Cálculo Infinitesimal 3 – Lista 5 - 2020

Prof. Flavio Dickstein.

Questão 1. Seja $F = (F_1, F_2)$ um campo irrotacional, isto é, $\nabla \times F = 0$. Se $F_1(x, y) = x - 4y + 1$, determine F_2 .

Resolução 1. Temos que $\partial_x F_2 = \partial_y F_1 = -4$. Então, $F_2(x,y) = -4x + g(y)$.

Questão 2. Seja $F = (F_1, F_2)$ um campo incompressível, isto é, $\nabla \cdot F = 0$. Se $F_1(x, y) = x - 4y + 1$, determine F_2 .

Resolução 2. Temos que $\partial_y F_2 = -\partial_x F_1 = 1$. Então, $F_2(x,y) = y + g(x)$.

Questão 3. Seja F(x,y)=(x,y) e seja γ o polígono de vértices (-2,0),(0,1),(1,0),(0,-2).

- (i) Calcule $\oint_{\mathcal{L}} F \cdot dl$ quando o circulação é feita no sentido trigonométrico.
- (ii) Calcule ∇F e refaça o item (i) usando o Teorema de Green.
- (iii) Calcule $\int_{\Omega} F \cdot d\eta$ tomando a normal exterior.
- (iv) Calcule $\nabla \cdot F$ e refaça o item (ii) usando o Teorema da Divergência.

Questão 4. Seja $F(x,y) = e^{xy}(-y,x)$ e seja γ a poligonal que vai de (-1,0) a (0,1) e, depois, de (0,1) a (1,0). Considere sobre o polígono o campo de normais unitárias que apontam para cima.

- (i) Calcule diretamente o fluxo $\int_{\gamma} F \cdot \eta$.
- (ii) Verifique que F é um campo incompressível, $\nabla \cdot F = 0$.
- (iii) Use o Teorema da Divergência para calcular $\int_{\gamma} F \cdot \eta$ de forma mais simples.

Resolução 3. Seja γ_1 o trecho que vai de (-1,0) a (0,1), parametrizado por $\alpha(t) = t(0,1) + (1-t)(-1,0) = (t-1,t)$. Então, $\alpha'(t) = (1,1)$, $\eta(t) = (-1,1)$ e

$$\int_{\gamma_1} F \cdot d\eta = \int_0^1 e^{t^2 - t} (-t)(-1) + e^{t^2 - t} (t - 1) dt = \int_0^1 e^{t^2 - t} (2t - 1) dt = e^{t^2 - t} \Big|_0^1 = 0.$$

O segundo trecho γ_1 é parametrizado por $\alpha(t) = t(1,0) + (1-t)(0,1) = (t,1-t)$. Então, $\alpha'(t) = (1,-1)$ e $\eta(t) = (1,1)$. Assim,

$$\int_{\gamma_2} F \cdot d\eta = \int_0^1 e^{t-t^2} (t-1) + e^{t-t^2} (t) dt = \int_0^1 e^{t-t^2} (2t-1) dt = -e^{t-t^2} \Big|_0^1 = 0.$$

Um cálculo direto mostra que $\nabla \cdot F = 0$. Então, se γ_3 é o segmento que une (1,0) a (-1,0), o Teorema da Divergência diz que

$$\int_{\gamma_1} + \int_{\gamma_2} + \int_{\gamma_2} F \cdot d\eta = 0.$$

$$\int_{\gamma_1} + \int_{\gamma_2} = -\int_{\gamma_3} F \cdot d\eta,$$

onde a normal em γ_3 tem que ser tomada para baixo. Seja $\alpha(t) = (t,0), t \in (-1,1)$. Então, $\alpha'(t) = (1,0)$ e $\eta(t) = (0,-1)$. Assim,

$$\int_{\gamma_3} F \cdot d\eta = \int_0^1 e^0 t(-1) = -\frac{t^2}{2} \Big|_{-1}^1 = 0.$$

Questão 5. O rotacional de um campo $F = (F_1, F_2, F_3)$ é definido por

$$\nabla \times F = \begin{pmatrix} i & j & k \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{pmatrix}.$$

O divergente de F é definido por

$$\nabla \cdot F = \partial_1 F_1 + \partial_2 F_2 + \partial_3 F_3.$$

Mostre que o "produto misto" $\nabla \cdot \nabla \times F$ é nulo, isto é, que o divergente do rotacional é igual a zero.

Questão 6. Seja F(x, y, z) um campo escalar em \mathbb{R}^3 . Seja ∇F o gradiente de F. Mostre que o "produto misto" $\nabla \times \nabla F$ é nulo, isto é, que o rotacional do gradiente é igual a zero.