

GAN - Generative Adversarial Networks

Research Paper

Welcome!

Internship - Kaizen Voiz

01 Why research GAN

Purpose of researching GAN?

Generate new, synthetic data that resembles some known data distribution,

Useful for data augmentation, anomaly detection, or creative applications.

02 Base Paper GAN

Researched about?

A new framework for estimating generative models via an adversarial process.

simultaneously train two models:

- o Generative model G
- o Discriminative model D

G & D:

Captures

data distribution

Discriminative model D

estimates probability that a sample came from

training data rather than G

How Training plays:

framework corresponds to a minimax two-player game

How Training plays:

In the case where G and D are defined by multilayer perceptron's

entire system can be trained

backpropagation.

Key Definitions:

(MLP) -- Type of ANN consisting of multiple layers of neurons.

Backpropagation -- A gradient estimation method used to train NN models.

INTRO on DL with GAN:

discover rich, hierarchical models.

DL Findings

data encountered

Success in DL

discriminative models → map a high-dimensional, rich sensory input

to a class label

DL algorithms

backpropagation and dropout algorithms

Data Findings

natural images, audio waveforms containing speech, and symbols in natural language corpora.

Disadvantages

Deep generative models have had less of an impact. difficulty of approximating many intractable probabilistic computations.

Adversarial Nets Framework

Generative model is pitted against an adversary.

Discriminative model.

Model distribution or data

distribution.

Straight forward framework When in multilayer perceptron.

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

 $G(z; \theta_g)$, Parameters

Mapping to data space

 $D(x; \theta_d)$

Parameters

Second multilayer perceptron

G & D play 2-P minmax game with val func

Modified National Institute of Standards and Technology database

TFD

Toronto Face Database

CIFAR-10

Canadian Institute For Advanced Research machine learning and computer vision algorithms

Thank You!..