korabbi kepletek:

$$\begin{split} p \text{ prim, } 1 < a, b < p, n \in \mathbb{Z}, g \text{ generator} \\ \log_g(a \cdot b) &= \log_g a + \log_g b \pmod{p-1} \\ \log_q(a^n) &= n \cdot \log_q a \pmod{p-1} \end{split}$$

Deffie-Hellman

$$\begin{bmatrix} A, & \text{publikus} \\ a \in \mathbb{Z}_{p-1} \\ p, g \\ \end{bmatrix} B, b \in \mathbb{Z}_{p-1}$$

A elkuldi g^a -t, B elkuldi g^b -t

Bkiszamolja: $(g^a \bmod p)^b \bmod p = g^{ab} \bmod p$
Akiszamolja: $\left(g^b \bmod p\right)^a \bmod p = g^{ba} \bmod p$

feladat

$$p = 11, g = 2, a = 3, b = 4$$

$A: 2^3 \mod 11 = 8,$	B: $2^4 \mod 11 = 5$,
$5^3 \bmod 11 = 4$	$8^3 \bmod 11 = 4$

todo megoldas

RSA

$$\begin{split} p,q \text{ primek}, n &= p \cdot q \\ e &\geq 2, \operatorname{lnko}(e,\varphi(n)) = 1 \\ \left(\varphi(n) &= p \cdot q \cdot \left(1 - \frac{1}{p}\right) \left(1 - \frac{1}{q}\right) = (p-1)(q-1)\right) \\ d &: e \cdot d \equiv 1 \mod \varphi(n) \\ (ax &\equiv b \mod n) \\ &\qquad \qquad \text{Titkos kulcs}: (p,q,d), \text{ publikus kulcs}: (n,e) \\ n \text{ uzenet}, 1 &\leq m < n, \operatorname{lnko}(m,n) = 1 \\ c &= m^e \mod n \quad m = c^d \mod n \quad \text{(c a cypher valami)} \end{split}$$

feladat

$$p = 11, q = 13, e = 7$$

b = ?, c = ? ha mod 4

$$n = p \cdot q = 11 \cdot 13 = 143$$

$$\varphi(n) = (11 - 1)(13 - 1) = 120$$

$$d:$$

$$e \cdot d \equiv 1 \mod \varphi(n)$$

$$7d \equiv 1 \mod 110$$

120	X	1	0
7	x	0	1
1	17	1	-17
0	7	-7	120

$$7d \equiv (1 - 7k)120 + (-17 + 120k)7$$

$$7d \equiv (-17 + 120k)7 \mod 120$$

$$7d \equiv -17 \cdot 7 \mod 120$$

$$d \equiv -17 \mod 120$$

$$d \equiv 103$$

c = ?

$$c = m^e \bmod n = 4^7 \bmod 143 = 4^4 \cdot 4^3 \bmod 143 = 256 \cdot 16 \cdot 4 \bmod 143 = 113 \cdot 64 \bmod 143 = 82$$

gyakorlas

$$205^{206^{207}} \mod 103 = ?$$
 $a^{\varphi(n)} \mod n$
 $\varphi(103) = 102 \Longrightarrow$
 $\Longrightarrow 205^{102} \mod 103 = 1$

 $205^{207} \, \mathrm{mod} \, 103 = 205^{102+102+1} \, \mathrm{mod} \, 103 = 205^{2 \cdot 102+1} \, \mathrm{mod} \, 103 = 205^{2 \cdot 202} \cdot 205 \, \mathrm{mod} \, 103 = 105 \, \mathrm{mod} \, 103 = 205^{2} \cdot 205 \, \mathrm{mod} \, 103 = 205^{2} \, 205 \, \mathrm{mod} \, 103 = 20$

$$a^k \bmod n = a^{k \bmod \varphi(n)} \bmod n$$
, ha $(a, n) = 1$

1

150 forint visszajaro, hanyfelekeppen kaphatjuk meg ha huszas es otvenes van csak

$$150 = 20x + 50y$$

50	x	1	0
20	X	0	1
10	2	1	-2
0	2	-2	5

$$10 = (1 - 2k)50 + (-2 + 5k)20$$
$$150 = (15 - 30k)50 + (-30 + 75k)20$$

13 szorosat felirva 4-es szamrendszerben 21-re vegzodik a szam

 $13x \equiv 2 \cdot 4^1 + 1 \cdot 4^1 \operatorname{mod} 4^1$ $13x \equiv 9 \operatorname{mod} 16$

16	X	1	0
13	x	0	1
3	1	1	-1
1	4	-4	5
0	3	13	-16

$$3 = (1+13k)16 + (-1-16k)13$$

$$9 = (3+13k)16 + (-3-16k)13$$

$$13x = (-3-16k)13 \mod 16$$

$$13x \equiv -3 \cdot 13 \mod 16$$

$$x \equiv -3 \mod 16$$

$$x \equiv 13 \mod 16$$

$$x \equiv 13$$

$$x \equiv 29$$