Оптимизационные алгоритмы параметрической идентификации потенциала Терсоффа для двухкомпонентных материалов

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)

Студент: Александр Владимирович Гревцев Руководитель: Абгарян Каринэ Карленовна

Цель исследования

Чтобы провести молекулярно-динамическое моделирование движения атомов в кристаллической решетке, требуется решить нормальную систему Коши:

$$\begin{cases}
m_{i} \frac{dv_{i}^{x}}{dt} = -\frac{\partial U_{i}}{\partial x_{i}}, \\
m_{i} \frac{dv_{i}^{y}}{dt} = -\frac{\partial U_{i}}{\partial y_{i}}, \\
m_{i} \frac{dv_{i}^{z}}{dt} = -\frac{\partial U_{i}}{\partial z_{i}}, \\
m_{i} \frac{dx_{i}^{z}}{dt} = v_{i}^{x}, \frac{dy_{i}}{dt} = v_{i}^{y}, \frac{dz_{i}}{dt} = v_{i}^{z}
\end{cases} \tag{1}$$

Чтобы получить правые части, нужно иметь потенциал с идентифицированными параметрами.

Потенциал Терсоффа подходит для систем атомов с ковалентной связью. Эти системы рассматриваются в работе.

Потенциал Терсоффа

Полная энергия системы атомов моделируемого материала:

$$E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} U(r_{ij})$$
 (2)

Суммируются значения энергии взаимодействующих пар атомов:

$$U(r_{ij}) = f_c(r_{ij})[f_R(r_{ij} + b_{ij}f_A(r_{ij})]$$
 (3)

где f_R и f_A — потенциалы притяжения и отталкивания между двумя атомами,

$$f_A(r_{ij}) = \frac{SD_e}{S-1} \exp(-\beta \sqrt{\frac{2}{S}} (r_{ij} - r_e))$$
 (4)

$$f_R(r_{ij}) = \frac{D_e}{S - 1} \exp(-\beta \sqrt{2S}(r_{ij} - r_e))$$
 (5)

Потенциал Терсоффа

Функция отсечения:

$$f_c(r_{ij}) = \begin{cases} 0, & r_{ij} > (R + R_{cut}) \\ \frac{1}{2} [1 - \sin[\frac{\pi(r_{ij} - R)}{2R_{cut}}]], & |r_{ij} - R| \le R_{cut} \\ 1, & r_{ij} < (R - R_{cut}) \end{cases}$$
(6)

Рис. 1: Функция отсечения

Рис. 2: Потенциал Терсоффа

Потенциал Терсоффа

Параметр, характеризующий зависимость энергии от расположения атома относительно соседних атомов:

$$b_{ij} = (1 + (\gamma \zeta_{ij})^n)^{-\frac{1}{2n}}, \tag{7}$$

$$\zeta_{ij} = \sum_{k=i,j} f_c(r_{ik}) g(\theta_{ijk}) \omega_{ik}, \tag{8}$$

$$\omega_{ik} = \exp[\lambda^3 (r_{ij} - r_{ik})^3], \tag{9}$$

$$g(\theta_{ijk}) = 1 + \frac{c^2}{d^2} - \frac{c^2}{d^2 + (h - \cos(\theta_{ijk}))^2},$$
 (10)

Однокомпонентные и двухкомпонентные материалы

Одно взаимодействие для компонента X:

X-X D_e r_e R_{cur} d h n

Три взаимодействие для компонент X и Y:

X-X	X-Y	Y-Y
D_e	D _e	De
S	S	S
β	β	β
r _e	r_e	r_e
R	R	R
R_{cur}	R_{cur}	R_{cur}
С	С	С
d	d	d
h	h	h
	• • • • • • • • • • • • • • • • • • • •	"
n	n	n

Постановка задачи

Для решения поставленной задачи необходимо найти:

$$\xi = \underset{\xi \in X}{\arg \min} F(\xi) \tag{11}$$

Необходимо определить вектор параметров потенциала Терсоффа $\xi=(\xi_1,...,\xi_k)\in X, X\subseteq R^k, k=36$, на котором достигается минимум функционала:

$$F(\xi) = \omega_1 \frac{(f_1(\xi) - \dot{f}_1)^2}{\dot{f}_1^2} + \dots + \omega_7 \frac{(f_7(\xi) - \dot{f}_7)^2}{\dot{f}_7^2} \to \min, \xi \in X$$
 (12)

В функцию минимизации входят следующие свойства материала:

- $f_1(\xi) = a$ постоянная решетки;
- $f_2(\xi) = E_{coh}$ когезионная энергия;
- $f_3(\xi) = B$ модуль всестороннего растяжения и сжатия;
- $f_4(\xi)=C_{11}$, $f_5(\xi)=C_{12}$, $f_6(\xi)=C_{44}$ константы эластичности;
- $f_7(\xi) = \zeta$ параметр Клейнмана

Постановка задачи

Для решения поставленной задачи необходимо найти:

$$\xi = \underset{\xi \in X}{\arg \min} F(\xi) \tag{13}$$

Необходимо определить вектор параметров потенциала Терсоффа $\xi=(\xi_1,...,\xi_k)\in X, X\subseteq R^k, k=36$, на котором достигается минимум функционала:

$$F(\xi) = \omega_1 \frac{(f_1(\xi) - \dot{f}_1)^2}{\dot{f}_1^2} + \dots + \omega_7 \frac{(f_7(\xi) - \dot{f}_7)^2}{\dot{f}_7^2} \to \min, \xi \in X$$
 (14)

Эталонные значения характеристик \dot{f}_i самостоятельно вычислялись в программном пакете VASP на суперкомпьютере в Межведомственном Суперкомпьютерном Центре Российской Академии наук.

Вычисления в программном пакете VASP считаются очень близкими к экспериментальным данным.

Система атомов

- Рассматриваются материалы вида сфалерита;
- Элементарная ячейка состоит из 8 атомов;
- Элементарная ячейка дублируется 3 раза во всех трех координатах(216 атомов);
- В расчетах свойств учитываются периодические граничные условия.

Сравниваемые методы минимизации

Методы глобальной минимизации:

- Случайный перебор;
- Метод имитации отжига.

Методы локальной минимизации:

- Метод Хука-Дживса;
- Granular Radial Search¹.

¹Powell D. Elasticity, lattice dynamics and parameterisation techniques for the Tersoff potential applied to elemental and type III-V semiconductors. University of Sheffield, 2006.

Сравнение методов глобальной минимизации

Каждый ме	тод обработал по	10 наборов параметров
В таблице	приведены значения	я функции минимизации
Nº	Случайный перебор	Метод имитации отжига
1	0.02064410	0.18527005054
2	0.02614400	0.05638658856
3	0.04038300	0.10829009569
4	0.04620780	0.06552733212
5	0.05129950	0.08336367006
6	0.05353240	0.07716891369
7	0.05855240	0.13123166326
8	0.06535910	0.04297800948
9	0.06545940	0.02592863035
10	0.06854700	0.06308355704
Среднее	0.04961287	0.0839228511
Время(сек)	66.981	238.210

Сравнение методов локальной минимизации

Каждый м	етод	обрабо	тал	ПО	10	набор	ов	параметр	ов,
которые б	ыли	получ	ены	СЛ	уча	йным	пер	ребором.	В
таблице п	риведе	ены з	наче	ния	þ	рункции	N	инимизац	ии.
Nº	Gra	nular R	adial	Sear	ch	Метод	Хук	а-Дживса	
1		0.0004	42008	304		0.00	0014	461210	
2		0.00010	05783	393		0.00	1040	029163	
3		0.00089	9300!	502		0.00	1515	516639	
4		0.0008	76044	466		0.00	0558	392461	
5		0.0000	74276	584		0.00	0945	588701	
6		0.00000	0861	521		0.00	0622	298738	
7		0.00009	97183	343		0.00	0018	392765	
8		0.0005	15982	259		0.00	0958	331038	
9		0.00000	01987	705		0.00	1122	273151	
10		0.00000	0487	502		0.00	0075	76683	
Среднее		0.00030)1976	520		0.00	068	736060]
Время(мин)	208	.466				441.9	933	

Варианты параллельных вычислений

Технология: OpenMP

Параметры системы: AMD Ryzen 7 1800X Eight-Core Processor

3.60 GHz

Число потоков: 16

Параллельное вычисление $U(r_{ij})$ при вычислении энергии.

$$E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} U(r_{ij})$$

Параллельная идентификация нескольких наборов параметров.

Сравнение вариантов параллельных вычислений

Метод	Время(мин)
Без OpenMP	141.83
Вычисление $\mathit{U}(\mathit{r}_{ij})$	71.86
Параллельная идентификация	98.25
Комбинация	66.783

Комбинация двух вариантов параллельных вычислений дает лучший результат.

Кремний (Si)

Пар.	Значение
D_e	5.14592
S	4.69548
β	1.44156
r _e	2.23518
R	2.85
R_{cut}	0.15
С	24697.3
d	103.132
h	-0.273259
n	1.21149
γ	0.953207
λ	0.00156529

		I
Xap.	VASP	Результат
E_{coh}	-4.617	-4.594
а	5.465	5.513
В	0.893	0.904
<i>C'</i>	0.469	0.458
C_{11}	1.519	1.538
C_{12}	0.58	0.561
C_{44}	0.627	0.624
ζ	0.522	0.517
<i>F</i> (ξ)	-	0.000051
Время	349.3	172.3

Германий (Ge)

Пар.	Значение
D_e	5.60702
S	6.09551
β	1.4484
r _e	2.24235
R	2.95
R_{cut}	0.15
С	33739
d	125.481
h	-0.524262
n	1.57274
γ	1.6957
λ	17.5114

	1/465	
Xap.	VASP	Результат
E_{coh}	-3.781	-3.778
a	5.645	5.675
В	0.745	0.746
C'	0.346	0.348
C_{11}	1.208	1.21
C_{12}	0.514	0.514
C_{44}	0.604	0.602
ζ	0.561	0.562
<i>F</i> (ξ)		0.0000083
Время	313.3	249.26

Нитрид алюминия (AIN)

Пар.	Al-Al	Al-N	N-N
D_e	3.3551	3.9127	2.7198
S	0.8359	1.0955	3.1015
β	1.0591	0.5093	1.5406
r _e	2.1372	2.5772	3.1928
R	2.335	2.335	2.335
R_{cut}	0.8	0.8	0.8
С	85871.1	3201.3	746383
d	158.496	31.1845	30.3546
h	-0.2732	-0.6584	-7.1584
n	20.9305	5.4059	6.0999
γ	0.0416	0.0623	0.0649
λ	1.0528	1.4831	0.5853

	1/4.65	_
Xap.	VASP	Результат
E_{coh}	-5.7528	-5.73307
а	4.38	4.22682
В	2.2285	2.24682
C'	0.791	0.794709
C_{11}	3.2833	3.3049
C_{12}	1.7012	1.71347
C_{44}	1.9094	1.8594
ζ	0.6402	0.627198
<i>F</i> (ξ)	-	0.0003
Время	596.34	310.3

Нитрид алюминия (область)

Нитрид алюминия (область)

Нитрид бора (BN)

Пар.	B-B	B-N	N-N
D_e	47.3631	5.99477	2.2943
S	1.9582	6.03235	3.6989
β	0.0337	1.26559	1.4498
r_e	2.552	1.6491	2.9738
R	1.95	1.95	1.95
R_{cut}	0.75	0.75	0.75
С	2579.2	34907.1	787946
d	160.381	102.02	26.1181
h	-0.3888	-0.6157	-5.1370
n	53.5382	64.6551	6.4700
γ	0.3917	0.4029	0.0875
λ	0.2174	0.0118	0.1826

_	1	•
Xap.	VASP	Результат
E_{coh}	-6.728	-6.568
а	3.615	3.794
В	4.206	4.10621
C'	3.321	3.3132
C_{11}	8.635	8.634
C_{12}	1.992	2.009
C_{44}	4.779	4.875
ζ	0.381	0.382
$F(\xi)$		0.0005
Время	606.2	320.6

Нитрид бора (область)

Нитрид бора (область)

Заключение

- Исследованы методы глобальной и локальной минимизации для идентификации параметров потенциала Терсоффа.
- Исследованы варианты применения параллельных вычислений.
- Самостоятельно проведены вычисления характеристик материалов в программном пакете VASP на суперкомпьютере.
- Реализованная программа с потенциалом Терсоффа работает для однокомпонентных и двухкомпонентных материалов.

Публикации и выступления

- Опубликована одна печатная работа: А. В. Гревцев , Д. И. Бажанов и К. К. Абгарян, «Параллельные алгоритмы параметрической идентификации потенциала Терсоффа для AIN» Материалы XX Юбилейной международной конференции по вычислительной механике и современным прикладным программным системам, pp. 26-27, 2017.
- Сделано выступление с докладом на XX Юбилейной международной конференции по вычислительной механике и современным прикладным программным системам.