Operator methods

Quantum Mechanics Foundation Course: Problem Sheet 3

1 OPERATOR REPRESENTATION OF THE HARMONIC OSCILLATOR HAMILTONIAN

Consider the Hamiltonian for the quantum harmonic oscillator, written in terms of the position and momentum operators:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2,$$

where $[\hat{x}, \hat{p}] = i\hbar$. The **ladder operators** are defined as,

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right) \qquad \hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right).$$

- (i) Express the position and momentum operators of the harmonic oscillator in terms of ladder operators
- (ii) Using the results of part (i), show that the Hamiltonian can be written in terms of ladder operators as,

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$

(iii) Using the expression for \hat{H} in terms of ladder operators, show that any eigenstate $|n\rangle$ of the Hamiltonian is also an eigenstate of $\hat{a}^{\dagger}\hat{a}$.

Recall that the energy spectrum of the quantum harmonic oscillator is:

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right).$$

(iv) Using this result, find the eigenvalue of $\hat{a}^{\dagger}\hat{a}$ corresponding to a given state $|n\rangle$. What does this suggest about the physical interpretation of $\hat{a}^{\dagger}\hat{a}$?

2 COMMUTATION RELATIONS

Consider the commutator, defined as [A, B] = AB - BA.

- (i) Using the commutation relations for \hat{x} and \hat{p} , show that $[\hat{a}, \hat{a}^{\dagger}] = 1$, $[\hat{a}, \hat{a}] = 0$, $[\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0$ (These are the commutation relations for bosons).
- (ii) Evaluate the commutators of the ladder operators with the Hamiltonian, i.e $[\hat{H}, \hat{a}]$ and $[\hat{H}, \hat{a}^{\dagger}]$.

3 Interpretation of the Ladder operators

Consider a general eigenstate of the Hamiltonian \hat{H} , $|n\rangle$, having energy E_n , i.e. a solution of $\hat{H}|n\rangle = E_n|n\rangle$.

- (i) Using the commutator you found in Part (2.ii), evaluate $\hat{H}\hat{a}^{\dagger}|n\rangle$ and $\hat{H}\hat{a}|n\rangle$.
- (ii) The above results imply that $\hat{H}\hat{a}^{\dagger}|n\rangle = E_{n+1}\hat{a}^{\dagger}|n\rangle$ and $\hat{H}\hat{a}|n\rangle = E_{n-1}\hat{a}|n\rangle$. How does this suggest that the action of the ladder operators is $\hat{a}^{\dagger}|n\rangle \propto |n+1\rangle$ and $\hat{a}|n\rangle \propto |n-1\rangle$?
- (iii) The action of the operators can thus be quantified as $\hat{a}^{\dagger} = \mathcal{C}|n+1\rangle$ and $\hat{a} = \mathcal{D}|n-1\rangle$. Find \mathcal{C} and \mathcal{D} (Hint: the orthonormality of eigenstates is useful here, i.e $\langle n|n\rangle = 1$).
- (iv) Consider acting the Hamiltonian on the ground state $\hat{H}|0\rangle$, reason that $\hat{a}|0\rangle = 0$.
- (v) Use the ladder operators to show that any eigenstate of the harmonic oscillator can be expressed as $|n\rangle=\frac{(\hat{a}^{\dagger})^n}{\sqrt{n}}|0\rangle$.

4 ANGULAR MOMENTUM

In 3D, generalizing from classical physics, the angular momentum operator is defined as the cross-product of the position and momentum operators:

$$\hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$$
 where $\hat{\mathbf{r}} = (\hat{x}, \hat{y}, \hat{z})$ and $\hat{\mathbf{p}} = (\hat{p}_x, \hat{p}_y, \hat{p}_z)$. (1)

Position and momentum are known as conjugate variables, which means that $[\hat{x}, \hat{p}_x] = i\hbar$ and $[\hat{x}, \hat{p}_{y,z}] = 0$, which similarly holds for the y and z components.

(i) Using the commutation relations for \hat{x} and \hat{p}_x (and similarly for \hat{y} , \hat{z}), show that the angular momentum operators satisfy commutation relations:

$$[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z, \quad [\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x, \quad [\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y$$
 (2)

It turns out that elementary quantum particles have a fundamental property known as their "spin", which is directly related to these angular momentum operators: spin operators $\hat{S}_{x,y,z}$, satisfy analogous commutation relations to $\hat{L}_{x,y,z}$. The term "spin" is rather unfortunate since elementary particles do not actually spin; the name derives from the fact that the units of this quantum observable are the same as those for angular momentum.

5 EXTRA: FLUCTUATIONS

- (i) Using the ladder operators, find the expectation value of \hat{x}^2 in the ground state $|0\rangle$ of the quantum harmonic oscillator.
- (ii) The uncertainty in position in the ground state is defined as $\Delta \hat{x} = \sqrt{\langle n|\hat{x}^2|n\rangle \langle n|\hat{x}|n\rangle^2}$. What does this suggest about the meaning of the expectation value computed in part (i)?

6 EXTRA: FERMIONS

In contrast to bosons, fermions obey anti-commutation relations given by:

$$\{\hat{c}, \hat{c}^{\dagger}\} = 1$$
 $\{\hat{c}, \hat{c}\} = 0$ $\{\hat{c}^{\dagger}, \hat{c}^{\dagger}\} = 0$,

where the *anticommutator* is defined as $\{A,B\} = AB + BA$. Show that $\{\hat{c}^{\dagger},\hat{c}^{\dagger}\} = 0$ implies Pauli's exclusion principle.