Nipun Batra

July 26, 2025

IIT Gandhinagar

Table of Contents

Introduction to Bayesian Classification

Bayesian Networks

• Nodes are random variables.

Bayesian Networks

- Nodes are random variables.
- Edges denote direct impact

• Grass can be wet due to multiple reasons:

- Grass can be wet due to multiple reasons:
 - Rain

- Grass can be wet due to multiple reasons:
 - Rain
 - Sprinkler

- Grass can be wet due to multiple reasons:
 - Rain
 - Sprinkler
- Also, if it rains, then sprinkler need not be used.

bayesian Nets

 $P(X_1, X_2, X_3, \dots, X_N)$ denotes the joint probability, where X_i are random variables.

$$P(X_1, X_2, X_3, \dots, X_N) = \prod_{k=1}^N P(X_k | parents(X_k))$$

$$P(S, G, R) = P(G|S, R)P(S|R)P(R)$$

Bayesian Networks

Known Random variables

• P(T)

Known Random variables

- P(T) P(E)

Known Random variables

- *P*(*T*)
- *P*(*E*)
- P(A|T,E)

Known Random variables

- *P*(*T*)
- *P*(*E*)
- P(A|T,E)
- P(R|E)

Question

Given, the above, calculate

Solution

$$P(A|T) = \frac{P(A,T)}{P(A)}$$

$$= \frac{P(A,T,E) + P(A,T,\bar{E})}{P(A,T,E) + P(A,T,\bar{E}) + P(A,\bar{T},E) + P(A,\bar{T},\bar{E})}$$

Medical Diagnosis

You tested positive for a disease.

Well, the test is only 99% accurate.

•
$$P(Test = +ve|Disease = True) = 0.99$$

Also, the disease is a rare one. Only one in 10,000 has it.

Medical Diagnosis

You tested positive for a disease.

Well, the test is only 99% accurate.

•
$$P(Test = +ve|Disease = True) = 0.99$$

•
$$P(Test = -ve | Disease = False) = 0.99$$

Also, the disease is a rare one. Only one in 10,000 has it.

•
$$P(T|D) = 0.99$$

- P(T|D) = 0.99
- $P(\bar{T}|\bar{D}) = 0.99$

- P(T|D) = 0.99
- $P(\bar{T}|\bar{D}) = 0.99$
- $P(T|\bar{D}) = 0.01$

- P(T|D) = 0.99
- $P(\bar{T}|\bar{D}) = 0.99$
- $P(T|\bar{D}) = 0.01$
- $P(\bar{T}|D) = 0.01$

- P(T|D) = 0.99
- $P(\bar{T}|\bar{D}) = 0.99$
- $P(T|\bar{D}) = 0.01$
- $P(\bar{T}|D) = 0.01$
- $P(D) = 10^{-4}$

- P(T|D) = 0.99
- $P(\bar{T}|\bar{D}) = 0.99$
- $P(T|\bar{D}) = 0.01$
- $P(\bar{T}|D) = 0.01$
- $P(D) = 10^{-4}$
- $P(\bar{D}) = 1 10^{-4}$

$$P(D|T) = \frac{P(T|D)P(D)}{P(T)}$$

$$= \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|\bar{D})P(\bar{D})}$$
(1)

SPAM EMAIL CLASSIFICATION

From the emails construct a vector X. The vector has ones if the word is present, and zeros is the word is absent

• Classification model

$$P(x_1, x_2, x_3, \dots, x_n | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$$

- Classification model
- Scalable

$$P(x_1, x_2, x_3, \dots, x_n | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$$

- Classification model
- Scalable
- Generative

$$P(x_1, x_2, x_3, \dots, x_n | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$$

Quick Question

Why is Naive Bayes model called Naive?

Frame Title

It assumes that the features are independent during modelling, which is generally not the case.

What do we need to predict?

$$P(y|x_1, x_2, ..., x_N) = \frac{P(x_1, x_2, ..., x_N|y)P(y)}{P(x_1, x_2, ..., x_N)}$$

Spam Mail Classification

Probability of x_i being a spam email

$$P(x_i = 1 | y = 1) = \frac{\mathsf{Count}(x_i = 1 \text{ and } y = 1)}{\mathsf{Count}(y = 1)}$$

Similarly,

$$P(x_i = 0|y = 1) = \frac{\text{Count}(x_i = 0 \text{ and } y = 1)}{\text{Count}(y = 1)}$$

Spam Mail classification

$$P(y=1) = \frac{\mathsf{Count}\; (y=1)}{\mathsf{Count}\; (y=1) + \mathsf{Count}\; (y=0)}$$

Similarly,

$$P(y=0) = \frac{\mathsf{Count}\; (y=0)}{\mathsf{Count}\; (y=1) + \mathsf{Count}\; (y=0)}$$

lets assume that dictionary is $[w_1, w_2, w_3]$

Index	w_1	<i>w</i> ₂	W ₃	у
1	0	0	0	1
2	0	0	0	0
3	0	0	0	1
4	1	0	0	0
5	1	0	1	1
6	1	1	1	0
7	1	1	1	1
8	1	1	0	0
9	0	1	1	0
10	0	1	1	1

if
$$y=0$$

•
$$P(w_1 = 0|y = 0) = \frac{3}{5} = 0.6$$

$$P(y=0) = 0.5$$

Similarly, if y=1

$$P(y=1) = 0.5$$

if
$$y=0$$

- $P(w_1 = 0|y = 0) = \frac{3}{5} = 0.6$
- $P(w_2 = 0|y = 0) = \frac{2}{5} = 0.4$

$$P(y=0) = 0.5$$

$$P(y=1) = 0.5$$

if
$$y=0$$

- $P(w_1 = 0|y = 0) = \frac{3}{5} = 0.6$
- $P(w_2 = 0|y = 0) = \frac{2}{5} = 0.4$
- $P(w_3 = 0|y = 0) = \frac{3}{5} = 0.6$

$$P(y=0) = 0.5$$

$$P(y=1) = 0.5$$

if
$$y=0$$

•
$$P(w_1 = 0|y = 0) = \frac{3}{5} = 0.6$$

•
$$P(w_2 = 0|y = 0) = \frac{2}{5} = 0.4$$

•
$$P(w_3 = 0|y = 0) = \frac{3}{5} = 0.6$$

$$P(y=0) = 0.5$$

•
$$P(w_1 = 1|y = 1) = \frac{2}{5} = 0.4$$

$$P(y=1) = 0.5$$

if y=0

•
$$P(w_1 = 0|y = 0) = \frac{3}{5} = 0.6$$

•
$$P(w_2 = 0|y = 0) = \frac{2}{5} = 0.4$$

•
$$P(w_3 = 0|y = 0) = \frac{3}{5} = 0.6$$

$$P(y=0) = 0.5$$

•
$$P(w_1 = 1|y = 1) = \frac{2}{5} = 0.4$$

•
$$P(w_2 = 1|y = 1) = \frac{1}{5} = 0.2$$

$$P(y=1) = 0.5$$

if y=0

•
$$P(w_1 = 0|y = 0) = \frac{3}{5} = 0.6$$

•
$$P(w_2 = 0|y = 0) = \frac{2}{5} = 0.4$$

•
$$P(w_3 = 0|y = 0) = \frac{3}{5} = 0.6$$

$$P(y=0) = 0.5$$

•
$$P(w_1 = 1|y = 1) = \frac{2}{5} = 0.4$$

•
$$P(w_2 = 1|y = 1) = \frac{1}{5} = 0.2$$

•
$$P(w_3 = 1|y = 1) = \frac{3}{5} = 0.6$$

$$P(y=1) = 0.5$$

Given, test email 0,0,1, classify it. Using naive bayes rule, we can do the following,

$$P(y = 1 | w_1 = 0, w_2 = 0, w_3 = 1) \frac{P(w_1 = 0 | y = 1)P(w_2 = 0 | y = 1)P(w_3 = 0)}{P(w_1 = 0, w_2 = 0, w_3 = 0)}$$

Gaussian naive Bayes

We have classes $C_1, C_2, C_3, \dots, C_k$ There is a continuous attribute x For Class k

• $\mu_k = Mean(x|y(x) = C_k)$

Gaussian naive Bayes

We have classes $C_1, C_2, C_3, \dots, C_k$ There is a continuous attribute x For Class k

- $\mu_k = Mean(x|y(x) = C_k)$
- $\sigma_k^2 = Variance(x|y(x) = C_k)$

Guassian Naive Bayes

Now for x = some observation 'v'

$$P(x = v | C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp^{\frac{-(v-\mu_k)^2}{2\sigma_k^2}}$$

Wikipedia Example

Height	Weight	Footsize	Gender
6	180	12	М
5.92	190	11	M
5.58	170	12	M
5.92	165	10	M
5	100	6	F
5.5	100	6	F
5.42	130	7	F
5.75	150	7	F

Example

	Male	Female
Mean (height)	5.855	5.41
Variance (height)	3.5×10^{-2}	9.7×10^{-2}
Mean (weight)	176.25	132.5
Variance (weight)	1.22×10^2	5.5×10^2
Mean (Foot)	11.25	7.5
Variance (Foot)	9.7×10^{-1}	1.67

Classify the Person

Given height = 6ft, weight = 13.5 lbs, feet = 8 inches, classify if it's male or female.

Classify the Person

Given height = 6ft, weight = 13.5 lbs, feet = 8 inches, classify if it's male or female.

It is female!

Practice and Review

1. What does the "naive" assumption in Naive Bayes refer to?

1. What does the "naive" assumption in Naive Bayes refer to?

- 1. What does the "naive" assumption in Naive Bayes refer to?
- 2. Why is Naive Bayes particularly effective for text classification?

- 1. What does the "naive" assumption in Naive Bayes refer to?
- 2. Why is Naive Bayes particularly effective for text classification?

- 1. What does the "naive" assumption in Naive Bayes refer to?
- 2. Why is Naive Bayes particularly effective for text classification?
- 3. What happens when a feature value appears in test data but not in training data?

- 1. What does the "naive" assumption in Naive Bayes refer to?
- 2. Why is Naive Bayes particularly effective for text classification?
- 3. What happens when a feature value appears in test data but not in training data?

- 1. What does the "naive" assumption in Naive Bayes refer to?
- 2. Why is Naive Bayes particularly effective for text classification?
- 3. What happens when a feature value appears in test data but not in training data?
- 4. Compare Naive Bayes with logistic regression when would you choose each?

• **Probabilistic Foundation**: Based on Bayes' theorem and conditional independence

- Probabilistic Foundation: Based on Bayes' theorem and conditional independence
- Naive Assumption: Features are conditionally independent given the class

- Probabilistic Foundation: Based on Bayes' theorem and conditional independence
- Naive Assumption: Features are conditionally independent given the class
- **Efficient Training**: Simple parameter estimation from training data

- Probabilistic Foundation: Based on Bayes' theorem and conditional independence
- Naive Assumption: Features are conditionally independent given the class
- **Efficient Training**: Simple parameter estimation from training data
- Handles Multiple Classes: Naturally extends to multi-class problems

- Probabilistic Foundation: Based on Bayes' theorem and conditional independence
- Naive Assumption: Features are conditionally independent given the class
- Efficient Training: Simple parameter estimation from training data
- Handles Multiple Classes: Naturally extends to multi-class problems
- Good with Small Data: Works well with limited training examples

- Probabilistic Foundation: Based on Bayes' theorem and conditional independence
- Naive Assumption: Features are conditionally independent given the class
- Efficient Training: Simple parameter estimation from training data
- Handles Multiple Classes: Naturally extends to multi-class problems
- Good with Small Data: Works well with limited training examples
- Interpretable: Probabilistic outputs provide confidence measures