

Gelombang Bunyi

PENDAHULUAN

- Gelombang bunyi tergolong gelombang mekanik karena membutuhkan medium untuk merambat.
- 🔪 Gelombang bunyi tergolong gelombang longitudinal karena gelombangnya searah dengan arah rambat.
- Nlasifikasi gelombang bunyi berdasarkan frekuensinya terdiri dari:
 - 1) Infrasonik, bunyi dengan frekuensi <20 Hz. Bunyi ini dapat didengar oleh hewan seperti jangkrik, laba-laba, gajah, anjing dan lumbalumba.
 - 2) Audiosonik, bunyi dengan frekuensi 20 Hz sampai 20.000 Hz.
 - Bunyi ini dapat didengar oleh manusia dan kebanyakan hewan lainnya.
 - 3) **Ultrasonik**, bunyi dengan frekuensi >20.000 Hz. Bunyi ini dapat didengar oleh hewan seperti kelelawar dan lumba-lumba.
- 🔪 **Bunyi** dapat didengar manusia karena:
 - 1) Adanya sumber bunyi.
 - 2) Adanya medium rambat bunyi.
 - 3) Bunyi tergolong audiosonik.

CEPAT RAMBAT BUNYI

🔦 Cepat rambat bunyi secara umum dapat dihitung:

Nepat rambat bunyi pada dawai:

$$v = \sqrt{\frac{F}{\mu}} \quad v = \sqrt{\frac{F.L}{m}} = \sqrt{\frac{F}{\rho.A}} \quad \mu = \frac{m}{L} = \rho A$$

v = cepat rambatgelombang (m/s) m = massa tali (kg)

L = panjang tali (m)

 $F = gaya tegangan tali (N) \rho = massa jenis tali$

 μ = massa jenis tali tiap (kg/m³)

satuan panjang (kg/m) A = luas penampang (m²)

Nepat rambat bunyi pada zat padat:

$$v = \sqrt{\frac{E}{\rho}}$$

E = modulus Young (N/m² atau Pa)

 ρ = massa jenis benda (kg/m³)

Nepat rambat bunyi pada zat cair:

$$v = \sqrt{\frac{B}{\rho}}$$

B = modulus Bulk (N/m² atau Pa)

 ρ = massa jenis zat cair (kg/m³)

Cepat rambat bunyi pada gas:

$$v = \sqrt{\frac{\gamma RT}{M_r}}$$

Y = tetapan Laplace

R = tetapan gas ideal (8,3 J/mol K)

T = suhu mutlak (K)

Mr = massa molekul relatif (kg/mol)

FREKUENSI BUNYI

- 🦠 **Resonansi** adalah bergetarnya suatu benda karena adanya benda lain yang bergetar akibat kesamaan frekuensi.
- 🔪 **Frekuensi nada** dapat dihasilkan menggunakan dawai atau pipa organa.
- Name of the Frekuensi nada dasar (f₁) dawai yang terikat kedua ujungnya, menurut hukum Marsenne:

$$f_o = \frac{1}{2L} \sqrt{\frac{F}{\rho A}}$$

fo = frekuensi nada dasar/harmonik kesatu (Hz)

L = panjang dawai (m)

F = gaya tegangan dawai (N)

Frekuensi nada atas pertama (f₁), kedua (f₂), dst. dapat dihitung:

- **Jumlah simpul** tiap frekuensi nada adalah n + 2, dan jumlah perut tiap frekuensi nada adalah n + 1.
- 🔪 **Pipa organa** adalah suatu kolom udara yang memiliki lubang di tepi kolom, dan menimbulkan gelombang stasioner.
- 🔪 Pipa organa terbuka memiliki ujung yang berhubungan dengan udara luar, contohnya flute dan rekorder.
- 🔪 Frekuensi nada dasar (fo) pipa organa terbuka:

v = cepat rambat bunyi (m/s) L = panjang pipa organa (m)

Frekuensi nada atas pertama (f₁), kedua (f₂) dst. dapat dihitung:

$$f_n = (n + 1) \frac{v}{2L}$$

$$f_n = (n + 1) f_o$$

$$f_0: f_1: f_2 = 1:2:3$$

- 🦠 **Jumlah simpul** tiap frekuensi nada adalah n + 1, sedangkan jumlah perut tiap frekuensi nada adalah n + 2
- 🔪 Panjang pipa organa terbuka pada tiap nada dapat dihitung:

$$L=\frac{n+1}{2}\,\lambda$$

- 🔪 Pipa organa tertutup memiliki ujung yang tidak berhubungan dengan udara luar, contohnya klarinet.
- 🦠 Frekuensi nada dasar (f_o) pipa organa tertutup:

$$\mathbf{f_o} = \frac{\mathbf{v}}{\mathbf{4L}}$$
 v = cepat rambat bunyi (m/s)
L = panjang pipa organa (m)

Frekuensi nada atas pertama (f_1) , kedua (f_2) dst. dapat dihitung:

$$f_n = (2n + 1) \frac{v}{4L}$$

$$f_n = (2n + 1) f_o$$

$$f_0: f_1: f_2 = 1:3:5$$

- 🔪 **Jumlah simpul dan perut** tiap frekuensi nada adalah n + 1.
- 🔪 Panjang pipa organa tertutup pada tiap nada dapat dihitung:

$$L = \frac{2n+1}{4} \, \lambda$$

🔪 Tinggi nada ditentukan oleh frekuensi, sedangkan kuat nada ditentukan oleh amplitudo.

GEJALA-GEJALA GELOMBANG BUNYI

- 🔪 Gejala-gejala gelombang bunyi terdiri dari:
 - 1) Refleksi (pemantulan)

Pada pemantulan bunyi berlaku hukum pemantulang gelombang.

Refleksi bunyi dalam ruang tertutup dapat menimbulkan gaung/kerdam, karena bunyi pantul dan bunyi asli datang bersamaan.

2) Refraksi (pembiasan)

Pada pembiasan bunyi berlaku hukum pembiasan gelombang.

Refraksi gelombang menyebabkan petir malam hari terdengar lebih keras daripada petir siang hari.

Perbedaan	Siang	Malam
Udara di atas	lebih dingin	lebih panas
Udara di bawah	lebih panas	lebih dingin
Refraksi	dari rapat ke	dari kurang
	kurang rapat	rapat ke rapat
Bunyi petir	lebih pelan	lebih keras

3) **Difraksi** (pelenturan)

Bunyi mudah mengalami difraksi karena memiliki panjang gelombang yang besar.

4) Interferensi (perpaduan)

Interferensi dua buah gelombang bunyi koheren akan menghasilkan pola teranggelap yang merupakan pola interferensi konstruktif-destruktif.

Beda lintasan dengan interferensi konstruktif:

$$\Delta s = n.\lambda$$

Beda lintasan dengan interferensi destruktif:

$$\Delta s = (n + \frac{1}{2}).\lambda$$

5) Efek Doppler

Adalah perubahan frekuensi atau panjang gelombang sumber gelombang diterima pengamat karena adanya gerak relatif di antara keduanya.

Persamaan efek Doppler:

$$fp = \frac{v \pm v_p}{v \pm v_s} .fs$$

fp = frekuensi pendengar (Hz)

fs = frekuensi sumber bunyi (Hz)

v = cepat rambat bunyi (m/s)

vp = kecepatan pendengar (m/s)

vs = kecepatan sumber bunyi (m/s)

Persamaan efek Doppler dengan tidak mengabaikan kecepatan angin:

$$fp = \frac{(v \pm v_w) \pm v_p}{(v \pm v_w) \pm v_s}.fs$$
 vw = kecepatan angin (m/s)

Jika pendengar mendekati sumber bunyi, maka vp bernilai positif, jika sumber bunyi menjauhi pendengar maka vs bernilai positif, jika arah angin searah dengan arah rambat bunyi, maka vw bernilai positif.

6) Pelayangan gelombang

Adalah interferensi dua bunyi beramplitudo sama namun berbeda frekuensi sedikit.

Pelayangan bunyi membentuk interferensi konstruktif-destruktif yang disebut layangan. Satu layangan didefinisikan sebagai gejala dua bunyi keras atau lemah yang terjadi

berurutan.

Frekuensi layangan dapat dihitung:

$$f_L = |f_1 - f_2|$$
 $f_1 > f_2$

$$f_1 > f_2$$

INTENSITAS GELOMBANG BUNYI E.

- 🔪 Intensitas gelombang bunyi adalah daya gelombang yang dipindahkan melalui bidang seluas satu satuan yang tegak lurus dengan arah rambat gelombang.
- Nitensitas gelombang bunyi dapat dihitung:

$$I_{tot} = I_1 + I_2 + ...$$

🔪 Persamaan jarak gelombang dari sumbernya terhadap amplitudo dan intensitas bunyi:

$$\frac{r_1}{r_2} = \frac{a_2}{a_1} \qquad \left(\frac{r_1}{r_2}\right)^2 = \frac{I_2}{I_1} \qquad \begin{array}{l} r = \text{ jarak ke sumber (m)} \\ a = \text{ amplitudo (m)} \\ I = \text{ intensitas bunyi} \\ (W/m^2) \end{array}$$

- 🦠 Taraf intensitas bunyi adalah 10 kali logaritma perbandingan intensitas bunyi dengan intensitas ambang bunyi (intensitas terendah).
- Naraf intensitas bunyi dapat dihitung:

TI = 10 log
$$\frac{I}{I_0}$$
 TI = taraf intensitas bunyi (dB)
I = intensitas bunyi (W/m²)
I₀ = intensitas ambang bunyi
(10⁻¹² W/m²)

🔪 Gabungan sumber bunyi dengan intensitas bunyi identik memiliki hubungan:

$$TI_2 = TI_1 + 10 \log \frac{n_2}{n_1}$$

🔪 Hubungan taraf intensitas bunyi dua sumber bunyi yang berbeda jarak:

$$TI_2 = TI_1 - 20 \log \frac{r_2}{r_1}$$

APLIKASI GELOMBANG BUNYI

- 🔪 Aplikasi gelombang bunyi antara lain:
 - 1) SONAR (Sound Navigation and Ranging) Sonar dapat digunakan untuk:
 - Sistem navigasi dengan bunyi pantul ultrasonik.
 - b. Pada kamera, untuk mendeteksi jarak benda yang akan difoto.
 - c. Pada mobil untuk mendeteksi jarak benda-benda yang ada di sekitar mobil.
 - 2) Pengukuran kedalaman laut

Kedalaman laut diukur dengan fathometer, dengan mengukur selang waktu yang dibutuhkan untuk menerima kembali pulsa ultrasonik yang dikirimkan.

$$\Delta d = \frac{v \times \Delta t}{2}$$

3) Mendeteksi keretakan pada logam

Keretakan logam dideteksi dengan pemindai menggunakan bunyi ultrasonik.

4) **Ultrasonografi** (USG)

Adalah pencitraan medis untuk melihat bagian tubuh menggunakan bunyi ultrasonik. Kelebihan USG:

- Lebih aman daripada X-Ray, MRI dan CT-
- b. Dapat melakukan pencitraan 3D organorgan dalam tubuh.
- Dapat mendeteksi perbedaan sel dan jaringan normal dengan abnormal.
- 5) Mengukur kelajuan darah

Kelajuan darah dapat diukur dengan menggunakan efek Doppler. Bunyi ultrasonik diarahkan menuju pembuluh nadi, dan pergerakan gelombang bunyi tersebut mengikuti kelajuan aliran darah.