Calculus and Differential Equations

Queensland University of Technology

Dr Vivien Challis 2021, Semester 2

Tarang Janawalkar

This work is licensed under a Creative "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Contents

C	ntents	1
1	Integration Techniques	2
	1.1 Derivatives	2
	1.2 Partial Fractions	3
	1.3 Integration by Parts	3
	1.4 Integration by Substitution	3
	1.5 Trigonometric Substitutions	4
2	Limits, Continuity and Differentiability	5
	2.1 Limits	5
	2.2 Continuity	5
	2.3 Differentiability	5
3	Definite Integrals	6
	3.1 Riemann Sums	6
	3.2 Fundamental Theorem of Calculus	6
	3.3 Taylor and Maclaurin Polynomials	8
4	Taylor and Maclaurin Series	9
5	Multivariable Calculus	10
6	Double and Triple Integrals	11
	•	
7	Vector-Valued Functions	12
8	First-Order Differential Equations	13
9	Second-Order Differential Equations	14

1 Integration Techniques

1.1 Derivatives

Let $a \in \mathbb{R}$ be a constant.

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
a	0	x	1
x^a	ax^{a-1}	\sqrt{x}	$rac{1}{2\sqrt{x}}$ \mathbf{e}^x
a^x	$\ln(a)a^x$	\sqrt{x} \mathbf{e}^x	\mathbf{e}^x
$\log_a x,\ a\in\mathbb{R}\backslash\left\{0\right\}$	$\frac{1}{a \ln x}$	$\ln x$	$\frac{1}{x}$

Table 1: Elementary Function Derivatives

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\sin\left(ax\right)$	$a\cos(ax)$	$\arcsin\left(ax\right)$	$\frac{a}{\sqrt{1-a^2x^2}}$
$\cos{(ax)}$	$-a\sin\left(ax\right)$	$\arccos\left(ax\right)$	$-\frac{a}{\sqrt{1-a^2x^2}}$
$\tan\left(ax\right)$	$a\sec^2{(ax)}$	$\arctan\left(ax\right)$	$\frac{a}{1+a^2x^2}$
$\cot\left(ax\right)$	$-a\csc^2(ax)$	$\mathrm{arccot}(ax)$	$-\frac{a}{1+a^2x^2}$
$\sec{(ax)}$	$a\sec\left(ax\right)\tan\left(ax\right)$	$\mathrm{arcsec}(ax)$	$\frac{1}{x\sqrt{a^2x^2-1}}$
$\csc\left(ax\right)$	$-a\csc\left(ax\right)\cot\left(ax\right)$	$\operatorname{arccsc}\left(ax\right)$	$-\frac{1}{x\sqrt{a^2x^2-1}}$

Table 2: Trigonometric Function Derivatives

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\sinh(ax)$	$a \cosh(ax)$	$\mathrm{arcsinh}(ax)$	$\frac{a}{\sqrt{1+a^2x^2}}$
$\cosh\left(ax\right)$	$a \sinh(ax)$	$\mathrm{arccosh}(ax)$	$\frac{a}{\sqrt{1-a^2x^2}}$
$\tanh\left(ax\right)$	$a\operatorname{sech}^{2}\left(ax\right)$	$\operatorname{arctanh}\left(ax\right)$	$\frac{a}{1-a^2x^2}$
$\coth{(ax)}$	$-a \operatorname{csch}^2(ax)$	$\operatorname{arccoth}\left(ax\right)$	$\frac{a}{1-a^2x^2}$
$\mathrm{sech}(ax)$	$-a\operatorname{sech}(ax)\tan(ax)$	$\operatorname{arcsech}\left(ax\right)$	$-\frac{1}{a(1+ax)\sqrt{\frac{1-ax}{1+ax}}}$
$\operatorname{csch}\left(ax\right)$	$-a \operatorname{csch}(ax) \cot(ax)$	$\mathrm{arccsch}(ax)$	$-\frac{1}{ax^2\sqrt{1+\frac{1}{a^2x^2}}}$

Table 3: Hyperbolic Function Derivatives

1.2 Partial Fractions

Definition 1.2.1 (Partial Fraction Decomposition). **Partial fraction decomposition** is a method where a rational function $\frac{P(x)}{Q(x)}$ is rewritten as a sum of fraction.

Factor in denominator	Term in partial fraction decomposition
ax + b	$\frac{A}{ax+b}$
$(ax+b)^k$	$\frac{A_1}{ax+b} + \frac{A_2}{\left(ax+b\right)^2} + \dots + \frac{A_k}{\left(ax+b\right)^k}, \ k \in \mathbb{N}$
$ax^2 + bx + c$	$\frac{A}{ax^2+bx+c}$
$\left(ax^2 + bx + c\right)^k$	$\frac{A_{1}x + B_{1}}{ax^{2} + bx + c} + \frac{A_{2}}{(ax + b)^{2}} + \dots + \frac{A_{k}}{(ax + b)^{k}}, \ k \in \mathbb{N}$

Table 4: Partial Fraction Forms

1.3 Integration by Parts

Theorem 1.3.1.

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Proof.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \left(u(x)v(x) \right) &= \frac{\mathrm{d}u(x)}{\mathrm{d}x} v(x) + u(x) \frac{\mathrm{d}v(x)}{\mathrm{d}x} \\ u(x) \frac{\mathrm{d}v(x)}{\mathrm{d}x} &= \frac{\mathrm{d}}{\mathrm{d}x} \left(u(x)v(x) \right) - \frac{\mathrm{d}u(x)}{\mathrm{d}x} v(x) \\ \int u(x) \frac{\mathrm{d}v(x)}{\mathrm{d}x} \, \mathrm{d}x &= \int \frac{\mathrm{d}}{\mathrm{d}x} \left(u(x)v(x) \right) \mathrm{d}x - \int \frac{\mathrm{d}u(x)}{\mathrm{d}x} v(x) \, \mathrm{d}x \\ \int u(x) \, \mathrm{d}v(x) &= u(x)v(x) - \int v(x) \, \mathrm{d}u(x) \end{split}$$

1.4 Integration by Substitution

Theorem 1.4.1.

$$\int f(g(x)) \frac{\mathrm{d}g(x)}{\mathrm{d}x} \, \mathrm{d}x = \int f(u) \, \mathrm{d}u \,, \text{ where } u = g(x)$$

1.5 Trigonometric Substitutions

Form	Substitution	Result	Domain
$(a^2 + b^2 x^2)^n$	$\begin{vmatrix} x = \frac{a}{b}\sin(\theta) \\ x = \frac{a}{b}\tan(\theta) \\ x = \frac{a}{b}\sec(\theta) \end{vmatrix}$	$a^2\sec^2\left(\theta\right)$	

Table 5: Trigonometric substitutions for various forms.

2 Limits, Continuity and Differentiability

2.1 Limits

Theorem 2.1.1 (Limits). $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^+} f(x)$ and $\lim_{x\to x_0^-} f(x)$ exist and are equal.

For $f: S \to T$,

$$I\subseteq S: \exists L\in I: \lim_{x\to x_0}f(x)=L\iff \lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=L$$

Theorem 2.1.2 (L'Hôpital's Rule). For two differentiable functions f(x) and g(x). If $\lim_{x\to x_0} f(x) = \int_{-\infty}^{\infty} f(x) dx$

 $\lim_{x\to x_0}g(x)=0,\ or\ \lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=\pm\infty,\ then\ \lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}\ (as\ long\ as\ the\ limit\ exists,\ or\ diverges\ to\ \pm\infty).$

2.2 Continuity

Theorem 2.2.1 (Continuity at a Point). f(x) is continuous at c iff $\lim_{x\to c} f(x) = f(c)$.

Theorem 2.2.2 (Continuity over an Interval). f(x) is continuous on I if f(x) is continuous for all $x \in I$.

- f(x) is continuous on I:(a, b) if it is continuous for all $x \in I$.
- f(x) is continuous on I : [a, b] if it is continuous for all $x \in I$, but only right continuous at a and left continuous at b.

If f(x) is continuous on $(-\infty, \infty)$, f(x) is continuous everywhere.

Theorem 2.2.3 (Intermediate Value Theorem). If f(x) is continuous on I : [a, b] and c is any number between f(a) and f(b), inclusive, then there exists an $x \in I$ such that f(x) = c.

2.3 Differentiability

Theorem 2.3.1 (Differentiability). f(x) is differentiable at $x = x_0$ iff

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists. When this limit exists, it defines the derivative

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

Theorem 2.3.2. f(x) is differentiable on I if f(x) is differentiable for all $x_0 \in I$.

Theorem 2.3.3. Differentiability implies continuity.

Theorem 2.3.4 (Mean Value Theorem). If f(x) is continuous on I : [a, b] and differentiable on I, then there exists a point $x_0 \in I$ such that

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{f(b) - f(a)}{b - a}$$

3 Definite Integrals

Theorem 3.0.1. If f(x) is continuous on an interval I:[a, b], then the net signed area A between the graph of f(x) and the interval I is

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Properties of Definite Integrals

Theorem 3.0.2. Suppose that f(x) and g(x) are continuous on the interval I, with $a, b, c \in I \text{ and } k \in \mathbb{R} \text{ then}$

a)
$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0.$$

b)
$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x.$$

c)
$$\int_a^b kf(x) \, \mathrm{d}x = k \int_a^b f(x) \, \mathrm{d}x.$$

$$d) \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$$

$$e) \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

e)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

3.1Riemann Sums

Theorem 3.1.1. Let A be the area under f(x) on the interval [a, b], then

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(x_k) \Delta x_k$$

where n is the number of rectangles, x_k is the centre of the rectangle k, and Δx_k is the width of the rectangle k. If every rectangle has the same width, then

$$\forall k: \Delta x_k = \frac{b-a}{n}$$

Fundamental Theorem of Calculus

The fundamental theorem of calculus provides a logical connection between infinite series (definite integrals) and antiderivatives (indefinite integrals).

Theorem 3.2.1 (The Fundamental Theorem of Calculus: Part 1). If f(x) is continuous on [a, b] and F is any antiderivative of f on [a, b] then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Equivalently

$$\int_a^b \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a) \equiv \left. F(x) \right|_a^b$$

Theorem 3.2.2 (The Fundamental Theorem of Calculus: Part 2). If f(x) is continuous on I then it has an antiderivative on I. In particular, if $a \in I$, then the function F defined by

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

is an antiderivative of f(x). That is,

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x) \iff \frac{\mathrm{d}}{\mathrm{d}x} = f(x)$$

Theorem 3.2.3. Differentiation and integration are inverse operations.

3.3 Taylor and Maclaurin Polynomials

Theorem 3.3.1 (Taylor Polynomials). If f(x) is a n differentiable function at x_0 , then the nth degree Taylor polynomial for f(x) near x_0 , is given by

$$f(x) \approx P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k$$

Theorem 3.3.2 (Maclaurin Polynomials). Evaluating a Taylor polynomial near 0, gives the nth degree Maclaurin polynomial for f(x)

$$f(x) \approx P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

Theorem 3.3.3 (Error in Approximation). Let $R_n(x)$ denote the difference between f(x) and its nth Taylor polynomial, that is

$$R_n(x) = f(x) - P_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k$$

4 Taylor and Maclaurin Series

5 Multivariable Calculus

Definition 5.0.1. A function is multivariable if its domain consists of several variables. In the reals, these functions are defined

$$f:\mathbb{R}^n\to\mathbb{R}$$

${\bf 6}\quad {\bf Double\ and\ Triple\ Integrals}$

7 Vector-Valued Functions

8 First-Order Differential Equations

9 Second-Order Differential Equations