Linux Device Drivers: Case Study of a Storage Controller

Manolis Marazakis FORTH-ICS (CARV)

IOP348-based I/O Controller

Programmable I/O Controller

Misc. Storage Devices

IOP348 - Board layout

IOP348 – Boot Loader

```
®iop348 - Hype RedBoot> fis list
Eile Edit View Ca Name
                         FLASH addr Mem addr Length Entry point
D = 3
          (reserved) 0xF0000000 0xF0000000 0x00200000 0x00000000
          RedBoot 0xF0200000 0xF0200000 0x00040000 0x00000000
 Display (
   \frac{1}{x} = \frac{1}{b}  LinuxKernel 0xF0240000 0x01008000 0x00260000 0x01008000
 RedBoot> FIS directory 0xF07E0000 0xF07E0000 0x0001F000 0x00000000
 ... Reset
 Use 'fcon RedBoot config 0xF07FF000 0xF07FF000 0x00001000 0x00000000
 Sending B
 ... waiti RedBoot> fis load LinuxKernel
 Ethernet
          RedBoot> exec -c "console=ttyS0,115200 root=/dev/sda1" 0x1008000
 Can't get
          Using base address 0x01008000 and length 0x00241f10
 RedBoot(the poorser up and depug environment inoni
 Intel IOP Redboot release
         version 2.3-IOP-RedBoot
        built 18:37:41. Dec 12 2006
 Platform: IQ8134x SC (XScale) Core1, DDR2-533
IF_PCIX: 1, PCIe EP, PCI-X CR: PCIX-133
 C1-Step, IB Speed: 400MHz, Core Speed: 1200MHz
 Copyright (C) 2000, 2001, 2002, 2003, 2004 Red Hat, Inc.
 Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited
 RAM: 0x00000000-0x10000000. [0x0001b7e8-0x0ffd1000] available
 FLASH: 0xf0000000 - 0xf0800000, 64 blocks of 0x00020000 bytes each.
 RedBoot>
                          SCROLL CAPS NUM Capture Print echo
Connected 0:05:53
            Auto detect 115200 8-N-1
```

Disk Interface Technologies (I)

ATA

ATA: Advanced Technology Attachment

SATA: Serial ATA

SCSI: Small Computer System Interface

FC: Fibre Channel

SATA

Disk Interface Technologies (II)

	Parallel ATA	Parallel SCSI	Fibre Channel	SATA	Serial Attached
Performan	ce				
Technology Introduction ²	2000	2002	2001	2002	2004
Maximum Speed³	100 MB/s	320 MB/s	4.2 Gb/s (400 MB/s)	3.0 Gb/s (300 MB/s)	3.0 Gb/s (300 MB/s)
Topology	Shared bus master/slave	Shared bus	Arbitrated loop/ switched fabric	Point-to-point	Point-to-point
Number of Devices	2	15	1,000s	up to 15	100s

Example Storage Area Network Configuration

RAID: Redundant Array of Independent (Inexpensive) Disks

- Striping for parallel data transfer & load balancing
- Redundancy for failure protection
- Error-correcting codes

RAID Levels

SCSI (Small Computer System Interface)

SCSI Architecture Model

SCSI Standards

Device-type specific command sets (e.g., SBC-2, SSC-2, MMC-3)

Primary command set (shared for all device types) (SPC-3)

Protocols (e.g., SPI-4, FCP-2, SAS SSP)

Interconnects (e.g., SPI-4, Fibre Channel, SAS)

SCSI: Command Sets

	OpCode	Command Support		-
Command name		Fixed	Removable	Reference
FORMAT UNIT	04h	0	0	RBC
INQUIRY	12h	М	м	SPC-21
MODE SELECT(6)	15h	М	м	SPC-21
MODE SENSE(6)	1Ah	М	м	SPC-2 ¹
PERSISTENT RESERVE IN	5Eh	0	0	SPC-21
PERSISTENT RESERVE OUT	5Fh	0	0	SPC-21
PREVENT/ALLOW MEDIUM REMOVAL	1Eh	N/A	М	SPC-2 ¹
READ (10)	28h	м	м	RBC
READ CAPACITY	25h	м	М	RBC
RELEASE(6)	17h	0	0	SPC-21
REQUEST SENSE	03h	0	0	SPC-21
RESERVE(6)	16h	0	0	SPC-21
START STOP UNIT	1Bh	М	М	RBC
SYNCHRONIZE CACHE	35h	0	0	RBC
TEST UNIT READY	00h	М	М	SPC-2 ¹
VERIFY (10)	2Fh	М	м	RBC
WRITE (10)	2Ah	м	м	RBC
WRITE BUFFER	3Bh	м	0	SPC-21

[RBC - reduced block command set]

SAS: Serial Attached SCSI

Compatible physical layer between SATA and SATA

Similar HDD ASIC and firmware design between SAS and FC

SAS Host-Based Adapters

Number of drives limited to number of ports in the HBA

Expander attach =

More drives than HBA ports

SSP (Serial SCSI Protocol) used to communicate with SAS drives

used to communicate with SATA drives over SATA physical links

SAS: Read Command Sequence

Chipset (Intel/ICH)

Chipset (AMD/NVIDIA)

NVIDIA nForce® 680a SLI™ System Architecture Motherboard Works with 1 or 2 CPUs

Chipset (Intel/MCH)

Host-Based Adapter

Intel 81348 Features (I)

- Host Interface:
 - PCI-X _or_ PCI-Express
 - 2-function PCI device: (ATU + MU, TPMI)
- Intel XScale Processor (ARM v5tel)
 - 2 cores, running at 1.2GHz
 - I-cache, D-cache per core (32KB each, 4-way)
 - Unified L2 cache (512KB, 8-way)
 - Inter-Processor Messaging Unit
- Internal Busses (North, South):
 - 128-bits wide, running at 400 MHz
 - Internal Bus System Controller: internal address bus arbitration, internal data bus arbitration, framing Address bus cycles, framing Data bus cycles, shared address & data paths
- DDR memory controller
- Timers:
 - 2 programmable timers per processor, 1 watchdog timer per processor
- I2C Bus Interface, 2 UART's, 16 GPIO, Peripheral Bus Interface (PBI), Performance Monitoring Unit (PMI)

XScale Microarchitecture

Unified L2 Cache (optional)

- No L2 / 256KB / 512KB
- 8 way set associative
- write-back / write-allocate
- lockable by line

- supports coherency with other ASSP blocks
- portions may be used as SRAM
- accepts writes from other ASSP blocks

Instruction Cache

- 32KB
- 4 way set associative
- lockable by line

Data Cache

- 32KB
- 4 way set associative
- Low-Locality Reference
- lockable by line
- write-back or write-through
- supports coherency
- hit-under-miss

Memory Management

- 32 entry Instruction TLB
- 32 entry Data TLB
- Lockable by entry

Branch Target Buffer

- Branch prediction
- 128 entries

Multiply / Accumulate

- single clock throughput (16*32)
- 2 way 16-bit SIMD
- 40-bit accumulator

Software Debug

- hardware breakpoints
- Debug SRAM
- software trace buffer

Performance Monitoring

Power Management

JTAG

PCI Express: Switch + Links

PCI Express: Layers

Intel 81348 Features (II)

- 3 Application DMA Channels (ADMA)
 - Dual-ported: South Bus SDRAM
 - Support L2 cache coherence
- Address Translation Unit (ATU)
 - Allow PCI Tx's direct access to local DDR SDRAM
 - Programmable registers to control address translation
- Messaging Unit (MU)
 - Data transfers between PCI system & 81348
 - Message passing, interrupt generation
 - Interrupts to notify each system when new data arrives
- FSENG block: 8 SATA/SAS engines

IOP348: Functional Blocks

Address Translation Unit (ATU)

Messaging Unit (MU)

The MU is accessed by an external PCI agent via ATU.

- Message registers
- Doorbell registers
- Circular queues
- Index registers

MU: inbound & outbound queues

Inbound:

Queue Mnemonic	Queue Name	Queue Size (Bytes)	
IWQ	Inbound Write Data Queue	4 KBytes (4*1KB)	
IWADQ	Inbound Write Address Queue	4 Transaction Addresses	
IRQ	Inbound Read Data Queue	4 KBytes (4*1KB)	
IDWQ	Inbound Delayed Write address/data Queue	1 Transaction	
ITQ Inbound Transaction Queue		8 Addresses/Commands	

Outbound:

Queue Mnemonic	Queue Name	Queue Size (Bytes)
owq	Cutbound Write Data Queue	4 KBytes (4*1024B)
OWADQ	Outbound Write Address Queue	4 Transaction Addresses
ORQ	Outbound Read Data Queue	2 or 4 KBytes (4* 512B or 4*1024B) ^a
ото	Outbound Transaction Queue	8 Addresses/Commands

Application DMA Channel (ADMA)

API: chain of Descriptors: (SRC, DST, byte-count, control-bits) + link to next descriptor

IOP348 - Storage System Layers

IOP348 - Controller Glue

