Formula Sheet EE2E11

MaybE_Tree

2022-09-07

Power 1

Name	Type	Symbol	Unit
Complex Power	Complex Value	S	VA
Active Power	Re(S)	P	W
Reactive Power	$\operatorname{Im}(S)$	Q	VAr
Apparent Power	S	S	VA

1.1 **Factors**

Active Power $= {\bf Distortion\ Factor} * {\bf Displacement\ Factor}$ Power Factor Apparent Power

 $\frac{\text{RMS of fundamental}}{\text{RMS of fundamental}} = 1 \quad \text{(when no harmonics)}$ Distortion Factor

 $\cos \phi$, where ϕ is phase difference between voltage and current Displacement Factor

2 Three-phase

Property	Y	Δ	
Voltage	$V_{LL} = \sqrt{3}V_{\phi}$	$V_{LL} = V_{\phi}$	
Current	$I_L = I_\phi$	$I_L = \sqrt{3}I_\phi$	
Phase	V_{ab} leads V_a by 30°	I_a lags I_{ab} by 30°	
Active Power	$P = \sqrt{3}V_{LL}I_L\cos\phi$		
Reactive Power	$Q = \sqrt{3}V_{LL}I_L\sin\phi$		
Apparent Power	$ S = \sqrt{3}V_{\phi}I_{\phi}$		

- All powers are given as total power (3 * Power of single load/coil)
- V_{ϕ} is voltage across one coil.
- I_{ϕ} is current through one coil.
- ϕ is phase difference between voltage and current (conventionally, voltage has 0 phase offset).

3 AC Machines

Synchronous Speed $n_s = \frac{120f}{P} = \frac{60f}{p} \quad \begin{array}{ll} P \text{ is poles,} \\ p = P/2 \text{ is pole pairs.} \end{array}$ Rotor Speed $n_r = (1-s)n_s \qquad 0 \leq s \leq 1 \text{ is slip.}$ Rotor Current Frequency $f_r = sf_s$

Parama's equation $P = \frac{V}{I}$ V is voltage, I is current, P is power.