LLM - Detect AI Generated Text

組員名單

NTUT 113598032 張字青

NTUT 113598043 張育丞

ITUT 113C53020 劉莉庭

NTUT 113C53049 黃育承

Table of Contents

1.技術選題

3.優勢解析

2. 改良成果

技術選題

The origin of the topic "LLM - Detect AI Generated Text"

題目需求: 偵測 AI 產生文字的論文。

解決方案: 運用 NLP 技術之模型, 進行偵測。

● 參考方案:

Plan A. LLM Detect: Text Cluster [中文]) 🗘 主要選擇

Plan B. LLM Detect AI Generated (Bert)

Plan C. Detect AI Generated Text Using BLSTM & DistilBERT

● 修改方案:

Plan D. LLM Detect AI Generated Text (Optimization)

A

LLM Detect: Text Cluster [中文]

B

LLM Detect AI Generated (Bert)

C

Detect AI Generated Text Using BLSTM & DistilBERT

2 改良成果

D

PCA with data correction based on Plan A

Plan A: PCA 訓練原始結果

Plan D: PCA 訓練改進結果

PCA (主成分分析) 是透過降維處理使得資料變異量降低的方法。

D

Data-corrected ROC based on Plan A

- **橫軸 (False Positive Rate)**: 假陽性率
- **縱軸 (True Positive Rate)**: 真陽性率
- ROC (Receiver Operating Characteristic): 1.00

ROC 曲線 是透過分類器進行效益與成本之相對關聯成數的分類法,結果越靠左邊及上面表達越好成效。

3 優勢解析

B

Evaluate the advantages of Plan B

較多的訓練層數

多工學習、注意力機制等,提 高表現。

SMOTE 類別與損失函數

處理不平衡資料集。

均分或注意力機制

使用特定資料集上訓練的微調嵌入或替代池化策略。

C

Evaluate the advantages of Plan C

預訓練模型

將 DistilBERT 和 BLSTM + Word2Vec 結合。

資料正則化處理

使用 Dropout 層來減少 過度擬合。

大量資料取樣穩定

組合多個資料集,並採用下取樣來解決類別不平衡問題。

多模型整合

基於 DistilBERT 與 BLSTM + Word2Vec, 整合並 實踐出良好的模型。

4 未來規劃

D Advanced Architecture Integration: Plans B and C and D

預訓練模型

結合 DistilBERT 與 BLSTM + Word2Vec, 以加強語義理 解能力。

分詞處理機制修改

利用 HuggingFace 的 Tokenizer 實現 精準的文字預處理。

資料正則化處理

透過引入 dropout 層, 有效抑制過擬合, 同時顯著提升模型的泛化性能。

類別與損失函數調適に

結合過取樣技術與加權隨機樣本 選取器,有效提升少數類別的覆 蓋率與模型表現。

資料集優化策略

整合多個資料集,以擴展數據多樣性,從而提升模型的泛化能力。

池化機制與策略統整

整合基於注意力的池化, 以更好地捕捉序列的重要部分。

Thank you