lenguaje es:

 $L = \{w \in \Sigma : w \text{ tiene un número par de } a \text{'s y termina con } b \text{'s} \}$

2. [1pt.] Convierta el siguiente NFA en un DFA equivalente mediante el procedimiento enseñado en clase:

3. [1pt.] Mediante el procedimiento del Teorema de Kleene, encuentre una expresión regular que describa el lenguaje aceptado por el siguiente DFA:

4. [1pt.] Mediante el procedimiento del Teorema de Kleene, convierta la siguiente expresión regular en un NFA que acepte el lenguaje representado por dicha expresión:

$$(((00)^*(11)) \cup 01)^*$$

- 5. [1pt.] Resuelva los problemas 1.24 y 1.25 (pág. 87 del texto guía).
- 6. [1pt.] Demuestre que el siguiente lenguaje no es regular:

$$L = \{a^{2^n} : n \ge 0\}$$

Escoger 1 ejercicio dentro de los siguientes:

7. [1pt.] Suponga que $\Sigma = \{a, b\}$. Diseñe una CFG que genere el siguiente lenguaje:

 $L = \{w \in \Sigma^* \colon \text{ la longitud de } w \text{ es impar y tiene una } a \text{ en la mitad}\}$

8. [1pt.] Describa informalmente el lenguaje aceptado por el siguiente PDA y muestre una secuencia de configuraciones instantáneas que determinen la aceptación de *abbaab*.

- 9. [1pt.] Escriba el diagrama de transiciones de un PDA que reconozca el lenguaje del ejercicio 7.
- 10. [1pt.] Use el procedimento enseñado en clase para transformar el PDA del ejercicio 8 en una CFG.
- 11. [1pt.] Demuestre que el siguiente lenguaje no es independiente del contexto:

 $L = \{ w\#t \colon w \text{ es una subcadena de } t, \, \text{donde } w, t \in \Sigma^* \}$

12. [1pt.] Considera la siguiente CFG y su respectivo autómata DK (ver "Parsing para dummies"):

Use el autómata DK para hacer el parsing bottom-up de la cadena CFNCNFF.

Escoger 1 ejercicio dentro de los siguientes:

13. [1pt.] Suponga que $\Sigma = \{0, 1\}$. Diseñar una TM que decida el siguiente lenguaje:

$$L = \{ww: w \in \Sigma^*\}$$

[Puede programar la máquina en el simulador y enviar el código por correo.]

14. [1pt.] Diseñar una TM que implemente la función $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que f(n, m) = n + m. La entrada es una pareja de números en base 10.

[Puede programar la máquina en el simulador y enviar el código por correo.]

- 15. [1pt.] Demuestre que la colección de lenguajes Turing-reconocibles es cerrada bajo unión y concatenación. En otras palabras, si L_1 y L_2 son lenguajes Turing-reconocibles, entonces también lo son $L_1 \cup L_2$ y $L_1 \cdot L_2$.
- 16. [1pt.] Demuestre que la colección de lenguajes decidibles es cerrada bajo intersección y complementación. En otras palabras, si L_1 y L_2 son lenguajes decidibles, entonces también lo son $L_1 \cap L_2$ y $\overline{L_1}$.

Escoger 2 ejercicios dentro de los siguientes:

17. [1pt.] Demuestre que el siguiente lenguaje es decidible:

$$L = \{\langle G \rangle : G \text{ es un grafo no dirigido conectado}\}$$

18. [1pt.] Demuestre que el siguiente lenguaje es decidible:

$$L = \{\langle f \rangle : f \text{ es una fórmula satisfacible de la lógica proposicional}\}$$

- 19. [1pt.] Demuestre que $A_{\scriptscriptstyle \text{TM}}$ no es co-Turing-reconocible.
- 20. [1pt.] Demuestre que \leq_m es una relación transitiva.
- 21. [1pt.] Sea $A \subseteq \Sigma^*$. Demuestre que A es Turing-reconocible sii $A \leq_m A_{\scriptscriptstyle \mathsf{TM}}$.
- 22. [1pt.] Demuestre que el siguiente lenguaje no es decidible:

$$L = \{ \langle M \rangle : M \text{ es un LBA tal que } L(M) = \emptyset \}$$