Задача 1. Что больше: **a)** 5^{15} или 15^5 ; **б)** 2^{100} или 10^{30} ; **в)** 7^8 или 8^7 ; **г)** 3^{500} или 7^{300} ?

Задача 2. а) Докажите, что $a + \frac{1}{a} \geqslant 2$ при всех a > 0.

б) Каково наименьшее значение выражения $a + \frac{9}{a}$ при a > 0?

Задача 3. Десятичная запись натурального числа a состоит из n цифр, а десятичная запись числа a^3 состоит из m цифр.

- **a)** Какие значения может принимать m, если n фиксировано?
- **б)** Может ли n + m быть равным 2013?

Задача 4. Число x изменили не более, чем на 0.1. Могло ли при этом измениться более, чем на 10, значение **a)** x^2 ; **б)** \sqrt{x} ?

Задача 5. Вкладчик кладёт в банк 1000 рублей. В каком случае спустя 10 лет он получит больше денег: если банк начисляет 5% от имеющейся суммы один раз в год или если банк начисляет (5/12)% один раз в месяц?

Задача 6. Описанный около круга квадрат разбили на 1000×1000 равных квадратиков и закрасили квадратики, не выходящие за пределы круга. Докажите, что площадь получившейся закрашенной фигуры составляет не менее 90% от площади всего круга.

Задача 7. Докажите, что если $n \in \mathbb{N}$ и a > 0, то

a)
$$(1+a)^n \ge 1+na$$
; 6) $(1+a)^n \ge 1+na+\frac{1}{2}n(n-1)a^2$.

Какова связь этой задачи с неравенством Бернулли и биномом Ньютона?

Задача 8. Укажите такое натуральное n > 1, что

a)
$$(1.001)^n > 1000$$
; 6) $(0.999)^n < 10^{-10}$; B) $\sqrt{n+1} - \sqrt{n} < 0.1$; $\sqrt[n]{n} < 1.001$.

Определение 1. Говорят, что неравенство выполнено npu всех достаточно больших n или npu n много большем нуля, если найдётся такое число k, что данное неравенство выполнено при всех n > k. Обозначение: $n \gg 0$.

Задача 9. Докажите, что если a>1 и $C\in\mathbb{R}$, то при $n\gg 0$ **a)** $a^n>C;$ **б)** $a^n>Cn.$

Задача 10. Докажите, что **a)** $2^n > n^{100}$ при $n \gg 0$;

б) если a>1 и k — натуральное число, то $a^n>n^k$ при $n\gg 0$.

Задача 11. Докажите, что для любого $a \in \mathbb{R}$ неравенство $n! > a^n$ выполнено при $n \gg 0$.

Задача 12. а) Докажите, что неравенство $n^n > 1000n!$ выполнено при $n \gg 0$.

б) Останется ли верным это неравенство, если 1000 заменить на произвольное число $C \in \mathbb{R}$?

Задача 13. Пусть $P(x) = p_n x^n + \ldots + p_0$ и $Q(x) = q_m x^m + \ldots + q_0$ — многочлены степеней n и m соответственно, причём n > m и $p_n, q_m > 0$. Докажите, что P(x) > Q(x) при $x \gg 0$.

1 a	1 6	1 B	1 Г	2 a	2 6	3 a	3	4 a	46	5	6	7 a	7 6	8 a	8 6	8 B	8 Г	9 a	9 6	10 a	10 6	11	12 a	12 6	13

Задача 14. Докажите, что при любом натуральном
$$n$$
 справедливо неравенство:
 a) $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \geqslant \frac{1}{2};$ **б)** $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n \cdot (n+1)} < 1.$

Задача 15. Верно ли, что для любого числа C найдётся такое натуральное число n, что выполнено неравенство: **a)** (Гармонический ряд) $1 + \frac{1}{2} + \ldots + \frac{1}{n} \geqslant C$; **б)** $1 + \frac{1}{2^2} + \ldots + \frac{1}{n^2} \geqslant C$?

Задача 16*. Есть неограниченное число одинаковых кирпичей в форме прямоугольного параллелепипеда. Кирпичи кладут друг на друга со сдвигом так, чтобы они не падали (см. рис.). «Крышу» какой наибольшей длины можно так получить?

Задача 17. Пусть a, b > 0 и $n \in \mathbb{N}$. Докажите неравенство $\frac{a^{n+1}}{b^n} \geqslant (n+1)a - nb$.

Задача 18. Для всех натуральных
$$n$$
 докажите следующие неравенства: a) $(1+\frac{1}{n+1})^{n+1}\geqslant (1+\frac{1}{n})^n;$ б) $(1+\frac{1}{n})^{n+1}\leqslant (1+\frac{1}{n-1})^n;$ в) $2\leqslant (1+\frac{1}{n})^n\leqslant 4;$ г)* $(1+\frac{1}{n})^n\leqslant 3.$

Задача 19*. Докажите, что для любого натурального числа n выполнены неравенства

$$\left(\frac{n}{4}\right)^n \leqslant n! \leqslant \left(\frac{n+1}{2}\right)^n.$$

Задача 20*. ($Hepasencmso\ Komu$) Докажите, что если $n\in\mathbb{N}$ и $a_1,a_2,\ldots,a_n>0,$ то

$$\frac{a_1 + a_2 + \ldots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \ldots a_n}.$$

Задача 21. Пусть $P(x)=x^{n_1}-x^{n_2}+x^{n_3}-x^{n_4}+\cdots+x^{n_{2k+1}},$ где $n_1>n_2>\cdots>n_{2k+1}$ — набор натуральных чисел. Докажите что $P(x) \ge 0$ при всех x > 0.

Задача 22*. Найдите наименьшее значение выражения $\sqrt{(x-1)^2+y^2}+\sqrt{x^2+(y-1)^2}$. При каких x и y оно достигается?

Задача 23*. Коэффициенты p и q квадратного уравнения $x^2 + px + q = 0$ изменили не больше, чем на 0.01. Мог ли больший корень уравнения измениться больше, чем на 100?

Задача 24^* . Найдётся ли такое натуральное n, что первыми девятью знаками после запятой в десятичной записи числа $\{\sqrt{n}\}$ будут цифры 987654321?

14 a	14 6	15 a	15 б	16	17	18 a	18 б	18 B	18 Г	19	20	21	22	23	24