Home Exercise 9: Gradient method with line search

Perform one iteration of the gradient method to solve

$$\max f(x_1, x_2) = 2x_1x_2 + 2x_2 - x_1^2 - 2x_2^2$$

from the initial point $x_0 = (0.5, 0.5)$. Use the bisection method to find the optimal step size with interval [0,2] and tolerance $\varepsilon = 0.01$. Is the new point obtained optimal (considering the tolerance of $\varepsilon = 0.01$)?

Hint. Do it by hand and notice it is a maximisation.

3D graph by GeoGebra

Graphically, we can observe that max .f(x1, x2) = 1, at [1, 1]

Gradient (descent) method

Algorithm Gradient descent method

- 1: **initialise.** tolerance $\epsilon > 0$, initial point x_0 , iteration count k = 0.
- 2: while $||\nabla f(x_k)|| > \epsilon$ do
- $\underline{d}_k = -\nabla f(x_k).$
- $\overline{\lambda} = \operatorname{argmin}_{\lambda \in \mathbb{R}} \{ f(x_k + \lambda d_k) \}.$ $x_{k+1} = x_k + \overline{\lambda} d_k.$
- 6: $k \leftarrow k + 1$.
- 7: end while
- 8: return x_k .

Instead of argmin, it is argmax since we need to maximize the function Firstly, the gradient is $\nabla f(x_1, x_2) = [2x_2 - 2x_1, 2x_1 - 4x_2 + 2]^T$ Initial point: $x_0 = [0.5, 0.5]$

$$\Rightarrow \nabla f(0.5, 0.5) = [0, 1]^T$$

```
Since norm( \nabla f(0.5, 0.5) ) > \epsilon => d_0 = \nabla f(0.5, 0.5) = [0, -1]^T f(\lambda) = argmax_{\lambda} (f([0.5, 0.5]^T + \lambda[0, 1]^T)) = f(0.5, 0.5 + \lambda) = -2\lambda^2 + \lambda + 0.75 => f'(\lambda) = -4\lambda + 1
```

Now we will use bisection method to find roots of $f'(\lambda)$

```
Algorithm Bisection method (minimisation)
 1: initialise. tolerance l > 0, [a_0, b_0] = [a, b], k = 0.
 2: while b_k - a_k > l do
        \lambda_k = \frac{(b_k + a_k)}{2} and evaluate f'(\lambda_k).
 4:
        if f'(\lambda_k) = 0 then return \lambda_k.
        else if f'(\lambda_k) > 0 then
 6:
              a_{k+1} = a_k, b_{k+1} = \lambda_k.
 7:
         else
 8:
              a_{k+1} = \lambda_k, b_{k+1} = b_k.
9:
         end if
         k = k + 1.
10:
11: end while
12: return \overline{\lambda} = \frac{a_k + b_k}{2}.
```

Remark: if maximising, the condition in Line 5 must be replaced with f'(x) < 0 and concavity is presumed.

Initialize: tolerance $\varepsilon = 0.01$, [a0, b0] = [0,2], k = 0• First iteration: $[a_0, b_0] = [0, 2]$, k = 0b₀ - a₀ = 2 > $\varepsilon = \lambda_0 = (2+0)/2 = 1$ f'(λ) = -4 λ + 1 => f'(λ ₀) = -3 < 0

=> a₁ = 0, b₁ = 1

• Second iteration: $[a_1, b_1] = [0, 1]$, k = 1b₁ - a₁ = 1 > $\varepsilon = \lambda_1 = (1+0)/2 = 0.5$ f'(λ) = -4 λ + 1 => f'(λ ₁) = -1 < 0

=> a₂ = 0, b₂ = 0.5

• Third iteration: $[a_2, b_2] = [0, 0.5]$, k = 2b₂ - a₂ = 0.5 > $\varepsilon = \lambda_2 = (0+0.5)/2 = 0.25$ f'(λ) = -4 λ + 1 => f'(λ ₂) = 0 (stop)

=> $\lambda_2 = 0.25$ is the root of f'(λ) = -4 λ + 1 and is the optimal step in the range [0, 2] (answer)

Now we return to the gradient method:

 $x_1 = x_0 + \lambda d_0 = [0.5, 0.5]^T + 0.25 * [0, -1]^T = [0.5, 0.75]^T$ Second iteration of gradient method: $\nabla f(x_1) = [0.5, 0]^T$, norm($[0.5, 0]^T$) = 0.5 > $\varepsilon = 0.01$

=> The algorithm of gradient descent has not stopped and we haven't arrived at the desired optimal solution. In fact, graphically the optimal solution is [1, 1], f(x) = 1

=> The new obtained point $x_1 = [0.5, 0.75]^T$ is not optimal (tolerance of $\varepsilon = 0.01$) (Answer)