

The Shockley Equation $I_D = I_S (e^{V_D/\eta V_T} - 1)$ • V_T is the thermal equivalent voltage. The equation to find V_T at various temperatures is: $V_T = \frac{kT}{q} \qquad \Rightarrow V_T = \frac{1.38 \times 10^{-23} \times 300}{1.6 \times 10^{-19}} = 2.6 \times 10^{-2} \text{Volt}$ $K = 1.38 \times 10^{-23} \text{ J/K} \qquad T = \text{temperature in Kelvin} \qquad q = 1.6 \times 10^{-19} \text{ C}$ • V_T is approximately 26 mV at room temperature.

60 61

The Shockley Equation

I_D = I_S(e^VD/ηVT - 1)

• η is the emission coefficient(ideality/quality factor) of the diode. For a silicon diode η is around 1.

• When current is lowered it may rise above 1; even up to 2 in some diodes.

• It is determined by the way the diode is constructed. It also varies slightly with diode current.

62 63

66 67

68 69

Effect of Temperature on Reverse Saturation Current

Si Diode

7% increase per degree C

Doubles at every 10 degree C increase

I02 = I01 x 2 [1/2-T1/10]

Ge Diode

12% increase per degree C

Doubles at every 6 degree C increase

72

74 75

DIODES AND APPLICATIONS

