CSE2209: Digital Electronics and Pulse Techniques

Course Conducted By:

Nowshin Nawar Arony Lecturer, Dept of CSE, AUST

Chapter 9

Dynamic NMOS Inverter

Dynamic NMOS Inverter At t₁:

 $\Phi = V_{DD}$ then Q_2 and Q_3 are ON $v_0 = \overline{v_i}$ and $C = \overline{v_i}$

$$v_i = 0$$
 then Q_1 OFF
 $v_0 = V_{DD}$ and $C = V_{DD}$

 $v_i = 1$ then Q_1 ON

- v_0 connects to ground
- C discharges

$$v_0 = \text{GND} \ and \ C = \text{GND}$$

At t₂:

 Φ = 0 then Q_2 and Q_3 are OFF $v_0 = \overline{v_i}$ and $C = \overline{v_i}$

At t_3 :

 $\Phi = 0$ then Q_2 and Q_3 are OFF $v_0 = \overline{v_i}$ and $C = \overline{v_i}$

At t_4 :

 $\Phi = V_{DD}$ then Q_2 and Q_3 are ON $v_0 = \overline{v_i}$ and $C = \overline{v_i}$

At t₅:

 Φ = 0 then Q_2 and Q_3 are OFF $v_0 = \overline{v_i}$ and $C = \overline{v_i}$

At $t_6 = t_3$, repetition will start.

Why is it called ratioed inverter?

The inverter discussed above is called a ratioed inverter. The name derives from the fact that when the input is high and the clock is high, transistors Q1 and Q2 form a voltage divider between V_{DD} and ground. Therefore the output voltage V_0 depends on the ratio of the on resistance of Q1 and the effective load resistance of Q2 (typically, <1:5). This ratio is related to the physical size of Q1 and Q2 and is often referred to as the aspect ratio.

Book Page No. 270

Two Phased Ratioed Dynamic NMOS Shift Register

Cascading two dynamic inverters allows each bit of information which is stored on first capacitor C₀ connected to the gate of Q₁ to be transferred to the following inverter by applying second clock pulse out of phase with first clock pulse.

At t₁:

 $\Phi_1 = V_{DD}$ then Q_2 and Q_3 are ON $\Phi_2 = 0$ then Q_5 and Q_6 are OFF

$$C_1 = v_i$$

 $C_2 = \overline{v_i}$

At t₂:

 $\Phi_1 = 0$ then Q_2 and Q_3 are OFF $\Phi_2 = 0$ then Q_5 and Q_6 are OFF

$$C_1 = v_i$$

$$C_2 = \overline{v_i}$$

At t_3 :

 $Φ_1 = 0$ then Q_2 and Q_3 are OFF $Φ_2 = V_{DD}$ then Q_5 and Q_6 are ON

$$C_1 = v_i$$

 $C_2 = \overline{v_i}$
 $C_3 = v_i$
 $V_0 = v_i$

At t_4 :

 $\Phi_1 = 0$ then Q_2 and Q_3 are OFF $\Phi_2 = 0$ then Q_5 and Q_6 are OFF

$$C_1 = v_i$$
 $C_2 = \overline{v}_i$
 $C_3 = v_i$
 $V_0 = v_i$

At t_5 :

 $\Phi_1 = V_{DD}$ then Q_2 and Q_3 are ON $\Phi_2 = 0$ then Q_5 and Q_6 are OFF

$$C_1 = v_i$$

 $C_2 = \overline{v}_i$
 $C_3 = v_i$
 $V_0 = v_i$

At t₆ repetition will start

Dynamic Ratioless Inverter

• The ratioed invertor limits the speed of operation of the register and had more power dissipation. As such, a ratioless invertor is given here.

 No power supply is used here. The clock pulse φ will supply the required energy to the circuit. Here, the power dissipation is proportional to the clocking frequency.

Two Phase Ratioless Dynamic NMOS Shift Register

By cascading two ratioless dynamic inverters we obtain the ratioless dynamic shift register. The first inverter is powered by pulse ϕ_1 and the second by pulse ϕ_2

Created by Nowshin Nawar Arony

Fig: 9.5 (Book PG. 275)

At t₁:

 $\Phi_1 = V_{DD}$ then Q_0 and Q_2 are ON $\Phi_2 = 0$ then Q_3 and Q_5 are OFF

$$C_0 = v_i$$

$$C_1 = \overline{v_i}$$

 $V_i = 0$, Q_1 off C_1 charges to V_{DD} through Q_2 $V_i = V_{DD}$, C_0 charges and Q_1 is on At the end of phase t1 when Φ_1 goes to 0, Q_2 turns off but V_i is still V_{DD} as such C_1 discharges the charge through Q_1 at the end of the phase.

At t₂:

 $\Phi_1 = 0$ then Q_0 and Q_2 are OFF

 $\Phi_2 = 0$ then Q_3 and Q_5 are OFF

$$C_0 = V_i$$

$$C_1 = \overline{v}_i$$

Φ1

 $\Phi_{\mathbf{2}}$

At t_3 :

 $\Phi_1 = 0$ then Q_0 and Q_2 are OFF

$$\Phi_2 = V_{DD}$$
 then Q_3 and Q_5 are ON

$$C_{0} = v_{i}$$

$$C_{1} = \overline{v_{i}}$$

$$C_{2} = C_{1} = \overline{v_{i}}$$

$$C_{3} = \overline{C_{2}} = \overline{C_{1}} = \overline{\overline{C_{0}}} = \overline{\overline{V_{i}}} = V_{i}$$

$$V_{0} = v_{i}$$

At t_4 :

 $\Phi_1 = V_{DD}$ then Q_0 and Q_2 are ON

 $\Phi_2 = 0$ then Q_3 and Q_5 are OFF

$$C_0 = v_i$$
 $C_1 = \overline{v_i}$
 $C_2 = C_1 = \overline{v_i}$
 $C_3 = v_i$
 $V_0 = v_i$

From t₅ repetition will continue.

• You do not need to draw circuits for each clock pulse during the exam. You can draw the clock pulse and circuits once and then explain all the steps.