Functional Dependency

Intro >> Lecture's Map

Learning Maps

Sequence	Title
1	Introduction to databases
2	Relational Databases
3	Relational Algebra
4	Structured Query Language – Part 1
5	Structured Query Language – Part 2
6	Constraints and Triggers
7	Entity Relationship Model
8	Functional Dependency
9	Normalization
10	Storage - Indexing
11	Query Processing
12	Transaction Management – Part 1
13	Transaction Management – Part 2

Intro > Overview

☐ A: Voice and PPT Overview☐ B: Text-based Overview☐ C: Video and PPT Overview

Opening Message	→ In this lesson, we will study the functional dependency concepts, Armstrong axioms and their' secondary rules, closure of a set of functional dependencies, closure of a set of attributes under a set of functional dependencies, algorithm to find a minimal key, equivalence of sets of functional dependencies, minimal set of a set of functional dependencies
Lesson topic	 Functional Dependency Armstrong 's Axioms and secondary rules closure of a FD set, closure of a set of attributes A minimal key equivalence of sets of functional dependencies Minimal Sets of FDs
Learning Goals	Upon completion of this lesson, students will be able to: 1. Recall the concepts of functional dependency, Armstrong 's axioms and secondary rules! 2. Identify closure of a FD set, closure of a set of attributes 3. Find a minimal key of a relation under a set of FDs 4. Identify the equivalence of sets of FDs and find the minimal cover of a set of FDs

Intro > Keywords

Keyword	Description	
Functional dependency	the values of the X component of a tuple uniquely (or functionally) determine the values of the Y component	
Armstrong 's axioms	Axioms about FDs	
closure of a FD set	the set of all dependencies that include F as well as all dependencie s that can be inferred from F	
Closure of a set of attributes	All attributes that are functionally determined by them	
A minimal key	A minimal set of attributes that determines R	
Equivalence of S ets of FDs	Two sets of FDs, in which, this set covers the other	
A minimal cover of a set of FDs	A set of dependencies in a standard or canonical form and with no re dundancies	

Lesson > Topic 1: Functional Dependency

- 1.1. Introduction
- 1.2. Definition

1.1. Introduction

- We have to deal with the problem of database design: anomalies, redundancies
- The single most important concept in relational schema design theory

1.2. Definition

- Suppose that R = {A₁, A₂, ..., A_n}, X and Y are non-empty subsets of R.
- A functional dependency (FD), denoted by X → Y, specifies a constraint on the possible tuples that can form a relation state r of R. The constraint is that, for any two tuples t₁ and t₂ in r that have t₁[X] = t₂[X], they must also have t₁[Y] = t₂[Y].
 - X: the left-hand side of the FD
 - Y: the right-hand side of the FD

1.2. Definition (cont.)

- This means that the values of the X component of a tuple uniquely (or functionally) determine the values of the Y component.
- A FD $X \rightarrow Y$ is **trivial** if $X \supseteq Y$
- If X is a candidate key of R, then X → R

1.2. Definition (cont.)

Examples

 $-AB \rightarrow C$

Α	В	С	D
a1	b1	c1	d1
a1	b1	c1	d2
a1	b2	c2	d1
a2	b1	сЗ	d1

- subject_id → name,
- subject_id → credit,
- subject_id → percentage_final_exam,
- subject_id → {name, credit}

subject_id	name	credit	percentage_ final_exam
IT3090	Databases	3	0.7
IT4843	Data integration	3	0.7
IT4868	Web mining	2	0.6
IT2000	Introduction to ICT	2	0.5
IT3020	Discrete Mathematics	2	0.7
IT3030	Computer Architectures	3	0.7

Lesson > Topic 2: Armstrong 's axioms

- 2.1. Armstrong 's axioms
- 2.2. Secondary rules
- 2.3. An example

2.1. Armstrong axioms

- R = $\{A_1, A_2, ..., A_n\}$, X, Y, Z, W are subsets of R.
- XY denoted for X∪Y
- Reflexivity
 - If $Y \subseteq X$ then $X \rightarrow Y$
- Augmentation
 - If $X \rightarrow Y$ then $XZ \rightarrow YZ$
- Transitivity
 - If $X \rightarrow Y$, $Y \rightarrow Z$ then $X \rightarrow Z$

2.2. Secondary rules

- Union
 - If X→Y, X→Z then X→YZ.
- Pseudo-transitivity
 - If X→Y, WY→Z then XW→Z.
- Decomposition
 - If X→Y, Z \subseteq Y then X→Z

2.3. An example

- Given a set of FDs: $F = \{AB \rightarrow C, C \rightarrow A\}$
- Prove: $BC \rightarrow ABC$
 - From $C \rightarrow A$, we have $BC \rightarrow AB$ (Augmentation)
 - From AB \rightarrow C, we have AB \rightarrow ABC (Augmentation)
 - And we can conclude BC → ABC (Transitivity)

Lesson > Topic 3: closure of a FD set, closure of a set of attributes

- 3.1. Closure of a FD set
- 3.2. Closure of a set of attributes
- 3.3. A problem

3.1. Closure of a FD set

- Suppose that F = {A → B, B → C} on R(A, B, C,...). We can infer many FD such as: A → C, AC → BC,...
- Definition
 - Formally, the set of all dependencies that include F as well as all dependencies that can be inferred from F is called the **closure** of F, denoted by F⁺.
- F ⊨ X → Y to denote that the FD X → Y is inferred from the set of FDs F.

3.2. Closure of a set of attributes

- Problem
 - We have F, and X \rightarrow Y, we have to check if F \models X \rightarrow Y or not
- Should we calculate F⁺?
 - ⇒closure of a set of attributes
- Definition
 - For each such set of attributes X, we determine the set X⁺ of attributes that are functionally determined by X based on F; X⁺ is called the closure of X under F.

3.2. Closure of a set of attributes (cont.)

To find the closure of an attribute set X⁺ under F

3.2. Closure of a set of attributes (cont.)

An example

- Given R(A, B, C, D, E, F) and F = {AB → C, BC → AD, D → E, CF → B}. Calculate (AB)⁺_F
 - $X^0 = AB$
 - $X^1 = ABC \text{ (from } AB \rightarrow C)$
 - $X^2 = ABCD \text{ (from BC} \rightarrow AD)$
 - $X^3 = ABCDE (from D \rightarrow E)$
 - X⁴ = ABCDE
 - (AB)+_F=ABCDE

3.3. A problem

- X → Y can be inferred from F if and only if Y⊆X⁺_F
- $F \models X \rightarrow Y \Leftrightarrow Y \subseteq X^+_F$
- An example
 - Let R(A, B, C, D, E), $F = \{A \rightarrow B, B \rightarrow CD, AB \rightarrow CE\}$. Consider whether or not $F \models A \rightarrow C$
 - $(A)^+_F = ABCDE \supseteq \{C\}$

Lesson > Topic 4: A minimal key

- 4.1. Definition
- 4.2. An algorithm to find a minimal key
- 4.3. An example

4.1. Definition

- Minimal key
 - Given R(U), U = $\{A_1, A_2, ..., A_n\}$, a set of FDs F
 - K is considered as a minimal key of R if:
 - K⊆U
 - $K \rightarrow U \in F^+$
 - Với ∀K'⊂K, thì K'→U ∉ F⁺
 - K⁺=U and K\{A_i} →U \notin F⁺

4.2. An algorithm to find a minimal key

To find a minimal key

```
Input: R(U), U = {A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>}, a set of FDs F - Step<sup>0</sup> K^0= U - Step<sup>i</sup> If (K^{i-1}\setminus\{A_i\}) \rightarrow U then K^i= K^{i-1}\setminus\{A_i\} else K^i= K^{i-1} - Step<sup>n+1</sup> K = K^n
```

4.3. An example

```
Given R(U), U= {A, B, C, D, E}, F = {AB \rightarrow C, AC \rightarrow B, BC \rightarrow DE}. Find a minimal key Step<sup>0</sup>: K<sup>0</sup>= U = ABCDE Step<sup>1</sup>: Check if or not (K<sup>0</sup>\{A}) \rightarrow U (i.e, BCDE \rightarrow U). (BCDE)<sup>+</sup>= BCDE \neq U. Vậy K<sup>1</sup> = K<sup>0</sup> = ABCDE Step<sup>2</sup>: Check if or not (K<sup>1</sup>\{B}) \rightarrow U (i.e, ACDE \rightarrow U). (ACDE)<sup>+</sup> = ABCDE = U. So, K<sup>2</sup> = K<sup>1</sup>\{B} = ACDE Step<sup>3</sup>: K<sup>3</sup> = ACDE Step<sup>4</sup>: K<sup>4</sup> = ACE Step<sup>5</sup>: K<sup>5</sup> = AC We infer that AC is a minimal key
```

Lesson > Topic 5: Equivalence of Sets of FDs

- 5.1. Definition
- 5.2. An example

5.1. Definition

- Definition.
 - A set of FDs F is said to cover another set of FDs G if every FD in G is also in F⁺ (every dependency in G can be inferred from F).
- Definition.
 - Two sets of FDs F and G are equivalent if F⁺ = G⁺. Therefore, equivalence means that every FD in G can be inferred from F, and every FD in F can be inferred from G; that is, G is equivalent to F if both the conditions G covers F and F covers G hold.

5.2. An example

- Prove that F = {A → C, AC → D, E → AD, E → H}
 and G = {A → CD, E → AH} are equivalent
 - For each FD of F, prove that it is in G⁺
 - $A \rightarrow C$: $(A)^+_G = ACD \supseteq C$, so $A \rightarrow C \in G^+$
 - AC \rightarrow D: (AC) $^{+}_{G}$ = ACD \supseteq D, so AC \rightarrow D \in G $^{+}$
 - $E \rightarrow AD$: $(E)^+_G = EAHCD \supseteq AD$, so $E \rightarrow AD \in G^+$
 - $E \rightarrow H$: $(E)^{+}_{G} = EAHCD \supseteq H$, so $E \rightarrow H \in G^{+}$
 - $\Rightarrow F^+ \subseteq G^+$
 - For each FD of G, prove that it is in F⁺ (the same)
 - $\Rightarrow G^+ \subseteq F^+$
 - $\Rightarrow F^+ = G^+$

Lesson > Topic 6: A minimal cover of a set of FDs

- 6.1. Definition
- 6.2. An algorithm to find a minimal cover of a set of FDs
- 6.3. An example

6.1. Definition

- Minimal Sets of FDs
 - A set of FDs F to be minimal if it satisfies:
 - Every dependency in F has a single attribute for its right-hand side.
 - We cannot replace any dependency X → A in F with a dependency Y → A, where Y is a proper subset of X, and still have a set of dependencies that is equivalent to F.
 - We cannot remove any dependency from F and still have a set of dependencies that is equivalent to F.
 - a set of dependencies in a standard or canonical form and with no redundancies

6.2. An algorithm to find a minimal cover of a set of FDs

Finding a Minimal Cover F for a Set of FDs G

Input: A set of FDs G.

- 1. Set F := G.
- 2. Replace each functional dependency $X \to \{A_1, A_2, ..., A_n\}$ in F by the n FDs $X \to A_1, X \to A_2, ..., X \to A_n$.
- 3. For each FD X → A in F for each attribute B that is an element of X if {{F {X → A}} ∪ {(X {B}) → A}} is equivalent to F then replace X → A with (X {B}) → A in F.
- 4. For each remaining functional dependency $X \to A$ in F if $\{F \{X \to A\}\}$ is equivalent to F, then remove $X \to A$ from F.

6.3. An example

- G = {B → A, D → A, AB → D}. We have to find the minimal cover of G.
 - All above dependencies are in canonical form
 - In step 2, we need to determine if AB \rightarrow D has any redundant attribute on the left-hand side; that is, can it be replaced by B \rightarrow D or A \rightarrow D? Since B \rightarrow A then AB \rightarrow D may be replaced by B \rightarrow D.

We now have a set equivalent to original G, say G_1 : {B \rightarrow A, D \rightarrow A, B \rightarrow D}.

- In step 3, we look for a redundant FD in G_1 . Using the transitive rule on $B \to D$ and $D \to A$, we conclude $B \to A$ is redundant.

Therefore, the minimal cover of G is $\{B \rightarrow D, D \rightarrow A\}$

Remarks

- Functional dependencies
- Armstrong axioms and their' secondary rules
- Closure of a set of FDs,
- Closure of a set of attributes under a set of FDs
- An algorithm to find a minimal key
- Equivalence of sets of FDs
- Finding a minimal set of a set of FDs

Quiz

No	Question (Multiple Choice)	Answer (1,2,3,4)	Commentary
1	Let R(A, B, C, D, E), $F = \{A \rightarrow B, B \rightarrow CD, AB \rightarrow CE\}$. Which of the followings can be inferred by F? 1. $A \rightarrow C$ 2. $C \rightarrow A$ 3. $C \rightarrow E$ 4. $B \rightarrow AC$	1	Since B \rightarrow CD, we have B \rightarrow C. Together with A \rightarrow B, we can conclude A \rightarrow C
2	Let F = {A \rightarrow D, AB \rightarrow DE, CE \rightarrow G, E \rightarrow H} Calculate (AB) $^+$ _F	ABDEH	Reaction rate: $\frac{1}{d[Co_z]} = -\frac{1}{2} \frac{d(c_z)}{dt}$ Formation rate of CO ₂ : $R_{co_s} = \frac{d[Co_2]}{dt}$ Consumption rate of C ₃ H ₆ $R_{c_s H_6} = -\frac{d[C_3 H_6]}{dt}$
3	R = {A,B,C}, F = {A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C}. Tìm p hủ tối thiểu của F?	Fc = {A→B, B→ C}	

→You have just learnt the following topics:
Functional dependencies
Armstrong axioms and their' secondary rules
Closure of a set of FDs,
Closure of a set of attributes under a set of FDs
An algorithm to find a minimal key
Equivalence of sets of FDs
Finding a minimal cover of a set of FDs

Next lesson:

Normalization