

Materiale didattico per partecipante al corso "TECNICO ESPERTO NELL'ANALISI E NELLA VISUALIZZAZIONE DEI DATI" – Rif.P.A. 2021-15998/RER – approvata con DGR n. 1263 del 02/08/2021 di IFOA – Istituto Formazione Operatori Aziendali

1.
K-Nearest
Neighbors (KNN)

IPER-PARAMETRI DEL MODELLO

- K: numero dei vicini. Più è alto più la curva di decisione sarà smooth, evitando l'overfitting ma anche perdendo un po' di accuratezza
- Distance metric: tipicamente si usa la distanza Euclidea, ma ci sono anche altre scelte (Manhattan, Minkowski...)
- **Weights**: volendo posso pesare la media sulla distanza dei singoli punti (i più vicini peseranno di più), ma occhio, si rischia di tornare a fare overfitting

PRO

- semplici da implementare (pochi parametri da impostare)
- vedono bene relazioni non lineari

CONTRO

- 1. con l'aumentare dei dati la previsione rallenta molto
- 2. Non è interpretabile come può essere una regressione lineare, o un albero decisionale

2.
Decision Tree /
Random Ferst

Age	Income	Student	Credit _rating	Buys_computer
<=30	Hight	No	Fair	No
<=30	Hight	No durek	Excellent	No urekal edurekal
3140	Hight	No		Yes edutated educ
>40	Medium	No		Yes
>40	Low	Yes	Fair	Yes
>40	Low	Yes	Excellent	No
3140	Low	Yes	Excellent	Yes relial eduncial
<=30	Medium	No		No edureial edur
,=30	Low	Yes		Yes
>30	Medium	Yes	Fair	Yes
<=30	Medium	Yes	Excellent	Yes
3140	Medium	No		Yes
3140	High	Yes		Yes
>40	Medium	No		No

TARGET

Age	Income	Student	Credit _rating	Buys_computer
<=30	Hight	No	Fair	No
<=30	Hight	No No	Excellent	No surekal edurekal
3140	Hight	No	Fair	Yes
>40	Medium	No		Yes
>40	Low	Yes	Fair	Yes
>40	Low	Yes	Excellent	No
3140	Low	Yes	Excellent	Yes
<=30	Medium	No		No il edurenal adur
,=30	Low	Yes		Yes
	Medium	Yes	Fair	Yes
<=30	Medium	Yes	Excellent	Yes
3140	Medium	No		Yes
3140	High	Yes	Fair	Yes
>40	Medium	No	Excellent	No

PRO

- facili da interpretare
- 2. li si può usare per avere un'idea dell'importanza relativa delle feature
- 3. non hanno problemi con valori mancanti e non richiedono la normalizzazione dei dati
- 4. si possono usare sia per la regressione che per la classificazione

CONTRO

- 1. tendono a fare overfitting
- 2. sono molto sensibili a piccoli cambiamenti nel training set (per esempio cambiando di poco il numero di esempi nel training set si può arrivare ad alberi completamente differenti)
- 3. un singolo albero decisionale non è un buon predittore

Random Forest

Si creano N alberi decisionali variando in modo random le combinazioni di feature e il numero di samples usati per costruirli, e si media il risultato finale. Sono più stabili per quanto riguarda l'overfitting, ma computazionalmente più costose.

