ЗАДАНИЕ 2. ИСПОЛЬЗОВАНИЕ ФУНКЦИЙ

Цель задания

Разбиение программы на функции. Изучение приемов программирования задач с накоплением сумм с заданной точностью ε и выводом результатов в виде таблицы.

Основные понятия

В простейшем случае программа состоит из одной функции *main*. Помимо функции *main* в программе могут быть и функции пользователя. Функция пользователя должна быть определена следующим образом: *ТипВозвращаемогоФункциейЗначения ИмяФункции (СписокФормальныхПараметров)* { *ТелоФункции*}

Прототип функции совпадает с ее заголовком, после которого ставится точка с запятой.

Вызов функции имеет вид:

ИмяФункции (СписокАргументов)

Существует два способа завершения функции: -достижение } для тела функции; -использование оператора *return*.

Пример выполнения задания

Пример 2.1. Вычислить значение функции $f(x) = e^x$ на отрезке [a, b] с шагом h и точностью ε , используя разложение в ряд Тейлора.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

Результат вывести в виде таблицы.

#include <iostream.h>

#include <math.h> //Подключение библиотеки математических ф-ий

```
#include <stdlib.h>
double Exp(double, double); //Прототип функции Exp
int main() {
     double a, b, h, eps;
     cout << "Введи начало отрезка а = ";
     cin >> a;
     cout << "Введи конец отрезка b = ";
     cin >> b;
     cout << "Введи шаг h = ";
     cin >> h;
     cout \ll "Введи точность eps = ";
     cin >> eps;
     cout << "\nТаблица значений функции\n\n";
     //Цикл по строкам таблицы
     for( double x = a; x \le b + h/2; x += h) {
        cout << " x = ";
        cout.width(6); //Для значения х в строке выделяется 6 позиций
        cout << x:
        cout.width(10); //Для значения функции Ехр след. 10 позиций
        cout << Exp(x, eps); //Получение значения функции Exp
        cout.width(10); //Для значения функции ехр след. 10 позиций
        cout \ll exp(x) \ll endl; //Вычисление стандартной ф-ии exp
system("pause");
return 0;
double Exp(double x, double eps) {
     double Sum = 1, Term = 1;
     for (int i = 1; fabs(Term) > eps; i++) {
        Term = Term * x/i;
        Sum = Sum + Term;
     return Sum;
}
```

Постановка задания

Построить таблицу приближенных значений функции f(x) на отрезке [a;b] с шагом h. Результаты представить в виде таблицы :

X	f(x)	F(x)

Значения функции F(x) вычислять, используя библиотечные функции. Значения функции f(x) вычислять, используя следующие разложения в ряд Тейлора :

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots,$$
 $x \in \mathbb{R};$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots, \qquad x \in \mathbb{R};$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \qquad x \in \mathbb{R};$$

$$shx = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \dots,$$
 $x \in \mathbb{R}$;

$$chx = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots,$$
 $x \in \mathbb{R};$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} + \dots, \qquad x \in [-1;1[;$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^n}{n} + \dots, \qquad x \in [-1;1[;$$

$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n-1}}{2n-1} + \dots\right), \qquad |x| < 1;$$

$$\ln x = 2\left[\frac{x-1}{x+1} + \frac{1}{3}\left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5}\left(\frac{x-1}{x+1}\right)^7 + \dots\right] , \qquad x > 0;$$

$$\arcsin x = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots, \qquad |x| < 1;$$

$$arctgx = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)} + \dots,$$
 $|x| \le 1$;

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + \dots , \qquad |x| < 1;$$

$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots + (-1)^n \frac{x^{2n}}{(2n+1)!} + \dots, \quad 0, 1 \le x \le \frac{\pi}{2};$$

$$a^{x} = 1 + \frac{(\ln a)}{1!}x + \frac{(\ln a)^{2}}{2!}x^{2} + \frac{(\ln a)^{3}}{3!}x^{3} + ...,$$
 $x \in R$

Варианты контрольных заданий

№ n/n	f(x)	a	ь	h	ε
1	$\sin 2x + 2x \cos 2x$	-2π	2π	$\frac{\pi}{4}$	10 -4
2	$e^{-x}\cos 3x$	-π	π	$\frac{\pi}{6}$	10 -4
3	$\ln(1-x) + \frac{1}{1+x}$	-0,9	0,9	0,1	10 -4
4	$\sin x + xchx$	-1	0	0,1	10
5	arctgx – 2shx	0	1	0,1	10 -4
6	$\ln(1+x) + e^{2x}$	0	1	0,1	10
7	$2xe^x + \sin 2x$	-1	1	0,2	10 -4
8	$\sin(\pi+x)-e^{x/2}$	-1	1	0,1	10 -4
9	$arctgx + \sin x$	-1	1	0,2	10 -4
10	$ \ln\frac{1+x}{1-x} + \cos 2x $	-0,9	0,9	0,1	10 -4
11	$e^{x+2}\sin 2x$	-1	1	0,2	10 -4

12	$arctgx + 2e^x$	0	1	0,2	10 -4
13	$\ln(1+x) + e^{2x}$	0	1	0,1	10
14	$2\cos x + ch2x$	0	1	0,1	10
15	$\cos x^2 + 2xshx$	0	2	0,2	10
16	$e^{-x} + 3\sin x$	-1	1	0,2	10
17	$\frac{1}{1+x} + arctg2x$	-0,9	0,9	0,1	10
18	$\begin{cases} shx, & -2 \le x \le 1 \\ chx, & 1 < x \le 2 \end{cases}$	-2	2	0,2	10 -4
19	$\ln x + \sin 2x$	1	2	0.1	10
20	$\begin{cases} \ln(1-x), & -1 \le x \le 0 \\ \ln(1+x), & 0 < x \le 1 \end{cases}$	-1	1	0,1	10 -4
21	$\begin{cases} \cos 2x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \sin 2x, & \frac{\pi}{2} < x \le \pi \end{cases}$	$-\frac{\pi}{2}$	π	0,2	10 -4
22	$\begin{cases} \ln(1+x), & 0 \le x \le 1 \\ \cos x, & 1 < x \le \frac{\pi}{2} \end{cases}$	0	2	0.2	10 -4

23	$\begin{cases} \frac{\sin x}{x}, & \frac{\pi}{8} \le x \le \frac{\pi}{2} \\ shx + e^x, & \frac{\pi}{2} < x \le \pi \end{cases}$	$\frac{\pi}{8}$	π	$\frac{\pi}{16}$	10
24	$a^x + \frac{1}{1+x}$	-2	2	0,2	10 -4
25	$\arcsin x + e^{x}$	-1	1	0,1	10 -4
26	$\arccos x + 2\cos x$		1	0,1	10 -4
27	arcsin x + shx	-1	1	0,1	10 -4
28	$\begin{cases} \arcsin x, & -1 \le x \le 0 \\ \arccos x, & 0 < x \le 1 \end{cases}$	-1	1	0,1	10 -4
29	$\begin{cases} \ln x, & 1 \le x \le 2 \\ a^x, & 2 < x \le 3 \end{cases}$	1	3	0,1	10 -4