# ELEKTROCHÉMIA



- Homogénne procesy prebiehajúce v roztoku (bez elektród a bez prúdu)
- a) rovnovážne rozpúšťanie a solvatácia, elektrolytická disociácia a asociácia iónov, aktivitný koeficient, slabé a silné elektrolyty
- b) nerovnovážne chemické reakcie a transport látky, elektrického náboja a tepelnej energie, vodivosť



Heterogénne procesy – interakcie medzi elektródou a roztokom

- a) rovnovážne na fázovom rozhraní sa ustáli rovnováha potenciál elektródy, dvojvrstva, galvanický článok
- b) nerovnovážne na elektródy vložíme prúd, elektrolýza, elektródová kinetika

# HOMOGÉNNE ROVNOVÁŽNE PROCESY



Roztok - homogénna sústava, skladajúca sa najmenej z dvoch zložiek, ktorých pomer sa môže plynulo meniť v určitom rozsahu

**Zložky roztoku - rozpúšťadlo a rozpustené látky** 

Elektrolyt - látka, ktorá je v roztoku alebo v tavenine aspoň čiastočne prítomná vo forme nabitých častíc – iónov

# Elektrolytická disociácia

- rozpad elektroneutrálnych molekúl na elektricky nabité ióny



Silné elektrolyty - elektrolyty, ktoré sú v roztoku prítomné výhradne vo forme svojich iónov, t.j. sú úplne disociované

Slabé elektrolyty - elektrolyty, ktoré sú prítomné vo forme iónov aj vo forme molekúl

## Rozpúšťanie tuhých látok:

- deštrukcia mriežky rozpúšťanej látky
- solvatácia/hydratácia iónov – obal'ovanie vzniknutých častíc molekulami rozpúšťadla/vody



Zmena Gibbsovej voľnej energie spojená s rozpúšťaním:

$$\Delta G_{rozp} = \Delta G_{deštr} + \Delta G_{solv}$$

- ak je  $\Delta G < 0$ , látka sa rozpúšťa samovoľne

# Veličiny ovplyvňujúce rozpúšťanie:

## V tuhej látke

- povaha väzby iónová
  - kovalentná polárna
    - nepolárna
  - koordinačná
- pevnosť väzby
- pevnosť kryštálovej mriežky

## V rozpúšť adle

- dipólový moment,  $\mu$  vyjadruje polaritu molekúl
- relatívna permitivita,  $\varepsilon_r (\varepsilon_r = \varepsilon/\varepsilon_0$ , kde  $\varepsilon$  je permitivita prostredia a  $\varepsilon_0$  je permitivita vákua)
  - charakterizuje elektrické vlastnosti rozpúšťadla
  - predstavuje priepustnosť rozpúšťadla pre prechod elektrickej sily vzhľadom na priechodnosť vo vákuu
- donorné číslo, DN schopnosť dávať elektrónový pár
  - charakterizuje nukleofilné vlastnosti rozpúšťadiel
- akceptorné číslo, A<sub>C</sub>N schopnosť prijímať elektrónový pár
  - charakterizuje elektrofilné vlastnosti rozpúšťadla

<u>Stérické faktory</u> - vzájomná veľkosť molekúl rozpúšťadla a iónov rozpúšťanej látky, štruktúra

# Typy interakcií v roztokoch elektrolytov

# I. ROZPÚŠŤADLO – ROZPÚŠŤADLO

- vzájomné interakcie molekúl rozpúšťadla
- interakcia je tým väčšia, čím je rozpúšťadlo polárnejšie

Molekuly polárnych látok sa v roztoku organizujú, štrukturalizujú

vodíkové mostíky



V kvapalnej vode existujú zhluky molekúl so štruktúrou ľadu, ktoré sa neustále rozpadávajú a znova vytvárajú

### II. ROZPÚŠŤADLO – LÁTKA

- interakcie medzi rozpustenou látkou a rozpúšť adlom

#### a) bornovská elektrostatická interakcia

 pri rozpúšťaní sa ióny od seba odďaľujú a prechádzajú z kryštálovej mriežky do roztoku, pričom prekonávajú príťažlivé Coulombove sily

#### b) chemické interakcie

- vodíkové väzby
- donorno-akceptorné väzby (tvorba π komplexov)

Solvatačné/hydratačné číslo, h - počet molekúl rozpúšť adla/vody, permanentne spojených s príslušným iónom (t.j. počet molekúl rozpúšť adla v primárnej a sekundárnej vrstve spolu)

- charakterizuje celkovú interakciu iónu s rozpúšťadlom

Oblasť bezprostredného okolia iónu charakterizuje primárne solvatačné číslo - počet molekúl rozpúšť adla v primárnej solvatačnej vrstve

## Schematické znázornenie čiastočne porušenej štruktúry vody:

- $1 i\acute{o}n$
- 2 primárna hydratačná vrstva
- 3 sekundárna hydratačná vrstva
- 4 dezorganizovaná voda
- 5 voda s pôvodnou štruktúrou
- 2, 3 a 4 tvoria solvátový obal



- porušenie štruktúry rozpúšťadla má za následok nárast hodnoty  $\Delta S$  sústavy a teda pokles  $\Delta G$ 

# III. IÓN – IÓN

- v málo polárnom rozpúšťadle je uprednostnená interakcia iónov navzájom pred solvatáciou – asociácia iónov
- vznikajú iónové páry (Na+Cl<sup>-</sup>) alebo triplety (Na+ClNa+)
- tvorba iónových párov spôsobuje zníženie vodivosti roztoku a nižšiu "aktivitu" než odpovedá počtu iónov

# Aktivita a aktivitný koeficient

Roztoky elektrolytov, v ktorých sa uplatňujú coulombovské interakcie sa nesprávajú ideálne

koncentrácia c<sub>i</sub> je korigovaná aktivitným koeficientom γ<sub>i</sub>

Aktivita

$$a_i = c_i . \gamma_i$$

- pri nekonečnom zriedení  $\gamma_i \rightarrow 1$ 

## V roztokoch slabých elektrolytov - elektrolytická disociácia

$$A_{\nu_{+}}B_{\nu_{-}} \Longleftrightarrow \nu_{+}A^{z_{+}} + \nu_{-}B^{z_{-}}$$

napr.

$$Fe_2(SO_4)_3 \Leftrightarrow 2Fe^{3+} + 3SO_4^{2-}$$

#### Stredná aktivita

$$a_{\pm} = \left(a_{z_{+}}^{\nu_{+}} \cdot a_{z_{-}}^{\nu_{-}}\right)^{\frac{1}{\nu}}$$

#### Stredná molarita

$$c_{\pm} = \left(c_{z_{+}}^{\nu_{+}} \cdot c_{z_{-}}^{\nu_{-}}\right)^{\frac{1}{\nu}}$$

# Stredný aktivitný koeficient

$$\gamma_{\pm} = \left(\gamma_{z_{+}}^{\nu_{+}} \cdot \gamma_{z_{-}}^{\nu_{-}}\right)^{\underline{1}}$$

pre Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> 
$$\gamma_{\pm} (Fe_2(SO_4)_3) = (\gamma_{Fe^{3+}}^2 \cdot \gamma_{SO_4^{2-}}^3)^{\frac{1}{5}}$$

pre NaCl 
$$\gamma_{\pm} (NaCl) = \left( \gamma_{Na^{1+}}^1 \cdot \gamma_{Cl^{1-}}^1 \right)^{\frac{1}{2}}$$

# Debyeova-Hückelova teória silných elektrolytov

Pri nízkych koncentráciách roztokov elektrolytov platí Debyeova-Hückelova teória – zanedbáva všetky typy interakcií okrem elektrostatickej

V nekonečne zriedenom roztoku sa ióny navzájom neovplyvňujú, ich elektrické pole je pole veľmi vzdialených bodových nábojov, roztok sa správa ideálne

Debye a Hückel - okolo každého iónu sa vytvorí guľovitá atmosféra iónov, v ktorej prevládajú ióny s nábojom opačného znamienka, než má centrálny ión



Iónovú atmosféru je možné nahradiť nábojom vo vzdialenosti  $oldsymbol{\mathcal{K}}^{-1}$ od centrálneho iónu – efektívny polomer iónovej atmosféry

Platí

$$\kappa = \sqrt{\frac{2N_A e^2 I}{\varepsilon_0 \varepsilon_r kT}}$$

$$N_A \text{ je Avogadr. konšt.}$$

$$k \text{ ie Boltzmann. konšt.}$$

k je Boltzmann, konšt.

I je iónová sila roztoku

$$I = \frac{1}{2} \sum_{i} c_i z_i^2$$

- kde  $c_i$  je molárna koncentrácia iónu druhu i,  $z_i$  je nábojové číslo tohto iónu

Pre veľmi zriedené roztoky,  $\underline{I} < 0.01 \text{ mol.dm}^{-3}$  je stredný aktivitný koeficient daný Debyeovým – Hückelovým limitným vzťahom

$$\left|\log \gamma_{\pm} = -A z_{+} z_{-} \sqrt{I}\right| \quad \bullet$$

- konštanta A má pre vodu pri teplote 25°C po vyčíslení ostatných konštánt hodnotu

$$A = \frac{e^{3} (N_{A})^{\frac{1}{2}}}{\ln 10.4\pi \sqrt{2}.(\varepsilon kT)^{\frac{3}{2}}} = 0,509 \quad \text{dm}^{\frac{3}{2}}.\text{mol}^{-\frac{1}{2}}$$

Pri zvýšení koncentrácie je nutné uvažovať rozmer iónu Efektívny priemer iónu, a - stredná vzdialenosť na ktorú sa k centrálnemu iónu môžu priblížiť stredy iných iónov

- a súčet polomerovkatiónu a aniónu
  - jeho individuálne meranie nie je možné



Vo veľmi zriedených roztokoch  $\kappa^{-1}>>a$ , v koncentrovanejších je  $\kappa^{-1}$  porovnateľné alebo aj menšie ako a

Pre roztoky s  $0.01 \text{ mol.dm}^{-3} < I < 0.03 \text{ mol.dm}^{-3}$  je stredný aktivitný koeficient daný McInnesovým vzťahom

$$\log \gamma_{\pm} = \frac{-A z_{+} z_{-} \sqrt{I}}{1 + Ba \sqrt{I}}$$

- konštanta B má pre vodu pri teplote 25°C po vyčíslení ostatných konštánt hodnotu

$$B = \left(\frac{2e^2 N_A}{\varepsilon kT}\right)^{\frac{1}{2}} = 3,286 \quad \text{dm}^{\frac{3}{2}}.\text{mol}^{-\frac{1}{2}}.\text{nm}^{-1}$$

<u>Pri d'alšom zvýšení koncentrácie, I > 0,03 mol.dm<sup>-3</sup></u> je nutné uvažovať aj interakcie medzi iónom a rozpúšťadlom ⇒ *vysoľovací efekt* 

- ióny navzájom tiež interagujú - iónové páry

Tieto vplyvy koriguje *Robinsonov-Stokesov vzťah* pre stredný aktivitný koeficient

$$\log \gamma_{\pm} = \frac{-A z_{+} z_{-} \sqrt{I}}{1 + Ba \sqrt{I}} + CI$$

- kde C je empirická konštanta závislá na charaktere iónov a rozpúšťadla

# Robinson a Stokes vyjadrili vzťah pre stredný aktivitný koeficient pre solvatované ióny

$$\log \gamma_{\pm} = \frac{-A z_{+} z_{-} \sqrt{I}}{1 + Ba \sqrt{I}} - \frac{h}{n_{el}} \log a_{v} + \log \frac{n_{v} + n_{el}}{(n_{v} - h) + n_{el}}$$

interakcie ión-ión

interakcie ión-rozpúšťadlo



Závislosť aktivitného koeficientu γ<sub>±,c</sub> NaCl vo vodnom roztoku na molárnej koncentrácii c pri 25°C podľa:

- 1 Debye-Hückelovho limitného vzťahu
- 2 McInnesovho vzťahu
- 3 –Robinsonovho-Stokesovho vzťahu
- o experimentálne body

# ROVNOVÁHY V ROZTOKOCH ELEKTROLYTOV

Teória kyselín a zásad

# Arrhéniova teória

Kyseliny - látky obsahujúce atóm H, pri disociácii vo vodnom roztoku sú schopné uvoľňovať H<sup>+</sup>

$$HCl \stackrel{H_2O}{\longleftrightarrow} H^+ + Cl^-$$

**Zásady -** látky obsahujúce OH skupinu, pri disociácii vo vodnom roztoku sú schopné uvoľňovať OH<sup>-</sup>

NaOH 
$$\leftarrow$$
  $\stackrel{\text{H}_2\text{O}}{\longleftrightarrow}$  Na<sup>+</sup> + OH<sup>-</sup>

Neutralizácia - 
$$H^+ + OH^- \Leftrightarrow H_2O$$

# Brönstedova a Lowryho teória

**Kyseliny -** látky schopné odovzdať iným molekulám alebo iónom protón  $H^+$  (protóndonory)

**Zásady -** molekuly alebo ióny schopné prijímať protón H<sup>+</sup> (protónakceptory)

Pri acidobázických dejoch nastáva výmena protónov medzi reagujúcimi látkami ⇒ *protolytické* reakcie

- kyseliny a zásady sú *protolyty* 

## konjugované páry



### Amfolyty:

- môžu sa chovať ako kyseliny aj ako zásady (H<sub>2</sub>O, H<sub>2</sub>PO<sub>4</sub>-)
- ich charakteristickou vlastnosťou je *autoprotolýza* výmena protónu medzi molekulami látky

$$2H_2O \Leftrightarrow H_3O^+ + OH^-$$
  
 $2HS \Leftrightarrow H_2S^+ + S^-$ 

# Lewisova teória

Kyseliny - látky s neúplne obsadeným vonkajším orbitálom, schopné prijímať elektrónové páry od iných látok (elektrónakceptory)

**Zásady -** látky s voľným elektrónovým párom, schopné odovzdávať elektrónové páry iným látkam (elektróndonory)



Na základe afinity k protónom rozoznávame rozpúšť adlá:

<u>Aprotné</u> - nie sú schopné ani prijať, ani uvoľniť protón - nepolárne rozpúšť adlá, napr. benzén, CCl<sub>4</sub>, chloroform, chlórbenzén

<u>Amfiprotné</u> - môžu byť aj donormi aj akceptormi protónov, podliehajú autoprotolýze

<u>Protofilné</u> - dobré akceptory protónu, ale nie sú schopné uvoľňovať protón, majú výrazne zásadité vlastnosti, napr. pyridín, éter, acetone, dietyléter, tetrahydrofurán, dioxin, dimetylsulfoxid a pod.

<u>Protogénne</u> - veľmi ľahko uvoľňujú protón, ale nie sú schopné ho prijať (napr. bezvodá  $H_2SO_4$ )

# Iónový súčin vody

Vo vode dochádza k slabej disociácii jej molekúl na ióny:



$$H_2O \Leftrightarrow H^+ + OH^-$$

Disociačná konštanta vody 
$$K_a = \frac{a_{H^+} \, a_{OH^-}}{a_{H_2O}}$$

<u>Iónový súčin vody:</u>

$$K_a.a_{H_2O} = K_V \Rightarrow K_V = a_{H^+} a_{OH^-}$$

Iónový súčin vody  $(I \rightarrow 0 \Rightarrow \gamma_{\pm} = 1)$ :

$$K_V = c_{H^+} c_{OH^-}$$

Vo vode vzniká disociáciou molekúl vody rovnaký počet vodíkových a hydroxidových iónov, takže platí:

$$c_{H^{+}} = c_{OH^{-}} = \sqrt{K_{V}}$$

Pri 25 °C: 
$$K_V = 10^{-14} \text{ mol}^2 1^{-2}$$

$$\Rightarrow$$
 vo vode  $c_{H^+} = 10^{-7} \text{ mol/dm}^3$ 

 $\Rightarrow$  disociačný stupeň  $\alpha = 1.8.10^{-9}$ 

Vo vode je 
$$C_{H^+} = C_{OH^-} \Rightarrow$$
 roztok považujeme za

- neutrálny, keď 
$$a_{H^+} = a_{OH^-}$$

- kyslý, keď 
$$a_{H^+} \rangle a_{OH^-}$$

- zásaditý, keď 
$$a_{H^+} \langle a_{OH^-} \rangle$$

$$pH = -\log a_{H^+}$$

$$pOH = -\log a_{OH^-}$$

$$pK_V = -\log K_V = -\log 10^{-14} = 14$$
  $pH + pOH = 14$ 

- v neutrálnych roztokoch je pH = 7
- v kyslých roztokoch je pH < 7</li>
- v zásaditých roztokoch je pH > 7



# Disociačné konštanty kyselín a zásad

Elektrolytická disociácia kyselín vo vode je vratný proces ⇒ ustálenie disociačnej rovnováhy

$$HA + H_2O \Leftrightarrow H_3O^+ + A^-$$

Rovnovážna konštanta tejto reakcie - disociačná konštanta elektrolytu

$$K_{a} = \frac{a_{H_{3}O^{+}} a_{A^{-}}}{a_{HA} a_{H_{2}O}}$$

Konštanta acidity (termodynamická kyslá disociačná konštanta) kyseliny HA

$$K_A(HA) = K_a a_{H_2O} \Rightarrow K_A(HA) = \frac{a_{H_3O^+} a_{A^-}}{a_{HA}}$$

Elektrolytická disociácia zásady B vo vode

$$B + H_2O \Leftrightarrow BH^+ + OH^-$$

Konštanta bázicity (termodynamická bázická disociačná konštanta)

zásady B

$$K_B(\mathbf{B}) = \frac{a_{BH^+} a_{OH^-}}{a_B}$$

- hodnoty disociačných konštánt sú mierou sily daného elektrolytu

Silné kyseliny a zásady -  $K_A(HA)$  resp.  $K_B(B) > 10^{-3}$  (napr.  $H_2SO_4$ , HCl, NaOH)

Slabé kyseliny a zásady -  $K_A(HA)$ ,  $K_B(B) = 10^{-3}$  až  $10^{-9}$  (napr. kyslina benzoová, NH<sub>3</sub>, CH<sub>3</sub>COOH, H<sub>2</sub>CO<sub>3</sub>)

Veľmi slabé kyseliny a zásady -  $K_A(HA)$ , resp.  $K_B(B) < 10^{-9}$  (napr. voda, HClO,  $H_3BO_3$ )

Na porovnanie sily kyselín a zásad sa používajú - záporné dekadické logaritmy disociačných konštánt

$$pK_a = -\log K_a$$
  $pK_b = -\log K_b$ 

Pre konjugovaný pár, napr. NH<sub>3</sub> a NH<sub>4</sub>+ platí:

$$K_b K_a = \frac{a_{NH_4^+} a_{OH^-}}{a_{NH_3}} \cdot \frac{a_{NH_3} a_{H_3O^+}}{a_{NH_4^+}} = a_{OH^-} a_{H_3O^+} = K_V$$

$$\left| pK_b + pK_a = pK_V = 14 \right|$$

# Výpočet pH kyselín a zásad

Silná kyselina - úplná disociácia ⇒ koncentrácia H+ iónov = celková koncentrácia kyseliny

$$pH = -\log a_{r,H^+} = -\log c_{r,H^+}$$

Napr. pre HCl, ktorej koncentrácia je  $[H_3O^+] = 10^{-4}$  mol.dm<sup>-3</sup>

$$pH = -log[H_3O^+] = -log10^{-4} = -(-4) = 4$$

Silná zásada - 
$$pOH = -\log a_{r,OH^-} = -\log c_{r,OH^-}$$

Napr. pre [NaOH] =  $10^{-4}$  mol.dm<sup>-3</sup> môžeme písať:

$$pOH = -log[OH^{-}] = -log10^{-4} = -(-4) = 4$$

$$pK_V = 14 = pH + pOH$$
  $pH = 14 - pOH = 14 - 4 = 10$ 

# Disociácia slabej kyseliny

$$HA \Leftrightarrow H^+ + A^-$$

- disociačný stupeň α - vyjadruje podiel disociovaných častíc k celkovému množstvu rozpustených molekúl elektrolytu

$$\alpha = \frac{c'}{c}$$

Koncentráciu jednotlivých zložiek môžeme vyjadriť:

$$c_{H+} = \alpha . c$$
  $c_{A-} = \alpha . c$   $c_{HA} = c . (1-\alpha)$ 

K<sub>c</sub> – disociačná konštanta slabého elektrolytu

$$K_{c} = \frac{c_{H^{+}} c_{A^{-}}}{c_{HA}} = \frac{\alpha c \alpha c}{c (1-\alpha)} = \frac{\alpha^{2} c}{1-\alpha}$$

- čiastočná disociácia  $HA + H_2O \Leftrightarrow H_3O^+ + A^-$
- ak  $c_{0,HA}$  je počiatočná koncentrácia slabej kyseliny HA a jej disociačný stupeň je  $\alpha \Rightarrow$  v rovnováhe je koncentrácia

nedisociovanej kyseliny a koncentrácie iónov sú

$$c_{r,HA} = c_{0,HA} (1 - \alpha)$$
 $c_{r,H_3O^+} = c_{r,A^-} = c_{0,HA} \alpha$ 

Keďže platí

$$K_{a} = \frac{a_{A^{-}} a_{H_{3}O^{+}}}{a_{HA}} = \frac{c_{0,HA} \alpha c_{0,HA} \alpha}{c_{0,HA} (1-\alpha)} = \frac{c_{0,HA} \alpha^{2}}{1-\alpha}$$

- v zriedených roztokoch je  $\alpha << 1$ , teda platí

$$K_a = c_{0,HA} \alpha^2 \qquad \alpha = \sqrt{\frac{K_a}{c_{0,HA}}}$$

Zároveň pre disociačný stupeň platí

$$\alpha = \frac{c_{r,H_3O^+}}{c_{0,HA}}$$

takže 
$$\alpha = \sqrt{\frac{K_a}{c_{0,HA}}} = \frac{c_{r,H_3O^+}}{c_{0,HA}}$$

teda 
$$c_{r,H_3O^+} = c_{0,HA} \sqrt{\frac{K_a}{c_{0,HA}}} = \sqrt{\frac{K_a c_{0,HA}^2}{c_{0,HA}}} = \sqrt{K_a c_{0,HA}^2}$$

Po zlogaritmovaní 
$$pH = \frac{1}{2}(pK_a - \log c_{0,HA})$$

Pre výpočet pH slabej zásady postupujeme analogicky cez výpočet pOH

$$pH = 14 - pOH = 14 - \frac{1}{2} (pK_b - \log c_{0,B})$$

## Hydrolýza solí

Všetky soli sú silnými elektrolytmi ⇒ v roztoku sú úplne disociované na ióny

- roztoky solí silných kyselín a silných zásad majú neutrálnu reakciu (pH = 7)
- soli slabých kyselín a silných zásad reagujú vo vodnom roztoku zásadito (pH > 7)
- soli slabých zásad a silných kyselín reagujú vo vodnom roztoku kyslo (pH < 7)</li>

<u>Hydrolýza soli</u> - zlučovanie aniónov slabej kyseliny s iónmi H<sup>+</sup> resp. katiónov slabej zásady s iónmi OH<sup>-</sup> z vody

## Sol' slabej kyseliny a silnej zásady (napr. CH<sub>3</sub>COONa):

$$H_2O \Leftrightarrow H^+ + OH^-$$

$$H^+ + Ac^- \Leftrightarrow HAc$$

**(b)** 

$$Ac^{-} + H_{2}O \Leftrightarrow HAc + OH^{-}$$
 (c)

Rovnovážna konštanta celkového procesu hydrolýzy

$$K = \frac{a_{HAc} \, a_{OH^{-}}}{a_{Ac^{-}} \, a_{H_20}}$$

Konštanta hydrolýzy  $K_h$   $K_h = K a_{H_2O}$ 

$$K_h = K a_{H_2O}$$

$$\Rightarrow K_h = \frac{a_{HAc} \, a_{OH^-}}{a_{Ac^-}}$$

pre zriedené roztoky 
$$K_h = \frac{c_{HAc} c_{OH^-}}{c_{Ac^-}}$$

- konštanta hydrolýzy vyjadruje mieru hydrolýzy

Po úprave

$$K_{h} = \frac{a_{HAc}(a_{OH^{-}} a_{H^{+}})}{a_{Ac^{-}} a_{H^{+}}} = \frac{K_{V}}{K_{A}}$$

Stupeň hydrolýzy  $\beta$  - pomer počtu hydrolyzovaných mólov soli c' ku všetkým jej mólom c

- z c mólov soli vznikne pri jej rozpustení c mólov iónov Ac, z ktorých hydrolyzuje  $c'=c\beta$  mólov a ostane  $c(1-\beta)$ 

- podľa rovnice (c) z každého hydrolyzovaného iónu Ac⁻ vznikne jedna molekula kyseliny HAc a jeden ión OH⁻ ⇒

$$c_{HAc} = c_{OH^{-}} = c' = c\beta$$

$$c_{Ac^{-}} = c - c' = c(1 - \beta)$$

$$\Rightarrow K_{h} = \frac{(c\beta)^{2}}{c(1 - \beta)} = \frac{c\beta^{2}}{1 - \beta}$$

Väčšinou  $eta << 1 \; \Rightarrow \; eta$  možno popri 1 zanedbať

$$K_{h} = c\beta^{2} = \frac{c_{OH^{-}}^{2}}{c} \Rightarrow \beta = \sqrt{\frac{K_{h}}{c}}$$

$$c_{OH^{-}} = \sqrt{K_{h} c}$$

a teda

$$c_{H^{+}} = \frac{K_{V}}{c_{OH^{-}}} = \frac{K_{V}}{\sqrt{K_{h} c}} = \sqrt{\frac{K_{V} K_{A}}{c}}$$

Po zlogaritmovaní

$$pH = \frac{1}{2} (\log c - \log K_V - \log K_A)$$

### Sol' silnej kyseliny a slabej zásady, napr. NH<sub>4</sub>Cl

Hydrolýza

$$H_2O \Leftrightarrow H^+ + OH^-$$

$$OH^- + NH_4^+ \Leftrightarrow NH_4OH$$
 (e)

sumárne

$$NH_4^+ + H_2O \Leftrightarrow H^+ + NH_4OH$$
 (f)

Konštanta hydrolýzy

$$K_h = \frac{a_{NH_4OH} a_{H^+}}{a_{NH_4^+}}$$

$$K_h = \frac{K_V}{K_B}$$

(d)

Stupeň hydrolýzy

$$\beta = \sqrt{\frac{K_h}{c}}$$

$$c_{H^+} = \sqrt{K_h c} \implies \text{pH} = -\frac{1}{2} (\log K_h + \log c)$$

# Tlmivé roztoky

#### Tlmivé roztoky - pufre:

- roztoky slabých kyselín a ich solí so silnými zásadami, alebo slabých zásad a ich solí so silnými kyselinami
- udržujú svoje pH aj po pridaní malého množstva kyseliny alebo zásady do roztoku

Napr. zmes kyseliny octovej (Hac) a octanu sodného (NaAc) vo vodnom roztoku ⇒ rovnováha je daná disociačnou konštantou

$$K_A = \frac{a_{H^+} a_{Ac^-}}{a_{HAc}}$$

#### Pridanie kyseliny (ióny H+)

$$H^+ + Ac^- + Na^+ \rightarrow HAc + Na^+$$

#### Pridanie hydroxidu (ióny OH<sup>-</sup>)

$$OH^- + HAc + Na^+ \rightarrow H_2O + Ac^- + Na^+$$

- v oboch prípadoch sa a tempo a temp

$$a_{H^{+}} \stackrel{nezment}{=} \frac{p_{H}}{a_{HAC}}$$

$$a_{H^{+}} = \frac{K_{A} a_{HAC}}{a_{AC^{-}}}$$

po zlogaritmovaní

$$pH = -\log a_{H^{+}} = -\log K_{A} + \log \frac{a_{Ac^{-}}}{a_{HAc}}$$

pre zriedené roztoky

$$pH = -\log K_A + \log \frac{c_{Ac^-}}{c_{HAc}}$$

- zmes  $c_A$  mólov kyseliny a  $c_s$  mólov soli  $\Rightarrow$  veľmi približne možno dosadiť

$$c_{Ac^{-}} = c_{s}$$
  $c_{HAc} = c_{A}$ 

Hendersonova-Hasselbachova rovnica pre tlmivý roztok zložený zo slabej kyseliny a jej soli

$$pH = -\log K_A + \log \frac{c_s}{c_A}$$

Hendersonova-Hasselbachova rovnica pre tlmivý roztok zložený zo slabej zásady a jej soli

$$pH = -\log \frac{K_V}{K_B} + \log \frac{c_B}{c_s}$$

- kde  $c_B$  je koncentrácia zásady,  $c_S$  koncentrácia soli,  $K_V$ iónový súčin vody a  $K_B$  je disociačná konštanta zásady

#### Kapacita tlmivého roztoku

- charakterizuje odolnosť tlmivého roztoku proti zmenám pH pri pridávaní kyselín alebo zásad zvonka
- je daná množstvom silnej zásady (kyseliny), ktoré zmení pH tlmivého roztoku o jednotku

$$\beta = \frac{dc}{d(pH)}$$

dc - je prírastok koncentrácie soli vplyvom pridanej silnej zásady (kyseliny)

d(pH) - je príslušná zmena pH

β - je kapacita daného tlmivého roztoku

## Amfotérne elektrolyty (amfolyty)

 látky, ktoré sa vzhľadom na silnú kyselinu chovajú ako zásady, vzhľadom na silnú zásadu ako kyseliny

 kyselina aminooctová reaguje so silnou zásadou (NaOH) ako kyselina

$$NH_2CH_2COOH + OH^- \Leftrightarrow H_2O + NH_2CH_2COO^-$$

- so silnou kyselinou (HCl) reaguje ako zásada

$$NH_2CH_2COOH + H^+ \Leftrightarrow NH_3^+CH_2COOH$$

⇒ štruktúrny vzorec kyseliny aminooctovej vo vodnom roztoku píšeme

Molekuly amfolytov sú vo vodnom roztoku vnútorne ionizované  $\Rightarrow$  obojaké ióny (amfióny, zwitterióny)  $^+A^-$ 

Súčasne nastávajú dve rovnováhy

kyslá 
$$^{+}A^{-} \Leftrightarrow H^{+} + A^{-}$$
 (a)  
zásaditá  $^{+}A^{-} \Leftrightarrow A^{+} + OH^{-}$ (b)

s disociačnými konštantami

$$K'_{A} = \frac{a_{H^{+}} a_{A^{-}}}{a_{-A^{+}}}$$
 a  $K'_{B} = \frac{a_{A^{+}} a_{OH^{-}}}{a_{-A^{+}}}$ 

Amfolyt reaguje v čistej vode kyslo - ak  $K_A' \setminus K_B'$ Amfolyt reaguje v čistej vode zásadito - ak  $K_A' \setminus K_B'$ Roztok amfolytu je v čistej vode neutrálny - ak  $K_A' = K_B'$ 

**Izoelektrický bod** - koncentrácia H<sup>+</sup>, pri ktorej je amfolyt v rovnakej miere disociovaný v oboch svojich funkciách - koncentrácia nedisociovaného amfolytu je vtedy maximálna

## Acidobázické indikátory

 sú slabými kyselinami alebo zásadami, ktorých disociácia je sprevádzaná zmenou štruktúry indikovanou zmenou farby ⇒ menia farbu v závislosti od pH



Fenolftaleín

## Acidobázické rovnováhy v živých systémoch

 metabolickými procesmi vzniká v organizme veľa kyslých a zásaditých látok

Krv – silný tlmivý roztok, nemení pH ani po pridaní 140 ml silnej minerálnej kyseliny

| Telová<br>tekutina | рН        |
|--------------------|-----------|
| krvná plazma       | 7,3 - 7,4 |
| moč                | 7,3 - 7,7 |
| sliny              | 5,8 - 7,1 |
| žalúdočné<br>šťavy | ~ 2       |
| slzy               | 7,3       |
| pot                | 3,8 - 6,8 |

# Rovnováhy v roztokoch slabých elektrolytov

# Protolytické rovnováhy

Protolytická rovnováha kyseliny H<sub>n</sub>B

$$HB^{1-n} \stackrel{\text{disoc.}}{\rightleftharpoons}_{\text{proton.}} B^{n-} + H^+$$

konštanta disociačná

$$K_{an} = \frac{\left[H^{+}\right]\left[B^{n-}\right]}{\left[HB^{1-n}\right]}$$

konštanta protonizačná

$$K_{\mathrm{H1}} = \frac{\left[\mathrm{HB}^{1-\mathrm{n}}\right]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{B}^{\mathrm{n}^{-}}\right]}$$

Vznik každej protonizovanej formy priamou reakciou zásady (B<sup>n-</sup>) s vodíkovými iónmi môžeme zapísať celkove reakciou

$$\mathbf{B}^{\mathbf{n}-} + k \mathbf{H}^+ \rightleftarrows \mathbf{H}_{\mathbf{k}} \mathbf{B}^{\mathbf{k}-\mathbf{n}}$$

$$\beta_{Hk} = \frac{\left[H_k B^{k-n}\right]}{\left[H^+\right]^k \left[B^{n-}\right]}$$

Celková protonizačná konštanta β<sub>Hk</sub> zahŕňa všetky čiastkové protonizačné konštanty pre zúčastnené stupne

$$\beta_{Hk} = K_{H1} K_{H2} .... K_{Hk}$$

# Komplexotvorné rovnováhy

Komplexotvorná rovnováha kovového (centrálneho) iónu M s ligandom L

$$mM + nL \rightleftharpoons M_mL_n$$

$$\beta_{nm} = \frac{\left[M_{m}L_{n}\right]}{\left[M\right]^{m}\left[L\right]^{n}} \begin{array}{c} celkov\acute{a} \\ kon\check{s}tanta \\ stability \end{array}$$

Vznik komplexu typu  $\mathrm{ML}_{\mathrm{n}}$  môžeme charakterizovať čiastkovými rovnováhami, ktorým prislúchajú *postupné konštanty stability* 

$$K_{1} = \frac{[\text{ML}]}{[\text{M}][\text{L}]}$$

$$K_{2} = \frac{[\text{ML}_{2}]}{[\text{ML}][\text{L}]}$$

$$K_{n} = \frac{[\text{ML}_{n}]}{[\text{MI}][\text{L}]}$$

Celková konštanta stability  $\beta_n$ , ktorá charakterizuje priamy vznik komplexu  $ML_n$  koordináciou n častíc ligandu L je súčinom všetkých postupných konštánt stability

$$\beta_n = K_1 K_2 \dots K_n$$

Komplexotvorné rovnováhy v roztokoch sú ovplyvňované vedľajšími reakciami centrálneho iónu M, ligandu L, prípadne aj komplexu ML s ďalšími zložkami roztoku ⇒ stabilita komplexov, odpovedajúca daným podmienkam sa vyjadruje podmienenou (zdanlivou) konštantou stability

$$\mathbf{M} + \mathbf{L} \rightleftharpoons \mathbf{M} \mathbf{L}$$

$$\beta'_{\mathrm{ML}} = \frac{[\mathbf{M} \mathbf{L}']}{[\mathbf{M}'][\mathbf{L}']}$$

 podmienené konštanty sú vyjadrené podmienenými koncentráciami - sú bilančným súčtom rovnovážnych koncentrácií všetkých foriem, na ktoré sa v danom prostredí premieňa uvažovaná zložka hlavnej komplexotvornej reakcie

# Oxidačno-redukčné rovnováhy

Oxidačno-redukčná rovnováha, ktorej sa zúčastňujú látky A a B vo svojich oxidovaných a redukovaných formách

$$n_B A_{ox} + n_A B_{red} \rightleftharpoons n_B A_{red} + n_A B_{ox}$$

- rovnovážna konštanta
$$K_a = \frac{\left(a_{A_{red}}\right)^{n_B} \left(a_{B_{ox}}\right)^{n_A}}{\left(a_{A_{ox}}\right)^{n_B} \left(a_{B_{red}}\right)^{n_A}}$$

- koná sa *elektrická práca* spojená s prevodom  $n=n_{\scriptscriptstyle A}n_{\scriptscriptstyle B}$ elektrónov z redukovanej formy látky B<sub>red</sub> na A<sub>ox</sub>

$$-\Delta G^0 = n F EMN^0$$

- F je Faradayova konštanta (96 484,56 C/mol)
- EMN<sup>0</sup> je štandardné elektromotorické napätie článku, v ktorom prebieha uvažovaná oxidačno-redukčná reakcia

# Rozpúšťacie rovnováhy, súčin rozpustnosti

Rozpúšťacia rovnováha medzi tuhou málo rozpustnou látkou a jej nasýteným roztokom

$$M_{m}N_{n}(s) \rightleftharpoons M_{m}N_{n} \rightleftharpoons m M^{n+} + n N^{m-}$$
 $I \qquad II \qquad III$ 

- konštanta rozpúšťacej rovnováhy sa nazýva súčin rozpustnosti

$$(K_s)_a = a_M^m a_N^n$$

$$\mathbf{A}\mathbf{k} \qquad a_{\mathbf{M}} = [\mathbf{M}^{\mathbf{n}^{+}}] \gamma_{\mathbf{M}} \qquad \mathbf{a}_{\mathbf{N}} = [\mathbf{N}^{\mathbf{m}^{-}}] \gamma_{\mathbf{N}}$$

**potom** 
$$K_s = \left[ \mathbf{M}^{n+} \right]^m \left[ \mathbf{N}^{m-} \right]^n = \frac{(K_s)_a}{\gamma_M^m \gamma_N^n}$$

### Rozpustnosť látky sa vyjadruje jej molárnou koncentráciou c

$$\mathbf{c} = \mathbf{c}_{M_m N_n}$$

Zo stechiometrie tohto elektrolytu vyplývajú pomery pre látkové množstvá

$$n_{M_{m}N_{n}}:n_{M}:n_{N}=1:m:n$$

$$[M^{n+}] = mc$$
  $[N^{m-}] = nc$ 

$$|N^{m-}| = nc$$

⇒ rozpustnosť elektrolytu je daná vzťahom

$$c = \sqrt[m+n]{\frac{K_s}{m^m.n^n}}$$



# **KONIEC**