Statement of the problem:

Nurses in a hospital							
Days of the week	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Number of nurses needed	>= 17	>= 13	>= 15	>= 19	>= 14	>= 16	>= 11

■ They work 5 days in row with 2 days off

Linear programming formulation

- Variables We define seven variables, each variable coresponding to a shift. Because we are talking about people, our variables must be integers. For a maximization LP, any feasible solution gives a lower bound on the optimal value. We want the highest lower bound possible (i.e. the lower bound closest to the optimal value).
- Constraints They work 5 days in row with 2 days off, and we cannot have less than a certain number of nurses at work, as fallowing:
 - o "Shift one Monday to Friday", >= 17
 - o "Shift two Tuesday to Saturday",6 >= 13
 - \circ "Shift three Wednesday to Sunday", 7 >= 15
 - "Shift four Thursday to Monday", >= 19
 - "Shift five Friday to Tuesday", >=14
 - o "Shift six Saturday to Wednesday", >= 10
 - o "Shift seven Sunday to Thursday", >= 11
- *Objective* our task is to minimize the number of nurses that we hire.
- The *basic assumptions* are:
 - o There won't be missing days at work;
 - All the data/numbers given are accurate;
 - o They will be eager to adopt the given shift pattern;

Now, let's understand the code step by step:

- **Line 1-2:** First import the library pulp as p.
- **Line 4-5:** Define the problem by giving a suitable name to our problem, I have chosen the name 'Nurses'. Also, I specified our aim for the objective function of Minimize.
- Line 7-14: Define LpVariable to hold the variables of the objective functions. The next argument specifies the lower bound of the defined variable, 0, and the upper bound is none by default.
- Line 16-17: Denotes the objective function in terms of defined variables.
- Line 19-26: These are the constraints on the variables.
- Line 28-29: This will show you the problem in the output screen.

- **Line 31-32:** This is the problem solver.
- Line 34-35: Will display the status of the problem.
- **Line 37-38:** Will print the final solution, represented by minimum number of nurses that we need.

Results: The optimum number of nurses that we need to hire to satisfy our conditions is 21.