

# Computational discovery of fast oxygen conductors

Jun Meng
University of Wisconsin-Madison

jmeng43@wisc.edu

October 17, 2024

PRiME 2024, Symposium: I02: Solid State Ionic Devices 15

## **Group / Collaborators**





**Dane Morgan (UW)** 



**Ryan Jacobs (UW)** 



Md Sariful Sheikh (UW)



Jian (Jay) Liu (NETL)

William O. Nachlas (UW-Madison)

**Acknowledgement** 







## Background: Applications implemented with oxygen-active materials



#### **Solid Oxide Fuel Cell**

#### **Proton-Exchange Membrane Fuel Cell**



#### **Solid Oxide Electrolysis Cell**



#### **Solid Oxide Air Battery**



#### **Oxygen Separation Membrane**



#### **Oxygen Sensor**



Energy Mater 2021;1:100002; ECS Trans. 2014; 58 67; Int J Energy Res. 2020; 44: 594–611. https://www.ngkntk.co.jp/english/product/sensors\_plugs/zirconia\_oxygen.html

## **Background: Known oxygen conduction materials**





Perovskite  $SrTiO_{3-\delta}$ 



Interstitial diffusion mechanism



Apatite La<sub>10</sub>Si<sub>6</sub>O<sub>27</sub>

Interstitialcy (kick-out) diffusion mechanism



Ruddlesden-Popper  $La_2NiO_{4+\delta}$ 



Interstitial oxygen  $(O_i)$  generally moves faster than vacancy oxygen  $(V_O)$ 

https://citrination.com/data\_views/147/matrix\_search?from=0

# Background: Known interstitial oxygen conductors E<sub>mig</sub> ~ 0.2-1eV



Ruddlesden–Popper ( $La_2NiO_{4+\delta}$ )



Hexagonal Perovskite (Ba<sub>3</sub>WNbO<sub>9-x</sub>)



Hexagonal Manganites (YMnO<sub>3</sub>)



Mayenite-type cage compounds (12CaO·7Al<sub>2</sub>O<sub>3</sub>)



Apatite ( $La_{10}Ge_6O_{27}$ )



Melilite (LaSrGa<sub>3</sub>O<sub>7</sub>)



Scheelite (CeNbO<sub> $4+\delta$ </sub>)



Cr<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>



Fluorite ( $UO_{2+x}$ )



9 families reported!

## High-throughput screening approach for new interstitial oxygen diffuser





Free space:  $d_{(O_i-O)} \ge 0.88\text{Å}$ ;

 $d_{(O_i-Cation)} \ge 1.0$ Å

short pathway:  $d_{(O_i-O_i)} \leq 3.0$ Å





Ruddlesden-Popper

**Phase stability**:  $E_{hull} < 100 \text{ meV/atom (in air)}$ 

 $E_{\rm hull} < 200 \text{ meV/atom (Vacuum)}$ 

Chemical reactivity: transition metal with low valence state

**Synthesizability** 

intersection screening with ICSD database

**DFT studies** on 341 oxides:  $E_{form}(O_{int}) < 0.3 \text{ eV}$ **AIMD simulation** on 87 oxides:  $E_{mig}(O_{int}) < 0.5 \text{ eV}$ 

Synthesis, XRD, EPMA, ECR, 4-probe method

# Ab initio studies of oxygen ion diffusion in $La_4Mn_5Si_4O_{22+\delta}$ ( $\delta$ = 0.5)



### Structure of La<sub>4</sub>Mn<sub>5</sub>Si<sub>4</sub>O<sub>22</sub>

- Eclipsed sorosilicate Si<sub>2</sub>O<sub>7</sub> groups connected with multivalent Mn polyhedral
- Free space in between unconnected Si<sub>2</sub>O<sub>7</sub> chains.
- Redox-active Mn<sup>2+</sup>
- Two stable oxygen interstitial sites under ambient

#### A dual diffusion mechanism

- Interstitial mechanism in between unconnected  $Si_2O_7$  chains (yellow arrow)  $E_m$ =0.69 eV
- Interstitialcy mechanism enabled by the corner-sharing  $Si_2O_7$ -MnO<sub>2</sub>- $Si_2O_7$  framework (cyan arrows)  $E_m$ =0.74 eV



# Ab initio studies of oxygen ion diffusion in $La_4Mn_5Si_4O_{22+\delta}$ ( $\delta$ = 0.5)







# Existence of interstitial oxygen in synthesized $La_4Mn_{4.69}Si_4O_{22+\delta}$ ( $\delta$ = 0.42)







Electron Probe Microscopy Analyzer (EPMA): La<sub>4</sub>Mn<sub>4.69</sub>Si<sub>4</sub>O<sub>22+0.42</sub>

# Experimental studied oxygen mobility in La<sub>4</sub>Mn<sub>4.69</sub>Si<sub>4.03</sub>O<sub>22.42</sub>



# Oxygen ionic conductivity measurement using YSZ-blocked DC 4-probe method





# Oxygen surface exchange coefficient ECR (Electrical conductivity relaxation)



## Universal features of high-performing interstitial oxygen conductors





- The availability of electrons for oxygen reduction
- Structural flexibility enabling sufficient accessible volume
  - i. corner-sharing polyhedral networks
  - ii. isolated polyhedra

## **Summary**



- A new family of interstitial oxygen diffuser  $La_4Mn_5Si_4O_{22+\delta}$  is discovered by a predesigned high-throughput screening approach along with experimental validation
- $La_4Mn_5Si_4O_{22+\delta}$  shows fast oxygen ionic conductivity, and excellent surface oxygen exchange rate
- Availability of electrons and structural flexibility with accessible volume are the universal features identified among high-performing interstitial oxygen conductors



Huge space to explore for new promising oxygen-active materials!!!

Scan to read the paper



Learn more about me





## **Acknowledgement**



#### **Computational Materials Group**

Faculty

Izabela Szlufarska Dane Morgan

Staff Scientists

Ajay Annamareddy Maciej Polak

Rafi Ullah Ryan Jacobs

Postdoc Researchers

Benjamin Afflerbach Chen Shen

Gaurav Arora Jun Meng

Muhammad Waqas Shuming Chen

Qureshi

Siamak Attarian

Graduate Students

Amy Kaczmarowski Chiyoung Kim

Lane Schultz Ni Li

Nuohao Liu Sakiru Akinyemi

Shuguang Wei Sudipta Paul

Xuanxin Hu Younsoo Kim

Undergraduate Students

Many students involved in the







Thank you!

