HW7

Name: Xiang Gu EID: xq2847

Part A

15.3.2

10,000/999 * (999 + 10,000) \appro 10 * 11,000 = 110,000 disk I/O's

15.3.3

a). $10,000/(M-1) * (M-1 + 10,000) \le 100,000 \Leftrightarrow M >= 1112$

15.4.2

- a). set union: 3 * (B(R) + B(S)) = 3 * 20,000 = 60,000 disk I/O's
- b). simple sort-join: 5 * (B(R) + B(S)) = 5 * 20,000 = 100,000 disk I/O's
- c). Merge-join: 3 * (B(R) + B(S)) = 3 * 20,000 = 60,000 disk I/O's

15.4.3

We can modify phase 1 such that some blocks are not written back to secondary storage, which was written out and read back to main-memory in the original two-pass algorithm.

Concretely, we can

- 1). Set a smaller chuck size to read into main-memory in phase 1;
- 2). Perform the same sort process as before;
- 3). For the last chuck, do not write it back to secondary storage. Just leave it in main memory;
- 4). In phase 2, do the same thing as before but acknowledging the fact that what was originally the last sublist is now already in main-memory.

Part B

16.4.1

- a). T(W join X join Y join Z) = 100 * 200 * 300 * 400 / (60 * 100 * 50) = 8,000
- b). $T(select_{c=20}(Y) join Z) = T(select_{c=20}(Y) * T(Z) / max{V(select_{c=20}(Y), d), V(Z,d)} = T(Y)/V(Y,c) * T(Z) / max{V(Y,d), V(Z,d)} = 300/50 * 400 / 50 = 48$
- c). $T(X \text{ join}\{X.c < Y.c\} Y) = T(\text{select}_{X.c < Y.c}(X \text{ CartisianProduct } Y)) = T(X \text{ CartisianProduct } Y) / 3 = T(X) * T(Y) / 3 = 200 * 300 / 3 = 20,000$

Part C

1.

a). Restricting to only left-deep trees:

	a). Hooding to only lost doop about						
Set	{VV}	{X}	{Y}	{Z}			
Cost	0	0	0	0			
Best Plan	W	Х	Y	Z			
Set	{W, X}	{W, Y}	{W, Z}	{X, Y}	{X, Z}	{Y, Z}	
Cost	0	0	0	0	0	0	
Best Plan	W join X	W join Y	W join Z	X join Y	X join Z	Y join Z	
Set	{W, X, Y}	{W, X, Z}	{W, Y, Z}	{X, Y, Z}			
Cost	1000/3	1000/3	2400	600			
Best Plan	(W join X) join Y	(W join X) join Z	(Y join Z) join W	(X join Y) join Z			
Set	{W, X, Y, Z}						
Cost	1000 * 4/3						
Best Plan	((W join X) join Y) join Z						

b). Consider all trees: (red cells are the only different cells in this answer compared to the above table)

			T.	I		
Set	{VV}	{X}	{Y}	{Z}		
Cost	0	0	0	0		
Best Plan	W	Х	Y	Z		
Set	{W, X}	{W, Y}	{W, Z}	{X, Y}	{X, Z}	{Y, Z}
Cost	0	0	0	0	0	0
Best Plan	W join X	W join Y	W join Z	X join Y	X join Z	Y join Z
Set	{W, X, Y}	{W, X, Z}	{W, Y, Z}	{X, Y, Z}		
Cost	1000/3	1000/3	2400	600		
Best Plan	Y join (W join X)	(W join X) join Z	W join (Y join Z)	Z join (X join Y)		
Set	{W, X, Y, Z}					
Cost	1000 * 4/3					
Best Plan	Z join (Y join (W join X))					

2. In this problem, we restrict our attention to left-deep trees.

Query graph looks like (there is no query here but we will draw a link between two nodes if those two relations have shared attributes)

Copied from the table in Part C::1.a, red strikethrough cells are those eliminated by the query graph because the nodes are not adjacent, effectively reducing the size of the table from 15 entries to 10 entries.

Set	{W}	{X}	{Y}	{Z}		
Cost	0	0	0	0		
Best Plan	W	Х	Y	Z		
Set	{W, X}	{₩, Y}	{₩, Z}	{X, Y}	{X, Z}	{Y, Z}
Cost	0	θ	0	0	0	0
Best Plan	W join X	W join Y	W join Z	X join Y	X join Z	Y join Z
Set	{W, X, Y}	{ ₩, X, Z}	{₩, Y, Z}	{X, Y, Z}		
Cost	1000/3	1000/3	2400	600		
Best Plan	(W join X) join Y	(W join X) join Z	(Y join Z) join W	(X join Y) join Z		
Set	{W, X, Y, Z}					
Cost	1000 * 4/3					
Best Plan	((W join X) join Y) join Z					