

Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics

Liming Wu^{1*}, Zhichao Hou^{2*}, Jirui Yuan³, Yu Rong⁴, Wenbing Huang¹ GSAI, Renmin University of China¹, North Carolina State University², Tsinghua University³, Tencent AI Lab⁴ Equal Contributions*, Corresponding Author

Introduction

- > TL; DR: We design a graph neural network to capture both spatial and temporal dependencies while respecting the underlying symmetries of the simulated systems.
- Learning to represent and simulate the dynamics of physical systems is a crucial yet challenging task.
- > Frame-to-frame formulation of the task overlooks the non-Markov property. We reformulate dynamics simulation as a spatio-temporal prediction task, by employing the trajectory in the past period.

Equivariant Spatio-Temporal Attentive GNN

- **Existing Challenges**
 - 1. Frame-to-Frame Prediction

$$(H(T-1), \overrightarrow{X}(T-1), A) \rightarrow \overrightarrow{X}(T)$$

✓ E(3)-Equivariance

Generalization

2. Spatio-Temporal Prediction (2D setting)

$$\{(H(T-1),A)\}_{t=0}^{T-1} \to H(T)$$

> The overall architecture of ESTAG

1. Equivariant Discrete Fourier Transform (EDFT)

From time domain to frequency domain

$$\vec{f}_i(k) = \sum_{t=0}^{T-1} e^{-it^2 \frac{2\pi}{T} kt} \left(\vec{x}_i(t) - \overline{\vec{x}(t)} \right)$$

Compute cross-correlation and amplitude

$$A_{ij}(k) = w_k(h_i)w_k(h_j)|\langle \vec{f}_i(k), \vec{f}_j(k)\rangle|,$$

$$c_i(k) = w_k(h_i)||\vec{f}_i(k)||^2.$$

2. Equivariant Message Passing (ESM & ETM)

We conduct inner-graph message passing and inter-graph message passing alternatively.

$$m_{ij} = \phi_m(h_i, d_{ij}, A_{ij})$$

$$h_i = h_i + \phi_h(h_i, c_i, \sum m_{ij})$$

$$x_i = x_i + \sum x_{ij}\phi_x(m_{ij})$$

 $\alpha_{ts} = \operatorname{attention}(Q, K, V)$ $h_i(t) = h_i(t) + \sum \alpha_{ts} v_i(s)$ $x_i(t) = x_i(t) + \sum_{i=1}^{n} \alpha_{ts} x_i(ts) \phi_x(v_i(s))$

3. Equivariant Temporal Pooling (ETP)

The trajectory is finally aggregated by a learned weight w, as the ultimate output for the prediction.

$$\vec{x}_i^*(T) = \hat{X}_i w + \vec{x}_i^{(L)}(T-1), w \in R^{T-1}$$

$$L = \sum ||\vec{x}_i(T) - \vec{x}_i^*(T)||_2^2$$

Where, $\hat{X}_i = [\vec{x}_i^{(L)}(0) - \vec{x}_i^{(L)}(T-1), \dots, \vec{x}_i^{(L)}(T-2) - \vec{x}_i^{(L)}(T-1)]$

Experiments

We evaluate the efficacy of ESTAG in three scenarios.

➤ 1. Molecular Dataset: MD17

Table 1: Prediction error ($\times 10^{-3}$) on MD17 dataset. Results averaged across 3 runs. We do not

	ASPIRIN	BENZENE	ETHANOL	MALONALDEHYDE	Naphthalene	SALICYLIC	TOLUENE	URACIL
PT-s	15.579	4.457	4.332	13.206	8.958	12.256	6.818	10.269
$\operatorname{PT-}m$	9.058	2.536	2.688	6.749	6.918	8.122	5.622	7.257
$\operatorname{PT-}t$	0.715	0.114	0.456	0.596	0.737	0.688	0.688	0.674
EGNN-s	12.056	3.290	2.354	10.635	4.871	8.733	3.154	6.815
EGNN- m	6.237	1.882	1.532	4.842	3.791	4.623	2.516	3.606
$EGNN ext{-}t$	0.625	0.112	0.416	0.513	0.614	0.598	0.577	0.568
ST_TFN	0.719	0.122	0.432	0.569	0.688	0.684	0.628	0.669
ST_GNN	1.014	0.210	0.487	0.664	0.769	0.789	0.713	0.680
ST_SE(3)TR	0.669	0.119	0.428	0.550	0.625	0.630	0.591	0.597
ST_EGNN	0.735	0.163	0.245	0.427	0.745	0.687	0.553	0.445
EQMOTION	0.721	0.156	0.476	0.600	0.747	0.697	0.691	0.681
STGCN	0.715	0.106	0.456	0.596	0.736	0.682	0.687	0.673
AGL-STAN	0.719	0.106	0.459	0.596	0.601	0.452	0.683	0.515
ESTAG	0.063	0.003	0.099	0.101	0.068	0.047	0.079	0.066

ESTAG achieves the lowest prediction error and almost reconstructes the ground truths.

2. Protein Dynamics: AdK

МЕТНОО	MSE	TIME(S)
PT-s	3.260	-
$\operatorname{PT-}m$	3.302	-
\mathbf{P} T- t	2.022	-
EGNN-s	3.254	1.062
EGNN- m	3.278	1.088
EGNN-t	1.983	1.069
ST_GNN	1.871	2.769
ST_GMN	1.526	4.705
ST_EGNN	1.543	4.705
STGCN	1.578	1.840
AGL-STAN	1.671	1.478
ESTAG	1.471	6.876

ESTAG also performs better, particularly for the prediction of alpha helix parts.

> 3. Human Motion: CMU Motion Capture

aset. Results averaged across 3 runs.							
M ETHOD	WALK	BASKETBALL					
PT- <i>s</i>	329.474	886.023					
${ m PT-}m$	127.152	413.306					
${ m PT-}t$	3.831	15.878					
EGNN-s	63.540	749.486					
EGNN- m	32.016	335.002					
EGNN- t	0.786	12.492					
T_GNN	0.441	15.336					
T_TFN	0.597	13.709					
T_SE(3)TR	0.236	13.851					
T_EGNN	0.538	13.199					
EQMOTION	1.011	4.893					
TGCN	0.062	4.919					
AGL-STAN	0.037	5.734					
ESTAG	0.040	0.746					

The motions predicted by ESTAG are closer to the ground truths.