First, I run the simulation for the three scheduling algorithm with random PL and IAT's, Where the mean of the IAT was 30 and the range of it was [10,100]; and PL mean was 70 in the range of [50, 200]. I generated 20 PL values by using these. IAT value chosen smaller than PL values intentionally, otherwise CPU's finish the process and starts to waiting for main thread to wake up and send another PL, results are shown below;

Fig. 1: FCFS algorithm's performance with different CPU counts and queue models.

Fig. 3: SJF algorithm's performance with different CPU counts and queue models.

Fig. 3: RR algorithm's performance with different CPU counts and queue models.

As seen from the graphs, SJF algorithm is better than the other two. However, in real life we do not know the real burst length of processes. Thus, although it is better algorithm, in real life it needs a expected burst length formulation inside the kernel.

If we compare the different queue approaches, single queue is better; but this is probably due to my simulation values. Another reason might be some queues stays empty. For example main thread put some processes in queue 1 and 2 but when it is going to put another process in some queue, if the processes done in queue 1, it might put it into queue 1 again. I this case process 3 does not utilized. This problem occurs in load balancing method since if there is more than one smallest total burst length, it chose the smaller queue id. In the RM, another problem occurs if the processes are to short. For example it puts a process that is to short in the cpu 3. When cpu 3 finishes it, it does not do any job until another queue is putted in the queue. Unfortunately comparison of RM and LM method is not possible from these graphs, In the next graph it will become more clear.

I also analyze different Q values for RR algorithm. Since if Q value is way to big, it turns into FCFS algorithm, I chose the Q values in the interval [0,70] (70 is the mean value of my PL's). I also increase the PL count to 40 and used 4 processors. Results are given below.

Fig. 4: RR algorithm's performance with different Q values and queue models. (N=4)

In this table we can clearly see that single queue approach is better, second best is RM algorithm. Also as q value increases, the results generally gets better. But we know that increasing Q too much turn RR algorithm into FCFS algorithm. For example, simulation runned with the following parameters;

./mps -n 2 -a M RM -s RR 400 -m 1 -r 0 0 0 100 50 400 30

./mps -n 2 -a M RM -s FCFS 0 -m 1 -r 0 0 0 100 50 400 30.

Results show that RR algorithm's performance is same with FCFS. This is because I chose a Q value that is the maximum of the burst time which varies between 50 and 400. Simulation results are given below.

Fig. 5: Simulation result of RR algorithm.

					xt, outmode = 1, outfile = out.txt, T = 0, T1 = 0, T2 = 0, L = 100, L1 = 50, L2 = 400, PC
сри	burstlen	arv	finish	waitingtime	turnaround
	54	0	55		55
	65	0	66		66
	244	0	299	55	299
	307	0	373	66	373
	154	0	453	299	453
	220	Θ	593	373	593
	99	0	553	454	553
	107	Θ	701	594	701
	359	Θ	912	553	912
	61	Θ	762	701	762
	195		1107	911	1106
	139		901	761	900
	105		1212	1106	1211
	98		999	900	998
	146		1358	1211	1357
	288		1287	998	1286
	133		1491	1357	1490
	195		1482	1286	1481
	300		1792	1491	1791
	60		1543	1482	1542
	133		1925	1791	1924
	91		1634	1542	1633
	233		2158	1924	2157
	163		1797	1633	1796
	367		2525	2157	2524
	52		1849	1795	1847
1	128	2	2653	2523	2651
2	70	2	1919	1847	1917
1	90	2	2743	2651	2741
2	173	2	2093	1918	2091

Fig. 6: Simulation result of FCFS algorithm.

From this result we can say that FCFS algorithm's average turnaround time is same with RR algorithm's when the Q value is the maximum burst length.