Families of Abelian Varieties with Big Monodromy

David Zureick-Brown (Emory University) David Zywina (IAS)

Slides available at http://www.mathcs.emory.edu/~dzb/slides/

2013 Colorado AMS meeting Special Session on Arithmetic statistics and big monodromy Boulder, CO

April 14, 2013

Background - Galois Representations

$$ho_{A,n} \colon G_K o \operatorname{Aut} A[n] \cong \operatorname{GL}_{2g}(\mathbb{Z}/n\mathbb{Z})$$

$$ho_{A,\ell^{\infty}} \colon G_K o \operatorname{GL}_{2g}(\mathbb{Z}_{\ell}) = \varprojlim_n \operatorname{GL}_{2g}(\mathbb{Z}/\ell^n\mathbb{Z})$$

$$ho_A \colon G_K o \operatorname{GL}_{2g}(\widehat{\mathbb{Z}}) = \varprojlim_n \operatorname{GL}_{2g}(\mathbb{Z}/n\mathbb{Z})$$

Background - Galois Representations

$$\rho_{A,n} \colon G_K \twoheadrightarrow G_n \hookrightarrow \mathsf{GSp}_{2g}(\mathbb{Z}/n\mathbb{Z})$$

$$G_n \cong \operatorname{Gal}(K(A[n])/K)$$

Example - torsion on an ellitpic curve

If *E* has a *K*-rational torsion point $P \in E(K)[n]$ (of exact order *n*), then the image is constrained:

$$G_n \subset \left(egin{array}{cc} 1 & * \ 0 & * \end{array}
ight)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = P$$

$$\sigma(Q) = a_{\sigma}P + b_{\sigma}Q$$

Monodromy of a family

- $oldsymbol{0} U \subset \mathbb{P}^N_K ext{ (non-empty open)}$
- $0 \eta \in U$ (generic point)

Definition

The **monodromy** of $\mathscr{A} \to U$ is the image H_{η} of $\rho_{\mathscr{A}_{\eta}}$. We say that $\mathscr{A} \to U$ has **big monodromy** if H_{η} is an open subgroup of $\mathsf{GSp}_{2g}(\widehat{\mathbb{Z}})$.

Monodromy of a family over a stack

① *U* is now a stack.

Definition

The **monodromy** of $\mathscr{A} \to U$ is the image H of $\rho_{\mathscr{A}}$. We say that $\mathscr{A} \to U$ has **big monodromy** if H is an open subgroup of $\mathsf{GSp}_{2g}(\widehat{\mathbb{Z}})$.

- Spec $\Omega \xrightarrow{\eta} U$ (geometric generic point)
- $oldsymbol{0} \mathscr{A} o U$ (family of principally polarized abelian varieties)

(Example) standard family of elliptic curves

$$E: y^2 = x^3 + ax + b$$

$$U = \mathbb{A}_K^2 - \Delta$$

$$H = \left\{ A \in \mathsf{GL}_2(\widehat{\mathbb{Z}}) : \mathsf{det}(A) \in \chi_K(\mathsf{Gal}(\overline{K}/K))
ight\}$$

(Example) elliptic curves with full two torsion

$$E \colon y^2 = x(x-a)(x-b)$$

$$U = \mathbb{A}_{\mathbb{Q}}^2 - \Delta$$

$$H = \left\{ A \in \mathsf{GL}_2(\widehat{\mathbb{Z}}) : A \equiv I \pmod{2} \right\}$$

Exotic example from Zywina's HIT paper

E:
$$y^2 + xy = x^3 - \frac{36}{j - 1728}x - \frac{1}{j - 1728}$$

Exotic example from Zywina's HIT paper

$$E: y^2 + xy = x^3 - \frac{36}{j - 1728}x - \frac{1}{j - 1728} \text{ over } U \subset \mathbb{A}^1_K$$
$$j = \frac{(T^{16} + 256T^8 + 4096)^3}{T^{32}(T^8 + 16)}$$
$$[GL_2(\widehat{\mathbb{Z}}): H] = 1536$$

Exotic example from Zywina's HIT paper

$$E: y^2 + xy = x^3 - \frac{36}{j - 1728}x - \frac{1}{j - 1728} \text{ over } U \subset \mathbb{A}^1_K$$

$$j = \frac{(T^{16} + 256T^8 + 4096)^3}{T^{32}(T^8 + 16)}$$

$$[GL_2(\widehat{\mathbb{Z}}): H] = 1536$$

H is the subgroup of matricies preserving $h(z) = \eta(z)^4/\eta(4z)$.

(Example) Hyperelliptic

$$E\colon y^2=x^{2g+2}+a_{2g+1}x^{2g+1}+\ldots+a_0$$
 over $U\subset \mathbb{A}^{2g+2}$

$$H = \left\{ A \in \mathsf{GSp}_{2g}(\widehat{\mathbb{Z}}) : A \pmod{2} \in S_{2g+2} \right\}$$

Main Theorem

Theorem (ZB-Zywina)

Let U be a non-empty open subset of \mathbb{P}^N_K and let $\mathscr{A} \to U$ be a family of principally polarized abelian varieties. Let η be the generic point of U and suppose moreover that $\mathscr{A}_\eta/K(\eta)$ has big monodromy. Let H_η be the image of $\rho_{\mathscr{A}_\eta}$.

Let

$$B_K(N) = \{u \in U(K) : h(u) \leq N\}.$$

Then a random fiber has maximal monodromy, i.e. (if $K \neq \mathbb{Q}$)

$$\lim_{N\to\infty}\frac{|\{u\in B_K(N): \rho_{\mathcal{A}_u}(G_K)=H_\eta\}|}{|B_K(N)|}=1.$$

Corollary - Variant of Inverse Galois Problem

Corollary

For every g > 2, there exists an abelian variety A/\mathbb{Q} such that

$$\mathsf{Gal}(\mathbb{Q}(A_{\mathsf{tors}})/\mathbb{Q}) \cong \mathsf{GSp}_{2g}(\widehat{\mathbb{Z}}),$$

i.e, for every n,

$$\mathsf{Gal}(\mathbb{Q}(A[n])/\mathbb{Q}) \cong \mathsf{GSp}_{2g}(\mathbb{Z}/n\mathbb{Z}).$$

Monodromy of trigonal curves

Theorem (ZB, Zywina)

For every g > 2

- **1** the stack T_g of trigonal curves has monodromy $\mathsf{GSp}_{2g}(\widehat{\mathbb{Z}})$, and
- ② there is a family of trigonal curves over a nonempty rational base $U \subset \mathbb{P}^N_{\mathbb{O}}$ with monodromy $\mathsf{GSp}_{2g}(\widehat{\mathbb{Z}})$

Monodromy of families of Pryms

Question

For every g, does there exists a family $\mathcal{A} \to U$ of PP abelian varieties of dimension g, U rational, which **are not generically isogenous to Jacobians**, with monodromy $\mathsf{GSp}_{2g}(\widehat{\mathbb{Z}})$?

- **①** One can (probably) take $A \to U$ to be a family of Prym varieties associated to **tetragonal curves**, or
- ② (Tsimerman) one can take $\mathcal{A} \to U$ to be a family of Prym varieties associated to **bielliptic curves**.

Sketch of trigonal proof

Theorem

For every g the stack T_g of trigonal curves has monodromy $\mathsf{GSp}_{2g}(\widehat{\mathbb{Z}})$.

Proof.

- **1** the mod 2 monodromy thus contains subgroups isomorphic to
 - S_{2g+2}

(Example) Hyperelliptic

$$E\colon y^2=x^{2g+2}+a_{2g+1}x^{2g+1}+\ldots+a_0$$
 over $U\subset \mathbb{A}^{2g+2}$

$$H = \left\{ A \in \mathsf{GSp}_{2g}(\widehat{\mathbb{Z}}) : A \pmod{2} \in S_{2g+2} \right\}$$

Hyperelliptic example continued

Theorem

- (Yu) unpublished
- (Achter, Pries) the stack of hyperelliptic curves has maximal monodromy
- **3** (Hall) any 1-paramater family $y^2 = (t x)f(t)$ over K(x) has full monodromy

Hyperelliptic example proof

Corollary

$$E: y^2 = x^{2g+2} + a_{2g+1}x^{2g+1} + \ldots + a_0$$

has monodromy $\{A \in \mathsf{GSp}_{2g}(\widehat{\mathbb{Z}}) : A \pmod{2} \in S_{2g+2}\}.$

Proof.

- **1** $U = \text{space of distinct unordered } 2g + 2 \text{-tuples of points on } \mathbb{P}^1$
- $U \rightarrow \mathcal{H}_{g,2}$
- \mathfrak{G} $\mathcal{H}_{g,2}\cong [U/\operatorname{Aut}\mathbb{P}^1]$
- fibers are irreducible, thus

$$\pi_{1,\text{et}}(U) \twoheadrightarrow \pi_{1,\text{et}}(\mathcal{H}_{g,2})$$

is surjective.

Sketch of trigonal proof

Theorem (ZB, Zywina)

For every g>2 there is a family of trigonal curves over a nonempty rational base $U\subset \mathbb{P}^N_{\mathbb{Q}}$ with monodromy $\mathsf{GSp}_{2g}(\widehat{\mathbb{Z}})$

Proof.

Main issue:

$$f_3(x)y^3 + f_2(x)y^2 + f_1(x)y + f_0(x) = 0$$

- $oldsymbol{0}$ The stack \mathcal{T}_g is unirational, need to make this explicit
- **3** (Bolognesi, Vistoli) $\mathcal{T}_g \cong [U/G]$ where U is rational and G is a connected algebraic group.
- Maroni-invariant (normal form for trigonal curves).

Sketch of trigonal proof - Maroni Invariant

Maroni-invariant

The image of the canonical map lands in a scroll

$$C \hookrightarrow \mathbb{F}_n \hookrightarrow \mathbb{P}^{g-1}$$

$$\mathbb{F}_n \cong \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-n))$$

$$\mathbb{F}_0 \cong \mathbb{P}^1 \times \mathbb{P}^1$$

$$\mathbb{F}_1 \cong \mathsf{Bl}_P \mathbb{P}^2$$

- $oldsymbol{0}$ n has the same parity as g
- **3** generically n = 0 or 1
- e.g., if g even we can take U = space of bihomogenous polynomials of bi-degree (3, d)

Pryms

 $C o D \leadsto \ker_0(J_C o J_D)$, generally not a Jacobian

Monodromy of families of Pryms, bielliptic target

Example (Tsimerman)

The space of (ramified) double covers of a fixed elliptic curve is rational, so the space of Pryms is also rational, with base isomorphic to a projective space over $X_1(2)$. The associated family of Prym's has big monodromy.