Algorytmy i struktury danych

Lista zadań 3

Zadanie 1

Ile (dokładnie) porównań wykona algorytm insertion_sort w wersji z wartownikiem (liczbą zapisaną pod adresem t[-1]), jeśli dane (a_1,\ldots,a_n) o rozmiarze n zawierają k inwersji. Liczba inwersji to liczba takich par (i,j), że i < j i $a_i > a_j$. Jaka jest maksymalna możliwa liczba inwersji dla danych rozmiaru n? Wylicz "średnią" złożoność algorytmu, jaka średnią z maksymalnej i minimalnej ilości porównań jaką wykona.

Uwaga: Prawdziwą średnią złożoność oblicza się, jako średnią po wszystkich możliwych permutacjach danych wejściowych.

Dokładna ilość porównań: n-1+k

Minimalna ilość porównań: n-1+0=n-1

Maksymalna ilość porównań: $n-1+\frac{n(n-1)}{2}=\frac{n^2+n-2}{2}$

Średnia ilość porównań: $\frac{n-1+\frac{n^2+n-2}{2}}{2}=\frac{n^2+3n-4}{4}$