ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ

Свойства функций	Основные тождества	Сумма углов
$sin(-d) = -sind$ $sin(2\pi n + d) = sind$, $T_0 = 2$	2π $\sin^2 d + \cos^2 d = 1$ $tgd \cdot ctgd = 1$	$\sin(d \pm \beta) = \sin d \cos \beta \pm \cos d \sin \beta$
cos(-d)=cosd cos(2πn+d)=cosd, To =2		$\cos(d \pm \beta) = \cos d \cos \beta \mp \sin d \sin \beta$
$tg(-d)=-tgd$ $tg(\pi n+d)=tgd$,T ₀ =	1 1 1 1	$tg(d\pm\beta) = \frac{tgd \pm tg\beta}{1\mp tgdtg\beta}$
$ ctg(-d)=-ctgd $ $ ctg(\pi n+d)=ctgd $, $T_0=ctgd$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ctg(d \pm \beta) - \frac{ctgd ctg \beta \mp 1}{ctgd \pm ctg \beta}$
ФОРМУЛЫ ПРИВЕДЕНИЯ $0 < d < \frac{\pi}{2}$		Сумма функций
	$\frac{1}{\sin d} = +\sqrt{1 - \cos^2 d \cos d} + \sqrt{1 - \sin^2 d}$	
$\times \pi + d \pi - d 2\pi + d 2\pi - d \frac{\pi}{2} + d \frac{\pi}{2} - d \frac{\pi}{2}$		$\cos d + \cos \beta = 2\cos \frac{d+\beta}{2}\cos \frac{d-\beta}{2}$
sinx -sind sind sind -sind cosd cosd - cosx-cosd -cosd cosd cosd -sind sind	$\frac{-\cos d}{\sin d} - \frac{1}{\sin d} = \frac{1}{\pm \sqrt{1 + \cot^2 d}} = \cos d = \frac{1}{\pm \sqrt{1 + \cot^2 d}}$	1 2, 2 1
		$tg d \pm tg\beta = \frac{\sin(d \pm \beta)}{\cos d \cos \beta}$
ctgx ctgd -ctgd ctgd -ctgd -tgd tgd -	$-\text{tgd}$ tgd $\pm\sqrt{1+\text{tg'd}}$ $\cos\alpha = \pm\sqrt{1+\text{ctg}}$	$\frac{\partial}{\partial t} = \frac{\sin(\beta \pm d)}{\sin d \sin \beta}$
f(x) сохраняется меняе $f(x)$ или $f(x)$ или $f(x)$	d 2d->d	$tg d + ctg\beta = \frac{\cos(d - \beta)}{\cos d \sin \beta}$
$\sin d = \frac{2 \operatorname{tg} d}{2} \left \cos d = \frac{1 - \operatorname{tg}^2 d}{2} \right \sin 2d = \frac{2 \operatorname{tg} d}{1 + \operatorname{tg}^2 d} \right $	sin2d = 2 sindcosd cos2d = cos²d - sin²d	$ctgd - tg\beta = \frac{\cos(d + \beta)}{\sin d \cos \beta}$
$\begin{vmatrix} \sin d - \frac{2 t g}{2} \frac{d}{2} \\ 1 + t g' \frac{d}{2} \end{vmatrix} = \cos d - \frac{1 - t g' \frac{d}{2}}{1 + t g' \frac{d}{2}} \begin{vmatrix} \sin 2d - \frac{2 t g}{1 + t g' d} \end{vmatrix} c$	$\cos 2d = \frac{1 - tg'd}{1 + tg'd}$ $\cos 2d = \cos^2 d - \sin^2 d$ $\cos 2d = 1 - 2\sin^2 d - 2\cos^2 d - 1$	
	trad - 2	$\cos d \pm \sin d = \sqrt{2} \sin(\frac{\pi}{4} \pm d) = \sqrt{2} \cos(\frac{\pi}{4} \mp d)$
$\begin{array}{c c} tgd - \frac{2}{1} tg'\frac{d}{d} \\ tgd - \frac{2}{1} tg'\frac{d}{d} \end{array} ctgd - \frac{1 - tg'\frac{d}{d}}{2tg} tg2d - \frac{2tgd}{1 - tg'd} d$	ta2d=1494	Asind + Bcosd = R $\sin(d + \varphi)$,
1-19 2 219 ½ 1-19 1	2 ctgd 2	где $R = \sqrt{A^2 + B^2}$, $\cos \varphi = \frac{A}{R}$, $\sin \varphi = \frac{B}{R}$
$\frac{d}{2} \rightarrow d$		Произведение функций
$\sin\frac{d}{2} = \pm \sqrt{\frac{1-\cos d}{2}} \cos\frac{d}{2} = \pm \sqrt{\frac{1+\cos d}{2}}$	sid sin3d=3sind-4sin'd	$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$
	C0304-4034-5034	$\cos d \cos \beta = \frac{1}{2} [\cos(d - \beta) + \cos(d + \beta)]$
$tg\frac{d}{2} = \frac{\sin d}{1 + \cos d} = \frac{1 - \cos d}{\sin d} = \pm \sqrt{\frac{1 - \cos d}{1 + \cos d}}$	$tg3d = \frac{3tgd - tg'd}{1 - 3tg'd}$	$\sin \alpha \cos \beta = \frac{1}{2} [\sin (\alpha - \beta) + \sin (\alpha + \beta)]$
$ctg\frac{d}{2} = \frac{sind}{1-cosd} = \frac{1+cosd}{sind} = \pm \sqrt{\frac{1+cosd}{1-cosd}}$	$ctg3d = \frac{ctg'd - 3ctgd}{3ctg'd - 1}$	$\cos d \sin \beta = \frac{1}{2} [\sin (d + \beta) - \sin (d - \beta)]$
		$tgdtg\beta = \frac{tgd + tg\beta}{ctgd + ctg\beta}$
1-cos d = 2 sin ² $\frac{d}{2}$ 1+cos d = 2 cos ² $\frac{d}{2}$ sin ² d = $\frac{1}{2}$ (1-co	$cos^2d = \frac{1}{2}(1+cos2d)$	$ctgd ctg\beta = \frac{ctgd + ctg\beta}{tad + ta\beta}$
1-sind = 2 sin ² $(\frac{\pi}{4} - \frac{d}{2})$ sin ² $d = \frac{1}{4}$ (3 sine	1 TO	$tg d + tg\beta$ $sin(d + \beta) \cdot sin(d - \beta) = cos^2\beta - cos^2d$
1 4 4/	$d_{-4}\cos 2d + 3) \qquad \cos d = \frac{1}{8}(\cos 4d + 4\cos 2d + 3)$	그 그녀는 이 이 이 가는 아이들이 그 아이들이 그 아이들이 가는 것이다.
17 27		
	$a = 0 = \frac{1}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{3}}{2} = 1 = \frac{1}{\sqrt{3}} + \sqrt{3} = \frac{1}{3}$	no. 4 0
$sinx=a$ $x=(-1)^n arcsina+\pi n$ $,n\in \mathbb{Z}$ $arcsina+\pi n$ $,n\in \mathbb{Z}$ $arcsina+\pi n$ $,n\in \mathbb{Z}$		SWLX=COSX COS.X=-SWX
tgx=a x=arctga+πn ,n∈Z arco	$\cos \alpha \left \frac{\pi}{\pi} \left \frac{\pi}{\pi} \left \frac{\pi}{\pi} \right \right \right \sqrt{2}$	and the second s
ctgx=a x=arcctga+πn ,n∈Z arct		$\sqrt{3}$ Первообразные $f(x) = \sin x$ $F(x) = -\cos x + c$
Особый случай	π π π π π π π π π	X * X,
SMX=1 X=5+27th ,1162 1		
$\sin x=-1$ $x=-\frac{\pi}{2}+2\pi n$, $n\in \mathbb{Z}$	sin (-a)=-arcsina <mark>Свойства</mark> arccos (-a)=π-ar tg (-a)=-arctga <mark>Свойства</mark> arcctg (-a)=π-ar	$\frac{\cot ga}{\cot ga} = \frac{1}{\sin^2 x} \qquad F(x) = -\cot gx + c$
	$nx = \frac{1}{2}$, $x = (-1)^n arc sin \frac{1}{2} + \pi n = (-1)^n \frac{\pi}{6} + \pi n$,	$n \in \mathbb{Z}$ $\begin{cases} f(x) = tgx & F(x) = -\ln \cos x + c \end{cases}$
1 v-2mm ==7 (0)	$x = \sqrt{\frac{2}{3}}$, $x = \pm \arccos(\sqrt{\frac{2}{3}} + 2\pi n) = \pm \frac{\pi}{4} + 2\pi n$	1 (x) = tgx
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x = \sqrt{3}$, $x = arctg\sqrt{3} + \pi n = \frac{\pi}{3} + \pi n$	n∈Z (-1)" (-1) =(-1)"
tgx=0 x=πn ,n∈Z ∪ sin∪	$x = -\sqrt{\frac{3}{2}}$, $x = (-1)^n \arcsin(-\sqrt{\frac{3}{2}}) + \pi n = (-1)^n (-\arcsin \sqrt{\frac{3}{2}})$	$\frac{1}{3}$) + $\pi n = (-1)^n (-\frac{\pi}{3}) + \pi n = (-1)^{n+1} \frac{\pi}{3} + \pi n, n \in \mathbb{Z}$
	$x = -\frac{\sqrt{2}}{2}$, $x = \pm arccos(-\frac{\sqrt{2}}{2}) + 2\pi n = \pm (\pi - arccos \sqrt{2})$	

Задачи Штурма-Лиувилля в простейшем случае

I рода слева – I рода справа.

Решить задачу Штурма-Лиувилля с краевыми условиями І-го рода:

$$\begin{cases} \mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0, \\ \mathbf{X}(0) = \mathbf{X}(l) = 0. \end{cases}$$
(1.1)

Общее решение уравнения $\mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0$ имеет вид

$$X(x) = c_1 \sin(\sqrt{\lambda} x) + c_2 \cos(\sqrt{\lambda} x)$$
 при $\lambda > 0$;
 $X(x) = c_1 e^{\sqrt{-\lambda} x} + c_2 e^{-\sqrt{-\lambda} x}$ при $\lambda < 0$;
 $X(x) = c_1 x + c_2$ при $\lambda = 0$;

• При $\lambda > 0$ имеем из краевого условия X(0) = 0, что $c_2 = 0$, $\Rightarrow X(x) = c_1 \sin(\sqrt{\lambda} x)$. Поэтому из второго краевого условия X(l) = 0 получаем, что $\sqrt{\lambda} \, l = \pi n$ откуда имеем бесконечное множество собственных чисел задачи Штурма—Лиувилля:

$$\lambda_n = \frac{\pi^2 n^2}{I^2}, \quad n \in \mathbb{N}.$$

Им соответствует бесконечное множество собственных функций:

$$X_n(x) = \sin\left(\frac{\pi nx}{l}\right), \quad n \in \mathbb{N}.$$

- При $\lambda < 0$ имеем из краевого условия X(0) = 0, что $c_2 = -c_1$, $\Rightarrow X(x) = 2c_1 \sinh \sqrt{-\lambda} x$. Поэтому из второго краевого условия X(l) = 0 получаем, что $c_1 = 0$, т.е. задача Штурма—Лиувилля не имеет отрицательных собственных чисел.
- При $\lambda = 0$ имеем из краевого условия X(0) = 0, что $c_2 = 0$, $\Rightarrow X(x) = c_1 x$. Поэтому из второго краевого условия X(l) = 0 получаем, что $c_1 = 0$, т.е. задача Штурма—Лиувилля не имеет собственного числа, равного нулю.

Итак, мы имеем бесконечное множество нетривиальных решений

$$\lambda_n = \frac{\pi^2 n^2}{l^2}, \quad X_n(x) = \sin\left(\frac{\pi nx}{l}\right), \quad n \in \mathbb{N}$$
 (1.2)

задачи (1.1).

3. I рода слева – II рода справа.

Решить задачу Штурма-Лиувилля с краевым условием I-го рода на левом конце отрезка [0, t] и II-го рода — на правом:

$$\begin{cases}
\mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0, \\
\mathbf{X}(0) = \mathbf{X}'(l) = 0.
\end{cases}$$
(3.1)

Общее решение уравнения $\mathbf{X}''(x) + \lambda \mathbf{X}(x) = 0$ имеет вид

$$X(x) = c_1 \sin(\sqrt{\lambda} x) + c_2 \cos(\sqrt{\lambda} x)$$
 при $\lambda > 0$;
 $X(x) = c_1 e^{\sqrt{-\lambda} x} + c_2 e^{-\sqrt{-\lambda} x}$ при $\lambda < 0$;
 $X(x) = c_1 x + c_2$ при $\lambda = 0$;

• При $\lambda > 0$ имеем из краевого условия X(0) = 0, что $c_2 = 0$, $\Rightarrow X(x) = c_1 \sin(\sqrt{\lambda} x) \Rightarrow X'(x) = c_1 \sqrt{\lambda} \cos(\sqrt{\lambda} x)$. Поэтому из второго краевого условия X'(l) = 0 получаем, что $\sqrt{\lambda} \, l = \pi k - \frac{\pi}{2}$ откуда имеем бесконечное множество собственных чисел задачи Штурма–Лиувилля:

$$\lambda_n = \left(\frac{\pi(2n-1)}{2l}\right)^2, \quad n \in \mathbb{N}.$$

Им соответствует бесконечное множество собственных функций:

$$X_n(x) = \cos\left(\frac{\pi(2n-1)x}{2l}\right), \qquad n \in \mathbb{N}.$$

-2-

УМФ – Задачи Штурма-Лиувилля – І

- При $\lambda < 0$ имеем из краевого условия X(0) = 0, что $c_1 = -c_2$, $\Rightarrow X(x) = 2c_1 \sinh \sqrt{-\lambda} x \Rightarrow X'(x) = 2c_1 \sqrt{-\lambda} \cosh(\sqrt{-\lambda} x)$. Поэтому из второго краевого условия X'(l) = 0 получаем, что $c_1 = 0$, т.е. задача Штурма–Лиувилля не имеет отрицательных собственных чисел.
- При $\lambda = 0$ имеем из краевого условия X(0) = 0, что $c_2 = 0$, $\Rightarrow X(x) = c_1 x$. Второе краевое условие X'(l) = 0 означает тогда, что $c_1 = 0$, поэтому задача Штурма–Лиувилля (3.1) не имеет собственного числа, равного нулю.

Итак, мы имеем бесконечное множество нетривиальных решений

$$\lambda_n = \left(\frac{\pi(2n-1)}{2l}\right)^2, \quad X_n(x) = \sin\left(\frac{\pi(2n-1)x}{2l}\right), \quad n \in \mathbb{N}$$
 (3.2)

задачи (3.1).