

NASA CR-653

NASA CONTRACTOR REPORT

> **DISTRIBUTION STATEMENT A** Approved for Public Release

Distribution Unlimited

UPPER AND LOWER BOUNDS FOR THE EIGENVALUES OF VIBRATING BEAMS WITH LINEARLY VARYING AXIAL LOAD

by William M. Laird and Guy Fauconneau

Prepared by UNIVERSITY OF PITTSBURGH Pittsburgh, Pa. for

Reproduced From **Best Available Copy**

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . NOVEMBER 1966

UPPER AND LOWER BOUNDS FOR THE EIGENVALUES OF VIBRATING BEAMS WITH LINEARLY VARYING AXIAL LOAD

By William M. Laird and Guy Fauconneau

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Grant No. NsG-634 by UNIVERSITY OF PITTSBURGH Pittsburgh, Pa.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TABLE OF CONTENTS

																															Pag	e
ABSTR	ACT	• •			•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v	
NOMEN	ICLA:	TURE				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii	
I-	- IN	rodi	JCT]	(O)	١.		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	
II -	- BO	UNDS	FOR	R E	EIGI	ZNZ	/AI	UE	ES		•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	
III -	- RE	SULT	S Al	ND	DIS	SCI	JSS	SIC	ONS	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7	,
IV -	- CO	NCLU	DIN	G F	REMA	ARI	KS.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	9	,
BIBL	IOGR	APHY		• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	10)
FIGU																															14	ł
TABL	ES O																						•									7

ABSTRACT

Previous investigations have demonstrated the importance of the effect of linearly varying axial or in-plane loading on the vibration characteristics of beams and flat plates. It has already been established that the problem reduces to solving for the eigenvalues of a fourth order, variable coefficient differential equation that can not be solved in closed form. Beginning with a variational representation of the eigenvalue problem, methods are discussed by which both upper and lower bounds for the eigenvalues may be formed. The true eigenvalues may thus be estimated as being bracketed by the upper and lower bounds which are shown to approach each other. The bounds for the eigenvalues may also be estimated by an averaging procedure which may or may not compare favorably with the true values depending on the values of the loading parameters. Finally, numerical values for upper bounds, lower bounds, and average lumped end-load eigenvalues are computed on an IBM 7090 Computer.

NOMENCLATURE

A	Differential operator of loaded beam
С	Eigenvectors
ci	Constants
E	Modulus of Elasticity
f.	Natural frequency of vibrating beam
I	Moment of inertia
$K_{\mathbf{b}}$	Class of admissible functions in elastic stability problems
K _v	Class of admissible functions in vibration problems
L	Length of the beam
P ₁ , P ₂	Constant end loads
u	Function
v	Function
x	Axial coordinate
α	Distributed axial load parameter
ď _c	Critical axial load
β	Ratio of end load to total distributed load
y 4	Separation constant
ф	Function
λ	Eigenvalue
$\boldsymbol{\tilde{\chi}}$	Upper bound
ξ	Nondimensional axial variable
ζ	Density per unit of length
ψ	Mode shape, dependent deflection variable

I. INTRODUCTION

In recent years much attention has been given to the effect of linearly varying axial or in-plane loads on the vibrational characteristics of beams and plates. This topic is of particular interest in aerospace applications where inertia and friction drag forces manifest themselves as axial or in-plane loads. A detailed formulation of the problem is the subject of a prior NASA report by authors (1) and is the subject of considerable literature (see ref. 2 through 16).

Formulation of the Problem

As described in references (1) and (2), the eigenvalue problem for both the beam and the rectangular plate may be resolved, under certain restrictions, to a solution of the ordinary differential equation

$$\frac{d^4 \Psi}{d \xi^4} + \alpha \frac{d}{d \xi} \left\{ (\beta + \xi) \frac{d \Psi}{d \xi} \right\} - \lambda \Psi = 0 \tag{1}$$

and the boundary conditions

$$\frac{d^2 \Psi}{d\xi^2} = 0 \quad , \quad \frac{d^2 \Psi}{d\xi^3} + \alpha (\beta + \xi) \frac{d\Psi}{d\xi} = 0 \quad \text{at a free end}$$

$$\Psi = 0 \quad , \quad \frac{d^2 \Psi}{d\xi^2} = 0 \quad \text{at a simply supported end}$$

$$\Psi = 0 \quad , \quad \frac{d\Psi}{d\xi} = 0 \quad \text{at a clamped end.}$$

where

$$\xi = \frac{x}{L}$$
 $\propto = \frac{\omega L^3}{EI}$, $\beta = \frac{R}{\omega L}$ and $\lambda = \frac{y^4 g L^4}{EI}$ (3)

In view of the definition of the parameter β , it is clear that for a given compressive distributed load ω , the following cases may occur:

- 1) **b**, the beam is entirely in compression
- 2) 0>8>-1, the beam is partly in tension and partly in compression
- 3) -1/ β , the beam is entirely in tension since the tensile and load P₁ is larger than the total distributed load L.

In the last case, the problem of elastic stability does not exist.

The determination of mode shapes and natural frequencies involves the solution of the differential eigenvalue problem defined by eqs. (1) and (2). Variational techniques (1) (2) finally resolve this to obtaining solutions to the variational principle

$$\lambda_1 = \min \frac{\langle Au, u \rangle}{\langle u, u \rangle} *$$
(4)

where K is the class of functions constituting the domain of definition of the operator A, and, hence, satisfying both the prescribed and the natural boundary conditions, and < u,v> denotes the inner product between two functions u,v, where

$$\langle u, v \rangle = \int_{0}^{1} u \, v \, d\xi$$
 and
$$A = \frac{d^{4}}{d\xi^{4}} + \frac{d}{d\xi} \left\{ (\beta + \xi) \, \frac{d}{d\xi} \right\}$$
 (5)

Equation (4) may be characterized by Courant's maximum-minimum characterization (ref. 18, Chap. III) given by

$$\lambda_{\delta} = \max_{\{\mu_{ik}\}} \left\{ \min_{\langle \phi, \mu_{i} \rangle = 0} \frac{\int_{0}^{1} \left[\left(\frac{d^{2}\phi}{d\xi^{2}} \right)^{2} - \alpha(\beta + \xi) \left(\frac{d\phi}{d\xi} \right)^{2} \right] d\xi}{\int_{0}^{1} \phi^{2} d\xi} \right\}$$

$$i=1 \text{ to } j-1.$$
(6)

where φ and μ_i belong to K_V , where K_V is the class of admissible functions required to satisfy only the prescribed boundary conditions.

^{*} This functional is known as Rayleigh's quotient.

In resume, the situation is as follows: if β is such that buckling may occur, there exists for the given falue of β a critical value of this distributed axial load parameter, α_{C} , for which the beam is unstable and the potential energy is equal to zero. For any value of α less than α_{C} , the potential energy is positive, and the beam has discrete natural frequencies whose square are proportional to the eigenvalues of the operator A,

where

$$A = \frac{d^4}{d\xi^4} + \frac{d}{d\xi} \left\{ (\beta + \xi) \frac{d}{d\xi} \right\} \tag{7}$$

These eigenvalues are assumed to be ordered in the non-decreasing sequences

$$0 < \lambda_1 \le \lambda_2 \le \lambda_3 \dots$$

The eigenfunctions corresponding to distinct eigenvalues are mutually orthogonal, and correspond to the mode shapes of the beam. For a given value of β , as α increases, the numerator of the Rayleigh quotient decreases and the eigenvalues decrease. Buckling occurs when α becomes equal to $\alpha_{\rm C}$, for which the first eigenvalue goes to zero.

In the next section, we review the methods used in this work to obtain approximate solutions.

II. BOUNDS FOR EIGENVALUES

There appear in the literature many methods for finding bounds for eigenvalues. Upper bounds are usually found without too many difficulties by the Rayleigh-Ritz method. Lower bounds present considerably more difficulties, and it can be said that no method having the generality, simplicity, and success of the Rayleigh-Ritz method exists for the computation of lower bounds. The most suitable method usually depends on the problem at hand.

In this section, we review briefly the methods used in this work in the calculations of approximations to eigenvalues. They are the Rayleigh-Ritz method, the method of Kato, and the method of intermediate problems of Weinstein and Aronszajn, with some modifications introduced by Bazley and Fox.

A. The Rayleigh-Ritz Method

The Rayleigh-Ritz method for numerical computations of approximations to eigenvalues has been used extensively and with great success in the literature.* Consequently, it will only be outlined briefly here.

The basic idea of the method consists in determining the stationary values of the Rayleigh quotient, not over all admissible functions u, but only over the linear manifold spanned by an arbitrary set of n linearly independent functions $\{u_i\}$ satisfying the boundary conditions of the operator A. The problem then consists in finding the functions u of the form

$$M = \sum_{i=1}^{N} C_i M_i \tag{8}$$

i.e., in finding the constants C_i , making the Rayleigh quotient stationary, and the stationary value of the quotient. Substitution of Equation(8)into Rayleigh's quotient yields

$$\frac{\langle u, Au \rangle}{\langle u, u \rangle} = \frac{\sum_{i,j=1}^{n} c_{i}c_{i} \langle ui, Au_{i} \rangle}{\sum_{i,j=1}^{n} c_{i}c_{i} \langle ui, u_{i} \rangle}$$
(9)

which is the ratio of two quadratic forms in the n real variables C_1 , C_2 , ... C_n . Its stationary values can be obtained by finding, for instance, the stationary values of the quadratic form in the numerator, subject to the auxiliary condition that the denominator be equal to one, and using the method of the Lagrange undetermined multiplier. The result is the general matrix eigenvalue problem

$$\left[\langle u_i, Au_i \rangle\right] \left[c_i\right] = \tilde{\lambda} \left[\langle u_i, u_i \rangle\right] \left[c_i\right] \tag{10}$$

 $^{^{*}}$ See, for instance, references 17, 18, and 19.

 $^{^*}$ The functions \mathbf{u}_i are often called coordinate functions.

Since the class of admissible functions was restricted to the finite dimensional manifold, it follows that the eigenvalues are upper-bounds for the eigenvalues of A, i.e.,

$$\lambda_{i} \leq \widetilde{\lambda}_{i}$$
 , $i^{=1}, 2, \dots n$ (11)

Furthermore, it follows that as n increases, the upper bounds are improved, or at least, not worsened.

From a computational standpoint, it is advantageous to choose mutually orthogonal coordinate functions to avoid the solution of a general eigenvalue problem. Also, Equation(9) may be written as in Equation(6) with the functions $\{u_i\}$ required to satisfy only the prescribed boundary conditions. This point is discussed in detail in references 18 and 19. The coordinate functions utilized in this work satisfy both the prescribed and the natural boundary conditions, as will be seen later.

B. The Method of Kato

The Rayleigh-Ritz method described above furnishes upper bounds for eigenvalues. The results, particularly for the first eigenvalue, are usually in agreement with the exact eigenvalues for the cases where the latter can be obtained. However, in general, the question regarding the closeness of these bounds to the true values remains unanswered, although in some instances, an estimate of the error is possible. One way of determining how good the approximations are is to compute also lower bounds. If these turn out close to the upper bounds, the question is essentially answered. The method of Kato(22), which is an extension of Temple's method, furnishes lower bounds, provided rough estimates of the sought eigenvalues are known. This is outlined by Freidman (22, p. 212).

C. The Method of Intermediate Problems

The methods described in the preceding two sections furnish upper and lower bounds for eigenvalues. In both methods, the quality of the results

^{*} See, for instance, reference 21, p. 336.

depends strongly on how well the trial functions approximate the eigenvectors of the operator. Hence, both methods may require considerable ingenuity in the selection of the trial functions. Furthermore, for different sets of trial functions, there is little prior knowledge of which set will give the best results. For these reasons, it is in order to consider also another method for the computation of the lower bounds. The method used here is the method of intermediate problem, which presents the advantage that the bounds can be improved.

Quite a few years back, Weinstein (24) introduced the method of intermediate problems, which gives improvable lower bounds by changing the boundary conditions of differential operators. Briefly, the method consists in relaxing the boundary conditions to obtain a solvable problem, the base problem, whose eigenvalues give rough lower bounds for the eigenvalues of the given problem. A sequence of intermediate problems linking the base problem to the given problem is then introduced. These are such that they can be solved in terms of the base problem, and that they give improved lower bounds. The details of the procedure are exposed in references 17 and 25.

In 1951, Aronszajn (26) pointed out that a base problem can be obtained by changing the differential operator, and indicated the method of construction of the intermediate problems. The solution of these intermediate problems requires the determination of the poles and the zeroes of a meromorphic function given in its partial fractions representations. From a computational standpoint, the determination of the zeroes present many difficulties which have been removed in a dissertation by Bazley (27), and in a series of recent papers by Bazley and Fox (28-33). These authors have applied their method to the determination of the eigenvalues of Schrodinger's equation and Mathieu's equation with excellent results.

A more detailed resume of the Method of Kato and the Method of Intermediate Problems is given in Reference (2). Reference (2) also describes specific application to the simply supported beam and the beam with builtin ends. These procedures are not particularly difficult in principle, but the calculations involved are somewhat laborious.

D. Lumped Constant End Load Approximation

An approximation to the response of beams with distributed axial load may be accomplished by replacing the distributed load and its reaction with equal and opposite average end loads. This results in an ordinary linear differential equation with constant coefficient which may be solved exactly in terms of trigonometric functions. A comparison of the eigenvalues calculated in this manner is made with the upper and lower bounds in the section on Results and Discussion.

III. RESULTS AND DISCUSSION

Following the methods described above, upper and lower bounds for the eigenvalues of the simply supported and clamped beam were calculated on an IBM 7090 Computer in the Computation and Data Processing Center of the University of Pittsburgh. The results are displayed in Tables I and II and Figures 1, 2, and 3. Upper bounds, lower bounds and lumped end-load eigenvalues are displayed for a wide range of loading parameters α and β .

A. Simply Supported Beam

The bounds for the first five eigenvalues of the simply supported beam are presented in Table I. To facilitate the comparison between the Rayleigh-Ritz upper bounds and the lower bounds by the method of intermediate problems, the ratio of their difference to their average has been computed and is also presented in Table I. Since the eigenvalues of a simply supported beam are easy to obtain, it is interesting to compare the upper and lower bounds of the eigenvalues obtained by lumping half of the total distributed load as a constant load at each end. These results are also included in Table I.

Analysis of the results in Table I indicates that the Rayleigh-Ritz upper bounds and the lower bounds by the method of intermediate problems remain close over the whole range of axial loadings. This is particularly true for the first eigenvalue. Only when the beam is extremely close to buckling does the relative error increase greatly as a result of the smallness of the eigenvalues. For eigenvalues of order higher than one, the error is slightly higher, but, if necessary, it could be reduced by considering higher intermediate problems.

The lower bounds for the first eigenvalue by the method of Kato remain close to the upper bounds for moderate loading, but drop off considerably at the loading increases. Perhaps, this effect might be attributed to the fact that as the first eigenvalue approaches zero, the choice arbitrary trial variations becomes more and more critical. For higher eigenvalues, this selection is not as critical, and consequently, the lower bounds remain close to the upper bounds. However, in the cases where the beam can not become elastically unstable, the Kato lower bounds eventually decrease as the loading becomes very large, and no explanation for this behavior can be offered.

The eigenvalues of the beam with lumped constant end load are remarkably close to those of the beam with distributed load for compressive end thrusts, i.e., for $\beta>0$. For negative β , the results are quite far apart. In particular, for $\beta=-5$, the beam with distributed axial load may become elastically unstable, while the beam with lumped load can not buckle, because its net thrust is zero. Consequently, extreme care should be exercised in the lumping of the loads when they are of opposite signs.

The effect of the axial loads on the first frequency of the simply supported beam is shown in Figures 1 and 2. Figure 1 represents the ratio of the first frequency of the loaded beam to that of the unloaded beam as a function of the distributed load parameter α , as obtained by Kato's method and the Rayleigh-Ritz method. The lower bounds of the method of intermediate problems are not shown because their curve practically coincides with the Rayleigh-Ritz curve for the scale used. The curves correspond to $\beta=0$. Figure 2 also represents the ratio of the fundamental frequency of the loaded beam to that of the unloaded beam as a function of α for various values of β . The curves were obtained by using the average of the upper bounds and lower bounds by the method of intermediate problems.

The values of the critical axial load α_c are given at the intersection of the frequency ratio curve with the horizontal axis. The buckling loads obtained from graphs having a larger scale than that of Figure 2 compare favorably with the exact results of Tyler and Rouleau (11). For $\beta=0$, the graphs indicate that $\alpha \approx 18.7 \, \mathrm{EI/L^3}$ while Tyler and Rouleau's result is $\alpha \approx 18.763 \, \mathrm{EI/L^3}$ while the exact answer is $\alpha \approx 6.5 \, \mathrm{EI/L^3}$ and for $\beta=-.50$ we have $\alpha \approx 83 \, \mathrm{EI/L^3}$ against the exact result of $82.8819 \, \mathrm{EI/L^3}$. The approximate values are certainly close enough for engineering application.

B. Clamped Beam

The bounds for the first four eigenvalues of the clamped beam are presented in Table 2. The ratio of the difference between the upper bound and the corresponding lower bound by the method of intermediate problems to their average has also been computed. The eigenvalues of the clamped beam carrying a constant end load equal to half the total distributed load and the constant end load are also presented in Table II to indicate for what values of the loading parameters this lumping is acceptable.

Examination of the results indicate the following:

- i) The lower bounds by the method of intermediate problems are very close to the Rayleigh-Ritz upper bounds for all eigenvalues and for the whole range of the loading parameters.
- ii) The lower bounds by the method of Kato present the same features demonstrated in the simply supported beam calculations: whenever the loading is small, the bounds are fairly good but become worse as the loads increase.
- iii) The eigenvalues of the beam with lumped end load are fairly close to the upper bounds for moderate loading, particularly for $\beta > 0$. For negative values of β , they can be quite remote from the upper bounds, particularly for β for which the beam with distributed axial load may buckle while the beam with lumped end load can not.

The effect of the axial loads on the first frequency of the clamped beam are shown in Figure 3, which represents the ratio of the first frequency of the loaded beam to that of the unloaded beam as a function of the axial load parameter α for various values of β .

IV. CONCLUDING REMARKS

Bounds for the eigenvalues of a simply supported and a clamped beam carrying linearly distributed axial loads have been presented. The main difficulty in problems of this nature arises from the fact that the governing differential equation has a varying coefficient which usually prevents one from obtaining exact solutions. Upper bounds were easily obtained by the Rayleigh-Ritz method. Lower bounds by the method of Kato were also easy to obtain. In both methods, the closeness of the results to the true eigenvalues depends on the quality of the coordinate functions. It appears that for moderate loading, the eigenfunctions of the unloaded beams were good coordinate functions, as our results indicate.

The lower bounds computed by the method of intermediate problems were very close to the upper bounds, both for the simply supported and the clamped beam. The modifications introduced by Bazley and Fox eliminate the computational difficulties which prevented extensive use of the method of intermediate problems.

For engineering applications, it appears that lumping the axial loads gives eigenvalues that are larger than the true eigenvalues, and that care must be exercised whenever the distributed load and the constant end thrust are of opposite signs. In this case, the buckling loads predicted by the lumped end load problem can be quite remote from the actual critical loads.

The present research could be extended to the consideration of beams with other boundary conditions, closer determinations of the buckling loads, and the methods used here can be applied to other problems giving rise to differential equations with variable coefficients, such as in the problems of the determination of natural frequencies and buckling loads of beams of varying cross sections, plates with varying in-plane loads, and plates of non-uniform thickness, to mention a few. Information of this nature would be valuable to designers, particularly in the Aerospace industry.

BIBLIOGRAPHY

- 1.) Fauconneau, G., and Laird, W., "The Eigenvalue Problem for Beams and Rectangular Plates with Linearly Varying In-Plane and Axial Load," NASA CR-459, August 1966.
- 2.) Fauconneau, G., "Upper and Lower Bounds for the Eigenvalues of Simply Supported and Clamped Uniform Beams Carrying Linearly Varying Axial Loads," Ph. D. Dissertation, University of Pittsburgh, 1966.
- 3.) Glaser, R. E., "Vibration and Stability Analysis of Compressed Rocket Vehicles," NASA TN D-2533, January 1965.
- 4.) Seide, P., "Effect of Constant Longitudinal Acceleration on the Transverse Vibration of Uniform Beams," Aerospace Corporation Report No. TDR-169 (3560-30) TN-6, October 1963.
- 5.) Beal, T. R., "Dynamic Stability of a Flexible Missile under Constant and Pulsating Thrusts," AIAA Journal, Vol. 5, No. 3, pp. 486-494, March 1965.
- 6.) Stevens, J. E., "The Effect of Thrust and Drag Load on the Aero-elastic Behavior of Booster Systems," <u>Journal of Aerospace Sciences</u>, Vol. 27, pp. 639-640, August 1960.
- 7.) Nowacki, W., <u>Dynamics of Elastic Systems</u>. New York: John Wiley and Sons, Inc., 1963.
- 8.) Timoshenko, S. P., and J. M. Gere. Theory of Elastic Stability. New York: McGraw-Hill Book Company, 1961.
- 9.) McKinney, E. H., "Vibration Analysis of Continuous Beam-Columns with Uniformly Distributed Axial Load," Ph. D. Dissertation, University of Pittsburgh, 1960.
- Tu, Y. O., and G. Handelman, "Lateral Vibrations of a Beam under Initial Linear Axial Stress," <u>Journal of Soc. Industr. Appl. Math.</u>, Vol. 9, No. 3, pp. 455-473, 1961.
- 11.) McLachlan, N. W. <u>Bessel Functions for Engineers</u>. Oxford: Oxford University Press, 1955.
- Bowman, F. <u>Introduction to Bessel Functions</u>. New York: Dover Publications, 1958.
- 13.) Tyler, C. M., and W. T. Rouleau, "An Airy Integral Analysis of Beam Columns with Distributed Axial Load that Deflects with the

- Column," Proceedings of the Second U. S. National Congress of Applied Mechanics, pp. 397-305, 1954.
- 14.) Przemieniecki, J. S., "Struts with Linearly Varying Axial Loading," The Aeronautical Quarterly, Vol. 11, pp. 71-98, 1960.
- Woinowsky-Krieger, S., "The Effect of an Axial Force on the Vibration of Hinged Bars," <u>Journal of Applied Mechanics</u>, Vol. 17, pp. 35-36, 1950.
- Burgreen, D., "Free Vibrations of a Pin Ended Column with Constant Distance Between Ends," <u>Journal of Applied Mechanics</u>, Vol. 18, pp. 135-139, 1951.
- 17.) Gould, S. H. <u>Variational Methods for Eigenvalue Problems</u>. Toronto: University of Toronto Press, 1957.
- 18.) Courant, R., and D. Hilbert. Methods of Mathematical Physics. Vol. I. New York: Interscience Publishers, Inc., 1953.
- 19.) Crandall, S. H. Engineering Analysis. New York: McGraw-Hill Book Company, 1956.
- 20.) Mikhlin, S. G. <u>Variational Methods in Mathematical Physics</u>. New York: MacMillan Company, 1964.
- 21.) Kantorovich, L. V., and V. I. Krylov. Approximate Methods of Higher Analysis. Groningen: P. Noordhoff, Ltd., 1958.
- 22.) Kato, T., "On the Upper and Lower Bounds of Eigenvalues," <u>Journal of Physical Society</u>, Vol. 4, pp. 334-339, 1949.
- 23.) Friedman, B. Principles and Techniques of Applied Mathematics. New York: John Wiley and Sons, Inc., 1956.
- 24.) Weinstein, A., "Etude des Spectres des Equations aux Dérivées Partielles," Memorial des Sciences Mathématiques, No. 88, 1937.
- Diaz, J. B., "Upper and Lower Bounds for Eigenvalues," Proceedings of Symposia in Applied Mathematics, Vol. 8, pp. 53-78, 1959.
- Aronszajn, N., "Approximation Methods for Eigenvalues of Completely Continuous Symmetric Operators," <u>Proceedings of Symposium on Spectral Theory and Differential Problems</u>, pp. 179-202, 1951.
- 27.) Bazley, N. W., "Lower Bounds for Eigenvalues," Ph. D. Dissertation, University of Maryland, 1959.

- 28.) Bazley, N. W., "Lower Bounds for Eigenvalues with Application to the Helium Atom," <u>Physical Review</u>, Vol. 120, No. 1, pp. 144-149, 1960.
- 29.) Bazley, N. W., "Lower Bounds for Eigenvalues," <u>Journal of Mathematics and Mechanics</u>, Vol. 10, No. 2, pp. 289-307, 1961.
- Bazley, N. W. and D. W. Fox, "Truncations in the Method of Intermediate Problems for Lower Bounds to Eigenvalues," <u>Journal of Research</u>, Vol. 65B, No. 2, pp. 105-111, 1961.
- 31.) Bazley, N. W. and D. W. Fox, "Lower Bounds for Eigenvalues of Schrodinger's Equation," <u>Physical Review</u>, Vol. 124, No. 2, pp. 483-492, 1961.
- Bazley, N. W. and D. W. Fox, "A Procedure for Estimating Eigenvalues,"

 Journal of Mathematical Physics, Vol. 3, No. 3, pp. 469-471, 1962.
- Bazley, N. W. and D. W. Fox, "Lower Bounds to Eigenvalues Using Operator Decompositions of the Form B*B," Archives Rational Mechanics and Analysis, Vol. 10, pp. 352-360, 1962.
- Abramowitz, M. and I. A. Stegun, ed. <u>Handbood of Mathematical</u> <u>Functions</u>. National Bureau of Standards, 1964.
- 35.) Rayleigh, J. W. S. The Theory of Sound. Vol. I. New York: Dover Publications, 1945.
- 36.) Timoshenko, S. <u>Vibration Problems in Engoneering</u>. Princeton: Van Nostrand, 1956.
- Protter, M. H., "Lower Bounds for the First Eigenvalue of Elliptic Equations," Annals of Mathematics, Vol. 71, pp. 423-444, 1960.
- Protter, M. H., "Vibration of a Nonhomogeneous Membrane," <u>Pacific Journal of Mathematics</u>, Vol. 9, pp. 1249-1255, 1959.
- 39.) Hersch, J., "Sur la Fréquence Fondamentale d'une Membrane Vibrante: Evaluations par Défaut et Principe de Maximum," Zeitschrift fur Angewandte Mathematik und Physik, Vol. 11, pp. 387-413, 1960.
- 40.) Hersch, J., "Physical Interpretation and Strengthening of M. H. Protter's Method for Vibrating Nonhomogeneous Membranes; Its Analogue for Schrodinger's Equation," <u>Pacific Journal of Mathematics</u>, Vol. 11, pp. 971-980, 1961.
- 41.) Hersch, J., "On the Methods of One-Dimensional Auxiliary Problems and of Domain Partitioning: Their Application to Lower Bounds for

- the Eigenvalues of Schrodinger's Equation," <u>Journal of Mathematics</u> and Physics, Vol. 43, pp. 15-26, 1964.
- Hooker, W. W., "Lower Bounds for the First Eigenvalue of Elliptic Equations of Order Two and Four," Ph. D. Dissertation, University of California, 1960.

Effect of Distributed Axial Load on the First Frequency of the Simply Supported Beam

Effect of Axial Loads on the Fundamental Frequency of a Simply Supported Beam

Effect of Axial Loads on the Fundamental Frequency of a Clamped Beam

FIGURE 3

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

Lumped Constant End Load	97.40909 1 558.545 7 890.136 24 936.73 60 880.68	87.5395 1 519.067 7 801.309 24 778.81 60 633.94	77.6699 1 479.588 7 712.483 24 620.89 60 387.20	67.8003 1 440.110 7 623.656 24 462.98 60 140.46
Gap/Average Per Cent	00000	0.009 0.007 0.029 0.154 0.318	0.020 0.014 0.058 0.309 0.640	0.034 0.021 0.087 0.466 0.965
Lower Bound by Intermediate Problems	97.40909 1 558.545 7 890.136 24 936.73 60 880.68	87.47622 1 518.916 7 798.981 24 740.64 60 441.32	77.42758 1 479.201 7 707.814 24 544.67 60 001.91	67.25670 1 439.409 7 616.639 24 348.82 59 562.45
Lower Bound by Kato's Method	97.40909 1 558.545 7 890.136 24 936.73 60 880.68	26. 82118 1 509.258 7 759.954 24 668.74 60 403.19	76.09688 1 459.780 7 629.280 24 399.70 59 923.86	65.20801 1 410.094 7 498.086 24 120.60 59 442.65
Upper Bound by Rayleigh-Ritz	97.40909 1 518.545 7 890.136 24 936.73 60 880.68	87.48401 1 519.022 7 801.265 24 778.77 60 633.89	77.44337 1 479.411 7 712.310 24 620.72 60 387.02	67.27963 1 439.716 7 623.273 24 462.60 60 140.07
Order	17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 3 5	ন্ধজন্ত	H 2 8 2 H
8	0.00	2.00	4.00	9.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

				1
Lumped Constant End Load	57.9307 11.400.631 7 534.830 24 305.07 59 893.71	48.0611 1 361.153 7 446.003 24 147.15 59 646.98	38, 1915 1 321,674 7 357, 177 23 989, 24 59 400, 23	28,3219 1 282,196 7 268,350 23 831,33 59 153,49
Gap/Average Per Gent	0.058 0.029 0.116 0.624 1.294	0.075 0.036 0.144 0.784 1.627	0.099 0.043 0.172 0.945 1.964	0, 158 0, 050 0, 199 1, 109 2, 304
Lower Bound by Intermediate Problems	56.95145 1 399.538 7 525.454 24 153.09 59 122.92	46.51453 1 359.597 7 434.263 23 957.49 58 683.34	35.92827 1 319.593 7 343.061 23 762.01 58 243.69	25.17796 1 279.623 7 251.870 23 566.66 57 803.98
Lower Bound by Kato's Method	54.11895 1 360.181 7 366,345 23 858.37 58 959.51	42,78417 1 310,021 7 234,029 23 585,99 58 474,38	31,14474 1 259,591 7 101,108 23 312,42 57 987,22	19.12343 1 208.868 6 967.549 23 037.61 57 497.99
Upper Bound by Rayleigh-Ritz Method	56,98461 1 399,940 7 534,153 24 304,39 59 893,04	46.54933 1 360.085 7 444.952 24 146.10 59 645.92	35.96395 1 320.157 7 355.672 23 987.74 59 398.72	25.21769 1 280.161 7 266.316 23 829.29 59 151.45
Order	12645	24 33 57	12645	7 6 7 3 5
ď	8.00	10.00	12.00	14.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

ò	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant En d Load
16.00	1 7 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	14.29866 1 240.103 7 175.883 23 670.76 58 904.09	6.61749 1 157.825 6 833.320 22 761.53 57 006.62	14.255 6 2 1 239.414 7 160.670 23 371.45 57 364.20	0.301 0.056 0.226 1.273 2.649	18,4523 1.242.718 7 179.524 23 673.41 58 906.75
18.00	17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3.193809 1 199.990 7 087.378 23 512.15 58 656.65	1 106.434 6 698.383 22 484.12 56 513.06	3.148092 1 199.233 7 069.476 23 176.36 56 924.36	1.442 0.063 0.253 1.438 2.998	8.5827 1 203.239 7 090.697 23 515.50 58 660.02
18.50	25 4 3 2 5 2	. 386901 1 189.955 7 064.990 23 472.49 58 594.78	1 093.528 6 664.534 22 414.56 56 389.33	.341591 1 189.187 7 046.678 23 127.62 56 814.39	1 12.448 0.065 0.260 1.480 3.085	6.1152 1 193.370 7 068.491 23 476.02 58 598.33

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM 3 ;—l TABLE

ờ	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
2.00	1 2 8 7 9 2	82.54863 1 499.283 7 756.852 24 699.80 60 510.51	81.91434 1 489.607 7 715.692 24 589.99 60 280.09	82.54596 1 499.177 7 754.567 24 661.68 60 317.95	0.003 0.007 0.029 0.357 0.319	82 .5047 1 499.327 7 75 6 .896 24 699.85 60 510.57
4.00	2 4 3 2 1	67.56889 1 439.935 7 523.485 24 462.81 60 140.28	66.34465 1 420.664 7 541.064 24 242.65 59 678.24	67.55165 1 439.726 7 618.987 24 386.76 59 755.17	0.026 0.015 0.059 0.311 0.642	67.8003 1 440.110 7 623.656 24 462.98 60 140.46
6. 00	1 5 4 4 3 2 5	52.45787 1 380.505 7 490.036 24 225.73 59 769.96	50.68089 1 351.718 7 366.244 23 894.68 59 075.06	52.43477 1 380.197 7 483.402 24 111.95 59 192.34	0.044 0.622 0.089 0.471 0.971	52.9959 1 380.892 7 490.416 24 226.11 59 770.35
8.00	T 4 8 8 11	37.20190 1 321.000 7 356.507 23 988.57 59 399.56	34.89742 1 282.770 7 191.216 23 546.06 58 470.54	37.16991 1 320.595 7 347.814 23 837.28 58 629.44	0.086 0.031 0.118 0.633 1.305	38.1915 1 321.674 7 357.177 23 989.24 59 400.23

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM . ⊢ TABLE

ò	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
10.00	1 7 8 7 9 2 9 1	21,78530 1 261.426 7 222.901 23 751.33 59 029.08	18.95922 1 213.824 7 015.972 23 196.75 57 864.62	21.74532 1 260.936 7 212.221 23 562.72 58 066.49	0.184 0.039 0.148 0.797 1.644	23.3871 1 262.457 7 223.937 23 752.37 59 030.12
12.00	1 2 2 4 4 5 5	6.190051 1 201.793 7 089.221 23 514.01 58 658.51	2.817389 1 144.882 6 840.497 22 846.74 57 257.28	6.1546701 1 201.233 7 076.629 23 288.30 57 503.46	0.573 0.047 0.178 0.965 1.989	8.5827 1 203.239 7 090.697 23 515.01 58 660.01
12.50	1 2 6 4 5	2.260952 1 186.877 7 055.789 23 454.67 58 565.86	1 127.648 6 796.590 22 759.13 57 105.22	2.224899 1 186.297 7 042.739 23 219.72 57 362.69	1.607 0.049 0.185 1.007 2.076	4.8815 1 188.435 7 057.387 23 456.28 58 567.49

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM 1 |--| TABLE

8	Order	Upper Bound by Rayleigh-Ritz	Lower Bounds by Kato's Method	Lower Bounds by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1.00	25 4 3 2 5 2 5 2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	87.52560 1 519.055 7 801.297 24 778.79 60 633.91	87.20957 1 514.228 7 780.766 24 724.01 60 518.92	87.51748 1 519.001 7 800.157 24.759.71 60 537.63	0.009 0.004 0.015 0.078 0.159	87.5395 1 519.067 7 801.309 24 778.81 60 633.94
3.00	1 2 3 3 2 5 4 4 3 3 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	67.67012 1 440.011 7 623.559 24 462.88 60 140.35	66.80439 1 425.730 7 562.125 24 298.45 59 794.90	67.65601 1 439.847 7 620.156 24 405.78 59 851.52	0.021 0.011 0.045 0.234 0.481	67.8003 1 440.110 7 623.656 24 462.98 60 140.46
5.00	1 2 2 2 2 5 4 3 3 5 4 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	47.68328 1 360.886 7 445.739 24 146.89 59 646.70	46.38864 1 337.431 7 343.619 23 872.72 59 070.15	47.66803 1 360.623 7 440.165 24 051.95 59 165.95	0.032 0.019 0.075 0.394 0.809	48.0611 1 361.153 7 446.003 24 147.15 59 646.98
7.00	1 2 8 4 9 2 5	27.54646 1 281.687 7 267.840 23 830.81 59 152.97	25.95841 1 249.359 7 125.257 23 446.81 58 344.64	27.51930 1 281.329 7 260.169 23 698.26 58 479.11	0.099 0.028 0.106 0.558 1.146	28.3219 1 282.196 7 268.350 23 831.33 59 153.49

2.6609 End Load 1 179.552 Constant 18.4523 8.5827 7 090.698 7 037.401 1 242.718 203.239 Lumped 7 179.524 23 515.50 58 660.02 23 420.75 58 511.97 23 573.41 58 906.75 = 0.50Gap/Average Φ. 0.146 0.776 1.592 0.040 0.155 0.033 0.121 0.473 0.037 0.137 0.725 1.316 1.488 0.641 Per Cent 7.2031238 Intermediate 1.070184 BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM 17.38809 Lower Bound Problems 1 178,171 23 238.65 57 586.90 7 170.170 7 026.174 1 241.659 201.981 7 080.177 23 521.4**6** 58 135.96 23 344.70 57 792.81 Kato's Method Lower Bound 5.507694 15.73609 205.418 6 841.618 22 892.85 1 161.547 6 907.049 7 016.133 1 135,259 23 233.79 57 981.60 23 020.71 57 918.37 57 400.33 Rayleigh-Ritz 7.237294 1.107041 Upper Bound 17.41498 7 036.460 23 419.80 1 242.063 7 178.863 1 202.425 1 178.637 7 089.866 23 672.75 58 906.08 23 514.66 58 659.17 659.17 58 511.01 Order 2 6 4 5 2645 6 4 5 1 9.60 8.00 00.6 Н à TABLE

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM H TABLE

		1		1
Lumped Constant End Load	85.0721 1 509.197 7 779.102 24 739.33 60 572.25	72.7351 1 459.849 7 668.069 24 541.94 60 263.83	60:3981 1 410.501 7 557.036 24 344.55 59 955.40	48.0611 1 361.153 7 446.003 24 147.16 59 646.98
Gap/Average Per Cent	0.002 0.003 0.015 0.077 0.159	0.011 0.007 0.030 0.155 0.320	0.024 0.011 0.005 0.235 0.483	0.026 0.016 0.060 0.315 0.065
Lower Bound by Intermediate Problems	85.05647 1 509.134 7 777.946 24 720.24 60 475.94	72.66977 1 459.697 7 665.747 24 503.77 60 071.21	60.25156 1 410.242 7 553.539 24 287.33 59 666.46	47.80695 1 360.769 7 441.338 24 070.93 59 261.69
Lower Bound by Kato's Method	84.74914 1 504.381 7 758.597 24 684.58 60 457.30	72.10252 1 450.306 7 627.168 24 432.50 60 033.91	59.47118 1 396.327 7 495.851 24 180.50 59 610.47	46.85748 1 342.451 7 364.650 23 928.56 59 187.00
Upper Bound by Rayleigh-Ritz	85.05812 1 509.186 7 779.090 24 739.31 60 572.23	72.67783 1 459.805 7 668.026 24 541.89 60 263.77	60.26579 1 410.403 7 556.940 24 344.45 59 995.29	47.81929 1 360.982 7 445.834 24 146.98 59 646.80
Order	1 2 6 7 5	28 4 3 5 1	1 2 5 4 3 2 2	12645
8	1.00	2.00	3.00	4.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM 1 ⊢ TABLE

ı .			
35.7241	23.3871	11.0501	4.8815
1 311.805	1 262.457	1 213.109	1 188.435
7 334.970	7 223.937	7 112.904	7 057.388
23 949.76	23 752.37	23 554.98	23 456.28
59 338.55	59 030.12	58 721.70	58 567.49
0.062	0.103	0.241	0.792
0.020	0.025	0.029	0.032
0.076	0.092	0.108	0.116
0.376	0.480	0.564	0.607
0.815	0.983	1.154	1.240
35.31343	22.78719	10.21664	3.907605
1 311.276	1 261.775	1 212.262	1 187.496
7 329.137	7 216.936	7 104.729	7 048.634
23 859.56	23 638.22	23 421.92	23 313.78
58 856.91	58 452.12	58 047.31	57 844.89
34.2 6 425	21.6949 6	9.153818	2.895383
1 288. 684	1 235.035	1 181.513	1 154.802
7 233.570	7 102.614	6.971.787	6 906.424
23 676.70	23 424.91	2 317.319	23 047.36
58 763.48	58 339.92	57 916.33	57 704.51
35.33536	22.81063	10.24133	3.938669
1 311.542	1 262.085	1 212.514	1 187.873
7 334.708	7 223.563	7 112.400	7 056.811
23 949.50	23 751.99	23 554.47	23 455.70
59 338.28	59 029.74	58 721.18	58 566.89
28 4 3 5 7 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	25 4 3 2 2 2	12 2 2 2 5	25 4 3 3 5 2
5.00	6.00	7.00	7.50
	1 35.33536 34.26425 35.31343 0.062 2 1 311.542 1 288.684 1 311.276 0.020 1 3 3 7 334.708 7 233.570 7 329.137 0.076 7 3 4 23 949.50 23 676.70 23 859.56 0.376 23 9 5 59 338.28 58 763.48 58 856.91 0.815 59 3	1 35.33536 34.26425 35.31343 0.062 2 1 311.542 1 288.684 1 311.276 0.020 1 3 3 7 334.708 7 233.570 7 329.137 0.076 7 3 4 23 949.50 23 676.70 23 859.56 0.076 7 3 5 59 338.28 58 763.48 58 856.91 0.815 59 3 1 22.81063 21.6949 6 22.78719 0.103 12 2 1 262.085 1 235.035 1 261.775 0.025 1 2 3 7 223.563 7 102.614 7 216.936 0.092 7 2 4 23 751.99 23 424.91 23 424.91 23 424.91 58 339.92 58 452.12 0.983 59 0	1 35.33536 34.26425 35.31343 0.062 13 2 1 311.542 1 288.684 1 311.276 0.020 1 3 3 7 334.708 7 233.570 7 329.137 0.076 7 3 4 23 949.50 23 676.70 23 859.56 0.076 7 3 5 59 388.28 58 763.48 58 856.91 0.815 59 3 1 22.81063 21.6949 6 22.78719 0.0815 59 3 2 1 262.085 1 235.035 1 261.775 0.092 7 2 3 7 223.563 7 102.614 7 216.936 0.092 7 2 4 23 751.99 23 424.91 23 638.22 0.480 23 7 5 59 029.74 58 339.92 58 452.12 0.983 59 0 1 10.24133 9.153818 10.21664 0.2241 0.983 59 0 2 1 212.514 1 181.513 1 212.262 0.029 1 2 2 1 212.40 6 971.737 7 104.729 0.108 7 1 4 23 554.47

1.7973 1 176.098 7 029.629 23 406.94 58 490.38 Constant End Load Lumped $\beta = .75$ Gap/Average Per Cent 3.693 0.033 0.120 0.628 1.284 0.7542064 1 175.109 7 020.583 23 259.71 57 743.69 Intermediate BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM Lower Bound Problems by Kato's Method Lower Bound 1 141,460 6 873.755 Rayleigh-Ritz 0.7825819 Upper Bound 1 175.502 7 029.015 23 406.31 58 4 89.75 Order 2845 . H 7.75 ò TABLE

22 984.45 57 598.60

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

 $\beta = 1.00$

ó	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1.00	1 2 8 7 5	82.59065 1 499.316 7 756.884 24 699.84 60 510.55	82.28879 1 494.533 7 736.428 24 645.15 60 395.69	82.58765 1 499.263 7 755.743 24 680.75 60 414.26	0.004 0.004 0.015 0.077 0.159	82.6047 1 499.327 7 756.896 24 699.85 60 510.57
3.00	25 4 3 3 5 1	52.8 6 138 1 380.795 7 490.320 24 226.01 59 770.24	52.14043 1 366.927 7 429.579 24 062.55 59 426.05	52.85093 1 380. 6 34 7 486.927 24 158.90 59 481.41	0.020 0.012 0.045 0.23 6 0.484	52.9959 1 380.892 7 490.416 24 226.11 59 770.35
5.00	25 4 3 5 1	22.98678 1 262.199 7 223.677 23 752.11 59 029.85	22.15408 1 239.950 7 123.531 23 480.69 58 456.83	22.96599 1 261.929 7 218.113 23 657.17 58 548.49	0.090 0.021 0.077 0.401 0.819	23.3871 1 262.457 7 223.937 23 752.37 59.030.13
9.00	1 2 4 5	7.984866 1 202.877 7 090.327 23 515.12. 58 659.63	7.241968 1 176.730 6 970.827 23 190.04 57 972.37	7.961275 1 202.567 7 083.696 23 401.35 58 082.01	0.296 0.026 0.094 0.485 0.990	8.5827 1 203.239 7 090.698 23 515.5 58 660.02

1 188.435 7 057.388 1 173.630 7 024.078 23 456.28 58 567.49 Constant End Load Lumped $\beta = 1.00$ Gap/Average 0.027 0.098 0.506 1.033 0.692 5.938 0.028 0.102 0.528 1.076 Per Cent .4387692 Intermediate 4.197706 BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM Lower Bound **Problems** 1 187.721 7 050.098 1 172.879 23 337.41 57 965.38 Kato's Method Lower Bound 3.524225 1 160.955 6 932.686 6 894.559 23 117.41 57 851.28 1 145.193 Rayleigh-Ritz .4656114 Upper Bound 4.22 834 1 188.045 7 05**6.**987 7 023.645 188.045 1 173.212 23 455.87 58 567.07 Order 12645 2649 1 Н 6.25 6.50 Ó TABLE

4.8816

1,1804

23 397.06 58 474.96

7 016.496 23 273.46 57 848.76

23 044.79 57 730.19

23 39**6.**62 58 474.51

28

BEAM
SUPPORTED
SIMPLY
THE
OF
EIGENVALUES
TE
FOR
BOUNDS
H
TABLE

 $\beta = 1.50$

1				
Lumped Constant End Load	77.6699 1 479.588 7 712.483 24 620.89 60 387.20	57.9307 1 400.631 7 534.830 24 305.07 59 893.71	38.1915 1 321.674 7 357.177 23 989.24 59 400.23	18.4523 1 242.718 7 179.524 23 673.41 58 906.75
Gap/Average Per Cent	0.002 0.003 0.015 0.078 0.160	0.014 0.008 0.030 0.157 0.322	0.028 0.072 0.046 0.238 0.487	0.070 0.017 0.063 0.322 0.656
Lower Bound by Intermediate Problems	77.65391 1 479.628 7 711.329 24 601.80 60 290.89	57.86322 1 400.479 7 532.50 6 24 266.90 59 701.10	38.04164 1 321.421 7 353.682 23 932.03 59 111.29	18.18 21 1 242.339 7 174.870 23 597.19 58 521.47
Lower Bound by Kato's Method	77.36830 1 474.838 7 692.090 24 566.31 60 272.46	57.38978 1 391.361 7 494.387 24 196.28 59 664.63	37.48683 1 308.134 7 297.041 23 826.66 59 057.20	17.67678 1 225.180 7 100.068 23 457.46 58 450.16
Upper Bound by Rayleigh-Ritz	77.65570 1 479.577 7 712.471 24 620.88 60 387.17	57.871 1 400.588 7 534.786 24 305.02 59 893.66	38.05234 1 321.579 7 357.081 23 989.14 59 400.13	18.19300 1 242.554 7 179.357 23 673.24 58 906.58
Order	12649	12645	11 2 8 4 5	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
۵	1.00	2.00	3.00	4.00

.686968 2.6609 1 179.552 7 037.402 1 171.657 7 019.636 23 420.75 58 511.97 Constant End Load 23 389.17 58 462.62 Lumped = 1.50Gap/Average Ø Per Cent 0.022 0.076 0.390 0.793 7.358 0.022 0.078 0.399 0.810 .2603751 Intermediate 2.251292 BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM Lower Bound Problems 7 013.928 23 295.88 57 990.62 1 179.062 7 031.815 23 329.35 58 049.61 1 171, 164 Kato's Method Lower Bound 1.910738 1 159.031 6 942.770 23 162.41 57 964.83 1 150.776 6 923.126 23 125.55 57 904.18 Rayleigh-Ritz .2892582 Upper Bound 2.272578 1 171.419 7 019.390 1 179.323 7 037.165 23 420.41 58 511.72 23 388.92 58 462.36 Order 2 6 4 5 2 6 4 5 5 ı 4.80 4.90 H Ó TABLE

BOUNDS FOR THE EIGENVLAUES OF THE SIMPLY SUPPORTED BEAM TABLE

_	
\circ	
8	
•	
7	
H	
യ	

	1.	2 2 2	7.7	155 5 8
Lumped Constant End Load	72.7351 1459.849 7 668.069 4 541.94 0 263.83	48.0611 361.153 445.003 147.15 646.98	23.3871 262.457 223.937 752.37 030.13	4.88155 188.435 057.388 456.28 567.49
Con	145 7 6 24 5 60 2	1 3 7 4 24 1 59 6	1 2 7 2 23 7 23 7 59 0	1 1 7 0 7 0 23 4 58 5
Gap/Average Per Cent	0.012 0.004 0.015 0.045 0.150	0.012 0.008 0.031 0.158 0.323	0.047 0.013 0.097 0.241 0.491	0.357 0.017 0.050 0.305 0.618
Gap/A				
nd ate is		171	2020	9351 7 2
Lower Bound by Intermediate Problems	72.71235 459.786 666.911 522.84 167.52	47.99471 360.999 443.674 108.99 454.36	23.232020 262.204 220.445 695.16 741.18	4.629351 188.087 053.022 384.81 206.29
Low	1 4 7 6 24 5 60 1	1 3 7 4 24 1 59 4	1 7 7 2 23 6 58 7	1 7 23 58
ound	313 3	488 7 0	481 2 2	1169 4 5
Lower Bound by Kato's Method	72.44813 455.143 647.753 487.45 149.23	47.58488 3.52.067 405.870 038.80 418.45	22.84481 249.352 164.512 590.78 688.35	4.391169 172.574 983.855 255.20 141.24
Kat	1 2 7 6 24 660 5	1 ; 7 6 24 6 59 4	1 7 23 58	1 6 23 58
ound h-Rítz	2075 38 58 2 1	00062 10 60 1	24296 364 342 27 27	645885 294 242 13
Upper Bou by Rayleigh	72.720' 459.838 668.058 541.92 263.81	48.000 361.110 445.960 147.11 646.92	23.242 262.364 223.842 752.27 030.02	4.6458 188.294 057.242 456.13 567.33
Upr Ray	1 7 7 6 24 560 5	1 7 2 24 59	1 7 23 59	1 7 23 58
Order	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12675	264321	- 2 E 4 S
ó	1.00	2.00	3.00	3.75

2.41419 1 178.565 7 035.181 23 416.81 58 505.81 Lumped Constant End Load = 2.00Gap/Average Per Cent Θ 0.641 0.018 0.061 0.313 9.636 Intermediate 2.150358 BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM Lower Bound Problems 1 178.210 7 030.706 23 343.44 58 134.96 Kato's Method Lower Bound 1.938379 1 162.355 6 959.792 23 210.48 58 068.32 by Rayleigh-Ritz Upper Bound 2.164188 1 178.418 7 035.028 23 416.64 58 505.64 Order 2 4 3 5 1 ı Н 3.85 Ó TABLE

I - BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

·				
Lumped Constant End Load	93.5612 1 542.754 7 854.605 24 873.56 60 781.98	81.6177 1 495.380 7 748.013 24 684.06 60 485.89	65.8264 1 432.214 7 605.891 24 431.40 60 091.11	50.0350 1 369.049 7 4 6 3.769 24 178.74 59 696.32
Gap/Average Per Cent	0.004 0.004 0.015 0.077 0.158	0.023 0.014 0.058 0.309 0.639	0.041 0.028 0.115 0.621 1.290	0.075 0.041 0.169 0.938 1.954
Lower Bound by Intermediate Problems	93.44343 1 542.688 7 853.450 24 854.46 60 685.67	81.37477 1 494.993 7 743.345 24 607.84 60 100.61	64.87003 1 431.118 7 596.508 24 279.42 59 320.31	47.83155 1 366.943 7 449.643 23 951.47 58 539.68
Lower Bound by Kato's Method	93.11508 1 537.864 7 833.972 24 818.62 60 666.80	80.011 6 3 1 475.431 7 664.568 24 462.53 60 022.11	61.93527 1 391.182 7 436.416 23 983.31 59 155.1	42.97865 1 305.609 7 205.422 23 498.74 58 279.23
Upper Bound by Rayleigh-Ritz	93.44753 1 542.742 7 854.593 24 873.54 60 781.96	81.39310 1 495.202 7 747.841 24 683.89 60 485.71	64.89664 1 431.516 7 605.211 24 430.72 60 090.42	47.86730 1 367.508 7 462.254 24 117.23 59 6 94.81
Order	1 7 7 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	H 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 4 3 3 5 4 3 5 4 3 5 6 4 9 6 9 6 9 6 9 9 6 9 9 9 9 9 9 9 9 9	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
à	1.00	4.00	8.00	12.00

ROUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED REAM TABLE

Lower Bound by Gap/Average C Intermediate Per Cent E Problems 34.66177 0.137 1 318.638 0.051 1 7 339.476 0.051 1 7 192.587 1.178 23 23 376.85 1.503 23 23 378.85 1.503 23 57 173.23 3.148 59 1 221.621 0.069 1 7 119.119 0.285 7 23 215.54 1.667 23 56 782.65 3.497 58 2 1205.413 0.071 1 7 082.395 1.749 23 56 587.34 3.672 58	BOUNDS FOR THE EIGEN	FOR THE	VAL	EIGENVALUES OF THE SIMPLY	SIMPLY SUPPORTED BEAM	β=	β =-0.10
34.66177 0.137 1 318.638 0.051 1 33 7 339.476 0.209 7 33 23 705.87 1.178 23 99 57 954.20 2.460 59 46 1 254.016 0.063 1 2 7 192.587 0.260 7 2 23 378.85 3.148 59 0 7 121.621 0.069 1 2 7 119.119 0.285 7 12 7 119.119 0.285 7 12 7 119.119 0.285 7 12 7 119.119 0.285 7 12 7 1205.413 0.071 1 2 7 082.395 1.749 23 56 76 56 587.34 3.672 58 7	Upper Bound Lower Bound by Order Rayleigh-Ritz Kato's Method	nd itz	Lower B by Kato's M	ound	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1 318.638 0.051 1 3 7 339.476 0.209 7 3 23 705.87 1.178 23 9 57 954.20 2.460 59 4 1 254.016 0.268 1 2 7 192.587 0.260 7 2 23 378.85 1.503 23 7 57 173.23 3.148 59 0 7 19.119 0.285 7 1 7 119.119 0.285 7 1 23 215.54 1.667 23 6 56 782.65 3.497 58 8 7 082.395 0.071 1 2 7 082.395 0.298 7 1 23 133.93 1.749 23 5 36 587.34 3.672 58 7	1 34.70939 28.00187	6	28.00	187	34.66177	0.137	38.1915
7 339.476 0.209 7 3 23 705.87 1.178 23 9 57 954.20 2.460 59 4 1 254.016 0.063 1 2 7 192.587 0.260 7 2 23 378.85 1.503 23 7 57 173.23 3.148 59 0 7 1221.621 0.069 1 2 7 119.119 0.285 7 1 23 215.54 1.667 23 6 56 782.65 3.497 58 8 1 205.413 0.071 1 2 7 082.395 1.749 23 5 23 133.93 1.749 23 5 96 587.34 3.672 58 7	1 319,305					0.051	
23 705.87 1.178 23 9 57 954.20 2.460 59 4 16.55101 0.268 1 2 7 192.587 0.260 7 2 23 378.85 3.148 59 0 7 121.621 0.069 1 2 7 119.119 0.285 7 1 23 215.54 1.667 23 6 56 782.65 3.497 58 8 1 205.413 0.071 1 2 7 082.395 0.071 1 2 7 082.395 1.749 23 5 96 587.34 3.672 58 7	7 354.827 7	354.827				0.209	
16.55101 0.268 1 254.016 0.063 1 2 2 3 378.85 1.503 23 7 23 378.85 1.503 23 7 23 378.85 3.148 59 0 7 192.587 0.712 1 7 121.621 0.069 1 2 7 119.119 0.285 7 1 23 215.54 1.667 23 6 56 782.65 3.497 58 8 1 205.413 0.071 1 2 7 082.395 0.071 1 2 23 133.93 1.749 23 5 24 133.93 1.749 23 5	986.98 23	986.98 23				1.178	
16.55101 0.268 1 2 7 192.587 0.260 7 2 23 378.85 1.503 23 7 23 378.85 1.503 23 7 57 173.23 3.148 59 0 7 121.621 0.069 1 2 7 119.119 0.285 7 1 23 215.54 1.667 23 6 56 782.65 3.497 58 8 1 205.413 0.071 1 2 7 082.395 1.749 23 5 23 133.93 1.749 23 5 56 587.34 3.672 58 7	59 397.88 57	397.88 57				2.460	
254.016 0.063 1.2 192.587 0.260 7.2 378.85 1.503 23 7 17.220387 0.712 0.069 1.2 221.621 0.069 1.2 215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 0.071 1.2 205.413 0.071 1.2 082.395 0.298 7 1 133.93 1.749 23 5 133.93 1.749 23 5	16, 59538	8	6.63926	69	16.55101	0.268	22,4001
192.587 0.260 7 2 378.85 1.503 23 7 173.23 3.148 59 0 7.220387 0.712 0.069 1 2 215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 0.071 1 2 205.413 0.071 1 2 0.298 7 1 133.93 1.749 23 5 587.34 3.672 58 7	1 254.801	7				0.063	
378.85 1.503 23 7 173.23 3.148 59 0 7.220387 0.712 1 2 221.621 0.069 1 2 119.119 0.285 7 1 215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 1 205.413 0.071 1 2 082.395 0.298 7 1 133.93 1.749 23 5 587.34 3.672 58 7		211.323 6				0.260	
173.23 3.148 59 0 7.220387 0.712 1 2 221.621 0.069 1 2 119.119 0.285 7 1 215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 1 205.413 0.071 1 2 082.395 0.298 7 1 133.93 1.749 23 5 587.34 3.672 58 7	23 732.84 22 636	732.84 22 636	636		378	1,503	
7.220387 0.712 221.621 0.069 1 2 119.119 0.285 7 1 215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 0.071 1 2 082.395 0.298 7 1 133.93 1.749 23 5 587.34 3.672 58 7		001.79 56 723	723		173	3.148	
221.621 0.069 1 2 119.119 0.285 7 1 215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 0.071 1 2 082.395 0.298 7 1 133.93 1.749 23 5 587.34 3.672 58 7	1 7.271955	55			7.220387	0.712	14.5044
215.54 0.285 7 1 215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 0.071 1 2 082.395 0.298 7 1 133.93 1.749 23 5 587.34 3.672 58 7	2 1 222,460 1 106.989	-				0.069	
215.54 1.667 23 6 782.65 3.497 58 8 2.489753 1.955 0.071 1 2 082.395 0.298 7 1 133.93 1.749 23 5 587.34 3.672 58 7	139.458	139.458 6				0.285	
2.489753 1.955 1.955 205.413 0.071 1.2 0.298 7 1 1.33.93 1.749 2.3 5 587.34 3.672 58.7		605.69 22				1.667	
2.4897 ₅ 3 1.955 205.413 0.071 1.2 082.395 0.298 7.1 133.93 1.749 23.5 587.34 3.672 58.7		803.48 56 273	273		782	3.497	
205.413 0.071 1 082.395 0.298 7 133.93 1.749 23 587.34 3.672 58	1 2.538900	00	:		2.489753	1.955	10.5565
0.298 7 133.93 0.298 7 1.749 23 587.34 3.672 58	1 206.270	-			20	0.071	
133.93 1.749 23 587.34 3.672 58	103,499 6	103,499 6				0.298	
587.34 3.672 58	23 542.09 22	542.09 22				1.749	
		704.35 56				3.672	

Gap/Average 0.072 0.301 1.770 Per Cent 3.741 Intermediate 1.298447 Lower Bound Pro blems 1 201.356 7 073.216 23 113.49 56 538.51 Kato's Method Lower Bound 1 078.596 6 598.468 22 230.07 55 991.40 Rayleigh-Ritz Upper Bound 1.347959 1 202.220 7 094.506 23 526.18 58 679.56 Order 2 6 4 5 22.25 δ

0.1040043

1 203.329 7 090.697 23 515.50 58 660.02

38.682 0.073 0.304 1.790 3.761

> 1 197.298 7 064.037 23 093.09 56 489.67

> > 6 583.360 22 198.61 55 934.77

1 072.890

0.1538999

7 085.512 23 510.28 58 654.77

7 6 9 5

22.50

1 198.17

9.56961

End Load

Lumped

 $\beta = -0.10$

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM

1

H

TABLE

1 207.187 7 099.580

23 531.29 58 684.69

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM ; ;; TABLE

	1	1	1	
Lumped Constant End Load	94.9417 1 548.675 7 867.929 24 897.24 60 818.99	85.0721 1 509.197 7 779.102 24 739.33 60 572.25	72.7351 1 459.849 7 668.069 24 541.94 60 263.83	60.3981 1 410.501 7 557.036 24 344.55 59 955.40
Gap/Average Per Cent	0.004 0.003 0.014 0.077 0.158	0.027 0.018 0.072 0.385 0.798	0.047 0.033 0.140 0.772 1.610	0.083 0.048 0.204 1.161 2.606
Lower Bound by Intermediate Problems	94.92394 1 548.610 7 866.778 24 878.15 60 722.68	84.70111 1 508.651 7 773.258 24 6 44.12 60 090.62	71.27029 1 458.265 7 656.303 24 352.25 59 300.19	57.03932 1 407.394 7 539.280 24 061.14 58 509.38
Lower Bound by Kato's Method	94.59147 1 543.772 7 847.274 24 842.28 60 703.77	82.85905 1 483.754 7 673.832 24 460.84 59 990.19	67.34356 1 409.939 7 459.246 23 979.70 59 089.72	50.16623 1 334.337 7 241.396 23 489.36 58 174.63
Upper Bound by Rayleigh-Ritz	94.92801 1 548.664 7 867.917 24 897.23 60 818.97	84.72365 1 508.919 7 778.833 24 739.06 60 571.98	71.30376 1 458.752 7 667.004 24 540.88 60 262.77	57.0 8 734 1 408.065 7 554.657 24 342 18 59 953.04
Order	1 2 8 3 5 1	22 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	₩ W W Y W	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Ø	1.00	5.00	10.00	15.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

Lumped Constant End Load	48.0611 1 361.153 7 446.003 24 147.15 59 646.98	35.7241 1 311.805 7 334.970 23 949.76 59 338.55	23.3871 1 262.457 7 223.937 23 752.37 59 030.12	18.4522 1 242.718 7 179.524 23 673.41 58 906.75
Gap/Average Per Cent	0.122 0.060 0.264 1.553 3.280	0.214 0.071 0.319 1.948 4.138	0.644 0.081 0.371 2.345 5.013	3.165 0.084 0.391 2.505 5.367
Lower Bound by Intermediate Problems	41.95275 1 35 6. 070 7 422.214 23 770.82 57 718.18	25.91837 1 304.336 7 305.086 23 481.30 56 926.59	8.848833 1 252.223 7 187.091 23 192.62 56 134.63	1.710738 1.231.279 7.141.022 23.077.39 55.817.73
Lower Bound by Kato's Method	30.90309 1 257.749 7 021.661 22 990.42 57 245.57	8.89325 1 179.673 6 802.433 22 482.28 56 301.99	1 100.010 6 579.224 21 964.30 55 388.08	1 067.875 6 489.106 21 755.39 54 954.51
Upper Bound by Rayleigh-Ritz	42.00398 1 356.890 7 441.805 24 142.97 59 642.79	25.97378 1 305.264 7 328.459 23 943.26 59 332.04	8.906012 1 253.232 7 214.636 23 743.05 59 020.79	1,765746 1,232,318 7,168,977 23,662,83 58,89 6 ,14
Order	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2 5 4 3 2 2 2	24321	1 2 8 4 5 5
8	20.00	25.00	30.00	32.00

17.8354 1 240.250 7 173.972 Constant End Load Lumped $\beta = -0.25$ Gap/Average 6.038 0.084 0.393 2.525 5.412 0.8096142 Intermediate BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM Lower Bound Problems by Kato's Method Lower Bound 0.8600384 1 229.700 7 163.264 23 652.79 58 880.55 Rayleigh-Ritz Upper Bound Order 1 2 4 3 5 Ó

Н

TABLE

23 663.54 58 891.33

1 228.664 7 135.161 23 062.99 55 778.11

1 063.699 6 478.028 21 725.42 54 906.15

32.25

38

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

Ö	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1.00	1 2 3 4 5	97.39548 1 558.533 7 890.123 24 936.71 60 880.66	97.05219 1 553.621 7 869.443 24 881.71 60 765.39	97.38885 1 558.481 7 888.977 24 917.63 60 784.37	0.007 0.003 0.015 0.077 0.158	97.4091 1 558.545 7 890.135 24 936.72 60 880.68
5.00	1 2 3 4 5	97.06945 1 558.264 7 889.865 24 936.45 60 880.40	95.02756 1 532.551 7 783.922 24 656.89 60 296.88	97.05359 1 558.000 7 884.291 24 841.50 60 399.04	0.016 0.017 0.071 0.381 0.794	97.4091 1 558.545 7 890.135 24 936.73 60 880.68
10.00	11 22 22 22 24 33 25 45 33 25 45 33 25 45 33 25 25 25 25 25 25 25 25 25 25 25 25 25	96.05006 1 557.425 7 889.057 24 935.66 60 879.61	91.43544 1 506.462 7 677.593 24 368.81 59 699.54	96.01405 1 556.936 7 878.347 24 747.01 59 917.04	0.037 0.031 0.136 0.759 1.594	97.4091 1 558.545 7 890.134 24 936.73 60 880.68
20.00	1 2 5	91.96428 1 554.071 7 885.830 24 932.48 60 876.46	78.640 6 3 1 446.067 7 451.941 23 756.87 58 451.08	91.91397 1 553.239 7 866.1 6 9 24 560.22 58 951.90	0.055 0.054 0.250 1.504 3.212	97.4091 1 558.545 7 890.135 24 936.73 60 880.68

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM Ħ TABLE

ø	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
30.00	1 3 5 5	85.12538 1 548.503 7 880.455 24 927.18 60 871.19	56.42424 1 375.513 7 210.208 23 095.63 57 129.12	85.06259 1 547.459 7 853.494 24 376.41 57 985.23	0.074 0.067 0.343 2.234 4.856	97.4091 1 558.545 7 890.135 24 936.73 60 880.68
40.00	H 2 E 4 S	75.48948 1 540.754 7 872.940 24 919.78 60 863.84	21.68015 1 292.824 6 950.046 22 387.13 55 727.85	75.42380 1 539.589 7 840.212 24 195.62 57 017.05	0.087 0.076 0.417 2.949 6.527	97.4091 1 558.545 7 890.135 24 936.73 60 880.68
50.00	1 2 6 4 5	62.99520 1 530.869 7 863.296 24 910.26 60 854.38	1 195.846 6 669.137 21 611.65 54 239.88	62.93328 1 529.658 7 826.211 24 017.91 56 047.35	0.098 0.079 0.473 3.648 8.224	97.4091 1 558.545 7 890.135 24 936.73 60 880.68
00.00	1 2 8 4 3 5	47.56379 1 518.906 7 851.536 24 898.63 60 842.82	1 082.880 6 364.444 20 767.33 52 657.41	47.49907 1 5 17.698 7 811.384 23 843.33 55 076.16	0.136 0.080 0.513 4.330 9.949	97.4091 1 558.545 7 890.135 24 936.73 60 880.68

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM з Н TABLE

_	
C	•
5	١
_	٠
Ç	•
ŧ	
11	
C	1

	T I			
Lumped Constant End Load	97.4091 1 558.545 7 890.135 24 936.73 60 880.68			
Gap/Average Per Cent	0.207 0.078 0.538 4.996 11.704	0.830 0.075 0.550 5.646 13.487	1.264 0.075 0.551 5.710 13.668	2.351 0.074 0.551 5.773 13.848
Lower Bound by Intermediate Problems	29.03900 1 503.762 7 795.619 23 671.88 54 103.51	7.427070 1 487.923 7 778.816 23 503.62 53 129.41	5.085385 1 486.242 7 777.073 23 486.96 53 031.92	2.713758 1 484.539 7 775.319 23 470.35 52 934.43
Lower Bound by Kato's Method	951.7511 6 034.095 19 863.03 50 971.82	801.0849 5 689.257 18 858.86 49 175.77	785.6676 5 652.000 18 753.30 48 988.74	768.9310 5 615.842 18 646.77 48 801.56
Upper Bound by Rayleigh-Ritz	29.09930 1 504.937 7 837.675 24 884.90 60 829.17	7.488954 1 489.045 7 821.731 24 869.08 60 813.43	5.150067 1 487.354 7 820.022 24 8 7.38 60 811.74	2.778307 1 485.644 7 818.294 24 86 .67 60 810.03
Order	12645	25 4 3 5 1	1 3 5	1 3 5
Ö	70.00	80.00	81.00	82.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM ı H TABLE

	T			
Lumped Constant End Load	99.8765 1 568.415 7 912.342 24 976.20 60 942.36	109.7461 1 607.893 8 001.168 25 134.11 61 189.10	122.0831 1 657.241 8 112.202 25 331.51 61 497.53	146.7571 1 755.937 8 334.268 25 726.29 62 114.38
Gap/Average Per Cent	0.001 0.003 0.014 0.076 0.158	0.016 0.016 0.070 0.378 0.790	0.029 0.029 0.132 0.748 1.578	0.040 0.048 0.237 1.458 3.147
Lower Bound by Intermediate Problems	99.86157 1 568.352 7 911.188 24 957.11 60 846.06	109.3978 1 607.345 7 995.323 25 038.90 60 707.47	120.7548 1 655.616 8 100.397 25 141.78 60 533.90	141.7554 1 750.491 8 310.140 25 349.63 60 185.61
Lower Bound by Kato's Method	99.51297 1 563.469 7 891.613 24 921.13 60 827.01	107.2052 1 581.359 7 894.022 24 852.95 60 603.59	115.5869 1 603.075 7 896.020 24 758.00 60 309.52	126.6892 1 635.145 7 880.263 24 523.88 59 656.94
Upper Bound by Rayleigh-Ritz	99.86295 1 568.403 7 912.330 24 976.19 60 942.34	109.4148 1 607.610 8 000.896 25 133.84 61 1881.83	120.7894 1 656.102 8 111.112 25 330.43 61 496.46	141.8121 1 751.334 8 329.371 25 721.99 62 110.12
Order	12675	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 4 3 3 2 1
ά	1.00	5.00	10.00	20.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM 1 |--| TABLE

			_	<u> </u>
Lumped Constant End Load	171.4311 1 854.633 8 556.334 26 121.079 62 731.23	196.1051 1 953.329 8 778.400 26 515.86 63 348.08	220.7791 2 052.0256 9 000.466 26 910.64 63 964.93	245.4531 2 150.726 9 222.532 27 305.43 64 581.78
Gap/Average Per Cent	0.042 0.058 0.319 2.133 4.709	0.043 0.063 0.380 2.774 6.264	0.045 0.065 0.424 3.382 7.811	0.041 0.064 0.455 3.958 9.350
Lower Bound by Intermediate Problems	160.7000 1 843.138 8 519.187 25 560.22 59 835.84	177.8083 1 933.479 8 727.331 25 773.49 59 484.58	193.2635 2 021.548 8 934.409 25 989.35 59 131.86	207.2298 2 107.367 9 140.270 26 207.73 58 777.69
Lower Bound by Kato's Method	129.6790 1 653.497 7 840.957 24 234.53 58 916.90	123.8125 1 656.769 7 776.235 23 875.30 58 083.83	108.4000 1 643.877 7 684.302 23 454.02 57 149.33	82.13972 1 611.067 7 572.918 22 945.47 56 109.45
Upper Bound by Rayleigh-Ritz	160.7671 1 844.200 8 546.365 26 111.35 62 721.62	177.8850 1 934.700 8 760.552 26 498.48 63 330.94	193,3510 2 022,857 8 972,409 26 883,35 63 938.06	207.3155 2 108.712 9 181.915 27 265.95 64 542.95
Order	25 4 3 2 1	1 2 6 4 3 5 1	- 4646	1 2 8 7 9
ø	30.00	40.00	50.00	90.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM , H TABLE

ò	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
70.00	1 2 6 7 5	219.9011 2 192.316 9 389.065 27 646.24 65 145.60	45.50295 1 565.173 7 423.49 22 435.10 54 952.82	219.8101 2 190.959 9 344.764 26 428.54 58 422.11	0.041 0.062 0.473 4.504 10.882	270.1271 2 249.417 9 444.598 27 700.22 65 198.63
80.00	11 2 8 3 5 1	231.2094 2 273.728 9 593.853 28 024.21 65 745.98	1.297.529 7.241.964 21.680.87 53.671.96	231.1131 2 272.369 9 547.784 26 651.69 58 065.14	0.042 0.060 0.481 5.021	294.8011 2 348.114 9 666.664 28 094.99 65 815.48
90.00	22 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	241.3245 2 353.010 9 796.286 28 399.86 66 344.09	1 410.343 7 026.768 20 992.29 52 257.63	241.2256 2 351.666 9 749.202 26 877.07 57 706.82	0.041 0.057 0.482 5.510 13.925	319,4752 2 446,809 9 888,731 28 489,78 66 432,33
100.00	1.2642	250.3169 2 430.225 9 996.371 28 773.16 66 939.92	1 303.072 6 795.214 20 018.08 50 702.86	250.2154 2 428.900 9 948.945 27 104.57 57 347.18	0.041 0.055 0.476 5.972 15.436	344.1492 2 545.505 10 110.79 28 884.57 67 047.18

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM ı H TABLE

ö	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
150.00	1 7 8 7 2 2	280.2315 2 787.495 10 962 20 30 604.40 69 884.39	439.3405 5 034.360 13 548.06 40 397.25	280.0769 2 78 6. 273 10 919.79 28 269.28 55 531.11	0.057 0.044 0.406 7.933 22.889	467.5192 3 038.986 11 221.12 30 858.49 70 133.43

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM ı H TABLE

Lumped Constant End Load	102,3439 1 578,284 7 934,549 25 015,68 61 004,05	122.0&31 1 657.241 8 112.202 25 331.51 61 497.52	145.7571 1 755.937 8 334.268 25 726.29 62 114.38	196.1 0 51 1 953.329 8 778.400 26 515.86 63 348.08
Gap/Average Per Cent	0.004 0.003 0.014 0.076 0.158	0.021 0.016 0.069 0.375 0.786	0.028 0.028 0.087 0.736 1.562	0.029 0.043 0.226 1.415 3.085
Lower Bound by Intermediate Problems	102.3264 1 578.219 7 933.391 24 996.58 60 907.74	121.7338 1 656.690 8 106.352 25 236.29 61 015.89	145.4817 1 754.292 8 322.439 25 536.55 61 150.74	191.5207 1 947.809 8 754.135 26 139.05 61 419.33
Lower Bound by Kato's Method	101.9738 1 573.317 7 913.782 24 960.05 60 888.62	119.3913 1 630.178 8 004.133 25 049.03 60 910.29	139.7893 1 699.563 8 114.520 25 148.07 60 914.02	174.8713 1 825.068 8 311.577 25 294.93 60 863.53
Upper Bound by Rayleigh-Ritz	102.3304 1 578.273 7 934.537 25 015.66 61 004.03	121.7597 1 656.956 8 111.928 25 331.23 61 497.25	145.6227 1 754.785 8 333.166 25 724.21 62 113.30	191.5759 1 948.654 8 773.930 26 511.51 63 343.78
Order	12845	22 4 3 2 5 4 5 5	12675	12645
8	1.00	5.00	10.00	20.00

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM TABLE

σ	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
30.00	1 3 5	236.0319 2 140.146 9 212.350 27 295.54 64 572.05	203.0425 1 933.952 8 476.840 25 372.56 60 706.93	235.9576 2 139.055 9 184.954 26 744.07 61 686.44	0.031 0.051 0.298 2.041 4.571	245.4531 2 150.721 9 222.532 27 304.43 64 581.78
40.00	1 3 5 5	279.2148 2 329.327 9 648.386 28 077.27 65 798.06	224.5836 2 026.117 8 615.351 25 380.02 60 444.15	279.1330 2 328.056 9 614.699 27 351.47 61 952.11	0.029 0.055 0.350 2.619 6.021	294.8012 2 348.114 9 666.664 28 094.99 65 815.48
50.00	11 2 4 4 3 5 5 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	321.3589 2 516.301 10 082.02 28 856.64 67 021.81	239.9198 2 099.304 8 716.340 25 305.54 60 068.90	321.2640 2 514.910 10 043.17 27 961.06 62 215.35	0.030 0.055 0.386 3.152 7.437	344.1492 2 545.506 10 110.79 28 884.57 67 049.18
75.00	1 2 3 4 5	423.2159 2 974.865 11 155.69 30 794.66 70 070.98	252.5182 2 216.332 8 839.134 24 732.32 58 596.06	423.102 2 973.316 11 108.01 29 493.62 62 870.95	0.027 0.052 0.428 4.316 10.832	467.5192 3 038.986 11 221.13 30 858.49 70 133.43

BOUNDS FOR THE EIGENVALUES OF THE SIMPLY SUPPORTED BEAM - I TABLE

	93	6	94
Lumped Constant End Load	590.8893 3 532.466 12 331.46 32 832.41 73 217.68	714.2593 4 025.946 13 441.79 34 806.33 76 301.94	837.6294 4 519.426 14 552.12 36 780.25 79 386.18
Gap/Average Per Cent	0.026 0.047 0.428 5.274 14.036	0.026 0.043 0.405 6.065 17.064	0.026 0.039 0.373 6.723 19.930
Lower Bound by Intermediate Problems	521.2197 3 420.612 12 162.74 31 036.50 63 517.38	616.6295 3 858.391 13 206.70 32 587.38 64 156.24	709.9560 4 287.981 14 239.73 34 143.94 64 788.19
Lower Bound by Kato's Method	230.0603 2 221.951 8 756.443 23 562.65 56 270.24	179.7252 2 144.900 8 451.943 21 666.47 52 967.30	99.52777 1 958.556 7 961.67 18 874.88 48 545.04
Upper Bound by Rayleigh-Ritz	521.3549 3 422.233 12 214.89 32 717.68 73 105.38	616.7877 3 860.049 13 260.35 34 625.77 76 124.82	710.1394 4 289.673 14 292.91 36 519.20 79 129.26
Order	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 4 3 5 11	2 4 3 3 5 1
ä	100.00	125.00	150.00

TABLE II

			т	T	
Lumped Constant End Load	500.564 3 803.54 14 617.6 39 943.8	438.857 3 573.03 14 123.0 39 085.8	376.742 3 342.01 13 628.2 38 227.7	314.184 3 110.44 13 133.2 37 369.5	251.143 2 878.30 12 6 38.1 36 511.2
Gap/Average Per Cent	0.000 0.000 0.000 0.000	0.047 0.037 0.045 0.040	0.098 0.074 0.091 0.074	0.171 0.115 0.138 0.114	0.245 0.152 0.186 0.156
Lower Bound by Intermediate Problems	500.564 3 803.54 14 617.6 39 943.8	438.281 3 571.05 14 115.8 39 069.3	374.825 3 336.87 13 612.6 38 196.0	310.010 3 100.83 13 107.8 37 318.9	243.766 2 863.13 12 601.6 36 440.4
Lower Bound by Kato's Method	500.564 3 803.54 14 617.6 39 943.8	436.964 3 570.81 14 119.9 39 081.3	366.109 3 320.29 13 589.2 38 189.7	289.161 3 062.73 13 047.8 37 285.5	200.691 2 786.55 12 472.4 36 364.3
Upper Bound by Rayleigh-Ritz	500.564 3 803.54 14 617.6 39 943.8	438.485 3 572.38 14 122.2 39 084.9	375.192 3 339.36 13 624.9 38 224.2	310.543 3 104.42 13 125.9 37 361.7	244.366 2 867.50 12 625.1 36 497.3
Order	73 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 7 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
, ø	0.0	10.0	20.0	30.0	40.0

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

à	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bourd by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
50.0	4 3 3 5	176.455 2 628.54 12 122.6 35 631.2	110.389 2 505.85 11 891.2 35 422.2	175.815 2 623.39 12 094.1 35 562.0	0.363 0.195 0.234 0.194	187.572 2 645.57 12 142.9 35 652.8
0.09	4 3 5 1	106.557 2 387. 5 2 11 618.4 34 763.3	5.130 2 164.11 11 249.9 34 453.4	105.877 2 381.38 11 584.8 34 679.2	0.639 0.257 0.288 0.242	123.421 2 412.22 11 647.6 34 794.3
70.0	4 3 3 5	34.354 2 144.43 11 112.6 33 893.8	1 801.43 10 592.4 33 459.1	33.672 2 137.92 11 074.6 33 799.5	2.004 0.304 0.342 0.278	58.631 2 178.22 11 152.3 33 935.9
72.0	1 3 3 4 4	19.603 2 095.57 11 011.2 33 719.7	1 735.77 10 464.7 33 261.5	18.915 2 088.83 10 971.8 33 621.8	3.567 0.321 0.358 0.290	45.590 2 131.34 11 053.2 33 764.2
73.0	1 2 3 4 4	12.185 2 071.11 10 960.5 33 632.5	1 702.82 10 400.7 33 097.8	11.517 2 064.43 10 920.7 33 535.9	5.632 0.322 0.363 0.287	39.059 2 107.88 11 003.6 33 678.3

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

ø	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
74.0	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.740 2 046.62 10 909.8 33 545.5	1 669.78 10 336.5 32 997.1	4.101 2 039.78 10 870.1 33 445.2	14.457 0.334 0.364 0.299	32.521 2 084.43 10 954.1 33 592.5

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

I	T				
Lumped Constant End Load	454.321 3 630.71 14 246.7 39 300.3	407.853 3 457.59 13 875.6 38 656.8	3 284.16 13 504.5 38 013.2	314.184 3 110.44 13 133.2 37 369.5	266.951 2 936.39 12 761.9 36 725.8
Gap/Average Per Cent	0.020 0.018 0.022 0.021	0.050 0.038 0.046 0.038	0.080 0.058 0.069 0.058	0.113 0.079 0.094 0.082	0.161 0.102 0.119 0.097
Lower Bound by Intermediate Problems	454.138 3 629.87 14 243.2 39 291.9	407.270 3 455.61 13 868.4 38 641.2	359.978 3 280.76 13 493.3 37 989.0	312.215 3 105.32 13 117.7 37 335.5	263.913 2 929.19 12 741.7 36 684.8
Lower Bound by Kato's Method	454.011 3 629.90 14 245.5 39 298.6	403.672 3 449.07 13 859.6 38 641.5	352.036 3 265.48 13 469.4 37 979.6	297.357 3 078.04 13 072.4 37 310.7	241.495 2 881.39 12 669.1 36 635.3
Upper Bound by Rayleigh-Ritz	454.229 3 630.54 14 246.5 39 300.1	407.474 3 456.93 13 874.8 38 655.9	3 282.68 13 502.7 38 011.2	312.568 3 107.77 13 130.0 37 366.1	264.339 2 932.19 12 756.1 36 720.5
Order	1 2 8 4	4 3 3 5 1	4 33 5 1	4 3 2 1	1 3 3 4 4
8	5.0	10.0	15.0	20.0	25.0

Lumped Constant End Load	219.427 2 762.01 12 390.5 36 082.0	171.591 2 587.29 12 019.1 35 438.2	123.422 2 412.22 11 647.6 34 794.4	74.892 2 236.78 11 276.1 34 150.5	35.791 2 096.16 10 978.9 33 635.4
Gap/Average Per Cent	0.220 0.123 0.145 0.121	0.289 0.149 0.171 0.144	0.426 0.173 0.198 0.162	0.789 0.211 0.228 0.185	2.186 0.230 0.251 0.203
Lower Bound by Intermediate Problems	215.058 2 752.53 12 365.3 36 030.6	165.609 2 575.09 11 988.7 35 376.8	115.458 2 397.11 11 611.7 34 724.5	64.531 2 218.17 11 234.2 34 070.1	23.192 2 074.83 10 932.1 33 546.8
Lower Bound by Kato's Method	181.248 2 684.91 12 259.8 35 947.8	117.249 2 485.09 11 824.7 35 258.3	45.459 2 266.53 11 399.8 34 546.6	2 033.24 10 969.9 33 841.8	1 823.99 10 601.7 33 227.0
Upper Bound by Rayleigh-Ritz	215.531 2 755.92 12 383.3 36 074.4	166.090 2 578.95 12 009.3 35 427.8	115.952 2 401.27 11 634.8 34 780.9	65.043 2 222.86 11 259.9 34 133.4	23.705 2 079.62 10 959.7 33 615.2
Order	13 5 7	1 2 8 4	1 3 3 4 4 4 4	1 2 3 4	1 2 3 4
۵	30.0	35.0	40.0	45.0	49.0

BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM TABLE II

е В

ø	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant Rnd Load
50.0	1 2 4	13.279 2 043.73 10 884.7 33 485.6	1 779.62 10 513.8 33 082.9	12.767 2 038.75 10 856.5 33 415.6	3.927 0.243 0.258 0.209	25.975 2 060.96 10 904.6 33 506.6

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

ò	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
5.0	1 7 3 7 4	438.765 3 572.87 14 122.8 39 085.1	437.247 3 569.78 14 116.7 39 079.9	438.674 3 572.20 14 119.6 39 077.9	0.021 0.018 0.023 0.019	438.857 3 573.03 14 123.0 39 085.8
10.0	13 5 7	376.346 3 341.35 13 627.4 38 226.8	370.642 3 329.51 13 604.2 38 204.9	376.159 3 340.05 13 621.1 38 211.4	0.052 0.039 0.046 0.040	376.743 3 342.01 13 628.2 38 227.7
15.0	7 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	313.277 3 108.94 13 131.5 37 367.6	300.721 3 080.15 13 081.0 47 313.1	312.998 3 107.06 13 122.1 37 343.8	0.089 0.060 0.071 0.063	314.183 3 110.437 13 133.2 37 369.5
20.0	t 33 5 1	249.456 2 875.62 12 635.0 36 507.9	226.799 2 826.68 12 548.4 36 413.4	249.107 2 873.20 12 622.7 36 478.8	0.140 0.084 0.097 0.079	251.143 2 878.30 12 638.1 36 511.2
25.0	1 3 3 4 4	184.806 2 641.34 12 138.0 35 647.7	148.818 2 568.21 12 007.4 35 503.7	184.415 2 638.51 12 122.9 35 610.2	0.212 0.107 0.124 0.105	187.573 2 645.57 12 142.9 35 652.8

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

૪	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
30.0	4 3 5 1	119.229 2 406.08 11 640.6 34 787.0	66.432 2 292.07 11 458.7 34 555.9	118.810 2 402.80 11 622.7 34 745.1	0.351 0.136 0.153 0.120	123.422 2 412.22 11 647.6 34 794.4
35.0	H 20 64	52.603 2 169.82 11 142.7 33 925.9	2 000.18 10 874.9 33 570.4	52.188 2 166.18 11 122.3 33 875.6	0.791 0.167 0.182 0.148	58.631 2 178.22 11 152.3 33 935.9
37.9	4 3 3 5 1	13.422 2 032.32 10 853.7 33 426.2	1 806.94 10 546.2 33 016.6	13.003 2 028.44 10 831.8 33 372.7	3.165 0.190 0.201 0.160	20.733 2 042.19 10 864.9 33 437.9

	m	2	1	8	7
Lumped Constant End Load	423.368 3 515.33 13 999.3 38 871.3	345.522 3 226.29 13 380.7 37 798.6	266.951 2 936.39 12 761.9 36 725.8	187.573 2 645.57 12 142.9 35 652.8	107.287 2 353.78 11 523.8 34 579.7
Gap/Average Per Cent	0.024 0.018 0.023 0.018	0.053 0.040 0.047 0.038	0.101 0.063 0.073 0.063	0.172 0.087 0.100 0.081	0.333 0.119 0.129 0.107
Lower Bound by Intermediate Problems	423.173 3 514.51 13 995.9 38 864.1	344.945 3 224.36 13 373.6 37 783.4	265.745 2 933.03 12 750.8 36 700.9	185.486 2 640.56 12 127.6 35 620.7	103.995 2 346.74 11 504.04 34 537.7
Lower Bound by Kato's Method	421.095 3 510.73 13 990.4 38 862.9	336.790 3 208.86 13 346.6 37 766.3	247.405 2 894.78 12 688.5 36 655.3	153.039 2 575.69 12 018.2 35 516.0	51.289 2 237.66 11 337.2 34 344.0
Upper Bound by Rayleigh-Ritz	423.275 3 515.16 13 999.1 38 871.1	345.128 3 225.64 13 379.9 37 797.8	266.015 2 934.90 12 760.2 36 724.0	185.806 2 642.88 12 139.9 35 649.6	104.342 2 349.54 11 519.0 34 574.8
Order	4 3 5 1	1 2 3 4 4	1 2 3 4	1 2 3 4	1 2 3 4
8	5.0	10.0	15.0	20.0	25.0

TABLE IT - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

θ #

Lumped Constant End Load	25.9749 2 060.96 10 904.6 33 506.6	17.782 2 031.62 10 842.7 33 399.2
Gap/Average Per Cent	1.703 0.153 0.161 0.130	2.799 0.156 0.164 0.131
Lower Bound by Intermediate Problems	21.064 2 051.66 10 880.1 33 456.0	12.685 2 022.09 10 817.7 33 348.2
Lower Bound by Kato's Method	1 852.78 10 617.7 33 181.0	1 818.03 10 547.5 33 061.3
Upper Bound by Rayleigh-Ritz	21.426 2 054.82 10 897.7 33 499.6	13.045 2 025.27 10 835.6 33 392.0
Order	7 7 3 5 7 7	4 3 2 1
ò	30.0	30.5

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

။ မ

			-		
Lumped Constant End Load	407.853 3 457.59 13 875.6 38 656.8	314.184 3 110.44 13 133.2 37 369.5	219.427 2 762.01 12 390.5 36 082.0	123.422 2 412.22 11 647.6 34 794.4	84.628 2 271.90 11 350.4 34 279.3
Gap/Average Per Cent	0.023 0.019 0.023 0.020	0.059 0.040 0.048 0.038	0.117 0.066 0.075 0.061	0.250 0.094 0.104 0.085	0.374 0.108 0.116 0.093
Lower Bound by Intermediate Problems	407.663 3 456.75 13 872.2 38 648.7	313.598 3 108.52 13 126.2 37 354.4	218.202 2 758.67 12 379.5 36 058.3	121.262 2 407.26 11 632.4 34 761.8	82.001 2 266.17 11 333.5 34 243.6
Lower Bound by Kato's Method	404.794 3 451.38 13 863.4 38 645.4	302.702 3 084.36 13 087.2 37 325.8	192.281 2 700.07 12 292.5 35 975.2	74.571 2 295.25 11 482.5 34 611.8	22.824 2 135.06 11 154.9 34 051.7
Upper Bound by Rayleigh-Ritz	407.759 3 457.42 13 875.4 38 656.6	313.783 3 109.78 13 132.5. 37 368.7	218.460 2 760.52 12 388.9 36 080.3	121.567 2 409.53 11 644.6 34 791.4	82.309 2 268.63 11 346.8 34 275.6
Order	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 7 3 3 7 4	1 2 4	1 7 3 3 7 4	1 2 8 4
ö	5.0	10.0	15.0	20.0	22.0

BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM II TABLE

β

	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
2 10 33	22.822 056.73 899.9	1 865.36 10 574.8 33 194.9	22.515 2 054.05 10 885.1 33 465.6	1.354 0.130 0.135 0.108	25.975 2 060.96 10 904.6 33 506.6
2 10 33	10.832 2 014.26 10 810.6 33 347.2	1 814.86 10 472.3 33 026.9	10.502 2 011.50 10 795.1 33 310.1	3.086 0.136 0.143 0.111	14.173 2 081.71 10 815.4 33 352.1

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BRAM

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

β =

8	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
19.0	4 3 3 5 1	17.599 2 035.09 10 852.6 33 418.4	1 850.68 10 574.2 33 070.8	17.348 2 032.97 10 841.0 33 390.8	1.432 0.104 0.106 0.082	19.422 2 037.49 10 885.1 33 420.8

					· · · · · · · · · · · · · · · · · · ·
Lumped Constant End Load	345.521 3 226.29 13 380,7 37 798.6	187.573 2 645.57 12 142.9 35 652.8	123.422 2 412.22 11 674.6 34 794.4	58.6312 2 178.22 11 152.3 33 935.9	25.97 5 2 060.96 10 904.6 33 506.6
Gap/Average Per Cent	0.024 0.020 0.024 0.021	0.088 0.046 0.052 0.041	0.151 0.059 0.064 0.051	0.360 0.075 0.078 0.061	0.806 0.083 0.085 0.065
Lower Bound by Intermediate Problems	345.341 3 225.48 13 377.3 37 790.6	186.972 2 643.70 12 136.0 35 637.5	122.576 2 409.85 11 639.2 34 775.8	57.474 2 175.32 11 142.3 33 914.1	24.652 2 057.77 10 893.9 33 483.6
Lower Bound by Kato's Method	343.790 3 221.23 13 372.4 37 785.5	158.651 2 577.60 12 032.7 35 532.4	80.012 2 305.74 11 494.8 34 625.7	2 018.56 10 928.2 33 681.5	1 883.64 10 652.4 33 218.8
Upper Bound by Rayleigh-Ritz	345.425 3 226.13 13 380.6 37 798.5	187.138 2 644.93 12 142.3 35 652.3	122.762 2 411.29 11 646.7 34 793.6	57.682 2 176.94 11 151.1 33 934.9	24.852 2 059.50 10 903.3 33 595.4
Order	1 2 5 4 4	1 2 3 4 4	1 7 3 3 4 4	4 3 5 1	4 3 3 7
8	5.0	10.0	12.0	14.0	15.0

II Gap/Average Per Cent Θ 1.388 0.087 0.087 0.068 Intermediate Lower Bound Problems 14.757 2 022.46 10 819.4 33 353.8 BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM Kato's Method Lower Bound 1 843.09 10 569.5 33 079.7 by Rayleigh-Ritz Upper Bound 14.954 2 024.23 10 828.9 33 376.6 Order 7 8 4 II Ø TABLE

2 025.75 10 830.3 33 377.8

16.142

Constant End Load

Lumped

2.00

64

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

Ö	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
10.0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	469.394 3 687.69 14 369.5 39 513.9	467.968 3 684.62 14 364.0 39 508.5	469.193 3 686.35 14 363.1 39 498.7	0.043 0.036 0.044 0.038	469.760 3 688.35 14 370.3 39 514.8
20.0	7 7 7 7	437.367 3 570.41 14 119.7 39 082.3	431.682 3 558.22 14 097.8 39 060.8	436.975 3 567.84 14 107.3 39 051.9	0.090 0.072 0.088 0.078	438.857 3 573.03 14 123.0 39 085.8
40.0	1 3 3 4 4	370.529 3 331.41 13 615.1 38 213.6	347.856 3 283.41 13 529.4 38 129.0	369.834 3 326.61 13 591.1 38 156.6	0.188 0.144 0.176 0.149	376.743 3 342.01 13 628.2 38 227.7
60.0	1 2 3 4	299.567 3 086.33 13 103.8 37 337.9	244.237 2 949.91 12 914.7 37 149.8	298.689 3 079.92 13 069.2 37 257.5	0.293 0.207 0.263 0.215	314.184 2 110.44 13 133.2 37 369.5
80.0	1 3 4	223.878 2 835.04 12 585.8 36 455.1	116.025 2 625.53 12 256.2 36 081.7	222.877 2 826.75 12 541.8 36 344.4	0.448 0.292 0.349 0.303	251.143 2 878.30 12 638.1 36 511.2

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

ð	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
100.0	1 3 5 4	142.697 2 577.45 12 061.2 35 565.4	2 255.24 11 555.8 34 990.1	·	13.33 4.25 1.63	187.573 2 645.57 12 142.9 35 652.8

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

-.50

B H

		· ·		_	
Lumped Constant End Load	500.564 3 803.54 14 617.6 39 943.8	500.564 3 803.54 14 617.6 39 943.8	500.564 3 803.54 14 617.6 39 943.8	500.564 3 803.54 14 617.6 39 943.8	500.564 3 803.54 14 617.6 39 943.8
Gap/Average Per Cent	0.042 0.035 0.044 0.040	0.081 0.068 0.086 0.077	0.153 0.129 0.166 0.137	0.223 0.184 0.243 0.206	0.288 0.227 0.314 0.271
Lower Bound by Intermediate Problems	499.992 3 801.55 14 610.4 39 926.8	498.723 3 798.33 14 601.8 39 909.6	494.061 3 788.27 14 580.3 39 874.9	486.533 3 773.26 14 552.9 39 829.7	476.125 3 753.56 14 519.8 39 779.1
Lower Bound by Kato's Method	499.105 3 800.44 14 613.5 39 938.6	494.724 3 791.15 14 601.4 39 923.2	477.099 3 763.95 14 552.6 39 8 6 1.4	447.372 3 591.84 14 471.2 39 758.5	405.005 3 604. 65 14 357.2 39 14.4
Upper Bound by Rayleigh-Ritz	500.205 3 802.89 14 616.8 39 942.9	499.129 3 800.94 14 614.4 39 940.2	494.821 3 793.17 14 604.6 39 929.6	487.621 3 780.22 14 588.3 39 912.0	477.550 3 762.09 14 565.6 39 887.3
Order	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	t 3 5 1	4 3 2 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 3 7 4 4
ø	10.0	20.0	40.0	60.0	80.0

BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM - II TABLE

-.50

β

ö	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
100.0	4 3 5 7	464.419 3 738.80 14 536.3 39 855.6	349.230 3 492.14 14 210.1 3 9 429.1	462.905 3 728.65 14 481.2 39 726.5	0.326 0.271 0.379 0.324	500.564 3 803.54 14 617.6 39 943.8
125.0	4 3 5 1	443.820 3 702.43 14 490.7 39 806.0	259.076 3 315.45 13 981.0 39 139.5	442.025 3 689.41 14 423.9 39 640.2	0.405 0.352 0.461 0.417	500.564 3 893.54 14 617.6 39 943.8

Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	530.922 3 917.96 14 864.1 40 371.8	529.723 3 915.17 14 859.8 40 366.3	530.701 3 916.53 14 857.6 40 355.9	0.042 0.036 0.043 0.039	531.274 3 918.60 14 864.9 40 372.7
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	560.511 4 030.98 15 108.8 40 798.1	555.692 4 020.35 15 091.5 40 7 6 8.6	560.062 4 028.28 15 096.1 40 768.9	0.080 0.067 0.084 0.072	561.893 4 033.54 15 112.1 40 801.7
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	617.532 4 252.96 15 593.4 41 645.3	599.287 4 212.01 15 523.6 41 566.3	616.673 4 247.82 15 568.6 41 585.6	0.139 0.121 0.158 0.143	622.874 4 263.06 15 606.3 41 659.4
4 3 3 2 1	671.896 4 469.68 16 071.4 42 485.3	634.041 4 380.84 15 819.7 42 309.6	670.667 4 462.22 16 035.1 42 399.3	0.183 0.167 0.225 0.203	683.530 4 492.12 16 100.2 42 517.0
4 33 2 1	723.829 4 681.35 16 542.9 43 318.2	655.591 4 521.11 16 294.4 43 016.2	722.256 4 671.69 16 495.6 43 203.9	0.217 0.206 0.286 0.264	743.883 4 720.74 16 494.0 43 374.4

BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM II -TABLE

-.75

ď	Order	Upper Bound by Rayleigh-Ritz	Lower Bound by Kato's Method	Lower Bound by Intermediate Problems	Gap/Average Per Cent	Lumped Constant End Load
100.0	1 2 3 4	773.522 4 888.16 17 008.0 44 144.0	671.565 4 646.52 16 648.5 43 687.5	770.979 4 864.31 16 936.9 43 861.5	0.329 0.489 0.419 0.642	803.955 4 948.93 17 087.5 44 231.7
125.0	1 2 3	832.739 5 140.13 17 580.6 45 166.2	683.535 4 790.86 17 009.6 44 443.2	829.534 5 110.31 17 493.0 44 827.8	0.386 0.582 0.499 0.752	878.676 5 233.58 17 704.0 45 303.1
150.0	1 2 3 4 4	888.985 5 385.16 18 143.7 46 177.5	696.494 4 896.41 17 377.3 45 167.2	885.218 5 350.45 18 040.9 45 775.5	0.425 0.646 0.568 0.874	953.016 5 517.62 18 230.2 46 374.2

Lumped Constant End Load	561.893 4 033.54 15 112.1 40 801.7	622.874 4 263.06 15 606.3 41 659.4	743.883 4 720.74 16 594.0 43 374.4	863.763 5 176.70 17 580.8 45 088.8	982.652 5 631.07 18 566.5 46 802.6
Gap/Average Per Cent	0.037 0.033 0.042 0.039	0.069 0.062 0.079 0.114	0.111 0.105 0.145 0.120	0.177 0.144 0.222 0.347	0.178 0.163 0.244 0.348
Lower Bound by Intermediate Problems	561.338 4 031.55 15 104.9 40 784.9	621.114 4 257.90 15 590.7 41 608.6	738.076 4 705.95 16 557.3 43 308.4	851.688 5 147.73 17 513.6 44 901.7	963.176 5 584.65 18 471.8 46 584.8
Lower Bound by Kato's Method	559.521 4 028.51 15 103.9 40 792.7	613. 6 8 9 4 243.43 15 577.1 41 623.8	709.280 4 642.44 16 482.1 43 233.6	793.191 5 001.03 17 339.1 44 775.5	857.790 5 332.86 18 153.4 46 251.4
Upper Bound by Rayleigh-Ritz	561.548 4 032.90 15 111.2 40 800.7	621.541 4 267.54 15 603.1 41 655.9	738.893 4 710.92 16 581.3 43 360.5	853.195 5 155.16 17 552.5 45 057.6	964.891 5 593.76 18 516.9 46 747.3
Order	4 3 5 1	4 3 5 1	4 3 5 1	4 3 2 1	4351
ö	10.0	20.0	40.0	0.09	80.0

TABLE II - BOUNDS FOR THE EIGENVALUES OF THE CLAMPED BEAM

-1.00

		1			
Lumped Constant End Load	1 100.66 6 083.95 19 551.3 48 515.6	1 247.09 6 648.11 20 780.8 50 655.8	1 392.44 7 21 0. 27 22 008.6 52 794.9	1 536.86 7 770.58 23 234.9 54 9328	1 680.44 8 329.17 24 459.6 57 069.4
Gap/Average Per Cent	0.253 0.193 0.346 0.359	0.296 0.209 0.411 0.626	0.249 0.209 0.358 0.478	0.269 0.224 0.396 0.233	0.243 0.219 0.355 0.392
Lower Bound by Intermediate Problem	1 071.61 6 015.50 19 407.2 48 255.9	1 204.80 6 548.45 20 578.1 50 209.0	1 336.44 7 075.31 21 763.0 52 352.5	1 464.90 7 594.8 22 919.3 54 546.7	1 592.01 8 110.06 24 084.8 56 511.6
Lower Bound by Kato's Method	917.851 5 637.97 18 929.7 47 680.0	975.666 5 998.45 19 837.7 49 42 5. 7	1 019.69 6 269.69 20 689.1 50 963.6	1 051.54 6 679.71 21 434.2 52 581.9	1 072.52 6 940.16 22 240.3 54 163.9
Upper Bound by Rayleigh-Ritz	1 074.33 6 027.13 19 474.6 48 429.6	1 208.37 6 562.08 20 662.6 50 522.1	1 339.76 7 090.13 21 881.0 52 603.5	1 468.84 7 611.88 23 010.1 54 673.8	1 595.89 8 127.84 24 170.5 56 733.4
Order	1 2 3 4	1 2 3 4	1 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2 3 4 4	1 3 3 4 4
Ö	100.0	125.0	150.0	175.0	200.0