Welcome to CS 55 Discrete Mathematics

Introduction and Propositional Logic

CS 55 - Spring 2016 - Pomona College Michael J Bannister www.michaelibannister.com/teaching/55-s16

Course Webpage

See course webpage for important information! Please ask questions whenever the information is confusing or ambiguous!

Propositional Logic

Propositions

A **proposition** is a statement that is either true or false, but not both. The **truth value** of a proposition is true (denoted **T**) if the proposition is true, and false (denoted F) otherwise

Common Logical Operators

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

and

negation

 $p \lor q$

or

 $p \oplus q$ Τ

exclusive or

Conditionals Operators

The proposition $q \to p$ is called the converse of $p \rightarrow q$.

The proposition $\neg q \rightarrow \neg p$ is called the contrapositive of $p \rightarrow q$.

The proposition $\neg p \lor q$ is equivalent to the conditional $p \to q$.

p	q	$p \rightarrow q$
Τ	Τ	Т
${\rm T}$	\mathbf{F}	F
\mathbf{F}	${ m T}$	Τ
\mathbf{F}	\mathbf{F}	Т

Conditional

$$\begin{array}{c|ccc} p & q & p \leftrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

Bi-conditional

Translating From English

- 1. You can use the quantum computer on campus only if you are a computer science major or you are not a freshman.
- 2. You cannot use the secret tunnels if you are taller than six foot unless you can crawl long distances.

Propositional Equivalences

Tautology and Contradiction

A propositional expression that is always true is called a **tautology**.

A propositional expression that is always false is called **contradiction**.

$$\begin{array}{c|cccc} p & \neg p & p \lor \neg p & p \land \neg p \\ \hline T & F & T & F \\ F & T & T & F \\ \end{array}$$

Logical Equivalence

The propositions p and q are called **logically equivalent** if $p \leftrightarrow q$ is a tautology. The notation $p \Leftrightarrow q$ denoted that p and q are logically equivalent.

Example: $\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$

Common Logical Equivalences 1

$$\begin{array}{lll} p \wedge \mathbf{T} \Leftrightarrow p & & p \vee \mathbf{T} \Leftrightarrow \mathbf{T} & & p \vee p \Leftrightarrow p \\ p \vee \mathbf{F} \Leftrightarrow p & & p \wedge \mathbf{F} \Leftrightarrow \mathbf{F} & & p \wedge p \Leftrightarrow p \end{array}$$

$$\neg(\neg p) \Leftrightarrow p$$

Common Logical Equivalences 2

$$p \lor q \Leftrightarrow q \lor p \qquad (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$
$$p \land q \Leftrightarrow q \land p \qquad (p \land q) \land r \Leftrightarrow p \land (q \land r)$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

De Morgan's Laws

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

Additional Examples