Generalized Model

Circular Data Analysis

Our previous work reveals that the heading direction $s_m,\ m=1,2$ is subject to the normal distribution, that is, $s_m \sim N(\mu,\sigma^2)$, where μ this the *mean direction* of s_m . The *mean resultant length* ρ is defined as

$$\rho = \mathbb{E}[\cos(s_m - \mu)]. \tag{1}$$

Assuming $\sigma \ll \pi$ ($\kappa > 1$), the *mean resultant length* is calculated to be

$$\rho = \int_{-\pi}^{\pi} \cos(s_m) \frac{\exp[-\frac{(s_m - \mu)^2}{2\sigma^2}]}{\sigma\sqrt{2\pi}} ds_m \approx \int_{-\infty}^{\infty} \cos(s_m) \frac{\exp[-\frac{(s_m - \mu)^2}{2\sigma^2}]}{\sigma\sqrt{2\pi}} ds_m = e^{-\frac{\sigma^2}{2}}.$$
 (2)

Definition of Circular Variance

If the *circular variance* $\hat{\sigma}^2$ is defined as

$$\hat{\sigma}^2 \equiv -2\ln\rho,\tag{3}$$

then $\hat{\sigma}^2$ is equivalent to σ^2 . We are using $\frac{1}{\hat{\sigma}^2}$ to represent the *concentration parameter* $\hat{\kappa}$.

However, Zhang et al. assume s_m can be represented by a von Mises distribution, that is, $s_m \sim \mathrm{M}(\widehat{s}_m, \widehat{\kappa})$. The maximum likelihood of $\widehat{\kappa}$ is the solution to

$$\rho = A(\hat{\kappa}),\tag{4}$$

where $A(x)\equiv I_1(x)/I_0(x)$. The solution is not easy to find for a large $\hat{\kappa}$ unless we are using the following approximation (see Fisher (1993) page 88 and Mardia & Jupp (2000) pages 85-86)

$$\hat{\kappa} = \begin{cases} 2\rho + \rho^3 + \frac{5\rho^5}{6}, & \rho < 0.53\\ -0.4 + 1.39\rho + \frac{0.43}{1-\rho}, & 0.53 \le \rho < 0.85\\ \frac{1}{3\rho - 4\rho^2 + \rho^3}, & \rho \ge 0.85. \end{cases}$$
(5)

Consider the Taylor expansion of $\hat{\kappa}$ centered at $\rho=1$ for a large $\hat{\kappa}$, then

$$\hat{\kappa}pprox rac{1}{3
ho-4
ho^2+
ho^3}pprox rac{1}{2(1-
ho)}=rac{1}{2(1-e^{-\sigma^2/2})}pprox rac{1}{\sigma^2}$$
 is fine for $ho o 1$. That is reason why we still get correct

answer while using the Gaussian noise. However, after introducing the output-dependent noise, the concentration parameter is much smaller so that we can no longer use the von Mises distribution to approximate a normal distribution. That is, we shall use Eq. (3) to calculate the variance for circular data.