

Introducción al uso de la Inteligencia Artificial Generativa

Octubre, 2024

Marcos Lupión Lorente

Índice

- 1. Herramientas
- 2. Tokenización
- 3. Embeddings
- 4. BERT
- 5. S-BERT
- 6. Clasificación
- 7. Búsqueda semántica y RAG
- 8. LLMs generativos
- 9. Modelos multimodales
- 10. Aplicaciones

Herramientas

Librerías y herramientas

Ciencia de Datos

- NumPy: Funciones matemáticas y gestión de datos multidimensionales.
- Pandas: Manipulación y análisis de datos.
- Matplotlib: Gráficos y visualizaciones.
- OpenCV: Visión por computadora. Herramientas y algoritmos para imágenes y videos.

Aprendizaje Automático

 Scikit-learn: Biblioteca para ML en Python. Proporciona una variedad de algoritmos de aprendizaje supervisado y no supervisado, junto con herramientas para el preprocesamiento de datos, selección de modelos y evaluación.

Aprendizaje Profundo

- TensorFlow: Construcción y entrenamiento de redes neuronales.
- PyTorch: Construcción y entrenamiento de redes neuronales.
- Keras: API de alto nivel que facilita la construcción y el entrenamiento de redes neuronales.
- Google Colaborate: Construcción y entrenamiento de modelos de ML en la nube. Plan gratuito. Recursos de GPU.
- Google AutoML: Construcción, entrenamiento y despliegue de modelos de ML en la nube. Ayuda a los usuarios a desarrollar modelos de alto rendimiento con los conjuntos de datos proporcionados.

TensorFlow

transformers

- Enlace:
 - https://huggingface.co/docs/transformers/index
- Pipeline: Usar para la inferencia
 - https://huggingface.co/docs/transformers/main_classes/pipelines
 - https://huggingface.co/docs/transformers/pipeline_tutorial
 - https://huggingface.co/docs/transformers/task_summary
 - Hay mútliples tareas predefinidas.
 - Parámetros de entrada/salida pre-definidos.
 - Se puede seleccionar un modelo (que hará una tarea específica):
 - https://huggingface.co/docs/transformers/model_summary

transformers

- Enlace:
 - https://huggingface.co/docs/transformers/index
- Pipeline: Usar para la inferencia
 - https://huggingface.co/docs/transformers/main_classes/pipelines
 - https://huggingface.co/docs/transformers/pipeline_tutorial
 - https://huggingface.co/docs/transformers/task_summary
 - Hay mútliples tareas predefinidas.
 - Parámetros de entrada/salida pre-definidos.
 - Se puede seleccionar un modelo (que hará una tarea específica):
 - https://huggingface.co/docs/transformers/model_summary

• ¡Manos a la obra!

- Acceder a Google Colaboratory
- Importar un Notebook

CursoGenAI_UAL_00_Transformers.ipynb

Probar diferentes modelos pre-entrenados

Task	Description	Modality	Pipeline identifier
Text classification	assign a label to a given sequence of text	NLP	pipeline(task="sentiment-analysis")
Text generation	generate text given a prompt	NLP	pipeline(task="text-generation")
Summarization	generate a summary of a sequence of text or document	NLP	pipeline(task="summarization")
Image classification	assign a label to an image	Computer vision	pipeline(task="image-classification")
Image segmentation	assign a label to each individual pixel of an image (supports semantic, panoptic, and instance segmentation)	Computer vision	pipeline(task="image-segmentation")
Object detection	predict the bounding boxes and classes of objects in an image	Computer vision	pipeline(task="object-detection")
Audio classification	assign a label to some audio data	Audio	pipeline(task="audio-classification")
Automatic speech recognition	transcribe speech into text	Audio	pipeline(task="automatic-speech-recognition")
Visual question answering	answer a question about the image, given an image and a question	Multimodal	pipeline(task="vqa")
Document question answering	answer a question about the document, given a document and a question	Multimodal	pipeline(task="document-question- answering")
Image captioning	generate a caption for a given image	Multimodal	pipeline(task="image-to-text")

transformers

- Auto class: Clases para cargar y hacer inferencia sobre los modelos
 - AutoModel
 - Carga modelos ya sean pre-entrenados o sin entrenar.
 - https://huggingface.co/models
 - AutoTokenizer
 - Carga el tokenizer adecuado para el modelo cargado anteriormente. Normalmente tienen el mismo nombre que los modelos.
 - AutoConfig
 - Cuando se carga un modelo, pero se quiere modificar su arquitectura.
- Si se quieren cargar modelos específicos para una tarea dada, estos sobre-escriben:
 - Clasificación: AutoModelForSequenceClassification

transformers

- Trainer: Clase para entrenar modelos sobre datasets.
 - Trainer:
 - Clase para realizar bucles de entrenamiento de un modelo sobre un dataset dado.
 - TrainingArguments:
 - Clase para configurar el bucle de entrenamiento.

- Para el caso de modelos de **secuencia a secuencia**, se tiene:
 - Seq2SeqTrainingArguments y Seq2SeqTrainer

datasets

- https://huggingface.co/docs/datasets/index
- Cargar un dataset del "hub". Hay muchos datasets.
 - https://huggingface.co/datasets
- También se pueden cargar datasets de archivos propios.
 - https://huggingface.co/docs/datasets/loading
 - CSV, JSON, txt, ...
- **Data collators**: Procesar el dataset, generar los batches de entrada, generar mascaras, etc.

Tokenización

Tokenización Concepto

- Los modelos de aprendizaje automático están basados en números.
 - Modelos de machine learning tradicionales tienen como entradas atributos numéricos.
 - Los atributos de texto se transforman en números (one-hot y label encoding).
 - Redes neuronales **convolucionales (imágenes)** codifican las imágenes en valores entre **0-1** (o 0-255).
- ¿Cómo se codifica el texto para que lo entienda el modelo?

Tokenización Mochila de palabras (Bag of words) (I)

- Primer enfoque para codificar texto en valores numéricos.
- El tamaño total del vocabulario es igual al número máximo de palabras, caracteres a representar, números que se deseen incorporar.
- Cada elemento en el vocabulario es un token.
 - "Hola" podría ser el token con identificador "1"
 - "!" Podría ser el token con identificador "2"

Tokenización Mochila de palabras (Bag of words) (II)

 Cada frase se puede representar como el número de veces que cada token está presente.

- Inconvenientes
 - Los tokens no codifican la relación entre las palabras.
 - "Hola" tiene el token "1", "saludos" tiene el token con identificador "2000" a pesar de ser muy similares en significado.
 - No se tiene en cuenta el **orden** de las palabras.

Tokenización Definiendo qué es un token

- En los métodos actuales, los **tokens codifican el vocabulario** que el modelo de lenguaje va a entender.
- Lo que no se pueda "escribir" con un token, no se podrá procesar ni generar.
- ¿Cómo definimos qué es un token?
 - 1 palabra 1 token
 - Palabras muy similares tokens diferentes
 - Reentrenamiento cuando aparezcan palabras nuevas
 - 1 sílaba 1 token
 - Permite combinar sílabas y formar palabras.
 - Permite reusar prefijos y sufijos.
 - El más usado.
 - 1 carácter 1 token.
 - Mucha flexibilidad pero complicado generar palabras completas correctamente.

Tokenización Seleccionar un tokenizer

- Comprobar el tamaño del vocabulario.
- Qué tokens hay disponibles. ¿Necesito tokens especiales?
 - Si mi texto tiene emojis, el tokenizer debe poder codificarlos.
- ¿Soporta mayúsculas?
 - Para aplicaciones de búsqueda de nombres, el hecho de incorporar mayúsculas facilita la tarea.
- ¿En qué dataset se ha entrenado?
 - Un tokenizer de un lenguaje de programación será diferente a uno de literatura china.

Tokenización Tokenizers populares

	WordPiece	Byte Pair Encoding (BPE)
Tamaño del vocabulario	32.522	50.257 - >100.000
Caracteres especiales	<unk>,<sep>,<pad></pad></sep></unk>	<unk>< endoftext ></unk>
Modelos que lo usan	BERT	GPT, GPT-4

['Machine', 'Ġlearning', 'Ġis', 'Ġfun']

Tokenización [Implementación] - Librerías

- Librería "tokenizers" de "Hugging Face"
 - https://huggingface.co/docs/tokenizers/index
 - Permite crear tokenizers desde 0 a partir de uno o varios archivos.
 - Permite usar tokenizers pre-entrenados.
- Librería "transformers" de la comunidad "Hugging Face".
 - Permite usar tokenizers pre-entrenados en diferentes datasets.
 - https://huggingface.co/docs/transformers/tokenizer_summary
 - AutoTokenizer
 - XLNetTokenizer
 - BertTokenizer
 - Permite importar los tokenizers definidos en "tokenizers"
- https://huggingface.co/transformers/v3.0.2/quicktour.html

tokenizers

- https://huggingface.co/docs/transformers/tokenizer_summary
- Incorpora funciones para cargar tokenizers pre-entrenados
 - AutoTokenizers
- Incorpora tokenizers **sin pre-entrenar** para realizar un entrenamiento propio.
 - Permite guardar tokenizers propios.

Ejercicio 0

Vamos a probar los tokenizers.

Archivo: CursoGenAl_UAL_01_tokenizer.ipynb

Probar diferentes modelos pre-entrenados

- Visualización del tokenizer de OpenAI
 - https://platform.openai.com/tokenizer

Ejercicio 1

- Entrenar un tokenizer propio sobre unos datos almacenados en memoria.
 - https://huggingface.co/docs/tokenizers/pipeline
- Guardarlo en formato .json
- Incorporar el archivo "CursoGenAI_UAL_01_testFile.py"
- **Ejercicio 1**: Re-entrenar el tokenizer con un nuevo archivo más apropiado (buscar), ajustando los parámetros del tokenizer. Ver el resultado tras ejecutarlo sobre "CursoGenAI UAL 01 testFile.py".
- Ejercicio 2: Descargar quijote.txt y ejecutar el tokenizer.
- **Ejercicio 3**: Ejecutar un tokenizer pre-entrenado (AutoTokenizer de transformers).

S Embeddings

Embeddings Conceptos generales (I)

- ¿Cómo entiende un modelo la relación entre dos tokens similares?
- Un token es un valor **unidimensional**.
 - El token "perro" puede ser el "128" y "dog" el "22.980". Cuando realmente son la misma palabra, solamente que cambiando el idioma.
- Ignoran la naturaleza **semántica** y el **significado** del texto.
- Para que los tokens sean más **característicos** del **significado** de la palabra o sílaba subyacente, se incorporan los **embeddings**.

Embeddings Conceptos generales (II)

- Los embeddings son **vectores multidimensionales** que permiten capturar el **significado** de las palabras.
- Palabras similares tienen tokens similares.

Embeddings Entrenamiento – Word2Vec (I)

- Los embeddings son vectores que necesitan "entrenarse" para que codifiquen los mejor posible las palabras que representan.
- Se entiende que **palabras muy relacionadas** (en significado) suelen estar "**cerca**" entre sí.
- ¿Cómo se entrenan?
 - Usando redes neuronales...
 - Y "Contrastive learning".
- Se cogen pares de palabras relacionadas y no relacionadas entre sí.
- La red neuronal predice si ambas palabras están relacionadas o no.

Embeddings Entrenamiento – Word2Vec (II)

- Yo voy a ser ingeniero informático por la Universidad de Almería.
 - Ejemplos de entrenamiento:

Palabra 1	Palabra 2	Clase
Yo	voy	1
voy	а	1
yo	por	0

Palabra 1	Palabra 2	Clase
Universidad	almería	1
Universidad	de	1
Almería	informático	0

• La Universidad de Almería está creciendo mucho.

Ejercicio 2a

• Ejercicio: Estudiar el embedding de Word2Vec

 Ejecutar el archivo: CursoGenAl_UAL_02_embeddingsWord2Vec.ipynb

- Obtener las películas más relacionadas con una película dada.
- Examinar los embeddings generados.
- Entrenar un modelo sobre un dataset propio.

Embeddings Problemas de Word2Vec

- Por ejemplo, si tenemos estas frases:
 - Fui a sacar dinero al banco.
 - El banco de peces desapareció al instante.
- <u>Banco</u> es una palabra cuyo embedding es el mismo (estático) en ambos casos.
- ¿Significa realmente siempre lo mismo? Depende del contexto.
 - Si tengo que generar frases de un **banco de peces**, pues la siguiente palabra va a ser muy probable que sea "de" y luego "peces", pero si se está hablando de **dinero**, no.

Embeddings Generación de contexto con RNNs (I)

• El principal objetivo de un **embedding con contexto**, es **cambiar** la **representación** de una palabra dependiendo del **contexto**.

Tarea

- Generación de la próxima palabra a partir de una frase dada.
- Para generar la palabra, un modelo parte de los embeddings de las anteriores palabras, y de un contexto (formado por estas palabras juntas).
- Uso de RNNs (Redes Neuronales Recurrentes)

Embeddings Generación de contexto con RNNs (II)

• Si la frase es muy **larga**, no se puede mantener un **contexto**; se **olvida**. Además, son muy **costosas** de entrenar.

Ejemplo

Archivo: CursoGenAl_UAL_03_LSTM_autoregressive.ipynb

- Implementar de una red autoregresiva de generación de texto.
- Observaciones:
 - Visualizar los datos de entrenamiento.
 - Entrada/salida en cada paso.
 - Visualizar el embedding de la misma palabra en varias generaciones.

• Probar a generar diferentes frases.

BERT

Attention is all you need

- En el anterior enfoque, el **embedding de la palabra NO CAMBIA**. Únicamente lo hace el **contexto** (que almacena la RNN).
- Además, es muy ineficiente: se calcula el contexto de forma secuencial y se pierde el contexto confome se tienen más palabras, se "olvida".
- Solución: Uso de ATENCIÓN.
 - La atención permite que el modelo evalúe la relevancia de cada palabra en la secuencia en relación con las demás, haciendo un análisis global.
 - Hay palabras más importantes que otras (afectan más al contexto).
 - El vector de embeddings cambia en cada palabra; depende del contexto.

Transformers Concepto general

• Encoder:

- "Entiende el texto" y genera embeddings.
 - Extractor de características.

Decoder

- "Transforma" los embeddings en nuevos datos a generar.
 - Respuesta de preguntas.
 - Resumen de texto
 - Traducción de texto
 - Generación de imágenes

BERT Arquitectura

- Es un transformer ENCODER.
- También llamado "<u>representation</u> model" o "<u>foundation model</u>".
- Entrada:
 - Cadena de texto
- Salida:
 - **Embeddings** para el texto de entrada: 1 palabra 1 embedding.

• Disponibles modelos **BERT pre- entrenados** en datasets gigantes.

Ejercicio 2b

- Ejercicio: Usar modelos de embedding pre-entrenados:
 - https://huggingface.co/models

 Ejecutar el archivo: CursoGenAl_UAL_02_ejercicio_embeddings.ipynb

- Usar el embedding. ¿Cuántas dimensiones tiene cada token?
- Obtener las 10 palabras más "similares" a una palabra dada. Por ejemplo "Almería", o "Banco".
- Obtener los embeddings en diferentes frases que incorporan la misma palabra. ¿Qué embedding tiene la palabra dada en cada caso?

BERT Entrenamiento

- Entrenamiento con "Mask language modelling".
 - Se incorporan máscaras para ocultar algunos tokens de la frase.
 - 15% de los tokens.
 - BERT tiene que ser capaz de predecirlos por el contexto.
 - Función de pérdida "cross-entropy" para calcular el error en la tarea de clasificación.

BERT Fine-Tuning en un dataset propio

- Adaptar BERT para que entienda un "nuevo dominio".
- Hacer mask language modelling en el nuevo dataset.

BERT Para qué se usa

- Complicado de entrenar. Muy costoso. ¿Cómo se usa realmente?
- Para otener los embeddings de una frase/palabras.
- Después con esos embeddings, se pueden **entrenar** otros **modelos** que hagan otras tareas. Por ejemplo, **GENERAR TEXTO**.

Ejercicio 3

- Archivo: CursoGenAl_UAL_04_ejercicio_03_bert_entrenamiento.ipynb
- Librería "transformers"
 - https://huggingface.co/docs/transformers/v4.45.1/en/model_doc/bert#o verview

Observaciones:

- Cargar un modelo de BERT sin entrenar.
- Cargar los datos de un dataset.
- Aplicar Mask Language Modelling.
- Guardar el modelo para su posterior uso.
- Hacer fine-tuning.
- Evaluar el modelo en el dataset.

BERT Clasificación a partir de embeddings

- Los embeddings de por sí solos, no sirven para "nada"... ¿o sí?
- Se puede clasificar un conjunto de palabras teniendo en cuenta su semántica y su contexto.

Ejercicio 4

Archivo:
 CursoGenAl_UAL_05_ejercicio_04_bert_clasificacion.ipynb

- Usar el dataset dado.
- Usar un modelo pre-entrenado para obtener embeddings.
- Entrenar un modelo simple de ML (kNN, DecisionTree) con los embeddings generados.
- Evaluar el modelo con el dataset de test.
- Proponer mejoras.

S-BERT

S-BERT

Conceptos generales

- Generación de embeddings para frases completas.
 - Comprimir información.
 - Misma longitud todos los elementos del dataset.
- Cada frase tiene un embedding diferente.
- Entrenamiento usando "contrastive learning".
 - Se cogen parejas de frases iguales y diferentes.
 - S-BERT intenta representar las frases "iguales" de forma muy similar, y separarlas de las "diferentes".
- Definir la función de pérdida:
 - **Softmax**: Clasificación entre "igual", "diferente" o "neutral".
 - Cosine Similarity: Calcula el factor de similitud entre las dos frases.

S-BERT Ejemplo

S-BERT aplicado a una tarea de clasificación de comentarios positivos/negativos

Ejercicio 5

Archivo:
 CursoGenAl_UAL_06_ejercicio_05_SBERT_similarity.ipynb

- Generación de una base de datos de embeddings con un modelo S-BERT pre-entrenado.
- Cálculo de similitud entre embeddings.

• Ejercicio: Obtención de la mejor respuesta a una pregunta dada.

S-BERT

Fine-tuning supervisado en un nuevo dataset

- ¿Por qué? Para lidiar mejor con la **tarea**, o cuando se tiene un **nuevo contexto** o **dominio**.
- 1) Si S-BERT ha sido entrenado en un dominio similar.
 - Se carga un S-BERT pre-entrenado en otro contexto/dominio.
 - Se hace fine-tuning usando contrastive learning.
- 2) Si S-BERT se ha pre-entenado en un dominio muy diferente.
 - Se aplica mask language modelling para entender el nuevo dominio.
 - Se genera un modelo **pre-entrenado**.
 - Se entrena el modelo con **frases** en el nuevo dominio usando contastive learning.
- Lo más **importante**: Encontrar frases que tengan diferente significado pero que sean muy similares: **Hard negatives**.
- Principal problema: Se necesitan muchos pares de frases.

Ejemplo

Archivo: CursoGenAI_UAL_07_ejemplo_SBERT_finetune.ipynb

• Entrenamiento de SBERT con un dataset particular

S-BERT Evaluación

Benchmarks

- GLUE: 9 tareas de comprensión del lenguaje.
 - MNLI: Multi-Genre Natural Language Inference corpus
 - Pares de frases anotadas con "contradicción", "neutral" y "similares".
- STSB: Semantic Textual Similarity Benchmark
 - Pares de frases anotadas con valores entre 1 y 5 según su similitud.

- Definir un **evaluador** de nuestro modelo
- Métrica más importante: "pearson cosine"

S-BERT Fine-Tuning semi-supervisado

- En la mayor parte de las ocasiones, adquirir datasets completamente anotados es complicado.
- Para ello, se proponen varias etapas:
 - Coger un dataset anotado pequeño (Golden dataset).
 - Entrenar BERT (cross-encoder) usando "contrastive learning". La salida de BERT ahora es un valor entre 0 y 1 indicando la similitud entre dos frases de entrada.
 - Usar el **BERT** pre-entrenado para anotar el resto del dataset.
 - Usar contrastive learning para entrenar S-BERT.

Ejercicio 6

- Archivo:
 - CursoGenAl_UAL_08_ejercicio_06_SBERT_semisupervisado.ipynb

- Fine-tuning de S-BERT en un dataset particular.
- Uso de BERT para anotar datos.

- Ejercicios:
 - Comparar entre el entrenamiento con un dataset pequeño y un dataset anotado con BERT.
 - Probar modelos pre-entrenados de S-BERT
 - Crear un conjunto de test propio y evaluar S-BERT.

Embeddings de frases Entrenamiento NO supervisado

- "Un buen embedding de frase permite a un decodificador reconstruir la frase original".
- Entrenamiento usando "Mask Language Modelling".

Clasificación

Clasificación de texto Conceptos

- Consiste en etiquetar una palabra o frase entre una o varias clases.
- Usando modelos de lenguaje:
 - 1. Un modelo de representación **pre-entrenado como BERT o S-BERT** extrae los **embeddings** de la frase.
 - 2. Se añade un clasificador (o capa) para clasificar los embeddings.
- Ejemplos: detección de spam en mails, clasificación de opiniones en amazon, detección de discurso ofensivo en redes sociales.

Clasificación de texto Uso de modelos de clasifación pre-entrenados

- Entrenados sobre un dataset específico.
- Puede que no funcionen del todo bien en nuevos datasets/contextos.
 - Por ejemplo, si he sido entrenado en un dataset de reviews de películas, puede funcionar bien en un dataset de review de literatura. Pero a lo mejor no funciona muy bien en la clasificación de correos de SPAM.

¿Habría que reentrenar desde 0 un nuevo modelo en mi dataset?
 ¿Puedo usar un modelo de lenguaje pre-entrenado?

Clasificación de texto Entrenamiento supervisado

- Partir de un modelo de representación del lenguaje.
 - Descongelar los pesos (BERT).
 - Congelar todo el modelo menos la última capa.
 - Congelar solamente algunas capas.
- Añadir una capa final totalmente conectada.

Clasificación de texto Entrenamiento supervisado <u>few-shot</u>

- Coger un modelo pre-entrenado S-BERT.
- Hay muy pocos datos de entrenamiento.
- Generar un dataset para contrastive learning.
 - Emparejar frases de la misma clase como positivas
 - Emparejar frases de diferentes clases como negativas
- **Fine-Tune** de S-BERT usando contrastive learning.
 - Los embeddings que se generan, harán que las frases de la misma clase sean muy similares y los de otra clase muy diferentes.
- Entrenar un clasificador a parte, o incorporar una capa de clasificación.

Clasificación de texto Entrenamiento no supervisado

- Usando S-BERT pre-entrenado:
 - Se obtiene el embedding de la frase.
 - Se obtienen los embeddings de las "clases".
- ¿Cómo se definen las clases?
 - Ver cómo varía la clasificación dependiendo de las clases que se le den al problema.
- Se mide la distancia.
- Se coge la clase con menor distancia (cosine similarity)

Ejercicio 7

- Ejercicio:
 - Usar el siguiente dataset:
 - data = load_dataset("rotten_tomatoes")
 - Crear un array que contenga frases de los siguientes temas:
 - Naturaleza
 - Tecnología
 - Deporte
 - Crear un clasificador NO SUPERVISADO que clasifique las frases dependiendo de su tema. Habrá tres clases posibles.

Búsqueda semántica y RAG

Búsqueda semántica Concepto general

- Las **búsquedas** en grandes bases de datos de documentos se hacían con "**palabras clave**" hasta hace muy poco.
- Ahora, se puede buscar por "significado".
- Se hace una pregunta a un LLM, ¿qué pasa si no sabe responder?
 - Hallucination
 - Se propone "aumentar su conocimiento" sin necesidad de reentrenar.

- Pasos
 - Dense retrieval
 - 2. Rerank
 - 3. Retrieval Augmented Generation

Búsqueda semántica Búsqueda densa (I)

- Se tiene una base de datos que no contiene documentos, sino embeddings.
- A partir de una pregunta, se genera el embedding y se obtienen los K embeddings más "próximos".
- Ambos **embeddings** serán muy **similares** (el entrenamiento fuerza a ello al modelo).
- Normalmente, el LLM debe haber sido entrenado muy bien en datasets de preguntas/respuestas.

Búsqueda semántica Búsqueda densa (II)

Búsqueda semántica Búsqueda densa (III)

- ¿Cómo se genera la base de datos?
- Se dividen los documentos
 - Documento completo: Se comprime mucho, se pierde mucha información.
 - Frases: Muy granular, pueden incorporar contenido incompleto.
 - Párrafos: Pueden ser muy grandes.
 - Ventanas deslizantes de párrafos: Tiene en cuenta el contexto.
- Se obtiene el **embedding** de la información.
 - Usando un modelo **pre-entrenado**.
- Se genera un **índice** (para su búsqueda eficiente)
- Se consultan los puntos más cercanos a la pregunta.
 - Método de los vecinos cercanos.
 - Bases de datos.
- Es muy importante el contexto del modelo de embedding.

Búsqueda semántica Reranking

- Ordenar los documentos extraidos por relevancia para responder a la pregunta original.
- Se pasan los **documentos** y la **pregunta** al modelo.
- Métricas:
 - Mean Average precisión (MAP)
- Modelos
 - https://www.sbert.net/

Búsqueda semántica Retrieval Augmented Generation (RAG)

- Dotar al modelo LLM de la habilidad de busar en **bases de datos específicas** para contestar a las preguntas.
- Capacidad de **búsqueda** y de **generación de respuestas**.
- Permite "hablar" con los documentos/datos aportados.
- Funcionamiento
 - Se obtienen los documentos más relacionados con la pregunta.
 - Se añade al **prompt del LLM** que se genere una respuesta para constestar a la pregunta teniendo en cuenta los documentos obtenidos.

Ejercicio 8

- Ejercicio:
 CursoGenAl_UAL_09_ejercicio_08_busquedaSemantica_RAG.ipy
 nb
 - Usar la base de datos que se ha usado en el ejercicio 5.
 - Guardar los datos en una base de datos indexada.
 - Obtención de embedding de una pregunta dada.
 - Comparativa de embeddings de la pregunta con el resto de la base de datos.
 - Obtención de la respuesta más adecuada.
 - Creación de un bot

Ejercicio

- Incorporar información sobre el grado en ingeniería informática de la UAL.
- Incorporación de un modelo de "transformers" generativo, tipo gpt-2.
- Investigar la incorporación de interfaz gráfica de interacción.

S LLMs generativos

Transformers La parte generativa (I)

- Decoder
 - Generación de contenido a partir de una entrada textual.
 - **Basados** en los **embeddings** del encoder (BERT, S-BERT o similares).
 - Aprender a **generar una salida** a partir de una entrada especificada (por el usuario).
- Principales aplicaciones:
 - Generación automática de texto coherente.
 - Respuesta a preguntas basadas en una entrada
 - Traducción automática entre distintos lenguajes.
 - Creación de imágenes a partir de descripciones textuales.
 - Descripción de imágenes.

Transformers La parte generativa (II)

- Comportamiento: Auto-regresivos.
- Entrada
 - Instrucción del usuario y tokens anteriores generados.
- Salida
 - Capa totalmente conectada. 1 token.
 - Probabilidad del siguiente token.

• Max.tokens: **Número máximo** de tokens que se pueden procesar.

LLM Control de la salida

- A partir de unas instrucciones y los tokens anteriores, generan el siguiente token. ¿Qué token se escoge?
 - Coger siempre el token más probable: Determinista.
 - Incorporar probabilidades.
 - **Top_p**: Considerar los tokens **hasta** que se alcance una **probabilidad acumulada** de "top_p".
 - Temperatura: Valores más altos hacen que los tokens con menos probabilidad puedan ser escogidos.

Ejercicio 9

- Usa la API de OpenAI en Databricks.
- Se va a estudiar el impacto de los parámetros "top_n" y "temperature".
- El prompt de entrada es:
 - "Escribe una breve historia sobre un alumno de ingeniería informática en la Universidad de Almería".
- Genera 4 combinaciones de parámetros "top_n" y "temperature"
 - top_n alto y temperatura alta
 - Top_n bajo y temperatura alta
 - Top_n alto y temperatura baja
 - Top_n bajo y temperatura baja.
- ¿Qué observas?

LLM Entrenamiento

- Construcción y entrenamiento del encoder.
 Mask Language Modelling.
- Entrenamiento del decoder:
 - Pre-entrenamiento no supervisado
 - Usando **máscaras**, **predicción** de la **siguiente** palabra.
 - Fine-tuning supervisado
 - Predicción de la siguiente palabra.
 - Se entrena para realizar una tarea específica.
 - Algunas tareas:
 - Respuesta a preguntas.
 - Creación de resumen de una frase.
 - Preference-tuning (supervisado)
 - Mejora la calidad de las respuesta del modelo porque se tiene en cuenta la respuesta esperada por los humanos.

Entrenamiento – Pre-entrenamiento no supervisado

- De igual forma que los modelos autoregresivos.
- "Causal Masking Modelling".
- Toda la frase/input a la vez.
- Se intenta predecir el **siguiente token** a partir de la **entrada** y los tokens **anteriores**.
- Paralelo.
- Dataset: Frases.
- Resultado: Modelo capaz de generar texto.

Entrenamiento

paralelo

Entrenamiento – Fine-tuning supervisado

- De igual forma que los modelos autoregresivos.
- "Causal Masking Modelling".
- El modelo aprende a **generar el contenido** que requiere la instrucción del prompt.
- No es un self-training.
- Dataset:
 - Entrada: Instrucción
 - Salida: El texto con el que se responde a dicha instrucción.

Entrenamiento – Preference tuning

- Se hace un **fine-tuning** con el **dataset específico** (tarea).
- A partir de una entrada, aprende a predecir la salida deseada.
- Se evalúa cada respuesta generada por el LLM para mejorar.
- Además, las respuestas están optimizadas para contentar al usuario.
- ¿Cómo? Sistema de recompensa.
 - Entrenamiento de un sistema de recompensa.
 - Entrada: Prompt y la respuesta
 - Salida: Valor
 - Inconvenientes:
 - Entrenamiento de un nuevo modelo
 - Dataset: Prompt + Buenas y malas respuestas.

LLM Librerías

from trl import SFTTrainer trainer = SFTTrainer("facebook/opt-350m", train_dataset=dataset, dataset_text_field="text", max_seq_length=512,) trainer.train()

Step 2: RewardTrainer Train a preference model on a comparison data to rank generations from the supervised fine-tuned (SFT) model from trl import RewardTrainer trainer = RewardTrainer(model=model, args=training_args, tokenizer=tokenizer, train_dataset=dataset,) trainer.train()

```
Step 3: PPOTrainer

Further optimize the SFT model using the rewards from the reward model and PPO algorithm

from trl import PPOConfig, PPOTrainer

trainer = PPOTrainer(
    config,
    model,
    tokenizer=tokenizer,
)

for query in dataloader:
    response = model.generate(query)
    reward = reward_model(response)
    trainer.step(query, response, reward)
```

https://huggingface.co/docs/trl/main/en/index

Ejemplo

- Archivo: CursoGenAl_UAL_10_LLM_entrenamiento.ipynb
- Entrenamiento de un modelo generativo haciendo uso de Causal Masking Modelling.
- Incorporación de LoRa para hacer dicho entrenamiento menos costoso.

Ejercicio 8*

- Archivo: CursoGenAl_UAL_09_ejercicio_08_semanticSearchRAG.ipynb
- Incorporar un decoder en el ejercicio sobre RAG.

LLM Control de la entrada

- Para dar instrucciones al modelo, se debe seguir una plantilla incorporando tokens específicos.
- La mayoría de las APIs lo generan automáticamente, pero en algunos casos el usuario tiene que especificarlo a mano.


```
Payload
                        Preview
                                  Response
    Headers
▼ Request Payload
                     view source
 ▼ {model: "gpt-3.5-turbo",...}
    frequency penalty: 0
    max tokens: 300
   ▼ messages: [{role: "system",...}, {rol
    ▼0: {role: "system",...}
       content: "Act like you are Charle
       role: "system"
    ▶1: {role: "user", content: "Hello'
    ▶ 2: {role: "assistant",...}
    ▶3: {role: "user", content: "Hi"}
    model: "gpt-3.5-turbo"
    presence penalty: 0.6
```

LLM Ingeniería de prompts (I)

- Instrucciones claras.
- Especificar claramente la **salida** que se **espera**.

LLM Ingeniería de prompts (II)

Identidad:

- El **rol** que tiene que tener el LLM. Contextualiza.
- Eres un médico radiólogo, experto en detección de células cancerosas en tejidos pulmonares.

• Instrucción:

- Tarea que debe realizar.
- Segmenta la imagen y muestra las partes donde se detecten las células cancerosas. Explica por qué resaltas cada parte importante.

Contexto:

- Por qué se está realizando esta tarea. Para qué.
- Se va a incorporar en una unidad de radiología en el hospital para aliviar la carga de trabajo.

LLM Ingeniería de prompts (III)

Formato

- Formato de salida/respuesta.
- Proporciona una imagen en blanco y negro, pero con las partes resaltadas en colores. También, una lista con la explicación de por qué cada elemento ha sido resaltado.

Audiencia

- Quién va a leer la respuesta o se va a beneficiar de ella.
- Explícalo para un médico radiólogo, con conocimientos avanzados.

Tono

- Formato y tono del texto a generar.
- La explicación debe estar escrita en formato médico.

LLM Ingeniería de prompts (IV)

One-shot prompting

 Se proporciona al LLM una tarea y la respuesta que nosotros queremos que nos proporcione de dicha tarea. Instrucción: Clasifica esta opinión sobre una película en "Positiva-1" si es positiva, o "Negativa-0" si es negativa.

Ejemplos:

- 1. **Opinión:** "Me ha encantado la película, los efectos especiales son increíbles y el guion está muy bien escrito." **Clasificación:** Positiva-1
- 2. Opinión: "La trama es predecible y los actores no están bien elegidos. No la recomendaría." Clasificación: Negativa-0
- 3. **Opinión:** "Es una película emocionante que me mantuvo pegado a la pantalla todo el tiempo. Sin duda la volvería a ver." **Clasificación:** Positiva-1

Nueva entrada: Opinión: "No me ha gustado nada la película, me he aburrido a los 10 minutos; no la recomiendo para nada."

Salida esperada:

Clasificación: Negativa-0

LLM Ingeniería de prompts (IV)

- Chain-prompting.
- Dividir el prompt en varios prompts, en lugar de hacerlo todo a la vez.
- Se da una
 especificación
 inicial, y se va yendo
 de lo más general, a
 lo más particular.

Instrucción: Analiza la siguiente opinión sobre una película y proporciona un resumen, la clasificación de la opinión y una breve explicación del porqué.

Opinión: "Me ha encantado la película, la actuación fue impresionante y la trama era innovadora. Sin duda, la recomendaría a todos mis amigos."

Paso 1: Resumir la opinión.

• Resumen: La persona disfrutó de la película, elogiando la actuación y la originalidad de la trama.

Paso 2: Clasificar la opinión.

Clasificación: Positiva-1

Paso 3: Explicar la clasificación.

• Explicación: La opinión expresa entusiasmo y satisfacción con la película, destacando aspectos positivos como la actuación y la trama, lo que justifica la clasificación como positiva.

LLM Ingeniería de prompts (V)

Chain-of-thought prompt

- Hacer una pregunta compleja (puede ser un acertijo matemático).
- Se proporciona **una respuesta**, explicando **paso a paso** cómo resolver el problema, dando la respuesta final.
- Se expone la pregunta definitiva que queremos que responda.
- El asistente va a "**razonar**" y responder de la misma forma que anteriormente se ha comentado.
 - **Tedioso**, hay que proporcionar ejemplos

• Zero-shot prompt

- Se especifica: "Piensa paso a paso".
- Usando "expertos".
 - Se tienen en cuenta múltiples puntos de vista para conseguir la solución.

Opciones avanzadas

- Incorporación de memoria.
 - En la versión original, cada nuevo prompt olvida lo anterior.
- Enfoques
 - · Añadir en cada nuevo prompt, toda la conversación.
 - Costoso, se alcanza el límite de prompts.
 - Añadir X respuestas anteriores.
 - Puede olvidar información más antigua.
 - Añadir un resumen de la conversación.
 - Costoso, pero permite mantener durante más tiempo la memoria.

Ejercicio 10 – Creación de un chatbot con memoria.

- Usando la API de OpenAI
 - Basándote en el código del CursoGenAI_UAL_11_ejercicio_10_sin_memoria.ipynb
- Programa la siguiente funcionalidad:
 - Añadir memoria en la conversación:
 - Tener en cuenta los últimos 3 mensajes únicamente.
 - Tener en cuenta un resumen de toda la conversación anterior.

LLM Razonar y Actuar (ReAct) (I)

- El **LLM no** está **entrenado** en **todas** las tareas.
- Hay herramientas específicas:
 - Cálculo matemático: calculadores.
 - Búsqueda por internet: navegadores.
- Algunos prompts requieren usar estas herramientas para obtener resultados precisos.
- Se entrena un agente para identificar la necesidad de usar una herramienta, y usarla adecuadamente, ofreciéndole la entrada correspondiente y procesando su salida.
- El sistema por lo tanto está formado por:
 - Razonamiento: Agente/LLM
 - Actuación: Herramientas

LLM Razonar y Actuar (ReAct) (I)

Herramientas Tiempo en Búsqueda en Almería ¿Qué tiempo Internet No sé. hace en Busco. Almería? Búsqueda en wikipedia WIKIPEDIA La enciclopedia libre Hacen 20 Uso de grados calculadora

LLM Razonar y Actuar (ReAct) (II)

https://github.com/openai/swarm

- Fecha de lanzamiento:
 - 12/10/2024 !!!!!

Fine-Tuning usando Parameter-Efficient (PEFT)

- Entrenamiento es muy costoso.
- Se añade un componente dentro de cada bloque.
 - Adaptador (Adapter).
- Se **congelan los pesos** del modelo. Se entrena únicamente el **adaptador**.
 - "Fine-tuning 3.6% parameters of BERT similar to the whole"
- Se pueden entrenar diferentes actuadores para diferentes tareas.

LLM Fine-tuning usando LowRank

- Aproximar las grandes matrices de atención en matrices mucho más pequeñas.
- Se actualizan las matrices pequeñas.
- El resultado final es la **agregación** de los valores de ambas.
- Rank: La dimensionalidad de las matrices. A menor valor, mayor reducción de parámetros.

Aspecto	Sin LoRA	Con LoRA
Dimensiones de Matrices	W:6,000,000,000	A:6,000,000,000 imes 16
		B:16 imes 6,000,000,000
Total de Parámetros	6,000,000,000	96,000
Número de Épocas	5	5
Tiempo por Época	1.5 horas	7.5 minutos
Tiempo Total	7.5 horas	37.5 minutos
Reducción de Parámetros (%)	N/A	99.9984%

Fine-tuning usando cuantización

- La cuantización es una técnica para reducir la representación numérica de los pesos del modelo.
- En lugar de almacenarlos o realizar cálculos en 32 bits, se usan 8 o incluso 4.
 - Reduce memoria.
- TPUs optimizadas para cálculo en 16 bits.

LLM Evaluación

- Tablas de líderes
- Evaluación de los modelos
 - MMLU
 - GLUE
 - TruthfulQA
 - GSM8k
 - HellaSwag
- Evaluación humana
 - https://lmarena.ai/

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

¿Cómo fue ChatGPT entrenado?

Modelos multimodales

Interactuando con imágenes CLIP

- Conectar imágenes con texto: CLIP
- Procesar imágenes como frases:
 - Divide la imagen en "tokens" (grupos de píxeles).
- Entrenar un **modelo** de **embedding** que genere **embeddings** a partir de imágenes y texto en el mismo espacio.
 - Codificador de texto (SBERT).
 - Codificador de imagen (ViT).
- Comparar embeddings
 - Forzar que sean **iguales**.
 - Diferencia usando similitud de coseno.
- Usar **aprendizaje contrastivo**: pares iguales y diferentes.

Hands-On Large Language Models. By Jay Alammar, Maarten Grootendorst. 2024.

Aplicaciones

Ejercicio 11 – Uso del servicio "Azure Speech"

- Creación de un sistema para resumir audios de WhatsAPP.
 - Obtención/grabación de un mensaje de voz .mp3
 - Obtención de texto partir del audio.
 - Resumen del texto.
 - Salida de audio con el resumen del texto.

• ¿Podrías crear un bot de Telegram/WhatsApp para que al recibir dichos mensajes, los resuma?

Ejercicio 12 – Evaluación de un TFG

- En esta aplicación, se va a usar la API de ChatGPT para evaluar un TFG dado en base a una rúbrica. Se evaluarán los diferentes aspectos contemplados en la misma, estableciendo una nota.
 - TFG: https://repositorio.ual.es/handle/10835/8008
 - Rúbrica: https://www.ual.es/application/files/5416/3211/7224/AnexoIV-RubricaEvaluacionTFG.docx
- ¿Cómo se incorporan ambos archivos?
- ¿Los acepta la API?
- ¿Cuál es su salida?
- Una posible solución se encuentra en: CursoGenAI_UAL_12_ejercicio_12_EvaluarTFG.ipynb