МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Качество и метрология программного обеспечения» ТЕМА: «Расчет метрических характеристик качества разработки программ по метрикам Холстеда»

Студент гр. 7304	Комаров А.О.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2021

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты.

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать как саму характеристику, так и ее оценку.

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А.

Ручной расчёт измеримых характеристик представлен в таблице 1.

Таблица 1 – Ручной расчёт измеримых характеристик (Pascal)

N₂	Оператор	Количество	Nº	Операнд	Количество
1	;	24	1	X	3
2	:=	13	2	у	2
3	() или begin end	16	3	i	10
4		12	4	j	11
5	+	4	5	a	12
6	-	2	6	n	5
7	>	2	7	p	3
8	for to do	4	8	q	3
9	If then	2	9	hold	6
10	repeat until	1	10	no_change	4
11	sort1	1	11	1	9
12	sort2	1	12	1000	3
13	swap	1	13	999	1
14	randomize	1	14	true	1
15	random	1	15	false	1
Bcer	ro	88	Всего)	74

Программный расчёт измеримых характеристик представлен в таблицу 2. Файл с результатами программных расчётов представлен в приложении Б. Таблица 2 – Программный расчёт измеримых характеристик (Pascal)

No	Оператор	Количество	No	Операнд	Количество
1	0	10	1	1	10

2	+	4	2	1000	4
3	-	2	3	999	1
4	;	39	4	a	12
5	=	10	5	bubble_sort	1
6	>	2	6	false	1
7	[]	13	7	hold	6
8	boolean	1	8	i	9
9	for	4	9	j	9
10	if	2	10	n	6
11	Integer	5	11	no_change	4
12	procedure	3	12	p	3
13	program	1	13	q	3
14	random	1	14	true	1
15	randomize	1	15	X	4
16	real	6	16	у	3
17	repeat	1	Bcer	0	77
18	sort1	2			1
19	sort2	2			
20	swap	2			
Bcer	70	111			

Определение расчетных характеристик представлено в таблице 3.

Таблица 3 – Расчёт расчетных характеристик (Pascal)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов n ₁	15	20
Число простых операндов n ₂	15	16
Общее число всех операторов N ₁	88	111
Общее число всех операндов N ₂	74	77

Словарь п	30	36
Длина N _{опыт}	162	188
Теоретическая длина $N_{\scriptscriptstyle Teop}$	190	150
Объём V	794.916	971.946
Потенциальный объём V*	19.65	19.65
Уровень программы L	0.026	0.02
Оценка уровня программы L~	0.027	0.021
Интеллектуальное содержание I	21.46	20.19
Работа программирования Е	30574	48071
Оценка времени	3057.4	2079.4
программирования Т^		
Время программирования Т	2941.2	2670.65
Уровень языка λ	0.486	0.397
Ожидаемое число ошибок в	1.99	0.44
программе В		

2. Определение метрических характеристик для программы на Си.

Код программы представлен в приложении В.

Ручной расчёт измеримых характеристик представлен в таблице 4.

Таблица 4 – Ручной расчёт измеримых характеристик (Си)

N₂	Оператор	Количество	No	Операнд	Количество
1	;	25	1	X	14
2	=	15	2	у	2
3	() или {}	27	3	i	12
4	[]	13	4	n	5
5	for	4	5	a	3
6	if	2	6	hold	5
7	>	2	7	no_change	4
8	<	4	8	j	13

9	+	4	9	0	6
10	++	4	10	1	7
11	-	2	11	999	1
12	%	1	12	1000	3
13	*	7	13	NULL	1
14	&	2	Всег	0	76
15	return	1			
16	sort1	1			
17	sort2	1			
18	swap	1			
19	srand	1			
20	time	1			
21	rand	1			
22	!	1			
Всего		120			

Программный расчёт измеримых характеристик представлен в таблицу 5. Файл с результатами программных расчётов представлен в приложении Г.

Таблица 5 – Программный расчёт измеримых характеристик (Си)

No	Оператор	Количество	Nº	Операнд	Количество
1	!	1	1	0	6
2	%	1	2	1	7
3	0	13	3	1000	5
4	+	4	4	999	1
5	++	4	5	NULL	1
6	,	6	6	a	3
7	-	2	7	b	3
8	;	35	8	hold	5
9	<	4	9	i	13
10	=	15	10	j	13
11	>	2	11	n	5
12	[]	13	12	no_change	4
13	_&	2	13	х	16
14	* _	4	14	у	3

15	_[]	2	Всего	85
16	_*	4		1
17	float	8		
18	for	4		
19	if	2		
20	int	8		
21	main	1		
22	rand	1		
23	return	1		
24	sort1	2		
25	sort2	2		
26	srand	1		
27	swap	2		
28	time	1		
29	void	3		
30	while	1		
Bcer	70	149		-

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчёт расчетных характеристик (Си)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов	22	30
n_1		
Число простых операндов	13	14
n_2		
Общее число всех	120	149
операторов N_1		
Общее число всех	76	85
операндов N ₂		
Словарь п	35	44
Длина N _{опыт}	196	234
Теоретическая длина $N_{\scriptscriptstyle Teop}$	241.7	200.51
Объём V	1044.3	1277.5
Потенциальный объём V*	19.65	19.65
Уровень программы L	0.019	0.015
Оценка уровня программы	0.015	0.011
L~		
Интеллектуальное	15.66	14.03
содержание I		
Работа программирования	54963	83048
E		
Оценка времени	5496.3	5538.5

программирования Т^		
Время программирования Т	7021	4613
Уровень языка λ	0.37	0.302
Ожидаемое число ошибок в	2.61	0.63
программе В		

3. Определение метрических характеристик для программы на Си. Код программы представлен в приложении Д.

Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Ручной расчёт измеримых характеристик (Ассемблер)

N₂	Оператор	Количество	No	Операнд	Количество
1	pushq	4	1	%rbp	74
2	movq	29	2	%rsp	6
3	movl	38	3	%rdi	6
4	jmp .L2	1	4	-24(%rbp)	15
5	addl	6	5	%esi	4
6	jmp .L3	1	6	-28(%rbp)	5
7	cltq	13	7	\$0	8
8	leaq	12	8	-12(%rbp)	7
9	addq	12	9	%eax	43
10	movss	19	10	\$1	13
11	ucomiss	2	11	-8(%rbp)	12
12	jbe .L4	1	12	0(,%rax,4)	10
13	cmpl	5	13	%rdx	19
14	jl .L6	1	14	%rax	57
15	subl	4	15	%xmm0	20
16	jl .L7	1	16	%xmm1	4
17	nop	3	17	-4(%rbp)	11
18	popq	2	18	%rcx	2
19	ret	4	19	%rsi	4
20	jmp .L11	1	20	-32(%rbp)	3
21	jmp .L12	1	21	\$32	1
22	jbe .L13	1	22	\$8032	1
23	call swap	1	23	%fs:40	2

24	jl .L15	1	24	-8020(%rbp)	6
25	je .L16	1	25	%ecx	5
26	leave	2	26	%edx	5
27	subq	2	27	\$9	1
28	xorl	1	28	\$31	1
29	call	1	29	\$999	2
	time@PLT				
30	call	1	30	-8016(%rbp,%rax,4)	2
	srand@PLT				
31	call	1	31	-4016(%rbp,%rax,4)	1
	rand@PLT				
32	imull	2	32	-8016(%rbp)	1
33	leal	1	33	\$1000	2
34	sarl	2	34	-4016(%rbp)	1
35	cvtsi2ss	1	Bce	ГО	354
36	jle .L20	1			
37	call sort1	1			
38	call sort2	1			
39	je .L22	1			
Bce	ГО	182			

Определение расчетных характеристик представлено в таблице 8. Таблица 8 – Расчёт расчетных характеристик (Ассемблер)

V	D
Характеристика	Ручной расчёт
Число простых операторов n ₁	39
Число простых операндов n ₂	34
Общее число всех операторов N_1	182
Общее число всех операндов N ₂	354
Словарь п	73
Длина N _{опыт}	536
Теоретическая длина N _{теор}	580.7
Объём V	3317.7
Потенциальный объём V*	19.65
Уровень программы L	0.006
Оценка уровня программы L~	0.005
Интеллектуальное содержание I	16.59
Работа программирования Е	552950
Оценка времени программирования Т^	55295
Время программирования Т	67360
Уровень языка λ	0.12
Ожидаемое число ошибок в программе В	8.3

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов на трех языках

Характеристика	Ручной	Програм-	Ручной	Програм-	Ручной
	расчёт	мный расчёт	расчёт	мный расчёт	расчёт
	Pascal	Pascal	Си	Си	Ассембле
					p
Число простых	15	20	22	30	39
операторов n_1					
Число простых	15	16	13	14	34
операндов n ₂					
Общее число всех	88	111	120	149	182
операторов N_1					
Общее число всех	74	77	76	85	354
операндов N_2					
Словарь п	30	36	35	44	73
Длина N _{опыт}	162	188	196	234	536
Теоретическая длина	190	150	241.7	200.51	580.7
N_{reop}					
Объём V	794.91	971.946	1044.3	1277.5	3317.7
	6				
Потенциальный объём	19.65	19.65	19.65	19.65	19.65
V*					
Уровень программы	0.026	0.02	0.019	0.015	0.006
Оценка уровня	0.027	0.021	0.015	0.011	0.005
 программы L~					
Интеллектуальное	21.46	20.19	15.66	14.03	16.59
содержание I					
Работа	30574	48071	54963	83048	552950
программирования Е					
Оценка времени	3057.4	2079.4	5496.3	5538.5	55295
программирования Т^ Время	2941.2	2670.65	7021	4613	67360
	2071.2		, 021	1010	0,500
программирования Т Уровень языка λ	0.486	0.397	0.37	0.302	0.12
Ожидаемое число	1.99	0.397	2.61	0.63	8.3
	1.55	0.77	2.01	0.05	0.0
ошибок в программе В					

В результате сравнения видно, что уровень программы самый низкий у программы на Acceмблере, а самый высокий у программы на Pascal. Наибольшие показатели времени программирования, работы

программирования и ожидаемого числа ошибок, наоборот, соответствуют Ассемблеру, а наименьший – Pascal.

Выводы

В результате выполнения данной лабораторной работы была изучена система метрик Холстеда. Было проведено сравнение программ, реализующих алгоритмы сортировки пузырьком, на языках Pascal, Си и Ассемблер.

ПРИЛОЖЕНИЕ А

Код программы на Pascal.

```
program bubble_sort1-2;
{ bubble sorting - vers.1 without procedure, vers.2 with swap-procedure }
const
             = 1000;
       max
type ary = array[1..max]of real;
var
     X
               : ary;
       i,n
             : integer;
procedure { bubble- } sort1(var a: ary; n: integer);
     i,j : integer;
var
     hold : real;
begin { procedure sort1 }
 for i:=1 to n-1 do
   for j:=i+1 to n do
     begin
     if a[i]>a[j] then
       begin
         hold:=a[i];
         a[i]:=a[j];
         a[j]:=hold
       end
   end
                { for }
           { procedure sort1 }
end;
procedure {bubble} sort2(var a: ary; n: integer);
var
     no_change : boolean;
     j
               : integer;
procedure swap(p,q: real);
var
     hold : real;
begin
 hold:=p;
 p:=q;
 q:=hold
end; { swap }
begin { procedure sort2 }
  repeat
```

```
no_change:=true;
for j:=1 to n-1 do
    begin
    if a[j]>a[j+1] then
    begin
        swap(a[j],a[j+1]);
        no_change:=false
        end
        end { for }
    until no_change
end; { procedure sort2 }
```

ПРИЛОЖЕНИЕ Б

Результаты parser_pas.exe

```
Statistics for module Z:\pasout.lxm
The number of different operators : 20
The number of different operands : 16
The total number of operators : 111
The total number of operands
The total number of operands
Dictionary
                                    D)
                                           : 36
Length
                                   N)
                                         : 188
Length estimation
                                   ^N)
                                         : 150.439
Volume
                                   V)
                                         : 971.946
Potential volume
                                 ( *V)
                                          : 19.6515
Limit volume
                                  (**V)
                                          : 38.2071
Programming level
                                 ( L)
                                          : 0.0202187
                                          : 0.0207792
: 20.1963
Programming level estimation ( ^L)
Intellect
                                    I)
                                         : 2670.65
: 2079.42
Time of programming
                                    T)
                                 ( ^T)
Time estimation
Programming language level (lambda): 0.397328
Work on programming
                                 ( E) : 48071.6
Error
                                   B)
                                          : 0.440695
Error estimation
                                  ( ^B) : 0.323982
```

Table:

_____ Operators: 1 | 10 | () 2 4 | + 3 2 39 | ; 4 5 10 | = 6 2 | > 7 13 | [] 8 1 | boolean 9 | 4 | for 2 | if 10 İ 11 5 | integer 3 | procedure 12 1 | program 13 1 | random 14 j | randomize | real | repeat 15 j 1 16 İ 6 17 | 1 18 | | sort1 2 19 | 2 | sort2 20 2 | swap Operands: 1 10 | 1 2 4 | 1000 3 1 | 999 4 12 | a 5 1 | bubble_sort 6 | false 1 7 j hold 6 8 ĺί 9 9 9 j 10 | 6 | n

```
| 11 | 4 | no_change
| 12 | 3 | p
| 13 | 3 | q
| 14 | 1 | true
| 15 | 4 | x
| 16 | 3 | y
```

Summary:

The number of different operators : 20

The humber of different opera	1013		20
The number of different operands			16
The total number of operators		:	111
The total number of operands		:	77
B	(D)		26
Dictionary	(D)		36
Length	(N)	-	188
Length estimation	(^N)	:	150.439
Volume	(V)	:	971.946
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0202187
Programming level estimation	(^L)	:	0.0207792
Intellect	(I)	:	20.1963
Time of programming	(T)	:	2670.65
Time estimation	(^T)	:	2079.42
Programming language level	(lambda)	:	0.397328
Work on programming	(E)	:	48071.6
Error	(B)	:	0.440695
Error estimation	(^B)	:	0.323982

приложение в

Код программы на Си

```
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
void sort1(float* x, int n){
    float hold;
    for (int i = 0; i < n - 1; i++) {
        for (int j = i + 1; j < n; j++) {
            if (x[i] > x[j]) {
                hold = x[i];
                x[i] = x[j];
                x[j] = hold;
            }
        }
    }
void swap(float *a, float *b) {
    float hold = (*a);
    *a = (*b);
    *b = hold;
void sort2(float *x, int n){
    int no change = 0;
    while(!no change) {
        no change = 1;
        for (int j=0; j < n-1; j++) {
            if (x[j] > x[j+1]) {
                swap(&x[j], &x[j+1]);
                no change = 0;
            }
        }
    }
int main(){
    float x[1000];
    float y[1000];
    srand(time(NULL));
    for (int i=0; i < 1000; i++) {
        x[i] = 1 + rand() % 999;
        y[i] = x[i];
    sort1(x,1000);
    sort2(y,1000);
    return 0;
}
```

ПРИЛОЖЕНИЕ Г

Результаты parser_c.exe

Statistics for module Z:\output.lxm

The number of different operators : 30
The number of different operands : 14
The total number of operators : 149
The total number of operands : 85

Table:

uperators:								
1	1	!						
i 2	1	%						
1 2 3 4 5 6	13	()						
i 4	4	+						
5	4	++						
1 6	4 6							
1 7	2	, -						
, 8	35							
8 9)	,						
10	35 4 15	; < =						
1 11	1 2 1	- >						
11 12 13	12							
12	1 2	[]						
13	2 13 2 4	_& *						
14	4	_						
15	2 4 8 4 2	_[]						
16	4							
17	8	float						
18	4	for						
19	2	if						
20	8	int						
21	1	main						
22	1	rand						
21 22 23	1	return						
j 24	2	sort1						
1 25	2	sort2						
j 26	1	srand						
26 27 28	1 1 2 2 1 2 1 3	swap						
i 28	1	time						
29	i 3 i	void						
30	1	while						
0	I							

Operands:

Summary:

The number of different operators : 30

The number of attracting ober	1015	•	20
The number of different opera	ands	:	14
The total number of operators			149
The total number of operands		:	85
·			
Dictionary	(D)	:	44
Length	(N)	:	234
Length estimation	(^N)	:	200.51
Volume	(V)	:	1277.51
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0153827
Programming level estimation	(^L)	:	0.0109804
Intellect	(I)	:	14.0275
Time of programming	(T)	:	4613.8
Time estimation	(^T)	:	5538.5
Programming language level	(lambda)	:	0.302293
Work on programming	(E)	:	83048.4
Error	(B)	:	0.634502
Error estimation	(^B)	:	0.425836

приложение д

Код программы на Ассемблер

```
sort1:
.LFB5:
      .cfi startproc
     pushq %rbp
     .cfi_def_cfa_offset 16
     .cfi_offset \overline{6}, -16
     movq %rsp, %rbp
     .cfi def cfa register 6
     movq %rdi, -24(%rbp)
     movl %esi, -28(%rbp)
     movl
           $0, -12(%rbp)
           .L2
     jmp
.L7:
           -12(%rbp), %eax
     movl
     addl
          $1, %eax
           %eax, -8(%rbp)
     movl
     jmp
            .L3
.L6:
     movl -12(%rbp), %eax
     cltq
     leaq 0(,%rax,4), %rdx
     movq -24(%rbp), %rax
     addg %rdx, %rax
     movss (%rax), %xmm0
     movl -8(%rbp), %eax
     clta
     leaq 0(,%rax,4), %rdx
     movq
           -24(%rbp), %rax
     addg %rdx, %rax
     movss (%rax), %xmm1
     ucomiss
                 %xmm1, %xmm0
           .L4
     jbe
     movl
           -12(%rbp), %eax
     cltq
     leaq 0(,%rax,4), %rdx
     movq -24(%rbp), %rax
     addq %rdx, %rax
     movss (%rax), %xmm0
     movss %xmm0, -4(%rbp)
     movl -8(%rbp), %eax
     clta
     leag 0(,%rax,4), %rdx
           -24(%rbp), %rax
     movq
     addq
           %rax, %rdx
           -12(%rbp), %eax
     movl
     cltq
     leaq 0(,%rax,4), %rcx
     movq -24(%rbp), %rax
     addq %rcx, %rax
     movss (%rdx), %xmm0
     movss %xmm0, (%rax)
     movl -8(%rbp), %eax
     cltq
     leaq 0(,%rax,4), %rdx
           -24(%rbp), %rax
     movq
     addq %rdx, %rax
     movss -4(%rbp), %xmm0
     movss %xmm0, (%rax)
```

```
.L4:
      addl $1, -8(%rbp)
.L3:
            -8(%rbp), %eax
      movl
      cmpl
            -28(%rbp), %eax
      jι
            .L6
      addl $1, -12(%rbp)
.L2:
            -28(%rbp), %eax
      movl
      subl
            $1, %eax
            %eax, -12(%rbp)
      cmpl
      jl
             .L7
      nop
      popq %rbp
      .cfi def cfa 7, 8
      .cfi endproc
.LFE5:
      .size sort1, .-sort1
      .globl
                  swap
      .type swap, @function
swap:
.LFB6:
      .cfi_startproc
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset \overline{6}, -16
      movq %rsp, %rbp
.cfi_def_cfa_register 6
      movq %rdi, -24(%rbp)
movq %rsi, -32(%rbp)
      movg -24(%rbp), %rax
      movss (%rax), %xmm0
      movss %xmm0, -4(%rbp)
      movq -32(%rbp), %rax
      movss (%rax), %xmm0
      movq -24(%rbp), %rax
      movss %xmm0, (%rax)
      movq -32(%rbp), %rax
      movss -4(%rbp), %xmm0
      movss %xmm0, (%rax)
      nop
      popq %rbp
      .cfi def cfa 7, 8
      .cfi_endproc
.LFE6:
      .size swap, .-swap
                 sort2
      .globl
      .type sort2, @function
sort2:
.LFB7:
      .cfi_startproc
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset \overline{6}, -16
      movq %rsp, %rbp
      .cfi def cfa register 6
      subq $32, %rsp
      movq %rdi, -24(%rbp)
      movl %esi, -28(%rbp)
      movl $0, -8(%rbp)
```

```
jmp
            .L11
.L16:
     movl
            $1, -8(%rbp)
     movl $0, -4(%rbp)
            .L12
      jmp
.L15:
     movl -4(%rbp), %eax
      cltq
      leaq 0(,%rax,4), %rdx
     movq -24(%rbp), %rax addq %rdx, %rax
     movss (%rax), %xmm0
     movl -4(%rbp), %eax
      clta
      addq $1, %rax
      leaq 0(,%rax,4), %rdx
     movq -24(%rbp), %rax
      addq %rdx, %rax
     movss (%rax), %xmm1
                  %xmm1, %xmm0
      ucomiss
      jbe
           .L13
     movl
           -4(%rbp), %eax
      cltq
      addq $1, %rax
leaq 0(,%rax,4), %rdx
           -24(%rbp), %rax
     movq
      addq %rax, %rdx
     movl -4(%rbp), %eax
      cltq
      leaq 0(,%rax,4), %rcx
     movq -24(%rbp), %rax
      addq %rcx, %rax
     movq %rdx, %rsi
     movq %rax, %rdi
      call
            swap
     movl $0, -8(%rbp)
.L13:
      addl $1, -4(%rbp)
.L12:
     movl
           -28(%rbp), %eax
      subl
           $1, %eax
      cmpl
           %eax, -4(%rbp)
      jι
            .L15
.L11:
      cmpl
            $0, -8(%rbp)
            .L16
      jе
      nop
      leave
      .cfi def cfa 7, 8
      ret
      .cfi_endproc
.LFE7:
      .size sort2, .-sort2
      .globl
              main
      .type main, @function
main:
.LFB8:
      .cfi_startproc
      pushq %rbp
      .cfi def cfa offset 16
      .cfi offset 6, -16
     movq %rsp, %rbp
```

```
.cfi def cfa register 6
      subq $8032, %rsp
     movq %fs:40, %rax
     movq %rax, -8(%rbp)
     xorl %eax, %eax
     movl $0, %edi
      call time@PLT
     movl %eax, %edi
      call srand@PLT
     movl $0, -8020(%rbp)
      jmp
            .L19
.L20:
      call rand@PLT
     movl %eax, %ecx
     movl $-2093742815, %edx
     movl %ecx, %eax
      imull %edx
      leal (%rdx,%rcx), %eax
      sarl $9, %eax
     movl %eax, %edx
     movl %ecx, %eax
      sarl $31, %eax
     subl %eax, %edx
movl %edx, %eax
imull $999, %eax, %eax
     subl %eax, %ecx
movl %ecx, %eax
      addl $1, %eax
      cvtsi2ss %eax, %xmm0
     movl -8020(%rbp), %eax
      clta
     movss %xmm0, -8016(%rbp,%rax,4)
     movl -8020(%rbp), %eax
      clta
     movss -8016(%rbp,%rax,4), %xmm0
     movl -8020(%rbp), %eax
      cltq
     movss %xmm0, -4016(%rbp,%rax,4)
      addl $1, -8020(%rbp)
.L19:
      cmpl $999, -8020(%rbp)
      jle
           .L20
      leaq -8016(%rbp), %rax
     movl $1000, %esi
     movq %rax, %rdi
      call sort1
     leaq -4016(%rbp), %rax
     movl $1000, %esi
     movq %rax, %rdi
      call
            sort2
     movl $0, %eax
     movq -8(%rbp), %rsi
     xorq %fs:40, %rsi
      jе
            .L22
      call
           __stack_chk_fail@PLT
.L22:
      leave
      .cfi_def_cfa 7, 8
      ret
      .cfi endproc
```