SERIA 17

Zadanie 1. Obliczyć następujące całki

- (a) $\int_0^{\frac{\pi}{2}} \ln(\sin x) dx$, (b) $\int_0^1 x^n \ln^n(x) dx$, (c) $\int_0^{\infty} \frac{dx}{x^2 \sqrt{x^2 1}}$.

Zadanie 2. Zbadać zbieżność poniższych całek niewłaściwych

- (a) $\int_{2}^{\infty} \frac{dx}{x \ln x}$, (b) $\int_{0}^{\infty} \frac{\sin^{2} x}{1+x^{2}} dx$, (c) $\int_{0}^{1} (-\ln x)^{a} dx$, $a \in \mathbb{R}$, (d) $\int_{0}^{1} \frac{dx}{x^{a}(-\ln x)^{b}}$, $a, b \in \mathbb{R}$ (e) $\int_{0}^{\infty} \frac{x dx}{1+x^{2} \sin^{2} x}$.

Zadanie 3. Niech f będzie nieujemną i ciągłą funkcją na $[0, \infty)$, dla której

$$\int_0^\infty f(x) \, \mathrm{d}x < \infty.$$

Udowodnić, że

$$\lim_{n \to \infty} \frac{1}{n} \int_0^n x f(x) \, \mathrm{d}x = 0.$$