Ζουρνατζής Δημήτριος - <u>sdi1600048@di.uoa.gr</u> Σχεδίαση Ψηφιακών Συστημάτων Εργασία 1 -Μέρος Α

Ερώτημα 1

Οι πίνακες αληθείας για τα Χ και Υ αντίστοιχα έχουν ως εξής:

A	В	C	D	Y	X
0	0	0	0	1	0
0	0	0	1	0	0
0	0	1	0	1	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	1	1	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	1	0	0

Οι ελαχιστοποιημένες εξισώσεις Boole που προκύπτουν από τον παραπάνω πίνακα είναι οι εξής:

$$y = \bar{a}\bar{b}\bar{d} + \bar{a}bc + a\bar{b}d + ab\bar{c}$$

και

$$x = \bar{a}\bar{b}c + \bar{a}b\bar{c}$$

Η συνάρτηση Y σε υλοποίηση πολυπλέκτη 4 σε 1 με σήματα εισόδου τα B και D αντίστοιχα είναι $y = \bar{a}\,\bar{b}\,\bar{d}\,D_{\rm s1}^{\bar{}} + \bar{a}\,b\,c\,B_{\rm s0} + a\bar{b}\,d\,D_{\rm s1}^{\bar{}} + ab\,\bar{c}\,B_{\rm s0}$

Ερώτημα 2 Ο πίνακας αληθείας του JK flip flop είναι ο εξής:

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	0	0
1	1	0	1
1	1	1	0

και ο K-map που προκύπτει είναι:

Q JK	00	01	11	10
0	0	1	1	0
1	1	1	0	0

και προκύπτει από τις ομαδοποιήσεις η απλοποιημένη εξίσωση Boole:

$$Q(t+1) = Q'K + QJ'$$

η βασική λογική της αρχιτεκτονικής του σε VHDL: $new_Q \le (not \ Q \ and \ K)$ or $(Q \ and \ not \ J)$;

Σχεδίαση του παραπάνω JK με την χρήση D flip-flop και συνδυαστικής λογικής:

