$\ensuremath{\mathsf{CS703}}$ - Optimization and Computing Notes

Nong Minh Hieu^{1,2}

- 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU Singapore)
- ² School of Computing and Information Systems, Singapore Management University (SMU - Singapore)

Contents

1	Introduction		
		2	
	1.2 Convex Functions	3	
A	List of Definitions	5	
В	Important Theorems	5	
\mathbf{C}	Important Corollaries	5	
D	Important Propositions	5	
\mathbf{E}	References	6	

1 Introduction

Definition 1.1 (Optimization Problem).

Generally, an optimization problem is defined as follows:

minimize:
$$f_0(x)$$

subject to: $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$. (1)

Where we have:

- 1. $x \in \mathbb{R}^n$ is the optimization variable.
- 2. $f_0: \mathbb{R}^n \to \mathbb{R}$ is the opjective (cost function).
- 3. $f_i: \mathbb{R}^n \to \mathbb{R}$ are inequality constraints.
- 4. $h_i: \mathbb{R}^n \to \mathbb{R}$ are equality constraints.

Definition 1.2 (Convex Optimization Problem).

An optimization problem is a convex optimization problem if:

- 1. f_0, f_1, \ldots, f_m are convex.
- 2. Equality constraints are affine.

The reason why we need convex optimization problems are:

- 1. Convex optimization problems can be solved optimally (no local minima).
- 2. Time required to solve convex optimization problems is polynomial (in terms of number of variables and constraints).

1.1 Convex Sets

Definition 1.3 (Lines).

Let $x_1, x_2 \in \mathbb{R}^n$. A line passing through x_1, x_2 is defined as:

$$L(x_1, x_2) = \left\{ x \in \mathbb{R}^n : x = \theta x_1 + (1 - \theta) x_2, \theta \in \mathbb{R} \right\}.$$
 (2)

When $\theta \in (0,1)$, we restrict the line to the points between x_1 and x_2 (exclusive).

Definition 1.4 (Affine Sets).

An affine set contains its elements' **affine combinations**: If x_1, \ldots, x_k belongs to an affine set A, then it contains the affine combination

$$\sum_{i=1}^{k} \theta_i x_i \in A, \quad \theta_i \in \mathbb{R}, \sum_{i=1}^{k} \theta_i = 1.$$
 (3)

For example,

- 1. An empty set is affine because there is no point.
- 2. A singleton is affine because there is only one point.
- 3. A line (extends indefinitely) is affine.
- 4. Any vector space is affine.
- 5. Linear subspaces of a vector space is affine.

Definition 1.5 (Convex Sets).

A convex set contains its elements' **convex combinations**: If x_1, \ldots, x_k belongs to an affine set A, then it contains the convex combination

$$\sum_{i=1}^{k} \theta_i x_i \in A, \quad \theta_i \in [0, 1], \sum_{i=1}^{k} \theta_i = 1.$$
 (4)

For example,

- 1. Norm ball $\{x: \|x\| \le r\}$ for a given norm $\|\cdot\|$, radius r.
- 2. Hyperplane $\{x: a^{\top}x = b\}$ for given a, b.
- 3. Halfspace $\left\{x:a^{\top}x\leqslant b\right\}$ for given a,b.
- 4. Affine space $\{x : Ax = b\}$ for given A, b.

Definition 1.6 (Convex Hull). __

Given a discrete set $C = \{x_1, \dots, x_k\}$. The convex hull of C, denoted conv(C), is the set of all convex combinations of points in C:

$$\operatorname{conv}(C) = \left\{ \sum_{i=1}^{k} \theta_i x_i : x_i \in C, \theta_i \geqslant 0, \sum_{i=1}^{k} \theta_i = 1 \right\}.$$
 (5)

Convex hulls are always convex.

1.2 Convex Functions

Definition 1.7 (Convex Function).

A function $f: \mathbb{R} \to \mathbb{R}$ is convex if

- (i) dom f is convex.
- (ii) $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y), \forall x, y \in \text{dom } f, \alpha \in [0, 1].$

A function f is concave if -f is convex.

Definition 1.8 (Strictly Convex Function). _

A function $f: \mathbb{R} \to \mathbb{R}$ is convex if

- (i) dom f is convex.
- (ii) $f(\alpha x + (1 \alpha)y) < \alpha f(x) + (1 \alpha)f(y), \forall x, y \in \text{dom} f, \alpha \in [0, 1].$

A strictly convex function implies a unique global minimum.

Test for Convexity of Function: We have the following tests for the convexity of any (real-valued vector) functions.

- 1. Second-order derivative test.
- 2. Restriction to a line.
- 3. Epigraph.

Proposition 1.1: Restriction to A Line

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff $g: \mathbb{R} \to \mathbb{R}$, defined as $g(t) = f(x + t\nu)$ is convex in t for any $x \in \text{dom} f$ and $\nu \in \mathbb{R}^n$. Furthermore,

$$dom g = \left\{ t \in \mathbb{R} : x + tv \in dom f \right\}. \tag{6}$$

Proof.

We prove from both directions.

(i) f **convex** $\Longrightarrow g$ **convex**: There are two sub-sections to prove - domg is convex and $g(\alpha t_1 + (1-\alpha)t_2) \le \alpha g(t_1) + (1-\alpha)g(t_2), \ \forall \alpha \in (0,1); t_1, t_2 \in \text{dom}g.$

П

Proposition 1.2: Second Order Derivative Test

A	A List of Definitions					
	1.1	Definition (Optimization Problem)				
	1.2	Definition (Convex Optimization Problem)				
	1.3	Definition (Lines)				
	1.4	Definition (Affine Sets)				
	1.5	Definition (Convex Sets)				
	1.6	Definition (Convex Hull)				
	1.7	Definition (Convex Function)				
	1.8	Definition (Strictly Convex Function)				
В		Important Theorems Important Corollaries				
D)]	Important Propositions				
	1.1	Restriction to A Line				
	1.2	Second Order Derivative Test				

E References