Existential Elimination and Soundness

LOGIC I Benjamin Brast-McKie November 29, 2023

Substitution

Free For: β is FREE FOR α in φ just in case there is no free occurrence of α in φ in the scope of a quantifier that binds β .

Substitution: If β is free for α in φ , then the SUBSTITUTION $\varphi[\beta/\alpha]$ is the result of replacing all free occurrences of α in φ with β .

QD Rules

- (∀E) ∀αφ ⊢ φ[β/α] where β is a constant and α is a variable.
- $(\exists I) \varphi[\beta/\alpha] \vdash \exists \alpha \varphi$ where β is a constant and α is a variable.
- (\forall I) $\varphi[\beta/\alpha] \vdash \forall \alpha \varphi$ where β is a constant, α is a variable, and β does not occur in $\forall \alpha \varphi$ or in any undischarged assumption.
- (\exists E) If $\exists \alpha \varphi$, $\varphi[\beta/\alpha] \vdash \psi$ where β is a constant that does not occur in $\exists \alpha \varphi$, ψ , or in any undischarged assumption, then $\exists \alpha \varphi \vdash \psi$.
- (=I) $\vdash \alpha = \alpha$ for any constant α .
- (=E) $\varphi[\alpha/\gamma], \alpha = \beta \vdash \varphi[\beta/\gamma].$

Existential Elimination

Task 1: Regiment and derive the following in QD.

- The elephant would not obey.
 Patrick is an elephant.
 Patrick would not obey.
- 2. $\forall x(Jx \supset Kx)$ $\exists x \forall y Lxy$ $\forall x Jx$ $\exists x(Kx \land Lxx)$.
- 3. $\frac{\exists x (Px \supset \forall x Qx)}{\forall x Px \supset \forall x Qx.}$
- 4. $\frac{\exists x Px \vee \exists x Qx}{\exists x (Px \vee Qx)}.$
- 5. Every nonempty asymmetric relation is non-symmetric.

Natural to Normative

Soundness: If $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.

- 1. Shows that we can trust QD to establish validity.
- 2. Easier to derive a conclusion that to provide a semantic argument.
- 3. The natural rules of deduction preserve validity.

Natural: QD describes (approximately) how we in fact reason.

Normative: Soundness explains why we ought to use QD to reason.

Soundness of QD

Assume: $\Gamma \vdash_{QD} \varphi$, so there is a QD proof X of φ from Γ .

Lines: Let φ_i be the *i*th line of *X*.

Dependencies: Let Γ_i be the undischarged assumptions at line *i*.

Proof: The proof goes by induction on length of *X*:

Base: $\Gamma_1 \vDash \varphi_i$.

Induction: If $\Gamma_k \vDash \varphi_k$ for all $k \le n$, then $\Gamma_{n+1} \vDash \varphi_{n+1}$.

Finite: Since *X* is finite, there is some *m* where $\Gamma_m = \Gamma$ and $\varphi_m = \varphi$, so $\Gamma \vDash \varphi$.

Base Case

Proof: Every line in a QD proof is either a premise or follows by the rules.

Assume: φ_1 is either a premise or follows by AS or =I.

Premise: If φ_1 is a premise or assumption, then $\Gamma_1 = {\varphi_1}$, and so $\Gamma_1 \vDash \varphi_1$.

Identity: If φ_1 follows by =I, then φ_1 is $\alpha = \alpha$ for some constant α .

- Letting $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ be any model, $\mathcal{I}(\alpha) = \mathcal{I}(\alpha)$.
- Letting *a* be a variable assignment, $\mathcal{V}_{\mathcal{T}}^{a}(\alpha) = \mathcal{V}_{\mathcal{T}}^{a}(\alpha)$.
- So $\mathcal{V}_{\tau}^{a}(\alpha = \alpha) = 1$, and so $\vDash \alpha = \alpha$.
- Thus $\Gamma_1 \vDash \varphi_1$ since $\Gamma_1 = \varnothing$.

Induction Case

Assume: $\Gamma_k \vDash \varphi_k$ for all $k \le n$.

Undischarged: If φ_{n+1} is a premise or assumption, then the argument above applies.

Rules: If φ_{n+1} follows from Γ_{n+1} by the QD rules, then $\Gamma_{n+1} \vDash \varphi_{n+1}$.

Cases: There are 12 rules in SD and an additional 6 in QD.

Further Problems: Relations

- **Task 1:** Regiment and derive the following in QD.
 - 1. Every transitive and symmetric relation is quasi-reflexive.
 - 2. Only the empty relation is symmetric and asymmetric.
 - 3. Every intransitive relation is irreflexive.
 - 4. Every intransitive relation is asymmetric.