Zadanie nr 1 - Generacja sygnału i szumu

Cyfrowe Przetwarzanie Sygnałów

Aleksander Janicki, 242405 Szymon Wydmuch, 242568 25.03.2024

1 Cel zadania

Celem zadania jest zapoznanie się z niektórymi własnościami podstawowych rodzajów sygnałów. Wśród tych sygnałów znajdują się:

- Szum o rozkładzie jednostajnym
- Szum gaussowski
- Sygnał sinusoidalny
- Sygnał sinusoidalny wyprostowany jednopołówkowo
- Sygnał sinusoidalny wyprostowany dwupołówkowo
- Sygnał prostokątny
- Sygnał prostokątny symetryczny
- Sygnał trójkatny
- Skok jednostkowy
- Impuls jednostkowy
- Szum impulsowy

W ramach zadania generowane są sygnały, przedstawiane graficznie w postaci wykresów oraz histogramów. Użytkownik ma możliwość wykonywania działań na sygnałach:

- Dodawanie
- Odejmowanie
- Mnożenie
- Dzielenie

2 Wstęp teoretyczny

Aplikacja została napisana w języku Python. Do generowania wykresów oraz histogramów została wykorzystana biblioteka Matplotlib, a interfejs użytkownika został zbudowany za pomocą PyQt5. Po uruchomieniu aplikacji pojawia się następujące okno, w którym użytkownik może wybrać rodzaj sygnału, podać parametry oraz wygenerować sygnał. Istnieje również opcja wczytania sygnału z pliku.

Rysunek 1: Interfejs użytkownika

(a) Wybór sygnałów cz.1

(b) Wybór sygnałów cz.2

Rysunek 2: Wybór sygnałów

Rysunek 3: Podawanie parametrów, po wyborze sygnału

Rysunek 4: Przedstawienie sygnału w postaci wykresów, po kliknięciu przycisku wygeneruj sygnał

3 Eksperymenty i wyniki

3.1 Generowanie szumu o rozkładzie jednostajnym

3.1.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- Czas trwania = 10s
- \bullet Częstotliwość próbkowania = 50Hz
- Liczba przedziałów histogramu = 10

Amplituda wygenerowanego sygnału powinna przyjmować losowe wartości z zakresu od $\langle -A_{\text{MAX}}, A_{\text{MAX}} \rangle$ z jednakowym prawdopodobieństwem.

3.1.2 Rezultat

Rysunek 5: Wygenerowany wykres, histogram oraz lista wartości

3.2 Generowanie szumu gaussowskiego

3.2.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- Czas trwania sygnału = 10s
- \bullet Częstotliwość próbkowania = 50Hz
- Liczba przedziałów histogramu = 10

Amplituda wygenerowanego sygnału powinna przyjmować losowe wartości z rozkładu normalnego o średniej 0 i odchyleniu standardowym 1.

3.2.2 Rezultat

Rysunek 6: Wygenerowany wykres, histogram oraz lista wartości

3.3 Generowanie sygnału sinusoidalnego

3.3.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 10s
- Okres podstawowy = 2s
- \bullet Częstotliwość próbkowania = 50Hz
- $\bullet\,$ Liczba przedziałów histogramu = 10

3.3.2 Rezultat

Rysunek 7: Wygenerowany wykres, histogram oraz lista wartości

3.4 Generowanie sygnału sinusoidalnego wyprostowanego jednopołówkowo

3.4.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 10s
- Okres podstawowy = 2s
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Liczba przedziałów histogramu = 10

3.4.2 Rezultat

Rysunek 8: Wygenerowany wykres, histogram oraz lista wartości

3.5 Generowanie sygnału sinusoidalnego wyprostowanego dwupołówkowo

3.5.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 10s
- Okres podstawowy = 2s
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Liczba przedziałów histogramu = 10

3.5.2 Rezultat

Rysunek 9: Wygenerowany wykres, histogram oraz lista wartości

3.6 Generowanie sygnału prostokątnego

3.6.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 10s
- Okres podstawowy = 2s
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Współczynnik wypełnienia = 0.5
- \bullet Liczba przedziałów histogramu = 10

3.6.2 Rezultat

Rysunek 10: Wygenerowany wykres, histogram oraz lista wartości

3.7 Generowanie sygnału prostokątnego symetrycznego

3.7.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 10s
- Okres podstawowy = 2s
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Współczynnik wypełnienia = 0.5
- \bullet Liczba przedziałów histogramu = 10

3.7.2 Rezultat

Rysunek 11: Wygenerowany wykres, histogram oraz lista wartości

3.8 Generowanie sygnału trójkątnego

3.8.1 Założenia

- Amplituda = 1
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 5s
- Okres podstawowy = 2s
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Współczynnik wypełnienia = 0.5
- \bullet Liczba przedziałów histogramu = 10

3.8.2 Rezultat

Rysunek 12: Wygenerowany wykres, histogram oraz lista wartości

3.9 Generowanie skoku jednostkowego

3.9.1 Założenia

- Amplituda = 2
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 10s
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Czas skoku = 5 s
- $\bullet\,$ Liczba przedziałów histogramu = 10

3.9.2 Rezultat

Rysunek 13: Wygenerowany wykres, histogram oraz lista wartości

3.10 Generowanie impulsu jednostkowego

3.10.1 Założenia

- Amplituda = 2
- \bullet Numer pierwszej próbki = 0
- $\bullet\,$ Numer próbki, dla której następuje skok amplitudy = 50
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Czas trwania sygnału = 10 s
- $\bullet\,$ Liczba przedziałów histogramu = 10

3.10.2 Rezultat

Rysunek 14: Wygenerowany wykres, histogram oraz lista wartości

3.11 Generowanie szumu impulsowego

3.11.1 Założenia

- Amplituda = 2
- Czas początkowy = 0s
- \bullet Czas trwania sygnału = 10s
- \bullet Częstotliwość próbkowania = 50Hz
- \bullet Prawdopodobieństwem wystąpienia wartości A = 75
- $\bullet\,$ Liczba przedziałów histogramu = 10

3.11.2 Rezultat

Rysunek 15: Wygenerowany wykres, histogram oraz lista wartości

3.12 Dodawanie sygnałów

3.12.1 Założenia

Do wykonania tego eksperymentu zostały wykorzystane sygnały z punktów $3.1~{\rm oraz}~3.2$

3.12.2 Rezultat

Rysunek 16: Wygenerowany wykres, histogram oraz lista wartości

3.13 Odejmowanie sygnałów

3.13.1 Założenia

Do wykonania tego eksperymentu zostały wykorzystane sygnały z punktów $3.1~{\rm oraz}~3.2$

3.13.2 Rezultat

Rysunek 17: Wygenerowany wykres, histogram oraz lista wartości

3.14 Mnożenie sygnałów

3.14.1 Założenia

Do wykonania tego eksperymentu zostały wykorzystane sygnały z punktów $3.1~{\rm oraz}~3.2$

3.14.2 Rezultat

Rysunek 18: Wygenerowany wykres, histogram oraz lista wartości

3.15 Dzielenie sygnałów

3.15.1 Założenia

Do wykonania tego eksperymentu zostały wykorzystane sygnały z punktów $3.1~{\rm oraz}~3.2$

3.15.2 Rezultat

Rysunek 19: Wygenerowany wykres, histogram oraz lista wartości

4 Wnioski

Przeprowadzone eksperymenty dowodzą, że stworzona aplikacja pozwala na generację szumów i sygnałów podanych w treści zadania, oraz na wykonywanie operacji na nich.

Literatura

[1] Instrukcja do zadania 1 https://ftims.edu.p.lodz.pl/file.php/ 154/zadanie1_20101011.pdf