Nachname:	 Vorname:		

Aufgabe 1: (10 Punkte)

$$\begin{pmatrix}
f_1 \\
f_2
\end{pmatrix} = f:]0, \infty[\times]0, \infty[\times\mathbb{R} \rightarrow \mathbb{R}^2 \\
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} \mapsto \begin{pmatrix}
\ln\left(\frac{x_1}{x_2}(1+x_3^2)\right) \\
x_2^{x_1x_2}
\end{pmatrix}$$

stetig differenzierbar ist und bestimme die Ableitung.

 \lesssim b) Entscheide, ob $\lim_{x\searrow 0} f(x,x,0)$ existiert und bestimme diesen Grenzwert, falls er existiert.

Tur (2) e Jo, 0/x/0,0/xR ist x/(1/x2) >0 md x,>0 also lu (X1 (1+x2)) und xxx = exxx. lu (x2) wolldefinient und danit f als Komposition von stetzen tunktionen stetze. Die partiellen Ableitungen $\left(2_{1}f_{1}\right)\left(\frac{\chi_{1}}{\chi_{2}}\right) = \frac{\chi_{2}\left(4+\chi_{3}^{2}\right)}{\chi_{1}\left(4+\chi_{3}^{2}\right)\chi_{2}} = \frac{1}{\chi_{1}}\left(2_{1}f_{1}\right)\left(\frac{\chi_{2}}{\chi_{2}}\right) = \frac{\chi_{2}\left(4+\chi_{3}^{2}\right)\chi_{1}}{\chi_{1}\left(4+\chi_{3}^{2}\right)\chi_{2}} = \frac{1}{\chi_{2}}\left(4+\chi_{3}^{2}\right)\chi_{2} = \frac{1}{\chi_{2}}\left(4$ (3f1)(x2) = x2.x1.28 = 2/3 (1+x2) , (21/2)(x2) = e x1/2 lu(x2) $\left(2f_2\right)\binom{X_1}{X_2} = e^{X_1X_2}\binom{X_2}{X_3} = 0$ sind step, deshalb ist f step partiell differenzierba, also step alflerenzierbar und für jedes a = (a) e Jo o [xR die dastelende Matrix der Ableitung 629l, Alen Standardbasen.

 $f_1(x,x,0) = h_1(\frac{x}{x}) = 0$ ist konstant hat also Grenzwert line f(x,x,0) = 0. $f(x,x,0) = e^{x \ln |x|}$ $\int a \times \ln(x) = \frac{\ln(x)}{\frac{1}{x^2}} \frac{1}{\int x dx} = 0 \quad \text{(made } l \text{ Hospital)}$ $(\ln |x|)' = \frac{1}{x}$ and $\frac{1}{x} = -\frac{x^2}{2} = 0$ $(\frac{1}{x^2})' = -2 \cdot \frac{1}{x^3}$ and die Esponential funktion stety xt, folt $f_2(x,x,0) = e^{\frac{2}{12}(kx)} e^{-1}.$ Da jede Komponente von f konvergiert, ist $\lim_{x \to 0} f(x,x,0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Aufg	gabe 2: (#Punkte)
	ei $d \in \mathbb{N}$. Zeige, daß
	$\begin{array}{ccc} f: M_d(\mathbb{C}) & \to & M_d(\mathbb{C}) \\ A & \mapsto & A^2 \end{array}$
differ	renzierbar ist und berechne für jedes $A \in M_d(\mathbb{C})$ die Ableitung $(Df)(A)$ von f bei A .
Da.	Matrix-Matrix Multipolikation study st, 1st of stety, Fur A, Te Md (C) 1st
Audi	I steps, Fur A, Te Md(C) 15th
[]	(A+T)-f(A) = (A+T)-1-A-AT+TA+T
also	gibt
	9/1/A): Ma(O) Ma(O)
	1 - ATATA
line	e Clineare Abbitdung / die stetz ist weit Mal
MI	Midedimensional) mit
I fla	1+T)-(f(A)+()f(A)/T)// = 1/T// = 1/T// = 1/T// T+0
v	17/1 T+0
Also 1	berutert fla) + Ofla) [-] in Punt A die hon f. Sourt 1st fin A & Ma (C) renzierbar und Ofla) die Ableitung
Tunks	Hon L. Somit 1st, I'm AEM(C)
Uffler	renzierbar und Of/A) die Ableitung
ou I	in A.

Nacl	nname: Vorname:
Aufg	abe 3: (12 Punkte) Es sei λ das Lebesguemaß auf \mathbb{R} . Zeige, daß
	$f: \mathbb{R} \to \mathbb{R}$ $x \mapsto e^{- x } \cos(x)$
\ int	
λ—IIII	tegrierbar ist und berechne $\int\limits_{\mathbb{R}} f d\lambda$.
Da	as(x) = as(-x) for alle x = R glt, st
le-	$\frac{ x }{ \cos(x) } dx = 2 \left e^{- x } \cos(x) dx \right $
) {	$2\int e^{-x} dx = 2\lim_{n\to\infty} \int e^{-x} dx = 0$
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	e 1/0, x 1/0, of (x) und Satz von der monotonen konvergenz
	Vou des monotonen houvegue
= 1	$\lim_{M\to\infty} \left(-\frac{x/M}{e}\right) = 2 < \infty$
In i	of die stetze - und dannt I-melbare
40 S 	1. I gid 1-jutegnerbar. Nach allen
MKT	ion f aun A my
et i	you der Majonsterten hurt Il Vals Majora
fd.	For fauch 1-integrierbar. Nach dem Non fauch 1-integrierbar. Nach dem Non der majonsverten konvergenz 18th non der majonsverten konvergenz 18th nurt ffrals Hajoran 1 = line /e as /x/ ax =
	$= 2 \lim_{N\to\infty} \int_{-\infty}^{\infty} e^{-x} \cos(x) dx.$
	~ N->00 0
1 = 1	sartieller Tutegration folgt:
	2411141 C / V

 $\int_{e}^{m} \frac{1}{\cos(x)} dx = e^{-x} \frac{\sin(x)}{e^{-x}} \int_{e}^{m} \frac{1}{e^{-x}} \frac{1}{\sin(x)} dx$ $= e^{-x} \frac{\sin(x)}{e^{-x}} + e^{-x} \frac{\sin(x)}{e^{-x}} + e^{-x} \frac{1}{e^{-x}} \frac{1}{e^{-x}}$

Aufgabe 4: (10 Punkte)
a) Auf welcher – möglichst großen – offenen Menge $U\subseteq\mathbb{C}$ konvergiert die Partialsummenfolge $\left(\sum_{k=0}^n\frac{z^{2k+1}}{2k+1}\right)_{n\in\mathbb{N}_0}\text{lokal gleichmäßig gegen einen Grenzwert?}$
b) Zeige: Für alle $x \in]-1,1[$ gilt
$\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}.$
Die Potenzolike (= 2k+1) = (= ae 2) men unt
ae 1 te für ungerades l hat wegen
L:= fim flat = fim fe = 1 den Konvergenzradia
S= 1, datier ist die Reilie (== 26+1 men auf
200, 2/31/2 midst leouverglust.
U:= (C:/2/>1/) = /2EC:/2/
de obline Kern die grotte offine ledniege,
Dut Not NID Tolled While Well grand
I) die Partial summen auf U - un muler auch
Kmillsaen 2 louges - Soual glaim mapy.
Ronvergilm It U= 12e L' 1212 1 000
gesudote offine Kinge.

Nachname: Vorname:

Vorname:

Aufgabe 4: (10 Punkte)

- a) Auf welcher möglichst großen offenen Menge $U\subseteq\mathbb{C}$ konvergiert die Partialsummenfolge $\left(\sum_{k=0}^n\frac{z^{2k+1}}{2k+1}\right)_{n\in\mathbb{N}_0}$ lokal gleichmäßig gegen einen Grenzwert?
- b) Zeige: Für alle $x \in]-1,1[$ gilt

$$\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}.$$

b) Fix
$$x \in]-1$$
, $[]$ ist $\frac{1+x}{1+x} > 0$ also $\ln |\frac{1+x}{1+x}|$ axidalefunct

$$\left[\frac{1}{2}\ln |\frac{1+x}{1+x}|\right]^{-1} = \frac{1}{2}\frac{1-x}{1+x} \cdot \frac{(1+x)-(1+x)(1-x)}{(1+x)^2} = \frac{1}{(1+x)(1+x)}$$

$$= \frac{1}{1-x^2} = \sum_{k=0}^{\infty} |x^2|^k = \sum_{k=0}^{\infty} x^2$$

$$= \frac{1}{1-x^2} = \sum_{k=0}^{\infty} |x^2|^k = \sum_{k=0}^{\infty}$$

	Aufgabe 5: (21 Punkte) Entscheide, ob die folgenden Aussagen wahr oder falsch sind:
	• Kennzeichne die wahren Aussagen mit W / wund gib einen Beweis an.
	• Kennzeichne die falschen Aussagen mit F und widerlege jede falsche Aussage.
	Remizeichne die faischen Aussagen mit/[F] und wideriege jede faische Aussage.
-	
The second	$ (X) = \{X \subseteq \mathbb{N} : X \text{ endlich oder } \mathbb{N} \setminus X \text{ endlich} \} \text{ ist eine } \sigma - \text{Algebra auf } \mathbb{N}. $
	(Lat we ist line toge in E(N) und da
	(1) MEN
	(12nt) new ist line Foye in E(N) und de 2N = () 12nt keine ludliche Meng
	MEN
	und N 2N keine endliche Menge 130
	foft 2N & E(N). Danit 17t dies ke
	fort IN & t (N). Vamil is which he
(5-Alachon
	o rigora,
ſ	$\overline{\mathrm{W}}/\mathbb{R}: \ f:\mathbb{R}^2 \to \mathbb{R}$ hat in $[-1,1] \times [-1,1]$ (mindestens) eine Nullstelle.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Degen 4+x+g > 4 > 0 1st fauf gant R stets a [-1,1]x [-1,1] als Product von Intervallen
_	Viegon 7 Th 19 21 10 101 of any June 11 10 10
/	a [-1,1/x]-1,1/ als troduct von Intervallen
	resammen hångend 15t, 18t f [[-1,1]x[-1,1]) n Forschen wertent Desammen hangend, also lin
P	usummen vargue voi, is f (L') I'L')
	vischen wertrate Zusammen hangend, Also en
1	utervall _1 0>2
	Attervall. -1 $= \frac{-1}{5} + \frac{1}{8} > \frac{-1}{10} + \frac{1}{8} > 0$
	7(-1,0) = -5 + 8 10 8
	$L(1,0) = \frac{-e}{5} + \frac{1}{8} < -\frac{2}{5} + \frac{1}{8} < 0$
7	to ist $0 \in f(E-1,17^2)$ und f hat Nullstelle in [
/	

Nachname: Vorname:

Nachname:	 Vorname:	
		=======================================

// F : Die Menge

$$X := \left\{ (x_n)_{n \in \mathbb{N}} : \|(x_n)_{n \in \mathbb{N}}\|_{l^2(\mathbb{N})}^2 = \sum_{n=1}^{\infty} |x_n|^2 \le 1 \right\} \subseteq l^2(\mathbb{N})$$

ist eine kompakte Teilmenge vom Hilbertraum $l^2(\mathbb{N})$. Fur en = (0,...,0,1,0,...) ist // en/gen) = 1, also u-ter Eintrag Cu EX und zu m, u e N, m + u st 1/ Cm - Cn/ = 2, dh. die tobje (Cn) uen in X hat keine houvergute Teitfolge und deshalb 18+ X wicht long paht.

W |/ \mathbb{R} : Es sei $\mathcal{B}(\mathbb{R})$ die Borel σ -Algebra auf \mathbb{R} und $\lambda:\mathcal{B}(\mathbb{R})\to [0,\infty]$ das Borelmaß, dann wird durch $\nu: \mathcal{B}(\mathbb{R}) \to [0,\infty]$ $A \mapsto \int \frac{|x|}{1+x^2} d\lambda(x)$ ein Maß auf $\mathcal{B}(\mathbb{R})$ definiert.

$$A \mapsto \int_A \frac{|x|}{1+x^2} d\lambda(x)$$

· D(b) = \(\frac{1x}{1+x^2} A(x) = 0

· It (An) new line Folge von paarweise disjunkten An E SIR), dann gilt für In! = DAE: 1/2 = 7 1/4 , R= Z= B= ..., Bn 1 1 WALE.

also mach Sate von monotonen Konvergenz

$$\frac{\sum_{k=1}^{N} \mathcal{V}(A_k)}{|X|} = \int \frac{1}{|X|} \frac{1}{|X|} \frac{1}{|X|} \frac{|X|}{|X|} \frac{|X|}{|X|}$$