Álgebra Lineal

Espacios Vectoriales, Transformaciones Lineales y Espacios con Producto Interno.

Definiciones, teoremas y ejercicios extraidos de la cuarta edición del libro *Linear Algebra Done Right* de Sheldon Axler.

§1 Subespacios invariantes

Definición 1.1 (Subespacio invariante)

Suponiendo $T \in \mathcal{L}(V)$. Un subespacio U de V es llamado **invariante** bajo T si $u \in U$ implica $Tu \in U$.

En la búsqueda del subespacio no trivial más simple posible (1-dimensional) nos encontramos con un U definido como

$$U = {\lambda v : \lambda \in \mathbb{F}} = \operatorname{span}(v)$$

Vemos que si U es invariante bajo un operador $T \in \mathcal{L}(V)$ entonces $Tv \in U$ y por tanto hay un escalar $\lambda \in \mathbb{F}$ que cumple

$$Tv = \lambda v$$

Esta ecuación es tan importante que el vector v y el valor λ reciben su propio nombre.

§2 Vectores y valores propios

Definición 2.1 (Valor Propio o Eigenvalue)

Suponiendo $T \in \mathcal{L}(V)$. Un número $\lambda \in \mathbb{F}$ es llamado valor propio de T si existe $v \in V$ tal que $v \neq 0$ y $Tv = \lambda v$.

Es condición indispensable que $v \neq 0$ porque cualquier escalar $\lambda \in \mathbb{F}$ cumple $T0 = \lambda 0$.

Definición 2.2 (Vector Propio o Eigenvector)

Suponiendo $T \in \mathcal{L}(V)$ y $\lambda \in \mathbb{F}$ es un valor propio de T. Un vector $v \in V$ es llamado **vector propio** de T correspondiente a λ si $v \neq 0$ y $Tv = \lambda v$.

Teorema 2.3 (Una lista de vectores propios es linealmente independiente)

Sea $T \in \mathcal{L}(V)$. Supón $\lambda_1, \ldots, \lambda_m$ son distintos valores propios de T y v_1, \ldots, v_m son los correspondientes vectores propios. Entonces v_1, \ldots, v_m es linealmente independiente.

Demostración. Suponeos que v_1, \ldots, v_m es linealmente dependiente. Siendo k el entero positivo más pequeño tal que

$$v_k \in span(v_1, \dots, v_{k-1}); \tag{5.11}$$

la existencia de k con esta propiedad se sigue del Lema de Dependencia Lineal

(2.21). Por tanto existe $a_1, \ldots, a_{k-1} \in \mathbb{F}$ tal que

$$v_k = a_1 v_1 + \dots + a_{k-1} v_{k-1}. \tag{5.12}$$

Applicando T a ambos lados de la ecuación obtenemos

$$\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$$

Multiplicando ambos lados de 5.12 por λ_k y luego restando la ecuación de arriba obtenemos

$$0 = a_1(\lambda_k - \lambda_1)v_1 + \dots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$$

Dado que definimos k como el menor entero positivo que satisface $5.11, v_1, \ldots, v_{k-1}$ es linealmente independiente. Por tanto la ecuación de arriba implica que todas las a's son 0. Sin embargo, esto significa que v_k es igual a 0, contradiciendo nuestra hipotesis de que v_k es un vector propio. Por tanto nuestra asunción de que v_1, \ldots, v_m es linealmente dependiente es falsa.

Teorema 2.4 (máximo de valores propios)

Suponiendo V finito-dimensional. Cada operador en V tiene como mucho dimV valores propios distintos.

§2.1 Definiciones clave para el calculo de valores propios

Definición 2.5

Las siguientes afirmaciones para un operador $T \in \mathcal{L}(V)$, con V de dimensión finita, y un escalar $\lambda \in \mathbb{F}$ son equivalentes:

- (a) λ es un valor propio de T;
- (b) $T \lambda I$ no es inyectivo;
- (c) $T \lambda I$ no es sobrevectivo;
- (d) $T \lambda I$ no es invertible.

Fact 2.6 (Identidad de Euler)

La *identidad de Euler* es la igualdad conocida como la más bonita entre todas las igualdades matemáticas. Tiene la siguiente forma

$$e^{i\pi} + 1 = 0$$

En ella se relacionan dos numeros irracionales como son e y π con la unidad compleja i y los elementos neutros de la multiplicación y la suma, el 1 y el 0. Este es sin embargo un caso particular, su forma generalizada no tiene menos belleza

$$e^{i\theta} = \cos\theta + i\sin\theta$$

La importancia de una igualdad que relaciona un número tan presente en teoría

de números y analisis matemtático como el número de Euler con las funciones trigonométricas básicas es inconmensurable y permite encontrar soluciones elegantes en cálculos complejos.

Teorema 2.7 (Teorema multiplos de 3)

Para todo $n \in \mathbb{Z}$ se cumple que al menos uno de los factores de la expresión n(n+1)(n+2) es divisible por 3.

Demostración. Vamos a completar la prueba por inducción, es fácil ver que el teorema se cumple para el caso $n=1, 1\cdot 2\cdot 3=3\cdot (2)$. Ahora suponiendo que se cumple para n demostraremos que lo hace también para n+1. Con la expresión

$$(n+1)(n+2)(n+3) = 3k$$

Para cierto $k \in \mathbb{Z}$, desarrollando la expresión obtenemos

$$(n+1)(n+2)(n+3) = \frac{3k}{n}(n+3)$$
$$= 3 \cdot \frac{k}{n}(n+3)$$

Donde la primera igualdad se sostiene de la supocisión inductiva. Vemos que si $\frac{k(n+3)}{n}$ es un entero entonces hemos terminado la prueba y sabemos que es un entero ya que de la suposición inductiva sabemos que

$$\frac{k(n+3)}{n} = \frac{kn+3k}{n}$$

$$= \frac{kn+n(n+1)(n+2)}{n}$$

$$= k+(n+1)(n+2)$$

Por tanto $\frac{k(n+3)}{n}$ es un entero completando la prueba

§3 Singular Value Decomposition (SVD)

Definición 3.1 (SVD)

Suppose $T \in \mathcal{L}(V, W)$ and the positive singular values of T are s_1, \ldots, s_m . Then there exist orthonormal lists e_1, \ldots, e_m in V and f_1, \ldots , in W such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m \tag{7.71}$$

for every $v \in V$.

Demostración. Let s_1, \ldots, s_m denote the singular values of T (thus n = dimV). Because T^*T is a positive operator, the spectral theorem implies that there exists an orthonormal basis e_1, \ldots, e_n of V with

$$T^*Te_k = s_k^2 e_k (7.72)$$

for each $k = 1, \ldots, n$.

For each $k = 1, \ldots, m$, let

$$f_k = \frac{Te_k}{s_k}. (7.73)$$

If $j, k \in 1, \ldots, m$, then

$$\langle f_j, f_k \rangle = \frac{1}{s_j s_k} \langle Te_j, Te_k \rangle = \frac{1}{s_j s_k} \langle e_j, T^*Te_k \rangle = \frac{s_k}{s_j} \langle e_j, e_k \rangle = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k. \end{cases}$$

Thus f_1, \ldots, f_m is an orthonormal list in W.

If $k \in 1, ..., n$ and k > m, then $s_k = 0$ and hence $T^*Te_k = 0$ (by ??), which implies that $Te_k = 0$.

Suppose $v \in V$. Then

$$Tv = T (\langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n)$$

= $\langle v, e_1 \rangle T e_1 + \dots + \langle v, e_m \rangle T e_m$
= $s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$,

where the last index in the first line switched from n of m in the second line because $Te_k = 0$ if k > m (as noted in the paragraph above) and the third line follows from 7.73. The equation above is our desired result.