Portfolio Data Science

Iris Classification Machine Learning with Decision Tree

by Hanin Firginita Gilty

CASE STUDY

Create a simple machine learning (classification) program using the dataset provided by scikit-learn. Can be accessed at the following link: https://scikit-learn.org/1.5/datasets/toy_dataset.html.

On these datasets, it is free to use any algorithm. You can learn the algorithm for classification at the following link:

https://www.geeksforgeeks.org/top-6-machine-learning-algorithms-for-classification/

ABOUT DATASET

The Iris dataset was used in R.A. Fisher's classic 1936 paper, <u>The Use of Multiple Measurements in Taxonomic Problems</u>, and can also be found on the <u>UCI Machine Learning Repository</u>.

It includes three iris species with 50 samples each as well as some properties about each flower. One flower species is linearly separable from the other two, but the other two are not linearly separable from each other.

The columns in this dataset are:

- Id
- SepalLengthCm
- SepalWidthCm
- PetalLengthCm
- PetalWidthCm
- Species

IMPORT LIBRARY

	nport Libra	aries					
[]	import p import n import m %matplot import s from skl from skl from skl	andas as pumpy as no atplotlib inline eaborn as earn.prepoearn.modelearn.tree	od pyplot as ples sns rocessing imples import Decis	oort LabelEnco import train_t sionTreeClassi lassification_	der est_split fier		
[]		g dataset		'			
	iris = s iris.hea	ns.load_da d()	acasec(1115	,			
<u>₹</u>	iris.hea	d()		petal_length	petal_width	species	
⊕	iris.hea	d()			petal_width	species setosa	
₹	iris.hea	d()	sepal_width	petal_length			
(}	sepal	d() 1_length 5.1	sepal_width	petal_length	0.2	setosa	
1 →	sepal	d() 1_length 5.1 4.9	sepal_width 3.5 3.0	petal_length 1.4 1.4	0.2	setosa setosa	

The Iris dataset contains measurements of 150 iris flowers, 50 from each of 3 species (setosa, versicolor, virginica). It includes 4 features: sepal length, sepal width, petal length, and petal width (all in cm).

EXPLORATORY DATA ANALYSIS

2. Ex	(plora	tory Data Analy	ysis			
[]		aFrame Inform	ation			
₹	Range Data # Ø 1 2 3	eIndex: 150 en columns (tota Column sepal_length sepal_width petal_length	Non-Null Count 150 non-null 150 non-null 150 non-null 150 non-null 150 non-null , object(1)	Dtype float64 float64 float64 float64 float64		
[]		ry usage: 6.0+ sciribing Data				
	# Des					
[] 2 >	# Des	sciribing Data		petal_length	petal_width	
	# Des	sciribing Data describe() sepal_lengt	:h sepal_width		petal_width 150.000000	
	# Des	sciribing Data describe() sepal_lengt	:h sepal_width 00 150.000000	150.000000	-	
	# Desiris	sciribing Data describe() sepal_lengt t 150.00000	:h sepal_width 00 150.000000 33 3.057333	150.000000	150.000000	
	# Desiris.	sciribing Data describe() sepal_lengt t 150.00000 n 5.84333	th sepal_width 0 150.000000 3 3.057333 6 0.435866	150.000000 3.758000 1.765298	150.000000 1.199333	
	# Desiris	sciribing Data describe() sepal_lengt t 150.00000 n 5.84333 0.82806	th sepal_width 150.000000 3 3.057333 6 0.435866 0 2.000000	150.000000 3.758000 1.765298 1.000000	150.000000 1.199333 0.762238	
	# Desiris	sciribing Data describe() sepal_lengt t	th sepal_width 150.000000 3 3.057333 6 0.435866 0 2.000000 0 2.800000	150.000000 3.758000 1.765298 1.000000	150.000000 1.199333 0.762238 0.100000	

```
# DataFrame Shape
    iris.shape
→ (150, 5)
[ ] # Checking Missing Value
    print("Checking Missing Value: ")
    iris.isnull().sum()

→ Checking Missing Value:
                 0
     sepal_length 0
     sepal_width 0
     petal_length 0
     petal_width 0
       species 0
    dtype: int64
```


DATA VISUALIZATION USING VARIOUS ATTRIBUTES

Both visualizations indicate that petal length and petal width are the most important features for distinguishing between iris species, exhibiting strong correlations and clear separation in scatter plots.

PREDICTING TARGET VARIABLE

TRAINING TEST DATASET

```
[ ] # Splitting the data - 80:20 ratio
x_train,x_test,y_train,y_test = train_test_split ( x,y, test_size = 0.2, random_state = 40)
```


DECISION TREE CLASSIFIER

VISUALIZING THE TRAINED MODEL

Decision Tree Visualization:

- Feature Names: 'sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'
- Class Names: 'setosa', 'versicolor', 'virginica'
- The decision tree is visualized using tree.plot_tree

CHECKING MODEL ACCURACY

```
[ ] # Model Accuracy
import sklearn.metrics as sm
print("Accuracy:",f"{sm.accuracy_score(y_test, y_predt)* 100:.2f}%")

Accuracy: 100.00%
```

Accuracy Score: The model achieved an accuracy score of 100%, which indicates that all predictions made by the decision tree classifier on the test dataset were correct.

Thank you