이학석사 학위논문

Gleason's Theorem and Quantum Logic

글리슨의 정리와 양자논리

2025년 2월

서울대학교 대학원 수리과 학부

이창재

Gleason's Theorem and Quantum Logic

글리슨의 정리와 양자논리

지도교수 이 훈 희

이 논문을 이학석사 학위논문으로 제출함 2024년 OO월

> 서울대학교 대학원 수리과학부 이창재

이 창 재의 이학석사 학위논문을 인준함 2024년 OO월

위원] 장	
	_ 0	
부위원장		
, ,,		
위	워	

Abstract

Abstract

 $\mathbf{Keywords:}$ Gleason's thoerem, Quantum logic, Hidden-variable theory

Student Number: 2019-26959

Contents

\mathbf{A}	bstra	ct	i	
1	Pre	Preliniminaries		
	1.1	C*-algebras	1	
	1.2	The Gelfand-Naimark-Segal construction	1	
	1.3	von Neumann algebras	2	
2 Gleason's Theorem				
	2.1	Gleason Theorem	3	
Bi	Bibliography			
요약				

Chapter 1

Preliniminaries

1.1 C*-algebras

An involution on a complex Banach algebra A is the map $*: A \to A$ such that

1.
$$\alpha x + \beta y = \bar{\alpha} x^* + \bar{b} y^*$$

2.
$$(xy)^* = y^*x^*$$

3.
$$(x^*)^* = x$$

whenever $x, y \in A$ and $\alpha, \beta \in \mathbb{C}$.

A C^* -algebra is a complex Banach algebra with an involution that satisfies the additional condition $\|x^*x\| = \|x\|^2$

If A and A' are Banach algebras with involutions, a mapping $\varphi:A\to A'$ is called *-homomorphism if it is a homomorphism of algebras such that $\varphi(x^*)=\varphi(x)^*$

1.2 The Gelfand-Naimark-Segal construction

Let φ be a positive functional on a C^* -algebra A. Then φ induces a semidefinite inner product $\langle \cdot, \cdot \rangle$ on H which is defined by

$$\langle x, y \rangle = \varphi(y^*x)$$

for all $x, y \in H$.

Theorem 1. For any positive functional ρ on a C^* -algebra A there is a Hilbert space, H_{ρ} , a *-homomorphism, $\pi: A \to B(H_{\rho})$, and a cyclic vector, $\xi_{\rho} \in H_{\rho}$, such that

$$\rho(x) = \langle \pi_{\rho}(x)\xi_{\rho}, \xi_{\rho} \rangle$$

Moreover, the triple $(\pi_{\rho}, H_{\rho}, \xi_{\rho})$ is unique up to a unitary transformation between the corresponding Hilbert spaces.

1.3 von Neumann algebras

Chapter 2

Gleason's Theorem

2.1 Gleason Theorem

Text

Bibliography

[1] J. Hamhalter, Quantum measure theory, vol. 134 of Fundamental Theories of Physics. Kluwer Academic Publishers Group, Dordrecht, 2003.

요 약

국문 요약 [1]

주요어: 글리슨의 정리, 양자논리, 숨은 변수 이론

학 번**:** 2019-26959