Corrections - Révisions Pâques

I Complexes

Exercice 1. Soit \mathbb{U} l'ensemble des complexes de module 1.

1. Calculer

$$\inf\left\{\left|\frac{1}{z}+z\right|,z\in\mathbb{U}\right\}$$

2. Pour tout $z \in \mathbb{C}^*$ on note $\alpha(z) = \frac{1}{\overline{z}} + z$.

(a) Calculer le module de $\alpha(z)$ en fonction de celui de z.

(b) Montrer que pour tout x > 0 on a : $\frac{1}{x} + x \ge 2$.

(c) En déduire

$$\inf\{|\alpha(z)|, z \in \mathbb{C}^*\}$$

Correction 1.

1. Comme $z \in \mathbb{U}$, il existe $\theta \in [0, 2\pi[$ tel que $z = e^{i\theta}$. Donc

$$\left| \frac{1}{z} + z \right| = \left| e^{-i\theta} + e^{i\theta} \right|$$
$$= \left| 2\cos(\frac{\theta}{2}) \right|$$

Pour $\theta = \pi$ on a $\left| 2\cos(\frac{\theta}{2}) \right| = 0$ donc

$$\inf\left\{ \left| \frac{1}{z} + z \right|, z \in \mathbb{U} \right\} = 0$$

2. (a)

$$|\alpha(z)| = \left| \frac{1}{\overline{z}} + z \right|$$

$$= \left| \frac{1 + z\overline{z}}{\overline{z}} \right|$$

$$= \left| \frac{1 + |z|^2}{\overline{z}} \right|$$

$$= \frac{|1 + |z|^2}{|\overline{z}|}$$

$$= \frac{1 + |z|^2}{|z|}$$

$$= \frac{1 + |z|^2}{|z|}$$

$$= \frac{1}{|z|} + |z|$$

(b) Pour tout x > 0 on a

$$x + \frac{1}{x} - 2 = \frac{x^2 - 2x + 1}{x}$$
$$= \frac{(x - 1)^2}{x} \ge 0$$

Donc pour tout x > 0, $x + \frac{1}{x} - 2 \ge 0$.

(c) On a $|\alpha(1)| = \frac{1}{|1|} + |1| = 2$ et on a vu que pour tout $z \in \mathbb{C}^*$, $|\alpha(z)| \geq 2$ donc

$$\inf\{|\alpha(z)|, z \in \mathbb{C}^*\} = 2$$

Exercice 2. On considère l'équation suivante, d'inconnue $z \in \mathbb{C}$:

$$z^3 + z + 1 = 0 (E)$$

- 1. On note $f: \mathbb{R} \to \mathbb{R}$, la fonciton définie par $f(t) = t^3 + t + 1$. A l'aide de l'étude de f, justifier que l'équation (E) possède une unique solution réelle, que l'on notera r. Montrer que $r \in]-1, \frac{-1}{2}[$.
- 2. On note z_1 et z_2 les deux autres solutions complexes de (E) qu'on ne cherche pas à calculer. Donner une écriture factoriser de P (à l'aide de r, z_1 et z_2) puis en déduire que $z_1 + z_2 = -r$ et $z_1 z_2 = \frac{-1}{r}$.
- 3. Justifier l'encadrement : $\frac{1}{2} < |z_1 + z_2| < 1$. De même montrer que $1 < |z_1 z_2| < 2$.
- 4. Rappeler l'inégalité triangulaire et donner une minoration de |x-y| pour tout $x,y\in\mathbb{C}$.
- 5. En déduire que

$$|z_1 + z_2| > |z_1| - \frac{2}{|z_1|}$$

- 6. Grâce à un raisonnement par l'absurde montrer que $|z_1| < 2$.
- 7. Conclure que toutes les solutions de (E) sont de modules strictement inférieures à 2.

Correction 2.

- 1. Comme f(-1) = -1 < 0 et $f(\frac{-1}{2}) = \frac{3}{8} > 0$, le théorème des valeurs intermédiaires assure qu'il existe une solution a f(t) = 0 dans l'intervalle $]-1, \frac{-1}{2}[$. De plus $f'(t) = 2t^2 + 1$ donc f' > 0 pour tout $t \in \mathbb{R}$, donc f est strictement croissante et cette racine est unique.
- 2. En développant on obtient

$$P(X) = X^{3} + (-r - z_{1} - z_{2})X^{2} + \alpha X - z_{1}z_{2}r$$

On n'est pas obligé de calculer α . Par identification on obtient :

$$-r - z_1 - z_2 = 0$$
 et $z_1 z_2 r = -1$

$$z_1 + z_2 = -r$$
 et $z_1 z_2 = \frac{-1}{r}$

$$(r \neq 0)$$

3. On a $\frac{1}{2} < -r < 1$ et $|z_1 + z_2| = |-r| = -r$. D'où

$$\frac{1}{2} < |z_1 + z_2| < 1.$$

On a $1 < \frac{-1}{r} < 2$ et $|z_1 z_2| = \left| \frac{-1}{r} \right| = \frac{-1}{r}$. D'où

$$1 < |z_1 z_2| < 2.$$

4. L'inégalité triangulaire 'inversée' donne

$$|x - y| \ge |x| - |y|.$$

5. On a donc

$$|z_1 + z_2| \ge |z_1| - |z_2|$$

Or $|z_1z_2|<2$, donc $|z_2|<\frac{2}{|z_1|}$ D'où $-|z_2|>-\frac{2}{|z_1|}$. On obtient donc l'inégalité voulue.

6. Supposons par l'absurde que $|z_1| \ge 2$. On a alors d'après la questions précédente

$$|z_1 - z_2| > 2 - 1 = 1$$

Ceci est en contradiction avec le résultat de la question 3. Donc

$$|z_1| \le 2.$$

7. Le raisonement de la question 5 et 6 s'applique de façon similaire à z_2 . Comme $|r| \leq 1$, toutes les racines de P sont bien de module strictement inférieur à 2.

Exercice 3. On considère $S = \{z \in \mathbb{C} \mid |z| = 2\}.$

- 1. Rappeler la nature géométrique de S. Soit $f: \mathbb{C} \to \mathbb{C}$ la fonction définie par $f(z) = \frac{2z+1}{z+1}$. Déterminer D_f le domaine de définition de f. Est elle bien définie pour tous les points de S?
- 2. (a) Mettre $f(z) \frac{7}{3}$ sous la forme d'une fraction.
 - (b) Montrer que pour tout z dans l'ensemble de définition de f,

$$\left| f(z) - \frac{7}{3} \right|^2 = \frac{|z|^2 + 8\Re(z) + 16}{9(|z|^2 + 2\Re(z) + 1)}$$

- (c) On note S_2 le cercle de centre 7/3 et de rayon $r_0 = \frac{2}{3}$. Montrer que $f(S) \subset S_2$
- 3. (a) Soit y = f(z), exprimer z en fonction de y quand cela a un sens.
 - (b) Déterminer l'ensemble F tel que $f: D_f \to F$ soit bijective. Déterminer l'expression de f^{-1}
 - (c) (Difficile) Montrer que pour tout $y \in S_2$, $f^{-1}(y) \in S$.
 - (d) En déduire f(S).

Correction 3.

- 1. S est le cercle de centre 0 et de rayon 2. L'ensemble de définition de f est $\mathbb{C}\setminus\{-1\}$. Comme $|-1|=1, -1 \notin S$ donc f est bien définie sur S.
- 2. (a)

$$f(z) - \frac{7}{3} = \frac{6z + 3 - 7(z+1)}{3(z+1)} = \frac{-z - 4}{3(z+1)}$$

(b)

$$\begin{split} \left| f(z) - \frac{7}{3} \right|^2 &= \left| \frac{-z - 4}{3(z+1)} \right|^2 \\ &= \frac{|z+4|^2}{9|z+1|^2} \\ &= \frac{(z+4)\overline{(z+4)}}{9(z+1)\overline{(z+1)}} \\ &= \frac{(z+4)\overline{(z+4)}}{9(z+1)\overline{(z+1)}} \\ &= \frac{(z+4)\overline{(z+4)}}{9(z+1)\overline{(z+1)}} \\ &= \frac{z\overline{z} + 4(z+\overline{z}) + 16}{9(z\overline{z} + (z+\overline{z}) + 1)} \\ &= \frac{|z|^2 + 8\Re \mathfrak{e}(z) + 16}{9(|z|^2 + 2\Re \mathfrak{e}(z) + 1)} \end{split}$$

(c) (La question était manifestement mal posée, il aurait par exemple fallu présicer le rayon qui vaut $\frac{2}{3}$)

Pour tout $z \in S$, on a $|z|^2 = 4$ donc pour tout $z \in S$:

$$\begin{aligned} \left| f(z) - \frac{7}{3} \right|^2 &= \frac{4 + 8\mathfrak{Re}(z) + 16}{9(4 + 2\mathfrak{Re}(z) + 1)} \\ &= \frac{8\mathfrak{Re}(z) + 20}{9(2\mathfrak{Re}(z) + 5)} \\ &= \frac{4(2\mathfrak{Re}(z) + 5)}{9(2\mathfrak{Re}(z) + 5)} \\ &= \frac{4}{9} \\ &= \left(\frac{2}{3}\right)^2 \end{aligned}$$

Ainsi pour tout $z \in S$ on a $f(z) \in S_2$. D'où $f(S) \subset S_2$.

3. (a) On résout y = f(z).

$$y = \frac{2z+1}{z+1}$$
$$(z+1)y = 2z+1$$
$$z(y-2) = 1-y$$
$$z = \frac{1-y}{y-2} \quad y \neq 2$$

- (b) Ainsi $f: D_f \to \mathbb{C} \setminus \{2\}$ réalise une bijection et $f^{-1}(y) = \frac{1-y}{y-2}$
- (c) Soit $y \in S_2$ on va réaliser le même procédé que la question 2b) pour f^{-1} . Comme on va s'intéresser aux images de $y \in S_2$ on cherche à mettre en lumière le role de $|y \frac{7}{3}|$

$$\begin{split} \left|f^{-1}(y)\right|^2 &= \frac{|1-y|^2}{|y-2|^2} \\ &= \frac{|y-1|^2}{|y-2|^2} \\ &= \frac{|(y-\frac{7}{3}) + \frac{4}{3}|^2}{|(y-\frac{7}{3}) + \frac{1}{3}|^2} \\ &= \frac{|y-\frac{7}{3}|^2 + \frac{8}{3}\Re\mathfrak{e}(y-\frac{7}{3}) + \frac{16}{9}}{|y-\frac{7}{3}|^2 + \frac{2}{3}\Re\mathfrak{e}(y-\frac{7}{3}) + \frac{1}{9}} \end{split}$$

Maintenant, pour tout $y \in S_2$ on a $|y - \frac{7}{3}|^2 = \frac{4}{9}$ donc pour tout $y \in S_2$ on a

$$\begin{split} \left| f^{-1}(y) \right|^2 &= \frac{\frac{4}{9} + \frac{8}{3} \Re \mathfrak{e}(y - \frac{7}{3}) + \frac{16}{9}}{\frac{4}{9} + \frac{2}{3} \Re \mathfrak{e}(y - \frac{7}{3}) + \frac{1}{9}} \\ &= \frac{\frac{8}{3} \Re \mathfrak{e}(y - \frac{7}{3}) + \frac{20}{9}}{\frac{2}{3} \Re \mathfrak{e}(y - \frac{7}{3}) + \frac{5}{9}} \\ &= \frac{24 \Re \mathfrak{e}(y - \frac{7}{3}) + 20}{6 \Re \mathfrak{e}(y - \frac{7}{3}) + 5} \\ &= \frac{4(6 \Re \mathfrak{e}(y - \frac{7}{3}) + 5)}{6 \Re \mathfrak{e}(y - \frac{7}{3}) + 5} \\ &= 4 \end{split}$$

Ainsi pour tout $y \in S_2$ $f^{-1}(y)$ appartient au cercle de centre 0 et de rayon 2, c'est-à-dire S. On vient donc de montrer $f^{-1}(S_2) \subset S$.

(d) Les questions 2c) et 3c) impliquent que $f(S) = S_2$

Exercice 4. (Cf DS2) Soit $\omega = e^{\frac{2i\pi}{7}}$. On considère $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$

- 1. Calculer $\frac{1}{\omega}$ en fonction de $\overline{\omega}$
- 2. Montrer que pour tout $k \in [0, 7]$ on a

$$\omega^k = \overline{\omega}^{7-k}$$

- 3. En déduire que $\overline{A} = B$.
- 4. Montrer que la partie imaginaire de A est strictement positive. (On pourra montrer que $\sin\left(\frac{2\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) > 0$.)
- 5. Rappelons la valeur de la somme d'une suite géométrique : $\forall q \neq 1, \, \forall n \in \mathbb{N}$:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

Montrer alors que $\sum_{k=0}^{6} \omega^k = 0$. En déduire que A + B = -1.

- 6. Montrer que AB = 2.
- 7. En déduire la valeur exacte de A.

Correction 4.

1.

$$\frac{1}{\omega} = e^{\frac{-2i\pi}{7}} = \overline{\omega}$$

2. On a $\omega^7=e^{7\frac{2i\pi}{7}}=e^{2i\pi}=1$ donc pour tout $k\in \llbracket 0,7 \rrbracket$ on a

$$\omega^{7-k}\omega^k = 1$$

D'où

$$\omega^k = \frac{1}{\omega^{7-k}} = \overline{\omega}^{7-k}$$

3. On a d'après la question précédente :

$$\overline{\omega} = \omega^6$$

$$\overline{\omega^2} = \omega^5$$

$$\overline{\omega^4} = \omega^3$$

Ainsi on a:

$$\overline{A} = \overline{\omega + \omega^2 + \omega^4}$$

$$= \overline{\omega} + \overline{\omega^2} + \overline{\omega^4}$$

$$= \omega^6 + \omega^5 + \omega^3$$

$$= B.$$

4.

$$\mathfrak{Im}(A) = \sin(\frac{2\pi}{7}) + \sin(\frac{4\pi}{7}) + \sin(\frac{8\pi}{7}) = \sin(\frac{2\pi}{7}) + \sin(\frac{4\pi}{7}) - \sin(\frac{\pi}{7})$$

Comme sin est croissante sur $\left[0, \frac{\pi}{2}\right]$

$$\sin(\frac{\pi}{7}) \le \sin(\frac{2\pi}{7})$$

Donc

$$\mathfrak{Im}(A) \geq \sin(\frac{4\pi}{7}) > 0$$

5. On a

$$\sum_{k=0}^{6} \omega^k = \frac{1 - \omega^7}{1 - \omega} = 0$$

Or

$$A + B = \sum_{k=1}^{6} \omega^k = \sum_{k=0}^{6} \omega^k - 1 = -1$$

6. $AB = \omega^4 + \omega^6 + \omega^7 + \omega^5 + \omega^7 + \omega^8 + \omega^7 + \omega^9 + \omega^{10}$ D'où

$$AB = 2\omega^7 + \omega^4(1 + \omega^1 + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6) = 2\omega^7 = 2\omega^7$$

7. A et B sont donc les racines du polynome du second degré $X^2 + X + 2$. Son discriminant vaut $\Delta = 1 - 8 = -7$ donc

$$A \in \{\frac{-1 \pm i\sqrt{7}}{2}\}$$

D'après la question 4, $\mathfrak{Im}(A) > 0$ donc

$$A = \frac{-1 + i\sqrt{7}}{2}$$

II Analyse

Exercice 5. 1. Montrer que pour tout $n \in \mathbb{N}^*$ l'équation $x^3 + nx = 1$ admet une unique solution dans \mathbb{R}^+ . On la note x_n .

- 2. Montrer que $x_{n+1}^3 + nx_{n+1} 1 < 0$.
- 3. En déduite que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 4. Justifier que la suite est minorée par 0 et majorée par 1.
- 5. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge.
- 6. A l'aide d'un raisonement par l'absurde justifier que cette limite vaut 0.

Correction 5.

1. Soit $n \in \mathbb{N}$. Pour tout $x \in \mathbb{R}$, on note $f_n(x) = x^3 + nx - 1$. C'est un polynome de degré 3, il est dérivable sur \mathbb{R} et on a

$$f'(x) = 3x^2 + n$$

Comme $n \geq 0$, la dérivée est strictement positive sur \mathbb{R} et ainsi la fonction f_n est strictement croissante.

On a par ailleurs $f_n(0) = -1$ et $f_n(1) = n \ge 1$. Comme f_n est continue sur [0,1] et strictement croissante on peut appliquer le théorème de la bijection pour la valeur $0 \in [f_n(0), f_n(1)] = [-1, 1]$. Ce théorème assure qu'il existe un unique réel $x_n \in [0, 1]$ tel que $f_n(x_n) = 0$.

2. On calcule $f_n(x_{n+1}) = x_{n+1}^3 + nx_{n+1} - 1$, on va montrer que $f_n(x_{n+1}) < 0$. Or par définition de x_{n+1} on a $f_{n+1}(x_{n+1}) = 0$ ce qui donne :

$$x_{n+1}^3 + (n+1)x_{n+1} - 1 = 0$$

Donc $x_{n+1}^3 + nx_{n+1} - 1 = -x_{n+1}$

Finalement en remplaçant dans la première égalité on obtient :

$$f_n(x_{n+1}) = -x_{n+1}$$

Comme pour tout $n \in \mathbb{N}$, $x_n \ge 0$ d'après la première question, on a bien

$$f_n(x_{n+1}) < 0$$

3. Comme pour tout $n \in \mathbb{N}$, f_n est strictement croissante, et $f_n(x_{n+1}) \leq f_n(x_n)$ on a

$$x_{n+1} \le x_n$$

Ainsi, $(x_n)_{n\in\mathbb{N}}$ est décroissante.

- 4. Le raisonement effectué à la question 1 montre que la suite $(x_n)_{n\in\mathbb{N}}$ est minorée par 0 et majorée par 1.
- 5. La suite $(x_n)_{n\in\mathbb{N}}$ est décroissante et minorée. Le théorème de la limite monotone assure que $(x_n)_{n\in\mathbb{N}}$ converge. Notons $\ell\in\mathbb{R}$ cette limite.
- 6. Comme $x_n \ge 0$ pour tout $n \in \mathbb{N}$, on a $\lim x_n \ge 0$.. Supposons par l'absurde que $\ell > 0$. On a alors d'une par $f_n(x_n) = 0$ donc $\lim x_n^3 + nx_n 1 = 0$. Par ailleurs, $\lim x_n^3 1 = \ell^3 1$ et $\lim nx_n = +\infty$. Donc $\lim x_n^3 + nx_n 1 = +\infty$. Comme $0 \ne +\infty$ et que la limite est unique, c'est une contradiction. Ainsi $\ell = 0$.

Exercice 6. On considère pour tout $n \in \mathbb{N}$ l'intégrale

$$I_n = \int_1^e (\ln(x))^n dx$$

- 1. (a) Démontrer que pour tout $x \in]1, e[$ et pour tout entier naturel $n \in \mathbb{N}$ on a $(\ln(x))^n (\ln(x))^{n+1} > 0$.
 - (b) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. (a) Calculer I_1 a l'aide d'une intégration par partie.
 - (b) Démontrer, toujours à l'aide d'une intégration par parties que, pour tout $n \in \mathbb{N}$, $I_{n+1} = e (n+1)I_n$
- 3. (a) Démontrer que pour tout $n \in \mathbb{N}$, $I_n \geq 0$.
 - (b) Démontrer que pour tout $n \in \mathbb{N}$, $(n+1)I_n \leq e$.
 - (c) En déduire la limite de $(I_n)_{n\in\mathbb{N}}$.
 - (d) Déterminer la valeur de $nI_n + (I_n + I_{n+1})$ et en déduire la limite de nI_n .

Correction 6.

1. Pour tout $x \in]1, e[$, $0 < \ln(x) < 1$, donc $\ln(x)^n \ln(x) < \ln(x)^n$. On obtient bien

$$\ln(x)^n - \ln(x)^{n+1} > 0$$

2. En intégrant, par positivité de l'intégrale on a

$$\int_{1}^{e} \ln(x)^{n} - \ln(x)^{n+1} dx > 0$$

Donc $I_n > I_{n+1}$ et la suite est bien décroissante.

3. vu en cours.

$$\int_{1}^{e} \ln(x)dx = [x \ln(x)]_{1}^{e} - \int_{1}^{e} x \frac{1}{x} dx$$

Donc

$$\int_{1}^{e} \ln(x)dx = e - (e - 1) = 1$$

4. On pose u'(x) = 1 et $v(x) = (\ln(x))^{n+1}$. On a u(x) = x et $v'(x) = (n+1)\frac{1}{x}(\ln(x))^n$. Et finalement

$$I_{n+1} = \int_{1}^{e} 1(\ln(x))^{n+1} dx$$

$$= [x(\ln(x))^{n+1}]_{1}^{e} - \int_{1}^{e} x(n+1) \frac{1}{x} (\ln(x))^{n} dx$$

$$= e - (n+1)I_{n}$$

- 5. Comme $\ln(x) \ge 0$ pour tout $x \in [1, e]$, $\ln(x)^n \ge 0$. Par positivité de l'intérgale, I_n est positive.
- 6. D'après la question 2b, $(n+1)I_n = e I_{n+1}$ et d'après la question précédente pour tout $n \in \mathbb{N}, I_n \geq 0$ donc $e I_{n+1} \leq e$. On a bien $(n+1)I_n \leq e$.
- 7. Les question précédentes montre que

$$0 \le I_n \le \frac{e}{n+1}$$

Comme $\lim_{n\to+\infty}\frac{e}{n+1}=0$, le théorème des gendarmes assure que la suite $(I_n)_{n\in\mathbb{N}}$ converge et sa limite vaut 0.

8. D'après la question 2b, $I_{n+1} = e - (n+1)I_n$ donc

$$(n+1)I_n + I_{n+1} = e$$

et finalement $nI_n + (I_n + I_{n+1}) = e$ Comme $\lim I_n = \lim I_{n+1} = 0$ on obtient

$$\lim_{n \to +\infty} nI_n = e.$$

Exercice 7. Soit f la fonction définie par

$$f(x) = \frac{e^x}{\ln(x)}$$

- 1. Donner l'ensemble de définition et de dérivation de f.
- 2. Calculer la dérivée de f en déduire que le signe de f' dépend de celui de $g(x) = \ln(x) \frac{1}{x}$
- 3. Donner l'ensemble de définition et de dérivation de g et calculer sa dérivée.
- 4. Montrer qu'il existe un unique $\alpha \in]1, +\infty[$ tel que f'(x) > 0 sur $]\alpha, +\infty[$ et f'(x) < 0 sur $]0, \alpha[\cap D_f]$.
- 5. Donner le tableau de variations complet de f.
- 6. Donner l'équation de la tangente à la courbe représentative de f en e.

Correction 7.

1. La fonction exp est définie et dérivable sur \mathbb{R} . La fonction ln est définie et dérivable sur $[0, +\infty[$. La fonction inverse est définie et dérivable sur \mathbb{R}^* et enfin $\ln(x) = 0$ si et seulement si x = 1 donc la fonction f est définie et dérivable sur $D_f = [0, 1[\cup]1, +\infty[$.

2. On a pour tout $x \in D_f$

$$f'(x) = \frac{e^x \ln(x) - e^x \frac{1}{x}}{\ln^2(x)} = \frac{e^x}{\log^2(x)} g(x)$$

Comme poru tout $x \in D_f$, $\frac{e^x}{\log^2(x)} \ge 0$, le signe de f' est égal à celui de $g(x) = \ln(x) - \frac{1}{x}$.

- 3. g est définie et dérivable sur $]0, +\infty[$ et on a $g'(x) = \frac{1}{x} + \frac{1}{x^2}$ Ainsi g'(x) est positif prou tout $x \in]0, +\infty[$.
- 4. La fonciton g est strictement croissante. Comme $\lim_{x\to 0} g(x) = -\infty$ $\lim_{x\to \infty} g(x) = \infty$, le théorème de la bijection assure qu'il existe un unique $\alpha \in]0, +\infty[$ tel que $g(\alpha) = 0$ Comme g(1) = -1 < 0 et que g est strictement croissante, on a de plus $\alpha > 1$

6. On a $f'(e) = e^e g(e) = -e^e (1 - \frac{1}{e}) = -e^e + e^{e-1}$ et $f(e) = e^e$ Donc l'équation de la tangente à la courbe représentative de f en e et donnée par

$$y - e^e = (-e^e + e^{e-1})(x - e)$$

Exercice 8. Pour tout réel t > 0, on note P_t le polynôme $X^5 + tX - 1 \in \mathbb{R}_5[X]$. Le but de ce problème est d'étudier les racines de P_t en fonction de t > 0.

- 1. On fixe t > 0 pour cette question. Prouver que P_t admet une unique racine notée f(t).
- 2. Montrer que $f(t) \in]0,1[$ pour tout t > 0.
- 3. Montrer que f est strictement décroissante sur $]0, +\infty[$.
- 4. En déduire que f admet des limites finies en 0^+ et en $+\infty$.
- 5. Déterminer $\lim_{t\to 0^+} f(t)$.
- 6. Déterminer $\lim_{t\to+\infty} f(t)$.
- 7. Montrer que $f(t) \sim_{+\infty} = \frac{1}{t}$
- 8. Justifier que f est la bijection réciproque de $g:]0,1[\rightarrow]0,+\infty[x \mapsto \frac{1-x^5}{x}]$
- 9. (a) Justifier que f est dérivale sur $]0, +\infty[$ et exprimer f'(t) en fonction de f(t) pour tout t>0
 - (b) En déduire la limite de f'(t) en 0. Calculer la limite de $t^2f'(t)$ en $+\infty$ (Comment noter ce résultat avec le signe équivalent : \sim)

Correction 8.

1. On considère la dérivée de la fonction polynomiale. On a $P'_t(X) = 5X^4 + t$. Ainsi pour tout $x \in \mathbb{R}$ et pour tout t > 0 $P'_t(x) \ge 0$. La fonction polynomiale $x \mapsto P_t(x)$ est donc strictement croissante sur \mathbb{R} , par ailleurs elle est continue. On peut appliquer le théorème de la bijection à P_t pour la valeur $0 \in \lim_{x \to +\infty} P_t(x) = +\infty$, $\lim_{x \to -\infty} P_t(x) = -\infty$. Il existe donc une unique valeur, notée f(t) par l'énoncé, telle que $P'_t(f(t)) = 0$.

- 2. Par définition de P_t on a $P_t(0) = -1 < 0$ et $P_t(1) = t > 0$. Comme $x \mapsto P_t(x)$ est strictement croissante et $P_t(f(f)) = 0$ on obtient $f(t) \in]0,1[$.
- 3. Soit $t_1 > t_2$, on a $P_{t_1}(X) P_{t_2}(X) = X^5 + t_1 X 1 (X^5 + t_2 X 1) = (t_1 t_2)X$ Donc pour x > 0 on a

$$P_{t_1}(x) - P_{t_2}(x) > 0$$

On applique ce résultat à $f(t_2)$ on obtient

$$P_{t_1}(f(t_2)) - P_{t_2}(f(t_2)) > 0$$

$$P_{t_1}(f(t_2)) > 0$$

Comme $x \mapsto P_{t_1}(x)$ est une fonction croissant et que $P_{t_1}(f(t_1)) = 0$ on obtient $f(t_2) > f(t_1)$ Finalement $t \mapsto f(t)$ est décroissante.

- 4. f est montone et bornée. Le théorème des limites monotones assure que f admet des limites finies en 0^+ et en $+\infty$.
- 5. Notons ℓ la limite $\lim_{t\to 0^+} f(t) = \ell$. Par définition de f on a $f(t)^5 + tf(t) 1 = 0$. Cette expression admet une limite quand $t\to 0$, on a $\lim_{t\to 0^+} f(t)^5 + tf(t) 1 = \ell^5 1$. Par unicité de la limite on a donc $\ell^5 1 = 0$. Et donc $\ell = 1$ (car ℓ est réel).
- 6. Notons ℓ' la limite $\lim_{t\to +\infty} f(t) = \ell'$. Supposons par l'absurde que cette limite soit non nulle. On a alors $\lim_{t\to +\infty} tf(t) = +\infty$. En passant à la limite dans l'égalité $f(t)^5 + tf(t) 1 = 0$ on obtient $+\infty = 0$ ce qui est absurde. Donc

$$\lim_{t \to +\infty} f(t) = 0.$$

7. En repartant de l'égalité $f(t)^5 + tf(t) - 1 = 0$ on obtient

$$tf(t) = 1 - f(t)^5$$

Comme $\lim_{t\to+\infty} f(t) = 0$ on a

$$\lim_{t \to +\infty} t f(t) = 1$$

En d'autres termes $f(t) \sim_{+\infty} \frac{1}{t}$

8. f est strictement montone sur $]0, +\infty[$ donc f est une bijection $]0, +\infty[$ sur son image. $\lim_{t\to 0} f(t) = 1$ et $\lim_{t\to +\infty} f(t) = 0$. Donc $f(]0, +\infty[) =]0, 1[$ et f est une bijection de $]0, +\infty[$ sur]0, 1[.

Par définition de f on a $f(t)^5 + tf(t) - 1 = 0$ Donc $tf(t) = -f(t)^5 + 1$. Comme f(t) > 0, on a:

$$t = \frac{1 - f(t)^5}{f(t)}$$

Soit $g(x) = \frac{1-x^5}{x}$ on a bien g(f(t)) = t Donc $g \circ f = \text{Id}$. Ainsi la réciproque de f est bien la fonction $g:]0, 1[\rightarrow]0, \infty[$.

9. (a) g est dérivable et pour tout $x \in]0,1[$

$$g'(x) = \frac{-1 - 4x^5}{x^2}.$$

g'(x) est différent de 0 car $-1-4x^5$ est différent de 0 sur]0,1[, donc f est dérivable et

$$f'(t) = \frac{1}{q'(f(t))} = \frac{f(t)^2}{-1 - 4f(t)^5}.$$

(b)
$$\lim_{t\to 0} f(t) = 1$$
 donc

$$\lim_{t \to 0} f'(t) = \frac{1^2}{-1 - 4 \times 1} = \frac{-1}{5}$$

On a aussi $t^2f'(t)=\frac{(tf(t)^2}{-1-4f(t)^5}$ Comme $\lim_{t\to\infty}tf(t)=1$ et $\lim_{t\to\infty}f(t)=0$ en passant à la limite dans l'égalité précédente on obtient :

$$\lim_{t\to\infty}t^2f'(t)=\frac{1}{-1}=-1$$

$$f'(t) \sim_{+\infty} \frac{-1}{t^2}$$