RELAÇÕES TRIGONOMÉTRICAS

$sen^2 \alpha + cos^2 \alpha = 1$	$sen \ \alpha sen \ \beta = \frac{1}{2}[cos(\alpha - \beta) - cos(\alpha + \beta)]$	$sen \alpha \pm sen \beta = 2 sen \frac{1}{2} (\alpha \pm \beta) cos \frac{1}{2} (\alpha \mp \beta)$
$1 + tan^2\alpha = sec^2\alpha$	$sen \ \alpha \cos \ \beta = \frac{1}{2}[sen(\alpha + \beta) + sen(\alpha - \beta)]$	$\cos \alpha + \cos \beta = 2\cos \frac{1}{2}(\alpha + \beta)\cos \frac{1}{2}(\alpha - \beta)$
$1 + sec^2 \alpha = \cot^2 \alpha$	$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$	$sen(\alpha + \beta) = sen \alpha cos \beta + sen \beta cos \alpha$
$sin^2\alpha = \frac{1 - cos(2\alpha)}{2}$	$sen(2\alpha) = \frac{2tan \alpha}{1 + tan^2\alpha}$	$cos(\alpha + \beta) = cos \alpha cos \beta - sen \alpha sen \beta$
$\cos^2\alpha = \frac{1 + \cos(2\alpha)}{2}$	$cos(2\alpha) = \frac{1 - tan^2\alpha}{1 + tan^2\alpha}$	
$sin^2\alpha = \frac{tan^2\alpha}{1 + tan^2\alpha}$	$\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$	
$\cos^2\alpha = \frac{1}{1 + \tan^2\alpha}$		

INTEGRAL INDEFINIDO

$\int dx = x + C$	$\int \sec x dx = \ln \sec x + \tan x + C$	$\int a^x dx = \frac{a^x}{\ln a} + C(a > 0, a \neq 1)$
$\int e^x dx = e^x + C$	$\int \csc x dx = \ln \csc x - \cot x + C$	$\int a^u u' dx = \frac{a^u}{\ln a} + C(a > 0, a \neq 1)$
$\int \cos x dx = \sin x + C$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C \ (n \neq -1)$	$\int \frac{1}{1+x^2} dx = \arctan x + C$
$\int \operatorname{sen} x dx = -\cos x + C$	$\int u' u^n dx = \frac{u^{n+1}}{n+1} + C (n \neq -1)$	$\int \frac{u'}{1+u^2} dx = \arctan u + C$
$\int \sec^2 x dx = \tan x + C$	$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$
$\int \csc^2 x dx = -\cot x + C$	$\int \frac{u'}{u} dx = \ln u + C$	$\int \frac{u'}{\sqrt{1-u^2}} dx = \arcsin u + C$

INTEGRAÇÃO POR SUBSTITUIÇÃO: SUGESTÕES

- 1) $\int f(\sin x, \cos x) \, dx$
 - a) Geral: fazer a substituição $u=tan\left(\frac{x}{2}\right)$ e usar as relações trigonométricas entre o ângulo duplo e a tangente
 - b) Se o integrando for ímpar em cosseno, fazer a substituição u = sen x , se for ímpar no seno, fazer u = cos x
 - Se no integrando os argumentos seno e cosseno aparecem só com expoente par usar as relações trigonométricas entre cos^2 , sen^2 e a os ângulos duplos. Fazer a substituição u = tan(x) e usar as relações trigonométricas entre cos^2 , sen^2 e a tan^2
 - d) Se o integrando depende só da $\tan x$, fazer a substituição $u = \tan x$
- 2) $\int [sen(nx) sen(mx)] ou [sen(nx) cos(mx)] ou [cos(nx) cos(mx)] dx$, usar as relações trigonométricas do produto correspondentes
- 3) Substituições trigonométricas
 - a) $\int f\left[x, \sqrt{a^2 (bx)^2}\right] dx$, fazer a substituição $x = \left(\frac{a}{b}\right) sen(u)$;
 - b) $\int f\left[x, \sqrt{a^2 + (bx)^2}\right] dx$, fazer a substituição $x = \left(\frac{a}{b}\right) tan(u)$;
 - c) $\int f\left[x, \sqrt{(bx)^2 a^2}\right] dx$, fazer a substituição $x = \left(\frac{a}{b}\right) sec(u)$;