Module "théorie des bases de connaissances" Contrôle n°2

Durée: 50 mn

Document autorisé: article à Reasoning Web 2014

Vous justifierez toutes vos réponses.

Exercice 1

Soit $R: p(x,y) \to \exists z \ p(y,z) \land p(z,y)$ Soit F = p(a,b), où a et b sont des constantes.

- 1. On considère *l'oblivious chase* sur $K=(F,\{R\})$. Quelle est la base de faits obtenue à l'issue de l'étape 2 de largeur? [Donnez-la sous forme logique ou graphique]. L'oblivious chase s'arrête-t-il sur K?
- 2. Le restricted chase s'arrête-t-il sur K?
- 3. Quel le plus petit modèle de K?
- 4. Ce modèle est-il universel?
- 5. K admet-elle un modèle universel fini?

Rappels. On rappelle qu'étant donnés une règle $R: B \to H$ et un homomorphisme h de B dans F, l'oblivious chase effectue l'application correspondante si h n'a pas déjà été utilisé pour appliquer R, tandis que le restricted chase effectue l'application correspondante si h ne peut être étendu à un homomorphisme de $(B \cup H)$ dans F.

Exercice 2

Soit l'ensemble de règles $\mathcal{R} = \{R_1, R_2\}$ avec :

```
R_1: r(x_1, y_1) \wedge t(y_1, z_1) \to \exists u_1 \ s(y_1, u_1)

R_2: s(x_2, y_2) \to r(x_2, y_2).
```

- 1. L'ensemble de règles \mathcal{R} est-il weakly-acyclic? Dessinez le graphe de positions (graph of position dependencies) de \mathcal{R} et justifiez votre réponse en vous appuyant sur ce graphe.
- 2. Soit la requête $q = \exists u \exists v \ s(u, v)$.
 - (a) Quel est l'ensemble \mathcal{Q} de toutes les réécritures de q avec \mathcal{R} ? On considère ici toutes les réécritures (non isomorphes) de q qui peuvent être obtenues par une séquence de réécritures directes basées sur des unificateurs par pièces. Indiquez comment vous calculez ces réécritures.
 - (b) Donnez une couverture minimale Q^c de cet ensemble.
 - (c) Pensez-vous que \mathcal{R} soit un ensemble à unification finie (finite unification set)? Argumentez-votre réponse.

Exercice 3

Weak acyclicity et acyclic GRD assurent qu'un ensemble de règles est à expansion finie (finite expansion set). Est-il possible qu'un ensemble de règles soit à expansion finie sans satisfaire aucune des 2 propriétés weak acyclicity et aGRD?