ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2022/23

Programmazione Dinamica

Problema dello zaino con ripetizione

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

PROBLEMA:

INPUT: Zaino di capacità $W \ge 0$

n item (oggetti) $1,2,\ldots,n$

PESI item $w_1, w_2, ..., w_n \in N$

VALORE item $v_1, v_2, ..., v_n \in N$

 ${f OUTPUT}$: selezione degli oggetti che abbia peso totale minore o uguale a W e che massimizzi il valore totale degli oggetti selezionati

SENZA RIPETIZIONE

un oggetto può essere selezionato una volta sola

CON RIPETIZIONE

un oggetto può essere selezionato più volte

PROBLEMA:

INPUT: Zaino di capacità $W \ge 0$

n item (oggetti) $1,2,\ldots,n$

PESI item $w_1, w_2, ..., w_n \in N$

VALORE item $v_1, v_2, ..., v_n \in N$

OUTPUT: selezione degli oggetti che abbia peso totale minore o uguale a W e che massimizzi il valore totale degli oggetti selezionati

Soluzione ammissibile:

Selezione di oggetti $i_1, i_2, ..., i_k$ tale che ogni $i_t \in [1..n]$ e

$$\sum_{t=1}^{k} w_t \le W$$

PROBLEMA:

INPUT: Zaino di capacità $W \ge 0$

n item (oggetti) $1,2,\ldots,n$

PESI item $w_1, w_2, ..., w_n \in N$

VALORE item $v_1, v_2, ..., v_n \in N$

 ${f OUTPUT}$: selezione degli oggetti che abbia peso totale minore o uguale a W e che massimizzi il valore totale degli oggetti selezionati

Costo soluzione ammissibile:

Data una selezione di oggetti $i_1, i_2, ..., i_k$ tale che ogni $i_t \in [1..n]$ e $\sum_{t=1}^{\kappa} w_t \leq W$,

il costo della soluzione è dato da

$$\sum_{t=1}^{k} v_t$$

PROBLEMA:

```
INPUT: Zaino di capacità W \ge 0 n item (oggetti) 1,2,...,n PESI item w_1,w_2,...,w_n \in N VALORE item v_1,v_2,...,v_n \in N
```

 ${f OUTPUT}$: selezione degli oggetti che abbia peso totale minore o uguale a W e che massimizzi il valore totale degli oggetti selezionati

Funzione obiettivo: massimo

PROBLEMA:

INPUT: Zaino di capacità $W \ge 0$

n item (oggetti) $1,2,\ldots,n$

PESI item $w_1, w_2, ..., w_n \in N$

VALORE item $v_1, v_2, ..., v_n \in N$

 ${f OUTPUT}$: selezione degli oggetti che abbia peso totale minore o uguale a W e che massimizzi il valore totale degli oggetti selezionati

ESEMPIO:

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

- CON RIPETIZIONE:
 - 1 item 1 + 2 item 4
 - —> peso 10, valore 48
- SENZA RIPETIZIONE:
 - 1 item 1 + 1 item 3
 - —> peso 10, valore 46

PROBLEMA:

INPUT: Zaino di capacità $W \ge 0$

n item (oggetti) $1,2,\ldots,n$

PESI item $w_1, w_2, ..., w_n \in N$

VALORE item $v_1, v_2, ..., v_n \in N$

 ${f OUTPUT}$: selezione degli oggetti che abbia peso totale minore o uguale a W e che massimizzi il valore totale degli oggetti selezionati

FORZA BRUTA: proviamo tutti i possibili modi di selezionare gli oggetti, controlliamo se entrano nello zaino. Se si, calcoliamo il valore totale e teniamo traccia della migliore selezione.

Computazionalmente intrattabile

il problema ha una sottostruttura OTTIMA

Altrimenti potrei costruire una soluzione migliore di quella ottima

Questo riempimento ha un valore maggiore dell'ottimo!

GREEDY: Quale scelta GREEDY?

Ordiniamo gli oggetti per ordine decrescente di VALORE e scegliamo iterativamente il primo che può essere ancora contenuto nello zaino

 \overline{W}

item	PESO	VALORE
1	W	30
2	W/2	20
3	W/2	15

Soluzione algoritmo GREEDY

1 item 1
—> peso W, valore 30

- CON RIPETIZIONE:
 - 2 item 2
 - —> peso W, valore 40
- SENZA RIPETIZIONE:
 - 1 item 2 + 1 item 3
 - —> peso W, valore 35

GREEDY: Quale scelta GREEDY?

Ordiniamo gli oggetti per ordine decrescente di PESO e scegliamo iterativamente il primo che può essere ancora contenuto nello zaino

W

item	PESO	VALORE
1	W	30
2	W/2	20
3	W/2	15

Soluzione algoritmo GREEDY

1 item 1
—> peso W, valore 30

- CON RIPETIZIONE:
 - 2 item 2
 - —> peso W, valore 40
- SENZA RIPETIZIONE:
 - 1 item 2 + 1 item 3
 - —> peso W, valore 35

GREEDY: Quale scelta GREEDY?

Ordiniamo gli oggetti per ordine crescente di PESO e scegliamo iterativamente il primo che può essere ancora contenuto nello zaino

 \overline{W}

item	PESO	VALORE
1	W	30
2	3W/4	20
3	W/2	15

Soluzione algoritmo GREEDY

1 item 3
—> peso W/2, valore 15

- CON RIPETIZIONE:
 - 1 item 1
 - —> peso W, valore 30
- SENZA RIPETIZIONE:
 - 1 item 1
 - —> peso W, valore 30

GREEDY: Quale scelta GREEDY?

Calcoliamo il valore per unità di peso per ogni oggetto (v_i/w_i)
Ordiniamo gli oggetti per ordine decrescente di VALORE per UNITÀ di PESO e scegliamo iterativamente il primo che può essere ancora contenuto nello zaino

$$W = 10$$

item	PESO	VALORE	v/w
1	10	30	30/10 = 3
2	6	28	28/6 = 4.66

Soluzione algoritmo GREEDY

1 item 2
—> peso 6, valore 28

- CON RIPETIZIONE:
 - 1 item 1
 - —> peso 10, valore 30
- SENZA RIPETIZIONE:
 - 1 item 1
 - —> peso 10, valore 30

GREEDY: Quale scelta GREEDY?

Nessuno lo sa....

PROGRAMMAZIONE DINAMICA

Il problema ha una sottostruttura ottima

CON RIPETIZIONE

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ definiamo

 $K(w) = \text{massimo valore ottenibile con zaino di capacità } w \leq W$

OSSERVAZIONE:

se sapessimo che nella soluzione ottima al sottoproblema c'è l'item i

 $K(w) = v_i + K(w - w_i)$

massimo valore ottenibile con zaino di capacità w

valore dell'item i, che sta nella soluzione ottima massimo valore ottenibile con zaino nella capacità residua $(w - w_i)$, considerando l'occupazione dell'item i

CON RIPETIZIONE

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ definiamo

K(w) = massimo valore ottenibile con zaino di capacità $w \leq W$

non sapendo quale item appartiene alla soluzione ottima... ...scegliamo quello che ci permette di ottenere il valore massimo

$$K(w) = \max_{i:w_i \le w} \{v_i + K(w - w_i)\}$$

massimo valore ottenibile con zaino di capacità w

Migliore scelta di item: massimizza la somma del valore dell'item scelto e del massimo valore ottenibile con zaino nella capacità residua (W-w), considerando l'occupazione dell'item scelto

CON RIPETIZIONE

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ definiamo

 $K(w) = \text{massimo valore ottenibile con zaino di capacità } w \leq W$

se i $K(w-w_i)$ sono già stati calcolati (per i=1,2,...,n) quando dobbiamo calcolare K(w), per calcolare K(w) dobbiamo solo eseguire O(n) operazioni aritmetiche

$$K(w) = \max_{i:w_i \le w} \{v_i + K(w - w_i)\}$$

massimo valore ottenibile con zaino di capacità w

Migliore scelta di item: massimizza la somma del valore dell'item e del massimo valore ottenibile con zaino nella capacità residua (W-w), considerando l'occupazione dell'item i

CON RIPETIZIONE

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ definiamo

 $K(w) = \text{massimo valore ottenibile con zaino di capacità } w \leq W$

$$K(w) = \max_{i:w_i \le w} \{v_i + K(w - w_i)\}$$

Risolviamo i sottoproblemi per w crescente

$$w = 0,1,2,...,W-1,W$$

ATTENZIONE

I pesi sono interi, ci interessano solo i valori di *w* interi!

CASO BASE: $w < min_i w_i \rightarrow K(w) = 0$ = massimo valore ottenibile con uno zaino di capacità inferiore all'item più piccolo

SOLUZIONE al PROBLEMA originale:

 $w = W \rightarrow K(W)$ = massimo valore ottenibile con uno zaino di capacità W

CON RIPETIZIONE

Per calcolare il valore della soluzione ottima di tutti i sottoproblemi

$$\min := \min_{i \in [1..n]} \{w_i\}$$

$$\text{for } w = 0 \text{ to min } -1 \text{ do}$$

$$K[w] := 0$$

$$\text{for } w = \min \text{ to } W \text{ do}$$

$$K[w] = \max_{i:w_i \leq w} \{v_i + K(w - w_i)\}$$

Costo computazionale O(Wn)

PSEUDO-POLINIMIALE

(il costo dipende da uno - o più - dei valori di input)

Per calcolare la **selezione** della soluzione **ottima** teniamo traccia dell'item che permette di calcolare K(w), per ogni w (non c'è nello pseudocodice)

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE	
1	6	30	
2	3	14	
3	4	16	
4	2	9	

$$K[w] = \max_{i:w_i \le w} \{v_i + K(w - w_i)\}$$

0	1	2	3	4	5	6	7	8	9	10
0	0									

ESEMPIO

CON RIPETIZIONE

item	PESO	VALORE		
1	6	30		
2	3	14		
3	4	16		
4	2	9		

$$K[w] = \max_{i:w_i \le w} \{v_i + K(w - w_i)\}$$

0	1	2	3	4	5	6	7	8	9	10
0	0									

ESEMPIO

CON RIPETIZIONE

item	PESO	VALORE	
1	6	30	
2	3	14	
3	4	16	
4	2	9	

$$K[w] = \max_{i:w_i \le w} \{v_i + K(w - w_i)\}$$

0	1	2	3	4	5	6	7	8	9	10
0	0	4								

ESEMPIO

CON RIPETIZIONE

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(3) = M \times X \left(V_2 + K(3-3) = 14+0 \right)$$

 $V_4 + K(3-2) = 9+0$

K[w]	=	max	$\{V_i$	+	K(w)	_	W_i
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$	_				_

0	1	2	3	4	5	6	7	8	9	10
0	0	4								

ESEMPIO

CON RIPETIZIONE

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(3) = M \times X \left(V_2 + K(3-3) = 14+0 \right)$$

 $V_4 + K(3-2) = 9+0$

K[w]	=	max	$\{V_i$	+	K(w)	_	W_i
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$	_				

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2							

ESEMPIO

CON RIPETIZIONE

W = 10

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

					V							
				3		5	6	7	8	9	10]
K	0	Ó	9	14								

$$W=4$$
 {i: w; $\{4\}=\{2,3,4\}$

$$W = 4 \quad \begin{cases} i : Wi \le 4 \end{cases} = \begin{cases} 2_{13}, 4 \end{cases}$$

$$V_{2} + K(4 - 3) = 14 + 0$$

$$K(4) = Mox \quad \begin{cases} v_{2} + K(4 - 4) = 16 + 0 \\ v_{4} + K(4 - 2) = 9 + 9 \end{cases}$$

$$v_{4} + K(4 - 2) = 9 + 9$$

K[w]	=	max	$\{v_i$	+	K(w	_	$w_i)$
		$i:W_{i}\leq W$					

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2							

ESEMPIO

CON RIPETIZIONE

W = 10

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

					V					
				3		6	7	8	9	10
K	0	Ó	9	14	81					

$$W = 4$$
 {i: w; $43 = \{2,3,4\}$

$$W = 4 \quad \begin{cases} i : Wi \le 4 \end{cases} = \begin{cases} 2_{13}, 4 \end{cases}$$

$$V_{2} + K(4 - 3) = 14 + 0$$

$$V_{3} + K(4 - 4) = 16 + 0$$

$$V_{4} + K(4 - 2) = 9 + 9$$

K[w]	=	max	$\{v_i$	+	K(w)	_	$w_i)$
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$	_				_

0	1	2	3	4	5	6	7	8	9	10
 0	0	4	2	4						

ESEMPIO

CON RIPETIZIONE

W = 10

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18						

$$W=5$$
 $\{i: wi \leq 5\} = \{2,3,43\}$

$$K(5) = Max (V_2 + K(5-3)) = (14+9)$$

 $V_3 + K(5-4) = 16+0$
 $V_4 + K(5-2) = 9+19$

$$\mathbf{K}[\mathbf{w}] = \max_{\mathbf{i}: \mathbf{w}_{\mathbf{i}} \leq \mathbf{w}} \left\{ \mathbf{v}_{\mathbf{i}} + \mathbf{K}(\mathbf{w} - \mathbf{w}_{\mathbf{i}}) \right\}$$

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4						

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

						V					
	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23					

$$W=5$$
 $\{i: wi \leq 5\} = \{2,3,43\}$

$$K(5) = Max (V_2 + K(5-3)) = (14+9)$$

 $V_3 + K(5-4) = 16+0$
 $V_4 + K(5-2) = 9+14$

K[w]	=	max	$\{ {\tt V_i}$	+	K(w	_	$w_i)$
		$i:w_i \leq w$					

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2					

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

K[w]

$$W = 6$$
 $\{i: Wi \le 6\} = \{2_13, 4, 1\}$

$$K(6) = max$$

$$K(6) = m \times (V_1 + K(6-6) \pm 30 + 0)$$

 $V_2 + K(6-3) = 14 + 14$
 $V_3 + K(6-4) = 16 + 9$
 $V_4 + K(6-2) = 9 + 18$

=	max	$\{V_i$	+	K(W)	_	W_i	}
	$\mathtt{i:} \mathtt{W}_\mathtt{i} {\leq} \mathtt{W}$						

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2					

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

 $K[w] = \max \{v_i + K(w - w_i)\}$

i:W₁≤W

$$W = 6$$
 $\{i : Wi \le 6\} = \{2_13, 4, 1\}$

$$K(6) = max$$

$$(V_1 + K(6-6) \pm 30+0)$$

 $(V_1 + K(6-6) \pm 30+0)$
 $(V_2 + K(6-3) = 14+14$
 $(V_3 + K(6-4) = 16+9$
 $(V_4 + K(6-2) = 9+18)$

i	+	em

0		2					8	9	10
0	0	4	2	4	2	1			

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30				

$$W = 7$$
 {i: wi $\{7\} = \{2,3,4,1\}$

$$K(7) = m \times (V_1 + K(7 - 6)) = 30 + 0$$

 $V_2 + K(7 - 3) = 14 + 18 + 32$
 $V_3 + K(7 - 4) = 16 + 14 = 30$
 $V_4 + K(7 - 2) = 9 + 23 + 32$

K[w]	=	max	$\{v_i$	+	K(w)	_	$w_i)$
		$\mathtt{i:} \mathtt{W}_{\mathtt{i}} {\leq} \mathtt{W}$					

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1				

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30	32			

$$W = 7$$
 $\{i : Wi \le 7\} = \{2,3,4,1\}$

$$K(7) = m_{2} \times (V_{1} + K(7 - 6)) = 30 + 0$$

 $V_{2} + K(7 - 3) = 14 + 18 + 32$
 $V_{3} + K(7 - 4) = 16 + 14 = 30$
 $V_{4} + K(7 - 2) = 9 + 23 = 32$

K[w]	=	max	$\{v_i$	+	K(w)	_	$w_i)$
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$					

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1	2			

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30	32			

$$W = 8$$

$$\{i: wi \in 8\} = \{2,3,4,1\}$$

$$K(8) = mex$$

$$W=8 \quad \{i: Wi \in 8\} = \{2_{1}3_{1}4_{1}1\}$$

$$V_{1}+K(8-6)=30+9=39$$

$$V_{2}+K(8-3)=14+23=37$$

$$V_{3}+K(8-4)=16+18=34$$

$$V_{4}+K(8-2)=9+30=39$$

K[w]	=	max	$\{V_i$	+	K(w)	_	$w_i)$
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$	_				_

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1	2			

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30	32	39		

$$W = 8$$

$$K(8) = mex$$

$$(V_1 + K(8-6) = 30+9=39)$$

 $(V_2 + K(8-8) = 14+23=37)$
 $(V_3 + K(8-4) = 16+18=34)$
 $(V_4 + K(8-2) = 9+30=39)$

K[w]	=	max	$\{v_i$	+	K(w)	_	$w_i)$	
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$						

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1	2	Y		

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30	32	39		

$$W = 9$$
 {i: W: $\{1\} = \{2,3,4,1\}$

$$K(9) = mex$$

$$(V_1 + K(9-6) = 30+14 = 94)$$

 $(V_2 + K(9-3) = 14 + 30 = 94)$
 $(V_3 + K(9-4) = 16 + 23 = 39)$
 $(V_4 + K(9-2) = 9 + 32 = 41)$

K[w]	=	max	$\{V_i$	+	K(w)	_	$w_i)$
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$	_				_

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1	2	4		

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30	32	39	44	

$$W = 9$$
 {i: W: $\{1\} = \{2,3,4,1\}$

$$K(9) = mex$$

$$(V_1 + K(9-6) = 30+14 = 44)$$

 $(V_2 + K(9-3) = 14 + 30 = 44)$
 $(V_3 + K(9-4) = 16 + 23 = 39)$
 $(V_4 + K(9-2) = 9 + 32 = 41)$

K[w]	=	max	$\{v_i$	+	K(w)	_	$w_i)$
		$\mathtt{i:} \mathtt{W}_\mathtt{i} {\leq} \mathtt{W}$					

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1	2	4	1	

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30	32	39	44	

$$W = 10$$
 $\{i : Wi \le 10\} = \{2_1, 3_1, 4_1\}$

$$(V_1 + K(10-6)) = 30 + 18 = 48$$

 $(V_1 + K(10-6)) = 30 + 18 = 48$
 $(V_2 + K(10-3)) = 14 + 32 = 46$
 $(V_3 + K(10-4)) = 16 + 30 = 46$
 $(V_4 + K(10-2)) = 9 + 39 = 48$

K[w]	=	max	$\{v_i$	+	K(w)	_	$w_i)$	
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$						

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1	2	Ч	١	

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

	0	 1	2	3	4	5	6	7	8	9	10
K	0	Ó	9	14	18	23	30	32	39	44	48

$$W = 10$$
 $\{i : Wi \le 10\} = \{213, 4, 1\}$

$$K(10) = mex$$

$$(V_1 + K(10-6)) = 30+18=48$$

 $(V_0) = m \times (V_2 + K(10-3)) = 14+32=46$
 $(V_3 + K(10-4)) = 16+30=46$
 $(V_4 + K(10-2)) = 9+39+48$

K[w]	=	max	$\{v_i$	+	K(w)	$-w_i$) }
		$\mathtt{i}{:}\mathtt{w}_\mathtt{i}{\leq}\mathtt{w}$				_	

0	1	2	3	4	5	6	7	8	9	10
0	O	Ч	2	4	2	1	2	Ч	١	

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

calcoliamo la selezione di oggetti che che ha permesso di ottenere il valore massimo

0	1	2	3	4	5	6	7	8	9	10
0	0	4	2	4	2	1	2	Ч	1	

ESEMPIO

CON RIPETIZIONE

W = 10

item	PESO	VALORE		
1	6	30		
2	3	14		
3	4	16		
4	2	9		

ESEMPIO

$$W = 10$$

item	PESO	VALORE		
1	6	30		
2	3	14		
3	4	16		
4	2	9		

CON RIPETIZIONE

ESEMPIO

$$W = 10$$

item	PESO	VALORE		
1	6	30		
2	3	14		
3	4	16		
4	2	9		

CON RIPETIZIONE

ESEMPIO

CON RIPETIZIONE

$$W = 10$$

item	PESO	VALORE		
1	6	30		
2	3	14		
3	4	16		
4	2	9		

	0)	1	2	3	4	5	6	7	8	9	10
K	C)	Ó	9	14	18	23	30	32	39	44	48

item 0 1 2 3 4 5 6 7 8 9 10 0 0 4 2 4 2 1 2 4 1