ДИСКРЕТНАЯ МАТЕМАТИКА

ИУ5 - 4 семестр 2015

Лекция 2.

2.1. Кортеж. Декартово произведение

Упорядоченная пара (a, b) на множествах A и B, определяется не только самими элементами $a \in A$ и $b \in B$, но и порядком, в котором они записаны.

Если A=B , то говорят об упорядоченной паре на множестве A .

Определение 2.1. Две упорядоченные пары (a, b) и (a', b') на множествах A и B называют равными, если a = a' и b = b'.

First
 Prev
 Next
 Last
 Go Back
 Full Screen
 Close
 Quit

Обобщением понятия упорядоченной пары является **упорядоченный n -набор**, или *кортеж*.

Кортеж (a_1, \ldots, a_n) на множествах A_1, \ldots, A_n характеризуется не только входящими в него элементами $a_1 \in A_1, \ldots, a_n \in A_n$, но и порядком, в котором они перечисляются.

Роль порядка в кортеже фиксируется определением равенства кортежей.

Определение 2.2. Два кортежа (a_1, \ldots, a_n) <u>и</u> (b_1, \ldots, b_n) на множествах A_1, \ldots, A_n равны, если $a_i = b_i$, $i = \overline{1, n}$.

Число n называется длиной кортежа (или размерностью кортежа), а элемент a_i — i -й проекцией (компонентой) кортежа.

Для двух кортежей одинаковой размерности их компоненты с одинаковыми номерами называют **одноименными компонентами**.

Определение 2.3. Множество всех кортежей длины n на множествах A_1 , ..., A_n называют декартовым (прямым) произведением множеств A_1 , ..., A_n и обозначают $A_1 \times \ldots \times A_n$.

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) : a_1 \in A_1, \ldots, a_n \in A_n\}.$$

Если все множества A_i , $i=\overline{1,\,n}$, равны между собой, то указанное декартово произведение называют n -й декартовой степенью множества A и обозначают A^n .

При n=2 получаем декартов квадрат, при n=3 — декартов куб множества A .

Первая декартова степень любого множества A есть само множество A , т.е. $A^1 = A$.

Свойства декартова произведения:

- $\bullet \ A \times (B \cup C) = (A \times B) \cup (A \times C);$
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$;
- \bullet $A \times \emptyset = \emptyset \times A = \emptyset$.

Докажем первое тождество методом двух включений.

$$(x, y) \in A \times (B \cup C) \Rightarrow$$

$$\Rightarrow (x \in A \land (y \in B \cup C))$$

$$\Rightarrow (x \in A \land (y \in B \lor y \in C))$$

$$\Rightarrow ((x \in A \land y \in B) \lor (x \in A \land y \in C))$$

$$\Rightarrow ((x, y) \in A \times B \lor (x, y) \in A \times C)$$

$$\Rightarrow ((x, y) \in (A \times B) \cup (A \times C))$$

Следовательно, $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$. Доказательство обратного включения аналогично.

Отображение f из множества A в множество B $(f: A \to B)$ считается заданным, если каждому элементу $x \in A$ сопоставлен единственный элемент $y \in B$.

Элемент $y \in B$, который отображением f сопоставляется элементу $x \in A$, называют **образом элемента** x **при отображении** f и обозначают f(x) .

Каждое отображение однозначно определяет множество упорядоченных пар $\{(x,y): x\in A,\ y=f(x)\}$, являющееся подмножеством декартова произведения $A\times B$ множества A на множество B и называемое графиком отображения f .

Обратно, если в декартовом произведении $A \times B$ фиксировано подмножество упорядоченных пар f, такое, что для любых двух пар (x, y) и (x', y') множества f из x = x' следует равенство y = y', то f единственным образом определяет некоторое отображение из A в B.

Отображение f , элементу $x \in A$ сопоставляет такой элемент $y \in B$, что $(x, y) \in f$. Можем отождествить отображения и их графики.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Отображение есть подмножество декартова произведения.

Отображение f множества A в себя называют **тождественным**, если f(x)=x при всех x из A .

В общем случае для отображения $f \colon A \to B$ может существовать несколько различных элементов множества A, образы которых совпадают. Множество всех элементов $x \in A$, для которых $f(x) = y_0$, называют прообразом элемента $y_0 \in B$ при отображении f.

Прообраз числа a , $|a| \le 1$, при отображении $y = \sin x$ есть множество всех решений уравнения $\sin x = a$, т.е. множество

$${x: x = \arcsin a + 2\pi n, n \in \mathbb{Z}} \cup {x: x = \pi - \arcsin a + 2\pi n, n \in \mathbb{Z}}.$$

Прообраз элемента $y_0 \in B$ может быть *пустым множеством*. Например, для числа 2 при отображении $y = \sin x$.

Множество A называют областью определения отображения f . Область определения отображения f будем обозначать D(f)

Множество всех $y \in B$, таких, что найдется $x \in A$, для которого y = f(x) , называют областью значений отображения f .

Область значений отображения f будем обозначать R(f) .

Отображение $f: A \to B$ называют **инъективным** (**инъекцией**), если каждый элемент из области его значений имеет единственный прообраз, т.е. из $f(x_1) = f(x_2)$ следует $x_1 = x_2$.

Отображение $f: A \to B$ называют **сюръективным** (**сюръекцией**), если его область значений совпадает со всем множеством B.

Сюръективное отображение из A в B называют также **отображением** множества A на множество B .

Отображение $f: A \to B$ называют **биективным** (**биекцией**), если оно одновременно инъективно и сюръективно.

Если отображение $f:A\to B$ биективно, то каждому элементу множества A отвечает единственный элемент множества B и наоборот. Тогда говорят, что множества A и B находятся между собой во **взаимно однозначном соответствии**.

◆ First ◆ Prev ◆ Next ◆ Last ◆ Go Back ◆ Full Screen ◆ Close ◆ Quit

Пример 2.1.

- **а.** Отображение, заданное равенством $\nu(n)=n+1$, есть биекция множества натуральных чисел $\mathbb N$ на его подмножество $\mathbb N\setminus\{1\}$.
- **б.** Отображение $\nu(n) = 2n$ есть биекция множества всех натуральных чисел на множество всех четных натуральных чисел.
- в. Любая *показательная функция* $y = a^x$, a > 0, есть биекция множества \mathbb{R} всех действительных чисел на множество \mathbb{R}^+ всех положительных действительных чисел.
- г. Функция $y = \arctan x$ есть биекция множества \mathbb{R} на интервал $(-\pi/2, \pi/2)$.

Пусть задано отображение $f: A \to B$ и $C \subseteq A$ — некоторое множество.

Множество f(C) элементов $y \in B$, таких, что y = f(x) , $x \in C$, называют **образом множества** C при отображении f .

Например, при отображении $y = \sin x$ отрезок [0, 1] является образом множества (отрезка) $[0, \pi]$ (и любого объединения отрезков вида $[2\pi k, (2k+1)\pi]$ (для произвольного целого k)).

При k=0 это можно записать следующим образом: $\sin([0,\,\pi])=[0,\,1]$.

Для любого отображения $f: A \to B$ образ f(A) всего множества A есть область значений данного отображения.

Для произвольного множества $D\subseteq B$ множество всех элементов $x\in A$, таких, что $f(x)\in D$, называют **прообразом множества** D при отображении f .

Например, для любого действительного числа $a \in [0,1)$ множество, которое является объединением всех отрезков вида $[\arcsin a + 2\pi k, \pi - \arcsin a + 2\pi k]$, $k \in \mathbb{Z}$, есть прообраз отрезка [a,1] при отображении $y = \sin x$.

Прообраз области значений произвольного отображения $f \colon A \to B$ совпадает со всем множеством A .

Множество всех отображений из A в B будем обозначать как B^A .

Понятие отображения можно обобщить.

1. Частичное отображение.

Пусть образ определен не для каждого элемента множества A, а для некоторых элементов этого множества (отказ от полной определенности отображения).

Мы пришли к понятию частичного отображения.

При этом подмножество всех элементов A, для которых определен образ, называют областью определения данного частичного отображения.

2.Соответствие.

Пусть данному $x \in A$ сопоставлен не один, а несколько образов (множество образов) в множестве B (отказ от однозначности отображения). В этом случае говорят, что задано **соответствие** Соответствие ρ из A в B будем обозначать $\rho(x)$ (по аналогии с обозначением f(x) для отображений). $\rho(x)$ есть элемент **подмножества** B .

График соответствия

Графиком соответствия ρ из множества A в множество B называется множество C_{ρ} упорядоченных пар (x,y) , таких, что $x\in A$, $y\in B$ и элементы x , y связаны соответствием ρ , т.е. $y\in \rho(x)$.

Указанное множество C_{ρ} упорядоченных пар есть подмножество декартова произведения $A \times B$.

Обратно, фиксируя на декартовом произведении $A \times B$ какое-либо подмножество C, мы однозначно определяем некоторое соответствие ρ_C из A в B, а именно $\rho_C(x) = \{y \colon y \in B \land (x,y) \in C\}$. Графиком соответствия ρ_C будет множество C, а соответствием, отвечающим графику C_ρ , будет ρ .

Можно отождествить соответствие с его графиком и считать, что соответствие из множества A в множество B есть некоторое подмножество ρ декартова произведения $A\times B$, т.е. $\rho\subseteq A\times B$.

При $\rho=\varnothing$ получаем пустое соответствие.

При ρ , совпадающем со всем указанным декартовым произведением, — **универсальное соответствие**.

 $(x, y) \in \rho$ -упорядоченные пары, связанных соответствием ρ .

Область определения соответствия $\rho\subseteq A\times B$ из множества A в множество B — это множество всех первых компонент упорядоченных пар из ρ :

$$D(\rho) = \{x : (\exists y \in B)(x, y) \in \rho\}.$$

Область значения соответствия ρ — это множество всех вторых компонент упорядоченных пар из ρ :

$$R(\rho) = \{ y \colon (\exists x \in A)(x, y) \in \rho \} .$$

 $D(\rho) \subseteq A$, $R(\rho) \subseteq B$.

Соответствие из A в B называют всюду определенным, если его область определения совпадает с множеством A : $D(\rho) = A$.

Сечением соответствия $\rho \subseteq A \times B$ для фиксированного элемента $x \in A$ называют множество $\rho(x) = \{y \colon (x, y) \in \rho\}$. Сечение соответствия $\rho(x)$ есть множество всех "образов" элемента x при данном соответствии.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Соответствие $\rho \subseteq A \times A$ из множества A в себя, т.е. подмножество множества A^2 , называют **бинарным отношением на множестве** A.

Пример 2.2. Отношение нестрогого неравенства на множестве действительных чисел $\mathbb R$. Здесь каждому $x \in \mathbb R$ поставлены в соответствие такие $y \in \mathbb R$, для которых справедливо $x \leq y$.

Для произвольного бинарного отношения на некотором множестве часто используют запись $x \rho y$ вместо $(x, y) \in \rho$, говоря при этом об элементах, связанных бинарным отношением ρ .

Например, $x \leq y$, а не $(x, y) \in \leq$.

Бинарное отношение на множестве A , состоящее из всех пар (x,x) , т.е. пар с совпадающими компонентами, называют диагональю множества A и обозначают id_A .

Диагональ A есть тождественное отображение A на себя.

Для наглядного изображения соответствий из A в B будем использовать два способа.

1. График соответствия

Соответствие интерпретируется как подмножество декартова произведения и изображается на плоскости как подмножество декартова квадрата числовых множеств.

2.Граф соответствия

Для конечных множеств A и B ,применяется построение графа соответствия.

Пример 2.3. Множество точек окружности $x^2+y^2=1$ есть график бинарного отношения на множестве действительных чисел, состоящего из всех таких упорядоченных пар (x,y), что $y=\pm\sqrt{(1-x^2)}$, (компоненты пары удовлетворяют уравнению $x^2+y^2=1$.) Область определения бинарного отношения есть отрезок [-1,1], область значения — также отрезок [-1,1].

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Соответствие $\rho\subseteq A\times B$ называют функциональным по второй (первой) компоненте, если для любых двух упорядоченных пар $(x,y)\in \rho$ и $(x',y')\in \rho$ из равенства x=x' следует y=y' (и из y=y' следует x=x').

Функциональность соответствия по второй компоненте означает, что, фиксируя в любой упорядоченной паре, принадлежащей данному соответствию, первую компоненту, мы однозначно определяем и вторую компоненту.

Соответствие, функциональное по второй компоненте, есть отображение (возможно, частичное).

Соответствие $f\subseteq A\times B$ является отображением из A в B , если и только если оно всюду определено (т.е. D(f)=A) и функционально по второй компоненте.

Отображение из A в B является инъекцией тогда и только тогда, когда оно функционально по первой компоненте.

Определение 2.4. Произвольное подмножество ρ декартова произведения $A_1 \times \ldots \times A_n$ называют (\mathbf{n} -арным или \mathbf{n} -местным) отношением на множествах A_1, \ldots, A_n .

В случае если все множества A_1 , ..., A_n совпадают, т.е. $A_1 = \ldots = A_n = A$, говорят об **n**-арном отношении на множестве A.

Если $\rho-n$ -арное отношение на множествах A_1 , ..., A_n и $(a_1,\ldots,a_n)\in\rho$, то говорят об элементах a_1 , ..., a_n , связанных отношением ρ .

При $\,n=2\,$ получаем бинарное отношение на множествах $\,A_1\,$, $\,A_2\,$.

Это соответствие из A_1 в A_2 , где множества A_1 и A_2 различны.

При $A_1 = A_2 = A$ получаем введенное ранее бинарное отношение на множестве, т.е. подмножество декартова квадрата A .

В общем случае (при произвольном $n \geq 2$) следует, сторого говоря, различать термины "n-арное отношение" и "n-арное отношение на множестве".

Пусть n -арное отношение $\rho\subseteq A_1\times\ldots\times A_n$ удовлетворяет условию: для любых двух кортежей $(x_1,\ldots,x_i,\ldots,x_n)\in\rho$ и $(y_1,\ldots,y_i,\ldots,y_n)\in\rho$ из выполнения равенств $x_k=y_k$ для любого $k\neq i$ ($0\leq k\leq n$) следует, что и $x_i=y_i$.

Тогда отношение $\, \rho \,$ называют функциональным по $\, i$ -й компоненте $\, (1 \leq i \leq n) \, .$

Функциональность n -местного отношения по i -й $(i \le n)$ компоненте равносильна условию, что, фиксируя все компоненты, кроме i -й, мы однозначно определяем и i -ю компоненту.

Пример 2.4. Рассмотрим на множестве V_3 геометрических векторов в пространстве тернарное (трехместное) отношение ρ , состоящее из всех упорядоченных троек $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ компланарных векторов.

Это отношение не является функциональным ни по одной компоненте, так как любым двум векторам соответствует бесконечно много векторов, образующих с ними компланарную тройку.

2.3. Операции над соответствиями

Поскольку **соответствия** можно считать множествами, то все операции над множествами (**пересечение**, **объединение**, **разность**, **дополнение** и т.д.) можно применить и к соответствиям.

Говоря о дополнении соответствия из A в B, мы имеем в виду дополнение до универсального соответствия из A в B, т.е. до декартова произведения $A \times B$.

Равенство соответствий можно трактовать как **равенство множеств**. На соответствия можно распространить операции, определяемые для отображений.

Композиция соответствий

Композицией (произведением) соответствий $\rho \subseteq A \times B$ и $\sigma \subseteq B \times C$ называют соответствие

$$\rho \circ \sigma = \{(x, y) : (\exists z \in B)((x, z) \in \rho) \land ((z, y) \in \sigma)\}. \tag{2.1}$$

■ First ■ Prev ■ Next ■ Last ■ Go Back ■ Full Screen ■ Close ■ Quit

Пример 2.5. Соответствие ρ задано следующим образом:

Есть множество программистов $A = \{II, II, C\}$ и множество программ $B = \{n_1, n_2, n_3, n_4, n_5\}$.

Соответствие ρ из A в B , связывает программистов и разрабатываемые ими программы:

$$\rho = \{ (\mathcal{U}, n_1), (\mathcal{U}, n_3), (\mathcal{U}, n_5), (\mathcal{U}, n_2), (\mathcal{U}, n_4), (\mathcal{C}, n_2), (\mathcal{C}, n_5) \}.$$

Соответствие σ зададим как соответствие из множества программ $\{n_1,\ n_2,\ n_3,\ n_4,\ n_5\}$ в множество заказчиков ПО $\{3_1,\ 3_2,\ 3_3,\ 3_4\}$. Пусть

$$\sigma = \{(n_1, \beta_3), (n_1, \beta_4), (n_2, \beta_1), (n_3, \beta_2), (n_4, \beta_4), (n_5, \beta_3)\}.$$

Построим композицию соответствий $\, \rho \,$ и $\, \sigma \,$.

Имеем

$$\rho(\mathbf{M}) = \{n_1, n_3, n_5\},
\sigma(n_1) = \{3_3, 3_4\},
\sigma(n_3) = \{3_2\},
\sigma(n_5) = \{3_3\}.$$

Получаем $\sigma(n_1) \cup \sigma(n_3) \cup \sigma(n_5) = \{\beta_2, \beta_3, \beta_4\}$ сечение композиции по элементу I.

Аналогично, получим

$$(\rho \circ \sigma)(\Pi) = \{\beta_1, \beta_4\}$$
 и $(\rho \circ \sigma)(C) = \{\beta_1, \beta_3\}$.

Операция композиции соответствий $\rho\subseteq A\times B$ и $\sigma\subseteq C\times D$ не коммутативна.

В общем случае $\rho \circ \sigma \neq \sigma \circ \rho$, поскольку $\rho \circ \sigma \subseteq A \times D$, а $\sigma \circ \rho \subseteq C \times B$.

Бинарное отношение на множестве является частным случаем соответствия. Для двух бинарных отношений ρ и σ , заданных на множестве A, их композиция $\rho \circ \sigma$ (2.1) как соответствий является бинарным отношением на том же множестве A.

В этом случае говорят о композиции бинарных отношений на множестве A .

Композицию $\rho \circ \rho$ бинарного отношения ρ на некотором множестве с самим собой называют **квадратом бинарного отношения** ρ и обозначают ρ^2 .

В общем случае для двух бинарных отношений τ и φ также имеет место неравенство

$$\tau \circ \varphi \neq \varphi \circ \tau,$$

хотя обе композиции заданы на одном и том же множестве.

Пример 2.6.

Зададим на множестве $A=\{1,\,2,\,3,\,4\}$ бинарные отношения $au=\{(x,\,y)\colon x+1< y\}$, $\varphi=\{(x,y)\colon |x-y|=2\}$ Найдем композицию $\tau\circ\varphi$.

Имеем
$$\tau(1) = \{3, 4\}$$
 , $\varphi(3) = \{1\}$ и $\varphi(4) = \{2\}$.

Следовательно,
$$(\tau \circ \varphi)(1) = \varphi(3) \cup \varphi(4) = \{1, 2\}$$
.

Далее
$$\tau(2) = \{4\}$$
, $\varphi(4) = \{2\}$ и $(\tau \circ \varphi)(2) = \{2\}$.

Так как
$$\tau(3) = \tau(4) = \emptyset$$
, то в итоге получим

$$\tau \circ \varphi = \{(1, 1), (1, 2), (2, 2)\}.$$

Свойства композиции соответствий.

- 1) $\rho \circ (\sigma \circ \tau) = (\rho \circ \sigma) \circ \tau$;
- 2) для любого соответствия ρ имеет место $\rho \circ \varnothing = \varnothing \circ \rho = \varnothing$;
- 3) $\rho \circ (\sigma \cup \tau) = (\rho \circ \sigma) \cup (\rho \circ \tau)$;
- 4) для любого бинарного отношения на множестве A имеет место равенство $\rho \circ \mathrm{id}_A = \mathrm{id}_A \circ \rho = \rho$.
- 5) $\rho\circ(\sigma\cap\tau)\subseteq\rho\circ\sigma\cap\rho\circ\tau$, обратное включение в общем случае не имеет места.

Роль **пустого соответствия** в операции композиции, определенной на множестве всех бинарных отношений на A, аналогична роли нуля при умножении чисел.

Диагональ множества A играет роль, аналогичную роли единицы.

Первые четыре свойства можно доказать методом двух включений.

Обратное соответствие

Соответствие, обратное к соответствию $\rho\subseteq A\times B$, есть соответствие из B в A , обозначаемое ρ^{-1} и равное, по определению,

$$\rho^{-1} = \{ (y, x) \colon (x, y) \in \rho \} .$$

Пример 2.7.

Соответствие ρ , задано следующим образом:

Соответствие ρ из A в B, связывает множество программистов $A=\{\mathit{U},\mathit{\Pi},\mathit{C}\}$ и разрабатываемые ими программы ($B=\{n_1,\,n_2,\,n_3,\,n_4,\,n_5\}$):

$$\rho = \{ (\mathbf{\textit{U}}, \ n_1), (\mathbf{\textit{U}}, \ n_3), (\mathbf{\textit{U}}, \ n_5), (\mathbf{\textit{\Pi}}, \ n_2), (\mathbf{\textit{\Pi}}, \ n_4), (\mathbf{\textit{C}}, \ n_2), (\mathbf{\textit{C}}, \ n_5) \}.$$

Обратное соответствие

$$\rho^{-1} = \{ (n_1, \mathcal{U}), (n_2, \Pi), (n_2, C), (n_3, \mathcal{U}), (n_4, \Pi), (n_5, \mathcal{U}), (n_5, C) \}.$$

Свойства обратного соответствия

- 1) $(\rho^{-1})^{-1} = \rho$;
- 2) $(\rho \circ \sigma)^{-1} = \sigma^{-1} \circ \rho^{-1}$.

Для бинарного отношения ρ на множестве A обратное соответствие есть бинарное отношение на том же множестве.

В этом случае говорят о бинарном отношении $\, \rho^{-1} \,$ на множестве $\, A \,$, обратном к $\, \rho \,$.

Соответствия $\rho \circ \rho^{-1}$ и $\rho^{-1} \circ \rho$ в общем случае не совпадают. Для бинарного отношения ρ на множестве A $\rho \circ \rho^{-1} \neq \rho^{-1} \circ \rho$ $\rho \circ \rho^{-1} \neq \mathrm{id}_A$ и $\rho^{-1} \circ \rho \neq \mathrm{id}_A$.

Ограничение отношения.

Любое бинарное отношение заданное на множестве А задает бинарное отношение на любом подмножестве В множества А.

Это отношение называется **сужением отношения** ρ **на подмножество** C и обозначается обозначаемое $\rho|_B$,

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

2.4. Специальные свойства бинарных отношений

Бинарное отношение ρ на множестве A называют **рефлексивным**, если диагональ множества A содержится β ρ : $\mathrm{id}_A\subseteq\rho$, т.е. $x\,\rho\,x$ для любого элемента x множества A.

Если же $\mathrm{id}_A \cap \rho = \varnothing$, то бинарное отношение ρ на множестве A называют **иррефлексивным**.

Указанные свойства бинарных отношений на множестве A называют рефлексивностью и иррефлексивностью.

Иррефлексивное отношение нерефлексивно, но не всякое нерефлексивное отношение иррефлексивно.

Иррефлексивному отношению на A не принадлежит ни один элемент диагонали id_A , а нерефлексивное отношение может содержать некоторые (но не все!) элементы диагонали.

Примеры рефлексивных бинарных отношений.

Бинарные отношения равенства и подобия на множестве геометрических фигур,все отношения равенства, нестрогого неравенства на множестве действительных чисел, **отношение** \subseteq **включения** множеств.

Примеры иррефлексивных бинарных отношений.

Бинарное отношение на множестве действительных чисел, задаваемое строгим неравенством x < y, отношение \subset *строгого включения* множеств.

Бинарное отношение ρ на множестве A называют:

- 1) симметричным, если для любых $x,y\in A$ из $x\,\rho\,y$ следует $y\,\rho\,x$;
- 2) антисимметричным, если для любых $x,y\in A$ из $x\,\rho\,y$ и $y\,\rho\,x$ следует, что x=y .

Соответствующие свойства бинарных отношений на множестве A называют симметричностью и антисимметричностью.

График симметричного бинарного отношения на множестве A симметричен относительно диагонали

Теорема 1. Бинарное отношение ρ на множестве A симметрично, если и только если бинарное отношение на множестве A, обратное к ρ , совпадает с ρ : $\rho^{-1}=\rho$.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Теорема 2. Бинарное отношение ρ на множестве A антисимметрично тогда и только тогда, когда $\rho \cap \rho^{-1} \subseteq \mathrm{id}_A$.

■ First ■ Prev ■ Next ■ Last ■ Go Back ■ Full Screen ■ Close ■ Quit

Для антисимметричного бинарного отношения на множестве A может иметь место равенство $\rho \cap \rho^{-1} = \varnothing$.

Все бинарные отношения в геометрии типа равенства или подобия симметричны.

Если треугольник ABC подобен треугольнику A'B'C', то и второй из этих треугольников подобен первому.

Бинарные отношения включения множеств ($A \subset B$, $A \subseteq B$), как строгие, так и не строгие, антисимметричны.

Бинарное отношение ρ на множестве A называют **транзитивным**, если для любых x, y, $z \in A$ из того, что $x \rho y$ и $y \rho z$, следует $x \rho z$. Соответствующее свойство бинарного отношения называют **транзитивностью**.

Пример 2.8. а. Пусть M — некоторое множество населенных пунктов. Зададим на нем бинарное отношение достижимости: из пункта A достижим пункт B, если есть дорога, по которой можно доехать из A в B. Это отношение транзитивно, поскольку если из пункта A можно доехать до пункта B, а из B есть дорога до C, то из A можно проехать в C.

б. Бинарное отношение неравенства на множестве действительных чисел не транзитивно, так как из того, что $x \neq y$ и $y \neq z$, вовсе не следует, что $x \neq z$.

First
 Prev
 Next
 Last
 Go Back
 Full Screen
 Close
 Quit

Свойство транзитивного бинарного отношения.

Теорема 3. Бинарное отношение ρ на множестве A транзитивно тогда и только тогда, когда его *квадрат* содержится в нем, т.е. $\rho \circ \rho \subseteq \rho$ ($\rho \circ \rho = \rho^2$).

Данное свойство целесообразно использовать для проверки транзитивности бинарного отношения ρ на некотором множестве в тех случаях, когда построение квадрата ρ является более легкой задачей по сравнению с исследованием свойства транзитивности ρ на основе определения.

Построение композиции.

1. Композиция двух отображений (частный случай соответствий).

Пусть заданы отображения : f из A в B и g из B в C .

Композиция $f\circ g$ определяется как отображение из A в C , задаваемое формулой y=g(f(x)) .

Тем самым задается график отображения $f\circ g$, т.е. множество упорядоченных пар $(x,\,y)$, таких, что y=g(f(x)) .

При этом упорядоченная пара (x,y) будет принадлежать графику отображения $f\circ g$,

если и только если найдется элемент $z \in B$, такой, что z = f(x) и y = g(z) .

График композиции отображений f и g есть

$$f\circ g=\{(x,\,y)\colon (\exists z)(z=f(x)\ \mathrm{if}\ y=g(z))\}=\ =\{(x,\,y)\colon y=g(f(x))\}\ .$$
 (2.2)

При построении композиции отображений обычно предполагается, что пересечение области значений отображения f и области определения отображения не пусто ($R(f) \cap D(g) \neq \varnothing$), поскольку в противном случае композиция была бы пуста.

Для отображений, не являющихся частичными, $R(f)\subseteq D(g)$, так как D(g)=B . Поэтому в данном случае пересечение $R(f)\cap D(g)$ всегда не пусто.

Если f и g — биекции, то и композиция их тоже будет биекцией.

2.Композиция двух соответствий $ho \circ \sigma$.

Возьмем произвольный элемент $x \in D(\rho)$. (область определения $D(\rho)$ соответствия ρ не пуста)

Пусть сечение $\rho(x)\subseteq B$ соответствия ρ не пусто и найдется такой элемент $z\in \rho(x)$, что сечение $\sigma(z)\subseteq C$ также не пусто.

Тогда непустое множество $\{(x,\,t)\colon t\in\sigma(z)\}$ будет подмножеством сечения соответствия $\,\rho\,\circ\sigma\,$ в точке $\,x\,$.

Сечением соответствия $\rho\circ\sigma$ в точке x будет непустое множество всех упорядоченных пар $(x,\,t)\in A\times C$ таких, что $x\in D(\rho)$, а $t\in\sigma(z)$ для некоторого $z\in\rho(x)$.

Нужно перебрать все элементы z из сечения $\rho(x)$.

Различие в построении композиции соответствий и композиции отображений заключается в том, что "промежуточный" элемент z в общем случае не единственный и каждому такому элементу также ставится в соответствие не единственный элемент $y \in C$.

Обратное соответствие (дополнение).

Если $f \colon A \to B$ — отображение, то оно является соответствием. Обратное к f соответствие из B в A в общем случае не является отображением.

Соответствие f^{-1} , обратное к f , состоит из всех упорядоченных пар вида (f(x),x) , $x\in A$.

В общем случае могут найтись такие два различных элемента x и x', что f(x)=f(x'), то соответствие f^{-1} случае не будет функционально по второй компоненте и поэтому не будет отображением.

Если *отображение* f инъективно, то обратное соответствие есть частичное отображение из B в A.

Если **отображение** f **биективно**, то обратное соответствие является отображением из B в A, причем имеют место равенства

$$f \circ f^{-1} = \mathrm{id}_A, \quad f^{-1} \circ f = \mathrm{id}_B.$$

Отображение f^{-1} в этом случае называют **отображением**, **обратным** к f .

First
 Prev
 Next
 Last
 Go Back
 Full Screen
 Close
 Quit

ТЕОРЕМА 1 . Бинарное отношение ρ на множестве A симметрично, если и только если бинарное отношение на множестве A , обратное к ρ , совпадает с ρ : $\rho^{-1} = \rho$.

 \blacktriangleleft Пусть бинарное отношение ρ на множестве A симметрично Докажем, что $\rho^{-1}=\rho$.

$$(x,\,y)\in
ho^{-1}\Rightarrow (y,\,x)\in
ho\Rightarrow$$
 (в силу симметричности $ho:(x,\,y)\in
ho\Rightarrow (y,\,x)\in
ho)$ $\Rightarrow (x,\,y)\in
ho\Rightarrow
ho^{-1}\subseteq
ho$

Аналогично доказывается включение $\rho \subseteq \rho^{-1}$.

Пусть $\rho = \rho^{-1}$.

Докажем, что бинарное отношение ρ на множестве A симметрично.

$$(x,\,y)\in
ho\Rightarrow (x,\,y)\in
ho^{-1}\Rightarrow$$
 (по определению обратного отношения)
$$\Rightarrow (y,\,x)\in
ho.$$

Следовательно, ρ — симметричное бинарное отношение. \blacktriangleright

ТЕОРЕМА 2. Бинарное отношение ρ на множестве A антисимметрично тогда и только тогда, когда $\rho \cap \rho^{-1} \subseteq \mathrm{id}_A$.

■ Пусть отношение ρ на множестве A антисимметрично, т.е. $\forall (x, y) \in A : (x, y) \in \rho \land (y, x) \in \rho \Rightarrow x = y$ Докажем, что $\rho \cap \rho^{-1} \subseteq \mathrm{id}_A$.

$$(x, y) \in \rho \cap \rho^{-1} \Rightarrow (x, y) \in \rho \wedge (x, y) \in \rho^{-1} \Rightarrow (x, y) \in \rho \wedge (y, x) \in \rho \Rightarrow$$

(по определению антисимметричности) $\Rightarrow x = y \Rightarrow (x, y) \in \mathrm{id}_A$

Пусть $\rho \cap \rho^{-1} \subseteq id_A$.

Докажем, что отношение ρ на множестве A антисимметрично.

От противного: пусть отношение ρ на множестве A не антисимметрично,т.е. $\exists (x,y): ((x,y)\in \rho) \land ((y,x)\in \rho) \land x\neq y$.

$$((x, y) \in \rho \land (y, x) \in \rho^{-1}) \land x \neq y \Rightarrow$$

$$\Rightarrow ((x, y) \in (\rho \cap \rho^{-1})) \land (\rho \cap \rho^{-1} \subseteq \mathrm{id}_A) (\text{по условию}) \land$$

$$\land (x, y) \notin \mathrm{id}_A(\mathsf{т.к.} \ \mathsf{условию} x \neq y)$$

Получаем противоречие: $(x, y) \in id_A$ и $(x, y) \notin id_A$ одновременно.

ТЕОРЕМА 3 . Бинарное отношение ρ на множестве A транзитивно тогда и только тогда, когда его *квадрат* содержится в нем, т.е. $\rho \circ \rho \subseteq \rho$ ($\rho \circ \rho = \rho^2$).

◄ Пусть бинарное отношение ρ на множестве A транзитивно, т.е. $\forall x,y,z\in A: (x,y)\in \rho \land (y,z)\in \rho \Rightarrow (x,z)\in \rho$. Докажем, что: $\rho^2\subseteq \rho$.

$$(x, z) \in \rho^2 \Rightarrow \exists y : (x, y) \in \rho \land (y, z) \in \rho \Rightarrow$$

 \Rightarrow (по определению транзитивности) $(x, z) \in \rho \Rightarrow$
 $\Rightarrow \rho^2 \subseteq \rho$

Пусть $\rho^2 \subseteq \rho$.

Докажем, что: бинарное отношение ρ транзитивно ($(x,y)\in\rho\wedge(y,z)\in\rho\Rightarrow(x,z)\in\rho$)

$$(x, y) \in \rho \land (y, z) \in \rho$$

(по определению композиции бинарных отношений) $(x, z) \in \rho^2$

$$\Rightarrow$$
 (t.k. $\rho^2 \subseteq \rho$) $(x, z) \in \rho$

Бинарное отношение ρ на множестве A называется **плотным**, если для любых $x,y\in A$, отличных друг от друга и таких, что $(x,y)\in \rho$, найдется z, отличный и от x и от y, такой, что $(x,z)\in \rho$ и $(y,z)\in \rho$. Пусть ρ — плотное бинарное отношение на множестве A. Тогда

$$\forall x,y\in A:(x,\,y)\in\rho$$

$$\exists z\in A:x\neq z\land y\neq z:(x,\,z)\in\rho\land(z,\,y)\in\rho\Rightarrow$$
 ⇒ по определению композиции $(x,\,y)\in\rho^2$

Если ρ плотно, то оно содержится в своем квадрате.

Для транзитивного бинарного отношения $\rho^2 \subseteq \rho$.

Если бинарное отношение ρ плотно и транзитивно одновременно, то $\rho=\rho^2$.