Vertex of the Quadratic

Given a quadratic $v(u) = a u^2 + b u + c$ compute its value at $u_1 = -\frac{b}{2a}$ namely $v(u_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{u}_{1^+}\mathsf{h}$, namely

 $v(u_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = v(u_1 + h) - v(u_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$v(u) = 2 u^2 + 8 u - 60$

400

