Sperimentazioni di Fisica I mod. A – Lezione 2

Numeri Relativi

Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova

Rappresentazione dei Numeri

Lezione II: Numeri Relativi 1. Introduzione

Complemento alla Radice

Dato un numero x espresso in base-R con un numero n di cifre, si definisce **complemento alla radice R**, il numero:

$$\mathbf{C}_{\mathbf{R}}\left(\mathbf{x}\right) = \mathbf{R}^{\mathbf{n}} - \mathbf{x}$$

Allo stesso modo si definisce il **complemento alla radice R diminuita di uno**, il numero:

$$C_{R-1}(x) = (R^n - 1) - x = R^n - 1 - x = (R^n - x) - 1$$

 C_R e C_{R-1} sono legati dalla relazione:

$$C_{R-1}(x) = C_{R}(x) - 1$$

 $C_{R}(x) = C_{R-1}(x) + 1$

Complementi in Base-10

In base-10, si definiscono il complemento a 10 (C_{10} , complemento alla radice 10) e il complemento a 9 (C_9 , complemento alla radice 10 diminuita di 1).

Consideriamo il numero 873₁₀

$$C_{10}(873) = 10^3 - 873 = 1000 - 873 = 127$$
 $C_{9}(873) = (10^3 - 1) - 873 = 999 - 873 = 126$
 $C_{10}(873) = C_{9}(873) + 1 = 126 + 1 = 127$

Altro esempio, consideriamo il numero **75911**₁₀

$$C_{10}(75911) = 10^5 - 75911 = 100000 - 75911 = 24089$$

 $C_{9}(75911) = (10^5 - 1) - 75911 = 99999 - 75911 = 24088$

Complementi in altre Basi

1. Complemento alla radice R diminuita di uno, $C_{R-1}(x)$

$$C_F(369_{16}) = FFF_{16} - 369_{16} = C96_{16}$$

$$C_9(873_{10}) = 999_{10} - 873_{10} = 126_{10}$$

$$C_7(1551_8) = 7777_8 - 1551_8 = 6226_8$$

$$C_1(1101101001_2) = 11111111111_2 - 1101101001_2 = 0010010110_2$$

2. Complemento alla radice R, $C_R(x)$

$$\begin{split} C_{16}(369_{16}) &= C_F(369_{16}) + 1_{16} = C96_{16} + 1_{16} = C97_{16} \\ C_{10}(873_{10}) &= C_9(873_{10}) + 1_{10} = 126_{10} + 1_{10} = 127_{10} \\ C_8(1551_8) &= C_7(1551_8) + 1_8 = 6226_8 + 1_8 = 6227_8 \\ C_2(1101101001_2) &= C_1(1101101001_2) + 1_2 = 0010010111_2 \end{split}$$

Rappresentazione dei Numeri

Lezione II: Numeri Relativi 2. La Rappresentazione del Segno

Il Segno

Il parametro che contraddistingue due numeri con lo stesso valore assoluto è il **segno**.

Il segno può assumere unicamente due valori: "+" e "-"

Per rappresentare l'informazione-segno è necessario e sufficiente **un bit**, una cifra che possa assumere valori 0 ed 1.

Aggiungiamo una cifra $\mathbf{d_n}$, che rappresenta il segno

$$\mathbf{d} = (\mathbf{d_n d_{n-1} d_{n-2} \dots d_2 d_1 d_0})_{\mathbf{R}}$$

dove $d_i \in \{0, 1, ... R-1\}, i \in N e$

 $d_n = 0$, se il numero è **positivo**

 $d_n = 1$, se il numero è negativo

$$d = (1 - 2d_n) \sum_{i=0}^{n-1} d_i R^i$$

I Numeri Relativi in Base-2

Interi Positivi. Si aggiunge uno zero (0) come cifra più significativa ($\mathbf{d_n} = \mathbf{0}$), mentre il resto delle cifre rimane invariato ($\mathbf{d_n} \mathbf{d_{n-1}} \dots \mathbf{d_1} \mathbf{d_0}$).

$$|19_{10}| = 10011_2$$

 $+19_{10} = 010011_2$

Interi Negativi. Ci sono diverse possibili rappresentazioni:

- 1. Rappresentazione Modulo e Segno,
- 2. Rappresentazione in Complemento ad Uno,
- 3. Rappresentazione in Complemento a Due.
- 4. Rappresentazione in Eccesso-q

Rappresentazione dei Numeri

Lezione II: Numeri Relativi 3. Rappresentazione Modulo e Segno

Modulo e Segno (I)

Un primo approccio al problema è di **separare** nettamente **il modulo** (valore assoluto) dell'intero rappresentato e di riservare il **bit più significativo** per la rappresentazione del **segno**.

Tale bit avrà valore 0 per i numeri **positivi** e 1 per i numeri **negativi**.

$$|19_{10}| = 10011_2$$

+ $19_{10} = 010011_2$
- $19_{10} = 110011_2$

Fissato il numero di bit disponibili per la rappresentazione di un numero, resta individuato l'intervallo di valori rappresentabili.

Modulo e Segno (II)

Supponiamo di descrivere un intero con n bit, 1 bit sarà riservato al segno e n-1 al suo modulo. L'intervallo rappresentabile sarà

$$[-2^{n-1}+1,2^{n-1}-1]$$

Vediamo un esempio con n = 8, $[-2^7 + 1, 2^7 - 1] = [-127, +127]$

Sistema Binario	Signed (8-bit)	Unsigned (8-bit)
00000000_2	$+0_{10}$	0_{10}
00000001_2	+1 ₁₀	1 ₁₀
011111111_2	$+127_{10}$	127 ₁₀
10000000_2	-0_{10}	128 ₁₀
10000001 ₂	-1_{10}	129 ₁₀
11111111_2	-127_{10}	255 ₁₀

Rappresentazione ridondante per la presenza di **due** "0": +0 e –0. Utilizzata inizialmente nei primi computer (IBM 7090).

Oggi usata per il **significante/mantissa** nei numeri a **virgola mobile**.

Rappresentazione dei Numeri

Lezione II: Numeri Relativi 4. Rappresentazione Complemento ad Uno

Complemento ad Uno

Ricordiamo la definizione di **complemento ad uno** (alla radice R diminuita di uno in base-2) di un numero x rappresentato con n bit:

$$C_{R-1}(x_R) = R_R^n - 1_R - x_R$$

 $C_1(x_2) = 2_2^n - 1_2 - x_2$

Per passare da un numero al suo **negativo**, si utilizza l'operazione di **complemento ad uno**.

La stessa trasformazione permette di passare da un numero negativo al corrispondente **positivo**:

$$\mathbf{C_1(C_1(x_2))} = 2_2^n - 1_2 - C_1(x_2)_2 =$$

$$= 2_2^n - 1_2 - (2_2^n - 1_2 - x_2) =$$

$$= 2_2^n - 1_2 - 2_2^n + 1_2 + x_2 =$$

$$= \mathbf{x_2}$$

Regola Pratica

Intero Positivo: si aggiunge un **bit di segno (0)** come cifra più significativa.

Intero Negativo: si considera il **complemento ad uno** dell'intero positivo.

$$|19_{10}| = 10011_2$$

+19₁₀ = 010011₂

$$-19_{10} = C_1(010011_2) = 1111111_2 - 010011_2 = 1011100_2$$

- → Per trovare la rappresentazione in complemento ad uno, invertire ad uno ad uno tutti i bit della parola.
- L'intervallo di valori rappresentato è lo stesso della rappresentazione Modulo-Segno: $[-2^{n-1}+1,+2^{n-1}-1]$.

Per esempio, per n = 8: [-127₁₀, +127₁₀].

Numeri Rappresentati in C₁

Sistema Binario	Signed (8-bit))Unsigned (8-bit)
00000000_2	$+0_{10}$	0_{10}
0000001_2	+1 ₁₀	1 ₁₀
01111101 ₂	$+125_{10}$	125 ₁₀
011111110_2	$+126_{10}$	126 ₁₀
0111111112	$+127_{10}$	127 ₁₀
10000000_2	-127_{10}	128 ₁₀
10000001_2	-126_{10}	129 ₁₀
10000010_2	-125_{10}	130 ₁₀
111111101_2	-2_{10}	253 ₁₀
111111110_2	-1_{10}	254 ₁₀
11111111 ₂	-0_{10}	255 ₁₀

Alcuni Inconvenienti

La rappresentazione è ridondante per la scrittura dello "0":

$$00...00_2 = +0_{10}$$
 $11...11_2 = -0_{10}$

Il complemento ad uno permetterebbe un **design più semplice dell'hardware** (es. i circuiti di addizione e sottrazione sono più semplici rispetto alla rappresentazione modulo e segno), ma la duplice rappresentazione dello "0" può generare degli inconvenienti nelle operazioni.

Nelle **sottrazioni**, come vedremo, possono inoltre verificarsi degli **errori** se non si considera opportunamente il **riporto**.

CDC 6000 e Univac 1100 utilizzarono il complemento ad uno.

Successivamente Intel fu tra i primi ad integrare il complemento a due (Intel 8080). La scelta fu quindi seguita anche da AMD ed IBM.

Addizione

Consideriamo la somma di
$$A_1 = +121_{10}$$
 e $A_2 = -55_{10}$
$$|A_1| = 121_{10} = 1111001_2$$

$$A_1 = +121_{10} = 01111001_2$$

$$|A_2| = 55_{10} = 110111_2$$

$$+|A_2| = +55_{10} = 00110111_2$$

$$A_2 = -55_{10} = C_1(00110111)_2 = 11001000_2$$

11111
01111001₂ +
$$A_1 + A_2 = 010000001_2 = 64_{10} + 1_{10} = 65_{10}$$

11001000₂ = $A_1 + A_2 = 121_{10} - 55_{10} = 66_{10}$!!!
occorre sommare l'overflow per ottenere il risultato corretto: $65_{10} + 1_2 = 66_{10}$

Rappresentazione dei Numeri

Lezione II: Numeri Relativi 5. Rappresentazione Complemento a Due

Complemento a Due

I problemi relativi alla doppia rappresentazione dello "0" e del riporto dell'overflow nelle sottrazioni sono evitati con la rappresentazione dei numeri negativi in complemento a due.

$$C_{\mathbf{R}}(\mathbf{x}_{\mathbf{R}}) = \mathbf{R}_{\mathbf{R}}^{\mathbf{n}} - \mathbf{x}_{\mathbf{R}}$$
 $C_{2}(\mathbf{x}_{2}) = 2_{2}^{\mathbf{n}} - \mathbf{x}_{2} = C_{1}(\mathbf{x}_{2}) + 1$

Ci sono due regole pratiche per il calcolo del complemento a due:

1. Calcolare il **complemento ad 1, C_1(x_2)**, invertendo tutti i bit, e poi **sommare 1** al risultato;

$$C_2(0101100_2) = 1010011_2 + 1_2 = 1010100_2$$

2. Partendo da destra, copiare tutti i bit fino al primo "1" e poi invertire tutti i bit a sinistra del primo "1"

$$C_2(0101100_2) = 1010100_2$$

Numeri Rappresentati in C₂

Sistema Binario	Signed (8-bit)	Unsigned (8-bit)
00000000_2	0_{10}	0_{10}
0000001_2	+1 ₁₀	1 ₁₀
01111101 ₂	$+125_{10}$	125 ₁₀
011111110_2	$+126_{10}$	126 ₁₀
01111111 ₂	$+127_{10}$	127 ₁₀
10000000_2	-128_{10}	128 ₁₀
10000001_2	-127_{10}	129 ₁₀
10000010_2	-126_{10}	130 ₁₀
11111101 ₂	-3 ₁₀	253 ₁₀
111111110_2	-2_{10}	254 ₁₀
11111111 ₂	-1_{10}	255 ₁₀

Confronto C₁ e C₂

Sistema Binario	C_1 (8-bit)	C_2 (8-bit)
00000000_2	$+0_{10}$	0_{10}
0000001_2	+1 ₁₀	+1 ₁₀
01111101 ₂	$+125_{10}$	$+125_{10}$
011111110_2	$+126_{10}$	$+126_{10}$
011111111_2	$+127_{10}$	$+127_{10}$
10000000_2	-127_{10}	-128_{10}
10000001_2	-126_{10}	-127_{10}
10000010_2	-125_{10}	-126_{10}
111111101_2	-2_{10}	-3_{10}
111111110_2	-1_{10}	-2_{10}
111111111_2	-0_{10}	-1_{10}

Proprietà in C₂

- E' il **metodo più diffuso** nella rappresentazione dei numeri negativi in **informatica**.
- Si utilizza un unico circuito per addizione e sottrazione, permettendo tecnologie più semplici e maggior precisione.
- Il valore assoluto di un numero negativo si ottiene invertendo il valore dei singoli bit e sommando 1 al numero binario risultante

(unica eccezione $10000000_2 = -128_{10}$)

$$-5_{10} = 11111011_2 \rightarrow C_2(11111011_2) = C_1(11111011_2) + 1_2 =$$

$$= 00000100_2 + 1_2 = 00000101_2 = 4_{10} * 1_{10} + 1_{10} = 5_{10}$$

- L'intervallo dei numeri rappresentati è $[-2^{n-1}, +2^{n-1}-1]$, per esempio per una rappresentazione in n=8 bit: [-128,127].
- C'è un'unica rappresentazione dello 0.

Addizione

Sommando due numeri di segno diverso, il segno del risultato è determinato automaticamente.

 $0000\ 1010_{2}(10_{10})$

Sommando due numeri dello stesso segno, occorre determinare se il risultato è fuori intervallo.

$$0100 \ 1011_2 + (+75_{10})$$

$$0100 \ 0010_2 = (+66_{10})$$

$$1000\ 1101_2\ (-115_{10})\ (\neq 141_{10})$$

Se gli ultimi due riporti sono diversi, si è verificata una condizione di overflow!

Rappresentazione dei Numeri

Lezione II: Numeri Relativi 6. Rappresentazione in Eccesso-q

Eccesso-q

Questa notazione, detta anche "biased", si realizza aggiungendo un valore fissato "q" (detto eccesso, offset) ai numeri della rappresentazione.

Dato il numero di bit, **n**, della rappresentazione **l'eccesso è** (generalmente)

$$q = 2^{n-1} - 1$$

Lo "0" è rappresentato dal numero "q", mentre una combinazione di bit tutti nulli rappresenta il numero "-q".

Intervallo:
$$[-2^{n-1}+1, 2^{n-1}]$$

Tale notazione è utilizzata per indicare l'esponente nei numeri in virgola mobile. Per esempio, secondo lo standard IEEE-P754, nei numeri in precisione singola (32-bit) l'esponente utilizza 8 bit ed è rappresentato in eccesso-127. Nei numeri in precisione doppia (64-bit), sono riservati 11 bit all'esponente rappresentato in eccesso-1023.

Numeri Rappresentati in Eccesso-127

Sistema Binario	Offset-127 (8-bit)	Unsigned (8-bit)
00000000_2	-127_{10}	$\mathbf{0_{10}}$
0000001_2	-126_{10}	1 ₁₀
01111101_2	-2_{10}	125 ₁₀
011111110_2	-1_{10}	126 ₁₀
01111111 ₂	0_{10}	127 ₁₀
10000000_2	1 ₁₀	128 ₁₀
10000001_2	2 ₁₀	129 ₁₀
10000010_2	3 ₁₀	130 ₁₀
111111110_2	127 ₁₀	254 ₁₀
1111111 ₂	128_{10}	255 ₁₀

Esercizio 1 (I)

Dato il numero decimale $x = -80_{10}$, rappresentarlo in base binaria nelle seguenti notazioni, utilizzando (complessivamente) 8 bit:

- 1. Modulo e Segno MS in base due
- 2. Complemento ad Uno C1 in base due
- 3. Complemento a Due C2 in base due
- 4. Eccesso-q

Passo 1. Conversione del numero x in base 2.

$$80 = \dots$$

$$= 64 + 16 = 2^{6} + 2^{4} = 1*2^{6} + 0*2^{5} + 1*2^{4} + 0*2^{3} + 0*2^{2} + 0*2^{1} + 0*2^{0}$$

$$80_{10} = 1010000_{2}$$

$$80/2 = 40 + 0/2$$
 $40/2 = 20 + 0/2$
 $20/2 = 10 + 0/2$
 $10/2 = 5 + 0/2$
 $5/2 = 2 + 1/2$
 $2/2 = 1 + 0/2$
 $1/2 = 0 + 1/2$

Esercizio 1 (II)

Passo 2. Quanti bit abbiamo a disposizione? 8 Quanti bit servono per rappresentare il modulo di x? 7

Passo 3. Modulo e Segno

Modulo: 1010000

Segno: 1 (negativo)

 $\rightarrow 1-1010000$

Passo 4. Complemento ad Uno (C1)

Invertiamo tutti i bit del Modulo

 \rightarrow 1-0101111

Esercizio 1 (III)

Passo 5. Complemento a Due (C2)

Sommiamo 1 al Complemento ad 1: 10101111 + 1

 $\rightarrow 1\text{-}0110000$

Passo 6. Eccesso -q

Quanto vale q?

$$q = 2^{n-1} - 1 = 27 - 1 = 128 - 1 = 127$$

Per rappresentare x in eccesso -127, dobbiamo sommare q = 127 a x = -80 e convertire il numero risultante (-80 + 127 = 47) dalla base decimale alla base binaria.

\rightarrow 0-0101111

Esercizio 2

Dato il numero decimale $x = -153_{10}$, rappresentarlo in base binaria nelle seguenti notazioni, utilizzando (complessivamente) 9 bit:

- 1. Modulo e Segno MS in base due
- 2. Complemento ad Uno C1 in base due
- 3. Complemento a Due C2 in base due
- 4. Eccesso-q

Soluzione: Modulo e Segno: 1-10011001

Complemento ad Uno: 1-01100110

Complemento a Due: 1-01100111

Eccesso-255: 0-01100110

Confronto tra le Rappresentazioni (I)

R = 10			R=2		
	Valore	Modulo	Complemento	Complemento	
	Assoluto	e Segno	a Uno	a Due	Eccesso -7
+15	1111	<u> </u>	-	-	-
+14	1110	-	-	-	-
+13	1101	-	-	-	-
+12	1100	-	-	-	-
+11	1011	-	-	-	-
+10	1010	-	-	-	-
+9	1001	-	-	-	^ -
+8	1000	J - 、	- 1		(1 111
+7	0111	0111	0111	0111	1110
+6	0110	0110	0110	9110	1101
+5	0101	0101	0101	0101	1100
+4	0100	0100	0100	0100	1011
+3	0011	0011	0011	0011	1010
+2	0010	0010	0010	0010	1001
+1	0001	0001	0001	0001	1000
+0	0000	J 0000 J	0000	0000	0111
-0	-	1000	1111	-	-
-1	-	1001	1110	1111	0110
-2	-	1010	1101	1110	0101
-3	-	1011	1100	1101	0100
-4	-	1100	1011	1100	0011
-5	-	1101	1010	1011	0010
-6	-	1110	1001	1010	0001
-7	-	1111	1000	1001	0000
-8	-	-	-	1000	-

Confronto tra le Rappresentazioni (II)

R = 10			R=2		
	Valore	Modulo	Complemento	Complemento	
	Assoluto	e Segno	a Uno	a Due	Eccesso -7
+15	1111) -	-	-	-
+14	1110	-	-	-	-
+13	1101	-	-	-	-
+12	1100	-	-	-	-
+11	1011	Λ-	-	-	-
+10	1010	\-	-	-	-
+9	1001	 -	-	-	-
+8	1000	<i>)</i> }	-	-	1111
+7	0111	0111	0111	0111	1110
+6	0110	0110	0110	0110	1101
+5	0101	0101	0101	0101	1100
+4	0100	0100	0100	0100	1011
+3	0011	0011	0011	0011	1010
+2	0010	0010	0010	0010	1001
+1	0001	0001	0001	0001	1000
+0	0000	0000	0000	0000	Q111
-0	-	1000	1111	^-	/ \-
-1	-	1001	1110	1111	0110
-2	-	1010	1101	1110	0.01
-3	-	1011	1100	1101	01.00
-4	-	1100	1011	1100	0011
-5	-	1101	1010	1011	0010
-6	-	1110	1001	1010	0001
-7	-	1111	1000	1001	0000
-8	-	-	-	1,000	-