3.04.2010	
15. Silyle Source Shortest Poth & Bellman-Ford Algorithm.	
- Algorithm Bellman-Ford (G, w, 8)	
Input: Directed graph G= (V, E);	
Edge weights è we : e E E 3	
vertex s E V.	
Output: For all vertices v reachable from 8, vod is set to the	
distance from sto v.	
The state of the state of the property of the second of the second of	
# Initialize-Stugle-Source:	
for each vertex v E & · V:	
v.d = 00	
V.TZ NIL	
8.d=0	
for i=1 to 1G.VI-1: (repeat WI-1 time)	
for each edge (u,v) € G.E:	
RELAX (u,v,w)	
for each edge (u,v) & G.E:	
if v.d > u.d + w(u,v)	
return FALSE	
return TRUE	
	1
Procedure RELAX (u, v, w)	1
if v.d > u.d + w(u,v):	
$v \cdot d = u \cdot d + w(u_1 v)$	
v. A = u	
. The algorithm solves the single source shortest path problem of a	
directed graph G= (V, E) in which the edge weights may be negation	ve.
· Moreover, this algorithm can be applied to find the shortest if there does not exist any negative weighted eycle.	sath,
If there does not exist any negative weighted eyels	