EXAMEN Semestre: 1 2 Session : Principale Rattrapage Module. Mathématiques de base 4. Enseignant(s): Soumaya Ben Chaabane, Lotfi Ncib, Fares Ben Amara, Lobna Derbel, Taoufik Moulahi, Nejib Mahmoudi, Kais Amari..... Classe(s) :.....2A/ 2P..... Documents autorisés : OUI **NON** Nombre de pages : 2 Calculatrice autorisée : OUI NON Internet autorisée : OUI | NON | Date: 13/05/2017..... Heure ... 09h00...... Durée :..1h30......

Exercice 1 (4 points): On considère l'équation différentielle :

$$(E): y'' + 2y' + 4y = xe^x$$

- 1. Résoudre l'équation (E).
- 2. Déterminer l'unique solution de (E) vérifiant : y(0) = 1 et y'(0) = 2.
- 3. Soit $f: [0, +\infty[\to \mathbb{R}]$ une fonction deux dérivable sur $[0, +\infty[$ et qui vérifie :

$$(E_1)$$
: $t^2 f''(t) + 3t f'(t) + 4f(t) = t ln(t)$

4. On pose $g(t) = f(e^t)$, vérifier que g est une solution de (E_1) .

Exercice 2 (4 points) : Soit f la fonction définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & si(x,y) \neq (0,0) \\ 0 & sinon \end{cases}$$

- 1. Montrer que f est est continue sur \mathbb{R}^2 .
- 2. Déterminer les dérivées partielles $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$.
- 3. Montrer que f est une fonction de classe C^1 sur \mathbb{R}^2 .

Exercice 3 (6 points) : Pour $x \in \mathbb{R}$ on note $F(x) = \int_0^1 \frac{e^{-tx}}{1+t^2} dt$.

- 1. Montrer que F est bien définie sur \mathbb{R} .
- 2. Montrer que F est continue sur \mathbb{R} .
- 3. Montrer que F est dérivable sur \mathbb{R} et donner l'expression de F'.
- 4. Calculer F(0) et F'(0).

5. Montrer que $0 \le F(x) \le \int_0^1 e^{-tx} dt$, en déduire $\lim_{x \to +\infty} F(x)$.

Exercice 4 (6 points): Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique, l'objectif de l'exercice st de montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si la série de terme général $(u_{n+1}-u_n)$ converge, i.e.

 $(u_n)_{n\in\mathbb{N}}$ suite convergente $\Leftrightarrow \sum (u_{n+1} - u_n)$ série convergente.

- 1. Soit $S_n = \sum_{k=0}^n (u_{k+1} u_k)$.
 - a. Montrer que $S_n = u_{n+1} u_0$.
 - b. Supposons que $(u_n)_{n\in\mathbb{N}}$ est une suite convergente, en deduire que la série $\sum (u_{n+1} u_n)$ est convergente (indication: calculer $\lim_{n \to +\infty} S_n$).
 - c. Supposons maintenant que la série $\sum (u_{n+1} u_n)$ est convergente, en déduire la nature de la suite $(u_n)_{n \in \mathbb{N}}$.

Application: Etudier la nature des séries suivantes:

- $1. \quad \sum_{n\geq 1} \frac{1}{n(n+1)}.$
- 2. $\sum_{n\geq 1} \operatorname{arctg}(\frac{(n+1)-n}{1+n(n+1)})$.

Indication $arctg\left(\frac{A-B}{1+A.B}\right) = arctg(A) - arctg(B)$