Supplementary Material 1: Individual Level Analyses

Manikya Alister

Table of contents

1	Prio	rs		1
2	Wha	2.0.1 2.0.2	the average belief updates for each claim type? Independent v Dependent consensus	
3		at were n type	the average independence deltas (independent - dependent) for each?	3
4	Mod	delling		3
	4.1	Model	Comparison	3
		4.1.1	Excluding contested condition (independent v dependent)	3
		4.1.2	Excluding dependent condition (independent v contested)	3
	4.2	Estim	ates	4
		4.2.1	Excluding contested condition (independent v dependent)	4
	4.3	Explo	ritory analysis: Looking at prior <i>certainty</i>	4
		4.3.1	Excluding contested condition (independent v dependent)	5
		4.3.2	Excluding dependent condition (independent v contested) $\dots \dots$	5
5	Pre-	registe	red follow up: broad claim types	6
	5.1	Averag	ge belief updates	7
		5 1 1	Independent vs. dependent	7

1 Priors

The priors plot is too large to show here, but it is in 07_Plots/priors.png (and on the OSF).

2 What were the average belief updates for each claim type?

2.0.1 Independent v Dependent consensus

2.0.2 Contested v Independent Consensus

3 What were the average independence deltas (independent - dependent) for each claim type?

4 Modelling

4.1 Model Comparison

4.1.1 Excluding contested condition (independent v dependent)

	model	${\tt excluded_condition}$	all_looic	all_se	model_rank
1	group-prior	contested	26952	103	4
2	group-prior-consensus	contested	26946	103	3
3	<pre>group-prior-consensus-claim</pre>	contested	26493	111	1
4	<pre>group-prior-consensusXclaim</pre>	contested	26496	111	2

4.1.2 Excluding dependent condition (independent v contested)

	model	excluded_condition	all_looic	all_se	model_rank
1	group-prior	dependent	27693	100	4
2	group-prior-consensus	dependent	26633	116	3
3	<pre>group-prior-consensus-claim</pre>	dependent	26565	117	2

1

4 group-prior-consensusXclaim

4.2.1 Excluding contested condition (independent v dependent)

	${\tt Estimate}$	Lower	Upper
b_Intercept	42.896	40.789	44.977
b_pre_adjusted	0.666	0.648	0.684
b_consensusindependent	1.678	0.725	2.620
b_claim_typeKnowableFacts	-2.706	-4.055	-1.329
b_claim_typeUnknowableExpert	-12.420	-13.816	-11.054
<pre>b_claim_typeUnknowablePreference</pre>	-15.898	-17.271	-14.512

contrast	estimate	lower.HPD	upper.HPD
Knowable Eye witness - Knowable Facts	2.71	1.33	4.03
Knowable Eye witness - Unknowable Expert	12.42	11.02	13.77
Knowable Eye witness - Unknowable Preference	15.90	14.47	17.21
Knowable Facts - Unknowable Expert	9.71	8.29	11.06
Knowable Facts - Unknowable Preference	13.19	11.80	14.48
Unknowable Expert - Unknowable Preference	3.48	2.12	4.85

Results are averaged over the levels of: consensus

Point estimate displayed: mean HPD interval probability: 0.89

4.3 Exploritory analysis: Looking at prior certainty

It is possible that our claim type results could be driven by the fact that people's prior beliefs weren't as strong for certain kinds of claims, which therefore made them more likely to change their beliefs. For example, people are likely to have stronger prior beliefs about things that are about facts, which they could have heard before, or personal preferences compared to things like eyewitness claims that they have never seen themselves. To test this, we ran another model that, in addition to all of the other predictors, looked at people's prior certainty. We quantified certainty as the absolute value of participants' prior belief minus the scale midpoint (50), such that a belief was less certain if it was closer to the mid point. This analysis was **not** pre-registered.

4.3.1 Excluding contested condition (independent v dependent)

	model	all_looic	all_se	model_rank
1	group-prior	26952	103	5
2	group-prior-consensus	26946	103	4
3	group-prior-consensus-claim	26493	111	2
4	<pre>group-prior-consensusXclaim</pre>	26496	111	3
5	<pre>group-prior-consensusXclaim-certainty</pre>	26460	114	1

The model performs better according to LOOIC when we consider prior certainty in addition to the other factors. However, to what extent does this reduce the credibility of the other main effects that were 89% credible in the next best performing model?

	${\tt Estimate}$	Lower	Upper
b_Intercept	44.861	42.383	47.289
b_pre_adjusted	0.665	0.647	0.684
b_pre_certainty	-0.119	-0.153	-0.087
b_consensusindependent	1.726	-0.173	3.666
b_claim_typeKnowableFacts	-2.855	-4.739	-0.951
b_claim_typeUnknowableExpert	-11.937	-13.963	-9.939
b_claim_typeUnknowablePreference	-13.925	-15.874	-11.960
b_consensusindependent:claim_typeKnowableFacts	0.880	-1.784	3.552
b_consensusindependent:claim_typeUnknowableExpert	0.960	-1.730	3.696
<pre>b_consensusindependent:claim_typeUnknowablePreference</pre>	-1.697	-4.423	1.017

Even though the model that includes certainty and an interaction does best, the main effects of claim type are still credible. However, it is worth noting that as prior certainty decreases, participants are more likely to be persuaded by the consensus. Controlling for certainty also did not make the claim type X consensus independence interaction more credible.

4.3.2 Excluding dependent condition (independent v contested)

	model	all_looic	all_se	model_rank
1	group-prior	27693	100	5
2	group-prior-consensus	26633	116	4
3	group-prior-consensus-claim	26565	117	3
4	<pre>group-prior-consensusXclaim</pre>	26335	121	1
5	<pre>group-prior-consensusXclaim-certainty</pre>	26335	121	2

For the standard consensus comparison, a model that included certainty was equally as good (according to the balance of fit and parsimony defined by LOOIC) compared to the model that did not.

	${\tt Estimate}$	Lower	Upper
b_Intercept	9.850	8.054	11.671
b_pre_adjusted	0.718	0.700	0.735
b_pre_certainty	-0.026	-0.059	0.006
b_consensusindependent	32.868	31.051	34.741
b_claim_typeKnowableFacts	1.934	0.012	3.839
b_claim_typeUnknowableExpert	6.523	4.563	8.376
b_claim_typeUnknowablePreference	4.422	2.504	6.331
b_consensusindependent:claim_typeKnowableFacts	-4.562	-7.276	-1.944
b_consensusindependent:claim_typeUnknowableExpert	-18.685	-21.323	-16.039
<pre>b_consensusindependent:claim_typeUnknowablePreference</pre>	-21.402	-24.075	-18.769

All of the main effects and interactions that were credible in the best performing model that excluded certainty were still credible when we included certainty. Notably though, the 89% CI for certainty overlapped with zero and is quite small relative to the consensus independence comparison, suggesting that the consensus X claim type interaction cannot only be explained by people having weaker priors for certain claims.

5 Pre-registered follow up: broad claim types

The four claim types that we use in our main analyses are sub-types of two main claim types: knowable and unknowable. In our pre-registration, we said that if there was no claim type X independence interaction for the four main claim types, we would repeat the modelling on the two broader claim types.

5.1 Average belief updates

5.1.1 Independent vs. dependent

