Modern C++ Programming

7. Object-Oriented Programming I

CLASS CONCEPTS

- 1 C++ Classes
 - RAII Idiom

2 Class Hierarchy

- Access specifiers
- Inheritance Access Specifiers

3 Class Constructor

- Default Constructor
- Class Initialization
- Uniform Initialization
- Delegate Constructor
- explicit Keyword
- [[nodiscard]] and Classes

4 Copy Constructor

5 Class Destructor

6 Defaulted Constructors, Destructor, and Operators
 (=default)

7 Class Keywords

- this
- static
- const
- mutable
- using
- friend
- delete

C++ Classes

C++ Classes

C/C++ Structure

A **structure** (**struct**) is a collection of variables of the same or different data types under a single name

C++ Class

A class (class) extends the concept of structure to hold functions as members

struct vs. class

Structures and classes are *semantically* equivalent. In general, **struct** represents *passive* objects, while **class** *active* objects

Class Members - Data and Function Members

Data Member

Data within a class are called data members or class fields

Function Member

Functions within a class are called function members or methods

RAII Idiom - Resource Acquisition is Initialization

Holding a resource is a <u>class invariant</u>, and is tied to object lifetime

RAII Idiom consists in three steps:

- Encapsulate a resource into a class (constructor)
- Use the resource via a local instance of the class
- The resource is automatically releases when the object gets out of scope (destructor)

 $\underline{\text{Implication 1}} \colon \mathsf{C} + + \text{ programming language does not require the garbage collector!!}$

<u>Implication 2</u>: The programmer has the responsibility to manage the resources

struct/class Declaration and Definition

struct declaration and definition

```
struct A;  // struct declaration

struct A {      // struct definition
      int x;      // data member
      void f(); // function member
};
```

class declaration and definition

struct/class Function Declaration and Definition

```
struct A {
   void g();  // function member declaration
   void f() {      // function member declaration
       cout << "f": // inline definition</pre>
};
void A::g() {      // function member definition
    cout << "g"; // out-of-line definition</pre>
```

struct/class Members

```
struct B {
    void g() { cout << "g"; } // function member</pre>
};
struct A {
    int x;
                            // data member
    B b;
              // data member
    void f() { cout << "f"; } // function member</pre>
};
Aa;
a.x;
a.f();
a.b.g();
```

Class Hierarchy

Child/Derived Class or Subclass

A new class that inheriting variables and functions from another class is called a **derived** or **child** class

Parent/Base Class

The *closest* class providing variables and functions of a derived class is called **parent** or **base** class

Extend a base class refers to creating a new class which retains characteristics of the base class and on top it can add (and never remove) its own members

Syntax:

```
class DerivedClass : [<inheritance attribute>] BaseClass {
```

Class Hierarchy

```
struct A { // base class
   int value = 3;
   void g() {}
};
struct B : A {      // B is a derived class of A (B extends A)
   int data = 4; // B inherits from A
   int f() { return data; }
};
Aa;
B b;
a.value;
b.g();
```

Class Hierarchy

```
struct A {}:
struct B : A {};
void f(A a) {}  // copy
void g(B b) {} // copy
void f_ref(A& a) {} // the same for A*
void g_ref(B& b) {} // the same for B*
A a:
B b:
f(a); // ok, also f(b), f(ref(a)), g(ref(b))
g(b); // ok, also g_ref(b), but not g(a), g_ref(a)
A a1 = b; //ok, also A\& a2 = b
// B b1 = a; // compile error
```

The access specifiers define the visibility of inherited members of the subsequent base class. The keywords <code>public</code>, <code>private</code>, and <code>protected</code> specify the sections of visibility

The goal of the *access specifiers* is to prevent a direct access to the internal representation of the class for avoiding wrong usage and potential inconsistency (access control)

- public: No restriction (function members, derived classes, outside the class)
- protected: Function members and derived classes access
- private: Function members only access (internal)

struct has default public members
class has default private members

Access specifiers

```
struct A1 {
    int value; // public (by default)
protected:
    void f1() {} // protected
private:
    void f2() {} // private
};
class A2 {
    int data; // private (by default)
};
struct B : A1 {
   void h1() { f1(); } // ok, "f1" is visible in B
// void h2() { f2(); } // compile error "f2" is private in A1
};
A1 a;
a.value; // ok
// a.f1() // compile error protected
// a.f2() // compile error private
```

The access specifiers are also used for defining how the visibility is propagated from the base class to a specific derived class in the inheritance

Member declaration		Inheritance		Derived classes
<pre>public protected private</pre>	\rightarrow	public	\rightarrow	<pre>public protected \</pre>
public protected private	\rightarrow	protected	\rightarrow	protected protected
public protected private	\rightarrow	private	\rightarrow	private private \

```
struct A {
    int var1; // public
protected:
    int var2; // protected
};
struct B : protected A {
    int var3; // public
};
B b;
// b.var1; // compile error, var1 is protected in B
// b.var2; // compile error, var2 is protected in B
b.var3; // ok, var3 is public in B
```

```
class A {
public:
    int var1;
protected:
   int var2;
};
class B1 : A {};  // private inheritance
class B2 : public A {}: // public inheritance
B1 b1;
// b1.var1; // compile error, var1 is private in B1
// b1.var2; // compile error, var2 is private in B1
B2 b2;
b2.var1; // ok, var1 is public in B2
```

Class Constructor

Class Constructor

Constructor [ctor]

A **constructor** is a *special* member function of a class that is executed when a new instance of that class is created

Goals: initialization and resource acquisition

Syntax: T(...) same named of the class and no return type

- A constructor is supposed to initialize <u>all</u> data members
- We can define multiple constructors with different signatures
- Any constructor can be constexpr

Default Constructor

Default Constructor

The **default constructor** T() is a constructor with no argument

Every class has always either an implicit or explicit default constructor

```
struct A {
    A() {} // explicit default constructor
    A(int) {} // user-defined (non-default) constructor
};
struct A {
    int x = 3; // implicit default constructor
};
A a{}; // ok
```

An implicit default constructor is constexpr

Default Constructor Examples

```
struct A {
   A() { cout << "A"; } // default constructor
};
A a1; // call the default constructor
// A a2(); // interpreted as a function declaration!!
A a3{};
              // ok, call the default constructor
                 // direct-list initialization (C++11)
A array[3]; // print "AAA"
A* ptr = new A[4]; // print "AAAA"
```

The *implicit* default constructor of a class is marked as **deleted** if (simplified):

It has any user-defined constructor

```
struct A {
     A(int x) {}
};
// A a; // compile error
```

It has a non-static member/base class of reference/const type

It has a non-static member/base class which has a deleted (or inaccessible)
 default constructor

```
struct A {
    NoDefault var;  // deleted default constructor
};
struct B : NoDefault {}; // deleted default constructor
```

It has a non-static member/base class with a deleted or inaccessible destructor

Initializer List

The **Initializer list** is used for *initializing the data members* of a class or explicitly call the base class constructor <u>before</u> entering the constructor body (Not to be confused with std::initializer_list)

In-Class Member Initializer

C++11 In-class non-static data members initialization (NSDMI) allows to initialize the data members where they are declared. A user-defined constructor can be used to override the their default values

Data Member Initialization

const and reference data members $\underline{\text{must}}$ be initialized by using the *initialization list* or by using in-class brace-or-equal-initializer syntax (C++11)

```
struct A {
   int
             x;
   const char y; // must be initialized
   int& z; // must be initialized
   v = x: // equal-initializer (C++11)
   const int w{4}; // brace initializer (C++11)
   A() : x(3), y('a'), z(x) {}
};
```

Initialization Order *

Class members initialization follows the <u>order of declarations</u> and *not* the order in the initialization list

```
struct ArrayWrapper {
    int* array;
    int size;
    A(int user size) :
        size{user size}.
        array{new int[size]} {}
        // wrong!!: "size" is still undefined
};
ArrayWrapper a(10):
cout << a.array[4]; // segmentation fault</pre>
```

Uniform Initialization

Uniform Initialization (C++11)

Uniform Initialization {}, also called *list-initialization*, is a way to fully initialize any object independently from its data type

- Minimizing Redundant Typenames
 - In function arguments
 - In function returns
- Solving the "Most Vexing Parse" problem
 - Constructor interpreted as function prototype

Minimizing Redundant Typenames

```
struct Point {
              int x, y;
              Point(int x1, int y1) : x(x1), y(y1) {}
          };
C++03
          Point add(Point a, Point b) {
              return Point(a.x + b.x, a.y + b.y);
          Point c = add(Point(1, 2), Point(3, 4));
          Point add(Point a, Point b) {
C + +11
              return { a.x + b.x, a.y + b.y }; // here
          auto c = add(\{1, 2\}, \{3, 4\}); // here
```

"Most Vexing Parse" problem *

```
struct A {}:
struct B {
    B(A a) {}
    B(int x, int y) {}
    void f() {}
};
B b(A()); // "b" is interpreted as function declaration
             // with a single argument A (*)() (func. pointer)
// b.f() // compile error "Most Vexing Parse" problem
             // solved with B bf Af} }:
struct C {
// B b(1, 2); // compile error (struct)! It works in a function scope
   B b{1, 2}; // ok, call the constructor
};
```

Constructors and Inheritance

Class constructors are never inherited

A *Derived* class <u>must</u> call *implicitly* or *explicitly* a *Base* constructor <u>before</u> the current class constructor

Class constructors are called <u>in order</u> from the top Base class to the most Derived class (C++ objects are constructed like onions)

```
struct A {
    A() { cout << "A" };
};
struct B1 : A { // call "A()" implicitly
    int y = 3; // then, "y = 3"
};
struct B2 : A { // call "A()" explicitly
    B2() : A() { cout << "B"; }
};
B1 b1; // print "A"
B2 b2; // print "A", then print "B"</pre>
```

Delegate Constructor

The problem:

Most constructors usually perform identical initialization steps before executing individual operations

C++11 A **delegate constructor** calls another constructor of the same class to reduce the repetitive code by adding a function that does all of the initialization steps

```
struct A {
    int a:
    float b:
    bool c:
    // standard constructor:
    A(int a1, float b1, bool c1) : a(a1), b(b1), c(c1) {
        // do a lot of work
    A(int a1. float b1): A(a1, b1, false) {} // delegate construtor
    A(float b1)
                        : A(100, b1, false) {} // delegate construtor
                                                                                             32/62
};
```

explicit

The explicit keyword specifies that a constructor or conversion operator (C++11) does not allow implicit conversions or copy-initialization from single arguments or braced initializers

The problem:

explicit cannot be applied to copy/move-constructors

```
struct B {
struct A {
   A() {}
                                            explicit B() {}
   A(int) {}
                                            explicit B(int) {}
                                            explicit B(int, int) {}
   A(int, int) {}
                                        };
}:
                                        void f(const B&) {}
void f(const A&) {}
A a1 = \{\}; // ok
                                        // B b1 = {}; // error implicit conversion
                                        B b2(2); // ok
A a2(2); // ok
                               // B b3 = 1; // error implicit conversion
A a3 = 1; // ok (implicit)
A a4{4, 5}; // ok. Selected A(int, int) B b4{4, 5}; // ok. Selected B(int. int)
A a5 = \{4, 5\}; // ok. Selected A(int. int) // B b5 = \{4, 5\}; // error implicit conversion
                                        B b6 = (B) 1; // OK: explicit cast
f({});
      // ok
f(1); // ok
                                        // f({}); // error implicit conversion
f(\{1\}); // ok
                                        // f(1); // error implicit conversion
                                        // f({1}); // error implicit conversion
                                                                             34/62
                                        f(B\{1\}); // ok
```

[[nodiscard]] and Classes

```
C++17 allows to set [[nodiscard]] for the entire class/struct
[[nodiscard]] struct A {}:
A f() { return A{}: }
auto x = f(); // ok
f(): // compiler warning
C++20 allows to set [[nodiscard]] for constructors
struct A {
    [[nodiscard]] A() {} // C++20 also allows [[nodiscard]] with a reason
}:
void f(A {})
A a\{\}: // ok
f(A{}); // ok
A{}; // compiler warning
                                                                                35/62
```

Copy Constructor

Copy Constructor

Copy Constructor

A copy constructor T(const T&) creates a new object as a *deep copy* of an existing object

- Every class always defines an implicit or explicit copy constructor
- Even the copy constructor implicitly calls the *default* Base class constructor
- Even the copy constructor is considered a non-default constructor

Copy Constructor Example

```
struct Array {
    int size;
    int* array;
    Array(int size1) : size{size1} {
        array = new int[size];
    // copy constructor, ": size{obj.size}" initializer list
    Array(const Array& obj) : size{obj.size} {
        arrav = new int[size];
        for (int i = 0; i < size; i++)</pre>
            array[i] = obj.array[i];
Array x{100}; // do something with x.array ...
Array y{x}; // call "Array::Array(const Array&)"
```

Copy Constructor Usage

The copy constructor is used to:

- <u>Initialize</u> one object from another one having the same type
 - Direct constructor
 - Assignment operator

```
A a1;
A a2(a1); // Direct copy initialization
A a3{a1}; // Direct copy initialization
A a4 = a1; // Copy initialization
A a5 = {a1}; // Copy list initialization
```

Copy an object which is passed by-value as input parameter of a function
 void f(A a);

Copy an object which is returned as <u>result</u> from a function*

```
A f() { return A(3); } // * see RVO optimization
```

Copy Constructor Usage Examples

```
struct A {
   A() {}
   A(const A& obj) { cout << "copy"; }
};
void f(A a) {} // pass by-value
A g() { return A(); };
A a:
A b = a; // copy constructor (assignment)
                                           "copy"
A c(b); // copy constructor (direct)
                                           "copy"
f(b); // copy constructor (argument)
                                           "copy"
g(); // copy constructor (return value) "copy"
A d = g(); // * see RVO optimization
                                    (depends)
```

Pass by-value and Copy Constructor

```
struct A {
    A() {}
    A(const A& obj) { cout << "expensive copy"; }
};
struct B : A {
    B() {}
    B(const B& obj) { cout << "cheap copy"; }</pre>
};
void f1(B b) {}
void f2(A a) {}
B b1:
f1(b1); // cheap copy
f2(b1); // expensive copy!! It calls A(const A&) implicitly
```

Deleted Copy Constructor

The *implicit* copy constructor of a class is marked as **deleted** if (simplified):

It has a non-static member/base class of reference/const type

```
struct NonDefault { int& x; }; // deleted copy constructor
```

It has a non-static member/base class which has a deleted (or inaccessible) copy constructor

```
struct B { // deleted copy constructor
    NonDefault a;
};
struct B : NonDefault {}; // delete copy constructor
```

- It has a non-static member/base class with a deleted or inaccessible destructor
- The class has the move constructor (next lectures)

Class Destructor

Destructor [dtor]

A **destructor** is a special member function that is executed whenever an object is out-of-scope or whenever the delete/delete[] expression is applied to a pointer of that class

Goals: resources releasing

Syntax: $\sim T()$ same name of the class and no return type

- Any object has exactly one destructor, which is always implictly or explicitly declared
- C++20 The *destructor* can be constexpr

```
struct Array {
    int* arrav;
    Array() { // constructor
       array = new int[10];
    ~Array() { // destructor
       delete[] array;
};
int main() {
  Array a; // call the constructor
  for (int i = 0; i < 5; i++)
       Array b; // call 5 times the constructor + destructor
} // call the destructor of "a"
```

Class destructor is <u>never</u> inherited. *Base* class destructor is invoked *after* the current class destructor

Class destructors are called in reverse order. From the most Derived to the top Base class

```
struct A {
    \simA() { cout << "A"; }
};
struct B {
    \simB() { cout << "B"; }
};
struct C : A {
    B b; // call \sim B()
    \simC() { cout << "C": }
};
int main() {
    C b; // print "C", then "B", then "A"
```

Defaulted Constructors, Destructor, and **Operators** (=default)

C++11 The compiler can automatically generate

default/copy/move constructors

```
A() = default
A(const A&) = default
A(A&&) = default
```

destructor

$$A() = default$$

- copy/move assignment operators A& operator=(const A&) = default A& operator=(A&&) = default
- spaceship operator

```
auto operator<=>(const A&) = default
```

= default implies constexpr, but not noexcept or explicit

When the compiler-generated constructors, destructors, and operators are useful:

- Change the visibility of non-user provided constructors and assignment operators (public, protected, private)
- Make visible the declarations of such members

The **defaulted** default constructor has a <u>similar</u> effect as a user-defined constructor with empty body and empty initializer list

When the compiler-generated constructor is useful:

- Any user-provided constructor disables implicitly-generated default constructor
- Force the default values for the class data members

```
struct B {
protected:
    B() = default; // now it is protected
};
```

Class Keywords

this Keyword

this

Every object has access to its own address through the pointer this

Explicit usage is not mandatory (and not suggested)

this is necessary when:

- The name of a local variable is equal to some member name
- Return reference to the calling object

```
struct A {
   int x;
   void f(int x) {
       this->x = x; // without "this" has no effect
   }
   const A& g() {
       return *this;
   }
};
```

static Keyword

The keyword static declares members (fields or methods) that are not bound to class instances. A static member is shared by all objects of the class

```
struct A {
    int x:
    int f() { return x; }
    static int g() { return 3; } // q() cannot access 'x' as it is associated with
}:
                                  // class instances
A a{4}:
a.f(); // call the class instance method
A::g(); // call the static class method
a.g(); // as an alternative, a class instance can access static class members
        // (less common)
```

Non-const static data members $\underline{\text{cannot}}$ be $\underline{\text{directly}}$ initialized inline (see Translation Units lecture)...before C++17

```
struct A {
// static int a = 4; // compiler error
  static int a; // ok, declaration only
   static inline int b = 4; // ok from C++17
   static int f() { return 2; }
   static int g();  // ok, declaration only
};
int A::a = 4;
                // ok, undefined reference without this definition
int A::g() { return 3; } // ok, undefined reference without this definition
```

```
struct A {
    static int x; // declaration
    static int f() { return x; }
    static int& g() { return x; }
};
int A::x = 3; // definition
A::f(); // return 3
A::x++:
A::f(); // return 4
A::g() = 7;
A::f(); // return 7
```

- A static member function can only access static class members
- A non- static member function can access static class members

```
struct A {
              x = 3;
    int
   static inline int v = 4:
    int f1() { return x: } // ok
// static int f2() { return x; } // compiler error, 'x' is not visible
    int g1() { return y; } // ok
    static int g2() { return y; } // ok
    struct B {
       int h() { return y + g2(); } // ok
   ; // 'x', 'f1()', 'g1()' are not visible within 'B'
};
```

Const member functions

Const member functions (inspectors or observer) are functions marked with const that are not allowed to change the object state

Member functions without a **const** suffix are called *non-const member functions* or **mutators**. The compiler prevents from inadvertently mutating/changing the data members of *observer* functions

The **const** keyword is part of the functions signature. Therefore a class can implement two similar methods, one which is called when the object is **const**, and one that is not

```
class A {
   int x = 3;
public:
   int& get1() { return x; } // read and write
   int get1() const { return x; } // read only
   int& get2() { return x; } // read and write
};
A a1:
cout << a1.get1(); // ok
cout << a1.get2(); // ok</pre>
a1.get1() = 4; // ok
const A a2;
cout << a2.get1(); // ok</pre>
// cout << a2.get2(); // compile error "a2" is const
//a2. qet1() = 5; // compile error only "qet1() const" is available
```

mutable Keyword

mutable

mutable members of const class instances are modifiable

Constant references or pointers to objects cannot modify objects in any way, $\underline{\mathsf{except}}$ for data members marked $\underline{\mathsf{mutable}}$

- It is particularly useful if most of the members should be constant but a few need to be modified
- Conceptually, mutable members should not change anything that can be retrieved from the class interface

using Keyword for type declaration

The using keyword is used to declare a type alias tied to a specific class

```
struct A {
    using type = int;
};

typename A::type x = 3; // "typename" keyword is needed when we refer to types

struct B : A {};

typename B::type x = 4; // B can use "type" as it is public in A
```

using Keyword for Inheritance

The using keyword can be also used to change the *inheritance attribute* of member data or functions

```
struct A {
protected:
    int x = 3;
};
struct B : A {
public:
    using A::x;
};
B b;
b.x = 3; // ok, "b.x" is public
```

friend Class

A friend class can access the private and protected members of the class in which it is declared as a friend

Friendship properties:

- Not Symmetric: if class A is a friend of class B, class B is not automatically a friend of class A
- Not Transitive: if class A is a friend of class B, and class B is a friend of class C, class A is not automatically a friend of class C
- Not Inherited: if class Base is a friend of class X, subclass Derived is not
 automatically a friend of class X; and if class X is a friend of class Base, class X is
 not automatically a friend of subclass Derived

```
class B: // class declaration
class A {
    friend class B;
   int x; // private
};
class B {
    int f(A a) { return a.x; } // ok, B is friend of A
};
class C : B {
// int f(A \ a) { return a.x; } // compile error not inherited
};
```

friend Method

A <u>non-member</u> function can access the private and protected members of a class if it is declared a <u>friend</u> of that class

```
class A {
    int x = 3; // private
    friend int f(A a): // friendship declaration, no implementation
};
//'f' is not a member function of any class
int f(A a) {
    return a.x; // A is friend of f(A)
```

friend methods are commonly used for implementing the stream operator operator<</pre>

delete Keyword

delete Keyword (C++11)

The delete keyword explicitly marks a member function as deleted and any use results in a compiler error. When it is applied to *copy/move constructor* or *assignment*, it prevents the compiler from implicitly generating these functions

The default copy/move functions for a class can produce unexpected results. The keyword delete prevents these errors

```
struct A {
    A() = default;
    A(const A&) = delete; // e.g. deleted because unsafe or expensive
};
void f(A a) {} // implicit call to copy constructor

A a;
// f(a); // compile error marked as deleted 62/62
```