Problem B2 Sum of Pairs (Hard Version)

Time limit: 1 second

Memory limit: 2048 megabytes

Problem Description

Given an array of n integers a_1, a_2, \ldots, a_n . Find the sum of $a_j - a_i$ over all integer pairs (i, j) satisfying $1 \le i < j \le n$ and $a_i < a_j$.

In other words, you are required to find the following sum:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \max(0, a_j - a_i)$$

Input Format

The first line of the input contains an integer n denoting the length of the array. The second line of the input contains n space-separated integers a_1, a_2, \ldots, a_n .

Output Format

Output the desired sum in one line.

Technical Specification

- $\bullet \quad 2 \leq n \leq 3 \times 10^5$
- $1 \le a_i \le 10^7 \text{ for } i = 1, 2, \dots, n$

Sample Input 1

5 4 10 3 8 2

Sample Output 1

15

Sample Input 2

7 82 283 194 30 201 30 217

Introduction to Algorithms, Fall, 2023 Programming Homework 2

Sample Output 2

1158

Hint

This problem is an application of the divide-and-conquer algorithm.

In each iteration of the algorithm, we divide the array into two parts and calculate the sum of the following three categories:

- Differences $a_j a_i$ where both i and j are on the left side of the division.
- Differences $a_j a_i$ where both i and j are on the right side of the division.
- Differences $a_j a_i$ where i is on the left side, and j is on the right side of the division.

The first two sums can be found using recursion. The third sum can be calculated using a process similar to merge-sort: We simultaneously perform a merge sort on the array while computing the sum. For each element j on the right side, we calculate the sum of differences $a_j - a_i$ by determining the sum and count of elements a_i that satisfy the condition $a_i < a_j$. The whole algorithm runs in $\mathcal{O}(n \log n)$ time.

The same technique can also be applied to solve problems such as counting inversions in an array.