Trees

What is a Tree?

- A tree is a collection of nodes with the following properties:
 - The collection can be empty and the tree is called a null tree.
 - Otherwise, a tree consists of a distinguished node r, called *root*, and the remaining nodes are partitioned into k subsets representing subtrees T_1, T_2, \ldots, T_k , each of whose roots are connected by a *directed edge* from r.
- The root of each sub-tree is said to be *child* of r, and r is the *parent* of each sub-tree root.
- If a tree is a collection of N nodes, then it has N-1 edges.

Preliminaries

- Node A has 6 children: B, C, D, E, F, G.
- B, C, H, I, P, Q, K, L, M, N are *leaves* in the tree above.
- K, L, M are *siblings* since F is parent of all of them.

Preliminaries (continued)

- A *path* from node n_1 to n_k is defined as a sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is parent of n_{i+1} $(1 \le i < k)$
 - The *length* of a path is the number of edges on that path.
 - There is a path of length zero from every node to itself.
 - There is exactly one path from the root to each node.
- The *depth* of node n_i is the length of the path from *root* to node n_i
- The *height* of node n_i is the length of longest path from node n_i to a *leaf*.
- If there is a path from n_1 to n_2 , then n_1 is *ancestor* of n_2 , and n_2 is *descendent* of n_1 .
 - If $n_1 \neq n_2$ then n_1 is *proper ancestor* of n_2 , and n_2 is *proper descendent* of n_1 .

Figure 1 A tree, with height and depth information

Lecture – 04 - Tree

- A tree T is a collection of n nodes.
 - If the collection is empty, then the tree is called a null tree.
 - One of the nodes, r is specially designated as root of the tree
 - The remaining nodes are partitioned in to k subsets, T₁, T₂, ..., T_k
 - Each subset represents a tree with r₁, r₂, ..., r_k as roots.
 - Each of these roots r₁, r₂, ..., r_k is connected through a directed edge from r.

Binary Tree

- A node in a tree is connected to any number of nodes. These nodes are called child nodes and the node connecting them is called parent.
- A tree can be represented through a structure called First-child Next-sibling.
- This kind of a general tree has very limited applications
- A tree such that every nodes has at most two child nodes is called Binary tree.
- Any node in a binary tree can have
 - No children
 - Only left child
 - Only right child
 - Both children

Binary Tree

A node in a tree can be represented as

 A binary tree with elements 25, 34, 67, 85, 12, 8 can be represented as

 In this tree, we can traverse in inorder, preorder or postorder.

Traversing in a binary tree

- Inoder
 - Traverse the left subtree
 - Traverse the root
 - Traverse the right subtree
- Preorder
 - Traverse the root
 - Traverse the left subtree
 - Traverse the right subtree
- Postorder
 - Traverse the left subtree
 - Traverse the right subtree
 - Traverse the **root**

Binary tree – level of nodes

- Root of a tree is considered as a node at level 0.
- Its immediate children are at level 1. Children of these nodes are at level 2 and so on.
- If a tree has n nodes,
 - what can be the maximum level of any node in the tree?
- Height of a tree
 - Height of a tree with one node is 0
 - Height of a tree with zero nodes is -1
 - Height of a tree is

```
1 + max( height(T \rightarrow left), height(T \rightarrow right) )
```