Afternoon

Nondeterministic Finite Automata

- Definition
- Notation
- ◆ Construction
- Language of NFA
- Equivalence with DFA

Construct a DFA to accept

 $L_{x01} = \{x \ 01 \mid x \text{ is any strings of 0's and 1's} \}$

If $w \in L_{xO1}$, then

$$q_0$$
 q_w

Construct a DFA to accept

 $L_{x01} = \{x \ 01 \mid x \text{ is any strings of 0's and 1's} \}$

We start from the most simple string

Construct a DFA to accept

 $L_{x01} = \{x \ 01 \mid x \text{ is any strings of 0's and 1's} \}$

Then to more complex strings

For
$$w=1^{n}00^{m}1$$
, q_{0} q_{1} q_{2} q_{2}

Finally to the most complex strings

Construct a DFA to accept

 $L_{x01} = \{x \ 01 \mid x \text{ is any strings of } 0's \text{ and } 1's \}$

Let us look at the most simple

and most complex

Formal Definition

Nondeterministic finite automaton is a five-tuple,

such as
$$M = (Q, \Sigma, \delta, q_0, F)$$

Where Q is a finite set of states,

 Σ is a finite set of input symbols,

 q_0 is a start state,

F is a set of final state,

 δ is transition function , which is a mapping

from $Q \times \Sigma$ to 2^Q .

Example 2 NFA for

 $L_{x01} = \{x \ 01 \mid x \text{ is any strings of } 0's \text{ and } 1's \}$

Note
$$\delta : Q \times \Sigma \Rightarrow 2Q$$

That
$$\delta(q, a) = \{q_1, q_2, ..., q_n\}$$

Example 2 NFA for

$$L_{x01} = \{x \ 01 \mid x \text{ is any strings of 0's and 1's} \}$$

$$N = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

 δ

$$\delta(q_0, 0) = \{q_0, q_1\}, \quad \delta(q_0, 1) = \{q_1\},$$

$$\delta(q_1, 1) = \{q_2\}$$

Diagram and Table Notation

<u>Diagram</u>

Table

Example 3 NFA for

 $L = \{w \mid w \text{ consists of 0's and 1's, and the}$ 10^{th} symbol from the right end is 1 \}

Shortage of DFA

 $L = \{w \mid w \text{ consists of 0's and 1's, and the} \\ 10^{th} \text{ symbol from the right end is 1} \}$

Extending δ to string

BASIS

$$\hat{\mathcal{S}}(q,\varepsilon) = q.$$

INDUCTION

Surpose
$$w = xa$$
, $\hat{\delta}(q, x) = \{p_1, p_2, \Lambda, p_k\}$

Let
$$Y \delta(p_i, a) = \{r_1, r_2, \Lambda, r_m\}$$

Then
$$\hat{\delta}(q, w) = \{r_1, r_2, \Lambda, r_m\}$$

Language of an NFA

Definition The language of an NFA A is denoted L(A), and defined by

$$L(A) = \{ w | \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

There is at least a path, labeled with w, from start state to final state.

How NFA accepts a string

$$Start \xrightarrow{q_0} 0 \xrightarrow{q_1} 1 \xrightarrow{q_2}$$

$$Start \xrightarrow{q_0} q_0 \xrightarrow{q_0} q_0 \xrightarrow{q_1} q_0 \xrightarrow{q_1} q_0$$

$$S(q_0, 0) = \{q_0, q_1\}$$

$$S(\{q_0, q_1\}, 0) \Rightarrow \{S(q_0, 0), S(q_1, 0)\} \Rightarrow \{q_0, q_1\}$$

$$S(\{q_0, q_1\}, 0) = S(q_0, 0) \cup S(q_1, 0) = \{q_0, q_1\} \cup \{\}$$

$$\hat{\delta}(q_0, w) \cap F \neq \phi$$

Calculate
$$\hat{\mathcal{S}}(q_0, 00101)$$
:

$$\delta(q_0, 0) = \{q_0, q_1\}$$

$$\delta(\{q_0, q_1\}, 0) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \{\}$$

$$\delta(\{q_0, q_1\}, 1) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\}$$

$$\delta(\{q_0, q_2\}, 0) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \{\}$$

$$\delta(\{q_0, q_1\}, 1) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\}$$

Calculate $\hat{\mathcal{S}}(q_0, 00101)$

Calculate $\hat{\mathcal{S}}(q_0, 00101)$

Equivalence of DFA and NFA

$$L = L(NFA) \Leftrightarrow L = L(DFA)$$

Equivalence of DFA and NFA

Chinglish

Prove: DFA and NFA are equivalent.

- → If there is an NFA accepting language L, then there must be a DFA to accept L.
 - If there is a DFA accepting language L, then there must be an NFA to accept L.

- → $\exists NFA \ A : L=L(A) \Rightarrow \exists DFA \ B : L=L(B)$.
 - ◆ $\exists DFA \ A : L=L(A) \Rightarrow \exists NFA \ B : L=L(B)$.

$NFA \Rightarrow DFA$

Given an NFA:
$$A = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

Construct a DFA:
$$B = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

Such that:

$$\mathbf{Q}_{\mathbf{D}} = 2^{\mathcal{Q}_N} \qquad 2^{\mathcal{Q}_N} = \left\{ S \mid S \in \mathcal{Q}_N \right\}$$

$$\delta_D(S,a) = Y \delta_N(p,a)$$

$$F_D = \{S \mid S \subseteq Q_N \text{ and } S \cap F_N \neq \emptyset\}$$

Example 4 NFA \Rightarrow DFA

 L_{x01} ={x01 | x is any strings of 0's and 1's}

Example 4 NFA \Rightarrow DFA

Example 4 NFA \Rightarrow DFA

"Lazy evaluation":

Bad case

 $L = \{w \mid w \text{ consists of 0's and 1's, and the }$ tenth symbol from the right end is 1 \}

$DFA \Rightarrow NFA$

Given a DFA:
$$A = (Q_D, \Sigma, \delta_D, q_0, F_D)$$

Construct an NFA:
$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

Such that:

$$Q_{\rm N} = Q_D$$

$$\delta_N(q,a) = \{\delta_D(q,a)\}$$

$$F_N = F_D$$

Example 5 DFA \Rightarrow NFA

 $L_{x01} = \{x \ 01 \mid x \text{ is any strings of 0's and 1's} \}$

DFA:

$$\delta(q_0, 0) = q_1, \quad \delta(q_1, 0) = q_1, \quad \delta(q_2, 0) = q_1$$

 $\delta(q_0, 1) = q_0, \quad \delta(q_1, 1) = q_2, \quad \delta(q_2, 1) = q_0$

NFA:

$$\delta(q_0, 0) = \{q_1\}, \ \delta(q_1, 0) = \{q_1\}, \ \delta(q_2, 0) = \{q_1\}$$

 $\delta(q_0, 1) = \{q_0\}, \ \delta(q_1, 1) = \{q_2\}, \ \delta(q_2, 1) = \{q_0\}$

Good good stilly day day up