MATH 7820 Homework 4

James Harbour

October 13, 2022

Problem 1

Show that the degree (mod 2) of a composition of two smooth maps f and g equals

$$\deg_2(f) \cdot \deg_2(g) \pmod{2}$$
.

Proof. Let $f: x \to Y$ and $g: Y \to Z$. We must assume X, Y are compact, Y, Z are connected, and $\dim(X) = \dim(Y) = \dim(Z) = n$ for all values above to be defined. Let $z \in Z$ be a regular value of $g \circ f$ and $\{x_1, \ldots, x_k\} = (g \circ f)^{-1}(z) = f^{-1}(g^{-1}(z))$. Fix $1 \le i \le k$. As $\dim T_{x_i}X = \dim T_{f(x_i)}Y = n$ and $d_{x_i}(g \circ f) = (d_{f(x_i)}g)(d_{x_i}f)$ is surjective, it follows that both $d_{f(x_i)}g$ and $d_{x_i}f$ are surjective. Thus, each $y_i = f(x_i)$ is a regular point of g as well as a regular value of f with corresponding regular point x_i .

By well definedness of degree mod 2, for each y_i , $|f^{-1}(y_i)| \pmod{2} = \deg_2(f)$. Hence, we compute

$$\deg_2(g \circ f) \equiv |f^{-1}(g^{-1}(z))| = \sum_{i=1}^k |f^{-1}(y_i)| \equiv \sum_{i=1}^k \deg_2(f) \pmod{2} = \deg_2(f) \cdot \deg_2(g).$$

Problem 2

Give an example of manifolds M, N, and of a smooth function $F: M \to N$ with a regular value which is a limit point of critical values.

 \Box Example.

Problem 3

If two smooth maps f, g from a manifold M to the unit sphere S^k satisfy

$$||f(x) - g(x)|| < 2$$

for all $x \in M$, prove that f is smoothly homotopic g.

Proof. Fix $t \in [0,1]$ and $x \in M$. If t = 0,1, then $||(1-t)f(x) + tg(x)|| = 1 \neq 0$. If $t \in (0,1)$, then we compute

$$||(1-t)f(x) + tg(x)|| = ||t(f(x) - g(x)) - f(x)|| \ge t||f(x) - g(x)|| - ||f(x)|| \ge 2t - 1 > 0.$$

Thus, we may define the function $H: M \times [0,1] \to S^k$ by

$$H(x,t) = \frac{(1-t)f(x) + tg(x)}{\|(1-t)f(x) + tg(x)\|}.$$

This map is clearly continuous as, for each $t \in [0, 1]$, the map $x \mapsto H(x, t)$ is smooth by smoothness of f and g and the fact that addition and scalar multiplication are smooth. Moreover, as f, g both map into the unit sphere already, H(x, 0) = f(x) and H(x, 1) = g(x).

Problem 4

Consider a simple closed curve C in $\mathbb{R}^2 \setminus \{(0,0)\}$, and let $f: C \to \mathbb{R}$ be the distance to the origin: $f(x,y) = \sqrt{x^2 + y^2}$. Prove that the critical points of f are precisely the points where the curve C is tangent to some circle centered at the origin.

Hint: It may be helpfuls to consider the square of the function, and you may assume the curve C is parameterized, $x = x(t), y = y(t), a \le t \le b$.

Proof. Let $\gamma:[a,b]\to C$ parameterize C bijectively and let $\gamma(t)=(x(t),y(t))$. For any open subset $U\subseteq C$, (U,γ^{-1}) is a chart. Suppose $p\in C$ is a critical point. Write $p=\gamma(s)$. Then

$$0 = 2(f \circ \gamma)(s) \cdot (f \circ \gamma)'(s) = \frac{d}{dt}|_{t=s} f \circ \gamma = 2x(s)x'(s) + 2y(s)y'(s),$$

so $\langle \gamma(s), \gamma'(s) \rangle = 0$, whence γ is tangent to the circle of radius $||\gamma(s)||$ at the point $\gamma(s)$.

On the other hand, suppose that $p \in C$ is tangent to some circle centered at the origin. Then it must be true that the circle has radius ||p||. Write $p = \gamma(s)$. Then, as before,

$$(f \circ \gamma)'(s) = \frac{\langle \gamma(s), \gamma'(s) \rangle}{(f \circ \gamma)(s)} = 0,$$

so p is a critical point of f.