Computational Analytical Mechanics

RIGID BODY | EULER'S EQUATIONS

1. **Inclined Gear** A gear with a mass of 10 kg is mounted with an inclination of 10° on a shaft of negligible mass. Bearings A and B support the shaft which rotates at constant angular velocity. Bearing A is a thrust bearing, so it provides reaction also in the longitudinal direction of the shaft, while bearing B only does so in the transverse directions. The moments of inertia of the gear are $I_z = 0.1 \text{ kg m}^2$ and $I_y = 0.05 \text{ kg m}^2$.

- a) Determine the reactions that the bearings must provide for the instant when the rotating system presents the arrangement shown.
- 2. Flywheel The flywheel centered at G has a mass of $10 \,\mathrm{kg}$ and is integral with the shaft of negligible mass that rotates at constant angular velocity $\omega_s = 6 \, \mathrm{s}^{-1}$ (radians per second) supported by bearings A and B. The first is a thrust bearing, so it provides reaction also in the longitudinal direction of the shaft, while the second only does so in the transverse directions. A transverse shaft to that of the flywheel supports the mount of bearing A and also rotates at constant angular velocity ω_p .

- a) Determine the reactions provided by the bearings.
- 3. Off-axis Rotation A homogeneous cylinder of mass m, radius R and height H rotates at constant angular velocity $\vec{\omega}$ around an axis that forms an angle of 30° with the \hat{z} and passes through its center of mass.

a) Calculate the torque that must be applied to the cylinder to maintain such

Result:
$$\vec{\tau} = \begin{bmatrix} \frac{\sqrt{3}m\omega^2(-H^2 + 3R^2)}{48} \\ 0 \\ 0 \end{bmatrix}$$

4. Rotating Rod The thin rod AB has mass m and is connected to the support by means of a pin at A. The support is rigidly mounted on the shaft. Determine the required constant angular velocity ω of the shaft so that the rod forms an angle θ with the vertical.

5. Unbalanced Cylinder A cylinder of height D and mass M rotates supported on two bearings P and Q with angular velocity ω . On an imaginary axis at an angle φ from the rotation axis, and at a distance φ larged on it. a from its center, it has two weights of equal mass, m, placed on it.

a) Calculate the force applied by the bearings.

Result: $F = \frac{ma^2\omega^2}{D}\sin(\varphi)\cos(\varphi)$.

Computational Analytical Mechanics

6. Shaft on Bearings The shaft was constructed with a rod whose mass per unit length is $2 \,\mathrm{kg} \,\mathrm{m}^{-1}$. Determine the x,y,z components of the reaction at bearings A and B if at the instant shown the shaft rotates freely at an angular velocity of $\omega = 30 \,\mathrm{s}^{-1}$ (radians per second). What is the angular acceleration of the shaft at this instant? Bearing A is capable of supporting a force component in the y direction while bearing B is not.

7. Constant Angular Acceleration The 15-pound cylinder rotates around axis AB with $\vec{\omega} = -4\,\mathrm{s}^{-1}\hat{x}$ (radians per second). Bearing A does not support force in the x direction, which is handled by bearing B. The shaft that extends from the support at point C, starting from rest, is subjected to an acceleration $\vec{\alpha}_C = \dot{\vec{\omega}} = 12\,\mathrm{s}^{-2}\hat{Z}$ (radians per second squared), where \hat{Z} includes \overline{AC} and is parallel to \hat{z} . The coordinate system has its origin at G, the center of mass of the cylinder.

- a) Convert the data in imperial units (feet, pounds) to International System units.
- b) Determine the reactions that the bearings must provide.

Result:
$$\begin{bmatrix} A_y \\ A_z \\ B_x \\ B_y \\ B_z \end{bmatrix} = \begin{bmatrix} -5.79 \\ 21.1t + 33.4 \\ 0 \\ 5.79 \\ 33.4 - 21.1t \end{bmatrix}$$

8. Rock Crusher A rock crusher consists of a large thin disk which is connected by means of a pin to a horizontal shaft. If it rotates at a constant speed of $8\,\mathrm{s}^{-1}$ (radians per second), determine the normal force that the disk exerts on the stones. Assume that the disk rolls without slipping and that its mass is $25\,\mathrm{kg}$. Ignore the mass of the shaft.

