```
1 Ajustando as bases de dados

1.1 Base: mortes por overdose por estado

1.2 Base: IDH por estado

1.3 Base: desemprego por estado

1.4 Base: renda por estado

1.5 Base: leis maconha por estado

1.6 Base: uso de drogas (maconha e cocaína) por estado

1.7 Base unificada

2 Descritivas

2.1 Tabelas

2.2 Gráficos

3 Regressão

3.1 Regressão de morte por overdoeses

3.2 Regressão de uso de maconha

3.3 Regressão de uso de cocaína
```

Trabalho Final

Ana Flavia Arrym, Bruno Penãs, Isabela Brunele, Enzo Carmona, Gabriel Belisiario, Mariana Canto

2024-04-26

#Importando bibliotecas

```
library(tidyverse)
```

```
## — Attaching core tidyverse packages —
                                                                   tidyverse 2.0.0
## √ dplyr 1.1.0
                           √ readr
                                        2.1.4
## √ forcats 1.0.0

√ stringr

                                        1.5.0
## \checkmark ggplot2 3.4.1 \checkmark tibble
                                       3.2.0
## ✓ lubridate 1.9.2
                           √ tidyr
                                        1.3.0
## √ purrr
                1.0.1
## — Conflicts -
                                                              ・tidyverse_conflicts()
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all con
flicts to become errors
```

```
library(readxl)
library(dplyr)
library(clipr)
```

```
\mbox{\tt \#\#} Welcome to clipr. See \mbox{\tt ?write\_clip} for advisories on writing to the clipboard in R.
```

```
library(did)
library(ggplot2)
library(modelsummary)
```

```
`modelsummary` 2.0.0 now uses `tinytable` as its default table-drawing
     backend. Learn more at: https://vincentarelbundock.github.io/tinytable/
##
## Revert to `kableExtra` for one session:
##
     options(modelsummary_factory_default = 'kableExtra')
##
##
## Change the default backend persistently:
##
     config_modelsummary(factory_default = 'gt')
##
##
## Silence this message forever:
##
     config_modelsummary(startup_message = FALSE)
```

setwd("C:/Users/Ana Flávia/OneDrive - Insper - Institudo de Ensino e Pesquisa/Eco nomia/Quinto Semestre/Microeconomia IV/Trabalho Final")

1 Ajustando as bases de dados

1.1 Base: mortes por overdose por estado

```
mortes = read.csv("NCHS_-_Drug_Poisoning_Mortality_by_State__United_States_202404
17 (1).csv")
mortes = mortes %>%
 select(State, Year, Sex, Age.Group, Race.and.Hispanic.Origin, Deaths, Populatio
 mutate(Year = as.character(Year)) %>%
 filter(Sex == "Both Sexes", Age.Group == "All Ages",
         Race.and.Hispanic.Origin == "All Races-All Origins") %>%
 select(State, Year, Deaths, Population) %>%
 mutate(Overdoses = Deaths) %>%
 select(State, Year, Overdoses, Population)%>%
 rename(year = Year)
mortes <- mortes %>%
 filter(State != "United States",
        year != "1999",
         year != "2000",
         year != "2001",
         year != "2002")
view(mortes)
```

1.2 Base: IDH por estado

1.3 Base: desemprego por estado

```
unemp = read_xls("emp-unemployment.xls", sheet = "States")
```

```
## New names:
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
## • `` -> `...21`
## • `` -> `...22`
## • `` -> `...23`
## • `` -> `...24`
## • `` -> `...25`
## • `` -> `...26`
## • `` -> `...27`
## • `` -> `...28`
## • `` -> `...29`
## • `` -> `...30`
## • `` -> `...31`
## • `` -> `...32`
## • `` -> `...33`
## • `` -> `...34`
## • `` -> `...35`
## • `` -> `...36`
## • `` -> `...37`
## • `` -> `...38`
## • `` -> `...39`
## • `` -> `...40`
## • `` -> `...41`
```

```
unemp = unemp %>%
 slice(-(1:4)) %>%
 slice(-(54:62))
header = unemp %>%
 slice(1) %>%
 unlist()
unemp = unemp %>%
 slice(-1) %>%
 rename_with(~header) %>%
 slice(-1) %>%
 rename_with(
    ~ paste0("X", .)) %>%
 rename(State = XArea,
         Fips = XFips) %>%
 select(State, X2003, X2004, X2005, X2006, X2007, X2008,
         X2009, X2010, X2011, X2012, X2013, X2014, X2015, X2016) %>%
 pivot_longer(!State, names_to = "year", values_to = "Desemprego") %>%
 mutate(year = gsub("X","", year))
view(unemp)
```

1.4 Base: renda por estado

```
income = read_xlsx("h08.xlsx")
```

```
## New names:
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
## • `` -> `...21`
## • `` -> `...22`
## • `` -> `...23`
## • `` -> `...24`
## • `` -> `...25`
## • `` -> `...26`
## • `` -> `...27`
## • `` -> `...28`
## • `` -> `...29`
## • `` -> `...30`
## • `` -> `...31`
## • `` -> `...32`
## • `` -> `...33`
## • `` -> `...34`
## • `` -> `...35`
## • `` -> `...36`
## • `` -> `...37`
## • `` -> `...38`
## • `` -> `...39`
## • `` -> `...40`
```

```
income = income %>%
 slice(-(1:60))
header = income %>%
  slice(1) %>%
 unlist()
income = income %>%
 slice(-1) %>%
 rename_with(~header) %>%
 slice(-1) %>%
 rename_with(
    ~ paste0("X", .)) %>%
 rename(State = XState) %>%
 select(State, X2003, X2004, X2005, X2006, X2007, X2008, X2009,
         X2010, X2011, X2012, X2013, X2014, X2015, X2016) %>%
 pivot_longer(!State, names_to = "year", values_to = "Income") %>%
 mutate(year = gsub("X","", year))
view(income)
```

1.5 Base: leis maconha por estado

```
leis = read_xlsx("BASE_LEISMACONHA.xlsx", sheet = "RML")

leis = leis %>%
    select(-(2:32)) %>%
    select(-(16:23))

leis = leis %>%
    rename(State = "Estados/Anos") %>%
    pivot_longer(!State, names_to = "year", values_to = "Tratamento") %>%
    mutate(Tratamento = as.numeric(Tratamento))
view(leis)
```

1.6 Base: uso de drogas (maconha e cocaína) por estado

```
drug_users = read_xlsx("Drug users.xlsx")

drug_users <- drug_users %>%
  mutate(year = as.character(year))

view(drug_users)
```

1.7 Base unificada

```
base_TF = left_join(mortes, IDH, by = c("State", "year"))
base_TF = left_join(base_TF, unemp, by = c("State", "year"))
base_TF = left_join(base_TF, income, by = c("State", "year"))
base_TF = left_join(base_TF, leis, by = c("State", "year"))
base_TF = left_join(base_TF, drug_users, by = c("State", "year"))
base_TF <- base_TF %>%
 mutate(year = as.numeric(year),
         weed_users = as.numeric(weed_users))
base TF <- base TF %>%
 mutate(Fips = case_when(State == 'Alabama' ~ '01000',
                          State == 'Alaska' ~'02000',
                          State == 'Arizona' ~'04000',
                          State == 'Arkansas' ~'05000',
                          State == 'California' ~'06000',
                          State == 'Colorado' ~'08000',
                          State == 'Connecticut' ~'09000',
                          State == 'Delaware' ~'10000',
                          State == 'District of Columbia' ~'11000',
                          State == 'Florida' ~'12000',
                          State == 'Georgia' ~'13000',
                          State == 'Hawaii' ~'15000',
                          State == 'Idaho' ~'16000',
                          State == 'Illinois' ~'17000',
                          State == 'Indiana' ~'18000',
                          State == 'Iowa' ~'19000',
                          State == 'Kansas' ~'20000'
                          State == 'Kentucky' ~'21000',
                          State == 'Louisiana' ~'22000',
                          State == 'Maine' ~'23000',
                          State == 'Maryland' ~'24000',
                          State == 'Massachusetts' ~'25000',
                          State == 'Michigan' ~'26000',
                          State == 'Minnesota' ~'27000',
                          State == 'Mississippi' ~'28000',
                          State == 'Missouri' ~'29000',
                          State == 'Montana' ~'30000',
                          State == 'Nebraska' ~'31000',
                          State == 'Nevada' ~'32000',
                          State == 'New Hampshire' ~'33000',
                          State == 'New Jersey' ~'34000',
                          State == 'New Mexico' ~'35000',
                          State == 'New York' ~'36000',
                          State == 'North Carolina' ~'37000',
                          State == 'North Dakota' ~'38000',
                          State == 'Ohio' ~'39000',
                          State == 'Oklahoma' ~'40000',
                          State == 'Oregon' ~'41000',
```

```
State == 'Pennsylvania' ~'42000',
                          State == 'Rhode Island' ~'44000',
                          State == 'South Carolina' ~'45000',
                          State == 'South Dakota' ~'46000',
                          State == 'Tennessee' ~'47000',
                          State == 'Texas' ~'48000',
                          State == 'Utah' ~'49000',
                          State == 'Vermont' ~'50000',
                          State == 'Virginia' ~'51000',
                          State == 'Washington' ~'53000',
                          State == 'West Virginia' ~'54000',
                          State == 'Wisconsin' ~'55000',
                          State == 'Wyoming' ~'56000')) %>%
           mutate(Fips = as.numeric(Fips))
base TF<-base TF %>%
 mutate(taxa_overdose = (Overdoses/Population)*1000,
         taxa_weed = (weed_users/Population)*1000,
         taxa_cocain = (cocain_users/Population)*1000)
view(base_TF)
```

2 Descritivas

2.1 Tabelas

	Colorado		Washington	
	Mean	SD	Mean	SD
Overdoses	667.11	115.80	903.00	103.30
Habitantes	4807537.89	208834.96	6461848.89	253777.23
IDH	0.93	0.00	0.92	0.01

	Colorado		Washington	
	Mean	SD	Mean	SD
Desemprego	5.97	1.79	6.99	2.05
Renda	76971.11	3454.54	75002.22	2965.02
Cocaina	152024.49	19155.18	144738.98	12002.89
Maconha	713874.37	122214.88	855660.74	106884.84

```
#pré tratamento (2014)
base_TF %>%
 filter(State %in% c("Alaska", "Oregon")) %>%
 filter(year %in% c("2003":"2013")) %>%
 rename(Cocaina = cocain_users,
        Maconha = weed_users,
         Renda = Income,
        Habitantes = Population) %>%
 select(State, Overdoses, Habitantes, IDH, Desemprego, Renda,
         Cocaina, Maconha) %>%
 datasummary(formula = ~ Overdoses + Habitantes + IDH
                   + Desemprego + Renda + Cocaina + Maconha
                ~ State*(Mean + SD))
```

	Alaska		Oregon	
	Mean	SD	Mean	SD
Overdoses	98.00	22.66	456.91	61.25
Habitantes	692375.27	29618.52	3748458.18	133901.36
IDH	0.93	0.01	0.91	0.01
Desemprego	7.19	0.54	7.88	2.04
Renda	79466.36	3991.66	65460.91	2490.47
Cocaina	16466.17	3102.24	83763.70	15332.42
Maconha	121482.87	18702.32	594795.02	100268.74

	Mean	SD
Overdoses	795.62	856.20
Habitantes	6194391.41	6984986.76
IDH	0.91	0.02
Desemprego	6.01	2.05
Renda	65957.81	10257.88
Cocaina	123241.71	152277.35
Maconha	685552.46	842265.58

2.2 Gráficos

Overdose para os tratados

Usuários de maconha nos grupos tratados

Usuários de cocaína nos grupos tratados

Médias de overdose nos EUA - geral


```
medias %>%
  ggplot(aes(x = year, y = medias_maconha))+
  geom_line(color = "#336600") +
  labs(title = "Médias de usuários de maconha nos EUA - geral",
      x = "Ano", y = "Médias de usuários de maconha por 1000 habitantes")
```

Médias de usuários de maconha nos EUA - geral


```
medias %>%
  ggplot(aes(x = year, y = medias_cocaina))+
  geom_line(color = "#336600") +
  labs(title = "Médias de usuários de cocaína nos EUA - geral",
        x = "Ano", y = "Médias dos usuários de cocaína por 1000 habitantes")
```


3 Regressão

3.1 Regressão de morte por overdoeses

```
#tentando rodar o sttagerd
primeiros_tratamentos <- base_TF %>%
 filter(Tratamento > 0) %>%
 group_by(State) %>%
 summarise(primeiros_tratamentos = min(year))
view(primeiros_tratamentos)
base_TF <- base_TF %>%
 mutate(year = as.numeric(year),
         Tratamento = as.numeric(Tratamento),
         Fips = as.numeric(Fips)) %>%
 left_join(primeiros_tratamentos, by = "State") %>%
 mutate(Tratado = ifelse(Tratamento > 0, primeiros_tratamentos, 0)) %>%
 arrange(State, year) %>%
 fill(Tratado, .direction = "down") %>%
 select(-primeiros_tratamentos)
base_TF <- base_TF %>%
 mutate(Tratado = case_when(State == "Alaska"~"2014",
                             State == "California"~"2016",
                             State == "Colorado"~"2012",
                             State == "Maine"~"2016",
                             State == "Massachusetts"~"2016",
                             State == "Nevada"~"2016",
                             State == "Oregon"~"2014",
                             State == "Washington"~"2012",
                              .default = "0")) %>%
 mutate(Tratado = as.numeric(Tratado))
view(base_TF)
#filtrei esses 4 estados pq não tem pós tratamento pra eles
base_2 <- base_TF %>%
 filter(State != "California",
         State != "Maine",
         State != "Massachusetts",
         State != "Nevada")
view(base_2)
overdose_death <- att_gt(yname = "taxa_overdose",</pre>
                   tname = "year",
                   idname = "Fips",
                   gname = "Tratado",
                   data = base_2)
```

```
## Warning in pre_process_did(yname = yname, tname = tname, idname = idname, : Be
aware that there are some small groups in your dataset.
## Check groups: 2012,2014.
```

Warning in att_gt(yname = "taxa_overdose", tname = "year", idname = "Fips", :
Not returning pre-test Wald statistic due to singular covariance matrix

```
aggte(overdose_death, type = "dynamic")
```

```
##
## Call:
## aggte(MP = overdose death, type = "dynamic")
##
## Reference: Callaway, Brantly and Pedro H.C. Sant'Anna. "Difference-in-Differe
nces with Multiple Time Periods." Journal of Econometrics, Vol. 225, No. 2, pp. 2
00-230, 2021. <a href="https://doi.org/10.1016/j.jeconom.2020.12.001">https://doi.org/10.1016/j.jeconom.2020.12.001</a>>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>), <a href="https://arx
g/abs/1803.09015>
##
##
## Overall summary of ATT's based on event-study/dynamic aggregation:
                     ATT
                                       Std. Error
                                                                               [ 95% Conf. Int.]
##
          -0.0288
                                                 0.0052
                                                                               -0.039
                                                                                                           -0.0186 *
##
##
##
## Dynamic Effects:
          Event time Estimate Std. Error [95% Simult. Conf. Band]
##
##
                             -10 -0.0015
                                                                         0.0026
                                                                                                           -0.0075
                                                                                                                                             0.0046
                               -9 -0.0092
##
                                                                         0.0068
                                                                                                           -0.0250
                                                                                                                                             0.0065
                               -8 -0.0004
##
                                                                         0.0079
                                                                                                           -0.0188
                                                                                                                                             0.0179
##
                               -7 -0.0002
                                                                         0.0047
                                                                                                           -0.0110
                                                                                                                                             0.0107
##
                               -6
                                            0.0080
                                                                         0.0244
                                                                                                           -0.0487
                                                                                                                                             0.0647
                                -5
                                           0.0104
                                                                                                            0.0012
                                                                                                                                             0.0196 *
##
                                                                         0.0040
##
                                -4 -0.0227
                                                                         0.0211
                                                                                                           -0.0718
                                                                                                                                             0.0265
##
                               -3
                                            0.0050
                                                                         0.0063
                                                                                                           -0.0096
                                                                                                                                             0.0196
                                -2 -0.0093
##
                                                                         0.0142
                                                                                                           -0.0424
                                                                                                                                             0.0238
##
                               -1 -0.0096
                                                                         0.0142
                                                                                                           -0.0427
                                                                                                                                             0.0235
##
                                  0
                                           0.0025
                                                                         0.0046
                                                                                                           -0.0081
                                                                                                                                             0.0131
##
                                  1 -0.0126
                                                                         0.0034
                                                                                                           -0.0205
                                                                                                                                           -0.0048 *
##
                                  2 -0.0327
                                                                         0.0094
                                                                                                           -0.0546
                                                                                                                                           -0.0108 *
##
                                  3 -0.0351
                                                                                                           -0.0512
                                                                                                                                           -0.0190 *
                                                                         0.0069
##
                                  4 -0.0660
                                                                         0.0103
                                                                                                           -0.0900
                                                                                                                                           -0.0419 *
## ---
## Signif. codes: `*' confidence band does not cover 0
##
## Control Group: Never Treated, Anticipation Periods:
## Estimation Method: Doubly Robust
```

```
#gráficos
ggdid(aggte(overdose_death, type = "dynamic"))
```


3.2 Regressão de uso de maconha

-10

Pre - Post

Warning in pre_process_did(yname = yname, tname = tname, idname = idname, : Be
aware that there are some small groups in your dataset.
Check groups: 2012,2014.

Warning in att_gt(yname = "taxa_weed", tname = "year", idname = "Fips", : Not
returning pre-test Wald statistic due to singular covariance matrix

```
aggte(weed, type = "dynamic")
```

```
##
## Call:
## aggte(MP = weed, type = "dynamic")
## Reference: Callaway, Brantly and Pedro H.C. Sant'Anna. "Difference-in-Differe
nces with Multiple Time Periods." Journal of Econometrics, Vol. 225, No. 2, pp. 2
00-230, 2021. <a href="https://doi.org/10.1016/j.jeconom.2020.12.001">https://doi.org/10.1016/j.jeconom.2020.12.001</a>, <a href="https://arxiv.or">https://arxiv.or</a>
g/abs/1803.09015>
##
##
## Overall summary of ATT's based on event-study/dynamic aggregation:
##
      ATT
              Std. Error
                            [ 95% Conf. Int.]
    6.493
##
                  6.9874
                             -7.2022
                                          20.1881
##
##
## Dynamic Effects:
    Event time Estimate Std. Error [95% Simult. Conf. Band]
##
            -10 -4.7907
##
                              4.6419
                                           -14.6504
                                                          5.0690
             -9 10.9651
##
                              3.8380
                                             2.8128
                                                         19.1174 *
                              4.5721
             -8 -11.8953
##
                                           -21.6069
                                                         -2.1838 *
            -7 -5.3488
                              4.8616
                                           -15.6753
                                                         4.9776
##
##
             -6
                  9.2674
                              1.3921
                                             6.3105
                                                         12.2244 *
##
             -5
                  4.8605
                              3.4375
                                            -2.4411
                                                         12.1620
             -4
                                                         10.7831 *
##
                  8.0872
                              1.2692
                                             5.3913
##
             -3
                  0.7674
                              3.3308
                                            -6.3076
                                                          7.8425
##
             -2 13.7616
                              3.6113
                                             6.0909
                                                         21.4324 *
             -1 1.9593
                                                         19.2048
##
                              8.1190
                                           -15.2862
##
              0 -8.6802
                              3.9745
                                           -17.1224
                                                         -0.2381 *
##
              1 -1.8370
                           14.3717
                                           -32.3640
                                                         28.6900
              2
##
                  9.0236
                              9.9167
                                           -12.0405
                                                         30.0877
##
              3 14.6732
                             20.6534
                                           -29.1966
                                                         58.5429
##
              4 19.2854
                                            -4.1964
                                                         42.7672
                             11.0550
## ---
## Signif. codes: `*' confidence band does not cover 0
##
## Control Group: Never Treated, Anticipation Periods:
## Estimation Method: Doubly Robust
```

```
#gráficos
ggdid(aggte(weed, type = "dynamic"))
```


3.3 Regressão de uso de cocaína

Warning in pre_process_did(yname = yname, tname = tname, idname = idname, : Be
aware that there are some small groups in your dataset.
Check groups: 2012,2014.

```
## Warning in att_gt(yname = "taxa_cocain", tname = "year", idname = "Fips", : No
t
## returning pre-test Wald statistic due to singular covariance matrix
```

```
aggte(cocaine, type = "dynamic")
```

```
##
## Call:
## aggte(MP = cocaine, type = "dynamic")
## Reference: Callaway, Brantly and Pedro H.C. Sant'Anna. "Difference-in-Differe
nces with Multiple Time Periods." Journal of Econometrics, Vol. 225, No. 2, pp. 2
00-230, 2021. <a href="https://doi.org/10.1016/j.jeconom.2020.12.001">https://doi.org/10.1016/j.jeconom.2020.12.001</a>, <a href="https://arxiv.org/10.1016/j.jeconom.2020.12.001">https://arxiv.org/10.1016/j.jeconom.2020.12.001</a>, <a href="https://arxiv.org/10.1016/j.j
g/abs/1803.09015>
##
##
## Overall summary of ATT's based on event-study/dynamic aggregation:
##
                  ATT
                                    Std. Error
                                                                            [ 95% Conf. Int.]
          0.0943
                                                                         -1.7209
##
                                               0.9262
                                                                                                            1.9095
##
##
## Dynamic Effects:
          Event time Estimate Std. Error [95% Simult. Conf. Band]
##
                             -10
##
                                            0.1968
                                                                          1.6324
                                                                                                            -3.0706
                                                                                                                                              3.4642
                               -9
##
                                            0.2638
                                                                          0.8981
                                                                                                            -1.5338
                                                                                                                                              2.0613
                                -8 -1.3440
##
                                                                          1.2797
                                                                                                            -3.9054
                                                                                                                                              1.2174
                               -7
                                            0.9081
                                                                          2.4442
                                                                                                            -3.9842
##
                                                                                                                                              5.8005
                                            3.7719
##
                                -6
                                                                          2.6245
                                                                                                            -1.4814
                                                                                                                                              9.0253
##
                               -5
                                            0.4120
                                                                         1.6497
                                                                                                            -2.8900
                                                                                                                                              3.7139
                                                                                                            -6.2226
                               -4 -0.4363
##
                                                                          2.8908
                                                                                                                                              5.3500
##
                                -3 -0.2460
                                                                          1.3320
                                                                                                            -2.9122
                                                                                                                                              2.4201
##
                               -2 -0.3545
                                                                         1.1314
                                                                                                            -2.6191
                                                                                                                                              1.9101
##
                               -1 -1.6069
                                                                          0.9673
                                                                                                            -3.5431
                                                                                                                                              0.3293
##
                                  0 -0.5664
                                                                          1.4374
                                                                                                            -3.4435
                                                                                                                                              2.3108
                                                                          1.5443
##
                                  1 1.2170
                                                                                                            -1.8740
                                                                                                                                              4.3080
                                  2 2.6266
##
                                                                          1.3303
                                                                                                            -0.0361
                                                                                                                                              5.2893
##
                                  3 -0.3460
                                                                          1.1629
                                                                                                            -2.6737
                                                                                                                                              1.9818
                                                                          0.5068
##
                                  4 -2.4598
                                                                                                            -3.4742
                                                                                                                                            -1.4453 *
## ---
## Signif. codes: `*' confidence band does not cover 0
##
## Control Group: Never Treated, Anticipation Periods:
## Estimation Method: Doubly Robust
```

```
#gráficos
ggdid(aggte(cocaine, type = "dynamic"))
```

