Cyclistic Case Study Feb21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for February 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Feb21 <- read_csv("C:/Users/theby/Documents/202102-divvy-tripdata.csv")
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(Feb21)

```
nrow(Feb21)
```

```
## [1] 49622
```

```
dim(Feb21)
```

```
## [1] 49622 13
```

```
head(Feb21)
```

```
## # A tibble: 6 × 13
##
                     ridea…¹ started at
                                                                          start...2 start...3
     ride id
                                                    ended at
##
     <chr>
                     <chr>
                             <dttm>
                                                    <dttm>
                                                                          <chr>
## 1 89E7AA6C29227... classi... 2021-02-12 16:14:56 2021-02-12 16:21:43 Glenwo... 525
## 2 0FEFDE2603568... classi... 2021-02-14 17:52:38 2021-02-14 18:12:09 Glenwo... 525
## 3 E6159D746B2DB... electr... 2021-02-09 19:10:18 2021-02-09 19:19:10 Clark ... KA1503...
## 4 B32D3199F1C2E... classi... 2021-02-02 17:49:41 2021-02-02 17:54:06 Wood S... 637
## 5 83E463F23575F... electr... 2021-02-23 15:07:23 2021-02-23 15:22:37 State ... 13216
## 6 BDAA7E3494E8D... electr... 2021-02-24 15:43:33 2021-02-24 15:49:05 Fairba... 18003
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

```
tail(Feb21)
```

```
## # A tibble: 6 × 13
##
   ride_id ridea…¹ started_at
                                                                         start...2 start...3
                                                   ended at
##
                     <chr> <dttm>
                                                   <dttm>
## 1 F1E4C456F8F88... electr... 2021-02-12 12:47:42 2021-02-12 13:23:32 Burnha... 15545
## 2 7ED482EE6C9F5... classi... 2021-02-20 15:25:32 2021-02-20 15:59:45 Wester... TA1307...
## 3 203DF22F090C1... classi... 2021-02-09 08:54:38 2021-02-09 09:08:19 Frankl... 13017
## 4 940161523673F... docked... 2021-02-27 14:46:06 2021-02-27 15:00:49 Frankl... 13017
## 5 C5538FFA492A7... classi... 2021-02-09 11:44:17 2021-02-09 11:46:13 Frankl... 13017
## 6 EB4CA525B953E... electr... 2021-02-04 10:26:44 2021-02-04 10:31:21 Frankl... 13017
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## # start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member_casual <chr>, and abbreviated variable names <sup>1</sup>rideable_type,
## #
       <sup>2</sup>start_station_name, <sup>3</sup>start_station_id
```

summary(Feb21)

```
ride id
                      rideable type
                                          started at
                                        Min. :2021-02-01 00:55:44.00
##
   Length: 49622
                      Length:49622
                      Class :character
                                        1st Qu.:2021-02-09 08:20:56.25
##
   Class :character
   Mode :character
                      Mode :character
                                        Median :2021-02-22 13:17:53.00
##
                                        Mean :2021-02-18 01:16:52.85
                                        3rd Qu.:2021-02-26 16:02:13.50
##
##
                                        Max. :2021-02-28 23:59:41.00
##
##
      ended at
                                    start_station_name start_station_id
##
   Min. :2021-02-01 01:22:48.00
                                   Length: 49622
                                                      Length: 49622
   1st Qu.:2021-02-09 08:36:02.50
                                   Class :character Class :character
##
   Median :2021-02-22 13:39:20.50
                                   Mode :character Mode :character
##
   Mean :2021-02-18 01:41:18.23
##
##
   3rd Qu.:2021-02-26 16:19:32.75
   Max. :2021-03-05 15:11:45.00
##
##
                                          start lat
                                                          start lng
##
   end station name
                      end station id
##
   Length:49622
                      Length:49622
                                        Min. :41.65 Min. :-87.77
   Class :character Class :character
                                        1st Qu.:41.88
##
                                                        1st Ou.:-87.66
##
   Mode :character Mode :character
                                        Median :41.90
                                                        Median :-87.64
##
                                        Mean :41.90
                                                        Mean :-87.64
##
                                        3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                        Max. :42.06
                                                        Max. :-87.53
##
##
      end_lat
                      end_lng
                                   member_casual
   Min. :41.54
                   Min. :-87.77
##
                                   Length: 49622
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                   Class :character
##
   Median :41.90
                   Median :-87.64
                                   Mode :character
   Mean :41.90
                   Mean :-87.64
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.07
                   Max. :-87.53
                        :214
##
  NA's
         :214
                   NA's
```

str(Feb21)

```
## spc_tbl_ [49,622 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:49622] "89E7AA6C29227EFF" "0FEFDE2603568365" "E6159D746B2DBB91" "B32D3199F1C2E75
## $ ride_id
В" ...
                       : chr [1:49622] "classic bike" "classic bike" "electric bike" "classic bike" ...
## $ rideable type
                       : POSIXct[1:49622], format: "2021-02-12 16:14:56" "2021-02-14 17:52:38" ...
##
   $ started at
                       : POSIXct[1:49622], format: "2021-02-12 16:21:43" "2021-02-14 18:12:09"
##
   $ ended at
## $ start station name: chr [1:49622] "Glenwood Ave & Touhy Ave" "Glenwood Ave & Touhy Ave" "Clark St & Lake St
" "Wood St & Chicago Ave" ...
## $ start station id : chr [1:49622] "525" "525" "KA1503000012" "637" ...
## $ end station name : chr [1:49622] "Sheridan Rd & Columbia Ave" "Bosworth Ave & Howard St" "State St & Rando
lph St" "Honore St & Division St" ...
   $ end_station_id : chr [1:49622] "660" "16806" "TA1305000029" "TA1305000034" ...
##
##
    $ start_lat
                       : num [1:49622] 42 42 41.9 41.9 41.8 ...
##
   $ start_lng
                       : num [1:49622] -87.7 -87.7 -87.6 -87.7 -87.6 ...
                       : num [1:49622] 42 42 41.9 41.9 41.8 ...
##
   $ end lat
                      : num [1:49622] -87.7 -87.7 -87.6 -87.7 -87.6 ...
   $ end lng
##
    $ member_casual
                      : chr [1:49622] "member" "casual" "member" "member"
    - attr(*, "spec")=
##
##
     .. cols(
##
          ride_id = col_character(),
     . .
##
     . .
         rideable type = col character(),
##
        started at = col datetime(format = ""),
     .. ended at = col datetime(format = ""),
##
##
         start_station_name = col_character(),
##
         start station id = col character(),
     . .
##
         end station name = col character(),
     . .
##
         end station id = col_character(),
##
         start lat = col double(),
     . .
         start lng = col double(),
##
     . .
##
     .. end_lat = col_double(),
##
     . .
         end_lng = col_double(),
##
         member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Feb21$date <- as.Date(Feb21$started_at)
Feb21$month <- format(as.Date(Feb21$date), "%m")
Feb21$month <- month.name[as.numeric(Feb21$month)]
Feb21$day <- format(as.Date(Feb21$date), "%d")
Feb21$year <- format(as.Date(Feb21$date), "%Y")
Feb21$day_of_week <- format(as.Date(Feb21$date), "%A")
Feb21$ride_length <- difftime(Feb21$ended_at,Feb21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Feb21$ride_length)
```

```
Recheck ride length data type.
```

[1] FALSE

Recheck ride_length data type.

```
Feb21$ride_length <- as.numeric(as.character(Feb21$ride_length))
is.numeric(Feb21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Feb21 <- na.omit(Feb21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Feb21 <- subset(Feb21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the *ride_length* less than 60 seconds or 1 minute.

```
Feb21 <- subset (Feb21, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Feb21$ride_length)

## [1] 1296.328

median(Feb21$ride length)
```

```
## [1] 675
```

```
max(Feb21$ride_length)
```

```
## [1] 1807754
```

```
min(Feb21$ride_length)
```

```
## [1] 60
```

Run a statistical summary of the ride_length.

```
summary(Feb21$ride_length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 60 407 675 1296 1191 1807754
```

Compare the members and casual users

```
aggregate(Feb21$ride_length ~ Feb21$member_casual, FUN = mean)
```

```
## Feb21$member_casual Feb21$ride_length
## 1 casual 2862.8077
## 2 member 901.9381
```

```
aggregate(Feb21$ride_length ~ Feb21$member_casual, FUN = median)
```

```
aggregate(Feb21$ride_length ~ Feb21$member_casual, FUN = max)
```

```
## Feb21$member_casual Feb21$ride_length
## 1 casual 1807754
## 2 member 88461
```

```
aggregate(Feb21$ride length ~ Feb21$member casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Feb21$ride_length ~ Feb21$member_casual + Feb21$day_of_week, FUN = mean)
```

```
##
      Feb21$member_casual Feb21$day_of_week Feb21$ride_length
## 1
                                                  3772.8599
                                    Friday
                   casual
## 2
                   member
                                     Friday
                                                    835.2875
## 3
                                                    1917.9371
                   casual
                                    Monday
## 4
                                    Monday
                   member
                                                     917.2421
## 5
                                                    3715.6154
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                     999.6027
## 7
                                                    2187.5168
                   casual
                                    Sunday
## 8
                   member
                                     Sunday
                                                    1009.9220
                                   Thursday
## 9
                   casual
                                                    1341.7620
## 10
                   member
                                   Thursday
                                                    813.5224
## 11
                   casual
                                    Tuesday
                                                    2646.1375
## 12
                   member
                                    Tuesday
                                                     913.2483
## 13
                   casual
                                  Wednesday
                                                    1717.1872
## 14
                                                    867.2685
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
Feb21$day_of_week <- ordered(Feb21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Feb21$ride_length ~ Feb21$member_casual + Feb21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
    Feb21$member_casual Feb21$day_of_week Feb21$ride_length
## 1
                  casual
                                    Sunday
                                                    2187.5168
## 2
                  member
                                                    1009.9220
                                     Sunday
## 3
                  casual
                                     Monday
                                                    1917.9371
## 4
                  member
                                    Monday
                                                     917.2421
## 5
                                   Tuesday
                                                    2646.1375
                  casual
                  member
                                   Tuesday
                                                     913.2483
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                       1194
                                                        2188.
                         1
## 2 casual
                          2
                                        445
                                                        1918.
## 3 casual
                         3
                                        822
                                                        2646.
## 4 casual
                          4
                                        919
                                                        1717.
## 5 casual
                                        836
                                                        1342.
## 6 casual
                          6
                                       1206
                                                        3773.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Feb21$member_casual)
```

```
##
## casual member
## 8508 33793
```

```
table(Feb21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 34054 1259 6988
```

```
table(Feb21$day_of_week)
```

```
##
      Sunday
                                                           Friday
##
                 Monday
                          Tuesday Wednesday
                                               Thursday
                                                                    Saturday
##
        4667
                   3873
                             5755
                                        6622
                                                   5985
                                                             6775
                                                                        8624
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Feb21$day_of_week,Feb21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                        casual 1194
## 2
          Monday
                        casual 445
## 3
         Tuesday
                        casual
                                822
## 4
      Wednesday
                        casual 919
## 5
                        casual 836
       Thursday
## 6
          Friday
                        casual 1206
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Feb21$rideable_type,Feb21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
## 1 classic bike
                         casual
                                 5525
## 2
      docked bike
                         casual 1259
## 3 electric_bike
                         casual 1724
## 4 classic bike
                         member 28529
## 5
      docked bike
                         member
## 6 electric_bike
                         member 5264
```

Plot for bike user vs bike type.

Rides and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Feb21, "Feb21.csv")