

Multiple File Organizations

Many alternatives exist, each good for some situations, and not so good in others:

- Heap files: Suitable when typical access is a file scan retrieving all records.
- <u>Sorted Files:</u> Best for retrieval in *search key* order, or only a `range' of records is needed.
- Clustered Files (with Indexes): Coming soon...

Cost Model for Analysis

- B: The number of data blocks
- R: Number of records per block
- D: (Average) time to read or write disk block Average-case analyses for uniform random workloads

We will ignore:

Sequential vs. Random I/O

Pre-fetching

Any in-memory costs

☞ Good enough to show the overall trends!

Berkeley More Assumptions

Single record insert and delete.

Equality selection - exactly one match

For Heap Files:

Insert always appends to end of file.

For Sorted Files:

Files compacted after deletions.

Selections on search key.

Question all these assumptions and rework As an exercise to study for tests, generate ideas

	ost of perations	B: The number R: Number of r D: (Average) til	of data pages ecords per page me to read or write disk pa
	Heap File	Sorted File	Clustered File
Scan all records			
Equality Search			
Range Search			
Insert			
Delete			

	ost of perations	B: The number of data pages R: Number of records per page D: (Average) time to read or write disk					
	Heap File	Sorted File	Clustered File				
Scan all records	BD	BD					
Equality Search							
Range Search							
Insert							
Delete							

	ost of perations	B: The number of data pages R: Number of records per page D: (Average) time to read or write disk page					
	Heap File	Sorted File	Clustered File				
Scan all records	BD	BD					
Equality Search	½BD (primary, if found)	(log ₂ B) * D					
Range Search							
Insert							
Delete							
	1						

ost of perations	B: The number of data pages R: Number of records per page D: (Average) time to read or write disk pa				
Heap File	Sorted File	Clustered File			
BD	BD				
½BD (primary, if found)	(log ₂ B) * D				
BD	[(log ₂ B) + #match pages]*D				
	Heap File BD ½BD (primary, if found)	Poerations R: Number of record (Average) time to the second seco			

erkeley O	perations	B: The number of data pages R: Number of records per page D: (Average) time to read or write disk p			
	Heap File	Sorted File	Clustered File		
Scan all records	BD	BD			
Equality Search	½BD (primary, if found)	(log ₂ B) * D			
Range Search	BD	[(log ₂ B) + #match pages]*D			
		((log ₂ B)+½B+½B)D (read/write half)			
Delete					

	ost of perations	B: The number of data pages R: Number of records per page D: (Average) time to read or write disk page				
	Heap File	Sorted File	Clustered File			
Scan all records	BD	BD				
Equality Search 1/2BD (primary, if found)		(log ₂ B) * D				
Range Search	BD	[(log ₂ B) + #match pages]*D				
Insert	D+D (read/write)	((log ₂ B)+½B+½B)D (read/write half)				
Delete ½BD + D (primary, if found)		((log ₂ B)+½B+½B)D (read/write half)				

Alternatives for Data Entry **k*** in Index

Three alternatives:

- 1. Actual data record (with key value k)
- 2. < k, rid of matching data record>
- 3. < k, list of rids of matching data records>

Choice is orthogonal to the indexing technique. B+ trees, hash-based structures, R trees, GiSTs, ...

Can have multiple (different) indexes per file. E.g. file sorted by age, with a hash index on salary and a B+tree index on name.

Alternatives for Data Entries (Contd.)

Alternative 1:

Actual data record (with key value k)

- Index as a file organization for records
 - Alongside Heap files or sorted files
- At most one Alt. 1 index per relation
- No "pointer lookups" to get data records

Alternatives for Data Entries (Contd.)

Alternative 2

<k, rid of matching data record> Alternative 3

<k, list of rids of matching data records>

- Alts. 2 or 3 required to support multiple indexes per
- Alt. 3 more compact than Alt. 2,
 - ... but variable sized data entries
 - even if search keys are of fixed length.
- For large rid lists, data entry spans multiple blocks (!)

Clustered vs. Unclustered Index

In a clustered index:

- index data entries are stored in (approximate) order by value of search key in data records
- A file can be clustered on at most one search key.
- Cost of retrieving data records through index varies greatly based on whether index is clustered or not!
- Alternative 1 => clustered
 - but not vice-versa!

Note: there is another definition of "clustering"

- Data Mining/AI: grouping similar items in n-space

Unclustered vs. Clustered Indexes

Clustered Pros

- Efficient for range searches
- Potential locality benefits
 - Disk scheduling, prefetching, etc.
- Support certain types of compression
 - More soon on this topic

Clustered Cons

- More expensive to maintain
 - on the fly or "sloppily" via reorgs
 - Heap file usually only packed to 2/3 to accommodate inserts

Berkeley	Cost of Operations	B: The number of data pages R: Number of records per page D: (Average) time to read or write disk pag					
	Heap File	Sorted File	Clustered File 1.5 BD (log _F 1.5B+1) * D				
Scan a		BD					
Equali Search		(log ₂ B) * D					
Range Search		[(log ₂ B) + #match pages]*D	[(log _F 1.5B) + #match pages]*D				
Insert	D+D (read/write)	((log ₂ B)+½B+½B)D (read/write half)	((log _F 1.5B)+2) * D				
Delete ½BD + D (primary, if found)		((log ₂ B)+½B+½B)D (read/write half)	((log _F 1.5B)+2) * D				

Inserting a Data Entry into a B+ Tree

- Find correct leaf L.
- Put data entry onto L.
 - If L has enough space, done
 - Else, must split L (into L and a new node L2)
 - Redistribute entries evenly, copy up middle key.
 - Insert index entry pointing to L2 into parent of L.
- This can happen recursively
 - To split index node, redistribute entries evenly, but <u>push up</u> middle key. (Contrast with leaf splits)
- Splits "grow" tree; root split increases height.
 - Tree growth: gets wider or one level taller at top.

	,
Berkeley	l

Suffix Key Compression

If many index entries share a common prefix

MacDonald	MacDougal	MacFeeley		MacLaren	
			ı		

Particularly useful for composite keys - Why?

Suffix Key Compression

If many index entries share a common prefix

Particularly useful for composite keys - Why?

Summary of Bulk Loading

Option 1: multiple inserts.

- Slow.
- Does not give sequential storage of leaves.

Option 2: Bulk Loading

- Fewer I/Os during build.
- Leaves will be stored sequentially (and linked, of course).
- Can control "fill factor" on pages.

A Note on `Order'

Order (d) makes little sense with variable-length entries

Use a physical criterion in practice: "at least half-full"

- Index pages often hold many more entries than leaf pages
- Variable sized records and search keys => different nodes have different numbers of entries.
- Even with fixed length fields, Alternative (3) gives variable length

Many real systems are even sloppier than this --- only reclaim space when a page is *completely* empty.

Berkeley Summary

- Data entries: 1 of 3 alternatives:
 - 1. actual data records
 - 2. <key, rid> pairs, or
 - 3. <key, rid-list> pairs.
 - Choice orthogonal to *indexing structure* (i.e., tree, hash, etc.).
- Often multiple indexes per file of data records
 - each with a different search key.
- Indexes can be classified as *clustered* vs. *unclustered*
 - Difs have important consequences for utility/performance.

Summary (cont'd)

- Tree-structured indexes are ideal for range-searches, also good for equality searches.
- ISAM is a static structure.
 - Only leaf pages modified; overflow pages needed.
 - Overflow chains can degrade performance unless size of data set and data distribution stay constant.
- B+ tree is a dynamic structure.
 - Inserts/deletes leave tree height-balanced; log _F N cost.
 - High fanout (**F**) means depth rarely more than 3 or 4.
 - Almost always better than maintaining a sorted file.
 - Typically, 67% occupancy on average.
 - Usually preferable to ISAM; adjusts to growth gracefully.
 - If data entries are data records, splits can change rids!

Summary (cont'd)

- Key compression increases fanout, reduces height.
- Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large data set.
- B+ tree widely used because of its versatility.
 - One of the most optimized components of a DBMS.