Bayesova formule a teorie Bayesovských sítí

Sergii Babichev

Univerzita Jana Evangelisty Purkyně v Ústí nad Labem sergii.babichev@ujep.cz

Motivace a pojetí pravděpodobnosti

- Pojem "pravděpodobnost" má různé interpretace: frekventistický vs. subjektivní.
- Klasický přístup vychází z opakovatelných experimentů (např. høžení mincí).
- Subjektivní přístup je vhodný pro jedinečné události a je matematicky zdůvodnitelný.
- Bayesovské sítě umožňují modelovat znalosti i při nekompletních datech.

Podmíněná pravděpodobnost

Nechť E a H jsou dvě události (nebo náhodné proměnné). Podmíněná pravděpodobnost události E za podmínky, že nastala událost H:

$$P(E|H) = \frac{P(E \cap H)}{P(H)} \tag{1}$$

kde $P(E \cap H)$ je pravděpodobnost současného výskytu E i H.

Úplná disjunktní množina událostí

Mějme úplnou a disjunktní množinu hypotéz H_1, H_2, \ldots, H_n , tak že:

$$\bigcup_{i=1}^{n} H_{i} = \Omega, \quad H_{i} \cap H_{j} = \emptyset, \ i \neq j$$
 (2)

Pak lze pravděpodobnost E vyjádřit pomocí podmíněných pravděpodobností:

$$P(E) = \sum_{i=1}^{n} P(H_i) P(E|H_i)$$
 (3)

Toto je tzv. věta o úplné pravděpodobnosti.

Přechod k Bayesově větě (krok 1)

Z definice podmíněné pravděpodobnosti máme:

$$P(H_k|E) = \frac{P(H_k \cap E)}{P(E)} \tag{4}$$

Zároveň platí:

$$P(H_k \cap E) = P(H_k)P(E|H_k) \tag{5}$$

Dosaď me do (1):

$$P(H_k|E) = \frac{P(H_k)P(E|H_k)}{P(E)}$$
(6)

Přechod k Bayesově větě (krok 2)

Dosadíme za P(E) z věty o úplné pravděpodobnosti:

$$P(E) = \sum_{i=1}^{n} P(H_i) P(E|H_i)$$
 (7)

Tím dostaneme Bayesovu formuli:

$$P(H_k|E) = \frac{P(H_k)P(E|H_k)}{\sum_{i=1}^{n} P(H_i)P(E|H_i)}$$
(8)

Shrnutí a význam

- Bayesova formule vyjadřuje, jak aktualizovat naši důvěru v platnost hypotézy H_k po pozorování E.
- Apriorní pravděpodobnosti $P(H_k)$ mohou být odhadnuty expertně.
- Bayesovský přístup je základem mnoha moderních metod učení a rozhodování.

Bayesova věta jako pomoc při rozhodování

Bayesovu větu lze použít v reálných situacích jako nástroj podpory rozhodování. Příklad:

- Mladý muž se pokouší posoudit postoj ženy na základě jejího chování.
- Předpokládá 5 možných stavů (hypotéz):
 - H₁: Zcela se nelíbí
 - H₂: Nelíbí se
 - H₃: Neutrální pocity
 - H₄: Líbí se
 - H₅: Zamilovanost na první pohled
- Apriorní pravděpodobnosti:

$$P(H) = [0,1, 0,15, 0,5, 0,2, 0,05]$$
(9)

Pozorování a expertní znalosti

Pravděpodobnosti pozorování při daném stavu ženy:

Pozorování	H_1	H_2	<i>H</i> ₃	H_4	H_5
Kontakt pohledem	0,1	0,2	0,4	0,2	0,1
Úsměv	0,1	0,1	0,2	0,4	0,2
Požádala o pití	0,52	0,45	0,029	0,0009	0,0001
Dívá se na jiné muže	0,3	0,4	0,2	0,08	0,02
Krátké fráze	0,1	0,4	0,3	0,1	0,1
Toaleta + make-up	0,05	0,05	0,1	0,2	0,6

Výpočet pro první pozorování: kontakt pohledem

Použijeme Bayesovu větu pro každou hypotézu:

$$P(H_i|E) = \frac{P(H_i)P(E|H_i)}{\sum_{j=1}^{5} P(H_j)P(E|H_j)}$$
(10)

Vektory:

$$P(H) = [0,1, 0,15, 0,5, 0,2, 0,05]$$

 $P(E|H) = [0,1, 0,2, 0,4, 0,2, 0,1]$

Součinové členy:

$$P(H_i)P(E|H_i) = [0.01, 0.03, 0.20, 0.04, 0.005]$$

Normační člen:

$$\sum = 0.01 + 0.03 + 0.20 + 0.04 + 0.005 = 0.285 \tag{11}$$

Výsledné posteriorní pravděpodobnosti

•
$$P(H_1|E) = \frac{0.01}{0.285} \approx 0.035$$

•
$$P(H_2|E) = \frac{0.03}{0.285} \approx 0.105$$

•
$$P(H_3|E) = \frac{0.20}{0.285} \approx 0.702$$

•
$$P(H_4|E) = \frac{0.04}{0.285} \approx 0.140$$

•
$$P(H_5|E) = \frac{0.005}{0.285} \approx 0.018$$

Závěr: Nejpravděpodobnější je stav H_3 : neutrální pocity (70 %). Tuto proceduru lze opakovat pro další pozorování (např. "úsměv", "toaleta"...). Konečná důvěra v hypotézu je dána vynásobením příslušných členů vektoru pro všechna pozorování.

Shrnutí příkladu

- Bayesova věta umožňuje na základě pozorování aktualizovat náš názor na hypotézu (stav).
- V praxi: rozpoznávání objektů, klasifikace, rozhodování.
- V Bayesovských sítích každý uzel (proměnná) může být vyhodnocen pomocí podmíněných pravděpodobností.
- Kombinace více pozorování umožňuje robustní rozhodování.

Proč uvažovat násobná pozorování?

- V reálných situacích máme často více nezávislých pozorování.
- Každé nové pozorování může upravit naši důvěru v platnost hypotézy.
- Iterativní Bayesovská aktualizace umožňuje akumulaci důkazů.
- Výsledná posteriorní pravděpodobnost závisí na všech dostupných údajích.

Iterativní Bayesovská aktualizace (postup)

- Mějme apriorní rozdělení pravděpodobností $P(H_k)$ a první pozorování E_1 .
- Provedeme první aktualizaci:

$$P(H_{k}|E_{1}) = \frac{P(H_{k}) \cdot P(E_{1}|H_{k})}{\sum_{j} P(H_{j}) \cdot P(E_{1}|H_{j})}$$

ullet Tento posterior se stává novým apriorním rozdělením pro další pozorování E_2 :

$$P(H_k|E_1, E_2) = \frac{P(H_k|E_1) \cdot P(E_2|H_k)}{\sum_j P(H_j|E_1) \cdot P(E_2|H_j)}$$

• Tento proces lze iterovat pro E_3, E_4, \ldots, E_n .

Alternativa: souhrnná aktualizace všech pozorování

• Pokud všechna pozorování E_1, E_2, \dots, E_n jsou podmíněně nezávislá vzhledem k H_k :

$$P(E_1, E_2, ..., E_n | H_k) = \prod_{i=1}^n P(E_i | H_k)$$

Pak celková aktualizace se provede jedním krokem:

$$P(H_k|E_1, E_2, ..., E_n) = \frac{P(H_k) \cdot \prod_{i=1}^n P(E_i|H_k)}{\sum_j P(H_j) \cdot \prod_{i=1}^n P(E_i|H_j)}$$

Výsledek je identický s iterativní aktualizací (za podmíněné nezávislosti).

Shrnutí

- Iterativní Bayesovská aktualizace umožňuje postupně zapracovávat nové důkazy.
- Při podmíněné nezávislosti pozorování je možné sloučit důkazy do jednoho výpočtu.
- Tato metoda je využitelná v sekvenčním rozhodování, strojovém učení, medicínské diagnostice atd.

Probléma Montyho Halla

Tento problém spočívá v soutěži, ve které soutěžící musí vybrat jednu ze tří dveří, za jednou z nichž je skrytá cena. Moderátor show (Monty) odemkne prázdné dveře a zeptá se soutěžícího, zda chce po tom, co si soutěžící vybral jedny dveře, změnit svůj výběr na jiné dveře.

Rozhodnutí spočívá v tom, zda si původní dveře ponechat, nebo je nahradit novými. Je výhodnější vybrat jiné dveře, protože pravděpodobnost výhry je vyšší. Abychom vyřešili tuto nejednoznačnost, vytvořme pro toto zadání model s bayesovskou sítí.

Guest	0	0	0	1	1	1	2	2	2
Price	0	1	2	0	1	2	0	1	2
Host(0)	0	0	0	0	0.5	1	0	1	0.5
Host(1)	0.5	0	1	0	0	0	1	0	0.5
Host(2)	0.5	1	0	1	0.5	0	0	0	0

Výpočet: $P(Prize \mid Guest = 0, Host = 2)$

Cíl: Vypočítat pravděpodobnost, že cena je za konkrétními dveřmi, za předpokladu:

- Hráč si zvolil dveře č. $\mathbf{0}$ (Guest = 0),
- Moderátor otevřel dveře č. 2 (Host = 2).

Použijeme Bayesův vzorec:

$$P(Prize = i \mid Guest = 0, Host = 2) =$$

 $P(Guest = 0) \cdot P(Prize = i) \cdot P(Host = 2 \mid Guest = 0, Prize = i)$
 $P(Host = 2 \mid Guest = 0)$

Apriorní pravděpodobnosti:

$$P(Guest = 0) = \frac{1}{3}, \quad P(Prize = i) = \frac{1}{3} \text{ pro } i = 0, 1, 2$$

Podmíněné pravděpodobnosti:

$$P(Host = 2 \mid Guest = 0, Prize = 0) = 0,5$$

 $P(Host = 2 \mid Guest = 0, Prize = 1) = 1$
 $P(Host = 2 \mid Guest = 0, Prize = 2) = 0$

4 中) 4 部) 4 差) 4 差) 三差

Výpočet: $P(Prize \mid Guest = 0, Host = 2)$ (pokračování)

Čitatel pro jednotlivé varianty:

$$P_0 = \frac{1}{3} \cdot \frac{1}{3} \cdot 0,5 = \frac{1}{18}$$

$$P_1 = \frac{1}{3} \cdot \frac{1}{3} \cdot 1 = \frac{1}{9}$$

$$P_2 = \frac{1}{3} \cdot \frac{1}{3} \cdot 0 = 0$$

Normalizační konstanta:

$$Z = P_0 + P_1 + P_2 = \frac{1}{18} + \frac{1}{9} = \frac{1}{6}$$

Posteriorní pravděpodobnosti:

$$P(Prize = 0 \mid G = 0, H = 2) = \frac{\frac{1}{18}}{\frac{1}{6}} = \frac{1}{3}$$

$$P(Prize = 1 \mid G = 0, H = 2) = \frac{\frac{1}{9}}{\frac{1}{6}} = \frac{2}{3}$$

$$P(Prize = 2 \mid G = 0, H = 2) = 0$$

Závěr: Vvplatí se změnit volbu — pravděpodobnost výhry po změně je 2/3.