Excercises for Sect. 1.2

Student

September 12, 2022

2.

The constraints $a+b+c=\alpha$ and x+x=2x would require $2\alpha=\alpha$. The only way this can be valid is if $\alpha=0$.

3.

$$V=\mathbb{Z}^2, \mathbb{F}=\mathbb{R}$$
 Closed under addition and additive inverse. e.g. $(a,b)+(c,d)=(a+c,b+d)$ and $(a,b)+(a,b)=0$ are valid for integers. Not closed under scalar multiplication. e.g. $\sqrt{2}x$

4.

$$V=\mathbb{R}^2, U=\{(a,b): a=0, b\neq 0 \text{ or } a\neq 0, b=0\}$$
 Not closed under addition: e.g. $(1,0)+(0,1)=(1,1)$

8.

This is true. We are simply removing elements of the original spanning set of $P(\mathbb{R})^m$ which is still a subspace. Ex: $1+x^5$.