UNIVERSITETET I OSLO

KJM2601 – forelesning 18 og 19

Simen Kvaal (simen.kvaal@kjemi.uio.no) Førsteamanuensis Hylleraassenteret

30/10/2024

Kjemisk binding i polyatomiske molekyl

Delokaliserte vs. lokaliserte MOer

Fakta: MOer fra Hartree-Fock er delokaliserte

- •Hartree-Fock:
 - Bølgefunksjon er <u>Slaterdeterminant</u> elektronene «lever» i orbitaler
 - Orbitaler og bestemt med <u>variasjonsmetoden</u> (minimering av energi)
- •Resulterer i at MOene er delokaliserte
- Gjaldt også vår kvalitative modell for binding
- Dette er ikke et negativt resultat et resultat av kvantemekanikk
- Men det strekker også intuisjonen langt ...

Eksempel: H₂

Delokalisering, F₂

Hver orbital er smurt utover hele molekylet

Polyatomisk eksempel: Metan

- •Her er et MO-diagram for metan
 - (1s for C er ikke med)
- Tydelig delokalisering
- Hvert elektron kan ikke assososieres med en binding mellom par av atomer!
- •(I toatomige molekyl kan de det.)

Dette elektronet lever på <u>alle</u> atomene

I kjemi er vi vant til å tenke lokalisert

- «Lokalisert Elektron-modell» fra KJM1101, Zumdahl og DeCoste
- Lewis-strukturer (se KJM1101)

$$H-H$$
 $H-\ddot{C}I:$ $H C < H$ $H-\ddot{N}-H$ $:\ddot{O}-H$

- •Elektronene er lokalisert
 - Kjerne-elektroner: Lokalisert på atomene
 - Valens-elektroner: Enten i bindinger eller «enslige par»
 - Diagrammet er ikke til å ta feil av: elektronene er lokaliserte

Valence Shell Electron Pair Repulsion (VSEPR)

- En slags utbrodering av Lewis-strukturer
- Valenselektronene lever enten i «enslige par» eller i bindinger
- Disse minner om orbitaler (selv om det ikke er uttalt i modellen)!

Valence Shell Electron Pair Repulsion (VSEPR)

Reglene i VSEPR (se KJM1101):

- 1. Ligander og enslige elektronpar oppfører seg som frastøtende «ballonger»
- 2. Hvert enslige par opptar mer plass enn et ligand
- 3. Bindinger til ligander med høyere elektronegativitet tar mindre plass og omvendt
- 4. Ligander med flere bindinger til sentralatom tar mer plass

Ballong-bildet viser lokaliteten til modellen. Hver ballong er et elektronpar

Ammoniakk, NH₃

Vann H₂O

Fosforpentaklorid PCI₅

Lewis structure for PCl₅

VSEPR for 1,3-butadien

- Konjugerte «pi-elektroner»
- Hvert C-atom har 1 dobbeltbinding, 2 enkeltbinding
- VSEPR: bindingene er plane
- Molekylet er tilnærmet plant, vinklene tilnærmet 120 grader

$$\begin{array}{cccc} H & H \\ -C & C \\ H & H \end{array}$$

Fordeler og ulemper med VSEPR

Det som er bra:

- Kvalitativ beskrivelse av geometri for mange molekyler
- Lett å bruke

Det som er mindre bra:

- Ikke fundert på naturens lover
- •I noen tilfeller virker ikke modellen
 - XeF₄ korrekt geometri, men Xe er edelgass hvordan kan Xe danne forbindelsen?
 - Overgangsmetallforbindelser komplisert skallstruktur ikke kompatibel med VSEPR

Behovet for hybridisering: Valensbåndteori

- Vi ønsker lokaliserte orbitaler for å beskrive bindinger
 - Kvantemekanisk støtte til VSEPR
 - Bindinger beskrives med overlapp av orbitaler
- •Hvordan kan vi finne orbitaler som beskriver fire sigma-bindinger til karbon?
- •2s og 2p-orbitalene peker i feil retninger ...

sp-hybridisering

Vi kan ta 2s-orbitalen og kombinere med en 2p-orbital, feks 2pz d

$$\psi_{\text{hybrid}} = c_{2s}\chi_{2s} + c_{2p}\chi_{2p_z}$$

- Hybrid-orbitalene har en tydelig retning og lokalisering
- Erstatter de opprinnelige orbitalene

sp-hybridisering, forts

•Formler:

$$\psi_{a} = \frac{1}{\sqrt{2}} \chi_{2s} + \frac{1}{\sqrt{2}} \chi_{2p_{z}}$$

$$\psi_{b} = \frac{1}{\sqrt{2}} \chi_{2s} - \frac{1}{\sqrt{2}} \chi_{2p_{z}}$$

- •Vi har sannsynlighet ½ for 2s, ½ for 2p.
 - 1:1-forhold, boka skriver «sp¹»

sp²-hybridisering

- •2s-orbitalen kombineres med to 2p-orbitaler
- •3 til 3 orbitaler

$$\psi_a = c_1 \chi_{2p_y} + c_2 \chi_{2s} + c_3 \chi_{2p_x}$$

$$\psi_b = c_4 \chi_{2p_y} + c_5 \chi_{2s} + c_6 \chi_{2p_x}$$

$$\psi_c = c_7 \chi_{2p_y} + c_8 \chi_{2s} + c_9 \chi_{2p_x}$$

Disse har planar trigonal symmetri

sp²-hybridisering, forts.

•I boka utledes følgende formler: (merk at vi bruker andre akser)

$$\psi_a = \sqrt{\frac{2}{3}} \chi_{2p_y} - \sqrt{\frac{1}{3}} \chi_{2s} + 0 \chi_{2p_x}$$

$$\psi_b = -\sqrt{\frac{1}{6}} \chi_{2p_y} - \sqrt{\frac{1}{3}} \chi_{2s} - \sqrt{\frac{1}{2}} \chi_{2p_x}$$

$$\psi_c = -\sqrt{\frac{1}{6}} \chi_{2p_y} - \sqrt{\frac{1}{3}} \chi_{2s} + \sqrt{\frac{1}{2}} \chi_{2p_x}$$

- •Alle 3 hybridorbitaler har 1/3 sannsynlighet for 2s, 2/3 sannsynlighet for 2p
 - 1:2-forhold --> alternativ definisjon av superskriptet i «sp²»

sp³-hybridisering

•2s kombineres med alle tre 2p-orbitalene

$$\psi_{a} = c_{1}\chi_{2s} + c_{2}\chi_{2p_{x}} + c_{3}\chi_{2p_{y}} + c_{4}\chi_{2p_{z}}$$

$$\psi_{b} = c_{5}\chi_{2s} + c_{6}\chi_{2p_{x}} + c_{7}\chi_{2p_{y}} + c_{8}\chi_{2p_{z}}$$

$$\psi_{c} = c_{9}\chi_{2s} + c_{10}\chi_{2p_{x}} + c_{11}\chi_{2p_{y}} + c_{12}\chi_{2p_{z}}$$

$$\psi_{d} = c_{13}\chi_{2s} + c_{14}\chi_{2p_{x}} + c_{15}\chi_{2p_{y}} + c_{16}\chi_{2p_{z}}$$

sp³-hybridisering, forts.

•Formler:

$$\psi_{a} = \frac{1}{2}(-\chi_{2s} + \chi_{2p_{x}} + \chi_{2p_{y}} + \chi_{2p_{z}})$$

$$\psi_{b} = \frac{1}{2}(-\chi_{2s} - \chi_{2p_{x}} - \chi_{2p_{y}} + \chi_{2p_{z}})$$

$$\psi_{c} = \frac{1}{2}(-\chi_{2s} + \chi_{2p_{x}} - \chi_{2p_{y}} - \chi_{2p_{z}})$$

$$\psi_{d} = \frac{1}{2}(-\chi_{2s} - \chi_{2p_{x}} + \chi_{2p_{y}} - \chi_{2p_{z}})$$

- •Alle 4 hybridorbitaler har 1/4 sannsynlighet for 2s, 3/4 sannsynlighet for 2p
 - 1:3-forhold --> alternativ definisjon av superskriptet i «sp³»

Hybridisering for karbon (denne slide inneholder feil!)

Karbon har 4 valenselektroner og konfigurasjon

$$1s^2 2s^2 2p_x^2 2p_y^2 2p_z^2$$

•sp-hybridisering:

$$1s^2(\psi_a)^2(\psi_b)^2 2p_y^2 2p_z^2$$

•sp²-hybridisering

$$1s^2(\psi_a)^2(\psi_b)^2(\psi_c)^2 2p_z^2$$

•sp³-hybridisering

UNIVERSITETET I OSLO

$$1s^2(\psi_a)^2(\psi_b)^2(\psi_c)^2(\psi_d)^2$$

Valensbåndteori: Metan CH₄

•VSEPR predikterer tetragonalt molekyl, 109,4 grader

•AOer: H – 1s, C – 1s, 2s, 2p

Vi trenger 4 lokaliserte AOer som kan overlappe med 1s-orbitalene til H'ene

• sp³

•VB-teori: Binding skjer med maksimering av overlappene.

H-atomene plasserer seg «oppå» hybridene

Molecular geometry (tetrahedral)

Trender i hybridisering

•Mer s-karakter → større vinkel

TABLE 13.1 C—C Bond Types				
Carbon—Carbon Single Bond Types	σ Bond Hybridization	s-to-p Ratio	Angle between Equivalent σ Bonds (°)	Carbon—Carbon Single Bond Length (pm)
>c−c€	sp^3	1:3	109.4	154
≥ c-c<	sp^2	1:2	120	146
≡c-c≡	sp	1:1	180	138

Ikke-ekvivalente ligander

- •Til nå har hybridorbitalene vært jevnt fordelt i romretninger
- •Dersom ligander ikke er ekivalente:
 - VSEPR predikterer at vinklene endres
- Hvordan kan vi konstruere hybridorbitaler for slike tilfeller?

Bents regel

- •Basert på eksperimentell evidens formulerte Henry Bent følgende:
- •Sentrale atomer som tilfredsstiller oktettregelen har som første tilnærming:
 - Fire enkeltbindinger/elektronpar: sp3
 - En dobbeltbindinger og to enkeltbindinger/elektronpar: sp2
 - To dobbeltbindinger eller 1 trippel + 1 enkel/elektronpar: sp1
- •Tilstedeværelse av ulike ligander tas til følge slik:
 - Ulik hybridisering til alle ikke-ekvivalente ligander og enslige par
 - Individuell hybridisering bestemt av elektronegativitet til hver ligand
 - Bents regel:
 - s-karakter konsentreres i hybridorbitaler rettet mot elektropositive ligander.
 - p-karakter konsentreres i hybridorbitaler rettet mot elektornegative ligander

Bindingsvinkel og sp-karakter

- Vi undersøker nærmere for sp2-hybrider
- •Konstruerer ortonormale hybridorbitaler med vinkel 2θ
- N = normaliseringskonstant, $\alpha = andel s-karakter$

$$\psi_a = N \left[(\cos \theta) \phi_{2p_z} + (\sin \theta) \phi_{2p_x} - \alpha \phi_{2s} \right]$$

$$\psi_b = N \left[(\cos \theta) \phi_{2p_z} - (\sin \theta) \phi_{2p_x} - \alpha \phi_{2s} \right]$$

Eksempel, varierende bindingsvinkel

Eksempel: VB-teori for H₂O

•VSEPR: Tetrahederstruktur, men enslige par skviser sammen bindingsvinkelen

- •Bents regel: sp3-hybrid-orbitaler til første tilnærming.
- •H mer elektronegativ enn elektronpar (som per def. ikke er elektronegative)
 - p-karakter mot H, s-karakter mot enslige par
 - økende p-karakter -> mindre vinkel enn 109.4
- ellustrasjon: Zumdahl (KJM1101-pensum)

Valensbindingsteori

COEN

Valensbindingsteori (VB-teori)

- Overbygg på VSEPR med hybridorbitaler
- Elektronbinding ved overlapp av lokaliserte orbitaler
- Hybridisering basert på «regioner» med elektroner
 - 2 regioner, sp, 3 regioner sp2, 4 regioner sp3
 - Hybridisering av kovalente bindinger først
- Rene p-orbitaler gir pi-bindinger

- VB-teori er bare kvantemekanisk «på overflaten!»
 - Ingen Schrödingerlikning blir løst ...

VB-teori vs. MO-teori

- •Hybridorbitalene er ekvivalente med de opprinnelige AOene
 - De opprinnelige AOene er lineærkombinajsoner av hybridene og omvendt!
- •Husk: Variasjonsmetoden leter over <u>alle</u> mulige MOer for å finne best mulig energi
- •Konsekvens:
 - Variasjonsmetoden gir <u>samme svar</u> med hybridorbitaler og opprinnelige AOer
- •Konsekvens:
 - VB-teori er på et beste tilnærmet kvantemekanikk
 - Ofte «samme svar» som MO-teori, men ulik tolkning av orbitalene

BeH₂

- •Be har elektronkonfigurasjon 1s² 2s².
- Ingen klart definert Lewis-struktur. Hvordan binder Be til H?
- •Vi vet at molekylet er lineært: sp-hybridisering for Be $1s^2(\psi_a)(\psi_b)$
- Med ett divalent to enslige elektroner

Hybridorbitaler og H-orbitaler

Lewis-struktur indikert

Separasjon mellom orbitaler overdrevet

Karbonforbindelser

•Strukturformel, viser 4 ekvivalente C-atomer som alle har 3 elektronregioner hver-> sp²

(b) Hybrid orbitals for sp² carbon (side view)

Hückelmetoden

- VB-teori gir en «kjapp» forklaring på molekylstruktur
 - Men noe med pi-bindingene i VB ... Hvorfor skulle elektronene velge å lokalisere seg mellom par av p_z-orbitaler?
 - Vanlig bindingslende C-C: 1,54 Å, men 1,46 Å observert i butadiene ...
- •VB kan ikke kan ikke forklare delokalisering av elektroner
- •Hückelmetoden:
 - Kvalitativ MO-metode for aromatiske og konjugerte molekyl
 - Bruke hybridisering for å beskrive «skjelettet»
 - ikke-hybridiserte elektroner beskrives med enkel MO-teori
 - «pi nettverk»
 - Forklarer stabilisering av aromatiske forbindelser, bindingslengder, reaktivitet

1,3-Butadien

•Pi-nettverket:

•MO basert på pi-orbitalene:

$$\psi_{\pi} = c_1 \phi_{2pz1} + c_2 \phi_{2pz2} + c_3 \phi_{2pz3} + c_4 \phi_{2pz4}$$

Hückel-modellens likninger

- En <u>semiempirisk metode</u>
 - Sterkt forenklet Hartree-Fock med justerbare parametre
- Vi antar at elektronene ikke vekselvirker, fører til generalisert egenverdiproblem

$$Hc = \epsilon S c$$

Vi antar «Zero Differential Overlap»-tilnærmingen

$$S_{ij} = 0$$
 $i \neq j$

$$S_{ii} = 1$$

Vi antar at alle C-atomene er ekvivalente:

$$H_{ii} = \alpha = \text{konstant}$$

$$H_{ij} = \beta = \text{konstant}, \quad i, j \text{ naboatomer}$$

$$H_{ij} = 0$$
 ellers

UNIV I OSL

Egenverdiproblemet for butadien:

$$\begin{vmatrix} \alpha - \varepsilon & \beta & 0 & 0 \\ \beta & \alpha - \varepsilon & \beta & 0 \\ 0 & \beta & \alpha - \varepsilon & \beta \\ 0 & 0 & \beta & \alpha - \varepsilon \end{vmatrix} = 0$$

$$\varepsilon = \alpha \pm 1.62\beta$$
 and $\varepsilon = \alpha \pm 0.62\beta$.

Vi ser på en notebook, der vi også regner ut delokaliserte bølgefunksjoner og bindingsorden

Okkuperte MOer:

Orbitalene fra Hückel vs. Hartree-Fock

Tilbake til elektronspektroskopi

Beer's lov og utslukningskoeffisient ε

TABLE 14.2 Characteristic Parameters for Common Chromophores

Chromophore	Transition	$\lambda_{max}(nm)$	$\varepsilon_{max} (\mathrm{dm^3 mol^{-1} cm^{-1}})$
N=0	$n \rightarrow \pi^*$	660	200
N=N	$n \rightarrow \pi^*$	350	100
c=0	$n \rightarrow \pi^*$	280	20 S
	$\pi\!\to\!\pi^*$	190	200
NO_2	$n \rightarrow \pi^*$	270	20
C ₆ H ₆ (benzene)	$\pi\!\to\!\pi^*$	260	200
C=N	$n \rightarrow \pi^*$	240	150
C=C-C=0	$\pi \mathop{\rightarrow} \pi^*$	220	2×10^5
C=C-C=C	$\pi \mathop{\rightarrow} \pi^*$	220	2×10^5
s=0	$n \rightarrow \pi^*$	210	1.5×10^{3}
C = C	$\pi\! o\!\pi^*$	180	1×10^3
C-C	$\sigma \! o \! \sigma^*$	<170	1×10^{3}
С—Н	$\sigma \rightarrow \sigma^*$	<170	1×10^3

Spinn-forbudte overganger med svakt signal

> Veldig sterkt signal, spinn-tillatte overganger

- For større molekyler er seleksjonsregelen ∆S=0 ikke like »streng»
- Tilnærmingene gjort i Franck-Condon-prinsippet ikke lenger like gode
- Beers lov gir attenuasjonen i absorbsjonsspektroskopi

$$\log\left(\frac{I_t}{I_0}\right) = -\varepsilon lc$$

VB-teori for formaldehyd

•Både C og O hybridiseres med sp²

I OSLO

MOer for formaldehyd – kvalitativ beskrivelse

σ-karakter: orbitalen rotasjonssymmetrisk om atom-atom-akse. Ikke null i molekylplanet, maksimum rundt molekylplanet

π-karakter: orbitalen rotasjonsantisymmetrisk om atom-atom-akse. molekylplanet er nodalplan. maksimum vekk fra nodalplanet

n-karakter (ikkebindende): enslige elektronpar, lokalisert på atomer, typisk ikke i bindinger. energien ligger mellom bindende og antibindende varianter

 $5a_1$ has σ character

 $1b_1$ has π character

HOMO has n character

LUMO has π^* character

 $6a_1$ has σ character

Overgangsdipolmomenter – kvalitativt

 $\pi \rightarrow \pi^*$

 $6a_1$ has σ character

Overgang med sterk intensitet (se tavla)

Overgangsdipolmomenter – kvalitativt

 $6a_1$ has σ char

Svak intensitet (se tavla)

Overgangsdipolmomenter – kvalitativt

 $\sigma \rightarrow \sigma^*$

 $6a_1$ has σ char

Svak intensitet grunnet lite overlapp

Konklusjon, elektronspektroskopi

- •Elektronoverganger følges av vibrasjonelle og rotasjonelle overganger
- •Franck-Condon-prinsippet og Franck-Condon-faktorer gir kvatitative overslag for spektere
- •For fleratomige molekyl blir spekteret veldig komplisert
 - Franck-Condon ikke lenger like god tilnærming
 - Nedkjøling av prøven rengjør spektere
- Spinn-forbudte overganger vises i fleratomige molekylspektre
- Kan forstås kvalitativt ved å studere MOene

Litt om molekylsymmetri

Mange molekyler har symmetrier

- •Kjernenes plassering i rom bevart under symmetrioperasjoner
- •Symmetrioperasjonene utgjør en matematisk gruppe
- Vi ser på eksempler

Homonukleære toatomige molekyl

- Rotasjon om molekylaksen
- Inversjon om massesenter
- Refleksjon om plan ortogonalt på aksen gjennom massesenter
- •(Se tavla)

Benzen

- Rotasjon om akse gjennom massesenter
 - 0, 60, 120, 180, 270 grader
- Refleksjon om plan som deler molekylet i to like deler
- Inversjon om massesenter
- •(Se tavla)

Symmetrielementer

- •Symmetrielementer er geometriske objekter slik som akser, plan og punkter
- •Eksempel:
 - Interatomær akse i toatomige molekyl
 - Massesenteret
 - Plan som inneholder alle kjernene (feks. benzen)

TAB	TABLE 16.1 Symmetry Elements and Their Corresponding Operations					
Symr	netry Elements	Symmetry Operat	ions			
E C_n	Identity n-Fold rotation axis	$\hat{C}_n, \hat{C}_n^2, \ldots, \hat{C}_n^n$	leaves molecule unchanged rotate about axis by $360^{\circ}/n$ 1, 2,, n times (indicated by superscript)			
σ i S_n	Mirror plane Inversion center n-Fold rotation—reflection axis	$\hat{\sigma}$ \hat{i} \hat{S}_n	reflect through the mirror plane $(x, y, z) \rightarrow (-x, -y, -z)$ rotate about axis by $360^{\circ}/n$, and reflect through a plane perpendicular to the axis.			

Symmetrioperasjoner

•Symmetrioperasjoner er geometriske transformasjoner assosiert med symmetrielementene

TAB	TABLE 16.1 Symmetry Elements and Their Corresponding Operations					
Symi	metry Elements	Symmetry Operat	ions			
E C_n	Identity n-Fold rotation axis	\hat{E} $\hat{C}_n, \hat{C}_n^2, \ldots, \hat{C}_n^n$	leaves molecule unchanged rotate about axis by $360^{\circ}/n$ 1, 2,, n times (indicated by superscript)			
σ	Mirror plane	$\hat{\sigma}$	reflect through the mirror plane			
i	Inversion center	\hat{i}	$(x, y, z) \rightarrow (-x, -y, -z)$			
S_n	<i>n</i> -Fold rotation–reflection axis	\hat{S}_n	rotate about axis by $360^{\circ}/n$, and reflect through a plane perpendicular to the axis.			

Eksempel: Allen

- •Rotasjon på 180 grader om C₂ rotasjonsakse
- •Rotasjon på 90 grader om samme akse, etterfulgt av refleksjon gjennom plan ortogonalt på aksen <u>S₄-refleksjon-rotasjonsakse</u>
- •To ytterligere rotasjonsakser C'₂ og C"_{2,} 180 C rotasjon
- •To refleksjonsplan $\sigma_{\rm v}$ og $\sigma'_{\rm v}$

(a) Allene (CH₂CCH₂)

Gruppe

- •Et sett med symmetrioperasjoner kan utgjøre en gruppe G
- Aksiomene for en gruppe:
 - Eksistens av identitet, som ikke gjør noe med molekylet

$$\hat{E} \in G$$

Komposisjon av symmetrioperasjoner:

$$\hat{A}, \hat{B} \in G \implies \hat{A}\hat{B} \in G$$

Eksistens av invers:

$$\hat{A} \in G \implies \text{finnes } \hat{A}^{-1} \in G \quad \text{slik at} \quad \hat{A}\hat{A}^{-1} = \hat{E}$$

Assosiativitet

$$\hat{A}(\hat{B}\hat{C}) = (\hat{A}\hat{B})\hat{C}$$

Punktgrupper

- Symmetrielementene har et felles punkt
- •Det er slike grupper vi er interessert i

Hvordan finne gruppen til et molekyl?

Figure 16.2

Logic diagram for assigning molecules to point groups. The red line indicates how NF₃ is assigned to the C_{3v} point group.

Vi har heldigvis en algoritme for å finne gruppen!

Hvordan finne gruppen, forts.

Eksempler

TABLE 16.2 Selected Point Groups and Their Elements						
Point Group	Symmetry Elements	Example Molecule				
C_{s}	E, σ	BFClBr (planar)				
C_2	E, C_2	H_2O_2				
$C_{ m 2v}$	$E, C_2, \sigma_v, \sigma'_v$	H_2O				
C_{3v}	$E, C_3, C_3^2, 3\sigma_{\rm v}$	NF ₃				
$C_{\infty_{\mathrm{V}}}$	$E, C_{\infty}, \infty \sigma_{ m v}$	HCl				
C_{2h}	$E, C_2, \sigma_{\rm h} i$	$trans$ - $C_2H_2F_2$				
D_{2h}	$E, C_2, C'_2, C''_2, \sigma_h, \sigma'_v, \sigma''_v, i$	C_2F_4				
D_{3h}	$E, C_3, C_3^2, 3C_2, S_3, S_3^2, \sigma_h, 3\sigma_v$	SO_3				
D_{4h}	$E, C_4, C_4^3, C_2, 2C_2', 2C_2'', i, S_4, S_4^3, \sigma_h, 2\sigma_v', 2\sigma_v''$	XeF ₄				
D_{6h}	E, C_6 , C_6^5 , C_3 , C_3^2 , C_2 , $3C_2'$, $3C_2''$, i , S_3 , S_3^2 , S_6 , S_6^5 , σ_h , $3\sigma_v'$, $3\sigma_v''$	C ₆ H ₆ (benzene)				
$D_{\infty h}$	$E, C_{\infty}, S_{\infty}, \infty C_2, \infty \sigma_{\mathrm{v}}, \sigma_{\mathrm{h}}', i$	H_2 , CO_2				
T_d	$E, 4C_3, 4C_3^2, 3C_2, 3S_4, 3S_4^3, 6\sigma_v$	CH ₄				
O_h	E, $4C_3$, $4C_3^2$, $6C_2$, $3C_4$, $3C_2$, i , $3S_4$, $3S_4^3$, $4S_6$, $4S_6^5$, $3\sigma_h$, $6\sigma'_v$	SF ₆				

TABLE 16.3 Multiplication Table for Operators of the C_{2v} Group

Second	First Operation				
Operation	\hat{E}	\hat{C}_2	$\hat{\pmb{\sigma}}_{\!\scriptscriptstyle \rm V}$	$\boldsymbol{\hat{\sigma}_{\mathrm{v}}'}$	
\hat{E}	\hat{E}	\hat{C}_2	$\hat{\sigma}_{\scriptscriptstyle \rm V}$	$\hat{\sigma}_{ ext{ iny V}}'$	
\hat{C}_2	\hat{C}_2	$\boldsymbol{\hat{E}}$	$\boldsymbol{\hat{\sigma}_{\mathrm{v}}'}$	$\hat{\pmb{\sigma}}_{\text{\tiny V}}$	
$\hat{\pmb{\sigma}}_{\mathtt{V}}$	$\hat{\pmb{\sigma}}_{\text{\tiny V}}$	$\hat{\boldsymbol{\sigma}}_{\text{\tiny V}}^{\prime}$	\hat{E}	\hat{C}_2	
$\hat{\sigma}_{ ext{v}}'$	$\hat{\sigma}_{ ext{ iny V}}'$	$\hat{\sigma}_{ ext{v}}$	\hat{C}_2	\hat{E}	

Alle grupper kan assosieres med 1 og bare 1 multiplikasjonstabell

Representasjoner av symmetrioperasjoner

- •En gruppe har representasjoner
- •Det vil si at gruppen kan skrives som en gruppe av matriser
- •Eksempel:
 - Rotasjon om z-aksen
 - (På tavla)
- Det er mange representasjoner for hver gruppe
- Representasjonsteori hjelper oss med å analysere MOer!

Representasjon av C_{2v}

Representation	\boldsymbol{E}	C_2	$\sigma_{ m v}$	$\sigma_{ m v}'$
$\overline{\Gamma_1}$	1	1	1	1
Γ_2	1	1	-1	-1
Γ_3	1	-1	1	-1
Γ_4	1	-1	-1	1

Dette er 1-dimensjonale representasjoner av gruppen. Hver rad Γ_i tilfredsstiller multiplikasjonstabellen for gruppen

TABLE 16.3 Multiplication Table for Operators of the C_{2v} Group

Second Operation	First Operation \hat{E} \hat{C}_2 $\hat{\sigma}_{\rm v}$ $\hat{\sigma}_{\rm v}'$					
\hat{E}	\hat{E}	\hat{C}_2	$\hat{\pmb{\sigma}}_{\text{v}}$	$\hat{\sigma}_{\text{\tiny V}}^{\prime}$		
\hat{C}_2	\hat{C}_2	\hat{E}	$\hat{m{\sigma}}_{ ext{v}}'$	$\hat{\pmb{\sigma}}_{\text{v}}$		
$\hat{\sigma}_{\scriptscriptstyle \rm V}$	$\boldsymbol{\hat{\sigma}_{\text{v}}}$	$\hat{\sigma}_{ ext{v}}'$	$\boldsymbol{\hat{E}}$	\hat{C}_2		
$\hat{\sigma}_{\rm v}'$	$\hat{\sigma}_{ ext{v}}'$	$\hat{\pmb{\sigma}}_{\text{v}}$	\hat{C}_2	\hat{E}		

Kommuterende observable

- •For hver symmetrioperasjon a i punktgruppen har vi en observabel A' som kommuterer med Hamiltonoperatorren H
- Vi kan finne felles egenvektorsett for H og A
- Eksempel: partikkel i boks, formaldehyd

Irreps for C_{2v}

- •MOene til et molekyl med symmetri C_{2v} kan klassifiseres med hvilken irrep de hører til
- •1a₁, 2a₁ ... Transformerer som A₁
 - OSV.

Karaktertabell:

	\boldsymbol{E}	C_2	$\sigma_{ m v}$	σ_{v}'			
$\overline{A_1}$	1	1	1	1	Z	x^2 , y^2 , z^2	$2p_z(\mathbf{O})$
A_2	1	1	-1	-1	R_z	xy	$3d_{xy}(O)$
\boldsymbol{B}_1	1	-1	1	-1	x, R_y	xz	$2p_x(\mathbf{O})$
B_2	1	-1	-1	1	y, R_x	yz	$2p_y(\mathbf{O})$

MOer fo

Figure 13.16

lar orbitals for formaldehyde. For all but the localized MOs, two perpendicular orientations of the molecule are shown. The last image shows a charge density contour enclosing 90% of the electron charge with a superimposed electrostatic potential map in which red and blue correspond to negative and positive regions of the molecule.