INGENIERÍA BIOMÉDICA

Índice

1.Introducción.	1
2.Áreas de Especialización	1
3.Bioinstrumentación	.2
4.Biomecatrónica	
5.Sistemas de Telemedicina y e-Salud	2
6. ¿Por qué estudiar el grado?	

1.Introducción.

La ingeniería biomédica (biomedical engineering) es una disciplina que combina principios de ingeniería y ciencias de la salud para desarrollar soluciones tecnológicas que mejoren el diagnóstico, tratamiento y prevención de enfermedades. Se enfoca en crear y optimizar dispositivos médicos, como prótesis, equipos de imagen médica y sistemas de monitoreo, así como en el diseño de biomateriales y tecnologías de rehabilitación. Esta ingeniería también abarca áreas como la bioinformática y la ingeniería de tejidos, con el objetivo de mejorar la calidad de vida y promover el bienestar mediante la innovación en el ámbito de la medicina y la biología.

The biomedical engineering field in Spain has grown substantially, with a 115% increase in employability since 2004 due to rising demand in healthcare technology and innovation.

2.Áreas de Especialización

- Biomecánica: estudio de movimiento y fuerzas en el cuerpo humano.
- Biomateriales: desarrollo de materiales compatibles con el cuerpo.
- Ingeniería de rehabilitación: dispositivos para mejorar la movilidad y función.
- Imágenes médicas: tecnologías para visualizar el interior del cuerpo.
- Ingeniería de tejidos: regeneración de tejidos y órganos.

3. Bioinstrumentación

La bioinstrumentación se centra en el diseño y desarrollo de dispositivos y sensores que pueden medir y monitorear parámetros biológicos, como el ritmo cardíaco, la actividad cerebral y los niveles de glucosa en sangre. Este campo combina electrónica y biología, y los dispositivos de bioinstrumentación son esenciales en hospitales y clínicas para el monitoreo continuo de pacientes. Ejemplos incluyen oxímetros de pulso, electrocardiógrafos (ECG) y electroencefalógrafos (EEG).

4.Biomecatrónica

La biomecatrónica integra principios de mecatrónica con biología para diseñar sistemas que puedan interactuar o integrarse con el cuerpo humano. Esto incluye el desarrollo de prótesis controladas por el cerebro y exoesqueletos robóticos que asisten en el movimiento. Este campo avanza rápidamente en el uso de sensores, actuadores y software para crear dispositivos que respondan a los impulsos eléctricos naturales del cuerpo, mejorando la funcionalidad para personas con discapacidad.

5. Sistemas de Telemedicina y e-Salud

Este campo implica el diseño y la implementación de sistemas que permiten la atención médica remota mediante el uso de tecnologías de comunicación. Los ingenieros biomédicos desarrollan aplicaciones y dispositivos que facilitan el monitoreo de pacientes a distancia, la consulta virtual y el análisis de datos médicos en tiempo real. La telemedicina ha crecido considerablemente, especialmente en áreas rurales o con limitaciones de acceso a servicios de salud, proporcionando atención y diagnóstico en tiempo real.

6. ¿Por qué estudiar el grado?

El objetivo general del nuevo título de Graduado/a en Ingeniería Biomédica es preparar profesionales con una formación amplia y sólida que los prepare para dirigir y realizar las tareas de todas las fases del ciclo de vida de sistemas, aplicaciones y productos que resuelvan problemas relacionados con la Ingeniería Biomédica y las Tecnologías de la Información y las Comunicaciones en el ámbito de la salud, aplicando su conocimiento científico y los métodos y técnicas propias de la ingeniería. Con carácter general, el Graduado/a en Ingeniería Biomédica está capacitado para aprender a conocer, hacer, convivir y ser, en su ámbito personal, profesional y social, de acuerdo con lo recogido en el informe de la UNESCO sobre las perspectivas de la educación en el siglo XXI.

Leer más

Dispositivo Médico	Función	Aplicación Principal	Área de Especialización
Prótesis de Pierna	Suplir la función de una pierna perdida	Rehabilitación y Movilidad	Biomecánica
Monitor de Ritmo	Supervisar y registrar la actividad cardíaca	Cardiología y Cuidados	Ingeniería de
Cardíaco		Intensivos	Dispositivos Médicos
Escáner de Resonancia	Obtener imágenes	Diagnóstico por Imagen	Ingeniería de Imágenes
Magnética (RM)	detalladas del cuerpo		Médicas