Intersección y suma de subespacios

Objetivos. Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespacios.

Requisitos. Espacio vectorial, subespacio vectorial.

Estamos suponiendo que V es un espacio vectorial sobre un campo \mathbb{F} .

- 1. Proposición (intersección de dos subespacios es un subespacio). Sean S_1 y S_2 subespacios de V. Entonces $S_1 \cap S_2$ también es un subespacio de V.
- **2. Definición (suma de subespacios).** Sea V un espacio vectorial sobre un campo \mathbb{F} y sean S_1 y S_2 subespacios de V. Entonces la *suma* de S_1 y S_2 se define mediante la fórmula:

$$S_1 + S_2 := \{ v \in V : \quad \exists a \in S_1 \quad \exists b \in S_2 \quad v = a + b \}. \tag{1}$$

Lo mismo también se escribe de manera más breve:

$$S_1 + S_2 := \{ a + b \colon \quad a \in S_1, \quad b \in S_2 \}. \tag{2}$$

Hay que comprender que (1) es la definición verdadera que se puede usar en demostraciones, y (2) es solamente una forma breve de escribir (1).

- 3. Proposición (suma de dos subespacios es un subespacio). Sean S_1 y S_2 subespacios de V. Entonces $S_1 + S_2$ también es un subespacio de V.
- 4. Conjunto generador de la suma. Sean S_1 y S_2 subespacios de V, generados por conjuntos finitos \mathcal{A} y \mathcal{B} :

$$S_1 = \ell(\mathcal{A}), \qquad S_2 = \ell(\mathcal{B}).$$

Entonces

$$S_1 + S_2 = \ell(\mathcal{A} \cup \mathcal{B}).$$

5. Ejercicio. De un ejemplo de conjuntos finitos de vectores $\mathcal{A}, \mathcal{B} \subset \mathbb{R}^3$ (o $\mathcal{A}, \mathcal{B} \subset V^3(O)$) tales que

$$\ell(\mathcal{A})\cap\ell(\mathcal{B})\neq\ell(\mathcal{A}\cap\mathcal{B}).$$

6. Ejemplo (dos planos en el espacio $V^3(O)$). En el espacio $V^3(O)$ consideremos dos planos Π_1 y Π_2 tales que $O \in \Pi_1$, $O \in \Pi_2$ y la intersección $\Pi_1 \cap \Pi_2$ es una recta ℓ_1 . Entonces Π_1 y Π_2 son subespacios de $V^3(O)$. Más adelante demostraremos que su suma coincide con todo el espacio $V^3(O)$.

Ejemplos

7. Calcule $S_1 \cap S_2$, donde S_1 y S_2 son los siguientes subespacios del espacio $\mathcal{P}(\mathbb{R})$:

$$S_1 := \ell(5 + 3x + 2x^2, 3 + 2x + x^2), \qquad S_2 := \{ f \in \mathcal{P}(\mathbb{R}) \colon f(-2) = 0 \}.$$

Solución. La forma general de los elementos de S_1 es

$$f(x) = \alpha(5 + 3x + 2x^2) + \beta(3 + 2x + x^2),$$

donde $\alpha, \beta \in \mathbb{R}$. Calculemos f(-2):

$$f(-2) = \alpha(5 - 6 + 8) + \beta(3 - 4 + 4) = 7\alpha + 3\beta.$$

Para que f pertenezca a S_2 , se debe cumplir la igualdad

$$7\alpha + 3\beta = 0,$$

de la cual $\beta=-\frac{7}{3}\alpha.$ Denotando $\frac{\alpha}{3}$ por γ obtenemos

$$\alpha = 3\gamma, \qquad \beta = -7\gamma,$$

y finalmente

$$f(x) = 3\gamma(5+3x+2x^2) - 7\gamma(3+2x+x^2) = \gamma(-6-5x-x^2) = -\gamma(6+5x+x^2).$$

Aquí γ puede ser cualquier número real.

Respuesta:

$$S_1 \cap S_2 = \ell(g)$$
, donde $g(x) = 6 + 5x + x^2$.

Probemos que $g \in S_2$:

$$g(-2) = 6 - 10 + 4 = 0.$$

8. Calcule $S_1 \cap S_2$, donde S_1 y S_2 son los siguientes subespacios del espacio $\mathcal{P}(\mathbb{R})$:

$$S_1 := \ell(2 + 2x + x^2, 5 - x + 2x^2), \qquad S_2 := \{ f \in \mathcal{P}(\mathbb{R}) \colon f'(3) = 0 \}.$$

Soluci'on. Los elementos del subespacio S_1 son polinomios de la forma

$$f(x) = \lambda(2 + 2x + x^2) + \mu(5 - x + 2x^2),$$

donde $\lambda, \mu \in \mathbb{R}$. Calculemos f'(x) y luego f'(3):

$$f'(x) = \lambda(2+2x) + \mu(-1+4x),$$

$$f'(3) = 8\lambda + 11\mu.$$

Vemos que f pertenece a S_2 si, y sólo si, los coeficientes λ y μ están relacionados por

$$8\lambda + 11\mu = 0.$$

De aquí $\mu = -\frac{8}{11}\lambda$. La forma general de los elementos de $S_1 \cap S_2$ es

$$f(x) = \lambda(2 + 2x + x^2) - \frac{8}{11}\lambda(5 - x + 2x^2)$$
$$= \frac{\lambda}{11}(-18 + 30x - 5x^2) = -\frac{\lambda}{11}(18 - 30x + 5x^2),$$

donde λ es un coeficiente real arbitrario, y por lo tanto $\frac{\lambda}{11}$ también es un coeficiente real arbitrario.

Respuesta:

$$S_1 \cap S_2 = \ell(g)$$
, donde $g(x) = 18 - 30x + 5x^2$.

Probemos que $g \in S_2$:

$$g'(x) = -30 + 10x,$$
 $g'(3) = -30 + 30 = 0.$

9. Calcule $S_1 \cap S_2$, donde S_1 y S_2 son los siguientes subespacios del espacio $\mathcal{M}_2(\mathbb{R})$:

$$S_1 := \ell(A, B),$$
 $S_2 = \left\{ X \in \mathcal{M}_2(\mathbb{R}) : \operatorname{tr}(X) = 0 \right\};$
$$A = \begin{bmatrix} -4 & -2 \\ -7 & -6 \end{bmatrix}, \quad B = \begin{bmatrix} -5 & -1 \\ -9 & -10 \end{bmatrix}.$$

Solución. La forma general de los elementos de S_1 es

$$X = \lambda A + \mu B$$
,

donde $\lambda, \mu \in \mathbb{R}$. Calculemos la traza de X:

$$tr(X) = \lambda tr(A) + \mu tr(B) = -10\lambda - 15\mu.$$

De aquí vemos que $X \in S_2$ si, y sólo si,

$$-10\lambda - 15\mu = 0.$$

Tratamos μ como una variable libre y despejamos λ :

$$\lambda = -\frac{3\mu}{2}.$$

La forma general de los elementos de $S_1 \cap S_2$ es

$$X = -\frac{3}{2}\mu A + \mu B = \frac{\mu}{2} \left(-3 \begin{bmatrix} -4 & -2 \\ -7 & -6 \end{bmatrix} + 2 \begin{bmatrix} -5 & -1 \\ -9 & -10 \end{bmatrix} \right) = \frac{\mu}{2} \begin{bmatrix} 2 & 4 \\ 3 & -2 \end{bmatrix}.$$

Respuesta:

$$S_1 \cap S_2 = \ell(C)$$
, donde $C = \begin{bmatrix} 2 & 4 \\ 3 & -2 \end{bmatrix}$.

Comprobamos que $C \in S_2$:

$$\operatorname{tr}(C) = 2 - 2 = 0. \qquad \checkmark$$

Ejercicios

En cada uno de los siguientes ejemplos muestre que S_1 y S_2 son subespacios de V, halle $S_1 \cap S_2$ y $S_1 + S_2$ y determine si V es la suma directa de S_1 y S_2 o no.

10.
$$V = \mathbb{R}^2$$
,

$$S_1 = \ell(e_1) = \{ x \in \mathbb{R}^2 : x_2 = 0 \}, \qquad S_2 = \ell(e_2) = \{ x \in \mathbb{R}^2 : x_1 = 0 \}.$$

donde e_1 , e_2 es la base canónica de \mathbb{R}^2 .

- 11. Matrices triangulares superiores y triangulares inferiores. $V = \mathcal{M}_n(\mathbb{F}), S_1 = \mathfrak{ut}_n(\mathbb{F}), S_2 = \mathfrak{tt}_n(\mathbb{F}).$
- 12. Funciones continuas pares e impares. $V = C(\mathbb{R}, \mathbb{R})$, S_1 y S_2 son subespacios de funciones pares e impares respectivamente:

$$S_1 = \{ g \in C(\mathbb{R}, \mathbb{R}) \colon g(-x) = g(x) \quad \forall x \in \mathbb{R} \},$$

$$S_2 = \{ h \in C(\mathbb{R}, \mathbb{R}) \colon h(-x) = -h(x) \quad \forall x \in \mathbb{R} \}.$$

13.
$$V = \mathbb{R}^3$$
, $S_1 = \{x \in \mathbb{R}^3 : x_1 = 0\}$, $S_2 = \{x \in \mathbb{R}^3 : x_2 = 0\}$.

14. Observación sobre la unión de dos subespacios. Por lo común, la unión de dos subespacios de un espacio vectorial V no es subespacio de V. Por ejemplo, en el espacio real \mathbb{R}^2 consideremos dos subespacios:

$$S_1 = \ell(e_1) = \{x \in \mathbb{R}^2 : x_2 = 0\}, \qquad S_2 = \ell(e_2) = \{x \in \mathbb{R}^2 : x_1 = 0\}.$$

Entonces el conjunto $S_1 \cup S_2$ no es cerrado bajo la adición y por lo tanto no es subespacio de \mathbb{R}^2 .

15. Problema sobre la unión de dos subespacios. Sean S_1 y S_2 dos subespacios de V tales que $S_1 \cup S_2$ también es un subespacio de V. Demuestre que $S_1 \subseteq V$ o $S_2 \subseteq V$.