Class 07: ML 1

James Woolley (A16440072)

#clustering

Today we will start by exploring clustering methods such as K-means using the kmeans() function.

We can begin with made up data so we know what the answer should be.

```
x <- rnorm(10000, mean=3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30,mean=3), rnorm(30,-3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 2.457858 -5.077181
[2,] 2.515566 -2.057764
[3,] 3.591910 -3.799588
[4,] 3.449359 -1.960568
[5,] 4.556085 -3.557897
[6,] 2.235217 -4.308188
```

We can take a look with base R plot

```
plot(x)
```



```
k <- kmeans(x,centers=2,nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Clustering vector:

2 -2.883363 2.935222

Within cluster sum of squares by cluster:

[1] 53.96118 53.96118

(between_SS / total_SS = 90.4 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q1. How many points are in each cluster?

k\$size

[1] 30 30

Q2. Cluster membership

k\$cluster

Q3. Cluster centers?

k\$centers

x y 1 2.935222 -2.883363 2 -2.883363 2.935222

Q4. Plot the restults

Q5. CLuster the data again with kmeans() into 4 groups and plot the results.

```
k4 <- kmeans(x,centers=4,nstart=20)
plot(x, col=k4$cluster, pch=17)</pre>
```


kmeans will always spit out what you tell it, even if it makes no sense (above). So if you don't know how many groups you SHOULD have, how do you determine how many centers data has?

kmeans is very popular because of how fast it is, but it

Hierarchical Clustering

The way to use helustering in base R is through the hclust() function. You have to pass it in a distance matrix. It won't work with ur input data.

```
hc <- hclust(dist(x))
plot(hc)</pre>
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

plot(hc)
abline(h=8, col="purple")

Cluster Dendrogram

dist(x) hclust (*, "complete")

```
grps <- cutree(hc,h=8)

To find the clusters from a hcluster
  table(grps)

grps
  1  2
  30  30</pre>
```

Q6. Plot the hclust results

```
plot (x, col=grps, pch=15)
```


PCA of food consumed in the UK

Consumption of 17 different types of food measured and averaged in England, Scotland, Wales, and N Ireland.

We can use PCA to help us analyse the data, but we can begin with conventional analysis.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
rownames(x) <- x[,1] #set correct row and col names
x <- x[,-1]
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

You can use the nrow() and ncol() functions to answer this question.

```
nrow(x)
[1] 17
```

ncol(x)

[1] 4

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

Using $x \leftarrow read.csv(url, row.names=1)$ head(x) is better than the other method, because it will fix the row-names column without removing columns. If you keep removing columns, you will lose data. This method sets the correct column instead of subtracting to arrive at the correct column.

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

We can visualize the data in a bar plot!

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


But that's not very helpful, so we want to try to put the data together in a way that makes it easier to understand.

Q3. Changing what optional argument in the above barplot() function results in the following plot?

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


This stacks the data by country instead of producing many tiny little bars.

Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs (x, col=rainbow(17), pch=16)
```


The closer a point is to the diagonal, the more similar the consumption for that point is between the two different countries.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

Northern Ireland consmes more of the blue point and less of the green point than the other countries, and you know because it

Principal component analysis (PCA)

PCA helps visualise data like this even better. THe main function in base R to use PCA is prcomp(). IN this case we want to first take the transpose of the original data x so the columns and rows are switched.

head(t(x))

	Cheese	Carcass_meat	Other_meat	Fish	Fats_and_oils	Sugars
England	105	245	685	147	193	156
Wales	103	227	803	160	235	175
Scotland	103	242	750	122	184	147
N.Ireland	66	267	586	93	209	139

	Fresh_potatoes	Fresh_Veg	Other_Veg	Processed	d_potatoes
England	720	253	488	3	198
Wales	874	265	570)	203
Scotland	566	171	418	3	220
N.Ireland	1033	143	355	5	187
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	2 1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drink	s Confectio	onery		
England	3	75	54		
Wales	4	75	64		
Scotland	4	58	62		
N.Ireland	1	35	41		

```
pca <- prcomp (t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

pca\$x

```
      PC1
      PC2
      PC3
      PC4

      England
      -144.99315
      -2.532999
      105.768945
      -9.152022e-15

      Wales
      -240.52915
      -224.646925
      -56.475555
      5.560040e-13

      Scotland
      -91.86934
      286.081786
      -44.415495
      -6.638419e-13

      N.Ireland
      477.39164
      -58.901862
      -4.877895
      1.329771e-13
```

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], col=c("orange", "pink", "lightblue", "lightgreen"), pch=16)
text(pca$x[,1], pca$x[,2], colnames(x),col=c("orange", "pink", "lightblue", "lightgreen"))
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

This will help create a PC1 plot.

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


TO make a PC2 plot, use

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


this shows that the biggest difference is Fresh Potatoes and Soft Drinks. This shows us variance that PC 1 didn't account for.