A QUANTUM ALGORITHM TO FIND THE MAXIMUM OF A PAIR OF (SIGNED) INTEGERS

The idea for the code came from a video by Anant Vigyan, see [1]. Comments are welcome (email to akosnagymath@gmail.com).

1. The $U_{<}$ gate

First, let's construct a quantum gate, $U_<$, on 3 quantum qubits with the following property: given two classical bits, $a, b \in \{0, 1\}$, the effect of $U_<$ on $|ab0\rangle(=:|a\rangle|b\rangle|0\rangle)$ is

$$U_{<}(|ab0\rangle) = |\bar{a}(a=b)(a < b)\rangle,$$

where $\bar{a} := \text{NOT } a$.

For the rest of this document, $CNOT_{i,j}$ will denote the CNOT gate with control qubit i and controlled qubit j. Similarly $TOFF_{i,j,k}$ will denote the Toffoli/TOFF gate with control qubits i and j, and controlled qubit k. Abstractly, the gate can be given as

$$U_{<} = (\text{CNOT}_{1,2} \otimes \mathbb{1}_2)(\text{TOFF}_{1,2,3})(X \otimes \mathbb{1}_2 \otimes \mathbb{1}_2),$$

where $\mathbb{1}_2$ is the 2-by-2 identity matrix. Schematically $U_{<}$ is

More generally, the effect of U_{\leq} for any $a, b, c \in \{0, 1\}$ bits is

or, more abstractly, $U_{<}(|abc\rangle) = |\bar{a}(b+\bar{a})(c+\bar{a}b)\rangle$, where addition and multiplication is understood modulo 2, and thus, in the lexicographically ordered computational basis¹, the matrix of $U_{<}$ is

$$\left(U_{<}\right) = \begin{pmatrix} 0_{4} & \mathbbm{1}_{4} \\ X \otimes \mathbbm{1}_{2} & 0_{4} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

The claim about the effect of $U_{<}$ is now a matter of simple computation.

1

 $^{^1\}text{that is, in }\{|000\rangle,|001\rangle,|010\rangle,|011\rangle,|100\rangle,|101\rangle,|110\rangle,|111\rangle\}$

Remark 1.1. Note that $U_{<}$ returns two important pieces of information: 1. which bit is larger (or equal to) than the other one, and 2. whether the bits are equal. The algorithm makes use of this by first implementing $U_{<}$ (with c=0) to each digit (including the sign digit) of number₁ and number₂.

2. The
$$U_0$$
 gate

The purpose of this gate is to reset the third qubit to $|0\rangle$ in the output of $U_{<}$. This can easily be implemented with

3. THE CLASSICAL ALGORITHM

Next, I describe the idea behind the algorithm.

We represent a nonnegative integer, number $\in \mathbb{N}$ via

$$number =_n 1c_1 \dots c_n,$$

where $n \ge \max(1, \lceil \log_2(\text{number}) \rceil)$, $c_i \in \{0, 1\}$, and $(c_1 \dots c_n)_2 = \text{number}$. For negative integers, number $\in -\mathbb{N}_+$, use

$$\mathtt{number} = 0c_1 \dots c_n,$$

where $n \ge \max(1, \lceil \log_2(|\text{number}|) \rceil)$, $c_i \in \{0, 1\}$, and $(c_1 \dots c_n)_2 = 2^n - |\text{number}|$. This is **not** the usual binary representation of signed integers, but it is useful for the problem at hand. In particular the Python code:

```
bits = []
sign = number >> 31
while number != sign:
  bits.append([number \& 1])
  number >>= 1
```

bits = bits[::-1]

produces the array bits = $[c_0, c_1, ..., c_n]$, with $n = \lceil \log_2(|\text{number}|) \rceil$. This has $O(\log_2(|\text{number}|))$ space and time complexity. If number is given in other binary representations, the conversion can also be done with the same space and time complexities.

Let now $n := \max(1, \log_2(\max(|\text{number}_1|, |\text{number}_2|)))$ and assume that the inputs, number₁ and number₂, are given the forms

$$number_1 = a_0 a_1 \dots a_n,$$

$$number_2 = b_0 b_1 \dots b_n,$$

defined above.

Since nonnegative numbers are larger than negatives, the statement ((number₁ < number₂) AND ($b_0 < a_0$)) is False. Thus we have the following identity, by the virtue of our binary presentation

$$(\text{number}_1 < \text{number}_2) = (a_0 < b_0) \text{ OR } (a_1 \dots a_n < b_1 \dots b_n)$$

$$= (a_0 < b_0)$$
 OR
$$((a_1 < b_1) \text{ XOR } (a_1 = b_1) \text{ AND } (a_2 \dots a_n < b_2 \dots b_n) \text{ XOR } \dots)$$

In the next, final section, I construct a quantum circuit and show that a particular qubit is always found in the eigenstate $|\text{number}_1 < \text{number}_2\rangle$.

4. THE QUANTUM CIRCUIT

Again assume that the inputs, number₁, number₂ $\in \mathbb{Z}$, are given the forms

$$number_1 = a_0 a_1 \dots a_n,$$

$$number_2 = b_0 b_1 \dots b_n,$$

where $n := \max(1, \lceil \log_2(\max(\lceil number_1 \rceil, \lceil number_2 \rceil)) \rceil)$. The algorithm can be described as follows:

Step 0: Prepare 3 * n quantum registers and a classical register. For each $i \in \{0, 1, ..., n\}$, initialize the (3 * i + 1)st qubit as $|a_i\rangle$, the (3 * i + 2)nd qubit as $|b_i\rangle$, and the (3 * i + 3)rd register as $|0\rangle$. Attach a $U_{<}$ gate to each such triplet:

Since $n \ge 1$, This generates at least 6 registers.

Step 1: Attach a TOFF_{2,6,3} gate, a U_0 gate to the registers 4, 5, and 6, and finally a TOFF_{2,5,6} gate.

Note that right after this gate, the third register is in the state $|(a_0 < b_0) \text{ OR } (a_1 < b_1)\rangle$.

Step \geq 2: For $i \in \{2, ..., n\}$ (in the normal order), attach a TOFF_{3*i,3*i+3,3} gate, then a U_0 gate to the registers (3 * i + 1), (3 * i + 2), and (3 * i + 3).

Note that right after this gate, the third register is in the state $|(a_0 < b_0) \text{ OR } (a_1 \dots a_i < b_1 \dots b_i)\rangle$.

Last step: Measure the third qubit, which is not in the state $|(a_0 < b_0) \text{ OR } (a_1 \dots a_n < b_1 \dots b_n)\rangle = |\text{number}_1 < \text{number}_2\rangle$.

Remark 4.1. The attachment of the last U_0 gate does not change the result of the measurement.

REFERENCES

[1] Anant Vigyan, Quantum algorithm 2 quantum comparison (new, to be published), available at https://www.youtube.com/watch?v=AmqvNmzeRkA. 1