Examen du 10 mai 2016

Règles générales

- Durée : 3 heures.
- Seul document autorisé : une feuille A4 recto-verso.
- Toutes les réponses doivent être justifiées.
- Toutes les questions valent autant. On pourra obtenir le maximum en faisant l'équivalent de 15 questions sur 18 parfaitement.
- Il est inutile et même contre-indiqué de recopier l'énoncé sur la copie d'examen.

Énoncé

Complexité de programmes

On rappelle que pour toute paire d'entiers n et p (p > 0), ¹ il existe un seul entier k et un seul entier r tels que r < p et $n = k \times p + r$.

On note alors:

- -k = n div p (k est le résultat de la division entière de n par p).
- $-r = n \mod p$ (r est le reste de la division entière de n par p, appelé le modulo de n par p).

Soit le programme pseudo-Pascal Prog(i, x) suivant, qui prend en entrée deux entiers i et x:

```
Prog(i, x):
e1: y:= x;
e2: for j:= 0 to i do
e3: res:= y mod 2; y:= y div 2
e4: end
e5: return res;
```

- 1. Quel et le résultat de Prog(0,5)? Donner également le résultat de Prog(1,5), Prog(2,5) et Prog(3,5).
- 2. Quelle fonction f calcule ce programme?
- 3. Evaluer le nombre d'opérations arithmétiques, d'affectations, et de tests réalisé par lors de l'exécution du programme en fonction de x et de i. En déduire l'ordre de grandeur (Θ) de la complexité du programme en fonction de i.
- 4. Donner le principe d'une machine de Turing classique (à une bande) calculant f selon la même méthode algorithmique à partir de la configuration intiale $q_0|^{i+1}B|^{x+1}$.
- 5. Donner l'ordre de grandeur de la complexité de cette machine de Turing en fonction de la taille de l'entrée, c'est-à-dire en fonction de i+x.

^{1.} Si p=0 (division par zéro), on peut étendre la définition usuelle en convenant que que r=n, et que k=0, pour avoir l'unicité.

Réduction entre problèmes

Le problème \mathbf{TS} du voyageur de commerce ($Traveller\ Salesman$) se définit de la façon suivante : étant donnés

- un ensemble fini V de n villes (numérotées de 1 à n),
- une matrice d de distances telle que pour tout $i \in [1..n]$ et pour tout $j \in [1..n]$ d(i,j) est un entier qui représente la distance en kilomètres entre les villes i et j,
- une constante b (entière),

existe-t-il une $tourn\acute{e}e$ de l'ensemble des villes dont la longueur est inférieure ou égale à b?

Une tournée de n villes (numérotées de 1 à n), est un n-uplet (p_1, \ldots, p_n) formé d'entiers de 1 à n tous différents.

La longueur d'une tournée (p_1,\ldots,p_n) est la somme des distances pour visiter les villes de la tournée dans l'ordre et revenir à la première ville, soit : $(\Sigma_{i=1}^{i=n-1}d(p_i,p_{i+1}))+d(p_n,p_1)$

- 1. Montrer par récurrence que le nombre de tournées d'un ensemble de n villes est égal à n! [Rappel : 0! = 1 et $(n + 1)! = n! \times (n + 1) = 1 \times 2 \dots n \times (n + 1)$].
- 2. Écrire un programme pseudo-Pascal qui prenant en entrée une matrice d de distances, une constante b et une tournée (p_1, \ldots, p_n) renvoie comme résultat Vrai si la longueur de la tournée est inférieure ou égale à b, et Faux sinon. Quelle est l'ordre de grandeur de sa complexité en fonction du nombre n de villes?
- 3. Rappeler la définition de l'ensemble NP et montrer que le problème TS est dans NP.
- 4. Le problème **HC** du circuit hamiltonien (Hamiltonian Circuit) se définit sur l'ensemble des graphes de la façon suivante : étant donné un graphe (orienté) G = (S, E), où S est un ensemble de n sommets (numérotés de 1 à n) et où E est l'ensemble de ses arêtes ($E \subseteq S \times S$), existe-t-il un circuit contenant chaque sommet du graphe une et une seule fois?
 - Un circuit de G est une séquence (s_1,\ldots,s_k) de nœuds de S, chacun (sauf le dernier qui est relié au premier) étant relié au suivant par une arête, formant ainsi un chemin fermé dans le graphe, c'est-à-dire : $(\forall j \in [1..k-1]) [\ (s_j,s_{j+1}) \in E \text{ et } (s_k,s_1) \in E \]$.
 - Dessiner un graphe à 5 sommets qui est une instance positive de HC, ainsi qu'un graphe à 5 sommets qui est une instance négative de HC.
- 5. Soit la transformation f qui, à partir d'un graphe quelconque G = (S, E) construit une instance (V, d, b) de TS de la façon suivante, où n est le nombre de sommets de G (n = |S|).
 - -V = S;
 - pour tout $i \in [1..n]$ et pour tout $j \in [1..n]$: si $(i, j) \in E$, alors d(i, j) = 1 sinon d(i, j) = 2;
 - -b=n

Donner l'ordre de grandeur de la complexité de la construction f(G) en fonction du nombre n de nœuds du graphe, puis en fonction de la taille t du graphe.

- 6. Montrer que G est une instance positive de HC si et seulement si f(G) est une instance positive de TS.
- 7. Dire si on peut en déduire que $HC \preceq_p TS$ ou que $TS \preceq_p HC$. Justifier précisément votre réponse.

Max2SAT est NP-complet

Le problème Max2SAT est défini de la façon suivante : étant donnés F une conjonction de clauses dont chaque clause a au plus 2 littéraux, et k un entier, Max2SAT(F,k) est vrai si et seulement si il existe une interprétation dans laquelle au moins k clauses de F sont évaluées à Vrai.

- 1. Montrer que le problème Max2SAT est dans NP.
- 2. Soit $F: E_1 \wedge \ldots \wedge E_i \ldots \wedge E_m$ une conjonction de clauses telle que chaque clause E_i a exactement 3 littéraux. On construit à partir de F la formule f(F) en remplaçant chaque clause E_i de F de la forme $\alpha \vee \beta \vee \gamma$ par la conjonction de clauses suivante, dénotée $f_i(\alpha \vee \beta \vee \gamma)$, où w_i est une nouvelle variable propositionnelle et où α', β', γ' sont respectivements les conjugués de α, β, γ :

$$f_i(\alpha \vee \beta \vee \gamma) = \\ (\alpha) \wedge (\beta) \wedge (\gamma) \wedge (w_i) \wedge (\alpha' \vee \beta') \wedge (\beta' \vee \gamma') \wedge (\alpha' \vee \gamma') \wedge (\alpha \vee \neg w_i) \wedge (\beta \vee \neg w_i) \wedge (\gamma \vee \neg w_i).$$

On rappelle que deux littéraux h et h' sont dits *conjugués* l'un de l'autre s'il existe une variable propositionnelle a telle que [h=a et $h'=\neg a]$ ou $[h=\neg a$ et h'=a].

Donner le résultat de la transformation f(F'), où F' est la conjonction de 2 clauses suivante : $F' = (\neg p_1 \lor p_2 \lor p_3) \land (p_1 \lor p_2 \lor \neg p_3)$

Vous détaillerez $f_1(E_1)$ et $f_2(E_2)$, où E_1 et et E_2 sont les clauses de $F': E_1 = (\neg p_1 \lor p_2 \lor p_3)$ et $E_2 = (p_1 \lor p_2 \lor \neg p_3)$.

- 3. Montrer que toute interprétation I dans laquelle $\alpha \vee \beta \vee \gamma$ est évaluée à Vrai peut être étendue à la nouvelle variable w_i pour obtenir une interprétation I_i dans laquelle exactement 7 clauses de $f_i(\alpha \vee \beta \vee \gamma)$ sont évaluées à Vrai.
- 4. Montrer que, dans toute interprétation I' dans laquelle $\alpha \vee \beta \vee \gamma$ est évaluée à Faux, au plus 6 clauses de $f_i(\alpha \vee \beta \vee \gamma)$ sont évaluées à Vrai.
- 5. En déduire que, pour toute conjonction F de m clauses ayant exactement 3 littéraux chacune, F est satisfaisable si et seulement si il existe une interprétation dans laquelle au moins $7 \times m$ clauses de f(F) sont évaluées à Vrai.
- 6. On rappelle que le problème 3SAT (défini sur l'ensemble des conjonctions de clauses ayant exactement 3 littéraux chacune), consistant à déterminer s'il existe une interprétation dans laquelle toutes les clauses sont évaluées à Vrai, est NP-complet.

Rappeler la définition d'un problème NP-complet et démontrer que Max2SAT est NP-complet.