ערכים עצמיים ווקטורים עצמיים

הגדרות

- $T(v)=\alpha v$ -ש סקלר α כך אם יש סקלר עצמי של T נקרא וקטור עצמי $0 \neq v \in V$ ט.ל. $T:V \to V$.1 . α נקרא הערך העצמי השייך ל-v . v נקרא הוקטור העצמי השייך ל- α
- . $Av=\alpha v$ אם A אם עצמי וקטור נקרא $0\neq v\in F$, F מעל שדה $n\times n$ מער מסדר A . 2 נקרא הערך העצמי השייך ל-v .
 - . | I-A| בולינום אופייני (פייא) הפולינום המתקבל מהחישוב:
 - .4 אופייני. ($\lambda \lambda_i$) בפולינום האופייני. החזקה של (רייא) של עייע. אלגברי (רייא) או
- 5. ריבוי גאומטרי (רייא) של עייע 📜 : המספר המקסימלי של וקטורים עצמיים בתייל השייכים לעייע זה.
 - $P^{-1}AP = B:$ הפיכה כך הפיכה P המיון אם קיימת תקראנה דומות תקראנה A, B. א מטריצות 6.
 - $P^{-1}AP = D:$ אלכסונית כך שP הפיכה אם קיימת P הפיכה לכסינה און A אלכסונית.

שלבי חישוב עייע וייע:

- 1. אם נתונה ט"ל, יש לחשב קודם את המטריצה המייצגת שלה.
 - 2. מחשבים: A I
 - 3. חישוב עייע: שורשי הפולינום שהתקבל בסעיף הקודם.
- 4. חישוב וייע: לכל עייע λ_i פותרים את מערכת המשוואות: $(A-\lambda_i I)x=0$. מרחב הפתרונות של מערכת זו נקרא המרחב העצמי של λ_i . מימדו של מרחב זה שווה לריבוי הגאומטרי של λ_i . וכל וקטור שונה מאפס במרחב זה הוא וייע המתאים לעייע λ_i .

משפטים:

- 1. וייע ששייכים לעייע שונים הם בתייל.
 - 2. רייא רייג 1 לכל עייע.
- $\lambda_i = tr(A)$: מעל השדה בו נמצאים כל העייע מתקיים .3
- $\lambda_i = \det(A)$: מעל השדה בו נמצאים כל העייע מתקיים .4
- .5 לכסינה \Leftrightarrow קיים ל- V בסיס שכולו מורכב מוקטורים עצמיים.
 - . רייא=רייג לכל עייע וכל העייע שלה בשדה ⇔
- .6 אם ל A_{nxn} יש n עייע שונים אז A לכסינה. (תנאי מספיק אך לא הכרחי).
- , אם A לכסינה אז המטריצה המלכסנת, P, מורכבת המסריצה אז המטריצה המלכסנת, D, מורכבת מהעייע באלכסון.
 - f(A)=0 אז f(x) או הפ.א. של מטריצה ריבועית A, אז f(x) אז f(x) .8
 - T של ע.ע. של אמיימ אמיימ T הפיכה T
 - .10 אותו פייא: יש להם אותו פייא. A,B

יש להם אותה דטרמיננטה.

יש להם אותה עקבה

יש להם אותה דרגה

יש להם אותם עייע כולל ריבויים.

- A^n אייע אייע א וייע מתאים אז א וייע מתאים של געייע ו u וייע מתאים של געיע ו אם λ
- A^{-1} אם א וייע מתאים אז λ^{-1} אייע ו λ וייע מתאים של λ אם A הפיכה ו λ עייע ו λ וייע מתאים אז
- .A אם א עייע מרוכב ו $ar{v}$ וייע מתאים של A ממשית אז א וייע מתאים של λ עייע λ אם λ
- $v_B=v_A$, $\lambda_B=f(\lambda_A)$ אז: B=f(A) אז וויע של A שמתאים לעייע B=f(A) אז. B=f(A) יהא
 - A או ע.ע. של א הוא קבוע k או קבוע א הוא (במטריצה (במטריצה בכל עמודה בכל א הוא א הוא ע.ע. של 15.
- $(1,1,\ldots,1)^t$: אם סכום האיברים בכל שורה (במטריצה A) הוא קבוע A . אז A הוא ע.ע. של