

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2014/2015 - 2nd Year Examination - Semester 4

IT4105 – Programming II
Part 2 - Structured Question Paper

1st August, 2015 (ONE HOUR)

To be completed by th	e candid	late	
BIT Examination	Index	No:	

Important Instructions:

- The duration of the paper is 1 (one) hour.
- The medium of instruction and questions is English.
- This paper has 2 questions and 16 pages.
- Answer both questions.
- Write your answers in English using the space provided in this question paper.
- Do not tear off any part of this answer book.
- Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.

Questions Answered

Indicate by a cross (x), (e.g. x) the numbers of the questions answered.

	Ques	tion nun	nbers	
To be completed by the candidate by marking a cross (x).	1	2		
To be completed by the examiners:				

Index No										

1) (a | Consider the following diagram and the ListNode class data structure definition.


```
Class ListNode
{
    Object ListNode;
    ListNode=next;
    ListNode=previous
}
```

Write down a Java Code or Pseudo Code to perform the following independent operations. Your answer should also be supported along with suitable diagrams.

(i) Describe, how the element "X" is inserted immediately before the Element "B".

ANSWER IN THIS BOX

Index No										

	[3 Mark
ANSWER IN THIS BOX	

(ii) Describe how the element "X" is inserted immediately after the element "B" in the initial

list.

Index	Nο								

	how you can delete	the element	B Hom	the initial his		
						[3 N
ANSWE	R IN THIS BOX					
You may	y assume that the ab	ove doubly	linked list o	consist of the	header and the	ne tail r
to indica	te both ends. What	is the relation	onship betw	een the head	er and the tail	if the
doubly l	ined list is empty?					
						[3 M
ANSWE	R IN THIS BOX					

					Index	No		
(i) Define the terms Graphs.	Cyclic Path,	Adjacency	Matrix	and	Path	Matrix	used in	Directed

(b

ANSWER IN THIS BOX

Index No											

Consider the following directed graph. It shows the name of cities and the possible paths from one city to another. The graph is labelled Graph P.

(ii) Find the Adjacency Matrix of Graph P.

ANSWER IN THIS BOX

Index No		

	questic	entation? on.	_ 0 4	 	 	 20	
	-						[3]
1							

Index No		
maex No		

Show the final answer with intermediate results.	
	[4 Mar
ANSWER IN THIS BOX	

(iv)Traverse the above directed graph in Breadth First Traversal Order using a queue.

_									
Index No									

2) (a) Consider the following binary search tree as shown in Figure H:

Figure H: Binary Search Tree

- (i) Write down the order of nodes visited for the tree if the tree is traversed in the following sequence.
 - Pre-order
 - In-order
 - Post-order

ANSWER IN THIS BOX	

Inday Ma											
Index No	 	 								 	

(ii)	One wants to find the maximum value from the above binary search tree in a recursive
	manner. You have been assigned to do this task and hence you are required to develop a
	recursive algorithm to find the maximum from any binary search tree. Using the
	proposed algorithm, illustrate how you could find the maximum value from the above
	tree.
	[4 Marks]

	Index No
i)	Write a JAVA code to find the maximum value from a binary search tree in a recursive
]	manner.
	[4 Marks
	ANSWER IN THIS BOX
_	

	[3 Ma
ANSWER IN THIS BOX	

Index No

No																						
	No																					

(v) Consider the following pseudo code algorithm:

```
    add(T, v, e){
    if(T.isLeaf(v)){
        if(v.element()>=e)
            add element e as v's left child
        else
            add element e as v's right child
    } else {
        if(v.element()>=e)
            add(T, T.leftChild(v), e)
        else
        add(T, T.rightChild(v), e)
    }
```

One wants to insert node 9 to Graph H. Describe how you could insert the node according to the steps (step shows the line numbers of the pseudo code) in the algorithm above?

[4 Marks]

ANSWER IN THIS BOX

ndex No		

(b) One wants to sort N numbers using the radix sort algorithm. You may that assume that each number has k-bits. For example, one can consider the following data set.

The above data set can be sorted using the straight radix sort as below.

Index No	

Write a suitable pseudo code algorithm or Java code to sort any given integer data set using the methodology described above.

[4 Marks]

ANSWER IN THIS BOX

Index No .				
------------	--	--	--	--

Draw the **final binary min heap** that results after inserting: 95, 16, 7, 59, 21, 45, 06, and 4 into an initially empty binary min heap in the given order. Show **only** the final heap.

Intermediate heaps are not required.

[3 Marks]

ANSWER IN THIS BOX
