СПИСОК ЛИТЕРАТУРЫ

- EN 300 421: «Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for 11/12 GHz satellite services». V1.1.2 (1997-08).
- Gartner 2007 Press-releases. [Электронный ресурс]. режим доступа: http://www.gartner.com/it/page.jsp?id=501276. 25.09.2008.
- 3. Шинкаренко К.В., Кориков А.М. Помехоустойчивое кодирование мультимедиа данных в компьютерных сетях // Известия Томского политехнического университета. 2008. Т. 313. № 5. С. 37—41.
- ISO/IEC 13818-1: «Information technology Generic coding of moving pictures and associated audio information: Systems». 2007.
- Shinkarenko K.V., Vlcek K. Design of Erasure Codes for Digital Multimedia Transmitting // In Proc. of Design and Diagnostic of Electronic Circuits and Systems (DDECS08). – Bratislava, 2008. – P. 30–34.
- Luby M. LT Codes // Proc. of the 43rd Annual IEEE Symp. on Foundations of Computer Science (FOCS). 2002. P. 271–282.
- MacKay D.J.C. Fountain codes // IEE Proc.-Commun., 2005. V. 152. – № 6 (December). – P. 1062–1068.
- IETF RFC 3550: «RTP: A Transport Protocol for Real-Time Applications»

Поступила 29.09.2008 г.

УДК 681.3.06

ОПТИМИЗАЦИЯ ИСПОЛЬЗОВАНИЯ РЕСУРСОВ СВЯЗИ В НАЗЕМНОЙ МЕТЕОРОЛОГИЧЕСКОЙ НАБЛЮДАТЕЛЬНОЙ СЕТИ

В.К. Погребной, М.А. Сонькин, А.В. Погребной

Институт «Кибернетический центр» ТПУ E-mail: vk@ad.cctpu.edu.ru

Выполнен анализ нижнего звена наземной метеорологической наблюдательной сети Росгидромета с целью оптимизации использования ресурсов каналов связи. Выделены основные схемы организации сбора данных от метеостанций и сформулированы математические постановки соответствующих задач оптимизации. Предложен базовый вариант постановки задачи как задачи математического программирования транспортного типа. Представлен многоканальный вариант постановки задачи и одноканальный с возможностью подключения резервного канала. Рассмотрена стратегия последовательного и совместного выбора основного и резервного каналов. Приведен пример решения задачи при последовательном выборе каналов.

Ключевые слова:

Наземная наблюдательная сеть, метеостанция, центр сбора данных, канал связи, оптимальный план использования каналов, задача транспортного типа, задача о назначении.

Сведения о предметной области

Наземная метеорологическая наблюдательная сеть Росгидромета относится к категории технологических сетей связи и имеет иерархическую структуру. На нижнем уровне иерархической сети расположены метеостанции (МС), которые осуществляют сбор результатов метеорологических измерений и передачу их в центры сбора данных (ЦСД). Сеть строится с использованием различных технологий организации каналов связи, таких как проводные, спутниковые, радиоканалы [1].

Подсистема обеспечения связи на МС включает аппаратное (контроллер, абонентские устройства *IP*-сетей, модемы, радиостанции) и программное обеспечение контроллера. Передача данных может инициироваться как со стороны МС, так и ЦСД. При отсутствии подтверждения о доставке данных контроллер повторяет попытки передачи информации в ЦСД в течение заданного интервала времени. При отсутствии подтверждения о доставке данные передаются через резервный канал.

В ЦСД устанавливается сервер, выполняющий функции сбора информации, контроля, промежу-

точного хранения и пересылки собранных метеоданных в центры обработки и хранения, расположенные на более высоком уровне иерархии. На сервере ЦСД также установлено программное средство управления контроллерами МС. Сервер проводит рассылку обновлений конфигураций, программного обеспечения, поддерживает топологию сети в актуальном состоянии, обеспечивает возможность сопряжения с автоматизированной системой передачи данных Росгидромета (АСПД).

Взаимодействие ЦСД с подключенными к нему МС разного вида показано на рис. 1. Передача информации от МС в ЦСД осуществляется с использованием следующих технологий [2]:

- ведомственная наземная сеть связи, построенная на базе протокола *TCP/IP*;
- сеть провайдеров Интернет-услуг;
- телефонная сеть общего пользования (аналоговые модемы);
- *GSM* сеть связи (*GSM* модем, *GPRS*);
- спутниковые системы связи;
- радиоканалы в режиме пакетной передачи данных.

Рис. 1. Взаимодействие ЦСД и МС разного вида

Передача результатов измерений и данных о состоянии средств измерений возможна как в режимах автоматической передачи данных, так и в режиме выполнения запроса «по требованию». Для повышения надежности системы допускается резервирование каналов и возможность перехода с основного канала на резервый. Каждому типу канала соответствуют определенные затраты на передачу данных. Важно так организовать использование каналов для связи МС и ЦСД, чтобы суммарные затраты на передачу данных были минимальны.

Базовый вариант постановки задачи

Исходя из наличия средств связи на территории установки МС, можно определить перечень типов каналов, доступных для использования при передаче информации от МС к ЦСД. С учетом того, что к одному ЦСД подключается определенная совокупность МС (в среднем до 15 МС), участок сети связи между МС и ЦСД представим схемой, рис. 2.

Рис. 2. Схема связи между МС и ЦСД

ЦСД на рис. 2 представлен совокупностью каналов, по которым могут приниматься данные от МС. Для каждого канала K_i в ЦСД установлена величина a_i , i=1,2,...,m, которая в общем случае определяет ресурс канала K_i по приему данных от МС. Каждая j-ая МС передает данные в ЦСД в объеме, который соответствует потреблению канального ресурса ЦСД в размере b_i , j=1,2,...,n. Канальный ресурс a_i , в частности, может измеряться объемом данных, который ЦСД способен принять по каналу K_i за установленный промежуток времени. При необходимости ресурс a_i можно оценивать допустимым суммарным временем работы канала K_i по сбору данных от МС.

Рассмотрим стратегию организации передач данных, в соответствии с которой по каналу K_i могут приниматься данные от нескольких МС. В свою очередь j-ая МС соответствующий объем данных b_j может передавать по нескольким доступным каналам. Такая стратегия отражена на рис. 2. Очевидно, что при этом должно выполняться условие:

$$\sum_{i=1}^{m} a_{i} = \sum_{i=1}^{n} b_{j}$$
. Исходя из того, что пропускная спо-

собность и затраты на передачу данных для каналов различны, важно найти такой план использования каналов, для которого суммарные затраты на передачу данных будут минимальны.

Введем обозначения: x_{ij} — объем данных, передаваемых от j-й МС в ЦСД по i-му каналу; c_{ii} — це-

на за единицу времени использования i-го канала для передачи данных от j-й MC. Здесь принимается, что величина c_{ij} зависит не только от типа канала, но и от места расположения (удаления) MC относительно ЦСД; φ_i — пропускная способность i-го канала (число единиц объема данных в единицу времени); T — предельно допустимое время передачи данных между МС и ЦСД.

В принятых обозначениях задача поиска оптимального плана использования каналов имеет следующий вид:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} (1/\varphi_i) c_{ij} x_{ij} \Rightarrow \min;$$
 (1)

$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, 2, ..., m;$$
 (2)

$$\sum_{i=1}^{m} x_{ij} = b_j, \ j = 1, 2, ..., n.$$
 (3)

В случае, если в ЦСД ограничивается время работы канала, то наряду с (2) должно выполняться условие:

$$(1/\varphi_i)\sum_{j=1}^n x_{ij} \le T, i = 1, 2, ..., m.$$
 (4)

Если канал K_i в ЦСД может принимать данные от нескольких МС одновременно, то должно выполняться условие:

$$\max_{i} \{x_{ij} / \varphi_i\} \le T, i = 1, 2, ..., m.$$
 (5)

Аналогично, одновременная работа каналов при передаче данных от MC предполагает выполнение условия:

$$\max\{x_{ij}/\varphi_i\} \le T, \ j = 1, 2, ..., n.$$
 (6)

Стратегия параллельной или последовательной работы каналов как со стороны ЦСД, так и МС, как правило, устанавливается регламентом работы сети. Величины a_i и b_j также могут быть заранее согласованы с ограничениями на время T с учетом условий (4)—(6). Поэтому поиск оптимального плана использования каналов сводится к решению задачи (1)—(3), которая относится к классу задач математического программирования транспортного типа. Имеются эффективные алгоритмы решения данной задачи, например, метод потенциалов или венгерский алгоритм [3].

Многоканальный вариант задачи

Изложенная выше постановка задачи нахождения оптимального плана использования каналов может рассматриваться в качестве базового варианта. В связи с этим интерес представляет возможность учета некоторых особенностей организации регламента работы сети. Результат решения задачи в постановке (1)—(3) не исключает возможности использования всех доступных для МС каналов. Это означает, что в общем случае величина b_i может распределиться по многим каналам. Если число ка-

налов для каждой j-й MC должно быть ограничено величиной q_j , что диктуется экономическими соображениями, так как при этом снижаются затраты на сетевое оборудование MC, то постановка задачи существенно меняется. Данное требование можно учесть путем введения дополнительной булевской переменной y_{ij} =1, если канал K_i для j-й MC используется, то есть x_{ij} >0, и y_{ij} =0, если по каналу K_i из j-й MC данные не передаются. В этом случае выражение (3) заменяется на выражение

$$\sum_{i=1}^{m} y_{ij} x_{ij} = b_j, j = 1, 2, ..., n.$$
 (7)

Ограничение на число используемых каналов запишется в виде:

$$\sum_{j=1}^{m} y_{ij} \le q_j, j = 1, 2, ..., n.$$
 (8)

Задача (1), (2), (7), (8) является нелинейной, что значительно усложняет ее решение. Вместе с тем, нелинейность в выражении (7) имеет такой вид, который позволяет разработать приемлемое эвристическое правило для решения данной задачи, оставаясь при этом в классе задач транспортного типа. Вопросы разработки такого правила в данный статье не рассматриваются.

Одноканальный вариант задачи

Выше отмечалось, что в большинстве случаев МС работают, используя два канала, то есть q_j =2. При этом передача данных осуществляется по одному (основному) каналу, а второй канал используется в качестве резервного. В этом случае задача получения оптимального плана использования каналов значительно упрощается, т. к. для каждой МС выбирается по одному каналу, q_j =1. При такой схеме организации передач данных каждый канал K_i в ЦСД принимает данные b_j от нескольких МС. Таким образом, задача сводится к распределению совокупности МС по каналам K_i . Ресурс a_i^* в этом случае измеряется числом МС, от которых канал K_i способен принять данные за установленное время T.

Недостаток такой схемы организации передач данных заключается в том, что не учитываются различия в объемах b_i . Предполагается, что эти различия невелики и при необходимости могут быть учтены в процессе назначения ресурса a_i^* для канала K_i . Например, если величина a_i^* принимается равной трем, то это должно означать, что канал K_i способен за время T принять данные от трех MC, имеющих наибольшие значения b_i .

В этих условиях величина c_{ij}^* обозначает затраты на передачу данных в объеме b_j из j-й МС в ЦСД по каналу K_i . Определение c_{ij}^* производится в зависимости от объема b_j , пропускной способности канала K_i и стоимости c_{ij} использования канала за единицу времени, т. е. $c_{ij}^* = c_{ij}b_j/\phi_i$. Переменная x_{ij}^* в данном случае принимает булевские значения: $x_{ij}^* = 1$, если j-я МС передает данные в ЦСД по каналу K_i , $x_{ij}^* = 0$, в противном случае.

Для принятых обозначений задача получения оптимального плана использования каналов запишется в следующем виде:

$$\sum_{i=1}^{m} \sum_{i=1}^{n} c_{ij}^* x_{ij}^* \Rightarrow \min; \tag{9}$$

$$\sum_{j=1}^{n} x_{ij}^{*} = a_{i}^{*}, i = 1, 2, ..., m;$$
 (10)

$$\sum_{i=1}^{m} x_{ij}^{*} = 1, j = 1, 2, ..., n.$$
 (11)

Задача (9)—(11) по классификации в большей степени приближается к задаче о назначении, чем к задаче транспортного типа. Для ее решения может быть использован один из известных алгоритмов [3], однако исходя из специфики задачи и ее размерности, предпочтение можно отдать алгоритму [4].

Экспериментальные исследования одноканального варианта задачи

Пример для задачи (9)—(11) размерностью m=6 и n=15 представлен в табл. 1, которая содержит значения затрат c_{ij}^* для доступных каналов. В тех случаях, когда МС не может воспользоваться каким-либо из каналов, например, на территории, где установлена МС, отсутствует сотовая связь, то в соответствующий элемент таблицы вместо величины c_{ij}^* записывается символ (*). При решении задачи символ (*) для удобства заменяется на большое число, например, на порядок больше максимального значения c_{ij}^* .

Таблица 1. План использования основных каналов

j =	= 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	*
i = 1	32	41	32	*	54	41	54	48	32	*	32	48	48	32	41	$\begin{vmatrix} a_i \\ 2 \end{vmatrix}$
2	*	*	40	52	68	52	68	*	40	68	40	*	60	*	52	3
3	46	60	*	60	78	60	78	69	46	78	46	69	*	46	60	3
4	*	*	36	47	61	47	61	*	36	61	36	*	54	*	47	2
5	58	75	*	75	98	*	98	82	58	98	*	82	*	58	75	3
6	42	54	42	54	71	54	71	63	42	71	42	63	63	42	54	2

Справа от табл. 1 указаны величины a_i^* . При назначении канального ресурса a_i^* должно соблюдаться условие $\sum a_i^* = n$, т. е. сумма ресурсов каналов в ЦСД должна быть равна числу МС. Величины затрат c_{ii}^* могут определяться не только в зависимости от объемов передаваемых данных, но и включать затраты на каналообразующее оборудование, устанавливаемое на МС и ЦСД, на его обслуживание, обеспечение требуемой надежности. Результат решения задачи для рассматриваемого примера в табл. 1 выделен штриховкой соответствующих элементов c_{ij}^* . Для каждой MC выбрано по одному (основному) каналу и минимальная сумма затрат (сумма заштрихованных элементов) составила 833 единицы. Решение задачи выполнено с помощью алгоритма, изложенного в [4].

Ранее отмечалось, что для повышения надежности на МС, как правило, устанавливается обору-

дование для резервного (вторичного) канала. Выбор вторичного канала для каждой МС может осуществляться пользователем на основе решения, полученного при выборе основного (первичного) канала (табл. 1). Очевидно, что в качестве вторичного будет выбираться канал с минимальным c_{ii}^* . Однако при таком выборе не учитываются ресурсы a_i^* , и следовательно самый дешевый канал выберется наибольшее число раз. Если в ходе эксплуатации сети несколько МС в одно время будут работать на одном и том же вторичном канале, то по данному каналу в ЦСД может произойти недопустимая задержка в приеме данных от МС. Исключить такую ситуацию возможно, если выбор вторичных каналов осуществлять пропорционально значениям величин a_i^* , что обеспечит более равномерную загрузку каналов. С этой целью предлагается повторно решить задачу (9)-(11), исключив при этом возможность выбора каналов, которые ранее вошли в состав первичных. Для этого в табл. 1 элементы c_{ii}^* , выделенные как первичные каналы, заменяются на символ (*).

Результат повторного решения задачи (9)—(11) по выбору вторичных каналов представлен в табл. 2. Элементы c_{ij} , соответствующие выбранным каналам, в табл. 2 заштрихованы. Минимальные суммарные затраты при работе на вторичных каналах составили 849 единиц.

Таблица 2. План использования вторичных каналов

j =	= 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	*
i = 1	32	41	32	*	*	41	54	*	32	*	32	48	48	32	41	$\begin{bmatrix} a_i \\ 2 \end{bmatrix}$
2	*	*	*	*	68	52	68	*	40	68	40	*	*	*	52	3
3	46	*	*	60	78	*	78	69	46	78	*	69	*	46	60	3
4	*	*	36	47	61	47	*	*	36	*	36	*	54	*	47	2
5	*	75	*	75	98	*	98	82	*	98	*	82	*	*	75	3
6	42	54	42	54	71	54	71	63	42	71	42	*	63	42	*	2

Возможна ситуация, когда некоторый канал K_i (или совокупность каналов) нецелесообразно выбирать в качестве вторичных. В этом случае строка, соответствующая каналу K_i , исключается из табл. 2. Исключаемый при этом ресурс a_i^* необходимо перераспределить между оставшимися каналами, иначе задача (9)—(11) окажется несовместной.

Заметим также, что задачи выбора первичных и вторичных каналов можно объединить и решить совместно. Для этого выражения (10), (11) нужно заменить на следующие:

$$\sum_{j=1}^{n} x_{ij}^{*} = 2a_{i}^{*}, i = 1, 2, ..., m;$$
 (12)

$$\sum_{i=1}^{m} x_{ij}^{*} = 2, j = 1, 2, ..., n.$$
 (13)

В результате решения задачи (9), (12), (13) для каждой МС выбирается по 2 канала, один из которых принимается основным, а другой резервным. При этом как для совокупности основных каналов, так и резервных должно соблюдаться условие (10).

Очевидно, что выбранная таким образом совокупность основных каналов по значению целевой функции (9) не может быть лучше плана, приведенного в табл. 1, т. е. меньше 833 единиц. В то же время совместный план, полученный при решении задачи (9), (12), (13), может оказаться лучше, чем при последовательном решении задачи (9)–(11), т. е. меньше суммы (833+849)=1682 единицы. Из этого не следует, что использование совместного плана более эффективно. Резервный канал включается в работу лишь при отсутствии подтверждения о доставке данных в ЦСД по основному каналу. Получается, что основные каналы по времени используются существенно больше, чем резервные. Поэтому для рассматриваемого примера работа основных каналов с затратами 833 единицы и эпизодические переходы на резервные каналы с затратами 849 единиц в целом оказывается более эффективной. Проведенные эксперименты также подтвердили предпочтительность последовательного выбора основных и резервных каналов.

Заключение

Анализ предметной области и условий организации работы сети выявил три существенно отли-

СПИСОК ЛИТЕРАТУРЫ

- Багдасарова Е.П. Применение современных технологий сбора данных с наблюдательной сети // Метеоспектроскопия. – 2005. – № 2. – С. 89–93.
- 2. Сонькин М.А., Слядников Е.Е. Об одном подходе к оптимизации функционирования многоканальных систем передачи данных для труднодоступных объектов // Вычислительные технологии. 2007. Т. 12. Спецвыпуск. С. 17—22.

чающихся друг от друга варианта постановки задачи оптимизации использования каналов связи: базовый вариант в форме классической транспортной задачи, вариант с ограничением на число используемых каналов (многоканальный вариант) и одноканальный вариант с возможностью подключения резервного канала.

Предложенные постановки данных задач для практического применения в рассматриваемой предметной области имеют небольшую размерность и эффективные алгоритмы решения. Это в первую очередь относится к транспортной задаче (базовый вариант) и задаче о назначении (одноканальный вариант). Решение нелинейной задачи для многоканального варианта можно заменить на многократное решение задачи в базовом варианте. При этом, если после очередного решения ограничение на число используемых каналов у какой либо из МС не выполняется, то для нее корректируются условия задачи и осуществляется переход к получению нового решения.

Экспериментальные исследования одноканального варианта задачи по применению стратегии последовательного и совместного выбора основных и резервных каналов показали предпочтительность последовательной стратегии.

- 3. Гольштейн Е.Г., Юдин Д.Б. Новые направления в линейном программировании. М.: Советское радио, 1966. 524 с.
- Погребной В.К. Матричный алгоритм решения задачи разрезания графов // Известия Томского политехнического университета. – 2007. – Т. 310. – № 5. – С. 91–96.

Поступила 27.06.2008 г.