

Introduction to Neural Networks

- History
- Tensorflow and Keras workflow
- Building Blocks of NN/Deep Learning
 - Feed forward
 - Back propagation
 - Fully connected layer
 - Activation functions
 - Softmax function
 - Cross-entropy loss
 - Optimization functions
 - Learning Rate
 - Batch normalization
- Hyper-parameters in deep learning
- Case Study

Sources

A lot of the material has been gratefully collected from:

- http://cs231n.stanford.edu/
- https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/
- https://adeshpande3.github.io/adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
- https://research.fb.com/learning-to-segment/
- https://research.fb.com/deep-learning-tutorial-at-cvpr-2014/
- https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical4.pdf
- http://torch.ch/docs/developer-docs.html
- https://github.com/torch/nn/blob/31d7d2bc86a914e2a9e6b3874c497c60517dc853/doc/module.md
- https://web.stanford.edu/group/pdplab/pdphandbook/handbookch6.html
- http://neuralnetworksanddeeplearning.com/chap2.html

Brief History

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

Brief History

greatlearning Learning for Life

A bit of history

Topographical mapping in the cortex: nearby cells in cortex represented nearby regions in the visual field

Hierarchical organization

Brief History – Mark I Perceptron – 1958

https://en.wikipedia.org/wiki/Perceptron

Perceptrons by M. L Minsky and S. Papert, 1969

Brief History – The First Deep Networks

- Perceptron: single layer 1960s
- Multiple layers of non-linear features Ivakhnenko and Lapa in 1965
- Thin but deep models with polynomial activation functions
- They did not use backpropagation

Brief History – The First ConvNet - 1980

- Neocognitron: multiple convolutional and pooling layers similar to modern networks, but the network was trained by using a reinforcement scheme
- Did not still use backpropagation
- Translational invariant

Kunihiko Fukushima

Brief History

A bit of history:
Gradient-based learning
applied to document
recognition
[LeCun, Bottou, Bengio, Haffner
1998]

LeNet-5

Brief History – LeNet-5 In Action

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Brief History – Al Winter

- Rapid advances led to a hype of artificial intelligence (similar to the buzz around deep learning today)
- Researchers made promises to solve AI and received lots of funding
- In the 1970s it became clear that those promises could not be kept, funding was cut dramatically
- The field of artificial intelligence dropped to near pseudo-science status
- Research became very difficult (little funding; publications almost never made it through peer review)
- Further advances such as SVMs with nice properties in terms of training, provable error bounds were preferred and took the front seat
- However, a handful of researchers continued further down this path

Brief History – Al Winter

Brief History – The Tipping Point

- 2012 ILSVRC: ImageNet Large-Scale Visual Recognition Challenge Annual World Cup of Computer Vision
- More than a million training images and 1000 categories

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

Brief History – The Tipping Point

- Reported 15.4% Top 5 error rate. The next best entry achieved an error of 26.2%
- > 8000 citations (last year), by today >19000!
- The coming out party for CNNs in the computer vision community
- Shocked the computer vision community. Trained end-to-end on raw pixels, without using any feature engineering methods
- From here it was apparent that deep learning would take over computer vision and that other methods would not be able to catch up

Deep Learning – Today – One Net To Rule Them All

- Deep Learning == Al
- Solves problems previously unsolvable

Thank you!