

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Recuperatorio Segundo Examen Parcial									
Lic. en Ciencias de la Computación – Ing. en Computación	– Ing. en Sistemas o	de Información							
Apellido y Nombre:	LU:	Hojas entregadas:							
(en ese orden)		(sin enunciado)							
Profesor:									
NOTA: Resolver los ejercicios en hojas separadas. Poner n	nombre. LU v núm	ero en cada hoia.							

Ejercicio 1. Implementar la siguiente expresión aritmética $B = (((D+C)^2) + (A \times (D+C)) \times (D+C))$, siendo A, B, C y D etiquetas que denotan direcciones de memoria, y asumiendo que se cuenta con las instrucciones add y mpy, para las siguientes arquitecturas:

- a) Una arquitectura de **0**—**direcciones** (tipo pila), contando con la instrucción **dup** (duplica el tope de la pila). Determinar la profundidad de la pila alcanzada.
- b) Una arquitectura estilo **RISC**, registro a registro, sin restricción en la cantidad de registros, y con instrucciones lda, ld y st. Indicar la cantidad de accesos a memoria realizados.
- c) Una arquitectura de **1**-dirección + registro (tipo Intel), sin restricción en la cantidad de registros y con la instrucción mov. Indicar la cantidad de accesos a memoria requeridos.

Ejercicio 2. En el marco de la norma IEEE 754, considerando la representación en punto flotante simplificada: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Dados los números $X=(0\ 01111101\ 0000000111)$ e $Y=(0\ 01111010\ 0000001001)$ realizar el producto $X\times Y$ aplicando redondeo por proximidad hacia los pares, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits \mathbf{G} , \mathbf{R} y \mathbf{S} del resultado y con \mathbf{R} y \mathbf{S} al redondear. El resultado debe ser expresando según la representación enunciada. Finalmente, convierta el número hallado a decimal e indique el error existente entre este valor y el obtenido al operar la multiplicación directamente sobre X e Y en decimal.

(Pista: X = 0.251708984, Y = 0.031524658, $X \times Y = 0.00793503969907761$).

Ejercicio 3. Considerando la representación en punto flotante propuesta para el ejercicio anterior, y los números $X = (0\ 01111100\ 0010000000)$ e $Y = (0\ 01111001\ 0000110011)$, realizar la suma X + Y aplicando redondeo hacia $+\infty$, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits G, R y S del resultado y con R y S al redondear. El resultado debe ser expresando según la representación enunciada. Finalmente, convierta el número hallado a decimal e indique el error existente entre este valor y el obtenido al operar la suma directamente sobre X e Y en decimal.

(Pista: X = 0.140625, Y = 0.016403198, X + Y = 0.157028198242187).

Ejercicio 4. Dados los valores indicados tanto para el banco de registros como para las etiquetas de memoria, indicar para cada modo de direccionamiento, el registro R y/o el número hexadecimal xxxx necesarios para mover el operando 100h al registro R6. Luego, indicar en cada paso cuántos accesos a memoria se realizan por la instrucción.

				(1) mov R6, #xxxx	Interpretación							
Reg.	Cont.	Dir.	Cont.	$\begin{array}{c} \text{(1) mov Ro, } \frac{1}{2} \text{AAAA} \\ \text{(2) mov Ro, R} \end{array}$	#xxxx R	Inmediato Registro						
R1	100h	100h		(3) mov R6, (R)	(R)	Registro indirecto						
R2	200h	200h		(4) mov R6, xxxx	XXXX	Absoluto						
R3 R4	300h 400h	400h 600h		(5) mov R6, (xxxx) (6) mov R6, (R2)xxxx	(xxxx) $(R)xxxx$	Memoria indirecto Base						
				(7) mov R6, @300(R)	$(\mathbf{R})\mathbf{x}\mathbf{x}\mathbf{x}$ $(\mathbf{R})\mathbf{x}\mathbf{x}$	Pre-indexado indirecto						

Ejercicio 5. Considerando el programa A para la arquitectura OCUNS, en la que toda lectura/escritura sobre la dirección FF es redireccionada a la E/S estándar, y los pseudocódigos 1 y 2 indicados a continuación:

Programa A: LDA RO, FFh LOAD R1, O(RO) ADD R2, RF, RF JZ R1, 1b12 1b11: ADD R2, R2, R1 DEC R1 JG R1, 1bl1 1b12: STORE R2, 0(R0) HLT Pseudocódigo 1 if $(R1 \le 4) R2++;$ else R2--; Pseudocódigo 2 R3 = 0;for(R4 = 0; R4 < 10; R4++)R3 += R4;

OP.	Descr.	Form.	Pseudocódigo						
0	add	I	$R[d] \leftarrow R[s] + R[t]$						
1	sub	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} - \texttt{R[t]}$						
2	and	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \& \texttt{R[t]}$						
3	xor	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$						
4	Ish	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \mathrel{<<} \texttt{R[t]}$						
5	rsh	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} >> \texttt{R[t]}$						
6	load	I	$\texttt{R[d]} \leftarrow \texttt{mem[offset} + \texttt{R[s]]}$						
7	store	I	$\texttt{mem}[\texttt{offset} + \texttt{R[d]}] \leftarrow \texttt{R[s]}$						
8	lda	II	$R[d] \leftarrow addr$						
9	jz	II	if $(R[d] == 0)$ PC \leftarrow PC + addr						
\mathbf{A}	jg	II	if (R[d] > 0) PC \leftarrow PC + addr						
В	call	II	$R[d] \leftarrow PC; PC \leftarrow addr$						
\mathbf{C}	jmp	III	$PC \leftarrow R[d]$						
D	inc	III	$R[d] \leftarrow R[d] + 1$						
\mathbf{E}	dec	III	$R[d] \leftarrow R[d] - 1$						
\mathbf{F}	hlt	III	exit						

FORMATO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	×	×	×	dest. d					src	. s		src. t / off.			
II	1	0	×	×	dest. d				address addr							
III	1	1	×	×		dest	. d					-	-			

- a) Ensamblar el programa A a partir de la dirección 00h.
- b) Suponiendo que se ingresa por teclado el valor 03h, realice una traza del programa A mostrando la evolución del contenido de cada registro y del PC (paso a paso), y luego describa el propósito del programa en su conjunto.
- c) Indique una secuencia de instrucciones para la arquitectura OCUNS, que sea equivalente al pseudocódigo 1.
- d) Indique una secuencia de instrucciones para la arquitectura OCUNS, que sea equivalente al pseudocódigo 2.