GroupRepresentation 10

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023 年 12 月 22 日

ROBEM I Assume $(\varphi, V), (\psi, W)$ are two finite-dim reperentation of group G, find the matrix of $\varphi \otimes \psi$.

SOLTON. Assume $\{v_i: i=1,\cdots,n\}, \{w_i: i=1,\cdots,m\}$ are basis of V,W. Then we get $\{v_i\otimes w_j: 1\leq i\leq n, 1\leq j\leq m\}$ is a basis of $V\otimes W$. Assume Φ,Ψ,Γ is the matrix of $\varphi,\psi,\varphi\otimes\psi$. We use $\{1,\cdots,n\}^4$ as the dom of $\Gamma(g)$. Then we get $(\varphi\otimes\psi)(g)(v_i\otimes w_j)=\varphi(g)(v_i)\otimes\psi(g)(w_j)$. So $\Gamma(g)(e_{ij})=(\sum_{k=1}^n\sum_{t=1}^m\Phi(g)_{ki}\Psi(g)_{tj}e_{kt})$. So finally we get $\Gamma(g)_{kt,ij}=\Phi(g)_{ki}\Psi(g)_{tj}$.

ROBEM II Assume $\operatorname{Sym}^2 V := \operatorname{Span}\{v \otimes w + w \otimes v : v, w \in V\}$ and $\bigwedge^2 V := \operatorname{Span}\{v \otimes w - w \otimes v : v, w \in V\}$. Prove that $V \otimes V = \operatorname{Sym}^2 V \oplus \bigwedge^2 V$.

SOUTION. First since $x \otimes y = \frac{x}{2} \otimes y + y \otimes \frac{x}{2} + \frac{x}{2} \otimes y - y \otimes \frac{x}{2}$ we get $x \otimes y \in \operatorname{Sym}^2 V + \bigwedge^2 V$. Since $\operatorname{Span}\{x \otimes y : x, y \in V\} = V \otimes V$, we get $V \otimes V = \operatorname{Sym}^2 V + \bigwedge^2 V$. Now assume $\dim V = n$, we only need to prove $\dim \operatorname{Sym}^2 V + \dim \bigwedge^2 V \leq n^2$. Assume $\{v_i : 1 \leq i \leq n\}$ is a basis of V, then $\{v_i \otimes v_j : 1 \leq i, j \leq n\}$ is basis of $V \otimes V$. Then easily $\operatorname{Span}\{v_i \otimes v_j + v_j \otimes v_i : 1 \leq i, j \leq n\} = \operatorname{Sym}^2 V$, $\operatorname{Span}\{v_i \otimes v_j - v_j \otimes v_i : 1 \leq i, j \leq n\} = \bigwedge^2 V$. Since for $i \neq j$ we get $v_i \otimes v_j + v_j \otimes v_i = v_j \otimes v_i + v_i \otimes v_j$ we get $\dim \operatorname{Sym}^2 V \leq n + \frac{n^2 - n}{2}$. Since for $i \neq j$ we have $v_i \otimes v_j - v_j \otimes v_i = -(v_j \otimes v_i - v_i \otimes v_j)$ and for i = j we have $v_i \otimes v_j - v_j \otimes v_i = 0$ we get $\dim \bigwedge^2 V \leq \frac{n^2 - n}{2}$. So finally we get $\dim \operatorname{Sym}^2 V + \dim \bigwedge^2 V \leq n + \frac{n^2 - n}{2} + \frac{n^2 - n}{2} = n^2$. So $V \otimes V = \operatorname{Sym}^2 V \oplus \bigwedge^2 V$.

ROBEM III Find the complex character table of the group D_5 .

SOUTION. First we should find all of irreducible complex reperentation of D_5 . Easily all of conjugate of D_5 are $\{e\}, \{\sigma, \sigma^4\}, \{\sigma^2, \sigma^3\}, \{\tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau, \sigma^4\tau\}$. So there are four different irreducible complex reperentation of D_5 . Now we try to find the one-dim irreducible complex reperentation. Easily we get $D_5' = \langle \sigma \rangle$. So $D_5/D_5' \cong \mathbb{Z}_2$. So D_5 has two different irreducible complex reperentation, φ_0, φ_1 . Where φ_0 is the main reperentation, and $\varphi_1(\sigma^i) = 1, \varphi_1(\sigma^i\tau) = -1$. Now we try to find other reperentation of D_5 . Since $|D_5| = 10 = 1^2 + 1^2 + 2^2 + 2^2$, we get D_5 has two different

two-dim irreducible reperentation. Consider $\varphi_{\theta}(\sigma) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ and $\varphi_{\theta}(\tau) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$,

let $\varphi_2 = \varphi_{\frac{2\pi}{5}}, \varphi_3 = \varphi_{\frac{4\pi}{5}}$. Easily φ_2, φ_3 are irreducible and different. So all of different irreducible complex reperentation of D_5 are $\varphi_0, \varphi_1, \varphi_2, \varphi_3$. Now we let $g_1 = e, g_2 = \sigma, g_3 = \sigma^2, g_4 = \tau$ and $W_{ij} = \chi_{i-1}(g_j)$, we have

$$W = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 2 & 2\cos\frac{2\pi}{5} & 2\cos\frac{4\pi}{5} & 0 \\ 2 & 2\cos\frac{4\pi}{5} & 2\cos\frac{2\pi}{5} & 0 \end{pmatrix}$$