- **Exercise 1.** (i) Let X be a noetherian scheme, and \mathcal{F} a coherent sheaf of \mathcal{O}_X -modules. Let \mathcal{F}_{α} , for $\alpha \in A$, be a collection of sheaves of \mathcal{O}_X -modules and $\bigoplus_{\alpha \in A} \mathcal{F}_{\alpha} \to \mathcal{F}$ a surjective morphism (i.e. surjective on stalks). Show that there is a finite subset B of A such that the induced morphism $\bigoplus_{\beta \in B} \mathcal{F}_{\beta} \to \mathcal{F}$ is surjective.
 - (ii) Let X be an affine scheme, and \mathcal{G} a quasi-coherent sheaf of \mathcal{O}_X -modules. Show that the natural morphism $\bigoplus_{\alpha \in A} \mathcal{G}_{\alpha} \to \mathcal{G}$ is surjective, where \mathcal{G}_{α} runs over the coherent sheaves of \mathcal{O}_X -submodules of \mathcal{G} .
- (iii) Let X be an affine noetherian scheme and U an open of X. Let \mathcal{F} be a coherent sheaf of \mathcal{O}_U -modules. Show that \mathcal{F} is the restriction to U of some coherent sheaf of \mathcal{O}_X -modules. (Hint: Let $j:U\to X$ be the open immersion. Apply (ii) with $\mathcal{G}=j_*\mathcal{F}$. Observe that the morphism $\mathcal{F}\to j^*j_*\mathcal{F}$ is an isomorphism, and use (i).)

Exercise 2. Let S be a graded ring, generated as an S_0 -algebra by S_1 . Let $d \ge 1$ be an integer, and consider the graded ring R such that $R_n = S_{nd}$ (with ring structure by that of S). Show that there is an isomorphism $\varphi \colon \operatorname{Proj}(S) \to \operatorname{Proj}(R)$ such that $\varphi^* \mathcal{O}_{\operatorname{Proj}(R)}(1) \simeq \mathcal{O}_{\operatorname{Proj}(S)}(d)$.