2599.
$$\frac{a}{b} + \frac{a(a+d)}{b(b+d)} + \frac{a(a+d)(b+2d)}{b(b+d)(b+2d)} + \dots$$
 $(a>0, b>0, d>0).$

$$2600. \sum_{n=1}^{\infty} \frac{n!e^n}{n^{n+p}}.$$

2601.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n!}}{(2+\sqrt{1})(2+\sqrt{2}) \cdot \cdot \cdot (2+\sqrt{n})}.$$

2602.
$$\sum_{n=1}^{\infty} \frac{n! n^{-p}}{q (q+1) \cdot \cdot \cdot (q+n)} (q > 0).$$

2603.
$$\sum_{n=1}^{\infty} \frac{p(p+1) \cdot \dots (p+n-1)}{n!} \cdot \frac{1}{n^q}.$$

2604.
$$\sum_{n=1}^{\infty} \left[\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot (2n)} \right]^{p} \cdot \frac{1}{n^{q}}.$$

2605(H).
$$\sum_{n=1}^{\infty} \left[\frac{p(p+1) \cdot \cdot \cdot (p+n-1)}{q(q+1) \cdot \cdot \cdot (q+n-1)} \right]^{\alpha} (p>0, q>0).$$

2606 (н). Доказать, что если для энакоположительного ряда $\sum_{n=1}^{\infty} a_n \ (a_n > 0)$ при $n \to \infty$ выполнено условие

$$\frac{a_n}{a_{n+1}} = 1 + \frac{p}{n} + o\left(\frac{1}{n}\right),$$

TO

$$a_n = o\left(\frac{1}{n^{p-\epsilon}}\right)$$

где $\varepsilon > 0$ произвольно мало; причем, если p > 0, то $a_n \downarrow 0$ при $n \to \infty$, т. е. a_n при $n \geqslant n_0$, монотонно убывая, стремится к нулю, когда $n \to \infty$.

Определив порядок убывания общего члена a_n , исследовать сходимость ряда $\sum_{n=1}^{\infty} a_n$, если