Introduction to NLP

CSE5321/CSEG321

Lecture 3. Word Vectors

Hwaran Lee (hwaran Lee (hwaran Lee (hwaranlee@sogang.ac.kr)

Lecture Plan

- 1. The course (10 mins)
- 2. Human language and word meaning (15 mins)
- 3. Word2vec introduction (15 mins)
- 4. Word2vec objective function gradients (25 mins)
- 5. Optimization basics (5 mins)
- 6. Looking at word vectors (10 mins or less)

Trained on text data, neural machine translation is quite good!

https://kiswahili.tuko.co.ke/

Malawi yawapoteza mawaziri 2 kutokana na maafa ya COVID-19

TUKO.co.ke imefahamishwa kuwa waziri wa serikali ya mitaa Lingson Belekanyama na mwenzake wa uchukuzi Sidik Mia walifariki dunia ndani ya saa mbili tofauti.

Malawi loses 2 ministers due to COVID-19 disaster

TUKO.co.ke has been informed that local government minister Lingson Belekanyama and his transport counterpart Sidik Mia died within two separate hours.

Free-text question answering: Next gen search

when did Kendrick lamar's first album come out?

July 2, 2011

These are my leftover songs you all can have them. I'm going to put my best out. My best effort. I'm trying to look for an album in 2012."^[44] In June 2011, Lamar released "Ronald Reagan Era (His Evils)", a cut from *Section.80*, featuring Wu-Tang Clan leader RZA.^[45] On July 2, 2011, Lamar released *Section.80*, his first independent album. The album features guest appearances from GLC, Colin Munroe, Schoolboy Q, and Ab-Soul, while the production was handled by Top Dawg in-house

E.g., YONO (Lee et al. 2021) uses a T5 model fine-tuned for QA

GPT-3: A first step on the path to foundation models

The SEC said, "Musk, your tweets are a blight.

They really could cost you your job, if you don't stop all this tweeting at night."

Then Musk cried, "Why?
The tweets I wrote are not mean,
I don't use all-caps
and I'm sure that my tweets are clean."

"But your tweets can move markets and that's why we're sore. You may be a genius and a billionaire, but it doesn't give you the right to be a bore!" S: I broke the window.

Q: What did I break?

S: I gracefully saved the day.

Q: What did I gracefully save?

S: I gave John flowers.

Q: Who did I give flowers to?

S: I gave her a rose and a guitar.

Q: Who did I give a rose and a guitar to?

How many users have signed up since the start of 2020?

SELECT count(id) FROM users

WHERE created at > '2020-01-01'

What is the average number of influencers each user is subscribed to?

SELECT avg(count) FROM (SELECT user_id, count(*)

FROM subscribers GROUP BY user id)

AS avg_subscriptions_per_user

Picti Ope

A illustration from a graphic novel. A bustling city street under the shine of a full moon. The sidewalks bustling with pedestrians enjoying the nightlife. At the corner stall, a young woman with fiery red hair, dressed in a signature velvet cloak, is haggling with the grumpy old vendor. the grumpy vendor, a tall, sophisticated man is wearing a sharp suit, sports a noteworthy moustache is animatedly conversing on his steampunk telephone.

ChatGPT, GPT-4, and more

Hey please draft a polite mail to explain my boss Jeremy that I would not be able to come to office for next 2 days because my 9 year song Peter is angry with me that I am not giving him much time. So I have plans to take him out for a trip. I will return and complete my work

by meeting deadline.

Dear Jeremy,

I hope this email finds you well. I'm writing to let you know that I will not be able to come into the office for the next two days.

My 9-year-old son Peter is feeling upset with me because he feels like I haven't been giving him enough attention lately. In order to make it up to him, I've decided to take him on a little trip to help us reconnect.

I understand that this may cause some inconvenience, but I promise to make up for any lost time by working extra hard to meet any deadlines when I return.

Thank you for your understanding.

Best regards,

[Your Name]

Give a step-by-step analysis of the worst-case time complexity of the bubble sort algorithm, with Python code examples, but write every sentence in the speaking style of a fast-talkin' wise guy from a 1940's gangster movie.

User What is unusual about this image?

Source: Barnorama

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

- the idea that is represented by a word, phrase, etc.
- the idea that a person wants to express by using words, signs, etc.
- the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⇔ signified (idea or thing)

= denotational semantics

tree
$$\iff \{ \bigcirc, \bigcirc, \ \heartsuit, ... \}$$

How do we have usable meaning in a computer?

Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of **synonym sets** and **hypernyms** ("is a" relationships)

e.g., synonym sets containing "good":

```
noun: good
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj: good
adj: good
adj: good
adj: good
adj: sat): estimable, good, honorable, respectable
adj (sat): beneficial, good
adj (sat): good
adverb: well, good
adverb: thoroughly, soundly, good
```

e.g., hypernyms of "panda":

```
from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))
```

```
[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('whole.n.02'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]
```

Problems with resources like WordNet

- A useful resource but missing nuance:
 - e.g., "proficient" is listed as a synonym for "good"
 This is only correct in some contexts
 - Also, WordNet list offensive synonyms in some synonym sets without any coverage of the connotations or appropriateness of words
- Missing new meanings of words:
 - e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
 - Impossible to keep up-to-date!
- Subjective
- Requires human labor to create and adapt
- Can't be used to accurately compute word similarity (see following slides)

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:

motel = [000000000010000]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Problem with words as discrete symbols

Example: in web search, if a user searches for "Seattle motel", we would like to match documents containing "Seattle hotel"

But:

```
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0]
```

These two vectors are orthogonal

There is no natural notion of **similarity** for one-hot vectors!

Solution:

- Could try to rely on WordNet's list of synonyms to get similarity?
 - But it is well-known to fail badly: incompleteness, etc.
- Instead: learn to encode similarity in the vectors themselves

Representing words by their context

 Distributional semantics: A word's meaning is given by the words that frequently appear close-by

- "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
- One of the most successful ideas of modern statistical NLP!
- When a word w appears in a text, its **context** is the set of words that appear nearby (within a fixed-size window).
- We use the many contexts of w to build up a representation of w

```
...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...
```


Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts, measuring similarity as the vector dot (scalar) product

$$banking = \begin{pmatrix} 0.286 \\ 0.792 \\ -0.177 \\ -0.107 \\ 0.109 \\ -0.542 \\ 0.349 \\ 0.271 \end{pmatrix} \qquad \begin{array}{c} 0.413 \\ 0.582 \\ -0.007 \\ 0.247 \\ 0.216 \\ -0.718 \\ 0.147 \\ 0.051 \\ \end{array}$$

Note: word vectors are also called (word) embeddings or (neural) word representations They are a distributed representation

Word meaning as a neural word vector – visualization

3. Word2vec: Overview

Word2vec is a framework for learning word vectors (Mikolov et al. 2013)

Idea:

- We have a large corpus ("body") of text: a long list of words
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context ("outside") words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability

Skip-gram model (Mikolov et al. 2013)

Word2Vec Overview

Example windows and process for computing $P(w_{t+j} \mid w_t)$

Word2Vec Overview

Example windows and process for computing $P(w_{t+j} \mid w_t)$

Word2Vec: objective function

For each position t = 1, ..., T, predict context words within a window of fixed size m, given center word w_t . Data likelihood:

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$
 θ is all variables to be optimized

sometimes called a *cost* or *loss* function

The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T}\log L(\theta) = -\frac{1}{T}\sum_{t=1}^{T}\sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

Minimizing objective function ⇔ Maximizing predictive accuracy

Word2Vec: objective function

We want to minimize the objective function:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

- Question: How to calculate $P(w_{t+j} | w_t; \theta)$?
- **Answer:** We will *use two* vectors per word *w*:
 - v_w when w is a center word
 - u_w when w is a context word
- Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Word2Vec with Vectors

- Example windows and process for computing $P(w_{t+j} \mid w_t)$
- $P(u_{problems} | v_{into})$ short for $P(problems | into; u_{problems}, v_{into}, \theta)$

Word2Vec: prediction function

2 Exponentiation makes anything positive

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

1 Dot product compares similarity of *o* and *c*.

$$u^T v = u \cdot v = \sum_{i=1}^n u_i v_i$$

Larger dot product = larger probability

- 3 Normalize over entire vocabulary to give probability distribution
- This is an example of the **softmax function** $\mathbb{R}^n \to (0,1)^n$ Open region softmax $(x_i) = \frac{\exp(x_i)}{\sum_{i=1}^n \exp(x_i)} = p_i$
- The softmax function maps arbitrary values x_i to a probability distribution p_i
 - "max" because amplifies probability of largest x_i
 - "soft" because still assigns some probability to smaller x_i
 - Frequently used in Deep Learning

But sort of a weird name because it returns a distribution!

To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

- Recall: θ represents **all** the model parameters, in one long vector
- In our case, with
 d-dimensional vectors and
 V-many words, we have →
- Remember: every word has two vectors

- We optimize these parameters by walking down the gradient (see right figure)
- We compute all vector gradients!

5. Optimization: Gradient Descent

- We have a cost function $J(\theta)$ we want to minimize
- Gradient Descent is an algorithm to minimize $J(\theta)$
- Idea: for current value of θ , calculate gradient of $J(\theta)$, then take small step in direction of negative gradient. Repeat.

Gradient Descent

Update equation (in matrix notation):

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

$$\alpha = \text{step size or learning rate}$$

Update equation (for single parameter):

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j^{old}} J(\theta)$$

Algorithm:

```
while True:
    theta_grad = evaluate_gradient(J,corpus,theta)
    theta = theta - alpha * theta_grad
```

Stochastic Gradient Descent

- **Problem**: $J(\theta)$ is a function of **all** windows in the corpus (potentially billions!)
 - So $\nabla_{\theta}J(\theta)$ is very expensive to compute
- You would wait a very long time before making a single update!
- Very bad idea for pretty much all neural nets!
- Solution: Stochastic gradient descent (SGD)
 - Repeatedly sample windows, and update after each one
- Algorithm:

Mini Batch Gradient Descent

```
while True:
    window = sample_window(corpus)
    theta_grad = evaluate_gradient(J,window,theta)
    theta = theta - alpha * theta_grad
```

Interactive Session!

•
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$

$$j \ne 0$$

• For a center word c and a context word o: $P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$

(TBD) Homework

Derive the gradients of u_o and v_c to minimize the loss (J_\theta).

Lecture Plan

- 1. The course (10 mins)
- 2. Human language and word meaning (15 mins)
- 3. Word2vec introduction (15 mins)
- 4. Word2vec objective function gradients (25 mins)
- 5. Optimization basics (5 mins)