

ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Εισαγωγή στη θεωρία γράφων

Κωνσταντίνος Γιαννουτάκης Επίκουρος Καθηγητής

ΣΥΝΟΨΗ ΔΙΑΛΕΞΗΣ

- Εισαγωγή
- Ισομορφισμοί Γράφων
- Επίπεδοι Γράφοι
- Αναπαράσταση Γράφων

ΕΙΣΑΓΩΓΗ

- Ορισμοί
- Παραδείγματα

ГРАФОІ

- Ένας **γράφος** (graph) *G* είναι μία αφηρημένη αναπαράσταση ενός συνόλου στοιχείων, τα οποία συνδέονται μεταξύ τους.
- Αποτελείται από 2 σύνολα G = (V, E)
 - *V*: Σύνολο κορυφών (ή κόμβων) vertices
 - *E*: Σύνολο ακμών edges
- Κάθε ακμή $e\ (e\in E)$, συνδέει (ή εφάπτεται σε) δύο κόμβους v_1 και v_2 $(v_1,v_2\in V)$.
 - Μια τέτοια ακμή συμβολίζεται με $e=(v_1,v_2)$

ΠΑΡΑΔΕΙΓΜΑ

$$V = \{v_1, v_2, v_3, v_4, v_5\} = \{1,2,3,4,5\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\} = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,5\}, \{3,4\}, \{4,5\}\}$$

Πλήθος κόμβων: |V| = n = 5

Πλήθος ακμών: |E|=m=7

ΚΑΤΕΥΘΥΝΟΜΕΝΟΙ (DIRECTED) ΓΡΑΦΟΙ

- Κάθε ακμή $e \in E$ σχετίζεται με ένα διατεταγμένο σύνολο κορυφών v_1 και v_2 .
 - Μια τέτοια ακμή συμβολίζεται με $e=(v_1,v_2)$ και συμβολίζει μια ακμή από τον κόμβο v_1 προς τον κόμβο v_2 .

$$V = \{v_1, v_2, v_3, v_4, v_5\} = \{1,2,3,4,5\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\} = \{\{2,1\}, \{3,1\}, \{4,1\}, \{2,3\}, \{5,2\}, \{5,4\}\}$$

- Εάν σε έναν μη κατευθυνόμενο γράφο υπάρχουν περισσότερες από μια ακμές που συνδέουν δύο κορυφές, τότε οι ακμές ονομάζονται παράλληλες.
- Μια ακμή που συνδέει ένα κόμβο με τον εαυτό του, δηλαδή $e_3 = (v_2, v_2)$ ονομάζεται ανακύκλωση.
- Ένας μη κατευθυνόμενος γράφος χωρίς ανακυκλώσεις και παράλληλες ακμές ονομάζεται απλός γράφος.
- Μια κορυφή στην οποία δεν εφάπτεται καμία ακμή, καλείται μεμονωμένη κορυφή.

• Ένας γράφος G με n κόμβους, ονομάζεται π λήρης, εάν είναι απλός και για κάθε ζεύγος διακριτών κόμβων $v_1, v_2 \in V$, υπάρχει μια ακμή στο E με $e = (v_1, v_2)$. Ο γράφος αυτός συμβολίζεται με K_n .

- Ένας γράφος ονομάζεται διχοτομίσιμος, εάν το σύνολο των κόμβων του μπορεί να διαμεριστεί σε δύο ξένα μεταξύ τους σύνολα V1 και V2, τέτοια ώστε **κάθε** ακμή $e \in E$ εφάπτεται ακριβώς σε ένα κόμβο του V1 και σε ένα του V2.
 - Ο ορισμός δεν καθορίζει ότι αν v_1 ένας κόμβος του V1 και v_2 ένας κόμβος του V2, τότε υπάρχει ακμή έτσι ώστε $e=(v_1,v_2)$.

6

• Ένας πλήρης και διχοτομίσιμος γράφος (bipartite graph) με n και m ακμές (συμβολίζεται με $K_{n,m}$), είναι ένας διχοτομίσιμος γράφος που αποτελείται από δύο ξένα μεταξύ τους σύνολα κόμβων: V1 με n κόμβους και V2 με m κόμβους, όπου για κάθε ζεύγος κόμβων (v_1, v_2) (με $v_1 \in V1$ και $v_2 \in V2$) υπάρχει ακριβώς μια ακμή που εφάπτεται σε αυτές.

ΜΟΝΟΠΑΤΙΑ

- Ένα **μονοπάτι** P από ένα κόμβο v_1 σε ένα κόμβο v_n (με $v_1, v_n \in V$), είναι μια ακολουθία από n κόμβους και (n-1) ακμές, όπου οι ακμές εναλλάσσονται των κορυφών.
 - $P = (v_1, e_1, v_2, e_2, ..., e_{n-1}, v_n)$ με κάθε ακμή e_i να εφάπτεται των κόμβων v_i και v_{i+1} .

Το μονοπάτι $(v_1,e_1,v_2,e_2,v_3,e_3,v_4,e_4,v_2)$ είναι ένα μονοπάτι **μήκους 4** από τον κόμβο v_1 στον κόμβο v_2

ΑΠΛΑ ΜΟΝΟΠΑΤΙΑ

 Απλό μονοπάτι σε ένα γράφο ονομάζεται το μονοπάτι που δεν περιλαμβάνει επαναλαμβανόμενους κόμβους

Το μονοπάτι

 $(v_1, e_1, v_2, e_2, v_3, e_3, v_4)$ είναι ένα **απλό** μονοπάτι **μήκους 3** από τον κόμβο v_1 στον κόμβο v_4

ΣΥΝΔΕΟΜΕΝΟΙ ΓΡΑΦΟΙ

• Ένας γράφος ονομάζεται **συνδεόμενος**, εάν για κάθε ζεύγος κόμβων $v_1, v_2 \in V$, υπάρχει ένα μονοπάτι από τον v_1 στον v_2 .

ΥΠΟ-ΓΡΑΦΟΙ

- Έστω G = (V, E) ένας γράφος. Ένας γράφος G' = (V', E') καλείται **υπο-γράφος** του G ανν
 - $V' \subseteq V$
 - $E' \subseteq E$
 - $\forall e \in E'$, η e εφάπτεται σε δύο κόμβους που ανήκουν στο V'

ТМНМА ГРАФОҮ

• Έστω G = (V, E) ένας γράφος και $v \in V$ ένας κόμβος του. Ο υπο-γράφος που αποτελείται από όλες τις ακμές και κόμβους που ανήκουν σε οποιοδήποτε μονοπάτι που ξεκινάει από τον κόμβο v, ονομάζεται **τμήμα του γράφου που περιέχει τον** v.

ΚΥΚΛΟΙ

• Κύκλος ονομάζεται το μονοπάτι χωρίς επαναλαμβανόμενες ακμές, όπου η αρχική και τελική κορυφές συμπίπτουν

ΑΠΛΟΙ ΚΥΚΛΟΙ

 Απλός κύκλος ονομάζεται ο κύκλος χωρίς επαναλαμβανόμενους κόμβους (εκτός του αρχικού και τελικού κόμβου)

ΚΥΚΛΟΣ EULER

 Κύκλος Euler είναι ο κύκλος που περιέχει κάθε ακμή του γράφου μια φορά

Δεν υπάρχει κύκλος Euler

Κύκλος Euler $(v_1,e_1,v_2,e_5,v_3,e_2,v_1,e_4,v_4,e_6,v_5,e_3,v_1)$

ΒΑΘΜΟΣ ΚΟΜΒΟΥ/ΚΟΡΥΦΗΣ

• **Βαθμός κόμβου** v ($v \in V$) ενός γράφου G = (V, E) ονομάζεται ο αριθμός των ακμών του γράφου που εφάπτονται

 $\delta(v_1) = 1$

 $\delta(v_2) = 5$

της v.

Θεώρημα 1

Ένας γράφος G = (V, E) έχει κύκλο του Euler εάν και μόνο εάν ο γράφος είναι συνδεόμενος και κάθε κόμβος του έχει άρτιο βαθμό

Δεν υπάρχει κύκλος Euler

Είναι συνδεόμενος Οι κόμβοι v_1, v_2, v_6, v_7 έχουν περιττό βαθμό

Υπάρχει κύκλος Euler

Είναι συνδεόμενος Όλοι οι κόμβοι έχουν άρτιο βαθμό

Θεώρημα 2

Το άθροισμα των βαθμών των κόμβων ενός γράφου είναι άρτιος αριθμός.

Θεώρημα 3

Σε ένα γράφο, το πλήθος των κόμβων με περιττό βαθμό είναι άρτιο.

Θεώρημα 4

Ένας γράφος έχει μονοπάτι με **μη επαναλαμβανόμενες ακμές** από ένα κόμβο v σε ένα κόμβο w ($v \neq w$), στο οποίο περιέχονται **όλες οι ακμές** και **όλοι οι κόμβοι** του γράφου, εάν και μόνο εάν ο γράφος είναι συνδεόμενος και οι κορυφές v και w είναι οι μοναδικοί κόμβοι με περιττό βαθμό.

Οι κόμβοι v_1 , v_2 , v_6 , v_7 έχουν περιττό βαθμό άρα **δεν υπάρχει** τέτοιο μονοπάτι

Οι κόμβοι v_2 , v_4 είναι οι μοναδικοί κόμβοι με περιττό βαθμό άρα **υπάρχει** τέτοιο μονοπάτι:

 $(v_2, e_1, v_1, e_2, v_3, e_5, v_2, e_7, v_4, e_4, v_1, e_3, v_5, e_6, v_4)$

Θεώρημα 5

Εάν ένας γράφος περιέχει ένα κύκλο από τον κόμβο v στον v, τότε ο γράφος αυτός περιέχει ένα απλό κύκλο από την v στην v.

Κύκλος
$$(v_2,e_2,v_3,e_3,v_4,e_4,v_2,e_6,v_6,e_7,v_5,e_5,v_2)$$

Απλός κύκλος $(v_2, e_2, v_3, e_3, v_4, e_4, v_2)$

Απλός κύκλος $(v_5, e_7, v_6, e_6, v_2, e_5, v_5)$

ΚΥΚΛΟΙ ΗΑΜΙΙΤΟΝ

 Ένας κύκλος που περιέχει κάθε κόμβο του γράφου ακριβώς μια φορά (με εξαίρεση τον αρχικό και τελικό), ονομάζεται κύκλος του Hamilton.

Κύκλος Hamilton

 $(v_1, e_3, v_2, e_4, v_3, e_5, v_5, e_8, v_6, e_7, v_4, e_1, v_1)$

ΙΣΟΜΟΡΦΙΣΜΟΙ ΓΡΑΦΩΝ

ΟΡΙΣΜΟΣ

- Δύο γράφοι G = (V, E) και G' = (V', E') καλούνται **ισόμορφοι** (συμβολίζεται με $G \cong G'$) εάν
 - Υπάρχει μια 1-1 συνάρτηση $f: V \longrightarrow V'$
 - Υπάρχει μια 1-1 συνάρτηση $g: E \longrightarrow E'$
 - $\forall v, v' \in V$ με e = (v, v'), εάν και μόνο εάν g(e) = (f(v), f(v'))

ΠΑΡΑΔΕΙΓΜΑ

$$G = (V, E)$$

Ισομορφισμός

$$v_{1} \xrightarrow{f} v'_{6}$$

$$v_{2} \xrightarrow{f} v'_{7}$$

$$v_{3} \xrightarrow{f} v'_{3}$$

$$v_{4} \xrightarrow{f} v'_{4}$$

$$v_{5} \xrightarrow{f} v'_{1}$$

$$v_{6} \xrightarrow{f} v'_{9}$$

$$v_{7} \xrightarrow{f} v'_{5}$$

$$v_{8} \xrightarrow{f} v'_{8}$$

$$v_{9} \xrightarrow{f} v'_{2}$$

$$G'=(V',E')$$

Ποια είναι η συνάρτηση *g* του ισομορφισμού

ΑΜΕΤΑΒΛΗΤΗ ΙΔΙΟΤΗΤΑ

- Μια ιδιότητα ενός γράφου G θα καλείται αμετάβλητη, εάν κάθε ισόμορφος γράφος G' του G έχει επίσης αυτή την ιδιότητα.
 - Για να δείξουμε ότι δύο γράφοι G, G' δεν είναι ισόμορφοι, αρκεί να βρούμε μια αμετάβλητη ιδιότητα του G που δεν έχει ο G' (αλλά θα έπρεπε να είχε αν ήταν ισόμορφος του G)

Οι ακόλουθες ιδιότητες είναι αμετάβλητες

- Ο αριθμός των κόμβων του γράφου
- Ο αριθμός των ακμών του γράφου
- Ένας κόμβος του γράφου έχει βαθμό k
- Ο γράφος έχει απλό κύκλο μήκους *m*

ΕΠΙΠΕΔΟΙ ΓΡΑΦΟΙ

- Ένας γράφος καλείται **επίπεδος** εάν μπορεί να αποτυπωθεί στο επίπεδο έτσι ώστε οι ακμές του να **μην διασταυρώνονται**.
- Αποτύπωση καλείται κάθε σχηματισμός του γράφου στο επίπεδο με μη διασταυρωμένες ακμές.

- Όψη του επιπέδου ονομάζεται κάθε τμήμα του επιπέδου το οποίο ορίζεται από τους κύκλους του επίπεδου γράφου.
- Βαθμός όψεως καλείται ο αριθμός των ακμών του γράφου που ορίζουν την όψη.

Τύπος Euler

$$|O| = |E| - |V| + 2$$

 $|E| = 6$
 $|V| = 5$
 $|O| = 3$

E	V	0	E - V + 2
0	1	1	1
1	2	1	1

E	V	0	E - V +2
0	1	1	1
1	2	1	1
2	3	1	1

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2
6	6	2	2

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2

E	V	0	E - V +2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
9	8	3	3

E	V	0	E - V +2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
9	8	3	3
10	8	4	4

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
9	8	3	3
10	8	4	4
11	8	5	5

E	V	0	E - V + 2
0	1	1	1
1	2	1	1
2	3	1	1
3	4	1	1
4	4	2	2
5	5	2	2
6	6	2	2
7	7	2	2
8	8	2	2
9	8	3	3
10	8	4	4
11	8	5	5
12	8	6	6

Πρόταση 1

Ο πλήρης και διχοτομίσιμος γράφος $K_{3,3}$ δεν είναι επίπεδος

Πρόταση 2

Ο πλήρης γράφος K_5 δεν είναι επίπεδος

ΘΕΩΡΗΜΑ ΤΟΥ KURATOWSKI

Θεώρημα του Kuratowski

Ένας γράφος G είναι επίπεδος εάν και μόνο εάν δεν περιέχει υπο-γράφο που να είναι ομοιομορφικός με τον K_5 ή με τον $K_{3,3}$.

ΑΝΑΠΑΡΑΣΤΑΣΗ ΓΡΑΦΩΝ

- Πίνακες Γειτνίασης
- Λίστες Γειτνίασης

ΠΙΝΑΚΑΣ ΓΕΙΤΝΙΑΣΗΣ (ADJACENCY MATRIX)

- Έστω γράφος G = (V, E) και μια διάταξη των κόμβων του γράφου $(v_1, v_2, ..., v_n)$.
- Ονομάζουμε **πίνακα γειτνίασης** (ή πίνακα σύνδεσης) του γράφου G, έναν τετραγωνικό πίνακα A διάστασης $n \times n$ όπου
 - Το στοιχείο A[i,j] είναι ίσο με 1 ανν υπάρχει ακμή στον G που συνδέει τους κόμβους v_i και v_j . Σε αντίθετη περίπτωση A[i,j]=0.

$$A[i,j] = \begin{cases} 1, & \varepsilon\alpha\nu\,\upsilon\pi\alpha\rho\chi\varepsilon\iota\,\alpha\kappa\mu\eta\,\pi\upsilon\upsilon\,\varepsilon\varphi\alpha\pi\tau\varepsilon\tau\alpha\iota\,\sigma\tau\upsilon\upsilon\varsigma\,v_i\,\kappa\alpha\iota\,v_j \\ 0, & \delta\iota\alpha\varphio\rho\varepsilon\tau\iota\kappa\alpha \end{cases}$$

ΠΑΡΑΔΕΙΓΜΑΤΑ

$$A = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\ v_2 & 0 & 0 & 0 & 1 & 0 \\ v_2 & 0 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 0 & 1 & 1 \\ v_5 & 0 & 0 & 0 & 0 & 0 & 0 \\ v_6 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- Σε έναν μη-κατευθυνόμενο γράφο, ο πίνακας γειτνίασης είναι συμμετρικός.
- Ο βαθμός ενός κόμβου σε έναν απλό γράφο είναι ίσος με το άθροισμα των στοιχείων του πίνακα γειτνίασης που αντιστοιχούν στη στήλη (γραμμή) του κόμβου αυτού.
- Δεν γίνεται αναπαράσταση των παράλληλων ακμών.
- Μπορούμε να ελέγξουμε εάν $e_{i,j} \in E$ (ακμή που εφάπτεται στους v_i, v_i) σε χρόνο $\mathcal{O}(1)$.
- Μπορούμε να επεξεργαστούμε όλες τις ακμές σε χρόνο $\mathcal{O}(n^2)$.

Θεώρημα 1

Εάν A είναι ο πίνακας γειτνίασης ενός απλού γράφου G, τότε το στοιχείο στη θέση i, j του πίνακα A^{ν} είναι ίσο με τον αριθμό των μονοπατιών μήκους $\nu, \nu > 0$, από τον κόμβο v_i στον κόμβο v_i του γράφου.

Θεώρημα 2

Εάν A είναι ο πίνακας γειτνίασης ενός απλού γράφου G, τότε τα στοιχεία της κύριας διαγωνίου του πίνακα A^2 είναι ίσα με το βαθμό της κάθε κορυφής του γράφου.

Πρόταση

Έστω G_1 και G_2 δύο απλοί γράφοι. Αυτοί είναι ισόμορφοι, εάν και μόνο εάν με κάποια διάταξη των κόμβων τους, οι πίνακες γειτνίασής τους είναι ίσοι.

ΛΙΣΤΕΣ ΓΕΙΤΝΙΑΣΗΣ

- Λίστα γειτνίασης (adjacency list) είναι ένας $n \times 1$ πίνακας Adj, όπου Adj[u] είναι ένας δείκτης σε μια λίστα που περιέχει τους κόμβους που γειτονεύουν με τον κόμβο u.
 - Μπορούμε να ελέγξουμε εάν $e_{i,j} \in E$ (ακμή που εφάπτεται στους v_i, v_i) σε χρόνο $\mathcal{O}(n)$.
 - Μπορούμε να διαπεράσουμε τους γειτονικούς κόμβους όλων των κόμβων σε χρόνο $\mathcal{O}(m)$, όπου m το πλήθος των ακμών του γράφου.

ΠΑΡΑΔΕΙΓΜΑΤΑ


```
struct node{
   int vertex;
   struct node* next;
};

struct Graph{
   int numVertices;
   struct node** adjLists;
};
```

Κωνσταντίνος Γιαννουτάκης

Επίκ. Καθηγητής kgiannou@uom.edu.gr

