Lecture 4: Data-Flow Analysis & Abstract Interpretation Framework

17-355/17-655/17-819: Program Analysis
Rohan Padhye
September 9, 2025

* Course materials developed with Jonathan Aldrich Claire Le Goues

Review: Zero Analysis with Branching

1: if x = 0 goto 4

2: y := 0

3: goto 6

4: y := 1

5: x := 1

6: z := y

	x	y	\mathbf{Z}
P1	?	?	?
P2	Z_T, N_F	?	?
P3	N	\boldsymbol{Z}	?
P4	N	\mathbf{Z}	?
P5	Z	?	?
P6	Z	N	?
P7	N	Т	?
P8	N	Т	Т
	ı		

Partial Order & Join on set L

 $l_1 \sqsubseteq l_2$: l_1 is at least as precise as l_2

reflexive: $\forall l: l \sqsubseteq l$

transitive: $\forall l_1, l_2, l_3 : l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_3 \Rightarrow l_1 \sqsubseteq l_3$

anti-symmetric: $\forall l_1, l_2 : l_1 \sqsubseteq l_2 \land l_2 \sqsubseteq l_1 \Rightarrow l_1 = l_2$

 $l_1 \sqcup l_2$: **join** or *least-upper-bound*... "most precise generalization"

L is a join-semilattice iff: $l_1 \sqcup l_2$ always exists and is unique $\forall l_1, l_2 \in L$

T ("top") is the maximal element

Lattice for Zero Analysis

What would this look like?

Data-Flow Analysis

- a lattice (L, \sqsubseteq)
- an abstraction function α
- a flow function *f*
- initial dataflow analysis assumptions, σ_0

Example of Zero Analysis: Looping

Code

$$1: x := 10$$

$$2: y := 0$$

$$3: \text{ if } x=0 \text{ goto } 7$$

$$4: y := 1$$

$$5: x := x - 1$$

6: goto 3

$$7: x := y$$

Example of Zero Analysis: Looping

Code

$$1: x := 10$$

$$2: y := 0$$

$$3: \text{ if } x=0 \text{ goto } 7$$

$$4: y := 1$$

$$5: x := x - 1$$

6: goto 3

$$7: x := y$$

	x	У	
P0	Т	Ť	
P1	N	Т	
P2	N	Z	
P3	N	Z	first time through
P4	N_F	Z	
P5	N	N	
P6	Т	N	
P7	Т	N	
P8	Z_t	N	first time through
P9	N	N	first time through

Example of Zero Analysis: Looping

Code

$$1: x := 10$$

$$2: y := 0$$

$$3: \text{ if } x=0 \text{ goto } 7$$

$$4: y := 1$$

$$5: x := x - 1$$

6: goto 3

$$7: x := y$$

	ı		
	X	y	
P0	T	T	
P1	N	T	
P2	N	Z	
P3	Т	Т	join
P4	N_F	Т	updated
P5	N	N	already at fixed point
P6	Т	N	already at fixed point
P7	Т	N	already at fixed point
P8	Z_T	T	updated
P9	Т	Т	updated

Fixed point of Flow Functions

1: x := 10

2: y := 0

3: if x=0 goto 7

4: y := 1

5: x := x - 1

6: goto 3

7: x := y

$$(\sigma_{0}, \sigma_{1}, \sigma_{2}, ..., \sigma_{n}) \xrightarrow{f_{Z}} (\sigma'_{0}, \sigma'_{1}, \sigma'_{2}, ..., \sigma'_{n})$$

$$\sigma'_{0} = \sigma_{0}$$

$$\sigma'_{1} = f_{Z} \llbracket x \coloneqq 10 \rrbracket (\sigma_{0})$$

$$\sigma'_{2} = f_{Z} \llbracket y \coloneqq 0 \rrbracket (\sigma_{1})$$

$$\sigma'_{3} = \sigma_{2} \sqcup \sigma_{7}$$

$$\sigma'_{4} = f_{Z} \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_{F} (\sigma_{3})$$

$$\vdots$$

$$\sigma'_{8} = f_{Z} \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_{T} (\sigma_{3})$$

$$\sigma'_{9} = f_{Z} \llbracket x \coloneqq y \rrbracket (\sigma_{8})$$

Fixed point of Flow Functions

Fixed point!

$$(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n) = f_z(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n)$$

Correctness theorem:

If data-flow analysis is well designed*, then any fixed point of the analysis is sound.

* we will define these properties and prove this theorem in two weeks!

$$(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n) \xrightarrow{f_z} (\sigma'_0, \sigma'_1, \sigma'_2, \dots, \sigma'_n)$$

$$\sigma'_{0} = \sigma_{0}$$

$$\sigma'_{1} = f_{z}[x := 10](\sigma_{0})$$

$$\sigma'_{2} = f_{z}[y := 0](\sigma_{1})$$

$$\sigma'_{3} = \sigma_{2} \sqcup \sigma_{7}$$

$$\sigma'_{4} = f_{z}[if x = 10 \text{ goto } 7]_{F}(\sigma_{3})$$

$$\vdots$$

$$\sigma'_{8} = f_{z}[if x = 10 \text{ goto } 7]_{T}(\sigma_{3})$$

$$\sigma'_{9} = f_{z}[x := y](\sigma_{8})$$

$$(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_n) \xrightarrow{f_z} (\sigma'_0, \sigma'_1, \sigma'_2, \dots, \sigma'_n)$$

Hold up! How do you

$$\sigma'_{0} = \sigma_{0}$$

$$\sigma'_{1} = f_{z} \llbracket x \coloneqq 10 \rrbracket (\sigma_{0})$$

$$\sigma'_{2} = f_{z} \llbracket y \coloneqq 0 \rrbracket (\sigma_{1})$$

$$\sigma'_{3} = \sigma_{2} \sqcup \sigma_{7}$$

$$\sigma'_{4} = f_{z} \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_{F} (\sigma_{3})$$

$$\vdots$$

$$\sigma'_{8} = f_{z} \llbracket \text{if } x = 10 \text{ goto } 7 \rrbracket_{T} (\sigma_{3})$$

$$\sigma'_{9} = f_{z} \llbracket x \coloneqq y \rrbracket (\sigma_{8})$$

	ı		
	X	y	
P0	Τ	Т	
P1	N	Τ	
P2	N	Z	
P3	N	\mathbf{Z}	first time through
P4			
P5			$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6			
P7	What	should	be the initial value for σ_7 ????
P8			
P9			_
'	l		-

Enter: ⊥ ("bottom")

What would the **complete lattice** for Zero Analysis look like?

for all $l \in L$:

$$\bot \sqsubseteq l$$
 $l \sqsubseteq \top$

$$\bot \sqcup l = l$$
 $l \sqcup \top = \top$

A lattice with both \bot and \top defined is called a *Complete Lattice*

$$\sigma: Var \rightarrow L$$
 where $L = \{Z, N, \bot, \top\}$ and $Var = \{x, y\}$

$$\sigma_1 \sqcup \sigma_2 = \{ x \mapsto \sigma_1(x) \sqcup \sigma_2(x), \quad y \mapsto \sigma_1(y) \sqcup \sigma_2(y) \}$$

Exercise: Define lifted \sqsubseteq in terms of ordering on L

$$\sigma_1 \sqsubseteq \sigma_2 = ???$$

Lifting a complete lattice gives another complete lattice

	X	У
P0	Т	Ť
P1	\perp	Τ
P2	丄	Τ
Р3	\perp	Τ
P4	丄	Τ
P5	Τ	Τ
P6	丄	Τ
P7	\perp	Τ
P8	\perp	Τ
P9	\perp	Τ

	x	y	
P0	T	T	
P1	N	Τ	
P2	N	7	
P3	N	Z	first time through
P4	1		,
P5	Т Т	工	$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6	Т .	Τ	
P7		\perp	
P8		\perp	
P9		Τ	_

	ı		
	x	y	
P0	T	T	
P1	N	Т	
P2	N	7	
P3	N	Z	first time through
P4	N_F	Z	
P5	N	N	$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6	T	N	
P7	T	N	
P8	Z_t	N	first time through
P9	N	N	first time through

	ı		
	X	y	
P0	T	T	
P1	N	T	
P2	N	7	
P3	Т	Т	join
P4	N_F	Z	
P5	N	N	$\sigma'_3 = \sigma_2 \sqcup \sigma_7$
P6	Т	N	
P7	Т	N	
P8	Z_t	N	first time through
P9	N	N	first time through

	x	y	
P0	T	T	
P1	N	T	
P2	N	Z	
P3	Т	Т	join
P4	N_F	Т	updated
P5	N	N	already at fixed point
P6	Т	N	already at fixed point
P7	Т	N	already at fixed point
P8	Z_T	Т	updated
P9	Т	Т	updated

What's the Algorithm?

Analysis Execution Strategy

```
for Node n in cfg
    input[n] = \bot
input[0] = initialDataflowInformation
while not at fixed point
    pick a node n in program
    output = flow(n, input[n])
    for Node j in sucessors(n)
        input[j] = input[j] \( \to \) output
```


Kildall's Algorithm

```
worklist = \emptyset
for Node n in cfg
    input[n] = output[n] = \bot
    add n to worklist
input[0] = initialDataflowInformation
while worklist is not empty
    take a Node n off the worklist
    output[n] = flow(n, input[n])
    for Node j in succs(n)
          newInput = input[j] ⊔ output[n]
          if newInput ≠ input[j]
                 input[j] = newInput
                 add j to worklist
```

What order to process worklist nodes in?

- Random? Queue? Stack?
- Any order is valid (!!)
- Some orders are better in practice
 - Topological sorts are nice
 - Explore loops inside out
 - Reverse postorder!

Exercise: Apply Kildall's Worklist Algorithm for Zero Analysis

Performance of Kildall's Algorithm

- Why is it guaranteed to terminate?
- What is its complexity?