# **PS Signal Processing**

Spectrogram

**Hector Villeda** 

Winter semester 2021

An audio signal is composed of many different individual signals with a unique frequency.

This is possible because a signal can be decomposed into a set of sine and cosine signals.

When we sum up these individual signals we can reconstruct the original one. This is called as **Fourier** theorem.





The **Fourier transform** is a math tool that allows us to decompose a signal into individual frequencies and its corresponding amplitudes. In other words, it is a mapping that allows us to go from the time domain to the frequency domain. The result is called the **spectrum** of the signal.



The Fast Fourier Transform (FFT) is an algorithm that allows calculating in an efficient way the Fourier transform.



#### Signal in the time domain



#### Signal in the Frequency domain



### Drawbacks of Frequency domain

- The Fourier transform is a powerful tool that allows analyzing the frequencies involved in a signal
- What if the frequency varies with respect to the time?:
  - Music
  - Speech
- Those signals are known as non-periodic signals
- We need a way to calculate the spectrum of these "non-periodic signals"



#### Hint

The change rate of the phase or angle with respect to the time

$$f(t) = rac{1}{2\pi} rac{d\phi(t)}{dt}$$

A cos signal with a frequency that changes with respect to the time will be defined as

$$s(t) = Acos(\phi(t)) = Acos(2\pi\int_0^t f( au)d au + \phi(0))$$

If "f" is constant, then

$$s(t) = Acos(2\pi t f + \phi)$$

# Spectrogram

- We could calculate the FFT in different segments of the signals
- This is called Short-Time-Fourier-Transform
- The FFT is calculated for each overlapped window.
- In this way, we get the called Spectrogram



### Spectrogram

- We can think of a spectrogram as a set of stacked slices of FFT.
- This is a way to represent the amplitude of frequencies of a signal that vary over time
- The "Y" axis is represented in a logarithmic scale.
- The color represent the 
  <sup>1</sup>
  decibels (DB). We can think
  of this as a logarithmic scale
  of the amplitude.
- The logarithmic scale is because humans can only perceive a small range of frequencies and amplitudes.



# Spectrogram

https://musiclab.chromeexperiments.com/spectrogram/

