PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-261448

(43)Date of publication of application: 13.09.2002

(51)Int.CI.

H05K 3/46 H01L 25/00 HO5K 1/02 HO5K 1/11 H05K 1/18

(21)Application number: 2001-367688

(71)Applicant:

NGK SPARK PLUG CO LTD

(22)Date of filing:

30.11.2001

2000402498

(72)Inventor:

OGAWA KOJU

SUGIMOTO YASUHIRO

(30)Priority

Priority number: 2000377926

Priority date: 12.12.2000

28.12.2000

Priority country: JP

JP

(54) WIRING BOARD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a wiring board that makes the connection between electronic components mounted on its main surface and a chip capacitor mounted on its rear surface easier.

SOLUTION: The wiring board 100 mounted with the chip capacitor 160 on its rear surface 101c has bumps 129 which can be connected to an IC chip 10, first and second capacitor connecting pads 149p and 149g which are connected to the upper surface sections 163 of the terminals 162 of the capacitor 160, a plurality of insulating layers 121, 111, and 141 interposed between the bumps 129 and pads 149p and 149g. The wiring board 100 also has first and second converting conductor layers 146p and 146g which are formed on the boundary 152 between the insulating layers 111 and 141, are connected to the bumps 129 on the main surface 101b side and to the first or second capacitor connecting pads 149p or 149g on the rear surface 101c side, and converts the connected positions and connected numbers on the main and rear surface sides. The layers 146p and 146g are formed in stripelike patterns.

LEGAL STATUS

[Date of request for examination]

19.09.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

REST AVAILABLE COPY

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-261448 (P2002-261448A)

(43)公開日 平成14年9月13日(2002.9.13)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
H05K 3/46		H05K 3/46	N 5E317
			Q 5E336
			Z 5E338
H01L 25/00		H01L 25/00	B 5E346
H 0 5 K 1/02		H05K 1/02	J
	審查請求	未請求 請求項の数9 ()L (全 27 頁) 最終頁に続く
(21)出願番号	特願2001-367688(P2001-367688)	(71)出願人 000004547	
(22)出顧日	平成13年11月30日(2001.11.30)	1	陶業株式会社 古屋市瑞穂区高辻町14番18号
		(72)発明者 小川 幸	謝
(31)優先権主張番号	特願2000-377926(P2000-377926)	愛知県名	古屋市瑞穂区高辻町14番18号 日
(32)優先日	平成12年12月12日(2000.12.12)	本特殊陶	業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 杉本 康	宏
(31)優先権主張番号	特願2000-402498 (P2000-402498)	愛知県名	古屋市瑞穂区高辻町14番18号 日
(32)優先日	平成12年12月28日(2000.12.28)	本特殊陶	業株式会社内
(33)優先権主張国	日本 (JP)	(74)代理人 10010416	7
		弁理士	奥田 誠 (外2名)
			最終頁に続く

(54) 【発明の名称】 配線基板

(57)【要約】

【課題】 配線基板の主面側に搭載した電子部品と裏面 側に搭載したチップコンデンサとの接続を容易とした配 線基板を提供すること。

【解決手段】 裏面101c側にチップコンデンサ16 ○を搭載する配線基板100は、ICチップ10と接続 可能なバンプ129と、チップコンデンサ160の端子 162の上面部163と接続する第1, 第2コンデンサ 接続パッド149p、149gと、これらの間に介在す る複数の絶縁層121.111.141と、層間152 に形成され、主面101b側でバンプ129と接続し、 裏面101c側で第1コンデンサ接続パッド149p、 あるいは第2コンデンサ接続パッド149gと接続し て、主面側と裏面側での接続位置や接続数を変換するス トライプ状パターンの第1,第2変換導体層146p, 146gを有する。

【特許請求の範囲】

【請求項1】主面と裏面とを有する配線基板であって、上記主面側に形成され、この主面上に搭載する電子部品の端子とそれぞれ接続可能な複数の主面側接続端子と、上記裏面側に搭載されており、コンデンサを構成する一方の電極及び他方の電極を備えるチップコンデンサであって

上記主面側を向く第1面、

上記第1面に形成され、上記一方の電極と接続する少な くとも1つの第1端子、及び、

上記第1面に形成され、上記他方の電極と接続する少な くとも1つの第2端子、

を有する少なくとも1つのチップコンデンサと、

上記裏面側に形成され、上記チップコンデンサの第1端 子とそれぞれ接続する第1コンデンサ接続端子と、

上記裏面側に形成され、上記チップコンデンサの第2端子とそれぞれ接続する第2コンデンサ接続端子と、

上記主面側接続端子と上記第1コンデンサ接続端子及び 第2コンデンサ接続端子との間に介在する複数の絶縁層 と、

上記絶縁層同士の層間から選ばれた特定層間に形成され、主面側で複数の上記主面側接続端子と接続し、裏面側で少なくとも1つの上記第1コンデンサ接続端子と接続して、主面側と裏面側での接続位置や接続数を変換する少なくとも1つの第1変換導体層と、

上記第1変換導体層と絶縁しつつ上記特定層間に形成され、主面側で複数の上記主面側接続端子と接続し、裏面側で少なくとも1つの上記第2コンデンサ接続端子と接続して、主面側と裏面側での接続位置や接続数を変換する少なくとも1つの第2変換導体層と、

を備える配線基板。

【請求項2】請求項1に記載の配線基板であって、 前記特定層間として、前記絶縁層同士の層間のうち前記 第1コンデンサ接続端子及び第2コンデンサ接続端子に 最も近い層間を選択し、

前記主面側接続端子のうち前記第1変換導体層及び第2 変換導体層のいずれかに接続する主面側接続端子の数 が、前記第1変換導体層に接続する前記第1コンデンサ 接続端子の数と前記第2変換導体層に接続する前記第2 コンデンサ接続端子の数の和よりも多い配線基板。

【請求項3】請求項1または請求項2に記載の配線基板であって、

前記第1変換導体層に裏面側から接続する前記第1コンデンサ接続端子の少なくとも一部は、接続する当該第1変換導体層を前記第1面側に投影した領域内に位置し、前記第1コンデンサ接続端子と前記第1変換導体層とは、前記絶縁層を貫通するビア導体によって接続され、前記第2変換導体層に裏面側から接続する前記第2コンデンサ接続端子の少なくとも一部は、接続する当該第2変換導体層を前記第1面側に投影した領域内に位置し、

前記第2コンデンサ接続端子と前記第2変換導体層とは、前記絶縁層を貫通するビア導体によって接続されている配線基板。

【請求項4】主面と裏面とを有する配線基板であって、上記主面側に形成され、この主面上に搭載する電子部品の端子とそれぞれ接続可能な複数の主面側接続端子と、上記裏面側に搭載されており、コンデンサを構成する一方の電極及び他方の電極を備えるチップコンデンサであって、

10 上記主面側を向く第1面、

上記第1面に形成され、上記一方の電極と接続する少な くとも1つの第1端子、及び、

上記第1面に形成され、上記他方の電極と接続する少な くとも1つの第2端子、

を有する少なくとも1つのチップコンデンサと、

上記主面側接続端子と上記チップコンデンサの第1端子及び第2端子との間に介在する少なくとも1つの絶縁層と、

上記絶縁層のうち最も裏面側に位置する最裏面側絶縁層 20 の裏面に形成され、主面側で複数の上記主面側接続端子 と接続し、裏面側で少なくとも1つの上記第1端子と直 接または通電接続材を介して接続して、主面側と裏面側 での接続位置や接続数を変換する少なくとも1つの第1 変換導体層と、

上記第1変換導体層と絶縁しつつ上記最裏面側絶縁層の 裏面側に形成され、主面側で複数の上記主面側接続端子 と接続し、裏面側で少なくとも1つの上記第2端子と直 接または上記通電接続材を介して接続して、主面側と裏 面側での接続位置や接続数を変換する少なくとも1つの 30 第2変換導体層と、を備える配線基板。

【請求項5】請求項4に記載の配線基板であって、前記主面側接続端子のうち前記第1変換導体層及び第2変換導体層のいずれかに接続する主面側接続端子の数が、前記第1変換導体層に接続する前記第1端子の数と前記第2変換導体層に接続する前記第2端子の数の和よりも多い配線基板。

【請求項6】請求項1~請求項5のいずれか一項に記載の配線基板であって、

前記第1変換導体層と第2変換導体層とは、交互に並ぶ 40 ストライプ状パターン部分を有する配線基板。

【請求項7】請求項6に記載の配線基板であって、

前記第1変換導体層と前記第2変換導体層とは、前記ストライプ状パターン部分において、前記チップコンデンサの充放電の際に流れる電流の向きが互いに逆向きとなる逆向き電流部分を有する配線基板。

【請求項8】請求項1~請求項7のいずれか一項に記載の配線基板であって、

前記絶縁層より前記裏面側に位置し、上記裏面側に開口する凹部の壁面を構成する凹周囲部を有し、

50 前記第1コンデンサ端子と前記第2コンデンサ端子と

3

は、上記凹部の底面に形成され、

前記チップコンデンサは、上記凹部の底面と上記チップ コンデンサの前記第1面とが対向して、上記凹部内に搭 載されている配線基板。

【請求項9】請求項8に記載の配線基板であって、 前記主面側に位置する第1コア部とこれより前記裏面側 に位置する第2コア部とを含むコア基板であって、

上記第1コア部は前記絶縁層に含まれ、上記第2コア部 は前記凹周囲部に含まれるコア基板を有し、

上記絶縁層は、最も前記裏面側に位置する上記第1コア 部と、これより主面側に積層されてなる1または複数の 樹脂絶縁層とからなり、

前記凹周囲部は、上記第2コア部を含み、上記第2コア 部の上記裏面側に裏面絶縁層を有さないか、または上記 樹脂絶縁層より少ない層数の上記裏面絶縁層を有する配 線基板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子部品を搭載す るための配線基板、特にチップコンデンサを裏面側に搭 載した配線基板に関する。

[0002]

【従来の技術】集積回路技術の進歩によりますますIC チップの動作が高速化されているが、それに伴い、電源 配線等にノイズが重畳されて、誤動作を引き起とすこと がある。そこでノイズ除去のため、例えば図22に示す ように、ICチップ 1 を搭載する配線基板 2 の主面 2 b あるいは裏面2cに、別途、チップコンデンサ3を搭載 し、コンデンサ3の2つの電極とそれぞれ接続するコン デンサ接続配線4を配線基板2の内部に設ける。これに より、コンデンサ接続配線4及びフリップチップバッド 5を経由してチップコンデンサ3をICチップ1の電源 端子や接地端子に接続することが行われている。

[0003]

【発明が解決しようとする課題】しかしながら、上記の 手法では、配線基板2内にチップコンデンサ3と接続す るコンデンサ接続配線4を引き回す必要がある。ICチ ップ1の端子配置などが変更になるとコンデンサ接続配 線4を含めた配線全体を設計し直す必要があった。特に 集積度の高い I C チップなどでは、多数の電源端子や接 40 地端子を形成することが多く、引き回しが複雑になりや すい。さらに、多数のチップコンデンサを搭載したい場 台、あるいは多数の端子を有するチップコンデンサに接 続したい場合などにも、配線の引き回しが複雑になりや すい。本発明は、かかる問題点に鑑みてなされたもので あって、配線基板の主面側に搭載した電子部品と裏面側 に搭載したチップコンデンサとの接続を容易とした配線 基板を提供することを目的とする。

[0004]

の解決手段は、主面と裏面とを有する配線基板であっ て、上記主面側に形成され、この主面上に搭載する電子 部品の端子とそれぞれ接続可能な複数の主面側接続端子 と、上記裏面側に搭載されており、コンデンサを構成す る一方の電極及び他方の電極を備えるチップコンデンサ であって、上記主面側を向く第1面、上記第1面に形成 され、上記一方の電極と接続する少なくとも1つの第1 端子、及び、上記第1面に形成され、上記他方の電極と 接続する少なくとも1つの第2端子、を有する少なくと も1つのチップコンデンサと、上記裏面側に形成され、 上記チップコンデンサの第1端子とそれぞれ接続する第 1コンデンサ接続端子と、上記裏面側に形成され、上記 チップコンデンサの第2端子とそれぞれ接続する第2コ ンデンサ接続端子と、上記主面側接続端子と上記第1コ ンデンサ接続端子及び第2コンデンサ接続端子との間に 介在する複数の絶縁層と、上記絶縁層同士の層間から選 ばれた特定層間に形成され、主面側で複数の上記主面側 接続端子と接続し、裏面側で少なくとも1つの上記第1 コンデンサ接続端子と接続して、主面側と裏面側での接 20 続位置や接続数を変換する少なくとも1つの第1変換導 体層と、上記第1変換導体層と絶縁しつつ上記特定層間 に形成され、主面側で複数の上記主面側接続端子と接続 し、裏面側で少なくとも1つの上記第2コンデンサ接続 端子と接続して、主面側と裏面側での接続位置や接続数 を変換する少なくとも1つの第2変換導体層と、を備え る配線基板である。

【0005】本発明の配線基板では、同じ特定層間に主 面側と裏面側での接続位置や接続数変換する第1,第2 変換導体層が形成されている。この第1変換導体層は、 主面側で主面側接続端子と接続し、裏面側で第1コンデ ンサ接続端子と接続する。また、第2変換導体層は、主 面側で主面側接続端子と接続し、裏面側で第2コンデン サ接続端子と接続する。とのため、主面側接続端子と第 1. 第2コンデンサ接続端子との間の接続が容易にでき る。従って、電子部品の端子とチップコンデンサの第 1, 第2端子との間の接続が容易にできる。

【0006】なお、チップコンデンサとしては、配線基 板に搭載できるものであればいずれのものでも良いが、 例えば、積層セラミックタイプや、電解コンデンサタイ ブ、フィルムコンデンサタイプのものなどが挙げられ る。特に、積層セラミックタイプのチップコンデンサ は、周波数特性も良好である点、また、熱が掛かるなど しても特性が比較的安定である。

【0007】また、チップコンデンサの第1面に形成さ れる第1、第2端子は、多数形成されるものが好まし い。多数形成することで第1、第2変換導体層と並列に 接続ができるので、第1, 第2変換導体層とチップコン デンサとの間の配線で生じる抵抗やインダクタンスをよ り一層低減することができるからである。従って、チッ 【課題を解決するための手段、作用及び効果】そしてそ 50 プコンデンサの第1, 第2端子は、第1面の周縁に形成

されているものでも良いが、さらには第1面内に例えば格子状などに配置されているものが好ましい。また、ある第1端子から見て、これに最も近接する端子が第2端子となるように、第1端子と第2端子とが交互に配置されているものがより好ましい。チップコンデンサからの電荷の充放電に際して第1端子を経由して流れる電流と第2端子を経由して流れる電流とは、その向きが逆向きとなるので、この部分でもインダクタンスを低減できるからである。

【0008】さらに、配線基板としては、エボキシ樹脂、ポリイミド樹脂、BT樹脂、PPE樹脂などの樹脂や、これらの樹脂とガラス繊維やポリエステル繊維などの繊維との複合材料、三次元網目構造のフッ素樹脂にエボキシ樹脂などを含浸させた樹脂複合材料を用いたものが挙げられる。さらに、アルミナ、ムライト、窒化アルミニウム、ガラスセラミックなどからなるセラミック基板、セラミック基板とこれらの樹脂や複合材料とを組み合わせたものなどが挙げられる。また、主面側接続端子や第1、第2コンデンサ接続端子の周囲には、相互間の絶縁を確実にし、ハンダ等の濡れ拡がりを防止するためソルダーレジスト層を形成することもできる。

【0009】さらに、上記配線基板であって、前記特定層間として、前記絶縁層同士の層間のうち前記第1コンデンサ接続端子及び第2コンデンサ接続端子に最も近い層間を選択し、前記主面側接続端子のうち前記第1変換導体層及び第2変換導体層のいずれかに接続する主面側接続端子の数が、前記第1変換導体層に接続する前記第1コンデンサ接続端子の数と前記第2変換導体層に接続する前記第2コンデンサ接続端子の数の和よりも多い配線基板とすると良い。

【0010】主面側接続端子と第1,第2コンデンサ接続端子(チップコンデンサの第1,第2端子)とを結ぶ接続配線は、並列な経路が多いほど、抵抗値やインダクタンスを抑えることができる。従って、第1,第2変換導体層から見て、これらに接続する主面側接続端子の数違い、第1,第2コンデンサ接続端子の数の和)を比較し、数の少ない側の接続配線を短くする方が抵抗やインダクタンスに関して有利となる。従って、第1コンデンサ接続端子及び第2コンデンサ接続端子の数よりも、主相側接続端子のうち第1変換導体層及び第2変換導体層に接続する数の方が多い場合には、第1,第2変換導体層をできるだけ第1,第2コンデンサ接続端子近く、つまりチップコンデンサの近くに配置するのが好ましくなる。

【0011】本発明では、特定層間として、絶縁層同士の層間のうち第1コンデンサ接続端子及び第2コンデンサ接続端子に最も近い層間を選択しているので、第1、第2変換導体層と、第1、第2コンデンサ接続端子とは最も接近して配置されていることになる。従って、主面

側接続端子とチップコンデンサの第1, 第2端子との間の抵抗やインダクタンスを小さくすることができる。なお、高集積のICチップを搭載する配線基板の場合には、主面側接続端子の数が多くなることが多い。高集積のICチップでは、多数の電源端子や接地端子を設けることが多いからである。従って、高集積のICチップを搭載する場合に本発明を適用するのが好ましい。

6

【0012】さらに上記いずれかに記載の配線基板であって、前記第1変換導体層に裏面側から接続する前記第1コンデンサ接続端子の少なくとも一部は、接続する当該第1変換導体層を前記第1面側に投影した領域内に位置し、前記第1コンデンサ接続端子と前記第1変換導体層とは、前記第2変換導体層に裏面側から接続する前記第2コンデンサ接続端子の少なくとも一部は、接続する当該第2変換導体層を前記第1面側に投影した領域内に位置し、前記第2コンデンサ接続端子と前記第2変換導体層とは、前記絶縁層を貫通するビア導体によって接続されている配線基板とすると良い。

【0013】本発明の配線基板では、チップコンデンサのうち、第1変換導体層と接続する第1コンデンサ接続端子の少なくとも一部は、接続する当該第1変換導体層をチップコンデンサの第1面に投影した領域内に位置する。逆に、ある第1コンデンサ接続端子から見ると、これに接続する第1変換導体層が主面側まっすぐ上に位置することになる。そして、この第1コンデンサ接続端子と第1変換導体層とは、絶縁層間に形成される配線層よりも低抵抗、低インダクタンスとなるビア導体によって、具体的には、第1変換導体層から裏面側に向かって絶縁層を貫通して垂直に延びるビア導体によって接続されている。従って、この第1コンデンサ接続端子と第1変換導体層とは、低抵抗や低インダクタンスで接続することができる。

【0014】同様に、第2変換導体層に裏面側で接続する第2コンデンサ接続端子の少なくとも一部は、接続する当該第2変換導体層をチップコンデンサの第1面に投影した領域内に位置する。逆に、ある第2コンデンサ接続端子から見ると、これに接続する第2変換導体層が主面側まっすぐ上に位置することになる。そして、この第2コンデンサ接続端子と第2変換導体層とは、第2変換導体層から裏面側に向かって絶縁層を貫通して垂直に延びるビア導体によって、接続されている。従って、この第2コンデンサ接続端子と第2変換導体層も、低抵抗や低インダクタンスで接続することができる。

【0015】さらに他の解決手段は、主面と裏面とを有する配線基板であって、上記主面側に形成され、この主面上に搭載する電子部品の端子とそれぞれ接続可能な複数の主面側接続端子と、上記裏面側に搭載されており、コンデンサを構成する一方の電極及び他方の電極を備えるチップコンデンサであって、上記主面側を向く第1

面、上記第1面に形成され、上記一方の電極と接続する 少なくとも1つの第1端子、及び、上記第1面に形成さ れ、上記他方の電極と接続する少なくとも1つの第2端 子、を有する少なくとも1つのチップコンデンサと、上 記主面側接続端子と上記チップコンデンサの第1端子及 び第2端子との間に介在する少なくとも1つの絶縁層 と、上記絶縁層のうち最も裏面側に位置する最裏面側絶 縁層の裏面に形成され、主面側で複数の上記主面側接続 端子と接続し、裏面側で少なくとも1つの上記第1端子 と直接または通電接続材を介して接続して、主面側と裏 10 面側での接続位置や接続数を変換する少なくとも1つの 第1変換導体層と、上記第1変換導体層と絶縁しつつ上 記最裏面側絶縁層の裏面側に形成され、主面側で複数の 上記主面側接続端子と接続し、裏面側で少なくとも1つ の上記第2端子と直接または上記通電接続材を介して接 続して、主面側と裏面側での接続位置や接続数を変換す る少なくとも1つの第2変換導体層と、を備える配線基 板である。

【0016】本発明の配線基板では、最裏面側絶縁層の 裏面に、主面側と裏面側での接続位置や接続数を変換す る第1、第2変換導体層が形成されている。この第1変 換導体層は、主面側で主面側接続端子と接続し、裏面側 でチップコンデンサの第1端子と接続する。また、第2 変換導体層は、主面側で主面側接続端子と接続し、裏面 側でチップコンデンサの第2端子と接続する。このた め、主面側接続端子、従って電子部品の端子とチップコ ンデンサの第1、第2端子との間の接続が容易にでき る。しかも、第1, 第2変換導体層は、主面側接続端子 とチップコンデンサの第1端子及び第2端子との間の絶 縁層のうち最も裏面側に位置する最裏面側絶縁層の裏面 に形成されている。とのため、チップコンデンサの第 1, 第2端子と第1, 第2変換導体層とが最も近くなる ので、この間に生じる抵抗やインダクタンスを最も小さ くすることができる。さらに、第1, 第2変換導体層 は、ビア導体等を介さず、チップコンデンサの第1,第 2端子と直接または通電接続材を介して接続している。 従って、チップコンデンサの第1, 第2端子と第1, 第 2変換導体層との接続によって生じる抵抗やインダクタ ンスを最も小さくすることができる。

【0017】なお、通電接続材としては、ハンダ、導電 40性接着剤などが挙げられる。ハンダとしては、配線基板や第1、第2端子等の材質を考慮して選択すれば良く、例えば、Pb-Sn系、Sn-Sb系などのハンダが挙げられる。また、導電性接着材としては、例えば、エボキシ樹脂などの樹脂に、カーボン粉末や銀、銅、ニッケルなどの金属粉末、これらの金属で被覆した樹脂粒子あるいはガラス粒子などからなる導線性のフィラーを分散して導電性を付与したものが挙げられる。

【0018】さらに、上記配線基板であって、前記主面 側接続端子のうち前記第1変換導体層及び第2変換導体 層のいずれかに接続する主面側接続端子の数が、前記第 1変換導体層に接続する前記第1端子の数と前記第2変 換導体層に接続する前記第2端子の数の和よりも多い配 線基板とすると良い。

9

【0019】主面側接続端子とチップコンデンサの第 1、第2端子とを結ぶ接続配線は、並列な経路が多いほ ど、抵抗値やインダクタンスを抑えることができる。従って、第1、第2変換導体層から見て、これらに接続す る主面側接続端子の数と第1、端子と第2端子の数の和 を比較し、数の少ない側の接続配線を短くする方が抵抗 やインダクタンスに関して有利となる。従って、第1端 子及び第2端子の数よりも、主面側接続端子のうち第1 変換導体層及び第2変換導体層に接続する数の方が多い 場合には、第1、第2変換導体層をできるだけ第1、第 2端子近く、つまりチップコンデンサの近くに配置する のが好ましくなる。

【0020】本発明では、前記したように第1、第2変換導体層が最裏面側絶縁層の裏面に形成され、チップコンデンサの第1、第2端子と直接または接続材を介して接続しているので、第1、第2変換導体層とチップコンデンサの第1、第2端子とは特に近い位置に配置されていることになる。従って、主面側接続端子とチップコンデンサの第1、第2端子との間の抵抗やインダクタンスを特に小さくすることができる。なお、高集積のICチップを搭載する配線基板の場合には、主面側接続端子の数が多くなることが多い。高集積のICチップでは、多数の電源端子や接地端子を設けることが多いからである。従って、高集積のICチップを搭載する場合に本発明を適用するのが好ましい。

【0021】さらに上記いずれかに記載の配線基板であって、前記第1変換導体層と第2変換導体層とは、交互に並ぶストライプ状パターン部分を有する配線基板すると良い。

【0022】一般にICチップなどの電子部品の接続端 子やこれに対応する主面側接続端子のうち、チップコン デンサの第1端子に接続されるもの(例えば、電源電位 に接続されるもの)と第2端子に接続されるもの(たと えば、接地電位に接続されるもの)とは近接して並部用 に設計・配置する場合が多い。これに対し、本発明の配 線基板では第1変換導体層と第2変換導体層とがストラ イプ状パターン部分を有する。このストライブ状パター ン部分では、第1変換導体層と第2変換導体層とが隣り 合って並んでいるので、主面側接続端子が接続すべきチ ップコンデンサの端子(第1端子、第2端子のいずれ か)に応じて、主面側接続端子から裏面側に向けてビア を用いて接続配線を延ばすと共に、必要に応じて絶縁層 同士の層間において短い配線を形成するなどして目的の 第1又は第2変換導体層に接続できるように位置を調整 すれば良い。つまり、このストライプ状パターン部分で 50 は、主面側接続端子を、第1, 第2変換導体層のいずれ

にも容易に接続でき、接続配線の設計が容易になる。

【0023】特に、チップコンデンサにおいてその第1 端子及び第2端子が交互に配置されている場合には、ス トライプ状パターン部分では、チップコンデンサの第1 端子を第1変換導体層に、第2端子を第2変換導体層に それぞれ容易に接続できるので、接続配線設計が容易に なる。しかも、チップコンデンサの第1端子及び第2端 子を交互に配置すると、インダクタンスを抑制でき流転 でも好ましい。チップコンデンサから出入りする電流の 向きを互いに逆向きにすることでインダクタンスを低く できるからである。

【0024】さらに、上記配線基板であって、前記第1 変換導体層と前記第2変換導体層とは、前記ストライプ 状パターン部分において、前記チップコンデンサの充放 電の際に流れる電流の向きが互いに逆向きとなる逆向き 電流部分を有する配線基板とすると良い。

【0025】本発明の配線基板では、逆向き電流部分有 するので、この逆向き電流部分でチップコンデンサの充 放電の際に流れる電流の向きが互いに逆向きとなり、互 いに磁界を打ち消しあう(負の相互インダクタンスを生 20 じる)。従って、この部分でインダクタンスを更に抑制 し、全体としてもよりインダクタンスを低くすることが できる。

【0026】さらに、上記いずれかに記載の配線基板で あって、前記絶縁層より前記裏面側に位置し、上記裏面 側に開口する凹部の壁面を構成する凹周囲部を有し、前 記第1コンデンサ端子と前記第2コンデンサ端子とは、 上記凹部の底面に形成され、前記チップコンデンサは、 上記凹部の底面と上記チップコンデンサの前記第1面と が対向して、上記凹部内に搭載されている配線基板とす ると良い。

【0027】本発明の配線基板では、第1面に第1端子 及び第2端子を有するチップコンデンサを、凹部内に搭 載する。従って、配線基板の主面上に搭載する電子部品 とチップコンデンサとが凹部の底面を挟んで略対向する ように搭載される。このため、凹部が形成されていない 両面積層配線基板と比較して、配線基板の主面側接続端 子とチップコンデンサの第1端子及び第2端子との距離 を短くし、さらには、主面上に搭載する電子部品とチッ プコンデンサとの距離を短くすることができる。従っ て、凹部が形成されていない両面積層配線基板と比較し て、短い経路で配線基板の主面側接続端子とコンデンサ の第1端子及び第2端子とを接続することが可能にな り、これらの経路で発生する抵抗成分やインダクタンス 成分を抑制できる。

【0028】さらに、上記配線基板であって、前記主面 側に位置する第1コア部とこれより前記裏面側に位置す る第2コア部とを含むコア基板であって、上記第1コア 部は前記絶縁層に含まれ、上記第2コア部は前記凹周囲 部に含まれるコア基板を有し、上記絶縁層は、最も前記 50 線層125に接続し、それぞれ周縁側(図1、図6中、

裏面側に位置する上記第1コア部と、これより主面側に 積層されてなる1または複数の樹脂絶縁層とからなり、 前記凹周囲部は、上記第2コア部を含み、上記第2コア 部の上記裏面側に裏面絶縁層を有さないか、または上記 樹脂絶縁層より少ない層数の上記裏面絶縁層を有する配 線基板とすると良い。

【0029】本発明の配線基板は、第1コア部の主面側 つまりコア基板の主面側に1または複数の樹脂絶縁層を 積層する一方、第2コア部の裏面側つまりコア基板の裏 面側には裏面絶縁層が無いか、樹脂絶縁層より少ない裏 面絶縁層を有する配線基板である。このため、この配線 基板は、両面積層配線基板と比較して裏面絶縁層を無く し、あるいは少なくできた分、安価である。

[0030]

【発明の実施の形態】(実施形態1)本発明の第1の実 施形態を、図1~図7を参照しつつ説明する。図1、図 6に示す配線基板100は、配線基板本体101とこの 裏面101c側に搭載されたチップコンデンサ160と からなる。配線基板101は、コア基板110と、その 上下にそれぞれ積層されたエポキシ樹脂からなる主面側 樹脂絶縁層121及びソルダーレジスト層122、裏面 側樹脂絶縁層141及びソルダーレジスト層142を有 する。配線基板本体101の主面101bの中央部に は、バンプ129が多数形成され、破線で示すICチッ ブ10の下面11に多数形成された接続端子12とそれ ぞれフリップチップ接続可能とされている。また、裏面 101 cでは、その略中央部分にコンデンサ接続パッド 149 (第1, 第2コンデンサ接続パッド149p, 1 49g)が多数形成され、このコンデンサ接続パッド1 49にハンダ169を用いてチップコンデンサ160が 多数搭載されている。さらに裏面101cの周縁部分に は、図示しないマザーボードなどの他の配線基板に多数 形成された接続端子とそれぞれ接続可能な接続バッド1 48が形成されている。

【0031】コア基板110は、31mm×31mmの 矩形板状で、厚さ1.0mmのガラス-エポキシ樹脂複 合材料からなるコア基板本体111を有している。その 上面111bと下面111cとの間には、これを貫通す る多数のスルーホール用貫通孔111hが穿孔されてい る。このスルーホール貫通孔111h内には、公知のス 40 ルーホール導体112, 113が形成されている。主面 101b側に形成されたバンプ129は、ソルダーレジ スト層122に開口するパッド128、及び主面側樹脂 絶縁層121を貫通するビア導体127を通じて、コア 基板本体111の上面111b(コア基板本体1111と 主面側樹脂絶縁層121との層間151) に形成された 配線層125,126に接続している。

【0032】具体的には、概略周縁部分に位置するバン ブ129は、パッド128、ビア導体127を通じて配 右または左方向)にファンアウトして周縁部分に位置す るスルーホール導体112に接続する。さらに、裏面1 11 c (コア基板本体 1 1 1 と 裏面側樹脂絶縁層 1 4 1 との層間152) に形成された配線層145、裏面側樹 脂絶縁層141を貫通するビア導体147を通じてソル ダーレジスト層142から露出する接続パッド148に 接続している。とれらは、例えば、主として信号用配線 として使用されるが、+の電源電位及び接地電位を供給 する電源配線として用いることもある。なお、ビア導体 147に発生する抵抗やインダクタンスを下げるため、 複数のビア導体147で裏面側樹脂絶縁層141と接続 パッド148とを接続するのが好ましい。

【0033】一方、概略中央部分に位置するバンブ12 9は、パッド128、ビア導体127を通じて、ファン アウトすることなく層間151に形成された配線層12 6で位置を調整し、あるいは複数のバンブ129からの 配線(ビア導体127)を纏めた上、つまり並列接続し た上、中央部分に位置するスルーホール導体113に接 続する。バンプ129同士の間隔(例えば、最小150 μm)に比して、スルーホール導体113同士の間隔が 大きい(例えば、最小600μm)場合にこのようにす ると良い。さらにコア基板111の下面111c (層間 152) に形成され、変換導体層146に接続し、裏面 側樹脂絶縁層141を貫通するビア導体147を通じて ソルダーレジスト層142から露出するコンデンサ接続 パッド149に接続している。従って、コンデンサ16 0の電極162(162b, 162c)とバンプ129 とが接続される。

【0034】なお、図1の左端に示すように、裏面10 1 c の周縁に位置する接続パッド148のうち或るもの は、ビア導体147を通じて変換導体層146に接続し ており、このような経路によって、+の電源電位及び接 地電位が中央部分に位置するバンブ129及びチップコ ンデンサ160にそれぞれ供給される。あるいは、接続 パッド148、ビア導体147、配線層145、スルー ホール導体112、及び配線層125,126を経由し て、+の電源電位及び接地電位を、中央部分に位置する バンプ129及びチップコンデンサ160に供給するこ ともできる。

【0035】この変換導体層146は、後述するように (図4参照)、+の電源電位(共通第1電位)に接続さ れる第1変換導体層146pと、接地電位(共通第2電 位)に接続される第2変換導体層146gとが、ストラ イプ状に交互に配置されたパターンとされたものであ る。

【0036】裏面101cに搭載されたチップコンデン サ160は、図1下方の拡大図、図2、及び図3に示す ように、BaTiO3系の高誘電体セラミックからなる 積層セラミックコンデンサである。このうちコンデンサ 本体161は、略直方形状(3.2×1.6×0.8m 50 0の第1側面161s1と第3側面161s3同士、及

m)であり、配線基板本体101の主面101b側を向 くコンデンサ上面(第1面) 160 u である上面 161 u、下面110b側を向くコンデンサ下面160vであ る下面161v、及び4つの側面161s(161s 1、161s2、161s3、161s4)を有してい る(図2,図3参照)。

12

【0037】図1下方の拡大図に示すように、その内部 には、一方の電極層161eと他方の電極層161fと が、セラミック高誘電体層161cを介して交互に、上 面161 u に平行に(側面161 s に垂直に)、従っ 10 て、主面101bに平行に多数積層されている。とれら の電極層 161e, 161 f はニッケル (Ni) からな る。各電極層 161e, 161fの一部が、それぞれ第 1側面161s1及び第3側面161s3に引き出され て、Cuからなる端子162の側面部164に接続して いる。具体的には一方の電極層161eが一方の側面部 164bに、他方の電極層 161 f が他方の側面部 16 4 c に接続している。

【0038】端子162b、162cは、それぞれ第1 側面161s1上、及び第3側面161s3上に位置す る側面部 164b, 164cを有するほか、上面 161 uに上面部163b, 163cを、下面161vに下面 部165b、165cをそれぞれ有している。従って、 端子162b, 162cは、この上面部163b, 16 3 cから上面161 u の周縁を越えて、側面161 s を 上面161u (つまり主面101b側) から下面161 v (つまり裏面101c側) に向かって延び (側面部1 64b, 164c)、さらに、下面161vの周縁を越 えて下面部165b,165cに接続して、略コ字形状 となっている。

【0039】本実施形態のチップコンデンサ160で は、第1側面161s1とこれに対向する第3側面16 1 s 3 に、それぞれ4つの端子162が形成されてお り、第2側面161s2及び第4側面161s4には端 子162は形成されていない。また、図2に示すよう に、1つのチップコンデンサ160について、第1側面 161s1から時計回りに第2側面161s2、第3側 面161s3、第4側面161s4の順に見ると、端子 162b, 162c. 従って、その上面部163b, 1 63cが交互に並んで配置されている。つまり、後述す るように、電極層161e、161 f のいずれか一方 (本実施形態では161e)を+の電源電位(図2に 「+」で示す)に、他方(本実施形態では161f)を 接地電位(図2に「G」で示す)にすると、「+」で示 す電源電位に接続する端子162b(上面部163b) と、「G」で示す接地電位に接続する端子162c(上 面部163c)とが交互に並ぶ構造とされている。 【0040】さらに、チップコンデンサ160は、図2

及び図3に示すように、隣り合うチップコンデンサ16

び第2側面161s2と第4側面161s4同士が対向 するように、主面110bから見て、縦横格子状に配置 されている。このため、電源電位と接地電位との各チッ ブコンデンサ160への接続を考慮することにより、図 2に示すように、隣り合って対向する端子162の側面 部164同士を、別の電位にする、つまり図3に示すよ うに、一方のコンデンサの電源電位とした側面部164 bと、他方のコンデンサの接地電位とした側面端子16 4 c とが隣り合わせとなるように配置している。

13

【0041】ところで、このチップコンデンサ160に ついて充放電させると、図1及び図3に矢印で示すよう に、端子162の側面部164に電流が流れる。との電 流によって、側面161s1などを上下方向に延びる側 面部164には、インダクタンスが発生する。なお、図 中の矢印は各チップコンデンサ160に充電したときの 電流の方向を示す。放電の場合にはこの逆になることは 言うまでもない。1つのチップコンデンサ160につい てみると、隣り合う側面部164相互の関係では、接続 される電位が異なるので、充放電の際に流れる電流の向 きが逆になる。従って、このように隣り合う側面部16 4に接続する電位が異なるように配置することで、両者 の結合によって発生する相互インダクタンスの分だけ、 側面部164(端子162)のインダクタンスを減少さ せることができる。

【0042】しかも、隣り合った2つのチップコンデン サ160同士についてみると、隣り合って対向する側面 部164同士の関係でも、接続される電位が異なるの で、充放電の際に流れる電流の向きが逆になる。従っ て、ここでも両者の結合によって発生する相互インダク タンスの分だけ、自己インダクタンスを減少させること ができる。従って、全体としてさらにインダクタンスを 低下させることができる。

【0043】その上、本実施形態では、図2に示すよう に、チップコンデンサ160内で隣り合う側面部164 同士の間隔 (ピッチ) P1=0.8 mmよりも、隣り合 うチップコンデンサ160同士の隣り台って対向する側 面部164同士の間隔(ピッチ) P2=0. 4mmの方 が小さくされている。このため、隣り合って対向する側 面部164同士の結合が大きくなり、インダクタンスを 160同士の間には空隙が保たれ、コンデンサ接続パッ ド149同士の間には、ソルダーレジスト層142が介 在しているので、側面部164同士の絶縁は保たれてい

【0044】更に、本実施形態の配線基板本体101で は、図1に示すように、コア基板本体111と裏面側樹 脂絶縁層141との層間152に変換導体層146が形 成されている。この変換導体層146とチップコンデン サ160の端子162b、162c、特にその上面部1 63b, 163c、さらにスルーホール導体113との 50

関係について、図4、図5、図6を参照して説明する。 【0045】図4は、図1、図6におけるM-M'断面 において、主面側から裏面側樹脂絶縁層141、ソルダ ーレジスト層142、コンデンサ接続パッド149等を 透視して(あるいは除いて)チップコンデンサ113を 見た図、従って、図1におけるN-N′断面において、 主面101b側から上面160uに変換導体層146を 投影した状態を示す図である。変換導体層146には、 第1変換導体層146pと第2変換導体層146gとが 含まれ、図4においてハッチングを異ならせて示すよう に、第1変換導体層146p及び第2変換導体層146 gは、いずれも帯状にされ、しかも、交互に並ぶストラ イプ状パターンとして配置されている。

【0046】しかも、第1変換導体層146pはチップ コンデンサ160の端子162(上面部163)のう ち、+の電源電位に接続される端子162b(上面部1 63b) の上方(主面101b側) に位置し、第2変換 導体層146gは、接地電位に接続される端子162c (上面部163c)の上方(主面101b側)に位置し 20 ている。従って、第1変換導体層146pとその下方 (裏面101c側)に位置するチップコンデンサ160 の端子162b(上面部163b)とは、裏面側樹脂絶 縁層141を貫通するどく短いビア導体147及び第1 コンデンサ接続パッド149pで接続することで足りる (図1参照)。同様に、第2変換導体層146gとその 下方に位置する端子162c(上面部163c)とも、 裏面側樹脂絶縁層141を貫通するどく短いビア導体1 47及び第2コンデンサ接続バッド149gで接続すれ ば足りる。このため、変換導体層146とコンデンサ1 60の端子162(上面部163)との間に生じる抵抗 やインダクタンスは低く抑えることができる。

【0047】次いで、図5を参照して、変換導体層14 6とそれより主面側に位置するスルーホール導体113 との接続関係について説明する。図5は、図4におい て、さらにストライプ状に配置された第1,第2変換導 体層146p、146gに主面側から接続するスルーホ ール導体113の接続位置を重ねて表示したものであ る。本図において、第1変換導体層146pに接続する スルーホール導体113pの位置を○(マル)にpの記 より小さくすることができる。なお、チップコンデンサ 40 号で表し、第2変換導体層146gに接続するスルーホ ール導体113gの位置を○にgの記号で表している。 図5から容易に理解できるように、本実施形態では、ス ルーホール導体113p、113gは、ちょうど端子1 62b, 162c(上面部163b, 163c)の上方 (主面101b側)でそれぞれ第1,第2変換導体層1 46p. 146gに接続するものがある。なお、一部で は上面部163b, 163cの上方で接続しない部位も ある。図5におけるX-X'断面は、図1に示す断面図 に相当する。

【0048】さらにそのほか、チップコンデンサ160

内の2つの端子162b(上面部163b)の間を架け渡す第1変換導体層146pの間の部分、具体的には、チップコンデンサ160を平面視縦長に見たときの中心線上で、中間接続スルーホール導体113pmが、第1変換導体層146pに接続している。また同様に、チップコンデンサ160の2つの端子162c(上面部163c)の間を架け渡す第2変換導体層146gの間の部分、具体的には、チップコンデンサ160を平面視縦長に見たときの中心線上でも、中間接続スルーホール導体113gmが、第2変換導体層146gに接続している。なお、図5におけるY-Y 断面が、図6に示す断面図に相当する。

【0049】このように、第1変換導体層146p及び 第2変換導体層146gをストライプ状に交互に配置し ているので、バンプ129からパッド128、ビア導体 127、配線層126及びスルーホール導体113を通 じて変換導体層126に接続するにあたり、短い配線層 126によってその位置を調整すれば足りるので接続が 容易である。このため、このスルーホール導体113、 配線層126及びビア導体127、及びパッド128を 通じて、バンプ129に+の電源電位及び接地電位のい ずれをも容易に引き出すことができるとともに、チップ コンデンサ160と短い距離で接続することができる。 しかも、第1, 第2変換導体層146p, 146gはい ずれも、コア基板本体111と裏面側樹脂絶縁層141 との層間152に形成されているので、2層のベタ状 (平板状)の変換導体層を用いた場合に比して、必要と なる層間の数が少なくなるから、配線基板本体101に おける樹脂絶縁層を1層分少なくできる。

【0050】さらに、図7に示すように、この配線基板100において、チップコンデンサ160を放電させる場合を考える。即ち、チップコンデンサ160の電源電位の端子162b(上面部163b)から、第1変換導体層162p及びスルーホール導体113pを通じて、1Cチップ10から、スルーホール導体113g、第2変換導体層146gを通じて、チップコンデンサ160の接地電位の端子162c(上面部163c)へ電流を流す場合を考える。この場合において、第1変換導体層146pから中間接続スルーホール導体113pmに流れ込む電流、及び中間接続スルーホール導体113gmから第2変換導体層146gに流れ出る電流を矢印で示す。

【0051】すると、図7において一点鎖線で囲む逆向き電流部分41においては、第1変換導体層146pを流れる電流の向きと第2変換導体層146gを流れる電流の向きとが逆向きになる。従って、この部分では相互インダクタンスが負となり、この部分でのインダクタンスを抑制できるから、変換導体層146、さらには、配線基板100(配線基板本体101)全体に生じるインダクタンスをより低減することができることが判る。

16

【0052】さらに、本実施形態では、図1及び図6から容易に理解できるように、主面側から変換導体層146に接続するスルーホール導体113の数の方が、きらにはこれらに接続するバンプ129の数の方が、裏面側から変換層体層146に接続するビア導体147の数よりも多い。従って、変換導体層146を層間152に設けたことにより、変換導体層を他の層間151に設けた場合よりも、全体として、チップコンデンサ160とバンプ129との間に生じる抵抗やインダクタンスを低く10抑えることができる。

【0053】次いで、本実施形態の配線基板100の製 造方法について説明する。本実施形態の配線基板100 は、樹脂配線基板の公知のビルドアップ製法によって形 成すればよい。例えば、まず、ガラスーエポキシ樹脂複 合材料からなり、上面111bと下面111cとの間を 貫通する多数の貫通孔111hを有するコア基板本体1 11を用意する。これらの貫通孔111hは、例えば、 ドリル、レーザ等によって穿孔する。その後、公知のパ ネルメッキ法によりコア基板本体111にCuメッキを 20 施し、エッチングにより所定のパターンを形成した後、 貫通孔111h内に樹脂112rを充填する。さらにメ ッキを施して、貫通孔111H内にスルーホール導体1 12, 113を形成するとともに、コア基板本体の上面 111b及び下面111cに所定パターンの配線層12 5, 126, 145、変換導体層146をそれぞれ形成 する。

【0054】次いで、公知のビルドアップ絶縁層形成手 法により、主面側及び裏面側樹脂絶縁層121,141 を形成し、さらにこれらをそれぞれ貫通するビア導体1 30 27,147、及びパッド128、接続パッド148、 コンデンサ接続パッド149をそれぞれ形成する。さら に、不要部分を覆うようにして、ソルダーレジスト層1 22,142を形成して配線基板本体101が完成す る。その後は、コンデンサ接続パッド149に予めハン ダベーストを塗布した上で、チップコンデンサ160を 裏面101cに搭載し、リフローしてチップコンデンサ 160の端子162(主に上面部163)とコンデンサ 接続パッド149とをハンダ169を介して接続する。 さらに、パッド128にハンダペーストを塗布し、ハン ダ169の溶融しない温度でリフローして、バンプ12 9を形成する。このようにして、配線基板100が完成 する。

【0055】との配線基板100は、上記のようにチップコンデンサ160を裏面101cに多数搭載しているため、ノイズを確実に除去できる上、複数のチップコンデンサ160を並列に接続しているので、搭載するコンデンサ全体としてのインダクタンスも低減させることができる。しかも、各チップコンデンサ160について見ると、隣り合って対向する端子162同士の極性が異なり、流れる電流の向きが逆向きになる。このため、イン

ダクタンスをさらに減少させることができ、より一層、 低インダクタンスで I C チップ 1 0 とコンデンサ 1 6 0 とを接続することができる。

17

【0056】また、チップコンデンサ160の端子16 2には、上面部163b、163cを形成しているの で、配線基板本体101の裏面101c側に形成したコ ンデンサ接続バッド149と端子162(上面部163 b, 163c)との接続が容易になる。しかも、変換導 体層として、第1変換導体層146pと第2変換導体層 146gとを同じ層間152に形成しているので、樹脂 絶縁層の数を減らすことができている。従って、コスト ダウンを図ることができる。

【0057】(変形形態1)上記実施形態における変換 導体層146は、図4等に示すように、若干ジグザグに 蛇行しているが、大略まっすぐな帯状の第1, 第2変換 導体層146p、146gが交互に並んだストライプ状 パターンとしたが、他のストライプ状パターンによって

【0058】例えば、図8に、本変形形態1の第1,第 2変換導体層246p, 246gと、チップコンデンサ 20 す。この変形形態3では、図10から容易に理解できる 160の端子162の上面部163b, 163cとの関 係を示す。この変形形態では、図8から容易に理解でき るように、第1、第2変換導体層246p, 246gが それぞれジグザグ帯状にされ、しかも、第1, 第2変換 導体層246p,246gが交互に並んだストライプ状 バターンとされている。変換導体層246をこのような パターンとしても、実施形態1と同じく、チップコンデ ンサ160の上面部163b、163cが、それぞれ第 1, 第2変換導体層246p, 246gの下方(裏面 側)に位置しており、実施形態1と同様、ごく短いビア 導体147及びコンデンサ接続パット149で互いに接 続することができる。また、この変換導体層246の主 面側においても、スルーホール導体113と容易に接続 することができる(図1参照)。従って、変換導体層2 46によっても、チップコンデンサ160とバンプ12 9(ICチップ10の接続端子12)とを、容易に接続 することができる。

【0059】(変形形態2)また、上記実施形態及び変 形形態1では、チップコンデンサ160の4つ側面16 1 s 1~1 6 1 s 4 のうち、第 1 側面 1 6 1 s 1 と第 3 側面 1 6 1 s 3 に端子 1 6 2 が形成されたものを使用し たが、他の形態のチップコンデンサを用いることもでき る。例えば、図9に示すように、本変形形態2で使用す るチップコンデンサ360は、前記実施形態1のチップ コンデンサ160と同じく、その第1側面361s1と 第3側面361 s 3に端子362 b, 362 c (上面部 363b, 363c)が形成されている他、さらに、第 2側面361s2と第4側面361s4にも、それぞれ 端子362(上面部363bs, 363cs)が形成さ れている。

【0060】このようなチップコンデンサ360を用い た場合にも、この図9に示すように、ジグザグ帯状の第 1, 第2変換導体層346p, 346gを交互に並んだ ストライプ状に形成することにより、各上面部363 b、363c (363bs, 363csを含む)を、そ れぞれ第1、第2変換導体層346p、346gの下方 に位置させることができ、実施形態1と同様、ごく短い ビア導体147で互いに接続することができる。また、 この変換導体層346の主面側においても、スルーホー 10 ル導体113と容易に接続することができる(図1参 照)。従って、変換導体層346により、チップコンデ ンサ360とバンプ129(1Cチップ10の接続端子 12)とを、容易に接続することができる。

18

【0061】(変形形態3)さらに、上記変形形態2に おけるチップコンデンサ360を用いて、第1,第2変 換導体層を他のストライプ状パターンとすることもでき る。例えば、図10に、本変形形態3の第1, 第2変換 導体層446p, 446gと、チップコンデンサ360 の端子362の上面部363b, 363cとの関係を示 ように、第1, 第2変換導体層446p, 446gがそ れぞれほぼまっすぐな帯状で、しかも交互に並んだスト ライプ形状とされている。また、変形形態2と同じく、 各上面部363b, 363cが、それぞれ第1, 第2変 換導体層446p、446gの下方に位置しており、変 形形態2と同様、どく短いビア導体147で互いに接続 することができる。また、この変換導体層446の主面 側においても、スルーホール導体113と容易に接続す ることができる(図1参照)。従って、変換導体層44 30 6によっても、チップコンデンサ360とバンプ129 (ICチップ10の接続端子12)とを、容易に接続す ることができる。

【0062】(変形形態4)上記実施形態及び変形形態 1~3においては、チップコンデンサの端子162,3 62は、いずれも側面に形成され、上面に回り込んで形 成された上面部163、363を有する形態であった。 しかし、本件発明に使用できるチップコンデンサとして は、チップコンデンサの上面に端子が形成されて、上方 (主面側) から接続できるものであれば良く、上面にバ 40 ンプ状に端子が形成されたものでも良い。例えば、図1 1に示すように、本変形形態4で使用するチップコンデ ンサ560は、前記実施形態のチップコンデンサ160 等とは異なり、その上面560u(チップコンデンサ本 体の上面561 u) に、縦横格子状に端子563が並ん でいる。しかも、+の電源電位に接続する第1端子56 3 bと接地電位に接続する第2端子563cとが、交互 に並ぶように配置されている。このようなチップコンデ ンサ560を用いた場合にも、この図11に示すよう に、直線帯状の第1、第2変換導体層546p,546 gが交互に並んだストライプ形成とすることにより、各

端子563b、563cを、それぞれ第1、第2変換導体層546p、546gの下方に位置させることができ、上記実施形態1等と同様、ごく短いビア導体147で互いに接続することができる。また、この変換導体層546の主面側においても、スルーホール導体113と容易に接続することができる(図1参照)。従って、変換導体層546によっても、チップコンデンサ560とバンブ129(ICチップ10の接続端子12)とを、容易に接続することができる。

19

【0063】(変形形態5) さらに、上記変形形態4に 10 おけるチップコンデンサ560を用いて、第1, 第2変 換導体層を他のストライプ状パターンとすることもでき る。例えば、図12に、本変形形態4の第1, 第2変換 導体層646p, 646gと、チップコンデンサ560 の端子563b、563cとの関係を示す。この変形形 態5では、図12から容易に理解できるように、第1、 第2変換導体層646p, 646gは、それぞれジグザ グ帯状で、しかも交互に並んだストライプ状パターンと されている。また、変形形態4と同じく、各端子563 b. 563 cが、それぞれ第1、第2変換導体層646 p, 646gの下方に位置しており、変形形態4と同 様、どく短いビア導体147で互いに接続することがで きる。また、この変換導体層646の主面側において も、スルーホール導体113と容易に接続することがで きる(図1参照)。従って、変換導体層646によって も、チップコンデンサ560とバンプ129(ICチッ ブ10の接続端子12)とを、容易に接続することがで

【0064】(実施形態2)次いで本発明の第2の実施形態について、図13~図15を参照しつつ説明する。本実施形態の配線基板800は、実施形態1にかかる配線基板100とほぼ同様の構造を有している。但し、実施形態1の配線基板100に起いては、ストライプ状パターンにされた変換導体層146(第1、第2変換導体層146p,146g)が、コア基板本体111と裏面側樹脂絶縁層141との層間152の形成されている。これに対し、本実施形態2では、変換導体層146とほぼ同形状の変換導体層849(第1,第2変換導体層849p,849g)が、裏面側樹脂絶縁層841とソルダーレジスト層842との層間854に形成されている点で異なる。従って、異なる部分を中心に説明し、同様な部分は省略または簡略化して説明する。

【0065】図13、図14に示す配線基板800は、配線基板本体801とこの裏面801c側に搭載された実施形態1と同様なチップコンデンサ160とからなる。配線基板801は、実施形態1と同じく、コア基板810と、その上下にそれぞれ積層された主面側樹脂絶縁層821及びソルダーレジスト層822、裏面側樹脂絶縁層841及びソルダーレジスト層842を有する。

配線基板本体801の主面801bの中央部には、バンプ829が多数形成され、破線で示すICチップ10の下面11に多数形成された接続端子12とそれぞれフリップチップ接続可能とされている。また、図中裏面801cでは、その略中央部分にコンデンサ接続パッド849が多数形成され、これにハンダ869を用いてチップコンデンサ160が多数搭載されている。さらに裏面801cの周縁部分には、接続パッド848が形成されている。

20

10 【0066】実施形態1と同じく、コア基板810は、コア基板本体811を有し、その上面811bと下面811cとの間には、これを貫通する多数のスルーホール用貫通孔811hが穿孔され、この内には、公知のスルーホール導体812、813が形成されている。また、パンプ829は、ソルダーレジスト層822に開口するパッド828、及び主面側樹脂絶縁層821を貫通するビア導体827を通じて、コア基板本体811の上面811b(コア基板本体811と主面側樹脂絶縁層821との層間851)に形成された配線層825、826に20接続している。

【0067】具体的には、概略周縁部分に位置するバンプ829は、バッド828、ビア導体827を通じて配線層825に接続し、それぞれ周縁側(図13、図14中、右または左方向)にファンアウトして周縁部分に位置するスルーホール導体812に接続する。さらに、裏面811c(層間852)に形成された配線層845、裏面側樹脂絶縁層841を貫通するビア導体847を通じてソルダーレジスト層842から露出する接続バッド848に接続している。これらは、例えば、主として信号用配線として使用されるが、+の電源電位及び接地電位を供給する電源配線として用いることもある。

【0068】一方、概略中央部分に位置するバンプ829は、パッド828、ビア導体727を通じて、ファンアウトすることなく層間851に形成された配線層826で位置を調整し、あるいは複数のバンプ829からの配線を纏めた上、つまり並列接続した上、中央部分に位置するスルーホール導体813に接続する。ここまでは実施形態1と同様である。さらにこのスルーホール導体813は、コア基板811の下面811c(層間852)に形成された配線層846に接続し、裏面側樹脂絶縁層841を貫通するビア導体847を通じて、裏面側樹脂絶縁層841を貫通するビア導体847を通じて、裏面側樹脂絶縁層841の裏面841c(層間854)に形成された変換導体層849に接続している。この変換導体層849の一部は、ソルダーレジスト層842から露出しており、この部分でチップコンデンサ160の端子162(162b,162c)とハンダ869によって接

絶縁層(主面側樹脂絶縁層821、コア基板本体81 50 1、裏面側樹脂絶縁層841)のうち、最も裏面側に位

続する。つまり、変換導体層849は、バンプ829と チップコンデンサ160の端子162との間に介在する 置する裏面側樹脂絶縁層841の裏面841cに形成されている。このようにして、チップコンデンサ160の電極162(162b,162c)とバンブ829とが接続される。

【0069】なお、図13の左端に示すように、裏面801cの周縁に位置する接続バッド848の或るものは、裏面側樹脂絶縁層841の裏面841cにおいて、変換導体層849に接続しており、このような経路によって、+の電源電位及び接地電位が中央部分に位置するバンプ829及びチップコンデンサ160にそれぞれ供給される。あるいは、接続パッド848、ビア導体847、配線層845、スルーホール導体812、及び配線層825,826を経由して、+の電源電位及び接地電位を、中央部分に位置するバンプ829及びチップコンデンサ160に供給することもできる。

【0070】この変換導体層849は、図15に示すよ うに、実施形態1の変換導体層146とほぼ同様なバタ ーンを有し、+の電源電位(共通第1電位)に接続され る第1変換導体層849pと、接地電位(共通第2電 位)に接続される第2変換導体層849gとが、ストラ イブ状に交互に配置されたパターンとされたものであ る。但し、変換導体層849は、チップコンデンサ16 0の端子162(上面部163)の形状に合わせて接続 を容易にするため、図4に示す変換導体層146に比し て、三角形状の突起部分が形成されている点で異なる。 図15は、図13、図14におけるQ-Q′断面におい て、主面側からソルダーレジスト層842、ハンダ86 9を透視して(あるいは除いて)チップコンデンサ16 0を見た図であり、変換導体層849とチップコンデン サ160の端子162b, 162c(上面部163b, 163c) との関係について示したものである。

【0071】図15から容易に理解できるように、第1 変換導体層849pはいずれも、チップコンデンサ16 0の端子162(上面部163)のうち、+の電源電位 に接続される端子162b (上面部163b)の上方 (主面801b側)に位置し、第2変換導体層849g のいずれも、接地電位に接続される端子162c(上面 部163c)の上方(主面801b側)に位置してい る。従って、第1変換導体層849pとその下方(裏面 801 c側) に位置するチップコンデンサ160の端子 162b (上面部163b)とは、ハンダ869で容易 に接続することができる(図13参照)。同様に、第2 変換導体層849gとその下方に位置する端子162c (上面部 1 6 3 c) とも、ハンダ 8 6 9 で容易に接続す ることができる。このため、変換導体層849とコンデ ンサ160の端子162(上面部163)との間に生じ る抵抗やインダクタンスは特に低く抑えることができ る。

【0072】なお、変換導体層849とそれより主面側 流の向きとが逆向きになる。従って、この部分では相互 に位置するビア導体847との接続関係については、図 50 インダクタンスが負となり、この部分でのインダクタン

5を参照して実施形態1において変換導体層146とスルーホール導体113の関係について説明したのと同様である。即ち、図5から容易に理解できるように、本実施形態2でも、ビア導体847p、847gは、ちょうど端子862b、862c(上面部863b、863c)の上方(主面801b側)でそれぞれ第1、第2変換導体層849p、849gに接続するものがある。なお、一部では上面部863b、863cの上方で接続しない部位もある。図5におけるX-X 断面は、図13に示す断面図に相当する。また、図5では、変換導体層の形状として実施形態1の変換導体層146の形態を示したので、図15に示す変換導体層849の形態と若干異なるように表現されている。

【0073】さらにそのほか、チップコンデンサ160

22

内の2つの端子162b(上面部163b)の間を架け 渡す第1変換導体層849pの間の部分、具体的には、 チップコンデンサ160を平面視縦長に見たときの中心 線上で、中間接続ビア導体847pmが、第1変換導体 層849pに接続している。また同様に、チップコンデ 20 ンサ160の2つの端子162c(上面部163c)の 間を架け渡す第2変換導体層849gの間の部分、具体 的には、チップコンデンサ160を平面視縦長に見たと きの中心線上でも、中間接続ビア導体847gmが、第 2変換導体層849gに接続している(図5参照)。 【0074】とのように、第1変換導体層849p及び 第2変換導体層849gをストライプ状に交互に配置し ているので、バンプ829からパッド828、ビア導体 827、配線層826、スルーホール導体813、配線 層846、ビア導体847を通じて変換導体層849に 30 接続するにあたり、短い配線層826によってその位置 を調整すれば足りるので接続が容易である。このため、 これらを通じて、バンプ829に+の電源電位及び接地 電位のいずれをも容易に引き出すことができるととも に、チップコンデンサ160と短い距離で接続すること ができる。しかも、第1、第2変換導体層849p、8 49gはいずれも、裏面側樹脂絶縁層841の裏面84 1 c に形成されているので、2層のベタ状(平板状)の 変換導体層を用いた場合に比して、必要となる層間の数 が少なくなるから、配線基板本体801における樹脂絶 40 縁層を1層分少なくできる。

【0075】さらに、この配線基板800において、チップコンデンサ160を充放電させる場合に変換導体層849を流れる電流についても、図7を参照して実施形態1において説明したのと同様である。即ち、この配線基板800において、チップコンデンサ160を放電させる場合を考えると、図7において一点鎖線で囲む逆向き電流部分41においては、第1変換導体層849pを流れる電流の向きと第2変換導体層849gを流れる電流の向きとが逆向きになる。従って、この部分では相互インダクタンスが負となり、この部分でのインダクタンスが負となり、この部分でのインダクタン

20

スを抑制できるから、変換導体層849、さらには、配 線基板800(配線基板本体801)全体に生じるイン ダクタンスをより低減することができることが判る。

23

【0076】さらに、本実施形態では、図13及び図1 4から容易に理解できるように、主面側から変換導体層 849に接続するビア導体847の数の方が、さらには これらに接続するバンプ829の数の方が、裏面側から 変換層体層849に接続するチップコンデンサ160の 端子162の数よりも多い。しかも、層間152に変換 導体層146を設けた実施形態1の配線基板100の場 合よりも、変換導体層849が裏面側、つまりチップコ ンデンサ160側に位置している。従って、変換導体層 849を最もチップコンデンサ160に近い裏面側樹脂 絶縁層841の裏面に設けたことにより、変換導体層を 層間151や152に設けた場合に比して、特にチップ コンデンサ160とバンプ829との間に生じる抵抗や インダクタンスを低く抑えることができる。なお、本実 施形態2の配線基板800の製造方法は、実施形態1の 配線基板100と同じく、公知のビルドアップ製法によ って形成すればよいので説明を省略する。

【0077】この配線基板800においても、上記のよ ろにチップコンデンサ160を裏面801c側に多数搭 載しているため、ノイズを確実に除去できる上、複数の チップコンデンサ160を並列に接続しているので、搭 載するコンデンサ全体としてのインダクタンスも低減さ せることができる。しかも、各チップコンデンサ160 について見ると、隣り合って対向する端子162同士の 極性が異なり、流れる電流の向きが逆向きになる。との ため、インダクタンスをさらに減少させることができ、 より一層、低インダクタンスで1Cチップ10とコンデ ンサ160とを接続することができる。

【0078】また、チップコンデンサ160の端子16 2には、上面部163b, 163cを形成しているの で、変換導体層849と端子162(上面部163b, 163c)との接続が容易になる。しかも、変換導体層 として、第1変換導体層849pと第2変換導体層84 9gとを同じ裏面側樹脂絶縁層841の裏面841c (層間852) に形成しているので、樹脂絶縁層の数を 減らすことができている。従って、コストダウンを図る ことができる。

【0079】(実施形態3)次に、本発明の第3の実施 形態について、図16を参照しつつ説明する。本実施形 態の配線基板900は、実施形態1及び変形形態1~5 にかかる配線基板100と比較して、コンデンサ接続パ ッドとバンプ(主面側接続端子)とを結ぶ配線について は、ほぼ同様の構造を有している。但し、実施形態1及 び変形形態1~5では、配線基板の裏面にコンデンサ接 続パッドを形成し、このコンデンサ接続パッドにチップ コンデンサを搭載した。これに対し、本実施形態3で

を構成する凹周囲部を絶縁層より裏面側に形成し、凹部 の底面にコンデンサ接続パッドを形成し、チップコンデ ンサを凹部内に搭載する。

【0080】具体的には、本発明の配線基板900は、 図16に示すように、配線基板本体901とチップコン デンサ160とによって構成されている。チップコンデ ンサ160については、実施形態1と同様であるので説 明を割愛し、とこでは配線基板本体901を中心に説明 する。配線基板本体901は、裏面901c側に開口す る凹部965が形成されたコア基板960と、この主面 960b上に積層された主面側樹脂絶縁層930,12 1、変換導体層946、及び配線層125,126とを 有する。また、チップコンデンサ160は、チップコン デンサの上面160u(第1面)が凹部965の底面9 65 bに対向するように、凹部965内に配置されてい る。

【0081】配線基板900のうちコア基板960は、 比較的肉薄の第1コア部910と比較的肉厚の第2コア 部920とによって形成される。第1コア部910は、 31mm×31mmの矩形で厚さ200μmのガラス-エポキシ樹脂からなり、図17に示すように、その中央 付近には第1コア部910の厚さ方向に貫通する直径約 100μmのスルーホール911が複数形成されてい る。さらに、各スルーホール911の内側には、銅製の スルーホール導体912が形成され、さらにその内側に は充填樹脂913が充填されている。第2コア部920 (図16参照)は、31mm×31mmの矩形で厚さ8 00μmのガラス-エボキシ樹脂からなり、その中央付 近には凹部965が形成されている。凹部965は平面 30 視 1 5 m m × 1 5 m m の正方形である。

【0082】第1コア部910と第2コア部920と は、厚さ約60μmの接着層968を介して貼り合わさ れることにより積層され、コア基板960を形成してい る。図16の左右に示すように、コア基板960のうち 凹部965の周囲(凹周囲部970)には、その厚さ方 向に貫通する直径約100 µmのスルーホール961が 形成されている。さらに、図16に拡大して示すよう に、各スルーホール961の内側には、銅製のスルーホ ール導体962が形成され、さらにその内側には充填樹 40 脂963が充填されている。さらに、コア基板960の コア裏面960cには、スルーホール導体962と接続 するパッド928とソルダーレジスト層967が形成さ れている。また、凹部965の底面965bには、実施 形態1のコンデンサ接続パッド149と同様のコンデン サ接続パッド949とエポキシ系樹脂からなるソルダー レジスト層966トが形成されている。コンデンサ接続 パッド949はスルーホール導体912と接続してい る。

【0083】コア基板960のコア主面960b上に は、裏面側に開口する凹部を形成するように凹部の壁面 50 は、実施形態1の変換導体層146と同様のパターンの 変換導体層946と、実施形態1の配線層145と同様 のパターンの配線層945が形成されている。変換導体 層946はスルーホール導体912と接続し、配線層9 45はスルーホール導体962と接続している。コア基 板960のコア主面960b、変換導体層946、及び 記線層945上には、エポキシ系樹脂からなる厚さ約3 Oμmの主面側樹脂絶縁層930が形成されている。さ らに、主面側樹脂絶縁層930には、実施形態1と同様 に、変換導体層946上の所定の位置に主面側樹脂絶縁 層930の厚さ方向に貫通するビア導体933と、配線 層945上の所定の位置に主面側樹脂絶縁層930の厚 さ方向に貫通するビア導体932とが形成されている。 さらに、主面側樹脂絶縁層930上には、実施形態1と 同様の配線層125,126が形成されている。配線層 125はビア導体932と接続し、配線層126はビア 導体933と接続されている。主面側樹脂絶縁層930 上及び配線層126上には、実施形態1と同様の主面側 樹脂絶縁層121が形成されている。

25

【0084】さらに、主面側樹脂絶縁層121には、実 施形態1と同様に、配線層125,126上の所定の位 20 位)に接続される第2変換導体層946gとが、ストラ 置に、主面側樹脂絶縁層121の厚さ方向に貫通する実 施形態1と同様のビア導体127が形成されている。主 面側樹脂絶縁層121上には、実施形態1と同様のソル ダーレジスト層122及びパッド128が形成され、パ ッド128はピア導体127と接続されている。さら に、パッド128上には、実施形態1と同様のバンプ1 29が形成されている。

【0085】上述のような配線基板本体901を有する 配線基板900によれば、実施形態1と同様に、概略周 縁部分に位置するバンプ129は、パッド128、ビア 導体127を通じて配線層125に接続し、それぞれ周 縁側(図16中、右または左方向)にファンアウトして 周縁部分に位置するビア導体932に接続する。さら に、配線層945、スルーホール導体962を通じてソ ルダーレジスト層967から露出する接続パッド928 に接続している。これらは、例えば、主として信号用配 線として使用されるが、+の電源電位及び接地電位を供 給する電源配線として用いることもある。なお、スルー ホール導体962に発生する抵抗やインダクタンスを下 げるため、複数のスルーホール導体962で配線層94 5と接続パッド928とを接続するのが好ましい。

【0086】一方、概略中央部分に位置するバンプ12 9は、パッド128、ビア導体127を通じて、ファン アウトすることなく層間953に形成された配線層12 6で位置を調整し、あるいは複数のバンプ129からの 配線(ビア導体127)を纏めた上、つまり並列接続し た上、中央部分に位置するビア導体933に接続する。 バンブ129同士の間隔(例えば、最小150µm)に 比して、ビア導体933同士の間隔が大きい場合(例え ば、最小600μm)にこのようにすると良い。さら

に、変換導体層946に接続し、第1コア部910を貫 通するスルーホール導体912を通じて、コンデンサ接 続パッド949に接続している。従って、コンデンサ1 60の電極162(162b、162c)とバンプ12 9とが接続される。

【0087】なお、図16の左端に示すように、裏面9 01cに位置する接続パッド928のうち或るものは、 スルーホール導体962を通じて変換導体層946に接 続しており、このような経路によって、+の電源電位及 び接地電位が中央部分に位置するバンプ129及びチッ プコンデンサ160にそれぞれ供給される。あるいは、 接続パッド928、スルーホール導体962、配線層9 45、ビア導体932、及び配線層125, 126を経 由して、+の電源電位及び接地電位を、中央部分に位置 するバンプ129及びチップコンデンサ160に供給す ることもできる。

【0088】変換導体層946は、実施形態1と同様に (図4参照)、+の電源電位(共通第1電位)に接続さ れる第1変換導体層946pと、接地電位(共通第2電 イブ状に交互に配置されたパターンとされたものであ る。この変換導体層946とチップコンデンサ160の 端子162b, 162c、特にその上面部163b, 1 63c、さらにビア導体933との関係については、実 施形態1と同様である。そとで、図4、図5、図7、 及び図21を参照して説明する。

【0089】図4は、図16、図21におけるR-R' 断面において、主面901b側から第1コア部910、 ソルダーレジスト層966、コンデンサ接続パッド94 30 9等を透視して(あるいは除いて)チップコンデンサ1 60を見た図、従って、図16におけるS-S'断面に おいて、主面901b側から上面160uに変換導体層 946を投影した状態を示す図である。変換導体層94 6には、第1変換導体層946pと第2変換導体層94 6gとが含まれ、図4においてハッチングを異ならせて 示すように、第1変換導体層946p及び第2変換導体 層946gは、いずれも帯状にされ、しかも、交互に並 ぶストライプ状パターンとして配置されている。

【0090】しかも、第1変換導体層946pはチップ コンデンサ160の端子162(上面部163)のう ち +の電源電位に接続される端子162b(上面部1 63b)の上方(主面901b側)に位置し、第2変換 導体層946gは、接地電位に接続される端子162 c (上面部163c)の上方(主面901b側)に位置し ている。従って、第1変換導体層946pとその下方 (裏面901c側)に位置するチップコンデンサ160 の端子162b(上面部163b)とは、第1コア部9 10を貫通するごく短いスルーホール導体912及び第 1コンデンサ接続パッド949pで接続することで足り 50 る(図16参照)。同様に、第2変換導体層946gと

その下方に位置する端子162 c(上面部163 c)とも、第1コア部910を貫通するごく短いスルーホール導体912及び第2コンデンサ接続パッド949gで接続すれば足りる。このため、変換導体層946とコンデンサ160の端子162(上面部163)との間に生じる抵抗やインダクタンスは低く抑えることができる。

27

【0091】次いで、図5を参照して、変換導体層94 6とそれより主面901b側に位置するビア導体933 との接続関係について説明する。図5は、図4におい て、さらにストライプ状に配置された第1、第2変換導 体層 9 4 6 p, 9 4 6 g に主面側から接続するビア導体 933の接続位置を重ねて表示したものである。本図に おいて、第1変換導体層946pに接続するビア導体9 33 pの位置を○(マル)に pの記号で表し、第2変換 導体層946gに接続するピア導体933gの位置を○ にgの記号で表している。図5から容易に理解できるよ うに、本実施形態では、ビア導体933p,933g は、ちょうど端子162b, 162c(上面部163 b, 163c)の上方(主面901b側)でそれぞれ第 1, 第2変換導体層 9 4 6 p, 9 4 6 g に接続するもの 20 がある。なお、一部では上面部163b、163cの上 方で接続しない部位もある。図5におけるX-X'断面 は、図16に示す断面図に相当する。

【0092】さらにそのほか、チップコンデンサ160 内の2つの端子162b(上面部163b)の間を架け 渡す第1変換導体層946pの間の部分、具体的には、 チップコンデンサ160を平面視縦長に見たときの中心 線上で、中間接続ビア導体933pmが、第1変換導体 層946pに接続している。また同様に、チップコンデ ンサ160の2つの端子162c(上面部163c)の 間を架け渡す第2変換導体層946gの間の部分、具体 的には、チップコンデンサ160を平面視縦長に見たと きの中心線上でも、中間接続ビア導体933gmが、第 2変換導体層946gに接続している。なお、図5にお けるY-Y'断面が、図21に示す断面図に相当する。 【0093】とのように、第1変換導体層946p及び 第2変換導体層946gをストライプ状に交互に配置し ているので、バンプ129からパッド128、ビア導体 127.配線層126及びビア導体933を通じて変換 導体層126に接続するにあたり、短い配線層126に よってその位置を調整すれば足りるので接続が容易であ る。このため、このビア導体933、配線層126及び ビア導体127、及びパッド128を通じて、バンプ1 29に+の電源電位及び接地電位のいずれをも容易に引 き出すことができるとともに、チップコンデンサ160 と短い距離で接続することができる。しかも、第1、第 2変換導体層946p, 946gはいずれも、第1コア 部910と主面側樹脂絶縁層930との層間952に形 成されているので、2層のベタ状(平板状)の変換導体 層を用いた場合に比して、必要となる層間の数が少なく なるから、配線基板本体901における樹脂絶縁層を1 層分少なくできる。

【0094】さらに、実施形態1と同様に、図7に示すように、この配線基板900において、チップコンデンサ160を放電させる場合を考える。即ち、チップコンデンサ160の電源電位の端子162b(上面部163b)から、第1変換導体層162p及びビア導体933pを通じて、ICチップ10に電流を流し、その帰路として、ICチップ10から、ビア導体933g、第2変換導体層946gを通じて、チップコンデンサ160の接地電位の端子162c(上面部163c)へ電流を流す場合を考える。この場合において、第1変換導体層946pから中間接続ビア導体933pmに流れ込む電流、及び中間接続ビア導体933gmから第2変換導体層946gに流れ出る電流を矢印で示す。

【0095】すると、図7において一点鎖線で囲む逆向き電流部分41においては、第1変換導体層946pを流れる電流の向きと第2変換導体層946gを流れる電流の向きとが逆向きになる。従って、この部分では相互インダクタンスが負となり、この部分でのインダクタンスを抑制できるから、変換導体層946、さらには、配線基板900(配線基板本体901)全体に生じるインダクタンスをより低減することができることが判る。

【0096】さらに、本実施形態では、図16及び図21から容易に理解できるように、主面901b側から変換導体層946に接続するビア導体933の数の方が、さらにはこれらに接続するバンプ129の数の方が、裏面901c側から変換層体層946に接続するスルーホール導体912の数よりも多い。従って、変換導体層946を層間952に設けたことにより、変換導体層90層間953に設けた場合よりも、全体として、チップコンデンサ160とバンプ129との間に生じる抵抗やインダクタンスを低く抑えることができる。

【0097】次いで、本実施形態の配線基板本体901の製造方法について、図17~図20を参照して説明する。なお、チップコンデンサ160の製造方法については、実施形態1と同様のため、説明を割愛する。

【0098】まず、主面915b及び裏面915cに厚さ約16μmの銅箔を貼り付けた、31mm×31mm の矩形で厚さ約200μmの両面銅張の第1コア基板本体915を用意する(図17参照)。そして、第1コア基板本体915の所定の位置に、レーザまたはドリルによって、図17に拡大して示すように、直径約100μmのスルーホール911を形成する。次いで、無電解銅メッキ、及び電解銅メッキを施し、各スルーホール911の内壁に沿って厚さ約30μmのスルーホール導体912、及び主面915bと裏面915cに銅メッキ層918が形成される。次いで、スルーホール導体912の内側にエボキシ系樹脂を充填し、充填樹脂913を形成50する。さらに、主面915b及び裏面915cに全面

メッキを行い、充填樹脂913を覆うように蓋メッキを 行う。そして、裏面915c側の銅メッキ層918を所 定パターンにエッチングし、コンデンサ接続パッド96 9と配線層917とを形成する。さらに、裏面915c 上の所定の位置にエポキシ系樹脂からなるソルダーレジ スト層966を形成する。以上のようにして、図17に 示すような、第1コア部910を含む第1コア基板91 9を形成する。

29

【0099】また、図18に示すような主面925b及 び裏面925cに厚さ約16μmの銅箔を貼り付けた、 31mm×31mmの矩形で厚さ約800μmの片面銅 張の第2コア基板本体925を用意する。そして、第2 コア基板本体925の主面925b側を、エンドミルに よって座ぐり加工することにより、図18(a)に示す ような平面視略ロ字状の凹溝923を、第2コア基板本 体925の中央部に形成する。次いで、主面925b側 の銅箔をエッチングして、凹溝923の周囲に配線層9 27を形成する。とのようにして、図18(b)に示す ような第2コア部920を含む第2コア基板929を形 成する。

【0100】次に、図19に示すように、第1コア基板 919の裏面919cと第2コア基板929の主面92 9 b との間に、接着性のあるプリプレグからなる接着層 968を配置して、加熱・押圧することによって、第1 コア基板919と第2コア基板929とを接着・積層す る。なお、このとき、過剰な接着層968がある場合 は、凹溝923内に収容される。次いで、この周縁部分 の所定の位置にレーザまたはドリルによって穿孔し、と の厚さ方向に貫通する直径約100μmのスルーホール 961を形成する。

【0101】次いで、図19に示すように、無電解銅メ ッキ、及び電解銅メッキを施し、各スルーホール961 の内壁に沿って厚さ約30μmのスルーホール導体96 2、及び主面964b上と裏面964c上に図示しない 銅メッキ層が形成される。次いで、スルーホール導体9 62の内側にエポキシ系樹脂を充填し、充填樹脂963 を形成する。さらに、主面964b及び裏面964cに 全面銅メッキを行い、充填樹脂963を覆うように蓋メ ッキを行う。そして、主面964b上の銅メッキ層を実 施形態1と同様のパターンにエッチングして変換導体層 946と配線層945とを形成する。また、コア裏面9 60c上の銅メッキ層を実施形態1と同様にエッチング し、パッド928を形成する。以上のようにして、図1 9に示すようなコア基板本体964を形成する。

【0102】次に、2つのコア基板本体964の裏面9 64c同士を、その外周縁より外側の不要部964d (図19の左右下面)で貼りあわせて、図示しない一対 のコア基板本体964とする。次いで、一対のコア基板 本体964のうち2つの主面964b (960b) につ

うに、主面964b(960b)上に主面側樹脂絶縁層 930を形成し、さらに、実施形態1と同様に、変換導 体層946上の所定の位置にビア導体933を形成す る。同様に、公知のビルドアップ工法によって、配線層 126、主面側樹脂絶縁層121、ピア導体127、バ ッド128、ソルダーレジスト層122を順次形成す る。次いで、パッド128にハンダペーストを塗布し、 ハンダベーストの溶融しない温度でリフローして、バン プ129を形成する。

【0103】このように、2つのコア基板本体964を 貼りあわせて、同時に樹脂絶縁層等を積層するのは、2 つのコア基板本体964を貼りあわせることによって、 樹脂絶縁層等の積層時に基板が反るのを防止することが できるからである。次に、コア基板本体964同士を貼 りあわせている不要部で切り離して、一対のコア基板本 体964に樹脂絶縁層等を積層したものを分離する。そ の後、コア基板本体964の裏面964c上に所定パタ ーンのソルダーレジスト層967を形成する。次に、コ ア基板本体964の裏面964c側から、図19に二点 鎖線で示すように、凹溝923の裏側にエンドミルによ って凹溝(二点鎖線部分)を形成し、第2コア基板92 9の中央部分を切り離して除去し、凹部965を形成す る。(このとき、コア基板本体964がコア基板960 となる。) こうして、図21に示すような配線基板本体 901が完成する。

【0104】以上に説明したように、配線基板本体90 1は、肉薄の第1コア基板919に接着層968を介し て内厚の第2コア基板929を積層し、コア基板本体9 64を形成した後、このような十分な強度を持つコア基 板本体964の主面964b上に絶縁樹脂層及び配線層 30 を積層している。従って、コア基板本体964の片面に だけ樹脂絶縁層が積層されていても、従来のような補強 材を取り付けることが不要となり、低コストで製造する ことが可能となる。

【0105】その後、チップコンデンサ160を配線基 板本体901の凹部965内に配置し、端子162bの 上面部163b(第1端子)と第1コンデンサ接続パッ ド949pとを、及び端子162cの上面部163c (第2端子)と第2コンデンサ接続パッド949gとを 接続させる。このようにして、配線基板900が完成す る。その後さらに、端子162bの下面部165b及び 端子162cの下面部165cを露出するようにして凹 部965内に樹脂を充填し、コンデンサ160を埋め込 んでも良い。

【0106】上記の配線基板900は、実施形態1と同 様に、チップコンデンサ160を多数搭載しているた め、ノイズを確実に除去できる上、複数のチップコンデ ンサ160を並列に接続しているので、搭載するコンデ ンサ全体としてのインダクタンスも低減させることがで いて、以下の工程を同時に行う。まず、図20に示すよ 50 きる。しかも、各チップコンデンサ160について見る

と、隣り合って対向する端子162同士の極性が異なり、流れる電流の向きが逆向きになる。このため、インダクタンスをさらに減少させることができ、より一層、低インダクタンスでICチップ10とコンデンサ160とを接続することができる。

31

【0107】また、配線基板900では、チップコンデンサ160を、凹部965内に搭載している。従って、主面901b上に搭載するIC10とチップコンデンサ160とが凹部965の底面965bを挟んで略対向するように搭載される。このため、凹部が形成されていない両面積層配線基板と比較して、配線基板の主面側接続端子(バンプ)とチップコンデンサの第1端子(上面部)及び第2端子(上面部)との距離を短くし、さらには、主面上に搭載するICとチップコンデンサとの距離を短くすることができる。従って、凹部が形成されていない両面積層配線基板と比較して、短い経路で配線基板の主面側接続端子(バンプ)とチップコンデンサの第1端子(上面部)及び第2端子(上面部)とを接続することが可能になり、これらの経路で発生する抵抗成分やインダクタンス成分を抑制できる。

【0108】以上において、本発明を実施形態1,2、 3、及び変形形態1~5に即して説明したが、本発明は 上記実施形態及び変形形態に限定されるものではなく、 その要旨を逸脱しない範囲で、適宜変更して適用できる ことはいうまでもない。例えば、上記実施形態1,2, 3では、主面側樹脂絶縁層の上方(ICチップ側)及び 裏面側樹脂絶縁層の下方(チップコンデンサ側)にそれ ぞれソルダーレジスト層122, 142, 822, 84 2,966,967を形成したが、ソルダーレジスト層 を形成しないで形態の配線基板としても良い。また、実 施形態1,2では、コア基板本体111,811の上下 に、1層ずつ主面側及び裏面側樹脂絶縁層121,14 1,821,841を形成したが、さらに多数の樹脂絶 縁層を積層した配線基板にも適用することができる。同 様に、実施形態3では、コア基板960のコア主面96 0 b 上に主面側樹脂絶縁層 9 3 0 , 1 2 1 を形成した。 が、さらに多数の主面側樹脂絶縁層を積層した配線基板 にも適用することができる。また、第2コア部920の 裏面920c上には裏面絶縁層を形成していないが、複 数の裏面絶縁層を積層した配線基板にも適用することが 40 できる。

【0109】また、上記実施形態1,2,3においては、図示しないマザーボード等から裏面101c,801c,901c側の周縁部分に形成した接続パッド148,928を経由して、電源電位あるいは接地電位をチップコンデンサ160及びバンプ129,829に供給する例を示した。しかし、チップコンデンサ160の端子162(下面部164)とマザーボード等の端子とを直接接続して、電源電位あるいは接地電位をチップコンデンサ160及びバンブ129,829に供給するよう

にしても良い。

【0110】また、上記実施形態及び変形形態においては、いずれも変換導体層全体にわたって、第1変換導体層と第2変換導体層が交互に並ぶストライプ状のパターンとされているものを例示したが、一部をストライプ状パターンとしても良い。さらに、上記実施形態2,3では、変換導体層849,946のパターンを、実施形態1と同様なパターンとした。しかし、実施形態2に示す配線基板800及び実施形態3に示す配線基板900においても、変換導体層849,946のパターンは、他のものでも良く、例えば、変形形態1のパターンを用いることもできる。さらに、実施形態2,3に用いるチップコンデンサ及び変換導体層のパターンとして、変形形態2,3、4、5に示すチップコンデンサ及び変換導体層のパターンを用いるなど、チップコンデンサの形態についても適宜変更して用いることができる。

【0111】さらに、上記実施形態1,2では、配線基 板100等の中心の絶縁層としてコア基板本体111, 811を用いたものを示したが、本発明をコア基板本体 1111等を用いない配線基板に適用することもでき る。また、実施形態1,2では、コア基板本体111, 811の裏面側(図中下側)に変換導体層146,84 9を形成したが、主面側(図中上側)、例えば、コア基 板本体111の上面111bに、あるいは、主面側樹脂 絶縁層同士の層間や主面側樹脂絶縁層とソルダーレジス ト層との間などに形成することもできる。同様に、実施 形態3では、層間952 (第1コア部910の主面91 0 b 上) に変換導体層 9 4 6 を形成したが、その他の層 間、例えば951に形成することもできる。また、実施 形態1,2,3では、バンプ129,829同士の間隔 よりも、コア基板本体111、主面側樹脂絶縁層930 等に形成したスルーホール導体113、ビア導体933 等同士の間隔を大きくしたものを示したが、スルーホー ル導体同士の間隔とバンプ同士の間隔とがほぼ同一のも のにも、本発明を適用することができる。

【0112】また、実施形態2においては、コア基板本体811の上面811b(層間151)に形成した配線層826で、ビア導体827とスルーホール導体813との位置を調整することで、スルーホール導体813とビア導体847との位置調整を不要として、ビア導体847を変換導体層849と接続させた。しかし、配線層846によって、スルーホール導体813とビア導体847との位置調整を行うようにしても良く、さらには、配線層826と846の両方で位置調整を行うようにしても良い。

【図面の簡単な説明】

【図1】実施形態1にかかる配線基板の断面図である。

【図2】縦横格子状に配列させたチップコンデンサの各端子の電位を示す説明図である。

【図3】縦横格子状に配列させたチップコンデンサの様

子及び側面部を流れる電流の方向を示す斜視説明図であ

【図4】変換導体層とチップコンデンサの各端子との関 係を示す説明図である。

【図5】変換導体層と主面側からこの変換導体層に接続 するビア導体とチップコンデンサの各端子との関係を示 す説明図である。

【図6】実施形態1,2にかかる配線基板の他の断面図 である。

体層を流れる電流の相互の関係を示す説明図である。

【図8】変形形態1にかかる配線基板において、変換導 体層とチップコンデンサの各端子との関係を示す説明図 である。

【図9】変形形態2にかかる配線基板において、変換導 体層とチップコンデンサの各端子との関係を示す説明図 である。

【図10】変形形態3にかかる配線基板において、変換 導体層とチップコンデンサの各端子との関係を示す説明

【図11】変形形態4にかかる配線基板において、変換 導体層とチップコンデンサの各端子との関係を示す説明 図である。

【図12】変形形態5にかかる配線基板において、変換 導体層とチップコンデンサの各端子との関係を示す説明 図である。

【図13】実施形態2にかかる配線基板の断面図であ

【図14】実施形態2にかかる配線基板の他の断面図で ある。

【図15】実施形態2にかかり、変換導体層とチップコ ンデンサの各端子との関係を示す説明図である。

【図16】実施形態3にかかる配線基板の断面図であ る。

【図17】実施形態3にかかる配線基板900の第1コ ア基板919の断面図である。

【図18】実施形態3にかかる配線基板900の第2コ ア基板929を示す図であり、(a)はその上面図、

(b) はそのA-A断面拡大図である。

【図19】実施形態3にかかる配線基板900のコア基 40 161e, 161f 電極層(電極) 板本体964の断面図である。

【図20】実施形態3にかかる配線基板900の配線基 板本体901の断面図である。

【図21】実施形態3にかかる配線基板の他の断面図で ある。

【図22】基板の主面や裏面にチップコンデンサを搭載 した従来の配線基板を示す説明図である。

【符号の説明】

100,800,900 配線基板

34

101,801,901 配線基板本体

101b, 801b, 901b 主面

101c, 801c, 901c 裏面

110.810.960 コア基板

910 第1コア部

920 第2コア部

111,811 コア基板本体(絶縁層)

112, 113, 812, 813, 962 スルーホー ル導体

【図7】実施形態1、2、3にかかり、隣り合う変換導 10 121,821,930 主面側樹脂絶縁層(絶縁層) 122, 142, 822, 842, 966, 967 ソ ルダーレジスト層

127,827 ビア導体

128,828 パッド

129,829 バンプ(主面側接続端子)

141 裏面側樹脂絶緣層(絶緣層)

841 裏面側樹脂絶縁層(最裏面側絶縁層)

146, 246, 346, 446, 546, 646, 8 49,946 変換導体層

146p, 246p, 346p, 446p, 546p,

646p, 849p, 946p 第1変換導体層

146g, 246g, 346g, 446g, 546g,

646g, 849g, 946g 第2変換導体層

149p, 949p 第1コンデンサ接続パッド(第1 コンデンサ接続端子)

149g, 949g 第2コンデンサ接続パッド(第2 コンデンサ接続端子)

152,952 層間(特定層間)

151, 153, 154, 851, 852, 853, 8

30 54、951、953、954 層間

965 凹部

970 凹周囲部

160, 360, 560 チップコンデンサ

160u, 360u, 560u チップコンデンサの上 面(第1面)

161, 361, 561 チップコンデンサ本体

161u, 361u, 561u チップコンデンサ本体 の上面

161s, 361s チップコンデンサ本体の側面

162, 362 コンデンサ端子

163b, 363b 上面部(第1端子)

163c, 363c 上面部 (第2端子)

164b, 164c 側面部

165b. 165c 下面部

563b 端子(第1端子)

563c 端子(第2端子)

41 逆向き電流部分

【図1】

【図2】

[図20]

【図3】

[図4]

【図6】

(図5)

【図7】

【図22】

【図8】

【図9】

【図13】

【図10】

【図11】

【図17]

【図12】

【図14】

[図21]

【図15】

【図16】

【図18】

【図19】

フロントページの続き

(51) Int .C1 .7		識別記号	FI		テーマコード(参考)
H 0 5 K	1/11		H 0 5 K	1/11	N
	1/18			1/18	J
					R
					C

Fターム(参考) 5E317 AA24 BB01 BB11 CC17 CC31

CD34 GG11

5E336 AA04 AA08 AA12 AA14 BB03

BC26 BC34 CC32 CC43 CC53

CC55 EE01 GG11

5E338 AA03 BB03 BB12 BB19 BB25

BB63 BB75 CC01 CC04 CC06

CD01 CD12 CD13 CD32 EE13

5E346 AA06 AA12 AA15 AA35 AA43

BB02 BB03 BB04 BB06 BB11

BB16 CC01 CC31 FF01 FF45

GG40 HH01 HH21

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
, D. carvers

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.