Battlecode Simulation v 4

Simulation code

```
ln[1]:= (*BASIC UTILITY FUNCTIONS*)
    nextTurnResources[numberOfBots , bytecodeUsage ,
       currentResources , decayMultiplier : .8] := Module[{},
     currentResources * decayMultiplier - numberOfBots * (1 + bytecodeUsage / 10000) + 40
    buildMoreBots[howOften ] := (
     If[(round - howOften >= lastBotBuiltRound) && round > 0,
        lastBotBuiltRound = round; numberOfBots = numberOfBots + 1];
     myResources[[round + 1]] = nextTurnResources[numberOfBots,
         bytecodeUsage, myResources[[round]], decayMultiplier];
    killExcessBots[] :=
      If[myResources[[round + 1]] < 0, numberOfBots = numberOfBots - 1];</pre>
    plotResults[] := Module[{},
     plotOptions = {PlotRange -> All, AspectRatio -> 1/3,
         ImagePadding -> 20 {{1.5, 3}, {1, 1}}, ImageSize -> {600, 200},
         PlotStyle -> Thick, BaseStyle -> {FontFamily -> "Calibri", FontSize -> 14}};
     generatorsAndSuppliers = ListPlot[{generators, suppliers} *
          {.8, .6} * Max@myResources, PlotStyle -> {Red, Black}];
     Return@{
      Show[ListLinePlot[myResources, plotOptions,
           AxesLabel -> {"Round", "Power"}], generatorsAndSuppliers]
      , ListLinePlot[botCount, plotOptions, AxesLabel -> {"Round", "# Robots"}]
      , Row[{Max@botCount
       , " Robots at round "
       , Position[botCount, Max@botCount][[1, 1]]
       , "."}, BaseStyle -> {FontFamily -> "Calibri", FontSize -> 14}]
      , ListLinePlot[Differences@Flatten@Position[Differences@botCount, 1],
          plotOptions[[2 ;;]], AxesLabel -> {"Round", "Spawn Time"}
       , PlotRange -> {Automatic, {0, 11}}]}
    (*GENERATOR CODE*)
    generatorBonus[round , tryToBuild ] := (
       (*get additional resources from generators*)
      myResources[[round]] = myResources[[round]] + 10 * generatorNumber;
      If[(tryToBuild)
         && myResources[[round]] > 10 * (encampmentCount + 1) + numberOfBots
         && round < (Length@generators - 50)
         && numberOfBots - reservedBots > 0
       myResources[[round]] = myResources[[round]] - 10 * (encampmentCount + 1);
       generators[[round + 50]] = 1;
```

```
current++; (*advance build order*)
   encampmentCount++;
   reservedBots++;
  ];
  generatorNumber = generatorNumber + generators[[round]];
  numberOfBots = numberOfBots - generators[[round]];
  reservedBots = reservedBots - generators[[round]];
(*SUPPLIER CODE*)
supplierBonus[round_, tryToBuild ] := (
  (*build encampments*)
  If[(tryToBuild)
    && myResources[[round]] > 10 * (encampmentCount + 1) + numberOfBots
    && round < (Length@generators - 50)
    && numberOfBots - reservedBots > 0
   myResources[[round]] = myResources[[round]] - 10 * (encampmentCount + 1);
   suppliers[[round + 50]] = 1;
   current++; (*advance build order*)
   encampmentCount++;
   reservedBots++;
  ];
  supplierNumber = supplierNumber + suppliers[[round]];
  numberOfBots = numberOfBots - suppliers[[round]];
  reservedBots = reservedBots - suppliers[[round]];
  spawnTime = 10 * (10 / (10 + supplierNumber));
 )
(*COMBINED MODEL*)
battlecodeModelExplicit[numRounds_, decayMultiplier_,
  bytecodeUsage_, buildOrderIn_] := Module[{buildOrder = buildOrderIn},
  myResources = ConstantArray[0, numRounds];
  generators = ConstantArray[0, numRounds];
  suppliers = ConstantArray[0, numRounds];
  reservedBots = 0;
  numberOfBots = 0;
  generatorNumber = 0;
  supplierNumber = 0;
  encampmentCount = generatorNumber + supplierNumber;
  spawnTime = 10;
  lastBotBuiltRound = -1000;
  current = 1;
  botCount = Table[
    buildGenerator = False; buildSupplier = False;
    If[current ≤ Length@buildOrder,
     If[buildOrder[[current]] == 1, buildGenerator = True];
     If[buildOrder[[current]] == 2, buildSupplier = True];
     If[buildOrder[[current]] == 0, current++];
     If[buildOrder[[current]] < 0, buildOrder[[current]] ++];</pre>
     (*allows a delay to be specified as a negative number*)
    generatorBonus[round, buildGenerator];
```

```
supplierBonus[round, buildSupplier];
   buildMoreBots[spawnTime];
   killExcessBots[];
   numberOfBots
   , {round, 1, numRounds - 1}];
Return@plotResults[]
]
```

Usage

KEY: Generator is 1, Supplier is 2, a negative number is a pause.

Builds no encampments:

```
In[8]:= Column@battlecodeModelExplicit[
      numberOfRounds = 500
      , decayMultiplier = .8
      , bytecodeUsage = 0
      , Flatten@{}
     1
```


40 Robots at round 391.

Waits 50 rounds, then builds suppliers

```
In[9]:= Column@battlecodeModelExplicit[
      numberOfRounds = 500
       , decayMultiplier = .8
       , bytecodeUsage = 0
       , Flatten@{-50, ConstantArray[2, 100]}
```


41 Robots at round 304.


```
In[10]:= Column@battlecodeModelExplicit[
        numberOfRounds = 500
         , decayMultiplier = .8
         , bytecodeUsage = 0
          Flatten@{-50, ConstantArray[{2, -20}, 100]}
            Power
           200
           150
           100
            50
                                                                                            Round
                                                                                       500
                            100
                                                         300
                                                                        400
                                           200
          # Robots
            40
            30
            20
Out[10]=
            10
                                                                                            Round
                            100
                                                                                       500
                                           200
                                                         300
                                                                        400
      41 Robots at round 361.
         Spawn Time
            10
             8
             6
             4
             2
                                                                                          <sup>⊥</sup> Round
              0
                          10
                                       20
                                                   30
                                                                40
                                                                            50
                                                                                         60
```

Waits 50 rounds, then alternates suppliers and generators every 20 rounds

```
In[11]:= Column@battlecodeModelExplicit[
        numberOfRounds = 500
        , decayMultiplier = .8
        , bytecodeUsage = 0
          Flatten@{-50, ConstantArray[{2, -20, 1, -20}, 100]}
       ]
           Power
          400
          300
          200
          100
                                                                                         Round
                           100
                                                                                     500
                                         200
                                                        300
                                                                      400
          # Robots
           50
           40
           30
Out[11]=
           20
           10
                                                                                         Round
                           100
                                          200
                                                                                     500
                                                        300
                                                                      400
      48 Robots at round 497.
         Spawn Time
           10
             8
             6
             4
             2
                                                                                         Round
             0
                         10
                                     20
                                                 30
                                                            40
                                                                        50
                                                                                    60
```

Compare strategies intelligently:

KEY: Generator is 1, Supplier is 2, a negative number is a pause.

```
In[222]:= compareStrategies[strategyList_, numRnd_: 500] := Module[{},
        {res, counts} = Transpose@Table[
            battlecodeModelExplicit[
             numberOfRounds = numRnd
             , decayMultiplier = .8
             , bytecodeUsage = 0
             , Flatten@strategyList[[i]]
            ];
            {myResources, botCount}
            , {i, 1, Length@strategyList}];
       ]
```

```
In[410]:= strategyList = {
          , {ConstantArray[{-10, 2}, 20]}
          , {ConstantArray[{2}, 20]}
          , {-100, ConstantArray[{-10, 2, 1}, 20]}
          , {-100, ConstantArray[{-20, 2, 1}, 20]}
          , {ConstantArray[{-20, 2, 1}, 20]}
         };
      strategyNames = ToString@Flatten[#][[;; Min[Length@Flatten@#, 10]]] & /@ strategyList;
      compareStrategies[strategyList, 500]
      opt = {BaseStyle \rightarrow {FontFamily \rightarrow "Calibri", 14}, AspectRatio \rightarrow 1 / 3,
          ImagePadding \rightarrow 20 {{1.5, 3}, {1, 1}}, ImageSize \rightarrow {400, Automatic}, PlotStyle \rightarrow
           Table[Directive[{RGBColor[2j, 2-2j, 0], Thick}],
             {j, 0, 1, 1 / (Length@strategyList - 1)}]
         };
      Needs["maxLegend"",
        "C:\\Users\\Max\\Dropbox\\backup\\mathematica projects\\maxLegend.m"]
      formatLegend[ListLinePlot[res, opt, AxesLabel → {"Round", "Res"}], strategyNames]
      ListLinePlot[counts, opt, AxesLabel → {"Round", "Bots"}]
          Res
       1000
        800
        600
Out[415]=
        400
        200
                                                              Round
                    100
                                                          500
                             200
                                       300
                                                400
          Bots
         40
         30
Out[416]=
         20
         10
                                                              Round
                    100
                             200
                                       300
                                                400
                                                          500
```

Encounters of units

Let's assume they all are dealing damage

The first units deal damage equally

the next ones deal damage to one unit, going along

```
ln[17]:= team1Units = 10;(*make sure this number is less than team 2 units*)
       team2Units = 10;
       team1hp = ConstantArray[40, team1Units];
       team2hp = ConstantArray[40, team2Units];
  In[21]:= getNextHP[] := (
         team2hp[[;; team1Units]] = team2hp[[;; team1Units]] - 6;
         team1hp[[;;]] = team1hp[[;;]]-6;
         remainingUnits = Min[team2Units - team1Units, team1Units];
         team1hp[[;; remainingUnits]] = team1hp[[;; remainingUnits]] - 6;
         (*now reduce the number of units*)
         team1hp = Select[team1hp, # > 0 &];
         team1Units = Length@team1hp;
         team2hp = Select[team2hp, # > 0 &];
         team2Units = Length@team2hp;
        )
  In[22]:= simulateCombat[team1UnitsIn_, team2UnitsIn_] := Module[{t},
         team1Units = team1UnitsIn;
         team2Units = team2UnitsIn;
         (*team1Units = 10; (*make sure this number is less than team 2 units*)
         team2Units = 11;*)
         team1hp = ConstantArray[40, team1Units];
         team2hp = ConstantArray[40, team2Units];
         (*Print@Dynamic@team1hp;
         Print@Dynamic@team2hp; *)
         While[team1Units > 0,
          getNextHP[];
          (*Pause[0];*)
         unitKillRatio = team1UnitsIn / Max[(team2UnitsIn - team2Units), .001];
         hpKillRatio = team1UnitsIn * 40 / Max[(team2UnitsIn * 40 - Total@team2hp), .001];
         Return@{{"Robot Kill Ratio", N@unitKillRatio}, {"HP Kill Ratio", N@hpKillRatio}}
  In[23]:= TableForm@simulateCombat[10, 11]
Out[23]//TableForm=
                           1.42857
      Robot Kill Ratio
      HP Kill Ratio
                          1.06383
```

Let's look at a lot of results

```
In[399]:= combatResults = Table[
           Flatten[{N@i / 20, simulateCombat[20, i][[;;, 2]]}]
            , {i, 21, 30}];
       Style[TableForm[Join[{{"Force Ratio", "Unit Kill Ratio", "HP Kill Ratio"}},
          ]], FontSize \rightarrow 14, FontFamily \rightarrow "Calibri"
       Force Ratio
                         Unit Kill Ratio
                                            HP Kill Ratio
       1.05
                         1.17647
                                            1.03093
       1.1
                         1.42857
                                            1.06383
       1.15
                         1.81818
                                            1.0989
       1.2
                         2.5
                                            1.13636
Out[400]= 1.25
                         4.
                                            1.17647
                         10.
                                            1.21951
       1.3
       1.35
                         20 000.
                                            1.25786
       1.4
                         20 000.
                                            1.28205
       1.45
                         20 000.
                                            1.30719
       1.5
                         20 000.
                                            1.33333
\label{eq:local_local_local_local} $$ \ln[401] = pts = ListPlot[combatResults[[;;,,\{1,3\}]], PlotStyle \rightarrow Thick] $$ $$
            1.30
            1.25
            1.20
Out[401]=
            1.15
            1.10
            1.05
                             1.2
                                           1.3
                                                         1.4
```

```
log(402):= theline = ax + b /. FindFit[combatResults[[;;, {1, 3}]], ax + b, {a, b}, x];
      Show[Plot[theline, \{x, 0, 3\}, PlotStyle \rightarrow Red], pts]
      theline
      2.0
      1.5
Out[403]=
      1.0
                0.5
                         1.0
                                  1.5
                                          2.0
                                                   2.5
Out[404]= 0.302247 + 0.696782 x
In[405]:= spawnTable = Table[
          Join[{n}, Round@{(10 * .95^n), 100 / (10 + n)}]
          , {n, 0, 50}];
      hpPerTurn = 40 / spawnTable[[;;, 3]];
      incrementalBonus = Join[{0}, Differences@hpPerTurn];
      spawnTable = N@Join[spawnTable, List/@hpPerTurn, List/@incrementalBonus, 2];
      TableForm@Join[{{"# Suppp", "Old Spec\n Spawn Delay",
           "Latest Spec\n Spawn Delay", "HP/round", "+HP/round"}}, spawnTable]
```

Out[409]//TableForm=

9]//TableForm=	01.1 0	Tallani Gaan	IID / 1	IID / 1
# Suppp	Old Spec	Latest Spec	HP/round	+HP/round
	Spawn Delay	Spawn Delay	_	
0.	10.	10.	4.	0.
1.	10.	9.	4.4444	0.44444
2.	9.	8.	5.	0.555556
3.	9.	8.	5.	0.
4.	8.	7.	5.71429	0.714286
5.	8.	7.	5.71429	0.
6.	7.	6.	6.66667	0.952381
7.	7.	6.	6.66667	0.
8.	7.	6.	6.66667	0.
9.	6.	5.	8.	1.33333
10.	6.	5.	8.	0.
11.	6.	5.	8.	0.
12.	5.	5.	8.	0.
13.	5.	4.	10.	2.
14.	5.	4.	10.	0.
15.	5.	4.	10.	0.
16.	4.	4.	10.	0.
17.	4.	4.	10.	0.
18.	4.	4.	10.	0.
19.	4.	3.	13.3333	3.33333
20.	4.	3.	13.3333	0.
21.	3.	3.	13.3333	0.
22.	3.	3.	13.3333	0.
23.	3.	3.	13.3333	0.
24.	3.	3.	13.3333	0.
25.	3.	3.	13.3333	0.
26.	3.	3.	13.3333	0.
27.	3.	3.	13.3333	0.
28.	2.	3.	13.3333	0.
29.	2.	3.	13.3333	0.
30.	2.	2.	20.	6.66667
31.	2.	2.	20.	0.
32.	2.	2.	20.	0.
33.	2.	2.	20.	0.
34.	2.	2.	20.	0.
35.	2.	2.	20.	0.
36.	2.	2.	20.	0.
37.	1.	2.	20.	0.
38.	1.	2.	20.	0.
39.	1.	2.	20.	0.
40.	1.	2.	20.	0.
41.	1.	2.	20.	0.
42.	1.	2.	20.	0.
43.	1.	2.	20.	0.
44.	1.	2.	20.	0.
45.	1.	2.	20.	0.
46.	1.	2.	20.	0.
47.	1.	2.	20.	0.
48.	1.	2.	20.	0.
49.	1.	2.	20.	0.
50.	1.	2.	20.	0.

6.370 The Battlecode Programming Competition IAP 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.