Мини-контрольная №5

В данном задании предполагается, что в задаче

$$F(x) = f(x) + R(x) \rightarrow \min_{x \in \mathbb{R}^n},$$

функция f(x) является μ — сильно выпуклой, R(x) — правильная замкнутая выпуклая функция, x^* — точка минимума функции F(x).

1 (0.5 балла)

Привести 3 примера задач выпуклой композитной оптимизации не из семинара.

2 (1 балл)

Покажите, что $u = \text{prox}_R(x) \Longleftrightarrow \langle x-u, y-u \rangle \leq R(y) - R(u) \ \ \forall y \in \mathbb{R}^n.$

3 (1.5 балла)

Покажите, что для проксимального градиентного спуска выполняется следующее свойство:

$$x^* = \operatorname{prox}_{\gamma R}(x^* - \gamma \nabla f(x^*)), \quad \gamma > 0.$$

4 (2 балла)

Пусть $R(x) = \gamma g\left(\frac{x}{\gamma}\right)$ для некоторой замкнутой правильной выпуклой функции g и $\gamma > 0$. Докажите, что $\operatorname{prox}_R(x) = \gamma \operatorname{prox}_{\frac{g}{\gamma}}(\frac{x}{\gamma})$.

5 (3 балла)

Пусть $\mathbb{R}^n_{++} = \{x \in \mathbb{R}^n \mid x_i > 0, \ i = 1, n\}, \ \gamma > 0$ и

$$R(x) = \begin{cases} -\gamma \sum_{i=1}^{n} \ln x_i & x \in \mathbb{R}_{++}^n, \\ +\infty, & \text{иначе.} \end{cases}$$

Найдите $\operatorname{prox}_{R}(x)$.