Journal of Foshan University (Natural Science Edition)

Mar. 2011

文章编号: 1008-0171(2011)02-0031-06

论求解极限的若干方法

温录亮

(佛山科学技术学院 计算机系 .广东 佛山 528000)

摘要: 对求解极限的常用方法进行简单概述,重点介绍数学教材中不常见的求解极限的方法,并列出典型例题 进行注释和说明。

关键词: 洛必达法则:泰勒展式:级数收敛:递推形式

中图分类号: 017

文献标志码: A

极限问题是数学分析的基本问题之一,掌握求解极限的思想和方法是学好微积分的前提条件。讲解 极限理论,通常先讲数列极限,然后再讲函数极限,二者有平行的理论,类似的方法,彼此之间有着深刻 的内在联系。下面就求解极限的常用方法和特殊方法进行探讨,重点介绍数学教材中不常见的求解极限 的方法。

1 求解极限的常用方法

1.1 迫敛性求极限

要点 当极限不易直接求出时,可考虑将求极限的变量作适当的放大和缩小,使放大、缩小所得的 自变量易于求极限,且二者的极限值相同,则原极限存在,且等于此公共值

1.2 洛必达法则求极限

要点 求 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型不定式极限常用的方法是洛必达法则 $^{[1]}$,有时还需用推广的洛必达法则来求解 注 将 $x \rightarrow a$ 换成 $x \rightarrow a + 0$ 或 $x \rightarrow a - 0$ 也有相应的洛必达法则。应用洛必达法则时应注意:

- (1)要验证应用洛必达法则的条件,若 $\lim_{x \to a} \frac{g^{'}(x)}{f^{'}(x)}$ 还是 $\frac{0}{0}$ 或 $_{\infty}^{\infty}$ 型,可继续用洛必达法则,只要符合条 件,一直可用到求出极限为止
 - (2)其他类型的不定式 (0° ∞ , ∞ - ∞ , 0°, f° , ∞ °等) ,先化成 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型的不定式

1.3 等价无穷小量求极限

要点 利用一些常见的等价无穷小量,可以方便地求解极限,如: $g(x) = x^2(x \rightarrow 0)$ arctanx~ $x(x \to 0)$, 1- $\cos \frac{1}{2}x^2(x \to 0)$ \$

注 在利用等价无穷小量代换求极限时,应注意: 只有对所求极限式中相乘或相除的因式才能用等 价无穷小量来替代,而对极限中的相加或相减部分则不能随便替代。

1.4 泰勒展式求极限

要点 一些初等函数的麦克劳林公式可用来求解某种类型的极限,如 $\stackrel{\circ}{e}$ sinx $\cos \ln(1+x)$

$$(1+ x)^2 \cdot \frac{1}{1-x}$$

注 根据题目所给的条件,要将所给函数展开得恰到好处。

1.5 初等变换求极限

要点 用初等数学的方法将已给题目公式变形,然后求极限

1.6 定积分求极限

要点 利用定积分定义求极限,即 $\int_a^b f(x) dx = \lim_{x \to x} \int_a^x f(X) \Delta k$ 。 有时还需要利用积分中值定理求 解极限,如求极限 $\lim_{x\to 0}\int_0^1 \frac{1}{Xx^3+1} dx$,由积分中值定理 $\int_0^1 \frac{1}{Xx^3+1} dx = \frac{1}{XI^3+1}(0 < T < 1)$,得 $\lim_{x \to 0} \int_{0}^{1} \frac{1}{X^{3} + 1} dx = \lim_{x \to 0} \frac{1}{X^{3} + 1} = 1$ 总之,要灵活应用知识点

另外还可以利用极限的定义、柯西准则、2个重要的极限、单调有界准则、函数的连续性、导数的定 义、微分中值定理等来求解极限,教材及相关论文已作详细介绍,这里就不再赘述。

求解极限的特殊方法

2.1 变量替代求极限

为了将未知的极限化简,或转化为已知的极限,可根据极限式的特点,适当引入新变量替换 原有的变量,以使原来的极限过程转化为新的极限过程

例 1 若
$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} y_n = b$, 试求 $\lim_{n\to\infty} \frac{x_1y_n + x_2y_{n-1} + \cdots + x_ny_1}{n}$ (参见文献 [2])。

解 令 $x_n = a + T$, $y_n = b + U$, 则 $n \to \infty$ 时, T , $U \to 0$, $T \to 0$.

$$\frac{x_1y_n + x_2y_{n-1} + \cdots + x_ny_1}{n} = \frac{(a + T_1)(b + U_1) + (a + T_2)(b + U_{n-1}) + \cdots + (a + T_n)(b + U_1)}{n} = ab + a \frac{U_1 + U_2 + \cdots + U_n}{n} + b \frac{T_1 + T_2 + \cdots + T_n}{n} + \frac{T_1U_n + T_2U_{n-1} + \cdots + T_nU_n}{n}$$

现证明 $\frac{U_1 + U_2 + \cdots + U_n}{n} \to 0$ ($n \to \infty$),已知 $U_n \to 0$ ($n \to \infty$)。

证明
$$\frac{U_1 + U_2 + \cdots + U_n}{n} \to 0$$
 ($n \to \infty$),记知 $U_n \to 0$ ($n \to \infty$)。

因 $\lim_{n \to \infty} U = 0$,故 $\forall X > 0$, $\exists N_1 > 0$, $n > N_1$ 时, $|U_n - 0| < \frac{X}{2}$,从而上式 $\leqslant \frac{|U_1|_+ |U_2|_+ \dots + |U_{N_1}|_+}{n} + \frac{|U_1|_+ |U_2|_+ \dots + |U_N|_+}{n} + \frac{|U_1|_+ |U_1|_+ \dots + |U_N|_+}{n} + \frac{|U_1|_+ |U_1|_+$ $\frac{n-N_1}{n} \cdot \frac{X}{2}$

注意这里 $|U| + |U_2| + \dots + |U_n|$ 已为定数,因而 $3v_2 > 0$,当 $n > N_2$ 时,

$$\frac{\mid \mathbf{U}_{1} \mid + \mid \mathbf{U}_{2} \mid + \cdots + \mid \mathbf{U}_{N_{1}} \mid}{n} < \frac{\mathbf{X}}{2}$$

于是令 $N= \max\{N_1, N_2\}$,则当 n> N 时

$$\left| \frac{U_1 + U_2 + \dots + U_n}{n} \right| < \frac{X}{2} + \frac{n - N_1}{n} \cdot \frac{X}{2} < \frac{X}{2} + \frac{X}{2} = X$$

即

$$\lim_{n\to\infty}\frac{\mathrm{U}_1+\ \mathrm{U}_2+\ \cdots+\ \mathrm{U}_n}{n}=\ 0$$

同理可证
$$\lim_{n\to\infty} \frac{T_{1+} \quad T_{2+} \quad \cdots \quad T_n}{n} = 0$$

再证式 (1)第 4项极限亦为零。事实上,因 $T_{n} \rightarrow 0$ (当 $n \rightarrow 0$),故 $\{a_n\}$ 有界,即 $\exists M>0$,使得 $|a_n| \leqslant 1$ $M(n \in N)$,故

$$0 < \left| \frac{T_1U_n + T_2U_{n-1} + \cdots + T_nU}{A \cdot Cademic Journal Electronic Publishing House.} \right| \leq M \frac{|U_n| + |U_n| + \cdots + |U_n|}{n} \rightarrow 0$$

从而

$$\lim_{n\to\infty}\frac{x_1y_n+x_2y_{n-1}+\cdots+x_ny_1}{n}=ab$$

2.2 利用级数收敛的必要条件求极限

要点 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛 ,则 $\lim_{n\to\infty} u_n = 0$ (参见文献 [3]).

例 2 求极限
$$1 \lim_{n \to \infty} \frac{n^n}{3^n \circ n!}$$
; $2 \lim_{n \to \infty} \frac{3^n \circ n!}{k^3 (n!)^3}$

解 (1)因为

$$\lim_{n\to\infty}\frac{u_n}{u_{m+1}}=\lim_{n\to\infty}\frac{n^n}{3^n\cdot n!}\cdot \frac{3^{m+1}(n+1)!}{(n+1)^{m+1}}=\lim_{n\to\infty}3^n\cdot \left(\frac{n}{n+1}\right)^n=\frac{3}{e},$$

即

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\frac{e}{3}<1,$$

所以
$$\sum_{n=1}^{\infty} \frac{n^n}{3^n \cdot n!}$$
 收敛,即 $\lim_{n\to\infty} \frac{n^n}{3^n \cdot n!} = 0$

$$\lim_{n\to\infty}\frac{u_{n+-1}}{u_n}=\lim_{n\to\infty}\frac{(n+-1)^{n+-1}}{k^3\left((n+-1)!\right)^3}\cdot\frac{k^3(n!)^3}{n^n}=\lim_{n\to\infty}\frac{1}{(n+-1)^2}\left(1+\frac{1}{n}\right)^n=0<1,$$

所以
$$\sum_{n=1}^{\infty} \frac{3^n n!}{k^3 (n!)^3}$$
 收敛,即 $\lim_{n\to\infty} \frac{3^n \cdot n!}{k^3 (n!)^3} = 0$

2.3 STOLZ公式求极限

定理 1 (二型 STOLZ公式 [4])若 1) $\{y_n\}$ 严格递增且 $\lim_{n\to\infty} y_n = +\infty$; 2) $\lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = A$ 则 $\lim_{n\to\infty} \frac{x_n}{y_n} = A$ (其中 A 为有限数或无穷大)

定理 2 ($\frac{0}{0}$ 型 STOLZ公式)若 1) { y_n }严格递减且 $\lim_{n\to\infty} y_n = 0$, $\lim_{n\to\infty} x_n = 0$, 2) $\lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = A$ 则 $\lim_{n\to\infty} \frac{x_n}{y_n} = A$ (其中 A 为有限数或无穷大)。

推论 1 若
$$\lim_{n\to\infty} a_n = a$$
,则 $\lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = a_n$

推论 2 若
$$\lim_{n\to\infty} (a^{n+1}-a^n) = 0$$
,则 $\lim_{n\to\infty} \frac{a_n}{n} = a$

例 3 设
$$s_n = \frac{\sum_{k=0}^{n} \ln C_n^k}{n^2}$$
 (其中, $C_n^k = \frac{n(n-1)\cdots(n-k+1)}{k!}$),求 $\lim_{n\to\infty} s_n$

解 因 n^2 严格递增且趋于 $+\infty$,应用 STO LZ公式得

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{\sum_{k=0}^{n+1} \ln C_{n+1}^k - \sum_{k=0}^{n} \ln C_n^k}{(n+1)^2 - n^2} = \lim_{n \to \infty} \frac{\sum_{k=0}^{n} \ln \frac{C_{n+1}^k}{C_n^k} + \ln C_{n+1}^{n+1}}{2n+1} = \lim_{n \to \infty} \frac{\sum_{k=0}^{n} \ln \frac{n+1}{n-k+1}}{2n+1} = \lim_{n \to \infty} \frac{(n+1)\ln(n+1) - \sum_{k=1}^{n} \ln k}{2n+1} = \lim_{n \to \infty} \frac{(n+1)\ln(n+1) - n\ln(n-\ln(n+1))}{(2n+1) - (2n-1)} = \lim_{n \to \infty} \frac{\ln \frac{n+1}{n-k+1}}{2n+1} = \lim_{n \to \infty} \frac{(n+1)\ln(n+1) - n\ln(n-\ln(n+1))}{(2n+1) - (2n-1)} = \lim_{n \to \infty} \frac{\ln \frac{n+1}{n-k+1}}{2n+1} = \lim_{n \to \infty} \frac{(n+1)\ln(n+1) - n\ln(n-\ln(n+1))}{(2n+1) - (2n-1)} = \lim_{n \to \infty} \frac{\ln \frac{n+1}{n-k+1}}{2n+1} = \lim_{n \to \infty} \frac{(n+1)\ln(n+1) - n\ln(n-\ln(n+1))}{(2n+1) - (2n-1)} = \lim_{n \to \infty} \frac{\ln \frac{n+1}{n-k+1}}{2n+1} = \lim_{n \to \infty} \frac{\ln \frac{n+1}}{2n+1} = \lim_{n \to \infty} \frac{\ln \frac{n+1}{n-k+1}}{2n+1} = \lim_{n \to \infty} \frac{\ln \frac{n+1}{n-k+1}}{2n$$

例 4 求
$$\lim_{n \to \infty} \left(\frac{2}{2-1} \right)^{\frac{1}{2^{n-1}}} \left(\frac{2^2}{2^3-1} \right)^{\frac{1}{2^{n-2}}} \cdots \left(\frac{2^{n-1}}{2^n-1} \right)^{\frac{1}{2}}$$
。

? 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$\ln x_n = \frac{1}{2^{n-1}} \ln \frac{2}{2^2 - 1} + \frac{1}{2^{n-2}} \ln \frac{2^2}{2^3 - 1} + \dots + \frac{1}{2} \ln \frac{2^{n-1}}{2^n - 1} - b \pm \frac{\overline{b^2 - 4ac}}{2a} = \frac{1}{2^{n-1}} \left[\ln \frac{2}{2^2 - 1} + 2 \ln \frac{2^2}{2^3 - 1} + \dots + 2^{n-2} \ln \frac{2^{n-1}}{2^n - 1} \right],$$

再应用 STOLZ公式求极限

$$\lim_{n\to\infty} \ln x_n = \lim_{n\to\infty} \frac{2^{n-2} \ln \frac{2^{n-1}}{2^n-1}}{2^{n-1}-2^{n-2}} = \lim_{n\to\infty} \ln \frac{1}{2-\frac{1}{2^{n-1}}} = \ln \frac{1}{2},$$

故原式 = $\frac{1}{2}$

注 有时求解问题需经过变形处理以后,方能应用 STOLZ公式。

- 2.4 递推形式求极限
- 2.4.1 利用存在性求极限

要点 假若用某种方法证明了递推序列的极限存在,则在递推公式里取极限,便可得极限值 A 应满足的方程,解此方程,可求极限值 A 证明序列的极限存在,常采用以下 2种方法。

- (1)利用单调有界定理;
- (2)利用压缩映射原理 (若存在正常数 V 0 < V < 1,对一切 $n \in N$,有 $|x_{n+1} x_n| \leqslant V |x_{n-1} x_{n-1}|$,则 $\{x_n\}$ 收敛)

单调有界定理在数学分析教材中已有详细介绍,这里只对压缩映射原理作重点描述

定义 1 设 f(x)在 [a,b] 让有定义,方程 f(x) = x在 [a,b] 的解称为 f(x)在 [a,b]让的不动点

定义 2 若存在一个常数 K,且 0 < k < 1,使得 $\forall x, y \in [a,b]$ 有 $|f(x) - f(y)| \leqslant k |x - y|$,则称 f(x) 是 [a,b] 让的一个压缩映射。

压缩映射原理^[5] 设 f(x)是 [a,b]上的压缩映射且 $x_0 \in [a,b], x_{n+1} = f(x_n), n=0,1,2,\cdots,$ 对 $\forall n \in \mathbb{N}$,f(x)在 [a,b],则 f(x)在 [a,b]上存在唯一的不动点 C且 $\lim_{n \to \infty} x_n = C$

推论 1 设 f(x)是 [a,b]上的压缩映射且 f([a,b]) $\subseteq [a,b]$,则 f(x)在 [a,b] 存在唯一的不动点 G 推论 2 设 f(x)在 [a,b] 上连续,在 (a,b)上可微,且存在 0 < k < 1,对 $\forall x \in (a,b)$ 使得 f'(x) $k \in (a,b)$,则 f(x)是 [a,b] 让的压缩映射,由压缩映射原理和 Lagrange中值定理可证该结论

例 5 设
$$x_1 > 0, x_{n+1} = \frac{c(1+x_n)}{c+x_n} (c > 1 为常数), 求 \lim_{n \to \infty} x_n$$

解
$$(1)$$
若 $x_1 = c$,则易知这是一切 $x_n = c$,从而极限为 c 。

(2)若
$$x_n > \overline{c}$$
,因 $f(x) = \frac{c(\frac{1}{n} x)}{\frac{1}{n} x} = c - \frac{c(c-1)}{c+x}$ 为递增函数,故 $x_{n+1} = \frac{c(\frac{1}{n} x_n)}{c+x_n} = f(x_n) > f(\overline{c}) = \overline{c}$,因此由 $\{x_n\}$ 可知一切 $x_n > \overline{c}$,进而由 $x_{n+1} - x_n = \frac{c(\frac{1}{n} x_n)}{c+x_n} - x_n = \frac{c-x_n^2}{c+x_n} < 0$,知 $\{x_n\}$ 单调递减。同理可知, $x_1 < \overline{c}$ 时,有一切 $x_n < \overline{c}$, x_n 单调递增。总之, x_n 单调有界,极限存在。在 $x_{n+1} = \frac{c(\frac{1}{n} x_n)}{c+x_n}$ 中取极限,解方程可知极限值为 \overline{c} 。

例 6 设
$$x_1 = \frac{a}{2}, x_{n+1} = \frac{a + x_n^2}{2} (0 < a < 1), n = 1, 2, \dots, 求 \lim_{n \to \infty} x_n$$

解 考察函数
$$f(x) = \frac{a}{2} + \frac{x^2}{2}, x \in \left[0, \frac{\mathbb{H} - d}{2}\right]$$
 ,易见对 $\forall x \in \left[0, \frac{\mathbb{H} - d}{2}\right]$ 有 $f(x) \in \left[0, \frac{\mathbb{H} - d}{2}\right]$,又 $x_{n+1} = \frac{a + x_n^2}{2} = f(x_n), x_1 = \frac{a}{2} \in \left[0, \frac{\mathbb{H} - d}{2}\right], |f'(x)| = x \leqslant \frac{\mathbb{H} - a}{2} < 1,$

因此 ,f(x) 是压缩的 ,由压缩映射原理 ,数列 $\{x_n\}$ 收敛 ,设 $C=\lim_{n\to\infty}x_n$,则 C 是 $x=\frac{a}{2}+\frac{1}{2}x^2$ 在 $[0,\frac{\mathbb{H}-a}{2}]$ 上 的解 ,解得 $C=1-\frac{1-a}{1-a}$,即 $\lim x_n=1-\frac{1-a}{1-a}$

?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

例 7 设
$$x_1 = \overline{a}$$
, $x_2 = \overline{a}$, $x_3 = \overline{a}$, $x_4 = \overline{a}$, $x_5 = \overline{a}$, 证明数列 $\{x_n\}$ 收敛并求极限

解 考察函数
$$f(x) = \overline{a+x}$$
, $x \in [0,+\infty)$, $f(x) \in [0,+\infty)$ 且在 $[0,+\infty)$ 上, $|f'(x)| = \frac{1}{2}$ $= \frac{1}{a+x}$ $= \frac{1}{2}$ $= \frac{1}{a}$ < 1,因此, $f(x)$ 在 $[0,+\infty)$ 是压缩的。

 $x_1 = a \in [0, +\infty), x_{n+1} = f(x_n)$,由压缩映射原理,数列 $\{x_n\}$ 收敛且极限为方程 $x = f(x) = x_n$ $\overline{a+x}$ 的解,解之得 $\lim_{n\to\infty} x_n = \frac{1+\frac{1+4a}{2}}{2}$ 。

 $\{x_n\}$ 的单调性,常通过 $x_n - x_{n-1}$ 的符号来鉴别,若 $x_n \neq 0$,也可用 $\frac{x_{n+1}}{x_n}$ 是否恒 ≤ 1 或 ≥ 1 来证明。 若递推公式由一元可微函数 $x_n = f(x_{n-1})$ 给出,则可通过 f的导数 f'来考察单调性。若存在实数 r,使得 $|f'(x)| \leqslant r < 1$,则应用微分中值定理,可知 $\{x_n\}$ 满足压缩映射的条件

$$|x_{n+1}-x_n| = |f(x_n)-f(x_{n-1})| = |f'(W)||x_n-x_{n-1}| \leqslant r|x_n-x_{n-1}|$$

不过,这时必须验证 $\{x_n\}$ 是否保持在f'(x)k r成立的范围之内。

2.4.2 写出通项求极限

要点 对于有些递推数列,可以通过递推关系求出其通项公式,然后再应用求数列极限的基本方法 来求出极限 [6]

例 8 设
$$x_0 = 0, x_1 = 1, x_{n+1} = \frac{x_{n+1} + x_{n-1}}{2}, 求 \lim_{n \to \infty} x_n$$

解 因为
$$x_{n+1} - x_n = \frac{x_n + x_{n-1}}{2} - x_n = -\frac{x_n - x_{n-1}}{2}$$
,所以反复应用此结果得
$$x_{n+1} - x_n = \left(-\frac{1}{2}\right)^n (x_1 - x_0) = \frac{(-1)^n}{2} (n = 1, 2, \cdots),$$

干是

$$\int_{0}^{1} \frac{1}{X_{k}^{3} + 1} dx = \frac{1}{X_{k}^{3} + 1} (0 < T < 1).$$

2.5 综合法求极限

要点:一些极限题目看似非常难求解,用一种方法不好解决时需要考虑运用所学的多种方法来求 解,这在考研试题中比较常见,下面举几个典型例子加以说明,更多更好的方法还需要去发现和探索

2.5.1 函数极限和归结原则结合求极限

例 9 求
$$\lim_{n\to\infty} \left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^n (a > 0,b > 0)$$
 (参见文献 [7])

解 (1)当 $n=0,1,2\cdots,a$ b中有一个为 0时,比如 a=0,0

$$\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{1}{x} \ln \frac{a^x + b^x}{2} = \lim_{x \to 0} \frac{2}{a^x + b^x} \cdot \left(\frac{a^x \ln a + b^x \ln b}{2} \right) = \frac{1}{2} (\ln a + \ln b) = \ln \overline{ab}$$

(2)当
$$a > 0, b > 0$$
时,令 $y = \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}}$,则 $\ln y = \frac{1}{x} \ln \frac{a^x + b^x}{2}$,

$$\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{1}{x} \ln \frac{a^x + b^x}{2} = \lim_{x \to 0} \frac{2}{a^x + b^x} \cdot \left(\frac{a^x \ln a + b^x \ln b}{2} \right) = \frac{1}{2} (\ln a + \ln b) = \ln \overline{ab}$$

所以
$$\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}} = \overline{ab}$$
,即有 $\lim_{n \to \infty} \left(\frac{n - a + n - b}{2} \right)^n = \overline{ab}$ 综上, $\lim_{n \to \infty} \left(\frac{n - a + n - b}{2} \right)^n = \overline{ab}$

注 有时数列极限需要先转化为函数极限,取对数,然后再利用归结原则进而轻松求解。

2.5.2 等价无穷小量和洛必达法则结合求极限

例 10 求
$$\lim_{x\to 0} \frac{x^2 - \int_0^{x^2} \cos^2 t \, dt}{\sin^{10} x}$$

例 10 求 $\lim_{t\to 0} \frac{x^2 - \int_0^{x^2} \cos^2 t \, dt}{\sin^{10} x}$ 。?1994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

解 用等价无穷小量替换: $\sin^{10}x \sim x^{10}$,原式= $\lim_{x \to 0} \frac{x^2 - \int_0^{x^2} \cos^2 t \, dt}{x^{10}}$.

由洛必达法则

原式 =
$$\lim_{x \to 0} \frac{2x - 2x \cos x^4}{10x^9} = \lim_{x \to 0} \frac{1 - \cos x^4}{5x^8} = \frac{1}{5} \cdot \frac{1}{2} = \frac{1}{10} (1 - \cos^4 x - \frac{1}{2} x^8)$$

注 这是典型的 2种基本方法的结合,需要分析好题目,找准解决方法

2.5.3 对数法和积分法求极限

例 11 设
$$\frac{n}{n}$$
 $\frac{(n+1)(n+2)\cdots(n+n)}{n}$ $\frac{1}{n}$ \frac

注 求解此类题目时,首先会想到应用积分的方法,但是直接求解又无从下手,这时巧妙借助取对数这一有力工具,就可以使题目得到解决

参考文献:

- [1] 华东师范大学. 数学分析 [M].北京: 高等教育出版社, 2001.
- [2] 钱吉林.数学分析题解精粹 [M].武汉:崇文书局,2003.
- [3] 张从军.数学分析摘要二十讲[M].合肥:安徽大学出版社,2000
- [4] 韩丹. STO LZ定理的证明及其在极限求解中的应用[J].大连教育学院学报,1999,15(3):69-71.
- [5] 敏志奇. 压缩映射原理在求数列极限中的应用 [J].甘肃高师学报,2006,11(2):85-86.
- [6] 孙涛. 数学分析经典习题解析 [M].北京: 高等教育出版社, 2004.
- [7] 费定晖,周学圣. 吉米多维奇数学分析习题集题解[M].济南:山东科学技术出版社,2003.
- [8] 刘西桓,李正元,周民强,等. 微积分题型精讲[M].北京: 机械工业出版社, 2004.

【责任编辑: 王桂珍 fo shanw g zh@ 163. com】

Solutions to limit

WEN Lu-liang

(Department of Computer Science, Foshan University, Foshan 528000, China)

Abstract Overviewing the common methods for solving limit, the paper focuses on special methods is not some unusual solution to the limit, followed by typical examples with annotation and illustration. **Key words** Hospital 's rule; taylor expansion; series convergence; recursive form