1- سیستم زیر را در نظر بگیرید،

$$\begin{cases} x_1 + \lambda x_2 - x_3 = 1 \\ 2x_1 + x_2 + 2x_3 = 5\lambda + 1 \\ x_1 - x_2 + 3x_3 = 4\lambda + 2 \\ x_1 - 2\lambda x_2 + 7x_3 = 10\lambda - 1 \end{cases}$$

الف) دستگاه معادلات را به فرم سطری پلکانی تبدیل نمایید.

 λ برای چه مقادیری از پارامتر λ دستگاه معادلات سازگار است

ج) پاسخ سیستم را بیابید.

$$\begin{cases} x_1 + \lambda x_2 - x_3 = 1 \\ 2x_1 + x_2 + 2x_3 = 5\lambda + 1 \\ x_1 - x_2 + 3x_3 = 4\lambda + 2 \\ x_1 - 2\lambda x_2 + 7x_3 = 10\lambda - 1 \end{cases}$$

الف) فرم ماتریس افزوده دستگاه معادلات بصورت زیر است،

$$\begin{bmatrix} 1 & \lambda & -1 & 1 \\ 2 & 1 & 2 & 5\lambda + 1 \\ 1 & -1 & 3 & 4\lambda + 2 \\ 1 & -2\lambda & 7 & 10\lambda - 1 \end{bmatrix}$$

حال فرم سطری پلکانی آن را بدست می آوریم،

$$(1+\lambda)r_2 + r_3 \to r_3$$
$$3\lambda r_2 + r_4 \to r_4$$

$$\begin{vmatrix} (1+\lambda)r_2 + r_3 \to r_3 \\ 3\lambda r_2 + r_4 \to r_4 \end{vmatrix} = \begin{vmatrix} 1 & \lambda & -1 & 1 \\ 0 & 1 & \frac{4}{1-2\lambda} & \frac{5\lambda-1}{1-2\lambda} \\ 0 & 0 & \frac{8-4\lambda}{1-2\lambda} & \frac{\lambda(6-3\lambda)}{1-2\lambda} \\ 0 & 0 & \frac{8-4\lambda}{1-2\lambda} & \frac{-9\lambda^3-2\lambda^2+14\lambda-2}{1-2\lambda} \end{vmatrix} = \begin{vmatrix} \frac{1-2\lambda}{8-4\lambda} & r_3 \to r_3 \\ 0 & 0 & \frac{8-4\lambda}{1-2\lambda} & \frac{-9\lambda^3-2\lambda^2+14\lambda-2}{1-2\lambda} \\ 0 & 0 & \frac{8-4\lambda}{1-2\lambda} & \frac{-9\lambda^3-2\lambda^2+14\lambda-2}{1-2\lambda} \end{vmatrix}$$

$$-\frac{8-4\lambda}{1-2\lambda}r_3 + r_4 \to r_4 \begin{bmatrix} 1 & \lambda & -1 & 1 \\ 0 & 1 & \frac{4}{1-2\lambda} & \frac{5\lambda-1}{1-2\lambda} \\ 0 & 0 & 1 & \frac{\lambda(6-3\lambda)}{8-4\lambda} \\ 0 & 0 & 0 & \frac{-9\lambda^3+\lambda^2+8\lambda-2}{1-2\lambda} \end{bmatrix}$$

لذا فرم سطري پلكاني بدست مي ايد.

ب) برای سازگار بودن این سیستم باید شرایط زیر برقرار گردد.

$$1-2\lambda \neq 0 \rightarrow \lambda \neq \frac{1}{2}$$

$$8-4\lambda \neq 0 \rightarrow \lambda \neq 2$$

$$-9\lambda^{3} + \lambda^{2} + 8\lambda - 2 = 0 \rightarrow \lambda = -1, \quad \frac{1530}{1801}, \quad \frac{271}{1036}$$

ج) با توجه به اینکه برای سیستم سه تا عنصر محوری بدست آمده است، لذا سیستم در صورت سازگار بودن، پاسخ منحصربفرد دارد. حال پاسخ سیستم را به ازای $\lambda = -1$ که یکی از شرایط سازگاری سیستم است بدست می آوریم.

$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & \frac{4}{3} & -2 \\ 0 & 0 & 1 & \frac{-3}{4} \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{cases} x_1 - x_2 - x_3 = 1 \to x_1 = \frac{-3}{4} \\ x_2 + \frac{4}{3}x_3 = -2 \to x_2 = -1 \\ x_3 = \frac{-3}{4} \end{cases}$$

۲- معکوس ماتریس های زیر را با استفاده از روش گوس- جردن بدست آورید.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 9 & 12 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix} \quad , \quad C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 1 & 1 \end{bmatrix}$$

حل تمرین شماره ۲

معكوس ماتريس ها را با استفاده از روش گوس- جردن بدست مي آوريم،

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 9 & 12 \end{bmatrix} , \quad [A|I] \rightarrow [I|A^{-1}]$$

$$[A|I] = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 9 & 12 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} -2r_1 + r_2 \to r_2 \\ -3r_1 + r_3 \to r_3 \end{array} \quad \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & 3 & 3 & -3 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -2 & -3 \end{bmatrix} , [B|I] \rightarrow [I|B^{-1}]$$

$$[B|I] = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 & 1 & 0 \\ -1 & -2 & -3 & 0 & 0 & 1 \end{bmatrix} \quad \begin{matrix} r_1 + r_2 \to r_2 \\ r_1 + r_3 \to r_3 \end{matrix} \quad \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & -2 & -2 & 1 & 0 & 1 \end{bmatrix}$$

$$2r_{2} + r_{3} \rightarrow r_{3} \quad \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 2 & 3 & 2 & 1 \end{bmatrix} \quad \begin{array}{c} \frac{-1}{2}r_{3} + r_{1} \rightarrow r_{1} \\ -r_{3} + r_{2} \rightarrow r_{2} \end{array} \quad \begin{bmatrix} 1 & 0 & 0 & \frac{-1}{2} & -1 & \frac{-1}{2} \\ 0 & 1 & 0 & -2 & -1 & -1 \\ 0 & 0 & 2 & 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & \frac{-1}{2} & -1 & \frac{-1}{2} \\
0 & 1 & 0 & -2 & -1 & -1 \\
0 & 0 & 1 & \frac{3}{2} & 1 & \frac{1}{2}
\end{bmatrix} = [I|B^{-1}]$$

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 1 & 1 \end{bmatrix} \quad , \quad [C|I] \quad \to \quad [I|C^{-1}]$$

$$\begin{bmatrix} C|I \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} -2r_2 + r_1 \to r_1 \\ -r_2 + r_3 \to r_3 \end{array} \quad \begin{bmatrix} 1 & 0 & -5 & -1 & -2 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 0 & -3 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{vmatrix}
\frac{-5}{3}r_3 + r_1 \to r_1 \\
\frac{4}{3}r_3 + r_2 \to r_2
\end{vmatrix}
= \begin{bmatrix}
1 & 0 & 0 & -1 & \frac{-1}{3} & \frac{-5}{3} \\
0 & 1 & 0 & 0 & \frac{-1}{3} & \frac{4}{3} \\
0 & 0 & -3 & 0 & -1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & -1 & \frac{-1}{3} & \frac{-5}{3} \\
0 & 1 & 0 & 0 & \frac{-1}{3} & \frac{4}{3} \\
0 & 0 & 1 & 0 & \frac{1}{3} & \frac{-1}{3}
\end{bmatrix} = \begin{bmatrix} I | C^{-1} \end{bmatrix}$$

۳- دستگاه معادلات جبری خطی زیر را در نظر بگیرید،

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 1 \\ 4x_1 + 3x_2 + 5x_3 = 1 \\ 6x_1 + 5x_2 + 7x_3 = 1 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 = -2 \\ 4x_1 + 3x_2 + 5x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 2 \end{cases}$$

هر یک از معادلات را یکبار با روش حذفی گوسی و یکبار با روش گوس- جردن بصورت دستی حل نمایید. در هر مرحله ماتریس های مقدماتی مربوطه را بیابید و متغیرهای آزاد را بیان نمایید.

حل تمرین شماره ۳

$$\begin{cases} 2x_1 + x_2 + 3x_3 = -2 \\ 4x_1 + 3x_2 + 5x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 2 \end{cases}$$
 (b)

فرم ماتریس افزوده این معادلات بصورت زیر می باشد،

$$\begin{bmatrix}
A|\mathbf{b}
\end{bmatrix} \rightarrow \begin{bmatrix}
2 & 1 & 3|-2 \\
4 & 3 & 5| & 0 \\
2 & -1 & 3| & 2
\end{bmatrix}$$

حل با روش حذفی گوسی،

گام اول– حذف مجهول x_1 از معادلات دوم و سوم،

$$\begin{bmatrix}
-2r_1 + r_2 \to r_2 \\
-r_1 + r_3 \to r_3
\end{bmatrix} \Rightarrow \begin{bmatrix}
2 & 1 & 3 & -2 \\
0 & 1 & -1 & 4 \\
0 & -2 & 0 & 4
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \to E_1 = \begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, E_2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}$$

رمادله سوم، x_2 از معادله سوم، گام دوم- حذف

$$2r_{2} + r_{3} \to r_{3} \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 & 3 & | -2 \\ 0 & 1 & -1 & | & 4 \\ 0 & 0 & -2 & | & 12 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \quad \to \quad E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

گام سوم - اجرای الگوریتم جایگزینی پسرو برای حل معادلات،

$$\begin{cases} 2x_1 + x_2 + 3x_3 = -2 \\ x_2 - x_3 = 4 \\ -2x_3 = 12 \end{cases} \rightarrow \begin{cases} x_3 = -6 \\ x_2 = 4 + x_3 = -2 \\ x_1 = \frac{1}{2}(-2 - x_2 - 3x_3) = 9 \end{cases}$$

حل با روش گوس- جردن،

گام اول- حذف مجهول x_1 از تمامی معادلات به جز معادله اول،

$$\begin{bmatrix}
-2r_1 + r_2 \to r_2 \\
-r_1 + r_3 \to r_3
\end{bmatrix} \Rightarrow \begin{bmatrix}
2 & 1 & 3 & -2 \\
0 & 1 & -1 & 4 \\
0 & -2 & 0 & 4
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \to E_1 = \begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, E_2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\rightarrow E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

گام دوم- حذف مجهول x_2 از تمامی معادلات به جز معادله دوم،

$$\begin{vmatrix}
-r_2 + r_1 \to r_1 \\
2r_2 + r_3 \to r_3
\end{vmatrix} \Rightarrow \begin{bmatrix}
2 & 0 & 4 & -6 \\
0 & 1 & -1 & 4 \\
0 & 0 & -2 & 12
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \to E_3 = \begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, E_4 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{bmatrix}$$

گام سوم - حذف مجهول x_3 از تمامی معادلات به جز معادله سوم،

$$\begin{vmatrix}
2r_3 + r_1 \to r_1 \\
-1 \\
2r_3 + r_2 \to r_2
\end{vmatrix} \Rightarrow \begin{vmatrix}
2 & 0 & 0 & 18 \\
0 & 1 & 0 & -2 \\
0 & 0 & -2 & 12
\end{vmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \to E_5 = \begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, E_6 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & \frac{-1}{2} \\
0 & 0 & 1
\end{bmatrix}$$

گام چهارم- تبدیل عناصر قطری به عدد یک و بدست آوردن جوابها،

$$\begin{vmatrix}
\frac{1}{2}r_1 \to r_1 \\
\frac{-1}{2}r_3 \to r_3
\end{vmatrix} \Rightarrow \begin{bmatrix}
1 & 0 & 0 & 9 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -6
\end{bmatrix} \to \begin{cases}
x_1 = 9 \\
x_2 = -2 \\
x_3 = -6
\end{cases} \to E_7 = \begin{bmatrix}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{-1}{2}
\end{bmatrix}$$

در این دستگاه معادلات متغیر آزاد نداریم.

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 1 \\ 4x_1 + 3x_2 + 5x_3 = 1 \\ 6x_1 + 5x_2 + 7x_3 = 1 \end{cases}$$

فرم ماتریس افزوده این دستگاه معادلات بصورت زیر می باشد،

$$\begin{bmatrix}
A|\mathbf{b}
\end{bmatrix} \rightarrow \begin{bmatrix}
2 & 1 & 3|1| \\
4 & 3 & 5|1| \\
6 & 5 & 7|1|
\end{bmatrix}$$

حل با روش حذفی گوسی،

گام اول – حذف مجهول x_1 از معادلات دوم و سوم،

$$\begin{bmatrix}
-2r_1 + r_2 \to r_2 \\
-3r_1 + r_3 \to r_3
\end{bmatrix} \Rightarrow \begin{bmatrix}
2 & 1 & 3 & 1 \\
0 & 1 & -1 & -1 \\
0 & 2 & -2 & -2
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \to E_1 = \begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, E_2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{bmatrix}$$

گام دوم- حذف مجهول x_2 از معادله سوم،

$$-2r_{2} + r_{3} \to r_{3} \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 & 3 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \quad \to \quad E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

گام سوم - اجرای الگوریتم جایگزینی پسرو برای حل معادلات،

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 1 \\ x_2 - x_3 = -1 \end{cases} \rightarrow \begin{cases} x_2 = -1 + x_3 \\ x_1 = 1 - 2x_3 \end{cases}$$

در این دستگاه معادلات x_3 متغیر آزاد است.

حل با روش گوس- جردن،

گام اول - حذف مجهول x_1 از تمامی معادلات به جز معادله اول،

$$\begin{vmatrix}
-2r_1 + r_2 \to r_2 \\
-3r_1 + r_3 \to r_3
\end{vmatrix} \Rightarrow \begin{bmatrix}
2 & 1 & 3 & 1 \\
0 & 1 & -1 & -1 \\
0 & 2 & -2 & -2 & x_3
\end{bmatrix} \to E_1 = \begin{bmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, E_2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{bmatrix}$$

گام دوم- حذف مجهول x_2 از تمامی معادلات به جز معادله دوم،

$$\begin{vmatrix} -r_2 + r_1 \to r_1 \\ -2r_2 + r_3 \to r_3 \end{vmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & 4 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow E_4 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_5 = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

از آنجاییکه عنصر $a_{33}=0$ است و آخرین سطر می باشد، لذا ماتریس به فرم سطری پلکانی کاهش یافته تبدیل می شود و x_3 متغیر آزاد خواهد بود.

گام سوم- تبدیل عناصر قطری به عدد یک و بدست آوردن جوابها،

$$\frac{1}{2}r_1 \to r_1 \} \quad \Rightarrow \quad \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \to \quad \begin{cases} x_1 = 1 - 2x_3 \\ x_2 = -1 + x_3 \end{cases} \quad \to \quad E_7 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

۴- دستگاه معادلات جبری خطی زیر را در نظر بگیرید،

$$\begin{cases} x_1 - 4x_2 = 2 \\ x_1 + 8x_2 = 5 \end{cases} \text{ (a)} \qquad \begin{cases} x_1 + 2x_2 + 3x_3 - 4x_4 = 2 \\ 2x_1 + 4x_2 + 3x_3 + x_4 = 5 \end{cases} \text{ (b)}$$

الف) فرم سطری پلکانی و فرم سطری پلکانی کاهش یافته این دو دستگاه معادلات را بدست آورده و آنها را حل نمایید. بیان کنید کدام متغیرها آزاد هستند؟

حل تمرین شماره ۴

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 4x_4 = 2\\ 2x_1 + 4x_2 + 3x_3 + x_4 = 5 \end{cases}$$
 (b)

$$\begin{bmatrix} A|\mathbf{b} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & -4|2 \\ 2 & 4 & 3 & 1|5 \end{bmatrix}$$

حل به فرم سطری پلکانی،

گام اول - ضریب x_1 در معادله اول یک است، لذا مجهول x_1 را از معادله دوم حذف می کنیم،

$$-2r_{1} + r_{2} \to r_{2} \implies \begin{bmatrix} 1 & 2 & 3 & -4 & 2 \\ 0 & 0 & -3 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

گام دوم- از آنجاییکه ضریب x_2 در معادله دوم صفر است، سراغ ضریب x_3 می رویم و آن را به یک تبدیل می کنیم،

$$\frac{-1}{3}r_2 \to r_2 \qquad \Rightarrow \qquad \begin{bmatrix} 1 & 2 & 3 & -4 & 2 \\ 0 & 0 & 1 & -3 & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

همانطور که پیداست سیستم سازگار بوده و دستگاه معادلات بیشمار جواب دارد.

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 4x_4 = 2 \\ x_3 - 3x_4 = \frac{-1}{3} \end{cases} \rightarrow x_1 = 3 - 2x_2 - 5x_4, \quad x_3 = \frac{-1}{3} + 3x_4$$

در این دستگاه معادلات با توجه به محل عناصر محوری x_2 و x_3 متغیرهای آزاد هستند.

حل به فرم سطری پلکانی کاهش یافته،

گام اول - ضریب x_1 در معادله اول یک است، لذا مجهول x_1 را از معادله دوم حذف می کنیم،

$$-2r_{1} + r_{2} \to r_{2} \quad \Rightarrow \quad \begin{bmatrix} 1 & 2 & 3 & -4 & 2 \\ 0 & 0 & -3 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

گام دوم- از آنجاییکه ضریب x_2 در معادله دوم صفر است، سراغ ضریب x_3 می رویم و آن را به یک تبدیل می کنیم،

$$\frac{-1}{3}r_2 \to r_2 \quad \Rightarrow \quad \begin{bmatrix} 1 & 2 & 3 & -4 & 2 \\ 0 & 0 & 1 & -3 & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

در فرم سطری پلکانی کاهش یافته عناصر بالای عنصر محوری صفر است، لذا داریم،

$$-3r_{2} + r_{1} \rightarrow r_{1} \implies \begin{bmatrix} 1 & 2 & 0 & 5 & 3 \\ 0 & 0 & 1 & -3 & \frac{-1}{3} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

دستگاه معادلات بیشمار جواب دارد.

$$\begin{vmatrix} x_1 + 2x_2 + 5x_4 = 3 \\ x_3 - 3x_4 = \frac{-1}{3} \end{vmatrix} \rightarrow x_1 = 3 - 2x_2 - 5x_4, \quad x_3 = \frac{-1}{3} + 3x_4$$

$$\begin{cases} x_1 - 4x_2 = 2 \\ x_1 + 8x_2 = 5 \\ x_1 + 2x_2 = -1 \end{cases}$$

$$\begin{bmatrix} A|\mathbf{b} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 2 \\ 1 & 8 & 5 \\ 1 & 2 & -1 \end{bmatrix}$$

حل به فرم سطری پلکانی،

گام اول - ضریب x_1 در معادله اول یک است، لذا مجهول x_1 را از معادلات دوم و سوم حذف می کنیم،

$$\begin{vmatrix}
-r_1 + r_2 \rightarrow r_2 \\
-r_1 + r_3 \rightarrow r_3
\end{vmatrix} \Rightarrow \begin{bmatrix}
1 & -4 & 2 \\
0 & 12 & 3 \\
0 & 6 & -3
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$$

گام دوم - از آنجاییکه ضریب x_2 در معادله دوم یک نیست داریم،

$$\frac{1}{12}r_2 \to r_2 \quad \Rightarrow \quad \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & \frac{1}{4} \\ 0 & 6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

حذف مجهول x_2 از معادله سوم،

$$-6r_2 + r_3 \rightarrow r_3 \qquad \Rightarrow \qquad \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & \frac{-9}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

با توجه به سطر آخر ماتریس سطری پلکانی دستگاه معادلات ناسازگار است، لذا جواب ندارد.

حل به فرم سطری پلکانی کاهش یافته،

گام اول - ضریب x_1 در معادله اول یک است، لذا مجهول x_1 را از معادلات دوم و سوم حذف می کنیم،

$$\begin{vmatrix}
-r_1 + r_2 \to r_2 \\
-r_1 + r_3 \to r_3
\end{vmatrix} \Rightarrow \begin{vmatrix}
1 & -4 & 2 \\
0 & 12 & 3 \\
0 & 6 & -3 & x_2
\end{vmatrix}$$

گام دوم - از آنجاییکه ضریب x_2 در معادله دوم یک نیست داریم،

$$\frac{1}{12}r_2 \to r_2 \qquad \Rightarrow \qquad \begin{vmatrix} 1 & -4 & 2 \\ 0 & 1 & \frac{1}{4} \\ 0 & 6 & -3 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

حذف مجهول x_2 از معادله اول و سوم،

$$\begin{vmatrix}
4r_2 + r_1 \to r_1 \\
-6r_2 + r_3 \to r_3
\end{vmatrix} \Rightarrow \begin{vmatrix}
1 & 0 & 3 \\
0 & 1 & \frac{1}{4} \\
0 & 0 & \frac{-9}{2}
\end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

با توجه به سطر آخر ماتریس سطری پلکانی کاهش یافته، دستگاه معادلات ناسازگار است، لذا جواب ندارد.

های مقدماتی لازم برای تبدیل ماتریس A به یک ماتریس بالا مثلثی را بدست آورید. Δ

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

ماتریس مقدماتی لازم برای خذف متغیر x_1 از معادله دوم، -

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow E_{1}A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

ماتریس مقدماتی لازم برای خذف متغیر x_2 از معادله سوم، -

$$E_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \frac{2}{3} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow E_{2}E_{1}A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & \frac{4}{3} & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

- ماتریس های مقدماتی لازم برای خذف متغیر x_3 از معادله چهارم،

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{3}{4} & 1 \end{bmatrix} \rightarrow E_{3}E_{2}E_{1}A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & \frac{4}{3} & -1 \\ 0 & 0 & 0 & \frac{5}{4} \end{bmatrix}$$

به این ترتیب با اعمال سه ماتریس مقدماتی، ماتریس A به فرم بالا مثلثی تبدیل می شود.

۶- کدام یک از سیستمهای زیر سازگار یا ناسارگار هستند؟ در صورت سازگار بودن آیا جواب منحصر بفرد دارند؟

$$\begin{cases} x_2 + x_3 = 1 \\ x_1 + x_2 = 1 \\ x_1 + x_3 = 1 \end{cases} \qquad \begin{cases} x_2 - x_3 = 0 \\ x_1 - x_2 = 0 \\ x_1 - x_3 = 0 \end{cases} \qquad \begin{cases} x_2 - x_3 = 2 \\ x_1 - x_2 = 2 \\ x_1 - x_3 = 2 \end{cases}$$

حل تمرین شماره ۶

$$\begin{cases} x_2 - x_3 = 2 \\ x_1 - x_2 = 2 \\ x_1 - x_3 = 2 \end{cases}$$
 (iii)

برای بررسی سازگار یا ناسازگار بودن سیستم از روش حذفی گوسی استفاده می کنیم،

$$\begin{bmatrix} 0 & 1 & -1 & 2 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 2 \end{bmatrix} \qquad r_1 \leftrightarrow r_3 \qquad \begin{bmatrix} 1 & 0 & -1 & 2 \\ 1 & -1 & 0 & 2 \\ 0 & 1 & -1 & 2 \end{bmatrix} \qquad -r_1 + r_2 \to r_2 \qquad \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$r_2 + r_3 \to r_3 \qquad \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

با توجه به سطر آخر مشخص است که سیستم ناسازگار است، زیرا معادله ای بصورت $2 = 0x_1 + 0x_2 + 0x_3 = 0$ جواب ندارد.

$$\begin{cases} x_2 - x_3 = 0 \\ x_1 - x_2 = 0 \\ x_1 - x_3 = 0 \end{cases}$$

برای بررسی سازگار یا ناسازگار بودن سیستم از روش حذفی گوسی استفاده می کنیم،

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix} \qquad r_1 \leftrightarrow r_3 \qquad \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \qquad -r_1 + r_2 \to r_2 \qquad \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

$$r_2 + r_3 \to r_3 \qquad \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad -r_2 \to r_2 \qquad \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

با توجه به اینکه دستگاه معادلات همگن است، حتماً سیستم سازگار است و یک جواب بردار صفر را دارد، لیکن با توجه به اینکه برای سیستم سه مجهولی دو تا عنصر محوری بدست آمده است، علاوه بر بردار صفر بیشمار جواب دیگر هم دارد.

$$x_1 = x_3$$
 , $x_2 = x_3$

در اینجا متغیر آزاد است. x_3

$$\begin{cases} x_2 + x_3 = 1 \\ x_1 + x_2 = 1 \\ x_1 + x_3 = 1 \end{cases}$$
 (2)

برای بررسی سازگار یا ناسازگار بودن سیستم از روش حذفی گوسی استفاده می کنیم،

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \quad r_1 \leftrightarrow r_3 \quad \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad -r_1 + r_2 \to r_2 \quad \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$-r_2 + r_3 \to r_3 \quad \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} \quad \frac{1}{2}r_3 \to r_3 \quad \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & \frac{1}{2} \end{bmatrix}$$

با توجه به فرم سطری پلکانی سیستم سازگار است و چون سه تا عنصر محوری بدست آمده دستگاه معادلات پاسخ منحصربفرد دارد.

$$\begin{cases} x_3 = \frac{1}{2} \\ x_2 - x_3 = 0 \to x_2 = \frac{1}{2} \\ x_1 + x_3 = 1 \to x_1 = \frac{1}{2} \end{cases}$$

نمونه ای دستگاه معادلات که همواره سازگار است دستگاه معادلات همگن می باشد. فرم کلی دستگاه معادلات جبری خطی همگن بصورت زیر می باشد،

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= 0 \\ &\vdots \end{aligned} \tag{9-7}$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

همانطور که از معادلات بالا بر می آید دستگاه معادلات خطی همگن سازگار می باشد، زیرا شرط ناسازگاری هرگز رخ نخواهد داد، همچنین یک مجموعه جواب پاسخ بدیهی تعنی $\mathbf{x} = \mathbf{0}$ برای حل این معادلات همواره وجود دارد. البته گاهی دستگاه معادلات خطی همگن می تواند علاوه بر پاسخ بدیهی بیشمار جواب دیگر هم داشته باشد.

مثال

دستگاه معادلات همگن زیر را در نظر بگیرید،

$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0 \\ 2x_1 + 5x_2 + 3x_3 = 0 \\ 3x_1 + 6x_2 + 8x_3 = 0 \end{cases}$$

ماتریس افزوده و تبدیل آن با روش خذفی گوسی بصورت زیر بدست می آید،

$$\begin{bmatrix} 1 & 2 & 2 & 0 \\ 2 & 5 & 3 & 0 \\ 3 & 6 & 8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

با حل این معادلات در می یابیم که تنها جواب ممکن پاسخ بدیهی $(x_1, x_2, x_3) = (0,0,0)$ می باشد.

مثال

دستگاه معادلات همگن زیر را در نظر بگیرید،

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 = 0 \\ 2x_1 + 4x_2 + x_3 + 3x_4 = 0 \\ 3x_1 + 6x_2 + x_3 + 4x_4 = 0 \end{cases}$$

ماتریس افزوده و تبدیل آن با روش سطری پلکانی بصورت زیر بدست می آید،

$$\begin{bmatrix} 1 & 2 & 2 & 3 & 0 \\ 2 & 4 & 1 & 3 & 0 \\ 3 & 6 & 1 & 4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 3 & 0 \\ 0 & 0 & -3 & -3 & 0 \\ 0 & 0 & -5 & -5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & -5 & -5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

با توجه به محل عناصر محوری x_1 و x_2 متغیرهای وابسته و x_2 و به محل عناصر محوری x_3 و x_4 متغیرهای آزاد هستند.

$$x_1 = -2x_2 - x_4$$
 , $x_3 = -x_4$

همانطور که مشاهده می شود در این حالت دستگاه معادلات علاوه بر پاسخ بدیهی، بینهایت جواب دیگر هم خواهد داشت.