

Matemática IV - Ing. Mecánica - 2018 Dra. Andrea Ridolfi Ing. Marcos Saromé

Guía de Actividad 5:

Ejercicio 1.

Probar que si m y n son enteros,

$$\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0 & cuando & m \neq n \\ 2\pi & cuando & m = n \end{cases}$$

Ejercicio 2.

Aplicar la desigualdad [10], Sección 30, para probar que en todo valor x del intervalo $-1 \le x \le 1$, las funciones

$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} (x + i\sqrt{1 - x^2} \cos \theta)^n d\theta \ n = 0, 2, 3, \dots$$

satisfacen la desigualdad $|P_n(x)| \le 1$

Ejercicio 3.

Supongamos que una función f(z) es analítica en un punto $z_0 = z_0(t)$ de un arco diferenciable $z = z(t) (a \le t \le b)$ Probar que si w(t) = f[z(t)], entonces

$$w'(t) = f'[z(t)]z'(t)$$

cuando $t = t_0$

Sugerencia: Escribir f(z) = u(x,y) + iv(x,y) y z(t) = x(t) + iy(t) de modo que

$$w(t) = u[x(t), y(t)] + iv[x(t), y(y)]$$

Aplicar entonces la regla de la cadena para funciones de dos variaables para escribir

$$w' = u_x x' + u_y y' + i(v_x x' + v_y y')$$

y utilizar las ecuaciones de Cauchy-Riemann.

Ejercicio 4.

Dados los contornos C y las funciones f usar representaciones paramétricas para C, o para los fragmentos de C, con el fin de calcular:

$$\int_C f(z)dz$$

1

$$f(z) = (z+2)/z$$
 y C es

- 1. el semicírculo $z=2e^{i\theta}(0\leq\theta\leq\pi)$
- 2. el semicírculo $z=2e^{i\theta}(\pi\leq\theta\leq2\pi)$

3. el círculo $z = 2e^{i\theta} (0 \le 2\pi)$

Ejercicio 5.

Sean C_1 y C_2 los círculos $z=Re^{i\theta}(0\leq\theta\leq2\pi)$ y $z=z_0+Re^{i\theta}(0\leq\theta\leq2\pi)$ respectivamente. Usar estas representaciones paramétrica para probar que

$$\int_C f(z)dz = \int_{C_0} f(z - z_0)dz$$

cuando f es continua a trozos sobre C

Ejercicio 6.

Sea C_0 el circulo $|z-z_0|=R$ en sentido contrario al de las agujas de un reloj. Usar la representación paramétrica $z=z_0+Re^{i\theta}(-\pi\leq\theta\leq\pi)$ para C_0 con objeto de deducir las siguientes fórmulas de integración:

1.
$$\int_{C_0} \frac{dz}{z - z_0} = 2\pi i$$

2.
$$\int_{C_0} (z-z_0)^{n-1} dz = 0 (n = \pm 1, \pm 2, ...)$$

3. $\int_{C_0} (z-z_0)^{a-1} = i \frac{2R^a}{a} \operatorname{sen}(a\pi)$ donde a es cualquier número real distinto de cero y donde se toman la rama principal del integrando y el valor principal de R^a

Ejercicio 7.

Demostrar que si f es analítica en el interior de y sobre un contorno cerrado simple C y Z_0 no esta sobre C, entonces

$$\int_C \frac{f'(z)dz}{z - z_0} = \int_C \frac{f(z)dz}{(z - z_0)^2}$$

Ejercicio 8.

Sea C el círculo unidad $z=e^{i\theta}(-\pi \leq \theta \leq \pi)$. Probar en primer lugar que, para cualquier constante a real,

$$\int \frac{e^{az}}{z} dz = 2\pi i$$

A continuación, escribir la integral en términos de θ para deducir la fórmula de integración

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi$$

Ejercicio 9.

1. Con la ayuda de la fórmula binomial:

$$(z_1 + z_2)^n = z_1^n + \frac{n}{1!} z_1^{n-1} z_2 + \frac{n(n-1)}{2!} z_1^{n-2} z_2^2 + \dots + \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} z_1^{n-k} z_2^k + \dots + z_2^n$$

probar que para cada valor de n, la función

$$P_n(z) = \frac{1}{n!2^n} \frac{d^n}{dz^n} (z^2 - 1)^n (n = 0, 1, 2, \dots)$$

es un polinomio de grado n

2. Sea C cualquier contorno cerrado simple positivamente orientado que rodea a un punto prefijado z. Con la ayuda de la representación integral:

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_c \frac{f(s)ds}{(s-z)^{n+1}} \ (n=0,1,2,\dots)$$

para la n-ésima derivada de una función analítica, demostrar que los polinomios del inciso 1 se pueden expresar en la forma:

$$P_n(z) = \frac{1}{2^{n+1}\pi i} \int_C \frac{(s^2 - 1)^n}{(s - z)^{n+1}} ds \ (n = 0, 1, 2, \dots)$$

3. Argumentar cómo el integrando en la representación del segundo inciso se puede escribir $(s+1)^n/(s-1)$ si z=1. Aplicar entonces la fórmula integral de Cauchy para probar que $P_n(1)=1(n=0,1,2,\ldots)$. Análogamente, probar que $P_n(-1)=(-1)^n(n=0,1,2,\ldots)$ donde z_1 y z_2 son números complejos arbitrarios, y n es un entero positivo $(n=1,2,\ldots)$.

Ejercicio 10.

Probar de dos maneras que la sucesión

$$z_n = -2 + i \frac{(-1)^n}{n} (n = 1, 2, \dots)$$

converge a -2.

Ejercicio 11.

Sean r_n los módulos y Θ_n los argumentos principales de los números complejos z_n del Ejercicio anterior. Demostrar que la sucesión $r_n (n = 1, 2, ...)$ converge, pero la sucesión $\Theta_n (n = 1, 2, ...)$ no converge.

Ejercicio 12.

Probar que

si
$$\lim_{n\to\infty} z_n = z$$
 entonces $\lim_{n\to\infty} |z_n| = |z|$

Ejercicio 13.

Considerando los restos $\rho_N(z)$ comprobar que

$$\sum_{n=1}^{\infty} z = \frac{z}{1-z}$$
 para $|z| < 1$

Sugerencia: Usar la identidad (Ej 18, Sec 7)

$$1 + z + z + \dots + z^{N} = \frac{1 - z^{N+1}}{1 - z} (z \neq 1)$$

para probar que $\rho_N(z) = z^{N+1}/(1-z)$

Ejercicio 14.

Escribamos $z = re^{i\theta}$, con 0 < r < 1, en la fórmula de suma obtenida en el ejercicio anterior. Probar entonces, con ayuda del Teorema 2 de la Sección 44, que

$$\sum_{n=1}^{\infty} r^n \cos n\theta = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2}$$

$$\sum_{n=1}^{\infty} r^n \sin n\theta = \frac{r \sin \theta - r^2}{1 - 2r \cos \theta + r^2}$$

cuando 0 < r < 1. (Nótese que estas fórmulas son asimismo válidas cuando r = 0.)

Ejercicio 15.

Probar que el límite de una sucesión convergente de números complejos es único, recurriendo al correspondiente resultado para las sucesiones reales.

Ejercicio 16.

Demostrar que $si \sum_{n=1}^{\infty} z_n = S$, entonces $\sum_{n=1}^{\infty} \overline{z_n} = \overline{S}$

Ejercicio 17.

Sea c cualquier número complejo. Probar que

si
$$\sum_{n=1}^{\infty} z_n = S$$
, entonces $\sum_{n=1}^{\infty} cz_n = cS$

Ejercicio 18.

Teniendo en cuenta el resultado análogo para series reales, y por referencia al Teorema 2 de la Sección 44, probar que si

$$\sum_{n=1}^{\infty} z_n = S \text{ y } \sum_{n=1}^{\infty} w_n = T \text{ entonces } \sum_{n=1}^{\infty} (z_n + w_n) = S + T$$

Ejercicio 19.

Hallar la representación en serie de Maclaurin

$$z \cosh(z) = \sum_{n=1}^{\infty} \frac{z^{3n+1}}{(2n)!} [|z| < \infty]$$

Ejercicio 20.

Hallar la serie de Maclaurin de la función

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \left(\frac{1}{1 + (z^4/9)}\right) \tag{1}$$

Ejercicio 21.

Desarrollar $\cos z$ en serie de Taylor centrada en el punto $z = \pi/2$

Ejercicio 22.

Usar la relación sen $z = (e^{iz} - e^{-iz})/(2i)$, junto con los ejercicios 16 y 17, al justificar ciertos pasos, para deducir la serie de Maclaurin de sen z a partir de la de e^x

Ejercicio 23.

Probar que

$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \frac{z^2}{4!} + \dots (0 < |z| < \infty)$$

Ejercicio 24.

Hallar una representación para 1/(1+z) en potencias negativas de z que sea válida cuando $1<|z|<\infty$

Ejercicio 25.

Representar la función (z+1)/(z-1) por

- 1. su serie de Maclaurin, y describir la región de validez de tal representación.
- 2. su serie de Laurent en el dominio $1 < |z| < \infty$.

Ejercicio 26.

Hallar el desarrollo en serie de Laurent para la función 1/(z-a) para el dominio $|a| < |z| < \infty$, donde a es real y -1 < a < 1. A continuación, escribir $z = e^{i\theta}$ para obtener las fórmulas de suma

$$\sum_{n=1}^{\infty} a^n \cos n\theta = \frac{a \cos \theta - a^2}{1 - 2a \cos \theta + a^2}$$

$$\sum_{n=1}^{\infty} a^n \sin n\theta = \frac{a \sin \theta}{a - 2a \cos \theta + a^2}$$

Ejercicio 27.

1. Sea z cualquier número complejo, y sea C el círculo unidad $w=e^{i\phi}$ para $(-\pi \le \phi \le \pi)$ en el plano w. Usar el contorno

$$c_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}}$$
 para $(n = 0, \pm 1, \pm 2, ...)$

para los coeficientes de una serie de Laurent, adaptando a tales series en torno al origen del plano w, para demostrar que

$$e^{\left[\frac{z}{2}(w-\frac{1}{w})\right]} = \sum_{n=-\infty}^{\infty} J_n(z)w^n \text{ para } (-\pi \le \phi \le \pi)$$

donde

$$J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(n\phi - z \sin \phi)} d\phi \ (n = 0, \pm 1, \pm 2, ...)$$

2. Con la ayuda del Ejercicio 7, Sección 31, relativo a ciertas integrales definidas de funciones complejas pares e impares de una variable real, probar que los coeficientes del inciso 1 se pueden escribir

$$J_n(z) = \frac{1}{\pi} \int_0^{\pi} \cos(n\phi - z \sin\phi) d\phi \ (n = 0, \pm 1, \pm 2, \dots)$$

Ejercicio 28.

1. Sea f una función analítica en un dominio anular en torno del origen que contiene al círculo unidad $z = e^{i\phi}(-\pi \le \phi \le \pi)$. Tomando ese círculo como camino de integración en las expresiones [2] y [3], sección 47, para los coeficientes a_n y b_n en una serie de Laurent en potencias de z, probar que

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\phi}) d\phi + \frac{1}{2\pi} \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} f(e^{i\phi}) \left[\left(\frac{z}{e^{i\phi}} \right)^n + \left(\frac{e^{i\phi}}{z} \right)^n \right] d\phi$$

cuando z es cualquier punto del dominio anular

2. Haciendo $u(\theta)=Re[f(e^{i\theta}],$ probar que del desarrollo del item 1 se sigue que

$$u(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\phi)d\phi + \frac{1}{\pi} \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} u(\phi) \cos[n(\theta - \phi)]d\phi$$

Esta es una forma de escribir el desarrollo en serie de Fourier de la función real $u(\theta)$ en el intervalo $-\pi \leq \theta \leq pi$. La restricción sobre $u(\theta)$ es más severa de lo necesasrio para que sea factible tal representación en serie de Fourier.

Entrega

Se deben entregar obligatoriamente los ejercicios: