This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

APR 2 0 2004 BY Claim:

- 1. An apparatus for converting the energy of a live load except the energy of ocean waves into electrical energy comprising:
- 5, a. a force collection means comprising a reservoir of working fluid wherein said working fluid is operatedly connected to a live load,
- b. an energy conversion means operatedly connected to said force collection means and comprising a Bourdon tube, an electric genaccording to transmission means for transmitting motion of said Bourdon tube to operate said generator.
- 2. The apparatus of claim 1 wherein said energy conversion means comprises a C-type Bourdon tube whose inlet end is fixedly attached to a fixed support upon which is mounted a first shaft and a 15 first spur gear and whose other end is affixed to a moveable cylinder located as part of a Scotch Yoke affixed to said first spur gear in a radial direction, said Bourdon tube and said Scotch Yoke located in a chamber filled with working fluid with an inlet opening, said chamber's dimensions partly defined by 24 first spur gear face to which said Scotch Yoke is attached through a rotateable seal so as said spur gear is made to rotate said chamber does not rotate, a second spur gear mounted on a second shaft, said second gear made to mesh with said first gear and having mounted on it concentrically a ratchet and pawl in a

shaft, a fourth spur gear made to mesh with said first gear and \therefore

mounted on it concentrically a ratchet and pawl in an opposite direction to said first direction, said fourth spur gear mounted on a third shaft, a fifth spur gear mounted on said third shaft and made to mesh with said third spur gear so as said Bourdon tube 5, is made to change shape said third shaft will be made to rotate in a single direction, said third shaft made to drive an electric generator. apparatus of claim 1 wherein said live load; is a motor vehicle and said reservoir is beneath a road surface with a steel IO channel whose legs are in contact with said reservoir's top surface with the other end of said leg in contact with the underside of said asphal and wherein said chamber of claim 2 is excluded from said energy conversion means so as a said vehicle is made to move over said channel the pressure on working fluid within said 15, reservoir is made to vary and drive said electric generator. 4. The apparatus of claim 3 wherein said | live load 🧀 is a walking human being, said road surface is a rug on top of a plywood floor with suitable blocking between said plywood floor and subflooring located beneath said reservoir as a support for 29 said reservoir so as said human being walks over said channel and presses down on said channel the pressure on working fluid within said reservoir is made to vary and drive said generator. The apparatus of claim 1 wherein said force collection means further comprises:

25,a. a piston sleeve closed on both sides defining the walls of a reservoir of working fluid,

3 20.

- b. a piston within said sleeve into two compartments,
- c.a piston shaft fixedly attached to said piston and extending through an end wall of said sleeve,
- 5, d. O-rings between said shaft and said wall and between said piston and said sleeve to prevent leakage of working fluid.
 - e. water completely filling both said compartments and serving as working fluid,
- f. check valves through the walls of each said compartment

 14 to allow each said compartment to be filled with water, and

 g.two exit tubes from each compartment

 so as said piston shaft is made to push on and pull on said piston

 water pressure in each said compartment and said exit tube

 is raised and lowered accordingly.
- comprises a flexible pole extended vertically from the ground with a revolveable sail affixed atop said pole the bottom of said pole extending below ground and attached to said piston shaft of claim 5 said pole pivoted at ground level so as wind presses against 20said sail said water pressure in said exit tube is made to vary accordingly and drive said electrical generator.

 7. The apparatus of claim 6 wherein said force collection means comprises said flexible pole affixed to a tree trunk and said sail comprises branches and leaves of said tree so as wind presses

 25 against said branches and leaves said water pressure in said exit tube of claim 5 is made to vary accordingly and drive said electrical generator.

3. The apparatus of claim 6 wherein said force collection means comprises said flexible pole located through the vertical axis of a tall building, said pole being attached to the roof of said building so as wind pressure causes said building to sway said water pressure in said exit tube of claim 5 is made to vary accordingly and drive said electric generator.

9. The apparatus of claim 6 wherein said force collection means comprises a flexible pole extended vertically from the hull of a sailboat as a mast and wherein said machinery of claim 5 is operatedly attached to running and standing rigging extended from said hull of said sailboat so as wind presses on a sail attached to said mast then said water pressure in said exit tube of claim 5 is made to vary accordingly and drive said electrical generator.

The apparatus of claim 6 wherein said force collection means comprises a flexible pole extending rearward of the end of a vehicle section selected from an aircraft wingtip, ship, hull and jet engine, the root of said pole extended to within said vehicle section and attached to said piston shaft, said pole pivoted at 24the surface of said vehicle section so as live load and drag causes said pole to flutter said water pressure in said exit tube of claim 5 is made to vary accordingly and drive said

11. The apparatus of claim 5 wherein said force collection

Zameans comprises a suspension cable of a bridge fixedly attached
to said piston shaft and said piston sleeve is fixedly attached
ed to said bridge so as said bridge is subject to live loads said
water pressure in said exit tube is made to vary accordingly
and drive said electrical generator.

generator.

22

A apparatus of claim 1 wherein said force collection means comprises a container of weight in a vehicle moveably fixed to said vehicle, said container being double walled and with the force collection means of claim 5 located between said walls, said piston 5, shaft containing a ball bearing located on said shaft's distal end and restng on the outside of the inner wall of said double wall so as said weight in said vehicle is made to move said electrical generator will be driven, producing electrical energy. We apparatus of claim 11 wherein said force collection means Acomprises a cable stretched along the top of a keel of a ship and wherein a first section of said cable is fixedly attached to the stern end of said keel and said piston shaft and the other section of said cable is fixedly attached to the bow end of said keel and said piston sleeve so as said cable is stretched 15 by hogging of said keel said water pressure in said exit tube is made to vary accordingly and driving said generator. apparatus of claim 13 wherein said cable is stretched diagonally across said ship's frame so as said ship's hull is said hull is made to roll said water pressure in said

2gexit tube is made to vary accordingly and drive said electrical generator

The apparatus of claim 5 wherein said piston sleeve is fixedly attached to a shock absorber of a first railway car and said piston shaft is fixedly attached to a shock absorber of 25a succeeding railway car so as each railway car is moved at a different velocity by inertia said water pressure in said exit tube is made to vary accordingly and drive said generator.

apparatus of claim 1 wherein said force collection means further comprises an inflated vehicle tire mounted on a wheel and axle. said axle having a hole through its concentric axis through which are located two tubes with rotateable seals mount-5, ed so the end section of each tube may be rotated while the connected end may not be rotated, a first tube being made to emerge from the end of said axle and terminate with said first tube open end near the rim of said wheel within the air compartment of said tire and a second said tube made to emerge from the 1Q end of said axle and made to terminate with said second tube's open end near the underside of the tread of said tire within the air compartment of said tire said open end faced in the same direction said tire is made to spin by forward motion of said vehicle, said first tube also made to terminate in said inlet 15 opening of said chamber of claim 2 and said second tube made to terminate in the inlet opening of said Bourdon tube of claim 2,

said tubes being each divided into a first section located concentrically within an axle of a vehicle with tires,

a second section located as said first section and joined **20**, to said first section by a sealed rotateable joint so said second section may be rotated with said axle as said is not rotated, said second tube section terminating within a sealed thrust bearing encircling a tire wheel fixedly attached to said axle, and a third section of said, first tube attached to the outer

ጊሃ,

ring of said thrust bearingso air may pass through all three sections of said tube, said third section connected to a weight so as said tire is made to spin said third section will remain in a downward position due to said weight so pressure will be 5. changed accordingly in all three sections,

said wheel having mounted on it ridges normal to said tire's direction of rotation and within said tire's air compartment so as said tire is spun air in said compartment is made to accelerate more rapidly, and as said tire is made to spin a pressure indifference is made between the interior of said Bourdon tube and the interior of said chamber, the changeing velocity of said spinning causing said electric generator to be driven.

The apparatus of claim 1 wherein said force collection means comprises:

15a. a hollow dome,

- b. a hollow shaped object selected from the group of (1.)dome and (2.) cone,
- c. said hollow dome and said hollow shaped object fixedly attached to each other along their respective rims, said rims being spaced 29apart and connected intermittently by suitable means,
 - d. a hole in the center of said hollow dome, oriented so said hole is parallel with the earth's surface,
- e.a cone shaped object located near said hole and within said anterior dome and operable attached to said piston shaft of 25, claim 2,

so as fluid is made to enter said hole said fluid will press on said cone and activate the invention, driving said electrical generator.

Jit

18. (currently amended). The apparatus of claim 1 wherein said force-collection-means-comprises-a-working-fluid-operatedly-connected-to-a-live-load-and-is-spun-so-said-working-fluid-is-made-to-flow-reservoir is a tube means laid radially on a disc means mounted on a shaft means, an inlet of said tube means drawn through said tube means and extended to form a second inlet to a bourdon tube so as said disc means is made to revolve with said shaft means fluid is drawn out of said tube means and said bourdon tube by inertia and a lifting force.

BRIEF DESCRIPTION OF THE DRAWINGS.

G. Fig. 1 is a perspective of an apparatus for transmitting live loads to a to a Bourdon tube.

Fig. lass a perspective view showing this transmission when the reservoir is spun on a shaft.

APR 2 0 2004 W

15, a pressure differential on either side of the piston which will be transmitted through tubes 5,6.

In Fig.1a we see a disc 86 mounted on a shaft 56. There is a tube 6 bent near the rim of disc 86. This tube 6 is laid radially to the center of shaft 56 where it is made to travel out an end of shaft 56 through revolveable seal 61. As the disc is made to revolve pressure is changed within tube 6 whenever the angular velocity of disc 86 is made to change. This is done by inertia and a resulting lifting force.