- 69. Demuestra las siguientes afirmaciones:
 - (1) no existe $n \in \mathbb{N}$ tal que 0 < n < 1; como sugerencia, emplea para ello la propiedad de buen orden de \mathbb{N} :
 - (2) no existe número natural simultáneamente par e impar.

Solución. (1) Definamos $S = \{n \in \mathbb{N} : 0 < n < 1\}.$

Supongamos por reducción al absurdo que $S \neq \emptyset$. Por el Principio del Buen Orden de $\mathbb N$ sabemos que existe un primer elemento, $x \in S$, de forma que $x \leq y$ para todo $y \in S$.

Dado que 0 < x < 1, se tiene por el ejercicio anterior que $0 < x^2 < x < 1$, y como $x^2 \in \mathbb{N}$, necesariamente $x^2 \in S$, lo cual contradice que x sea el mínimo elemento de S.

(2) Supongamos que $n \in \mathbb{N}$ es simultáneamente par e impar, de forma que n = 2p y n = 2q - 1 para ciertos $p, q \in \mathbb{N}$. Entonces:

$$2p = 2q - 1 \iff 2(q - p) = 1 \iff \mathbb{Z} \ni q - p = \frac{1}{2} \in (0, 1),$$

y como q y p son números naturales, $q-p\in\mathbb{Z}$ (y necesariamente q-p>0), digamos que es positivo, lo cual contradice (1).

- 70. Demuestra las siguientes afirmaciones:
 - (1) si c > 1, entonces $c^n > c$ para $n \ge 2$;
 - (2) si 0 < c < 1, entonces $c^n < c$ para $n \ge 2$.

Solución. (1) Caso base: $0 < 1 < c \implies c - 1, c \in \mathbb{P} \stackrel{\text{2do.ax.}}{\Longrightarrow} c \cdot (c - 1) = c^2 - c \in \mathbb{P} \iff c < c^2$

Caso inductivo: supongamos que $c^n > c$ y veamos que $c^{n+1} > c$.

$$c^n > c > 1 > 0 \stackrel{\text{trans.}}{\Longrightarrow} c, c^n - 1 \in \mathbb{P} \stackrel{\text{2do.ax.}}{\Longrightarrow} c \cdot (c^n - 1) = c^{n+1} - c \in \mathbb{P} \iff c^{n+1} > c.$$

- (2) Se razona análogamente.
- **71.** Sean $a, b \in \mathbb{R}$, a, b > 0 y sea $n \in \mathbb{N}$. Demuestra que a < b si y solo si $a^n < b^n$. Como sugerencia, emplea inducción matemática para ello.

Solución. (\Rightarrow) Supongamos que a < b y veamos que $a^n < b^n$ para todo $n \in \mathbb{N}$.

Sabemos que si x > 0, entonces $x^n > 0$ para todo $n \in \mathbb{N}$ (es inmediato por inducción por el 2do.ax.).

Para n=1 es simplemente la hipótesis.

Supongamos que se verifica para $n \in \mathbb{N}$ y veamos que también lo hace con ello para n + 1:

$$\left. \begin{array}{ll} a^n < b^n & \stackrel{\cdot a > 0}{\Longrightarrow} & a^{n+1} = a \cdot a^n < a \cdot b^n \\ a < b & \stackrel{\cdot b^n > 0}{\Longrightarrow} & a \cdot b^n < b \cdot b^n = b^{n+1} \end{array} \right\} \implies a^{n+1} < a \cdot b^n < b^{n+1},$$

en virtud de los axiomas de orden y la transitividad de éste.

 (\Leftarrow) Basta particularizar n=1.

Hemos usado... que $\alpha < \beta$ y $0 < \gamma$ implica que $\alpha \gamma < \beta \gamma$.

Es consecuencia del 2do.ax.:
$$\gamma, \beta - \alpha \in \mathbb{P} \implies \gamma(\beta - \alpha) = \beta\gamma - \alpha\gamma \in \mathbb{P} \iff \alpha\gamma < \beta\gamma$$
.

- 72. Demuestra las siguientes afirmaciones:
 - (1) si c > 1 y $m, n \in \mathbb{N}$, entonces $c^m > c^n$ si y solo si m > n;
 - (2) si 0 < c < 1 y $m, n \in \mathbb{N}$, entonces $c^m < c^n$ si y solo si m > n.

Solución. $(1,\Leftarrow)$ dado que k:=m-n>0, por el Ej. 70 deducimos que $c^{m-n}>c>1$,

$$\stackrel{\text{trans.}}{\Longrightarrow} c^{m-n} - 1 \in \mathbb{P} \stackrel{\text{2do.ax}}{\Longrightarrow} c^n (c^{m-n} - 1) = c^m - c^n \in \mathbb{P} \iff c^m > c^n.$$

ojo, hemos usado que $c^n \in \mathbb{P}$ supuesto que $c \in \mathbb{P}$, es inmediato por inducción y 2do.ax.

 $(1,\Rightarrow)$ Supongamos que $c^m > c^n$ y probemos que m > n.

Probemos el contrarrecíproco: $m \le n \implies c^m \le c^n$.

Esto es una consecuencia inmediata de lo anterior, $(1, \Leftarrow)$.

(2) Se hace análogamente o se aplica a $\tilde{c} := 1/c$ el primer apartado.

73. Emplea el principio de inducción matemática para demostrar que si $a \in \mathbb{R}$ y $m, n \in \mathbb{N}$, entonces $a^{m+n} = a^m a^n$ y $(a^m)^n = a^{mn}$.

Solución. En primer lugar, por definición:

$$a^0 := 1, \quad a^m := a^{m-1} \cdot a \quad \forall m \in \mathbb{N}.$$

Probemos que $a^{m+n} = a^m a^n$ por inducción sobre n (m queda fijo, arbitrario):

El caso base: $a^{m+1} \stackrel{\text{def.}}{=} a^{(m+1)-1} \cdot a = a^m \cdot a^1$.

El caso inductivo: supongamos que $a^{m+n} = a^m a^n$; entonces

$$a^{m+(n+1)} = a^{(m+n)+1} = a^{m+n} \cdot a \stackrel{\text{HI}}{=} (a^m \cdot a^n) \cdot a = a^m (a^n \cdot a) = a^m a^{n+1}.$$

Probemos ahora que $(a^m)^n = a^{mn}$ por inducción sobre n (m queda fijo, arbitrario).

El caso base: $(a^m)^1 = a^m = a^{m \cdot 1}$.

El caso inductivo: supongamos que $(a^m)^n = a^{mn}$ para $n \in \mathbb{N}$; entonces:

$$(a^m)^{n+1} \stackrel{\mathrm{def.}}{=} (a^m)^n \cdot (a^m) \stackrel{\mathrm{HI}}{=} a^{mn} \cdot a^m \stackrel{(1)}{=} a^{mn+m} = a^{m(n+1)}.$$

como queríamos demostrar.

74. Suouesta probada la existencia de raíces, demuestra que si c > 1, entonces $c^{1/m} < c^{1/n}$ si y solo si m > n. Solución. Definamos $\xi := c^{1/(mn)}$.

Sabemos que $\xi^{mn} = c$ por la definición de raíz mn-ésima de c.

Sabemos que $c^{1/n} = \xi^m$ y que $c^{1/m} = \xi^n$ por el Ej. 73 y la definición de raíz m-ésima (resp. n-ésima).

Probemos que $\xi > 1$.

Supongamos por red. al absurdo que $\xi \leq 1$. pero el Ej. 70.(2) implica $1 < c = \xi^{mn} \leq \xi \leq 1$, absurdo.

Entonces, el Ej. 72.(1) implica que
$$c^{1/n} = \xi^m > \xi^n = c^{1/m}$$
 si y solo si $m > n$.

El valor absoluto y la recta real.

75. Sean $a,b\in\mathbb{R}$ y supongamos que $b\neq 0$. Demuestra que

(1)
$$|a| = \sqrt{a^2}$$
; (2) $|a/b| = |a|/|b|$.

Solución. (1) Supongamos en primer lugar que $a \ge 0$. Sabemos que $a^2 \ge 0$ y por ello que posee una única raíz cuadrada no negativa, la cual es necesariamente a pues $a \cdot a = a^2$ por definición. Esto coincide claramente con |a| = a.

Supongamos ahora que a < 0, con lo que -a > 0; dado que $a^2 \ge 0$, éste posee una única raíz cuadrada no negativa, la cual es claramente -a, dado que $(-a)(-a) = a^2$. Esto coincide con |a| = -a, como queríamos probar.

(2) Si b > 0 entonces 1/b > 0 y |b| = b, con lo que |1/b| = 1/b = 1/|b|.

Por contra, si b < 0, entonces 1/b < 0 y |b| = -b, con lo que |1/b| = -1/b.

Por tanto, sabido que |ab| = |a||b|, deducible sencillamente de la definición,

$$\left| \frac{a}{b} \right| = \left| a \cdot \frac{1}{b} \right| = |a| \cdot \left| \frac{1}{b} \right| = |a| \cdot \frac{1}{|b|} = \frac{|a|}{|b|},$$

como queríamos demostrar.

76. Sean $a, b \in \mathbb{R}$. Demuestra que |a+b| = |a| + |b| si y solo si $ab \ge 0$.

Solución. (\Rightarrow) Supongamos que |a+b|=|a|+|b|. En tal caso,

$$a^{2} + b^{2} + 2ab = (a + b)^{2} = |a + b|^{2} = (|a| + |b|)^{2} = a^{2} + b^{2} + 2|a||b|,$$

de modo que |ab| = ab.

Supongamos por reducción al absurdo que ab < 0, de forma que |ab| = -ab y por ende |ab| = ab es equivalente a 2ab = 0. Deducimos así que a = 0 o b = 0, lo cual contradice la suposición previa de que ab < 0. Con ello $ab \ge 0$.

- (\Leftarrow) Supongamos ahora que $ab \ge 0$ y veamos que |a+b| = |a| + |b|. Distinguimos los siguientes casos:
 - Supongamos que ab = 0 y, sin pérdida de generalidad, que a = 0 en particular. Entonces, |a + b| = |b| = |0| + |b| = |a| + |b|, como queríamos.
 - Supongamos que ab > 0, de forma que a, b > 0 y por consiguiente |a + b| = a + b = |a| + |b| o bien a, b < 0 y en tal caso |a + b| = -(a + b) = (-a) + (-b) = |a| + |b|, como queríamos.

Esto concluye la solución del ejercicio.

77. Sean $x, y, z \in \mathbb{R}$ tales que $x \le z$. Demuestra que $x \le y \le z$ si y solo si |x - y| + |y - z| = |x - z|. Explica una interpretación geométrica de este resultado.

Solución. (\Rightarrow) Supongamos que $x \le y \le z$. En tal caso, |x-y| = y-x, |y-z| = z-y y |x-z| = z-x, de forma que |x-y| + |y-z| = y-x+z-y = z-x = |x-z|, como queríamos probar.

- (\Leftarrow) Supongamos ahora que |x-y|+|y-z|=|x-z| y que $x\leq z$.
 - Supongamos que y < x, entonces $|x y| + |y z| = x y + z y = z + x 2y \neq z x = |x z|$.
 - Supongamos que y > z, entonces $|x y| + |y z| = y x + y z = 2y x z \neq z x = |x z|$.

Con ello, necesariamente $x \le y \le z$, como queríamos probar.

Geométricamente, esto significa que la distancia entre x e y más la distancia entre y y z ha de ser precisamente la distancia entre x y z si y solamente si y se encuentra entre x y z.

78. Sean $x, a \in \mathbb{R}$ y sea $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$. Demuestra que $|x - a| < \varepsilon$ si y solo si $a - \varepsilon < x < a + \varepsilon$.

Solución. Supongamos que $x - a \ge 0$, entonces es claro que $x < a + \varepsilon$, mientras que, trivialmente, $a - \varepsilon < x$ pues $a - x \le 0 < \varepsilon$.

Supongamos ahora que x-a < 0, entonces de $|x-a| < \varepsilon$ deducimos que $a-x < \varepsilon$ y por ende que $a-\varepsilon < x$, mientras que, trivialmente, $x < a + \varepsilon$, pues $x-a < 0 < \varepsilon$.

Esto concluye la solución del ejercicio, pues la condición es equivalente a que $x < a + \varepsilon$ y que $a - \varepsilon < x$, que reescrito resulta $a - \varepsilon < x < a + \varepsilon$.

- **79.** Sean $a, b, x, y \in \mathbb{R}$ tales que a < x < b y a < y < b.
 - (1) Demuestra que se verifica la desigualdad |x y| < b a.
 - (2) Establece la interpretación geométrica de este resultado.

Solución. (1) Supongamos sin pérdida de generalidad que x < y, de forma que |x - y| = y - x, dado que en caso contrario el razonamiento es exactamente el mismo intercambiando los papeles de x e y.

Con ello, |x-y| < b-a si y solo si y-x < b-a o, equivalentemente, y+a < x+b. Probémoslo.

Dado que y < b, sumando en ambos lados de la desigualdad a obtenemos que y + a < b + a, y dado que a < x, deducimos que b + a < b + x, tras sumar en ambos lados de la desigualdad b. Por la transitividad del orden, concluimos que y + a < b + x, como queríamos concluir.

- (2) La interpretación geométrica del resultado es clara: la distancia entre dos puntos situados en un mismo intervalo es menor o igual que la longitud de dicho intervalo.
- 80. Encuentra todos los números reales $x \in \mathbb{R}$ que satisfacen

(1)
$$|4x - 5| \le 13$$
; (2) $|x^2 - 1| \le 3$.

Solución. (1) Usando el Ejercicio 78, basta observar que

$$|4x - 5| \le 13 \iff -13 \le 4x - 5 \le 13$$

 $\iff -8 \le 4x \le 18$
 $\iff -2 \le x \le 9/2.$

(2) De manera similar,

$$|x^{2} - 1| \le 3 \iff -3 \le x^{2} - 1 \le 3$$

$$\iff -2 \le x^{2} \le 4$$

$$\iff 0 \le x^{2} \le 4$$

$$\iff \sqrt{0} \le \sqrt{x^{2}} \le \sqrt{4} = 2$$

$$\iff 0 \le |x| \le 2$$

$$\iff -2 \le x \le 2,$$

lo cual concluye la solución del ejercicio.

81. Encuentra todos los $x \in \mathbb{R}$ que satisfacen |x+1| + |x-2| = 7.

Solución. Distinguimos los $x \in \mathbb{R}$ según cambien de definición los valores absolutos en la ecuación del enunciado. Dicha definición cambia en x = -1 y en x = 2, de modo que resolver la ecuación equivale a resolver el sistema

$$\begin{cases} (x+1) + (x-2) = 7 & \text{si } x \ge 2, \\ (x+1) - (x-2) = 7 & \text{si } -1 \le x < 2, \\ -(x+1) - (x-2) = 7 & \text{si } -1 < x \end{cases}$$

o bien, tras simplificar las expresiones anteriores,

$$\begin{cases} 2x - 1 = 7 & \text{si } x \ge 2, \\ 3 = 7 & \text{si } -1 \le x < 2, \\ -2x + 1 = 7 & \text{si } x < -1 \end{cases}$$

con lo que el segundo caso es absurdo y no hay soluciones si $-1 \le x < 2$, mientras que la única solución en el primer caso sería x = 4, que es mayor que 2 y por ende válida, y la solución en el tercer caso sería x = -3, que menor que -1, con lo que también es válida. Así, las soluciones a la ecuación son x = -3 y x = 4. \square

82. Encuentra todos los $x \in \mathbb{R}$ que satisfacen

(1)
$$|x-1| > |x+1|$$
; (2) $|x| + |x+1| < 2$.

Solución. (1)

$$|x+1| < |x-1| \iff \begin{cases} \begin{bmatrix} -(x+1) < -(x-1) & \wedge & x \le -1 & \end{bmatrix} & \vee \\ \begin{bmatrix} x+1 < -(x-1) & \wedge & -1 < x \le 1 & \end{bmatrix} & \vee \\ \begin{bmatrix} x+1 < x-1 & \wedge & 1 < x & \end{bmatrix} & \vee \\ \begin{bmatrix} x+1 < x-1 & \wedge & 1 < x & \end{bmatrix} & \vee \\ \begin{bmatrix} x < -x & \wedge & -1 < x \le 1 & \end{bmatrix} & \vee \\ \begin{bmatrix} 1 < -1 & \wedge & 1 < x & \end{bmatrix} & \vee \\ \end{bmatrix} \iff \begin{cases} \begin{bmatrix} x \le -1 & \forall \\ -1 < x < 0 & \end{bmatrix} & \vee \\ \end{bmatrix} \iff x < 0$$

83. Esboza la gráfica de la ecuación y = |x| - |x - 1|.

Solución. Esencialmente, es la gráfica dada por la expresión por partes

$$y = \begin{cases} -1 & \text{si } x < 0, \\ 2x - 1 & \text{si } 0 \le x < 1, \\ 1 & \text{si } 1 \le x. \end{cases}$$

la cual es sencilla de esbozar:

85. Determina todos los $x \in \mathbb{R}$ que satisfacen |2x-3| < 5 y |x+1| > 2 simultáneamente.

Solución. Es sencillo comprobar que las soluciones de la primera inecuación son los números reales $x \in \mathbb{R}$ tales que -1 < x < 4 y que las soluciones de la segunda inecuación son los números reales $x \in \mathbb{R}$ tales que x < -3 o x > 1. Así, si $x \in \mathbb{R}$ es solución de ambas inecuaciones ha de satisfacer necesariamente 1 < x < 4.

86. Determina analíticamente y esboza el conjunto de pares de números reales $(x,y) \in \mathbb{R} \times \mathbb{R}$ que satisfacen:

(1) |x| = |y|;

(3) |xy| = 2;

(2) |x| + |y| = 1;

(4) |x| - |y| = 2.

Solución. Las representaciones resultan las siguientes:

87. Determina analíticamente y esboza el conjunto de pares de números reales $(x,y) \in \mathbb{R} \times \mathbb{R}$ que satisfacen:

 $(1) |x| \le |y|;$

(2) $|x| + |y| \le 1$;

(3) $|xy| \le 2$; (4) $|x| - |y| \ge 2$.

Solución. Lo mismo que en el apartado anterior, pero con el «relleno»: