

Chapter 1 Introduction to Data Management

Instructor: He Li

DATA MANAGEMENT

Department of
MANAGEMENT
Clemson' University

is a discipline that focuses on the proper *generation*, *storage*, and *retrieval* of data.

Why do we need data management? In today's world, **DATA** is

- Ubiquitous (i.e., abundant, global, and everywhere)
- Pervasive (i.e., unescapable, prevalent, and persistent)

A Day In Susan's Life

See how many databases she interacts with each day

Before leaving for work, Susan checks her Facebook and Twitter accounts On her lunch break, she picks up her prescription at the pharmacy After work, Susan goes to the grocery store At night, she plans for a trip and buys airline tickets and hotel reservations online Then she makes a few online purchases

Where is the data about the friends and groups stored?

Where are the "likes" stored and what would they be used for?

Where is the pharmacy inventory data stored?

What data about each product will be in the inventory data?

What data is kept about each customer and where is it stored?

Where is the product data stored?

Is the product quantity in stock updated at checkout?

Does she pay with a credit card?

Where does the online travel website get the airline and hotel data from?

What customer data would be kept by the website?

Where would the customer data be stored?

Where are the product and stock data stored?

Where does the system get the data to generate product "recommendations" to the customer?

Where would credit card information be stored?

DATA MANAGEMENT for business ...

Organizational Resources

Size and Complexity of DATA varies ...

Customer Contact Lists

AT&T's trillions of phone calls Data

Google responds to over 91 million searches per day

Applications of Database

City	State	Type of breach	Туре
Novato	California	PORT	BSF
Evansville	Indiana	INSD	BSF
Columbia	South Carolina	DISC	EDU
Honolulu	Hawaii	INSD	BSO
New York	New York	PORT	MED
Columbus	Georgia	PORT	BSF
New York	New York	DISC	BSF
Fairbanks	Alaska	HACK	EDU
Newport Beach	California	PORT	BSF
Seattle	Washington	PORT	BSO
Austin	Texas	HACK	EDU
New Paltz	New York	HACK	EDU
Charlottesville	Virginia	STAT	EDU
West Lafayette	Indiana	HACK	EDU
Syracuse	New York	HACK	BSO
Jersev Citv	New Jersev	PORT	BSF

Fitness tracking data

Numeric and alphanumeric data

Biometric data

Geographical data

Walmart

Volatile data

Big data

Example: from Data to Information

Raw Data

Baker, Kenneth D. 324917628 Doyle, Joan E. 476193248 Finkle, Clive R. 548429344 Lewis, John C. 551742186 McFerran, Debra R. 409723145 Sisneros, Michael 392416582

Class Roster

Course: MGT 500 Semester: Spring 2018

Business Policy

Section: 2

Name	ID	Major	GPA
Baker, Kenneth D.	324917628	MGT	2.9
Doyle, Joan E.	476193248	MKT	3.4
Finkle, Clive R.	548429344	PRM	2.8
Lewis, John C.	551742186	MGT	3.7
McFerran, Debra R.	409723145	IS	2.9
Sisneros, Michael	392416582	ACCT	3.3

Summarized Data

Data in Context

Example: from Data to Information

Data Entry Screen

ld LastName	MidName	FirstName	DeptCode	Office		Rank	HireYear Degree
1 Washinghto	iA.	George	MGMT	N135	gwashington@entsu.edu	Professor	2001 Ph.D.
2 Adoms		John	EN	N013	adams@mtsu.eds	Professor	1984 Ph.D.
3 Jefferson	L	Thomas	ECON		tjefferson@intss.edu	Instructor	ABM 2005
4 Madison	0.	James	FIN	N236	modison@m/swedu	Associate Professor	1994 Ph.D.
5 Manage	N.	Jowes	ACCT	NH11	monroe@mtsu.edu	Assistant Professor	1995 Ph.D.
6 Adoms	0.	John	ACCT	NH18	gadams@mtsu.edu	Associate Professor	1989 Ph.D.
7 Jackson	C.	Andrew	ECON	N303	ajackson@mtsu.edu	Associate Professor	1999 Ph.D.
8 Yen Burch	T.	Mortin	FIN	N306	mverburer@mtsu.edu	Professor	1988 Ph.D.
9 Harrion	R.	William	MKTG	N118	wherison@mtsu.edu	Professor	1994 Ph.D.
10 Tyler	M.	John	MGMT		Jtyfer@mtsu.edu	Assistant Professor	2000 EdD.
11 Folk		Cheryl	MKTG	N143	cpolk@mtsu.edu	Associate Professor	2002 Ph.D.
12 Taylor	G.	Zachary	ACCT	19415	złaylor@wtsu.edu	Associate Professor	1996 Ph.D.
13 Fillmore		Millard	JCB	N215	mfilmore@mtss.edu	Professor	1992 Ph.D.
14 Pierce	A.	Frenklin	MKTG	N058	pfrenklin@mtsu.edu	Instructor	2005 MBA
15 Buchenen	T.	James	MGMT	N146	jbuchenen@mtsu eds	Associate Professor	1996 D.B.A.
17 Lincoln	W.	Leny	MGMT	N151	llinceln@mlsu.edu	Associate Professor	1996 Ph.D.
18 Johnson		Andrew	ISYS	N360	ejohnsen@mtsu.edu	Professor	1987 Ph.D.
19 Grent		Kelio	MKTG	NID	kgrent@mtsu.edu	Assistent Professor	1989 D.B.A.
20 Ratherford		Heyes.	ACCT	14108	hrutherford/9mtss.edu	Professor	1992 Ph.D.
21 Grefield	T.	Denise	ACCT		dgefield@mtsu.edu	Assistant Professor	2018 Ph.D.
22 Arthur		Emily	ACCT	N413	eorhur@mtsu.edu	Associate Professor	2003 J.D.
23 Clevenland	G.	Robert	ACCT	1401	roleveland/Brntsu.edu	Associate Professor	1997 Ph.D.
24 Horison	×	Panicia	BULA	10406	phenison@wtsu.edu	Associate Professor	2001 J.D.
25 McKinley	0.	Priscillo.	ISYS	N061	pmckinley@mtsu.edu	Adjunct	1994 M.S.
26 Roosevelt	E.	Hillory	MGMT	N104	hroosevelk@mtsu.edu	Associate Professor	2002 Ph.D.
27 Wilson		Lauro	BCEN	14441	Welson@mtsu.edu	Professor	1992 Ph.D.
28 Harding		Warren	MKTO	NI114	whording@intex.edu	Professor	1984 Ed.D.
29 Coolidge		Calvin	ECON	N316	cooplidge@mtsu.edu	Professor	1975 Ph.D.
30 Hoover		Liso	MGMT		lhoover@mtsu.edu	Adjunct	1978 MBA
31 Teumon		Betty	ACCT	11111	btrumon@artsu.edu	Professor	1971 Ed.D.
32 Johnson		Robert	BCEN	N24I	riphrepor/Simbou.edu	Professor	2001 Ph.D.

Raw Data

Information in Summary Format

Information in Graphical Format

Summary: Data → **Information**

- Data constitutes the building blocks of information.
- Information is produced by processing data.
- Information is used to reveal the meaning of data.

Accurate, relevant, and timely information is the key

to good decision making.

 Good decision making is the key to organizational survival in a global environment.

File System Data Processing

Manual File Systems

Computerized File Systems

File Systems Redux

Disadvantages of File System Data Processing

Program-Data Dependence

Limited Data Sharing

Duplication of Data

Lengthy Development Times

Excessive Program Maintenance

The Database Approach

Database System Environment

Three-Layer Database Architecture

Example of the Three-Layer Database Architecture

Implementation ←

Department of

Clemson[®] University

a Database

build databases, test and install the new system, train users, and finalize documentation

recover database when

Purpose: To write programs,

it is contaminated

Database implementation

- Code and test database processing programs
- Complete database documentation and training materials
- Install database and convert data from prior systems

Logical database design

Design

· Analyze in detail the transactions, forms, displays, and inquiries (database views) required by the business functions supported by the database

specifications

- Integrate database views into conceptual data model
- · Identify data integrity and security requirements, and populate repository

Populate repository with all

technology and organizational

Purpose: To elicit and structure all

conceptual database specifications

information requirements; to develop all

Physical database design and definition

- Define database to DBMS (often generated from repository)
- · Decide on physical organization of data
- Design database processing programs

Evolution of Database Systems

RELATION 1 (PRIMARY KEY, ATTRIBUTES...)

RELATION 2 (PRIMARY KEY, FOREIGN KEY, ATTRIBUTES...)

Table = Relation = Entity = Concept = Object
PK - Primary Key And FK - Foreign Key

Relational Database

Object 1: Maintenance Report Object 1 Instance

	Date		01-12-01	
~	Activity Code		24	
	Route No.		I-95	
	Daily Production		2.5	
	Equipment Hours		6.0	
	Labor Hours		6.0	
'	•	'	Obia -t 2.	

Object 2: Maintenance Activity

n Rate	
	n Rate

Object-Oriented Database

1 PB=1,024 TB

Multidimensional Database star-schema view

Volume

Integrated Data Management Framework

	Operational	Informational		
	Transactional	Data Warehousing	Big Data	
Technology	Relational Relational Nor		Non-Relational	
Modeling	Conceptual Data Modeling (ERD and EER)			
Design	Logical Data Modeling (relational tables and normalization)	Data Warehousing and Integration	Big Data (Hadoop, NoSQL)	
Access	SQL			
Data Analysis	Analytics and Its Applications			
Governance and Data Management	Lifecycle, Governance, and Data Quality			