MR ALPHABET SOUP: UNDERSTANDING THE PRINCIPLES OF COMMON MAGNETIC RESONANCE ABBREVIATIONS

Educational Exhibit

OUTLINE

- Introduction to Magnetic Resonance
 - Current Magnetic Resonance Applications
 - Flavors of MR: MRI, MRA, MRS, NMR etc.
 - Clinical Applications
 - Speaking the Same Language
 - Basics for Understanding MR Physics
 - Magnetic Principles
 - Resonance Principles
 - Physics with Hardware
- Image Acquisition
 - Terms at the Terminal
 - Pulse Sequence Design
 - Spin Echo
 - Gradient Echo
 - Common Clinical Pulse Sequences (FLAIR, DCE, FSE, etc.)
- Tips for Understanding New Terms

THE ABBREVIATED JUNGLE

MR PHYSICS: Bo

- All MR systems rely on a main magnetic field to produce a signal.
- The main magnetic field is abbreviated a B₀ and referred to as B zero or B "nought"
- There are primarily three types of magnets used in the clinic:
 - Super Conducting Magnets (0.5T and up)
 - Permanent Magnets (up to 0.3T)
 - Resistive and Electromagnets (up to 0.6T)
- The direction of B_0 can vary depending on the types of system.

Permanent Magnet

TERMS AT THE TERMINAL

- MRI has the ability to acquire a variety of images in relation to contrast and spatial characteristics.
- The parameters you set at the scanner can drastically change the final image characteristics
- Terms you can tweak at the terminal:
 - TR Repetition Time
 - TE Echo Time
 - TI Inversion Time
 - BW Bandwidth
 - **FOV** Field of View
 - NSA or NEX Number of Signal Averages / Number of Excitations
 - N_{PE} Number of Phase Encodes
 - N_{FE} Number of Frequency Encodes
- Changes you will see in the images:
 - Noise
 - Contrast to Noise
 - Signal to Noise
 - Scan Time
- By understanding principles behind the terms related to image acquisition you can better predict how images will change during protocol optimization

THE BUILDING BLOCKS OF PSD

- Essentially all pulse sequences can be group into two categories: spin echo (SE) and gradient echo (GE or GRE)
- Both pulse sequences use a radio frequency (RF) pulse to tip the net magnetization into the transverse plane
- SE applies a 180° refocusing pulse to give the image a T2 weighting while GE does not use a refocusing pulse and will have a T2/T2* weighting.
- From these two basic sequences a multitude of new sequences are born.

TIPS TO DECODE NEW ABBREVIATIONS

- When learning or using MRI it is common to come across unfamiliar abbreviations.
- Tips for learning a new abbreviation
 - Take a breath and calm down. MRI is confusing and takes time to become familiar with.
 - Determine if the abbreviation is related to physics principles or pulse sequences. This can be made easier by looking for familiar abbreviations contained within the new one. (ex. GRASE → GRASE → SE = Spin Echo)
 - Determine which vendor the term is coming from. (GE,SIEMENS,PHILIPS,ETC.) Similar terms and pulse sequences can change between vendors. (Philips = GRASE, Siemens = TGSE (turbo gradient spin echo)
 - Start from the ground up. Strengthen your understanding of the basics it will help simplifying new complex terms.