Fiches de révision

September 2025

Contents

1	Fon	ctions Réelles
	1.1	f(E):
	1.2	Parité:
	1.3	Périodicité:
	1.4	Fonction Majorée, Minorée, Bornée
	1.5	Fonction Croissante/Décroissante/Monotone:
	1.6	Opération usuelles sur les fonctions:
	1.7	Fonctions Réciproques:
2	Con	ntinuité et Dérivation
	2.1	Continuité:
	2.2	Nombre dérivée:
	2.3	Fonction dérivée et Opérations:
	2.4	Equation de la droite de la tangente:
	2.5	Dérivée et composition:
	2.6	Dérivée d'une réciproque:
	2.7	Sens de variation d'une fonction:
	2.8	Fonction de classe C^n :
	2.9	Théorème de la bijection réciproque:
		Dérivées partielles:
3	Fon	ction Usuelles
	3.1	$f: x \mapsto x^n \dots \dots$
	3.2	$f: x \mapsto \frac{1}{x^n} \dots \dots$
	3.3	$f: x \mapsto \sqrt[x]{x}$
	3.4	$f: x \mapsto log \ et \ exp \ \dots \dots \dots \dots \dots \dots \dots \dots$
	3.5	Croissances Comparrées:
	3.6	Exponentielle de base a

1 Fonctions Réelles

1.1 f(E):

Pour un ensemble: $E \subset \mathbb{R}$ et une fonction f définie sur E donnés, l'image de E par f, notée: f(E) on a:

$$f(E) = \{ y \in \mathbb{R}, \exists x \in E, y = f(x) \} = \{ f(x), x \in E \}$$

1.2 Parité:

• f est paire si:

$$\forall x \in R, f(-x) = f(x)$$

On observe une symétrie axiale (Oy)

• f est impare si:

$$\forall x \in \mathbb{R}, f(-x) = -f(x)$$

On observe une symétrie centrale

1.3 Périodicité:

Soit $E \subset \mathbb{R}$ et T > 0. On dit que est **périodique de période T**, On a:

$$\forall x \in \mathbb{R}, \ f(x+T) \in E, \ f(x+T) = f(T)$$

1.4 Fonction Majorée, Minorée, Bornée

• f est majorée si:

$$\exists M \in \mathbb{R}, \ \forall x \in \mathbb{R}, f(x) \leq M$$

• f est minorée si:

$$\exists M \in \mathbb{R}, \ \forall x \in \mathbb{R}, f(x) \ge M$$

• f est bornée si: Majorée et Minorée Ou soit $f:I\to\mathbb{R}$ On a:

f est bornée
$$\Leftrightarrow \exists m \in \mathbb{R}_+, |f(x)| \leq m, \forall x \in I$$

1.5 Fonction Croissante/Décroissante/Monotone:

• f est **croissante** lorsque:

$$\forall (x,y) \in \mathbb{R}^2, \quad x \le y, \quad f(x) \le f(y)$$

• f est décroissante lorsque:

$$\forall (x,y) \in \mathbb{R}^2, \quad x \le y, \quad f(x) \ge f(y)$$

2

• f est monotone si elle est ou bien croissante ou bien décroissante.

1.6 Opération usuelles sur les fonctions:

- $(f+g): x \to f(x) + g(x)$
- $(\lambda f) = x \to \lambda f(x)$
- $(f \times g) : x \to f(x)g(x)$
- Si f ne annule pas sur E, $(\frac{1}{f}): x \to \frac{1}{f(x)}$

1.7 Fonctions Réciproques:

Soit $f: E \to F$ une fonction. On dit f est **bijective** lorsque tout élément de F possède un **unique antécedent** dans E par f. On dit que f est bijéctive.

La fonction identité vaut:

$$id_E: E \to E$$

 $x \to x$

Soit $f: E \to F$ est une bijection ssi il existe $g: F \to E$ telle que:

$$f \circ g = id_E$$
 et $g \circ f = id_E$

Alors on dit queg est la **fonction réciproque** de f, on la note:

$$g(x) = f^{-1}(x)$$

Interprétation graphique de la réciproque: Représente une symétrie de la fonction par rapport à y = x

2 Continuité et Dérivation

2.1 Continuité:

2.2 Nombre dérivée:

On appelle taux d'accroissement:

$$\frac{f(x+h) - f(x)}{h}$$

On dit alors que la fonction f est dérivable en un point x.

2.3 Fonction dérivée et Opérations:

La dérivée complète d'une fonction s'obtient avec:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

On a également les opération suivantes:

- $(\alpha f + \beta g)' = \alpha f' + \beta g'$
- (fg)' = f'g + g'f
- $\bullet \ (\frac{f}{g})' = \frac{f'g g'f}{g^2}$

2.4 Equation de la droite de la tangente:

La droite de la tangente au point a admet pour équation:

$$y = f'(a)(x - a) + f(a)$$

2.5 Dérivée et composition:

$$(f \circ u)' = f'(u(x)) * u'$$

2.6 Dérivée d'une réciproque:

Si f est dérivable en $x \in I$ et si $f'(x) \neq 0$, alors f^{-1} est dérivable en y = f(x) et on a:

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

2.7 Sens de variation d'une fonction:

Si $f: x \to I$ est dérivable sur $E \subset I$, on a:

- Si f'(x) < 0 alors f est décroissante.
- Si f'(x) > 0 alors f est croissante.
- Si f'(x) = 0 alors f est constante.

2.8 Fonction de classe C^n :

 \bullet Notion de dérivées n-èmes: Une fonction pouvant, sur I, être dérivée un nombre n de fois se note:

$$\forall n \in \mathbb{N}, f^{(n)}$$

• Classe d'une fonction: Une fonction définie sur un intervalle ouvert I est dite de classe $C^{(n)}$ si elle y est dérivable n fois.

Pour deux fonctions f(x) et g(x) dérivable sur I et de classe $C^{(n)}$ on a les règles suivantes:

- pour: $\lambda \in \mathbb{R}$, $\lambda f(x) + g(x) \to C^{(n)}$
- pour: $f(x)g(x) \to C^{(n)} \implies \frac{f(x)}{g(x)} \to C^{(n)}$

2.9 Théorème de la bijection réciproque:

Soit I un intervalle de \mathbb{R} , I une partie de \mathbb{R} et $f: I \to J$:

- Contine sur I,
- Strictement Monotone sur I

Alors on dit que f induit une bijéction: soit:

$$g: I \to f(I)$$

 $x \to f(x)$

2.10 Dérivées partielles:

On parle de dérivées partielles lorsque nous sommens en présence de fonction à 2 variables ou plus. On définie les **dérivées partielles** de f en (x, y) (lorsqu'elles existent)par:

$$\frac{\partial f}{\partial x}(x,y)$$

En partique, on decomposera l'analyse en autant de partie qu'il y a de variable. On trouvera la dérivée de la fonction pour chaque variable (les autres seront alors considérées comme des constantes.)

3 Fonction Usuelles

3.1
$$f: x \mapsto x^n$$

- $\bullet\,$ définie sur $\mathbb R$
- $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, n = 2k, f(-x) = f(x)$
- $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, n = 2k + 1, f(-x) = -f(x)$
- Continue et Dérivable sur \mathbb{R}

3.2
$$f: x \mapsto \frac{1}{x^n}$$

4

- définie sur \mathbb{R}^*
- Conserve les mêmes propriété de parité que x^n
- Continue et Dérivable sur \mathbb{R}^*

3.3
$$f: x \mapsto \sqrt{x}$$

- définie et continue sur \mathbb{R}_+
- Strictement croissante.
- Continue et Dérivable sur \mathbb{R}_+^*

3.4
$$f: x \mapsto log \ \mathbf{et} \ exp$$

- exp(x) est la seule foction définie et dérivable sur \mathbb{R}^* dont exp(0) = 1 et dont la dérivée est égale à elle même.
- La fonction ln(x) est la fonction réciproque de exp(x), définie et dérivable sur \mathbb{R}_+^* .
- Elles sont **strictement** croissante.

On a alors les propriétés suivante: $\forall a, b \in \mathbb{R}$ et $n \in N$:

- $exp(a + b) = exp(a) \times exp(b)$
- $exp(a-b) = \frac{exp(a)}{exp(b)}$
- $exp(n \times a) = exp(a)^n$

 $\forall a, b \in \mathbb{R} \text{ et } n \in N$:

- $ln(a \times b) = ln(a) \times ln(b)$
- $ln(\frac{a}{b}) = ln(a) ln(b)$
- $ln(x^n) = n \times ln(a)$

3.5 Croissances Comparrées:

• Pour ln(x):

$$\lim_{x \to +\infty} \frac{ln(x)}{x^n} = 0$$
 et $\lim_{x \to 0^+} x^n ln(x) = 0$

• Pour exp(x):

$$\lim_{x \to +\infty} \frac{exp(x)}{x^n} = +\infty$$
 et $\lim_{x \to -\infty} x^n exp(x) = 0$

3.6 Exponentielle de base a

Soit a > 0 et $b \in \mathbb{R}$, on définit a^b , on lit "a exposant b", le nombre:

$$a^b = \exp(b \times ln(a))$$