CCF 全国信息学奥林匹克联赛(NOIP2013)复赛

提高组 day1

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	转圈游戏	火柴排队	货车运输
英文题目与子目录名	circle	match	truck
可执行文件名	circle	match	truck
输入文件名	circle.in	match.in	truck.in
输出文件名	circle.out	match.out	truck.out
每个测试点时限	1秒	1 秒	1秒
测试点数目	10	10	20
每个测试点分值	10	10	5
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统	传统	传统
运行内存上限	128M	128M	128M

二. 提交源程序文件名

对于 C++语言	circle.cpp	match.cpp	truck.cpp
对于 C 语言	circle.c	match.c	truck.c
对于 pascal 语言	circle.pas	match.pas	truck.pas

三. 编译命令(不包含任何优化开关)

对于 C++语言	g++ -o circle	g++ -o match	g++ -o truck
	circle.cpp -lm	match.cpp -lm	truck.cpp -lm
对于 C 语言	gcc-o circle circle.c	gcc-o match match.c -	gcc-o truck truck.c
	-lm	lm	-lm
对于 pascal 语言	fpc circle.pas	fpc match.pas	fpc truck.pas

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: CPU AMD Athlon(tm) 64x2 Dual Core CPU 5200+, 2.71GHz, 内存 2G, 上述时限以此配置为准。
- 4、只提供 Linux 格式附加样例文件。
- 5、特别提醒: 评测在 NOI Linux 下进行。

1. 转圈游戏

(circle.cpp/c/pas)

【问题描述】

n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从 0 到 n-1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。

游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第n-m号位置上的小伙伴走到第 0 号位置,第 n-m+1 号位置上的小伙伴走到第 1 号位置,……,第 n-1 号位置上的小伙伴顺时针走到第 m-1 号位置。

现在,一共进行了10^k轮,请问x号小伙伴最后走到了第几号位置。

【输入】

输入文件名为 circle.in。

输入共1行,包含4个整数n、m、k、x,每两个整数之间用一个空格隔开。

【输出】

输出文件名为 circle.out。

输出共1行,包含1个整数,表示10^k轮后x号小伙伴所在的位置编号。

【输入输出样例】

circle.in	circle.out
10 3 4 5	5

【数据说明】

对于 30%的数据, 0 < k < 7;

对于 80%的数据, $0 < k < 10^7$;

对于 100%的数据,1 < n < 1,000,000,0 < m < n, $1 \le x \le n$, $0 < k < 10^9$ 。

2. 火柴排队

(match.cpp/c/pas)

【问题描述】

涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为: $\sum_{i=1}^{n} (a_i - b_i)^2$,其中 a_i 表示第一列火柴中第 i 个火柴的高度, b_i 表示第二列火柴中第 i 个火柴的高度。

每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。

【输入】

输入文件为 match.in。

共三行,第一行包含一个整数 n,表示每盒中火柴的数目。

第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。

第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。

【输出】

输出文件为 match.out。

输出共一行,包含一个整数,表示最少交换次数对99,999,997取模的结果。

【输入输出样例1】

match.in	match.out
4	1
2 3 1 4	
3 2 1 4	

【输入输出样例说明】

最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。

【输入输出样例 2】

match.in	match.out
4	2
1 3 4 2	
1 7 2 4	

【输入输出样例说明】

最小距离是 10,最少需要交换 2次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。

【数据范围】

对于 10%的数据, $1 \le n \le 10$;

对于 30%的数据, $1 \le n \le 100$;

对于 60%的数据, $1 \le n \le 1,000$;

对于 100%的数据, $1 \le n \le 100,000$, $0 \le$ 火柴高度 $\le 2^{31} - 1$ 。

3. 货车运输

(truck.cpp/c/pas)

【问题描述】

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

【输入】

输入文件名为 truck.in。

输入文件第一行有两个用一个空格隔开的整数 n, m, 表示 A 国有 n 座城市和 m 条道路。

接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市 到 y 号城市有一条限重为 z 的道路。注意: x 不等于 y,两座城市之间可能有多条道路。

接下来一行有一个整数 q,表示有 q辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: x 不等于 y。

【输出】

输出文件名为 truck.out。

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。

【输入输出样例】

truck.in	truck.out
4 3	3
1 2 4	-1
2 3 3	3
3 1 1	
3	
1 3	
1 4	
1 3	

【数据说明】

对于 30%的数据, 0 < n < 1,000, 0 < m < 10,000, 0 < q < 1,000;

对于 60%的数据, 0 < n < 1,000, 0 < m < 50,000, 0 < q < 1,000;

对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q < 30,000, $0 \le z \le 100,000$ 。