```
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
%matplotlib inline
```

hdata = pd.read_csv('housdata.csv')

hdata

	CONTROL	AGE1	BEDRMS	PER	REGION	METRO3	LMED	FMR	L30	L50	 FMTINCRELFMRCAT
0	'734778500142'	56	4	2	'4'	'2'	70998	1925	18392	30628	 '3 GT FMR'
1	'730204310145'	54	6	4	'2'	'1'	62425	1199	18729	31213	 '3 GT FMR'
2	'295273830133'	39	4	4	'1'	'2'	91523	1819	27459	45761	 '3 GT FMR'
3	'301895590141'	49	5	3	'2'	'2'	70700	1216	19100	31800	 '3 GT FMR'
4	'100007130148'	30	2	2	'3'	'1'	61059	685	14662	24438	 '2 50.1 - 100% FMR'
3946	'187812570142'	25	3	4	'3'	'1'	67900	1236	20350	33950	 '3 GT FMR'
3947	'280828360140'	67	3	6	'2'	'1'	83900	1143	29150	48650	 '3 GT FMR'
3948	'187827900149'	78	4	2	'3'	'1'	61239	1047	14818	24711	 '3 GT FMR'
3949	'187828980149'	-9	4	-6	'2'	'2'	83900	1284	17600	29350	 9
3950	'200958770141'	44	3	4	'2'	'2'	63054	889	18943	31562	 NaN
3951 rows × 100 columns											

Remove rows with negative values in 'VALUE' column
hdata = hdata[hdata['VALUE'] >= 0]
Remove rows with null values in 'FMTZADEQ' column
hdata = hdata.dropna(subset=['FMTZADEQ'])

hdata

	CONTROL	AGE1	BEDRMS	PER	REGION	METRO3	LMED	FMR	L30	L50	• • •	FMTINCRELFMRCAT
0	'734778500142'	56	4	2	'4'	'2'	70998	1925	18392	30628		'3 GT FMR'
1	'730204310145'	54	6	4	'2'	'1'	62425	1199	18729	31213		'3 GT FMR'
2	'295273830133'	39	4	4	'1'	'2'	91523	1819	27459	45761		'3 GT FMR'
3	'301895590141'	49	5	3	'2'	'2'	70700	1216	19100	31800		'3 GT FMR'

- Q1

How does the housing quality vary across different regions? (ZADEQ, REGION)

```
import re
# Define a function to clean and replace values in 'ZADEQ' column
# bcecoues there r 2 values that hv the same meaning "2" and '2'.
def clean zadeq(value):
    if re.match(r"^\s*'2'?\s*$", value):
       return '2'
       return value
hdata['ZADEQ'] = hdata['ZADEQ'].apply(clean_zadeq)
hdata['ZADEQ'] = hdata['ZADEQ'].replace('-', np.nan)
## Get the unique values in the 'ZADEQ' column to make sure data is clean
unique_values = hdata['ZADEQ'].unique()
print("Unique values in 'ZADEQ' column:", unique_values)
    Unique values in 'ZADEQ' column: ["'1'" '2' "'-6'" "'3'"]
# Group the data by 'REGION' and 'ZADEQ' and count the number of occurrences
counts = hdata.groupby(['REGION', 'ZADEQ']).size().reset_index(name='count')
Q1 = counts.pivot(index='REGION', columns='ZADEQ', values='count')
# Fill missing values with 0
Q1 = Q1.fillna(0)
# Rename the columns to proppr naming
Q1 = Q1.rename(columns={"'1'": "Highly Adequate", "2": "Middle Adequate", "'3'": "Low Adequate"})
Q1 = Q1.reindex(columns=["Highly Adequate", "Middle Adequate", "Low Adequate"])
print(01)
     ZADEQ Highly Adequate Middle Adequate Low Adequate
     REGION
     '1'
                         589
                         462
                                            6
     '3'
                         606
                                                          2
                                            4
     '4'
                         511
# Calculate the total count of units in each region
total counts = Q1.sum(axis=1)
# Calculate the percentage of highly adequate units in each region
percentage_highly_adequate = (Q1["Highly Adequate"] / total_counts) * 100
# Display the resulting percentages
print("Percentage of Highly Adequate Units in Each Region:")
print(percentage_highly_adequate)
```

```
Percentage of Highly Adequate Units in Each Region:
REGION
'1' 97.840532
'2' 98.297872
'3' 99.019608
'4' 98.458574
dtype: float64
```

- Q2

which housing unit has the most number of rooms and has an under-average value? (CONTROL, ROOMS, VALUE)

- 03

How does the housing quality vary across different year ranges? (FMTZADEQ, FMTBUILT)

```
unique_values = hdata['FMTBUILT'].unique()
print(unique_values)
# Remove rows with '-5' in the 'FMTBUILT' column
hdata = hdata[hdata['FMTBUILT'] != "'-5'"]
# Display the filtered data
print(hdata[['CONTROL', 'FMTBUILT']])
     ["'2000-2009'" "'1990-1999'" "'1960-1979'" "'1980-1989'" "'1940-1959'"
      _-
"'-5'"]
                  CONTROL
                             FMTBUILT
           '734778500142'
                          '2000-2009'
    0
          '730204310145' '1990-1999'
    1
          '295273830133' '1960-1979'
     2
          '301895590141' '1980-1989'
    6
          '466383110144' '1960-1979'
     3939 '730783800149' '1990-1999'
     3944 '288127700140'
                           '1960-1979'
     3945 '299883930344'
                          '1960-1979'
     3947 '280828360140' '1960-1979'
     3949 '187828980149' '1960-1979'
     [2060 rows x 2 columns]
\# Remove rows with '-5' in the 'FMTZADEQ' column
hdata = hdata [hdata ['FMTZADEQ'] != "'-5'"]
# Display the filtered data
print(hdata [ 'FMTZADEQ'])
unique_values = hdata['FMTZADEQ'].unique()
```

```
print(unique_values)
                        '1 Adequate'
     0
     1
                        '1 Adequate'
                        '1 Adequate'
     2
                        '1 Adequate'
     6
                        '1 Adequate'
                        '1 Adequate'
     3938
     3939
                        '1 Adequate'
                        '1 Adequate'
     3944
                       '1 Adequate'
     3945
             '2 Moderately Inadequ'
     Name: FMTZADEQ, Length: 1950, dtype: object
["'1 Adequate'" "'2 Moderately Inadequ'" "'3 Severely Indadequa'"]
# Clean the column
hdata['FMTZADEQ'] = hdata['FMTZADEQ'].str.replace("'", "")
# Group the data by 'FMTBUILT' and 'FMTZADEQ'
grouped_counts = hdata.groupby(['FMTBUILT', 'FMTZADEQ']).size().reset_index(name='count')
Q3 = grouped_counts.pivot(index='FMTZADEQ', columns='FMTBUILT', values='count')
# Sort the columns
Q3 = Q3.reindex(sorted(Q3.columns), axis=1)
print(Q3)
                            '1940-1959' '1960-1979' '1980-1989' '1990-1999' \
     FMTBUILT
     EMTZADEO
     1 Adequate
                                  228.0
                                                473.0
                                                              288.0
                                                                           447.0
     2 Moderately Inadequ
                                    5.0
                                                  4.0
                                                               2.0
                                                                              3.0
                                                  4.0
                                                                1.0
     3 Severely Indadequa
                                                                             NaN
                                    1.0
     FMTBUILT
                            '2000-2009'
     FMTZADEQ
     1 Adequate
                                  492.0
     2 Moderately Inadequ
                                    1.0
     3 Severely Indadequa
```

- Q4

what is the relationship between the number of people per unit and the monthly utility cost? (UTILITY, PER)

```
# Calculate the correlation coefficient
correlation = hdata['PER'].corr(hdata['UTILITY'])
print("Correlation coefficient between 'PER' and 'UTILITY':", correlation)

Correlation coefficient between 'PER' and 'UTILITY': 0.2657760945756594

Data Visuallisation:

import matplotlib.pyplot as plt

# Create a scatter plot of 'PER' vs 'UTILITY'
plt.scatter(hdata['PER'], hdata['UTILITY'])

# Set plot labels and title
plt.xlabel('Number of People per Unit')
plt.ylabel('Monthly Utility Cost')
plt.title('Relationship between Number of People per Unit and Monthly Utility Cost')

# Show the plot
plt.show()
```

Relationship between Number of People per Unit and Monthly Utility Cost

- Q5

Are there any significant differences in the adequacy of the housing unit and the Location? (METRO3, FMTZADEQ) METRO3 indicates whether a housing unit is located in a central city, suburb, or outside a metropolitan area.

```
# Compute cross-tabulation of METRO3 and FMTZADEQ
cross_tab = pd.crosstab(hdata['METRO3'], hdata['FMTZADEQ'], dropna=False)
print(cross_tab)
```

FMTZADEQ	1 Adequate	2 Moderately Inadequ	3 Severely Indadequa
METRO3			
'1'	357	5	4
'2'	1020	7	3
'3'	364	3	0
'4'	71	0	0
'5'	116	0	0

▶ Q6

How does the quality of housing vary based on the number of occupants in a housing unit? (PER, FMTZADEQ)

[] L, 1 cell hidden

- Q7

Are there any disparities in housing adequacy across income groups?(ZINC2,FMTZADEQ)

```
# clean 'ZINC2' column
hdata = hdata[hdata['ZINC2'] >= 0]
print(hdata[['ZINC2']])

ZINC2
0 785402
1 742441
2 725402
3 695402
6 691480
...
3938 176000
3939 176000
3944 175800
3945 175600
```

[1949 rows x 1 columns]

3947 175538

```
# Create income classes
income_classes = ['Low Income', 'Medium Income', 'High Income']
# Group 'ZINC2' into income classes and create a new column 'IncomeGroup'
hdata['IncomeGroup'] = pd.cut(hdata['ZINC2'], bins=[0, 30000, 70000, float('inf')], labels=income_classes)
# Group the data by 'IncomeGroup' and 'FMTZADEQ'
Q7 = hdata.groupby(['IncomeGroup', 'FMTZADEQ']).size().unstack()
print(Q7)
    FMTZADEQ
                    1 Adequate 2 Moderately Inadequ 3 Severely Indadequa
    IncomeGroup
                             0
                                                   0
    Low Income
    Medium Income
                                                   0
                                                                         0
                             0
                          1927
    High Income
                                                  15
```

Data Visualisation

```
region_adequacy_counts = hdata.groupby(['REGION', 'FMTZADEQ']).size().unstack()
region_adequacy_counts.plot(kind='bar')
plt.xlabel('Region')
plt.ylabel('Count')
plt.title('Housing Unit Adequacy by Region')
plt.legend(title='Housing Adequacy')
plt.show()
```



```
# Filter data for housing units with below-average value
below_avg_value = hdata[hdata['VALUE'] < hdata['VALUE'].mean()]

# Plotting
plt.scatter(below_avg_value['ROOMS'], below_avg_value['VALUE'])
plt.xlabel('Number of Rooms')
plt.ylabel('Value')
plt.title('Housing Units with Below-Average Value')
plt.show()</pre>
```


import matplotlib.pyplot as plt

```
# Group data by location and adequacy, and calculate counts
grouped_counts = hdata.groupby(['METRO3', 'FMTZADEQ']).size().unstack()

# Plotting
grouped_counts.plot(kind='bar', stacked=True)
plt.xlabel('Location')
plt.ylabel('Count')
plt.title('Housing Adequacy by Location')
plt.legend(title='Adequacy')
plt.show()
```



```
import matplotlib.pyplot as plt

# Group data by 'PER' and calculate average utility cost
utility_costs = hdata.groupby('PER')['UTILITY'].mean()

# Set up the line plot
fig, ax = plt.subplots()

ax.plot(utility_costs, color='red', marker='o', linestyle='-', linewidth=2)

ax.set_xlabel('Number of Occupants')
ax.set_ylabel('Average Utility Cost')
ax.set_title('Relationship between Number of Occupants and Average Utility Cost')

plt.show()
```

Relationship between Number of Occupants and Average Utility Cost


```
grouped_counts = hdata.groupby(['FMTBUILT', 'FMTZADEQ']).size().unstack()
grouped_counts.plot(kind='bar')
plt.xlabel('Year Range Built')
plt.ylabel('Count')
plt.title('Housing Quality by Year Range Built')
plt.legend(title='Adequacy')
plt.show()
```


remove noise columns

	CONTROL	PER	REGION	METRO3	VALUE	ZINC2	ROOMS	ZADEQ	UTILITY	F
0	'734778500142'	2	'4'	'2'	2465647	785402	9	'1'	1009.166667	Α
1	'730204310145'	4	'2'	'1'	740000	742441	10	'1'	381.000000	Α
2	'295273830133'	4	'1'	'2'	450000	725402	9	'1'	710.166667	Α
3	'301895590141'	3	'2'	'2'	665000	695402	9	'1'	471.416667	Α
6	'466383110144'	5	'4'	'2'	1200000	691480	8	'1'	478.666667	Α
3938	'389303160146'	3	'3'	'1'	200000	176000	10	'1'	373.000000	Д

output the dataframe

Output the DataFrame to a CSV file
hdata.to_csv('output.csv', index=False)

from google.colab import files

files.download('output.csv')