How to THINK like a Programmer

Problem Solving for the Bewildered

paul vickers

chapter 4

choices and repeated actions

Purpose

- This chapter is all about applying the problem solving strategy to problems that involve making choices and repeating things
 - High-level control abstractions: sequence, selection, iteration
 - Evaluating solutions

Making coffee

- Last chapter's coffee making problem:
 - Using an electric filter machine (also called a percolator) make a pot of coffee and pour a cup
- We need to apply the strategy (chapter 2) to work up a solution.
- First three steps of the strategy:
 - Understanding the problem
 - Devising a plan to solve the problem
 - Carrying out the plan
- Here is a worked through application of the strategy

A diagram

First, a sketch of the problem and its parts

Understanding the problem

- Q. What are you being asked to do?
 - I need to make a pot of coffee and pour a cup.
- Q. What is required?
 - A cup of coffee.
- Q. Is that all that is required?
 - I think that before I can get a cup of coffee I need the machine's jug to have enough coffee to pour into the cup.
- Q. What is the unknown?
 - How much coffee to make. I need to pour a cup, but I also have to make a pot. How much is a pot? Does it mean a whole pot, or just enough coffee to fill one cup?

Understanding the problem

- Q. Can the problem be better expressed by drawing a diagram or a picture?
 - I do not know. Looking at Figure 4.1 I can see the jug probably holds more coffee than the cup.
- Q. What are the principal parts of the problem
 - ▶ 1) Make a pot of coffee. 2) Pour a cup. Or, looking at it another way: 1) The filter machine, 2) the cup, 3) the coffee, 4) some water, 5) the cup of coffee is there just coffee in it, or milk and sugar as well?
- Q. Have you made any assumptions?
 - Well, I have assumed that the jug holds more than one cupful of coffee. That is not always the case — you can buy single-cup filter machines.

Understanding the problem

- Q. What can you do about the assumptions?
 - I could ask the person who wants me to make the coffee what size coffee machine to use.
- Now we have a good understanding of the problem and the issues it raises.
- Remember, you can always come back to step 1 later on

Devising a plan

- Q. Have you solved this problem before/is it similar to one you have solved before?
 - In the context of this book, the answer must be 'no'.
- Q. Are some parts of the problem more easily solved than others?
 - Yes. Pouring the coffee is easy. Adding the water and the coffee grounds requires some thought as to how much to add. After pouring the coffee I do not know if anything else is needed (e.g. milk and sugar).
- Q. Does restating the problem help? Try restating it in a different language.
 - I do not think that applies here. It is not a weird logical problem, or one that requires a puzzle to be solved. Mind you, the picture of the coffee machine does clarify the main parts of the problem.

Devising a plan

Q. Did you make use of all the information in the problem statement?

Yes, I think so. In fact, the statement seems to be incomplete as I do not know how much coffee to make or whether milk and sugar are needed.

Q. Can you satisfy all the conditions of the problem?

If I make some assumptions, yes. Without any further information I have to define what is meant by 'pot of coffee' (how much is in a pot) and what constitutes pouring a cup — is it just pouring out the coffee, or is it also adding milk or sugar?

Q. Have you left anything out?

No, I do not think so; I seem to have gleaned all the information I can from the statement.

Carrying out the plan

Here we have to "write down the basic sequence of actions necessary to solve the general problem". We should do this using the pseudo-code notation introduced in the last chapter

```
An underlined action is based on an assumption that needs resolving

1. Put water in coffee machine;

2. Open the coffee holder;

3. Put filter paper in machine;

4. Measure coffee for one cup;

5. Put coffee into filter paper;

6. Shut the coffee holder;

7. Turn on machine;

8. Wait for coffee to filter through;

9. Pour coffee into mug;

10. Turn off machine;
```


Reflection

- Why 10 steps in the sequence?
- Is the assumption valid that only enough coffee for one cup should be made?
- What assumption underlies task #3?
- Task #1: how much water?
- Any other hidden assumptions?
- When should the machine be switched off? Try this:
 - 10. When jug empty turn off machine;
- New task #10 implies a decision to be made about when to turn off the machine

Making choices

- Step #3 of the strategy asks whether all actions should be carried out in every circumstance, or should some actions/groups of actions be carried out only when certain conditions are met?
- It is very common for solutions to problems to include some decision-making. Consider the extended coffee-making problem:
 - Using an electric filter machine (also called a percolator) make a pot of coffee and pour a cup for a guest. Add sugar and cream/ milk as required.
- Problem now contains some explicit decisions to be made
 - Add sugar? Add cream?

ACTIVITY

Write out a new solution to include this extra milk/ sugar requirement

Solution as a sequence

```
Put water in coffee machine;
   Open the coffee holder;
   Put filter paper in machine;
   Measure coffee for one cup;
5. Put coffee into filter paper;
6. Shut the coffee holder;
7. Turn on machine;
8. Wait for coffee to filter through;
9. Add sugar;
10. Add milk/cream;
11. Pour coffee into mug;
12. Stir coffee;
13. Turn off machine;
```

Now we need to put in the decision making (tasks #9, #10)

Solution with decisions

```
Put water in coffee machine;
   Open the coffee holder;
   Put filter paper in machine;
   Measure coffee for one cup;
   Put coffee into filter paper;
   Shut the coffee holder;
  Turn on machine ;
8. Wait for coffee to filter through;
   IF (sugar required)
      9.1. Add sugar ;
   ENDIF
10. IF (white coffee required)
       10.1. Add milk/cream;
   ENDIF
11. Pour coffee into mug;
12. Stir coffee;
13. Turn off machine;
```


©2008, PAUL VICKERS

The IF construct

We show decisions with the IF selection construct

ACTIVITY

Before you leave home in the morning you check to see whether it is raining; if it is you take an umbrella with you. Write an IF...ENDIF construct that shows this decision-making process

Write an IF...ENDIF construct that adds a 10% tip to a restaurant bill and compliments the chef if the service was of a high standard. After the ENDIF add a statement to pay the bill. Convince yourself that the tip is only added when good service is received

Get a friend/person sitting next to you to evaluate your solutions

Repeated actions

- What if more than 1 spoon of sugar is required? We need to repeat the task of adding sugar
- If two sugars required we could do this:

```
IF (sugar required)
   Add spoonful of sugar;
ENDIF
IF (more sugar required)
   Add spoonful of sugar;
ENDIF
```

- But what is wrong with this approach?
 - We need to find out once how much sugar is required then repeatedly add a spoon of sugar until the required amount has been added

The WHILE construct


```
WHILE (condition is true)
Action 1;
ENDWHILE
Next task;
```

Or, with multiple actions:

```
WHILE (condition is true)
Action 1;
Action 2;
Action n;
ENDWHILE
Next task;
```


©2008, PAUL VICKERS

ACTIVITY

Write a WHILE loop to handle adding sugar to the coffee. Remember to close the action block with an ENDWHILE

Solution

Need to found out how many sugars required...

Adding sugar

```
Find out how many sugars required;
WHILE (sugars added not equal to number
required)
  Add spoonful of sugar;
   Add 1 to number of sugars added;
ENDWHILE
```

In the above WHILE loop, why is there a statement to add 1 to the number of sugars added?

Updated solution

```
Put water in coffee machine;
   Open coffee holder;
   Put filter paper in machine;
   Measure coffee for one cup;
  Put coffee into filter paper;
   Shut the coffee holder;
  Turn on machine ;
  Wait for coffee to filter through;
   Find out how many sugars required;
10. WHILE (sugars added not equal to number required)
      10.1 Add spoonful of sugar;
      10.2 Add 1 to number of sugars added;
   FNDWHTIF
11. IF (white coffee required)
      11.1 Add milk/cream;
   ENDIF
12. Pour coffee into mug;
13. Stir coffee;
14. Turn off machine;
```


©2008, PAUL VICKERS

Reflection

- Should all actions be carried out in every circumstance? Should some actions (or groups/ blocks of actions) only be carried out when certain conditions are met?
- Is carrying out each action once only sufficient to give the desired outcome? If not, do you have actions (or groups/blocks of actions) that must therefore be repeated?
- Do any actions/blocks of actions belong inside others? For example, do you have a block of actions that must be repeated, but only when some condition is met?

Assess the result

- To make sure the solution produces the correct results.
- To make sure that it produced the results in a sensible and efficient manner.

ACTIVITY

Write down a few different orderings of the first eight actions of the solution. Are any tasks dependent on other tasks happening first?

When do we ask the guest if he/she wants sugar? When do we ask him/her if milk/cream is wanted?

Is there a more efficient way to interact with the guest?

Final coffee solution

```
Put water in coffee machine;
   Open coffee holder;
   Put filter paper in machine;
   Measure coffee for one cup;
   Put coffee into filter paper;
   Shut the coffee holder;
7. Turn on machine;
8. Wait for coffee to filter through;
9. Find out how many sugars required;
10. Find out whether milk required;
11. WHILE (sugars added not equal to number required)
      11.1 Add spoonful of sugar;
      11.2 Add 1 to number of sugars added;
    ENDWHILE
12. IF (white coffee required)
      12.1 Add milk/cream;
   ENDIF
13. Pour coffee into mug;
14. Stir coffee;
15. Turn off machine ;
```


©2008, PAUL VICKERS

ACTIVITY

Compare the first solution with the last one. Can you explain the differences?

end of chapter 4