Performance of high resolution (400 m) $PM_{2.5}$ forecast over Delhi

Chinmay Jena^{1*}, Sachin D. Ghude^{1*}, Rajesh Kumar², Sreyashi Debnath^{1,3}, Gaurav Govardhan^{1,7}, Vijay K. Soni⁴, Santosh H. Kulkarni⁵, G. Beig¹, Ravi S. Nanjundiah^{1,6}, M. Rajeevan⁸

¹Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India

²National Center for Atmospheric Research, Boulder, CO, 80301, USA

³Dept. of Atmospheric and Space sciences, Savitribai Phule Pune University, Pune, India

⁴India Meteorological Department, New Delhi, Ministry of Earth Sciences, India

⁵Centre for Development of Advanced Computing, Pune 411 008, India

⁶Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, India

⁷National Center for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, UP, India

⁸Ministry of Earth Sciences, Prithvi Bhavan, Lodhi Road, New Delhi 110003, India

^{*}email: chinmayjena@tropmet.res.in and sachinghude@tropmet.res.in

Figure S1: Architecture of the very-high resolution air quality early warning system.

Figure S2: Map of model simulation domain (D1: 10 km horizontal grid spacing, D2: 2 km horizontal grid spacing and D3: 400 meter horizontal grid spacing). We have used ncl/6.6.2 software to create the images (https://www.ncl.ucar.edu/).

Figure S3: Geographical locations of 37 air quality monitoring stations (stations names associated with the numbers are provided in Table ST2)

Figure S4: Spatial distribution of High-resolution Delhi Emission Inventory (HrDEI) of $PM_{2.5}$ anthropogenic emissions (unit: $10^{10} \text{ kg/m}^2/\text{s}$) at 400 m horizontal resolution. We have used ncl/6.6.2 software to create the image (https://www.ncl.ucar.edu/).

Figure S5: Sensitivity simulations for different emission inventory over Delhi.

Figure S6: Time-series of daily surface-level $PM_{2.5}$ concentrations from a) observations (black line) (average of 37 stations across Delhi) b) model simulations with EDGAR emissions inventory and with 10 km x 10 km grid-spacing (green line) c) model simulations with High-resolution Delhi Emission Inventory (HrDEI) and with 10 km x 10 km grid-spacing (blue line) and d) model simulations with HrDEI emissions' inventory and with 400 m x 400 m grid-spacing (red line) of 1^{st} day forecast.

Figure S7: Spatial distribution of average $PM_{2.5}$ of 1^{st} day forecast for 400 meter grid spacing during 21 October 2019 to 01 February 2020 at 10 km grid spacing (left) and 2 Km Horizontal grid spacing (right). We have used ncl/6.6.2 software to create the images (https://www.ncl.ucar.edu/).

Figure S8: Correlation between hourly mean observed and predicted $PM_{2.5}$ in Delhi.

Table ST1: Selected atmospheric physical and chemical parameterizations

Atmospheric Process	Parameterization
Cloud Microphysics	WRF Single-Moment 6-class scheme (WSM6) ¹
Short- and Long-wave radiation	Rapid Radiative Transfer Model for GCMs ²
Surface Layer	Monin-Obukhov (Janjic Eta)Scheme ^{3,4}
Land Surface model	Unified Noah Land-surface model ⁵
Planetary Boundary Layer	MYNN2.5 ⁶
Cumulus	Grell-Freitas ensemble scheme ⁷
Gas-phase Chemistry	Model for Ozone and Related Tracers ⁸
Aerosol Processes	Goddard Global Ozone Chemistry Aerosol Radiation and
	Transport (GOCART) ⁹

Table ST2: Performance statistics for mean PM2.5 forecast for different emission inventory and different grid spacing of 1st day forecast over Delhi.

State Variables	Emission	MB	NMFB (%)	NMFE (%)	r
DM bounds	Variables EDGAR@10km	62.1	-42.6	51.1	0.5
PM ₂₅ _hourly		-63.1			
	HrDEI@10km	-0.3	-0.2	33.1	0.6
	HrDEI@400m	2.5	1.3	36.3	0.5
PM ₂₅ _daily	EDGAR@10km	-64.9	-43.8	47.8	0.5
	HrDEI@10km	-1.0	-0.5	23.2	0.7
	HrDEI@400m	1.8	1.0	25.6	0.6

Table ST3: Performance statistics for simulated $PM_{2.5}$ at different monitoring sites in Delhi during 21 October 2019 to 01 February 2020 at 400 m horizontal grid-spacing.

State	Station name	Latitude	Longitude	MB	NMB (%)	RMSE	R
	CRRI Mathura Road (103)	28.5512005	77.2735737	158.7	87.6	249.9	0.4
	Burari Crossing (104)	28.7256504	77.2011573	-60.2	-31.0	149.5	0.3
	North Campus DU (105)	28.6573814	77.1585447	68.4	40.8	181.6	0.3
	IGI-Airport-T3 (106)	28.5627763	77.1180053	-12.6	-8.1	106.0	0.4
	Pusa IMD (107)	28.639645	77.146262	115.2	83.4	208.1	0.3
	DTU (118)	28.7500499	77.1112615	-95.6	- 45.6	161.2	0.3
Delhi	R K Puram (124)	28.674045	77.131023	59.4	37.2	154.0	0.4
	Shadipur (113)	28.6514781	77.1473105	104.4	65.5	177.0	0.6
	NSIT Dwarka (115)	28.60909	77.0325413	-36.1	- 20.7	92.4	0.5
	Mandir Marg (122)	28.636429	77.201067	52.2	29.1	174.3	0.2
	Punjabi Bagh (125)	28.563262	77.186937	-0.5	- 0.2	122.1	0.5
	Sirifort (119)	28.5504249	77.2159377	-12.4	- 6.3	120.4	0.4
	Lodhi Road (109)	28.5918245	77.2273074	34.4	23.3	127.8	0.3
	ITO (117)	28.6316945	77.2494387	20.0	10.7	144.4	0.3
	Anand Vihar (301)	28.646835	77.316032	-52.3	- 25.0	145.2	0.5
	Sector – 62 (111)	28.6245479	77.3577104	-33.5	-17.3	133.8	0.3
	IHBAS-Dilshad-Garden (114)	28.6811736	77.3025234	13.3	8.5	118.5	0.4
	Aya Nagar (108)	28.4706914	77.1099364	-23.8	-15.7	110.8	0.4
	Vasundhara (144)	28.6603346	77.3572563	-31.5	- 14.0	140.5	0.4
	Sector 125 (153)	28.5447608	77.3231257	-14.9	- 7.5	140.9	0.3
	Ashok_Vihar (1420)	28.695381	77.181665	26.1	24.3	79.0	0.2
	DKSS_Stadium (1421)	28.498571	77.264840	-48.0	- 24.5	137.8	0.3
	Dwarka Sector8 (1422)	28.57	77.07				
	Jahangirpuri (1423)	28.732820	77.170633	-81.1	- 35.9	151.5	0.3
	Jawaharlal Nehru Stadium (1424)	28.580280	77.233829	3.0	1.5	116.8	0.5
	MDC National Stadium (1425)	28.611281	77.237738	32.7	19.2	140.0	0.3
	Najafgarh (1427)	28.570173	76.933762	46.1	85.3	59.3	0.1
	Narela (1426)	28.822836	77.101981	-49.4	- 38.8	66.8	0.1
	Nehru Nagar (1429)	28.567890	77.250515	-9.2	- 3.8	145.3	0.5
	Okhla Phase2 (1428)	28.530785	77.271255	17.4	14.7	77.6	0.2
	Patparganj (1431)	28.623748	77.287205	28.7	16.0	122.5	0.4
	Rohini (1430)	28.732528	77.119920	-88.6	- 39.1	163.0	0.4
	Sonia Vihar (1432)	28.710508	77.249485	-44.6	- 25.8	114.3	0.3
	Sri_Aurbindo_Marg (1562)	28.531346	77.190156	2.6	3.1	53.5	0.1
	Mundak (1561)	28.684678	77.076574	19.0	18.8	50.8	0.6
	New_collectorate (1569)	28.974801	77.213357	-83.3	- 46.4	142.2	0.4
	New_mandi (1550)	29.4723508	77.7194031	-65.0	- 44.9	109.6	0.4
	Bawana (1560)	28.776200	77.051074	-92.6	- 41.9	163.4	0.4

Table ST4: Model performance goals used to evaluate the model performance for $PM_{2.5}$ (Morris et al., 2005)

Fractional Bias	Fractional Error	Comment
≤± 15%	≤ 35%	A level of model performance that would be considered excellent
≤± 30%	≤ 50%	A level of model performance that would be considered good
≤ ± 60%	≤ 75%	A level of model performance that would be considered average and hope each PM species could meet for regulatory modeling
> ± 60%	> 75%	At or exceeding this level of performance indicates fundamental problems with the modeling system

Table ST5: AQI category and corresponding break-point concentrations ranges for $PM_{2.5}$ based on National Ambient Air Quality Standard (NAAQS).

AQI Category	AQI	PM _{2.5}
		Concentration range
Good	0 - 50	0 - 30
Satisfactory	51 - 100	31 - 60
Moderately	100 - 200	61 - 90
Poor	201 - 300	91 - 120
Very poor	301 - 400	121 - 250
Severe	401 +	250+

Table ST6: Performance statistics of different PM_{2.5} AQI forecast category

State	PM ₂₅ AQI	Variables		10km 2km		400 meter					
	Category		MB	NMFB	NMFE (%)	MB	NMFB	NMFE (%)	MB	NMFB	NMFE (%)
				(%)			(%)			(%)	
Delhi	Poor	1 st day	51.1	18.4	19.3	66.2	23.2	23.3	62.9	22.1	22.3
	(201-300)	2 nd day	30.4	11.4	20.8	56.1	20.0	22.6	53.6	19.2	22.2
		3 rd day	16.3	6.2	23.2	42.4	15.4	20.9	44.6	16.2	20.2
	Very Poor	1 st day	4.2	1.2	6.4	12.3	3.5	7.4	8.2	2.3	6.8
	(301-400)	2 nd day	-17.7	-5.3	9.1	0.2	0.1	6.7	-2.7	-0.8	6.9
		3 rd day	-27.5	-8.3	11.4	-13.7	-4.0	8.9	-13.4	-3.9	8.7
	Severe	1 st day	-47.1	-11.1	15.6	-55.5	-13.3	16.2	-58.0	-13.9	16.3
	(401-above)	2 nd day	-89.0	-22.1	22.2	-70.2	-17.1	17.5	-70.8	-17.2	17.8
		3 rd day	-	-26.7	26.7	-86.2	-21.4	21.8	-83.6	-20.7	20.9
			105.0								

Table ST7: A contingency table and equations used to calculate the different skill score for different category of AQI forecast.

		Observation			
ıst		YES	NO		
Forecast	YES	a	b		
<u>5</u>	NO	c	d		

Statistic name	What it measures	Equation	unit	How to interpret
Accuracy (A)	Percent of forecasts that correctly predicted the	A=(a+d)/(a+b+c+d) *100	%	Higher numbers are
	event or non-event.			better
False Alarm Rate (FAR)	The percent of times a forecast of high pollution	FAR = (b/(a+b)) *100	%	Smaller values are
	did not actually occur.			best
Probability of Detection	Ability to predict high pollution events (i.e., the	POD = (a/(a+c)) * 100	%	Higher numbers are
(POD) or Hit rate	percentage of forecasted high pollution events			best
	that actually occurred).			
Critical Success Index	How well the high-pollution events were	CSI = (a/(a+b+c)) * 100	%	Higher numbers are
(CSI), also called Threat	predicted. Useful for evaluating rarer events like			best
Score	high-pollution days. It is not affected by a large			
	number of correctly forecasted, low pollution			
	events.			

Reference:

- 1. Hong, S.-Y. and Lim, J.-O. J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). J. Kor. Meteorol. Soc. 42, 129-151.
- 2. Iacono M.J., J.S. Delamere, E.J. Mlawer, M.W. Shephard, S.A. Clough, and W. Collins, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiate transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944, 2008.
- 3. Janjic, Z. I., 1996: The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19–23 August; Amer. Meteor. Soc., Boston, MA, 354–355.
- 4. Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, No. 437, 61.
- 5. Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, M. A., Mitchell, K. E. (2004). Implementation and verification of the unified Noah land-surface model in the WRF model [presentation]. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. American Meteorological Society: Seattle, WA, US.
- 6. Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound. Layer Meteor., 119, 397–407.
- 7. Grell, G. A., & Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modelling, Atmospheric Chemistry and Physics, 14, 5233–5250. https://doi.org/10.5194/acp-14-5233-2014
- 8. Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, 2010.
- 9. Chin, M., Savoie, D. L., Huebert, B. J., Bandy, A. R., Thornton, D. C., Bates, T. S., Quinn, P. K., Saltzman, E. S., and De Bruyn, W. J.: Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets, J. Geophys. Res.-Atmos., 105, 24689–24712, https://doi.org/10.1029/2000JD900385, 2000.