### **Image Segmentation**

- Luminance-based segmentation
  - Optimal supervised thresholding
  - Maximum A Posteriori (MAP) detector
  - Unsupervised thresholding
- Color-based segmentation
  - Chroma keying
  - Multidimensional MAP detector
  - Linear discriminant function

# Luminance-Based Segmentation



original image f(x,y)



thresholded: f(x,y) > T

## Error Probability for Thresholding





# Optimal Supervised Thresholding





# Maximum A Posteriori (MAP) Detector

Choose the class with maximum a posteriori probability

$$\Omega_{\mathsf{MAP}} = \arg \max_{\Omega_i} p(\Omega_i|z)$$

Bayes' rule:

$$p(\Omega_i|z) = \frac{p(z|\Omega_i)p(\Omega_i)}{p(z)}$$

Probability p(z) is constant:

$$\Omega_{\mathsf{MAP}} = \arg \max_{\Omega_i} p(z|\Omega_i) p(\Omega_i)$$

# Maximum A Posteriori (MAP) Detector

• Assuming p(z) = const. and  $p(\Omega_i) = const.$ 



 Recall: Necessary condition for optimal supervised thresholding . . .



### **Unsupervised Thresholding**

 Idea: Find threshold T that minimizes within-class variance of both foreground F and background B

$$\sigma_{within}^2(T) = \frac{N_F(T)}{N} \sigma_F^2(T) + \frac{N_B(T)}{N} \sigma_B^2(T)$$

Equivalently, maximize between-class variance

$$\begin{split} \sigma_{between}^2(T) &= \sigma^2 - \sigma_{within}^2(T) \\ &= \left[ \frac{1}{N} \sum_{x,y} f^2(x,y) - \mu^2 \right] - \frac{N_F}{N} \left[ \frac{1}{N_F} \sum_{x,y \in F} f^2(x,y) - \mu_F^2 \right] - \frac{N_B}{N} \left[ \frac{1}{N_B} \sum_{x,y \in B} f^2(x,y) - \mu_B^2 \right] \\ &= -\mu^2 + \frac{N_F}{N} \mu_F^2 + \frac{N_B}{N} \mu_B^2 = \frac{N_F}{N} (\mu_F - \mu)^2 + \frac{N_B}{N} (\mu_B - \mu)^2 \\ &= \frac{N_F(T) N_B(T)}{N^2} [\mu_F(T) - \mu_B(T)]^2 \end{split}$$

[Otsu, 1979]



## **Unsupervised Thresholding**

Algorithm: Search for threshold T to maximize

$$\sigma_{between}^2(T) = \frac{N_F(T)N_B(T)}{N^2} [\mu_F(T) - \mu_B(T)]^2$$

Efficient recursive computation:

$$N_F(T+1) = N_F(T) + n_T$$
 $N_B(T+1) = N_B(T) - n_T$ 
 $\mu_F(T+1) = \frac{\mu_F(T)N_F(T) + n_TT}{N_F(T+1)}$ 
 $\mu_B(T+1) = \frac{\mu_B(T)N_B(T) - n_TT}{N_B(T+1)}$ 

[Otsu, 1979]



### Unsupervised Thresholding Example







## **Chroma Keying**

- Color is more powerful for pixel-wise segmentation: 3-d vs. 1-d space
- Take picture in front of a blue screen (or green, or orange)







# Soft Chroma Keying





#### Landsat Image Processing



original Landsat image false color picture out of bands 4,5,6



water area segmented and enhanced to show sediments



Source: US Geological Survey USGS, http://sfbay.wr.usgs.gov/

#### Multidimensional MAP Detector

- Label categories in training set by hand
- Subdivide n-dimensional space into small bins
- Count frequency of occurrence for each bin and class in training set
- For test data:
  - identify bin
  - detect the more probable category



# MAP Detector in RGB-Space



original image



skin color detector



Source: Class project, Stanford University

#### **Linear Discriminant Function**

 To segment an image with n components f<sub>i</sub>, i=1,2,...,n, into two categories, perform test n

$$\sum_{i=1}^{n} w_i f_i + w_0 \ge 0$$

- Categories are separated by hyperplane in n-space
- Numerous techniques to determine weights w<sub>i</sub>, i=0,1,2,...,n. See, e.g., [Duda, Hart, Stork, 2001]
- Can be extended to the intersection of several linear discriminant functions
- Can be extended to multiple categories

