1. Differentiate between OSI and TCI\IP model.

➤ The differences between the OSI (Open Systems Interconnection) model and the TCP/IP (Transmission Control Protocol/Internet Protocol) model are:

Aspect	OSI Model	TCP/IP Model
Full Form	Open Systems Interconnection	Transmission Control Protocol/Internet Protocol
Developed By	ISO (International Organization for Standardization)	Department of Defense (DoD)
Architecture	Reference model with 7 layers	Protocol suite with 4 or 5 layers
Layers	7 Layers: Physical, Data Link, Network, Transport, Session, Presentation, Application	4 Layers: Network Interface (or Link), Internet, Transport, Application
Layer Functionality	Each layer has specific functions and services	Layers can have overlapping functions and services
Usage	Theoretical model used as a teaching tool	Practical model used for Internet and network communications
Protocol Specificity	Generic and protocol-independent	Protocol-specific (TCP, IP, etc.)
Layer Interaction	Vertical communication (peer-to- peer communication)	Horizontal communication (layer protocols interact)
Protocol Dependency	Protocols are not strictly defined within the model	Defines specific protocols at each layer
Examples of Protocols	Not specified, but can include protocols like Ethernet, ATM, etc.	Includes specific protocols like TCP, IP, UDP, HTTP, FTP, etc.
Flexibility	More flexible in terms of layer functionality and protocol design	Less flexible due to specific protocol definitions
Layer Implementation	Ideal for understanding and teaching how different network layers interact	Practical implementation for real- world networking
Error Handling	Error handling can occur at multiple layers (Data Link, Transport)	Error handling primarily occurs at the Transport layer (TCP)
Flow Control	Managed at the Data Link and Transport layers	Managed mainly at the Transport layer (TCP)
Congestion Control	Managed at the Network and Transport layers	Managed mainly at the Transport layer (TCP)
Session Management	Explicit Session layer for managing sessions	No specific Session layer; session management handled by application protocols

2. Differentiate between peer-to-peer and client-server network architecture.

➤ The differences between Peer-to-Peer (P2P) and Client-Server network architectures:

Aspect	Peer-to-Peer (P2P)	Client-Server
Architecture	Decentralized	Centralized
Node Roles	Each node acts as both client and server	Dedicated servers and clients
Scalability		Scalable, but requires more resources for more clients
Resource Sharing	Resources are shared directly among peers	Resources are provided by the server to clients
Cost	Generally lower cost	Can be higher due to dedicated server hardware
Maintenance	Can be more complex, as each node must be maintained	Easier to manage, as servers are centrally maintained
Security	Less secure, as each peer can be a point of vulnerability	More secure, as central servers can enforce security policies
Performance	Can suffer with high traffic or large networks	Generally more stable and reliable performance
Data Storage	Distributed among peers	Centralized on the server
Data Access	Each peer accesses data directly from other peers	Clients access data from the server
Reliability	Can be less reliable due to decentralization	More reliable due to centralized control
Examples	File sharing networks like BitTorrent	Web services, email servers, database servers
Setup Complexity	Easier to set up and configure	More complex setup requiring server configuration
Fault Tolerance	Higher fault tolerance as there is no single point of failure	Can have a single point of failure at the server
Use Case Suitability	II Silitable for email ad-hoc networks I	Suitable for larger, more structured networks
Control	Equal control among peers	Central control by the server

3. What are the seven layers of OSI model and their functions?

The seven layers of the OSI (Open Systems Interconnection) model and their functions are:

1. Physical Layer:

- o **Function**: Transmits raw bit streams over a physical medium.
- Details: Deals with hardware components like cables, switches, and other devices. Defines the electrical, mechanical, and procedural aspects of physical connections.

2. Data Link Layer:

- **Function**: Handles node-to-node data transfer and error detection and correction.
- o **Details**: Ensures that data transferred between adjacent network nodes is error-free. Includes protocols like Ethernet and PPP (Point-to-Point Protocol).

3. Network Layer:

- **Function**: Manages data routing, forwarding, and addressing between devices on different networks.
- o **Details**: Determines the best physical path for data to travel. Uses logical addressing (e.g., IP addresses). Protocols include IP (Internet Protocol).

4. Transport Layer:

- Function: Provides end-to-end communication, error handling, and flow control
- Details: Ensures complete data transfer. Responsible for segmentation, acknowledgment, and retransmission. Protocols include TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

5. Session Layer:

- o **Function**: Manages sessions between applications.
- o **Details**: Establishes, maintains, and terminates connections between applications. Handles session recovery and synchronization.

6. **Presentation Layer**:

- **Function**: Translates data formats between the application layer and the network.
- o **Details**: Ensures that data is in a usable format. Handles data encryption, decryption, compression, and translation (e.g., from EBCDIC to ASCII).

7. Application Layer:

- o **Function**: Provides network services directly to end-user applications.
- o **Details**: Interacts with software applications to implement a communicating component. Protocols include HTTP, FTP, SMTP, and DNS.

Summary of OSI Layers and Functions:

- 1. **Physical Layer**: Transmits raw data bits over a physical medium.
- 2. **Data Link Layer**: Ensures error-free data transfer between adjacent nodes.
- 3. **Network Layer**: Routes data between different networks.
- 4. Transport Layer: Manages end-to-end data transfer.
- 5. **Session Layer**: Manages sessions between applications.
- 6. **Presentation Layer**: Translates data formats and handles encryption.
- 7. **Application Layer**: Provides network services to applications.

4. What are the principle behind OSI model?

➤ The OSI (Open Systems Interconnection) model is based on several key principles designed to facilitate interoperability and standardization in network communications. Here are the main principles behind the OSI model:

1. Layered Architecture:

 The OSI model divides the network communication process into seven distinct layers. Each layer has specific functions and interacts with the layers directly above and below it.

2. Separation of Concerns:

 Each layer is designed to perform a specific set of functions independently from the other layers. This separation allows for easier troubleshooting, development, and understanding of network protocols.

3. Encapsulation:

 Data is encapsulated as it moves down the layers of the OSI model. Each layer adds its own header (and sometimes trailer) to the data, forming a protocol data unit (PDU) specific to that layer.

4. Interoperability:

o The OSI model promotes interoperability between different vendors and technologies by defining standard protocols and interfaces for each layer.

5. Modularity:

 Each layer in the OSI model can be updated or replaced independently, as long as the interfaces between the layers remain consistent. This modularity enhances flexibility and adaptability.

6. Standardization:

 The OSI model provides a standardized framework for developing and implementing network protocols, which helps ensure consistency and compatibility across different systems and technologies.

7. Layer Communication:

 Each layer in the OSI model communicates with its corresponding layer on the destination device (peer-to-peer communication). This ensures that the appropriate protocol data units are correctly interpreted and handled.

8. Network Function Distribution:

 The OSI model distributes network functions across the seven layers, ensuring that each layer handles a specific part of the communication process. This distribution helps manage complexity and enhances the overall efficiency of network communication.

By adhering to these principles, the OSI model provides a comprehensive and systematic approach to network communication, promoting interoperability, standardization, and ease of implementation.

- 5. Simulate two different network and make a ping request between devices of same and different network.
- > Simulation is done in Packet Tracer and in Assignment_02 directory.