1:

Order by Growth Increasing Rate: $2/N, 12, \sqrt{N}, N, N \log \log N, N \log N, N \log (N^2), N \log^2 N, N^{1.5}, N^2, N^2 \log N, N^3, 2^{N/2}, 2^N$

Table of comparisons on final page, where the tabular values denote the results of a limit comparison test (x denotnig infinities). Only one pair of identical growth was found, which makes sense by the rules of logarithms.

2:

Given:
$$a_n = a_{n-1}^2$$
, $a_0 = 2$, $a_1 = 4$, $a_2 = 16$

a) Alice's fee for hour N: Looking at the pattern, $2^2 = 4$, $2^4 = 16$, $2^8 = 256$, it is noted that the degree of 2 is represented by 2^N every step. $\boxed{Fee = 2^{2^N}}$

b) Estimate for number of hours to reach S Hourly: Using the formula for part a, then algebraically solving for N. $S(N) = 2^{2^N}, N(S) = \log_2(\log_2 S), O(\log_2(\log_2 S))$

c) Estimate for number of hours to reach S Total: $S(N)_{total} = \Sigma_{N=1}^{K} 2^{2^{N}}$, so N(S) is $O(\log_{2}(\log_{2}S))$, N times, bringing it to $O(N\log_{2}(\log_{2}S)) = O((\log_{2}(\log_{2}S))^{(\log_{2}(\log_{2}S))})$.

3:

a)
$$O(N)$$

 $y = cx, y(100p) = 0.8ms, c = \frac{0.8ms}{100p}$
 $y(x) = 1.20E5ms, x = \frac{100*1.20E5p}{0.8} = \boxed{1.50E7p}$

b)
$$O(N \log N)$$

 $y = cx \log x, y(100p) = 0.8ms, c = 1.74E - 3\frac{ms}{p},$

 $x \log x(y) = y/c, x \log x(1.2E5ms) \to |4.51E6p|$

c)
$$O(N^2)$$

 $y = cx^2, y(100p) = 0.8ms, x(y) = \sqrt{\frac{y}{c}},$
 $c = 8E - 5\frac{ms}{p}, x(1.20E5)^2 \rightarrow \boxed{38729p}$

d)
$$O(N^3)$$

 $x(y) = (\frac{y}{c})^{\frac{1}{3}}, c = 8E - 7\frac{ms}{p},$
 $x(1.20E5) \to \boxed{5313p}$

e)
$$O(2^N)$$

 $x(y) = \log_2 \frac{y}{c}, c = 6.31E - 31 \frac{ms}{p},$
 $x(1.20E5) \rightarrow \boxed{81p}$

0.1 4:

 $Given: Foo(N) = 221N \log_2 N, Bar(N) = 2N^2$

It is noted that the two functions share solutions in the following way.

$$\frac{2}{221} = \frac{\log_2 N}{N} = \log_2 N^{\frac{1}{N}} \to 2^{\frac{2}{221}} = N^{\frac{1}{N}}$$

Considering that it is impossible to complete any decimal of an operation; For N < 1, Bar > Foo. For 1 < N < 1120, Bar < Foo. For N > 1120, Bar > Foo.

a)
$$N > 10,000$$

Using the ranges previously established.

Better runtime: | Foo

b)
$$N < 100$$

Better runtime: | Bar

c)
$$N = 1000$$

Number of operations is just under the cross over point. Using $\frac{1}{\Delta N} \int_{N_1}^{N_2} f(N) dN = \langle f(N) \rangle$ ranging from 0 to 1000 we find $\langle Foo \rangle = 1\underline{E6}, \langle Bar \rangle = 6.7E5$

Better avg runtime: |Bar|

d) Will Bar always be faster than Foo? No, Foo completes the first operation instantanously, and as mentioned, Foo will be the faster algorithm for operation sets (N) greater than 1120.

2/N	1	Х	Х	Х	X	X	X	X	X	X	X	X	X	X
12	0	1	x	х	x	x	X	x	x	X	x	x	x	X
\sqrt{N}	0	0	1	х	x	x	X	X	X	X	х	х	x	X
N	0	0	0	1	х	x	X	x	x	х	х	х	х	х
N \log \log N	0	0	0	0	1	х	X	x	x	X	х	х	x	X
N \log N	0	0	0	0	0	1	2	х	x	X	х	x	x	х
N \log(N^2)	0	0	0	0	0	1/2	1	х	х	X	x	х	x	X
N \log^2 N	0	0	0	0	0	0	0	1	х	X	x	x	x	х
N^{1.5}	0	0	0	0	0	0	0	0	1	х	х	x	x	х
N^2	0	0	0	0	0	0	0	0	0	1	х	х	x	х
N^2 \log N	0	0	0	0	0	0	0	0	0	0	1	х	x	X
N^3	0	0	0	0	0	0	0	0	0	0	0	1	х	х

0

0 0

0 0

0

0

12 \sqrt{N} N \log \log N N \log N \log N N \log N

0

0

0

0

0 0

0 0

0

Numerator

2/N

Denominator

2^{N/2}

2^N