## МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ



## Дніпровський національний університет залізничного транспорту імені академіка В. Лазаряна

Кафедра «Комп'ютерні інформаційні технології»

## Лабораторна робота №6

## з дисципліни «Алгоритми та структури даних»

на тему: «Графи та пошук у них»

Виконав: студент гр.ПЗ1911 Сафонов Д. Є. Прийняла: Куроп'ятник О. С.

Дніпро, 2021

**Тема.** Графи та пошук у них.

Мета. Ознайомитися з поняттям графа. Отримати практичні навички реалізації різних представлень та обходу графів.

**Завдання.** Написати програму мовою java, що складається з класів:

- вершини, який містить поле назви;
- графа з представленням матрицею суміжності;
- графа з представленням списком суміжності;
- інтерфейсу користувача. Взаємодію з користувачем організувати через текстове меню. Для кожного пункту меню передбачити зворотній зв'язок у вигляді виведення результатів виконання дії та/або текстового повідомлення.

Передбачити такі дії над графом: додавання вершин, ребер (дуг), видалення дуг, обхід в глибину та ширину, з можливістю завдання стартової вершини.

Розробити тестові приклади для перевірки працездатності програми.

Варіанти завдань: <u>парні(6) – орієнтований граф</u>, непарні – неорієнтований.

**Текст програми.** github(main), github(test)

# Опис тестового прикладу.



Pисунок 2:  $bfs(A) \rightarrow A B C D E F$ 



Рисунок 3:  $dfs(A) \rightarrow A B E F C D$ 



Pucyнок 4:  $bfs(C) \rightarrow CAFBDE$ 



 $Pucyнok 5: dfs(C) \rightarrow CABEFD$ 

Таблиця 1: Матриця суміжності

|   | A | В | С | D | Е | F |
|---|---|---|---|---|---|---|
| A |   | 1 | 1 | 1 |   |   |
| В |   |   |   |   | 1 | 1 |
| С | 1 |   |   |   |   | 1 |
| D |   |   |   |   |   |   |
| Е |   |   |   |   |   |   |
| F |   |   |   |   |   |   |

Таблиця 2: Список суміжності

| from | to    |
|------|-------|
| A    | B C D |
| В    | EF    |
| С    | A F   |
| D    |       |
| Е    |       |
| F    |       |

#### Висновки.

Графами можна моделювати відносини між об'єктами. Наприклад зважений ненаправлений граф може представляти відстані між городами(оптимізація шляху), незважений направлений — соціальні зв'язки. Також графами зображують споріднені слова у мовах(наприклад деякі слова можуть мати різні значення в залежності від контексту тож вони будуть мати зв'язки із словами із обох контекстів, також слова які використовуються разом можна буде легше відокремити). Також з допомогою графу можна побудувати каталог із рекомендаціями, де схожі об'єкти будуть мати зв'язки.

Як можна побачити з коду програми, обидва алгоритми абсолютно однакові, різниця тільки у структурі даних яку вони використовують(стек та черга). Представлення списком суміжності виграє по пам'яті, але програє по швидкості у не розріджених графах. Також можна використовувати розріджену матрицю Кнута.