۱ مقدمه

نخستین اعداد شناخته شده توسط بشر اعداد طبیعی بوده اند، یعنی اعدادی چون $\{1,7,7,7,1\}$. این اعداد برای شمارش استفاده می شده اند؛ مثلاً شمارش گوسفندان، اموال و دارائیها. برای هر کاربردی در هندسه نیز، رسم پاره خطی به طول یک طبیعی با استفاده از یک خطکش کار آسانی است. ولی احتمالاً از همان ابتدا معلوم شده است که به اعداد دیگری غیر از اعداد طبیعی هم نیاز است. مثلاً شاید لزوم استفاده از قطعاتی از اجسام، مثلاً نصف یک قرص نان، موجب کشف اعداد گویا (کسری) شده باشد. هر عدد گویا خارج قسمتی از دو عدد طبیعی است، و از این رو با استفاده از الگوریتم اقلیدسی، برای هر عدد گویا می توان یک نمایش اعشاری متناهی یا نامتناهیِ متناوب در نظر گرفت (البته این گفته نیاز به اثبات دارد). مثلاً برای نمایش $\frac{1}{4}$ ، نخست عدد 1 را بر 1 تقسیم می کنیم، خارج قسمتش را نگه می داریم و باقیمانده تقسیم را دوباره بر 1 تقسیم می کنیم. با کمک الگوریتم اقلیدسی با ادامه این روش به نمایش 1, برای عدد روباره بر 1 تقسیم می کنیم، با کمک الگوریتم اقلیدسی با ادامه این روش به نمایش 1, برای عدد روسعی کنید روشی برای این کار ارائه کنید). اما آیا همه ی طولها، گویا (یعنی به صورت خارج قسمت دو رسع کنید طبیعی) هستند؟ پاسخ این سوال به ظاهر ساده و بواقع گیج کننده، شروع مناسبی برای معرفی درس حساب دیفرانسیل است.

مثلثی قائم الزاویه را در نظر بگیرید که طول دو ضلع زاویه ی قائمه اش ۱ باشد. با استفاده از فرمول فیثاغورث نیک می دانیم که طول و تر این مثلث برابر است با ∇ . با روشهای دبیرستانی می توان تحقیق کرد که این عدد را نمی توان به صورت خارج قسمتی از دو عدد طبیعی نوشت. بنابراین نمایش اعشاری این عدد، نامتناهی و نامتناوب است. با این حال، رسم پاره خطی به طول ∇ چندان دشوار نیست. کافی است مثلث یادشده را بکشیم. اما به عنوان مثال دیگر، دایره ای به شعاع τ در نظر بگیرید. می دانیم که نسبت محیط این دایره به قطر آن، برابر با عدد τ است. عدد τ هم ماهیتی شبیه به همان τ دارد. وضعیت این عدد بغرنجتر هم هست: امروزه (با استفاده از تکنیکهای جبری) می دانیم که خطی به طول τ را نمی توان با استفاده از روشهای خطکش و پرگاری رسم کرد. وارد جزئیات پیچیده نمی شویم، مهم این است که هر دوی اینها اعداد اعشاری ای هستند که به صورت بدون پایان ادامه دارند ولی از هیچ الگوی تکرار شونده ای پیروی نمی کنند. سختی کار بااین اعداد، نامتناهی بودن نمایش آنهاست.

نامتناهی بودن، از مفاهیم اسرارآمیز ریاضیات است. در ریاضیات اصول موضوعهای، وجود بی نهایت یک «اصل موضوعه» است. به محض پذیرش این اصل، بی نهایت برای ریاضیدانان مفهومی قابل درک و حتی دارای اندازههای مختلف می شود. وارد شدن دقیق به مبحث بی نهایتها جزو اهداف این درس نیست، ولی درک بی نهایت به وسیلهی در نظر گرفتن بخشهای متناهی بزرگ آن، دقیقاً موضوع مورد نظر ماست. برای مثال، یک راه پله دارای بی نهایت پله را نمی توان تصور کرد. نمی توان فهمید که انتهای آن چیست و در قسمتهای بالای آن چه اتفاقی می افتد، ولی می توان ۱۰۰۰ پلهی اول را بالا رفت و به درکی رسید. اگر این درک کافی نبود می توان ۱ میلیون پله از آن را بالا رفت و به درک بهتری رسید. بدین ترتیب می توان به هر تعداد (متناهی) دلخواه پله از آن را بالا رفت، ولی نمی شود تا نهایت آن پیش رفت. در مورد اعداد گنگ هم وضع همینگونه است. هر عدد گنگ را می توان به هر اندازه ی دلخواه با بسطهای اعشاری متناهی

تقریب زد ولی هیچگاه نمی توان به کُل آن رسید. به بیان دیگر، به هر عدد گنگ می توان به هر اندازه ی دلخواه با «دنبالهای» از اعداد گویا نزدیک شد. باز به بیان دیگر، می شود فاصله ی خود را از یک عدد گنگ، «بی نهایت کوچک» کرد. بی نهایت نزدیک شدن به یک پارامتر، از موضوعات مهم در حساب است.

برای محاسبه ی سرعت یک جسم در لحظه ی t باید بدانیم مقدار تغییر مکان آن جسم در زمان بی نهایت کوچک ِ نزدیک به t چقدر است. پس سرعت لحظه ای یک نوع سرعت متوسط است. به بیان بهتر، برای یافتن سرعت متوسط یک جسم باید $\Delta(x)/\Delta(t)$ را حساب کرد، ولی برای یافتن سرعت لحظه ای باید سرعت متوسط را در زمان بی نهایت نزدیک به t حساب کرد. همان گونه که شرح داده شد، بینهایت نزدیک شدن به زمان t ممکن نیست، ولی می شود در مراحل متناهی، فاصله ی خود را از از زمان t به هر اندازه ی دلخواه کم کرد. موضوع حساب، دقیقاً تغییرهای پیوسته ی یک متغیر بر حسب تغییرهای بی نهایت کوچک متغیری دیگر است. در مثال سرعت، و با نمادگذاری لایبنیتز در واقع هدف محاسبه ی $\frac{dx}{dt}$ است که در آن تغییرات بینهایت کوچک ِ یک متغیر دیگر می پردازد، «حساب دیفرانسیل» تغییرات یک متغیر بر حسب تغییرات بینهایت کوچک ِ یک متغیر دیگر می پردازد، «حساب دیفرانسیل» گفته می شود. اما حساب بخش دیگری نیز دارد.

نحوهی محاسبهی مساحت یک مستطیل را از دبستان میدانیم. برای محاسبهی مساحت یک شکل پیچیده تر دارای انحنا، می توان مجموع مساحتهای همهی مستطیلهای درون آن را در نظر گرفت. برای این که شکل منحنی حاصل شود، باید مستطیلها را کوچکتر و کوچکتر کرد و نهایتاً یک «مجموع نامتناهی» را در نظر گرفت. لایبنیتز برای این مجموع از علامت ∫ استفاده کرد که یادآور حرف S است در کلمهی Summe که در آلمانی به معنی «مجموع» است. ۱ از آنجا که بنا به گفتههای بالا، جمع نامتناهی مقدار دست نایافتنی است، باید برای این کار با تقریبهای متناهی مناسب به هر اندازه ی دلخواه به حاصل جمع مورد نظر (یعنی مساحت) نزدیک شد و به بیان دیگر باید «حد» گرفت. به بخشی از حساب دیفرانسیل که بدین موضوع می پردازد، «حساب انتگرال» میگویند.

تا اینجا گفتیم که حساب، دو بخش دارد: حساب دیفرانسیل و حساب انتگرال. ایندو را گاهی با هم «حسابان» میخوانند. اما حساب خواندن هر دوی آنها هم درست است. در واقع قضیهی اساسی حساب دیفرانسیل و انتگرال، بیانگر این است که این دو بخش با هم مربوطند (به بیان دقیقتر، هر یک برعکس دیگری است). این قضیه (تحت شرایطی روی تابع f) دارای صورت فشرده ی زیر است:

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

یعنی، اگر از یک تابع مشتق بگیریم، مساحت زیر منحنی مشتق، برابر با میزان تغییر تابع است از نقطهی شروع تا نقطه ی پایان. به بیان غیردقیق، انتگرالِ مشتق یک تابع می شود خود تابع.

به همهی آنچه که در بالا گفته شد، در طول ترم به طور دقیق خواهیم پرداخت. بگذارید مقدمه را با ذکر دو نکتهی عمومی به پایان بریم. نخست این که واژهی calculus که آن را حساب ترجمه کردهاند، در اصل لاتین و به معنی سنگهای کوچکی است که از آنها در چرتکه استفاده می شود. دوم این که حساب را، در

او به انگلیسی می شود summation

معنی مُدرنِ آن و به گونهای که در بالا شرح داده شد، نیوتون در انگلستان و لایبنیز در آلمان به طور همزمان و مستقل و بیخبر از یکدیگر بسط داده اند. نیوتون سپس لایبنیتز را متهم به کپیبرداری آثار خود کرده است و این ادعا را به ناحق و با استفاده از نفوذ و قدرت علمی و اجتماعی خود در دادگاهی در انگلستان به اثبات رسانده است. امروز اعتبار یافتن حساب را به هر دوی آنها می دهند ولی، بسیاری از نمادگذاریهای معروف حساب مانند dx, نمادهای ابتکاری لایبنیتز هستند.