Minerals

Minerals: Building blocks of rocks

- Definition of a mineral:
 - Naturally occurring
 - Inorganic solid
 - Ordered internal molecular structure
 - Definite chemical composition
- Definition of a rock:
 - A solid aggregate or mass of minerals

How do minerals form

- Crystal is any natural solid with an ordered, repetitive, atomic structure.
- Minerals form through crystallization. The molecules, or ions, chemically bond to form an orderly structure.
- Example:

Mineral properties

Hardness: - How hard a mineral is depends primarily on its crystal structure.

- Example: Diamond & graphite
- Mohs hardness scale

Habit/ Shape:

- -Characteristic shape
- -Determined by crystal structure
- Types: Bladed

Platy

Prismatic

Banded

Botryoidal

Cleavage

Optical properties:

- Colour
- Streak
- Luster

TABLE 2.2 Mohs Scale of Hardness

Relative Scale			Hardness of Some Common Objects
Hardest	10 9 8 7 6	Diamond Corundum Topaz Quartz Potassium Feldspar	
	5	Apatite	5.5 Glass, Pocketknife
	4	Fluorite	
	3	Calcite	3 Copper Penny
	2	Gypsum	2.5 Fingernail
Softest	1	Talc	

Mineral properties: Shape

Bladed kyanite

Prismatic quartz

Fibrous okenite

Botryoidal hematite

Banded agate

Mineral properties: cleavage

- Preferred plane of breakage.
- Creates a smooth plane.
- Generated by atomic arrangements.

Mineral properties

Optical property:

Color: Rarely a diagnostic property.

Streak: -The color of powdered mineral.

- Diagnostic property.
- Rub the mineral across unglazed porcelain.

Luster: - The appearance of light reflected from mineral surface.

Types: 1. Metallic

2. Non-metallic: Dull/Earthy

Glassy

Pearly

Silky

Different types of luster

Metallic luster of pyrite

Glassy luster of quartz

Earthy luster of limonite

Pearly luster of talc

Silky luster of siderite

Crystals are made of infinite number of unit cells

Unit cell is the smallest unit of a crystal, which, if repeated, could generate the whole crystal.

A crystal's unit cell dimensions are defined by six numbers, the lengths of the 3 axes, a, b, and c, and the three interaxial angles, α , β and γ .

Representative Minerals in Crystal Systems

3-D Symmetry

3-D Symmetry

The Hexagonal system (and Trigonal sub-system) typically has four axes, three are of equal length at 120 degrees to one another, and all \perp to c, which is || to either the 3-fold or 6-fold rotation. The conventional choice of the three a axes is shown in the inset.

3-D Symmetry

Crystal Axes

The axes are mutually perpendicular and \parallel to 2-fold axes (conventionally $\mathbf{c} < \mathbf{a} < \mathbf{b}$). When crystals are elongated (as above left) \mathbf{c} is chosen as the direction of elongation. When crystals are flattened (top insert), \mathbf{c} is chosen as normal to the predominant plane.

The axes are mutually perpendicular and \mathbf{c} is chosen \parallel to the 4-fold axis. Due to the 4-fold symmetry, the other two axes are equal. a_1 is oriented toward the front and a_2 to the right.

Crystallographic Axes & Crystal Systems

Crystal Axes

The axes are chosen as parallel to the principal face intersections. There are no symmetric restrictions to the choice of a, b, and c, but, by convention, the most pronounced zone is oriented vertically and the zone axis is c.

The axes are chosen as parallel to the principal face intersections. **b** is selected as \parallel to the 2-fold axis or \perp to the mirror. The most pronounced zone is oriented vertically and the zone axis is **c**. *a* slopes down and forward so that β is typically > 90.

Classification of Minerals

- Nearly 4000 minerals have been identified on Earth (most of which we don't really worry about).
- Rock-forming minerals
 - Common minerals that make up most of the rocks of Earth's crust
 - Only a few dozen members
 - Composed mainly of the 8 elements that make up 98% of the continental crust

Structure of minerals: Basic considerations are radius ratio and co-ordination number

Radius Coordir ratio	nation Arrange	ment of ions
<0.155	0-0-0	Linear
0.155-0.225 3		Trigonal planar
0.225-0.414 4	0	Tetrahedral

Silicates

- Most important mineral group
 - Comprise most of the rock-forming minerals
 - Very abundant due to large amounts of silicon and oxygen in Earth's crust
- Basic building block is the silicon-oxygen tetrahedron molecule
 - Four oxygen ions surrounding a much smaller silicon ion

Silica Tetrahedra (1 Si, 4 O's)

Silica tetrahedron

Independent	Olivine		
Single chain	Pyroxene		
Double chain	Amphibole		
Sheet structure	Mica	District Tables of Paris	
Three dimensional network	Quartz, Feldspar		

SINGLE CHAIN SILICATES: THEIR PHYSICAL AND CHEMICAL PROPERTIES

The single chain silicates have a basic structural unit consisting of linked SiO4 tetrahedra that each share 2 of their oxygens in such a way as to build long chains of SiO4. The basic structural group is thus Si2O6 with an Si:O ratio of 1:3. The most important inosilicates are the pyroxenes. These have a general structural formula of:

XYZ206

where X = Na+, Ca+2, Mn+2, Fe+2, or Mg+2 filling octahedral sites called M2

Y = Mn+2, Fe+2, Mg+2, Al+3, Cr+3, or Ti+4 filling smaller octahedral sites called M1

Z = Si+4 or Al+3 in tetrahedral coordination

REPEAT UNITS

2- Pyroxene, 3-, 5-, 7- Pyroxenoid Rhodonite (MnSiO3), Wollastonite(CaSiO3)

Structure of AMPHIBOLE

Projection along the C-axis

All the corners of a SiO4 tetrahedron are linked with the corners of the neighboring tetrahedron resulting in a Si : O = 1:2

Solid solutions

- Practically all naturally occurring minerals containing Fe-Mg-Mn-Ca or Na-K etc are solid solutions
 - Quartz (SiO₂) is not a solid solution
 - •Olivine contains two (there are more) members Forsterite Mg₂SiO₄ Fayalite Fe₂SiO₄ Natural olivine is a solid solution of FO-Fa

Ionic Substitution

Substitution is possible if difference in radii is < 15%

Substitution is possible between ions of same charge, or else through coupled substitution maintaining charge balance

If two ions compete for the same site, the one with higher ionic potential is preferred

Substitution can be limited if there is a large difference in electronegativity or difference in bonding character between two ions of same charge and similar size.

Ionic Substitution leads to formation of solid solution

Some interesting details about Olivine

- Nesosilicate: Isolated SiO₄ Tetrahedra
- Most common mineral in the Earth's mantle
- (Mg,Fe)₂SiO₄
- Mg, Fe form MO₆ Octahedra that link Tetrahedra
- Olivine is Orthorhombic near surface conditions called Alpha olivine
- At higher P-T, Alpha olivine changes to Beta olivine which contains sites that contain (OH)
- At still higher P-T, changes to gamma olivine which is isometric and can contain OH
- At still higher P-T changes to perovskite structure

High Pressure Polymorph of Olivine

RINGWOODITE

(Fe,Mg)2SiO4 in the spinel (Cubic) structure is known as ringwoodite (γ). Here, Si atoms occupy the tetrahedral sites (yellow) and Fe and Mg atoms occupy the *edge-sharing* octahedral sites (blue).

SPINEL (AB2O4) SiMg2O4

WADSI FYITE

OH in the structure

Intermediate between the olivine and spinel (ringwoodite) structure is a phase known as wadsleyite (β (Mg,Fe)2SiO4) The wadsleyite (or beta-spinel) structure is currently of great interest because it is being invoked as a reservior of water (as chemically bound OH) in the Earth's mantle.

Phase Transitions in the Earth's Mantle Low Velocity Zone 100 (Partial Melting?) Upper 200 Mantle 300 Depth (km) 200 200 200 α -Mg₂SiO₄ --> β -Mg₂SiO₄Wadsleyite/Spinel 13.4 GPa Transition. Zone600 Fingwoodite γ Mg₂SiO₄ --> MgO + MgSiO₃(il) 23.8 GPa 700 MgSiO₃(il) ->MgSiO₃(pv) Lower 800 Mantle 900 **Perovskite**

4.5

Alpha to Beta at 410 Km, Beta to Gamma at 520 Km, Gamma to Perovskite at 660 Km

3

2.5

3.5

Density (gm/cm³)

Polymorphism

Structure of Minerals

