Choice of Prior Distributions

STA721 Linear Models Duke University

Merlise Clyde

September 23, 2019

Model

$$\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}_n/\phi)$$

precision
$$\phi = 1/\sigma^2$$

Model

$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}_n/\phi)$$

precision
$$\phi = 1/\sigma^2$$

Normal-Gamma Conjugate prior $NG(\mathbf{b}_0, \Phi_0, \mathbf{v}_0, SS_0)$

$$\Phi_{n} = \mathbf{X}^{T}\mathbf{X} + \Phi_{0}
\mathbf{b}_{n} = \Phi_{n}^{-1}(\mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}} + \Phi_{0}\mathbf{b}_{0})
\nu_{n} = \nu_{0} + n
SS_{n} = SSE + SS_{0} + \hat{\boldsymbol{\beta}}^{T}\mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{b}_{0}^{T}\Phi_{0}\mathbf{b}_{0} - \mathbf{b}_{n}^{T}\Phi_{n}\mathbf{b}_{n}
\hat{\sigma}_{n}^{2} \equiv SS_{n}/\nu_{n}$$

Model

$$\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}_n/\phi)$$

precision $\phi = 1/\sigma^2$

Normal-Gamma Conjugate prior $NG(\mathbf{b}_0, \Phi_0, \mathbf{v}_0, SS_0)$

$$\begin{aligned}
\Phi_n &= \mathbf{X}^T \mathbf{X} + \Phi_0 \\
\mathbf{b}_n &= \Phi_n^{-1} (\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} + \Phi_0 \mathbf{b}_0) \\
\nu_n &= \nu_0 + n \\
SS_n &= SSE + SS_0 + \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} + \mathbf{b}_0^T \Phi_0 \mathbf{b}_0 - \mathbf{b}_n^T \Phi_n \mathbf{b}_n \\
\hat{\sigma}_n^2 &= SS_n / \nu_n
\end{aligned}$$

Posterior Distribution

$$\boldsymbol{\beta} \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, (\phi \Phi_n)^{-1})$$

Model

$$\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}_n/\phi)$$

precision $\phi = 1/\sigma^2$

Normal-Gamma Conjugate prior $NG(\mathbf{b}_0, \Phi_0, \mathbf{v}_0, SS_0)$

$$\begin{aligned}
\Phi_n &= \mathbf{X}^T \mathbf{X} + \Phi_0 \\
\mathbf{b}_n &= \Phi_n^{-1} (\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} + \Phi_0 \mathbf{b}_0) \\
\nu_n &= \nu_0 + n \\
SS_n &= SSE + SS_0 + \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} + \mathbf{b}_0^T \Phi_0 \mathbf{b}_0 - \mathbf{b}_n^T \Phi_n \mathbf{b}_n \\
\hat{\sigma}_n^2 &\equiv SS_n / \nu_n
\end{aligned}$$

Posterior Distribution

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, (\phi \Phi_n)^{-1})$$
 $\phi \mid \mathbf{Y} \sim \mathsf{G}(\frac{\nu_n}{2}, \frac{\nu_n \hat{\sigma}_n^2}{2})$

Marginal Distribution from Normal-Gamma

Theorem

Let $\theta \mid \phi \sim N(m, \frac{1}{\phi}\Sigma)$ and $\phi \sim \mathbf{G}(\nu/2, \nu \hat{\sigma}^2/2)$. Then \mathbf{t} $(p \times 1)$ has a p dimensional multivariate t distribution

$$\theta \sim t_{\nu}(m,\hat{\sigma}^2\Sigma)$$

with density

$$p(oldsymbol{ heta}) \propto \left[1 + rac{1}{
u} rac{(oldsymbol{ heta} - oldsymbol{m})^T \Sigma^{-1} (oldsymbol{ heta} - oldsymbol{m})}{\hat{\sigma}^2}
ight]^{-rac{oldsymbol{ heta} + oldsymbol{ heta}}{2}}$$

Marginal density
$$p(\theta) = \int p(\theta \mid \phi) p(\phi) d\phi$$

$$p(\theta) \propto \int |\Sigma/\phi|^{-1/2} e^{-\frac{\phi}{2}(\theta-m)^T \Sigma^{-1}(\theta-m)} \phi^{\nu/2-1} e^{-\phi \frac{\nu \hat{\sigma}^2}{2}} d\phi$$

$$p(\boldsymbol{\theta}) \propto \int |\Sigma/\phi|^{-1/2} e^{-\frac{\phi}{2}(\boldsymbol{\theta}-m)^T \Sigma^{-1}(\boldsymbol{\theta}-m)} \phi^{\nu/2-1} e^{-\phi \frac{\nu \hat{\sigma}^2}{2}} d\phi$$
$$\propto \int \phi^{p/2} \phi^{\nu/2-1} e^{-\phi \frac{(\boldsymbol{\theta}-m)^T \Sigma^{-1}(\boldsymbol{\theta}-m)+\nu \hat{\sigma}^2}{2}} d\phi$$

$$p(\theta) \propto \int |\Sigma/\phi|^{-1/2} e^{-\frac{\phi}{2}(\theta-m)^T \Sigma^{-1}(\theta-m)} \phi^{\nu/2-1} e^{-\phi \frac{\nu \hat{\sigma}^2}{2}} d\phi$$

$$\propto \int \phi^{p/2} \phi^{\nu/2-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi$$

$$\propto \int \phi^{\frac{p+\nu}{2}-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi$$

$$p(\theta) \propto \int |\Sigma/\phi|^{-1/2} e^{-\frac{\phi}{2}(\theta-m)^T \Sigma^{-1}(\theta-m)} \phi^{\nu/2-1} e^{-\phi \frac{\nu \hat{\sigma}^2}{2}} d\phi$$

$$\propto \int \phi^{p/2} \phi^{\nu/2-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi$$

$$\propto \int \phi^{\frac{p+\nu}{2}-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi$$

$$= \Gamma((p+\nu)/2) \left(\frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2} \right)^{-\frac{p+\nu}{2}}$$

$$p(\theta) \propto \int |\Sigma/\phi|^{-1/2} e^{-\frac{\phi}{2}(\theta-m)^T \Sigma^{-1}(\theta-m)} \phi^{\nu/2-1} e^{-\phi \frac{\nu \hat{\sigma}^2}{2}} d\phi$$

$$\propto \int \phi^{p/2} \phi^{\nu/2-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi$$

$$\propto \int \phi^{\frac{p+\nu}{2}-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi$$

$$= \Gamma((p+\nu)/2) \left(\frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2} \right)^{-\frac{p+\nu}{2}}$$

$$\propto ((\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2)^{-\frac{p+\nu}{2}}$$

$$\begin{split} \rho(\theta) & \propto \int |\Sigma/\phi|^{-1/2} e^{-\frac{\phi}{2}(\theta-m)^T \Sigma^{-1}(\theta-m)} \phi^{\nu/2-1} e^{-\phi \frac{\nu \hat{\sigma}^2}{2}} d\phi \\ & \propto \int \phi^{p/2} \phi^{\nu/2-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi \\ & \propto \int \phi^{\frac{p+\nu}{2}-1} e^{-\phi \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2}} d\phi \\ & = \Gamma((p+\nu)/2) \left(\frac{(\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2}{2} \right)^{-\frac{p+\nu}{2}} \\ & \propto \left((\theta-m)^T \Sigma^{-1}(\theta-m)+\nu \hat{\sigma}^2 \right)^{-\frac{p+\nu}{2}} \\ & \propto \left(1 + \frac{1}{\nu} \frac{(\theta-m)^T \Sigma^{-1}(\theta-m)}{\hat{\sigma}^2} \right)^{-\frac{p+\nu}{2}} \end{split}$$

$$\boldsymbol{\beta} \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, \phi^{-1} \Phi_n^{-1})$$

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, \phi^{-1}\Phi_n^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}\left(\frac{\nu_n}{2}, \frac{\mathsf{SS}_n}{2}\right)$

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, \phi^{-1}\Phi_n^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}\left(\frac{\nu_n}{2}, \frac{\mathsf{SS}_n}{2}\right)$

Let $\hat{\sigma}^2 = SS_n/\nu_n$ (Bayesian MSE)

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, \phi^{-1}\Phi_n^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathbf{G}\left(\frac{\nu_n}{2}, \frac{\mathsf{SS}_n}{2}\right)$

Let $\hat{\sigma}^2 = SS_n/\nu_n$ (Bayesian MSE) Then the marginal posterior distribution of β is

$$eta \mid \mathbf{Y} \sim t_{\nu_n}(\mathbf{b}_n, \hat{\sigma}^2 \Phi_n^{-1})$$

Marginal Posterior Distribution of $oldsymbol{eta}$

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, \phi^{-1}\Phi_n^{-1})$$
 $\phi \mid \mathbf{Y} \sim \mathsf{G}\left(\frac{\nu_n}{2}, \frac{\mathsf{SS}_n}{2}\right)$

Let $\hat{\sigma}^2 = SS_n/\nu_n$ (Bayesian MSE) Then the marginal posterior distribution of $\boldsymbol{\beta}$ is

$$\boldsymbol{\beta} \mid \mathbf{Y} \sim t_{\nu_n}(\mathbf{b}_n, \hat{\sigma}^2 \Phi_n^{-1})$$

Any linear combination $\lambda^T \beta$

$$\lambda^T \boldsymbol{\beta} \mid \mathbf{Y} \sim t_{\nu_n}(\lambda^T \mathbf{b}_n, \hat{\sigma}^2 \lambda^T \Phi_n^{-1} \lambda)$$

has a univariate t distribution with ν_n degrees of freedom

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim N(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$ and is conditionally independent of **Y** given $\boldsymbol{\beta}$ and ϕ

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim N(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$ and is conditionally independent of **Y** given $\boldsymbol{\beta}$ and ϕ

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim \mathsf{N}(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$ and is conditionally independent of **Y** given β and ϕ

What is the predictive distribution of $\mathbf{Y}^* \mid \mathbf{Y}$?

 $\mathbf{Y}^* = \mathbf{X}^* \boldsymbol{\beta} + \boldsymbol{\epsilon}^*$ and $\boldsymbol{\epsilon}^*$ is independent of \mathbf{Y} given ϕ

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim \mathsf{N}(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$ and is conditionally independent of **Y** given β and ϕ

$$\mathbf{Y}^* = \mathbf{X}^*oldsymbol{eta} + oldsymbol{\epsilon}^*$$
 and $oldsymbol{\epsilon}^*$ is independent of \mathbf{Y} given ϕ

$$\mathbf{X}^* \boldsymbol{\beta} + \boldsymbol{\epsilon}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^* \mathbf{b}_n, (\mathbf{X}^* \boldsymbol{\Phi}_n^{-1} \mathbf{X}^{*T} + \mathbf{I})/\phi)$$

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim \mathsf{N}(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$ and is conditionally independent of **Y** given β and ϕ

$$\mathbf{Y}^* = \mathbf{X}^*oldsymbol{eta} + oldsymbol{\epsilon}^*$$
 and $oldsymbol{\epsilon}^*$ is independent of \mathbf{Y} given ϕ

$$\mathbf{X}^* \boldsymbol{\beta} + \boldsymbol{\epsilon}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^* \mathbf{b}_n, (\mathbf{X}^* \boldsymbol{\Phi}_n^{-1} \mathbf{X}^{*T} + \mathbf{I})/\phi)$$

 $\mathbf{Y}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^* \mathbf{b}_n, (\mathbf{X}^* \boldsymbol{\Phi}_n^{-1} \mathbf{X}^{*T} + \mathbf{I})/\phi)$

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim N(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$ and is conditionally independent of **Y** given β and ϕ

$$\mathbf{Y}^* = \mathbf{X}^*oldsymbol{eta} + oldsymbol{\epsilon}^*$$
 and $oldsymbol{\epsilon}^*$ is independent of \mathbf{Y} given ϕ

$$\mathbf{X}^*\boldsymbol{\beta} + \boldsymbol{\epsilon}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi)$$

$$\mathbf{Y}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi)$$

$$\phi \mid \mathbf{Y} \sim \mathbf{G}\left(\frac{\nu_n}{2}, \frac{\hat{\sigma}^2\nu_n}{2}\right)$$

Suppose $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim N(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$ and is conditionally independent of **Y** given β and ϕ

$$\mathbf{Y}^* = \mathbf{X}^*oldsymbol{eta} + oldsymbol{\epsilon}^*$$
 and $oldsymbol{\epsilon}^*$ is independent of \mathbf{Y} given ϕ

$$\mathbf{X}^*\boldsymbol{\beta} + \boldsymbol{\epsilon}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi)$$

$$\mathbf{Y}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi)$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}\left(\frac{\nu_n}{2}, \frac{\hat{\sigma}^2\nu_n}{2}\right)$$

$$\mathbf{Y}^* \mid \mathbf{Y} \sim t_{\nu_n}(\mathbf{X}^*\mathbf{b}_n, \hat{\sigma}^2(\mathbf{I} + \mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^T))$$

Definition

A class of prior distributions \mathcal{P} for θ is conjugate for a sampling model $p(y \mid \theta)$ if for every $p(\theta) \in \mathcal{P}$, $p(\theta \mid \mathbf{Y}) \in \mathcal{P}$.

Definition

A class of prior distributions \mathcal{P} for θ is conjugate for a sampling model $p(y \mid \theta)$ if for every $p(\theta) \in \mathcal{P}$, $p(\theta \mid \mathbf{Y}) \in \mathcal{P}$.

Definition

A class of prior distributions \mathcal{P} for θ is conjugate for a sampling model $p(y \mid \theta)$ if for every $p(\theta) \in \mathcal{P}$, $p(\theta \mid \mathbf{Y}) \in \mathcal{P}$.

Advantages:

 Closed form distributions for most quantities; bypass MCMC for calculations

Definition

A class of prior distributions \mathcal{P} for θ is conjugate for a sampling model $p(y \mid \theta)$ if for every $p(\theta) \in \mathcal{P}$, $p(\theta \mid \mathbf{Y}) \in \mathcal{P}$.

- Closed form distributions for most quantities; bypass MCMC for calculations
- Simple updating in terms of sufficient statistics "weighted average"

Definition

A class of prior distributions \mathcal{P} for $\boldsymbol{\theta}$ is conjugate for a sampling model $p(y \mid \boldsymbol{\theta})$ if for every $p(\boldsymbol{\theta}) \in \mathcal{P}$, $p(\boldsymbol{\theta} \mid \mathbf{Y}) \in \mathcal{P}$.

- Closed form distributions for most quantities; bypass MCMC for calculations
- Simple updating in terms of sufficient statistics "weighted average"
- Interpretation as prior samples prior sample size

Definition

A class of prior distributions \mathcal{P} for $\boldsymbol{\theta}$ is conjugate for a sampling model $p(y \mid \boldsymbol{\theta})$ if for every $p(\boldsymbol{\theta}) \in \mathcal{P}$, $p(\boldsymbol{\theta} \mid \mathbf{Y}) \in \mathcal{P}$.

- Closed form distributions for most quantities; bypass MCMC for calculations
- Simple updating in terms of sufficient statistics "weighted average"
- ▶ Interpretation as prior samples prior sample size
- Elicitation of prior through imaginary or historical data

Definition

A class of prior distributions \mathcal{P} for $\boldsymbol{\theta}$ is conjugate for a sampling model $p(y \mid \boldsymbol{\theta})$ if for every $p(\boldsymbol{\theta}) \in \mathcal{P}$, $p(\boldsymbol{\theta} \mid \mathbf{Y}) \in \mathcal{P}$.

- Closed form distributions for most quantities; bypass MCMC for calculations
- Simple updating in terms of sufficient statistics "weighted average"
- ▶ Interpretation as prior samples prior sample size
- Elicitation of prior through imaginary or historical data
- ▶ limiting "non-proper" form recovers MLEs

Definition

A class of prior distributions \mathcal{P} for $\boldsymbol{\theta}$ is conjugate for a sampling model $p(y \mid \boldsymbol{\theta})$ if for every $p(\boldsymbol{\theta}) \in \mathcal{P}$, $p(\boldsymbol{\theta} \mid \mathbf{Y}) \in \mathcal{P}$.

Advantages:

- Closed form distributions for most quantities; bypass MCMC for calculations
- Simple updating in terms of sufficient statistics "weighted average"
- ▶ Interpretation as prior samples prior sample size
- Elicitation of prior through imaginary or historical data
- ▶ limiting "non-proper" form recovers MLEs

Choice of conjugate prior?

Unit Information Prior

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

Unit Information Prior

Unit information prior $\beta \mid \phi \sim \mathsf{N}(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

▶ Fisher Information is $\phi \mathbf{X}^T \mathbf{X}$ based on a sample of nobservations

Unit Information Prior

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- ▶ Fisher Information is $\phi \mathbf{X}^T \mathbf{X}$ based on a sample of nobservations
- ▶ Inverse Fisher information is covariance matrix of MLE

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- ▶ Fisher Information is $\phi \mathbf{X}^T \mathbf{X}$ based on a sample of nobservations
- Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- ► Fisher Information is $\phi \mathbf{X}^T \mathbf{X}$ based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation

Unit information prior $\beta \mid \phi \sim N(\hat{\beta}, n(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- ► Fisher Information is $\phi \mathbf{X}^T \mathbf{X}$ based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation
- Posterior mean

$$\frac{n}{1+n}\hat{\boldsymbol{\beta}} + \frac{1}{1+n}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}$$

Unit information prior $\beta \mid \phi \sim \mathsf{N}(\hat{\beta}, \mathsf{n}(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- ► Fisher Information is $\phi \mathbf{X}^T \mathbf{X}$ based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation
- Posterior mean

$$\frac{n}{1+n}\hat{\boldsymbol{\beta}} + \frac{1}{1+n}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}$$

Posterior Distribution

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(\hat{oldsymbol{eta}}, rac{n}{1+n} (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1}
ight)$$

Unit information prior $\beta \mid \phi \sim \mathsf{N}(\hat{\beta}, \mathsf{n}(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

- ► Fisher Information is $\phi \mathbf{X}^T \mathbf{X}$ based on a sample of n observations
- ▶ Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation
- ▶ Posterior mean

$$\frac{n}{1+n}\hat{\boldsymbol{\beta}} + \frac{1}{1+n}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}$$

Posterior Distribution

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(\hat{oldsymbol{eta}}, rac{n}{1+n} (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1}
ight)$$

Cannot represent real prior beliefs; double use of data but has the "right" behaviour.

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{oldsymbol{g}}{1+oldsymbol{g}}\hat{oldsymbol{eta}} + rac{1}{1+oldsymbol{g}}\mathbf{b}_0, rac{oldsymbol{g}}{1+oldsymbol{g}}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

Zellner's g-prior(s) $\beta \mid \phi \sim N(\mathbf{b}_0, g(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{oldsymbol{g}}{1+oldsymbol{g}}\hat{oldsymbol{eta}} + rac{1}{1+oldsymbol{g}}\mathbf{b}_0, rac{oldsymbol{g}}{1+oldsymbol{g}}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

Invariance: Require posterior of $X\beta$ equal the posterior of $XH\alpha$

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{oldsymbol{g}}{1+oldsymbol{g}}\hat{oldsymbol{eta}} + rac{1}{1+oldsymbol{g}}\mathbf{b}_0, rac{oldsymbol{g}}{1+oldsymbol{g}}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

- Invariance: Require posterior of $X\beta$ equal the posterior of $XH\alpha \ (a_0 = H^{-1}b_0) \ (\text{ take } b_0 = 0)$
- Choice of g?

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{oldsymbol{g}}{1+oldsymbol{g}} \hat{oldsymbol{eta}} + rac{1}{1+oldsymbol{g}} \mathbf{b_0}, rac{oldsymbol{g}}{1+oldsymbol{g}} (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1}
ight)$$

- Invariance: Require posterior of $X\beta$ equal the posterior of $XH\alpha \ (a_0 = H^{-1}b_0) \ (\text{ take } b_0 = 0)$
- Choice of g?
- $ightharpoonup \frac{g}{1+g}$ weight given to the data

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b}_0, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

- Invariance: Require posterior of $X\beta$ equal the posterior of $XH\alpha \ (a_0 = H^{-1}b_0) \ (\text{ take } b_0 = 0)$
- Choice of g?
- $ightharpoonup \frac{g}{1+g}$ weight given to the data
- ▶ Fixed g effect does not vanish as $n \to \infty$
- ▶ Use g = n or place a prior distribution on g

Shrinkage

Posterior mean under *g*-prior with $\mathbf{b}_0 = 0$ $\frac{g}{1+g}\hat{\boldsymbol{\beta}}$

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

$$p(\theta) \propto |\Im(\theta)|^{1/2}$$

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

$$p(\theta) \propto |\Im(\theta)|^{1/2}$$

where $\mathfrak{I}(\theta)$ is the Expected Fisher Information matrix

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

$$p(\theta) \propto |\Im(\theta)|^{1/2}$$

where $\Im(\theta)$ is the Expected Fisher Information matrix

$$\mathbb{J}(\boldsymbol{\theta}) = -\mathsf{E}\left[\left[\frac{\partial^2 \log(\mathcal{L}(\boldsymbol{\theta}))}{\partial \theta_i \partial \theta_j}\right]\right]$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2}\log(\phi) - \frac{\phi}{2}\|(\mathbf{I} - \mathbf{P_x})\mathbf{Y}\|^2 - \frac{\phi}{2}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T(\mathbf{X}^T\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2} \log(\phi) - \frac{\phi}{2} \|(\mathbf{I} - \mathbf{P_x})\mathbf{Y}\|^2 - \frac{\phi}{2} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\frac{\partial^2 \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} = \begin{bmatrix} -\phi(\mathbf{X}^T \mathbf{X}) & -(\mathbf{X}^T \mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \\ -(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) & -\frac{n}{2} \frac{1}{\phi^2} \end{bmatrix}$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2} \log(\phi) - \frac{\phi}{2} \|(\mathbf{I} - \mathbf{P_x})\mathbf{Y}\|^2 - \frac{\phi}{2} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & -(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \\ -(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X}) & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
E\left[\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}\right] = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix}$$

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2} \log(\phi) - \frac{\phi}{2} \|(\mathbf{I} - \mathbf{P_x})\mathbf{Y}\|^2 - \frac{\phi}{2} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & -(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \\ -(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X}) & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
\mathsf{E}\left[\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}\right] = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
\mathfrak{I}((\boldsymbol{\beta}, \phi)^{T}) = \begin{bmatrix} \phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & \frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix}$$

$$p_J(\boldsymbol{\beta}, \phi) \propto |\Im((\boldsymbol{\beta}, \phi)^T)|^{1/2}$$

$$\rho_{J}(\boldsymbol{\beta}, \phi) \propto |\mathfrak{I}((\boldsymbol{\beta}, \phi)^{T})|^{1/2}$$
$$= |\phi(\mathbf{X}^{T}\mathbf{X})^{1/2} \left(\frac{n}{2}\frac{1}{\phi^{2}}\right)^{1/2}$$

$$\rho_{J}(\beta, \phi) \propto |\mathfrak{I}((\beta, \phi)^{T})|^{1/2}$$

$$= |\phi(\mathbf{X}^{T}\mathbf{X}|^{1/2} \left(\frac{n}{2}\frac{1}{\phi^{2}}\right)^{1/2}$$

$$\propto \phi^{p/2-1}|\mathbf{X}^{T}\mathbf{X}|^{1/2}$$

$$p_{J}(\beta, \phi) \propto |\mathfrak{I}((\beta, \phi)^{T})|^{1/2}$$

$$= |\phi(\mathbf{X}^{T}\mathbf{X}|^{1/2} \left(\frac{n}{2} \frac{1}{\phi^{2}}\right)^{1/2}$$

$$\propto \phi^{p/2-1} |\mathbf{X}^{T}\mathbf{X}|^{1/2}$$

$$\propto \phi^{p/2-1}$$

Jeffreys Prior

$$\begin{aligned} \rho_{J}(\boldsymbol{\beta}, \phi) & \propto & |\Im((\boldsymbol{\beta}, \phi)^{T})|^{1/2} \\ &= & |\phi(\mathbf{X}^{T}\mathbf{X}|^{1/2} \left(\frac{n}{2} \frac{1}{\phi^{2}}\right)^{1/2} \\ & \propto & \phi^{p/2-1} |\mathbf{X}^{T}\mathbf{X}|^{1/2} \\ & \propto & \phi^{p/2-1} \end{aligned}$$

Improper prior $\iint p_J(\beta, \phi) d\beta d\phi$ not finite

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) \phi^{p/2-1}$$

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) \phi^{p/2-1}$$

if this is integrable, then renormalize to obtain formal posterior distribution

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) \phi^{p/2-1}$$

if this is integrable, then renormalize to obtain formal posterior distribution

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{eta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}(n/2, \|\mathbf{Y} - \mathbf{X}\hat{eta}\|^2/2)$

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) \phi^{p/2-1}$$

if this is integrable, then renormalize to obtain formal posterior distribution

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{eta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}(n/2, \|\mathbf{Y} - \mathbf{X}\hat{eta}\|^2/2)$

Limiting case of Conjugate prior with $\boldsymbol{b}_0=0,~\Phi=\boldsymbol{0},~\nu_0=0$ and $SS_0=0$

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) \phi^{p/2-1}$$

if this is integrable, then renormalize to obtain formal posterior distribution

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{eta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}(n/2, \|\mathbf{Y} - \mathbf{X}\hat{eta}\|^2/2)$

Limiting case of Conjugate prior with $\mathbf{b}_0=0,\ \Phi=\mathbf{0},\ \nu_0=0$ and $SS_0=0$

Posterior does not depend on dimension p;

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) \phi^{p/2-1}$$

if this is integrable, then renormalize to obtain formal posterior distribution

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{eta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}(n/2, \|\mathbf{Y} - \mathbf{X}\hat{eta}\|^2/2)$

Limiting case of Conjugate prior with $\boldsymbol{b}_0=0,~\Phi=\boldsymbol{0},~\nu_0=0$ and $SS_0=0$

Posterior does not depend on dimension *p*;

Jeffreys did not recommend using this

▶ Treat β and ϕ separately ("orthogonal parameterization")

- \blacktriangleright Treat β and ϕ separately ("orthogonal parameterization")
- $ightharpoonup p_{IJ}(\beta) \propto |\mathfrak{I}(\beta)|^{1/2}$

- ▶ Treat β and ϕ separately ("orthogonal parameterization")
- $ightharpoonup p_{IJ}(\beta) \propto |\mathfrak{I}(\beta)|^{1/2}$
- $ightharpoonup p_U(\phi) \propto |\mathfrak{I}(\phi)|^{1/2}$

- \blacktriangleright Treat β and ϕ separately ("orthogonal parameterization")
- $ightharpoonup p_{IJ}(\beta) \propto |\mathfrak{I}(\beta)|^{1/2}$
- \triangleright $p_{IJ}(\phi) \propto |\Im(\phi)|^{1/2}$

$$\mathbb{I}((\boldsymbol{\beta}, \phi)^T) = \begin{bmatrix} \phi(\mathbf{X}^T \mathbf{X}) & \mathbf{0}_p \\ \mathbf{0}_p^T & \frac{n}{2} \frac{1}{\phi^2} \end{bmatrix}$$

- ightharpoonup Treat β and ϕ separately ("orthogonal parameterization")
- $ightharpoonup p_U(\beta) \propto |\mathfrak{I}(\beta)|^{1/2}$
- \triangleright $p_{IJ}(\phi) \propto |\Im(\phi)|^{1/2}$

$$\mathbb{J}((\boldsymbol{\beta}, \phi)^T) = \begin{bmatrix} \phi(\mathbf{X}^T \mathbf{X}) & \mathbf{0}_p \\ \mathbf{0}_p^T & \frac{n}{2} \frac{1}{\phi^2} \end{bmatrix}$$

$$p_{IJ}(\boldsymbol{eta}) \propto |\phi \mathbf{X}^T \mathbf{X}|^{1/2} \propto 1$$

Independent Jeffreys Prior

- ightharpoonup Treat β and ϕ separately ("orthogonal parameterization")
- $ightharpoonup p_U(\beta) \propto |\mathfrak{I}(\beta)|^{1/2}$
- \triangleright $p_{IJ}(\phi) \propto |\mathfrak{I}(\phi)|^{1/2}$

$$\mathbb{J}((\boldsymbol{\beta}, \phi)^T) = \begin{bmatrix} \phi(\mathbf{X}^T \mathbf{X}) & \mathbf{0}_p \\ \mathbf{0}_p^T & \frac{n}{2} \frac{1}{\phi^2} \end{bmatrix}$$

$$p_{IJ}(\boldsymbol{\beta}) \propto |\phi \mathbf{X}^T \mathbf{X}|^{1/2} \propto 1$$

$$p_{IJ}(\phi) \propto \phi^{-1}$$

Independent Jeffreys Prior

- lacktriangle Treat eta and ϕ separately ("orthogonal parameterization")
- $ightharpoonup p_{IJ}(oldsymbol{eta}) \propto |\Im(oldsymbol{eta})|^{1/2}$
- $ightharpoonup p_{IJ}(\phi) \propto |\Im(\phi)|^{1/2}$

$$\mathbb{J}((\boldsymbol{\beta}, \phi)^T) = \begin{bmatrix} \phi(\mathbf{X}^T \mathbf{X}) & \mathbf{0}_p \\ \mathbf{0}_p^T & \frac{n}{2} \frac{1}{\phi^2} \end{bmatrix}$$

$$p_{IJ}(\boldsymbol{\beta}) \propto |\phi \mathbf{X}^T \mathbf{X}|^{1/2} \propto 1$$

$$p_{IJ}(\phi) \propto \phi^{-1}$$

Independent Jeffreys Prior is

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

$$\boldsymbol{\beta} \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\boldsymbol{\beta}}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{eta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

 $\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, \|\mathbf{Y} - \mathbf{X}\hat{eta}\|^2/2)$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

$$\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\beta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, ||\mathbf{Y} - \mathbf{X}\hat{\beta}||^2/2)$$

$$\beta \mid \mathbf{Y} \sim t_{n-p}(\hat{\beta}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1})$$

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

Formal Posterior Distribution

$$\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\beta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, ||\mathbf{Y} - \mathbf{X}\hat{\beta}||^2/2)$$

$$\beta \mid \mathbf{Y} \sim t_{n-p}(\hat{\beta}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1})$$

Bayesian Credible Sets $p(\beta \in C_{\alpha}) = 1 - \alpha$ correspond to frequentist Confidence Regions

$$rac{oldsymbol{\lambda}^Toldsymbol{eta}-oldsymbol{\lambda}\hat{eta}}{\sqrt{\hat{\sigma}^2oldsymbol{\lambda}^T(oldsymbol{\mathsf{X}}^Toldsymbol{\mathsf{X}})^{-1}oldsymbol{\lambda}}}\sim t_{n-
ho}$$

Disadvantages:

Disadvantages:

▶ Results may have be sensitive to prior "outliers" due to linear updating

Disadvantages:

 Results may have be sensitive to prior "outliers" due to linear updating

Cannot capture all possible prior beliefs

Disadvantages:

 Results may have be sensitive to prior "outliers" due to linear updating

- Cannot capture all possible prior beliefs
- ► Mixtures of Conjugate Priors