Statistical Learning Theory (S&DS 669) Problem Set 1

Instructor: Omar Montasser TA: Herlock Rahimi

Due Date: Friday, September 26, 2025 (11:59 PM ET).

Instructions

- You may collaborate with your classmates, but each student must write solutions on their own. You also need to write down who you worked with.
- If you use a language model, then you need to provide a transcript of the interaction as a supplement. Refer to the policy on the Canvas page for more guidelines.
- If you use any sources other than the class material and references available on Canvas, then mention that. It's fine to look up a complicated sum or inequality, but don't look up an entire solution.
- Submit your solutions in LATEX by uploading a PDF to Canvas.

Problems

Problem 1 (VC Dimension of Halfspaces). Let $\mathcal{X} = \mathbb{R}^d$ and let \mathcal{H} denote the class of homogenous halfspaces defined as

$$\mathcal{H} = \left\{ x \mapsto \operatorname{sign}(\langle w, x \rangle) \mid w \in \mathbb{R}^d \right\}.$$

- (a) Show that $vc(\mathcal{H}) \geq d$. That is, show that there exists d points $x_1, \ldots, x_d \in \mathbb{R}^d$ that can be shattered by \mathcal{H} .
- (b) Show that $vc(\mathcal{H}) \leq d$. That is, show that *any* set of d+1 points *can not* be shattered by \mathcal{H} . **Hint:** Recall that any set of d+1 points $x_1, x_2, \ldots, x_{d+1} \in \mathbb{R}^d$ must be linearly dependent, i.e., there exists scalar coefficients a_1, \ldots, a_{d+1} (not all zero) such that $a_1x_1 + \cdots + a_{d+1}x_{d+1} = 0$.

Problem 2 (VC Dimension of Composition). Let \mathcal{X} be an arbitrary instance space and let $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ be an arbitrary binary hypothesis class where $vc(\mathcal{H}) = d$. Let $k \in \mathbb{N}$

and fix a Boolean function $f: \{\pm 1\}^k \to \{\pm 1\}$. Consider the binary class resulting from composing k functions from \mathcal{H} with f,

$$\mathcal{H}_f^k = \left\{ x \mapsto f(h_1(x), \dots, h_k(x)) \mid h_1, \dots, h_k \in \mathcal{H} \right\}.$$

Show that $vc(\mathcal{H}_f^k) \leq O(dk \log(k))$.

Hint: Use the Sauer-Shelah-Perles Lemma. Suppose that we have a set S of m points. The number of ways of labeling S using functions in \mathcal{H} is at most $\left(\frac{em}{d}\right)^d$. Use this to bound the number of ways of labeling S using functions in \mathcal{H}_f^k . Now choose m such that this is less than 2^m , which implies that $\operatorname{vc}(\mathcal{H}_f^k)$ must be less than the chosen m.

Problem 3 (VC Dimension and Number of Parameters). Let $\mathcal{X}=\mathbb{R}$ and consider the hypothesis class

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(\sin(\theta x)) \mid \theta \in \mathbb{R} \}.$$

Show that $vc(\mathcal{H})$ is infinite. This example highlights that the VC dimension is not always proportional to the number of parameters defining a hypothesis.

Hint: You may find the identity $\sin(\pi(n+a)) = (-1)^n \sin(\pi a)$ helpful.

Problem 4 (Optimistic Bounds, Bernstein Inequality). Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be a finite hypothesis class and D be an arbitrary distribution over $\mathcal{X} \times \mathcal{Y}$. Let $\delta \in (0,1)$, and $m \in \mathbb{N}$. Recall that in lecture, we proved uniform convergence bounds of the following forms:

• (Realizable Case). If $\exists h^* \in \mathcal{H}$ such that $L_D(h) = 0$, then with probability at least $1 - \delta$ over $S \sim D^m$:

$$\forall h \in \mathcal{H} : L_S(h) = 0 \Longrightarrow L_D(h) \le \frac{\log |\mathcal{H}| + \log(1/\delta)}{m}.$$
 (1)

• (Agnostic Case). With probability at least $1 - \delta$ over $S \sim D^m$:

$$\forall h \in \mathcal{H} : |L_S(h) - L_D(h)| \le \sqrt{\frac{\log |\mathcal{H}| + \log(2/\delta)}{2m}}.$$
 (2)

In this problem, we will prove a more general uniform convergence bound that interpolates the realizable and agnostic cases, using Bernstein's inequality. Specifically, our goal is to show that with probability at least $1 - \delta$ over $S \sim D^m$,

$$\forall h \in \mathcal{H} : |L_S(h) - L_D(h)| \le c_1 \sqrt{\frac{L_D(h) \log(|\mathcal{H}|/\delta)}{m}} + c_2 \frac{\log(|\mathcal{H}|/\delta)}{m}, \tag{3}$$

for some absolute constants c_1 , c_2 . Observe that the bound in Equation 3 can be much better than the agnostic bound in Equation 2, when $L_D(h)$ is small. For example, when $L_D(h) = 0$, Equation 3 recovers the bound in Equation 1 (up to constants).

(a) To prove the bound in Equation 3, we will use Bernstein's inequality, which is stated next.

Theorem 1 (Bernstein's Inequality). Let X_1, \ldots, X_m be m iid real-valued random variables with mean zero ($\mathbb{E}[X_i] = 0$), and bounded $|X_i| \leq M$. Then, for all t > 0

$$\mathbb{P}\left[\sum_{i=1}^{m} X_i \ge t\right] \le \exp\left(-\frac{\frac{t^2}{2}}{\sum_{i=1}^{m} \mathbb{E}[X_i^2] + M\frac{t}{3}}\right).$$

Use the inequality above to show that with probability at least $1 - \delta$,

$$\left| \frac{1}{m} \sum_{i=1}^{m} X_i \right| \le \sqrt{\frac{2\mathbb{E}[X_1^2] \log(2/\delta)}{m}} + \frac{2M \log(2/\delta)}{3m}. \tag{4}$$

- (b) Use Equation 4 and the union bound over \mathcal{H} to show Equation 3. **Hint:** this requires carefully choosing/defining an appropriate random variable X_i .
- (c) Let $\hat{h} = \text{ERM}_{\mathcal{H}}(S) = \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$ be the output of $\text{ERM}_{\mathcal{H}}$ when receiving a sample S as input. Using Equation 3, show that with probability at least 1δ over $S \sim D^m$,

$$L_D(\hat{h}) \le L_D(h^*) + c_3 \sqrt{\frac{L_D(h^*) \log(|\mathcal{H}|/\delta)}{m}} + c_4 \frac{\log(|\mathcal{H}|/\delta)}{m},\tag{5}$$

where $h^* = \operatorname{argmin}_{h \in \mathcal{H}} L_D(h)$, and c_3, c_4 are some absolute constants.