Final Quiz Ph.D Course Work
* Required
Name *
Your answer
Enrollment Number (If you have)
Your answer
Which of the following is not the heuristic for deciding which variable to 2 points choose next in a backtracking search for solving CSP? *
Minimum remaining value
Degree
C Least constrained value
None of the above
After performing arc consistency, one can solve a CSP without 1 point backtracking. *
○ True

!

You are given a CSP with 'n' variables and each variable can take 'd' values. 2 p You are able to decompose the problem into three independent subproblems each with n/3 variables. What will be the worst case complexity of solving CAP after decomposition? *	points
O(d^(n/3))	
O(d^n)	
O((n/3)^d)	
O(n^d)	
Which of the following is true about CSPs? * 2 p	points
Tree structured CSPs cannot be solved in polynomial time	
Forward checking is an efficient inference technique as it can check all failures	
Computational time of solving CSPs depend on number of variables and number of constraints	f
All are true	
If an arc from X>Y is arc consistent then *	points
Y>X is also arc consistent	
All values in X will have a corresponding value in Y	
All values in Y will have a corresponding value in X	
O Both X and Y can be assigned the same value	

If h1 and h2 are two admissible heuristics then which of the following will 2 points give the heuristic that will dominate over h1 and h2? *

- min(h1, h2)
- max(h1, h2)
- (h1.h2)^0.5
- (h1+h2)/2

Consider the following graph in which a path is to be found from state state A to goal state G. The number on the edge shows the transition cost. Also, the heuristic function h is $h=\{h(A)=7, h(B)=5, h(C)=6, h(D)=4, h(E)=3. h(F)=3, h(G)=0\}$. This heuristic is *

- Both admissible and consistent
- Admissible but not consistent
- Consistent but not admissible
- Neither admissible nor consistent

Which of the following algorithm is definitely provide optimal solution? *	1 point
Greedy best first search	
A* with zero heuristic	
O Depth first search	
A* with consistent heuristic	
Consider an infinite search space. The start state is $(0,0)$ and goal state is (Fx, Fy) . Given that an agent can move from state (x,y) to states $\{(x+1,y), (x-1,y), (x,y+1), (x,y-1)\}$ with a unit step cost. Find the number of nodes explored using A* when $(Fx,Fy)=(6,7)$ when Mahanttan distance is the heuristic. No duplicates are detected. *	4 points
Your answer	
Your answer Which of the following is true? *	1 point
	1 point
Which of the following is true? *	1 point
Which of the following is true? * A* search expands no more nodes than uniform cost search	1 point
Which of the following is true? * A* search expands no more nodes than uniform cost search A* seach expands no more nodes than depth first search	1 point

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms