Hope Artificial Intelligence Assignment-Regression

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

1. Identifying the problem statement:

It's purely based on numbers so, the given problem statement comes under

Stage-1: Machine Learning.

Stage-2: Requirement is clear, Input and Output is present so in stage-2 it comes under **supervised learning.**

Stage-3: It's a numerical data which it shows that it comes under Regression.

2.Information about the dataset:

 $1338 \text{ rows} \times 6 \text{ columns}$

['age', 'bmi', 'children', 'charges', 'sex_male', 'smoker_yes']

Independent Dataset: Input

'age', 'bmi', 'children', 'sex_male', 'smoker_yes'

Dependent Dataset: Output

'charges'

3.Data Preprocessing Method:

Columns: Sex and Smoker is given in strings in order to convert to numbers(Nominal Data) we have to change the dataset to binary so that we are getting the dummies from pandas libraries.

To find the Machine Learning Regression method using the R_Score value

1.Multiple Linear Regression : R Score Value = 0.7894. accuracy

2.Support Vector Machine:

S.No	Hyper Parameter	Linear (R-Score)	Rbf (Non Linear) R-Score	Poly R-Score	Sigmoid R-Score
1.	C=10	0.462	-0.032	0.387	0.039
2.	C=100	0.628	0.320	0.617	0.527

3.	C=500	0.763	0.664	0.826	0.444
4.	C=1000	0.764	0.810	0.856	0.287
5.	C=5000	0.741	0.874	0.859	-7.53
6.	C=10000	0.741	0.877	0.859	-34.15

SVM Regression for R_Score Value : 0.877 accuracy Rbf (Non Linear) and hyper parameter C=10000.

3.Decion Tree:

S.No	Criterion	Splitter	Features	R-Score
1.	squared_error	Best	Auto	0.687
2.	squared_error	Best	Sqrt	0.621
3.	squared_error	Best	log2	0.740
4.	squared_error	Random	Auto	0.686
5.	squared_error	Random	Sqrt	0.670
6.	squared_error	Random	log2	0.618
7.	friedman_mse	Best	Auto	0.690
8.	friedman_mse	Best	Sqrt	0.646
9.	friedman_mse	Best	log2	0.730
10.	friedman_mse	Random	Auto	0.726
11.	friedman_mse	Random	Sqrt	0.672
12.	friedman_mse	Random	log2	0.718
13.	mse	Best	Auto	0.705
14.	mse	Best	Sqrt	0.741
15.	mse	Best	log2	0.740
16.	mse	Random	Auto	0.734
17.	mse	Random	Sqrt	0.700
18.	mse	Random	log2	0.626
19.	тае	Best	Auto	0.674
20.	mae	Best	Sqrt	0.713
21.	mae	Best	log2	0.704
22.	mae	Random	Auto	0.774
23.	mae	Random	Sqrt	0.641
24.	mae	Random	log2	0.720

The Decision Tree Regression R_Score Value for(mae,random,auto) is 0.774 accuracy

5.Random Forest:

S.No	Criterion	Max_features	N_estimators	R_score
1.	squared_error	Auto	10	0.833
2.	squared_error	Sqrt	10	0.852
3.	squared_error	log2	10	0.852
4.	squared_error	Auto	100	0.853
5.	squared_error	Sqrt	100	0.870
6.	squared_error	log2	100	0.870
7.	friedman_mse	Auto	10	0.833
8.	friedman_mse	Sqrt	10	0.850
9.	friedman_mse	log2	10	0.850
10.	friedman_mse	Auto	100	0.854
11.	friedman_mse	Sqrt	100	0.870
12.	friedman_mse	log2	100	0.870
13.	absolute_error(mae)	Auto	10	0.835
14.	absolute_error(mae)	Sqrt	10	0.857
15.	absolute_error(mae)	log2	10	0.857
16.	absolute_error(mae)	Auto	100	0.852
17.	absolute_error(mae)	Sqrt	100	0.871
18.	absolute_error(mae)	log2	100	0.871
19.	Mse	Auto	10	0.833
20.	Mse	Sqrt	10	0.852
21.	Mse	log2	10	0.852
22.	Mse	Auto	100	0.853
23.	Mse	Sqrt	100	0.870
24.	mse	log2	100	0.870

The Random forest regression R_Score value: 0.871 accuracy for both (mae,sqrt,100) & (mae,log2,100).

The finalised best saved model is Support Vector Machine learning model

R Score value when compared to other model the accuracy is closer to 1

Accuracy

(0.877 rbf (Non linear and Hyper parameter C = 10000)