

2.6. DENSITIES

Unit Conversions Unless otherwise noted, densities are given in grams per cubic centimeter. To convert to pounds per cubic foot, multiply by 62.43. Temperature conversion: $^{\circ}F = 9/5^{\circ}C + 32$.

Additional References and Comments The aqueous solution data tables are from International Critical Tables, vol. 3, pp. 115–129, unless otherwise stated. All compositions are in weight percent in vacuo. All density values are $d_4^t = \mathrm{g/mL}$ in vacuo. For more detailed data on densities, see also the CRC Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., 97th ed.; or http://hbcponline.com.

2.6.1. DENSITIES OF PURE SUBSTANCES

Table 2-31 Density (kg/m³) of Saturated Liquid Water from the Triple Point to the Critical Point

т, к	ρ, kg/m³	Т, К	ρ, kg/m³	Т, К	ρ, kg/m³	<i>T</i> , K	ρ, kg/m³	т, к	ρ, kg/m³
273.160*	999.793	352	972.479	432	908.571	512	814.982	592	669.930
274	999.843	354	971.235	434	906.617	514	812.164	594	664.974
276	999.914	356	969.972	436	904.645	516	809.318	596	659.907
278	999.919	358	968.689	438	902.656	518	806.441	598	654.722
280	999.862	360	967.386	440	900.649	520	803.535	600	649.411
282	999.746	362	966.064	442	898.624	522	800.597	602	643.97
284	999.575	364	964.723	444	896.580	524	797.629	604	638.38
286	999.352	366	963.363	446	894.519	526	794.628	606	632.64
288	999.079	368	961.984	448	892.439	528	791.594	608	626.74
290	998.758	370	960.587	450	890.341	530	788.527	610	620.65
292	998.392	372	959.171	452	888.225	532	785.425	612	614.37
294	997.983	374	957.737	454	886.089	534	782.288	614	607.88
296	997.532	376	956.285	456	883.935	536	779.115	616	601.15
298	997.042	378	954.815	458	881.761	538	775.905	618	594.16
300	996.513	380	953.327	460	879.569	540	772.657	620	586.88
302	995.948	382	951.822	462	877.357	542	769.369	622	579.26
304	995.346	384	950.298	464	875.125	544	766.042	624	571.25

T, K	ρ, kg/m	T, K	ρ, kg/m	<i>T</i> , K	ρ, kg/m	T, K	ρ, kg/m	Т, К	ρ, kg/m
306	994.711	386	948.758	466	872.873	546	762.674	626	562.81
308	994.042	388	947.199	468	870.601	548	759.263	628	553.84
310	993.342	390	945.624	470	868.310	550	755.808	630	544.25
312	992.610	392	944.030	472	865.997	552	752.308	632	533.92
314	991.848	394	942.420	474	863.664	554	748.762	634	522.71
316	991.056	396	940.793	476	861.310	556	745.169	636	510.42
318	990.235	398	939.148	478	858.934	558	741.525	638	496.82
320	989.387	400	937.486	480	856.537	560	737.831	640	481.53
322	988.512	402	935.807	482	854.118	562	734.084	641	473.01
324	987.610	404	934.111	484	851.678	564	730.283	642	463.67
326	986.682	406	932.398	486	849.214	566	726.425	643	453.14
328	985.728	408	930.668	488	846.728	568	722.508	644	440.73
330	984.750	410	928.921	490	844.219	570	718.530	645	425.05
332	983.747	412	927.157	492	841.686	572	714.489	646	402.96
334	982.721	414	925.375	494	839.130	574	710.382	647	357.34
336	981.671	416	923.577	496	836.549	576	706.206	647.096 [†]	322
338	980.599	418	921.761	498	833.944	578	701.959		
340	979.503	420	919.929	500	831.313	580	697.638		
342	978.386	422	918.079	502	828.658	582	693.238		
344	977.247	424	916.212	504	825.976	584	688.757		
346	976.086	426	914.328	506	823.269	586	684.190		
348	974.904	428	912.426	508	820.534	588	679.533		
350	973.702	430	910.507	510	817.772	590	674.781		

*Triple point

[†]Critical point

From Wagner, W., and Pruss, A., "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," *J. Phys. Chem. Ref. Data* **31**(2):387–535, 2002.

Click here for the Natural Convection Heat Transfer Coefficients spreadsheet calculator.
Click here for the Forced Convection Heat Transfer Coefficients spreadsheet calculator.
Click here for the Thermal Design of Double Pipe Heat Exchangers spreadsheet calculator.
Click here for the Venturi Meter Liquid Flow Calculations spreadsheet calculator.
Click here for the Incompressible Orifice Flow Meter Calculations spreadsheet calculator.
Click here for the Incompressible Flow in Pipes and Channels spreadsheet calculator.
Click here for the Incompressible Annulus and Duct Flow Calculations spreadsheet calculator.

Table 2-32 Densities of Inorganic and Organic Liquids (mol/dm³)

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	C ₁	C ₂	<i>C</i> ₃	C ₄	C ₅	C ₆	C ₇	T _{min} , K	Den sity at T _{min}	T _{max} , K	Den sity at T _{max}
105	1	Ace tald ehy de	C ₂ H ₄ O	75- 07-0	44.0 525 6	1.71 136 5	0.26 355	466	0.28 571				149. 78	21.4 23	466. 00	6.49 35
105	2	Ace tami de	C ₂ H ₅ NO	60- 35-5	59.0 672	1.01 6	0.21 845	761	0.26 116				353. 33	16.9 36	761. 00	4.65 09
105	3	Ace tic acid	C ₂ H ₄ O ₂	64- 19-7	60.0 52	1.44 86	0.25 892	591. 95	0.25 29				289. 81	17.4 92	591. 95	5.59 48
105	4	Ace tic anh ydri de	C ₄ H ₆ O ₃	108- 24-7	102. 088 64	0.79 388	0.24 119	606	0.29 817				200. 15	11.6 26	606. 00	3.29 15
105	5	Ace tone	C ₃ H ₆ O	67- 64-1	58.0 791 4	1.23 32	0.25 886	508. 2	0.29 13				178. 45	15.6 83	508. 20	4.76 40
105	6	Ace tonit rile	C ₂ H ₃ N	75- 05-8	41.0 519	1.06 93	0.20 656	545. 5	0.24 699				229. 32	20.5 44	545. 50	5.17 67
105	7	Ace tyle ne	C ₂ H	74- 86-2	26.0 372 8	2.45 07	0.27 448	308. 3	0.28 752				192. 40	23.6 92	308. 30	8.92 85
105	8	Acr olei n	C ₃ H ₄ O	107- 02-8	56.0 632 6	1.32 61	0.26 124	506	0.24 89				185. 45	16.8 22	506. 00	5.07 62
105	9	Acry lic acid	C ₃ H ₄ O ₂	79- 10-7	72.0 626 6	1.24 14	0.25 822	615	0.30 701				286. 15	14.6 93	615. 00	4.80 75

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	Т, К	Den sity at T	т, К	Den sity at T
105	10	Acry lonit rile	C ₃ H ₃ N	107- 13-1	53.0 626	1.03 79	0.22 465	540	0.28 921				189. 63	17.2 54	540. 00	4.62 01
105	11	Air	Mixt ure	132 259- 10-0	28.9 6	2.89 63	0.26 733	132. 45	0.27 341				59.1 5	33.2 79	132. 45	10.8 340
105	12	Am mon ia	H ₃ N	766 4- 41-7	17.0 305 2	3.53 83	0.25 443	405. 65	0.28 88				195. 41	43.1 41	405. 65	13.9 070
105	13	Anis ole	C ₇ H ₈ O	100- 66-3	108. 137 82	0.77 488	0.26 114	645. 6	0.28 234				235. 65	9.66 75	645. 60	2.96 73
105	14	Arg on	Ar	744 0- 37-1	39.9 48	3.84 69	0.28 81	150. 86	0.29 783				83.7 8	35.4 91	150. 86	13.3 530
105	15	Ben zam ide	C ₇ H ₇ NO	55- 21-0	121. 136 58	0.73 71	0.25 487	824	0.28 571				403. 00	8.93 81	824. 00	2.89 21
105	16	Ben zen e	C ₆ H	71- 43-2	78.1 118 4	1.02 59	0.26 666	562. 05	0.28 394				278. 68	11.4 22	562. 05	3.84 72
105	17	Ben zen ethi ol	C ₆ H ₆ S	108- 98-5	110. 176 84	0.83 573	0.26 326	689	0.30 798				258. 27	10.0 74	689. 00	3.17 45
105	18	Ben zoic acid	C ₇ H ₆ O ₂	65- 85-0	122. 121 34	0.71 587	0.24 812	751	0.28 57				395. 45	8.89 35	751. 00	2.88 52
105	19	Ben zoni trile	C ₇ H ₅ N	100- 47-0	103. 121 3	0.72 184	0.24 606	702. 3	0.28 789				260. 28	10.0 08	702. 30	2.93 36
105	20	Ben zop hen one	C ₁₃ H ₁₀ O	119- 61-9	182. 217 9	0.43 743	0.24 833	830	0.27 555				321. 35	5.94 96	830. 00	1.76 15
105	21	Ben zyl alco hol	C ₇ H ₈ O	100- 51-6	108. 137 82	0.59 867	0.22 849	720. 15	0.23 567				257. 85	9.90 51	720. 15	2.62 01
105	22	Ben zyl ethy I ethe r	C ₉ H ₁₂ O	539- 30-0	136. 190 98	0.60 917	0.26 925	662	0.26 32				275. 65	7.06 51	662. 00	2.26 25

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	23	Ben zyl mer capt an	C ₇ H ₈ S	100- 53-8	124. 203 42	0.70 797	0.25 982	718	0.32 144				243. 95	8.86 23	718. 00	2.72 48
105	24	Biph enyl	C ₁₂ H ₁₀	92- 52-4	154. 207 8	0.52 257	0.25 833	773	0.27 026				342. 20	6.42 51	773. 00	2.02 29
105	25	Bro min e	Br ₂	772 6- 95-6	159. 808	2.18 72	0.29 527	584. 15	0.32 95				265. 85	20.1 09	584. 15	7.40 75
105	26	Bro mob enz ene	C ₆ H ₅ Br	108- 86-1	157. 007 9	0.82 26	0.26 632	670. 15	0.28 21				242. 43	9.90 87	670. 15	3.08 88
105	27	Bro moe than e	C ₂ H ₅ Br	74- 96-4	108. 965	1.32 85	0.27 08	503. 8	0.30 12				154. 25	15.8 09	503. 80	4.90 58
105	28	Bro mo met han e	CH ₃ Br	74- 83-9	94.9 385 2	1.79 6	0.27 065	464	0.28 947				173. 00	20.7 87	464. 00	6.63 59
105	29	1,2- But adie ne	C ₄ H	590- 19-2	54.0 904 4	1.18 7	0.26 114	452	0.30 65				136. 95	15.1 23	452. 00	4.54 55
105	30	1,3- But adie ne	C₄H 6	106- 99-0	54.0 904 4	1.23 46	0.27 216	425	0.28 707				164. 25	14.0 58	425. 00	4.53 63
105	31	But ane	C ₄ H	106- 97-8	58.1 222	1.06 77	0.27 188	425. 12	0.28 688				134. 86	12.6 2	425. 12	3.92 71
105	32	1,2- But ane diol	C ₄ H ₁₀ O ₂	584- 03-2	90.1 21	0.81 696	0.24 755	680	0.24 535				220. 00	11.7 34	680. 00	3.30 02
105	33	1,3- But ane diol	C ₄ H ₁₀ O ₂	107- 88-0	90.1 21	0.81 856	0.24 967	676	0.22 023				196. 15	11.8 72	676. 00	3.27 86
105	34	1- But anol	C ₄ H ₁₀ O	71- 36-3	74.1 216	0.98 279	0.26 83	563. 1	0.25 488				183. 85	12.0 35	563. 10	3.66 30

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	35	2- But anol	C ₄ H ₁₀ O	78- 92-2	74.1 216	0.97 552	0.26 339	535. 9	0.26 864				158. 45	12.4 73	535. 90	3.70 37
105	36	1- But ene	C ₄ H	106- 98-9	56.1 063 2	1.08 77	0.26 454	419. 5	0.28 43				87.8 0	14.2 64	419. 50	4.11 17
105	37	cis- 2- But ene	C₄H 8	590- 18-1	56.1 063 2	1.15 91	0.27 085	435. 5	0.28 116				134. 26	13.8 94	435. 50	4.27 95
105	38	tran s-2- But ene	C₄H 8	624- 64-6	56.1 063 2	1.14 48	0.27 154	428. 6	0.28 419				167. 62	13.0 8	428. 60	4.21 60
105	39	Buty I acet ate	C ₆ H ₁₂ O ₂	123- 86-4	116. 158 28	0.67 794	0.26 37	575. 4	0.29 318				199. 65	8.33 65	575. 40	2.57 09
105	40	Buty Iben zen e	C ₁₀ H ₁₄	104- 51-8	134. 218 16	0.50 812	0.25 238	660. 5	0.29 373				185. 30	7.02 64	660. 50	2.01 33
105	41	Buty I mer capt an	C ₄ H ₁₀ S	109- 79-5	90.1 872	0.89 458	0.27 463	570. 1	0.28 512				157. 46	10.5 85	570. 10	3.25 74
105	42	sec- Buty I mer capt an	C ₄ H ₁₀ S	513- 53-1	90.1 872	0.89 137	0.27 365	554	0.29 53				133. 02	10.7 61	554. 00	3.25 73
105	43	1- Buty ne	C ₄ H	107- 00-6	54.0 904 4	1.34 09	0.27 892	440	0.29 661				147. 43	14.9 01	440. 00	4.80 75
105	44	Buty rald ehy de	C ₄ H ₈ O	123- 72-8	72.1 057 2	1.03 387 3	0.26 673 9	537. 2	0.28 571				176. 80	12.6 02	537. 20	3.87 60
105	45	Buty ric acid	C ₄ H ₈ O ₂	107- 92-6	88.1 051	0.88 443	0.25 828	615. 7	0.24 8				267. 95	11.0 87	615. 70	3.42 43
105	46	Buty roni trile	C ₄ H ₇ N	109- 74-0	69.1 051	0.79 716	0.23 168	585. 4	0.28 071				161. 30	13.0 87	585. 40	3.44 08

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	47	Car bon diox ide	CO ₂	124- 38-9	44.0 095	2.76 8	0.26 212	304. 21	0.29 08				216. 58	26.8 28	304. 21	10.5 600
105	48	Car bon disu Ifide	CS ₂	75- 15-0	76.1 407	1.79 68	0.28 749	552	0.32 26				161. 11	19.0 64	552. 00	6.25 00
105	49	Car bon mon oxid e	со	630- 08-0	28.0 101	2.89 7	0.27 532	132. 92	0.28 13				68.1 5	30.1 8	132. 92	10.5 220
105	50	Car bon tetr achl orid e	CCI ₄	56- 23-5	153. 822 7	0.99 835	0.27	556. 35	0.28 7				250. 33	10.8 43	556. 35	3.64 36
105	51	Car bon tetr aflu orid e	CF ₄	75- 73-0	88.0 043	1.95 5	0.27 884	227. 51	0.28 571				89.5 6	21.2 11	227. 51	7.01 12
105	52	Chlo rine	Cl ₂	778 2- 50-5	70.9 06	2.23	0.27 645	417. 15	0.29 26				172. 12	24.2 42	417. 15	8.06 66
105	53	Chlo robe nze ne	C ₆ H ₅ Cl	108- 90-7	112. 556 9	0.87 11	0.26 805	632. 35	0.27 99				227. 95	10.3 85	632. 35	3.24 98
105	54	Chlo roet han e	C ₂ H ₅Cl	75- 00-3	64.5 141	1.39 625	0.26 867	460. 35	0.28 571				136. 75	17.0 55	460. 35	5.19 69
105	55	Chlo rofo rm	CHC I ₃	67- 66-3	119. 377 64	1.08 41	0.25 81	536. 4	0.27 41				209. 63	13.7 02	536. 40	4.20 03
105	56	Chlo rom etha ne	CH ₃ CI	74- 87-3	50.4 875	1.86 51	0.26 27	416. 25	0.28 571				175. 43	22.2 72	416. 25	7.09 97
105	57	1- Chlo ropr opa ne	C ₃ H ₇ Cl	540- 54-5	78.5 406 8	1.12 465	0.27 28	503. 15	0.28 571				150. 35	13.3 33	503. 15	4.12 26

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	Т, К	Den sity at T	т, К	Den sity at T
105	58	2- Chlo ropr opa ne	C ₃ H ₇ Cl	75- 29-6	78.5 406 8	1.12 02	0.27 669	489	0.27 646				155. 97	12.8 55	489. 00	4.04 86
105	59	m- Cre sol	C ₇ H ₈ O	108- 39-4	108. 137 82	0.90 61	0.28 268	705. 85	0.27 07				285. 39	9.61 15	705. 85	3.20 54
105	60	o- Cre sol	C ₇ H ₈ O	95- 48-7	108. 137 82	0.95 937	0.28 82	697. 55	0.28 57				304. 19	9.57 25	697. 55	3.32 88
105	61	p- Cre sol	C ₇ H ₈ O	106- 44-5	108. 137 82	1.15 03	0.31 861	704. 65	0.30 104				307. 93	9.44 94	704. 65	3.61 04
105	62	Cu men e	C ₉ H 12	98- 82-8	120. 191 58	0.58 711	0.25 583	631	0.28 498				177. 14	7.93 87	631. 00	2.29 49
105	63	Cya nog en	C ₂ N 2	460- 19-5	52.0 348	1.78 05	0.26 846	400. 15	0.26 079				245. 25	18.5 17	400. 15	6.63 23
105	64	Cycl obut ane	C ₄ H	287- 23-0	56.1 063 2	1.39 31	0.29 255	459. 93	0.24 913				182. 48	14.0 74	459. 93	4.76 19
105	65	Cycl ohe xan e	C ₆ H	110- 82-7	84.1 594 8	0.88 998	0.27 376	553. 8	0.28 571				279. 69	9.38 04	553. 80	3.25 09
105	66	Cycl ohe xan ol	C ₆ H ₁₂ O	108- 93-0	100. 158 88	0.82 43	0.26 545	650. 1	0.28 495				296. 60	9.46 93	650. 10	3.10 53
105	67	Cycl ohe xan one	C ₆ H ₁₀ O	108- 94-1	98.1 43	0.86 464	0.26 888	653	0.29 943				242. 00	10.0	653. 00	3.21 57
105	68	Cycl ohe xen e	C ₆ H	110- 83-8	82.1 436	0.92 997	0.27 056	560. 4	0.28 943				169. 67	11.1 6	560. 40	3.43 72
105	69	Cycl ope ntan e	C ₅ H	287- 92-3	70.1 329	1.08 97	0.28 356	511. 7	0.25 142				179. 28	11.9 06	511. 70	3.84 29

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, к	Den sity at T	т, К	Den sity at T
105	70	Cycl ope nten e	C ₅ H 8	142- 29-0	68.1 170 2	1.10 35	0.27 035	507	0.28 699				138. 13	13.4 7	507. 00	4.08 17
105	71	Cycl opro pan e	C ₃ H 6	75- 19-4	42.0 797 4	1.74 11	0.28 205	398	0.29 598				145. 59	18.6 58	398. 00	6.17 30
105	72	Cycl ohe xyl mer capt an	C ₆ H ₁₂ S	156 9- 69-3	116. 224 48	0.78 578	0.27 882	664	0.31 067				189. 64	8.90 48	664. 00	2.81 82
105	73	Dec anal	C ₁₀ H ₂₀ O	112- 31-2	156. 265 2	0.47 854 2	0.27 516 2	674	0.28 571				285. 00	5.23 96	674. 00	1.73 91
105	74	Dec ane	C ₁₀ H ₂₂	124- 18-5	142. 281 68	0.41 084	0.25 175	617. 7	0.28 571				243. 51	5.39 27	617. 70	1.63 19
105	75	Dec anoi c acid	C ₁₀ H ₂₀ O ₂	334- 48-5	172. 265	0.39 348	0.24 92	722. 1	0.28 571				304. 55	5.18 09	722. 10	1.57 90
105	76	1- Dec anol	C ₁₀ H ₂₂ O	112- 30-1	158. 281 08	0.38 208	0.24 645	688	0.26 125				280. 05	5.26 09	688. 00	1.55 03
105	77	1- Dec ene	C ₁₀ H ₂₀	872- 05-9	140. 265 8	0.43 981	0.25 661	616. 6	0.29 148				206. 89	5.73 28	616. 60	1.71 39
105	78	Dec yl mer capt an	C ₁₀ H ₂₂ S	143- 10-2	174. 346 68	0.44 289	0.27 636	696	0.27 668				247. 56	5.00 48	696. 00	1.60 26
105	79	1- Dec yne	C ₁₀ H ₁₈	764- 93-2	138. 249 92	0.46 877	0.25 875	619. 85	0.29 479				229. 15	5.89 54	619. 85	1.81 17
105	80	Deu teriu m	D ₂	778 2- 39-0	4.03 16	5.21 15	0.31 5	38.3 5	0.28 571				18.7 3	42.9 45	38.3 5	16.5 440
105	81	1,1- Dibr omo etha ne	C ₂ H ₄ Br ₂	557- 91-5	187. 861 16	0.95 523	0.26 364	628	0.29 825				210. 15	11.7 99	628. 00	3.62 32

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	82	1,2- Dibr omo etha ne	C ₂ H ₄ Br ₂	106- 93-4	187. 861 16	1.01 32	0.26 634	650. 15	0.28 571				282. 85	11.7 04	650. 15	3.80 42
105	83	Dibr omo met han e	CH ₂ Br ₂	74- 95-3	173. 834 58	1.11 36	0.24 834	611	0.27 583				220. 60	15.3 58	611. 00	4.48 42
105	84	Dibu tyl ethe r	C ₈ H ₁₈ O	142- 96-1	130. 227 92	0.55 941	0.27 243	584. 1	0.29 932				175. 30	6.60 71	584. 10	2.05 34
105	85	m- Dich loro ben zen e	C ₆ H ₄ Cl ₂	541- 73-1	147. 001 96	0.74 495	0.26 147	683. 95	0.31 526				248. 39	9.12 07	683. 95	2.84 91
105	86	o- Dich loro ben zen e	C ₆ H ₄ Cl ₂	95- 50-1	147. 001 96	0.74 404	0.26 112	705	0.30 815				256. 15	9.16 58	705. 00	2.84 94
105	87	p- Dich loro ben zen e	C ₆ H ₄ Cl ₂	106- 46-7	147. 001 96	0.74 858	0.26 276	684. 75	0.30 788				326. 14	8.51 75	684. 75	2.84 89
105	88	1,1- Dich loro etha ne	C ₂ H ₄ Cl ₂	75- 34-3	98.9 591 6	1.10 55	0.26 533	523	0.28 7				176. 19	13.5 49	523. 00	4.16 65
105	89	1,2- Dich loro etha ne	C ₂ H ₄ Cl ₂	107- 06-2	98.9 591 6	1.25 91	0.27 698	561. 6	0.30 492				237. 49	13.4 62	561. 60	4.54 58
105	90	Dich loro met han e	CH ₂ Cl ₂	75- 09-2	84.9 325 8	1.38 97	0.25 678	510	0.29 02				178. 01	17.9 74	510. 00	5.41 20

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	91	1,1- Dich loro prop ane	C ₃ H ₆ Cl ₂	78- 99-9	112. 985 74	0.95 51	0.27 794	560	0.24 132				192. 50	10.9 25	560. 00	3.43 64
105	92	1,2- Dich loro prop ane	C ₃ H ₆ Cl ₂	78- 87-5	112. 985 74	0.89 833	0.26 142	572	0.28 68				172. 71	11.5 26	572. 00	3.43 63
105	93	Diet han ol ami ne	C ₄ H ₁₁ N O ₂	111- 42-2	105. 135 64	0.68 184	0.23 796	736. 6	0.20 62				301. 15	10.3 9	736. 60	2.86 54
105	94	Diet hyl ami ne	C ₄ H ₁₁ N	109- 89-7	73.1 368 4	0.85 379	0.25 675	496. 6	0.27 027				223. 35	10.5 75	496. 60	3.32 54
105	95	Diet hyl ethe r	C ₄ H ₁₀ O	60- 29-7	74.1 216	0.95 54	0.26 847	466. 7	0.28 14				156. 85	11.4 87	466. 70	3.55 87
105	96	Diet hyl sulfi de	C ₄ H ₁₀ S	352- 93-2	90.1 872	0.82 227	0.26 314	557. 15	0.27 369				169. 20	10.4 7	557. 15	3.12 48
105	97	1,1- Difl uoro etha ne	C ₂ H ₄ F ₂	75- 37-6	66.0 499 7	1.43 45	0.25 774	386. 44	0.28 178				154. 56	18.0 06	386. 44	5.56 57
105	98	1,2- Difl uoro etha ne	C ₂ H ₄ F ₂	624- 72-6	66.0 499 7	1.17 3	0.22 856	445	0.28 571				179. 60	18.3 36	445. 00	5.13 21
105	99	Difl uoro met han e	CH ₂ F ₂	75- 10-5	52.0 233 9	1.99 73	0.24 653	351. 26	0.28 153				136. 95	27.3 99	351. 26	8.10 17
105	100	Di- sopr opyl ami ne	C ₆ H ₁₅ N	108- 18-9	101. 19	0.61 81	0.25 786	523. 1	0.27 1				176. 85	8.05 41	523. 10	2.39 70

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т,	Den sity at T
105	101	Di- sopr opyl ethe r	C ₆ H ₁₄ O	108- 20-3	102. 174 76	0.69 213	0.26 974	500. 05	0.28 571				187. 65	8.06 73	500. 05	2.56 59
105	102	Di- sopr opyl keto ne	C ₇ H ₁₄ O	565- 80-0	114. 185 46	0.64 619	0.26 881	576	0.28 036				204. 81	7.67 96	576. 00	2.40 39
105	103	1,1- Dim etho xyet han e	C ₄ H ₁₀ O ₂	534- 15-6	90.1 21	0.89 368	0.26 599	507. 8	0.28 571				159. 95	11.0 29	507. 80	3.35 98
105	104	1,2- Dim etho xypr opa ne	C ₅ H ₁₂ O ₂	777 8- 85-0	104. 147 58	0.76 327	0.26 742	543	0.28 571				226. 10	8.84 31	543. 00	2.85 42
105	105	Dim ethy I acet ylen e	C ₄ H	503- 17-3	54.0 904 4	1.17 17	0.25 895	473. 2	0.27 289				240. 91	13.7 67	473. 20	4.52 48
105	106	Dim ethy I ami ne	C ₂ H ₇ N	124- 40-3	45.0 836 8	1.54 36	0.27 784	437. 2	0.25 72				180. 96	16.9 64	437. 20	5.55 57
105	107	2,3- Dim ethy Ibut ane	C ₆ H	79- 29-8	86.1 753 6	0.75 65	0.27 305	500	0.27 408				145. 19	9.03 1	500. 00	2.77 06
105	108	1,1- Dim ethy lcycl ohe xan e	C ₈ H 16	590- 66-9	112. 212 64	0.55 873	0.25 143	591. 15	0.27 758				239. 66	7.34 17	591. 15	2.22 22
105	109	cis- 1,2- Dim ethy lcycl ohe xan e	C ₈ H 16	220 7- 01-4	112. 212 64	0.52 953	0.24 358	606. 15	0.26 809				223. 16	7.57 83	606. 15	2.17 39

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	110	tran s- 1,2- Dim ethy lcycl ohe xan e	C ₈ H 16	687 6- 23-9	112. 212 64	0.54 405	0.25 026	596. 15	0.26 58				184. 99	7.62 58	596. 15	2.17 39
105	111	Dim ethy I disu Ifide	C ₂ H ₆ S ₂	624- 92-0	94.1 990 4	1.10 58	0.27 866	615	0.31 082				188. 44	12.4 13	615. 00	3.96 83
105	112	Dim ethy I ethe r	C ₂ H ₆ O	115- 10-6	46.0 684 4	1.56 93	0.26 79	400. 1	0.28 82				131. 65	18.9 5	400. 10	5.85 78
105	113	N,N- Dim ethy I for ma mid e	C ₃ H ₇ NO	68- 12-2	73.0 937 8	0.89 615	0.23 478	649. 6	0.28 091				212. 72	13.9 54	649. 60	3.81 70
105	114	2,3- Dim ethy Ipen tane	C ₇ H 16	565- 59-3	100. 201 94	0.72 352	0.28 629	537. 3	0.27 121				141. 23	7.99 32	537. 30	2.52 72
105	115	Dim ethy I phth alat e	C ₁₀ H ₁₀ O ₄	131- 11-3	194. 184	0.47 977	0.25 428	766	0.30 722				274. 18	6.23 34	766. 00	1.88 68
105	116	Dim ethy Isila ne	C ₂ H ₈ Si	111 1- 74-6	60.1 704 2	1.02 14	0.26 351	402	0.28 421				122. 93	12.8 98	402. 00	3.87 61
105	117	Dim ethy I sulfi de	C ₂ H ₆ S	75- 18-3	62.1 34	1.40 29	0.27 991	503. 04	0.27 41				174. 88	15.5 56	503. 04	5.01 20

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	118	Dim ethy I sulf oxid e	C ₂ H ₆ OS	67- 68-5	78.1 334 4	1.10 96	0.25 189	729	0.33 11				291. 67	14.1 11	729. 00	4.40 51
105	119	Dim ethy I tere phth alat e	C ₁₀ H ₁₀ O ₄	120- 61-6	194. 184	0.48 611	0.25 715	777. 4	0.28 571				413. 79	5.63 97	777. 40	1.89 04
105	120	1,4- Diox ane	C ₄ H ₈ O ₂	123- 91-1	88.1 051 2	1.18 19	0.28 13	587	0.30 47				284. 95	11.8 38	587. 00	4.20 16
105	121	Diph enyl ethe r	C ₁₂ H ₁₀ O	101- 84-8	170. 207 2	0.52 133	0.26 218	766. 8	0.31 033				300. 03	6.26 48	766. 80	1.98 84
105	122	Dipr opyl ami ne	C ₆ H ₁₅ N	142- 84-7	101. 19	0.65 9	0.26 428	550	0.27 66				210. 15	7.99 29	550. 00	2.49 36
105	123	Dod eca ne	C ₁₂ H ₂₆	112- 40-3	170. 334 84	0.33 267	0.24 664	658	0.28 571				263. 57	4.52 05	658. 00	1.34 88
105	124	Eico san e	C ₂₀ H ₄₂	112- 95-8	282. 547 48	0.18 166	0.23 351	768	0.28 571				309. 58	2.72 93	768. 00	0.77 80
105	125	Etha ne	C ₂ H	74- 84-0	30.0 69	1.91 22	0.27 937	305. 32	0.29 187				90.3 5	21.6 4	305. 32	6.84 47
105	126	Etha nol	C ₂ H ₆ O	64- 17-5	46.0 684 4	1.62 88	0.27 469	514	0.23 178				159. 05	19.4 1	514. 00	5.92 96
105	127	Ethy I acet ate	C ₄ H ₈ O ₂	141- 78-6	88.1 051 2	0.89 96	0.25 856	523. 3	0.27 8				189. 60	11.4 78	523. 30	3.47 93
105	128	Ethy I ami ne	C ₂ H ₇ N	75- 04-7	45.0 836 8	1.09 36	0.22 636	456. 15	0.25 522				192. 15	17.5 88	456. 15	4.83 12
105	129	Ethy Iben zen e	C ₈ H	100- 41-4	106. 165	0.70 041	0.26 162	617. 15	0.28 454				178. 20	9.04 07	617. 15	2.67 72

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	130	Ethy I ben zoat e	C ₉ H ₁₀ O ₂	93- 89-0	150. 174 5	0.48 864	0.23 894	698	0.28 421				238. 45	7.29 08	698. 00	2.04 50
105	131	2- Ethy I buta noic acid	C ₆ H ₁₂ O ₂	88- 09-5	116. 158 28	0.66 085	0.25 707	655	0.31 103				258. 15	8.21 98	655. 00	2.57 07
105	132	Ethy I buty rate	C ₆ H ₁₂ O ₂	105- 54-4	116. 158 28	0.63 566	0.25 613	571	0.27 829				175. 15	8.49 12	571. 00	2.48 18
105	133	Ethy lcycl ohe xan e	C ₈ H 16	167 8- 91-7	112. 212 64	0.61 587	0.26 477	609. 15	0.28 054				161. 84	7.86 79	609. 15	2.32 61
105	134	Ethy lcycl ope ntan e	C ₇ H 14	164 0- 89-7	98.1 860 6	0.71 751	0.26 903	569. 5	0.27 733				134. 71	9.01 79	569. 50	2.66 70
105	135	Ethy lene	C ₂ H 4	74- 85-1	28.0 531 6	2.09 61	0.27 657	282. 34	0.29 147				104. 00	23.3 26	282. 34	7.57 89
105	136	Ethy lene dia min e	C ₂ H ₈ N ₂	107- 15-3	60.0 983 2	0.78 42	0.20 702	593	0.20 254				284. 29	15.0 55	593. 00	3.78 80
105	137	Ethy lene glyc ol	C ₂ H ₆ O ₂	107- 21-1	62.0 678 4	1.31 5	0.25 125	720	0.21 868				260. 15	18.3 1	720. 00	5.23 38
105	138	Ethy lene imin e	C ₂ H ₅ N	151- 56-4	43.0 678	1.34 62	0.23 289	537	0.23 357				195. 20	21.4 5	537. 00	5.78 04
105	139	Ethy lene oxid e	C ₂ H ₄ O	75- 21-8	44.0 525 6	1.83 6	0.26 024	469. 15	0.26 96				160. 65	23.4 77	469. 15	7.05 50
105	140	Ethy I for mat e	C ₃ H ₆ O ₂	109- 94-4	74.0 785 4	1.13 43	0.26 168	508. 4	0.27 91				193. 55	14.0 06	508. 40	4.33 47

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	141	2- Ethy I hex anoi c acid	C ₈ H ₁₆ O ₂	149- 57-5	144. 211	0.47 428	0.25 028	674. 6	0.25 442				155. 15	6.92 6	674. 60	1.89 50
105	142	Ethy Ihex yl ethe r	C ₈ H ₁₈ O	575 6- 43-4	130. 227 92	0.55 729	0.27 14	583	0.29 538				180. 00	6.61	583. 00	2.05 34
105	143	Ethy liso prop yl ethe r	C ₅ H ₁₂ O	625- 54-7	88.1 481 8	0.81 85	0.26 929	489	0.30 621				140. 00	9.92 36	489. 00	3.03 95
105	144	Ethy liso prop yl keto ne	C ₆ H ₁₂ O	565- 69-5	100. 158 88	0.68 162	0.25 152	567	0.31 82				204. 15	8.97 49	567. 00	2.71 00
105	145	Ethy I mer capt an	C₂H ₆ S	75- 08-1	62.1 340 4	1.30 47	0.26 94	499. 15	0.27 866				125. 26	16.2 42	499. 15	4.84 30
105	146	Ethy I prop iona te	C ₅ H ₁₀ O ₂	105- 37-3	102. 131 7	0.74 05	0.25 563	546	0.27 95				199. 25	9.63 17	546. 00	2.89 68
105	147	Ethy Ipro pyl ethe r	C ₅ H ₁₂ O	628- 32-0	88.1 481 8	0.79 08	0.26 6	500. 23	0.29				145. 65	9.84 74	500. 23	2.97 29
105	148	Ethy Itric hlor osil ane	C ₂ H ₅ Cl ₃ Si	115- 21-9	163. 506	0.61 243	0.24 681	559. 95	0.30 858				167. 55	8.69 34	559. 95	2.48 14
105	149	Fluo rine	F ₂	778 2- 41-4	37.9 968 064	4.28 95	0.28 587	144. 12	0.28 776				53.4 8	44.8 88	144. 12	15.0 050
105	150	Fluo robe nze ne	C ₆ H ₅ F	462- 06-6	96.1 023 032	1.01 46	0.27 277	560. 09	0.28 291				230. 94	11.3 74	560. 09	3.71 96

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, к	Den sity at T	т, К	Den sity at T
105	151	Fluo roet han e	C ₂ H ₅ F	353- 36-6	48.0 595	1.69 385 8	0.26 932 3	375. 31	0.28 571				129. 95	20.0 99	375. 31	6.28 93
105	152	Fluo rom etha ne	CH ₃ F	593- 53-3	34.0 329 2	2.22 61	0.25 072	317. 42	0.27 343				131. 35	29.3 45	317. 42	8.87 88
105	153	For mal deh yde	CH ₂ O	50- 00-0	30.0 259 8	3.89 701 1	0.33 163 6	420	0.28 571				155. 15	30.9 2	420. 00	11.7 510
105	154	For ma mid e	CH ₃ NO	75- 12-7	45.0 406 2	1.24 86	0.20 352	771	0.25 178				275. 60	25.4 88	771. 00	6.13 50
105	155	For mic acid	CH ₂ O ₂	64- 18-6	46.0 257	1.93 8	0.24 225	588	0.24 435				281. 45	26.8 06	588. 00	8.00 00
105	156	Fura n	C ₄ H ₄ O	110- 00-9	68.0 739 6	1.13 39	0.24 741	490. 15	0.26 12				187. 55	15.7 02	490. 15	4.58 31
105	157	Heli um- 4	He	744 0- 59-7	4.00 26	7.24 75	0.41 865	5.2	0.24 096				2.20	37.1 15	5.20	17.3 120
105	158	Hep tade can e	C ₁₇ H ₃₆	629- 78-7	240. 467 74	0.21 897	0.23 642	736	0.28 571				295. 13	3.21 89	736. 00	0.92 62
105	159	Hep tana I	C ₇ H ₁₄ O	111- 71-7	114. 185 46	0.57 736 2	0.25 057 5	620	0.28 571				229. 80	7.74 62	620. 00	2.30 41
105	160	Hep tane	C ₇ H	142- 82-5	100. 201 94	0.61 259	0.26 211	540. 2	0.28 141				182. 57	7.69 98	540. 20	2.33 71
105	161	Hep tano ic acid	C ₇ H ₁₄ O ₂	111- 14-8	130. 185	0.53 066	0.24 729	677. 3	0.28 289				265. 83	7.22 12	677. 30	2.14 59
105	162	1- Hep tano I	C ₇ H ₁₆ O	111- 70-6	116. 201 34	0.55 687	0.24 725	632. 3	0.31 471				239. 15	7.50 22	632. 30	2.25 23

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	163	2- Hep tano I	C ₇ H ₁₆ O	543- 49-7	116. 201 34	0.59 339	0.26 02	608. 3	0.26 968				220. 00	7.51 73	608. 30	2.28 05
105	164	3- Hep tano ne	C ₇ H ₁₄ O	106- 35-4	114. 185 46	0.59 268	0.25 663	606. 6	0.27 766				234. 15	7.57 51	606. 60	2.30 95
105	165	2- Hep tano ne	C ₇ H ₁₄ O	110- 43-0	114. 185 46	0.58 247	0.25 279	611. 4	0.29 818				238. 15	7.55 14	611. 40	2.30 42
105	166	1- Hep tene	C ₇ H	592- 76-7	98.1 860 6	0.66 016	0.26 657	537. 4	0.28 571				154. 12	8.22 57	537. 40	2.47 65
105	167	Hep tyl mer capt an	C ₇ H ₁₆ S	163 9- 09-4	132. 266 94	0.58 622	0.27 26	645	0.29 644				229. 92	6.72 77	645. 00	2.15 05
105	168	1- Hep tyne	C ₇ H	628- 71-7	96.1 701 8	0.67 304	0.26 045	547	0.28 388				192. 22	8.49 22	547. 00	2.58 41
105	169	Hex ade can e	C ₁₆ H ₃₄	544- 76-3	226. 441 16	0.23 289	0.23 659	723	0.28 571				291. 31	3.41 5	723. 00	0.98 44
105	170	Hex anal	C ₆ H ₁₂ O	66- 25-1	100. 158 88	0.66 850 4	0.25 269 5	594	0.28 571				214. 93	8.87 08	594. 00	2.64 55
105	171	Hex ane	C ₆ H	110- 54-3	86.1 753 6	0.70 824	0.26 411	507. 6	0.27 537				177. 83	8.74 7	507. 60	2.68 16
105	172	Hex anoi c acid	C ₆ H ₁₂ O ₂	142- 62-1	116. 158	0.62 833	0.25 598	660. 2	0.25 304				269. 25	8.09 64	660. 20	2.45 46
105	173	1- Hex anol	C ₆ H ₁₄ O	111- 27-3	102. 174 76	0.70 093	0.26 776	611. 3	0.24 919				228. 55	8.45 6	611. 30	2.61 78
105	174	2- Hex anol	C ₆ H ₁₄ O	626- 93-7	102. 175	0.67 393	0.25 948	585. 3	0.26 552				223. 00	8.51 81	585. 30	2.59 72

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т,	Den sity at T
105	175	2- Hex ano ne	C ₆ H ₁₂ O	591- 78-6	100. 158 88	0.67 816	0.25 634	587. 61	0.28 365				217. 35	8.73 19	587. 61	2.64 55
105	176	3- Hex ano ne	C ₆ H ₁₂ O	589- 38-8	100. 158 88	0.67 666	0.25 578	582. 82	0.27 746				217. 50	8.76 31	582. 82	2.64 55
105	177	1- Hex ene	C ₆ H	592- 41-6	84.1 594 8	0.76 925	0.26 809	504	0.28 571				133. 39	9.58 15	504. 00	2.86 94
105	178	3- Hex yne	C ₆ H	928- 49-4	82.1 436	0.78 045	0.26 065	544	0.28 571				170. 05	10.0 21	544. 00	2.99 42
105	179	Hex yl mer capt an	C ₆ H ₁₄ S	111- 31-9	118. 240 36	0.66 372	0.27 345	623	0.29 185				192. 62	7.77 33	623. 00	2.42 72
105	180	1- Hex yne	C ₆ H	693- 02-7	82.1 436	0.84 427	0.27 185	516. 2	0.27 71				141. 25	10.2 3	516. 20	3.10 56
105	181	2- Hex yne	C ₆ H	764- 35-2	82.1 436	0.76 277	0.25 248	549	0.31 611				183. 65	10.1 33	549. 00	3.02 11
105	182	Hyd razi ne	H ₄ N	302- 01-2	32.0 451 6	1.05 16	0.16 613	653. 15	0.18 98				274. 69	31.9 34	653. 15	6.33 00
105	183	Hyd roge n	H ₂	133 3- 74-0	2.01 588	5.41 4	0.34 893	33.1 9	0.27 06				13.9 5	38.4 87	33.1 9	15.5 160
105	184	Hyd roge n bro mid e	BrH	100 35- 10-6	80.9 119 4	2.83	0.28 32	363. 15	0.28 571				185. 15	27.9 85	363. 15	10.0 000
105	185	Hyd roge n chlo ride	CIH	764 7- 01-0	36.4 609 4	3.34	0.27 29	324. 65	0.32 17				158. 97	34.8 54	324. 65	12.2 460

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	186	Hyd roge n cya nide	CH N	74- 90-8	27.0 253 4	1.34 13	0.18 589	456. 65	0.28 206				259. 83	27.2 02	456. 65	7.21 56
105	187	Hyd roge n fluo ride	FH	766 4- 39-3	20.0 063 432	2.80 61	0.19 362	461. 15	0.29 847				189. 79	58.8 61	461. 15	14.4 930
105	188	Hyd roge n sulfi de	H ₂ S	778 3- 06-4	34.0 808 8	2.76 72	0.27 369	373. 53	0.29 015				187. 68	29.1 3	373. 53	10.1 110
105	189	Isob utyri c acid	C ₄ H ₈ O ₂	79- 31-2	88.1 051 2	0.88 575	0.25 736	605	0.26 265				227. 15	11.4 2	605. 00	3.44 17
105	190	Isop ropy I ami ne	C ₃ H ₉ N	75- 31-0	59.1 102 6	1.28 01	0.28 28	471. 85	0.29 72				177. 95	13.5 61	471. 85	4.52 65
105	191	Mal onic acid	C ₃ H ₄ O ₄	141- 82-2	104. 061 46	0.87 969	0.24 543	834	0.28 571				409. 15	11.4 17	834. 00	3.58 43
105	192	Met hacr ylic acid	C ₄ H ₆ O ₂	79- 41-4	86.0 892 4	0.87 025	0.24 383	662	0.28 571				288. 15	11.8 34	662. 00	3.56 91
105	193	Met han e	CH ₄	74- 82-8	16.0 425	2.92 14	0.28 976	190. 56	0.28 881				90.6 9	28.1 8	190. 56	10.0 820
105	194	Met han ol	CH₄ O	67- 56-1	32.0 418 6	2.32 67	0.27 073	512. 5	0.24 713				175. 47	27.9 15	512. 50	8.59 42
105	195	N- Met hyl acet ami de	C ₃ H ₇ NO	79- 16-3	73.0 937 8	0.88 268	0.23 568	718	0.27 379				301. 15	13.0 12	718. 00	3.74 52
105	196	Met hyl acet ate	C ₃ H ₆ O ₂	79- 20-9	74.0 785 4	1.13	0.25 93	506. 55	0.27 64				175. 15	14.4 75	506. 55	4.35 79

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	197	Met hyl acet ylen e	C ₃ H 4	74- 99-7	40.0 638 6	1.60 85	0.26 436	402. 4	0.27 987				170. 45	19.0 31	402. 40	6.08 45
105	198	Met hyl acry late	C ₄ H ₆ O ₂	96- 33-3	86.0 892 4	0.97 286	0.26 267	536	0.25 08				196. 32	12.2 03	536. 00	3.70 37
105	199	Met hyl ami ne	CH ₅ N	74- 89-5	31.0 571	1.39	0.21 405	430. 05	0.22 75				179. 69	25.3 78	430. 05	6.49 38
105	200	Met hyl ben zoat e	C ₈ H ₈ O ₂	93- 58-3	136. 147 92	0.53 382	0.23 274	693	0.28 147				260. 75	8.22 02	693. 00	2.29
105	201	3- Met hyl- 1,2- buta dien e	C ₅ H 8	598- 25-4	68.1 170 2	0.84 623	0.24 625	490	0.29 041				159. 53	11.9 94	490. 00	3.43 65
105	202	2- Met hylb utan e	C ₅ H 12	78- 78-4	72.1 487 8	0.91 991	0.27 815	460. 4	0.28 667				113. 25	10.7 64	460. 40	3.30 72
105	203	2- Met hylb utan oic acid	C ₅ H ₁₀ O ₂	116- 53-0	102. 131 7	0.72 762	0.25 244	643	0.28 571				193. 00	9.99 15	643. 00	2.88 23
105	204	3- Met hyl- 1- buta nol	C ₅ H ₁₂ O	123- 51-3	88.1 482	0.81 89	0.26 974	577. 2	0.23 573				155. 95	10.2 48	577. 20	3.03 59
105	205	2- Met hyl- 1- bute ne	C ₅ H	563- 46-2	70.1 329	0.91 619	0.26 752	465	0.28 164				135. 58	11.3 32	465. 00	3.42 48

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т,	Den sity at T
105	206	2- Met hyl- 2- bute ne	C ₅ H	513- 35-9	70.1 329	0.93 391	0.27 275	470	0.25 78				139. 39	11.2 16	470. 00	3.42 41
105	207	2- Met hyl- 1- bute ne- 3- yne	C ₅ H 6	78- 80-8	66.1 011 4	1.11 57	0.27 671	492	0.30 821				160. 15	12.5 81	492. 00	4.03 20
105	208	Met hylb utyl ethe r	C ₅ H ₁₂ O	628- 28-4	88.1 481 8	0.83 63	0.27 514	512. 74	0.27 553				157. 48	9.75 81	512. 74	3.03 95
105	209	Met hylb utyl sulfi de	C ₅ H ₁₂ S	628- 29-5	104. 214	0.75 509	0.27 183	593	0.29 127				175. 30	9.00 56	593. 00	2.77 78
105	210	3- Met hyl- 1- buty ne	C ₅ H 8	598- 23-2	68.1 170 2	0.94 575	0.26 008	463. 2	0.30 807				183. 45	11.5 19	463. 20	3.63 64
105	211	Met hyl buty rate	C ₅ H ₁₀ O ₂	623- 42-7	102. 131 7	0.76 983	0.26 173	554. 5	0.26 879				187. 35	9.76 38	554. 50	2.94 13
105	212	Met hylc hlor osil ane	CH ₅ CISi	993- 00-0	80.5 889	1.06 74	0.26 257	442	0.26 569				139. 05	13.6 26	442. 00	4.06 52
105	213	Met hylc yclo hex ane	C ₇ H 14	108- 87-2	98.1 860 6	0.73 109	0.26 971	572. 1	0.29 185				146. 58	9.01 73	572. 10	2.71 07
105	214	1- Met hylc yclo hex anol	C ₇ H ₁₄ O	590- 67-0	114. 185 46	0.70 13	0.26 6	686	0.28 571				285. 15	8.20 91	686. 00	2.63 65

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т,	Den sity at T
105	215	cis- 2- Met hylc yclo hex anol	C ₇ H ₁₄ O	744 3- 70-1	114. 185 46	0.70 973	0.26 544	614	0.26 016				280. 15	8.29 31	614. 00	2.67 38
105	216	tran s-2- Met hylc yclo hex anol	C ₇ H ₁₄ O	744 3- 52-9	114. 185 46	0.72 836	0.27 241	617	0.24 78				269. 15	8.26 28	617. 00	2.67 38
105	217	Met hylc yclo pent ane	C ₆ H 12	96- 37-7	84.1 594 8	0.84 758	0.27 037	532. 7	0.28 258				130. 73	10.4 91	532. 70	3.13 49
105	218	1- Met hylc yclo pent ene	C ₆ H	693- 89-0	82.1 436	0.88 824	0.26 914	542	0.27 874				146. 62	10.9	542. 00	3.30 03
105	219	3- Met hylc yclo pent ene	C ₆ H	112 0- 62-3	82.1 436	0.91 09	0.27 6	526	0.26 756				168. 54	10.5 38	526. 00	3.30 04
105	220	Met hyld ichl oros ilan e	CH ₄ Cl ₂ S i	75- 54-7	115. 033 96	0.97 608	0.28 209	483	0.22 529				182. 55	10.7 89	483. 00	3.46 02
105	221	Met hyle thyl ethe r	C ₃ H ₈ O	540- 67-0	60.0 950 2	1.26 35	0.27 878	437. 8	0.27 44				160. 00	13.9 95	437. 80	4.53 22
105	222	Met hyle thyl keto ne	C ₄ H ₈ O	78- 93-3	72.1 057 2	0.93 767	0.25 035	535. 5	0.29 964				186. 48	12.6 63	535. 50	3.74 54
105	223	Met hyle thyl sulfi de	C ₃ H ₈ S	624- 89-5	76.1 606	1.06 7	0.27 102	533	0.29 364				167. 23	12.6 71	533. 00	3.93 70

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	224	Met hyl for mat e	C ₂ H ₄ O ₂	107- 31-3	60.0 519 6	1.52 5	0.26 34	487. 2	0.28 06				174. 15	18.8 11	487. 20	5.78 97
105	225	Met hyli sob utyl ethe r	C ₅ H ₁₂ O	625- 44-5	88.1 481 8	0.84 005	0.27 638	497	0.27 645				188. 00	9.38 71	497. 00	3.03 95
105	226	Met hyli sob utyl keto ne	C ₆ H ₁₂ O	108- 10-1	100. 158 88	0.71 687	0.26 453	574. 6	0.28 918				189. 15	8.86 17	574. 60	2.71
105	227	Met hyl Isoc yan ate	C ₂ H ₃ NO	624- 83-9	57.0 513 2	1.02 28	0.20 692	488	0.28 571				256. 15	17.6 66	488. 00	4.94 30
105	228	Met hyli sopr opyl ethe r	C ₄ H ₁₀ O	598- 53-8	74.1 216	0.97 887	0.27 017	464. 48	0.28 998				127. 93	11.9 33	464. 48	3.62 32
105	229	Met hyli sopr opyl keto ne	C ₅ H ₁₀ O	563- 80-4	86.1 323	0.86 567	0.26 836	553. 4	0.28 364				180. 15	10.4	553. 40	3.22 58
105	230	Met hyli sopr opyl sulfi de	C ₄ H ₁₀ S	155 1- 21-9	90.1 872	0.78 912	0.25 915	553. 1	0.26 512				171. 64	10.3 52	553. 10	3.04 50
105	231	Met hyl mer capt an	CH₄ S	74- 93-1	48.1 074 6	1.93 23	0.28 018	469. 95	0.28 523				150. 18	21.5 64	469. 95	6.89 66
105	232	Met hyl met hacr ylat e	C ₅ H ₈ O ₂	80- 62-6	100. 115 82	0.77 61	0.25 068	566	0.29 773				224. 95	10.1 76	566. 00	3.09 60

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	Т, К	Den sity at T	т, К	Den sity at T
105	233	2- Met hylo ctan oic acid	C ₉ H ₁₈ O ₂	300 4- 93-1	158. 238 02	0.44 16	0.25 21	694	0.28 532				240. 00	5.93 8	694. 00	1.75 17
105	234	2- Met hylp enta ne	C ₆ H	107- 83-5	86.1 753 6	0.72 701	0.26 754	497. 7	0.28 268				119. 55	9.20 41	497. 70	2.71 74
105	235	Met hyl pent yl ethe r	C ₆ H ₁₄ O	628- 80-8	102. 174 76	0.71 004	0.26 981	546. 49	0.29 974				176. 00	8.44 5	546. 49	2.63 16
105	236	2- Met hylp ropa ne	C ₄ H 10	75- 28-5	58.1 222	1.06 31	0.27 506	407. 8	0.27 58				113. 54	12.5 74	407. 80	3.86 50
105	237	2- Met hyl- 2- prop anol	C ₄ H ₁₀ O	75- 65-0	74.1 216	0.92 128	0.25 442	506. 2	0.27 586				298. 97	10.5 56	506. 20	3.62 11
105	238	2- Met hyl prop ene	C ₄ H	115- 11-7	56.1 063 2	1.14 46	0.27 24	417. 9	0.28 172				132. 81	13.5 07	417. 90	4.20 19
105	239	Met hyl prop iona te	C ₄ H ₈ O ₂	554- 12-1	88.1 051 2	0.91 47	0.25 94	530. 6	0.27 74				185. 65	11.6 78	530. 60	3.52 62
105	240	Met hylp ropy I ethe	C ₄ H ₁₀ O	557- 17-5	74.1 216	0.96 145	0.26 536	476. 25	0.30 088				133. 97	12.0 43	476. 25	3.62 32
105	241	Met hylp ropy I sulfi de	C ₄ H ₁₀ S	387 7- 15-4	90.1 872	0.87 496	0.26 862	565	0.30 259				160. 17	10.6 89	565. 00	3.25 72

Eqn	Cmp d.	Nam e	For mul	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity	т, К	Den sity
	no.		a											at T		at T
105	242	Met hyls ilan e	CH ₆ Si	992- 94-9	46.1 438 4	1.30 52	0.26 757	352. 5	0.28 799				116. 34	15.7 91	352. 50	4.87 80
105	243	alph a- Met hyl styr ene	C ₉ H 10	98- 83-9	118. 175 7	0.64 856	0.25 877	654	0.31 444				249. 95	8.00 99	654. 00	2.50 63
105	244	Met hyl tert- buty I ethe	C ₅ H ₁₂ O	163 4- 04-4	88.1 482	0.81 794 8	0.26 910 5	497. 1	0.28 571				164. 55	9.79 55	497. 10	3.03 95
105	245	Met hyl vinyl ethe r	C ₃ H ₆ O	107- 25-5	58.0 791 4	1.25 87	0.26 433	437	0.25 819				151. 15	15.6 91	437. 00	4.76 19
105	246	Nap htha lene	C ₁₀ H ₈	91- 20-3	128. 170 52	0.63 48	0.25 838	748. 4	0.27 727				333. 15	7.75 45	748. 40	2.45 68
105	247	Neo n	Ne	744 0- 01-9	20.1 797	7.37 18	0.30 67	44.4	0.27 86				24.5 6	61.7 96	44.4 0	24.0 360
105	248	Nitr oeth ane	C ₂ H ₅ NO ₂	79- 24-3	75.0 666	1.00 24	0.23 655	593	0.27 8				183. 63	15.5 56	593. 00	4.23 76
105	249	Nitr oge n	N ₂	772 7- 37-9	28.0 134	3.20 91	0.28 61	126. 2	0.29 66				63.1 5	31.0 63	126. 20	11.2 170
105	250	Nitr oge n trifl uori de	F ₃ N	778 3- 54-2	71.0 019 1	2.37 36	0.28 17	234	0.29 529				66.4	26.5 55	234. 00	8.42 60
105	251	Nitr ome than e	CH ₃ NO ₂	75- 52-5	61.0 400 2	1.37 28	0.23 793	588. 15	0.29 601				244. 60	19.6 32	588. 15	5.76 98
105	252	Nitr ous oxid e	N ₂ O	100 24- 97-2	44.0 128	2.78	0.27 244	309. 57	0.28 82				182. 30	27.9 28	309. 57	10.2 080

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	253	Nitri c oxid e	NO	101 02- 43-9	30.0 061	5.24 6	0.30 44	180. 15	0.24				109. 50	44.4 87	180. 15	17.2 340
105	254	Non ade can e	C ₁₉ H ₄₀	629- 92-5	268. 520 9	0.19 199	0.23 337	758	0.28 571				305. 04	2.88 89	758. 00	0.82 27
105	255	Non anal	C ₉ H ₁₈ O	124- 19-6	142. 238 62	0.47 323 3	0.25 691 8	658. 5	0.28 571				267. 30	5.94 15	658. 50	1.84 20
105	256	Non ane	C ₉ H 20	111- 84-2	128. 255 1	0.46 321	0.25 444	594. 6	0.28 571				219. 66	6.04 27	594. 60	1.82 05
105	257	Non anoi c acid	C ₉ H ₁₈ O ₂	112- 05-0	158. 238	0.41 582	0.24 284	710. 7	0.30 036				285. 55	5.75 92	710. 70	1.71 23
105	258	1- Non anol	C ₉ H ₂₀ O	143- 08-8	144. 254 5	0.43 682	0.25 161	670. 9	0.24 98				268. 15	5.84 96	670. 90	1.73 61
105	259	2- Non anol	C ₉ H ₂₀ O	628- 99-9	144. 255	0.41 925 8	0.24 191 2	649. 5	0.28 571				238. 15	6.02 23	649. 50	1.73 31
105	260	1- Non ene	C ₉ H 18	124- 11-8	126. 239 22	0.48 661	0.25 722	593. 1	0.28 571				191. 91	6.37 17	593. 10	1.89 18
105	261	Non yl mer capt an	C ₉ H ₂₀ S	145 5- 21-6	160. 320 1	0.47 377	0.27 052	681	0.30 284				253. 05	5.45 32	681. 00	1.75 13
105	262	1- Non yne	C ₉ H 16	345 2- 09-3	124. 223 34	0.52 152	0.25 918	598. 05	0.29 177				223. 15	6.53 69	598. 05	2.01 22
105	263	Oct ade can e	C ₁₈ H ₃₈	593- 45-3	254. 494 32	0.20 448	0.23 474	747	0.28 571				301. 31	3.04 18	747. 00	0.87 11
105	264	Oct anal	C ₈ H ₁₆ O	124- 13-0	128. 212	0.52 590 1	0.25 664	638. 9	0.28 571				251. 65	6.66 08	638. 90	2.04 92
105	265	Oct ane	C ₈ H	111- 65-9	114. 228 52	0.52 66	0.25 693	568. 7	0.28 571				216. 38	6.70 49	568. 70	2.04 96

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	266	Oct anoi c acid	C ₈ H ₁₆ O ₂	124- 07-2	144. 211	0.48 251	0.25 196	694. 26	0.26 842				289. 65	6.31 07	694. 26	1.91 50
105	267	1- Oct anol	C ₈ H ₁₈ O	111- 87-5	130. 227 92	0.48 979	0.24 931	652. 3	0.27 824				257. 65	6.57 38	652. 30	1.96 46
105	268	2- Oct anol	C ₈ H ₁₈ O	123- 96-6	130. 228	0.52 497	0.26 186	629. 8	0.25 257				241. 55	6.56 25	629. 80	2.00 48
105	269	2- Oct ano ne	C ₈ H ₁₆ O	111- 13-7	128. 212 04	0.50 006	0.24 851	632. 7	0.29 942				252. 85	6.64 77	632. 70	2.01 22
105	270	3- Oct ano ne	C ₈ H ₁₆ O	106- 68-3	128. 212 04	0.51 08	0.25 386	627. 7	0.26 735				255. 55	6.62 83	627. 70	2.01 21
105	271	1- Oct ene	C ₈ H	111- 66-0	112. 212 64	0.55 449	0.25 952	566. 9	0.28 571				171. 45	7.21 55	566. 90	2.13 66
105	272	Octy I mer capt an	C ₈ H ₁₈ S	111- 88-6	146. 293 52	0.52 577	0.27 234	667.	0.30 063				223. 95	6.09 87	667. 30	1.93 06
105	273	1- Octy ne	C ₈ H	629- 05-0	110. 196 76	0.58 945	0.26 052	574	0.28 532				193. 55	7.48 32	574. 00	2.26 26
105	274	Oxal ic acid	C ₂ H ₂ O ₄	144- 62-7	90.0 348 8	1.19 11	0.27 038	828	0.28 571				462. 65	12.4 05	828. 00	4.40 53
105	275	Oxy gen	02	778 2- 44-7	31.9 988	3.91 43	0.28 772	154. 58	0.29 24				54.3 5	40.7 7	154. 58	13.6 050
105	276	Ozo ne	03	100 28- 15-6	47.9 982	3.35 92	0.29 884	261	0.28 523				80.1 5	33.3 61	261. 00	11.2 410
105	277	Pen tade can e	C ₁₅ H ₃₂	629- 62-9	212. 414 58	0.25 142	0.23 837	708	0.28 571				283. 07	3.64 23	708. 00	1.05 47
105	278	Pen tana I	C ₅ H ₁₀ O	110- 62-3	86.1 323	0.85 658	0.26 811	566. 1	0.27 354				191. 59	10.3 53	566. 10	3.19 49

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	279	Pen tane	C ₅ H	109- 66-0	72.1 487 8	0.84 947	0.26 726	469. 7	0.27 789				143. 42	10.4 74	469. 70	3.17 84
105	280	Pen tano ic acid	C ₅ H ₁₀ O ₂	109- 52-4	102. 132	0.73 455	0.25 636	639. 16	0.25 522				239. 15	9.58 69	639. 16	2.86 53
105	281	1- Pen tano I	C ₅ H ₁₂ O	71- 41-0	88.1 482	0.81 754	0.26 732	588. 1	0.25 348				195. 56	10.0 61	588. 10	3.05 83
105	282	2- Pen tano	C ₅ H ₁₂ O	603 2- 29-7	88.1 482	0.81 577	0.26 594	561	0.25 551				200. 00	10.0 17	561. 00	3.06 75
105	283	2- Pen tano ne	C ₅ H ₁₀ O	107- 87-9	86.1 323	0.90 411	0.27 207	561. 08	0.30 669				196. 29	10.3 98	561. 08	3.32 31
105	284	3- Pen tano ne	C ₅ H ₁₀ O	96- 22-0	86.1 323	0.71 811	0.24 129	560. 95	0.27 996				234. 18	10.1 02	560. 95	2.97 61
105	285	1- Pen tene	C ₅ H	109- 67-1	70.1 329	0.89 816	0.26 608	464. 8	0.28 571				108. 02	11.5 21	464. 80	3.37 55
105	286	2- Pen tyl mer capt an	C ₅ H ₁₂ S	208 4- 19-7	104. 213 78	0.65 858	0.25 367	584. 3	0.28 571				160. 75	9.07	584. 30	2.59 62
105	287	Pen tyl mer capt an	C ₅ H ₁₂ S	110- 66-7	104. 213 78	0.75 345	0.27 047	598	0.30 583				197. 45	8.85 75	598. 00	2.78 57
105	288	1- Pen tyne	C ₅ H	627- 19-0	68.1 170 2	0.84 91	0.23 52	481. 2	0.35 3				167. 45	12.5 32	481. 20	3.61 01
105	289	2- Pen tyne	C ₅ H 8	627- 21-4	68.1 170 2	0.92 099	0.25 419	519	0.31 077				163. 83	12.2 4	519. 00	3.62 32

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	290	Phe nant hren e	C ₁₄ H ₁₀	85- 01-8	178. 229 2	0.45 554	0.25 23	869	0.24 841				372. 38	5.98 53	869. 00	1.80 55
105	291	Phe nol	C ₆ H ₆ O	108- 95-2	94.1 112 4	1.37 98	0.31 598	694. 25	0.32 768				314. 06	11.2 44	694. 25	4.36 67
105	292	Phe nyl isoc yan ate	C ₇ H ₅NO	103- 71-9	119. 120 7	0.63 163	0.23 373	653	0.28 571				243. 15	9.64 66	653. 00	2.70 24
105	293	Pht hali c anh ydri de	C ₈ H ₄ O ₃	85- 44-9	148. 115 56	0.53 93	0.22 704	791	0.24				404. 15	8.22 18	791. 00	2.37 54
105	294	Pro padi ene	C ₃ H	463- 49-0	40.0 638 6	1.60 87	0.26 543	394	0.29 895				136. 87	19.4 79	394. 00	6.06 07
105	295	Pro pan e	C ₃ H 8	74- 98-6	44.0 956 2	1.37 57	0.27 453	369. 83	0.29 359				85.4 7	16.5 83	369. 83	5.01 11
105	296	1- Pro pan ol	C ₃ H ₈ O	71- 23-8	60.0 950 2	1.24 57	0.27 281	536. 8	0.23 994				146. 95	15.2 06	536. 80	4.56 62
105	297	2- Pro pan ol	C ₃ H ₈ O	67- 63-0	60.0 95	1.17 99	0.26 44	508. 3	0.24 653				185. 26	14.6 63	508. 30	4.46 26
105	298	Pro pen ylcy cloh exe ne	C ₉ H 14	135 11- 13-2	122. 207 46	0.61 255	0.26 769	636	0.28 571				199. 00	7.47 63	636. 00	2.28 83
105	299	Pro pion alde hyd e	C₃H ₆ O	123- 38-6	58.0 791 4	1.28 61	0.26 236	503. 6	0.30 04				165. 00	16.0 75	503. 60	4.90 20
105	300	Pro pion ic acid	C ₃ H ₆ O ₂	79- 09-4	74.0 785	1.09 69	0.25 568	600. 81	0.26 857				252. 45	13.9 35	600. 81	4.29 01

Eqn	Cmp d.	Nam e	For mul	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity	т, К	Den sity
	no.		а											at T		at T
105	301	Pro pion itrile	C ₃ H ₅ N	107- 12-0	55.0 785	0.91 281	0.22 125	561. 3	0.26 811				180. 37	16.0 67	561. 30	4.12 57
105	302	Pro pyl acet ate	C ₅ H ₁₀ O ₂	109- 60-4	102. 131 7	0.73 041	0.25 456	549. 73	0.27 666				178. 15	9.79 41	549. 73	2.86 93
105	303	Pro pyl ami ne	C ₃ H ₉ N	107- 10-8	59.1 102 6	0.91 95	0.23 878	496. 95	0.24 61				188. 36	13.7 64	496. 95	3.85 08
105	304	Pro pylb enz ene	C ₉ H 12	103- 65-1	120. 191 58	0.57 233	0.25 171	638. 35	0.29 616				173. 55	7.98 21	638. 35	2.27 38
105	305	Pro pyle ne	C ₃ H	115- 07-1	42.0 797 4	1.44 03	0.26 852	364. 85	0.28 775				87.8 9	18.0 7	364. 85	5.36 38
105	306	Pro pyl for mat e	C ₄ H ₈ O ₂	110- 74-7	88.1 051 2	0.91 5	0.26 134	538	0.28				180. 25	11.5 9	538. 00	3.50 12
105	307	2- Pro pyl mer capt an	C ₃ H ₈ S	75- 33-2	76.1 606 2	1.09	0.27 762	517	0.29 781				142. 61	12.6 1	517. 00	3.93 70
105	308	Pro pyl mer capt an	C ₃ H ₈ S	107- 03-9	76.1 606 2	1.07 14	0.27 214	536. 6	0.29 481				159. 95	12.7 16	536. 60	3.93 69
105	309	1,2- Pro pyle ne glyc ol	C ₃ H ₈ O ₂	57- 55-6	76.0 944 2	1.09 23	0.26 106	626	0.20 459				213. 15	14.3 63	626. 00	4.18 41
105	310	Qui non e	C ₆ H ₄ O ₂	106- 51-4	108. 094 76	0.83 228	0.25 385	683	0.23 658				388. 85	10.0 82	683. 00	3.27 86
105	311	Silic on tetr aflu orid e	F ₄ Si	778 3- 61-1	104. 079 11	1.19 45	0.24 128	259	0.16 693				186. 35	15.6 35	259. 00	4.95 07

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	Т, К	Den sity at T	т, К	Den sity at T
105	312	Styr ene	C ₈ H	100- 42-5	104. 149 12	0.73 97	0.26 03	636	0.30 09				242. 54	9.10 88	636. 00	2.84 17
105	313	Suc cini c acid	C ₄ H ₆ O ₄	110- 15-6	118. 088 04	0.65 882	0.21 741	838	0.28 571				460. 85	10.2 1	838. 00	3.03 03
105	314	Sulf ur diox ide	028	744 6- 09-5	64.0 638	2.10 6	0.25 842	430. 75	0.28 95				197. 67	25.2 98	430. 75	8.14 95
105	315	Sulf ur hex aflu orid e	F ₆ S	255 1- 62-4	146. 055 419 2	1.35 87	0.27 01	318. 69	0.29 21				223. 15	12.6 31	318. 69	5.03 04
105	316	Sulf ur triox ide	038	744 6- 11-9	80.0 632	1.49 69	0.19 013	490. 85	0.43 59				289. 95	24.2 41	490. 85	7.87 30
105	317	Tere phth alic acid	C ₈ H ₆ O ₄	100- 21-0	166. 130 84	0.41 922	0.17 775	883. 6	0.28 571				700. 15	7.10 2	883. 60	2.35 85
105	318	o- Ter phe nyl	C ₁₈ H ₁₄	84- 15-1	230. 303 76	0.34 48	0.25 116	857	0.29 268				329. 35	4.55 26	857. 00	1.37 28
100	318	o- Ter phe nyl	C ₁₈ H ₁₄	84- 15-1	230. 303 76	5.71 36	-0.00	3474					288. 15	4.71 26	313. 19	4.62 56
105	319	Tetr ade can e	C ₁₄ H ₃₀	629- 59-4	198. 388	0.27 248	0.24 007	693	0.28 571				279. 01	3.88 9	693. 00	1.13 50
105	320	Tetr ahy drof uran	C ₄ H ₈ O	109- 99-9	72.1 057 2	1.25 43	0.28 084	540. 15	0.29 12				164. 65	13.9 98	540. 15	4.46 62
105	321	1,2,3 ,4- Tetr ahy dron apht hale ne	C ₁₀ H ₁₂	119- 64-2	132. 202 28	0.67 717	0.27 772	720	0.28 78				237. 38	7.63 8	720. 00	2.43 83

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	322	Tetr ahy drot hiop hen e	C ₄ H ₈ S	110- 01-0	88.1 713 2	1.16 28	0.28 954	631. 95	0.28 674				176. 99	12.4 08	631. 95	4.01 60
105	323	2,2,3 ,3- Tetr ame thyl buta ne	C ₈ H	594- 82-1	114. 228 52	0.58 988	0.27 201	568	0.27 341				373. 96	5.72 42	568. 00	2.16 86
105	324	Thio phe ne	C ₄ H ₄ S	110- 02-1	84.1 395 6	1.28 74	0.28 194	579. 35	0.30 781				234. 94	13.4 3	579. 35	4.56 62
105	325	Tolu ene	C ₇ H 8	108- 88-3	92.1 384 2	0.87 92	0.27 136	591. 75	0.29 241				178. 18	10.4 87	591. 75	3.24 00
105	326	1,1,2 - Tric hlor oeth ane	C ₂ H ₃ Cl ₃	79- 00-5	133. 404 22	0.90 62	0.25 475	602	0.31				236. 50	11.4 78	602. 00	3.55 72
105	327	Trid eca ne	C ₁₃ H ₂₈	629- 50-5	184. 361 42	0.29 934	0.24 33	675	0.28 571				267. 76	4.18 17	675. 00	1.23 03
105	328	Trie thyl ami ne	C ₆ H ₁₅ N	121- 44-8	101. 19	0.70 35	0.27 386	535. 15	0.28 72				158. 45	8.28 43	535. 15	2.56 88
105	329	Tri met hyl ami ne	C ₃ H ₉ N	75- 50-3	59.1 102 6	1.01 16	0.25 683	433. 25	0.26 96				156. 08	13.1 44	433. 25	3.93 88
105	330	1,2,3 - Tri met hylb enz ene	C ₉ H 12	526- 73-8	120. 191 58	0.65 31	0.27 002	664. 5	0.26 268				243. 15	7.72 78	664. 50	2.41 87

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	331	1,2,4 - Tri met hylb enz ene	C ₉ H 12	95- 63-6	120. 191 58	0.60 394	0.25 956	649. 1	0.27 713				229. 33	7.68 9	649. 10	2.32 68
105	332	2,2,4 - Tri met hylp enta ne	C ₈ H	540- 84-1	114. 228 52	0.59 059	0.27 424	543. 8	0.28 47				165. 78	6.91 46	543. 80	2.15 36
105	333	2,3,3 - Tri met hylp enta ne	C ₈ H	560- 21-4	114. 228 52	0.60 28	0.27 446	573. 5	0.27 41				172. 22	7.09 34	573. 50	2.19 63
105	334	1,3,5 - Trini trob enz ene	C ₆ H ₃ N ₃ O ₆	99- 35-4	213. 104 52	0.48 195	0.23 093	846	0.28 571				398. 40	7.08 25	846. 00	2.08 70
105	335	2,4,6 - Trini trot olue ne	C ₇ H ₅ N ₃ O ₆	118- 96-7	227. 131 1	0.37 378	0.21 379	828	0.29 905				354. 00	6.45 21	828. 00	1.74 84
105	336	Und eca ne	C ₁₁ H ₂₄	112 0- 21-4	156. 308 26	0.36 703	0.24 876	639	0.28 571				247. 57	4.94 53	639. 00	1.47 54
105	337	1- Und eca nol	C ₁₁ H ₂₄ O	112- 42-5	172. 307 66	0.33 113	0.23 676	703. 9	0.27 62				288. 45	4.85 94	703. 90	1.39 86
105	338	Viny I acet ate	C ₄ H ₆ O ₂	108- 05-4	86.0 892 4	0.95 91	0.25 93	519. 13	0.27 448				180. 35	12.2 87	519. 13	3.69 88
105	339	Viny I acet ylen e	C ₄ H 4	689- 97-4	52.0 745 6	1.27 03	0.26 041	454	0.29 7				173. 15	15.6 64	454. 00	4.87 81

Eqn	Cmp d. no.	Nam e	For mul a	CAS	Mol. wt.	С	С	С	С	С	С	С	т, К	Den sity at T	т, К	Den sity at T
105	340	Viny I chlo ride	C₂H ₃Cl	75- 01-4	62.4 982 2	1.51 15	0.27 07	432	0.27 16				119. 36	18.4 81	432. 00	5.58 37
105	341	Viny I trich loro sila ne	C ₂ H ₃ Cl ₃ Si	75- 94-5	161. 489 72	0.59 595	0.24 314	543. 15	0.24 856				178. 35	8.82 36	543. 15	2.45 11
100	342	Wat er	H ₂ O	773 2- 18-5	18.0 152 8	- 13.8 51	0.64 038	-0.00	1911. 22 11E- 06				273. 16	55.4 97	353. 15	54.0 010
119	342	Wat er	H ₂ O	773 2- 18-5	18.0 152 8	17.8 74	35.6 18	19.6 55	- 9.13 06	-31.3	67–813.	56–1742	21000. 16	55.4 87	647. 096	17.8 740
105	343	m- Xyle ne	C ₈ H	108- 38-3	106. 165	0.68 902	0.26 086	617	0.27 479				225. 30	8.64 8	617. 00	2.64 13
105	344	o- Xyle ne	C ₈ H	95- 47-6	106. 165	0.69 962	0.26 143	630. 3	0.27 365				247. 98	8.62 29	630. 30	2.67 61
105	345	p- Xyle ne	C ₈ H	106- 42-3	106. 165	0.67 752	0.25 887	616. 2	0.27 596				286. 41	8.16 14	616. 20	2.61 72

Except for o-terphenyl and water, liquid density ρ is calculated by Eqn 105: $\rho = C_1/(C_2^{[1+(1-T/C3)^{\Lambda}C_4]})$ where ρ is in mol/dm³ and T is in K. The pressure is equal to the vapor pressure for pressures greater than 1 atm and equal to 1 atm when the vapor pressure is less than 1 atm.

Equation (2-100), used for the limited temperature ranges as noted for o-terphenyl and water, is $\rho = C_1 + C_2T + C_3T^2 + C_4T^3$.

Equation (2-119), used for water, is $\rho = C_1 + C_2 \tau^{1/3} + C_3 \tau^{2/3} + C_4 \tau^{5/3} + C_5 \tau^{16/3} + C_6 \tau^{43/3} + C_7 \tau^{110/3}$ where $\tau = 1 - T/TC$, and TC = critical temperature (647.096 K).

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard™ Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, and N. F. Giles, *DIPPR*® *Data Compilation of Pure Chemical Properties*, Design Institute for Physical Properties, AIChE, New York, NY (2016).