THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Solutions to O-Notation, Induction and Recursion – Week 7 Tutorials

MATH1064: Discrete Mathematics for Computing

1. For each of the following functions $f : \mathbb{N} \to \mathbb{R}$ determine g(n) such that $f(n) \in O(g(n))$. Can you also determine g(n) such that $f(n) \in \Theta(g(n))$?

(a)
$$f(n) = 3n + 7$$

Solution: First note that f(n) > 0 and n > 0 for all $n \in \mathbb{N}$. We therefore don't need to take absolute values of the functions involved.

 $f(n) \in \Theta(n)$ follows from $n \le 3n + 7 \le 4 \cdot n$ for all n > 6.

(b)
$$f(n) = 3 + \sin(1/n)$$

Solution: First note that f(n) > 0 for all $n \in \mathbb{N}$. We therefore don't need to take absolute values of the functions involved.

 $f(n) \in \Theta(1)$ follows from $2 \cdot 1 = 2 \le 3 + \sin(1/n) \le 4 = 4 \cdot 1$ for all n > 0 since $-1 \le \sin(1/n) \le 1$ in this case.

(c)
$$f(n) = 5n^2 + 3n \log_2(n)$$

Solution: First note that f(n) > 0 and $n^2 > 0$ for all $n \in \mathbb{N}$. We therefore don't need to take absolute values of the functions involved.

$$f(n) \in \Theta(n^2)$$
 follows by using $1 \le \log_2(n) \le n$ for all $n \ge 2$, so

$$5 \cdot n^2 \le 5n^2 + 3n\log_2(n) \le 5n^2 + 3n^2 \le 8 \cdot n^2$$

for all n > 1.

(d)
$$f(n) = \sum_{k=1}^{n} 2k$$

Solution: First note that f(n) > 0 and $n^2 > 0$ for all $n \in \mathbb{N}$. We therefore don't need to take absolute values of the functions involved.

We have
$$f(n) = \sum_{k=1}^{n} 2k = 2 \cdot \sum_{k=1}^{n} k = n(n+1) = n^2 + n$$
, hence $n^2 \le n^2 + n \le n^2 + n^2 = 2 \cdot n^2$ for all $n > 0$. Hence $f(n) \in \Theta(n^2)$.

2. Can you find functions f and g such that $f(x) \notin O(g(x))$ and $g(x) \notin O(f(x))$?

Solution: Take your favourite function f. Choose a function g_1 that grows slower than f and a function g_2 that grows faster. Try to combine g_1 and g_2 .

Example:
$$f(n) = n$$
, define $g(2k) = 1$ and $g(2k+1) = (2k+1)^2$.

3. Prove that $1+3+5+\cdots+(2n-1)=n^2$, for all positive integers n.

Solution: P(1) is the proposition $1 = 1^2$, which is clearly true.

Suppose that P(n) is true for some $n \ge 1$, i.e. $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ for some

 $n \ge 1$. Then

$$1+3+5+\cdots+(2n-1)+(2(n+1)-1)$$
= 1+3+5+\cdots+(2n-1)+(2n+1)
= [1+3+5+\cdots+(2n-1)]+(2n+1)
= n^2+(2n+1) (induction hypothesis)
= n^2+2n+1
= (n+1)^2.

so that P(n+1) is true.

Hence P(n) is true for all positive integers n.

4. Prove that $2+5+8+\cdots+(3n-1)=\frac{n(3n+1)}{2}$, for all positive integers n.

Solution: P(1) is the proposition $2 = \frac{1(3 \cdot 1 + 1)}{2}$, which is clearly true.

Suppose that P(n) is true for some $n \ge 1$. That is, suppose that

$$2+5+8+\cdots+(3n-1)=\frac{n(3n+1)}{2}$$

for some $n \ge 1$. Then

$$2+5+8+\cdots+(3n-1)+(3(n+1)-1)$$
=\[[2+5+8+\cdots+(3n-1)]+(3n+2)\]
=\frac{n(3n+1)}{2}+(3n+2) \quad \text{(induction hypothesis)}
\]
=\frac{3n^2+7n+4}{2}
=\frac{(n+1)(3n+4)}{2}
=\frac{(n+1)\left(3(n+1)+1)}{2},

which shows that P(n+1) is true.

Hence P(n) is true for all positive integers n.

5. Prove that for any integer $n \ge 1$, $\frac{(2n)!}{2^n}$ is an integer.

Solution: For n = 1, we see that $\frac{2!}{2^1} = 1$ and so P(1) is true.

Suppose that P(n) is true for some $n \ge 1$; that is, suppose that for some $n \ge 1$:

$$\frac{(2n)!}{2^n} = \ell$$

for some integer $\ell > 0$. Then

$$\frac{[2(n+1)]!}{2^{n+1}} = \frac{2(n+1)(2n+1)(2n)!}{2^{n+1}}$$

$$= (n+1)(2n+1) \cdot \frac{(2n)!}{2^n}$$

$$= (n+1)(2n+1)\ell \qquad \text{(induction hypothesis)},$$

and so P(n+1) is true.

Hence P(n) is true for all positive integers n.

6. Prove that 6 divides $n(n^2 + 5)$ for all positive integers n.

Solution: When n = 1, $n(n^2 + 5) = 1(1 + 5) = 6$, which is divisible by 6. Hence P(1) is true.

Suppose that P(n) is true. That is suppose that $n(n^2+5)=6\ell$, for some integer ℓ . Then

$$(n+1)((n+1)^2+5) = (n+1)(n^2+5+2n+1)$$

$$= n(n^2+5)+3n^2+3n+6$$

$$= 6\ell+3n^2+3n+6 \quad \text{(induction hypothesis)}$$

$$= 6\ell+3n(n+1)+6.$$

For each positive integer n, either n or n+1 is even so that each term on the right-hand side (of the last equality) is divisible by 6. Thus $(n+1)((n+1)^2+5)$ is divisible by 6 and so P(n+1) is true. Hence P(n) is true for all positive integers n.

7. Prove that $5^n - 4n - 1$ is divisible by 16 for all positive integers n.

Solution: When n = 1, $5^n - 4n - 1 = 0$, which is clearly divisible by 16. Hence P(1) is true.

Suppose that P(n) is true. That is, suppose that $5^n - 4 - 1 = 16\ell$, for some integer ℓ . Then

$$5^{(n+1)} - 4(n+1) - 1 = 5(5^n - 4n - 1) + 5(4n) + 5 - 4n - 4 - 1$$

= $5(16\ell) + 4(4n)$ (induction hypothesis)
= $16(5\ell + n)$,

which shows that $5^{(n+1)} - 4(n+1) - 1$ is divisible by 16, and so P(n+1) is true.

Hence P(n) is true for all positive integers n.

- **8.** Describe each of the following sets as a recursively defined sequence.
 - (a) The set of all positive even integers, and

Solution:
$$a_0 = 2$$
, $a_n = a_{n-1} + 2$ for all $n \ge 1$

(b) The set of all positive odd integers

Solution:
$$a_0 = 1$$
, $a_n = a_{n-1} + 2$ for all $n \ge 1$

- **9.** Recall the Fibonacci sequence defined by $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Let $\phi = (1 + \sqrt{5})/2$.
 - (a) Prove that $\phi^2 = \phi + 1$.

Solution:
$$\phi^2 = (1 + \sqrt{5})^2/2^2 = (1 + 2\sqrt{5} + \sqrt{5}^2)/4 = (6 + 2\sqrt{5})/4 = (3 + \sqrt{5})/2 = (1 + \sqrt{5})/2 + 1 = \phi + 1.$$

(b) Prove that $F_n \ge \phi^{n-2}$ for all $n \ge 2$.

Solution: We use strong induction, with base cases n = 2 and n = 3:

- $F_2 = 1$ and $\phi^{2-2} = \phi^0 = 1$. Therefore $F_2 > \phi^{2-2}$.
- $F_3 = 2$ and $\phi^{3-2} = \phi^1 = (1 + \sqrt{5})/2$. We now observe:

$$F_3 \ge \phi^{3-3} \longleftrightarrow 2 \ge (1+\sqrt{5})/2 \longleftrightarrow 4 \ge (1+\sqrt{5}) \longleftrightarrow 3 \ge \sqrt{5} \longleftrightarrow 9 \ge 5$$

which is clearly true.

• Now let $n \ge 4$, and suppose that $F_i \ge \phi^{i-2}$ for all i = 2, ..., n-1. Then

$$F_n = F_{n-1} + F_{n-2} \ge \phi^{n-3} + \phi^{n-4},$$

using the inductive hypothesis and the fact that $n-2 \ge 2$. Therefore:

$$F_n \ge \phi^{n-3} + \phi^{n-4} = \phi^{n-4} \cdot (\phi + 1) = \phi^{n-4} \cdot \phi^2 = \phi^{n-2},$$

using the result from part (a).

By mathematical induction, it follows that $F_n \ge \phi^{n-2}$ for all $n \ge 2$.

(c) Show that the Fibonacci series has an exponentially fast growth rate.

Solution: This follows from Part (b) since $\phi > 1$. Specifically, $f(n) = F_n$ and $g(n) = \phi^{n-2}$ satisfy $f(n) \ge g(n)$ for all $n \ge 3$, and so $f(n) \in \Omega(g(n))$.

10. Consider the sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_1=1, a_2=2, a_3=3$ and

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$

for all $n \in \mathbb{N}$ satisfying $n \ge 3$. Use induction on n to show that $a_n \le 3^n$ for all $n \in \mathbb{N}$.

Solution: Let P(n) be the predicate " $a_n \leq 3^n$ ". This is defined for all $n \in \mathbb{N}$.

Base cases

- P(1): $a_1 = 1 < 3^1 = 3$ is true.
- P(2): $a_2 = 2 \le 3^2 = 9$ is true.
- P(3): $a_3 = 3 < 3^3 = 27$ is true.

Inductive Hypothesis Assume P(i) is true for every integer i such that, $1 \le i \le k$, where $k \ge 3$ is some integer. We want to prove that this implies P(k+1) is true.

Inductive Step Now

$$a_{k+1} = a_k + a_{k-1} + a_{k-2}$$
 (by definition)
 $\leq 3^k + 3^{k-1} + 3^{k-2}$ (by I.H.)
 $\leq 3^k + 3^k + 3^k$
 $= 3 \cdot 3^k$
 $= 3^{k+1}$

Hence, by (strong) mathematical induction P(n) is true for all $n \in \mathbb{N}$.