سیاوش کاوسی ۹۲۳۱۰۴۸

تمرین سوم درس ریزپردازنده

- 1

مراحل اجرا به صورت خط لوله (Execution Pipeline) مراحل اجرا

فرآیند شامل مراحل اجرایی (اصلی) زیر است:

- مراحل واكشى دستور
- مراحل تشخيص (decode) دستورالعمل
 - مرحله issue
 - سه یا چهار مرحله اجرایی

Figure 1-2 Processor Fetch and Decode pipeline stages

Fe: دو مرحله واكشى دستورالعمل از حافظه اصلى

Pd: مرحله pre-decode (پیش تشخیص) که قالب دستورالعمل مشخص می شود و پیش بینی دستور های branch در این مرحله است

De: تشخيص دستورالعمل (Instruction decode)

Figure 1-4 Cortex-R4F Issue and Execution pipeline stages

نام و توضيح كوتاه مراحل خط لوله:

Iss: خواندن از ثبات و instruction issue (کار واحد instruction issue پر کردن خط لوله از دستورالعمل هاست در واقع جریان کنترلی (جریان برنامه) را پیش بینی میکند و دستورات را براساس آن واکشی می کند)

Ex: مراحل اجرابي

Wr: دوباره نوشتن(write-back) داده بعد از مراحل اجرایی

instruction retire:Ret ، چون ساختار به صورت خط لوله است توانایی اجرای دستورالعمل ها بیشتر از حدی است که جریان برنامه به آن نیاز دارد (speculative execution) در نتیجه دستورالعمل هایی که برنامه واقعا به آنها نیاز داشته باشد را instruction می گویند پس کار این بخش انتخاب این دستورات است

نام و توضيح كوتاه مراحل بارگذاري/ذخيره خط لوله:

DC1: اولين مرحله دسترسى به حافظه

DC2: دومین مرحله دسترسی به حافظه

نام و توضيح كوتاه مراحل مربوط به مميز شناور خط لوله:

F0: خواندن ثبات مميز شناور

F1: مرحله اول اجرای دستور ممیز شناور

F2: مرحله دوم اجرای دستور ممیز شناور

Fwr: بازنویسی داده ممیزشناور

ساختار خط لوله فوق امکان دسترسی با ۲ سیکل به حافظه و ۱ سیکل پنالتی بارگذاری-استفاده (در خط لوله اگر دستورالعمل فعلی به قبلی وابسته باشد اجرای دستور وابسته باید یک سیکل عقب بیفتد) را فراهم کرده است

تمرین ۲ از فصل ۸

sbis: آدرس دهی مستقیم ثباتی

in: آدرس دهی مستقیم I/O

sbrc: آدرس دهی مستقیم ثباتی

sbi: آدرس دهی مستقیم ثباتی

andi: آدرس دهی مستقیم ثباتی

spm: آدرس دهی حافظه برنامه با آدرس ثابت و پس افزایش

elpm: آدرس دهی حافظه برنامه با آدرس ثابت

std: آدرس دهی غیرمستقیم با جابجایی

brlt: آدرس دهی نسبی حافظه برنامه

cpi: آدرس مستقیم ثباتی

brbs: آدرس دهی نسبی حافظه برنامه

تمرین ۱ از فصل ۹

الف)

انتخاب منبع ساعت توسط فیوز بیت های که در جدول زیر آمده انتخاب می شود .سیگنال ساعت از منبع انتخاب شده به مولد ساعت میکروکنترلر وارد شده و به ماژول های مناسب مسیردهی می شود.

توجه: برای همه فیوزها 1به معنی برنامه ریزی نشده و 0به معنی برنامه ریزی شده میباشد.

Device Clocking Option	CKSEL30
External Crystal/Ceramic Resonator	1111 - 1010
External Low-frequency Crystal	1001
External RC Oscillator	1000 - 0101
Calibrated Internal RC Oscillator	0100 - 0001
External Clock	0000

گزینههای انتخاب ساعت میکروکنترلر

مقدار پیش فرض فیوزبیت های میکروکنترلر

SUT : start up time="10"

CKSEL: clock select="0001"

اسیلاتور RCداخلی کالیبره شده:

حالتهای عملیاتی نوسانساز RC کالیبره شده داخلی

CKSEL30	Nominal Frequency (MHz)
0001 ⁽¹⁾	1.0
0010	2.0
0011	4.0
0100	8.0

زمانهای راهاندازی مربوط به انتخاب ساعت نوسانساز RC کالیبره شده داخلی

SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (V _{CC} = 5.0V)	Recommended Usage		
00	6 CK	_	BOD enabled		
01	6 CK	4.1 ms	Fast rising power		
10(1)	6 CK	65 ms	Slowly rising power		
11					

کلاک خارجی :

مدار راهانداز ساعت خارجي

زمانهای راهاندازی برای انتخاب ساعت خارجی

SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (V _{CC} = 5.0V)	Recommended Usage
00	6 CK	-	BOD enabled
01	6 CK	4.1 ms	Fast rising power
10	6 CK	65 ms	Slowly rising power
11		Reserved	

اسیلاتور RCخارجی:

فرکانس بطور تقریبي توسط فرمول $f=rac{1}{3RC}$ محاسبه مي شود C باید حداقل ۲۲ پیکوفاراد باشد. ورکانس بطور تقریبي توسط فرمول $f=rac{1}{3RC}$ محاسبه مي شود C با برنامه ریزي فیوز C کاربر مي تواند یک خازن داخلي C پیکوفاراد را بین C کاربر مي تواند یک خازن داخلي C پیکوفاراد را بین C خارجی نباشد.

CKSEL30	Frequency Range (MHz)
0101	0.1≤0.9
0110	0.9 - 3.0
0111	3.0 - 8.0
1000	8.0 - 12.0

حالتهای عملیاتی نوسانساز RC خارجی

زمانهای راهاندازی برای انتخاب ساعت نوسانساز RC خارجی

SUT10	Start-up Time from Power-down and Power-save Additional Delay from Reset (V _{CC} = 5.0V)		Recommended Usage		
00	18 CK	_	BOD enabled		
01	18 CK	4.1 ms	Fast rising power		
10	18 CK	65 ms	Slowly rising power		
11	6 CK ⁽¹⁾	4.1 ms	Fast rising power or BOD enabled		

توجه ۱: در صورت کار کردن میکروکنترلر در فرکانس کاری نزدیک به بیشینه فرکانس کاری مجاز، این حالت نباید استفاده شود

اسیلاتور کریستالی:

СКОРТ	CKSEL31	Frequency Range (MHz)	Recommended Range for Capacitors C1 and C2 for Use with Crystals (pF)
1	101 ⁽¹⁾	0.4 - 0.9	_
1	110	0.9 - 3.0	12 - 22
1	111	3.0 - 8.0	12 - 22
0	101, 110, 111	1.0 ≤	12 - 22

زمانهای start-up بعد از حالات صرفهجویی در توان (مثل حالات power down و power save) در حالت انتخاب ساعت نوسانساز کریستالی

CKSELO	SUT10	Start-up Time from Power-down and Power-save	from Reset (V _{CC} = 5.0V)	Recommended Usage
o	00	258 CK ⁽¹⁾	4.1 ms	Ceramic resonator, fast rising power
o	01	258 CK ⁽¹⁾	65 ms	Ceramic resonator, slowly rising power
o	10	1K CK(2)	-	Ceramic resonator, BOD enabled
o	11	1K CK ⁽²⁾	4.1 ms	Ceramic resonator, fast rising power
1	00	1K CK ⁽²⁾	65 ms	Ceramic resonator, slowly rising power
1	01	16K CK	-	Crystal Oscillator, BOD enabled
1	10	16K CK	4.1 ms	Crystal Oscillator, fast rising power
1	11	16K CK	65 ms	Crystal Oscillator, slowly rising power

اسیلاتور کریستالی فرکانس پائین:

اگر این نوسان ساز انتخاب شود، زمان مربوط به راه اندازي توسط فیوزهاي SUT مطابق جدول زیر تعیین مي شود.

زمانهای راهاندازی مربوط به انتخاب ساعت نوسانساز کریستالی فرکانس پایین

SUT10	Start-up Time from Power-down and Power-save	Additional Delay from Reset (V _{CC} = 5.0V)	Recommended Usage
00	1K CK ⁽¹⁾	4.1 ms	Fast rising power or BOD enabled
01	1K CK ⁽¹⁾	65 ms Slowly rising power	
10	32K CK	65 ms	Stable frequency at start-up
11		Reserve	ed .

ب) در حالت استفاده از اسیلاتور RC داخلی کالیبره شده، از تنظیم ثبات OSCCAL برای کالیبره کردن ساعت RC داخلی تولید شده استفاده میکنیم:

Bit	7	6	5	4	3	2	1	0	_
	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	OSCCAL
Read/Write	R/W	RW	RW	RW	R/W	R/W	R/W	R/W	•
Initial Value Device Specific Calibration Value									

نوشتن بایت کالیبراسیون در این آدرس باعث میشود که اسیلاتور داخلی به گونهای تنظیم شود که تغییرات فرآیند از نوسانساز داخلی حذف شود. این کار به صورت خودکار در حین بازنشانی و شروع به کار مجدد تراشه انجام میشود. وقتی که OSCCAL صفر شود، کمترین مقدار فرکانس ممکن انتخاب میشود. نوشتن مقادیر غیر صفر در این ثبات، فرکانس نوسانساز داخلی را افزایش میدهد. نوشتن مقدار FF\$ در این ثبات بیشترین مقدار فرکانس ممکن را ایجاد میکند.

ج) چون فیوز cksel3...0 برای تعیین فرکانس ساعت به کار می روند پس اگر این فیوزها تغییر نمایند میتوان نتیجه گرفت که فرکانس ساعت نیز تغییر نموده است.