Roll No.

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech II Semester (SVEC-19) Regular Examinations August – 2021

PROBABILITY AND STOCHASTIC PROCESSES

[Electronics and Communication Engineering]

Electronics and Communication Engineering J						Max. Marks: 60					
Time: 3 hours Answer One Question from each Unit All questions carry equal marks				Max	. Marks:	OU					
(UNIT-I)											
1.	a)	A pack contains 4 white and 2 green pencils, another contains 3 white and 5 green pencils. If one pencil is drawn from each pack, find the probability that:	6 Marks	L2	CO1	PO4					
	b)	i) Both are white. ii) One is white, and another is green Explain about joint and conditional probability.	6 Marks	L1	CO1	PO2					
2.	a)	An urn contains 10 white and 3 black balls while another urn contains 3 white and 5 black balls. Two are drawn from the first urn and put into the second urn and then a ball is drawn from letter. What is the probability that it is a white hell?	6 Marks	L2	CO1	PO4					
	b)	latter. What is the probability that it is a white ball? State and prove the Baye's theorem. UNIT-II	6 Marks	L1	CO1	PO2					
3.	a)	Let X be a Continuous random variable with density function $f(x) = (x/9) + K$ $0 \le x \le 6$ otherwise	6 Marks	L3	CO2	PO4					
	b)	Find the value of K and also find $P\{2 \le X \le 5\}$. Let X and Y be the random variables defined as X=Cos θ and Y=Sin θ , where θ is a uniform random variable over $(0, 2\pi)$	6 Marks	L2	CO2	PO4					
		i) Are X and Y Uncorrelated? ii) Are X and Y Independent? (OR)									
4.	a)	Prove that $P(x_1 < X \le x_2) = F_x(x_2) - F_x(x_1)$.	6 Marks	L2	CO2	PO1					
	b)	If X is a normal variate with mean 30 and standard deviation 5. Estimate the probabilities when. i) $26 \le X \le 40$. ii) $X \ge 45$. UNIT-III	6 Marks	L2	CO2	PO2					
5.	a)	Explain the Gaussian Random Variable and Exponential Random variable with corresponding neat sketches.	6 Marks	L1	CO2	PO2					
	b)	The ranks of 16 students in Mathematics and Statistics are as follows. (1,1) (2,10) (3,3) (4,4) (5,5) (6,7) (7,2) (8,6) (9,8) (10,11) (11,15) (12,9) (13,14) (14,12) (15,16) (16,13). Calculate the rank correlation coefficient for proficiencies of this group in Mathematics and Statistics. (OR)	6 Marks	L3	CO2	PO2					
6.	a)	If the joint PDF of two dimensional random variable (x, y) is given by: $F_{XY}(X,Y) = 2; \text{for } 0 < x < 1, 0 < y < x$ $= 0; \text{otherwise}$	6 Marks	L2	CO2	PO4					

Find the marginal density function of X and Y.

	b)	Discuss the properties of conditional distribution function.	6 Marks	L3	CO2	PO2					
	(UNIT-IV)										
7.	a)	Find the cross-correlation function corresponding to the cross power spectrum $S_{XY}(\omega) = 6/[(9+\omega^2)(3+j\omega)]^2$.	6 Marks	L3	CO3	PO4					
	b)	Write short notes on cross power density spectrum. (OR)	6 Marks	L3	CO3	PO2					
8.	a)	A random process has the power density spectrum $S_{YY}(\omega) = 6 \omega^2 / [1 + \omega^4]$. Find the average power in the process.	6 Marks	L3	CO3	PO4					
	b)	Find the auto correlation function of the random process whose psd is $16/[\omega^2+4]$.	6 Marks	L3	CO3	PO4					
	psα is 16/[ω +4]. UNIT-V										
9.	a)	An amplifier has a bandwidth of 500KHz, and an input resistance of 150. When a 0.5 x 10 ⁻⁶ v input signal level is applied to the	6 Marks	L2	CO4	PO4					
		amplifier input under matched condition, the output SNR=0dB. Determine the noise figure of the amplifier.									
	b)	Discuss the following external noises with examples. i) Atmospheric noise.	6 Marks	L1	CO4	PO2					
		ii) Extra-terrestrial noise.									
		iii) Manmade noise. (OR)									
10	a)	An antenna having a noise temperature of 40K is connected to an amplifier having a gain of 250dB and an equivalent noise bandwidth of 3.5MHz. The equivalent noise temperature of the	6 Marks	L2	CO4	PO4					
	b)	amplifier is 270K. Find the available noise power. Write a short note on Linear Transformations of Gaussian Random Variables.	6 Marks	L1	CO4	PO2					

& & &