Grafos

Grafos

Grafo – formado por dois conjuntos:

Vértices

Arcos

```
      Ponta inicial
      0
      0
      2
      6
      6
      6
      1
      1
      3
      8

      arco
      a
      b
      c
      d
      e
      f
      g
      h
      i
      j

      Ponta final
      0
      2
      6
      0
      2
      4
      3
      3
      7
      5
```

Aplicações

Associando-se significados aos vértices e às linhas, o grafo passa a constituir um modelo de uma situação ou informação real

Exemplos de aplicações

- 1a. Aplicação conhecida (1736)
 - Problema da ponte de Koenigsberg (na Prússia oriental)
 - Resolvido por Euler

É possível atravessar todas as pontes uma única vez, voltando ao lugar de partida?

Exemplos de aplicações

Cidades e estradas

Tráfego aéreo

Exemplos de aplicações

Atividades e tempo de execução

Outras Aplicações

- Cada vértice é uma tarefa de um grande projeto. Há um arco de x a y se x é pré-requisito de y, ou seja, se x deve estar pronta antes que y possa começar. Análise de circuitos elétricos
- Cada vértice é um arquivo de um sistema de software. Cada arco é uma "dependência": um arquivo v é construído a partir de todos os arquivos w para os quais existe um arco da forma (v,w).
 - O utilitário make do UNIX trabalha sobre grafos deste tipo
- Cada vértice é uma página na teia WWW. Cada arco é um link que leva de uma página a outra. [Parece que há cerca de 22 bilhões de páginas e 176 bilhões de links.]

Outras Aplicações

- Cada vértice é uma tarefa de um grande projeto. Há um arco de x a y se x é pré-requisito de y, ou seja, se x deve estar pronta antes que y possa começar. Análise de circuitos elétricos
- Os vértices são times de futebol e os arcos são os jogos entre os times durante um campeonato.
- Os vértices são as casas de um tabuleiro de xadrez. Há um arco de x para y se um cavalo do jogo pode ir de x a y em um só movimento.

Outras Aplicações

- Outras aplicações
 - Análise de circuitos elétricos
 - Verificação de caminhos mais curtos
 - Análise de planejamento de projetos
 - Identificação de compostos químicos
 - Mecânica estática
 - Genética
 - Cibernética
 - Linguística
 - Ciências sociais

— ...

Grafos

Representação

implementação da

Estrutura de Dados

Principais Algoritmos

Problemas típicos

- caminho crítico (máximo e mínimo)
- número cromático
- árvore geradora (máxima e mínima)
- planaridade

Caminho Mínimo

O *caminho crítico* entre dois vértices *u* e *w*, em um grafo orientado *G*, é o caminho de maior custo de *u* até *w* em *G*

Número cromático

É o número mínimo de cores suficiente para que os vértices do grafo sejam coloridos sem que se atribua a mesma cor a dois vértices adjacentes

Número cromático

Planaridade

GRAFOS - Definições

Definição formal

Um grafo é uma tripla (V,A,f), onde V é um conjunto não-vazio de nodos (vértices), A é um conjunto possivelmente vazio de relacionamentos (linhas) e f é uma função de incidência que representa um relacionamento

Grafo orientado

Grafo não-orientado

Grafos orientados x não-orientados

Um grafo expressa uma relação binária R

Grafo não-orientado: $(v1, v2) \in G \leftrightarrow v1 R v2$

Grafo orientado:

 $\{v1, v2\} \in G \leftrightarrow v1 R v2^{v2} v2 R v1$

Um grafo é *valorado* se possuir valores associados às linhas e/ou aos vértices.

Dois vértices v1 e v2 são ditos **adjacentes** em G, se neste existe a aresta {v1,v2} ou um dos arcos (v1,v2) e (v2,v1)

Uma linha a é *incidente* a um vértice v, se v for uma das extremidades de a.

Grau de um vértice é igual ao número de linhas que nele incidem

Vértices com grau igual a zero são ditos *isolados*

A *ordem* de um grafo é igual ao número de vértices do mesmo

Uma linha que tem ambas extremidades em um mesmo vértice é chamada *laço*

Um grafo é dito **completo** se todos os seus pares de vértices forem adjacentes

Um grafo é dito **simétrico** se para cada arco da forma (v,w) existe um arco da forma (w,v).

Semigrau interior de um vértice **w**, em um grafo orientado, é igual ao número de arcos (v,w) existente no grafo.

Entradas ou **fontes** são vértices que possuem **semigrau** interior igual a zero.

Semigrau exterior de um vértice **w**, em um grafo orientado, é igual ao número de arcos (**w**,**v**) existente no grafo.

Saídas ou sumidouros são vértices que possuem **semigrau exterior** igual a zero.

Representação física de grafos

- matriz de adjacência
- matriz de incidência
- lista de adjacência
- lista de incidência

Matriz de adjacência A(n x n) de um grafo G de ordem n, é uma matriz onde cada elemento a_{i.i} é:

Grafos orientados:

$$\mathbf{a}_{i,j} = 1 \text{ se } (\mathbf{v}_i, \mathbf{v}_j) \in \mathbf{G}$$

$$\mathbf{a}_{i,j} = 0$$
 se $(\mathbf{v}_i, \mathbf{v}_i) \sim \varepsilon \mathbf{G}$

Grafos não orientados:

$$a_{i,j} = 1$$
 se $\{v_i, v_i\}$ εG

$$\mathbf{a}_{i,j} = 0$$
 se $\{v_i, v_j\} \sim \varepsilon G$

Matriz de adjacência vértices

A matriz de adjacência é uma forma de representação de grafos simples, econômica e adequada para muitos problemas que envolvem apenas a estrutura do grafo.

	1	2	3	4
1	0	1	1	0
2	1	0	1	1
3	1	1	0	1
4	0	1	1	0

$$a_{ij}=1$$
 se $\{v_i,v_j\}$ ϵ G

$$a_{ij}$$
=1 se $\{v_i, v_j\}$ ε G
 a_{ij} =0 se $\{v_i, v_j\}$ $\sim \varepsilon$ G

Não-orientado - SIMÉTRICO

	1	2	3	4
1	0	1	1	0
2		0	1	1
3			0	1
4				0

 $a_{ij}=1$ se $\{v_i,v_j\}$ ϵ G $a_{ij}=0$ se $\{v_i,v_j\}$ $\sim \epsilon$ G

Valores associados às linhas podem ser representados por uma extensão simples da Matriz de Adjacência

$$a_{ij}=k \text{ se } (v_i,v_j) \in G$$

$$a_{ij}=*$$
 se (v_i,v_j) ~ ϵ G

	1	2	3	4	5	6
1	*	9	*	7	*	19
2	9	*	23	15	*	*
3	*	23	*	27	*	*
4	7	15	27	*	30	17
5	*	*	*	30	*	8
6	19	*	*	17	8	*

Matriz de adjacência (MA)

- Matriz binária: ocupa pouco espaço, especialmente para grafos densos
- Manipulação simples: recursos p/matrizes em qualquer linguagem
- Fácil determinar se (v_i,v_j) ε G
- Fácil determinar {Adjacentes(v,G)}
- Quando o grafo é não orientado, a MA é simétrica (mais econômica)
- Inserção de novos vértices é muito difícil

Matriz de incidência

É uma matriz B(n x m), sendo n o número de vértices, m o número de linhas e:

b_{ij}= -1 se o vértice i é a origem da linha j

b_{ii}= 1 se o vértice i é o término da linha j

Para grafos não orientados, b_{ii}= 1 se a aresta j é incidente ao vértice i.

arcos

		a1	a2	a3	a4	a5
es	1	-1	-1	0	0	0
rtic	2	1	0	-1	-1	0
Vél	3	0	1	1	0	-1
	4	0	0	0	1	1

Listas de adjacência

Para cada vértice v é representada a lista de vértices u tais que (v,u) ε G

Contigüidade Física

Grau máximo

1 2 2 3 3 4

•	Muito	rígida
		•

- Requer previsão do tamanho máximo das listas
- Eficiente para grafos pouco densos, com graus uniformes

Listas de adjacência

Representação mista

- Uso mais racional do espaço
- · Inserção/exclusão de linhas mais fácil
- · Inserção de vértices problemática

Listas de adjacência

Encadeamento

- Uso racional do espaço
- Flexibilidade
- Nós podem ser estendidos para representar outras informações
 - Designações das linhas

Listas de incidência

Contigüidade Física

_1	_	•	-	_	_	-	_	-		 	
1	2	1	3	2	3	2	4	3	4		

Encadeamento

1	2	3	4	5	6	7	8
1	1	2	2	3			
2	3	3	4	4			

Exercício

Exercício 01. Os Turistas Jensen, Leuzingner, Dufour e Medeiros se encontram em um bar de Paris e começam a conversar. As línguas disponíveis são o inglês, o francês, o português e o alemão. Jensen fala todas. Leuzingner não fala apenas o português. Dufour fala francês e alemão. Medeiros fala inglês e português. Represente por meio de um grafo todas as possibilidades de um deles dirigir a palavra a outro, sendo compreendido.

Exercício 02

	1	2	3	4	5	6	7
1		5					
2			2	6	10		
3					33	4	
4			1		14		9
5							19
6				8	33		
7							

- 2. Representar o grafo por Matriz de Adjacência
- 3. Representar o grafo por Matriz de Incidência
- 3. Representar o grafo por Lista de Adjacência
- 3. Representar o grafo por Lista de Incidência