CS F364: Design & Analysis of Algorithm

Search Trees Optimal Binary

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Feb 17, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Introduction

$$\sum_{i=1}^n p_i + \sum_{i=0}^n q_i = 1$$

Expected Search Cost in tree T

$$E[\mathcal{T}] = \sum_{i=1}^n (depth_{\mathcal{T}}(k_i)+1) imes p_i + \sum_{i=0}^n (depth_{\mathcal{T}}(d_i)+1) imes q_i$$

Optimal Substructure

- Any non-leaf sub-tree of BST would must contains keys in continuous range $k_1,...,k_f$ for some $1 \le i \le j \le n$
- Subtree T' of an optimal BST T must be optimal

Contradiction: If T'' is optimal then put T'' in T at the place of T' Bruit-force would take $\Omega(4^n/n^{3/2})$ time

Searching

Consider a subsequence $K=< k_1, k_2, ..., k_n>$ of n distinct keys (in sorted order). Let p_i be the probability of searching k_i

 We wish to construct a binary search tree (BST) with minimum expected search cost ire-14(Feb 17, 2021) 2/10

Example: Expected Search Cost

Problem formulation

Let k, be at root

- T< has keys k₀, k₁, ..., k_{r-1}
- $T_{>}$ has keys $k_{r+1}, k_{r+2}, ..., k_n$

- Let
$$E[T_{<}]$$
 is expected search cost of $T_{<}$ and $w[T_{<}] = \sum_{i=1}^{r-1} p_i + \sum_{i=0}^{r-1} q_i$, $w[T_{>}] = \sum_{i=r+1}^{r} p_i + \sum_{i=r}^{r} q_i$

Expected search cost of the tree is

$$E[T] = E[T_{<}] + w[T_{<}] + E[T_{>}] + w[T_{>}] + p$$

$$= E[T_{<}] + E[T_{>}] + 1$$

Overlapping subproblems?

Using Dynamic Programming

• e[i,j] expected search cost for optimal BST for keys $k_i,...,k_j$

•
$$w[i,j] = \sum_{v=i}^{j} p_v + \sum_{v=i-1}^{j} q_v$$

If k_r is root then

$$e[i,j] = p_r + e[i,r-1] + w[i,r-1] + e[r+1,j] + w[r+1,j]$$

= $e[i,r-1] + e[r+1,j] + w[i,j]$

We have to choose r that maximizes e[i, j]

$$\theta[i, J] = \left\{ \begin{array}{ll} q_{i-1} & \text{if } j = i-1 \\ \min_{i \leq r \leq j} \{ \theta[i, r-1] + \theta[r+1, J] + w[i, J] \} & \text{otherwise} \end{array} \right.$$

Example: Expected Search Cost

Design & Analysis of Algo. (BITS F364) MW F (3-4PM) online@BITS-PII

Let $< p_1, p_2, p_3, p_4, p_5> = < 0.15, 0.10, 0.05, 0.10, 0.20>$ and $< q_0, q_1, q_2, q_3, q_4, q_5> = < 0.05, 0.10, 0.05, 0.05, 0.05, 0.10>$

esign & Analysis of Algo. (BITS F364) MW F (6-4PM) online@BITS-Pilani Lecture-14(Feb 17, 2021) 9/10

The algorithm

	Algorithm 1: Optimal-BST(p , q , n)
-	for $i = 1$ to $n + 1$ do
7	$e[i, i-1] = w[i, i-1] = q_{i-1}$
ဗ	for $l = 1$ to n do
4	$e[i, i-1] = w[i, i-1] = q_{i-1}$ for $i = 1$ to $n-l+1$ do
ß	j = i + l - 1
9	$e[i,j] = \infty$
7	$w[i,j] = w[i,j-1] + p_j + q_j$
œ	for $i = 1$ to $n + 1$ do
6	if $e[i, r-1] + e[r+1, j] + w[i, j] < e[i, j]$ then
9	e[i, j] = e[i, r-1] + e[r+1, j] + w[i, j]
Ξ	root[i, J] = r
12	12 return e and <i>root</i>

Complexity: time $O(n^3)$, space $O(n^2)$

⟨□⟩ > ⟨≡⟩ > ⟨≡⟩ > □

Lecture.14(Feb 17, 2021) 7/10

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecturo-14(Feb 17, 2021) 8/11

Thank You!

Thank you very much for your attention! (Reference1)

Queries?

1(1) Book - Introduction to Algorithm. By THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN
Lecture-14(Feb 17, 2021) 10/10