

Explainability of machine learning models for survival analysis:

current state and challenges

Mateusz Krzyziński, Przemysław Biecek
Based on joint work with: Mikołaj Spytek, Hubert Baniecki

MI2.AI, Warsaw University of Technology, Poland MI2.AI, University of Warsaw, Poland

Explainability of machine learning models for survival analysis: current state and challenges

Classical survival models:

- Cox Proportional Hazards model
- Parametric Proportional Hazards model
- Accelerated Failure Time model
- Royston-Parmar model

...

Classical survival models:

- ☐ Cox Proportional Hazards model
- Parametric Proportional Hazards model
- ☐ Accelerated Failure Time model
- ☐ Royston-Parmar model

...

Machine learning survival models:

- Survival Trees
- Random Survival Forests
- Survival Gradient Boosting Machines
- Survival Support Vector Machines

...

many different versions:

Ping Wang, Yan Li, and Chandan K. Reddy (2019).

Machine Learning for Survival Analysis: A Survey.

ACM Computing Surveys.

Classical survival models:

	Cox Proportional Hazards model Parametric Proportional Hazards model Accelerated Failure Time model Royston-Parmar model
Mach	ine learning survival models:
	Survival Trees
	Random Survival Forests
	Survival Gradient Boosting Machines
	Survival Support Vector Machines
	m
Deep	learning models:
	Cox-based models (e.g., DeepSurv, Cox-Time)
	Discrete Time models (e.g., DeepHit, MultiSurv)
	Piecewise Exponential models (e.g., PC-Hazard, DeepPAMM)
	Ranking-based models (e.g., RankDeepSurv)

many different versions:

S. Wiegrebe, et al. (2023).

Deep learning for Survival Analysis: A Review.

arXiv:2305.14961

Class	ical survival models:			lifelines
	Cox Proportional Hazards model			scikit-survival
	Parametric Proportional Hazards model			PySurvival
	Accelerated Failure Time model			pycox auton-survival
	Royston-Parmar model		_	uutoii sui vivui
	m.			survival
Mach	ine learning survival models:			flexsurv
	Survival Trees			ranger
	Random Survival Forests			randomForestSRC
	Survival Gradient Boosting Machines			gbm
	Survival Support Vector Machines			mboost
				svm mlr3proba
Deep	learning models:			censored
	Cox-based models (e.g., DeepSurv, Cox-Time)		ā	survivalmodels
	Discrete Time models (e.g., DeepHit, MultiSurv)	_		
	Piecewise Exponential models (e.g., PC-Hazard, DeepPAMM)	in the		Survival.jl
	Ranking-based models (e.g., RankDeepSurv)	Julia		SurvivalAnalysis.jl

Explainability of machine learning models for survival analysis: current state and challenges

Cox model

- Cox-Snell residuals
- martingale residuals
- deviance residuals
- Schoenfeld residuals
- ☐ Wald test
- score test
- ☐ likelihood ratio test
- model coefficient values
- hazard ratio

...

machine learning models

Cox model

- ☐ Cox-Snell residuals
- martingale residuals
- deviance residuals
- Schoenfeld residuals
- Wald test
- score test
- ☐ likelihood ratio test
- model coefficient values
- hazard ratio

• • • •

machine learning models

explainable artificial intelligence

(XAI) /

interpretable machine learning

(IML)

methods

The **overoptimistic** use of AI models in biostatistics, for medical applications

The need for a method of **validation** other than just performance measures

The **overoptimistic** use of AI models in biostatistics, for medical applications

The need for a method of **validation** other than just performance measures

The **complexity** and **lack of interpretability** of AI models hindering their widespread adoption

The need for a method of **examining** models that enables to undersand their operation

SurvLIME

apply the Cox proportional hazards model to approximate the black-box model

- adaptation of LIME method
- ☐ local method explains prediction for one patient
- the explanation: parameters of the Cox model
- coefficients calculated based on distance between cumulative hazard functions of black-box model and surrogate model:

$$\min_{\mathbf{b}} \sum_{k=1}^{N} w_k \sum_{j=0}^{m} v_{kj}^2 \left(\ln H_j(\mathbf{x}_k) - \ln H_{0j} - \mathbf{b}^{\mathrm{T}} \mathbf{x}_k \right)^2 (t_{j+1} - t_j)$$

M. S. Kovalev, L. V. Utkin, E. M. Kasimov (2020). A method for explaining machine learning survival models. *Knowledge-Based Systems*.

SurvLIME

M. S. Kovalev, L. V. Utkin, E. M. Kasimov (2020). A method for explaining machine learning survival models. *Knowledge-Based Systems*.

SurvLIME modifications

SurvLIME-Inf	(uses L_{∞} -norm instead of L	2)
--------------	---	----

- lacktriangle SurvLIME-KS (uses Kolmogorov-Smirnov bounds for CHFs and L_{∞} -norm)
- SurvNAM (uses GAM in place of the linear combination of covariates in Cox
 - model, the explanation: relationships learnt by NAM network)
- ☐ SurvBeX (uses Beran estimator instead of Cox model as the surrogate)

SurvLIME modifications

SurvLIME-Inf	(uses L_{∞} -norm instead of L_2)
SurvLIME-KS	(uses Kolmogorov-Smirnov bounds for CHFs and L_{∞} -norm)
SurvNAM	(uses GAM in place of the linear combination of covariates in Cox
	model, the explanation: relationships learnt by NAM network)
SurvBeX	(uses Beran estimator instead of Cox model as the surrogate)

Is the Cox model a good choice for approximating complex black-boxes?

allow for time-dependent explainability better suited to complex models

- adaptation of SHAP method with solid theoretical foundations and a broad adoption (by far the most popular XAI method)
- local method explains prediction for one patient (but can be aggregated to global explanations)
- ☐ first time-dependent explanation method

Number of	SHAP	LIME
citations	15.1 k	13.9 k
GitHub stars	20.0 k	10.8 k
downloads/month	7 M	275 k

M. Krzyziński, M. Spytek, H. Baniecki, P. Biecek (2023).

SurvSHAP(t): Time-dependent explanations of machine learning survival models. *Knowledge-Based Systems*.

Contribution of variable d in time point t for the patient x_* :

$$\phi_t(\mathbf{x}_*, d) = \frac{1}{|\Pi|} \sum_{\pi \in \Pi} e_{t, \mathbf{x}_*}^{\text{before}(\pi, d) \cup \{d\}} - e_{t, \mathbf{x}_*}^{\text{before}(\pi, d)}$$

$$e_{t,\mathbf{x}_*}^D = \mathbb{E}[\hat{S}(t,\mathbf{x})|\mathbf{x}^D = \mathbf{x}_*^D]$$

Local variable importance of variable d for the patient x_* :

$$\psi(\mathbf{x}_*, d) = \int_0^{t_{max}} |\phi_t(\mathbf{x}_*, d)| \, \mathrm{d}w(t)$$

can detect time-dependent variable effects

Variable

aggregation over time determines the local variable importance (better than SurvLIME)

SurvSHAP(t) results are more consistent with global importance and less noisy

example for RSF predicting survival of patients with heart failure

SurvSHAP(t) global aggregations

show global variable importance and variable attribution distributions

example for RSF predicting survival of patients with heart failure

SurvSHAP(t) global aggregations

show the dependence of variable attributions on its values

SurvSHAP(t) global aggregations

can be analyzed using functional data analysis techniques

Implementations

survshap repository

- □ SurvSHAP(t)
 - **SurvLIME**

SurvLIMEpy package

□ SurvLIME

survex package

- SurvSHAP(t)
- ¬ SurvLIME
- also many other explanation methods

survex

- cohesive R framework for explaining any survival model
- ☐ available on CRAN

☐ compatible with many R packages (supports selected models from Python too)

Explainability of machine learning models for survival analysis: current state and challenges

Limitations & challenges (potential research ideas)

- computational complexity of time-dependent methods
- no consideration of competing risks or other types of censoring
- □ lack of described connections to data generating process (biological mechanism)

(GRAND CHALLENGE)

responsible (supported by explanations) use of survival machine learning models in biostatistics

Key Takeaways

Explainable artificial intelligence methods enable responsible use of machine learning in survival analysis.

SurvSHAP(t) is a method well suited to explaining complex survival models.

It is available in survex along with several other explanation methods.

Several explanation methods have already been proposed, but there are still many challenges to be resolved in this area.

Thank you! QUESTIONS?

Explainability of machine learning models for survival analysis:

current state and challenges

<u>Mateusz Krzyziński</u>, Przemysław Biecek Based on joint work with: Mikołaj Spytek, Hubert Baniecki

MI2.AI, Warsaw University of Technology, Poland
MI2.AI, University of Warsaw, Poland

