

دانشکدهٔ ریاضی، آمار و علوم کامپیوتر

توپولوژی عمومی

بهار ۱۴۰۱

استاد درس: استاد زارع

تمرین سری سوم

مهلت تحویل: ۱۳ اردیبهشت ساعت ۲۴

است. \mathbf{R}^2 نشان دهید که مجموعه ی زیر پایه ای برای توپولوژی معمولی روی \mathbf{R}^2 است.

 $\mathcal{B} = \{ (a, b) \times (c, d) \mid a < b, c < d; \ a, b, c, d \in \mathbb{Q} \}$

که اگر T_1 و T_2 دو توپولوژی روی فضای X باشند، ثابت کنید: $f:(X,T_1)\to (X,T_2)$ بیوسته باشد. T_1 ظریفتر از T_2 است اگر و تنها اگر تابع همانی T_1

برای $A \times B$ همان توپولوژی زیرفضایی باشند. ثابت کنید توپولوژی حاصلضربی برای $A \times B$ همان توپولوژی زیرفضایی است که توسط $X \times Y$ روی $A \times B$ القا میشود.

ید: $y=(y_1,\ldots,y_n)$ و $x=(x_1,\ldots,x_n)$ تعریف کنید:

$$d(x,y) := \sum_{i=1}^{n} |x_i - y_i|$$

- است. \mathbb{R}^n است. کنید d کنید d است.
- است. \mathbb{R}^n است. کنید توپولوژی القایی توسط متر d همان توپولوژی حاصلضربی روی
 - نابت کنید مجموعه ی زیر روی فضای X یک توپولوژی است: Δ

$$T = \{U|X - U \quad is finite\}$$

(به این توپولوژی، توپولوژی متمم متناهی گفته میشود.)

- (II) ثابت کنید فضای نامتناهی X با توپولوژی متمم متناهی، هاسدورف نیست.
 - (III) ثابت کنید فضای متناهی X با توپولوژی متمم متناهی، هاسدورف است.