Week 7

Juan Patricio Carrizales Torres Section 3: Set Operations

September 02, 2021

Problem 23. Give examples of two sets A and B such that $|A-B| = |A \cap B| = |B-A| = 3$. Draw the accompanying Venn diagram.

Solution. Because |A - B| = 3, it follows that there must be 3 elements in A which do not belong to B. On the other hand, |B - A| = 3 implies that there are 3 elements in B such that they do not belong to A. Finally, there must be 3 elements that belong to both A and B since $|A \cap B| = 3$. Two sets A and B that fulfill this conditions are

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$B = \{4, 5, 6, 7, 8, 9\}$$

The set $A - B = \{1, 2, 3\}$, $A \cap B = \{4, 5, 6\}$, and $B - A = \{7, 8, 9\}$. Therefore, $|A - B| = |A \cap B| = |B - A| = 3$.

Problem 24. Give examples of three sets A, B and C such that $B \neq C$ but B - A = C - A

Solution. Since B-A=C-A, it follows that the elements of C and B that do not belong to A must be the same. Also, $B \cap A \neq C \cap A$ so that $B \neq C$. Let

$$A = \{3\}$$

$$B = \{3, 5\}$$

$$C = \{5\}$$

Then,
$$B - A = \{5\}$$
, and $C - A = \{5\}$. Thus, $B \neq C$ but $B - A = C - A$

Problem 26. Let U be a universal set and let A and B be two subsets of U. Draw a Venn diagram for each of the following sets.

(a) $\overline{A \cup B}$

Solution a. $\overline{A \cup B} = \{x : x \in U \text{ and } x \notin A \cup B\}.$ Note that $A \cup B = \{x : x \in A \text{ or } x \in B\}$

(b) $\overline{A} \cap \overline{B}$

Solution b. $\overline{A} \cap \overline{B} = \{x : x \in \overline{A} \text{ and } x \in \overline{B}\}$

Note that $\overline{A} = \{x : x \in U \text{ and } x \notin A\}$ and $\overline{B} = \{x : x \in U \text{ and } x \notin B\}$. Therefore, $\overline{A} \cap \overline{B}$ is the set of all $x \in U$ such that they don't belong to $A \cup B$.

It can be seen that, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

(c) $\overline{A \cap B}$

Solution c. $\overline{A \cap B} = \{x : x \in U \text{ and } x \notin A \cap B\}.$

(d) $\overline{A} \cup \overline{B}$

Solution d. $\overline{A} \cup \overline{B} = \{x : x \in \overline{A} \text{ or } x \in \overline{B}\}.$

Thus, the set $\overline{A} \cup \overline{B}$ contains all $x \in U$ that don't belong to A or don't belong to B.

It can be seen that, $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Problem 32. Give an example of four different subsets A, B, C and D of $\{1, 2, 3, 4\}$ such that all intersections of two subsets are different.

Solution. The subset A can be the set $\{1,2,3,4\}$ since every set is a subset of itself. Each subset B, C and D takes one different number from A so that their intersections with A differ and they are not equal. Then, both B and C can take the number that only A contains, now they got an intersection. Lastly, D takes one element x of either B or C such that $x \notin B \cap C$.

Let
$$A = \{1, 2, 3, 4\}$$

$$B = \{1, 4\}$$

$$C=\{2,4\}$$

$$D = \{3, 1\}$$

Then, $A \cap B = \{1, 4\}, A \cap C = \{2, 4\}, A \cap D = \{1, 3\}, B \cap C = \{4\}, B \cap D = \{1\}, C \cap D = \emptyset$

Problem 33. Give an example of two nonempty sets A and B such that $\{A \cup B, A \cap B, A - B, B - A\}$ is the power set of some set.

Solution. Let D be a set and $\mathcal{P}(D) = \{A \cup B, A \cap B, A - B, B - A\}$ be its power set. Because $|\mathcal{P}(D)| = 2^{|D|} = 4$, it follows that |D| = 2. Therefore, $D = \{n, m\}$ for some elements n, m and $\mathcal{P}(D) = \{\emptyset, \{n\}, \{m\}, \{n, m\}\}$. The cardinality $|A \cup B|$ must be greater than that of the other sets $A \cap B$, A - B and B - A since they are subsets of $A \cup B$. Thus, $A \cup B = \{n, m\} = D$. It is possible that $A = \{n\}$ and $B = \{m\}$. Let,

 $A = \{1\}$ $B = \{2\}$

 $D = \{1, 2\}$ Then, $\mathcal{P}(D) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} \text{ and } A \cup B = \{1, 2\}, A - B = \{1\}, B - A = \{2\}, A \cap B = \emptyset.$

Problem 34. Give an example of two subsets A and B of $\{1,2,3\}$ such that all of the following sets are different: $A \cup B$, $A \cup \overline{B}$, $\overline{A} \cup B$, $\overline{A} \cup \overline{B}$, $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$, $\overline{A} \cap B$.

Solution . under construction

Problem 35. Give examples of a universal set U and sets A, B and C such that each of the following sets contains exactly one element: $A \cap B \cap C$, $(A \cap B) - C$, $(A \cap C) - B$, $(B \cap C) - A$, $A - (B \cup C)$, $B - (A \cup C)$, $C - (A \cup B)$, $A \cup B \cup C$. Draw the accompanying Venn diagram.

Solution. Using a Venn Diagram will facilitate the process of coming up with a solution for this problem since each of the sets that must contain one element represent a section of the following Venn diagram and they don't intersect each other.

Let,
$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

 $A = \{1, 2, 3, 5\}$

$$\begin{array}{l} B = \{1,2,4,6\} \\ C = \{1,3,4,7\} \\ \text{Then, } A \cap B \cap C = \{1\}, \ (A \cap B) - C = \{2\}, \ (A \cap C) - B = \{3\}, \ (B \cap C) - A = \{4\}, \\ A - (B \cup C) = \{5\}, \ B - (A \cup C) = \{6\}, \ C - (A \cup B) = \{7\}, \ \overline{A \cup B \cup C} = \{8\}. \end{array}$$