

Unsupervised Root-Cause Analysis for Integrated Systems

Renjian Pan¹, Zhaobo Zhang², Xin Li¹, Krishnendu Chakrabarty¹ and Xinli Gu²

¹ Department of ECE, Duke University

² Futurewei Technologies, Inc.

Purpose

Analyze the root causes for integrated systems with an unsupervised machine-learning method

Outline

- Background
- Problem Formulation
- Proposed Method
- Experimental Results
- Conclusions

Motivation

Intelligently locate the root cause

Review of Root-Cause Analysis

	Supervised Methods	Unsupervised Methods	
Example	Classification models (SVM, random forest, etc.)	Clustering models (K-means, DBSCAN, etc.)	
Framework	Training Phase Data: Historical test data Label: Historical diagnosis info. with RCs Diagnosis Phase Systems under diagnosis with test data Root-Cause Analysis Model Root-Cause Suggestion	Root-Cause	ve not used the bass/fail info. which contains great value
PROS	High accuracy	No need of historical diagnosis information	
CONS	Need historical diagnosis information with root cause from experts	Relatively low accuracy	

Background

Problem Formulation

Proposed Method

Experimental Results

Conclusions

Problem Formulation

Evaluation Metric

Normalized Mutual Information (NMI)

$$I_{NMI}(r,c) = \frac{I_{MI}(r,c)}{(H(r) + H(c))/2}$$

• r: correct root causes c: clustering result

• $I_{MI}(\cdot)$: mutual information $H(\cdot)$: entropy

Clusters	NMI
[0,0],[1,1],[2,2],[3,3]	1.0
[0,1,2,3], [0,1,2,3]	0.0
[0,0,1,1], [2,2,3,3]	0.67
[0,0,1,3], [2,2,1,3]	0.33

Overall Flow of the Two-Stage Clustering

Stage-I: Rough Clustering by Decision Tree

- Learning: Build a decision tree with pass/fail info. as the label Fail node: fail-labeled data as majority
 Pass node: pass-labeled data as majority
- Clustering: Data in pass nodes form a pass cluster (Stage-I Cluster 0)
 Data in each fail node forms a stage-I cluster

Stage-II: Precise Clustering with Frequent-Pattern Mining

- Initialization: Discretize numerical data
- Learning: Mine frequent patterns to extract important info. on each stage-I cluster
- Clustering: Split each stage-I cluster based on the frequent patterns for data samples

Frequent-Pattern Mining

Index	d _{F,*,1}	d _{F,*,2}	Frequent Items
1	А	С	$[d_{F,*,2} = C, d_{F,*,1} = A]$
2	В	С	$[d_{F,*,2} = C, d_{F,*,1} = B]$
3	В	С	$[d_{F,*,2} = C, d_{F,*,1} = B]$
4	А	С	$[d_{F,*,2} = C, d_{F,*,1} = A]$
5	A	D	$[d_{F,^*,1} = A]$

Order:
$$[d_{F,*,2} = C, d_{F,*,1} = A, d_{F,*,1} = B]$$

Frequent Patterns	Frequency
$\{d_{F,^*,2}=C\}$	4
$\{d_{F,^*,1}=A\}$	3
$\{d_{F,^*,1} = B\}$	2
$\{d_{F,^*,2} = C, d_{F,^*,1} = A\}$	2
${d_{F,*,2} = C, d_{F,*,1} = B}$	2

(d)

Hyper-Parameter Tuning

- Depth of decision tree: T_{Dep}
 - \circ Select from a set of candidates $\{T_{Dep,1}, T_{Dep,2}, \ldots\}$
 - Cross-validation (CV)

J-fold of data $\{D_{L,CV,1}, D_{L,CV,2}, ..., D_{L,CV,J}\}$ J-1 folds for training and 1-fold for validation

$$P_{Acc}(T_{Dep,d}) = \frac{1}{J} \sum_{j=1}^{J} P_{Acc}(j, T_{Dep,d})$$

Select T_{Dep} with maximum $P_{Acc}(T_{Dep})$

Hyper-Parameter Tuning

- Frequency threshold for frequent-pattern mining: N_{Th}
 - Select from a set of candidates $\{N_{Th,1}, N_{Th,2}, ...\}$

Calculate a set of triplets
$$\{(N_{Th,1}, K_1, I_{Dis,1}), (N_{Th,2}, K_2, I_{Dis,2}), ...\}$$

$$I_{Dis,d} = \sum_{k=1}^{K_d} \sum_{n=1}^{N_{d,k}} \|d_{L,Fail,d,k,n} - \bar{d}_{L,Fail,d,k}\|_2^2$$

K: # of clusters

L-method to determine the "knee point" and the effective N_{Th}

- Industrial Network test data:
 - Training: 1597 samples with pass/fail label
 - Diagnosis: 1012 samples with RCs labeled by human experts
 - 19 numerical features and 4 RCs

	NMI	Optimum K	Runtime (s)
Hierarchical clustering	0.062	50	10.7
Proposed algorithm	0.293	8	19.0

Root-cause distribution on test data

Root-cause distribution on largest 5 clusters

- Industrial Network test data:
 - Training: 6299 samples with pass/fail label
 - Diagnosis: 2678 samples with RCs labeled by human experts
 - 17 numerical features and 4 RCs

	NMI	Optimum <i>K</i>	Runtime (s)
Hierarchical clustering	0.093	45	13.6
Proposed algorithm	0.283	10	54.4

Root-cause distribution on test data

Root-cause distribution on largest 5 clusters

Conclusions

- Formulate the root-cause analysis as an unsupervised clustering problem
- Propose a two-stage clustering method leveraging the pass/fail information
- Outperform the state-of-the-art hierarchical clustering method

Thanks!