Problem Set 4 5.46

## 4 Determining Stereochemistry

3/18: Aflatoxin B1 is a toxin produced by a fungus which grows on a number of plant species, but is best known for causing liver carcinogenicity from contaminated peanuts.

The unknown-C\_5.46\_2025 dataset contains a series of spectra which you should be able to identify (if this is untrue, let me know and I'll send out a list). For this exercise, I'd like you to identify the ROESY crosspeaks in experiment #9 and the NOESY crosspeaks in #37 as follows.

1. Assign all the protons in the molecule using the standard  $^{13}\mathrm{C}\text{-directed}$  approach.

Answer.



Problem Set 4 5.46



2. Show the ROE/NOE crosspeaks on the structure of Aflatoxin B1 and explain whether any are missing that you would expect.

Answer.

Some cross peaks are small, but all the ones I expect to see are distinguishable from noise at some level of zoom on both spectra. The 14-17 crosspeak is the hardest to distinguish on both spectra.  $\Box$ 

3. Confirm the stereochemistry of the bridged ring.

Answer. Since we can observe a significant 15-9 NOESY, the saturated bridgehead carbons on the western fragment of Aflatoxin B1 must bear two cis protons. Without a chiral resolving reagent, it is impossible to determine the absolute stereochemistry of the molecule.

Labalme 2

Problem Set 4 5.46

4. Experiment #13 shows a  $^{1}\text{H-}^{13}\text{C}$  HSQC in which the decoupling is turned off during acquisition; indicate on the structure which proton-carbon couplings are larger than usual and explain why you think this is.

Answer. To begin, here is an accounting of all  $^1J_{\mathrm{CH}}$  coupling constants in the visible in the coupled HSQC spectrum.

| Proton # | Shift (ppm) | $^1J_{ m CH} \ ({ m Hz})$ |
|----------|-------------|---------------------------|
| 9        | 6.96        | 188.41                    |
| 13       | 6.77        | 167.62                    |
| 7        | 6.74        | 202.33                    |
| 12       | 5.41        | 181.30                    |
| 15       | 4.79        | 146.88                    |
| 14       | 3.94        | 146.80                    |
| 17       | 3.30        | 139.69                    |
| 16       | 2.49        | 132.41                    |

The largest proton-carbon coupling constant corresponds to an  $sp^2$ -hybridized carbon-proton bond, as we might expect since increasing s-character means shorter bonds and more coupling. However, with all of the strain in this molecule, it is very difficult to qualitatively predict the magnitude of the  $^1J_{\rm CH}$  couplings.