

## RWTH AACHEN

## CES Softwareentwicklungspraktikum

Analyse- und Entwurfsdokument - Wärmeleitung

Christian Bilas christian.bilas@rwthaachen.de, Matrikel-

nummer: 334829

Robin Tim Broeske robin.tim.broeske@rwthaachen.de, Matrikelnummer: 334031

Konstantin Key konstantin.key@rwthaachen.de, Matrikelnummer: 332523

## Inhaltsverzeichnis

| In           | Inhaltsverzeichnis 1     |            |                                          |                  |  |  |  |  |  |
|--------------|--------------------------|------------|------------------------------------------|------------------|--|--|--|--|--|
| 1            | Vor<br>1.1<br>1.2<br>1.3 | Projektm   | astellung und Struktur des Dokument      | 2<br>2<br>2<br>2 |  |  |  |  |  |
| <b>2</b>     | Ana                      | lyse       |                                          | 3                |  |  |  |  |  |
| _            | 2.1 Anforderungsanalyse  |            |                                          |                  |  |  |  |  |  |
|              |                          |            | enutzeranforderungen                     | 3                |  |  |  |  |  |
|              |                          | 2.1.2 A    | nwendungsfallanalyse                     | 3                |  |  |  |  |  |
|              |                          | 2.         | 1.2.1 Anwendungsfalldiagramm             | 3                |  |  |  |  |  |
|              |                          | 2.         | 1.2.2 Beschreibungen der Anwendungsfälle | 4                |  |  |  |  |  |
|              |                          | 2.         | 1.2.3 Aktivitätsdiagramme                | 7                |  |  |  |  |  |
|              |                          | 2.         | 1.2.4 Systemanforderungen                | 11               |  |  |  |  |  |
|              | 2.2                      | Begriffsar | v                                        | 12               |  |  |  |  |  |
|              |                          |            | lassenkandidaten                         | 12               |  |  |  |  |  |
|              |                          | 2.2.2 Be   | egriffsnetz                              | 12               |  |  |  |  |  |
| 3            | Ent                      | wurf       |                                          | 14               |  |  |  |  |  |
| •            | 3.1                      |            |                                          | 14               |  |  |  |  |  |
|              | 3.2                      |            |                                          |                  |  |  |  |  |  |
|              | 3.3                      |            |                                          | 14               |  |  |  |  |  |
|              |                          |            | aket algorithms                          | 14               |  |  |  |  |  |
|              |                          | 3.         | 3.1.1 IntMethod                          | 15               |  |  |  |  |  |
|              |                          | 3.3.2 Pa   | aket model                               | 16               |  |  |  |  |  |
|              |                          | 3.         | 3.2.1 model                              | 16               |  |  |  |  |  |
|              |                          | 3.3.3 Pa   | aket presentation                        | 21               |  |  |  |  |  |
|              |                          | 3.         | 3.3.1 UI                                 | 22               |  |  |  |  |  |
| $\mathbf{A}$ | bbild                    | ungsverz   | eichnis                                  | 26               |  |  |  |  |  |
| Ta           | abelle                   | enverzeicl | hnis                                     | 27               |  |  |  |  |  |
|              |                          |            |                                          |                  |  |  |  |  |  |

# Kapitel 1

## Vorwort

- 1.1 Aufgabenstellung und Struktur des Dokument
- 1.2 Projektmanagement
- 1.3 Lob und Kritik

## Kapitel 2

## Analyse

## 2.1 Anforderungsanalyse

#### 2.1.1 Benutzeranforderungen

Es soll eine Software zur Simulation der zeitlichen Entwicklung einer Temperaturverteilung in Metallplatten entwickelt werden. Diese sollen die Abmessungen 1 Meter x 1 Meter besitzen. Diese können weiterhin inhomogen sein und somit beliebig ortsabhängige Temperaturleitkoeffizienten besitzen. Außerdem ist es dem Benutzer möglich, sowohl die Start- und Randbedingungen des Wärmeleitungsproblems als auch den Endzeitpunkt der Simulation vorzugeben. Des Weiteren ist es dem Benutzer möglich Wärmequellen und deren Intensität ein- sowie weiterhin die Simulationsparameter der Ortsbeziehungsweise Zeitdiskretisierung vorzugeben. Jegliche Benutzereingaben erfolgen über eine grafische Oberfläche. Nach Abschluss der Berechnung wird das Ergebnis visualisiert und die zeitliche Entwicklung der Temperaturverteilung kann in Form eines Videos untersucht werden.

#### 2.1.2 Anwendungsfallanalyse

#### 2.1.2.1 Anwendungsfalldiagramm

Das Anwendungsfalldiagramm zeigt die Abbildung 2.1.



Abbildung 2.1: Anwendungsfalldiagramm

### 2.1.2.2 Beschreibungen der Anwendungsfälle

Die folgenden Tabellen (Tab. 2.1 - 2.8) zeigen die Beschreibungen der Anwendungsfälle.

| Name                | Anfangsb                                         | oedingungen eingeben                                     |  |
|---------------------|--------------------------------------------------|----------------------------------------------------------|--|
| Ziel                | Der Benutzer möchte Anfangsbedingungen vorgeben. |                                                          |  |
| Einordnung          | Hauptfur                                         | ıktion                                                   |  |
| Vorbedingung        | Die Softv                                        | vare wird korrekt ausgeführt.                            |  |
| Nachbedingung       | Die Anfa                                         | ngsbedingungen wurden vorgegeben und gespeichert.        |  |
| Nachbedingung       | Die Anfa                                         | ngsbedingungen wurden nicht geändert und                 |  |
| im Fehlerfall       | entsprech                                        | nende Fehlermeldungen wurden ausgegeben.                 |  |
| Haupt-              | Benutzer                                         |                                                          |  |
| Neben-Akteur        |                                                  |                                                          |  |
| Auslöser            | Der Benu                                         | ntzer möchte Anfangsbedingungen vorgeben.                |  |
| Standardfluss       | Schritt                                          | Aktion                                                   |  |
|                     | 1                                                | Der Benutzer wählt den Menüpunkt Anfangsbedingungen aus. |  |
|                     | 2                                                | Die Software wechselt zu dem entsprechenden Menü.        |  |
|                     | 3                                                | Der Benutzer gibt die Anfangsbedingungen vor.            |  |
|                     | 4                                                | Die Software prüft die eingegebenen Anfangsbedingungen.  |  |
|                     | 5                                                | Die Software speichert die Anfangsbedingungen.           |  |
| Nebenfluss          | Schritt                                          | Aktion                                                   |  |
| Anfangsbedingung-   | 5a.1                                             | Eine Fehlermeldung wird angezeigt.                       |  |
| en nicht akzeptiert | 5a.2                                             | Der Benutzer korrigiert seine Eingabe.                   |  |
|                     | 5a.3                                             | $\rightarrow$ Schritt 4                                  |  |

Tabelle 2.1: Beschreibung Use Case Anfangsbedingungen eingeben

| Name                | Diskretis                                            | ierungsgrößen eingeben                                                  |  |
|---------------------|------------------------------------------------------|-------------------------------------------------------------------------|--|
| Ziel                | Der Benutzer möchte Diskretisierungsgrößen eingeben. |                                                                         |  |
| Einordnung          | Hauptfunktion                                        |                                                                         |  |
| Vorbedingung        | Die Softv                                            | vare wird korrekt ausgeführt.                                           |  |
| Nachbedingung       | Die Disk                                             | retisierungsgrößen wurden vorgegeben und gespeichert.                   |  |
| Nachbedingung       | Die Disk                                             | retisierungsgrößen wurden nicht geändert und                            |  |
| im Fehlerfall       | entsprech                                            | ende Fehlermeldungen wurden ausgegeben.                                 |  |
| Haupt-              | Benutzer                                             |                                                                         |  |
| Neben-Akteur        |                                                      |                                                                         |  |
| Auslöser            | Der Bent                                             | ıtzer möchte Diskretisierungsgrößen eingeben.                           |  |
| Standardfluss       | Schritt                                              | Aktion                                                                  |  |
|                     | 1                                                    | Der Benutzer wählt den Menüpunkt Diskretisierungsgrößen aus.            |  |
|                     | 2                                                    | Die Software wechselt zu dem entsprechenden Menü.                       |  |
|                     | 3                                                    | Der Benutzer gibt die Stützstellenzahl der Ortsdiskretisierung $n$ ein. |  |
|                     | 4                                                    | Der Benutzer gibt die Stützstellenzahl der Zeitdiskretisierung $m$ ein. |  |
|                     | 5                                                    | Der Benutzer gibt den Endzeitpunkt $T$ ein.                             |  |
|                     | 6                                                    | Die Software prüft die eingegebenen Größen.                             |  |
|                     | 7                                                    | Die Software speichert die eingegebenen Größen.                         |  |
| Nebenfluss          | Schritt                                              | Aktion                                                                  |  |
| Eingegebene Größ-   | 7a.1                                                 | Eine Fehlermeldung wird angezeigt.                                      |  |
| en nicht akzeptiert | 7a.2                                                 | Der Benutzer korrigiert seine Eingabe.                                  |  |
|                     | 7a.3                                                 | $\rightarrow$ Schritt 6                                                 |  |

Tabelle 2.2: Beschreibung Use Case Diskretisierungsgrößen eingeben

| Name             | Randbed                                       | ingungen eingeben                                     |  |
|------------------|-----------------------------------------------|-------------------------------------------------------|--|
| Ziel             | Der Benutzer möchte Randbedingungen vorgeben. |                                                       |  |
| Einordnung       | Hauptfur                                      | nktion                                                |  |
| Vorbedingung     | Die Softv                                     | vare wird korrekt ausgeführt.                         |  |
| Nachbedingung    | Die Rand                                      | lbedingungen wurden vorgegeben und gespeichert.       |  |
| Nachbedingung    | Die Rand                                      | lbedingungen wurden nicht geändert und                |  |
| im Fehlerfall    | entsprech                                     | nende Fehlermeldungen wurden ausgegeben.              |  |
| Haupt-           | Benutzer                                      |                                                       |  |
| Neben-Akteur     |                                               |                                                       |  |
| Auslöser         | Der Beni                                      | ıtzer möchte Randbedingungen vorgeben.                |  |
| Standardfluss    | Schritt                                       | Aktion                                                |  |
|                  | 1                                             | Der Benutzer wählt den Menüpunkt Randbedingungen aus. |  |
|                  | 2                                             | Die Software wechselt zu dem entsprechenden Menü.     |  |
|                  | 3                                             | Der Benutzer gibt die Randbedingungen vor.            |  |
|                  | 4                                             | Die Software prüft die eingegebenen Randbedingungen.  |  |
|                  | 5                                             | Die Software speichert die Randbedingungen.           |  |
| Nebenfluss       | Schritt                                       | Aktion                                                |  |
| Randbedingungen  | 5a.1                                          | Eine Fehlermeldung wird angezeigt.                    |  |
| nicht akzeptiert | 5a.2                                          | Der Benutzer korrigiert seine Eingabe.                |  |
|                  | 5a.3                                          | $\rightarrow$ Schritt 4                               |  |

Tabelle 2.3: Beschreibung Use Case Randbedingungen eingeben

| Name          | Simuliere | en                                                |
|---------------|-----------|---------------------------------------------------|
| Ziel          | Der Benu  | ıtzer möchte simulieren.                          |
| Einordnung    | Hauptfur  | nktion                                            |
| Vorbedingung  | Die Softv | vare wird korrekt ausgeführt.                     |
| Nachbedingung | Die Simu  | llation wurde ausgeführt.                         |
| Nachbedingung | Die Simu  | llation wurden nicht ausgeführt und               |
| im Fehlerfall | entsprech | nende Fehlermeldungen wurden ausgegeben.          |
| Haupt-        | Benutzer  |                                                   |
| Neben-Akteur  |           |                                                   |
| Auslöser      | Der Benu  | itzer möchte die Simulation starten.              |
| Standardfluss | Schritt   | Aktion                                            |
|               | 1         | Der Benutzer wählt den Menüpunkt Simulieren aus.  |
|               | 2         | Die Software wechselt zu dem entsprechenden Menü. |
|               | 3         | Der Benutzer drückt den Knopf Simulieren.         |
|               | 4         | Die Software simuliert.                           |
|               | 5         | Die Software wechselt zu dem Menü Visualisierung. |
|               | 6         | Die Software stellt den Endzustand dar.           |

Tabelle 2.4: Beschreibung Use Case Simulieren

| Name          | Video ab                                         | spielen                                                         |  |
|---------------|--------------------------------------------------|-----------------------------------------------------------------|--|
| Ziel          | Der Benu                                         | itzer möchte die zeitliche Entwicklung der Temperaturverteilung |  |
|               | untersuch                                        | nen.                                                            |  |
| Einordnung    | Hauptfur                                         | ıktion                                                          |  |
| Vorbedingung  | Die Softv                                        | vare wird korrekt ausgeführt und es wurde eine Simulation       |  |
|               | erfolgreic                                       | h durchgeführt.                                                 |  |
| Nachbedingung | Das Vide                                         | o wird abgespielt.                                              |  |
| Nachbedingung | Das Video wurde nicht abgespielt und             |                                                                 |  |
| im Fehlerfall | entsprechende Fehlermeldungen wurden ausgegeben. |                                                                 |  |
| Haupt-        | Benutzer                                         |                                                                 |  |
| Neben-Akteur  |                                                  |                                                                 |  |
| Auslöser      | Der Benu                                         | itzer möchte die zeitliche Entwicklung der Temperaturverteilung |  |
|               | untersuch                                        | nen.                                                            |  |
| Standardfluss | Schritt                                          | Aktion                                                          |  |
|               | 1                                                | Der Benutzer wählt den Menüpunkt Visualisierung aus.            |  |
|               | 2                                                | Die Software wechselt zu dem entsprechenden Menü.               |  |
|               | 3                                                | Der Benutzer startet das Video.                                 |  |
|               | 4                                                | Die Software spielt das Video ab.                               |  |

Tabelle 2.5: Beschreibung Use Case Video abspielen

| Name          | Wärmele                                              | itkoeffizienten eingeben                                     |  |
|---------------|------------------------------------------------------|--------------------------------------------------------------|--|
| Ziel          | Der Benutzer möchte Wärmeleitkoeffizienten eingeben. |                                                              |  |
| Einordnung    | Hauptfur                                             | ıktion                                                       |  |
| Vorbedingung  | Die Softv                                            | vare wird korrekt ausgeführt.                                |  |
| Nachbedingung | Die Wärı                                             | neleitkoeffizienten wurden eingegeben und gespeichert.       |  |
| Nachbedingung | Die Wärı                                             | neleitkoeffizienten wurden nicht geändert und                |  |
| im Fehlerfall | entsprech                                            | ende Fehlermeldungen wurden ausgegeben.                      |  |
| Haupt-        | Benutzer                                             |                                                              |  |
| Neben-Akteur  |                                                      |                                                              |  |
| Auslöser      | Der Benu                                             | itzer möchte Wärmeleitkoeffizienten eingeben.                |  |
| Standardfluss | Schritt                                              | Aktion                                                       |  |
|               | 1                                                    | Der Benutzer wählt den Menüpunkt Wärmeleitkoeffizienten aus. |  |
|               | 2                                                    | Die Software wechselt zu dem entsprechenden Menü.            |  |
|               | 3                                                    | Der Benutzer wählt auf der Darstellung der Platte die        |  |
|               |                                                      | gewünschten Gebiete.                                         |  |
|               | 4                                                    | Die Software prüft die eingegebenen Gebiete.                 |  |
|               | 5                                                    | Der Benutzer wählt die Werte für die einzelnen Gebiete.      |  |
|               | 6                                                    | Die Software prüft die eingegebenen Werte.                   |  |
|               | 7                                                    | Die Software speichert die Gebiete und die Werte.            |  |
| Nebenfluss    | Schritt                                              | Aktion                                                       |  |
| Gebiet nicht  | 5a.1                                                 | Eine Fehlermeldung wird angezeigt.                           |  |
| akzeptiert    | 5a.2                                                 | Der Benutzer korrigiert seine Eingabe.                       |  |
|               | 5a.3                                                 | $\rightarrow$ Schritt 4                                      |  |
| Werte nicht   | 7a.1                                                 | Eine Fehlermeldung wird angezeigt.                           |  |
| akzeptiert    | 7a.2                                                 | Der Benutzer korrigiert seine Eingabe.                       |  |
|               | 7a.3                                                 | $\rightarrow$ Schritt 6                                      |  |

Tabelle 2.6: Beschreibung Use Case Wärmeleitkoeffizienten eingeben

| Name          | Wärmequellen eingeben                      |                                                         |  |
|---------------|--------------------------------------------|---------------------------------------------------------|--|
| Ziel          | Der Benutzer möchte Wärmequellen eingeben. |                                                         |  |
| Einordnung    | Hauptfur                                   | ıktion                                                  |  |
| Vorbedingung  | Die Softv                                  | vare wird korrekt ausgeführt.                           |  |
| Nachbedingung | Die Wärı                                   | nequellen wurden eingegeben und gespeichert.            |  |
| Nachbedingung | Die Wärı                                   | nequellen wurden nicht geändert und                     |  |
| im Fehlerfall | entsprech                                  | ende Fehlermeldungen wurden ausgegeben.                 |  |
| Haupt-        | Benutzer                                   |                                                         |  |
| Neben-Akteur  |                                            |                                                         |  |
| Auslöser      | Der Benu                                   | ıtzer möchte Wärmequellen eingeben.                     |  |
| Standardfluss | Schritt                                    | Aktion                                                  |  |
|               | 1                                          | Der Benutzer wählt den Menüpunkt Wärmequellen aus.      |  |
|               | 2                                          | Die Software wechselt zu dem entsprechenden Menü.       |  |
|               | 3                                          | Der Benutzer wählt auf der Darstellung der Platte die   |  |
|               |                                            | gewünschten Gebiete.                                    |  |
|               | 4                                          | Die Software prüft die eingegebenen Gebiete.            |  |
|               | 5                                          | Der Benutzer wählt die Werte für die einzelnen Gebiete. |  |
|               | 6                                          | Die Software prüft die eingegebenen Werte.              |  |
|               | 7                                          | Die Software speichert die Gebiete sowie die Werte.     |  |
| Nebenfluss    | Schritt                                    | Aktion                                                  |  |
| Gebiet nicht  | 5a.1                                       | Eine Fehlermeldung wird angezeigt.                      |  |
| akzeptiert    | 5a.2                                       | Der Benutzer korrigiert seine Eingabe.                  |  |
|               | 5a.3                                       | $\rightarrow$ Schritt 4                                 |  |
| Werte nicht   | 7a.1                                       | Eine Fehlermeldung wird angezeigt.                      |  |
| akzeptiert    | 7a.2                                       | Der Benutzer korrigiert seine Eingabe.                  |  |
|               | 7a.3                                       | $\rightarrow$ Schritt 6                                 |  |

Tabelle 2.7: Beschreibung Use Case Wärmequellen eingeben

| Name          | Zustand                                          | anzeigen                                                       |  |  |
|---------------|--------------------------------------------------|----------------------------------------------------------------|--|--|
| Ziel          | Der Benutzer möchte ein Zustand anzeigen lassen. |                                                                |  |  |
| Einordnung    | Hauptfur                                         | ıktion                                                         |  |  |
| Vorbedingung  | Die Softv                                        | vare wird korrekt ausgeführt und es wurde eine Simulation      |  |  |
|               | erfolgreic                                       | h durchgeführt.                                                |  |  |
| Nachbedingung | Der Zust                                         | and wird angezeigt.                                            |  |  |
| Nachbedingung | Der Zust                                         | Der Zustand wurde nicht angezeigt und                          |  |  |
| im Fehlerfall | entsprechende Fehlermeldungen wurden ausgegeben. |                                                                |  |  |
| Haupt-        | Benutzer                                         | Benutzer                                                       |  |  |
| Neben-Akteur  |                                                  |                                                                |  |  |
| Auslöser      | Der Benu                                         | tzer möchte ein Zustand anzeigen lassen.                       |  |  |
| Standardfluss | Schritt                                          | Aktion                                                         |  |  |
|               | 1                                                | Der Benutzer wählt den Menüpunkt Visualisierung aus.           |  |  |
|               | 2                                                | Die Software wechselt zu dem entsprechenden Menü.              |  |  |
|               | 3                                                | Der Benutzer wählt per Maus den Zeitpunkt des Zustands, den er |  |  |
|               |                                                  | betrachten möchte, aus.                                        |  |  |
|               | 4                                                | Die Software zeigt den Zustand an.                             |  |  |

Tabelle 2.8: Beschreibung Use Case Zustand anzeigen

### 2.1.2.3 Aktivitätsdiagramme

Die folgenden Abbildungen (Abb. 2.2 - 2.9) zeigen die Aktivitätsdiagramme der Anwendungsfälle.



Abbildung 2.2: Aktivitätsdiagramm Use Case Anfangsbedingungen eingeben



Abbildung 2.3: Aktivitätsdiagramm Use Case Diskretisierungsgrößen eingeben



Abbildung 2.4: Aktivitätsdiagramm Use Case Randbedingungen eingeben



Abbildung 2.5: Aktivitätsdiagramm Use Case Simulieren



Abbildung 2.6: Aktivitätsdiagramm Use Case Video abspielen



Abbildung 2.7: Aktivitätsdiagramm Use Case Wärmeleitkoeffizienten eingeben



Abbildung 2.8: Aktivitätsdiagramm Use Case Wärmequellen eingeben



Abbildung 2.9: Aktivitätsdiagramm Use Case Zustand anzeigen

#### 2.1.2.4 Systemanforderungen

#### Funktionale Anforderungen

- 1. Der Benutzer kann mit linken Mausklicks Gebiete der Wärmeleitkoeffizienten eingeben und deren Werte per Tastatur festlegen.
- 2. Der Benutzer kann mit linken Mausklicks Wärmequellen eingeben und deren Werte per Tastatur festlegen.
- 3. Um das Problem zu spezifizieren,kann der Benutzer Funktionen für die Anfangs- und Randbedingungen vorgeben.
- 4. Die Diskretisierungsparameter (Stützstellenzahlen der Orts- beziehungsweise Zeitdiskretisierungen sowie den Endzeitpunkt der Simulation) & Simulationsparameter (Integrationsverfahren) können durch den Benutzer festgelegt werden.
- 5. Die Simulation kann per Knopfdruck durch den Benutzer gestartet werden.
- 6. Der Benutzer kann sich die zeitliche Entwicklung der Temperaturverteilung als Video oder einen Zustand als Standbild anzeigen lassen.
- 7. Die Software kann durch den Benutzer per Knopfdruck auf den Ausgangszustand zurückgesetzt werden.
- 8. Der Benutzer kann sich eine Hilfe zur Benutzung der Software anzeigen lassen.

#### Nicht-funktionale Anforderungen

- 1. Dokumentation der Implementierung mittels Doxygen
- 2. Grafische Oberfläche mit Qt
- 3. Einfache Erweiterbarkeit um weitere Simulationsmethoden
- 4. Lauffähig unter Windows und Linux (insbesondere auf dem RWTH Aachen Cluster)
- 5. Grafische Oberfläche skaliert korrekt bei Veränderung der Fenstergröße
- 6. Die Berechnung im Laufe der Simulation soll innerhalb von maximal 45 Sekunden abgeschlossen sein.

## 2.2 Begriffsanalyse

#### 2.2.1 Klassenkandidaten

- Platte  $\rightarrow$  Gitter
- Temperaturverteilung
- Temperaturkoeffizient ( $\rightarrow$  durch *Area* implementiert)
- Wärmequellen ( $\rightarrow$  durch *Area* implementiert)
- Function
- Startbedingung ( $\rightarrow$  durch Function implementiert)
- Randbedingung ( $\rightarrow$  durch Function implementiert)
- Endzeitpunkt, Stützstellenzahl (Ort- & Zeitdiskretisierung)
- Simulation
- Problem + Ergebnis  $\rightarrow$  **Model**
- Zustand/Video
- Fehlermeldung ( $\rightarrow$  durch GUI implementiert)
- Area
- $\bullet \ \mathbf{IntMethod} \to \mathbf{ImpEuler}, \dots$
- IterativeSolver  $\rightarrow$  Jacobi, ...

### 2.2.2 Begriffsnetz

Abbildung 2.10 zeigt das Begriffsnetz.



Abbildung 2.10: Begriffsnetz

## Kapitel 3

## Entwurf

## 3.1 Pakete

Unsere Software gliedert sich in drei Pakete, deren Struktur in Abbildung 3.1 dargestellt ist.



Abbildung 3.1: Paketstruktur

## 3.2 Abstrakte Datentypen

### 3.3 Klassen

### 3.3.1 Paket algorithms

Das Klassendiagramm in Abbildung 3.2 zeigt alle im Paket algorithms enthaltene Klassen.



Abbildung 3.2: Klassendiagramm algorithms

Die Sequenzdiagramme für Methoden, die Algorithmen implementieren, werden nicht dargestellt.

#### 3.3.1.1 IntMethod

#### calcNextStep

Das Sequenzdiagramm für calcNextStep ist in 3.3 dargstellt.



Abbildung 3.3: Sequenzdiagramm calcNextStep

#### setUp

Das Sequenzdiagramm für setUp ist in 3.4 dargstellt.



Abbildung 3.4: Sequenzdiagramm setUp

#### 3.3.2 Paket model

Das Klassendiagramm in Abbildung 3.5 zeigt alle im Paket model enthaltene Klassen.



Abbildung 3.5: Klassendiagramm model

#### $3.3.2.1 \mod el$

Die Sequenzdiagramme für getter-Methoden werden nicht dargestellt.

#### addHeatSource

Das Sequenzdiagramm für addHeatSource ist in 3.6 dargstellt.



Abbildung 3.6: Sequenzdiagramm addHeatSource

#### addThermalConductivity

Das Sequenzdiagramm für addHeatSource ist in 3.7 dargstellt.



Abbildung 3.7: Sequenzdiagramm addThermalConductivity

#### removeLastHeatSource

Das Sequenzdiagramm für removeLastHeatSource ist in 3.8 dargstellt.



Abbildung 3.8: Sequenzdiagramm removeLastHeatSource

#### removeLastThermalConductivity

Das Sequenzdiagramm für removeLastThermalConductivity ist in 3.9 dargstellt.



Abbildung 3.9: Sequenzdiagramm removeLastThermalConductivity

#### selectIntMethod

Das Sequenzdiagramm für selectIntMethod ist in 3.10 dargstellt.



Abbildung 3.10: Sequenzdiagramm selectIntMethod

#### selectIterativeSolver

Das Sequenzdiagramm für selectIterativeSolver ist in 3.11 dargstellt.



Abbildung 3.11: Sequenzdiagramm selectIterativeSolver

#### setBottomBoundary

Das Sequenzdiagramm für setBottomBoundary ist in 3.12 dargstellt.



Abbildung 3.12: Sequenzdiagramm setBottomBoundary

#### setInitialValue

Das Sequenzdiagramm für setInitialValue ist in 3.13 dargstellt.



Abbildung 3.13: Sequenzdiagramm setInitialValue

#### setLeftBoundary

Das Sequenzdiagramm für setLeftBoundary ist in 3.14 dargstellt.



Abbildung 3.14: Sequenzdiagramm setLeftBoundary

#### $\mathbf{set}\mathbf{M}$

Das Sequenzdiagramm für setM ist in 3.15 dargstellt.



Abbildung 3.15: Sequenzdiagramm setM

#### $\mathbf{set}\mathbf{N}$

Das Sequenzdiagramm für setN ist in 3.16 dargstellt.



Abbildung 3.16: Sequenzdiagramm setN

#### setRightBoundary

Das Sequenzdiagramm für setRightBoundary ist in 3.17 dargstellt.



Abbildung 3.17: Sequenzdiagramm setRightBoundary

#### $\operatorname{set} T$

Das Sequenzdiagramm für setT ist in 3.18 dargstellt.



Abbildung 3.18: Sequenzdiagramm setT

#### setTopBoundary

Das Sequenzdiagramm für setTopBoundary ist in 3.19 dargstellt.



Abbildung 3.19: Sequenzdiagramm setTopBoundary

#### simulate

Das Sequenzdiagramm für simulate ist in 3.20 dargstellt.



Abbildung 3.20: Sequenzdiagramm simulate

### 3.3.3 Paket presentation

Das Klassendiagramm in Abbildung 3.21 zeigt alle im Paket presentation enthaltene Klassen.



Abbildung 3.21: Klassendiagramm presentation

#### 3.3.3.1 UI

Es werden lediglich die Sequenzdiagramme der Update-Methoden dargestellt.

#### updateHeatSources

Das Sequenzdiagramm für *updateHeatSources* ist in 3.22 dargstellt.



Abbildung 3.22: Sequenzdiagramm updateHeatSources

#### updateIBVs

Das Sequenzdiagramm für *updateIBVs* ist in 3.23 dargstellt.



Abbildung 3.23: Sequenzdiagramm update IBVs

#### update Notification

Das Sequenzdiagramm für updateNotification ist in 3.24 dargstellt.



Abbildung 3.24: Sequenzdiagramm updateNotification

#### updateSimulating

Das Sequenzdiagramm für updateSimulating ist in 3.25 dargstellt.



Abbildung 3.25: Sequenzdiagramm updateSimulating

#### update Thermal Conductivities

Das Sequenzdiagramm für update Thermal Conductivities ist in 3.26 dargstellt.



Abbildung 3.26: Sequenzdiagramm updateThermalConductivities

#### updateVisualization

Das Sequenzdiagramm für updateVisualization ist in 3.27 dargstellt.



Abbildung 3.27: Sequenzdiagramm updateVisualization

#### 3.3.3.2 Controller

#### focus Changed Slot

Das Sequenzdiagramm für focus Changed Slot ist in ?? dargstellt.



Abbildung 3.28: Sequenzdiagramm focusChangedSlot

# Abbildungsverzeichnis

| 2.1  | Anwendungsfalldiagramm                                      | 3  |
|------|-------------------------------------------------------------|----|
| 2.2  | Aktivitätsdiagramm Use Case Anfangsbedingungen eingeben     | 8  |
| 2.3  | Aktivitätsdiagramm Use Case Diskretisierungsgrößen eingeben | 8  |
| 2.4  | Aktivitätsdiagramm Use Case Randbedingungen eingeben        | 8  |
| 2.5  | Aktivitätsdiagramm Use Case Simulieren                      | 9  |
| 2.6  | Aktivitätsdiagramm Use Case Video abspielen                 | 9  |
| 2.7  | Aktivitätsdiagramm Use Case Wärmeleitkoeffizienten eingeben | 10 |
| 2.8  | Aktivitätsdiagramm Use Case Wärmequellen eingeben           | 10 |
| 2.9  | Aktivitätsdiagramm Use Case Zustand anzeigen                | 11 |
| 2.10 | Begriffsnetz                                                | 13 |
| 3.1  | Paketstruktur                                               | 14 |
| 3.2  | Klassendiagramm algorithms                                  | 15 |
| 3.3  | Sequenzdiagramm calcNextStep                                | 15 |
| 3.4  | Sequenzdiagramm setUp                                       | 15 |
| 3.5  | Klassendiagramm model                                       | 16 |
| 3.6  | Sequenzdiagramm addHeatSource                               | 17 |
| 3.7  | Sequenzdiagramm addThermalConductivity                      | 17 |
| 3.8  | Sequenzdiagramm removeLastHeatSource                        | 17 |
| 3.9  | Sequenzdiagramm removeLastThermalConductivity               | 18 |
| 3.10 | Sequenzdiagramm selectIntMethod                             | 18 |
| 3.11 | Sequenzdiagramm selectIterativeSolver                       | 18 |
| 3.12 | Sequenzdiagramm setBottomBoundary                           | 19 |
| 3.13 | Sequenzdiagramm setInitialValue                             | 19 |
|      | Sequenzdiagramm setLeftBoundary                             | 19 |
| 3.15 | Sequenzdiagramm setM                                        | 19 |
| 3.16 | Sequenzdiagramm setN                                        | 20 |
| 3.17 |                                                             | 20 |
|      | 1 0                                                         | 20 |
|      |                                                             | 21 |
|      |                                                             | 21 |
|      | Klassendiagramm presentation                                | 22 |
|      |                                                             | 22 |
|      | Sequenzdiagramm updateIBVs                                  | 23 |
|      | Sequenzdiagramm updateNotification                          | 23 |
|      | Sequenzdiagramm updateSimulating                            | 24 |
|      | Sequenzdiagramm updateThermalConductivities                 | 24 |
| 3.27 | Sequenzdiagramm updateVisualization                         | 25 |

# Tabellenverzeichnis

| 2.1 | Beschreibung Use Case | Anfangsbedingungen eingeben     |
|-----|-----------------------|---------------------------------|
| 2.2 | Beschreibung Use Case | Diskretisierungsgrößen eingeben |
| 2.3 | Beschreibung Use Case | Randbedingungen eingeben        |
| 2.4 | Beschreibung Use Case | Simulieren                      |
| 2.5 | Beschreibung Use Case | Video abspielen                 |
| 2.6 | Beschreibung Use Case | Wärmeleitkoeffizienten eingeben |
| 2.7 | Beschreibung Use Case | Wärmequellen eingeben           |
| 2.8 | Beschreibung Use Case | Zustand anzeigen                |