Digital Image Processing

Lesson 2: Human Perception & Image Representations

Master Course Fall Semester 2023

Prof. Rolf Ingold

Outline

- Human Visual System
 - Visible Light
 - Anatomy of the eye
 - Brightness Perception
 - Color Perception
 - Color Models
- Digital Image representation
 - Digital Image
 - Sampling and quantization
 - Image representation
 - Raster organization
 - Color models

Visible Light

- Visible light consists of electromagnetic energy having
 - Wavelengths in the range 380 (violet) to 780 nm (red)
 - Frequencies in the range 380 THz (red) to 780 THz (violet)

Origin of Color Perception

Light Spectrum

- Light is characterized by its spectral composition
 - Monochromatic light : all the power is concentrated on a single wavelength
 - Equienergetic light: the energy is uniformly distributed over the spectrum
 - Day light
 - Artificial light (for instance tungsten filament)
 - Reflected light

Eye Anatomy

source: http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture4/

Composition of the Retina

- The retina is composed of two types of cells:
 - 150 millions of rods, which are sensitive to brightness
 - 7 millions of cones, which are responsible for color perception
- The fovea is a region densely packed with cones

The blind spot has no rods nor cones

Blind Spot Experiment

1 2 3 4 5 6

source: http://www.yorku.ca/eye/blndspo1.htm

Human Visual System

- Human vision has two complementary vision mechanisms
 - Scotopic vision:
 - Provided by the rods
 - Low levels of illumination
 - Monochromatic
 - Low acuity
 - Photopic vision:
 - Provided by the cones
 - High level of illumination
 - Color sensitive
 - High acuity (but chromatic aberration!)

Mesopic Vision

- The combination of
 - Photopic vision
 - Scotopic vision

is called **mesopic vision**

Brightness Perception

- The sensitivity of the human visual system covers a wide range of light intensity
 - The global range is about 10¹⁰!
 - The range for photopic vision it is about 10⁶
- For a given brightness adaptation, the range of intensity levels that can be discriminate simultaneously is between 10² and 10³

Brightness Discrimination

 The just-noticeable difference between intensity levels is nearly constant at about 2 percent over a very wide range of brightness levels

- Intensity discrimination depend on context
 - Brightness discrimination vs. frequencies

Brightness Illusions

Color Perception

 Color perception of human beings results from the simultaneous stimulation of the three types of cones (trichromy)

 Different spectra can result in a perceptually identical sensations

 Perception of color is also affected by surround effects and adaptation

 Lights at 430, 560, and 610 nm are respectively violet, blue-green, and yellow-green (not blue, green, and red)

Color Blindness

- Color blindness is the decreased ability to distinguish colors
 - It can impair tasks such as selecting ripe fruits
- Males are more frequently affected than females

Color Matching Experiment

- Observers match color of a given wavelength X, by mixing three pure light (at fixed wavelengths)
 - R=700nm
 - G=546.1nm
 - B=435.8nm

Three matching curves are obtained

XYZ Colour Space

 CIE ("Commission Internationale d'Eclairage") has defined three new hypothetical light sources, x, y, and z which yield positive matching curves:

$$X = 0.49 R + 0.31 G + 0.20 B$$

$$Y = 0.17697 R + 0.8124 G + 0.01063 B$$

$$Z = 0.01 G + 0.99 B$$

The values of X, Y, Z the three-dimensional CIE XYZ space

Chromaticity Diagram

 Pure colors are normalized and projected on 2D space

$$x = X / (X+Y+Z)$$
$$y = Y / (X+Y+Z)$$

- Outer edge consists of single wavelength primaries
- Inner points correspond to color mixtures

Monitor Color Gamut

- The displayable colors belong to a triangle defined by the three primary colors of the monitor
 - Vertices represent the primary colors
 - Combination of colors are linear
 - White is located at the center of mass

What about the gamut of a printer using CMY color space?

Perceptible Color Differences

- In the CIE chromaticity diagram, perceptible color differences are not uniformly distributed
- Empirical studies show that the human eye is most sensitive to blue variations

Additive vs Subtractive Color Spaces

- RGB is an additive color model in which red, green, and blue light are combined to create other colors.
 - It is the most used color model
 - It is used for monitor displays

 CMY (and CYMK) are subtractive color models in which cyan, magenta, yellow (and black) pigments are mixed to produce various colors

It is used for printing

HSV Color Model: Hue Saturation Value

 The HSV (Hue, Saturation, Value) color model is often preferred because it is often more natural to think about a color in terms of hue and saturation than in terms of additive or subtractive color

- H (from 0 to 360) represents the color type (such as red, blue, or yellow):
- S (from 0 to 100) represents the "purity" of the color:
- V (from 0 to 100) represents the brightness

Better Understanding of the HSV Color Model

YUV Color Space

- YUV color space used in PAL television
 - a linear combination of RGB

- Y represent luminance (brightness)
- U,V represent chrominance (color)
- Other similar color spaces
 - YIQ is used in NTSC
 - YDbDr is used in SECAM
 - YCbCr is used in Video and JPEG compression

Other Color Models

- The most complete color model used to describe all the colors visible to the human eye is CIE L*a*b* (CIELAB)
 - It is based directly on XYZ as an attempt to linearize the perceptibility of color differences
- There are some commercial color spaces:
 - Panton, Munsell
- Artists use a traditional wheel of 12 colors:

 - Three secondary colors
 - the primary and secondary colors)
- The Natural Color System (NCS) is based on the six elementary color percepts of human vision: white, black, red, yellow, green, and blue.

Conclusion on Human Perception and Colors

- The visual system of humans is very complex
 - It consists of a combination of scotopic and photopic vision
- Color matching depends on lighting conditions (metamerism phenomena)
- Color perception is highly subjective (changes from one observer to the other)
- Acurate color processing needs calibrated environments
- Color sensitivity has not yet been understood in all details

Some additional funny visual artifacts are shown next

Visual Artifacts (1)

Visual Artifacts (2)

Outline

- Human Visual System
 - Visible Light
 - Anatomy of the eye
 - Brightness Perception
 - Color Perception
 - Color Models
- Digital Image representation
 - Reminder: Digital Image
 - Sampling and quantization
 - Image representation
 - Raster organization
 - Color models

Image as a function

 In the analogic world, an image is considered to be a continuous function of two real variables

$$I = f(x, y)$$

- In most cases the function f is supposed to be defined in a rectangular domain
 - $x \in [xmin, xmax], y \in [ymin, ymax]$
- The result of the function can be
 - a scalar

$$f(x, y) \in [0, imax]$$

or a vector

$$f(x, y) \in [0, imax]^n$$

Digital Image

- A digital image is an image handled by a computer
- A natural image is transformed to a digital image by a digitization process which contains two aspects
 - Sampling for the image domain
 - Quantization for the image values
- A sample of a digital image is called a pixel
- The pixels values are often referred to as intensities

Digital Image Types

- Binary images (often black and white)
- Monochrome images
 - Fixed number of gray levels (often 256 levels)
 - Intensity from a continuous space (float numbers)
- Color images
 - Indexed color: index used to select the color from a color table
 - True color images using 3 channels (for various color spaces : RGB, HSV, ...)
 - Optionally, with an additional transparency channel
- Multispectral images (with several wavelength bands)
- Range images (measuring distance to the observer)
- Animated images (varying in time)
 - Frame rate (at 25 or 30 fps)

Sampling Grid

Several planar paving schemes may be used

- Squared : orthogonal raster, isometric, easiest to implement
- Hexagonal: with interesting geometrical properties (neighborhood)
- Triangular
- There is a fundamental theory on sampling that will be studied later

Sampling and Resolution

- Sampling defines a resolution which is measured in dpi (dots per inch)
 - Screen resolutions: 72 144 dpi, Retina displays: more than 200 dpi
 - Laser printers: 300 1200 dpi, High quality printing: up to 9'600 dpi
 - Office scanner resolution : 300 1200 dpi

Quantization

- Quantization determines the number of (gray) levels
- The number of levels is chosen accordingly to quality

Example: images with 256, 16 and 4 gray levels

- Printers are restricted to 2 levels (black ink, paper)
 - Gray levels are simulated by dithering at a higher resolution

Gray Level Visualization

Color representation

- A pixel value of a color image is defined by a 3-component vector
 - most frequently used components are RGB (Red-Green-Blue)
- Thus, a color image consists in a combination of three monochrome images, called channels, planes or banks

Image Representation

- The image's representation has an important impact on performance
 - In main memory : random access, locality principle
 - On files: compactness, streamability
- Variable parameters
 - Sampling grid
 - Resolution and size
 - Coordinate system
 - Raster organization
 - Quantization
 - Color representation
 - Coding

Coordinate System

- Most commonly used coordinate system:
 - The origin in the upper right
 - The x axis extending to the right
 - The y axis extending downwards

Raster Organization

The raster organization defines the pixel order by mapping coordinates to pixel addresses

Pyramidal Representation

- The image is represented as a sequence of layers
 - With increasing resolution
 - First layer contains a low resolution image
 - Subsequent layers contain color differences to the upper level
- Suitable for streaming image formats

Quantization

- Quantization determines the range of pixel values
- Monochrome case
 - 256 levels (8 bits) are considered sufficient for most applications
 - more bits are required for high accuracy applications
- Color case
 - color tables have generally between 256 and 65536 colors
 - standard 24 bits (3x8bits) true color can represent more than
 16 million colors
 - very high color accuracy needs 32 or 48 bits!

Color Representation

- Direct color :
 - each pixel has 3 components :r, g, b (red, green, blue intensities)

- Indexed color :
 - each pixel is represented by an index, corresponding to an entry in a color map

Real vs. Indexed Color

Real color image (16 million colors)

Alternative Color Spaces

- There exist many different color spaces!
 - CMY : Cyan, Magenta, Yellow (complements to RGB)
 - HSV : Hue, Saturation, Value
 - HLS: Hue, Luminosity, Saturation
 - ... many others

File Size and Bandwidth

- Raw image data uses prohibitive storage resources
 - Binary image of a A4 page at 300dpi : 1MB
 - Screen shot of a 1024 x 768 color image : 2MB
 - Digital picture at 2560 x 1920 (5M pixel) : 15MB
 - Digital video (640x480x25) : 22MB per second, 1.3 GB per minute !
- For storage and network transfer, data compression is required
 - Compression methods can be lossy or lossless

File Format Descriptors

- A format descriptor is needed to represent additional information
 - Type of image (binary, gray levels, color, ...)
 - Size (width, height) in number of pixels
 - Physical dimension (in cm, inch, ...) or resolution (in dpi, ...)
 - Sample model (pixel order, pixel coding, byte order, bit order)
 - Color model (color coding)
 - Color table (optionally)
 - Link(s) to pixel data
 - Optionally other information (capture conditions, location, date, history, keywords for indexing, general comments, ...)

Non Proprietary File Formats

	Binary	Grayscale	Indexed color	True color	Progressive	Compressed	Lossless	Lossy
GIF - Graphics Interchange Format	Χ	Х	Х		Х	Х	Х	
TIFF - Tag Image File Format	Х	Х	Х			Х	Х	
JBIG - Joint Bi-level Image exp. Group	Х	Х				Х	Х	
JPEG - Joint Photographic Expert Group		Х		Х	Х	Х		Х
PNG - Portable Network Graphics	X	Х	Х	Х	Х	Х	Х	Х

