Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – II Question Paper

Degree & Branch	BE & Computer Science and Engineering				Semester	VII	
Subject Code & Name	UCS1701- Distributed Systems				Regulation:	2018	
Academic Year	2022-2023 ODD	Batch	2019-2023	Date	14-10-2022	FN / AN	
Time: 08:15 – 09:45 AM (90 Minutes)	Answer All Questions			Maximum: 50 Marks			

$Part - A (6 \times 2 = 12 Marks)$

KL2	1. Explain any two performance parameters of distributed mutex exclusion.	CO3
KL1	2. Define idle token.	CO3
KL2	3. Outline the message complexity of two non-token-based D-MUTEX algorithms.	CO3
KL2	4. Outline the difference between starvation and deadlocks.	CO3
KL3	5. Identify the maximum number of malicious processes when the total number of processes is 12 for the Byzantine agreement problem in the synchronous environment.	CO4
KL1	6. List any two applications of Byzantine consensus.	CO4

$Part - B (3 \times 6 = 18 Marks)$

KL2	7. Illustrate the effect of Byzantine Consensus for Asynchronous non-malicious environment in which the source sends the commands as $1 \rightarrow 0$.	CO4
KL3	 8. Consider 4 cohorts and 1 source in synchronous environment. Apply Byzantine consensus for the following cases and illustrate the result. i. Two of the cohorts are malicious. ii. Only the source is malicious. 	CO4
KL2	9. Demonstrate the limitations of Path -Pushing algorithm with an example.	CO3

$Part - C (2 \times 10 = 20 Marks)$

KL3	 10. Apply the Lamport's non-token based distributed mutual exclusion algorithm for the scenario in which the order of request for critical section is as follows. P1 → (P2 P3) → P4 	CO3	
	(OR)		
KL3	11. Apply the Ricart Agrawala's distributed mutual exclusion algorithm for the scenario in which the order of request for critical section is as follows.	CO3	
	$P3 \rightarrow (P1 \parallel P2) \rightarrow P3$		
KL3	12. Apply the token based distributed mutual exclusion algorithm for the scenario in which the order of request for critical section is as follows.	CO3	
	$P1 \rightarrow P2 \rightarrow (P3 \parallel P4)$		
	Note: Initially the token is held by process P3		

-----ALL THE BEST-----