单纯形法

(1) 对于下列 LP 问题, 先定一个可行基 B, 将该问 题化为关于基 B 的典式, 列初始单纯形表。

$$\max Z = 10x_1 + 5x_2; \qquad \max Z = 5x_1 - 2x_2 + 3x_3 - 6x_2$$

$$(1) \quad s.t. \begin{cases} 3x_1 + 4x_2 \le 9; \\ 5x_1 + 2x_2 \le 8; \\ x_1, x_2 \ge 0; \end{cases}$$

$$(2) \quad \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 7; \\ 2x_1 + x_2 + x_3 + 2x_4 = 3; \\ x_1, x_2, x_3, x_4 \ge 0; \end{cases}$$

$$\max Z = 10x_1 + 5x_2;$$

解:将 1 化为标准型 s.t. $\begin{cases} 3x_1 + 4x_2 + x_3 = 9; \\ 5x_1 + 2x_2 + x_4 = 8; \\ x_1, x_2, x_3, x_4 \ge 0; \end{cases}$

	С		10	5	0	0
Св	X_B	b	x_1	x_2	x_3	x_4
0	<i>x</i> ₃	9	3	4	1	0
0	<i>x</i> ₄	8	5	2	0	1
2	Z		10	5	0	0

$$B = (P_3, P_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Z = C_B B^{-1} b = 0, \quad \delta = C - C_B B^{-1} A = (10, 5, 0, 0)$$

2 已经是标准型,但由于没有恰当的单位阵,故随机选 x_1 、 x_2 为基变量, x_3 、 x_4 为非基变量。

$$B = (P_1, P_2) = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, N = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{bmatrix}, b' = B^{-1}b = \begin{bmatrix} -\frac{1}{3} \\ \frac{11}{3} \end{bmatrix}, Z = C_B B^{-1}b = -9, \delta = C - C_B B^{-1}A = (0, 0, 8, -2)$$

则典式为

$$\max Z = -9 + 8x_3 - 2x_4;$$

$$s.t. \begin{cases} x_1 - \frac{1}{3}x_3 = -\frac{1}{3}; \\ x_2 + \frac{5}{3}x_3 + 2x_4 = \frac{11}{3}; \\ x_1, x_2, x_3, x_4 \ge 0; \end{cases}$$

	С		5	-2	3	-6
Св	X_B	b	x_1	x_2	x_3	x_4
5	x_1	-1/3	1	0	-1/3	0
-2	x_2	11/3	0	1	5/3	2
2	Z		0	0	8	-2

(2) 用单纯形法求解下列线性规划问题

$$\max Z = 2x_1 + x_2$$

解:将 1 化为标准型
$$s.t.$$
 $\begin{cases} 3x_1 + 5x_2 + x_3 = 15; \\ 6x_1 + 2x_2 + x_4 = 24; \\ x_j \ge 0, (j = 1, 2, 3, 4) \end{cases}$,列出单纯形表如下

	C		2	1	0	0
Св	X_B	b	x_1	x_2	x_3	x_4
0	<i>x</i> ₃	15	3	5	1	0
0	<i>x</i> ₄	24	6	2	0	1
2	Z 0		2	1	0	0

然后 x_1 进基, x_4 出基, 得到

С			2	1	0	0
Св	X_B	ь	x_1	x_2	x_3	<i>X</i> ₄
0	x_3	3	0	4	1	-1/2
2	x_1	4	1	1/3	0	1/6
Z		-8	0	1/3	0	-1/3

再 x₂ 进基, x₃出基, 得到最终单纯形表如下:

	С		2	1	0	0
C_B	X_{B}	b	x_1	x_2	x_3	x_4
1	x_2	3/4	0	1	1/4	-1/8
2	x_1	15/4	1	0	-1/12	5/24
Z		-33/4	0	0	-1/12	-7/12

最优解求得
$$x^* = (\frac{15}{4}, \frac{3}{4}, 0, 0)$$
, $Z^* = \frac{33}{4}$

$$\max Z=2x_1+5x_2$$
 将 2 化为标准型得 $x_1+x_3=4;$ $2x_2+x_4=12;$ 列出单纯形表 $3x_1+2x_2+x_5=18;$ $x_j\geq 0, (j=1,2,3,4,5)$

	С			5	0	0	0
C_B	X_{B}	b	x_1	x_2	x_3	x_4	x_5
0	<i>x</i> ₃	4	1	0	1	0	0
0	x_4	12	0	2	0	1	0
0	x_5	18	3	2	0	0	1
2	Z 0		2	5	0	0	0

然后 x_2 进基, x_4 出基, 得到

С			2	5	0	0	0
C_B	X_{B}	b	x_1	x_2	x_3	χ_4	<i>x</i> ₅
0	<i>x</i> ₃	4	1	0	1	0	0
5	x_2	6	0	1	0	1/2	0
0	<i>x</i> ₅	6	3	0	0	-1	1
2	Z	-30	2	0	0	-5/2	0

然后 x_1 进基, x_5 出基, 得到最终单纯形表

С			2	5	0	0	0
Св	X_{B}	b	x_1	x_2	x_3	x_4	<i>x</i> ₅
0	x_3	2	0	0	1	1/3	-1/3
5	x_2	6	0	1	0	1/2	0
2	x_1	2	1	0	0	-1/3	1/3
2	Z -34		0	0	0	-11/6	-2/3

最优解求得 $x^* = (2, 6, 2, 0, 0)$, $Z^* = 34$

(3) 分别用大 M 法和两阶段法求解下列 LP 问题

$$\max Z = 2x_1 + 3x_2 - 5x_3 \qquad \max Z = 2x_1 + 3x_2 + x_3$$

$$\text{①} s.t. \begin{cases} x_1 + x_2 + x_3 = 7; \\ 2x_1 - 5x_2 + x_3 \ge 10; \\ x_j \ge 0, (j = 1, 2, 3) \end{cases}$$

$$\text{②} s.t. \begin{cases} x_1 + 4x_2 + 2x_3 \ge 8; \\ 3x_1 + 2x_2 \ge 6; \\ x_j \ge 0, (j = 1, 2, 3) \end{cases}$$

解:对于问题 1,构造大 M 问题

$$\max Z = 2x_1 + 3x_2 - 5x_3 - Mx_5 - Mx_6$$

$$s.t. egin{cases} x_1 + x_2 + x_3 &= 7; \\ 2x_1 - 5x_2 + x_3 - x_4 + x_6 &= 10; \\ x_j \geq 0, (j = 1, 2, 3, 4, 5, 6) \end{cases}$$
 列出单纯形表如下

	С			3	-5	0	-M	-M
Св	X_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6
-M	<i>x</i> ₅	7	1	1	1	0	1	0
-M	x_6	10	2	-5	1	-1	0	1
2	Z	17M	2+3M	3-4M	-5+2M	-M	0	0

然后 x_1 进基, x_6 出基, 得到

	С		2	3	-5	0	-M	-M
Св	X_B	b	x_1	x_2	x_3	x_4	x_5	x_6
-M	<i>x</i> ₅	2	0	7/2	1/2	1/2	1	-1/2
2	x_1	5	1	-5/2	1/2	-1/2	0	1/2
2	Z	2M-10	0	8+7/2M	-6+1/2M	1+1/2M	0	-3/2M+1/7

然后 x_2 进基, x_5 出基, 得到

	C			3	-5	0	-M	-M
Св	X_{B}	ь	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6
3	x_2	4/7	0	1	1/7	1/7	2/7	-1/7
2	x_1	45/7	1	0	6/7	-1/7	5/7	1/7
2	Z	-102/7	0	0	-50/7	-1/7	-M-16/7	-M+1/7

最优解求得
$$x^* = (\frac{45}{7}, \frac{4}{7}, 0), Z^* = \frac{102}{7}$$

对于问题 2,利用两阶段法如下

max
$$g=-x_4-x_5$$
 构造辅助 LP 问题
$$s.t.\begin{cases} x_1+4x_2+2x_3+x_4=8;\\ 3x_1+2x_2+x_5=6;\\ x_j\geq 0, (j=1,2,3,4,5) \end{cases}$$
 ,列出单纯形表

	С		0	0	0	-1	-1
Св	X_B	b	x_1	x_2	x_3	χ_4	<i>x</i> ₅
-1	x_4	8	1	4	2	1	0
-1	<i>x</i> ₅	6	3	2	0	0	1
٤	g		4	6	2	0	0

然后 x₂ 进基, x₄出基, 得到

С			0	0	0	-1	-1
Св	X_B	b	x_1	x_2	x_3	χ_4	x_5
0	x_2	2	1/4	1	1/2	1/4	0
-1	<i>x</i> ₅	2	5/2	0	-1	-1/2	1
	3	2	5/2	0	-1	-3/2	0

然后 x_1 进基, x_5 出基, 得到

	С			0	0	-1	-1
Св	X_{B}	b	x_1	x_2	x_3	x_4	x_5
0	x_2	9/5	0	1	3/5	3/10	-1/10
0	x_1	4/5	1	0	-2/5	-1/5	2/5
٤	g 0		0	0	0	-1	-1

最优解求得 $x^* = (\frac{4}{5}, \frac{9}{5}, 0, 0, 0)$,以 $B = (P_1, P_2)$ 为基,带入原 LP 问题有

	C		2	3	1
Св	X_{B}	b	x_1	x_2	<i>x</i> ₃
3	x_2	9/5	0	1	3/5
2	x_1	4/5	1	0	-2/5
	g	-7	0	0	0

由于非基变量存在检验数为 0,所以存在无穷多个最优解,其中一个最优解为 $x^* = (\frac{4}{5}, \frac{9}{5}, 0)$, $Z^* = 7$

对偶理论

(1) 写出下列线性规划问题的对偶问题

$$\min z = 2x_1 + 2x_2 + 4x_3 \qquad \max z = x_1 + 2x_2 + 3x_3 + 4x_4$$
① $s.t.$

$$\begin{cases} 2x_1 + 3x_2 + 5x_3 \geqslant 2 \\ 3x_1 + x_2 + 7x_3 \leqslant 3 \\ x_1 + 4x_2 + 6x_3 \leqslant 5 \\ x_1, x_2, x_3 \geqslant 0 \end{cases}$$
② $s.t.$

$$\begin{cases} -x_1 + x_2 - x_3 - 3x_4 = 5 \\ 6x_1 + 7x_2 + 3x_3 - 5x_4 \geq 8 \\ 12x_1 - 9x_2 - 9x_3 + 9x_4 \leqslant 20 \\ x_1, x_2 \geqslant 0, x_3 \leqslant 0, x_4$$
① $x_1, x_2 \geqslant 0, x_3 \leqslant 0, x_4$
① $x_2 \approx 0$

解: 由对偶理论得

$$\max w = 2y_1 + 3y_2 + 5y_3$$

$$\text{In } w = 5y_1 + 8y_2 + 20y_3$$

$$\sum_{3y_1 + y_2 + 4y_3 \le 2} \{2y_1 + 3y_2 + 4y_3 \le 2\} \{3y_1 + y_2 + 6y_3 \le 4\} \{2y_1 + 7y_2 + 6y_3 \le 4\} \{2y_1 + 7$$

(2) 应用对偶理论证明 LP1 问题可行但无最优解;

$$\max Z = x_1 - x_2 + x_3;$$

$$x_1 - x_3 \ge 4;$$

$$x_1 - x_2 + 2x_3 \ge 3;$$

$$x_j \ge 0 (j = 1, 2, 3).$$

解:

min
$$w=4y_1+3y_2$$

$$y_1+y_2\ge 1$$

$$y_1+7y_2-9y_3\ge 2$$
 其可行域如下所示,交集为空
$$-y_2\ge -1$$

$$-y_1+2y_2\ge 1$$

$$y_i\le 0,\quad (j=1,2,3)$$

原问题中(5,0,1)是一个可行解。对偶问题无可行解,故原问题无最优

(3) 已知 LP2 问题对偶问题最优解为 $y_1^* = 1.2 \ y_2^* = 0.2$,试根据对偶理论求原问题最优解。

$$\max Z = x_1 + 2x_2 + 3x_3 + 4x_4;$$

$$s.t.\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20; \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20; \\ x_j \ge 0, \quad (j = 1, 2, 3, 4) \end{cases}$$

min
$$w=20y_1+20y_2$$
 写出其对偶问题为
$$s.t.\begin{cases} y_1+2y_2\geq 1\\ 2y_1+y_2\geq 2\\ 2y_1+3y_2\geq 3\\ 3y_1+2y_2\geq 4\\ y_i\geq 0,\quad (j=1,2) \end{cases}$$
 由题意得,对偶问题最优值为 $20*1.2+20*0.2=28$,最优

解(1.2,0.2)

$$\begin{vmatrix} y_1+2y_2=1.6>1\\2y_1+y_2=2.6>2 \end{vmatrix} \Longrightarrow \begin{cases} x_1=0\\x_2=0 \end{vmatrix}, \ \ \text{filt} \ \begin{vmatrix} y_1\geq 0\\y_2\geq 0 \end{vmatrix} \Longrightarrow \begin{cases} 2x_3+3x_4=20\\3x_3+2x_4=20 \Longrightarrow \begin{cases} x_3=4\\x_4=4 \end{cases}$$

所以原问题得最优解为 $x^* = (0,0,0,4,4),Z^* = 28$

(4) 已知 LP 问题用两阶段法求解时得到最终单纯表如下:

	С			-33	0	0	0
C_B	X_{B}	b	x_1	x_2	x_3	χ_4	<i>x</i> ₅
0	x_4	3	0	0	-2	1	3
-15	x_1	4/3	1	0	-1/3	0	2/3
-33	x_2	1	0	1	0	0	-1
2	Z		0	0	-5	0	-23

$$\min Z = 15x_1 + 33x_2$$

s.t.
$$\begin{cases} 3x_1 + 2x_2 - x_3 = 6; \\ 6x_1 + x_2 - x_4 = 6; \\ x_2 - x_5 = 1; \\ x_i \ge 0, i = 1, 2, ..., 5. \end{cases}$$

写出其对偶问题; 求出其对偶最优解

解: 由对偶理论容易写出对偶问题如下

max
$$w = 6y_1 + 6y_2 + y_3$$

$$\begin{cases} 3y_1 + 6y_2 \le 15 \\ 2y_1 + y_2 + y_3 \le 33 \\ -y_1 \le 0 \end{cases}$$
 从表中可直接看出,对偶问题最优解为 $y^* = (5,0,23)$,从而算出 $-y_2 \le 0$ $-y_3 \le 0$ y_i 无约束,($j = 1,2$)

(5) 用对偶单纯法求解下列 LP 问题

$$\min Z = x_1 + x_2;$$

$$s.t. \begin{cases} 2x_1 + x_2 \ge 4; \\ x_1 + 7x_2 \ge 7; \\ x_1, x_2 \ge 0. \end{cases}$$

解:转换为标准型

$$\max \quad Z = -x_1 - x_2;$$

$$s.t. \begin{cases} -2x_1 - x_2 + x_3 = 4; \\ -x_1 - 7x_2 + x_4 = 7; \\ x_1, x_2, x_3, x_4 \geq 0. \end{cases}$$
 列出初始单纯形表如下

	С		-1	-1	0	0
Св	X_{B}	b	x_1	x_2	x_3	x_4
0	x_3	-4	-2	-1	1	0
0	x_4	-7	-1	-7	0	1
2	Z		-1	-1	0	0

检验数都是-1,随机选一个进基,然后 x1 进基, x3 出基,得到

					-	
	С		-1	-1	0	0
Св	X_{B}	b	x_1	x_2	x_3	x_4
-1	x_1	2	1	1/2	-1/2	0
0	x_4	-5	0	-13/2	-1/2	1
	Z	2	0	-1/2	-1/2	0

然后 x2 进基, x4 出基, 得到

	С		-1	-1	0	0
Св	X_{B}	b	x_1	x_2	x_3	x_4
-1	x_1	21/13	1	0	-7/13	1/13
-1	x_2	10/13	0	1	1/13	-2/13
z		31/13	0	0	-6/13	-1/13

最优解
$$x^* = (\frac{21}{13}, \frac{10}{13}, 0, 0)$$
, $Z^* = \frac{31}{13}$,原函数得最优值也为 $\frac{31}{13}$

灵敏度分析

已知 LP 问题及其最终单纯形表如下,求条件变化后的最优解。

$$\max \quad Z = 2x_1 - x_2 + x_3$$

$$s.t. \begin{cases} x_1 + x_2 + x_3 \le 6 \\ -x_1 + 2x_2 \le 4 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

C			2	-1	1	0	0
Св	X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	6	1	1	1	1	0
0	x_5	10	0	3	1	1	1
2	Z -12		0	-3	-1	-2	0

- (1) 目标函数变为 \mathbf{max} $\mathbf{Z} = 2x_1 + 3x_2 + x_3$
- (2) 约束条件右端项由 $\begin{bmatrix} 6 & 4 \end{bmatrix}^T$ 变为 $\begin{bmatrix} 3 & 4 \end{bmatrix}^T$
- (3) 增加一个新的约束条件 $-x_1 + 2x_2 \ge 2$

 $m{K}$: (1) 当 $m{C}_2$ 由-1 变成 3,对应的检验数 $m{\delta}_2 = 1 > 0$,最优解发生变化,

	С			3	1	0	0
C_{B}	X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	6	1	1	1	1	0
0	x_5	10	0	3	1	1	1
2	Z -12		0	1	-1	-2	0

然后 x2 进基, x5 出基, 得到

C			2	3	1	0	0
Св	X_B	ь	x_1	x_2	x_3	x_4	x_5
2	x_1	8/3	1	0	2/3	2/3	-1/3
3	x_2	10/3	0	1	1/3	1/3	1/3
2	Z -46/3		0	0	-4/3	-7/3	-1/3

最优解
$$x^* = (\frac{8}{3}, \frac{10}{3}, 0, 0, 0)$$
, $Z^* = \frac{46}{3}$,

$$B^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
, $b' = B^{-1}b = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$,带入原始表格有

	С			-1	1	0	0
Св	X_B	b	x_1	x_2	x_3	χ_4	x_5
2	x_1	3	1	1	1	1	0
0	<i>x</i> ₅	7	0	3	1	1	1
2	Z -6		0	-3	-1	-2	0

最优基不变,最优解 $x^* = (3,0,0,0,7), Z^* = 6$,

(3) 将增加的一个约束先变成标准型 $-x_1+2x_2 \geq 2 \Longrightarrow x_1-2x_2+x_6=-2$,修改表格

	С			-1	1	0	0	0
Св	X_B	b	x_1	x_2	x_3	x_4	x_5	x_6
2	x_1	6	1	1	1	1	0	0
0	x_5	10	0	3	1	1	1	0
0	x_6	-2	1	.0	-2	0	0	1
2	Z	-12	0	-3	-1	-2	0	0

我们需要变换出一个单位阵出来

, ,	, ,_,,	• •						
	С		2	-1	1	0	0	0
Св	X _B	b	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆
2	x_1	6	1	1	1	1	0	0
0	x_5	10	0	3	1	1	1	0
0	x_6	-8	0	-1	-3	-1	0	1
Z		-12	0	-3	-1	-2	0	0

现在有了单位阵,但发现 b 有小于 0 的,所以利用对偶单纯形法,找到-1 最小,所以后 x_3 进基, x_6 出基,4 得到

	С		2	-1	1	0	0	0
C_B	X_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6
2	x_1	10/3	1	2/3	0	2/3	0	1/3.
0	x_5	10/3	0	8/3	0	2/3	1	1/3
1	x_3	8/3	0	1/3	1	1/3	0	-1/3
Z		-28/3	0	-8/3	0	-5/3	0	-1/3

检验数均小于 0,且 b 均大于 0,最优解 $x^* = (\frac{10}{3}, 0, \frac{8}{3}, 0, \frac{4}{3})$, $Z^* = \frac{28}{3}$