Контрольная работа №1.

7 ноября 2023 г.

Задача 1. (50 баллов) В вашем распоряжении имеются следующие данные о 229 работниках (111 мужчин и 118 женщин): lnEARNINGS — логарифм текущего часового заработка в долларах США, S — продолжительность обучения (число полных лет обучения), EXP — общий стаж работы после окончания учебы, FEMALE — пол респондента (0 для мужчин, 1 для женщин). Ваша цель состоит в том, чтобы выявить влияние опыта работы и образования на доход индивида. Для этого вы оцениваете модель регрессии:

 $lnEARNINGS_i = \beta_1 + \beta_2 EXP_i + \beta_3 S_i + \beta_4 FEMALE_i + \beta_5 EXP_i * FEMALE_i + \varepsilon_i, i = 1,...,229.$

Ниже представлены результаты оценивания модели:

Source	Sum of Squares	Degrees	of Freed	om	Number of		229 ???E
Explained Residual		<mark>???A</mark> 224			Prob > F = 0.0000 $R-squared = ???$		
Total	57.617198	???C			Standard e		???H
lnearnings	Coef.	Std. Err.	t	P> t	[95% Conf.]	[nterval]	
exp s female exp*female	,	.0166437 .0132887 .1627401 ???N	3.55 7.25 ???K ???O	0.000 ???J NA 0.687	.0262485 .0701059 <mark>???L</mark> NA	.0918449 .1224797 ???M NA	
const	???P	NA	NA	NA	.6054517	1.67635	

NA — скрытые значения, которые **не нужно восстанавливать**.

Матрица $(X'X)^{-1}$ имеет следующий вид:

```
female
                                                          expfemale
               const
                             exp
   const
           .37113295
     exp -.01718743
                       .00139249
       s -.01636512
                      .00048446
                                  .00088769
                                              .13313258
   female -.05522604
                       .00783554 -.00077057
expfemale .00762025 -.00110927 .00003449 -.01629641
                                                          .00230557
```

- (a) (19) Заполните отмеченные знаками «???» пропуски в таблице (A–P). Обоснуйте ответ. При расчетах используйте значения из таблицы, округленные до тысячных.
- (б) (3) Дайте содержательную интерпретацию коэффициента β_3 при переменной S.
- (в) (3) Дайте содержательную интерпретацию коэффициента β_2 при переменной EXP.
- (г) (5) Проверьте гипотезу о значимости коэффициента β_4 для переменной FEMALE.

- (д) (10) Проверьте гипотезу о том, что отдача от образования у мужчин в два раза выше отдачи от опыта работы, который не различается в зависимости от пола.
- (e) (10) Постройте 95% доверительный интервал для $2\beta_2 \beta_4$.

Задача 2. (20 баллов) В программе исследований k разных удобрений, предназначенных для повышения урожайности огурцов, использованы в опытах на $n=n_1+...+n_k$ опытных участках. Удобрение номер s (s=1,...,k) использовалось на n_s опытных участках. Для изучения влияния удобрений использовалась регрессионная модель:

$$Y_i = \beta_1 D_{1i} + ... + \beta_k D_{ik} + \varepsilon_i, i = 1,...,n.$$

Здесь Y — урожайность, D_k — фиктивная переменная, равная 1 для участка номер k и 0 в других случаях. Известны выборочные средние \bar{Y}_s и стандартные отклонения $\hat{\sigma}_s$:

$$\bar{Y}_s = \frac{1}{n_s} \sum_{D_{si}=1} Y_i, \hat{\sigma}_s = \frac{1}{n_s - 1} \sum_{D_{si}=1} (Y_i - \hat{Y}_s)^2.$$

Покажите, что F-статистика для тестирования гипотезы о равном влиянии всех удобрений ($\beta_1=\beta_2=...=\beta_k$) выражается через известные величины следующим образом:

$$F = \frac{\sum_{s=1}^{k} n_s (\bar{Y}_s - \bar{Y})^2}{\sum_{s=1}^{k} (n_s - 1)\hat{\sigma}_s^2} \cdot \frac{n - k}{k},$$

где
$$\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$$
.

Задача 3. (30 баллов) Рассмотрим модель регрессии, которая включает в себя два набора объясняющих переменных X_1 и X_2 . Тогда

$$y = X\beta = X_1\beta_1 + X_2\beta_2 + \varepsilon$$
.

Здесь y — вектор размерности $n \times 1$, X_1 — матрица размерности $n \times k_1$, X_2 — матрица размерности $n \times k_2$, β_1 — вектор размерности $k_1 \times 1$, β_2 — вектор размерности $k_2 \times 1$, ε — вектор размерности $n \times 1$.

(а) (15 баллов) Покажите, что справедлива следующая формула:

$$\hat{\beta}_2 = (X_2' M_1 X_2)^{-1} (X_2' M_1 y),$$

где
$$M_1 = I - X_1(X_1'X_1)^{-1}X_1'$$
.

Лекции: Вакуленко Е.С. Семинары: Погорелова П.В.

(б) (15 баллов) Пусть теперь мы хотим построить регрессию y на набор k переменных, записанных в матрицу X, и на константу. Для того чтобы вычислить МНК-оценку вектора коэффициентов при X, мы можем реализовать следующий алгоритм оценивания:

- (1) преобразовать вектор y, перейдя к отклонениям от среднего, то есть к $y \bar{y}$;
- (2) преобразовать каждый столбец матрицы X, перейдя к отклонениям от среднего значения соответствующего столбца;
- (3) оценить регрессию преобразованного вектора y в соответствии с (1) на преобразованную матрицу X из (2) без константы.

Даст ли выше описанный алгоритм оценивания тот же результат для вектора коэффициентов, если теперь мы преобразуем только матрицу X в исходной модели с константой?

Подсказка: для решения пункта (б) используйте результат, описанный в пункте (а).