

INFRARED REMOTE CONTROL TRANSMITTER

DESCRIPTION

The SC6122 is a remote control transmitter utilizing CMOS Technology specially designed for use on infrared remote control applications. It is capable of controlling 64 function keys and 3 double keys. SC6122 is housed in a 24-pins SO package.

FEATURES

- * CMOS Technology
- * Low Operating Voltage (VDD=2.0~5.5V)
- * Using SEL pin, SC6122 can support 128+6 function codes
- * Customer Code can be selected

APPLICATIONS

- * TV and VCR
- * Audio Equipment
- * Air Conditioner
- * VCD and DVD ROM/Player
- * Moniputer/Multi-Media Personal Computer System

ORDERING INFORMATION

SC6122-001	ROM Content=0
SC6122-002	Custom Version

PIN CONFIGURATION

—— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD —

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING (Tamb=25°C, unless otherwise specified)

	,	<u>'</u>	
Characteristic	Symbol	Value	Unit
Supply Voltage	VDD	6.0	V
Input Voltage	VIN	-0.3~VDD	V
Power Dissipation	Pd	250	mW
Storage Temperature	Tstg	-40~+125	°C
Operating Temperature	Topr	-20~+75	°C

RECOMMENDED OPERATING CONDITIONS (Tamb=25°C, unless otherwise specified)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	2.0	3.0	3.3	V
Oscillation Frequency	fosc	400	455	500	KHz
Input Voltage	Vin	0		VDD	V
Custom Code Select Pull-Up	Rup		100		ΚΩ
Resistance					

----- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD -----

ELECTRICAL CHARACTERISTICS (Tamb=25°C,VDD=3.0V,unless otherwise specified)

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Supply Voltage	V _{DD}		2.0	3.0	5.5	V
Current Consumption 1	IDD1	Fosc =455KHz		0.1	1.0	mA
Current Consumption 2	I _{DD2}	Fosc =STOP			1.0	μΑ
REM High Level Output Current	Іон1	Vo=1.5V	-5.0	-8.0		mA
REM Low Level Output Current	lo _{L1}	Vo=0.3V	15	30		μΑ
LMP High Level Output Current	IOH2	Vo=2.7V	-15	-30		μΑ
LMP Low Level Output Current	lol2	Vo=0.3V	1	1.5		mA
KI High Level Input Current	l _{IH1}	VIN =3.0V	5		30	μΑ
KI Low Level Input Current	I _{IL1}	VIN =0V			-0.2	μΑ
KI High Level Input Voltage	VIH1		0.7 VDD		VDD	V
KI Low Level Input Voltage	VIL1		0		0.3 VDD	٧
KI/O High Level Input Voltage	V _{IH2}		0.7 V _{DD}		V _{DD}	٧
KI/O Low Level Input Voltage	V _{IL2}		0		0.4	٧
KI/O High Level Input Current	IIH2	VIN =3.0V	2		7	μΑ
KI/O Low Level Input Current	IIL2	VIN =0V			-0.2	μΑ
KI/O High Level Output Current	Юнз	Vo=2.5V	0.5		1.5	mA
KI/O Low Level Output Current	lo _{L3}	Vo=1.7V	1.5		2.5	mA
CCS Low Level Input Voltage	VIH3		1.1			٧
CCS High Level Input Current	Інз	Pull Up VIN =3.0V			0.2	μΑ
CCS Low Level Input Current	lıl3	Pull Up VIN =0V	-3		-15	μΑ
CCS High Level Input Current	l _{IH4}	Pull Down VIN =3.0V	5		30	μΑ
CCS Low Level Input Current	IIL4	Pull Down VIN =0V			-0.2	μΑ

PIN DESCRIPTION

Pin No.	Symbol	I/O	Description
23,24,1~6	KI0~KI7	1	Key Input Pin Nos. 0~7
7	REM	0	Data Output Pin
8	VDD		Power Supply
9	SEL	1	Select Pin
10	osco	0	Oscillator Pin
11	OSCI	I	Oscillator Pin
12	Vss		Power Supply
13	LMP		Output LED Indicator
21~14	KI/O0~KI/O7	I/O	Key Input/Output Pin Nos.0~7
22	ccs	I	Custom Code Scan Input Pin

—— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD —

FUNCTIONAL DESCRIPTION

1. TRANSMISSION CODE

The transmission code consists of a leader code, 16-bits custom codes, and 8-bits data codes. The inverse code of the data code is also sent simultaneously. The following diagram shows this one frame construction.

The leader codes consist of a 9ms carrier waveform followed by a 4.5ms OFF waveform. It is used as the leader for the following code. Thus, when reception is configured by a microcomputer, the time relationship between the reception detection and other processes can be managed efficiently. The code uses the PPM (Pulse Position Modulation) Method, with "0" and "1" differentiated by the time between pulses. Each code consists of 8 bits, and simultaneous transmission of the inverse code allows configuration of a system with an extremely low error rate.

2. KEY INPUT MATRIX

The Key Input Matrix of SC6122 if given below:

3. KEY INPUT

A total of 64 keys can be connected by SC6122 Key Input Pins--KI0~KI7 and the Timing Signal Output Pins KI/O0~KI/O7.

Double Key Operation is possible for only Key No.21 in combination with other keys connected to the KI/O5 line namely: Key No.22,23 or 24.thus, only the following key combinations may be used for the double key operation:

1. Key Nos.21 and 22 ; 2. Key Nos.21 and 23 ; 3. Key Nos.21 and 24

—— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD ——

Pull-down resistors are connected between the Key Input and Vss Pins. When more than one key (except the double key combinations:K21+22, K21+23, K21+24) are pressed simultaneously, the transmission output stops.

Two key inputs are regarded as being pressed simultaneously when the time interval between these two key entries is less than 36ms.

The order of priority given to two key inputs with a time interval of more than 36ms is on a First-Pressed-First-Served or Longer-Pressed-First-Served Basis.

When a key is pressed, the custom and data codes are read. 36ms later, the Remote (REM) Output is activated. When the key is kept depressed during this 36ms, one transmission is outputted. If the key is depressed for more than 108ms, then the only the leader code is transmitted continuously.

4. DOUBLE KEY OPERATION

Double Key Operation is useful for operations such as tape deck recording. The following table shows the Key Data corresponding to the double keys pressed. Also refer to the Key Input Section.

The Double Key operation forms are as follows:

Key	D0	D1	D2	D3	D4	D5	D6	D7
K21+K22	1	0	1	0	1	1	0	0/1
K21+K23	0	1	1	0	1	1	0	0/1
K21+K24	1	1	1	0	1	1	0	0/1

Note: D7=1 when SEL is connected to VSS, or D7=0 when SEL is connected to VDD.

—— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD —

5. REMOTE OUTPUT WAVEFORMS

The Remote Output Waveforms are given in the diagram below:

---- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD ---

SC6122 KEYS DATA CODE

The Keys Data Code is given in the table below.

Key		С	onnect	ion					Data	Code			
No.	KI0	KI1	KI2	KI3	KI/O	D0	D1	D2	D3	D4	D5	D6	D7
K1	•					0	0	0	0	0	0	0	0/1
K2		•			KI/O0	1	0	0	0	0	0	0	0/1
К3			•		KI/O0	0	1	0	0	0	0	0	0/1
K4				•		1	1	0	0	0	0	0	0/1
K5	•					0	0	1	0	0	0	0	0/1
K6		•			KI/O1	1	0	1	0	0	0	0	0/1
K7			•		KI/O1	0	1	1	0	0	0	0	0/1
K8				•		1	1	1	0	0	0	0	0/1
K9	•					0	0	0	1	0	0	0	0/1
K10		•			KI/O2	1	0	0	1	0	0	0	0/1
K11			•		KI/O2	0	1	0	1	0	0	0	0/1
K12				•		1	1	0	1	0	0	0	0/1
K13	•					0	0	1	1	0	0	0	0/1
K14		•			KI/O3	1	0	1	1	0	0	0	0/1
K15			•		KI/O3	0	1	1	1	0	0	0	0/1
K16				•		1	1	1	1	0	0	0	0/1
K17	•					0	0	0	0	1	0	0	0/1
K18		•			KI/O4	1	0	0	0	1	0	0	0/1
K19			•		10,04	0	1	0	0	1	0	0	0/1
K20				•		1	1	0	0	1	0	0	0/1
K21	•					0	0	1	0	1	0	0	0/1
K22		•			KI/O5	1	0	1	0	1	0	0	0/1
K23			•		1000	0	1	1	0	1	0	0	0/1
K24				•		1	1	1	0	1	0	0	0/1
K25	•					0	0	0	1	1	0	0	0/1
K26		•			KI/O6	1	0	0	1	1	0	0	0/1
K27			•		1.17.00	0	1	0	1	1	0	0	0/1
K28				•		1	1	0	1	1	0	0	0/1
K29	•					0	0	1	1	1	0	0	0/1
K30		•			KI/O7	1	0	1	1	1	0	0	0/1
K31			•		',',	0	1	1	1	1	0	0	0/1
K32				•		1	1	1	1	1	0	0	0/1

(to be continued)

----- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD -----

(continue	d)				
Key		С	onnect	ion	
No.	KI4	KI5	KI6	KI7	KI

Key		С	onnect	ion					Data	Code			
No.	KI4	KI5	KI6	KI7	KI/O	D0	D1	D2	D3	D4	D5	D6	D7
K33	•					0	0	0	0	0	0	1	0/1
K34		•			KUOO	1	0	0	0	0	0	1	0/1
K35			•		KI/O0	0	1	0	0	0	0	1	0/1
K36				•		1	1	0	0	0	0	1	0/1
K37	•					0	0	1	0	0	0	1	0/1
K38		•			KI/O1	1	0	1	0	0	0	1	0/1
K39			•		KI/O1	0	1	1	0	0	0	1	0/1
K40				•		1	1	1	0	0	0	1	0/1
K41	•					0	0	0	1	0	0	1	0/1
K42		•			KI/O2	1	0	0	1	0	0	1	0/1
K43			•		N/02	0	1	0	1	0	0	1	0/1
K44				•		1	1	0	1	0	0	1	0/1
K45	•					0	0	1	1	0	0	1	0/1
K46		•			KI/O3	1	0	1	1	0	0	1	0/1
K47			•		IN/OS	0	1	1	1	0	0	1	0/1
K48				•		1	1	1	1	0	0	1	0/1
K49	•					0	0	0	0	1	0	1	0/1
K50		•			KI/O4	1	0	0	0	1	0	1	0/1
K51			•		10,04	0	1	0	0	1	0	1	0/1
K52				•		1	1	0	0	1	0	1	0/1
K53	•					0	0	1	0	1	0	1	0/1
K54		•			KI/O5	1	0	1	0	1	0	1	0/1
K55			•		IN/OS	0	1	1	0	1	0	1	0/1
K56				•		1	1	1	0	1	0	1	0/1
K57	•					0	0	0	1	1	0	1	0/1
K58		•			KI/O6	1	0	0	1	1	0	1	0/1
K59			•		11,700	0	1	0	1	1	0	1	0/1
K60				•		1	1	0	1	1	0	1	0/1
K61	•]	0	0	1	1	1	0	1	0/1
K62		•			KI/O7	1	0	1	1	1	0	1	0/1
K63			•		13,07	0	1	1	1	1	0	1	0/1
K64				•		1	1	1	1	1	0	1	0/1

Note: D7=1 when SEL is connected to Vss, or D7=0 when SEL is connected to Vpd.

TYPICAL APPLICATION CIRCUIT

Note:1. Two capacitance connect with Vcc should as near as possible.

 $2. \ \mbox{The line}$ between two capacitance and Vcc and ground should as short as possible.

----- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD ----

CHIP TOPOGRAPHY

Size: 1.84 x 1.46 mm²

PAD COORDINATES (Unit: µm)

No.	Symbol	х	Υ	No.	Symbol	Х	Υ
1	P1	-602.80	-322.10	13	P13	605.70	217.90
2	P2	-602.80	-452.10	14	P14	542.00	452.00
3	P3	-350.70	-452.10	15	P15	403.50	452.00
4	P4	-220.90	-452.10	16	P16	160.40	452.00
5	P5	-89.50	-452.10	17	P17	12.50	452.00
6	P6	41.00	-452.10	18	P18	-230.30	452.00
7	P7	171.40	-452.10	19	P19	-361.30	451.90
8	P8	347.90	-452.10	20	P20	-602.50	451.90
9	P9	477.80	-452.10	21	P21	-607.50	252.40
10	P10	608.00	-452.10	22	P22	-602.80	68.50
11	P11	607.20	-176.00	23	P23	-602.80	-61.20
12	P12	607.20	-44.60	24	P24	-602.80	-191.50

Note: The original point of the coordinate is the die center.

----- HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD -----

PCB WIRE LAYOUT SCHEMATIC:

The transmitting tube ground line and IC ground line should layout separated or overstriking ground line.

The above IC only use to hint, not to specified.

Note::

- * In wire layout, the power filter capacitor should near to IC.
- * In wire layout, should avoid power line and ground line too long.
- * Recommended infrared transmit unit and IC ground line should layout separated, or overstriking lines.
- * The emitter of triode connect 1 Ω resistor at least.
- * Recommended triode use 9014.

PACKAGE OUTLINE

Attach

Revision History

Data	REV	Description	Page
2000.12.31	2.0	Change name of company in page footer	
2001.12.12	2.1		
		Modify the "Typical application circuit"	9
2002.03.01	2.2	Add the "PCB wire layout schematic"	11
		Modify the "Package outline"	12