6 Fonction exponentielle

lajssés/poly/plys/vard déjà fait

- Contenu
 - a) Définition de la fonction exponentielle, comme unique fonction dérivable sur vérifiant f' = f et f(0) = 1. L'existence et l'unicité sont admises. Notation $\exp(x)$.
 - b) Pour tous réels x et y, $\exp(x+y) = \exp(x) \exp(y)$ et $\exp(x) \exp(-x) = 1$. Nombre e. Notation e^x .
 - c) Pour tout réel a, la suite (e^{na}) est une suite géométrique.
 - d) Signe, sens de variation et courbe représentative de la fonction exponentielle.
- Capacités
 - a) Transformer une expression en utilisant les propriétés algébriques de la fonction exponentielle.
 - b) Pour une valeur numérique strictement positive de k, représenter graphiquement les fonctions $t \mapsto e^{-kt}$ et $t \mapsto e^{kt}$.
 - ✓ Modéliser une situation par une croissance, une décroissance exponentielle (par exemple évolution d'un capital à taux fixe, décroissance radioactive).
- Démonstrations
 - a)
- Algorithmes
 - a) Construction de l'exponentielle par la méthode d'Euler.
 - b) Détermination d'une valeur approchée de e à l'aide de la suite $\left(1 \frac{1}{n}\right)^n$
- Approfondissements
 - a) Unicité d'une fonction f dérivable sur telle que f' = f et f(0) = 1.
 - b) Pour tous réels x et y, $\exp(x+y) = \exp(x) \exp(y)$.
 - c) La fonction exponentielle est strictement positive et croissante.