NLP Tasks and Applications Using Word Embeddings End-to-end problem solving

Venelin Kovatchev

Lecturer in Computer Science

v.o.kovatchev@bham.ac.uk

Outline

NLP Applications

• Using embeddings. Compositionality.

• End to end neural models

NLP Applications Classical NLP Pipeline and Features

What we have learned so far

- Tokenization
- Pos tagging
- Chunking / Syntactic parsing / Dependency parsing
- Word co-occurrence and distributional semantic models
- Word embeddings

"Linguistic" tasks: Text tokenization and POS tagging

- Tokenization: output is a text segmented in tokens
 - Regular expressions, BPE

I sold my book for \$ 80.00 .

- POS tagging: output is a sequence of hidden states:
 - noun, verb, adjective
 - Hidden Markov Models (HMM)

"Linguistic tasks: Chunking and constituent analysis

- Grouping words together based on their shared "function" in the text
- Find all groups that "function together" in the sentence
- I went to the movies with a friend who I know from high school.

 - I [went] to the movies with a friend who I know from high school.
 - I went [to the movies] with a friend who I know from high school.
 - I went to the movies [with a friend who I know from high school] .

word itself doesn't provide compositionality.

(affect from other words)

One possible way to group them

"Linguistic" tasks: The problem of syntax

"What combinations can we get with the constituents "dog", "human", and "bites"

- "Dog bites human" (statistically) most common
- "Human bites dog" meaningful, possible, but unlikely
- "Bites dog human", "Human dog bites", etc. ungrammatical

t unlikely doesn't doesn't doesn't

- Same constituents, different rules -> different (im-)possible complex expression

"Linguistic" tasks: Full syntactic parsing

"Colorless green ideas sleep furiously in love

S -> NP VP

 $NP \rightarrow AN$

NP -> A NP

 $VP \rightarrow VJ$

VP -> VP PP

 $PP \rightarrow P N$

(NP -> N)

Syntactic ambiguity

syntax, rules, word meanings all needed

- Sentences are often ambiguous
- How many interpretations for the following sentence:
 - "I saw a man in the park with the telescope"

"Linguistic" tasks: Dependency parsing

- The (det) -> cat
- cat (subj) -> sat
- on (prep) -> sat
- mat (pobj) -> on
- the (det) mat

"Linguistic" tasks: word embeddings - thaining, might overfit.

- What do the words "mean"?
- How can we "measure" the meaning?
- Distributional semantics:
 - the meaning is a function of the context

Word vectors: one-hod, count based, embeddings

but for most [M, it's still useful even with overfitting.

"Linguistic" NLP tasks

- Why do we need linguistic tasks?
 - To help computers make sense of language
 - Pre-processing and feature extraction
 - To help humans make sense of language
 - Linguistic and cognitive science experiments
 - For some problems "linguistic" NLP tasks are end goals

Linguistic tasks and machine learning

• Linguistic tasks are a goal on their own

• Linguistic tasks are tools in the (classical) NLP toolbox

- The bi-direction interaction between ML and linguistic tasks and data
 - Many linguistic tasks require ML
 - The output of linguistic analysis is used in practical applications
 - Word embeddings and transfer learning

Everyday tasks that use language / NLP

- Marketing
 - Sentiment analysis
 - Recommender systems
 - Content creation

Everyday tasks that use language / NLP (2)

- News articles, social media, and search
 - Information extraction
 - Question answering
 - Inference and Fact checking
 - Content moderation

Everyday tasks that use language / NLP

- User experience and assistance
 - Conversational Agents / Chat bots
 - Machine translation
 - Personal assistants
 - Autocomplete, copilot

Extra-linguistic tasks

- Extra-linguistic tasks are not "internal" to language
 - Part-of-speech tagging vs book recommendation

Language can be used to solve extra-linguistic tasks (in part)

- Rest of the module: taking a more practical direction
 - How do we solve problems using language
 - How do we define (and evaluate) problems and solutions
 - Feature-based solutions vs end-to-end solutions

Text classification Feature Engineering

Machine learning and NLP – supervised and unsupervised NLP

• Types of machine learning problems: supervised, unsupervised, reinforcement

Pop quiz: can you name ML problems of each of the three types?

- NLP problems are predominantly (represented as) supervised
 - Text classification: Sentiment analysis, Textual Inference, Fact checking, Toxic language detection
 - Text generation: Question answering, Chatbots, Machine translation

Text classification

- Observations are independent from each other (e.g. single tweet)
- Observations are preprocessed and fed into (a trained) classifier
- The classifier assigns the correct class-label to the observation
- Classes are discreet and often disjointed:
 - an email is either spam or ham, never both

• Different types of classification: binary, multi-class, multi-label

Extra-linguistic problems and feature engineering

Historically, we approached extra-linguistic problems via feature engineering

- Feature engineering
 - Converting language data into relevant data that is easy to process for machines
 - A "faulty" translation from "human" to "computer"
 - Loses some (often a lot of) information
 - Requires a lot of human intervention

Feature engineering

Analyze the problem, the input, and the desired outcome

Explore existing resources and processing techniques

Select the most relevant features and feature-extraction methods

Bagof words, N-grams etc... thinking of the word lengths.

Empirically test what works best

Feature engineering

- Various features can be extracted from texts
- Bag-of-words (+ tf-idf)
- N-grams
- Part-of-speech tags
- Named entities
- Sentiment words
- Stop words
- Length

Feature engineering (example)

- Consider the task of sentiment analysis
- What features can you extract from the following examples?
- Are these tweets positive or negative?

dictionary words, negative/positive.

- Absolutely in love with my new headphones from SoundWave! The sound quality is top-notch, crystal clear, and the noise cancellation is a game-changer! 🞧 🤲 Highly recommend to all music lovers out there! #SoundWave #MusicLife 🍵 😊 "
- 2."Really disappointed with my purchase from QuickTech. The laptop crashes constantly and the battery life is a joke. 🔯 📕 Worst customer service ever - they just don't care. Totally regret this buy. #QuickTechFail #Frustrated

Feature extraction

- Define the set of relevant features
- Train (or program) algorithms to process the text
- Extract features
- Represent the text via the features

Text classification using features

- Step by step process
- Involves active human engagement
 - Feature selection and extraction

• Data is fed into a classifier (Logistic, NB, SVM)

• Iteratively improve feature selection and model (hyper) parameters

The shift towards data-driven approaches

- DSM and embeddings extract (relevant) features from the data
 - Minimal supervision
 - Easier maintenance

• Allow computers to "read" and use language in a more direct way

The cost is loss of control and transparency

New NLP paradigm – the rise of end-to-end neural models

- Word embeddings mark a major shift in NLP
- What do you think is an "end-to-end" neural model?
- End-to-end neural model represent the complete target system
 - No external preprocessing
 - No explicit pipelines
 - Input-output mapping
 - Training for a specific task (with some transfer learning)
- What would be some limitations of end-to-end models?

alot of data rely on your data and can lead to racia

what's black box.

Using embeddings Compositionality

Use of word embeddings

• Embeddings are high dimensional vector representations of words

• All words in the vocabulary can be represented as a high dimensional vector

- What can we use embeddings for?
 - Write five different applications

Querying embeddings for lexical information

- Embeddings are originally a lexical resource
- Performing operations at word level
 - Find words that are semantically similar to a given word
 - Expand existing dictionaries by automatically searching for similar words
 - Explore relational similarity (e.g., UK London: France Paris)
 - Compare the meaning of a word to its context
 - Automatic error correction

Querying embeddings for lexical information

- Learning from embeddings
 - Learn specific semantic relations (e.g. hypernymy) (Shwartz, et al. 2016)
 - Learn compositionality rules (Baroni and Zampareli, 2010, Socher et al. 2013)
 - Learn representations for phrases and compare with words
 - Clustering (Kovatchev et al. 2016)
 - Topics
 - Part of speech

From words to text

• Embeddings represent words

• NLP is about processing text

• "The cat sat on a mat" vs "the mat sat on a cat"

Compositionality of meaning

• "The meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them"

- Two key questions:
 - How do we combine individual word meaning?
 - Does the word meaning remain static?

How to combine word meaning

• Assume that the word meaning is a vector or a tensor

- How can you calculate the meaning of a phrase?
 - Addition/aggregation
 - Complex (hierarchical) operations
 - Via a deep neural network

Vector addition

- The simplest form of compositionality
 - "The cat sat on a mat" = "The" + "cat" + "sat" + "on" + a" + "mat"
- Advantages
 - Easy to calculate
 - Fixed vector length, regardless of text length
- Disadvantages
 - Loses word order
 - Lower impact of individual words (e.g., "not")

Vector concatenation

Alternative to vector addition

Instead of adding dimensions, we concatenate the vectors

Can you identify advantages and disadvantages of this approach?

Recursive compositionality

- Baroni and Zampareli (2010), Socher et al. (2012, 2013)
- Meaning is not just a vector, but can be a vector + matrix

• Compositionality is a recursive vector-matrix operation

Follow the syntactic structure

Compositionality via deep neural networks

The current state-of-the-art

• Input the embeddings into a neural network

- Let the network handle the interactions
 - The network architecture determines the compositionality

Task specific embeddings

- General purpose word embeddings
- Polysemy ("blue cat", "cat myfile.sh", "CAT scan")
- Retraining embeddings
 - Domain: news, medical, social media (Major et al. 2018, Soares, 2019)
 - Task: sentiment, NER (Siencnik, 2015)
 - Languages

Contextual word embeddings

- The problem of polysemy
 - "The **cat** sat on a mat"
 - "You can cat this text file"
 - "I just got the results from my cat scanner"

- Are these the same word?
- Should they have the same embedding?
- Task specific embeddings may solve the problem, but can we do better?

ELMO – Deep contextualized word representations

- Key idea: generate a dynamic embedding, based on the context a word appears
 - "The cat sat on a mat" -> W2V -> the vector of "cat" depends only on "cat"
 - "The cat sat on a mat" -> ELMO -> the vector of "cat" depends on all words

- How? Bi-directional (LSTM) language model
- Concatenation of different layers
- Task-specific weights

Bi-directional language model

Bi-directional language model

Forward language model:

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_1, t_2, \dots, t_{k-1}).$$

• Backward language model:

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N).$$

• Bi-directional LM:

$$\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)).$$

Predict a word given its left and right context; keep input and output weights shared;

Deep representations

• For each token k, an L-layer bi-directional LM obtains 2L + 1 representations

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\} = \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\}$$

- Initial (static) representation x
- For each layer hidden representation of forward and backward

• ELMO learns a task-specific linear combination:

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}.$$
(1)

- The representations R_k depend only on the context
- The embedding ELMO_k depends on the context and the task

The impact and importance of ELMO

- ELMO (Peters et al. 2017) significantly improves NLP model performance
- Not the first contextual representation
- The first deep contextual representation (prior work only takes last layer)
- The first task-specific representation
- Short lived success due to the appearance of transformers and BERT
- Many of the concepts in ELMO are adopted in BERT

Using embeddings in downstream tasks and student projects

- What kind of vectors to use?
- Use pre-trained or re-train?
- Use as feature vectors or use to learn features?
 - E.g., can you "learn" which vectors are positive?
- Can you combine with other features?
- What would be the classifier?
- Size and scale of vectors?

Using embeddings in downstream tasks and student projects

- What kind of vectors to use?
- Use pre-trained or re-train?
- Use as feature vectors or use to learn features?
 - E.g., can you "learn" which vectors are positive?
- Can you combine with other features?
- What would be the classifier?
- Size and scale of vectors?