

Course code	Course Name	L-T-P - Credits	Year of Introduction	
CS464	ARTIFICIAL INTELLIGENCE	3-0-0-3	2016	

Course Objectives:

- To introduce basic principles that drive complex real world intelligence applications.
- To introduce and discuss the basic concepts of AI Techniques and Learning

Syllabus:

Introduction to AI, Solving Problems by Searching-uninformed, informed, heuristic, constraint Satisfaction problems -AI Representational Schemes-Learning-Advanced searches-Alpha beta pruning, Expert Systems-Natural Language Processing Concepts.

Expected Outcome:

The Student will be able to:

- i. appreciate the scope and limits of the artificial intelligence (AI) field
- ii. assess the applicability, strengths, and weaknesses of the basic knowledge representation
- iii. interpret the role of knowledge representation, problem solving, and learning
- iv. explain various search algorithms (uninformed, informed, and heuristic) for problem solving
- v. comprehend the fundamentals of Natural Language Processing

Text Books:

- 1. E Rich, K Knight, Artificial Intelligence, 3/e, Tata McGraw Hil, 2009.
- 2. George.F.Luger, Artificial Intelligence- Structures and Strategies for Complex Problem Solving, 4/e, Pearson Education. 2002.

References:

- 1. D. Poole and A. Mackworth. Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010 Available online: http://artint.info/
- 2. Dan W Patterson, Introduction to Artificial Intelligence, Pearson, 2009
- 3. Deepak Khemeni, A First course in Artificial Intelligence, Tata McGraw Hill, 2013
- 4. Maja J. Mataric ,Robotics Primer,MIT press,2007
- 5. Patrick Henry Winston, Artificial intelligence, Addisson wessley, 1992
- 6. Stefan Edelkamp, Stefan Schroedl, Heuristic Search: Theory and Applications, Morgan Kaufman, 2011.
- 7. Stuart Jonathan Russell, Peter Norvig, Artificial intelligence, A modern approach,3rd edition, pearson,2010

	Course Plan			
Module	Contents	Hours	End Sem. Exam Marks	
I	Introduction : What is AI, The foundations of AI, History and applications, Production systems. Structures and strategies for state space search. Informed and Uninformed searches.	5	15%	
Ш	Search Methods: data driven and goal driven search. Depth first and breadth first search, DFS with iterative deepening. Heuristic search-best first search, A * algorithm.AO* algorithm, Constraint Satisfaction. Crypt Arithmetic Problems	8	15%	
	FIRST INTERNAL EXAMINATION		•	
III	AI representational schemes- Semantic nets, conceptual dependency, scripts, frames, introduction to agent based problem solving, Machine learning-symbol based-a frame work for symbol based learning.	6	15%	
IV	Advanced Search: Heuristics in Games, Design of good heuristic-an example. Min-Max Search Procedure, Alpha Beta pruning,	6	15%	
SECOND INTERNAL EXAMINATION				
V	Learning Concepts: Version space search. Back propagation learning. Social and emergent models of learning-genetic algorithm, classifier systems and genetic programming.	9	20%	
VI	Expert Systems: rule based expert systems. Natural language processing-natural language understanding problem, deconstructing language. Syntax stochastic tools for language analysis, natural language applications	9	20%	

Question Paper Pattern (End semester exam)

1. There will be FOUR parts in the question paper – A, B, C, D

2. Part A

- a. Total marks: 40
- b. *TEN* questions, each have **4 marks**, covering **all the SIX modules** (*THREE* questions from **modules I & II**; *THREE* questions from **modules III & IV**; *FOUR* questions from **modules V & VI**).

All the TEN questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having 9 marks. One question is from module I;
 one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

4. Part C

- a. Total marks: 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks: 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be AT LEAST 60% analytical/numerical questions in all possible combinations of question choices.

2014