Differential expression analysis

Isabelle Dupanloup

BCF - Bioinformatics Core Facility

SIB - Swiss Institute of Bioinformatics

isabelle.dupanloup@sib.swiss

Teaching material from Harvard Chan Bioinformatics Core training

Learning Objectives

- Getting familiar with the differential gene expression analysis workflow
- Exploring different types of normalization methods

samples: want to see if differences across condition are significant (w.r.t. biological and technical variation)

Courtesy of Paul Pavlidis, UBC

We need to take into account the variation in the data (and where it might be coming from) when determining whether genes are differentially expressed.

- Goal of differential expression analysis:
 determine, for each gene, whether the
 differences in expression (counts) between
 groups is significant given the amount of
 variation observed within groups (replicates)
- Test for significance with an appropriate statistical model that accurately performs normalization (to account for differences in sequencing depth, etc.) and variance modeling (to account for few numbers of replicates and large dynamic expression range)

- **Biological replicates** represent multiple samples (i.e. RNA from different mice) representing the same sample class
- **Technical replicates** represent the same sample (i.e. RNA from the same mouse) but with technical steps replicated
- Usually biological variance is much greater than technical variance, so we do not need to account for technical variance to identify biological differences in expression

To determine the appropriate statistical model, we need information about the distribution of counts.

low number of counts associated with a large proportion of genes

a long right tail due to the lack of any upper limit for expression

Modeling count data

- Count data: often modeled using the binomial distribution (number of possible outcomes = 2)
- RNA-seq data
 - > large number of RNAs are represented (large number of possible outcomes)
 - probability of pulling out a particular transcript is very small
 - > Poisson distribution
- RNA-seq data
 - > biological variation across biological replicates
 - > genes with larger average expression levels will tend to have larger observed variances across replicates
 - Negative Binomial (NB) distribution !

more biological replicates

- > more precise estimates of group means
- > greater confidence in the ability to distinguish differences between sample classes (i.e. more DE genes)

an increase in the number of replicates tends to return more DE genes than increasing the sequencing depth !!!

Differential expression analysis workflow

- DESeq2 and EdgeR
 - continuously being developed
 - recommended as best practice
 - use the negative binomial model
 - yield similar results
- Limma-Voom
 - another set of tools often used together for DE analysis
 - less sensitive for small sample sizes
 - method recommended when number of biological replicates per group > 20

Normalization

- necessary to make accurate comparisons of gene expression between samples
- essential for differential expression analyses
- also necessary for exploratory data analysis, visualization of data
- main factors often considered during normalization
 - ☐ Sequencing depth
 - ☐ Gene length
 - ☐ RNA composition

Sample A Reads

Normalization method	Description	Accounted factors	Recommendations for use
CPM (counts per million)	counts scaled by total number of reads	sequencing depth	gene count comparisons between replicates of the same samplegroup; NOT for within sample comparisons or DE analysis
TPM (transcripts per kilobase million)	counts per length of transcript (kb) per million reads mapped	sequencing depth and gene length	gene count comparisons within a sample or between samples of the same sample group; NOT for DE analysis
RPKM/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	similar to TPM	sequencing depth and gene length	gene count comparisons between genes within a sample; NOT for between sample comparisons or DE analysis
DESeq2's median of ratios	counts divided by sample- specific size factors determined by median ratio of gene counts relative to geometric mean per gene	sequencing depth and RNA composition	gene count comparisons between samples and for DE analysis; NOT for within sample comparisons
EdgeR's trimmed mean of M values (TMM)	uses a weighted trimmed mean of the log expression ratios between samples	sequencing depth, RNA composition, and gene length	gene count comparisons between and within samples and for DE analysis

RPKM/FPKM (not recommended)

- normalized count values output by the RPKM/FPKM method are not comparable between samples
- RPKM: single-end reads
- FPKM: paired-end reads

gene name	read counts S1	read counts S2	read counts S3
A (2 Kb)	10	12	2 30
B (4 Kb)	20	2!	60
C (1 Kb)	5	5	3 15
D (10 Kb)	O) (1
total	35	4!	5 106
total/10(6)	0.000035	0.00004	0.000106
gene name	RPM S1	RPM S2	RPM S3
A (2 Kb)	285714.29	266666.67	7 283018.87
B (4 Kb)	571428.57	555555.56	5 566037.74
C (1 Kb)	142857.14	177777.78	3 141509.43
D (10 Kb)	0.00	0.00	9433.96
total	1000000.00	1000000.00	1000000.00
	DDVM C1	DDVM C2	DDVM C2
gene name	RPKM S1	RPKM S2	
A (2 Kb)	142857.14		
B (4 Kb)	142857.14	138888.89	9 141509.43
C (1 Kb)	142857.14	177777.78	3 141509.43
D (10 Kb)	0.00	0.00	943.40
	428571.43	450000.00	425471.70

sum of normalized reads in each sample is different !!!

DESeq2-normalized counts: Median of ratios method

Step 1: creates a pseudo-reference sample (row-wise geometric mean)

gene	sampleA	sampleB	pseudo-reference sample
EF2A	1489	906	sqrt(1489 * 906) = 1161.5
ABCD1	22	13	sqrt(22 * 13) = 17.7

• Step 2: calculates ratio of each sample to the reference

gene	sampleA	sampleB	pseudo-reference sample	ratio of sampleA/ref	ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72
BAG1	76	42	56.5	76/56.5 = 1.35	42/56.5 = 0.74
MOV10	521	1196	883.7	521/883.7 = 0.590	1196/883.7 = 1.35

since the majority of genes are not differentially expressed, the majority of genes in each sample should have similar ratios within the sample

DESeq2-normalized counts: Median of ratios method

• Step 3: calculate the normalization factor for each sample (size factor)

```
normalization_factor_sampleA <- median(c(1.28, 1.3, 1.39, 1.35, 0.59))
normalization_factor_sampleB <- median(c(0.78, 0.77, 0.72, 0.74, 1.35))
```

• Step 4: calculate the normalized count values using the normalization factor

Normalized Counts

gene	sampleA	sampleB
EF2A	1489 / 1.3 = 1145.39	906 / 0.77 = 1176.62
ABCD1	22 / 1.3 = 16.92	13 / 0.77 = 16.88

DESeq2-normalized counts: Median of ratios method

DESeq2 doesn't actually use normalized counts, rather it uses the raw counts and models the normalization inside the Generalized Linear Model (GLM).

These normalized counts will be useful for downstream visualization of results, but cannot be used as input to DESeq2 or any other tools that perform differential expression analysis which use the negative binomial model.

EdgeR-normalized counts: Trimmed mean of M values (TMM)

• Step 1: picks one sample as a reference sample

The illustrations of the EdgeR normalizations were taken from Josh Starmer (StatQuest)

EdgeR-normalized counts: Trimmed mean of M values (TMM)

An example of an extremely bad "reference sample"

To avoid choosing extreme samples, edgeR attempts to identify the most "average" sample.

Let's see how it does this!

	Sample #1	Sample #2	Sample #3
Gene1	0	10	0
Gene2	2	6	0
Gene3	33	55	200
Gene4	12	40	0
Gene5	117	187	0
Gene6	86	123	0
Gene7	34	91	0
Gene8	10	72	0
Gene9	217	250	0

Sample #3 would be a terrible reference sample.

Scaling would be based on a single, potentially very noisy, measurement.

EdgeR-normalized counts: Trimmed mean of M values (TMM)

	Original	read counts			Scale	d read count	s
5	Sample #1	Sample #2	Sample #3		Sample #1	Sample #2	Sample #3
Gene1	0	10	4	Gene1	0/47	10/111	4/249
Gene2	2	6	12	Gene2	2/47	5/111	12/249
Gene3	33	55	200	Gene3	33/47	55/111	200/249
Gene4	12	40	33	Gene4	12/47	40/111	33/249
Total rea	ds: 47	111	249		/ \		
			Origi	nal read co	ountsc	divided by the	e total

EdgeR-normalized counts: Trimmed mean of M values (TMM)

Part a: Scale each sample by its total read counts.

Part b: For each sample, determine the value such that 75% of the scaled data are

equal to or smaller than it.

Scaled read counts

	Sample #1	Sample #2	Sample #3
Gene1	0	0.09	0.02
Gene2	0.04	0.05	0.05
Gene3	0.70	0.50	0.80
Gene4	0.26	0.36	0.13

In Sample #1, 3 of the 4 values (75%) are less than or equal to 0.26

EdgeR-normalized counts: Trimmed mean of M values (TMM)

Part a: Scale each sample by its total read counts.

Part b: For each sample, determine the value such that 75% of the scaled data are equal to or smaller than it.

Part c: Average the 75th quantiles.

Part d: The "reference sample" is the one who's 75th quintile is closest to the average.

EdgeR-normalized counts: Trimmed mean of M values (TMM)

• Step 2: selects the genes for calculating the scaling factors. This is done separately for each sample relative to the "reference sample".

EdgeR-normalized counts: Trimmed mean of M values (TMM)

EdgeR-normalized counts: Trimmed mean of M values (TMM)

...and one to identify genes that are highly and lowly transcribed in both samples.

log₂(Reference) + log₂(Sample #2)

2

IVICAL	or logs
Gene2	-4.48
Gene3	-0.76
Gene4	-1.71

GeneN	-2.84

Mean of logs

EdgeR-normalized counts: Trimmed mean of M values (TMM)

Sort both tables from low to high.

Filter out the top 30% and the bottom 30% biased genes.

Filter out the top 5% and the bottom 5% of the highly and lowly transcribed genes.

log₂(Reference / Sample #2)

-0.47
-0.32
-0.21
0.49

Mean of logs

Gene2	-4.48
GeneN	-2.84
Gene4	-1.71
 Gene3	-0.76

EdgeR-normalized counts: Trimmed mean of M values (TMM)

EdgeR-normalized counts: Trimmed mean of M values (TMM)

• Step 3: calculates the weighted average of the remaining log₂ ratios

(Referen	ce / Sampl
GeneA	-0.07
GeneB	-0.02
GeneC	0.21
 GeneZ	0.49

Once you have selected which genes will be used to calculate the scaling factor, just calculate the **weighted** average of their log₂ ratios.

EdgeR-normalized counts: Trimmed mean of M values (TMM)

• Step 3: calculates the weighted average of the remaining log₂ ratios

	Sample #1	Sample #2	log ₂ (ratio)
Gene #1	202	101	1
Gene #2	204	101	1.01
Gene #3	206	101	1.02
Gene #4	2	1	1
Gene #5	4	1	2
Gene #6	6	1	2.6

Road Counts

Genes with more reads mapped to them get more weight.

This is because log ratios have more variance with low read counts.

• Step 4: compute a scaling factor 2 weighted average of log₂ ratios