Байесовский подход к определению достаточного размера выборки

Выпускная квалификационная работа бакалавра

Киселев Никита Сергеевич Научный руководитель: А.В.Грабовой 17 апреля 2024 г.

Московский физико-технический институт (национальный исследовательский университет) Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

Байесовский подход к определению достаточного размера выборки

Исследуется задача определения достаточного размера выборки.

Проблема

Определение достаточного размера выборки без постановки статистической гипотезы о распределении параметров модели.

Цель

Предложить критерий определения достаточного размера выборки. Построить метод, реализующий этот критерий на практике.

Решение

Предлагается использовать в качестве критерия

- 1. Сходимость функции правдоподобия на бутстрапированных подвыборках;
- 2. Близость апостериорных распределений параметров на схожих подвыборках.

1/12

Постановка задачи определения достаточного размера выборки

Выборка

$$\mathfrak{D}_m = \left\{ (\mathbf{x}_i, y_i) \right\}, i \in \mathcal{I} = \left\{ 1, \dots, m \right\}$$

- $\mathbf{x} \in \mathbb{X} \subseteq \mathbb{R}^n$ вектор признакового описания объекта;
- ullet $y \in \mathbb{Y}$ значение целевой переменной.

Вероятностная модель

$$p(y, \mathbf{w}|\mathbf{x}) = p(y|\mathbf{x}, \mathbf{w})p(\mathbf{w}) : \mathbb{Y} \times \mathbb{W} \times \mathbb{X} \to \mathbb{R}^+$$

- ullet $p(y|\mathbf{x},\mathbf{w})$ правдоподобие;
- ullet $p(\mathbf{w})$ априорное распределение.

Определение

Размер выборки m^* называется достаточным согласно критерию T, если T выполняется для всех $k\geqslant m^*$.

Требуется

- Предложить критерий T определения достаточного размера выборки m^{st} ;
- Построить метод, реализующий критерий T на практике.

Анализ поведения функции правдоподобия

Функция правдоподобия

$$L(\mathfrak{D}_m, \mathbf{w}) = p(\mathbf{y}_m | \mathbf{X}_m, \mathbf{w}) = \prod_{i=1}^m p(y_i | \mathbf{x}_i, \mathbf{w}), \qquad l(\mathfrak{D}_m, \mathbf{w}) = \sum_{i=1}^m \log p(y_i | \mathbf{x}_i, \mathbf{w})$$

Оценка максимума правдоподобия

$$\hat{\mathbf{w}}_k = \arg\max_{\mathbf{w} \in \mathbb{W}} L(\mathfrak{D}_k, \mathbf{w})$$

Определение (D-достаточный размер выборки)

$$\forall k \geqslant m^* : \mathcal{D}(k) = \mathbb{D}_{\hat{\mathbf{w}}_k} L(\mathfrak{D}_m, \hat{\mathbf{w}}_k) \leqslant \varepsilon$$

Определение (М-достаточный размер выборки)

$$\forall k \geqslant m^* : \underline{M}(k) = \left| \mathbb{E}_{\hat{\mathbf{w}}_{k+1}} L(\mathfrak{D}_m, \hat{\mathbf{w}}_{k+1}) - \mathbb{E}_{\hat{\mathbf{w}}_k} L(\mathfrak{D}_m, \hat{\mathbf{w}}_k) \right| \leqslant \varepsilon$$

Корректность определения М-достаточного размера выборки

Обозначим параметры распределения $\hat{\mathbf{w}}_k$ следующим образом:

- ullet Математическое ожидание $\mathbb{E}\hat{\mathbf{w}}_k = \mathbf{m}_k$;
- ullet Матрица ковариации $\mathbb{D}\hat{\mathbf{w}}_k = oldsymbol{\Sigma}_k.$

Теорема 1 (Киселев, 2023)

Пусть $\|\mathbf{m}_{k+1} - \mathbf{m}_k\|_2 \to 0$ и $\|\mathbf{\Sigma}_{k+1} - \mathbf{\Sigma}_k\|_F \to 0$ при $k \to \infty$. Тогда в модели линейной регрессии определение М-достаточного размера выборки является корректным. А именно, для любого $\varepsilon > 0$ найдется такой m^* , что для всех $k \geqslant m^*$ выполнено $M(k) \leqslant \varepsilon$.

Анализ апостериорного распределения параметров модели

Определение¹ (Схожие подвыборки)

Рассмотрим две подвыборки $\mathfrak{D}^1\subseteq\mathfrak{D}_m$ и $\mathfrak{D}^2\subseteq\mathfrak{D}_m$. Пусть $\mathcal{I}_1\subseteq\mathcal{I}=\{1,\ldots,m\}$ и $\mathcal{I}_2\subseteq\mathcal{I}=\{1,\ldots,m\}$ — соответствующие им подмножества индексов.

Подвыборки \mathfrak{D}^1 и \mathfrak{D}^2 называются схожими, если $|\mathcal{I}_1 \triangle \mathcal{I}_2| = 1$.

Апостериорные распределения на схожих подвыборках

$$\mathfrak{D}_k = (\mathbf{X}_k, \mathbf{y}_k) \to p_k(\mathbf{w}) = p(\mathbf{w}|\mathfrak{D}_k) \propto p(\mathfrak{D}_k|\mathbf{w})p(\mathbf{w})$$

$$\mathfrak{D}_{k+1} = (\mathbf{X}_{k+1}, \mathbf{y}_{k+1}) \to p_{k+1}(\mathbf{w}) = p(\mathbf{w}|\mathfrak{D}_{k+1}) \propto p(\mathfrak{D}_{k+1}|\mathbf{w})p(\mathbf{w})$$

Функция близости s-score 2

s-score
$$(g_1, g_2) = \frac{\int_{\mathbf{w}} g_1(\mathbf{w}) g_2(\mathbf{w}) d\mathbf{w}}{\max_{\mathbf{b}} \int_{\mathbf{w}} g_1(\mathbf{w} - \mathbf{b}) g_2(\mathbf{w}) d\mathbf{w}}$$

Кандидатская диссертация. Москва: МФТИ, 2017.

¹Anastasiya Motrenko, Vadim Strijov и Gerhard-Wilhelm Weber. "Sample size determination for logistic regression". В: *Journal of Computational and Applied Mathematics* 255 (2014), с. 743—752. ²Адуенко Александр Александрович. "Выбор мультимоделей в задачах классификации".

Близость апостериорных распределений на схожих подвыборках

Определение (КL-достаточный размер выборки)

$$\forall k \geqslant m^* : \underline{KL}(k) = D_{KL}(p_k || p_{k+1}) = \int p_k(\mathbf{w}) \log \frac{p_k(\mathbf{w})}{p_{k+1}(\mathbf{w})} d\mathbf{w} \leqslant \varepsilon$$

Определение (S-достаточный размер выборки)

$$\forall k \geqslant m^* : S(k) = \operatorname{s-score}(p_k, p_{k+1}) \geqslant 1 - \varepsilon$$

Корректность определений KL- и S-достаточного размера выборки

Предположим, что апостериорное распределение является нормальным, то есть $p_k(\mathbf{w}) = \mathcal{N}\left(\mathbf{w}|\mathbf{m}_k, \mathbf{\Sigma}_k\right)$.

Теорема 2 (Киселев, 2024)

Пусть $\|\mathbf{m}_{k+1} - \mathbf{m}_k\|_2 \to 0$ и $\|\mathbf{\Sigma}_{k+1} - \mathbf{\Sigma}_k\|_F \to 0$ при $k \to \infty$. Тогда в модели с нормальным апостериорным распределением параметров определение КL-достаточного размера выборки является корректным. А именно, для любого $\varepsilon > 0$ найдется такой m^* , что для всех $k \geqslant m^*$ выполнено $KL(k) \leqslant \varepsilon$.

Теорема 3 (Киселев, 2024)

Пусть $\|\mathbf{m}_{k+1} - \mathbf{m}_k\|_2 o 0$ при $k o \infty$. Тогда

в модели с нормальным апостериорным распределением параметров определение S-достаточного размера выборки является корректным. А именно, для любого $\varepsilon>0$ найдется такой m^* , что для всех $k\geqslant m^*$ выполнено $S(k)\geqslant 1-\varepsilon$.

Модель линейной регрессии с нормальным априорным распределением

Вероятностная модель линейной регрессии

$$p(\mathbf{y}, \mathbf{w}|\mathbf{X}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w}) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2\mathbf{I})\mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

Апостериорное распределение

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{w}|\mathbf{m}, \mathbf{\Sigma}),$$

$$\mathbf{\Sigma} = \left(\alpha \mathbf{I} + \frac{1}{\sigma^2} \mathbf{X}^\mathsf{T} \mathbf{X}\right)^{-1}, \qquad \mathbf{m} = \left(\mathbf{X}^\mathsf{T} \mathbf{X} + \alpha \sigma^2 \mathbf{I}\right)^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$$

Теорема 4 (Киселев, 2024)

Пусть множества значений признаков и целевой переменной ограничены, то есть $\exists M \in \mathbb{R}: \|\mathbf{x}\|_2 \leqslant M$ и $|y| \leqslant M$. Если $\lambda_{\min}\left(\mathbf{X}_k^\mathsf{T}\mathbf{X}_k\right) = \omega(\sqrt{k})$ при $k \to \infty$, то в модели линейной регрессии с нормальным априорным распределением параметров $\|\mathbf{m}_{k+1} - \mathbf{m}_k\|_2 \to 0$ и $\|\mathbf{\Sigma}_{k+1} - \mathbf{\Sigma}_k\|_F \to 0$ при $k \to \infty$.

Близость полных байесовских прогнозов для линейной регрессии

Разделение на обучающую и тестовую выборки

$$\mathfrak{D}_m = \mathfrak{D}^{\mathsf{train}}_{m_1} \sqcup \mathfrak{D}^{\mathsf{test}}_{m_2}$$

Подвыборка тестовой выборки

$$(\mathbf{X}_k,\mathbf{y}_k)\subset\mathfrak{D}^{\mathsf{train}}_{m_1}$$

Теорема 5 (Киселев, 2024)

Пусть множества значений признаков и целевой переменной ограничены, то есть $\exists M \in \mathbb{R}: \|\mathbf{x}\|_2 \leqslant M$ и $|y| \leqslant M$. Если $\lambda_{\min}\left(\mathbf{X}_k^\mathsf{T}\mathbf{X}_k\right) = \omega(\sqrt{k})$ при $k \to \infty$, то в модели линейной регрессии с нормальным априорным распределением параметров

$$\|\mathbb{E}\left[\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}},\mathbf{X}_{k+1},\mathbf{y}_{k+1}\right] - \mathbb{E}\left[\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}},\mathbf{X}_{k},\mathbf{y}_{k}\right]\|_{2} \to 0,$$

$$\|\mathbb{D}\left[\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}},\mathbf{X}_{k+1},\mathbf{y}_{k+1}\right] - \mathbb{D}\left[\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}},\mathbf{X}_{k},\mathbf{y}_{k}\right]\|_{F} \to 0,$$

$$D_{\mathrm{KL}}\left(p(\mathbf{y}_{\mathrm{test}}|\mathbf{X}_{\mathrm{test}},\mathbf{X}_{k},\mathbf{y}_{k})||p(\mathbf{y}_{\mathrm{test}}|\mathbf{X}_{\mathrm{test}},\mathbf{X}_{k+1},\mathbf{y}_{k+1})\right) \to 0.$$

Вычислительный эксперимент

Достаточный размер выборки в зависимости от гиперпараметра arepsilon

Используются выборки

- Синтетическая регрессия: 500 объектов, 10 признаков;
- Синтетическая классификация: 500 объектов, 10 признаков;
- Liver Disorders с задачей регрессии: 345 объектов, 5 признаков.

Для каждого значения arepsilon определяется достаточный размер выборки.

Сравнение подходов на множестве выборок с задачей регрессии

Определяется размер выборки, при котором значение метрики уменьшается в

- 1000 раз для D- и М-достаточного размера выборки;
- 2 раза для KL- и S-достаточного размера выборки.

Пропуски означают, что первоначальный размер выборки недостаточен.

Название выборки	Объектов m	Признаков n	D	М	KL	S
Abalone	4177	8	96	96	3921	4091
Auto MPG	392	8	15	15	62	_
Automobile	159	25	70	156	156	_
Liver Disorders	345	6	12	19	_	_
Servo	167	4	41	_	163	163
Forest fires	517	12	208	_	507	_
Wine Quality	6497	12	144	144	5305	6099
Energy Efficiency	768	9	24	442	_	_
Student Performance	649	32	129	177	636	_
Facebook Metrics	495	18	31	388	475	_
Real Estate Valuation	414	7	15	23	_	_
Heart Failure Clinical Records	299	12	63	224	276	293
Bone marrow transplant: children	142	36	_	_	109	_

11/12

Выносится на защиту

- 1. Подходы к определению достаточного размера выборки по
 - Сходимости функции правдоподобия на бутстрапированных подвыборках;
 - Близости апостериорных распределений параметров на схожих подвыборках;
- 2. Теоремы о корректности определений
 - М-достаточного размера выборки в модели линейной регрессии;
 - КL-достаточного размера выборки в модели с нормальным апостериорным распределением параметров;
 - S-достаточного размера выборки в модели с нормальным апостериорным распределением параметров;
- 3. Теорема о близости моментов предельного апостериорного распределения в модели линейной регрессии с нормальным априорным распределением параметров;
- 4. Теорема о близости полных байесовских прогнозов в модели линейной регрессии с нормальным априорным распределением параметров.

Список работ автора по теме диплома

Публикации ВАК

1. *N. Kiselev*, A. Grabovoy. Sample Size Determination: Posterior Distributions Proximity // Journal of Computational and Applied Mathematics (на рецензировании).

Выступления с докладом

1. Определение достаточного размера выборки по апостериорному распределению параметров модели // 66-я Всероссийская научная конференция МФТИ, 2024.