

Riconoscimento di dispositivi di protezione individuale in ambito industriale tramite infrastruttura cloud

Compilato in ETEX

Corso di Laurea Magistrale in Ingegneria Informatica

Rei Zoto Relatore: Prof. Luca Ardito

December 10, 2024

Table of Contents

1 Introduzione

- ► Introduzione
- Panoramica
- ▶ Implementazione
- Risultati
- ▶ Conclusion

- Problemi
 - costi diretti
 - costi indiretti
 - impatto sulla società
- Soluzioni
 - Prevenzione: valutazione dei rischi, idoneità del lavoratore, formazione
 - Dispositivi di sicurezza individuale (DPI)
 - Sistemi automatici al posto di controlli manuali

INAIL: Statistiche sugli infortuni

1 Introduzione

• Totale infortuni nella manifattura anno 2022: 13,9%

Totale infortuni divisi per genere

Infortuni per categoria

OSHA-EU: Impatto sulla produttività nazionale

1 Introduzione

- bottom-up: totale infortuni 6,3% su PIL
- top-down (VSLY): mediana infortuni 7,7% sul PIL
- Effetti dominio industriale sul PIL italiano 20MLD (1%)

Paese		Finlandia	Germania	Paesi Bassi	Italia	Polonia
Numero di casi		131 867	2 262 031	323 544	1 907 504	1 156 394
Costi diretti	In Mio EUR	484	10 914	2 137	8 491	1 882
Costi diretti, % ris	petto al totale	8	10	9	8	4
Costi indiretti	In Mio EUR	4 362	70 658	6 468	58 961	19 588
Costi indiretti, 9 total		72	66	69	56	45
Costi immateriali	In Mio EUR	1 196	25 557	5 147	37 392	22 311
Costi immateriali, total		20	24	22	36	51
Onere economico complessivo	In Mio EUR	6 042	107 129	23 751	104 844	43 781
Percentuale ris	petto al PIL	2,9	3,5	3,5	6,3	10,2

Approccio bottom-up

	Germania	Finlandia	Italia	Paesi Bassi	Polonia
		DALY			
Totale dei DALY professionali	1 236 855	64 516	853 817	248 464	507 068
Percentuale rispetto ai DALY totali	4,9	4,2	5,1	5,7	4,0
DALY professionali per ogni 10.000 persone occupate	308	265	380	299	315

	Mio EUR	% rispet to al PIL	Mio EUR	% rispet to al PIL	Mio EUR	% rispet to al PIL	Mio EUR	% rispett o al PIL	Mio EUR	% rispett o al PIL
					STI					
			Approccio	basato	sul capita	le uman	0			
Valore minimo	24 597	0,8	1 419	0,7	13 530	0,8	5 290	0,8	2 692	0,6
Media	55 429	1,8	3 106	1,5	31 475	1,9	11 879	1,7	6 929	1,6
Mediana	39 712	1,3	2 291	1,1	23 865	1,4	8 708	1,3	4 656	1,1
Massimo	138 404	4,5	7 393	3,5	69 671	4,2	30 114	4,4	17 037	4,0
Approccio WTP										
Valore minimo	32 324	1,1	1 637	8,0	20 929	1,3	3 276	0,5	5 118	1,2
Media	66 251	2,2	5 814	2,8	42 895	2,6	14 613	2.1	9 676	2,3
Mediana (*)	66 251	2,2	4 335	2,1	42 895	2,6	13 953	2,0	8 863	2,1
Massimo	100 177	3,3	17 453	8,3	64 861	3,9	30 767	4,5	15 861	3,7
Approccio VSLY/VOLY										
Valore minimo	60 609	2,0	4 214	2,0	52 304	3,2	9 649	1,4	12 790	3,0
Media	191 939	6,3	9 345	4,5	133 789	8,1	38 016	5,6	43 836	10,2
Mediana	166 943	5,5	8 633	4,1	126 876	7,7	33 248	4,9	31 026	7,2
Massimo	420 489	13,8	19 425	9,3	256 120	15,5	77 016	11,3	119 149	27,7

Approccio top-down

Scopo del lavoro:

• Implementazione di un sistema integrato con il cloud per la rilevazione di dispositivi di sicurezza

Motivazioni personali:

- Interesse sistemi IoT e deep learning
- Scelta della tesi durante lo studio di sistemi operativi, virtualizzazione ed estensione dei concetti al cloud.

Table of Contents

- ► Introduzione
- **▶** Panoramica
- Implementazione
- Risultati
- ▶ Conclusion

Innovazione nell'industria: fattori abilitanti

- Quantità di dati disponibili grazie dispositivi connessi alla rete
- Avanzamenti Deep Learning

- Cloud Computing: potenza di calcolo ed integrazione di modelli e dati nell'ecosistema industriale
- Investimenti

- Utilizzo di modelli di deep learning per diversi task di computer vision
- Dominio di applicazione: Object Detection
- Modello utilizzato: Amazon Rekognition

Lavori Correlati

B. Balakreshnan and Others, "Ppe compliance detection using artificial intelligence in learning factories"

I. Yousif and Others, "Safety 4.0: Harnessing computer vision for advanced industrial protection"

- Entry-level
 - Mostrare quali sono le possibilità con l'integrazione dei diversi fattori discussi.
 - Approccio che supera barriere di ingresso per piccole aziende sia nei tempi che nei costi.
- Risposta al problema con un sistema near real-time.
- Motivazioni:
 - Mancanza di benchmark specifici per dispositivi di sicurezza.
 - L'approccio near real-time è conservativo
 - Tempi di risposta del modello non veloci (servizio pensato per tutti gli utenti AWS, tipicamente 5 fps).
 - o Latenza intrinseca per la comunicazione con il cloud e problemi di connettività.

Tecnologie, protocolli e servizi

Table of Contents

3 Implementazione

- ► Introduzione
- Panoramica
- ► Implementazione
- ▶ Risultati
- **▶** Conclusion

Use Case

3 Implementazione

Scenario

- Uno o più impiegati entrano all'interno di una certa area di sicurezza e si trovano in prossimità di un macchinario attivo
- Una telecamera sul soffitto ed una frontale monitorano l'area di sicurezza
- La zona è definita da un insieme di ancore dotate di sensori che rilevano i tag indossati dai lavoratori.
- Il sistema genera allarme e spegne il macchinario se tutti gli operatori
 - non possiedono i dispositivi di sicurezza
 - non sono abilitati ad agire sulla macchina

Table of Contents4 Risultati

- ▶ Introduzione
- Panoramica
- Implementazione
- ► Risultati
- **▶** Conclusion

- Rilevazioni dirette dal video feed effettuate per la classe casco protettivo
- machine state: TRUE

1	TRUE FALSE	ALARM
1	EALCE	
	FALSE	ALARM
1	FALSE	ALARM
2	TRUE;FALSE	ALARM
2	TRUE;FALSE	ALARM
	_	2 TRUE;FALSE

- Rilevazione del casco corretta in quasi tutti i test:
 - In un caso rilevazione presente nell'80% dei frame (soglia accettata: 70%)
 - Nelle altre prove, nessuna rilevazione poiché il casco non era indossato
- Conteggio delle persone sempre esatto e matching corretto su tutti i frame
- Regole per l'attivazione dell'allarme sempre soddisfatte
- Tempi di risposta near real-time:
 - Ritardo totale medio (dall'evento al ritorno dell'analisi) circa 2,56 s (deviazione standard: 0,374 s)
 - Ritardo singolo servizio (Rekognition): 850 ms
 - Ritardo big data application: 550 ms

- Prove non eseguite in un ambiente industriale reale
- Insieme dei test non automatizzato: implementazione manuale di script e parametrizzazione
- Amazon Rekognition: impossibilità di installare il modello sull'edge
- Utilizzo di due sole telecamere, scalabilità del sistema non verificata
- Potenza insufficiente del gateway per gestire un elevato numero di dispositivi e flussi video RTSP

Table of Contents 5 Conclusioni

- ▶ Introduzione
- Panoramica
- Implementazione
- Risultati
- **▶** Conclusioni

- Obiettivi raggiunti
 - Generazione infrastruttura cloud e funzionalità quasi in tempo reale
 - Capacità di identificare persone autorizzate e dotate di dispositivi di sicurezza
 - Architettura facilmente replicabile con utilizzo Infrastructure as Code (IaC)
- Soluzione già utilizzabile come punto di partenza, pur non essendo confrontabile con lavori edge-based.

- Creazione di un modello custom e deploy sull'edge per ridurre latenza e dipendenza dal cloud.
- Integrazione con robot tramite container ROS e AWS Greengrass per favorire comunicazione e controllo locale.
- Automazione dell'ambiente di test con orchestratori (ad es. Step Functions) e CI/CD (CodePipeline).
- Adattabilità del sistema a contesti variabili, con aggiornamenti dinamici delle soglie (Apache Flink + DynamoDB).
- Estensione del logging (CloudWatch) e generazione di metriche e statistiche consultabili via interfaccia utente.

Q&A

Grazie per l'attenzione Domande?