Note Curs Algebră și Geometrie

LazR

26 Noiembrie, 2023

Spații Vectoriale

Definiție: Un spațiu vectorial este o structură algebrică $(V, +, \cdot)/\mathbb{K}$, alcătuită dintr-o mulțime nevidă V de obiecte numite vectori, și două operații, numite, prin convenție, adunarea a doi vectori și înmulțirea cu un scalar, unde scalarii sunt elemente dintr-o mulțime \mathbb{K} , înzestrată cu o operație de adunare a doi scalari și o operație de înmulțire a doi scalari, unde operațiile satisfac următoarele axiome:

Axiome de închidere

$$(SV1) v_1 + v_2 \in V \,\forall v_1, v_2 \in V$$
$$(SV2) \alpha \cdot v \in V \,\forall v \in V \land \forall \alpha \in \mathbb{K}$$

Axiomele adunării

$$(SV3) v_1 + v_2 = v_2 + v_1 \,\forall v_1, v_2 \in V$$

$$(SV4) v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3 \,\forall v_1, v_2, v_3 \in V$$

$$(SV5) \,\exists \theta \in V \ni v + \theta = v \,\forall v \in V$$

$$(SV6) \,\forall v \in V \,\exists (-v) \in V \ni v + (-v) = 0$$

Axiomele înmulțirii cu un scalar

$$(SV7) \alpha(\beta \cdot v) = (\alpha\beta) \cdot v \,\forall v \in V \land \forall \alpha, \beta \in \mathbb{K}$$
$$(SV8) \,\exists 1 \in \mathbb{K} \ni 1 \cdot v = v \,\forall v \in V$$

Axiomele distributivității

$$(SV9) \alpha \cdot (v_1 + v_2) = \alpha \cdot v_1 + \alpha \cdot v_2 \,\forall v_1, v_2 \in V \land \forall \alpha \in \mathbb{K}$$
$$(SV10) (\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v \,\forall v \in V \land \forall \alpha, \beta \in \mathbb{K}$$

Observație: De obicei, se va omite scrierea simbolului ·, prezența lui fiind, în majoritatea cazurilor, implicită.

Observație: Inmulțirea dintre doi scalari și înmulțirea dintre un vector și un scalar sunt două operații diferite.

Observație: Vectorul θ se numește element neutru al adunării a doi vectori, sau vectorul nul, iar scalarul 1 se numește element neutru al înmulțirii cu un scalar.

Observație: Vectorul (-v) se numește opusul vectorului v. De obicei, în loc de +(-v), se va utiliza notația -v.

Observație: Notația $(V, +, \cdot)/\mathbb{K}$ va fi deseori prescurtată sub forma V/\mathbb{K} , sau doar V.

Teoremă: În orice spațiu vectorial, elementul neutru al adunării a doi vectori este unic.

Demonstrație: Presupunem că există doi vectori θ_1, θ_2 care satisfac axioma elementului neutru al adunării. Avem:

$$\theta_1 + \theta_2 = \theta_2 = \theta_2 + \theta_1 = \theta_1 \Rightarrow \theta_1 = \theta_2.$$

Teoremă: În orice spațiu vectorial, produsul dintre scalarul nul și orice vector este vectorul nul.

Demonstație:

$$0v = (0+0)v = 0v + 0v \Rightarrow 0v = \theta.$$

Teoremă: În orice spațiu vectorial, produsul dintre orice scalar și vectorul nul este scalarul nul.

Demonstație:

$$\alpha\theta = \alpha(\theta + \theta) = \alpha\theta + \alpha\theta \Rightarrow \alpha\theta = \theta.$$

Teoremă: În orice spațiu vectorial, produsul dintre scalarul -1 și orice vector este opusul vectorului.

Demonstrație:

$$\theta = 0v = (1-1)v = 1v + (-1)v = v + (-1)v \Rightarrow (-1)v = -v.$$

Teoremă: În orice spatiu vectorial, opusul unui vector este unic.

Demonstrație: Presupunem că există doi vectori v_1, v_2 care satisfac axioma opusului unui vector. Avem:

$$v_1 + (v + v_2) = v_1 = (v_1 + v) + v_2 = v_2 \Rightarrow v_1 = v_2.$$

Teoremă: În orice spațiu vectorial, dacă produsul dintre un vector și un scalar este vectorul nul, atunci, fie scalarul este scalarul nul, fie vectorul este vectorul nul.

Demonstrație: Pentru cazul în care vectorul este nenul, scalarul este, în mod evident, scalarul nul. Reciproc

$$\alpha^{-1}(\alpha v) = \theta = (\alpha^{-1}\alpha)v = v \Rightarrow v = \theta.$$

Subspații vectoriale

Definiție: Un subspațiu vectorial al unui spațiu vectorial V este un spațiu vectorial al cărui mulțime de vectori este o submulțime a lui V, iar al cărui operații și mulțime de scalari sunt aceleași cu ale lui V.

Teoremă: Fie V un subspațiu vectorial, iar S o submulțime a mulțimii V. S este un subspațiu al lui V dacă și numai dacă îndeplinește axiomele închiderii.

Demonstrație: Dacă S este un subspațiu, atunci satisface toate axiomele unui spațiu vectorial, inclusiv axiomele închiderii. Reciproc, axiomele (SV3), (SV4), (SV7)-(SV10) sunt verificate pentru orice vector. Au mai rămas de verificat axiomele (SV5), (SV6):

$$(SV5)$$
 Din $(SV2) \Rightarrow 0v \in S \Rightarrow \theta \in S \Rightarrow (SV6)$ este verificată.
 $(SV6)$ Din $(SV2) \Rightarrow -v \in S \Rightarrow (SV6)$ este verificată.

Baze

Independența liniară

Definiție: O mulțime liniar dependentă de vectori este o mulțime într-un spațiu vectorial în care există o submulțime finită de elemente distincte, $v_k, k = [1...n]$ și un șir corespunzător de scalari, $\alpha_k, k = [1...n]$, nesimultan nuli, astfel încât:

$$\sum_{k=1}^{n} \alpha_k v_k = \theta.$$

Definiție: O mulțime liniar independentă de vectori este o mulțime într-un spațiu vectorial care nu este liniar dependentă.

Observație: Dacă $\theta \in S$, atunci S este liniar dependentă.

Definiție: Spanul unei mulțimi finite de vectori S, cu n elemente, reprezintă mulțimea tuturor vectorilor de forma $\sum_{k=1}^{n} \alpha_k v_k$, $\alpha \in \mathbb{K}$, $v_k \in S$. O astfel de sumă se numește combinație liniară, iar S se numește sistem de generatori.

Observație: Un sistem de generatori alcătuit din vectori liniar independenți ai une mulțimi este o submulțime maximală de vectori liniar independenți ai mulțimii (se demonstrează prin inducție). Această observație conduce la definiția ce urmează.

Definiție: O bază într-un spațiu vectorial V este un sistem de generatori liniar independeți, inclus în V, al cărui span este V.

Definiție: Coordonatele unui vector relativ la o bază sunt coeficienții combinației liniare a vectorilor bazei, a cărei rezultat este vectorul respectiv.

Teoremă: Orice bază într-un spatiu vectorial are acelasi cardinal.

Demonstrație: Fie S și T două baze distincte într-un spațiu vectorial V. Cum S reprezintă o submulțime maximală de vectori liniar independenți din V, trebuie să avem $card(T) \leq card(S)$. Însă, reciproc, $card(S) \leq card(T)$. Prin urmare, card(S) = card(T).

Definiție: Dimensiunea unui spațiu vectorial este cardinalul unei baze din spațiul respectiv. Cardinalul lui $V = \{\theta\}$ este, prin convenție, 0.

Spații euclidiene

Definiție: Un produs scalar al unui spațiu vectorial V/\mathbb{K} este o lege de compozitie a doi vectori din spațiul respectiv, notată $\langle v_1, v_2 \rangle, v_1, v_2 \in V$, care asociază oricărei perechi din V un scalar din \mathbb{K} și care îndeplinește următoarele axiome, pentru orice $v_1, v_2, v_3 \in V$:

$$(PS1)\langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle$$

$$(PS2)\langle v_1, v_2 + v_3 \rangle = \langle v_1, v_2 \rangle + \langle v_1, v_3 \rangle$$

$$(PS3)\alpha \langle v_1, v_2 \rangle = \langle \alpha v_1, v_2 \rangle$$

$$(PS4)\langle v, v \rangle > 0, \text{ dacă } v \neq \theta$$

Definiție: Un spațiu euclidian este un spațiu vectorial cu produs scalar. **Definiție:** O normă a unui spațiu vectorial V/\mathbb{K} este o funcție, notată $||v||, v \in V$ și, care asociază oricărui vector din V un scalar din \mathbb{K} și care îndeplinește următoarele axiome, pentru orice $v_1, v_2 \in V$ și $\alpha \in \mathbb{K}$:

$$(N1)||v|| = 0 \iff v = \theta$$

$$(N2)||v|| > 0 \iff v \neq \theta$$

$$(N3)||\alpha v|| = |\alpha|||v||$$

$$(N4)||v_1+v_2|| < ||v_1|| + ||v_2||$$

Observație: În cele ce urmează, vom utiliza norma $||v|| = \sqrt{\langle v, v \rangle}$.

Definiție: Într-un spațiu euclidian V, unghiul dintre doi vectori $v_1, v_2 \in V$ este numărul $\phi \in [0, \pi]$ care satisface ecuația:

$$\cos(\phi) = \frac{\langle v_1, v_2 \rangle}{||v_1|| ||v_2||}$$

Teoremă: Într-un spațiu vectorial, orice produs scalar și orice normă verifică umrătoarea identitate, numită Identitatea lui Lagrange:

$$\langle v_1, v_2 \rangle^2 + ||v_1 \times v_2||^2 = ||v_1||^2 ||v_2||^2$$

Teoremă: Într-un spațiu vectorial, orice produs scalar verifică umrătoarea inegalitate, numită Inegalitatea Cauchy-Schwarz:

$$\langle v_1, v_2 \rangle^2 \le \langle v_1, v_1 \rangle \langle v_2, v_2 \rangle$$

Ortogonalitate

Definiție: Într-un spațiu euclidian V, doi vectori ortogonali sunt doi vectori ai căror produs scalar este scalarul nul. O submulțime $S \subset V$ de vectori ortogonali doi câte doi se numește mulțime ortogonală. Dacă în plus, norma tuturor vectorilor din S este unitară, atunci S se numește mulțime ortonormată.

Teoremă: Într-un spațiu euclidian, orice mulțime ortogonală de vectori nenuli este liniar independentă.

Demonstrație: Fie

$$\sum_{k=1}^{n} \alpha_k v_k = \theta \Rightarrow$$

$$\Rightarrow \sum_{k=1}^{n} \alpha_k \langle v_k, v_i \rangle = \theta, i = [1...n] \Rightarrow$$

$$\alpha_i \langle v_i, v_i \rangle = \theta, v_i \neq \theta \Rightarrow \alpha_i = 0 \, \forall i = [1...n] \Rightarrow$$

 \Rightarrow mulțimea vectorilor $v_k, k = [1...n]$ este liniar independentă.

Teoremă: Coordonatele relative la o bază ortogonală $\{e_1,...,e_n\}$ ale unui vector v sunt date de formula:

$$\alpha_k = \frac{\langle v, e_k \rangle}{\langle e_k, e_k \rangle}$$

Demonstrație:

$$\sum_{k=1}^{n} \alpha_k e_k = v \Rightarrow \sum_{k=1}^{n} \alpha_k \langle e_k, e_k \rangle = \langle v, e_k \rangle \Rightarrow \alpha_k = \frac{\langle v, e_k \rangle}{\langle e_k, e_k \rangle}.$$

Observație: În cazul unei baze ortonormate:

$$\alpha_k = \langle v, e_k \rangle.$$

Prin urmare, într-o bază ortonormată, un vector din spanul bazei se poate scrie în felul următor:

$$v = \sum_{k=1}^{n} \langle v, e_k \rangle e_k.$$

Teoremă: Într-un spațiu vectorial finit-dimensional de dimensiune n, cu o bază ortonormată $\{e_1, ..., e_k\}$, are loc următoarea identitate pentru orice pereche de vectori $v_1, v_2 \in V$, cunoscută ca Identitatea lui Parseval:

$$\langle v_1, v_2 \rangle = \sum_{k=1}^n \langle v_1, e_k \rangle \langle v_2, e_k \rangle.$$

Demonstrație: Este o consecință a observației anterioare.

Observație: În caz particular, avem:

$$||v||^2 = \sum_{k=1}^n \langle v, e_k \rangle^2.$$

Ecuația de mai sus este o generalizare a teoremei lui Pitagora.

Aplicații Liniare

Definiție: Fie V/\mathbb{K} și W/\mathbb{K} două spații vectoriale. O aplicație liniară de la V la W este o funcție $T:V\to W$ care verifică:

$$T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2) \,\forall v_1, v_2 \in V \land \forall \alpha, \beta \in \mathbb{K}.$$

Kernel și Imagine

Definiție: Imaginea aplicației liniare T este mulțimea T(V).

Teoremă: T(V) este un subspațiu pentru W, iar $T(\theta_v) = \theta_w$.

Demonstrație: Axiomele închiderii se verifică ușor cu definiția unei aplicații

liniare, iar $T(\theta_v) = T(0\theta_v) = 0$ $T(\theta_v) = \theta_w$.

Definiție: Kernelul unei aplicații liniare T este mulțimea

$$Ker(T) = \{ v \in V : T(v) = \theta \}.$$

Teoremă: Kernelul lui T este un subspațiu al lui V.

Demonstație: Fie $v_1, v_2 \in V$. Avem:

$$T(v_1) + T(v_2) = T(v_1 + v_2) = \theta \Rightarrow v_1 + v_2 \in \text{Ker}(T);$$

 $\alpha T(v) = T(\alpha v) = \theta \Rightarrow \alpha v \in \text{Ker}(T).$