Alma Mater Studiorum - Università di Bologna

Esercizi per il corso di Data Science - Laurea in Scienza dei Materiali

Prof. D. Di Sante, Dr. A. Consiglio Semestre Invernale 2024/2025 2° Foglio, Ottimizzazione 09/10/2024

Esercizio 1 - Ottimizzazione non vincolata

(a) Si consideri il problema di ottimizzazione

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$

ove la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ è data da:

$$f(x,y) = x^2 - 2x + x^2y^2 - 2xy$$

Si calcolino i punti stazionari critici del problema e si trovino tutti i suoi minimi locali e globali.

Successivamente, si consideri il punto $\mathbf{x}_0 = (0,0)$ e si ottimizzi la funzione con i metodi della discesa del gradiente e di Newton.

Esercizio 2 - Metodi di discesa del gradiente

(a) Si creino 200 punti-dati (x_i, y_i) , dove ogni x_i è generato in modo casuale dall'intervallo [0, 1] e $y_i = \sin(2\pi x_i) + \epsilon$. ϵ è un rumore casuale i cui valori appartengono all'intervallo [-0.2, 0.2].

Si implementi in Python un codice basato sulla discesa stocastica del gradiente per risolvere il problema di regressione, ove verranno utilizzati i 200 punti-dati generati in precedenza. Per iniziare, si può considerare un tasso di apprendimento costante (per esempio $\alpha = 0.001$) e un modello di regressione polinomiale di ordine D. I coefficienti del polinomio possono essere generati in modo casuale all'interno di un intervallo [-0.5, 0.5].

(b) Sia data la funzione:

$$f(x) = x^4 - 3x^3 + 2$$

Si utilizzino i tre metodi visti in aula per minimizzare la funzione di costo, ovvero: metodo del gradiente, discesa del gradiente con momento e discesa del gradiente accelerata di Nesterov.

Si faccia un confronto critico tra i risultati, studiando anche il numero di iterazioni necessarie per raggiungere la convergenza al valore di minimo. Quale algoritmo oscilla di meno, e perché?

Si può fare riferimento anche al materiale didattico del Prof. Di Sante presente su Virtuale.