

$$V_{\text{CC}} = 12 \text{ V}; \quad R_1 = R_2 = 1 \text{ k}\Omega; \quad R_{\text{B}} = 22 \text{ k}\Omega; \quad V_{\text{BE,ON}} = 0.7 \text{ V}; \quad V_{\text{CE,SAT}} = 0.2 \text{ V}; \quad \beta = 100;$$

Бонус ($4\pi/6\pi$): Да се одреди максималната вредност на отпорникот R_1 за која транзисторот воопшто нема да се најде во подрачјето на заситување (при ниту една вредност на овој конкретен влезен сигнал)

$$V_{TEV} = \frac{R_z}{R_{AT}R_z} V_{CC} = 6V$$

THOFF

Vo = VTEV = 6 V 2

Kord

$$\frac{10\,\text{ms}}{5V} = \frac{t_1}{0.7V} = > t_1 = 1.4\,\text{ms}$$
 2

$$\frac{10 \text{ ms}}{5V} = \frac{62}{325V} = \frac{1}{325V} = \frac{1}{325V} = \frac{1}{2} = \frac{1}{$$

FOHYC: 30 T
$$\Rightarrow$$
 SAT, TPEGO TO NAP/SAT DO E HO 5V

$$5V = RB \cdot FBEOS + VBEON = > FBEOS = 195 \text{ MA}$$

$$Tc SAT = TBEOS \cdot P = 19, 5 \text{ mA} = \frac{Vcc - VcESAT}{R_1} - \frac{VCESAT}{R_2}$$

$$\Rightarrow R_1 = \frac{12V - 0.2V}{19.7 \text{ mA}} \approx 598 \text{ S2} \left(\frac{BCYUHOCT}{R_1} + \frac{CSBS}{SSBS}\right)$$

NAP/OFF 5) NAP/SAT

$$0 \pm = 0.7 V$$

$$0 \pm = 2.8 V$$

 $\theta_{I} = 2,8 \text{ V}$

ta (32 0= 2,8 V) = 8,8 ms

BOHYC :

P1 € 496 52

$$R_1 = 3.3 \text{ k}\Omega;$$

$$R_2 = 15 \text{ k}\Omega;$$

$$R_{\rm B1} = 47 \text{ k}\Omega;$$

$$R_{\rm C} = 1 \text{ k}\Omega;$$

$$\beta_{\rm N} = 100;$$

$$V_{\rm CC} = 10 \text{ V}$$

$$R_2 = 15 \text{ k}\Omega;$$
 $R_{\text{B1}} = 47 \text{ k}\Omega;$ $R_{\text{C}} = 1 \text{ k}\Omega;$ $V_{\text{BE,ON}} = 0.7 \text{ V};$ $V_{\text{CE,SAT}} = 0.2 \text{ V}$

Решение:

 $R_{\rm B1}$

$$I_{c} = \frac{V_{TEV} - V_{CESAT}}{R_{TEV}} = 2.16 \text{ mA}$$

$$I_{b} = I_{b} - I_{b} = \frac{V_{cc} - V_{BEON}}{R_{BA}} - \frac{V_{BEON}}{R_{B}^{2}}$$

$$I_{b} = I_{b} - I_{b} = \frac{V_{cc} - V_{BEON}}{R_{BA}} - \frac{V_{BEON}}{R_{B}^{2}}$$

$$I_{b} = I_{b} - I_{b} = \frac{V_{cc} - V_{BEON}}{R_{BA}} - \frac{V_{BEON}}{R_{B}^{2}}$$

$$I_B \geqslant \frac{I_C}{B} = 21,6 \text{ MA}$$

$$R_1 = 10 \text{ k}\Omega;$$
 $R_2 = 15 \text{ k}\Omega;$ $R_{B1} = 100 \text{ k}\Omega;$ $R_{B2} = 100 \text{ k}\Omega;$ $R_{C} = 1 \text{ k}\Omega;$ $R_{C} = 100 \text{ k}\Omega;$ $R_{D} = 100 \text{ k}\Omega;$ R_{D

Pewerne:

ApunenyBane TeBeHeHOBA TEOPENA CAMO HE KOJEKTOPCKOTO VOJO:

$$V_{B} = V_{BE} = V_{BEON}$$

$$V_{B} = V_{BB} \frac{R_{B2}}{R_{B1} + R_{B2}}$$

$$V_{BEON} = 1,4 V$$

$$V_{BBNIN}$$

$$VBB = VBEON + RB1 \cdot \left(\frac{VBEON}{RB2} + IB\right) = 2,4 \text{ V}$$
 (VBBMAX) (15 n)

3. За колото прикажано на сликата да се одреди напонот V_O .

$$V_{DD} = 12 \text{ V};$$
 $R_{G1} = R_{G2} = 100 \text{ k}\Omega;$ $R_D = 470 \Omega;$

Q1:
$$k_n \cdot W/L = 1 \text{ mA/V}^2$$
 $|V_{TH}| = 1 \text{ V}$

Q1:
$$k_n \cdot W/L = 1 \text{ mA/V}^2$$
 $|V_{TH}| = 1 \text{ V}$
Q2: $V_{BE,ON} = 0.7 \text{ V};$ $V_{CE,SAT} = 0.2 \text{ V};$ $\beta = 100;$

Решение:

Претпоставка: Q1 \rightarrow PKS, Q2 \rightarrow NAP

$$I_B = \frac{V_{DD} - V_{BE,ON}}{R_{G1} + R_{G2}} = 57 \text{ } \mu\text{A} \qquad \Rightarrow \qquad I_C = \beta \cdot I_B = 5,7 \text{ } m\text{A}$$

$$I_D = I_C \qquad \Rightarrow \qquad V_O = V_{DD} - R_D \cdot I_D = 9,3 \text{ } V \qquad \text{10 } \Pi.$$

Ова е решението на задачата, но за да важи треба да се проверат направените претпоставки:

$$I_D = k_n \frac{W}{L} (V_{GS} - V_{TH})^2$$
 \Rightarrow $V_{GS} = \sqrt{\frac{I_D L}{k_n W}} + V_{TH} = 3,4 \text{ V}$ 5 n.

$$V_G = V_{DD} - R_{G1} \cdot I_B = 6,3 \text{ V}$$

$$V_C = V_S = V_G - V_{GS} = 2,9 \text{ V}$$
 4 II.

$$V_{CE} = V_C - V_E = 2.9 \text{ V}$$
 \Rightarrow $V_{CE} > V_{CESAT}$ T претп.

$$V_{DS} = V_O - V_S = 6,4 \text{ V}$$
 \Rightarrow $V_{DS} > V_{GS} - V_{TH}$ T претп.

1. На влезот на колото прикажано на сликата а), е донесен сигналот $v_l(t)$ чија временска форма е прикажана на сликата б). Да се скицира временската форма на излезниот сигнал $v_O(t)$.

$$V_{\rm CC} = 5 \text{V}$$
; $R_{\rm C} = 4.7 \text{ k}\Omega$; $R_{\rm B} = 100 \text{ k}\Omega$; $R_{\rm E} = 100 \Omega$; $V_{\rm BE,ON} = 0.7 \text{ V}$; $V_{\rm CE,SAT} = 0.2 \text{ V}$; $\beta = 50$;

Pewenne .

Aro
$$T \rightarrow OFF$$
; $I_B = I_C = I_E = 0$ \Rightarrow $V_O = \emptyset$

AND
$$T \rightarrow SAT$$
 $VI = SV$) $Vcc = Rc \cdot Ic + VcesAT + ReIe$
 $VI = Re \cdot Ie + VeeoN + ReIe$ =) $IE = 1.04 \text{ m A}$
 $Vo = Re \cdot Ie = 104 \text{ m V}$

2. Да се одреди потребната вредност на отпорникот R_1 за излезниот напон да изнесува $V_{\rm O}$ = 6V. Направените претпоставки за подрачјата на работа да се докажуваат.

Познато е:

$$V_{DD} = 10 \text{ V}$$
$$k_{n} = 1 \text{ mA/V}^{2}$$

$$|V_{\rm T}| = 1 \text{ V}$$

$$W = 40 \text{ } \mu\text{m}$$

$$k_{\rm n} = 1 \text{ mA/V}^2$$
$$L_1 = 10 \text{ } \mu\text{m}$$

$$L_2 = 20 \mu m$$

$$T_{D2} = \frac{V_{OD} - V_{O}}{R_{D}} = 4_{MA}$$

=)
$$V_{GS2} = 3V > V_{TH}$$
 $V_{GS2} = 3V$

$$V_{EA} = V_{DD} - V_{GSA} = 7V$$

$$I_{R1} = I_{D1} = 8uA$$
 $V_{R1} = V_{DD} - V_{GS1} = 7V$
 $R_{1} = \frac{V_{R1}}{I_{R1}} = 875$ 52

3. На влезот на колото прикажано на сликата е донесен сигналот $v_i(t)$ чија вредност се движи во опсег 1V - 10V. Да се калибрира колото (отпорниците R_1 и R_3) така што транзисторот ќе се наоѓа во подрачјето NAP за сите вредности на влезниот напон.

$$V_{\text{CC}} = 12 \text{ V}; \quad R_2 = 10 \text{ k}\Omega; \quad V_{\text{BE,ON}} = 0.7 \text{ V}; \quad V_{\text{CE,SAT}} = 0.2 \text{ V}; \quad \beta = 50;$$

Бонус (5п): Ако $R_1 = 1$ k Ω а $R_2 = 10$ М Ω , да се калибрира R_3 така што промена на влезниот напон за одредена вредност ќе предизвика исто толкава промена (по апсолутна вредност) на излезниот

Pewe Aue:
$$= 15_{\text{ADRHM}} + 5_{\text{BOHYC NORM}} = 20_{\text{NORMM}}$$

32 T→NAP 30 CUTE BIESA4 HOROHY 1-10V, TREBO RE CE OBESBEROT CLEDITUTE FRAHUGU NOMERY RORPAGIOTE:

The Huge NAP/OFF 32
$$U_{I} \leq 1V$$
 $V_{RE} = V_{REON}$
 $V_{I} = I_{RA}R_{A} + I_{R2}R_{2} \leq 1V$
 $V_{I} = I_{RA}R_{A} + I_{R2}R_{2} \leq 1V$
 $V_{I} = I_{RA}R_{A} + I_{R2}R_{2} \leq 1V$

DOHYC:
$$R_A = 1KR$$
 $R_2 = 10MR$ $T \rightarrow NAP (MOPS!)$
 $R_2 >>> R_A =)$ is 3themapyBame $IR2 =)$ $IR_A = IB$
 $V_{\dot{I}} = R_A \cdot I_B + V_{BEON} =)$ $IB = \frac{V_{II} - V_{BEON}}{R_A}$
 $V_0 = V_{CC} - R_2 I_C = V_{CC} - R_3 \cdot R_3 \cdot I_B = V_{CC} - \frac{R_3 \cdot R}{R_A} (V_{II} - V_{BEON})$
 $V_0 = comst - \frac{R_3 \cdot R}{R_A} V_{II}$
 $V_0 = comst - \frac{R_3 \cdot R}{R_A} V_{II} = \frac{R_3 \cdot R}{R_A} = 1$
 $V_0 = \frac{R_3 \cdot R}{R_A} = \frac{R_3 \cdot R}{R_A} = 1$
 $V_0 = \frac{R_3 \cdot R}{R_A} = \frac{R_3 \cdot R}{R_A} = 1$
 $V_0 = \frac{R_3 \cdot R}{R_A} = \frac{R_3 \cdot R}{R_A} = 1$