Problem

Give the formal description of the machines M1 and M2 pictured in Exercise 1.1.

Step-by-step solution

Step 1 of 4

Given state diagram for the machine $\ M_1$ is

Comment

Step 2 of 4

Formal definition of a finite automata is

A finite automaton is a 5-tupel $\left(Q, \Sigma, \delta, q_0, F\right)$

Where

- 1. Q is a finite set called states
- 2. Σ is a finite set called alphabet
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function.
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states.

Now we can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{a, b\}$
- 3. δ is described as

	a	b	
q_1	q_{2}	$q_{_1}$	
q_2	q_3	q_3	
q_3	q_{2}	q_3	

- 4. q_1 is the start state
- 5. Set of accept states $F = \left\{q_2\right\}$.

Given state diagram for the machine $\ M_2$ is

Comment

Step 4 of 4

Now we can describe $\,M_2^{}$ formally by writing

$$M_2 = (Q, \Sigma, \delta, q_1, F)$$
, where

- 1. Set of states $Q = \{q_1, q_2, q_3, q_4\}$
- 2. Set of alphabet $\Sigma = \{a, b\}$
- 3. δ is described as

	а	b	
q_1	$q_{_1}$	q_2	
q_2	$q_{\scriptscriptstyle 3}$	$q_{\scriptscriptstyle 4}$	
q_3	$q_{\scriptscriptstyle 2}$	$q_{_1}$	
q_4	q_3	q_4	

- 4. $q_{\scriptscriptstyle \parallel}$ is the start state
- 5. Set of accept states $F = \{q_1, q_4\}$

Comments (4)