T_{c}	tho	Crad	uate (Coun	cil	
10) ыне	しょしねひ	палеч	COIIII	CH	1

I am submitting herewith a thesis written by Mahendra Duwal Shrestha entitled "Analysis and Simulation Of A Simple Evolutionary System." I have examined the final paper copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Computer Science.

We have read this thesis and recommend its acceptance:	Michael D. Vose, Major Professor
Committee Member 1	_
Committee Member 2	_
	Accepted for the Council:
	Dixie Thompson

To the Graduate Council:

I am submitting herewith a thesis written by Mahendra Duwal Shrestha entitled "Analysis and Simulation Of A Simple Evolutionary System." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Computer Science.

eil:
(

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Analysis and Simulation Of A Simple Evolutionary System

A Thesis Presented for

The Master of Science

Degree

The University of Tennessee, Knoxville

Mahendra Duwal Shrestha August 2016 © by Mahendra Duwal Shrestha, 2016 All Rights Reserved. $dedication \dots$

Acknowledgements

I would like to thank...

 $Some\ quotation...$

Abstract

Abstract text goes here...

Contents

Lis	st of	Tables	viii	
Lis	st of	Figures	ix	
1	Intr	oduction	1	
	1.1	Introduction	1	
	1.2	Literature	1	
	1.3	Random Heuristic Search	1	
2	Extending A Genetic Algorithm Model To The Diploid Case			
	2.1	Model	5	
	2.2	Reduction	6	
3	Spe	Specialization		
	3.1	Mutation	9	
	3.2	Crossover	10	
	3.3	Mixing Matrix	12	
4	Adaptation of Walsh Transformation			
	4.1	Walsh Functions and Walsh Transorm	13	
	4.2	Walsh Transform Adaptation	16	
	4.3	Simplification	17	
5	Evo	lutionary Limits	19	

6	Experimental Simulations and Measurements		20
	6.1	Distance Computation	20
	6.2	Simplification	20
	6.3	Convergence Of Finite Diploid Population Short-Term Behavior	20
Bi	bliog	graphy	21
A	Sun	nmary of Equations	23
	A.1	Cartesian	23
	A.2	Cylindrical	23
$\mathbf{V}_{\mathbf{i}}$	ita		24

List of Tables

List of Figures

Chapter 1

Introduction

1.1 Introduction

1.2 Literature

1.3 Random Heuristic Search

Vose ? introduced abstract model, a generalized heuristic search method referred to as $Random\ Heuristic\ Search\ (RHS)$ which is defined upon the central concept of state and transition between states. An instance of RHS can be thought of as an initial collection of elements P_0 chosen from some search space Ω , together with a stochastic transition rule τ , which from P_i will produce another collection P_{i+1} . In other words, τ will be iterated to produce a sequence of generations.

The beginning collection P_0 is referred to as the *initial population*. Let n be the cardinality of Ω . The *simplex* is defined to be the set of population descriptors:

$$\Lambda = \langle x_0, ..., x_{n-1} \rangle : \mathbf{1}^T x = 1, x + j \ge 0$$

An element p of Λ corresponds to a population according to the rule: p_j = the proportion in the population of the jth element of Ω The cardinality of each population is a constant r, called the population size. Given r, a population descriptor p unambiguously determines a population.

Given the current population vector p, the next population vector $\tau(p)$ cannot be predicted with certainty because τ is stochastic and results from r independent, identically distributed random choices. Let $\mathcal{G}:\Lambda\to\Lambda$ be a function that given the current population vector p produces a new vector whose ith component is the probability that ith element of Ω is chosen. Thus, $\mathcal{G}(p)$ is the probability vector that specifies the distribution from which the aggregate of r choices forms the subsequent generation. Probability that population $q \in \frac{1}{r}X_n^r$ given current population vector p can be computed as ?

$$r! \prod \frac{(\mathcal{G}(p)_j)^{rq_j}}{(rq_j)!}$$

$$= exp\{-r \sum q_j \ln \frac{q_j}{\mathcal{G}(p)!} - \sum (\ln \sqrt{2\pi r q_j} + \frac{1}{12rq_j + \theta(rq_j)}) + O(\ln r)\}$$

where summation is restricted to indices for which $q_j > 0$ and $\frac{1}{r}X_n^r$ is set of possible populations.

Each random vector in the sequence $p, \tau(p), \tau^2(p), \dots$ depends only on the value of the preceding one, which is a special situation, and such a sequence form a Markov chain with transition matrix

$$Q_{p,q} = r! \prod \frac{(\mathcal{G}(p)_j)^{rq_j}}{(rq_i)!}$$

So the conceptualization of RHS can be replaced by Markov chain model abstraction which makes no reference to sampling Ω . That is from current population p, produce $q = \tau(p)$ with probability $Q_{p,q}$. With transition matrix defined for Markov chain model, Vose ? says the expected next generation $E(\tau(p))$ is $\mathcal{G}(p)$ and the expression in transition matrix

$$\sum q_j \ln \frac{q_j}{\mathcal{G}(p)!}$$

gives the qualitative information regarding probable next generation which is the discrepancy of q with respect to $\mathcal{G}(p)$. It is a measure of how far q is from the expected next population $\mathcal{G}(p)$. Discrepancy is nonnegative and is zero only when q is the expected next population. Hence the factor

$$exp\{-r\sum q_j\ln\frac{q_j}{\mathcal{G}(p)!}\}$$

in the expression of transition matrix indicates the probability that q is the next generation decays exponentially, with constant r, as the discrepancy between q and the expected next population increases. The expression

$$\sum \left(\ln \sqrt{2\pi r q_j} + \frac{1}{12rq_j + \theta(rq_j)}\right)$$

measures the dispersion of the population vector q and the factor

$$exp\{-\sum(\ln\sqrt{2\pi rq_j} + \frac{1}{12rq_j + \theta(rq_j)})\}$$

indicates the probability that q is the next generation decays exponentially with increasing dispersion.

Vose? calculated variance of next generation population with respect to expected population as

$$E(\|\tau(p) - \mathcal{G}(p)\|^2) = (1 - \|\mathcal{G}(p)\|^2)/r)$$

and mentioned $\tau(p)$ converges in probability to $\mathcal{G}(p)$ as the population size increases. Therefore, corresponds to \mathcal{G} in the infinite population case.

Chapter 2

Extending A Genetic Algorithm Model To The Diploid Case

This chapter describes a simple Markov model for evolution under the influence of crossing over and mutation; it is a non-overlapping, generational, infinite population model which assumes panmixia and no selective pressure. This chapter contributes to the elegance and simplicity of the abstract development and the demonstration that Vose's infinite population model for Genetic Algorithms — which is a haploid model — extends to the diploid case.

A basic syntactic model for haploid and diploid genomes is considered in the beginning and commented on its expressive power. Then the mechanics of how the next generation is obtained from the current generation are defined abstractly in procedural terms, which serves to motivate the equations governing evolution.

Next evolution equations are developed — corresponding to the procedural description defining evolution — for a population of diploid genomes. Observations concerning the form and symmetry of those equations directly lead to decoupling from the diploid case a haploid model sufficient to determine evolutionary trajectories for the diploid case. The model is specialized to a context where mask-based crossing

over and mutation operators are used, leading to Vose's infinite population model for Genetic Algorithms.

2.1 Model

A haploid genome g is defined syntactically as a length ℓ binary string. A collection of h chromosomes may be modeled by partitioning g into h segments (of arbitrary lengths ℓ_1, \ldots, ℓ_h ; thus $\ell = \ell_1 + \cdots + \ell_h$). Partitioning may be extended to chromosomes so as to interpret each as a collection of genes. If continued to the granularity of pairs of bits, partitioning allows, for example, representing the four possibilities Adenine, Guanine, Cytosine, and Thymine.

A diploid genome $\alpha = \langle \alpha_0, \alpha_1 \rangle$ is likewise defined syntactically as a pair of length ℓ binary strings. Although simple, that syntax is flexible and possesses significant modeling power by means of tailoring partitioning to application. We focus on the abstract level, considering the evolution of a non-overlapping, generational, infinite population model assuming panmixia and no selective pressure. Whether and how partitioning is defined is orthogonal to the development.

Following Hardy?, the model q^n at generation n is a vector having for component q^n_α the prevalence of diploid α (the probability of selecting α at generation n, assuming unbiased selection).* Ordered diploid $\gamma = \langle \gamma_0, \gamma_1 \rangle$ is produced for generation n+1 according to following procedural description.

Assuming independent selection events:

- From parent α selected with probability q_{α}^n obtain gamete γ_0
- From parent β selected with probability q_{β}^n obtain gamete γ_1

Following Gieringer?, let the transmission function $t_{\alpha}(g)$ be the probability that gamete g is produced from parental genome α . It follows from the above that the

^{*}The representation here is the conceptual equivalent of Hardy's model.

equation determining the next generation q^{n+1} is

$$q_{\gamma}^{n+1} = \sum_{\alpha} q_{\alpha}^{n} t_{\alpha}(\gamma_{0}) \sum_{\beta} q_{\beta}^{n} t_{\beta}(\gamma_{1})$$

$$(2.1)$$

It should be appreciated that the Mendelian ? laws of segregation[†] and independent assortment[‡] need not be respected by the transmission function.

The right hand side of (2.1) is invariant under interchange of the summation variables α and β , which is equivalent to interchanging γ_0 and γ_1 . This symmetry reflects the fact that which haploid of γ is designated as γ_0 is arbitrary,

$$q_{\langle \gamma_0, \gamma_1 \rangle}^{n+1} = q_{\langle \gamma_1, \gamma_0 \rangle}^{n+1}$$

The model corresponding to (2.1) is low-level in the sense that it regards $\langle \gamma_0, \gamma_1 \rangle$ and $\langle \gamma_1, \gamma_0 \rangle$ as distinct when $\gamma_1 \neq \gamma_0$. A higher-level model based on sets is easily obtained,

$$q_{\{\gamma_0,\gamma_1\}} = \begin{cases} 2q_{\langle\gamma_0,\gamma_1\rangle} & \text{if } \gamma_0 \neq \gamma_1 \\ q_{\langle\gamma_0,\gamma_1\rangle} & \text{otherwise} \end{cases}$$

which is in agreement with Hardy? (issues he considered and results he obtained relating to invariant distributions for a particular sort of transmission function are not here mentioned because they are irrelevant to the purpose of this section).

2.2 Reduction

Evolution equation (2.1) may be reduced to the haploid case. Its right hand side is the product of two summations; denote the first by $p_{\gamma_0}^{n+1}$ and the second by $p_{\gamma_1}^{n+1}$ so that

$$q_{\langle \gamma_0, \gamma_1 \rangle}^{n+1} = p_{\gamma_0}^{n+1} p_{\gamma_1}^{n+1}$$
 (2.2)

[†]Alleles of a given locus segregate into separate gametes.

[‡]Alleles of one gene sort into gametes independently of the alleles of another gene.

where for any haploid γ_0 ,

$$p_{\gamma_0}^{n+1} = \sum_{\alpha} q_{\alpha}^n t_{\alpha}(\gamma_0) \tag{2.3}$$

It suffices to determine the evolution of the distributions p^n . Uncoupling p from q using (2.3), and equation (2.2) with superscript n — instantiate the n in (2.2) with n-1 — yields the evolution equation

$$p_{\gamma_0}^{n+1} = \sum_{\alpha_0, \alpha_1} q_{\langle \alpha_0, \alpha_1 \rangle}^n t_{\langle \alpha_0, \alpha_1 \rangle}(\gamma_0)$$

$$= \sum_{\alpha_0, \alpha_1} p_{\alpha_0}^n p_{\alpha_1}^n t_{\langle \alpha_0, \alpha_1 \rangle}(\gamma_0)$$
(2.4)

The p^n are in fact distributions; summing equation (2.2) with superscript n yields

$$1 = \sum_{\alpha} q_{\alpha}^{n} = \sum_{\alpha_{0}, \alpha_{1}} p_{\alpha_{0}}^{n} p_{\alpha_{1}}^{n} = \left(\sum_{\alpha_{0}} p_{\alpha_{0}}^{n}\right)^{2}$$

Let [expression] denote 1 if expression is true, and 0 otherwise.§ The weighted count of haploid g in generation n is

$$\sum_{\alpha_0, \alpha_1} q_{\langle \alpha_0, \alpha_1 \rangle}^n ([g = \alpha_0] + [g = \alpha_1])$$

$$= \sum_{\alpha_0, \alpha_1} p_{\alpha_0}^n p_{\alpha_1}^n [g = \alpha_0] + \sum_{\alpha_0, \alpha_1} p_{\alpha_0}^n p_{\alpha_1}^n [g = \alpha_1]$$

$$= 2p_a^n$$

Hence the (normalized) prevalence of haploid g in generation n is the gth component of the distribution p^n .

Evolution equation (2.4) in matrix form is

$$p_g' = p^T M_g p (2.5)$$

 $^{[[\}cdots]]$ is sometimes referred to as an *Iverson bracket*.

where current state p (generation n) and next state p' (generation n+1) are column vectors, and the g th transmission matrix is

$$\left(M_g\right)_{u,v} = t_{\langle u,v\rangle}(g) \tag{2.6}$$

(vectors and matrices are indexed by haploids — length ℓ binary strings).

Chapter 3

Specialization

This chapter summarizes from the development in Vose? It specializes the haploid evolution equations in the previous section to Vose's infinite population model for Genetic Algorithms. Whereas in previous sections *component* referred to a component of a distribution vector q^n or p^n , in this section a component is either a probability (when when speaking of a component of a distribution vector), or a bit (when speaking of a component of a haploid).

The set of haploids (i.e., length ℓ binary strings) is a commutative ring \mathcal{R} under component-wise addition and multiplication modulo 2. This algebraic structure is crucial to Vose's specialization and subsequent analysis of (2.5). Denote the additive identity by $\mathbf{0}$ and the multiplicative identity by $\mathbf{1}$, and let \overline{g} abbreviate $\mathbf{1} + g$. Except when explicitly indicated otherwise, operations acting on elements of \mathcal{R} are as defined in this paragraph.*

3.1 Mutation

Mutation simulates effects of error that happen with low probability during duplication of chromosome. Mutation provides mechanism to inject new strings into the

^{*}In particular, $g\overline{g} = \mathbf{0} = g + g$, $g^2 = g$, $g + \overline{g} = \mathbf{1}$ for all $g \in \mathcal{R}$.

next generation population which gives RHS ability to search beyond the confines of initial population.

Symbol μ is used to represent mutation distribution describing the probability μ_i with which $i \in \Omega$ is selected to be a mutation mask. $\mu: \Omega \to \Omega$ is nondeterministic mutation function where the result $\mu(x)$ of applying mutation function on x is $x \oplus i$ with probability μ_i of distribution μ where i is mutation mask. Mutating x using mutation mask i alters the bits of x in those positions the mutation mask i is 1. $\mu \in [0,0.5)$ is regarded as a mutation rate which implicitly specifies distribution μ according to rule ?

$$\mu_i = (\mu)^{\mathbf{1}^T i} (1 - \mu)^{\ell - \mathbf{1}^T i}$$

If g should mutate to g' with probability ρ , let

$$\mu_{q+q'} = \rho$$

Given distribution μ , mutation is the stochastic operator sending g to g' with probability $\mu_{g+g'}$.

Mutation considered is *independent* for all j and k which means?

$$\mu_j = \sum_{k \otimes i = 0} \mu_{i \oplus j} \sum_{k \overline{\otimes} i = 0} \mu_{i \otimes j}$$

3.2 Crossover

Crossover refers to crossing over (also termed recombination) between two chromosomes (strings in our case). Crossover like mutation also provides mechanism for injection of new strings into new generation population. Masked based crossover is used in this document. Geiringer? used crossover mask with probability (distribution) associated with the mask to generate offsprings from parent chromosomes in absence of mutation and selection. Let χ_m be probability distribution with which m is selected to be a crossover mask. Following Geiringer?, if crossing over u and v

should produce u' and v' with probability ρ , let

$$\chi_m = \rho$$

where m is 1 at components which u' inherits from u, and 0 at components inherited from v. It follows that

$$u' = mu + \overline{m}v$$

$$v' = mv + \overline{m}u$$

Given distribution χ , crossover is the stochastic operator which sends u and v to u' and v' with probability $\chi_m/2$ for each u' and v'.

 χ can be considered as a *crossover rate* that specifies the distribution χ given by rule ?

$$\chi_i = \begin{cases} \chi c_i & \text{if } i > 0. \\ 1 - \chi + \chi c_0 & \text{if } i = 0. \end{cases}$$

where $c \in \Lambda$ is referred to as crossover type. Classical crossover types include 1-point crossover and uniform crossover. For 1-point crossover,

$$c_i = \begin{cases} 1/(\ell-1) & \text{if } \exists k \in (0,\ell). i = 2^k - 1. \\ 0 & \text{otherwise.} \end{cases}$$

and for uniform crossover, $c_i = 2^{-\ell}$.

3.3 Mixing Matrix

Whether or not μ is independent if mutation is performed before crossover, then transmission function can be expressed as ?

$$t_{\langle u,v\rangle}(g) = \sum_{i\in\mathcal{R}} \sum_{j\in\mathcal{R}} \sum_{k\in\mathcal{R}} \mu_i \mu_j \frac{\chi_k + \chi_{\overline{k}}}{2} \left[k(u+i) + \overline{k}(v+j) = g \right]$$
 (3.1)

Here a child gamete g is produced via mutation and then crossover (which are operators that commute). The combined action of mutation and crossover is referred to as mixing.

The mixing matrix M is

$$M = M_0$$

The mixing matrix M is a fundamental object, because (3.1) implies that evolution equation (2.5) can be expressed in the form

$$p_g' = (\sigma_g p)^T M (\sigma_g p) (3.2)$$

where the permutation matrix σ_g is defined by component equations

$$(\sigma_q)_{u,v} = [u+v=g]$$

Chapter 4

Adaptation of Walsh

Transformation

4.1 Walsh Functions and Walsh Transorm

Walsh functions are orthonormal set of functions that form an ordered set of rectangular waveforms taking only two amplitude values +1 and -1 and are defined over a limited time interval, time-base T which requires to be known if quantative values are to be assigned to a function. Like in sine-cosine functions, two arguments are necessary to completely define walsh function, a time period, t, and an ordering number, t. The function can be written as

A time series, f(t), in terms of a series of Walsh functions ?, viz.

$$f(t) = a_0 WAL(0, t) + \sum_{n=1}^{N-1} a_n WAL(n, t)$$

where N is number of terms used in Walsh series to express time series and

$$\frac{a_0}{2} = \frac{1}{T} \int_{0}^{T} f(t)WAL(0,t)dt$$

$$a_n = \frac{1}{T} \int_{0}^{T} f(t)WAL(n,t)dt$$

According to Beauchamp?, the above definition for the Walsh functions may be restated by saying that every function f(t) which is integrable is capable of being represented by a Walsh series defined over the open interval (0, 1) as

$$x(t) = a_0 + a_1 WAL(1, t) + a_2 WAL(2, t) + \dots$$

where the coefficients are given by

$$a_k = \int_{0}^{1} f(t)WAL(k,t)dt$$

and a transform pair can be defined,

$$f(t) = \sum_{k=0}^{\infty} F(k)WAL(k,t)$$

$$F(k) = \int_{0}^{1} f(t)WAL(k,t)dt$$

This is for continuous function limited in time over the interval $0 \ge t \ge 1$. Finite discrete Walsh transform pair on N sampling points, x_i , can be expressed as

$$X_n = \frac{1}{N} \sum_{i=0}^{N-1} x_i WAL(n, i)$$

$$n = 0, 1, 2...N - 1$$

and

$$x_{i} = \sum_{n=0}^{N-1} X_{n} WAL(n, i)$$
$$i = 0, 1, 2...N - 1$$

The Walsh function series WAL(n,t) can be obtained using Walsh matrix also known as Hadamard matrix of order N. Walsh matrix or Hadamard matrix is a square matrix of order N whose coefficients comprise only +1 and -1 and where its rows (and columns) are orthogonal to one another. Let us represent Walsh matrix as W so WAL(n,t) is represented by $W_{n,t}$. The Walsh matrix is defined by

$$W_{n,t} = N^{-1/2}(-1)^{n.t}$$

where $N^{-1/2}$ is normalization factor and n.t is bitwise dot product of binary representation of number n and t.

The matrix is symmetric, i.e.,

$$W_{n,t} = W_{n,t}$$

and it has entries satisfying

$$W_{n,t\oplus k} = N^{1/2}W_{n,t}W_{n,k}$$

The practical importance of this symmetry is that the transform and inverse represent same mathematical operation, hence simplifying the derivation and application of the transform. With the normalized form, *Walsh matrix* is its own inverse, i.e.,

$$W = W^{-1}$$

In the matrix form, given vector w and matrix A, let \widehat{w} and \widehat{A} denote the Walsh transform of w and A respectively. Then $\widehat{w} = Ww$ and $\widehat{A} = WAW$. If w is a row vector, then w in its Walsh basis \widehat{w} represents wW.

4.2 Walsh Transform Adaptation

The Walsh transform has spectacular ability to unravel the intricacies of mixing. And that is why we adapt Walsh transform methods for computing evolutionary trajectories, which have already been established for Vose's haploid model?. Adaptation of Walsh transformation efficiently models infinite diploid population evolution. This adaptation of Walsh transformation helps in making feasible comparisons between finite and infinite diploid population short-term evolutionary behavior. Recalling evolution equation (3.2), without selection, specialized to Vose's infinite population model expressed in mixing matrix's term,

$$p_g' = (\sigma_g p)^T M (\sigma_g p)$$

where the permutation matrix σ_g is defined by component equations

$$(\sigma_g)_{u,v} = [u+v=g]$$

In our model, the Walsh matrix W is defined by component equations

$$W_{u,v} = 2^{-\ell/2} (-1)^{u^T v}$$

where the subscripts u, v (which belong to \mathcal{R}) on the left hand side are interpreted on the right hand side as column vectors in \mathbb{R}^{ℓ} . Columns of W form the orthonormal basis — the Walsh basis — which simultaneously diagonalizes the σ_g .

A change of basis which simultaneously diagonalizes the σ_g unravels the evolution equation (3.2). Expressed in the Walsh basis (see ?), the mixing matrix takes the

form

$$\widehat{M}_{u,v} = 2^{\ell-1} \left[uv = \mathbf{0} \right] \widehat{\mu}_u \widehat{\mu}_v \sum_{k \in \overline{u+v}\mathcal{R}} \chi_{k+u} + \chi_{k+v}$$

$$\tag{4.1}$$

and equation (3.2) takes the form

$$\widehat{p}_g' = 2^{\ell/2} \sum_{i \in g\mathcal{R}} \widehat{p}_i \, \widehat{p}_{i+g} \, \widehat{M}_{i,i+g}$$

$$\tag{4.2}$$

where $g\mathcal{R} = \{gi \mid i \in \mathcal{R}\}$ (for any $g \in \mathcal{R}$).

The mapping from generation n to generation n+1, determined in natural coordinates by equation (2.5) in terms of the transmission function (2.6), and given in Walsh coordinates by equation (4.2) in terms of the mixing matrix (4.1), is Markovian; the next state p' depends only upon the current state p. Let \mathcal{M} represent the mixing transformation,

$$p' = \mathcal{M}(p) \tag{4.3}$$

and let $\mathcal{M}^n(p)$ denote the *n*-fold composition of \mathcal{M} with itself; thus generation *n* is described by

$$p^n = \mathcal{M}^n(p^0)$$

where p^0 represents the initial population. We have little to say about the matrix of the Markov chain corresponding to the mixing transformation \mathcal{M} , because it is uncountable; each state is a distribution vector p describing a population. However, that is not an obstacle to computing evolutionary trajectories; (4.3) can be computed in Walsh coordinates relatively efficiently via (4.1) and (4.2).

4.3 Simplification

The haploid case simplified by equations (4.1) and (4.2) are the consequence of specializing to Vose's infinite population model and computing in the Walsh basis.

Time switching between the standard basis and the Walsh basis is negligible; the fast Walsh transform (in dimension n) has complexity $n \log n$?.

Only one mixing matrix as opposed to 2^{ℓ} matrices is needed to compute the next generation; evolution equation (4.2) references the same matrix for every g, whereas evolution equation (2.5) depends upon a different matrix M_g for each choice of g. The matrix is computed by a single sum as opposed to a triple sum; compare equation (4.1) with equation (3.1). Also, the relevant quadratic form is computed with a single sum as opposed to a double sum; computing via (4.2) is linear time in the size of $g\mathcal{R}$ (for each g) as opposed to the quadratic time computation (for each g) represented by equation (2.5).

From a computational standpoint, the best-case scenario is where recomputation of the matrices mentioned in the previous paragraph is obviated by sufficient memory. The reduction from 2^{ℓ} matrices to one matrix helps significantly in that regard. To demonstrate these advantages in concrete terms, consider computing with genomes of length $\ell \in \{4, 6, 8, 10, 12, 14\}$. The fact that only the mixing matrix need be involved is significant; using 2^{14} matrices each of which contains $2^{14} \times 2^{14}$ entries of type double requires 32 terabytes, whereas the mixing matrix at 2 gigabytes fits easily within the memory of a laptop.

Chapter 5

Evolutionary Limits

Chapter 6

Experimental Simulations and Measurements

- 6.1 Distance Computation
- 6.2 Simplification
- 6.3 Convergence Of Finite Diploid Population Short-Term Behavior

Bibliography

Appendix

Appendix A

Summary of Equations

A.1 Cartesian

some equations here

A.2 Cylindrical

some equations also here

Vita

Vita goes here...