CS114B Lab 2

Kenneth Lai

January 27, 2023

Wikipedia: A vector space is a set of objects called vectors, which may be added together and multiplied by numbers called scalars

- Wikipedia: A vector space is a set of objects called vectors, which may be added together and multiplied by numbers called scalars
- ► Lots of examples of vector spaces; we will focus on a particular type of real vector space/coordinate space, where
 - Vectors are n-tuples of real numbers, for some natural number n
 - Scalars are real numbers

- Wikipedia: A vector space is a set of objects called vectors, which may be added together and multiplied by numbers called scalars
- ► Lots of examples of vector spaces; we will focus on a particular type of real vector space/coordinate space, where
 - \triangleright Vectors are elements of \mathbb{R}^n
 - ightharpoonup Scalars are elements of $\mathbb R$

- Wikipedia: A vector space is a set of objects called vectors, which may be added together and multiplied by numbers called scalars
- ► Lots of examples of vector spaces; we will focus on a particular type of real vector space/coordinate space, where
 - \triangleright Vectors are elements of \mathbb{R}^n
 - ightharpoonup Scalars are elements of $\mathbb R$
- ► The dimension of such a vector space (not to be confused with a dimension, i.e., axis, of a Numpy array) is *n*

Vectors in NLP

- ▶ Idea: objects of interest (e.g., documents, words, etc.) can be represented as vectors (embeddings) in some vector space
- ► Coordinates of the vector correspond to features of the object

Vectors in NLP

- ▶ Idea: objects of interest (e.g., documents, words, etc.) can be represented as vectors (embeddings) in some vector space
- Coordinates of the vector correspond to features of the object
 - ► Sometimes, these features are human-interpretable
 - Naïve Bayes features: word counts in a document

Vectors in NLP

- ▶ Idea: objects of interest (e.g., documents, words, etc.) can be represented as vectors (embeddings) in some vector space
- Coordinates of the vector correspond to features of the object
 - ► Sometimes, these features are human-interpretable
 - ▶ Naïve Bayes features: word counts in a document
 - Sometimes, they are not
 - Many word vector "features"

► Suppose we have a classification problem (e.g., text classification, sequence labeling, etc.)

- ► Suppose we have a classification problem (e.g., text classification, sequence labeling, etc.)
- Linear classifiers make their classification decisions based on a linear combination of features
 - Logistic regression
 - Perceptron
 - Naïve Bayes (in a way)
 - **.**..

Let $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$ be a feature vector, $\theta = \begin{bmatrix} \theta_1 & \dots & \theta_n \end{bmatrix}$ be a vector of parameters, g be a classification function, \hat{y} be the classification decision, and \cdot denote the dot product

$$\hat{y} = g\left(\sum_{j=1}^{n} \theta_{j} x_{j}\right) = g(\theta \cdot \mathbf{x})$$

- Sometimes (especially in logistic regression), within the set of parameters, we distinguish between weights w_j and a bias term b
 - ▶ This is equivalent to having a "dummy feature" with value 1

$$\theta = \begin{bmatrix} w_1 & \dots & w_n & b \end{bmatrix} = \begin{bmatrix} \mathbf{w} \mid b \end{bmatrix}$$

$$\mathbf{x}' = \begin{bmatrix} x_1 & \dots & x_n & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} \mid 1 \end{bmatrix}$$

$$\hat{y} = g\left(\sum_{i=1}^n w_i x_i + b\right) = g(\mathbf{w} \cdot \mathbf{x} + b) = g(\theta \cdot \mathbf{x}')$$

- ▶ What is *g*?
 - ► A dot product of two vectors produces a scalar, but in general, we don't just want an arbitrary real number
 - ► Sometimes, we want a probability (logistic regression)
 - ► Sometimes, we just want the decision itself (perceptron)

- ▶ Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
- ► Logistic regression: logistic (sigmoid) function

- ▶ Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
- ► Logistic regression: logistic (sigmoid) function

Perceptron: (Heaviside) step function

$$H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$$

ightharpoonup Sometimes you may see values 1 and -1, instead of 1 and 0

- ▶ Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
- Logistic regression: logistic (sigmoid) function

► Perceptron: (Heaviside) step function

$$H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$$

- \triangleright Sometimes you may see values 1 and -1, instead of 1 and 0
- ightharpoonup What if z=0?
 - ► Set by convention (1, 0, or 1/2)

► Input (including dummy feature 1)

► Parameters (weights and bias term)

► Sum function ∑

- "Score"
 - Sometimes (if g is the logistic function) called a logit

- Classification function g
 - Logistic, step, etc.
 - ► Later called an activation function

- Output
- ► Input

- Output
- ► Input

- Output
- ► Input
- $\hat{y} = g(\theta \cdot \mathbf{x})$
 - ▶ We will assume that the dummy feature 1 is part of x

- ► Two-class (binary) classification
 - ► Compute "score" $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
 - **Compute decision** \hat{y} as a function of z
 - If \hat{y} is interpreted as the probability of (or indicator for) one class, $1 \hat{y}$ is the probability of (indicator for) the other class

- Two-class (binary) classification
 - ► Compute "score" $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
 - ightharpoonup Compute decision \hat{y} as a function of z
 - If \hat{y} is interpreted as the probability of (or indicator for) one class, $1 \hat{y}$ is the probability of (indicator for) the other class
- ► Multi-class (multinomial) classification
 - ► Compute a vector of scores $\mathbf{z} = \mathbf{\Theta} \mathbf{x}$ (or $\mathbf{W} \mathbf{x} + \mathbf{b}$)
 - **Compute decision** \hat{y} as a function of **z**

- ► A matrix is a rectangular array of scalars
- Two uses of matrices
 - 1. Matrices represent linear maps
 - ► Transformations between vector spaces
 - ▶ Given a feature vector **x**, we want a score vector **z**
 - $\blacktriangleright \ z = \Theta x \ (\text{or} \ W x + b)$

- A matrix is a rectangular array of scalars
- Two uses of matrices
 - 1. Matrices represent linear maps
 - ► Transformations between vector spaces
 - ▶ Given a feature vector **x**, we want a score vector **z**
 - $ightharpoonup z = \Theta x (or Wx + b)$
 - 2. Matrices represent data
 - Stacks of feature vectors
 - Matrix-vector products become matrix-matrix products

- Warning! A note on notation:
 - Math convention: A p-by-n matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - Matrices have shapes (output dimension, input dimension)
 - Let $\mathbf{\Theta} \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $z = \Theta x (or Wx + b)$

- Warning! A note on notation:
 - Math convention: A *p*-by-*n* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - Matrices have shapes (output dimension, input dimension)
 - Let $\Theta \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $ightharpoonup z = \Theta x (or Wx + b)$
 - Computer science convention (mostly): An *n*-by-*p* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p (technically $\mathbb{R}^{1 \times n}$ to $\mathbb{R}^{1 \times p}$)
 - Matrices have shapes (input dimension, output dimension)
 - ▶ Let $\Theta \in \mathbb{R}^{n \times p}$, $\mathbf{x} \in \mathbb{R}^{1 \times n}$, and $\mathbf{z} \in \mathbb{R}^{1 \times p}$
 - ightharpoonup $z = x\Theta (or xW + b)$

- Warning! A note on notation:
 - Math convention: A p-by-n matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - Matrices have shapes (output dimension, input dimension)
 - Let $\Theta \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $ightharpoonup z = \Theta x (or Wx + b)$
 - Computer science convention (mostly): An *n*-by-*p* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p (technically $\mathbb{R}^{1 \times n}$ to $\mathbb{R}^{1 \times p}$)
 - Matrices have shapes (input dimension, output dimension)
 - Let $\Theta \in \mathbb{R}^{n \times p}$, $\mathbf{x} \in \mathbb{R}^{1 \times n}$, and $\mathbf{z} \in \mathbb{R}^{1 \times p}$
 - ightharpoonup $z = x\Theta (or xW + b)$
 - More intuitive (input → output)
 - Aligns with the convention in (mini)batch training that the first dimension is the batch size ("feature vectors are stacked row-wise")

General Advice

► Know your shapes!

Source

- ▶ What is the classification function *g*?
- ▶ Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class

- ▶ What is the classification function *g*?
- ▶ Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class
- ► Logistic regression: softmax function

• softmax(\mathbf{z}) = $\hat{\mathbf{y}}$ is a vector of probabilities for each class

- ▶ What is the classification function *g*?
- Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class
- ► Logistic regression: softmax function

- softmax(\mathbf{z}) = $\hat{\mathbf{y}}$ is a vector of probabilities for each class
- Perceptron: argmax function

- What is the classification function g?
- Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class
- Logistic regression: softmax function

- ightharpoonup softmax(z) = \hat{y} is a vector of probabilities for each class
- Perceptron: argmax function

- - Do whatever numpy.argmax does

► Suppose we observe a document *d*. What is the most likely class *ĉ*?

- Suppose we observe a document d. What is the most likely class ĉ?
- $P(c|d) = \frac{P(d|c)P(c)}{P(d)}$
 - ► Bayes' Rule
- $\hat{c} = \operatorname*{argmax}_{c \in C} P(d|c)P(c)$
 - \triangleright P(d) is the same for each class
- $\hat{c} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i \in \mathsf{positions}} P(w_i | c)$
 - Bag of words assumption, Naïve Bayes assumption
- $\hat{c} = \operatorname*{argmax} \log P(c) + \sum_{i \in \text{positions}} \log P(w_i | c)$
 - If xy = z, then log(x) + log(y) = log(z)

$$\hat{c} = \operatorname*{argmax}_{c \in C} \sum_{w \in |V|} \left[(\operatorname{count}(w, d)) (\log P(w|c)) \right] + \log P(c)$$

- $\hat{c} = \operatorname*{argmax}_{c \in C} \sum_{w \in |V|} \left[(\operatorname{count}(w, d)) (\log P(w|c)) \right] + \log P(c)$
- ▶ Let $x_w = \text{count}(w, d)$, $\ell_{cw} = \log P(w|c)$, and $p_c = \log P(c)$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \sum_{w \in |V|} x_w \ell_{cw} + p_c$$
$$= \underset{c \in C}{\operatorname{argmax}} (\mathbf{x} \cdot \ell_{\mathbf{c}} + p_c)$$

Let ${f x}$ be a feature vector, ${\cal L}={ t self.likelihood},$ and ${f p}={ t self.prior}$ ${f z}={f x}{\cal L}+{f p}$ $\hat c={ t argmax}(z_c)$