

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA CIVIL

MINICURSO GMSH

GABRIELA PENNA BIANCHIN MIGUEL ANGEL AGUIRRE

> PORTO ALEGRE NOVEMBRO DE 2020

1. ASPECTOS GERAIS

O software **livre** Gmsh, distribuído pela *GNU General Public License* (*GPL*), foi desenvolvido em 1997 por C. Geuzaine e J-F. Remacle. Cujo, download é realizado pelo site: **gmsh.info**

Trata-se de um **gerador de malha de elementos finitos bi e tridimensional**, com <u>código aberto</u>, cujo objetivo principal é fornecer uma ferramenta de geração de malha *rápida*, *leve* (requer pouco espaço para instalação), com linguagem *paramétrica* e de *fácil manipulação*.

Documentation

- General presentation with high-level overview of Gmsh and recent developments
- Gmsh reference manual (stable release) (also available in PDF and in plain text)
- Gmsh reference manual (development version) (also available in PDF and in plain text)
- Screencasts showing how to use the graphical user interface
- Gitlab development site with a wiki, time line of changes and the bug tracking database

Whole site

Changelog

Please report all issues on https://gitlab.onelab.info/gmsh/gmsh/issues.

1. ASPECTOS GERAIS ▲ Gmsh - C:\Users\Usuário\AppData\Roaming/untitled.geo Menus < Window Help **INTERFACE** Modules Geometry + Mesh DO GMSH: + Solver 0.667 0.333 Eixo de coordenadas Escala 1:1:1 0.333 0.667 Indica os modelos Done reading 'C:\Users\Usuario\AppData\Roaming/untitled.geo.opt gerados no processo 😽 🖟 🖟 🖟 Done reading 'C:\Users\Usuário\AppData\Roaming/untitled.geo.opt' de desenvolvimento Caixa de informações Desmarcado indica que o mouse possui Através da interface e dos do modelo permissão para selecionar elementos da modules é possível construir Seleciona os eixos geometria (nós, linhas, superfícies e volumes).

geometrias dos problemas e malhas de elementos finitos.

de coordenadas

visível no plano 2D

gabriela_bianchin@hotmail.com

1. ASPECTOS GERAIS

MENU TOOLS

Window Help File Tools Configurações relativas à malha e geometria (cores, Options Ctrl+Shift+N visibilidade, algoritmos de otimização...); aspectos do software; Plugins Ctrl+Shift+U Aspectos relativos a visibilidade da geometria dos modelos ± <u>V</u>isibility Ctrl+Shift+V (nós, linhas, superfícies, volumes) Clipping Ctrl+Shift+C → Mostram os vetores e coordenadas dos nós Ctrl+Shift+M. Manipulator Ctrl+I Statistics Manipula o domínio computacional, movendo o desenho na Message Console Ctrl+L interface do software Mostra dados relativos à malha: quantidade de nós e elementos

Tools Window Help Modules New Window + Mesh Split Horizontally Solver Split Vertically Unsplit Ctrl+M Minimize Zoom Enter Full Screen Ctrl+F Attach/Detach Menu Ctrl+D Bring All to Front

MENU WINDOW

Divisões da tela para visualização em todas as dimensões

MENU HELP

2. ELABORAÇÃO DÉ GEOMETRIAS

Há **duas maneiras** de elaborar <u>geometrias</u>, a primeira através de arquivo com script *.geo*, escrito em linguagem paramétrica e carregado através do menu File e a segunda maneira através de comandos presentes no *module geometry* na interface do G*msh*.

obs: As duas maneiras podem ser utilizadas conjuntamente a fim de facilitar a geração.

```
exemplo1 - Bloco de Notas
Arquivo Editar Formatar Exibir Ajuda
                                                                                                                     1ª Arquivo de entrada .geo
                                          → Formato de exportação da malha
Mesh.MshFileVersion = 2.2;
                                                                                                       Exemplo script bidimensional com elementos triangulares
/dimensoes em m
                    //dimensão x do ponto 1
x1=0:
                    //dimensão y do ponto 1
v1=0:
                                                                Dimensões que os pontos do objeto de estudo estarão localizados
                    //dimensão x do ponto 2
v2=0.5:
                    //dimensão y do ponto 2
gridsize=1;
/Montagem da geometria do objeto de estudo - VIGA
Point(1) = \{x1,y1,0,gridsize\};
Point(2) = \{x1,y2,0,gridsize\};
                                                   Pontos do problema {posição x; posição y; posição z; valor de tamanho de elementos}
Point(3) = \{x2,y2,0,gridsize\};
Point(4) = \{x2,y1,0,gridsize\};
                                                                           Linhas entre os pontos determinados anteriormente. O comando "Transfinite Line" indica
//Linhas que unem os pontos do objeto - VIGA
Line(1) = \{1,2\}; Transfinite Line\{1\} = 6 Using Progression 1;
                                                                           a quantidade de pontos que a linha será dividida para a formação da malha de elementos
Line(2) = \{2,3\}; Transfinite Line\{2\} = 51 Using Progression 1;
                                                                           finitos e "Progression" remete a uma progressão geométrica relativa ao
Line(3) = \{3,4\}; Transfinite Line\{3\} = 6 Using Progression 1;
                                                                           aumento/decréscimo do tamanho dos lados de elemento.
Line(4) = \{4,1\}; Transfinite Line\{4\} = 51 Using Progression 1;
//Superficie da viga
                                                                           obs: valor da progression 1 indica que a divisão será uniforme.
Curve Loop(1) = \{1, 2, 3, 4\};
                                                                           obs2: ao utilizar o comando "progression", o comando "gridsize" não é levado em consideração.
Plane Surface(1) = \{1\};
```

Comandos para definir a superfície entorno das linhas já determinadas

2. ELABORAÇÃO DE. GEQMETRIAS

2ª Comandos module geometry Exemplo script bidimensional com elementos triangulares

Geometry -- Add -- Point

Escreve as **coordenadas dos pontos** e o tamanho de elemento" *gridsize*" ligado ao ponto na última linha.

Para sair do comando digite "q".

Geometry -- Add -- Line

Seleciona dois pontos por vez;
Quando se utiliza o comando *Progression*, a ordem de seleção dos pontos para formar as linhas deve ser tal qual se inicia com o menor tamanho de elemento.

Para sair do comando digite "q".

2. ELABORAÇÃO DE GEQMETRIAS

2ª Comandos module geometry Exemplo script bidimensional com elementos triangulares

2. ELABORAÇÃO DE, GEOMETRIAS

MÉTODOS PARA TRANSFORMAR EM EXEMPLO TRIDIMENSIONAL

1. Comando Extrudar

Geometry -- Extrude -- Translate

- Determina o valor de extrusão para cada dimensão;
- Escolhe quantos layers deseja para elaboração da malha (valor 1 indica a mesma malha para toda a geometria e que ao longo da direção extrudada haverá apenas um elemento);
- Indica a entidade que se deseja extrudar (linha, superfície ou volume).

2. ELABORAÇÃO DE, GEOMETRIAS

MÉTODOS PARA TRANSFORMAR EM EXEMPLO TRIDIMENSIONAL

```
exemplo1 - Bloco de Notas
 Arquivo Editar Formatar Exibir Ajuda
Mesh.MshFileVersion = 2.2;
 //dimensoes em m
                        //dimensão x do ponto 1
                        //dimensão y do ponto 1
y1=0;
x2=5;
                        //dimensão x do ponto 2
y2=0.5;
                        //dimensão y do ponto 2
gridsize=1;
//Montagem da geometria do objeto de estudo - VIGA
Point(1) = \{x1, y1, 0, gridsize\};
Point(2) = \{x1,y2,0,gridsize\};
Point(3) = \{x2, y2, 0, gridsize\};
Point(4) = \{x2,y1,0,gridsize\};
//Linhas que unem os pontos do objeto - VIGA
Line(1) = \{1,2\}; Transfinite Line\{1\} = 6 Using Progression 1;
Line(2) = \{2,3\}; Transfinite Line\{2\} = 51 Using Progression 1;
Line(3) = \{3,4\}; Transfinite Line\{3\} = 6 Using Progression 1;
Line(4) = \{4,1\}; Transfinite Line\{4\} = 51 Using Progression 1;
//Superficie da viga
Curve Loop(1) = \{1, 2, 3, 4\};
Plane Surface(1) = \{1\};
Extrude {0, 0, 1} {
Surface{1}; Layers{1};
```

1. Comando Extrudar

Comando aplicado diretamente no script .geo

2. ELABORAÇÃO DE, GEOMETRIAS

MÉTODOS PARA TRANSFORMAR EM EXEMPLO TRIDIMENSIONAL

2. Comandos de geometria

Geometry -- Add-- Volume

Seleciona todas as superfícies determinadas e digita "e"; Para sair do comando pressione "q". Através da escrita semelhante a anterior, cuidando as coordenadas dos novos pontos.

Sequência de comandos para as duas maneiras de construção:

- .. Determinar os pontos
- 2. Fazer as linhas ligando os pontos
- Determinar as superfícies
- Determinar o volume:

3. GERAÇÃO DE MALHAS DE ELÉMENTOS FINITOS

A geração de malhas de elementos finitos ocorre automaticamente através dos **comandos na interface do Gmsh**.

Module -- Mesh -- 2D ou 3D

3. GERAÇÃO DE MALHAS DE ELEMENTOS FINITOS

Naturalmente o gmsh gera **elementos triangulares** com três nós, mas **elementos quadrangulares** podem ser obtidos através do comando "*Recombine Surface*"

3. GERAÇÃO DE MALHAS DE FINITOS

A exportação da malha gerada pode ser obtida através dos comandos:

Mesh -- save

File -- Export -- Escolhe a extensão -- salvar

O primeiro comando presente no *script.geo* (*Mesh.MshFileVersion* = *2.2;*) indica uma das extensões, que é a mais utilizada nos trabalhos desenvolvidos pelo PPGEC/UFRGS.

3. GERAÇÃO DE MALHAS DE ELEMENTOS

Através do comando *Mesh.MshFileVersion* = 2.2; é gerado um arquivo .msh, com as características da malha de elementos finitos, cujas informações referem-se a:

3. GERAÇÃO DE MALHAS DE EEEMENTOS FINITOS

```
611 4.799999999999756 0.3999999999999895 1
612 4.899999999999877 0.39999999999999 1
$EndNodes
$Elements
2952
1 15 2 0 1 1
2 15 2 0 2 2
3 15 2 0 3 3
4 15 2 0 4 4
5 15 2 0 5 5
6152066
7 15 2 0 10 7
               232 1 2 0 20 4 8
8 15 2 0 14 8
               233 2 2 0 1 1 9 114
               234 2 2 0 1 114 9 221
               235 2 2 0 1 114 221 113
                236 2 2 0 1 113 221 222
                237 2 2 0 1 113 222 112
               238 2 2 0 1 112 222 223
               239 2 2 0 1 112 223 111
```

Nome do elemento; entidade (15=points; 1=linhas; 2=elemento triangular; 4=elemento tetraedro); número máximo de entidades ao longo das linhas para formar os elementos (dois pontos); número mínimo de entidades ao longo das linhas (0 pontos); "nome da entidade" (ponto 1; linha 1; superfície 1; volume 1...); conectividades (nós-1; linhas-2; superfícies-3; volumes-4).

REFERÊNCIAS:

GEUZAINE, C.; REMACLE, J.-F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing acilities. **International Journal for Numerical Methods in Engineering** 79(11), pp. 1309-1331, 2009.

GEUZAINE, C.; REMACLE, J.-F. **Gmsh Reference Manual**. Copyright, 2020, 364 p. Disponível em: https://gmsh.info/doc/texinfo/gmsh.html. Acesso em: 04 de Nov. de 2020.

Download: http://gmsh.info/#Download

Manual de referência: http://gmsh.info/doc/texinfo/gmsh.html

OBRIGADO PELA ATENÇÃO!

LINKS: