Que what is Boolean Algebra? Describe the method used for Minimization of Boolean function with example. And Explain the canonical forms for solean functions AND METHODS FOR MINIMIZATION OF BOOLEAN ALGEBRA Definition of Boolean Algebra: Boolean Algebra is a system of algebra which is based on only two values o and 1. Binary logic deals with variables that an take only two discreate values. The two values taken by variables can be true ar false. Thus Boolean algebra is defined as set of elements, set of postulates and set of operations to be performed set of elements: - Collection of having objects having a common property. The operation performed in Boolean Algerbra are called as logical operations. Logical operations are: AND, OR ; NOT. 1.1 method used for minimization of Booleans function. 1. By using the laws on rules of Boolean Algebra 2. By using Kannaugh Map (K-Map)

	Minimization of Boolean function using Lows on sules of Boolean Algebra: The Boolean function can be minimized by using the sules an laws of Boolean Algebra. This can be explain with the help of following example: xy+x'z+yz.
	= $xy + x'3 + y3(x+x')$ (Multiply $y3$ with $(x+x')$ = $xy + x'3 + xy3 + x'y3$ = $xy + xy3 + x'3 + x'y3$. = $xy + xy3 + x'z + x'yz$. = $xy + x'z + x'z + x'yz$. = $xy + x'z + x'z + x'z + x'zz$. = $xy + x'z + x'z + x'z + x'zz$. = $xy + x'z + x'z + x'zz + x'zz$. = $xy + x'z + x'zz $
	" minimization of Boolean expression of xy + x'z + yz will be: xy+x'z.
	x'y+x = x+x'y = (x+x') · (x+ya)a College, Jalandhar = (x+x') · (x+ya)a College, Jalandhar = (x+x') · (x+ya)a College, Jalandhar = 1 · (x+y) = x+y Ex+x'=1 As pen Complementary laws g
ey3.	$(x+y) \cdot (x+y')$ $= x \cdot x + xy' + yx + yy' \text{for } x = x \cdot y' + zy + yy' \text{and for dempotent such } x$ $= x + xy' + xy + yy' \text{and for dempotent such } x$ $= x + xy' + xy + 0 \text{for } y + y = 1 \text{ for } x + x = x \text{ for } x$
The state of the s	

complement of a Boolean function

The complement of a function of denoted of is obtained by intercharging o's for 1 to and 1's for 0's in the town table that defines a function. Algebrically, the complement of a function may be desired using on many be desired using one more and so law.

D firstly, complement expression representing a bollean function is written.

O Next, laws of Boolean Algebric are used to simplify the Expression.

For example

ton example

F = (x+y+3) · (ny+3)

f' = [(n+y+z).(xy+z)]'nege, Jalandhar
Doaba

= [(x+y+3) + (xy+3)]

= ((x'·y'.3') + (x'+y').z')

* * 「なります(x'+y')·マリ

find the Complement of the function

F= 2'y'3' + x'y 3 + x y 3

F' = [(x'43' + x'43.+ x43)]'

= [(x'y'3') · (x'43) · (n43)]

=) ((n)) + y' + (z')) · ((x') +y'+z') · (x'+y'+z')

=) (n+y'+z). (n+y'+z'). (n'+y'+z')

Canonical fasings for Boolean Expression

"A Boolean Expression with a variable are said

to be in Canonical fasion it each terms of
Boolean expression has exactly a variables in

direct an indirect fasingle complement fooin.

Canonical form of Boolean function

1.5-0-P form

(Mintern)

(Mintern)

the variables on literals with on without bor within the logic system. A binary variable may appear either in its normal forms on in its complement form.

eg. (a) xy+xy1+xy

bets take D

Sum of Products (s-0-P):

A Boolean expression that consist of sum of product of various liternals on variables is called s-of form. Each literal expease only once in direct on indirect form of each minter of sop form.

f(2,9,3)=2-y-3+2-y

f(x, y, 3) = x.y. 3 + x.y. 3 + x.y. 3 + x.y. 31

Page No.

Date: / /201

Example: Express the Boolean function F= A +B insum of mint enny, first step to represent each team in the form of minterino. > A. (B+B') + B. (N+A') & A+A' = 1, B+B'=1 complementary law 4 = AB + AB' + BA + BA' = AB+ AB' +AB+ A'B. = AB + AB + AB' + A'B . - Remone Duplicate teen using idempotent law : AB+ AB = AB. = AB+ AB'+A'B co Minderm = AB, AB', A'Band SOP FOOIM : AB+ AB' + A'B. Example 2: find the sum of minterine of pay + J = xy(z+z)+ z(n+x') = 243+243+23+23 = xy3+xy3'+x3(y+y')+x'3(J+y') = xy3+xy3'+xy3 +xy'3+x'y3+x'y'3 = 742+743+ x43+ x43+ x43+ 2,43 = 2173+2181+1813+2173shorthand Notation to Express a function as sum of ment en F = & (7, 6, 3, 5, 1) f = mitmb+ mit mit me = m, + m 3 + m 5 + m 6 + m 7 f = x'y'3 + x'y3 + ny3 + ny3 + ny3

mintern in shorthand notation can be enpressed using truth table:

INPUT		00.	TPUT
7	9	2	m
0	0	0	mos x'y'z'
0	1		m1= 2 413
0	1	1	m2 = . 21, A31
1 1 1 1 1 1 1 1	0	0	m = x'43
1.30	0	1	my= 21 4/31
1		0	m = x y 31
	Share Are	The second	m7= x43
ALL IN SECTION			

maxtorm: - 9+ is defined as sum of all the variable with an without box with an the logic system.

(B) Product of sum (Pos) tourn

A Boolean Expression that consist of product of sums of unious literals on variables is called pos form and each literal only once indirect or direct

Example to convert A.B into product of max terms.

= A+ (BB') 8 + (AA')

= (A+B) - (A+B') (B+A)(B+A')

- (A+B) . (A+B') . (A+B) (A+B)

= (A+B) (A+B) (A+B) - (B'+B)

Remove dupliate using idempotent low

= (A+B) . (A+B') . (A'+B)

Marctem = (A+B), (A+B'), (A'+B) and P-O-S for = (A+B). (A+B'). (A'+B)

Exampl 1: find pos form of n+y'3. empression

F= x+y'3

= (n+y') · (x+z)

= (n+y'+(221)) · (n+z)(yy')

= (n+y'+z) · (n+y+z') · (n+y+z) (n+y+z)

= (n+y'+z). (n+y'+z). (n+y'+z') (n+y+z)

= (n+y'+z). (n+y'+z'). (n+y+z) pos for

shorthand rotation for n+y'z enpression and efindout using touth table ton mantenn:

Inputs		outputx	
R	9	3	m
0	0	0	m = x+y+3
0	0	1	m = >1+4+31
0		0	M, = 71+41+3
0	Town I have	adaminente	M3 = N+41+31
	0	0	My = - x1 4+2
1	0	1	M5 = 244731
	1-2-3	0	M6 = 1+4+3
1	1 - 12 1	1	M= 21+41+21