

Next-Activity Prediction tramite Reti Convoluzionali Deformabili

Relatore: Prof. Nicola Di Mauro

Candidato: Antonio Matteo Carulli Mat. 655891

- > Introduzione
- > Next-Activity Prediction
- > Stato dell'arte
- > Architetture progettate
- > Implementazione
- > Valutazione Sperimentale
- > Conclusioni

Introduzione - Process Mining

It's a data-driven age!

I sistemi informativi aziendali registrano **event log** sulle attività interne dell'azienda

Con tecniche di **Process Mining** da questi registri si formulano dei **modelli** sulla base dei quali *migliorare* e *confrontare* un *processo aziendale*

Tipi di Process Mining da "Process Mining Manifesto"

Event Log e Next-Activity Prediction

Cost

Stato dell'arte - LSTM

L'approccio più diffuso per elaborare dati sequenziali si basa su reti neurali ricorrenti LSTM

PRO:

- Osservazione di lunghe dipendenze temporali tra i dati

CONTRO:

- Alto costo computazionale
- Grafi di elaborazioni molto profondi

Stato dell'arte - Inception Networks

Naïve Inception Module
[Szegedy et al. 2014] [Di Mauro et al., 2019]

Anche le reti convoluzionali possono gestire dati sequenziali

Il modulo a inception unisce più convoluzioni dal kernel diverso per "allargare" il campo recettivo della rete

I risultati raggiunti in recenti articoli hanno dimostrato la superiorità di questo metodo rispetto alle reti LSTM

Architetture Progettate

In questo lavoro di tesi si è voluta portare avanti la ricerca sulle reti convoluzionali mettendo a confronto tre approcci diversi:

- una rete convoluzionale tradizionale
- un metodo mutuato dalla computer vision, *Deformable ConvNets*
- una convoluzione il cui kernel rimane fisso, ma deformato da una maschera binaria casuale, che abbiamo chiamato MaskedConv

Implementazione

Tutte le reti sono state implementate in Python3, sfruttando la libreria open source di deep learning Keras e il backend TensorFlow 2.0

Per la scelta degli iperparametri, si è invece utilizzata la libreria HyperOPT di hyperparameter optimization

Infine l'effettiva elaborazione dei dataset è avvenuta sulla piattaforma online Google Colab

Deformable Convolutional Network

[Dai et Al., Deformable Convolutional Networks, 2017]

Il campo recettivo della rete viene dilatato tramite l'applicazione di offset appresi dal layer precedente e interpolati con le posizioni di input

L'assunzione è che effettuando un'osservazione più completa, la rete possa notare dipendenze tra i dati anche a lunga distanza temporale

Implementazione - DeformableConv1D

```
eformable 1D Convolution
2 class DeformableConv1D(tf.keras.layers.Layer):
      def init (self, filters, kernel size):
          super(DeformableConv1D, self). init ()
         self.filters = filters
         self.kernel_size = kernel_size
         self.R = tf.constant(self.regularGrid(self.kernel_size),
                             tf.float32)
      def build(self, input_shape):
         W shape = (self.kernel size, 1)
         self.W = self.add weight(
              name='W',
              shape=W_shape,
              trainable=True.
              dtype=self.dtype)
         super(DeformableConv1D, self).build(input shape)
      def call(self, x):
         offconv = Conv1D(x.shape[-1]*2,
                          self.kernel size.
                          padding='same',
                          activation='relu'.
                          trainable=True)
         offset = offconv(x)
         y = self.linearInterpolation(x, offset)
         y = tf.reduce sum(self.W * y, [0])
         y = tf.reshape(y, [-1, x.shape[1], x.shape[2]])
```

Ogni layer in Keras si basa su tre metodi:

- __init__() per l'inizializzazione degli attributi della classe
- **build()** per la definizione dei pesi
- call() per la definizione del forward pass

La nostra classe DeformableConv1D aggiunge:

- **regularGrid()** per la definizione della tassellatura regolare di campionamento
- linearInterpolation() per la preparazione degli attributi all'operazione di interpolazione
- g() per la logica del kernel dell'operazione di convoluzione

Implementazione - DeformableConv1D

```
def linearInterpolation(self, x, offset):
    # input locations
    Q = tf.where(tf.equal(K.flatten(x), K.flatten(x)))
    Q = tf.cast(Q, tf.float32)

    offset = offset - x
    offset = K.flatten(offset)

# offset locations
P = Q + offset

# regulard grid sampling
ylist = []
for pn in tf.unstack(self.R):
    G = self.g(Q, P+pn)
    ylist.append(G * K.flatten(x))
return tf.stack(ylist)
```

Il metodo linearInterpolation():

- calcola gli spostamenti
- applica l'operazione di interpolazione Il metodo g() definisce il kernel dell'operazione di convoluzione tramite interpolazione lineare tra gli spostamenti calcolati e l'input

Formalmente, l'operazione finale è

$$\begin{split} & y(p_0) = \sum_{p_n \in R} w(p_n) \cdot x(p_0 + p_n + \Delta p_n) \quad \text{con} \\ & x(p) = \sum_{q} G(q,p) \cdot x(q) \quad \text{dove} \quad p = p_0 + p_n + \Delta p_n \\ & \text{e} \quad g(a,b) = max(0,1-\mid a-b\mid) \end{split}$$

Implementazione - MaskedConv1D

La classe MaskedConv1D eredita direttamente dalla classe Conv1D

Il metodo build() è chiamato automaticamente subito prima dell'esecuzione del corpo del metodo call(), definendo il parametro kernel

Il metodo call() definisce e applica la maschera binaria casuale al kernel ed esegue la convoluzione sull'input

Valutazione Sperimentale

Esempio di rete a un modulo

I log adottati sono i seguenti:

- Receipt phase: contiene i record dell'esecuzione della fase di ricevuta del processo di applicazione del permesso di costruzione in un anonimo comune olandese.
- helpdesk: contiene gli eventi di un processo di biglietteria del reparto helpdesk di una software agency italiana.
- sepsis: contiene eventi di casi di sepsi registrati dal sistema ERP di un ospedale.
- bpi12: descrive il processo di un'applicazione di prestiti.
- nasa: contiene eventi al livello di chiamate dei metodi della classe NASA Crew Exploration Vehicle descritti da una esecuzione di una esaustiva suite di test d'unità.

Valutazione Sperimentale

Metodo	Media Brier Score	Media Accuracy
Standard	0.020	0.779
Deformable	0.020	0.780
Masked	0.021	0.752

- L'approccio deformabile si è dimostrato in media marginalmente migliore di quello tradizionale, confermando la fondatezza delle assunzioni.
- L'approccio a kernel fisso invece si è dimostrato peggiore in tutte le metriche, anche qui secondo le aspettative.
- I due metodi implementati hanno tuttavia quasi sempre mostrato un numero minore di parametri nei modelli finali, occupando di conseguenza uno spazio inferiore

Conclusioni

Sono da indagare i *contributi* di ogni punto nel campo recettivo deformato e da testare diverse forme di *inizializzazione dei pesi* che possono influenzare differentemente la struttura del campionamento, ampliando ulteriormente l'area di ricerca nelle reti convoluzionali in contesti diversi dalla computer vision

Grazie per l'attenzione