Lecture 6 - RC/RL First-Order Circuits

Temporal Behavior of Circuit Responses

- Till now we discussed static analysis of a circuit
 - Responses at a given time depend only on inputs at that time.
 - Circuit responds to input changes infinitely fast.

Temporal Behavior of Circuit Responses

- From now on we start to discuss <u>dynamic</u> circuit
 - Time-varying sources and responses

Outline

- Natural response of RC/RL circuits
- Step response of RC/RL circuits

RC and RL Circuits

 A circuit that contains only sources, resistors and <u>a</u> <u>capacitor</u> is called an *RC circuit*.

 A circuit that contains only sources, resistors and <u>an</u> <u>inductor</u> is called an *RL circuit*.

RC and RL Circuits

- Capacitor voltage cannot change instantaneously
- In steady state, a capacitor behaves like an open circuit

- Inductor current cannot change instantaneously
- In steady state, an inductor behaves like a short circuit.

[Source: Berkeley]

Natural Response of a Charged Capacitor

Behavior (*i.e.*, current and voltage) when stored energy in the inductor or capacitor is released to the resistive part of the network (containing <u>no independent sources</u>).

(a) $t = 0^-$ is the instant just before the switch is moved from terminal 1 to terminal 2;

(b) t = 0 is the instant just after it was moved, t = 0 is synonymous with $t = 0^+$.

Natural Response of a Charged Capacitor

[Source: Berkeley] Lecture 5

Natural Response of RC

Time constant: $\tau = RC$

Time Constant τ (= RC)

 A circuit with a small time constant has a fast response and vice versa.

Example

• In the circuit below, let $v_C(0) = 15$ V. Find v_C , v_χ , and i_χ for t > 0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Example

• The switch in the circuit below has been closed for a long time. At t=0, the switch is opened. Calculate i(t) for t>0.

Assuming that i(0) = 10 A, calculate i(t) and $i_x(t)$

Lecture 5

Natural Response Summary

Capacitor voltage cannot change instantaneously

$$v(0^-) = v(0^+)$$

$$v(t) = v(0)e^{-t/\tau}$$

• time constant $\tau = RC$

Inductor current cannot change instantaneously

$$i(0^-) = i(0^+)$$

$$i(t) = i(0)e^{-t/\tau}$$

• time constant
$$\tau = \frac{L}{R}$$

7.16 Determine the time constant for each of the circuits in Fig. 7.96.

Figure 7.96

For Prob. 7.16.

7.19 In the circuit of Fig. 7.99, find i(t) for t > 0 if i(0) = 6 A.

Figure 7.99 For Prob. 7.19.

Outline

- Natural response of RC/RL circuits
- Step response of RC/RL circuits

Step Response of RC Circuit

 When a DC source is suddenly applied to a RC circuit, the circuit response is known as the step response.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Step Response of the RC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Step Response of the RC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

This is known as the <u>complete response</u>, or total response.

Forced Response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The complete response

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

can be written as:

$$v = v_n + v_f$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or disp

Another Perspective

 Another way to look at the response is to break it up into the <u>transient response</u> and the <u>steady state response</u>:

$$v(t) = \underbrace{v(\infty)}_{\text{steady } v_{SS}} + \underbrace{[v(0) - v(\infty)]e^{-t/\tau}}_{\text{transient } v_t}$$

Lecture 5

Example

• The switch has been in position A for a long time. At t=0, the switch moves to B. Find v(t).

Step Response of the RL Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Step Response of the RL Circuit

- We will use the transient and steady state response approach.
- We know that the <u>transient response will</u> be an exponential:

$$i_{t} = Ae^{-t/\tau}$$

 After a sufficiently long time, the current will reach the steady state:

$$i_{ss} = \frac{V_s}{R}$$

Step Response of RL Circuit

This yields an overall response of:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$i = Ae^{-t/\tau} + \frac{V_s}{R}$$

$$i \left(0^+\right) = i\left(0^-\right) = I_0 \qquad A = I_0 - \frac{V_s}{R}$$

$$i \left(t\right) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-t/\tau}$$

Response of a Circuit

· Circuit (dynamic) response

• the reaction of a certain voltage or current in the circuit to change, such as the adding of a new source, the elimination of a source, in the circuit configuration.

Transient response

 Behavior when voltage or current source are suddenly applied to or removed from the circuit due to switching.

Temporary behavior

[Source: Berkeley] Lecture 5

Example

• Find i(t) in the circuit for t > 0. Assume that the switch has been closed for a long time.

General Procedure for Finding RC/RL Response

1. Identify the variable of interest

- For RL circuits, it is usually the inductor current $i_I(t)$.
- For RC circuits, it is usually the capacitor voltage $v_c(t)$.

2. Determine the initial value (at $t = t_{\theta}^{-}$ and t_{θ}^{+}) of the variable

• Recall that $i_L(t)$ and $v_c(t)$ are continuous variables:

$$i_L(t_{\theta}^{+}) = i_L(t_{\theta}^{-})$$
 and $v_c(t_{\theta}^{+}) = v_c(t_{\theta}^{-})$

• Assuming that the circuit reached steady state before t_{θ} : use the fact that an inductor behaves like a short circuit in steady state or that a capacitor behaves like an open circuit in steady state.

Procedure (cont'd)

3. Calculate the final value of the variable (as $t \rightarrow \infty$)

 Again, make use of the fact that an inductor behaves like a short circuit in steady state (t → ∞) or that a capacitor behaves like an open circuit in steady state (t → ∞).

4. Calculate the time constant for the circuit

- τ = CR for an RC circuit where R is the Thévenin equivalent resistance "seen" by the capacitor.
- $\tau = L/R$ for an RL circuit, where R is the Thévenin equivalent resistance "seen" by the inductor.

Find the time constant for the RC circuit

Sequential switch

At t = 0, switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later. Find i(t) for t > 0. Calculate i for t = 2 s and t = 5 s.

We need to consider the three time intervals $t \le 0$, $0 \le t \le 4$, and $t \ge 4$ separately. For t < 0, switches S_1 and S_2 are open so that i = 0. Since the inductor current cannot change instantly,

$$i(0^{-}) = i(0) = i(0^{+}) = 0$$

7.49 If the waveform in Fig. 7.116(a) is applied to the circuit of Fig. 7.116(b), find v(t). Assume v(0) = 0.

1st Order Circuit with OPA

7.73 For the op amp circuit of Fig. 7.138, let $R_1 = 10 \text{ k}\Omega$, $R_f = 20 \text{ k}\Omega$, $C = 20 \mu\text{F}$, and v(0) = 1V. Find v_0 .

Figure **7.138**

For Prob. 7.73.

For the op amp circuit in Fig. 7.56, find v_o for t > 0 if v(0) = 4 V. Assume that $R_f = 50 \text{ k}\Omega$, $R_1 = 10 \text{ k}\Omega$, and $C = 10 \mu\text{F}$.

Lecture 5

Other kinds of excitations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$V_S = e^{\omega t}$$
, wt, $V_S = \cos(\omega t)$

$$v(0^-) = v(0^+) = v_0$$

Other kinds of excitations

In the circuit below, $R_1 = 10 \ \Omega$, $R_2 = 5 \ \Omega$, $R_3 = 10 \ \Omega$, $C = 10 \ \text{mF}$. When t < 0, the input voltage (U) is $1 \ \text{V}$. When t = 0, the input voltage begins to change as shown in the plot below. When $t > 1 \ \text{s}$, U = 0. Assume that the circuit reaches steady state before t = 0. Determine the expression for $V_C(t)$ when $t \ge 0$.

Applications

Activation of a switch at the time t = 0 in a certain circuit caused the voltage across a $L=20 \,\text{mH}$ inductor to exhibit the voltage response:

$$v(t) = 4e^{-0.2t} \text{mV}$$
 $t > 0$

Determine i(t) for t > 0, given the energy stored in the inductor at $t = \infty$ is 0.64mJ.

Lecture 5