Probabilistic Classification

MACHINE LEARNING UNIT 12

- Predict the ratings by a particular user to a given restaurant!
- Possible indicators:
 - The user's ratings of other restaurants
 - most frequently, (s)he rates 4.0!

- Predict the ratings by a particular user to a given restaurant!
- Possible indicators:
 - The user's ratings of other restaurants
 - most frequently, (s)he rates 4.0!

- Other users' ratings of that restaurant
 - most frequently, others rate 3.5!

- Predict the ratings by a particular user to a given restaurant!
- Possible indicators:
 - The user's ratings of other restaurants
 - most frequently, (s)he rates 4.0!

- Other users' ratings of that restaurant
 - most frequently, others rate 3.5!

- Predict the ratings by a particular user to a given restaurant!
- Possible indicators:
 - The user's ratings of other restaurants
 - most frequently, (s)he rates 4.0!
 - Other users' ratings of that restaurant
 - most frequently, others rate 3.5!
- But we can never be sure!
- Can we attach a probability to each possible rating?

Generative Model

- A story about how the observed data were "born"
- Story in the language of probability!

- Treat labels Y and features X as random variables
- Story outline:
 - Y created first
 - X created based on Y

Generative Model

- A story about how the observed data were "born"
- Story in the language of probability!

- Treat labels Y and features X as random variables
- Story outline:
- Y created first p(Y): prior distribution
- X created based on Y p(X|Y):class-conditional distribution
- Probabilistic Classification: p(Y|X): posterior distribution

Prior Distribution

Prior: information before observing X

Y =1	Y = 2	Y = 3	Y = 4
80	50	40	30

- P(Y = k) = ?
- Frequentist approach: just relative frequencies!

Y	′ = 1	Y = 2	Y = 3	Y = 4
0).4	0.25	0.20	0.15

Posterior Distribution

- Posterior: information after observing X
- P(Y = k | X) = ?

- Bayes Theorem:
- $P(Y = k \mid X) = (p(X \mid Y = k) * p(Y = k)) / p(X)$ = $K * p(X \mid Y = k) * p(Y = k)$

Class-conditional Distribution

	Y = 1	Y = 2	Y = 3	Y = 4
X < 15	40	45	10	5
X > 15	40	5	30	25

•
$$P(X \mid Y = k) = ??$$

•
$$P(X<15 \mid Y=1) = 40/(40+40) = 0.5$$

•
$$P(X>15 \mid Y=3) = 30/(30+10) = 0.75$$

•
$$P(Y = k \mid X) = ???$$

Frequentist Approach: Direct estimation

	Y = 1	Y = 2	Y = 3	Y = 4	
X < 15	40	45	10	5	100
X > 15	40	5	30	25	100

•
$$P(Y = 1 \mid X < 15) = 40 / 100 = 0.4$$

	Y = 1	Y = 2	Y = 3	Y = 4	
p(Y X < 15)	0.4	0.45	0.10	0.05	1.0
p(Y X > 15)	0.4	0.05	0.30	0.25	1.0

• Similar to Decision Trees

Bayesian Approach: Posterior Distribution

	Y = 1	Y = 2	Y = 3	Y = 4
X < 15	40	45	10	5
X > 15	40	5	30	25

•
$$P(Y = 1 \mid X < 15) = K * p(X < 15 \mid Y = 1) * p(Y = 1) = K*(40/80)*(80/200)$$

•
$$P(Y = 2 \mid X < 15) = K * p(X < 15 \mid Y = 2) * p(Y = 2) = K*(45/50)*(50/200)$$

•
$$P(Y = 3 \mid X < 15) = K * p(X < 15 \mid Y = 3) * p(Y = 3) = K*(10/40)*(40/200)$$

•
$$P(Y = 4 \mid X < 15) = K * p(X < 15 \mid Y = 4) * p(Y = 4) = K * (5/30)*(30/200)$$

Posterior Distribution

	Y = 1	Y = 2	Y = 3	Y = 4
X < 15	40	45	10	5
X > 15	40	5	30	25

	Y = 1	Y = 2	Y = 3	Y = 4
Prior p(Y)	0.40	0.25	0.20	0.15
p(Y X < 15)	0.40	0.45	0.10	0.05
P(Y X > 15)	0.40	0.05	0.30	0.25

Probabilistic Classifier

- Predicted label: mode of the posterior distribution!
- $Y_{pred} = argmax_k p (Y = k | X)$
- Confidence of the prediction = p(Y = Y_{pred} | X)

• If Bayesian approach used for p(Y | X): Bayesian Classifier!

Posterior Distribution

	Y = 1	Y = 2	Y = 3	Y = 4
X < 15	40	45	10	5
X > 15	40	5	30	25

	Y = 1	Y = 2	Y = 3	Y = 4	Ypred
Prior	0.40	0.25	0.20	0.15	1
X < 15	0.40	0.45	0.10	0.05	2
X > 15	0.40	0.05	0.30	0.25	1

	Y = 1	Y = 2	Y = 3	Y = 4
X1<15	40	45	10	5
X1>15	40	5	30	25
X2 = a	40	30	15	30
X2 = b	40	20	25	0

- $P(Y = k \mid X1=12, X2=a) = ????$
- We need Joint Distribution of the features!!!

	Y = 1	Y = 2	Y = 3	Y = 4
X1<15, X2=a	30	25	0	5
X1<15, X2=b	10	20	10	0
X1>15, X2=a	10	5	15	25
X1>15, X2=b	30	0	15	0

	Y = 1	Y = 2	Y = 3	Y = 4
X1<15, X2=a	0.375	0.50	0	0.166
X1<15, X2=b	0.125	0.40	0.25	0
X1>15, X2=a	0.125	0.10	0.375	0.837
X1>15, X2=b	0.375	0	0.375	0

	Y = 1	Y = 2	Y = 3	Y = 4
X1<15, X2=a	0.375 * 0.4 * K1	0.50 * 0.25 * K1	0 * 0.2 * K1	0.166 * 0.15 * K1
X1<15, X2=b	0.125 * 0.4 * K2	0.40 * 0.25 * K2	0.25 * 0.2 * K2	0 * 0.15 * K2
X1>15, X2=a	0.125 * 0.4 * K3	0.10 * 0.25 * K3	0.375 * 0.2 * K3	0.837 * 0.15 * K3
X1>15, X2=b	0.375 * 0.4 * K4	0 * 0.25 * K4	0.375 * 0.2 * K4	0 * 0.15 * K4

Naïve Bayes Classifier

- D-dimensional feature vector, M values each
- Rows of table = M**D

- Assumption: all features are independent (Naïve!)
- P(X1<15, X2=b) = p(X1<15) * p(X2=b)

- D tables, rows of each table = M
- Naïve, but computationally efficient!

Naïve Bayes Classification

```
    P(Y = k | X1<15, X2=b) = K * p(X1<15, X2=b | Y = k) * p(Y = k)</li>
    = K * p(X1<15 | Y = k) * p(X2=b | Y = k) * p(Y = k)</li>
```

```
Final prediction = argmax<sub>k</sub> p(X_1|Y=k) p(X_2|Y=k)*..... p(X_D|Y=k)*p(Y=k)
Confidence = max<sub>k</sub> p(X_1|Y=k) p(X_2|Y=k)*..... p(X_D|Y=k)*p(Y=k)
```

```
: import numpy as np
 def fit(X train,Y train):
      result ={}
      class values = set(Y train)
      for current class in class values:
          result[current class] = {}
          result["total data"] = len(Y train)
          current class rows = (Y train == current class)
          X train current = X train[current class rows]
          Y train current = Y train[current class rows]
          num features = X train.shape[1]
          result[current class]["total count"] = len(Y train current)
          for j in range(1,num features+1):
              result[current class][j] ={}
              all possible values = set(X train[:,j-1])
              for current value in all possible values:
                  result[current class][j][current value] = (X train current[:,j-1] == current value).sum()
      return result
 def probablity(dictionary,x,current class):
      output= np.log(dictionary[current class]["total count"])-np.log(dictionary["total data"])
      num_features = len(dictionary[current_class].keys())-1;
      for j in range(1,num features+1):
          xj = x[j-1]
          count_current_class_with_value_xj = dictionary[current_class][j][xj] + 1
          count current class = dictionary[current class]["total count"] + len(dictionary[current class][j].keys())
          current xj prob = np.log(count current class with value xj) -np.log(count current class)
          output = output + current xj prob
      return output
```

```
def predictSinglePoint(dictionary,x):
    classes = dictionary.keys()
    best_p = -1000
    best_class = -1
    first_run = True
    for current_class in classes:
        if(current_class == "total_data"):
            continue
        p_current_class = probablity(dictionary,x,current_class)
        if(first_run or p_current_class > best_p):
            best_p = p_current_class
            best_class = current_class
        first_run = False
    return best_class
```

```
def predict(dictonary, X_test):
    y_pred = []
    for x in X_test:
        x_class = predictSinglePoint(dictionary,x)
        y_pred.append(x_class)
    return y_pred
```