Bike Sharing Demand Analysis

Min Fang

Outline

- □ Introduction
- Model building
- Results and conclusion

☐ Future work and Applications

Bike Sharing System

- ☐ New generation of traditional bike rental (4th generation)
- Provide self-service point-topoint short trips
- □ Benefits:
 - reduce traffic congestion
 - mitigate pollution
 - health benefits
 - greater environmental awareness
- ☐ Global expansion

Data Description

Our data set was obtained by the UC Irvine Machine Learning Repository

(http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset)

- → hour.csv file was selected hourly count of rental bikes
- 17,379 observations
- 13 predictior variables
 - 9 Indicator predictors: record index, date, season, year, month, hour, holiday, weekday, working day, weather condition

Machine Learning Repository

- 4 Quantitative predictors: temp, feeling temp, wind speed and humidity
- 3 response variables
 - counts from casual users, registered users and total counts

Data and Variable Treatment

- □ Data treatment
 - Added a new dummy variable "type": casual is 1, registered is 0

- □ Variable treatment
 - Indicator variables (season, mnth, weekday, holiday, workingday, weathersit, yr, and hr) were converted into factors
 - ☐ The variable hour was divided into five levels (hours 1 [0-5], hours 2 [6-9], hours 3 [10-15], hours 4 [16-20], hours 5 [21-23])

Motivations

- ☐ Problem: There exist different bike sharing demand for casual and registered users
 - different needs and difficulties
- Our goal: To describe the differences on the bike sharing demand between casual and registered users
 - To be more specific, we want to build a regression model to describe bike sharing demand for a specific group in a given scenario
- Benefits: Government or bike provider can provide better service and deal with different needs of subgroups of users

Research Questions

- Which predictor variables significantly influenced bike rental demand?
- □ Did the predictors affect bike rental demand differently in casual and registered user groups?
- □ Can we fit a model to describe such differences?

Significant Predictors (season / yr / weather / hum)

season Number of rentals by year

Average Hourly rentals by weather

Significant Predictors (temp / atemp / hr / working day)

Average Number of rentals by hour

atemp

Can the model describe the distinct patterns observed?

Daily Bike Rental Demand
Per Time of Day, Registered/Casual, and Working Day

Translate model estimates into the rental counts ratio

The ratio is the bike rental counts during four activity hours when compared to the baseline hours [0-5].

	Ratio (activity hr/baseline hr) exp(estimated parameters)							
	Working	day	Non-Working day					
Activity hr	casual	registered	casual	registered				
Morning peak hr (hr2)	4.415	24.095	1.941	1.941				
Middle of the day(hr3)	8.776	10.591	11.905	7.330				
Evening peak hr (hr4)	9.143	24.631	7.404	3.367				
Night time (hr5)	4.637	10.166	2.869	3.367				

Groups of interest (casual/registered/workingday) Make contrasts Find corresponding estimated parameters ∆log(activity hr/baseline hr) Ratio = exp (estimated parameters) Ratio: hr2 / hr1 hr3 / hr1 hr3 / hr1 hr4 / hr1

Bike rental patterns described by the model agreed with observed patterns

Conclusion

- We fitted a linear regression model to describe the different effect of various predictors on the bike rental counts from casual and registered users.
- ☐ The addition of a three-way interaction of important predictors (hr*type*workingday) greatly improved the model fitting.
- ☐ The model successfully described the patterns of bike rental counts against four hour levels from casual and registered users. And the patterns differed significantly on working and non-working days.

Future work & Applications

□ Althernative model fitting

Generalized linear model with Poisson distribution

Nonparametric model using random forest method

☐ Model applications

Predict bike sharing demand in a given scenario

Optimaize bike allocation

Improve on-demand user experience (e.g. helmet rental, payment instruction and etc.)

Translate model estimates into the rental counts ratio

	Estimated parameters				Ratio (hr2-5/hr1)			
	∆log(hr2-5/hr1)				exp(estimated parameters)			
	Working day		Non-Working day		Working day		Non-Working day	
hr comparison	casual	register ed	casual	register ed	casual	register ed	casual	register ed
Morning peak hr (hr2) vs. midnight (hr1)	1.485	3.182	0.663	0.663	4.415	24.095	1.941	1.941
Middle of the day(hr3) vs. midnight (hr1)	2.172	2.36	2.477	1.992	8.776	10.591	11.905	7.330
Evening peak hr (hr4) vs. midnight (hr1)	2.213	3.204	2.002	1.214	9.143	24.631	7.404	3.367
Night time (hr5) vs. midnight (hr1)	1.534	2.319	1.054	1.214	4.637	10.166	2.869	3.367