Tutorial 1 - Introduction and Regular Languages

2/2/2020 - 5/2/2020

Name	Nourhan Ehab Azab
Email	nourhan.ehab@guc.edu.eg
Office	C7.305
Office Hours	Wednesday 5 th

Today's Plan

- Administrivia
- Motivation and Course Plan
- Regular Languages
- 4 Recap

Today's Plan

- 1 Administrivia
- Motivation and Course Plan

Grading Scheme and Communication Channels

Quizzes (2/3)	25%
Assignments $(2/2)$	10%
Midterm	25%
Final	40%

- Course Material:
 - http://met.guc.edu.eg/Courses/CourseEdition.aspx?crsEdId=996
- Piazza Course Page: piazza.com/guc.edu.eg/spring2020/csen1003/home

- Administrivia
- 2 Motivation and Course Plan
- Regular Languages
- 4 Recap

What Do You Expect We Will Do?

What is a Compiler?

Compilers vs Interpreters

Overall structure of a Compiler

1 A compiler can be viewed as a general language processor.

- 1 A compiler can be viewed as a general language processor.
- 2 Studying compilers will involve studying a lot of useful data structures and algorithms.

But Why Study Compiler Construction?

- 1 A compiler can be viewed as a general language processor.
- 2 Studying compilers will involve studying a lot of useful data structures and algorithms.
- 3 It is a very successful realization of computer science.

- Motivation and Course Plan
- Regular Languages

- The lexical analyzer needs to scan the input to identify valid tokens.
- For programming languages, tokens can be expressed by regular languages.

Regular Expressions - Exercise 1-3

Example

Write a regular expression for each of the following regular languages. The alphabet $\Sigma = \{0, 1\}$.

- a $L_1 = \{ w \mid w \text{ begins with a 1 and ends with a 0} \}.$
- **b** $L_2 = \{ w \mid w \text{ contains the substring 0101} \}.$
- **a** $L_3 = \{ w \mid \text{ every odd position of } w \text{ is a } 1 \}$
- **d** $L_4 = \{ w \mid w \text{ contains at least two 0 and at most one 1} \}$

Regular Languages 000000

DFA and NFA Design - Exercise 1-2

Example

Give the DFA and NFA state diagrams recognizing each of the following regular languages. The alphabet $\Sigma = \{0, 1\}$.

- a $L_1 = \{ w \mid w \text{ begins with a 1 and ends with a 0} \}.$
- **b** $L_2 = \{ w \mid w \text{ contains the substring 0101} \}.$
- **a** $L_3 = \{ w \mid \text{ every odd position of } w \text{ is a } 1 \}$
- **d** $L_4 = \{ w \mid w \text{ contains at least two 0 and at most one 1} \}$

Example

Convert the regular expression you wrote in 1-3 (a) to an NFA.

From Regular Expressions to NFAs to DFAs

Example

Convert the NFA you got to a DFA.

- Administrivia
- 2 Motivation and Course Plan
- Regular Languages
- 4 Recap

- 1 Compilers, Interpreters, and Hybrid Approaches.
- 2 Stages of Compilation.
- Recap of Regular Languages.
 - Regular Expressions.
 - From Regular Expressions to NFAs.
 - From NFAs to DFAs.

Next Week: Lexical Analysis!