

Informatique 1

10. Tris et complexité

Une méthode de résolution de problèmes

1. ALGORITHMES

Introduction

- Collections: stocker information, dynamique.
- Information brute est peu utile... il faut pouvoir trier et faire des recherche dans cette information
- Exemples :

Comment trier?

$$int[] a = {4, 7, 1, 3, 6}$$

Algorithme

Ensemble des étapes pour résoudre un problème en utilisant un nombre fini d'instructions.

Algorithme

a)

b)

```
if <condition> do stuff;
else do other stuff;
while <condition> do stuff;
...
```

Exemple: le plus grand diviseur commun

Quelques notions

2. COMPLEXITÉ ALGORITHMIQUE

Idée de complexité

 Tautologie : plus problème est grand, plus ça prendra de temps pour le résoudre

Idée de complexité (2)

Tri de 10k éléments : 1.67 secondes

x2

Tri de 20k éléments:

• Question: combien de fois plus de temps quand on augmente $n? \rightarrow complexité$

La notion de complexité

Lien entre taille *n* d'un problème et temps / mémoire pour le résoudre

Complexité

Tous les algorithmes ne sont pas équivalents

Algorithmique (1)

Branche des mathématiques / informatique théorique

Analyse des algorithmes

Problèmes difficiles ∈ NP

Problèmes faciles ∈ P

Théorème de la NP-complétude (P = NP?)

Exemple NP: watermelons

Solution possible

Algorithmique (2)

- En algorithmique, notation $\mathcal{O}()$
- Nommé ordre de la complexité. Obtenu si taille n du problème tend vers +∞
- Exemples :

$$\mathcal{O}(1), \mathcal{O}(n), \mathcal{O}(n^2), \mathcal{O}(n\log(n))$$

La complexité en images

La complexité en chiffres

n	n^2	n!
1	1	1
2	4	2
3	9	6
4	16	24
5	25	120
6	36	720
7	49	5040
8	64	40'320
9	81	362'880
10	100	3'628'800

P.-A. Mudry

Tris et complexité

Handshakes

Tris et complexité 21

Four color theorem

Explications https://www.youtube.com/watch?v=g_nTfZ90gJs

Quiz

Arranger selon un ordre

3. ALGORITHMES DE TRIS

Algorithmes de tri

Une méthode de tri prend une structure de donnée a et réarrange les éléments de a afin que, lorsque la méthode termine, les éléments de a soient triés dans l'ordre croissant.

Méthode de tri

Autrement dit:

Donald E. Knuth

The Art of Computer **Programming**

VOLUME 3

Sorting and Searching Second Edition

DONALD E. KNUTH

A Bohemian in Exile

A REMINISCENCE

 $\dot{g} = gg^{ij}\dot{g}_{ij} = -2e^{\psi}Hg,$

and thus, the volume of M(t), |M(t)|, evolves according to

 $\frac{d}{dt}|M(t)| = \int_{M(t,t)} \frac{d}{dt} \sqrt{g} = -\int_{M(t)} e^{\psi} H,$

where we shall assume without loss of generality that $|M(t_1)|$ is finite, otherwise, we replace $M(t_1)$ by an arbitrary measurable subset of $M(t_1)$ with finite

Now, let $T \in [t_1, T_+)$ be arbitrary and denote by $Q(t_1, T)$ the cylinder

(1.8)
$$Q(t_1,T) = \{ (x^0, x) : t_1 \le x^0 \le T \},$$

- (a) At what speed does the proton enter the magnetic field? (3 pts) (b) Will the proton follow path a or path b? (1 pt)
- (c) What will the radius of this path be? (3 pts)
- (d) How long after it enters the magnetic field will the proton hit the back of the

Tris et complexité 26 P.-A. Mudry

Tri par sélection

Pseudo-code pour un tableau a à trier:

```
// Selection sort pseudo-code
for (i = 0; i < size[a]; i++) {
    Mettre le i-ème plus petit élément dans a[i]
}</pre>
```

Code complet à réaliser au labo...

Tri par sélection

Initial array

Tri par sélection, autre exemple

P.-A. Mudry Tris et complexité

Tri par bulles (bubble sort)

• *Idée* : regarder des paires d'éléments adjacents du début à la fin et les échanger si pas dans l'ordre. On recommence tant que pas trié.

```
// Bubble sort pseudo-code
Tant que a n'est pas trié
for(i= 0; i< a.length-1; i++)
   if(a[i] > a[i+1])
        Echanger a[i] et a[i+1]
```


En vidéo

Complexité des tris examinés

- Algorithmes vus sont les plus simples mais les plus performants
- II en existe beaucoup d'autres
 http://www.sorting-algorithms.com/ ou http://sorting.at/#
- Résumé complexité quelques algorithmes :

Methode	Best case	Average case	Worst case
Insertionsort	$\mathcal{O}(n)$ Si déjà trié	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$ Ordre inversé
Selectionsort	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Bubblesort	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Quicksort	$\mathcal{O}(nlog(n))$	$\mathcal{O}(nlog(n))$	$\mathcal{O}(n^2)$
Mergesort	$\mathcal{O}(nlog(n))$	$\mathcal{O}(nlog(n))$	$\mathcal{O}(nlog(n))$

Conclusion

- Complexité → très important car mauvais choix d'algorithme = mauvais programme.
- Ordinateur rapide pas suffisant :