

Chap 02 네트워크_2.3 네트워크 기기

2.3 네트워크 기기

네트워크는 여러 개의 네트워크 기기를 기반으로 구축된다.

2.3.1 네트워크 기기의 처리 범위

- 네트워크 기기는 계층별로 처리 범위가 나뉨
- 상위 계층 처리 기기는 하위 계층 처리 가능 (반대는 불가)

애플리케이션 계층	L7 스위치
인터넷 계층	L3 스위치
데이터 링크 계층	L2 스위치, 브리지
물리 계층	NIC, 리피터, AP

2.3.2 애플리케이션 계층 처리하는 기기

▼ 로드 밸런싱

네트워크 트래픽을 여러 서버로 분산하여 서버의 과부하를 방지하고, 시스템의 성능과 신뢰성을 향상시키는 기술 *로드 밸런서: 서버의 부하를 분산 해주는 장치 또는 기술

- ■로드밸런서 전략 종류 (알고리즘)
- 1. 라운드 로빈

- 들어오는 요청을 서버들에게 순차적으로 하나씩 보냄
 → 각 서버가 동일한 요청 수 처리
- 한번 끝나면 다시 처음으로
 - → 라운드를 도는 방식
- 트래픽을 모든 서버가 분산해서 가져감
- 서버의 성능이나 현재 상태 고려 x
 - → 균등한 부하 보장 X

2. 랜덤 셀렉트

- 랜덤으로 서버 하나 택해서 요청 보냄
- 사실상 모든 서버가 요청 받음

3. 최소 연결

- 현재 가장 적은 연결을 처리하고 있는 서버로 트래픽 분배
- 서버의 현재 상태 고려 → 부하 균등 분산 가능
- 얼마의 connection이 되어있는지 알려줌
- 다이나믹한 판단 가능
- 애플리케이션 서버와 로드밸런서 간의 실시간 통신 이루어짐

4. 가중치

- 좋은 성능을 가진 서버에 트래픽 몰아 줌
- 좋은 성능의 서버에 가중치 높게 부여

■로드밸런서 구현/구축 방법

1. 소프트웨어 방식 - 로직으로 구현

- 특징: 서버나 클라우드에서 실행되는 애플리케이션 또는 서비스
- 장점:
 - ∘ 비용 저렴, 유연성 및 확장성 좋음
 - 。 다양한 환경에서 쉽게 설치 및 설정 가능
 - 。 클라우드 환경과 잘 통합되어, 클라우드 네이티브 애플리케이션에 적합

• 단점:

- 。 하드웨어 로드 밸런서에 비해 성능 다소 떨어짐
- 。 CPU와 메모리 사용량 증가

• 예시:

- NGINX: 웹 서버 기능 포함 소프트웨어 로드 밸런서(HTTP, TCP, UDP 로드 밸런싱 지원)
- HAProxy: 고성능 TCP 및 HTTP 로드 밸런서 (높은 트래픽 처리 기능 제공)
- Apache Traffic Server: 프록시 및 캐싱이 가능한 소프트웨어 로드 밸런서

2. 하드웨어 방식 - 물리적으로 서버 묶기

- 특징: 전용 네트워크 장비로, 네트워크 계층에서 트래픽을 분산하는 장치
- 장점:
 - 。 높은 성능, 안정성 제공
 - 고성능 네트워크 프로세서 사용 → 트래픽 효율적으로 처리
 - ∘ 보안 기능(Firewall, SSL Offloading) 등 다양한 네트워크 기능 통합하여 제공

• 단점:

- 。 비용 높음, 설치 및 유지 관리 복잡
- 예시:
 - ∘ **F5 BIG-IP**: L4~L7 로드 밸런싱 지원, 보안 및 가속 기능 포함

- ∘ Citrix NetScaler: 애플리케이션 딜리버리 컨트롤러로, L4~L7 로드 밸런싱 지원
- ⇒ 로드밸런싱 또한 SPOF를 예방하기 위해 스케일 아웃 필요

▼ L7 스위치

▲ 그림 2-35 **L7 스위치**

- = 스위치는 여러 장비를 연결하고 데이터 통신 중재
- = 목적지가 연결된 포트로만 전기 신호를 보내 데이터를 전송하는 통신 네트워크 장비
- = 로드밸런서 : 서버의 부하를 분산하는 기기
 - URL, 서버, 캐시, 쿠키들을 기반으로 트래픽 분산
 - 바이러스, 불필요한 외부 데이터 등을 걸러내는 필터링 기능 또한 가짐
 - 트래픽 모니터링 가능
 - 장애 서버 발생 시 헬스체크를 이용해 감시해 트래픽 분산 대상에서 제외

■L4 스위치 vs L7 스위치

	L4	L7
작동 계층	전송 계층	애플리케이션 계층
주요 프로토콜	TCP, UDP 프로토콜 기반	HTTP, HTTPS 프로토콜 기반
로드 밸런싱 기준	IP주소, 포트	요청 내용(URL, 헤더, 쿠키 등)
처리 속도	상대적으로 빠름	상대적으로 느림
기능 및 유연성	상대적으로 제한적	다양한 기능 및 유연성
사용 사례	온라인 게임, 스트리밍 서비스 (실시간 트래픽 처리 중요 서비스)	웹 서비스, API 게이트웨이, 컨텐츠 전송 네트워크 (애플리케이션 레벨의 LB 필요 서비스)

	L4	L7
컴포넌트	NLB(Network Load Balancer)	ALB(Application Load Balancer)

■헬스 체크

- 헬스 체크를 통해 정상 서버/ 비정상 서버 판별
- 전송 주기, 재전송 횟수 등을 설정한 이후 반복적으로 서버에 요청을 보내는 것

■LB를 이용한 서버 이중화

2.3.3 인터넷 계층 처리하는 기기

라우터/L3 스위치

🔽 라우터

- = 여러개의 네트워크를 연결, 분할, 구분시켜주는 역할을 함
- = 라우팅을 하는 장비
- *라우팅이란?

다른 네트워크에 존재하는 장치끼리 서로 데이터를 주고받을 때 패킷 소모를 최소화 하고 경로를 최적화하여 최소 경로로 패킷을 포워딩

= 한 개 이상의 근거리 통신망(LAN) 간에 데이터를 전달하는 게이트웨이

✓ L3 스위치

- = L2 스위치 기능 + 라우팅 기능
- = 라우터라고 해도 무방
- = 하드웨어 기반의 라우팅을 담당하는 장치

▼ 표 2-1 L3 스위치와 L2 스위치 비교

구분	L2 스위치	L3 스위치
참조 테이블	MAC 주소 테이블	라우팅 테이블
참조 PDU	이더넷 프레임	IP 패킷
참조 주소	MAC 주소	IP 주소

2.3.4 데이터 링크 계층 처리 기기

L2 스위치, 브리지

✓ L2 스위치

- 장치들의 MAC 주소를 MAC 주소 테이블을 통해 관리
- 연결된 장치로부터 패킷이 왔을 때 패킷 전송 담당
- IP 주소를 이해하지 못해 IP 주소를 기반으로 라우팅은 불가능 → 단순히 패킷의 MAC 주소를 읽어 스위칭

▼ 브릿지

▲ 그림 2-39 **브리지**

- 두개의 근거리 통신망(LAN)을 상호 접속할 수 있도록 하는 통신망 연결 장치
- 포트화 포트 사이의 다리 역할
- MAC 주소를 MAC 주소 테이블로 관리
- 통신망 범위를 확장하고 서로 다른 LAN 등으로 이루어진 하나의 통신망 구축시 사용됨

2.3.5 물리 계층 처리 기기

NIC, 리피터, AP

NIC

- = Network Interface Card
- 2대 이상의 컴퓨터 네트워크를 구성하는데 사용
- 네트워크와 빠른 속도로 데이터를 송수신 할 수 있도록 컴퓨터 내에 설치하는 확장 카드
- 카드마다 고유한 MAC 주소 있음

🔽 리피터

▲ 그림 2-41 리피터

- 들어오는 약해진 신호 정도를 증폭하여 다른 쪽으로 전달하는 장치
- 리피터를 통해 패킷은 더 멀리 갈수 있다.
- 광케이블 보급 → 리피터 잘 안씀

✓ AP

= Access Point

- 패킷을 복사하는 기기
- 유선 LAN을 연결한 후 다른 장치에서 무선 LAN기술(와이파이 등등)을 사용
 → 무선 네트워크 연결 가능