1 ЗАДАЧИ

1

1 Задачи

Задача 1.1.

Пусть Y_t - стационарный процесс.

Верно ли, что стационарны:

- a) $Z_t = 2Y_t$
- 6) $Z_t = Y_t + 1$
- B) $Z_t = \Delta Y_t$
- Γ) $Z_t = 2Y_t + 3Y_{t-1}$

Задача 1.2.

Известно, что временной ряд Y_t порожден стационарным процессом, задаваемым соотношением $Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t$. Имеется 1000 наблюдений.

Вася построил регрессию Y_t на константу и Y_{t-1} . Петя построил регрессию на константу и Y_{t+1} .

Как (примерно) будут соотносится между собой их оценки коэффициентов?

Задача 1.3.

Рассмотрим следующий AR(1)-ARCH(1) процесс:

$$Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t, \ \varepsilon_t = \nu_t \cdot \sigma_t$$

 ν_t независимые N(0;1) величины.

$$\sigma_t^2 = 1 + 0.8\varepsilon_{t-1}^2$$

Также известно, что $Y_{100}=2,\,Y_{99}=1.7$

- а) Найдите $E_{100}(\varepsilon_{101}^2)$, $E_{100}(\varepsilon_{102}^2)$, $E_{100}(\varepsilon_{103}^2)$, $E(\varepsilon_t^2)$
- б) $Var(Y_t)$, $Var(Y_t|\mathcal{F}_{t-1})$
- в) Постройте доверительный интервал для Y_{101} :
- проигнорировав условную гетероскедастичность
- учтя условную гетерескедастичность

Задача 1.4.

Рассмотрим GARCH(1,1) процесс

...

Задача 1.5.

Пусть X_t , t = 0, 1, 2, ... - случайный процесс и $Y_t = (1+L)^t X_t$. Выразите X_t с помощью Y_t и оператора лага L. Задача 1.6.

Пусть F_n - последовательность чисел Фибоначчи. Упростите величину

$$F_1 + C_5^1 F_2 + C_5^2 F_3 + C_5^3 F_4 + C_5^4 F_5 + C_5^5 F_6$$

Задача 1.7.

Пусть X_t , $t = \dots -2, -1, 0, 1, 2, \dots$ - случайный процесс. И $Y_t = X_{-t}$. Какое рассуждение верно?

a)
$$LY_t = LX_{-t} = X_{-t-1}$$

б)
$$LY_t = Y_{t-1} = X_{-t+1}$$

Задача 1.8.

Представьте процесс AR(1), $y_t = 0.9y_{t-1} - 0.2y_{t-2} + \varepsilon_t$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

- а) Выбрав в качестве состояний вектор $\begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix}$ б) Выбрав в качестве состояний вектор $\begin{pmatrix} y_t \\ \hat{y}_{t-1} \end{pmatrix}$

Найдите дисперсии ошибок состояний Задача 1.9.

Представьте процесс MA(1), $y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

a)
$$\begin{pmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{pmatrix}$$

b) $\begin{pmatrix} \varepsilon_t + 0.5\varepsilon_{t-1} \\ 0.5\varepsilon_t \end{pmatrix}$

Представьте процесс ARMA(1,1), $y_t = 0.5y_{t-1} + \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

Вектор состояний имеет вид x_t, x_{t-1} , где $x_t = \frac{1}{1-0.5L} \varepsilon_t$ Задача 1.11.

Рекурсивные коэффициенты

2 РЕШЕНИЯ 3

- 1. Оцените модель вида $y_t = a + b_t x_t + \varepsilon_t$, где $b_t = b_{t-1}$.
- 2. Сравните графики filtered state и smoothed state.
- 3. Сравните финальное состояние b_T с коэффициентом в обычной модели линейной регрессии, $y_t = a + bx_t + \varepsilon_t$.

2 Решения

- 1.1. а, б, в, г стационарны
- **1.2**. Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией.
- 1.3.
- 1.4.
- 1.5. $X_t = (1 L)^t Y_t$
- 1.6. $F_n = L(1+L)F_n$, значит $F_n = L^k(1+L)^kF_n$ или $F_{n+k} = (1+L)^kF_n$
- 1.7. а неверно, б верно.
- 1.8.
- 1.9.
- 1.10.
- 1.11.