

Models & graphs for log odds and log odds ratios

Michael Friendly
Psych 6136

http://friendly.github.io/6136

Today's topics

- We've come a long way, but there is more...
- Logit models → general models for log odds
 - Two-way tables
 - Three-way + tables
 - Log odds plots
- Models for generalized odds ratios
 - Log odds ratios
 - Bivariate response models

Main ideas

- Familiar case— Binary responses:
 - Every loglinear model for a binary response has an equivalent form in terms of log odds ["logit" models]
 - Log odds models have simple interpretations
 - Data + model plots give simple descriptions of data and models
- Extend to two-way $(I \times J)$ and three-way + $(I \times J \times K_1 \dots)$ tables:
 - Log odds as contrasts in log(n)
 - Variety of simple models for log odds (ANOVA-like)
 - Easily incorporate ordinal variables
 - Data + model plots give simple descriptions of data and models
- Generalized log odds ratios capture associations between two focal variables
 - Simple linear models for LOR
 - Direct visualization (Data + model plots)

 more sensitive comparisons

Logit models → Log odds models

 In an I × 2 table for variables[A B], where B is a binary response, the logit model expresses the log odds that B=1 vs. B=2

$$\psi_i^A = \log\left(\frac{m_{i1}}{m_{i2}}\right)$$

- Models pertain to the one-way log odds
- This generalizes to I × J tables, where we consider (J-1) log odds for each level of A, e.g.,
 - Adjacent categories

$$\psi_{ij}^{A\overline{B}} = \log\left(\frac{m_{ij}}{m_{i(j+1)}}\right) \quad j = 1, 2, ..., J-1$$

- In general, $I \times J \rightarrow (J-1)$ log odds contrasts of the B categories for each level of A
- Similar to how polytomous responses treated in logistic regression
- Can also use comparisons with a baseline category

J responses → J-1 contrasts/logits

Adjacent-category logits

b1	b2	b3	b4
1	-1		
	1	-1	
		1	-1

For
$$A_i$$
: $\psi_j^{\bar{B}} = \log(m_{ij}) - \log(m_{i(j+1)})$

Reference-level logits

b1	b2	b3	b4
1			-1
	1		-1
		1	-1

For
$$A_i$$
: $\psi_j^{\bar{B}} = \log(m_{ij}) - \log(m_{i(J)})$

Generalized logit models extend the advantages of the standard one to a polytomous response

2-way example: Hospital visits

How does the length of stay in hospital differ among schizophrenic patients, classified by the frequency of visiting by friends and relatives?

```
data(HospVisits, package="vcdExtra")
HospVisits

## stay
## visit 2-9 10-19 20+
## Regular 43 16 3
## Infrequent 6 11 10
## Never 9 18 16
```

- Length of stay is the response, and it is ordered
- Can model the adjacent odds or log odds that stay is category j vs (j+1)
 - E.g., stay= 2-9 vs. 10-19; stay= 10-19 vs. 20+
- In general, $I \times J \rightarrow I \times (J-1)$ adjacent comparisons
- visit is also ordered. Can consider simpler (e.g., linear) models for the log odds

Exploratory plots: Doubledecker

Doubledecker plot

doubledecker (HospVisits)

- Shows directly the conditional distributions of stay given visit
- Length of stay is shorter with frequent visits
- Infrequent and Never don't differ very much

Exploratory plots: ca

What does CA tell us?

plot(ca(HospVisits))

- Association is entirely 1D!
- Infrequent and Never category points don't differ much
- Greater visit frequency associated with shorter stay

But, how can we test and and visualize these ideas with models?

Models for log odds

Start with the saturated loglinear model for the two-way table

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB}$$

• For adjacent categories of the response variable B, the odds, $\omega_{ij}^{A\overline{B}}$ and log odds, $\psi_{ij}^{A\overline{B}}$, that the response is in category j rather than j+1 are:

odds:
$$\omega_{ij}^{A\overline{B}} = \frac{m_{ij}}{m_{i,j+1}}$$
 log odds: $\psi_{ij}^{A\overline{B}} = \log\left(\frac{m_{ij}}{m_{i,j+1}}\right)$, $j = 1, \dots, J-1$

For the hospital visits data, this gives:

Models for log odds

A variety of simple models can be specified in terms of log odds:

Table: Models for adjacent log odds in an $I \times J$ table with B as the response

Model	log odds parameters	degrees of freedom
null log odds	$\psi_{ij}^{A\overline{B}} = 0$	I(J-1)
constant log odds	$\psi_{ij}^{A\overline{B}} = \psi$	I(J-1)-1
uniform B log odds	$\psi_{ij}^{A\overline{B}} = \psi_i^A$	I(J-2)
parallel log odds	$\psi_{ij}^{A\overline{B}} = \psi_i^A + \psi_j^B$	(I-1)(J-2)
saturated	$\psi_{ij}^{oldsymbol{A}\overline{B}}$ unspecified	

- The log odds, $\psi^{A\overline{B}}_{ij}$ can be viewed as entries in an $I \times (J-1)$ table
- These models are analogous to ANOVA tests of the A, B and A * B effects in this table.

Fit some models

I'm simply using Im() here. Should use WLS: weights = $1/ASE^2$

Compare models:

```
anova(mod.null, mod.const, mod.unif, mod.par)

## Analysis of Variance Table
##

## Model 1: logodds ~ -1
## Model 2: logodds ~ 1
## Model 3: logodds ~ visit
## Model 4: logodds ~ visit + stay
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 6 4.65
## 2 5 4.24 1 0.41 177 0.0056 **
## 3 4 3.43 1 0.81 345 0.0029 **
## 4 2 0.00 2 3.43 734 0.0014 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Ordinal variables

When the levels of A are ordinal, we can also test for linear effects.

Effects of visit are certainly not linear.

Visualizing log odds and models

Plots of observed and fitted log odds: easy interpretation of data and models

Data plot: Observed log odds

Data + Model plot (fitted log odds)

Visualizing log odds and models

Basic plot:

Add lines for predicted values from the models

```
grid <- hosp.lodds[,1:2]
gg_lines <- function(grid, mod, size=1.2, color=NULL, ...) {
        grid$logodds <- stats::predict(mod, grid)
        if(is.null(color)) geom_line(data=grid, size=size, ...)
        else geom_line(data=grid, size=size, color=color, ...)
    }

gg + gg_lines(grid, mod.null, color="gray", size=1, linetype="dashed") +
    gg_lines(grid, mod.const, color=gray(.5), size=1) +
    gg_lines(grid, mod.unif, color="black", size=1) +
    gg_lines(grid, mod.par)</pre>
```

Three-way+ tables: Log odds

These methods naturally extend to three- and higher-way tables:

- Consider a three-way $I \times J \times K$ table of variables A, B and C, where C is the response (or focal variable)
- The standard loglinear model is:

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC} + \lambda_{ijk}^{ABC}$$

• For categories k and k + 1 the adjacent log odds for C are

log odds:
$$\psi_{ijk}^{AB\overline{C}} = \log\left(\frac{m_{ijk}}{m_{i,j+1}}\right)$$
, $k = 1, \dots, K-1$

• These log odds can be viewed as entries in a two-way, $IJ \times (K-1)$ table.

Three-way+ tables: Log odds

The parallel log odds model is

$$\psi_{ijk}^{AB\overline{C}} = \Psi_{ij}^{AB} + \psi_{k}^{C}$$

$$= \psi + \psi_{i}^{A} + \psi_{j}^{B} + \psi_{ij}^{AB} + \psi_{k}^{C}$$

where the Ψ_{ij}^{AB} are unspecified and the ψ parameters obey standard (sum-to-zero) constraints.

Simpler models:

uniform log odds:
$$\psi_k^C = 0$$
 joint independence: $\Psi_{ij}^{AB} = \psi$

- Even simpler models: null effects of A ($\psi_i^A = 0$) or B ($\psi_i^B = 0$)
- Linear effects models: An ordinal A can use $\psi_i^A = i \times \beta_A$ to test for linearity

3-way example: Mice depletion data

- Kastenbaum and Lamphiear (1959) gave a 3 × 5 × 2 table of the number of deaths (0, 1, 2+) in 657 litters of mice, classified by litter size (7–11) and treatment ("A", "B")
- How does number of deaths depend on litter size and treatment?

```
data(Mice, package="vcdExtra")
mice.tab <- xtabs(Freq ~ litter + treatment + deaths, data=Mice)
ftable(litter + treatment ~ deaths, data=mice.tab)

## litter 7 8 9 10 11
## treatment A B A B A B A B A B
## deaths
## deaths
## 0 58 75 49 58 33 45 15 39 4 5
## 1 11 19 14 17 18 22 13 22 12 15
## 2+ 5 7 10 8 15 10 15 18 17 8</pre>
```

- → Adjacent categories:
- Odds or log odds of 0 vs. 1 deaths
- Odds or log odds of 1 vs. 2+ deaths

How do these differ with litter size & treatment?

Mice data: mosaic plot

Fit and display the model of joint independence, [litter, treatment] [deaths]

```
mosaic(mice.tab, expected= ~ litter * treatment + deaths)
```


- What can we see?
- Small litters more likely to have 0 deaths
- Large litters more likely to have 2+ deaths
- More deaths with treatment A than B

Mice data: MCA

```
mice.mca <- mjca(mice.tab)
plot(mice.mca)</pre>
```


What can we see?

- Larger litter size associated with more deaths
- More deaths with treatment A than B
- What model? How to simplify?

Calculating log odds

For a three-way table, a simple way to calculate all (log) odds is to reshape the data as a two-way matrix, T, with $I \times J$ rows and K columns.

```
## 7:A 58 11 5

## 8:A 49 14 10

## 9:A 33 18 15

## 10:A 15 13 15

## 11:A 4 12 17
```

The $IJ \times (K-1)$ table of adjacent log odds can then be calculated as log(T)C, where C is the $K \times K-1$ matrix of contrasts,

$$\mathbf{C} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$$

Adjacent categories

$$\mathbf{C} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Reference level = 0

In general, any set of K-1 {1, 0, -1} contrasts can be used

Calculating log odds

Calculating log odds

More generally,

- Consider an $R \times K_1 \times K_2 \times ...$ frequency table $n_{ij...}$, with factors $K_1, K_2 ...$ considered as strata.
- Let $\mathbf{n} = \text{vec}(n_{ij...})$ be the $N \times 1$ vectorization of the table.
- Then, all log odds and their asymptotic covariance matrix S can be calculated as:
 - $\widehat{\psi} = \boldsymbol{C} \log(\boldsymbol{n})$
 - $\mathbf{S} = \text{Var}[\boldsymbol{\psi}] = \mathbf{C} \text{ diag } \mathbf{n}^{-1} \mathbf{C}^{\mathsf{T}}$

where C is an N-column matrix containing all zeros, except for one +1 elements and one -1 elements in each row.

- With strata, C can be calculated as the Kronecker product
 - $C = C_R \otimes I_{K_1} \otimes I_{K_2} \otimes \cdots$
- Linear models for log odds: $\psi = X\beta$

Mice data: Log odds

The vcd package contains a general implementation of these ideas:

- odds() and lodds(): calculate odds or log odds for 1 variable in an n-way table
- Provides methods (coef(), vcov(), confint(), ...) for "lodds" objects

```
> (mice.lodds <- as.data.frame(lodds(mice.tab, response="deaths")))</pre>
  deaths litter treatment logodds
                                  ASE
     0:1
                        A 1.663 0.329
1
    1:2+
                        A 0.788 0.539
3
   0:1
              8
                        A 1.253 0.303
                        A 0.336 0.414
4
    1:2+
   0:1
                        A 0.606 0.293
    1:2+
                        A 0.182 0.350
7
    0:1
                        A 0.143 0.379
             10
    1:2+
             10
                        A -0.143 0.379
    0:1
                       A -1.099 0.577
             11
10
   1:2+
                       A -0.348 0.377
             11
```

Mice data: Fit models

Use WLS, with weights $\sim ASE^{-2}$

```
mod0 <- lm(logodds ~ 1, weights=1/ASE^2, data=mice.lodds)
mod1 <- lm(logodds ~ litter + treatment, weights=1/ASE^2, data=mice.lodds)
mod2 <- lm(logodds ~ litter * treatment, weights=1/ASE^2, data=mice.lodds)
mod3 <- lm(logodds ~ litter * treatment + deaths, weights=1/ASE^2, data=mi</pre>
```

Compare models:

```
## Analysis of Variance Table
##
## Model 1: logodds ~ 1
## Model 2: logodds ~ litter + treatment
## Model 3: logodds ~ litter * treatment
## Model 4: logodds ~ litter * treatment
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 19 65.0
## 2 14 17.8 5 47.2 18.22 0.00018 ***
## 3 10 6.7 4 11.1 5.36 0.01737 *
## 4 9 4.7 1 2.1 3.98 0.07723 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Visualize log odds & models: Data plot

- Data plot: log odds with error bars: $\psi_{ijk}^{AB\overline{C}} \pm 1ASE_{\psi}$ This is equivalent to the saturated model for log odds

Basic plot:

Add error bars, dodged

ggplot thinking:

- gg is my basic plot of points
- I can add other layers to it

Visualize log odds & models: Smoothing

- Apply a linear smoother (weighed linear regression) to each
- This is equalvalent to a model with a three-way term,
 as.numeric(litter)*treatment*deaths
- Error bands show model uncertainty

Visualize log odds & models: Data + Model

• Display the fit of the parallel log odds model, $\psi^{AB\overline{C}}_{ijk} = \Psi^{AB}_{ij} + \psi^{C}_{k}$

Visualize log odds & models: Data + Model

- Simplify the model: fit only linear effects of litter
- lm(logodds ~ as.numeric(litter)*treatment + deaths)
- Error bands show smaller model uncertainty

Generalized log odds ratios

 In any two-way, R × C table, all associations can be represented by a set of (R − 1) × (C − 1) odds ratios,

$$\theta_{ij} = \frac{n_{ij}/n_{i+1,j}}{n_{i,j+1}/n_{i+1,j+1}} = \frac{n_{ij} \times n_{i+1,j+1}}{n_{i+1,j} \times n_{i,j+1}}$$

Simpler in terms of log odds ratios:

$$\log(\theta_{ij}) = (1 -1 -1 1) \log(n_{ij} n_{i+1,j} n_{i,j+1} n_{i+1,j+1})^{\mathsf{T}}$$

Generalized log odds ratios

• $\log \theta_{ij} \sim \mathcal{N}(0, \sigma^2)$, with estimated asymptotic standard error:

$$\widehat{\sigma}(\log \theta_{ij}) = (n_{ij}^{-1} + n_{i+1,j}^{-1} + n_{i,j+1}^{-1} + n_{i+1,j+1}^{-1})^{1/2}$$

- This extends naturally to θ_{ij | k} in higher-way tables, stratified by one or more "control" variables.
- Many models have a simpler form expressed in terms of $log(\theta_{ij})$.
 - e.g., Uniform association model

$$\log(m_{ij}) = \mu + \lambda_i^A + \lambda_j^B + \gamma \mathbf{a}_i \mathbf{b}_j \equiv \log(\theta_{ij}) = \gamma$$

 Direct visualization of log odds ratios permits more sensitive comparisons than area-based displays.

Models for log odds ratios: Computation

- Consider an $R \times C \times K_1 \times K_2 \times ...$ frequency table $n_{ij}...$, with factors $K_1, K_2...$ considered as strata.
- Let $\mathbf{n} = \text{vec}(n_{ij...})$ be the $N \times 1$ vectorization of the table.
- Then, all log odds ratios and their asymptotic covariance matrix S can be calculated as:
 - $\log(\widehat{\theta}) = \mathbf{C} \log(\mathbf{n})$ • $\mathbf{S} = \text{Var}[\log(\theta)] = \mathbf{C} \operatorname{diag} \mathbf{n}^{-1} \mathbf{C}^{\mathsf{T}}$

where C is an N-column matrix containing all zeros, except for two +1 elements and two -1 elements in each row.

- With strata, \boldsymbol{C} can be calculated as $\boldsymbol{C} = \boldsymbol{C}_{RC} \otimes \boldsymbol{I}_{K_1} \otimes \boldsymbol{I}_{K_2} \otimes \cdots$
- loddsratio() in vcd provides generic methods (coef(), vcov(), confint(),...)
- plot () method gives reasonable data and model plots.

Models for log odds ratios: Computation

For example, for a 2×3 table, there are two adjacent odds ratios

```
## Age
## Sex Yng Mid Old
## M 30 20 10
## F 5 15 25
## log odds ratios for Sex and Age
##
## Yng:Mid Mid:Old
## 1.504 1.204
```

These are calculated as:

$$\log(\theta) = \mathbf{C}\log(\mathbf{n}) = \begin{bmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{bmatrix} \log \begin{pmatrix} n_{11} \\ n_{21} \\ n_{12} \\ n_{21} \\ n_{13} \\ n_{23} \end{pmatrix}$$

Models for log odds ratios: Estimation

• A log odds ratio linear model for the $log(\theta)$ is

$$\log(\theta) = X\beta$$

where **X** is the design matrix of covariates

• The (asymptotic) ML estimates $\widehat{\beta}$ are obtained by GLS via

$$\widehat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{S}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{S}^{-1} \log \left(\widehat{\boldsymbol{\theta}} \right)$$

where $\mathbf{S} = \text{Var}[\log(\theta)]$ is the estimated covariance matrix

- Standard graphical and diagnostic methods can be adapted to this case.
 - visualization: full-model plots, effect plots, ...
 - diagnostics: influence plots, added-variable plots, . . .

Technical note: for simplicity, I use lm() for WLS, with $S^{-1} = diag(1/ASE^2)$ Should probably use nlme::gls() instead

Example: Breathlessness & wheeze in coal miners

- Ashford & Sowden (1970) gave data on the association between two pulmonary conditions: breathlessness and wheeze, in a large sample of coal miners
- Age is the primary covariate
- How does the association between breathlessness and wheeze vary with age?

ftable(CoalMiners)											
##	Breathlessness	Wheeze	Age	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-
##	В	W		23	54	121		269	404	406	3
##		NoW		9	19	48	54	88	117	152	1
##	NoB	W		105	177	257	273	324	245	225	1
##		NoW		1654	1863	2357	1778	1712	1324	967	5

Example: Breathlessness & wheeze in coal miners

fourfold (CoalMiners, mfcol=c(2,4), fontsize=18)

- There is a strong + association at all ages
- But can you see the trend?

Coal miners: Log odds & models

```
(lor.CM <- loddsratio(CoalMiners))

## log odds ratios for Breathlessness and Wheeze by Age

##

## 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64

## 3.695 3.398 3.141 3.015 2.782 2.926 2.441 2.638
```

How does LOR vary with Age?

- Uniform association: $ln(\theta) = \beta_0$
- Linear association: $ln(\theta) = \beta_0 + \beta_1$ Age
- Quadratic association: $ln(\theta) = \beta_0 + \beta_1 Age + \beta_2 Age^2$

Fit models using WLS:

Coal miners: LOR plot

Plot log odds ratios and fitted regressions: The trend is now clear!

CoalMiners data: Log odds ratio plot

Coal miners: Model comparisons

Standard ANOVA procedures allow tests of nested competing models:

```
## Analysis of Variance Table
##
## Model 1: LOR ~ 1
## Model 2: LOR ~ age
## Model 3: LOR ~ poly(age, 2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 7 25.61
## 2 6 6.34 1 19.28 17.23 0.0089 **
## 3 5 5.60 1 0.74 0.66 0.4525
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

(vcdExtra::LRstats() gives direct tests of each model, and AIC, BIC) The linear model, $ln(\theta) = \beta_0 + \beta_1$ Age, gives the best fit.

Going further: Bivariate response models

- In this example, breathlessness and wheeze are two binary responses
- A bivariate logistic response model fits simultaneously
 - the marginal log odds of each response, ψ_1, ψ_2 vs. predictors (\mathbf{x})
 - the joint log odds ratio, ϕ_{12} , vs. \boldsymbol{x}
- This model has the form

$$\eta(\mathbf{x}) = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_{12} \end{pmatrix} \equiv \begin{pmatrix} \log \operatorname{odds}_1(\mathbf{x}) \\ \log \operatorname{odds}_2(\mathbf{x}) \\ \log \operatorname{OR}_{12}(\mathbf{x}) \end{pmatrix} \equiv \begin{pmatrix} \psi_1 \\ \psi_2 \\ \log \theta_{12} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1^\mathsf{T} \beta_1 \\ \mathbf{x}_2^\mathsf{T} \beta_2 \\ \mathbf{x}_{12}^\mathsf{T} \beta_{12} \end{pmatrix}$$

where $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_{12} \subset \mathbf{X}$

 For example, with one x, the following model allows linear effects on log odds, with a constant log odds ratio

$$\begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_{12} \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 X \\ \alpha_2 + \beta_2 X \\ \log(\theta) \end{pmatrix} \tag{1}$$

Calculating...

Logits and log odds for a bivariate response can be calculated with vcdExtra::blogits()

```
logitB logitW logOR age Age

1 -4.736 -2.868  3.20  22  -4

2 -3.977 -2.557  3.66  27  -3

3 -3.317 -2.094  3.38  32  -2

4 -2.733 -1.848  3.13  37  -1

5 -2.215 -1.420  3.01  42  0

6 -1.739 -1.109  2.78  47  1

7 -1.101 -0.797  2.92  52  2

8 -0.758 -0.572  2.44  57  3

9 -0.319 -0.226  2.63  62  4
```

Linear model for log odds and log odds ratios

Log odds & LORs have similar scales, so it is not terrible to plot them together

Linear model for log odds and log odds ratios

This data + model plot has a simple interpretation:

- Prevalence of breathlessness and wheeze both increase with age
- Breathlessness is less prevalent at young age, but increases faster
- Their association decreases approx. linearly, but is still strong

Quadratic model for log odds and log odds ratios

- Allowing quadratic fits in age serves as a sensitivity check
- The story is pretty much the same

Plotting ...

With the data in this form, we can use matplot() to plot each column against age

To plot the quadratic fit, simply use

```
lm(logitsCM[,1] \sim poly(age,2)
```

But: this is NOT a model. It simply fits each set of odds separately

Fitting: VGAM::vglm()

VGAM::vglm() can fit a wide class of models for a vector of multivariate responses

- The family binom2 () is used for bivariate logistic models
- An argument zero= allows the logit or odds ratio submodels to be constrained to intercept-only

```
logitlink(mu1) logitlink(mu2) loglink(oratio)
(Intercept) 0.104 0.226 20.530
Age 1.673 1.385 0.877
```

Each 5 years of age:

- Multiplies odds of breathlessness by 1.67, a 67% increase
- Multiplies odds of wheeze by 1.38, a 38% increase
- Multiplies the OR for association by 0.88, a 12 % decrease

Plotting the model fit

VGAM::fitted() returns the fitted values on the probability scale

VGAM::depvar() returns the observed values on the probability scale

You can get these on the logit scale using the inverse logit function, qlogis()

```
LP <- qlogis(P)
LY <- qlogis(Y)
```

The plot is made using matplot()

Other possibilities

We can also model the relations with age as a quadratic, cubic, ...

```
cm.vglm2 <- vglm(cbind(nBnW, nBW, BnW, BW) ~ poly(Age,2),
binom2.or(zero = NULL), data = coalminers)
```

VGAM also implements vector generalized additive models, fit using vgam()

```
cm.vgam <- vgam(cbind(nBnW, nBW, BnW, BW) ~ s(Age, df = 2),
binom2.or(zero = NULL), data = coalminers)
```

Example: Attitudes toward corporal punishment

A four-way table, classifying 1,456 persons in Denmark (Punishment data in vcd).

- Attitude: approves moderate punishment of children ("moderate"), or refuses any punishment ("no")
- Memory: Person recalls having been punished as a child?
- Education: highest level (elementary, secondary, high)
- Age group: (15–24, 25–39, 40+)

		Age	15–24		25–39		40+	
Education	Attitude	Memory	Yes	No	Yes	No	Yes	No
Elementary	No		1	26	3	46	20	109
	Moderate		21	93	41	119	143	324
Secondary	No		2	23	8	52	4	44
	Moderate		5	45	20	84	20	56
High	No		2	26	6	24	1	13
	Moderate		1	19	4	26	8	17

Attitudes: Questions

Interest focuses on several questions:

- How does Attitude toward punishment depend on Memory, Education and Age?
 - Model log odds approve of moderate corporal punishment
 - Standard logit model:

```
glm(attitude ~ memory + education + age, data=Punishment,
weight=Freq, family=binomial)
```

- How does association between Attitude and Memory vary with Education and Age?
 - Model log odds ratio (Attitude, Memory)
 - Visualize: LOR plots

Log odds model for attitude

Fit the main-effects model for Attitude on other predictors:

- Only Memory and Education have significant effects
- A more complex model with all two-way interactions showed no improvement

Attitude: Effect plots

- Model plots, showing fitted values for high-order terms in any model
- Other predictors averaged over in each plot
- Simple interpretation:
 - Those who remembered punishment as children more likely to approve
 - Approval decreases with education
 - No effect of age

Association of attitude with memory: Fourfold plots

How does the association of attitude and memory vary with education and age?

Each fourfold plot visualizes the log odds ratio between them

What's going on here?

Log odds ratio plot

```
(lor.pun <- loddsratio(punish))

## log odds ratios for memory and attitude by age, education
##

## education
## age elementary secondary high
## 15-24 -1.7700 -0.2451 0.3795
## 25-39 -1.6645 -0.4367 0.4855
## 40+ -0.8777 -1.3683 -1.8112</pre>
```

log odds ratios for attitude and memory by education, age

- Structure now completely clear
- Little diff^{ce} between younger groups
- Opposite pattern for the 40+
- Fit an LOR model to confirm appearences (SEs large)!

Summary

- Logit models for a binary response generalize readily to a polytomous response
 - →Models for log odds, familiar interpretation
 - Handles 3+ way table, ordinal variables
 - Simple plots for interpretation
- Generalized odds ratios handle bivariate responses
 - Simple linear models for LOR
 - Easy to model log odds for each response and the LOR simultaneously
 - Easy to visualize results