Предел функции и его свойства

Говорят, что при $x \to a$ предел f(x) = b или $\lim_{x \to a} f(x) = b$, если $f \colon D \to \mathbb{R}$, a - предельная точка D, $\forall \{x_n\} \in D, \, x_n \to a, \, x \neq a, \, f(x_n) \to b$.

Опр: 1. (Коши) Пусть $f \colon D \to \mathbb{R}, a$ - предельная точка D. Число b называется пределом f при $x \to a$, если

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall x \in D, \ 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

Рис. 1: Определение предела функции f(x).

Rm: 1. |x - a| > 0 - то же самое, что и сказать $x \neq a$.

Rm: 2. Если D - не ограничено сверху, то в качестве a можно взять $+\infty$ и <u>определение Коши</u> переписывается так:

$$\forall \varepsilon > 0, \, \exists \, M > 0 \colon \forall x \in D, \, x > M \Rightarrow |f(x) - b| < \varepsilon$$

Rm: 3. Если D - не ограничено снизу, то в качестве a можно взять $-\infty$ и <u>определение Коши</u> переписывается так:

$$\forall \varepsilon > 0, \exists M > 0 \colon \forall x \in D, x < -M \Rightarrow |f(x) - b| < \varepsilon$$

Теорема 1. Определения Гейне и Коши - равносильны.

 $\hfill \square$ Рассмотрим случай, когда a - число. На бесконечности - аналогично

 $(K) \Rightarrow (\Gamma)$: $\forall \varepsilon > 0$, $\exists \delta > 0$: $\forall x \in D$, $0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$. Пусть $x_n \in D$, $x_n \to a$ и $x_n \neq a$. По определению предела последовательности $\exists N : \forall n > N$, $0 < |x_n - a| < \delta \Rightarrow |f(x_n) - b| < \varepsilon \Rightarrow f(x_n) \to b$ и выполняется определение Гейне.

 $(\Gamma)\Rightarrow (K)$: $\forall \{x_n\}\in D,\, x_n\to a\land x_n\neq a$ верно, что $f(x_n)\to b$. Предположим, что определение Коши не выполняется $\Rightarrow \exists\, \varepsilon>0,\, \forall \delta>0,\, \exists\, x\in D\colon 0<|x-a|<\delta\land |f(x)-b|\geq \varepsilon.$ Пусть $\delta=\frac{1}{n}$, тогда найдется $x_n\colon 0<|x_n-a|<\frac{1}{n}\land |f(x_n)-b|\geq \varepsilon.$ Тогда $x_n\to a\land x_n\neq a$, но $|f(x_n)-b|\geq \varepsilon$, то есть $f(x_n)\nrightarrow b\Rightarrow$ противоречие.

Теорема 2. (Ограниченность): Пусть $x \in D$, $\lim_{x \to a} f(x) = b$. Тогда $\exists \mathcal{U}'(a) \land C > 0 \colon |f(x)| \leq C$, $\forall x \in \mathcal{U}'(a) \cap D$. Если у функции в точке есть предел, то в некоторой проколотой окрестности эта функция должна быть ограничена.

 \square Используем определение Коши, пусть $\varepsilon=1\Rightarrow\exists\,\delta>0\colon \forall x\in D,\,\underbrace{0<|x-a|<\delta}_{x\in\mathcal{U}_{\delta}'(a)}\Rightarrow|f(x)-b|<1.$

Тогда получим следующее:

$$\forall x \in \mathcal{U}'_{\delta}(a) \cap D, |f(x)| \le |f(x) - b| + |b| < 1 + |b| = C$$

Упр. 1. Доказать с помощью определения Гейне.

Теорема 3. (Отделимость): Пусть $x \in D$, $\lim_{x \to a} f(x) = b > 0 \Rightarrow \exists \mathcal{U}'(a) \colon \forall x \in \mathcal{U}'(a) \cap D, \ f(x) \ge \frac{b}{2} > 0.$

Рис. 2: Доказательство теоремы отделимости.

$$\square$$
 Возьмем $\varepsilon=\frac{b}{2},\,\exists\,\delta>0\colon\forall x\in D,\,0<|x-a|<\delta\Rightarrow|f(x)-b|<\frac{b}{2}.$ Тогда

$$\forall x \in \mathcal{U}_{\delta}'(a) \cap D, \ f(x) = f(x) - b + b \ge -\frac{b}{2} + b = \frac{b}{2}$$

Упр. 2. Доказать с помощью определения Гейне.

Замечательные пределы

(I) Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Rm: 4. Множество $D = \mathbb{R} \setminus 0$. Но будем рассматривать только $x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \setminus \{0\}$, так как нас интересует поведение функции около 0.

Заметим также, что $\frac{\sin x}{x}$ - четная функция, поэтому будем рассматривать $0 < x < \frac{\pi}{2}$.

 \square Заметим, что $2\sin x \le 2x$, то есть хорда не длиннее дуги. Тогда $\sin x \le x \Rightarrow \frac{\sin x}{x} \le 1$.

Рис. 3: Хорда не длиннее дуги.

Найдем $\tan x$ и обозначим вершины соответствующего сектора и треугольника:

Рис. 4: Треугольник OAB содержит сектор OCB.

Сектор $OCB \subset OAB \Rightarrow S_{OCB} \leq S_{OAB}$. Площадь сектора = доля сектора от всего круга на площадь круга. Доля сектора = доля дуги от длины всей окружности. Доля дуги = $\frac{x}{2\pi}$, площадь круга = πr^2 = $\pi \cdot 1^2 = \pi \Rightarrow S_{OCB} = \pi \cdot \frac{x}{2\pi} = \frac{x}{2} \leq S_{OAB} = \frac{\tan x}{2} \Rightarrow \cos x \leq \frac{\sin x}{x}$.

Так как $|\sin x| \leq |x|$, то по теореме о двух полицейских $\lim_{x\to 0}\sin x = 0$. $\lim_{x\to 0}\cos x = \lim_{x\to 0}\left(1-2\sin^2\frac{x}{2}\right) = 1$.

По теореме о двух полицейских, из того, что $\cos x \leq \frac{\sin x}{x} \leq 1$ в интервале $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus \{0\} \Rightarrow$

$$\lim_{x \to 0} \cos x = 1 = \lim_{x \to 0} 1 \Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Rm: 5. Важно заметить, что понятия площади круга, площади сектора, длины дуги в данном случае не определены строго и доказательство первого замечательного предела становится циклическим.

(II) Второй замечательный предел

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Знаем, что $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$. Используя это знание докажем второй замечательный предел.

 \square Пусть $n \le x < n+1 \Rightarrow$

$$\left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^x \le \left(1 + \frac{1}{n}\right)^{n+1}$$
$$\left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{n+1}\right)^x \le \left(1 + \frac{1}{x}\right)^x$$

Так как $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n+1}=\lim_{n\to\infty}\left(1+\frac{1}{n+1}\right)^n=e$, то

$$\forall \varepsilon > 0, \ \exists N : \forall n > N, \ \left(1 + \frac{1}{n}\right)^{n+1} < e + \varepsilon \wedge \left(1 + \frac{1}{n+1}\right)^n > e - \varepsilon$$

Пусть x > N+1, тогда x точно заключен между n и n+1: n > N. Получим

$$e - \varepsilon < \left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^{n+1} < e + \varepsilon \Rightarrow$$

$$\Rightarrow \left|\left(1 + \frac{1}{x}\right)^x - e\right| < \varepsilon$$

Упр. 3. Докажите, что:

(1)
$$\lim_{x \to -\infty} (1 + \frac{1}{x})^x = e;$$

(2)
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e;$$

Как узнать, есть ли у последовательности предел или нет? Аналогично пределам последовательности есть теорема Вейрштрасса и критерий Коши.

Опр: 2. Пусть $D^- = (-\infty, a) \cap D$, $D^+ = (a, +\infty) \cap D$.

Если a - предельная точка D^- , то предел функции f по множеству D^- , при $x \to a$ называется пределом слева и обозначается, через $\lim_{x \to a^-} f(x)$ или $\lim_{x \to (a-0)} f(x)$ или f(a-0).

Если a - предельная точка D^+ , то предел функции f по множеству D^+ , при $x \to a$ называется пределом справа и обозначается, через $\lim_{x \to a+} f(x)$ или $\lim_{x \to (a+0)} f(x)$ или f(a+0).

Распишем с точки зрения Гейне и Коши: для $\lim_{x \to a^-} f(x)$

Гейне: $\forall \{x_n\} \in D, x_n \to a \land x_n < a$ верно, что $f(x_n) \to b$.

<u>Коши</u>: $\forall \varepsilon > 0, \ \exists \ \delta > 0 : \ \forall x \in D, \ a - \delta < x < a \Rightarrow |f(x) - b| < \varepsilon.$

Пример: Рассмотрим следующую функцию f(x):

Рис. 5: Пример разных частичных пределов слева и справа.

Существуют пределы справа и слева: $\lim_{x\to 0-} f(x) = -1$, $\lim_{x\to 0+} f(x) = 1$, но в точке 0 предела $\lim_{x\to 0} f(x)$ не существует.

Теорема 4. Пусть a - предельная точка D^- и D^+ . Тогда

$$\lim_{x \to a} f(x) = b \Leftrightarrow \lim_{x \to a^{-}} f(x) = b \land \lim_{x \to a^{+}} f(x) = b$$

— (⇒) По определению Коши $\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall x \in D, \ a - \delta < x < a + \delta \Rightarrow |f(x) - b| < \varepsilon.$ Тогда $\forall x \in D, \ a - \delta < x < a \Rightarrow |f(x) - b| < \varepsilon \land \forall x \in D, \ a < x < a + \delta \Rightarrow |f(x) - b| < \varepsilon \Rightarrow \lim_{x \to a^-} f(x) = b \land \lim_{x \to a^+} f(x) = b.$

(\Leftarrow) По определению Коши $\forall \varepsilon > 0, \ \exists \ \delta_1 > 0 \colon \forall x \in D, \ a - \delta_1 < x < a \Rightarrow |f(x) - b| < \varepsilon, \ \exists \ \delta_2 > 0 \colon \forall x \in D, \ a < x < a + \delta_2 \Rightarrow |f(x) - b| < \varepsilon.$ Пусть $\delta = \min\{\delta_1, \delta_2\}$, тогда как только $a - \delta < x < a + \delta, \ x \neq a \Rightarrow |f(x) - b| < \varepsilon.$

Теорема 5. (Вейрштрасса) Пусть $f: D \to \mathbb{R}$ не убывает и ограничена сверху. Пусть a - предельная точка D^- . Тогда существует $\lim_{x \to a^-} f(x) = \sup_{x \in D^-} f(x)$.

Rm: 6. $D^- = (-\infty, a)$, тогда из $x \in D^- \Rightarrow x < a$.

Рис. 6: Доказательство теоремы Вейрштрасса.

 \square $\forall \varepsilon > 0$ число $\sup_{D^-} f - \varepsilon$ не является верхней гранью значений f на множестве D^- . Следовательно, $\exists \, x_0 \in D^- \colon f(x_0) > \sup_{D^-} f - \varepsilon$. Из-за монотонности $f, \, \forall x \in (x_0,a) \cap D \Rightarrow f(x) \geq f(x_0) \Rightarrow$

$$\sup_{D^{-}} f - \varepsilon < f(x) \le \sup_{D^{-}} f, \, \forall x \in (x_0, a) \cap D$$

Дельту можно взять, как $\delta = a - x_0$.

Математический анализ - I

Rm: 7. Аналогично доказываются следующие утверждения:

(а) Не убывает и ограничена снизу.

(b) Не возрастает и ограничена снизу.

- 1) Если f не убывает на D, ограничена снизу и a предельная точка D^+ , то $\lim_{x\to a+}f=\inf_{D^+}f;$
- 2) Если f не возрастает на D, ограничена снизу и a предельная точка D^- , то $\lim_{x \to a^-} f = \inf_{D^-} f$;
- 3) Если f не возрастает на D, ограничена сверху и a предельная точка D^+ , то $\lim_{x\to a+}f=\sup_{D^+}f;$

Следствие 1. Если f - монотонная функция на интервале (α, β) , то в каждой точке интервала существуют пределы f слева и справа.

Рис. 8: Следствие теоремы Вейрштрасса.

 $f(x_1)$ и $f(x_2)$ - ограничивают значения функции f снизу и сверху. По теореме Вейрштрасса есть предел слева и справа.