## Macroeconomía Internacional

Francisco Roldán IMF

October 2021

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

### Importa la demanda agregada?

- Rigideces de precio transmiten gasto a cantidades
- Receta sencilla
  - Rigideces de salario nominal
  - + Tipo de cambio nominal fijo
  - = Rigidez real

#### Importa la demanda agregada?

- Rigideces de precio transmiten gasto a cantidades
- Receta sencilla
  - Rigideces de salario nominal
  - + Tipo de cambio nominal fijo
  - = Rigidez real

Schmitt-Grohé, S. and M. Uribe (2016): "Downward Nominal Wage Rigidity, Currency Pegs, and Involuntary Unemployment," *Journal of Political Economy*, 124, 1466–1514



#### Curvas de Phillips

Rigidez a la Calvo/Rotemberg

$$\pi_t = \kappa \mathsf{y}_t + \beta \mathbb{E} \left[ \pi_{t+1} \right]$$

Versión SOE: Galí y Monacelli (2005, Rev Econ Studies)

- Otra rigidez
  - · Dos sectores: transable y no transable
  - $\cdot$  Tipo de cambio fijo:  $p_T$  exógeno medido en 'pesos
  - Salario fijo en 'pesos' = Salario fijo medido en transables

#### Curvas de Phillips

Rigidez a la Calvo/Rotemberg

$$\pi_t = \kappa \mathsf{y}_t + \beta \mathbb{E} \left[ \pi_{t+1} \right]$$

Versión SOE: Galí y Monacelli (2005, Rev Econ Studies)

- · Otra rigidez:
  - · Dos sectores: transable y no transable
  - · Tipo de cambio fijo:  $p_T$  exógeno medido en 'pesos'
  - Salario fijo en 'pesos' = Salario fijo medido en transables

#### Un solo bien transable?



## Un modelo con salarios fijos

- Restricción agregada:  $w_t \ge f(w_{t-1})$ 
  - Schmitt-Grohé y Uribe:  $f(x) = \gamma x$ , con  $\gamma \le 1$
  - · Todavía más fácil:  $f(x) = \bar{w}$

#### Agentes

· Consumen N y T, oferta de trabajo inelástica

$$\mathsf{u}(c) = \left[arpi_{\mathsf{N}} c_{\mathsf{N}}^{-\eta} + arpi_{\mathsf{T}} c_{\mathsf{T}}^{-\eta}
ight]^{-rac{1}{\eta}}$$

· Pueden ahorrar libre de riesgo en 'dólares'

$$p_N c_N + c_T + \frac{a'}{1+r} = p_N y_N + y_T + a'$$

### Un modelo con salarios fijos

- · Restricción agregada:  $w_t \ge f(w_{t-1})$ 
  - Schmitt-Grohé y Uribe:  $f(x) = \gamma x$ , con  $\gamma \le 1$
  - Todavía más fácil:  $f(x) = \bar{w}$
- Agentes
  - · Consumen N y T, oferta de trabajo inelástica

$$u(c) = \left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta}\right]^{-\frac{1}{\eta}}$$

· Pueden ahorrar libre de riesgo en 'dólares'

$$p_N c_N + c_T + \frac{a'}{1+r} = p_N y_N + y_T + a$$

Agentes

$$\max\left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta}\right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = y$$
 
$$-\frac{1}{\eta}\left[\text{choclo}\right]^{-\frac{1}{\eta}-1}(-\eta)\varpi_i c_i^{-\eta-1} = \lambda p_i$$

Agentes

$$\max \left[ \varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathbf{y}$$
$$-\frac{1}{\eta} \left[ \text{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left( \frac{c_T}{c_N} \right)^{1 + \eta}$$

Agentes

$$\max \left[ \varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathbf{y}$$
$$-\frac{1}{\eta} \left[ \text{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left( \frac{c_T}{c_N} \right)^{1 + \eta}$$

Equilibrio:  $c_N = h_N^2$  para no transables:

6

Agentes

$$\max \left[ \varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = y$$
$$-\frac{1}{\eta} \left[ \text{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left( \frac{c_T}{c_N} \right)^{1 + \eta}$$

Equilibrio:  $c_N=h_N^lpha$  para no transables; y para transables?

6

Agentes

$$\max \left[ \varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathsf{y}$$
$$-\frac{1}{\eta} \left[ \mathsf{choclo} \right]^{-\frac{1}{\eta} - 1} (-\eta) \varpi_i c_i^{-\eta - 1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left( \frac{c_T}{c_N} \right)^{1 + \eta}$$

Equilibrio:  $c_N = h_N^{\alpha}$  para no transables; y para transables?

Agentes

$$\max \left[ arpi_N c_N^{-\eta} + arpi_T c_T^{-\eta} 
ight]^{-rac{1}{\eta}} \quad ext{sujeto a } p_N c_N + c_T = \mathsf{y} \ -rac{1}{\eta} \left[ ext{choclo} 
ight]^{-rac{1}{\eta}-1} (-\eta) arpi_i c_i^{-\eta-1} = \lambda p_i \implies p_N = rac{arpi_N}{arpi_T} \left( rac{c_T}{c_N} 
ight)^{1+\eta}$$

• Equilibrio:  $c_N = h_N^{\alpha}$  para no transables; y para transables?

Por lo tanto en equilibrio

$$arphi_N = rac{arpi_N}{arpi_T} \left(rac{\mathsf{c}_T}{\mathsf{h}_N^lpha}
ight)^{1+ au}$$

6

Agentes

$$\max\left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta}\right]^{-\frac{1}{\eta}} \quad \text{sujeto a } p_N c_N + c_T = \mathbf{y}$$
$$-\frac{1}{\eta}\left[\text{choclo}\right]^{-\frac{1}{\eta}-1} (-\eta)\varpi_i c_i^{-\eta-1} = \lambda p_i \implies p_N = \frac{\varpi_N}{\varpi_T} \left(\frac{c_T}{c_N}\right)^{1+\eta}$$

- Equilibrio:  $c_N = h_N^{\alpha}$  para no transables; y para transables?
  - · Por lo tanto en equilibrio

$$p_N = rac{arpi_N}{arpi_T} \left(rac{oldsymbol{c}_T}{h_N^{lpha}}
ight)^{1+\eta}$$

6

· Firmas

$$y_N = h_N^{lpha}$$
  
 $y_T = z h_T^{lpha}$ 

Demandas de trabajo

$$\int \max_{h_N} p_N y_N - w h_N \ \max_{h_T} y_T - w h_T$$

· Firmas

$$egin{aligned} \mathbf{y}_{\mathsf{N}} &= \mathbf{h}^{lpha}_{\mathsf{N}} \ \mathbf{y}_{\mathsf{T}} &= \mathsf{z}\mathbf{h}^{lpha}_{\mathsf{T}} \end{aligned}$$

Demandas de trabajo

$$\begin{cases} \max_{h_N} p_N y_N - w h_N \\ \max_{h_T} y_T - w h_T \end{cases}$$

· Firmas

$$egin{aligned} \mathbf{y}_{\mathsf{N}} &= \mathbf{h}_{\mathsf{N}}^{lpha} \ \mathbf{y}_{\mathsf{T}} &= \mathbf{z} \mathbf{h}_{\mathsf{T}}^{lpha} \end{aligned}$$

· Demandas de trabajo

$$\begin{cases}
\max_{h_N} p_N h_N^{\alpha} - w h_N \\
\max_{h_T} z h_T^{\alpha} - w h_T
\end{cases} \longrightarrow \begin{cases}
\alpha p_N h_N^{\alpha - 1} = w \\
\alpha z h_T^{\alpha - 1} = w
\end{cases}$$

Firmas

$$y_N = h_N^{\alpha}$$
  
 $y_T = z h_T^{\alpha}$ 

Demandas de trabajo

$$\begin{cases} \max_{h_N} p_N h_N^{\alpha} - w h_N \\ \max_{h_T} z h_T^{\alpha} - w h_T \end{cases} \longrightarrow \begin{cases} \alpha p_N h_N^{\alpha - 1} &= w \\ \alpha z h_T^{\alpha - 1} &= w \end{cases} \longrightarrow \begin{cases} h_N &= \left(\frac{\alpha}{w}\right)^{\frac{1}{1 - \alpha}} p_N^{\frac{1}{1 - \alpha}} \\ h_T &= \left(\frac{2\alpha}{w}\right)^{\frac{1}{1 - \alpha}} \end{cases}$$

Firmas

$$y_N = h_N^{lpha}$$
  
 $y_T = z h_T^{lpha}$ 

· Demandas de trabajo

$$\begin{cases} \max_{h_N} p_N h_N^{\alpha} - w h_N \\ \max_{h_T} z h_T^{\alpha} - w h_T \end{cases} \longrightarrow \begin{cases} \alpha p_N h_N^{\alpha - 1} &= w \\ \alpha z h_T^{\alpha - 1} &= w \end{cases} \longrightarrow \begin{cases} h_N &= \left(\frac{\alpha}{w}\right)^{\frac{1}{1 - \alpha}} p_N^{\frac{1}{1 - \alpha}} \\ h_T &= \left(\frac{z\alpha}{w}\right)^{\frac{1}{1 - \alpha}} \end{cases}$$

7

Firmas

$$y_N = h_N^{lpha}$$
  
 $y_T = z h_T^{lpha}$ 

· Demandas de trabajo

$$\begin{cases} \max_{\mathsf{h}_N} p_N \mathsf{h}_N^\alpha - \mathsf{w} \mathsf{h}_N \\ \max_{\mathsf{h}_T} \mathsf{z} \mathsf{h}_T^\alpha - \mathsf{w} \mathsf{h}_T \end{cases} \longrightarrow \begin{cases} \alpha p_N \mathsf{h}_N^{\alpha - 1} &= \mathsf{w} \\ \alpha \mathsf{z} \mathsf{h}_T^{\alpha - 1} &= \mathsf{w} \end{cases} \longrightarrow \begin{cases} \mathsf{h}_N &= \left(\frac{\alpha}{\mathsf{w}} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1 + \alpha \eta}} \mathsf{c}_T^{1 + \eta} \\ \mathsf{h}_T &= \left(\frac{\mathsf{z}\alpha}{\mathsf{w}}\right)^{\frac{1}{1 - \alpha}} \end{cases}$$

· Firmas

$$y_N = h_N^{\alpha}$$
  
 $y_T = z h_T^{\alpha}$ 

· Demandas de trabajo

$$h \leq \left(rac{\mathsf{z}lpha}{ar{w}}
ight)^{rac{1}{1-lpha}} + \left(rac{lpha}{ar{w}}rac{arpi_N}{arpi_{\mathsf{T}}}
ight)^{rac{1}{1+lpha\eta}} c_{\mathsf{T}}^{1+\eta} = \left(rac{\mathsf{z}lpha}{ar{w}}
ight)^{rac{1}{1-lpha}} + \mathcal{H}(ar{w},c_{\mathsf{T}})$$

· Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)
ight]$$
sujeto a  $p_t^{\mathsf{C}} c_t + rac{a_{t+1}}{1+r} = p_t^{\mathsf{C}} \mathsf{y}_t + a_t$ 

- ... donde  $p_C$  es el índice de precios de la CES tal que  $p_C c = p_N c_N + p_T c_T$
- Estado de la economía: productividad  $z_t$ , riqueza del agente representativo A
  - Nivel de producto  $y_t = y(A_t, z_t)$ , precios  $p_t^c = p_c(A_t, z_t)$
  - Ahorro del agente representativo?

· Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \mathsf{u}(c_t)
ight]$$
sujeto a  $p_t^{\mathsf{C}} c_t + rac{a_{t+1}}{1+r} = p_t^{\mathsf{C}} \mathsf{y}_t + a_t$ 

- ... donde  $p_C$  es el índice de precios de la CES tal que  $p_C c = p_N c_N + p_T c_T$
- $\cdot$  Estado de la economía: productividad  $z_t$ , riqueza del agente representativo  $A_t$ 
  - Nivel de producto  $y_t = y(A_t, z_t)$ , precios  $p_t^C = p_C(A_t, z_t)$ Ahorro del agente representativo??

· Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} eta^t \mathsf{u}(c_t)
ight]$$
sujeto a  $p_t^\mathsf{C} c_t + rac{a_{t+1}}{1+r} = p_t^\mathsf{C} \mathsf{y}_t + a_t$ 

- ... donde  $p_C$  es el índice de precios de la CES tal que  $p_C c = p_N c_N + p_T c_T$
- · Estado de la economía: productividad  $z_t$ , riqueza del agente representativo  $A_t$ 
  - · Nivel de producto  $y_t = y(A_t, z_t)$ , precios  $p_t^C = p_C(A_t, z_t)$ Ahorro del agente representativo??

8

· Agentes maximizan

$$\max_{c_t, a_t} \mathbb{E}\left[\sum_{t=0}^{\infty} eta^t \mathsf{u}(c_t)
ight]$$
sujeto a  $p_t^\mathsf{C} c_t + rac{a_{t+1}}{1+r} = p_t^\mathsf{C} \mathsf{y}_t + a_t$ 

- ... donde  $p_C$  es el índice de precios de la CES tal que  $p_C c = p_N c_N + p_T c_T$
- $\cdot$  Estado de la economía: productividad  $z_t$ , riqueza del agente representativo  $A_t$ 
  - Nivel de producto  $y_t = y(A_t, z_t)$ , precios  $p_t^C = p_C(A_t, z_t)$
  - · Ahorro del agente representativo??

Agentes

$$egin{aligned} v(a,A,z) &= \max_{a'} u(c) + eta \mathbb{E}\left[v(a',A',z') \mid z
ight] \ & ext{sujeto a} \ p_C(A,z)c + rac{a'}{1+r} = y(A,z) + a \ A' &= \Phi(A,z) \end{aligned}$$

... Dados  $p_C(A, z)$ ,  $\Phi(A, z)$ , y(A, z)

En equilibrio, 
$$a=A$$
,  $p_N(A,z)=rac{arpi_N}{arpi_T}\left(rac{c_T}{c_N}
ight)^{1+\eta}$ ,  $y(A,z)=p_N(A,z)y_N+y_T$ 

$$\wp_{\mathcal{C}}(A,z) = \left[ \varpi_N^{rac{1}{1+\eta}} p_N^{rac{\eta}{1+\eta}} + \varpi_T^{rac{1}{1+\eta}} p_T^{rac{\eta}{1+\eta}} 
ight]^{rac{1+\eta}{\eta}}$$

Agentes

$$v(a,A,z) = \max_{a'} u(c) + \beta \mathbb{E} \left[ v(a',A',z') \mid z \right]$$
  
sujeto a  $p_C(A,z)c + \frac{a'}{1+r} = y(A,z) + a$   
 $A' = \Phi(A,z)$ 

... Dados 
$$p_C(A, z)$$
,  $\Phi(A, z)$ ,  $y(A, z)$ 

En equilibrio, 
$$a=A$$
,  $p_N(A,z)=rac{\varpi_N}{\varpi_T}\left(rac{c_T}{c_N}
ight)^{1+\eta}$ ,  $y(A,z)=p_N(A,z)y_N+y_T$ ,

$$p_{\mathsf{C}}(\mathsf{A},\mathsf{z}) = \left[ \varpi_N^{\frac{1}{1+\eta}} p_N^{\frac{\eta}{1+\eta}} + \varpi_T^{\frac{1}{1+\eta}} p_T^{\frac{\eta}{1+\eta}} \right]^{\frac{1+\eta}{\eta}}$$

#### Agentes

$$v(a,A,z) = \max_{a'} u(c) + \beta \mathbb{E} \left[ v(a',A',z') \mid z \right]$$
  
sujeto a  $p_C(A,z)c + \frac{a'}{1+r} = y(A,z) + a$   
 $A' = \Phi(A,z)$ 

... Dados 
$$p_C(A, z)$$
,  $\Phi(A, z)$ ,  $y(A, z)$ 

En equilibrio, 
$$a=A$$
,  $p_N(A,z)=rac{arpi_N}{arpi_T}\left(rac{c_T}{c_N}
ight)^{1+\eta}$ ,  $y(A,z)=p_N(A,z)y_N+y_T$ ,

$$p_{\mathsf{C}}(\mathsf{A},\mathsf{z}) = \left[ arpi_{\mathsf{N}}^{\frac{1}{1+\eta}} p_{\mathsf{N}}^{\frac{\eta}{1+\eta}} + arpi_{\mathsf{T}}^{\frac{1}{1+\eta}} p_{\mathsf{T}}^{\frac{\eta}{1+\eta}} 
ight]^{\frac{1+\eta}{\eta}}$$

Agentes

$$v(a,A,z) = \max_{a'} u(c) + \beta \mathbb{E} \left[ v(a',A',z') \mid z \right]$$
  
sujeto a  $p_C(A,z)c + \frac{a'}{1+r} = y(A,z) + a$   
 $A' = \Phi(A,z)$ 

... Dados 
$$p_C(A, z)$$
,  $\Phi(A, z)$ ,  $y(A, z)$ 

En equilibrio, 
$$a=A$$
,  $p_N(A,z)=rac{arpi_N}{arpi_T}\left(rac{c_T}{c_N}
ight)^{1+\eta}$ ,  $y(A,z)=p_N(A,z)y_N+y_T$ ,

$$p_{C}(A,z) = \left[\varpi_{N}^{\frac{1}{1+\eta}}p_{N}^{\frac{\eta}{1+\eta}} + \varpi_{T}^{\frac{1}{1+\eta}}p_{T}^{\frac{\eta}{1+\eta}}\right]^{\frac{1+\eta}{\eta}}$$

Agentes

$$v(a,A,z) = \max_{a'} u(c) + \beta \mathbb{E} \left[ v(a',A',z') \mid z \right]$$
  
sujeto a  $p_C(A,z)c + \frac{a'}{1+r} = y(A,z) + a$   
 $A' = \Phi(A,z)$ 

... Dados 
$$p_C(A, z)$$
,  $\Phi(A, z)$ ,  $y(A, z)$ 

• En equilibrio, 
$$a=A$$
,  $p_N(A,z)=rac{\varpi_N}{\varpi_T}\left(rac{c_T}{c_N}
ight)^{1+\eta}$ ,  $y(A,z)=p_N(A,z)y_N+y_T$ ,

$$p_{C}(A,z) = \left[\varpi_{N}^{\frac{1}{1+\eta}}p_{N}^{\frac{\eta}{1+\eta}} + \varpi_{T}^{\frac{1}{1+\eta}}p_{T}^{\frac{\eta}{1+\eta}}\right]^{\frac{1+\eta}{\eta}}$$

## Equilibrio - Agregados

- El problema del agente nos da v(a,A,z), c(a,A,z), a'(a,A,z)
- A partir de ahí, reconstruir
  - Ahorros de la economía

$$\Phi(A,z) = a'(A,A,z)$$

2. Consumo total de transables

$$arphi_{\mathsf{T}}(\mathsf{A},\mathsf{z}) = arpi_{\mathsf{T}} \left( rac{1}{p_{\mathsf{C}}(\mathsf{A},\mathsf{z})} 
ight)^{-\eta} c(\mathsf{A},\mathsf{A},\mathsf{z})$$

3. Demanda de trabajo  $H(\mathsf{A},z)$  y por lo tanto el producto  $h_N^lpha p_N + z h_T^lpha$ 

$$egin{cases} h_N &=\left(rac{lpha}{\mathbb{W}}rac{arpi_N}{\mathbb{W} au_T}
ight)^{rac{1}{1+lpha\eta}}c_T^{1+\eta} & \ h_T &=\left(rac{2lpha}{\mathbb{W}}
ight)^{rac{1}{1-lpha\eta}}c_T^{1+\eta} & \ h_N+h_T &=1,w$$

## Equilibrio - Agregados

- El problema del agente nos da v(a,A,z), c(a,A,z), a'(a,A,z)
- · A partir de ahí, reconstruir
  - 1. Ahorros de la economía

$$\Phi(A,z)=a'(A,A,z)$$

2. Consumo total de transables

$$c_{\mathsf{T}}(\mathsf{A},\mathsf{z}) = \varpi_{\mathsf{T}} \left( \frac{1}{p_{\mathsf{C}}(\mathsf{A},\mathsf{z})} \right)^{-\eta} c(\mathsf{A},\mathsf{A},\mathsf{z})$$

3. Demanda de trabajo H(A,z) y por lo tanto el producto  $h_N^{\alpha}p_N + zh_T^{\alpha}$ 

$$\begin{cases} h_N &= \left(\frac{\alpha}{W} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1+\alpha\eta}} c_T^{1+\eta} \\ h_T &= \left(\frac{z\alpha}{W}\right)^{\frac{1}{1-\alpha}} \end{cases} \quad o \quad \begin{cases} h_N &= \left(\frac{\alpha}{W} \frac{\varpi_N}{\varpi_T}\right)^{\frac{1}{1+\alpha\eta}} c_T^{1+\eta} \\ h_T &= \left(\frac{z\alpha}{W}\right)^{\frac{1}{1-\alpha}} \\ h_N + h_T &= 1, w < \bar{w} \end{cases}$$

### Estrategia de solución

#### Algoritmo

- 1. Inicializar v(a, A, z) y los agregados  $p_C(A, z)$ , y(A, z),  $\Phi(A, z)$
- 2. Iterar la ecuación de Bellman del agente
- 3. Actualizar v(a, A, z) y los controles óptimos c(a, A, z) a'(a, A, z)
- 4. Actualizar  $\Phi(A, z)$
- 5. Encontrar nuevos precios, salarios, demandas de trabajo en cada (A, z)
- 6. Actualizar  $p_C(A, z), y(A, z)$
- 7. Medir el cambio en  $v, p_C, y, \Phi$
- 8. Si la diferencia es mayor que  $\epsilon$ , volver a 2
- 9. Fin

#### Definición

Un equilibrio es un conjunto de funciones de valor y controles  $v(\cdot)$ ,  $c(\cdot)$ ,  $a'(\cdot)$ , agregados  $p_N(\cdot)$ ,  $p_C(\cdot)$ 

- Dados los agregados y las leyes de movimiento, las funciones de valor y controles satisfacen la ecuación de Bellman del agente
- Los agregados y leyes de movimiento son consistentes con las funciones de control del agente

Planificador vs. Equilibrio

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- Puede el planificador mejorar la asignación?
  - Puede mejorar la asignación respetando las restricciones reales de la economía?
  - ... o sea respetando la restricción de salarios

$$egin{aligned} \mathsf{v}(\mathsf{A}, \mathsf{z}) &= \max_{c_T, h_N, h_T} \mathsf{u}(\mathsf{F}(\mathsf{h}_N), c_\mathsf{T}) + eta \mathbb{E}\left[\mathsf{v}(\mathsf{A}', \mathsf{z}') \mid \mathsf{z}
ight. \end{aligned}$$
 sujeto a  $c_\mathsf{T} + rac{\mathsf{A}'}{1+r} = \mathsf{y}_\mathsf{T}(\mathsf{h}_\mathsf{T}) + \mathsf{A}$   $h_N + h_T \leq \mathcal{H}(ar{w}, c_\mathsf{T})$ 

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
  - · Puede mejorar la asignación respetando las restricciones reales de la economía?
  - ... o sea respetando la restricción de salarios

$$egin{aligned} v(A,z) &= \max_{c_T,h_N,h_T} u(F(h_N),c_T) + eta \mathbb{E}\left[v(A',z') \mid z
ight] \ & ext{sujeto a } c_T + rac{A'}{1+r} = y_T(h_T) + A \ & ext{} h_N + h_T \leq \mathcal{H}(ar{w},c_T) \end{aligned}$$

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- Puede el planificador mejorar la asignación?
  - Puede mejorar la asignación respetando las restricciones reales de la economía?
  - ... o sea respetando la restricción de salarios

$$\begin{split} v(A,z) &= \max_{c_T,h_N,h_T} u(F(h_N),c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= y_T(h_T) + A \\ h_N + h_T &\leq \mathcal{H}(\bar{w},c_T) \end{split}$$

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
  - Puede mejorar la asignación respetando las restricciones reales de la economía?
  - ... o sea respetando la restricción de salarios

$$\begin{split} v(A,z) &= \max_{c_T,h_N,h_T} u(h_N^\alpha,c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= z h_T^\alpha + A \\ h_N + h_T &\leq \mathcal{H}(\bar{w},c_T) \end{split}$$

- · Imaginemos un planificador que le dice a cada quién qué hacer con su vida
- · Puede el planificador mejorar la asignación?
  - Puede mejorar la asignación respetando las restricciones reales de la economía?
  - ... o sea respetando la restricción de salarios

$$\begin{aligned} v(A,z) &= \max_{c_T,h_N,h_T} u(h_N^\alpha,c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= zh_T^\alpha + A \\ h_N + h_T &\leq \mathcal{H}(\bar{w},c_T) \end{aligned}$$

Sobre la interpretación de la cuenta corriente

#### Un twist

· El proceso de  $z_t$  es

$$\log z_t = \rho \log z_{t-1} + \epsilon_t$$

· Supongamos ahora que

$$z_t = \xi_{t-1}$$

$$\log \xi_t = \rho \log z_t + \epsilon_t$$

- ... con lo que la productividad de mañana ya es sabida hoy
- Qué cambia?

### Un twist

· El proceso de  $z_t$  es

$$\log z_t = \rho \log z_{t-1} + \epsilon_t$$

· Supongamos ahora que

$$z_t = \xi_{t-1}$$

$$\log \xi_t = \rho \log z_t + \epsilon_t$$

... con lo que la productividad de mañana ya es sabida hoy

Qué cambia:

### Un twist

· El proceso de  $z_t$  es

$$\log z_t = \rho \log z_{t-1} + \epsilon_t$$

· Supongamos ahora que

$$\mathbf{z}_t = \xi_{t-1}$$
$$\log \xi_t = \rho \log \mathbf{z}_t + \epsilon_t$$

... con lo que la productividad de mañana ya es sabida hoy

· Qué cambia?

### SOE con shocks de noticias

Agentes

$$v(a,A,z,\xi) = \max_{a'} u(c) + \beta \mathbb{E} \left[ v(a',A',\xi,\xi') \right]$$
  
sujeto a  $p_C(A,z,\xi)c + \frac{a'}{1+r} = y(A,z,\xi) + a$   
 $A' = \Phi(A,z,\xi)$ 

· Agregados: todo igual que antes (pero dependiendo de  $\xi$  además de z)

Estrategia: idéntica con una variable de estado más

## SOE con shocks de noticias

Agentes

$$egin{aligned} \mathbf{v}(a,\mathsf{A},\mathsf{z},\xi) &= \max_{a'} u(c) + eta \mathbb{E}\left[\mathbf{v}(a',\mathsf{A}',\xi,\xi')
ight] \ & ext{sujeto a } p_{\mathcal{C}}(\mathsf{A},\mathsf{z},\xi)c + rac{a'}{1+r} = \mathbf{y}(\mathsf{A},\mathsf{z},\xi) + a \ & ext{A}' &= \Phi(\mathsf{A},\mathsf{z},\xi) \end{aligned}$$

- · Agregados: todo igual que antes (pero dependiendo de  $\xi$  además de z)
- · Estrategia: idéntica con una variable de estado más