

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

	по лабораторной работе № _3				
Название:	Алгоритмы сортировки				
Дисциплина:	Анализ алгоритмов				
Студент	<u>ИУ7-52Б</u>	(Поличес поло)	В.А. Иванов		
Преподаватель	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
преподаватель	•	(Подпись, дата)	(И.О. Фамилия)		

Москва, 2020

Оглавление

Bı	веде	ние	3
1	Ана	алитическая часть	4
2	Кон	нструкторская часть	5
	2.1	Сортировка пузырьком	5
	2.2	Поразрядная сортировка	5
	2.3	Сортировка слиянием	6
	2.4	Требования к программному обеспечению	6
	2.5	Заготовки тестов	6
3	Tex	нологическая часть	12
	3.1	Выбор языка программирования	12
	3.2	Листинг кода	12
	3.3	Результаты тестирования	16
	3.4	Оценка трудоёмкости	19
		3.4.1 Алгоритм сортировки пузырьком	19
		3.4.2 Алгоритм поразрядной сортировки	19
		3.4.3 Алгоритм сортировки слиянием	20
	3.5	Оценка времени	21
И	ссле,	довательская часть	23
	Зак	лючение	23
	Резу	ультат экспериментов	23
	Cpa	внительный анализ	24
38	клю	эчение	25
Cı	писо	к литературы	26

Введение

Сортировка - это процесс упорядочения некоторого множества элементов, на котором определены отношения порядка[1].

Задача сортировки множества данных является одной из самых часто встречающихся при разработке программ. Также существует и достаточное количество алгоритмов, решающих данную задачу. Однако, "лучшего"алгоритма подходящего для решения любых задач сортировки наиболее оптимальным образом не существует. Поэтому задача изучения алгоритмов упорядочения до сих пор остаётся актуальной.

В данной лабораторной изучается и оценивается три алгоритма сортировки:

- сортировка пузырьком;
- поразрядная сортировка;
- сортировка слиянием.

1. Аналитическая часть

Целью лабораторной работы является оценка трудоёмкости алгоритмов сортировки.

Выделены следующие задачи лабораторной работы:

- описание операции сортировки;
- описание и реализация алгоритмов сортировки;
- проведение замеров процессорного времени работы алгоритмов при различных размерах массивов;
- оценка трудоёмкости алгоритов;
- проведение сравнительного анализа алгоритмов на основании экспериментов.

Сортировка массива по неубыванию - операция над массивом arr[N], в результате которой в нём начинает выполняется условие:

$$arr[i+1] >= arr[i], i \in [0, N-2]$$
 (1.1)

Аналогично формулируется определение для сортировки по невозрастанию. В случае, если в массиве нет равных элементов, также возможно применить операции сортироки по возрастанию и убыванию.

2. Конструкторская часть

Рассмотрим вышеупомянутые алгоритмы сортировки. Для удобства изложения сути алгоритмов, будем рассматривать сортировку по неубыванию. Алгоритмы сортировки других порядков могут быть получены заменой условия сравнения.

2.1. Сортировка пузырьком

Алгоритм сортировки пузырьком основывается на следующем действии. Массив проссматривается от 0 до N-2 элемента, и в случае, если текущий элемент массива больше следующего, они меняются местами. Таким образом, после первого прохода в конце массива окажется максимальный элемент, после второго - два максимальных, и так далее до полного упорядочивания массива.

Схема алгоритма приведена на рисунке 2.1.

2.2. Поразрядная сортировка

Цель алгоритма заключается в реализации трудоёмкости, линейно зависящей от размера массива. Упорядоченнсть достигается последовательной сортировкой по значению разрядов (в порядке от меньшего разряда к большему). Алгоритм применим к массиву, состоящему из целых положительных чисел или иных значений, которые могут быть спроецированы на множетво положительных чисел.

Будем считать, что максимальное число в массиве состоит из К разрядов. В случае, если массив содержит целыйе отрицательные числа, то перед сортировкой все числа должны быть увеличены на модуль минимального числа, а после сортировки уменьшены.

Схема алгоритма приведена на рисунках 2.2. и 2.3.

2.3. Сортировка слиянием

Идея алгоритма заключается в том, что достаточно эффективно производится операция слияния (т.е. создания из двух массивов одного) при условии, что оба сливаемых массива уже упорядочены. Алгоритм разбивает массив на два подмассива, после чего применяет к ним ту же операцию, до тех пор, пока длина массива не станет меньше 3. После завершения сортировки подмассивов производится построение упорядоченного массива их слиянием.

Схема алгоритма приведена на рисунке 2.3.

2.4. Требования к программному обеспечению

Для полноценной проверки и оценки алгоритмов необходимо выполнить следующее.

- 1. Обеспечить возможность консольного ввода массива и выбора алгоритма сортировки. Программа должна вывести отсортированный массив.
- 2. Реализовать функцию замера процессорного времени, затраченного функцией. Для этого также создать возможность ввода размера массива, на котором будет выполнен замер.

2.5. Заготовки тестов

При проверке алгоритмов необходимо будет использовать следующие классы тестов:

- массив размером 1;
- массив одинаковых элементов;
- упорядоченный массив;

• массив упорядоченный в обратном порядке.

Рис. 2.1: Сортировка пузырьком

Рис. 2.2: Поразрядная сортировка (часть 1)

Рис. 2.3: Поразрядная сортировка (часть 2)

Рис. 2.4: Алгоритм Винограда

3. Технологическая часть

3.1. Выбор языка программирования

В качестве языка программирования был выбран C++, так как имеется опыт работы с ним, и с библиотеками, позволяющими провести исследование и тестирование программы. Также в языке имеются средства для отключения оптимизации компилятора.

3.2. Листинг кода

Реализация алгоритмов умножения матриц представлена на листингах 3.1-3.3.

Листинг 3.1: Функция умножения матриц классическим алгоритмом.

```
1 #include "classic.h"
2 #pragma optimize ( "", off )
3 mat t classic mult(mat ta, mat tb, intm, int n, int q)
4|\{
    mat t c = create mat(m, q);
5
6
7
    for (int i = 0; i < m; i++)
8
    for (int j = 0; j < q; j++)
9
10
      c[i][j] = 0;
      for (int k = 0; k < n; k++)
11
      c[i][j] += a[i][k] * b[k][j];
12
13
    }
14
    return c;
15|}
16 #pragma optimize ( "", on )
```

Листинг 3.2: Функция умножения матриц алгоритмом Винограда.

```
#include "winograd.h"
2
3 #pragma optimize( "", off )
```

```
5 arr t calc mi(mat ta, int m, int n)
6
7
    arr t mi = create arr(m);
8
    for (int i = 0; i < m; i++)
9
      mi[i] = 0;
10
      for (int k = 0; k < n / 2; k++)
11
         mi[i] += a[i][2*k] * a[i][2*k + 1];
12
13
|14|
    return mi;
15|}
16 arr t calc mj(mat t b, int n, int q)
17|\{
    arr_t mj = create_arr(q);
18
19
    for (int j = 0; j < q; j++)
20
      mj[j] = 0;
21
22
      for (int k = 0; k < n / 2; k++)
         mj[j] += b[2*k][j] * b[2*k + 1][j];
23
24
25
    return mj;
26
27 mat t winograd mult(mat ta, mat tb, int m, int n, int q)
28 {
29
    mat t c = create mat(m, q);
    arr t mi = calc mi(a, m, n);
30
    arr_t mj = calc_mj(b, n, q);
31
32
    for (int i = 0; i < m; i++)
      for (int j = 0; j < q; j++)
33
34
35
         c[i][j] = -(mi[i] + mj[j]);
36
         for (int k = 0; k < n / 2; k++)
37
           c[i][j] += (a[i][2*k] + b[2*k + 1][j]) *
```

```
38
                 (a[i][2*k+1] + b[2*k][j]);
      }
39
    if (n % 2)
40
      for (int i = 0; i < m; i++)
41
         for (int j = 0; j < q; j++)
42
           c[i][j] += a[i][n-1] * b[n-1][j];
43
44
    return c;
45|}
46
47 #pragma optimize ( "", on )
```

Листинг 3.3: Оптимизированая функция умножения матриц алгоритмом Винограда.

```
1 #include "winograd.h"
3 #pragma optimize ( "", off )
4
5 arr_t calc_mj(mat_t b, int n, int q)
6
7
    arr t mj = create arr(q);
8
    for (int j = 0; j < q; j++)
9
    {
      double mjj = 0;
10
      for (int k = 1; k < n; k += 2)
11
         mjj += b[k][j] * b[k - 1][j];
12
      mj[j] = mjj;
13
    }
14
15
    return mj;
16|}
17
18 mat twinograd mult(mat ta, mat tb, int m, int n, int q)
19|\{
20
    mat t c = create mat(m, q);
```

```
21
     arr t mj = calc mj(b, n, q);
22
     for (int i = 0; i < m; i++)
23
24
25
       double mi_i = 0;
       for (int k = 1; k < n; k += 2)
26
         mi_i += a[i][k] * a[i][k - 1];
27
28
29
       for (int j = 0; j < q; j++)
30
       {
         double cij = -(mi_i + mj[j]);
31
         int k = 1;
32
33
         int k1 = 0;
         for (; k < n; k += 2, k1 += 2)
34
           cij += (a[i][k] + b[k1][j]) * (a[i][k1] + b[k][j]);
35
36
         c[i][j] = cij;
37
    }
38
39
    if (n % 2)
40
41
42
       int n minus 1 = n - 1;
       for (int i = 0; i < m; i++)
43
         for (int j = 0; j < q; j++)
44
45
           c[i][j] += a[i][n\_minus1] * b[n\_minus1][j];
46
    }
47
     free arr(&mj);
48
49
     return c;
50 | }
51
52 #pragma optimize ( "", on )
```

3.3. Результаты тестирования

Для тестирования написанных функций был создан отдельный файл с вышеописаными классами тестов. Тестирование функций проводилось за счёт сравнения результов двух функций.

Состав тестов приведён в листинге 3.4.

Листинг 3.4: Модульные тесты

```
1|#include "tests.h"
2 // Сравнение результата умножения разными способами
3 bool cmp funcs (mat ta, mat tb, intm, int n, int q)
4 {
    mat_t c1 = classic_mult(a, b, m, n, q);
5
    mat t c2 = winograd mult(a, b, m, n, q);
6
    bool flag = cmp matrix(c1, c2, m, q);
7
    free mat(\&c1, m, q);
9
    free mat(\&c2, m, q);
    return flag;
10
11|}
12
13 // Матрицы с размером 1x1
  void size one test()
15|{
    mat t a = create mat(1, 1);
16
    mat t b = create mat(1, 1);
17
18
    a[0][0] = 0;
19
    b[0][0] = 1;
20
    if (!_cmp_funcs(a, b, 1, 1, 1))
21
22
    {
      std::cout << __FUNCTION__ << " - FAILED\n";
23
24
      return:
25
    }
```

```
26
27
     a[0][0] = 3;
    b[0][0] = 4;
28
    if (!_cmp_funcs(a, b, 1, 1, 1))
29
30
     {
       std::cout << __FUNCTION__ << " - FAILED\n";
31
32
       return;
     }
33
34
    free_mat(\&a, 1, 1);
35
    free mat(\&b, 1, 1);
36
37
    std::cout << __FUNCTION__ << " - OK\n";
38
39 }
40|// Нулевые матрицы
41 void _void _test()
42 {
    mat t a = random matrix(3, 2);
43
    mat_t b = void_matrix(2, 1);
44
    if (!_cmp_funcs(a, b, 3, 2, 1))
45
46
       std::cout << FUNCTION << " - FAILED\n";</pre>
47
       return;
48
     }
49
50
    free mat(\&a, 3, 2);
    a = void matrix(3, 2);
51
     if (!_cmp_funcs(a, b, 3, 2, 1))
52
53
    {
       std::cout << FUNCTION << " - FAILED\n";
54
55
       return;
56
    free mat(\&a, 3, 2);
57
     free mat(\&b, 2, 1);
58
     std::cout << FUNCTION << " - OK\n";
59
```

```
60 }
61// Квадратные матрицы
62 void square test()
63 | {
    mat t a = random matrix(4, 4);
64
    mat t b = random matrix (4, 4);
65
66
     if (! cmp funcs(a, b, 4, 4, 4))
67
68
       std::cout << __FUNCTION__ << " - FAILED\n";
69
70
       return;
71
    }
72
    free mat(\&a, 4, 4);
73
    free mat(\&b, 4, 4);
74
    std::cout << __FUNCTION__ << " - OK\n";
75
76 }
77 // Матрицы нечётного размера
78 void odd test()
79 {
    mat t a = random matrix(5, 3);
80
81
    mat t b = random matrix (3, 7);
82
     if (! cmp funcs(a, b, 5, 3, 7))
83
84
     {
       std::cout << FUNCTION << " - FAILED\n";
85
86
       return;
     }
87
88
     free mat(\&a, 5, 3);
89
    free mat(\&b, 3, 7);
90
    std::cout << __FUNCTION__ << " - OK\n";
91
92 }
93
```

Все тесты пройдены успешно.

3.4. Оценка трудоёмкости

Произведём оценку трудоёмкости алгоритов. Будем считать, что сортируется массив $\mathbf{A}[N]$

, максимальная разница двух элементов состоит из K элементов.

3.4.1. Алгоритм сортировки пузырьком

$$f_{bub} = 2 + (N-1) \cdot (2+3+\frac{N-1+1}{2} \cdot [3+4+\begin{cases} 0, & \text{л.с.} \\ 9, & \text{х.с.} \end{cases}])$$

$$f_{bub} = 2 + (N-1) \cdot (5+\frac{N}{2} \cdot [7+\begin{cases} 0, & \text{л.с.} \\ 9, & \text{х.с.} \end{cases}])$$
 Лучший случай (отсортированный массив):
$$f_{bub} = 2 + (N-1) \cdot (5+\frac{N}{2} \cdot 7) = \frac{7}{2}N^2 + \frac{3}{2}N - 3$$
 Худший случай (массив в обратном порядке):
$$f_{bub} = 2 + (N-1) \cdot (5+9N) = 9N^2 - 4N - 3$$

3.4.2. Алгоритм поразрядной сортировки

Функция нормализации массива:

$$f_{format} = 2 + 2 + N \cdot [2 + 4 + \begin{cases} 0, & \text{ л.с.} \\ 1, & \text{ x.c.} \end{cases}] + 2 + \begin{cases} 0, & \text{ л.с.} \\ 1 + 2 + N \cdot (2 + 2), & \text{ x.c.} \end{cases} +$$

$$1 + (2 + 3K)$$

$$f_{format} = 9 + 3K + 7N + \begin{cases} 0, & \text{s.c.} \\ 3 + 4N, & \text{s.c.} \end{cases}$$

Функция получения значения разряда:

$$f_{dig} = 3 + 2 = 5$$

Функция поразрядной сортировки:

$$f_{rad} = f_{format} + 1 + 2 + K \cdot (2 + 2 + 10(2 + 1) + 2 + N \cdot (2 + f_{dig} + 2) + 1 + 2 + 10(2 + 6) + 2 + N \cdot (2 + f_{dig} + 5) + 3) + 1 + \begin{cases} 0, & \text{л.с.} \\ 2 + N \cdot (2 + 2), & \text{х.с.} \end{cases}$$

$$f_{rad} = 24KN + 125K + 7N + 12 + \begin{cases} 0, & \text{л.с.} \\ 5 + 8N, & \text{х.с.} \end{cases}$$
Пумучий а кумучий (бол отрумато кумучу мусок):

Лучший случай (без отрицательных чисел):

$$f_{rad} = 24KN + 125K + 7N + 12$$

Худший случай (с отрицательными числами):

$$f_{rad} = 24KN + 125K + 15N + 17$$

3.4.3. Алгоритм сортировки слиянием

$$f_{mer} = 2 + \frac{N}{2} \cdot (2 + 4 + \begin{cases} 0, & \text{ л.c.} \\ 10, & \text{ x.c.} \end{cases}) + 1 + 2 + \log_2(N) \cdot (2 + \frac{2(1 - 2^{\log_2(N)})}{(1 - 2) \cdot \log_2(N)} \cdot [4 + 2 + 1 + \begin{cases} 1, & \text{ л.c.} \\ 2, & \text{ x.c.} \end{cases} + 3 + 2 + 1 + \frac{\log_2(N) * N}{2(1 - 2^{\log_2(N)})} \cdot \frac{1}{(1 - 2)} \cdot \frac{1}{(1 - 2)} \cdot \frac{1}{(1 - 2)} \cdot \frac{1}{(1 - 2) \cdot \log_2(N)} \cdot (2 + 3), \text{ x.c.}$$

$$\begin{cases} (3 + 4 + 1)/2 + (3 + 3)/2, & \text{ л.c.} \\ 3 + 4 + 1, & \text{ x.c.} \end{cases} = -21 + 29N + \begin{cases} 0, & \text{ л.c.} \\ 5N, & \text{ x.c.} \end{cases} + 12 \log_2(N) + \begin{cases} 2N - 2, & \text{ л.c.} \\ 4N - 4, & \text{ x.c.} \end{cases} + \frac{2N - 2}{4N - 4} \cdot \frac{1}{2N} \cdot \frac{1}{2N$$

$$(log_2(N)*N) \cdot \begin{cases} 7, & \text{л.с.} \\ 8, & \text{x.c.} \end{cases} + \begin{cases} 0, & \text{л.c.} \\ 2\log_2(N) + 10(N-1), & \text{x.c.} \end{cases}$$

Лучший случай (N является степенью 2, отсортированный массив):

$$f_{mer} = 7N\log_2(N) + 31N + 12\log_2(N) - 23$$

Худший случай (N является степенью 2 - 1, случайный массив):

$$f_{mer} = 8N \log_2(N) + 48N + 14 \log_2(N) - 35$$

3.5. Оценка времени

Для замера процессорного времени исполнения функции используется функция QueryPerformanceCounter библиотеки windows.h[2]. Проведение измерений производится в функции, приведённой в листинге 3.5.

Листинг 3.5: Функция замера процессорного времени работы функции

```
1 void test time(mat t(*f)(mat t, mat t, int, int, int), int n)
2|\{
    cout << "\Pазмерп матрицы: " << n << endl;
3
    mat t a = random matrix(n, n);
4
    mat t b = random matrix(n, n);
    mat t c;
6
7
    int count = 0;
    start_counter();
8
    while (get counter() < 3.0 * 1000) {
9
      c = f(a, b, n, n, n);
10
      free mat(\&c, n, n);
11
12
      count++;
13
    }
```

```
      14
      double t = get_counter() / 1000;

      15
      cout << "Выполнено " << count << " операций за " << t << " секунд" << endl;</td>

      16
      cout << "Время: " << t / count << endl;</td>

      17
      free_mat(&a, n, n);

      18
      free_mat(&b, n, n);

      19
      }
```

Исследовательская часть

План экспериментов

Измерения процессорного времени проводятся на квадратных матрица. Содержание матриц сгенерировано случайным образом. Ввиду разного поведения алгоритма Винограда для чётных и нечётных размерностей, время работы изучается двумя сериями экспериментов с размерностями матриц:

- 1. 50, 100, 200, 400, 800;
- 2. 51, 101, 201, 401, 801.

Для повышения точности, каждый замер производится пять раз, за результат берётся среднее арифметическое.

Результат экспериментов

По результатам измерений процессорного времени можно составить таблицу 4.1 и таблицу 4.2

Таблица 4.1: Чётная размерность матриц. Результат измерений процессорного времени (в секундах)

	50	100	200	400	800
Классический	$5.1 \cdot 10^{-4}$	$4.2 \cdot 10^{-3}$	0.037	0.32	3.54
Виноград	$3.2 \cdot 10^{-4}$	$2.7 \cdot 10^{-3}$	0.023	0.20	2.31

Таблица 4.2: Нечётная размерность матриц. Результат измерений процессорного времени (в секундах)

	51	101	201	401	801
Классический	$5.0 \cdot 10^{-4}$	$4.1 \cdot 10^{-3}$	0.034	0.35	3.48
Виноград	$3.3 \cdot 10^{-4}$	$2.5 \cdot 10^{-3}$	0.023	0.21	2.27

Эксперименты проводились на компьютере с характеристиками:

- OC Windows 10, 64 бит;
- Процессор Intel Core i7 8550U (1800 МГц);
- Объем ОЗУ: 8 ГБ.

Сравнительный анализ

По результатам экспериментов можно заключить следующее.

- Алгоритм Винограда затрачивает меньше времени, чем классический алгоритм умножения на всех исследованных размерах матриц.
- Существенных различий в процессорном времени при умножении матриц чётных и нечётных размеров у алгоритмп Винограда не выявлено.
- При увеличении размера матриц в 2 раза, наблюдается рост затраченного процессорного времени для обоих алгоритмов примерно в 8-10 раз, что соответсвует расчётам их трудоёмкости.

Заключение

В ходе лабораторной работы достигнута поставленная цель: оценка трудоёмкости алгоритма умножения матриц и получение практического навыка оптимизации алгоритмов. Решены все задачи работы.

Были изучены и описаны понятия трудоёмкости и операции умножения матриц. Также были описаны и реализованы алгоритмы умножения матриц. Был оптимизирован алгоритм Винограда. Проведены замеры процессорного времени работы каждого алгоритма при различных размерах матриц (в том числе чётных и нечётных), оценена трудоёмкость. На основании оценок и экспериментов проведён сравнительный анализ.

Список литературы

- 1. Методы сортировки: метод. указания к лаб. работе по дисциплине «Информационные технологии» для студентов направления подготовки бакалавра 210400 «Радиотехника» дневной формы обучения / НГТУ; Сост.: Е.Н.Приблудова, С.Б.Сидоров. Н.Новгород, 2012, 11 с. (дата обращения: 30.09.2020).
- 2. QueryPerformanceCounter function [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/enus/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter, свободный (дата обращения: 28.09.2020).