Regular Expressions

Definitions
Equivalence to Finite Automata

RE's: Introduction

- Regular expressions describe languages by an algebra.
- They describe exactly the regular languages.
- If E is a regular expression, then L(E) is the language it defines.
- We'll describe RE's and their languages recursively.

Operations on Languages

- RE's use three operations: union, concatenation, and Kleene star.
- The union of languages is the usual thing, since languages are sets.
- **◆Example**: $\{01,111,10\}\cup\{00,01\} = \{01,111,10,00\}$.

Concatenation

- The concatenation of languages L and M is denoted LM.
- It contains every string wx such that w is in L and x is in M.
- Example: {01,111,10}{00, 01} =
 {0100, 0101, 11100, 11101, 1000,
 1001}.

Kleene Star

- ◆If L is a language, then L*, the Kleene star or just "star," is the set of strings formed by concatenating zero or more strings from L, in any order.
- **◆Example**: $\{0,10\}^* = \{\epsilon, 0, 10, 00, 010, 100, 1010, ...\}$

RE's: Definition

- ♦ Basis 1: If a is any symbol, then a is a RE, and $L(a) = \{a\}$.
 - Note: {a} is the language containing one string, and that string is of length 1.
- ♦ Basis 2: ϵ is a RE, and $L(\epsilon) = {\epsilon}$.
- ♦ Basis 3: \emptyset is a RE, and L(\emptyset) = \emptyset .

RE's: Definition – (2)

- ◆Induction 1: If E_1 and E_2 are regular expressions, then E_1+E_2 is a regular expression, and $L(E_1+E_2) = L(E_1) \cup L(E_2)$.
- ◆Induction 2: If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression, and $L(E_1E_2) = L(E_1)L(E_2)$.
- ◆Induction 3: If E is a RE, then E* is a RE, and L(E*) = (L(E))*.

Precedence of Operators

- Parentheses may be used wherever needed to influence the grouping of operators.
- Order of precedence is * (highest), then concatenation, then + (lowest).

Examples: RE's

- \bullet L(**01**) = $\{01\}$.
- \bullet L(**01**+**0**) = $\{01, 0\}$.
- \bullet L(**0**(**1**+**0**)) = $\{01, 00\}$.
 - Note order of precedence of operators.
- \bullet L(**0***) = { ϵ , 0, 00, 000,...}
- ◆L(($\mathbf{0}+\mathbf{10}$)*($\epsilon+\mathbf{1}$)) = all strings of 0's and 1's without two consecutive 1's.

Equivalence of RE's and Finite Automata

- We need to show that for every RE, there is a finite automaton that accepts the same language.
 - Pick the most powerful automaton type: the ∈-NFA.
- And we need to show that for every finite automaton, there is a RE defining its language.
 - Pick the most restrictive type: the DFA.

Converting a RE to an ϵ -NFA

- Proof is an induction on the number of operators (+, concatenation, *) in the RE.
- We always construct an automaton of a special form (next slide).

Form of ϵ -NFA's Constructed

RE to ϵ -NFA: Basis

◆Symbol **a**:

♦€:

◆ Ø:

RE to ϵ -NFA: Induction 1 — Union

For $E_1 \cup E_2$

RE to ϵ -NFA: Induction 2 — Concatenation

For E₁E₂

RE to ϵ -NFA: Induction 3 — Closure

For E*

DFA-to-RE

- A strange sort of induction.
- States of the DFA are named 1,2,...,n.
- Induction is on k, the maximum state number we are allowed to traverse along a path.

k-Paths

- A k-path is a path through the graph of the DFA that goes through no state numbered higher than k.
- Endpoints are not restricted; they can be any state.
- n-paths are unrestricted.
- RE is the union of RE's for the n-paths from the start state to each final state.

Example: k-Paths

0-paths from 2 to 3: RE for labels = $\mathbf{0}$.

1-paths from 2 to 3: RE for labels = $\mathbf{0}+\mathbf{11}$.

2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1

3-paths from 2 to 3: RE for labels = ??

DFA-to-RE

- Basis: k = 0; only arcs or a node by itself.
- ◆Induction: construct RE's for paths allowed to pass through state k from paths allowed only up to k-1.

k-Path Induction

- Let R_{ij}^k be the regular expression for the set of labels of k-paths from state i to state j.
- ♦ Basis: k=0. $R_{ij}^{0} = \text{sum of labels of arc}$ from i to j.
 - ∅ if no such arc.
 - **)** But add ϵ if i=j.

Example: Basis

$$R_{12}^{0} = 0.$$

Notice algebraic law: \emptyset plus anything = that thing.

k-Path Inductive Case

- A k-path from i to j either:
 - 1. Never goes through state k, or
 - 2. Goes through k one or more times.

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}(R_{kk}^{k-1})^* R_{kj}^{k-1}$$
.

Goes from

Doesn't go i to k the through k first time

Zero or more times from k to k

Illustration of Induction

Final Step

- The RE with the same language as the DFA is the sum (union) of R_{ii}ⁿ, where:
 - 1. n is the number of states; i.e., paths are unconstrained.
 - 2. i is the start state.
 - 3. j is one of the final states.

Example

$$+ R_{23}^3 = R_{23}^2 + R_{23}^2 (R_{33}^2) R_{33}^2 = R_{23}^2 (R_{33}^2) R_{33}^2$$

$$R_{23}^2 = (10)*0+1(01)*1$$

$$R_{33}^2 = \epsilon + O(01)*(1+00) + 1(10)*(0+11)$$

$$R_{23}^3 = [(10)*0+1(01)*1][\epsilon + (0(01)*(1+00) + 1(10)*(0+11))]*$$

Summary

◆ Each of the three types of automata (DFA, NFA, ϵ -NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.

Algebraic Laws for RE's

- Union and concatenation behave sort of like addition and multiplication.
 - + is commutative and associative;
 concatenation is associative.
 - Concatenation distributes over +.
 - Exception: Concatenation is not commutative.

Identities and Annihilators

- \bullet \varnothing is the identity for +.
 - $R + \emptyset = R$
- \bullet ϵ is the identity for concatenation.
 - $\mathbf{E} \in \mathbf{R} = \mathbf{R} \in \mathbf{R}$
- \bullet \varnothing is the annihilator for concatenation.
 - $\triangleright \varnothing R = R\varnothing = \varnothing.$