PyTorch and Graph Neural Networks (GNNs)

Natalí de Santi

PhD candidate at IF-USP

November 30th, 2023

What does it mean to use ML?

We get answers using rules and data!

Machine Learning

We get the rules given the data and their answers!

What makes PyTorch so advantageous?

- Machine learning framework produced by Facebook in 2016
- Designed to provide good flexibility and high speeds
- Uses dynamic computation graphs

- Pythonic Nature
- Strong Community

Easy to Learn

Easy Debugging

- Dynamic X Static
- Data parallelism: asynchronous X
- Flexibility, debugging capabilities, and short training duration:

Different datasets

Tabular data

Х	 Y
15.7	 24.2
12.1	 14.6
13.0	 15.9

Different datasets

Tabular data

Neural Networks

k Nearest Neighbors

Extremely Randomized Trees

Light Gradient Boosting Machines

Random Forests

Support Vector Machines

Structured data

Graph

Neural

Networks

An overview of Neural Networks

$$b_{\mu} + \sum_{
u} W_{\mu
u} a_{
u}$$

Every layer is responsible to employ an activation function:

$$y_{\mu}=f\left(b_{\mu}+\sum_{
u}W_{\mu
u}a_{
u}
ight)$$

Examples of activation functions

The training process is done is ephocs, minimizing the loss function, e.g., *Mean Square Error* (MSE):

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

What are graphs?

What are graph neural networks?

How this answer can be?

<u> https://images.datacamp.com/image/upload/v1658404112/Types_of_Graph_Neural_Networks_fd300394e8.pnc</u>

Hands-on activity

STEP 1: go to github and download the repo using:

\$ git clone https://github.com/natalidesanti/pytorch and GNNs

STEP 2: open the **pytorch** notebook in your preferred machine (your own or in Google Colab)

