Numerical Integration

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

New toolbox (use it! it's user friendly):

- 1. Gaussian quadratures (orthogonal functions)
- 2. Newton's method

Numerical Integration

• Numerical integration = weighted sum of function values

$$S = \int_{a}^{b} f(x)dx \cong \sum_{k=0}^{n-1} w_k f(x_k)$$

• Trapezoid quadrature: Piecewise linear approximation

$$f(x) \cong f_k + (x - x_k)(f_{k+1} - f_k)/h \quad x \in [x_k, x_{k+1}]$$

Piecewise constant *O*(*h*) approximation

$$\begin{cases} x_k = kh = (b-a)k/n \\ w_k = h \end{cases}$$

$$\Delta f(x)$$

$$k$$

$$0(h^2) x_{k+1} x$$

$$error = height(O(h^2)) \times base(h) \times \# of bins(\frac{b-a}{h}) = O(h^2)$$

Resulting area:
$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{k=0}^{n-1} (f_k + f_{k+1}) + O(h^2)$$

Simpson Rule

- Simpson quadrature: Piecewise quadratic approximation
- Lagrange interpolation: $f(x) = \frac{(x x_k)(x x_{k+1})}{(x_{k-1} x_k)(x_{k-1} x_{k+1})} f_{k-1}$

Gaussian Quadratures

- Idea of Gaussian quadrature: Freedom to choose both weighting coefficients & the location of abscissas to evaluate the function
- Gaussian quadrature: Chooses the weight & abscissas to make the integral exact for a class of integrands "polynomials times some known function W(x)".

> Gauss-Legendre:
$$W(x) = 1$$
; $-1 < x < 1$

> Gauss-Chebyshev:
$$W(x) = (1 - x^2)^{-1/2}$$
; $-1 < x < 1$

$$\int_{a}^{b} W(x) f(x) dx = \sum_{k=1}^{n} w_{k} f(x_{k})$$

• New toolbox: (1) orthogonal functions (recursive generation via a generating function); (2) Newton method for root finding

See gauleg-driver.c & gauleg.c

W.H. Press, B.P. Flannery, S.A. Teukolsky, & W.T. Vetterling, Numerical Recipes, 2nd Ed. (Cambridge U Press, '93), Sec. 4.5

Orthogonal Functions

- Gaussian quadratures are defined through orthogonal functions
- Orthogonal functions are often introduced as solutions to differential equations
- Examples: Legendre, Bessel, Laguerre, Hermite, Chebyshev, ...
- Operationally well-defined to compute the function values & derivatives
- Efficiently computable through recursive relations (more than elementary functions like sin(x), exp(x), ...)

13	Gamma Function	599
14	Bessel Functions	643
15	Legendre Functions	715

Orthogonal Functions

• Scalar product (vector space):

$$\langle f | g \rangle \equiv \int_{a}^{b} W(x) f(x) g(x) dx$$

Orthonormal set of functions: Mutually orthogonal & normalized

$$\langle p_m | p_n \rangle = \delta_{m,n} = \begin{cases} 1, & m = n \\ 0, & m \neq n \end{cases}$$

Recurrence relation to construct an orthonormal set:

$$p_{-1}(x) \equiv 0$$

$$p_0(x) \equiv 1$$

$$p_{j+1}(x) = (x - a_j)p_j(x) - b_j p_{j-1}(x) \quad j = 0,1,2,...$$

$$a_j = \frac{\langle x p_j | p_j \rangle}{\langle p_j | p_j \rangle} \quad j = 0,1,...$$

$$b_j = \frac{\langle p_j | p_j \rangle}{\langle p_{j-1} | p_{j-1} \rangle} \quad j = 1,2,...$$

(Theorem) $p_j(x)$ has exactly j distinct roots in (a,b), & the roots interleave the j-1 roots of $p_{j-1}(x)$

Legendre Polynomial

$$W(x) = 1 -1 < x < 1$$

Recursive function evaluation

$$(j+1)P_{j+1} = (2j+1)xP_j - jP_{j-1}$$
 $P_0 = 1$ $P_1 = x^2$

• Generating function: The recurrence may be obtained through the Taylor expansion of the following function with respect to t

$$g(t,x) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{j=0}^{\infty} P_j(x)t^j$$

(Hint) Differentiate both sides by $t & compare the coefficients of <math>t^j$

• Function derivative: A recurrence derived by differentiating g by x

$$(x^2 - 1)P'_j = jxP_j - jP_{j-1}$$

See lecture on <u>recursive formula for Legendre</u> <u>polynomials</u>

Origin of Legendre Polynomial

 Generating function of the Legendre polynomial is used for multipole expansion in electrostatics

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{\sqrt{r^2 - 2rr'\cos\theta + r'^2}}$$

$$= \frac{r}{r\sqrt{1 - 2\frac{r'}{r}\cos\theta + \left(\frac{r'}{r}\right)^2}}$$

$$= \frac{1}{r}\sum_{j=0}^{\infty} P_j(\cos\theta) \left(\frac{r'}{r}\right)^j$$

See lecture note on O(N) fast multipole method

Open-source code: S. Ogata et al., Comput. Phys. Commun 153, 445 ('03)

Gauss-Legendre Quadrature

$$\int_{-1}^{1} W(x) f(x) dx = \sum_{k=1}^{n} w_k f(x_k)$$

• Abscissae from roots, x_k

$$P_n(x_k) = 0 \quad k = 1, \dots, n$$

• Weights, w_k : To reproduce some integrals exactly (linear equation)

$$\int_{-1}^{1} P_0(x) P_n(x) dx = \frac{2}{2n+1} \delta_{0,n} = \sum_{k=1}^{n} w_k P_n(x_k)$$

or

$$w_k = \frac{2}{nP_{n-1}(x_k)P'_n(x_k)} = \frac{2}{(1-x_k^2)[P'_n(x_k)]^2}$$
 Note $(x^2 - 1)P'_n = nxP_n - nP_{n-1}$

Newton's Method for Root Finding

Problem: Find a root of a function

$$P_n(x) = 0$$

- Newton iteration: Successive linear approximation of the function
 - Start from an initial guess, x_0 , of the root
 - Given the k-th guess, x_k , obtain a refined guess, x_{k+1} , from the linear fit:

$$P_n(x) \cong P'_n(x_k)(x - x_k) + P_n(x_k) = 0$$

$$\Rightarrow x_{k+1} = x_k - \frac{P_n(x_k)}{P'_n(x_k)}$$

Gauss-Legendre Program

• Given the lower & upper limits $(x_1 \& x_2)$ of integration & n, returns the abscissas & weights of the Gauss-Legendre n-point quadrature in x[1:n] & w[1:n].

```
void gauleg(float x1,float x2,float x[],float w[],int n) {
  int m, j, i;
  double z1, z, xm, x1, pp, p3, p2, p1;
  m=(n+1)/2; // Find only half the roots because of symmetry
                                                        \begin{cases} P_{-1} = 0 \\ P_0 = 1 \\ jP_j = (2j-1)zP_{j-1} - (j-1)P_{j-2} \end{cases}
  xm=0.5*(x2+x1);
  x1=0.5*(x2-x1);
  for (i=1;i<=m;i++) {
     z=cos(3.141592654*(i-0.25)/(n+0.5));
    do {
       p1=1.0; p2=0.0;
       for (j=1;j<=n;j++) { // Recurrence relation
         p3=p2; p2=p1;
         p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;
                                                        (z^2 - 1)P'_j = jzP_j - jP_{j-1}
       pp=n*(z*p1-p2)/(z*z-1.0); // Derivative
    z=z1-p1/pp; // Newton's method z \leftarrow z - \frac{P_n(z)}{P'_n(z)} while (fabs(z-z1) > EPS); // EPS=3.0e-11
    x[i]=xm-xl*z;
    x[n+1-i]=xm+x1*z;
                                               w_i = \frac{2}{(1 - x_i^2) [P'_n(x_i)]^2}
    W[i]=2.0*x1/((1.0-z*z)*pp*pp);
    w[n+1-i]=w[i]; // Weights
}
```

How to Use the Gauss-Legendre Program

\$ cc -o gauleg-driver gauleg-driver.c gauleg.c -lm

```
//gauleg-driver.c
#include <stdio.h>
#include <math.h>
double *dvector(int, int);
void gauleg(double, double, double *, double *, int);
int main() {
  double *x, *w;
  double x1 = -1.0, x2 = 1.0, sum;
  int N,i;
  printf("Input the number of quadrature points\n");
  scanf("%d",&N);
  x = dvector(1, N); // Allocate & use array elements x[1], ..., x[N]
  w = dvector(1,N); // It's Numerical Recipe's utility function (in gauleg.c)
  qauleq(x1,x2,x,w,N);
  sum=0.0;
  for (i=1; i<=N; i++)
    sum += w[i]*2.0/(1.0 + x[i]*x[i]);
  printf("Integration = %f\n", sum);
}
```

$$\pi = \int_{-1}^{1} dx \frac{2}{x^2 + 1} \cong \sum_{k=1}^{N} w_k \frac{1}{x_k^2 + 1}$$

Recursive Function Evaluation

• Legendre function

```
\begin{array}{ll} & \\ \text{p1=1.0; p2=0.0;} \\ \text{for (j=1;j<=n;j++) } \{ \text{ // Recurrence relation} \\ \text{p3=p2;} \\ \text{p2=p1;} \\ \text{p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;} \\ \\ \text{pp=n*(z*p1-p2)/(z*z-1.0); // Derivative} \end{array} \begin{array}{ll} P_{-1} = 0 \\ P_{0} = 1 \\ jP_{j} = (2j-1)zP_{j-1} - (j-1)P_{j-2} \\ (z^{2}-1)P'_{j} = jzP_{j} - jP_{j-1} \end{array}
```

Compare it with a (low-accuracy) square-root function

```
#define C0 0.188030699
#define C1 1.48359853
#define C2 (-1.0979059)
#define C3 0.430357353

fs = C0+x*(C1+x*(C2+x*C3)); // Polynomial approximation
sr = fs+0.5*(x/fs-fs); // Newton correction
```


$$r - f(s) \approx \frac{dr}{ds} (s - f(s)^{2})$$

$$\frac{dr}{ds} = \frac{d}{ds} s^{1/2} = \frac{1}{2} s^{-1/2} \approx \frac{1}{2f(s)}$$

$$\therefore r - f(s) = \frac{1}{2f(s)} (s - f(s)^{2}) = \frac{1}{2} \left(\frac{s}{f(s)} - f(s)^{2} \right)$$

Where to Go from Here?

- Gaussian quadrature for multiscale simulations? *cf.* quasicontinuum method, where each function evaluation is an expensive quantum-mechanical calculation *cf.* Knap & Ortiz, *J. Mech. Phys. Solids* **49**, 1899 (2001)
- Adaptive Gaussian quadrature? cf. power of Metropolis importance sampling: $2\times10^6 \ll 2^{400} \sim 10^{120}$ configurations

Lepage, *J. Comput. Phys.* **27**, 192 (1978) Evila *et al.*, *IEEE T. Signal Process.* **69**, 474 (2021)

• Related technique: Bayesian optimization (active learning, kriging), using Gaussian process regression with minimal number of function evaluations (trade-off between exploration & exploitation)

Bassman *et al.*, *npj Comput. Mater.* **4**, 74 (2018) Shields *et al.*, *Nature* **590**, 89 (2021)

