Formulário

TRIGNOMETRIA

Alguns valores de funções trigonométricas

$$\cos 0 = 1 \qquad \sin 0 = 0 \qquad \text{tg } 0 = 0$$

$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \qquad \sin \frac{\pi}{6} = \frac{1}{2} \qquad \text{tg } \frac{\pi}{6} = \frac{\sqrt{3}}{3}$$

$$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \qquad \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \qquad \text{tg } \frac{\pi}{4} = 1$$

$$\cos \frac{\pi}{3} = \frac{1}{2} \qquad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \qquad \text{tg } \frac{\pi}{3} = \sqrt{3}$$

$$\cos \frac{\pi}{2} = 0 \qquad \sin \frac{\pi}{2} = 1$$

Algumas relações trigonométricas

$$\operatorname{sen}^{2} x + \cos^{2} x = 1; \quad \operatorname{tg}^{2} x + 1 = \frac{1}{\cos^{2} x}$$
$$\operatorname{sen}(x+y) = \operatorname{sen} x \cos y + \cos x \operatorname{sen} y$$
$$\cos(x+y) = \cos x \cos y - \operatorname{sen} x \operatorname{sen} y$$
$$\operatorname{sen} 2x = 2 \operatorname{sen} x \cos x$$
$$\cos 2x = 2 \cos^{2} x - 1 = 1 - 2 \operatorname{sen}^{2} x$$

Funções exponenciais e logarítmicas

Leis dos expoentes

$$1. b^{x+y} = b^x b^y;$$

$$2. b^{x-y} = \frac{b^x}{b^y};$$

3.
$$b^{xy} = (b^x)^y$$
;

$$4. (ab)^x = a^x b^x.$$

Leis dos logaritmos

Se x > 0 e y > 0, tem-se

1.
$$\log_a(xy) = \log_a x + \log_a y;$$

2.
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$
;

3.
$$\log_a(x^r) = r \log_a x$$
 (onde $r \in \mathbb{R}$)

Equações de cancelamento

1.
$$\log_b(b^x) = x, (x \in \mathbb{R});$$

2. $b^{\log_b x} = x, (x > 0).$

2.
$$b^{\log_b x} = x$$
, $(x > 0)$.

1. $\log_a(xy) = \log_a x + \log_a y;$ 2. $\log_a \frac{x}{y} = \log_a x - \log_a y;$ 3. $\log_a(x^r) = r \log_a x$ (onde $r \in \mathbb{R}$) 1. $\log_b(v) = x, (x \in \mathbb{R}),$ 2. $b^{\log_b x} = x, (x > 0).$ Mudança de base: $\log_b x = \frac{\log_a x}{\log_a b}$ Notação: $\log_e x = \ln x$

DERIVADAS

Reta tangente ao gráfico

• Se f é uma função derivável em a, então f'(a) é o declive da reta tangente ao gráfico de f em (a, f(a)) e y = f(a) + f'(a)(x - a) é uma equação da reta tangente ao gráfico de f em (a, f(a)).

Algumas propriedades

- Se f é uma função derivável em a, então, para qualquer número real c, tem-se (cf)'(a) = cf'(a).
- Se f e q são funções deriváveis em a, então
 - f + g é derivável em a e (f + g)'(a) = f'(a) + g'(a);
 - $f \cdot g$ é derivável em ae $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$
 - se $g(a) \neq 0$ então f/g é derivável em a e $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) f(a) \cdot g'(a)}{(g(a))^2}$.
- Se f é derivável em a e g é derivável em f(a), então $g \circ f$ é derivável em a e

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ Na notação de Leibniz: se y = f(u) e u = g(x) são ambas funções diferenciáveis, então

Derivadas de algumas funções

Se
$$f(x) = c$$
, então $f'(x) = 0$, para qualquer $c \in \mathbb{R}$.

Se
$$f(x) = x^k$$
, então $f'(x) = kx^{k-1}$, para qualquer $k \in \mathbb{R}$.

Se
$$f(x) = x$$
, entao $f(x) = kx$, para qualquer $k \in \mathbb{R}$

Se
$$f(x) = \operatorname{sen} x$$
, então $f'(x) = \cos x$.
Se $f(x) = \operatorname{arcsen} x$, então $f'(x) = \frac{1}{\sqrt{1-x^2}}$.
Se $f(x) = \operatorname{arccos} x$, então $f'(x) = -\frac{1}{\sqrt{1-x^2}}$.

Se
$$f(x) = \operatorname{tg} x$$
, então $f'(x) = \frac{1}{1+x^2}$. Se $f(x) = \operatorname{arctg} x$, então $f'(x) = \frac{1}{1+x^2}$.

Se
$$f(x) = e^x$$
, então $f'(x) = e^x$. Se $f(x) = \ln |x|$, então $f'(x) = \frac{1}{x}$.

Se
$$f(x) = a^x$$
, então $f'(x) = a^x \ln a$. Se $f(x) = \log_a |x|$, então $f'(x) = \frac{1}{x \ln a}$.

PRIMITIVAS

Lista de primitivas imediatas

$$\int k \, dx = kx + C$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1$$

$$\int e^x \, dx = e^x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \frac{1}{(\cos x)^2} \, dx = \operatorname{tg} x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \operatorname{arcsen} x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \operatorname{arccen} x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \operatorname{arccen} x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \operatorname{arccen} x + C$$

Técnicas de primitivação

• Primitivação por substituição Se u=g(x) é uma função derivável cujo contradomínio é um intervalo I e f é primitivável em I, então $f\circ g$ é primitivável em I e

$$\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du$$

Primitivação por Partes
 Se f e g forem funções deriváveis, então

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx \tag{1}$$

Fazendo u = f(x) e v = g(x), a Fórmula (1) toma a forma

$$\int u \, dv = uv - \int v \, du$$

• Primitivação de funções racionais Qualquer função racional $\frac{P(x)}{Q(x)}$ com $\operatorname{gr} P(x) < \operatorname{gr} Q(x)$ pode ser escrita como soma de frações cujos denominadores sejam potências de polinómios irredutíveis, isto é, polinómios de grau 1 ou de grau 2 irredutíveis, os quais são factores da decomposição de Q(x) em produto de polinómios irredutíveis. Além disso, os numeradores destas frações têm grau inferior ao do polinómio irredutível que aparece no denominador.

Lista de primitivas de funções racionais

$$\int \frac{1}{x+a} dx = \ln|x+a| + C \qquad \qquad \int \frac{1}{(x+a)^n} = -\frac{1}{(n-1)(x+a)^{n-1}} + C, \ n > 1$$

$$\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C, \ a \neq 0 \qquad \qquad \int \frac{1}{(x+b)^2+a^2} = \frac{1}{a} \arctan \frac{x+b}{a} + C, \ a \neq 0$$

$$\int \frac{2x}{x^2+a^2} dx = \ln(x^2+a^2) + C \qquad \qquad \int \frac{2x+b}{x^2+bx+c} dx = \ln|x^2+bx+c| + C$$

$$\int \frac{2x+b}{(x^2+bx+c)^n} dx = -\frac{1}{(n-1)(x^2+bx+c)^{n-1}} + C, \ n \neq 1$$

$$\int \frac{1}{(x^2+a^2)^n} dx = \frac{x}{(2n-2)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{(2n-2)a^2} \int \frac{1}{(x^2+a^2)^{n-1}} dx, \ n > 1$$