```
# import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import requests
import xml.dom.minidom as m
import xml.etree.ElementTree as et
import time as time
import json
from matplotlib import pyplot as plt
```

150 # import data for Alzheimer articles

152

```
al_dict = {}
with open("Alzheimer.json") as f:
    al_dict = json.load(f)

151 # import data for cancer articles
    cn_dict = {}
    with open("Cancer.json") as f:
        cn_dict = json.load(f)

152 # create dataframe from al_dict
    al_df = pd.DataFrame.from_dict(al_dict, orient='index')
    al_df.head()
```

	title	abstract	query	mesh
33939349	Electroconvulsive Therapy for the Treatment of	Dementia refers to a state of cognitive impair	Alzheimer's	N/A
33841007	Gintonin facilitates brain delivery of donepez	Gintonin is a ginseng-derived exogenous G-prot	Alzheimer's	N/A
33627920	Bayesian Scalar on Image Regression With Nonig	Medical imaging has become an increasingly imp	Alzheimer's	N/A
33463291	The Structural Basis of Amyloid Strains in Alz	Amyloid fibrils represent one of the defining	Alzheimer's	Alzheimer Disease
33323224	Healthy ageing through internet counselling in	Although web-based interventions have been pro	Alzheimer's	Aged

153 # create dataframe from cn_dict
 cn_df = pd.DataFrame.from_dict(cn_dict, orient='index')
 cn_df.head()

153		title	abstract	query	mesh
	34590506	Diarylpentanones from the root of Wikstroemia	One new diarylpentanone, 4(S)-hydroxy-1, 5-dip	Cancer	A549 Cells
	34539049	Re-evaluating standards of human subjects prot This study addresses ethical questions about c		Cancer	N/A

	title	abstract	query	mesh
34539046	Inference for L-estimators of location using a	In this note we propose a new semiparametric	Cancer	N/A
34493369	The ITGB6 gene: its role in experimental and c	Integrin αvβ6 is a membrane-spanning	Cancer	Animals
34460208	Advancing the Science of Cancer in Latinos	Cancer is the leading cause of death among Lat	Cancer	N/A

```
154 # count number of Alzheimer papers that have no MeSH terms
    # note that the finding of mesh terms in Q1 is incorrect hence no mesh terms exist in dataframes, but thi
    al_no_mesh = len(al_df[al_df['mesh'] == "N/A"])
    print("There are", al_no_mesh, "Alzheimer papers that have no MeSH terms.")
    There are 164 Alzheimer papers that have no MeSH terms.
155 # count number of cancer papers that have no MeSH terms
    cn no mesh = len(cn df[cn df['mesh'] == "N/A"])
    print("There are", cn_no_mesh, "cancer papers that have no MeSH terms.")
    There are 756 cancer papers that have no MeSH terms.
156 # function for finding 10 most frequent mesh terms
    # returns a dictionary sorted by keys in descending order
    def mesh_frequency(df):
        mesh_counts = {}
        meshes = df['mesh']
        for m in meshes:
            if m not in mesh_counts: mesh_counts[m] = 0
            mesh_counts[m] += 1
        mesh counts = sorted(mesh counts.items(), key=lambda item: item[1], reverse=True)
        return mesh counts
157 # mesh terms in al_df ordered by frequency
    al top 10 mesh = mesh frequency(al df)
    al top 10 mesh = al top 10 mesh[:11]
    index na = [i[0] for i in al top 10 mesh].index('N/A')
    na_mesh_al = al_top_10_mesh.pop(index_na)
    # print(al top 10 mesh)
158 # plot frequency of 10 most common al df mesh terms
    al x = [i[0] \text{ for } i \text{ in al top } 10 \text{ mesh}]
    # print(al x)
    al_y = [i[1] for i in al_top_10_mesh]
    # print(al y)
    plt.bar(range(len(al_top_10_mesh)), al_y, tick_label=al_x)
    plt.xticks(rotation='vertical')
```

plt.show()

[34, 27, 23, 15, 5, 4, 3, 3, 3, 2]

```
159 # 10 most frequent mesh terms in cn_df
    cn_top_10_mesh = mesh_frequency(cn_df)
    cn_top_10_mesh = cn_top_10_mesh[:11]
    index_na = [i[0] for i in cn_top_10_mesh].index('N/A')
    na_mesh = cn_top_10_mesh.pop(index_na)
    # print(cn_top_10_mesh)

160 # plot frequency of 10 most common cn_df mesh terms
    cn_x = [i[0] for i in cn_top_10_mesh]
    print(cn_x)
    cn_y = [i[1] for i in cn_top_10_mesh]
    print(cn_y)

    plt.bar(range(len(cn_top_10_mesh)), cn_y, tick_label=cn_x)
    plt.xticks(rotation='vertical')
    plt.show()

['Adult', 'Animals', 'Aged', 'Adolescent', 'Humans', 'Cell Line, Tumor', 'Drug Delivery Systems', 'Biopsy
```



```
161 # table comparing number of articles from cn_df and al_df that have both matching mesh terms as specified
    al\_top\_5\_mesh = al\_x[:5]
    al_top_5_mesh_freq = al_y[:5]
    cn_{top_5_mesh} = cn_x[:5]
    cn_top_5_mesh_freq = cn_y[:5]
    print(al_top_5_mesh, '\n', cn_top_5_mesh)
    print(al_top_5_mesh_freq, '\n', cn_top_5_mesh_freq)
    al_cn_mesh = pd.DataFrame(index=al_top_5_mesh, columns=cn_top_5_mesh)
    i = 0
    while i < 5:
        j = 0
        while j < 5:
            al_cn_mesh.iloc[i][j] = al_top_5_mesh_freq[i] + cn_top_5_mesh_freq[j]
            j += 1
        i += 1
    al cn mesh.head()
    ['Aged', 'Alzheimer Disease', 'Alzheimer Diseasemetabolism', 'Adult', 'Alzheimer Diseasemetabolismpatholo
     ['Adult', 'Animals', 'Aged', 'Adolescent', 'Humans']
    [223, 45, 38, 28, 26]
```

161

[34, 27, 23, 15, 5]

	Adult	Animals	Aged	Adolescent	Humans
Aged	257	250	246	238	228
Alzheimer Disease	79	72	68	60	50
Alzheimer Diseasemetabolism	72	65	61	53	43
Adult	62	55	51	43	33
Alzheimer Diseasemetabolismpathology	60	53	49	41	31