NYU Computer Science Bridge to Tandon Course		Spring 2022	
Homework 4			
Name(s)	$\overline{\mathrm{NetID}(\mathrm{s})}$		
Rishie Nandhan Babu	rb5291@nyu.edu		
Amulya Thota	ast9920@nyu.edu		
Cangyuan Li	cl4220@stern.nyu.edu		
Daniel Lim	dl3009@nyu.edu		

Question 9:

Section A: zyBooks Exercise 4.1.3; b-c

Which of the following functions are from \mathbb{R} to \mathbb{R} ? If f is a function, give its range.

(b)
$$f(x) = \frac{1}{x^2 - 4}$$

Answer:

This is not a function from \mathbb{R} to \mathbb{R} because for x=2 or x=-2, there is no corresponding y.

(c)
$$f(x) = \sqrt{x^2}$$

Answer:

This is a function from \mathbb{R} to \mathbb{R} because the square root is undefined only for negative numbers, and $\forall x, x^2 >= 0$. f is a function because there is exactly one y that corresponds to an x. The range is $[0, \infty)$ since $\forall x, f(x) >= 0$.

Section B: zyBooks Exercise 4.1.5; b, d, h, i, l

(b) Let
$$A = \{2, 3, 4, 5\}$$
. $f: A \to \mathbb{Z}$ s.t. $f(x) = x^2$

Answer:

(d) Let $f: \{0,1\}^5 \to \mathbb{Z}$. For $x \in \{0,1\}^5$, f(x) is the number of 1's that occur in x.

Answer:

The range is { 0, 1, 2, 3, 4, 5 }. There can be at most 5 1's in a string 11111, and the lowest possible is 0 1's in a string 00000.

(h) Let
$$A = \{1, 2, 3\}$$
. $f: A \times A \to \mathbb{Z} \times \mathbb{Z}$, where $f(x, y) = (y, x)$

Answer:

Step 1:
$$A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

Step 2: Since A = A, (x, y) = (y, x), so the range is the set in Step 1.

2

(i) Let $A = \{1, 2, 3\}$. $f: A \times A \to \mathbb{Z} \times \mathbb{Z}$, where f(x, y) = (x, y + 1)

Answer:

From (h) we have $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}.$ Then the range is:

$$\{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$$

(1) Let
$$A = \{1, 2, 3\}$$
. $f : \mathcal{P}(A) \to \mathcal{P}(A)$. For $X \subseteq A, f(X) = X - \{1\}$

Answer:

Step 1:
$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Step 2: All elements of the powerset are by definition subsets of A, so the range is:

$$\{\emptyset, \{2\}, \{3\}, \{2,3\}\}$$

Question 10:

Part I.

Section A: zyBooks Exercise 4.2.2; c, g, k

Indicate if the function is one-to-one or not, and if it is onto or not. If not one-to-one or onto, give an example showing why.

(c)
$$f: \mathbb{Z} \to \mathbb{Z}$$
. $h(x) = x^3$

Answer:

One-to-one, but not Onto.

One-to-one: no two integers have the same result when the raised to the power 3.

Not onto: there are examples for y in target set for which there is no x in the domain such that $x^3 = y$. For example: 2, 3, 4 etc have no integer cube roots.

(g)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
. $f(x,y) = (x+1,2y)$

Answer: One-to-one, but not Onto.

One-to-one: no two elements of the domain can be mapped to the same element in the target.

Not onto: for example, for (2,3) in the Target, there is no corresponding (x,y) in the Domain as there is no y such that 2y=3.

(k)
$$f: \mathbb{Z}^+ \to \mathbb{Z}^+$$
. $f(x, y) = 2^x + y$

Answer: Neither one-to-one or onto.

Not one-to-one: Example: Let us consider the integer 7 in the target. For two elements in the Domain (1,5) and (2,3), the function maps to 7 in the Target.

Not onto: Example: For integer 1 in the target, there is no (x, y) in the Domain such that the function maps it to 1 in the Target.

Section B: zyBooks Exercise 4.2.4; b, c, d, g

Indicate if the function is one-to-one, onto, neither, or both. If not one-to-one or onto, give an example showing why.

(b) $f\{0,1\}^3 \to \{0,1\}^3$

Answer:

Neither one-to-one nor Onto

Not one-to-one: For example, two elements of the domain: 000 and 100 are mapped to the same element 100 in the target.

$$f(000) = f(100) = 100$$

Not onto: For example, the element (000) in the Target does not have a corresponding element in the domain.

(c) $f\{0,1\}^3 \to \{0,1\}^3$: The output of f is obtained by taking the input string and reversing the bits.

Answer:

Both one-to-one and onto.

One-to-one: Since each element in the domain is unique, its reverse, i.e, the corresponding element in the Target is also unique.

Onto: Every element in the target can be identified as a reverse of an element in the domain.

(d) $f\{0,1\}^3 \to \{0,1\}^4$: The output of f is obtained by taking the input string and adding an extra copy of the first bit to the end of the string.

Answer:

One-to-one, but not Onto.

One-to-one: every element in the domain has a unique corresponding element in the target.

Not onto: The elements the target that have non-identical first and last bits: such as 0001

(g) Let A be defined as the set $\{1,2,3,4,5,6,7,8\}$ and B be defined as $\{1\}$. $f: P(A) \to P(A)$. For $X \subseteq A$, f(X) = X - B

Answer:

Neither One-to-one nor Onto.

Not one-to-one:

Example: Consider these two subsets of A $\{2\}$ and $\{1, 2\}$.

Since f(X) = X - B,

$$f\{2\} = \{2\} - \{1\} = \{2\}$$

$$f\{1,2\} = \{1,2\} - \{1\} = \{2\}$$

Both $\{2\}$ and $\{1,2\}$ in the Domain set map to the same corresponding element $\{2\}$ in the Target set. Hence not one-to-one.

Not onto:

Example: Consider $\{1\}$ in the target set. There is no corresponding X in the Domain set such that $f(X) = \{1\}$. Hence, not onto.

Part II.

Give an example of a function from the set of integers to the set of positive integers $(\mathbb{Z} \to \mathbb{Z}^+)$ that is:

(a) One-to-one, but not onto.

$$f(x) = \begin{cases} \text{if x is negative,} & |x| \cdot 2\\ \text{if x is non-negative,} & 2x + 3 \end{cases}$$

If x is negative, f(x) will always be positive and even.

If x is positive, the lowest possible f(x) is 5.

If x is zero, f(x) is 3.

All non-negative x outputs an odd/positive f(x).

But there is no x such that f(x) = 1.

 \therefore One-to-one, but not onto.

(b) Onto, but not one-to-one.

$$f(x) = |x| + 1$$

Not one-to-one because x = 2 and x = -2 can produce the same f(x) = 3. Onto, because for every f(x) value, there exists some corresponding x that outputs it.

... Onto, but not one-to-one.

(c) One-to-one and onto.

$$f(x) = \begin{cases} \text{if x is negative,} & |x| \cdot 2\\ \text{if x is non-negative,} & 2x + 1 \end{cases}$$

If $x ext{ is } 0, f(x) = 1$

If x is positive, f(x) = 3, 5, 7, ... (all positive odd integers)

If x is negative, f(x) = 2, 4, 6, ... (all positive even integers)

.: One-to-one and onto (bijection).

(d) Neither one-to-one nor onto.

 $f(x) = x^2 + 1$ If x = -1 or 1, then f(x) = 2 for either. Hence, not one-to-one. Considering the case where f(x) = 7 or 11 or any other positive integer that

is not a perfect square +1, there does not exist an integer solution of x.

... Neither one-to-one nor onto.

Question 11:

zyBooks Exercise 4.3.2; c, d, g, i.

For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f^{-1} .

(c)
$$f: \mathbb{R} \to \mathbb{R}$$
. $f(x) = 2x + 3$

Answer:

- \Rightarrow Both one-to-one and onto, so the function has a well-defined inverse.
- \Rightarrow Let f(x) = y, so y = 2x + 3
- $\Rightarrow 2x = y 3$
- $\Rightarrow x = \frac{y-3}{2}$ $\therefore f^{-1}(y) = \frac{y-3}{2}.$
- (d) Let A be defined to be the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$

 $f: P(A) \to \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

For $X \subseteq A$, f(x) = |X|. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

Answer:

- \Rightarrow Not one to one, as $f(\{1\})$ and $f(\{2\})$ have the same cardinality of f(x) =|X| = 1.
- \Rightarrow Not onto, since there is no $X \subseteq P(A)$ that has a cardinality of 0. The smallest |X| = 1, for $\{1\}$ or \emptyset
- : Well-defined inverse does not exist.
- (g) $f: \{0,1\}^3 \to f: \{0,1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110.

Answer:

⇒ Function is both one-to-one and onto, and hence has a well-defined inverse. $\Rightarrow f^{-1}(x)$ = The inverse output is obtained by simply taking the input string and reversing, which is the same as the function itself.

$$\therefore f^{-1} = f.$$

(i) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, f(x, y) = (x + 5, y - 2).$

Answer:

⇒ Function is both one-to-one and onto, and hence has a well-defined inverse.

 \Rightarrow Let f(x,y) be P,Q, so P=x+5 and Q=y-2

 \Rightarrow Solve for x, y with respect to P, Q

 \Rightarrow So x = P - 5, y = Q + 2

 $\therefore f^{-1}(x,y) = (x-5, y+2).$

Section B: zyBooks Exercise 4.4.8; c, d

The domain and target set of functions f, g, and h are \mathbb{Z} . The functions are defined as:

- $\bullet \ f(x) = 2x + 3$
- g(x) = 5x + 7
- $h(x) = x^2 + 1$
- (c) $f \circ h$

Answer:

$$f(h(x)) = 2(x^{2} + 1) + 3$$
$$= 2x^{2} + 2 + 3$$
$$= 2x^{2} + 5$$

(d) $h \circ f$

Answer:

$$h(f(x)) = (2x+3)^{2} + 1$$
$$= (2x)^{2} + 2 \cdot 2x \cdot 3 + 3^{2} + 1$$
$$= 4x^{2} + 12x + 10$$

Section C: zyBooks Exercise 4.4.2; b-d

(b) Answer:

$$(f \circ h)(x) = f(h(x))$$

$$= f\left(\left\lceil \frac{x}{5} \right\rceil\right)$$

$$= \left(\left\lceil \frac{x}{5} \right\rceil\right)^2$$

$$\therefore (f \circ h) (52) = \left(\left\lceil \frac{52}{5} \right\rceil \right)^2$$
$$= (\left\lceil 10.4 \right\rceil)^2$$
$$= (11)^2 = 121$$

(c) **Answer:**

$$(g \circ h \circ f)(x) = g(h(f(x)))$$

$$= g(h(x^{2}))$$

$$= g\left(\left\lceil \frac{x^{2}}{5} \right\rceil \right)$$

$$= 2^{\left\lceil \frac{x^{2}}{5} \right\rceil}$$

$$\therefore (g \circ h \circ f) (4) = 2^{\left\lceil \frac{16}{5} \right\rceil}$$
$$= 2^4$$
$$= 16$$

(d) Answer:

$$(h \circ f)(x) = h(f(x))$$
$$= h(x^{2})$$
$$= \left\lceil \frac{x^{2}}{5} \right\rceil$$

Section D: zyBooks Exercise 4.4.6; c-e

Define the following functions f, g, and h:

- $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1.
- $g: \{0,1\}^3 \to \{0,1\}^3$. The output of g is obtained by taking the input string and reversing the bits.
- $h: \{0,1\}^3 \to \{0,1\}^3$. The output of h is obtained by taking the input string x, and replacing the last bit with a copy of the first bit.
- (c) What is $(h \circ f)(010)$?

Answer:

$$(h \circ f) (010) = h (f (010))$$

= $h(110)$
= 111

(d) What is the range of $h \circ f$?

Answer:

Domain	f(x)	h(f(x))
000	100	101
001	101	101
010	110	111
011	111	111
100	100	101
101	101	101
110	110	111
111	111	111

:. Range of $h \circ f = \{101, 111\}$

(e) What is the range of $g \circ f$?

Answer:

Domain	f(x)	g(f(x))
000	100	001
001	101	101
010	110	011
011	111	111
100	100	001
101	101	101
110	110	011
111	111	111

 \therefore Range of $g \circ f = \{001, 101, 011, 111\}$

Section E: Extra Credit, zyBooks Exercise 4.4.4; c, d

Let $f: X \to Y$ and $g: Y \to X$ be two functions.

(c) Is it possible that f is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

Answer:

Let us assume $g \circ f$ is one-to-one. We will show that f has to be one-to-one.

Assume $x_1 \in X, x_2 \in X$ such that $x_1 \neq x_2$.

Since $(g \circ f)(x)$ is one-to-one,

$$g(f(x_1)) \neq g(f(x_2))$$

Taking inverse of g on both sides, we get,

$$g^{-1}(g(f(x_1))) \neq g^{-1}(g(f(x_2)))$$

 $\Rightarrow f(x_1) \neq f(x_2) \quad [as \ h^{-1}(h(x)) = x]$

Hence, f is one-to-one.

i.e. If $g \circ f$ is one-to-one, we must have f as one-to-one.

(d) Is it possible that g is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

Answer:

Following example depicts that g is not one-to-one and $g \circ f$ is one-to-one.

