Welcome To My Presentation

My Presentation Topic is Digital IC Terminology, IC Data Sheet

Presented By

Tushar Sarkar

Student ID: 18CSE035

Second Year Second Semester

Department of CSE, BSMRSTU.

What is IC?

▶ An integrated circuit (IC) is a small semiconductor-based electronic device consisting of fabricated transistors, resistors and capacitors.

▶ An integrated circuit is also known as a chip or microchip.

Propagation Delay

- ▶ Propagation delay is the time required to change the output after application of input.
- ► It's basically have two types:
 - 1. High to Low (tPHL)
 - 2.Low to High(tPLH)

Propagation delay diagram

Fan IN

► The number of inputs of a gate that it can handle impairing it's normal operation.

Fan Out

► Fan out is no of output signals a gate can drive without degrading it's output voltage level.

Voltage Parameters

- ▶ VIL= Low level I/P voltage
- ► VIH=High level I/P voltage
- ▶ VOH =High Level O/P voltage
- ▶ VOL= Low level O/P voltage

Current Parameters

- ► IIL = Low level I/P current
- ▶ IIH =High level I/P current
- ► IOH =High Level O/P current
- ► IOL= Low level O/P current

IC Data Sheet

Types of IC

▶ IC categorize are following three ways:

Through Hole Technology(THT)

▶ THT components have pins that are inserted into holes drilled in the PCB and soldered on the reverse side of the board.

Surface Mount Technology

▶ SMT components are mounted on the surface of the PCB, so no holes need to be drilled.

TTL logic sub families

TTL series	Infix	Example	Comments
Standard TTL	none	7404 ,7400	Original TTL series. Slowest & use lots of power.
Low power	L	74L00, 74L04	Consume less power than standard
Schottky	S	74S04,74S00	Optimized for speed consume lots of power.
Low power Schottky	LS	74LS01, 74LS02	Faster & lower power consume than L & LS.
Advanced Schottky	AS	74AS08	Very fast ,use lots of power.
Advanced Low Power Schottky	ALS	74ALS86	Very good speed power ratio. Quit popular number of this family.

Manufacture Datasheets

A manufacturer datasheet for a logic gate contains the following information:

- ► General Description
- ► Connection (pin-out) Diagram
- ► Function Table
- ▶ Operating Conditions
- ► Electrical Characteristics
- ► Switching Characteristics
- ▶ Physical Dimensions

Function Table:

DM74ALS273

Function Table

(Each Flip-Flop)

Inputs			Output		
Clear	Clock	D	Q		
L	X	Х	L		
н	1	Н	н		
н	1	L	L		
н	L	X	Q_0		

- L LOW State
- H HIGH State
- X Don't Care
- Positive Edge Transition
 Q = Previous Condition of Q

Logic Diagram

Operating Conditions:

Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				8.0	V
I _{OH}	HIGH Level Output Current				-2.6	mA
I _{OL}	LOW Level Output Current				24	mA
f _{CLK}	Clock Frequency		0		35	MHz
t _{W(CLK)}	Width of Clock Pulse HIG	SH	14			ns
	LO	W	14			ns
t _W	Width of Clear Pulse LO	W	10			ns
t _{SU}	Data Setup Time (Note 2)		10↑			
	Cle	ar Inactive	15↑			ns
t _H	Data Hold Time		0↑			ns
T _A	Free Air Operating Temperature		0		70	°C
Note 2: The (↑) a	rrow indicates the positive edge of the Clock is	s used for refere	nce.			,

Electrical Characteristics

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_{I} = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = 4.5V	$I_{OH} = -2.6 \text{ mA}$	2.4	3.3		V
	Output Voltage	V _{CC} = 4.5V to 5.5V	$I_{OH} = -400 \mu A$	V _{CC} - 2			V
V _{OL}	LOW Level	\/ A.E\/	I _{OL} = 12 mA		0.25	0.4	V
	Output Voltage	$V_{CC} = 4.5V$	$I_{OL} = 24 \text{ mA}$		0.35	0.5	V
II	Input Current @ Maximum Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$	•			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.2	mA
Io	Output Drive Current	$V_{CC} = 5.5V$	$V_0 = 2.25V$	-30		-112	mA
I _{CC}	Supply Current	V _{CC} = 5.5V	Outputs HIGH		11	20	mA
		Outputs OPEN	Outputs LOW		19	29	mA

Switching Characteristics

Switching Characteristics

over recommended operating free air temperature range.

Symbol	Parameter	Conditions	From	То	Min	Max	Units
f _{MAX}	Maximum Clock Frequency	V _{CC} = 4.5V to 5.5V			35		MHz
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	$R_L = 500\Omega$ $C_L = 50 \text{ pF}$	Clear	Any Q	4	18	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		Clock	Any Q	2	12	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Clock	Any Q	3	15	ns

Thank You!