СОДЕРЖАНИЕ

BE	ВЕДЕ	НИЕ	3
1	ПОС	СТАНОВКА ЗАДАЧИ	4
	1.1	NER	4
	1.2	Предмет исследования	4
	1.3	Актуальность работы	5
2	MET	ГОДЫ РЕШЕНИЯ	6
	2.1	LSTM-CRF	6
	2.2	CRF + AutoEncoder	8
	2.3	ELMo	9
	2.4	BERT	9
	2.5	CNN Large + fine-tune	11
3	ПРС	ДЕЛАННАЯ РАБОТА	12
	3.1	Реализация существующих подходов	13
	3.2	Исследование	15
	3.3	Результаты	16
	3.4	Выводы	18
3A	КЛЮ	ОЧЕНИЕ	19
CI	шисс	NA MCUUTTSUBY ARTONIANAD	20

ВВЕДЕНИЕ

Автоматическая обработка естественного языка – популярная область исследований специалистов по машинному обучению. С развитием технологий появляется все больше задач, успешное решение которых требует сложных алгоритмов и больших затрат ресурсов.

Несмотря на то что задача распознавания именованных сущностей была сформулирована в 90-х годах 20 века, до сих пор нельзя утверждать, что она является полностью решенной: нет алгоритма, который решал бы задачу лучше, чем асессор. В настоящее время задача может рассматриваться как отдельная, а может и как часть большой системы. Таким образом, она является популярной (каждый год появляются новые, более успешные алгоритмы решения) и актуальной.

В данной работе изучаются различные методы решения задачи распознавания именованных сущностей. В частности, рассмотрены основные методы, придуманные в последние 4 года. Были реализованы подходы, описанные в статьях [5] и [9]. Над архитектурой, предложенной в последней статье, было проведено исследование. Была выдвинута, а впоследствии опровергнута гипотеза о возможном упрощении данной архитектуры.

1 ПОСТАНОВКА ЗАДАЧИ

1.1 NER

Распознавание именованных сущностей является важной подзадачей при извлечении информации из неструктурированных данных. В задаче, представленной на конференции CoNLL 2003, необходимо отнести каждое слово в предложении к одному из четырех классов: PER (человек), LOC (локация), ORG (организация), MISC (другое). Используется IOB-нотация: для сущностей, состоящих более чем из одного слова, необходимо определить начальное (В-) и все внутренние (I-) слова. Если слово не относится ни к одному из четырех классов, то оно помечается отдельно (О).

Т.к. задача распознавания именованных сущностей была сформулирована достаточно давно, то существует большое количество соревнований и различных датасетов, на которых ученые могут проверить свое решение. В данный момент большинство авторов статей сравнивают свои результаты на корпусе, который был представлен на конференции CoNLL 2003.

Отметим также, что помимо IOB существуют и другие нотации. В частности, в этой работе используется IOBES-нотация (согласно [7], [2] эта схема позволяет получить более высокие результаты), а для подсчета качества распознавания она переводится в IOB-схему.

1.2 Предмет исследования

В [9] был предложен эффективный способ использования дополнительных признаков для решения задачи распознавания именованных сущностей. В данной статье вводится автоэнкодер, который получает дополнительные признаки на вход, а затем возвращает их в качестве своего выхода.

Кроме того в [9] было установлено, что выход автоэнкодера является важной составляющей успешного решения: если дополнительные признаки подавать только на вход, то качество не лучше, чем если их вообще не подавать.

Была выдвинута следующая гипотеза: можно отказаться от подачи автоэнкодеру на вход вручную сгенерированных признаков, оставив выход неизменным, причем итоговое качество модели не ухудшится.

1.3 Актуальность работы

Распознавание именованных сущностей может рассматриваться как отдельная задача (например, для поиска и защиты персональных данных в Интернете) или как часть большой системы (например, как составная часть голосового помощника). В обоих случаях будет полезно минимизировать ресурсы, необходимые для построения и поддержания качественного решения.

2 МЕТОДЫ РЕШЕНИЯ

С 2016 года качество решения задачи распознавания именованных сущностей значительно увеличилось.

Таблица 2.1 – Качество решения задачи NER

Архитектура	Год	F1-score
CNN Large + fine-tune	2019	93.5
BERT	2018	92.8
ELMo	2018	92.22
CRF + AutoEncoder	2018	91.87
LSTM-CRF	2016	91.21

В данном разделе будут описаны самые важные подходы к решению рассматриваемой задачи.

2.1 LSTM-CRF

Стандартным нейросетевым подходом к решению задачи распознавания именованных сущностей можно считать следующую архитектуру: конкатенация символьных и словных эмбеддингов подается в двунаправленный LSTM; непосредственная классификация производится с помощью CRF.

В [4] и [5] были предложены два различных подхода к получению символьных эмбеддингов (такие подходы встречались и раньше, но именно эти работы считаются самыми успешными). Основная идея – использование механизма, который может работать с данными произвольной длины. Для этого в [4] используется рекуррентная нейронная сеть, а в [5] – сверточная.

Рис. 2.1 – Символьные эмбеддинги и архитектура, предложенные в [4]

Рис. 2.2 – Символьные эмбеддинги и архитектура, предложенные в [5]

2.2 CRF + AutoEncoder

Многие ученые пытались улучшить качество решения задачи распознавания именованных сущностей с помощью дополнительных признаков: POS-тэгов, данных из географических справочников, шаблонов капитализации. В то время как простое добавление этих данных не дает улучшений, в [9] был предложен новый способ, который позволил увеличить F1-score примерно на 1%. Авторы данной статьи предлагают помимо решения задачи распознавания именованных сущностей также решать задачу восстановления дополнительных признаков. Для этого вводится автоэнкодер и его функция потерь.

$$\mathcal{L}_{AE}^{t} = \sum_{i=0}^{T} XEntropy(f_{i}^{t}, \hat{f}_{i}^{t})$$

$$\mathcal{L} = \mathcal{L}_{CRF} + \sum_{t} \lambda_{t} \mathcal{L}_{AE}^{t}$$

Рис. 2.3 – Архитектура, предложенная в [9]

2.3 ELMo

В статье [6] описывается способ получения эмбеддингов, которые будут учитывать не только синтаксические и семантические признаки, а также контекст рассматриваемого слова. Для этого используется многослойный двунаправленный LSTM, взвешенная сумма состояний которого и определяет вектор токена. Эмбеддинги, полученные таким способом, позволили улучшить качество решения сразу нескольких традиционных задач в области обработки естественного языка.

Рис. 2.4 – Архитектура ЕLMo

2.4 BERT

В 2018 году группа ученых из Google AI Language предложила универсальную архитектуру BERT (см. [3]), которая позволила получить State-ofthe-art результаты на большом числе NLP задач.

В то время как большинство языковых моделей работают только с одним из контекстов (левым или правым), в BERT применятся идея Masked

LM – часть слов предложения маскируется специальным символом, а затем эти слова предсказываются (получается, что учитываются все токены).

Рис. 2.5 – Pre-training и Fine-Tuning – два процесса, составляющих алгоритм

Универсальность модели также обеспечивается следующими двумя факторами: на вход подается не одно, а два предложения; дополнительно решается задача NSP — определяется, является ли второе предложение продолжением первого.

Рис. 2.6 – На вход BERT подаются два предложения, разделенные специальным символом

2.5 CNN Large + fine-tune

Еще более высокие результаты были опубликованы в [1]. Как и в BERT, сначала происходит Pre-training, а затем – Fine-tuning. Основными отличиями являются:

- а) Маскинг каждого токена, а не случайного набора
- б) Отсутствие необходимости решать задачу NSP
- в) Измененные блоки трансформера (см. [8])
- г) Процесс обучения похож на процесс обучения классической языковой модели

3 ПРОДЕЛАННАЯ РАБОТА

Для того чтобы лучше разобраться в исследуемой задаче, сначала были реализованы существующие подходы, а уже после этого проводились эксперименты.

Работа велась с данными, представленными на конференции CoNLL 2003. Основной метрикой качества является F1-score. Для дополнительных задач также измерялась точность предсказаний.

Таблица 3.2 – Датасет CoNLL 2003

Данные	Количество предложений
Обучающая выборка	14041
Валидационная выборка	3250
Тестовая выборка	3453

Рис. 3.1 – Пример обработанного предложения

3.1 Реализация существующих подходов

Сначала была реализована архитектура, предложенная в статье [5]. В отличие от оригинальной статьи была реализована возможность обучения с батчем произвольной длины. Это позволило ускорить процесс обучения, а также сделать его более стабильным.

Таблица 3.3 – Параметры обучения

Размер батча	128
Размерность LSTM	300
Размерность CNN	30
Размер ядра CNN	4
Размер фильтра CNN	30
Dropout	0.5
Recurrent dropout	0.3
Предобученные эмбеддинги	GloVe.6B.100d
Оптимизатор	Nadam
Ограничение нормы градиента	5

Таблица 3.4 – Сравнение качества реализации модели, представленной в [5]

Модель	F1-score
Ma & Hovy	91.21
Полученная реализация	90.46

Обучение производилось с использованием GPU NVIDIA Tesla K80. Процесс занял около 8 часов на Google Colaboratory. В результате получилась

модель, уступающая оригинальной в качестве. Это может быть связано с тем, что не проводилась явная инициализация весов нейросети. Также возможно влияние используемого фреймворка и рабочей машины.

Следующий этап – реализация архитектуры из статьи [9]. Как и в предыдущем случае, было реализовано обучение с батчем произвольной длины.

Таблица 3.5 – Параметры обучения лучшей модели

Размер батча	32
Размерность LSTM	300
Размерность CNN	25
Размер ядра CNN	3
Размер фильтра CNN	25
Dropout	0.5
Recurrent dropout	0.5
Предобученные эмбеддинги	GloVe.6B.300d
Оптимизатор	SGD
Learning rate	0.015
Убывание весов	1e-6
Момент	0.9
Ограничение нормы градиента	5

Таблица 3.6 – Сравнение качества реализации модели, представленной в [9]

Модель	F1-score
Wu et al.	91.89 ± 0.23
Полученная реализация	91.64

Обучение производилось с использованием GPU NVIDIA Tesla K80. Процесс занял около 8 часов на Google Colaboratory. В результате получилась модель, попадающая в заявленный в статье интервал.

3.2 Исследование

Основной целью работы являлась проверка следующей гипотезы: на вход автоэнкодеру (см. [9]) можно не подавать сгенерированные вручную признаки. Остановимся на них подробнее.

Во-первых, это POS-тэги, которые указывают, какой частью речи является данное слово. Используется самая распространенная классификация — каждое слово относится к одному из 45 классов. Так как обучение происходит с батчами, предложения в которых могут иметь разную длину, был добавлен еще один класс, обозначающий паддинг.

Во-вторых, используются шаблоны капитализации. Они показывают, есть ли в слове заглавные буквы, цифры и др. Всего авторам [9] удалось выделить 151 класс. Здесь также был добавлен дополнительный класс для паддингов.

В-третьих, используются "газитиры" – сведения из картографических справочников. Под них выделено 4 класса.

В [9] можно подробно прочитать, как производился сбор и разметка этих дополнительных данных.

Согласно архитектуре, на вход автоэнкодер получает конкатенацию символьных и словных эмбеддингов, а также конкатенацию "газитиров", РОЅ-тегов и шаблонов капитализации, причем последние два подаются в склеенном состоянии.

Помимо основной задачи NER, решается задача восстановления полученных на вход "газитиров", POS-тегов и шаблонов капитализации. Таким образом, у модели 4 выхода.

В данной работе проверяется, можно ли оставив выход нейросети прежним, отказаться от подачи на вход либо всех дополнительных признаков, либо только от POS-тегов и шаблонов капитализации.

3.3 Результаты

Для проверки гипотезы были обучены еще две нейросети. Одна получала на вход дополнительно "газитиры", другая не получала никаких дополнительных признаков.

Таблица 3.7 – Параметры обучения моделей

Параметры	С "газитирами"	Без дополнительных
		признаков
Размер батча	64	48
Размерность LSTM	400	200
Размерность CNN	25	27
Размер ядра CNN	4	3
Размер фильтра CNN	25	27
Dropout	0.4	0.47
Recurrent dropout	0.5	0.47
Предобученные эмбеддинги	GloVe.6B.300d	GloVe.6B.300d
Оптимизатор	SGD	SGD
Learning rate	0.03	0.04
Убывание весов	1e-5	5e-5
Момент	0.9	0.9
Ограничение нормы градиента	5	10
Метод Нестерова	Да	Да

Обучение производилось с использованием GPU NVIDIA Tesla K80. Во всех случаях процесс занял около 8 часов на Google Colaboratory. Получились следующие результаты.

Таблица 3.8 – Качество реализации оригинальной модели

	F1-score	Accuracy
NER	91.5 ± 0.1	
POS-теги	98.90	98.90
Шаблоны капитализации	99.02	99.02

Таблица 3.9 – Качество модели, принимающей на вход "газитиры"

	F1-score	Accuracy
NER	91.05	
POS-теги	88.83	94.98
Шаблоны капитализации	65.09	98.12

Таблица 3.10 – Качество модели, не принимающей на вход дополнительных признаков

	F1-score	Accuracy
NER	90.78	
POS-теги	94.31	99.09
Шаблоны капитализации	72.77	99.14

В результате, достичь того же качества, что и в оригинальной статье, не удалось.

3.4 Выводы

Из результатов становится понятно, что отказаться от подачи дополнительных признаков на вход автоэнкодеру без потери качества нельзя.

Отчетливо видна связь между качеством решения основной задачи – распознавания именованных сущностей, и между качеством решения вспомогательных задач – восстановления дополнительных признаков. Не получая эти признаки на вход, автоэнкодер не позволяет нейросети правильно выучить веса, о чем говорят низкие результаты решения как основной, так и вспомогательных задач. Если же подавать дополнительную информацию на вход автоэнкодеру, то на обеих задачах наблюдаются высокие результаты. Это можно объяснить следующим образом: нейросеть выучивает общее представление о POS-тэгах и шаблонах капитализации, но не может восстановить важные данные, содержащиеся в оригинальных признаках.

Таким образом, для успешного решения задачи распознавания именованных сущностей необходимы какие-то определенные POS-тэги и шаблоны капитализации: F1-score говорит о том, что они действительно существуют, точность восстановления подсказывает, что они являются редкими, а их необходимость понятна из результатов исследования.

ЗАКЛЮЧЕНИЕ

В данной работе были подробно изучены способы решения задачи распознавания именованных сущностей. Алгоритмы, предложенные в статьях [5] и [9] были успешно реализованы. Также проведено исследование архитектуры, рассматриваемой в последней статье. По результатам этого исследования была отвергнута гипотеза о возможном упрощении модели.

Исходный код моделей, их обучение и исследование, а также все необходимые данные и скрипты выложены в репозитории ¹ в открытом доступе.

¹github.com/svinkapeppa/bachelor-thesis

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Alexei Baevski и др. Cloze-driven Pretraining of Self-attention Networks. 2019. arXiv: 1903.07785.
- [2] Jason P. C. Chiu и Eric Nichols. *Named Entity Recognition with Bidirectional LSTM-CNNs*. 2015. arXiv: 1511.08308.
- [3] Jacob Devlin и др. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018. arXiv: 1810.04805.
- [4] Guillaume Lample и др. Neural Architectures for Named Entity Recognition. 2016. arXiv: 1603.01360.
- [5] Xuezhe Ma и Eduard Hovy. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF. 2016. arXiv: 1603.01354.
- [6] Matthew E. Peters и др. Deep contextualized word representations. 2018. arXiv: 1802.05365.
- [7] Lev Ratinov и Dan Roth. "Design Challenges and Misconceptions in Named Entity Recognition". B: *Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009)*. Boulder, Colorado: Association for Computational Linguistics, июнь 2009, с. 147—155. URL: https://www.aclweb.org/anthology/W09-1119.
- [8] Ashish Vaswani и др. Attention Is All You Need. 2017. arXiv: 1706.03762.
- [9] Minghao Wu, Fei Liu и Trevor Cohn. Evaluating the Utility of Hand-crafted Features in Sequence Labelling. 2018. arXiv: 1808.09075.