数学科学学院本科生2015 — 2016学年第一学期《数理统计》期末考试试卷(A卷)

任课教师:	专业:	年级:	学号:	姓名:	成绩
得分一、填	[空题(本题共22分, 每3	空2分).			
(i). 设 X_1,\ldots	X_n 为来自 $N(\mu, \sigma^2)$ 的i	id样本,则参数e ^μ 的	JMLE为		
(ii). 设 $X \sim \Gamma($	$(\alpha, \lambda), Y \sim \Gamma(\beta, \lambda), \perp 2$	X, Y独立,则 $X+Y$	~; X	的PDF为:	·
(iii). 设φ(x)为э	关于假设 $H_0: \theta \leq \theta_0 \leftrightarrow$	$H_1: \theta > \theta_0$ 的水平 ϵ	α的UMPT,则它在	检验类Φ*={	
中第	_类错误概率最小.				
(iv). 设 X_1,\ldots ,	X_n 为来自正态分布 N	$(\mu,1)$ 的iid样本,则	关于假设 $H_0: \mu \leq 0$	$\leftrightarrow H_1: \mu > 0$ 的水平	
为α的UM	P检验为 $\phi(x) = \begin{cases} 1, \\ 0, \end{cases}$	———"它等同 否则,	引于正态总体显著性	检验中的检验.	
(v) . 设 $X_1,\ldots,$	X_n 为来自CDF为 $F(x)$	的 iid 样本,以 $F_n(x)$)记其经验分布函数。	,则 $F_n(x)=$	
则关于假	设 $H_0: F(x) = F_0(x)$	$\leftrightarrow H_1: F(x) \neq F_0($	(x) (其中 $F_0(x)$ 完全已	己知)的Kolmogorov检验	脸统计量
为:		如对于给定的正整	整数 r ,将样本空间。	划分成 r 个不交区间,	且以 n_i ,
p_i, p_{i0} 分别	表示落入第i个区间的	样本个数、理论概念	率和期望概率, 则检	验上述假设的 χ^2 拟合作	优度检验
统计量为:	:	, 其极限零分	· 布为:		

草稿区

草稿区

得分

二、(10分)设 X_1,\ldots,X_n 为来自指数分布E(1)的iid样本,记 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ 为其次序统计量, $X_{(0)} = 0,\ Z_i = X_{(i)} - X_{(i-1)}, i = 1,\ldots,n$ (注: $(X_{(1)},\ldots,X_{(n)})$ 的联合PDF为 $f(x) = n! \exp\{-\sum_{i=1}^n x_i\}I(1 < x_1 < \cdots < x_n)$). 证明:

- (i). Z_1, \ldots, Z_n 相互独立且 $2(n-i+1)Z_i \sim \chi^2(2)$;
- (ii). $2\left[\sum_{i=1}^{r} X_{(i)} + (n-r)X_{(r)}\right] \sim \chi^{2}(2r), r = 1, \dots, n.$

数学科学学院本科生2015 — 2016学年第一学期《数理统计》期末考试试卷(A卷) 专业: 年级:

学号: 姓名:

草稿区

得分

三、(12分)设 X_1,\ldots,X_n 为来自 $N(\mu,\sigma^2)$ 的iid样本, μ,σ^2 均未知.

- (i). 求 μ^2 的UMVUE, 并记之为 $T_n(X)$;
- (ii). 验证上述 $T_n(X)$ 是否为 μ^2 的有效估计;
- (iii). 验证上述 $T_n(X)$ 是否为 μ^2 的相合估计.

年级:

学号:

姓名:

草稿区

得 分

四、 (10分)设样本 X_1,\ldots,X_m 为来自 $N(\mu,\sigma_1^2)$ 的iid样本, Y_1,\ldots,Y_n 为来自 $N(\mu,\sigma_2^2)$ 的iid样本,且全样本独立,其中 $\mu,\sigma_1^2,\sigma_2^2$ 为未知参数. 求 μ 水平 $1-\alpha$ 的置信区间.

年级:

学号:

姓名:

草稿区

得分

五、(10分)设 X_1,\ldots,X_n 为来自具有如下PDF $f(x,\mu)=\exp\{-(x-\mu)\}I_{\{x\geq\mu\}}$ 的总体的IID样本,其中 $\mu\in R$ 为参数,求假设 $H_0:\mu=0\leftrightarrow H_1:\mu\neq0$ 的水平 α 的似然比检验.

数学科学学院本科生2015 — 2016学年第一学期《数理统计》期末考试试卷(A卷) 专业:

年级: 学号: 姓名:

草稿 区

得 分

六、(12分) 设 X_1,\ldots,X_n 为来自总体 $N(\mu,\sigma^2)$ 的iid样本.

- (1) 当 $\sigma^2 = 1$ 时, 求假设 $H_0: \mu \leq 0 \longleftrightarrow H_1: \mu > 0$ 的水平为 α 的显著性检验, 并证明其功效函数 $\beta(\mu)$ 关于 μ 单调增加;(8分)
- (2) 当 μ 未知时, 求假设 $H_0: \sigma^2 = \sigma_0^2 \longleftrightarrow H_1: \sigma^2 \neq \sigma_0^2$ 的水平为 α 的显著性检验.

数学科学学院本科生2015 — 2016学年第一学期《数理统计》期末考试试卷(A卷) 专业:

年级:

学号:

姓名:

草稿 区

得分

七、(12分) 设 X_1, \ldots, X_n 为来自概率分布为 $f(x, \theta)$ 的iid样本,其中 $\theta \in \Theta = \{\theta_0, \theta_1\}$,我们感兴趣的假设为 $H_0: \theta = \theta_0 \longleftrightarrow H_1: \theta = \theta_1$. 设检验 $\phi(x) = \begin{cases} 1, & \lambda(X) > k; \\ 0, & \lambda(X) < k, \end{cases}$ 其中非负数k满足 $\beta_{\phi}(\theta_0) = \alpha \in (0,1), \lambda(X) = f(X,\theta_1)/f(X,\theta_0)$ 为似然比. 证明上述 $\phi(X)$ 为水平 α 的MPT,且 $\beta_{\phi}(\theta_1) \geq \alpha$.

数学科学学院本科生2015 — 2016学年第一学期《数理统计》期末考试试卷(A卷) 专业:

年级:

学号:

姓名:

草稿区

得 分

八、(12分) 设 X_1,\ldots,X_n 为来自指数分布 $E(\lambda)$ 的iid样本,其中 $\lambda>0$ 为未知参数. 求假设 $H_0:$ $\lambda=1\longleftrightarrow H_1:\lambda\neq 1$ 的水平为 α 的UMPUT.