Отчёт по лабораторной работе 17

Задания для самостоятельной работы

Наталья Андреевна Сидорова

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	21
Сг	писок литературы	22

Список иллюстраций

3.1	Вычислительный центр	8
3.2	Отчет	9
3.3	Аэропорт	11
3.4	Отчет	12
3.5	Морской порт первый случай	13
3.6	Отчет	14
3.7	Морской порт первый случай, оптимальное число причалов	15
	Отчет	16
3.9	Морской порт второй случай	17
3.10	Отчет	18
3.11	Морской порт второй случай, оптимальное число причалов	19
3 1 2	Отчет	20

Список таблиц

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта[1].

2 Задание

Реализовать с помощью gpss[2]:

- 1. модель работы вычислительного центра;
- 2. модель работы аэропорта;
- 3. модель работы морского порта.

3 Выполнение лабораторной работы

Моделирование работы вычислительного центра. На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку. Код состоит из трех блоков: первые два обрабатывают задания класса А и В, используя один элемент ЭВМ, а третий обрабатывает задания класса С, используя два элемента ЭВМ. Также есть блок времени генерирующий 4800 минут (80 часов). (рис. 3.1).

evm STORAGE 2

- ; KJACC A
 GENERATE 20,5
 QUEUE que_A
 ENTER evm,1
 DEPART que_A
 ADVANCE 20,5
 LEAVE evm,1
 TERMINATE 0
- ; KJACC B
 GENERATE 20,10
 QUEUE que_B
 ENTER evm,1
 DEPART que_B
 ADVANCE 21,3
 LEAVE evm,1
 TERMINATE 0
- ; KJACC C
 GENERATE 28,5
 QUEUE que_C
 ENTER evm,2
 DEPART que_C
 ADVANCE 28,5
 LEAVE evm,2
 TERMINATE 0
- ; timer GENERATE 4800 TERMINATE 1 START 1

Рис. 3.1: Вычислительный центр

Отчет. Загруженность системы равна 0.994. (рис. 3.2).

	START T	IME						CILITIES	STO	RAGES	
	0.	000		48	300.000	23		0		1	
	NAME					VALUE					
	EVM				10	000.000					
	QUE A				10	001.000					
	QUE B				10	002.000					
	QUE_C				10	003.000					
LABEL		LOC	BLO	CK TYE	PE 1	ENTRY CO	OUNT (CURRENT	COUNT	RETRY	
		1	GEN	ERATE		240			0	0	
		2	QUE	UE		240			4	0	
		3	ENT	ER		236			0	0	
		4		ART		236			0	0	
		5	ADV	ANCE VE		236			1	0	
		6	LEA	VE		235			0	0	
		7	TER	MINATE	Ξ	235			0	0	
		8	GEN	ERATE		236			0	0	
		9	QUE	UE		236			5	0	
		10	ENT			231			0	0	
		11	DEP	ART		231			0	0	
		12	ADV	ANCE		231			1	0	
		13	LEA	VE		230			0	0	
				MINATE		230			0	0	
		15		ERATE		172			0	0	
			QUE	UE		172		17		0	
		17	ENT			0			0	0	
		18		ART		0			0	0	
				ANCE		0			0	0	
		20	LEA	VE		0			0	0	
		21	TER	MINATE	Ξ	0			0	0	
		22		ERATE		1			0	0	
		23	TER	MINATE	2	1			0	0	
QUEUE		MAX	CONT.	ENTRY	Y ENTRY	(0) AVE.	CONT	. AVE.TI	ME	AVE.(-0)	RETR
QUE A		7	4	240)	3 3.	288	65.7	65	66.597	0
QUE_A QUE B		7	5	236	5	1 3.				66.987	
QUE_C										2394.038	
STORAGE		CAP.	REM.	MIN.	MAX.	ENTRIES	AVL.	AVE.C.	UTIT	. RETRY	DELAY
EVM				0				1.988			181

Рис. 3.2: Отчет

Модель работы аэропорта. Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для

посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине. Требуется: 1. выполнить моделирование работы аэропорта в течение суток; 2. подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром; 3. определить коэффициент загрузки взлетно-посадочной полосы. Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком в запасном аэродроме. Время задаем в минутах – 1440 (24 часа). (рис. 3.3).

```
; посадка
GENERATE 10,5,,1
ASSIGN 1,0
QUEUE que ar
check GATE NU line, wait
SEIZE line
DEPART que ar
ADVANCE 2
RELEASE line
TERMINATE 0
; ожидание
wait TEST L pl,5,skip
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0, check
skip SEIZE dop
DEPART que ar
RELEASE dop
TERMINATE 0
; взлет
GENERATE 10,2,,,2
QUEUE que fly
SEIZE line
DEPART que fly
ADVANCE 2
RELEASE line
TERMINATE 0
; timer
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 3.3: Аэропорт

Отчет. Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется. (рис. 3.4).

LABEL	LOC	BLOCK TYPE	E ENTE	RY COUNT	CURRENT	COUNT	RETRY	
	1	GENERATE		146		0	0	
	2	ASSIGN		146		0	0	
	3	QUEUE GATE		146		0	0	
CHECK	4	GATE		184		0	0	
		CETTE		146		0	0	
	6	DEPART		146		0	0	
	7	ADVANCE		146		0	0	
	8	RELEASE		146		0	0	
	9	TERMINATE		146		0	0	
WAIT	10	TEST		38		0	0	
	11	ADVANCE		38		0	0	
	12	ASSIGN		38		0	0	
	13	TRANSFER		38		0	0	
SKIP	14	SEIZE		0		0	0	
	15	DEPART		0		0	0	
	16	RELEASE		0		0	0	
	17	TERMINATE		0		0	0	
	18	GENERATE		142			0	
	19	QUEUE		142		0	0	
	20	SEIZE		142		0	0	
	21	DEPART		142		0	0	
	22	ADVANCE		142		0	0	
	23	RELEASE		142		0	0	
		TERMINATE		142		0	0	
	25	GENERATE		1		0	0	
	26	TERMINATE		1		0	0	
FACILITY	ENTRIES	UTIL. 1	AVE. TIME	AVAIL.	OWNER PE	IND INT	ER RETRY	DELAY
LINE		0.400						
QUEUE QUE_FLY QUE_AR	MAX C	ONT. ENTRY	ENTRY(0)	AVE.CON	T. AVE.T	TIME	AVE.(-0)	RETRY
QUE FLY	1	0 142	114	0.017	0.	173	0.880	0
OUF AR	2	0 146	114	0.132	1	301	5.937	0

Рис. 3.4: Отчет

Моделирование работы морского порта. Морские суда прибывают в порт каждые [$\Box \pm \Box$] часов. В порту имеется N причалов. Каждый корабль по длине занимает М причалов и находится в порту [b $\pm \Box$] часов.

Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1.
$$a = 20 \text{ y}, \square = 5 \text{ y}, b = 10 \text{ y}, \square = 3 \text{ y}, N = 10, M = 3$$
;

```
2. a = 30 \text{ y}, \square = 10 \text{ y}, b = 8 \text{ y}, \square = 4 \text{ y}, N = 6, M = 2.
```

Первый случай. (рис. 3.5).

```
prichal STORAGE 10
GENERATE 20,5
QUEUE que
ENTER prichal, 3
DEPART que
ADVANCE 10,3
LEAVE prichal, 3
TERMINATE O
 timer
GENERATE 4320
TERMINATE 1
START 1
```

Рис. 3.5: Морской порт первый случай

Отчет. При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. (рис. 3.6).

		суббо	та, ма	ія 17,	2025	20:39:	17				
	START T	IME									
	0.	000		432	0.000	9		0		1	
	NAME					VALUE					
	PRICHAL				100	00.000					
	QUE				100	01.000					
LABEL		LOC	BLOCK	TYPE	Е	NTRY CO	DUNT	CURRENT	COUNT	retry	
			GENER			215			0	0	
		2	QUEUE			215			0	0	
			ENTER			215			0	0	
		4	DEPAR	TS		215			0	0	
		5	ADVAN	ICE		215			1	0	
		6				214			0	0	
		7	TERMI	NATE		214			0	0	
		8	GENER	RATE		1			0	0	
		9	TERMI	NATE		1			0	0	
QUEUE		MAX C	ONT. E	NTRY	ENTRY	O) AVE	.CONT	. AVE.T	IME	AVE. (-0)	RETR
QUE										0.000	
STORAGE										L. RETRY	
PRICHAL		10	7	0	3	645	1	1.485	0.14	18 0	0
FEC XN	PRI	BDT		ASSEM	CURF	RENT N	EXT	PARAMET	ER	VALUE	
	0										
	0										
218	0	8640.	000	218		10 11	В				

Рис. 3.6: Отчет

Моделирование работы морского порта. Первый случай. оптимальное число причалов (рис. 3.7).

```
prichal STORAGE 3
GENERATE 20,5
QUEUE que
ENTER prichal, 3
DEPART que
ADVANCE 10,3
LEAVE prichal, 3
TERMINATE 0
; timer
GENERATE 4320
TERMINATE 1
START 1
```

Рис. 3.7: Морской порт первый случай, оптимальное число причалов

Отчет. Соответственно, установив наименьшее возможное число причалов – 3, получаем оптимальный результат (рис. 3.8).

216 217		4324				5		LARADETI	ar\	VALUE	
EC VN	PRI	BD.	-	3000	v cm	DENT	NEVE	DADAMETE	. n	מוז ד נוני	
PRICHAL		3	0	0	3	64	5 1	1.485	0.49	5 0	0
TORAGE								. AVE.C			
QUE								0.0			
UEUE		MAY (CONT	FNTDV	FNTD	V (O) A	JE CON	T. AVE.T	TME	AVF (-0)	DET
		9	TER	MINATE			1		0	0	
				ERATE			1		0		
				MINATE					0		
				VE .			14		0	0.70	
				ANCE					1		
				ART			15		0		
				ER		2			0		
		2	QUE	JE		2	15		0	0	
		1	GENE	ERATE		2	15		0	0	
LABEL		LOC	BLO	CK TYP	Ξ	ENTRY	COUNT	CURRENT	COUNT	RETRY	
	202					0001.0					
	OUE					0001.0					
	NAME PRICHAL					VALU					
						1112	20				
	0.	000		43.	20.000		2	U		1	
	START T	IME 000						ACILITIES 0			

Рис. 3.8: Отчет

Моделирование работы морского порта. Второй случай. (рис. 3.9).

```
prichal STORAGE 6

GENERATE 30,10

QUEUE que

ENTER prichal,2

DEPART que

ADVANCE 8,4

LEAVE prichal,2

TERMINATE 0

; timer

GENERATE 4320

TERMINATE 1

START 1
```

Рис. 3.9: Морской порт второй случай

Отчет. При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. (рис. 3.10).

	PRICHAL QUE				100	00.00					
LABEL											
									0		
						14	3		0	0	
		3	ENT	ER		14	3		0	0	
		4	DEP	ART		14	3		0	0	
										0	
		17.74		VE			2		0		
		7				14:	2		0	0	
		8		ERATE		14.	1		0	0	
		9	TER	MINATE			1		0	0	
QUEUE		MAX (CONT.	ENTRY	ENTRY	(0) AV	E.CONT	. AVE.TI	IME 3	AVE. (-0)	RETR
OUE								0.0			
		100									
TORAGE		CAP.	REM.	MIN.	MAX. I	NTRIE	S AVL.	AVE.C.	. UTIL	. RETRY	DELAY
PRICHAL		6	4	0	2	286	1	0.524	0.08	7 0	0

Рис. 3.10: Отчет

Моделирование работы морского порта. Второй случай. оптимальное число причалов (рис. 3.11).

```
prichal STORAGE 2
GENERATE 30,10
QUEUE que
ENTER prichal, 2
DEPART que
ADVANCE 8,4
LEAVE prichal, 2
TERMINATE 0
 timer
GENERATE 4320
TERMINATE 1
```

Рис. 3.11: Морской порт второй случай, оптимальное число причалов

Отчет. Соответственно, установив наименьшее возможное число причалов – 2, получаем оптимальный результат (рис. 3.12).

		155	13								
								FACILITIE		RAGES	
	0.	000		432	0.000	9	9	0		1	
	NAME					VALUE	2				
	PRICHAL				10	000.00	0.0				
	QUE				10	001.00	0.0				
LABEL		LOC	BLOG	CK TYPE				CURRENT	COUNT	RETRY	
		1	GENE	ERATE		14	13			0	
		2	QUE	JE		14	13		0	0	
		3	ENTE	ER		14	13		0	0	
			DEPA			_	13		0	0	
				ANCE			13		1	0	
				/E		14	12		0	0	
				MINATE			12		0	-	
				ERATE			1		0	0	
		9	TERM	MINATE			1		0	0	
UEUE		MAX C	ONT.	ENTRY	ENTRY	(0)	/E.COI	NT. AVE.T	IME	AVE.(-0) RE	T
QUE		1	0	143	14	3	0.000	0.	000	0.000	0
TORAGE		CAP.	REM.	MIN. M	AX.	ENTRIE	ES AVI	L. AVE.C	. UTIL	. RETRY DEL	A
PRICHAL		2	0	0	2	286	5 1	0.524	0.26	2 0 0	1
	PRI							PARAMET	ER	VALUE	
	0										
	0										
146	0	8640.	000	146	3	0	8				

Рис. 3.12: Отчет

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- 1. модель работы вычислительного центра;
- 2. модель работы аэропорта;
- 3. модель работы морского порта.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Лабораторная работа 17. Задания для самостоятельной работы [Электронный ресурс].
- 2. Королькова А.В., Кулябов Д.С. Имитационное моделирование в GPSS [Электронный ресурс].