First SEMESTER 2023-2024 Course Handout (Part II)

Date: 11/08/2023

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding this course.

Course No. : CHEM F325

Course Title : POLYMER CHEMISTRY

Instructor-in-charge : Dr. Subit Kumar Saha

Instructors : Dr. Subit Kumar Saha, Dr. Chanchal Chakraborty

- 1. Scope and Objective of the course: The objective of the present course is to introduce the foundation of the subject by studying the types and structures of polymers, the molecular weight of polymers, the kinetics of polymerization, the thermodynamics of polymer solutions, thermal and mechanical properties of solid polymers, polymer's viscoelasticity and rubber elasticity, commodity, network, engineering and specialty polymers and applications for polymers in separations, biotechnology, and electronics.
- 2. **Text Book (TB):** Fried, Joel R., Polymer Science and Technology, 2nd Edition, Prentice-Hall of India Pvt. Ltd. New Delhi, 2005.
- **3. Reference Books (RB):** (a) Bahadur, P. and Sastry, N.V., Principles of polymer Science, Narosa Publishing House, New Delhi, 2002. (b) V R Gowarikar, N V Vishwanathan, Jayadev Sreedhar, First Edition 1986, Polymer Science, Reprint 2009. New age International limited (p).

The syllabus also includes lectures class notes.

4. Course Plan:

Lecture	Learning objectives	Торіс	Chap./	Learning Outcomes		
No.	Learning objectives		Sec. No.			
1	Classification of polymers, polymer structure and isomerism, molecular weights and chemical structure, and thermal transitions.	(i) Classification of polymers	TB 1.1, RB(a) 1.2	Recognize various types of polymers based on th chemical structures, isomerism of polymers, calculation		
2		(ii) Polymer structure and isomerism	TB 1.2, RB(a) 1.4	molecular weights of the polymers and analysis, and the		

Lecture No.		Торіс	Chap./ Sec. No.	Learning Outcomes	
3-4		(iii) Molecular weight and chemical	TB 1.3 & 1.4,	relation between the structure of polymers and thermal	
		structure and thermal transitions	RB(a) 3.3.1	properties.	
5	Synthesis and kinetics of different	(i) Step-growth polymerization	TB 2.1, RB(a) 2.2	Demonstrate techniques and methodologies adopted polymers synthesis	
6-7	types of polymerizations	(ii) Chain-growth polymerization TB 2.2, RB(a)2.1			
8-9	The different techniques of polymerization and the reactions of synthetic polymers	Polymerization techniques, reactions of synthetic polymers and special topic in polymer synthesis	TB 2.3-2.5	Envisage reactions of synthetic polymers and outline spe topics encountered in polymers synthesis.	
10	Different model to explain conformations and chain dimensions	Polymer conformation and chain dimension	TB 3.1	A comprehensive study of polymer conformations and their chain dimensions	
11	How thermodynamics of polymers solutions differs from the	(i) Flory-Huggins theory and Flory- Krigbaum and modified Flory-Huggins theory	TB 3.2.1 & 3.2.2, RB (a) 4.3	Recognize the need of Flory- Huggins and related mod theories to outline the thermodynamics of poly solutions. Interpret interaction parameter and predict	
12		(ii) Phase equilibria	TB 3.2.4	solubility of polymers in various solvents.	
13	thermodynamics of ordinary solutions	(iii) Determination of interaction parameter and prediction of solubilities	TB 3.2.5 & 3.2.6 RB (a) 4.3		
14		(i) Osmometry	TB 3.3.1, RB (a) 3.3.3	Types of experimental methodology, from simple laboratory to high-end gel permeation techniques, involved in determining the molecular weight of polymers	
15	The principles behind both primary and secondary methods for molecular-weight determination	(ii) Light-Scattering method	TB 3.3.2, RB (a) 3.3.3		
16		(iii) Intrinsic-Viscosity measurement	TB 3.3.3 RB (a) 3.3.3		
17		(iv) Gel-Permeation Chromatography	TB 3.3.4		
18		(i) Amorphous state	TB 4.1.1-4.1.3	Acquire knowledge on different phases of solid polymeric	
19	<u> </u>	(ii) Crystalline state	TB 4.2.1 - 4.2.4	materials and their thermal transitions. Glass transition temperature (T_g) and melting temperature (T_m), get an idea	
20		(iii) Thermal transitions and properties	TB 4.3.1 & 4.3.2		
21	Thermal and mechanical properties of different solid states of polymers	(iv) Structure property relationships, effect of molecular weight, composition, and pressure on T _q	TB 4.3.3 & 4.3.4	about the variation of Tg and Tm with polymer struct and functionalities. Importance of $T_{\rm g}$ regarding mechan properties of polymers.	
22	1	(v) Mechanical properties TB 4.4		1	

Lecture No.	Learning objectives	Торіс	Chap./ Sec. No.	Learning Outcomes	
23	Introduction to viscoelasticity and	(i) Introduction to viscoelasticity TB 5.1.1, RB (a) 4.4		Experience the basics of viscoelasticity and rubber elasticit and knowledge of a polymer's elastic behavior in the ligh	
24	rubber elasticity	(ii) Introduction to rubber elasticity	TB 5.2	of its structure.	
25	Effects of environmental agents on polymers	Polymer degradation, stability, and management	TB 6.1 & 6.2	Knowledge of basic principles and mechanisms of synthetic polymers' degradation and synthetic polymer's environmental impacts. Absorb the technical application capabilities of the most used commodity plastics	
26	Effect of additives, blends and composites on the properties of	(i) Additives and blends	TB 7.1.1 - 7.1.3,7.2.1	The role of additives in the polymer blend. Methods of polymer composites preparation and their applications	
27-28	polymers	(iii) Polymer composites	TB 7.3		
29	Polymers in biological systems and nature	Biopolymers and other naturally occur- ring polymers	TB 8.1	Acquire knowledge of the chemical structure and applications of naturally occurring biopolymers like proteins, polynucleotides, polysaccharides, and natural fibers.	
30	To know different types of thermoplastics and fibers and their	(i) Fibers	TB 8.2.1 – 8.2.3 RB 5.3	Discover the natural and synthetic fibers, cellulosics and non-cellulosics etc. An idea about commodity thermoplastics like polyolefins, vinyl polymers, and	
31	properties	(ii) Thermoplastics	TB 9.1 RB (a) 5.2	thermoplastic polyesters.	
32	To know different types of network polymers and their properties	(i) Elastomers	TB 9.2, RB (a) 5.4	Interpretation of the basic of elastomers and thermoset An idea about diene and non-diene elastomers, and epox and phenol-formaldehyde resin-type thermosets.	
		(ii) Thermosets	TB 9.3		
33	Introduction to some outstanding polymers and their properties and	(i) Engineering thermoplastics	TB 10.1	Apprehension about the engineering plastics lil polyamides. ABS, polycarbonates, PEO, polysulfones et	
34	comparison with commodity thermoplastics	(ii) Specialty polymers	TB 10.2, RB (a) Ch. 8	and polyimides and related specialty polymers and high- performance fibers.	
35-36	Applications for polymers in separations, biotechnology and electronics	(i) Membrane separations & preparation	TB 12.1.2	Recognize membrane science and technology, barrie polymers etc. Awareness about biomedical engineering conductive polymers, and polymer-based controlled dru delivery systems.	
		Membrane separation, Biomedical applications, applications in electronics and photonic polymers	TB 12.2-12.4		

Lecture No.	Learning objectives	Topic Chap./ Sec. No		Learning Outcomes	
37-40	Lab components and discussion for the experiences in linear (polyaniline) and cross-linked polymer synthesis, molecular weight measurement, applications etc.			Students will get hands-on experience in polymer synthesis, characterizations, and properties.	

5. Evaluation Scheme:1

Component	Duration	Weightage (%)	Date & Time	Nature
Mid Semester Examination	90 Minutes	30	09/10 - 11.30 - 1.00PM	Closed BOOK
Lab component and quizzes/assignments on lab component²	-	10	ТВА	OPEN BOOK
Quizzes/Assignments ³	-	20	Continuous	OPEN BOOK
Comprehensive Examination	3 hours	40	06/12 AN	Closed Book

[•] ¹Regular attendance in the class will be considered as a plus during the final evaluation.

- **6. Chamber Consultation Hour:** To be announced in the class
- **7. Notice:** Notices concerning this course will be displayed only on the CMS.
- 8. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- **9. Makeup-policy**: Makeup would be considered only for very genuine reasons (*such as institute deputation outside for sports/cultural fest, hospitalization (with appropriate documentary proof*).

²Marks will be awarded for attending and performing lab components and writing quizzes/assignments.

³Quizzes/Assignments will be conducted in some of the lecture classes. Problem sets will be assigned, and quizzes will be conducted periodically. Two quizzes and two assignments, each of equal weightage, will be conducted.

Dr. Subit Kumar Saha

Instru

ctor-in-charge, CHEM F325