Numerical Analysis Homework #1

Junyoung, Jang (2013314051)

April 8, 2013

1. Find the roots of the following equations by using Bisection, Newton's and Secant methods. Comapare the convergence (verify with real numbers).

(1)
$$e^{x} - 3x^2 = 0$$

(Solution.)

We can find roots using Rootfinding Method. I choose error boundary less than ϵ First, We find intersection point of e^x and $3x^2$ or using f(x)f(y) < 0

Figure 1: Problem 1-(1), Graph.

Redpoint of Right Graph of Figure 1. is Roots. Problem 1-(1) have two roots. Therefore, Using rootfinding method,

11			Bisection		•••••	11		•	R	E S U L T= Newton			11			Secant			11
11	n	×	l y	I	Err	П	n	Ϊ	×	l у	Ī	Err	П	n	l ×	l y	Ī	Err	11
	1 2 3	0.50000 0.75000 0.87500	0.89872 0.42950 0.10200	j (1.00000 0.50000 0.25000	 	1 2 3	İ	1.00000 2.00000 1.00000	-0.28172 -4.61094 -0.28172	 - -	0.00000 1.00000 0.09391	 	1 2 3	1.00000 0.78020 0.90287	-0.28172 0.35577 0.02116	 	1.00000 0.28172 0.13586	
	4 5 6	0.93750 0.90625 0.92188 0.91406	-0.08313 0.01116 -0.03556 -0.01210	i d	0.12500 0.06250 0.03125 0.01562		4 5 6	į	0.91416 0.91002 0.91001 0.91001	-0.01237 -0.00003 -0.00000		0.00455 0.00001 0.00000 0.00000	H	4 5 6	0.91062 0.91000 0.91001	-0.00183 0.00001 0.00000 -0.00000		0.00852 0.00068 0.00000 0.00000	
ij	8 9	0.91016	0.00536	į (0.00781 0.00391	ii							ij	8 9	0.91001	0.00000		0.00000	ii
	50 51 52	0.91001 0.91001 0.91001	0.00000	į	0.00000								ii II II						

Figure 2: Problem 1-(1), Result of 1 near root

We choose initial condition,

Bisection: $x_0 = 0, x_1 = 1$, **Newton:** $x_0 = 1$, **Secant:** $x_0 = 0, x_1 = 1$

We aleady know this result. Because we learned convergence speed. We have result as expected.

Therefore, We know convergence speed which is Bisection << Secant < Newton. Next, We once more find root which is near 3. Similarly, using rootfinding method,

		Bisection		П		=======	Newton		11			Secant		
	n	× y	Err	П	n	×	l y l	Err	11	n	×	l y	Err	ı
11	1	3,50000 -3,63455	1.00000	11	1	1 4.00000	6.59815	0.00000	11	1	1 4.00000	6.59815	0.25000) [
ii.	2	j 3.75000 j 0.33358 j	0.50000	ii.	2	5.00000	73.41316	0.14155	- i i	2	3.51170	-3.49088	0.13909	5 j
ΪÌ	3	3.62500 -1.89715	0.25000	ΪÏ	3	4.38003	22.28619	0.10497	- 11	3	3.68066	-0.96924	0.04590) į
ΪÌ	4	3.68750 -0.84811	0.12500	ΪÏ	4	3.96393	5.52558	0.05072	- 11	4	3.74560	0.24581	0.01734	4 j
ΪÌ	5	3.71875 -0.27446	0.06250	ΪÏ	5	3.77260	0.79545	0.01021	- 11	5	3.73246	-0.01200	0.00352	2 j
ΪÌ	6	3.73438 0.02518	0.03125	ΪÏ	6	3.73446	0.02687	0.00037	- 11	6	3.73307	-0.00014	0.00016	5 j
ΪÌ	7	3.72656 -0.12572	0.01562	ΪÏ	7	3.73308	0.00003	0.00000	- 11	7	3.73308	0.00000	0.00000) į
ΪÌ	8	3.73047 -0.05054	0.00781	ΪÏ	8	3.73308	0.00000	0.00000	- 11	8	3.73308	-0.00000	0.00000) į
ΪÌ	9	3.73242 -0.01275	0.00391	ΪÏ	9	3.73308	0.00000	0.00000	- 11	9	3.73308	-0.00000	0.00000) į
ΪÌ	10	3.73340 0.00620	0.00195	ii.		i	i i		- 11	10	3.73308	0.00000	0.00000) į
H	11	3.73291 -0.00328	0.00098	ii .		i	i i		- 11	11	3.73308	0.00000	0.00000) j
H		i i i		ii .		i	i i		- 11		i			į.
ΤĹ	50	3.73308 0.00000	0.00000	TÍ.		i	i i		- 11		i			į.
ΤĹ	51	3.73308 -0.00000	0.00000	TÍ.		i	i i		- 11		1			į.
ΤĹ	52	3.73308 0.00000	0.00000	TÍ.		i	i i		- 11		1			į.

Figure 3: Problem 1-(1), Result of 3 near root

We can know convergence speed, as known above. Therefore, we can check that i learned in theory.

(2)
$$x^3 = x^2 + x + 1$$

(Solution.)

Similarly, we can find roots using Rootfinding Method. I choose error boundary less than ϵ First, We find intersection point of x^3 and $x^2 + x + 1$ or using f(x)f(y) < 0

Figure 4: Problem 1-(2), Graph.

Problem 1-(2) have one root near 2. Therefore, Using rootfinding method, We choose initial condition,

Bisection: $x_0 = 1, x_1 = 2,$ **Newton:** $x_0 = 1,$ **Secant:** $x_0 = 1, x_1 = 2$

Like Problem (1), We have similar result. We can know centain comparison of convergence speed. Bisection << Secant < Newton.

(3)
$$e^x = \frac{1}{0.1+x^2}$$

(Solution.)

Similary, we can find roots using Rootfinding Method. I choose error boundary less than ϵ First, We find intersection point of e^x and $\frac{1}{0.1+x^2}$ or using f(x)f(y)<0 Problem 1-(3) have one root near 1. Therefore, Using rootfinding method, We choose initial condition,

Bisection: $x_0 = 0, x_1 = 1$, **Newton:** $x_0 = 1$, **Secant:** $x_0 = 0, x_1 = 1$

We can get different result from above. Newton Method don't have convergence point. Since there is not differential value of $f(x) = e^x - \frac{1}{0.1 + x^2}$ at x=0 and f' = 0 where x < -1. Therefore,

											F	۲ ا	E S U L T=											
11					Bisection	1							Newton								Secant			
П	n	Ī	×	Ī	У	Ī	Err	П	n	Ī	×	Ī	У	Ī	Err	П	n	Ī	×	Ī	У	I	Err	-11
11	1	ī	1.50000	1	-1.37500		1.00000		1	ī	1.00000	ī	-2.00000	1	0.00000	11	1	ī	2.00000	1	1.00000		0.50000	11
11	2		1.75000	1	-0.45312		0.50000	11	2		2.00000		1.00000		0.07692	-11	2		1.66667		-0.81481		0.20000	-11
11	3		1.87500		0.20117		0.25000	11	3		1.85714		0.09913		0.00957	-11	3		1.81633		-0.12323		0.08240	-11
П	4		1.81250	1	-0.14331		0.12500	11	4		1.83954		0.00141		0.00014	-11	4		1.84299		0.02034		0.01447	- 11
11	- 5		1.84375		0.02451		0.06250	11	5		1.83929		0.00000		0.00000	-11	5		1.83922		-0.00039		0.00205	- 11
H	6		1.82812		-0.06050		0.03125	11								-11	6		1.83929		-0.00000		0.00004	- 11
П	7		1.83594		-0.01827		0.01562	11								-11	7		1.83929		0.00000		0.00000	- 11
П	8		1.83984		0.00305		0.00781	-11								-11	8		1.83929		-0.00000		0.00000	- 11
П								-11								-11								- 11
П	50		1.83929		0.00000		0.00000	-11								-11								- 11
Ш	51		1.83929		0.00000		0.00000	-11								-11								- 11
Ш	52		1.83929		0.00000		0.00000	-11								\Box								- 11

Figure 5: Problem 1-(2), Result of 2 near root

Figure 6: Problem 1-(3), Graph.

11			Bisectio						R	E	S U L T= Newton					==			Secant			
11	n	×	l y	ı	Err	П	n	ī	×	Ī	У		Err		n		×	ī	У		Err	11
	1 2 3 4 5 6 7 8 9 10 11	0.50000 0.75000 0.62500 0.68750 0.65625 0.64062 0.64844 0.65234 0.65039 0.64941 0.64990	0.60757 -0.16997 0.24249 0.04312 -0.06158 -0.00879 0.01728 0.00427 -0.00225 0.00101		1.00000 0.50000 0.25000 0.12500 0.06250 0.03125 0.00781 0.00391 0.00195 0.00098		1 2 3 	i.	1.00000 2.00000 0.97926		1.80919 7.14515 1.71817		0.00000 1.04235 0.95553		1 2 3 4 5 6 7 8 9 10 11		1.00000 0.83262 0.60697 0.65754 0.65012 0.64975 0.64975 0.64975 0.64975	 	1.80919 1.03873 -0.30001 0.05160 0.00245 -0.00002 0.00000 -0.00000 0.00000 -0.00000		1.00000 0.20102 0.37177 0.07691 0.01141 0.00057 0.00000 0.00000 0.00000 0.00000 0.00000	
 	50 51 52	0.64975 0.64975 0.64975	-0.00000 0.00000	١į.	0.00000 0.00000 0.00000	11	:::					 		 	:::			 				

Figure 7: Problem 1-(3), Result of 1 near root

no longer newton method don't work. We can know disadvantage of Newton method above result.

(4) $x = 1 + 0.3\cos(x)$

(Solution.)

Similarly, we can find roots using Rootfinding Method. I choose error boundary less than ϵ First, We find intersection point of x and $1 + 0.3\cos(x)$ or using f(x)f(y) < 0

Figure 8: Problem 1-(4), Graph.

Problem 1-(4) have one root near 1. Therefore, Using rootfinding method,

П			Bisection		П			Newton		-11			Secant		- 11
П	n	×	l y l	Err	П	n	×	l y	Err	П	n	×	l y	Err	П
 	1	1.50000	0.47878	1.00000	11	1	2.00000	1.12484	0.00000	11	1	2.00000	1.12484	0.50000	11
ii.	2	1.25000	0.15540	0.50000	Ξij	2	3.00000	2.29700	0.03981	- 11	2	1.12595	-0.00314	0.77628	- ii
ii.	3	1.12500	-0.00435	0.25000	ΞÜ	3	2.88515	2.17534	0.04321	- 11	3	1.12839	-0.00005	0.00216	- ii
ii.	4	1.18750	0.07531	0.12500	ΞÜ	4	2.76564	2.04469	0.04716	- 11	4	1.12843	0.00000	0.00003	- ii
ii.	5	1.15625	0.03542	0.06250	ΞÜ	5	2.64108	1.90428	0.05179	- 11	5	1.12843	-0.00000	0.00000	Ξij
П	6	1.14062	0.01552	0.03125	11	6	2.51104	1.75335	0.05725	- 11	6	1.12843	-0.00000	0.00000	- 11
П		1	l I		11			l		- 11					- 11
П	40	1.12843	-0.00000	0.00000	11	40	1.18554	0.07280	0.07832	- 11					- 11
П	41	1.12843	0.00000	0.00000	11	41	1.09943	-0.03680	0.07263	- 11					- 11
П	42	1.12843	0.00000	0.00000	11	42	1.18554	0.07280	0.07832	- 11					- 11
П	43	1.12843	-0.00000	0.00000	11	43	1.09943	-0.03680	0.07263	- 11					- 11
П	44	1.12843	0.00000	0.00000	11	44	1.18554	0.07280	0.07832	- 11			l		- 11
П	45	1.12843	-0.00000	0.00000	11	45	1.09943	-0.03680	0.07263	- 11			l		- 11
П	46	1.12843	0.00000	0.00000	11	46	1.18554	0.07280	0.07832	- 11			l		- 11
П	47	1.12843	-0.00000	0.00000	11	47	1.09943	-0.03680	0.07263	- 11			l	l	- 11
П	48	1.12843	0.00000	0.00000	11	48	1.18554	0.07280	0.07832	- 11		l	l	l	- 11
П	49	1.12843	0.00000	0.00000	11	49	1.09943	-0.03680	0.07263	- 11		l	l	l	- 11
П	50	1.12843	-0.00000	0.00000	11	50	1.18554	0.07280	0.07832	- 11		l	l	l	- 11
П	51	1.12843	0.00000	0.00000	11	51	1.09943	-0.03680	0.07263	- 11		1	l	l	- 11
П	52	1.12843	0.00000	0.00000	11	52	1.18554	0.07280	0.07832	- 11		l	l	l	- 11
П		I	l I		11	53	1.09943	-0.03680	0.07263	- 11		l	l	l	- 11
П		l	l I		11	54	1.18554	0.07280	0.07832	- 11		l	l	l	- 11
П		l	l I		11	55	1.09943	-0.03680	0.07263	- 11			l	l	- 11

Figure 9: Problem 1-(4), Result of 1 near root

We choose initial condition,

Bisection: $x_0 = 1, x_1 = 2,$ **Newton:** $x_0 = 2,$ **Secant:** $x_0 = 1, x_1 = 2$

We can know disadvantage of Newton Method. This situation is Cycling of Newton Method. Newton Method don't convergence a point.

- Comment

Newton Method have the fastest convergence speed. But we should careful use it.

Since (3) and (4) situation are able to occur. Because We can know Newton Method always don't haveguarantee to find root. Maybe, I think Newton Method use differential value. On the other hand, Bisection and Secant Method converge well.

(Bisection and Secant Method are covergence speed less than Newton method.)

I think most important choose initial condition and looking to characteristics of the function.

2. Witch of the following iterations will converge to the indicated fixed point α (provided x_0 is sufficiently close to α)? If it does converge, give the order of convergence; for linear convergence, give the rate of linear convergence.

(a)
$$x_{n+1} = -16 + 6x_n + 12/x_n$$
, $\alpha = 2$

(Solution.)

Before using Fixed Point Method, Looking at Graph of f(x) = -16 + 6x + 12/x

Figure 10: Problem 2-(a), -16 + 6x + 12/x

We can know f(x) don't have root. Using Fixed Point Method,

		F i x	=====RESULI====== edPoint	
ı	Iteration	×	y	Error
 I	1	2.0000000000000000000000000000000000000	2.0000000000000000000000000000000000000	0.3333333333333331483
i	2 j	3.00000000000000000000	6.000000000000000000	0.50000000000000000000
i	3 j	6.00000000000000000000	22.000000000000000000000	0.72727272727272729291
	4	22.000000000000000000000	116.54545454545454674644	0.81123244929797189151
	5	116.54545454545454674644	683.37569139129197992588	0.82945624783904980948
	6 j	683.37569139129197992588	4084.27170823486949302605	0.83268113871723004049
	7 j	4084.27170823486949302605	24489.63318750953112612478	0.83322446371642788776
	8 j	24489.63318750953112612478	146921.79961506044492125511	0.83331518364413503797
	9 j	146921.79961506044492125511	881514.79777203872799873352	0.83333030825302756295
	10	881514.79777203872799873352	5289072.78664584551006555557	0.83333282914961237520
	i	i		
	Inf i	Inf	Inf	

Figure 11: Problem 2-(a), Result

We choose initial condition. $x_0 = 2 + \epsilon$ and relative error boundary less than ϵ . Therefore, We can know this function is divergence using fixed point method.

(b)
$$x_{n+1} = -2x_n/3 + 1/x_n^2$$
, $\alpha = 3^{\frac{1}{3}}$

(Solution.)

Similary, Before using Fixed Point Method, Looking at Graph of $f(x) = -2x/3 + 1/x^2$

Figure 12: Problem 2-(b), $-2x/3 + 1/x^2$

We can know f(x) have root. Using Fixed Point Method,

11			F i × e	==RESULT===== d Point			
II	Iteration	×		У		Error	
	1 2 3 4 1 5 1 6 7 1	1.442249570307- 2.442249570307- 1.795822695171: 1.507294653954 1.445016118976 1.442254863609 1.4422495703268	10874586 188404247 1681432 19216761 12551480	1.44224957030740 1.79582269517138 1.50729465395461 1.44501611897609 1.44225486360962 1.44224957032683 1.44224957030740	8404247 681432 9216761 9551480 9565039	0.4094585631861; 0.3599614131585; 0.1914211268909; 0.0430988513973; 0.0019145405130; 0.0000036701573; 0.0000000000134;	1509779 9641254 4905002 1021694 0062923

Figure 13: Problem 2-(b), Result

We choose initial condition. $x_0 = 3^{\frac{1}{3}} + \epsilon$ and relative error boundary less than ϵ . We can know this function is convergence using fixed point method. Therefore, convergence rate is

$$f(x_n) - (\alpha + \epsilon) = r(x_n - (\alpha + \epsilon)) \to x_{n+1} - (\alpha + \epsilon) = r(x_n - (\alpha + \epsilon))$$

$$\to r = \frac{x_{n+1} - (\alpha + \epsilon)}{x_n - (\alpha + \epsilon)}$$

$$\to r = g(\alpha) \approx \frac{x_{n+1} - \alpha + \epsilon}{x_n - \alpha + \epsilon} \text{ (Using I.V.T)}$$

$$\to r = -\frac{1}{3}.$$

Since $f'(x) = \frac{2}{3} - 3x^{-3}$. Therefore, convergence rate is $-\frac{1}{3}$.

(c)
$$x_{n+1} = 12/(1+x_n)$$
, $\alpha = 3$

(Solution.)

Similary, Before using Fixed Point Method, Looking at Graph of $f(x) = 12/(1+x_n)$

Figure 14: Problem 2-(c), $12/(1 + x_n)$

We can know f(x)don't have root. Using Fixed Point Method,

П			Fixe	d Point	
11	Iteration	ı	x	у І	Error
11	1		3.0000000000000000000000000000000000000	3.0000000000000000000000000000000000000	0.2500000000000000000000000000000000000
ii -	2	i	4.00000000000000000000	2.399999999999991118	0.6666666666666674068
ii -	3	i	2.399999999999991118	3.52941176470588224845	0.32000000000000000666
ii -	4	i	3.52941176470588224845	2.64935064935064934488	0.33217993079584773319 i
i i	5	i	2.64935064935064934488	3.28825622775800718856	0.19429920728622029902
iί	6	i	3.28825622775800718856	2.79834024896265587401	0.17507377059561041177
ii -	7	i	2.79834024896265587401	3.15927463403976371836	0.11424596683941375119 l
ii -	8	i	3.15927463403976371836	2.88511845353784757151	0.09502423727723723068 I
ii -	9	i	2.88511845353784757151	3.08870891415746129383	0.06591442129312764797 i
ΪĹ	10	i i	3.08870891415746129383	2.93491179047965466964	0.05240263921276879650
ii -		i	j	i	i
ii -	121	i	2.999999999999866773	3.0000000000000088818	0.0000000000000074015
i i	122	i i	3.0000000000000088818	2.999999999999955591	0.0000000000000044409
ii.	123	i	2.999999999999955591	3.0000000000000044409	0.00000000000000029606

Figure 15: Problem 2-(c), Result

We choose initial condition. $x_0 = 3 + \epsilon$ and relative error boundary less than ϵ .

We can know this function is convergence using fixed point method. Therefore, convergence rate is

$$f(x_n) - (\alpha + \epsilon) = r(x_n - (\alpha + \epsilon)) \rightarrow x_{n+1} - (\alpha + \epsilon) = r(x_n - (\alpha + \epsilon))$$

 $\rightarrow r = -\frac{3}{4}.$

Since $f'(x) = -\frac{12}{(1+x)^2}$. Therefore, convergence rate is $-\frac{3}{4}$.

- Comment

We investigated the convergence. We calculated convergence rate of (b) and (c), When the other problem (a) compute convergence rate r = 3.

We can know |r| < 1 is convergence, |r| > 1 is divergence. And we can know slow convergence and divergence when r is closer 1. Above all the reason is

$$x_{n+1} - \alpha = r(x_n - \alpha) \rightarrow E_{n+1} = rE_n.$$

Therefore, If r increase, Error is more and more increased by r.

3. Consider the system

$$x = \frac{0.5}{1 + (x+y)^2}, \quad y = \frac{0.5}{1 + (x-y)^2}$$

Find a bouded region D for which the hypotheses of Theorem in page 10 of NA lecture note #1 are satisfied.

(Solution.)

The hypotheses of Theorem in page 10 of NA lecture note

$$g(D) \subset D$$
, $\lambda \equiv \max_{x \in D} ||G(x)||_{\infty} \to \exists !$ solution and convergenc in D to α .

We can calculate Boundary condition, substituting $(x+y)^2$ to T. Boundary of $x=\frac{0.5}{1+T^2}$ is

$$\begin{array}{l} \to T^2 \geq 0 \\ \to 1 + T^2 \geq 1 \\ \to \frac{1}{1 + T^2} \leq 1 \\ \to \frac{0.5}{1 + T^2} \leq 0.5 \end{array}$$

Therefore, $x \le 0.5$, we can compute y using similar manner. $y \le 0.5$. For recheck, Using Matlab, (Initical condition $x_0 = 0.5$, $y_0 = 0.5$)

			R E S U L T	
П		Fixe	d Point	H
П	Iteration	×	у	Error
11	1	0.5000000000000000000000000000000000000	0.5000000000000000000000000000000000000	0.0000000000000000000000000000000000000
Ħ	2	1.5000000000000000000000000000000000000	1.5000000000000000000000000000000000000	0.9666666666666667407
ii -	3 j	0.0500000000000000278	0.50000000000000000000	6.67754318618042219668
ii -	4 i	0.38387715930902110983	0.41580041580041576799	0.20554282814836677407
ii -	5 i	0.30497396232308376929	0.49949097159544042501	0.00466232054893498532
ii -	6 i	0.30355207595165473178	0.48177128405092389807	0.01882256023979731255
ii -	7 i	0.30926570318717028218	0.48460784391947586691	0.00828250362714415614
ii -	8 i	0.30670420887877125615	0.48508609292110482780	0.00203040262954292837
ii -	9 i	0.30732694191097059688	0.484580598565220843631	0.00011411015658246712
ii -	10 i	0.30729187278550712525	0.48476910785113086488	0.00014934881947028532
ii -	i	i	i	ii
ii -	32 i	0.30726479114590404818	0.48473329168512946374	0.0000000000000234861
ii -	33 i	0.30726479114590476982	0.48473329168512946374	0.0000000000000072265
ii -	34	0.30726479114590454778	0.48473329168512951926	0.0000000000000018066

Figure 16: Problem 3, Result

Therefore, we can know that calculated boundary $D = \{(x, y) | x \in (0, 0.5], y \in (0, 0.5]\}$. Once again, we are running iteration 1000 using random function to select initial condition.

Figure 17: Problem 3, Random initial condition, iteration 1000

Therefore, we know this function is started at some initial point. Convergence point is about (0.30, 0.48).

4. Consider

$$f(x) = \frac{1}{1+x^2}, \quad -5 \le x \le 5$$

Use Lagrange's formula and Newton's divided difference formula to construct p_6, p_8, p_{10} and p_{16} interpolation polynomials in uniformly divided interval.

(Solution.)

To solve this problem, We can know disadvantage of Lagrange and Newton interpolation. We already knew that Newton is computing better than Langrange. Priority, comparing Original with Numerical function,

Figure 18: Problem 4, Left figure is f(x) vs Lagrange. Right figure is f(x) vs Newton

Two method is similar result. Results show that each degree.

		R E S U L Interpolation	T====== Method	
degree Lagrange Time N	lewton Time	norm(f(x)-lagrange,inf)	norm(f(x)-newton,inf) norm(la	agrange-newton,inf)
6 0.2671290 8 0.0550630 10 0.0537940 16 0.0549450	0.1681380 0.0446817 0.0453469 0.0480365	0.61691948634373006133 1.04517391178372132110 1.91564305021916880811 14.38626843693654855372	1.04517391178377327954 0.00 1.91564305021923408923 0.00	00000000000001387779 000000000000006594725 0000000000036393111 000000018136962765

Figure 19: Problem 4, Result

You can see Newton time is shorter than Lagrange. And Lagrange is similar to Newton. But two interpolation have ocillation at boundary. Therefore, we need other method to minimize ocillation. Other method mean piecewise interporation using some a condition. Next problem (5) is Spline which is piecewise interporation.

5. Consider the same function f(x) given in "problem4" and consider

$$x_k = -5 + k(10/16), \quad y_k = f(x_k), \text{ for } k = 0, 1, ..., 16$$

Construct cubic sspline interpolation and compare the result with the results when p_{16} polynomial was used in "problem4"-interpolation.

(Solution.)

Cubic Spline is piecewise interpolation. Therefore, we can expect more and more exact solution. Prior to the description, Cubic Spline end-conditions are Natural, Complete and Not-A-Knot. Each condition is simila to boundary condition.

In some cases, We can select end-condition. This problem compare Problem (4) with 3 case of Cubic Spline. First, 3 condition of Cubic Spline are

Figure 20: Problem 5, Natural Condition vs. Complete Condition vs. Not-A-Knot Condition.

We can know that this problem is not good using Complete Condition. Because boudary have a few ocillation. But Cubic Spline have result better than problem (4). Examined error is

 			Interpolatio	n Metho	d	
Ī		l	norm(f(x)-'method',2)		norm(f(x)-'method',inf)	
 	Lagrange Newton Cubic(Natural) Cubic(Complete) Cubic(N-A-K)	 	41.376270277118948115457897074520587921: 41.376270276751490939659561263397336006: 0.0138760852338742184108877353310163016 0.014758610040086200115849734970652207: 0.013867442118468506495609915418754098	.646 .6431 .2665	14.24599425499817328955032280646264553 14.24599425489270920763829053612425923 0.00373679804878723764716141886310651 0.00373621260287804179966997253359295 0.00373676534866995702088843245292082	34747 89838 42780

Figure 21: Problem 5, Result

Therefore, We can exactly know that Cubic Spline of piecewise interporation is better than Lagrange and Newton interpolation.