Assignment Project Exam Help Modeling and Forecasting Seasonality

https://tutorcs.com

Ka-fu WONG

WeChartiversity of them to proces

Contents

	1.	A recap of the unobserved components model	4
	2.	Seasonality	5
4	3. S	Signment Broject Exam Help	12 13
	3.2.	Should use seasonally un-adjusted data?	15
	4.	Modeling seasonal components as deterministic	17
	5. 5.1.	Modeling seasonality/with dummies Modeling quarterly seasonality with dummies when we have	18
		quarterly data	19
	5.2.	Modeling monthly seasonality with dummies when we have monthly	
	5.3.	Modeling quartery seasonality with durinnes when we have	22
		monthly data	25
	5.4.	Modeling irregular seasonality with dummies when we have monthly data	28
	6.	Estimating seasonal effects	31

7. Estimation of Trend and Seasonal components together	37
8. Forecasting y_{T+h}	41
9. Application: Forecast of Hong Kong Port Cargo Throughput	44
ASSI Gentification of the Policy of the Poli	1p ⁴⁶
9.3. Model with Seasonality and Quadratic Trend	5 2
9.4. Comparison	55
10. Application: Foregast of Hong Kong Electricity Consumption	57
10. Application: Foregast of Hong Kong Electricity Consumption 10.1. Foregast photos considered CS.COM	59
10.2. Comparison	66
10.3. Log-Transformation	68
10.4. Firecast models considered a track of the considered at the	70
10.4. Funcion nodes considered Stutores 10.5. Companion nodes considered Stutores	77
11. Additional discussions	80

- 1. A RECAP OF THE UNOBSERVED COMPONENTS MODEL
- According to the unobserved components model of a time series, the series y_t , is made up of the sum of three independent components

Assignment Project Exam Help

- an irregular or cyclical component.

https://tutorcs.com

 $y_t = \text{time trend} + \text{seasonal} + \text{cyclical} = T_t + S_t + C_t$

2. Seasonality

Seasonality refers to the annual cyclical variation in a time series, which
may be due to weather patterns, holiday patterns, school calendar pat-

Assergment Project Exam Help
Eyclical peaks in U.S. retail sales and employment during the last
quarter of each calendar year due to the holiday shopping season

Cyclical troughs in U.S. housing starts during the winter months of

Cyclical troughs in U.S. housing starts during the winter months of

WeChat: cstutorcs

Seasonality

US Retailers Sales (1992:01 - 2013-11), Millions of Dollars

Seasonality

US Retailers Sales (2008:11 - 2013-11), Millions of Dollars

US Non-farm Employees (1939:01 - 2013-12), Thousands of Persons

Seasonality

US Non-farm Employees (2009:01 - 2013-12), Thousands of Persons

Seasonality

US Housing Starts (1959:01 - 2013-12), Thousands of Units

Seasonality // 10 .

US Housing Starts (2009:01 - 2013-12), Thousands of Units

Seasonality

3. Seasonal Adjustment

Most of the time series that we have ever used for economic analysis have been seasonally adjusted. That is,

Assignment Project Exam Help

where \hat{S}_t is an estimate of the seasonal component of y_t .

https://tutorcs.com

3.1. Why use seasonally adjusted data.

 Typically, our interest in a macroeconomic time series is in the information it provides about the overall state of the economy and the direction

Assignment earling Project Exam Help

 we observe a huge increase in retail sales during the fourth quarter of 2005. Should we interpret this as a sign that the economy is

* Ino, unless retail sales are growing by more than normal for that part of the year.

- we observe a huge increase in the unemployment rate during May/June 2004 (after Artools et out and those Sarge temporary increase in the economy's labor force). Should I interpret this as a sign that the economy and its labor market are suddenly deteriorating?
 - * No, unless the unemployment rate is increasing by more than normal for that part of the year.

- Seasonally adjusted data are meant to smooth out the data, i.e., to remove the regular ups and downs that are associated with the seasonal cycle.
- So, if seasonally adjusted pretail sales increase during the fourth quarter or Softing seasonal cadjusted unemployment rate increases during May Tune we can interpret these as movements beyond the movements that are part of the normal seasonal cycle.

https://tutorcs.com

3.2. Should use seasonally un-adjusted data?

• There are many business forecasting settings where the seasonal component of the series is fundamentally important and seasonally adjusted

A Start Golden of the seasonal component.

- A bank may be interested in forecasting housing starts in its area housin
- A business that provides building supplies to home-builders may need
 to forecast housing starts to anticipate the demand for its products
 The provided in the content inventory derisions CS
- In these cases, you would want to use seasonally unadjusted data, model the seasonality and forecast it, along with forecasts of the trend and cyclical components.

- Would anyone be interested in predicting the number of birth by Hong Kong residents?
 - Immigration Department

Assignment Project Exam Help

- Restaurant owners
- Education Bureau

https://tutorcs.com

- 4. Modeling seasonal components as deterministic
- Two approaches to modeling seasonality
 - deterministic seasonality and

Assignmental Project Exam Help The two approaches differ according to whether S_t is perfectly predictable

- The two approaches differ according to whether S_t is perfectly predictable or is subject to random disturbances.
- We will assume that the seasonal component is deterministic. https://tutorcs.com

5. Modeling seasonality with dummies

• A straightforward and commonly used approach to modeling seasonality (which is, however, not the method government agencies typically use to Assessmely adjust that a) Properity assessmely adjust that a properity as a properity and a properity as a p

https://tutorcs.com

5.1. Modeling quarterly seasonality with dummies when we have quarterly data. Suppose you are working with quarterly data and want to allow each quarter to have a distinct seasonal effect on the series.

The following two types of models will yield distinct quarterly seasonal effects. ASSIGNMENT PROJECT EXAM Help

$$S_t = \gamma_1 D_{1t} + \gamma_2 D_{2t} + \gamma_3 D_{3t} + \gamma_4 D_{4t}$$

- We Ciffatte CS tutor CS $S_t = \gamma_2$ if t = quarter 2.
- $S_t = \gamma_3$ if t = quarter 3.
- $S_t = \gamma_A$ if t = quarter 4.

(2) Model 2:

$$S_t = \delta_1 + \delta_2 D_{2t} + \delta_3 D_{3t} + \delta_4 D_{4t}$$

where

Assignment Project Exam Help

for i = 2, 3, 4. So,

- $S_t = \delta_1 + \delta_4$ if t = quarter 4.

5.2. Modeling monthly seasonality with dummies when we have monthly data. Suppose you are working with monthly data and want to allow each month to have a distinct seasonal effect on the series. The following two types of models

Assignment Project Exam Help

$$S_t = \gamma_1 D_{1t} + \gamma_2 D_{2t} + \gamma_3 D_{3t} + \dots + \gamma_{12} D_{12t}$$

- We Ciffatthe Stutores
 $S_t = \gamma_{12}$ if t = month 2.
- . . . ,
- $S_t = \gamma_{12}$ if t = month 12.

(2) Model 2:

$$S_t = \delta_1 + \delta_2 D_{2t} + \delta_3 D_{3t} + \dots + \delta_{12} D_{12t}$$

Assignment Projecton Exam Help

for i = 2, 3, ..., 12. So,

- $S_t = \delta_1 + \delta_3$ if t = month 3 (e.g., March),
- •W=O+DAT= northern.

5.3. Modeling quarterly seasonality with dummies when we have monthly data. Suppose you are working with monthly data and want to allow each quarter to have a distinct seasonal effect on the series.

The following two types of models will yield distinct quarterly seasonal effects. ASSISING THE PROJECT EXAM HELP

$$S_t = \gamma_1 D_{1t} + \gamma_2 D_{2t} + \gamma_3 D_{3t} + \gamma_4 D_{4t}$$

for i = 1, 2, 3, 4. So,

- We Cipatris estatores
- $S_t = \gamma_2$ if month t is in quarter 2,
- $S_t = \gamma_3$ if month t is in quarter 3,
- $S_t = \gamma_4$ if month t is in quarter 4.

(2) Model 2:

$$S_t = \delta_1 + \delta_2 D_{2t} + \delta_3 D_{3t} + \delta_4 D_{4t}$$

where

Assignment Project Exam Help

for i = 2, 3, 4. So,

- $S_t = \delta_1$ if month t is in quarter 1, $t \in S_t$ if the state S_t is the state S_t in S_t is the state S_t in S_t is the state S_t in S_t in S_t is the state S_t in S_t
- $S_t = \delta_1 + \delta_3$ if month t is in quarter 3, and
- $S_t = \delta_1 + \delta_4$ if month t is in quarter 4.

5.4. Modeling irregular seasonality with dummies when we have monthly data. Suppose you are working with monthly data and want to allow a distinct seasonal effect in December (month 12) and another for the remaining months (January to November) on the series.

The Sloving Mothes of Priodes Willy of Casting December earlier e

 $S_t = \gamma_1 D_{1t} + \gamma_2 D_{2t}$ where the state of the s

(2) Model 2:

$$S_t = \delta_1 + \delta_2 D_{2t}$$

where

Assignment Project Exam Help

https://tutorcs.com

Similarly, we can model any distinct seasonal effects on data of any frequency. Of course, the number of distinct seasonal effects has to be less or equal to the frequency of data.

Assignment Project Exam Help

https://tutorcs.com

6. Estimating seasonal effects

For the sake of discussion, consider the following simple model

Assignment Project Exam Help

https://tutorcs.com

 β can be estimated in two ways:

(1) Simple average of y_t .

Assignment Project Exam Help

(2) Regression:

https://tutorcs.com

Both methods yield identical results:

Assignment Project Exam Help
$$b = \frac{1}{T} \sum_{t=1}^{T} y_{t}$$

$$b \stackrel{A}{\sim} N(\beta, \sigma^{2}/T)$$

 $https://tutorcs_{\sigma/\sqrt{T}} cs. com$

Now, consider the following simple model with seasonal dummies

$$y_t = \gamma_1 D_{1t} + \gamma_2 D_{2t} + \epsilon_t, \qquad \epsilon_t \sim (0, \sigma^2)$$

Assignment Project Exam Help

https://tutorcs.com

 γ 's can be estimated in two ways:

- (1) Simple average of y_t :
 - (a) Use the observations that yields $D_{1t} = 1$, and compute simple av-

Assignment Project Exam Help $\hat{\gamma}_1 = \frac{P_1 o_{ject}}{\sum_{t=1}^T D_{1t}} \left(\sum_{t=1}^T D_{1t} y_t \right)$

(b) Use the observations that yields $D_{2t} \equiv 1$ and compute simple avaluate $D_{2t} = 1$

$$\hat{\gamma}_2 = \frac{1}{\sum_{t=1}^T D_{2t}} \left(\sum_{t=1}^T D_{2t} y_t \right)$$
(2) Regression Chat: CStutores
$$y_t = \gamma_1 D_{1t} + \gamma_2 D_{1t} + \epsilon_t$$

Both methods yield identical results. Under usual statistical conditions, the estimator

Assignment
$$\Pr_{\gamma_{1} \stackrel{A}{\sim} N} \left(\gamma_{1}, \sigma^{2} / \sum_{t=1}^{T} D_{1t} \right)$$

where σ² =https://tutorcs.com

7. ESTIMATION OF TREND AND SEASONAL COMPONENTS TOGETHER. Suppose

$\underset{\bullet}{\text{ The trend is linear}} \text{ Project Exam Help}$

$$T_t = \beta_0 + \beta_1 t$$

• The second effects are modeled as quarterly $S_t = \delta_1 + \delta_2 D_{2t} + \cdots + \delta_4 D_{4t}$

Estimation can take two steps.

(1) To estimate the triend model ignoring coasonality, run a regression of $y_t = \beta_0 + \beta_1 t + u_t$.

Let \hat{u}_t be the estimated residuals.

(2) To estimate the seasonal model, run a regression of

$$\hat{u}_t = \delta_1 + \delta_2 D_{2t} + \dots + \delta_4 D_{4t} + v_t$$

Estimation of Trend and Seasonal components together

The alternative to estimate the trend and seasonality components in one step.

$$y_t = \beta_0 + \beta_1 t + \delta_1 + \delta_2 D_{2t} + \dots + \delta_4 D_{4t} + \epsilon_t$$

Note that the model has a redundant parameter, since it has two constants, β_0 and S. The parameters compositely constant the parameter in the stimution, all statistical programs will return error (say, singular matrix encountered) because the variables included are perfectly co-linear, or, some set of variables are linearly dependent. Thus, we have to drop one of them.

https://tutorcs.com

Beware of perfect collinearity when including both trend and seasonal

WeChat: cstutorcs

• Model 1:

$$y_t = \beta_0 + \beta_1 t + \delta_2 D_{2t} + \dots + \delta_4 D_{4t} + \epsilon_t$$

• Model 2:

Assignment of Performent Help According to this model of trend and seasonality, the nature of the seasonality is that the intercept of the trend line differs for each season.

- In Model 2, eliminating β_0 from the model has no consequence since the intercept of β_0 is accounted by the secondary jointly.
- In Model 1, eliminating δ_1 from the model has no consequence since the intercept of δ_1 is accounted for by β_0 .

Remark: Although we focus on a mear trend moder and quarterly seasonality, the discussion can be easily extended to models with more complicated trend and seasonality.

Usually we preferred the following model:

$$y_t = \beta_1 t + \gamma_1 D_{1t} + \gamma_2 D_{2t} + \dots + \gamma_4 D_{4t} + \epsilon_t$$

In the model, we can imagine the seasonal component

Assignment, Project, Exam Help

is nothing more than allowing the constant term to vary with time. Thus, it is reasonable to use $\gamma_1 D_{1t} + \gamma_2 D_{2t} + ... + \gamma_4 D_{4t}$ to substitute out the constant term (β_0) . Using this interpretation, we will avoid the perfect collinear problem easily.

It is better to use $\gamma_1 D_{1t} + \gamma_2 D_{2t} + ... + \gamma_4 D_{4t}$ instead of $\delta_1 + \delta_2 D_{2t} + ... + \delta_4 D_{4t}$ because the estimated value of the limit date $\gamma_1 D_{1t} + \delta_2 D_{2t} + ... + \delta_4 D_{4t}$ because the estimated value of the pattern of seasonality, without the need to do additional calculations.

8. Forecasting y_{T+h}

The model

$$\begin{aligned} & \underset{y_{T+h}}{\text{plissignment}} & \underset{\beta_{1}(T+h)}{\text{Project}} & \underset{\gamma_{2D+h}}{\text{Exam}} & \underset{\gamma_{4}D_{4T+h}}{\text{Help}} \\ & \underset{y_{T+h}}{\text{Project}} & \underset{\beta_{1}(T+h)}{\text{Exam}} & \underset{\gamma_{2}D_{2T+h}}{\text{Help}} \end{aligned}$$

So, our forecast of y_{T+h} formed at time T will be:

$$\hat{y}_{T+h,T}$$
 https://tutores.com $\hat{\gamma}_4 D_{4T+h} + \hat{\epsilon}_{T+h,T}$

where $\hat{\epsilon}_{T+h,T}$ is the forecast of ϵ_{T+h} based on time T information.

If the ϵ 's are i.i.d. with mean zero, then $\hat{\epsilon}_{T+h,T}{=}0$ and

$$\hat{y}_T$$
NeChat: $\hat{\gamma}_1$ **estitores** ... + $\hat{\gamma}_4 D_{4T+h}$

If the ϵ 's are i.i.d. $N(0, \sigma_{\epsilon}^2)$ then, ignoring parameter uncertainty, the forecast error $e_{T+h,T} = \epsilon_{T+h}$ and

Assignment Project Exam Help

$$\hat{\sigma}_{\epsilon}^2 = \frac{1}{T} \sum_{t=1}^{T} \epsilon_t^2$$

 $\hat{\sigma}_{\epsilon}^{2} = \frac{1}{T} \sum_{t=1}^{T} \epsilon_{t}^{2}$ https://tutorcs.com

WeChat: cstutorcs

When the parameter has to be estimated, we have the forecast error $e_{T+h,T} \neq$ ϵ_{T+h} and

Assignment Project Exam Help

 $\frac{\hat{\sigma}_e^2}{\text{https://tutorc}} = \frac{1}{T} \sum_{t=1}^{T} \hat{e}_t^2$ and 5 is the degree of freedom lost due to the estimation of 5 parameters (2 trend

parameters + 3 seasonality parameters, or 1 trend parameters + 4 seasonality parameters, depending on the specification).

We Chat: CStutorCS

Hence, the 95% forecast interval for y_{T+h} is

$$\hat{y}_{T+h,T} \pm 1.96\hat{\sigma}_e$$

9. Application: Forecast of Hong Kong Port Cargo Throughput

• Quarterly Port Cargo Throughput data (in thousand tonnes) from 1997:01

A S do 2013:0373 total of Dobservations, twelve obtained from the Census and Statistics Department Website.

• Port cargo comprises seaborne cargo and river cargo.

- Seaborne cargo refers to cargo transported by vessels plying beyond

River cargo refers to cargo transported by vessels plying exclusively within the river trade limits (i.e., the Pearl River, Mirs Bay and Macao, and other inland waterways in Guangdong and Guangxi).

• We we cobserd that (2023 Ld 10) for checking the accuracy of our model out of sample. That is, estimation and model selection use only 60 observations.

¹http://www.censtatd.gov.hk/hkstat/sub/sp130.jsp?tableID=085&ID=0&productType=8

HK Port Cargo Throughput (1997:01 - 2013:03), in thousands tonnes

9.1. Model with Seasonality Only.

Residuals (Model with Seasonality Only)

Application: Forecast of Hong Kong Port Cargo Throughput

Forecasts (Model with Seasonality Only)

Application: Forecast of Hong Kong Port Cargo Throughput

9.2. Model with Seasonality and Linear Trend.

Residual standard error: 2716 on 55 degrees of freedom Multiple R-squared: 0.9978, Adjusted R-squared: 0.9976

Adjusted R-squared: 0.9976

AC=1125.889: SIC=1138.455

Residuals (Model with Seasonality and Linear Trend)

Application: Forecast of Hong Kong Port Cargo Throughput

Forecasts (Model with Seasonality and Linear Trend)

Application: Forecast of Hong Kong Port Cargo Throughput

9.3. Model with Seasonality and Quadratic Trend.

Residual standard error: 2719 on 54 degrees of freedom Mytype R-sq rared 10.9978 Adjusted P-squared: 0.9975 F-statistic: 4000 on 6 and 54 DF, p-value: < 2.2e-16 AIC=1126.929; SIC=1141.589

Residuals (Model with Seasonality and Quadratic Trend)

Application: Forecast of Hong Kong Port Cargo Throughput

Forecasts (Model with Seasonality and Quadratic Trend)

Application: Forecast of Hong Kong Port Cargo Throughput

9.4. Comparison.

	In-sample criteria		•
Assignment Pro	ALC	FIC 21	m MPE1n
Seasonality Without Tiend	1280.204	1290.676	11180542814
Seasonality with Linear Trend	1125.889	1138.455	23403563
Seasonality with Quadratic Trend	1126.929	1141.589	34040818
1-444-			

- The best model chosen based on in-sample criteria (AIC and SIC) also yield the best out-of-sample performance (measured in terms of MSPE).
- The forecast with interval including the realized values need not be the best CStutorcs

Seasonality Pattern (Model with Seasonality and Linear Trend)

Application: Forecast of Hong Kong Port Cargo Throughput

10. Application: Forecast of Hong Kong Electricity Consumption

- Monthly Domestic Electricity Consumption (in Terajoule) from 1970:01

 A S do 2014-11-74 total of 589 phenographics were obtained from the Census and Statistics Department Website.
 - We save 35 observations (2012:01 to 2014:11) for checking the accuracy of our model out of sample. That is, estimation and model selection use only 1440 System LUCICS.COM

WeChat: cstutorcs

 $^{^2} http://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?tableID=127\&ID=0\&productType=8$

HK Domestic Electricity Consumption (1970:01 - 2011:12), in Terajoule

10.1. Forecast models considered.

• Model with seasonality only

Assignment by Project Exam Help
$$y_t = \gamma_1 M 01_t + \gamma_2 M 02_t + \dots + \gamma_{12} M 12_t + \epsilon_t$$

$$y_t = \gamma_1 M 01_t + \gamma_2 M 02_t + \dots + \gamma_{12} M 12_t + \beta_1 T I M E_t + \epsilon_t$$

• Model with seasonality and quadratic trend

$$y_t = \gamma_1 \frac{\text{Mtpsio2}}{\text{tutofics+com}} + \beta_2 TIM E_t^2 + \epsilon_t$$

WeChat: cstutorcs

Residuals (Model with Seasonality Only)

Forecasts (Model with Seasonality Only)

Residuals (Model with Seasonality and Linear Trend)

Forecasts (Model with Seasonality and Linear Trend)

Residuals (Model with Seasonality and Quadratic Trend)

Forecasts (Model with Seasonality and Quadratic Trend)

10.2. Comparison.

- SIC indicates Seasonality with Linear Trend.
- Seasonality with Linear Trend has the best out-of-sample performance (measure) terms of MSIESTUTOTCS

Seasonality Pattern (Model with Seasonality and Linear Trend)

10.3. Log-Transformation. From the data plot, we observe

- (1) Volatility increases with time.
- (2) Volatility increases with the Electricity Consumption.

Most transformation will reduce the changing volatility with levels. He has regression based on data with similar volatility across observations tend to yield more precise estimates.

- y = https://deutorosticom
- ullet Once forecast of y is obtained, we take exponential transformation to obtain the forecast of domestic electricity consumption, i.e.,

WeChat: Estatores

Log-transformed HK Domestic Electricity Consumption (1970:01 - 2011:12)

10.4. Forecast models considered.

• Model with seasonality only

Assignment by Project Exam Help
$$y_t = \gamma_1 M 01_t + \gamma_2 M 02_t + \dots + \gamma_{12} M 12_t + \epsilon_t$$

$$y_t = \gamma_1 M 01_t + \gamma_2 M 02_t + \dots + \gamma_{12} M 12_t + \beta_1 T I M E_t + \epsilon_t$$

• Model with seasonality and quadratic trend

$$y_t = \gamma_1$$
 http://www.tuto.com/ t + $\beta_2 TIME_t^2 + \epsilon_t$

WeChat: cstutorcs

Forecast of Log Electricity Consumption (Model with Seasonality Only)

Forecast of Electricity Consumption (Model with Seasonality Only)

Forecast of Log Electricity Consumption (Model with Seasonality and Linear Trend)

Application: Forecast of Hong Kong Electricity Consumption

// 73

. . . .

Forecast of Electricity Consumption (Model with Seasonality and Linear Trend)

Forecast of Log Electricity Consumption (Model with Seasonality and Quadratic Trend)

Forecast of Electricity Consumption (Model with Seasonality and Quadratic Trend)

10.5. Comparison.

Assignment Pr	In-sample cr iter	a MSPF (Out-of-sample)
Assignment Pr	OPECL III	Xam dorstingtion
Seasonality without Trend	1178.57 1233.4	64 517588 1
Seasonality with Linear Trend		
Seasonality with Quadraticy Trend	-715.416 -652.0	78 131271
	DICS.COI	

- Both AIC and SIC indicates Seasonality with Quadratic Trend.
- Seasonality with Quadratic Trend has the best out-of-sample performance manufacture him terms of MEDE CS

• The log-transformed much as a crush Cetter of sample performance (measured in terms of MSPE)

WeChat: cstutorcs

Transformation that stabilizes volatility across observations tends to improve forecast performance.

• Gauss-Markov Theorem says OLS estimator is efficient when the observations are homographic not then observations are homographic

A Stations are homoscedas to not when observations are heteroscedastic.

- Forecast uncertainty is a sum of the parameter uncertainty and fundamental uncertainty.
- If wencer finds way to refluce parameter uncertainty, we will reduce the forecast uncertainty as well.

WeChat: cstutorcs

11. Additional discussions

Recall the best model on Electricity Consumption — seasonality with linear trend. The residuals still display certain kind of periodicity and serial correlation.

Assignment Project Exam Help

Additional discussions

The presence of periodicity and serial correlation in the residuals suggest that there is much room to improve the model.

- It is possible the annual periodic pattern is partly driven by seasonal pattern of lunar calendar, in additional to the wastern calendar. Thus, adding additional set by seasonal dumnities to capture the lunar calendar pay improve the fit, and hence the forecast.
 - It is possible the serial correlation can be captured by the ARMA model of the exclisal components, to be discussed later.

WeChat: cstutorcs