Fisica III "D" - Franck - Hertz Mercurio

Liberali Franco, Scakosky Matías.

 1^{er} cuatrimestre 2019

${\rm \acute{I}ndice}$

1.	Introducción	2
	1.1. Objetivos	2
2.	Métodos	2
	2.1. Desarrollo teórico	2
	2.2. Detalles experimentales	2
3.	Resultados experimentales	6
	3.1. Datos obtenidos	6
	3.2. Procesamiento de los datos	12
4.	Conclusiones	14

1. Introducción

En 1913 Niels Bohr propuso un modelo atómico el cual explicaba cómo es que los electrones pueden tener órbitas estables alrededor del núcleo y porque los átomos presentaban espectros de emisión característicos. Si bien Bohr ya había realizado experiencias previas para probar su teoría, estas eran criticadas debido a que se llevaban a cabo mediante la intervención de la luz y muchos le atribuían este fenómeno cuántico a la luz, la cual ya se sabía que tenía un comportamiento cuántico, y que no se debía a los niveles de energía de un átomo.

En 1914, James Franck y Gustav Hertz realizaron un experimento que demostró la existencia de estados de energía cuantizados en los átomos de mercurio a partir de una medición directa.

1.1. Objetivos

En el objetivo principal de esta experiencia es replicar el experimento realizado por Franck y Hertz, de manera de analizar los resultados obtenidos para contrastarlos con los resultados obtenidos por ellos, explicar posibles diferencias y similitudes y comprender porque estos resultados nos permiten verificar la discretización entre niveles energéticos de los electrones atómicos predichos por el modelo de Bohr.

2. Métodos

2.1. Desarrollo teórico

Cuando electrones libres se encuentren acelerados a través de un gas, los mismos colisionarán con los átomos del gas en su trayectoria. Cuando la energía del electrón no llega a alcanzar la energía necesaria para excitar el electrón de menos energía del átomo de mercurio hacia un nivel mayor no podrá existir transferencia de energía entre ambos ya que, de acuerdo al modelo de Bohr, no pueden ocuparse niveles de energía intermedios, produciéndose un choque completamente elástico y la energía del electrón incidente no varia. Cuando los electrones llegan a una energía igual o superior a la energía de excitación del electrón de menor nivel de energía del átomo de Hg al siguiente nivel, producirá un choque inelástico y hará que el electrón no conserve su energía y el átomo de mercurio pasará de su estado fundamental a un estado excitado.

Si luego del choque entre el electrón y el átomo de mercurio, éste mismo recupera suficiente energía como para excitar a otro átomo, hay probabilidad de que colisione nuevamente. También, existe la posibilidad de la excitación sea desde el nivel de menor de energía a uno mayor al siguiente, si la energía del electrón que colisiona es suficiente.

2.2. Detalles experimentales

El experimento consta de acelerar electrones desde un cátodo a un ánodo, mediante un campo eléctrico, a través un gas de mercurio (Hg).

Para la realización del experimento contamos con

• Un horno con termocupla a temperatura variable

- Amplificador de corriente
- Multímetro con interfaz hacia PC
- Tubo de Hg para experimento de Franck-Hertz
- Fuente de tensión
- Conjunto de voltímetros
- Circuito de Figura 1

Figura 1: Circuito del experimento

Tal como se observa en la figura 1, electrones fueron acelerados por una tensión V_a o potencial acelerador hacia una rejilla dentro de un recipiente de cristal lleno de vapor de mercurio, cargada positivamente respecto del cátodo. Más allá de la rejilla, se dispone de un ánodo recolector, mantenido a un pequeño voltaje negativo respecto de la rejilla V_f o potencial de frenado. Como el mercurio a temperatura ambiente se encuentra en estado liquido, ese recipiente de cristal es en realidad un horno que nos permita levar al mercurio a su estado gaseoso.

Podemos observar que el potencial acelerador está dado por la caída de potencial en el capacitor C, que a su vez depende de un potencial de entrada V_0 y del estado de la llave L_1 . Cuando la llave se encuentre cerrada, la caída de tensión sobre el capacitor es la misma que sobre la resistencia de 100Ω , siendo la misma:

$$V_a = \frac{100\Omega V_0}{100\Omega + 10K\Omega} = 0.01V_0$$

por divisor resistivo. Cuando se abra la llave L_1 la caída de tensión sobre el capacitor tenderá a ser V_0 para el estado estacionario, siendo su función de carga:

$$V_a(t) = V_0(1 - e^{-\frac{t}{RC}}) = V_0(1 - e^{-\frac{t}{22s}})$$

El potencial de frenado es la caída de tensión sobre la resistencia de $3,3K\Omega$, siendo el mismo:

$$V_f = \frac{3.3K\Omega V_1}{10K\Omega + 3.3K\Omega} = 0.25V_1$$

donde V_1 es el potencial de entrada marcado en la figura 1 como 0-12V.

Utilizamos la fuente de alimentación de continua con sus múltiples salidas variables para poder variar los valores V_0 y V_1 y, de esta forma, modificar V_f y el comportamiento de $V_a(t)$.

Se disponen de tres voltímetros, los cuales son conectados para medir V_0 , $V_a(t)$ y V_1 . La corriente I a la salida del ánodo pasa por un amplificador de corriente y luego es medida por un multímetro que se conecta a una computadora, para registrar valores de corriente en función del tiempo.

Una vez todo conectado, la configuración final resulta como la mostrada en la figura 2.

Figura 2: Dispositivo conectado

Para la obtención de datos, se realizaron previamente los siguientes pasos para la preparación del dispositivo:

- 1. Encender el cátodo a 6.3V y esperar un minuto.
- 2. Encender el horno a temperatura máxima durante 10 minutos (quema elementos volátiles).
- 3. Colocar el amplificador de corriente, I, recibida en el ánodo (blanco) a fondo de escala de $1\mu A$, dejar estabilizar el amplificador por 5 minutos antes de empezar a medir.
- 4. Llevar la temperatura del horno a aproximadamente $190^{\circ}C$.

Luego, se fijo en V_0 y V_1 algún valor para realizar la medición, con L_1 cerrada. De manera simultanea, se cerró L_1 y se comenzó a registrar en la computadora la corriente a la salida del amplificador de corriente durante aproximadamente 60 segundos (ya que este tiempo es aproximadamente $3\tau = 3 \times 22s$). Dado que la referencia del tiempo inicial es la misma, registraremos I(t) y podemos calcular $V_a(t) = V_0(1 - e^{-\frac{t}{22s}})$.

3. Resultados experimentales

3.1. Datos obtenidos

Se muestran a continuación los resultados obtenidos de I(t) y los calculados de $V_a(t)$ para distintos potenciales V_0 y V_f , a temperatura constante.

t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]
0	0	0.1 0.2	19 19	8.676 8.676	22.4 22.4	38 38	12.333 12.333	46.0 46.6
$0 \\ 1$	$\begin{array}{c} 0 \\ 0.667 \end{array}$	$0.2 \\ 0.2$	$\frac{20}{20}$	$8.957 \\ 8.957$	$\frac{23.9}{23.9}$	$\frac{38}{39}$	$\begin{array}{c} 12.333 \\ 12.452 \end{array}$	46.6 47.3 47.3
$\frac{1}{1}$	$0.667 \\ 0.667$	$0.2 \\ 0.2$	20 20	$8.957 \\ 8.957$	$25.6 \\ 25.6$	39 39	$\begin{array}{c} 12.452 \\ 12.452 \end{array}$	48.1
$\frac{1}{2}$	0.667 1.303	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \end{array}$	21 21	9.225 9.225	$\frac{27.4}{27.4}$	39 40	12.452 12.565	48.1 48.9
$\frac{2}{2}$	1.303 1.303 1.912	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \end{array}$	$\begin{array}{c} 21 \\ 21 \\ 22 \end{array}$	$\begin{array}{c} 9.225 \\ 9.225 \\ 9.482 \end{array}$	$ \begin{array}{r} 29.3 \\ 29.3 \\ 31.4 \end{array} $	40 40 40	$\begin{array}{c} 12.565 \\ 12.565 \\ 12.565 \end{array}$	$48.9 \\ 49.7 \\ 49.7$
2 2 2 3 3 3 4	1.912 1.912 1.912	$0.2 \\ 0.3 \\ 0.3$	$\frac{22}{22}$	9.482 9.482 9.482	$31.4 \\ 31.4 \\ 33.6$	41 41	12.673 12.673	50.7 50.7
$\frac{3}{4}$	2.494 2.494	0.5 0.5	$\frac{22}{23}$	$9.482 \\ 9.727$	33.6 35.9	$\frac{42}{42}$	12.777 12.777	51.7 51.7
4	2.494 2.494	0.6 0.6	$\frac{1}{23}$ 23	$9.727 \\ 9.727$	35.9 38.3	$\frac{42}{42}$	$12.777 \\ 12.777$	$52.7 \\ 52.7$
4 5 5 5 5	$3.049 \\ 3.049$	$0.9 \\ 0.9$	$\frac{23}{24}$	$9.727 \\ 9.961$	$\frac{38.3}{40.6}$	$\frac{43}{43}$	$12.876 \\ 12.876$	$53.9 \\ 53.9$
5 5	$\frac{3.049}{3.049}$	$\frac{1.2}{1.2}$	$\frac{24}{24}$	$9.961 \\ 9.961$	$\frac{40.6}{42.7}$	43 43	$\begin{array}{c} 12.876 \\ 12.876 \end{array}$	$55.1 \\ 55.1$
6 6	$\frac{3.58}{3.58}$	1.5 1.5	24 25	9.961 10.185	$42.7 \\ 44.5 $	44 44	12.97 12.97	$\frac{56.2}{56.2}$
6 7 7 7 7	$3.58 \\ 3.58 \\ 4.088$	$\begin{array}{c} 2.0 \\ 2.0 \\ 2.5 \end{array}$	25 26 26	$10.185 \\ 10.399 \\ 10.399$	$44.5 \\ 46.0 \\ 46.0$	44 44 45	$\begin{array}{c} 12.97 \\ 12.97 \\ 13.06 \end{array}$	57.6 57.6 59.0
7	4.088 4.088	$\frac{2.5}{2.5}$ $\frac{3.2}{3.2}$	26 26 26	10.399 10.399 10.399	47.1 47.1	45 45 45	13.06 13.06	59.0 59.0 60.2
7 8	$\frac{4.088}{4.573}$	$\frac{3.2}{3.9}$	$\frac{27}{27}$	10.604 10.604	$47.7 \\ 47.7$	$\frac{45}{46}$	13.06 13.146	$60.2 \\ 61.5$
8 8 9	4.573 5.036	3.9 4.8	$\frac{27}{27}$	10.604 10.604	48.1 48.1	46 46	13.146 13.146	$61.5 \\ 62.7$
9	$5.036 \\ 5.036$	$\frac{4.8}{5.8}$	$\frac{28}{28}$	$10.799 \\ 10.799$	$\frac{48.1}{48.1}$	$\frac{47}{47}$	$13.229 \\ 13.229$	$62.7 \\ 64.0$
9 10	5.036 5.479	$\frac{5.8}{6.9}$	28 28	10.799 10.799	47.9 47.9	47 48	13.229 13.307	64.0 65.3
10 10 10	$5.479 \\ 5.479 \\ 5.479$	6.9 8.0 8.0	29 29 29	$\begin{array}{c} 10.986 \\ 10.986 \\ 10.986 \end{array}$	$47.5 \\ 47.5 \\ 47.1$	48 48 48	13.307 13.307 13.307	$65.3 \\ 66.7 \\ 66.7$
11 11	5.902 5.902	9.1 9.1	29 29 30	10.986 11.164	47.1 47.1 46.6	49 49	13.383 13.383	68.0 68.0
11 11	5.902 5.902	$10.1 \\ 10.1$	30 30	11.164 11.164 11.164	46.6 46.1	49 49	13.383 13.383	69.4 69.4
$\frac{12}{12}$	6.306 6.306	11.0 11.0	31 31	11.335 11.335	46.1 45.6	50 50	13.455 13.455	70.7 70.7
$\frac{12}{12}$	$6.306 \\ 6.306$	11.8 11.8	$\frac{31}{32}$	$11.335 \\ 11.497$	$45.6 \\ 45.1$	50 50	$13.455 \\ 13.455$	$72.1 \\ 72.1$
13 13	$6.693 \\ 6.693$	$\frac{12.6}{12.6}$	$\frac{32}{32}$	11.497 11.497	$\frac{45.1}{44.8}$	$\frac{51}{51}$	$\begin{array}{c} 13.523 \\ 13.523 \end{array}$	$73.5 \\ 73.5$
13 14	6.693 7.062	13.3 13.3	32 33	11.497 11.653	$44.8 \\ 44.5$	51 51	13.523 13.523	$74.9 \\ 74.9$
14 14 15	$7.062 \\ 7.062 \\ 7.415$	$14.0 \\ 14.0 \\ 14.6$	33 33 33	$\begin{array}{c} 11.653 \\ 11.653 \\ 11.653 \end{array}$	$44.5 \\ 44.3 \\ 44.3$	52 52 53 53	$\begin{array}{c} 13.589 \\ 13.589 \\ 13.652 \end{array}$	$76.2 \\ 76.2 \\ 77.5$
15 15 15	7.415 7.415 7.415	$14.6 \\ 15.3$	34 34	$ \begin{array}{c} 11.033 \\ 11.802 \\ 11.802 \end{array} $	$44.3 \\ 44.2 \\ 44.2$	53 53	13.652 13.652 13.652	77.5 77.5 78.7
15 16	7.415 7.752	15.3 16.1	34 34	11.802 11.802	44.1 44.1	53 54	13.652 13.711	78.7 80.1
$\frac{16}{16}$	7.752 7.752 7.752 7.752	$16.1 \\ 16.8$	$\frac{35}{35}$	11.944 11.944	$\frac{44.2}{44.2}$	$\frac{54}{54}$	13.711 13.711 13.711	$ \begin{array}{r} 80.1 \\ 81.4 \end{array} $
$\frac{16}{17}$	8.074	$\frac{16.8}{17.7}$	35 36	11.944 12.08 12.08	$44.4 \\ 44.4$	$\frac{54}{55}$	13.769	$81.4 \\ 82.7 \\ 82.7$
17 17	8.074 8.074	$\frac{17.7}{18.7}$	$\frac{36}{36}$	12.08	44.7 44.7	55 55	13.769 13.769	84.1
17 18 18	8.074 8.382 8.382	18.7 19.8 19.8	37 37 37	$\begin{array}{c} 12.209 \\ 12.209 \\ 12.209 \end{array}$	$\begin{array}{c} 45.0 \\ 45.0 \\ 45.4 \end{array}$	55 56 56	$\begin{array}{c} 13.769 \\ 13.823 \\ 13.823 \end{array}$	84.1 85.4 85.4
18 18	8.382 8.382	$21.1 \\ 21.1$	$\frac{37}{37}$	12.209 12.209 12.333	45.4 45.0	56 56	13.823 13.823	86.7 86.7

Cuadro 1: Datos obtenidos para un potencial $V_0=15V$ y $V_f=0.5V$

t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]
0 0 0	0 0 0	0.3 0.3 0.3	22 22 22 23	9.482 9.482 9.482	15.2 15.2 16.4	44 44 45	12.970 12.970 13.060	25.1 25.1 25
1 1 1	0.667 0.667 0.667 1.303	0.3 0.3 0.3 0.3	23 23 23 24	9.727 9.727 9.727 9.961	$16.4 \\ 17.7 \\ 17.7 \\ 19.2$	45 45 45 46	$ \begin{array}{c} 13.060 \\ 13.060 \\ 13.060 \\ 13.146 \end{array} $	25.00 25.1 25.1 25.2
1 1 2 2 2 2 3 3 3 4	1.303 1.303 1.303	0.3 0.3 0.3	$\begin{array}{c} 24 \\ 24 \\ 24 \\ 24 \end{array}$	9.961 9.961 9.961	19.2 20.8 20.8	46 46 46	13.146 13.146 13.146	$25.2 \\ 25.2 \\ 25.4 \\ 25.4$
3 3 3	$\begin{array}{c} 1.912 \\ 1.912 \\ 1.912 \end{array}$	0.3 0.3 0.3 0.3	25 25 25 25 25	$\begin{array}{c} 10.185 \\ 10.185 \\ 10.185 \end{array}$	$22.5 \\ 22.5 \\ 24.4$	47 47 47 47	13.229 13.229 13.229 13.229	25.6 25.6 25.8
4	1.912 2.494 2.494	$0.3 \\ 0.3$	$\frac{26}{26}$	$ \begin{array}{c} 10.185 \\ 10.399 \\ 10.399 \\ 10.399 \\ \end{array} $	24.4 26.3 26.3	$\frac{48}{48}$	$13.307 \\ 13.307$	25.8 26.1 26.1
4 4 5	2.494 2.494 3.049 3.049	0.3 0.3 0.3 0.3	26 26 27 27	10.399 10.604	28.3 28.3 30.4 30.4	48 48 49 49	13.307 13.307 13.383 13.383	26.5 26.5 26.8 26.8
5 6 6	3.049 3.580 3.580	$0.3 \\ 0.3 \\ 0.3 \\ 0.4$	27 27 27 28	$10.604 \\ 10.604 \\ 10.604 \\ 10.799$	32.6 32.6 34.7	49 49 50 50	13.383 13.455 13.455	20.8 27.3 27.3 27.7
$\begin{array}{c} 6\\7\\7\\7\end{array}$	3.580 4.088 4.088	$0.4 \\ 0.5 \\ 0.5$	28 29 29	10.799 10.986 10.986	34.7 36.6 36.6	50 51 51	13.455 13.523	27.7 28.2 28.2
7 7 8	$4.088 \\ 4.088 \\ 4.573$	$0.7 \\ 0.7 \\ 0.9$	29 29 30	$\begin{array}{c} 10.986 \\ 10.986 \\ 11.164 \end{array}$	$ \begin{array}{r} 38.4 \\ 38.4 \\ 39.9 \end{array} $	51	13.523 13.523 13.523 13.523 13.589	$\frac{28.7}{28.7}$
$egin{array}{c} 4 \\ 55 \\ 56 \\ 66 \\ 67 \\ 77 \\ 88 \\ 88 \\ 99 \\ 99 \\ 99 \\ 99 \\ 9$	4.573 4.573 4.573	$0.9 \\ 1.2 \\ 1.2 \\ 1.6$	30 30 30 31	11.164 11.164 11.164 11.335 11.335	$ \begin{array}{r} 39.9 \\ 40.9 \\ 40.9 \\ 41.7 \end{array} $	51 52 52 52 52 53 53 53	13.589 13.589 13.589	29.2 29.2 29.6 29.6 30.2
9 9 9	5.036 5.036 5.036 5.036	$ \begin{array}{c} 1.6 \\ 2.1 \\ 2.1 \end{array} $	31 31 31 31	11.335 11.335 11.335 11.335	41.7 41.9 41.9	53 53 53	$\begin{array}{c} 13.652 \\ 13.652 \\ 13.652 \\ 13.652 \end{array}$	30.2 30.7 30.7
10 10 10	$5.479 \\ 5.479 \\ 5.479$	2.8 2.8 3.5	$\begin{array}{c} 32 \\ 32 \\ 32 \end{array}$	$\begin{array}{c} 11.497 \\ 11.497 \\ 11.497 \end{array}$	$41.9 \\ 41.9 \\ 41.5$	54 54 54	13.711 13.711 13.711	31.3 31.3 31.8
10 11 11	5.479 5.902 5.902	3.5 4.3 4.3	32 33 33	$ \begin{array}{c} 11.497 \\ 11.653 \\ 11.653 \end{array} $	41.5 40.8 40.8	54 55 55	13.711 13.769 13.769	31.8 32.4 32.4
12 12 12 12	6.306 6.306 6.306 6.306	5.3 5.3 6.3 6.3	33 34 34 34	$ \begin{array}{c} 11.653 \\ 11.802 \\ 11.802 \\ 11.802 \end{array} $	39.9 39.9 38.8 38.8	56 56 56	13.823 13.823 13.823 13.823 13.876	33.00 33.00 33.6 33.6
13 13 13	$6.693 \\ 6.693$	7.2 7.2 7.9	34 35 35 35	11.944 11.944 11.944	37.7 37.7 36.5	56 57 57 57 57	13.876 13.876 13.876	34.2 34.2 34.8
$ \begin{array}{r} 13 \\ 14 \\ 14 \end{array} $	6.693 6.693 7.062 7.062	7.9 8.5 8.5	35 36 36 36	11.944 12.080 12.080	$\begin{array}{c} 36.5 \\ 35.2 \\ 35.2 \end{array}$	57 58 58 58 58	13.876 13.926 13.926	$34.8 \\ 35.4 \\ 35.4$
14 14 15	7.062 7.062 7.415	9.00 9.00 9.3	$\frac{36}{37}$	12.080 12.080 12.209	$ \begin{array}{r} 34.00 \\ 34.00 \\ 32.8 \\ 20.8 \\ \end{array} $	59	13.926 13.926 13.973	36.00 36.00 36.6
15 15 15 16	$\begin{array}{c} 7.415 \\ 7.415 \\ 7.415 \\ 7.752 \end{array}$	9.3 9.5 9.5 9.7	37 37 37 38	12.209 12.209 12.209 12.333	32.8 31.7 31.7 30.6	59 59 59 60	13.973 13.973 13.973 13.973 14.019	36.6 37.2 37.2 37.9
16 16 17	7.752 7.752 8.074	9.7 9.8 9.8	38 38 38	$\begin{array}{c} 12.333 \\ 12.333 \\ 12.333 \end{array}$	$30.6 \\ 29.6 \\ 29.6$	60 60 60	$14.019 \\ 14.019 \\ 14.019$	37.9 38.5 38.5 39.1
17 17 18	8.074 8.074 8.382 8.382	9.9 9.9 10.1	39 39 40	$12.452 \\ 12.452 \\ 12.565$	$28.8 \\ 28.8 \\ 28.00$	61 61 62	$\begin{array}{c} 14.063 \\ 14.063 \\ 14.104 \end{array}$	$ \begin{array}{r} 39.1 \\ 39.7 \end{array} $
18 18 18 19	$8.382 \\ 8.382$	$ \begin{array}{c} 10.1 \\ 10.4 \\ 10.4 \\ 10.7 \end{array} $	40 40 40 41	$12.565 \\ 12.565 \\ 12.565 \\ 12.673$	28.00 27.3 27.3 26.7	62 62 62 63	$14.104 \\ 14.104 \\ 14.104 \\ 14.144$	39.7 40.3 40.3 40.9
19 19 19	8.676 8.676 8.676 8.676	$10.7 \\ 11.2 \\ 11.2$	41 41 41	$12.673 \\ 12.673$	26.7 26.3 26.3	63 63 63	14.144 14.144 14.144 14.144	40.9 41.6 41.6
20 20 20	8.957 8.957 8.957	$11.7 \\ 11.7 \\ 12.4$	$\begin{array}{c} 42 \\ 42 \\ 42 \end{array}$	$12.673 \\ 12.777 \\ 12.777 \\ 12.777 \\ 12.777$	$25.8 \\ 25.8 \\ 25.6$	64 64 64	$14.182 \\ 14.182 \\ 14.182$	42.2 42.2 42.8
20 21 21 21	8.957 9.225 9.225	12.4 13.1 13.1	42 43 43	$12.876 \\ 12.876$	25.6 25.3 25.3	64 65 65	14.182 14.218 14.218	$42.8 \\ 43.4 \\ 43.4$
$\frac{21}{21}$	9.225 9.225	14.1 14.1	43 43	12.876 12.876	25.1 25.1	65 ———	14.218	44.00

Cuadro 2: Datos obtenidos para un potencial $V_0=15V$ y $V_f=1V$

t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]	•	t [s]	$V_a(t)$ [V]	I(t) [μA]
$\begin{array}{ c c c c c c }\hline & & & & & \\ \hline & & & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ & & \\ \hline & & \\ & & $	$egin{array}{c} V_a(t) \ [V] \\ 0 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.111 \\ 1.112 \\ 2.172 \\ 2.172 \\ 2.172 \\ 2.172 \\ 2.172 \\ 2.172 \\ 3.187 \\ 3.187 \\ 3.187 \\ 3.187 \\ 3.187 \\ 3.187 \\ 3.187 \\ 3.187 \\ 3.186 \\ 4.156 \\ 4$	$ \begin{array}{c} \textbf{I(t)} \ [\mu A] \\ \hline 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.8 \\ 0.4 \\ 0.5 \\ 0.8 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.8 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.8 \\ 0.8 \\ 0.4 \\ 0.5 \\ 0.8 \\ 0.8 \\ 0.4 \\ 0.5 \\ 0.8 \\ 0.8 \\ 0.14 \\ 0.14 \\ 0.2 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.14 \\ 0.14 \\ 0.2 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.8 $	t [s] 21 22 22 22 23 23 23 23 23 24 24 24 25 25 26 26 26 26 26 26 27 27 28 28 28 29 29 29 29 30 30 30 31 31 31 31 32 32 33 33 34 34 34 34 35 35 35 36 36 36 36 36 37 37	Va(t) [V] 15.375 15.803 15.803 15.803 15.803 15.803 16.212 16.212 16.212 16.602 16.602 16.602 16.602 16.75 16.975 16.975 17.332 17.332 17.332 17.332 17.332 17.339 17.673 17.698 17.998 17.998 17.998 17.998 17.998 18.309	I(t) [µA] 60.0 68.9 68.9 77.8 77.8 85.0 89.1 89.1 89.1 89.1 89.1 85.1 78.3 70.3 70.3 62.2 62.2 62.2 62.2 45.2 45.2 45.2 45.2 45.2 45.2 45.5 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9		t [s] 42 43 43 444 445 445 446 446 447 447 447 448 488 489 499 500 551 551 552 552 553 553 554 544 555 566 567 577 578 588 588	Va(t) [V] 21.295 21.459 21.459 21.459 21.459 21.617 21.617 21.767 21.767 21.767 21.911 21.911 21.911 22.048 22.048 22.048 22.048 22.179 22.180 22.539	$ \begin{array}{c} \textbf{I(t)} \ [\mu A] \\ 189.6 \\ 186.8 \\ 186.8 \\ 181.6 \\ 181.6 \\ 174.5 \\ 174.5 \\ 165.8 \\ 165.8 \\ 165.1 \\ 145.9 \\ 145.9 \\ 145.9 \\ 135.6 \\ 125.6 \\ 135.6 \\ 125.$
14 14 15 15 15	$11.770 \\ 11.770 \\ 12.358 \\ 12.358 \\ 12.358 \\ 12.358$	32.5 32.5 32.2 32.2 30.4 30.4	35 36 36 36 36 37	19.906 20.133 20.133 20.133 20.133 20.349	$100.1 \\ 108.5 \\ 108.5 \\ 117.0 \\ 117.0 \\ 125.8$		57 57 57 57	23.126 23.126 23.126 23.126	66.0 66.0 67.5 67.5

Cuadro 3: Datos obtenidos para un potencial $V_0=25V$ y $V_f=1V$

t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]
0 0 1	$0 \\ 0 \\ 1.111$	0.3 0.3 0.3	22 22 23	$\begin{array}{c} 15.803 \\ 15.803 \\ 16.212 \end{array}$	68.8 68.8 70.6	44 44 45	$\begin{array}{c} 21.617 \\ 21.617 \\ 21.767 \end{array}$	87.4 87.4 80
$\frac{1}{2}$	1.111 1.111 2.172	$0.3 \\ 0.2$	$\begin{array}{c} 23 \\ 23 \\ 24 \end{array}$	16.212 16.212 16.602	70.6 70.6 68.7	45 45 46	21.767 21.767 21.911	$ \begin{array}{c} 80 \\ 80 \\ 73.2 \end{array} $
1 2 2 2 2 3 3 3 4 4	$\frac{2.172}{2.172}$	$0.2 \\ 0.2$	$\frac{24}{24}$	16.602 16.602	68.7 64.2	46 46	21.911 21.911	$73.2 \\ 67.1$
$\frac{2}{3}$	$\frac{2.172}{3.187}$	0.2 0.3 0.3	$\frac{24}{25}$	$ \begin{array}{r} 16.602 \\ 16.975 \end{array} $	$\frac{64.2}{58.7}$	$\frac{46}{47}$	$\frac{21.911}{22.048}$	$67.1 \\ 61.6$
3	$\frac{3.187}{3.187}$	0.3	$\frac{25}{25}$	16.975 16.975	58.7 52.9	47 47	22.048 22.048	61.6 56.9
3 4 1	3.187 4.156 4.156	0.3 0.3 0.3	$\begin{array}{c} 25 \\ 26 \\ 26 \end{array}$	$ \begin{array}{c} 16.975 \\ 17.332 \\ 17.332 \end{array} $	$52.9 \\ 47.1 \\ 47.1$	47 48 48	$\begin{array}{c} 22.048 \\ 22.179 \\ 22.179 \end{array}$	56.9 $ 52.8 $ $ 52.8$
4	4.156 4.156	$0.4 \\ 0.4$	$\frac{26}{26}$	17.332 17.332	$41.6 \\ 41.6$	48 48	$\frac{22.179}{22.179}$	49.4 49.4
$egin{array}{c} 4 \ 5 \ 5 \ 5 \ 6 \ 6 \ 6 \ 7 \ 7 \ 7 \end{array}$	$\frac{5.082}{5.082}$	$0.5 \\ 0.5$	$\frac{27}{27}$	$17.673 \\ 17.673$	$\frac{36.8}{36.8}$	49 49	$22.304 \\ 22.304$	$\frac{46.7}{46.7}$
5 5	5.082 5.082	0.9 0.9	27 27	17.673 17.673	33.1 33.1	49 49	22.304 22.304	44.5 44.5
6 6	5.967 5.967 5.967	$\begin{array}{c} 1.6 \\ 1.6 \\ 2.7 \end{array}$	$ \begin{array}{c} 28 \\ 28 \\ 28 \end{array} $	17.998 17.998 17.998	$ \begin{array}{r} 30.6 \\ 30.6 \\ 29.4 \end{array} $	50 50 51	$\begin{array}{c} 22.424 \\ 22.424 \\ 22.539 \end{array}$	$\begin{array}{c} 43 \\ 43 \\ 42 \end{array}$
7 7	6.813	$\frac{2.7}{2.7}$	29 29	18.309 18.309	29.4 29.4 29.5	51 51	22.539	$\begin{array}{c} 42 \\ 42 \\ 41.5 \end{array}$
7 8	$\begin{array}{c} 6.813 \\ 6.813 \\ 7.621 \\ 7.621 \end{array}$	$\begin{array}{c} 4 \\ 5.2 \end{array}$	$\frac{29}{30}$	$18.309 \\ 18.607$	29.5 30.8	51	$\begin{array}{c} 22.539 \\ 22.539 \\ 22.648 \end{array}$	41.5 41.4
8 8 8 9 9	7.621	$\frac{5.2}{5.9}$	$\frac{30}{30}$	$18.607 \\ 18.607$	$\frac{30.8}{33.3}$	52 52 52	22.648 22.648	$\frac{41.4}{41.7}$
8 9	7.621 8.394 8.394	$5.9 \\ 6.4 \\ 6.4$	30 31 31	18.607 18.891	33.3 36.8 36.8	52 53	22.648 22.753 22.753	41.7 42.3 42.3
9 9	8.394 8.394	6.6 6.6	31 31	18.891 18.891 18.891	41.1 41.1	53 53 53	22.753 22.753 22.753	42.3 43.4 43.4
10 10	9.132 9.132	7 7	$\frac{32}{32}$	19.162 19.162	46.2 46.2	54 54	22.852 22.852	44.8 44.8
10 10	$9.132 \\ 9.132$	7.8 7.8	$\frac{32}{32}$	$\begin{array}{c} 19.162 \\ 19.162 \end{array}$	$\begin{array}{c} 52 \\ 52 \end{array}$	$\frac{54}{54}$	$\begin{array}{c} 22.852 \\ 22.852 \end{array}$	$\frac{46.3}{46.3}$
11 11 11	9.837 9.837	9.1 9.1 11	33 33 33	$\begin{array}{c} 19.422 \\ 19.422 \\ 19.422 \end{array}$	$58.3 \\ 58.3 \\ 65.2$	55 55	$\begin{array}{c} 22.948 \\ 22.948 \\ 22.948 \end{array}$	48.2 $ 48.2 $ $ 50.2$
$\begin{array}{c} 11\\12\\12\end{array}$	$\begin{array}{c} 9.837 \\ 10.511 \\ 10.511 \end{array}$	11 13.9	33 34	19.422 19.422 19.670	$65.2 \\ 72.6$	55 55 56	22.948 22.948 23.039	$50.2 \\ 50.2 \\ 52.5$
$\frac{12}{13}$	10.511 11.154	13.9 17.6	$\frac{34}{35}$	19.670 19.906	72.6 80.4	56 56	23.039 23.039	52.5 54.8
13 13	$11.154 \\ 11.154$	$17.6 \\ 21.8$	35 35	19.906 19.906 19.906	$80.4 \\ 88.5$	57 5 <u>7</u>	23.126 23.126	$54.8 \\ 57.3$
13 14 14	11.154 11.770	$ \begin{array}{c} 21.8 \\ 25.2 \\ 25.2 \end{array} $	35 36	20.133	88.5 96.8	57 58 58	23.126 23.209	57.3 59.9
$\begin{array}{c} 14 \\ 14 \\ 14 \end{array}$	$\begin{array}{c} 11.770 \\ 11.770 \\ 11.770 \end{array}$	$\begin{array}{c} 25.2 \\ 27 \\ 27 \end{array}$	36 36 36	$\begin{array}{c} 20.133 \\ 20.133 \\ 20.133 \end{array}$	$96.8 \\ 105.2 \\ 105.2$	58	23.209 23.209 23.209	59.9 62.7 62.7
15 15	12.358 12.358	$26.9 \\ 26.9$	37 37	20.349 20.349	113.6 113.6	58 59 59	23 289	65.5 65.5
$\frac{15}{15}$	$12.358 \\ 12.358$	$25.4 \\ 25.4$	$\frac{37}{37}$	$20.349 \\ 20.349$	$121.5 \\ 121.5$	59 59	23.289 23.289 23.289	$68.3 \\ 68.3 \\ 71.3$
16 16	12.919 12.919	23.2 23.2	38 38	20.556 20.556	128.5 128.5	60 60	23.289 23.365 23.365	71.3
16 16 17	$12.919 \\ 12.919 \\ 13.456$	$21.1 \\ 21.1 \\ 19.9$	38 38 39	20.556 20.556 20.753	134.3 134.3 138.2	60 60 61	23.365 23.365 23.438	$74.3 \\ 74.3 \\ 77.3$
$\begin{array}{c} 17 \\ 17 \\ 17 \end{array}$	$13.456 \\ 13.456$	19.9 19.8	39 39	20.753 20.753 20.753 20.753	$138.2 \\ 138.2 \\ 140.1$	$\frac{61}{61}$	23.438 23.438 23.438	77.3 77.3 80.5
18 18	13.969 13.969 13.969	$\frac{19.8}{21}$	40 40	$\begin{array}{c} 20.942 \\ 20.942 \\ 20.942 \end{array}$	140 1	$\frac{62}{62}$	23.507 23.507 23.507	$80.5 \\ 83.6$
18 19	14.459	$\frac{21}{23.7}$	$\frac{40}{41}$	20.942 21.122 21.122	139.7 139.7 137.1 137.1	62 63	23.573	83.6 86.8
19 19 19	$14.459 \\ 14.459 \\ 14.459$	$23.7 \\ 27.7 \\ 27.7$	$\begin{array}{c} 41 \\ 41 \\ 41 \end{array}$	21.122 21.122	137.1 132.5 132.5 126.4	63 63 63	23.573 23.573 23.573	86.8 90 90
$\frac{20}{20}$	$\begin{array}{c} 14.928 \\ 14.928 \end{array}$	$33.1 \\ 33.1$	$\frac{42}{42}$	$ 21.295 \\ 21.295 \\ 21.295 \\ 21.295 $	126.4	$\frac{64}{64}$	23.573 23.637 23.637	$93.2 \\ 93.2$
$\begin{array}{c} 20 \\ 20 \\ 21 \end{array}$	$\begin{array}{c} 14.928 \\ 14.928 \\ 15.375 \end{array}$	39.8 39.8	42 42	$\begin{array}{c} 21.295 \\ 21.295 \\ 21.459 \end{array}$	$ \begin{array}{r} 119.2 \\ 119.2 \\ \end{array} $	64 64	23.637 23.637	96.4 96.4
$\begin{array}{c} 21 \\ 21 \\ 21 \end{array}$	15.375	$47.1 \\ 47.1 \\ 55.5$	43 43 43	21.459 21.459 21.459	111.3 111.3 103.2	$ \begin{array}{r} 65 \\ 65 \\ 65 \end{array} $	$\begin{array}{c} 23.697 \\ 23.697 \\ 23.697 \end{array}$	99.6 99.6 102.8
$\begin{array}{c} 21 \\ 21 \\ 22 \end{array}$	$\begin{array}{c} 15.375 \\ 15.375 \\ 15.803 \end{array}$	55.5 63.6	43 44	$21.459 \\ 21.617$	103.2 103.2 95.1	65 66	$23.697 \\ 23.755$	102.8 102.8 106.1
22	15.803	63.6	44	21.617	95.1	66	23.755	106.1

Cuadro 4: Datos obtenidos para un potencial $V_0=25V$ y $V_f=1,25V$

$oxed{\mathbf{t} \; [\mathrm{s}] \; \; \; V_a(t) \; [\mathrm{V}]}$	I (t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]	t [s]	$V_a(t)$ [V]	I(t) [μA]
1 1.777 1 1.777 1 1.777 1 1.777 2 3.476 2 3.476 2 3.476 2 3.476 3 5.099 3 5.099 3 5.099 4 6.650 4 6.650 4 6.650 4 6.650 5 8.132 5 8.132 5 8.132 5 8.132 6 9.548 6 9.548 7 10.901 7 10.901 7 10.901 7 10.901 7 10.901 8 12.194 8 12.194 8 12.194	0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.5 1.3 1.3 2.9 4.7 5.9 6.8 8.7 8.7 12.5 12.5 18.8 24.1 24.1 25.0 25.0	21 21 21 22 22 22 22 22 23 23 24 24 24 25 25 25 26 26 26 27 27 27 27 27 28 28 28 29 29	24.601 24.601 24.601 24.601 25.285 25.285 25.285 25.285 25.285 25.939 26.564 26.564 26.564 27.161 27.161 27.161 27.731 27.731 27.731 27.731 27.731 27.731 28.276 28.276 28.276 28.276 28.276 28.797 28.797 29.295 29.295	83.7 104.8 104.8 133.8 133.8 169.5 169.5 209.9 209.9 248.8 248.8 271.5 264.3 230.4 230.4 185.6 144.4 144.4 115.1 110.3 100.3 99.3 99.3 109.8 109.8 129.2 129.2 129.2	t [s] 42 43 43 44 44 44 45 45 45 46 46 47 47 47 48 49 49 50 50 50 51 51	$egin{array}{c} V_a(t) \ [V] \\ \hline 34.071 \\ 34.071 \\ 34.335 \\ 34.335 \\ 34.335 \\ 34.587 \\ 34.587 \\ 34.587 \\ 34.587 \\ 34.587 \\ 34.827 \\ 34.827 \\ 34.827 \\ 34.827 \\ 35.057 \\ 35.057 \\ 35.277 \\ 35.277 \\ 35.277 \\ 35.277 \\ 35.277 \\ 35.277 \\ 35.277 \\ 35.487 \\ 35.687 \\ 35.687 \\ 35.687 \\ 35.687 \\ 35.687 \\ 35.687 \\ 35.687 \\ 35.879 \\ 35.879 \\ 36.062 \\ 36.0$	$ \begin{array}{c} \textbf{I(t)} \ [\mu A] \\ \hline 181.9 \\ 205.3 \\ 205.3 \\ 205.3 \\ 2231.2 \\ 231.2 \\ 238.8 \\ 258.8 \\ 2288.0 \\ 288.0 \\ 318.5 \\ 350.0 \\ 318.5 \\ 350.0 \\ 417 \\ 417 \\ 451 \\ 451 \\ 451 \\ 487 \\ 487 \\ 522 \\ 557 \\ 593 \\ 593 \\ 626 \\ 626 \\ 659 \\ 659 \\ 687 \\ 687 \\ 687 \\ \end{array} $
9 13.430 9 13.430 9 13.430 9 13.430 9 13.430 10 14.611 10 14.611 11 15.739 11 15.739 12 16.817 13 17.847 13 17.847 13 17.847 14 18.831 14 18.831 14 18.831 14 18.831 16 20.671 17 21.530 17 21.530 17 21.530 17 21.530 18 22.351 18 22.351 18 22.351 19 23.135 19 23.135 20 23.884 20 23.884 20 23.884 20 23.884 20 23.884 20 23.884 20 23.884 20 23.884 20 23.884	25.0	29	29.295	109.6 129.2 129.2 155.5 155.5 187.2 187.2 223.4 223.4 223.4 223.4 223.6 263.2 306.0 350.9 350.9 423 425 4454 4464 449 4410 410 308.4 253.6 206.7 206.7 170.6	51	36.062	687

Cuadro 5: Datos obtenidos para un potencial $V_0 = 40 V$ y $V_f = 1{,}25 V$

Cuadro 6: Datos obtenidos para un potencial $V_0 = 40 V$ y $V_f = 2 V$

3.2. Procesamiento de los datos

A partir de las tablas de la sección anterior se realizan los gráficos de corriente en función del potencial acelerador uniendo las mediciones tomadas. Se marcan en los mismos las tensiones para las cuales la corriente tiene un punto de inflexión.

Figura 3: $I(V_a)$ para $V_0=15V$ y $V_f=0.5V$

Figura 4: $I(V_a)$ para $V_0=15V$ y $V_f=1V$

Figura 5: $I(V_a)$ para $V_0=25V$ y $V_f=1V$

Figura 6: $I(V_a)$ para $V_0=25V$ y $V_f=1,\!25V$

Figura 7: $I(V_a)$ para $V_0 = 40V$ y $V_f = 1,25V$

Figura 8: $I(V_a)$ para $V_0 = 40V$ y $V_f = 2V$

4. Conclusiones

Como fue explicado en la sección de Desarrollo teórico, los electrones acelerados a través del gas, solo perderán energía en el caso de su energía sea suficiente para excitar al átomo. La perdida de energía por parte de los electrones implica que estos electrones podrían no tener energía suficiente para vencer el potencial de frenado y llegar al ánodo, mostrando una caída en la corriente I.

Por esta razón, si comenzamos el análisis por las figuras 3 y 4 observamos un crecimiento de I respecto de V_a hasta un determinado punto, a partir del cual los electrones tienen la energía suficiente para excitar al átomo. Cuanto mayor sea el potencial acelerador respecto de ese punto, los electrones alcanzarán la energía necesaria para entregar energía al átomo más rápidamente, de manera que existirá cada vez más zona en la que este fenómeno sucede y la corriente bajará debido a que son cada vez más electrones los que pierden energía y no logran vencer el potencial acelerador.

Esto sucede hasta que dicha zona es lo suficientemente grande como para que luego de perder energía el electrón se encuentre lo suficientemente lejos de la rejilla para ser nuevamente acelerado y vencer el potencial de frenado, por lo que vemos que a partir de un determinado potencial la corriente vuelve a crecer.

Como vemos, este punto mínimo es dependiente del potencial de frenado y cuanto mayor sea este mayor será la diferencia entre el máximo y el mínimo y mayor el potencial acelerador necesario para que la corriente vuelva a crecer. Además, para todos los valores de V_a , I es mayor en la figura 3 que en la 4 porque un mayor potencial de frenado implica un mayor filtro de electrones que pueden llegar al ánodo según su energía.

Luego, si continuamos con la figura 5, veremos que aumentar V_0 nos permite barrer más valores de V_a . En esta figura observaremos que el comportamiento hasta los valores de V_a que se llegaban a ver en la figura 4 es similar, pero en este caso vemos que la corriente crece nuevamente hasta otro pico luego de esos valores. Esto lo podemos atribuir a que cuando el potencial acelerador siga creciendo los electrones podrán recuperar suficiente energía como para excitar a otro átomo luego de un choque. En este nuevo pico, la corriente I medida es más alta que el pico anterior, producto de que a mayor V_a más son los electrones que logran vencer el potencial frenador a pesar de haber chocado con un átomo. La explicación del descenso de la corriente a partir del segundo pico es similar a la anterior, cuanto mayor sea el potencial acelerador a partir de ese punto donde el doble choque puede suceder, mayor será la zona donde estos dos choques puedan suceder y esto sucederá hasta el punto donde los electrones vuelven a ganar energía para vencer el potencial frenador.

Este fenómeno se repite de manera muy similar a periódica y cuanto mayor sea el valor de V_0 más máximos y mínimos podremos observar como en las figuras 7 y 8. Notemos que lo picos se encuentran en todas las figuras en valores muy similares mientras que los mínimos dependen del valor de V_f como fue explicado anteriormente. Las diferencias de potencial acelerador entre picos se muestran en el cuadro 7.

$V_{1-2} [V]$
4.65
5.052
4.81
4.504
$\frac{4.417}{4.933}$
4.907
5.034
3.69
4.41
$\frac{4.73}{4.442}$
4.442
$\frac{4.033}{4.244}$

Cuadro 7: Diferencias de potencial acelerador registradas entre dos picos de corriente

Podemos decir entonces que estos son los valores que medimos para la diferencia de potencial necesaria para que un electrón pueda excitar del nivel fundamental al siguiente a un átomo de mercurio y por eso lo notamos V_{1-2} , siendo los distintos valores producto de los errores que afectan nuestras mediciones.

Cabe aclarar que la diferencia entre picos y la distancia hasta el primer pico son distintas en todos los casos de medición. Podemos atribuir esta diferencia a que en el sección de potenciales hasta el primer pico también nos afecta un potencial de contacto del dispositivo, el cual no permite la aceleración del los electrones.

De esta forma, podemos concluir que hemos encontrado una manera directa de medir efectos que son producto de la discretización de los niveles de energía de los electrones en los átomos. La disminución de la corriente de electrones medida en el ánodo pone de manifiesto la existencia de una determinada separación energética entre el nivel fundamental y el primer nivel excitado del átomo.