STUDY OF LCR SERIES CIRCUIT USING expEYES-17

INDEX

- LCR SERIES CIRCUIT
- RESONANT LCR SERIES CIRCUIT
- EXPEYES
- CODING IN EXPEYES
- PYTHON CODE
- OBSERVATION
- RESULTS AND CONCLUSSION

LCR SERIES CIRCUIT

- L,C,R IN SERIES
- used to select a certain narrow range of frequencies from the total spectrum
- eg:AM/FM radio tuners use a RLC circuit to tune a radio frequency.

VOLTAGE ACROSS R,L,C

- voltage across a pure resistor, VR is "inphase" with current
- voltage across a pure inductor, VL "leads" the current by 90*
- voltage across a pure capacitor, VC "lags" the current by 90*
- VL and VC are 180* "out-of-phase" and in opposition to each other

PHASOR DIAGRAM

PHASE IN LCR SERIES

- At resonance Φ=0
- Ф is +ve when circuit is inductive
- Ф is -ve if circuit is capacitive
- Φ=0 ,pure resistive

IMPEDENCE

$$I_{rms} = \frac{V_{rms}}{Z} \rightarrow Z = \frac{V}{I} \rightarrow$$

$$Z = \frac{\sqrt{V_R^2 + (V_L - V_C)^2}}{I} \rightarrow$$

$$Z = \frac{\sqrt{(IR)^2 + (I \times X_L - I \times X_C)^2}}{I} \to$$

$$Z = \frac{I\sqrt{R^2 + (X_L - X_C)^2}}{I} \to$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

- Total resistance offered by circuit
- At resonance Z=R

RESONANT LCR SERIES CIRCUIT

- At resonance XL=Xc
- Z = R
- Max current flow through R

RESONANCE FREQUENCY

$$X_{L} = X_{C} \implies 2\pi f L = \frac{1}{2\pi f C}$$

$$f^2 = \frac{1}{2\pi L \times 2\pi C} = \frac{1}{4\pi^2 LC}$$

$$f = \sqrt{\frac{1}{4\pi^2 LC}}$$

$$\therefore \ f_{\rm r} \ = \ \frac{1}{2\pi\,\sqrt{{\rm LC}}}\,({\rm Hz}) \quad \ {\rm or} \quad \ \, \omega_{\rm r} \ = \frac{1}{\sqrt{{\rm LC}}}\,({\rm rads})$$

- Only depend on L&C
- Independent of R
- Max current at Fr

QUALITY FACTOR

- VL/VR or VC/VR
- Q=XL/R or Xc/R
- Voltage magnification ratio
- Define sharpness

EXPERIMENTAL METHODE

- LCR CIRCUIT CONNECTED TO expEYES
- RUN THE PROGRAM
- GIVE VALUES L,C,R
- GRAPH & FINAL VALUES ARE APPEARED

expEYES-17

- Programmable Voltage sources
- 4-channel oscilloscpe
- Wave genarator
- Constant current source
- Python programmable

CODING expEYES IN PYTHON

- To establish connection import eyes17.eyesp = eyes17.eyes.open()
- p.set_pv1(v), set_pv2(v), to set voltage at pv
- p.get_voltage(input)

#PROGRAMME FOR FREQUENCY RESPONCE OF LCR SERIES CIRCUIT import math import eyes17.eyes p=eyes17.eyes.open() from math import* from pylab import* R=input("Enter the value of Resistance in ohms =") C=input("enter the value of capacitance in uF =") C=C*1e-6 L=input ("enter the value of inductor in mH =") L=L*1e-3 p.set_sine_amp(2) v0lis=[] i0lis=[] freqlis=[] freqlog=[] for f in range(50,5000,50): p.set_sine(f) time.sleep(.01) freqlis.append(f) logf=log(f) frqlog.append(logf) t,v=p.capture1('A2',300,300) v0=max(v) v0lis.append(v0) i0=v0/R i0lis.append(i0) freqlis=list(freqlis) i0lis=list(i0lis) Ir=max(i0lis) k=i0lis.index(Ir) frex=freqlis[k] frexl=log(frex) Icut=Ir/sqrt(2) frth=1/(2.0*pi*sqrt(L*C))Q=(frth*2.0*pi*L)/R print"theoretical value of resonance frequency is=",frth print"the quality factor is=",Q print"experimant value of resonant frequency=",frex title("frequency response of an lcr series circuit") xlabel("log frequency") vlabel("peak value of current") axvline(x=frexl, linestyle='--',color='r') axhline(y=Icut, linestyle='--') plot(freqlog,i0lis) scatter(freqlog,i0lis)

show()

OBSERVATIONS

NO;	L IN Mh	C IN Uf	R IN ohm	Q-TH	Q-PR	Fr-TH	Fr-PR	F1	F2	BW IN Hz	ERROR
1	84.75	0.032	384	4.23802622601	4.215624642	3056.154383	3040	2453.45	3919.15	1465.7	0.53%
2	109	0.032	384	4.80625750659	4.6371216564	2694.83322696	2600	1992.41	3451.72	1459.31	3.52%
3	118	0.032	384	5.0007459296	4.8655416223	2590.02608979	2520	1951	3303.57	1352.57	2.70%
4	119	0.032	384	5.021890827	4.8094183785	2579.12066835	2470	1957.75	3285.95	1328.2	4.23%
5	120	0.032	384	5.04294706537	4.8105637508	2568.3518502	2450	1955.1	3274.26	1319.16	4.61%
6	137	0.032	384	5.38832856681	5.17818375	2403.7254346	2310	1802.573	2936.636	1134.063	3.90%
7	155	0.032	384	5.73138569715	5.452790374	2259.8483352	2150	1681.447	2778.788	1097.341	4.86%
8	187	0.032	384	6.29527330918	6.0277672795	2057.42654687	1970	1539.634	2491.699	952.065	4.25%
9	155	0.01513	384	8.3351834	8.24259	3286.50894419	3250	2872.1	3879.38	1007.28	1.11%
10	155	0.0265	384	6.2981309725	6.1629212134	2483.312334	2430	1913	3057.15	1133.31	2.15%
11	155	0.0316	384	5.7675462	5.7064085309	2274.106194	2250	1736.5	2815.96	1138.21	1.06%
12	155	0.0587	384	4.23170684631	4.0325286952	1668.534657	1590	1123.82	2290.92	1146.68	4.71%
13	155	0.0644	384	4.0400960575	4.0071668795	1592.983762	1580	1097.39	2268.27	1170.88	0.82%
14	155	0.0771	384	3.69238889	3.550654197	1455.8850738	1400	972.47	2311.42	1338.95	3.84%
15	155	0.1163	384	3.00638618687	2.8658851733	1185.39864151	1130	698.39	2039.43	1341.04	4.67%
16	155	0.1457	384	2.6859928	2.561543385	1059.06961	1010	605.38	2089.64	1484.26	4.63%
17	109	0.2086	137.8	5.24574142468	5.0793488886	1055.479324	1044	677.35	1722.36	1045.01	1.09%
18	109	0.2086	140.6	5.14127431238	4.9781954256	1055.47932	1044	673.08	1718.21	1045.13	1.09%
19	109	0.2086	162.1	4.45936562	4.4108658557	1055.4793249	1044	670.86	1719.28	1048.42	1.09%
20	109	0.2086	172.4	4.1929418116	4.147339647	1055.47932	1044	668.8	1722.48	1053.68	1.09%
21	109	0.2086	187.5	3.86144854872	3.92920604	1055.47932	1044	646.11	1702.12	1056.01	1.09%
22	109	0.2086	197.4	3.6619208121	3.7261771589	1055.479324	1044	643.55	1737.7	1094.15	1.09%
23	109	0.2086	202.2	3.5749909412	3.53610957	1055.4793249	1044	635.15	1759.33	1124.18	1.09%
24	109	0.2086	218.7	3.30527283183	3.3632710159	1055.47932	1044	641.41	1804.64	1163.23	1.09%

Changing capacitance 15.13nF, 31.6nF, 77.1nF, 116.3nF

Changing inductance 87.5mH,118mH,137mH,155mH

Changing resistance 172,187,197,218 ohm

RESULTS AND CONCLUSION

- Fr decreases as c increases
- Fr decreases as L increases
- Fr does not depend on R
- Q decreases as c increases
- Q increases as L increases
- Q decreases as R increases

