

MACHINE LEARNING TOPIC: DATA HANDLING BASICS

DATA: EXPERT'S LOAN APPROVAL RECORDS

1	A	В	C	D	E	F	G	Н	1	J	K
1	Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	Credit History	Property_Area	Status
2	LP001002	Male	No	0	No	\$5849.00		60	1	Urban	Υ
3	LP001003	Male	Yes	1	No	\$4583.00	120		1	Rural	N
4	LP001005	Male	Yes	0	Yes	\$3000.00	\$66.00	60	1	Urban	Y
5	LP001006	Male	Yes	2	No	\$2583.00	\$120.00	60	1	Urban	Y

Can we replace the expert by creating a model to determine whether a customer loan should be approved or not based on the expert's past approval records???

	Α	B	-C	D	E	F	G	н	-		K
1	Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	Credit History	Property_Area	Status
2	LP001002	Male	No	0	No	\$5849.00		60	1	Urban	Υ
3	LP001003	Male	Yes	1	No	\$4583.00	120		1	Rural	N
4	LP001005	Male	Yes	0	Yes	\$3000.00	\$66.00	60	1	Urban	Υ
5	LP001006	Male	Yes	2	No	\$2583.00	\$120.00	60	1	Urban	Υ

Types of Variable

- Predictor / Independent
 - Gender
 - Married
 - Dependents
 - Self_Imployed
 - Income
 - LoanAmt
 - Term
 - Credit History
 - Property_Area
- Target / Dependent
 - Status

The value of status will be dependent on these variables.

This is what we are trying to determine.

	A	B	-	_		_ _		F	G	Н				<u>K</u>	
1	Loan_ID	Gender	Married	Dependents	S	elf_Emplo	/ed	Income	LoanAmt	Term	Credit History	Pro	perty_Area	Statu	s
2	LP001002	Male	No	0		No		\$5849.00		60	1		Urban	Υ	
3	LP001003	Male	Yes	1		No		\$4583.00	120		1		Rural	N	П
4	LP001005	Male	Yes	0		Yes		\$3000.00	\$66.00	60	1		Urban	Υ	П
5	LP001006	Male	Yes	2		No		\$2583.00	\$120.00	60	1		Urban	Υ)	Л

Data Type

- Character / String
 - Gender
 - Married
 - Self_Imployed
 - Property_Area
 - Status
- Numeric
 - Dependents
 - Income
 - LoanAmt
 - Term
 - Credit History

	A	В	-	0	E	F	G	Н			J	K
1	Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	4	redit History	Property_Area	Status
2	LP001002	Male	No	0	No	\$5849.00		60		1	Urban	Y
3	LP001003	Male	Yes	1	No	\$4583.00	120			1	Rural	N
4	LP001005	Male	Yes	0	Yes	\$3000.00	\$66.00	60		1	Urban	Y
5	LP001006	Male	Yes		No	\$2583.00	\$120.00	60		1	Urban	Y

Category

Categorical

- Gender
- Married
- Self_Imployed
- Credit History
- Property_Area
- Status

Continuous

- Dependents
- Income
- LoanAmt
- Term

VARIABLE DATA

VARIABLE

QUANTITATIVE DATA CATEGORICAL DATA

DATA THAT IS MEASURED IN NUMBERS. IT DEALS WITH NUMBERS THAT MAKE SENSE TO PERFORM ARITHMETIC CALCULATIONS WITH

QUANTITATIVE VARIABLES

HEIGHT
WEIGHT
MIDTERM SCORE

REFERS TO THE VALUES THAT PLACE "THINGS" INTO DIFFERENT GROUPS OR CATEGORIES

CATEGORICAL VARIABLES

HAIR COLOUR
TYPE OF CAT
LETTER GRADE

QUANTITATIVE VARIABLE

DISCRETE

REFER TO VARIABLES THAT CAN ONLY BE MEASURED IN CERTAIN NUMBERS

NUMBER OF PETS YOU OWN

0

1

2

30

2.5

CONTINUOUS

REFER TO VARIABLES THAT CAN TAKE ON ANY NUMERICAL VALUE

EX:

WEIGHT

105

185

170.683

VARIABLE

QUANTITATIVE DATA CATEGORICAL DATA

DATA THAT IS MEASURED IN NUMBERS. IT DEALS WITH NUMBERS THAT MAKE SENSE TO PERFORM ARITHMETIC CALCULATIONS WITH

QUANTITATIVE VARIABLES

HEIGHT
WEIGHT
MIDTERM SCORE

REFERS TO THE VALUES THAT PLACE "THINGS" INTO DIFFERENT GROUPS OR CATEGORIES

CATEGORICAL VARIABLES

HAIR COLOUR
TYPE OF CAT
LETTER GRADE

CATEGORICAL VARIABLE

CATEGORICAL AND ORDINAL

LOGICAL ORDERING TO THE VALUES OF A CATEGORICAL VARIABLE

EX: LETTER GRADE

F C C+ B B+ A A+

CATEGORICAL AND NOMINAL

NO LOGICAL ORDERING TO THE VALUES OF A CATEGORICAL VARIABLE

EX: HAIR COLOUR

RED BLONDE BROWN BLUE

Qualitative vs Quantitative Data

Categorical Data

Overview:

- Deals with descriptions.
 Deals with numbers.
- Data can be observed but not measured.
- Colors, textures, smells, tastes, appearance, beauty, etc.
- Qualitative → Quality

Numerical Data

Overview:

- Data which can be measured.
- Length, height, area, volume, weight, speed, time, temperature, humidity, sound levels, cost, members, ages, etc.
- •Quantitative → Quantity

Scales of Measurement

Data	Nominal	Ordinal	Interval	Ratio
Labeled	1	1	-	-
Meaningful Order	×	1	1	-
Measurable Difference	X	X	1	1
True Zero Starting Point	X	×	X	1

CLASSIFICATION DATASET

case ID		predicto	rs		target
CUST_ID CUST	GENDER 2	EDUCATION 2	OCCUPATION	₫ AGE	AFFINITY_CARD
101501 F	Ma	sters Pro	of.	41	0
101502 M	Bac	ch. Sal	es	27	0
101503 F	HS	grad Cle	ric.	20	0
101504 M	Bad	ch. Exe	ec.	45	1
101505 M	Ma	sters Sal	es	34	1
101506 M	HS	grad Oth	ner	38	0
101507 M	< E	Bach. Sal	es	28	0
101508 M	HS	grad Sal	es	19	0
101509 M	Bad	ch. Oth	ner	52	0
101510 M	Bad	ch. Sal	es	27	1

CLUSTERING DATASET

< Mall_Customers.csv (3.89 KB)

平 ⊞ #

Detail Compact Column 5 of 5 columns ✓

About this file

This file contains the basic information (ID, age, gender, income, spending score) about the customers

CustomerID	▲ Gender =	# Age =	# Annual Income (k\$) =	# Spending Score (=
Unique ID assigned to the customer	Gender of the customer	Age of the customer	Annual Income of the customee	Score assigned by the mall based on customer behavior and spending nature
1 200	Female 56% Male 44%	18 70	15 137	1 99
1	Male	19	15	39
2	Male	21	15	81
3	Female	20	16	6
4	Female	23	16	77

REGRESSION DATASET

Multiple features (variables).

-	Size (foot ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	×1	×2	×3	74	3
	2104	5	1	45	460 7
	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178
	170	891	144	- 00	***
	Jbs.		-0		

Notation:

$$x^{(i)}$$
 = input (features) of i^{th} training example.

$$x_j^{(i)}$$
 = value of feature j in i^{th} training example.

Dataset for time series analysis

Example #2: US rate of unemployment

Unstructured data

- Video
- Image
- Audio
- Text

BAG-OF-WORDS FOR TEXT

Review1: This movie is very scary. Review2: This movie is scary and not slow. Review3: This movie is spooky and good.

Term	Review 1	Review 2	Review 3
This	1	1	1
movie	1	1	1
is	1	2	1
very	1	0	0
scary	1	1	0
and	1	1	1
long	1	0	0
not	0	1	0
slow	0	1	0
spooky	0	0	1
good	0	0	1

HISTOGRAM FOR IMAGE

Structured Data

vs

Unstructured Data

Univariate data analysis – E.G. age, weight, salary

• Understanding central tendency: Mean, Median, Mode

Mean	Average value
Median	Middle value
Mode	Most frequent value

MEAN

Mean

It is the sum of the value observation divide by the sample size. The mean of the values 5,6,6,8,9,9,9,10,10 is (5+6+6+8+9+9+9+9+10+10)/10 = 8.1

Limitation:

It is affected by enormous values. Very large or very small numbers can distort the answer

MEDIAN

It is the middle value of the list. It splits the data in half. Half of the data are above the median; half of the data are below the median.

Advantage:

It is **NOT** affected by enormous values. large or small

numbers doesn't make a impact.

Median	Odd
	23
	21
	18
	16
	15
	13
(12
	10
	9
	7
	6
	5
	2

Median I	
Median i	
	40
	38
	35
	33
	32
	30
20	29
28	27
	26
	24
	23
	22
	4.0
	19

MODE

It is the value that occurs most frequently in a data-set.

Advantage:

It can be used when the data is not numerical.

Disadvantage:

- 1. There may be no mode at all if none of the data is the same
- 2. There may be more than one mode

Mode		
	5	
	5	
	5	
	4	
	4	
	3	
	2	
	2	
	1	

Univariate data analysis

Understanding data Spread/Variability

Range	Difference between max and min in a distribution
Standard Deviation	Average distance of scores in a distribution from their mean
Variance	Square of the standard deviation
Skewness	Degree to which scores in a distribution are spread out.
Kurtosis	Flatness or peakness of the curve

Univariate data analysis: range

Range: defined as a single number representing the spread of the data

Range = maximum score — minimum score

In order to figure out the range, A) arrange your data set in order from lowest to highest and B) subtract the lowest number from the highest number.

- A) When arranged in order, 4, 6, 3, 7, 9, 4, 2, 1, 4,
- 2 becomes: 1, 2, 2, 3, 4, 4, 4, 6, 7, 9
- B) The lowest number is 1 and the highest number is 9.

Therefore, R = 9-1 = 8

Univariate data analysis: mean deviation

The mean deviation gives us a measure of the typical difference (or deviation) from the mean. If most data values are very similar to the mean, then the mean deviation score will be low, indicating high similarity within the data. If there is great variation among scores, then the mean deviation score will be high, indicating low similarity within the data.

$$MD = \frac{\sum |x_i - \bar{x}|}{N}$$

Mean Deviation: An Example

Data: X = {6, 10, 5, 4, 9, 8}

$\bar{X} = X_i$	Abs. Dev.
7 – 6	1
7 – 10	3
7 – 5	2
7 – 4	3
7 – 9	2
7 - 8	1

- Compute X (Average)
- Compute X X and take the Absolute Value to get Absolute Deviations
- Sum the Absolute Deviations
- Divide the sum of the absolute deviations by N

Total: 13

12/6-2

Univariate data analysis: variance & standard deviation

Variance is defined as a number indicating how spread out the data is. **Standard Deviation** is the square root of the variance.

B8	▼ (= fx =(E2+E3+E4+E5+E6)/COUNT(A2:A6)					
-4	А	В	C	D	E	F
1	No.of Items (N)	Observations(x)	μ	х- μ	(x- μ) ²	
2	1	50		0	0	
3	2	55		5	25	
4	3	45	50	-5	25	
5	4	60		10	100	
6	5	40		-10	100	
7						
8	σ^2	50			$\sum (x_i)$	$-\bar{x})^2$
9			•	S	$=\sqrt{\frac{1}{2}}$	N

MEASURE OF CONSISTENCY

A large variance indicates that numbers in the set are far from the mean and far from each other. A small variance, on the other hand, indicates the opposite i.e more consistency

BATSMAN A: 70, 80, 75, 90;

mean = 78; variance = 54; std-dev = 7

BATSMAN B: 25, 175, 85, 35;

mean = 80; variance = 3525; std-dev = 59

BATSMAN A is more consistent as the variance of his scores is less as compared to BATSMAN B

Univariate data analysis: coefficient of variation

The coefficient of variation (CV) is a relative measure of variability that indicates the size of a standard deviation in relation to its mean. It is a standardized, unitless measure that allows you to compare variability between disparate groups and characteristics. It is also known as the relative standard deviation (RSD).

$$CV = \frac{Standard\ deviation}{Mean}$$

A data set of [100, 100, 100] has constant values. Its standard deviation is 0 and average is 100, giving the coefficient of variation as 0 / 100 = 0

A data set of [90, 100, 110] has more variability. Its sample standard deviation is 10 and its average is 100, giving the coefficient of variation as

10 / 100 = 0.1

A data set of [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 30.78 and its average is 27.9, giving a coefficient of variation of 30.78 / 27.9 = 1.10

Example of Coefficient of Variation

A Restaurant owner wants to open a new outlet. There are two territories to choose from. The choice mainly depends on the rental value, and the best option would be to open the restaurant in the territory that has lesser variation in the rentals.

Territory A

Average Rental is around Rs 120,000 Standard Deviation is 2,000

Co-efficient of Variation = 2000/120000 = 0.016 or 1.60%

Territory B

Average rental is around Rs 200,000

Standard deviation is 3,000

Coefficient of variation =

3000/200000 = 0.015 or 1.50%

The data available to us is as follows.

- (i) If you look at the rental values, Territory A seems to be a better bet as the average rental cost is considerably lower when compared to Territory B.
- (ii) However, it is not the right option because the variation in the rental values is lower in Territory B as compared to Territory A
- (iii) The CV of Territory B is 1.50% whereas the CV of Territory A is 1.60%
- (iv) Thus, the better option for the restaurant owner is to open the QSR in Territory B.

A lower value of Coefficient of Variation is preferable because of the lesser degree of volatility. Thus, the lower the CV, the better is the option.

DATA VISUALIZATION

- Histogram
- Box Plot
- Scatter Plot

Univariate data analysis

Understanding data distribution: Histogram

A histogram is a graphical representation of the distribution of numerical data.

A bar graph has gaps between the bars. A histogram has no gaps between the bars.

Colombia Califor 2011

HISTOGRAMS & CENTRAL TENDENCY

Use histograms to understand the center of the data. In the histogram below, you can see that the center is near 50. Most values in the dataset will be close to 50, and values further away are rarer. The distribution is roughly symmetric and the values fall between

approximately 40 and 64.

HISTOGRAMS & VARIABILITY

Suppose you hear that two groups have the same mean of 50. It sounds like they're practically equivalent. However, after you graph the data, the differences become apparent, as shown below. The histograms center on the same value of 50, but the spread of values is notably different. The values for group A mostly fall between 40-60 while for group B that range is 20-90. The mean does not tell the entire story! At a glance, the difference is evident in the histograms.

Histogram of A, C

20 30 40 50 60 70 80 90

BOX-PLOT

Boxplots are a standardized way of displaying the distribution of data based on a five number summary ("minimum", first quartile (Q1), median, third quartile (Q3), and "maximum").

BOXPLOT: FIVE NUMBER SUMMARY

- Mean
- Median
- Quartile (Q)
- Minimum
- Maximum

Example: 5, 8, 3, 2, 1, 3, 10

If the data-set has an even number of values, the value of Q2 (median), will be the mean of the middle 2 values. The value of Q1 will be the median of all values to the left of calculated Q2 and the value of Q3 will be the median of all values to the right of calculated Q2.

Once the Five Number Summary values have been computed, finding the Range and Interquartile Range is easy.

Range = Maximum — Minimum =
$$10-1 = 9$$

Interquartile Range (IQR) = $Q3$ — $Q1 = 8-2 = 6$

BOX-PLOT

median (Q2): the middle value of the dataset.

first quartile (Q1): the middle number between the smallest number (not the "minimum") and the median of the dataset.

third quartile (Q3): the middle value between the median and the highest value (not the "maximum") of the dataset.

interquartile range (IQR): 25th to the 75th percentile.

whiskers (shown in blue); outliers (shown as green circles)

"maximum": Q3 + 1.5*IQR

"minimum": Q1 -1.5*IQR

BOX-PLOT EXAMPLE:

99, 101, 236, 269,271,278,283,291, 301, 303, 441

Median (Q2) =
$$\frac{1}{2}$$
 (11+1) th term = 6th Term Lower Quartile (Q1) = $\frac{1}{4}$ (11+1) th term = 3rd Term
$$\mathbf{Q1} = \mathbf{236}$$

Upper Quartile (Q3) =
$$\frac{3}{4}$$
 (11 + 1) th term = 9th Term
$$\mathbf{Q3} = \mathbf{301}$$

luartile Range (IQR) =
$$Q3 - Q1 = 301 - 236$$

$$IQR = 65$$

Lower Limit =
$$Q1 - 1.5 | QR = 236 - 1.5 * 65$$

Lower Limit = 138.5

Upper Limit = 398.5

Upper Limit = Q3 + 1.5 IQR = 301 + 1.5 * 65

HANDING OUTLIERS

5.5

5

5.8

5.11

TT		1.4
П	eig.	$\mathbf{n}\mathbf{t}$
	- 0	

5.5

5

5.8

5.11

8

5

4

Height

Height

5.5

5

5

5.8

5.11

5.4

5

5.4

 $\mu = 5.4$ $\sigma^2 = 1.3$

Remove

Replace

HANDING MISSING VALUES

Height	Height	Height
5.5	5.5	5.5
5	5	5
5.8	5.8	5.8
5.11	5.11	5.11
?	\otimes	5.4
5	5	5
?		5.4

Remove

Replace

	col1	col2	col3	col4	col5	_		col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	mean()	0	2.0	5.0	3.0	6.0	7.0
1	9	NaN	9.0	0	7.0	\longrightarrow	1	9.0	11.0	9.0	0.0	7.0
2	19	17.0	NaN	9	NaN		2	19.0	17.0	6.0	9.0	7.0

Gender	Manpower	Sales
M	25	343
F		280-
M	33	332
M		272-
F	25	
M	29	326
	26	259
M	32	297

SCATTER PLOT

Temperature °C	Ice Cream Sales
14.2°	\$215
16.4°	\$325
11.9°	\$185
15.2°	\$332
18.5°	\$406
22.1°	\$522
19.4°	\$412
25.1°	\$614
23.4°	\$544
18.1°	\$421
22.6°	\$445
17.2°	\$408

CATEGORICAL DATA ENCODING

CATEGORICAL DATA ENCODING: NOMINAL

Gender	Is_Male	Is_Female
6 -	⇒ 0	1
6	⇒ 0	1
8 -	⇒ 1	0
G . —	⇒ 0	1
8-	⇒ 1	0

CATEGORICAL DATA ENCODING: ORDINAL

	Temperature	Temp_Ordinal	
0	Hot	3	If we consider in the temperature scale as
1	Cold	1	the order, then the ordinal value should
2	Very Hot	4	from cold to "Very Hot." Ordinal encoding
3	Warm	2	will assign values as
4	Hot	3	
5	Warm	2	Cold(1) < Warm(2) < Hot(3) < "Very Hot(4)
6	Warm	2	Harralla and Ordinal Erranding days
7	Hot	3	Usually, we Ordinal Encoding is done
8	Hot	3	starting from 1.
9	Cold	1	

CATEGORICAL DATA ENCODING: ONE HOT

	weather			is_sunny	is_rainy	
0	sunny	 	0	1	0	
1	rainy	 OH encoding	1	0	1	
2	rainy	 -	2	0	1	
3	sunny		3	1	0	

CATEGORICAL DATA ENCODING: ORDINAL PLUS ONE HOT

Temperature
Hot
Cold
Very Hot
Warm
Hot
Warm
Warm
Hot
Hot
Cold

Order	
1	
2	
3	
4	
1	
4	
4	
1	
1	
2	

Е	Bina	ar	Y	
	00	1		
	01	0		
	01	1		
	10	0		
	00	1		
	10	0		
	10	0		
	00	1		
	00	1		
	01	0		
				•

Temperature_0	Temperature_1	Temperature_2				
0	9	1				
0	1	0				
0	1	1				
1	0	0				
0	0	1				
1	0	0				
1	0	0				
0	0	1				
0	0	7				
0	1	0				

DATA ASSESSMENT

The first step in data understanding is a Data Assessment. This should be undertaken before the kick-off of a project as it is an important step to validate its feasibility. This task evaluates what data is available and how it aligns to the business problem. It should answer the following questions:

- What data is available?
- How much data is available?
- Do you have access to the ground truth, the values you're trying to predict?
- What format will the data be in?

DATA ASSESSMENT

- Count the number of records is this what you expected?
- What are the datatypes? Will you need to change these for a machine learning model?
- Look for missing values how should you deal with these?
- Verify the distribution of each column are they matching the distribution you expect (e.g. normally distributed)?

DATA ASSESSMENT

- Search for outliers are there anomalies in your data?
 Are all values valid (e.g. no ages less than 0)?
- Validated if your data is balanced are different groups represented in your data? Are there enough examples of each class you wish to predict?
- Is there bias in your data are subgroups in your data treated more favorable than others?

THANK YOU

