01204211 Discrete Mathematics Lecture 9b: Polynomials (1)¹

Jittat Fakcharoenphol

October 2, 2023

¹This section is from Berkeley CS70 lecture notes.

Quick exercise

For any integer $a \neq 1$, $a - 1|a^2 - 1$.

For any integer $a \neq 1$ and $n \geq 1$, $a - 1|a^n - 1$.

Polynomials

A single-variable polynomial is a function p(x) of the form

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

We call a_i 's coefficients. Usually, variable x and coefficients a_i 's are real numbers. The degree of a polynomial is the largest exponent of the terms with non-zero coefficients.

Examples

- $x^3 3x + 1$
- x + 10
- ▶ 10
- **•** 0

Applications

- Secret sharing
- ► Error-correcting codes

Basic facts

Definition

a is a **root** of polynomial f(x) if f(a) = 0.

Properties

Property 1: A non-zero polynomial of degree d has at most d roots.

Property 2: Given d+1 pairs $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$ with distinct x_i 's, there is a unique polynomial p(x) of degree at most d such that $p(x_i)=y_i$ for $1\leq i\leq d+1$.

Lemma 1

If two polynomials f(x) and g(x) of degree at most d that share d+1 points $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$, where all x_i 's are distinct, i.e., $f(x_i)=g(x_i)=y_i$, then f(x)=g(x).

Proof.

Suppose that $f(x) = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ and $g(x) = b_d x^d + b_{d-1} x^{d-1} + \cdots + b_0$. Let h(x) = f(x) - g(x), i.e., let $h(x) = c_d x^d + c_{d-1} x^{d-1} + \cdots + c_0$, where $c_i = a_i - b_i$. Note that h(x) is also a polynomial of degree (at most) d. We claim that h(x) has d+1 roots. Note that since $f(x_i) = g(x_i) = y_i$, we have that

$$h(x_i) = f(x_i) - g(x_i) = y_i - y_i = 0,$$

i.e., every x_i is a root of h(x).

From **Property 1**, if h(x) is non-zero it has at most d roots; therefore, h(x) must be zero, i.e., f(x) - g(x) = 0 or f(x) = g(x) as required.

Lagrange polynomial

For
$$d+1$$
 points $(x_1,y_1),(x_2,y_2),\ldots,(x_{d+1},y_{d+1})$ where all x_i 's are distinct, let
$$\Delta_i(x)=\frac{(x-x_1)(x-x_2)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_{d+1})}{(x_i-x_1)(x_i-x_2)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_{d+1})}.$$

Note that $\Delta_i(x)$ is a polynomial of degree d. Also we have that

- ightharpoonup For $i \neq i$, $\Delta_i(x_i) = 0$, and
- $\Delta_i(x_i) = 1.$

We can use $\Delta_i(x)$ to construct a degree-d polynomial

$$p(x) = y_1 \cdot \Delta_1(x) + y_2 \cdot \Delta_2(x) + \cdots + y_{d+1} \cdot \Delta_{d+1}(x).$$

What can you say about $p(x_i)$?

Property 2

Given d+1 pairs $(x_1,y_1),\ldots,(x_{d+1},y_{d+1})$ with distinct x_i 's, there is a *unique* polynomial p(x) of degree at most d such that $p(x_i)=y_i$ for $1 \le i \le d+1$.

Proof of Property 2.

Using Lagrange interpolation, we know that there exists a polynomial p(x) of degree d such that $p(x_i) = y_i$ for all $1 \le i \le d+1$.

For uniqueness, assume that there exists another polynomial g(x) of degree d also satisfying the condition. Since p(x) and g(x) agrees on more than d points, p(x) and g(x) must be equal from Lemma 1.