Assignment -2 Python Programming

Assignment Date	29 september 2022
Student Name	Mr. Mothish A
Student Roll Number	910619104049
Maximum Marks	2 Marks

In [6]:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
import pandas as pd

In [7]:

#Dataset loaded

df = pd.read_csv('Churn_Modelling.csv')

df.shape

(10000, 14)

Out[7]:

df.head()

Out[8]:

In [8]:

	RowN umber			Credit Score	Geog raph y		A g e	Ten ure	Bala nce	NumOfP roducts		IsActive Member	Estimate dSalary	
C	1	15634 602	Harg rave	619	Franc e	Fe mal e	4 2	2	0.00	1	1	1	101348.8 8	1
1	2	15647 311	Hill	608	Spain	Fe mal e	4	1	8380 7.86	1	0	1	112542.5 8	0
2	3	15619 304	Onio	502	Franc e	Fe mal e	4 2	8	1596 60.80	3	1	0	113931.5 7	1
3	4	15701 354	Boni	699	Franc e	Fe mal e	3	1	0.00	2	0	0	93826.63	0
4	5	15737 888	Mitc hell	850	Spain	Fe mal e	4 3	2	1255 10.82	1	1	1	79084.10	0

In [9]:

df.dtypes

Out[9]:

RowNumber int64 CustomerId int64

```
Surname
                  object
                   int64
CreditScore
                  object
Geography
Gender
                  object
                   int64
Age
                   int64
Tenure
                 float64
Balance
NumOfProducts
                  int64
HasCrCard
                    int64
IsActiveMember
                   int64
EstimatedSalary float64
Exited
                    int64
dtype: object
                                                                       In [10]:
df.columns
                                                                       Out[10]:
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
       'IsActiveMember', 'EstimatedSalary', 'Exited'],
      dtype='object')
Univariate analysis
                                                                       In [34]:
df['EstimatedSalary'].mean()
                                                                       Out[34]:
100090.2398809998
                                                                       In [35]:
df['EstimatedSalary'].std()
                                                                       Out[35]:
57510.49281769822
                                                                       In [36]:
df['EstimatedSalary'].value counts()
                                                                       Out[36]:
24924.92
           2
101348.88
55313.44
           1
72500.68
           1
182692.80
120893.07 1
188377.21
55902.93
           1
4523.74
            1
38190.78
Name: EstimatedSalary, Length: 9999, dtype: int64
```

In [37]:

df.hist(column='EstimatedSalary',grid=False,edgecolor="red")

Out[37]:

array([[<AxesSubplot:title={'center':'EstimatedSalary'}>]], dtype=object)

df.boxplot(column=['EstimatedSalary'], grid=False, color='red')

In [38]:

Out[38]:

<AxesSubplot:>

EstimatedSalary

In [39]:

```
sns.kdeplot(df['EstimatedSalary'])
```

<AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>

Bivariate analysis

```
In [41]:
# Scatterplots
plt.scatter(df.EstimatedSalary, df.Age)
plt.title('Estimated Salary vs Age')
plt.xlabel('Estimated Salary')
plt.ylabel('Age')

Out[41]:
Text(0, 0.5, 'Age')
```


In [42]:

Correlation Coefficients
df.corr()

Out[42]:

	Out[42]										
	RowNu mber	Custo merId	Credit Score	Age	Ten ure	Bala nce	NumOfP roducts	HasCr Card	IsActive Member	Estimate dSalary	
RowNum ber	1.0000	0.0042	0.0058 40	0.00 0783	- 0.00 6495	- 0.00 9067	0.007246	0.000 599	0.012044	- 0.005988	- 0.01 6571
Custome rId	0.0042	1.0000	0.0053 08	0.00 9497	- 0.01 4883	- 0.01 2419	0.016972	- 0.014 025	0.001665	0.015271	- 0.00 6248
CreditSc ore	0.0058 40	0.0053 08	1.0000	- 0.00 3965	0.00 0842	0.00 6268	0.012238	- 0.005 458	0.025651	0.001384	- 0.02 7094
Age	0.0007 83	0.0094 97	- 0.0039 65	1.00 0000	- 0.00 9997	0.02 8308	- 0.030680	- 0.011 721	0.085472	0.007201	0.28 5323
Tenure	- 0.0064 95	- 0.0148 83	0.0008 42	- 0.00 9997	1.00 0000	- 0.01 2254	0.013444	0.022 583	0.028362	0.007784	- 0.01 4001
Balance	- 0.0090 67	- 0.0124 19	0.0062 68	0.02 8308	- 0.01 2254	1.00	0.304180	- 0.014 858	0.010084	0.012797	0.11 8533

	RowNu mber	Custo merId	Credit Score	Age	Ten ure	Bala nce	NumOfP roducts	HasCr Card	IsActive Member	Estimate dSalary	
NumOfPr oducts	0.0072 46	0.0169 72	0.0122 38	- 0.03 0680	0.01 3444	- 0.30 4180	1.000000	0.003 183	0.009612	0.014204	- 0.04 7820
HasCrCar d	0.0005 99	- 0.0140 25	- 0.0054 58	- 0.01 1721	0.02 2583	- 0.01 4858	0.003183	1.000	0.011866	0.009933	- 0.00 7138
IsActive Member	0.0120 44	0.0016 65	0.0256 51	0.08 5472	- 0.02 8362	- 0.01 0084	0.009612	- 0.011 866	1.000000	- 0.011421	- 0.15 6128
Estimate dSalary	- 0.0059 88	0.0152 71	- 0.0013 84	- 0.00 7201	0.00 7784	0.01 2797	0.014204	- 0.009 933	0.011421	1.000000	0.01 2097
Exited	- 0.0165 71	- 0.0062 48	- 0.0270 94	0.28 5323	- 0.01 4001	0.11 8533	- 0.047820	- 0.007 138	- 0.156128	0.012097	1.00

In [43]:

Simple Linear Regression
sns.barplot(x='Gender', y='Balance', data=df)

Out[43]:

<AxesSubplot:xlabel='Gender', ylabel='Balance'>

In [44]:

Out[44]:

sns.boxplot(x='Gender',y='Age',data=df)

<AxesSubplot:xlabel='Gender', ylabel='Age'>

sns.violinplot(x='Gender', y='Age', data=df, palette='coolwarm_r')
<AxesSubplot:xlabel='Gender', ylabel='Age'>

In [45]:

Out[45]:

Multivariate Analysis

Pair Plot
sns.pairplot(data=df,aspect=.85);


```
# Scatter Plot
sns.set(font_scale=1.3)
sns.scatterplot(x='EstimatedSalary',y='Age',data=df)
plt.xlabel('EstimatedSalary')
plt.ylabel('Age')

Text(0, 0.5, 'Age')

80

40
```

```
# Heat Map
sns.set(font_scale=1.15)
plt.figure(figsize=(30,4))
sns.heatmap(df.corr(),cmap='RdBu_r',annot=True,vmin=-1, vmax=1);
```

100000

EstimatedSalary

150000

200000

In [49]:

50000

20

RowNumber	1	0.0042	0.0058	0.000
CustomerId	0.0042	1	0.0053	0.00
CreditScore	0.0058	0.0053	1	-0.0
Age	0.00078	0.0095	-0.004	1
Tenure	-0.0065	-0.015	0.00084	-0.0
Balance	-0.0091	-0.012	0.0063	0.02
NumOfProducts	0.0072	0.017	0.012	-0.0
HasCrCard	0.0006	-0.014	-0.0055	-0.0
IsActiveMember	0.012	0.0017	0.026	0.08
EstimatedSalary	-0.006	0.015	-0.0014	-0.00
Exited	-0.017	-0.0062	-0.027	0.2
	RowNumber	CustomerId	CreditScore	Ag

In [51]:

#Missing values in the dataset
df.isnull().sum().sum()

0

Outliers Identification

In [58]:

Out[51]:

#Visualization

sns.boxplot(df['EstimatedSalary'], data=df)

C:\Users\Ilyas\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[58]:

<AxesSubplot:xlabel='EstimatedSalary'>


```
In [59]:
#Skewness

df['EstimatedSalary'].skew()

Out[59]:
0.0020853576615585162

In [60]:
#Interquartile Range
Q1=df['EstimatedSalary'].quantile(0.25)
Q3=df['EstimatedSalary'].quantile(0.75)
IQR=Q3-Q1
print(IQR)
98386.1375
```

Outliers Treatment

```
In [66]:
# 1.Flooring and Capping.
# 2.Trimming.
Q1=df['EstimatedSalary'].quantile(0.25)
Q3=df['EstimatedSalary'].quantile(0.75)
IQR=Q3-Q1
whisker_width = 1.5
lower_whisker = Q1 -(whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
df['EstimatedSalary']=np.where((df['EstimatedSalary'])>upper_whisker,upper_whisker,upper_whisker,np.where(df['EstimatedSalary']<lower_whisker,lower_whisker,df['EstimatedSalary']))</pre>
```

```
In [67]:
```

sns.boxplot(df['EstimatedSalary'],data=df)

C:\Users\Ilyas\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[67]:

<AxesSubplot:xlabel='EstimatedSalary'>

Check for Categorical Columns

In [69]:

data_numeric = df[['Age','Balance', 'NumOfProducts','HasCrCard',
'IsActiveMember', 'EstimatedSalary', 'Exited']]
data_categorical = df[['Surname', 'Geography', 'Gender']]

In [70]:

data numeric.head()

Out[70]:

	Age	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	42	0.00	1	1	1	101348.88	1
1	41	83807.86	1	0	1	112542.58	0
2	42	159660.80	3	1	0	113931.57	1
3	39	0.00	2	0	0	93826.63	0

	Age	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
4	43	125510.82	1	1	1	79084.10	0

In [71]:

data_categorical.head()

Out[71]:

	Surname	Geography	Gender
0	Hargrave	France	Female
1	Hill	Spain	Female
2	Onio	France	Female
3	Boni	France	Female
4	Mitchell	Spain	Female

In [72]:

```
print(df['Surname'].unique())
print(df['Geography'].unique())
print(df['Gender'].unique())
['Hargrave' 'Hill' 'Onio' ... 'Kashiwagi' 'Aldridge' 'Burbidge']
['France' 'Spain' 'Germany']
['Female' 'Male']
```

Perform Encoding

In [78]:

```
from sklearn.preprocessing import OneHotEncoder
Surname encoder = OneHotEncoder()
Surname_reshaped = np.array(data_categorical['Surname']).reshape(-1, 1)
Surname values = Surname encoder.fit transform(Surname reshaped)
print(data categorical['Surname'][:5])
print(Surname values.toarray()[:5])
print(Surname encoder.inverse transform(Surname values)[:5])
    Hargrave
1
        Hill
2
        Onio
3
         Boni
    Mitchell
Name: Surname, dtype: object
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]
[['Hargrave']
['Hill']
 ['Onio']
 ['Boni']
```

```
['Mitchell']]
```

One Hot Encoding

```
In [79]:
Gender encoder = OneHotEncoder()
Gender reshaped = np.array(data categorical['Gender']).reshape(-1, 1)
Gender values = Gender encoder.fit transform(Gender reshaped)
print(data categorical['Gender'][:5])
print(Gender values.toarray()[:5])
print(Gender encoder.inverse transform(Gender values)[:5])
    Female
1
   Female
   Female
   Female
   Female
Name: Gender, dtype: object
[[1. 0.]
[1. 0.]
[1. 0.]
[1. 0.]
[1. 0.]]
[['Female']
 ['Female']
 ['Female']
 ['Female']
 ['Female']]
```

Label Encoding

```
In [80]:
from sklearn.preprocessing import LabelEncoder

Gender_encoder = LabelEncoder()

Gender_encoder = LabelEncoder()

Gender_values = Gender_encoder.fit_transform(data_categorical['Gender'])

print("Before Encoding:", list(data_categorical['Gender'][:5]))
print("After Encoding:", Gender_values[:5])
print("Result after inverse:",
Gender_encoder.inverse_transform(Gender_values[:5]))
Before Encoding: ['Female', 'Female', 'Female', 'Female', 'Female']

After Encoding: [0 0 0 0 0]
Result after inverse: ['Female' 'Female' 'Female' 'Female' 'Female']
```

Split the data into Dependent and Independent variables.

```
In [83]:
a=df.iloc[:, :-1].values
print(a)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
       [2 15647311 'Hill' ... 0 1 112542.58]
       [3 15619304 'Onio' ... 1 0 113931.57]
       ...
       [9998 15584532 'Liu' ... 0 1 42085.58]
       [9999 15682355 'Sabbatini' ... 1 0 92888.52]
       [10000 15628319 'Walker' ... 1 0 38190.78]]

b= df.iloc[:, -1].values
print(b)
[1 0 1 ... 1 1 0]
```

In [88]:

Scale the Independent variables

```
from sklearn.preprocessing import MinMaxScaler
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
a = df[['Age', 'NumOfProducts']]
scaleda = scale.fit_transform(a)
print(scaleda)
[[ 0.29351742 -0.91158349]
[ 0.19816383 -0.91158349]
[ 0.29351742  2.52705662]
...
[-0.27860412 -0.91158349]
[ 0.29351742  0.80773656]
[-1.04143285 -0.91158349]]
```

Split the data into Training and Testing

```
In [95]:
#LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
x = df.iloc[:, :-1]
y= df.iloc[:, -1]
a_train, a_test, b_train, b_test = train_test_split(
    a, y, test_size=0.05, random_state=0)
In [96]:
```

	Age	NumOfProducts
799	42	1
1069	40	1
8410	46	1
9436	38	3
5099	45	1
9225	32	2
4859	22	1
3264	35	2
9845	38	2
2732	48	1

9500 rows × 2 columns

b_train

799 0

1069 1

8410 0

9436 0

5099 1

9225 0

. .

4859 0

3264 0

9845 0

2732 1

Name: Exited, Length: 9500, dtype: int64

 a_test

	Age	NumOfProducts
9394	35	1
898	40	1
2398	42	1
5906	32	1
2343	38	2
8938	47	1

Out[96]:

In [97]:

Out[97]:

In [98]:

Out[98]:

	Age	NumOfProducts
9291	36	2
491	41	1
2021	18	1
4299	30	2

500 rows × 2 columns

1 .								In [99]:
b_tes	t							Out[99]:
9394	0							o are[>>].
898	1							
2398	0							
5906	0							
2343	0							
8938	0							
9291	0							
491	0							
2021	0							
4299	0							
Name:	Exited,	Length:	500,	dtype:	int64			
								In []:
								In []: