

FCC RF EXPOSURE REPORT

FCC ID: V7TAC23

Project No. : 1912C172

Equipment: AC2100 Dual Band Gigabit WiFi Router

Brand Name : Tenda Test Model : AC23 Series Model : N/A

Applicant : SHENZHEN TENDA TECHNOLOGY CO.,LTD

Address : 6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan

District, Shenzhen, China. 518052

Manufacturer : SHENZHEN TENDA TECHNOLOGY CO.,LTD

Address : 6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan

District, Shenzhen, China. 518052

Date of Receipt : Dec. 25, 2019

Date of Test : Dec. 27, 2019 ~ Feb. 20, 2020

Issued Date : Feb. 28, 2020

Report Version : R00

Test Sample : Engineering Sample No.: DG2019122551

Standard(s): FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Chay Cai

Approved by: Ethan Ma

Iac MRA

ACCRED

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

Tel: +86-769-8318-3000 Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue	Feb. 28, 2020

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Table for Filed Antenna:

For 2.4G:

Ant.	Brand	Model Name	odel Name Antenna Type		Gain (dBi)
1	N/A	N/A	Dipole	N/A	5
2	N/A	N/A	Dipole	N/A	5

Note:

This EUT supports CDD, and all antennas have the same gain,

(1) For Non-Beamforming function, Directional gain = G_{ANT} +Array Gain, where Array Gain is as follows:

For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$.

So Directional gain = G_{ANT} + Array G_{ANT} + 10 log (N_{ANT} / N_{SS}) dB =5+10log(2/1)dBi=8.01.

Then, the power density limit is 8-(8.01-6) = 5.99.

For power measurements, Array Gain = 0 dB ($N_{ANT} \le 4$), so the Directional gain=5.

(2) For Beamforming function, Beamforming Gain: 3 dB

So Directional gain = 3+5=8. Then, the output power limit is 30-(8-6) = 28.

For 5G:

Ant.	Brand	Model Name	del Name Antenna Type		Gain (dBi)
1	N/A	N/A	Dipole	N/A	5
2	N/A	N/A	Dipole	N/A	5
3	N/A	N/A	Dipole	N/A	5
4	N/A	N/A	Dipole	N/A	5

Note:

This EUT supports CDD, and all antennas have the same gain,

(1) For Non-Beamforming function, Directional gain = G_{ANT} +Array Gain, where Array Gain is as follows:

For power spectral density measurements, $N_{ANT} = 4$, $N_{SS} = 1$.

So Directional gain = G_{ANT} + Array $Gain = G_{ANT}$ + 10 $log (N_{ANT}/N_{SS}) dB = 5 + 10 log (4/1) dBi = 11.02.$

Then, the UNII-1 power spectral density limit is 17-(11.02-6)=11.98.

the UNII-3 power spectral density limit is 30-(11.02-6)=24.98.

For power measurements, Array Gain = 0 dB ($N_{ANT} \le 4$), so the Directional gain=5.

(2) For Beamforming function, Beamforming Gain: 6.00 dB.

So Directional gain = 5+6=11. Then, the UNII-1 and UNII-3 output power limit is 30-(11-6) = 25.

The worst case for 3TX as follow:

For 2.4G:

For Non Beamforming:

or Non Bearmenting.							
Operating Mode TX Mode	1TX	2TX					
IEEE 802.11b	V (Ant. 1)	-					
IEEE 802.11g	V (Ant. 1)	-					
IEEE 802.11n(HT20)	-	V (Ant. 1+ Ant. 2)					
IEEE 802.11n(HT40)	-	V (Ant. 1+ Ant. 2)					

For Beamforming:

Operating Mode TX Mode	2TX
IEEE 802.11n(HT20)	V (Ant. 1+ Ant. 2)
IEEE 802.11n(HT40)	V (Ant. 1+ Ant. 2)

For 5G:

For Non Beamforming:

For Non Beamforming:								
Operating Mode TX Mode	1TX	4TX						
IEEE 802.11a	V (Ant. 3)	-						
IEEE 802.11n (HT20)	-	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)						
IEEE 802.11n (HT40)	-	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)						
IEEE 802.11ac(VHT20)	-	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)						
IEEE 802.11ac(VHT40)	-	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)						
IEEE 802.11ac(VHT80)	-	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)						

For Beamforming:

Operating Mode TX Mode	4TX
IEEE 802.11n (HT20)	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)
IEEE 802.11n (HT40)	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)
IEEE 802.11ac(VHT20)	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)
IEEE 802.11ac(VHT40)	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)
IEEE 802.11ac(VHT80)	V (Ant. 1+Ant. 2+Ant. 3+Ant. 4)

2. TEST RESULTS

For 2.4GHz_Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. AVG Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5	3.1623	22.52	178.6488	0.11245	1	Complies

For 2.4GHz_ Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. AVG Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
8	6.3096	18.30	67.6083	0.08491	1	Complies

For 5GHz UNII-1_Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5	3.1623	23.95	248.3133	0.15630	1	Complies

For 5GHz UNII-1_Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
11	12.5893	23.76	237.6840	0.59559	1	Complies

For 5GHz UNII-3_Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
5	3.1623	25.48	353.1832	0.22231	1	Complies

For 5GHz UNII-3_Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
11	12.5893	24.80	301.9952	0.75675	1	Complies

For the max simultaneous transmission MPE:

Power Density (S) (mW/cm ²)	Power Density (S) (mW/cm ²)	Total	Limit of Power Density (S)	Test Result
2.4GHz	5GHz		(mW/cm ²)	
0.11245	0.75675	0.8692	1	Complies

Note: The calculated distance is 20 cm.

End of Test Report