Simulazione test

Andrea Bazzani, Clori Caprile

06/06/2025

1. (4 punti) Si consideri una massa m (kg) di un certo materiale con calore latente di fusione λ_F (kJ/kg) che si trova allo stato solido alla temperatura T_f (°C), sua temperatura di fusione. La variazione di entropia quando tutto il materiale si è fuso è ΔS (J/K).

Dati: $\Delta S = 230.0$, m = 4.3, $T_f = 320.0$, trovare λ_F .

- A. 99.0
- B. 32.0
- C. 6.5
- D. 52.0
- 2. (4 punti) Un corpo di massa m (kg) fermo inizia a scivolare su un piano inclinato alto h (m). Alla base del piano, il corpo inizia a muoversi su un piano orizzontale con coefficiente di attrito dinamico μ_d e si ferma dopo Δl (m).

Dati: h = 74.0, $\mu_d = 1.1$, trovare Δl .

- A. 190.0
- B. 33.0
- C. 67.0
- D. 11.0
- 3. (6 punti) Una molecola di metano (CH₄) ha 6 gradi di libertà. Si consideri un gas di $N \cdot 10^{23}$ molecole. All'inizio il gas occupa volume V_1 (m³) a temperatura T_1 (K). Dopo una trasformazione adiabatica, il gas occupa volume V_2 (m³) a pressione P_2 (kPa). $N_A = 6.022 \cdot 10^{23}$ e R = 8.314 J/(mol K)

Dati: N = 11.0, $V_1 = 0.028$, $V_2 = 0.037$, $P_2 = 160.0$, trovare T_1 .

A. 0.12

- B. 0.43
- C. 0.87
- D. 1.5
- 4. (4 punti) Un sasso è lasciato cadere in un pozzo profondo h (m) e il rumore del sasso che colpisce l'acqua si sente dopo un tempo t (s). Velocità del suono in aria: 330 m/s.

Dati: h = 59.0, trovare t.

- A. 3.6
- B. 0.51
- C. 7.0
- D. 13.0
- 5. (4 punti) Un gas alla pressione P (Pa) è contenuto in un cilindro chiuso da un pistone mobile su cui è appoggiata una bottiglietta d'acqua. Un fornello sotto il cilindro scalda il gas. Per effetto dell'aumento di temperatura, il gas si espande eseguendo sulla bottiglietta un lavoro W(J). Inizialmente il volume occupato dal gas è V_i (m³) mentre il volume finale è V_f (m³)

Dati: P = 56.0, $V_f = 11.0$, W = 120.0, trovare V_i .

- A. 28.0
- B. 20.0
- C. 8.9
- D. 2.3
- 6. (4 punti) Su Titano ($g_{\text{Titano}} = 1.352 \text{ m/s}^2$), l'esercito di Thanos spara a Hulk (massa m_H (kg)) una raffica di proiettili di massa m_p (kg) e velocità v_p (m/s), con frequenza f (Hz). I proiettili non scalfiscono la dura pelle di Hulk e tornano indietro, ma fanno scivolare indietro l'uomo verde a velocità costante. Il coefficiente di attrito dinamico tra i piedi di Hulk e la superficie di Titano è μ_d . Suggerimento: considerare la quantità di moto trasferita dai proiettili ad Hulk.

Dati: $m_H = 680.0$, $m_p = 2.1$, f = 7.8, $\mu_d = 1.2$, trovare v_p .

- A. 80.0
- B. 15.0
- C. 130.0

- D. 34.0
- 7. (6 punti) Sul fondo di un cilindro munito di un pistone mobile e isolante si trova uno strato di materiale con capacità termica C_1 (J/K). Nella parte superiore si trovano n (mol) di un gas perfetto monoatomico. Inizialmente il sistema è all'equilibrio termodinamico, con pressione e temperatura P_0 e T_0 (K). Si effettua una compressione isobara non reversibile del gas fino a dimezzare il volume del gas e nuova la temperatura sarà T_f (K).

Dati: $C_1 = 41.0$, n = 27.0, $T_f = 570.0$, trovare T_0 .

- A. 380.0
- B. 290.0
- C. 180.0
- D. 930.0

Soluzioni:

- 1. B
- 2. C
- 3. B
- 4. A
- 5. C
- 6. D
- 7. X *

Note:

Ci teniamo a segnalare un errore nel quesito 3: ovvero c'è un fattore 10^3 errato nelle soluzioni.

 $\mbox{*}$: In quest'ultimo quesito, il testo lascia spazio ad incertezze, quindi la risposta non è certa.