

Missing indicator: definition

 A Missing Indicator is an additional binary variable, which indicates whether the data was missing for an observation (1) or not (0).

Suitable for numerical and categorical variables

Missing indicator: example

Price
100
90
50
40
20
100
60
120
200

Missing Indicator

Price	MI
100	0
90	0
50	0
40	0
20	0
100	0
	1
60	0
120	0
	1
200	0

Missing indicator + Mean Imputation

Price
100
90
50
40
20
100
60
120
200

Mean = 86.66

Price	MI
100	0
90	0
50	0
40	0
20	0
100	0
86.66	1
60	0
120	0
86.66	1
200	0

Missing indicator: example

Make

Ford

Ford

Fiat

BMW

Ford

Kia

Ford

BMW

Kia

Missing Indicator

Make	MI
Ford	0
Ford	0
Fiat	0
BMW	0
Ford	0
	1
Kia	0
Ford	0
BMW	0
	1
Kia	0

Missing indicator + Frequent Category

Make

Ford

Ford

Fiat

BMW

Ford

Kia

Ford

BMW

Kia

Frequent category = Ford

MI
0
0
0
0
0
1
0
0
0
1
0

Missing indicator: use

- The Missing Indicator is used together with methods that assume data is missing at random:
 - Mean, median, mode imputation
 - Random sample imputation

Missing indicator: Assumptions

- Data is NOT missing at random
- Missing data are predictive

Missing indicator: Advantages

- Easy to implement
- Captures importance of missing data
- Can be integrated in production (during model deployment)

Missing indicator: Limitations

- Expands the feature space
- Original variable still needs to be imputed
- Many missing indicators may end up being identical or very highly correlated

When to use a missing indicator

Typically, mean, median and mode imputation are done together with adding a binary "missing indicator" variable to capture those observations where the data was missing (see lecture "Missing Indicator"), thus covering 2 angles:

if the data was missing completely at random, this would be captured by the mean, median or mode imputation, and if it wasn't this would be captured by the additional "missing indicator" variable.

Both methods are extremely straight forward to implement, and therefore are a top choice in data science competitions.

Accompanying Jupyter Notebook

Read the accompanying Jupyter
 Notebook

 Missing indicator with pandas and NumPy

Followed by median imputation

Missing indicator with NumPy

Out[6]:

		age	fare	Age_NA
	501	13.0	19.5000	0
	588	4.0	23.0000	0
	402	30.0	13.8583	0
	1193	NaN	7.7250	1
	686	22.0	7.7250	0

Missing indicator + Median imputation

```
# for example median imputation
median = X_train['age'].median()

X_train['age'] = X_train['age'].fillna(median)
X_test['age'] = X_test['age'].fillna(median)

# check that there are no more missing values
X_train.isnull().mean()
```

```
t[9]: age 0.0
fare 0.0
Age_NA 0.0
dtype: float64
```


THANK YOU

www.trainindata.com