Medical Image Processing for Diagnostic Applications

About the History of CT

Online Course – Unit 29 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Short History of CT

Development of the Geometry Further developments

Summary

Take Home Messages Further Readings

Parallel Beam Geometry

- Earliest acquisition geometry
- Principle: "Rotate & Translate"

Figure 1: Parallel projection scheme with two different angles θ_1 , θ_2 and the object f(x,y)

Parallel Beam Geometry

First CT scanner by EMI (1971)

- Acquisition took 5 minutes.
- Reconstruction took 30 minutes.
- Slice resolution was 80 × 80 pixels.

Figure 2: Image of the first commercial CT scanner model (Wikipedia)

Fan Beam Geometry

Figure 3: Fan beam projection scheme with two different angles θ_1 , θ_2 and the object f(x,y)

Fan Beam Geometry

- Fan beam scanners became available in 1975 (20 s / slice).
- Fast rotations became possible 1987 with slip rings (300 ms/slice).

Figure 4: View inside a CT scanner (Wikipedia, GFDL)

Cone Beam Geometry

Figure 5: Cone beam projection scheme

Cone Beam Geometry

- Further increase in the number of rows did not take place so far.
- Physical effects such as scattered radiation currently limit the number of detector rows in CT.
- Flat panel detector technologies have even larger cone angles.

Figure 6: 320 Row Scanner by Toshiba (2007) (image courtesy of Toshiba)

3-D Reconstruction in Dual CT

- Dual source CT introduced 2005_{dont need to rotate 360 degree}
- Fast scanning (75 ms)
- Material decomposition possible since we have 2 sources

Figure 7: Dual CT scanner (image courtesy of Siemens AG)

3-D Reconstruction in Dental Medicine

Figure 8: Introduced in October 2006 (image courtesy of Planmeca Oy)

3-D Reconstruction in the Angio Lab

Figure 9: C-arm mounted on a robot system (November 2007) (image courtesy of Siemens AG)

3-D Reconstruction in the Neuro Lab

Figure 10: C-arm biplane device (image courtesy of Siemens AG) like two c-arms

Topics

Short History of CT

Development of the Geometry Further developments

Summary

Take Home Messages Further Readings

Take Home Messages

- Over the years the geometries used for tomography developed from parallel beam and fan beam to cone beam geometries.
- Meanwhile CT scanners and thus 3-D reconstruction can be found in many different medical fields.

Further Readings

Students learning about reconstruction should have a look at one of the following books:

- Gengsheng Lawrence Zeng. Medical Image Reconstruction A Conceptual Tutorial. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9
- Avinash C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imaging. Classics in Applied Mathematics. Accessed: 21. November 2016. Society of Industrial and Applied Mathematics, 2001. DOI: 10.1137/1.9780898719277. URL: http://www.slaney.org/pct/
- Thorsten Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Springer Berlin Heidelberg, 2008. DOI: 10.1007/978-3-540-39408-2
- Willi A. Kalender. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications. 3rd ed. Publicis Publishing, July 2011