Lösungen zu Übungsaufgaben 05 Gruppe: Mi 08-10 SR 2, Barbara Rieß

Linus Keiser

30. November 2023

Aufgabe 17

Zu zeigen: Die Folge $(\alpha \cdot a_n)_{n \in \mathbb{N}}$ konvergiert gegen den Grenzwert $\alpha \cdot a$.

Beweis. Gegeben ist eine konvergente Folge $(a_n)_{n\in\mathbb{N}}$ mit dem Grenzwert a. Nach der Definition der Konvergenz, für jedes $\varepsilon > 0$, existiert ein $N \in \mathbb{N}$, so dass für alle $n \geq N$ gilt, dass $|a_n - a| < \varepsilon/\alpha$, wobei α eine konstante reelle Zahl ist.

Wir müssen zeigen, dass $\lim_{n\to\infty}(\alpha\cdot a_n)=\alpha\cdot a$. Dafür betrachten wir den Ausdruck $|(\alpha\cdot a_n)-(\alpha\cdot a)|$, der sich zu $\alpha\cdot |a_n-a|$ vereinfacht. Da $|a_n-a|<\varepsilon/\alpha$ für alle $n\geq N$, folgt, dass $\alpha\cdot |a_n-a|<\varepsilon$, und somit $|(\alpha\cdot a_n)-(\alpha\cdot a)|<\varepsilon$ für alle $n\geq N$.

Somit konvergiert die Folge $(\alpha \cdot a_n)_{n \in \mathbb{N}}$ gegen $\alpha \cdot a$, da die Bedingung der Konvergenz für jedes $\varepsilon > 0$ erfüllt ist, sobald n groß genug ist.

Teil (b)

Zu zeigen: Jede Cauchyfolge in K ist beschränkt.

Beweis. Sei $(b_n)_{n\in\mathbb{N}}$ eine Cauchyfolge in K. Nach der Definition einer Cauchyfolge gibt es für jedes $\varepsilon > 0$ ein $N \in \mathbb{N}$, so dass für alle $m, n \geq N$ gilt, dass $|b_m - b_n| < \varepsilon$. Wählen wir speziell $\varepsilon = 1$, dann existiert ein solches N.

Für alle $n \geq N$ gilt dann $|b_n - b_N| < 1$, was bedeutet, dass b_n im Intervall $[b_N - 1, b_N + 1]$ liegt. Betrachten wir nun die Folgenglieder $b_1, b_2, \ldots, b_{N-1}$. Es gibt ein maximales Element b_{max} und ein minimales Element b_{min} bezüglich ihres Betrages.

Wir definieren M als das Maximum von $|b_{max}|, |b_{min}|,$ und $|b_N+1|$. Dadurch ist sichergestellt, dass $|b_n| \leq M$ für alle n < N und $|b_n| \leq |b_N+1| \leq M$ für alle n > N.

Somit ist die gesamte Folge (b_n) beschränkt, da es ein M>0 gibt, so dass $|b_n|\leq M$ für alle $n\in\mathbb{N}$.

Aufgabe 18

Teil (a)

Zu zeigen: Für die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gelten:

- $\lim_{n\to\infty} a_n = \infty$
- $\lim_{n\to\infty} b_n = 0$
- $\lim_{n\to\infty} a_n b_n = 3$

Beweis. Wir wählen $a_n = n$ und $b_n = \frac{3}{n}$. Zuerst betrachten wir die Folge (a_n) :

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n = \infty.$$

Für die Folge (b_n) gilt:

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{3}{n}=0.$$

Für das Produkt der beiden Folgen erhalten wir:

$$\lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}n\cdot\frac{3}{n}=\lim_{n\to\infty}3=3.$$

Damit sind alle drei Bedingungen erfüllt.

Teil (b)

Zu zeigen: Für die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt:

- $\lim_{n\to\infty} a_n = \infty$
- $\lim_{n\to\infty} b_n = 0$
- \bullet Die Folge $(a_nb_n)_{n\in\mathbb{N}}$ ist beschränkt, aber nicht konvergent.

Beweis. Wir definieren $a_n = (-1)^n n$ und $b_n = \frac{1}{n}$.

Für a_n gilt:

$$\lim_{n \to \infty} a_n = \infty,$$

da die Beträge der Folgenglieder gegen unendlich streben, obwohl die Folge selbst nicht gegen einen spezifischen Wert konvergiert, sondern oszilliert.

Für b_n erhalten wir:

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{1}{n}=0.$$

Für das Produkt $(a_n b_n)$ gilt:

Die Folge $(a_nb_n)_{n\in\mathbb{N}}=((-1)^n)$ ist offensichtlich beschränkt, da sie nur die Werte -1 und 1 annimmt. Jedoch ist sie nicht konvergent, da kein Grenzwert existiert, gegen den die Folge konvergiert.

Somit sind alle geforderten Eigenschaften nachgewiesen.

Aufgabe 19

Teil (a)

Zu zeigen: Die Reihe $\sum_{k=1}^{\infty} \frac{5}{k(k+1)}$ konvergiert und bestimmen Sie ihren Grenz-

Beweis. Wir betrachten die Partialbruchzerlegung der Terme der Reihe:

$$\frac{5}{k(k+1)} = \frac{A}{k} + \frac{B}{k+1}$$

wobei A und B so gewählt werden, dass die Gleichheit für alle k gilt. Durch Koeffizientenvergleich erhalten wir A = 5 und B = -5, also:

$$\frac{5}{k(k+1)} = \frac{5}{k} - \frac{5}{k+1}$$

Dies führt zu einer teleskopierenden Reihe, deren Partialsummen S_N sich wie folgt verhalten:

$$S_N = \sum_{k=1}^{N} \left(\frac{5}{k} - \frac{5}{k+1} \right) = 5 \left(1 - \frac{1}{N+1} \right)$$

Da $\lim_{N\to\infty}\frac{1}{N+1}=0$, konvergiert S_N gegen 5. Daher konvergiert die Reihe $\sum_{k=1}^{\infty}\frac{5}{k(k+1)}$ und ihr Grenzwert ist 5.

Teil (b)

Zu zeigen: Die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n:=\sqrt{n^2+2}-n$ konvergiert und bestimmen Sie ihren Grenzwert.

Beweis. Um die Konvergenz der Folge zu zeigen, formen wir a_n um:

$$a_n = \frac{\left(\sqrt{n^2 + 2} - n\right)\left(\sqrt{n^2 + 2} + n\right)}{\sqrt{n^2 + 2} + n} = \frac{n^2 + 2 - n^2}{\sqrt{n^2 + 2} + n} = \frac{2}{\sqrt{n^2 + 2} + n}$$

Für große n nähert sich der Term $\sqrt{n^2+2}$ dem Term n, und daher strebt der Ausdruck $\frac{2}{\sqrt{n^2+2}+n}$ gegen 0.

Somit konvergiert die Folge $(a_n)_{n\in\mathbb{N}}$ gegen 0, da der Grenzwert der Folge für n gegen unendlich 0 ist.

Aufgabe 20

Teil (a)

Zu zeigen: Für die Folge $(a_n)_{n\in\mathbb{N}_0}$ definiert durch

$$a_0 := 0, \, a_1 := 1, \, a_n := \frac{a_{n-1} + a_{n-2}}{2} \text{ für } n = 2, 3, \dots$$

gilt

$$a_{n+1} - a_n = \frac{(-1)^n}{2^n}$$
 für $n \in \mathbb{N}_0$.

Beweis. Wir führen einen Induktionsbeweis.

Induktions an fang (n = 0):

$$a_{0+1} - a_0 = a_1 - a_0$$

$$= 1 - 0$$

$$= 1$$

$$= \frac{(-1)^0}{2^0}$$

$$= 1.$$

Die Behauptung gilt für n=0.

Induktionsschritt: Induktionsvoraussetzung: Für ein beliebiges, aber festes $n \in \mathbb{N}_0$ gilt

$$a_{n+1} - a_n = \frac{(-1)^n}{2^n}.$$

 $\mathbb{Z}u$ zeigen: Die Behauptung gilt auch für n+1, also

$$a_{n+2} - a_{n+1} = \frac{(-1)^{n+1}}{2^{n+1}}.$$

Aus der Rekursionsformel folgt:

$$a_{n+2} = \frac{a_{n+1} + a_n}{2}.$$

Daraus ergibt sich:

$$a_{n+2} - a_{n+1} = \frac{a_{n+1} + a_n}{2} - a_{n+1}$$
$$= \frac{a_n - a_{n+1}}{2}.$$

Unter Verwendung der Induktionsvoraussetzung erhalten wir:

$$a_{n+2} - a_{n+1} = \frac{-\frac{(-1)^n}{2^n}}{2}$$
$$= -\frac{(-1)^n}{2^{n+1}}$$
$$= \frac{(-1)^{n+1}}{2^{n+1}}.$$

Somit gilt die Behauptung auch für n+1.

Der Induktionsbeweis ist damit abgeschlossen, und die Aussage gilt für alle $n \in \mathbb{N}_0$.

Teil (b)

Zu zeigen: Für alle $n \in \mathbb{N}_0$ und $k \in \mathbb{N}$ gilt

$$a_{n+k} - a_n = \sum_{j=1}^{k} (a_{n+j} - a_{n+j-1}).$$

Beweis. Zur Beweisführung nutzen wir die Eigenschaft von Teleskopsummen, dass sich in der Summe der aufeinanderfolgenden Differenzen benachbarter Glieder die meisten Terme gegenseitig aufheben.

Betrachten wir die gegebene Summe:

$$\sum_{j=1}^{k} (a_{n+j} - a_{n+j-1}).$$

Jeder Summand kann als Differenz zweier aufeinanderfolgender Glieder der Folge interpretiert werden. Indem wir die Terme der Summe einzeln anschreiben, beobachten wir, dass sich aufeinanderfolgende Terme aufheben:

$$(a_{n+1} - a_n) + (a_{n+2} - a_{n+1}) + \dots + (a_{n+k} - a_{n+k-1})$$

= $a_{n+1} - a_n + a_{n+2} - a_{n+1} + \dots + a_{n+k} - a_{n+k-1}$
= $-a_n + a_{n+k}$.

Hier heben sich alle Terme außer $-a_n$ und a_{n+k} auf, was zur Formulierung $a_{n+k}-a_n$ führt.

Somit ist die Gleichung

$$a_{n+k} - a_n = \sum_{j=1}^{k} (a_{n+j} - a_{n+j-1})$$

formal bewiesen.

Teil (c)

Zu zeigen: Die durch

$$a_0 := 0, \, a_1 := 1, \, a_n := \frac{a_{n-1} + a_{n-2}}{2} \text{ für } n = 2, 3, \dots$$

definierte Folge $(a_n)_{n\in\mathbb{N}_0}$ ist eine Cauchyfolge.

Beweis. Um zu zeigen, dass $(a_n)_{n\in\mathbb{N}_0}$ eine Cauchyfolge ist, müssen wir beweisen, dass für jedes $\varepsilon>0$ ein $N(\varepsilon)\in\mathbb{N}$ existiert, sodass für alle $m,n\geq N(\varepsilon)$ gilt $|a_m-a_n|<\varepsilon$.

Aus Teil (a) wissen wir, dass $a_{n+1}-a_n=\frac{(-1)^n}{2^n}$ für alle $n\in\mathbb{N}_0$. Für m>n kann $|a_m-a_n|$ wie folgt ausgedrückt werden:

$$|a_m - a_n| = \left| \sum_{i=n}^{m-1} (a_{i+1} - a_i) \right|$$

Anwendung der Dreiecksungleichung ergibt:

$$|a_m - a_n| \le \sum_{i=n}^{m-1} |a_{i+1} - a_i| = \sum_{i=n}^{m-1} \left| \frac{(-1)^i}{2^i} \right|$$

Da $\left| \frac{(-1)^i}{2^i} \right| = \frac{1}{2^i}$, haben wir:

$$|a_m - a_n| \le \sum_{i=n}^{m-1} \frac{1}{2^i}$$

Diese Summe ist eine endliche geometrische Reihe, die sich zu $2 \cdot 2^{-n} - 2 \cdot 2^{-m}$ vereinfacht. Für $m, n \geq N(\varepsilon)$ mit $N(\varepsilon) = \lceil -\log_2(\varepsilon/2) \rceil$, ist:

$$|a_m - a_n| \le 2 \cdot 2^{-n} < \varepsilon.$$

Somit ist $(a_n)_{n\in\mathbb{N}_0}$ eine Cauchyfolge.