

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DOCENTE: NIKOLA KAMBUROV AYUDANTE: MATÍAS DÍAZ

MAT2555 - Análisis Funcional

Tarea 3 - Omar Neyra, Sebastián Sánchez

PROBLEMA 1 -

Sea (Ω, M, μ) un espacio de medida y suponga que $f \in L^{p_0}(\mu) \cap L^{\infty}(\mu)$ para algún $p_0 \in [1, \infty)$. Pruebe que $f \in L^p$ para todo $p \ge p_0$ y que

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

SOLUCIÓN El caso $p = p_0$ es directo, así que supongamos que la desigualdad es estricta y denotemos $p' := p - p_0 > 0$. Notando que $|f(x)| \le ||f||_{\infty}$ tenemos que

$$\int |f|^p = \int |f|^{p_0} |f|^{p'} \le \int |f|^{p_0} ||f||_{\infty}^{p'} \le ||f||_{\infty}^{p'} ||f||_{p_0}^{p_0} \tag{1}$$

Todas las cantidades son positivas, así que tomando raíz obtenemos que

$$||f||_{p} \le ||f||_{\infty}^{p'/p} ||f||_{p_{0}}^{p_{0}/p} < \infty, \tag{2}$$

pues la norma uniforme y p_0 están acotadas. Tomando límite se ve directamente que

$$\lim_{p \to \infty} \|f\|_p \le \|f\|_{\infty} \tag{3}$$

pues $p'/p = 1 - p_0/p \rightarrow 1$ y $p_0/p \rightarrow 0$ cuando $p \rightarrow \infty$.

— PROBLEMA 2 —

Para todo $a \in \mathbb{R}$ construya una función $f_a \in L^{\infty}(\mathbb{R})$ con $||f_a - f_b||_{L^{\infty}(\mathbb{R})} \ge 1$ cuando $a \ne b$. Demuestre que esto implica que $L^{\infty}(\mathbb{R})$ no es separable.

SOLUCIÓN Consideremos $f_a(x) = \sin(ax)$. Como $-1 \le \sin \le 1$, $f_a \in L^{\infty}$ para todo a. Por otro lado, $f_a \ge \frac{\sqrt{2}}{2}$ para

$$x \in \frac{1}{a} \left(\frac{\pi}{2} + 2\pi k - \frac{\pi}{4}, \frac{\pi}{2} + 2\pi k + \frac{\pi}{4} \right), \text{ con } k \in \mathbb{Z}.$$
 (4)

Similarmente, $f_a \leq -\frac{\sqrt{2}}{2}$ cuando

$$x \in \frac{1}{a} \left(\frac{3\pi}{2} + 2\pi k - \frac{\pi}{4}, \frac{3\pi}{2} + 2\pi k + \frac{\pi}{4} \right), \text{ con } k \in \mathbb{Z}.$$
 (5)

Llamemos a los intervalos I^a y I_a de las Ecuaciones (4) y (5), respectivamente.

— PROBLEMA 3 —

Suponga que el espacio de medida (Ω, M, μ) es σ -finito. Decimos que una sucesión $f_n \in L^p$ converge débilmente a $f \in L^p$ si $c(f_n) \to c(f)$ para todo $c \in (L^p)^*$. Escribimos $f_n \to f$ en L^p .

(a) Demuestre que $f_n \rightharpoonup f$ en L^p , $p \in [1, \infty)$, si y solo si

$$\int f_n g \to \int f g$$

para toda $g \in L^q$, con 1/p + 1/q = 1.

- (b) Pruebe que cuando $f_n \rightharpoonup f$ en L^p , $||f||_p \le \liminf_{n \to \infty} ||f_n||_p$
- (c) (Compacidad débil de L^p) Sea $p \in (1, \infty)$ y suponga que L^q es separable. Pruebe que si $\sup_n \|f_n\|_p < \infty$, entonces existe $f \in L^p$ y una sucesión $f_{n_k} \in L^p$ tal que $f_{n_k} \rightharpoonup f$.
- (d) De un contraejemplo del ítem anterior cuando p = 1.

SOLUCIÓN

(a) \implies : Notamos que para todo $g \in L^q$, el mapa $\Phi \colon L^p \to \mathbb{K}$ dado por $a \mapsto \int ag$ define un funcional lineal acotado. En efecto, la linealidad es directa por la linealidad de la integral y la cota sale por Hölder:

$$|\Phi(a)| \le \int |ag| \le ||a||_p ||g||_q < \infty.$$

Luego, la convergencia débil nos da que

$$\lim_{n\to\infty} \Phi(f_n) = \Phi(f) \Rightarrow \lim_{n\to\infty} \int f_n g = \int f g.$$

 \Leftarrow : Por el teorema de representación de Riesz para espacios de funciones integrables, para todo $T \in (L^p)^*$ existe $h \ge 0$ en L^q tal que

$$T(a) = \int ah.$$

Por la hipótesis, se sigue que

$$\lim_{n\to\infty} T(f_n) = \lim_{n\to\infty} \int f_n h = \int f h = T(f).$$

(b) Usaremos el lema de Fatou con $F_n = |f_n|^p$. Como $f_n \in L^p$, se tiene que $F_n \in L^1$, además, es evidente que $F_n \ge 0$. Definamos

$$F = \liminf_{n \to \infty} F_n < \infty \qquad c.t.p.$$

Luego,

$$\int F \leq \liminf_{n \to \infty} \int F_n = \liminf_{n \to \infty} ||f_n||_p^p.$$

Como \int es un funcional lineal acotado, la convergencia débil implica que

$$\int f_n \to \int f \implies \int F_n \to \int F.$$

En particular, lo hace en líminf. Así, nos queda que

$$||f||_p^p \leq \liminf_{n\to\infty} ||f_n||_p^p.$$