a) Design a 2x1 MUX. b) Using 2 2x1 MUX, design a 4x1 MUX.

c) Design and implementation of 1 bit Logic unit.

2 2x1 to form 4x1

<u>LU</u>

51	50	Output	Operation
0	0	$F_i = A_i + B_i$	OR
0	1	$F_i = A_i \oplus B_i$	XOR
1	0	$F_i = A_i B_i$	AND
1	1	$F_i = A_i^i$	NOT

<u>AU</u>

Inputs			Outputs	
A	B	$C_{\rm in}$	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

∫ FA

(a) Addition

(c) A plus 1's complement of B

(b) Addition with carry

(d) Subtraction

Figure 9-6 Operations obtained by controlling one set of inputs to a parallel adder

Function select		Y Output equals equals		Function	
s ₁	<i>s</i> ₀	$C_{\rm in}$	•		
0	0	0	0	F = A	Transfer A
0	0	1	0	F = A + 1	Increment A
0	1	0	B	F = A + B	Add B to A
0	1	1	В	F = A + B + 1	Add B to A plus 1
1	0	0	\overline{B}	$F = A + \overline{B}$	Add I's complement of B to A
1	0	1	\vec{B}	$F = A + \widehat{B} + 1$	Add 2's complement of B to A
1	1	0	All 1's	F = A - 1	Decrement A
1	1	1	All I's	F = A	Transfer A

Figure 9-8 Logic diagram of arithmetic circuit