

GENERAL MATHEMATICS 2024

Unit 4

Key Topic Test 5 – Network and Decision Mathematics: Introduction to Graphs

Recommended writing time*: 45 minutes
Total number of marks available: 25 marks

SOLUTIONS

© TSSM 2024 Page 1 of 4

SECTION A – Multiple Choice (1 mark per question)

Question 1

Answer: C

$$3 + 2 + 2 + 5 + 1 + 1 = 14$$

Question 2

Answer: B

There are 4 odd degree vertices. Adding one edge that connects 2 of the existing odd degree vertices would create a Eulerian trail.

Question 3

Answer: D

$$v + f - e = 2$$

 $6 + f - 10 = 2$
 $f = 6$

Question 4

Answer: E

A Hamiltonian circuit does not exist

Question 5

Answer: C

DE is a bridge, if it was removed, the graph would not be connected

SECTION B – Short Answer

Question 1

a. Nigeria = degree 4

1 mark

b. The flight must connect the other 2 odd degree vertices (not Mexico or Peru)

1 mark

c. Eulerian trail

1 mark

d. 5

Any country with degree ≥ 3

1 mark

e. Mexico – US – Canada – Russia – Canada – Columbia – Nigeria – Russia – Australia – Nigeria – South Africa – Columbia – Mexico – Peru

*note there are multiple solutions

1 mark

Question 2

a. Deg(BBQ) = 4

1 mark

b.

Number of edges	12
Number of vertices	9
Number of faces	5

$$12 + 5 - 9 = 2$$

2 marks

c. Hamiltonian path

1 mark

2024 GENERAL MATHEMATICS KEY TOPIC TEST

d. Entry – office – car park – camping – BBQ – playground – pool – cabins – toilet

*note multiple solutions exist

1 mark

e. 4 odd degree vertices

1 mark

f. Entry or office (odd degree)

2 marks

 $\textbf{g.} \quad Office-car\ park-camping-BBQ-playground-pool-cabins-toilet-pool-BBQ-toilet-camping-office-entry} \\$

*note multiple solutions exist

1 mark

h. Entry to the office

1 mark

i. Eulerian circuit

1 mark

Question 3

a.

$$\begin{bmatrix} a & b & c & d \\ 0 & 3 & 0 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 0 \end{bmatrix} a$$

2 marks

b. 5

1 mark

c. Deg(C) = 5

1 mark

END OF KEY TOPIC TEST SOLUTIONS