1、实验名称及目的

UDP 直传方式吊舱视觉控制键盘仿真虚拟机实验:通过在 Windows 平台向 RflySim3D 进行取图请求,然后在虚拟机中通过 UDP 直传方式接收图像数据,然后通过接口上(\uparrow)下(\downarrow)键控制俯仰角(pitch); 左(\leftarrow)右(\rightarrow)键控制偏航角(yaw);右 Ctrl 建 + 左(\leftarrow)右(\rightarrow) 控制横滚角(roll);焦距操作 alt+上,alt+下进行吊舱视觉的控制。

2、实验原理

首先查找虚拟机的 ip, 然后在 Config.json 文件中设置图像数据传输方式为 UDP 直传模式,并将接收端 ip 改为虚拟机的 ip 地址。其中配置文件中的参数含义如下:

- "SeqID"代表第几个传感器。此处表示第1个传感器(免费版只支持2个图)。
- "TypeID"代表传感器类型 ID, 1:RGB 图 (免费版只支持 RGB 图), 2:深度图, 3:灰度图。
- "TargetCopter"传感器装载的目标飞机的 ID, 可改变。
- "TargetMountType"代表坐标类型, 0: 固定飞机上(相对几何中心), 1: 固定飞机上(相对底部中心), 2: 固定地面上(监控)也可变。
- "DataWidth"为数据或图像宽度此处为 640, "DataHeight"为数据或图像高度此处为 480。
- "DataCheckFreq"检查数据更新频率此处为 30HZ。
- "SendProtocol[8]"为传输方式与地址, SendProtocol[0]取值 0: 共享内存(免费版只支持共享内存), 1: UDP 直传 png 压缩, 2: UDP 直传图片不压缩, 3: UDP 直传 jpg 压缩; SendProtocol[1-4]: IP 地址; SendProtocol[5]端口号。
- "CameraFOV"为相机视场角(仅限视觉类传感器),单位度也可改变。
- "SensorPosXYZ[3]"为传感器安装位置,单位米也可改变。
- "SensorAngEular[3]"为传感器安装角度,单位度。也可改变。

然后在 windows 下运行 client_ue4.py 客户端程序,向 RflySim3D 发送图像请求。然后 RflySim3D 就会以 UDP 直传的方式向虚拟机进行图像数据的转发。最后在 Windows 下输入 ipconfig 查询 Windows 的 ip 地址。然后在将实验文件夹全拷贝到虚拟机中,在 server_ue4.p y 文件中将 vis.RemotSendIP 变量改为 Windows 下 ip 地址。然后在虚拟机里打开终端到实验文件夹路径执行" sudo su" 切换到 root 用户,在使用"python3 server_ue4.py"启动程序,启动吊舱视觉控制实验程序。

3、实验效果

本实验通过在 Windows 平台向 RflySim3D 进行取图请求, 然后在虚拟机中通过 UDP 直传方式接收图像数据, 进行吊舱视觉的俯仰角(pitch)、俯仰角(pitch)、俯仰角(pitch)、焦距控制。

4、文件目录

文件夹/文件名称	说明	
AircraftMathworksSITLRun.bat	启动仿真配置文件	
VisionCaptureApi.py	取图接口	
client_ue4.py	Python 取图请求程序	
server_ue4.py	Python 吊舱控制程序	
CameraCtrlApi.py	Python 实验程序	
PX4MavCtrlV4.py	无人机控制接口	
Config.json	视觉传感器配置文件	

5、运行环境

序号	软件要求	硬件要求	
11, 4	长日安 本	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台高级版及以上		
3	Visual Studio Code		
4	Ubuntu 虚拟机		
5	Python 环境需要装有 pykeyboard		

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

首先在虚拟机中读取 linux 设备要权限,所以需要使用 root 用户,不建议使用更改设备文件权限,因为键盘设备在虚拟机里随机性挂载,所以在 ubuntu 系统里使用以下命令 sudo su、pip install keyboard 安装 keyboard 库。

通信方式配置修改 AircraftMathworksSITLRun.bat 文件 SET IS_BROADCAST 参数,设置为 1(0:表示使用共享内存,1: 使用 255.255.255.255 广播方式)。以管理员方式运行 Aircra ftMathworksSITLRun.bat 开启一个飞机的软件在环仿真。将会启动 1 个 QGC 地面站,1 个 Copt erSim 软件且其软件下侧日志栏必须打印出 GPS 3D fixed & EKF initialization finished 字样代表初始化完成,并且 RflySim3D 软件内有 1 架固定翼无人机。

Step 2:

用 VScode 打开到本实验路径文件夹,通过 UDP 直传方式进行图像数据传输需要在 config.jsion 中 SendProtocal 的第一个参数改成 1,并用命令 ifconfig 查询虚拟机的 ip 地址,然后将 SendProtocal 的第 2-5 个参数改成虚拟机 ip 地址。然后运行 client_ue4.py 文件,向 RflyS im3D 进行取图请求。

Step 3:

在 Windows 下输入 ipconfig 查询 Windows 的 ip 地址。然后在将实验文件夹全拷贝到虚拟机中,在 server_ue4.py 文件中将 vis.RemotSendIP 变量改为 Windows 下 ip 地址。然后在虚拟机里打开终端到实验文件夹路劲执行" sudo su" 切换到 root 用户,在使用"python3 ser ver_ue4.py"启动程序,启动吊舱视觉控制实验程序。

Step 4:

在下图 "AircraftMathworksSITLRun.bat" 脚本开启的命令提示符 CMD 窗口中,按下回车

键(任意键)就能快速关闭 CopterSim、QGC、RflySim3D 等所有程序。

C:\WINDOWS\system32\cmd.exe

Start QGroundControl
Kill all CopterSims
Starting PX4 Build
[1/1] Generating ../../logs
killing running instances
starting instance 1 in /mnt/c/PX4PSPFull/Firmware/build/px4_sitl_default/instance_1
PX4 instances start finished
Press any key to exit

按下回车键,快速关闭所有仿真窗口

Step 5:

在下图 VScode 中,点击"终止终端",可以彻底退出脚本运行。

7、参考文献

[1]. 无

8、常见问题

Q1: 无

A1: 无