Day-One

Notes

Interactive class (Feel free to stop him and ask questions)

check our basic info (name, emails, version of os, how many monitors, introduce why join the Year Up and etc..)

How the 12 Weeks Work

Parts on PC

1. CPU (Central Processing Unit):

- The brain of the computer
- Executes instructions from programs by performing basic arithmetic, logic, and control
 operations.

2. Cooling Fans

- Prevents components like the CPU and GPU from overheating.
- Ensures proper airflow inside the case to maintain optimal temperature.

3. Motherboard:

- The main circuit board that connects all components of the PC.
- Provides communication between the CPU, memory, storage, and peripherals.
- 4. Video Card (Graphics Processing Unit GPU):
- Responsible for rendering images, video, and animations to be displayed on the monitor.
- Some computers have integrated graphics in the CPU, while others use dedicated graphics cards.

5. RAM (Random Access Memory):

- Temporary storage for active processes and data.
- Allows quick access to programs and data in use, improving overall speed.

6. Expansion Slots:

 Slots on the motherboard used for adding extra cards like video cards, sound cards, or network adapters.

7. Hard Drive:

- Long-term storage device for the operating system, software, and files.
- Can be either HDD (mechanical) or SSD (solid-state, faster).

8. Power Supply:

- Converts electrical power from the outlet into a usable form for the computer.
- Powers all internal components.

9. CDROM Drive:

- An optical drive for reading (or writing) CDs/DVDs.
- Less commonly used today as many software and media are now distributed digitally.

10. Data Cables:

- Connects storage devices (like hard drives and CD/DVD drives) to the motherboard.
- Includes SATA cables for data transfer.

11. Power Cables:

 Provide electrical power from the power supply to all components, including the motherboard, hard drives, and other peripherals.

Each component plays a crucial role in making the PC function, and they work together to execute programs, manage data, display graphics, and communicate with external devices.

Java Garbage Collector

Garbage Collector	Generations	Threads	Pauses	Heap Size	Suitable for
Serial GC	Yes	Single	High (stop-the- world)	Small (< 1 GB)	Single-threaded apps
Parallel GC	Yes	Multiple	Moderate (stop- the-world)	Medium to	Throughput- focused apps
G1 GC	Yes	Multiple	Low to moderate	Large (> 6 GB)	Balanced performance
CMS	Yes	Multiple	Low	Medium to	Low-latency apps
zgc	Yes	Multiple	Extremely low (<10ms)	Very large (multi-TB)	Very large heaps
Shenandoah GC	Yes	Multiple	Extremely low	Large	Low-latency apps
Epsilon GC	No	N/A	None (no GC)	Any size	Testing only

Summary of Algorithms Used by Java GCs

- Copying: Used to evacuate objects in the young generation (in collectors like G1 and Parallel GC).
- Mark-Sweep: Used to identify and reclaim unreachable objects in the old generation.
- Mark-Sweep-Compact: Combines mark-sweep with compaction to reduce memory fragmentation.
- Region-based: Used by G1, ZGC, and Shenandoah to divide the heap into regions and collect garbage in parts to avoid long pauses.

Number System Convertor

•

Decimal, Binary, Octal, and Hex Numbers

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

1. Decimal (Base 10)

• Symbol: 0-9

• Base: 10 (Each digit is raised to the power of 10)

• Common Use: This is the standard number system humans use for everyday counting and arithmetic.

• Example:

• 345 (in decimal) = $3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0 = 300 + 40 + 5$

2. Binary (Base 2)

• Symbol: 0, 1

- Base: 2 (Each digit is raised to the power of 2)
- Common Use: Used by computers and digital systems to represent data because computers operate on electrical signals that can be either on (1) or off (0).
- Example:

• 1011 (in binary) =
$$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 0 + 2 + 1 = 11$$
 (in decimal)

3. Octal (Base 8)

Symbol: 0-7

Base: 8 (Each digit is raised to the power of 8)

- Common Use: Historically used in early computing systems. Still useful in representing large binary numbers in shorter form.
- Example:
 - 17 (in octal) = $1 \times 8^1 + 7 \times 8^0 = 8 + 7 = 15$ (in decimal)
- 4. Hexadecimal (Base 16)
- Symbol: 0-9, A-F (A=10, B=11, C=12, D=13, E=14, F=15)
- Base: 16 (Each digit is raised to the power of 16)
- Common Use: Widely used in computing for memory addressing, color codes in web design, and representing binary data in a more readable form.
- Example:
 - 1F (in hexadecimal) = $1 \times 16^{1} + F \times 16^{0} = 16 + 15 = 31$ (in decimal)

Conversion Table

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8

Decimal	Binary	Octal	Hexadecimal
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Summary of Use Cases

- Decimal: For everyday human use in counting and arithmetic.
- Binary: For computer operations, as it reflects the binary nature of electronic circuits (on/off states).
- Octal: Shortened version of binary for legacy systems or simpler grouping.
- Hexadecimal: Efficient representation of large binary numbers, commonly used in programming, memory addressing, and digital design (e.g., web colors).

Example: Conversion between Systems

Convert 255 (decimal) into other systems:

Binary: 255 (decimal) = 11111111 (binary)

• Octal: 255 (decimal) = 377 (octal)

Hexadecimal: 255 (decimal) = FF (hex)

Key Points:

- Binary is the foundation for computing systems.
- Hexadecimal is frequently used in computing for compact and human-readable binary representation.
- Octal has been mostly replaced by hexadecimal but is still useful in some contexts.
- 1. Decimal (Base 10)

- Digits: 0-9
- Usage: Predominantly used in everyday life and most programming scenarios.
- Example: The decimal number 10 represents ten units.
- 2. Binary (Base 2)
- Digits: 0-1
- Usage: Fundamental in computing and digital electronics, as it represents the two states of a transistor (on/off).
- Example: The binary number 1010 represents the decimal number 10.
- 3. Octal (Base 8)
- Digits: 0-7
- Usage: Less common, but used in some programming contexts and digital systems.
- Example: The octal number 12 represents the decimal number 10.
- 4. Hexadecimal (Base 16)
- Digits: 0-9 and A-F
- Usage: Widely used in programming to represent binary data in a more readable format.
- Example: The hexadecimal number A represents the decimal number 10.
- 5. Conversions:
- Binary to Decimal: Multiply each bit by 2 raised to its position number and sum the results.
- Decimal to Binary: Divide the decimal number by 2 repeatedly and record the remainders.
- Hexadecimal to Decimal: Multiply each digit by 16 raised to its position number and sum the results.
- Decimal to Hexadecimal: Divide the decimal number by 16 repeatedly and record the remainders.

Understanding these numeral systems is essential in various fields, including computer science, digital electronics, and programming.

Memory Capacity Conversion

- "Pasted image 20240923141210.png" could not be found.
- Table: Bit, Byte, KB, MB, GB, TB in Memory/Storage Capacity

Unit	Symbol	Value in bits	Value in bytes	Explanation
Bit	b	1 bit	1/8 byte	Smallest unit of data (binary: 0 or 1).
Byte	В	8 bits	1 byte	One byte is 8 bits, commonly used to represent one character.
Kilobyte (KB)	KB	8,192 bits	1,024 bytes	1 KB = 1,024 bytes (in computer storage context).
Megabyte (MB)	MB	8,388,608 bits	1,048,576 bytes	1 MB = 1,024 KB.
Gigabyte (GB)	GB	8,589,934,592 bits	1,073,741,824 bytes	1 GB = 1,024 MB.
Terabyte (TB)	ТВ	8,796,093,022,208 bits	1,099,511,627,776 bytes	1 TB = 1,024 GB.

Explanation:

- Bit (b): The smallest unit of data in computing, representing a binary digit (0 or 1).
- Byte (B): Made up of 8 bits, a byte is commonly used to store one character in memory.
- Kilobyte (KB): In computer memory/storage, 1 KB = 1,024 bytes (due to binary system), though in networking or marketing, 1 KB might be considered as 1,000 bytes.
- Megabyte (MB): 1 MB = 1,024 KB, commonly used to measure file sizes or smaller storage media.
- Gigabyte (GB): 1 GB = 1,024 MB, typical for measuring larger storage devices, like hard drives or RAM.
- Terabyte (TB): 1 TB = 1,024 GB, commonly used for large-scale data storage.

Table: Bit, Byte, KB, MB, GB, TB in Data Transfer Speed

Unit	Symbol	Explanation
Bit per second	bps	The number of bits transmitted per second.
Kilobits per second	Kbps	1 Kbps = 1,000 bits per second (typically used in network speeds).
Megabits per second	Mbps	1 Mbps = 1,000,000 bits per second (network bandwidth speeds).

Unit	Symbol	Explanation
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bits per second.
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bits per second.
Kilobytes per second	KBps	1 KBps = 1,024 bytes per second (used in file download speeds).
Megabytes per second	MBps	1 MBps = 1,024 KB per second.
Gigabytes per second	GBps	1 GBps = 1,024 MB per second.
Terabytes per second	TBps	1 TBps = 1,024 GB per second.

Explanation:

- Bit per second (bps): Commonly used in networking to indicate how many bits are transferred every second (1 bit per second).
- Kilobits per second (Kbps): Often used in older modems and slow internet connections (1 Kbps = 1,000 bits per second).
- Megabits per second (Mbps): Common for internet speeds (e.g., 100 Mbps internet speed).
- Gigabits per second (Gbps): Typically seen in high-speed internet connections or fiber optic connections.
- Megabytes per second (MBps): Used to measure download/upload speed in terms of bytes (not bits) per second.
- Gigabytes per second (GBps): Fast data transfers like SSD to SSD or high-end networks might use these units.

Memory vs. Speed Clarification:

- Memory/Storage units (KB, MB, GB, TB) are in bytes (B) and refer to capacity.
- Data transfer speeds (Kbps, Mbps, Gbps, Tbps) are typically in bits (b) and refer to how fast data is transferred over networks or between devices.

Example Conversions:

- 1 Byte (B) = 8 bits (b)
- 1 KB (Kilobyte) = 1,024 bytes (B) = 8,192 bits (b)

- 1 MB (Megabyte) = 1,024 KB = 1,048,576 bytes (B)
- 1 GB (Gigabyte) = 1,024 MB = 1,073,741,824 bytes (B)

When considering transfer speeds, it is important to remember that 1 byte is 8 bits. For example:

 A download speed of 10 Mbps (megabits per second) translates to a real download speed of 1.25 MBps (megabytes per second), since 10 megabits ÷ 8 = 1.25 megabytes.

Summary:

- Storage units like MB, GB, and TB refer to memory capacity.
- Transfer speed units like Mbps, Gbps are used to measure how fast data moves over a network.

Command Prompts

Introduction Windows

Welcome to the Windows Command Prompt (CMD) Commands Guide! In this comprehensive guide, you'll find a vast collection of Windows CMD commands ranging from beginner to advanced levels. CMD is a powerful tool for interacting with your Windows operating system through a command-line interface.

This guide is designed to help you learn and master the essential commands, making you more efficient in managing your Windows system. Whether you're a novice or an experienced user, you'll find valuable information here.

Commands

File and Directory Commands:

- 1. dir List files and directories in the current directory.
- cd Change the current directory.
- mkdir Create a new directory.
- rmdir Remove a directory.
- copy Copy files or directories.
- move Move files or directories.

- 7. del Delete files.
- 8. ren Rename files or directories.
- 9. type Display the contents of a text file.
- 10. find Search for a specific string in a file.
- 11. attrib Change file attributes.
- 12. tree Display directory structure as a tree.
- 13. xcopy Extended copy command with more options.
- 14. chkdsk Check and repair disk errors.
- 15. fc Compare two files or sets of files.
- 16. comp Compare the contents of two files.
- 17. robocopy Robust file and directory copying tool.
- 18. sfc System File Checker to repair corrupted system files.
- 19. findstr Search for specific strings in files.
- 20. more Display the contents of a text file one page at a time.
- 21. sort Sort the contents of a text file.
- 22. xcopy /e Copy directories and subdirectories, including empty ones.
- 23. compact Compress or decompress files on an NTFS partition.
- 24. xcaccls Backup and restore NTFS permissions.
- 25. subst Associate a drive letter with a directory.
- deltree Delete a directory and its subdirectories.
- 27. cipher Display or alter file encryption on NTFS volumes.
- 28. fsutil File system utility for managing various file system settings.
- openfiles Display or disconnect open shared files and folders.

Network Commands:

- 30. ipconfig Display network configuration information.
- 31. ping Test network connectivity.
- 32. tracert Trace the route to a remote host.
- 33. netstat Display network statistics.
- 34. nslookup Look up IP addresses and domain names.
- 35. hostname Display or set the computer's hostname.
- 36. arp Display and modify the ARP cache.
- 37. route Display or modify the routing table.
- 38. telnet Connect to remote hosts using Telnet.
- ftp Transfer files to/from remote FTP servers.
- 40. net Manage network resources.
- 41. netsh Network Shell for configuring network-related settings.

- 42. net use Connect or disconnect a computer from shared resources.
- 43. net view Display a list of available network resources.
- 44. net share Create, delete, or manage shared folders.
- 45. net session View and manage network sessions.
- 46. net time Synchronize the computer's time with a network server.
- 47. netdom Domain-related management tool.
- 48. route print Display the routing table with more details.
- 49. nbtstat Display statistics and current connections using NetBIOS over TCP/IP.
- 50. ipconfig /flushdns Flush and reset the DNS resolver cache.
- 51. ipconfig /release Release the current DHCP configuration.
- 52. ipconfig /renew Renew the DHCP configuration.
- 53. netsh firewall Configure the Windows Firewall.
- 54. netstat -a Display all active network connections and listening ports.

System Information and Management:

- 55. systeminfo Display detailed system information.
- tasklist List running processes.
- 57. taskkill Terminate processes or applications.
- 58. msconfig System Configuration Utility.
- 59. regedit Registry Editor.
- 60. eventvwr Event Viewer.
- 61. services msc Services management console.
- 62. shutdown Shut down or restart the computer.
- 63. gpupdate Update Group Policy settings.
- 64. ver Display the Windows version.
- 65. systeminfo Display detailed system information.
- 66. gpresult Display Group Policy settings for the current user.
- 67. powercfg Configure power management settings.
- 68. bcdedit Boot Configuration Data Editor for managing boot options.
- 69. dxdiag DirectX Diagnostic Tool for troubleshooting DirectX issues.
- 70. driverquery List installed device drivers.
- 71. msinfo32 System Information utility.
- 72. mmc Microsoft Management Console for creating custom management tools.
- taskmgr Task Manager for managing running processes.
- 74. perfmon Performance Monitor for system monitoring.
- 75. wmic Windows Management Instrumentation Command-line tool.
- 76. schtasks Schedule tasks to run at specific times or events.

User Account Management:

- 77. net user Manage user accounts.
- 78. net group Manage user groups.
- 79. net localgroup Manage local groups.
- 80. whoami Display the current user.
- 81. runas Run a program as another user.
- 82. control userpasswords2 User Accounts control panel.

Disk and Storage Management:

- 83. diskpart Disk Partitioning tool.
- 84. format Format a disk drive.
- 85. defrag Defragment disk drives.
- 86. diskmgmt.msc Disk Management console.
- 87. cleanmgr Disk Cleanup utility.

Miscellaneous Commands:

- 88. cls Clear the screen.
- 89. echo Display text on the screen.
- 90. date Display or set the system date.
- 91. time Display or set the system time.
- 92. help Get help on commands.
- 93. color Change the console text and background color.
- 94. assoc Display or modify file extension associations.
- 95. shutdown Shutdown or restart the computer.
- 96. shutdown /s Shutdown the computer (immediate).
- 97. shutdown /r Restart the computer (immediate).
- 98. shutdown /h Hibernate the computer (if supported). Source :

Mac/Linux

- 1. https://linuxcommand.org/lc3_resources.php
- 2. https://github.com/sudheerj/Linux-cheat-sheet

Unix/Linux Command Reference

FOSSwire.com

File Commands

ls - directory listing

ls -al - formatted listing with hidden files

cd dir - change directory to dir

cd - change to home

pwd - show current directory

mkdir dir - create a directory dir

rm file - delete file

rm -r dir - delete directory dir

rm -f file - force remove file

rm -rf dir - force remove directory dir *

cp file1 file2 - copy file1 to file2

cp -r dir1 dir2 - copy dir1 to dir2; create dir2 if it

mv file1 file2 - rename or move file1 to file2 if file2 is an existing directory, moves file1 into directory file2

In -s file link - create symbolic link link to file

touch *file* - create or update *file*

cat > file - places standard input into file

more file - output the contents of file

head file - output the first 10 lines of file

tail file - output the last 10 lines of file

tail -f file - output the contents of file as it grows, starting with the last 10 lines

Process Management

ps - display your currently active processes

top - display all running processes

kill pid - kill process id pid

killall proc - kill all processes named proc * bg - lists stopped or background jobs; resume a stopped job in the background

fg - brings the most recent job to foreground

fg n - brings job n to the foreground

File Permissions

chmod octal file - change the permissions of file to octal, which can be found separately for user, group, and world by adding:

• 4 - read (r)

2 - write (w)

• 1 - execute (x)

Examples:

chmod 777 - read, write, execute for all

chmod 755 - rwx for owner, rx for group and world For more options, see man chmod.

ssh user@host - connect to host as user

ssh -p port user@host - connect to host on port port as user

ssh-copy-id user@host - add your key to host for user to enable a keyed or passwordless login

Searching

grep pattern files - search for pattern in files grep -r pattern dir - search recursively for pattern in dir

command | grep pattern - search for pattern in the output of command

locate file - find all instances of file

System Info

date - show the current date and time

cal - show this month's calendar

uptime - show current uptime

w - display who is online

whoami - who you are logged in as

finger user - display information about user

uname -a - show kernel information

cat /proc/cpuinfo - cpu information

cat /proc/meminfo - memory information

man command - show the manual for command

df - show disk usage

du - show directory space usage

free - show memory and swap usage

whereis app - show possible locations of app which app - show which app will be run by default

Compression

tar cf file.tar files - create a tar named

file.tar containing files

tar xf file.tar - extract the files from file.tar tar czf file.tar.gz files - create a tar with

Gzip compression tar xzf file.tar.gz - extract a tar using Gzip

tar cjf file.tar.bz2 - create a tar with Bzip2 compression

tar xjf file.tar.bz2 - extract a tar using Bzip2 gzip file - compresses file and renames it to file.gz

gzip -d file.gz - decompresses file.gz back to

Network

ping host - ping host and output results whois domain - get whois information for domain

dig domain - get DNS information for domain

dig -x host - reverse lookup host wget file - download file

wget -c file - continue a stopped download

Installation

Install from source:

./configure

make

make install

dpkg -i pkg.deb - install a package (Debian)

rpm -Uvh pkg.rpm - install a package (RPM)

Shortcuts

Ctrl+C - halts the current command

Ctrl+Z - stops the current command, resume with

fg in the foreground or bg in the background

Ctrl+D - log out of current session, similar to exit

Ctrl+W - erases one word in the current line Ctrl+U - erases the whole line

Ctrl+R - type to bring up a recent command

!! - repeats the last command

exit - log out of current session

* use with extreme caution.


```
yiminggao@MacBookAir Week_One % ls
Workbook 1 - Intro to Java v2.1Y.pdf
Workbook 1 - Workshop - Financial Calculators v2.0Y.pdf
Workbook 1 - a - From-10000-Feet v3.0Y.pdf
Workbook 1 - b - CLI and Git v6.0Y.pdf
Workbook 1 - c - Working with IntelliJ v2.0Y.pdf
command-line
[yiminggao@MacBookAir Week One % cd command-line/VirtualWorld
[yiminggao@MacBookAir VirtualWorld % pwd
/Users/yiminggao/Documents/Year up/Content/Week One/command-line/VirtualWorld
[yiminggao@MacBookAir VirtualWorld % ls
Animals Foods Parks
[yiminggao@MacBookAir VirtualWorld % ls Foods/
       Mexican
[yiminggao@MacBookAir VirtualWorld % ls Animals/Pets
Cat.txt
                Dog.txt Goldfish.txt Parrot.txt
[yiminggao@MacBookAir VirtualWorld % ls Parks/Califiornia
Joshua Tree National Park.txt
                                       Sequoia National Park.txt
Point Reyes National Seashore.txt
                                      Yosemite National Park.txt
Redwood National Park.txt
[yiminggao@MacBookAir VirtualWorld % ls Foods/BBQ
Brisket.txt
                Ribs.txt
                               Sausage.txt
yiminggao@MacBookAir VirtualWorld % ls Animals/Farm/
Buffalo.txt
               Cow.txt
                               Goat.txt
                                               Pig.txt
                                                               Sheep.txt
yiminggao@MacBookAir VirtualWorld % ls Foods/Mexican/
                       Guacamole and Chips.txt
Burrito.txt
Chile Rellano.txt
                       Taco.txt
[yiminggao@MacBookAir VirtualWorld % cd Parks/Texas
yiminggao@MacBookAir Texas % ls
Big Bend National Park.txt
                                        Mineral Wells State Park.txt
Big Bend State Park.txt
                                        Padre Island National Seashore.txt
Enchanted Rock State Park.txt
[yiminggao@MacBookAir Texas % cd ../..
[yiminggao@MacBookAir VirtualWorld % ls
Animals Foods
                Parks
yiminggao@MacBookAir VirtualWorld %
```