$[f(\xi)]^2 \leq 0$ получаем

откуда следует, что $f(\xi) = 0$, т.е. ξ - корень уравнения (1).

В этом случае процесс деления отрезке продолжеется до тех пор, поке не выполнится условие

Torms $\xi = \xi$. The ξ — nucles Tours ordests $La_n, \delta_n J$, inpu stom

ся, повтому он применяется для грубого определения корня, ка Следует однако заметить, что втот метод очень медленно сходя торий затем уточняется более совершенными методами.

\$ 3. METOU IIPOCTON NTEPAINN

Пусть дано уравнение (I), где $f(\mathcal{X})$ — непрерывная функция, и требуется определить вто вещественные корни.

Замении (I) вквивалентим уравнением

$$x = \mathcal{G}(x). \tag{4}$$

Предположим, что [A, B] — отрезон, на котором находитетолько один корень $\{Y, B$ уравнения (I). Выберен на [A, E] начальное приближение $\mathcal{R}_{\mathcal{O}}$ к корню и положим

$$x_1 = g(x_0)$$

Аналогично, считая начальным приближением $Z_{\mathcal{L}_j}$ получим в вое приближение

$$\mathcal{X}_{\lambda} = \mathcal{Y}(\mathcal{X}_{\mathcal{L}}).$$

Повторяя втот процесс, будем иметь последовательность приблиме-HNA [2]:

$$x_n = \mathcal{G}(x_{n-1}), n = 1, 2, \dots$$
 (5)

Если $\ell_{m} \mathcal{Z}_{n} = \xi$ существует, то, переходя в (5) к пределу, получим $\xi = \mathcal{G}(\xi)$, т.е. ξ - корень уравинения (4) (уравиния (1)).

Геометрическая интерпретация метода простой итерации.

Построни на плоскости \mathcal{XOY} графики функций $y=\mathcal{X}$ и $\mathcal{U}=\mathcal{S}(\mathcal{X})$, Каждый действительный корень ξ уравнения (4) является абсциссой точки пересечения \mathcal{M} кривой $y=\mathcal{S}(\mathcal{X})$ с прямой y = 2c (см. рис. 5).

чек Ад и Вд, Ади Вд, ..., очевидно, представляют собой после-довательные приближения Жд, ДСд, ... кория § отправляясь от точки $A_0[\mathcal{X}_0, \mathcal{G}(\mathcal{Z}_0)]$, строим лома-ную $A_0B_1A_1B_2A_2\dots$ ("лестница"), звенья которой попере-менно параллельны оси $O\mathcal{X}$ и $O\mathcal{Y}$. Общие абсилски то-

