

Иллюстрация В.Хлебниковой

Уравнения Пелля

В.СЕНДЕРОВ, А.СПИВАК

Всякое уравнение, имеющее несколько переменных, подлежит исследованию теории чисел. Но не все они одинаково доступны исследованию и не все имеют одинаковую важность по приложениям своим. Теория чисел до сих пор ограничивается только рассмотрением уравнений, наиболее простых и в то же время имеющих наиболее важные приложения.

П.Л.Чебышёв

АПИШЕМ УРАВНЕНИЕ И СПРОСИМ, ИМЕЕТ ли оно решение в целых числах, — получится задача. Скорее всего, если уравнение взято «просто так», эта задача будет очень трудной (или вообще не поддастся решению), а главное, не будет никому интересна. Но есть уравнения, знакомство с которыми неизбежно и в высшей степени полезно для всякого, кто интересуется математикой. Именно таковы уравнения Пелля:

$$x^2 - dy^2 = 1$$

где d — натуральное число, не являющееся точным квадратом.

Почему «не являющееся точным квадратом»? Потому что левую часть уравнения

$$x^2 - a^2y^2 = 1 ,$$

где a — натуральное число, можно разложить на множители:

$$(x - ay)(x + ay) = 1.$$

Число 1 можно представить в виде произведения двух целых чисел двумя способами: $1\cdot 1$ и $-1\cdot (-1)$. В первом случае x-ay=1 и x+ay=1, откуда x=1 и y=0. Во втором случае x-ay=-1 и x+ay=-1, откуда x=-1 и y=0.

Итак, уравнение $x^2-dy^2=1$, где $d=a^2$, решить очень легко. Ничего особенно интересного в нем нет — мы всего лишь разложили на множители разность квадратов. Действительно поразительные эффекты обнаружатся, когда d не будет точным квадратом.

Уравнениями Пелля можно заниматься по-разному. Что-то может понять даже семиклассник. Интересны эти уравнения и для студента мехмата МГУ – например, очень важная для математики 10-я проблема Гильберта, поставленная в августе 1900-го года в докладе на Международном математическом конгрессе в Париже, была решена в 1970 году Ю. Матиясевичем при помощи уравнений типа уравнений Пелля.

В этой статье будет рассказано как о самых простых свойствах решений уравнений Пелля, так и о весьма серьезных и трудных теоремах и задачах, связанных с этими замечательными уравнениями.

Несколько примеров

Уравнение $x^2 - 2y^2 = \pm 1$

Рассмотрим уравнение

$$x^2 - 2y^2 = \pm 1 .$$

Не удивляйтесь тому, что в правой части не 1, а ± 1 . Поверьте, что так легче догадаться до закономерности, о которой вскоре пойдет речь.

Подбором найдем несколько решений: (x; y) = (1; 0), (1; 1) или (3; 2). Продолжая вычисления, составим таблицу:

X	1	1	3	7	17	41	99	239
y	0	1	2	5	12	29	70	169
$x^2 - 2y^2$	1	-1	1	-1	1	-1	1	-1

Если присмотреться, то можно заметить, что каждый следующий столбец получается из предыдущего по простому правилу: «новое» значение y есть сумма «старых» x и y, а «новое» значение x есть сумма «старого» и «нового» значений y. Точнее,

$$\begin{cases} X = x + 2y, \\ Y = x + y. \end{cases}$$

Конечно, таблицы с несколькими первыми решениями недостаточно для того, чтобы быть уверенным в справедливости этих формул для всего множества решений уравнения; мы должны доказать следующие утверждения.

Теорема 1. Если $x^2 - 2y^2 = \pm 1$, то пара чисел (X;Y) = (x + 2y; x + y) удовлетворяет равенству $X^2 - 2Y^2 = \pm 1$.

Следствие. Уравнение $x^2 - 2y^2 = \pm 1$ имеет бесконечно много решений в натуральных числах.

Теорема 2. Уравнение $x^2 - 2y^2 = \pm 1$ не имеет решений в целых неотрицательных числах, кроме тех, что получаются из «тривиального» решения (1;0) при помощи правила $(x;y) \rightarrow (x+2y;x+y)$.

Доказать теорему 1 очень легко: достаточно подста-

вить значения X и Y вместо x и y. А именно,

$$(x+2y)^{2} - 2(x+y)^{2} =$$

$$= x^{2} + 4xy + 4y^{2} - 2(x^{2} + 2xy + y^{2}) =$$

$$= 2y^{2} - x^{2} = -(x^{2} - 2y^{2}).$$

Как видите, если $x^2-2y^2=\pm 1$, то $X^2-2Y^2=\mp 1$. Теорема 1 доказана, мы научились строить «новое» решение из «старого».

А вот доказательство теоремы 2 хотя и не очень сложно, но требует привлечения идеи, которая слишком важна, чтобы говорить о ней мимоходом. Поэтому мы займемся этим позже, а пока посмотрим, как для решения уравнения Пелля можно использовать иррациональные числа.

Упражнения

- **1.** Рассмотрим последовательности $x_0=1$, $x_1=1$, $x_2=3$, $x_3=7$, $x_4=17$, ... и $y_0=0$, $y_1=1$, $y_2=2$, $y_3=5$, $y_4=12$, ..., заданные своими первыми членами $x_0=1$, $y_0=0$ и рекуррентными соотношениями $x_{n+1}=x_n+2y_n$ и $y_{n+1}=x_n+y_n$. Докажите, что $x_{n+2}=2x_{n+1}+x_n$ и $y_{n+2}=2y_{n+1}+y_n$.
- 2. По правилам новомодного танца надо делать пибо шаг вперед, либо два шага вперед, либо два шага вперед и сразу же шаг назад. Сколькими способами танцор может за несколько таких па сдвинуться на 7 шагов от исходного рубежа?

Степени числа $1 + \sqrt{2}$

Если d не является квадратом натурального числа, то в разложении

$$x^{2} - dy^{2} = (x - y\sqrt{d})(x + y\sqrt{d})$$

участвует иррациональное число \sqrt{d} . Казалось бы, мы решаем уравнения в целых числах; зачем нам иррациональности?

Но заметьте:

$$\left(1 + \sqrt{2}\right)^2 = 1 + 2\sqrt{2} + 2 = 3 + 2\sqrt{2} ,$$

$$\left(1 + \sqrt{2}\right)^3 = 1 + 3\sqrt{2} + 3 \cdot 2 + 2\sqrt{2} = 7 + 5\sqrt{2} .$$

Узнали? Это же решения (3; 2) и (7; 5) уравнения $x^2 - 2y^2 = \pm 1$! Если вас не убедили эти два примера, вот еще один:

$$(1+\sqrt{2})^4 = (1+\sqrt{2})^3 (1+\sqrt{2}) =$$

$$= (7+5\sqrt{2})(1+\sqrt{2}) = 17+12\sqrt{2}.$$

Впрочем, это всего лишь примеры. Чтобы получить доказательство, посмотрим, что происходит при переходе от n-й степени числа $1+\sqrt{2}$ к (n+1)-й. А именно, пусть

$$\left(1+\sqrt{2}\right)^n = x_n + y_n\sqrt{2} ,$$

где x_n и y_n – натуральные числа. Тогда

$$(1+\sqrt{2})^{n+1} = (1+\sqrt{2})^n (1+\sqrt{2}) = (x_n+y_n\sqrt{2})(1+\sqrt{2}) = = x_n+y_n\sqrt{2}+x_n\sqrt{2}+2y_n = (x_n+2y_n)+(x_n+y_n)\sqrt{2} ,$$

так что $x_{{\scriptscriptstyle n+1}} = x_{{\scriptscriptstyle n}} + 2y_{{\scriptscriptstyle n}}$ и $y_{{\scriptscriptstyle n+1}} = x_{{\scriptscriptstyle n}} + y_{{\scriptscriptstyle n}}$. Знакомые формулы, не правда ли?

Что будет, если возводить в степень не $1+\sqrt{2}$, а $1-\sqrt{2}$? Смотрите:

$$(1 - \sqrt{2})^2 = 3 - 2\sqrt{2},$$

$$(1 - \sqrt{2})^3 = 7 - 5\sqrt{2},$$

$$(1 - \sqrt{2})^4 = 17 - 12\sqrt{2},$$

и вообще,

$$\left(1-\sqrt{2}\right)^n=x_n-y_n\sqrt{2}.$$

Это легко доказать по индукции:

$$(1 - \sqrt{2})^{n+1} = (1 - \sqrt{2})^n (1 - \sqrt{2}) = (x_n - y_n \sqrt{2})(1 - \sqrt{2}) =$$

$$= x_n - y_n \sqrt{2} - x_n \sqrt{2} + 2y_n = (x_n + 2y_n) - (x_n + y_n) \sqrt{2} .$$

А можно обойтись и без индукции, заметив, что при возведении числа $1+\sqrt{2}$ в степень мы используем равенство $\left(\sqrt{2}\right)^2=2$; но число $\left(-\sqrt{2}\right)^2$ тоже равно 2.

Подобные соображения в алгебре используют часто, есть даже термин: conpяженные uucna. В полной общности это важное понятие нам не понадобится. Поэтому пока просто скажем, что для каждого числа вида $a+b\sqrt{2}$, где a,b- рациональные числа, сопряженным числом называют $a-b\sqrt{2}$. Если вы знаете, что такое комплексные числа, и помните, что для любого комплексного числа a+bi сопряженное — это a-bi, не удивляйтесь использованию одного и того же слова для разных целей: если бы мы подробно рассказали о сопряженных числах, то все стало бы абсолютно ясно. Но это, к сожалению, слишком отвлекло бы нас от основной темы.

Тем не менее, для нас важно следующее свойство: сопряженное к сумме (разности, произведению, частному) двух чисел равно сумме (разности, произведению, частному) сопряженных к ним. Например, вот как выглядит это для сложения:

$$(a+c)-(b+d)\sqrt{2} = (a-b\sqrt{2})+(c-d\sqrt{2}).$$

Чуть больших усилий потребует от нас проверка этого свойства для умножения. Прежде всего вычислим произвеление

$$(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2}.$$

Значит, сопряженное к произведению равно $(ac+2bd)-(ad+bc)\sqrt{2}$. Осталось вычислить произведение сопряженных:

$$(a-b\sqrt{2})(c-d\sqrt{2}) = (ac+2bd) - (ad+bc)\sqrt{2}.$$

Как видите, результат получился тот же самый.

Отображение $a+b\sqrt{2}\mapsto a-b\sqrt{2}$ называют автоморфизмом поля $\mathbf{Q}[\sqrt{2}]$. А произведение

$$\left(a+b\sqrt{2}\right)\left(a-b\sqrt{2}\right)=a^2-2b^2$$

¹ Строго говоря, надо бы еще разобраться с разностью и частным, но не будем тратить на это силы: при желании вы легко сделаете это самостоятельно.

называют *нормой* числа $a+b\sqrt{2}$. Очень многое из того, что мы расскажем об уравнениях Пелля, можно перенести на случай так называемого норменного уравнения в полях алгебраических чисел. Но мы слишком увлеклись. Порекомендовав заинтересованному читателю когда-нибудь изучить «Теорию чисел» З.И.Боревича и И.Р.Шафаревича, вернемся к нашим делам.

Упражнение 3. Пусть a, b — целые числа, d — натуральное число, не являющееся квадратом, $x+y\sqrt{d}=\frac{1}{a+b\sqrt{d}}$. Докажите, что числа x и y целые в том и только том случае, когда $a^2-db^2=\pm 1$.

Сложив равенства

$$\left(1+\sqrt{2}\right)^n = x_n + y_n\sqrt{2}$$

И

$$\left(1 - \sqrt{2}\right)^n = x_n - y_n \sqrt{2}$$

и поделив на 2, находим

$$x_n = \frac{(1+\sqrt{2})^n + (1-\sqrt{2})^n}{2}$$

А если не сложить, а вычесть, то получим

$$y_n = \frac{\left(1 + \sqrt{2}\right)^n - \left(1 - \sqrt{2}\right)^n}{2\sqrt{2}}.$$

Это и есть не рекуррентные (когда каждую следующую пару получаем из предыдущей), а явные формулы решений уравнения $x^2 - 2y^2 = \pm 1$ в натуральных числах. Заметьте: натуральные x_n и y_n получаются из формул, в которые входит иррациональное число $\sqrt{2}$!

Не каждому читателю, по себе знаем, легко привыкнуть пользоваться иррациональными числами для решения уравнений в целых числах. Поэтому мы вернемся к таким рассмотрениям чуть позже, а пока продолжим рассмотрение примеров.

Упражнения

- **4.** а) Докажите равенства $x_{2n}=2x_n^2-\left(-1\right)^n$ и $y_{2n}=2x_ny_n$. 6) Если d натуральное число, не являющееся квадратом, а z и t натуральные числа, удовлетворяющие равенству $z^2-dt^2=1$, то натуральные числа a_n и b_n , определенные формулой $a_n+b_n\sqrt{d}=\left(z+t\sqrt{d}\right)^n$, обладают тем свойством, что $a_{2n}=2a_n^2-1$ и $b_{2n}=2a_nb_n$. Докажите это.
- **5.** а) Для любого натурального n число $\left(1+\sqrt{2}\right)^n$ представимо в виде $\sqrt{k}+\sqrt{k+1}$, где k натуральное число. Докажите это. 6) (М1522) Для любых натуральных $m,\ d,\ n$ существует такое натуральное k, что $\left(\sqrt{m}+\sqrt{m+d}\right)^n=\sqrt{k}+\sqrt{k+d^n}$. Докажите это. в) Пусть m и n натуральные числа, n > 1. Докажите, что для некоторого натурального числа k имеем $\left(\frac{n+\sqrt{n^2-4}}{2}\right)^m=\frac{k+\sqrt{k^2-4}}{2}$.
- **6.** Существуют ли такие рациональные числа a, b, c, d, что $(a + b\sqrt{2})^2 + (c + d\sqrt{2})^2 = 7 + 5\sqrt{2}$?

7(М874). Пусть m и n – натуральные числа. Докажите, что а) $\left(5+3\sqrt{2}\right)^m \neq \left(3+5\sqrt{2}\right)^n$; 6^*) $\left(a+b\sqrt{d}\right)^m \neq \left(b+a\sqrt{d}\right)^n$,

где a, b и d — натуральные числа, $a \neq b$ и число d не является точным квадратом.

- 8. Докажите следующие утверждения.
- а) (M352) Число $\left[\left(45 + \sqrt{1975} \right)^{30} \right]$ нечетно.
- 6) Первые 1000 цифр после запятой десятичной записи числа $\left(6+\sqrt{35}\right)^{979}$ девятки.
- в) Первые 999 цифр после запятой десятичной записи числа $\left(6+\sqrt{37}\right)^{999}$ нули.
 - $\Gamma) \lim_{n\to\infty} \left\{ \left(2 + \sqrt{3}\right)^n \right\} = 1.$
- д) Перед запятой в десятичной записи числа $\left(\sqrt{2}+\sqrt{3}\right)^{2000}$ стоит цифра 1, а после запятой не менее 666 девяток. Указание. Для любого целого неотрицательного n обозначьте $a_n = \left(\sqrt{3}+\sqrt{2}\right)^{2n}+\left(\sqrt{3}-\sqrt{2}\right)^{2n}$ и докажите равенство $a_{n+2}=10a_{n+1}-a_n$.

(Пункт 6) предлагали в соответствующем году самым сильным абитуриентам мехмата МГУ на устном экзамене. Пункт в) предлагали в 1965 году на конкурсе ВМШ при мехмате МГУ. Пункт г) предлагали на студенческой олимпиаде 1977 года.)

9* (М520). Рассмотрим последовательность чисел $x_n = \left(1 + \sqrt{2} + \sqrt{3}\right)^n$. Каждое из них можно привести к виду $x_n = q_n + r_n \sqrt{2} + s_n \sqrt{3} + t_n \sqrt{6}$, где q_n , r_n , s_n , t_n — целые числа. Найдите пределы $\lim_{n \to \infty} \frac{r_n}{q_n}$, $\lim_{n \to \infty} \frac{s_n}{q_n}$ и $\lim_{n \to \infty} \frac{t_n}{q_n}$.

Уравнение $x^2 + (x+1)^2 = y^2$

Прямоугольный треугольник со сторонами 3, 4 и 5 обладает тем свойством, что один из его катетов на 1 длиннее другого. Много ли еще таких треугольников, точнее, много ли решений в натуральных числах имеет уравнение $x^2 + (x+1)^2 = y^2$? Чтобы ответить на этот вопрос, раскроем скобки и приведем подобные:

$$2x^2 + 2x + 1 = y^2.$$

Теперь, домножив обе части на 2, выделим полный квадрат:

$$(2x+1)^2+1=2y^2$$
.

Обозначив z = 2x + 1, получим уравнение

$$z^2 - 2y^2 = -1.$$

Любое удовлетворяющее последнему уравнению число z нечетно. Поэтому мы свели задачу к уравнению $z^2-2y^2=-1$, где $y,\ z$ — натуральные числа, причем z>1

Как мы помним, если $z^2 - 2y^2 = -1$, то

$$(z+2y)^2-2(z+y)^2=1.$$

В правой части теперь находится 1, а не –1. Мы умеем переходить от 1 к –1: для любого решения (a; b) уравнения $a^2 - 2b^2 = 1$ выполнено равенство

$$(a+2b)^2 - 2(a+b)^2 = -1$$
.

Следовательно, из любой пары натуральных чисел (z; y), удовлетворяющей равенству $z^2 - 2y^2 = -1$, мы

можем получить новую пару:

$$Z = (z + 2y) + 2(z + y) = 3z + 4y,$$

$$Y = (z + 2y) + (z + y) = 2z + 3y,$$

удовлетворяющую равенству $Z^2 - 2Y^2 = -1$. Давайте проверим это:

$$(3z+4y)^2 - 2(2z+3y)^2 = 9z^2 + 24zy + 16y^2 - 2(4z^2 + 12zy + 9y^2) = z^2 - 2y^2.$$

(Никакой логической необходимости в последней проверке нет. Но, согласитесь, приятно убедиться, что мы не ошиблись в вычислениях.)

Упражнения

- **10.** а) Найдите некоторые три решения в натуральных числах уравнения $x^2 + (x+1)^2 = y^2$. б) Придумайте такие натуральные числа a, b, c, d, e, f, что для всякого решения x, y уравнения $x^2 + (x+1)^2 = y^2$ верно равенство $(ax+by+c)^2 + (ax+by+c+1)^2 = (dx+ey+f)^2$.
- 11. Существует бесконечно много различных прямоугольных треугольников, каждый из которых обладает следующими свойствами: длины сторон целые числа, длина гипотенузы квадрат целого числа, а один из катетов на единицу короче гипотенузы. Докажите это.

Уравнение $x^2 - 2y^2 = 1$

При помощи многократно примененного перехода $(x;y) \rightarrow (3x+4y;2x+3y)$ из решения (1; 0) получаются решения (3; 2), (17; 12), (99; 70), ... уравнения $x^2-2y^2=1$. Например,

$$99 = 3 \cdot 17 + 4 \cdot 12,$$
$$70 = 2 \cdot 17 + 3 \cdot 12.$$

Таким образом, уравнение $x^2-2y^2=1$, как и уравнение $x^2-2y^2=-1$, имеет бесконечно много решений в натуральных числах. Если бы мы уже доказали теорему 2, то могли бы утверждать, что эти уравнения не имеют никаких других решений в целых неотрицательных числах, кроме тех, что получаются из «начального» решения (x;y)=(1;0) или (1;1) при помощи правила $(x;y)\to (3x+4y;2x+3y)$. Но пока теорема 2 не доказана, торопиться с этим не стоит.

Упражнения

- **12.** Существует ли такой многочлен второй степени f, что среди его значений f(n), где n натуральное число, имеется бесконечно много квадратов натуральных чисел, а сам многочлен f не представим в виде $f=g^2$ ни для какого многочлена g?
- **13.** Рассмотрим последовательности $x_0=1$, $x_1=3$, $x_2=17$, $x_3=99$, ... и $y_0=0$, $y_1=2$, $y_2=12$, $y_3=70$, ..., заданные своими начальными членами $x_0=1$, $y_0=0$ и рекуррентными соотношениями $x_{n+1}=3x_n+4y_n$, $y_{n+1}=2x_n+3y_n$. Существуют ли такие числа a и b, что для любого натурального n верны равенства $x_{n+1}=ax_n+bx_{n-1}$ и $y_{n+1}=ay_n+by_{n-1}$?

Уравнение
$$x^2 - 2y^2 = 7$$

Правило $(x;y) \rightarrow (3x+4y;2x+3y)$ позволяет из одного решения уравнения $x^2-2y^2=7$ получить дру-

гое решение. Так, из решения (x;y)=(3;1) получаем $(3\cdot 3+4\cdot 1;2\cdot 3+3\cdot 1)=(13;9)$, из которого получаем $(3\cdot 13+4\cdot 9;2\cdot 13+3\cdot 9)=(75;53)$, из которого можно получить еще одно решение, и так далее.

Привычная ситуация, скажете вы? Решения уравнения $x^2 - 2y^2 = 1$ получались из «начального» решения (1;0) при помощи этого же правила $(x;y) \to (3x+4y;2x+3y)$, так что ничего нового нет? Не торопитесь:

$$5^2 - 2 \cdot 3^2 = 7$$

Решение (5; 3) не входит в цепочку

$$(3; 1) \rightarrow (13; 9) \rightarrow (75; 53) \rightarrow \dots,$$

а порождает свою цепочку:

$$(5; 3) \rightarrow (3 \cdot 5 + 4 \cdot 3; 2 \cdot 5 + 3 \cdot 3) =$$

$$= (27; 19) \rightarrow (3 \cdot 27 + 4 \cdot 19; 2 \cdot 27 + 3 \cdot 19) =$$

$$= (157; 111) \rightarrow \dots$$

Других цепочек нет. Точнее говоря, верна следующая теорема.

Теорема 3. Уравнение $x^2 - 2y^2 = 7$ не имеет решений в целых неотрицательных числах, кроме тех, что получаются из одного из двух «начальных» решений (3; 1) и (5; 3) при помощи правила $(x; y) \rightarrow (3x + 4y; 2x + 3y)$.

Доказательство примерно такое же, как и доказательство теоремы 2. Поэтому мы отложим его на будущее, а пока продолжим рассмотрение примеров.

Уравнение
$$x^2 - 3y^2 = \pm 1$$

Пара (x; y) = (1; 0) удовлетворяет любому уравнению $x^2 - dy^2 = 1$. Подбором легко найти решение x = 2, y = 1 уравнения

$$x^2 - 3y^2 = 1.$$

Можно найти и решение (x; y) = (7; 4), а затем и (26; 15). Возможны и дальнейшие вычисления (особенно если есть калькулятор и готовность к продолжительному и не очень разумному труду). Они приводят к решению (97; 56).

Здесь явно пора остановиться и подумать. Мы не нашли ни одного решения уравнения

$$x^2 - 3y^2 = -1$$
.

И не потому, что плохо искали, а потому, что их нет. В самом деле, рассмотрим остаток от деления на 3 левой части уравнения $x^2-3y^2=-1$. Поскольку $3y^2$ делится на 3, искомый остаток совпадает с остатком от деления x^2 на 3. Число x можно представить одной из трех формул: x=3k (если x делится на 3), x=3k+1 (если x при делении на 3 дает остаток 1) или, наконец, x=3k+2 (если остаток равен 2). При этом $x^2=9k^2$, $9k^2+6k+1$ или $9k^2+12k+4$. Остаток от деления на 3 в первом случае равен 0, а в двух других случаях остаток равен 1.

Итак, левая часть уравнения $x^2 - 3y^2 = -1$ при делении на 3 дает остаток 0 или 1, а правая – остаток 2. Мы

доказали, что уравнение $x^2 - 3y^2 = -1$ не имеет решений в целых числах.

Упражнение 14. Может ли сумма квадратов а) трех; 6) четырех; в) пяти; г) шести; д) семи; е) восьми; ж) девяти; з) десяти; и) двенадцати последовательных целых чисел быть квадратом целого числа?

Уравнение $x^2 - 3y^2 = 1$

Уравнение $x^2 - 3y^2 = 1$ имеет бесконечно много решений в натуральных числах. Чтобы доказать это, мы, как и в теореме 1, укажем формулы, которые из решения (x;y) строят новое решение (X;Y). А именно, пару (1;0) эти формулы преобразуют в (2;1), пару (2;1) — в (7;4), которую, в свою очередь, они преобразуют в (26;15). Следующая пара, как помните, (97;56).

Что же это за формулы? Немного терпения и удачи, и вы заметите, что $97 = 2 \cdot 26 + 3 \cdot 15$ и $56 = 26 + 2 \cdot 15$.

Впрочем, можно получить формулу $(x; y) \rightarrow (2x + 3y; x + 2y)$ и более «научным» способом, если использовать иррациональности. Смотрите:

$$(2+\sqrt{3})^2 = 4+4\sqrt{3}+3=7+4\sqrt{3},$$
$$(2+\sqrt{3})^3 = 8+12\sqrt{3}+18+3\sqrt{3}=26+15\sqrt{3}.$$

Мы получили решения (7; 4) и (26; 15) уравнения $x^2 - 3y^2 = 1$.

Если

$$\left(2+\sqrt{3}\right)^n = x + y\sqrt{3},$$

TO

$$(2+\sqrt{3})^{n+1} = (x+y\sqrt{3})(2+\sqrt{3}) =$$

$$= (2x+3y)+(x+2y)\sqrt{3},$$

что и дает нужную нам формулу.

Вообще, давайте равенство

$$2^2 - 3 = 1$$

запишем в виде

$$(2+\sqrt{3})(2-\sqrt{3})=1$$
,

а затем возведем обе части в n-ю степень:

$$(2+\sqrt{3})^n(2-\sqrt{3})^n=1$$
.

Обозначив через x_n и y_n такие натуральные числа, что

$$\left(2+\sqrt{3}\right)^n=x_n+y_n\sqrt{3}\ ,$$

получим, заменив знаки перед $\sqrt{3}$, равенство

$$\left(2-\sqrt{3}\right)^n = x_n - y_n\sqrt{3} .$$

(Переход к сопряженным числам законен по той же причине, что и для $\sqrt{2}$.) Следовательно,

$$1 = (2 + \sqrt{3})^n (2 - \sqrt{3})^n = (x_n + y_n \sqrt{3})(x_n - y_n \sqrt{3}) = x_n^2 - 3y_n^2.$$

Значит, пара

$$(x_n; y_n) = \left(\frac{(2+\sqrt{3})^n + (2-\sqrt{3})^n}{2}; \frac{(2+\sqrt{3})^n - (2-\sqrt{3})^n}{2\sqrt{3}}\right)$$

– решение уравнения $x^2 - 3y^2 = 1$. Других решений в натуральных числах, как следует из сформулированной ниже теоремы 5, у этого уравнения нет.

Теорема 4. $Ecnu \quad x^2 - 3y^2 = 1$, то пара чисел (X; Y) = (2x + 3y; x + 2y) удовлетворяет равенству $X^2 - 3Y^2 = 1$.

Теорема 5. Уравнение $x^2 - 3y^2 = 1$ не имеет решений в целых неотрицательных числах, кроме тех, что получаются из «тривиального» решения (1; 0) при помощи правила $(x; y) \rightarrow (2x + 3y; x + 2y)$.

Доказательство теоремы 5 отложим на будущее, а теорему 4 докажем:

$$(2x+3y)^2 - 3(x+2y)^2 = 4x^2 + 12xy + 9y^2 -$$

$$-3(x^2 + 4xy + 4y^2) = x^2 - 3y^2 = 1.$$

Фокус вновь удался. Интересно, что мы будем делать, когда d будет не таким маленьким и догадаться до правила, которое «размножает» решения, будет сложно? Да и всегда ли такое правило существует? Не будем пока отвечать на эти законные вопросы. Подождите — вскоре и это, и многое другое прояснится.

Упражнения

- 15. Докажите следующие утверждения.
- а) Уравнение $(x+1)^3 x^3 = y^2$ имеет бесконечно много решений в натуральных числах.
- 6) (М960) Если квадрат некоторого натурального числа *п* представим в виде разности кубов последовательных целых чисел, то число *п* есть сумма квадратов двух последовательных целых чисел.
- в) Уравнение $(x+2)^3 x^3 = y^2$ не имеет решений в целых
- **16.** Если натуральные числа k, m и n удовлетворяют равенству $m+n\sqrt{3}=\left(2+\sqrt{3}\right)^k$, где k а) нечетно; 6) четно, то число а) $\sqrt{m-1}$; 6) $\sqrt{(m+1)/2}$ целое. Докажите это.
- **17.** а) Пусть p простое число и $x^2 py^2 = 1$, где x, y натуральные числа. Докажите, что если x (не)четно, то одно из чисел x 1 или x + 1 является (удвоенным) квадратом.
- 6) Существуют ли такие натуральные числа x, y, d, что $x^2 dy^2 = 1$ и ни одно из чисел x 1 и x + 1 не является ни квадратом, ни удвоенным квадратом?
- **18.** Пусть n целое неотрицательное число. Докажите, что число $\left[\left(1+\sqrt{3}\right)^{2n+1}\right]$ делится на 2^{n+1} и не делится на 2^{n+2} .

Гиперболы и решетки

Мы уже долго занимаемся алгеброй и арифметикой. Наверное, стоит чуть отвлечься на геометрию — там тоже встречаются интересные для нас явления. В «Задачнике «Кванта» недавно опубликована следующая задача Н.Осипова.

M1775. a) Существует ли квадрат, все вершины и все середины сторон которого лежат на гиперболах $xy = \pm 1$?

- 6) Докажите, что существует бесконечно много параллелограммов, одна из вершин каждого из которых начало координат, две другие лежат на гиперболе xy = 1, а четвертая на гиперболе xy = -1.
- в) Докажите, что площадь любого такого параллелограмма равна $\sqrt{5}$.

г) Рассмотрим для некоторого такого параллелограмма OABC порожденную им решетку, т.е. множество таких точек P, что $\overrightarrow{OP} = m\overrightarrow{OA} + n\overrightarrow{OC}$, где m, n — целые числа. Докажите, что внутренность «креста», ограниченного гиперболами $xy = \pm 1$, содержит лишь одну точку этой решетки — начало координат.

В авторском варианте задача имела продолжение: a на самих гиперболах $xy = \pm 1$ лежит бесконечно много точек решетки! Редакция вычеркнула это, убояв-

шись, что задача покажется читателю слишком сложной. Но мы, разумеется, решим и неопубликованный пункт.

Решение задачи М1775. а) Проанализируем ситуацию. Пусть искомый квадрат существует и выглядит так, как показано на рисунке 1. Обозначим коор-

динаты точки A — середины стороны квадрата — через $\left(a;\frac{1}{a}\right)$. Тогда, как легко видеть, $\overrightarrow{AB}=\left(\frac{1}{a};-a\right)$, так что точка B имеет координаты $\left(a+\frac{1}{a};\frac{1}{a}-a\right)$. Условие принадлежности точки B гиперболе xy=1 дает уравнение

$$\left(a + \frac{1}{a}\right)\left(\frac{1}{a} - a\right) = 1,$$

откуда $\frac{1}{a^2}-a^2=1$. Этому уравнению удовлетворяет число $a=\sqrt{\left(\sqrt{5}-1\right)\!/2}$. Анализ окончен.

Теперь легко предъявить искомый квадрат: при найденном значении a все четыре точки $B\left(a+\frac{1}{a};\frac{1}{a}-a\right), D\left(-a+\frac{1}{a};-\frac{1}{a}-a\right), F\left(-a-\frac{1}{a};-\frac{1}{a}+a\right),$ $H\left(a-\frac{1}{a};\frac{1}{a}+a\right)$ (вершины квадрата) и точки $A\left(a;\frac{1}{a}\right),$ $C\left(\frac{1}{a};-a\right), E\left(-a;-\frac{1}{a}\right), G\left(-\frac{1}{a};a\right)$ (середины сторон) лежат на гиперболах $xy=\pm 1$.

Упражнение 19. Докажите, что если все вершины и все середины сторон квадрата лежат на гиперболах $xy=\pm 1$, то центр этого квадрата — начало координат.

6) Рассмотрим точки $A\left(a; \frac{1}{a}\right)$ и $C\left(c; -\frac{1}{c}\right)$, а также начало координат O(0; 0) (рис.2). Вершина B параллелограмма OABC

имеет координаты $\left(a+c; \frac{1}{a}-\frac{1}{c}\right)$. Она лежит на гиперболе xy=1 при условии

$$(a+c)\left(\frac{1}{a}-\frac{1}{c}\right)=1,$$

которое можно записать в виде

$$\frac{c}{a} - \frac{a}{c} = 1 ,$$

т.е.

$$\frac{c}{a} = \frac{1 \pm \sqrt{5}}{2} \ .$$

Осталось заметить, что последнему условию удовлетворяют бесконечно много пар чисел a и c.

в) Легко доказать, что площадь S параллелограмма OABC, где O — начало координат, $\overrightarrow{OA}=(a;b)$ и $\overrightarrow{OC}=(c;d)$, равна S=|ad-bc|. Подставляя $b=\frac{1}{a}$ и $d=-\frac{1}{c}$, находим

$$S = \left| \frac{a}{c} + \frac{c}{a} \right| = \left| \frac{2}{1 \pm \sqrt{5}} + \frac{1 \pm \sqrt{5}}{2} \right| = \sqrt{5}$$
,

что и требовалось доказать.

Но решение еще не закончено! Дело в том, что параллелограмм может выглядеть так, как показано на рисунке 3. Его вершины

 $A\left(a;\frac{1}{a}\right)$ и $C\left(c;\frac{1}{c}\right)$ лежат на гиперболе xy=1. Точка B имеет координаты $\left(a+c;\frac{1}{a}+\frac{1}{c}\right)$. Чтобы она принадлежала гиперболе xy=-1, должно быть выполнено равенство

$$(a+c)\left(\frac{1}{a}+\frac{1}{c}\right)=-1\,,$$

Рис.З

т.е. $\frac{a}{c} + \frac{c}{a} = -3$. Площадь параллелограмма OABC равна

$$S = \left| \frac{a}{c} - \frac{c}{a} \right| = \sqrt{\left(\frac{a}{c} \right)^2 - 2 + \left(\frac{c}{a} \right)^2} = \sqrt{\left(\frac{a}{c} \right)^2 + 2 + \left(\frac{c}{a} \right)^2 - 4} =$$
$$= \sqrt{\left(\frac{a}{c} + \frac{c}{a} \right)^2 - 4} = \sqrt{(-3)^2 - 4} = \sqrt{5} .$$

г) Рассмотрим порожденную параллелограммом рисунка 2 решетку (рис.4). Для произвольной точки P(x;y) этой решетки $\overrightarrow{OP} = m\overrightarrow{OA} + n\overrightarrow{OC} = \left[ma + nc; \frac{m}{a} - \frac{n}{c}\right]$, где m, n – целые числа,

имеем

$$|xy| = \left| (ma + nc) \left(\frac{m}{a} - \frac{n}{c} \right) \right| =$$

$$= \left| m^2 + mn \left(\frac{c}{a} - \frac{a}{c} \right) - n^2 \right| = \left| m^2 + mn - n^2 \right|.$$

Внутренность «креста» из гипербол $xy = \pm 1$ задается неравенством |xy| < 1. Но при целых m и n величина $\left|m^2 + mn - n^2\right|$ тоже целая. Единственным целым числом, которое по модулю меньше 1, является ноль.

Значит, для лежащей внутри креста точки решетки имеем

$$\left| (ma + nc) \left(\frac{m}{a} - \frac{n}{c} \right) \right| = 0$$

откуда ma + nc = 0 или mc - na = 0. Ввиду иррациональности отношения a/c это возможно лишь при m = n = 0.

Значит, внутри «кре-

ста» из гипербол расположена единственная точка рассматриваемой решетки – начало координат.

Для решетки, порожденной параллелограммом рисунка 3, решение аналогично, поэтому мы выпишем только формулы

$$\overrightarrow{OP} = m\overrightarrow{OA} + n\overrightarrow{OC} = \left(ma + nc; \frac{m}{a} + \frac{n}{c}\right)$$

И

$$|xy| = \left| (ma + nc) \left(\frac{m}{a} + \frac{n}{c} \right) \right| = \left| m^2 + mn \left(\frac{c}{a} + \frac{a}{c} \right) + n^2 \right| =$$

$$= \left| m^2 - 3mn + n^2 \right| = \left| (m-n)^2 - (m-n)n - n^2 \right| =$$

$$= \left| k^2 - kn - n^2 \right|,$$

где обозначено k = m - n.

Итак, внутри «креста гипербол» нет ни одной точки решеток, кроме начала координат. А на самих гиперболах таких точек бесконечно много. Чтобы доказать это, в первом из рассмотренных нами случаев достаточно убедиться, что уравнение

$$m^2 + mn - n^2 = \pm 1$$

имеет бесконечно много решений в целых числах m, n,а во втором случае — сделать то же самое для уравнения

$$k^2 - kn - n^2 = \pm 1.$$

Впрочем, первое из этих двух уравнений сводится ко второму заменой m на -k.

Уравнение
$$x^2 - xy - y^2 = \pm 1$$

Это уравнение не имеет вида $x^2 - dy^2 = 1$. Но умножение на 4 приводит его к виду

$$4x^2 - 4xy - 4y^2 = \pm 4$$
,

т.е.

$$(2x - y)^2 - 5y^2 = \pm 4,$$

что уже похоже на уравнение Пелля. Впрочем, мы воспользуемся этим преобразованием чуть позже, а здесь решим уравнение в его первоначальном виде.

Немного посчитав, можно составить таблицу:

£	0	1	1	2	3	5	8	13	21
y	1	0	1	1	2	3	5	8	13
$x^2 - xy - y^2$	-1	1	-1	1	-1	1	-1	1	-1

Всякий, кто знаком с числами Фибоначчи, уже узнал их. А остальным скажем, что последовательность Фибоначчи задана своими двумя членами $\phi_0=0$, $\phi_1=1$ и рекуррентной формулой $\phi_{n+2}=\phi_n++\phi_{n+1}$. Несколько следующих членов этой замечательной последовательности таковы: $\phi_2=0+1=1$, $\phi_3=1+1=2$, $\phi_4=1+2=3$, $\phi_5=2+3=5$, $\phi_6=3++5=8$, $\phi_7=5+8=13$.

Теорема 6. Если $x^2 - xy - y^2 = \pm 1$, то пара чисел (X; Y) = (x + y; x) удовлетворяет равенству $X^2 - XY - Y^2 = \mp 1$.

Доказательство.

$$(x+y)^{2} - (x+y)x - x^{2} = x^{2} + 2xy + y^{2} - x^{2} - xy - x^{2} =$$
$$= -(x^{2} - xy - y^{2}) = \mp 1.$$

Доказав теорему 6, мы наконец-то решили задачу M1775.

Как и не раз выше, сформулируем и не докажем еще одну теорему.

Теорема 7. Уравнение $x^2 - xy - y^2 = \pm 1$ не имеет решений в целых неотрицательных числах, кроме тех, что получаются из «тривиального» решения (0;1) при помощи правила $(x;y) \rightarrow (x+y;x)$.

Следствие. Все решения уравнения $z^2 - 5y^2 = \pm 4$ в натуральных числах даются формулой $(z; y) = (\varphi_{n+1} + \varphi_{n-1}; \varphi_n)$.

Доказательство. Каждой паре целых чисел (x; y), удовлетворяющей равенству $x^2 - xy - y^2 = \pm 1$, соответствует пара целых чисел (z; y) = (2x - y; y), удовлетворяющая равенству $z^2 - 5y^2 = \pm 4$, и наоборот (поскольку числа z и y одной четности). Осталось заметить, что если $x = \varphi_{n+1}$ и $y = \varphi_n$, то

$$z = 2x - y = 2\varphi_{n+1} - \varphi_n = \varphi_{n+1} + \varphi_{n-1}$$
.

Упражнение 20. Докажите тождества

a)
$$\varphi_n^2 = \varphi_{n-1} \varphi_{n+1} - (-1)^n$$
;

6)
$$\varphi_n^2 = \varphi_{n-2}\varphi_{n+2} + (-1)^n$$
.

(Продолжение следует)