

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

2 GENERALIZACIÓN DEL CONCEPTO DE LÍMITE

2. Generalización del Concepto de Límite

2.1. Límites Infinitos

Consideremos la función

$$f: \mathbb{R} - \{0\} \longrightarrow \mathbb{R}$$

 $f(x) = \frac{1}{x^2}$.

Si prefijamos M > 0, siempre es posible encontrar un entorno reducido en el cual los valores correspondientes de la función son mayores que M.

Por ejemplo, si $M=10^8$, y $x \neq 0$,

$$f(x) > 10^8 \Leftrightarrow \frac{1}{x^2} > 10^8$$

$$\Leftrightarrow x^2 < \frac{1}{10^8} \Leftrightarrow |x| < \frac{1}{10^4}.$$

Es decir,

$$0 < |x - 0| < \frac{1}{10^4} \implies f(x) > 10^8$$
,

y en el entorno reducido de centro 0 y radio 10^{-4} , la función es más grande que 10^8 . En general, para M>0 basta considerar $\delta<\frac{1}{\sqrt{M}}$ para que se verifique

$$0 < |x - 0| < \delta \implies 0 < |x - 0| < \frac{1}{\sqrt{M}}$$

$$\Rightarrow |x| < \frac{1}{\sqrt{M}} \implies x^2 < \frac{1}{M}$$

$$\Rightarrow \frac{1}{x^2} > M \implies f(x) > M.$$

Definición.

1. Una función tiene límite $+\infty$ en el punto a, si para cualquier número positivo M, existe un número positivo δ , tal que

$$0 < |x - a| < \delta \implies f(x) > M.$$

Para indicar esta situación, notamos

$$\lim_{x \to a} f(x) = +\infty .$$

2. Una función tiene límite $-\infty$ en el punto a, si para cualquier número positivo M, existe un número positivo δ , tal que

$$0 < |x - a| < \delta \implies f(x) < -M.$$

En este caso,

$$\lim_{x \to a} f(x) = -\infty.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

2 GENERALIZACIÓN DEL CONCEPTO DE LÍMITE

Figura 5: Figura 5

Teorema 10. (Álgebra de límites infinitos) Sean a un número real y f y g dos funciones tales que

$$1. \ \ Si \lim_{x \to a} f(x) = +\infty \ \ y \lim_{x \to a} g(x) = +\infty \ \ \ \text{entonces} \ \lim_{x \to a} (f+g)(x) = +\infty \ .$$

2.
$$Si \lim_{x \to a} f(x) = -\infty$$
 $y \lim_{x \to a} g(x) = -\infty$ entonces $\lim_{x \to a} (f+g)(x) = -\infty$.

3. Si c es número positivo, $\lim_{x\to a} f(x) = +\infty$ y $\lim_{x\to a} g(x) = -\infty$ entonces $\lim_{x\to a} (cf)(x) = +\infty$ y $\lim_{x\to a} (cg)(x) = -\infty$.

4. Si c es número negativo, $\lim_{x\to a}f(x)=+\infty$ y $\lim_{x\to a}g(x)=-\infty$ entonces $\lim_{x\to a}(cf)(x)=-\infty$ y $\lim_{x\to a}(cg)(x)=+\infty$.

5. $Si \lim_{x \to a} f(x) = +\infty$ $y \lim_{x \to a} g(x) = +\infty$ $(resp. -\infty)$ entonces $\lim_{x \to a} (f \cdot g)(x) = +\infty$ $(resp. -\infty)$. En consecuencia, $\lim_{x \to a} f(x) = -\infty$ $y \lim_{x \to a} g(x) = -\infty$ entonces $\lim_{x \to a} (f \cdot g)(x) = +\infty$.

Demostración:

1. Dado M>0, sean $\delta_1>0$ y $\delta_2>0$, tales que

$$0 < |x - a| < \delta_1 \implies f(x) > \frac{M}{2} \quad \text{y} \quad 0 < |x - a| < \delta_2 \implies g(x) > \frac{M}{2}$$
.

Entonces, para $\delta \leq \min\{\delta_1, \delta_2\}$ y x tal que $0 < |x - a| < \delta$,

$$(f+g)(x) = f(x)+g(x) > \frac{M}{2} + \frac{M}{2} = M$$
.

2. Dado M>0, sean $\delta_1>0$ y $\delta_2>0$, tales que

$$0 < |x - a| < \delta_1 \ \Rightarrow \ f(x) < -\frac{M}{2} \quad \text{y} \quad 0 < |x - a| < \delta_2 \ \Rightarrow \ g(x) < -\frac{M}{2} \ .$$

Entonces, para $\delta \leq \min\{\delta_1, \delta_2\}$ y x tal que $0 < |x - a| < \delta$,

$$(f+g)(x) = f(x)+g(x) < -\frac{M}{2}-\frac{M}{2} = -M.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

2.1 Límites Infinitos 2 GENERALIZACIÓN DEL CONCEPTO DE LÍMITE

3. Dado M>0, sean $\delta_1>0$ y $\delta_2>0$, tales que

$$0 < |x-a| < \delta_1 \implies f(x) > \frac{M}{c} \quad \text{y} \quad 0 < |x-a| < \delta_2 \implies g(x) < -\frac{M}{c}$$

Entonces, para x tal que $0 < |x-a| < \delta_1$,

$$(cf)(x) = c f(x) > c \frac{M}{c} = M,$$

y para x tal que $0<|x-a|<\delta_2$,

$$(cg)(x) = c g(x) < c\left(-\frac{M}{c}\right) = -M.$$

4. Dado M>0, sean $\delta_1>0$ y $\delta_2>0$, tales que (recordar c<0)

$$0 < |x-a| < \delta_1 \implies f(x) > -\frac{M}{c}$$
 y $0 < |x-a| < \delta_2 \implies g(x) < \frac{M}{c}$.

Entonces, para x tal que $0 < |x-a| < \delta_1$,

$$(cf)(x) = cf(x) < c\left(-\frac{M}{c}\right) = -M,$$

y para x tal que $0<|x-a|<\pmb{\delta}_2$,

$$(cg)(x) = c g(x) > c \frac{M}{c} = M.$$

5. Dado M>0, sean $\delta_1>0$ y $\delta_2>0$, tales que

$$0 < |x-a| < \delta_1 \Rightarrow f(x) > \sqrt{M}$$
 y $0 < |x-a| < \delta_2 \Rightarrow g(x) > \sqrt{M}$ (resp. $g(x) < -\sqrt{M}$).

Entonces, si $\delta \leq \min\{\delta_1, \delta_2\}$ y x tal que $0 < |x - a| < \delta$,

$$(f \cdot g)(x) = f(x)g(x) > \sqrt{M} \cdot \sqrt{M} = M$$
, (resp. $(f \cdot g)(x) < \sqrt{M}(-\sqrt{M}) = -M$).

De manera alternativa, podríamos haber observado que,

$$\lim_{x \to a} g(x) = -\infty \iff \lim_{x \to a} (-g)(x) = +\infty$$

y entonces

$$\lim_{x\to a} (f\cdot (-g))(x) = +\infty \ \Rightarrow \ \lim_{x\to a} -(f\cdot g)(x) = +\infty \ \Rightarrow \ \lim_{x\to a} (f\cdot g)(x) = -\infty \ .$$

Por último,

$$\lim_{x\to a} f(x) = -\infty \quad \text{ y } \quad \lim_{x\to a} g(x) = -\infty \ ,$$

implican

$$\lim_{x \to a} (-f)(x) = +\infty \quad \text{y} \quad \lim_{x \to a} (-g)(x) = +\infty ,$$

con lo que

$$\lim_{x \to a} (f \cdot g)(x) = \lim_{x \to a} ((-f) \cdot (-g))(x) = +\infty.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Límites en el Infinito

GENERALIZACIÓN DEL CONCEPTO DE LÍMITE

Q.E.D.

Ejemplo.
$$\lim_{x\to 1} \frac{2}{(x-1)^2} = +\infty$$

Al igual que sucedió cuando estudiamos a los límites finitos puntuales, presentaremos aquí la noción de límites laterales infinitos, en los cuales la atención se restringe a valores de la variable independiente acercándose al punto sólo por un lado.

Definición (Límites laterales infinitos).

1. Una función tiene límite $+\infty$ (resp. $-\infty$) por izquierda en el punto a, si para M>0, existe $\delta > 0$, tal que

$$a - \delta < x < a \implies f(x) > M \text{ (resp. } f(x) < -M);$$

2. Una función tiene límite $+\infty$ (resp. $-\infty$) por derecha en el punto a_1 si dado M>0, existe $\delta > 0$, tal que

$$a < x < a + \delta \implies f(x) > M \text{ (resp. } f(x) < -M)$$
.

Las situaciones anteriores se notarán, correspondientemente,

$$\lim_{x\to a^+}\,f(x)=\pm\infty \quad \ \ \mathrm{y}\quad \ \, \lim_{x\to a^-}\,f(x)=\pm\infty\;.$$

Proposición 7. (Álgebra de límites laterales infinitos) Los resultados del Teorema 10 son válidos si se reemplazan los símbolos $x \to a$ por $x \to a^+$ o $x \to a^-$.

Ejemplo. 1)
$$\lim_{x \to 2^+} \frac{1}{x-2} = +\infty$$
 2) $\lim_{x \to 2^-} \frac{1}{x-2} = -\infty$ 3) $\lim_{x \to 0^+} \ln x = -\infty$ 4) $\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty$.

$$3) \lim_{x \to 0^+} \ln x = -\infty \qquad 4)$$

$$4) \lim_{x \to \frac{\pi}{2}^{-}} \tan x = +\infty$$

22 Límites en el Infinito

Si aceptamos a los símbolos

$$x \to +\infty$$
 y $x \to -\infty$

para describir, respectivamente, a las situaciones en las que se estudia el comportamiento de cierta propiedad a medida que el valor de la variable independiente crece con valores arbitrariamente grandes, o decrece con valores arbitrariamente pequeños, definiremos los siguientes límites, a los que llamaremos límites en el infinito.

Definición (Límites finitos en el infinito).

1. Una función f tiene límite ℓ cuando $x \to +\infty$, si para cualquier número $\varepsilon > 0$, existe un número H > 0, tal que

$$x > H \implies |f(x) - \ell| < \varepsilon$$
.

Para indicar esta situación, notamos $\lim_{x \to +\infty} f(x) = \ell$.

2. Una función f tiene límite ℓ cuando $x \to -\infty$, si para cualquier número $\varepsilon > 0$, existe un número H>0, tal que

$$x < -H \Rightarrow |f(x) - \ell| < \varepsilon$$
.

En este caso, notamos $\lim_{x \to -\infty} f(x) = \ell$.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

GENERALIZACIÓN DEL CONCEPTO DE LÍMITE

Límites en el Infinito

Figura 6: Figura 6

Observemos en este punto que, si una propiedad se verifica para todo $x > H_1$, y otra propiedad se verifica para $x > H_2$, ambas propiedades, simultáneamente, se verifican para $H \ge \max\{H_1, H_2\}$. De la misma manera, si una propiedad vale para $x < -H_1$, y otra para $x < -H_2$, ambas propiedades valen para $H \leq \min\{-H_1, -H_2\}$.

Con estas dos observaciones, modificando lo que se deba en cada caso, se deja como ejercicio probar el siguiente resultado.

Proposición 8. Los resultados de la Subsección 1.8 son válidos si se reemplazan los símbolos $x \rightarrow a$ por $x \to +\infty$ o $x \to -\infty$. Lo mismo para el Principio de Intercalación.

Ejemplo. 1)
$$\lim_{x \to -\infty} e^x = 0$$

2)
$$\lim_{x \to +\infty} (\frac{1}{x-2} + 1) = 1$$

2)
$$\lim_{x \to +\infty} \left(\frac{1}{x-2} + 1\right) = 1$$
 3) $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$.

Combinando las definiciones anteriores con las hechas para límites infinitos, definiremos los nuevos símbolos que representan situaciones en los que las funciones crecen o decrecen arbitrariamente a medida que también lo hace la variable independiente.

Definición (Límites infinitos en el infinito).

1. Una función f tiene límite $+\infty$ cuando $x \to +\infty$, si para cualquier número M > 0, existe un número H > 0, tal que

$$x > H \implies f(x) > M$$
.

2. Una función f tiene límite $+\infty$ cuando $x \to -\infty$, si para M > 0, existe H > 0, tal que

$$x < -H \implies f(x) > M$$
.

3. Una función f tiene límite $-\infty$ cuando $x \to +\infty$ si dado M > 0, existe H > 0, tal que

$$x > H \implies f(x) < -M$$
.

4. Una función f tiene límite $-\infty$ cuando $x \to -\infty$ si dado M > 0, existe H > 0, tal que

$$x < -H \Rightarrow f(x) < -M$$
.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

3 LÍMITES INDETERMINADOS

Los símbolos para las situaciones anteriores son, respectivamente,

$$\lim_{x\to +\infty} f(x) = +\infty \;, \qquad \lim_{x\to -\infty} f(x) = +\infty \;, \qquad \lim_{x\to +\infty} f(x) = -\infty \;, \qquad \text{y} \qquad \lim_{x\to -\infty} f(x) = -\infty \;.$$

Proposición 9. (Álgebra de límites infinitos en el infinito) Los resultados de la Subsección 2.1 son válidos si se reemplazan los símbolos $x \to a$ por $x \to +\infty$ o $x \to -\infty$.

Ejemplo. 1)
$$\lim_{x \to +\infty} x^3 = +\infty$$
 2) $\lim_{x \to -\infty} x^3 = -\infty$ 3) $\lim_{x \to +\infty} \ln x = +\infty$ 4) $\lim_{x \to +\infty} e^x = +\infty$.

Proposición 10.

- $\begin{array}{ll} 1. & \lim_{x \to a} f(x) = \pm \infty \ \Rightarrow \ \lim_{x \to a} \left(\frac{1}{f}\right)(x) = 0 \ , \ y \ \ lo \ \ mismo \ \ o \ curre \ \ cuando \ se \ \ reemplazan \ \ los \ \ símbolos \ \ punto \ x \to a \ \ por \ x \to a^-, \ x \to +\infty \ \ o \ x \to -\infty. \end{array}$
- 2. $\lim_{x \to \pm \infty} f(x) = \ell \iff \lim_{x \to 0^{\pm}} f\left(\frac{1}{x}\right) = \ell$, y lo mismo ocurre si se reemplaza el valor ℓ por los símbolos $+\infty$ o $-\infty$.

Demostración:

1. Surge observando que, para M > 0,

$$\begin{split} f(x) > M & \Leftrightarrow \ 0 < \frac{1}{f(x)} < \frac{1}{M} \\ & \Rightarrow \ \left| \frac{1}{f(x)} - 0 \right| < \frac{1}{M} \ , \end{split} \qquad \qquad \begin{aligned} f(x) < -M & \Leftrightarrow \ -\frac{1}{M} < \frac{1}{f(x)} < 0 \\ & \Rightarrow \ \left| \frac{1}{f(x)} - 0 \right| < \frac{1}{M} \ . \end{aligned}$$

2. Aquí, para H > 0,

$$x > H \Leftrightarrow 0 < \frac{1}{x} < \frac{1}{H}$$
, $y \qquad x < -H \Leftrightarrow -\frac{1}{H} < \frac{1}{x} < 0$.

Q.E.D.

Ejemplo.

$$\lim_{x\to\pm\infty}\sin\left(\frac{1}{x}\right)=\lim_{x\to0^\pm}\sin x=0\ , \quad \ \ \text{y} \quad \ \, \lim_{x\to\pm\infty}x\,\sin\left(\frac{1}{x}\right)=\lim_{x\to0^\pm}\frac{\sin x}{x}=1\ .$$

3. Límites Indeterminados

Dado un número real c cualquiera, consideremos las funciones

$$f(x) = c(x-a)$$
, $g(x) = (x-a)$, $y h(x) = (x-a)^2$.

Para ellas se verifica:

$$\lim_{x \to a} \; f(x) = 0 \ , \quad \ \, \lim_{x \to a} \; g(x) = 0 \ , \quad \ \, \text{y} \quad \ \, \lim_{x \to a} \; h(x) = 0 \ , \label{eq:force}$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

3 LÍMITES INDETERMINADOS

y además

$$\lim_{x\to a} \ \left(\frac{f}{g}\right)(x) = c \ , \quad \ \ \text{y} \quad \ \, \lim_{x\to a} \ \left(\frac{f}{h}\right)(x) = \pm \infty \ ,$$

dependiendo el último límite del signo de c.

En ese ejemplo observamos que el cociente de dos funciones que tienen límite cero en un punto, puede tener cualquier límite finito, o incluso los símbolos $+\infty$ o $-\infty$.

Se dice que el límite del cociente de dos funciones que tienen límite cero en un punto es una indeterminación del límite.

Un límite es indeterminado cuando no puede anticiparse o determinarse el resultado, y se deben realizar simplificaciones, reemplazos adecuados, etc., antes de encontrarlo.

El producto de una función que tiene límite cero en un punto, por una función acotada, tiene límite cero, y por lo tanto está determinado. En cambio, no puede anticiparse el resultado para el producto de una función que tienda a cero, por una función que tenga límite infinito.

Casos de Límites Indeterminados

- 1. Cociente de dos funciones con límite cero.
- 2. Cociente de dos funciones con límite infinito (de cualquier signo).
- 3. Producto de un límite cero por uno infinito.
- 4. Suma de dos infinitos de distinto signo.

Nota. Si bien mencionamos que el cociente de dos funciones con límite 0 en un punto es un caso de indeterminación del límite, no pasa esto cuando el numerador es la función nula, pues en este caso, el límite sí está determinado, y vale 0. En efecto, si g es una función definida en un entorno reducido de un punto a, que no se anula en este entorno, y que tiende a 0 en ese punto, entonces, para los x dentro de ese entorno, $\frac{0}{g(x)} = 0$, y por el Carácter Local del Límite, $\lim_{x \to a} \frac{0}{g(x)} = 0$.

Ejemplo. 1)
$$\lim_{x \to 1} \frac{x-1}{x^2-1} = \frac{1}{2}$$
 2) $\lim_{x \to +\infty} \frac{x^2+x}{x^3} = 0$ 3) $\lim_{x \to -\infty} \frac{x^2+x}{x} = -\infty$ 4) $\lim_{x \to 1} (\sqrt{x} - 1) \frac{3}{x^2-1} = \frac{1}{4}$ 5) $\lim_{x \to +\infty} x^2 - x = +\infty$

Nota

Al estudiar funciones del tipo f^g , aparecerán otros límites indeterminados.

Nota.

Las mismas consideraciones hechas para el cálculo de límites puntuales valen para los límites en el infinito y para el cálculo de límites laterales, con los mismos casos de indeterminación.