$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i \sqrt{2} k(2k^2 (r_1 + r_5) - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))}$	$\frac{i k (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2\right)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#2}_{+}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2 k^2 (2r_1 + r_5) (t_1 + t_2))}$	$\frac{6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 (2 r_1 + r_5) (t_1 + t_2))}$	$-\frac{ik\left(6k^{2}\left(2r_{1}+r_{5}\right)+t_{1}+4t_{2}\right)}{\left(1+k^{2}\right)^{2}\left(3t_{1}t_{2}+2k^{2}\left(2r_{1}+r_{5}\right)\left(t_{1}+t_{2}\right)\right)}\left \frac{k^{2}\left(6k^{2}\left(2r_{1}+r_{5}\right)+t_{1}+4t_{2}\right)}{\left(1+k^{2}\right)^{2}\left(3t_{1}t_{2}+2k^{2}\left(2r_{1}+r_{5}\right)\left(t_{1}+t_{2}\right)\right)}\right $	0	0	0	0
$\sigma_{1+\alpha\beta}^{\#1}$	3 t 1 t 2 + 3	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5)(t_1 + t_2))}$	$i \sqrt{2} k(t_1 - 2t_2) + k^2) (3t_1t_2 + 2k^2 (2r_1 + r_5) (t_1 + t_2))$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1+}^{#2} +^{\alpha\beta}$	$\tau_1^{\#1} + \alpha \beta \left[-\frac{1}{(1-\alpha)^2} \right]$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$	
$\sigma_{2^+}^{\sharp 1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$\tau_{2+}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-} \alpha eta \chi}^{\# 1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$ \tau_{0+}^{#2} == 0 $	$\tau_{0}^{\#1} - 2 \bar{l} k \sigma_{0}^{\#1} = 0$	$t_1^{\#2\alpha} + 2 \bar{l} k \sigma_1^{\#2\alpha} = 0$	$t_{1}^{#1\alpha} = 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0	Total #:

Lagrangian density

_	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	t_2

$-t_1 \omega_i^{\alpha_i} \omega_{\kappa\alpha}^{\kappa} - \frac{1}{3} t_1 \omega_i^{\kappa\lambda} \omega_{\kappa\lambda}^{i} + \frac{2}{3} t_2 \omega_i^{\kappa\lambda} \omega_{\kappa\lambda}^{i} + \frac{1}{3} t_1 \omega_{\kappa\lambda}^{i} \omega^{\kappa\lambda}_{i} +$
$\frac{1}{3} t_2 \omega_{\kappa\lambda}^{\ \prime} \omega^{\kappa\lambda}_{\ \ \prime} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - r_5 \partial_i \omega^{\kappa\lambda}_{\ \ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} - \frac{2}{3} r_1 \partial^\beta \omega^{\theta\alpha}_{\ \ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \kappa} -$
$\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} +$
$r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - \frac{1}{3} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} +$
$\frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{3} t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda} +$
$\frac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\alpha\lambda} + t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{i} + t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{i} + 2 t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{i} -$
$t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f^{\prime}_{,} + \frac{1}{3} t_1 \omega_{i\theta\kappa} \partial^{\kappa} f^{\prime\theta} + \frac{1}{3} t_2 \omega_{i\theta\kappa} \partial^{\kappa} f^{\prime\theta} + \frac{4}{3} t_1 \omega_{i\kappa\theta} \partial^{\kappa} f^{\prime\theta} -$
$\frac{2}{3} t_2 \omega_{IK\theta} \partial^K f^{I\theta} - \frac{1}{3} t_1 \omega_{\theta IK} \partial^K f^{I\theta} - \frac{1}{3} t_2 \omega_{\theta IK} \partial^K f^{I\theta} + \frac{2}{3} t_1 \omega_{\theta KI} \partial^K f^{I\theta} +$
$\frac{2}{3} t_2 \omega_{\theta \kappa \iota} \partial^{\kappa} f^{\iota \theta} - t_1 \omega_{\iota \alpha}^{\alpha} \partial^{\kappa} f^{\iota}_{\kappa} - t_1 \omega_{\iota \lambda}^{\lambda} \partial^{\kappa} f^{\iota}_{\kappa} + \frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} -$
$\frac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} - \frac{1}{6} t_2 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} + \frac{2}{3} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} +$

 $\frac{1}{6}\,t_2\,\partial_\kappa f^\lambda_{\ \theta}\,\partial^\kappa f_\lambda^{\ \theta} - t_1\,\partial^\alpha f^\lambda_{\ \alpha}\,\partial^\kappa f_{\lambda\kappa} + \frac{2}{3}\,r_1\,\partial_\kappa\omega^{\alpha\beta\theta}\,\partial^\kappa\omega_{\alpha\beta\theta} - \frac{2}{3}\,r_1\,\partial_\kappa\omega^{\theta\alpha\beta}\,\partial^\kappa\omega_{\alpha\beta\theta} +$

 $\frac{2}{3} r_1 \partial^{\beta} \omega_{I}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ I} - \frac{8}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ I} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa}$

<u>.</u>							
$f_{1}^{\#2}$	0	0	0	ikt_1	0	0	0
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2} \alpha f_{1}^{\#1} \alpha f_{1}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	- <i>ī</i> k t ₁
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{i}k(t_1+t_2)$	$\frac{1}{3}$ \vec{l} k $(t_1 + t_2)$ $\frac{1}{3}$ k^2 $(t_1 + t_2)$	0	0	0	0
$\omega_{1}^{\#2}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha \beta = \frac{1}{6} (6 k^2 (2 r_1 + r_5) + t_1 + 4 t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_{1}^{#2} + \alpha \beta$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

Massive particle						
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))} > 0$					
Polarisations:	3					
Square mass:	$-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$					
Spin:	1					
Parity:	Even					

Massive particle					
$-\frac{1}{r_1} > 0$					
5					
$-\frac{t_1}{2r_1} > 0$					
2					
Odd					

(No massless particles)