Using $A = \begin{pmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & -7 & -2 \\ 0 & 2 & -1 \end{pmatrix} = LU$

compute the solution to Ax = b with

(a)
$$b = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix}$$
;

(b)
$$b = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

v — hith

$$X_{1}$$
 = 1 $X_{1}=1$
 $-X_{1}+X_{2}$ = -1 $X_{3}=-1+1=0$
 $2x_{1}-5x_{2}+x_{3}=1$ $X_{3}=1-2(1)+5(6)=-1$

Steps to get Land U

- D Calculate upper using gaussian elimination and Save m, ma and ma fundamental matrices
 - (2) Create L prots and zeroes (100)
 - 3 Combine

 m, m2 m3

 and make all

 non identity numbers

 regative

 $A = \begin{pmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{2}$ $\begin{bmatrix} 3 & -7 & -3 \\ 0 & -3 & 1 \\ 6 & -4 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{2}$ $\begin{bmatrix} 3 & -7 & -3 \\ 0 & -3 & 1 \\ 0 & 10 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}^{2}$

$$\begin{bmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix} = \mathbf{U}$$