Supplementary Handout for Dis 11: Inference about a Population

1 Motivation

- Last week, we learned how to perform hypothesis testing regarding population mean μ .
- The technique we learned can be extended to testing other population parameters obtained from one single population, and we are going to focus on three extensions this week:
 - 1. Testing μ , but remove the assumption that σ is known
 - 2. Testing σ^2
 - 3. Testing p (proportion of success from a binomial experiment)

2 General Approach

• Before we talk about each specific extension, let's generalize two out of the three testing methods that we learned from last week: test statistic & rejection region, and confidence interval method.

2.1 How is the test statistic & rejection region method generally applied?

- 1. Does the test statistic follow (exactly or approximately) some known distribution? And what is the distribution?
- 2. Based on the test (two-tailed or one-tailed), select the appropriate tail of the distribution for rejection using the specified significance level. This constitutes of the rejection region.
- 3. Calculate the test statistic with the given sample, and see if it falls within the rejection region.
 - If it falls within the rejection region, then we reject H_0 at the specified α significance level;
 - If it doesn't fall within the rejection region, then we fail to reject H_0 at the specified α significance level.

Two-tailed Test	Left-tailed Test	Right-tailed Test
H_0 : parameter = parameter ₀	H_0 : parameter = parameter ₀	H_0 : parameter = parameter ₀
H_1 : parameter \neq parameter ₀	H_1 : parameter < parameter ₀	H_1 : parameter > parameter ₀
Distribution of test statistic left right cutoff	Distribution of test statistic	Distribution of test statistic
Reject H_0 if test statistic < left cutoff, or if test statistic > right cutoff	Reject H_0 if test statistic < cutoff	Reject H_0 if test statistic $>$ cutoff

2.2 How to construct a confidence interval in general?

1. Based on the distribution of the test statistic, one can set probability of drawing sample statistic across multiple samples to be the confidence level $(1 - \alpha)$ by

$$P$$
 (left cutoff \leq test statistic \leq right cutoff) = $1 - \alpha$

2. Shuffle some terms around to rewrite the above equation as

$$P(LB \le \text{parameter} \le UB) = 1 - \alpha$$

Then the confidence interval of $(1 - \alpha)$ confidence level is [LB, UB]

Note: In the special case where test statistic = $\frac{\text{statistic-parameter}}{se(\text{statistic})}$, step 2 is achieved through the following procedure:

$$P\left(\text{left cutoff} \le \frac{\text{statistic} - \text{parameter}}{se(\text{statistic})} \le \text{right cutoff}\right) = 1 - \alpha$$

 $P(\text{left cutoff} \times se(\text{statistic}) \leq \text{statistic} - \text{parameter} \leq \text{right cutoff} \times se(\text{statistic})) = 1 - \alpha$

 $P(\text{left cutoff} \times se(\text{statistic}) - \text{statistic} \le -\text{parameter} \le \text{right cutoff} \times se(\text{statistic}) - \text{statistic}) = 1 - \alpha$

$$P(\text{statistic} - \text{left cutoff} \times se(\text{statistic}) \ge \text{parameter} \ge \text{statistic} - \text{right cutoff} \times se(\text{statistic})) = 1 - \alpha$$

which implies that, in this special case, the confidence interval of $(1 - \alpha)$ confidence level is

$$[statistic - right cutoff \times se(statistic), statistic - left cutoff \times se(statistic)]$$

- Using the constructed confidence interval of confidence level (1α) , one can perform a **two-tailed** test under significance level α :
 - If parameter₀ is NOT contained within the (1α) confidence interval, then we reject H_0 at α significance level;
 - If parameter₀ is contained within the (1α) confidence interval, then we fail to reject H_0 at α significance level.

3 Inferences on Three Parameters from a Single Population

3.1 Inference on μ , when σ is unknown

- Last week, we looked at how to perform hypothesis testing (inference) on μ using \bar{X} , while assuming that the population standard deviation of X (i.e. σ) is known.
 - Recall: if σ is known, then

test statistic =
$$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1^2)$$

(If *X* is already normally distributed, then test statistic is exactly normally distributed; otherwise, as long as $n \ge 30$, then CLT implies that test statistic is approximately normally distributed.)

- However, often in practice, σ is unknown.
 - To address this problem, one might think about substituting σ with unbiased sample estimate s.
 - Replacing σ with s introduces some problem though: s is an estimated object, instead of something that's known for certain (like σ).
 - So the new test statistic $\frac{\bar{X}-\mu_0}{s/\sqrt{n}}$ follows a different distirbution. One figured out that this new distribution is called **student-t distribution**:

test statistic =
$$\frac{\bar{X} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$$

where n-1 is the degree of freedom (DOF).

(Regardless of how X is distributed, the test statistic with estimated s always follows student-t distribution.)

– Since this falls under the special case that test statistic is standardized by subtracting parameter and then devided by standard error of the statistic, the $(1 - \alpha)$ confidence interval is

$$\left[\bar{X} - t_{\alpha/2,n-1} \times \frac{s}{\sqrt{n}}, \quad \bar{X} + t_{\alpha/2,n-1} \times \frac{s}{\sqrt{n}}\right]$$

3

[Go to Exercise 1 & 2]

3.2 Inference on σ^2

- Since we are assuming away from knowing σ with certainty, one might be interested in conducting hypothesis testing on population standard deviation / population variance.
 - Since variance = standard deviation², let's just always perform the test on variance.
- The test statistic used for testing variance follows a **Chi-squared distribution**:

test statistic =
$$\frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

where n-1 is the DOF.

• To construct the confidence interval with $(1 - \alpha)$ confidence level, we need to find the relevant cutoff values that yield middle portion probability of $(1 - \alpha)$:

Hence,

$$\begin{split} P\left(\chi_{1-\frac{\alpha}{2},n-1}^{2} \leq \frac{(n-1)s^{2}}{\sigma^{2}} \leq \chi_{\frac{\alpha}{2},n-1}^{2}\right) &= 1 - \alpha \\ P\left(\frac{\chi_{1-\frac{\alpha}{2},n-1}^{2}}{(n-1)s^{2}} \leq \frac{1}{\sigma^{2}} \leq \frac{\chi_{\frac{\alpha}{2},n-1}^{2}}{(n-1)s^{2}}\right) &= 1 - \alpha \\ P\left(\frac{(n-1)s^{2}}{\chi_{\frac{\alpha}{2},n-1}^{2}} \leq \sigma^{2} \leq \frac{(n-1)s^{2}}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}\right) &= 1 - \alpha \end{split}$$

The confidence interval with $(1 - \alpha)$ confidence level for σ^2 is constructed to be

$$\left[\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right]$$

4

[Go to Exercise 3]

3.3 Inference on p (proportion of success from a binomial experiment)

- Recall from Dis 8 that a binomial $X \stackrel{a}{\sim} N(np, np(1-p))$ if the following conditions both hold:
 - 1. $np \ge 5$, and
 - 2. $n(1-p) \ge 5$

This implies that the sample success proportion $\hat{p} \stackrel{a}{\sim} N\left(p, \left(\sqrt{\frac{p(1-p)}{n}}\right)^2\right)$.

- To perform hypothesis testing, we can check, under the sample proportion \hat{p} from the given sample, if we can first approximate \hat{p} as a normally distributed variable:
 - 1. $n\hat{p} \geq 5$, and
 - 2. $n(1 \hat{p}) \ge 5$

If both conditions hold, we will use the standardized version of \hat{p} as our test statistic, so that the test statistic follows (approximately) a standard normal distribution $N(0, 1^2)$. That is,

test statistic =
$$\frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \stackrel{a}{\sim} N(0, 1^2)$$

• This also falls under the special case that test statistic is standardized by subtracting parameter and then devided by standard error of the statistic. So the $(1 - \alpha)$ confidence interval is

$$\left[\hat{p} - Z_{\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \quad \hat{p} + Z_{\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

[Go to Exercise 4]