FUNDAMENTOS DE TEORÍA DE LA COMPUTACIÓN 2025 Trabajo Práctico Nro 3

Indecibilidad

Comentario: Ningún ejercicio reviste mucha dificultad.

Ejercicio 1. ¿Qué es una MT universal?

Ejercicio 2. Explicar cómo enumeraría los números naturales pares, los números enteros, los números racionales (o fraccionarios), y las cadenas de Σ^* siendo $\Sigma = \{0, 1\}$.

Ejercicio 3. Dar la idea general de cómo sería una MT que, teniendo como cadena de entrada un número natural i, genera la i-ésima fórmula booleana satisfactible según el orden canónico. Comentario: asumir que existen una MT M_1 que determina si una cadena es una fórmula booleana, y una MT M_2 que determina si una fórmula booleana es satisfactible.

Ejercicio 4. Sea M_1 una MT que genera en su cinta de salida todas las cadenas de un lenguaje L. Dar la idea general de cómo sería una MT M_2 que, usando M_1 , acepte una cadena w sii w \in L.

Ejercicio 5. El lenguaje $L_U = \{(<M>, w) \mid M \text{ acepta } w\}$ se conoce como lenguaje universal, y representa el problema general de aceptación. Probar que $L_U \in RE$. *Ayuda: construir una MT que acepte L_U.*

Ejercicio 6. Una función $f: A \to B$ es total computable sii existe una MT M_f que la computa para todo elemento $a \in A$. Sea la función $f_{01}: \Sigma^* \to \{0, 1\}$ tal que:

 $f_{01}(v) = 1$, si v = (< M >, w) y M para a partir de w.

 $f_{01}(v) = 0$, si v = (< M>, w) y M no para a partir de w o bien $v \neq (< M>, w)$.

Probar que foi no es total computable. Ayuda: ¿con qué problema se relaciona dicha función?

Ejercicio 7. Responder breve y claramente cada uno de los siguientes incisos (en todos los casos, las MT mencionadas tienen una sola cinta):

- a. Probar que se puede decidir si una MT M, a partir de la cadena vacía λ, escribe alguna vez un símbolo no blanco. Ayuda: ¿Cuántos pasos puede hacer M antes de entrar en un loop?
- b. Probar que se puede decidir si una MT M que sólo se mueve a la derecha, a partir de una cadena w, para, *Ayuda: ¿Cuántos pasos puede hacer M antes de entrar en un loop?*
- c. Probar que se puede decidir si dada una MT M, existe una cadena w a partir de la cual M para en a lo sumo 10 pasos. Ayuda: ¿Hasta qué tamaño de cadenas hay que chequear?
- d. ¿Se puede decidir si dada una MT M, existe una cadena w de a lo sumo 10 símbolos a partir de la cual M para? Justificar la respuesta.