Cinématique du point

P2 - Chapitre 2

I. Définitions des grandeurs cinématiques

1. Vecteur vitesse instantanée (vitesse linéaire, vitesse scalaire)

$$\overrightarrow{v_{M/R}} = \left(\frac{d\overrightarrow{OM}}{dt}\right)_{(R)}$$

Note : La vitesse angulaire est $\dot{\theta}$

2. Vecteur accélération instantanée

$$\overline{a_{M/R}} = \left(\frac{d\overline{v_{M/R}}}{dt}\right)_{(R)} = \left(\frac{d^2\overline{OM}}{dt^2}\right)_{(R)}$$

II. Coordonnées cartésiennes

$$\overrightarrow{OM} = x\overrightarrow{u_x} + y\overrightarrow{u_y} + z\overrightarrow{u_z}$$

$$\overrightarrow{v_{M/R}} = \dot{x} \overrightarrow{u_x} + \dot{y} \overrightarrow{u_y} + \dot{z} \overrightarrow{u_z}$$

$$\overrightarrow{a_{M/R}} = \ddot{x} \overrightarrow{u_x} + \ddot{y} \overrightarrow{u_y} + \ddot{z} \overrightarrow{u_z}$$

III. Coordonnées cylindriques

Coordonnées	$r = \ \overrightarrow{Om}\ $	$\theta = \left(\overrightarrow{u_x}, \overrightarrow{Om}\right)$	$z = \overline{mM}$
Base	$\overrightarrow{u_r} = \frac{\overrightarrow{HM}}{\ \overrightarrow{HM}\ } = \frac{\overrightarrow{Om}}{\ \overrightarrow{Om}\ }$	$\overrightarrow{u_{\theta}}$: rotation de $\overrightarrow{u_r}$ de $+\frac{\pi}{2}$	$\overrightarrow{u_z} = \overrightarrow{u_r} \wedge \overrightarrow{u_\theta}$

$$\overrightarrow{OM} = r\overrightarrow{u_r} + z\overrightarrow{u_z}$$

 $\overrightarrow{u_z}$ est invariant quand M se déplace.

<u>Coordonnées polaires</u>: Quand M est dans le plan $(0, \overrightarrow{u_x}, \overrightarrow{u_y})$, il est repéré par ses coordonnées polaire (r, θ)

IV. Coordonnées sphériques

Coordonnées	$r = \ \overrightarrow{OM}\ $	$\theta = \left(\overrightarrow{u_x}, \overrightarrow{Om}\right)$	$\varphi = \left(\overrightarrow{Om}, \overrightarrow{OM}\right)$
Base	$\overrightarrow{u_r} = \frac{\overrightarrow{OM}}{\ \overrightarrow{OM}\ }$	$\overrightarrow{u_{\theta}}$: rotation de \overrightarrow{OM} de $+\frac{\pi}{2}$	$\overrightarrow{u_{\varphi}} = \overrightarrow{u_r} \wedge \overrightarrow{u_{\theta}}$

$$\overrightarrow{OM} = r\overrightarrow{u_r}$$

Cinématique du point

P2 – Chapitre 2

V. Coordonnées curvilignes

1. Base de Frenet

$$\vec{\tau} = \frac{d\vec{OM}}{ds} \qquad \qquad \frac{\vec{N}}{R} = \frac{d\vec{\tau}}{ds}$$

2. Grandeurs cinématiques

$$\vec{v} = \dot{s}\vec{\tau} = v\vec{\tau}$$

$$\vec{a} = \frac{dv}{dt}\vec{\tau} + \frac{v^2}{R}\vec{N} = a_T\vec{\tau} + a_N\vec{N}$$

 a_T accélération tangentielle a_N accélération normale

VI. Quelques mouvements fondamentaux

1. Mouvements rectilignes uniforme et uniformément varié

	Mouvement rectiligne uniforme	Mouvement rectiligne uniformément varié
Accélération	a(t) = 0	$a(t) = a = \frac{\Delta v}{\Delta t}$
Vitesse	$v(t) = v_i = \frac{\Delta d}{\Delta t}$	$v(t) = a(t - t_i) + v_i$
Position	$x(t) = v_i(t - t_i) + x_i$	$x(t) = \frac{1}{2}a(t - t_i)^2 + v_i(t - t_i) + x_i$

2. Mouvement rectiligne sinusoïdal

$$x(t) = X_m \cos(\omega t + \phi)$$

$$\omega = \frac{2\pi}{T}$$

$$V = \omega R = \frac{2\pi R}{T}$$

$$\ddot{x} + \omega^2 x = 0$$

3. Mouvement circulaire

$$\overrightarrow{OM} = r\overrightarrow{u_r}$$

$$\overrightarrow{OM} = r\underbrace{\cos\theta}_{x} \overrightarrow{u_x} + r\underbrace{\sin\theta}_{y} \overrightarrow{u_y}$$