Determinisztikus idősorelemzés, dekompozíciós idősormodellek: trend, szezonalitás és ciklus

Ferenci Tamás tamas.ferenci@medstat.hu

Utoljára frissítve: 2023. május 9.

Tartalom

Tartalomjegyzék

1 Determinisztikus idősorelemzés			
	1.1	Alapgondolat	1
	1.2	Determinisztikus idősormodellezés regresszióval	2
	1.3	Trend és szezonalitás	4

1. Determinisztikus idősorelemzés

1.1. Alapgondolat

A determinisztikus idősorelemzés

- Az idősor alakulása elvileg függvényszerűen felírható bizonyos tényezők alapján
- Csak azért nem tudjuk tökéletesen megtenni, mert nem ismerjük e tényezőket, nem tudjuk milyen függvényformával hatnak, nem tudjuk pontosan mérni stb. ezért fogunk hibázni
- De pont: a hibának csak ennyi szerepe van...
- ...beállítja az aktuális időszaki értéket, és kész

Dekompozíciós idősormodellek

- Minderre a legtipikusabb és egyben legklasszikusabb példát a dekompozíciós idősormodellek jelentik
- A legismertebb additív modell:

$$Y_t = R_t + C_t + S_t + u_t,$$

ahol R_t , C_t és S_t a trend, a ciklus és a szezonalitás t-edik időszakbeli értéke rendre, u_t pedig a már említett eltérésváltozó

• Becslés?

1.2. Determinisztikus idősormodellezés regresszióval

Regresszió alkalmazása

- Az előbbi modell teljesen természetesen becsülhető regresszióval, ha R_t , C_t és S_t helyébe beírjuk a feltételezett paraméteres függvényformákat
- (Most tehát mindvégig paraméteres regressziót fogunk használni)
- Legegyszerűbb eset: $R_t = \alpha + \beta t, C_t = 0$ és $S_t = 0$ (egyszerű lineáris trend)
- Az így kapott modell OLS-sel becsülhető

Negyedéves GDP (éves) lineáris trenddel I.

Negyedéves GDP (éves) lineáris trenddel II.

Mi ezzel a baj? Hibatag jól specifikált? Aligha!

Negyedéves GDP (éves) lineáris trenddel és szezonalitással I.

Negyedéves GDP (éves) lineáris trenddel és szezonalitással II.

A szezonalitás jónak tűnik, de az alaptrendet még mindig nem sikerült megragadni:

A szezonalitás azért tűnik jónak, mert nincs interakció az év és a szezon között, azaz minden évben hasonló a szezonalitás mintázata.

Negyedéves GDP (éves) kvadratikus trenddel és szezonalitással I.

Negyedéves GDP (éves) kvadratikus trenddel és szezonalitással II.

Reziduumok kicsit jobbak:

Mindezek limitációi

- Egyrészt el kell találni a függvényformát
- Persze modelldiagnosztika (az előbb látott grafikus módszerek és tesztek is) ott van
- (Ez igazából már keresztmetszetnél is így volt)
- Pl. a kvadratikus nyilván csak erre az időszakra jó, az általánosítóképessége botrányos lenne
- Másrészt a hibatag diagnosztikája bonyolultabbá válik, egy új szempont is megjelenik (autokorreláció) → később még nagyon sokat fogunk róla beszélni

1.3. Trend és szezonalitás

A trend megadása

• Trend: "hosszú távú alapirányzat"

• A mostani trend (determinisztikus trend) bármi lehet, amit paraméteres függvényformában megadunk; például:

- Lineáris trend: a + bt

- Kvadratikus trend: $a + b_1 t + b_2 t^2$

– Polinomiális trend: $a + b_1 t + b_2 t^2 + \ldots + b_k t^k$

– Exponenciális trend: ae^{bt}

- Aszimptotikus trend: $c + \frac{1}{a+bt}$

- Logisztikus trend: $\frac{1}{c+e^{a+bt}}$

- stb. stb.

(Persze amelyik nem lineáris, ott vagy linearizálni kell vagy – ha ez nem lehetséges – akkor nem OLS-sel becsülni)

• Ezek mind paraméteres trendek voltak, elképzelhető nem-paraméteres trend is, a legismertebb a spline-ok használata (de ne feledjük, annak a becslése kevésbé hatásos, nem kapunk egyetlen vagy néhány számba sűrített – és jó esetben tárgyterületileg értelmezhető – eredményt, valamint az előrejelzés is problémásabb)

Szezonalitás megadása

• Szezonalitás: "éven belüli mintázat", exogén módon rögzített hosszúságú, periodikus (vs. ciklus: "éven túli", nem feltétlenül exogén módon adott, ismert hosszúságú)

• A szezonalitásnál viszont tipikusabb a nem-paraméteres megadás: minden negyedévnek (hónapnak, félévnek stb.) saját paramétere van

• (Dummy-kkal, ld. később, regressziós keretbe szintén szépen illeszkednek!)

 Persze itt is elképzelhető paraméteres megadás, a legismertebb a trigonometrikus (harmonikus) függvények használata

Dummy-kódolás szezonalitáshoz: referenciakódolás

• Az egyik szezon indikátorát elhagyjuk: referenciakódolás

	D_{Q1}	D_{Q2}	D_{Q3}
Q1	1	0	0
Q2	0	1	0
Q3	0	0	1
Q4	0	0	0

Értelmezés: eltérés a referenciacsoporthoz képest (ami az elhagyott indikátorú csoport)

Dummy-kódolás szezonalitáshoz: kontrasztkódolás I.

- Egy másik népszerű megoldás a kontrasztkódolás: viszonyítsunk az átlaghoz!
- Ehhez hogyan kell kódolni...?

	C_{Q1}	C_{Q2}	C_{Q3}
Q1	1	0	0
Q2	0	1	0
Q3	0	0	1
Q4	-1	-1	-1

Dummy-kódolás szezonalitáshoz: kontrasztkódolás II.

Mert:

$$\alpha + \beta_{C_{Q_1}} + 0 + 0 = \overline{y}_{Q_1} \tag{1}$$

$$\alpha + 0 + \beta_{C_{Q2}} + 0 = \overline{y}_{Q2} \tag{2}$$

$$\alpha + 0 + 0 + \beta_{C_{O3}} = \overline{y}_{O3} \tag{3}$$

$$\alpha - \beta_{C_{Q1}} - \beta_{C_{Q2}} - \beta_{C_{Q3}} = \overline{y}_{Q4} \tag{4}$$

És így:

- $(1)+(2)+(3)+(4) \Rightarrow 4\alpha = \overline{y}_{Q1} + \overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4} \Rightarrow \alpha$ tényleg a főátlag (mert azonosak voltak a csoportok elemszámai, különben ún. súlyozott kontraszt kellene)
- $(2)+(3)+(4) \Rightarrow 3\alpha \beta_{C_{Q1}} = \overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4} \Rightarrow \beta_{C_{Q1}} = 3\alpha (\overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4}) = 3\alpha (4\alpha \overline{y}_{Q1}) \Rightarrow \beta_{C_{Q1}} = \overline{y}_{Q1} \alpha \Rightarrow$ tényleg az átlagtól való eltérés (és hasonlóan a másik kettő)

Dummy-kódolás szezonalitáshoz: egyebek

- Az angol irodalomban az általunk kontrasztkódolásnak nevezett módszert nagyon gyakran "effect coding"-nak nevezik...
- … a kontraszt pedig az, amikor a csoportok tetszőleges általunk meghatározott lineáris kombinációját teszteljük