

CLAIMS

What is claimed is:

1 1. An apparatus comprising:
2 a printed circuit board (PCB) having a top surface and a bottom surface;
3 a bottom heat dissipating device attached to the bottom surface of the PCB, a
4 top surface of the bottom heat dissipating device thermally coupled with a backside
5 surface of one or more electronic components mounted on the bottom surface of the
6 PCB;
7 a top heat dissipating device attached to the top surface of the PCB; and
8 a thermally conductive coupling member thermally coupled with the bottom and
9 top heat dissipating devices.

1 2. The apparatus of claim 1, wherein the apparatus is a mezzanine card.

1 3. The apparatus of claim 2, wherein the top and bottom heat dissipating devices
2 are heat spreaders having a length between 100 and 140 millimeters.

1 4. The apparatus of claim 3, wherein a height from a bottom surface of the bottom
2 heat spreader to a top surface of the top heat spreader is 8.2 millimeters or less.

1 5. The apparatus of claim 2, wherein the mezzanine card is in accordance with an
2 IEEE 1386 standard.

1 6. The apparatus of claim 3, wherein the one or more electronic components
2 mounted on the bottom surface of the PCB comprise a processor.

1 7. The apparatus of claim 6, wherein the thermally conductive coupling member
2 extends along an edge portion of the PCB, and the processor is mounted within 3
3 millimeters from said edge portion.

1 8. The apparatus of claim 1, wherein the thermally conductive coupling member
2 comprises a top portion and a bottom portion, wherein the top portion is integral with
3 the top heat dissipating device and/or the bottom portion is integral with the bottom
4 heat dissipating device.

1 9. The apparatus of claim 1, further comprising at least one other thermally
2 conductive coupling member thermally coupled with the bottom and top heat
3 dissipating devices.

1 10. The apparatus of claim 1, wherein the bottom heat dissipating device and/or the
2 top heat dissipating device are made substantially of copper or a copper alloy.

1 11. The apparatus of claim 1, wherein a bottom surface of the top heat dissipating
2 device is thermally coupled with one or more electronic devices mounted on the top
3 surface of the PCB.

1 12. The apparatus of claim 1, wherein the top and bottom heat dissipating devices
2 are attached to the PCB with thermally conductive mounting hardware, said mounting
3 hardware thermally coupled with the top and bottom heat dissipating devices.

1 13. The apparatus of claim 12, wherein the thermally conductive mounting
2 hardware comprises one or more screws.

1 14. The apparatus of claim 1, wherein the bottom heat dissipating device and/or the
2 top heat dissipating device have recessed areas of different depths to thermally couple
3 with electronic components of different heights.

where in what member

Cont'd P3

1 15. The apparatus of claim 1, wherein the thermally conductive coupling member
2 extends along an edge of the PCB by at least one opening formed adjacent a side edge
3 of the thermally conductive coupling member between the top and bottom heat
4 dissipating devices.

1 16. The apparatus of claim 15, wherein lengths of the top and bottom heat
2 dissipating devices extending along the edge of the PCB are between 100 and 140
3 millimeters and a length of the thermally conductive coupling member extending along
4 the edge is between 25 and 50 millimeters.

1 17. The apparatus of claim 15, wherein one or more dimensions of the thermally
2 conductive coupling member are optimized for cooling the PCB by conduction and
3 convection.

1 18. The apparatus of claim 1, wherein the thermally conductive coupling member
2 extends along an edge of the PCB with at least one opening formed within the
3 thermally conductive coupling member.

*where ?
seen*

Cont'd P3

1 19. A system comprising:
2 a carrier board having a bus; and
3 a mezzanine card mounted on the carrier board coupled with the bus, the
4 mezzanine card comprising a printed circuit board (PCB), a bottom heat dissipating

5 device attached to a bottom surface of the PCB facing the carrier board, a top surface of
6 the bottom heat dissipating device thermally coupled with a backside surface of one or
7 more electronic components mounted on the bottom surface of the PCB, a top heat
8 dissipating device attached to a top surface of the PCB, and a thermally conductive
Cont Sub P3 coupling member thermally coupled with the bottom and top heat dissipating devices.

1 20. The system of claim 19, wherein the top and bottom heat dissipating devices are
2 heat spreaders having a length between 100 and 140 millimeters.

1 21. The system of claim 19, wherein a height from a top surface of the carrier board
2 to a top surface of the top heat dissipating device is 13.5 millimeters or less.

1 22. The system of claim 21, wherein the mezzanine card is in accordance with an
2 IEEE 1386 standard.

1 23. The system of claim 19, wherein the bottom heat dissipating device and/or the
2 top heat dissipating device have recessed areas of different depths to thermally couple
Cont Sub P3 with electronic components of different heights.

1 24. The system of claim 19, wherein the top and bottom heat dissipating devices are
2 attached to the PCB with thermally conductive mounting hardware also used to mount
3 the mezzanine card to the carrier board, said mounting hardware thermally coupled
4 with the top and bottom heat dissipating devices.

1 25. The system of claim 19, wherein the thermally conductive coupling member
2 extends along an edge of the PCB with at least one opening formed adjacent the

3 thermally conductive coupling member between the top and bottom heat dissipating
4 devices.

Conducting
26. The system of claim 25, wherein lengths of the top and bottom heat dissipating
2 devices extending along the edge of the PCB are between 100 and 140 millimeters and
3 a length of the thermally conductive coupling member extending along the edge is
4 between 25 and 50 millimeters.

1 27. A method to remove heat from a printed circuit board (PCB) comprising:
2 attaching a bottom heat dissipating device to a bottom surface of the PCB, a top
3 surface of the bottom heat dissipating device thermally coupled with a backside surface
4 of one or more electronic devices mounted on the bottom surface of the PCB;
5 attaching a top heat dissipating device to a top surface of the PCB; and
6 thermally coupling the top heat dissipating device with the bottom heat
7 dissipating device through a thermally conductive coupling member.

1 28. The method of claim 27, wherein thermally coupling the top heat dissipating
2 device with the bottom heat dissipating device with the thermally conductive coupling
3 member comprises forming an opening adjacent to at least one side edge of the
4 thermally conductive coupling member to allow air flow between the top and bottom
5 heat dissipating devices.

1 29. The method of claim 27, wherein the PCB is a PCB of a mezzanine card.

1 30. The method of claim 29, comprising optimizing one or more dimensions of the
2 thermally conductive coupling member for cooling the mezzanine card by conduction
3 and convection.