MITx: Statistics, Computation & Applications

Criminal Networks Module

Lecture 3: Network Models

$$(n-1)_{p} = \mathbb{E}(\text{degree})$$

$$p_{n} = (n-1)_{p} p^{k} (n-p)^{n-1-k}$$

MITx: Statistics, Computation & Applications

Criminal Networks Module

Lecture 3: Network Models

Network models

Develop models of networks in order to:

- determine interesting structural properties in a network
- study how networks come to exist and how this changes the structural properties
- study processes on networks and be able to make statements for many networks at once

Erdös-Renyi model

- Random graph models: network models that have some specified parameters, but otherwise the edges in the network appear at random
- Simple network model: Fix number of nodes and number of (undirected) edges and place edges uniformly at random

Erdös-Renyi model

- Random graph models: network models that have some specified parameters, but otherwise the edges in the network appear at random
- Simple network model: Fix number of nodes and number of (undirected) edges and place edges uniformly at random
- Erdös-Renyi model: G(n, p), where each edge between the n nodes is formed with probability $p \in [0, 1]$ independently of every other edge

Erdös-Renyi model

- Random graph models: network models that have some specified parameters, but otherwise the edges in the network appear at random
- Simple network model: Fix number of nodes and number of (undirected) edges and place edges uniformly at random
- Erdös-Renyi model: G(n, p), where each edge between the n nodes is formed with probability $p \in [0, 1]$ independently of every other edge
 - similar but easier to handle mathematically
 - expected number of edges is $\mathbb{E}[\text{number of edges}] = \binom{n}{2} p$
 - ullet expected degree of a node i is $\mathbb{E}[k_i]=(n-1)p$
- VZ

- degree distribution is Binomial(n-1,p), i.e. $\mathbb{P}(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$
- degree distribution does not follow a power law: approximation of binomial distribution by Poisson distribution: $\mathbb{P}(k) = \frac{e^{-\lambda}\lambda^k}{k!}, \text{ where } \lambda = (n-1)p$

$$P_{n} = \frac{2^{-3} \chi^{2}}{h!}$$

$$R_{0} p_{n} = -\chi + h \log(2) - \log(h!)$$

$$\approx -h \log h - k + h \log(2)$$

$$\approx -h \log h$$

$$power law degree distr$$

log pn $\approx -L log (fr)$

Binomial degree distribution

Erdös-Renyi graphs

c = (n-1)p (expected degree)

Erdös-Renyi graphs: connected components

- ullet study structural graph properties as $n o \infty$
- Erdös-Renyi graphs show phase transition:
 - $p < \frac{1}{n}$: no connected component of size $\geq c \log(n)$
 - $p > \frac{1}{n}$: giant component emerges, i.e. component of size *cn*
 - $p > \frac{\log(n)}{n}$: graph is connected
- proof of phase transitions in seminal work of Erdös & Renyi (1959)

Erdös-Renyi graphs: clustering coefficient

Expected clustering coefficient in Erdös-Renyi graphs is $\frac{\binom{n}{3}p^3}{\binom{n}{2}p^2}=p\approx\frac{c}{n}$

Network	Type	n	m	С	S	l	α	С
Film actors	Undirected	449 913	25 516 482	113.43	0.980	3.48	2.3	0.20
Company directors	Undirected	7 673	55 392	14.44	0.876	4.60	-	0.59
Math coauthorship	Undirected	253 339	496 489	3.92	0.822	7.57	-	0.15
Physics coauthorship	Undirected	52 909	245 300	9.27	0.838	6.19	-	0.45
Biology coauthorship	Undirected	1 520 251	11 803 064	15.53	0.918	4.92	-	0.08
Biology coauthorship Telephone call graph	Undirected	47 000 000	80 000 000	3.16			2.1	
Email messages	Directed	59812	86 300	1.44	0.952	4.95	1.5/2.0	
Email address books	Directed	16881	57 029	3.38	0.590	5.22	-	0.17
Student dating	Undirected	573	477	1.66	0.503	16.01	_	0.00
Sexual contacts	Undirected	2810					3.2	
WWW nd.edu	Directed	269 504	1 497 135	5.55	1.000	11.27	2.1/2.4	0.11
WWW AltaVista	Directed	203 549 046	1 466 000 000	7.20	0.914	16.18	2.1/2.7	
WWW AltaVista Citation network Roget's Thesaurus	Directed	783 339	6716198	8.57			3.0/-	
Roget's Thesaurus	Directed	1 022	5 103	4.99	0.977	4.87	_	0.13
Word co-occurrence	Undirected	460 902	16 100 000	66.96	1.000		2.7	
Internet	Undirected	10 697	31 992	5.98	1.000	3.31	2.5	0.03
Power grid	Undirected	4941	6594	2.67	1.000	18.99	_	0.10
Train routes	Undirected	587	19 603	66.79	1.000	2.16	_	
Power grid Train routes Software packages Software classes Electronic circuits	Directed	1 439	1723	1.20	0.998	2.42	1.6/1.4	0.07
Software classes	Directed	1 376	2 2 1 3	1.61	1.000	5.40	-	0.03
Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3.0	0.01
Peer-to-peer network	Undirected	880	1 296	1.47	0.805	4.28	2.1	0.01
Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.09
Protein interactions Marine food web Freshwater food web	Undirected	2 1 1 5	2 240	2.12	0.689	6.80	2.4	0.07
Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16
Freshwater food web	Directed	92	997	10.84	1.000	1.90	-	0.20
Neural network	Directed	307	2.359	7.68	0.967	3.97	_	0.18

n = |nodes|, m = |edges|, c: mean degree, S: prop. largest component, ℓ : mean geodesic, α : exp. power-law degree distribution, C: clustering coeff.

Erdös-Renyi graphs: diameter

• for constant average degree c, one can show that diameter is $\log(n)$

$$c^{S} = \bigcap$$

$$S \log(c) = \log(n)$$

$$S = \log(n)$$

$$\log(c)$$

Erdös-Renyi graphs: diameter

- for constant average degree c, one can show that diameter is $\log(n)$
- heuristic argument:
 - ullet average number of nodes s steps away from randomly chosen node: c^s
 - all nodes can be reached when $c^s \approx n$, or equivalently when $s \approx \frac{\log(n)}{\log(c)}$
 - hence, the diameter is $s \approx \frac{\log(n)}{\log(c)}$

Erdös-Renyi graphs: diameter

- ullet for constant average degree c, one can show that diameter is $\log(n)$
- heuristic argument:
 - ullet average number of nodes s steps away from randomly chosen node: c^s
 - all nodes can be reached when $c^s \approx n$, or equivalently when $s pprox \frac{\log(n)}{\log(c)}$
 - hence, the diameter is $s pprox \frac{\log(n)}{\log(c)}$

Summary of structural properties of Erdös-Renyi graphs:

- small-world property, i.e. diameter of the order of log(n)
- locally tree-like, i.e. few triangles
- and binomial degree distribution, i.e. no power law

How to address unrealistic degree distribution of Erdös-Renyi graphs?

How to address unrealistic degree distribution of Erdös-Renyi graphs?

generate random networks with a given degree distribution (e.g. power law)

How to address unrealistic degree distribution of Erdös-Renyi graphs?

generate random networks with a given degree distribution (e.g. power law)

Configuration model (Bender and Canfield, 1978)

- One of the most widely used models for this purpose
- Specify degree sequence (k_1, \ldots, k_n) and attach k_i stubs to node i
- Choose 2 stubs at random and create edge connecting them and continue process with remaining stubs

12/35/12/34/35/43/14

How to address unrealistic degree distribution of Erdös-Renyi graphs?

 generate random networks with a given degree distribution (e.g. power law)

Configuration model (Bender and Canfield, 1978)

- One of the most widely used models for this purpose
- Specify degree sequence (k_1, \ldots, k_n) and attach k_i stubs to node i
- Choose 2 stubs at random and create edge connecting them and continue process with remaining stubs
- Drawback: It is possible to have self-loops and multi-edges
 - but average number of self-loops and multi-edges is a constant as $n \to \infty$
- **Drawback:** One can show that clustering coefficient is of order of $\frac{1}{n}$

Preferential attachment model

- other type of network models: generative network models
- explore hypothesized generative mechanisms to see what structures they produce

Preferential attachment model

- other type of network models: generative network models
- explore hypothesized generative mechanisms to see what structures they produce

Preferential attachment model (Price, 1976)

- In context of bibliographic network:
 - newly appearing paper cites previous ones with probability proportional to their number of citations
 - ullet give every paper eta citations for free
- one can show that this model has power law degree distribution:

$$p_k \sim k^{-\alpha}$$
, where $\alpha = 2 + \frac{\beta}{c}$

$$p(\text{edy to rade } i) = \frac{\text{deg(rade } i) + (3)}{\sum (\text{deg(rade } i) + (3))}$$

Preferential attachment model

- other type of network models: generative network models
- explore hypothesized generative mechanisms to see what structures they produce

Preferential attachment model (Price, 1976)

- In context of bibliographic network:
 - newly appearing paper cites previous ones with probability proportional to their number of citations
 - \bullet give every paper β citations for free
- one can show that this model has power law degree distribution: $p_k \sim k^{-\alpha}$, where $\alpha = 2 + \frac{\beta}{c}$
- drawback: leads to acyclic network
- drawback: small clustering coefficient

Small-world model

How to address unrealistic clustering coefficients?

Small-world model

How to address unrealistic clustering coefficients?

- generate circulant graph, where every node around a cycle is connected to its c closest neighbors
- drawbacks: diameter is of order n, no power law degree distribution

Small-world model

How to address unrealistic clustering coefficients?

- generate circulant graph, where every node around a cycle is connected to its c closest neighbors
- drawbacks: diameter is of order n, no power law degree distribution
- Small-world model (Watts and Strogatz, 1998)
 - rewire edges at random with probability p
 - leads to networks with high clustering coefficient and small diameter
 - drawback: degree distribution does not follow power law

Summary: Network models

- Erdös-Renyi model
 - realistic diameter, but small clustering coefficient and binomial degree distribution
- configuration model
 - power law degree distribution, realistic diameter, but small clustering coefficient
- preferential attachment model
 - generative model with power law degree distribution, realistic diameter, but small clustering coefficient
- small-world model
 - generative model with high clustering coefficient, realistic diameter, but no power law degree distribution

How to construct a network model that leads to power law degree distribution, realistic diameter, and high clustering coefficient?

References

• Chapters 12-15 in

M. E. J. Newman. Networks: An Introduction. 2010.