Ball Speed Calculation Using Image Analysis

By: Aadi Patangi

Experiment Setup

- Ping-Pong ball speed is calculated using image analysis.
- Ball speed is analyzed by distance travelled by the ball in captured frames

- Paper scale with one inch incremental lines is prepared
- > Ping-Pong ball is hit and the video of the moving ball is captured at 60fps
- Video is transferred to computer and is analyzed using python opency
- The experiment is repeated 20 times

Frame Analysis for one trial

- After transferring the video (60 fps) to the opency program, video is analyzed frame by frame
- The first frame when the ball enters till the last frame when the ball leaves are visually analyzed (following 8 slides)
- Based on the number of inches passed and the frame count taken, the speed is calculated for that trial
- In the following images, ball moves 19 inches(21 2) in 7 frames (frames 53 60)
- The speed in this example is 19/7 ≈ 2.714 in/frame

= 162.85 in/sec = 13.57 ft/sec

Experiment Summary

- Speed per frame for each trial and average
- The details of the speed calculations are explained in <u>Slide 5</u>

Trial	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	AVG	
Value	2.83"	2.68"	2.92"	2.86"	3.04"	2.63"	3.08"	3.13"	2.68"	2.86"	2.59"	3.00"	3.04"	2.14"	2.79"	3.15"	2.79"	2.68"	2.50"	2.64"	2.80"	

Speed Calculation

Average speed per frame for each trial = 2.80"

fps = 60

Average speed per sec = 2.80 * 60 / 12 ft/sec = **14.00 ft/sec**

Average speed per hour = 14 * 60* 60 / 5280 = **9.55 miles/hour**