Übungen zur Linearen Algebra I 1. Übungsblatt

Abgabe bis zum 24.10.19, 9:15 Uhr

Ist $f: A \to B$ eine Abbildung und $M \subset B$ eine Teilmenge, so definieren wir $f^{-1}(M)$ als

$$f^{-1}(M) = \bigcup_{m \in M} f^{-1}(m) = \{ a \in A \mid f(a) \in M \}.$$

Aufgabe 1 (2 + 2 + 1 + 1 Punkte). Sei $f: X \to Y$ eine Abbildung und $A, B \subset X$ und $C \subset Y$ Teilmengen. Zeigen Sie:

- (a) $f(A \cap f^{-1}(C)) = f(A) \cap C$.
- (b) $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$.
- (c) $f(A \cap B) \subset f(A) \cap f(B)$.
- (d) $f(f^{-1}(C)) \subset C$.

Aufgabe 2 (3 + 3 Punkte). Sei $f: X \to Y$ eine Abbildung. Zeigen Sie:

- (a) f ist genau dann injektiv, wenn für alle Teilmengen $A, B \subset X$ die Gleichheit $f(A \cap B) = f(A) \cap f(B)$ gilt.
- (b) f ist genau dann surjektiv, wenn für alle Teilmengen $C \subset Y$ die Gleichheit $f(f^{-1}(C)) = C$ gilt.

Aufgabe 3 (6 Punkte). Sei A eine Menge und $X,Y\subset A$. Wir betrachten die Abbildung $f_{X,Y}\colon \mathcal{P}(A)\to \mathcal{P}(A)$, welche für $M\subset A$ definiert ist durch

$$f_{X,Y}(M) = (X \cap M) \cup (Y \cap (A \setminus M)).$$

Wann gibt es eine Teilmenge $M \subset A$ mit $f_{X,Y}(M) = \emptyset$?

Aufgabe 4 (3+3 Punkte). Seien A und B endliche Mengen, welche jeweils genau n verschiedene Elemente enthalten.

- (a) In der Vorlesung wurde skizziert, wieso die Potenzmenge $\mathcal{P}(A)$ genau 2^n Elemente enthält. Führen Sie einen Beweis dieser Behauptung mit vollständiger Induktion.
- (b) Zeigen Sie mit vollständiger Induktion, dass es genau $n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1$ bijektive Abbildungen $f: A \to B$ gibt. Hierbei definieren wir 0! = 1.