Ορισμοί Γ΄ Λυκείου

Κωνσταντίνος Λόλας

2025

Ορισμός 1: Πραγματική Συνάρτηση

Εστω A ένα υποσύνολο του \mathbb{R} . Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το A;

Απάντηση: Εστω A ένα υποσύνολο του \mathbb{R} . Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το A μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο $x \in A$ αντιστοιχίζεται σε ένα μόνο πραγματικό αριθμό y. Το y ονομάζεται τιμή της f στο x και συμβολίζεται με f(x). \Box

Ορισμός 2: Σύνολο Τιμών

Εστω f μια συνάρτηση με πεδίο ορισμού το A. Πώς ορίζουμε το σύνολο τιμών της f;

Απάντηση: Το σύνολο των τιμών της f ορίζεται ως το σύνολο

$$f(A) = \{ f(x) | x \in A \}$$

Ορισμός 3: Γραφική Παράσταση

Τι ονομάζουμε γραφική παράσταση μιας συνάρτησης f;

Απάντηση: Εστω f μια συνάρτηση με πεδίο ορισμού A και Oxy ένα σύστημα συντεταγμένων στο επίπεδο. Το σύνολο των σημείων M(x,y) για τα οποία ισχύει y=f(x), δηλαδή το σύνολο των σημείων M(x,f(x)), $x\in A$, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C_f .

Ορισμός 4: Ισότητα Συναρτήσεων

Πότε λέμε ότι δύο συναρτήσεις f και g είναι ίσες;

Απάντηση: Δύο συναρτήσεις f και g λέγονται ίσες όταν:

- έχουν το ίδιο πεδίο ορισμού Α και
- για κάθε $x \in A$ ισχύει f(x) = g(x).

Ορισμός 5: Πράξεις Συναρτήσεων

Εστω f και g δύο συναρτήσεις ορισμένες στα A και B αντίστοιχα. Πώς ορίζονται οι πράξεις άθροισμα, διαφορά, γινόμενο και πηλίκο των συναρτήσεων f και g;

Απάντηση: Ορίζουμε ως άθροισμα f+g, διαφορά f-g, γινόμενο fg και πηλίκο $\frac{f}{g}$ δύο συναρτήσεων f,g τις συναρτήσεις με τύπους:

- (f+g)(x) = f(x) + g(x)
- $\bullet \ (f-g)(x) = f(x) g(x)$
- (fg)(x) = f(x)g(x)
- $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$.

Το πεδίο ορισμού των f+g, f-g, fg είναι η τομή $A\cap B$ των πεδίων ορισμού των συναρτήσεων f και g, ενώ το πεδίο ορισμού της $\frac{f}{g}$ είναι το $A\cap B$ εξαιρουμένων των τιμών του x που μηδενίζουν τον παρανομαστή g. δηλαδή

$$\{x|x\in A\cap B, g(x)\neq 0\}$$

Ορισμός 6: Σύνθεση Συναρτήσεων

Εστω f και g δύο συναρτήσεις ορισμένες στα A και B αντίστοιχα. Πώς ορίζεται η σύνθεση των συναρτήσεων f και g;

Απάντηση: Αν f, g είναι δύο συναρτήσεις με πεδίο ορισμού A, B αντιστοίχως, τότε ονομάζουμε σύνθεση της f με την g, και τη συμβολίζουμε με $g \circ f$, τη συνάρτηση με τύπο

$$(g\circ f)(x)=g(f(x))$$

Το πεδίο ορισμού της $g\circ f$ αποτελείται από όλα τα στοιχεία x του πεδίου ορισμού της f για τα οποία το f(x) ανήκει στο πεδίο ορισμού της g. Δηλαδή είναι το σύνολο $A_1=\{x\in A|f(x)\in B\}$

Ορισμός 7: Γνησίως Αύξουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ ;

Απάντηση: Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) < f(x_2)$.

Ορισμός 8: Γνησίως Φθίνουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ ;

Απάντηση: Μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) > f(x_2)$.

Ορισμός 9: Αύξουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται αύξουσα σε ένα διάστημα Δ ;

Απάντηση: Μια συνάρτηση f λέγεται αύξουσα σε ένα διάστημα Δ αν για κάθε x_1 , $x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) \le f(x_2)$.

Ορισμός 10: Φθίνουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται φθίνουσα σε ένα διάστημα Δ ;

Απάντηση: Μια συνάρτηση f λέγεται φθίνουσα σε ένα διάστημα Δ αν για κάθε x_1 , $x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) \geq f(x_2)$.

Ορισμός 11: Γνησίως Μονότονη Συνάρτηση

Πότε μια συνάρτηση f λέγεται γνησίως μονότονη σε ένα διάστημα Δ ;

Απάντηση: Μια συνάρτηση f λέγεται γνησίως μονότονη σε ένα διάστημα Δ αν είναι γνησίως αύξουσα ή γνησίως φθίνουσα σε αυτό.

Ορισμός 12: Μέγιστο

Πότε μια συνάρτηση f με πεδίο ορισμού το A θα λέμε ότι έχει μέγιστο στο x_0 ;

Απάντηση: Εστω f μια συνάρτηση με πεδίο ορισμού το A. Θα λέμε ότι η f παρουσιάζει στο $x_0 \in A$ μέγιστο το $f(x_0)$ αν ισχύει:

$$f(x_0) \ge f(x)$$
 για κάθε $x \in A$

Ορισμός 13: Ελάχιστο

Πότε μια συνάρτηση f με πεδίο ορισμού το A θα λέμε ότι έχει ελάχιστο στο x_0 ;

Απάντηση: Εστω f μια συνάρτηση με πεδίο ορισμού το A. Θα λέμε ότι η f παρουσιάζει στο $x_0 \in A$ ελάχιστο το $f(x_0)$ αν ισχύει:

$$f(x_0) \le f(x)$$
 για κάθε $x \in A$

3 από 14

Ορισμός 14: Ακρότατα

Τι ονομάζουμε ακρότατα μιας συνάρτησης f;

Απάντηση: Το μέγιστο και το ελάχιστο μιας συνάρτησης f λέγονται ολικά ακρότατα της f. \Box

Ορισμός 15: 1-1

Πότε μια συνάρτηση f λέγεται 1-1;

Απάντηση: Μια συνάρτηση f λέγεται 1-1 αν για κάθε x_1 , $x_2 \in A$ με $x_1 \neq x_2$ ισχύει $f(x_1) \neq f(x_2)$.

Ορισμός 16: Αντίστροφη Συνάρτηση

Πώς ορίζεται η αντίστροφη συνάρτηση μιας f;

Απάντηση: Εστω μια συνάρτηση $f:A\to\mathbb{R}$. Αν υποθέσουμε ότι αυτή είναι 1–1, τότε για κάθε στοιχείο y του συνόλου τιμών, f(A), της f υπάρχει μοναδικό στοιχείο x του πεδίου ορισμού της A για το οποίο ισχύει f(x)=y. Επομένως ορίζεται μια συνάρτηση $g:f(A)\to\mathbb{R}$ με την οποία κάθε $y\in f(A)$ αντιστοιχίζεται στο μοναδικό $x\in A$ για το οποίο ισχύει f(x)=y.

Ορισμός 17: Κριτήριο Παρεμβολής

Να διατυπώσετε το κριτήριο παρεμβολής

Απάντηση: Εστω οι συναρτήσεις f, g, h. Αν

- $h(x) \leq f(x) \leq g(x)$ για κάθε x κοντά στο x_0 και
- $\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = \lambda$,

τότε

$$\lim_{x\to x_0} f(x) = \lambda$$

Ορισμός 18: Ακολουθία

Να δώσετε τον ορισμό της ακολουθίας.

Απάντηση: Ακολουθία ονομάζεται κάθε πραγματική συνάρτηση $\alpha:\mathbb{N}^* o\mathbb{R}$.

Ορισμός 19: Συνέχεια σε σημείο

Να δώσετε τον ορισμό της συνέχειας σε σημείο x_0 .

Απάντηση: Εστω μια συνάρτηση f και x_0 ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x_0 , όταν

$$\lim_{x\to x_0} f(x) = f(x_0)$$

Ορισμός 20: Συνεχής Συνάρτηση

Πότε λέμε ότι μια συνάρτηση f είναι συνεχής;

Απάντηση: Μια συνάρτηση f λέγεται συνεχής αν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της. \Box

Ορισμός 21: Συνέχεια σε ανοιχτό διάστημα

Πότε λέμε ότι μια συνάρτηση f είναι συνεχής σε ένα ανοικτό διάστημα (α, β) ;

Απάντηση: Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (α, β) , όταν είναι συνεχής σε κάθε σημείο του (α, β)

Ορισμός 22: Συνέχεια σε κλειστό διάστημα

Πότε λέμε ότι μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα $[\alpha, \beta]$;

Απάντηση: Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα $[\alpha, \beta]$, όταν είναι συνεχής στο ανοιχτό (α, β) και επιπλέον

- $\bullet \ \lim\nolimits_{x \to \alpha^+} f(x) = f(\alpha)$
- $\bullet \ \lim\nolimits_{x \to \beta^-} f(x) = f(\beta)$

Ορισμός 23: Θεώρημα Bolzano

Να διατυπώσετε το θεώρημα Bolzano.

Απάντηση: Εστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα $[\alpha, \beta]$. Αν:

- η f είναι συνεχής στο $[\alpha, \beta]$ και
- $f(\alpha) \cdot f(\beta) < 0$

τότε υπάρχει ένα, τουλάχιστον, $x_0 \in (\alpha,\beta)$ τέτοιο, ώστε $f(x_0) = 0$. Δηλαδή, υπάρχει μια, τουλάχιστον, ρίζα της εξίσωσης f(x) = 0 στο ανοικτό διάστημα (α,β) .

Ορισμός 24: Γεωμετρική ερμηνεία θ. Bolzano

Να δώσετε τη γεωμετρική ερμηνεία του θεωρήματος Bolzano.

Απάντηση: Στο διπλανό σχήμα έχουμε τη γραφική παράσταση μιας συνεχούς συνάρτησης f στο $[\alpha,\beta]$. Επειδή τα σημεία $A(\alpha,f(\alpha))$ και $B(\beta,f(\beta))$ βρίσκονται εκατέρωθεν του άξονα x'x, η γραφική παράσταση της f τέμνει τον άξονα σε ένα τουλάχιστον σημείο.

Ορισμός 25: Θεώρημα Ενδιάμεσων Τιμών

Να διατυπώσετε το θεώρημα Ενδιάμεσων Τιμών.

Απάντηση: Εστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα $[\alpha, \beta]$. Αν:

- η f είναι συνεχής στο $[\alpha, \beta]$ και
- $f(\alpha) \neq f(\beta)$

τότε, για κάθε αριθμό η μεταξύ των $f(\alpha)$ και $f(\beta)$ υπάρχει ένας, τουλάχιστον $x_0\in(\alpha,\beta)$ τέτοιος, ώστε $f(x_0)=\eta$

Ορισμός 26: Γεωμετρική ερμηνεία Θ.Ε.Τ.

Να δώσετε τη γεωμετρική ερμηνεία του θεώρηματος Ενδιάμεσων Τιμών.

Απάντηση: Στο διπλανό σχήμα έχουμε τη γραφική παράσταση μιας συνεχούς συνάρτησης f στο $[\alpha,\beta]$. Επειδή η f είναι συνεχής στο $[\alpha,\beta]$, η γραφική της παράσταση είναι μια συνεχή καμπύλη. Αν η είναι ένας αριθμός μεταξύ των $f(\alpha)$ και $f(\beta)$, τότε η γραφική παράσταση της f τέμνει την οριζόντια ευθεία $g=\eta$ σε ένα τουλάχιστον σημείο.

Ορισμός 27: Θεώρημα Μέγιστης και Ελάχιστης τιμής

Να διατυπώσετε το θεώρημα μέγιστης και ελάχιστης τιμής.

Απάντηση: Αν f είναι συνεχής συνάρτηση στο $[\alpha, \beta]$, τότε η f παίρνει στο $[\alpha, \beta]$ μια μέγιστη τιμή M και μια ελάχιστη τιμή m.

Ορισμός 28: Εφαπτομένη

Πώς ορίζεται η εφαπτομένη μιας συνάρτησης f στο σημείο της $(x_0, f(x_0))$;

Απάντηση: Εστω f μια συνάρτηση και $\mathrm{A}(x_0,f(x_0))$ ένα σημείο της C_f . Αν υπάρχει το

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

και είναι ένας πραγματικός αριθμός λ , τότε ορίζουμε ως εφαπτομένη της C_f στο σημείο της A, την ευθεία ε που διέρχεται από το A και έχει συντελεστή διεύθυνσης λ .

Ορισμός 29: Παραγωγισιμότητα σε σημείο

Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη στο x_0 ;

Απάντηση: Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη σ' ένα σημείο x_0 του πεδίου ορισμού της, αν υπάρχει το

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

και είναι πραγματικός αριθμός. Το όριο αυτό ονομάζεται παράγωγος της f στο x_0 και συμβολίζεται με $f'(x_0)$. Δηλαδή:

$$f'(x_0) = \lim_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Ορισμός 30: Παραγωγίσιμη συνάρτηση

Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη στο $A \subseteq \mathbb{R}$;

Απάντηση: Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη στο $A\subseteq\mathbb{R}$, αν είναι παραγωγίσιμη σε κάθε σημείο $x\in A$.

Ορισμός 31: Παραγωγισιμότητα σε ανοικτό διάστημα

Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σε ένα ανοικτό διάστημα (α,β) του πεδίου ορισμού της;

Απάντηση: Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη σε ένα ανοικτό διάστημα (α, β) του πεδίου ορισμού της, όταν είναι παραγωγίσιμη σε κάθε σημείο $x_0 \in (\alpha, \beta)$.

Ορισμός 32: Παραγωγισιμότητα σε κλειστό διάστημα

Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σε ένα κλειστό διάστημα $[\alpha,\beta]$ του πεδίου ορισμού της;

Απάντηση: Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη σε ένα κλειστό διάστημα $[\alpha,\beta]$ του πεδίου ορισμού της, όταν είναι παραγωγίσιμη σε κάθε σημείο $x_0 \in (\alpha,\beta)$ και επιπλέον

$$\lim_{x o \alpha^+} f'(x) \in \mathbb{R}$$
 και $\lim_{x o \beta^-} f'(x) \in \mathbb{R}$

Ορισμός 33: Παράγωγος συνάρτηση

Πώς ορίζεται η παράγωγος συνάρτηση μιας f;

Απάντηση: Εστω f μια συνάρτηση με πεδίο ορισμού A και A_1 το σύνολο των σημείων του A στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε $x\in A_1$ στο f'(x), ορίζουμε τη συνάρτηση

$$f': A_1 \to \mathbb{R}$$

 $x \mapsto f'(x)$

η οποία ονομάζεται πρώτη παράγωγος της f ή απλά παράγωγος της f.

Ορισμός 34: Ρυθμός μεταβολής

Πώς ορίζεται ο ρυθμός μεταβολής του y ως προς το x στο σημείο x_0 ;

Απάντηση: Αν δύο μεταβλητά μεγέθη x,y συνδέονται με τη σχέση y=f(x), όταν f είναι μια συνάρτηση παραγωγίσιμη στο x_0 , τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x_0 την παράγωγο $f'(x_0)$.

Ορισμός 35: Θεώρημα Rolle

Να διατυπώσετε το θεώρημα Rolle.

Απάντηση: Αν μια συνάρτηση f είναι:

- συνεχής στο κλειστό διάστημα $[\alpha, \beta]$
- παραγωγίσιμη στο ανοικτό διάστημα (α, β) και
- $f(\alpha) = f(\beta)$

τότε υπάρχει ένα, τουλάχιστον, $\xi \in (\alpha, \beta)$ τέτοιο, ώστε:

$$f'(\xi) = 0$$

Ορισμός 36: Γεωμετρική ερμηνεία Θ. Rolle

Να δώσετε τη γεωμετρική ερμηνεία του θεωρήματος Rolle.

Απάντηση: Στο διπλανό σχήμα έχουμε τη γραφική παράσταση μιας συνεχούς συνάρτησης f στο $[\alpha,\beta]$. Επειδή η f είναι συνεχής στο $[\alpha,\beta]$, η γραφική της παράσταση είναι μια συνεχή καμπύλη. Επίσης, επειδή $f(\alpha)=f(\beta)$, υπάρχει τουλάχιστον ένα σημείο ξ της C_f στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα x'x. Δηλαδή, η $f'(\xi)=0$.

Ορισμός 37: Θεώρημα Μέσης Τιμής

Να διατυπώσετε το θεώρημα μέσης τιμής.

Απάντηση: Αν μια συνάρτηση f είναι:

- συνεχής στο κλειστό διάστημα $[\alpha, \beta]$
- παραγωγίσιμη στο ανοικτό διάστημα (α, β)

τότε υπάρχει ένα, τουλάχιστον, $\xi \in (\alpha, \beta)$ τέτοιο, ώστε:

$$f'(\xi) = \frac{f(\beta) - f(\alpha)}{\beta - \alpha}$$

Ορισμός 38: Γεωμετρική ερμηνεία Θ.Μ.Τ.

Να δώσετε τη γεωμετρική ερμηνεία του θεωρήματος μέσης τιμής.

Απάντηση: Στο διπλανό σχήμα έχουμε τη γραφική παράσταση μιας συνεχούς συνάρτησης f στο $[\alpha,\beta]$. Επειδή η f είναι συνεχής στο $[\alpha,\beta]$, η γραφική της παράσταση είναι μια συνεχή καμπύλη. Υπάρχει τουλάχιστον ένα σημείο ξ της C_f στο οποίο η εφαπτομένη είναι παράλληλη στην εφαπτομένη της ευθείας που ενώνει τα σημεία $A(\alpha,f(\alpha))$ και $B(\beta,f(\beta))$.

Ορισμός 39: Τοπικό μέγιστο

Πώς ορίζεται το τοπικό μέγιστο μιας συνάρτησης f στο x_0 ;

Απάντηση: Μια συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0 \in A$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$, τέτοιο ώστε

$$f(x) \le f(x_0)$$

για κάθε $x\in A\cap (x_0-\delta,x_0+\delta)$. Το x_0 λέγεται θέση ή σημείο τοπικού μεγίστου, ενώ το $f(x_0)$ το τοπικό μέγιστο της f.

Ορισμός 40: Τοπικό ελάχιστο

Πώς ορίζεται το τοπικό ελάχιστο μιας συνάρτησης f στο x_0 ;

Απάντηση: Μια συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0 \in A$ τοπικό ελάχιστο, όταν υπάρχει $\delta>0$, τέτοιο ώστε

$$f(x) \ge f(x_0)$$

για κάθε $x\in A\cap (x_0-\delta,x_0+\delta)$. Το x_0 λέγεται θέση ή σημείο τοπικού ελαχίστου, ενώ το $f(x_0)$ το τοπικό ελάχιστο της f.

Ορισμός 41: Θεώρημα Fermat

Να διατυπώσετε το θεώρημα Fermat.

Απάντηση: Εστω μια συνάρτηση f ορισμένη σ' ένα διάστημα Δ και x_0 ένα εσωτερικό σημείο του Δ . Αν η f παρουσιάζει τοπικό μέγιστο ή τοπικό ελάχιστο στο x_0 και είναι παραγωγίσιμη στο σημείο αυτό, τότε:

$$f'(x_0) = 0$$

Ορισμός 42: Πιθανές θέσεις τοπικών ακροτάτων

Εστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ . Ποιες είναι οι πιθανές θέσεις τοπικών ακροτάτων της f στο Δ ;

Απάντηση: Οι πιθανές θέσεις τοπικών ακροτάτων της f στο διάστημα Δ είναι:

- Τα εσωτερικά σημεία του Δ στα οποία η παράγωγος της f μηδενίζεται.
- Τα εσωτερικά σημεία του Δ στα οποία η f δεν παραγωγίζεται.
- Τα άκρα του Δ (αν ανήκουν στο πεδίο ορισμού της).

Ορισμός 43: Κρίσιμα σημεία

Πώς ορίζονται τα κρίσιμα σημεία μιας συνάρτησης f;

Απάντηση: Τα εσωτερικά σημεία του Δ στα οποία η f δεν παραγωγίζεται ή η παράγωγός της είναι ίση με το μηδέν, λέγονται κρίσιμα σημεία της f στο διάστημα Δ .

Ορισμός 44: Κυρτή συνάρτηση

Πώς ορίζεται μια κυρτή συνάρτηση f στο Δ ;

Απάντηση: Εστω μία συνάρτηση f συνεχής σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ . Θα λέμε ότι η συνάρτηση f στρέφει τα κοίλα προς τα κάτω ή είναι κυρτή στο Δ , αν η f' είναι γνησίως φθίνουσα στο εσωτερικό του Δ .

Ορισμός 45: Κοίλη συνάρτηση

Πώς ορίζεται μια κοίλη συνάρτηση f στο Δ ;

Απάντηση: Εστω μία συνάρτηση f συνεχής σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ . Θα λέμε ότι η συνάρτηση f στρέφει τα κοίλα προς τα πάνω ή είναι κοίλη στο Δ , αν η f' είναι γνησίως αύξουσα στο εσωτερικό του Δ .

Ορισμός 46: Σημείο καμπής

Πώς ορίζεται το σημείο καμπής μιας συνάρτησης f στο x_0 ;

Απάντηση: Εστω μια συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α, β) , με εξαίρεση ίσως ένα σημείο του x_0 . Αν

- η f είναι κυρτή στο (α, x_0) και κοίλη στο (x_0, β) , ή αντιστρόφως, και
- η C_f έχει εφαπτομένη στο σημείο $A(x_0,f(x_0))$,

τότε το σημείο $A(x_0, f(x_0))$ ονομάζεται σημείο καμπής της γραφικής παράστασης της f. \square

Ορισμός 47: Πιθανές θέσεις σημείων καμπής

Ποιες είναι οι πιθανές θέσεις σημείων καμπής μιας συνάρτησης f;

Απάντηση: Οι πιθανές θέσεις σημείων καμπής μιας συνάρτησης f σ' ένα διάστημα Δ είναι:

- Τα εσωτερικά σημεία του Δ στα οποία η f'' μηδενίζεται.
- Τα εσωτερικά σημεία του Δ στα οποία δεν υπάρχει η f''.

Ορισμός 48: Κατακόρυφη ασύμπτωτη

Πώς ορίζεται η κατακόρυφη ασύμπτωτη μιας συνάρτησης f;

Απάντηση: Αν ένα τουλάχιστον από τα όρια

$$\lim_{x\to x_0} f(x) = +\infty \ \text{\'n} \ \lim_{x\to x_0} f(x) = -\infty$$

τότε η ευθεία $x=x_0$ λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f. \square

Ορισμός 49: Οριζόντια ασύμπτωτη

Πώς ορίζεται η οριζόντια ασύμπτωτη μιας συνάρτησης f;

Απάντηση: Av $\lim_{x\to +\infty}f(x)=\lambda$ (αντιστοίχως $\lim_{x\to -\infty}f(x)=\lambda$), τότε η ευθεία $y=\lambda$ λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο $+\infty$ (αντιστοίχως στο $-\infty$).

Ορισμός 50: Ασύμπτωτη

Πώς ορίζεται η ασύμπτωτη μιας συνάρτησης f;

Απάντηση: Η ευθεία $y=\lambda x+\beta$ λέγεται ασύμπτωτη της γραφικής παράστασης της f στο $+\infty$ (αντιστοίχως στο $-\infty$), αν

$$\lim_{x \to +\infty} [f(x) - (\lambda x + \beta)] = 0$$

(αντιστοίχως $\lim_{x\to -\infty}[f(x)-(\lambda x+\beta)]=0$).

Ορισμός 51: Κανόνας de L' Hospital

Να διατυπώσετε το κανόνα de L' Hospital.

Απάντηση: Αν $\lim_{x\to x_0}f(x)=0$, $\lim_{x\to x_0}g(x)=0$, $x_0\in\mathbb{R}\cup\{-\infty,+\infty\}$ και υπάρχει το

$$\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

(περασμένο ή άπειρο), τότε:

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

Ορισμός 52: Αρχική συνάρτηση

Πώς ορίζεται η αρχική συνάρτηση μιας f;

Απάντηση: Εστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ . Αρχική συνάρτηση ή παράγωγος της f στο Δ ονομάζεται κάθε συνάρτηση F που είναι παραγωγίσιμη στο Δ και ισχύει

$$F'(x) = f(x)$$
, για κάθε $x \in \Delta$

Ορισμός 53: Ορισμένο ολοκλήρωμα

Πώς ορίζεται το ορισμένο ολοκλήρωμα μιας f στο $[\alpha, \beta]$;

Απάντηση: Εστω f μια συνάρτηση ορισμένη στο $[\alpha, \beta]$. Το ορισμένο ολοκλήρωμα της f στο $[\alpha, \beta]$ ορίζεται ως το όριο

$$\lim_{n\to\infty}\sum_{i=1}^n f(\xi_i)\Delta x$$

όπου $\Delta x = \frac{b-a}{n}$ και $\xi_i \in [x_{i-1}, x_i]$, έτσι

$$\int_{\alpha}^{\beta} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \Delta x$$

Ορισμός 54: Θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού

Να διατυπώσετε το θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού.

Απάντηση: Εστω f μια συνεχής συνάρτηση σ' ένα διάστημα [α, β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε

$$\int_{\alpha}^{\beta} f(x) dx = G(\beta) - G(\alpha)$$

Ευρετήριο

1-1, 4 κοίλη συνάρτηση, 11 ακολουθία, 4 κρίσιμα σημεία, 11 ακρότατα, 4 κριτήριο παρεμβολής, 4 αντίστροφη συνάρτηση, 4 κυρτή συνάρτηση, 11 αρχική συνάρτηση, 12 μέγιστο, 3 ασύμπτωτη, 12 οριζόντια ασύμπτωτη, 12 αύξουσα συνάρτηση, 3 ορισμένο ολοκλήρωμα, 13 γεωμετρική ερμηνεία θ. rolle, 8 παράγωγος συνάρτηση, 8 γεωμετρική ερμηνεία θ.ε.τ., 6 παραγωγίσιμη συνάρτηση, 7 γεωμετρική ερμηνεία θ.μ.τ., 9 παραγωγισιμότητα σε ανοικτό διάστημα, 7 γεωμετρική ερμηνεία θ. bolzano , 5 παραγωγισιμότητα σε κλειστό διάστημα, 8 γνησίως αύξουσα συνάρτηση, 2 παραγωγισιμότητα σε σημείο, 7 γνησίως μονότονη συνάρτηση, 3 πιθανές θέσεις σημείων καμπής, 11 γνησίως φθίνουσα συνάρτηση, 3 πιθανές θέσεις τοπικών ακροτάτων, 10 γραφική παράσταση, 1 πράξεις συναρτήσεων, 2 ελάχιστο, 3 πραγματική συνάρτηση, 1 εφαπτομένη, 7 ρυθμός μεταβολής, 8 θεμελιώδες θεώρημα του ολοκληρωτικού σημείο καμπής, 11 λογισμού, 13 συνέχεια σε ανοιχτό διάστημα, 5 θεώρημα bolzano, 5 συνέχεια σε κλειστό διάστημα, 5 θεώρημα fermat, 10 συνέχεια σε σημείο, 4 θεώρημα rolle, 8 συνεχής συνάρτηση, 5 θεώρημα ενδιάμεσων τιμών, 6 σύνθεση συναρτήσεων, 2 θεώρημα μέγιστης και ελάχιστης τιμής, 7 σύνολο τιμών, 1 θεώρημα μέσης τιμής, 9 τοπικό ελάχιστο, 10 ισότητα συναρτήσεων, 1 τοπικό μέγιστο, 10 κανόνας de l' hospital, 12 κατακόρυφη ασύμπτωτη, 11 φθίνουσα συνάρτηση, 3