A strong encryption algorithm

Secure Encryption Scheme

Unconditional security

 no matter how much computer power is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

Computational security

- the cost of breaking the cipher exceeds the value of the encrypted information;
- or the time required to break the cipher exceeds the useful lifetime of the information

Desired characteristics

- Cipher needs to completely obscure statistical properties of original message
- more practically Shannon suggested combining elements to obtain:
 - Confusion how does changing a bit of the key affect the ciphertext?
 - Diffusion how does changing one bit of the plaintext affect the ciphertext?

Ways to achieve

- Symmetric Encryption:
 - substitution / transposition / hybrid
- Asymmetric Encryption:
 - Mathematical hardness problems that are efficient to compute in one direction, but inefficient to reverse by the attacker
 - Examples: Modular arithmetic, factoring, discrete logarithm problem, Elliptic Logs over Elliptic Curves

Two basic types

- Block Ciphers
 - Typically 64, 128 bit blocks
 - A k-bit plaintext block maps to a k-bit ciphertext block
 - Usually employ Feistel structure
- Stream Ciphers
 - A key is used to generate a stream of pseudo-random bits key stream
 - Just XOR plaintext bits with the key stream for encryption
 - For decryption generate the key stream and XOR with the ciphertext!

Block cipher

- the most commonly used symmetric encryption algorithms
- input: fixed-size blocks (Typically 64, 128 bit blocks), output: equal size blocks
- provide secrecy and/or authentication services
- Data Encryption Standard (DES), triple DES (3DES), and the Advanced Encryption Standard (AES)s
- Usually employ Feistel structure

Feistel Cipher Structure

- most symmetric block ciphers are based on a Feistel Cipher Structure
- based on the two primitive cryptographic operations
 - *substitution* (S-box)
 - permutation (P-box)
- provide confusion and diffusion of message

Feistel Cipher Structure

- Horst Feistel devised the **feistel cipher** in the 1973
 - based on concept of invertible product cipher
- partitions input block into two halves
 - process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves
- implements Shannon's substitution-permutation network concept

Feistel Encryption and Decryption

