บทที่ 7 Regression Models

หัวข้อหลัก

- การเตรียมข้อมูลเพื่อการสร้างโมเดล
- การสร้างโมเดล Linear Regression และ Logistic Regression โดยใช้โลบารี่ scikit-learn
- ศึกษาวิธีการสกัดฟีเจอร์ที่สำคัญจากโมเดลที่ปรับแต่งแล้ว
- ศึกษาวิธีการประเมินประสิทธิภาพของโมเดล
- การปรับแต่งค่าพารามิเตอร์ด้วยวิธีการค้นหาแบบกริด (grid search)

7.1 Linear Regression

ในการทำนายค่าด้วยวิธี Regression ค่าของตัวแปรตาม (dependent variable) หนึ่งตัวจะถูกทำนายจากค่าของตัว แปรต้น (independent variables) หลายๆ ตัว เราสามารถใช^{*} Regression สำหรับการทำนายค่า ดังเช่น

- การทำนายเปอร์เซ็นต์ที่ทีมฟุตบอลลิเวอร์พูลจะชนะ เมื่อกำหนดสถิติการเล่นของทีมลิเวอร์พูลและทีมคู่แข่ง
- การทำนายอัตราเสี่ยงของการเกิดหัวใจวาย เมื่อทราบประวัติสุขภาพของบุคคลในครอบครัวและค่าที่วัดได้ทาง กายภาพและสรีรวิทยาต่างๆ
- โอกาสที่หิมะจะตก เมื่อกำหนดผลการวัดค่าทางภูมิอากาศต่างๆ

Regression เป็นที่นิยมใช้เนื่องมาจากความง่าย ความโปร่งใส (transparency) ความสามารถในการตีความผลลัพธ์ที่ ได้จากโมเดล (interpretability) และความสามารถในการนำไปใช้กับค่าอินพุทที่ไม่ได้อยู่ในชุดข้อมูลฝึกฝน (extrapolation or generalization) ผลลัพธ์ของ linear regression คือเส้นตรงที่ลากผ่านชุดข้อมูลที่ทำให้ค่าของผลต่างระหว่างค่าของจุดข้อมูล (observations) กับค่าของฟังก์ชันเส้นตรง (predicted values) มีค่าน้อยที่สุด

สมมติฐานของ linear regression คือ ความสัมพันธ์ระหว่างฟีเจอร์และตัวแปรตาม สอดคล้องกับสมการเส้นตรง ซึ่ง นิยามโดยค่าความชั้นและจุดตัด (slope and intercept) ในรูปแบบ $y=\alpha+\beta x$ เมื่อ α คือค่าจุดตัด (ค่า y เมื่อ x=0) และ β คือค่าความชั้น ส่วน x คือตัวแปรต้น (independent variables)

การสร้าง Simple Linear Regression Model ด้วย Scikit-Learn

1. ดาวน์โหลดข้อมูลอากาศในเมืองๆ หนึ่งของประเทศฮังการี ระหว่าง April 1, 2006 ถึง September 9, 2016

ข้อมูลดังกล่าวประกอบด้วย ผลการสังเกต หรือ จุดข้อมูลจำนวน 10,000 เรคอร์ด แต่ละจุดข้อมูลมีค่าฟีเจอร์ 8 ค่าดังนี้คือ

- Temperature c: อุณหภูมิ หน่วยเป็นองศาเซลเซียส
- Humidity: สัดส่วนของความชื้น

- Wind Speed kmh: ความเร็วลมหน่วยเป็น กม. ต่อ ชม. (kilometers per hour)
- Wind Bearing Degrees: ทิศทางลมหน่วยเป็นดีกรี ในทิศทางตามเข็มนาฬิกาจากทิศเหนือ
- Visibility km: ความสามารถในการมองเห็นหน่วยเป็น กิโลเมตร
- Pressure millibars: ความดันอากาศวัดในหน่วย มิลลิบาร์
- Rain: มีค่าเป็น 1 หากฝนตก และมีค่าเป็น 0 หากหิมะตก

2. ใช้โลบารี่ pandas นำเข้าข้อมูลจากไฟล์ weather.csv

```
In [8]: import pandas as pd
    df = pd.read_csv('weather.csv')
```

3. ตรวจสอบข้อมูลโดยใช้ df.info() และ df.head()

```
In [10]: df.info()
             <class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
             Data columns (total 8 columns):
Temperature_c 10000 no
                                                10000 non-null float64
10000 non-null float64
10000 non-null float64
             Humidity
Wind_Speed_kmh
Wind_Bearing_degrees
                                                10000 non-null int64
             Visibility_km
Pressure_millibars
                                                10000 non-null float64
10000 non-null float64
             Rain
                                               10000 non-null int64
10000 non-null object
             Description
             dtypes: float64(5), int64(2), object(1) memory usage: 625.1+ KB
In [11]: df.head(5)
Out[11]:
                 Temperature_c Humidity Wind_Speed_kmh Wind_Bearing_degrees Visibility_km Pressure_millibars Rain Description
              0 -0.555556
                                       0.92
                                                        11.2700
                                                                                      130
                                                                                                 8.0500
                                                                                                                     1021.60
                                                                                                                                 0
                                                                                                                                            Cold
              1
                      21.111111
                                       0.73
                                                        20.9300
                                                                                      330
                                                                                                16.1000
                                                                                                                     1017.00
                                                                                                                                            Warm
                                       0.97
                                                                                      193
              2
                      16.600000
                                                         5.9731
                                                                                                14.9086
                                                                                                                     1013.99
                                                                                                                                          Normal
                                                         3.2200
                                                                                      300
                                                                                                                     1031.59
                       1.600000
                                       0.82
                                                                                                16.1000
                                                                                                                                             Cold
                       2.194444
                                       0.60
                                                                                      116
                                                                                                 9.9820
                                                                                                                     1020.88
                                                                                                                                             Cold
```

4. จะเห็นได้ว่าคอลัมน์ Description เป็นตัวแปรแบบ Categorical เราสามารถตรวจสอบจำนวนประเภททั้งหมดใน คอลัมน์ Description ของ dataframe นี้ได้ดังนี้

```
In [20]: levels = len(pd.value_counts(df['Description']))
    print('There are {} levels in the Description column'.format(levels))

There are 3 levels in the Description column
```

5. แปลง Categorical value attribute ไปเป็น indicator variables

```
In [23]: df_dummies = pd.get_dummies(df, drop_first=True)
             df_dummies.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 10000 entries, 0 to 9999
Data columns (total 9 columns):
                                              10000 non-null float64
10000 non-null float64
             Temperature_c
            Humidity
Wind_Speed_kmh
Wind_Bearing_degrees
                                              10000 non-null float64
                                              10000 non-null int64
                                              10000 non-null float64
10000 non-null float64
            Visibility_km
Pressure_millibars
                                              10000 non-null int64
             Rain
             Description_Normal
                                              10000 non-null uint8
            Description_Warm 10000 non-null dtypes: float64(5), int64(2), uint8(2) memory usage: 566.5 KB
                                              10000 non-null uint8
```

6. สลับตำแหน่งของข้อมูลเพื่อป้องกันผลกระทบจากลำดับข้อมูล โดยใช้คำสั่ง shuffle

```
In [25]: from sklearn.utils import shuffle

df_shuffled = shuffle(df_dummies, random_state=42)
```

7. แบ่งข้อมูลออกเป็นฟีเจอร์ X และตัวแปรตาม y

```
In [27]: DV = 'Temperature_c'

X = df_shuffled.drop(DV, axis=1)
y = df_shuffled[DV]
```

8. แบ่ง X และ y ออกเป็น ชุดข้อมูลฝึกฝน และชุดข้อมูลทดสอบ

9. ฟิตโมเดล Simple Linear Regression กับชุดข้อมูลฝึกฝน: โมเดล Simple Linear Regression เป็นโมเดลที่สร้าง ความสัมพันธ์ระหว่าง ฟีเจอร์หนึ่งตัว กับ ค่าผลลัพธ์แบบต่อเนื่อง (continuous outcome variable) โดยใช้ สมการ $y=\alpha+\beta x$ ในตัวอย่างนี้เราจะเลือกฟีเจอร์ Humidity เป็นตัวแปรต้น

10. ดึงค่าพารามิเตอร์ของโมเดลที่เทรนเรียบร้อยแล้ว

- 11. ทำนายและประเมินประสิทธิภาพของโมเดล โดยใช้วิธีการวัดประสิทธิภาพดังนี้คือ
 - Mean Absolute Error (MAE): คือ คาเฉลี่ยของความต่างสัมบูรณ์ระหว่างคาที่ทำนายได้กับคาจริง
 - Mean Squared Error (MSE): คือ ค่าเฉลี่ยของกำลังสองของความแตกต่างระหว่างค่าที่ทำนายได้กับค่าจริง
 - Root Mean Squred Error (RMSE): คือ รากที่สองของ MSE
 - R-Squared: เป็นค่าที่บอกถึงสัดส่วนของความแปรปรวนของตัวแปรตามซึ่งสามารถอธิบายได้โดยโมเดลนี้

จากตัวอย่างข้างต้นจะพบว่า ค่าความชื้น หรือ Humidity สามารถอธิบายค่าอุณหภูมิหรือตัวแปรตามได้เพียง 38.9% ของค่า ความแปรปรวนของอุณหภูมิ และความผิดพลาดของโมเดลจะมีค่าอยู่ภายในช่วง ± 6.052± 6.052

12. ทำความเข้าใจประสิทธิภาพของโมเดลโดยใช้ Data Visualization เราจะเริ่มจากการดูความสัมพันธ์ระหว่างคำทำนายที่ ได้จากโมเดลและค[่]าเอาท์พุทจริง โดยการใช**้** scatterplot

จากกราฟข้างต้นจะเห็นได้ว่า ค่า y_test และ predicted_value แปรผันตามกัน โดยมีค่า Pearson r value เท่ากับ 0.62 ซึ่ง หมายความว่า y_test และ predicted_value มีความสัมพันธ์กันเชิงบวกแบบเชิงเส้นในระดับกลาง (moderate, positive linear correlation)

เนื่องจากโมเดลที่ฟิตกับชุดข้อมูลได้ดี จะมีการกระจายของค่าความแตกต่าง (residuals) เป็นแบบปกติ ลำดับถัดไปเรา จะทำการพล็อตการกระจายของค่า Residuals เพื่อดูรูปแบบการกระจายว่าเป็นแบบปกติหรือไม่

```
import seaborn as sns
from scipy.stats import shapiro
sns.distplot((y_test - predictions), bins=50)
plt.xlabel('Residuals')
plt.ylabel('Density')
plt.title('Histogram of Residuals (Shapiro W p-value = {0:0.3f})'.format(
shapiro(y_test - predictions)[1]))
plt.show()
Histogram of Residuals (Shapiro W p-value = 0.000)
```

จากภาพฮิสโตแกรม จะเห็นได้ว่า Residuals มีการกระจายเบี่ยงไปทางขวา (negatively skewed) และมีค่า Shapiro W p-value เท่ากับศูนย์ หมายความว่าการกระจายข้อมูลนี้ไม่ใช่แบบปกติ (not normal distribution) ดังนั้นโมเดลนี้จึงยังไม่ สามารถฟิตกับชุดข้อมูลได้ดีพอ เราจึงจำเป็นต้องพัฒนาโมเดลให้ดีกว่านี้ได้

7.2 Multiple Linear Regression

โมเดล Multiple Linear Regression เป็นโมเดลที่แสดงความสัมพันธ์ระหว่างฟีเจอร์ตั้งแต่สองตัวขึ้นไป กับ ค่าผลลัพธ์ แบบต่อเนื่อง (continuous outcome variable) โดยใช้สมการในรูปแบบ $y=\alpha+eta_1x_{i,1}+eta_2x_{i,2}+...+eta_px_{i,p}$

ตัวอย่าง สคริปต์ภาษาไพธอนสำหรับการสร้าง Multiple Linear Regression Model ด้วยไลบารี่ scikit-learn แสดง ดังรูปต่อไปนี้ สำหรับรายละเอียดสามารถศึกษาได้จาก Jupyter Notebook ที่แจกให้ผ่านทาง GitHub ของรายวิชา

```
In [44]: # Construct a model
           from sklearn.linear model import LinearRegression
          model = LinearRegression()
In [45]: # Fit the Model
           model.fit(X_train, y_train)
In [46]: # Extract intercept, and coefficients
           intercept = model.intercept_
           coefficients = model.coef
           print('Temperature = {0:0.2f} + ({1:0.2f} x Humidity) + ({2:0.2f} x Wind Speed) + ({3:0.2f} x Wind Bearing Degrees) + (-
                       format(intercept,
                      coefficients[1].
                      coefficients[2],
                      coefficients[3],
                       coefficients[4],
                      coefficients[5],
                       coefficients[6]
                      coefficients[7]))
          Temperature = 3.54 + (-7.93 \times \text{Humidity}) + (-0.07 \times \text{Wind Speed}) + (0.00 \times \text{Wind Bearing Degrees}) + (0.06 \times \text{Visibility}) + (0.00 \times \text{Pressure}) + (5.61 \times \text{Rain}) + (8.54 \times \text{Normal Weather}) + (19.10 \times \text{Warm Weather})
```

การประเมินประสิทธิภาพโดยใช้ค่า MAE, MSE, RMSE, และ R-Squared แสดงในรูปถัดไป จะเห็นได้ว่า โมเดลที่ได้มี ประสิทธิภาพสูงกว่า Simple Linear Regression Model โดยมีค่ำ MAE เพียง 2.861 และค่ำ R-Squared เท่ากับ 0.866

จากนั้นทำการประเมินคุณภาพของโมเดลโดยใช^{*} Data Visualization เริ่มจากการพล็อตค[่]าเอาท์พุทจริงกับคำทำนาย ของโมเดลบน scatter plot

จะเห็นได้ว่า ค่าที่โมเดลทำนายกับค่าจริง มีความสัมพันธ์เชิงเส้นแบบบวกที่เข้มแข็งกว่าในกรณีของ simple linear regression model โดยพบว่าค่า pearson r มีค่าเท่ากับ 0.93

ต่อไปทำการตรวจสอบการกระจายตัวของค่า Residuals ซึ่งพบว่า มีการกระจายตัวแบบไม่ปกติ แต่มีความเบี่ยงเบน (skewness) ที่น้อยกว่าค่า Residuals ในกรณีของ Simple Linear Regression Model

7.3 Logistic Regression

โมเดลวิเคราะห์การถดถอยแบบโลจิสติก ใช้ค่าของตัวแปรต้นแบบต่อเนื่อง (continuous) และแบบจัดประเภท (categorical) เพื่อทำนายค่าผลลัพธ์ที่มีชนิดเป็นแบบจัดประเภท (categorical outcome) ในกรณีที่ค่าผลลัพธ์มีค่าที่เป็นไป ได้สองค่า เราจะเรียกว่า binary logistic regression ส่วนกรณีที่ค่าผลลัพธ์ที่เราต้องการทำนายมีค่าที่เป็นไปได้มากกว่าสองค่า เราจะเรียกว่า multinomial logistic regression

หลักการของการวิเคราะห์การถดถอยแบบโลจิสติก คือการแปลงค่าผลลัพธ์ของการวิเคราะห์การถดถอยแบบเชิงเส้น (linear regression) ให้อยู่ในช่วง (0,1] โดยใช้การแปลงแบบลอการิทึม (logarithmic transformation) สมการของโมเดล logistic regression สำหรับกรณีที่มีตัวแปรต้นเพียงหนึ่งตัว สามารถเขียนได้ดังนี้

$$P(Y) = \frac{1}{1 + e^{-(\alpha + \beta x)}}$$

เมื่อ P(Y) คือค่าความน่าจะเป็นของการเกิดขึ้นของผลลัพธ์ Y, e คือ ฐานของลอการิทึมธรรมชาติ, α คือค่าจุดตัด (ค่า y เมื่อ x=0) และ β คือค่าความชัน ส่วน x คือตัวแปรต้น (independent variables) จะเห็นได้ว่าค่าเลขยกกำลัง $\alpha+\beta x$ ก็ คือ ค่าผลลัพธ์ของการวิเคราะห์การถดถอยแบบเชิงเส้นนั่นเอง

ในกรณีที่ตัวแปรต้นของการทำนายมีหลายตัวแปร สมการของโมเดลวิเคราะห์การถดถอยแบบโลจิสติก จะอยู่ในรูปดังนี้

$$P(Y) = \frac{1}{1 + e^{-(\alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{ip-1})}}$$

จะเห็นได้ว่า ในการวิเคราะห์การถดถอยแบบเชิงเส้น (linear regression) นั้น เราตั้งสมมติฐานว่ามีความสัมพันธ์ ระหว่างตัวแปรต้นและตัวแปรตามจะเป็นแบบเชิงเส้น แต่ในการวิเคราะห์การถดถอยแบบโลจิสติกนั้น สมมติฐานของโมเดลก็ คือความสัมพันธ์เชิงเส้นระหว่างค่าของตัวแปรต้นกับค่า natural logarithm ของ p/(1-p) เมื่อ p คือค่าความน่าจะเป็นของ การเกิดขึ้นของผลลัพธ์ (ค่า P(Y))

ต่อไปจะแสดงตัวอย่างการใช้โมเดลวิเคราะห์การถดถอยแบบโลจิสติก เพื่อทำนายความน่าจะเป็นของการเกิดฝนตก โดยใช้ข้อมูลสภาพภูมิอากาศของเมืองหนึ่งในประเทศฮังการีระหว่าง April 1, 2006 ถึง September 9, 2016 ที่ถูกเก็บไว้ใน ไฟล์ weather.csv จากการวิเคราะห์ในหัวข้อ 7.1 และ 7.2

สคริปต์สำหรับสร้างโมเดล logistic regression ด้วยไลบารี่ scikit-learn

ค่าพารามิเตอร์ที่เทรนได้มีดังนี้คือ

ค่าพารามิเตอร์ β คือ

```
In [17]: intercept = model.intercept
         print(intercept[0])
         -0.1775235755667482
         ค่าพารามิเตอร์ \alpha_1 \dots \alpha_8 คือ
In [45]: coef df = pd.DataFrame(
              { 'Feature': list(X train.columns), 'Coefficient' : coef list})
         print(coef_df)
                          Feature Coefficient
         0
                   Temperature_c
                                     5.691326
         1
                         Humidity
                                     -0.165325
                  Wind_Speed_kmh -0.067057
         2
         3 Wind_Bearing_degrees -0.002367
                                     0.055192
0.000845
                   Visibility_km
         5
              Pressure millibars
                                     0.029056
         6
              Description_Normal
                                     0.001911
         7
                Description_Warm
```

ประเมินประสิทธิภาพของโมเดล

```
In [14]: predicted_prob = model.predict_proba(X_test)[:, 1]
    predicted_class = model.predict(X_test)

from sklearn.metrics import confusion_matrix
    import numpy as np
    cm = pd.DataFrame(confusion_matrix(y_test, predicted_class))
    cm['Total'] = np.sum(cm, axis=1)
    cm = cm.append(np.sum(cm, axis=0), ignore_index=True)
    cm = cm.set_index([['Actual No', 'Actual Yes', 'Total']])
    print(cm)

print()

from sklearn.metrics import classification_report
    print(classification_report(y_test, predicted_class))
```

```
Actual No 377 6 383
Actual Yes 10 2907 2917
Total 387 2913 3300
```

		precision	recall	fl-score	support
	0	0.97	0.98	0.98	383
	1	1.00	1.00	1.00	2917
micro	avg	1.00	1.00	1.00	3300
macro	avg	0.99	0.99	0.99	3300
weighted	avg	1.00	1.00	1.00	3300

7.4 การปรับแต่งค่าไฮเปอร์พารามิเตอร์ของโมเดลด้วยการค้นหาแบบกริด

จากหัวข้อที่ 7.3 จะเห็นได้ว่าโมเดลของเราสามารถทำนายการเกิดฝนตกได้แม่นยำมาก แต่ยังมีความผิดพลาดอยู่ใน กรณีที่ฝนไม่ตก (f1-score = 0.98) ต่อไปเราจะทำการเพิ่มประสิทธิภาพของโมเดลด้วยวิธีการ Grid Search ซึ่งเป็นการค้นหา ค่าไฮเปอร์พารามิเตอร์ (hyperparameters) ที่เหมาะสมจากค่าที่เป็นไปได้ โดยค่าไฮเปอร์พารามิเตอร์ของ Logistic Regression ที่เราต้องการปรับแต่งมีดังนี้คือ

- penalty : ใช้ระบุค่า norm ที่ใช้สำหรับ penaalization เช่น 'l1' และ 'l2'
- C : ค่าอินเวอร์สของสเกลการทำ regularization หากค่า C มีค่าน้อยจะทำให้ regularization term มีค่ามาก
- solver : อัลกอริทีมสำหรับ optimization เช่น liblinear, saga, newton-cg

การปรับแต่งโมเดล logistic regression ด้วยวิธีการค้นหาแบบกริดโดยใช้ไลบารี่ scikit-learn แสดงดังซอร์สโค้ด ตัวอย่างต่อไปนี้

1. สร้าง grid search modle เพื่อค้นหาคาไฮเปอร์พารามิเตอร์ที่ทำให้โมเดลมีค่า f1-score สูงที่สุด

2. ฟิตโมเดลกับชุดข้อมูลฝึกฝน

3. ค่าไฮเปอร์พารามิเตอร์ที่ทำให้โมเดลมีค่า f1-score สูงที่สุดคือ

```
In [18]: best_parameters = model.best_params_
    print(best_parameters)

{'C': 9.0, 'penalty': 'll', 'solver': 'liblinear'}
```

4. ประเมินประสิทธิภาพของโมเดลที่ได้จากการปรับแต่งค่าไฮเปอร์พารามิเตอร์ด้วยวิธีการ Grid Search

```
In [19]: predicted_prob = model.predict_proba(X_test)[:, 1]
         predicted class = model.predict(X test)
         from sklearn.metrics import confusion_matrix
         import numpy as np
         cm = pd.DataFrame(confusion_matrix(y_test, predicted_class))
         cm['Total'] = np.sum(cm, axis=1)
         cm = cm.append(np.sum(cm, axis=0), ignore_index=True)
         cm = cm.set_index([['Actual No', 'Actual Yes', 'Total']])
         print(cm)
         print()
         from sklearn.metrics import classification_report
         print(classification_report(y_test, predicted_class))
                           1 Total
         Actual No
                     379
                                 383
         Actual Yes
                    5 2912
                                 2917
```

Iotai	,	04	2910	3300				
		precision		recall	f1-sco	re su	support	
	0		0.99	0.99	0.	99	383	
	1		1.00	1.00	1.	00	2917	
micro	avg		1.00	1.00	1.	00	3300	
macro	avg		0.99	0.99	0.	99	3300	

1.00

จะเห็นได้ว่าโมเดลที่ได้จากการทำ Grid Search กับค่าที่เป็นไปได้ของไฮเปอร์พารามิเตอร์ penalty, C, และ solver มีค่า f1score ดีกว่าโมเดลก่อนหน้าซึ่งไม่มีการปรับแต่งค่าไฮเปอร์พารามิเตอร์

1.00

1.00

3300

แบบฝึกหัด

- จงสร้างโมเดล linear regression สำหรับทำนายคา miles-per-gallon ของรถยนต์ โดยใช้ชุดขอมูล Auto MPG
 dataset จาก UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/auto+mpg
- 2. จงสร้างโมเดล logistic regression สำหรับทำนายค่า miles-per-gallon ของรถยนต์ โดยใช้ชุดข้อมูล Auto MPG dataset จาก UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/auto+mpg
- 3. จงอธิบายเปรียบเทียบคุณลักษณะของ linear regression กับ logistic regression

384 2916

weighted avg

4. จงศึกษาคนคว้าข้อมูลเกี่ยวกับการปรับแต่งค่าไฮเปอร์พารามิเตอร์ของโมเดลด้วยวิธีการคนหาแบบกริด (grid search hyperparameter tuning)

เอกสารอ้างอิง

- [1] Joel Grus. Data Science from Scratch (2ed), O'Reilly Media, Inc., 2019.
- [2] Aaron England; Mohamed Noordeen Alaudeen; Rohan Chopra. Data Science with Python, Packt Publishing, 2019