

US012390633B2

(12) United States Patent

Stotz et al.

(54) BEARING DEVICE FOR A HEART SUPPORT SYSTEM, AND METHOD FOR RINSING A SPACE IN A BEARING DEVICE FOR A HEART SUPPORT SYSTEM

(71) Applicant: KARDION GMBH, Stuttgart (DE)

(72) Inventors: Ingo Stotz, Ditzingen (DE); Fabian

Eiberger, Gerlingen (DE)

(73) Assignee: Kardion GmbH, Stuttgart (DE)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1196 days.

(21) Appl. No.: 17/266,044

(22) PCT Filed: Aug. 7, 2019

(86) PCT No.: **PCT/EP2019/071233**

§ 371 (c)(1),

(2) Date: Sep. 29, 2021

(87) PCT Pub. No.: **WO2020/030700**

PCT Pub. Date: Feb. 13, 2020

(65) Prior Publication Data

US 2022/0008714 A1 Jan. 13, 2022

(30) Foreign Application Priority Data

Aug. 7, 2018 (DE) 102018213150.3

(51) **Int. Cl.**

A61M 60/824 (2021.01) **A61M 60/178** (2021.01)

(Continued)

(52) U.S. Cl.

CPC A61M 60/824 (2021.01); A61M 60/178 (2021.01); A61M 60/183 (2021.01);

(Continued)

(10) Patent No.: US 12,390,633 B2

(45) **Date of Patent:** Aug. 19, 2025

(58) Field of Classification Search

CPC .. A61M 60/237; A61M 60/82; A61M 60/216; A61M 60/804; A61M 60/806

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2,254,698 A 9/1941 Hansen, Jr. 2,310,923 A 2/1943 Bean (Continued)

FOREIGN PATENT DOCUMENTS

AU 7993698 2/1999 AU 2002308409 12/2005 (Continued)

OTHER PUBLICATIONS

"ABMD—Taking a Closer Look at Impella ECP as the Pivotal Trial Gets Underway", Guggenheim, Press Release, Mar. 29, 2022, pp. 4. (Continued)

Primary Examiner — Christopher D. Prone (74) Attorney, Agent, or Firm — Knobbe Martens Olson & Bear LLP

(57) ABSTRACT

The invention relates to a bearing device (100) for a cardiac support system. The bearing device (100) comprises a stand unit (105) and an impeller (110). The stand unit (105) is designed to support the impeller (110) such that it can rotate. The impeller (110) is designed to rotate during an operation of the cardiac support system in order to convey a pump fluid flow (115). The impeller (110) is designed to enclose at least one subsection (120) of the stand unit (105) in the assembled state of the bearing device (100), wherein an intermediate space (125) for guiding a flushing fluid flow (130) is provided between the subsection (120) and the impeller (110). At least one flushing outlet (135) is formed in the impeller (110). The flushing outlet (135) is designed to discharge the flushing fluid flow (130) from the interme-(Continued)

diate space (125) by means cardiac support system is in	5,720,771 A 5,746,709 A 5,749,855 A		Snell Rom et al. Reitan	
20 Claims, 10	5,752,976 A 5,766,207 A 5,831,365 A 5,888,241 A	6/1998	Duffin et al. Potter et al. Keim et al. Jarvik	
		5,888,242 A 5,904,646 A	3/1999 5/1999	Antaki et al. Jarvik
(51) Int. Cl.		5,911,685 A	6/1999	
A61M 60/183	(2021.01)	5,921,913 A	7/1999	
A61M 60/216	(2021.01)	5,964,694 A 6,001,056 A	10/1999 12/1999	Jassawalla et al.
A61M 60/232 A61M 60/806	(2021.01) (2021.01)	6,007,303 A	12/1999	
A61M 60/82	(2021.01)	6,007,478 A 6,018,208 A		Siess et al. Maher et al.
A61M 60/825	(2021.01)	6,050,975 A		Poirier
(52) U.S. Cl.	(=====)	6,071,093 A	6/2000	
()	0/216 (2021.01); A61M 60/232	6,116,862 A 6,123,659 A		Rau et al. le Blanc et al.
	61M 60/806 (2021.01); A61M	6,135,710 A		Araki et al.
60/82 (202	1.01); A61M 60/825 (2021.01)	6,149,405 A		Abe et al.
(5C) D.C	C' I	6,155,969 A 6,158,984 A		Schima et al. Cao et al.
(56) Referen	nces Cited	6,161,838 A	12/2000	Balsells
U.S. PATENT	DOCUMENTS	6,176,848 B1		Rau et al. Maher et al.
		6,186,665 B1 6,210,318 B1		Lederman
	Tomlinson Heilman	6,217,541 B1	4/2001	Yu
	Karnegis	6,220,832 B1 6,227,820 B1	4/2001 5/2001	
3,614,181 A 10/1971		6,245,007 B1		Bedingham et al.
	Klein et al. Milligan	6,254,359 B1	7/2001	
	Watkins et al.	6,264,205 B1 6,264,601 B1		Balsells Jassawalla et al.
	Knorr	6,264,645 B1	7/2001	Jonkman
4,245,622 A 1/1981 4,471,252 A 9/1984	Hutchins, IV West	6,293,752 B1		Clague et al.
4,522,194 A 6/1985	Normann	6,351,048 B1 6,361,292 B1		Schob et al. Chang et al.
	Wampler Clausen et al.	6,432,136 B1	8/2002	Weiss et al.
	Kensey et al.	6,445,956 B1		Laird et al.
4,779,614 A 10/1988	Moise	6,447,266 B2 6,527,698 B1		Antaki et al. Kung et al.
	Singh et al. Wampler	6,530,876 B1	3/2003	Spence
	Wampler et al.	6,533,716 B1 6,540,658 B1	3/2003	Schmitz-Rode et al. Fasciano et al.
	Kung et al.	6,544,216 B1		Sammler et al.
	Salem et al. Moise et al.	6,579,257 B1		Elgas et al.
7 7	Carlson et al.	6,589,031 B2 6,592,620 B1		Maeda et al. Lancisi et al.
	Milder et al.	6,595,743 B1		Kazatchkov et al.
	Moise et al. Dorman	6,607,368 B1 6,623,475 B1		Ross et al.
4,943,275 A 7/1990	Stricker	6,719,791 B1	9/2003 4/2004	Nüsser et al.
	Carriker et al. Moutafis et al.	6,794,789 B2	9/2004	Siess et al.
4,971,768 A 11/1990	Ealba	6,841,910 B2 6,879,126 B2	1/2005 4/2005	Gery Paden et al.
	Orejola Dorman	6,912,423 B2		Ley et al.
, ,	Wampler	6,942,611 B2	9/2005	
5,089,016 A 2/1992	Millner et al.	6,949,066 B2 6,969,345 B2		Bearnson et al. Jassawalla et al.
	Moutafis et al. Hwang et al.	7,011,620 B1	3/2006	Siess
	Summers et al.	7,014,620 B2 7,022,100 B1	3/2006	Kim Aboul-Hosn et al.
	Milder et al.	7,027,875 B2		Siess et al.
5,195,877 A 3/1993 5,297,940 A 3/1994	Kletschka Buse	7,070,398 B2		Olsen et al.
5,313,765 A 5/1994	Martin	7,070,555 B2 7.083,588 B1	7/2006 8/2006	Siess Shmulewitz et al.
	Palma et al.	7,144,364 B2	12/2006	Barbut et al.
5,354,271 A 10/1994 5,376,114 A 12/1994		7,160,243 B2		Medvedev
5,399,145 A 3/1995	Ito et al.	7,238,151 B2 7,241,257 B1		Frazier Ainsworth et al.
5,405,383 A 4/1995 5,443,503 A 8/1995	Barr Yamane	7,264,606 B2		Jarvik et al.
5,456,715 A 10/1995		7,393,181 B2	7/2008	McBride et al.
5,527,159 A 6/1996	Bozeman, Jr. et al.	7,462,019 B1		Allarie et al.
	Chen et al. Jarvik	7,479,102 B2 7,502,648 B2	1/2009 3/2009	Jarvik Okubo et al.
5,695,471 A 12/1997	Wampler	7,736,296 B2	6/2010	Siess et al.
5,702,430 A 12/1997	Larson, Jr. et al.	7,762,941 B2	7/2010	Jarvik

(56)		R	eferen	ces Cited	9,370,613			Hsu et al.
	TI	C DA	TENT	DOCUMENTS	9,371,826 9,381,286			Yanai et al. Spence et al.
	U	.S. FA	TENI	DOCUMENTS	9,421,311			Tanner et al.
	7,798,952 E	32 (9/2010	Tansley et al.	9,433,713	B2		Corbett et al.
	7,841,976 E			McBride et al.	9,440,013			Dowling et al.
	7,850,593 E			Vincent et al.	9,486,566		11/2016	
	7,878,967 E			Khanal	9,492,601 9,533,084			Casas et al. Siess et al.
	7,914,436 E		3/2011	Nuesser et al.	9,539,378			Tuseth
	7,934,909 E 7,959,551 E		5/2011 6/2011		9,550,017			Spanier et al.
	7,963,905 E			Salmonsen et al.	9,555,173		1/2017	Spanier
	7,998,190 E	32		Gharib et al.	9,555,175			Bulent et al.
	8,012,079 E			Delgado, III	9,556,873 9,561,313		2/2017	Yanai et al.
	8,075,472 E			Zilbershlag et al.	9,561,314			Aboul-Hosn et al.
	8,088,059 E 8,114,008 E		1/2012	Hidaka et al.	9,579,433			LaRose et al.
	8,123,669 E			Siess et al.	9,585,991		3/2017	
	RE43,299 E		4/2012		9,592,397			Hansen et al.
	8,152,845 E			Bourque	9,616,157		4/2017	
	8,177,703 E			Smith et al.	9,623,162 9,623,163		4/2017	Graham et al.
	8,216,122 E		7/2012	Kung Shifflette	9,636,442			Karmon et al.
	8,371,997 E 8,376,926 E			Benkowsi et al.	9,669,144		6/2017	Spanier et al.
	8,382,695 E		2/2013		9,675,738			Tanner et al.
	8,388,565 E			Shifflette	9,675,739			Tanner et al.
	8,419,609 E			Shambaugh, Jr. et al.	9,675,740			Zeng et al.
	8,449,443 E			Rodefeld et al.	9,682,180 9,731,058		8/2017	Hoarau et al. Siebenhaar et al.
	8,480,555 E		7/2013		9,751,038			Zimmermann et al.
	8,485,961 E 8,512,012 E			Campbell et al. Akdis et al.	9,770,543			Tanner et al.
	8,535,211 E			Campbell et al.	9,789,238			Aboul-Hosn et al.
	8,545,380 E	32 10		Farnan et al.	9,801,990		10/2017	
	8,562,508 E			Dague et al.	9,814,813		11/2017	
	8,585,572 E			Mehmanesh	9,821,100			Corbett et al.
	8,591,393 E			Walters et al.	9,833,550 9,849,223		12/2017 12/2017	
	8,591,538 E			Gellman	9,872,948		1/2018	
	8,591,539 E 8,597,170 E			Gellman Walters et al.	9,878,087			Richardson et al.
	8,617,239 E		2/2013		9,907,890		3/2018	Muller
	8,622,949 E			Zafirelis et al.	9,919,087			Pfeffer et al.
	8,641,594 E	32	2/2014	LaRose et al.	9,950,101			Smith et al.
	8,657,875 E			Kung et al.	9,968,719 9,999,714		5/2018	Spanier et al.
	8,684,362 E			Balsells et al.	10,029,037			Muller et al.
	8,684,904 E 8,690,749 E		4/2014 4/2014	Campbell et al.	10,123,875			Wildhirt et al.
	8,721,517 E			Zeng et al.	10,124,102		11/2018	Bulent et al.
	8,727,959 E			Reitan et al.	10,130,742		11/2018	
	8,731,664 E	32	5/2014	Foster et al.	10,149,932			McBride et al.
	8,734,331 E			Evans et al.	10,179,197 10,201,645		2/2019	Kaiser et al.
	8,814,933 E		8/2014 9/2014		10,207,043			Neumann
	8,849,398 E 8,864,642 E			Scheckel	10,220,129			Ayre et al.
	8,864,643 E			Reichenbach et al.	10,232,099	B2	3/2019	Peters et al.
	8,864,644 E	32 10		Yomtov	10,238,782	B2	3/2019	
	8,882,477 E			Fritz, IV et al.	10,238,783 10,251,986			Aboul-Hosn et al.
	8,888,728 E			Aboul-Hosn et al.	10,231,980			Larose et al. Reichenbach et al.
	8,894,387 E 8,897,873 E	32 I. 32 I	1/2014	Schima et al.	10,293,090			Bonde et al.
	8,900,060 E			Liebing	10,300,185			Aboul-Hosn et al.
	8,900,115 E			Bolling et al.	10,300,249			Tao et al.
	8,932,246 E		1/2015		10,322,217		6/2019	
	8,992,406 E			Corbett	10,342,906 10,357,598		7/2019	D'Ambrosio et al. Aboul-Hosn et al.
	8,992,407 E			Smith et al.	10,357,398			Mueller et al.
	9,028,216 E 9,028,392 E			Schumacher et al. Shifflette	10,371,150			Wu et al.
	9,028,392 E 9,033,863 E		5/2015		10,376,162			Edelman et al.
	9.091.271 E			Bourque	10,420,869		9/2019	
!	9,138,518 E	32	9/2015	Campbell et al.	10,434,232			Wu et al.
	9,144,638 E			Zimmermann et al.	10,449,275		10/2019	
	9,162,017 E			Evans et al.	10,449,279		10/2019	
	9,192,705 E 9,199,020 E		1/2015 2/2015	Yanai et al.	10,478,538 10,478,539			Scheckel et al. Pfeffer et al.
	9,199,020 E 9,265,870 E			Reichenbach et al.	10,478,539			Jahangir
	9,203,870 E 9,297,735 E			Graichen et al.	10,500,323			Heuring et al.
	9,314,556 E		4/2016		10,512,537			Corbett et al.
	9,327,067 E			Zeng et al.	10,525,178		1/2020	
	9,327,068 E	32	5/2016	Aboul-Hosn et al.	10,537,670		1/2020	Tuseth et al.
!	9,345,824 E	32	5/2016	Mohl et al.	10,537,672	B2	1/2020	Tuseth et al.

(56)	Re	feren	ces Cited		1,324,940			Earles et al.
	U.S. PAT	ENT	DOCUMENTS		1,324,941 1,331,465		5/2022	Xu et al. Epple
	0.0.111		20001121112		1,331,466			Keen et al.
10,557,475	B2 2/	2020	Roehn		1,331,467			King et al.
10,561,771			Heilman et al.		1,331,470 1,338,124			Muller et al. Pfeffer et al.
10,561,772 10,576,191			Schumacher LaRose		1,338,125			Liu et al.
10,584,589		2020		1	1,344,716	B2	5/2022	Taskin
10,589,012			Toellner et al.		1,344,717			Kallenbach et al.
10,589,013			Bourque		1,351,356 1,351,357		6/2022 6/2022	
10,610,626 10,617,808		/2020	Spanier et al. Hastie et al.		1,351,357			Clifton et al.
10,632,241			Schenck et al.		1,357,967		6/2022	Zeng et al.
10,660,998			Hodges		1,364,373			Corbett et al.
10,662,967			Scheckel		1,368,081 1,369,785			Vogt et al. Callaway et al.
10,668,195 10,669,855			Flores Toellner et al.		1,369,786			Menon et al.
10,722,631		/2020			1,376,415		7/2022	
10,773,002			Siess et al.		1,389,639		7/2022	
10,814,053			Throckmorton et al.		1,389,641 1,413,443			Nguyen et al. Hodges et al.
10,857,273 10,864,308			Hodges et al. Muller et al.		1,413,446			Siess et al.
11,027,114			D'Ambrosio et al.		1,415,150			Richert et al.
11,033,729			Scheckel et al.		1,421,701		8/2022	
11,045,638			Keenan et al.		1,428,236 1,433,168			McBride et al. Wu et al.
11,058,863			Demou Fitzgerald et al		1,434,921			McBride et al.
11,058,865 11,065,434			Fitzgerald et al. Egler et al.		1,434,922		9/2022	
11,092,158			Siess et al.		1,446,481			Wolman et al.
11,097,092			Siess et al.		1,446,482 1,452,859			Kirchhoff et al. Earles et al.
11,103,689 11,103,690			Siess et al.		1,452,839		10/2022	Shambaugh et al.
11,103,690			Epple Siess et al.		1,471,662			Akkerman et al.
11,123,538			Epple et al.		1,471,663			Tuval et al.
11,123,539			Pfeffer et al.		1,471,665 1,478,627			Clifton et al. Siess et al.
11,123,541 11,129,978			Corbett et al. Pfeffer et al.		1,478,628			Muller et al.
11,141,579			Steingräber		1,478,629			Harjes et al.
11,160,970			Muller et al.		1,484,698		11/2022	
11,167,124			Pfeffer et al.		1,484,699 1,486,400		11/2022 11/2022	
11,173,297 11,179,557			Muller Georges et al.		1,491,320		11/2022	
11,185,678			Smith et al.	1	1,491,322	B2		Muller et al.
11,185,680	B2 11/		Tuval et al.		1,497,896		11/2022	
11,191,944			Tuval et al.		1,497,906 1,511,101			Grace et al. Hastie et al.
11,197,989 11,202,901		/2021	Arslan et al.		1,511,103		11/2022	
11,219,756			Tanner et al.		1,511,104			Dur et al.
11,229,786	B2 1/		Zeng et al.		1,517,726 1,517,736		12/2022	Siess et al. Earles et al.
11,235,138 11,235,140		/2022 /2022	Gross-Hardt et al. Siess et al.		1,517,730		12/2022	Struthers et al.
11,241,568			Keenan et al.	1	1,517,738	B2	12/2022	Wisniewski
11,241,569			Delgado, III		1,517,739			Toellner
11,253,693			Pfeffer et al.		1,517,740 1,524,137			Agarwa et al. Jahangir
11,260,212 11,260,213			Tuval et al. Zeng et al.		1,524,165			Tan et al.
11,260,215			Scheckel et al.	1	1,529,062	B2	12/2022	Moyer et al.
11,273,300	B2 3/	2022	Schafir		1,534,596			Schafir et al.
11,273,301			Pfeffer et al.		1,565,103 1,569,015		1/2023 1/2023	Farago et al. Mourran et al.
11,278,711 11,280,345			Liebing Bredenbreuker et al.		1,572,879		2/2023	Mohl
11,285,309			Tuval et al.		1,577,067		2/2023	
11,291,824			Schwammenthal et al.		1,577,068 1,583,659		2/2023 2/2023	Spence et al. Pfeffer et al.
11,291,825			Tuval et al. Tuval et al.		1,583,670			Pfeifer et al.
11,291,826 11,298,519			Josephy et al.		1,583,671			Nguyen et al.
11,298,520	B2 4	2022			1,583,672			Weber et al.
11,298,521			Schwammenthal et al.		1,590,336 1,590,337		2/2023 2/2023	Harjes et al.
11,298,523 11,298,524			Tuval et al. El Katerji et al.		1,590,337		2/2023	Granegger et al. Barry
11,298,524			Jahangir		1,592,028		2/2023	Schumacher et al.
11,305,103			Larose et al.	1	1,596,727	B2	3/2023	Siess et al.
11,305,105			Corbett et al.		1,602,627			Leonhardt
11,311,711			Casas et al.		1,617,876		4/2023	Scheckel et al.
11,311,712 11,313,228		/2022	Zeng et al. Schumacher et al.		1,628,293 1,632,015		4/2023	Gandhi et al. Sconzert et al.
D951,435	S 5/		Motomura et al.		1,633,586		4/2023	Tanner et al.
11,318,295		2022	Reyes et al.	1	1,638,813	B2	5/2023	West

(56)	Refere	nces Cited	11,898,642 11,904,104			Stanton et al. Jahangir
1	U.S. PATENT	DOCUMENTS	11,911,579	B2	2/2024	Tanner et al.
11 (20 722	D2 5/2022	36.1.1.4.1	11,918,470 11,918,496		3/2024 3/2024	Jarral et al.
11,639,722 11,642,511		Medvedev et al. Delgado, III	11,918,726	B2	3/2024	Siess et al.
11,648,387	B2 5/2023	Schwammenthal et al.	11,918,800			Muller et al.
11,648,388 11,648,389			11,925,356 11,925,570	B2		Anderson et al. Lydecker et al.
11,648,390			11,925,794	B2	3/2024	Malkin et al.
11,648,391			11,925,795 11,925,796			Muller et al. Tanner et al.
11,648,392 11,648,393			11,925,797			Tanner et al.
11,654,273	B2 5/2023	Granegger et al.	11,938,311			Corbett et al.
11,654,275 11,654,276		Brandt Fitzgerald et al.	11,944,805 11,980,385		4/2024 5/2024	Stotz Haselman
11,660,441		Fitzgerald et al.	11,986,604	B2	5/2024	Siess
11,666,747	B2 6/2023	Tuval et al.	12,005,248 12,011,583		6/2024 6/2024	Vogt et al.
11,666,748 11,668,321		Kronstedt et al. Richert et al.	12,017,058			Kerkhoffs et al.
11,674,517			12,023,476			Tuval et al.
11,679,234		King et al.	12,023,477 12,059,559		7/2024 8/2024	Siess Muller et al.
11,679,249 11,684,275			12,064,120	B2	8/2024	Hajjar et al.
11,684,769		3	12,064,611 12,064,614			D'Ambrosio et al. Agah et al.
11,690,521 11,690,996			12,064,615			Stotz et al.
11,697,016	B2 7/2023		12,064,616		8/2024	Spanier et al.
11,701,510			12,076,544 12,076,549		9/2024 9/2024	
11,702,938 11,703,064			12,090,314		9/2024	Tuval et al.
11,708,833	B2 7/2023	McBride et al.	12,092,114 12,097,016		9/2024	Siess Goldvasser
11,744,987 11,745,005		Siess et al. Delgado, III	12,097,010		10/2024	
11,746,906			2001/0009645	A1	7/2001	
11,752,322			2001/0041934 2002/0076322			Yamazaki et al. Maeda et al.
11,752,323 11,754,075		Edwards et al. Schuelke et al.	2002/0147495		10/2002	Petroff
11,754,077	B1 9/2023	Mohl	2002/0153664 2003/0060685		10/2002 3/2003	Schroeder
11,759,612 11,759,622			2003/0000083			Davis et al.
11,766,555			2003/0100816		5/2003	
11,771,884			2003/0111800 2003/0139643		6/2003 7/2003	Kreutzer Smith et al.
11,771,885 11,779,234		Liu et al. Harjes et al.	2003/0191357	A1	10/2003	Frazier
11,779,751	B2 10/2023	Earles et al.	2004/0044266 2004/0066107		3/2004 4/2004	Siess et al.
11,781,551 11,786,386		Yanai et al. Brady et al.	2004/0000107			Zadini et al.
11,786,700	B2 10/2023	Pfeffer et al.	2004/0115038			Nuesser et al.
11,786,720 11,793,994			2004/0167376 2004/0234391		8/2004	Peters et al. Izraelev
11,793,994			2004/0241019	A1	12/2004	Goldowsky
11,806,116			2004/0260346 2005/0006083			Overall et al. Chen et al.
11,806,117 11,806,517		Tuval et al. Petersen	2005/0008509		1/2005	
11,806,518	B2 11/2023	Michelena et al.	2005/0019167			Nusser et al.
11,813,443 11,813,444		Hanson et al. Siess et al.	2005/0085683 2005/0220636			Bolling et al. Henein et al.
11,819,678			2005/0254976	A1	11/2005	Carrier et al.
11,826,127			2006/0030809 2006/0062672			Barzilay et al. McBride et al.
11,833,278 11,833,342			2006/0155158	A1	7/2006	Aboul-Hosn
11,839,754	B2 12/2023	Tuval et al.	2006/0224110			Scott et al.
11,844,592 11,844,940		Tuval et al. D'Ambrosio et al.	2006/0276682 2007/0004959			Bolling et al. Carrier et al.
11,850,412			2007/0142696	A1	6/2007	Crosby et al.
11,850,413			2007/0156006 2008/0015517		7/2007 1/2008	Smith et al. Geistert et al.
11,850,414 11,850,415			2008/0058925		3/2008	
11,857,743	B2 1/2024	Fantuzzi et al.	2008/0086027		4/2008	Siess et al.
11,857,777 11,865,238		Earles et al. Siess et al.	2008/0114339 2008/0262289			McBride et al. Goldowsky
11,872,384		Cotter	2008/0292478	A1	11/2008	Baykut et al.
11,883,005		Golden et al.	2008/0306328		12/2008	
11,883,207 11,883,310		El Katerji et al. Nolan et al.	2009/0004037 2009/0112312		1/2009 4/2009	Ito Larose et al.
11,883,510		Dur et al.	2009/0112312		5/2009	Siess et al.
11,890,212		Gilmartin et al.	2009/0203957			LaRose et al.
11,896,482	В2 2/2024	Delaloye et al.	2009/0204205	Al	8/2009	Larose et al.

(56)	References Cited	2017/0143952 A1		Siess et al.
U.S.	. PATENT DOCUMENTS	2017/0157309 A1 2017/0209633 A1		Begg et al. Cohen
0.0		2017/0232169 A1		Muller
2010/0041939 A1	2/2010 Siess	2017/0271971 A1		Riemay et al.
2010/0082099 A1	4/2010 Vodermayer et al.	2017/0274128 A1 2017/0317573 A1		Tamburino et al. Mueller et al.
2010/0191035 A1 2010/0268017 A1	7/2010 Kang et al. 10/2010 Siess	2017/0317575 A1 2017/0333607 A1	11/2017	
2010/0298625 A1	11/2010 Siess 11/2010 Reichenbach et al.	2017/0333608 A1	11/2017	
2011/0184224 A1	7/2011 Garrigue	2017/0340787 A1		Corbett et al.
2011/0230821 A1	9/2011 Babic	2017/0340788 A1		Korakianitis et al. Bonde et al.
2011/0237863 A1	9/2011 Ricci et al.	2017/0340789 A1 2017/0343043 A1		Walsh et al.
2011/0238172 A1 2012/0029265 A1	9/2011 Akdis 2/2012 LaRose	2018/0015214 A1	1/2018	
2012/0035645 A1	2/2012 Gross	2018/0021494 A1		Muller et al.
2012/0088954 A1	4/2012 Foster	2018/0021495 A1		Muller et al.
2012/0093628 A1	4/2012 Liebing	2018/0050141 A1 2018/0055979 A1		Corbett et al. Corbett et al.
2012/0134793 A1 2012/0172655 A1	5/2012 Wu et al. 7/2012 Campbell et al.	2018/0064860 A1		Nunez et al.
2012/0178986 A1	7/2012 Campbell et al.	2018/0093070 A1		Cottone
2012/0247200 A1	10/2012 Ahonen et al.	2018/0099076 A1		LaRose
2012/0283506 A1	11/2012 Meister et al.	2018/0110907 A1 2018/0133379 A1		Keenan et al. Farnan et al.
2012/0310036 A1 2013/0053623 A1	12/2012 Peters et al. 2/2013 Evans	2018/0154058 A1		Menon et al.
2013/0085318 A1	4/2013 Evans 4/2013 Toellner	2018/0169312 A1	6/2018	
2013/0209292 A1	8/2013 Baykut et al.	2018/0169313 A1		Schwammenthal et al.
2013/0281761 A1	10/2013 Kapur	2018/0207336 A1 2018/0219452 A1	7/2018 8/2018	Boisclair
2013/0289376 A1 2013/0303830 A1	10/2013 Lang 11/2013 Zeng et al.	2018/0221551 A1		Tanner et al.
2013/0303830 A1 2013/0303831 A1	11/2013 Evans	2018/0221553 A1	8/2018	Taskin
2013/0303832 A1	11/2013 Wampler	2018/0228950 A1		Janeczek et al.
2013/0330219 A1	12/2013 LaRose et al.	2018/0228953 A1* 2018/0243004 A1		Siess A61M 60/857 Von Segesser et al.
2014/0005467 A1 2014/0051908 A1	1/2014 Farnan et al. 2/2014 Khanal et al.	2018/0243489 A1		Haddadi
2014/0079557 A1	3/2014 Khanar et al.	2018/0250456 A1	9/2018	Nitzan et al.
2014/0107399 A1	4/2014 Spence	2018/0256797 A1		Schenck et al.
2014/0167545 A1	6/2014 Bremner et al.	2018/0280598 A1 2018/0289877 A1		Curran et al. Schumacher et al.
2014/0194717 A1 2014/0200389 A1	7/2014 Wildhirt et al. 7/2014 Yanai et al.	2018/0303990 A1		Siess et al.
2014/0200389 A1 2014/0207232 A1	7/2014 Tanai et al. 7/2014 Garrigue		11/2018	Tuseth A61M 60/17
2014/0275721 A1	9/2014 Yanai et al.	2018/0311423 A1		Zeng et al.
2014/0330069 A1	11/2014 Hastings et al.	2018/0318483 A1 2018/0318547 A1		Dague et al. Yokoyama
2014/0341726 A1 2015/0031936 A1	11/2014 Wu et al. 1/2015 LaRose et al.	2018/0326132 A1		Maimon et al.
2015/0051936 A1	2/2015 Siess et al.	2018/0335037 A1	11/2018	Shambaugh et al.
2015/0051438 A1	2/2015 Taskin	2018/0345028 A1		Aboud et al.
2015/0099923 A1	4/2015 Magovern et al.	2018/0361042 A1 2018/0369469 A1		Fitzgerald et al. Le Duc De Lillers et al.
2015/0141842 A1 2015/0171694 A1	5/2015 Spanier et al. 6/2015 Dallas	2019/0001034 A1		Taskin et al.
2015/0190092 A1	7/2015 Mori	2019/0004037 A1		Zhang et al.
2015/0273184 A1	10/2015 Scott et al.	2019/0030228 A1	1/2019 2/2019	Keenan et al. Siess et al.
2015/0290372 A1	10/2015 Muller et al.	2019/0046702 A1 2019/0046703 A1		Shambaugh et al.
2015/0290373 A1 2015/0306291 A1	10/2015 Rudser et al. 10/2015 Bonde et al.	2019/0054223 A1	2/2019	Frazier et al.
2015/0343179 A1	12/2015 Schumacher et al.	2019/0060539 A1	2/2019	Siess et al.
2015/0365738 A1	12/2015 Purvis et al.	2019/0060543 A1 2019/0076167 A1		Khanal et al. Fantuzzi et al.
2016/0008531 A1	1/2016 Wang et al.	2019/00/0107 A1 2019/0083690 A1		Siess et al.
2016/0030649 A1 2016/0038663 A1	2/2016 Zeng 2/2016 Taskin et al.	2019/0099532 A1	4/2019	
2016/0045654 A1	2/2016 Connor	2019/0101130 A1		Bredenbreuker et al.
2016/0144089 A1	5/2016 Woo et al.	2019/0105437 A1 2019/0117865 A1		Siess et al. Walters et al.
2016/0144166 A1 2016/0166747 A1	5/2016 Decréet al. 6/2016 Frazier et al.	2019/0117803 A1 2019/0125948 A1		Stanfield et al.
2016/0213828 A1	7/2016 Sievers	2019/0143016 A1		Corbett et al.
2016/0223086 A1	8/2016 Balsells et al.	2019/0143018 A1		Salahieh et al.
2016/0256620 A1	9/2016 Scheckel et al.	2019/0154053 A1 2019/0167122 A1		McBride et al. Obermiller et al.
2016/0279311 A1 2016/0367739 A1	9/2016 Cecere et al. 12/2016 Wiesener et al.	2019/0167875 A1		Simon et al.
2016/0307/39 A1 2016/0375187 A1	12/2016 Wiesener et al. 12/2016 Lee et al.	2019/0167878 A1	6/2019	Rowe
2017/0021069 A1	1/2017 Hodges	2019/0170153 A1		Scheckel
2017/0021074 A1	1/2017 Opfermann et al.	2019/0175806 A1		Tuval et al.
2017/0035952 A1 2017/0043074 A1	2/2017 Muller 2/2017 Siess	2019/0184078 A1 2019/0184080 A1	6/2019	Zilbershlag et al.
2017/0043074 A1 2017/0049947 A1	2/2017 Siess 2/2017 Corbett et al.	2019/0194080 A1 2019/0192752 A1		Tiller et al.
2017/0080136 A1	3/2017 Janeczek et al.	2019/0201603 A1		Siess et al.
2017/0087286 A1	3/2017 Spanier et al.	2019/0209755 A1		Nix et al.
2017/0087288 A1	3/2017 Groß-Hardt et al.	2019/0209758 A1		Tuval et al.
2017/0128644 A1 2017/0136225 A1	5/2017 Foster 5/2017 Siess et al.	2019/0211836 A1 2019/0211846 A1		Schumacher et al. Liebing
2011/0130223 AI	5/2017 Siess et al.	2017/0211070 AI	112019	Licomg

(56)	F	Referen	ces Cited	2022/01053 2022/01260			Nix et al. Grauwinkel et al.
	U.S. PA	ATENT	DOCUMENTS	2022/01610	018 A1	5/2022	Mitze et al.
2010/0211045		=/2010	**** 4 4 4 4	2022/01610 2022/01610			Mitze et al. Mitze et al.
2019/0211847 2019/0223877			Walsh et al. Nitzen et al.	2022/0241:			Stotz et al.
2019/0269840) A1	9/2019	Tuval et al.	2022/0323			Grauwinkel et al.
2019/0275224			Hanson et al.	2022/04074 2023/0001			Vogt et al. Corbett et al.
2019/0282741 2019/0282744			Franano et al. D'Ambrosio et al.	2023/02778		9/2023	Sharma et al.
2019/0282746	5 A1	9/2019	Judisch	2023/02778			Schellenberg et al.
2019/0290817			Guo et al. Siess et al.	2023/02938 2023/0364		11/2023	Christof et al. Bette
2019/0298902 2019/0316591			Toellner	2024/00752		3/2024	Schellenberg
2019/0321527	7 A1 1		King et al.	2024/01024		3/2024 6/2024	Schuelke et al. Stotz
2019/0321529 2019/0321531			Korakianitis et al. Cambronne et al.	2024/01980 2024/02459			Schlebusch et al.
2019/0321991			Liebing	2024/02694		8/2024	
2019/0344000			Kushwaha et al.	2024/02779			Vogt et al.
2019/0344001 2019/0351117			Salahieh et al. Cambronne et al.	2024/02859 2024/03350			Popov et al. Mitze et al.
2019/0351119			Cambronne et al.	202 1/0333	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10/2021	Witze et al.
2019/0351120			Kushwaha et al.		FOREIG	N PATE	NT DOCUMENTS
2019/0358378 2019/0358379			Schumacher Wiessler et al.	ATT	2012261	((0)	1/2012
2019/0358384		1/2019	Epple	AU AU	2012261 2013203		1/2013 5/2013
2019/0365975		2/2019 2/2019		AU	2013273		1/2014
2019/0383298 2020/0016309			Toellner Kallenbach et al.	BR CA	PI090448 2 026		7/2011
2020/0023109	9 A1	1/2020	Epple	CA	2 026		4/1992 4/1992
2020/0030507 2020/0030509			Higgins et al. Siess et al.	CA	2 292	432	5/1998
2020/0030510			Higgins	CA CA	2 664 2 796		2/2008 10/2011
2020/0030511			Higgins	CA	2 947		11/2022
2020/0030512 2020/0038567		2/2020	Higgins et al. Siess et al.	CN		862 A	7/1999
2020/0038568	3 A1	2/2020	Higgins et al.	CN CN		598 A 523 A	5/2000 10/2002
2020/0038571 2020/0069857		2/2020 3/2020	Jahangir Schwammenthal et al.	CN	2535	055	2/2003
2020/0009837			Schumacher et al.	CN CN	1118 2616	304 C	8/2003 5/2004
2020/0114053			Salahieh et al.	CN		871 C	5/2005
2020/0129684 2020/0139028			Pfeffer et al. Scheckel et al.	CN		736 A	9/2006
2020/0139029	9 A1	5/2020	Scheckel et al.	CN CN	200977 101112		11/2007 1/2008
2020/0147283 2020/0164125			Tanner et al. Muller et al.	CN	101128	168	2/2008
2020/0164126		5/2020		CN CN	201150 101677		11/2008 3/2010
2020/0261633		8/2020		CN	201437		4/2010
2020/0345337 2020/0350812		1/2020	Muller et al. Vogt et al.	CN	201618		11/2010
2021/0052793	3 A1	2/2021	Struthers et al.	CN CN	201658 201710		12/2010 1/2011
2021/0236803 2021/0268264		8/2021 9/2021	Stotz	CN	201894	758	7/2011
2021/0208204		9/2021		CN CN	102475 102545		5/2012 7/2012
2021/0290930		9/2021		CN	202314		7/2012
2021/0290932 2021/0290937		9/2021	Stotz Baumbach	CN	102743		10/2012
2021/0313869	9 A1 1	0/2021	Strasswiemer et al.	CN CN	103143 103845		6/2013 6/2014
2021/0316133 2021/0322756		0/2021	Kassel et al. Vollmer et al.	CN	103861	162	6/2014
2021/0322750		0/2021	Stotz et al.	CN CN	203842 104208		9/2014 12/2014
2021/0338999		1/2021	Stotz et al.	CN	104208		12/2014
2021/0339004 2021/0339005		1/2021	Schlebusch et al. Stotz et al.	CN	203971		12/2014
2021/0346678	3 A1 1	1/2021	Baumbach et al.	CN CN	104274 204106		1/2015 1/2015
2021/0346680 2021/0379352		.1/2021 .2/2021	Vogt et al. Schlebusch et al.	CN	204219	479	3/2015
2021/0379355		2/2021	Schuelke et al.	CN CN	103877 205215		2/2016 5/2016
2021/0384812		2/2021	Vollmer et al.	CN	103977		8/2016
2022/0016411 2022/0072296		1/2022 3/2022	Winterwerber Mori	CN	104162		9/2016
2022/0072297	7 A1	3/2022	Tuval et al.	CN CN	104888 106512		3/2017 3/2017
2022/0080178 2022/0080180		3/2022 3/2022	Salahieh et al. Siess et al.	CN	104225	696	6/2017
2022/0080180			Earles et al.	CN CN	107019 206443		8/2017 8/2017
2022/0080183	3 A1	3/2022	Earles et al.	CN	107281		10/2017
2022/0080184 2022/0080185			Clifton et al. Clifton et al.	CN	104707		11/2017
2022/0080183			Salahieh et al.	CN CN	107921 105498		4/2018 6/2018

(56)	Refere	ences Cited	EP EP	1 475 880	11/2004
	FOREIGN PAT	ENT DOCUMENTS	EP EP	1 169 072 1 176 999 1 801 420	5/2005 7/2005 6/2007
CN	106310410	7/2018	EP	2 009 233	12/2008
CN CN	106902404 209790495	8/2019 12/2019	EP EP	2 098 746 2 403 109	9/2009 1/2012
CN	110665079	1/2020	EP EP	2 187 807 3 326 567	6/2012 10/2014
CN CN	210020563 111166948	2/2020 5/2020	EP EP	1 898 971	3/2015
CN	111166949	5/2020	EP EP	2 519 273 2 217 302	8/2015 9/2015
DE DE	1 001 642 1 165 144	1/1957 3/1964	EP	2 438 936	10/2015
DE	27 07 951	9/1977 12/1977	EP EP	2 438 937 2 960 515	10/2015 12/2015
DE DE	26 24 058 3 545 214	7/1986	EP	2 968 718	1/2016
DE DE	195 46 336 695 01 834	5/1997 10/1998	EP EP	1 996 252 2 475 415	5/2016 6/2016
DE	198 54 724	5/1999	EP EP	2 906 265	7/2016
DE DE	198 21 307 199 10 872	10/1999 10/1999	EP EP	3 069 739 1 931 403	9/2016 1/2017
DE	199 56 380	11/1999	EP EP	3 127 562 2 585 129	2/2017 3/2017
DE DE	100 59 714 103 45 694	5/2002 4/2005	EP	3 187 210	7/2017
DE	697 31 709	4/2005	EP EP	3 222 301 3 222 302	9/2017 9/2017
DE DE	101 55 011 601 19 592	11/2005 9/2006	EP	3 020 426	12/2017
DE DE	11 2004 001 809 20 2005 020 288	11/2006 6/2007	EP EP	3 038 669 3 062 730	1/2018 1/2018
DE	10 2006 019 206	10/2007	EP	3 180 050	2/2018
DE DE	10 2006 036 948 10 2008 060 357	2/2008 6/2010	EP EP	3 287 154 1 789 129	2/2018 6/2018
DE	10 2009 039 658	3/2011	EP EP	2 366 412 3 205 359	8/2018 8/2018
DE DE	20 2009 018 416 10 2010 041 995	8/2011 4/2012	EP	3 205 360	8/2018
DE	10 2012 022 456	5/2014	EP EP	3 131 599 3 456 367	2/2019 3/2019
DE DE	10 2013 007 562 10 2014 210 299	11/2014 12/2015	EP	3 119 451	6/2019
DE DE	10 2014 212 323 11 2014 001 418	12/2015 12/2015	EP EP	3 536 360 3 542 835	9/2019 9/2019
DE	10 2014 224 151	6/2016	EP	3 542 836	9/2019
DE DE	10 2015 216 050 10 2015 219 263	2/2017 4/2017	EP EP	3 062 877 3 668 560	12/2019 6/2020
DE	10 2015 222 199	5/2017	EP EP	3 711 785 3 711 786	9/2020 9/2020
DE DE	20 2015 009 422 10 2012 207 042	7/2017 9/2017	EP	3 711 787	9/2020
DE DE	10 2016 013 334 10 2017 209 917	4/2018 12/2018	EP EP	3 720 520 3 069 740	10/2020 12/2020
DE	10 2017 212 193	1/2019	EP	3 142 722	12/2020
DE DE	10 2018 207 564 10 2018 207 578	11/2019 11/2019	EP EP	3 579 894 3 188 769	12/2020 1/2021
DE	10 2018 207 585	11/2019	EP EP	3 490 122 2 869 866	1/2021 2/2021
DE DE	10 2018 207 591 10 2018 207 594	11/2019 11/2019	EP	3 398 626	2/2021
DE	10 2018 207 611	11/2019	EP EP	3 487 549 3 113 806	2/2021 3/2021
DE DE	10 2018 207 622 10 2018 208 536	11/2019 12/2019	EP	3 615 103	3/2021
DE DE	10 2018 208 540 10 2018 208 541	12/2019 12/2019	EP EP	4 271 461 2 344 218	3/2021 4/2021
DE	10 2018 208 550	12/2019	EP EP	3 436 104 3 749 383	4/2021 4/2021
DE DE	10 2018 208 945 10 2018 210 076	12/2019 12/2019	\mathbf{EP}	3 821 938	5/2021
DE	10 2018 207 624	1/2020	EP EP	3 131 615 3 338 825	6/2021 6/2021
DE DE	10 2018 211 327 10 2018 211 328	1/2020 1/2020	EP	3 432 944	6/2021
DE DE	10 2018 212 153 10 2018 213 350	1/2020 2/2020	EP EP	3 684 439 2 582 414	7/2021 8/2021
DE	10 2018 220 658	6/2020	\mathbf{EP}	3 407 930	8/2021
DE DE	10 2020 102 473 11 2020 003 063	8/2021 3/2022	EP EP	3 782 665 3 782 666	8/2021 8/2021
DE	11 2020 004 148	6/2022	EP	3 782 668	8/2021
EP EP	0 050 814 0 629 412	5/1982 12/1994	EP EP	3 858 397 3 216 467	8/2021 9/2021
EP	0 764 448	3/1997	EP	3 463 505	9/2021
EP EP	0 855 515 0 890 179	7/1998 1/1999	EP EP	3 884 968 3 884 969	9/2021 9/2021
EP	0 916 359	5/1999	EP	3 027 241	10/2021
EP EP	1 013 294 1 186 873	6/2000 3/2002	EP EP	3 579 904 2 628 493	11/2021 12/2021

(56)	Refere	nces Cited	EP EP	3 744 362 3 766 428	11/2023 11/2023
	FOREIGN PATI	ENT DOCUMENTS	EP	3 808 390	11/2023
EP	3 556 409	1/2022	EP EP	4 061 470 3 449 958	11/2023 12/2023
EP	3 624 868	1/2022	EP	3 687 596	12/2023
EP EP	3 930 785 3 955 985	1/2022 2/2022	EP EP	3 710 076 3 768 340	12/2023 12/2023
EP	3 624 867	3/2022	EP	3 787 707	12/2023
EP EP	3 689 389 3 697 464	3/2022 3/2022	EP EP	3 926 194 3 784 305	12/2023 1/2024
EP	3 737 436	3/2022	EP	3 801 675	1/2024
EP EP	3 972 661 2 967 630	3/2022 4/2022	EP EP	3 925 659 4 115 919	1/2024 1/2024
EP	3 142 721	4/2022	EP	3 634 526	2/2024
EP EP	3 520 834 3 586 887	4/2022 4/2022	EP EP	3 768 342 3 768 347	2/2024 2/2024
EP	3 638 336	4/2022	EP	3 769 799	2/2024
EP EP	3 689 388 3 765 110	4/2022 4/2022	EP EP	3 790 606 3 930 780	2/2024 2/2024
EP	3 782 667	4/2022	EP	3 782 695	3/2024
EP EP	3 829 673 3 976 129	4/2022 4/2022	EP EP	3 854 448 4 140 532	3/2024 5/2024
EP	3 984 589	4/2022	EP	3 693 038	6/2024 7/2024
EP EP	3 986 528 3 649 926	4/2022 5/2022	EP EP	3 768 344 3 970 765	7/2024
EP	3 653 113	5/2022	EP	3 854 444	9/2024
EP EP	3 654 006 3 735 280	5/2022 5/2022	FR FR	1458525 2 768 056	3/1966 3/1999
EP	3 897 814	5/2022	GB	0 648 739	1/1951
EP EP	3 219 339 3 737 310	6/2022 7/2022	GB GB	2 213 541 2 335 242	8/1989 9/1999
EP	3 899 994	8/2022	GB	2 345 387	7/2000
EP EP	3 487 550 3 606 575	9/2022 9/2022	GB GB	2 451 161 2 545 062	12/2011 6/2017
EP	3 834 876	9/2022	GB	2 545 750	6/2017
EP EP	3 000 492 3 600 477	10/2022 10/2022	JP JP	59-119788 S61-500059	8/1984 1/1986
EP	3 897 768	10/2022	JP	S62-113555	7/1987
EP EP	3 914 310 3 914 311	10/2022 10/2022	JP JP	S64-68236 H02-055886	3/1989 2/1990
EP	3 000 493	11/2022	JP JP	2-79738 H04-176471	3/1990 6/1992
EP EP	3 858 422 3 866 876	11/2022 11/2022	JP	H04-108384	9/1992
EP	3 941 546	11/2022	JP JP	H08-057042 H10-052489	3/1996 2/1998
EP EP	2 892 583 3 393 542	1/2023 1/2023	JP	2888609	5/1999
EP	3 597 231	1/2023	JP JP	2889384 H11-239617	5/1999 9/1999
EP EP	3 656 292 3 768 345	1/2023 1/2023	JP	2001-037728	2/2001
EP	2 868 332	2/2023	JP JP	2001-515374 2001-515375	9/2001 9/2001
EP EP	3 003 420 3 539 585	2/2023 2/2023	JP	2003-019197	1/2003
EP	3 956 010	2/2023	JP JP	2003-525438 2004-019468	8/2003 1/2004
EP EP	3 046 594 3 127 563	3/2023 3/2023	JP	2004-278375	10/2004
EP EP	3 256 186	3/2023	JP JP	2005-028137 2005-507039	2/2005 3/2005
EP EP	3 288 609 3 538 173	3/2023 3/2023	JP	2008-511414	4/2008
EP EP	3 606 576 3 927 390	3/2023 3/2023	JP JP	2008-516654 2010-518907	5/2008 6/2010
EP EP	3 384 940	4/2023	JP	2010-258181	11/2010
EP EP	3 441 616	4/2023 4/2023	JP JP	2010-534080 2013-013216	11/2010 1/2013
EP EP	3 938 005 3 946 511	4/2023	JP	2013-519497	5/2013
EP EP	3 544 649 3 634 528	6/2023 6/2023	JP JP	2014-004303 2014-524274	1/2014 9/2014
EP	3 809 959	7/2023	JP	2015-514529	5/2015
EP EP	3 912 673 2 961 984	7/2023 9/2023	JP JP	2015-514531 2015-122448	5/2015 7/2015
EP	3 352 808	9/2023	JP	2016-002466	1/2016
EP EP	3 554 576 3 737 435	10/2023 10/2023	JР JР	2016-532500 6063151	10/2016 1/2017
EP	3 795 208	10/2023	JP	6267625	1/2018
EP	4 052 754	10/2023	JP	2018-057878	4/2018
EP EP	4 149 606 3 157 596	10/2023 11/2023	JP JP	6572056 2020-072985	9/2019 5/2020
EP	3 515 525	11/2023	JP	2018-510708	3/2021
EP	3 621 669	11/2023	KR	10-2011-0098192	9/2011

(56)	Ref	erences Cited	WO	WO 2019/145253	8/2019
	EOREIGN D	ATENT DOCUMENTS	WO WO	WO 2019/158996 WO 2019/161245	8/2019 8/2019
	TOKEION FA	ATENT DOCUMENTS	wo	WO 2019/180104	9/2019
RO	131676	2/2017	WO	WO 2019/180179	9/2019
RU	2 051 695	1/1996	WO	WO 2019/180181	9/2019
TW	374317	11/1999	WO	WO 2018/135477	11/2019
UA	97202		WO WO	WO 2018/135478 WO 2019/211410	11/2019 11/2019
WO WO	WO 94/009835 WO 97/037696	5/1994 10/1997	wo	WO 2019/211410 WO 2019/219868	11/2019
WO	WO 97/037090 WO 97/039785	10/1997	WO	WO 2019/219871	11/2019
WO	WO 99/049912	10/1999	WO	WO 2019/219872	11/2019
WO	WO 00/033446	6/2000	WO WO	WO 2019/219874 WO 2019/219876	11/2019 11/2019
WO	WO 02/022200	3/2002	WO	WO 2019/2198/0 WO 2019/219881	11/2019
WO WO	WO 02/041935 WO 02/070039	5/2002 9/2002	WO	WO 2019/219882	11/2019
WO	WO 03/075981	9/2003	WO	WO 2019/219883	11/2019
WO	WO 03/103745	12/2003	WO	WO 2019/219884	11/2019
WO	WO 2005/020848	3/2005	WO WO	WO 2019/219885 WO 2019/229210	11/2019 12/2019
WO WO	WO 2005/028014 WO 2005/037345	3/2005 4/2005	wo	WO 2019/229211	12/2019
wo	WO 2007/033933	3/2007	WO	WO 2019/229214	12/2019
WO	WO 2007/105842	9/2007	WO	WO 2019/229220	12/2019
WO	WO 2008/017289	2/2008	WO WO	WO 2019/229221 WO 2019/229222	12/2019 12/2019
WO WO	WO-2008017289		WO WO	WO 2019/229222 WO 2019/229223	12/2019
WO	WO 2008/081783 WO 2009/010888	7/2008 1/2009	wo	WO 2019/234146	12/2019
wo	WO 2009/046789	4/2009	WO	WO 2019/239259	12/2019
WO	WO 2009/046790	4/2009	WO	WO 2019/241556	12/2019
WO	WO 2009/073037	6/2009	WO WO	WO 2019/243582 WO 2019/243588	12/2019 12/2019
WO WO	WO 2010/119267 WO 2011/003043	10/2010 1/2011	wo	WO 2019/243388 WO 2020/003110	1/2020
WO	WO 2011/003043 WO 2011/081626	7/2011	WO	WO 2020/011760	1/2020
WO	WO 2011/160858	12/2011	WO	WO 2020/011795	1/2020
WO	WO 2012/018917	2/2012	WO WO	WO 2020/011797	1/2020
WO WO	WO 2012/047540	4/2012 8/2012	WO	WO 2020/016438 WO 2020/028312	1/2020 2/2020
WO	WO 2012/112129 WO 2013/037380	8/2012 3/2013	wo	WO 2020/028512 WO 2020/028537	2/2020
WO	WO 2013/120957	8/2013	WO	WO 2020/030700	2/2020
WO	WO 2013/167432	11/2013	WO	WO 2020/064911	4/2020
WO	WO 2013/173239	11/2013	WO	WO 2020/073047	4/2020
WO WO	WO 2015/039605 WO 2015/063281	3/2015 5/2015	WO	WO 2020/132211	6/2020
WO	WO 2015/005281 WO 2015/085076	6/2015	WO WO	WO 2020/176236 WO 2020/187797	9/2020 9/2020
WO	WO 2015/109028	7/2015	WO	WO 2020/18/797 WO 2020/219430	10/2020
WO	WO 2015/172173	11/2015	WO	WO 2020/234785	11/2020
WO WO	WO 2015/175718 WO 2016/028644	11/2015 2/2016	WO	WO 2020/242881	12/2020
WO	WO 2016/028044 WO 2016/137743	9/2016	WO	WO 2021/046275	3/2021
WO	WO 2016/146661	9/2016	WO	WO 2021/062265	4/2021
WO	WO 2016/146663	9/2016	WO WO	WO 2021/067691 WO 2021/119478	4/2021 6/2021
WO WO	WO 2017/004175	1/2017 2/2017	WO	WO 2021/119478 WO 2021/150777	7/2021
WO	WO 2017/015764 WO 2017/021465	2/2017	wo	WO 2021/152013	8/2021
WO	WO 2017/053988	3/2017	WO	WO 2022/056542	3/2022
WO	WO 2017/060257	4/2017	WO	WO 2022/063650	3/2022
WO	WO 2017/112695	6/2017	WO	WO 2022/072944	4/2022
WO WO	WO 2017/112698 WO 2017/147291	6/2017 8/2017	WO WO	WO 2022/076862 WO 2022/076948	4/2022 4/2022
WO	WO 2017/11/291 WO 2017/159849	9/2017	WO	WO 2022/070348 WO 2022/109589	5/2022
WO	WO 2017/162619	9/2017	WO	WO 2022/109590	5/2022
WO	WO 2017/205909	12/2017	WO	WO 2022/109591	5/2022
WO WO	WO 2018/007120 WO 2018/036927	1/2018 3/2018	WO	WO 2022/173970	8/2022
WO	WO 2018/030927 WO 2018/088939	3/2018	WO	WO 2022/174249	8/2022
WO	WO 2018/081040	5/2018	WO	WO 2023/278599	1/2023
WO	WO 2018/089970	5/2018	WO WO	WO 2023/014742 WO 2023/049813	2/2023 3/2023
WO	WO 2018/109038	6/2018 8/2018	WO	WO 2023/076869	5/2023
WO WO	WO 2018/139508 WO 2018/197306	8/2018 11/2018	wo	WO 2023/230157	11/2023
wo	WO 2019/034670	2/2019			
WO	WO 2019/035804	2/2019		OTHER I	PUBLICATIONS
WO	WO 2019/038343	2/2019		OTHER	
WO WO	WO 2019/057636 WO 2019/067233	3/2019 4/2019	Vollkr	on et al., "Advanced S	Suction Detection for an Axial Flow
WO	WO 2019/06/233 WO 2019/078723	4/2019 4/2019	Pump'	, Artificial Organs, 200	06, vol. 30, No. 9, pp. 665-670.
wo	WO 2019/078723 WO 2019/135767	7/2019	Vollkr	on et al., "Developmer	at of a Suction Detection System for
WO	WO 2019/137911	7/2019			al Organs, 2004, vol. 28, No. 8, pp.
WO	WO 2019/138350	7/2019	709-71	16.	

(56) References Cited

OTHER PUBLICATIONS

International Search Report and Written Opinion received in PCT Application No. PCT/EP2019/071233, dated Sep. 6, 2019 in 11 pages.

International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/EP2019/071233, dated Feb. 18, 2021 in 14 pages.

"Edwards SAPIEN 3 Kit—Transapical and Transaortic", Edwards Lifesciences, Released Nov. 8, 2016, pp. 11. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://edwardsprod.blob.core.windows.net/media/De/sapien3/doc-0045537b%20-%20certitude.pdf.

Escudeiro et al., "Tribological behavior of uncoated and DLC-coated CoCr and Ti-alloys in contact with UHMWPE and PEEK counterbodies;" Tribology International, vol. 89, 2015, pp. 97-104. Gopinath, Divya, "A System for Impedance Characterization of Coronary Stents", University of Strathclyde Engineering, Thesis, Aug. 2015, pp. 77.

Hinkel et al., "Pump Reliability and Efficiency Increase Maintenance Program—Utilizing High Performance Thermoplastics;" Proceedings of the 16th International Pump Users Symposium, Texas A&M University. Turbomachinery Laboratories; 1999, pp. 115-120. Neale, Michael J., "The Tribology Handbook;" 1999, Butterworth-Heinemann, Second Edition, pp. 582.

Park et al., "A Novel Electrical Potential Sensing Method for in Vitro Stent Fracture Monitoring and Detection", Jan. 1, 2011, vol. 21, No. 4, pp. 213-222.

Sak et al., "Influence of polyetheretherketone coatings on the Ti—13Nb—13Zr titanium alloy's bio-tribological properties and corrosion resistance;" Materials Science and Engineering: C, vol. 63, 2016, pp. 52-61.

^{*} cited by examiner

a Ö

Aug. 19, 2025

Fig. 4

140 Fig. 5 134 110 135 -135 140 **-530** 510-- 134 -525 135 134 150 515 -- 520 140 114

ø Ö

Fig. 9

Aug. 19, 2025

Fig. 10

Fig. 11

Fig. 12

BEARING DEVICE FOR A HEART SUPPORT SYSTEM, AND METHOD FOR RINSING A SPACE IN A BEARING DEVICE FOR A HEART SUPPORT SYSTEM

BACKGROUND

Field

The invention relates to a bearing device for a cardiac support system comprising a stand unit, an impeller and an intermediate space formed between the impeller and the stand unit for guiding a flushing fluid flow of a fluid, wherein the stand unit comprises a subsection which projects into the impeller and is configured to support the impeller such that it can rotate about an axis of rotation, wherein the impeller is configured to rotate about a longitudinal axis aligned with the axis of rotation when the cardiac support system is in operation to convey a pump fluid flow of the fluid in a flow direction, and wherein the impeller comprises at least one flushing inlet for introducing the flushing fluid flow into the intermediate space and at least one flushing outlet for discharging the flushing fluid flow from the intermediate space.

The invention further relates to a cardiac support system having a bearing device and a method for flushing an a intermediate space for guiding a flushing fluid flow with a fluid in a bearing device for a cardiac support system and a method for producing a bearing device for a cardiac support system.

Description of the Related Art

To provide cardiovascular support for patients having heart failure, systems are used in particular that take over part or all of the heart's pumping function. These systems, which are also referred to as cardiac support systems or 35 VADs (ventricular assist devices) for short, can be subdivided into temporary systems for short-term cardiac support and permanent systems for long-term use on or in the patient. One component of such a system is usually a blood pump, typically a centrifugal pump (turbo pump), which is 40 driven by an integrated electric motor and produces the required blood flow by means of a rotor. The pump can be implanted in different locations. The pump can be sutured to the heart from the outside by means of an invasive sternotomy, for example, or it can be placed into the aorta or into 45 a ventricle in a minimally invasive manner by means of a catheter. In the latter case, the maximum permissible outer diameter of the pump is generally limited to 10 mm, which is why the use of an axial pump having a rotor which receives flow axially is desirable. In the process, the blood 50 to be conveyed is expelled through the discharge openings disposed on the circumference of a cylindrical pump housing in order to be returned to the aorta.

EP 3 127 562 A1 discloses a blood pump for a cardiac support system, which comprises a pump housing with an 55 impeller that is rotatably mounted in the pump housing in a sliding bearing having stationary support surfaces, against which support surfaces configured on the blades of the impeller abut. The complex structure of the blades of the impeller on which the support surfaces are formed has the 60 effect that the sliding bearing is flushed and heat is removed from it when blood is pumped in the blood pump.

SUMMARY

The object of the invention is to provide a bearing device for a cardiac support system that does not require complex 2

blade structures and/or hoses with additional flushing pumps for flushing with a fluid, and to specify a method for flushing a bearing device for a cardiac support system that ensures that sufficient heat can be dissipated from the bearing device during operation of the cardiac support system.

This object is achieved by the bearing device specified herein and the method specified herein. Advantageous embodiments of the invention are described herein.

A bearing device according to the invention for a cardiac support system includes a stand unit and an impeller and comprises an intermediate space formed between the impeller and the stand unit for guiding a flushing fluid flow of a fluid. The stand unit comprises a subsection which projects into the impeller and is configured to support the impeller such that it can rotate about an axis of rotation. The impeller is configured to rotate about a longitudinal axis aligned with the axis of rotation when the cardiac support system is in operation to convey a pump fluid flow of the fluid in a flow direction, wherein the impeller comprises at least one flushing outlet for discharging the flushing fluid flow from the intermediate space. The at least one flushing outlet in the impeller is configured such that, due to a centrifugal force acting upon the fluid in the at least one flushing outlet, a rotation of the impeller about the axis of rotation during operation of the cardiac support system causes the fluid to be expelled from the intermediate space through the flushing outlet to at least one discharge opening, whereby the flushing fluid flow is discharged from the intermediate space. For this purpose, the at least one flushing outlet in the impeller can comprise a discharge opening for discharging the flushing fluid flow, which has an opening cross-section, in which, at at least one location, an opening cross-section normal vector has a directional component which faces away from the axis of rotation and is radial to the axis of rotation. The at least one flushing outlet in the impeller is configured such that, due to a centrifugal force acting upon the fluid in the at least one flushing outlet, a rotation of the impeller about the axis of rotation during operation of the cardiac support system causes the fluid to be expelled from the intermediate space through the flushing outlet to at least one discharge opening, whereby the flushing fluid flow is discharged from the intermediate space.

A plurality of flushing outlets can be formed in the impeller. The at least one flushing outlet preferably extends along an axis which intersects the longitudinal axis of the impeller or is disposed at an angle to said longitudinal axis. The at least one flushing outlet can in particular be configured as a tube. The at least one discharge opening of the flushing outlet can, for example, be disposed in a jacket section of the impeller enclosing the subsection of the stand unit projecting into the impeller. The at least one discharge opening of the flushing outlet can in particular be disposed in a transition section between a region of a propeller of the impeller and a jacket section of the impeller enclosing the subsection of the stand unit projecting into the impeller.

It is also possible for the impeller to comprise a plurality of flushing outlets, wherein the at least one discharge openings of the flushing outlet are disposed at least partially in a transition section between a region of a propeller of the impeller and a jacket section of the impeller enclosing the subsection of the stand unit projecting into the impeller.

It should be noted that a number of flushing outlets in the impeller can correspond to a multiple of the number of blades of the impeller. It should also be noted that the bearing device can have a flushing inlet which, in the assembled state of the sliding bearing device, opens into the intermediate space. The flushing inlet can be configured as

a gap between a base of the stand unit and a jacket section of the impeller enclosing the subsection of the stand unit projecting into the impeller, for example.

It should be noted that the flushing inlet can also be configured as at least one inlet channel extending in a 5 direction which intersects the longitudinal axis of the impeller or extends at an angle to said longitudinal axis. The bearing device can also comprise a flushing inlet having a plurality of inlet channels.

The flushing inlet can in particular be disposed down- 10 stream with respect to the flushing outlet in the flow direction of the pump fluid flow.

The impeller can be located in a housing comprising a housing section to which an inlet hose for supplying the fluid is connected.

The housing section of the bearing device preferably has at least one discharge opening for discharging the pump fluid flow. The housing section can comprise webs for connecting to a connection section for connecting an inlet hose, wherein the webs delimit at least one discharge opening of the 20

A bearing device according to the invention can be configured as a sliding bearing device which comprises a sliding bearing for supporting a rotating component, or as a magnetic bearing device, in which a rotating component is 25 magnetically supported.

A sliding bearing device according to the invention comprises a stand unit and an impeller. The stand unit is designed to support the impeller such that it can rotate. The impeller is designed to rotate during an operation of the cardiac 30 support system in order to convey a pump fluid flow. The impeller is configured to enclose at least one subsection of the stand unit in the assembled state of the sliding bearing device. An intermediate space for guiding a flushing fluid flow is provided between said subsection and the impeller. 35 At least one flushing outlet is configured in the impeller to discharge the flushing fluid flow from the intermediate space by means of centrifugal force when the cardiac support system is in operation.

A sliding bearing device according to the invention for a 40 cardiac support system in particular enables the sliding bearing device to be flushed by utilizing centrifugal force. For this purpose, an impeller of the sliding bearing device can comprise a flushing outlet that rotates with the impeller in order to use the centrifugal force at the rotating flushing 45 outlet as the driving force for flushing the sliding bearing device. Flushing the sliding bearing device is beneficial during operation of the cardiac support system to dissipate heat and prevent the formation of thromboses.

which the flushing rate substantially depends only on the rotational speed of the cardiac support system and not on the static pressure difference between the flushing inlet and the flushing outlet, advantageously reduces the risk of thrombosis formation, because the flushing rate is significantly 55 less affected by loss of pressure in the blood stream and can thus be set more robustly. It is also not necessary for an external pressure difference to be imposed via the flushing

The utilization of the centrifugal force via the flushing 60 outlet in the impeller furthermore enables a compact design of the sliding bearing device, which is advantageous in particular for the use of the sliding bearing device in conjunction with the cardiac support system.

The cardiac support system can be a heart pump, for 65 example, such as a left ventricular support system, a right ventricular support system, or a biventricular support sys-

tem. The stand unit can be understood to be a non-rotating component of the sliding bearing device. The impeller can be a rotating component, such as a rotor. In the assembled state of the sliding bearing device, the impeller can enclose at least one subsection of the stand unit, whereby the sliding bearing device can be configured as a cylindrical sliding bearing, for example. In the implanted state of the cardiac support system, the impeller can be positioned in the blood. The pump fluid flow to be conveyed can, for example, be a blood flow pumped by the cardiac support system and produced by means of the cardiac support system. In the assembled state, an intermediate space in the form of a gap can emerge between the impeller and the subsection of the stand unit. The flushing outlet can be realized as a bore or another type of through-opening in the impeller. The flushing outlet can be configured to conduct the flushing fluid flow from the intermediate space through a portion of the impeller to discharge the flushing fluid flow from the intermediate space. It is also possible to configure two or more flushing outlets in the impeller.

According to one embodiment, the flushing outlet can be inclined relative to a longitudinal axis of the impeller, which in particular corresponds to an axis of rotation of the impeller. This is advantageous for utilizing the centrifugal force to effect a flushing of the sliding bearing device. The flushing outlet can have a longitudinal extension axis which is inclined relative to the longitudinal axis of the impeller. The longitudinal extension axis of the flushing outlet can also be inclined at a right angle with respect to the longitudinal axis of the impeller.

According to one embodiment, the flushing outlet can be configured as a tube having a discharge opening. The flushing outlet can thus advantageously be realized in a cost-saving manner, for example as a bore in the impeller, which also enables a compact design of the sliding bearing

According to one embodiment, the discharge opening can be disposed in a jacket section of the impeller enclosing the subsection of the stand unit or in a transition section between a region of a propeller of the impeller and said subsection. The transition section can be configured as a narrowing of the jacket section in the direction of the propeller, for example.

The discharge opening can alternatively also be disposed in the region of the propeller. The potential of the centrifugal force, by means of which the flushing effect for flushing the sliding bearing device can advantageously be set, can be set via the positioning of the discharge opening.

According to one embodiment, the impeller can also Flushing that utilizes centrifugal force, as a result of 50 comprise a plurality of flushing outlets. The discharge openings of the flushing outlets can be disposed at least partially in the transition section. In the assembled state of the sliding bearing device, the flushing outlets can extend radially outward with respect to the stand unit, for example. The discharge openings can be disposed evenly spaced around the periphery of the transition section. This positioning of the flushing outlets and the discharge openings is advantageous in terms of uniform flushing of the intermediate space and in terms of presenting the largest possible cross-section of the flushing outlets.

According to one embodiment, at least one pair of flushing outlets can be configured in the impeller. The flushing outlets of the at least one pair can be disposed opposite one another with respect to a longitudinal axis of the impeller. The configuration of the oppositely disposed pair of flushing outlets is advantageous to prevent an imbalance of the rotating propeller.

A number of flushing outlets in the impeller can correspond to a multiple of the number of blades of the impeller. The flushing outlets in the form of flushing bores are disposed just as periodically as the blading of the impeller, for example. This makes it possible to prevent an imbalance. In this case, for example, two blades result in a multiple of two as the number of flushing outlets.

According to one embodiment, the sliding bearing device can also comprise a flushing inlet for introducing the flushing fluid flow. In the assembled state of the sliding bearing device, the flushing inlet can open into the intermediate space. Using the acting centrifugal force, the flushing fluid flow can flush the intermediate space and thus also the bearing of the sliding bearing device, even without the provision of a static pressure difference between the flushing inlet and the flushing outlet.

According to one embodiment, the flushing inlet can also be configured as a gap between a base of the stand unit and a jacket section of the impeller enclosing the subsection of 20 the stand unit. Additionally or alternatively, the flushing inlet can be configured as an inlet channel in the impeller. The inlet channel can be inclined relative to an axis of rotation of the impeller. The flushing outlet can furthermore be formed in the impeller by a plurality of inlet channels with at least one inclined inlet channel. At least one side of the flushing inlet can thus be configured to be stationary and one side such that it can rotate. The flushing fluid flow can be drawn in on the stationary side of the flushing inlet, e.g., on a wall of the stand unit. If the flushing inlet is configured as 30 an inlet channel in the impeller, the flushing inlet can be configured at least partially in the rotating body of the impeller. A portion of the flushing fluid flow that is partially enclosed in the intermediate space can be introduced through the flushing inlet and discharged again through the 35 flushing outlet, for example to absorb and dissipate heat from the stand unit. The centrifugal pressure is advantageously increased if the flushing inlet is not or only partially located in the rotating body, the impeller.

The flushing inlet can furthermore be disposed down- 40 with the rotation speed $v=2\pi Rn$ and with n being the speed stream with respect to the flushing outlet in the flow direction of the pump fluid flow. By introducing the flushing fluid flow along the stand unit and along the impeller, a constant flushing of the sliding device can advantageously be set thanks to the rotation of the flushing fluid flow at the flushing 45 outlet, even when the pressure levels at the flushing inlet and flushing outlet are the same.

The invention further presents a cardiac support system having an embodiment of the aforementioned sliding bearing device. The cardiac support system can be a left ven- 50 tricular cardiac support pump, for example. For minimally invasive transfemoral or transacrtic insertion, for example, the cardiac support system can furthermore have an elongated, cylindrical shape.

A method for producing a bearing device for a cardiac 55 support system configured as a sliding bearing device or as a magnetic bearing device is presented as well. The method comprises the following steps:

providing a stand unit, which is designed to support an impeller such that it can rotate, and the impeller, which 60 is configured to rotate during operation of the cardiac support system to convey a pump fluid flow;

forming at least one flushing outlet in the impeller, wherein the flushing outlet is designed to discharge a flushing fluid flow from the bearing device by means of centrifugal force when the cardiac support system is in operation; and

6

assembling the impeller and the stand unit to produce the bearing device, wherein at least one subsection of the stand unit is enclosed by the impeller, and wherein an intermediate space for guiding the flushing fluid flow is disposed between the subsection and the impeller.

An embodiment of the aforementioned bearing device can advantageously be produced by carrying out the method.

The condition for the flushing to function by the action of centrifugal force is set out in the following:

The flushing is independent of the static pressure difference. Centrifugal force is used to flush the sliding bearing device; no external pump or additional geometries or structures to produce a static pressure difference are needed. This requires the mechanical energy balance due to the kinetic rotational energy at the exit, at the discharge opening of the flushing outlet, to be positive; i.e., the mechanical energy of the flow at the exit has to be greater than at the entry, at the flushing inlet. This is illustrated in the following using formulas according to Bernoulli's principle:

$$\frac{p_{\textit{exit}}}{\text{density}} - \frac{v_{\textit{exit}}^2}{2} < \frac{p_{\textit{entry}}}{\text{density}} - \frac{v_{\textit{entry}}^2}{2}$$

If v is the rotational speed and the flushing inlet is not subject to rotation, then:

$$\frac{p_{exit}}{\text{density}} - \frac{v_{exit}^2}{2} < \frac{p_{entry}}{\text{density}}$$

rearranged:

$$\frac{(p_{exit} - p_{entry})}{\text{density}} < \frac{v_{exit}^2}{2}$$

in revolutions/second

$$\frac{(p_{exit} - p_{entry})}{\text{density}} < 2(\pi Rn)^2$$

from which then follows:

static pressure difference $<< 2(\pi Rn)^2$ *density

For water, the "centrifugal pressure" corresponds to a pressure difference of approx. 5 bar at a radius of 1 cm and a speed of 30,000 revolutions/minute. The described approach is therefore effective for this numerical example if the static pressure difference is only approx. 500 mbar (interpreted as "much greater" than a factor of ten).

Flushing of the sliding bearing device by means of centrifugal force requires a rotating system with system limits, the "entry" and "exit", which point outward in the direction normal to the axis of rotation. The flushing path of the flushing fluid flow extends between the rotating body, the jacket section of the impeller, and the body which is stationary relative to it, the stand unit. According to the design example shown here, the flushing fluid flow moves along the path, i.e., along the intermediate space to the flushing outlet. At the exit of the flushing outlet, the flushing fluid flow flows out of the flushing path. In order to impose the centrifugal

force across the entire cross-section, the exit boundary of the flushing outlet is located inside the rotating body, inside the jacket section. The cross-section normal vector should have a component in radial direction, which is not the case on the end face of a cylindrical sliding bearing device, for example, 5 but in radial direction, i.e., when the jacket section is drilled

The invention also extends to a cardiac support system in which there is a bearing device as described above.

In a method according to the invention for flushing an intermediate space for guiding a flushing fluid flow with a fluid in a bearing device for a cardiac support system, wherein the intermediate space comprises at least one flushing inlet for introducing the flushing fluid flow and at least one flushing outlet for discharging the flushing fluid flow and wherein the intermediate space is configured between an impeller which can rotate about an axis of rotation for conveying a pump fluid flow and a stand unit for rotatably supporting the impeller, in which the fluid is introduced into the intermediate space through the at least one flushing inlet, 20 opening cross-section 132, in which, at at least one location, the fluid is expelled from the intermediate space through the flushing outlet to at least one discharge opening by means of a centrifugal force acting upon said fluid in the at least one flushing outlet relative to the axis of rotation.

Advantageous design examples of the invention are 25 described in more detail in the following with reference to schematic drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The figures show:

FIG. 1 a first sliding bearing device for a cardiac support system comprising an impeller and comprising a stand unit as a section:

the first sliding bearing device;

FIG. 3 a side view of the first sliding bearing device;

FIG. 4 a rear view of the impeller in the direction of the arrow IV of FIG. 3;

FIG. 5 other possible designs of an impeller in a sliding 40 bearing device for a cardiac support system;

FIG. 6 an intermediate space having various flushing fluid volumes in different sliding bearing devices for a cardiac support system with different configurations of flushing outlets;

FIG. 7 a further sliding bearing device comprising an impeller and comprising a stand unit;

FIG. 8 the further sliding bearing device comprising an impeller and comprising a stand unit as a section;

FIG. 9 a detail of a further sliding bearing device for a 50 cardiac support system in a sectional view;

FIG. 10 the detail of the further sliding bearing device for a cardiac support system of FIG. 9 in a plan view;

FIG. 11 a detail of a further sliding bearing device for a cardiac support system in a sectional view; and

FIG. 12 a flow diagram of a method for producing a sliding bearing device.

DETAILED DESCRIPTION

In the following description of favorable design examples of the present invention, the same reference signs are used for the elements shown in the various figures, which are the same or have a similar effect, whereby a repeated description of these elements is omitted.

FIG. 1 shows a schematic illustration of a bearing device 100 for a cardiac support system which is configured as a

sliding bearing device according to one design example. The bearing device 100 comprises a stand unit 105 and an impeller 110. The stand unit 105 is configured to support the impeller 110 such that it can rotate about an axis of rotation 112 which is coaxial with the longitudinal axis 114 of the impeller 110. The impeller 110 is designed to rotate about the axis of rotation 112 when the cardiac support system is in operation in order to convey a pump fluid flow 115. In the assembled state of the sliding bearing device shown here, the impeller 110 encloses at least one subsection 120 of the stand unit 105. An intermediate space 125 for guiding a flushing fluid flow 130 is provided between the subsection 120 and the impeller 110. At least one flushing outlet 135 is formed in the impeller 110. The flushing outlet 135 is designed to discharge the flushing fluid flow 130 from the intermediate space 125 by means of centrifugal force when the cardiac support system is in operation.

The flushing outlet 135 comprises a discharge opening 140 for discharging the flushing fluid flow 130, which has an an opening cross-section normal vector 134 has a directional component 136 which faces away from the axis of rotation 112 and is radial to the axis of rotation 112.

According to the design example shown here, the flushing outlet 135 is inclined relative to the longitudinal axis 114 of the impeller 110 which is coaxial with the axis of rotation 112. The flushing outlet 135 comprises an axis 137 along which said flushing outlet 135 extends and which is thus a longitudinal extension axis of the flushing outlet 135, which is inclined relative to the longitudinal axis 114 of the impeller 110 and forms an acute angle α with it. It should be noted that this axis 137 can also be inclined relative to the longitudinal axis 114 of the impeller 110.

Furthermore, according to the design example shown FIG. 2 a portion of a cardiac support system comprising 35 here, the flushing outlet 135 is configured as a tube with a discharge opening 140. The discharge opening 140 is disposed at an end of the tube facing away from the intermediate space 125.

> According to the design example shown here, the sliding bearing device 100 also comprises a flushing inlet 145 for introducing the flushing fluid flow 130. In the assembled state of the bearing device 100 shown here, the flushing inlet 145 opens into the intermediate space 125.

According to the design example shown here, the flushing 45 inlet **145** is configured as a gap between a base **107** of the stand unit 105 and a jacket section 150 of the impeller 110 enclosing the subsection 120 of the stand unit 105. It should be noted that the flushing inlet can in principle also be configured as an inlet channel in the impeller 110.

In the sliding bearing device shown in FIG. 1, the flushing inlet 145 is disposed downstream with respect to the flushing outlet 135 in the flow direction of the pump fluid flow 115 as in the design example shown here. FIG. 1 shows a flushing fluid flow 130 with a flushing path for flushing the bearing device 100 which extends from the flushing inlet 145 through the intermediate space 125 to the flushing outlet 135 with the discharge opening 140.

FIG. 2 shows a perspective view of a portion of a cardiac support system 200 with the sliding bearing device 100 in the form of a left ventricular cardiac support pump (LVAD heart pump). FIG. 3 is a side view of the bearing device 100.

The bearing device 100 and its function in a cardiac support system are described in more detail in the following:

The impeller 110 is a rotor that forms a rotating component in the bearing device 100 of the cardiac support system 200, which is supported magnetically or by means of sliding bearings, wherein the rotating component is positioned over

a fluid to dissipate heat or reduce friction. When the impeller 110 is positioned directly in the blood during operation of the cardiac support system, as is the case, for example, with the left ventricular cardiac support pump (LVAD heart pump) shown in FIG. 2 in the implanted state of the cardiac 5 support system, it is beneficial to flush the bearing device 100 to dissipate heat and prevent the formation of thromboses ("blood clotting"). To enable robust flushing of the sliding bearing device 100, a constant flow is necessary. Flushing the sliding bearing device 100 prevents the forma- 10 tion of thromboses. A pump design (such as baffles) that converts mechanical energy into hydrodynamic energy can be used for this purpose. With the sliding bearing device 100 shown in FIG. 1 and FIG. 2, it is possible to utilize the centrifugal force on the flushing outlet 135 rotating with the 15 impeller 110 using only a bore in the form of the flushing outlet 135. The centrifugal force represents the driving force for the flushing. Such a structure is inexpensive to produce.

A plurality of flushing outlets 135 can alternatively also be provided at different locations on the impeller 110 to 20 utilize the centrifugal force, as shown in the following figures.

Using a design example of the bearing device 100 shown here, introduction can be realized by suctioning out the flushing fluid flow 130 with the aid of the centrifugal force 25 at the flushing outlet 135. Structurally, this is achieved by configuring the flushing outlet 135 such that the flushing outlet 135 is enclosed by the rotating component, the impeller 110, e.g., by having a bore as the flushing outlet 135, while the inlet side in the form of flushing inlet 145 is not 30 or only partially, e.g., only on one side, subject to the rotation. This is achieved by configuring the flushing inlet 145 with at least one section of the stand unit 105 as a wall section. In this case, the statistical pressure difference has practically no effect on the flushing flow of the flushing fluid 35 flow 130, which is why the flushing effect of the bearing device 100 is substantially determined by the centrifugal force and the rotational speed of the pump of the cardiac support system. The flushing effect of the bearing device 100 variables, such as the magnitude of the mass flow or the level of the pressure build-up through or over the cardiac support system. Consequently, there is no need for a static pressure difference to flush the bearing device 100. The positioning of the flushing outlet 135 in the impeller 110, which is trumpet- 45 shaped here as an example, with widely varying diameters relative to a longitudinal extension axis 114 of said impeller 110, can therefore be realized in different ways, whereby a positioning of the flushing outlet 135 far upstream of the longitudinal extension of the impeller 110 can be omitted. 50 Complex structures, such as a pump wheel, or the application of a pressure difference in or around the sliding bearing device 100 are not necessary to effect the flushing of the sliding bearing device 100 either. Because of the independence from the pump flow, the pump flow of the pump fluid 55 flow 115 shown here, the flushing of the bearing device 100 is possible without an absence of flushing as long as the impeller 110 is rotating.

In the design example discussed here, the bearing device 100 comprises the impeller 110 as a rotating part which, 60 together with the stand unit 105 as a stationary part, forms a cylindrical sliding bearing. The flushing effect of the bearing device 100 is based on the centrifugal force that results from a rotation at the flushing outlet 135. The prerequisite for this is that, as shown here, at least one side at the flushing inlet 145 is stationary; in this case the inner side in the form of the stand unit 105. As a result, even if the

10

pressure levels at the flushing inlet 145 and the flushing outlet 135 are comparable or the same, a constant flushing of the sliding bearing device 100 can be set due to the rotation of both sides of the flushing outlet 135 formed in the rotating impeller 110 or the fluid volume of the flushing outlet 135. The design example of the bearing device 100 shown here also makes it possible to flush a partially enclosed volume, which is shown here in block 155 which, as an example, is disposed around the fixed bearing of the stand unit 105, by combining a rotating and a stationary side. The reason for this is that the flushing fluid flow 130 is accelerated on the rotating side of the impeller as a result of the molecular adhesion conditions. The flushing fluid flow 130 is accelerated along the wall of the intermediate space 125 toward a larger diameter due to the centrifugal force, as a result of which the flushing fluid flow 130 is drawn in on the stationary side of the intermediate space 125 in the form of a wall of the stand unit 105. This causes the partially enclosed fluid of the flushing fluid flow 130 to be flushed, which allows heat at the fixed bearing of the stand unit 105, for example, to be absorbed and dissipated.

The cardiac support system 200 shown in FIG. 2 comprises a housing section 205. The impeller 110 of the bearing device 100 is located in the housing section 205 of the cardiac support system 200. In the cardiac support system 200, the impeller 110 is disposed in a housing section 205 on which an inlet hose 210 for supplying the fluid is provided. In the housing section 205 of the housing of the cardiac support system, there are discharge openings 215 for discharging the pump fluid flow 115. For connecting the inlet hose 210, the cardiac support system 200 comprises a connection section 220 which is connected to webs 225 of the housing section 205 that delimit two discharge openings 215 for discharging fluid conveyed by a rotation of the impeller 110 in the cardiac support system 200 from the housing section 205.

The housing section 205 of the cardiac support system is thus largely independent of other potential influencing 40 200 has a cylindrical, elongated structure with a substantially constant outer diameter for easy placement in a blood vessel, such as the aorta, by means of a catheter. The elongated axial design shown here allows transfemoral implantation of the cardiac support system 200. The sliding bearing device 100 is accordingly disposed in a window opening in the housing section 205 such that, in the implanted state of the cardiac support system 200, the rotating rotor component, the impeller 110, is positioned in the blood. Due to the axial design of the cardiac support system 200, the flow received by the impeller 110 is axial relative to the longitudinal axis 114 of the impeller 110, which corresponds to a longitudinal axis of the cardiac support system 200. The flushing outlet 135 in the impeller 110 is disposed in the region 111 of a propeller of the impeller 110, whereby the flushing outlet 135 is realized by a drilled hole or a through-bore or another type of throughhole in the impeller 110.

> FIG. 3 shows the sliding bearing device 100 with the stand unit 105 and the impeller 110 in the assembled state, whereby the stand unit 105 forms the non-rotating counterpart to the rotating impeller 110. The stand unit 105 has a section which narrows in the direction of the impeller 110. The narrowed section of the stand unit 105 is mostly enclosed by the impeller 110. The stand unit 105 is connected to the impeller 110 and supports the impeller 110 such that it can rotate. The flushing outlet 135 having a discharge opening 140 is configured in the impeller 105. As

an example, the discharge opening 140 of the flushing outlet here is disposed in the region of the propeller of the impeller 110

FIG. 4 shows a perspective rear view of the impeller in the direction of the arrow IV of FIG. 3. The side of the impeller 110 facing away from the propeller of the impeller 110, which can be coupled to the stand unit 105 of the bearing device, is shown as the rear side of the impeller 110. To connect the impeller 110 to the stand unit 105, the impeller 110 here comprises a ball bearing 405 for supporting the impeller 110. The flushing outlets 135 of the impeller 110, which, as an example, are configured here as discharge bores and which communicate with the intermediate space 125 shown in FIG. 1, can be seen as well.

According to the design example shown here, at least one 15 pair of flushing outlets 135 is configured in the impeller 110. The flushing outlets 135 of the at least one pair are disposed opposite one another with respect to a longitudinal axis 114 of the impeller 110. As an example, the flushing outlets 135 of the pair are evenly spaced with respect to the axis of 20 rotation 112 of the impeller 110, i.e., they extend symmetrically relative to a longitudinal axis 114 of the impeller 110 coaxial with the axis of rotation 112.

FIG. 5 shows further possible designs of an impeller 110 in a bearing device for a cardiac support system, which can 25 be configured as a sliding bearing device or as a magnetic bearing device. The figure shows a perspective view of the impeller 110, wherein different example positionings of a discharge opening 140 of the flushing outlet 135 in the impeller 110 as well as a respective opening cross-section 30 normal vector 134 and the longitudinal axis 114 of the impeller 110 are identified.

According to one design example, the discharge opening 140 of the flushing outlet 135 is disposed in a jacket section 150 of the impeller 110 enclosing the subsection of the stand 35 unit. Alternatively, the discharge opening of the flushing outlet is disposed in a transition section 510 between a region of a propeller 515 of the impeller 110 and the jacket section 505.

This figure shows a potential estimate for the design 40 example, where the strongest suction force occurs, and thus where a suitable location for positioning the flushing outlet and the discharge opening of the flushing outlet is. Three regions 520, 525 and 530 for disposing the discharge opening of the flushing outlet in the impeller 110 are shown as 45 examples. The region 520 is located in the region of the propeller 515. The region 525, for example, identifies a position of the discharge opening of the flushing outlet 135 in the transition section 510. The region 530, for example, identifies a positioning of the discharge opening of the 50 flushing outlet in the jacket section 150. According to the potential estimate shown here, when the flushing outlet 135 and the discharge opening 140 are positioned in the region 530, a beneficial flushing effect is achieved in a bearing device having such an impeller 110 and a stand unit 105 55 because the centrifugal force between the flushing inlet and the flushing outlet is sufficient to drive the flushing.

FIG. 6 shows the intermediate space 125 with different flushing fluid volumes in different bearing devices for a cardiac support system designed as a sliding bearing device 60 or as a magnetic bearing device having different configurations of flushing outlets, wherein the flushing outlets 135 are configured differently. The flushing outlet 135, through which the flushing fluid flow passes, has different configurations 605, 610, 615, 620, 625 here. At least one pair of 65 flushing outlets 135 is configured in the impeller of these sliding bearing devices, whereby the flushing outlets 135 of

12

the at least one pair in a bearing device are disposed opposite one another with respect to the longitudinal axis 114 of the impeller 110 aligned with the axis of rotation 112. The respective configurations 605, 610, 615, 620, 625 of the flushing outlets shown here show examples of the pair of flushing outlets. In a first configuration 605, the flushing outlets of the pair extend radially from the longitudinal axis 114 of the impeller inclined at an obtuse angle α with respect to said longitudinal axis 114 of the impeller, whereby a starting point of the flushing outlets 135 is formed in close proximity to the longitudinal axis 114. In a second configuration 610, the flushing outlets 135 of the pair extend inclined at an acute angle α with respect to the longitudinal axis 114 of the impeller; the flushing outlets 135 of the pair are accordingly angled toward one another. A third configuration 615 corresponds to the first configuration 605 with the exception of the starting point of the flushing outlets 135, which are disposed further apart than the starting points of the flushing outlets of the first configuration 605. In a fourth configuration 620, the flushing outlets 135 of the pair extend at a right angle β to the longitudinal axis 114 of the impeller. A fifth configuration 625 shows an example of two pairs of flushing outlets 135, which are disposed opposite one another with respect to the longitudinal axis 114 of the impeller and are disposed evenly spaced apart from one another. Like the pair shown in the fourth configuration 620, the two pairs of flushing outlets 135 extend at a right angle β to the longitudinal axis 114 of the impeller.

FIG. 7 shows a further sliding bearing device 100 for a cardiac support system. The figure shows a perspective view of the sliding bearing device 100 in the assembled state, in which the impeller partly encloses the stand unit 105. FIG. 8 shows this sliding bearing device 100 as a section. The sliding bearing device 100 shown here is similar to the sliding bearing device described with reference to the preceding figures. According to the design example shown here, the impeller 110 comprises a plurality of flushing outlets 135. The discharge openings 140 of the flushing outlets are disposed at least partially in the transition section 510 between the propeller 515 and the jacket section 505. As an example, the discharge openings 140 are disposed evenly spaced around the periphery of the transition section 510. FIG. 7 shows a utilization of the flushing position of the plurality of flushing outlets having the suction force determined to be the strongest.

FIG. 8 shows a further sliding bearing device 100 for a cardiac support system. The figure shows a sectional view of a side view of the sliding bearing device 100. The stand unit 105 is partially enclosed by the jacket section 150 of the impeller 110. The plurality of discharge openings 140 of flushing outlets 135 is disposed in the transition region or transition section 510 between the propeller of the impeller 110 and the jacket section 150. The figure shows the flow direction of the pump fluid flow 115 and the flow path of the flushing fluid flow 130. The flushing fluid flow 130 is introduced through the flushing inlet 145 which, according to the design example shown here, is configured as a gap 905 between the base 107 of the stand unit 105 and the jacket section 505 of the impeller 110 enclosing the subsection 120 of the stand unit 105. The flushing fluid flow 130 is then conducted through the intermediate space 125 to one of the discharge openings 140 of the plurality of flushing outlets 135 by means of centrifugal force in order to flush the sliding bearing device 100.

FIG. 9 shows a schematic illustration of a detail of a sliding bearing device 100 for a cardiac support system according to one design example. The figure shows a

cross-section of a part of the sliding bearing device 100 with the subsection of the stand unit 105 enclosed by the jacket section 150 of the impeller. The configuration of the flushing outlet 135 here is intended to show that the flushing outlets can also be disposed in a non-mirror-symmetrical manner.

The figure shows a portion of the flushing path of the flushing fluid flow 130 that flows through the intermediate space 125 to the flushing outlet 135 and is discharged from the discharge opening of the flushing outlet 135. The outflow of the flushing fluid flow is shown in the following FIG. 10 with the aid of a plan view from the direction identified here with the arrow 1005.

FIG. 10 shows a schematic illustration of a detail of a sliding bearing device 100 for a cardiac support system 15 according to one design example. The figure shows a plan view onto the detail of the sliding bearing device 100 identified in the preceding FIG. 9. The flushing outlet 135 is disposed in the jacket section 150 radially to a longitudinal extension axis 116 of the subsection of the stand unit 105 20 field in the following clauses: enclosed by the jacket section 505 which is aligned with the axis of rotation 112 in the bearing device. The flushing fluid flow 130 exits the jacket section 150 at the discharge opening 140 of the flushing outlet.

FIG. 11 shows a schematic illustration of a detail of a 25 sliding bearing device 100 for a cardiac support system according to one design example. According to the design example shown here, the flushing inlet 145 is realized in the intermediate space 125 by a plurality of inlet channels, namely by the channel 1105 and the channel 1107. This is 30 also intended to demonstrate that the inlet direction does not necessarily only have to be oriented in the direction of the longitudinal extension axis 116 of the bearing device 100 aligned with the axis of rotation 112 of the bearing device 100, but can also be inclined relative to said longitudinal 35 extension axis. If the flushing inlet 145 is configured such that there is no acting centrifugal force there, for example such that the boundary of the flushing inlet 145 is not or only partially in the rotating body as in the design example of the is partially configured in the jacket section 150, the centrifugal pressure is advantageously increased.

FIG. 12 shows a flow diagram of a method 800 for producing a bearing device for a cardiac support system configured as a sliding bearing device or as a magnetic 45 bearing device according to one design example. The method 800 comprises a step 801 of providing, a step 803 of forming, and a step 805 of assembling. In step 801 of providing, a stand unit is provided, which is configured to step 801 is the impeller, which is designed to rotate during an operation of the cardiac support system in order to convey a pump fluid flow. In step 803 of forming, at least one flushing outlet is formed in the impeller, which is designed to discharge a flushing fluid flow from the sliding bearing 55 device by means of centrifugal force when the cardiac support system is in operation. In step 805 of assembling, the impeller and the stand unit are assembled to produce the sliding bearing device. At least one subsection of the stand unit is enclosed by the impeller. An intermediate space for 60 guiding the flushing fluid flow is furthermore provided between said subsection and the impeller. During the operation of the cardiac support system, the flushing fluid flow is conducted from the intermediate space into the flushing outlet by means of centrifugal force and from there is discharged from the bearing device in order to flush the bearing device.

14

In summary, in particular the following should be noted: The invention relates to a bearing device 100 for a cardiac support system. The bearing device 100 comprises a stand unit 105 and an impeller 110. The stand unit 105 is designed to support the impeller 110 such that it can rotate. The impeller 110 is designed to rotate when the cardiac support system is in operation in order to convey a pump fluid flow 115. The impeller 110 is designed to enclose at least one subsection 120 of the stand unit 105 in the assembled state of the bearing device 100, wherein an intermediate space 125 for guiding a flushing fluid flow 130 is provided between the subsection 120 and the impeller 110. At least one flushing outlet 135 is formed in the impeller 110. The flushing outlet 135 is designed to discharge the flushing fluid flow 130 from the intermediate space 125 by means of centrifugal force when the cardiac support system is in operation.

The invention relates, in particular, to the aspects speci-

- 1. Sliding bearing device (100) for a cardiac support system (200), wherein the sliding bearing device (100) has the following features:
 - a stand unit (105) is designed to support an impeller (110) such that it can rotate; and
 - the impeller (110), which is configured to rotate when the cardiac support system (200) is in operation to convey a pump fluid flow (115), wherein the impeller (110) is designed to enclose at least one subsection (120) of the stand unit (105) in the assembled state of the sliding bearing device (100), wherein an intermediate space (125) for guiding a flushing fluid flow (130) is provided between the subsection (120) and the impeller (110), wherein at least one flushing outlet (135) is formed in the impeller (110), wherein the flushing outlet (135) is designed to discharge the flushing fluid flow (130) from the intermediate space (125) by means of centrifugal force when the cardiac support system (200) is in operation.
- flushing inlet 145 shown here as an inlet channel 1105 which 40 2. Sliding bearing device (100) according to clause 1, wherein a plurality of flushing outlets (135) are formed in the impeller (110).
 - 3. Sliding bearing device (100) according to any one of the preceding clauses, wherein the at least one flushing outlet (135) is inclined relative to a longitudinal axis of the impeller (110).
 - 4. Sliding bearing device (100) according to any one of the preceding clauses, wherein the flushing outlet (135) is configured as a tube having a discharge opening (140).
- support an impeller such that it can rotate. Also provided in 50 5. Sliding bearing device (100) according to clause 4, wherein the discharge opening (140) is disposed in a jacket section (505) of the impeller (110) enclosing the subsection (120) of the stand unit (105) or in a transition section (510) between a region of a propeller (515) of the impeller (110) and the jacket section (150).
 - 6. Sliding bearing device (100) according to clause 5, wherein the impeller (110) comprises a plurality of flushing outlets (135), wherein the discharge openings (140) of the flushing outlets (135) are at least partially disposed in the transition section (510).
 - 7. Sliding bearing device (100) according to any one of the preceding clauses, wherein a number of the flushing outlets (135) in the impeller (110) corresponds to a multiple of the number of blades of the impeller (110).
 - 65 8. Sliding bearing device (100) according to any one of the preceding clauses, comprising a flushing inlet (145) for introducing the flushing fluid flow (130), wherein, in the

assembled state of the sliding bearing device (100), the flushing inlet (145) opens into the intermediate space (125).

- 9. Sliding bearing device (100) according to clause 8, wherein the flushing inlet (145) is formed as a gap (905) 5 between a base of the stand unit (105) and a jacket section (150) of the impeller (110) enclosing the subsection (120) of the stand unit (105), and/or wherein the flushing inlet (145) is formed in the impeller (110) as an inclined inlet channel (1105) or by a plurality of inlet channels having 10 at least one inclined inlet channel (1105).
- 10. Sliding bearing device (100) according to any one of clauses 8 to 9, wherein the flushing inlet (145) is disposed downstream with respect to the flushing outlet (135) in the flow direction of the pump fluid flow (115).
- 11. Cardiac support system (200) comprising a sliding bearing device (100) according to any one of the preceding clauses 1 to 10.
- 12. Method (800) for producing a sliding bearing device (100) for a cardiac support system (200), wherein the ²⁰ method (800) comprises the following steps:
 - providing (801) a stand unit (105), which is designed to support an impeller (110) such that it can rotate, and the impeller (110), which is configured to rotate during operation of the cardiac support system (200) to convey 25 a pump fluid flow (115);
 - forming (803) at least one flushing outlet (135) in the impeller (110), wherein the flushing outlet (135) is designed to discharge a flushing fluid flow (130) from the sliding bearing device (100) by means of centrifugal force when the cardiac support system (200) is in operation; and
 - assembling (805) the impeller (110) and the stand unit (105) to produce the sliding bearing device (100), wherein at least one subsection (120) of the stand unit ³⁵ (105) is enclosed by the impeller (110), and wherein an intermediate space (125) for guiding the flushing fluid flow (130) is disposed between the subsection (120) and the impeller (110).

LIST OF REFERENCE SIGNS

- 100 Sliding bearing device
- 105 Stand unit
- **107** Base
- 110 Impeller
- 111 Region of a propeller of the impeller
- 112 Axis of rotation
- 114 Longitudinal axis
- 115 Pump fluid flow
- 116 Longitudinal extension axis
- 120 Subsection of the stand unit
- 125 Intermediate space
- 130 Flushing fluid flow
- 132 Opening cross-section
- 134 Opening cross-section normal vector
- 135 Flushing outlet
- 136 Directional component
- **137** Axis
- 140 Discharge opening
- 145 Flushing inlet
- 150 Jacket section
- 155 Block
- 200 Cardiac support system
- 205 Housing section
- 210 Inlet hose
- 215 Discharge opening

16

220 Connection section

225 Web

405 Ball bearing

505 Jacket section

510 Transition section

515 Propeller

520, 525, 530 Region

605, 610, 615, 620, 625 Configuration

800 Method

801 Step of providing

803 Step of forming

805 Step of assembling

905 Gap

1005 Arrow

1105, 1107 Inlet channel

The invention claimed is:

- 1. A heart pump having a bearing device, the bearing device comprising:
 - a stand unit;

40

45

- an impeller; and
- an intermediate space formed between the impeller and the stand unit for conducting a flushing fluid flow from
- wherein the stand unit comprises a subsection enclosed by the impeller and configured to align the impeller about an axis of rotation.
- wherein the impeller is configured to rotate about a longitudinal axis aligned with the axis of rotation when the heart pump is in operation to convey a pump fluid flow of the fluid in a flow direction,
- wherein the impeller comprises at least one flushing outlet for discharging the flushing fluid flow from the intermediate space,
- wherein the at least one flushing outlet comprises a first discharge opening for discharging the flushing fluid flow, which has an opening cross-section in which, an opening cross-section normal vector faces away from the axis of rotation and is radial to the axis of rotation,
- wherein the impeller is disposed in a housing section comprising at least two second discharge openings for discharging the pump fluid flow and connected to an inlet hose for supplying the fluid, and
- wherein the opening cross-section normal vector intersects with one of the at least two second discharge openings of the housing section at a time and is perpendicular to the axis of rotation.
- 2. The heart pump according to claim 1, wherein the at least one flushing outlet comprises a plurality of flushing outlets formed in the impeller.
- 3. The heart pump according to claim 1, wherein the at least one flushing outlet is tubular.
- 4. The heart pump according to claim 1, wherein the first discharge opening of the at least one flushing outlet is disposed in a jacket section of the impeller enclosing the subsection of the stand unit.
 - 5. The heart pump according to claim 1, wherein the first discharge opening of the at least one flushing outlet is disposed in a transition section between a region of a propeller of the impeller and a jacket section of the impeller surrounding the subsection of the stand unit.
- 6. The heart pump according to claim 1, wherein the at least one flushing outlet comprises a plurality of flushing outlets formed in the impeller, the first discharge openings of the plurality of flushing outlets disposed at least partially in a transition section between a region of a propeller of the
 - a transition section between a region of a propeller of the impeller and a jacket section of the impeller enclosing the subsection of the stand unit.

17

- 7. The heart pump according to claim 1, wherein a number of the flushing outlets formed in the impeller correspond to a multiple of a number of blades of the impeller.
- **8**. The heart pump according to claim **1**, wherein the housing section comprises webs, wherein the webs delimit 5 the at least two second discharge openings for discharging the pump fluid flow.
- 9. The heart pump according to claim 1, wherein the bearing device is configured as a sliding bearing device comprising a sliding bearing for supporting a rotating component in the form of the impeller, or as a magnetic bearing device in which a rotating component in the form of the impeller is magnetically supported.
- 10. The heart pump according to claim 1, wherein a flushing inlet opens into the intermediate space in an 15 assembled state of the bearing device.
- 11. The heart pump according to claim 10, wherein the flushing inlet is configured as a gap between a base of the stand unit and a jacket section of the impeller enclosing the subsection of the stand unit.
- 12. The heart pump according to claim 10, wherein the flushing inlet is configured as at least one inlet channel extending in a direction which intersects the longitudinal axis of the impeller or extends at an angle to the longitudinal axis of the impeller.
- 13. The heart pump according to claim 10, wherein the flushing inlet comprises a plurality of inlet channels.
- 14. The heart pump according to claim 10, wherein the flushing inlet is disposed downstream with respect to the at least one flushing outlet in the flow direction of the pump 30 fluid flow.
- 15. The heart pump according to claim 1, wherein the impeller comprises a jacket section, the jacket section comprising an inner surface comprising a first constant radius from a longitudinal axis; wherein a flushing inlet is positioned at a first end of the jacket section and the at least one flushing outlet is positioned at a second end of the jacket section opposite the first end, wherein the intermediate space is parallel to the longitudinal axis between the flushing inlet and the at least one flushing outlet.
- **16**. A method for flushing an intermediate space for guiding a flushing fluid flow with a fluid in a bearing device of a heart pump, the method comprising:

providing the intermediate space, the intermediate space comprising at least one flushing inlet for introducing 45 the flushing fluid flow and at least one flushing outlet for discharging the flushing fluid flow, wherein the intermediate space is configured between an impeller which can rotate about an axis of rotation for conveying a pump fluid flow and a stand unit configured to align 50 the impeller about the axis of rotation;

18

introducing the fluid into the intermediate space through the at least one flushing inlet;

expelling the fluid from the intermediate space through the at least one flushing outlet to at least one first discharge opening by means of a centrifugal force acting upon the fluid in the at least one flushing outlet relative to the axis of rotation, wherein the at least one flushing outlet comprises the at least one first discharge opening for an exit of the flushing fluid flow, wherein the at least one first discharge opening has an opening cross-section in which an opening cross-section normal vector faces away from the axis of rotation and is radial to the axis of rotation, wherein the impeller is disposed in a housing section connected to an inlet hose for supplying the fluid, wherein the housing section comprises at least two second discharge openings for discharging the pump fluid flow, and wherein the opening cross-section normal vector intersects with at the least two second discharge openings of the housing section and is perpendicular to the axis of rotation.

17. A heart pump configured to be delivered to the heart via catheter for pumping blood, the heart pump comprising: a conduit having a discharge opening and configured to convey blood through the discharge opening into a blood vessel;

an impeller comprising a first magnet and configured to rotate about an axis to convey the blood; and

- a support comprising a second magnet and configured to magnetically communicate with the first magnet to rotate the impeller, wherein the impeller and support define an intermediate space therebetween, the intermediate space configured to convey from a flushing inlet to a flushing outlet a portion of the blood conveyed through the conduit, the flushing inlet disposed downstream of the flushing outlet with respect to a direction of flow of the blood conveyed in the conduit, and the flushing outlet extending perpendicular to the axis;
- wherein the flushing outlet extends in a direction that intersects the discharge opening of the conduit.
- 18. The heart pump according to claim 17, wherein the conduit comprises a tubular inlet hose connected to a tubular housing section.
- 19. The heart pump according to claim 17, wherein the flushing inlet defines a disc-like gap configured to receive blood from a plurality of angular locations about the axis.
- 20. The heart pump according to claim 17, further comprising a plurality of the flushing outlets defining elongated channels extending through the impeller.

* * * * *