Eliminating Recursion Recursive Search with Backtracking

CS 311 Data Structures and Algorithms Lecture Slides Wednesday, February 20, 2013

Chris Hartman
Department of Computer Science
University of Alaska Fairbanks
cmhartman@alaska.edu
Based on material by Glenn G. Chappell
© 2005–2009 Glenn G. Chappell

Unit Overview Recursion & Searching

Major Topics

- ✓ Introduction to Recursion
- ✓ Search Algorithms
- ✓ Recursion vs. Iteration
- ✓ Eliminating Recursion
 - Recursive Search with Backtracking

Review Recursion vs. Iteration

The **Fibonacci numbers** are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...

To get the next Fibonacci number, add the two before it.

They are defined formally as follows:

• We denote the *n*th Fibonacci number by F_n (n = 0, 1, 2, ...).

•
$$F_0 = 0$$
.

Another recurrence relation

•
$$F_1 = 1$$
.

• For $n \ge 2$, $F_n = F_{n-2} + F_{n-1}$.

As before, recurrence relations often translate nicely into recursive algorithms.

TO DO

• Write a recursive function to compute a Fibonacci number: given n, compute F_n .

Done. See fibol.cpp

Recursion vs. Iteration continued Fibonacci Numbers — Problem

For high-ish values of *n* (above 40, say) function **fibo** in **fibo1.cpp** is **extremely** slow.

What can we do about this?

TO DO

 Rewrite the Fibonacci computation in a fast iterative form. Done. See fibo2.cpp

Wow! Recursion is a **lot** slower than iteration!

0 0

Wrong! Wrong, wrong, wrong, wrong. wrong. You're wrong.

TO DO

 Figure out how to do a fast recursive version. Write it. Done. See fibo3.cpp

Recursion vs. Iteration Note — Even Faster fibo

There is actually a simple formula for F_n (we must use floating-point).

Let
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.6180339887$$
. This is called the "golden ratio".

Then for each nonnegative integer n, F_n is the nearest integer to $\frac{\varphi^n}{\sqrt{5}}$.

Here is **fibo** using this formula:

20 Feb 2013

CS 311 Fall 2013

5

Review Recursion vs. Iteration [1/2]

Five Fibonacci number computation programs.

• fibo2: Iterative.

• fibo3: Inspired by previous. Recursive. Returns 2 values, instead of 1. Added wrapper.

- fibo4: Recursive memoizing.
 - Memoizing (which we do not really cover) is saving values of a function, to be returned when it is called with the same parameters. A special case of caching.
- fibo5: Uses a formula.

Wow!
Recursion is a lot slower than iteration!

Wrong! Wrong, wrong, wrong, wrong, wrong, wrong.

You' re wrong.

Also much faster.

Much faster.

Review Recursion vs. Iteration [2/2]

Choice of algorithm can make a **huge** difference in performance.

As we will see, data structures can make a similar difference.

Recursion vs. Iteration Fibonacci Numbers — Lessons

Some algorithms have natural implementations in both **recursive** and **iterative** form.

Iterative means making use of loops.

A struct can be used to return two values at once.

The template std::pair (declared in <utility>) can be helpful.

Sometimes we have a **workhorse** function that does most of the processing and a **wrapper** function that is set up for convenient use.

- Often the wrapper just calls the workhorse for us.
- This is common when we use recursion, since recursion can place inconvenient restrictions on how a function is called.
- We have seen this in another context. Remember toString and operator<< in the package from Assignment #1.

Review: Drawbacks of Recursion

Two factors can make recursive algorithms inefficient.

- Inherent inefficiency of <u>some</u> recursive algorithms
 - However, there are efficient recursive algorithms (fibo3.cpp).
- Function-call overhead
 - Making all those function calls requires work: saving return addresses, creating and destroying automatic variables.

And recursion has another problem.

- Memory-management issues
 - Memory for automatic variables is allocated in a way that does not allow for normal error handling. Making too many recursive calls will cause stack overflow (resulting in a crash — or worse).
 - When we use iteration, we can manage memory ourselves. This is more work, but it also allows us to handle errors properly.

These two are important regardless of the recursive algorithm used.

Review Eliminating Recursion

Every recursive function can be rewritten as an iterative function that uses essentially the same algorithm.

- The system helps you do recursion by providing a Stack, used to hold return addresses for function calls, and values of automatic local variables.
- We can eliminate recursion (convert it to iteration) by mimicking the system's method of handling recursive calls using Stack frames.
- This "brute force" method is primarily of theoretical interest. When eliminating recursion, it is usually better to do some thinking.
- We will look at this method again when we study Stacks.

Tail recursion is when the recursive call is the last operation a function does.

- Tail recursion is easy to eliminate.
- Some compilers (not C++) do this automatically: tail call optimization.

Recursive Search with Backtracking Introduction — Backtracking

In most of the programming you have done, you have probably proceeded directly toward our goal.

- Work never had to be undone.
- But what if it does ...

Sometimes we **search** for a solution to a problem.

- When we search for solutions, we may hit "dead ends" that do not work.
- Then we need to restore the program to a previous state. This is called **backtracking**.

Recursion is often a convenient technique for search with backtracking.

 However, such recursive programming can require rather different ways of thinking from "normal" recursive programming.

Recursive Search with Backtracking Introduction — Partial Solutions

Recursive solution search works well when we have a notion of a **partial solution**.

- Each recursive call says, "Look for full solutions based on this partial solution."
- The function attempts to build more complete solutions based on the partial solution it was given.
- For each possible more complete solution, a recursive call is made.
- We usually have a wrapper function, so that the client does not need to deal with partial solutions.

In a recursive solution search, to backtrack, we often simply return from a function.

Recursive Search with Backtracking Introduction — No-Backtracking Diagram

In the recursion we studied earlier:

- A recursive call is a request for information (or action).
- The return sends the information back (if any).

The diagram below shows the information flow in the first version of fibo.

Recursive Search with Backtracking Printing Solutions — Diagram

In recursive search with backtracking:

- A recursive call means "continue with the proposed partial solution".
- The return means "backtrack".

The diagram below illustrates a search for 3-digit sequences with digits in $\{0, 1\}$, in which no two consecutive digits are the same.

On finding a solution, we can stop. Or continue, finding **all solutions**.

Recursive Search with Backtracking Printing Solutions — *n*-Queens Problem

We now look at how to solve the **n-Queens Problem**.

 Place n queens on an n x n chessboard so that none of them can attack each other.

Recursive Search with Backtracking Printing Solutions — How to Do It [1/4]

To Figure Out

- What is a partial solution for the problem we wish to solve? How should we represent a partial solution?
 - If possible, we should represent a partial solution in a way that makes it convenient to determine whether we have a full solution.
 - It is also nice if we can quickly determine whether we have a dead end.
- How should we output a full solution?

Recursive Search with Backtracking Printing Solutions — How to Do It [2/4]

Representing a Partial Solution

- Number rows and columns 0 .. n−1.
- Two variables:
 - Variable board (vector of ints).
 - Variable n (int).
- Variable n holds the number of rows/columns in a full solution.
- Variable board holds the columns of the queens already placed, one per row.
- The size of board is the number of rows in which queens have been placed.

Recursive Search with Backtracking Printing Solutions — How to Do It [3/4]

The Code

- Nonrecursive wrapper function
 - Creates an empty partial solution.
 - Calls the workhorse function with this partial solution.
- Recursive workhorse function is given a partial solution, prints all full solutions that can be made from it.
 - Do we have a full solution?
 - If so, output it.
 - Do we have a clear dead end?
 - If so, simply return.
 - Otherwise:
 - Make a recursive call for each way of extending the partial solution.

Note:

This part **might** not be necessary. Another way to handle dead ends is simply not to make any recursive calls when we get to this part.

Recursive Search with Backtracking Printing Solutions — How to Do It [4/4]

Notes

- It is often convenient to have a separate function that checks the validity of a proposed way to extend a partial solution.
- When you backtrack make sure that you go back to the previous partial solution. Two ways to do this:
 - Each recursive call has its own copy of the current partial solution.
 - All use the same data. When backtracking, restore the previous state.

TO DO

 Write a recursive function to print solutions to the n-Queens Problem.

Recursive Search with Backtracking TO BE CONTINUED ...

Recursive Search with Backtracking will be continued next time.