Unsupervised Deep Learning

Legrand Thomas & Raphaël Pessis

K-means: Principe

• Initialisation de k centroïdes

•

Calcul de la distance entre les points et tous les centroïdes

Assignation des points au centroïde le plus proche.

• Calcul des nouveaux centroïdes en fonction de la moyenne des points assignés au cluster

K-means: Méthodes

Visualisation:

• Visualisation des différents clusters formés avec les points qui leur appartiennent

Compression / Décompression :

Remplacement de chaque point par le centroïde de son cluster

Génération:

- Utilisation d'un représentants de cluster
- Ajoute un bruit gaussien (normal) au centroid

K-means: premiers résultats

Original Images

Nombre clusters	2
Itérations max	100
Tolérance	1e-3

Decompressed Images

Generated Images

K-means: meilleurs résultats

Nombre clusters	100
Itérations max	10000
Noise level	0.1

Generated Images

PCA: Principe

Normalisation des données

- Calcul des vecteurs et de leurs valeurs propres
 - Vecteurs : directions des axes de la variance de données
 - Valeurs : quantité de variance des vecteurs

Sélection des k premiers vecteurs propres avec la plus grosse valeur propre

PCA: Méthodes

Compression / Décompression :

- Projection des données sur K premier vecteurs propres
- Reconstruction des données sur les même vecteurs propres, application de la transposée

Visualisation 2D/3D:

Projection des K premiers vecteurs propres sur un espace en k dimensions

Génération:

 Génération aléatoire à partir de la moyenne et de l'écart-type des composantes principales du dataset compréssé

PCA: premiers résultats

K 10

PCA: meilleurs résultats

K 500

PCA: visualisation

Auto encoders : Principe

 Encodage des données par des couches Denses qui réduisent la dimension des données

 Reconstruction des données en appliquant les mêmes couches mais dans l'ordre inverse. On applique une sigmoid pour la dernière couche pour que les valeurs des pixels restent entre 0 et 1

Auto encoders : Méthodes

Visualisation:

Projection de l'espace latent sur deux dimensions à l'aide des données compressées

Compression / Décompression :

Utilisation des fonctions encodeur et décodeur (couches Dense)

Génération:

- Recherche aléatoire d'un vecteur latent avec distribution normale
- Utilisation du décodeur pour transformer le vecteur en image

Auto encoders : premiers résultats

Decompressed Images

Generated Images

	100
Encoding dimension	2
Epochs	100
Batch size	256
Fonction d'activation	relu
Fonction loss	mse
noise level	0.1

Auto encoders : meilleurs résultats

Original Images

Encoding dimension	32
Epochs	500
Batch size	256
Fonction d'activation	tanh
Fonction loss	mse
Noise level	1

SOMaps: Principe

• Création d'une grille 10x10 et initialisation du poids en random dans cette grille

• Calcul de la norme euclidienne entre chaque vecteur et les poids de chaque neurone (distance)

Recherche du neurone avec le poids le plus proche du vecteur d'entrée

Conversion de celui-ci en un indice 2D donnant les coordonnées du neurone dit "BMU"

- Modification du poids du BMU pour se rapprocher du vecteur d'entrée avec fonction de voisinage comprenant :
 - o un taux d'apprentissage regressif
 - largeur de voisinage sigma adaptatif

SOMaps: Méthodes

Visualisation:

Compression / Décompression :

- Extrait les poids des vecteurs présents dans compressed_data en fonction du BMU
- Crée un tableau numpy à partir de ces éléments où chaque ligne correspond au poids d'un neurone particulier

Génération:

- Sélection d'un neurone dans la grille SOM en random
- récupération de son poids
- Ajout du bruit et de l'écart-type

SOMaps: premiers résultats

Generated Images

m	10
n	10
n_iterations	25
learning rate	0.5
noise_level (generation)	0.1

SOMaps: meilleurs résultats

Generated Images

m	30
n	30
n_iterations	50
learning rate	0.7
noise_level (generation)	0.2

GAN: Principe

GAN: premiers résultats

Dimension Latente	10
Format de l'image	<u>(</u> 28,28,1)
Nombre d'epoch	2000
Neurones générateur (Layer1, Layer2, Layer3)	128, 256, 512,
Neurones discriminator (Layer1, Layer2, Layer3)	256, 128, 1

GAN: meilleurs résultats

Dimension Latente	100
Nombre d'epoch	9000
Intervalle d'Echantillonage	1000
Neurones générateur (Layer1, Layer2, Layer3)	256, 512, 1024,
Neurones discriminator (Layer1, Layer2, Layer3)	512, 256, 1

VAE : Principe

• Encodeur prend les données en entrée et cible une zone latente avec des paramètres de distribution

Une couche lambda utilise ces paramètres pour créer des vecteurs latents

 Le décodeur reconstruit ces vecteurs latents en optimisant la perte de reconstruction et la perte de loss avec fonction KL

VAE: premiers résultats

Original Images

Encoding dimension	32
Epochs	300
Batch size	256
Fonction d'activation	tanh
Fonction loss	kl_loss perso
Noise level	0.5

VAE : meilleurs résultats

Original Images

Encoding dimension

Epochs

Batch size

500

256

