Úvod do složitosti algoritmů

prof. Ing. Pavel Tvrdík CSc.

Katedra počítačových systémů FIT České vysoké učení technické v Praze

DSA, ZS 2009/10, Předn. 1

http://service.felk.cvut.cz/courses/X36DSA/

Organizace předmětu DSA

- Základní předmět informatického kurikula: Cílem je
 - seznámit se s vlastnostmi složitějších datových struktur a jejich využitím při řešení úloh v informatice,
 - seznámit se se základními algoritmy a naučit se je navrhovat a analyzovat, zvl. pro řazení a hledání.
- Cvičení: seminární, u tabule, 6 písemek po 8b = 48b, zápočet min
 26b.
- Zkouška:
 - Roztřel: 24b, min 16b.
 - Velká písemka: max. 26b.
 - Ústní: není.

Problémy a algoritmy

Výpočetní problém V: úkol zpracovat/transformovat vstupní data In na výstupní data Out s požadovanými vlastnostmi.

Algoritmus A: výpočetní postup řešení problému V čili

posloupnost výpočetních kroků, která vezme vstupní data a vyprodukuje výstupní data, požadovaných vlastností podle zadání problému.

Instance problému: problém s konkrétními daty potřebnými pro jeho řešení.

Příklad

Problém řazení čísel (Sorting Problem).

Vstup: Posloupnost čísel $In = (a_1, a_2, \dots, a_n)$.

Výstup: Permutace $Out=(a'_1,a'_2,\ldots,a'_n)$ posloupnosti In taková, že $a'_1\leq a'_2\leq\ldots\leq a'_n$.

Instance problému řazení:

Seřaďte vzestupně posloupnost In = (75, 11, 34, 176, 59, 6, 54).

Korektnost algoritmů

Korektní algoritmus A pro problém V: pro každou instanci problému V, algoritmus A skončí v konečném čase se správným výstupem. Pak říkáme, že algoritmus A řeší problém V.

Čili:

A není korektní algoritmus, pokud:

- pro některou instanci problému neskončí (např. se "zacyklí") nebo
- pro některou instanci problému skončí s nesprávným výstupem.

Úmluva: v DSA uvažujeme pouze korektní algoritmy.

Zápis algoritmů

- Kritériem je srozumitelnost a stručnost zápisu.
- Způsoby zápisu algoritmů:
 - slovní popis,
 - vývojový diagram,
 - pseudokód (C-like, Java-like, Pascal-like), s případnými částmi (českých, anglických) vět,
 - kód v nějakém programovacím jazyku:
 - vyšší programovací jazyk,
 - mezijazyk (bytekód),
 - strojový jazyk,
 - logický obvod (např. FPGA).

Program

Program P: zápis (implementace) algoritmu A v programovacím jazyku, spustitelný (proveditelný) na nějakém počítači s nějakým OS a SW prostředím.

- U návrhu a implementace programů nás zajímají SW inženýrské otázky, jako např.
 - modularita,
 - ošetření vyjímek,
 - datová abstrakce a ošetření vstupů a výstupů,
 - dokumentace.
- Jednomu algoritmu A mohou odpovídat různé programy P_1, P_2, \ldots v různých programovacích jazycích.
- Složitosti provedení jednotlivých programů téhož algoritmu se mohou lišit svojí složitostí v závislosti na architektuře počítače — nikoli ale řádově.

Různé algoritmy mohou mít různou složitost

- Pro jeden problém V mohou existovat různé algoritmy A_1, A_2, \ldots , pro jeho řešení.
- Jejich složitosti se mohou lišit výrazně (= řádově) svými nároky na výpočetní prostředky.
- Zvláště se mohou lišit svojí rychlostí (operační složitostí).

Jak měřit a určovat složitost algoritmů?

Analýza složitosti algoritmu: **výpočet/odhad/predikce** požadavků na výpočetní prostředky, které provedení algoritmu bude vyžadovat v závislosti na **velikosti vstupních dat**.

Velikost (složitost) vstupních dat závisí na specifikaci daného problému

- počet bitů vstupního čísla,
- délka vstupní posloupnosti čísel,
- rozměry vstupní matice,
- počet znaků vstupního textu,
- . . .

Výpočetní prostředky

- cykly procesoru \Rightarrow **operační** složitost,
- paměťové buňky ⇒ paměťová složitost,
- počet logických hradel FPGA při HW implementaci algoritmu,

Výpočetní (operační) složitost

Varianty:

- doba běhu algoritmu,
- doba výpočtu,
- počet provedených operací,
- počet provedených instrukcí (aritmetických, logických, paměťových),
- počet transakcí nad databází.

Případová analýza složitosti: Typický algoritmus obsahuje podmíněné příkazy \Rightarrow složitost algoritmu **může obecně** záviset **nejen na velikosti** vstupních dat, ale také na jejich **hodnotách** (pak říkáme, že algoritmus je **citlivý na vstupní data**).

Příklad algoritmů s různou složitostí

Příklad

Zjistěte, zda jsou v poli $a[0,\ldots,n-1]$ všechny hodnoty navzájem různé.

$$8 \mid 1 \mid 4 \mid 6 \mid 3 \mid 10 \mid -2$$
 \Rightarrow true

$$8 \mid 1 \mid 3 \mid 6 \mid 3 \mid 10 \mid -2 \mid \Rightarrow \text{ false}$$

1. algoritmus A_1 (intuitivní, jednoduchý)

Myšlenka: porovnat každý prvek s každým, zda se shodují.

```
bool ruzne = true;
for (i=0; (i<n); i++)
    for (j=0; (j<n); j++)
        if ((i!=j) && (a[i]==a[j]))
        ruzne = false;</pre>
```

- Počet iterací: n².
- Počet porovnání: přibližně $h_1(n) \doteq 4n^2$.
- Kromě toho se provádí řada dalších operací, např. čtení z paměti.

2. lepší algoritmus A_2

Myšlenka: ukončit cyklus, pokud jsou nalezeny stejné hodnoty.

```
bool ruzne = true;
for (i=0; (i<n) && ruzne; i++)
    for (j=0; (j<n) && ruzne; j++)
        if ((i!=j) && (a[i]==a[j]))
            ruzne = false;</pre>
```

- Počet iterací: 1 až n^2 .
- Počet porovnání: $h_2(n) \doteq 4$ až přibližně $4n^2$.

3. ještě lepší algoritmus A_3

- Myšlenka: Neporovnávat každý prvek s každým prvkem dvakrát (rovnost je symetrická relace)
- & elegantněji vynechat diagonálu.

```
bool ruzne = true;
for (i=1; (i<n) && ruzne; i++)
   for (j=0; (j<i) && ruzne; j++)
      if ( /* ... */ (a[i]==a[j]))
      ruzne = false;</pre>
```

- Počet iterací: 1 až n(n-1)/2.
- Počet porovnání: $h_3 \doteq 3$ až přibližně 3n(n-1)/2.

4. ještě lepší algoritmus A_4

Myšlenka: Hodnoty v poli nejprve seřadit.

```
bool ruzne = true;
seřaď vstupní pole a[0,...,n-1];
for (i=1; (i<n) && ruzne; i++)
   if (a[i]==a[i-1])
    ruzne = false;</pre>
```

- Počet iterací: 1 až (n-1).
- Počet porovnání: 3 až přibližně 3n.
- Celková složitost: nejvýše přibližně $h_4(n) \doteq kn \log n + 3n$, k je nějaká konstanta.

Vyjádření složitosti algoritmu

- Viděli jsme, že složitost algoritmu může obecně záviset na hodnotách vstupních dat.
- Proto je obecně potřebné vyjádřit složitost algoritmu:
 - v nejlepším případě,
 - v nejhorším případě,
 - v průměrném případě.
- Poslední případ je nejobtížnější, protože není vždy zřejmé, co to jsou vstupní data v průměrném případě. Typicky náhodně vygenerovaná, ale to nemusí být v praxi splněno.
- Platí pro časovou, paměťovou, komunikační, transakční,....

Umění analýzy složitosti algoritmu

Umění analyzovat složitost algoritmů vyžaduje řadu znalostí a schopností:

- znalosti odhadů řádu rychlosti růstu funkcí,
- schopnost abstrakce výpočetního modelu,
- matematické znalosti z diskétní matematiky, kombinatoriky,
- znalosti sčítání řad a řešení rekurentních rovnic,
- znalosti základů teorie pravděpodobnosti,
- a další.

RAM model

- Pro analýzu složitosti algoritmu potřebujeme model výpočetního systému, na kterém algoritmus bude hypoteticky implementován.
- Nejčastější je jednoprocesorový Random Access Machine (RAM) model:
 - data uložena v adresovatelné paměti,
 - aritmetickologické, řídící, paměťové instrukce,
 - časová složitost instrukcí je jednotková nebo konstatní,
 - intrukce jsou prováděny postupně (sekvenčně).

Asymptotická složitost

- Přestože lze v případě jednodušších algoritmů určit složitost přesně,
 - ve většině případů to nestojí za tu námahu,
 - v řadě případů složitých algoritmů je to velmi obtížné.
- Proto se to typicky nedělá.
- Z praktického hlediska nás zajímá především, jak se bude algoritmus chovat pro **velké** $(\to \infty)$ instance problému.
- Typicky nám stačí vyjádřit řád růstu funkce složitosti se zanedbáním příspěvků nižších řádu.

Příklad

Složitost 4. algoritmu je nejvýše $h_4(n) = kn \log n + 3n \doteq kn \log n$ pro velká n (\Rightarrow řazení dominuje zbytku algoritmu).

Asymptotická složitost (pokr.)

- Zajímá nás, jak složitost algoritmu závisí na velkosti vstupních dat v limitě, pokud velikost instance problému poroste nade všechny meze.
- Pro první porozumění chování algoritmu nás nemusejí zajímat ani multiplikativní konstanty

 říkáme, že nás zajímá asymptotická složitost.
- Je to složitost vyjádřená pro instance problému dostatečně velké, aby se jasně projevil řád růstu funkce složitosti v závislosti na velikosti vstupních dat.
- Asymptoticky lepší algoritmus bude lepší pro všechny instance problému kromě konečného počtu menších instancí.

Příklad

Hodnoty fce $f(n)=1.5n^2+140\sqrt{n}+30$ pro velká n budou velmi blízké hodnotám fce $g(n)=1.5n^2$ nebo fce $h(n)=1.5n^2-25n+44$.

Asymptotická aritmetika

- ullet $\mathcal{N}^+=$ množina přirozených čísel
- $R^+ = \text{množina kladných reálných čísel}$.
- Uvažujeme pouze kladné funkce jedné přirozené proměnné n: $f, q, \ldots : \mathcal{N}^+ \to \Re^+$.

Asymptotická těsná mez : Θ-notace

Definice

(Relační) Jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je **téhož** řádu jako g(n), psáno $f(n) = \Theta(g(n))$, jestliže $\exists c_1, c_2 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+; \quad \forall n \geq n_0: \quad c_1.g(n) \leq f(n) \leq c_2.g(n).$

Alternativní definice.

Definice

(Množinová) Je-li dána funkce g(n), pak $\Theta(g(n))$ je definována jako (nekonečná) množina funkcí $\{f(n): \exists c_1, c_2 \in \Re^+ \exists n_2 \in \mathcal{N}^+ \forall n > n_2 : c_1, g(n) < f(n) < c_2, g(n)\}$

- $\{f(n): \exists c_1, c_2 \in \Re^+ \exists n_0 \in \mathcal{N}^+ \, \forall n \ge n_0: c_1.g(n) \le f(n) \le c_2.g(n)\}.$
 - Zápisy $f(n) \in \Theta(g(n))$ a $f(n) = \Theta(g(n))$ jsou rovnocenné a záleží pouze na kontextu, který je vhodnější. (To samé platí pro O, Ω, o, ω).
 - Θ-notaci používáme pro vyjádření faktu, že 2 funkce jsou asymptoticky stejné až na multiplikativní konstantu.

Asymptotická těsná mez : ⊖-notace (pokr.)

Příklad

- $3n^2 5n 15 = \Theta(n^2)$
- \bullet Obecně pro každý polynom $\sum_{i=0}^d a_i n^i = \Theta(n^d)$, pokud $a_d > 0$.
- $\frac{1}{3}\log^2 n + 2\sqrt[3]{n} = \Theta(\sqrt[3]{n})$: funkce $\frac{1}{3}\log^2 n + 2\sqrt[3]{n}$ a $\sqrt[3]{n}$ rostou řádově stejně rychle.

Asymptotická horní mez : O-notace

Definice

```
(Relační) Jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je nejvýše řádu g(n), psáno f(n) = O(g(n)), jestliže \exists c_2 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+; \quad \forall n \geq n_0: \quad f(n) \leq c_2.g(n).
```

Alternativní definice.

Definice

(Množinová) Je-li dána funkce g(n), pak O(g(n)) je definována jako (nekonečná) množina funkcí $\{f(n): \exists c_2 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+; \quad \forall n \geq n_0: \quad f(n) \leq c_2.g(n)\}.$

 O-notaci používáme pro vyjádření horní meze funkce až na multiplikativní konstantu.

Asymptotická horní mez : O-notace (pokr.)

- $f(n) = \Theta(g(n))$ implikuje f(n) = O(g(n))(Θ je silnější podmínka než O neboli $\Theta(g(n)) \subset O(g(n))$).
- Zápisem f(n) = O(g(n)) vyjadřujeme, že g(n) je pro f(n) asymp. horní mezí **stejného nebo vyššího** řádu.
- O-výrazy používáme pro odhady složitostí algoritmů v nejhorších případech.

Příklad

• $3n^2 - 5n - 15 = O(n^2)$, ale také $3n^2 - 5n - 15 = O(n^3)$

Asymptotická dolní mez : Ω -notace

Definice

(Relační) Jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je nejméně řádu g(n), psáno $f(n) = \Omega(g(n))$, jestliže $\exists c_1 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+; \quad \forall n \geq n_0 : \quad c_1.g(n) \leq f(n).$

Alternativní definice.

Definice

(Množinová) Je-li dána funkce g(n), pak $\Omega(g(n))$ je definována jako (nekonečná) množina funkcí $\{f(n): \exists c_1 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+; \quad \forall n \geq n_0: \quad c_1.g(n) \leq f(n)\}.$

• Ω -notaci používáme pro vyjádření **dolní meze** funkce až na **multiplikativní** konstantu.

Asymptotická dolní mez : Ω -notace (pokr.)

- $f(n) = \Theta(g(n))$ implikuje $f(n) = \Omega(g(n))$ (Θ je silnější podmínka než Ω neboli $\Theta(g(n)) \subset \Omega(g(n))$).
- Zápisem $f(n)=\Omega(g(n))$ vyjadřujeme, že g(n) je pro f(n) asymp. dolní mezí **stejného nebo nižšího** řádu.
- Ω-výrazy používáme pro odhady složitostí algoritmů v nejlepších případech.

Příklad

• $2n\log n + 3\sqrt{n} + 1 = \Omega(n\log n)$, ale také $2n\log n + 3\sqrt{n} + 1 = \Omega(n)$.

Striktně větší horní mez : o-notace

Definice

(Relační) Jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je striktně nižšího řádu než g(n), psáno f(n) = o(g(n)), jestliže $\forall c_2 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+ \quad \forall n \geq n_0 : \quad f(n) < c_2.g(n).$

Alternativní definice.

Definice

(Množinová) Je-li dána funkce g(n), pak o(g(n)) je definována jako (nekonečná) množina funkcí

$$\{f(n): \forall c_2 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+ \quad \forall n \ge n_0: \quad f(n) < c_2.g(n)\}.$$

- Zápisy $f(n) \in o(g(n))$ a f(n) = o(g(n)) jsou opět rovnocenné.
- Vyjadřují, že g(n) je pro f(n) asymp. horní mezí **vyššího** řádu.
- Pak platí $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$

Striktně menší dolní mez : ω -notace

Definice

(Relační) Jsou-li dány funkce f(n) a g(n), pak řekneme, že f(n) je striktně vyššího řádu než g(n), psáno $f(n) = \omega(g(n))$, jestliže $\forall c_1 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+; \quad \forall n \geq n_0 : \quad c_1.g(n) < f(n).$

Alternativní definice.

Definice

(Množinová) Je-li dána funkce g(n), pak $\omega(g(n))$ je definována jako (nekonečná) množina funkcí

$$\{f(n): \forall c_1 \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+; \quad \forall n \ge n_0: \quad c_1.g(n) < f(n)\}.$$

- Zápis $f(n) = \omega(g(n))$ vyjadřuje, že g(n) je pro f(n) asymp. dolní mezí **nižšího** řádu.
- Pak platí $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$.
- ullet Žádná multiplikativní konstanta neumožní, aby g(n) dostihlo f(n).

Použití asymptotické notace

- Asymptotická notace nám umožňuje zjednodušovat výrazy zanedbáním nepodstatných částí.
- Co znamená zápis $f(n)=4n^3+\Theta(n^2)$? Výraz $\Theta(n)$ zastupuje anonymní funkci z množiny $\Theta(n^2)$ (nějaká kvadratická funkce), jejíž konkrétní podobu pro zatím zanedbáváme.
- Co znamenají zápisy $\Theta(1)$, O(1), $\Omega(1)$? Přesněji neurčené **konstantní** meze.
- Co znamená zápis $f(n) = O(n^{O(1)})$? f(n) je shora omezena nějakou polynomiální funkcí n^c , kde c sice přesně neznáme, ale víme, že to je konstanta.

Zákony asymptotické aritmetika

Transitivita:	$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n)).$
	Podobně pro $\Omega, \Theta, o, \omega$.
Reflexivita:	$f(n) = O(f(n))$. Podobně pro Ω, Θ .
Symetrie:	$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n)).$
Transpoziční	$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)),$
symetrie:	$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n)).$
Inkluze:	$f(n) = o(g(n)) \Rightarrow f(n) = O(g(n)),$
	$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)),$
	$f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n)).$
	$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)),$

Všimněte si následující analogie s porovnáváním čísel:

Základní funkce jedné proměnné

- dolní celá část $\lfloor x \rfloor$, horní celá část $\lceil x \rceil$,
- polynomiální
 - exponent > 1, např. n^2 ,
 - lineární,
 - exponent < 1, např. $\sqrt[4]{n}$,
- exponenciální, např. 2^n ,
- polylogaritmické, např. $\log^3 n$,
- faktoriální n!,
- logaritmická iterace $\log^* n$,
- Fibonacciho čísla F(n).
-

Porovnání řádu funkcí

Příklad

- ① Dokažte, že $\log n = o(n^c)$ pro libovolnou konstantu 0 < c < 1.
- 2 Seřaďte následující funkce dle jejich asymptotické složitosti.

n^3	$\lceil \log n \rceil!$	e^n
$2^{\sqrt{n}}$	n	$\log(n!)$
$\log \log n$	1.5^{n}	$n2^n$
n!	$n^{\log n}$	$\log n$
$\log^2 n$	2^{2^n}	$n^2 \log n$
2^n	$n/\log n$	$2^{\log^2 n}$
$n^{1/\log n}$	$\sqrt{\log n}$	$n \log n$

Srovnání časových složitostí

Předpokládejme, že 1 operace trvá čas $1\mu s$ a že počet operací je dán funkcí v prvním sloupci. Pak doba výpočtu bude pro různé hodnoty n následující: (Připomeňme, že počet atomů ve vesmíru se odhaduje na 10^{80} a stáří vesmíru na 14×10^9 let.)

n	10	20	40	80	500	1000
$\log n$	$3,3~\mu$ s	$4,3\mu s$	$5\mu s$	$5,8\mu s$	$9\mu s$	$10\mu s$
n	$10\mu s$	$20\mu s$	$40\mu s$	$60\mu s$	0,5ms	1ms
$n \log n$	$33\mu s$	$86\mu s$	0,2ms	0,35ms	4,5ms	10ms
n^2	0,1ms	0,4ms	1,6~ms	3,6ms	0,25s	1s
n^3	1ms	8ms	64ms	0, 2s	125s	17min
n^4	10ms	160ms	2,56s	13s	17 h	$11,6\;dn$ í
2^n	1ms	1s	12,7dní	3600 let	$10^{137} \; {\rm let}$	$10^{287} \; {\sf let}$
n!	3,6s	77100 let	10^{34} let	10^{105} let	10^{1110} let	10^{2554} let

Základní diskrétní posloupnosti a řady

Aritmetická posloupnost:

Základní:
$$1 + 2 + \cdots + n = \sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

Obecná: $a_1 + \cdots + a_n = \frac{1}{2}n(a_1 + a_n)$.

- Geometrická posloupnost: Pro $x \neq 1$: $1 + x + x^2 + \cdots + x^n = \sum_{i=0}^n x^i = \frac{x^{n+1}-1}{x-1}$.
- Obecná posloupnost: Je-li f(n) monotonně rostoucí funkce, lze součet řady $\sum_{k=m}^{n} f(k)$ aproximovat určitým integrálem:

$$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$$

Aplikace:

- ▶ Příklad 1: **Harmonická posloupnost:** $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1).$
- ▶ Příklad 2: **Součet kvadrátů:** $1 + 2^2 + 3^2 + \cdots + n^2 = \sum_{k=1}^{n} k^2 = \frac{n^3}{3} + \frac{n^2}{2}$.

Základní kombinatorika

- **Permutace:** (prvky se neopakují, záleží na pořadí) Počet k-permutací z n prvků je $\frac{n!}{(n-k)!} = n(n-1)\dots(n-k+1)$. Počet permutací z n prvků je n!.
- Permutace s opakováním: (prvky se opakují, záleží na pořadí)

$$\frac{n!}{k_1!k_2!\dots k_d!},$$

 $kde \sum_{i=1}^{d} k_i = n.$

- Kombinace: (prvky se neopakují, nezáleží na pořadí). Počet k-kombinací z n prvků je $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
 - = Počet k-podmnožin z n-prvkové množiny.
 - = Počet n-bitových řetězců s k bity 1.
 - = Permutace s opakováním pro d=2.
- Variace (prvky se opakují libovolně, záleží na pořadí):
 Počet k-variací z n-prvkové množiny je nk.