PROJECT II

E. Gerlitz, A. Popkes, P. Wenker, K. Patel, N. Lutz

STRUCTURE

- Tic tac toe game tree
- Minmax algorithm
- Minmax for Connect4
- Breakout
- Path Planning
 - Dijkstra's algorithm
 - A* algorithm

THETICTACTOE GAMETREE

Upper bound
Total number of nodes = 1 + 9 + 9 · 8 + 9 · 8 · 7 + ...
$$= \sum_{i=0}^{9} \frac{9!}{(9-i)!} = 986410$$

THETICTACTOE GAMETREE

- number nodes in the tree: 549946
- number of times X wins: 131184
- number of times O wins: 77904
- average branching factor: 1.86

recursive computation

$$mmv(n) = \begin{cases} u(n) & \text{if } n \text{ is a terminal node} \\ \max_{s \in Succ(n)} mmv(s) & \text{if } n \text{ is a } MAX \text{ node} \\ \min_{s \in Succ(n)} mmv(s) & \text{if } n \text{ is a } MIN \text{ node} \end{cases}$$

- Idea: Store max & average of next level
- Problem: If we assume that the opponent always chooses the minimum, there is no point in storing another value

MIN MAX FOR CONNECT 4 HEURISTIC

Score = weighted occurrences of 4, 3, 2 in a row of player - weighted occurrences of 4, 3, 2 in a row of opponent

MIN MAX FOR CONNECT 4

Depth restricted Minmax using:

- alpha-beta pruning
- score hashing

MIN MAX FOR CONNECT 4 TIME COMPARISON

BREAKOUT - SIMPLE BALL FOLLOWER

BREAKOUT - REINFORCEMENT LEARNING

- 3 Main Components:
 - Agent: Learner/Decision Maker
 - Environment: Everything the agent interacts with
 - Actions: What the agent can do

• Need to learn Action-Value function: $Q^{\pi}(s, a)$

REINFORCEMENT LEARNING -STATE & REWARD FUNCTION

$$reward = \begin{cases} -10000 & \text{if episode ends} \\ -distance to ball + score & else \end{cases}$$

BREAKOUT - INCREASING BALL SPEED

- Both Al controllers cope with the increase in speed of ball until the point where the ball speed exceeds the paddle speed
- If you increase the speed of paddle, the episodes last longer

PATH PLANNING - DIJKSTRA'S ALGORITHM

PATH PLANNING - A* ALGORITHM

PATH PLANNING - A* ALGORITHM

