Equações Diferenciais EDO's Lineares EDO de 1ª Ordem EDO de Bernoulli EDO de 2ª Ordem

EDO I

por Abílio Lemos

Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147 - 2019

9 e 14 de maio de 2019

Uma **equação diferencial** é qualquer relação entre uma função e suas derivadas.

Existem dois tipos de equações:

- (1) Equações Diferenciais Ordinárias (EDO): A função y que aparece na equação é uma função de uma variável x. A forma geral da equação é F(x, y, y', y", ..., y⁽ⁿ⁾) = 0. A **ordem** da equação é a ordem da derivada de ordem superior máxima que aparece na equação;
- (2) Equações Diferenciais Parciais (EDP): A função u que aparece na equação é uma função de uma várias variáveis, $u(x_1, x_2, \ldots, x_m)$. A equação é uma relação entre u, as variáveis independentes x_1, x_2, \ldots, x_m e as derivadas parciais de u.

Neste curso estudaremos apenas o primeiro caso.

- (i) Uma **solução explícita** da EDO é qualquer função y(x) que satisfaça a EDO em um intervalo a < x < b;
- (ii) Uma solução implícita da EDO é uma relação G(x, y) = 0 que satisfaça a EDO.

As soluções implícitas podem dar origem a várias soluções implícitas.

Exemplos

- (1) Mostre que $y(x) = e^{5x}$ e $y(x) = e^{-3x}$ são soluções da EDO y'' 2y' 15y = 0.
- (2) Mostre que a relação $x + y + e^{xy} = 0$ é solução implícita da EDO $(1 + xe^{xy})y' + 1 + ye^{xy} = 0$.

Pergunta: $y(x) = e^{5x} + e^{-3x}$ é solução da EDO em (1)?

Uma EDO $F(x, y, y', y'', \dots, y^{(n)}) = 0$ é **linear** se F for uma função linear nas variáveis $y, y', y'', \dots, y^{(n)}$. Caso contrário dizemos que a EDO é **não linear**.

Exemplo: A EDO y' = f(x, y) é **linear** se pode ser escrita como

$$y' = g(x) - p(x)y.$$

Assim, ela se torna

$$y' + p(x)y = g(x).$$

No caso em que g(x) = 0 dizemos que a EDO é homogênia.

Exemplo: Classifique as EDO's abaixo quanto a ordem, linearidade e a homogeneidade.

(a)
$$y''' + 2e^x y'' + yy' = x^4$$
;

(b)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 2y = sen x;$$

(c)
$$\frac{dy}{dx} + xy = y \cos x$$
;

(d)
$$\frac{d^2y}{dx^2} + sen(x+y) = sen x;$$

Exemplo: Em cada um dos itens abaixo, faça o que se pede.

- (1) Considere a EDO que controla o decaimento de uma substância radioativa com o tempo R(t), dada por $\frac{dR(t)}{dt} = -kR(t)$, onde k é uma constante conhecida. Qual a solução do problema?
- (2) Prove que y(x) = sen x e y(x) = cos x são soluções de y'' + y = 0.
- (3) Mostre que $y(x) = x^2 \ln x$ é solução de $x^2y'' 3xy' + 4y = 0, x > 0.$;

Uma EDO de 1ª ordem tem a forma :

$$F(x, y, y') = 0$$
 ou $y' = f(x, y)$

Obs: Sabemos que uma EDO por si só não estabelece a unicidade da solução, quando esta existe. Por exemplo $y(x) = e^{-x} + ce^{-2x}$ é solução de $y' + 2y - e^{-x} = 0$ para cada $c \in \mathbb{R}$. A família de curvas denominada **curvas integrais** são as soluções da EDO. Para escolher uma curva em particular como solução é necessário colocar uma condição inicial.

Um problema de valor inicial (PVI) é uma EDO com uma condição inicial, ou seja,

$$y' = f(x, y), y(x_0) = y_0$$

Exemplo: Determine a solução do PVI y' - 2y = 0, $y(\ln 2) = 12$.

Teorema 1

Considere o PVI

$$y' = f(x, y), y(x_0) = y_0.$$
 (1)

Se f(x,y) e $\partial f/\partial y$ são contínuas no retângulo

$$R = \{(x, y) \in \mathbb{R}^2; \alpha \le x \le \beta, \delta \le y \le \gamma\}$$

contendo (x_0, y_0) , então o PVI (1) tem uma única solução em um intervalo I tal que $x_0 \in I$.

Seja f uma função contínua em I=(a,b). Então

$$\int y'dx = \int f(x) dx \Rightarrow y = \int f(x) dx + C, \ C \in \mathbb{R}.$$

A generalização do caso mais simples é

$$y' + p(x)y = q(x), (2)$$

onde p e q são funções contínuas em um intervalo I=(a,b). Se fizermos q(x)=0 em (2) obtemos a solução y(x)=0 e uma solução não nula, desde que y(x)>0, é $y(x)=ke^{-\int p(x)\,dx}$, com $k\in\mathbb{R}$.

Exemplos: Resolva as EDO's ou PVI's abaixo.

(a)
$$2y' - \cos^2 x = 0$$
;

(b)
$$y' - y \ln x = 0, y(1) = 1;$$

(c)
$$y' - \frac{y}{x^2 + 1} = 0, y(0) = e.$$

Vamos voltar ao caso geral da EDO em (2) supondo $q(x)\neq 0$. Devemos encontrar uma função μ tal que multiplicado (2) por $\mu(x)\neq 0$, o membro esquerdo de (2) seja a derivada de $\mu(x)y$. Se conseguirmos isso teremos $\frac{d}{dx}(\mu(x)y)=\mu(x)q(x)$, ou seja, $y(x)=\frac{1}{\mu(x)}\left(\int \mu(x)q(x)\,dx+C\right)$, com $c\in\mathbb{R}$, e assim a EDO está resolvida.

Precisamos, agora, garantir a existência da função μ . Queremos $\frac{d}{dx}(\mu(x)y) = \mu(x)y' + \mu(x)p(x)y$. Supondo $\mu(x) > 0$, obtemos $\mu(x) = e^{\int p(x)\,dx}$, e essa última igualdade é chamada **fator integrante** que também dá nome a técnica de resolução da EDO. *Exemplo*: Resolva a EDO xy' + 2y = sen x, x > 0.

Uma EDO de 1ª ordem **separável** tem a forma:

$$y' = f(x, y) = g(x)p(y),$$

ou seja, a função f(x, y) pode ser separada em um produto de uma função de x por uma função de y.

Se $p(y) \neq 0$, então

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}, h(y) = 1/p(y).$$

Para resolvermos essa EDO reescrevemos na forma diferencial h(y) dy = g(x) dx. Se mostrarmos que $\int h(y) dy = \int g(x) dx$ podemos resolver a EDO.

Exemplos: 1) Resolva o PVI
$$\frac{dy}{dx} = \frac{6x^2}{2y + \cos y}, y(1) = \pi.$$

2) Resolva o PVI

$$\frac{dy}{dx} = \frac{y\cos x}{1+2y^2}, y(0) = 1.$$

3) Obtenha uma solução implícita e depois uma solução explícita para a EDO $y^\prime=x^2y$.

Uma EDO da forma

$$y' + p(x)y = q(x)y^n,$$

é chamada **equação de Bernoulli**. Se $n \neq 0$ e $n \neq 1$ esse é um exemplo de EDO não linear.

Para $n \neq 0$ e $n \neq 1$ tem-se

$$y^{-n}y' + p(x)y^{1-n} = q(x).$$

Isso sugere a mudança de variável

$$v = y^{1-n}.$$

Como

$$v' = (1-n)y^{-n}y' \Leftrightarrow y^{-n}y' = \frac{v'}{1-n}$$

decorre que

$$\frac{v'}{1-n} + p(x)v = q(x) v' + (1-n)p(x)v = (1-n)q(x) v' + \phi(x)v = g(x)$$

onde $\phi(x) = (1-n)p(x)$ e g(x) = (1-n)q(x). Assim foi possível transformar uma equação não linear em uma linear e então usamos os métodos aprendidos anteriormente para resolvê-la.

Exemplo: Resolva as EDO's abaixo.

(a)
$$y' = \epsilon y - \sigma y^2$$
, com $\epsilon > 0$ e $\sigma > 0$;

(b)
$$y' = \epsilon y - \sigma y^3$$
, com $\epsilon > 0$ e $\sigma > 0$.

Resposta dos Exemplos:

(a)
$$y(x) = \frac{\epsilon e^{\epsilon x}}{\epsilon k + \sigma e^{\epsilon x}}, k \in \mathbb{R};$$

(b)
$$y(x) = \left(\frac{\sigma}{\epsilon} + ke^{-2\epsilon x}\right)^{-1/2}, k \in \mathbb{R}.$$

Uma EDO de segunda ordem tem a forma:

$$y'' = f(x, y, y') \tag{3}$$

A EDO (3) é dita **linear** se a função f pode ser escrita como

$$f(x, y, y') = g(x) - p(x)y' - q(x)y.$$

Assim, a EDO (3) se torna

$$y'' + p(x)y' + q(x)y = g(x).$$

Lembremos que, no caso em que g(x) = 0 dizemos que a EDO é homogênea.

Uma EDO homogênea com coeficientes constantes é dada por

$$ay'' + by' + cy = 0$$
, com $a \neq 0, b, c \in \mathbb{R}$. (4)

Uma solução para a EDO (4) é $y(x) = e^{rx}$, onde r é raiz de

$$ar^2 + br + c = 0. ag{5}$$

A equação (5) é chamada equação característica da EDO (4).

1º **Caso**: As raizes r_1 e r_2 da equação (5) são reais e distintas. Neste caso, $y(x) = e^{r_1x}$ e $y(x) = e^{r_2x}$ são soluções de (4) e portando $y(x) = Ae^{r_1x} + Be^{r_2x}$, com $A, B \in \mathbb{R}$, também é solução de (4).

Exemplos: Resolva as EDO's abaixo.

- (a) y'' + y' 2y = 0;
- (b) 2y'' 6y' + 4y = 0;
- (c) y'' + 2y' 3y = 0.
- (d) 2y'' 3y' + y = 0;
- (e) 4y'' 9y' = 0;
- (f) y'' 2y' 2y = 0.