```
In [1]: %matplotlib inline
    import numpy as np
    import pandas as pd
    from datetime import timedelta
    import datetime as dt
    import matplotlib.pyplot as plt
    import xgboost as xgb
    from sklearn.cluster import MiniBatchKMeans
    import warnings
    from sklearn.model_selection import train_test_split
```

Out[2]:

	VendorID	lpep_pickup_datetime	lpep_dropoff_datetime	store_and_fwd_flag	RatecodeID	PULocationID	DOLocationID	passenger_
0	2	2016-12-01 00:00:54	2016-12-01 00:06:54	N	1	92	192	
1	2	2016-12-01 00:52:41	2016-12-01 00:54:51	N	1	92	171	
2	2	2016-12-01 00:10:39	2016-12-01 00:14:47	N	1	75	238	
3	2	2016-12-01 00:12:16	2016-12-01 00:15:31	N	1	166	151	
4	2	2016-12-01 00:29:22	2016-12-01 00:39:51	N	1	166	42	
1224153	1	2016-12-31 23:00:16	2016-12-31 23:05:30	N	1	74	75	
1224154	1	2016-12-31 23:00:20	2016-12-31 23:04:05	N	1	42	41	
1224155	1	2016-12-31 23:00:08	2016-12-31 23:15:57	N	1	243	159	
1224156	1	2016-12-31 23:00:00	2016-12-31 23:10:15	N	1	244	120	
1224157	1	2016-12-31 23:00:10	2016-12-31 23:04:17	N	1	7	7	

1224158 rows × 19 columns

- VendorID A code indicating the LPEP provider that provided the record. (1= Creative Mobile Technologies, LLC; 2= VeriFone Inc).
- lpep_pickup_datetime The date and time when the meter was engaged.
- lpep_dropoff_datetime The date and time when the meter was disengaged.

- store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka "store and forward," because the vehicle did not have a connection to the server. ('Y' = store and forward trip 'N' = not a store and forward trip)
- RatecodelD The final rate code in effect at the end of the trip. (1= Standard rate 2=JFK 3=Newark 4=Nassau or Westchester 5=Negotiated fare 6=Group ride)
- PULocationID pickup location matching zone numbers to the map
- DOLocationID drop location matching zone numbers to the map
- passenger_count The number of passengers in the vehicle. This is a driver-entered value.
- trip_distance The elapsed trip distance in miles reported by the taximeter.
- fare_amount The time-and-distance fare calculated by the meter.
- extra Miscellaneous extras and surcharges.
- mta_tax \$0.50 MTA tax that is automatically triggered based on the metered rate in use.
- tip_amount This field is automatically populated for credit card tips. Cash tips are not included.
- tolls_amount Total amount of all tolls paid in trip.
- · ehail fee None
- improvement_surcharge \$0.30 improvement surcharge assessed on hailed trips at the flag drop. The improvement surcharge began being levied in 2015.
- total_amount The total amount charged to passengers. Does not include cash tips.
- payment_type A numeric code signifying how the passenger paid for the trip. (1= Credit card 2= Cash 3= No charge 4= Dispute 5= Unknown 6= Voided trip)
- trip_type A code indicating whether the trip was a street-hail or a dispatch that is automatically assigned based on the metered rate in use but can be altered by the driver. (1= Street-hail 2= Dispatch)

1. Characterize the data and comment about its quality

```
In [3]: data.shape
Out[3]: (1224158, 19)
```

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1224158 entries, 0 to 1224157
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype				
0	VendorID	1224158 non-null					
1	lpep_pickup_datetime	1224158 non-null	object				
2	<pre>lpep_dropoff_datetime</pre>	1224158 non-null	object				
3	store_and_fwd_flag	1224158 non-null	object				
4	RatecodeID	1224158 non-null	int64				
5	PULocationID	1224158 non-null	int64				
6	DOLocationID	1224158 non-null	int64				
7	passenger_count	1224158 non-null	int64				
8	trip_distance	1224158 non-null	float64				
9	fare_amount	1224158 non-null	float64				
10	extra	1224158 non-null	float64				
11	mta_tax	1224158 non-null	float64				
12	tip_amount	1224158 non-null	float64				
13	tolls_amount	1224158 non-null	float64				
14	ehail_fee	0 non-null	float64				
15	improvement surcharge	1224158 non-null	float64				
16	total_amount	1224158 non-null	float64				
17	payment type	1224158 non-null	int64				
18	trip_type	1224158 non-null	int64				
Htvnes: float64(9), int64(7), object(3)							

dtypes: float64(9), int64(7), object(3)

memory usage: 177.5+ MB

```
In [5]: data.describe()
```

Out[5]:

	VendorID	RatecodelD	PULocationID	DOLocationID	passenger_count	trip_distance	fare_amount	extra	mta_
count	1.224158e+06	1.224158e+06	1.224158e+06	1.224158e+06	1.224158e+06	1.224158e+06	1.224158e+06	1.224158e+06	1.224158e
mean	1.799278e+00	1.085079e+00	1.131729e+02	1.290862e+02	1.362447e+00	2.618179e+00	1.159368e+01	3.629562e-01	4.872578€
std	4.005404e-01	5.660195e-01	7.628387e+01	7.723367e+01	1.036924e+00	2.806160e+00	9.793499e+00	3.901575e-01	8.517500€
min	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	0.000000e+00	0.000000e+00	-4.990000e+02	-4.500000e+00	-5.00000
25%	2.000000e+00	1.000000e+00	4.900000e+01	6.100000e+01	1.000000e+00	9.800000e-01	6.000000e+00	0.000000e+00	5.000000€
50%	2.000000e+00	1.000000e+00	8.300000e+01	1.290000e+02	1.000000e+00	1.700000e+00	9.000000e+00	5.000000e-01	5.000000€
75%	2.000000e+00	1.000000e+00	1.730000e+02	1.930000e+02	1.000000e+00	3.200000e+00	1.400000e+01	5.000000e-01	5.000000€
max	2.000000e+00	6.000000e+00	2.650000e+02	2.650000e+02	9.000000e+00	1.475000e+02	1.007000e+03	4.500000e+00	5.000000€

- There're 1224158 data samples with 19 features. There're 3 objective columns, the others are continuous variables. 'ehail_fee' are all NAN, no missing values in this table other than that.
- There're negative values in 'fare_amount', 'extra', 'mta_tax','tip_amount','tolls_amount','improvement_surcharge' and 'total_amount', and value 0 in 'passenger_count', 'trip_distance', which makes no sense.
- The maximum trip_distance of 147.5 miles, tip_amount of 250.7 dollars, tolls_amount of 298 dollars, total_amount of 1008.3 dollars are also weird.

2. Visualize and Clean Data

Trip Distance

```
In [6]: plt.figure(figsize=(8,6))
    plt.scatter(range(data.shape[0]), np.sort(data["trip_distance"].values), alpha=0.2)
    plt.xlabel('index', fontsize=12)
    plt.ylabel('trip_distance', fontsize=12)
    plt.title('Trip_Distance')
    plt.show()
```



```
In [7]: data["trip_distance"].quantile([.0, 0.01, 0.25, .5, 0.75, 0.99, 1])
Out[7]: 0.00
                   0.00
        0.01
                   0.00
        0.25
                   0.98
        0.50
                  1.70
        0.75
                   3.20
        0.99
                 13.97
        1.00
                147.50
        Name: trip_distance, dtype: float64
```

The 99 quantile is 13.97 miles while the maximum is 147.5 miles

clipping trip distance longer than 20 miles and shorter than 0.1 mile.

```
In [8]: data = data.loc[(data["trip_distance"]<=20)&(data["trip_distance"]>0.1)].reset_index(drop=True)
```

Trip Duration

```
In [9]: data.lpep_pickup_datetime = pd.to_datetime(data.lpep_pickup_datetime)
    data.lpep_dropoff_datetime = pd.to_datetime(data.lpep_dropoff_datetime)
    data['duration'] = (data.lpep_dropoff_datetime - data.lpep_pickup_datetime).dt.total_seconds() / 60
```

```
In [10]: plt.figure(figsize=(8,6))
    plt.scatter(range(data.shape[0]), np.sort(data["duration"].values), alpha=0.2)
    plt.xlabel('index', fontsize=12)
    plt.ylabel('duration', fontsize=12)
    plt.title('Duartion')
    plt.show()
```



```
In [11]: data["duration"].quantile([.0, 0.01, 0.25, .5, 0.75, 0.99, 1])
Out[11]: 0.00
                     0.00000
         0.01
                    1.583333
         0.25
                    5.883333
         0.50
                    9.750000
         0.75
                   16.116667
         0.99
                    64.433333
                 2487.900000
         1.00
         Name: duration, dtype: float64
```

The 99 quantile is 64.5 min while the maximum is 1439.9 min

clipping trip distance longer than 60 min and less that one minute

```
In [12]: data = data.loc[(data["duration"]<=60)&(data["duration"]>=1)].reset_index(drop=True)
```

Speed

```
In [13]: data['speed'] = data.trip_distance/data.duration
```

```
In [14]: plt.figure(figsize=(8,6))
    plt.scatter(range(data.shape[0]), np.sort(data["speed"].values), alpha=0.2)
    plt.xlabel('index', fontsize=12)
    plt.ylabel('speed', fontsize=12)
    plt.title('Speed')
    plt.show()
```



```
Out[15]: count
                   1.181390e+06
                   2.057084e-01
          mean
                   1.003032e-01
          std
                   2.071346e-03
          min
                   1.496104e-01
          25%
          50%
                   1.876161e-01
          75%
                    2.376238e-01
                   1.419048e+01
          max
          Name: speed, dtype: float64
          Delete records with speed more than 1 mile/min.
In [16]: data = data.loc[data.speed<=1].reset_index(drop=True)</pre>
```

Passenger Count

In [15]: data.speed.describe()

```
In [17]: plt.hist(data.passenger_count)
    plt.title('Passenger Count')
    plt.xlabel('Passenger', fontsize=12)
    plt.show()
```


Name: passenger_count, dtype: int64

8 7

```
In [19]: data["passenger_count"].quantile([.0, 0.01, 0.25, .5, 0.75, 0.99, 1])
Out[19]: 0.00
                  0.0
         0.01
                 1.0
         0.25
                 1.0
         0.50
                 1.0
         0.75
                  1.0
         0.99
                  6.0
         1.00
                  9.0
         Name: passenger_count, dtype: float64
```

Delete records with 0 pssenger and passenger_count greater than 6.

```
In [20]: data = data.loc[(data["passenger_count"]>0) & (data["passenger_count"]<=6)].reset_index(drop=True)

In [21]: plt.hist(data.passenger_count)
    plt.title('Passenger Count')
    plt.xlabel('Passenger', fontsize=12)
    plt.show()</pre>
```


Total Amount

```
In [22]: plt.figure(figsize=(8,6))
    plt.scatter(range(data.shape[0]), np.sort(data["total_amount"].values), alpha=0.2)
    plt.xlabel('index', fontsize=12)
    plt.ylabel('total_amount', fontsize=12)
    plt.title('Total_Amount')
    plt.show()
```



```
In [23]: data["total_amount"].quantile([.0, 0.01, 0.25, .5, 0.75, 0.99, 1])
Out[23]: 0.00
                 -100.0
         0.01
                     4.3
         0.25
                    7.8
         0.50
                   10.8
         0.75
                   16.3
         0.99
                    47.3
         1.00
                  1008.3
         Name: total amount, dtype: float64
```

Delete total amount larger than 400 and less that 0

```
In [24]: data = data.loc[(data["total_amount"]<=400)&(data["total_amount"]>0)].reset_index(drop=True)
```

Fare Amount

```
In [25]: plt.figure(figsize=(8,6))
    plt.scatter(range(data.shape[0]), np.sort(data["fare_amount"].values), alpha=0.2)
    plt.xlabel('index', fontsize=12)
    plt.ylabel('fare', fontsize=12)
    plt.title('Fare Amount')
    plt.show()
```



```
In [26]: data["fare_amount"].quantile([.0, 0.01, 0.25, .5, 0.75, 0.99, 1])
Out[26]: 0.00
                    0.0
          0.01
                    3.5
         0.25
                    6.0
         0.50
                    9.0
         0.75
                   14.0
         0.99
                   40.0
         1.00
                  340.0
         Name: fare_amount, dtype: float64
         Delete records with 0 fare amount.
In [27]: data = data.loc[data.fare_amount>0].reset_index(drop=True)
```

Tip Amount

```
In [28]: plt.figure(figsize=(8,6))
    plt.scatter(range(data.shape[0]), np.sort(data["tip_amount"].values), alpha=0.2)
    plt.xlabel('index', fontsize=12)
    plt.ylabel('tip', fontsize=12)
    plt.title('Tip Amount')
    plt.show()
```



```
In [29]: data["tip_amount"].quantile([.0, 0.01, 0.25, .5, 0.75, 0.99, 1])
Out[29]: 0.00
                    0.00
         0.01
                    0.00
         0.25
                    0.00
         0.50
                    0.00
         0.75
                   1.86
         0.99
                   7.84
         1.00
                  240.00
         Name: tip amount, dtype: float64
```

Delete records with which tips is larger than fare amount

	VendorID	RatecodelD	PULocationID	DOLocationID	passenger_count	trip_distance	fare_amount	extra	mta_t
count	1.176458e+06	1.176458e+06	1.176458e+06	1.176458e+06	1.176458e+06	1.176458e+06	1.176458e+06	1.176458e+06	1.176458e+
mean	1.800384e+00	1.045240e+00	1.127070e+02	1.290701e+02	1.363125e+00	2.580974e+00	1.131171e+01	3.669749e-01	4.944996e-
std	3.997120e-01	4.155648e-01	7.613657e+01	7.720240e+01	1.038978e+00	2.482266e+00	7.698733e+00	3.794237e-01	5.215316e-
min	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.100000e-01	1.000000e-02	0.000000e+00	0.000000e+
25%	2.000000e+00	1.000000e+00	4.900000e+01	6.100000e+01	1.000000e+00	1.000000e+00	6.000000e+00	0.000000e+00	5.000000e-
50%	2.000000e+00	1.000000e+00	8.200000e+01	1.290000e+02	1.000000e+00	1.710000e+00	9.000000e+00	5.000000e-01	5.000000e-
75%	2.000000e+00	1.000000e+00	1.680000e+02	1.930000e+02	1.000000e+00	3.200000e+00	1.400000e+01	5.000000e-01	5.000000e-
max	2.000000e+00	6.000000e+00	2.650000e+02	2.650000e+02	6.000000e+00	2.000000e+01	3.400000e+02	4.500000e+00	5.000000e-

3. Find interesting trip statistics grouped by hour

```
In [32]: data['pickup_hour'] = data['lpep_pickup_datetime'].dt.hour
    data['dropoff_hour'] = data['lpep_dropoff_datetime'].dt.hour
    data['pickup_weekday'] = data['lpep_pickup_datetime'].dt.weekday
    data['dropoff_weekday'] = data['lpep_dropoff_datetime'].dt.weekday
```

```
In [33]: metric = 'pickup_hour'
y = 'duration'
data.boxplot(column=y, by=[metric],figsize=(8,5))
```

Out[33]: <AxesSubplot:title={'center':'duration'}, xlabel='[pickup_hour]'>


```
In [34]: duration_hour = data.groupby(by='pickup_hour',as_index=False)['duration'].mean()
    plt.figure(figsize=(10,6))
    plt.plot(duration_hour['pickup_hour'], duration_hour['duration'],marker='o', markerfacecolor='red',label
    plt.xlabel('Pickup Hour', fontsize=12)
    plt.ylabel('Duration (min)', fontsize=12)
    plt.title('Duration and Pickup hour')
    plt.show()
```


The trip duration at night (7pm - 4am) is shorter than any other time during the day.

```
In [35]: metric = 'pickup_hour'
y = 'trip_distance'
data.boxplot(column=y, by=[metric],figsize=(8,5))
```

Out[35]: <AxesSubplot:title={'center':'trip_distance'}, xlabel='[pickup_hour]'>


```
In [36]: distance_hour = data.groupby(by='pickup_hour',as_index=False)['trip_distance'].mean()
    plt.figure(figsize=(10,6))
    plt.plot(distance_hour['pickup_hour'], distance_hour['trip_distance'], marker='o', markerfacecolor='red
    plt.xlabel('Pickup Hour', fontsize=12)
    plt.ylabel('Distance (mile)', fontsize=12)
    plt.title('Distance and Pickup hour')
    plt.show()
```


Trip distance around 5am-6am is more likely to be longer than any other time during the day.

4. What kind of trip yields better tips?

According to the data dictionary on the website, the records only include tip information paid by credit card. So delete records with other payment method.

When defining better tips, it's more reasonable to evaluate tip percentage other than its absolute value. So the model is built to predict which trip yields a higher tip percentage.

```
In [37]: data['tip percent'] = data.tip_amount/data.fare_amount
In [38]: df = data.loc[data.payment_type==1].reset_index(drop=True)
In [39]: df.tip percent.quantile([.0, 0.01, 0.25, .5, 0.75, 0.99, 1])
Out[39]: 0.00
                 0.000000
         0.01
                 0.000000
         0.25
                 0.142857
         0.50
                 0.217931
         0.75
                 0.252000
         0.99
                 0.440741
                  0.993333
         1.00
         Name: tip percent, dtype: float64
```

```
In [40]: plt.figure(figsize=(8,6))
    plt.scatter(range(df.shape[0]), np.log(np.sort(df["tip_percent"].values)+1), alpha=0.2)
    plt.xlabel('index', fontsize=12)
    plt.ylabel('tip_percent', fontsize=12)
    plt.show()
```



```
In [41]: loction = pd.read_csv('taxi+_zone_lookup.csv')
loction
```

Out[41]:

	LocationID	Borough	Zone	service_zone
0	1	EWR	Newark Airport	EWR
1	2	Queens	Jamaica Bay	Boro Zone
2	3	Bronx	Allerton/Pelham Gardens	Boro Zone
3	4	Manhattan	Alphabet City	Yellow Zone
4	5	Staten Island	Arden Heights	Boro Zone
•••				
260	261	Manhattan	World Trade Center	Yellow Zone
261	262	Manhattan	Yorkville East	Yellow Zone
262	263	Manhattan	Yorkville West	Yellow Zone
263	264	Unknown	NV	NaN
264	265	Unknown	NaN	NaN

265 rows × 4 columns

Map the LocationID to borough.

```
In [42]: d = {'Manhattan':1,'Queens':2,'Brooklyn':3,'Bronx':4,'Staten Island':5,'Unknown':6,'EWR':7}
    df['PUL'] = df.PULocationID.map(lambda x:loction.Borough[x-1]).map(d)
    df['DOL'] = df.DOLocationID.map(lambda x:loction.Borough[x-1]).map(d)
In [43]: df['store and fwd flag'] = df['store and fwd flag'].map({'N':0,'Y':1})
```

```
In [44]: df.columns
Out[44]: Index(['VendorID', 'lpep pickup datetime', 'lpep dropoff datetime',
                 'store and fwd flag', 'RatecodeID', 'PULocationID', 'DOLocationID',
                 'passenger count', 'trip distance', 'fare amount', 'extra', 'mta tax',
                 'tip amount', 'tolls amount', 'ehail fee', 'improvement surcharge',
                 'total amount', 'payment type', 'trip type', 'duration', 'speed',
                 'pickup hour', 'dropoff hour', 'pickup weekday', 'dropoff weekday',
                 'tip percent', 'PUL', 'DOL'],
               dtype='object')
In [45]: ind = [0, 3, 4,15,16] + list(range(7, 13)) + list(range(18,22)) + [23,24,25,26,27]
         features = df.columns[ind]
         features
Out[45]: Index(['VendorID', 'store and fwd flag', 'RatecodeID', 'improvement surcharge',
                 'total amount', 'passenger count', 'trip distance', 'fare_amount',
                 'extra', 'mta_tax', 'tip_amount', 'trip type', 'duration', 'speed',
                 'pickup hour', 'pickup weekday', 'dropoff weekday', 'tip percent',
                 'PUL', 'DOL'],
               dtype='object')
In [46]: | train, val = train test split(df[features], test size=0.2)
```

Target Encoding

XGBoost Model

```
In [49]: xgb pars = {'min child weight': 50, 'eta': 0.1, 'colsample bytree': 0.3, 'max depth': 10,
                     'subsample': 0.8, 'lambda': 1., 'nthread': -1, 'booster': 'gbtree',
                     'eval metric': 'rmse', 'objective': 'reg:squarederror'}
In [50]: dtrain = xqb.DMatrix(X train.values, label=y train)
         dvalid = xgb.DMatrix(X val.values, label=y val)
         watchlist = [(dtrain, 'train'), (dvalid, 'valid')]
In [51]: t0 = dt.datetime.now()
         gbm = xgb.train(xgb pars, dtrain, 600, watchlist, early stopping rounds=50,
                         maximize=False, verbose eval=10)
         t1 = dt.datetime.now()
         print('Time fitting xgb: %i seconds' % (t1 - t0).seconds)
                                         valid-rmse:0.26866
         [1]
                 train-rmse:0.26846
                                         valid-rmse:0.24321
         [2]
                 train-rmse:0.24300
         [3]
                 train-rmse:0.22269
                                         valid-rmse:0.22293
         [4]
                 train-rmse:0.20475
                                         valid-rmse:0.20504
                                         valid-rmse:0.18870
         [5]
                 train-rmse:0.18837
                                         valid-rmse:0.17483
         [6]
                 train-rmse:0.17444
                                         valid-rmse:0.16272
         [7]
                 train-rmse:0.16228
         [8]
                 train-rmse:0.15169
                                         valid-rmse:0.15219
                 train-rmse:0.14254
                                         valid-rmse:0.14310
         [9]
                                         valid-rmse:0.12644
         [11]
                 train-rmse:0.12579
                                         valid-rmse:0.12064
         [12]
                 train-rmse:0.11993
         [13]
                 train-rmse:0.11497
                                         valid-rmse:0.11575
         [14]
                 train-rmse:0.11085
                                         valid-rmse:0.11167
         [15]
                 train-rmse:0.10734
                                         valid-rmse:0.10820
                                         valid-rmse:0.10530
         [16]
                 train-rmse:0.10440
         [17]
                 train-rmse:0.10193
                                         valid-rmse:0.10289
         [18]
                 train-rmse:0.09985
                                         valid-rmse:0.10088
                                         valid-rmse:0.09512
         [19]
                 train-rmse:0.09413
         [21]
                 train-rmse:0.09149
                                         valid-rmse:0.09258
         ----
```

The final RMSE for the validation test to predict a high tip percentage reaches 0.027.

Feature Importance

```
In [52]: feature = X_train.columns

In [53]: feature_importance_dict = gbm.get_fscore()
    fs = ['f%i' % i for i in range(len(features))]
    f1 = pd.DataFrame({'f': list(feature_importance_dict.keys()), 'importance': list(feature_importance_dict f2 = pd.DataFrame({'f': fs, 'feature_name': features})
    feature_importance = pd.merge(f1, f2, how='right', on='f')
    feature_importance = feature_importance.fillna(0)
```

In [54]: feature_importance.sort_values('importance', ascending=False)

Out[54]:

	f	importance	feature_name
4	f4	20864	total_amount
11	f11	19181	duration
6	f6	17319	trip_distance
12	f12	14991	speed
7	f7	11606	fare_amount
13	f13	9674	pickup_hour
21	f21	8578	tip_amount_gby_pickup_hour
20	f20	6901	duration_gby_pickup_hour
14	f14	6691	pickup_weekday
15	f15	6084	dropoff_weekday
19	f19	4495	tip_amount_gby_pickup_weekday
24	f24	4145	duration_gby_DOL
18	f18	4104	duration_gby_pickup_weekday
17	f17	3919	DOL
5	f5	3784	passenger_count
16	f16	3534	PUL
22	f22	3152	duration_gby_PUL
23	f23	2895	tip_amount_gby_PUL
25	f25	2587	tip_amount_gby_DOL
0	fO	2373	VendorlD
8	f8	1881	extra
2	f2	723	RatecodelD
9	f9	384	mta_tax
10	f10	358	trip_type

feature_name	f importance			
improvement_surcharge	345	f3	3	
store_and_fwd_flag	83	f1	1	

5. Visualize the data to understand trip patterns

- Among the cleaned data, VeriFone Inc provides about 4 times records than Creative Mobile Technologies, LLC.
- 1 passenger is the most common scenario.
- Most trips last around 2.5 min to 20 min.
- Most trip distances are around 1 mile to 3 miles.
- Most passengers won't pay the tip. Among tip payers, people are most willingly to pay 15% 25% fare amount fee as the tip.
- Most fare amount are under \$25.