### Formuleblad Statistiek (2024-2025)

#### Statistiek deel 1

Steekproefgemiddelde (gegeven een steekproef met n uitkomsten  $x_1, x_2, \ldots, x_n$ )

$$\overline{x} = \frac{\sum_{i} x_i}{n} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Steekproefvariantie en steekproefstandaardafwijking:

$$s^{2} = \frac{\sum_{i}(x_{i} - \overline{x})^{2}}{n - 1} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1}$$
$$s = \sqrt{s^{2}} = \sqrt{\frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1}}$$

#### Rekenregels kansrekening:

$$P(A \text{ of } B) = P(A) + P(B) - P(A \text{ en } B) \qquad \text{(optelregel)}$$
 
$$P(B) = 1 - P(\text{niet } B) \qquad \text{(complement regel)}$$
 
$$P(A \mid B) = \frac{P(A \text{ en } B)}{P(B)} \qquad \text{(conditionele kansen)}$$

#### Discrete en continue kansverdelingen:

|                     | Discrete kansvariabelen                                         | Continue kansvariabelen                                      |
|---------------------|-----------------------------------------------------------------|--------------------------------------------------------------|
| Uitkomstenruimte:   | Eindig / aftelbaar oneindig                                     | Overaftelbaar oneindig                                       |
| Toepassingen:       | Tellen / categoriseren                                          | Meten                                                        |
| Kansbegrip:         | Kansfunctie $p(k) = P(X = k)$                                   | $\mid$ Kansdichtheidsfunctie $f(x)$                          |
| CDF:                | $\mid F(k) = P(X \le k) = \sum_{\ell:\ell \le k} p(\ell)$       | $F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$             |
| Verwachtingswaarde: | $ E[X] = \sum_{k} k \cdot P(X = k) $                            | $ E[X] = \int x \cdot f(x) \ dx $                            |
| Variantie:          | $ \operatorname{Var}(X) = \sum_{k} (k - E[X])^2 \cdot P(X = k)$ | $ \operatorname{Var}(X) = \int (x - E[X])^2 \cdot f(x) \ dx$ |
| Standaardafwijking: | $\sigma(X) = \sqrt{\operatorname{Var}(X)}$                      | $\sigma(X) = \sqrt{\operatorname{Var}(X)}$                   |

#### Speciale kansverdelingen:

•  $X \sim \text{Binomiaal}(n, p)$ : tellen van aantal successen bij onafhankelijke kansexperimenten met twee uitkomsten (Bernoulli-experimenten): succes / mislukking.

**Parameters:** het aantal Bernoulli-experimenten n en de succeskans per experiment p.

•  $X \sim \text{Poisson}(\lambda \cdot t)$ : tellen van aantal "gebeurtenissen" in een "interval" van tijd / ruimte.

**Parameters:** het gemiddelde aantal gebeurtenissen  $\lambda$  per meeteenheid (tijd / ruimte) en het aantal meeteenheden t.

- $\rightarrow$  Voorbeeld: bij de meeteenheid van een dag bestaat een week uit t=7 meeteenheden.
- $T \sim \text{Exponentieel}(\lambda)$ : meten van de tijd / ruimte tot de volgende gebeurtenis.

**Parameter:** het gemiddelde aantal gebeurtenissen  $\lambda$  per meeteenheid (tijd / ruimte).

#### Verwachtingswaarde en variantie van veelgebruikte kansverdelingen:

| Verdeling                 | Kans(dichtheids)functie                                                                  | CDF                                                                                              | $\mid E(X) \mid$    | $\operatorname{Var}(X)$  |
|---------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------|--------------------------|
| Discreet                  |                                                                                          |                                                                                                  |                     |                          |
| Uniform $(a,b)$           | $p(k) = \frac{1}{b-a+1} \\ (k = a, a+1, \dots, b)$                                       | $F(k) = \begin{cases} 0 & x < a \\ \frac{k-a+1}{b-a+1} & a \le k < b \\ 1 & k \ge b \end{cases}$ | $\frac{a+b}{2}$     | $\frac{(b-a+1)^2-1}{12}$ |
| Binomiaal $(n, p)$        | $p(k) = \binom{n}{k} p^k (1-p)^{n-k}$                                                    | $F(k) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$                                          | np                  | np(1-p)                  |
| Poisson( $\lambda$ )      | $p(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$                                         | $F(k) = \sum_{i=0}^{k} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$                                | $\lambda$           | λ                        |
| Continuous                |                                                                                          |                                                                                                  |                     |                          |
| Uniform(a,b)              | $f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{elders.} \end{cases}$ | $F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$  | $\frac{a+b}{2}$     | $\frac{(b-a)^2}{12}$     |
| Exponentieel( $\lambda$ ) | $f(x) = \lambda e^{-\lambda x},  x \ge 0$                                                | $F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$                    | $\frac{1}{\lambda}$ | $\frac{1}{\lambda^2}$    |

#### Veelgebruikte functies op de grafische rekenmachine

| Type vraag                                                  | TI-84 Plus               | Casio               |  |
|-------------------------------------------------------------|--------------------------|---------------------|--|
| Continue kansverdeling (willekeurig)                        |                          |                     |  |
| $P(a \le X \le b)$                                          | $\int_{a}^{b} f(x)  dx$  | $\int_a^b f(x)  dx$ |  |
| $\overline{X}$                                              | $\sim$ Binomiaal $(n,p)$ |                     |  |
| $P(X = k)$ $P(X \le k)$                                     |                          |                     |  |
| $X \sim N(\mu, \sigma)$                                     |                          |                     |  |
| $P(a \le X \le b)$ Grenswaarde $g$ zodat $P(X \le g) = p$ ? |                          |                     |  |
| $X \sim \mathbf{Poisson}(\lambda)$                          |                          |                     |  |
| $P(X = k)$ $P(X \le k)$                                     |                          |                     |  |

z-score:

$$z = \frac{x - \mu}{\sigma}$$

Centrale limietstelling: Gegeven n kansvariabelen  $X_1, X_2, \ldots, X_n$  die onderling onafhankelijk zijn en dezelfde kansverdeling hebben met een verwachtingswaarde  $\mu$  en standaardafwijking  $\sigma$ , dan geldt (bij benadering) dat

- de som  $\sum X = X_1 + X_2 + \ldots + X_n$  normaal verdeeld is met verwachtingswaarde  $n \cdot \mu$  en standaardafwijking  $\sqrt{n} \cdot \sigma$ .
- het gemiddelde  $\overline{X}=\frac{X_1+X_2+...+X_n}{n}$  normaal verdeeld is met verwachtingswaarde  $\mu$  en standaardafwijking  $\frac{\sigma}{\sqrt{n}}$ .

#### Statistiek deel 2:

#### Betrouwbaarheidsintervallen voor het gemiddelde $\mu$ ( $\sigma$ bekend)

•  $100 \cdot (1 - \alpha)\%$ -betrouwbaarheidsinterval (BI) voor  $\mu$ :

$$\begin{split} z_{\alpha/2} &= \text{InvNorm}(\text{opp} = 1 - \alpha/2; \mu = 0; \sigma = 1) \\ & [\overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}] \end{split}$$

• Minimale steekproefomvang voor  $100 \cdot (1-\alpha)\%$ -BI als  $\mu$  maximaal  $\pm a$  mag afwijken:

$$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{a}\right)^2$$

#### Betrouwbaarheidsintervallen voor het gemiddelde $\mu$ ( $\sigma$ onbekend)

•  $100 \cdot (1-\alpha)\%$ -betrouwbaarheidsinterval (BI) voor  $\mu$ :

$$t = \text{InvT}(\text{opp} = 1 - \alpha/2; \text{df} = n - 1)$$
$$[\overline{x} - t \cdot \frac{s}{\sqrt{n}}; \overline{x} + t \cdot \frac{s}{\sqrt{n}}]$$

• Minimale steekproefomvang voor  $100 \cdot (1-\alpha)\%$ -BI als  $\mu$  maximaal  $\pm a$  mag afwijken:

GR tabel (voor verschillende 
$$n$$
):  $\frac{s}{\sqrt{n}} \cdot \text{InvT}(\text{opp} = 1 - \alpha/2; \text{df} = n - 1) \le a$ 

NB: zodra  $n \ge 30$ , vallen de normale en de t-verdeling nagenoeg samen. Je mag dan rekenen met de schatting s in plaats van de daadwerkelijke (onbekende)  $\sigma$ .

• Onderscheidend vermogen (toets met  $H_0: \mu = \mu_0$  vs.  $H_1: \mu \neq \mu_0$ , en gegeven  $\mu = \mu_1$ )

$$1 - \beta = P(\overline{X} \text{ neemt waarde aan in het kritieke gebied } | \mu = \mu_1)$$

#### Betrouwbaarheidsintervallen voor de binomiale succeskans p

Betrouwbaarheidsinterval voor p (Clopper-Pearson): Gegeven een binomiale verdeling met n Bernoulli-experimenten en onbekende p, en uitkomst k.

- 1. Bereken de succeskans  $p_1$  zodat geldt  $P(X \le k) = \operatorname{binomcdf}(n; p; k) = \alpha/2$
- 2. Bereken de succeskans  $p_2$  zodat geldt  $P(X \ge k) = 1 \mathrm{binomcdf}(n; p; k 1) = \alpha/2$
- 3. De berekende waarden voor  $p_1$  en  $p_2$  zijn de grenzen van het Clopper-Pearson interval.

#### Hypothesetoetsen

#### Stappenplan hypothesetoetsen

- 1. Definieer de nul<br/>hypothese  $H_0$  en de alternatieve hypothese  $H_1$ .
- 2. Bepaal het significantieniveau  $\alpha$  (kans op verwerpen van  $H_0$  terwijl  $H_0$  waar is  $\rightarrow$  type-I fout)
- 3. Verzamel data voor de toetsingsgrootheid
- 4. Bereken de toetsingsgrootheid
  - Uitgaande van de nulhypothese  $H_0$  maken we aannames over de kansverdeling van de toetsingsgrootheid!
- 5. Geef een conclusie (met behulp van het kritieke gebied / *p*-waarde) en vertaal deze terug naar de originele probleemcontext.

#### Drie typen hypothesetoetsen: linkszijdig, tweezijdig, rechtszijdig

# **Linkszijdige toets**Kritiek gebied:

 $(-\infty;g]$ 

## **Tweezijdige toets**Kritiek gebied:

 $(-\infty; g_1]$  en  $[g_2; \infty)$ 

### Rechtszijdige toets

Kritiek gebied:







| Kansverdeling (onder $H_0$ ) | Linkszijdig                                          | Tweezijdig                                                                                                                                                                         | Rechtszijdig                                  |
|------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| $N(\mu;\sigma)$              | $g = \text{InvNorm}(\alpha; \mu; \sigma)$            | $g_1 = \text{InvNorm}(opp = \frac{\alpha}{2}; \mu; \sigma)$<br>$g_2 = \text{InvNorm}(opp = 1 - \frac{\alpha}{2}; \mu; \sigma)$                                                     | $g = \text{InvNorm}(1 - \alpha; \mu; \sigma)$ |
| t(df)                        | $g = \operatorname{InvT}(\alpha; \operatorname{df})$ | $g_1 = \operatorname{InvT}(\operatorname{opp} = \frac{\alpha}{2}; \operatorname{df})$<br>$g_2 = \operatorname{InvT}(\operatorname{opp} = 1 - \frac{\alpha}{2}; \operatorname{df})$ | $g = \text{InvT}(1 - \alpha; df)$             |

#### Grenzen die met de solver functie moeten worden opgelost:

| $\chi^2(\mathrm{df})$ (chikwadraat) | $\chi^2 \mathrm{cdf}(0; g; \mathrm{df}) = \alpha$ | $\chi^2 \operatorname{cdf}(0; g_1; \operatorname{df}) = \frac{\alpha}{2}$ $\chi^2 \operatorname{cdf}(g_2; 10^{99}; \operatorname{df}) = \frac{\alpha}{2}$                                                                | $\chi^2 \mathrm{cdf}(g; 10^{99}; \mathrm{df}) = \alpha$                              |
|-------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| $F(\mathrm{df}_A;\mathrm{df}_B)$    |                                                   | $\begin{aligned} &\operatorname{Fcdf}(0;g_1;\operatorname{df}_A;\operatorname{df}_B) = \tfrac{\alpha}{2} \\ &\operatorname{Fcdf}(g_2;10^{99};\operatorname{df}_A;\operatorname{df}_B) = \tfrac{\alpha}{2} \end{aligned}$ | $\operatorname{Fcdf}(g; 10^{99}; \operatorname{df}_A; \operatorname{df}_B) = \alpha$ |

#### p-waardes uitrekenen (gegeven een theoretische en geobserveerde toetsingsgrootheid T en t)

| Kansverdeling (onder $H_0$ )     | Linkszijdig ( $P(T \leq t)$ )                                             | Rechtszijdig ( $P(T \ge t)$ )                                                   |
|----------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $N(\mu;\sigma)$                  | $p = \text{normalcdf}(-10^{99}; t; \mu; \sigma)$                          | $p = \text{normalcdf}(t; 10^{99}; \mu; \sigma)$                                 |
| t(df)                            | $p = \operatorname{tcdf}(-10^{99}; t; \operatorname{df})$                 | $p = \operatorname{tcdf}(t; 10^{99}; \operatorname{df})$                        |
| $\chi^2(\mathrm{df})$            | $p = \chi^2 \mathbf{cdf}(0; t; \mathbf{df})$                              | $p = \chi^2 \operatorname{cdf}(t; 10^{99}; \operatorname{df})$                  |
| $F(\mathrm{df}_A;\mathrm{df}_B)$ | $p = \operatorname{Fcdf}(0; t; \operatorname{df}_A; \operatorname{df}_B)$ | $p = \operatorname{Fcdf}(t; 10^{99}; \operatorname{df}_A; \operatorname{df}_B)$ |

NB: Om met de p-waarde een conclusie te trekken uit een hypothesetoets vergelijken we de p-waarde met het significantieniveau  $\alpha$ . Let op: bij tweezijdige toetsen neem je het minimum van de linkszijdige en rechtszijdige p-waarde en vergelijk je deze met  $\alpha/2!$ 

#### Soorten toetsen

| Soort toets                                                                     | Toetsingsgrootheid                                    | Kansverdeling (onder $H_0$ )                                                         |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Toetsen voor het gemiddelde $\mu \le \mu_0$ of $\mu = \mu_0$ of $\mu \ge \mu_0$ |                                                       |                                                                                      |  |
| $z$ -toets ( $\sigma$ bekend)                                                   | $\overline{X}$                                        | $N(\mu_0; \frac{\sigma}{\sqrt{n}})$                                                  |  |
| $t$ -toets ( $\sigma$ onbekend)                                                 | $T = \frac{\overline{X} - \mu_0}{\frac{s}{\sqrt{n}}}$ | t(df = n-1)                                                                          |  |
| Chikwadraattoetsen ( $\chi^2$ )                                                 |                                                       |                                                                                      |  |
| Onafhankelijkheid                                                               | $X^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$ | $\chi^{2}(df = (\#rijen-1) \cdot (\#kolommen-1))$ $\chi^{2}(df = (\#categorieen-1))$ |  |
| Aanpassing (goodness-of-fit)                                                    | $X^2 = \sum_i \frac{(O_i - E_i)^2}{E}$                | $\chi^2(df = (\#categorieen-1))$                                                     |  |

#### Verschiltoetsen (op basis van twee populaties A en B)

$$F\text{-toets: }\sigma_A^2 = \sigma_B^2 \qquad \qquad F = \frac{S_A^2}{S_B^2} \qquad \qquad F(\mathrm{df}_A,\mathrm{df}_B)$$
 
$$z\text{-toets} \qquad \qquad V = \overline{X_A} - \overline{X_B} \qquad \qquad N\left(\mu_A - \mu_B; \sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}\right)$$
 
$$t\text{-toets }(\sigma_A^2 = \sigma_B^2) \qquad \qquad T = \frac{(\overline{X_A} - \overline{X_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n} + \frac{S_B^2}{m}}} \qquad \qquad t(\mathrm{df} = n + m - 2)$$
 
$$t\text{-toets }(\sigma_A^2 \neq \sigma_B^2) \qquad \qquad T = \frac{(\overline{X_A} - \overline{X_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{S_A^2}{n} + \frac{S_B^2}{m}}} \qquad \qquad t(\mathrm{df} = \min(n - 1; m - 1))$$

#### Beslisboom verschiltoetsen



#### Correlatie en regressie

Correlatiecoëfficiënt van Pearson:

$$r = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{(\overline{x^2} - \overline{x}^2) \cdot (\overline{y^2} - \overline{y}^2)}}$$

Correlatiecoëfficiënt van Spearman:

$$r_s = 1 - \frac{6 \cdot \sum_i d_i^2}{n^3 - n}$$

Coëfficiënten van de lineaire regressielijn  $Y = a + b \cdot X$ :

$$b = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2}$$
$$a = \overline{y} - b \cdot \overline{x}$$

Schatting van de variantie van de storingsterm  $\varepsilon$ :

$$s_{\varepsilon}^{2} = \frac{\sum e_{i}^{2}}{n-2} = \frac{\sum (y_{i} - (a+b \cdot x_{i}))^{2}}{n-2} = \frac{n}{n-2} \cdot \left(\overline{y^{2}} - a \cdot \overline{y} - b \cdot \overline{xy}\right)$$

 $100 \cdot (1 - \alpha)$ %-betrouwbaarheidsinterval voor de gemiddelde Y bij een gegeven  $X = x_0$ :

$$t = \text{InvT}(\text{opp} = 1 - \alpha/2; \text{df} = n - 2)$$

$$s_{\mu} = s_{\varepsilon} \cdot \sqrt{\frac{1}{n} \cdot \left(1 + \frac{(x_0 - \overline{x})^2}{\overline{x^2} - \overline{x}^2}\right)}$$

$$[a+b\cdot x_0-t\cdot s_\mu;a+b\cdot x_0+t\cdot s_\mu]$$

 $100 \cdot (1 - \alpha)\%$ -betrouwbaarheidsinterval voor Y bij een gegeven  $X = x_0$ :

$$t = \text{InvT}(\mathsf{opp} = 1 - \alpha/2; \mathsf{df} = n - 2)$$

$$s_f = s_{\varepsilon} \cdot \sqrt{1 + \frac{1}{n} \cdot \left(1 + \frac{(x_0 - \overline{x})^2}{\overline{x^2} - \overline{x}^2}\right)}$$

$$[a+b\cdot x_0-t\cdot s_f;a+b\cdot x_0+t\cdot s_f]$$