

Scalable Data Science

Lecture 14c: Fast LSH + Sparse Random Projection

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Johnson Lindenstrauss Lemma [JL84]

 $\epsilon>0$, $k\geq \frac{c}{\epsilon^2}\log(n)$. There exists a linear mapping A such that whp, for all (i,j)

Time taken for projection

- Projection matrix out of Gaussian or iid $\pm 1 = O(kd)$
 - $k = \Omega\left(\frac{1}{\epsilon^2}\right)$
- FJLT : projection matrix is $\frac{1}{\sqrt{d}}PHD^{-1}$
 - H is the $d \times d$ Hadamard matrix
 - -D is a random ± 1 diagonal matrix
 - P is a sparse Gaussian matrix
 - Time = $O(d \log d + k \log(nd))$

Densification claim

$$x \in \Re^d$$
, $|x|_2 = 1$

Claim:
$$\max_{i} |(HDx)_{i}| \le O\left(\frac{\log(nd)}{d}\right)^{1/2}$$

Application of Chernoff style tail inequality per coordinate and union bound

Projecting a dense vector

$$y = HDx$$
, $\max_{i} |y_i| \approx O(\sqrt{\log(nd)/d})$

$$P = \begin{cases} 0, w. p. \ 1 - q \\ N\left(0, \frac{1}{\sqrt{q}}\right), w. p. \ q \end{cases}, \ P \in \Re^{k \times d}, \ k = O\left(\frac{1}{\epsilon^2} \log\left(\frac{1}{\delta}\right)\right)$$

 $z = \frac{1}{\sqrt{d}} PHDx$ is the final projected vector

Fast JL Transform

AC09]

If
$$q = O(|x|_{\infty}^2) = O(\frac{\log(nd)}{d})$$
, $\frac{1}{\sqrt{d}}PHD$ satisfies JL property

Calculating y = PHDx takes time $O(d \log d + k \log(nd))$, potentially much faster than original Gaussian construction

Locality Sensitive Hashing

Given input data, radius r, approx factor c and confident δ

Output: if there is any point at distance $\leq r$ then w.p. $1 - \delta$ return one at distance $\leq cr$

$$h_i(x) = \left\lfloor \frac{x \cdot v_i + b_i}{w} \right\rfloor$$

Picture courtesy Slaney et al.

Time taken

- Total query time = time to hash + time to check all candidates
 - Calculating k-hash indices takes time O(kd)
 - Calculating indices for L buckets takes time O(kdL)

Can we reduce query time?

Creating hash indices

- Looking at LSH as random projection + quantization
 - $-A \in \mathbb{R}^{k \times d}$ is a Gaussian JL matrix, $b \in \mathbb{R}^k$
 - We first project and then bucketize
 - calculate $\left\lfloor \frac{Ax+b}{w} \right\rfloor$, k-index key calculated at once
- Time taken by matrix-vector multiplication = O(kd) per hash table

Collision Probability

• $p(u) = \Pr[h_i(q) = h_i(q)]$ when |p - q| = u

•
$$p(u) = \int_{0}^{W} \frac{1}{u} f(t_u) \left(1 - \frac{t}{u}\right) dt$$
, $f(v) = pdf$ of $|N(o_1)|$

This is decreasing with increasing u

ACHash [DKS11]

When calculating a k-tuple hash bucket index

$$-\left|\frac{Ax+b}{w}\right|$$
, use $A = PHD$

$$-q \approx O\left(\frac{\log(d)}{d}\right)$$

- Projection time = $O(d \log d + kL \log^2 d)$

ACHash

 $p_{AC}(u) = \text{probability that a k-tuple hash bucket has same value}$ for two points at distance u

We can show that

$$-(k+1)\delta + p^k((1+\epsilon)u) \le p_{AC}(u) \le p^k((1-\epsilon)u) + (k+1)\delta.$$

i.e. collision prob does not change much

DHHash

We can make the projection faster

 $D = \text{random diagonal matrix of } \pm 1$

 $G = \text{random diagonal matrix}, G_{ii} \sim N(0, 1)$

M = random permutation matrix

Hash value calculated as $\left[\frac{HGMHDx + b}{w}\right]$

DHHash

- The above creates d bits
- Sample kL indices and create L hash bucket ids, each of size k

- Total calculation time for all L bucket-ids = $O(d \log d + kL)$
- Also performs nicely in practice

Experiments: faster query time with more or less same recall

(d) Recall, LSH query time, and LSH computation time for P53.

FJLT is fast, but...

- Sparse vectors are prevalent in large scale ML
 - e.g. document representations
- What happens when a sparse vector is
 - multiplied by a dense Gaussian matrix
 - multiplied by PHD of FJLT

Effect on sparsity

- Sparse vectors are prevalent in large scale ML
 - e.g. document representations
- What happens when a sparse vector is
 - multiplied by a dense Gaussian matrix
 - multiplied by PHD of FJLT
- Both result in dense vector!
 - much more expensive in terms of storage and computation

Preserving sparsity

- Can we design a linear transformation $A \in \Re^{k \times d}$ such that
 - $-|Ax| \approx |x|$ w.h.p. for any fixed $x \in \Re^d$
 - $-nnz(x) \approx nnz(Ax)$
- Existing iid constructions do not satisfy this
 - As we saw before, we cannot make the projection matrix very sparse if the elements are chosen independently

Hashing as projection

Input $x \in \mathbb{R}^d$ Target $y \in \mathbb{R}^k$

Hash function $h: [d] \rightarrow [k]$

Sign hash: $s: [h] \rightarrow \{-1, +1\}$

$$y[j] = \sum_{i:h(i)=j} s(i) x_i$$

Hashing as projection

Sparsity

- nnz(y) = nnz(x)
- Norm preservation whp does not happen with only one hash function
 - Repeat the construction

Sparse random projection matrix

For every column, choose a fixed number, ℓ , positions For each position chosen, fill up with uar ± 1 random variable

Formalization

 $A \in \Re^{k \times d}$

[DKS10] Choose ℓ positions from each column with replacement [KN11] Choose ℓ positions without replacement

For each nonzero position
$$A_{ij} = \begin{cases} +1 \ w. \ p. \frac{1}{2} \\ -1 \ w. \ p. \frac{1}{2} \end{cases}$$

Guarantee

Claim: For
$$\ell = \tilde{O}\left(\frac{1}{\epsilon}\right)$$
, $k = O\left(\frac{1}{\epsilon^2}\log\left(\frac{1}{\delta}\right)\right)$,
$$\Pr[(1 - \epsilon) \le |Ax| \le (1 + \epsilon)] \ge 1 - \delta$$

So a vector that initially has nnz(x) nonzeros, now will have at most $\frac{nnz(x)}{\epsilon}$ nonzeros

References:

- Primary references for this lecture
 - Fast Johnson Lindenstrauss Transform, Ailon and Chazelle, SIAM J Computing 2009.
 - Sparse Johnson Lindenstrauss Transformation, Dasgupta, Kumar, Sarlos, STOC 2010.
 - Fast Locality Sensitive Hashing, Dasgupta, Kumar, Sarlos, KDD 2011.

Summary

In this lecture, we saw

- An application of FJLT in improving the query time of LSH
- A different construction for random projection that, in addition to preserving length, preserves sparsity better than original

Thank You!!

