IS471F

■ Features

- 1. Impervious to external disturbing lights due to light modulation system
- 2. Built-in pulse driver circuit and sync. detector circuit on the emitter side
- 3. A wide range of operating supply voltage (Vcc: 4.5 to 16V)

■ Applications

- 1. Optoelectronic switches
- 2. Copiers, printers
- 3. Facsimiles

OPIC Light Detector with Built-in Signal Processing Circuit for Light Modulation System

■ Outline Dimensions

*"OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

I Absolute Maximum Ratings

Parameter		Symbol	Rating	Unit	
Supply voltage		V _{CC}	-0.5 to 16	V	
Output	Output voltage	Vo	16	V	
	Output current	I_{O}	50	mA	
*1 GL output	Output voltage	$V_{ m GL}$	16	V	
Power dissipation		P	250	mW	
Operating temperature		Topr	- 25 to +60	°C	
Storage temperature		T _{stg}	- 40 to +100	°C	
*2 Soldering temperature		T _{sol}	260	°C	

^{*1} Applies to GL out terminal

 $(Ta=25^{\circ}C)$

^{*2} For 5 seconds at the position shown in the right figure

■ Electro-optical Characteristics

(\mathbf{V} –	5V	T_{2}	25°C)
(V CC-	.) V .	1a=	43 C	,

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating supply voltage		V _{CC}	-	4.5	-	16	V
Supply current		I_{CC}	V _O , GL _{out} terminals shall be opened.	-	3.5	7.0	mA
Output	Low level output voltage	V _{OL}	I_{OL} = 16mA, E $_{VP}$ = 500lx, E $_{VD}$ = 0^{*3}	-	0.15	0.35	V
	High level output voltage	V _{OH}	$E_{VD} = E_{VP} = 0^{*3}$	4.97	-	-	V
	Output short circuit current	Ios	$E_{VP}=E_{VD}=0^{*3}$	0.25	0.5	1.0	mA
GL	Low level output current	I_{GL}	V _{GL} = 1.2V	40	55	70	mA
	*4Pulse cycle	t _p	-	70	130	220	μs
output	*4Pulse width	tw	-	4.4	8	13.7	μs
*5 "Low→High" threshold irradiance		E ePLH	$E_{eD} = 0^{*3}$	-	0.4	2.66	μW/mm ²
*5 "High→Low" threshold irradiance		E ePHL	Light emitting diode $(\lambda p = 940 \text{nm})^{*6}$	-	0.7	2.8	μW/mm ²
Hysteresis		E ePLH /E ePHL	-	0.45	0.65	0.95	-
Response	"High→Low" propagation delay time	t PHL	*6	-	400	670	μs
time	"Low→High" propagation dealy time	t plh	*6	-	400	670	μs
*7 External disturbing light illuminance		Evdx	Eep= 7.5 μ W/mm ² , *3 λ p= 940nm	2000	7500	-	lx

^{*3} E_{eP} represents illuminance of signal light in sync with the low level timing of output at GL_{out} terminal.

E_{eD} represents illuminance of DC light. For detail, see Fig. 1.

Light source: Infrared light emitting diode ($\lambda p = 940 \text{nm}$)

E_{VP} represents illuminance of signal light in sync with the low level timing of output at GL_{out} terminal.

E_{VD} represents illuminance of DC light. Note that the light source is CIE standard light source A.

Fig.1

(Note) Fig. 1 shows the output waveform at GL out terminal with **IS471F** connected as shown in Fig. 3.

The waveform shown in Fig. 2 is the output voltage waveform at GL_{out} terminal with **IS471F** connected as shown in Fig. 3

Fig.2

Fig.3

^{*4} Pulse cycle (t p), pulse width (t W) are defined as shown in Fig. 2.

^{*5} Defined as E_{ep} that causes the output to go" Low to High" (or" High to Low").

*6 Test circuit for response time, threshold irradiance is shown in Fig. 4.

Fig. 4

^{*7} E $_{VDX}\!:\!Defined$ as the $E_{\,VD}$ at the limit of normal operation range.

Fig. 5 Power Dissipation vs.
Ambient Temperature

Fig. 7 Low Level Output Voltage vs.
Ambient Temperature

Fig. 6 Low Level Output Voltage vs. Low Level Output Current

Fig. 8 Supply Current vs. Supply Voltage

Fig. 9 Low Level Output Current vs. Supply Voltage

Fig.11 Spectral Sensitivity

Fig.10 Sensitivity Diagram $(T_a = 25^{\circ}C)$

■ Basic Circuit

^{*} In order to stabilize power supply line, connect a by-pass capacitor of $0.33\mu F$ or more between Vcc and GNP near the device.

Please refer to the chapter "Precautions for Use."

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.