W1. Objectives, Challenges, State of the Art, Technologies

- Socio-economic context
- Technological evolution of Robotics & State of the Art
- New challenges for Robotics in Human Environments
- Decisional & Control Architecture for Autonomous Mobile Robots & IV
- Sensing technologies: Object Detection
- Sensing technologies: Robot Control & HRI
- Basic technologies for Navigation in Dynamic Human Environments
- Intelligent Vehicles: Context & State of the Art
- Intelligent Vehicles: Technical Challenges & Driving Skills

Problem formulation

The objective is to achieve

Goal oriented navigation in Open, Dynamic, and Uncertain environments populated by Human beings

- → Traditional Motion Planning approaches cannot be directly applied
- → New Models & Algorithms have to be designed

Problem formulation

Sub-problems & Solutions

- Static environment is unknown & partially observable
 - → Construct a Digital Map : SLAM + Hidden zones model + Uncertainty
- Moving obstacles are not known ... but they follow typical patterns
 - → Learning typical patterns through observations (sensors)
- Moving obstacles behaviors cannot be directly observed
 - → Detection & Tracking of Mobile Objects + Motion Prediction
- Navigation Decisions in Dynamic & Uncertain environment
 - → Iterative planning decisions + Time Horizon + Search guided by "Collision Risk"
- Human Aware Navigation
 - → Concept of Social Filter

Paradigm 1: Partial Motion Planning (PMP)

Repeat until the goal is reached:

- 1. Get model of the future (Observation & Prediction)
- 2. Built tree of partial motions towards the goal
- 3. When time δ_c is over, Return "Best partial motion" (e.g. closest & safest)
- δ_c value depends on the dynamicity of the environment
- Predictions are performed in a given "time horizon" H
- Various search algorithms can be used (e.g. RRT)

Paradigm 2: Inevitable Collision States (ICS)

- Avoiding instantaneous collision is not enough!
 - → We also have to avoid states leading to "Inevitable Collisions" in the near future (ICS)
- Doing nothing may also be dangerous!

ICS-Check [Martinez 08], ICS-Avoid [Martinez 09], Prob-ICS [Bautin 09]

Paradigm 2: Inevitable Collision States (ICS)

Paradigm 3: Risk-Based Navigation (Risk-RRT)

• Function 1: Observation & Learning (Environment structure + Motion patterns)

Inria entrance hall (ceiling camera view)

Map + Learned motion patterns (represented by HMM)

=> Learning process described in Week 5

Paradigm 3: Risk-Based Navigation (Risk-RRT)

• Function 2 : Sense & Predict + Risk based navigation

Local Map + Moving Obstacle

Prediction & Risk Assessment
+
Iterative Motion Planning

Risk-RRT: Outline of the Algorithm

Risk-RRT: Experimental Results

- Robot: green rectangle
- Assigned Robot goal: green dot
- Local search graph: blue curves
- Selected motion: red curve
- Pedestrian: red dots

Paradigm 4: Human Aware Navigation Paradigm

- Problem: Safe & Socially acceptable Robot Motions in Human Environment
 - => No collision
 - => Robot Behavior complies with Social Conventions

Paradigm 4: Human Aware Navigation Paradigm

- Problem: Safe & Socially acceptable Robot Motions in Human Environments
- Approach:
 - ✓ Safety issue: Integrating Perception (off board & on board) + Iterative Motion Planning + mid-term Motion Prediction → e.g. Risk-RRT
 - ✓ Social & Interaction issue: Detecting People Interactions & Executing Socially Acceptable Robot Motions → Social Filter

Social Filter: Basic idea

• Approach: Representing "Personal Space" & "Interaction Space" as motion constraints for the robot (using Mixture of Gaussians)

Social Filter: Impact of interactions on navigation

Illustration: Back to back & Viz a Viz scenarios

Social Filter: Experimental results (simulation)

Social Filter: Experimental validation scenario

INRIA's entrance hall + Autonomous Wheelchair

- Markers to detect human orientation (hats)
- Experiment: Validate Social Filter + Navigation

Social Filter: Experimental validation (video)

INRIA's entrance hall + Autonomous Wheelchair

Social Filter: Experimental validation (video)

INRIA's entrance hall + Autonomous Wheelchair

Social Filter ignored

(Simulation)

Social Filter activated

Pictures & Movies

• p.2: © Inria

• p. 4-18: © Inria – E-Motion team