Stat 6021: Pairwise Comparisons from R Output

Read this after going over the tutorial for this module.

1 Setting Up Our Example

In the tutorial, we looked at a data set that contains ratings of various wines produced in California. We focused on the response variable y = Quality (average quality rating), $x_1 = Flavor$ (average flavor rating), and Region indicating which of three regions (North / Central / Napa) in California the wine is produced in. We ended up creating two indicator variables to represent the three regions, with Napa as the reference class, i.e.,

$$I_1 = \begin{cases} 1 & \text{if North} \\ 0 & \text{otherwise;} \end{cases}$$
 $I_2 = \begin{cases} 1 & \text{if Central} \\ 0 & \text{otherwise;} \end{cases}$

The model is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 I_1 + \beta_3 I_2 + \epsilon.$$

So the regression functions are:

North region: $E\{Y\} = \beta_0 + \beta_1 x_1 + \beta_2(1) + \beta_3(0) = (\beta_0 + \beta_2) + \beta_1 x_1$ Central region: $E\{Y\} = \beta_0 + \beta_1 x_1 + \beta_2(0) + \beta_3(1) = (\beta_0 + \beta_3) + \beta_1 x_1$

Napa region: $E\{Y\} = \beta_0 + \beta_1 x_1 + \beta_2(0) + \beta_3(0) = \beta_0 + \beta_1 x_1$

We note the following:

- The difference in mean quality rating between the North and Napa regions is denoted by β_2 .
- The difference in mean quality rating between the Central and Napa regions is denoted by β_3 .
- The difference in mean quality rating between the North and Central regions is denoted by $\beta_2 \beta_3$.

2 R Output

After fitting the model, we have the following output from R for the coefficients

(Intercept)	Flavor	RegionNorth	RegionCentral
8.318	1.116	-1.223	-2.757

and the variance-covariance matrix for the coefficients

	(Intercept)	${\tt Flavor}$	${\tt RegionNorth}$	RegionCentral
(Intercept)	1.020	-0.170	-0.277	-0.277
Flavor	-0.170	0.030	0.037	0.037
RegionNorth	-0.277	0.037	0.160	0.113
RegionCentral	-0.277	0.037	0.113	0.202

The entries in the diagonals of this matrix give the estimated variance of the corresponding coefficient, for example, the estimated variance of β_0 is 1.020, and so its standard error is $\sqrt{1.020}$.

The entries in the off-diagonals of this matrix give the estimated covariance of the corresponding coefficients, for example, the estimated covariance between β_0 and β_1 is -0.170.

3 Pairwise Comparisons using Bonferroni Procedure

Using the Bonferroni procedure, compute the 95% family confidence intervals for the difference in mean quality rating between wines in the

- 1. North and Napa regions;
- 2. Central and Napa regions;
- 3. North and Central regions.

As we are making three pairwise comparisons here, the multiplier for the confidence interval is $\Delta = t_{1-0.05/(2\times g),n-p} = t_{1-0.05/6,34} = 2.518$ since g = 3, n = 38 and p = 4, where g denotes the number of pairwise comparisons we are making.

For the difference in mean quality rating between wines in the North and Napa regions, we use the confidence interval for β_2 , i.e.,

$$\hat{\beta}_2 \pm \Delta se(\hat{\beta}_2)$$
= -1.223 \pm 2.518 \times \sqrt{0.160}
= (-2.230 , -0.216)

Likewise, for the difference in mean quality rating between wines in the North and Napa regions, we use the confidence interval for β_3 , which results in (-3.889, -1.625).

For the difference in mean quality rating between wines in the North and Central regions, we use the confidence interval for $\beta_2 - \beta_3$. We need to find the estimated variance of $\beta_2 - \beta_3$ first, i.e.,

$$Var\{\hat{\beta}_2 - \hat{\beta}_3\} = Var\{\hat{\beta}_2\} + Var\{\hat{\beta}_3\} - 2Cov\{\hat{\beta}_2, \hat{\beta}_3\}$$
$$= 0.160 + 0.202 - 2(0.113)$$
$$= 0.136.$$

using the general result (1) shown below. Therefore, the CI for $\beta_2 - \beta_3$ is

$$(\hat{\beta}_2 - \hat{\beta}_3) \pm \Delta se\{\hat{\beta}_2 - \hat{\beta}_3\}$$

= $(-1.223 + 2.757) \pm 2.518\sqrt{0.136}$
= $(1.192 , 1.876)$.

Note: A general result for the variance of any linear combination of random variables X and Y is

$$Var\{aX + bY\} = a^{2}Var\{X\} + b^{2}Var\{Y\} + 2ab \times Cov\{X, Y\}$$
 (1)