CODIFICACIÓN DE PROGRAMAS, FUNCIONES NO COMPUTABLES Y PROGRAMAS UNIVERSALES

1. Codificación de Programas

Tenemos como objetivo asignarle un número natural a cada programa en lenguaje S, es decir definir $\sharp \mathcal{P} \in \mathbb{N}$. Además queremos que se cumplan las siguientes restricciones:

- 1. Si dos programas \mathcal{P} y \mathcal{P}' son distintos, entonces queremos que $\sharp \mathcal{P} \neq \sharp \mathcal{P}'$.
- 2. Dado cualquier $n \in \mathbb{N}$, queremos que exista un programa en lenguaje S tal que $\sharp \mathcal{P} = n$.

Es decir, lo que queremos definir es una función biyectiva:

$$\sharp : \{ Programas en lenguaje S \} \rightarrow \mathbb{N}$$

Por lo tanto para lograr esta codificación de programas, primero vamos a codificar las instrucciones.

1.1. Codificación de Instrucciones.

Enumeramos las variables en el siguiente orden:

$$Y, X_1, Z_1, X_2, Z_2, X_3, Z_3, \cdots$$

es decir, la variable Y esta en la posición 1 de la lista, la variable X_1 está en la posición 2 de la lista, etc.

Enumeramos las etiquetas en el siguiente orden:

$$A_1, B_1, C_1, D_1, E_1, A_2, B_2, C_2, \cdots$$

es decir, la etiqueta A_1 esta en la posición 1 de la lista, la etiqueta A_2 está en la posición 6 de la lista, etc.

Si bien se dispone de las siguientes 3 instrucciones en el lenguaje S:

$$V \leftarrow V + 1$$

$$V \leftarrow V - 1$$

$$IF \ V \neq 0 \ GOTO \ L$$

vamos a agregar una instrucción que no hace nada:

$$V \leftarrow V$$
1

Definimos

$$\sharp: \{Instrucciones\} \to \mathbb{N}$$

de la siguiente forma:

$$\sharp I = \langle a, \langle b, c \rangle \rangle$$

Veamos qué representan \mathbf{a} , \mathbf{b} y \mathbf{c} :

a: Está asociado a la etiqueta de la instrucción.

$$a = \begin{cases} 0 & si\ I\ no\ tiene\ etiqueta \\ \sharp L & si\ I\ tiene\ adelante\ la\ etiqueta\ L \end{cases}$$
 c: Está asociado a la variable que aparece en la instrucción.

 $C = \sharp V - 1$, siendo V la variable que aparece en la instrucción I.

b: Está asociado al tipo de instrucción.

$$b = \begin{cases} 0 & \text{si } I \text{ es } V \leftarrow V \\ 1 & \text{si } I \text{ es } V \leftarrow V + 1 \\ 2 & \text{si } I \text{ es } V \leftarrow V - 1 \\ \sharp L + 2 & \text{si } I \text{ es } IF \text{ } V \neq 0 \text{ } GOTO \text{ } L \end{cases}$$

Proposición 1.1. La función recién definida que asigna un número natural a cada instrucción es biyectiva.

Ejercicio 1. .

- 1. Hallar la instrucción de código 6.
- 2. Hallar el código de la instrucción:

$$[B_1]$$
 IF $Z_3 \neq 0$ GOTO A_1

1.2. Codificación de programas. .

Dado un programa \mathcal{P} que tiene k instrucciones: I_1, I_2, \dots, I_k definimos

$$\sharp: \{Programas\} \to \mathbb{N}$$

de la siguiente manera:

$$\sharp \mathcal{P} = [(\sharp I_1, \cdots, \sharp I_k)] - 1$$

Ejercicio 2. Hallar el código del siguiente programa:

$$[B_1] X_1 \leftarrow X_1 - 1$$
$$IF X_1 \neq 0 \ GOTO B_1$$

Ejercicio 3. Hallar el código del siguiente programa:

$$[B_1] X_1 \leftarrow X_1 - 1$$

$$IF X_1 \neq 0 \ GOTO B_1$$

$$Y \leftarrow Y$$

Luego de resolver los dos ejercicios anteriores, detectamos que la función recién definida no es inyectiva. Para resolver este problema vamos a agregar una restricción a los programas escritos en lenguaje S:

La última instrucción no puede ser $Y \leftarrow Y$, a menos que sea la única instrucción.

Proposición 1.2. La función recién definida que asigna un número natural a cada programa es biyectiva.

Ejercicio 4. Hallar el programa de código 71.

2. Funciones no computables

Tesis 2.1 (de Church). Todos los algortimos para computar funciones $f: A \subset \mathbb{N}^k \to \mathbb{N}$ se pueden programar en lenguaje S.

Teorema 2.1. Existen funciones no computables.

Teorema 2.2. La función $Halt : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definida de la siguiente manera:

$$Halt(x,y) = \left\{ egin{array}{ll} 1 & si \ el \ programa \ de \ c\'odigo \ y \ ante \ la \ entrada \ x \ se \ detiene \ 0 & sino \end{array}
ight.$$

no es computable.

3. Programas universales

Definimos para cada $n \in \mathbb{N}_{>0}$ la siguiente función:

$$\phi^n(x_1,\cdots,x_n,e)=\psi^n_{\mathcal{D}}(x_1,\cdots,x_n)$$

siendo $\sharp \mathcal{P} = e$.

Notemos que esta función solo está definida si el programa \mathcal{P} termina ante la entrada (x_1, \dots, x_n) y en ese caso devuelve la salida del programa.

Teorema 3.1. La función ϕ^n es parcialmente computable para cada $n \in \mathbb{N}_{>0}$.

Demostraci'on: El siguiente programa computa la función universal $\Phi^n,$

tal que $\Phi(x_1, \dots, x_n, e) = \psi_P^n(x_1, \dots, x_n)$ siendo P = #e:

- 1) $Z \leftarrow X_{n+1} + 1$
- 2) $S = \prod_{i=1}^{n} p_{2i}^{X_i}$
- 3) $K \leftarrow 1$
- 4) [C] IF $K = \mid Z \mid +1 \lor K = 0$ GOTO F
- 5) $U \leftarrow r(Z[k])$
- 6) $P \leftarrow p_{r(U)+1}$
- 7) IF l(U) = 0 GOTO N
- 8) IF l(U) = 1 GOTO S
- 9) IF $\neg (DIV(P, S))$ GOTO N
- 10) IF l(U) = 2 GOTO R
- 11) $K \leftarrow \min_{i < |Z|} (l(Z[i]) + 2 = l(U))$
- 12) GOTO C
- 13) [R] $S \leftarrow coc(P,S)$
- 14) GOTO N
- 15) [S] $S \leftarrow S \cdot P$
- 16) GOTO N
- 17) $[N] K \leftarrow K + 1$
- 18) GOTO C
- 19) $[F] Y \leftarrow S[1]$

Analicemos un poco el programa...

En la primer instrucción se guarda en la variable $Z=[\#I_1,\cdots,\#I_n]$, dado que $X_{n+1}=e=[\#I_1,\cdots,\#I_n]-1$.

En el segundo renglón se guarda en la variable S el estado inicial del programa de código e, de la siguiente manera: $S = [0, X_1, 0, X_2, 0, \cdots, 0, X_n]$

En el tercer renglón se guarda en la variable K la instrucción a la que se apunta del programa de código e.

En el renglón 4, si la instrucción a la que se apunta en el programa de código e es la 0 (que no existe) o la siguiente a la última (que no existe) se direcciona a la etiqueda F, sino quiere decir que apunta a una instrucción correcta del programa de código e que hay que decodificar para ejecutarla y para ello se va al siguiente renglón.

En el renglón 5: Recordemos que en Z[K] está el código de la K-ésima instrucción del programa de código e, es decir $Z[K] = \langle a, \langle b, c \rangle \rangle$, entonces se guarda en la variable $U = \langle b, c \rangle$.

En el renglón 6: La variable que aparece en la K-ésima instrucción del programa de código e es la (c+1)-ésima, entonces se guarda en P el (c+1)-ésimo primo, notemos que c=r(U), ya que U=< b,c>.

En el renglón 7: Si b=0, es una instrucción del tipo $V\leftarrow V$ y direcciona a la etiqueta N.

En el renglón 8: Si b=1, es una instrucción del tipo $V\leftarrow V+1$ y direcciona a la etiqueta S.

En el renglón 9: Si P no divide a S, es decir si la variable V tiene el valor 0, va a la etiqueta N,

En el renglón 10: Si b=2, es una instrucción del tipo $V \leftarrow V-1$, entonces direcciona a la etiqueta R.

En el renglón 11: Si se llegó hasta acá es porque $b \geq 2$, es decir es una instrucción del tipo IF. Por lo tanto el estado no cambia (S), y hay que determinar la próxima instrucción a ejecutar (a decodificar) del programa de código e y guardar su número en la variable K. Como enl(Z[j]) está guaradado el número a vinculado a la instrucción j, busca la primer instrucción cuya etiqueta tengo el número tal que si le sumo 2 es b.

En el renglón 13: Ejecuta la instrucción $V \leftarrow V - 1$ es decir divide S por P.

En el renglón 15: Ejecuta la instrucción $V \leftarrow V + 1$ es decir multiplica S por P.

Teorema 3.2. Existen funciones que son computables y no son recursivas primitivas.