

AMENDMENTS TO THE CLAIMS

1. (Previously Presented) A cryptographic method, including:
generating, at a first entity, a first public key M_B , the first public key M_B being session specific;
receiving, at the first entity, a second public key M_A , the second public key M_A being session specific;
generating, at the first entity, a first session key K_B and a first secret S_B , the first session key K_B being different from the first secret S_B , both the first session key K_B and the first secret S_B being computed from the second public key M_A ;
encrypting, at the first entity, a first random nonce N_B with the first session key K_B or the first secret S_B to obtain a first encrypted result;
encrypting, at the first entity, the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce;
transmitting the encrypted random nonce from the first entity to the second entity;
receiving a response to the encrypted random nonce; and
authenticating through determining whether the response includes a correct modification of the first random nonce N_B .
2. (Previously Presented) The method of claim 1 wherein said encrypting the first random nonce N_B includes:
generating the first secret S_B from at least a first password P_B and the first public key M_B .
3. (Previously Presented) The method of claim 1 wherein authenticating through determining whether the response includes a correct modification includes:
checking whether a received modification of the first random nonce N_B equals a modification of the first random nonce N_B applied by the first entity.
4. (Previously Presented) The method of claim 1 wherein said authenticating includes:
checking whether a received modification of the first random nonce less a modification thereof as applied thereto by the first entity equals the first random nonce.

5. (Previously Presented) The method of claim 1 wherein generating the first session key K_B includes:
generating a first random number R_B , and
computing the first session key K_B from the second public key M_A raised to the exponential power of the first random number R_B , modulo a parameter β_B .
6. (Previously Presented) The method of claim 1 wherein the first secret S_B is generated using a combining function f_B on at least a first password P_B and the first public key M_B .
7. (Previously Presented) The method of claim 6 wherein the first secret S_B is generated using the combining function f_B on the first password P_B and the second public key M_A and the first public key M_B .
8. (Currently Amended) The method of claim 1 wherein said generating the first secret S_B includes:
combining the second public key M_A and the first public key M_B with ~~the~~a first password P_B to produce a first result, and
hashing the first result with a secure hash.
9. (Original) The method of claim 8 wherein the secure hash is a one-way hash function.
10. (Original) The method of claim 9 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvenny Standard.
11. (Currently Amended) The method of claim 1 wherein said generating the first secret S_B includes:
combining ~~the~~a first password P_B and at least one of the second public key M_A and the first public key M_B to generate a first combined result, and

combining the first combined result and at least one of the second public key M_A , the first password P_B , and the first public key M_B to generate a second combined result.

12. (Previously Presented) The method of claim 1 wherein the first random nonce N_B is encrypted using a symmetrical encryption algorithm.
13. (Original) The method of claim 12, wherein the symmetrical encryption algorithm is one of the Data Encryption Standard and the block cipher CAST.
14. (Previously Presented) The method of claim 1 wherein encrypting the first random nonce N_B includes superencrypting the first random nonce N_B .
15. (Previously Presented) The method of claim 14, wherein superencrypting the first random nonce N_B includes:
 - encrypting the first random nonce N_B with the first secret S_B to produce the first encrypted result; and
 - encrypting the first encrypted result using the first session key K_B .
16. (Previously Presented) The method of claim 15 wherein said authenticating includes:
 - decrypting the response using the first session key K_B to generate a first decrypted result; and
 - decrypting the first decrypted result using the first secret S_B .
17. (Previously Presented) The method of claim 1, wherein the response includes a combination of a second random nonce N_A and a modification of the first random nonce; and wherein the method further includes:
 - extracting the second random nonce N_A from the response;
 - modifying the second random nonce N_A to obtain a modified second random nonce;
 - encrypting the modified second random nonce using the first session key K_B and the first secret S_B to obtain an encrypted package; and

transmitting the encrypted package from the first entity.

18. (Previously Presented) The method of claim 17 wherein said encrypting the modified second random nonce includes:
 - generating a string of random bits I_B ;
 - encrypting a combination of the string of random bits I_B and the modified second random nonce using the first secret S_B to generate a first result; and
 - encrypting the first result using the first session key K_B .
19. (Previously Presented) The method of claim 17 wherein the encrypted package is transmitted for authentication of the first entity in opening a two-way communication channel.
20. (Previously Presented) A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system to perform a cryptographic method including:
 - generating, at the first computer system, a first public key M_B , the first public key M_B being session specific;
 - receiving, at the first computer system, a second public key M_A , the second public key M_A being session specific;
 - generating, at the first computer system, a first session key K_B and a first secret S_B , the first session key K_B being different from the first secret S_B , both the first session key K_B and the first secret S_B being computed from the second public key M_A ;
 - encrypting, at the first computer system, a first random nonce N_B with the first session key K_B or the first secret S_B to obtain a first encrypted result;
 - encrypting, at the first computer system, the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce;
 - transmitting the encrypted random nonce from the first computer system to the second computer system; and
 - authenticating through determining whether a response to the encrypted random nonce includes a correct modification of the first random nonce N_B .

21. (Previously Presented) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a computer cryptographic method through a network, the method comprising:

generating at the first computer system a first public key M_B , the first public key M_B being session specific;

generating at the second computer system a second public key M_A , the second public key M_A being session specific;

receiving at the first computer system the second public key M_A ;

generating at the first computer system a session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;

generating at the first computer system a first random nonce N_B ;

encrypting at the first computer system the first random nonce N_B with the first session key K_B or the first secret S_B to obtain a first encrypted result;

encrypting at the first computer system the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce;

transmitting the encrypted random nonce and the first public key M_B from the first computer system to the second computer system to establish the session key at the second computer system;

receiving at the first computer system from the second computer system a response to the encrypted random nonce; and

authenticating the second computer system at the first computer system through determining whether the response includes a correct modification of the first random nonce N_B .

22. (Previously Presented) A computer system for performing a cryptographic method through a network, the computer system comprising:

a processor;

a network interface coupled to the network and coupled to the processor, the network interface to receive a request including information on a user identification; and

a storage device coupled to the processor, the storage device to store a user password corresponding to the user identification, and wherein the processor is to perform a method, including:

receiving a second public key M_A through the network interface, the second public key M_A being session specific;

generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;

generating a first public key M_B , the first public key M_B being session specific;

generating a first random nonce N_B ;

encrypting the first random nonce N_B with the session key K_B or the first secret S_B to obtain a first encrypted result;

encrypting the first encrypted result with the other one of the session key K_B or the first secret S_B to obtain an encrypted random nonce;

transmitting the encrypted random nonce and the first public key M_B through the network interface;

authenticating through determining whether a response to the encrypted random nonce includes a correct modification of the first random nonce.

23. (Previously Presented) The computer system of claim 22 wherein the network is a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted with the encrypted random nonce for session key exchange.
24. (Previously Presented) A cryptographic method, comprising:

receiving at a first entity a second public key M_A and an encrypted second random number;

generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;

decrypting, using at least a first password P_B and the first session key K_B , to retrieve a second random number N_A from the encrypted second random number;

modifying the second random number N_A to obtain a modified second random number; encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result; encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package; and transmitting the encrypted random package from the first entity.

25. (Currently Amended) The method of claim 24, wherein said decrypting includes: decrypting the encrypted second random number using the first session key K_B to generate the first decrypted result; and decrypting the first decrypted result using at least ~~the-a~~ first password P_B and the second public key M_A .
26. (Previously Presented) The method of claim 24 wherein said generating the first session key K_B includes: generating a first random number R_B , and computing the first session key K_B from the second public key M_A raised to the exponential power of the first random number R_B , modulo a parameter β_B .
27. (Currently Amended) The method of claim 24 wherein said decrypting further includes: generating at the first entity a first public key M_B ; and generating ~~a~~the first secret S_B using a combining function f_B on at least ~~the-a~~ first password P_B and the first public key M_B .
28. (Previously Presented) The method of claim 27 wherein said decrypting includes decrypting the encrypted second random number using at least the first secret S_B and the first session key K_B .
29. (Previously Presented) The method of claim 27 wherein said generating the first secret S_B includes: combining the first public key M_B with the first password P_B to produce a first result, and

hashing the first result with a secure hash.

30. (Original) The method of claim 29 wherein the secure hash is a one-way hash function.
31. (Original) The method of claim 30 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvenny Standard.
32. (Previously Presented) The method of claim 27 wherein said generating the first secret S_B includes:
combining the first password P_B and the first public key M_B to generate a first combined result, and
combining the first combined result and at least one of the second public key M_A , the first password P_B , and the first public key M_B to generate the first secret S_B .
33. (Previously Presented) The method of claim 24, wherein said encrypting the modified second random number includes superencrypting the modified second random number.
34. (Previously Presented) The method of claim 24, further including:
generating a first random number N_B ; and
wherein said encrypting the modified second random number includes:
encrypting a combination of the first random number N_B and the modified second random number.
35. (Previously Presented) The method of claim 34 which further includes:
receiving at the first entity a response to the encrypted random package;
decrypting the response to obtain a combination of a string of random bits and a modified first random nonce; and
retrieving the modified first random nonce from the combination of the string of random bits and the modified first random nonce;

determining whether the modified first random nonce was correctly modified from the first random number N_B .

36. (Previously Presented) The method of claim 35 wherein said determining whether the modified first random nonce was correctly modified includes:
checking whether the modified first random nonce equals a modification of the first random nonce as applied to the first random nonce by the first entity.
37. (Previously Presented) The method of claim 35 wherein said determining whether the modified first random nonce was correctly modified includes:
checking whether the modified first random nonce less a modification thereof as applied thereto by the first entity equals the first random nonce.
38. (Previously Presented) A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system to perform a cryptographic method including:
receiving at the first computer system a second public key M_A and an encrypted second random number;
generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;
decrypting, using at least a first password P_B and the first session key K_B , to retrieve the second random number N_A from the encrypted second random number;
modifying the second random number N_A to obtain a modified second random number;
encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result;
encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package;
transmitting the encrypted random package from the first computer system for authentication.

39. (Previously Presented) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a cryptographic method through a network, the method including:

receiving, from the second computer system and at the first computer system, a second public key M_A and an encrypted second random number;

generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;

decrypting, using at least a first password P_B , to retrieve a second random number N_A from the encrypted second random number;

modifying the second random number N_A to obtain a modified second random number;

encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result;

encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package;

transmitting the encrypted random package from the first computer system to the second computer system.

40. (Previously Presented) A computer system for performing a cryptographic method through a network, the computer system comprising:

a processor;

a network interface coupled to the network and coupled to the processor, the network interface to receive a request including information on a user identification; and

a storage device coupled to the processor, the storage device to store a user password associated with the user identification, and wherein the processor is to perform a method, including

generating a first public key M_B ;

receiving a second public key M_A and an encrypted second random number through the network interface;

generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;

decrypting, using at least a first password P_B and the first session key K_B , to retrieve the second random number N_A from the encrypted second random number;

modifying the second random number N_A to obtain a modified second random number;

encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result;

encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package;

transmitting the encrypted random package through the network interface.

41. (Previously Presented) The computer system of claim 40 wherein the network is a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted for session key exchange before the encrypted second random number is received.