2.1 Gradientenabstieg 1d

- ullet $J_{s}\left(heta
 ight)$: Mittlerer Verlust auf der Stichprobe
- $J'(\theta)$: Steigung der Verlustfunktion bei konkreten Modellparametern
- $heta\left(t
 ight):= heta\left(t-1
 ight)-\lambda\cdot J'\left(heta\left(t-1
 ight)
 ight)$: Neubestimmung der Modellparameterauf Basis der Steigung der Verlustfunktion mit Lernrate

Annahme hier: nur ein Modellparameter (1d)

- Gegeben ist die Funktion $L_b\left(heta
 ight)=\left\{egin{array}{cc} 2\cdot heta^2+rac{3}{16} & heta\leq0 \\ rac{\theta}{2}+rac{3}{16} & heta>0 \end{array}
 ight.$ Berechnen Sie mit Stift und Papier:
 - \int_{0}^{∞} Bei Startwert heta=-1 und Lernrate $\lambda=0.1$, was sind die nächsten beiden Schritte des Gradientenabstiegs?
 - \mathcal{I}_{0}^{-} Bei Startwert $\theta=4$ und unbekannter Lernrate benötigt der Gradientenabstieg 12 Schritte, bis $L_{b}\left(\mathcal{O}\right)=0$ erreicht wird. Bestimme die Lernrate.

$$\int \Theta(0)=-1 \quad \lambda=0.1$$

$$\Theta(1) = -1 - 0.1 \cdot 4(-1) = -0.6$$

 $\Theta(2) = -0.6 - 0.1 \cdot 4(-0.6) = -0.36$

$$\Theta(1) = 4 - \frac{1}{2}\lambda$$

 $\Theta(2) = 4 - \frac{1}{2}\lambda - \frac{1}{2}\lambda = 4 - 2(\frac{1}{2}\lambda)$

$$\frac{O(12) = 4 - 12(\frac{2}{2}\lambda) = 0}{4 = 12 \cdot \frac{2}{3}\lambda = 6\lambda}$$

$$\frac{A}{\lambda} = \frac{4}{6} = \frac{2}{3}$$