Una macchina di Turing con reset a sinistra è una variante delle comuni macchine di Turing, dove la funzione di transizione ha la forma:

$$\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{R, RESET\}.$$

Se $\delta(q,a)=(r,b,RESET)$, quando la macchina si trova nello stato q e legge a, la testina scrive b sul nastro, salta all'estremità sinistra del nastro ed entra nello stato r. Per sapere su quale cella saltare la macchina usa il simbolo speciale \triangleright per identificare l'estremità di sinistra del nastro. Questo simbolo si può trovare solo in una cella del nastro, e non può essere sovrascritto o cancellato. La computazione di una macchina di Turing con reset a sinistra sulla parola w inizia con $\triangleright w$ sul nastro. Si noti che queste macchine non hanno la solità capacità di muovere la testina di una cella a sinistra.

Mostrare che le macchine di Turing con reset a sinistra riconoscono la classe dei linguaggi Turing-riconoscibili.

- Per risolvere l'esercizio dobbiamo dimostrare che (a) ogni linguaggio riconosciuto da una TM con reset a sinistra è Turing-riconoscibile e (b) ogni linguaggio Turing-riconoscibile è riconosciuto da una TM con reset a sinistra.
 - (a) Mostriamo come convertire una TM con reset a sinistra M in una TM standard S equivalente. S simula il comportamento di M nel modo seguente. Se la mossa da simulare prevede uno spostamento a destra, allora S esegue direttamente la mossa. Se la mossa prevede un RESET, allora S scrive il nuovo simbolo sul nastro, poi scorre il nastro a sinistra finché non trova il simbolo ▷, e riprende la simulazione dall'inizio del nastro. Per ogni stato q di M, S possiede uno stato qRESET che serve per simulare il reset e riprendere la simulazione dallo stato corretto.

S = "Su input w:

- 1. scrive il simbolo \triangleright subito prima dell'input, in modo che il nastro contenga $\triangleright w$.
- Se la mossa da simulare è δ(q, a) = (r, b, R), allora S la esegue direttamente: scrive b sul nastro, muove la testina a destra e va nello stato r.
- 3. Se la mossa da simulare è $\delta(q,a)=(r,b,RESET)$, allora S esegue le seguenti operazioni: scrive b sul nastro, poi muove la testina a sinistra e va nello stato r_{RESET} . La macchina rimane nello stato r_{RESET} e continua a muovere la testina a sinistra finché non trova il simbolo \triangleright . A quel punto la macchina sposta la testina un'ultima volta a sinistra, poi di una cella a destra per tornare sopra al simbolo di fine nastro. La computazione riprende dallo stato r.
- 4. Se non sei nello stato di accettazione o di rifiuto, ripeti da 2."
- (b) Mostriamo come convertire una TM standard S in una TM con reset a sinistra M equivalente. M simula il comportamento di S nel modo seguente. Se la mossa da simulare prevede uno spostamento a destra, allora M può eseguire direttamente la mossa. Se la mossa da simulare prevede uno spostamento a sinistra, allora M simula la mossa come descritto dall'algoritmo seguente. L'algoritmo usa un nuovo simbolo \triangleleft per identificare la fine della porzione di nastro usata fino a quel momento, e può marcare le celle del nastro ponendo un punto al di sopra di un simbolo.

M = "Su input w:

- 1. Scrive il simbolo \triangleleft subito dopo l'input, per marcare la fine della porzione di nastro utilizzata. Il nastro contiene $\triangleright w \triangleleft$.
- 2. Simula il comportamento di S. Se la mossa da simulare è $\delta(q,a)=(r,b,R)$, allora M la esegue direttamente: scrive b sul nastro, muove la testina a destra e va nello stato r. Se muovendosi a destra la macchina si sposta sulla cella che contiene \triangleleft , allora questo significa che S ha spostato la testina sulla parte di nastro vuota non usata in precedenza. Quindi M scrive un simbolo blank marcato su questa cella, sposta \triangleleft di una cella a destra, e fa un reset a sinistra. Dopo il reset si muove a destra fino al blank marcato, e prosegue con la simulazione mossa successiva.
- 3. Se la mossa da simulare è $\delta(q, a) = (r, b, L)$, allora S esegue le seguenti operazioni: 3.1 scrive b sul nastro, marcandolo con un punto, poi fa un reset a sinistra
 - 3.2 Se il simbolo subito dopo ⊳ è già marcato, allora vuol dire che S ha spostato la testina sulla parte vuota di sinistra del nastro. Quindi M scrive un blank e sposta il contenuto del nastro di una cella a destra finché non trova il simbolo di fine nastro ⊲. Fa un reset a sinistra e prosegue con la simulazione della prossima mossa dal nuovo blank posto subito dopo l'inizio del nastro. Se il simbolo subito dopo ⊳ non è marcato, lo marca, resetta a sinistra e prosegue con i passi successivi.
 - 3.3 Si muove a destra fino al primo simbolo marcato, e poi a destra di nuovo.
 - 3.4 se la cella in cui si trova è marcata, allora è la cella da cui è partita la simulazione. Toglie la marcatura e resetta. Si muove a destra finché non trova una cella marcata. Questa cella è quella immediatamente precedente la cella di partenza, e la simulazione della mossa è terminata
 - 3.5 se la cella in cui si trova non è marcata, la marca, resetta, si muove a destra finché non trova una marcatura, cancella la marcatura e riprende da 3.3.
- 4. Se non sei nello stato di accettazione o di rifiuto, ripeti da 2."