1 Connectivity in Digraphs

How do we achieve a clean description of reachability in a directed graph?

- ullet Note that reachability is no longer symmetric. That is, we can reach w from v but not the other way around.
- Can we maybe allow reachability in either direction?
- Maybe we can allow the ability to follow edges in either direction? However, this treats a digraph as an undirected graph.

1.1 Strongly Connected Components

Definition 1.1: Strongly Connected Components

In a directed graph G, two vertices v and w are in the same **strongly connected component** if v is reachable from w and w is reachable from v.

1.2 Equivalence Relation

Let $v \sim w$ if v is reachable from w and vice versa.

Proposition. This is an equivalence relation. Namely:

- $v \sim v$ (v is reachable from itself).
- $\bullet \ v \sim w \implies w \sim v \ (\textit{relation is symmetric}).$
- $u \sim v$ and $v \sim w \implies u \sim w$.

If we take any v, the set of all w so that $v \sim w$ is the component of v. Everything connects to everything else in this equivalence class and does not connect (both ways) to anything outside.

1.3 Connectivity

Do strongly connected components completely describe connectivity in G?

• No. In directed cases, we can have an edge between strongly connected components.

1.4 Metagraph

Definition 1.2: Metagraph

The **metagraph** of a directed graph G is a graph whose vertices are the strongly connected components of G.

1.4.1 Result

Theorem 1.1

The metagraph of any directed graph is a DAG.

1.5 Computing SCCs

Given a directed graph G, compute the SCCs of G and its metagraph.

1.5.1 Easy Algorithm

- For each v, compute vertices reachable from v.
- Find pairs v, w so that v reachable from w and vice versa.
- For each v, the corresponding w's are in the SCC of v.

The runtime is O(|V|(|V| + |E|)).

1.5.2 Better Algorithm

Suppose that SCC(v) is a sink in the metagraph.

- G has no edges from SCC(v) to another SCC.
- We can run explore(v) to find all vertices reachable from v. This will contain all vertices in SCC(v). But, it contains no other vertices.
- If v is in the SCC, then explore(v) finds exactly v's component.

With this observation, we consider the following strategy:

- Find v in a sink SCC of G.
- Run explore(v) to find the component C_1 .
- Repeat process on $G \setminus C_1$.

The problem is, how do we find v that is in a sink?

Proposition. Let C_1 and C_2 be SCCs of G with an edge from C_1 to C_2 . If we run DFS on G, the largest postorder number of any vertex in C_1 will be larger than the largest postorder number in C_2 .

The reason why we care is because if v is the vertex with the largest postorder number, then:

- There is no edge to SCC(V) from any other SCC.
- SCC is a source SCC.

However, we wanted a sink SCC. So, how do we relate these two?

• A sink is like a source, only with edges going in the opposite direction.

So, we define a reverse graph like so:

Definition 1.3

Given a directed graph G, the **reverse graph** of G (denoted G^R) is obtained by reversing the directions of all the edges of G.

Some properties of reverse graphs are:

- G and G^R have the same SCCs.
- The sink SCCs of G are the source SCCs of G^R .
- The source SCCs of G are the sink SCCs of G^R .