Exercice 1

Soit A un anneau unitaire tel que pour tout $x \in A$, on a $x^2 = x$.

- 1. Montrer que $\forall x \in A$, on a x + x = 0 et que A est commutatif.
- Soit (x, y) ∈ A². Calculer xy(x + y).
 En déduire que si A contient plus de deux éléments alors A n'est pas intègre.

Exercice 2

Soit $A = \mathbb{Z}/9\mathbb{Z}$.

- 1. Déterminer les éléments inversibles de A.
- 2. Déterminer les éléments nilpotents de A.
- 3. Déterminer les diviseurs de zéro dans A.

Exercice 3

Soient A un anneau commutatif et I et J deux idéaux de A. On considère l'ensemble

$$I:J=\{x\in A:xJ\subset I\}.$$

- 1. Montrer que I:J est un idéal.
- 2. Calculer dans \mathbb{Z} , les idéaux suivants : $12\mathbb{Z}$: $2\mathbb{Z}$, $12\mathbb{Z}$: $4\mathbb{Z}$, $12\mathbb{Z}$: $8\mathbb{Z}$ et $12\mathbb{Z}$: $5\mathbb{Z}$.

Exercice 4

Soit $\mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$

- 1. Montrer que $(\mathbb{Z}[\sqrt{2}], +, .)$ est un anneau.
- 2. i) Montrer que $U(\mathbb{Z}[\sqrt{2}])=\{a+b\sqrt{2}\in\mathbb{Z}[\sqrt{2}]:a^2-2b^2=\pm 1\}.$
 - ii) Est ce que $\mathbb{Z}[\sqrt{2}]$ est un corps?

Exercice 5

On considère l'ensemble des matrices suivant : $\mathcal{A} = \{\begin{pmatrix} u & v \\ -\bar{v} & \bar{u} \end{pmatrix} \mid u,v \in \mathbb{C}\}.$

Montrer que (A, +, .) est corps non commutatif.

Exercice 6

Soit A un anneau commutatif unitaire.

- On suppose que A est intègre et qu'il n'admet qu'un nombre fini d'idéaux. Démontrer que A est un corps.
- En déduire que tout anneau commutatif unitaire intègre fini est un corps.

Exercice 7

On considère l'anneau $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} .

- 1. Montrer que l'application $\varphi: \mathbb{R}[X] \to \mathbb{C}$ définie par $\varphi(P) = P(i)$ est un morphisme d'anneaux surjectif.
- 2. Montrer que $ker(\varphi) = (X^2 + 1)$ (l'idéal principal engendré par $X^2 + 1$).
- 3. En déduire que $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$.
- 4. Que peut-on dire de l'idéal $(X^2 + 1)$.

Exercice 8 (Examen normal 2020-2021)

On considère l'anneau $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}.$

Soit $I=(\sqrt{2})$ l'idéal principal de $\mathbb{Z}[\sqrt{2}]$ engendré par $\sqrt{2}$

- 1. Vérifier que $I = \{a + b\sqrt{2} \mid a \in 2\mathbb{Z} \text{ et } b \in \mathbb{Z}\}.$
- 2. Montrer que l'application $f: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}/2\mathbb{Z}$ définie par $f(a+b\sqrt{2}) = \bar{a}$ est un morphisme d'anneaux surjectif.
- 3. Montrer que ker(f) = I.
- 4. En déduire que I est un idéal maximal de $\mathbb{Z}[\sqrt{2}]$.

Exercice 9 (Facultatif)

On considère l'anneau $\mathbb{Z}[i]=\{a+ib:a,b\in\mathbb{Z}\}$ et l'ensemble $I=\{a+ib:a,b\in\mathbb{Z}\ et\ a\equiv b[2]\}.$

- 1. Montrer que l'application $\varphi: \mathbb{Z}[i] \to \mathbb{Z}/2\mathbb{Z}$ définie par $\varphi(a+ib) = \overline{a-b}$ est un morphisme d'anneaux surjectif.
- 2. Montrer que $ker(\varphi) = I$.
- En déduire que I est un idéal maximal de Z[i].

Exercice 10 (Extrait du rattrapage 2022-2023)

- Déterminer \(U(\mathbb{Z}[X])\) et \(U((\mathbb{Z}/2\mathbb{Z})[X])\). (\(U\) désigne l'ensemble des éléments inversibles).
- 2. On considère le morphisme d'anneaux surjectif

$$\begin{array}{cccc} \varphi: & \mathbb{Z}[X] & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})[X] \\ P = \sum_{i=0}^n a_i X^i & \longmapsto & \varphi(P) = \sum_{i=0}^n \overline{a_i} X^i, \end{array}$$

où \bar{a}_i désigne la classe de a_i modulo 2.

- (a) Montrer que $\ker(\varphi) = (2) = 2\mathbb{Z}[X]$ (l'idéal principal de $\mathbb{Z}[X]$ engendré par 2).
- (b) Que peut-on dire de (2) dans $\mathbb{Z}[X]$?

Exercice 11 (Extrait de l'examen normal 2022-2023)

Soit l'ensemble $\mathcal{B} = \{\frac{a}{b} \in \mathbb{Q} : a \in \mathbb{Z}, b \in \mathbb{N}^* \text{ et } b \text{ est impair}\}.$

- 1. Vérifier que $\mathcal B$ est un anneau intègre.
- 2. Vérifier que $\mathcal{U}(\mathcal{B}) = \{\frac{a}{b} \in \mathcal{B} : a \in \mathbb{Z}, b \in \mathbb{N}^*, a \text{ et } b \text{ impairs}\}$. \mathcal{B} est-il un corps?
- On considère l'application φ : B → Z/2Z définie par φ(^a/_t) = ā.
 - a) Vérifier que φ est bien définie et qu'elle est un morphisme d'anneaux surjectif.
 - b) Montrer que $\mathcal{B}/(2) \cong \mathbb{Z}/2\mathbb{Z}$.
 - c) Que peut-on dire de l'idéal (2) dans \mathcal{B} ?

Exercice 12 (Facultatif)

On considère l'anneau $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$ et l'ensemble $I = \{a + ib : a, b \in \mathbb{Z} \text{ et } a \equiv b[2]\}.$

- 1. Montrer que l'application $\varphi: \mathbb{Z}[i] \to \mathbb{Z}/2\mathbb{Z}$ définie par $\varphi(a+ib) = \overline{a-b}$ est un morphisme d'anneaux surjectif.
- 2. Montrer que $ker(\varphi) = I$.
- 3. En déduire que I est un idéal maximal de $\mathbb{Z}[i]$.