Problem statement: To predict How Best the Data Fits, To Predict the accuracy of the Rainfall based on the given features

1)Data collection ¶

```
In [1]: #Importing libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.preprocessing import StandardScaler
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4113	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9
	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4

4116 rows × 19 columns

2) Data Cleaning and Preprocessing

In [3]: data.head() Out[3]: SUBDIVISION YEAR JAN **FEB** MAR **APR** JUN JUL **AUG SEP** OCT NO/ **ANDAMAN &** 0 **NICOBAR** 1901 49.2 87.1 29.2 2.3 528.8 517.5 365.1 481.1 332.6 388.5 558.2 **ISLANDS ANDAMAN &** 1 **NICOBAR** 1902 0.0 159.8 12.2 446.1 537.1 228.9 753.7 666.2 197.2 **ISLANDS** ANDAMAN & 2 **NICOBAR** 1903 12.7 144.0 0.0 1.0 235.1 479.9 728.4 326.7 339.0 181.2 284.4 **ISLANDS ANDAMAN &** 3 **NICOBAR** 202.4 308.7 1904 9.4 14.7 0.0 304.5 495.1 502.0 160.1 820.4 222.2 **ISLANDS ANDAMAN & NICOBAR** 1905 1.3 0.0 3.3 26.9 279.5 628.7 368.7 330.5 297.0 25.4 **ISLANDS** • data.tail() In [4]: Out[4]: SUBDIVISION YEAR JAN **FEB** MAR APR MAY JUN JUL AUG SEP OCT 4111 LAKSHADWEEP 2011 5.1 2.8 3.1 85.9 107.2 153.6 350.2 254.0 255.2 117.4 4112 LAKSHADWEEP 2012 19.2 0.1 1.6 76.8 21.2 327.0 231.5 381.2 179.8 145.9 296.4 4113 LAKSHADWEEP 26.2 34.4 37.5 5.3 88.3 426.2 154.4 180.0 72.8 2013 LAKSHADWEEP 2014 53.2 16.1 4.4 14.9 57.4 244.1 116.1 466.1 132.2 169.2 4115 LAKSHADWEEP 2015 2.2 0.5 3.7 87.1 133.1 296.6 257.5 146.4 160.4 165.4 2 Þ In [5]: data.shape Out[5]: (4116, 19)

< bound			me.aesc	ribe of	Γ			50	RDIAIZIO	N YEAR	JAN
FEB	MAR	APR	MAY	JUN							
0	ANDAMA	N & NIC	OBAR IS	LANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5
\											
1	ANDAMA	N & NIC	OBAR IS	LANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1
2	ANDAMA	N & NIC	OBAR IS	LANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9
3	ANDAMA	N & NIC	OBAR IS	LANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1
4	ANDAMA	N & NIC	OBAR IS	LANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7
4111			LAKSHA			5.1	2.8	3.1		107.2	153.6
4112			LAKSHA	DWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0
4113			LAKSHA	DWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2
4114			LAKSHA	DWEEP	2014	53.2	16.1			57.4	244.1
4115			LAKSHA	DWEEP	2015	2.2	0.5			133.1	296.6
	JUL	AUG	SEP	ОСТ	NOV	DE	C ANN	IUAL .	Jan-Feb	Mar-Ma	у
0	365.1	481.1	332.6	388.5	558.2	33.	6 337	73.2	136.3	560.	3 \
1	228.9	753.7	666.2	197.2	359.0	160.	5 352	20.7	159.8	458.	3
2	728.4	326.7	339.0	181.2	284.4	225.	0 295	57.4	156.7	236.	1
3	502.0	160.1	820.4	222.2	308.7	40.	1 307	79.6	24.1	506.	9
4	368.7	330.5	297.0	260.7	25.4	344.	7 256	6.7	1.3	309.	7
4111	350.2	254.0	255.2	117.4	184.3	14.	9 153	33.7	7.9	196.	2
4112	231.5	381.2	179.8	145.9	12.4	8.	8 146	95.5	19.3	99.	6
4113	296.4	154.4	180.0	72.8	78.1	26.	7 142	26.3	60.6	131.	1
4114	116.1	466.1	132.2	169.2	59.0	62.	3 139	95.0	69.3	76.	7
4115	257.5	146.4	160.4	165.4	231.0	159.			2.7	223.	9
		p Oct-	Dec								
0	1696.		0.3								
1	2185.	9 71	6.7								
2	1874.	0 69	0.6								
3	1977.	6 57	1.0								
4	1624.	9 63	0.8								
			• • •								
4111	1013.		6.6								
4112	1119.		7.1								
4113	1057.	0 17	7.6								
4114	958.		0.5								
4115	860.	9 55	5.4								

[4116 rows x 19 columns]>

```
In [7]: data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4116 entries, 0 to 4115 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype				
0	SUBDIVISION	4116 non-null	object				
1	YEAR	4116 non-null	int64				
2	JAN	4112 non-null	float64				
3	FEB	4113 non-null	float64				
4	MAR	4110 non-null	float64				
5	APR	4112 non-null	float64				
6	MAY	4113 non-null	float64				
7	JUN	4111 non-null	float64				
8	JUL	4109 non-null	float64				
9	AUG	4112 non-null	float64				
10	SEP	4110 non-null	float64				
11	OCT	4109 non-null	float64				
12	NOV	4105 non-null	float64				
13	DEC	4106 non-null	float64				
14	ANNUAL	4090 non-null	float64				
15	Jan-Feb	4110 non-null	float64				
16	Mar-May	4107 non-null	float64				
17	Jun-Sep	4106 non-null	float64				
18	Oct-Dec	4103 non-null	float64				
<pre>dtypes: float64(17), int64(1), object(1)</pre>							
mamory usaga: 611 1+ KR							

memory usage: 611.1+ KB

```
In [8]: data.isnull().sum()
```

```
Out[8]: SUBDIVISION
                           0
         YEAR
                           0
         JAN
                           4
         FEB
                           3
                           6
         MAR
         APR
                           4
                           3
         MAY
                           5
         JUN
                           7
         JUL
                           4
         AUG
         SEP
                           6
         OCT
                          7
         NOV
                          11
         DEC
                          10
         ANNUAL
                          26
         Jan-Feb
                          6
                          9
         Mar-May
         Jun-Sep
                          10
```

Oct-Dec

dtype: int64

13

localhost:8888/notebooks/rainfall.ipynb

```
In [9]: data.fillna(method="ffill",inplace=True)
In [10]: data.isnull().sum()
Out[10]: SUBDIVISION
                         0
         YEAR
          JAN
                         0
                          0
         FEB
         MAR
                         0
         APR
                         0
         MAY
                          0
          JUN
                          0
         JUL
                          0
         AUG
                         0
         SEP
                          0
         OCT
         NOV
         DEC
         ANNUAL
                         0
         Jan-Feb
                         0
         Mar-May
                         0
         Jun-Sep
                         0
         Oct-Dec
          dtype: int64
In [11]: data['YEAR'].value_counts()
Out[11]: YEAR
          1963
                  36
          2002
                  36
          1976
                  36
          1975
                  36
         1974
                  36
         1915
                  35
          1918
                  35
         1954
                  35
          1955
                  35
         1909
         Name: count, Length: 115, dtype: int64
```

3) Exploratory Data Analysis


```
In [13]: df=data[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


4)Training our Model

```
In [15]: x=np.array(df['FEB']).reshape(-1,1)
y=x=np.array(df['JAN']).reshape(-1,1)

In [16]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)

In [17]: lin=LinearRegression()
lin.fit(x_train,y_train)
print(lin.score(x_train,y_train))
```

1.0

5) Exploring our Results

```
In [18]: y_pred=lin.predict(x_test)
    plt.scatter(x_test,y_test,color='blue')
    plt.plot(x_test,y_pred,color='black')
    plt.show()
```


7)Working with subset of data

```
In [19]: df700=df[:][:700]
    sns.lmplot(x='FEB',y='JAN',order=2,ci=None,data=df700)
    plt.show()
```



```
In [20]: df700.fillna(method='ffill',inplace=True)
```

```
In [21]: x=np.array(df700['FEB']).reshape(-1,1)
y=x=np.array(df700['JAN']).reshape(-1,1)
```

```
In [22]: df700.dropna(inplace=True)
```

1.0

```
In [25]: y_pred=lr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [26]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

```
In [27]: lr=LinearRegression()
lr.fit(x_train,y_train)
y_pred=lr.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 1.0

Ridge Regression

```
In [28]: #Importing Libraries
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

```
In [29]: plt.figure(figsize=(10,10))
    sns.heatmap(df700.corr(),annot=True)
    plt.show()
```



```
In [30]: features=df.columns[0:5]
    target=df.columns[-5]
```

In [48]: x=df[features].values
 y=df[target].values
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state
 print("The dimension of X_train is {}".format(x_train.shape))
 print("The dimension of X_test is {}".format(x_test.shape))

The dimension of X_train is (2881, 5) The dimension of X_test is (1235, 5)

```
In [49]: lr = LinearRegression()
#Fit model
lr.fit(x_train, y_train)
#predict
actual = y_test
train_score_lr = lr.score(x_train, y_train)
test_score_lr = lr.score(x_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

```
In [51]: ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
    train_score_ridge = ridgeReg.score(x_train, y_train)
    test_score_ridge = ridgeReg.score(x_test, y_test)
    print("\nRidge Model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.999999999856335 The test score for ridge model is 0.999999999840021

Lasso Regression

```
In [33]: #Importing libraries
         lasso= Lasso(alpha=10)
         lasso.fit(x train,y train)
         #train and test scorefor ridge regression
         train score ls = lasso.score(x train, y train)
         test_score_ls= lasso.score(x_test, y_test)
         print("\nLasso Model:\n")
         print("The train score for lasso model is {}".format(train score ls))
         print("The test score for lasso model is {}".format(test_score ls))
         Lasso Model:
         The train score for lasso model is 0.9999539358821963
         The test score for lasso model is 0.9999440763208948
In [34]: |plt.figure(figsize=(10,10))
Out[34]: <Figure size 1000x1000 with 0 Axes>
         <Figure size 1000x1000 with 0 Axes>
In [35]: from sklearn.linear_model import LassoCV
In [36]: #using the linear cv model
         from sklearn.linear model import RidgeCV
         #cross validation
         ridge cv=RidgeCV(alphas = [0.0001, 0.001, 0.01, 0.1, 1, 1, 10]).fit(x train, y train)
         print(ridge cv.score(x train,y train))
         print(ridge_cv.score(x_test,y_test))
         0.999999999860413
         0.999999999830534
In [37]: #using the linear cv model
         from sklearn.linear model import LassoCV
         #cross validation
         lasso_cv=LassoCV(alphas =[0.0001,0.001,0.01,0.1,1,10]).fit(x_train,y_train)
         print(lasso_cv.score(x_train,y_train))
         print(lasso_cv.score(x_test,y_test))
         0.99999999999954
         0.99999999999944
         C:\Users\manasa\AppData\Local\Programs\Python\Python311\Lib\site-packages\skl
         earn\linear model\ coordinate descent.py:1568: DataConversionWarning: A colum
         n-vector y was passed when a 1d array was expected. Please change the shape o
         f y to (n samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
```

Elastic Regression

```
In [38]: from sklearn.linear_model import ElasticNet

In [39]: el=ElasticNet()
    el.fit(x_train,y_train)
    print(el.coef_)
    print(el.intercept_)
    el.score(x,y)

    [0.99932152]
    [0.01712925]

Out[39]: 0.9999995396414608

In [40]: y_pred_elastic=el.predict(x_train)

In [41]: mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
    print(mean_squared_error)

2944.787483507373
```

CONCLUSION:

The given data is "Rain fall prediction".here weneed to find the best fit model. As per the givendata set I had applyed different types of models...in which different type of models gotdifferent type of accyuraciesThe accuracy of the Linear Regression is 1.0 The accuracy of the Ridge Model is 0.999999999856 The accuracy of the Lasso Model is 0.20 The accuracy of the ElasticNet Regression is 0.99999914, comparing to all the models, RidgeRegression got the Highest Accuracy

```
In [ ]:
```