Package 'VeccTMVN'

November 26, 2024

Type Package

Title Multivariate Normal Probabilities using Vecchia Approximation

Version 1.2.1 **Date** 2024-11-26

Author Jian Cao [aut, cre], Matthias Katzfuss [aut]

Maintainer Jian Cao < jcao 2416@gmail.com>

Description Under a different representation of the multivariate normal (MVN) probability, we can use the Vecchia approximation to sample the integrand at a linear complexity with respect to n. Additionally, both the SOV algorithm from Genz (92) and the exponential-tilting method from Botev (2017) can be adapted to linear complexity. The reference for the method implemented in this package is Jian Cao and Matthias Katzfuss (2024) `Linear-Cost Vecchia Approximation of Multivariate Normal Probabilities" <doi:10.48550/arXiv.2311.09426>. Two major references for the development of our method are Alan Genz (1992) `Numerical Computation of Multivariate Normal Probabilities" <doi:10.1080/10618600.1992.10477010> and Z. I. Botev (2017) `The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting" <doi:10.48550/arXiv.1603.04166>.

License GPL (>= 2)

Imports Rcpp (>= 1.0.10), Matrix (>= 1.5-3), GpGp (>= 0.4.0), truncnorm (>= 1.0-8), GPvecchia, TruncatedNormal, nleqsly

Suggests testthat (>= 3.0.0), lhs, mytnorm

Config/testthat/edition 3

LinkingTo Rcpp, RcppArmadillo

URL https://github.com/JCatwood/VeccTMVN

BugReports https://github.com/JCatwood/VeccTMVN/issues

RoxygenNote 7.3.2 Encoding UTF-8 NeedsCompilation yes Repository CRAN

Date/Publication 2024-11-26 19:40:06 UTC

2 FIC_reorder_univar

Contents

FIC_reorder_univar																																					2
find_nn_corr																																					3
get_sp_inv_chol																																					4
loglk_censor_MVN																																					4
mvrandn																																					6
mvrandt																																					7
pmvn																																					8
pmvn_MLMC																																					9
pmvt																																					10
pmvt_MLMC																																					11
ptmvrandn																																					13
univar_order																																					14
VeccTMVN																																					14
Vecc_reorder																																					15
																																					17
		T T							,					,		7	77.	_						٠.			c				,			- 1	,		
reorder_univar	-	Ui	uv	ai	rıc	ιte	? (or	ae	rı	nį	3 1	un	a	er	r	10		aį	p)	ro.	xu	na	tu	Эn,	, J	ηr	st	m	l C	ne	0S	en	ı t	эу	n	ı

Description

Univariate ordering under FIC approximation, first m chosen by m iter of dense univariate reordering

iter of dense univariate reordering

Usage

Index

```
FIC_reorder_univar(
    a,
    b,
    m,
    locs = NULL,
    covName = NULL,
    covParms = NULL,
    covMat = NULL
)
```

Arguments

а	lower bound vector for IMVN
b	upper bound vector for TMVN
m	Vecchia conditioning set size
locs	location (feature) matrix n X d
covName	covariance function name from the 'GpGp' package

find_nn_corr 3

covParms parameters for 'covName'

covMat dense covariance matrix, not needed when 'locs' is not null

Value

a vector of new order based on FIC assumption and maxmin ordering

Examples

```
library(VeccTMVN)
n1 <- 5
n2 <- 5
n <- n1 * n2
m <- 5
locs <- as.matrix(expand.grid((1:n1) / n1, (1:n2) / n2))
covparms <- c(2, 0.1, 0)
cov_name <- "matern15_isotropic"
a <- rep(-Inf, n)
b <- seq(from = -3, to = 3, length.out = n)
cat("The output order should be roughly 1 to ", n)
cat(FIC_reorder_univar(a, b, m, locs, cov_name, covparms))</pre>
```

find_nn_corr

Find ordered nearest neighbors based on a correlation Matrix. Assuming the absolute value of the correlation is monotonically decreasing with distance. Returns an X(m+1) matrix similar to 'GpGp::find_ordered_nn'.

Description

Find ordered nearest neighbors based on a correlation Matrix. Assuming the absolute value of the correlation is monotonically decreasing with distance. Returns an $n \times (m + 1)$ matrix similar to 'GpGp::find_ordered_nn'.

Usage

```
find_nn_corr(corrMat, m)
```

Arguments

corrMat the correlation matrix

m the number of nearest neighbors

Value

```
an n X (m + 1) matrix
```

get_sp_inv_chol

Examples

```
library(GpGp)
library(VeccTMVN)
set.seed(123)
d <- 3
n <- 100
locs <- matrix(runif(d * n), n, d)
covparms <- c(2, 0.01, 0)
cov_mat <- GpGp::matern15_isotropic(covparms, locs)
m <- 10
NNarray_test <- GpGp::find_ordered_nn(locs, m = m)
NNarray <- find_nn_corr(cov_mat, m)
cat("Number of mismatch is", sum(NNarray != NNarray_test, na.rm = TRUE))</pre>
```

get_sp_inv_chol

Get the inverse upper Cholesky factor under the Vecchia approximation

Description

Get the inverse upper Cholesky factor under the Vecchia approximation

Usage

```
get_sp_inv_chol(covMat, NNarray)
```

Arguments

covMat the covariance matrix

NNarray $n \times (m + 1)$ matrix representing the nearest neighbor indices among previous

observations. This is typically the return of GpGp::find_ordered_nn

Value

upper Cholesky of the inverse of 'covMat'

Examples

loglk_censor_MVN 5

```
U_Vecc <- get_sp_inv_chol(cov_mat, NNarray)
U <- solve(chol(cov_mat))
cat("Frobenius norm of the difference is", sqrt(sum((U - U_Vecc)^2)))</pre>
```

loglk_censor_MVN

Compute censored multivariate normal (MVN) log-probabilities that have spatial covariance matrices using Vecchia approximation

Description

Compute censored multivariate normal (MVN) log-probabilities that have spatial covariance matrices using Vecchia approximation

Usage

```
loglk_censor_MVN(
  locs,
  indCensor,
  y,
  bCensor,
  covName = NULL,
  covParms = NULL,
  m = 30,
  NLevel1 = 10,
  NLevel2 = 1000,
  verbose = TRUE
)
```

Arguments

locs location (feature) matrix n X d

indCensor indices of locations that have only censored observations

y observed (not censored) values, of length n

bCensor upper bound, above which observations are not censored, can be different for

different locations, of length 1 or n

covName covariance function name from the 'GpGp' package

covParms parameters for 'covName'

m Vecchia conditioning set size

NLevel1 first level Monte Carlo sample size

NLevel2 second level Monte Carlo sample size

verbose verbose level

Value

estimated MVN probability and estimation error

6 mvrandn

mvrandn

Simulate truncated multivariate normal (TMVN) using the Vecchia approximation

Description

Simulate truncated multivariate normal (TMVN) using the Vecchia approximation

Usage

```
mvrandn(
  lower,
  upper,
  mean,
  locs = NULL,
  covName = "matern15_isotropic",
  covParms = c(1, 0.1, 0),
  m = 30,
  sigma = NULL,
  N = 1000,
  verbose = FALSE
)
```

Arguments

lower lower bound vector for TMVN upper upper bound vector for TMVN

mean MVN mean

locs location (feature) matrix n X d

covName covariance function name from the 'GpGp' package

covParms parameters for 'covName'

m Vecchia conditioning set size

sigma dense covariance matrix, not needed when 'locs' is not null

N number of samples required

verbose verbose level

Value

n X N matrix of generated samples

mvrandt 7

mvrandt	Simulate truncated multivariate normal (TMVT) using the Vecchia ap-
	proximation

Description

Simulate truncated multivariate normal (TMVT) using the Vecchia approximation

Usage

```
mvrandt(
  lower,
  upper,
  delta,
  df,
  locs = NULL,
  covName = "matern15_isotropic",
  covParms = c(1, 0.1, 0),
  m = 30,
  sigma = NULL,
  N = 1000,
  verbose = FALSE
)
```

Arguments

lower	lower bound vector for TMVT
upper	upper bound vector for TMVT
delta	MVT shifting parameter
df	degrees of freedom
locs	location (feature) matrix n X d
covName	covariance function name from the 'GpGp' package
covParms	parameters for 'covName'
m	Vecchia conditioning set size
sigma	dense covariance matrix, not needed when 'locs' is not null
N	number of samples required
verbose	verbose level

Value

n X N matrix of generated samples

8 pmvn

pmvn

Compute multivariate normal (MVN) probabilities that have spatial covariance matrices using Vecchia approximation

Description

Compute multivariate normal (MVN) probabilities that have spatial covariance matrices using Vecchia approximation

Usage

```
pmvn(
  lower,
  upper,
 mean,
  locs = NULL,
  covName = "matern15_isotropic",
  covParms = c(1, 0.1, 0),
 m = 30,
  sigma = NULL,
  reorder = 0,
 NLevel1 = 12,
 NLevel2 = 10000,
  verbose = FALSE,
  retlog = FALSE,
)
```

Arguments

lower	lower bound vector for TMVN
upper	upper bound vector for TMVN

MVN mean mean

locs location (feature) matrix n X d

covariance function name from the 'GpGp' package covName

covParms parameters for 'covName' Vecchia conditioning set size m

dense covariance matrix, not needed when 'locs' is not null sigma

whether to reorder integration variables. '0' for no, '1' for FIC-based univarireorder

ate ordering, '2' for Vecchia-based univariate ordering, and '3' for univariate

reordering, which appeared faster than '2'

first level Monte Carlo sample size NLevel1 NLevel2 second level Monte Carlo sample size

verbose verbose or not pmvn_MLMC 9

```
retlog TRUE or FALSE for whether to return loglk or not could be m_ord for conditioning set size for reordering
```

Value

estimated MVN probability and estimation error

pmvn_MLMC

Applying the multi-level Monte Carlo (MLMC) technique to the pmvn function The function uses NLevel1 = 1 for m = m2 and the same exponential tilting parameter as m = m1 to compute one MC estimate. This MC estimate is used to correct the bias from the Vecchia approximation

Description

Applying the multi-level Monte Carlo (MLMC) technique to the pmvn function The function uses NLevel1 = 1 for m = m2 and the same exponential tilting parameter as m = m1 to compute one MC estimate. This MC estimate is used to correct the bias from the Vecchia approximation

Usage

```
pmvn_MLMC(
  lower,
  upper,
 mean,
  locs = NULL,
  covName = "matern15_isotropic",
  covParms = c(1, 0.1, 0),
 m1 = 30,
 m2 = 100,
  sigma = NULL,
  reorder = 0,
 NLevel1 = 12,
 NLevel2 = 10000,
 verbose = FALSE,
  retlog = FALSE,
)
```

Arguments

lower	lower bound vector for TMVN
upper	upper bound vector for TMVN
mean	MVN mean
locs	location (feature) matrix n X d

10 pmvt

covName	covariance function name from the 'GpGp' package
covParms	parameters for 'covName'
m1	the smaller Vecchia conditioning set size for Level 1 MC
m2	the bigger Vecchia conditioning set size for Level 2 MC
sigma	dense covariance matrix, not needed when 'locs' is not null
reorder	whether to reorder integration variables. '0' for no, '1' for FIC-based univariate ordering, '2' for Vecchia-based univariate ordering, and '3' for univariate reordering, which appeared faster than '2'
NLevel1	first level Monte Carlo sample size
NLevel2	second level Monte Carlo sample size
verbose	verbose or not
retlog	TRUE or FALSE for whether to return loglk or not
	could be m_ord for conditioning set size for reordering

Value

estimated MVN probability and estimation error

pmvt Compute multivariate Student-t (MVT) probabilities that have spatial covariance matrices using Vecchia approximation

Description

Compute multivariate Student-t (MVT) probabilities that have spatial covariance matrices using Vecchia approximation

Usage

```
pmvt(
 lower,
 upper,
  delta,
 df,
 locs = NULL,
  covName = "matern15_isotropic",
  covParms = c(1, 0.1, 0),
 m = 30,
  sigma = NULL,
  reorder = 0,
 NLevel1 = 12,
 NLevel2 = 10000,
 verbose = FALSE,
  retlog = FALSE,
)
```

pmvt_MLMC 11

Arguments

lower lower bound vector for TMVT upper upper bound vector for TMVT delta MVT shifting parameter

df degrees of freedom

locs location (feature) matrix n X d

covName covariance function name from the 'GpGp' package

covParms parameters for 'covName'

m Vecchia conditioning set size

sigma dense covariance matrix, not needed when 'locs' is not null

reorder whether to reorder integration variables. '0' for no, '1' for FIC-based univari-

ate ordering, '2' for Vecchia-based univariate ordering, and '3' for univariate

reordering, which appeared faster than '2'

NLevel1 first level Monte Carlo sample size

NLevel2 second level Monte Carlo sample size

verbose verbose or not

retlog TRUE or FALSE for whether to return loglk or not

... could be m_ord for conditioning set size for reordering

Value

estimated MVT probability and estimation error

pmvt_MLMC	Applying the multi-level Monte Carlo (MLMC) technique to the pmvt function The function uses NLevel1 = 1 for m = m2 and the same exponential tilting parameter as m = m1 to compute one MC estimate. This MC estimate is used to correct the bias from the Vecchia approxima-
	tion

Description

Applying the multi-level Monte Carlo (MLMC) technique to the pmvt function The function uses NLevel1 = 1 for m = m2 and the same exponential tilting parameter as m = m1 to compute one MC estimate. This MC estimate is used to correct the bias from the Vecchia approximation

pmvt_MLMC

Usage

```
pmvt_MLMC(
  lower,
 upper,
 delta,
 df,
 locs = NULL,
 covName = "matern15_isotropic",
 covParms = c(1, 0.1, 0),
 m1 = 30,
 m2 = 100,
 sigma = NULL,
 reorder = 0,
 NLevel1 = 12,
 NLevel2 = 10000,
 verbose = FALSE,
 retlog = FALSE,
)
```

Arguments

lower	lower bound vector for TMVT
upper	upper bound vector for TMVT
delta	MVT shifting parameter
df	degrees of freedom
locs	location (feature) matrix n X d
covName	covariance function name from the 'GpGp' package
covParms	parameters for 'covName'
m1	the smaller Vecchia conditioning set size for Level 1 MC
m2	the bigger Vecchia conditioning set size for Level 2 MC
sigma	dense covariance matrix, not needed when 'locs' is not null
reorder	whether to reorder integration variables. '0' for no, '1' for FIC-based univariate ordering, '2' for Vecchia-based univariate ordering, and '3' for univariate reordering, which appeared faster than '2'
NLevel1	first level Monte Carlo sample size
NLevel2	second level Monte Carlo sample size
verbose	verbose or not
retlog	TRUE or FALSE for whether to return loglk or not
	could be m_ord for conditioning set size for reordering

Value

estimated MVT probability and estimation error

ptmvrandn 13

ptmvrandn	Simulate partially censored multivariate normal (MVN) at censored
	locations using the Vecchia approximation

Description

Simulate partially censored multivariate normal (MVN) at censored locations using the Vecchia approximation

Usage

```
ptmvrandn(
  locs,
  indCensor,
  y,
  bCensor,
  covName = NULL,
  covParms = NULL,
  m = 30,
  N = 1000,
  verbose = TRUE,
  reorder = TRUE
)
```

Arguments

locs location (feature) matrix n X d

indCensor indices of locations that have only censored observations

y observed (not censored) values, of length n

bCensor upper bound, above which observations are not censored, can be different for

different locations, of length 1 or n

covName covariance function name from the 'GpGp' package

covParms parameters for 'covName'

m Vecchia conditioning set size

N number of samples required

verbose verbose level

reorder whether to Vecchia univariate variable reordering

Value

n X N matrix of generated samples

14 VeccTMVN

univar_order	Univariate variable reordering, described in Genz and Bretz (2009) If failed due to PD singularity, the unfinished order will be returned and a warning will be issued
	a warning will be issuea

Description

Univariate variable reordering, described in Genz and Bretz (2009) If failed due to PD singularity, the unfinished order will be returned and a warning will be issued

Usage

```
univar_order(a, b, sigma)
```

Arguments

a	lower integration limits
b	upper integration limits
sigma	covariance matrix

Value

the new order

|--|

Description

Compute multivariate normal probabilities and sample from multivariate truncated normal distribution, taking advantage of the Vecchia approximation

Author(s)

jcao2416@gmail.com

Vecc_reorder 15

Vecc_reorder

Univariate ordering under Vecchia approximation

Description

Univariate ordering under Vecchia approximation

Usage

```
Vecc_reorder(
   a,
   b,
   m,
   locs = NULL,
   covName = NULL,
   covParms = NULL,
   covMat = NULL
)
```

Arguments

lower bound vector for TMVN
upper bound vector for TMVN
Vecchia conditioning set size
location (feature) matrix n $X\ d$

covName covariance function name from the 'GpGp' package

covParms parameters for 'covName'

covMat dense covariance matrix, not needed when 'locs' is not null

Value

new order, nearest neighbor matrix, and coefficient matrix

Examples

```
library(lhs)
library(GpGp)
library(VeccTMVN)
set.seed(123)
n <- 100
m <- 5
locs <- lhs::geneticLHS(n, 2)
covparms <- c(1, 0.1, 0)
cov_name <- "matern15_isotropic"
cov_mat <- get(cov_name)(covparms, locs)
a <- rep(-Inf, n)</pre>
```

Vecc_reorder

```
b <- runif(n)
odr_TN <- TruncatedNormal::cholperm(cov_mat, a, b)$perm
rslt <- Vecc_reorder(a, b, m,
   locs = locs, covName = cov_name,
   covParms = covparms
)
# compare order
cat(rslt$order)
cat(odr_TN)</pre>
```

Index

```
FIC_reorder_univar, 2
find_nn_corr, 3

get_sp_inv_chol, 4

loglk_censor_MVN, 5

mvrandn, 6
mvrandt, 7

pmvn, 8
pmvn_MLMC, 9
pmvt, 10
pmvt_MLMC, 11
ptmvrandn, 13

univar_order, 14

Vecc_reorder, 15
VeccTMVN, 14
```