## Non-degenerate quadric surfaces

**Ellipsoid** 

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$



**Spheroid** (special case of ellipsoid)

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$$

Sphere (special case of spheroid)

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{a^2} = 1$$

Elliptic paraboloid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$$



Circular <u>paraboloid</u> (special case of elliptic  $\frac{x^2}{a^2} + \frac{y^2}{a^2} - z = 0$ 

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} - z = 0$$

Hyperbolic paraboloid

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0$$



$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$



Hyperboloid of two sheets

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$



## Degenerate quadric surfaces

Cone

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$



Circular Cone (special case of cone)

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{c^2} = 0$$

Elliptic cylinder

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$



Circular <u>cylinder</u> (special case of elliptic cylinder)

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$



$$x^2 + 2ay = 0$$

