- 1. Prove the following variation of Exercise 3.32.
 - a) The space $(X_1 \times X_2) \times X_3$ is homeomorphic to $X_1 \times X_2 \times X_3$. You may not use the words "open" or "closed" at any point in your proof. (*Hint*: Use the Characteristic Property, Luke!)
 - b) A projection map from an arbitrary product space is an open map.
 - c) An arbitrary product of Hausdorff spaces is Hausdorff.
 - d) A countable product of second countable spaces is second countable.

Solution, part a:

Let $Y = (X_1 \times X_2) \times X_3$ and $Z = X_1 \times X_2 \times X_3$ and define $f : Y \to Z$ as $f((x_1, x_2), x_3) = (x_1, x_2, x_3)$. Evidently f is a bijection.

Observe that these diagrams commute:

The first diagram implies that $\pi_i \circ \pi_1 = f \circ \pi_1$. Since a composition of projection functions is continuous, by the characteristic property of the product topology f is continuous in its first component. The second diagram shows that f is continuous in its second component, so f is continuous.

Now $f^{-1}: Z \to Y$ is $f^{-1}(x_1, x_2, x_3) = ((x_1, x_2), x_3)$, and we have these diagrams that commute:

From the left diagram, we have $\pi_i \circ \pi_1 \circ f^{-1} = \pi_i$, and since $\pi_i \circ \pi_1$ and π_i are continuous, f^{-1} is, too, in its first two components. From the right diagram, the diagonal is $\pi_2 \circ f^{-1} = \pi_3$, which is continuous, so f^{-1} is continuous.

Hence f is a homeomorphism, therefore Y and Z are homeomorphic.

Solution, part b:

Let $\pi: \prod_{\alpha \in I} X_{\alpha} \to X_0$ be a projection map from the arbitrary product space $\prod_{\alpha \in I} X_{\alpha}$, where I is an index collection, to $X_0 \in \{X_{\alpha}\}_{\alpha \in I}$.

Let U be a basic open set in $\prod_{\alpha \in I} X_{\alpha}$, so $U = \prod_{\alpha \in I} U_{\alpha}$, where U_{α} is open in X_{α} , and all but finitely many are X_{α} . Then, $\pi(U) = U_0$ where U_0 is open in X_0 . Thus π is an open map.

Solution, part c:

Let $\prod_{\alpha \in I} X_{\alpha}$ be an arbitrary product space, where X_{α} is Hausdorff for each $\alpha \in I$. Let $x, y \in \prod_{\alpha \in I} X_{\alpha}$ with $x \neq y$. Then for some $\beta \in I$, we will have $x_{\beta} \neq y_{\beta}$ where $x_{\beta}, y_{\beta} \in X_{\beta} \in \{X_{\alpha}\}_{\alpha \in I}$.

The topological space X_{β} is Hausdorff so there exist sets U_1 and U_2 open in X_{β} with $U_1 \cap U_2 = \emptyset$.

Let $\pi_{\beta}: \prod_{\alpha \in I} \to X_{\beta}$ be the projection function to X_{β} and define $V_1 = \pi_{\beta}^{-1}(U_1)$, and $V_2 = \pi_{\beta}^{-1}(U_2)$. These are open sets in $\prod_{\alpha \in I} X_{\alpha}$ and $V_1 \cap V_2 = \emptyset$. Further, $x \in V_1$ and $y \in V_2$, so $\prod_{\alpha \in X_{\alpha}}$ is Hausdorff.

Solution, part d:

Let $X = \prod_{n=1}^{\infty} X_n$ be a product of countably many spaces X_n , where each X_n is second countable. Hence for each X_n we have a countable basis $\mathcal{B}_n = \{B_k\}_{k=1}^{\infty}$.

Define $S = \{\pi_n^{-1}(B_k) : B_k \in \mathcal{B}_n \text{ and } k, n \in \mathbb{N}\}$, where $\pi_n : X \to X_n$ is the projection function onto the *n*-th component. Note that S is countable.

Now take any $x = (x_1, x_2, ...) \in X$. Then $x_1 \in B_k$ for some $B_k \in \mathcal{B}_1$. So, $\pi_1^{-1}(B_k) = B_k \times \prod_{n=2}^{\infty} X_n$, so $x \in \pi_1^{-1}(B_k) \in \mathcal{S}$. Hence \mathcal{S} covers X and so it is a sub-basis for X.

We can then form a basis for X from S as follows:

$$\mathcal{B} = \left\{ \bigcap_{k=1}^{N} S_k : S_k \in \mathcal{S} \right\}.$$

Observe that \mathcal{B} is countable, as it is composed of all finite intersections of elements of the countable set \mathcal{S} .