# Influenza Seasonality Assessed Through Climatic Variables and Indoor Activity Across the United States



Annabel Coyle<sup>1</sup>, Venkatsai Bellala<sup>2</sup>, Linsey Marr<sup>3</sup>

<sup>1</sup>Biological Sciences, Virginia Tech, <sup>2</sup>Biomedical Engineering, Brown University, <sup>3</sup>Civil and Environmental Engineering, Virginia Tech

## Background

- Effective reproduction number (R<sub>t</sub>): a measure of transmission; the number of infections caused at a given time by one infected individual.
- Virus stability is directly mitigated by dry bulb temperature (DBT) and relative humidity (RH). [1]
- Absolute humidity (AH) is implicated as a predictive variable for R<sub>t</sub>. [2]



Figure 1. A flow chart depicting variables that contribute to influenza seasonality in temperate (T) and tropical (Tr) climates [3]

# **Objectives**

It was hypothesized that weather variables and human interaction mitigate seasonal influenza patterns across climate zones as interconnected variables.

- To understand the predictive quality of AH on influenza epidemics in the United States.
- To determine a model combining behavioral and climatic variables to better define influenza seasonality across climate zones.

## **Methods**

R and RStudio were used for all data cleaning and analysis. Exploratory data analyses were conducted with binomial linear regressions to determine the factors most related to an increase in R<sub>t</sub>.

#### Independent Variables:

- RH, AH, DBT [4]
- Indoor activity, a measure of indoor interaction (based on cell phone location data) [5]

# Outcome Measure:

• R<sub>t</sub> (calculated using EpiEstim package and incidence counts from state health departments; SI = 3.6  $\sigma$  = 1.6) [6]

A multivariate linear regression model was defined:

$$\bar{R} \approx \text{poly}\left(\frac{\text{DBT} \cdot \text{lnRH}}{\text{Indoor Activity}}, 2\right)$$

**Equation 1**. A multivariate orthogonal binomial integrating RH, DBT, and indoor activity

A one-week lag was applied to the model to determine the predictive qualities of these variables as well.

## Results

I. R<sup>2</sup> values are more significant in northern counties.

→ Incidence (I)

- II. Incorporating a one-week lag on the model had consistent R<sup>2</sup> values among counties but did not show a northern trend.
- III. Neither non-lagged AH nor lagged AH (not pictured) had a significant relationship with weekly mean R<sub>t</sub>.

**Table 1.**  $R^2$  adjusted values for each county between weekly mean  $R_t$  and models.

| County                           | Model | Lag Model<br>(1 week) |
|----------------------------------|-------|-----------------------|
| Queens County                    | 0.14  | 0.12                  |
| Erie County                      | 0.71  | 0.59                  |
| Thomas Jefferson Health District | 0.39  | 0.22                  |
| Virginia Beach<br>County         | 0.16  | 0.029                 |
| Cameron County                   | 0.056 | 0.35                  |
| Harris County                    | 0.16  | 0.28                  |



| County                              | Shapiro-Wilk<br>Normality Test | Optimal Lag<br>(days) |
|-------------------------------------|--------------------------------|-----------------------|
| Queens County                       | 0.01181                        | 42                    |
| Erie County                         | 0.164                          | 7                     |
| Thomas Jefferson<br>Health District | 0.5188                         | 0                     |
| Virginia Beach<br>County            | 0.0252                         | 14                    |
| Cameron County                      | 0.046                          | 7                     |
| Harris County                       | 0.4285                         | 7                     |

Absolute Humidity (AH)



Dry Bulb Temperature (DBT)





Figure 2. Exploratory data analysis for each county studied including the  $R^2$  values between variables and weekly mean  $R_t$ , not including the lag model.

Incidence, DBT, RH, and AH normalized by maximum value. Orthogonal binomial fit.



**Figure 3**. A map illustrating the three states and six counties chosen to represent temperate (NY and VA) and near-tropical (TX) regions.

#### Conclusion

The large range in R<sup>2</sup> values implies there is a difference in how variables contribute to seasonality across states. Although incorporating a lag did not result in a latitudinal trend, it proved important in consideration of real-time factors leading to outbreaks. The integration of both environmental and behavioral variables can be applied to public health measures to lower the morbidity of seasonal influenza outbreaks.

## **Future Directions**

- A larger sample size will depict a clearer latitudinal trend in the model fit.
- A geographical expansion will better represent all climate zones (specifically more tropical and subtropical locations) and increase accuracy in the latitudinal trend of the model.
- A retrospective study to include a larger temporal range is required to increase statistical significance.

#### References

1. Marr, L. C., Tang, J. W., Van Mullekom, J., & Lakdawala, S. S. (2019). Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. *Journal of The Royal Society Interface*, *16*(150), 20180298.

2. Ali, S. T., Cowling, B. J., Wong, J. Y., Chen, D., Shan, S., Lau, E. H. Y., He, D., Tian, L., Li, Z., & Wu, P. (2022). Influenza seasonality and its environmental driving factors in mainland China and Hong Kong. *Science of The Total Environment*, *818*, 151724.

3. Tamerius, J., Nelson, M. I., Zhou, S. Z., Viboud, C., Miller, M. A., & Alonso, W. J. (2011). Global Influenza Seasonality: Reconciling Patterns across Temperate and Tropical Regions. *Environmental Health Perspectives*, *119*(4), 439–445.

4. National Centers for Environmental Information. (2018-2019). Retrieved July 2022. *U.S. Local Climatological Data*.

5. Susswein, Z., Rest, E. C., & Bansal, S. (2022). *Disentangling the rhythms of human activity in the built environment for airborne transmission risk* [Preprint].

6. Cowling BJ, Fang VJ, Riley S, Malik Peiris JS, Leung GM. Estimation of the serial interval of influenza. Epidemiology. 2009 May;20(3):344-7.

# Acknowledgements

Thank you to Dr. Marr for her insight, guidance, and mentorship; to Venkatsai for his patience and partnership; and to Drs. Schmale and Ross for their support. This research was supported in part by the National Science Foundation (NSF) under grant number 1922516.