

Vorige les

Allosterie

Vandaag

Voorbeeld van een allosterisch eiwit: hemoglobine

Vergelijking tussen hemoglobine en myoglobine

Hemoglobin & Myoglobin

Myoglobin

heme group in hydrophobic pocket, interacts with two His-residues.

monomer, 153 amino acids

most polar side chains on the surface, nonpolar side chains folded to the interior

Heme group Iron atom 8 α-helices

Charged

Hydrophobic

Polar

Hemoglobin

tetramer of two α -chains (141 amino acids each) and two β-chains (153 amino acids each); $\alpha_2\beta_2$

Quaternary Structures Mb and Hb

Myoglobin is monomeric

Hemoglobin is tetrameric

Globin fold

Heme group

Iron atom + protoporphyrin

Protoporphyrin: 4 pyrrole rings linked by methine bridges (=C-)

$$R_1 \leftarrow H$$
 R_2

Fe²⁺ forms bonds with N atoms of the pyrrole rings

Propionate group **Pyrrole** ring **Methyl group** Vinyl group

Heme (Fe-protoporphyrin IX)

Fe(II): 6 coordination sites. 4 interactions with N's of protoporphyrin \rightarrow 2 left

Heme – oxygen binding

Heme – oxygen binding

Zie ook:

https://pdb101.rcsb.org/motm/41#tabs-2

Oxygen binding

Oxygen binding

Oxygen binding to hemoglobin

- each chain has one heme group; hemoglobin can bind up to 4 molecules of O₂
- binding is cooperative; when one O₂ is bound, it becomes easier for the next O₂ to bind
- Hemoglobin is an allosteric protein: binding of O₂ in one subunit brings changes in structure of other subunit(s)

Hemoglobin

Allosteric protein

Deoxyhemoglobin → T-state

Oxyhemoglobin → R-state

Oxygen binding: $T \rightarrow R$

How?

Heme – oxygen binding

In the absence of O₂, the iron is slightly outside the prophyrin ring plan

Upon O₂ binding, the iron moves into the porphyrin plane

In oxyhemoglobin

In deoxyhemoglobin

Hemoglobin – oxygen binding

Zie ook: https://pdb101.rcsb.org/motm/41#tabs-2

Binding of Oxygen by Myoglobin and Hemoglobin

Hemoglobin must bind oxygen in lungs and release it in capillaries. Myoglobin must bind oxygen.

Hemoglobin:

- Adjacent hemoglobin subunits' affinity for oxygen increases
- This is called positive cooperativity and does not happen in Myoglobin
- If Hemoglobin behaved like Myoglobin, very little oxygen would be released in capillaries
- The sigmoid, cooperative oxygen binding curve of Hemoglobin makes this possible!

Recap: Hb conformational changes upon O₂ binding

- Without O_2 bound \rightarrow Fe out of the heme plane
- O₂ binding → Fe pulled into the heme plane → His F8 (proximal histidine) pulled along → F helix moves
- Total movement of Fe is 0.29 Å.
- This change means little to Mb, but lots to Hb!
- Movement of Fe initiates a series of conformational changes to adjacent subunits
- T-to-R-state transition

Vorige les: concerted model

Vorige les: sequential model

In het concerted model heeft een enzym 2 toestanden, T en R

Een alternatief is dat binden van S aan één subunit de conformaties van andere subunits verandert, zodat S beter bindt

Onderzoek naar allosterische enzymen suggereert dat veel van deze enzymen werken volgens een combinatie van beide modellen

Hemoglobin

3 sites occupied by oxygen?

- → quaternary structure almost always R state
- → affinity for oxygen of free site 20x higher

Resembles concerted model

1 sites occupied by oxygen?

- → quaternary structure: T state
- → affinity for oxygen of free site 3x higher

Resembles sequential model

Concerted model/ sequential model: idealized cases.

Vorige les: regulatiemoleculen beïnvloeden het evenwicht tussen T en R

- Positieve regulatie:
 - molecuul stabiliseert R
 - concentratie R 个
 - grotere kans op binding van S
- Negatieve regulatie:
 - molecuul stabiliseert T
 - concentratie T ↑
 - kleinere kans op binding van S

2,3-Bisphosphoglycerate

Hemoglobin in blood is bound to 2,3-BPG

- Highly anionic compound
- Present in red blood cells at ~same concentration as hemoglobin
- 2,3-BPG binds at a site distant from the Fe where oxygen binds → allosteric effector

2,3-BPG and hemoglobin

2,3-BPG binds in a pocket only present in the T-form of Hg Negative charges interact with 2 Lys (β chain), 4 His (each subunit 1 His), 2 N-termini (α chain)

2,3-BPG and hemoglobin

- 2,3-BPG binds preferentially deoxyhemoglobin and stabilizes it
 ⇒ 2,3-BPG reduces affinity for O₂
- Hemoglobin stripped of 2,3-BPG remains saturated with O₂

Fetal Hemoglobin

- Two α-chains and two γ -chains

Fetal Hemoglobin

Lower affinity for 2,3-BPG

- → higher affinity for oxygen
- → oxygen from mother Hg to fetal Hg

Oxygen binding (so far)

The Bohr Effect

- Regulation of oxygen binding by H⁺ and CO₂
- Discovered by Christian Bohr
- Binding of protons and CO₂ diminishes oxygen binding
- Important physiological significance

Body tissue

Blood capillary

Lowering the pH

Lowering the pH

CO₂ effects

```
    pH 7.4, no CO<sub>2</sub>
    pH 7.2, no CO<sub>2</sub>
    pH 7.2, 40 torr CO<sub>2</sub>
```


CO₂ effects

- Amino termini at the interface between $\alpha\beta$ dimers
- Negatively charged carbamate groups participate in salt-bridges, characteristic of the T-state structure → deoxyhemoglobin stabilized → release of O₂ favored

Blackboard:

Extra oefenopgaven over dit hoofdstuk.

Oefententamens

Volgende lessen:

Hoofdstuk 11 en 12

Vragen