Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 По дисциплине: «Основы машинного обучения» Тема: «Знакомство с анализом данных: предварительная обработка и визуализация»

Выполнил: Студент 3-го курса Группы АС-65 Кисель М. С. Проверил: Крощенко А.А. **Цель работы:** Получить практические навыки работы с данными с использованием библиотек **Pandas** для манипуляции и **Matplotlib** для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков

Ход работы

Общее задание:

- 1. Загрузить предложенный набор данных (по вариантам) в DataFrame библиотеки Pandas.
- 2. Провести исследовательский анализ: изучить типы данных, количество пропусков, основные статистические показатели (среднее, медиана, стандартное отклонение).
- 3. Обработать пропущенные значения (например, заполнить средним значением или удалить строки/столбцы).
 - 4. Преобразовать категориальные признаки в числовые с помощью метода One-Hot Encoding.
 - 5. Выполнить нормализацию или стандартизацию числовых признаков.
- 6. Построить несколько графиков для визуализации данных (гистограммы, диаграммы рассеяния) и сделать выводы о зависимостях между признаками.
- 7. Написать отчет, создать пул-реквест в репозиторий с кодом решения и отчетом в формате pdf.

Используемые инструменты: Python, Pandas, Matplotlib, NumPy, Jupyter Notebook / Google Colab / PyCharm

Вариант 8

Выборка Pima Indians Diabetes. Содержит медицинские показатели женщин из племени Пима и информацию о наличии у них диабета.

Задачи:

- 1. Загрузите данные и выведите их статистические характеристики.
- 2. Проанализируйте столбцы Glucose, BloodPressure, SkinThickness. Нулевые значения в них, скорее всего, являются ошибками. Замените их медианным значением соответствующего столбца.
 - 3. Постройте гистограммы для признаков ВМІ и Age.
 - 4. Создайте матрицу корреляции только для признаков Glucose, BMI, Age и Outcome
 - 5. Визуализируйте распределение Outcome (наличие диабета) с помощью круговой диаграммы.
 - 6. Примените стандартизацию ко всем признакам, кроме Outcome.

```
Код программы:
```

```
import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
#Заголовки в csv-файле(Задаем вручную)
columns = [
    "Pregnancies",
    "Glucose",
    "BloodPressure",
    "SkinThickness",
    "Insulin",
    "BMI",
    "DiabetesPedigreeFunction",
    "Age",
    "Outcome"
1
# Загрузка и первичный просмотр данных
os.chdir("d:/Универ/ОМО/ОМО2025/Лаба1/")
df = pd.read csv("pima-indians-diabetes.csv", comment="#", names=columns, header=None)
```

```
print("Первые 5 строк:")
      print(df.head())
      print("\пИнформация о данных:")
      print(df.info())
      print("\nСтатистика по числовым признакам:")
      print(df.describe())
      # Замена скрытых пропусков (нулей) на медиану
      cols = ['Glucose', 'BloodPressure', 'SkinThickness']
      for c in cols:
          median = df[c].median()
          df[c] = df[c].replace(0, median)
      # Визуализация распределений BMI и Age
      plt.figure(figsize=(12, 5))
      plt.subplot(1, 2, 1)
      df['BMI'].hist(bins=20, color='skyblue', edgecolor='black')
      plt.title('Распределение ВМІ')
      plt.xlabel('BMI')
      plt.ylabel('Количество')
      plt.subplot(1, 2, 2)
      df['Age'].hist(bins=20, color='salmon', edgecolor='black')
      plt.title('Распределение возраста')
      plt.xlabel('Bospact')
      plt.ylabel('Количество')
      plt.tight_layout()
      plt.show()
      # Матрица корреляции (Glucose, BMI, Age, Outcome)
      subset = df[['Glucose', 'BMI', 'Age', 'Outcome']]
      corr = subset.corr()
      print("\nМатрица корреляции:")
      print(corr)
      plt.figure(figsize=(6, 5))
      sns.heatmap(corr, annot=True, cmap='coolwarm')
      plt.title('Матрица корреляции')
      plt.show()
      # Круговая диаграмма распределения Outcome
      outcome_counts = df['Outcome'].value_counts()
      plt.figure(figsize=(6, 6))
      plt.pie(outcome_counts, labels=['Без диабета', 'С диабетом'], autopct='%1.1f%%', colors=['lightgreen',
'lightcoral'])
      plt.title('Распределение наличия диабета')
      plt.show()
      # Стандартизация признаков (кроме Outcome)
      scaler = StandardScaler()
      features = df.drop('Outcome', axis=1)
      scaled_features = scaler.fit_transform(features)
      df_scaled = pd.DataFrame(scaled_features, columns=features.columns)
      df_scaled['Outcome'] = df['Outcome']
      print("\nСтандартизированные данные:")
      print(df_scaled.head())
```

Диаграмма, матрица и гистограммы после выполнения программы:

Консольный вывод:

Первые 5 строк:

	Pregnancies	Glucose	BloodPres	sure	SkinThickness	Insulin BMI	Dial	betesPedigreeF	Function Age	Outcome
0	6 1	148	72	35	0 33.6	0.627	50	1		
1	. 1	85	66	29	0 26.6	0.351	31	0		
2	2 8 1	183	64	0	0 23.3	0.672	32	1		
3	1	89	66	23	94 28.1	0.167	21	0		
Δ	. 0 1	137	40	35	168 43 1	2 288	33	1		

Информация о данных:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

#	Column	Non-Null Count Dtype
0	Pregnancies	768 non-null int64
1	Glucose	768 non-null int64
2	BloodPressure	768 non-null int64
3	SkinThickness	768 non-null int64
4	Insulin	768 non-null int64
5	BMI	768 non-null float64
6	Diahataa Dadiamaa	Eumation 760 man mult flac

6 DiabetesPedigreeFunction 768 non-null float64

7 Age 768 non-null int64 8 Outcome 768 non-null int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

None

Статистика по числовым признакам:

Pı	regnancies	Glucose Blo	odPressure Sk	inThickness	Insulin	BMI Diabete	sPedigreeFunction	Age Outcome	
count	768.00000	0 768.000000	768.000000	768.00000	00 768.000	768.000000	768.000000	768.000000 768.00000	0
mean	3.845052	120.894531	69.105469	20.536458	79.79947	79 31.992578	0.471876 33	.240885 0.348958	
std	3.369578	31.972618	19.355807	15.952218 1	15.244002	7.884160	0.331329 11.76	60232 0.476951	
min	0.000000	0.000000	0.000000	0.000000 0	.000000	0.000000	0.078000 21.0000	000 0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750 24.00	000000 0.000000	
50%	3.000000	117.000000	72.000000	23.000000	30.50000	0 32.000000	0.372500 29	.000000 0.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.2500	00 36.600000	0.626250 41	1.000000 1.000000	
max	17.000000	199.000000	122.000000	99.000000	846.0000	000 67.100000	2.420000 8	31.000000 1.000000	

Матрица корреляции:

Glucose BMI Age Outcome
Glucose 1.000000 0.235035 0.266909 0.492782
BMI 0.235035 1.000000 0.036242 0.292695
Age 0.266909 0.036242 1.000000 0.238356
Outcome 0.492782 0.292695 0.238356 1.000000

Стандартизированные данные:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age Outcome
0	0.639947	0.866045	-0.031990	0.831114 -0.6	92891 0.	204013	0.468492 1.425995	1
1	-0.844885	-1.205066	-0.528319	0.180566 -0.6	592891 -0	.684422	-0.365061 -0.19067	2 0
2	1.233880	2.016662	-0.693761	-0.469981 -0.6	92891 -1	.103255	0.604397 -0.105584	4 1
3	-0.844885	-1.073567	-0.528319	-0.469981 0.1	23302 -0	.494043	-0.920763 -1.04154	9 0
4	-1.141852	0.504422	-2.679076	0.831114 0.7	65836 1.	409746	5.484909 -0.020496	5 1