The synthesis of integral dimensions

Andy J. Wills – University of Plymouth **C.E.R. Edmunds** – Queen Mary University **Fraser Milton** – University of Exeter

Stimuli have multiple attributes

Classes of theories of classification

- Differentiation Theory
 - Lockhead (1972), et seq.

- Combination Theory
 - Neisser (1967), et seq.

Differentiation Theory

Widespread assumption of Differentiation Theory

 Use of terms "analytic" and "nonanalytic" (or "holistic") to describe modes of thought.

- Example: Hypothesis that Western Educated Industrialised Rich Democratic (WEIRD) populations have an unusually analytic mode of thought
 - Heinrich et al. (2010)

Differentiation Theory is wrong

For example:

- Milton, Longmore & Wills (2008): time pressure, concurrent load
- Milton, Wills & Hodgson (2009): fMRI
- Wills et al. (2009): pigeon / squirrel / human comparisons
- Wills et al. (2013): concurrent load, instructions, working memory capacity
- Wills, Inkster & Milton (2015): time pressure, concurrent load, incidental training.
- Wills, Ellett, Milton, Croft & Beesley (2020): pretraining, concurrent load.

Combination Theory

Combination Theory

 Predicts the effects of time pressure, cognitive load, incidental training, instructions ... on the classification of a variety of stimuli in a variety of procedures.

 Basically: The less time or mental resources we have to apply to a classification the fewer stimulus attributes we use.

Breaking Combination Theory?

Separable versus integral stimuli (Garner, 1976)

Separable stimulus set:

Integral stimulus set:

Predictions

Combination Theory: With sufficiently high time pressure, people will classify integral stimuli on the basis of a single attribute, because the attributes have not yet been combined.

Differentiation Theory: Classification on the basis of a single attribute will be more likely as time pressure reduces.

Experiment

IV: stimulus presentation time

- 100 ms vs. 2000 ms (between-subjects)

Stimuli

- Red hue squares varying in saturation and brightness

Procedure

- "Triad" (restricted classification) task

Odd one out?

Results

Time	UD	OS	ID	Bias
100 ms	1	27	0	1
2000 ms	0	17	0	0

 $BF_{10} = 0.14$

Exploratory analysis

Time	UD	OS	ID
100 ms	0.119	0.881	0.000
2000 ms	0.018	0.975	0.007

 $BF_{10} = 4.92$

Direct replication

Time	UD	os	ID
100 ms	0.142	0.850	0.008
$2000~\mathrm{ms}$	0.012	0.988	0.000

 $BF_{10} = 1047$

Multidimensional scaling

Final analysis

Time UD OS ID 100 ms 0.319 0.681 0 2000 ms 0.086 0.914 0			BF ₁₀ =	892
	$2000~\mathrm{ms}$	0.086	0.914	0
Time UD OS ID	100 ms	0.319	0.681	0
	Time	UD	OS	ID

Summary

Differentiation Theory

Combination Theory

Our cognitive chemists do not analyze mysterious compounds, they synthesize stimuli from their components.

Questions?