

AO8814

Common-Drain Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO8814 uses advanced trench technology to provide excellent $R_{\rm DS(ON)},$ low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\rm GS(MAX)}$ rating. It is ESD protected. This device is suitable for use as a uni-directional or bi-directional load switch, facilitated by its commondrain configuration.

Features

 $V_{DS}(V) = 20V$

 $I_D = 8 A$

 $R_{DS(ON)}$ < 16m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 18m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 23.5m Ω (V_{GS} = 2.5V)

 $R_{DS(ON)}$ < 34m Ω (V_{GS} = 1.8V)

ESD Rating: 2500V HBM

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V _{DS}	20	V				
Gate-Source Voltage		V_{GS}	±12	V				
Continuous Drain	T _A =25°C		8					
Current ^A	T _A =70°C	I _D	6.4	A				
Pulsed Drain Current ^B		I _{DM}	30					
	T _A =25°C	P _D	1.5	W				
Power Dissipation A	T _A =70°C		1.08	¬				
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C				

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	64	83	°C/W			
Maximum Junction-to-Ambient A	Steady-State	K _θ JA	89	120	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	53	70	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V				10	μА
	Zero Gate Voltage Drain Current					25	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±10V	•			10	μА
BV_GSO	Gate-Source Breakdown Voltage	V _{DS} =0V, I _G =±250uA		±12			V
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.5	0.71	1	V
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V		30			Α
, ,		V _{GS} =10V, I _D =8A			13	16	mΩ
			T _J =125°C		18	22	
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =7.5A			15	18	mΩ
		V _{GS} =2.5V, I _D =6.6A			19	23.5	mΩ
		V _{GS} =1.8V, I _D =5.4A		26	34	mΩ	
g FS	Forward Transconductance	V _{DS} =5V, I _D =8A			30		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.74	0.8	V
Is	Maximum Body-Diode Continuous Current					2.5	Α
DYNAMIC	CPARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz			1390		pF
C _{oss}	Output Capacitance				190		pF
C _{rss}	Reverse Transfer Capacitance				150		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			1.5		Ω
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =10V, I _D =8A			15.4		nC
Q_{gs}	Gate Source Charge				1.4		nC
Q_{gd}	Gate Drain Charge				4		nC
t _{D(on)}	Turn-On DelayTime				6.2		ns
t _r	Turn-On Rise Time	V_{GS} =5V, V_{DS} =10V, R_L =1.3 Ω , R_{GEN} =3 Ω			11		ns
t _{D(off)}	Turn-Off DelayTime				40.5		ns
t _f	Turn-Off Fall Time				10		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =8A, dI/dt=100A/μs			15		ns
Q _{rr}	Body Diode Reverse Recovery Charge	l _F =8A, dI/dt=100A/μs			5.1		nC

A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.