Hệ Khuyến Nghị

Research Paper Recommendation

GVHD:

Thầy Nguyễn Văn Kiệt Thầy Huỳnh Văn Tín

Nhóm 3:

Tiêu Kim Hảo19521480Văn Kim Ngân19520177Nguyễn Thị Bảo Hân19520071

Overview

Introduction

Mô tả bài toán:

- Xây dựng hệ thống khuyến nghị những bài báo nghiên cứu khoa học trong lĩnh vực công nghệ.
- Giúp việc tìm kiếm những bài báo liên quan trở nên dễ dàng hơn.

Quy trình

Dataset & Preprocessing

Dataset

• Nhóm thu thập được **10.000** điểm dữ liệu từ **arxiv**.

Bảng mô tả thuộc tính dataset

No.	Attribute name	Data Types	Description
1	Title	string	Tiêu đề của bài báo
2	Date	datetime	Thời điểm bài báo được đăng
3	Id	string	ID của bài báo
4	Summary	string	Tóm tắt nội dung của bài báo
5	URL	string	Đường dẫn URL của bài báo

Dataset

```
{"Title":{"0":"Mapping Tropical Forest Cover and Deforestation
with Planet NICFI Satellite Images and Deep Learning in Mato Gr
osso State (Brazil) from 2015 to 2021"},
"Date":{"0":"2022-11-17 18:59:44+00:00"},
"Id":{"0":"2211.09806v1"},
"Summary":{"0":"Monitoring changes in tree cover for rapid asse
ssment of deforestation is considered the critical component of
any climate mitigation policy for reducing carbon."},
"URL":{"0":"http://arxiv.org/pdf/2211.09806v1"}}
```

Preprocessing

- Kiểm tra các giá trị Null.
- Loại bỏ các ký tự đặc biệt.
- Áp dụng Stemming Algorithm.

Monitoring changes in tree cover for rapid assessment of deforestation is considered the critical component of any climate mitigation policy for reducing carbon.

monitor chang in tree cover for rapid assess of deforest is consid the critic compon of ani climat mitig polici for reduc carbon.

Stemming

Preprocessing

31,713 unigrams

Stemming algorithm được sử dụng để reduce unigram size còn **23,178 unigrams**

Nhận xét:

- Giảm ~8500 unigrams.
- Giúp việc tính toán nhanh và cải thiện hiệu suất.

Model

TF-IDF & Cosine Similarity

KNN ->

Sentence Transformer

1.TF-IDF & Cosine Similarity

 \longrightarrow

Using Unigram

TF-IDF matrix: (9990, 23178)

TF

IDF

Frequency of a word within the document

Frequency of a word across the documents

2. KNN

Input matrix: (9990, 23178)

3. Sentence Transformer

Experiment

- Thực nghiệm trên 3 mô hình TF-IDF, KNN, và Sentence Transformer áp dụng phương pháp stemming với n-gram là 1 và độ đo tương đồng cosine similarity.
- Chọn ra 10 paper cho tập test.

Đánh giá

 Cho 10 người đánh giá mức độ liên quan giữa bài báo gốc với những bài báo được khuyến nghị.

0: không liên quan 1: liên quan

Top 10 bài báo được khuyến nghị

	MORA: Improving Ensemble Robustness Evaluation with Model-Reweighing Attack	0.689346194
	Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis	0.673604965
	AccelAT: A Framework for Accelerating the Adversarial Training of Deep Neural Networks through Accuracy Gradient	0.67120713
	Adversarial Coreset Selection for Efficient Robust Training	0.667131126
A New Kind of Adversarial Example	Enhancing Targeted Attack Transferability via Diversified Weight Pruning	0.656535685
A New Killu of Auversaliai Example	ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation	0.655549645
	Stateful Detection of Adversarial Reprogramming	0.649802744
	Scaling Adversarial Training to Large Perturbation Bounds	0.644129276
	Approximate better, Attack stronger: Adversarial Example Generation via Asymptotically Gaussian Mixture Distribution	0.643854737
	White-Box Adversarial Policies in Deep Reinforcement Learning	0.635106623
•	· ·	

Bảng kết quả độ tương đồng của 3 thuật toán

TF-IDF				
Paper RCM STEMMING KHÔNG STEMMING				
1	0.336843	0.309826		
2	0.378926	0.296853		
3	0.472766	0.35188		
4	0.296526	0.270421		
5	0.268042	0.23245		
6	0.349001	0.287358		
7	0.34887	0.321103		
8	0.257381	0.233424		
9	0.323475	0.278197		
10	0.29321	0.236436		
	0.332504	0.2817948		

KNN			
Paper RCM	STEMMING	KHÔNG STEMMING	
1	0.286149888	0.285572101	
2	0.360650346	0.349597842	
3	0.28261254	0.28029342	
4	0.229613741	0.242760213	
5	0.275099055	0.268552846	
6	0.44261648	0.423564217	
7	0.384431429	0.380502157	
8	0.487117583	0.471257252	
9	0.269686374	0.256509796	
10	0.396515267	0.363013336	
	0.34144927	0.332162318	

Sentence Transformer				
Paper RCM	STEMMING	KHÔNG STEMMING		
1	0.689243442	0.691350436		
2	0.700947571	0.682801461		
3	0.711578	0.706672275		
4	0.697959232	0.682360959		
5	0.606046963	0.543643534		
6	0.713009602	0.658626813		
7	0.773307478	0.694353259		
8	0.706452495	0.673009169		
9	0.720546949	0.696698451		
10	0.653846371	0.635615587		
	0.69729381	0.666513194		

TF-IDF			KNN		
Paper RCM	STEMMING	KHÔNG STEMMING	Paper RCM	STEMMING	KHÔNG STEMMING
1	0.336843	0.309826	1	0.286149888	0.285572101
2	0.378926	0.296853	2	0.360650346	0.349597842
3	0.472766	0.35188	3	0.28261254	0.28029342
4	0.296526	0.270421	4	0.229613741	0.242760213
5	0.268042	0.23245	5	0.275099055	0.268552846
6	0.349001	0.287358	6	0.44261648	0.423564217
7	0.34887	0.321103	7	0.384431429	0.380502157
8	0.257381	0.233424	8	0.487117583	0.471257252
9	0.323475	0.278197	9	0.269686374	0.256509796
10	0.29321	0.236436	10	0.396515267	0.363013336
	0.332504	0.2817948		0.34144927	0.332162318

Sentence Transformer			
Paper RCM	STEMMING	KHÔNG STEMMING	
1	0.689243442	0.691350436	
2	0.700947571	0.682801461	
3	0.711578	0.706672275	
4	0.697959232	0.682360959	
5	0.606046963	0.543643534	
6	0.713009602	0.658626813	
7	0.773307478	0.694353259	
8	0.706452495	0.673009169	
9	0.720546949	0.696698451	
10	0.653846371	0.635615587	
	0.69729381	0.666513194	

Tỉ lệ bài báo được RCM phù hợp chính xác

KNN	0.34
TF-IDF	0.36
Sentence transformer	0.46

Conclusion

- Xây dựng được 1 mô hình khuyến nghị các bài báo khoa học dựa trên summary.
- Mô hình Sentences Transformer ghi nhận được kết quả tốt nhất (~46% số bài báo được recommend phù hợp) trên cả 3 mô hình.
- Phương pháp Stemming làm giảm số lượng unigram -> Tính toán nhanh và cải thiện hiệu suất.

Hướng Phát triển

- Tăng mức độ chính xác của các paper được khuyến nghị.
- Train được trên số n-gram cao hơn.
- Phát triển được thành một ứng dụng thực tế.

DEMO

