UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

Laboratorio de Álgebra Lineal

Nombre del Alumno	Diego Joel Zuñiga Fragoso	Grupo	511
Fecha de la Práctica	11/01/2023	No Práctica	15
Nombre de la Práctica	Ecuación de un Plano que pasa por 3 puntos		
Unidad	Vectores en R ³		

OBJETIVO

 $\label{thm:constraints} Utilizar\ las\ operaciones\ entre\ de\ vectores,\ producto\ punto\ y\ producto\ cruz\ y\ los\ conceptos\ de\ ortogonalidad\ para\ obtener\ la\ ecuación\ de\ un\ plano\ en\ el\ espacio\ R^3$

EQUIPO Y MATERIALES

Programa computacional que permita grafica en 3D y resuelva operaciones con vectores Scientific WorkPlace

DESARROLLO

I. Obtener la ecuación del plano que pasa por 3 puntos.

Con los 3 puntos no colineales A(3,0,1), B(2,-1,6), C(1,2,-1) forma el triángulo ΔABC . Considera el plano que contiene al triángulo

1. Calcula los tres vectores que forman los lados del triángulo.

$$\mathbf{u} = \overrightarrow{AB} = (2,-1,6) - (3,0,1) = (2-3,-1,6-1) = (-1,-1,5)$$

$$\mathbf{v} = \overrightarrow{AC} = (1,2,-1) - (3,0,1) = (1-3,2,-1-1) = (-2,2,-2)$$

$$\mathbf{w} = \overrightarrow{BC} = (1,2,-1) - (2,-1,6) = (1-2,2+1,-1-6) = (-1,3,-7)$$

2. Calcula los tres vectores normales al plano.

$$\mathbf{n}_{1} = \mathbf{u} \times \mathbf{v} = \begin{bmatrix} i & j & k \\ -1 & -1 & 5 \\ -2 & 2 & -2 \end{bmatrix} = i(2 - 10) - j(2 + 10) + k(-2 - 2) = -8i - 12j - 4k = (-8, -15, -4)$$

$$\mathbf{n}_{2} = \mathbf{u} \times \mathbf{w} = \begin{vmatrix} i & j & k \\ -1 & -1 & 5 \\ -1 & 3 & -7 \end{vmatrix} = i(7 - 15) - j(7 + 5) + k(-3 - 1) = -8i - 12j - 4k = (-8, -12, -4)$$

$$\mathbf{n}_{3} = \mathbf{v} \times \mathbf{w} = \begin{bmatrix} i & j & k \\ -1 & -1 & 5 \\ -2 & 2 & -2 \end{bmatrix} = i(2-10) - j(2+10) + k(-2-2) = -8i - 12j - 4k = (-8, -12, -4)$$

¿son paralelos estos vectores? Si pues los 3 tienen la misma dirección y componente.

¿cómo puedes determinar esto? Por lo de que tienen la misma dirección y magnitud.

3. Determina la ecuación del plano que va del punto A(3,0,1) a un punto cualquiera P(x,y,z) que se encuentra en el plano.

$$\overrightarrow{AP}$$
 = (x,y,z) - (3,0,1) = (x-3, y, z-1)

$$\mathbf{n} \cdot \overrightarrow{AP} = (-8, -12, -4) \cdot (x-3, y, z-1) = -8(x-3)-12(y)-4(z-1) = -8x+24-12y-4z+4 = -8x-12y-4z+28$$

La ecuación del plano $\mathbf{n} \cdot \overrightarrow{AP} = 0$ es: -8x-12y-4z+28=0

4. Grafica la ecuación del plano obtenido utilizando la opción: Compute > Plot 3D > Implicit

- II. Obtención de las 3 rectas perpendiculares al plano con dirección $\mathbf{n} = (a, b, c)$ y que pasan por los puntos A, B y C
 - 1. Obtención de las rectas en forma paramétrica $(x_1 + ta, y_1 + tb, z_1 + tc)$

Recta que pasa por A(3,0,1) = (3-8t, -12t, 1-4t)

Recta que pasa por B(2,-1,6) = (2-8t, -1-12t, 6-4t)

Recta que pasa por C(1, 2, -1) = (1-8t, 2-12t, -1-4t)

2. Grafica las tres rectas obtenidas en el mismo sistema cartesiano donde graficaste el plano (Nota: Verifica que tengas seña lada la opción de **Igual escala?**

¿son paralelas las rectas entre sí?

Por lo que se ve en las graficas

¿son perpendiculares al plano?

Sí, son perpendiculares al plano

Ejercicios: Determina la ecuación del plano que contienen los puntos A, B y C

1. A(1,0,2), B(-2,-1,0), C(0,0,0)

$$PQ \cdot n = 0$$

$$u = AB = (2, -1, -3) - (1, 1, 1) = (2 - 1, -1 - 1, -3 - 1) = (1 -2 -4)$$

$$v = BC = (4, 0, 4) - (2, -1, -3) = (4 - 2, 1, 4 + 3) = (2 | 1 | 7)$$

$$n = u \times v = \begin{vmatrix} i & j & k \\ 1 & -2 & -4 \\ 2 & 1 & 7 \end{vmatrix} = i(-14 + 4) - j(7 + 8) + k(1 + 4) = -10i - 15j + 5k = (-1, -15, 5)$$

$$PQ = (x,y,z) - (1,1,1) = (x-1,y-1,z-1)$$

$$PQ \cdot n = (x-1,y-1,z-1) \cdot (10,-15.5) = -10(x-1) - 15(y-1) + 5(z-1) = -10x + 10 - 15y + 5z + 20 = 0$$

3.
$$A(-1,0,0)$$
, $B(0,5,0)$, $C(0,0,-4)$

$$PQ \cdot n = 0$$

$$u = AB = (0,5,0) - (-1,0,0) = (1 | 5 | 0)$$

$$v = BC = (0,0,-4) - (0,5,0) = (0 | -5 | -4)$$

$$n = u \times v = \begin{vmatrix} i & j & k \\ 1 & 5 & 0 \\ 0 & -5 & -4 \end{vmatrix} = i(-20) - j(-4) + k(-5) = -20i + 4j - 5k = (-20,4,-5)$$

$$PQ = (x,y,z) - (0,5,0) = (x,y-5,z)$$

$$PQ \cdot n = (x,y-5,z) \cdot (-20,4,-5) = -20x + 4(y-5) - 5z = -20x + 4y - 5z - 20 = 0$$

CONCLUSIONES

 $PQ \cdot n = 0$

Concluyo que los espacios vectoriales son un tema muy extenso y el poder ver de manera grafica el comportamiento de un vector al calcular el producto cruz. Me gusto esta practica aunque fue muy tardada de ha cer.

EVALUACIÓN DE LA PRÁCTICA

Se evaluarán los resultados obtenidos de los problemas organizados de acuerdo a las instrucciones así como las conclusiones.

Envía la práctica terminada utilizando el Campus Virtual