Homework 2

David Miller MAP 5165: Methods of Applied Mathematics I

October 11, 2017

Problem 1

Find the fixed points and classify them.

$$\dot{x} = y - x^3 + x, \quad \dot{y} = -x - y^3 + y$$
 (1)

The point (0,0) is an obvious fixed point. Now lets check for other fixed points:

$$x = 0 = y - x^{3} + x \Rightarrow y = x^{3} - x$$

$$y = 0 = -x - y^{3} + y \Rightarrow 0 - x - (x^{3} - x)^{3} + x^{3} - x$$

$$\Rightarrow 0 = -1 - x^{2}(x+1)^{3}(x-1)^{3} + (x+1)(x-1)$$

From this we can see (from plugging into Wolfram|Alpha) that there are no other fixed points. Therefore letting $f = y - x^3 + x$ and $g = -x - y^3 + y$ we get

$$\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} = \begin{pmatrix} -3x^2 + 1 & 1 \\ -1 & -3y^2 + 1 \end{pmatrix} \xrightarrow{\text{Plugging in } (0,0)} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \xrightarrow{\text{Compute eigenvalue } \lambda} \begin{pmatrix} 1 - \lambda & 1 \\ -1 & 1 - \lambda \end{pmatrix}$$

From this we have that $(1 - \lambda)^2 = -1$ and therefore $\lambda = 1 \pm i$. Therefore the fixed point is an unstable spiral.

A particle is confined on the half line $x \ge 0$ and moves according to the following equation of motion: $\dot{x} = -x^{\alpha}$ where α is a real constant.

(a) Find all the values of α for which the origin (x = 0) is a stable fixed point.

If we want the origin to be a stable fixed point then we need two conditions

- If x > 0 then \dot{x} must be less than zero to force it back to the origin,
- If x < 0 then \dot{x} must be greater than zero to force it back to the origin.

When x > 0 we get that α can be any positive real number. If it is negative than the problem does ot admit a fixed point. When x < 0 we get that α must be some rational $\frac{p}{q}$ where p is an odd integer. Putting this together we get that α can take on any positive number on the positive half-line.

(b) Consider the values of α found in part (a). Can the particle ever reach the origin in finite time? Specifically, how long does it take for the particle to travel from x = 1 to x = 0 as a function of α .

$$\frac{dx}{dt} = -x^{\alpha}$$

$$-\int \frac{dx}{x^{\alpha}} = \int dt$$

$$-\frac{x^{-\alpha+1}}{-\alpha+1} = t+c$$

for some $c \in \mathbb{R}$. The time it takes to get from x = 1 to x = 0 is

$$t_0 - t_1 = \frac{1}{1 - \alpha}$$

Therefore we do have that the particle can reach the origin in finite time if we allow $\alpha \in (0,1)$.

Consider the equation

$$\dot{x} = cx + x^3 \tag{2}$$

where $x(t) \in \mathbb{R}$ and c > 0 is real and fixed. Prove rigorously that $x(t) \to \pm \infty$ in finite time, starting from any initial condition $x_0 \neq 0$.

$$\frac{dx}{dt} = cx + x^3$$

$$\int \frac{dx}{x(c+x^2)} = \int dt$$

$$\int \frac{dx}{cx} - \int \frac{xdx}{c(c+x^2)} = t + a$$

$$\frac{\ln(x)}{c} - \frac{\ln(c+x^2)}{2c} = t + a$$

$$\frac{1}{c} \ln\left(\frac{x}{c+x^2}\right) = t + a$$

for some $a \in \mathbb{R}$. We can not have that $x_0 = 0$ since we can not evaluate ln(0). As $x \to \pm \infty$ we have that $ln(\frac{x}{c+x^2}) \to 0$. Therefore there is some finite t^* such that $x(t^*) \to \pm \infty$.

Find and classify all equilibrium points and sketch the local phase diagrams (find all phase paths whenever possible):

(a)
$$\dot{x} = \sin(y), \quad \dot{y} = -\sin(x)$$

From the problem we have that

$$sin(y) = 0$$
 and $-sin(x) = 0$

and therefore the fixed points are $(x,y)=(n\pi,m\pi)$ for $n,m\in\mathbb{Z}$. Setting f=sin(y) and g=-sin(x) we get

$$\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} = \begin{pmatrix} 0 & \cos(y) \\ \cos(x) & 0 \end{pmatrix} \xrightarrow{\text{Plugging in } (n\pi, m\pi)} \begin{pmatrix} 0 & \cos(m\pi) \\ \cos(n\pi) & 0 \end{pmatrix} \xrightarrow{\text{Compute } \lambda} \begin{pmatrix} -\lambda & \cos(m\pi) \\ \cos(n\pi) & \lambda \end{pmatrix}$$

Solving this we get $\lambda^2 - \cos(n\pi)\cos(m\pi) = 0$ where $\cos(n\pi)\cos(m\pi)$ is always 1 or -1. If $\cos(n\pi)\cos(m\pi) = 1$ we have that $\lambda = \pm i$ and therefore we have center fixed point. If $\cos(n\pi)\cos(m\pi) = -1$ then we have that $\lambda = \pm 1$. This is a saddle point and therefore can not be a stable fixed point.

(b)
$$\dot{x} = 4 - 4x^2 - y^2$$
, $\dot{y} = 3xy$

From the problem we have that

$$3xy = 0 \Rightarrow x = y = 0 \Rightarrow 4 - 4x^2 = 0$$
 and $4 - y^2 = 0 \Rightarrow y = \pm 2, x = \pm 1$

So we have that the four fixed points are $(x,y)=(0,\pm 2)$ and $(x,y)=(\pm 1,0)$. Setting $f=4-4x^2-y^2$ and g=3xy we get

$$\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} = \begin{pmatrix} -8x & -2y \\ 3y & 3x \end{pmatrix} \xrightarrow{\text{Plugging in } (0, \pm 2)} \begin{pmatrix} 0 & \mp 4 \\ \pm 6 & 0 \end{pmatrix} \xrightarrow{\text{Compute eigenvalue } \lambda} \begin{pmatrix} -\lambda & \mp 4 \\ \pm 6 & -\lambda \end{pmatrix}$$

Solving this we get $\lambda^2 + 24 = 0$. Therefore we have that $\lambda = \pm i\sqrt{24}$ which is a center for the fixed point $(0, \pm 2)$. Plugging in $(\pm 1, 0)$ yields $(8 \pm \lambda)(3 \pm \lambda)$ which evaluates to $\lambda = \sqrt{24}$. This implies that $(\pm 1, 0)$ is a saddle point and therefore not a stable fixed point.

Prove that the ODE

$$\dot{x} = 1 + x^{12}, \quad x(0) = 2$$
 (3)

blows up in finite time.

We have that

$$\dot{x}_1 = x^{12} \le \dot{x} = 1 + x^{12}, \quad \forall x$$

Therefore it is sufficient to show \dot{x}_1 blows up in finite time.

$$\frac{dx_1}{dt} = x_1^{12}$$

$$\int \frac{dx_1}{x_1^{12}} = \int dt$$

$$-\frac{1}{11x_1^{11}} = t + c$$

$$\Rightarrow c = \frac{-2^{-11}}{11}$$

$$x_1 = \frac{-1}{11} \frac{1}{t+c}$$

Therefore we have that \dot{x}_1 blows up in finite time $(t = \frac{1}{11 \star 2^{11}})$ and therefore \dot{x} blows up in finite time.

Prove the following theorem:

Theorem. Suppose that Γ lies in a simply connected domain in \mathbb{R}^2 and there are no fixed points in the area enclosed by Γ , then the index I_{Γ} must be zero.

Proof. Since Γ is a closed non-intersecting curve in a simply connected region we can apply Green's Theorem which states

$$\oint_{\Gamma} (Pdx + Qdy) = \iint_{D\Gamma} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

where D_{Γ} is the interior region bounded by Γ . In class we were given the equation for calculating the index

$$I_{\Gamma} = \frac{1}{2\pi} \int_{s_0}^{s} \frac{XY' - YX'}{X^2 + Y^2} \, ds$$

Since we want to evaluate this in \mathbb{R}^2 to use Green's Theorem we use the chain rule

$$X' = \frac{dX}{ds} = \frac{dx}{ds} + X_y \frac{dy}{ds}, \quad Y' = \frac{dY}{ds} = Y_x \frac{dx}{ds} + Y_y \frac{dy}{ds}$$

which then turns the index equation into

$$I_{\Gamma} = \frac{1}{2\pi} \oint_{\Gamma} \left(\underbrace{\frac{XY_x - YX_x}{X^2 + Y^2}}_{P} dx + \underbrace{\frac{XY_y - YX_y}{X^2 + Y^2}}_{Q} dy \right).$$

The functions P and Q satisfy Green's Theorem since the denominator of each does not equal zero. Therefore we have

$$I_{\Gamma} = \frac{1}{2\pi} \iint_{\Gamma} \left[\left(\frac{\partial}{\partial x} \frac{XY_y - YX_y}{X^2 + Y^2} \right) - \frac{\partial}{\partial y} \left(\frac{XY_x - YX_x}{X^2 + Y^2} \right) \right]$$

Evaluating the inside of the double integral we get

$$(X_xY_y - XY_{yx} - Y_xX_y - YX_{yx})(X^2 + Y^2) - (2XX_x + 2YY_x)(XY_y - YX_y) - (X_yY_x + XY_{xy} - Y_yX_x - YX_{xy})(X^2 + Y^2) + (2XX_y + 2YY_y)(XY_x - YX_x)$$

After some very tedious algebra this expression reduces to zero proving that the index of the curve is zero. \Box