

Máster en Programación avanzada en Python para Big Data, Hacking y Machine Learning

Programación Python para Machine Learning

ÍNDICE

- ✓ Introducción
- Objetivos
- Estadística descriptiva
- ✓ Visualización de datos
- ✓ Preprocesamiento de datos
- Conclusiones

OBJETIVOS

Al finalizar esta lección serás capaz de:

- 1 Entender los datos para obtener el máximo rendimiento de ellos.
- 2 Utilizar las técnicas de estadística descriptiva para resumir los datos.
- Analizar las relaciones presentes en los datos, numérica y gráficamente.
- 4 Conocer los principios y saber aplicar las técnicas de preprocesamiento de datos.

INTRODUCCIÓN

- ✓ Conocer los datos:
 - Descubrir las relaciones entre variables.
 - Sesgo.
 - Balanceo de clases.
- ✓ Herramientas:
 - Estadística descriptiva.
 - Visualización de datos.

UN VISTAZO A LOS DATOS

Nada mejor que un vistazo de los datos en bruto.

Dimensiones del problema.

Tipos de características

Los términos: instancias, patrones, puntos, observaciones, registros, filas... se refieren conceptualmente a lo mismo, cada uno de los datos de los que se disponen para hacer un análisis.

De manera análoga, los términos: características, factores, dimensiones, variables, atributo, propiedad, campo, columnas... son los atributos que describen cada una de las instancias del conjunto de datos.

Estadísticos descriptivos

- Conteo.
- Media.
- Desviación típica.
- Valores máximo y mínimo.
- Q1, Q2 (mediana) y Q3.

Desequilibrio de clases

Muchas más observaciones para una clase que para otra.

Ratios:

1:10, 1:100, 1:10^3, 1:10^4...

Correlación de atributos

Relación entre dos variables y de cómo cambian al mismo tiempo.

Problemas de algunos métodos de ML con atributos correlados.

Sesgo de la distribución

Simetría en la forma de la distribución.

Mayor, menor o igual a 0.

Coeficiente de Fisher:

$$g1 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^3}{N \cdot S_x^3}$$

VISUALIZACIÓN DE DATOS

Gráficamente es el modo más rápido de adquirir una idea inicial de los datos.

Gráficos univariantes

- Histogramas.
- Gráficos de densidad.
- Gráficos de cajas y patas (boxplot).

Gráficos multivariantes

- Matriz de correlación.
- Matriz de dispersión

Histogramas

Lección 2: Estadística descriptiva, visualización y preparación de datos

Gráficos de densidad

Boxplots

Matriz de correlación

Matriz de dispersión

TRANSFORMACIONES DE LOS DATOS

Preprocesamiento de los datos para mejor rendimiento de los modelos de Machine Learning

Procedimiento:

- 1) Cargar el conjunto de datos.
- 2) Dividir el conjunto en las variables de entrada y objetivo.
- 3) Aplicar un preprocesamiento mediante una transformación de las variables de entrada.
- 4) Mostrar el cambio producido.

Tratamiento de datos categóricos

Problemática de los algoritmos de ML a la hora de trabajar con datos categóricos.

One-hot-encoding.

Hay otras alternativas.

Cambiar la escala de los datos

Problemática de los algoritmos de ML a la hora de trabajar con datos en diferentes rangos.

Estandarizar los datos

Problemática de los algoritmos de ML a la hora de trabajar con datos con distribución no gaussiana.

Estandarización estándar: A una N(0,1)

Estandarización robusta: Datos atípicos.

MUCHAS GRACIAS POR SU ATENCIÓN

