

Point Cloud Generation from a Single 2D Image

Can Gümeli, Tymur Mirlas

can.gumeli@gmail.com, tymur.mirlas@tum.de

Introduction

- Motivation: generating point clouds from 2D images will enable future research to utilize 3D geometry in all image analysis challenges, ranging from scene retrieval to object detection.
- **Goal:** introduce an end-to-end deep learning architecture to generate point clouds from 2D images.
- Mathematical formulation of the problem:

$$S_{pred} = DNN_{\theta}(I_{rgb}) = \{(x_i, y_i, z_i)\}_{i=1}^{N}$$

- **Dataset:** synthetic benchmarks such as Shapenet [1] or ModelNet [2].

Figure 1. Examples of inputs and corresponding point clouds. Note, that we're interested in generating point clouds, which are aligned with the input. The color of points in a point cloud corresponds to their depth.

Method

- **Problem:** Exponentially increasing dimensionality of an output produced by a CNN with skip connections.
- **Solution:** Multi-branch CNN with the Spatial Transformer Network [3] as an attention mechanism.
- Loss function Chamfer distance:

Figure 3. Spatial Transformer Network as a feature

Network

transform

 $H \times W$

h' x w'

Results

Figure 4. Predictions from the validation samples. Input

– GT – Predictions from left to right respectively.

Figure 5. Visualization of the attention modules for each of 6 branches (each column corresponds to one branch).

Figure 6. Learning curves.

	Loss		Fscore		IoU	
	Ours	PSG	Ours	PSG	Ours	PSG
bathtub	0.1721	0.1740	0.4617	0.4465	0.0864	0.0834
bed	0.1499	0.1543	0.5328	0.5092	0.0876	0.0846
chair	0.1733	0.1748	0.4657	0.4436	0.0970	0.0900
desk	0.2140	0.2182	0.3703	0.3445	0.0578	0.0552
dresser	0.2100	0.2142	0.2998	0.2839	0.0403	0.0360
monitor	0.1543	0.1534	0.5502	0.5376	0.1082	0.1010
night stand	0.2446	0.2447	0.2561	0.2395	0.0383	0.0384
sofa	0.1435	0.1466	0.5259	0.5139	0.1029	0.1002
table	0.2255	0.2374	0.3513	0.3232	0.0848	0.0884
toilet	0.1613	0.1646	0.4606	0.4300	0.0815	0.0743

Figure 7. Class-wise comparison of ours model vs. PointSetGenerationNetwork [4] trained on **ModelNet10**.

Final Layer. Ablation Study

The ablation study was conducted to choose the final layer. There were 3 options:

- Grid Deformation [5]
- Linear Transformation
- Tanh

Figure 8. Overfitting results on **1 sample** for *Grid Deformation, Linear Transformation* and *Tanh* final layers.

Figure 9. Training results for a **class** "**table**" for *Grid Deformation, Linear Transformation* and *Tanh* final layers.

Conclusions

- During the ablation study, we have checked the hypothesis, that final layer of the network affects its performance. As a conclusion, we can say, that final layer indeed matters only in case of overfitting to one sample, and doesn't matter in case of large-scale training of deep networks.
- As the baseline, we have the Point Set Generation Network, which utilizes convolutional layers to regress point clouds.
- We have reached the state of the art performance in comparison with the baseline. Moreover, our model has more capacity, is more interpretable, and scales better for architectural enhancements.

References

[1] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, SilvioSavarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich 3d model repository.

CoRR, abs/1512.03012, 2015.
[2] Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang,and Jianxiong Xiao. 3d shapenets for 2.5d object recognition and next-

best-view prediction. CoRR, abs/1406.5670, 2014.

[3] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer networks. CoRR, abs/1506.02025, 2015.

[4] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object reconstruction from a single

image. CoRR, abs/1612.00603, 2016.

[5] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning efficient point cloud generation for dense 3d object reconstruction. CoRR, abs/1706.07036, 2017.

pooling module.

h x w