Cours & Bilan pédagogique

Formalismes 6×6 « tout rotations » et passage à SO(3,3)

Dualité rotation/translation, temps 3D, sondes, vielbeins et borne \boldsymbol{c}

Synthèse pédagogique

13 août 2025

Table des matières

CHEAT-SHEET (Lecture rapide)					
M	Mini-glossaire (encadrés mnémotechniques)				
Notations, objets, définitions					
1	Motivation et état 6D : pourquoi (3+3)?				
	1.1	Mettre rotations et translations sur un pied d'égalité	7		
	1.2	Chaîne de calcul en une ligne	7		
	1.3	Ce que gagne un lecteur Bac+2	7		
2	Définition de $SO(3,3)$ et contraintes en blocs				
	2.1	Invariant et forme bilinéaire	8		
	2.2	Écriture par blocs et lecture Bac+2	8		
3	Trois familles de « rotations » en $SO(3,3)$				
	3.1	Elliptiques (internes)	8		
	3.2	Hyperboliques (boosts)	8		
	3.3	Paraboliques (null-rotations)	8		
4	Opérateur M (agit) et Champ S (prépare) : rôles exhaustifs				
	4.1	Lecture bloc par bloc (aucun élément oublié)	9		

	4.2	Formules opérationnelles (rappel compact)	9	
	4.3	Interprétations physiques et cosmologiques	9	
5	Ponts avec les formalismes usuels			
	5.1	SE(3) (matrices homogènes 4×4)	10	
	5.2	Quaternions duaux	10	
	5.3	Géométrie conforme (CGA)	10	
6	Exemples (pas à pas, Bac+2)			
	6.1	Exemple 1 : rotation spatiale pure	10	
	6.2	Exemple 2 : boost simple	11	
	6.3	Exemple 3 : null-rotation (effet translation)	11	
7	Rela	tivité locale, gravitation effective et cosmologie 3D	11	
	7.1	Relativité locale (cinématique hyperbolique)	11	
	7.2	Gravitation effective (vielbeins et inhomogénéité)	11	
	7.3	Cosmologie locale (temps 3D, dilatation/anisotropie)	11	
8	Dua	lités et symétries : panorama unifié	12	
	8.1	Rotation \leftrightarrow Translation (null-rotations)	12	
	8.2	Transformation \leftrightarrow Champ ($M \text{ vs } S$)	12	
	8.3	Espace \leftrightarrow Temps (3D)	12	
	8.4	$Local \leftrightarrow Global$ (vielbeins)	12	
	8.5	Ponts algébriques (SE(3), quaternions duaux, CGA)	12	
9	Pers	pectives, bonnes pratiques et check-list	13	
	9.1	Bonnes pratiques	13	
	9.2	Pistes	13	
10	Exemple numérique fil rouge (ligne à ligne) 13			
	10.1	Choix simples mais non triviaux	13	
	10.2	Étape 1 : préparation $(X_{\text{eff}}, Y_{\text{eff}})$	13	
	10.3	Étape 2 : action M (rotation interne + boost)	14	
		Étape 3 : lecture et observables	14	
	10.5	Remarques	14	
A	Véri	fications $SO(3,3)$ (Sympy)	15	

CHEAT-SHEET (Lecture rapide Bac+2)

Schéma-blocs (lecture visuelle simple)

$$\Delta x = e_s X', \qquad \Delta \tau = u_t^{\top} e_t Y', \qquad v = ||\Delta x||/\Delta \tau, \qquad \mathcal{A} = \ell_X^{\top} X' + \ell_Y^{\top} Y'.$$

Chaîne compacte.

$$f \xrightarrow{S} \begin{bmatrix} X_{\text{eff}} \\ Y_{\text{eff}} \end{bmatrix} \xrightarrow{M} \begin{bmatrix} X' \\ Y' \end{bmatrix} \xrightarrow{\ell^{\top}} \mathcal{A} = \ell_X^{\top} X' + \ell_Y^{\top} Y'.$$

Lecture (observables).

$$(X',Y') \xrightarrow{(e_s,e_t,u_t)} (\Delta x, \Delta \tau), \qquad v = ||\Delta x||/\Delta \tau, \quad \Delta x = e_s X', \quad \Delta \tau = u_t^\top e_t Y'.$$

Objets, dimensions et notations (immédiat)

— Invariant $J = diag(I_3, -I_3)$.

$$- f = \begin{bmatrix} f_X \\ f_Y \end{bmatrix} \in \mathbb{R}^6 : \text{ sonde droite (colonne)}; \ \ell^\top = \begin{bmatrix} \ell_X^\top & \ell_Y^\top \end{bmatrix} \in \mathbb{R}^{1 \times 6} : \text{ sonde gauche}$$
 (ligne).
$$- S = \begin{bmatrix} S_{XX} & S_{XY} \\ S_{YX} & S_{YY} \end{bmatrix} \in SO(3,3) : \text{ champ (préparation)}.$$

$$- M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in SO(3,3) : \text{ opérateur (action)}.$$

$$- e_s, e_t \in GL(3) : \text{ vielbeins}; \ u_t \in \mathbb{R}^3 : \text{ direction temporelle unitaire}.$$

Formules prêtes à l'emploi.

$$\begin{bmatrix} X_{\text{eff}} \\ Y_{\text{eff}} \end{bmatrix} = \underbrace{\begin{bmatrix} S_{XX} & S_{XY} \\ S_{YX} & S_{YY} \end{bmatrix}}_{S} \begin{bmatrix} f_X \\ f_Y \end{bmatrix},$$

$$\begin{bmatrix} X' \\ Y' \end{bmatrix} = \underbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}_{M} \begin{bmatrix} X_{\text{eff}} \\ Y_{\text{eff}} \end{bmatrix},$$

$$\Delta x = e_s X', \qquad \Delta \tau = u_t^{\top} e_t Y', \qquad v = \|\Delta x\| / \Delta \tau,$$

$$\mathcal{A} = \ell^{\top} M S f = \ell_X^{\top} X' + \ell_Y^{\top} Y'.$$

Mini-glossaire (aperçu, sans ToC)

Elliptique Rotation interne (comme SO(3)), conserve une norme euclidienne partielle.

Hyperbolique Boost (mélange X/Y) via cosh/sinh.

Parabolique Null-rotation (unipotente): agit comme une translation selon la lecture choisie.

Vielbein Carte locale (unités, anisotropie) : e_s , e_t .

Sonde f (prépare) et ℓ^{\top} (lit); la particule apparaît après la lecture $(\Delta x, \Delta \tau)$.

Mini-glossaire (encadrés mnémotechniques)

Rotation (elliptique) : conserve une norme euclidienne ; bloc 3×3 orthogonal de déterminant +1.

Boost (hyperbolique): mélange espace/temps (cosh/sinh).

Null-rotation (parabolique): unipotente, agit comme une translation selon la lecture choisie.

Vielbein (e_s, e_t) : carte locale pour mesurer; choisir $e_t = \frac{1}{c}I$ fixe l'échelle temporelle avec la vitesse c.

Sonde (f, ℓ) : *onde de test*. La particule apparaît après lecture des sorties $(\Delta x, \Delta \tau)$.

Invariance $SO(3,3) : M^{T}JM = J \text{ avec } J = \text{diag}(I_3, -I_3).$ Blocs : $A^{T}A - C^{T}C = I$, $B^{T}B - D^{T}D = -I$, $A^{T}B - C^{T}D = 0$.

Notations, objets, définitions (lecture immédiate)

Espaces et objets.

- \mathbb{R}^n : espace vectoriel réel de dimension n. \mathbf{I}_n : identité $n \times n$.
- $\mathbf{J} = \operatorname{diag}(\mathbf{I}_3, -\mathbf{I}_3)$: forme bilinéaire signature (3, 3). Invariant $Q(\mathbf{V}) = \mathbf{V}^{\mathsf{T}} \mathbf{J} \mathbf{V} = \|\mathbf{X}\|^2 \|\mathbf{Y}\|^2$.
- $V = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \in \mathbb{R}^6 : \mathbf{X} \in \mathbb{R}^3 \text{ (partie spatiale), } \mathbf{Y} \in \mathbb{R}^3 \text{ (partie temporelle 3D).}$

Acteurs fondamentaux (tous 6×6).

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_{XX} & \mathbf{S}_{XY} \\ \mathbf{S}_{YX} & \mathbf{S}_{YY} \end{bmatrix}, \qquad \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}.$$

S *prépare* un état effectif (champ); **M** *agit* (opérateur physique). Les deux peuvent (et idéalement doivent) appartenir à $SO(3,3) = \{G \in \mathbb{R}^{6\times 6} \mid G^{\mathsf{T}}JG = J, \det = 1\}$ pour préserver l'invariant Q. Voir la structure en blocs et les contraintes associées dans les chapitres suivants. :contentReference[oaicite :2]index=2

Sondes et lecture (mesure).

$$\mathbf{f} = \begin{bmatrix} \mathbf{f}_X \\ \mathbf{f}_Y \end{bmatrix} \in \mathbb{R}^6 \quad \text{(sonde droite, "prépare")} \qquad \text{et} \qquad \boldsymbol{\ell}^\top = \begin{bmatrix} \ell_X^\top & \ell_Y^\top \end{bmatrix} \in \mathbb{R}^{1 \times 6} \quad \text{(sonde gauche, "lit")}.$$

 \mathbf{e}_s , $\mathbf{e}_t \in \mathrm{GL}(3)$ sont des *vielbeins* (cartes locales d'unité et d'orientation) pour l'espace et le "temps 3D"; $\mathbf{u}_t \in \mathbb{R}^3$ est unitaire et extrait un *temps scalaire* $\Delta \tau = \mathbf{u}_t^{\top} \mathbf{e}_t \mathbf{Y}'$.

Chaîne de calcul (posée dès maintenant).

$$\underbrace{\mathbf{f}}_{\text{sonde}} \xrightarrow{\mathbf{S}} \underbrace{\begin{bmatrix} \mathbf{X}_{\text{eff}} \\ \mathbf{Y}_{\text{eff}} \end{bmatrix}}_{\text{\'etat effectif}} \xrightarrow{\mathbf{M}} \underbrace{\begin{bmatrix} \mathbf{X}' \\ \mathbf{Y'} \end{bmatrix}}_{\text{\'etat agi}} \xrightarrow{\mathbf{e}_s, \mathbf{e}_t, \mathbf{u}_t}_{\text{lecture}} (\Delta x, \Delta \tau), \quad \begin{cases} \Delta x = \mathbf{e}_s \, \mathbf{X}', \\ \Delta \tau = \mathbf{u}_t^\top \mathbf{e}_t \, \mathbf{Y}', \\ v = \frac{\|\Delta x\|}{\Delta \tau}. \end{cases}$$

X_{eff}, Y_{eff} sont définis *immédiatement* par

$$\begin{bmatrix} \mathbf{X}_{\text{eff}} \\ \mathbf{Y}_{\text{eff}} \end{bmatrix} = \mathbf{S} \begin{bmatrix} \mathbf{f}_{X} \\ \mathbf{f}_{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{XX}\mathbf{f}_{X} + \mathbf{S}_{XY}\mathbf{f}_{Y} \\ \mathbf{S}_{YX}\mathbf{f}_{X} + \mathbf{S}_{YY}\mathbf{f}_{Y} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{X}' \\ \mathbf{Y}' \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{X}_{\text{eff}} \\ \mathbf{Y}_{\text{eff}} \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{X}_{\text{eff}} + \mathbf{B}\mathbf{Y}_{\text{eff}} \\ \mathbf{C}\mathbf{X}_{\text{eff}} + \mathbf{D}\mathbf{Y}_{\text{eff}} \end{bmatrix}.$$

Cette écriture compacte évite tout flottement de notation et rend explicite le rôle de

chaque sous-bloc. Elle est cohérente avec ta version actuelle et la clarifie. :contentReference[oaicite :3]index=3

Mini-glossaire (utilisable partout).

- Elliptique : rotation interne (type SO(3)) au sein de X ou Y.
- **Hyperbolique (boost)**: mélange contrôlé $X \leftrightarrow Y$ (blocs cosh/sinh).
- **Parabolique (null-rotation)**: unipotente, stabilise une direction nulle Q = 0; lu correctement, cela agit comme une translation *sans jamais quitter le tout-rotation*.
- **Vielbein** \mathbf{e}_s , \mathbf{e}_t : change de base local (unités, anisotropie, gravitation effective).
- Sondes f, ℓ^{\top} : préparation/lecture (onde \rightarrow corpuscule via $\ell^{\top}MSf$).

1 Motivation et état 6D : pourquoi (3+3)?

1.1 Mettre rotations et translations sur un pied d'égalité

Dans l'espace euclidien classique, une rotation est une matrice 3×3 et une translation est un *vecteur* ajouté. Ici, nous voulons **tout coder par des matrices** : les couplages carrés B, C permettent de rendre les translations comme des *null-rotations* (paraboliques) dans une signature (3,3).

1.2 Chaîne de calcul en une ligne

$$f \xrightarrow{S} (X_{\text{eff}}, Y_{\text{eff}}) \xrightarrow{M} (X', Y') \xrightarrow{e_s, e_t, u_t} (\Delta x, \Delta \tau) \xrightarrow{/} v.$$

C'est la recette complète : préparation S, action M, lecture (vielbeins), extraction des observables.

1.3 Ce que gagne un lecteur Bac+2

- Une vision unifiée des mouvements (rotations, boosts, translations) par blocs 3×3.
- Des **rôles explicites** de chaque sous-bloc (*A*, *B*, *C*, *D* et *S*...) dès le début.
- La possibilité d'introduire un temps vectoriel 3D pour mieux coupler cinématique et lecture.

2 Définition de SO(3,3) et contraintes en blocs

2.1 Invariant et forme bilinéaire

$$J = \text{diag}(I_3, -I_3), \qquad \langle V, W \rangle = V^{\top} J W, \qquad Q(V) = ||X||^2 - ||Y||^2.$$

Le groupe SO(3,3) préserve Q et a det = 1 :

$$SO(3,3) = \{ M \in \mathbb{R}^{6 \times 6} \mid M^{\top} J M = J, \det M = 1 \}.$$

2.2 Écriture par blocs et lecture Bac+2

Pour $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, les contraintes équivalentes à $M^{T}JM = J$ sont :

$$A^{\mathsf{T}}A - C^{\mathsf{T}}C = I_3,\tag{1}$$

$$B^{\mathsf{T}}B - D^{\mathsf{T}}D = -I_3,\tag{2}$$

$$A^{\mathsf{T}}B - C^{\mathsf{T}}D = 0. \tag{3}$$

À retenir : A, D ressemblent à des rotations internes ; B, C sont des *ponts* qui transfèrent l'information entre X et Y. Les trois familles (elliptique, hyperbolique, parabolique) sont contenues dans SO(3,3).

3 Trois familles de « rotations » en SO(3,3)

3.1 Elliptiques (internes)

B = C = 0, A, $D \in SO(3)$: rotations à l'intérieur des sous-espaces X et Y.

3.2 Hyperboliques (boosts)

Mélange d'une composante de X et d'une de Y via un bloc $\begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$, inséré dans M.

3.3 Paraboliques (null-rotations)

Transformations unipotentes : elles stabilisent une direction nulle (Q = 0). En lecture adaptée, elles agissent comme des translations.

4 Opérateur M (agit) et Champ S (prépare) : rôles exhaustifs

4.1 Lecture bloc par bloc (aucun élément oublié)

On écrit

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_{XX} & \mathbf{S}_{XY} \\ \mathbf{S}_{YX} & \mathbf{S}_{YY} \end{bmatrix}, \qquad \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}.$$

 $\mathbf{S} \text{ fabrique l'état effectif } \begin{bmatrix} \mathbf{X}_{\text{eff}} \\ \mathbf{Y}_{\text{eff}} \end{bmatrix} = \mathbf{S} \begin{bmatrix} \mathbf{f}_{X} \\ \mathbf{f}_{Y} \end{bmatrix}. \, \mathbf{M} \text{ produit l'état agi } \begin{bmatrix} \mathbf{X}' \\ \mathbf{Y}' \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{X}_{\text{eff}} \\ \mathbf{Y}_{\text{eff}} \end{bmatrix}.$

Sous-blocs de S.

- S_{XX} : préparation spatiale interne transforme f_X en contribution à X_{eff} .
- S_{XY} : *mélange sonde-temps* \rightarrow *espace* injecte f_Y dans X_{eff} .
- \mathbf{S}_{YX} : *mélange sonde-espace* \rightarrow *temps* injecte \mathbf{f}_X dans \mathbf{Y}_{eff} .
- S_{YY} : préparation temporelle interne transforme f_Y en contribution à Y_{eff} .

Sous-blocs de M.

- **A** : action interne sur X_{eff} (rotation elliptique, ou partie d'un boost via compatibilité $\mathbf{M}^{\mathsf{T}}\mathbf{J}\mathbf{M} = \mathbf{J}$).
- **D** : action interne sur **Y**_{eff} (idem côté "temps 3D").
- \mathbf{B} : transfert $\mathbf{Y}_{\mathrm{eff}} \to \mathbf{X}'$. Sous lecture adaptée, un bloc de translation (null-rotation) apparaîtra: $\Delta x = \mathbf{e}_s(\mathbf{A}\mathbf{X}_{\mathrm{eff}} + \mathbf{B}\mathbf{Y}_{\mathrm{eff}})$.
- C: transfert $X_{\text{eff}} \to Y'$. Contrôle les composantes "boost" et les $\Delta \tau$ observés : $\Delta \tau = \mathbf{u}_t^{\mathsf{T}} \mathbf{e}_t (\mathbf{C} \mathbf{X}_{\text{eff}} + \mathbf{D} \mathbf{Y}_{\text{eff}})$.

4.2 Formules opérationnelles (rappel compact)

$$\begin{bmatrix} \mathbf{X}_{\text{eff}} \\ \mathbf{Y}_{\text{eff}} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{XX} & \mathbf{S}_{XY} \\ \mathbf{S}_{YX} & \mathbf{S}_{YY} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{X} \\ \mathbf{f}_{Y} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{X}' \\ \mathbf{Y}' \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\text{eff}} \\ \mathbf{Y}_{\text{eff}} \end{bmatrix}.$$

$$\Delta x = \mathbf{e}_s \, \mathbf{X}' = \mathbf{e}_s \, (\mathbf{A} \, \mathbf{X}_{\text{eff}} + \mathbf{B} \, \mathbf{Y}_{\text{eff}}) \,, \qquad \Delta \tau = \mathbf{u}_t^\top \mathbf{e}_t \, \mathbf{Y}' = \mathbf{u}_t^\top \mathbf{e}_t \, (\mathbf{C} \, \mathbf{X}_{\text{eff}} + \mathbf{D} \, \mathbf{Y}_{\text{eff}}) \,, \qquad v = \frac{\|\Delta x\|}{\Delta \tau}.$$

4.3 Interprétations physiques et cosmologiques

Tout-rotation et "translations" lues. Dans SO(3, 3), les *null-rotations* (transformations unipotentes stabilisant des directions nulles de Q) miment des translations *après lecture*. Concrètement, \mathbf{B} et \mathbf{C} jouent le rôle d'*interfaces* entre parties espace/temps 3D; \mathbf{B} induit un décalage spatial lu dans Δx , \mathbf{C} ajuste le temps propre

lu dans $\Delta \tau$. Ainsi la translation *émerge* de la géométrie rotationnelle via la paire (préparation **S**, lecture \mathbf{e}_s , \mathbf{e}_t , \mathbf{u}_t). Cette idée est cohérente avec la « rotation à l'infini » des traitements projectifs/duaux, mais ici gardée au sein d'une dimension 6 fixe. :contentReference[oaicite :4]index=4

Dualité champ/particule via les sondes. f (onde de test) est "préparée" en $[X_{eff}, Y_{eff}]$ par S. Après l'action M, la *particule* apparaît au moment de la *lecture* : amplitude scalaire $\alpha = \ell^T MSf$ ou observables $(\Delta x, \Delta \tau)$. La symétrie est forte : S et M sont du même type (mêmes contraintes SO(3,3)), l'un prépare la scène, l'autre joue la dynamique — les sondes font le lien ondes/corpuscules.

Rôle des vielbeins e_s, **e**_t **et de u**_t. **e**_s et **e**_t encodent les *unités locales*, l'anisotropie et la gravitation effective (lecture locale « façon vielbein »). Fixer $\mathbf{e}_t = \frac{1}{c}\mathbf{I}_3$ borne naturellement les vitesses lues $v \le c$. Faire dépendre \mathbf{e}_s , \mathbf{e}_t de la position/temps propre modélise l'inhomogénéité (milieux, gravitation, cosmologie locale). :contentReference[oaicite :5]index=5

5 Ponts avec les formalismes usuels

5.1 SE(3) (matrices homogènes 4×4)

Au voisinage de l'identité, si l'on fige une sonde f_Y (et la lecture), le terme B Y_{eff} joue le rôle d'une colonne affine de translation, tandis que A correspond à la rotation SO(3). Ici, la translation n'est plus un simple vecteur mais un bloc carré relié à une null-rotation.

5.2 Quaternions duaux

Même idée : la partie « duale » encode la translation; notre B en donne une version matricielle symétrique face au A rotationnel.

5.3 Géométrie conforme (CGA)

Les « points à l'infini » sont liés au cône nul; les null-rotations de SO(3,3) en sont des analogues à dimension constante.

6 Exemples (pas à pas, Bac+2)

6.1 Exemple 1: rotation spatiale pure

Choisir B = C = 0, $A = R_x(\theta)$, $D = I_3$. Alors $X' = R_x(\theta)X_{\text{eff}}$, $Y' = Y_{\text{eff}}$. La lecture donne $\Delta x = e_s R_x(\theta)X_{\text{eff}}$ et $\Delta \tau = u_t^{\mathsf{T}} e_t Y_{\text{eff}}$.

6.2 Exemple 2: boost simple

Insérer un bloc $\begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$ dans un plan (x_i, y_i) au sein de M. Le rapport v est borné par l'échelle de e_t (choix de c).

6.3 Exemple 3: null-rotation (effet translation)

Prendre $M = \exp\begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}$ (unipotent) et une préparation/lecture adaptées. Alors Δx apparaît comme un décalage constant, comme une *translation* en pratique, bien que tout soit par multiplication matricielle.

7 Relativité locale, gravitation effective et cosmologie 3D

7.1 Relativité locale (cinématique hyperbolique)

Les mélanges $X \leftrightarrow Y$ se font via des sous-blocs *hyperboliques* ($\cosh \phi$, $\sinh \phi$) insérés dans M de façon à respecter $M^{T}JM = J$. La lecture $\Delta x = \mathbf{e}_{s}X'$, $\Delta \tau = \mathbf{u}_{t}^{T}\mathbf{e}_{t}Y'$ conduit à $v = \|\Delta x\|/\Delta \tau$. Le choix d'échelle $\mathbf{e}_{t} = \frac{1}{c}\mathbf{I}_{3}$ fixe immédiatement une borne $v \leq c$. Les rotations elliptiques restent internes (\mathbf{A} , \mathbf{D}), tandis que \mathbf{B} , \mathbf{C} portent les boosts/"translations" lues.

7.2 Gravitation effective (vielbeins et inhomogénéité)

Plutôt que courber l'espace globalement, on laisse varier localement la carte de lecture : $\mathbf{e}_s(\mathbf{r}, \tau)$, $\mathbf{e}_t(\mathbf{r}, \tau)$ (et éventuellement \mathbf{M}).

- Redshift gravitationnel (lecture) : un facteur d'échelle dans \mathbf{e}_t modifie $\Delta \tau$ observé sans changer la structure rotationnelle sous-jacente.
- Lentille gravitationnelle (lecture) : anisotropie dans \mathbf{e}_s déforme la mesure des directions, modélisant des déviations d'angle.
- *Champs effectifs*: variations lentes de **M** couplées à \mathbf{e}_s , \mathbf{e}_t miment une connexion (façon vielbein), sans déroger au *tout-rotation* des blocs 3×3 .

7.3 Cosmologie locale (temps 3D, dilatation/anisotropie)

On peut représenter une dilatation cosmologique effective par un $\mathbf{e}_t(\tau)$ dilatant la lecture temporelle : $\Delta \tau = \mathbf{u}_t^{\mathsf{T}} \mathbf{e}_t(\tau) \mathbf{Y}'$; combinée à un $\mathbf{e}_s(\tau)$, cela simule un facteur d'échelle anisotrope. Le « temps 3D » offre une riche cinématique interne (précession, inclinaison) : la projection $\mathbf{u}_t^{\mathsf{T}} \mathbf{e}_t \mathbf{Y}'$ remplace l'unique temps scalaire usuel, tout en permettant de retrouver ce dernier comme *lecture* dans la direction \mathbf{u}_t choisie.

Message clé. Sans quitter SO(3, 3) ni ajouter de colonne affine, on obtient : cinématique relativiste (boosts), "translations" via null-rotations, gravitation/cosmologie effectives via vielbeins — le tout compatible avec la chaîne $\mathbf{f} \to \mathbf{S} \to \mathbf{M} \to (\mathbf{e}_s, \mathbf{e}_t, \mathbf{u}_t) \to$ observables. :contentReference[oaicite :6]index=6

8 Dualités et symétries : panorama unifié

8.1 Rotation ↔ Translation (null-rotations)

Dans SO(3,3), les *null-rotations* (unipotentes) agissent, après lecture, comme des translations : l'effet "déplacement" provient d'un *bloc carré* ($\bf B$ ou $\bf C$) et non d'un vecteur ajouté. Ainsi, rotation et translation sont mis sur un *pied d'égalité* au niveau matriciel : tout est rotation adaptée à la signature, la translation étant une rotation « au bord du cône nul ». \Rightarrow Symétrie conceptuelle atteinte. :contentReference[oaicite :7]index=7

8.2 Transformation \leftrightarrow Champ (M vs S)

S (préparation) et **M** (action) vérifient les mêmes contraintes SO(3, 3). La première sculpte [X_{eff} ; Y_{eff}] à partir de la sonde **f**; la seconde propulse [X'; Y']. \Rightarrow *Dualité champ/particule* : onde (préparation et propagation) \rightarrow corpuscule (projection locale via ℓ^{\top} ou via lecture \mathbf{e}_s , \mathbf{e}_t , \mathbf{u}_t).

8.3 Espace \leftrightarrow Temps (3D)

Le temps est vectoriel : $\mathbf{Y} \in \mathbb{R}^3$. Les boosts mélangent \mathbf{X} et \mathbf{Y} , les rotations internes agissent séparément. La mesure scalaire du temps $(\Delta \tau)$ n'est qu'une *projection* $\mathbf{u}_t^{\mathsf{T}} \mathbf{e}_t \mathbf{Y}'$. \Rightarrow Symétrie structurelle : on peut travailler « espace et temps 3D » sur un pied d'égalité, puis *choisir* une lecture (donc un temps scalaire) adaptée à l'expérience.

8.4 Local ↔ Global (vielbeins)

 \mathbf{e}_s , \mathbf{e}_t transforment les quantités internes en observables. En les rendant dépendants du point, on encode des effets « géométriques » (gravitation, expansion locale) *sans* abandonner l'esthétique rotationnelle. \Rightarrow Pont simple vers des lectures relativistes/cosmologiques.

8.5 Ponts algébriques (SE(3), quaternions duaux, CGA)

Près de l'identité et sous lecture adaptée, **B** rejoue la colonne affine de SE(3). Les quaternions duaux « translation = rotation à l'infini » sont réinterprétés ici au sein d'un bloc carré. La géométrie conforme (CGA) et ses points à l'infini se reflètent dans

le cône nul de SO(3,3), sans explosion dimensionnelle. \Rightarrow Le formalisme 6×6 sert de *carrefour* cohérent. :contentReference[oaicite :8]index=8

9 Perspectives, bonnes pratiques et check-list

9.1 Bonnes pratiques

- Toujours préciser f (sonde), S (préparation), M (action), (e_s, e_t, u_t) (lecture).
- Vérifier $M^{T}JM = J$ et $S^{T}JS = J$ quand on prétend rester dans SO(3,3).
- Documenter l'interprétation *physique* de chaque bloc $(A, B, C, D \text{ et } S_{..})$.

9.2 Pistes

- Dériver des cartes explicites vers SE(3), quaternions duaux, CGA.
- Étendre la lecture pour inclure des temps multiples (3D) et des constantes d'échelle (dont c).
- Explorer les null-rotations comme traductions *pures* au sens de la lecture choisie.

10 Exemple numérique fil rouge (ligne à ligne)

10.1 Choix simples mais non triviaux

- **Sonde** : $f_X = (1, 0, 0)^{\mathsf{T}}$, $f_Y = (0, 1, 0)^{\mathsf{T}}$.
- **Préparation** : $S = \text{diag}(S_{XX}, S_{YY})$ avec $S_{XX} = R_z(\frac{\pi}{6})$, $S_{YY} = R_y(\frac{\pi}{9})$. $S_{XY} = S_{YX} = 0 \Rightarrow S \in SO(3,3)$ (bloc diagonal).
- **Action**: on compose une *rotation interne* et un *boost simple* sur la paire (x_1, y_1) . Prenons $A = R_x(\frac{\pi}{12})$, $D = R_z(\frac{\pi}{10})$. Boost de rapidité $\phi = \frac{1}{5}$ entre x_1 et $y_1 : \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$ inséré dans M (indices (1,1) des blocs X et Y).
- **Lecture** : $e_s = I_3$, $e_t = \frac{1}{c}I_3$ (fixe l'échelle), $u_t = (1, 0, 0)^{\mathsf{T}}$.

10.2 Étape 1 : préparation (X_{eff}, Y_{eff})

$$X_{\text{eff}} = S_{XX} f_X = R_z(\frac{\pi}{6})(1, 0, 0)^{\top} = (\cos \frac{\pi}{6}, \sin \frac{\pi}{6}, 0)^{\top},$$

$$Y_{\text{eff}} = S_{YY} f_Y = R_y(\frac{\pi}{9})(0, 1, 0)^{\top} = (0, \cos \frac{\pi}{9}, \sin \frac{\pi}{9})^{\top}.$$

10.3 Étape 2 : action M (rotation interne + boost)

Rotation interne:

$$\tilde{X} = A X_{\text{eff}}, \qquad \tilde{Y} = D Y_{\text{eff}}.$$

Boost sur la paire $(\tilde{x}_1, \tilde{y}_1)$:

$$\begin{pmatrix} x_1' \\ y_1' \end{pmatrix} = \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{y}_1 \end{pmatrix}, \qquad (x_2', x_3') = (\tilde{x}_2, \tilde{x}_3), \ (y_2', y_3') = (\tilde{y}_2, \tilde{y}_3).$$

10.4 Étape 3 : lecture et observables

$$\Delta x = e_s X' = X', \qquad \Delta \tau = u_t^{\top} e_t Y' = \frac{1}{c} y_1', \qquad v = ||\Delta x||/\Delta \tau.$$

10.5 Remarques

- On a bien $M^{T}JM = J$: une rotation bloc-diagonale + un boost élémentaire donne un $M \in SO(3,3)$.
- Ici, l'effet *translation-like* apparaît si l'on fige $Y_{\rm eff}$ et que l'on lit uniquement X': le boost injecte un décalage contrôlé par sinh ϕ .

A Vérifications SO(3,3) (Sympy)

Test $M^{\top}JM = J$ **et** $S^{\top}JS = J$

```
Python/Sympy (copier-coller dans un notebook):
import sympy as sp
I3 = sp.eye(3)
J = sp.diag(1,1,1,-1,-1,-1)
def Rz(theta):
    c,s = sp.cos(theta), sp.sin(theta)
    return sp.Matrix([[c,-s,0],[s,c,0],[0,0,1]])
def Rx(theta):
    c,s = sp.cos(theta), sp.sin(theta)
    return sp.Matrix([[1,0,0],[0,c,-s],[0,s,c]])
def block(M11,M12,M21,M22):
    return sp.Matrix(sp.BlockMatrix([[M11,M12],[M21,M22]]))
# Exemple: S bloc-diagonal
Sxx = Rz(sp.pi/6); Syy = Rz(sp.pi/10)
    = block(Sxx, sp.zeros(3), sp.zeros(3), Syy)
print("S^T J S - J =")
print((S.T*J*S - J).simplify())
# Exemple: M = rotation (bloc) + boost (x1<->y1)
A = Rx(sp.pi/12); D = Rz(sp.pi/10)
B = sp.zeros(3); C = sp.zeros(3)
M = block(A,B,C,D)
# Insérer boost sur indices 0 (x1) et 3 (y1)
phi = sp.Rational(1,5)
cosh, sinh = sp.cosh(phi), sp.sinh(phi)
M_{boost} = sp.eye(6)
M_boost[0,0]=cosh; M_boost[0,3]=sinh
M_boost[3,0]=sinh; M_boost[3,3]=cosh
M = M_boost * M # compose
print("M^T J M - J =")
print((M.T*J*M - J).simplify())
```