	oad F is suspended from a fixed point by a steel wire. The variation with extension x
	F for the wire is shown in Fig. 5.1.
	4.0-
F/N	2.0
	1.0
	0 0.10 0.20 0.30 x/mm
(i)	Fig. 5.1 State two quantities, other than the gradient of the graph in Fig. 5.1, that are required in order to determine the Young modulus of steel.
	1
(ii)	[1] Describe how the quantities you listed in (i) may be measured.
	[2

	(iii)	A load of 3.0 N is applied to the wire the wire.	Fig. 5.1 to calculate the energy stored in	
			L FOI	
(c)	A c	opper wire has the same original dim steel is $2.2 \times 10^{11} \mathrm{N}\mathrm{m}^{-2}$ and for coppe	energy =	
	On Fig. 5.1, sketch the variation with x of F for the copper wire for extensions up to 0.25 mm. The copper wire is not extended beyond its limit of proportionality. [2]			