PUB-NO: JP402310339A

DOCUMENT-IDENTIFIER: JP 02310339 A

TITLE: MARTENSITIC STAINLESS STEEL HAVING EXCELLENT STRENGTH, SPRING

CHARACTERISTICS AND FORMABILITY

PUBN-DATE: December 26, 1990

INVENTOR-INFORMATION:

NAME COUNTRY

IMAZU, KAORU
YOSHIOKA, KEIICHI
ASSIGNEE-INFORMATION:

NAME COUNTRY

KAWASAKI STEEL CORP APPL-NO: JP01128892 APPL-DATE: May 24, 1989

INT-CL (IPC): C22C 38/00; C22C 38/50

ABSTRACT:

PURPOSE: To provide the <u>stainless</u> steel with excellent strength, spring characteristics and formability by compositely adding Al, Ti and Ni in a positive manner, regulating the amounts of C, N and Si and specifying the relationship among the elements to be incorporated.

CONSTITUTION: The compsn. of the <u>martensitic stainless</u> steel is constituted of, by weight, 10 to 19% Cr, 5.5 to 10% Ni, iÜ0.4% Si, iÜ2.0% Mn, 1.10 to 2.00% Al, 0.5 to 2.0% Ti, iÜ0.03% C, iÜ0.04% N and the blance Fe with inevitable impurities. Furthermore, iÜ35% Cr+2Ni+Mn+Al and iÝ11.10% Cr+Al are satisfied. If required, one or more kinds among iÜ1.0% Nb, iÜ2.5% Zr, iÜ1.0% V, iÜ0.7% Cu and iÜ3.0% Mo are moreover incorporated thereto. The steel has high elongation and excellent formability in either case of after solution or aging treatment.

COPYRIGHT: (C)1990, JPO&Japio

19 日本国特許庁(JP)

⑪特許出願公開

◎ 公開特許公報(A) 平2-310339

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)12月26日

C 22 C 38/00 38/50 302 Z

7047-4K

審査請求 未請求 請求項の数 2 (全5頁)

69発明の名称

強度、バネ特性及び成形性に優れたマルテンサイト系ステンレス鋼

②特 願 平1-128892

20出 願 平1(1989)5月24日

⑫発 明 者 今 津

薫 千葉県千葉市川

薫 千葉県千葉市川崎町1番地 川崎製鉄株式会社技術研究本

@発明者 吉岡 啓 -

千葉県千葉市川崎町1番地 川崎製鉄株式会社技術研究本

部内

勿出 願 人 川崎製鉄株式会社

兵庫県神戸市中央区北本町通1丁目1番28号

明 細 書

1. 発明の名称

強度、バネ特性及び成形性に優れたマルテンサ

イト系ステンレス鋼

2. 特許請求の範囲

(1) 重量%にて、

Cr: 10~19%,

Ni: 5.5~10%,

Si: 0.4%以下,

Mn: 2.0%以下,

AL: 1.10~2.00%,

Ti: 0.5~2.0 %.

C:0.03%以下,

N:0.04%以下

を含有し、かつ

Cr + 2 Ni + Mn + Al : 35%以下,

2 Ni + Mn: 11%以上,

Cr + At: 11.10%以上

を満足し、残部がFe及び不可避的不純物から

なることを特徴とする強度,バネ特性及び成 形性に優れたマルテンサイト系ステンレス鋼。

(2) 重量%にて、

Cr: 10~19%,

Ni: 5.5~10%,

Si: 0.4%以下,

Mn: 2.0%以下,

At: 1.10~2.00%,

Ti: 0.5~2.0 %,

C:0.03%以下,

N:0.04%以下 を含有し、さらに

Nb: 1.0%以下,

Zr: 2.5%以下,

V: 1.0%以下,

Cu: 0.7%以下,

Mo: 3.0%以下

のうち1種以上を含有し、かつ

Cr + 2 Ni + Mn + Al + No: 35%以下,

2 Ni+Mn:11%以上,

Cr + Al + Mo: 11.10%以上

を満足し、残部がPe及び不可避的不純物からなることを特徴とする強度、バネ特性及び成形性に優れたマルテンサイト系ステンレス鋼。

3. 発明の詳細な説明

<産業上の利用分野>

本発明は、強度, バネ特性及び成形性に優れた マルテンサイト系ステンレス鋼に関するものである。

<従来の技術>

強度、バネ特性に優れた代表的なものにSUS 301や折出効果型ステンレス鋼の17-4 PHや17-7 PHなどがあるが、最近自動車エンジンや化学プラントのガスケット材として高強度、バネ性に優れたうえに、さらにこれらの複雑なプレス成形加工に耐える成形性の良い材料の出現が望まれている。しかしSUS 301のハード材や17-7 PHを冷間加工後時効処理(CH処理)したものでは伸びが低く加工性が著しく劣り、一方17-4 PHや17-7 PH (CH処理以外)では逆に強度に

Ni: 5.5~10%, Si: 0.4%以下, Mn: 2.0%以下, Al: 1.10~2.00%, Ti: 0.5~2.0%, C: 0.03%以下, N: 0.04%以下を含有し、さらに必要に応じて、Nb: 1.0%以下, Zr: 2.5%以下, V: 1.0%以下, Cu: 0.7%以下, Mo: 3.0%以下のうち1種以上を含有し、かつCr+2Ni+Mn+Al+Mo: 35%以下, 2Ni+Mn:11%以上, Cr+Al+Mo: 11.10%以上を満足し、残部がFe及び不可避的不純物からなることを特徴とする強度, バネ特性及び成形性に優れたマルテンサイト系ステンレス鯛である。

<作 用>

本発明者らは小型網塊を用いて機械的性質について検討した結果、At, Ti, Niの積極的複合添加により、従来網よりも優れた強度が得られ、またC, Nの低減を行うと共に特にSi置を限定することにより著しく加工性が改善されることを見出した。

従来鋼は加工性が悪かったため溶体化処理後に 成形加工を行い、その後で時効処理を行わなくて 劣るという問題があった。

そこで、従来、その強度、加工性を改善しようとする試みがなされており、例えば特開昭59~222558号公報に見られるように、オーステナイト生成元素とフェライト生成元素をバランスよく調整し、さらにCuを添加することにより時効後の強度を改善したものがあるが、最近さらに素材に対する強度の要求が厳しくなってきており、強度、加工性とも不十分である。しかもこれらの従来綱は加工を行うのが溶体化後時効前に限られていたため、加工メーカーでは時効処理設備が必要できる素材が求められていた。

<発明が解決しようとする課題>

これらの情勢に鑑み、本発明の目的は強度、バネ特性に優れると共に、溶体化後又は時効後のいずれの場合でも伸びは高く成形性にも優れたステンレス鋼を提供するものである。

<課題を解決するための手段>

すなわち本発明は、重量%にて、Cr:10~19%,

はならなかったが、本発明鋼では時効後の加工性 にも優れるため、時効後に加工を行うことができ る。従って加工メーカーでの時効処理工程を省略 することができ、熱処理設備が不要となり、広く 産業上の利用が可能となる。

またさらに本発明者らは、Ni, Cr, Mn, (Mo) を $Cr + 2Ni + Mn + (Mo) \le 35$ の式によって制限することにより残留オーステナイトを抑え、さらに優れたバネ特性が得られることを見出した。

またさらに、Nb、Zr、V、Cu及びMoのうち1種 以上を添加することにより一層の強度及び延性が 得られることがわかった。

本発明は、これらの知見に基づき構成された折 出硬化型ステンレス鋼であって、以下にその化学 成分の限定理由について述べる。

C, N: C, Nはそれぞれ0.03重量%(以下%で示す), 0.04%を超えると成形加工性が悪くなるので、その上限をそれぞれ0.03%, 0.04%に限定する。

Si:Siを 0.4%以下に限定することにより溶体

特開平2-310339(3)

化処理材又は溶体化後時効処理材のいずれにおいても加工性(伸び)が著しく改善され、かつそれらの両者の差異がほとんどなくなる。従ってSiの上限を 0.4%に限定する。しかし、Si量はいくら低くても本願の主旨を損なうものではないので、その下限については限定しない。

Nn: 2.0%を超えると残留オーステナイトが増加し強度が小さくなるので、その上限を 2.0%に限定する。

Ni、At. Ti:第1図、第2図に示すようにNi、At. Tiはそれぞれ 5.5%以上、1.10%以上、0.4%以上の複合添加により優れた強度が得られる。そこでそれぞれの下限をNi: 5.5%以上、At: 1.10%以上、Ti: 0.4%以上に限定する。しかしNiは10%を超えると残留オーステナイトが増え軟化するので、その上限を10%以下にする。また逆にAt. Tiは両者とも 2.0%を超えると伸びが低くなり成形性が悪くなるのでその上限を 2.0%以下に限定する。

Cr:10%未満では耐食性が著しく劣るので、下

ステナイトが折出しバネ疲労限が低下することを 見出した。その結果Cr + 2 Ni + Mn + Al + (Mo) の かたちで35%以下に制限される。また、Cr, Al, (Mo) 量はCr + Al + (Mo) のかたちで 11.10%未 満だと耐食性に劣るので、その下限を 11.10%以 上に限定する。

上記成分のステンレス鋼は、 750~1000℃で溶体化を行い、さらに 425~500 ℃で時効を行うことにより優れた強度、パネ特性及び成形性が得られる。成形加工は成形性の良い溶体化後または時効後に行うのが望ましい。

<実施例>

以下実施例について述べる。第1表のNo.1~19に示す成分の真空高周波溶解(50kg小型鋼塊)を用いて、750℃以上で3.0㎜厚まで熱間圧延を行い、引き続き1回法で圧延して0.3㎜厚の冷延板とした。750~1000℃で溶体化処理を行い、さらに475℃、4時間の時効処理を行った。なお、比較網No.24は市販されている0.35㎜厚のSUS301ハード材である。

限を10%以上に限定する。しかしCrが19%を超えると残留オーステナイトが増え強度が低下するため、その上限を19%以下に限定する。

Nb: 1.0%を超えるともフェライトが増加し、 Fe:Nb等の金属間化合物の出現により熱間加工性 が悪くなるので、その上限を 1.0%以下に限定する。

Zr: 2.5%を超えると成形性が悪くなるためその上限を 2.5%以下に限定する。

V: 1.0%を超えると成形加工性が悪くなるためその上限を 1.0%以下に限定する。

Cu: 0.7%を超えると熱間加工性及び時効処理 材の伸びが悪くなるのでその上限を 0.7%以下に 限定する。

No: 3.0%を超えると熱間加工性が悪くなるのでその上限を 3.0%以下に限定する。

さらにまた本発明鋼は、第3図に示すようにNi. Hn量が2×Ni+Hnのかたちで11%未満だと強度が 低いのでその下限を11%とする。

しかしNi、Mnの添加量が多すぎると、残留オー

第2 衷に時効前後の機械的性質を示す。加工性 は伸びにより評価した。強度は硬度測定により、 またパネ特性はパネ限界値により評価した。

本発明網1~15は溶体化処理後の加工性に優れ、また溶体化後時効処理を施しても強度のみ増加し、伸びはほとんど変化せず、時効後においても伸び5%以上を示し、加工性に優れている。

これに比べ比較例16、17、21は加工性には優れるものの、強度、バネ特性に劣り、バネ材として適さない。また比較鋼18~20、22~24は、強度、バネ特性には優れているが、加工性に劣る。

麦 1

(重量%)

						,											E 30 / 0 /
		Cr	Ni -	Si	Nn	A.	·Ti	Nb	Zr	V	Cu	Мо	С	N	A値*	B値。	C値*
1	1	11.76	8.51	0.28	0.12	1.15	1.88		-	-	_	-	0.019	0.014	30.05	17.14	12.91
	2	11.92	8.43	0.30	0.21	1.18	0.78	0.30	-			_	0.022	0.012	30.17	17.07	13.10
1	3	12.20	9.91	0.28	0.17	1.71	1.50	_	0.60	_	_	-	0.023	0.015	33.90	19.99	13.91
本	4	12.08	9.50	0.31	0.20	1.53	1.44	_	-	0.49	_		0.025	0.013	32.81	19.20	13.61
	5	12.01	9.00	0.34	0.22	1.20	0.79	_	_	-	0.68	_	0.021	0.014	31.43	18.22	13.21
74	6	11.98	8.60	0.28	0.18	1.19	0.78	-	-	_	-	2.00	0.026	0.016	32.55	17.38	15.17
発	7	12.20	8.53	0.31	0.19	1.17	0.82	_	-		0.69	2.00	0.0034	0.0039	32.62	17.25	15.37
	8	12.42	8.46	0.31	0.18	1.18	0.79		_	_	0.70	2.00	0.020	0.0149	32.70	17.10	15.60
明	9	12.17	5.98	0.31	0.19	1.18	0.81	-		_	0.66	2.01	0.0040	0.0057	27.51	12.15	15.36
	10	11.81	6.22	0.29	0.19	1.17	0.82	-	-		0.68	1.92	0.019	0.0141	27.53	12.63	14.90
揖	11	15.36	8.66	0.36	0.20	1.17	0.60	0.24		_	0.68		0.0020	0.0038	34.05	17.52	16.53
3444	12	15.44	6.04	0.27	0.18	1.12	0.52	0.22	-	_	_	2.01	0.0018	0.0045	30.83	12.26	18.57
	13	18.76	5.51	0.30	0.22	1.17	0.49	0.15	0.17	0.07	_	-	0.028	0.014	31.17	11.24	19.93
	14	12.02	8.48	0.21	0.19	1.12	1.23	0.20			0.59	1.98	0.0041	0.0051	32.27	17.15	15.12
Ĺ	15	11.98	8.63	0.18	0.21	1.13	0.55	0.28	0.11	0.08	0.66	2.05	0.0015	0.0044	32.63	17.47	15.16
	16	11.77	6.58	0.27	0.22	1.19	0.35	_	_		-	_	0.0037	0.0012	26.34	13.38	12.96
	17	12.11	5.03	0.26	0.18	0.99	0.45	-		_	_	_	0.0045	0.0066	23.34	10.24	13.10
比	18	13.01	8.99	0.34	0.24	1.18	2.01	0.31	_	-	0.68	2.00	0.031	0.030	34.41	18.22	16.19
	19	12.56	9.00	0.31	0.16	2.05	1.52	0.35	_	-	0.67	2.01	0.026	0.015	34.74	18.32	16.62
較	20	12.14	8.51	0.56	0.22	1.15	0.87	0.32	_	-	0.69	1.99	0.028	0.019	32.52	17.24	15.28
	21	11.67	4.99	0.27	0.21	1.12	0.52	-		-	_	_	0.025	0.018	22.98	10.19	12.79
如	22	21.04	6.98	0.28	0.20	1.14	0.76	_	-	_	_	-	0.020	0.015	36.34	14.16	22.18
1	23	12.88	11.21	0.27	0.19	1.14	0.82		_	_	-		0.018	0.019	36.63	22.61	14.02
	24	16.31	6.12	0.90	0.94	0.001	_	-	_	-	0.01	0.009	0.122	0.045	29.50	13.18	16.32

* (A值=Cr+2Ni+Nn+At+No B值=2Ni+Nn C值=Cr+At+No

^

				表	2				
No.		溶体化温度	(*	部体化)	後	〔溶体化→時効〕後			
		(°C)	伸 (%) び	硬 (Hv) さ	パネ限界値 (kg/ml)	伸 (%)	硬 (Hv) さ	バネ限界値 (kg/ml)	
	1	950	7.2	341	99	6.4	585	177	
	2	1000	7.0	363	107	6.8	583	180	
	3	800	6.8	358	105	6.5	589	185	
本	4	800	7.1	361	106	6.8	583	181	
	5	800	6.6	374	111	5.4	581	180	
発	6	1000	9.3	363	107	6.6	571	178	
光	7	950	9.1	367	108	6.8	590	181	
	8	950	7.6	372	110	6.2	593	195	
明	9	950	9.4	381	113	7.0	560	173	
	10	950	7.9	378	112	6.5	563	174	
掘	11	1000	7.2	366	108	5.7	585	184	
** [12	1000	8.3	354	.104	6.1	571	176	
	13	800	8.7	342	100	6.9	560	173	
	14	800	8.8	369	110	6.8	588	179	
	15	1000	8.2	375	111	6.5	571	176	
	16	975	5.8	355	104	5.1	470	139	
	17	1000	7.2	394	129	6.2	469	133	
比	18	1000	0.8	363	110	0.2	588	182	
	19	800	1.0	371	124	0.4	579	179	
较	20	800	1.8	338	168	0.5	548	169	
	21	900	4.9	359	103	4.5	460	136	
鋼	22	900	3.9	345	101	4.1	421	128	
	23	900	4.4	372	111	4.0	430	131	
İ	24**	i	容体化多	処理なり	L	0	400	120	

** SUS 301冷延板

<発明の効果>

本発明により高強度でバネ特性に優れ、かつ成 形性のよい材料を安価に提供することが可能にな り、さらに加工メーカーでは時効設備が不要なの で、バネ材、ガスケット材などとして広く産業上 利用されることが可能となった。

4. 図面の簡単な説明

第1図はNi及びTi含有量と硬度との関係を示す グラフ、第2図はAI及びTi含有量と硬度との関係 を示すグラフ、第3図はCr, AI, Mo, Ni, Mn含有 量とパネ限界等との関係を示すグラフである。

特許出願人 川崎製鉄株式会社

第 3 図

