Requested Patent:

WO0132610A1

Title:

UREA DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND MEDICINE CONTAINING THE UREA DERIVATIVE :

Abstracted Patent:

WO0132610:

Publication Date:

2001-05-10:

Inventor(s):

FUJIMOTO KYOUKO (JP); FUKUI HIDETO (JP); IKEGAMI SATORU (JP); NAGATA NAOYA (JP); OKUYAMA AKIHIKO (JP); HARADA TATSUHIRO (JP); MARUYAMA TATSUYA (JP); MATSUMURA YUZURU (JP) :

Applicant(s):

KAKEN PHARMA CO LTD (JP); FUJIMOTO KYOUKO (JP); FUKUI HIDETO (JP); IKEGAMI SATORU (JP); NAGATA NAOYA (JP); OKUYAMA AKIHIKO (JP); HARADA TATSUHIRO (JP); MARUYAMA TATSUYA (JP); MATSUMURA YUZURU (JP) ;

Application Number:

WO2000JP07571 20001027;

Priority Number(s):

JP19990310316 19991029;

IPC Classification:

C07C275/24; C07C275/26; C07C275/42; C07C335/12; C07C335/14; C07C335/22; C07D333/20; C07D215/08; C07D223/16; C07D213/40; C07D307/52; C07D277/28; C07D333/52; C07D241/12; C07D333/58; C07D207/06; C07D211/16; C07D209/08; C07D217/06; C07D265/36; C07D241/40; C07D209/94; C07D211/14; A61K31/198; A61K31/381; A61K31/47; A61K31/4402; A61K31/4406; A61K31/4409; A61K31/341; A61K31/426; A61K31/4965; A61K31/40; A61K31/445; A61K31/4035; A61K31/472; A61K31/538; A61K31/498; A61K31/403; A61K31/55; A61P29/00; A61P19/02; A61P37/06; A61P19/04; A61P37/08; A61P11/06; A61P13/12; A61P3/10; A61P21/00; A61P9/10; A61P35/00; C07M7/00;

Equivalents:

AU7961200;

ABSTRACT:

A urea derivative represented by the general formula (I) or a salt thereof: wherein R is hydrogen, alkyl, etc.; X is hydrogen, halogeno, alkyl, aryl, arylamide, etc.; Y is oxygen or sulfur; and Z is a hydrocarbon or heterocyclic group containing a nitrogen atom through which Z is bonded to the carbon atom of C=Y. The urea derivative or salt thereof is a novel compound having VLA-4 antagonistic activity, and is useful in a medicine as a VLA-4 antagonist.

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年5月10日(10.05.2001)

PCT

(10) 国際公開番号 WO 01/32610. A1

- (51) 国際特許分類7: C07C 275/24, 275/26, 275/42, 335/12, 335/14, 335/22, C07D 333/20, 215/08, 223/16, 213/40, 307/52, 277/28, 333/52, 241/12, 333/58, 207/06, 211/16, 209/08, 217/06, 265/36, 241/40, 209/94, 211/14, A61K 31/198, 31/381, 31/47, 31/4402, 31/4406, 31/4409, 31/341, 31/426, 31/4965, 31/40, 31/445, 31/4035, 31/472, 31/538, 31/498, 31/403, 31/55, A61P 29/00, 19/02, 37/06, 1/04, 37/08, 11/06, 13/12, 3/10, 21/00, 9/10, 35/00 // C07M 7:00
- (21) 国際出願番号:

PCT/JP00/07571

(22) 国際出願日:

2000年10月27日(27.10.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願平11-310316

1999年10月29日(29.10.1999)

- (71) 出願人 (米国を除く全ての指定国について): 科研製薬 株式会社 (KAKEN PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒113-8650 東京都文京区本駒込二丁目28番8 号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 奥山昭彦 (OKUYAMA, Akihiko) [JP/JP]. 池上 悟 (IKEGAMI, Satoru) [JP/JP]. 原田達広 (HARADA、Tatsuhiro) [JP/JP]. 丸山達哉 (MARUYAMA, Tatsuya) [JP/JP]. 松

讓 (MATSUMURA, Yuzuru) [JP/JP]. 永田尚也 (NAGATA, Naoya) [JP/JP]. 福井英人 (FUKUI, Hideto) [JP/JP]. 藤本恭子 (FUJIMOTO, Kyouko) [JP/JP]; 〒 607-8042 京都府京都市山科区四ノ宮南河原町14番 地 科研製薬株式会社 総合研究所内 Kyoto (JP).

- (74) 代理人: 中村静男(NAKAMURA, Shizuo); 〒110-0016 東京都台東区台東2丁目24番10号 エスティビル3階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書
- 請求の範囲の補正の期限前の公開であり、補正書受 領の際には再公開される。

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: UREA DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND MEDICINE CONTAINING THE UREA DERIVATIVE

(54) 発明の名称: ウレア誘導体、その製造方法および該ウレア誘導体を含む医薬品

(57) Abstract: A urea derivative represented by the general formula (I) or a salt thereof: wherein R¹ is hydrogen, alkyl, etc.; X is hydrogen, halogeno, alkyl, aryl, arylamide, etc.; Y is oxygen or sulfur; and Z is a hydrocarbon or heterocyclic group containing a nitrogen atom through which Z is bonded to the carbon atom of C=Y. The urea derivative or salt thereof is a novel compound having VLA-4 antagonistic activity, and is useful in a medicine

(57) 要約:

$$Z \xrightarrow{N} COOH$$
 (I)

 $(R^1 dH, アルキル基など、XdH, ハロゲン原子、アルキル基、アリール基、アリールアミド基など、YdOまたは<math>S$ 、Zd窒素原子を含み該窒素原子を介してC=Yの炭素に結合する炭化水素基又は複素環式基)

で表されるウレア誘導体またはその塩、およびその製造方法が開示されている。

上記ウレア誘導体またはその塩は、VLA-4アンタゴニスト作用を示す新規な化合物であって、VLA-4アンタゴニストとしての医薬品として有用である。

明細書

ウレア誘導体、その製造方法および該ウレア誘導体を含む医薬品

5 技術分野

本発明は、新規なウレア誘導体、その製造方法、該ウレア誘導体を含む医薬品および該ウレア誘導体を投与する治療方法に関する。さらに詳しくは、本発明は、VLA-4アンタゴニスト作用を示す新規な(チオ)ウレア化合物またはその塩、このものを効率よく製造する方法、上記(チオ)ウレア化合物またはその塩を有効成分として含む、VLA-4アンタゴニストとして有用な医薬品、および上記(チオ)ウレア化合物またはその塩を投与する細胞接着を介した疾患の治療方法に関するものである。

背景技術

25

15 接着現象は、細胞の活性化、移動、増殖、分化などの細胞間相互作用によってもたらされる複雑な生命現象に不可欠である。そして、このような細胞ー細胞または細胞ー細胞外マトリックスの相互作用には、インテグリン、免疫グロブリン、セレクチン、カドヘリンなどに分類される細胞接着分子が関与している。インテグリンはαβーヘテロダイマー構造を有し、3種の主要グループβ1、β2およ20 びβ3のサブファミリーに分類される。

β1インテグリンは、VLAタンパク質とも呼ばれ、その一つであるインテグリンVLA-4 (α4β1) は、リンパ球、好酸球、好塩基球、単球に発現し、VCAM-1とフィブロネクチンがリガンドである。すなわち、VLA-4はVCAM-1およびフィブロネクチンを介して細胞ー細胞相互作用および細胞ー細胞外マトリックス相互作用において重要な役割を果たすβ1インテグリンである。白血球が炎症組織で機能するためには、血液中を循環している白血球が血管内

VLA-4とVCAM-1の結合は、白血球と血管内皮との強い接着に最も重要な機構の一つである。Tリンパ球、Bリンパ球、単球および好酸球などの炎症

皮細胞をくぐり抜けて炎症部位へと浸潤しなければならない。

性細胞はVLA-4を発現し、これらの細胞の炎症病巣への浸潤にVLA-4/VCAM-1機構は強く関与している。そして、接着分子は、細胞間相互作用を介する細胞の活性化にも重要な役割を果たし、VCAM-1/VLA-4機構が好酸球を活性化させ脱顆粒を引き起こすこと、また、VLA-4を介するシグナルは、リンパ球の抗原特異的な増殖活性化にも関与することが明らかにされている。

炎症などにおけるVCAM-1/VLA-4機構の役割を解明するために、モノクローナル抗体によるこれら分子間の結合の阻害が試みられてきた。例えば、抗VLA-4モノクローナル抗体は、ヒト臍帯静脈血管内皮細胞(HUVEC)およびVCAM-1遺伝子導入COS細胞へのVLA-4発現性Ramos細胞の接着を阻害する。

10

そして、いくつかの動物モデルで、抗体により治療または予防両方で効果が示された。例えば、ラットアジュバント関節炎モデル (Barbadillo et al., Arthr Rheuma., 1993, 36, 95)、接触性過敏症、遅延型過敏症モデル (Ferguson and Kupper, J. Immunol., 1993, 150, 1172; Chisholm et al., Eur. J. Immunol., 1993, 23, 682)で有意な効果が示された。また、実験的自己免疫脳脊髄炎 (Ye dnock, Nature, 1992, 356, 63)、喘息モデル (Abraham et al., J. Clin. Inv est., 1993, 93, 776)、炎症性腸疾患 (IBD) モデル (Podolsky et al., J. Clin. Invest., 1993, 92, 372)でも抗体の作用が評価された。

20 さらに、VLA-4による細胞接着が、リウマチ性関節炎、腎炎、糖尿病、全身性エリテマトーデス、遅発性タイプのアレルギー、多発性硬化症、動脈硬化、臓器移植および種々の悪性腫瘍において役割を果たすことが示された。

したがって、適当なアンタゴニストによるVLA-4遮断は、炎症疾患をはじめとする上記の種々疾患の治療に関して有効である。

25 VLA-4アンタゴニストとして既に低分子化合物が提示されている。それらの化合物は、特許公報W096/22966,W097/03094,W098/04247,W099/61421,W098/538 14,W098/53817,W098/53818,W099/20272,W099/25685,W099/26615,W099/26921,W09 9/26922,W099/26923,W099/64395,W099/06390,W099/06431,W099/06432,W099/0643 3,W099/06434,W099/06435,W099/06436,W099/06437,W099/10312,W099/10313,W000

/21929, W000/48988, W000/48994, W098/54207, W099/35163, W099/37618, W099/43642, W099/47547, W099/48879, W099/61465, W099/62901, W099/64390, W000/01690, W000/1 8759, W000/20396, W000/32575, W099/67230, W099/36393, W000/37429, W099/52898に記載されている。

5 しかしながら、これらの化合物いずれにおいても、経口投与におけるバイオアベイラビリティーの欠如、生体内での容易な分解性などの問題点が残されている。 したがって、治療および予防での使用に好ましい性質を有するVLA-4アンタゴニストの開発が望まれていた。

10 発明の開示

20

このような事情のもとで、本発明の第1の目的は、経口吸収性および生体内での動態に優れたVLA-4アンタゴニスト作用を示す新規な化合物を提供することにあり、第2の目的は、この化合物を効率よく製造する方法を提供することにある。

15 さらに、第3の目的は、上記化合物を有効成分とするVLA-4アンタゴニストとして有用な医薬品を提供することにあり、第4の目的は、上記化合物を投与する細胞接着を介した疾患の治療方法を提供することにある。

そこで、本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の構造を有する(チオ)ウレア化合物またはその塩が、優れたVLA-4アンタゴニスト作用を有すること、そしてこのものは特定の工程により効率よく製造し得ることを見出し、この知見に基づいて本発明を完成するに至った。

すなわち、本発明の第1の目的は、一般式 (I)

[式中、R は水素原子、アルキル基、シクロアルキル基またはアリールアルキル 25 基を表し、Xは水素原子、ハロゲン原子、アルキル基、アリール基、アリールス ルファモイル基またはアリールアミド基を表し、Yは酸素原子または硫黄原子を

表し、Zは窒素原子を含み該窒素原子を介してC=Yの炭素原子に結合するヘテロ原子を含んでいてもよい炭化水素基または複素環式基を表し、*は不斉炭素を示す。]

で表されるウレア誘導体またはその塩、特に一般式(I-a)

5

$$Z = \begin{pmatrix} X & & & & \\ N & & & & \\ R^1 & & & & \\ R^1 & & & & \\ \end{pmatrix}$$

で表される光学活性体であるウレア誘導体またはその塩によって達成される。

前記一般式(I) および一般式(I-a) における R^1 、X、YおよびZの詳細については、 R^1 は水素原子、炭素数 $1\sim10$ のアルキル基、炭素数 $3\sim7$ のシクロアルキル基または炭素数 $7\sim13$ のアリールアルキル基を表し、Xは水素原子、ハロゲン原子、炭素数 $1\sim6$ のアルキル基、炭素数 $6\sim10$ のアリールスルファモイル基または式(A)

10のアリール基、炭素数7~13のアリールアルキル基、炭素数2~10のヘテロアリール基または炭素数3~11のヘテロアリールアルキル基を表し、R⁶ は水素原子、炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基、炭素数6~10のアリール基、炭素数7~13のアリールアルキル基、炭素数2~10のヘテロアリール基、炭素数3~11のヘテロアリールアルキル基、一C (R²⁷) (R²⁸) - (CH₂)_p-CONR²⁴R²⁵、-C (R²⁷) (R²⁸) - (CH₂)_p-NR²⁴COR²⁵、-C (R²⁷) (R²⁸) - (CH₂)_p-NR²⁴SO₂R² 、-C (R²⁷) (R²⁸) - (CH₂)_p-OR²⁴、-C (R²⁷) (R²⁸) - (CH₂)_p-NR²⁴R²⁵、-C (R²⁷) (R²⁸) - (CH₂)_p-SR²⁴、-C (R²⁷) (R²⁸) - (CH₂)_p-NR²⁴R²⁵、-C (R²⁷) (R²⁶) - (CH₂)_p-SR²⁴、-C (R²⁷) (R²⁸) - (CH₂)_p-NR²⁴R²⁵、C (R²⁷) (R²⁶) - (CH₂)_p-NR²⁴CY¹NR²⁵R²⁶ (式中、R²⁴、R²⁵、R²⁶、R²⁷およびR²⁸はそれぞれ独立してR²⁰と同じ意味を表し、Y¹は酸素原子または硫黄原子を表し、pは0~3の整数である。)を表す。]、式 (B)

$$\begin{array}{c}
R^7 \\
-N \\
R^9 \\
R^{10}
\end{array}
\right)_{\mathbf{q}} \qquad \dots (B)$$

15 (式中、 R^7 、 R^8 、 R^9 および R^{10} はそれぞれ独立して水素原子または炭素数 $1\sim6$ のアルキル基を表し、qは $0\sim3$ の整数を表す。)または式 (C)

$$R^{11}$$
 R^{12} ...(C)

[式中、 R^{11} は水素原子または炭素数 $1\sim 10$ のアルキル基を表し、 R^{12} は水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、炭素数 $1\sim 10$ のアルキル基、炭素数 $1\sim 6$ のアルコキシ基、 $-NR^{28}R^{30}$ 、 $-NR^{31}C$ OR^{32} または $-NR^{31}SO_2R^{32}$ (式中、 R^{29} 、 R^{30} 、 R^{31} および R^{32} はそれぞれ独立して R^{20} と同じ意味を示す。)を表し、Sおよびrはそれぞれ独立して $0\sim 3$ の整数である。]を表す。

本発明の第2の目的は、

(1) 一般式 (II-1)

(式中、Xおよび*は、前記と同じ意味を表す。) で表される化合物またはその塩と、一般式 (III)

5 R⁵ - NCY ... (III)

(式中、 R^5 およびYは、前記と同じ意味を表す。) で表される化合物を反応させることを特徴とする、一般式(I-1)

(式中、X、Y、R⁵および*は、前記と同じ意味を表す。)

10 で表されるウレア誘導体の製造方法(以下、製造方法 I と称す。)、

(2) 一般式 (II-2)

(式中、Rは低級アルキル基を表し、Xおよび*は前記と同じ意味を表す。)、で表される化合物またはその塩と、一般式 (IV)

15 Z-H ... (IV)

(式中、Zは前記と同じ意味を表す。)

で表される化合物と、カルボニル基またはチオカルボニル基導入試薬を反応させて、一般式(I-2)

[式中、X、Y、Z、Rおよび*は、前記と同じ意味を表す。] で表される化合物を得たのち、加水分解することを特徴とする、一般式 (I-3)

5 (式中、X、Y、Zおよび*は、前記と同じ意味を表す。) で表されるウレア誘導体の製造方法(以下、製造方法IIと称す。)、 によって達成される。

さらに、本発明の第3の目的は、前記一般式(I)で表されるウレア誘導体またはその塩からなるVLA-4アンタゴニスト、前記一般式(I-a)で表される光学活性ウレア誘導体またはその塩からなるVLA-4アンタゴニスト、前記一般式(I)で表されるウレア誘導体またはその塩を有効成分として含む医薬組成物、および一般式(I-a)で表される光学活性ウレア誘導体またはその塩を有効成分として含む医薬組成物によって達成される。

また、本発明の第4の目的は、前記一般式(I)で表されるウレア誘導体また 15 はその塩、前記一般式(I-a)で表される光学活性ウレア誘導体またはその塩、 前記VLA-4アンタゴニストあるいは前記医薬組成物を投与することからなる 細胞接着を介した疾患の治療方法によって達成される。

なお、本発明でいうウレア誘導体は、 (チオ) ウレア化合物、すなわちウレア 化合物およびチオウレア化合物の両方を意味する。

発明を実施するための最良の形態

20

本発明のウレア誘導体又はその塩は、一般式 (I)

(式中、R¹、X、Y、Zおよび*は、前記と同じ意味を表す。) で表される (チオ) ウレア化合物またはその塩である。

上記一般式(I)において、R'は水素原子、アルキル基、シクロアルキル基またはアリールアルキル基を表す。具体的には、水素原子、炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基または炭素数7~13のアリールアルキル基を表す。

Xは水素原子、ハロゲン原子、アルキル基、アリール基、アリールスルファモイル基またはアリールアミド基を表す。具体的には水素原子、ハロゲン原子、炭素数 $1 \sim 6$ のアルキル基、炭素数 $6 \sim 1$ 0 のアリール基、炭素数 $6 \sim 1$ 0 のアリールスルファモイル基または式 (A)

$$\begin{array}{c}
0 \\
R^3 \\
R^4
\end{array} \dots (A)$$

Yは酸素原子または硫黄原子を表す。

ド基を表す。

素数7~13のアリールアルキル基である。)を示す。]示されるアリールアミ

Zは窒素原子を含み該窒素原子を介してC=Yの炭素原子に結合するヘテロ原 子を含んでいてもよい炭化水素基または複素環式基を表す。具体的には、-NR5 R⁶[式中、R⁶は炭素数1~10のアルキル基、炭素数3~7のシクロアルキル 基、炭素数6~10のアリール基、炭素数7~13のアリールアルキル基、炭素 数2~10のヘテロアリール基または炭素数3~11のヘテロアリールアルキル 基を表し、 R^6 は水素原子、炭素数 $1\sim10$ のアルキル基、炭素数 $3\sim7$ のシクロ アルキル基、炭素数6~10のアリール基、炭素数7~13のアリールアルキル 基、炭素数2~10のヘテロアリール基、炭素数3~11のヘテロアリールアル キル基、 $-C(R^{27})(R^{28})-(CH_2)_p-CONR^{24}R^{25}$ 、 $-C(R^{27})(R^{28})$ 28) - (CH₂) $_{p}$ -NR²⁴COR²⁵, -C (R²⁷) (R²⁸) - (CH₂) $_{p}$ -NR $^{24}SO_2R^{25}$, $-C(R^{27})(R^{28}) - (CH_2)_p - OR^{24}$, $-C(R^{27})(R^2)$ ⁸) - $(CH_2)_p - NR^{24}R^{25}$, -C (R^{27}) (R^{28}) - $(CH_2)_p - SR^{24}$, $-C(R^{27})(R^{28})-(CH_2)_p-SO_2R^{24}$ $\pm EL-C(R^{27})(R^{28})-(C^{28})$ H₂)_p-NR²⁴CY¹NR²⁵R²⁶ (式中、R²⁴、R²⁵、R²⁶、R²⁷およびR²⁸はそ れぞれ独立してR²⁰と同じ意味を表し、Y¹は酸素原子または硫黄原子を表し、p は0~3の整数である。) を表す。]、式(B)

(式中、 R^7 、 R^8 、 R^8 および R^{10} はそれぞれ独立して水素原子または炭素数 $1\sim6$ のアルキル基を表し、qは $0\sim3$ の整数を表す。) または式 (C)

20

10

15

[式中、 R^{11} は水素原子または炭素数 $1\sim 10$ のアルキル基を表し、 R^{12} は水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、炭素数 $1\sim 10$ のアルキル基、炭素数 $1\sim 6$ のアルコキシ基、 $-NR^{29}R^{30}$ 、 $-NR^{31}C$ OR^{32} または $-NR^{31}SO_2R^{32}$ (式中、 R^{29} 、 R^{30} 、 R^{31} および R^{32} はそれぞれ

独立して R^{20} と同じ意味を示す。)を表し、sおよびrはそれぞれ独立して $0\sim 3$ の整数である。]を表す。

なお、*は不斉炭素を示す。

10

前記一般式(I)における各置換基について説明する。

5 「ハロゲン原子」の具体例としては、フッ素原子、塩素原子、臭素原子または ヨウ素原子があげられる。

「炭素数1~10のアルキル基」の具体例としては、メチル基、エチル基、nープロピル基、イソプロピル基、nープチル基、イソブチル基、tertープチル基、secープチル基、nーペンチル基、tertーアミル基、3ーメチルブチル基、ネオペンチル基、nーペキシル基、nーオクチル基、nーデシル基などの直鎖または分枝状のアルキル基があげられる。

「炭素数3~7のシクロアルキル基」の具体例としては、シクロプロビル基、シクロブチル基、シクロペンチル基、シクロペキシル基、シクロペプチル基などがあげられる。

- 15 「炭素数 1 ~ 6 のアルコキシ基」の具体例としては、メトキシ基、エトキシ基、 nープロポキシ基、イソプロポキシ基、nーブトキシ基、イソブトキシ基、te rtーブトキシ基、secーブトキシ基、nーベンチルオキシ基、tertーア ミルオキシ基、3-メチルブトキシ基、ネオベンチルオキシ基、n-ヘキシルオ キシル基などの直鎖または分枝状のアルコキシ基があげられる。
- 20 「炭素数6~10のアリール基」とは、非置換または1ないし3置換された炭素数6~10の単環または2環性の芳香族炭化水素基を表し、具体例としては、フェニル基、0ートリル基、2ーメトキシフェニル基、3ークロロフェニル基、1ーナフチル基、2ーナフチル基などがあげられる。置換基の例としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ハロゲン原子、炭素数625~10のアリールオキシ基、炭素数1~6のアルキルアミノ基、炭素数1~6のアルキルアミド基または炭素数6~10のアリールアミド基などがあげられる。

「炭素数6~10のアリールオキシ基」とは、非置換または1ないし3置換された炭素数6~10の単環または2環性の芳香族炭化水素オキシ基を表し、具体例としては、フェノキシ基、3-クロロフェノキシ基または1-ナフチルオキシ基

などがあげられる。置換基の例としては、炭素数 $1 \sim 6$ のアルキル基、炭素数 $1 \sim 6$ のアルコキシ基、ハロゲン原子、炭素数 $6 \sim 1$ 0 のアリールオキシ基、炭素数 $1 \sim 6$ のアルキルアミノ基、炭素数 $1 \sim 6$ のアルキルアミノ基、炭素数 $1 \sim 6$ のアルキルアミド基または炭素数 $6 \sim 1$ 0 のアリールアミド基などがあげられる。

「炭素数1~6のアルキルアミノ基」の具体例としては、メチルアミノ基、エチルアミノ基、イソプロピルアミノ基、n-ブチルアミノ基、ジメチルアミノ基またはジエチルアミノ基などの直鎖または分枝状のアルキルアミノ基があげられる。

「炭素数1~6のアルキルアミド基」の具体例としては、アセトアミド基、nープチルアミド基、tertーブチルアミド基またはnーヘキシルアミド基などの直鎖または分枝状のアルキルアミド基があげられる。

10

20

25

「炭素数 $6 \sim 10$ のアリールアミド基」とは、非置換または 1ないし 3 置換された炭素数 $6 \sim 10$ の単環または 2 環性の芳香族炭化水素基を有するアミド基を表し、具体例としては、ベンズアミド基、3-クロロベンズアミド基または 1-ナフチルアミド基などがあげられる。置換基の例としては、炭素数 $1 \sim 6$ のアルキル基、 ルロゲン原子、 炭素数 $1 \sim 6$ のアルコキシ基、 ハロゲン原子、 炭素数 $1 \sim 6$ のアルールオキシ基、 炭素数 $1 \sim 6$ のアルキルアミノ基、 炭素数 $1 \sim 6$ のアルキルアミド基または炭素数 $1 \sim 6$ のアルキルアミド基または炭素数 $1 \sim 6$ のアリールアミド基などがあげられる。

「炭素数 $6 \sim 10$ のアリールスルファモイル基」とは、非置換または 1ないし 3置換された炭素数 $6 \sim 10$ の単環性の芳香族炭化水素スルファモイル基を表し、具体例としては、ベンゼンスルファモイル基、2 - 10のドリールスルファモイル基、4 - 11のアリール本と、11のアリール本と、12、12、13のアルキル基、14、14のアルキル基、炭素数 14のアルキル基、炭素数 14のアルキルを、炭素数 15のアルキルアミノ基、炭素数 15のアルキルアミノ基、炭素数 16のアルキルアミド基または炭素数 16のアルキルアミド基などがあげられる。

「炭素数7~13のアリールアルキル基」とは、非置換または1ないし3置換された炭素数7~13の単環または2環性の芳香脂肪族炭化水素基を表し、具体例としては、ベンジル基、フェネチル基、1-フェニルエチル基、1-フェニル

プロビル基、1-ナフチルメチル基、 $2-ナフチルメチル基などがあげられる。 置換基の例としては、炭素数 <math>1\sim6$ のアルキル基、炭素数 $1\sim6$ のアルコキシ基、ハロゲン原子、炭素数 $6\sim1$ 0のアリールオキシ基、炭素数 $1\sim6$ のアルキルアミノ基、炭素数 $1\sim6$ のアルキルアミド基または炭素数 $6\sim1$ 0のアリールアミド基などがあげられる。

10

「炭素数 $1 \sim 4$ のアルキルチオ基」の具体例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、secープチルチオ基またはtert-ブチルチオ基などの直鎖または分枝状のアルキルチオ基があげられる。

- 「炭素数 1 ~ 4のアルキルスルホニル基」の具体例としては、メタンスルホニル基、エタンスルホニル基、 n プロピルスルホニル基、イソプロピルスルホニル基、 n ブチルスルホニル基、 s e c ブチルスルホニル基または t e r t ブチルスルホニル基などの直鎖または分枝状のアルキルスルホニル基があげられる。
- 「炭素数 $1\sim 4$ のアルキルスルフィニル基」の具体例としては、メタンスルフィニル基、エタンスルフィニル基、n-プロピルスルフィニル基、イソプロピルスルフィニル基、n-ブチルスルフィニル基、sec-ブチルスルフィニル基またはtert-ブチルスルフィニル基などの直鎖または分枝状のアルキルスルフィニル基があげられる。
- 25 「炭素数2~10のヘテロアリール基」とは、環中に窒素原子、酸素原子または硫黄原子から選択される1ないし3個の複素原子を含む5~10員の単環または2環性の複素環を表し、具体例としては、フリル基、チエニル基、イミダゾリル基、チアゾリル基、オキサゾリル基、イソキサゾリル基、ピリジニル基、ピラジニル基、ベンゾフラニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基な

どがあげられる。

5

10

20

25

「炭素数3~11のヘテロアリールアルキル基」とは、環中に窒素原子、酸素原子または硫黄原子から選択される1ないし3個の複素原子を含む5~10員の単環または2環性の複素環を有するアルキル基を表し、具体例としては、フリルメチル基、チエニルメチル基、イミダゾリルメチル基、チアゾリルメチル基、ベンゾフラニルメチル基、ベンゾイミダゾリルメチル基、ベンゾオキサゾリルメチル基などがあげられる。

前記一般式(I)で表される本発明の化合物は少なくとも1つの不斉炭素を有するものであり、ラセミ体、個々の光学活性体および分子中に不斉炭素が2個以上存在する場合にはジアステレオ異性体のいずれも包含する。また、幾何異性体が存在する場合には、(E)体、(Z)体およびその混合物のいずれも包含する。これらの中で、一般式(I-a)

$$Z \stackrel{\text{V}}{\underset{\text{R}^1}{\bigvee}} X$$
 ... (I-a)

(式中、R¹、X、YおよびZは、前記と同じ意味を表す。)

15 で表される光学活性体が特に好適である。

前記一般式(I)および一般式 (I-a) において、 R^1 としては水素原子が好ましく、また、Xとしてはアリールアミド基が好ましい。

前記一般式(I)で表される本発明の化合物の塩としては、薬理学的に許容される塩であれば特に制限されず、例えば、無機塩基との塩、有機塩基との塩、有機酸との塩、無機酸との塩およびアミノ酸との塩などがあげられる。無機塩基との塩の例としては、ナトリウム塩、カリウム塩などのアルカリ金属塩およびアンモニウム塩などがあげられる。有機塩基との塩の例としては、ドリエチルアミン塩、ピリジン塩、エタノールアミン塩、シクロヘキシルアミン塩、ジシクロヘキシルアミン塩などがあげられる。有機酸との塩の例としては、ギ酸塩、酢酸塩、酒石酸塩、マレイン酸塩、コハク酸塩、メタンスルホン酸塩などがあげられる。無機酸との塩の例としては、塩酸塩、臭化水素酸塩、硝酸塩などがあげられる。

また、アミノ酸との塩の例としては、グリシン塩、アラニン塩、アルギニン塩、 グルタミン酸塩、アスパラギン酸塩などがあげられる。

次に本発明の製造方法(I)および(II)について説明する。

5 製造方法工

製造方法Iにおいて、下記の反応式

$$R^{5}$$
-NCY(III)

 R^{5} -NCY(III)

 R^{5} -NCY(III)

 R^{5} -NCY(III)

 R^{5} -NCY(III)

 R^{5} -NCY(III)

 R^{5} -NCY(III)

(式中、X、R⁵、Yおよび*は、前記と同じ意味を表す。)

に従い、一般式 (II-1) で表される化合物またはその塩と、一般式 (III) で表 2 される化合物を反応させることにより、一般式 (I-1) で表されるウレア誘導 体が得られる。

この反応は、通常、無機または有機塩基の存在下で行われる。好適な無機塩基としては、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどがあげられ、好適な有機塩基としては、トリエチルアミン、N,Nージイソプロピルエチルアミン、4ーメチルモルホリン、ピリジンなどがあげられる。反応溶媒としては、反応を著しく阻害しない溶媒であれば特に限定されないが、水、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、ジオキサンまたはそれらの混合溶媒中で行われる。反応温度は特に限定されず、通常、0~100℃で行われ、反応時間は2~10時間が好ましい。

製造方法[[

15

20

製造方法IIにおいては、下記の反応式

(式中、Rは低級アルキル基を示し、X、Y、Zおよび*は、前記と同じ意味を表す。)

に従い、一般式(II-2)で表される化合物またはその塩と、一般式 (IV) で表される化合物と、カルボニル基またはチオカルボニル基導入試薬を反応させて、一般式 (I-2) で表される化合物を得たのち、加水分解することにより、一般式 (I-3) で表されるウレア誘導体が得られる。

10

20

この反応は、まず工程1において、一般式(II-2)で表される化合物またはその塩と、一般式(IV)で表される化合物と、カルボニル基またはチオカルボニル基導入試薬を反応させて、一般式(I-2)で表される化合物を製造する。なおRで表される低級アルキル基としては、メチル基、エチル基を好ましく挙げることができる。カルボニル基導入試薬としては、カルボニルジイミダゾール、トリホスゲン、ホスゲンなどが、チオカルボニル基導入試薬としては、チオカルボニルジイミダゾール、チオホスゲンなどが挙げられる。この反応は、原料の種類によっては塩基の存在下で行うことができる。この場合の好適な塩基としては、ビリジン、トリエチルアミン、N,Nージイソプロピルエチルアミン、Nーメチルモルホリンなどがあげられる。反応溶媒としては、反応を著しく阻害しない溶媒であれば特に限定されないが、ジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、ジオキサンなどが好ましい。反応温度は特に限定されず、通常、0~100℃で行われ、反応時間は2~10時間が好ましい。

次に、工程 2 において、前記のようにして得られた化合物 (I-2) を、アルカリ条件下で加水分解処理して、化合物 (I-3) を製造する。このアルカリ条

件下での加水分解処理は公知の方法を使用すればよく、アルカリ水溶液としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどがあげられる。反応溶媒としては、水と混和しうる有機溶媒であれば特に限定されないが、メタノール、エタノール、テトラヒドロフラン、ジメトキシエタンまたはそれらの混合溶媒などが好ましい。反応温度は特に限定されず、通常、0~100℃で行われ、反応時間は30分~3時間が好ましい。

前述した製法で製造される本発明化合物は遊離化合物、その塩、その水和物もしくはエタノール和物などの各種溶媒和物または結晶多形の物質として単離精製される。本発明化合物の薬理学的に許容される塩は常法の造塩反応により製造することができる。単離精製は抽出分別、結晶化、各種分画クロマトグラフィーなどの化学操作を適用して行われる。

また光学異性体は適当な原料化合物を選択することにより、またはラセミ化合物の光学分割法により立体科学的に純粋な異性体に導くことができる。

なお、本発明の化合物を製造する際の原料の1つとして用いられる一般式 (V -1) で表されるアミノ化合物 (Z'H) は、下記の反応式

[式中、 R^5 は前記と同じ意味を表し、 R^{33} は水素原子、炭素数 $1\sim 9$ のアルキル基、炭素数 $3\sim 7$ のシクロアルキル基、炭素数 $6\sim 1$ 0のアリール基または炭素数 $7\sim 1$ 2のアリールアルキル基を表し、 R^{34} は水素原子、炭素数 $1\sim 9$ のア ルキル基、炭素数 $3\sim 7$ のシクロアルキル基、炭素数 $6\sim 1$ 0のアリール基、炭素数 $7\sim 1$ 2のアリールアルキル基、炭素数 $2\sim 1$ 0のヘテロアリール基、炭素数 $3\sim 1$ 0のヘテロアリールアルキル基、 $-(CH_2)_p-CONR^{35}R^{36}$ 、 $-(CH_2)_p-NR^{35}COR^{36}$ 、 $-(CH_2)_p-OR^{35}$ または $-(CH_2)_p-NR^{35}COR^{36}$ 、 $-(CH_2)_p-OR^{35}$ または $-(CH_2)_p-NR^{35}COR^{36}$ $-(CH_2)_p-OR^{35}$ または $-(CH_2)_p-OR^{35}$ または $-(CH_2)_p-OR^{35}$ または $-(CH_2)_p-OR^{35}$

25 同じ意味を表す。)を表す。] に従って製造することができる。

10

すなわち、一般式 (V-1)で表される化合物又はその塩は、一般式 (V-2)で表される化合物またはその塩と、一般式 (V-3)で表される化合物を、還元的アミノ化反応させることにより製造することができる。この反応は通常、酸存在下または非存在下で行われ、酸としては有機または無機酸いずれも好ましく、 お酸、酢酸、トリフルオロ酢酸、p-トルエンスルホン酸などがあげられる。還元剤としては、パラジウム、亜鉛、水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどがあげられる。反応溶媒としては、本反応を著しく阻害しない溶媒であれば特に限定されないが、メタノール、エタノール、イソプロパノール、酢酸エチル、ベンゼン、トルエン、キシレンなどが好ましい。反応温度は特に限定されず、通常、0~100℃で行われ、反応時間は1~12時間が好ましい。

本発明のウレア誘導体またはその塩は、優れたVLA-4アンタゴニスト作用を示し、白血球の接着および浸潤により惹起される疾患またはVLA-4依存性接着過程がある役割を果たす疾患の治療または予防用医薬として有用であり、例えば、リウマチ性関節炎、腎炎、炎症性腸疾患、全身性エリテマトーテス、中枢神経系の炎症性疾患、喘息、アレルギー(遅発性タイプのアレルギーなど)、多発性硬化症、心臓血管性疾患、動脈硬化症、糖尿病、種々の悪性腫瘍、移植臓器の損傷予防、腫瘍増殖または転移阻止などがあげられる。

本発明の化合物は、経口または非経口(例えば静脈内注射、皮下注射、直腸内投与など)の方法で投与することができ、全身投与型であっても局所投与型であってもよい。中でも経口投与が望ましい。また剤形も特に制限されず、投与経路に応じて便宜選択することができ、例えば、錠剤、トローチ剤、舌下錠、糖衣錠、カプセル剤、丸剤、散剤、顆粒剤、液剤、乳剤、シロップ剤、吸入剤、点眼剤、点鼻剤、注射剤、座剤などがあげられる。またこれらの製剤は、有機または無機の固体または液体の賦形剤、防腐剤、湿潤剤、乳化剤、安定化剤、溶解補助剤、その他薬理学的に許容される各種添加剤を配合し製造することができる。

20

25

本発明の化合物の投与量は、投与対象、投与ルート、症状などの条件によって 適宜決定すればよく、例えば、成人の患者に対して経口投与する場合、有効成分 である本化合物を通常1回量として、約0.1~100mg/kg、好ましくは

 $1 \sim 30 \, \text{mg/kg}$ の範囲であればよく、 $1 \, \text{H} = 1 \sim 3 \, \text{回投与する}$ のが好ましい。以下に実施例をあげて本発明を詳述するが、本発明はこれらの記載によって限定されるものではない。なお、 $^{1}\text{H} = 1 \, \text{H} = 1 \, \text{H}$ 大の型スペクトルは、テトラメチルシラン (TMS)を内部標準とし、 $\text{JNM} = 1 \, \text{EX} = 2 \, \text{T} \, \text{OM} = 2 \, \text{T}$ 大の型スペクトルメーター(Z70MHz、日本電子(株)製)で測定し、S 値はPpmで示した。

また、以下の構造式および表において、Meはメチル基、Etはエチル基、Prはプロビル基、Buはプチル基、Phはフェニル基、Acはアセチル基、Msはメタンスルホニル基およびBocはtープトキシカルボニル基を表す。

10 〔実施例 1〕 3 - [4 - (2, 6 - ジクロロベンゾイルアミノ) フェニル] - 2 (S) - (3 - 4 ソプチル - 3 - 7 ェニルチオウレイド) プロピオン酸の製造

(工程1) アニリン(2.0g、21.5 mmo1)のベンゼン溶液(200 m1)に、イソブチルアルデヒド(2.3 m1、32.6 mo1)を加え3時間加熱還流した。反応後、溶媒を減圧濃縮した。次に得られた残留物をメタノール(20 m1)に溶解し、0℃にて水素化ホウ素ナトリウム(0.82g、21.6 mm o1)を加え、3時間撹拌した。反応後、溶媒を減圧濃縮し、残留物に酢酸エチル(50 m1)を加え、炭酸水素ナトリウム水溶液(50 m1)及び飽和食塩水(50 m1)にて洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、3液を減圧濃縮し、残留物をシリガゲルカラムクロマトグラフィー(クロロホルム:メタノール容量比=50:1)で精製し、N-イソブチルアニリン(2.1

 1 H-NMR(CDCl₃) δ 值: 7.2-7.1(2H, m), 6.7-6.5(3H, m), 3.7(1H, brs), 2.9 (2H, d, J= 6.9Hz), 1.9(1H, m), 1.0(6H, d, J= 6.6Hz).

g、収率66%)を得た。物性値を以下に示す。

(工程3)工程2で製造された3-[4-(2,6-ジクロロベンゾイルアミノ) フェニル]-2(S)-(3-イソプチル-3-フェニルチオウレイド)プロピオン酸メチルエステル(90mg、0.16mmol)のメタノール/テトラヒドロフラン混液(容量比1:1、2ml)に2モル/リットルー水酸化ナトリウム水溶液(1ml)を加え、室温で30分間撹拌した。反応後、溶媒を減圧濃縮し、水層をエーテル(10ml)で洗浄し、次に水層を1モル/リットルー塩酸にて酸性にし酢酸エチル(2×10ml)で抽出し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮し標題化合物(65mg、収率74%)を得た。物性値を以下に示す。

'H-NMR(CDCl₃) る値:7.7-6.9(13H, m), 5.5-5.4(2H,m), 4.1-3.9(2H, m), 3.2 -3.1(2H, m), 1.8(1H, m), 1.0(3H, s), 0.9(3H, s).

25

実施例1と同様にして、実施例2~22、157~173、177~185および188~194に示す化合物を製造した。得られた化合物の物性値を以下の表1、表4、表5および表6に示す。

〔実施例23〕3 - [4 - (2, 6 - ジクロロベンソイルアミノ) フェニル] - 2 (S) - (3 - イソブチル- 3 - フェニルウレイド) プロピオン酸の製造

(工程1) トリホスゲン (38mg、0.13mmol) のジクロロメタン溶液 ニルアラニンメチルエステル (0.14g、0.38mmol) およびN, N-ジイソプロピルエチルアミン (0.08ml、0.42mmol) のジクロロメ タン溶液 (3 m 1) を 3 0 分以上かけてゆっくり滴下した。 1 0 分撹拌後、実施 例1の工程1で製造されたN-イソプチルアニリン(85mg、0.38mmo 10 1) およびN, N-ジイソプロピルエチルアミン(0.08ml、0.42mm o1)のジクロロメタン溶液(2m1)を加え室温で2時間撹拌した。反応後、 溶媒を減圧濃縮し、残留物に酢酸エチル(20m1)を加え、硫酸水素カリウム 水溶液(20m1)、炭酸水素ナトリウム水溶液(20m1)および飽和食塩水 にて洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減 15 圧濃縮し、残留物をシリガゲルカラムクロマトグラフィー (n-ヘキサン:酢酸 エチル=容量比1:1) で精製し、3-[4-(2,6-ジクロロベンゾイルア[S(S)] = [S(S)] = [ビオン酸メチルエステル (0.11g、収率52%)を得た。物性値を以下に示 す。

(工程2) 工程1で得た3-[4-(2,6-ジクロロベンソイルアミノ)フェニル]-2(S)-(3-イソプチル-3-フェニルウレイド)プロピオン酸メチルエステル(0.1g,0.18mmol)のメタノール/テトラヒドロフラン混液(容量比1:1、2ml)に2モル/リットルー水酸化ナトリウム水溶液(1ml)を加え、室温で1時間撹拌した。反応後、溶媒を減圧濃縮し、水層をエーテル(10ml)で洗浄し、次に水層を1モル/リットルー塩酸にて酸性とし、酢酸エチル(2×10ml)で抽出し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮し、標題化合物(50mg、収率52%)を得た。物性値を以下に示す。

実施例23と同様にして、実施例24~26、76~80、82~103、1 5 05~116、118、150~155、174、176、187および206 ~208に示す化合物を製造した。得られた化合物の物性値を以下の表1、表2、表3、表4、表5および表7に示す。

〔実施例41〕3-[4-(2, 6-ジクロロベンゾイルアミノ) フェニル] -20 2(S)-[3-イソプチル-3-(1(S)-フェニルエチル) チオウレイド] プロピオン酸の製造

(工程1) (S) -1-フェニルエチルアミン (10.9g、90mmol)の 酢酸エチル (60ml) 溶液に、イソブチルアルデヒド (7.1g、90mmo

1)、酢酸(0.5ml)および無水硫酸マグネシウム(20g)を加え、4時間撹拌した。反応後、無機塩をセライトろ過し、ろ液にエタノール(60ml)を加え、さらに0℃にて水素化ホウ素ナトリウム(5.1g、135mmol)を加え、室温にて3時間撹拌した。反応後、溶媒を減圧濃縮し、残留物にエーテル(100ml)を加えて、塩化アンモニウム水溶液(100ml)および飽和食塩水(100ml)で洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮した。次に得られた残留物をエーテル(100ml)に溶解し、4モル/リットルー塩酸/酢酸エチル混液(35ml)を加え、析出する結晶をろ取、エーテル洗浄を行い(S)ーイソプチルー(1ーフェニルエチル)アミンの塩酸塩を得た。さらにこの塩酸塩をエーテル(150ml)に懸濁し、1モル/リットルー水酸化ナトリウム水溶液(100ml)で沖和し、有機層を水(100ml)および飽和食塩水(100ml)で洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮し、(S)ーイソプチル(1ーフェニルエチル)アミン(13g、収率81%)を得た。物性値を以下に

 1 H-NMR(CDCl₃) δ 值: 7.4-7.2(5H, m), 3.7(1H, q, J= 6.6Hz), 2.3(1H, dd, J= 6.3, 11.5Hz), 2.2(1H, dd, J= 7.3, 11.5Hz), 1.7(1H, m), 1.3(3H, d, J= 6.6Hz), 0.9(6H, dx2, J= 6.6Hz).

15

示す。

20 (工程2) 実施例1の工程2と同様にして3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]-2(S)-[3-イソブチル-3-(1(S)-フェニルエチル)チオウレイド]プロピオン酸メチルエステルを製造した。物性値を以下に示す。

¹H-NMR(CDCl₃) δ値: 7.5(2H, d, J= 6.6Hz), 7.4-7.2(8H, m), 7.0(2H, d, J= 6.6Hz), 6.6(1H, brs), 6.0(1H, d, J= 6.9Hz), 5.5(1H, m), 3.8(3H, s), 3.4(1H, dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 4.3, 13.9Hz), 3.0(2H, brs), 1.8(1H, m), 1.6(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.6Hz).

(工程3)実施例1の工程3と同様にして標題化合物を製造した。物性値を以下 に示す。

 1 H-NMR(CDCl₃) δ 值: 7.5(2H, d, J= 8.2Hz), 7.4-7.2(8H, m), 7.1(2H, d, J= 8.2Hz), 6.6(1H, d, J= 6.9Hz), 5.5(1H, m), 4.2(1H, brs), 3.5(1H, dd, J= 6.3, 13.9Hz), 3.2(1H, dd, J= 4.0, 13.9Hz), 3.0(2H, brs), 1.8(1H, m), 1.6(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.6Hz).

実施例41と同様にして、実施例47~65および195~205に示す化合物を製造した。得られた化合物の物性値を以下の表2および表7に示す

10

〔実施例69〕3 - [4 - (2, 6 - ジクロロベンゾイルアミノ) フェニル] - 2 (S) - [3 - イソプチル-3 - (1, 2, 3, 4 - テトラヒドロナフタレン -1 - イル) チオウレイド] プロピオン酸の製造

(工程1)1,2,3,4-テトラヒドロ-1-ナフチルアミン(1.0g、7.0 mmo1)のメタノール(40ml)溶液に、0℃にてイソプチルアルデヒド(0.5g、7.0 mmol)およびトリアセトキシ水素化ホウ素ナトリウム(3.0g、14.0 mmol)を加え、さらに酢酸を1滴加え、室温にて12時間撹した。反応後、溶媒を減圧濃縮し、残留物に酢酸エチル(80ml)を加え、炭酸水素ナトリウム水溶液(80ml)および飽和食塩水(80ml)で洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮し、Nーイソプチル-1,2,3,4-テトラヒドロ-1-ナフチルアミン(1.3g、収率94%)を得た。物性値を以下に示す。

FAB-MS : 203(M+)

(工程3)実施例1の工程3と同様にして標題化合物を製造した。物性値を以下10 に示す。

¹H-NMR(CDCl₃) る値: 8.7(1H, brs), 7.7-7.6(2H, m), 7.4-7.0(10H, m), 6.0(1H, m), 5.4(1H, m), 3.5(1H, m), 3.2(1H, m), 2.9-2.6(4H, m), 2.2-1.7(5H, m), 0.9-0.8(6H, m).

15 実施例 6 9 と同様にして、実施例 2 7~4 0、4 2~4 6、6 6~6 8、7 0 ~7 5 および 1 2 7~1 4 9 に示す化合物を製造した。得られた化合物の物性値 を以下の表 2 および表 3 に示す

〔実施例81〕3-[4-(2, 6-ジクロロベンゾイルアミノ) フェニル] 20 2(S)-[3-イソプチル-3-(1(S)-フェニルエチル) ウレイド] プロピオン酸の製造

(工程1)実施例23の工程1と同様にして3- [4-(2,6-3)] (1) [4-(2,6-3)] (1) [4-(2,6-3)] (2) [4-(2,6-3)] (3) [4-(2,6-3)] (4) [4-(2,6-3)] (5) [4-(2,6-3)] (7) [4-(2,6-3)] (1) [4-(2,6-3)] (2) [4-(2,6-3)] (3) [4-(2,6-3)] (4) [4-(2,6-3)] (5) [4-(2,6-3)] (7) [4-(2,6-3)] (7) [4-(2,6-3)] (8) [4-(2,6-3)] (9) [4-(2,6-3)] (1) [4-

ェニルエチル) ウレイド] プロピオン酸メチルエステルを製造した。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值: 7.5(2H, d, J= 8.6Hz), 7.4-7.2(8H, m), 7.0(2H, d, J= 8.6Hz), 5.3(1H, m), 4.8(1H, s), 3.7(3H, s), 3.1-2.8(4H, m), 1.8(1H, m), 1.6(3H, d, J= 6.9Hz), 0.8(3H, d, J= 6.6Hz), 0.7(3H, d, J= 6.6Hz).

(工程2) 実施例23の工程2と同様にして標題化合物を製造した。

¹H-NMR(CDCl₃) る値: 12.5(1H, brs), 10.6(1H, s), 7.6-7.4(6H, m), 7.3-7. 2(6H, m), 6.1(1H, d, J= 7.9Hz), 5.3(1H, m), 4.4(1H, m), 3.1-2.9(2H, m), 10 2.8(1H, dd, J= 7.3, 14.5Hz), 2.6(1H, dd, J= 7.6, 14.5Hz), 1.6(1H, m), 1.4(3H, d, J= 6.9Hz), 0.7(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.6Hz).

〔実施例104〕3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]-2(S)-[3-イソプチル-3-(1,2,3,4-テトラヒドロナフタレ15 ン-1-イル)ウレイド]プロピオン酸の製造

(工程1)実施例23の工程1と同様にして3-[4-(2,6-ジクロロベンソイルアミノ)フェニル]-2(S)-[3-イソプチル-3-(1,2,3,4-テトラヒドロナフタレン-1-イル)ウレイド]プロピオン酸メチルエステルを製造した。物性値を以下に示す。

20

 1 H-NMR(CDCl₃) δ 值: 7.6-7.0(11H, m), 6.9(2H, d, J= 8.2Hz), 4.7(1H, m), 4.5(1H, brs), 3.7(3H, s), 3.3-2.9(4H, m), 2.8-2.6(3H, m), 2.1-1.7(5H, m), 0.9(6H, dx2, J= 6.6Hz).

(工程2)実施例23の工程2と同様にして標題化合物を製造した。物性値を以下に示す。

'H-NMR(CDCl₃) る値: 9.1(1H, brs), 7.6-7.5(2H, m), 7.4-7.0(10H, m), 4.9(1H, m), 4.7(1H, m), 3.3-2.7(7H, m), 2.0-1.7(5H, m), 0.9-0.8(6H, m).

5

〔実施例117〕2(S) $-{3-[1(S)-(ベンジルチオフェン-2-イルメチルカルバモイル)エチル]-3-イソブチルウレイド}-3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]プロピオン酸の製造$

10 (工程1) t-プトキシカルポニルーL-アラニン(0.28g、1.5mmo 1) のジメチルホルムアミド溶液 (10m1) に、0℃にてN-チオフェン-2 -イルメチルベンジルアミン(0.30g、1.5mmol)、1-ヒドロキシ ベンズトリアゾール(0.40g、3.0mmol) およびNーメチルモルホリ ン(0.23g、2.1mmol)を加え、次に1-エチル-3-(3-ジメチ ルアミノプロビル) カルボジイミド塩酸塩 (0.34g、1.8 mm o 1) を加 15 え、室温にて12時間撹拌した。反応後、溶媒を減圧濃縮し、残留物に酢酸エチ ル(50m1)を加え、シュウ酸水溶液(50m1)、炭酸水素ナトリウム水溶 液(50m1)および飽和食塩水(50m1)にて洗浄し、有機層を硫酸マグネ シウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮し、残留物をシリガゲルカ 20 ラムクロマトグラフィー(n-ヘキサン:酢酸エチル=容量比5:1)で精製し、 [1-(ベンジルチオフェン-2-イルメチルカルバモイル) エチル] カルバミ ン酸 t ーブチルエステル(0.39g、収率71%)を得た。物性値を以下に示 す。

'H-NMR(CDCl₃) る値: 7.4-7.2 (6H, m), 7.0-6.8(2H, m), 5.5(1H, m), 4.9-

4.4(4H, m), 1.4(9H, d, J= 6.6Hz), 1.4-1.3(3H, m).

(工程2) [1-(ペンジルチオフェン-2-イルメチルカルバモイル) エチル] カルバミン酸 t ーブチルエステル (0.36g、96mmol) の酢酸エチル溶 液 (7ml) に、4モル/リットルー塩酸/酢酸エチル混液 (7ml) を加え、室温にて3時間撹拌した。反応後、溶媒を減圧濃縮し、次に得られた残留物をメタノール (20ml) に溶解し、0℃にてイソブチルアルデヒド (70mg、1mmol)、トリアセトキシ水素化ホウ素ナトリウム (0.37g、1.4mmol) および酢酸3滴を加え、室温にて12時間撹拌した。反応後、溶媒を減圧 濃縮し、残留物に酢酸エチル (30ml) を加え、炭酸水素ナトリウム水溶液 (30ml) 及び飽和食塩水 (30ml) にて洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮し、残留物をジリガゲルカラムクロマトグラフィー (クロロホル:メタノール=容量比10:1) で精製し、Nーペンジル-2-イソブチルアミノーNーチオフェン-2-イルメチルプロピオナミド (0.23g、収率85%) を得た。物性値を以下に示す。

FAB-MS : 330(M+)

(工程3) 実施例23の工程1と同様にして2(S) - [3-[1(S) - (ベンジルチオフェン-2-イルメチルカルバモイル) エチル] - 3-イソプチルウ
 20 レイド] -3-[4-(2,6-ジクロロベンゾイルアミノ) フェニル] プロピオン酸メチルエステルを製造した。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值: 7.6-6.8(16H, m), 5.4-4.6(4H, m), 4.5-4.2(2H, m), 3.7(3H, s), 3.1-2.9(4H, m), 1.7(1H, m), 1.4-1.3(3H, m), 0.8-0.6(6H, m).

25 (工程4) 実施例23の工程2と同様にして標題化合物を製造した。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值: 8.3(1H, d, J= 2.0Hz), 7.6-7.5(2H, m), 7.4-7.1(10H, m), 6.9-6.8(2H, m), 5.2(1H, m), 5.0-4.6(5H, m), 4.5-4.3(2H, m), 3.2-2.8 (4H, m), 1.6(1H, m), 1.2(3H, dd, J= 5.9, 12.2Hz), 0.7(3H, d, J= 6.6Hz),

0.6(3H, d, J= 6.6Hz).

〔実施例119〕3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]-2(S)-[3-(1(S)-ジイソブチルカルバモイルエチル)-3-5 イソブチルウレイド]プロピオン酸の製造

(工程1) t-ブトキシカルボニル-L-アラニン(0.50g、2.6mmo 1)のテトラヒドロン溶液(20ml)に、0℃にてN-メチルモルホリン(0.38g、3.2mmol)を加え、さらにイソブチルクロロホルメート(0.3 10 8g、2.8mmol)を滴下し、30分間撹拌した。撹拌後、ジイソブチルアミン(0.51g、3.9mmol)のテトラヒドロフラン溶液(5ml)を加え、室温にて3時間撹拌した。反応後、溶媒を減圧濃縮し、酢酸エチル(100ml)を加え、炭酸水素ナトリウム水溶液(100ml)、1モル/リットルー塩酸水溶液(100ml)および飽和食塩水(100ml)で洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後、3過し、3液を減圧濃縮し、1-(ジイソブチルカルバモイル)エチルカルバミン酸t-ブチルエステル(0.71g、収率90%)を得た。物性値を以下に示す。

¹H-NMR(CDCl₃) る値: 5.4(1H, brd, J= 8.3Hz), 4.6(1H, m), 3.4(1H, m), 3.1(2H, d, J= 7.9Hz), 2.9(1H, m), 2.0-1.8(2H, m), 1.7(9H, s), 1.3(3H, d, J= 6.9Hz), 1.0-0.8(12H, m).

(工程2)実施例117の工程2と同様にしてN, Nージイソブチルー2 (S) ーイソブチルアミノプロピオナミドを製造した。物性値を以下に示す。

FAB-MS: 256(M+)

(工程3)実施例23の工程1と同様にして3-[4-(2,6-3)クロロベンゾイルアミノ)フェニル]-2(S)-[3-[1(S)-(3)] (ジイソブチルカルバモイルエチル)]-3-4ソブチルウレイド]プロピオン酸メチルエステルを製造した。物性値を以下に示す。

- 5 'H-NMR(CDCl₃) δ値: 7.6(2H, d, J= 8.6Hz), 7.5(1H, brs), 7.4-7.3(3H, m), 7.1(2H, d, J= 8.6Hz), 5.3(1H, brs), 5.2(1H, m), 4.8(1H, dd, J= 5.6, 12.9Hz), 3.7(3H, s), 3.5-3.4(2H, m), 3.2-2.8(6H, m), 2.1-1.8(3H, m), 1.3 (3H, dd, J= 7.3, 14.5Hz), 1.0-0.8(18H, m)
- 10 (工程4)実施例23の工程2と同様にして標題化合物を製造した。物性値を以下に示す

¹H-NMR(CDCl₃) る値: 8.6(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.3-7.1(4H, m), 5.2(1H, brs), 4.7(1H, m), 3.5-3.3(2H, m), 3.2-2.8(4H, m), 2.1-1.8(2H, m), 1.7(1H, m), 1.3(3H, d, J= 6.6Hz), 0.9-0.8(18H, m).

15

〔実施例120〕3 - [4-(2,6-ジクロロベンソイルアミノ) フェニル] -2(S)-[3-(2-ジイソブチルアミノ-1(S)-メチルエチル)-3 -イソブチルウレイド] プロピオン酸ナトリウムの製造

20 (工程1) 実施例119 (工程2) で製造したN, N-ジイソプチル-2 (S) -イソプチルアミノプロピオナミド (0.22g、0.8 mmol) のテトラヒドロン溶液 (10ml) に、ボラン-ジメチルスルフィド錯塩のテトラヒドロフラン溶液 (1.2ml、0.9 mmol) を加え10時間加熱還流した。反応後、クロロホルム (20ml) を加え、炭酸水素ナトリウム (30ml) および飽和

FAB-MS : 252(M+)

5

25

(工程2) 実施例23の工程1と同様にして3-[4-(2,6-ジクロロベンソイルアミノ)フェニル]-2(S)-[3-(2-ジイソブチルアミノ-1(S)-メチルエチル)-3-イソブチルウレイド] プロピオン酸メチルエステルを製造した。物性値を以下に示す。

- 15 (工程3)3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]-2(S)-[3-(2-ジイソブチルアミノ-1(S)-メチルエチル)-3-イソブチルウレイド]プロピオン酸メチルエステル(0.16g、0.25mmol)のテトラヒドロフラン/メタノール(容量比1:1、5ml)の溶液に、水酸化ナトリウム(10mg、0.25mmol)の水溶液(1ml)を加え、4時間撹20 拌した。反応後、溶媒を減圧濃縮し、表題化合物(0.13g、収率80%)を得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值: 7.5(2H, d, J= 8.6Hz), 7.4-7.2(3H, m), 7.2(2H, d, J= 8.6Hz), 4.3(1H, m), 3.7-3.5(5H, m), 3.1(1H, dd, J= 5.6, 13.5Hz), 3.0 (1H, dd, J= 6.3, 13.5Hz), 2.9(1H, dd, J= 7.9, 15.2Hz), 2.8(1H, dd, J= 7.6, 15.2Hz), 2.5-2.2(2H, m), 1.8-1.6(3H, m), 1.2(3H, d, J= 6.6Hz), 0.9-0.9(18H, m).

〔実施例121〕3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル] <math>-2(S)-(3-o-)リルチオウレイド)プロピオン酸の製造

2(S) - アミノ-3-[4-(2,6-ジクロロベンゾイルアミノ) フェニル]プロピオン酸 (0.15g,0.42mmo1) の50重量%ピリジン溶液(5ml)にo-トリルイソチオシアナート(0.17g,1.3mmo1)を加え、pH8~9にて室温で3時間撹拌した。反応後、エーテル(5m1)で抽出し、水層を1モル/リットルー塩酸にて酸性とし、酢酸エチル(20m1)で抽出し、有機層を硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液を減圧濃縮し、標題化合物(0.11g、収率52%)を得た。物性値を以下に示す。

¹H-NMR(CDCl₃)δ値: 9.7(1H, brs), 8.6(1H, brs), 8.4(1H, brs), 7.7-7.1 10 (11H, m), 6.6(1H, brs), 5.3(1H, m), 3.5(1H, dd, J= 4.3, 13.8Hz), 3.2(1H, dd, J= 5.8, 13.8Hz), 2.2(3H, s).

実施例121と同様にして実施例122~126に示す化合物を製造した。得 られた化合物の物性値を以下の表3に示す。

15

〔実施例156〕3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]-2(S)-[(3,4-ジヒドロキノリン-1-イルーカルボチオイル)アミノ]プロピオン酸の製造

20 (工程1) 実施例1の工程2と同様にして3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]-2(S)-[(3,4-ジヒドロキノリン-1-イル

-カルボチオイル) アミノ] プロピオン酸メチルエステルを製造した。物性値を 以下に示す。

 1 H-NMR(CDCl₃) δ 值: 7.6-6.7(13H, m), 5.2(1H, m), 4.3-4.1(2H, m), 3.7 (3H, s), 3.3(1H. dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 5.3, 13.9Hz), 2.7(2 H, t, J= 5.9H), 2.0(2H, dt, J= 6.6, 13.9Hz).

(工程2)実施例1の工程3と同様にして標題化合物を製造した。物性値を以下 に示す

〔実施例175〕3-[4-(2,6-ジクロロベンゾイルアミノ)フェニル]
 15 -2(S)-[(4-エチル-3,4-ジヒドロキノリン-1-イルーカルボニル)アミノ]プロピオン酸の製造

(工程1) 実施例23の工程1と同様にして3-[4-(2,6-ジクロロベンソイルアミノ)フェニル]-2(S)-[(4-エチル-3,4-ジヒドロキノリン-1-イルーカルボニル)アミノ]プロピオン酸メチルエステルを製造した。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ 值: 7.7-7.5(2H, m), 7.4-7.0(11H, m), 5.5(1H, m), 4.8 (1H, m), 3.7(3H, d, J= 5.6Hz), 3.7-3.5(2H, m), 3.3-3.0(2H, m), 2.7(1H, m), 2.0(1H, m), 1.8-1.6(3H, m), 1.0(3H, t, J= 7.3Hz).

(工程2)実施例23の工程2と同様にして標題化合物を製造した。物性値を以下に示す

 1 H-NMR(CDCl₃) δ 值: 7.7-7.0(11H, m), 5.6(1H, m), 4.7(1H, m), 3.9-3.6 (2H, m), 3.4-3.0(2H, m), 2.6(1H, m), 2.0-1.4(4H, m), 1.0-0.9(3H, m).

5

〔実施例186〕3-[4-(2,6-ジクロロベンゾイルアミノ) フェニル] <math>-2(S)-[(2,3,4,5-テトラヒドロベンズアゼピン-1-イル-カルボニル) アミノ] プロピオン酸の製造

10 (工程1) 実施例23の工程1と同様にして3-[4-(2,6-ジクロロベンソイルアミノ)フェニル]-2(S)-[(2,3,4,5-テトラヒドロベンズアゼピン-1-イルーカルボニル)アミノ]プロピオン酸メチルエステルを製造した。物性値を以下に示す。

¹H-NMR(CDCl₃) る値: 7.8-7.0(13H, m), 3.7(1H, brs), 3.1-2.9(2H, m), 2. 8-2.6(4H, m), 2.0-1.6(4H, m).

(工程2)実施例23の工程2と同様にして標題化合物を製造した。物性値を以下に示す

¹H-NMR(CDCl₃)δ値: 8.1(1H, brs), 7.6-6.7(121H, m), 4.7-4.4(2H, m), 3. 20 3-3.2(6H, m), 1.9-1.6(4H, m).

	R "	•	
実施例 番号	R	Υ	¹H-NMR δ:
2	Ме	·s	(CDCl ₃): 7.5(2H, d, J= 8.2Hz), 74-7.2(7H, m), 7.1(2H, dd, J= 1.6, 8.2Hz), 6.9(2H, d, J= 8.2Hz), 5.6(1H, m), 5.2(1H, m), 3.6(3H, s), 3.2(1H, dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 5.3, 13.9Hz).
3	iPr	S	(CDCl ₃): 7.7(1H, brs), 7.5-7.4(5H, m), 7.3-7.2(3H, m), 7.0-6.8(4H, m), 5.7(1H, dt, J= 6.6, 16.5Hz), 5.4(1H, m), 5.1(1H, m), 3.1(2H, d, J= 14.6Hz), 1.1(3H, d, J= 6.6Hz), 1.0(3H, d, J=6.6Hz).
4	O	S	(CDCl ₃): 8.0(1H, brs), 7.5-7.2(13H, m), 6.9(4H, d, J= 6.6Hz),5.6-5.3(4H, m), 3.2(2H, d, J= 4.9Hz).
5	Me0 C	S	(CDCl ₃): 8.2(1H, brs), 7.4(2H, d, J= 8.6Hz), 7.3-6.8(13H, m), 6.7(2H, d, J= 8.6Hz), 5.6-5.3(4H, m), 3.8(3H, s), 3.2(2H, d, J= 4.9Hz).
6	MeO	S	(CDCl ₂): 9.9(1H, s), 7.5-6.7(16H, m), 5.7(1H, brd, J= 14.9Hz), 5.5-5.2(3H, m), 3.8(3H, s), 3.3(1H, dd, J= 5.6, 13.8Hz), 3.1(1H, dd, J= 4.9, 13.8Hz).
7	∕ ОМе	S	(CDCl ₃): 7.9(1H, brs), 7.5-7.1(10H, m), 6.9(2H, d, J= 8.3Hz), 5.7(1H, brs), 5.4(1H, m), 4.4-4.2(2H, m), 3.3(3H, s), 3.2-3.1(2H, m).
8	~ 0 ~ Ph	S	(CDCl ₃): 8.1(1H, s), 7.5-6.8(18H, m), 5.7(1H, brs), 5.4(1H, dd, J= 4.9, 12.5Hz), 4.3(2H, s), 4.1(1H, dd, J= 4.2, 7.3Hz), 3.8-3.7(2H, m), 3.1(2H, brd, J= 5.3Hz).
9	CONH ₂	S	(CDCl ₃): 7.5-6.9(15H, m), 5.6(1H, d, J= 7.9Hz), 5.4(1H, brs), 5.3(1H, d, J= 5.9Hz), 4.5(2H, t, J= 6.9Hz), 3.2(2H, dd, J= 6.3, 13.9Hz), 3.0(2H, dd, J= 5.3, 13.9Hz), 2.6(2H, t, J= 6.9Hz).
10	CONHMe	ø	(CDCl ₃): 7.6-6.8(14H, m), 6.7(1H, brs), 5.6(1H, d, J= 7.3Hz), 5.2(1H, m), 4.4(2H, t, J= 7.3Hz), 3.2(2H, dd, J= 5.6, 13.9Hz), 3.0(2H, dd, J= 5.3, 13.9Hz), 2.8(3H, d, J= 4.7Hz), 2.6(2H, t, J= 6.9Hz).
11	CONMe₂	s	(CDCl ₂): 8.8(1H, s), 7.6-7.5(2H, m), 7.4-7.2(6H, m), 7.0-6.9(4H, m), 5.7(1H, d, J= 7.3Hz), 5.2(1H, q, J= 5.6Hz), 4.4-4.3(2H, m), 3.3(H, dd, J= 5.6, 13.9Hz), 3.1(3H, s), 3.0(1H, m), 2.8(3H, s), 2.8-2.7(2H, m).

表1-2

			<u> </u>
12	NH₂	s	(CDCl ₃): 9.7(1H, d. J= 7.3Hz), 8.6(1H, brs), 7.6-6.8(12H, m), 5.7(1H, d. J= 7.3Hz), 5.2(1H, d. J= 6.3Hz), 4.5(2H, d. J= 6.3Hz), 3.2(2H, d. J= 5.6Hz), 3.2(1H, dd, J=6.3, 14.2Hz), 3.0(1H, dd, J= 5.6, 14.2Hz).
13	∕ NHMs	s	(CDCl ₃): 9.1(1H, brs), 7.5-6.9(13H, m), 6.0(1H, brs), 5.7(1H, d, J= 7.3Hz), 5.2(1H, d, J= 5.3Hz), 4.4(2H, brs), 3.3-3.2(1H, m), 3.2(2H, brs), 3.1(1H, dd, J= 4.6, 13.9Hz), 2.9(3H, s).
14	∕ NHAc	s	(CDCl ₃): 9.4(1H, brs), 7.5-6.9(14H, m), 5.7(1H, d, J= 6.9Hz), 5.2(1H, d, J= 6.9Hz), 4.5-4.3(3H, m), 3.4(2H, d, J= 5.6Hz), 3.2(1H, dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 5.0, 13.9Hz), 1.9(3H, s).
15	∕ H Y tBu	s	(CDCl ₃): 8.3(1H, brs), 7.6-6.7(14H, m), 5.6(1H, d, J= 7.6Hz), 5.3(1H, d, J= 7.3Hz), 4.5-4.3(2H, m), 3.4(2H, brd, J= 14.7Hz), 3.1(2H, brd, J= 4.9Hz), 1.2(9H, s).
16		S	(CDCl ₃): 9.1(1H, brs), 8.1-6.1(19H, m), 5.7(1H, d, J= 7.3Hz), 5.2(1H, brs), 4.6-4.2(2H, m), 3.8-3.5(2H, m), 3.2(1H, m), 3.1(1H, m).
17	∕ NHCO2Me	S	(CDCl ₃): 9.1(1H, brs), 7.5-6.9(13H, m), 5.9(1H, brs), 5.7(1H, d, J= 7.3Hz), 5.2(1H, dd, J= 5.5, 7.3Hz), 4.4-4.3(2H, m), 3.6(3H, s), 3.6-3.4(2H, m), 3.3(1H, dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 4.6, 13.9Hz).
18	∕ NHBoc	S	(CDCl ₃): 9.3(1H, brs), 7.5–6.9(13H, m), 5.7(1H, brs), 5.4(1H, brs), 5.2(1H, brs), 4.3(2H, brs), 3.4(2H, brs), 3.3(1H, m), 3.1(1H, m), 1.4(9H, s).
19	~ N. soz	S	(CDCl ₃): 9.4(1H, brs), 7.9-6.7(18H, m), 5.6(1H, d, J= 6.9Hz), 5.1(1H, d, J= 5.3Hz), 4.4(1H, brd, J= 14.3Hz), 4.2(1H, brd, J= 14.3Hz), 3.2(2H, dd, J= 5.6, 14.2Hz), 3.1-3.0(3H, m)
20	~#\$#O	S	(CDCl ₃): 9.4(1H,brs), 7.8-6.9(19H, m), 6.0(1H, brs), 5.7(1H, d, J= 7.3Hz), 5.2(1H, d, J= 6.6Hz), 4.3(2H, brd, J= 5.3Hz), 3.5-3.4(2H, m), 3.3(1H, dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 5.0, 13.9Hz).
21	Me N-Boc	s	(CDCl ₃): 8.1(1H, s), 7.6-6.8(12H, m), 5.5(1H, m), 5.4(1H, d, J= 7.3Hz), 4.3(1H, m), 3.5(4H, q, J= 6.9Hz), 3.1(2H, d, J= 5.0Hz), 2.9(3H, brd, J= 18.8Hz), 1.2(9H, s).
22	Me N. _{Ms}	s	(CDCl ₃): 8.0(1H, s), 7.5-6.9(12H, m), 5.6(1H, d, J= 6.9Hz), 5.4(1H, dd, J= 5.3, 12.5Hz), 4.3(2H, m), 3.5(1H, q, J= 6.6Hz), 3.3(1H, q, J= 6.6Hz), 3.2(2H, t, J= 4.7Hz), 2.9(3H, s), 2.8(3H, s).

24	~ N Y tBu	0	(CDCl ₃): 8.3(1H, brs), 7.6-6.8(13H, m), 5.6(1H, d, J= 7.6Hz), 5.3(1H, d, J= 7.3Hz), 4.5(1H, m), 4.4(1H, m), 3.4(2H, brs), 3.1(2H, d, J= 4.9Hz), 1.2(9H, s).
25	∕ NHCO₂Me	o	(CDCl ₃): 9.0(1H, s), 7.5(2H, d, J= 8.2hz), 7.4-7.2(6H, m), 7.1(2H, d, J= 6.6Hz), 7.0((2H, d, J= 8.3Hz), 5.6(1H, m), 4.7-4.5(2H, m), 3.8-3.7(2H, m), 3.6(3H, s), 3.3-3.2(2H, m), 3.1-3.0(2H, m).
26	∕ NHBoc	0	(CDCl ₃): 8.1(1H, s), 7.5(2H, d, J=8.6Hz), 7.4-7.2(6H, m), 7.1(2H, d, J= 7.6Hz), 7.0(2H, d, J= 8.3Hz), 5.2-5.1(1H, m), 4.7-4.6(2H, m), 3.8-3.7(2H, m), 3.3-3.0(4H, m), 1.4(9H, s).

	Me		
実施例 番号	R	Υ	¹H-NMR δ:
27	Me Me	S	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.3(3H, m), 7.2(2H, d, J= 8.6Hz), 5.4-5.3(1H, m), 3.5(1H, dd, J= 5.9, 13.9Hz), 3.4-3.3(4H, m), 3.2(1H, dd, J= 4.3, 13.9Hz), 2.1-1.9(2H, m), 0.8(6H, d, J= 2.3Hz), 0.8(6H, d, 2.6Hz)
28	Me Me	S	(CDCl ₃): 7.7-7.1(7H, m), 5.3(1H, m), 3.5(1H, m), 3.3-3.1(4H, m), 1.9-1.6(2H, m), 1.1(3H, dd, J= 6.9, 14.9Hz), 1.0-0.8(12H, m).
29	Me Me	s	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.2(2H, d, J= 8.3Hz), 6.0(1H, d, J= 6.3Hz), 5.4(1H, d, J= 4.3Hz), 3.7-3.1(5H, m), 2.0-1.4(4H, m), 1.3-0.8(12H, m).
30	Me Me	S	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.6-7.2(3H, m), 7.2(2H, dd, J= 2.6, 8.3Hz), 5.4(1H, brs), 3.6-3.5(1H, m), 3.4-3.0(3H, m), 2.0-1.9(1H, m), 1.5-1.1(11H, m), 1.0-0.8(9H, m).
31	Д	S	(CDCl ₃): 10.1(1H, s), 7.6(2H, d, J= 8.6Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.6Hz), 6.0(1H, d, J= 6.6Hz), 5.3(1H, dd, J= 6.9, 10.9Hz), 4.4-4.3(1H, m), 3.8-3.5(2H, m), 3.5(1H, dd, J= 3.9, 13.5Hz), 3.2(1H, dd, J= 3.6, 13.5Hz), 2.3-1.9(5H, m), 1.7-1.5(2H, m), 0.9(6H, dx2, J= 4.6Hz).
32	a	s _	(CDCl ₃): 9.5(1H, s), 7.6-7.1(7H, m), 6.1(1H, d, J= 6.6Hz), 5.4(1H, brd, J= 3.6Hz), 5.0(1H, brs), 3.6(1H, dd, J= 6.9, 13.9Hz), 3.3(1H, dd, J= 6.9, 13.9Hz), 2.6(1H, s), 1.8-1.4(6H, m), 0.9(6H, dx2, J= 7.3Hz).
33	Q	S	(CDCl ₃): 9.0(1H, s), 7.6-7.1(8H, m), 6.0(1H, d, J= 6.3Hz), 5.4(1H, brd, J= 3.6Hz), 4.9(1H, brs), 3.6(1H, dd, J= 5.9; 13.9Hz), 3.3(1H, dd, J= 3.9, 13.9Hz), 1.9-1.1(10H, m), 0.8(6H, dx2, J= 7.3Hz).
34	Me	S	(CDCl ₃): 7.6-6.8(12H, m), 5.5-5.2(2H, m), 4.7-4.5(2H, m), 3.4-3.0(2H, m), 2.0(3H, s), 1.9-1.7(1H, m), 1.3-0.9(m, 6H).

表 2 - 2

35	Me	s	(CDCl ₃): 8.1(1H. s). 7.5(2H. d, J= 8.3Hz), 7.4-7.1(6H, m), 6.9(1H, s), 6.8(2H, d, J= 8.3Hz), 5.6-5.4(2H, m), 4.1(1H, dd, J= 7.9, 13.5Hz), 3.9(1H, dd, J= 7.3, 13.5Hz), 3.1(2H, d, J= 5.6Hz), 2.3(3H, s), 1.9-1.7(1H, m), 0.9(3H, d, J= 6.6Hz), 0.8(3H, d, J=6.6Hz).
36	a	s	(CDCl ₃): 8.1(1H, brs), 7.5(2H, d, J= 8.3Hz), 7.4-7.0(6H, m), 7.0(1H, m), 6.9(2H, d, J= 8.3Hz), 5.5-5.4(2H, m), 4.2-3.9(2H, m), 3.2(1H, d, J= 3.3Hz), 1.8(1H, m), 0.9(6H, dx2, J= 6.6Hz).
37	a	S	(CDCl ₃): 9.5(1H, brs), 7.6-7.0(11H, m), 5.7(1H, d, J= 6.9Hz), 5.2(1H, dd, J= 5.9, 6.3Hz), 4.1-3.9(2H, m), 3.4(1H, dd, J= 6.3, 13.9Hz), 3.1(1H, dd, J= 5.9, 13.9Hz), 1.8(1H, m), 0.9(6H, dx2, J= 6.6Hz).
38	8	S	(CDCl ₃): 8.0-7.8(2H, m), 7.7-7.3(7H, m), 7.1(2H, d, J= 8.3Hz), 7.0(2H, d, J= 8.3Hz), 6.4(2H, d, J= 8.3Hz), 5.4- 5.2(2H, m), 4.0(2H, s), 3.5-3.2(2H, m), 1:9(1H, m), 1.1(3H, d, J= 6.6Hz), 0.9(3H, d, J=6.6Hz).
39		s	(CDCl ₃): 9.7(1H, s), 7.8-7.1(13H, m), 6.1(1H, d, J= 6.6Hz), 5.4(1H, d, J= 4.6Hz), 5.1(2H, s), 3.4-3.3(2H, m), 3.5(1H, dd, J= 6.3, 13.9Hz), 3.2(1H, dd, J= 4.0, 13.9Hz), 2.0(1H, m), 0.9(3H, d, J= 7.9Hz), 0.8(3H, d, J= 6.9Hz).
40	Me	s	(CDCl ₃): 12.7(1H, brs), 10.6(1H, s), 7.68-7.1(12H, m), 6.1(1H, d, J= 6.3Hz), 5.4(1H, d, J=3.6Hz), 3.6(1H, d, J= 13.9Hz), 3.3(1H, d, J= 13.9Hz), 3.1-2.6(2H, m), 1.9-1.8(1H, m), 1.6(3H, d, J= 6.9Hz), 0.7(3H, d, J= 6.6Hz), 0.5(3H, d, J= 6.6Hz).
42	Me	s	(CDCl ₃): 7.6(2H, d, J= 8.6Hz), 7.4-7.2(3H, m), 7.2(2H, d, J= 8.6Hz), 5.4(1H, m), 3.6(1H, dd, J= 5.9, 13.9Hz), 3.3(1H, dd, J= 3.9, 13.9Hz), 3.1(1H, m), 2.1(1H, m), 0.9(6H, dx2, J= 7.3Hz).
43	Me Me	S	(CDCl ₃): 7.6-7.1(12H, m), 6.8(1H, brs), 6.1(1H, brs), 5.4(1H, m), 3.6-2.3(5H, m), 1.7-1.2(2H, m), 1.1(3H, dd, J= 6.6, 18.5Hz), 1.0(3H, dd, J= 6.6, 9.2Hz), 0.6(3H, dd, J= 6.6, 15.2Hz), 0.5(3H, dd, J= 6.6, 18.5Hz)
44	Me	s	(CDCl ₃): 7.7-7.1(12H, m), 6.8(1H, brs), 5.5(1H, m), 5.4(1H, m), 3.6(1H, m), 3.3-3.2(3H, m), 2.9(2H, brs), 1.6-1.4(4H, m), 1.1-0.9(3H, m), 0.7(3H, dd, J= 3.0, 6.6Hz), 0.4-0.2(3H, m).
45	ОН	s	(CDCl ₃): 7.5(2H, d, J= 8.3Hz), 7.5-7.2(8H, m), 7.1(2H, d, J= 8.3Hz), 5.3(1H, m), 4.2-4.1(2H, m), 3.5-3.0(5H, m), 1.8(1H, brs), 0.8(3H, d, J= 6.6Hz), 0.6(3H, d, J= 5.9Hz).
46	Me Me	S	(CDCl ₃): 8.0(1H, brs), 7.4-6.9(13H, m), 4.5(2H, brs), 3.4(2H, t, J= 6.9Hz), 2.9(1H, dd, J= 6.6, 15.6Hz), 2.7(1H, dd, J= 6.6, 15.6Hz), 1.8(1H, m), 1.6(3H, s), 1.5(3H, s), 0.9(6H, dx2, J= 2.6Hz).

47	F Me	s	(DMSO-d ₆): 12.7(brs). 10.7(1H, brs), 7.6-7.4(5H, m), 7.4(1H, t, J= 5.9Hz), 7.2(2H, t, J= 8.3Hz), 7.1-7.0(3H, m), 6.6(1H, brs), 5.3(1H, q, J= 56Hz), 3.3-3.1(2H, m), 2.9(1H, m), 2.4(1H, m), 1.6(1H, m), 1.4(3H, d, J= 6.9Hz), 0.6(3H, dd, J= 6.6, 15.6Hz), 0.5(3H, d, J= 6.6Hz)
48	F Me	S	(DMSO- d_8): 12.7(1H, brs), 10.7(1H, s), 7.6(2H, d, J= 8.3Hz), 7.6(2H, d, J= 6.3Hz), 7.5(1H, m), 7.3-7.1(7H, m), 6.6(1H, brs), 5.3(1H, brs), 3.3-3.1(2H, m), 2.9(1H, m), 1.6(1H, m), 1.4(3H, t, J= 3.3Hz), 0.6(2H, d, J= 6.6Hz), 0.5(2H, dd, J= 6.6, 12.9Hz), 0.4(2H, d, J= 6.6Hz).
49	Mc ₂ N Me	s	(DMSO-d ₆): 10.7(1H, s), 7.6-7.4(6H, m), 7.3(1H, t, J= 8.6Hz), 7.2-7.1(3H, m), 7.0(1H, d, J= 6.9Hz), 6.9(1H, brs), 6.6(1H, brs), 5.3(1H, m), 3.3-3.1(3H, m), 3.0(6H, sx2), 1.7(1H, brs), 1.5(3H, t, J= 5.9Hz), 0.6(2H, d, J= 6.6Hz), 0.5(3H, t, J= 6.3Hz), 0.4(1H, d, J= 6.3Hz).
50	ÇI Me	S	DMSO-d ₆): 10.6(1H, s), 7.6-7.4(8H, m), 7.1(3H, t, J= 7.6Hz), 6.7(1H, brd, J= 6.6Hz), 4.6(1H, brs), 4.2(1H, m), 3.1(3H, m), 2.8(1H, m), 2.5(1H, m), 1.5(3H, dd, J= 6.9, 12.9Hz), 1.2(1H, m), 0.5(3H, dd, J= 6.3, 19.1Hz), 0.3(3H, dd, J= 6.3, 18.0Hz).
51	CI	S	(DMSO-d _e): 10.6(1H, s), 7.6-7.3(7H, m), 7.3(1H, d, J= 2.6Hz), 7.2(2H, d, J= 8.3Hz), 7.1(1H, d, J= 7.6Hz), 6.6(1H, brs), 5.3(1H, q, J=5.6Hz), 3.2(2H, dd, J= 5.9, 14.4Hz), 3.1(1H, m), 3.0(1H, brs), 1.7-1.6(1H, m), 1.5(3H, d, J= 6.9Hz), 0.6(2H, d, J= 6.6Hz), 0.5(3H, d, J= 6.3Hz), 0.36(1H, d, J= 6.6Hz).
52	CI Me	S	(DMSO-d ₆): 10.6(1H, s), 7.6-7.3(8H, m), 7.1(3H, d, J=7.9Hz), 6.8(1H, m), 4.7(1H, brs), 3.5(1H, m), 3.2-3.1(2H, m), 2.9(1H, m), 2.7(1H, brs), 2.6(1H, m), 1.7(1H, m), 1.5(3H, brs), 0.6(3H, d, J=6.6Hz), 0.4(3H, dd, J=6.3, 13.5Hz).
53	OMe Me	s	(DMSO-d ₀): 10.7(1H, s), 7.6-7.3(7H, m), 7.2(2H, dd, J= 2.0, 8.6), 7.0(1H, brs), 7.0-6.9(2H, m), 6.1(1H, brs), 5.1(1H, brs), 3.6(3H, s), 3.2-3.0(2H, m), 2.8(1H, dd, J= 7.9, 14.2Hz), 1.5(1H, m), 1.4(3H, t, J= 7.6Hz), 0.6(3H, t, J= 6.6Hz), 0.3(3H, d, J= 6.6Hz).
54	MeO Me	S	(DMSO- d_{θ}): 10.5(1H, brs), 7.6-7.2(6H, m), 7.1-7.0(2H, m), 6.9(1H, s), 6.8(2H, d, J= 8.3Hz), 6.7(1H, brs), 4.5(1H, brs), 3.7(3H, s), 3.5(1H), 3.2-3.1(2H, m), 2.8(1H, m), 2.7(1H, brs), 1.7(1H, brs), 1.4(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.3Hz), 0.4(3H, d, J= 4.0Hz).
55	Me O Me		(DMSO-d ₈): 10.6(1H, s), 7.6-7.4(4H, m), 7.2(3H, dd, J= 8.6, 14.4Hz), 7.1(2H, dd, J= 4.3, 8.6Hz), 6.9(2H, dd, 8.9, 11.2Hz), 6.7(1H, m), 4.6(1H, brs), 3.7(3H, s), 3.2-3.1(2H, m), 2.9(1H, m), 2.7(1H, d, J=6.3Hz), 1.7(1H, m), 1.4(3H, d, J= 4.6Hz), 0.6(3H, d, J= 6.6Hz), 0.4(3H, dd, J= 6.3, 9.6Hz).

56	CI Me	S	(DMSO-d ₆):12.8(1H, brs), 10.7(1H, s), 7.6-7.3(8H, m), 7.2(1H, d, J= 8.2Hz), 7.2(1H, d, J= 8.2Hz), 7.1(1H, d, J= 8.6Hz), 6.9(1H, d, J= 7.3Hz), 6.4(1H, d, J= 6.6Hz), 5.2(1H, q, J= 5.9Hz), 3.3-3.1(2H, m), 2.9(1H, dd, J= 7.9, 15.0Hz), 1.5(3H, d, J= 6.6Hz), 1.3(1H, m), 0.6(3H, d, J= 6.6Hz), 0.4(3H, dd, J= 6.6, 12.2Hz).
57	CI CI	S	(DMSO- $d_{\rm g}$): 12.7(1H, brs), 10.7(1H, s), 7.6-7.4(8H, m), 7.2(2H, dd, J= 8.3, 11.7Hz), 6.9(1H, d, J= 6.6Hz), 6.4(1H, d, J= 6.6Hz), 5.2(1H, m), 3.2-2.8(3H, m), 1.4(1H, m), 1.5(3H, d, J= 6.6Hz), 0.9(1H, d, J= 6.9Hz), 0.54(3H, d, J= 6.6Hz), 0.4(3H, dd, J= 6.6, 12.2Hz).
58	Me N	s	(DMSO-d ₆): 12.6(1H, brs), 10.7(1H, s), 8.5(1H, m), 7.8-7.1(11H, m), 6.3(1H, m), 5.2(1H, m), 3.4-2.9(4H, m), 1.7(1H, m), 1.5-1.4(3H, m), 0.7-0.4(6H, m).
59	Me N	S	(DMSO-d _e): 10.7(1H, s), 8.6-8.4(2H, m), 7.6-7.1(10H, m), 6.8(1H, m), 5.2(1H,m), 3.4-2.9(4H, m), 1.6(1H, m), 1.5(3H, d, J= 7.3Hz), 0.6-0.3(6H, m).
60	Me N	Ś	(DMSO-d ₆): 12.7(1H, brs), 10.7(1H, s). 8.5(2H, m), 7.6-7.2(10H, m), 6.6(1H, m), 5.3(1H, m), 3.4-3.1(3H, m), 2.6(1H, m), 1.6(1H, m), 1.5(3H, d, J= 6.9Hz), 0.7-0.5(6H, m).
61	Me	S	(DMSO-d ₆): 12.7(1H, brs), 10.7(1H, s), 7.6-7.4(6H, m), 7.2-7.0(3H, m), 6.6-6.4(3H, m), 5.2(1H, m), 3.3-2.7(4H, m), 1.5-1.3(4H, m), 0.6-0.3(6H, m)
62	√N Me	S	(DMSO-d _g): 12.8(1H, brs), 10.7(1H, s), 7.7-7.2(9H, m), 6.8(1H, m), 5.2(1H, m), 3.4-2.7(4H, m), 1.6-1.5(4H, m), 0.6-0.3(6H, m).
63	s C	S	(DMSO-d ₈): 12.7(1H, brs), 10.7(1H, s), 7.6-7.2(9H, m), 6.6-6.2(2H, m), 5.4(1H, m), 3.6-2.6(6H, m), 2.1-1.5(5H, m), 1.0-0.5(6H, m).
64	N Me	Ø	(DMSO-d _B): 12.7(1H, brs), 10.6(1H, s), 8.7-8.5(3H, m), 7.6-7.2(8H, m), 6.6(1H, m), 5.2(1H, m), 3.3-2.8(4H, m), 1.5-1.4(4H, m), 0.6-0.2(6H, m).
65	S—Me	s	(DMSO-d _e): 12.8(1H, brs), 10.7(1H, s), 7.9-7.1(13H, m), 6.9(1H, m), 5.3(1H, m), 3.3-2.6(4H, m), 1.8(1H, m), 1.6-1.5(3H, m), 0.7-0.5(6H, m).
66	M _o	s	(CDOI ₃): 7.6-7.2(12H, m), 5.4(1H, brs), 3.6-3.1(5H, m), 2.7-2.5(2H, m), 2.0-1.7(3H, m), 1.2(3H, dd, J= 3.3, 6.6Hz), 0.9(3H, d, J= 8.3Hz), 0.8(3H, d, J= 5.3Hz).
67	8	S	(CDCl ₃): 8.4(1H, brs), 7.6-7.5(2H, m), 7.4-7.0(10H, m), 6.0-5.9(1H, m), 5.4-5.3(1H, m), 3.5-2.8(7H, m), 2.5-1.8(3H, m), 0.9-0.8(6H, m).

			·
68		s	(CDCl ₃): 9.2(1H, brs), 7.7-7.6(2H, m), 7.4-7.1(9H, m), 6.0(1H, d, J= 6.6Hz), 5.8(1H, m), 5.4(1H, m), 3.6-2.9(9H, m), 1.9(1H, m), 0.9-0.8(6H, m).
70	MeO MeO	S	(DMSO- d_{δ}): 12.8(1H, brs), 10.8(1H, s), 7.6-7.4(5H, m), 7.3(2H, d, J= 8.3Hz), 7.2(1H, d, J= 8.3Hz), 7.1(1H, brs), 6.8(1H, d, J= 8.6Hz), 6.8(1H, s), 6.7(1H, d, J= 7.3Hz), 4.8(1H, m), 3.9(1H, brs), 3.7(6H, sx2), 3.4(2H, brs), 3.2(1H, d, J= 6.3Hz), 3.1(2H, brs), 2.7(2H, brs), 1.9(1H, brs), 0.8(6H, t, J= 6.9Hz).
71	MeO MeO	s	(CDCl ₃): 8.2(1H, d, J= 13.5Hz), 7.6(1H, d, J= 8.5Hz), 7.5(1H, d, J= 8.5Hz), 7.3-7.1(3H, m), 7.0-6.7(4H, m), 5.9-5.6(2H, m), 3.9(6H, sx2), 3.5-2.5(7H, m), 2.0(1H, m), 1.2(3H, d, J= 6.9Hz), 0.8(6H, dx2, J= 3.3Hz).
72	CI CI	S	(CDCl ₃): 8.1(1H, brs), 7.5(2H, d, J= 8.3Hz), 7.4-7.1(8H, m), 5.3(1H, d, J=6.3Hz), 4.8(2H, s), 3.9-3.7(1H, brs), 3.6(2H, d, J= 6.6Hz), 3.3(1H, dd, J= 5.6, 13.9Hz), 3.1-2.9(3H, m), 2.0(1H, m), 1.1(3H, d, J= 6.9Hz), 0.8(6H, dx2, J= 4.3Hz).
73	BocHN <u> </u>	S	(CDCl ₃): 7.6-7.2(8H, m), 5.3(1H, brs), 3.5(1H, dd, J= 5.3, 13.5Hz), 3.4-3.3(4H, m), 3.3(1H, dd, J= 6.3, 13.5Hz), 1.8(1H, m), 1.5(9H, s), 0.9(3H, d, J= 3.9Hz), 0.8(3H, d, J= 5.9Hz).
74	CI O H	S	(CDCl ₃): 9.8(1H, brs), 8.0(1H, d, J= 4.3Hz), 7.6(2H, d, J= 8.3Hz), 7.4-7.2(7H, m), 7.2(2H, d, J= 8.3Hz), 6.5(1H, brs), 5.3(1H, d, J=6.3Hz), 4.2-3.6(4H, m), 3.5-3.3(3H, m), 3.2(1H, dd, J= 5.3, 13.9Hz), 2.0-1.9(1H, m), 0.9(6H, dx2, J= 2.3Hz).
75	Me O H	S	(CDCl ₃): 9.7(1H, brs), 8.2(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.3Hz), 7.0(2H, m), 6.5(1H, m), 6.4(1H, brs), 5.3(1H, brs), 4.2(2H, brs), 3.8(6H, sx2), 3.7-3.2(6H, m), 1.9(1H, m), 0.9(6H, m).

表2-6

	1.		
実施例 番号	R	Υ	¹H-NMR δ:
76	Me Me	0	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.2(2H, d, J= 8.3Hz), 4.6(1H, t, J= 5.6Hz), 3.8(1H, dd, J= 6.6, 13.5Hz), 3.4-3.1(2H, m), 3.0-2.7(2H, m), 1.9-1.2(8H, m), 1.1(3H, d, J= 6.9Hz), 0.9-0.8(9H, m).
77	Me ^	0	(CDCl ₃): 7.6(2H, d, J= 7.9Hz), 7.4-7.2(3H, m), 7.2(2H, d, J= 7.9Hz), 4.6(1H, brs), 3.2-2.9(6H, m), 1.8(1H, m), 1.5(2H, brs), 1.3(6H, brs), 0.9-0.8(9H, m).
78	₩e	0	(CDCl ₃): 7.8-6.8(12H, m), 7.0(2H, d, J= 7.9Hz), 6.8(2H, d, J= 8.3Hz), 5.6(1H, s), 5.5-5.4(1H, m), 4.1-3.9(2H, m), 3.1(1H, dd, J= 5.6, 13.9Hz), 3.0(1H, dd, J= 5.2, 13.9Hz), 2.1(3H, s), 1.9-1.7(1H, m), 0.9(3H, d, J= 6.6Hz), 0.8(3H, d, J=6.6Hz).
79	8	0	(CDCl ₃): 7.9-7.2(13H, m), 6.9(1H, d, J= 8.3Hz), 6.5(1H, d, J= 8.3Hz), 5.6(1H, m), 4.1-3.9(2H, m), 3.8(2H, d, J= 5.6Hz), 1.8(1H, m), 1.1-0.9(6H, m).
80	Me	0	(CDCl ₂): 7.6(2H, d, J= 8.3Hz), 7.4-7.2(9H, m), 7.1(1H, d, J= 8.3Hz), 5.3-5.2(1H, m), 4.7-4.6(1H, m), 3.2(1H, dd, J= 5.6, 18.9Hz), 3.1(1H, dd, J= 6.3, 18.9Hz), 2.9(1H, dd, J= 6.9, 14.8Hz), 2.7(1H, dd, J= 7.9, 14.8Hz), 1.7-1.6(1H, m), 1.5(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.6Hz), 0.7(3H, d, J= 6.6Hz).
82	F Me	0	(DMSO-d ₆): 12.5(1H, m), 10.7(1H, s), 7.6(4H, d, J= 7.3Hz), 7.5(1H, m), 7.3(1H, m), 7.2(2H, t, J= 6.6Hz), 7.1-6.9(3H, m), 6.3(1H, d, J= 7.9Hz), 5.3(1H, m), 4.3(1H, m), 3.2-2.9(2H, m), 2.7(1H, m), 2.4(1H, m), 1.5(1H, m), 1.4(3H, d, J= 6.6Hz), 0.7(2H, dd, J= 6.6, 11.9Hz), 0.6(3H, d, J= 6.3Hz).
83	F Me	0	(DMSO- d_0): 12.5(1H, brs), 10.7(1H, s), 7.6-7.5(5H, m), 7.3-7.0(6H, m), 6.3(1H, d, J= 8.3Hz), 5.3(1H, dd, 7.3, 15.3Hz), 4.3(1H, m), 3.1-2.9(2H, m), 2.8(1H, m), 2.4(1H, m), 1.5(1H, m), 1.4(3H, t, J= 6.9Hz), 0.7(2H, d, J= 3.3Hz), 0.6(2H, dd, J= 6.6, 15.0Hz), 0.4(2H, d, J= 6.6Hz).
84	Me ₂ N Mc	0	(DMSO-d ₈): 10.6(1H, s), 7.6-7.5(6H, m), 7.2-7.1(3H, m), 6.6-6.5(3H, m), 5.8(1H, brs), 5.3(1H, brs), 4.2(1H, brs), 3.2-3.1(3H, m), 2.9(3H, s), 2.8(3H, s), 1.6(1H, m), 1.4(3H, d, J=6.3Hz), 0.7(3H, d, J=5.9Hz), 0.6(1H, dd, J=6.3, 12.5Hz).
85	Cl Me	0	(DMSO- d_8): 12.5(1H, brs), 10.7(1H, s), 7.6(4H, d, J= 7.3Hz), 7.5(2H, t, J= 6.6Hz), 7.4(1H, d, J= 6.9Hz), 7.3(2H, t, J= 5.6Hz), 7.2(2H, t, J= 5.9Hz), 6.1(1H, d, J= 7.3Hz), 5.5(1H, dd, J= 6.9, 13.5Hz), 4.3(1H, m), 3.1-2.9(2H, m), 2.8(1H, dd, J= 7.6, 14.2Hz), 2.7(1H, d, J= 7.3Hz), 1.4(3H, t, J= 5.9Hz), 1.2(1H, m), 0.6(3H, dd, J= 6.3, 9.9Hz), 0.4(3H, dd, J= 6.3, 10.6Hz).

86	CI	0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.6(4H, d, J= 6.6Hz), 7.5(1H, m), 7.4-7.2(6H, m), 7.1(1H, d, J= 7.2Hz), 6.3(1H, d, 7.9Hz), 5.3(1H, q, J=6.6Hz), 4.3(1H, m), 3.1-2.9(2H, m), 2.7(1H, m), 1.6(1H, m), 1.4(3H, d, J= 2.6Hz), 0.7(3H, d, J= 6.6Hz), 0.6(3H, dd, J= 6.3, 15.4Hz).
87	Cı	0	$(DMSO-d_8)$: 12.5(1H, brs), 10.7(1H, s), 7.6-7.2(10H, m), 7.1(1H, d, J= 7.3Hz), 6.3(1H, dd, J=8.3, 46.4Hz), 5.3(1H, d, J= 7.3Hz), 4.3(1H, m), 3.2-2.9(2H, m), 2.8(1H, m), 2.61H, m), 1.5(1H, m), 1.4(3H, t, J= 6.3Hz), 0.7(3H, d, J= 4.6Hz), 0.6(3H, dd, J= 6.6, 12.9Hz).
88	OMe Me	0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.6-7.2(9H, m), 6.9(2H, d, J= 6.6Hz), 6.0(1H, d, J= 7.6Hz), 5.3(1H, q, J= 6.6Hz), 4.3(1H, m), 3.6(3H, s), 3.2-2.9(2H, m), 2.7(1H, m), 2.6(1H, m), 1.4(3H, t, J= 6.3Hz), 0.6(3H, d, J= 6.6Hz), 0.4(3H, d, J= 6.6Hz).
89	MeO Me	0	(DMSO-d ₆): 10.7(1H, s), 7.6-7.5(5H, m), 7.2-7.1(3H, m), 6.8(1H, d, J= 6.9Hz), 6.7-6.6(2H, m), 6.2(1H, d, J= 8.3Hz), 5.3(1H, q, J= 6.6Hz), 4.3(1H, m), 3.7(3H, s), 3.6(1H, m), 3.1-2.8(2H, m), 2.6(1H, dd, J= 7.3, 14.2Hz), 1.5(1H, m), 0.7(3H, d, J= 6.3Hz), 0.6(3H, dd, J= 6.6, 11.6Hz).
90	MeO Me	0	(DMSO-d ₆): 10.6(1H, s). 7.6-7.4(5H, m), 7.3(1H, d, J= 8.6Hz), 7.2-7.1(4H, m), 6.9(2H, dd, J= 8.6, 11.6Hz), 6.0(1H, brs), 5.3(1H, m), 4.2(1H, d, J= 5.3Hz), 3.7(3H, s), 3.2-3.0(2H, m), 2.6(1H, m), 1.6(1H, m), 1.4(3H, d, J= 5.0Hz), 0.8(1H, dd, J= 2.3, 6.3Hz), 0.7(3H, d, J= 6.6Hz), 0.6(3H, t, J= 5.9Hz), 3.4-3.1(3H, m), 2.6(1H, m), 1.6(1H, m), 1.5(3H, d, J= 6.9Hz), 0.7-0.5(6H, m).
91	G C	0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.6(4H, d, J= 6.9Hz), 7.5(2H, d, J= 6.3Hz), 7.5-7.4(2H, m), 7.2(1H, t, J= 7.3Hz), 6.2(1H, d, J= 7.6Hz), 5.4(1H, t, J= 6.3Hz), 4.3(1H, brs), 3.0-2.6(4H, m), 1.4(1H, d, J= 6.9Hz), 1.3(1H, m), 0.6(3H, t, J= 5.3Hz), 0.5(3H, t, J= 5.3Hz),
92	CI CI CI	0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.9-7.4(8H, m), 7.2(2H, t, J= 6.6Hz), 6.2(1H, d, J= 7.6Hz), 5.4(1H, dd, J= 6.3, 11.0Hz), 4.4(1H, m), 3.1-2.6(4H, m), 1.4(1H, d, J=5.0Hz), 1.3(1H, dd, J= 5.9, 12.9Hz), 0.6(3H, t, J= 6.3Hz), 0.4(3H, t, J= 6.3Hz).
93	Me N	0	(DMSO-d _e): 12.5(1H, brs), 10.7(1H, s), 8.5(1H, d, J= 4.6Hz), 7.7-7.5(6H, m), 7.3-7.0(4H, m), 6.5(1H, m), 5.2(1H, m), 4.4(1H, m), 3.1-2.7(4H, m), 1.6(1H, m), 1.5(3H, d, J= 6.9Hz), 0.7-0.6(6H, m).
94	Me N	0	(DMSO-d ₆): 12.5(1H, brs), 10.6(1H, s), 8.5-8.4(2H, m), 7.6-7.2(9H, m), 6.2(1H, m), 5.3(1H, m), 4.3(1H, m), 3.1-2.7(4H, m), 1.6(1H, m), 1.5-1.4(3H, m), 0.7-0.6(6H, m).

	·		
95	Me N	0	(DMSO-d ₈): 12.5(1H, brs), 10.7(1H, s), 8.5-8.4(2H, m), 7.6-7.4(5H, m), 7.2-7.0(4H, m), 6.3(1H, m), 5.2(1H, m), 4.4(1H, m), 3.1-2.6(4H, m), 1.7(1H, m), 1.5-1.4(3H, m), 0.8-0.7(6H, m).
96	√ Me	٥٠	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.6-7.4(6H, m), 7.2-7.1(2H, m), 6.4-6.2(2H, m), 6.2(1H, d, J= 7.6Hz), 5.3(1H, m), 4.3(1H, m), 3.1-2.6(4H, m), 1.5-1.3(4H, m), 0.7-0.5(6H, m).
97	√N Me	0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.7-7.4(7H, m), 7.2-7.1(2H, m), 6.4(1H, m), 5.4(1H, q, J=6.9Hz), 4.3(1H, m), 3.1-2.7(4H, m), 1.6(1H, m), 1.5-1.4(3H, m), 0.7-0.6(6H, m).
98		0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.6-7.4(5H, m), 7.3-7.2(3H, m), 6.4(1H, m), 6.1(1H,m), 5.1(1H, m), 4.4(1H, m), 3.2-2.2(6H, m), 2.1-1.6(5H, m), 0.8-0.7(6H, m).
99	Me Z Z	0	(DMSO-d _e): 10.6(1H, s), 8.6-8.5(2H, m), 7.6-7.5(5H, m), 7.2-7.1(2H, m), 6.4(1H, m), 5.2(1H, m), 4.3(1H, m), 3.1-2.7(4H, m), 1.6(1H, m), 1.5(3H, d, J= 6.9Hz), 0.7-0.6(6H, m).
100	CJS-/Me	0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.9-7.2(12H, m), 6.2(1H, m), 5.5(1H, m), 4.4(1H, m), 3.1-2.6(4H, m), 1.7(1H, m), 1.6(3H, d, J= 6.9Hz), 0.7-0.6(6H, m).
101	Me Me	0	(CDCl ₃): 12.4(1H, brs), 10.6(1H, s), 7.6-7.1(12H, m), 5.9(1H, m), 4.3(1H, m), 3.8(1H, m), 3.1-2.7(4H, m), 2.5-2.3(2H, m), 1.9-1.5(3H, m), 1.1(3H, d, J= 5.9Hz), 0.7(6H, dx2, J= 6.9Hz).
102	8	0	(CDCl ₃): 8.2(1H, brs), 7.6-7.5(2H, m), 7.4-6.9(10H, m), 5.1(1H, m), 4.5(1H, m), 3.3-2.7(7H, m), 2.4-1.8(3H, m), 0.9-0.8(6H, m).
103		0	(CDCl ₃): 8.8(1H, brs), 7.6-7.5(2H, m), 7.4-7.0(10H, m), 5.3(1H, m), 4.7(1H, m), 3.3-2.7(7H, m), 2.4-1.7(3H, m), 0.9-0.8(6H, m).
105	0~~	0	(CDCl ₃): 7.6(2H, d, J= 7.9Hz), 7.4-7.2(6H, m), 7.2(4H, d, J= 7.9Hz), 4.6(1H, brs), 3.3-3.0(4H, m), 2.9(2H, d, J= 5.0Hz), 2.6-2.5(2H, m), 1.9-1.7(3H, m), 0.8(6H, d, J= 6.6Hz).
106	MeO MeO	0	(DMSO-d ₆): 12.5(1H, brs), 10.6(1H, s), 7.6-7.4(5H, m), 7.2(2H, d, J= 8.3Hz), 6.8(1H, d, J= 7.9Hz), 6.7(1H, s), 6.6(1H, d, J= 8.3Hz), 6.0(1H, d, J= 6.3Hz), 4.1(1H, d, J= 5.3Hz), 3.7(6H, s), 3.5-3.2(1H, m), 3.1(1H, s), 3.0(2H, brd, J= 6.6Hz), 2.9(1H, dd, J= 7.6, 13.9Hz), 2.8(1H, dd, J= 7.3, 13.9Hz), 2.6(2H, brs), 1.8-1.7(1H, m), 0.8(6H, t, J= 6.3Hz).

'			
107	MeO Me	0	(CDCl ₃): 8.2(1H, d, J= 6.6Hz), 7.6(2H, d, J= 7.9Hz), 7.3-7.1(5H, m), 6.7(1H, d, J= 8.6Hz), 6.6(2H, d, J= 3.9Hz), 4.6(1H, m), 3.8(1H, m), 3.8(6H, sx2), 3.2-3.1(2H, m), 3.0(1H, m), 2.8-2.5(3H, m), 1.2(3H, t, J= 5.9Hz), 0.8-0.7(6H, m).
108	MeO 🔨	0	(CDCl ₃): 8.3(1H, s), 7.6(2H, d, J= 8.3Hz), 7.3-7.2(4H, m), 6.2(1H, brs), 4.5(1H, dd, J= 6.3, 12.6Hz), 3.3(3H, s), 3.4-3.0(8H, m), 1.8(1H, m), 0.9(3H, s), 0.8(3H, s).
109	MeO	0	(CDCl ₃): 8.6(1H, d, J= 7.9Hz), 7.6(2H, d, J= 7.9Hz), 7.3-7.1(4H, m), 6.0(1H, brs), 4.5(1H, m), 3.7(1H, m), 3.4-3.3(2H, m), 3.2(3H, s), 3.2-2.8(2H, m), 1.7(1H, m), 1.1(3H, d, J= 6.9Hz), 0.8(6H, d, J= 6.3Hz).
110	Ç _G ° ~ ~	0	(CDCl ₃): 7.6(2H, d, J= 8.6Hz), 7.4-7.2(5H, m), 7.1(2H, d, J= 8.6Hz), 6.1(1H, brs), 4.8(2H, s), 43(1H, m), 3.7-3.5(3H, m), 3.3-3.1(2H, m), 2.7(2H, dd, J= 6.9, 14.5Hz), 1.7(1H, m), 1.1(3H, d, J= 6.1Hz), 0.8(6H, dx2, J= 2.6Hz).
111	BocHN	0	(CDCl ₃): 8.9(1H, brs), 7.6-7.2(7H, m), 5.4(1H, brs), 4.6(1H, m), 3.3-3.1(6H, m), 2.9(2H, d, J= 7.6Hz), 1.7(1H, m), 1.45(9H, s), 0.8(6H, dx2, J= 6.6Hz).
112	AcHN	0	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.3(3H, m), 7.2(2H, d, J= 8.3Hz), 4.6(1H, m), 3.4-3.1(6H, m), 2.9(2H, d, J= 7.6Hz), 1.9(3H, s), 1.8(1H, m), 0.8(6H, dx2, J= 6.6Hz).
113	MsHN 🔨	0	(CDCl ₃): 7.6(2H, dd, J= 2.0, 8.6Hz), 7.4-7.3(3H, m), 7.2(2H, dd, J= 2.6, 8.6Hz), 4.6(1H, m), 3.4-2.9(12H, m), 1.8(1H, m), 0.8(6H, dx2, J= 6.6Hz).
114.		0	(CDCl ₃): 9.9(1H, brs), 8.0(1H, s), 7.6(2H, d, J= 7.9Hz), 7.5-7.2(7H, m), 7.2(2H, d, J= 7.9Hz), 5.6(1H, brs), 3.7-3.4(4H, m), 3.2-3.0(4H, m), 1.8(1H, m), 0.9(6H, dx2, J= 2.3Hz).
115	MeO H	0	(CDCl ₃): 9.8(1H, brs), 8.2(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.3Hz), 7.0(2H, d, J= 2.0Hz), 6.5(1H, m), 5.5(1H, m), 3.8(6H, sx2), 3.5(4H, m), 3.2(2H, m), 1.8(1H, m), 0.8(6H, m).
116	Me Me Mc	·. O	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.3Hz), 5.1(1H, dd, J= 6.6, 13.5Hz), 4.7(1H, t, J= 5.6Hz), 1.7(1H, m), 1.2-1.1(9H, m), 0.8(6H, dx2, J= 8.6Hz).
118	Me Me Me Me N	0	(CDCl ₃): 7.6(2H, d, J= 7.9Hz), 7.4-7.2(3H, m), 7.2(2H, d, J= 7.9Hz), 5.2(1H, m), 4.7(1H, brs), 3.4-2.8(9H, m), 1.9(1H, m), 1.8(1H, m), 1.3-0.8(15H, m).

	H		•
実施例 番号	R	Υ	¹H-NMR δ:
122	Me H	s	(CDCl ₃): 10.2(1H, brs), 7.6-7.2(9H, m), 5.4-5.3(1H, m), 3.3(2H, m), 3.3-3.1(2H, m), 1.8(1H, m), 0.9(3H, s), 0.8(3H, s).
123	O II.	s	(CDCl ₃): 10.2(1H, brs), 9.5(1H, brs), 7.6-7.1(14H, m), 5.3(1H, dd, J= 4.3, 5.6Hz), 3.4(1H, dd, J= 5.6, 13.9Hz), 3.2(1H, dd, J= 4.3, 13.9Hz).
124		S	(CDCl ₃): 10.2(1H, brs), 8.5(1H, d, J= 4.0Hz), 8.0(1H, brs), 7.7-7.1(13H, m), 5.3(2H, d, J= 6.3Hz), 4.7(1H, m), 3.3(1H, dd, J= 5.6, 13.9Hz), 3.1(1H, dd, J= 4.9, 13.9Hz).
125	cı C	S	(CDCl ₃): 9.4(1H, brs), 9.2(1H, brs), 7.6-7.1(12H, m), 6.0(1H, brs), 5.3(1H, m), 3.4(1H, dd, J= 5.9, 13.2Hz), 3.2(1H, dd, J= 4.3, 13.2Hz).
126	Me Me	S	(CDCl ₃): 12.9(1H, brs), 10.7(1H, brs), 9.4(1H, brs), 8.9(1H, brs), 7.7-6.9(10H, m), 5.2(1H, brs), 3.4-2.9(2H, m), 2.5(6H, s).
127	Me Me N Me	s	(CDCl ₃): 8.9(1H, s), 7.5(2H, d, J= 8.6Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.6Hz), 6.0(1H, d, J= 7.6Hz), 3.5-3.2(2H, m), 1.2-1.0(9H, m).
128	Mc Mc Mc N Me	s	(CDCl ₃): 8.4(1H, brs), 7.6(2H, d, J= 12.6Hz), 7.3-7.1(8H, m), 5.9-5.8(2H, m), 5.7(1H, brs), 3.6-3.3(2H, m), 1.2(6H, d, J= 14.2Hz), 1.1(6H, d, J= 13.9Hz).
129	○ _N ^Me	S	(CDCl ₃): 9.7(1H, s), 7.6(2H, d, J= 8.6Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.6Hz), 6.0(1H, d, J= 6.6Hz), 5.4(1H, dd, J= 4.9, 5.9Hz), 3.5(1H, dd, J= 5.9, 13.9Hz), 3.4-3.2(2H, m), 3.2(1H, dd, J= 4.9, 13.9Hz), 1.9-1.6(6H, m), 1.5-1.3(4H, m), 1.1(3H, t, J= 7.3Hz).
130	$\bigcirc_{N}\bigcirc$	s	(CDCl ₃): 8.9(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.4-7.2(6H, m), 4.9(1H, d, J= 5.9Hz), 4.6-4.5(1H, m), 3.4-3.1(4H, m), 1.8-1.0(20H, m)
131	PhO Me	S	(CDCl ₃): 12.9(1H, brs), 10.7(1H, s), 7.6-7.3(7H, m), 7.2-6.9(9H, m), 5.7(1H, d, J= 7.3Hz), 5.6(1H, dt, J= 6.9, 13.5Hz), 5.1(1H, dd, J= 5.3, 5.9Hz), 3.2(1H, dd, J= 5.3, 13.5Hz), 3.0(1H, dd, J= 5.9, 13.5Hz), 1.0(3H, d, J= 6.6Hz), 0.9(3H, d, J=6.6Hz).

Me Me	s	(CDCl ₃): 8.26(1H, m), 7.6-7.1(11H, m), 5.4(1H, m), 3.5-2.9(4H, m), 1.6(3H, d, J= 7.0Hz), 1.3(3H, d, J= 7.3Hz), 1.3-1.2(2H, m), 1.0-0.9(3H, m).,
Me Me	s	(CDCl ₃): 8.5(1H, s), 7.6(2H, d, J= 8.6Hz), 7.4-7.0(9H, m), 6.2(1H, d, J= 6.9Hz), 5.7(1H, m), 4.8(1H, brs), 3.7-3.2(4H, m), 1.6(3H, d, J= 6.9Hz), 1.5(3H, s), 1.2(3H, s).
Me Me Mc	s	(CDCl ₃): 7.5(2H, d, J= 8.3Hz), 7.4-7.2(8H, m), 7.1(2H, d, J= 8.3Hz), 6.8(1H, brs), 5.4(1H, m), 3.4-2.9(5H, m), 1.6(3H, d, J= 6.9Hz), 1.4-0.9(5H, m), 0.7(3H, d, J= 6.3Hz), 0.6(3H, d, J= 6.3Hz).
M _e N ∩ O	S	(DMSO- d_{θ}): 12.7(1H, brs), 10.7(1H, s), 7.6-7.4(5H, m), 7.3-7.1(10H, m), 7.0(2H, d, J= 6.9Hz), 6.7(1H, brs), 5.5(1H, q, J= 4.6Hz), 5.2(1H, brs), 4.9(1H, d, J=17.5Hz), 4.2(1H, d, J= 17.5Hz), 3.2-3.0(2H, m), 1.3(3H, d, J= 7.3Hz).
Me N	S	(DMSO-d ₀): 12.7(1H, brs), 10.7(1H, s), 7.6-7.4(5H, m), 7.3-7.1(9H, m), 7.0(4H, d, J= 7.6Hz), 6.7(1H, brs), 5.2(1H, brs), 5.0(1H, brd, J=15.8Hz), 4.2(1H, d, J= 17.5Hz), 3.1-3.0(2H, m), 1.4(3H, d, J= 6.9Hz).
Me Me	S	(CDCl ₃): 7.6-7.1(18H, m), 6.6(2H, d, J= 8.3Hz), 5.2(2H, d, J= 6.3Hz), 4.6(1H, brs), 2.9(1H, dd, J= 4.6, 13.9Hz), 2.7(1H, d, J= 6.6, 13.9Hz), 1.7(6H, d, J= 7.3Hz).
NHAc NHAc	s	(CDCl ₃): 9.2(1H, s), 7.6(2H, d, J= 8.6Hz), 7.4-7.2(5H, m), 6.9(1H, brs), 5.4(1H, m), 3.5-3.1(7H, m), 1.9(3H, s), 1.8-1.6(5H, m), 1.4-1.2(4H, m), 1.1(1H, m).
O _N NHMs	S	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.3(3H, m), 7.2(2H, d, J= 8.3Hz), 5.4(1H, t, J= 5.6Hz), 3.7-3.1(7H, m), 2.9(3H, s), 1.9-1.7(4H, m), 1.4-1.0(6H, m).
NN NHB∞	s	(CDCl ₃): 9.1(1H, brs), 7.6(2H, d, J= 7.9Hz), 7.3-7.1(5H, m), 5.4-5.2(2H, m), 3.6-3.0(6H, m), 1.9-1.6(5H, m), 1.4(9H, s), 1.5-1.0(5H, m).
N~NHAc	S	(CDCl ₃): 9.3(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.4-7.2(9H, m), 7.0-6.7(2H, m), 5.5(1H, m), 3.5-2.8(9H, m), 2.4(1H, m), 1.9(1H, m), 1.9(3H, s).
N NHMs	S	(CDCl ₃): 9.2(1H, s), 7.6(2H, d, J= 8.3Hz), 7.4-7.1(9H, m), 6.5(1H, brs), 6.0(1H, m), 5.4(1H, brs), 2.8(3H, s), 3.6-2.8(8H, m), 2.4(1H, m), 1.9(1H, m).
N~NHBoc	s _	(CDCl ₃): 8.1(1H, brs), 7.7-7.6(3H, m), 7.3-7.1(8H, m), 7.0(1H, d, J= 6.3Hz), 5.6(1H, m), 4.8(1H, m), 3.5-2.8(8H, m), 2.5(1H, m), 1.8(1H, m), 1.4(9H, s).
NHAc NHAc	S	(CDCl ₃): 9.2(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.4-7.2(5H, m), 7.1-7.0(4H, m), 6.8(1H, brs), 5.6(1H, m), 3.6-2.7(8H, m), 1.9(3H, s), 2.2-1.6(5H, m).
	Me M	Me Me S Me Me S Me Me S Me Me S Me N S Me N S Me N S N N NHAC S S N NHAC S S S S S S S S S S S S S

145	N-NHMs	s	(CDCl ₃): 9.2(1H, brs), 7.6(2H, d, J= 7.9Hz), 7.4-7.1(9H, m), 6.8(1H, brs), 5.7-5.4(1H, m), 3.6-2.7(10H, m), 2.2-1.7(6H, m).
146	NHBoc NHBoc	S	(CDCl ₃): 8.3(1H, brs), 7.7-7.5(3H, m), 7.4-7.0(8H, m), 6.6(1H, m), 5.6(1H, m), 4.8(1H, m), 3.5-2.9(6H, m), 2.7(2H, s), 2.2-1.6(4H, m), 1.5(9H, s)
147	NHAc NHAc	s	(CDCl ₃): 9.1(1H, brs), 7.6(2H, d. J= 7.9Hz), 7.4-7.2(10H, m), 6.6(1H, brs), 5.7-5.4(1H, m), 3.5-2.8(7H, m), 1.9(3H, s), 1.6-1.5(3H, m).
148	NHBoc NHBoc	s	(CDCl ₃): 9.7(1H, brs), 7.7(1H, brs), 7.5(2H, brs), 7.3– 7.1(10H, m), 6.7(1H, brs), 5.3(1H, brs), 5.2(1H, brs), 3.3– 2.7(6H, m), 1.6–1.4(3H, m), 1.4(9H, s).
149	Me N N	s	(CDCl ₃): 10.7(1H, s), 7.6-7.4(5H, m), 7.3(2H, d, J= 8.6Hz), 5.2(1H, m), 3.8-3.5(4H, m), 3.3-3.1(8H, m), 1.2(6H, t, J= 7.3hz), 1.1(3H, t, J= 6.9Hz).
150	Me Me Me	0	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.2(2H, d, J= 8.3Hz), 4.6(1H, m), 3.5(2H, brs), 3.2(1H, dd, J= 5.6, 13.9Hz), 3.1(1H, dd, J= 5.6, 13.9Hz), 1.6-1.4(4H, m), 1.2(3H, d, J= 7.3Hz), 1.1(3H, d, J= 1.7Hz), 0.9(3H, t, J= 7.3Hz), 0.8(3H, t, 7.3Hz).
151	Me Me	0	(CDCl ₃): 8.6(1H, s), 7.7(1H, brs), 7.5(2H, dd, J= 2.3, 8.3Hz), 7.3-7.1(7H, m), 6.9-6.7(2H, m), 5.1-4.9(1H, m), 4.0-3.6(2H, m), 3.1-3.0(2H, m), 1.6(3H, d, J= 6.9Hz), 1.2(3H, d, J= 6.9Hz), 0.9(2H, t, J= 7.3Hz), 0.6(3H, t, J= 7.3Hz).
152	Me N Me Me	0	(CDCl ₃): 8.3(1H, brs), 7.5(2H, d, J= 8.3Hz), 7.3-7.2(8H, m), 6.7(2H, d, J= 7.6Hz), 5.8(1H, d, J= 6.9Hz), 5.4(1H, d, J= 4.3Hz), 4.2-3.6(2H, brs), 3.2-3.1(2H, m), 1.7(3H, d, J= 6.9Hz), 1.1(9H, s).
153	Me N	0	(DMSO-d ₆): 12.6(1H, brs), 10.7(1H, s), 7.6-7.4(5H, m), 7.3-7.1(10H, m), 7.1(2H, d, J= 7.3Hz), 6.4(1H, d, J= 7.9Hz), 5.5(1H, q, J= 6.6Hz), 4.5(1H, d, J=17.5Hz), 3.9(1H, d, J= 17.8Hz), 3.1-2.9(2H, m), 1.3(3H, d, J= 6.9Hz).
154	Me N	0	(DMSO-d ₆): 12.5(1H, brs), 10.7(1H, s), 7.6-7.4(5H, m), 7.3-7.1(12H, m), 6.4(1H, d, J= 7.9Hz), 5.5(1H, dd, J= 6.4, 13.7Hz), 4.5(1H, d, J= 17.2Hz), 4.3(1H, m), 3.9(1H, d, 17.2Hz), 3.1-2.9(2H, m), 1.3(3H, d, J= 6.9Hz).
155	S N Me	0	(CDCl ₃): 7.6-7.1(13H, m), 7.0-6.8(2H, m), 5.0-4.3(6H, m), 3.1-2.9(2H, m), 1.3-1.1(3H, m).

表4-1

	\sim		
実施例 番号	R	Υ	'H-NMR δ:
157	2-Me	S	(CDCl ₃): 8.2(1H, brs), 7.6(1H, d, J= 8.3Hz), 7.4(1H, d, J= 8.3Hz), 7.3-7.1(8H, m), 5.6-5.4(3H, m), 3.4-3.1(2H, m), 2.7-2.3(4H, m), 1.1(3H, t, J= 5.9Hz).
158	3-Ме	s	(CDCl ₃): 7.7-6.8(11H, m), 5.3(1H, s), 4.7(1H, m), 3.5-3.1(3H, m), 2.9(1H, m), 2.3(1H, m), 2.1(1H, m), 1.1(3H, m).
159	6-Me	S	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.3(3H, m), 7.1(2H, d, J= 8.3Hz), 6.9-6.7(3H, m), 5.3(1H, m), 4.3-4.0(2H, m), 3.4(1H, dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 5.3, 13.9Hz), 2.7-2.6(2H, m), 2.3(3H, s), 2.0-1.9(2H, m)
160	7-Me	s	(CDCl ₃): 7.6-6.7(10H, m), 5.4-5.3(1H, m), 4.4-4.1(2H, m), 3.5(1H, dd, J= 5.6, 13.9Hz), 3.2(1H, dd, J= 4.6, 13.9Hz), 2.7-2.6(2H, m), 2.1(3H, s), 2.0-1.9(2H, m).
161	4 -Et	s	(CDCl ₃): 7.6-7.0(11H, m), 5.4(1H, s), 4.6(1H, m), 3.8(1H, m), 3.4(1H, dd, J= 5.9, 14.2Hz), 3.2(1H, dd, J= 5.6, 14.2Hz), 2.7(1H, m), 2.1(1H, m), 1.9-1.5(3H, m), 0.9-0.8(3H, m).
162	3–iPr	s	(CDCl ₃): 7.6-6.7(11H, m), 5.3(1H, m), 4.8(1H, m), 3.5-3.3(3H, m), 3.2(1H, dd, J= 4.9, 13.9Hz), 2.8(1H, m), 2.4(1H, m), 1.9-1.6(2H, m), 1.0-0.9(6H, m).
163	4-nPr	s	(CDCl ₃): 7.6-6.8(11H, m), 5.3(1H, m), 4.6(1H, m), 3.9(1H, m), 3.4-3.1(2H, m), 2.7(1H, m), 2.1(1H, m), 1.9-1.3(6H, m), 0.9(3H, dt, J= 7.3, 10.2Hz).
164	6 - CI	Ø	(CDCl ₃): 10.4(1H, brs), 7.7-6.7(10H, m), 5.2(1H, m), 4.3(1H, m), 4.0(1H, m), 3.5(1H, dd, J= 5.9, 13.9Hz), 3.2(1H, dd, J= 4.9, 13.9Hz), 2.8-2.7(2H, m), 2.0-1.8(2H, m).
165	5-ОН	S	(CDCl ₃): 10.1(1H, brs), 9.0(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.5-6.8(6H, m), 6.7(1H, d, J= 7.9Hz), 6.4(1H, d, J= 7.9Hz), 5.3(1H, m), 4.3(1H, m), 4.2(1H, m), 3.4(1H, dd, J= 6.3, 14.2Hz), 3.1(1H, dd, J= 6.6, 14.2Hz), 2.7(2H, t, J= 6.9Hz), 2.0(2H, t, J= 6.3Hz).
166	6-ОН	S	(CDCl ₃): 7.5(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.3Hz), 6.7-6.5(3H, m), 5.3(1H, m), 4.3-4.1(2H, m), 3.4(1H, dd, J= 5.6, 13.9Hz), 3.1(1H, dd, J= 5.6, 14.2Hz), 2.6(2H, t, J= 6.6Hz), 2.0(2H, t, J= 6.6Hz).

表4-2

	<u> </u>		· ·
167	5-ОМе	s	(CDCl ₃): 9.9(1H, brs), 7.6(2H, d, J= 8.6Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.6Hz), 6.8-6.6(3H, m), 4.3(1H, m), 4.1(1H, m), 3.8(3H, s), 3.4(1H, dd, J= 6.6, 13.9Hz), 3.1(1H, dd, J= 5.3, 13.9Hz), 2.7-2.6(2H, m), 2.0-1.9(2H, m).
168	6-ОМе	s	(CDCl ₃): 9.8(1H, brs), 7.6(2H, d, J= 8.6Hz), 7.4-7.3(3H, m), 7.1(2H, d, J= 8.6Hz), 6.8-6.6(4H, m), 5.3(1H, m), 4.4-4.1(2H, m), 3.8(3H, s), 3.5(1H, dd, J= 6.9, 13.9Hz), 3.1(1H, dd, J= 5.3, 13.9Hz), 2.7-2.6(2H, m), 1.3-1.2(2H, m).
169	5-NHAc	S	(CDCl ₃): 7.5-7.3(7H, m), 7.1-6.9(3H, m), 5.3(1H, m), 4.7(1H, brs), 3.9-3.6(2H, m), 3.4(1H, dd, J= 5.9, 13.9Hz), 3.1(1H, dd, J= 4.9, 13.9Hz), 2.7-2.6(2H, m), 2.1(3H, s), 2.1-1.9(2H, m).
170	6−NHAc	s	(CDCl ₃): 7.6(1H, s), 7.5(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.0(2H, d, J= 8.3Hz), 6.9-6.6(3H, m), 5.3(1H, m), 4.4-4.1(2H, m), 3.3(1H, dd, J= 5.9, 14.2Hz), 3.2(1H, dd, J= 5.3, 14.2Hz), 2.7-2.6(2H, m), 2.1(3H, s), 2.1-1.9(2H, m).
171	7-NHAc	S	(CDCl ₃): 9.8(1H, s), 8.8(1H, s), 7.5(1H, d, J= 8.6Hz), 7.4-7.1(7H, m), 7.1(2H, d, J= 8.6Hz), 6.8(1H, d, J= 7.6Hz), 5.3(1H, brs), 4.3-4.2(2H, m), 3.4(1H, dd, J= 5.6, 13.9Hz), 3.2(1H, dd, J= 4.9, 13.9Hz), 2.7-2.6(2H, m), 2.1(3H, s), 2.0-1.9(2H, m).
172	7-NHCOnPr	S	(CDCl ₃): 9.9(1H, brs), 8.7(1H, brs), 7.5(2H, d, J= 8.3Hz), 7.4-7.2(5H, m), 7.1(2H, d, J= 8.3Hz), 6.8(1H, d, J= 7.3Hz), 5.3(1H, brs), 4.2(2H, brs), 3.4-3.2(2H, m), 2.7(2H, t, J= 6.9Hz), 2.3(2H, t, J= 6.9Hz), 2.0(2H, t, J= 6.3Hz), 1.7(2H, dd, J= 7.3, 14.5Hz), 0.9(3H, t, J= 7.3Hz).
173	7-NHCOPh	S	(CDCl ₃): 9.4(1H, brs), 9.2(1H, brs), 7.9(2H, d, J= 8.3Hz), 7.5-7.2(9H, m), 7.2(2H, d, J= 7.3Hz), 7.1(2H, d, J= 8.3Hz), 6.9(1H, d, J= 7.3Hz), 5.4(1H, brs), 4.4(1H, m), 4.2-4.1(1H, m), 3.3-3.2(2H, m), 2.7(2H, t, J= 6.6Hz), 2.2-2.0(2H, m).
174	Н	0	(CDCl ₂): 7.6-7.0(12H, m), 4.7(1H, t, J= 5.9Hz), 3.8-3.4(2H, m), 3.1(1H, dd, J= 5.6, 13.9Hz), 2.9(1H, dd, J= 6.6, 13.9Hz), 2.7(2H, t, J= 6.6Hz).
176	7-NHAc	0	(CDCl ₃): 9.5(1H, brs), 8.5(1H, brs), 7.6-7.0(10H, m), 5.6(1H, m), 4.7(1H, d, J= 6.6Hz), 3.8-3.4(2H, m), 3.2-3.1(2H, m), 2.7(2H, t, J= 6.6Hz), 2.1(3H, s), 1.9(2H, brs).

	н		
実施例 番号	R	Υ	¹H-NMR δ:
177	Me Me	s	(CDCl ₃): 7.6(2H, d, J= 8.3Hz), 7.4-7.2(3H, m), 7.1(2H, d, J= 8.3Hz), 5.4(1H, dd, J= 4.6, 5.9Hz), 3.5(1H, dd, J= 5.9, 13.9Hz), 3.2(1H, dd, J= 4.6, 13.9Hz), 2.2-2.1(1H, m), 1.9-1.7(2H, m), 1.3(3H, d, J= 6.6Hz), 1.2(3H, d, J=6.6Hz).
178	Mc	S	(CDCl ₃): 7.6-7.1(8H, m), 5.5-5.4(2H, m), 4.1-4.0(2H, m), 3.7-3.2(2H, m), 1.9-1.5(6H, m), 1.4-1.1(6H, m).
179		S	(CDCl ₃): 7.7-6.9(13H, m), 5.4(1H, brs), 4.3(2H, d, J= 7.9Hz), 3.6-3.1(2H, m), 3.0(2H, br).
180		s	(CDCl ₃): 7.6-7.2(13H, m), 5.3(1H, m), 4.9(2H, dd, J= 15.8, 19.8Hz), 4.0-3.8(2H, m), 3.4(1H, dd, J= 7.6, 13.5Hz), 3.2(2H, dd, J= 6.6, 13.5Hz), 2.9(2H, brs).
181	()	S	(CDCl ₃): 9.6(1H, brs), 7.6(2H, d, J= 8.3Hz), 7.4~7.2(3H, m), 7.1(1H, d, J= 8.3Hz), 7.1~6.7(4H, m), 5.3(1H, m), 4.6(1H, m), 4.4~4.2(3H, m), 3.5(1H, dd, J= 4.6, 13.9Hz), 3.2(1H, dd, J= 4.9, 13.9Hz).
182	Ac N	S	(CDCl ₃): 9.9(1H, brs), 7.7-6.6(11H, m), 5.3-5.2(2H, m), 4.3(1H, m), 4.0(2H, t, J= 6.3Hz), 3.5(1H, dd, J= 5.9, 13.9Hz), 3.2(1H, dd, J= 4.6, 13.9Hz), 2.3(3H, s).
183	-z-m	S	(CDCl ₃): 8.0(H, s), 7.6-7.0(10H, m), 6.8-6.7(2H, m), 6.4(1H, m), 5.4(1H, m), 3.5-3.2(8H, m), 1.3-1.1(3H, m).
184		s	(CDCl ₃): 7.6-6.9(10H, m), 6.7(1H, m), 5.4(1H, m), 3.5-3.1(3H, m), 2.2(1H, m), 2.0(1H, brs), 1.7-1.2(7H, m).
185		S	(CDCl ₃): 8.1(1H, s), 7.6-6.7(12H, m), 4.7-4.4(2H, m), 3.3- 2.2(6H, m), 1.9-1.6(4H, m).
187	Me N , Me	0	(CDCl ₃): 9.3(1H, brs), 7.6-7.2(8H, m), 4.7(1H, t, J= 5.6Hz), 4.1-3.9(2H, m), 3.3-3.1(2H, m), 1.8-1.6(3H, m), 1.3-1.1(3H, m).

$$\begin{array}{c}
S \\
R \\
N
\end{array}$$
COOH
$$A =
\begin{array}{c}
N \\
Me
\end{array}$$

	•			
実施例 番号	х	R	置換位置	¹H-NMR δ:
188	, N	Α	4-	(CDCl ₃): 8.3(1H, brs), 7.8(2H, d, J= 7.9Hz), 7.6-7.2(9H, m), 7.0(2H, d, J= 7.9Hz), 6.8(2H, d, J= 8.3Hz), 5.6(1H, s), 5.4(1H, m), 4.1-3.9(2H, m), 3.1(1H, dd, J= 5.6, 13.9Hz), 3.0(1H, dd, J= 5.2, 13.9Hz), 1.8(1H, m), 0.9(3H, d, J= 6.6Hz), 0.8(3H, d, J=6.6Hz).
189	, h co	A	4-	(CDCl ₃): 7.9(2H, d, J= 8.6Hz), 7.5-7.3(14H, m), 7.1(2H, d, J= 6.9Hz), 6.9(2H, d, J= 8.6Hz), 5.7(1H, brs), 5.2(1H, t, J= 5.3Hz), 4.2-4.0(2H, m), 3.3-3.0(2H, m), 1.8(1H, m), 0.9(3H, d, J= 6.6Hz), 0.8(3H, d, J=6.6Hz),
190	ZH G	Α	4-	(CDCl ₃): 8.6(1H, brd, J= 5.9Hz), 7.7(2H, d, J= 2.2Hz), 7.5-7.3(6H, m), 7.1(2H, d, J= 7.6Hz), 6.8(2H, d, J= 8.3Hz), 5.6-5.4(2H, m), 4.1-3.9(2H, m), 3.1(1H, dd, J= 5.3, 13.9Hz), 3.0(1H, dd, J= 5.0, 13.9Hz), 1.8(1H, m), 0.9(3H, d, J= 6.6Hz), 0.8(3H, d, J=6.6Hz).
191	SH ON	Α	4-	(CDCl ₃): 7.7(1H, s), 7.6-7.5(6H, m), 7.0-6.8(6H, m), 5.5(1H, brs), 5.3(1H, m), 4.1-3.9(2H, m), 3.2-2.9(2H, m), 1.8(1H, m), 0.9(3H, s), 0.8(3H, s).
192	D TZ O	A	3-	(CDCl ₃): 8.0(1H, brs), 7.6(1H, d, 9.2Hz), 7.4–7.1(8H, m), 7.0(2H, d, J= 7.2Hz), 6.6(1H, d, J= 7.6Hz), 5.5(1H, d, J=5.6, 5.9Hz), 4.0(2H, d, J= 7.6Hz), 3.2(1H, dd, J= 5.9, 13.9Hz), 3.0(1H, dd, J= 5.6, 13.9Hz), 1.7(1H, m), 0.9(3H, d, J= 6.6Hz), 0.8(3H, d, J=6.6Hz).
193	MeO MeO	Α	4-	(CDCl ₃): 7.3-7.2(6H, m), 7.0(2H, d, J= 8.3Hz), 6.9(1H, brs), 6.7(2H, d, J= 8.6Hz), 5.3(1H, m), 4.3(1H, dd, J= 8.3, 13.5Hz), 3.8(1H, dd, J= 6.9, 13.5z), 3.7(6H, s), 3.4(1H, dd, J= 5.3, 14.5Hz), 2.9(1H, dd, J= 8.6, 14.5Hz), 1.7(1H, m), 0.9(6H, dx2, J= 6.6Hz).
194	Me	PhO N Me Me	4-	(DMSO-d ₈): 12.9(1H, brs), 7.6-7.5(5H, m), 7.3-6.8(8H, m), 5.1(1H, m), 4.2(1H, dt, J= 6.3, 12.5Hz), 3.8(1H, dt, J= 6.3, 12.5Hz), 3.7(3H, s), 3.4-3.1(2H, m), 2.3(3H, s), 1.9-1.8(2H, m).

	Me		<u></u>
実施例 番号	X	Ý	¹H-NMR δ:
195	—≡сн	Ø	(CDCl ₃): 7.4-7.0(9H, m), 6.5(1H, m), 5.7(1H, d, J= 6.9Hz), 5.5(1H, m), 3.4(1H, m), 3.2(1H, m), 3.1(1H, s), 3.0-2.8(2H, m), 1.7(1H, m), 1.6(3H, d, J= 7.3Hz), 0.8(3H, d, J=6.9Hz), 0.6(3H, d, J= 6.9Hz).
196	- -	S	(CDCl ₃): 9.8(1H, brs), 7.5-7.0(14H, m), 6.5(1H, m), 5.8(1H, d, J= 6.9Hz), 5.6(1H, m), 3.5(1H, m), 3.3-3.2(1H, m), 3.0(2H, m), 1.7(1H, m), 1.6(3H, d, J= 6.9Hz), 0.8(3H, d, J= 6.3Hz), 0.6(3H, d, J= 6.6Hz).
197	CI	s	(CDCl ₃): 7.5-7.0(12H, m), 6.5(1H, m), 5.8(1H, d, J= 7.3Hz), 5.6(1H, m), 3.5(1H, m), 3.2(1H, dd, J= 4.7, 14.1Hz), 3.1(2H, m), 1.8(1H, m), 1.6(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.8Hz), 0.7(3H, d, J= 6.4Hz).
198	~ Ca	Ø	(CDCl ₃): 7.7-7.3(10H, m), 7.2(2H, d, J= 8.3Hz), 6.5(1H, m), 5.7(1H, d, J= 6.9Hz), 5.6(1H, m), 3.5(1H, m), 3.2(1H, m), 3.1-3.0(2H, m), 1.7(1H, m), 1.6(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.3Hz).
199	MeO MeO	S	(CDCl ₃): 7.3-7.1(10H, m), 6.6(2H, d, J= 6.3Hz), 5.8-5.6(2H, m), 3.7(1H, m), 3.6(6H, s), 3.5(1H, dd, J= 5.9, 14.2Hz), 3.3(1H, dd, J= 4.9, 14.2Hz), 2.9(2H, brs), 1.7(1H, m), 1.6(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.6Hz), 0.5(3H, d, J= 6.6Hz).
200	`°~	S	(CDCl ₃): 9.9(1H, brs), 7.4-7.2(10H, m), 7.0(2H, d, J= 8.6Hz), 6.8(2H, d, J= 8.6Hz), 6.6(1H, m), 5.7(1H, d, J= 6.9Hz), 5.5(1H, m), 5.0(2H, s), 3.4(1H, dd, J= 5.9, 14.2Hz), 3.2(1H, dd, J= 4.6, 14.2Hz), 3.0-2.9(2H, m), 1.7(1H, m), 1.6(3H, d, J= 6.9Hz), 0.7(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.9Hz).
201	, o C1	s	(CDCl ₃): 10.3(1H, brs), 7.4-7.2(10H, m), 7.0(2H, d, J= 8.6Hz), 6.9(2H, d, J= 8.6Hz), 6.6(1H, m), 5.8(1H, d, J= 6.9Hz), 5.5(1H, m), 5.2(1H, d, J= 9.9Hz), 5.2(1H, d, J= 9.9Hz), 3.4(1H, dd, J= 5.6, 14.2Hz), 3.2(1H, dd, J= 4.6, 14.2Hz), 3.0-2.9(2H, m), 1.7(1H, m), 1.6(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.6Hz).

			<u> </u>
202	Me ,	S	(CDCl ₃): 10.0(1H, brs), 7.4-7.2(10H, m), 7.0-6.7(4H, m), 6.6(1H, m), 5.7-5.4(2H, m), 5.2(1H, m), 3.2(1H, m), 3.0(1H, m), 3.0-2.9(2H, m), 1.7(1H, m), 1.6(3H, d, J= 6.3Hz), 1.5(3H, d, J= 7.3Hz), 0.7(3H, d, J= 6.3Hz), 0.5(3H, d, J= 6.3Hz).
203		S	(CDCl ₃): 7.8-7.5(7H, m), 7.3-7.1(7H, m), 6.4(1H, m), 5.8-5.6(2H, m), 3.6(1H, dd, J= 5.6, 13.9Hz), 3.3-3.1(3H, m), 1.7(1H, m), 1.6(3H, d, J= 6.9Hz), 0.8(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.9Hz).
204	\$ t	S	(CDCl ₃): 7.3-7.1(14H, m), 6.5(1H, m), 5.8(2H, s), 5.7-5.5(2H, m), 3.4(1H, m), 3.2-2.9(3H, m), 1.6(1H, m), 1.5(3H, d, J=7.3Hz), 0.7(3H, d, J=6.3Hz), 0.5(3H, d, J=6.6Hz).
205) E F	S	(DMSO-d ₆): 12.8(1H, brs), 10.7(1H, s), 7.6-7.5(3H, m), 7.3-7.1(9H, m), 7.0(1H, d, J= 7.6Hz), 6.6(1H, m), 5.4(1H, m), 3.3-2.9(3H, m), 2.8(1H, dd, J= 7.9, 15.2Hz), 1.7(1H, m), 1.4(3H, d, J= 7.3Hz), 0.6(3H, d, J= 6.6Hz), 0.4(3H, d, J= 6.6Hz).
206		Ö	(CDCl ₃): 9.5(1H, brs), 7.5(2H, d, J= 7.3Hz), 7.4-7.2(8H, m), 7.1-7.0(4H, m), 5.3(1H, m), 4.8(1H, d, J= 6.6Hz), 4.7(1H, m), 3.2(1H, dd, J= 5.3, 14.2Hz), 3.1(1H, dd, J= 6.6, 14.2Hz), 2.9(1H, dd, J= 7.6, 15.2Hz), 2.8(1H, dd, J= 7.3, 15.2Hz), 1.6(1H, m), 1.5(3H, d, J= 6.9Hz), 0.8(3H, d, J= 6.6Hz), 0.6(3H, d, J= 7.3Hz).
207	ö-	0	(CDCl ₃): 9.7(1H, brs), 7.4(2H, d, J= 8.3Hz), 7.4-7.2(6H, m), 7.2-7.0(4H, m), 5.3(1H, m), 4.8-4.7(2H, m), 3.2(1H, dd, J= 4.9, 14.2Hz), 3.1(1H, dd, J= 6.3, 14.2Hz), 2.9(1H, dd, J= 7.6, 15.2Hz), 2.8(1H, dd, J= 7.6, 15.2Hz), 1.6(1H, m), 1.5(3H, d, J= 7.3Hz), 0.8(3H, d, J= 6.9Hz), 0.7(3H, d, J= 6.6Hz).
208	, SH F	0	(DMSO-d ₈): 12.5(1H, brs), 10.7(1H, s), 7.6-7.5(3H, m), 7.3-7.1(9H, m), 6.2(1H, d, J= 8.2Hz), 5.3(1H, q, J= 6.9Hz), 4.4(1H, m), 3.1(1H, dd, J= 5.0, 13.5Hz), 3.0(1H, dd, J= 9.6, 13.5Hz), 2.8(1H, dd, J= 7.6, 14.5Hz), 2.6(1H, dd, J= 7.6, 14.5H), 1.6(1H, m), 1.4(3H, d, J= 6.9Hz), 0.7(3H, d, J= 6.6Hz), 0.6(3H, d, J= 6.6Hz).

〔試験例1〕 VLA-4/VCAM-1接着阻害試験

ヒトVCAM-1遺伝子をトランスフェクトしたチャイニーズハムスター卵巣細胞(C HO細胞)と、VLA-4を発現するヒト前骨髄球様細胞株田-60細胞間の接着に対する本発明化合物の阻害活性を下記の方法を用いて評価した。

5 上記のVCAM-1発現CHO細胞を96穴培養プレートに1穴あたり7×103個添 加し、コンフレントな状態になるまで10重量%ウシ胎児血清 (FCS) を含むHam 's F-12培地で3日間培養し、HL-60細胞を0.4重量%ウシ血清アルブミン(BSA) を含むハンクス液に再浮遊し、 $5 \mu \text{M} \text{O} \text{2}'$,7'-bis-(carbooxy ethyl)-5',6'-carb oxy-fluorescein-Penta acetoxy Methyl ester(BCECF-AM)を添加してラベルする。 FCS不含RPMI1640培地で4×106個/mlに再浮遊したBCECFラベルHL-60細胞懸濁 10 液180μ1に、種々の濃度の試験物質溶液を20μ1づつ添加して37℃で15分間 前処置する。そして、前処置したHL-60細胞を、VCAM-1発現CHO細胞を培養した9 6 穴プレートに1 穴あたり 2×10^5 個重層して、37 ℃で5 分間接着させる。 その後プレートを0.4重量%BSAハンクス液で満たし、プレートシーラーでカバー してプレートを逆さにして、更に15分間培養する。洗浄後、1重量%NP-40を含 15 むPBSを添加して細胞を破壊し、得られた上清の蛍光強度をcyto Fluor 2300蛍光 測定システム(ミリポア製)で測定する。

またプランクとして、1重量%NP-40を含むPBSの蛍光強度、更にスタンダードとして、蛍光標識HL-60浮遊液を 2×10^5 , 10^5 , 2×10^4 , 10^4 個/mlとなるように1重量%NP-40を含むPBSに添加、細胞破壊を行い、得られた上清の蛍光強度を測定する。

試験結果は、スタンダードの測定から作成される検量線により、コントロールおよび試験物質添加によるVCAM-1発現CHO細胞に接着した細胞数を測定し、次式により細胞接着抑制率(%)を算出する。

25

20

細胞接着抑制率(%)=100×[1-(試験物質添加群の接着細胞数/コントロール群の接着細胞数)]

本試験により得られた本発明化合物の50%阻害濃度を表8に示す。

表8-1

実施例番号	50%阻害濃度(nM)
1	2000
5	1400
23	87
27	43
28	37
29	19
30	130
34	480
37	38
38	620
40	110
41	26
42	90
43	43
44	89
45	83
49	61
58	30
59	63
60	23
62	90
67	45
69	18
70	11
71	76
73	85
75	50
76	32
80	40
81	15

84	55
87	7.6
89	93
93	25
94	33
95	8.1
97	7.7
98	8.2
99	27
100	79
101	23
102	58
104	13
106	2.5
107	19
115	72
116	3.7
117	0.01
118	2.3
119	0.71
120	10
124	1900
127	1700
135	44
156	1200
171	81
175	71
176	85
178	940
185	250
186	320

産業上の利用可能性

本発明のウレア誘導体またはその塩は、優れたVLA-4アンタゴニスト作用を示し、白血球の接着および浸潤により惹起される疾患またはVLA-4依存性接着過程がある役割を果たす疾患などのVLA-4を介する疾患の治療または予防用医薬として有用である。

請求の範囲

1. 一般式(I)

$$Z$$
 N
 $COOH$
 $COOH$
 $COOH$
 $COOH$

[式中、R¹は水素原子、アルキル基、シクロアルキル基またはアリールアルキル基を表し、Xは水素原子、ハロゲン原子、アルキル基、アリール基、アリールスルファモイル基またはアリールアミド基を表し、Yは酸素原子または硫黄原子を表し、Zは窒素原子を含み該窒素原子を介してC=Yの炭素原子に結合するヘテロ原子を含んでいてもよい炭化水素基または複素環式基を表し、*は不斉炭素を示す。]

10 で表されるウレア誘導体またはその塩。

2. 一般式 (I-a)

$$Z \stackrel{\text{N}}{\underset{\text{R}^1}{\bigvee}} COOH$$
 ... (I-a)

で表される光学活性体である請求項1に記載のウレア誘導体またはその塩。

3. 一般式(I)または(I-a)において、R は水素原子、炭素数 $1\sim10$ のアルキル基、炭素数 $3\sim7$ のシクロアルキル基または炭素数 $7\sim13$ のアリールアルキル基を表し、X は水素原子、ハロゲン原子、炭素数 $1\sim6$ のアルキル基、炭素数 $6\sim10$ のアリールスルファモイル基または式(A)

20 [式中、R²は独立して前記R¹と同じ意味を表し、R³およびR⁴はそれぞれ独立 して水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、

炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基、炭素数1~6 のアルコキシ基、炭素数6~10のアリール基、炭素数7~13のアリールアル キル基、炭素数2~7のアルコキシカルボニル基、炭素数1~4のアルキルチオ 基、炭素数1~4のアルキルスルホニル基、炭素数1~4のアルキルスルフィニ ル基、-NR²⁰R²¹、-NR²²COR²³または-NR²²SO₂R²³ (式中、R²⁰、 R^{21} 、 R^{22} および R^{23} はそれぞれ独立して、水素原子、炭素数 $1\sim 10$ のアルキ ル基、炭素数3~7のシクロアルキル基、炭素数6~10のアリール基または炭 素数7~13のアリールアルキル基である。)を示す。]で示されるアリールア ミド基を表し、Yは酸素原子または硫黄原子を表し、2は-NR5R6「式中、R5 は炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基、炭素数6~ 10 10のアリール基、炭素数7~13のアリールアルキル基、炭素数2~10のへ テロアリール基または炭素数3~11のヘテロアリールアルキル基を表し、R⁶ は水素原子、炭素数1~10のアルキル基、炭素数3~7のシクロアルキル基、 炭素数6~10のアリール基、炭素数7~13のアリールアルキル基、炭素数2 ~10のヘテロアリール基、炭素数3~11のヘテロアリールアルキル基、-C 15 (R^{27}) (R^{28}) - (CH_2) _p - $CONR^{24}R^{25}$, - $C(R^{27})$ (R^{28}) - (C H_2) $_p$ - $NR^{24}COR^{25}$, - $C(R^{27})(R^{28})$ - $(CH_2)_p$ - $NR^{24}SO_2R^2$ 5 , $-C(R^{27})(R^{28}) - (CH_{2})_{p} - OR^{24}$, $-C(R^{27})(R^{28}) - (CH_{2})_{p}$ $_{2}$) $_{p}$ - NR $_{24}^{24}$ R $_{25}^{25}$, - C (R $_{27}^{27}$) (R $_{28}^{28}$) - (CH $_{2}$) $_{p}$ - SR $_{24}^{24}$, - C (R $_{27}^{27}$) $(R^{28}) - (CH_2)_p - SO_2R^{24}$ $\pm tcd - C(R^{27})(R^{28}) - (CH_2)_p -$ 20 NR²⁴CY¹NR²⁵R²⁶ (式中、R²⁴、R²⁵、R²⁶、R²⁷およびR²⁸はそれぞれ独 立して R^{20} と同じ意味を表し、 Y^1 は酸素原子または硫黄原子を表し、Pは $0\sim3$ の整数である。) を表す。]、式(B)

$$\begin{array}{ccc}
R^7 & R^8 \\
-N & & \\
R^9 & R^{10}
\end{array}$$
...(B)

25 (式中、 R^7 、 R^8 、 R^9 および R^{10} はそれぞれ独立して水素原子または炭素数 $1\sim6$ のアルキル基を表し、qは $0\sim3$ の整数を表す。)または式 (C)

$$R^{11} \qquad \dots (C)$$

[式中、 R^{11} は水素原子または炭素数 $1\sim 10$ のアルキル基を表し、 R^{12} は水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、炭素数 $1\sim 10$ のアルキル基、炭素数 $1\sim 6$ のアルコキシ基、 $-NR^{29}R^{30}$ 、 $-NR^{31}C$ OR^{32} または $-NR^{31}SO_2R^{32}$ (式中、 R^{29} 、 R^{30} 、 R^{31} および R^{32} はそれぞれ独立して R^{20} と同じ意味を示す。)を表し、Sおよびrはそれぞれ独立して $0\sim 3$ の整数である。]を表す請求項 1 または 2 に記載のウレア誘導体またはその塩。

- 4. 一般式 (I) または (I-a) において、R が水素原子である請求項 $1\sim$ 3のいずれか 1 項に記載のウレア誘導体またはその塩。
- 10 5. 一般式 (I) または (I-a) において、Xがアリールアミド基である請求項 $1\sim 4$ のいずれか 1 項に記載のウレア誘導体またはその塩。
 - 6. 一般式(II-1)

(式中、Xおよび*は、前記と同じ意味を表す。)

15 で表される化合物またはその塩と、一般式 (III)

$$R^5 - NCY$$
 ... (III)

(式中、R⁵およびYは前記と同じ意味を表す。)

で表される化合物を反応させることを特徴とする、一般式 (I-1)

20 (式中、X、Y、R 5 および*は前記と同じ意味を表す。) で表されるウレア誘導体の製造方法。

7. 一般式(II-2)

(式中、Rは低級アルキル基を表し、Xおよび*は前記と同じ意味を表す。) で表される化合物またはその塩と、一般式 (IV)

 $5 Z-H \cdots (IV)$

(式中、乙は前記と同じ意味を表す。)

で表される化合物と、カルボニル基またはチオカルボニル基導入試薬を反応させて、一般式 (I-2)

10 [式中、X、Y、Z、Rおよび*は、前記と同じ意味を表す。] で表される化合物を得たのち、加水分解することを特徴とする、一般式(I-3)

(式中、X、Y、Zおよび*は、前記と同じ意味を表す。) で表されるウレア誘導体の製造方法。

- 15 8. 請求項 $1 \sim 5$ のいずれか1 項に記載のウレア誘導体またはその塩からなる VLA 4 アンタゴニスト。
 - 9. 請求項1~5のいずれか1項に記載のウレア誘導体またはその塩を有効成分として含む医薬組成物。
- 10. 請求項1~5のいずれか1項に記載のウレア誘導体またはその塩を投与 20 することからなる細胞接着を介した疾患の治療方法。
 - 11. 請求項8に記載のVLA-4アンタゴニストを投与することからなる細

胞接着を介した疾患の治療方法。

12. 請求項9に記載の医薬組成物を投与することからなる細胞接着を介した疾患の治療方法。

- 13. VLA-4を介した細胞接着を阻害する請求項10~12のいずれか
- 5 1項に記載の治療方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/07571

	<u> </u>							
Int. CO7D CO7D CO7D According to	333/20, C07D215/08, C07D223/16, C07 241/12, C07D333/58, C07D207/06, C07 241/40, C07D209/94, C07D211/14, o International Patent Classification (IPC) or to both na	D213/40, C07D307/52, C07D27 D211/16, C07D209/08, C07D21	5/14, C07C335/22, 7/28, C07D333/52, 7/06, C07D265/36,					
	S SEARCHED							
Int. C07D C07D C07D	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07C275/24, C07C275/26, C07C275/42, C07C335/12, C07C335/14, C07C335/22, C07D333/20, C07D215/08, C07D223/16, C07D213/40, C07D307/52, C07D277/28, C07D333/52, C07D241/12, C07D333/58, C07D207/06, C07D211/16, C07D209/08, C07D217/06, C07D265/36, C07D241/40, C07D209/94, C07D211/14,							
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched					
	ata base consulted during the international search (nam .US (STN), REGISTRY (STN)	e of data base and, where practicable, sea	rch terms used)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.					
Х	WO, 99/20272, A1 (MERCK & CO.,	INC.),	1-4,6-9					
A	29 April, 1999 (29.04.99)	-	5					
	& US, 6069163, A	*	9					
x	WO, 97/36859, A1 (G.D. SEARLE &	: (0)	1-7,9					
A	09 October, 1997 (09.10.97)		8					
	& JP, 2000-515493, A& EP, 8913	25, A1						
	& US, 59523851, A							
X A	JP, 7-2843, A (Fujisawa Pharmad 06 January, 1995 (06.01.95) (1-4,6-7,9 5,8					
X A	JP, 6-184086, A (ONO PHARMACEUT 05 July, 1994 (05.07.94) (Fam		1-4,6-7,9 5,8					
		300	•					
0%								
	documents are listed in the continuation of Box C.	See patent family annex.						
	categories of cited documents: ant defining the general state of the art which is not	"T" later document published after the inter priority date and not in conflict with the						
conside	red to be of particular relevance document but published on or after the international filing	understand the principle or theory under	rlying the invention					
date	laimed invention cannot be ed to involve an inventive							
cited to	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the c						
"O" docume								
means combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed comment member of the same patent family								
	Date of the actual completion of the international search 13 March, 2001 (13.03.01) Date of mailing of the international search 27 March, 2001 (27.03.01)							
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer							
Facsimile No		Telephone No						

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/07571

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🛚	Claims Nos.: 10~13 because they relate to subject matter not required to be searched by this Authority, namely:
is	Claims 10 to 13 pertain to a method for treatment of the human body by therapy d thus relate to a subject matter which this International Searching Authority not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule .1(iv) of the Regulations under the PCT, to search.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	ernational Searching Authority found multiple inventions in this international application, as follows:
	фр. 1010-101
ì. 🗌	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
. \Box	As and a source of the second and a 1995. In 1995, the second and a 1995 are the second and a 19
J	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos.:
	·
Remark	on Protest

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/07571

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (IPC)

A61K31/198, A61K31/381, A61K31/47, A61K31/4402, A61K31/4406, A61K31/4409, A61K31/341, A61K31/426, A61K31/4965, A61K31/40, A61K31/445, A61K31/4035, A61K31/472, A61K31/538, A61K31/498, A61K31/403, A61K31/55, A61P29/00, A61P19/02, A61P37/06, A61P1/04, A61P37/08, A61P11/06, A61P13/12, A61P3/10, A61P21/00, A61P910, A61P35/00 // C07M7:00

Continuation of B. FIELDS SEARCHED (IPC)

A61K31/198,A61K31/381,A61K31/47,A61K31/4402,A61K31/4406,A61K31/4409, A61K31/341,A61K31/426,A61K31/4965,A61K31/40,A61K31/445,A61K31/4035, A61K31/472,A61K31/538,A61K31/498,A61K31/403,A61K31/55,A61P29/00,A61P19/02, A61P37/06,A61P1/04,A61P37/08,A61P11/06,A61P13/12,A61P3/10,A61P21/00,A61P910, A61P35/00

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. 7 C07C275/24, C07C275/26, C07C275/42, C07C335/12, C07C335/14, C07C335/22, C07D333/20, C07D215/08, C07D223/16, C07D213/40, C07D307/52, C07D277/28, C07D333/52, C07D241/12, C07D333/58, C07D207/06, C07D211/16, C07D209/08, C07D217/06, C07D265/36, C07D241/40, C07D209/94, C07D211/14,

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1. ' C07C275/24, C07C275/26, C07C275/42, C07C335/12, C07C335/14, C07C335/22, C07D333/20, C07D215/08, C07D223/16, C07D213/40, C07D307/52, C07D277/28, C07D333/52, C07D241/12, C07D333/58, C07D207/06, C07D211/16, C07D209/08, C07D217/06, C07D265/36, C07D241/40, C07D209/94, C07D211/14,

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN)

C. 関連する	C. 関連すると認められる文献				
引用文献のカテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
X	WO, 99/20272, A1 (MERCK & CO., INC.)	1-4, 6-9			
A	29.4月.1999(29.04.99) &US,6069163,A	5			
X	WO, 97/36859, A1 (G. D. SEARLE & CO.)	1-7,9			
A	9.10月.1997(09.10.97) &JP,2000-515493, A &EP,891325,A1 &US,5952381,A	8			
X	 JP, 7-2843, A (藤沢薬品工業株式会社)	1-4, 6-7, 9			
Ą	6. 1月. 1995 (06. 01. 95) (ファミリーなし)	- 5,8			

|X|| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

3月末秋の カテゴリー* 3月末秋名 及び一部の箇所が顕直するときは、その関連する箇所の表示 現状の範囲の番号 X JP, 6-184086, A (小野薬品工業株式会社) 5.7月.1994(05.07.94)(ファミリーなし) 1-4, 6-7, 9 5, 8	C(続き).	関連すると認められる文献	
X JP, 6-184086, A (小野薬品工業株式会社) 1-4, 6-7, 9	引用文献の		関連する
	X	JP, 6-184086, A (小野薬品工業株式会社)	1-4, 6-7, 9
	, A .	3. 7月. 1994 (03. 01. 94) (ファミリーなじ)	, J, G
			i.
	141		
	:		
			*
	*		

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなが	かった。
1. X	請求の範囲 10~13 は、この国際調査機関が調査をすることを要しない対象に係るものである。
* . 🗠	請求の範囲 <u>10~13</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり
	治療による人体の処置方法に関するものであり、PCT17条(2)(a)(i)及びPCT規
	則39.1(iv)の規定により、この国際調査機関が国際調査をすることを要しない対象に係
	るものである。
*	
	Att. 15 a. Admini
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい ない国際出版の知公に係るよのではよう。
	ない国際出願の部分に係るものである。つまり、
*	
	At high them
3.	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
1	従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
	The state of the s
次に対	☆るようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	$m{t}$
1. 🗆	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
_	
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
	加調査手数料の納付を求めなかった。
3. 🗀	出版 おひ無か迫加調本手券料を一切の 7. み切りかけ カユーキャペート の同時報を担かけ マギャッグ
· 3· L	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
ļ.	ロコマンのノンドにDNマンph ANVス型以内マンの外に、フV・C TH DX し /Co
_	
4. 📙	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
追加調査	至手数料の異議の申立てに関する注意
	〕 追加調査手数料の納付と共に出願人から異議申立てがあった。
Г	追加調査手数料の納付と共に出願人から異議申立てがなかった。

A. 発明の属する分野の分類(国際特許分類(IPC))の続き A61K31/198, A61K31/381, A61K31/47, A61K31/4402, A61K31/4406, A61K31/4409, A61K31/341, A61K31/426, A61K31/4965, A61K31/40, A61K31/445, A61K31/4035, A61K31/472, A61K31/538, A61K31/498, A61K31/403, A61K31/55, A61P29/00, A61P19/02, A61P37/06, A61P1/04, A61P37/08, A61P11/06, A61P13/12, A61P3/10, A61P21/00, A61P910, A61P35/00 // C07M7:00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))の続き A61K31/198, A61K31/381, A61K31/47, A61K31/4402, A61K31/4406, A61K31/4409, A61K31/341, A61K31/426, A61K31/4965, A61K31/40, A61K31/445, A61K31/4035, A61K31/472, A61K31/538, A61K31/498, A61K31/403, A61K31/55, A61P29/00, A61P19/02, A61P37/06, A61P1/04, A61P37/08, A61P11/06, A61P13/12, A61P3/10, A61P21/00, A61P910, A61P35/00