4.1.16 Let botbix+...+bxxt ERa] be the inverse of 1/2+ ax.

(b.+b(x+...+bkx)(1+0a) = b.+ (b,+ab,)x+...+ (bk+abk-1)x+abkx+1

1.= | K, b = (-y a a for 1 s i s k.

4.1.22. Let $f(x) = \frac{1}{\lambda^2}Q_{\lambda} \chi^{\lambda}$, $a_{\lambda} \in \mathbb{R}$ and define $\psi(f(x)) = \frac{1}{\lambda^2}Q_{\lambda}(kx)^{\lambda}$.

 $= \ell(f(x)) + \ell(g(x))$

If we define ℓ as above, $\ell(r)=r$ the ℓ and $\ell(x)=k(x)$.

Let fa)= a+ax+...+anx", ga)= b+bx+...+bmx". w.l.o.g

(i) $\psi((f+g)(x)) = \psi((Q_0+b_1) + (Q_1+b_1)\chi + \dots + (Q_m+b_m)\chi^m + Q_{m+1}\chi^{m+1} + \dots + Q_m\chi^n)$

= \((a.+a, x + ... + an x " + b. + b, x + ... + bm x ")

= $Q_0 + Q_1(k(x) + \cdots + Q_n(k(x))^n + b_0 + b_1(k(x)) + \cdots + b_{pn}(k(x))^{pn}$

Last term, abexx , should also be zero.

Thus, $ab_k = (-ba^{k+1} = 0 \Rightarrow a^{k+1} = 0)$

Thus, the coefficients are all zero except bo. (: equality of polynomials)

Then, we can say that the multiple of those two is $I_R \in \mathbb{R}^{[2]}$

(ii)
$$\varphi(fg(x)) = \varphi(Q_0J_0 + (Q_0J_1 + Q_1J_0)X + \cdots + Q_nJ_nX^{n+n})$$

$$= Q_0J_0 + (Q_0J_1 + Q_1J_0)k(x) + \cdots + Q_nJ_n(k(x))$$

$$= (Q_0 + Q_1k(x) + \cdots + Q_n(k(x))^n) \cdot (J_0 + J_1k(x) + \cdots + J_n(k(x))^n)$$

$$= \varphi(f(x)) \cdot \varphi(g(x))$$
By (i) and (ii) φ is a homomorphism.

(iii) Consider $\theta: R[x] \to R[x]$ which is another homomorphism and $\theta(r) = r$ for any $r \in R$ and $\theta(x) = k(x) \cdot \cdots \cdot k(x)$

Then $\theta(f(x)) = \theta(Q_0 + Q_1x + \cdots + Q_nx^n)$

$$= \theta(Q_0) + \theta(Q_1)\theta(x) + \cdots + \theta(Q_n)(\theta(x))^n$$

= Qo + Q, k(x) + ... + Qn (k(x)) (: by (x))

Therefore φ is a unique homomorphism,

= $\varphi(t(x))$

4.2.10. Let d(2) be the god of two phynomials.

The deg(d(x)) should be $| \circ \circ \circ \circ \circ$, since $\mathbb{Q}[x]$ is an integral domain. $deg(d(x)) \leq deg(x+a+b) = 1$ $deg(d(x)) \leq deg(x-3abx+a+b^2) = 3$

 $\Rightarrow 0 \leq \deg(d(x)) \leq |$ Meanshile, χ^3 -3ab χ + α^3 + β^3 = $(\chi$ + α + β) $(\chi^2$ - $(\alpha$ + β) χ + $(\alpha^2$ -ab+ β^2)

This means that x+a+1 | x+a+1 | and $x+a+1 | x^2-3abx+a^2+1^3$

 $\chi+\alpha+b$ is the monic polynomial with the highest degree, which means $d(x)=\chi+\alpha+b_{10}$.

4.3.12. $(\chi^2+z)(\chi^2-z)$ in $Q[\chi]$.

If χ^2-2 is reducible in $Q[\chi]$, then it should be factorized with two polynomials with degree | since $Q[\chi]$ is α field.

But this doesn't happen because it doesn't have any roots in Ω thus does

not have linear factor by factor thm. Same situation happens for

ر2°+2.

$$(\chi^2+2)(\chi+J_2)(\chi-J_2)$$
 in $R[\chi]$.

By factor thm, χ^2+2 does not have linear factors. Thus, χ^2+2 is irreducible in IR[2]. $(\chi+J\bar{z}i)(\chi-J\bar{z}i)(\chi+J\bar{z})(\chi-J\bar{z})$ in C[x].

These 4 factors are irreducible since C(2) is a field and every polynomial of degree 1 is irreducible.

4.3.22. (a) Let
$$f(x) = x^3 + a$$
 then
$$f(0) = 0 + a = a$$

$$f(0) = 1 + a = a + 1$$

 $f(0) = 0 + \alpha = \alpha$ $f(1) = 1 + \alpha = \alpha + 1$ $f(2) = 8 + \alpha = \alpha + 2$

The number of elements in \$\mathbb{Z}_0\$ is \$3\$ and \$a,at1,at2 \in \$\mathbb{Z}_0\$ which are distinct.

Therefore, one of \$a\$, at1, at2 must be zero and by factor thm,

\$\times^3 t a\$ has \$a\$ linear factor, which means \$a^3 t a\$ is reducible.

 χ^3 ta has a linear factor, which means χ^3 to is reducible. We can use factor than since \mathbb{Z}_2 is a commutative ring with $|_{R_{100}}$

(a) Let
$$f(x) = x^5 + a$$
 then
 $f(0) = 0 + a = a$

 $f(i)=1+\alpha=\alpha+1$ $f(4)=|024+\alpha=\alpha+4|$ $f(2)=32+\alpha=\alpha+2$ The number of elements in \mathbb{Z}_5 is 5 and $\alpha,\alpha+1,\alpha+2,\alpha+3,\alpha+4\in\mathbb{Z}_5$

f(3) = 243 + a = a+3

The number of elements in \mathbb{Z}_5 is 5 and $a,at1,at2,at3,at4 \in \mathbb{Z}_5$ which are distinct. Therefore, one of a, at1,at2,at3,at4 must be zero and by factor thm, x^5ta has a linear factor, which means x^5ta is reducible

We can use factor thm since \mathbb{Z}_5 is a commutative ring with $|_{R_{100}}$

F.4.8. (b) [et a be root of
$$x^2-7$$
. We know that $\alpha=\pm 17$ but $\pm 17 \oplus 0$, thus by factor thm, x^2-7 is irreducible in $0[x]$, (d) [et $f(x)=2x^3+x^2+2x+2$ then $f(0)=2$ $f(2)=1$ $f(4)=4$ $f(1)=2$ $f(3)=1$

Va \in \mathbb{Z}_{5} , $f(a) \neq 0$, which means there is no linear factor by factor thm, thus inteducible in \mathbb{Z}_{5} (f) Let $g(x) = x^4 + x^2 + 1$ then g(1) = 0. Thus $x - 1 = x + 2 \mid x^4 + x^2 + 1$.

This means that x^4+x^2+1 is reducible in \mathbb{Z}_3

Thus a2+1=np for net. We need to find only one p, let's think of a situation that n=1. Then $p=a^2+1$. We can consider that if a=4, p=17, the equation holds. In this case, $x^2+1=(x+4)(x+13)$ 4.4.26. (a) Note that Q[Jz] €\$ since O∈Q[Jz] (: for the case that 1;=0 4) Let a, be D[12] Let Q=Qo+Q1/2+...+Qn(J2)" for some neW. b=bo+b, \sum + \cdot + \cdot + \cdot + \cdot \cdot \square \cdot \ w.l.o.g n≥m. Claim 1: Q-b \(\Q[\overline{L}_2] $Q - b = (Q_0 - b_0) + (Q_1 - b_1) \sqrt{b_2} + \dots + (Q_m - b_m) (\sqrt{b_2})^m + Q_{m+1} (\sqrt{b_2})^m + \dots + Q_n (\sqrt{b_n})^n \in \mathbb{Q}[\overline{b_2}].$ Claim 2: ab e Q[Ji] $Qb = Q_0b_0 + (Q_1b_0 + Q_0b_1)J_2 + \dots + Q_nb_m(J_2)^{n+m} \in \mathbb{Q}[J_2]$ By Claim 1, 2, Q[F] is a subring of R

4.4.10. We need to find $\alpha \in \mathbb{Z}$, $0 \le \alpha < \beta$ such that $\alpha^2 + 1 = 0 \pmod{\beta}$.

(i)
$$\theta$$
 ((f+9)(α)) = θ (($\alpha_0 + b_0$) + ($\alpha_1 + b_1$) $\alpha + \cdots + (\alpha_m + b_m)\alpha^m + \alpha_{m+1}\alpha^m + \cdots + \alpha_n\alpha^n$)

= $(\alpha_0 + b_0) + (\alpha_1 + b_1)[\overline{a} + \cdots + (\alpha_m + b_m)(\overline{a}) + \alpha_{m+1}(\overline{a}) + \cdots + \alpha_n(\overline{a})$

= $\alpha_0 + \alpha_1, \overline{a} + \cdots + \alpha_n(\overline{a})^n + b_0 + b_1 + \cdots + b_m(\overline{a})^n$

$$= f(\sqrt{2}) + g(\sqrt{2})$$

$$= \theta(f(x)) + \theta(g(x))$$
(ii) $\theta((f \cdot g)(x)) = \theta(a_0b_0 + (a_1b_0 + a_0b_1)x + (a_0b_2 + a_1b_1 + a_0b_2)x^2 + \dots + a_nb_nx^{n+n})$

$$= a_{0} |_{a_{0}}$$

$$= Q_{0}b_{0} + (Q_{1}b_{0} + Q_{0}b_{1})\sqrt{2} + (Q_{0}b_{2} + Q_{1}b_{1} + Q_{0}b_{2})\sqrt{2} + \dots + Q_{n}b_{n}(\sqrt{2})$$

$$= (Q_{0} + Q_{1})\sqrt{2} + \dots + Q_{n}(\sqrt{2})^{n}) \cdot (b_{0} + b_{1})\sqrt{2} + \dots + b_{n}(\sqrt{2})^{n})$$

$$= \theta(tx) \cdot \theta(dx)$$

Let
$$C \in \mathbb{Q}[\overline{J_2}]$$
 then then the large $f(x) = 3$

Then we always have
$$f(x) = \frac{n}{x^2}$$

(iii) Let
$$C \in \mathbb{Q}[J_2]$$
 then use can say that $C = \sum_{i=0}^{n} C_i(J_2)^i$ (b), GeO)
Then use always have $f(x) = \sum_{i=0}^{n} C_i \chi^i$ S.t. $\varphi(f(x)) = C$.

This means 0 is surjective.

(iv) Consider
$$f(x) = \chi^2$$
, $g(x) = \frac{1}{2}\chi^4$.
 $\theta(f(x)) = f(J_2) = 2 = g(J_2) = \theta(g(x))$ but

$$f(x) \neq g(x)$$
. Thus, θ is not injective.

$$f(x) \neq g(x)$$
. Thus, θ is not injective.

By (i),(ii),(iii), and (iv), θ is a surjective homomorphism but not an isomorphism.