Homework 3

Karan Sarkar sarkak2@rpi.edu

September 23, 2019

Exercise 1.13.

- (a) We are looking for $P[h(x) \neq y]$. We will consider two cases. First, suppose that h(x) = f(x). This occurs with probability $1-\mu$. Now note that $y \neq f(x)$ with probability $1-\lambda$. Thus the case probability is $(1-\mu)(1-\lambda)$. For the second case, suppose that $h(x) \neq f(x)$. This occurs with probability μ . Now note that y = f(x) with probability λ . Thus the case probability is $\mu\lambda$. The total probability is $1-\lambda-\mu+2\lambda\mu$.
- (b) We are looking for the value of λ at which μ is irrelevant. The probability of error is $1 \lambda \mu + 2\lambda\mu = 1 \lambda + \mu(2\lambda 1)$. Thus, the cofficient for μ is zero when $\lambda = 0.5$.

Exercise 2.1.

- 1. A break point for positive rays occurs at k=2. From the formula given, $m_{\mathcal{H}}(N)=N+1$, thus $m_{\mathcal{H}}(2)=3<2^2$.
- 2. A break point for positive intervals occurs at k=3. From the formula given, $m_{\mathcal{H}}(N)=\frac{1}{2}N^2+\frac{1}{2}N+1$, thus $m_{\mathcal{H}}(3)=7<2^3$.
- 3. A break point for convex sets occurs at $k = \infty$. From the formula given, $m_{\mathcal{H}}(N) = 2^N$ so there is no finite break point.

Exercise 2.2.

- (a) 1. For positive rays, the bound is tight. $m_{\mathcal{H}}(N) = N + 1 = \binom{N}{1} + \binom{N}{0}$.
 - 2. The bound holds for positive intervals.

$$\binom{N}{2} + \binom{N}{1} + \binom{N}{0} = \frac{1}{2}N(N-1) + N + 1$$
$$= \frac{1}{2}N^2 - \frac{1}{2}N + N + 1$$
$$= \frac{1}{2}N^2 + \frac{1}{2}N + 1 = m_{\mathcal{H}}(N)$$

- 3. The bound holds for convex sets. The bound from Sauer's Lemma is $\sum_{i=0}^{N} {N \choose i}$. Note that this sums up the number of ways to pick from a set of size N a subset of size N, N. In other words, we are looking for the number of ways to pick a subset from a set of size N. Because every element has two states in or out, we have $\sum_{i=0}^{N} {N \choose i} = 2^N = m_{\mathcal{H}}$.
- (b) There exists no such hypothesis set. Suppose that $m_{\mathcal{H}} = N + 2^{\lfloor N/2 \rfloor}$. Note that $m_{\mathcal{H}}$ has a break point at N = 3. From Sauer's Lemma, we know that it is now less than $\binom{N}{3} + \binom{N}{2} + \binom{N}{1} + \binom{N}{0} < N^3 + 1$. Thus, the given growth function was impossible.

Exercise 2.3.

- 1. The smallest break point for positive rays occurs at k=2. Thus, the VC-dimension is 1.
- 2. The smallest break point for positive intervals occurs at k=3. Thus, the VC-dimension is 2.
- 3. The smallest break point for convex sets occurs at $k = \infty$. Thus, the VC-dimension is ∞ .

Exercise 2.6.

- (a) We get that the in-sample error bar is $\sqrt{\frac{1}{2N}\ln\left(\frac{2\mathcal{H}}{\delta}\right)} = \sqrt{\frac{1}{2\cdot400}\ln\left(\frac{2\cdot1000}{0.05}\right)} \approx 0.115$. We get that the test error bar is $\sqrt{\frac{1}{2N}\ln\left(\frac{2\mathcal{H}}{\delta}\right)} = \sqrt{\frac{1}{2\cdot200}\ln\left(\frac{2\cdot1000}{0.05}\right)} \approx 0.162$. The in-sample error is smaller than the test error.
- (b) If you reserve more data for testing, you get a smaller error bar. However, you sacrifice approximation and $E_{\rm in}$ might not be as low even though the error bar is reduced.

Problem 1.11. We can calculate the error for the supermarket.

$$E_{\text{in}}^{S} = \frac{1}{N} \sum_{i=1}^{n} E[h(x_n), y_n]$$

$$= \frac{1}{N} \left[\sum_{y_n=1}^{n} E[h(x_n), 1] + \sum_{y_n=-1}^{n} E[h(x_n), -1] \right]$$

$$= \frac{1}{N} \left[\sum_{y_n=1}^{n} 10 \cdot [h(x_n) \neq 1] + \sum_{y_n=-1}^{n} [h(x_n) \neq -1] \right]$$

We can calculate the error for the CIA.

$$E_{\text{in}}^{S} = \frac{1}{N} \sum_{i=1}^{n} E[h(x_n), y_n]$$

$$= \frac{1}{N} \left[\sum_{y_n=1}^{n} E[h(x_n), 1] + \sum_{y_n=-1}^{n} E[h(x_n), -1] \right]$$

$$= \frac{1}{N} \left[\sum_{y_n=1}^{n} [h(x_n) \neq 1] + \sum_{y_n=-1}^{n} 1000 \cdot [h(x_n) \neq -1] \right]$$

Problem 1.12.

(a) To minimize $E_{\rm in}(h)$ we have to find the point such that $E'_{\rm in}(h)=0$ with respect to h.

$$E_{\text{in}}(h) = \sum_{n=1}^{N} (h - y_n)^2$$

$$E'_{\text{in}}(h) = \sum_{n=1}^{N} 2(h - y_n)$$

$$0 = \sum_{n=1}^{N} 2h - \sum_{n=1}^{N} 2y_n$$

$$Nh = \sum_{n=1}^{N} y_n$$

$$h = \frac{1}{N} \sum_{n=1}^{N} y_n = h_{\text{mean}}$$

(b) To minimize $E_{\text{in}}(h)$ we have to find the point such that $E'_{\text{in}}(h) = 0$ with respect to h. Let a be the number of y_n such that $y_n < h$.

$$E_{\text{in}}(h) = \sum_{n=1}^{N} |h - y_n|$$

$$E_{\text{in}}(h) = \sum_{y_n < h}^{N} |h - y_n| + \sum_{y_n > h} |h - y_n|$$

$$E_{\text{in}}(h) = \sum_{y_n < h}^{N} (h - y_n) + \sum_{y_n > h} (-h + y_n)$$

$$E'_{\text{in}}(h) = \sum_{y_n < h}^{N} 1 + \sum_{y_n > h} -1$$

$$0 = a - b$$

$$a = b$$

Thus, we have the quantity minimized, when the number of terms less than h is equal to the number of terms greater than h.

(c) When we add an outlier $y_N + \epsilon$ as $\epsilon \to \infty$, we see that $h_{\text{mean}} \to \infty$ whereas h_{med} at most shifts to the next highest value of y.