COMP6704 Lecture 2 Advanced Topics in Optimization

Convex Sets

Fall, 2022

Instructor: WU, Xiao-Ming

For internal use only, please do not distribute!

Convexity: A Crucial Matter

• A convex function (top) is one whose graph slopes everywhere toward its minimum value.

• A nonconvex function (bottom) may have many basins, or local minima.

Image by Amir Ali Ahmadi

Convex Optimization: A Brief History

- The field is about 50 years old.
- Starts with the work of Von Neumann, Kuhn and Tucker, etc.
- Explodes in the 60's with the advent of "relatively" cheap and efficient computers...
- Key to all this: fast linear algebra
- Some of the theory developed before computers even existed...

Convex Optimization: History

- Convexity ⇒ Low complexity:
- "... In fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

T. Rockafellar.

- True: Nemirovskii and Yudin [1979].
- Very true: Karmarkar [1984].
- Seriously true: Convex programming, Nesterov and Nemirovskii [1994].

Standard Convex Complexity Analysis

- All convex minimization problems with a first order oracle (returning f(x) and a sub-gradient) can be solved in polynomial time in size and number of precision digits.
- Proved using the **ellipsoid method** by Nemirovskii and Yudin [1979].
- Very slow convergence in practice.

Convex Set

• A line segment defined by vectors x and y is the set of points of the form

• A set $C \subset \mathbb{R}^n$ is **convex** when, with any two vectors x and y that belong to the set C, the line segment connecting x and y also belongs to C.

Examples

- Which of the following sets are convex?
 - The space \mathbb{R}^n
 - A line through two given vectors x and y

$$l(x, y) = \{z \mid z = x + t(y - x), t \in \mathbb{R}\}\$$

• A ray defined by a vector x

$$\{z \mid z = \lambda x, \lambda \ge 0\}$$

- The positive orthant $\{x \in \mathbb{R}^n | x \succeq 0\}$, $(\succeq \text{componentwise inequality})$
- The set $\{x \in \mathbb{R}^2 \mid x_1 > 0, x_2 \ge 0\}$
- The set $\{x \in \mathbb{R}^2 \mid x_1 x_2 = 0\}$

Convex Combination and Convex Hull

• Convex Combination of $x_1, ..., x_k$: any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \dots + \theta_k = 1$$
, $\theta_i \ge 0$

• Convex hull CoS: set of all convex combinations of points in S

Convex Hull

Convex hull of the set 4-point set in \mathbb{R}^2 (red triangle)

Exercise

Let $C \subseteq \mathbf{R}^n$ be a convex set, with $x_1, \ldots, x_k \in C$, and let $\theta_1, \ldots, \theta_k \in \mathbf{R}$ satisfy $\theta_i \geq 0$, $\theta_1 + \cdots + \theta_k = 1$. Show that $\theta_1 x_1 + \cdots + \theta_k x_k \in C$. (The definition of convexity is that this holds for k = 2; you must show it for arbitrary k.) *Hint.* Use induction on k.

Solution. This is readily shown by induction from the definition of convex set. We illustrate the idea for k = 3, leaving the general case to the reader. Suppose that $x_1, x_2, x_3 \in C$, and $\theta_1 + \theta_2 + \theta_3 = 1$ with $\theta_1, \theta_2, \theta_3 \geq 0$. We will show that $y = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \in C$. At least one of the θ_i is not equal to one; without loss of generality we can assume that $\theta_1 \neq 1$. Then we can write

$$y = \theta_1 x_1 + (1 - \theta_1)(\mu_2 x_2 + \mu_3 x_3)$$

where $\mu_2 = \theta_2/(1 - \theta_1)$ and $\mu_2 = \theta_3/(1 - \theta_1)$. Note that $\mu_2, \mu_3 \ge 0$ and

$$\mu_1 + \mu_2 = \frac{\theta_2 + \theta_3}{1 - \theta_1} = \frac{1 - \theta_1}{1 - \theta_1} = 1.$$

Since C is convex and $x_2, x_3 \in C$, we conclude that $\mu_2 x_2 + \mu_3 x_3 \in C$. Since this point and x_1 are in $C, y \in C$.

Convex cone

- A set C is called a cone if $x \in C \implies \theta x \in C, \forall \theta \ge 0$.
- A set C is a convex cone if it is convex and a cone, i.e.,

$$x_1, x_2 \in C \Longrightarrow \theta_1 x_1 + \theta_2 x_2 \in C, \qquad \forall \theta_1, \theta_2 \ge 0$$

- The point $\sum_{i=1}^k \theta_i x_i$, where $\theta_i \ge 0, \forall i = 1, ..., k$, is called a **conic** combination of $x_1, ..., x_k$.
- The **conic hull** of a set C is the set of all conic combinations of points in C.

Conic Hull: Examples

Examples of conic hull

Cone

• A cone (the union of two rays) that is not a convex cone.

Convex Cone

• Convex cone generated by the conic combination of three black vectors.

Pointed polyhedral cone.

Convex Cone

• Convex cone that is not a conic combination of finitely many generators.

Circular pyramid, example of a cone that is not finitely generated.

Affine Set

• line through x_1, x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \quad (\theta \in \mathbb{R})$$

$$\theta = 1.2 \quad x_1$$

$$\theta = 0.6$$

$$\theta = 0.2$$

- affine set: contains the line through any two distinct points in the set.
- example: solution set of linear equations $\{x \mid Ax = b\}$

Hyperplanes and Half-spaces

• Hyperplane is a set of the form $\{x \mid a'x = b\}$

- Half-space is a set of the form $\{x \mid a'x \le b\}$ with a nonzero vector a. The vector a is referred to as the normal vector.
 - A hyperplane in \mathbb{R}^n divides the space into two half-spaces

$$\{x \mid a'x \leq b\}$$
 and $\{x \mid a'x \geq b\}$

- Half-spaces are convex
- Hyperplanes are convex and affine

Polyhedral Sets

• A polyhedral set is given by finitely many linear inequalities

$$C = \{x \mid Ax \leq b\}$$
 where A is an $m \times n$ matrix

- Every polyhedral set is convex
- Linear Problem

minimize c'x

subject to $Bx \le b, Dx = d$

The constraint set $\{x \mid Bx \leq b, \ Dx = d\}$ is polyhedral

Exercise

Which of the following sets are convex?

- 1. A slab, i.e., a set of the form $\{x \in \mathbf{R}^n \mid \alpha \leq a^T x \leq \beta\}$.
- 2. A rectangle, i.e., a set of the form $\{x \in \mathbf{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, ..., n\}$. A rectangle is sometimes called a hyperrectangle when n > 2.
- 3. A wedge, i.e., $\{x \in \mathbf{R}^n \mid a_1^T x \le b_1, \ a_2^T x \le b_2\}.$

Solution.

- 1. A slab is an intersection of two halfspaces, hence it is a convex set (and a polyhedron).
- 2. As in part (a), a rectangle is a convex set and a polyhedron because it is a finite intersection of halfspaces.
- 3. A wedge is an intersection of two halfspaces, so it is convex set. It is also a polyhedron. It is a cone if $b_1 = 0$ and $b_2 = 0$.

Semidefinite Matrices

• Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the scalar value $x^T A x$ is called a quadratic form. Written explicitly, we see that

$$x^{T}Ax = \sum_{i=1}^{n} x_{i}(Ax)_{i} = \sum_{i=1}^{n} x_{i} \left(\sum_{j=1}^{n} A_{ij}x_{j}\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} A_{ij}x_{i}x_{j}$$

- A symmetric matrix $A \in \mathbb{S}^n$ is **positive definite** (PD) if for all non-zero vectors $x \in \mathbb{R}^n$, $x^T A x > 0$. This is usually denoted $A \succ 0$ (or just A > 0), and often times the set of all positive definite matrices is denoted \mathbb{S}^n_{++} .
- A symmetric matrix $A \in \mathbb{S}^n$ is **positive semidefinite** (PSD) if for all vectors $x^T A x \ge 0$. This is written $A \succeq 0$ (or just $A \ge 0$), and the set of all positive semidefinite matrices is often denoted \mathbb{S}^n_+ .
- Likewise, a symmetric matrix $A \in \mathbb{S}^n$ is **negative definite** (ND), denoted $A \prec 0$ (or just A < 0) if for all non-zero $x \in \mathbb{R}^n$, $x^T A x < 0$.
- Similarly, a symmetric matrix $A \in \mathbb{S}^n$ is **negative semidefinite** (NSD), denoted $A \leq 0$ (or just $A \leq 0$) if for all $x \in \mathbb{R}^n$, $x^T A x \leq 0$.
- Finally, a symmetric matrix $A \in \mathbb{S}^n$ is *indefinite*, if it is neither positive semidefinite nor negative semidefinite i.e., if there exists $x_1, x_2 \in \mathbb{R}^n$ such that $x_1^T A x_1 > 0$ and $x_2^T A x_2 < 0$.

Ellipsoids

- Let A be a square $(n \times n)$ matrix.
 - A is positive semidefinite when $x'Ax \ge 0$ for all $x \in \mathbb{R}^n$
 - A is positive definite when x'Ax > 0 for all $x \in \mathbb{R}^n$, $x \neq 0$
- An ellipsoid is a set of the form

$$\varepsilon = \{x \mid (x - x_0)' P^{-1} (x - x_0) \le 1\}$$

Where *P* is symmetric and positive definite

- x_0 is the center of the ellipsoid ε
- A ball $\{x \mid ||x x_0|| \le r\}$ is a special case of the ellipsoid $(P = r^2 I)$
- Ellipsoids are convex

Euclidean Balls and Ellipsoids

- Euclidean ball in \mathbb{R}^n with center x_c and radius r:
- ellipsoid in \mathbb{R}^n with center x_c :

$$\varepsilon = \{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \}$$

Where $P \in S_{++}^n$ (i.e., symmetric and positive definite)

- The lengths of the semi-axes of ε are given by $\sqrt{\lambda_i}$, where λ_i are the eigenvalues of P.
- An alternative representation of an ellipsoid: with $A = P^{1/2}$

$$\varepsilon = \{x_c + Au \mid ||u||_2 \le 1\}$$

• Euclidean balls and ellipsoids are convex.

Norms

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is called a **norm**, denoted ||x||, if
 - non-negative: $f(x) \ge 0$, for all $x \in \mathbb{R}^n$
 - definite: f(x) = 0 only if x = 0
 - homogeneous: f(tx) = |t| f(x), for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$
 - satisfies the triangle inequality: $f(x + y) \le f(x) + f(y)$
- Notation: $\|\cdot\|$ denotes a general norm; $\|\cdot\|_{symb}$ denotes a specific norm
- Distance: dist(x, y) = ||x y|| between $x, y \in \mathbb{R}^n$

Examples of Norms

- $l_p norm \text{ on } \mathbb{R}^n$: $||x||_p = (|x_1| + \dots + |x_n|^p)^{1/p}$
 - $l_1 norm \text{ on } \mathbb{R}^n$: $||x||_1 = \sum_i |x_i|$
 - $l_{\infty} norm$ on \mathbb{R}^n : $||x||_{\infty} = \max_i |x_i|$
- Quadratic norms: For $P \in S_{++}^n$, define the P-quadratic norm as

$$||x||_P = (x^T P x)^{1/2} = ||P^{\frac{1}{2}}x||_2$$

Norm Balls and Norm Cones

- norm ball with center x_c and radius $r: \{x \mid ||x x_c|| \le r\}$
- norm cone: $C = \{(x, t) \mid ||x|| \le t\} \subseteq \mathbb{R}^{n+1}$
 - The second-order cone is the norm cone for the Euclidean norm
- Norm balls and cones are convex

Norm Balls and Norm Cones

- norm: a function || || that satisfies
 - $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
 - ||tx|| = |t|||x|| for $t \in \mathbb{R}$
 - $||x + y|| \le ||x|| + ||y||$
- notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm
- **norm ball** with center x_c and radius $r: \{x \mid ||x x_c|| \le r\}$
- **norm cone**: $\{(x, t) | ||x|| \le t\}$
- Euclidean norm cone is called secondorder cone
- Norm balls and cones are convex

Positive Semidefinite Cone

• Notation:

- S^n : the set of symmetric $n \times n$ matrices
- $S_{+}^{n} = \{X \in S^{n} \mid X \succeq 0\}$: symmetric positive semidefinite matrices
- $S_{++}^n = \{X \in S^n \mid X > 0\}$ symmetric positive definite matrices
- S_{+}^{n} is a convex cone, called positive semi-definite cone. S_{++}^{n} comprise the cone interior; all singular positive semi-definite matrices reside on the cone boundary.

Positive Semi-definite Cone: Example

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in S_+^2 \iff x \ge 0, z \ge 0, xz \ge y^2$$

Positive Semi-definite cone: S_+^2

Practical Methods for Establishing Convexity of a Set

- Establish the convexity of a given set X
 - The set is one of the "recognizable" (simple) convex sets such as polyhedral, simplex, norm cone, etc.
 - Prove the convexity by directly applying the definition for every $x, y \in X$ and $\alpha \in (0,1)$, show that $\alpha x + (1-\alpha)y$ is also in X.
 - Show that the set is obtained from one of the simple convex sets through an operation that preserves convexity.

Operations Preserving Convexity

- Let $C \subseteq \mathbb{R}^n$, $C_1 \subseteq \mathbb{R}^n$, $C_2 \subseteq \mathbb{R}^n$, and $K \subseteq \mathbb{R}^m$ be convex sets. Then, the following sets are also convex:
 - The intersection $C_1 \cap C_2 = \{x \mid x \in C_1 \text{ and } x \in C_2\}$
 - The sum $C_1 + C_2$ of two convex sets
 - The translated set $C + \alpha$
 - The scaled set $tC = \{tx \mid x \in C\}$ for any $t \in \mathbb{R}$
 - The Cartesian product $C_1 \times C_2 = \{(x_1, x_2) \mid x_1 \in C_1, x_2 \in C_2\}$
 - The coordinate projection $\{x_1 \mid (x_1, x_2) \in C \text{ for some } x_2\}$
 - The image AC under a linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$:

$$AC = \{ y \in \mathbb{R}^m \mid y = Ax \text{ for some } x \in C \}$$

• The inverse image $A^{-1}K$ under a linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$:

$$A^{-1}K = \{x \in \mathbb{R}^n \mid Ax \in K\}$$

Exercise

Exercise 1 Show that the intersection S of any numbers of convex sets S_i is a convex set.

Solution: Let C_1, \dots, C_k be convex sets, and define $C := \cap C_k$. Assume $x, y \in C$ and $\lambda \in [0, 1]$. By definition of C we have $x, y \in C_i$, $i \in \{1, \dots, k\}$, and by convexity we have $\lambda x + (1-\lambda)y \in C_i$, $i \in \{1, \dots, k\}$. This means $\lambda x + (1-\lambda)y \in C$, so C is convex. (A similar argument holds for an infinite number of sets.)

This is not true for the union of convex sets. Let $C_1 := \{0\}$ and $C_2 := \{1\}$ as subsets of \mathbb{R} . Both sets are clearly convex, but the union of them is not convex.

Intersection: Example 1

• Show that the positive semi-definite cone S_+^n is convex.

Proof

 S_{+}^{n} can be expressed as

$$S_{+}^{n} = \bigcap_{z \neq 0} \{ X \in S^{n} \mid z^{T} X z \geq 0 \}.$$

Since the set

$$\{X \in S^n \mid z^T X z \ge 0\}$$

Is a half-space in S^n , it is convex. S^n_+ is the intersection of an infinite number of half-spaces, so it is convex.

Affine Function: Theorem

Suppose

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function (i.e., f(x) = Ax + b).

Then

- the image of a convex set under f is convex
- $S \subseteq \mathbb{R}^n$ is convex $\Longrightarrow f(S) = \{f(x) \mid x \in S\}$ is convex
- the inverse image of a convex set under f is convex

$$B \subseteq \mathbb{R}^m$$
 is convex $\Longrightarrow f^{-1}(B) = \{x \mid f(x) \in B\}$ is convex

Affine Function: Example 1

Show that the ellipsoid

$$\varepsilon = \{ x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1 \}$$

where $P \in S_{++}^n$ is convex.

Proof

Let

$$S = \{ u \in \mathbb{R}^n \mid ||u||_2 \le 1 \}$$

denote the unit ball in \mathbb{R}^n . Define an affine function

$$f(u) = P^{1/2}u + x_c$$

 ε is the image of S under f, so is convex.