Exercise 1, MATLAB Environment Lab

Linnéa Olsson, André Frisk, Andreas R Almgren September 13, 2018

1 Abstract

This laboratory reports main focus lies within getting us familiar with the MATLAB environment. This is achieved through asking us to write a script that outputs a graph.

2 Introduction

In this laboratory report we are going to use MATLAB to create a graph. MATLAB is a language that manipulates vectors and matrices. This lab is mostly about learning how to work with MATLAB and see the benefits of using it.

2.1 Purpose

The purpose of this lab is to plot the function $\sin(10x) + x$ in blue colour, $\sin(30x) + 1$ in red colour and x^2 in green colour. The plotted graph is meant to have smooth curves and dotted grids; have the range (-1,5) and domain [0,2] - and also have labels for its axes: x-axis as x and y as f(x).

3 Method

3.1 Tools/Material

- A computer fitting for the task
- LATEX editor, in this lab Overleaf was used
- MATLAB
- EX1_perspective.zip (link)

3.2 Implementation

We opened Matlab and entered the following code:

```
% Line in remarks: Linnea Olsson, Andre Frisk, Andreas R Almgren
\% Create a vector of 1000 evenly spaced points in the interval [0, 2].
x = linspace(0, 2, 1000);
f1 = \sin(10 * x) + x;
f2 = \sin(30 * x) + 1;
f3 = x.^2;
% Plot the functions f1, f2 and f3. Specify the colours of respective
% functions.
plot(x, f1, 'b', x, f2, 'r', x, f3, 'g')
\% Specify limits on f-axis.
y \lim (\begin{bmatrix} -1 & 5 \end{bmatrix})
% Specifies axis tick values.
xticks ([0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2])
\% Set label below x-axis.
xlabel('x')
ylabel('f(x)')
grid on
% Current axes.
ax = gca;
% Set the style of the gridlines to be dotted.
ax.GridLineStyle = '--';
% Make a legend.
legend ('\sin(10x) + x', '\sin(30x) + 1', 'x^2', 'Location', 'northeast')
% Save plot as a PNG named el 1.
print('-dpng', '-r600', 'e1_1')
```

After having finished the code, we ran it.

4 Result

We found that when executing the file e1_1.m, we got the output that can be seen in figure 1.

Figure 1: Output of e1 1.m.

Figure 1 has the functions $\sin(10x) + x$, $\sin(30x) + 1$ and x^2 plotted in it.

5 Conclusion

We successfully plotted a graph including what we aimed to include in 2.1.

6 Note on a bug in the instructions

In the pdf e1v3.pdf (found in EX1_perspective.zip) we are told to plot the function $\sin(30x)+1$ in red and also that the same function should be plotted in green. We chose to use the first alternative.