Silicon PN Junctions

A Basic Summary

The pn junction

The pn junction: open-circuited

Majority carriers holes

Majority carriers electrons

The pn junction: Diffusion Current

Holes diffuse from high concentration to lower concentration

Electrons diffuse from high The net result is a diffusion concentration to lower (I_D) that flows from the p-type-Si tocorcentration the n-type Si.

The pn junction: Depletion Region

 As diffusion occurs, electron-hole pairs are formed. This leaves uncovered or "bound" minority carrier charge near the junction.

The pn junction: Depletion Region

 Eventually, the area on each side of the junction becomes depleted of majority carriers.

What's a micron?

- 1 micron = 1×10^{-6} meters
- Dust mite length: 250-300 microns
- Human hair diameter: 10-100 microns
- Red blood cell diameter: 7 microns

The pn junction: Barrier Voltage

 The charges on each side of the depletion region establish an electric field (i.e. a voltage drop across the region)

The pn junction: Barrier Voltage

 \odot This voltage drop – the barrier voltage - will limit the number of carriers that can diffuse across the region and thus limits I_D

← E

$$V_{O} = V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}} \right)$$

The pn junction: Drift Current

- Minority carrier drift current (I_S) occurs when thermally generated holes (n-type Si) and electrons (p-type Si) move towards the edge of the depletion region.
- The electric field sweeps the minority carriers across the junction creating current flow.

The pn junction: Equilibrium

- Under open-circuit conditions (i.e. no external voltage), the drift current will equal the diffusion current.
- The barrier voltage ensures this equilibrium.

The pn junction: Forward Bias

- \circ When a voltage, V_F , is applied the barrier voltage is decreased by that voltage and the depletion region narrows.
- The diffusion current will increase.

