感应电动机

感应电机设计逻辑

- 1. 根据需求设定额定工况和一些限制参数,如起动性能,最大转矩倍数,温升等。
- 2. 根据额定工况选择材料,根据材料选择气隙磁密幅值 B_{δ} 和 I_{m} 再设计选择铁心的基本尺寸 $D^{2}l$,结合一般电机的主要尺寸比选择 λ ,如此即可确定电机定子铁心内径 D_{il} 和 l_{ef} 。根据经验比设定定子外径和铁心内径,根据经验设定气隙长度,从而确定铁心内径。自此,我们设计了定子和转子的内径外径,和长度l。(经验可见表6-4到表6-7)
- 3. 根据性能要求,我们提前选择极数。根据经验,我们选择定子每极每相槽数 q_1 在2~6,则可以确认定子总槽数 Z_1 ,进而根据 p_1 38的各要求或经验表选择转子侧槽数 Z_2 ,根据每极每相槽数的选择我们选择了绕组形式,从而可以算出分布系数 k_{d1} ,进而选择线圈节距。线圈节距选好后,我们可以算出短矩系数 d_{p_1} 。从而我们算出了绕组系数。自此,我们设计了定子和转子的槽结构和线圈结构。

根据线电流密度和槽数,我们可以算出每相串联根数,进而算出每槽每相串联根数。我们根据线电荷密度和热负荷算出电流密度J后,与额定电流一起确定导体形制导体截面积 A_c 和并绕根数 N_{c1} 和并联支路数a。自此,我们设计了定子和转子的铁心结构和槽数和绕组的结构。

- 4. 在确定槽数和绕组绕制形式后,可以进而确定槽形和槽尺寸。核心设计思想就是三点: 装的下需要绕的线,线不容易被甩出去,定子转子铁心磁通不会饱和。故需要分别考察定子和转子槽满率 S_t 满足要求否,槽口宽高角,齿宽 b_t 轭高 h_j 够不够。故总的设计流程为,先确定一种形状,根据磁通设计齿宽和轭高,算出槽宽,进而根据槽满率设计槽高,后根据经验设计槽口尺寸。自此,我们设计了槽的结构。
- 5. 自此,我们已经完整的设计了一个电机的结构了,那么接下来就是验证我们设计的电机合用不合用,给出电机的一些重要参数。确认各处磁通合不合适,会不会饱和;确认额定工况和性能是否合适;确认起动时是否合适....
- 6. 从磁路计算来说,计算每极磁通,气隙磁通密度,齿部磁通密度,轭部磁通密度,五者需要的磁动势加和对应的总励磁电流。在算气隙磁密时需要注意气隙轴向和径向长度的折算。有漏磁折算 $l_{ef}=l_t+2\delta$ 、气道折算 $l_{ef}=l_t-n_vb_v'$ 、槽口折算 k_δ 三方面影响。在算齿部磁密时除气道轴向折算外,还需考虑铁心叠压系数。轭部需考虑槽对轭部的宽度减小的影响。
- 7. 把电机视为 Γ 型结构,需计算相关电阻电抗参数。定子电阻按照绕组拉直法即可;对转子电阻来说,在算出一个导条的电阻后通过向量叠加法可以得到端环电阻,经绕组折算可以得到定子侧的电阻。电抗计算依赖磁链法,即想象一个电流,计算其产生的磁链,从而得到L,进而得到 x_m 。对励磁电抗计算与常规一致;对漏抗计算通过计算各比漏磁导叠加,包括槽比漏磁导(需要考虑交链磁链的分布)、端部比漏磁导(经验公式)、谐波比漏磁导(常规计算)、斜槽比漏磁导(斜槽分布系数 K_{sk})。
- 8. 根据基本参数可以计算额定运行工况,计算很正常,没什么特殊的就是....值得注意的是最大功率的计算。

9. 起动性能计算时,需要考虑漏磁路饱和对漏抗的影响 K_Z 和挤流效应对电阻 K_r 电抗 K_x 的影响。 K_Z 的计算是通过假设起动电流进行虚拟磁密(忽略磁阻)查表得到 K_Z 这个系数,或通过槽尺寸关系计算得到 K_Z 。通过计算考虑挤流时转子导条相对高度为 ξ ,查表可以得到 K_r , K_x 。从而可以计算漏阻抗等更新值。从而使用老套的方法算出起动相关参数。

PLUS. 永磁电机基本上原理只在磁路计算有相关差别,其他差别影响不大,近乎与感应电机相同,故不再叙述,需要时找就行。

感应电动机符号

主要性能指标和额定数据P130

符号	内涵	单位	公式
P_N	额定运行时轴端输出的机械功率	kW	
U_N	额定电压	V	
f_N	额定频率	V	
n	额定转速	rpm	p163
$\eta\%$	额定效率		p163
$\cos arphi$	额定功率因数		p163
$T_{M}=T_{max}/T_{N}$	最大转矩倍数		p164
T_{st}/T_N	起动转矩倍数		
I_{st}/I_N	起动电流倍数		
T_{min}/T_N	起动过程中最小转矩倍数		
	绕组温升	K	
	铁心温升	A	
U_{Narphi}	电压基值额定相电压	V	
P_N	功率基值额定功率	kW	
I_{kW}	电流基值每相额定功电流	A	p132
Z_N	阻抗基值	Ω	p133

主要尺寸和电磁负荷P133

符号	内涵	单位	公式
D_{il}	铁心内径	m	6-1
l_{ef}	铁心有效长度或电枢计算长度	m	6-1
P_r	电磁功率/计算视在内功率	kVA	
$1-\epsilon_L$	满载电动势系数,取决于定子绕组漏电抗压降 0.85~0.95		
E_1	满载时定子每相感应电动势	V	
k_B	波形系数		
k_{w1}	基波绕组系数 假定0.92 0.96		p138
B_δ	气隙磁密最大值 1.3~1.6T	Т	表6-4 pl45
A_s	线负荷	A/m	表6-4
J_1	定子电流密度 3.5~6.5	A/mm^2	表6-4 pl40
$lpha_i$	磁通比例系数 $lpha_i = rac{B_{av}}{B_\delta} = rac{b_i}{ au}$		p135
I_m	励磁电流	A	p134
x_{σ}	漏磁	Ω	
x_{σ}^*	漏磁标幺值		p134
λ	主要尺寸比 $\lambda = rac{l_{ef}}{ au}$		表6-5
D_1	外径	m	表6-6
D_{i2}	铁心内径	m	p136
δ	气隙长度	mm	表6-7
q_1	每极每相槽数 2~6 整数		p137
Z_1	定子槽数		
Z_2	笼型转子槽数		p137 表6-8
p	极对数		

绕组设计P138

符号	内涵	单位	公式
y_1	线圈节距 $5/6 au, 2/3 au$	m	p138
k_{d1}	分布系数		p139
k_{p1}	短矩系数		p140
β	节距占角		p140
$N_{arphi 1}$	定子每相串联匝数		
S_{n1}	每槽导体数		p140
W_1	每相串联匝数		p140
Φ	每相磁通	Wb	p140
f_1	电频率	Hz	
a_1	每相并联支路数		
A_c	导线截面积 < 15mm - 2	mm^2	p140
N_{c1}	定子并绕根数		

槽设计P141

符号	内涵	单位	公式
d	圆线直径 1.68mm内	mm	p141
a	矩形线窄边	mm	p141
b	矩形线宽边	mm	p141
b/a	宽边与窄边比 不能过大		
S_f	槽满率 75~78%		p142
A_{ef}	扣除槽内绝缘所占面积后的有效槽面积	mm^2	
b_{t1}	定子齿宽	mm	p142
t_1	定子齿距	mm	
k_{Fe}	铁心叠压系数 0.95/0.92		

符号	内涵	单位	公式
B_{t1}	定子铁心齿磁密	Т	
h_{j1}	定子轭高	mm	p142
B_{j1}	定子轭部磁通	T	
b_{01}	定子槽口宽 2.5~4.0mm	mm	p142
h_{01}	定子槽口高度 0.5~2.0mm	mm	
$lpha_1$	槽口角 30°	0	
I_2	转子等效静止电流	A	p143
A_B	笼条截面积	mm^2	p143
J_B	笼条电流密度 2~4.5	A/mm ²	
b_{t2}	转子齿宽	mm	p143
t_2	转子齿距	mm	
B_{t2}	转子齿磁密 1.45~1.55T	T	
B_{j2}	转子轭磁密 1.2~1.55T	Т	
h_{j2}	转子轭高	mm	p143
b_{02}	转子槽口宽 1.0~1.5mm		
h_{02}	转子槽口高度 0.5~1.0mm		

磁路计算P144

符号	内涵	单位	公式
I_R	端环电流	A	p144
A_R	端环截面积	mm^2	pl44
Φ	每极磁通	Wb	pl45
F_s	波形系数 $F_s=rac{1}{lpha_i}$		p145
l_t	转子轴向长度		
n_{v1}	定子径向通风道数		
b_{v1}^{\prime}	定子一个径向通风道损失的长度	mm	

符号	内涵	单位	公式
n_{v2}	转子径向通风道数		
b_{v2}^{\prime}	转子一个径向通风道损失的长度	mm	
k_δ	气隙系数 开槽齿顶部磁通密度大 略大于1		pl46
F_δ	气隙最大磁位降	A	pl47
δ_e	有效气隙,计算气隙 气隙长度增加	mm	
B_t	齿部磁通密度	Т	p147
A_t	每极下齿截面积	mm^2	p147
b_t	齿宽	mm	
l_{Fe}	铁心净铁长	mm	p147
Φ_j	轭部总磁通	Wb	p148
B_{j}	轭部磁通密度	Т	p148
A_{j}	极间中心线的轭部截面积	mm^2	p148
h_j'	轭部计算高度		
h_{j1}'	定子轭部计算高度	mm	p148
h_{j2}'	转子轭部计算高度	mm	p148
h_s	定子槽高	mm	p148
h_R	转子槽高	mm	p148
r_s	定子圆底槽半径		
r	转子圆底槽半径		
L_{j1}	定子轭部磁路计算长度	mm	p148
L_{j2}	转子轭部磁路计算长度	mm	p148
c	磁通不均匀修正系数		p149
F_{j1}	定子轭部磁位降	A	p149
F_{j2}	转子轭部磁位降	A	p149
F_0	每极磁路的总磁位降	A	p149
F_{t1}	定子齿部磁位降	A	p147
F_{t2}	转子齿部磁位降	A	p147
I_m	励磁电流	A	p149

参数计算P149

符号	内涵	单位	公式
R_1	定子内阻	Ω	p149
L_{c1}	定子绕组的线圈平均半匝长	m	
F_{m1}	\mathbf{m} 1相定子励磁电流 I_m (有效值)产生的基波磁动势	A	p152
$B_{\delta 1}$	该磁动势在气隙表面建立相应的径向基波磁通密度的 幅值	Т	pl52
Φ_1	每极基波磁通	Wb	p152
Ψ_{m1}	与定子每相绕组交链的基波磁链	Wb	p152
x_m	每相励磁电抗实际值	Ω	p152
x_m^*	每相励磁电抗标幺值		p152
x_{σ}	感应电机每相绕组漏电抗	Ω	pl52 pl61
x_σ^*	感应电机每相绕组漏电抗标幺值		p152
Λ_{σ}	每相绕组漏磁场对应的总漏磁导	A/Wb	
$\sum \lambda_{\sigma}$	单位长度的总比漏磁导	A/(Wb m)	p153
λ_s	槽比漏磁导	A/(Wb m)	pl54 pl56 pl57
λ_e	端部比漏磁导	A/(Wb m)	pl59
λ_d	谐波比漏磁导	A/(Wb m)	pl59
λ_{sk}	斜槽比漏磁导	A/(Wb m)	p161

运行性能计算P161

符号	内涵	单位	公式
I_{1p}^*	定子有功电流分量		p162

符号	内涵	单位	公式
I_x^*	转子无功电流分量		
X'^*	等效电路负载支路的总电抗标幺值		
Z'^*	负载支路的总阻抗标幺值		
X^*	定转子总漏抗的标幺值		
I_{1R}^*	定子无功电流		
I_1^*	定子总电流标幺值		
I_2	转子导条电流实际值	A	
I_R	端环实际电流	A	p162
$\cos arphi$	功率因数		p162
η	效率		p163
s_N	额定转差		p163
T_{max}	最大转矩	Nm	p164
T_M	最大转矩倍数		p164
T_N	额定转矩	Nm	p164

起动性能计算P164

符号	内涵	单位	公式
I_{st}'	预取起动电流	A	p165
F_{s1}	定子每槽磁动势幅值	A	p165
K_{u1}	定子绕组槽口部分节距漏抗系数		
F_{s2}	转子每槽磁动势幅值	A	p165
I_{2st}	起动转子导条电流	A	p165
$\sqrt{1-\epsilon_0}$	修正系数,修正励磁电流的抹去造成的磁动势减少影响		
B_L	虚拟磁密	Т	p165
K_Z	起动时漏磁饱和系数,实际磁密和虚拟磁密的比值		图A-18
$x^*_{d1(st)}$	起动时定子谐波漏抗标幺值		p166
$x_{d2(st)}^*$	起动时转子谐波漏抗标幺值		p166

符号	内涵	单位	公式
$x^*_{sk(st)}$	起动时斜槽漏抗与正常运行时的标幺值		p166
c_s	等效槽口增加量		p166
K_x	挤流效应引起的转子槽漏抗变换		
K_r	挤流效应引起的转子槽电阻变换		
ξ	启动时考虑挤流效应的转子导条相对高度		