Chapter 5 NUMBER THEORY

- 1 Introduction
- 2 Modular Arithmetic
- 3 Inverse and GCD

1. <u>Introduction</u>: Terminologies

Lexeme	Meaning
Plaintext	Original message to be sent in a secret way, or string of symbols in a given alphabet representing the message or text to be enciphered
Ciphertext	Modified, disguised version of the plaintext
Encipher, (encrypt)	Convert a plaintext into a ciphertext
Decypher, decrypt	Convert a ciphertext into a plaintext
Cipher	Method used to convert a plaintext into a ciphertext
Key	Data determining both a particular enciphering and the correponding deciphering rule, among all the possible ones: in the first case it is called <i>cipher key</i> , in the second <i>decipher key</i>
Cryptology	Science of enciphering messages
Cryptanalysis	Science of interpreting enciphered messages

Caesar cipher

The letters of the alphabet are shifted by some fixed amount.

Example:

plaintext ABCDEFGHIJKLMNOPQRSTUVWXYZ ciphertext EFGHIJKLMNOPQRSTUVWXYZABCD.

Then the message "ONE IF BY LAND AND TWO IF BY SEA" Becomes "SRI MJ FC PERH ERH XAS MJ FC WIE"

A *Caesar cipher* is especially easy to implement on a computer using a scheme known as arithmetic mod 26.

m mod n

means the "remainder" we get when we divide m by n.

Theorem 1.1 (Euclid's division theorem)

For every integer m and positive integer n, there exist unique integers q and r such that m = nq + r and $0 \le r < n$.

Definition 1.1

For integers m and n, we say $r = m \mod n$ if m - r is a multiple of n.

Exercise 1.1-1 Use The definition of $m \mod n$ to compute 10 mod 7 and -10 mod 7. What are q and r in each case? Does $(-m) \mod n = -(m \mod n)$?

Exercise 1.1-2

How can you use the idea of m mod n to implement a Caesar cipher?

2. Modular Arithmetic

Goal: understand basic arithmetic operations, addition, subtraction, multiplication, division, and exponentiation behave when all arithmetic is done in mod n.

Exercise 2.1-1 Compute 21 mod 9, 38 mod 9, (21 · 38) mod 9, (21 mod 9) · (38 mod 9), (21+38) mod 9, (21 mod 9)+(38 mod 9).

Any observations?

Lemma 2.1 $i \mod n = (i + kn) \mod n$ for any integer k.

Lemma 2.2

$$(i+j) \bmod n = [i+(j \bmod n)] \bmod n$$

= $[(i \bmod n)+j] \bmod n$
= $[(i \bmod n)+(j \bmod n)] \bmod n$

$$(i \cdot j) \mod n = [i \cdot (j \mod n)] \mod n$$

= $[(i \mod n) \cdot j] \mod n$
= $[(i \mod n) \cdot (j \mod n)] \mod n$

We will use the notation Z_n to represent the integer set

$$\{0, 1, \ldots, n-1\}$$

In Z_n, addition and multiplication are defied by

$$+_{n}$$
 and \cdot_{n}

More precisely,

$$i +_n j = (i + j) \mod n$$
, $i \cdot_n j = (i \cdot j) \mod n$

Theorem 2.3

Addition and multiplication mod *n* satisfy the commutative and associative laws, and multiplication distributes over addition.

Plaintext	a	b	С	d	e	f	g	h	i	j	k	ı	m	n	0	р	q	r	s	t	u	v	w	х	У	z
Numerical																										
equivalent	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Caeser ciphers

Sender:

- 1. Transform plaintext to numerical equivalences.
- 2. Choose a key k, and use the corresponding cipher $C_k(p) = p + k \mod n$, to cipher the numbers.

Receiver

- 1. Determine the decipher $D_k(c)=c-k \mod n$, and decipher the numbers.
- 2. Transform the numbers back to original message.

Plain text	attacktoday				
Numerical equivalent	0 19 19 0 2 10 19 14 3 0 24				
Ciphertext (numerical) $C_5(p) = p + 5 \mod 26$	5 24 24 5 7 15 24 19 8 5 3				
Ciphertext	FYYFHPYTIFD				
Deciphered text (numerical) $D_5(c) = c - 5 \mod 26$	0 19 19 0 2 10 19 14 3 0 24				
Deciphered text	attacktoday				

3. Inverse and GCD

Affine cipher

Sender:

- 1. Transform plaintext to numerical equivalences.
- 2. Choose a key k=(a,b), where a and n are **relative primes**.
- 3. Use the corresponding cipher $C_k(p)=ap+b \mod n$, to cipher the numbers.

Receiver

- 1. There is a unique a' in Z_n such that $a'a=1 \mod n$.
- 2. Determine the decipher $D_k(c)=a'(c-b) \mod n$, and decipher the numbers.
- 3. Transform the numbers back to original message.

Plain text	attackatdawn				
Numerical equivalent	0 19 19 0 2 10 0 19 3 0 22 13				
Ciphertext (numerical) $C_{(7,10)}(p) = 7p + 10 \mod 26$	10 13 13 10 24 2 10 13 5 10 8 23				
Ciphertext	KNNKYCKNFKIX				
Deciphered text (numerical) $D_{(7,10)}(c) = 15c + 6 \mod 26$	0 19 19 0 2 10 0 19 3 0 22 13				
Deciphered text	attackatdawn				

Questions:

- Q1. What is relative prime?
- Q2. When a and n are relative primes, why there is a unique a in Z_n such that a $a=1 \mod n$?
- Q3. Why $D_k(c)=a'(c-b) \mod n$ is the right decipher?

Answer to Q1

Definition Let $m_1, ..., m_k$ be integers which are not all 0.

Their greatest common divisor (GCD) is the largest

integer that divides all of $m_1, ..., m_k$.

Example gcd(24,8,12)=4, gcd(2,3)=1, gcd(-15,6)=3.

Definition Two integers m,n are called relative primes if gcd(m,n)=1.

Answer to Q3

Lemma 3.1 If $a'a=1 \mod n$, then

 $ax = b \mod n$

has the unique solution

 $x=a'b \mod n$

in Z_n .

Definition a' is called the multiplicative inverse of a in \mathbb{Z}_n if $a'a=1 \mod n$

Theorem 3.2 If an element of Z_n has a multiplicative inverse, then it has exactly one inverse.

Remark Theorem 3.2 answers the uniqueness part of Q2.

It remains to answer the existence part of Q2:

If a and n are relative primes, i.e. gcd(a,n)=1, then there exists a' such that $a'a=1 \mod n$.

Theorem 3.3 A number a has a multiplicative inverse in Z_n iff there are integers x and y such that ax + ny = 1.

Lemma 3.4 Given a and n, if there exist integers x and y such that ax + ny = 1 then gcd(a, n) = 1.

We would like to show that if gcd(a,n)=1, then There exists x,y such that ax+ny=1.

Recall Euclid's division theorem

For every integer m and positive integer n, there exist unique integers q and r such that m = nq + r and $0 \le r < n$.

The argument follows from Euclidean algorithm.