```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   df = pd.read_csv(r'F:\Prthon Programming\Time Series Modelling\AirlinePassenge
   rs_data.csv')
   df.head()
```

Out[1]:

	ID	Datetime	Count
0	0	25-08-2012 00:00	8
1	1	25-08-2012 01:00	2
2	2	25-08-2012 02:00	6
3	3	25-08-2012 03:00	2
4	4	25-08-2012 04:00	2

In [2]: df.dtypes

Out[2]: ID int64
Datetime object
Count int64
dtype: object

In [3]: df.Timestamp = pd.to_datetime(df.Datetime,format='%d-%m-%Y %H:%M')
 df.index = df.Timestamp
 df = df.resample('D').sum()

C:\Users\admin\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: UserWarni
ng: Pandas doesn't allow columns to be created via a new attribute name - see
https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access
"""Entry point for launching an IPython kernel.

In [5]: df.tail()

Out[5]:

Datetime		
2013-12-27	281940	3868
2013-12-28	282516	3084
2013-12-29	283092	2330
2013-12-30	283668	4928
2013-12-31	284244	4860

ID Count

In [6]: df.sort_index(axis=0)

Out[6]:

	ID	Count
Datetime		
2012-08-25	276	76
2012-08-26	852	88
2012-08-27	1428	62
2012-08-28	2004	58
2012-08-29	2580	60
2012-08-30	3156	74
2012-08-31	3732	78
2012-09-01	4308	112
2012-09-02	4884	118
2012-09-03	5460	108
2012-09-04	6036	66
2012-09-05	6612	104
2012-09-06	7188	100
2012-09-07	7764	68
2012-09-08	8340	100
2012-09-09	8916	68
2012-09-10	9492	64
2012-09-11	10068	58
2012-09-12	10644	84
2012-09-13	11220	72
2012-09-14	11796	84
2012-09-15	12372	92
2012-09-16	12948	70
2012-09-17	13524	92
2012-09-18	14100	188
2012-09-19	14676	158
2012-09-20	15252	84
2012-09-21	15828	90
2012-09-22	16404	78
2012-09-23	16980	102
2013-12-02	267540	4042
2013-12-03	268116	6186
2013-12-04	268692	5078

ID Count

Datetime		
2013-12-05	269268	4948
2013-12-06	269844	4558
2013-12-07	270420	2344
2013-12-08	270996	2414
2013-12-09	271572	4394
2013-12-10	272148	3850
2013-12-11	272724	4808
2013-12-12	273300	4772
2013-12-13	273876	3624
2013-12-14	274452	2166
2013-12-15	275028	2722
2013-12-16	275604	5252
2013-12-17	276180	4508
2013-12-18	276756	4708
2013-12-19	277332	4344
2013-12-20	277908	3474
2013-12-21	278484	1988
2013-12-22	279060	1862
2013-12-23	279636	3642
2013-12-24	280212	3198
2013-12-25	280788	3676
2013-12-26	281364	3376
2013-12-27	281940	3868
2013-12-28	282516	3084
2013-12-29	283092	2330
2013-12-30	283668	4928
2013-12-31	284244	4860

494 rows × 2 columns

```
In [7]: train=df.loc[:'2013-10-31']
    train.tail()
```

Out[7]:

ID Count

Datetime		
2013-10-27	246804	2082
2013-10-28	247380	3536
2013-10-29	247956	4030
2013-10-30	248532	3774
2013-10-31	249108	3408

```
In [8]: test=df.loc['2013-11-01':]
    test.tail()
```

Out[8]:

ID Count

Datetime		
2013-12-27	281940	3868
2013-12-28	282516	3084
2013-12-29	283092	2330
2013-12-30	283668	4928
2013-12-31	284244	4860

In [13]: #Plotting data train.Count.plot(figsize=(10,5), title= 'Daily Ridership', fontsize=14) test.Count.plot(figsize=(10,5), title= 'Daily Ridership', fontsize=14) plt.show()


```
In [14]: import statsmodels.api as sm
sm.tsa.seasonal_decompose(train.Count).plot()
plt.show()
```



```
In [15]: dd= np.asarray(train.Count)
    y_hat = test.copy()
    #print(dd)
    y_hat['naive'] = dd[-1] #3408.0
    #print(y_hat.head())
    plt.figure(figsize=(10,6))
    plt.plot(train.index, train['Count'], label='Train')
    plt.plot(test.index,test['Count'], label='Test')
    plt.plot(y_hat.index,y_hat['naive'], label='Naive Forecast')
    plt.legend(loc='best')
    plt.title("Naive Forecast")
    plt.show()
```



```
In [16]: from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(y_hat.Count, y_hat.naive))
print(rms)
```

1053.9937474540022

```
In [18]: y_hat_avg = test.copy()
    y_hat_avg['avg_forecast'] = train['Count'].mean() #1160.00
    #print(y_hat_avg.head())

    plt.figure(figsize=(10,6))
    plt.plot(train['Count'], label='Train')
    plt.plot(test['Count'], label='Test')
    plt.plot(y_hat_avg['avg_forecast'], label='Average Forecast')
    plt.legend(loc='best')
    plt.show()
```



```
In [19]: train['Count'].mean()
```

Out[19]: 1160.0092378752886

```
In [20]: from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(y_hat_avg.Count, y_hat_avg.avg_forecast))
print(rms)
```

2637.2463664998872

```
In [21]: y_hat_avg = test.copy()
    y_hat_avg['moving_avg_forecast'] = train['Count'].rolling(60).mean().iloc[-1]
#3162.
    plt.figure(figsize=(10,6))
    plt.plot(train['Count'], label='Train')
    plt.plot(test['Count'], label='Test')
    plt.plot(y_hat_avg['moving_avg_forecast'], label='Moving Average Forecast')
    plt.legend(loc='best')
    plt.show()
```



```
In [22]: from sklearn.metrics import mean_squared_error
    from math import sqrt
    rms = sqrt(mean_squared_error(y_hat_avg.Count, y_hat_avg.moving_avg_forecast))
    print(rms)
```

1121.4817740256713

In [23]: from statsmodels.tsa.api import SimpleExpSmoothing


```
In [25]: fit2.aic
```

Out[25]: 5436.843107674888

```
In [26]: from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(y_hat_avg.Count, y_hat_avg.SES))
print(rms)
```

1071.2120259800895

```
In [27]: import statsmodels.api as sm
sm.tsa.seasonal_decompose(train.Count).plot()
plt.show()
```



```
In [28]: from statsmodels.tsa.api import Holt
    y_hat_avg = test.copy()

fit1 = Holt(np.asarray(train['Count'])).fit(smoothing_level = 0.23,smoothing_s
    lope = 0.19)
    y_hat_avg['Holt_linear'] = fit1.forecast(len(test))

plt.figure(figsize=(10,6))
    plt.plot(train['Count'], label='Train')
    plt.plot(test['Count'], label='Test')
    plt.plot(y_hat_avg['Holt_linear'], label='Holt_linear')
    plt.legend(loc='best')
    plt.show()
```



```
In [29]: fit1.aic
```

Out[29]: 5509.380903223064

```
In [30]: from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(y_hat_avg.Count, y_hat_avg.Holt_linear))
print(rms)
```

1029.6846993193717


```
In [32]: from sklearn.metrics import mean_squared_error
    from math import sqrt
    rms = sqrt(mean_squared_error(y_hat_avg.Count, y_hat_avg.Holt_Winter))
    print(rms)
```

575.0758215878233