地球型惑星における南北熱輸送 その太陽定数への依存性

人見祥磨

学籍番号:20203069

* * * * *

北海道大学 大学院理学院 宇宙理学専攻 地球流体研究室 修士 2 年

指導教員:石渡正樹

* * * * *

2021年12月20日

概要

目次

1	はじめ	に・・・		• •	•	• •	•	•	 •	•	•	• •	•	•	• •	•	•	•	• •	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	2
2	モデル	の概要			•		•	•	 •	•	•		•	•		•	•	•		•	•		•	•	•	 •	•	•	•	•	•	•	•	2
	2.1	礎方程式	† · · · †					•	 •	•	•		•	•		•	•	•		•	•		•	•	•	 •	•	•	•	•	•	•	•	2
	2.1.1	連続σ	· 走(•		•	•	 •	•	•		•	•		•	•	•		•	•		•	•	•	 •	•	•	•	•	•	•	•	2
	2.1.2	静水压	Eの式		•		•		 •	•	•		•	•		•	•			•	•		•	•	•	 •	•	•	•	•	•	•	•	2
	2.1.3	運動力	程式		•		•		 •	•	•		•	•		•	•			•	•		•	•	•	 •	•	•	•	•	•	•	•	2
3	実験結	果・・・			•		•		 •	•	•		•	•		•	•			•	•		•	•	•	 •	•	•	•	•	•	•	•	2
4	結論・						•	•	 •	•	•		•	•		•	•	•		•	•		•	•	•	 •	•	•	•	•	•	•	•	3
5	謝辞・						•		 •	•	•		•	•		•	•			•	•		•	•	•	 •	•	•	•	•	•	•	•	3
6	参考文	献リスト																																2

1 はじめに

- ハビタブルゾーンの説明
- 暴走温室状態の説明
- 1 次元計算は Nakajima et al. (1992) が行った。
- 3 次元計算を Ishiwatari et al. (2002) が行った。
- Ishiwatari et al. (2002) で利用したモデルにはバグが含まれていた。
- •現在、放射上限に関して3次元計算をしっかり行った論文はない状況である。
- 3 次元計算を行って南北熱輸送に関して考察する。

2 モデルの概要

DCPAM5 を利用している。

2.1 基礎方程式

2.1.1 連続の式

$$\frac{\partial \pi}{\partial t} + v_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}.$$
 (1)

2.1.2 静水圧の式

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma}.\tag{2}$$

2.1.3 運動方程式

$$\frac{\partial}{\partial \zeta} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_A}{\partial \lambda} - \frac{\partial U_A}{\partial \mu} \right) + \mathfrak{D}[\zeta]. \tag{3}$$

3 実験結果

実験結果(図を貼る)。

4 結論

結論。

5 謝辞

謝辞。

6 参考文献リスト

参考文献。