Continuous Monitoring of Pareto Frontiers over Partially Ordered Attributes for Many Users

21st International Conference on Extending Database Technology, Vienna, Austria, 2018

Afroza Sultana and Chengkai Li The University of Texas at Arlington

Motivation

Recommendation based on users' preferences

Preferences with multiple attributes

Genre

Author

Objects that 'stand out"

Meet your next favorite book. Publisher or Hills Bear of

Algorithm FilterThenVerify

For each cluster in C

- Filter: if U approve o in Pareto-optimality, stores o in \mathcal{P}_U
- Verify: for each c, determines whether o belongs to \mathcal{Q}_c

_		display	brand	Cru
_	o_I	12	Apple	single
uad	02	14	Apple	dual
	03	15	Samsung	dual
	04	19	Toshiba	quad
	05	9	Samsung	quad
	06	9.5	Lenovo	triple
	07	16.5	Lenovo	quad

An Example

Pareto-optimal as

"stand out"

Problem Formulation

Find target users such that o_7 is in Pareto frontier.

Similarity Functions

Approx. Common Preference Tuples

- Jaccard similarity
- | Common preference tuples | / | All preference tuples |
- •Weighted Jaccard similarity
- ■Values near top have more impact
- Maximal values: no other value is preferred over
- ■Weighted preference tuples

Challenges & Ideas

- ■Exhaustive comparisons
- •For every user
- •With every Pareto-optimal object
- A number of users
- Objects streaming
- Efficient dissemination
- ✓ Sharing computation across users

- ■Which users share preferences? ✓ Cluster users based on preferences
- No prior study on clustering for partial orders
- ✓ Define similarity functions w.r.t. partial orders

Preferences can be diverse

Tiny clusters

Relax idea of common preference tuple

✓ Preference polling

Experimental Evaluation

- Movie Dataset: 12,749 movies: joined Netflix dataset with data from IMDB
- Publication Dataset: 17,598 publications: ACM Digital Library

Movie Dataset

Publication Dataset

Publication Dataset

h = 0.70h = 0.55Precision Recall Precision Recall Movie 97.67 94.99 Publication 98.27 95.13

