Ch 5+: Review of ARIMA "mean" parameters and log-transformations

Motivating example for review on mean parameters:

- ▶ Suppose Y_t follows an ARIMA(p, 1, q) model, and $W_t = Y_t Y_{t-1}$.
- ▶ If $E(W_t) = \mu \neq 0$, what does that imply for Y_t ?
- ▶ To discuss:
 - ▶ Review: How to formulate/interpret/simulate/estimate/forecast ARMA(p, q) models with non-zero mean μ ,
 - ▶ How to formulate/interpret/simulate/estimate/forecast ARIMA(p, 1, q) models with non-zero mean μ for ($Y_t Y_{t-1}$).

ARMA(p,q) models constant term θ_0

▶ A stationary ARMA(p,q) model can be written compactly as

$$\phi(B)Y_t = \theta_0 + \theta(B)e_t,$$

with constant term θ_0 and AR and MA characteristic polynomials

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p,$$

$$\theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \dots - \theta_q x^q.$$

Or equivalently

$$Y_{t} = \theta_{0} + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}.$$

▶ With $E(e_t) = 0$, it follows that

$$E(Y_t) = E(\theta_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p})$$

and because Y_t is stationary, $E(Y_t) = \mu$, a constant given by:

$$\mu = \theta_0/(1 - \phi_1 - \dots - \phi_p).$$

Rewriting ARMA(p, q) models with constant term θ_0

► Instead of

$$Y_{t} = \theta_{0} + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

we can also write the ARMA model as

$$Y_{t} - \mu = \phi_{1}(Y_{t-1} - \mu) + \phi_{2}(Y_{t-2} - \mu) + \dots + \phi_{p}(Y_{t-p} - \mu) + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}.$$

- ► Two ways to verify that this expression is correct:
 - ▶ Just plug in $\theta_0 = \mu(1 \phi_1 \ldots \phi_p)$ in the first expression
 - ▶ Start with $X_t \sim ARMA(p,q)$ with $E(X_t) = 0$:

$$\phi(B)X_t = \theta(B)e_t,$$

and define $Y_t = X_t + \mu$:

$$\phi(B)(Y_t - \mu) = \theta(B)e_t.$$

▶ How to estimate μ for a given time series?

Estimating μ and forecasting Y_t for the ARMA(p,q) model

- ▶ If $E(Y_t) = \mu \neq 0$, μ is included in the likelihood function, and we can obtain the MLE for μ (see Ch.7).
- ▶ The MLE for μ is used for forecasting Y_{t+g} (see Ch.9).
- ► A note on reading R output:

Does "intercept" refer to μ or θ₀?
> theta0 <- mu*(1-sum(phis)); theta0
[1] 1.5
> mu
[1] 3

ARIMA(p, d, q) models constant term θ_0

▶ An ARIMA(p, d, q) model can be written compactly as

$$\phi(B)(1-B)^d Y_t = \theta_0 + \theta(B)e_t,$$

with constant term θ_0 and AR and MA characteristic polynomials

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p, \theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \dots - \theta_q x^q.$$

• Or equivalently, for $W_t = (1 - B)^d Y_t$

$$W_{t} = \theta_{0} + \phi_{1}W_{t-1} + \phi_{2}W_{t-2} + \dots + \phi_{p}W_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

It follows that

$$E(W_t) = E(\theta_0 + \phi_1 W_{t-1} + \phi_2 W_{t-2} + \ldots + \phi_p W_{t-p})$$

and because W_t is stationary, $E(W_t) = \mu = \theta_0/(1 - \phi_1 - \ldots - \phi_p)$.

• What is $E(Y_t)$ if $E(W_t) = \mu$?

Example: $E(Y_t)$ for IMA(1,1) model with $\theta_0 \neq 0$

▶ For the IMA(1,1) model, if $E(W_t) = E(Y_t - Y_{t-1}) = \mu$

$$(1-B)Y_t = \theta_0 + e_t - \theta e_{t-1},$$

$$Y_t - Y_{t-1} = \mu + e_t - \theta e_{t-1},$$

$$Y_t = \mu + e_t - \theta e_{t-1} + Y_{t-1}.$$

▶ Substituting the expression for Y_{t-1} , Y_{t-2} , etc we find

$$Y_{t} = \mu + e_{t} - \theta e_{t-1} + Y_{t-1},$$

$$= \mu + e_{t} - \theta e_{t-1} + (\mu + e_{t-1} - \theta e_{t-2} + Y_{t-2}),$$

$$= 2\mu + e_{t} + (1 - \theta)e_{t-1} - \theta e_{t-2} + Y_{t-2},$$

$$\dots$$

$$= t\mu + e_{t} + (1 - \theta)e_{t-1} + \dots + (1 - \theta)e_{1} - \theta e_{0} + Y_{0}.$$

▶ Suppose $Y_0 = 0$, then $E(Y_t) = t \cdot \mu$.

$E(Y_t)$ in an ARIMA(p, 1, q) model with $\theta_0 \neq 0$

More generally, for an ARIMA(p,1,q) with $W_t=Y_t-Y_{t-1}$, with $Y_0=0$, we find that if $E(W_t)=\mu$ then:

$$E(Y_{t}) = E(W_{t} + Y_{t-1}),$$

$$= \mu + E(Y_{t-1}),$$

$$= \mu + \mu + E(Y_{t-2}),$$
...
$$= t \cdot \mu + E(Y_{0}),$$

$$= t \cdot \mu.$$

▶ Even more generally (Ch. 5), $\theta_0 \neq 0$ in an ARIMA(p, d, q) model results in a mean function for Y_t which is a deterministic polynomial of degree d.

Estimating μ and forecasting Y_t for the ARIMA(p, 1, q) model

- Maximum likelihood estimates for all ARIMA model parameters, including μ can be obtained as usual, based on the likelihood function for W_t .
- ▶ The MLE for μ is used for forecasting Y_{t+g} (see Ch.9).
 - ► E.g., for IMA(1,1) use

$$Y_t = Y_{t-1} + \mu + e_t - \theta e_{t-1}.$$

You can obtain an estimate for μ in an ARIMA(p,1,q) model using the "arima" function in R but it is less straightforward than doing so using the "Arima" function from the "forecast" package... so let's check that one out!

Example simulation/estimation/forecast for ARIMA(1,1,1) process

- ▶ How to simulate an ARIMA(1,1,1) process with $\theta_0 \neq 0$?
- ► Steps:
 - ▶ Get $X_t \sim ARMA(1,1)$ with mean zero.
 - Get $W_t = X_t + \mu = Y_t Y_{t-1}$.
 - Fix $Y_0 = 0$ and get $Y_t = W_t + Y_{t-1}$.

R-code for simu and estimation

▶ The drift term refers to μ (NOT θ_0).

```
library(forecast)
mu < -0.5
phis \leftarrow -0.8
Wzeromean <- arima.sim(mode = list(ma = -0.5, ar = phis,
 order = c(1,0,1), n=200)
W.t. <- Wzeromean + mil
Y.t <- diffinv(W.t, xi = 0) # xi is starting value Y_0
mod <- Arima(Y.t, order = c(1,1,1), include.drift = TRUE,
method="MI.")
> summary(mod)
          ar1 ma1 drift
      -0.7809 -0.4860 0.4844
```

10 / 17

Forecasting in R using "forecast"

```
Nice plots with 80% and 95% Pls!
R-code (main points)
                                         r.t (observed and fore 0 40 80
mod <- Arima(Y.t.
 order = c(1,1,1),
 include.drift = TRUE,
 method="ML")
fcast <- forecast(mod, h=50)</pre>
                                                 50
                                                              200
plot(fcast)
                                                       Time
plot(fcast, include = 20)
                                         and foreca
> fcast$mean[50]-fcast$mean[49]
[1] 0.4843754
> coef(mod)['drift']
   drift
0.484378
                                                  200
                                                               240
```

Summary

- ▶ Suppose Y_t follows an ARIMA(p, 1, q) model, and $W_t = Y_t Y_{t-1}$.
- ▶ If $E(W_t) = \mu \neq 0$, $E(Y_t)$ is a linear function of μ , which we can estimate using ML estimation, and incorporate in the forecast.
- ► However, do note the implication of including $\mu \neq 0$: decide whether a time trend should be included in the forecast or not!

Log-transformations: Oil price example

- Remember the oil price data: using a log-transform and differencing of Y_t resulted in a "nice looking series".
- ► Let's discuss some motivation for using a log-transform (to determine when such a transform would be appropriate).
- ▶ Assume that *Y*_t is positive and note that log refers to the natural log-transform unless otherwise stated.
- Motivation 0 to use a log-transform: a log-transform guarantees that forecasts for Y_t will be positive.

Motivation 1 for using log-transformations

- ▶ Suppose $E(Y_t) = \mu_t$ and $\sqrt{Var(Y_t)} = \mu_t \sigma$,
 - i.e. the standard deviation of the series is proportional to the level of the series,

and μ_t changes roughly exponentially $(\mu_t \approx \beta_0 \exp(\beta_1 \cdot t))$.

Then

$$\log(Y_t) ~pprox ~\log(\mu_t) + rac{Y_t - \mu_t}{\mu_t} ext{ (Taylor appr.)}, \ E(\log(Y_t)) ~pprox ~\log(\mu_t) pprox \log(eta_0) + eta_1 \cdot t, \ Var(\log(Y_t)) ~pprox ~\sigma^2.$$

▶ Thus a log-transform of Y_t may make the variance of the series constant, and taking differences would solve the non-constant mean problem.

Motivation 2 for using log-transformations

▶ Suppose you are monitoring Y_t (e.g. sales) that tends to have relatively stable percentage changes, denoted by $X_t \cdot 100\%$:

$$Y_t = (1 + X_t)Y_{t-1}.$$

Then

$$egin{array}{lll}
abla \log(Y_t) &=& \log(Y_t) - \log(Y_{t-1}), \ &=& \log(1+X_t), \ &pprox & X_t. \end{array}$$

where the approximation is reasonable if the percentage changes are small, e.g. $X_t \cdot 100\%$ less than 20%.

▶ If X_t is indeed relatively stable, $\nabla \log(Y_t)$ may be well-modeled by a stationary process.

Example: Electricity

- Plot: Electricity generated in the USA (by month).
- Why is this series not stationary?
- ► Answer: variance seems to increase with the level, and there is a time trend.

Example: Electricity

- ▶ Approach: Take log-transform, and difference $log(Y_t)$.
- Now it may be possible to use an ARMA model to model the series.

