6. 準同型写像

G,H を群とする. 写像 $\varphi:G\to H$ が準同型写像であるとは, φ が群演算を保存すること, すなわち, 任意の $a,b\in G$ に対して $\varphi(ab)=\varphi(a)\varphi(b)$ を満たすことをいう (ab は G の積, $\varphi(a)\varphi(b)$ は H の積). 特に, 全単射な準同型写像を同型写像という.

問題 **6.1.** (1) G,G' を群とする. $\varphi:G\to G'$ が同型写像であるとき, φ の逆写像 φ^{-1} も同型写像であることを示せ.

- (2) G,G',G'' を群とする. $\varphi:G\to G'$ と $\psi:G'\to G''$ が準同型写像であるとき, 合成写像 $\psi\circ\varphi:G\to G''$ も準同型写像であることを示せ.
- (3) G,G',G'' を群とする. $\varphi:G\to G'$ と $\psi:G'\to G''$ が同型写像であるとき, 合成写像 $\psi\circ\varphi:G\to G''$ も同型写像であることを示せ.

ある群 G から群 H への同型写像が存在するとき, G と H は同型であるといい, $G \cong H$ と書く.

問題 6.2. 実数全体が加法に関してなす群 $(\mathbb{R},+)$ と, 正の実数全体が乗法に関してなす群 $(\mathbb{R}_{>0},\cdot)$ が同型であることを示せ.

問題 6.3. 位数の等しい巡回群はすべて同型であることを示せ.

問題 6.4.~G,G' を群, $\varphi:G\to G'$ を準同型写像とする.

- (1) $e \in G$ が G の単位元ならば, $\varphi(e)$ は G' の単位元になることを示せ.
- (2) 任意の $g \in G$ に対し, $\varphi(g^{-1}) = \varphi(g)^{-1}$ となることを示せ.

問題 6.5. G, G' を群, $\varphi: G \to G'$ を準同型写像とする.

- (1) H を G の部分群とするとき, φ による H の像 $\varphi(H)=\{\varphi(h)\mid h\in H\}$ は G' の部分群であることを示せ.
- (2) H' を G' の部分群とするとき, φ による H' の逆像 $\varphi^{-1}(H')=\{g\in G\mid \varphi(g)\in H'\}$ は G の部分群であることを示せ.

問題 6.6. (1) \mathbb{Z} から $\mathbb{Z}/2\mathbb{Z}$ への準同型写像をすべて求めよ.

- (2) \mathbb{Z} から $\mathbb{Z}/6\mathbb{Z}$ への準同型写像をすべて求めよ.
- (3) $\mathbb{Z}/6\mathbb{Z}$ から $\mathbb{Z}/5\mathbb{Z}$ への準同型写像をすべて求めよ.
- (4) $\mathbb{Z}/6\mathbb{Z}$ から $\mathbb{Z}/3\mathbb{Z}$ への準同型写像をすべて求めよ.
- (5) n を 2 以上の自然数とするとき, $\mathbb{Z}/n\mathbb{Z}$ から \mathbb{Z} への準同型写像は唯一つしかないことを示せ.