Math 591 Lecture 4

Thomas Cohn

9/9/20

Defn: A space X is locally Euclidean iff every point in X has a neighborhood homeomorphic to \mathbb{R}^n , for some fixed n.

Defn: A topological manifold is a space that is locally Euclidean, Hausdorff, and second countable.

Thm: If $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ are homeomorphic nonempty open sets, then m = n. In other words, "dimension is topological".

The idea of this proof is to show that any open set in \mathbb{R} can be covered by families of open sets with overlaps of at most 2 sets, any open set in \mathbb{R}^2 can be covered by families of open sets with overlaps of at most 3 sets, and so on.

Observe that in the definition of locally Euclidean, it's equivalent to ask that $\forall p \in X$, p has a neighborhood homeomorphic to an open subset of \mathbb{R}^n .

Defn: Let M be a topological manifold. If $U \subseteq M$ is open, and $\phi: U \to \mathbb{R}^n$ is a homeomorphism onto an open set $\phi(U) \subseteq \mathbb{R}^n$, then the pair (U, ϕ) is a <u>chart</u> of M.

Defn: Let (U,ϕ) and (V,ψ) be charts, with $U\cap V\neq\emptyset$. The transition function (from ϕ to ψ) is a map

$$\psi \circ \phi^{-1}|_{\phi(U \cap V)} : \phi(U \cap V) \to \psi(U \cap V)$$

Note: $\phi(U \cap V)$ and $\psi(U \cap V)$ are open in \mathbb{R}^n , because ϕ and ψ are homeomorphisms.

Note: Transition functions are automatically homeomorphisms.

Defn: Two charts of a topological manifold are C^{∞} -compatible (or just compatible) iff their transition functions are C^{∞} . That is,

$$\psi \circ \phi^{-1}\big|_{\phi(U \cap V)} \qquad \text{and} \qquad \phi \circ \psi^{-1}\big|_{\psi(U \cap V)}$$

are both C^{∞} diffeomorphisms.

Defn: An <u>atlas</u> of a topological manifold M is a collection $\mathscr{A} = \{(U_i, \phi_i)\}_{i \in I}$ of charts s.t. $M = \bigcup_{i \in I} U_i$.

Preliminary "definition": An atlas of M s.t. $\forall i, j \in I$, the transition function $\phi_i \circ \phi_i^{-1}$ is C^{∞} determines a differentiable structure on M. Note that the condition is vacuous if $U_i \cap U_j = \emptyset$.

Ex: Some topological manifolds and atlases satisfying the preliminary definition:

- A trivial example: $M \subseteq \mathbb{R}^n$ any open set, $\mathscr{A} = \{M \hookrightarrow \mathbb{R}^n \text{ (inclusion)}\}.$ Let $A \subseteq \mathbb{R}^n$ be an open set, and $G : A \to \mathbb{R}^k$ a C^∞ map. Let M be the graph of G, i.e., $M = \{(x, G(x)) \in \mathbb{R}^{n+k} \mid x \in A\} \subseteq \mathbb{R}^{n+k}$ with the subspace topology. Then let $\mathscr{A} = \{\pi : M \to \mathbb{R}^n \mid \pi : (x, G(x)) \mapsto x\}.$ Cases of $M \subseteq \mathbb{R}^N$ which are <u>locally</u> graphs. (Note: \mathbb{R}^N is known as the "ambient space".)
- - $-S^1$. Let

$$\begin{split} &U_1 = \left\{ (x, \sqrt{1 - x^2}); x \in (-1, 1) \right\} \\ &U_2 = \left\{ (y, \sqrt{1 - y^2}); y \in (-1, 1) \right\} \\ &U_3 = \left\{ (x, -\sqrt{1 - x^2}); x \in (-1, 1) \right\} \\ &U_4 = \left\{ (y, -\sqrt{1 - y^2}); y \in (-1, 1) \right\} \\ &\mathscr{A} = \left\{ (U_1, (x, y) \mapsto x), (U_2, (x, y) \mapsto y), (U_3, (x, y) \mapsto x), (U_4, (x, y) \mapsto y) \right\} \end{split}$$

Let's explicitly compute a transition map. $\phi_1^{-1}(x) = (x, \sqrt{1-x^2})$, so $\phi_2 \circ \phi_1^{-1}(x) = \sqrt{1-x^2}$. Note: this is C^{∞}

on (0,1).

- S^1 with a new atlas. Let p=(u,v). Let $U_+=\left\{S^1\setminus\{(0,1)\}\right\}$ and $U_-=\left\{S^1\setminus\{(1,0)\}\right\}$.

Then let $\phi_+(p)=x=\frac{u}{1-v}$ and $\phi_-(p)=y=\frac{u}{1+v}$. Another atlas: $\mathscr{B}=\left\{(U_1,\phi_1),(U_2,\phi_2)\right\}$. We claim that ϕ_1 and ϕ_2 are C^∞ -compatible.

In fact, it turns out that $\mathscr{A} \cup \mathscr{B}$ consists of compatible charts. So \mathscr{A} and \mathscr{B} define the same differentiable structure on S^1 .