ANALISE SINTÁTICA

BOTTOM-UP

ANÁLISE BOTTOM-UP

Análise empilhar e reduzir

Análise de precedência de operadores

Análise LR

ANÁLISE GRAMATICAL EMPILHAR E REDUZIR

Tenta construir a árvore gramatical começando pelas folhas e para o topo.

Consiste em "reduzir" uma cadeia ao símbolo de partida de uma gramática.

Análise Gramatical Empilhar e Reduzir

A cada passo de redução:

- Uma subcadeia particular, que reconheça o lado direito de uma produção, é substituída por um símbolo a esquerda daquela produção.
- Se a subcadeia tiver sido escolhida corretamente a cada passo, uma derivação mais a direita terá sido rastreada na ordem inversa.

Empilhar e Reduzir

Considere a gramática:

Cadeia: abbcde

$$S \rightarrow aABe$$

$$A \rightarrow Abc \mid b$$

$$B \rightarrow d$$

abbcde

a**A**bcde

aAde

aABe

S

Derivação mais a direita

 $S \rightarrow aABe \rightarrow aAde \rightarrow aAbcde \rightarrow abbcde$

- È uma subcadeia que reconhece o lado direito de uma produção;
- A redução ao não-terminal do lado esquerdo da produção representa um passo ao longo do percurso de uma derivação mais a direita;
- Em muitos casos a cadeia mais e esquerda que reconhece o lado direito de uma produção, não é um handle.

Ex: Gramática Anterior.

abbcde

aAbcde

aAAcde // b não é um handle.

Handle, e cada subcadeia de uma redução, que consiga chegar ao símbolo inicial da gramática.

- Observações:
- A cadeia w a à direita do handle contém apenas símbolos terminais;
- Se a gramática for inambígua, cada forma sentencial a direita possui apenas um handle.

Podemos dizer que " a subcadeia β é um handle de αβw" se a posição de β e a produção $A \rightarrow β$ forem claras.

► Handle A → β na produção $\alpha\beta w$.

 A redução de β para A pode ser chamada de "poda do handle"

Considere a seguinte gramática

(1)
$$E \rightarrow E + E$$

(2)
$$E \rightarrow E * E$$

$$(3) E \rightarrow (E)$$

(4)
$$E \rightarrow id$$

$$E \implies \underbrace{E+E}_{mad} \implies E+\underbrace{E*E}_{mad} \implies E+\underbrace{E*E}_{mad} \implies E+\underbrace{E*id}_{3}$$

$$\implies E+E*\underbrace{id}_{3} \implies E+\underbrace{E*id}_{3} \implies E+\underbrace{id}_{2}*id_{3}$$

$$\implies E+\underbrace{id}_{2}*id_{3} \implies E+\underbrace{id}_{2}*id_{3}$$

A Poda do Handle

Forma Sentencial à Direita	Handle	Produção Redutora
$\mathbf{id}_{1} + \mathbf{id}_{2} * \mathbf{id}_{3}$ $E + \mathbf{id}_{2} * \mathbf{id}_{3}$ $E + E * \mathbf{id}_{3}$ $E + E * E$ $E + E$	id_1 id_2 id_3 $E * E$ $E + E$	$E \rightarrow id$ $E \rightarrow id$ $E \rightarrow id$ $E \rightarrow E * E$ $E \rightarrow E + E$

Note que a sequência de formas sentenciais nesse exemplo é somente o inverso da sequência da primeira derivação do exemplo anterior.

A Poda do Handle

- Dois problemas devem ser considerados:
- Localizar a subcadeia a ser reduzida numa forma sentencial à direita

 Determinar que produção escolher, no caso de existir mais de uma.

Trataremos desses dois problemas mais tarde.

- Implementando:
- 1. Pilha para guardar os símbolos gramaticais;
- 2. Buffer de entrada para a cadeia w;
- 3. \$ no fundo da pilha e a direita da entrada;

Iniciamos com a pilha está vazia e a cadeia w na entrada

PILHA ENTRADA

\$ w\$

- O analisador opera empilhando zero ou mais símbolos na pilha até que o handle β surja no topo da pilha.
- Reduz β para o lado esquerdo da produção apropriada.
- Repete o ciclo até que tenha detectado um erro ou que a pilha contenha apenas o símbolo de partida e a entrada esteja vazia.
- PILHA ENTRADA
- **\$** \$\$

Exemplo:

Pilha	Entrada	Ação
(1) \$ (2) \$id ₁ (3) \$E (4) \$E + (5) \$E + id ₂ (6) \$E + E (7) \$E + E * (8) \$E + E* id ₃ (9) \$E + E * E (10) \$E + E (11) \$E	id ₁ + id ₂ * id ₃ \$ + id ₂ * id ₃ \$ + id ₂ * id ₃ \$ id ₂ * id ₃ \$ * id ₃ \$ * id ₃ \$ * id ₃ \$ * id ₃ \$ * 5 \$ \$	-

Existem quatro operação possíveis:

1. Empilhar

2. Reduzir

3. Aceitar

4. Erro

Prefixos Variáveis

- Def(Livro): Um prefixo de uma forma sentencial a direita, o qual não se estende para além do limite a direita do handle mais a direita, daquela forma sentencial.
 - Professor: É sempre possível adicionar símbolos terminais ao final do prefixo variável de modo a obter uma forma sentencial a direita;

Conflitos durante a análise sintática de empilhar e reduzir

 Existem Gramáticas Livres de Contexto (Gramáticas não LR (k))para as quais o analisador empilhar e reduzir não pode ser usado;

Podem existir duas situações:

- Mesmo conhecendo toda a pilha e o próximo símbolo de entrada, não pode decidir entre empilhar e reduzir;
- 2. Não pode decidir qual das diversas reduções alternativas realizar;

Exemplo: Gramáticas Ambiguas

Uma Gramática Ambígua jamais poderá ser LR;

 $cmd \rightarrow if exp then cmd$ | if exp then cmd else cmd outro

Se tivermos um analisador sintático d configuração

PILHA

... if exp then cmd

FALAREMOS MAIS SOBRE ISSO DEPOIS. **ENTRA**

else ...\$

Não podemos dizer se if exp then cmd é o male, não importa o que apareça abaixo do mesmo na pilha.

ANÁLISE SINTÁTICA DE PRECEDÊNCIA DE OPERADORES

Gramática de Precedência de Operadores

- Propriedades:
- 1. Nenhum lado direito de produção seja ε
- 2. Não tenha dois não-terminais subjacentes
- 3. Os operadores tem precedência uns sobre os outros
- ▶ Três relações de precedência:
- I. a < b → a "confere precedência a" b;
- 2. a = b → a "tem a mesma precedência que" b;
- 3. a ◆> b → a "tem precedência sobre " b.

Essas relações de precedência guiam a seleção de handles.

Usando Relações de Precedência de Operadores

 O objetivo das relações de precedência é delimitar o handle de uma forma sentencial à direita.

- ▶ Com:
- <-> assinalando o limite à esquerda;
- = → marcando o interior do *handle*;
- •> → marcando o limite à direita.

Por exemplo:

Forma sentencial à direita: id + id * id;

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid E \uparrow E \mid (E) \mid -E \mid id$$

	id	+	*	\$
id		·>	Ÿ	·
+	<∙	·>	<.	·>
*	<∙	·>	·>	·>
\$	<∙	<.	<.	

Relações de precedência de operadores.

$$\$ < \cdot id \cdot > + < \cdot id \cdot > \$ < \cdot id \cdot > \$$$

- ▶ O handle pode ser encontrado:
- Esquadrilhar a cadeia a partir da esquerda até encontrar o primeiro •>;
- Esquadrilhar de volta por sobre as relações = até encontrar <•;
- (3.) O handle é tudo a esqueda do primeiro •> e á direita de <•.

$$\underbrace{\$(\operatorname{id})}_{+} < \cdot \operatorname{id} \cdot > \ast < \cdot \operatorname{id} \cdot > \$$$

GRAMÁTICA:

$$E \rightarrow E + E \mid E - E \mid E * E \mid E \mid E \mid E \mid E \mid (E) \mid -E \mid id$$

Cadeia: id + id * id

E + E * E

Considerando a Cadeia:

\$ + * \$ (remoção do ñ-term.)

Reduzir **id** para **E**.

E + id * id

Temos:

\$ <• + <• * •> \$

Da cadeia:

Reduzir os dois **id's** restantes

E + E * E

E + E * E

Handle: E * E

- Observações Importantes:
- Pode parecer que toda sentença precise ser esquadrilhada a cada passo para encontrarmos o handle. Isso pode ser resolvido usando uma pilha para armazenar os símbolos já esquadrilhados.
- 2. Se nenhuma relação de precedência vigorar entre um par de terminais, então um erro sintático foi detectado. Invoca-se a rotina de recuperação de erros.

Relação de precedência de operadores a partir da associatividade

IMPORTANTE:

Existe uma liberdade para criar relações de precedência de operadores a qualquer ponto em que as vejamos adequadas e esperamos que o algoritmo de análise sintática de precedência de operadores irá funcionar corretamente quando guiados por elas.

Relação de precedência de operadores a partir da associatividade

REGRAS:

- 1. Se θ_1 possuir maior precedência que θ_2 , fazer $\theta_1 > \theta_2$ e $\theta_2 < \theta_1$.
- 2. Se θ_1 e θ_2 são se igual precedência (podem ser o mesmo operador), fazer $\theta_1 > \theta_2$ e $\theta_2 > \theta_1$ se forem associativos a esquerda e $\theta_1 < \theta_2$ e $\theta_2 < \theta_1$ se forem associativos a direita.

Relação de precedência de operadores a partir da associatividade

3. Fazer:

Para todos os operadores θ

Fazer também:

Esses regras asseguram o uso dos parênteses e o \$ como marcados de extremidades

Exemplo:

Gramática:

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid E \land E \mid (E) \mid -E \mid id$$

	+	_	*	/	†	id	()	\$
+	·>	·>	<.	<.	<.	<·	<·	·>	·>
_	·>	·>	<∙	<∙	<∙	<∙	<.	·>	·>
*	·>	·>	·>	·>	<⋅	<∙	< ⋅	·>	·>
/	·>	·>	·>	·>	<⋅		< ∙	·>	·>
1	·>		·>				<⋅	·>	·>
id	·>	·>	·>	·>	·>			·>	·>
(< ⋅	<∙	<⋅	<.	<∙	<∙	< ⋅	÷	
)	·>	·>	·>	·>	·>			·>	·>
\$	<∙	< ⋅	<-	 < ⋅	< ⋅	<.	< ⋅		

Relações de precedência de operadores.

- * e / possui a segunda maior precedência e é associativo a esquerda;
- 3. + e possui a menor precedência e é associativo a esquerda;

FUNÇÕES DE PRECEDÊNCIA

- Os compiladores que usam análise de precedência de operadores não precisam usar a tabela de relações;
- A tabela pode ser codificada por duas funções, f e g, que manipulam símbolos terminais em inteiros;
- Para quaisquer símbolos a e b;
- 1. f(a) < g(b), sempre que $a < \bullet b$;
- 2. f(a) = g(b), sempre que a = b;
- 3. f(a) > g(b), sempre que a $\bullet > b$;

A relação de precedência entre a e b pode ser determinada entre a comparação numérica entre f(a) e g(b).

Exemplo

	+	_	*	/	†	id	()	\$
+		·>	<.	<.	<.	Ý	<·	·>	·>
_	·>	·>	<∙				1		·>
*	·>	·>	·>	·>	<.	<∙	< ⋅	·>	·>
/	·>	·>	-	1	<∙		< ⋅	·>	·>
1	·>	·>	·>	·>	<⋅	< ⋅	<∙	·>	·>
id	·>	·>	·>	·>	·>			·>	·>
(< ⋅	<∙	<⋅	<.	< ⋅	<.	< ⋅	÷	
)	·>	·>	·>	·>	·>			·>	·>
\$	<∙	< ⋅	<-	< ⋅	< ⋅	<.	< ⋅		

. Relações de precedência de operadores.

	+		*	/	†	()	id	\$
\overline{f}	2	2	4	4	4	0	6	6	0
g	2	1	3	3	5	5	o	5	0

ANALISADORES SINTÁTICOS LR

ANALISADORES SINTÁTICOS LR

A técnica é chamada de LR (k);

VANTAGENS:

- Pode reconhecer todas as construções de uma linguagem de programação estrita por uma glc;
- 2. É o método mais geral dentro os métodos sem retrocesso de empilhar e reduzir;
- 3. Implementação eficiente;
- 4. Detecção rápida dos erros

ANALISADORES SINTÁTICOS LR

DESVANTAGEM:

- É muito trabalhoso construir um analisador sintático LR manualmente;
- ▶ Em geral usa-se uma ferramenta especializada Yacc;
- Três técnicas:
- LR simples (SLR);
- 2. LR canônico;
- 3. LR lookahead (LALR).

Esquema:

- Programa Diretor:
- I. Determina $s_m e a_i$;
- 2. Consulta em ação [s_m, a_i];
 - 1. Empilhar s, onde s é um estado
 - 2. Reduzir através da produção A 🔿 β
 - 3. Aceitar
 - 4. Erro

A função desvio toma um estado e um símbolo como argumentos e produz um estado de saída. Ela é uma função de transição de um AFD.

- Configuração (par):
- 1. Primeiro componente: conteúdo da pilha;
- 2. Segundo componente: entrada ainda não consumida;

$$(s_0 X_1 s_1 X_2 ... X_m s_m, a_i a_{i+1} ... a_n \$)$$

Igual ao empilhar e reduzir;

A novidade é a presença dos estados na pilha;

- O movimento é determinado por [s_m, a_i]
- Se ação[s_m, a_i] = empilhar s. Empilhar é executado.
 O analisador empilha tanto o símbolo corrente de entrada quanto o próximo estado s;
- 2. Se ação $[s_m, a_i] = reduzir A \rightarrow \beta$. Reduzir é executado. Onde $s = desvio [s_{m-r}, A], r = comprimento de <math>\beta$

O analisador remove da pilha 2r símbolos (r símbolos de estado, e r símbolos gramaticais). Expondo o estado s_{m-r}

Em seguida empilha A e s

- 3. Se ação $[s_m, a_i]$ = aceitar. Análise sintática completa.
- 4. Se ação $[s_m, a_i]$ = erro. Chamar procedimento de recuperação de erros.

Exemplo

(1)
$$E \rightarrow E + T$$

O código para cada ação é:

(2)
$$E \rightarrow T$$

$$(3) T \rightarrow T * F$$

1. si significa empilhar o símbolo de entrada mais o estado i,

$$(4) T \rightarrow F$$

2. rj significa reduzir através da produção de número j,

$$(5)$$
 $F \rightarrow (E)$

3. acc significa aceitar,

(6)
$$F \rightarrow id$$

uma entrada em branco significa um erro.

ESTADO	ação							desvio		
	id	+	*	()	\$	Е	T	F	
0	s5			s4			1	2	3	
1		s6				acc				
2 3		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4 5	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s 4				9	3	
7	s5			s4					10	
8		s6			s11					
9		r1	s7		r l	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	г5				

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)	PILHA 0 0 id 5 0 F 3 0 T 2 0 T 2 * 7 0 T 2 * 7 id 5 0 T 2 * 7 F 10 0 T 2 0 E 1 0 E 1 + 6 0 E 1 + 6 id 5	ENTRADA id * id + id \$ * id	AÇÃO empilhar reduzir por $F \rightarrow \mathbf{id}$ reduzir por $T \rightarrow F$ empilhar empilhar reduzir por $F \rightarrow \mathbf{id}$ reduzir por $F \rightarrow \mathbf{id}$ reduzir por $F \rightarrow \mathbf{id}$ reduzir por $E \rightarrow T$ empilhar empilhar reduzir por $F \rightarrow \mathbf{id}$	(1) (2) (3) (4) (5) (6)	$E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $F \rightarrow \mathbf{id}$
(10)	0E1+6	id \$	empilhar	- /	

ESTADO	ação						desvio			
	id	+	*	()	\$	Е	T	F	•
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11					
9		r1	s7		r l	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

Construção da Tabela SLR

INTRODUÇÃO

- ▶ Gramática LR → uma gramática livre de contexto para a qual podemos construir uma tabela sintática;
- ▶ L → left-to-rigth
- \rightarrow R \rightarrow rigth most derivation
- Um analisador LR não precisa varrer toda a pilha para saber quando o handle surge no topo;

Gramática LR (pontos importantes)

- Uma gramática que podemos construir uma tabela sintática é denominada de LR;
- Existem GLC que não são LR;
- Para uma gramática ser LR deve ser possível construir um analisador de empilhar e reduzir, que seja capaz de reconhecer os handles;
- Uma gramática que pode ser decomposta por um analisador LR examinando até k símbolos de entrada a cada movimento é chamada de gramática LR (k)
- Gramáticas LR podem descrever mais linguagens que as gramática LL;

Função Desvio

- Definição: Autômato finito que pode, através da leitura dos símbolos gramaticais da pilha, determinar qual o *handle*.
 - D autômato não precisa ler toda a pilha a cada movimento;
 - O símbolo do estado no topo da pilha é o estado que o AF estaria se tivesse lido os símbolos gramaticais.

LR(k)

 Uma gramática LR(k) examina até k símbolos de entrada a cada movimento;

Por serem menos restritivos as gramáticas LR podem descrever mais LP que as LL.

ITEM

Para uma gramática G um item é uma produção de G com um ponto em algum lugar de suas posições no lado direito.

ITEM

Um item pode ser representado por um par de inteiros

- ▶ (x,y)
 - x → representa o número da produção;
 - y → representa a posição do ponto.
- Um item indica quanto de uma produção já examinamos a uma dada altura de uma análise sintática.
 - $A \rightarrow X \cdot YZ$
 - Acabamos de ler X e esperamos ver a cadeia YZ

SLR - Ideia Central

- Construir, a partir da gramática, um autômato finito determinístico que reconheça prefixos variáveis.
- Agruparemos esse itens com conjuntos, os quais dão origem aos estados do analisador sintático.
- O agrupamento dos itens é, de fato, um processo de construção de subconjuntos.

Coleção LR(0) Canônica

- Coleção do conjunto de itens LR(0)
- Para a construção da coleção LR(0) Canônica definimos:
 - I. Uma gramática aumentada;
 - 2. Duas funções:
 - Fechamento
 - Desvio

GRAMÁTICA AUMENTADA

- Sendo G uma gramática com um símbolo de partida S;
- G' é a gramática aumentada para G.
 - Novo símbolo de partida S' [Produção S' → S]
- ▶ Objetivo da Produção S' → S
 - Indicar ao analisador sintático quando o mesmo deve parar de analisar e anunciar a aceitação da entrada.

Operação Fechamento

- Se I for um conjunto de itens para a gramática G, então o fechamento(I) é o conjunto de itens construídos a partir de I por duas regras:
- Cada item de I é adicionado ao fechamento de I
- 2. Se $A \rightarrow \alpha \cdot B\beta$ estiver em fechamento de $I \in B \rightarrow \gamma$ for produção, adicionar o item $B \rightarrow \gamma$, caso não esteja lá. Aplicamos essa regra até que não possam mais ser adicionados itens ao fechamento(I).
 - Se $A \to \alpha \cdot B\beta$ está em fechamento(I) <u>esperamos $B\beta$ </u> e se $B \to \gamma$ também esperamos ver γ .

Função Fechamento (Algoritmo)

```
função fechamento(I)
início
        |:=|
        repetir
                 para cada item A \rightarrow \alpha \cdot B\beta em J e cada
                 produção B \rightarrow \gamma de G tal que B \rightarrow \gamma não
                 esteja em J faça
                          incluir B \rightarrow \gamma a
        até que não possam mais ser adicionados itens
fim
```


Operação Fechamento (Exemplo)

(aumentada)

$$E' \to E$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid id$$

▶ Gramática de Expressões ▶ Se I for o conjunto $\{[E' \rightarrow E]\}$, então o fechamento(I) contém os itens.

Criar o conjunto de todos os itens para a gramática:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

Gramática Aumentada

$$E' \to E$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid id$$

Conjunto de Itens

$$E' \to E$$

$$E' \to E \cdot$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow E \cdot + T$$

$$E \rightarrow E + \cdot T$$

$$E \rightarrow E + T \cdot C$$

$$E \rightarrow \cdot T$$

 $E \rightarrow T$.

$$T \rightarrow \cdot T * F$$

$$T \rightarrow T \cdot * F$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow (\cdot E)$$

$$F \rightarrow (E \cdot)$$

$$F \rightarrow (E) \cdot$$

$$F \rightarrow \cdot id$$

$$F \rightarrow id \cdot$$

Fechamento

	I ₃	I ₈
$E' \rightarrow \cdot E$	$E \rightarrow E + T$.	$F \to (\cdot E)$
$E \rightarrow \cdot E + T$	$T \to T \cdot * F$	$E \rightarrow \cdot E + T$
$E \rightarrow \cdot T$		$E \rightarrow \cdot T$
$T \rightarrow \cdot T * F$	I ₄	$T \to \cdot T * F$
$T \to \cdot F$	$E \rightarrow T$.	$T \rightarrow \cdot F$
$F \to \cdot (E)$	$T \to T \cdot * F$	$F \rightarrow \cdot (E)$
$F \rightarrow \cdot id$		$F \rightarrow \cdot id$
$ \begin{array}{c} \mathbf{I}_{\mathbf{I}} \\ E' \to E \cdot \\ E \to E \cdot + T \end{array} $	I_5 $T o T * \cdot F$ $F o \cdot (E)$ $F o \cdot id$	$F \rightarrow (E \cdot)$ $E \rightarrow E \cdot +T$
$ \begin{array}{l} I_2 \\ E \to E + T \\ T \to T * F \end{array} $	$\begin{array}{c} \mathbf{I_6} \\ T \to T * F \end{array}$	I_{10} $F \to (E)$.
$T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$	$T \to F \cdot$	$oldsymbol{I_{II}}F ightarrow oldsymbol{id}$

Operação Desvio

Desvio(I,X)

- ▶ I conjunto de itens
- X símbolo gramatical
- ▶ Definida como fechamento do conjunto de todos os itens $[A \rightarrow \alpha X \cdot \beta]$ tais que $[A \rightarrow \alpha \cdot X\beta]$ esteja em I.
 - Se I for o conjunto de Itens válidos para algum prefixo variável γ , então desvio(I,X) será o conjunto de itens válidos para o prefixo variável γ X.

Operação Desvio (Exemplo)

▶ Se I for o conjunto de itens

$$E' \to E \cdot E \to E \cdot + T$$

desvio(I,+)

$$E \rightarrow E + \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow id$$

Diagrama de Transições para AF para prefixos variáveis

Exemplo:

- A cadeia $E + T * \acute{e}$ um prefixo variável para a gramática de expressões;
- Após ler E + T * estamos no estado I_5 ;

$$\begin{array}{l}
\mathbf{I_5} \\
T \to T * \cdot F \\
F \to \cdot (E) \\
F \to \cdot id
\end{array}$$

São precisamente os itens válidos para E + T *

$$E' \rightarrow E \qquad E' \rightarrow E \qquad E' \rightarrow E \qquad \rightarrow E + T * F \qquad \rightarrow E + T * F \qquad \rightarrow E + T * id$$

Construção da Tabela Sintática (SLR)

▶ Entrada → Gramática G'

▶ Saída → As funções sintáticas SLR ação e desvio para G'

Método

- 1. Construir $C = \{I_0, I_1, ..., I_n\}$, a coleção do conjunto de itens LR(0) para G'.
- 2. O estado i é construído a partir de I_i. Ações sintáticas para o estado i.
 - Se $[A \rightarrow \alpha \cdot \alpha\beta]$ estiver em I_i e desvio(I_i , a) = I_j . Ação[I_i ,a]="empilhar j".'a' precisa ser terminal;
 - Se [A $\rightarrow \alpha$ ·] estiver em l_i. Ação[i,a]="redizir através de A $\rightarrow \alpha$ ", para todo a em seguinte(A). 'A' não pode ser S'.
 - Se $[S' \rightarrow S \cdot]$ estiver em I_i . Ação[i,\$]="aceitar"

Método

3. As transições de desvio para o estado i são construídas para todos os não terminais A, usando-se a seguinte regra.

Se desvio $(I_i,A)=I_i$, estão desvio[i,A]=i.

- 4. O que não foi definido em 2 e 3 é erro.
- 5. Estado inicial $[S' \rightarrow S]$

Exemplo

AÇÃO								DESVIO		
	id	+	*	()	\$	E	Т	F	
0	EII			E8			I	4	7	
1		E2				acc				
2	EII			E8				3	7	
3		RI	E5		RI	RI				
4		R2	E5		R2	R2				
I _o :	I ₀ : $F \rightarrow \cdot (E)$ ação[0,(] empilhar 8							$(1) E \rightarrow$	E+T	

I₀:
$$F \rightarrow \cdot (E)$$
 ação[0,(] empilhar 8 $F \rightarrow \cdot id$ ação[0,id] empilhar 11

I₁:
$$E' \to E \cdot \text{ação[I,\$] acc}$$

 $E \to T \cdot +F \text{ação[I,+] empilhar 2}$

I₂:
$$F \rightarrow \cdot (E)$$
 ação[1,+] empilhar 8 $F \rightarrow \cdot id$ ação[0,id] empilhar 11

I₄:
$$E \to T$$
 · Seg(E) = {\$,+,}} ação[4,\$]=[4,+]=[4,)] \to Reduzir $E \to T$
 $E \to T \cdot *F$ ação[2,*] empilhar 5

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3)
$$T \rightarrow T * F$$

$$(4) T \to F$$

$$(5) F \to (E)$$

(6)
$$F \rightarrow id$$