Weak Convergence

Tong Zhou

JHU

1. CONVERGENCE IN DISTRIBUTION

Any random variable $X: \Omega \to \mathbb{R}$ can induce a measure \mathbb{P}_X on \mathbb{R} . Since \mathbb{P}_X is defined on every Borel set in \mathbb{R} , when considering a specific Borel set $(-\infty, \alpha]$, $F_X(\alpha) := \mathbb{P}_X((-\infty, \alpha])$ is defined to be the distribution function of X. The distribution function of any random variable is instrumental to exploring many important properties of a random variable, such that convergence in distribution. However, when we study more general random variables, for example a random vector, the concept of distribution function is not able to be defined. This limitation motivates a new notion called weak convergence.

DEFINITION 1. We say that $R.V.-s~X_n~\underline{converge~in~distribution}$ to a $R.V.~X_{\infty}$, denoted by $X_n \stackrel{d}{\longrightarrow} X_{\infty}$, if $F_{X_n}(\alpha) \to F_{X_{\infty}}(\alpha)$ as $n \to \infty$ for each fixed α which is a continuity point of $F_{X_{\infty}}$.

Similarly, we say that distribution functions $\underline{F_n}$ converge weakly to F_{∞} , denoted by $F_n \xrightarrow{w} F_{\infty}$, if $F_n(\alpha) \to F_{\infty}(\alpha)$ as $n \to \infty$ for each fixed α which is a continuity point of F_{∞} .

Conv. in distribution ← Point-wise Conv. of corresponding CFs

LEMMA 1. If the limit R.V. X_{∞} has a probability density function, or more general whenever $F_{X_{\infty}}$ is a continuous function, then

$$X_n \xrightarrow{d} X_\infty \iff F_n(\alpha) \to F_\infty(\alpha), \forall \alpha \in \mathbb{R}.$$

Exercise 1 (1.2.50). The support of a distribution function F is the set

$$S_F := \{x \in \mathbb{R} \text{ such that } F(x + \varepsilon) - F(x - \varepsilon) > 0 \text{ for all } \varepsilon > 0\}.$$

- (a) Show that all points of discontinuity of $F(\cdot)$ belong to S_F , and that any isolated point of S_F (i.e., $x \in S_F$ such that $(x \delta, x + \delta) \cap S_F = \{x\}$ for some $\delta > 0$) must be a point of discontinuity of $F(\cdot)$.
- (b) Show that the support of the law \mathbb{P}_X of a random variable X, as defined in Exercise 1.2.48, is the same as the support of its distribution function F_X .

Proof.

(a) Since F is monotone increasing and right-continuous, if b is a discontinuity point of F, it must be the case that $F(b+\varepsilon) \ge F(b) > F(b-\varepsilon)$ for all $\varepsilon > 0$. It implies that $b \in S_F$.

If a is any isolated point of S_F , then $(a - \delta, a + \delta) \cap S_F = \{a\}$ for some $\delta > 0$. To show a is a discontinuity point of $F(\cdot)$, we need to show F(a) > F(a-).

Pick a small $\varepsilon < \delta$, then $(a - \varepsilon, a + \varepsilon) \cap S_F = \{a\}$. We first shall show that F(a) = F(x) for any $x \in (a, a + \varepsilon)$.

Suppose on the contrary that $\exists b \in (a, a+\varepsilon)$ such that F(a) < F(b). Note that since $F(\cdot)$ is monotone increasing and right-continuous, F must be continuous on (a, b). Otherwise its discontinuity point must be in S_F . Hence by the *Intermediate Value Theorem*, $\exists c \in (a, b)$ such that $F(c) \in (F(a), F(b))$. Define

$$\ell := \sup_{d} \left\{ d : F(c - d) = F(c) = F(c + d) \right\}.$$

Then we have the following observations:

- If $\ell = 0$, it implies $c \in S_F$. contradiction!
- If $\ell > 0$, then $\ell < \min\{c a, b c\}$. Otherwise F(c) = F(a) or F(c) = F(b). Contradiction with $F(c) \in (F(a), F(b))$.
- Fix $\ell < \min\{c-a, b-c\}$. Then $a < c-\ell < c < c+\ell < b$ and $F(c-\ell) = F(c) = F(c+\ell) \in (F(a), F(b))$. Moreover, $c-\ell, c+\ell \in S_F$. This is true because for any $x \in (a, c-\ell)$ and $y \in (c+\ell, b)$, there must be the case that

$$F(x) < F(c - \ell)$$
 and $F(c + \ell) < F(y)$,

which implies that $c - \ell$, $c + \ell \in S_F$. Contradiction with $(a - \varepsilon, a + \varepsilon) \cap S_F = \{a\}$.

Therefore, all the contradictions indicate that the assumption F(a) < F(b) is untrue. Hence, there must be that F(a) = F(b) for any $b \in (a, a + \varepsilon)$.

The analogous argument can be applied to the interval $(a - \varepsilon, a)$ if F is left-continuous and therefore $F(\cdot)$ must be constant on $(a - \varepsilon, a + \varepsilon)$. However, this would imply $a \notin S_F$. This contradiction is owing to the fact that we mistakenly assume $F(\cdot)$ is left-continuous.

EXERCISE 2. Show that if $F_n \xrightarrow{w} F_{\infty}$ and F_{∞} is a continuous function then also $\sup_{x} |F_n(x) - F_{\infty}(x)| \to 0$.

Proof.

Suppose $\varepsilon > 0$ is small and $k = \frac{2}{\varepsilon}$ is an integer. Then the interval [0,1] is equal-divided into k sub-intervals $[0,\frac{\varepsilon}{2}),\cdots,(1-\frac{\varepsilon}{2},1]$. For each knot except for the leftmost and rightmost ends 0 and 1: $\frac{\varepsilon}{2},\cdots,1-\frac{\varepsilon}{2}$, in total there are $\frac{2}{\varepsilon}-1(=k-1)$ knots, denoted by t_1,\cdots,t_{k-1} with $t_1 < t_2 < \cdots < t_{k-1}$ and the length of any adjacent knots is $|t_j - t_{j-1}| = \varepsilon/2$.

Since $F_{\infty}(\cdot)$ is increasing and continuous on \mathbb{R} , for each knot t_j , $\exists x_j \in \mathbb{R}$ such that $F_{\infty}(x_j) = t_j$, for $j = 1, \dots, k-1$ with the monotonicity relation of F_{∞} implying that $x_1 \leq x_2 \leq \dots \leq x_{k-1}$.

More specifically, the equal-division $(|t_j - t_{j-1}| = \varepsilon/2)$ implies $F_{\infty}(x_{j+1}) = F_{\infty}(x_j) + \varepsilon/2$ for each j. Fixing each x_j , by the point-wise convergence of $F_n(x_j) \to F_{\infty}(x_j)$ for $n \to \infty$, there exists $N_j \in \mathbb{N}$, such that $|F_n(x_j) - F_{\infty}(x_j)| < \varepsilon/2$ whenever $n > N_j$, and let

$$N:=\max_{1\leq j\leq k-1}N_j<\infty.$$

By construction, we have x_1, \dots, x_{k-1} partitioning $\mathbb{R} = (-\infty, x_1] \cup \bigcup_{j=2}^{k-2} (x_j, x_{j+1}] \cup (x_{k-1}, \infty)$. To ease subsequent derivation, let $x_0 = -\infty$ and $x_k = \infty$, then $\mathbb{R} = \bigcup_{j=0}^{k-1} (x_j, x_{j+1})$. Also, $F_{\infty}(x_0) = t_0 = 0$ and $F_{\infty}(x_k) = t_k = 1$.

Pick any $x \in \mathbb{R}$, there must be case that $x \in (x_j, x_{j+1}]$ for some $j = 0, \dots, k-1$ and hence $F_{\infty}(x) \in (t_j, t_{j+1}]$ by monotonicity. For any n > N, it follows that

$$F_n(x) \leq F_n(x_{j+1})$$

$$< F_{\infty}(x_{j+1}) + \frac{\varepsilon}{2}$$

$$= F_{\infty}(x_j) + \varepsilon$$

$$< F_{\infty}(x) + \varepsilon$$

So we obtain an one-side inequality:

(1)
$$F_n(x) < F_{\infty}(x) + \varepsilon, \quad \forall n > N$$

Similarly, we have the other side

$$F_{n}(x) \geq F_{n}(x_{j})$$

$$> F_{\infty}(x_{j}) - \frac{\varepsilon}{2}$$

$$= F_{\infty}(x_{j}) - \frac{\varepsilon}{2} + F_{\infty}(x) - F_{\infty}(x) \quad \left[F_{\infty}(x_{j}) - F_{\infty}(x) > -\frac{\varepsilon}{2} \right].$$

$$> F_{\infty}(x) - \varepsilon$$

So we have another one-side inequality:

(2)
$$F_n(x) > F_{\infty}(x) - \varepsilon, \quad \forall n > N.$$

Combine *Equations* (1) and (2), it is concluded that for any such $\varepsilon > 0$, there exists $N \in \mathbb{N}$, such that

$$|F_n(x) - F_{\infty}(x)| < \varepsilon, \forall n > N \text{ for any } x \in \mathbb{R}$$

Thus, $F_n \to F_\infty$ uniformly on \mathbb{R} . Or equivalently,

$$\sup_{x\in\mathbb{R}}|F_n(x)-F_\infty(x)|\to 0, \text{ as } n\to\infty.$$

Note that we only consider the case where $2/\varepsilon$ is an integer. If it is not, the argument is similar, but we should be careful about dividing the interval [0,1].

conv. in probability \implies conv. in distribution

LEMMA 2. If $X_n \xrightarrow{P} X_{\infty}$, then $X_n \xrightarrow{d} X_{\infty}$. Conversely, if $X_n \xrightarrow{d} X_{\infty}$ and X_{∞} is a.s. a non-random constant, then $X_n \xrightarrow{P} X_{\infty}$.

Proof.

Suppose R.V.-s X_n and its limit X_∞ are all in the same probability space. Given $\varepsilon > 0$ and $\alpha \in \mathbb{R}$, we have

$$\mathbb{P}(X_n \leqslant \alpha) = \mathbb{P}(X_n \leqslant \alpha, |X_n - X_\infty| \leqslant \varepsilon) + \mathbb{P}(X_n \leqslant \alpha, |X_n - X_\infty| > \varepsilon)$$

$$\leqslant \mathbb{P}(X_\infty < \alpha + \varepsilon) + \mathbb{P}(|X_n - X_\infty| > \varepsilon).$$

Thus we got the first ingredient:

$$\mathbb{P}(X_n \le \alpha) \le \mathbb{P}(X_\infty < \alpha + \varepsilon) + P(|X_n - X_\infty| > \varepsilon).$$

Moreover, taking limits on both sides yields:

(3)
$$\limsup_{n \to \infty} \mathbb{P}(X_n \le \alpha) \le \mathbb{P}(X_\infty \le \alpha + \varepsilon)$$

Similar argument applies for the set $\{X < \alpha - \varepsilon\}$:

$$\mathbb{P}(X_{\infty} < \alpha - \varepsilon) = \mathbb{P}(X_{\infty} < \alpha - \varepsilon, |X_{\infty} - X_n| \le \varepsilon) + \mathbb{P}(X_{\infty} < \alpha - \varepsilon, |X_{\infty} - X_n| \ge \varepsilon)$$

$$\le \mathbb{P}(X_n \le \alpha) + \mathbb{P}(|X_n - X_{\infty}| > \varepsilon).$$

So we got the second ingredient:

$$\mathbb{P}(X_n \leq \alpha) \geqslant \mathbb{P}(X_\infty < \alpha - \varepsilon) - \mathbb{P}(|X_n - X_\infty| > \varepsilon).$$

Taking limits gives:

(4)
$$\liminf_{n\to\infty} \mathbb{P}(X_n \leq \alpha) \geqslant \mathbb{P}(X_\infty \leq \alpha - \varepsilon).$$

Combining Equations (3) and (4), and letting $\varepsilon \searrow 0$, we have

$$F_{X_{\infty}}(\alpha) \leqslant \liminf_{n \to \infty} \mathbb{P}(X_n \leqslant \alpha) \leqslant \limsup_{n \to \infty} \mathbb{P}(X_n \leqslant \alpha) \leqslant F_{X_{\infty}}(\alpha),$$

which implies that

$$\lim_{n\to\infty} F_{X_n}(\alpha) = F_{X_\infty}(\alpha), \forall \alpha \text{ that is the continuity point of } F_{X_\infty}.$$

Now let's see when X_{∞} is a constant and $X_n \xrightarrow{d} X_{\infty}$. Given $\varepsilon > 0$, w.l.o.g, suppose $X_{\infty} \leq \varepsilon$ a.s., i.e. $\mathbb{P}(X_{\infty} \leq \varepsilon) = 1$.

First note that $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_\infty$ implies $\mathbb{P}(X_n \leqslant \varepsilon) \to 1$. To prove $X_n \stackrel{\mathsf{P}}{\longrightarrow} X_\infty$, we shall show $\mathbb{P}(|X_n - X_{\infty}| \le \varepsilon) \to 1.$

Observe that

$$\mathbb{P}(|X_n - X_{\infty}| \leq \varepsilon) = F_{X_n}(X_{\infty} + \varepsilon) - F_{X_n}(X_{\infty} - \varepsilon),$$

and

$$F_{X_n}(X_\infty + \varepsilon) \to 1$$

 $F_{X_n}(X_\infty - \varepsilon) \to 0.$

So we have

$$\mathbb{P}(|X_n - X_{\infty}| \le \varepsilon) \to 1.$$

Thus $X_n \xrightarrow{\mathsf{P}} X_{\infty}$.

Slustky's Lemma (Coverging Together Lemma)

Exercise 3. Suppose that $X_n \xrightarrow{d} X_{\infty}$ and $Y_n \xrightarrow{d} Y_{\infty}$, where Y_{∞} is non-random and for each n the variables X_n and Y_n are defined on the same probability space.

- (a) Show that then $X_n + Y_n \xrightarrow{d} X_{\infty} + Y_{\infty}$. (b) Deduce that if $Z_n X_n \xrightarrow{d} 0$ then $X_n \xrightarrow{d} X$ if and only if $Z_n \xrightarrow{d} X$.
- (c) Show that $Y_n X_n \xrightarrow{d} X_{\infty} Y_{\infty}$.

Proof.

(a) We need to show that for all α that is the continuity point of $F_{X_{\infty}}(\cdot)$, $\mathbb{P}(X_n + Y_n \leq \alpha) \rightarrow$ $\mathbb{P}(X_{\infty} + Y_{\infty} \leq \alpha) = F_{X_{\infty}}(\alpha - Y_{\infty}).$

Note that $\alpha + Y_{\infty}$ is not necessarily a continuity point of $F_{X_{\infty}}$, so choose $\varepsilon > 0$ such that $\alpha - Y_{\infty} + \varepsilon$ and $\alpha - Y_{\infty} - \varepsilon$ are continuity points of $F_{X_{\infty}}$. Then we have

$$\mathbb{P}(X_n + Y_n \leq \alpha) = \mathbb{P}(X_n + Y_n \leq \alpha, |Y_n - Y_\infty| \leq \varepsilon) + \mathbb{P}(X_n + Y_n \leq \alpha, |Y_n - Y_\infty| > \varepsilon)$$

$$\leq \mathbb{P}(X_n \leq \alpha - Y_\infty + \varepsilon) + \mathbb{P}(|Y_n - Y_\infty| > \varepsilon).$$

By $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_\infty$, first term $\mathbb{P}(X_n \leqslant \alpha - Y_\infty + \varepsilon) \to \mathbb{P}(X_\infty \leqslant \alpha - Y_\infty + \varepsilon)$. By $Y_n \stackrel{\mathsf{P}}{\longrightarrow} Y_\infty$, the second term $\mathbb{P}(|Y_n - Y_{\infty}| > \varepsilon) \to 0$. So we obtain an one-side inequality

(5)
$$\limsup_{n \to \infty} \mathbb{P}(X_n + Y_n \leqslant \alpha) \leqslant F_{X_{\infty}}(\alpha - Y_{\infty} + \varepsilon).$$

Using an analogous argument, we bound the other side by

$$\mathbb{P}(X_n \leqslant \alpha - Y_{\infty} - \varepsilon) = \mathbb{P}(X_n \leqslant \alpha - Y_{\infty} - \varepsilon, |Y_n - Y_{\infty}| \leqslant \varepsilon) + \mathbb{P}(X_n \leqslant \alpha - Y_{\infty} - \varepsilon, |Y_n - Y_{\infty}| > \varepsilon)$$

$$\leqslant \mathbb{P}(X_n + Y_n \leqslant \alpha) + \mathbb{P}(|Y_n - Y_{\infty}| > \varepsilon).$$

Taking limits then yields

(6)
$$\liminf_{n\to\infty} \mathbb{P}(X_n + Y_n \leqslant \alpha) \geqslant F_{X_{\infty}}(\alpha - Y_{\infty} - \varepsilon).$$

Combining Equations (5) and (6):

$$F_{X_{\infty}}(\alpha - Y_{\infty} - \varepsilon) \leq \liminf_{n \to \infty} \mathbb{P}(X_n + Y_n \leq \alpha) \leq \limsup_{n \to \infty} \mathbb{P}(X_n + Y_n \leq \alpha) \leq F_{X_{\infty}}(\alpha - Y_{\infty} + \varepsilon).$$

Let $\varepsilon \searrow 0$ with $\alpha - Y_{\infty} - \varepsilon$ and $\alpha - Y_{\infty} + \varepsilon$ being continuity points of $F_{X_{\infty}}$, then

$$\mathbb{P}(X_n + Y_n \leq \alpha) \to F_{X_{\infty}}(\alpha - Y_{\infty}).$$

- (b) Just use results in (a).
- (c) Mimic the strategy in (a).

renewal theory (application of the Slutsky' theorem)

Exercise 4.

(a) Suppose $\{N_m\}$ are non-negative integer-valued random variables and $b_m \to \infty$ are non-random integers such that $N_m/b_m \stackrel{P}{\longrightarrow} 1$. Show that if $S_n = \sum_{k=1}^n X_k$ for i.i.d. random variables $\{X_k\}$ with $v = Var(X_1) \in (0, \infty)$ and $\mathbb{E}[X_1] = 0$, then $S_{N_m}/\sqrt{vb_m} \stackrel{d}{\longrightarrow} G$ as $m \to \infty$. (Hint: Use Kolmogorov's inequality to show that $S_{N_m}/\sqrt{vb_m} - S_{b_m}/\sqrt{vb_m} \stackrel{P}{\longrightarrow} 0$.)

Proof.

(a) The CLT implies that

$$\frac{S_{b_m}}{\sqrt{vb_m}} \stackrel{\mathsf{d}}{\longrightarrow} G.$$

If we know

(7)
$$\frac{S_{N_m}}{\sqrt{\upsilon b_m}} - \frac{S_{b_m}}{\sqrt{\upsilon b_m}} \stackrel{\mathsf{P}}{\longrightarrow} 0,$$

then by the Slutsky Theorem, then $S_{N_m}/\sqrt{vb_m} \stackrel{\mathsf{d}}{\longrightarrow} G$, as $m \to \infty$. So what we need to prove is Equation (7).

j++j