Chamblandes 2005 — Exercice 2

On cherche à maximiser le volume du cône $V = \frac{1}{3} \pi r^2 x$.

Vu le théorème de Pythagore, $(\sqrt{3})^2 = x^2 + r^2$ d'où l'on tire $r^2 = 3 - x^2$.

En remplaçant $r^2 = 3 - x^2$ dans $V = \frac{1}{3} \pi r^2 x$, on obtient : $V = \frac{1}{3} \pi (3 - x^2) x = \frac{\pi}{3} (3 x - x^3)$.

Chercher à maximiser le volume du cône revient donc à chercher un maximum de la fonction $f(x) = \frac{\pi}{3} (3x - x^3)$ définie sur $]0; \infty[$

$$f'(x) = \frac{\pi}{3} (3x - x^3)' = \frac{\pi}{3} (3 - 3x^2) = \frac{\pi}{3} \cdot 3(1 - x^2) = \pi (1 + x) (1 - x)$$

On a le tableau de croissance suivant :

-1 1					
π	+	+	+		
1+x	l	+	+		
1-x	+	+	-		
f'	_	+	_		
f	\	/	\		

En conclusion, le volume du cône est maximal si x=1. Dans ce cas, l'égalité $r^2=3-x^2$ donne $r^2=3-1^2=2$ d'où l'on déduit que $r=\sqrt{2}$.

Autre méthode de résolution

De la condition $(\sqrt{3})^2 = x^2 + r^2$ on peut déduire $x = \sqrt{3 - r^2}$.

On obtient alors l'expression du volume en fonction de $r: V = \frac{1}{3} \pi r^2 \sqrt{3 - r^2}$.

Comme cette expression du volume présente l'inconvénient d'une racine carrée, on ne va pas chercher à maximiser directement cette expression, mais, ce qui revient au même, à maximiser son carré.

Le problème revient donc à déterminer le maximum de la fonction

$$f(r) = \left(\frac{1}{3}\pi r^2 \sqrt{3 - r^2}\right)^2 = \frac{1}{9}\pi^2 r^4 (3 - r^2) = \frac{\pi^2}{9} (3r^4 - r^6).$$

On calcule la dérivée de cette fonction :

$$f'(r) = \frac{\pi^2}{9} (3 r^4 - r^6)' = \frac{\pi^2}{9} (12 r^3 - 6 r^5) = \frac{\pi^2}{9} \cdot 6 r^3 (2 - r^2) = \frac{2 \pi^2}{3} r^3 (\sqrt{2} + r) (\sqrt{2} - r)$$
ce qui donne lieu à ce tableau de croissance :

	-1	$\sqrt{2}$) _v	$\sqrt{2}$
$\frac{2\pi^2}{3}$	+	+	+	+
r	1	_	+	+
r			+	+
r			+	+
$\sqrt{2} + r$	-	+	+	+
$\sqrt{2}-r$	+	+	+	_
f'	+	_	+	_
f	7	\searrow	7	\

Puisqu'une longueur doit être positive, on doit avoir r>0, si bien que le maximum recherché est $r=\sqrt{2}$.

En définitive, le volume du cône est maximal si $r=\sqrt{2}$; dans ce cas, sa hauteur vaut $x=\sqrt{3-r^2}=\sqrt{3-(\sqrt{2})^2}=\sqrt{3-2}=\sqrt{1}=1$.

1