Path Awareness and Selection in the Socket Intents prototype

Theresa Enghardt
TU Berlin
theresa@inet.tu-berlin.de

Scenario: Multiple paths

Multiple paths via different access networks

- Laptop can use WiFi or cellular
- WiFi usually default, but not always better¹
 1 Dang et al: "WiFi LTE or Both? Measuring Multi-Homed Wireless Internet Performs
 - ¹ Deng et al.: "WiFi, LTE, or Both? Measuring Multi-Homed Wireless Internet Performance" (2014)
- → Pick the better one? Use both?

Socket API

Vanilla BSD sockets:

Connection 1

Connection 2

Connection 3

Connection 4

Connections"look the same"

- No information about paths

→ use default path based on system policy

Intents:

Connection 1

Connection 2

Connection 3

Connection 4

What the application

wants,

knows,

prefers,

or assumes about its traffic

(connection or message)

→ What to optimize for

Path 1 Path 2

See our draft-tiesel-taps-socketintents

Intents:

Connection 1

Connection 2

Connection 3

Connection 4

- Traffic Category
- Size to be received
- Bitrate to send
- Timeliness
- Cost preferences

See our draft-tiesel-taps-socketintents

Connection 1:

Connection 1

Connection 2

Connection 3

Connection 4

Traffic Category:
Query

Size to be Received:10 KB

See our draft-tiesel-taps-socketintents

Connection 1 Query, 10 KB

Connection 2

Connection 3

Connection 4

 Median Round Trip Time (RTT)

- Maximum bitrate
- WiFi utilization

•

Connection 1 Query, 10 KB

Connection 2

Connection 3

Connection 4

Path 1:

- RTT = 10 ms
- Bandwidth = 2 Mbit/s

Path 2:

- RTT = 100 ms
- Bandwidth = 20 Mbit/s

Path Selection Policy:

Connection 1 Query, 10 KB

Connection 2

Connection 3

Connection 4

"Use path with shorter completion time"

• Path 1: ≈ 20 ms

• Path 2: ≈ 200 ms

→ Use Path 1

Connection 2:

 Traffic Category: Bulk

Connection 3

Connection 2

Connection 4

 Size to be Received: 500 KB

Path Selection Policy:

 "Use path with shorter completion time"

Connection 2 Bulk, 500 KB

• Path 1: ≈ 450 ms

Connection 3

• Path 2: ≈ 225 ms

Connection 4

→ Use Path 2

... or both (MPTCP)

Socket Intents Prototype

- Socket Intents Library: Augmented Socket API
- Multi Access Manager:
 - Standalone daemon with policy modules
 - Gathers current performance estimates
 - Chooses path and local address

See our draft-tiesel-taps-socketintents-bsdsockets and code https://github.com/fg-inet/socket-intents

Paths

Multi Access Manager:

- Detects locally configured interfaces with their prefixes and addresses
- Gathers statistics on them passively, based on current and past traffic

	Path 1		Path 2	
Local prefix	a:a:a:a::a/64	1.2.3.4/24	b:b:b::b/64	5.6.7.8/24
Minimum RTT	8 ms	10 ms	95 ms	105 ms
Maximum Bitrate	1.98 Mbit/s		18.9 Mbit/s	
WiFi Utilization	N/A		60%	

Path Bitrate

- Bitrate per interface
 - Read interface counter every n ms¹

$$- bitrate_{current} = \frac{counter_{current} - counter_{prev}}{n}$$

- bitrate_max: Maximum within the last m minutes²
 - → estimate of bandwidth of the path
- Assumes the bottleneck on each path is within the first few hops

¹ 100 ms works for us

² 5 minutes works for us

Path RTT

- RTT per prefix
 - Linux kernel keeps list of current TCP connections
 - Each TCP connection has a current Smoothed RTT (SRTT)
 - Query SRTTs of all connections over prefix every n ms
 - Compute current mean, median or SRTTs
 - If no current values, retain values for up to m minutes
 - Compute minimum of the last m minutes
- We expect the first hop or first few hops to dominate latency

Radio properties on path

- For WiFi:
 - Current Received Signal Strength
 - Last observed modulation bitrates
 - Utilization: QBSS Information Element from Beacon frames
- Other wireless technologies possible, but hard

Current and Future Work

- Show page load time reduction for web browsing
- More path selection policies
- More path properties
 - RTT variation
 - Packet loss
 - Information from the network

Summary

Socket Intents:

- Application provides hints on Connection (or Message...)
- We know what to optimize for
- Path properties:
 - Socket Intents prototype gathers them locally
 - Observed median SRTT, maximum bitrate, WiFi Utilization
- Path selection:
 - E.g. use Path with shortest expected completion time
 - Other optimization possible, e.g. for cost

See our draft-tiesel-taps-socketintents-bsdsockets and code https://github.com/fg-inet/socket-intents

Theresa Enghardt: Socket Intents