BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43) Date of publication of application: 16.10.2001

(51)Int.Cl.

C12N 15/09 **C12N** 1/16 C120 GO1N 33/566 GO1N 33/569 //(C12N 15/09 C12R 1:645 (C12N **C12R** 1:645 (C12Q 1/68 C12R 1:645)

(21)Application number: 2000-105907

(71)Applicant: NATL INST OF ADVANCED

INDUSTRIAL SCIENCE & TECHNOLOGY METI TERAMETSUKUSU KK

(22)Date of filing:

07.04.2000

(72)Inventor: IWAHASHI HITOSHI

MOMOSE YUKO KAWAI SHOJI

MATSUMOTO MASAMITSU

(54) METHOD FOR ASSESSING TOXICITY OF AND METHOD FOR IDENTIFYING CHEMICAL **SUBSTANCE**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide the subject two methods having resolved such a problem that, conventional bioassays rely on cell growth inhibition or specific biological reaction as index, resulting in limited amount of information to be obtained; in such a bioassay system, although the presence/absence of toxicity due to chemical substance(s) in the environment can be assessed, neither information concerning such toxicity's characteristics nor information for judging what kind of chemical substance(s) has(have) caused the toxicity is available.

SOLUTION: The two methods, i.e., a method for assessing the toxicity of and a method for identifying chemical substance(s) in question, comprise culturing cells in the presence of chemical substance(s) to be assessed and simultaneously observing the expressed state for the genes in the above cells.

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The toxic evaluation approach of the chemical characterized by cultivating a cell under existence of the chemical which should be evaluated and observing two or more gene expression conditions of this cell to coincidence.

[Claim 2] The toxic evaluation approach of the chemical according to claim 1 chosen from the gene cluster as which at least one of these genes is specified in Table 9, or this and a homologous gene cluster.

[Claim 3] The toxic evaluation approach of the chemical according to claim 2 which is a thing using a DNA microarray or a macro array.

[Claim 4] The toxic evaluation approach of a chemical according to claim 1, 2, or 3 that this cell is a microorganism.

[Claim 5] The toxic evaluation approach of a chemical according to claim 4 that this microorganism is yeast.

[Claim 6] Evaluation of this manifestation condition cultivates a cell in the condition that this chemical does not exist on the same conditions as the culture under existence of this chemical. The complementary DNA from the gene at the time of the culture under existence of this chemical (cDNA), The toxic evaluation approach of the chemical according to claim 3, 4, or 5 which is what is performed by applying both cDNA(s) from the gene in the condition of not existing to the same DNA chip, and detecting the difference of the hybridization by the competitive reaction.

[Claim 7] The identification approach of the chemical characterized by identifying the matter in measured liquid by cultivating a cell under existence of a known chemical, memorizing the gene expression condition of this cell as a standard pattern, cultivating the same cell under existence of measured liquid, and comparing the gene expression condition at that time with a standard pattern.

[Claim 8] The identification approach of the chemical according to claim 7 chosen from the gene cluster as which at least one of these genes is specified in Table 9, or this and a homologous gene cluster.

[Claim 9] The identification approach of the chemical according to claim 8 which is a thing using a DNA microarray or a macro array.

[Claim 10] The identification approach of a chemical according to claim 7, 8, or 9 that this cell is a microorganism.

[Claim 11] The identification approach of a chemical according to claim 10 that this microorganism is yeast.

[Claim 12] Evaluation of this manifestation condition cultivates a cell in the condition that this chemical does not exist on the same conditions as the culture under existence of this chemical. The complementary DNA from the gene at the time of the culture under existence of this chemical (cDNA), The identification approach of the chemical according to claim 9, 10, or 11 which is what is performed by applying both cDNA(s) from the gene in the

condition of not existing to the same DNA chip, and detecting the difference of the hybridization by the competitive reaction.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the toxic appraisal method and method of identification of a chemical.

[0002]

[Description of the Prior Art] Current, data base of a chemical The chemical of about 17 million affairs is registered into Chemical abstract. Among those, what 10,000 or more kinds of synthetic chemistry matter is accumulating into an environment is presumed, and the number is increasing every year. Direct in synthetic material After changing a form in ** or an environment, the matter which has a bad influence on ecology or the body is also contained. Therefore, it is necessary to evaluate quickly the effect which it has on ecology or the body about each chemical. Moreover, the attempt which is going to identify the chemical which exists in an environment with various advanced gaging systems is made under the situation of being the social problem which an environmental pollution problem instigates national anxiety.

[0003] Furthermore, toxic index-ization by the simple toxicity evaluation trial using a bioassay is made in many engines. This measures "change of the living thing-response by the chemical" using an animals-and-plants cell or a microorganism, and evaluates "toxicity." [0004]

[Problem(s) to be Solved by the Invention] However, no matter advanced technique [what] it may use, in the present condition, it is said that about 10% of chemical can be identified. Therefore, the method of identifying simply the chemical which exists in an environment was demanded. Furthermore, the conventional bioassay mainly makes the index the growth inhibition and the specific vital reaction of a cell, and the amount of information is restricted. By such bioassay system The information for judging the toxic property and what kind of toxic chemical although the toxic existence by the chemical in an environment can be evaluated, it is the toxicity resulting from is not acquired at all. [0005]

[Means for Solving the Problem] The place by which this invention person used to make complete this invention wholeheartedly in view of the above present condition as a result of research, and it is characterized [the] In the toxic appraisal method of a chemical, a cell is cultivated under existence of the chemical which should be evaluated. If it is in the point which observes two or more gene expression conditions of this cell to coincidence, and is evaluated and is in the identification approach of a chemical It is in the point of identifying

the matter in measured liquid, by cultivating a cell under existence of a known chemical, memorizing the gene expression condition of this cell as a standard pattern, cultivating the same cell under existence of measured liquid, and comparing the gene expression condition at that time with a standard pattern.

[0006] The chemical has the toxicity of a proper, respectively and affects a living thing. The influenced living thing uses restoration or a detoxication device according to the toxicity. There are some which are called a stress response as the example. From a microorganism to a higher organism, if all living thing cells are put to environmental stress (an elevated temperature, low temperature, high pressure, desiccation, ultraviolet rays, drug exposure, etc.), stress response protein (HSP) will be compounded in an instant, and the organization which bears these environments will be prepared. This is called stress response. That is, moreover, a stress response protein production gene is produced according to extent of the stress which received the protein according to the class of stress, only when a living body is influenced of environmental. If it returns, the living body will have discovered the stress response protein production gene according to the class and extent of stress. That is, it becomes possible to evaluate the toxicity of the chemical by detecting the specific gene expression brought about by induction of the repair mechanism from the effect of toxic, or a detoxication device which the living body received from the chemical.

[0007] The effect of a chemical does not only bring about one gene expression, and two or more genes answer toxicity and always discover it. Moreover, the class of gene to discover and a manifestation pattern change with chemicals. This invention can identify the class of strange chemical, and toxic extent using this. That is, the chemical can be presumed because this strange chemical compares the spectrum (pattern) of the gene cluster guided characteristic and the gene cluster guided using a known chemical. Moreover, it can presume whether there is any danger that a strange chemical is how much, from the gene cluster guided.

[0008] The chemical which should be evaluated is a chemical contained in sample liquid, and it does not need to understand some, and it is not necessary to understand more than one in an unit. Therefore, the bottom of existence of the chemical here which should be evaluated is the semantics of the bottom of existence of the sample liquid in which the chemical is contained. [0009] With a chemical here, a copper sulfate, a mercury chloride, a potassium dichromate, Inorganic metallic compounds, such as a lead chloride, a nickel chloride, and a cadmium chloride, a tributyltin chloride, Organochlorine compounds, such as organometallic compounds, such as methylmercury and a tetramethyl lead, a dichloroethane, and dioxin, Although alcohols, such as surfactants, such as agricultural chemicals, such as organic compounds, such as bisphenol A and a dimethyl phthalate, sulfanil urea, an organic phosphorous compound, and a carver mate agent, and sodium dodecylbenzenesulfonate, and a methanol, etc. are raised What is necessary is just not the thing to limit to these but the chemical which has bioactive at least.

[0010] Moreover, this invention can also evaluate the toxicity of a new chemical entity. If the gene cluster guided about a new chemical entity is measured and the manifestation pattern is memorized, existence of the chemical concerned in a strange sample can be checked. A presentation or structure of a chemical do not need to be known at this time. Moreover, examining the manifestation gene in a detail can estimate the toxicity, and it is **. For example, as an example 1 shows, it can presume that lack of a glutathione, a cysteine, and a methionine takes place from the gene cluster guided from cadmium at least, but if these genes are discovered in a new chemical entity, it can evaluate that the matter has the toxicity of cadmium resemblance.

[0011] Although a human cell is naturally desirable as a cell, the cell of a mouse and others is sufficient. Furthermore, since culture being easy and the function of a gene are often studied, it is also suitable to use a microorganism as a cell. Moreover, yeast was suitable also in the

microorganism. This is because it is considered the living thing in the process of Homo sapiens evolution and it is thought that there are many genes which function as the toxicity to Homo sapiens etc. similarly the top where handling is easy.

[0012] The culture approach does not need to be a good special approach by the usual culture approach of the cell to be used. It is good at a YPD culture medium or other culture media. [0013] As a means to observe a gene expression condition and to evaluate, as long as it is the approach of measuring the amount of gene expression to perform two or more Northern blots and RTPCR(s) etc., what kind of approach is sufficient as it. However, the approach using a DNA microarray or a macro array is suitable. With a DNA microarray, several ten to about thousands of pieces or tens of thousands of cDNA(s) (complementary DNA) are stuck on a small chip like slide glass (about 25mmx75mm). On the other hand, with a macro array, dozens to about thousands of cDNA(s) are similarly stuck on the support (about 10cmx10cm) of the shape of a comparatively big filter paper.

[0014] DNA or RNA discovered from the sample is taken out, and it amplifies suitably using PCR etc. as occasion demands, and adds to an array (application). DNA in a sample and cDNA on an array are made to hybridize by adjusting temperature suitably. Although detection of hybridized DNA is usually detected using markers, such as a fluorochrome, not using a marker, the detecting method using surface plasmon resonance, depolarization or EBANESSENTO light, etc. can also be used.

[0015] By the above-mentioned observation approach, although the sample is detected independently, except not adding a chemical (sample solution containing this), also create the control plot (blank specimen) cultivated on the same conditions as a sample, apply it and a sample specimen to a DNA array together, hybridization is made to start competitively, and the difference in the amount of hybridization of the sample in the same gene and a blank specimen may be observed.

[0016] DNA installed to the array identifies the target chemical -- being required. For example, although it is said in yeast that there are about 6000 genes, it is presumed that the gene from which a chemical is answered and the amount of manifestations changes specifically is at most about 500 pieces. A part of genes answered and discovered to poison in Table 9 were enumerated. Although the judgment of eight kinds of compounds which are only these genes and were shown in the example at least is possible, a compound is not limited to these.

[Table 9]

YAL012W	YCR021C	YER103w	YHLO15W	YJR047C	YLR231C	YNL178W	YOR259C
YAL019W	YCR031C	YER138c	YHLO23C	YJR132W	YLR257W	YNL190W	Y0B266W
YAL067C	YCR062W	YER150w	YHRO19C	YJR155W	YLR270W	YNL191W	Y0R293W
YAROO2W	YCR085W	YFL014W	YHRO53C	YJR157W	YLR280C	YHL208W	Y02303W
YAROO7C	YCR096C	YFL057C	YHB055C	YKL001C	YLR282C	YNL209W	YOR306C
YAR043C	YCR097wa	YFR016C	YHRO56C	AKT000A	YLR286C	YNL214W	YOR310C
YBL006C	YDL061C	YFR022W	YHRO73W	YEL026C	YLE300W	YNL239W	YOR338W
YBL046W	YDL078C	YFR031BC	YHRO87W	YKL060C	YLR303W	YNL277W	YOR355W
YBL069W	YDL081C	YFR043C	YHRO92C	YELO71W	YLR327C	YNL281W	YOR369C
YBL073W	YDL089W	YFR049W	YHRO94C	YKL097W	YLR337W	YNL302C	Y0B371C
YBL077W	YDL109c	YFR052W	YHR096C	YKL136W	YLR340W	YNL307C	YOB375C
YBR012W-K	YDL181W	YGL014W	YHR104W	YKL143W	YLR354C	YNL33IC	YOR382W
YBR027C	YDL204*	YGL030W	YHR138C	YEL181W	YLR359W	YNL334C	YPL028W
YBROSIW	YDR032c	YGL037C	YHR140W	YKL200C	YLR367W	YNBOO1C	YPL037C
YBR071W	YDR033w	YGL053W	YHR174W	YKL214C	YLR388W	YNB021W	YPL053C
YBR072W	YDB069C	YGL055W	YHR203C	YKL217W	YML004C	YNRO30W	YPL079W
YBR077C	YDR070c	YGL103W	YIL010W	YKR032W	YML102W	YOLOO6C	YPL081W
YBR078W	YDR077W	YGL116W	Y1L020C	YKR039W	YML106W	YOLO16C	YPL090C
YBR082C	YDR154C	YGL121C	YILO21W	YKR042W	YMR009W	A0F038A	YPL106C
YBR094W	YDR223W	YGL135W	YILO74W	YEBO51W	YMRO11W	YOLO44W	YPL147W
YBR149W	YDB225W	YGL138C	YILO82W	YERO57W	YMRO15C	YOLO49W	YPL149W
YBR153W	YDR227W	YGL146C	YILO90W	YKR059W	YMR052W	YOLO53C	YPL194W
YBR162C	YDR335W	YGL147C	YIL100W	YEROSOW	YMR058W	YOLO56W	YPL201C
YBR167C	YDR342C	YGL239C	YIL106W	YKR094C	YMR107W	AOrosec	YPL221W
YBR169C	YDR343C	YGL240W	YIL111W	YLL024c	YME167W	YOL127W	YPL239W
YBR173C	YDR345C	YGR008C	YIL136W	YLL039c	YMR173W	YOL141W	YPL250C
YBR181C	YDB385W	YGR039W	YIL144W	YLL058W	YMR215W	YOL151W	YPR006C
YBR191W	YDB443C	YGR040W	YIRO12W	YLR029c	YMR243C	YOL164W	YPR023C
YBR196C	YDR453C	YGRO43C	YJL062\	YLR056w	YMR275C	YORJOO7C	YPRO82C
YBB207W	YDR475C	YGR087C	YJL083W	YLR058c	YMR301C	YORO19W	YPR099C
YBR221C	YDB491C	YGR088W	YJL110C	YLRO81w	YMR307W	YOROZOC	YPR119W
YBR236C	YDB533C	YGR103W	YJL116C	YLR092W	YMR318C	YORO27W	YPR125W
YBR257W	YBL006w	YGB142W	YJL144W	YLR110C	YNLO15W	YORO81C	YPR159W
YBR263W	YBR012w	YGR154C	YJL151C	YLR118C	YNLO55C	YORO88W	YPR165W
YBR296C	YERO21W	YGR163W	YJL158C	YLR134w	AM TOR CA	YOR128C	YPR167C
YCL025C	YER042w	YGR205W	YJL169W	YLR153c	YWL069C	YOB136W	YPR188C
YCL043C	YBR046w	YGR224W	VJL160C	YLR157C	YWL134C	YOR152C	YPR204W
YCL056C	YBR067w	YGR236C	YJL177W	YLR167W	YNL135C	YOB184W	
YCLX11W	YERO72w	YGR246C	YJR009C	YLR178C	YNL142W	YOR187W	
YCR004C	YER074w	YGB253C	YJR010W	YLR205C	YNL143C	YOR221C	
YCR012W	YER091c	YGR254W	YJR025C	YLR214W	YNL160W	YOR240W	
YCR013C	YER102w	YGR275W	YJRO29W	YLR216C	YRL169C	YOR253W	

[0017] Only the gene of the high order predetermined number of these amounts of gene expression that choose a specific chemical like eight sorts and are discovered by them may be measured and evaluated. For example, it is measuring only the gene of 50 high orders etc. Measurement will become easy if it does in this way.

[0018] Next, the chemical method of identification of this invention is explained. First, the sample containing a known chemical (a single is desirable) is cultivated, and the gene name and manifestation reinforcement which were discovered are recorded as a criterion of the compound. If these are graph-ized at this time and it memorizes as a pattern, also visually, it can judge. Of course, it may record on a computer and you may judge there.

[0019] When two or more chemicals were contained in sample liquid at this time, it turned out that a gene expression pattern becomes the simple sum total of each manifestation pattern of that chemical contained. Therefore, two or more of the chemicals can be easily presumed from the characteristic amount of gene expression. Of course, a strange chemical cannot be identified in this case. Therefore, the numerousness of the chemicals which how the manifestation pattern of many known chemicals is recorded and saved can identify will be decided. However, the semantics or the function of the gene itself do not need to be known.

[0020]

[Example] Although invention is concretely explained to a detail in accordance with an example below, this invention is not limited to these.

Yeast was cultivated using the example 1YPD culture medium (1% of yeast extracts, poly peptone 2%, 2% of grape sugars). a logarithm -- the cadmium chloride (CdCl2, 0.33mM) was added as a chemical, and it cultivated for 2 hours at the increment term. What added and cultivated the chemical on the completely same conditions as this was made into the control plot. this sample and control plot -- a tales-doses DNA chip (made in a DNA chip lab) -being dropped -- 65 degrees C -- one evening -- or it was made to hybridize for 12 hours or more The manifestation gene and the amount of manifestations were measured for the DNA chip with the scanner (SCAN-ARRAY4000:GSI RUMIKOSU). It is shown in Table 10. Although it was also possible to have described all genes, since it was aimed at the gene which answered by the toxicity of a chemical here, about each modeling study matter, only the gene of the high order 50 with many amounts of manifestations was chosen mechanically, and was shown. The relative amount to a control plot shows the numeric value here. That is, when a numeric value is 1, it is tales doses, and I hear that the sample and the control plot are not specially discovered with a chemical, and there are. It may be made to color the approach of this comparison in a different color (fluorescence), it may measure that color, and may perform it.

[0021] Of course, it applies to the same DNA chip, and it may not be made to compete, but it may apply to another DNA chip, and the difference may be measured.

[0022] These tables 10 and 11 also described the role (function) of the gene guided with a cadmium chloride. A sulphuric metabolic system enzyme group can be mentioned as a description of the gene cluster guided. This shows that the abnormalities of sulfur metabolism arose in intracellular [of yeast] by addition of cadmium. Moreover, the amino acid intracellular taking-in-related gene is guided. If the final product of sulfur metabolism considers that they are a glutathione, a cysteine, and a methionine, it can be concluded that the abnormalities which arose by yeast intracellular are lack of these sulfur containing amino acid.

[Table 10]

カドミウムによって誘導される遺伝子-1

遺伝子名	発現強度	遺伝子の機能(wnは未知の遺伝子)
2-11	70-70-LL	
YLR303W	16. 52826667	O-Acetylhomoserine-O-Acetyl serine Sulfhydralase
YKL001C	10. 95636	adenylylsulfate kinase
YOL164W	7. 11974	un (unknown)
YILO74W	5. 452856667	
YBR296C	4. 361473333	Probable Nat/Pi sympereer
YFL057C	3, 90936	very similar to A55449 aryl-allcohol dehydrogenase
YALO67C	3. 76404	Suppressor of Sulfoxyde Ethionine resistance
YNL142W	3. 74786	Ammonia transport protein
YCL025C	3, 471056667	Amino acid permease
YMRI 73W	3, 415143383	DNA damage inducible;
YMR318C	3, 35437	un
YER074w	3, 333333333	40S ribosomal protein S24A
YLL058W	3, 296736667	un
YLR092W	3. 217813333	high affinity sulfate permease
YNL134C	3. 160216667	un
YKL217W	3, 097286667	essential for lactate uptake in yeast
Y0R382W	3, 074303333	un
YLR327C	2, 93819	un
YNL277W	2, 900126667	homoserine O-trans-acetylase
YNL160W	2, 871143333	may be involved in cellular adaptations
		prior to stationary
YLR205C	2. 838356667	un
YKR039W	2, 76581	general amino acid permease
YDR533C	2, 632056667	un
YBR072W	2, 615956667	heat shock protein 26
YMR058W	2, 613936667	high-affinity iron transport system
YNL239W	2. 581933333	aminopeptidase of cysteine protease family

[Table 11]

カドミウムによって誘導される遺伝子-2

遺伝子名	発現強度	遺伝子の機能(unは未知の遺伝子)
YNL331C	2. 513673333	Hypothetical aryl-alcohol dehydrogenase
YDR223W	2. 50132	un
YBR207W	2, 481336667	
YNL191W	2, 430063333	un
YAL012W	2. 40838833\$	cystathionine gamma-lyase
YHR138C	2. 345876667	un.
YFL014W	2. 303206667	12 kDa heat shock protein
YOR253W	2. 287533333	un
YOR338W	2. 28119	un
YOR303W	2. 26205	Carbamoyl phosphate synthetase, arginine specific
YOR306C	2, 242523333	un
YKR032W	2, 22148	un
YOROO7C	2. 22148	small glutamine-rich tetratricopeptide
		repeat containing protein
YPR204W	2. 192553333	un
YER046w	2. 189143333	un
YGR154C	2. 187783383	un
YGRO87C	2, 157476667	un
YNL208W	2, 149786667	un
YJL151C	2, 13153	un
YOR375C	2. 13153	NADP-specific glutamate dehydrogenase
YOLOO6C	2. 121983333	topoisomerase I
YGR103W	2, 116846667	un
YGL055W	2, 116823333	delta-9-fatty acid desaturase
YPR023C	2. 11356	un

[0023] Next, the same experiment was conducted to various chemicals. The gene name and amount of manifestations are shown in a table. As a chemical, they are methylmercury (CH3HgCl), a mercury chloride (HgCl2), TORIBUCHI rutin chloride (C4H9) (3SnCl), a potassium dichromate (K2Cr 2O7), a nickel chloride (NiCl2), a copper sulfate (CuSO4and5H2O), and a lead chloride (PbCl2). In addition to these matter, it is shown in Tables 1-8 also including said cadmium chloride. All the genes (it is a limitation to a high order 50) guided were shown in the alphabetical order. Although the number of the genes shown in Tables 1-8 was 400, since there was an overlapping gene, it is a total of 331 kinds, and this was enumerated to Table 9.

塩化カドミウム (CdCl₁)

遺伝子名	発現胤	遺伝子名	発現量
YLR303W	16. 53	YNL239W	2. 582
YKL001C	10. 96	YNL331C	2. 514
YOL164W	7. 12	YDR223W	2. 501
YILO74W	5. 453	YBR207W	2. 481
YBR296C	4. 361	YNL191W	2. 43
YFL057C	3. 909	YAL012W	2.408
YALO67C	3. 764	YHR138C	2. 346
YNL142W	3. 748	YFL014W	2. 303
YCL025C	3. 471	YOR253W	2, 288
YMR173W	3.415	YOR338W	2, 281
YMR318C	3, 354	YOR303W	2, 262
YERO74W	3, 333	YOR306C	2, 243
YLL058W	3, 297	TKR032W	2. 221
YLR092W	3. 218	YOROO7C	2. 221
YNL134C	3. 16	YPR204W	2. 193
YKL217W	3. 097	YERO46W	2. 189
YOR382W	3. 074	YGR154C	2, 188
YLR327C	2. 938	YGR087C	2. 157
YNL277W	2, 9	YNL208W	2. 15
YNL160W	2, 871	YJL151C	2. 132
YLR205C	2. 838	YOR375C	2. 132
YKR039W	2, 766	YOLOO6C	2. 122
YDR533C	2, 632	YGR103W	2, 117
YBR072W	2.616	YGL055₩	2, 117
YMR058W	2.614	YPR023C	2, 114

[Table 2]

メチル水銀 (CH:HgC1)

遺伝子名	発現最	遺伝子名	発現量
YLR214W	5. 327	YJR157W	2. 127
YJR009C	4. 656	YOR136W	2. 08
YLR286C	3. 95	YNL066W	2,071
YCR013C	3. 401	YLR354C	2,061
YMR307W	2. 951	YOR187W	2, 027
YLR300W	2. 782	YOR128C	1, 993
YLB359W	2. 746	YJL159W	1.992
YMR058W	2. 694	YBR031W	1.989
YOR184W	2. 693	YLR340W	1. 986
YPL028W	2. 663	YLR056W	1.978
YMR015C	2, 647	YDR033W	1. 966
YOLO86C	2, 552	YJR047C	1.922
YBR078W	2, 541	YOR355W	1.916
YNL069C	2. 484	YCL043C	1.884
YNL190W	2. 435	YLR058C	1.872
YKR080W	2. 411	YJL062₩	1.858
YLR303W	2. 387	YLR153C	1, 793
YHR019C	2, 364	AWT 108A	I. 793
YLL024C	2, 277	YDL109C	1.786
YMR243C	2, 233	YCR012W	1, 707
YHR174₩	2. 215	YMR215W	1.697
YLR029C	2, 163	YNL307C	1.695
YBR162C	2. 159	YNRO21W	1,677
YNL209W	2. 135	YLR231C	1.675
YPL037C	2. 135	YJL158C	1.675
YBR162C YNL209W	2. 159 2. 135	YNRO21W YLR231C	1,677 1,675

[Table 3]

塩化水銀 (HgCl:)

遺伝子名	発現量	遺伝子名	発現 積
YJR010W	4. 993	YDR032C	2. 602
YERO91C	4. 667	YBR149W	2.514
YMR052W	3. 935	YCR013C	2. 511
YHR087W	3, 688	YGL138C	2. 479
YNL160W	3. 439	YGL116W	2. 454
YOL141W	3. 427	YKR051W	2.419
YPR167C	3. 364	YKL200C	2. 416
YER103W	3, 318	YLL024C	2. 399
YCLX11W	3. 315	YGL037C	2. 384
YNL134C	3. 289	YER150W	2. 383
YFL014W	3, 288	YBR169C	2. 38
YGR142W	3. 157	YMR173W	2. 341
YJL160C	3. 087	YBR082C	2. 303
YLR216C	3. 055	YML004C	2. 288
YCR012W	3.047	YKL071W	2. 288
YGL146C	2. 975	YHR056C	2. 27
YDR227W	2. 9	YLR178C	2. 269
YOL151W	2, 885	YPL106C	2. 261
YNLO15W	2.875	YNL281W	2. 237
YGRO40W	2.748	YLR303W	2. 224
YDL204W	2. 719	YPL250C	2, 21
YORO27W	2.714	YLR270W	2. 167
YGRO43C	2. 654	YGRO88W	2. 157
YERO42W	2, 621	YHR104W	2. 15
YDR453C	2, 603	YML102W	2. 145

[Table 4]

トリプチルチンクロライド ((C.H.):SnC1)

'8/:: 7 <i>A</i>	50 III II	遺伝子名	28 EE 23
进位1.43	発現量 .	超位于石	光况度
YKL214C	3. 886	YOLO53C	1. 674
YGR253C	3, 434	YKL026C	1. 669
YLR327C	3, 105	YHR087W	1. 66
YIL111W	3.062	YGR275W	1. 654
YDRO70C	2.918	YJR155W	1. 647
YDR533C	2.672	YORO27W	1. 644
YFL014W	2.64	YER012W	1. 64
YNR030W	2. 479	YDR475C	1. 639
YGR163W	2, 329	YORO19W	1, 601
YFL057C	2, 328	YFR052W	1.601
YGL121C	2, 31	YOR338W	1. 597
YNL134C	2, 087	YHR138C	1. 597
YORO2OC	2, 039	YCR062W	1. 567
YGL053W	2.027	YLR157C	1. 564
YORO88W	1.965	YGR236C	1. 554
YER150W	1. 909	YMR107W	1, 554
YOLO38W	1.833	YGR224W	1, 545
YOR152C	1, 827	YGR205W	1, 538
YGROO8C	1, 797	YBR236C	1. 534
YOR259C	1, 764	YPL053C	1. 527
YNL160W	1.728	YCR096C	1. 524
YIL144W	1.718	YMR009W	1. 513
YPL149W	1.702	YMR167W	1, 511
YKL136W	1, 687	YIL136W	1. 51
YJL114N	1. 685	YBR173C	1, 507

[Table 5]

重クロム酸カリウム (K₂Cr₂Oτ)

遊伝子名	発現量	遺伝子名	発現鼠
YORO81C	25. 25	YDR335W	0. 998
YLR337W	5. 79	YNL135C	0. 994
YJR009C	2, 758	YFR016C	0. 984
YDR032C	2, 679	YOLO44W	0. 978
YMR275C	2, 528	YFR022W	0. 962
YOR371C	1. 993	YKL143W	0. 957
YAROO7C	1.641	YLR340W	0.954
Y0R221C	1.584	YDL181W	0. 95
YJL159₩	1, 396	YOLO49W	0. 94
YCRO13C	1, 383	YDL061C	0. 933
YGLO30W	1. 308	YOR240W	0. 929
YBL006C	1. 308	YJL177W	0. 923
YLR388W	1. 291	YLR214W	0. 921
YOLO86C	1. 261	YNL134C	0.907
YLLO24C	1. 253	YLR134W	0.899
YPL147W	1, 246	YLR303W	0. 895
YDRO77W	1, 206	YOR136W	0, 889
YPL221W	1. 164	YBR078W	0.883
YDRO69C	1. 119	YHR073W	0.878
YLR110C	1. 118	YJR155W	0.865
YDR154C	1, 098	YOR259C	0. 856
YALO19W	1.085	YBR027C	0.853
YHR174W	1.053	YNL208W	0.848
YNL178W	1.047	YDR533C	0.844
YCRO31C	1,047	YNL143C	0. 836

[Table 6]

塩化ニッケル (NiCl₁)

遺伝子名	発現量	遺伝子	発現量
YNL160W	19. 02	YOLO16C	7. 572
YJRO09C	18. 78	YOR266W	7. 521
YBRO12W	I5. 72	YMR307W	7. 453
YKRO59W	13. 21	YILO90W	7. 193
YJRO29W	11.61	YOL127W	7. 193
YMRO58W	11.2	YPL239W	7, 105
YPL028W	10. 4	YCL043C	6. 988
YJRO25C	10.05	YELOO6W	6. 975
YDRO77W	10.04	YGR246C	6, 892
YHRO55C	9. 485	YCL025C	6. 82
YBR162C	9, 369	YLR056W	6. 82
YLR354C	9. 323	YERO67W	6. 789
YNL135C	9. 206	YBR078W	6.66
YKR094C	9. 187	YHL023C	6, 578
YJL151C	9. 148	YFR049W	6, 521
YMR173₩	8, 996	YLR300W	6. 29
YJL159W	8, 916	YDL078C	6. 29
YGL121C	8. 561	YGL030W	6. 286
YJL110C	8. 319	YLR367W	6. 224
YCRO21C	8. 314	YNROO1C	6. 221
YLR359W	8. 142	YGL135W	6. 136
YLL039C	8. 024	YGL014W	6. 102
YCRO13C	7. 886	YER138C	6.071
YBR263W	7. 696	YKR042W	6.026
YLR257W	7. 67	YOR310C	6.01

[Table 7]

硫酸銅 (CuSO.・5H₂O)

遺伝子名	発現量	遊伝子名	発現量
YHR053C	13. 97	YIL106W	6. 134
YNL169C	11.98	YPR099C	6. 121
YPR082C	9. 876	YPR188C	6.076
YPR167C	8, 821	YNL214W	6.073
YDR443C	8. 642	YBL077W	6.071
YHRO55C	8. 568	AIT051A	6,036
YPR165W	8. 447	YERO72W	5. 902
YPR006C	8. 171	YPL201C	5.779
YIL010W	7. 728	YBL073W	5.764
YAROO2W	7. 721	YBR153W	5 . 7 57
YIL082W	7. 433	YGL239C	5, 645
YGL240W	7. 365	YLR280C	5, 613
YLL058W	7. 265	YCR004C	5. 575
YCRO85W	7. 09	YNL334C	5. 553
YIL100W	7.067	YBL046W	5. 522
YBR077C	6. 986	YARO43C	5. 507
YBR257W	6.897	YPR125W	5, 501
YGR039₩	6. 849	YLR118C	5. 468
YPR119W	6. 84	YBR094W	5. 461
YDR491C	6. 485	YMR301C	5. 45
YCLO56C	6. 391	YJR132W	5. 408
YBL069W	6. 35	YCR097W	5. 403
YPR159W	6. 313	YPL194W	5. 385
YBR071W	6. 306	YLR282C	5. 366
YBR167C	6. 216	YHR140W	5. 363

[Table 8]

塩化鉛 (PbCl₂)

遺伝子名	発見量	遺伝子名	兇現嶽
YGR254W	4. 601	YBR031₩	2, 719
YLR359W	3. 972	YBR196C	2. 68
YDR342C	3. 948	YNL178W	2. 641
YJL083W	3. 58	YPL090C	2. 521
YHRO96C	3. 55	YHR092C	2. 488
YOR293W	3. 294	YLRO81W	2. 482
YER102W	3. 279	YFR043C	2. 472
YPL079W	3, 255	YLR110C	2. 458
YDR385W	3, 253	YDR225W	2. 427
YKLO60C	3, 118	YFR031B	2. 384
YKRO57W	3. 096	YDL081C	2. 379
YGL103W	3. 09	YKL181W	2. 359
YDR343C	3.067	YDR345C	2. 322
YHL015W	3. 053	YMR011W	2, 317
YJRO09C	3, 043	YBR181C	2. 277
YBR191W	3, 035	YOLO56W	2. 219
YDL089W	2, 991	YJL116C	2. 201
YGL135W	2. 877	YBR221C	2. 199
YKL097W	2. 842	YNLO55C	2. 179
YILO20C	2. 798	YGL147C	2.173
YHRO94C	2. 791	YHR203C	2. 17
YKLO06W	2.79 1	YERO21W	2. 125
YLR167W	2. 79	YIRO12W	2. 106
YNL302C	2, 771	YOR369C	2, 092
YPL081W	2, 729	YFL014W	2. 083

[0024] Moreover, the graph which patternized the numeric value of Tables 1-8 is shown in drawing 1 - drawing 8. The gene shown on the axis of ordinate in Table 9 is arranged in the order, and the straight line supports each amount of gene expression. If eight kinds of chemicals are compared, it turns out that the gene expression patterns guided completely differ so that clearly. The pattern of the gene guided can be concluded if the toxic difference in a chemical is reflected.

[0025]

[Effect of the Invention] According to this invention explained to the detail above, even if it is what kind of chemical is contained and the liquid which is not known, the toxicity can presume easily and understands the data from which gene it is. Even if this is the strange new matter, it is completely possible.

[0026] Furthermore, toxicity can identify the chemical independently by comparing with the memorized manifestation pattern.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-286281

(43)Date of publication of application: 16.10.2001

(51)Int.CI.

C12N 15/09 C12N 1/16 C12Q 1/68 G01N 33/53 GO1N 33/566 G01N 33/569 //(C12N 15/09 1:645 C12R (C12N 1/16 C12R 1:645 (C12Q 1/68 C12R 1:645

(21)Application number : 2000-105907

(71)Applicant: NATL INST OF ADVANCED

INDUSTRIAL SCIENCE &
TECHNOLOGY METI
TERAMETSUKUSU KK

(22)Date of filing:

07.04.2000

(72)Inventor: [WAHASHI HITOSHI

MOMOSE YUKO

KAWAI SHOJI

MATSUMOTO MASAMITSU

(54) METHOD FOR ASSESSING TOXICITY OF AND METHOD FOR IDENTIFYING CHEMICAL SUBSTANCE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide the subject two methods having resolved such a problem that, conventional bioassays rely on cell growth inhibition or specific biological reaction as index, resulting in limited amount of information to be obtained; in such a bioassay system, although the presence/absence of toxicity due to chemical substance(s) in the environment can be assessed, neither information concerning such toxicity's characteristics nor information for judging what kind of chemical substance(s) has(have) caused the toxicity is available.

SOLUTION: The two methods, i.e., a method for assessing the toxicity of and a method for identifying chemical substance(s) in question, comprise culturing cells in the presence of chemical substance(s) to be assessed and simultaneously observing the expressed state for the genes in the above cells.

塩化カドミウム(0.33mM)

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of

09.01.2003

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-286281 (P2001-286281A)

(43)公開日 平成13年10月16日(2001.10.16)

(51) Int.Cl.'		識別記号		FΙ					テーマコード(参考)
C12N	15/09			C1:	2 N	1/16		Λ	4B024
	1/16			C 1 :	2 Q	1/63		Λ	4B063
C 1 2 Q	1/68			G 0	1 N	33/53		— м	4B065
G01N						33/566			
	33/566					33/569		Z	
			客查請求	未請求	請才	マスタイプ である できまる できまる できまる できない ひょうしん でんしょう マイス	OL	(全 12 頁)	最終頁に続く

(21)出顧番号

特願2000-105907(P2000-105907)

(22) 出願日

平成12年4月7日(2000.4.7)

(71)出願人 301000011

経済産業省産業技術総合研究所長

東京都千代田区設が関15目3番1号

(74)上記1名の復代理人 100080724

弁理士 永田 久喜

(71)出願人 591029518

テラメックス株式会社

大阪府大阪市阿倍野区阪南町7丁目2番10

号

(74)上記1名の代理人 100080724

弁理士 永田 久喜

最終頁に続く

(54) 【発明の名称】 化学物質の毒性評価方法及び同定方法

(57)【要約】

【課題】 従来のバイオアッセイは主として細胞の生育 阻害や特定の生体反応を指標としておりその情報量が限 られている。このようなバイオアッセイ系では環境中の 化学物質による毒性の有無は評価できるが、その毒性の 性質やどのような化学物質に起因する毒性であるかを判 断するための情報が得られない。

【解決手段】 化学物質の毒性評価方法及び同定方法であって、評価すべき化学物質の存在下で細胞を培養し、該細胞の複数の遺伝子の発現状態を同時に観察するもの。

塩化カドミウム(0.33mM)

【特許請求の範囲】

【請求項1】 評価すべき化学物質の存在下で細胞を培養し、該細胞の複数の遺伝子の発現状態を同時に観察することを特徴とする化学物質の毒性評価方法。

【請求項2】 該遺伝子の内少なくとも1つが表9で規 定される遺伝子群或いはこれと相同な遺伝子群から選ば れたものである請求項1記載の化学物質の毒性評価方 法.

【請求項3】 DNAマイクロアレイ又はマクロアレイを用いるものである請求項2記載の化学物質の毒性評価方法。

【請求項4】 該細胞が、微生物である請求項1、2又は3記載の化学物質の毒性評価方法。

【請求項5】 該微生物が酵母である請求項4記載の化 学物質の毒性評価方法。

【請求項6】 該発現状態の評価は、該化学物質の存在下での培養と同じ条件で該化学物質の存在しない状態で細胞を培養し、該化学物質の存在下での培養時の遺伝子からの相補的DNA(cDNA)と、存在しない状態での遺伝子からのcDNAの両方を同一のDNAチップに適用し、その競争反応によるハイブリダイゼイションの差を検出することによって行うものである請求項3、4又は5記載の化学物質の毒性評価方法。

【請求項7】 既知の化学物質の存在下で細胞を培養し、該細胞の遺伝子の発現状態を標準パターンとして記憶し、被測定液の存在下で同様の細胞を培養し、そのときの遺伝子の発現状態を標準パターンと比較することによって、被測定液中の物質を同定することを特徴とする化学物質の同定方法。

【請求項8】 該遺伝子の内少なくとも1つが表9で規定される遺伝子群或いはこれと相同な遺伝子群から選ばれたものである請求項7記載の化学物質の同定方法。

【請求項9】 DNAマイクロアレイ又はマクロアレイを用いるものである請求項8記載の化学物質の同定方法。

【請求項10】 該細胞が、微生物である請求項7、8 又は9記載の化学物質の同定方法。

【請求項11】 該微生物が酵母である請求項10記載 の化学物質の同定方法。

【請求項12】 該発現状態の評価は、該化学物質の存在下での培養と同じ条件で該化学物質の存在しない状態で細胞を培養し、該化学物質の存在下での培養時の遺伝子からの相補的DNA(cDNA)と、存在しない状態での遺伝子からのcDNAの両方を同一のDNAチップに適用し、その競争反応によるハイブリダイゼイションの差を検出することによって行うものである請求項9、10月は11月間からなどが表する目のです。

10又は11記載の化学物質の同定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、化学物質の毒性評

価法及び同定法に関するものである。

[0002]

【従来の技術】現在、化学物質のデーターベース Chemi cal abstractには約1700万件の化学物質が登録されている。そのうち、1万種類以上の合成化学物質が環境中に蓄積しているものと推定され、その数は年々増加している。合成物質の中には、直 接又は環境中で形を変えた後に生態や人体に悪影響を与える物質も含まれている。そのため、それぞれの化学物質について、生態や人体に与える影響を迅速に評価する必要がある。また、環境汚染問題が国民の不安をあおるような社会問題となっている状況の下、種々の高度な測定システムで、環境中に存在する化学物質を同定しようとする試みがなされている。

【0003】さらに、多くの機関でバイオアッセイを用いた簡易毒性評価試験による毒性の指標化がなされている。これは、動植物細胞や微生物を用いて「化学物質による生物的応答の変化」を測定し、「毒性」を評価するものである。

[0004]

【発明が解決しようとする課題】しかしながら、どのような高度な技術を用いても、現状では約10%の化学物質を同定できるにすぎないと言われている。従って、環境中に存在する化学物質を簡単に同定する方法が要望されていた。さらに、従来のバイオアッセイは主として細胞の生育阻害や特定の生体反応を指標としておりその情報量が限られている。このようなバイオアッセイ系では、 環境中の化学物質による毒性の有無は評価できるが、その毒性の性質やどのような化学物質に起因する毒性であるかを判断するための情報がまったく得られない

[0005]

【課題を解決するための手段】以上のような現状に鑑み本発明者は鋭意研究の結果本発明を完成させたものであり、その特徴とするところは、化学物質の毒性評価法においては、評価すべき化学物質の存在下で細胞を培養し、該細胞の複数の遺伝子の発現状態を同時に観察、評価する点にあり、化学物質の同定方法にあっては、既知の化学物質の存在下で細胞を培養し、該細胞の遺伝子の発現状態を標準パターンとして記憶し、被測定液の存在下で同様の細胞を培養し、そのときの遺伝子の発現状態を標準パターンと比較することによって、被測定液中の物質を同定する点にある。

【0006】化学物質は、それぞれ固有の毒性を有しており、生物に影響を与える。影響を受けた生物はその毒性に応じて修復又は解毒機構を働かせる。その例として、ストレス応答と呼ばれるものがある。微生物から高等生物まですべての生物細胞は、環境ストレス(高温、低温、高圧、乾燥、紫外線、薬物暴露等)に曝されると、瞬時にストレス応答タンパク(HSP)を合成し、

これらの環境に耐える体制を整える。これをストレス応答という。即ち、ストレス応答タンパク産生遺伝子は、生体が環境の影響を受けたときのみ、しかもストレスの種類に応じたタンパクを、受けたストレスの程度に応じて産生する。還元すれば、生体はストレスの種類と程度に応じてストレス応答タンパク産生遺伝子を発現している事となる。即ち、生体が化学物質から受けた毒性の影響からの修復機構や解毒機構の誘導によってもたらされる特定の遺伝子の発現を検出することによって、その化学物質の毒性を評価することが可能になるのである。

【0007】化学物質の影響は単に1つの遺伝子の発現をもたらすものではなく、常に複数の遺伝子が毒性に応答して発現する。また、発現する遺伝子の種類、発現パターンは化学物質によって異なる。本発明はこのことを利用して未知化学物質の種類と毒性の程度を同定することができる。即ち、該未知化学物質が特徴的に誘導する遺伝子群と、既知の化学物質を用いて誘導される遺伝子群のスペクトル(パターン)を比較することで、その化学物質を推定することができる。また、その誘導される遺伝子群から未知化学物質がどの程度の危険性があるかを推定することができる。

【0008】評価すべき化学物質とは、被検液に含まれる化学物質であり、それが何か分かっている必要はなく、また単数か複数かもわかっていなくともよい。よって、ここでいう評価すべき化学物質の存在下というのは、その化学物質が含まれている被検液の存在下という意味である。

【0009】ここでいう化学物質とは、硫酸銅、塩化水銀、重クロム酸カリウム、塩化鉛、塩化ニッケル、塩化カドミウムなどの無機金属化合物、塩化トリブチル錫、メチル水銀、四メチル鉛などの有機金属化合物、ジクロエタン、ダイオキシン類などの有機塩素化合物、ビスフェノールA、フタル酸ジメチルなどの有機化合物、スルファニルウレア、有機リン化合物、カーバメート剤などの農薬、ドデシルベンゼンスルホン酸ナトリウムなどの界面活性剤、メタノールなどのアルコール類などがあげられるが、これらに限定するものではなく少なくとも生理活性を持つ化学物質であればよい。

【0010】また、本発明は新規化学物質の毒性も評価できる。新規化学物質について誘導される遺伝子群を測定しその発現パターンを記憶しておけば、未知試料中の当該化学物質の存在が確認できる。このとき化学物質の組成や構造が分かっている必要はない。また、その発現遺伝子を詳細に検討することで、その毒性を評価することができ。例えば、実施例1で示すように、カドミウムで誘導される遺伝子群からは、少なくともグルタチオン、システイン、メチオニンの欠乏が起こることが推定できるが、新規化学物質においてこれらの遺伝子が発現していれば、その物質がカドミウム類似の毒性を持つこ

とが評価できる。

【0011】細胞としては、ヒト細胞が好ましいのは当然であるが、マウスその他の細胞でもよい。更に、培養が容易であること、遺伝子の機能がよく研究されていることから細胞として微生物を用いることも好適である。また、微生物の中でも酵母が好適であった。これは、取り扱いが容易であるうえ、ヒト進化の過程にある生物と考えられ、ヒトに対する毒性等と同じように機能する遺伝子が多いと考えられているためである。

【0012】培養方法は、用いる細胞の通常の培養方法でよく特別な方法である必要はない。YPD培地やその他の培地でよい。

【0013】遺伝子の発現状態を観察、評価する手段と しては、ノーザンブロットやRTPCRを複数行う等、 遺伝子の発現量が測定できる方法であればどのような方 法でもよい。しかし、DNAマイクロアレイ又はマクロ アレイを用いる方法が好適である。DNAマイクロアレ イとは、スライドガラスのような小さなチップ上(25 mm×75mm程度)に数10から数千個程度、或いは 数万個のcDNA(相補的なDNA)を貼りつけたもの である。これに対してマクロアレイとは、比較的大きな デ紙状の担体(10cm×10cm程度)に、同様に数 十から数千個程度のcDNAを貼りつけたものである。 【0014】試料から発現しているDNA或いはRNA を取りだし、必要によりPCRなどを用いて適当に増幅 し、アレイに添加(適用)する。温度を適当に調整する ことで、試料中のDNAとアレイ上のcDNAをハイブ リダイズさせる。ハイブリダイズしたDNAの検出は通 常蛍光色素などのマーカーを用いて検出するが、マーカ ーを用いず、表面プラズモン共鳴や、偏光解消或いはエ バネッセント光などを用いた検出法を用いることもでき る。

【0015】上記の観察方法では、試料を単独で検出しているが、化学物質(これを含む試料液)を添加しないこと以外は試料と同じ条件で培養した対照区(ブランク検体)も作成し、それと試料検体とを一緒にDNAアレイに適用し、ハイブリダイゼイションを競争的に起こさせ、同一遺伝子における試料とブランク検体のハイブリダイズ量の違いを観察してもよい。

【0016】アレイに添着しておくDNAは目的とする化学物質を識別するのに必要なだけでよい。例えば、酵母ではおよそ6000個の遺伝子があると言われるが、化学物質に応答して特異的に発現量が変化する遺伝子は高々500個程度であると推定される。表9に毒物に応答して発現する遺伝子の一部を列挙した。これらの遺伝子だけで、少なくとも実施例に示した8種類の化合物の判定が可能であるが、化合物はこれらに限定されるものではない。

【表9】

発現する遺伝子の一部

YALO12W	YCR021C	YER103w	YHLOISW	YJR047C	YLB231C	YNL178W	YOR259C
YALO19#	YCR031C	YER138c	YHL023C	YJR132W	YLB257W	TEL1908	YOR266W
YALOG7C	YCR062N	YEB150w	YHRO19C	TJR156W	YLR270W	TRL191W	YORZGOW
YAROOZ#	YCR085W	YFL014W	YHR053C	YJR157W	YLR280C	YHL208W	YOR3O3W
YAR007 C	YCR096C	YFL057C	YHRO55C	TELOGIC	YLR282C	TNL209W	YOR306C
YAR043C	TCR097wa	TFR016C	YHR056C	TELOOGY	YLR286C	YHL214V	Y02310C
ABT00ec	YDL061C	YFR022W	YHRO73W	YELO26C	YLE300W	YHLZ39V	YOR338W
YBL046W	YDL078C	TFB031BC	YHRO87W	TKL060C	YLR303W	TEL277V	YOR355W
ABT0@am	TOLO81C	TFR043C	YHR092C	YELO71 W	YLR327C	THL281W	YOR369C
YBL073W	YDL089W	YFB049W	YHR094C	YEL097W	YLR337W	YML302C	TOR371C
YBL077W	VDL109c	YFE052W	YHR096C	TEL 136 W	YLR340W	YML307C	10B375C
YBRO12W-	YDL181¥	YGLO14W	YHRLO4W	WEL143W	YLR354C	YML33IC	YOR382W
YBR027C	YDL2O4w	TGL030W	YHR138C	TEL 181W	YLR359W	THL334C	TPL028W
YBR031W	YDR032c	YGL037C	YHR140V	TEL200C	YLR367W	YMROO1C	TPL037C
YBR071W	YDR033w	YGL053W	YHR174V	YEL214C	YLR388W	YNRO21V	TPL053C
YBR072W	YDR069C	YGL055W	YHR203C	TEL217N	YML004C	TREO30V	YPL079W
YBR077C	YDR070c	TGL103W	YILDION	YERO32W	YHL102W	YOLOO6C	PPLOSIN
YBR078W	YDR077W	TGL116W	YILO20C	TERO39N	YNL106W	TOLO16C	YPL090C
YBR082C	YDR154C	YGL121C	YILO21W	YERO42W	YMR009W	YOLO38W	YPL106C
YBR094#	YDR223M	YGL 135#	YILO74W	YERO51N	YMR011W	YOLO44W	YPL147W
YBR149W	YOR225W	YGL 138C	YILO82V	TERO57N	YMR015C	YOLO49W	YPL149V
YBR163W	YDR227W	TGL146C	YILO90W	TERO598	YNRO52W	YOLO53C	YPL194V
YBR162C	YDR335W	Y61147C	YIL100Y	YEROSON	YKR058W	YOLOSSW	YPL201C
YBR167C	YDR342C	YGL239C	YIL106W	YERO94C	YMR107W	Y010 86C	YPL221W
YBR169C	YDR343C	YGL240W	YILILIY	YLL024c	YMR167W	YOL1278	YPL239W
YBR173C	YDR345C	TGB008C	YIL136W	YLL039c	YME173W	WOL141W	YPL250C
YBR181C	TDR385W	YGRO39W	YIL144W	YLL058W	THR215W	YOL161W	YPR006C
YBR191#	TDR443C	YGRO40W	YIRO12W	TLE029c	YMR243C	YOL164W	YPR023C
YBR196C	YDR453C	YGRO43C	YJL082V	TLR056w	YHR275C	Y6RJ007C	YPR082C
YBR207W	YDR475C	YGRO87C	YJL083W	YLR058c	YMR301C	YCRO19W	YPR099C
YBR221C	YDR491C	YGRO88W	YJL110C	YLRO81 w	YMR307W	YORO20C	YPE119N
YBR236C	YDR633C	YGR103W	YJL116C	YLR092W	YMR318C	YORO27W	YPR126W
YBR257W	YELOOGW	YGR142¥	YJL144W	YLR110C	YNLO15W	YORO81C	TPB159W
YBR263W	YERO12w	YGR154C	YJL151C	YLR118C	YNLOSSC	YOROSSW	YPR165W
YBR296C	YERO21W	TGB163W	YJL158C	YLB134#	YNLO66W	YOR128C	YPR167C
YCL025C	YER042w	YGB205W	YJL169W	YLB153c	YNLO69C	YOR136W	YPR188C
YCL043C	YBR046*	YGR224W	VJL160C	YLR157C	YWL134C	YOR152C	YPR204W
YCL056C	YERO67w	YGB236C	¥JL177¥	YLB157W	YEL135C	YOR184W	
ACTX118	YERO72w	YGR246C	YJR009C	YLR178C	YNL142W	YOR187V	
YCROO4C	YERO74w	YGR253C	YJR010W	YLR205C	YHL143C	Y01221C	
YCR012#	YER091c	YGR254V	YJR025C	YLR214V	YNL160W	YOR240W	
YCE013C	YER102w	TGR275W	YJR029W	TLB216C	YRL169C	YOR253V	

【0017】これらの8種のように特定の化学物質を選択しそれらによって発現する遺伝子の発現量の上位所定数の遺伝子のみ測定して評価してもよい。例えば、上位50個の遺伝子のみ測定する等である。このようにすると、測定が簡単になる。

【0018】次に本発明の化学物質同定法について説明する。まず、既知の化学物質(単一が好ましい)を含有する試料を培養し、発現した遺伝子名と発現強度をその化合物の標準として記録しておく。このときこれらをグラフ化してパターンとして記憶しておくと視覚的にも判断できる。勿論、コンピューターに記録しそこで判定してもよい。

【0019】このとき、被検液中に複数の化学物質が含まれている場合、遺伝子の発現パターンはその含まれている化学物質のそれぞれの発現パターンの単純合計になることがわかった。よって、特徴的な遺伝子の発現量から容易にその複数の化学物質を推定することができる。

勿論、この場合には未知化学物質は同定できない。よって、いかに多くの既知化学物質の発現パターンを記録、 保存しておくかが同定できる化学物質の多さを決めることとなる。しかし、その遺伝子自体の意味や機能がわかっている必要はない。

[0020]

【実施例】以下実施例に沿って具体的に発明を詳細に説明するが、本発明がこれらに限定されるものではない。 実施例1

YPD培地(酵母エキス1%、ボリペプトン2%、ブドウ糖2%)を用いて酵母を培養した。対数増加期に化学物質として塩化カドミウム(CdC12、0.33mM)を添加し2時間培養した。これとまったく同じ条件で化学物質を添加せず培養したものを対照区とした。この試料及び対照区を同量DNAチップ(DNAチップ研究所製)に満下し、65℃で、1晩又は12時間以上ハイブリダイズさせた。DNAチップをスキャナー(SC

AN・ARRAY4000: GSIルミコス)により発現遺伝子と発現量を測定した。それを表10に示す。全ての遺伝子について、記述することも可能であるが、ここでは化学物質の毒性によって応答した遺伝子を対象としているため、それぞれのモデル化学物質について発現量の多い上位50の遺伝子だけを機械的に選択して示した。ここでの数値は、対照区に対する相対量で示している。即ち、数値が1の場合には、試料と対照区が同量であり、化学物質によって特別に発現していないということである。この比較の方法は異なる色に発色(蛍光)するようにしておき、その色を測定して行ってもよい。

【0021】勿論、同一のDNAチップに適用して競争させず、別のDNAチップに適用してその差を測定して

もよい。

【0022】この表10及び11は、塩化カドミウムによって誘導される遺伝子の役割(機能)も記述した。誘導される遺伝子群の特徴として、硫黄の代謝系酵素群を挙げることができる。このことは、カドミウムの添加により、酵母の細胞内で硫黄代謝の異常が生じたことを示している。また、アミノ酸細胞内取りこみ関連の遺伝子が誘導されている。硫黄代謝の最終生産物が、グルタチオン、システイン、メチオニンであることを考えると、酵母細胞内で起こった異常は、これら含硫アミノ酸の欠乏であると結論することができる。

【表10】

カドミウムによって誘導される遺伝子-1

遺伝	子名 発現強度	遺伝子の機能(unは未知の遺伝子)
YLR30	3¥ 16. 52826667	O-Acetylhomoserine-O-Acetyl serine Sulfhydralmse
YKL OO	IC 10. 95636	adenylylsulfate kinase
YOL16	4# 7 . 11974	un (unknown)
YIL07	4H 5, 4 52856667	
YBR29	SC 4.361473333	Probable Nat/Pi sympereer
YFL05	7C 3, 9 0936	very similar to A55449 aryl-allcohol dehydrogenase
YAL06	7C 3,764 04	Suppressor of Sulfoxyde Ethionine resistance
YNL14	2 % 3.747 86	Ammonia transport protein
YCL02	5C 3.471056667	Amino acid permease
YMR17	3H 3, 415143383	DNA damage inducible;
YMR31	8C 3, 354 37	un
YER07	4w 3.3 33333333	40S ribosomal protein \$24A
YLL05	8# 3, 296736667	un
YLR09	2# 3.217813333	high affinity sulfate permease
YNL13	4C 3. 150216667	un
YKL21	7# 3. 097286667	essential for lactate uptake in yeast
YOR38	2# 3.074303333	un
YLR32	7C 2.9 3819	un
YNL27	7# 2,90 0126667	homoserine O-trans-acetylase
YNL16	0뉴 2.87 11 4 333 3	may be involved in cellular adaptations
		prior to stationary
YLR20	5C 2,838356667	ար
YKR03	9 V 2,7 6581	general amino acid permease
YDR53	3C 2.632 0566 67	tin
YBR07	2W 2 .615956667	heat shock protein 26
YMR05	8 W 2.6 13936667	high-affinity iron transport system
YNL23	9W 2.5 81933333	aminopeptidase of cysteine protease family

カドミウムによって誘導される遺伝子-2

遺伝子名	免別強度	遺伝子の機能(畑は未知の遺伝子)
YNL331C	2, 513673333	Hypothetical aryl-alcohol dehydrogenase
YDR223W	2. 50132	un
YBR207W	2, 481336667	
YNL191W	2. 430063333	un
YAL012W	2. 40838833S	cystathionine gama-lyase
YHR138C	2. 345876667	un
YPL014W	2. 303206667	12 kDa heat shock protein
YOR253W	2. 287533333	un
YOR338#	2. 28119	un
YOR303W	2. 26205	Carbancyl phosphate synthetase, arginine specific
YOR306C	2. 242523333	un
YKR032#	2, 22148	un
YOROO7C	2, 22148	small glutamine-rich tetratricopeptide
		repeat containing protein
YPR204#	2. 192553333	un
YER046w	2. 189143333	ua
YGR154C	2. 187783383	un
YGRO87C	2, 157476667	un
YNL208W	2. 149786667	Un
YJL151C	2. 13153	Un
YOR375C	2. 13153	NADP-specific glutamate dehydrogenase
YOLOO6C	2. 121983333	topoisomerase I
YGR103W	2. 116846667	Un
YGL055W	2, 116823333	delta-9 faity acid desaturase
YPR023C	2. 11356	Un

【0023】次に種々の化学物質に対して、同様の実験を行った。その遺伝子名と発現量を表に示す。化学物質としては、メチル水銀(CH_3HgCl)、塩化水銀($HgCl_2$)、トリブチルチンクロライド($(C_4H_9)_3SnCl$)、重クロム酸カリウム($K_2Cr_2O_7$)、塩化ニッケル($NiCl_2$)、硫酸銅($CuSO_4 \cdot 5H_2O$)、塩化鉛($PbCl_2$)である。これらの物質に加えて、前記塩化カドミウムも含めて表 $1\sim 8$ に示す。誘導される遺伝子(上位50に限り)全てをアルファベット順に示した。表 $1\sim 8$ に示された遺伝子は400種類であるが、重複する遺伝子があるため、合計331種類であり、これを表9に羅列した。【表1】

塩化カドミウム (CdCl:)

遺伝子名	発規議	遺伝子名	発現量
YLR303W	16. 53	YNL239W	2. 582
YKL001C	10. 96	YNL331C	2. 514
YOL164W	7. 12	YDR223¥	2. 501
YILO74W	5. 453	YBR207W	2. 481
YBR296C	4, 361	YNL191¥	2. 43
YFL057C	3. 909	YAL012#	2. 408
YALO67C	3. 764	YHR138C	2. 346
YNL142W	3. 748	YFL014W	2. 303
YCL025C	3. 471	YOR253W	2, 288
YMR173W	3. 415	YOR338¥	2. 281
YMR318C	3. 354	YOR3O3¥	2. 262
YERO74W	3, 333	YOR306C	2. 243
YLL058W	3. 297	TKR032¥	2. 221
YLR092W	3. 218	Y08007C	2. 221
YNL134C	3. 16	YPR204¥	2. 193
YKL217W	3. 097	YERO46W	2. 189
YOR382W	3. 074	YGR154C	2, 188
YLR327C	2. 938	YGR087C	2. 157
YKL277W	2, 9	YNL208W	2. 15
YNL160W	2, 871	үлл151С	2. 132
YLR205C	2. 838	YOR375C	2. 132
YKR039W	2, 766	YOLOOGC	2. 122
YDR533C	2, 632	YGR103W	2. 117
YBR072W	2, 616	YGL055W	2. 117
YMR058W	2.614	YPRO23C	2.114

メチル水線 (CH:HgCl)

遺伝子名	発現景	遺伝子名	免児量
YLR214W	5. 327	YJR157W	2. 127
YJR009C	4. 656	YOR136W	2.08
YLR286C	3. 95	YNLO66W	2.071
YCR013C	3. 401	YLR354C	2.061
YMR307W	2. 951	YOR187W	2, 027
YLE300W	2. 782	Y 01: 128C	1, 993
YLR359W	2. 746	YJL159#	1.992
YMR058W	2. 694	YBRO31W	1, 989
YOR184W	2. 693	YLR340#	1, 986
YPL028W	2. 663	YLR056¥	1.978
YMR015C	2.647	YDR033#	1. 966
YOLO86C	2, 552	YJRO47C	1, 922
YBR078W	2. 541	Y08355¥	1.916
YNL069C	2. 484	YCL043C	1. 884
YKL190W	2. 435	YLR058C	1.872
YKR080W	2. 411	YJL062#	1, 858
YLR303W	2. 387	YLR153C	1, 793
YHR019C	2. 364	AMT 100#	1. 793
YLL024C	2. 277	YDL109C	1. 786
YXR243C	2, 233	YCR012¥	1, 707
YHR174W	2, 215	YMR215≌	1.697
YLR029C	2. 163	YNL307C	1.695
YBR162C	2, 159	YNRO21#	1,677
YNL209W	2. 135	YLR231C	1.675
YPL037C	2. 135	YJL158C	1.675
I		L	

【表2】

塩化水級(HgCli)

遺伝子名	免現益	遺伝子名	党現最
YJR010W	4. 993	YDR032C	2. 602
YERO91C	4.667	YBR149¥	2.514
YMR052W	3. 935	YCR013C	2.511
YHE087W	3, 688	YGL138C	2. 479
YNL160W	3, 439	YGL116¥	2.454
YOLL41W	3, 427	YKR051₩	2.419
YPR167C	3, 364	YKL200C	2.416
YER103W	3, 318	YLL024C	2, 399
YCLX11W	3, 315	YGL037C	2. 384
YNL134C	3, 289	YER150₩	2. 383
YFL014W	3. 288	YBR169C	2. 38
YGR142W	3, 157	YMR173¥	2. 341
YJL160C	3.087	YBR082C	2.303
YLR216C	3, 055	YML004C	2.288
YCRO12W	3,047	YKL0714	2. 288
YGL146C	2, 975	YHR056C	2, 27
YDR227W	2,9	YLR178C	2. 269
YOL151W	2.885	YPL106C	2. 261
YNLO15W	2.875	YML281#	2. 237
YGRO40W	2.748	YLR303₩	2. 224
YDL204W	2.719	YPL250C	2.21
YORO27W	2.714	YLR270#	2, 167
YGRO43C	2. 654	YGR088W	2. 157
YER042#	2, 621	YHR104#	2.15
YDR453C	2. 603	YML102W	2.145

トリプチルテンクロライド ((C,H,),SnC1)

遺伝子名	発現最	遺伝子名	発現量
YKL2140	3. 886	Y0L053C	1. 674
YC22 530	3. 434	YKLO26C	1.669
YLE327C	3. 105	YHRO87W	1.66
YIL1118	3. 062	YGR275W	1, 654
YDRO 700	2.918	YJR155W	1, 647
YDR5330	2. 672	YO RO 27W	1. 644
YFL014N	2. 64	YERO12W	1, 64
YMR030N	2.479 .	YDR475C	1, 639
YGR163N	2. 329	YORO19W	1, 601
YFL 057C	2. 328	YFR052W	1. 60i
YGL121C	2. 31	YOB338W	1, 597
YNR. 1340	2, 087	YAR 1380	1. 597
YOR020C	2. 039	YCR062W	1. 567
YGL053N	2. 027	YLR157C	1. 564
YORO88W	1. 965	YGR236C	1. 554
YER150N	1. 909	YMR107W	1, 554
YOLO38N	1. 833	YGR224W	1, 545
Y00:152C	1. 827	YGR205W	1, 538
YC2008C	1. 797	YBR236C	1. 534
Y002 590	1. 764	YPL053C	1. 527
YML160W	1.728	YCRO96C	1. 524
YIL144N	1.718	YMR009W	1.513
YPL149N	1. 702	YMR167W	1, 511
YKL136W	1. 687	YIL136W	1, 51
YJL114N	1. 685	YBR173C	1. 507

【表4】

砠クΠム酸カリウム(KェCァェO₁)

遗伝子名	発規量	遊伝子名	免現證
YORO81C	25. 25	YDR335W	0. 998
YLB337W	5. 79	YNL13SC	0.994
YJR009C	2. 758	YFR016C	0. 984
YDRO32C	2, 679	YOLO44:	0. 978
YMB2750	2, 528	YFR022	0. 962
YOR371C	1. 993	YKL143H	0.957
YAROO7C	1. 641	YLR340∺	0. 954
YOR221C	1. 584	YDL181≌	0. 95
YJL159W	1. 396	Y0L049#	0. 94
YCRO13C	1. 383	YDLO61C	0. 933
YGLO30W	1. 308	Y0B240₩	0. 929
YBL006C	1, 308	YJL177∺	0.923
YLR388W	1. 291	YLR214∺	0. 921
YOLO86C	1. 261	YNL134C	0. 907
YLL024C	1. 253	YLR134∺	0. 899
YPL147N	1, 246	YLR303≒	0, 895
YDBO77W	1, 206	YOR136¥	0, 889
YPL221W	1. 164	YBR078#	0. 883
YDR069C	1. 119	YHR073∺	0.878
YLR110C	1. 118	YJR155W	0.865
YDR154C	1, 098	YOR259C	0.856
YALO19W	1, 085	YBR027C	0. 853
YHR174W	1. 053	YNL208W	0. 848
YNL1 78W	1,047	YDR533C	0. 844
YCR031C	1, 047	YNL143C	0. 836
		L	

塩化ニッケル (NiCl,)

过低子名	発見量	遺伝子	発見量
YNL160W	19. 02	YOL 016C	7. 572
YJE00 9C	18.78	YOR266N	7. 521
YERO12W	15, 72	YMR307K	7. 453
YKR059W	13. 21	YILO90K	7. 193
YJRO29W	11.61	YOL127W	7. 193
YMR058W	11.2	YPL239W	7. 105
YPL028W	10.4	YCL043C	6. 988
YJR0250	10.05	YELOO6W	6. 975
YDRO77W	10.04	YGR246C	6, 892
YHRO55C	9. 485	YCL025C	6. 82
YBR162C	9. 369	YLR056W	6. 82
YLB354C	9. 32 3	YERO67W	6. 789
YNL135C	9. 206	YBR078W	6.66
YKR 094C	9. 187	YHL023C	6. 578
YJL151C	9. 148	YPR049∺	6. 521
YMR173W	8, 996	YLR300W	6, 29
YJL159¥	8, 916	YDL078C	6. 29
YGL121C	8. 561	YGL030W	6. 2 86
YJL110C	8.319 .	YLR367#	6. 224
YC2021C	8. 314	YNRO01C	6. 2 21
YLB359W	8. 142	YGL135W	6. 136
YLL0390	8. 024	YGL014W	6. 102
YCRO13C	7. 886	YER138C	6.071
YBR263W	7. 696	YKR042W	6. 026
YLB257W	7. 67	YOR310C	6.01

【表6】

硫酸剤 (CuSO(・5H₂O)

遺伝子名	発見量	遺伝子名	羌 現最
YHR053C	13. 97	YIL106#	6. 134
YNL169C	11. 98	YPR099C	6. 121
YPR082C	9. 876	YPR188C	6.076
YPR167C	8, 821	YNL214#	6.073
YDR443C	8, 642	YBL077W	6. 071
YHR055C	8.568	YIL021#	6.036
YPR165W	8. 447	YER072#	5. 902
YPR006C	8. 171	YPL201C	5.779
YIL010W	7, 728	YBL073₩	5.764
YAROO2W	7. 721	YBR153W	5. 757
YIL082W	7. 433	YGL239C	5. 645
YGL240W	7. 365	YLR280C	5, 613
YLL058W	7. 265	YCR004C	5. 575
YCRO85W	7. 09	YNL334C	5. 553
AIT100M.	7. 067	YBL046∺	5. 522
YBR077C	6, 986	YARO43C	5. 507
YBR257W	6.897	YPR125W	5, 501
YGRO39W	6. 849	YLR118C	5. 468
YPR119W	6. 84	YBR094₩	5. 461
YDR491C	6. 485	YMR301C	5, 45
YCL056C	6. 3 91	YJR132W	5. 408
YBL069W	6, 35	YCRO97W	5. 403
YPR159W	6. 313	YPL194W	5, 385
YBR071W	6. 306	YLR282C	5. 366
YBR167C	6. 216	YHR140W	5. 363

【表8】

塩化鉛 (PbC1,)

遠伝子名	飛規量	遺伝子名	党現型
YGR254¥	4. 601	YBRO31W	2.719
YLR359#	3. 972	YBR196C	2, 68
YDR342C	3. 948	YNL178W	2 , 641
YJL083¥	3. 58	YPL090C	2. 521
YHRO96C	3, 55	YHRO92C	2, 488
YOR293W	3. 294	YLRO81W	2. 482
YER102W	3. 279	YPRO43C	2.472
YPL079#	3, 255	YLR110C	2, 458
YDR385W	3, 253	YDR225W	2, 427
YKL060C	3, 118	YFRO31B	2, 384
YKRO57W	3. 096	YDL081C	2, 379
YGL103₩	3. 09	YXL181W	2, 359
YDR343C	3.067	YDR345C	2. 322
YHL015W	3. 053	YMR011W	2, 317
YJE009C	3. 043	YBR181C	2, 277
YBR191W	3. 035	YOLO56W	2. 219
YDLO89W	2, 991	YJL116C	2, 201
YGL135W	2. 877	YBR221C	2 , 199
YKL097W	2. 842	YNLO55C	2, 179
YILO20C	2. 798	YGL147C	2 , 173
YHRO94C	2, 791	YHR203C	2. 17
YKL006W	2. 79 1	YERO21W	2. 125
YLR167W	2. 79	YIR012W	2. 106
YNL302C	2.771	YOR369C	2. 092
YPL081W	2. 729	YFL014W	2. 083

【0024】また、表1~8の数値をパターン化したグラフを図1~図8に示す。縦軸には表9で示した遺伝子をその順に並べており、直線はそれぞれの遺伝子の発現量に対応している。8種類の化学物質を比較すれば明らかなように、誘導される遺伝子の発現パターンはまったく異なることがわかる。誘導される遺伝子のパターンは化学物質の毒性の違いを反映したものであると結論づけることができる。

[0025]

【発明の効果】以上詳細に説明した本発明によれば、どのような化学物質が含まれているか分からない液体であっても、その毒性が簡単に推定でき、またどの遺伝子からのデータであるかもわかる。これは、まったく未知の新規物質であっても可能である。

【0026】さらに、記憶している発現パターンと比較することによって、毒性とは別にその化学物質を同定することができる。

【図面の簡単な説明】

【図1】塩化カドミウム($CdCl_2$)を添加したときの遺伝子の発現パターンを示すグラフである。

【図2】メチル水銀 (CH_3HgC1) を添加したときの遺伝子の発現パターンを示すグラフである。

【図3】塩化水銀($HgCl_2$)を添加したときの遺伝子の発現パターンを示すグラフである。

【図4】トリブチルチンクロライド((C_4H_9) $_3SnC1$)を添加したときの遺伝子の発現パターンを示すグラフである。

【図5】重クロム酸カリウム($K_2 Cr_2 O_7$)を添加したときの遺伝子の発現パターンを示すグラフである。

【図6】塩化ニッケル(NiCl2)を添加したときの遺伝子の発現パターンを示すグラフである。

【図7】硫酸銅 ($CuSO_4 \cdot 5H_2O$) を添加したときの遺伝子の発現パターンを示すグラフである。

【図8】塩化鉛($PbCl_2$)を添加したときの遺伝子の発現パターンを示すグラフである。

【図1】 【図2】 【図3】 塩化カドミウム(0.33mM) メチル水銀 (74μM) 塩化水銀 (0.67mM)

【図7】

硫酸銅 (10mM)

【図8】

塩化鉛 (2 mM)

フロントページの続き

G 0 1 N 33/569

(51) Int. Cl. 7

//(C12N	15/09	
C12R	1:645)	
(C12N	1/16	
C12R	1:645)	
(C12Q	1/68	
C12R	1:645)	
(72)発明者	岩橋 均	
	茨城県つくば市東1丁目1番3	工業技術
	院生命工学工業技術研究所内	
(72)発明者	百瀬 祐子	
	茨城県つくば市東1丁目1番3	工業技術
	院生命工学工業技術研究所内	
(72)発明者	河井 昭治	
	京都府宇治市平尾台2丁目8の4	1

識別記号

(参考)			FΙ
		1:645)	C12R
L	Α	1/16	(C 1 2 N
	•	1:645)	C12R
A .	Α	1/68	(C12Q
		1:645)	C12R
A	Α	15/00	C12N
		1:645)	C12R

大阪府三島郡島本町山崎4丁目20番5-909号 Fターム(参考) 4B024 AA11 CA02 CA09 GA19 HA14 4B063 QA01 QA06 QA18 QQ20 QQ61 QQ89 QR32 QR40 QR55 QR76 QR84 QS34 4B065 AA72X AC20 BB02 BB04 BC12 BC41 BD01 CA46

(72) 発明者 松本 雅光

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.