CRMS2Map documentation

Jin Ikeda Last Modify 01/09/25

CRMS2Map: Data analytical and mapping tools for the Louisiana Coastal Reference Monitoring System

(CRMS)

Repository: https://github.com/jinikeda/crms2map

Datasets

Available data list https://cims.coastal.la.gov/monitoring-data/
Bulk downloads: https://cims.coastal.la.gov/FullTableExports.aspx

CRMS data list

- Hydrographic Data (Continuous Hydrographic (Hourly), Discrete Hydrographic (Monthly)) using bulk download links
- Coastal Basin (GIS data -> Reference layers -> Basins)
 Input/Basin_NAD83.shp (ten coastal domains defined by CPRA)
 Input/Basin_NAD83_Dissolve.shp (merged single domain)
- Datum conversion for surface water elevation (**Geoid12B** after Oct 2, 2023. No more Geoid12A data are available)

https://www.lacoast.gov/chart/Charting.aspx?laf=crms&tab=2

Environment Setting

Follow sections 1 to 3 in the Readme file: https://github.com/jinikeda/crms2map

CRMS2 Map package: Features and Workflow

1. Auto-Retrieve Hydrographic Data

- CRMS2Map continuous:
 - o Retrieves and subsets continuous hydrographic data (hourly).

○ Estimated Time: 10 – 20 minutes.

• CRMS2Map discrete:

- o Retrieves and subsets discrete hydrographic data (monthly).
- Estimated Time: ~1 minute.

2. Data Processing of Hydrographic Data

• CRMS2Map resample:

- o Generates averaged datasets (hourly, daily, monthly, yearly) from continuous and discrete hydrographic data.
- o Processed datasets are saved in the "Input" folder.
- o Processed and output data are organized in their respective folders for easy access.
- Estimated Time: ~3 minutes.

3. Data Visualization of Hydrographic Data

• CRMS2Map Plot:

- o Creates time-series plots for the user's specified period.
- o Includes (moving-averaged) datasets for:
 - Salinity [ppt]
 - Water level [m, NAVD88]
 - Percent time inundation/Hydro period [-]
 - Inundation depth [m]

Station Specification:

- When the user wants to specify the station(s), of interest, update the station_list.txt file located in the parent folder.
- **Estimated Time**: ~3 minutes.

option

sdate	State date for the data analysis (format: YYYY-MM-DD) [Default: "2008-01-01"]					
edate	End date for the data analysis (format: YYYY-MM-DD)[Default: "2024-12-31"]					
staionfile	Path to station list file <station_list.txt> (format: CRMSxxxx)[Default: None]</station_list.txt>					
data_type	Data type: hourly(H), daily(D), monthly(M), and yearly(Y)[Default: M]					
save	Save as a single (bundled) dataset and MA_datasets. This is time-consuming when					
the user uses high spatial datasets. [Default: True]						
plotdata	Plot original data (org) or moving average data (MA)[Default: MA]					
specify_ma	[Optional] The user can specify a central moving average window size in days.					
[Default: yearly averaged]						

CRMS2Map Pytest

• tests/test_CRMS_general_functions.py

Test individual functions used in each submodule (Github Action automatically tests the CI/CD pipeline when changing the code).

Supplement Analysis (folder: CRMS2Map/Supplement)

Datasets

CRMS station coordinates

CRMS_Long_Lat.csv

https://www.lacoast.gov/crms_viewer/Map/CRMSViewer -> Download Lat./Long.

• Marsh Vegetation

 $\frac{(https://cims.coastal.la.gov/FullTableExports.aspx}{Only} -> Full Table Exports - CRMS \ Data \ Only -> \textbf{Marsh Vegetation})$

Processed CRMS_Long_Lat.csv and CRMS_Marsh_Vegetation.csv to make dominant marsh vegetation types and the station's coastal domains.

- o Location: Data/CRMS station Basin Community.shp
- Station list for each variable (Surface_salinity, water elevation, temperature, etc)
 - Data/CRMS stations Surface salinity.shp
 - o Data/CRMS_stations_Water_Elevation_to_Datum.shp
 - Data/CRMS_stations_Water_Elevation_to_Marsh.shp
 - o Data/CRMS_stations_Water_Temp.shp
- Median monthly climate drivers (sea surface temperature, river flow, precipitation, winds) in Coastal Louisiana (Processed data)
 - o Locations: Data/MonthlySST.xlsx

Date	SST	AR_Q	Prcp	U10	V10	UV	GI_trend
1981-09-01 00:00:00	29.28783	3394.246	94.55	-2.28132	0.58002	2.332741	-0.380
1981-10-01 00:00:00	28.1729	2775.051	56.14	-2.95152	1.003608	3.252465	-0.352
1981-11-01 00:00:00	26.386	4179.567	41.39	-1.29317	0.598614	1.436008	-0.265

Subdomain/community analysis:

- o Data/AR_daily_discharge_since_1970.csv (daily Atchafalaya River discharge)
- o Data/CS_discharge_since_2008.csv (daily Calcasieu River discharge)
- Data/Basin total prcp Monthly.xlsx (total precipitation in each basin)

For the detailed datasets list, please refer to Table2 on "Tempo-spatial variations in water level and salinity in Louisiana coastal wetlands over 15 years"

1. Function of Monthly_analysis_practice.py

- Data Reading and Preparation
 - o Read monthly continuous and discrete hydrographic datasets.
- Data Analysis
 - o Generate 12-month moving average datasets.
 - Examine short- (15 years) and long-term (over 40 years) trends for climate driver and CRMS data
- Data Grouping
 - o Grouped by subdomain and vegetation datasets
- Data Visualization
 - o Generates visualizations for subdomain and vegetation-specific datasets.
- Statistical Analysis
 - o Analyzes correlations between subdomain/vegetation datasets and climate drivers

Output:

- Plots for subdomains and vegetation datasets.
- Display/output statistical results

2. Function of Bootstrap_Regression_analysis.py

- Run multiple regression models.
 - o Automated bootstrap regression analysis using ordinal linear and random forest models
- Statistical Analysis
 - Evaluate the performance of models

Output:

statistical results

3. Function of Regression_analysis_plot.py

- Data Visualization
 - o Generates a time series of visualizations for each subdomain.
- Statistical Analysis
 - o Generates a summary table of model performance for each subdomain