Mid-semester Examination

Course: Topology (KSM1C03)

Instructor: Aritra Bhowmick

11th October, 2025

Time: 2:00 PM onwards

Total marks: 90

Attempt any question. You can get maximum 70 marks.

Q1. (Furstenberg) Consider the integers \mathbb{Z} . For $a,b\in\mathbb{Z}$ with $a\neq 0$, denote the set

$$P(a,b) := a\mathbb{Z} + b = \{an + b \mid n \in \mathbb{Z}\} = \{b, b \pm a, b \pm 2a, \dots\} \subset \mathbb{Z}.$$

- a) Show that $\mathcal{B} := \{ P(a,b) \mid a,b \in \mathbb{Z}, \ a \neq 0 \}$ is a basis for a topology, say, \mathcal{T} on \mathbb{Z} .
- b) Prove that any basic open set $P(a,b) \in \mathcal{B}$ is also closed in (\mathbb{Z},\mathcal{T}) .
- c) Justify that one can write $\mathbb{Z} \setminus \{1, -1\} = \bigcup_{p \text{ is a prime}} P(p, 0)$.
- d) Conclude that there are infinitely many prime numbers.

[3+3+2+2=10]

- Q2. Suppose X is an infinite set, equipped with the cofinite topology. Prove the following.
 - a) X is compact.
 - b) If $\{x_n\}$ is a sequence in X such that no point is repeated infinitely many times, then x_n converges to every point of X.
 - c) If $\{x_n\}$ is a sequence in X such that exactly one point, say y, is repeated infinitely many times, then x_n converges to only y, and no other point of X.

Now, suppose $\{x_n\}$ is some arbitrary sequence in X which converges to some x. Show that the sequence must be either of type b) or of type c). [2+3+3+2=10]

- Q3. Let X be a space.
 - a) Given a locally finite collection $\{F_{\alpha}\}_{\alpha\in I}$ of subsets of X, show that $\overline{\bigcup_{\alpha\in I}F_{\alpha}}=\bigcup_{\alpha\in I}\overline{F_{\alpha}}$.
 - b) Suppose $\mathcal{C}=\{C_{\alpha}\}_{\alpha\in I}$ is a locally finite collection of closed subsets of X, so that $X=\bigcup_{\alpha\in I}C_{\alpha}$. For some space Y, let $f_{\alpha}:C_{\alpha}\to Y$ be a collection of continuous functions such that $f_{\alpha}(x)=f_{\beta}(x)$ for any $x\in C_{\alpha}\cap C_{\beta}$. Then prove that there exists a unique continuous function $h:X\to Y$ such that $h(x)=f_{\alpha}(x)$ whenever $x\in C_{\alpha}$.
 - c) Give an example of an infinite collection of closed sets, where the above pasting argument fails. [4+4+2=10]
- Q4. Let X be a compact, T_2 space. Consider the identification space $Z \coloneqq \frac{X \times [0,1]}{X \times \{0,1\}}$, and the one-point compactification \hat{Y} of $Y \coloneqq X \times (0,1)$. Prove the following. [2 + (2+1) + 5 = 10]
 - a) Z is compact.
 - b) Y is locally compact, T_2 .
 - c) Z is homeomorphic to \hat{Y} .
- Q5. Prove (or disprove) the following.

 $[2\frac{1}{2} \times 4 = 10]$

- a) For any subspace $A \subset X$, we have $X \setminus \overline{X \setminus A} = \operatorname{int}(A)$.
- b) For any subspace $A \subset X$, we have $\operatorname{int}(A) = \operatorname{int}\left(\overline{\operatorname{int}(A)}\right)$.
- c) For any subspace $A \subset X$, we have $\overline{\operatorname{int}(A)} = \operatorname{int}\left(\overline{\operatorname{int}(A)}\right)$.
- d) A compact space is first countable at least at one point.
- Q6. Show that a function $f: X \to Y$ is continuous if and only if for any subset $A \subset X$, we have $f(\bar{A}) \subset \overline{f(A)}$. [5]
- Q7. Suppose X is a topological space. Show that the topology on X is indiscrete if and only if given any space Y, any function $f: Y \to X$ is continuous. [5]
- Q8. Show that the product of a Lindelöf space X and a compact space Y is again Lindelöf. [5]
- Q9. Let X be a second countable space. Show that there exists a countable subset $A \subset X$, such that $X = \overline{A}$. [5]

Q10. Let X,Y be given spaces. For any $K\subset X$, and $U\subset Y$, consider the collection of continuous maps

$$W(K,U) := \{ f : X \to Y \mid f \text{ is continuous, } f(K) \subset U \}.$$

Next, consider the collection

$$S := \{W(K, U) \mid K \subset X \text{ is compact, } U \subset Y \text{ is open}\}.$$

The topology on

$$Y^X := \mathsf{Map}(X,Y) = \{f : X \to Y \mid f \text{ is continuous}\}\$$

generated by ${\cal S}$ as a sub-basis, is called the *compact-open* topology.

a) Suppose X is locally compact. Show that the evaluation map

$$ev: Y^X \times X \longrightarrow Y$$

 $(f, x) \longmapsto f(x)$

is continuous, where Y^X has the compact-open topology.

b) For any map $f: X \times Y \to Z$, define the adjoint map as

$$f^{\wedge}: X \longrightarrow Z^{Y}$$

 $x \longmapsto (y \mapsto f(x, y)).$

Assume Z^Y has the compact-open topology.

- i) Show that if f is continuous, then f^{\wedge} is continuous. (Hint: Use the tube lemma!)
- ii) Suppose Y is locally compact. Show that if f^{\wedge} is continuous then f is continuous. (Hint: Write f in terms of f^{\wedge} and a suitable evaluation map.)
- c) (J.H.C. Whitehead) Suppose $q:X \to Y$ is a quotient map, and Z is locally compact. Show that the product

$$p \coloneqq q \times \operatorname{Id}_Z : X \times Z \longrightarrow Y \times Z$$
$$(x, z) \longmapsto (q(x), z)$$

is a quotient map. (Hint : Use the universal property. Take a set map $f: Y \times Z \to W$ with $f \circ p$ continuous, and use the adjoint operation suitably.)

d) Let $f: X \to Y$ and $g: A \to B$ be quotient maps, and Y, A be locally compact. Show that the product

$$q := f \times g : X \times A \longrightarrow Y \times B$$

 $(x, a) \longmapsto (f(x), q(a))$

is a quotient map.

$$[4 + (6 + 3) + 5 + 2 = 20]$$

Definitions/Hints

- A collection $\mathcal{B} \subset \mathcal{P}(X)$ is a basis for a topology on X, if i) for any $x \in X$, there is some $B \in \mathcal{B}$, with $x \in B$, and ii) for any $B_1, B_2 \in \mathcal{B}$ and any $x \in B_1 \cap B_2$, there exists some $B_3 \in \mathcal{B}$ with $x \in B_3 \subset B_1 \cap B_2$.
- In the cofinite topology on a set X, a nonempty subset $U \subset X$ is open if and only if $X \setminus U$ is a finite set.
- The interior int(A) is the largest open set contained in A, and the closure \bar{A} is the smallest closed set containing A.
- A collection $\mathcal{A} = \{A_{\alpha} \subset X\}$ of subsets is called locally finite, if for any $x \in X$, there exists an open neighborhood $x \in U \subset X$, such that U intersects at most finitely many (possibly none) of A_{α} .
- X is locally compact if for any open set U and any $x \in U$, there exists a compact set C with $x \in \operatorname{int}(C) \subset C \subset U$.
- A noncompact space X is locally compact, T_2 if and only if the one-point compactification \hat{X} is T_2 .
- A space is second countable if it admits a countable basis.
- A space X is first countable at a point $x \in X$ if there exists a countable collection of open neighborhoods $\{U_i\}$ of x, such that for any open neighborhood $x \in V$, there is some i_0 satisfying $x \in U_{i_0} \subset V$.
- A space X is called Lindelöf if given any open cover of X, there is a countable sub-cover.
- Given a subspace $A \subset X$, the identification space X/A is the quotient space induced by the equivalence relation: $x \sim y$ if and only if either (i) $x,y \notin A$ and x=y, or (ii) $x,y \in A$.
- Tube lemma : Let $x \in X$ and $C \subset Y$ be compact. If $\{x\} \times C \subset O \subset X \times Y$, where O is open, then there exists an open neighborhood $x \in U \subset X$ such that $\{x\} \times C \subset U \times C \subset O \subset X \times Y$.
- Universal property of the quotient map : A map $q: X \to Y$ is a quotient map if and only if for any function $f: Y \to W$, the map f is continuous precisely when $f \circ q$ is continuous.