Problem 1 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be (non-zero) normed vector spaces over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $T: X \to Y$ be a linear map. First we want to show that $||x||_0 := ||x||_X + ||Tx||_Y$ is a norm on X for all $x \in X$. So let $x_1, x_2 \in X$, then

$$||x_1 + x_2||_0 = ||x_1 + x_2||_X + ||T(x_1 + x_2)||_Y$$

$$= ||x_1 + x_2||_X + ||Tx_1 + Tx_2||_Y$$

$$\leq ||x_1||_X + ||x_2||_X + ||Tx_1||_Y + ||Tx_2||_Y$$

$$= ||x_1||_0 + ||x_2||_0$$

Since T is linear and $\|\cdot\|_X$ and $\|\cdot\|_Y$ are both norms. For $x\in X$ and $\alpha\in\mathbb{K}$ we have

$$\|\alpha x\|_{0} = \|\alpha x\|_{X} + \|T(\alpha x)\|_{Y} = \alpha \|x\|_{X} + (\alpha \|Tx\|_{Y} = \alpha \|x\|_{0}.$$

Now for all $x \in X$ we have $||x||_0 = 0$ iff. $||x||_X + ||Tx||_Y = 0$ iff. $||x||_X = 0$ and $||Tx||_Y = 0$ iff. x = 0. Hence it follows that $||x||_0$ is indeed a norm on X.

Now we want to show that the two norms $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent iff. T is bounded. First notice that since $0 \le \|Tx\|_Y$ we see that $\|x\|_X \le \|x\|_0$ for all $x \in X$.

So assume now that T is bounded. In this case we know (Prop. 1.10) that there exists C > 0 s.t. $||Tx||_Y \le C||x||_X$, which means that

$$||x||_0 = ||x||_X + ||Tx||_Y$$

$$\leq ||x||_X + C||x||_X$$

$$= (C+1)||x||_X$$

So if T is bounded it follows that the norms are equivalent.

Now assume instead that the norms are equivalent. Since $||x||_X$ is always less than or equal to $||x||_0$ the equivalence here just means that there exists C > 0 s.t. $||x||_0 = ||x||_X + ||Tx||_Y \le C||x||_X$. In this case we have

$$||Tx||_Y \le C||x||_X - ||x||_X = (C-1)||x||_X.$$

So if we just let C > 1, it follows that T i bounded.

(b) We want to show that any linear map $T: X \to Y$ is bounded, if X is finite dimensional. So let X be finite dimensional. Then any two norms on X are equivalent (Theorem 1.6). This means that $\|\cdot\|_X$ and $\|\cdot\|_0$ from (a) are equivalent and hence it follows, from what we have already shown, that T is bounded.

Problem 1 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be (non-zero) normed vector spaces over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $T: X \to Y$ be a linear map. First we want to show that $||x||_0 := ||x||_X + ||Tx||_Y$ is a norm on X for all $x \in X$. So let $x_1, x_2 \in X$, then

$$||x_1 + x_2||_0 = ||x_1 + x_2||_X + ||T(x_1 + x_2)||_Y$$

$$= ||x_1 + x_2||_X + ||Tx_1 + Tx_2||_Y$$

$$\leq ||x_1||_X + ||x_2||_X + ||Tx_1||_Y + ||Tx_2||_Y$$

$$= ||x_1||_0 + ||x_2||_0$$

Since T is linear and $\|\cdot\|_X$ and $\|\cdot\|_Y$ are both norms. For $x\in X$ and $\alpha\in\mathbb{K}$ we have

$$\|\alpha x\|_0 = \|\alpha x\|_X + \|T(\alpha x)\|_Y = \alpha \|x\|_X + \alpha \|Tx\|_Y = \alpha \|x\|_0.$$

Now for all $x \in X$ we have $||x||_0 = 0$ iff. $||x||_X + ||Tx||_Y = 0$ iff. $||x||_X = 0$ and $||Tx||_Y = 0$ iff. x = 0. Hence it follows that $||x||_0$ is indeed a norm on X.

Now we want to show that the two norms $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent iff. T is bounded. First notice that since $0 \le \|Tx\|_Y$ we see that $\|x\|_X \le \|x\|_0$ for all $x \in X$.

So assume now that T is bounded. In this case we know (Prop. 1.10) that there exists C > 0 s.t. $||Tx||_Y \le C||x||_X$, which means that

$$||x||_0 = ||x||_X + ||Tx||_Y$$

$$\leq ||x||_X + C||x||_X$$

$$= (C+1)||x||_X$$

So if T is bounded it follows that the norms are equivalent.

Now assume instead that the norms are equivalent. Since $||x||_X$ is always less than or equal to $||x||_0$ the equivalence here just means that there exists C > 0 s.t. $||x||_0 = ||x||_X + ||Tx||_Y \le C||x||_X$. In this case we have

$$||Tx||_Y < C||x||_X - ||x||_X = (C-1)||x||_X.$$

So if we just let C > 1, it follows that T i bounded.

(b) We want to show that any linear map $T: X \to Y$ is bounded, if X is finite dimensional. So let X be finite dimensional. Then any two norms on X are equivalent (Theorem 1.6). This means that $\|\cdot\|_X$ and $\|\cdot\|_0$ from (a) are equivalent and hence it follows, from what we have already shown, that T is bounded.

This does
not make
sense as
I is just
some sut,
not IV...

(c) We want to show that if X is infinite dimensional, then there exists a linear map $T: X \to Y$ which is not bounded. So let X be infinite dimensional, then we know that X has a Hamel basis $(e_i)_{i \in I}$. Consider the family $(y_i)_{i \in I}$ in Y with $y_i = \alpha_i \cdot ||e_i||_X \cdot c_y$ where $c_y \in Y$ is a (non-zero) constant and where $\alpha_i \in \mathbb{N}$ with $|\alpha_i| < |\alpha_{i+1}|$. From the assignment description we know that there exists precisely one linear map $T: X \to Y$ satisfying $T(e_i) = y_i$, for all $i \in I$. Now define the map $A: X \to X$ with A(x) = x if x is a basis element, i.e. $x \in (e_i)_{i \in I}$, and zero otherwise. Then $T \circ A: X \to Y$ is a linear map which is bounded iff. $||(T \circ A)(e_i)||_Y = |\alpha_i| \cdot ||e_i||_X \cdot ||c_y||_Y \le C$ for every $i \in I$. But since the α_i 's are increased by at least 1 for every term of the infinite basis, we conclude that there does not exist a C with this property, showing that $T \circ A$ is not bounded.

(d) Suppose again that X is infinite dimensional. Then we know from (c) that there exist a linear map $T: X \to Y$ which is not bounded. So let $\|\cdot\|_0$ be defined as in (a) with this T. Since we have shown in (a) that the two norms $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent if and only if T is bounded, it follows that this norm is not equivalent to the given norm on X. Since $0 \le \|Tx\|_Y$ we have $\|\cdot\|_X \le \|\cdot\|_0$ for all $x \in X$. We know that $(X, \|\cdot\|_X)$ is a Banach space hence it is complete. From Homework 3, problem 1 we know that if $(X, \|\cdot\|_0)$ is also complete, then the two norms are equivalent, which we have just argued is not the case. We conclude that $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space.

(e) Following the hint, we consider $l_1(\mathbb{N})$ with the norm $\|\cdot\|_1$. Define $\|\cdot\| := \sum_{n=1}^{\infty} \frac{|x_n|}{n}$. It is easily seen that this is also a norm on $l_1(\mathbb{N})$ and that $\|x\| \le \|x\|_1$ for all $x \in l_1(\mathbb{N})$. Clearly the norms are inequivalent, since there is no C > 0 s.t. $\|x\|_1 \le C\|x\|$ for all $x \in l_1(\mathbb{N})$. From the lecture notes (lecture 1, page 3, and An2) we know that $(l_1(\mathbb{N}), \|\cdot\|_1)$ is a Banach space and hence complete. Pr. the same argument as in (d) we conclude that $(l_1(\mathbb{N}), \|\cdot\|_n)$ can not be complete as desired.

Problem 2 Let $1 \leq p < \infty$ be fixed, and consider the subspace M of the Banach space $(l_p(\mathbb{N}), \|\cdot\|_p)$, considered as a vector space over \mathbb{C} , given by

$$M=\{(a,b,0,0,\ldots):a,b\in\mathbb{C}\}$$

Let $f: M \to \mathbb{C}$ be given by f(a, b, 0, 0, ...) = a + b for all $a, b \in \mathbb{C}$.

(a) First of we want to show that f is bounded on $(M, \|\cdot\|_p)$. For $x \in M$ we have

$$||f(x)|| = |a+b| \le |a| + |b|$$

Note that f can be written as $f(x) = \sum_{n=1}^{\infty} x_n y_n$ for all $x \in M$ and some $y = (1, 1, x_3, x_4, ...) \in l_q(\mathbb{N})$ for some q satisfying $\frac{1}{q} = \frac{p-1}{p}$ so we can use Hölder's inequality, which gives us

Why?

$$|a| + |b| \le (|a|^p + |b|^p)^{\frac{1}{p}} (1+1)^{\frac{1}{q}} = 2^{\frac{1}{q}} ||x||_p$$

Showing that f is bounded on $(M, \|\cdot\|_p)$.

Now we want to calculate ||f||.

We have just shown that $f \in \mathcal{L}(M, \mathbb{C})$ and that $||f(x)|| \leq 2^{\frac{1}{q}} ||x||_p$ hence $2^{\frac{1}{q}} \in \{C > 0 : ||f(x)|| \leq C ||x||_p, x \in M\}$ which means that $||f|| = \inf\{C > 0 : ||f(x)|| \leq C ||x||_p, x \in M\} \leq 2^{\frac{1}{q}}$.

Now let $x' = (\frac{1}{\sqrt[p]{2}}, \frac{1}{\sqrt[p]{2}}, 0, 0, \dots) \in M$. Then $||x'||_p = (|\frac{1}{\sqrt[p]{2}}|^p + |\frac{1}{\sqrt[p]{2}}|^p)^{\frac{1}{p}} = (1/2 + 1/2)^{\frac{1}{p}} = 1$. Furthermore $||f(x')|| = |\frac{1}{\sqrt[p]{2}} + \frac{1}{\sqrt[p]{2}}| = 2 \cdot \frac{1}{\sqrt[p]{2}} = 2^{\frac{p-1}{p}} = 2^{\frac{1}{q}}$. This shows that $2^{\frac{1}{q}} \in \{||f(x)|| : ||x||_p = 1\}$ and therefore that $2^{\frac{1}{q}} \le \sup\{||f(x)|| : ||x||_p = 1\} = ||f||$. We conclude that $||f|| = 2^{\frac{1}{q}}$.

(b) We want to show that if 1 , then there is a unique linear functional <math>F on $l_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Since $f \in L(M, \mathbb{C})$ we know from Corollary 2.6 that there exists a linear functional $F \in (l_p(\mathbb{N}))^*$ such that $F_{|_M} = f$ and ||F|| = ||f||. From homework 1, problem 5 we know that $(l_p(\mathbb{N}))^* \cong l_q(\mathbb{N})$ so we can write $F(x) = \sum_{n=1}^{\infty} x_n y_n$ for $y = (y_n)_{n \geq 1} \in l_q(\mathbb{N})$ and $x \in l_p(\mathbb{N})$. From (a) we know that $2^{\frac{1}{q}} = ||f|| = ||F||$ and since F is represented by y we also have $||F|| = ||y||_q$ We see that $F_{|_M}(x) = f(x) = x_1 + x_2$ so we must have $y = (1, 1, y_3, y_4, ...)$, but since

$$||y||_q = \left(\sum_{n=1}^{\infty} |y_n|^q\right)^{\frac{1}{q}}$$

$$= \left(|1|^q + |1|^q + |y_3|^q + \dots\right)^{\frac{1}{q}}$$

$$= 2^{\frac{1}{q}}$$

then y_3, y_4, \dots must all be zero, meaning $y = (1, 1, 0, 0, \dots)$ whereas $F(x) = x_1 + x_2$ for all $x \in l_p(\mathbb{N})$.

It follows from our previous argumentation that F is unique - If there exists $F' \in (l_p(\mathbb{N}))^*$ satisfying $F'_{|_M} = f$ and ||F'|| = ||f|| then $F'(x) = \sum_{n=1}^{\infty} x_n y_n$ for $y = (1, 1, 0, 0, ...) \in l_q(\mathbb{N}), x \in l_p(\mathbb{N})$ meaning that $F'(x) = x_1 + x_2 = F(x)$.

We conclude that a linear functional extending f which satisfies the desired properties is unique.

(c) We want to show that if p=1, then there are infinitely many linear functionals F on $l_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

For p=1 and for $x \in M$ we have $||f(x)|| = |a+b| \le |a| + |b| = ||x||_1$ Hence f is bounded on M by C=1 and since $||f|| = \sup\{||f(x)|| : ||x||_1 = 1\}$ clearly ||f|| = 1 (take for example $x = (\frac{1}{2}, \frac{1}{2}, 0, 0, ...)$.). Consider $F_i(x) = x_1 + x_2 + x_i$ for some $2 < x_i \le n$. This F_i is obviously a linear functional on $l_1(\mathbb{N})$ and we see that $F_i|_M(x) = x_1 + x_2 = f(x)$ showing that F_i is an extension of f. Since F_i extends f we must have $||F_i|| \ge ||f|| = 1$. At the same time

$$||F_i|| = \sup\{||F_i(x)|| : ||x||_1 = 1\}$$

$$= \sup\{|x_1 + x_2 + x_i| : ||x||_1 = 1\}$$

$$\leq \sup\{|x_1| + |x_2| + |x_i| : ||x||_1 = 1\}$$

$$\leq 1$$

So $||F_i|| = ||f|| = 1$. This shows that any such $F_i \in l_1(\mathbb{N})$ is an extension of f satisfying the desired properties. But we can define F_i for every $i \in \mathbb{C}$ with 1 < i hence we have infinitely many options.

Problem 3 Let X be an infinite dimensional normed vector space over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $n \geq 1$ be an integer. We want to show that no linear map $F: X \to \mathbb{K}^n$ is injective. Assume that there exists a linear map $F: X \to \mathbb{K}^n$ which is injective. Let $x_1, x_2, ..., x_{n+1} \in X$ (all non-zero) be linearly independent. We know that this is possible since X is infinite dimensional (take for example n+1 elements in a basis for X). Since \mathbb{K}^n is n-dimensional, we know that every linearly independent subset has at most n elements. Hence $F(x_1), ..., F(x_{n+1})$ can't all be linearly independent. This means that there must exist $\alpha_1, ..., \alpha_{n+1} \in \mathbb{K}$, not all zero s.t.

$$\sum_{i=1}^{n+1} \alpha_i F(x_i) = F(\alpha_1 x_1 + \dots + \alpha_{n+1} x_{n+1}) = 0$$

Where the first equality follows from the linearity of F. It follows that $\alpha_1 x_1 + ... + \alpha_{n+1} x_{n+1} \in \ker(F) = \{x \in X \mid F(x) = 0\}$. Since F is injective we know that $\ker(F) = \{0\}$ but then $\alpha_1 x_1 + ... + \alpha_{n+1} x_{n+1} = 0$ which is a contradiction, since all the x_i 's are linearly independent. We conclude that no such F can be injective.

(b) Let $n \geq 1$ be an integer and let $f_1, f_2, ..., f_n \in X^*$. We want to show that

$$\bigcap_{j=1}^{n} \ker(f_j) \neq \{0\}.$$

Following the hint, we consider the function $F: X \to \mathbb{K}^n$ given by $F(x) = (f_1(x), f_2(x), ..., f_n(x))$ for $x \in X$. In (a) we have just shown that F is not injective, which means that $\ker(F) \neq \{0\}$.

It follows that there exists at least one non-zero element in $x_0 \in X$ s.t. $x_0 \in \ker(F)$. This x_0 satisfies that $F(x_0) = (f_1(x_0), ..., f_n(x_0)) = 0$, hence that $f_j(x_0) = 0$ for all j = 1, ..., n showing that $x_0 \in \bigcap_{j=1}^n \ker(f_j)$. This proves that $\bigcap_{j=1}^n \ker(f_j) \neq \{0\}$.

(c) Let $x_1, x_2, ..., x_n \in X$. We want to show that there exists $y \in X$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all j = 1, 2, ..., n. Let $U := \{x_1, x_2, ..., x_n\}$. First note that if there is one (or several) element(s) $x_j \in U$ with $x_j = 0$ then obviously $||y - x_j|| \ge ||x_j|| = 0$ so we can assume $0 \notin U$. Since all of the x_j 's are non-zero, there exists $f_j \in X^*$ with $||f_j|| = 1$ s.t. $|f_j(x)| = ||x_j||$ for j = 1, ..., n by theorem 2.7(b). It follows from (b) that we can take $0 \neq y \in \bigcap_{j=1}^n \ker(f_j)$ for any element y satisfying ||y|| = 1 (take for example $\frac{y_0}{||y_0||}$ for a non-zero element y_0 in the kernel). From the linearity of each f_j and by the definition of a norm, for each $x_j \in U$ we then have $||y - x_j|| = ||f_j|||y - x_j|| \ge ||f_j(y - x_j)|| = ||f_j(y) - f_j(x_j)|| = ||0 - ||x_j||| = ||x_j||$ for all j = 1, ..., n as desired.

(d) We want to show that the unit sphere $S = \{x \in X : ||x|| = 1\}$ cannot be covered with a finite family of closed balls in X s.t. none of the balls contains 0. Let $K_1(x_1, \epsilon_1), K_2(x_2, \epsilon_2), ..., K_n(x_n, \epsilon_n)$ be a finite family of closed balls, none of which contains 0 and where $K_j(x_j, \epsilon_j) = \{y \in X : ||y - x_j|| \le \epsilon_j\}$ for j = 1, ..., n. Assume that S can be covered with a finite number of these balls, hence that $S \subseteq \bigcup_{j=1}^n K_j(x_j, \epsilon_j)$ for some $n \ge 1$. Let $y \in X$ be as defined in (c). Then we have $y \in S \subseteq \bigcup_{j=1}^n K_j(x_j, \epsilon_j)$ as ||y|| = 1. If $y \in K_j(x_j, \epsilon_j)$ we must have $||y - x_j|| \le \epsilon_j$, but we also know that $||y - x_j|| \ge ||x_j||$ for all j = 1, ..., n. This means that $||x_j - 0|| = ||x_j|| \le \epsilon_j$ showing that $0 \in K_j(x_j, \epsilon_j)$ which contradicts the assumption that none of the balls contains 0. We conclude that S cannot be covered with a finite family of closed balls in X s.t. none of the balls contains 0.

(e) First we want to show that S is non-compact.

Let $y_1, y_2, y_3, ... \in S$ be distinct. Define $B_i(y_i, \frac{1}{2}) = \{x \in X : ||x - y_i|| < \frac{1}{2}\}$ and let $\mathcal{B} = \bigcup_{i=1}^{\infty} B_i(y_i, \frac{1}{2})$. Obviously we have that $S \subseteq \mathcal{B}$ showing that \mathcal{B} is an open cover. If S is compact, it means that every open cover has a finite subcover, so we want to show that no finite subset $\bigcup_{i=1}^{n} B_i(y_i, \frac{1}{2})$ covers S. From (c) we get that $||y_i - y_j|| \ge 1$ showing that $y_i \notin B_j(y_j, \frac{1}{2})$ and $y_j \notin B_i(y_i, \frac{1}{2})$ for all $i, j \in \{1, 2, ..., n\}$ with $i \ne j$, which means that each of these open balls contains only 1 element of S. It follows that $\bigcup_{i=1}^{n} B_i(y_i, \frac{1}{2})$ contains exactly n elements of S hence it does not cover S, showing that S is non-compact. If we now let $B_i(x_i, \frac{1}{2}) = \{y \in K(0, 1) : ||y - x_i|| < \frac{1}{2}\}$. Then $\mathcal{B}_x = \bigcup_{i=1}^{\infty} B_i(x_i, \frac{1}{2})$ covers the closed unit ball. If $u, v \in B_i(x_i, \frac{1}{2})$, then ||u - v|| < 1, showing as before that each open ball only contains a single element y with ||y|| = 1. Hence a finite number of these open balls cannot cover K(0, 1) showing that the unit ball in X is non-compact.

Many misundestandings

Problem 4 Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be the Lesbegue spaces on [0,1].

For $n \geq 1$, define

$$E_n := \{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \}$$

(a) First let $n \ge 1$ and $f, g \in E_n$ be given. Then we know that $||f||_3^3 \le n$ and $||g||_3^3 \le n$. This means that for all $0 \le \alpha \le 1$ we get

$$\|\alpha f + (1 - \alpha)g\|_3^3 \le \alpha \|f\|_3^3 + (1 - \alpha)\|g\|_3^3 \le \alpha n + (1 - \alpha)n = n$$

Showing that E_n is convex. Now assume that E_n is an absorbing subset of $L_1([0,1],m)$ for all $n \geq 1$. Then for all $0 \neq f \in L_1([0,1])$ there exists t > 0 such that $t^{-1}f \in E_n$. This means that $||t^{-1}f||_3^3 = t^{-3}||f||_3^3 \leq n$, hence that $||f||_3 \leq \frac{n^{\frac{1}{3}}}{(t^{-3})^{\frac{1}{3}}}$. This implies that the 3-norm is bounded by $\frac{n^{\frac{1}{3}}}{(t^{-3})^{\frac{1}{3}}}$ for every $f \in L([0,1],m)$ which is not true. We conclude that E_n is not an absorbing subset of $L_1([0,1],m)$.

(b) Assume that E_n does not have empty interior in L([0,1],m) for some $n \ge 1$. Then for $f \in E_n$ there exists $\epsilon > 0$ s.t.

$$B(f,\epsilon) := \{ g \in L_1([0,1], m) : ||g - f||_1 < \epsilon \} \subseteq E_n$$

Let $0 \neq g \in L_1([0,1],m)$ and define $h := f + \frac{\epsilon}{2} \frac{g}{\|g\|_1}$. Then $\|h - f\|_1 = \frac{\epsilon}{2}$ showing that $z \in B(f,\epsilon) \subseteq E_n$. Note that since $f, h \in E_n$ we have $\|f\|_3^3 \le n$ and $\|h\|_3^3 \le n$ which means that $\|f\|_3 \le n^{\frac{1}{3}} < \infty$ and $\|h\|_3 \le n^{\frac{1}{3}} < \infty$ so $f, h \in L_3([0,1],m)$. We see that $g = (h-f)\frac{2\|g\|_1}{\epsilon}$ and since $L_3([0,1],m)$ is a subspace of $L_1([0,1],m)$ it follows that $g \in L_3([0,1],m)$. But since $g \in L_1([0,1],m)$ was chosen arbitrarily, this would now imply that $L_1([0,1],m) \subseteq L_3([0,1],m)$ which is a contradiction. We conclude that E_n has empty interior in L([0,1],m).

(c) We want to show that E_n is closed in $L_1([0,1],m)$, for all $n \ge 1$. So let $(f_n)_{n\ge 1} \in E_n$ be a sequence of functions converging to some $f \in L([0,1],m)$. Since $|f_n|^3 \to |f|^3$, Fatou's lemma gives us that

mma gives us that
$$L^1$$
 convergence does not imply
$$\int_{[0,1]} |f|^3 dm \leq \liminf_{n\to\infty} \int_{[0,1]} |f_n|^3 dm.$$
 Pointwise convergence

Since each term $f_n \leq n$ the limit must be finite. This shows that $f \in E_n$ and hence that E_n is closed.

(d) We have just shown in (b) and (c) that E_n is closed and has empty interior in $L_1([0,1],m)$ for every $n \geq 1$ so we have that $\operatorname{int}(E_n) = \operatorname{int}(\bar{E_n}) = \emptyset$ in $L_1([0,1],m)$. This means that each E_n is nowhere dense in $L_1([0,1],m)$. Since $f \in E_n$ means that $||f||_3^3 \leq n$ which in turn implies $||f||_3 \leq n^{\frac{1}{3}}$,

we see that the infinite union $\bigcup_{n=1}^{\infty} E_n = L_3([0,1],m)$. We have now shown that $L_3([0,1],m)$ can be written as a union of nowhere dense sets in L([0,1],m) so we conclude that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

Problem 5 Let H be an infinite dimensional separable Hilbert space with associated norm $\|\cdot\|$, let $(x_n)_{n\geq 1}$ be a sequence in H and let $x\in H$.

(a) Suppose that $x_n \to x$ in norm, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.

No, lat it is a conseque of nown conegre.

Yes, this is the definition of strong convergence. Since $\lim_{n\to\infty} ||x_n - x|| = 0$, the triangle inequality gives us $||x_n|| \le ||x_n - x|| + ||x||$ and $||x|| \le ||x_n - x|| + ||x_n||$, which implies that $\lim_{n\to\infty} ||x_n|| = ||x||$ since the norm is continuous.

This is what you aim to show.

(b) Suppose that $x_n \to x$ weakly, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$? Give a proof or a counterexample.

It does not. Following the hint, we consider an orthonormal basis $(e_n)_{n\geq 1}$ in H. Since $||e_n||=1$, $(e_n)_{n\geq 1}$ is bounded and since $\lim_{n\to\infty} e_i^{(n)}=0$ for every $i\geq 1$ where $e_n=(e_1^{(n)},e_2^{(n)},\ldots)$, homework 4, problem 3 gives us that $\lim_{n\to\infty} e_n=0$ hence x=0. For any two terms e_i,e_j with $e_i\neq e_j$ we have $||e_i-e_j||>1$ implying that $(e_n)_{n\geq 1}$ doesn't have any convergent subsequence. And since we have shown that the sequence is bounded by 1 we must have $\lim_{n\to\infty} ||e_n||=1\neq 0$, hence it is a counterexample to the statement.

(c) Suppose that $||x_n|| \le 1$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Is it true that $||x|| \le 1$? Give a proof or a counterexample.

This is true. If x_n converges weakly to x, we have $|\langle x_n, \frac{x}{\|x\|} \rangle| \leq \|x_n\|$ and since $|\langle x_n, \frac{x}{\|x\|} \rangle| \rightarrow |\langle x, \frac{x}{\|x\|} \rangle| = \|x\|$ we get that $\|x\| \leq \liminf_{n \to \infty} \|x_n\| \leq 1$ by applying \lim inf on both sides of the first inequality.