2025 Team 3

Al-Driven Cost Estimation for Injection Mold Quotation

AGENDA

- Model, Data, Algorithm, Workflow
- O2 Prediction Precision
- Impact Study (Environmental, Cyber risk, change management, a control and maintenance plan
- Deliverables: Variable dictionary, Data quality diagnosis, training survey, performance analysis, impact study

Theoretical Causal Model

Theoretical Causal Model

1. Product Features (shape, size, material)

- → Influence **Mold Design** (dimensions, cavities, steel type)
- → Affect **Cavity Complexity** (e.g. intricate geometries increase complexity)

2. Mold Design

- → Directly contributes to **Total Cost** (due to size, number of cavities, steel type)
- → Influences **Process Features** required (design effort, polishing, machining)
- 3. Process Features (design, polishing, machining)
- → Directly impact **Total Cost** (higher process requirements = higher cost)

Theoretical Causal Model

4. Production Scale (units to produce)

→ Directly impacts **Total Cost** (due to economies of scale or complexity adjustments)

5. Cavity Complexity

→ Direct effect on **Total Cost** (complex cavities require more work and precision)

6. Quotation Date

→ Impacts **Total Cost** (price fluctuations over time, inflation, material market variations)

It might be considered as a contextual variable.

Data

What we did:

- Selected key features from 70+ columns
- Handled missing values
- Encoded categorical data (like steel and plastic types)
- Transformed Total_price using log scale
- Split data into training and test sets

What was tricky:

- Some features were unclear or redundant
- Many binary flags (0/1) with little explanation
- Hard to know what really impacts cost

Algorithms

Model Results & Insights

Approach:

- Built regression models using historical quotation data (n = 643).
- Tried both Linear Regression and Random Forest Regressor.

Results:

- Linear Regression R²: ~0.21
- Random Forest R²: ~0.33

WE ARE STUCK HERE

Algorithms

Model Results &

Approach:

- Built regressi (n = 643).
- Tried both Lii Regressor.

Results:

- Linear Regre
- Random For

WE HAVE PROGRESS

WE'RE STILL TRYING

WE NEED MORE TIME

WE ARE STUCK
HERE

Workflow

Workflow

1. Data Loading

We use Python with pandas (pd.read_csv)
 Good formatting for Jupyter.

2. Data Cleaning

Handle missing values (NA and ZEROS)

3. Feature Engineering

• **We** Extract the necessary variables for the modeling that affects the price.

```
WE SELECTED: 'ACHATS', 'AJUSTAGE', 'CN', 'ETUDES', 'METHODES', 'MOULE.CLEF.EN.MAIN1', 'ST', 'Mold_Volume_A4'
```

4. Scaling process

• Scale numerical features to **mean=0**, **std=1** (StandardScaler) with a function in Sklearn.

THE VISION COMPANY NAME

Workflow

5. Splitting

 We Create train-test splits using scikit-learn's train_test_split, ensuring temporal splits if modeling time-sensitive prices.

2. Model Selection

- Candidates: Linear Regression and Random Forest Regressor
- **Tool**: scikit-learn (sklearn.linear_model, sklearn.ensemble)
- Rationale: Start simple (Linear)
- And Increase complexity (Tree-based) for Random Forest

3. Evaluation & Impact

→ Compare performance.

Impact Study (Environmental Risk)

- Mold production uses steel, energy, and water.
- Al-driven quoting may influence environmental outcomes indirectly.

Positive Impacts

Reduces overproduction and material waste.

May favor simpler, more sustainable designs.

Can evolve to include CO₂ or energy metrics.

Risks

Current model ignores sustainability factors.

May favor cheapest options, not greenest.

No data yet on energy or material footprint.

Future Steps

Add eco-metrics (energy, scrap rate).

Apply Green AI practices.

Explore sustainability-focused extensions.

Impact Study (Cyber Risk)

- The system handles sensitive industrial data (designs, prices, materials).
- Risk increases when deploying AI tools online or across teams.

Benefits

Reduces overproduction and material waste.

May favor simpler, more sustainable designs.

Can evolve to include CO₂ or energy metrics.

Risks

Exposure of proprietary cost models or client quotes.

Risk of unauthorized access to sensitive product specs.

Possible model manipulation or data poisoning.

Mitigation Strategies

Implement access control and encryption.

Regular security audits and version tracking.

Log user interactions for traceability.

Impact Study (Change Management)

- Switching from expert-based to Al-driven quoting affects workflows and roles.
- Resistance may come from mold designers, sales, or finance teams.

Benefits

Standardizes quoting process across teams.

Reduces reliance on individual expertise.

Speeds up decision-making with consistent logic.

Risks

Risk of mistrust or rejection by experienced staff.

May reduce flexibility in custom quoting.

Requires retraining and mindset shift.

Recommendation

Involve experts early in system design.

Provide training and transparent model explanations.

Allow manual overrides or hybrid decision options.

Impact Study (Control & Maintenance Plan)

- AI models degrade over time (data drift, outdated assumptions).
- Regular updates ensure accuracy and trust.

Key Actions

Schedule periodic model retraining (e.g., every 6–12 months).

Monitor performance metrics continuously.

Log predictions and feedback to detect errors.

Data & Model Management

Maintain a version-controlled dataset and model registry.

Track changes in features (e.g., new steel types or processes).

Ensure compatibility with evolving business needs.

Governance

Assign ownership (data steward, model owner).

Define escalation paths for anomalies or failures.

Include experts in update reviews.

Deliverables

Variable dictionary, Da

Work in Progress