武汉大学数学与统计学院 2010—2011 第一学期《高等数学 A1》期末考试试题 A

- 一、(42分) 试解下列各题:
 - 1、计算 $\lim_{x\to +\infty} [e^{\frac{1}{x}}-1]^{\frac{1}{\ln x}}$
 - 2、求解微分方程 y''' y'' + 2y' 2y = 0 的通解。
 - 3、判断函数 $f(x) = \frac{x^2 x}{x^2 1} \sqrt{1 + \frac{1}{x^2}}$ 的间断点,并说明是可去间断点、跳跃间断点、无穷间断点还是振荡间断点。
 - 4、求曲线 $y = \frac{x^2 5}{x 3}$ 的渐近线方程.
 - 5、设 $y = \ln(x^2 + 3x + 2)$, 求 $y^{(n)}$
 - 6、讨论函数 $y = \ln(x^2 + 1)$ 的单调性和曲线 $y = \ln(x^2 + 1)$ 的凹凸性, 并求函数 $y = \ln(x^2 + 1)$ 的极值和曲线 $y = \ln(x^2 + 1)$ 的拐点。
- 二、(8分) 设函数 y = f(x) 与 y = g(x) 互为反函数, f(x) 可导,且 $f'(x) \neq 0$, f(a) = 3a, $F(x) = f[\frac{1}{a}g^2(4x a)], 求 F'(a).$
- 三、(10 分) 设函数 $f(x) = \begin{cases} ax^2 + b\mathbf{t} & \text{an } x + c & x \leq 0 \\ \ln(1+x) & x > 0 \end{cases}$, 试问 a,b,c 为何值时, f(x) 在 x = 0 处一

阶导数连续。但二阶导数不存在。

到、(12 分) 设函数
$$f(x) = \begin{cases} \sqrt{1-x^2} + x \cos^5 x & -1 \le x \le 1 \\ \frac{\arctan x}{x^2} & x > 1 \end{cases}$$
 , 求积分: $\int_{-1}^{+\infty} f(x) \mathrm{d}x$

- 五、 $(12 \ f)$ 已知一容器的侧面是由曲线 $L: x^2 y^2 = 1$ $(-1 \le y \le 1)$ (单位: m),绕着 oy 轴旋转而成,容器中装有其一半容量的水若以每分钟 $\frac{\pi}{3}$ 的速度将水从容器口处抽出,问:
 - 1、需要多少分钟才能抽完?
 - 2、需要做多少功?
- 六、(10 分) 求曲线 $y = \sqrt{x}$ 的一条切线,使得该曲线与切线 l 及直线 x = 0 和 x = 2 所围成的图形绕 x 轴旋转的旋转体的体积为最小。
- 七、 $(6 \, f)$ 设 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导,且 $f(a) = f(b) \ge 0$,又有 f(c) < 0 (a < c < b). 试证:在 (a,b) 内至少存在两点 ξ_1 , ξ_2 使 $f''(\xi_1) > 0$, $f''(\xi_2) > 0$.

武汉大学数学与统计学院

2010-2011 第一学期《高等数学 A1》期末考试试题参考答案

一、(42分)试解下列各题:

1、解: 原极限=
$$e^{\frac{\ln \ln \frac{\ln(e^z-1)}{2}}{\ln z}}=e^{\frac{\ln \frac{e^z}{2}-(-\frac{1}{z^2})}{\frac{1}{z}}}=e^{\frac{\ln \frac{n}{z}}{z}}=e^{-1}$$
或原极限= $e^{\frac{\ln \frac{\ln \frac{1}{z}}{z}}{\ln z}}=e^{-1}$

2、解: 齐次方程y'''-y''+2y'-2y=0的特征方程为 $\lambda^3-\lambda^2+2\lambda-2=(\lambda-1)(\lambda^2+2)=0$,它 有复数根为: $\lambda=\pm\sqrt{2}i$,实特征根为: $\lambda=1$,故原方程的通解为:

$$y = C_1 e^x + C_2 \cos \sqrt{2}x + C_3 \sin \sqrt{2}x$$

3、解: 由
$$f(x) = \frac{x(x-1)\sqrt{1+x^2}}{(x+1)(x-1)|x|}$$
 知, $x=0; x=1; x=-1$ 是间断点,

又
$$\lim_{x \to 0^{-}} f(x) = \frac{x(x-1)\sqrt{1+x^2}}{(x+1)(x-1)|x|} = -1$$
 $\lim_{x \to 0^{+}} f(x) = \frac{x(x-1)\sqrt{1+x^2}}{(x+1)(x-1)|x|} = 1$ 所以 $x = 0$ 是

跳跃间断点;
$$\lim_{x\to 1} f(x) = \frac{x(x-1)\sqrt{1+x^2}}{(x+1)(x-1)|x|} = \frac{\sqrt{2}}{2}$$
 所以 $x=1$ 是可去间断点;

4.
$$\mathbb{M}$$
: $\text{th } a = \lim_{x \to \infty} \frac{f(x)}{x} = 1$, $b = \lim_{x \to \infty} [f(x) - ax] = \lim_{x \to \infty} [\frac{x^2 - 5}{x - 3} - x] = \lim_{x \to \infty} \frac{x^2 - 5 - x^2 + 3x}{x - 3} = 3$

故有斜渐近线: y = x + 3, 又 $\lim_{x \to 3^+} f(x) = +\infty$, $\lim_{x \to 3^-} f(x) = -\infty$, 所以 x = 3 为垂直渐近线.

而 $\lim f(x) = \infty$,所以没有水平渐近线。

定义域为
$$(-\infty, +\infty)$$
 $y' = \frac{2x}{x^2 + 1}, \quad y'' = \frac{2(1 - x^2)}{(x^2 + 1)^2}$

由
$$y'=0$$
 得驻点 $x=0$. 由 $y''=0$ 得 $x_1=1$ 和 $x_2=-1$

\boldsymbol{x}	$(-\infty,0)$	0	$(0,+\infty)$
 y'	1 / · · · · · · · · · · · · · · · · · ·	0	+
у	``	0 极小值	7

\boldsymbol{x}	$(-\infty, -1)$	-1	(-1,1)	1	$(1,+\infty)$
y''	<u>-</u>	0	+	0	
\overline{y}	\cap	ln 2	U	ln 2	

由上表可以看出,单调增区间为 $(0,+\infty)$,单调减区间为 $(-\infty,0)$,凹区间为(-1,1),凸区 间有两个: $(-\infty, -1)$ 和 $(-1, +\infty)$, 极小值为 0, 拐点有两个: $(-1, \ln 2)$ 和 $(1, \ln 2)$

二、(8分) 解:
$$F'(x) = f'[\frac{1}{a}g^2(4x-a)]\frac{8}{a}g(4x-a)g'(4x-a)$$
,故

$$F'(a) = f'\left[\frac{1}{a}g^2(3a)\right] \frac{8}{a}g(3a)g'(3a) = f'(a)\frac{8}{a}g(3a)g'(3a) = \frac{8}{a}g(3a) = 8$$

三、(10分)解:因为一阶导数连续,故 $f(0-0) = f(0+0) \Rightarrow f(0) = c = 0$

$$f_{-}'(0) = \lim_{x \to 0^{-}} \frac{ax^{2} + b \tan x - 0}{x} = b$$
 $f_{+}'(0) = \lim_{x \to 0^{-}} \frac{\ln(x+1) - 0}{x} = 1$

所以有: b=1 故有 $f'(x) = \begin{cases} 1 & x = 0 \\ \frac{1}{1+x} & x > 0 \end{cases}$ $f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \begin{cases} \lim_{x \to 0^{+}} \frac{2ax + \sec^{2} x - 1}{x} = 2a \\ \frac{1}{1+x} - 1 \\ \lim_{x \to 0^{+}} \frac{-x}{x} = \lim_{x \to 0^{+}} \frac{-x}{x(1+x)} = -1 \end{cases}$ 四、(12分) 解: $\int_{-1}^{+\infty} f(x)dx = \int_{-1}^{1} (\sqrt{1-x^2} + x\cos^5 x)dx + \int_{-2}^{+\infty} \frac{\arctan x}{x^2} dx$ $=2\int_{0}^{1}\sqrt{1-x^{2}}dx-\int_{0}^{+\infty}\arctan xd(\frac{1}{x})$ $\int_{1}^{1} \sqrt{1 - x^{2}} dx \frac{x = \sin t}{1 - x^{2}} \int_{1}^{\frac{\pi}{2}} \cos^{2} t dt = \int_{1}^{\frac{\pi}{2}} \frac{1 + \cos 2t}{2} dt = \frac{\pi}{4}$ $\int_{-\infty}^{+\infty} \frac{\arctan x}{x} dx = -\int_{-\infty}^{+\infty} \arctan x d\left(\frac{1}{x}\right) = \frac{\arctan x}{x} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{1}{x} \frac{1}{1+x^{2}} dx$ $=\frac{\pi}{4}+\int_{1}^{+\infty}(\frac{1}{x}-\frac{x}{1+x^2})dx=\frac{\pi}{4}+\frac{1}{2}\ln\frac{x^2}{1+x^2}\Big|_{1}^{+\infty}=\frac{\pi}{4}+\frac{1}{2}\ln 2$ 故 $\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{1} (\sqrt{1-x^2} + x\cos^5 x)dx + \int_{-\infty}^{+\infty} \frac{\arctan x}{x^2} dx = \frac{3\pi}{4} + \frac{1}{2}\ln 2$ 五、(12分)解: 1、 $V = \pi \int_{1}^{0} (1+y^2) dy = \frac{4\pi}{3} \Rightarrow t = 4$ 2、 $W = \pi g \int_{1}^{0} (1+y^2) (1-y) dy = \frac{25}{12} \pi g$ 六、(10分)解:设切点坐标为 $\left(t, \sqrt{t}\right)$,由 $y=\frac{1}{2\sqrt{t}}$,可知曲线 $y=\sqrt{x}$ 在 $\left(t, \sqrt{t}\right)$ 处的切线方程 为 $y - \sqrt{t} = \frac{1}{2\sqrt{t}}(x-t)$,或 $y = \frac{1}{2\sqrt{t}}(x+t)$. 因此所求旋转体的体积为 $V = \pi \int_{1}^{2} \left\{ \left[\frac{1}{2\sqrt{t}} (x+t) \right]^{2} - (\sqrt{x})^{2} \right\} dx = \frac{\pi}{4} \left(\frac{8}{3t} - 4 + 2t \right) \text{ fig. } \frac{dV}{dt} = \frac{\pi}{4} \left(-\frac{8}{3t^{2}} + 2 \right) = 0. \text{ }$ 驻点 $t = \pm \frac{2}{\sqrt{3}}$, 舍去 $t = -\frac{2}{\sqrt{3}}$. 由于 $\frac{d^2V}{dt^2}\Big|_{t=\frac{2}{5}} = \frac{\pi}{4} \cdot \frac{16}{3t^2}\Big|_{t=\frac{2}{5}} > 0$, 因而函数 V 在 $t = \frac{2}{\sqrt{3}}$ 处达 到极小值,而且也是最小值. 因此所求切线方程为 $y = \frac{1}{24E} \times \frac{1}{24E} \times$ 七、 $(6 \, f)$ 证明 由 $f(a) = f(b) \geq 0$,f(c) < 0,根据零点值定理知, 至少存在一点 $\eta \in (a,c)$,使得 $f(\eta_1) = 0$,至少存在一点 $\eta_2 \in (c,b)$,使得 $f(\eta_2) = 0$,再由罗尔定理知,至少存在一点 $\eta \in (\eta_1,\eta_2)$ 使 得 $f'(\eta)=0$,又在 $[\eta_1,c]$ 与 $[c,\eta_2]$ 上,由拉格朗日中值定理知,至少存在一点 $\varsigma_1\in(\eta_1,c)$,使得 $f'(\varsigma_1) = \frac{f(c) - f(\eta_1)}{c - \eta} < 0$,由拉格朗日中值定理知,至少存在一点 $\varsigma_2 \in (c, \eta_2)$,使得 $f'(\varsigma_2) = \frac{f(\eta_2) - f(c)}{\eta_1 - c} > 0$,再在区间 $[\varsigma_1, \eta]$ ($[\eta, \varsigma_1]$)与 $[\eta, \varsigma_2]$ ($[\varsigma_2, \eta]$)上,由拉格朗日中值定理知,至 少存在一点 $\xi_1 \in (\varsigma_1, \eta)$, 使得 $f''(\xi_1) = \frac{f'(\eta) - f'(\varsigma_1)}{n - c} > 0$, 由拉格朗日中值定理知, 至少存在一点 $\xi_2 \in (\eta, \xi_2)$, 使 得 $f''(\xi_2) = \frac{f'(\xi_2) - f'(\eta)}{\xi_2 - \eta} > 0$, 故 在 (a,b) 内 至 少 存 在 两 点 ξ_1 , ξ_2 使 $f''(\xi_1) > 0, \ f''(\xi_2) > 0$ iE(52): $f(u) - f(a) = f'(y_1)(c-a) < 0$: $f'(y_1) < 0$ (acy, < c)

 $f(b) - f(c) = f'(\eta_2)(b-c) > 0$, : $f'(\eta_2) > 0$ ($C < \eta_2 < b$)
: $\exists \eta \in (\eta_1, \eta_2)$, 後得 $f'(\eta) = 0$.: $f'(\eta_1) = f'(\eta_1) = f'(\eta_1) > 0$.
: $f'(\eta_1) > 0$, $f'(\eta_2) - f'(\eta) = f'(\eta_2) > 0$.
: $f'(\eta_1) > 0$, : $f'(\eta_2) > 0$.