

A Character wise Windowed Approach to Hebrew Morphological

Seg | mentation

AMIR ZELDES

amir.zeldes@georgetown.edu

SIGMORPHON 2018, October 31, Brussels

Overview

• RFTokenizer: a new trainable segmenter for Morphologically Rich Languages

Paper code + datasets:

Full NLP pipeline for Hebrew:

https://github.com/amir-zeldes/RFTokenizer

https://github.com/amir-zeldes/HebPipe

- Based on character-wise binary classification
- Provides best Hebrew segmentation accuracy to date: (>yap/UDPipe/Shao et al. 18)
- 98.19% in domain (SOA +≈4% on **SPMRL shared task**, Seddah et al. 2014)
- 97.63% out of domain (SOA +≈5% on a new Wikipedia dataset, **Wiki5K**)

Segmenting Hebrew

- Like Arabic and similar languages, Hebrew has whitespace-separated supertokens representing stress-bearing phrases, most vowels are not written out:
- מהבית <m.h.byt> [me.ha.bajit] from.the.house
- ושמצאוהו <w.š.mc'w.hw> [ve.še.mtsa'u.hu] and.that.they-found.him
- Constituent **sub-tokens** are hard to recognize and can be highly ambiguous: (Adler & Ehadad 2006)

בצלם

(b.cl.m) be.cil.am - in.shadow.their

(b.clm) (be./b.a.)celem - in.(a/the).image

(b.clm) (be./b.a.)calam in.(a/the).photographer

(bcl.m) bcal.am - onion.their

(bclm) becelem - Betzelem (organization)

Note this example has 7 distinct analyses, but only two positions are candidates for a boundary: after and after <l>!

To alter or not to alter?

- Previous approaches aim at outputting analyzed dictionary forms:
 - -> Token text is altered: b.byt [ba.bajit] "in the house" -> b.h.byt [be.ha.bajit] can lead to errors: pwly "poly-" -> plh 't 'ni [pala et ani] "he plucked ACC I"
 - -> unexpressed articles and prepositions inserted: byth "her daughter" -> bt šl hy' [bat šel hi] "daughter of she"
- The current approach performs pure character level segmentation

Advantages:

- Input text reconstructible from output
- Tokens align to text positions
- Use standard, token-fed NLP on output
- Useful for:
- NER (tokens preserve entity text)
- NMT (segment embeddings)
- Character/word-level models match

Disadvantages:

- Zero articles moved to morphological features (+Def)
- Need separate morphological analyzer (e.g. Marmot, Müller et al. 2013)
- Lose joint segmentation and disambiguation information for joint inference (cf. previous SOA: yap, More & Tsarfaty 2016)

Features and learning approaches

Character features:

- Use characters in +/-2 character window from boundary candidate
- Use first/last character of preceding/next super-token
- Extra feature for each char 'is vowel', for c ∈ {י,ו,ה,א} (= ', h, w, y)

Numerical features:

- Corpus frequency ratio (rfreq) of current super-token to substring on left and substring on right of window (IsraBlog dataset, Linzen 2009)
- $f(left) \cdot f(right)$ Lengths of this, previous and next super-tokens
- Position of current window center

Lexicon lookup

- MILA lexicon used in previous work (More & Tsarfaty 2016) has very many, complex/hierarchical and sometimes sparse categories
- We collapse POS>UPOS (Petrov et. 2012), add "CPLX" affix if entry also contains clitics
- Extend via WikiData named entities
- Look up range of substrings around window and prev/ next word (Table 1)
- Lookup value is a **concatenation** of matched POS tags

Word embeddings

Only used for NN approaches (300d, from Wikipedia)

ML algorithms

- Ensembles: RF, GBM, ExtraTrees
- NNs: DNN, CNN, LSTM classifiers

Best in each class:

DNN (using scikit-learn and TensorFlow)

ExtraTrees RF,

- string from char -4 for the third character) return '_'.
- location substring lexicon response [šmhpkny] super token [šmh]... str so far ADV|NOUN|VERB ..[pkny] str remaining ..[hpkny] str -1 remain ADJ|NOUN|CPLXN str -2 remain .[mhpkny] [__šmh].... str from -4 [_šmh].... str from -3 str from -2 [šmh].... ADV|NOUN|VERB .[mh].... str from -1 ADP|ADV str to +1..[hp]... str to +2..[hpk].. NOUN|VERB ..[hpkn]. str to +3..[hpkny] str to +4 [xšbnw] **VERB** prev string [hw' next string PRON COP

Table 1: Lexicon lookup features for character 3 in the super-token *š.mhpkny*. Overflow positions (e.g. sub-

Main results

	%perfect	P	R	F
SPMRL				
Baseline	69.65	_	_	_
UDPipe	89.65	93.52	68.82	79.29
уар	94.25	86.33	96.33	91.05
RF (ET)	98.19	97.59	96.57	97.08
DNN	97.27	95.9	95.01	95.45
Wiki5K				
Baseline	67.61	_	_	_
UDPipe	87.39	92.03	64.88	76.11
уар	92.66	85.55	92.34	88.81
RF (ET)	97.63	97.41	95.31	96.35
DNN	95.72	94.95	92.22	93.56

Ablation tests

- Lexicon critical
- WikiData helps, lexicon is still not complete
- Vowel features help to generalize but only a little
- See paper for error analysis

SPMRL	98.19	97.59	96.57	97.08
-wikidata	98.01	97.25	96.35	96.80
-vowels	97.99	97.55	95.97	96.75
-letters	97.77	96.98	95.73	96.35
-letr-vowl	97.57	97.56	94.44	95.97
-lexicon	94.79	92.08	91.46	91.77
Wiki5K	97.63	97.41	95.31	96.35
-wikidata	97.33	96.64	95.31	95.97
-vowels	97.51	97.56	94.87	96.19
-letters	97.27	96.89	94.71	95.79
-letr-vowl	96.72	97.17	92.77	94.92
-lexicon	94.72	92.53	91.51	92.01

Discussion

- Why does this outperform joint inference SOA?
 - Parses are sparse, char-wise data is dense
 - Most important syntactic information is preserved, e.g.:
 - kdy 'in order to' is SCONJ, 3 chars (k..y) -> next word is to-infinitive
- Local decisions do not require coherent analyses!
- Better handling of OOV cases
- Why doesn't DNN beat RF? Needs more data?
 - Need better embeddings (not optimized for this task)
 - Possible issues handling imbalanced problem

References

- Linzen, T. 2009. Corpus of Blog Postings Collected from the Israblog Website. TAU, Tech. Report
- More, A./Tsarfaty, R. 2016. Data-driven morphological analysis and disambiguation for
- morphologically-rich languages and universal dependencies. COLING 2016. Osaka, 337–348. • Müller, T./Schmid, H./Schütze, H. 2013. Efficient higher-order CRFs for morphological tagging *EMNLP 2013*. Seattle, WA, 322–332.
- Petrov, S./Das, D./McDonald, R. 2012. A universal part-of-speech tagset. LREC 2012. Istanbul,

• Seddah, D./Kübler, S./Tsarfaty, R. 2014. SPMRL 2014 shared task. Statistical Parsing of MRLs and

- Syntactic Analysis of Non-Canonical Languages. Dublin, 103–109. • Shao, Y./Hardmeier, C./Nivre, J. 2018. Universal word segmentation: Implementation and
- interpretation. TACL 6, 421–435. • Straka, M./Hajič, J./Straková, J. 2016. UDPipe: Trainable pipeline for processing CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing. LREC 2016. Portorož, 4290–4297.