Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 + \frac{1}{2} = \frac{3}{2}, \ 1 + \frac{1}{3} = \frac{4}{3}, \ 1 + \frac{1}{4} = \frac{5}{4}$	3p
	$2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} = 5$	2 p
2.	$f(x) \ge g(x) \Leftrightarrow 3x - 2 \ge x + 4$	2p
	$x \ge 3 \Leftrightarrow x \in [3, +\infty)$	3 p
3.	$x^2 + 3 = 4x \Leftrightarrow x^2 - 4x + 3 = 0$	3p
	x=1 sau $x=3$	2p
4.	$5\% \cdot x = \frac{x}{20}$, unde x este profitul anual al firmei	3p
	$\frac{x}{20} = 6000 \Rightarrow x = 120000$ de lei	2 p
5.	$AB = \sqrt{(6-3)^2 + (4-0)^2} = 5$, $AC = \sqrt{(0-3)^2 + (4-0)^2} = 5$	2p
	$BC = 6 \Rightarrow P_{\Delta ABC} = 5 + 5 + 6 = 16$	3 p
6.	$\sin 30^\circ = \frac{1}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$\sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$	3 p

1.	$(-1) \circ 1 = (-1) + 1 + 5 =$	3 p
	=0+5=5	2p
2.	$(x \circ y) \circ z = (x + y + 5) \circ z = (x + y + 5) + z + 5 = x + y + z + 10$	2p
	$x \circ (y \circ z) = x \circ (y + z + 5) = x + (y + z + 5) + 5 = x + y + z + 10 = (x \circ y) \circ z$, pentru orice numere reale x , y şi z , deci legea de compoziție " \circ " este asociativă	3 p
3.	$x \circ (-5) = x + (-5) + 5 = x$	2p
	$(-5) \circ x = (-5) + x + 5 = x = x \circ (-5)$, pentru orice număr real x , deci $e = -5$ este elementul neutru al legii de compoziție " \circ "	3 p
4.	$x^2 + x + 5 = 7 \Leftrightarrow x^2 + x - 2 = 0$	3р
	x = -2 sau $x = 1$	2p
5.	$(x^2 - y - 5) \circ (x - y^2) = x^2 - y - 5 + x - y^2 + 5 =$	2p
	$= x^{2} - y^{2} + x - y = (x - y)(x + y) + (x - y) = (x - y)(x + y + 1), \text{ pentru orice numere reale } x$	3p
	şi y	
6.	$m+n+5=6 \Leftrightarrow m+n=1$	2p
	Cum m şi n sunt numere naturale, obţinem $m = 0$, $n = 1$ sau $m = 1$, $n = 0$	3 p

SUBII	SUBIECTUL al III-lea (30 de pur	
1.	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot 0 =$	3 p
	=1-0=1	2p
2.	$\det(A(a)) = \begin{vmatrix} 1 & a \\ a & 1 \end{vmatrix} = 1 - a^2$	2 p
	$\det(A(a)) = 0 \Leftrightarrow 1 - a^2 = 0 \Leftrightarrow a = -1 \text{ sau } a = 1$	3p
3.	$A(1) \cdot A(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, \ 2A(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$	3p
	$A(1) \cdot A(1) - 2A(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
4.	$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} = 3 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1+2a & a+2 \\ 2+a & 2a+1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$	3p
	a = 1	2p
5.	$A(a)-A(0) = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} \Rightarrow \det(A(a)-A(0)) = \begin{vmatrix} 0 & a \\ a & 0 \end{vmatrix} =$	3p
	$=-a^2 \le 0$, pentru orice număr real a	2 p
6.	$ \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1+ab & b+a \\ a+b & ab+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $	2p
	Cum $ab = -1$ și $b = -a$, obținem $a = 1$, $b = -1$ sau $a = -1$, $b = 1$	3 p

Proba E. c)

Matematică *M_pedagogic*

Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $2\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)=5$.
- **5p** 2. Determinați valorile reale ale lui x, pentru care $f(x) \ge g(x)$, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x 2 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + 4.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $7^{x^2+3} = 7^{4x}$.
- **5p 4.** O firmă folosește 6000 de lei pentru publicitate, sumă care reprezintă 5% din profitul anual al firmei. Calculați profitul anual al firmei.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,0), B(6,4) și C(0,4). Calculați perimetrul triunghiului ABC.
- **5p 6.** Arătați că $\sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{2}$.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definește legea de compoziție $x \circ y = x + y + 5$.

- **5p 1.** Arătați că $(-1) \circ 1 = 5$.
- **5p 2.** Arătați că legea de compoziție "°" este asociativă.
- **5p 3.** Verificați dacă e = -5 este elementul neutru al legii de compoziție " \circ ".
- **5p 4.** Determinați numerele reale x, pentru care $x^2 \circ x = 7$.
- **5p** | **5.** Demonstrați că $(x^2 y 5) \circ (x y^2) = (x y)(x + y + 1)$, pentru orice numere reale x și y.
- **5p 6.** Determinați numerele naturale m și n, știind că $m \circ n = 6$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și $A(a) = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$, unde a este număr real.

- **5p** \mid **1.** Arătați că $\det(A(0)) = 1$.
- **5p** 2. Determinați numerele reale a, pentru care $\det(A(a)) = 0$.
- **5p 3.** Arătați că $A(1) \cdot A(1) 2A(1) = O_2$.
- **5p 4.** Determinați numărul real a, pentru care $A(2) \cdot A(a) = 3A(1)$.
- **5p** | **5.** Demonstrați că $\det(A(a) A(0)) \le 0$, pentru orice număr real a.
- **5p 6.** Determinați numerele reale a și b, știind că $A(a) \cdot A(b) = O_2$.

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{48} = 4\sqrt{3}$, $\sqrt{27} = 3\sqrt{3}$	2p
	$4\sqrt{3} - 3\sqrt{3} = \sqrt{3}$	3 p
2.	$f(x) = g(x) \Leftrightarrow 2x - 1 = 2 - x \Leftrightarrow 3x = 3$	3 p
	Coordonatele punctului de intersecție sunt $x=1$ și $y=1$	2p
3.	$3^{8-3x} = 3^2 \Leftrightarrow 8-3x = 2$	3 p
	x=2	2p
4.	Cifra unităților poate fi aleasă în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 5 moduri, deci se pot forma $2 \cdot 5 = 10$ numere	3 p
5.	AB = 4	2p
	$BC = 4 \Rightarrow AB = BC$	3p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 60^\circ = \frac{1}{2}$	3 p
	$\sin 45^{\circ} \cdot \cos 45^{\circ} + \cos 60^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} = 1$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$1 \circ 2016 = 1 \cdot 2016 - 1 - 2016 + 1 =$	3p
	=2015-2015=0	2p
2.	$y \circ x = yx - y - x + 1 =$	2p
	$= xy - x - y + 1 = x \circ y$, pentru orice numere reale $x \neq y$, deci legea de compoziție " \circ " este	3 p
	comutativă	
3.	$x \circ y = xy - x - (y - 1) =$	2p
	=x(y-1)-(y-1)=(x-1)(y-1), pentru orice numere reale x și y	3p
4.	$(x-1) \circ x = (x-2)(x-1)$	2p
	$(x-2)(x-1) = 0 \Leftrightarrow x = 1 \text{ sau } x = 2$	3 p
5.	$x^2 \circ x^2 = (x^2 - 1)(x^2 - 1) =$	2 p
	$=(x-1)(x+1)(x-1)(x+1)=(x-1)^2(x+1)^2$, pentru orice număr real x	3 p
6.	(a-1)(b-1)=3	2p
	Cum a și b sunt numere naturale, obținem $a=2$, $b=4$ sau $a=4$, $b=2$	3 p

1.	$\det A = \begin{vmatrix} 2 & 1 \\ -4 & -2 \end{vmatrix} = 2 \cdot (-2) - (-4) \cdot 1 =$	3 p
	=-4+4=0	2 p

Ministerul Educației Naționale și Cercetării Științifice Centrul Național de Evaluare și Examinare

2.	$M(a) = \begin{pmatrix} 2+a & 1 \\ -4 & -2+a \end{pmatrix} \Rightarrow \det(M(a)) = \begin{vmatrix} 2+a & 1 \\ -4 & -2+a \end{vmatrix} = a^2$	3p
	$a^2 = 16 \Leftrightarrow a = -4 \text{ sau } a = 4$	2 p
3.	$M(-1) + M(0) + M(1) = A + (-1) \cdot I_2 + A + 0 \cdot I_2 + A + 1 \cdot I_2 =$	3p
	$=A-I_2+A+A+I_2=3A$	2p
4.	$A \cdot A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	2p
	$M(a) \cdot M(b) = (A + aI_2)(A + bI_2) = A \cdot A + (a + b)A + abI_2 = (a + b)A + abI_2$, pentru orice numere reale a și b	3 p
5.	Matricea $M(a)$ este inversabilă $\Leftrightarrow \det(M(a)) \neq 0$	2p
	$a^2 \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \{0\}$	3 p
6.	$\det(M(1)) = 1 \neq 0 \text{si} (M(1))^{-1} = \begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}$	2p
	$X = (M(1))^{-1} \cdot A \Leftrightarrow X = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$	3 p

Proba E. c)

Matematică M_pedagogic

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Arătați că $\sqrt{48} \sqrt{27} = \sqrt{3}$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 2 x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{8-3x} = 9$.
- **5p 4.** Determinați câte numere naturale pare de două cifre se pot forma cu cifrele 5, 6, 7, 8 și 9.
- **5p** | **5**. În reperul cartezian xOy se consideră punctele A(1,4), B(5,4) și C(5,8). Arătați că AB = BC.
- **5p** | **6.** Arătați că $\sin 45^{\circ} \cdot \cos 45^{\circ} + \cos 60^{\circ} = 1$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy - x - y + 1$.

- **5p 1.** Arătați că $1 \circ 2016 = 0$.
- **5p 2.** Arătați că legea de compoziție "°" este comutativă.
- **5p 3.** Demonstrați că $x \circ y = (x-1)(y-1)$, pentru orice numere reale x și y.
- **5p 4.** Determinați numerele reale x, pentru care $(x-1) \circ x = 0$.
- **5p 5.** Arătați că $x^2 \circ x^2 = (x-1)^2 (x+1)^2$, pentru orice număr real x.
- **5p** | **6.** Determinați numerele naturale a și b, știind că $a \circ b = 3$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $M(a) = A + aI_2$, unde a este număr real.

- **5p 1.** Arătați că det A = 0.
- **5p** 2. Determinați numerele reale a, pentru care det(M(a)) = 16.
- **5p** | **3.** Arătați că M(-1) + M(0) + M(1) = 3A.
- **5p** | **4.** Demonstrați că $M(a) \cdot M(b) = (a+b)A + abI_2$, pentru orice numere reale $a \neq b$.
- **5p 5.** Determinați valorile reale ale lui a, pentru care matricea M(a) este inversabilă.
- **5p 6.** Rezolvați în $\mathcal{M}_2(\mathbb{R})$ ecuația $M(1) \cdot X = A$.

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{25} = 5$, $\sqrt{64} = 8$, $\sqrt{169} = 13$	3 p
	5+8-13=0	2p
2.	$x+2 \le 3$	2p
	$x \le 1$, deci $x \in (-\infty, 1]$	3 p
3.	2x-8=2	3 p
	x = 5, care verifică ecuația	2p
4.	După prima ieftinire cu 10%, prețul obiectului este $1000-10\%\cdot 1000=900$ de lei	3 p
	După a doua ieftinire cu 10%, prețul obiectului este $900-10\% \cdot 900=810$ lei	2p
5.	$x_A + x_C = x_O + x_B = 5$	2 p
	$y_A + y_C = y_O + y_B = 6$, adică segmentele AC și OB au același mijloc, deci $AOCB$ este paralelogram	3p
6.	paralelogram $\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin A}{2} = \frac{6 \cdot 6 \cdot \frac{\sqrt{3}}{2}}{2} = 9\sqrt{3}$	3p
	$=9\sqrt{3}$	2p

1.	(-2)*7 = (-2)+7-5 =	3 p
	=5-5=0	2p
2.	(x*y)*z = (x+y-5)*z = (x+y-5)+z-5 = x+y+z-10	2p
	x*(y*z) = x*(y+z-5) = x+(y+z-5)-5 = x+y+z-10 = (x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție "*" este asociativă	3 p
3.	(1*2)*(8*9) = (1+2-5)*(8+9-5) = (-2)*12 = -2+12-5=5	2p
	(1*9)*(2*8)=(1+9-5)*(2+8-5)=5*5=5+5-5=5=(1*2)*(8*9)	3 p
4.	x * x = 2x - 5, $(x * x) * x = 3x - 10$	3 p
	$3x - 10 = x \Leftrightarrow x = 5$	2p
5.	$9^{x} + 3^{x} - 5 = 7 \Leftrightarrow (3^{x} + 4)(3^{x} - 3) = 0$	3 p
	Cum $3^x > 0$, obţinem $x = 1$	2p
6.	$x^2 * \frac{1}{x^2} \ge -3 \Leftrightarrow x^2 + \frac{1}{x^2} - 5 \ge -3$	2p
	$x^2 + \frac{1}{x^2} - 2 \ge 0 \Leftrightarrow \left(x - \frac{1}{x}\right)^2 \ge 0$, relație adevărată, pentru orice număr real nenul x	3 p

1.	$\det B = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot 0 =$	3 p
	=1-0=1	2p
2.	$aA(a) = \begin{pmatrix} a^2 & a \\ 2a & 3a \end{pmatrix} \Rightarrow \det(aA(a)) = \begin{vmatrix} a^2 & a \\ 2a & 3a \end{vmatrix} = 3a^3 - 2a^2$	3p
	$3a^3 - 2a^2 = 0 \Leftrightarrow a = 0 \text{ sau } a = \frac{2}{3}$	2p
3.	$\det(A(a)) = \begin{vmatrix} a & 1 \\ 2 & 3 \end{vmatrix} = 3a - 2$	2p
	Matricea $A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0 \Leftrightarrow 3a - 2 \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \left\{\frac{2}{3}\right\}$	3p
4.	$A(a-1) = \begin{pmatrix} a-1 & 1 \\ 2 & 3 \end{pmatrix}, \ A(a+1) = \begin{pmatrix} a+1 & 1 \\ 2 & 3 \end{pmatrix}$	2p
	$A(a-1)+A(a+1)=\begin{pmatrix} 2a & 2\\ 4 & 6 \end{pmatrix}=2\begin{pmatrix} a & 1\\ 2 & 3 \end{pmatrix}=2A(a)$, pentru orice număr real a	3p
5.	$A(a) + B = \begin{pmatrix} a+1 & 2 \\ 2 & 4 \end{pmatrix} \Rightarrow \det(A(a) + B) = \begin{vmatrix} a+1 & 2 \\ 2 & 4 \end{vmatrix} = 4a$	3p
	$4a = a + 3 \Leftrightarrow a = 1$	2 p
6.	$A(1) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \det A(1) = 1 \neq 0, \ \left(A(1) \right)^{-1} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$	3p
	$X = B \cdot (A(1))^{-1} \Leftrightarrow X = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$	2p

Proba E. c)

Matematică M_pedagogic

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{25} + \sqrt{64} \sqrt{169} = 0$.
- **5p** 2. Rezolvați în mulțimea numerelor reale inecuația $3(x+2) \le 9$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_3(2x-8) = \log_3 2$.
- **5p 4.** Prețul unui obiect este 1000 de lei. Determinați prețul obiectului după ce se ieftinește de două ori, succesiv, cu câte 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,3), B(5,6) și C(5,3). Arătați că patrulaterul AOCB este paralelogram.
- **5p 6.** Calculați aria triunghiului ABC, știind că $m(< A) = 60^{\circ}$ și AB = AC = 6.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definește legea de compoziție x * y = x + y - 5.

- **5p 1.** Arătați că (-2)*7=0.
- **5p** 2. Arătați că legea de compoziție "*" este asociativă.
- **5p 3.** Arătați că (1*2)*(8*9)=(1*9)*(2*8).
- **5p 4.** Determinați numărul real x, pentru care (x*x)*x = x.
- **5p 5.** Determinați numărul real x, pentru care $9^x * 3^x = 7$.
- **5p 6.** Demonstrați că $x^2 * \frac{1}{x^2} \ge -3$, pentru orice număr real nenul x.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A(a) = \begin{pmatrix} a & 1 \\ 2 & 3 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, unde a este număr real.

- **5p 1.** Arătați că det B = 1.
- **5p** 2. Determinați numerele reale a, știind că $\det(aA(a)) = 0$.
- **5p** 3. Determinați valorile reale ale lui a, pentru care matricea A(a) este inversabilă.
- **5p 4.** Demonstrați că A(a-1)+A(a+1)=2A(a), pentru orice număr real a.
- **5p 5.** Determinați numărul real a, știind că det(A(a)+B)=a+3.
- **5p 6.** Rezolvați în $\mathcal{M}_2(\mathbb{R})$ ecuația $X \cdot A(1) = B$.

Proba E. c)

Matematică M pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{10} = 0.1, \ \frac{1}{100} = 0.01, \ \frac{1}{1000} = 0.001$	3p
	0.1 + 0.01 + 0.001 = 0.111	2p
2.	$f(x) \ge g(x) \Leftrightarrow 2x - 1 \ge x + 1$	2p
	$x \ge 2 \Leftrightarrow x \in [2, +\infty)$	3p
3.	$x^2 = 4x - 3 \Leftrightarrow x^2 - 4x + 3 = 0$	3p
	$x_1 = 1$ și $x_2 = 3$	2p
4.	$5\% \cdot x = \frac{x}{20}$, unde x este profitul anual al firmei	3p
	$\frac{x}{20} = 5\ 000 \Rightarrow x = 100\ 000$ de lei	2p
5.	BC = 8 și lungimea înălțimii din A este 3	3p
	$\mathcal{A}_{\Delta ABC} = \frac{8 \cdot 3}{2} = 12$	2p
6.	$\sin 30^\circ = \frac{1}{2}$, $\cos 60^\circ = \frac{1}{2}$	2p
	$2\sin^2 30^\circ + 2\cos^2 60^\circ = 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} = 1$	3p

1.	$0 \circ (-3) = 0 \cdot (-3) + 3 \cdot 0 + 3 \cdot (-3) + 6 =$	2p
	=0+0-9+6=-3	3р
2.	$x \circ y = xy + 3x + 3y + 9 - 3 =$	2p
	= x(y+3)+3(y+3)-3=(x+3)(y+3)-3, pentru orice numere reale x şi y	3p
3.	$(-3) \circ x = ((-3)+3)(x+3)-3 =$	3p
	=0-3=-3, pentru orice număr real x	2p
4.	$x \circ (-2) = (x+3)((-2)+3)-3 = x+3-3 = x$	2p
	$(-2) \circ x = ((-2) + 3)(x + 3) - 3 = x + 3 - 3 = x$, pentru orice număr real x, deci $e = -2$ este	3 p
	element neutru al legii de compoziție "°"	
5.	$x \circ (-3) = -3$, pentru x număr real	2p
	$(-2016) \circ (-2015) \circ \circ (-3) = ((-2016) \circ (-2015) \circ \circ (-4)) \circ (-3) = -3$	3p
6.	$x \circ x = (x+3)^2 - 3$, $x \circ x \circ x = (x+3)^3 - 3$	2p
	$(x+3)^3 - 3 = 5 \Leftrightarrow (x+3)^3 = 8 \Leftrightarrow x = -1$	3 p

SUBII	ECTUL al III-lea (30 de p	uncte
	$\det A = \begin{vmatrix} 5 & 2 \\ 2 & 1 \end{vmatrix} = 5 \cdot 1 - 2 \cdot 2 =$	3 p
	=5-4=1	2p
2.	$= 5 - 4 = 1$ $A^{2} = A \cdot A = \begin{pmatrix} 29 & 12 \\ 12 & 5 \end{pmatrix}$	2p
	$A^{2} - 6A = \begin{pmatrix} 29 & 12 \\ 12 & 5 \end{pmatrix} - \begin{pmatrix} 30 & 12 \\ 12 & 6 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_{2}$	3 p
3.	$xA = \begin{pmatrix} 5x & 2x \\ 2x & x \end{pmatrix} \Rightarrow \det(xA) = \begin{vmatrix} 5x & 2x \\ 2x & x \end{vmatrix} = x^2$	3 p
	$x^2 = 4 \Leftrightarrow x_1 = -2 \text{ si } x_2 = 2$	2p
4.	$A^{2} - 6A + aI_{2} = \begin{pmatrix} a - 1 & 0 \\ 0 & a - 1 \end{pmatrix} \Rightarrow \det(A^{2} - 6A + aI_{2}) = \begin{vmatrix} a - 1 & 0 \\ 0 & a - 1 \end{vmatrix} =$	3р
	$=(a-1)^2 \ge 0$, pentru orice număr real a	2p
5.	$B = \begin{pmatrix} 6 & 2 \\ 2 & 2 \end{pmatrix}, \det B = \begin{vmatrix} 6 & 2 \\ 2 & 2 \end{vmatrix} = 8 \neq 0$	2p
	$B^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} \end{pmatrix}$	3р
6.	$\det X = \begin{vmatrix} a & b \\ b & a \end{vmatrix} = a^2 - b^2, \det A = 8 \Leftrightarrow a^2 - b^2 = 8 \Leftrightarrow (a - b)(a + b) = 8$	2p
	Cum a și b sunt numere întregi, obținem matricele $X = \begin{pmatrix} -3 & -1 \\ -1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix}$, $X = \begin{pmatrix} -3 & 1 \\ 1 & 3 \end{pmatrix}$	3р

Proba E. c)

Matematică M pedagogic

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} = 0,111$.
- **5p** 2. Determinați valorile reale ale lui x pentru care $f(x) \ge g(x)$, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + 1.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{x^2} = 2^{4x-3}$.
- **5p 4.** O firmă folosește 5000 de lei pentru publicitate, sumă care reprezintă 5% din profitul anual al firmei. Calculați profitul anual al firmei.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,0), B(8,3) și C(0,3). Calculați aria triunghiului ABC.
- **5p 6.** Arătați că $2\sin^2 30^\circ + 2\cos^2 60^\circ = 1$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = xy + 3x + 3y + 6$.

- **5p 1.** Arătați că $0 \circ (-3) = -3$.
- **5p 2.** Arătați că $x \circ y = (x+3)(y+3)-3$, pentru orice numere reale x și y.
- **5p 3.** Arătați că $(-3) \circ x = -3$, pentru orice număr real x.
- **5p** | **4.** Verificați dacă e = -2 este element neutru al legii de compoziție " \circ ".
- **5p 5.** Calculați $(-2016) \circ (-2015) \circ ... \circ (-3)$.
- **5p 6.** Rezolvați în mulțimea numerelor reale ecuația $x \circ x \circ x = 5$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **5p 1.** Arătați că det A = 1.
- **5p 2.** Arătați că $A^2 6A = -I_2$, unde $A^2 = A \cdot A$.
- **5p 3.** Determinați numerele reale x pentru care det(xA) = 4.
- **5p** 4. Arătați că $\det(A^2 6A + aI_2) \ge 0$, pentru orice număr real a, unde $A^2 = A \cdot A$.
- **5p** | **5.** Determinați inversa matricei B, unde $B = A + I_2$.
- **5p 6.** Determinați matricele $X = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z})$, știind că det X = 8.

Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_pedagogic*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2016 = 2^5 \cdot 3^2 \cdot 7^1$	2p
	a = 5, b = 2, c = 1	3 p
2.	$f(x) = 1 \Leftrightarrow x^2 - 1 = 0$	3 p
	x = -1 sau $x = 1$	2p
3.	$\sqrt{3x+10} = 4 + x \Rightarrow x^2 + 5x + 6 = 0$	3 p
	x = -3 sau $x = -2$, care verifică ecuația	2 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 54 de numere naturale de două cifre care au suma cifrelor mai mică sau egală cu 10, deci sunt 54 de cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{54}{90} = \frac{3}{5}$	2p
5.	B este mijlocul segmentului AC , unde $C(x_C, y_C)$ este simetricul punctului A față de punctul B , deci $3 = \frac{-1 + x_C}{2} \Leftrightarrow x_C = 7$	3 p
	$5 = \frac{2 + y_C}{2} \Leftrightarrow y_C = 8$	2p
6.	$\sin C = \frac{AB}{BC} \Rightarrow AB = \frac{4}{5}BC$	1p
	$AB^2 + AC^2 = BC^2 \Rightarrow AC = \frac{3}{5}BC$	2p
	$\frac{4}{5}BC + \frac{3}{5}BC + BC = 72 \Leftrightarrow BC = 30$	2 p

1.	$\left(-\sqrt{2}\right) \circ \sqrt{2} = \left(-\sqrt{2}\right) \cdot \sqrt{2} + \left(-\sqrt{2}\right) + \sqrt{2} =$	3p
	=-2	2p
2.	$x \circ y = xy + x + y + 1 - 1 =$	2 p
	=x(y+1)+(y+1)-1=(x+1)(y+1)-1, pentru orice numere reale x și y	3 p
3.	$(x^2+1)(x+1)-1=-1 \Leftrightarrow (x^2+1)(x+1)=0$	3 p
	x = -1	2 p
4.	$(x \circ y) \circ z = ((x+1)(y+1)-1) \circ z = ((x+1)(y+1)-1+1)(z+1)-1 = (x+1)(y+1)(z+1)-1$	2p
	$x \circ (y \circ z) = x \circ ((y+1)(z+1)-1) = (x+1)((y+1)(z+1)-1+1)-1 = (x+1)(y+1)(z+1)-1 = (x \circ y) \circ z$, pentru orice numere reale x , y și z , deci legea "o" este asociativă	3p

5.	$n = 2k, k \in \mathbb{N} \Rightarrow n \circ n = 4k(k+1)$	3 p
	Deoarece k și $k+1$ sunt numere naturale consecutive, numărul $k(k+1)$ este multiplu de 2,	2p
	deci numărul $n \circ n$ este multiplu de 8	2 P
6.	$a \circ b = (a+1)(b+1)-1 \in \mathbb{N} \Rightarrow (a+1)(b+1) \in \mathbb{N}^*$	3 p
	De exemplu, $a = \sqrt{2} - 1$ și $b = 2\sqrt{2} - 1$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.	$A(2) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} =$	2p
	= 3	3 p
2.	$A(1) + A(3) = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} =$	3p
	$=2\begin{pmatrix}2&1\\1&2\end{pmatrix}=2A(2)$	2p
3.	$A(n) = {n \choose 1} = {n-1 \choose 1} \Rightarrow \det(A(n)) = n+1$	2p
	Deoarece $n \in \mathbb{N}$, $ n+1 = 1 - 2n$ implică $n+1 = 1 - 2n$, de unde obținem $n = 0$, care convine	3 p
4.	$xA(x) - 2I_2 = $ $\begin{pmatrix} x^2 - 2 & x^2 - x \\ x & 2x - 2 \end{pmatrix} \Rightarrow \det(xA(x) - 2I_2) = (x - 1)(x - 2)(x + 2)$	3p
	$(x-1)(x-2)(x+2) \ge 0 \Leftrightarrow x \in [-2,1] \cup [2,+\infty)$	2p
5.		3p
	$x^2 + 1 \neq 0$ pentru orice număr real x, deci $A(x^2)$ este inversabilă pentru orice număr real x	2p
6.	$2X + 3 \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = 4 \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \Leftrightarrow 2X + \begin{pmatrix} 3 & 0 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 8 & 4 \\ 4 & 8 \end{pmatrix}$	3p
	$X = \begin{pmatrix} \frac{5}{2} & 2\\ \frac{1}{2} & 1 \end{pmatrix}$	2p

Proba E. c) Matematică *M_pedagogic*

Clasa a XII-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numerele naturale a, b și c, știind că $2016 = 2^a \cdot 3^b \cdot 7^c$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^2 3$. Determinați abscisele punctelor care au ordonata egală cu 1 și aparțin graficului funcției f.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3x+10}-2x=4-x$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă suma cifrelor mai mică sau egală cu 10.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,2) și B(3,5). Determinați coordonatele simetricului punctului A față de punctul B.
- **5p 6.** Perimetrul triunghiului dreptunghic *ABC* este egal cu 72. Determinați lungimea ipotenuzei *BC*, știind că $\sin C = 0.8$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + x + y$.

- **5p** 1. Calculați $\left(-\sqrt{2}\right) \circ \sqrt{2}$.
- **5p** 2. Arătați că $x \circ y = (x+1)(y+1)-1$, pentru orice numere reale x și y.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $x^2 \circ x = -1$.
- **5p 4.** Verificați dacă legea de compoziție "o" este asociativă.
- **5p 5.** Demonstrați că numărul $n \circ n$ este multiplu de 8, pentru orice număr natural par n.
- **5p 6.** Dați un exemplu de două numere iraționale a și b, pentru care $a \circ b \in \mathbb{N}$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricea $A(x) = \begin{pmatrix} x & x-1 \\ 1 & 2 \end{pmatrix}$, unde x este număr real.

- **5p 1.** Calculați $\det(A(2))$.
- **5p 2.** Arătați că A(1) + A(3) = 2A(2).
- **5p** 3. Determinați numărul natural n, pentru care $|\det(A(n))| = 1 2n$.
- **5p** 4. Determinați valorile reale ale lui x, pentru care $\det(xA(x)-2I_2) \ge 0$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** | **5.** Demonstrați că matricea $A(x^2)$ este inversabilă, pentru orice număr real x.
- **5p 6.** Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, pentru care 2X + 3A(1) = 4A(2).

Proba E. c)

Matematică *M_pedagogic*

Clasa a XI-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{4} =$	3p
	=0,25>0,24	2p
2.	$f(6-x)=(6-x)^2-6(6-x)+3=36-12x+x^2-36+6x+3=$	3p
	$= x^2 - 6x + 3 = f(x)$, pentru orice număr real x	2p
3.	$x^{2} + 4x - 5 = (x - 1)^{2} \Rightarrow x^{2} + 4x - 5 = x^{2} - 2x + 1$	3 p
	x=1, care verifică ecuația	2p
4.	Sunt 50 de elemente în mulțimea $\{\sqrt{n} \mid n \in \mathbb{N}, n < 50\}$, deci sunt 50 de cazuri posibile	1p
	Sunt 8 numere raționale în mulțimea $\{\sqrt{n} n \in \mathbb{N}, n < 50\}$, deoarece sunt 8 numere naturale	2p
	pătrate perfecte în mulțimea $\{0, 1, 2,, 49\}$, deci sunt 8 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{8}{50} = \frac{4}{25}$	2p
5.	$m_{AB} = -1$	2p
	$m_{BC} = -1 \Rightarrow m_{AB} = m_{BC}$, deci punctele A, B și C sunt coliniare	3p
6.	$m(\not AOD) = 90^{\circ}$, unde $\{O\} = AC \cap BD$ și $DO = 3 \Rightarrow AO = 4$	3p
	$\sin\left(\ll ADB\right) = \frac{AO}{AD} = \frac{4}{5}$	2p

	(C + 1 + F - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
1.	2*(-4) = 2+(-4)+3=	3p
	=1	2p
2.	(x*y)*z = (x+y+3)*z = (x+y+3)+z+3=x+y+z+6	2p
	x*(y*z) = x*(y+z+3) = x+(y+z+3)+3 = x+y+z+6 = (x*y)*z, pentru orice numere	2n
	reale x , y și z , deci legea de compoziție "*" este asociativă	3p
3.	x*(-3) = x + (-3) + 3 = x, pentru orice număr real x	2p
	(-3)*x = (-3)+x+3=x, pentru orice număr real x, deci $e=-3$ este elementul neutru al	3p
	legii de compoziție "*"	Sp
4.	$9^{x} + 3^{x} - 90 = 0 \Leftrightarrow (3^{x} - 9)(3^{x} + 10) = 0$	3p
	Deoarece $3^x > 0$, soluția ecuației este $x = 2$	2p
5.	$(2n^2 - 2n - 1) * (2n^2 - 2n - 1) = (2n^2 - 2n - 1) + (2n^2 - 2n - 1) + 3 = 4n^2 - 4n + 1 =$	3p
	$=(2n-1)^2$, care este pătrat perfect pentru orice număr natural n	2p

6.	a = (1*(-3))*(5*(-7))*(9*(-11))*(13*(-15))*(17*(-19)) = 1*1*1*1*1=5*5*1=13*1=	3p
	$=17 = \sqrt{289} \in \left(\sqrt{288}, \sqrt{290}\right)$	2p

	\ I	,
1.	$1 = 1 + 0\sqrt{5}$	3 p
	Deoarece $0 \in \mathbb{Z}$ și $1 \in \mathbb{Z}$, obținem $1 \in \mathbb{Z}\left[\sqrt{5}\right]$	2p
2.	$x = a + b\sqrt{5}$, $y = c + d\sqrt{5}$, unde $a, b, c, d \in \mathbb{Z} \Rightarrow x + y = (a + c) + (b + d)\sqrt{5}$	3 p
	Deoarece $a + c \in \mathbb{Z}$ și $b + d \in \mathbb{Z}$, obținem $x + y \in \mathbb{Z}\left[\sqrt{5}\right]$	2p
3.	$x = a + b\sqrt{5}$, $y = c + d\sqrt{5}$, unde $a, b, c, d \in \mathbb{Z} \Rightarrow xy = (ac + 5bd) + (ad + bc)\sqrt{5}$	3 p
	Deoarece $ac + 5bd \in \mathbb{Z}$ şi $ad + bc \in \mathbb{Z}$, obţinem $xy \in \mathbb{Z}\left[\sqrt{5}\right]$	2p
4.	$\frac{1}{9+4\sqrt{5}} = \frac{9-4\sqrt{5}}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)} =$	3р
	$= \frac{9 - 4\sqrt{5}}{9^2 - \left(4\sqrt{5}\right)^2} = 9 - 4\sqrt{5}$	2p
5.	$\frac{1}{9 - 4\sqrt{5}} = 9 + 4\sqrt{5}$	3p
	Deoarece $9 \in \mathbb{Z}$ și $4 \in \mathbb{Z}$, obținem $\frac{1}{9 - 4\sqrt{5}} \in \mathbb{Z} \left[\sqrt{5} \right]$	2p
6.	De exemplu, pentru $x = 9 - 4\sqrt{5}$, avem $x \in \mathbb{Z}\left[\sqrt{5}\right]$ și $x = \frac{1}{9 + 4\sqrt{5}}$	3 p
	Deoarece $2 < \sqrt{5} \Rightarrow 8 < 4\sqrt{5} \Rightarrow 17 < 9 + 4\sqrt{5}$, obţinem $0 < \frac{1}{9 + 4\sqrt{5}} < \frac{1}{17}$, adică $0 < x < \frac{1}{17}$	2p

Proba E. c)

Matematică M_pedagogic

Clasa a XI-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- 1. Arătați că $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) > 0,24$. 5p
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + 3$. Arătați că f(6-x) = f(x), pentru orice 5p
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 4x 5} = x 1$. **5p**
- **4.** Calculați probabilitatea ca, alegând un element din mulțimea $\{\sqrt{n} \mid n \in \mathbb{N}, n < 50\}$, acesta să fie număr rational.
- 5. În reperul cartezian xOy se consideră punctele A(-3,3), B(-4,4) și C(3,-3). Verificați dacă **5p** punctele A, B și C sunt coliniare.
- **6.** Se consideră rombul *ABCD* cu AB = 5 și BD = 6. Calculați $\sin(\angle ADB)$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = x + y + 3.

- **1.** Calculați 2*(-4). **5**p
- 2. Arătați că legea de compoziție "*" este asociativă. **5**p
- 3. Verificați dacă e = -3 este elementul neutru al legii de compoziție "*".
- **4.** Rezolvați în mulțimea numerelor reale ecuația $9^x * 3^x = 93$.
- 5. Demonstrați că numărul $(2n^2-2n-1)*(2n^2-2n-1)$ este pătrat perfect, pentru orice număr **5p** natural n.
- **6.** Se consideră numărul real a = 1*(-3)*5*(-7)*9*(-11)*13*(-15)*17*(-19). Arătați că **5**p $a \in (\sqrt{288}, \sqrt{290})$

SUBIECTUL al III-lea (30 de puncte)

Se consideră mulțimea $\mathbb{Z}\left[\sqrt{5}\right] = \left\{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$.

- **1.** Verificați dacă $1 \in \mathbb{Z} \lceil \sqrt{5} \rceil$. **5**p
- **2.** Demonstrați că $x + y \in \mathbb{Z} \lceil \sqrt{5} \rceil$, pentru orice $x, y \in \mathbb{Z} \lceil \sqrt{5} \rceil$.
- **3.** Demonstrați că $xy \in \mathbb{Z} \lceil \sqrt{5} \rceil$, pentru orice $x, y \in \mathbb{Z} \lceil \sqrt{5} \rceil$.
- **4.** Verificați dacă $\frac{1}{9+4\sqrt{5}} = 9-4\sqrt{5}$.
- **5.** Arătați că $\frac{1}{9-4\sqrt{5}} \in \mathbb{Z}\left[\sqrt{5}\right]$.
- **6.** Dați exemplu de un număr $x \in \mathbb{Z}\left[\sqrt{5}\right]$, astfel încât $0 < x < \frac{1}{17}$. **5**p