第4章: 进化树构建的概率方法

- 问题介绍
- 进化树构建方法的概率方法

部分Slides修改自University of Basel的Michael Springmann课程"CS302 Seminar Life Science Informatics"的讲义

Phylogenetic Tree

- Topology: bifurcating
 - Leaves 1...N
 - Internal nodes N+1...2N-2
- Branch length

Molecular Clock Hypothesis

- Amount of genetic difference between sequences is a function of time since separation.
- Rate of molecular change is constant (enough) to predict times of divergence

Likelihood of a Tree

• Given:

- n aligned sequences $M = X_1, ..., X_n$
- A tree T, leaves labeled with $X_1,...,X_n$
- Reconstruction t*:
 - Labeling of internal nodes
 - Branch lengths

Goal: Find optimal reconstruction t* : One maximizing the likelihood P(M|T, t*)

Probabilistic Methods

- The phylogenetic tree represents a generative probabilistic model (like HMMs) for the observed sequences.
- Background probabilities: q(a)
- Mutation probabilities: P(a|b, t)
- Models for evolutionary mutations
 - Jukes Cantor
 - Kimura 2-parameter model
- Such models are used to derive the probabilities

Probabilistic Model

Assumptions:

- Each character is independent
- The branching is a Markov process: The probability that a node x has a specific label is only a function of the parent node y and the branch length t between them
- The probabilities P(x|y,t) are known

Example

Given then tree

$$P(x_1, x_2, x_3, x_4, x_5 | T, t^*)$$

$$= P(x_1 | x_4, t_1) P(x_2 | x_4, t_2) P(x_3 | x_5, t_3) P(x_4 | x_5, t_5)$$

连续时间马氏链

• 随机变量族 $\{\xi_t(\omega), t \geq 0\}$ 称为连续时间马氏链, 若 ξ_n 是离散的(其状态空间至多是可数集,即有限或者与自然数一一对应),而且对于 $\forall m \geq 0, \forall s > s_1 \geq \cdots \geq s_m \geq 0$ 及任意状态序列 i, j, i_1, \cdots, i_m ,都有

$$P(\xi_{t+s} = j \mid \xi_s = i, \dots, \xi_{s_1} = i_1, \dots, \xi_{s_m} = i_m)$$

= $P(\xi_{t+s} = j \mid \xi_s = i)$

转移概率矩阵

• 定义:对连续时间马氏链 $\{\xi_t(\omega), t \geq 0\}$,记

$$p_{ij}(s,t) = P(\xi_t = j | \xi_s = i), \forall t \ge s$$
$$P(s,t) = (p_{ij}(s,t))$$

称无穷矩阵P(s,t)为转移概率矩阵

• 易证转移概率满足Chapman-Kolmogorov方程

$$p_{ij}(s, u) = \sum_{k} p_{ik}(s, t) p_{kj}(t, u)$$

时齐的连续时间马氏链

• 定义: 如果连续时间马氏链的转移概率矩阵P(s,s+t)与起始时间s无关, 称此时的马氏链为时齐的。那么此时的转移概率矩阵就可用一个时间参数来标度

$$P(t-s) = P(s,t)$$

• 相应地,chapman-kolmogorov方程简化为

$$P(t+s) = P(s)P(t)$$

连续时间马氏链的有限维分布

• 类似于离散时间马氏链,连续时间马氏链的有限维分布有初始分布和转移概率唯一确定。设 $\mu_i(0) = P(\xi_0 = i)$,转移概率矩阵P(t),那么对 $\forall 0 < t_1 < t_2 < \cdots < t_n$,

$$P(\xi_0 = i_0, \xi_{t_1} = i_1, \dots, \xi_{t_n} = i_n)$$

= $\mu_{i_0}(0) p_{i_0 i_1}(t_1) p_{i_1 i_2}(t_2 - t_1) \dots p_{i_{n-1} i_n}(t_n - t_{n-1})$

绝对概率

• $\Leftrightarrow \mu_i(t) = P(\xi_t = i),$ 称向量

$$\mu(t) = \begin{pmatrix} \mu_1(t) \\ \vdots \\ \mu_i(t) \\ \vdots \end{pmatrix}$$

为t时刻的绝对概率

转移速率矩阵(Q矩阵)

- 马氏链中时齐马氏链的多步转移矩阵是最小的转移矩阵P的次方。
- 连续情况下对应于无穷小生成元,但此时需要加条件
- 定义:设 $P(t) \rightarrow I, t \rightarrow 0$,若转移概率矩阵在0点的导数存在,记为P'(0) = Q,称之为转移概率矩阵的转移速率矩阵(简称为Q矩阵)。

有限状态情形

• 当状态数有限时,如Q矩阵满足 Σ̄qii = 0 (即所谓保守),此时转移概率矩阵由Q矩阵唯一确定

$$P(t) = e^{Qt} = I + \frac{Qt}{1!} + \frac{Q^2t^2}{2!} + \dots + \frac{Q^kt^k}{k!} + \dots$$

• 通常转移速率矩阵Q已知,我们可以通过指数矩阵给出转移概率矩阵P(t).

Kolmogorov方程和Master方程

• Kolmogorov向前方程(Fokker-Planck方程):

$$P'(t) = P(t)Q, P(0) = I$$

• Kolmogorov向后方程:

$$P'(t) = QP(t), P(0) = I$$

• Master方程

$$(\mu'_1(t), \mu'_2(t), \cdots,) = (\mu_1(t), \mu_2(t), \cdots,)Q$$

其中 $\mu_k(t) = P(\xi_t = k)$ 为绝对概率

- Q: How can we model evolution on nucleotide level? (ignore gaps, focus on substitutions)
- A: Consider what happens at a specific position for small time interval Δt

- p(t) = vector of probabilities of {A,C,G,T} at time t
- μ_{AC} = rate of transition from A to C per unit time
- $\mu_A = \mu_{AC} + \mu_{AG} + \mu_{AT}$ rate of transition out of A

$$p_A(t + \Delta t) = p_A(t)(1 - \mu_A \Delta t)$$

+ $p_C(t)\mu_{CA}\Delta t + p_G(t)\mu_{GA}\Delta t + p_T(t)\mu_{TA}\Delta t$

• 同理可得

$$p_C(t + \Delta t) = p_C(t)(1 - \mu_C \Delta t)$$

+ $p_A(t)\mu_{AC}\Delta t + p_G(t)\mu_{GC}\Delta t + p_T(t)\mu_{TC}\Delta t$

$$p_G(t + \Delta t) = p_G(t)(1 - \mu_G \Delta t)$$

+ $p_A(t)\mu_{AG}\Delta t + p_C(t)\mu_{CG}\Delta t + p_T(t)\mu_{TG}\Delta t$

$$p_T(t + \Delta t) = p_T(t)(1 - \mu_T \Delta t)$$

+ $p_A(t)\mu_{AT}\Delta t + p_C(t)\mu_{CT}\Delta t + p_G(t)\mu_{GT}\Delta t$

In vector notation, we get

$$p(t + \Delta t) = p(t) + P(t)Q\Delta t$$

where Q is the substitution rate matrix

$$Q = \begin{pmatrix} -\mu_A & \mu_{AG} & \mu_{AC} & \mu_{AT} \\ \mu_{GA} & -\mu_G & \mu_{GC} & \mu_{GT} \\ \mu_{CA} & \mu_{CG} & -\mu_C & \mu_{CT} \\ \mu_{TA} & \mu_{TG} & \mu_{TC} & -\mu_T \end{pmatrix}$$

• 写成列向量形式

$$\vec{p}(t + \Delta t) = \vec{p}(t) + Q^T \vec{p}(t)$$

- 取转置后即为Master方程
- 其中Q为转移速率矩阵

$$Q = \begin{pmatrix} -\mu_A & \mu_{AG} & \mu_{AC} & \mu_{AT} \\ \mu_{GA} & -\mu_G & \mu_{GC} & \mu_{GT} \\ \mu_{CA} & \mu_{CG} & -\mu_C & \mu_{CT} \\ \mu_{TA} & \mu_{TG} & \mu_{TC} & -\mu_T \end{pmatrix}$$

Jukes Cantor model

- Mutation occurs at a constant rate
- Each nucleotide is equally likely to mutate into any other nucleotide with rate a.

$$Q = \begin{pmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{pmatrix}$$

Substitution Matrix

• 由对称性,可设

$$P(t) = \begin{pmatrix} \gamma(t) & s(t) & s(t) & s(t) \\ s(t) & \gamma(t) & s(t) & s(t) \\ s(t) & s(t) & \gamma(t) & s(t) \\ s(t) & s(t) & s(t) & \gamma(t) \end{pmatrix}$$

• 由Kolmogorov后向方程

$$\frac{dP(t)}{d(t)} = QP(t)$$

Substitution Matrix

• 可得方程

$$\begin{cases} \frac{d\gamma(t)}{dt} = -3\alpha\gamma(t) + 3\alpha s(t) \\ \frac{ds(t)}{dt} = -\alpha s(t) + \alpha\gamma(t) \end{cases}$$

• 容易求得

$$\gamma(t) = \frac{1}{4}(1 + 3e^{-4\alpha t})$$
$$s(t) = \frac{1}{4}(1 - e^{-4\alpha t})$$

Kimura 2-parameter Model

 Allows a different rate for transitions and transversions.

$$Q = \begin{pmatrix} -\alpha - 2\beta & \beta & \alpha & \beta \\ \beta & -\alpha - 2\beta & \beta & \alpha \\ \alpha & \beta & -\alpha - 2\beta & \beta \\ \beta & \alpha & \beta & -\alpha - 2\beta \end{pmatrix}$$

Substitution Matrix

• 由对称性,可设转移概率矩阵

$$P(t) = \begin{pmatrix} \gamma(t) & s(t) & u(t) & s(t) \\ s(t) & \gamma(t) & s(t) & u(t) \\ u(t) & s(t) & \gamma(t) & s(t) \\ s(t) & u(t) & s(t) & \gamma(t) \end{pmatrix}$$

• 由Kolmogorov后向方程

$$\frac{dP(t)}{d(t)} = QP(t)$$

Substitution Matrix

• 可得方程

$$\begin{cases} \frac{d\gamma(t)}{dt} = -(2\beta + \alpha)\gamma(t) + 2\beta s(t) + \alpha u(t) \\ \frac{ds(t)}{dt} = -2\beta s(t) + \beta \gamma(t) + \beta u(t) \\ \frac{du(t)}{dt} = -(2\beta + \alpha)u(t) + 2\beta s(t) + \alpha \gamma(t) \end{cases}$$

• 容易求得

$$\begin{cases} s(t) = \frac{1}{4}(1 - e^{-4\beta t}) \\ s(t) = \frac{1}{4}(1 + e^{-4\beta t} - 2e^{-2(\alpha + \beta)t}) \\ \gamma(t) = 1 - 2s(t) - u(t) \end{cases}$$

Substitution Matrix: General Case

• 对于对称矩阵Q可以对角化,即存在正交矩阵U,和特征值 $\lambda_1 \geq \cdots \geq \lambda_n$,使得

$$Q = U^T diag\{\lambda_1, \cdots, \lambda_n\} U$$

• 于是

$$P(t) = U^T diag\{e^{\lambda_1 t}, \cdots, e^{\lambda_n t}\} U$$

PAM矩阵

- Point accepted mutation (Dayhoff et al 1978)
- Given an tree of protein family, the frequence matrix A_{ab} counting the occurrence of an "a" in the ancestral sequence was replaced by a "b" in the descendant.
- Estimate the conditional probability p(b|a)

$$P(b|a) = B_{a,b} = \frac{A_{ab}}{\sum_{c} A_{ac}}$$

PAM矩阵

Scaling B

$$C_{ab} = \sigma B_{ab}, C_{aa} = \sigma B_{aa} + (1 - \sigma)$$

 Such that the expected number of substitution is 1%, i.e.

$$\sum_{ab} q_a q_b C_{ab} = 0.01$$

Then the PAM(1) matrix is given by

$$S(1) = (C_{ab})$$

Calculating the Likelihood for Ungapped Alignments

$$P(X^{1}, X^{2}|T, t_{1}, t_{2}) = \prod_{u=1}^{N} P(X_{u}^{1}, X_{u}^{2}|T, t_{1}, t_{2})$$

$$P(X_{u}^{1}, X_{u}^{2}|T, t_{1}, t_{2}) = \sum_{a} q_{a} P(X_{u}^{1}, |a, t_{1}) P(X_{u}^{2}|a, t_{2})$$

• 假设突变符合JC model, 等初始概率 $q_A = q_C = q_G = q_T = \frac{1}{4}$

$$P(C, C|T, t_1, t_2) = q_c \gamma(t_1) \gamma(t_2) + q_G s(t_1) s(t_2) + q_G s(t_1) s(t_2) + q_T s(t_1) s(t_2)$$

$$= \frac{1}{3} (r(t_1) r(t_1) + 3S(t_1) S(t_2))$$

$$P(C, G|T, t_1, t_2) = P(G, C|T, t) = \frac{1}{4} (\gamma(t_1) s(t_1) + s(t_1) \gamma(t_2) + 2s(t_1) s(t_2))$$

$$P(X^1, X^2|T, t_1, t_2) = 16^{-(n_1 + n_2)} (1 + 3e^{-4\alpha(t_1 + t_2)})^{n_1} (1 - e^{-4\alpha(t_1 + t_2)})^{n_2}$$

其中n1是匹配数,n2是不匹配数目.

Calculating the Likelihood for Ungapped Alignments

- n sequences of length N, site u=1...N
- Given a rooted tree contains 2n 1 nodes, 1... n being the leaf nodes, n+1 ... 2n-1 non-leaf, tree lengths t1, ..., t_{2n-1}.
- Let a(i) denote the ancestor of node aⁱ

$$P(x^{1}, \dots, x^{n}|T, t) = \prod_{u=1}^{N} P(x^{1}_{u}, \dots, x^{n}_{u}|T, t)$$

$$P(x^{1}_{u}, \dots, x^{n}_{u}|T, t) = \sum_{a^{n+1}, \dots, a^{2n-1}} q_{a^{2n-1}} \prod_{i=n+1}^{2n-2} P(a^{i}|a^{\alpha(i)}, t_{i})$$

$$\times \prod_{i=1}^{n} P(x^{i}_{u}|a^{\alpha(i)}, t_{i})$$

Felsenstein's Recursive Algorithm

- Let $P(L_k|a)$ denote the probability of all the leafs below node k given that the residue at k is a.
- Then we compute P(L_k|a) from the probabilities P(L_i | b) and P(L_j | c) for all b and c, where i and j are the daughter nodes of k.

Felsenstein's Recursive Algorithm

- Initialization: set k=2n-1
- Recursion: Compute P(L_k | a) for all a as follows:
 - If k is leaf node: $P(L_k|a)=1$ only if $a=x_u^k$.
 - If k is not a leaf node:
 - Compute $P(L_i|a)$, $P(L_j|a)$ for all a at the daughter nodes i,j, and set $P(L_k|a) = \sum_i P(b|a,t_i)P(L_i|b)P(c|a,t_j)P(L_j|c)$
- Temination: Likelihood at site u,

$$P(x_u|T,t) = \sum_a P(L_{2n-1}|a)q_a$$

Reversibility & Independence of Root Position

- The score of the optimal tree is independent of the root position if and only if:
 - the substitution matrix is multiplicative
 - the substitution matrix is reversible
- A substitution matrix is reversible if for all a,b and t:

$$P(b|a,t)q_a = P(a|b,t)q_b$$

Maximum Likelihood (ML)

- Score each tree by
 - Assumption of independent positions "m"
- Branch lengths t can be optimized
 - Gradient Ascent
 - EM
- We look for the highest scoring tree
 - Exhaustive
 - Sampling methods (Metropolis)

Computational Problem

- Such procedures are computationally expensive!
- Computation of optimal parameters, per candidate, requires non-trivial optimization step.
- Spend non-negligible computation on a candidate, even if it is a low scoring one.
- In practice, such learning procedures can only consider small sets of candidate structures

参考文献

 S. Durbin, S. Eddy, A. Krogh and G. Mitchison. Biological Sequence Analysis—Probabilistic Models of Proteins and Nucleic Acids. 1998, Cambridge University Press.