PROBLEM SET 3

Problem 1. Exercises 2.1.1, 2.1.2-2.1.4, 2.2.3, 2.2.4, 2.2.5, 2.2.8, and 2.2.10 on pages 27-30.

Problem 2. Exercises 2.3.4, 2.3.8, 2.3.10, 2.3.16, and 2.3.17 on pages 32–34.

Problem 3. Exercise 2.4.1 on page 36.

Problem 4. Find the distance of the (linear) code

$$C = \{00000000, 10101011, 111111100, 010101111\}.$$

Determine s, the error-detecting capability of C, and then find an error pattern of weight s+1 which is not detected by C. Determine t, the error-correcting capability of C, and then find an error pattern of weight t+1 which is not corrected by C.

Problem 5. Consider the subset

$$S = \{11000, 00011, 01110\}$$

of K^5 .

- (a) Find the code C generated by S (i.e., list all of its codewords).
- (b) Find C^{\perp} , the dual code of C (i.e., list all of its codewords).

Problem 6. Prove that a linear code detects an error pattern e if and only if e is not a codeword.

Problem 7. Exercise 2.5.3 on page 38.

Problem 8. Exercises 2.5.10 and 2.5.12 on page 41.