Системы искусственного интеллекта

Лекция 2 Линейная регрессия

Запорожцев Иван Федорович zaporozhtsev.if.work@gmail.com

Линейная регрессия

Гипотеза о линейной зависимости целевой переменной, ищем решение в виде:

$$a(X_1,...,X_n) = w_0 + w_1X_1 + ... + w_nX_n$$

Практика:

- часто неплохо работает
 и при монотонных зависимостях
- хорошо работает, когда есть много «однородных» признаков

Цель – число продаж на следующей неделе

- признак 1 число заходов на страницу продукта
- признак 2 число добавлений в корзину
- признак 3 число появлений продукта в поисковой выдачи
-

Линейная регрессия от одной переменной

$$a(X_1) = w_0 + w_1 X_1$$

Обучение:

$$\{(x_1, y_1), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}$$

Хотели бы...

$$\begin{cases} w_0 + w_1 x_1 = y_1 \\ \cdots \\ w_0 + w_1 x_m = y_m \end{cases}$$

Невязки / отклонения (residuals):

$$e_1 = y_1 - w_0 - w_1 x_1$$

$$e_m = y_m - w_0 - w_1 x_m$$

Обучение:

$$\{(x_1, y_1), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}$$

Хотели бы...

$$\begin{cases} w_0 + w_1 x_1 = y_1 \\ \dots \\ w_0 + w_1 x_m = y_m \end{cases}$$

Невязки / отклонения (residuals):

$$e_1 = y_1 - w_0 - w_1 x_1 \cdots$$

$$e_m = y_m - w_0 - w_1 x_m$$

Задача минимизации суммы квадратов отклонений (residual sum of squares)

$$RSS = e_1^2 + \ldots + e_m^2 \rightarrow \min$$

$$L(w) = \sum_{i=1}^{m} (y_i - a_w(x_i))^2 = \sum_{i=1}^{m} (y_i - (w_0 + w_1 x_i))^2$$

Линейная регрессия от одной переменной

Геометрический смысл ошибки

$$a(X_1) = w_0 + w_1 X_1$$

$$\sum_{i=1}^{m} (y_i - w_0 - w_1 x_i)^2$$

Отличается от суммы расстояний до поверхности!

Линейная регрессия от одной переменной

Нетрудно показать:

$$w_{1} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{m} (x_{i} - \overline{x})^{2}} = \frac{\text{cov}(\{x_{i}\}, \{y_{i}\})}{\text{var}(\{x_{i}\})},$$

$$w_0 = \overline{y} - w_1 \overline{x},$$

где
$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i, \, \overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_i.$$

Полученное уравнение прямой (проходит через «центр масс»):

$$(y - \overline{y}) = \frac{\operatorname{cov}(\{x_i\}, \{y_i\})}{\operatorname{var}(\{x_i\})} (x - \overline{x})$$

Общий случай

Многих переменных

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + \cdots + w_n X_n = x^{\mathrm{T}} w$$

веса (параметры) -
$$w = (w_0, w_1, ..., w_n)^T$$

объект -
$$x = (X_0, X_1, ..., X_n)^T$$

$$X_0 \equiv 1$$
 – фиктивный признак для удобства

обучение:
$$\{(x_1, y_1), \dots, (x_m, y_m)\}$$
 $x_i \in \mathbf{R}^{n+1}$

опять хотим решить
$$Xw = y$$

$$\begin{cases} x_1^{\mathrm{T}} w = y_1 \\ \dots \\ x_m^{\mathrm{T}} w = y_n \end{cases}$$

Как решать?

Общий случай

многих переменных:

в матричной форме

$$Xw = y$$

В матрице X по строкам записаны описания объектов, в векторе y значения их целевого признака (здесь есть коллизия в обозначении y)

Будем решать так:

$$||Xw - y||_2^2 = \sum_{i=1}^m (x_i^T w - y_i)^2 \to \min_w$$

Общий случай

МНОГИХ

переменных:

в матричной форме

$$Xw = y$$

$$||Xw - y||_2^2 = \sum_{i=1}^m (x_i^T w - y_i)^2 \to \min_w$$

Будет единственный минимум – локальный = глобальный

Решение задачи минимизации: прямой метод

$$||Xw - y||_2^2 \rightarrow \min_{w}$$

$$||Xw - y||_2^2 = (Xw - y)^{\mathrm{T}}(Xw - y) = w^{\mathrm{T}}X^{\mathrm{T}}Xw - w^{\mathrm{T}}X^{\mathrm{T}}y - y^{\mathrm{T}}Xw + y^{\mathrm{T}}y$$

$$\nabla || Xw - y ||_2^2 = 2X^{\mathrm{T}}Xw - 2X^{\mathrm{T}}y = 0$$

 $X^{T}Xw = X^{T}y$ решение существует, если столбцы л/н

$$w = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$
 помним, что $rg(X^{\mathsf{T}}X) = rg(X)$

хотим решить Xw = y

$$(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

псевдообратная матрица Мура-Пенроуза обобщение обратной на неквадратные матрицы

Обобщённая линейная регрессия: вместо X – что угодно

Выражаем целевое значение через л/к базисных функций (они фиксированы)

$$a(X_1,...,X_n) = w_0 + w_1 \varphi_1(X_1,...,X_n) + \cdots + w_k \varphi_k(X_1,...,X_n)$$

FEATURE GENERATION

$$C_{Ni}(I_{Ni}, I_{Cu}, I_{Fe}) = w_0 + w_1 I_{Ni} + w_2 \frac{1}{I_{Cu}} + w_3 \frac{I_{Cu}}{I_{Fe}}$$

PATIENT ID	PATIENT AGE	NUMBER OF DIAGNOSES
55629189	15	9
86057875	25	6
82442376	35	7
42519267	45	5
82637451	55	9
114882984	65	7
48330782	75	8

AGE X NUMBER

Проблема вырожденности матрицы

$$w = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Проблемы, когда матрица $X^{\scriptscriptstyle \mathrm{T}} X$ плохо обусловлена...

$$\mu(X^{\mathsf{T}}X) = \|X^{\mathsf{T}}X\| \cdot \|(X^{\mathsf{T}}X)^{-1}\| = \frac{\lambda_{\max}(X^{\mathsf{T}}X)}{\lambda_{\min}(X^{\mathsf{T}}X)}$$

Решения:

- (1) Регуляризация здесь и в «сложности»
- 2 Селекция (отбор) признаков «селекция»

- 3 Уменьшение размерности (в том числе, PCA) USL
- 4 Увеличение выборки

Регуляризация:

Упрощённое объяснение смысла

$$a(X_1,...,X_n) = w_0 + w_1X_1 + ... + w_nX_n$$

Если есть два похожих объекта, то должны быть похожи метки, пусть отличаются в j-м признаке, тогда ответы модели отличаются на $\mathcal{E}_i W_j$

Поэтому не должно быть очень больших по модулю весов (у признаков, по которым могут отличаться похожие объекты)

Поэтому вместе с $||Xw - y||_2^2 \rightarrow \min$ хотим $||w||_2^2 \rightarrow \min$

Не на все коэффициенты нужна регуляризация!

Почему?

Регуляризация

Иванова

$$\begin{cases} ||Xw - y||_2^2 \to \min \\ ||w||_2^2 \le \lambda \end{cases}$$

Тихонова

$$||Xw - y||_2^2 + \lambda ||w||_2^2 \rightarrow \min$$

Удобнее: безусловная оптимизация

$$||w||_2^2 = w_1^2 + w_2^2 + \ldots + w_n^2 - \text{HET } w_0^2$$

Эти две формы эквивалентны: решение одного можно получить как решение другого На самом деле, регуляризация упрощает модель

Регуляризация и гребневая регрессия

$$\underset{w}{\operatorname{arg\,min}} \| Xw - y \|_{2}^{2} + \lambda \| w \|_{2}^{2} = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y$$

 $\lambda \ge 0$

Доказать!

Такая регрессия называется гребневой регрессией (Ridge Regression)

Виден другой смысл регрессии: складываем две матрицы Грама

Неотрицательно определённая + положительно определённая

Боремся с вырожденностью матрицы

Коэффициент регуляризации

(shrinkage penalty)

$$\lambda=0$$
 - получаем классическое решение

$$\lambda \to +\infty$$
 – меньше «затачиваемся на данные» и больше регуляризуем

Значение параметра регуляризации можно выбрать на скользящем контроле Минутка кода

Регуляризация и гребневая регрессия

Регуляризация и гребневая регрессия

Для ridge-регрессии нужна правильная нормировка признаков!

Нет инвариантности (в отличие от линейной) от умножения признаков на скаляры

Перед регуляризацией – стандартизация!!!

LASSO

Least Absolute Shrinkage and Selection Operator

$$\sum_{i=1}^{m} (y_i - a(x_i))^2 + \lambda \sum_{j=1}^{n} |w_j| \to \min$$

$$\lambda \ge 0$$

Здесь значения коэффициентов существенно меньше (т.к. при $\Sigma |\cdot|$, а не $\Sigma (\cdot)^2$)

Здесь коэффициенты интенсивнее зануляются при увеличении $\lambda \geq 0$

Геометрический смысл Ridge и LASSO

$$\sum_{i=1}^{m} \left(y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} w_j^2 \le s$$

$$\sum_{i=1}^{m} \left(y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} w_j^2 \le s \qquad \left| \qquad \sum_{i=1}^{m} \left(y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} |w_j| \le s$$

Семейство регуляризированных линейных методов

Ridge
$$||y - Xw||_2^2 + \lambda ||w||_2^2 \to \min_{w}$$

LASSO

Least Absolute Shrinkage and Selection Operator

$$||y - Xw||_2^2 + \lambda ||w||_1 \rightarrow \min_w$$

Elastic Net = LASSO + Ridge $||y - Xw||_2^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2 \to \min_{w}$

Проблема вырожденности / плохой обусловленности матрицы

$$w = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

- **1** Регуляризация
- 2 Селекция (отбор) признаков
- (3) Уменьшение размерности (в том числе, PCA)
- (4) Увеличение выборки

Какие признаки включить в модель

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

Маленький обзор стратегий:

1 стратегия – **перебор** – умный перебор подмножества признаков

2 стратегий – **оценка** – оценка качества признаков (фильтры)

3 стратегия – **автомат** – встроенные методы (ex: LASSO)

Проблема вырожденности / плохой обусловленности матрицы

$$w = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

(1) Регуляризация

(2) Селекция (отбор) признаков

З Уменьшение размерности (в том числе, РСА)

4) Увеличение выборки

	x1	x2	х3	у			x1-x2	у
0	0.44	0.62	0.51	-0.25		0	-0.18	-0.25
1	0.03	0.53	0.07	-0.51		1	-0.50	-0.51
2	0.55	0.13	0.43	0.41		2	0.42	0.41
3	0.44	0.51	0.10	0.04	_	3	-0.07	0.04
4	0.42	0.18	0.13	0.12		4	0.24	0.12
5	0.33	0.79	0.60	-0.45		5	-0.46	-0.45
					-			

Обоснование необходимости аналогично селекции

Проблема вырожденности / плохой обусловленности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Решения:

- Регуляризация
- 2 Селекция (отбор) признаков
- З Уменьшение размерности (в том числе, РСА)

4 Увеличение выборки

На модельном примере:

$$m \le n \implies \operatorname{rg}(X^{\mathsf{T}}X) = n$$

При увеличении выборки могут исчезнуть линейные зависимости между столбцами

Оптимизация: градиентный спуск: проблема выбора темпа

$$\frac{1}{2}\sum_{i=1}^{m}(a(x_i \mid w) - y_i)^2 \to \min \qquad a(x \mid w) = w^{\mathrm{T}}x$$

 $abla f(w_0)$ – направление наискорейшего возрастания функции

$$f(w) = f(w_0) + (w - w_0)^{\mathsf{T}} \nabla f(w_0) + o(||w - w_0||)$$
$$f(w) - f(w_0) \approx (w - w_0)^{\mathsf{T}} \nabla f(w_0)$$

Если выбирать из всех векторов $\, \mathcal{W} - \mathcal{W}_{0} \,$ единичной нормы, то по неравенству

$$|(w-w_0)^{\mathsf{T}}\nabla f(w_0)| \le 1 ||\nabla f(w_0)|| = \frac{\nabla f(w_0)^{\mathsf{T}}}{||\nabla f(w_0)||} \nabla f(w_0)$$

Антиградиент $(-\nabla f(w_0))$ – направление наискорейшего убывания функции

Оптимизация: градиентный спуск: проблема выбора темпа

Оптимизация: градиентный спуск: проблема выбора темпа

$$w^{(t+1)} = w^{(t)} - \eta \nabla L(w^{(t)})$$

 $\eta > 0$ – шаг / темп обучения (step size / learning rate)

Хотим
$$\lim_{t \to \infty} w^{(t)} = \underset{w}{\operatorname{arg\,min}} L(w)$$

Темп, возможно, маленький

Темп, возможно, большой

<u>Диаграмма последовате</u>льных приближений и линий уровня

Оптимизация: проблема масштаба признаков

Вот для чего нормируют признаки

Линейная регрессия: градиентный метод обучения

$$L(w) = \frac{1}{2} \sum_{i=1}^{m} (a(x_i \mid w) - y_i)^2 \to \min$$

$$a(x \mid w) = w^{\mathsf{T}} x$$

$$L(w) = \sum_{t=1}^{m} L_t(w)$$

$$\nabla L(w) = \sum_{t=1}^{m} \nabla L_t(w)$$

$$w^{(t+1)} = w^{(t)} - \eta \nabla L_i(w^{(t)})$$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) \frac{\partial a(x_i \mid w^{(t)})}{\partial w}$$

$$w^{(t+1)} = w^{(t)} - \eta \sum_{i=1}^{m} (a(x_i \mid w^{(t)}) - y_i) x_i$$
 Gradient Descent

$$w^{(t+1)} = w^{(t)} - \eta_t (a(x_i \mid w^{(t)}) - y_i) x_i$$
 Stochastic Gradient Descent

Неустойчивость к выбросам

- удаление выбросов
- устойчивая регрессия (ошибки с весами)

Прогнозирование спроса, точки раскупаемости

$$Y = \max \left[\sum_{t} w_{t} X_{t}, 0 \right]$$

Кол-во купленных единиц по дням. Падает спрос?

«Эффективные» диапазоны. Пример флотации

«Эффективные» диапазоны. Пример флотации

Плюсы и минусы линейных алгоритмов

+	простой, надёжный, быстрый, популярный метод
٠	интерпретируемость (нахождение закономерностей)
+	интерполяция и экстраполяция
+	может быть добавлена нелинейность, с помощью генерации новых признаков
+	хорош для теоретических исследований (в Ridge есть явная формула)
+	коэффициенты асимптотически нормальны (можно тестировать гипотезы о влиянии признаков)
+	глобальный минимум в оптимизируемом функционале

-	линейная гипотеза вряд ли верна
-	в теоретическом обосновании ещё предполагается нормальность ошибок (зависит от функции ошибок)
-	«страдает» из-за выбросов
-	признаки в одной шкале и однородные (см. успешные примеры)
-	проблема коррелированных признаков → необходимость регуляризации, селекции, РСА, data↑

Производная — это разность Производная — это тангенс угла Производная — это скорость

Вычисляем производную без предела (теорема Лагранжа)

В малом все процессы линейные

The rate of change of function is called a **derivative** and **differential** is the actual change of linear model

Спасибо за внимание!

Запорожцев Иван Федорович zaporozhtsev.if.work@gmail.com