1. Geometry

5 minutes trailer

Direct geometry

The geometric model is a tree of joints and bodies

$$\mathbf{M}(\mathbf{q}) = \mathbf{M}_1 \oplus \mathbf{M}_1(\mathbf{q}_1) \oplus \mathbf{M}_2 \oplus \ldots \oplus \mathbf{M}_4 \oplus \mathbf{M}_4(\mathbf{q}_4) \oplus \mathbf{M}_e$$

About representation of motion

- ☐ The geometric model is a tree of joints and bodies
 - \square What is $M \in SE(3)$
 - What is ⊕
 - Links with the differential geometry

$$\mathbf{M}(\mathbf{q}) = \mathbf{M}_1 \oplus \mathbf{M}_1(\mathbf{q}_1) \oplus \mathbf{M}_2 \oplus \ldots \oplus \mathbf{M}_4 \oplus \mathbf{M}_4(\mathbf{q}_4) \oplus \mathbf{M}_e$$

Inverse geometry

- Being given a x* ...
- \Box what is q such that $h(q) = x^*$

$$M^{-1}: x^* \to q = M^{-1}(x^*)$$

$$M(q) = \begin{bmatrix} l_1 \cos(q_1) + l_2 \cos(q_1 + q_2) \\ l_1 \sin(q_1) + l_2 \sin(q_1 + q_2) \end{bmatrix}$$

Follow the slope

□ Decreasing sequence: $f(x_{k+1}) < f(x_k)$

