Clase 23

Machine Learning

ECON. Y CIENCIA DE DATOS - EAE 253B

I SEM 2019

Supervised Learning

Econometría vs ML

Econometría	ML
Busca explicar el pasado y obtener conclusiones para el futuro	Busca predecir el resultado ("Y") de experiencias futuras ("X")
Modelo específico es muy relevante (motivación teórica)	Modelo específico es irrelevante
Importancia en coeficientes (dy/dx) y significancia	Valor de coeficientes es irrelevante

Econometría vs ML

Econometría	ML
"Performance" no es tan relevante (R ²)	Performance es muy relevante; métrica difiere según tipo de problema
Evaluación dentro de muestra	Evaluación fuera de muestra
Mucho énfasis en poder argumentar causalidad	Lo único que interesa es el poder predictivo

Modelos de Predicción / Clasificación

- Regresión lineal
 - OLS / 2SLS
 - Lasso
 - Ridge
 - Panel (FE / RE) o Series de tiempo
- Modelos estadísticos
 - Logistic (Logit) / Probit
 - Poisson
 - Duración

Modelos de Predicción / Clasificación

- K-vecinos más cercanos (K-NN)
- Decision Trees
- Support Vector Machines
- Bayes Classifier
- Ensembles
 - Bagging
 - Boosting
 - Random Forests
- Neural Networks / Deep learning

"Modelo" más simple: K-NN

Decision Trees

Decision Trees

Support Vector Machines (SVM)

"Ensembles" o ensambles

Combina las predicciones de muchos modelos

Predice usando una predicción "promedio"

Random Forests es de los más conocidos

Neural Networks (Deep Learning)

Métricas de evaluación

Precision

Recall

F-1

Accuracy

AUC
P-R curves
ROC curves

Yes No Yes TP FN No FP TN

Measure	Formula
precision	tp/(tp+fp)
recall	tp/(tp+fn)
f-score	2pr * re/(pr + re)
accuracy	(tp+tn)/(tp+tn+fp+fn)

Métricas de evaluación

Loop típico de ML

for train-test in muestras:

- for subsets in set_variables: (demografica (i), geografica (c), temporales (t), comportamiento (it), relacionales (ij), etc)
 - for classifier in models:
 - for parameter in parameters:
 - Fit (train)
 - Predict (test)
 - Store Metrics

Max_metric, Best_Model = max(

• [(metric, model) for (metric, model) in results])

Análisis más profundo de los resultados...

Classifier	Param 1	Param 2	Test Split	Feature Subsets used	Accuracy	Prec @ 1%	AUC

Puesta en marcha de modelo ML

new_X_data = read_data()

prediction = Best_model.predict(new_X_data)

If prediction ...:

Cabeats de Machine Learning

Operativos

Problema con los datos (garbage in – garbage out)

Costo computacional (trade-off precisión versus costo)

Problemas con el modelamiento (trade-off bias/variance)

Deterioro del modelo

Mal mapeo problema / solución

Consideraciones éticas

Conceptuales