

University of Colorado A Midsummer Night's Tree: Efficient and High Performance Secure SCM Boulder

Samuel Thomas¹, Kidus Workneh², Jac McCarty³, Joseph Izraelevitz², Tamara Lehman², R. Iris Bahar⁴

A Midsummer Night's Tree

Efficient and High Performance Secure SCM

Samuel Thomas¹, Kidus Workneh², Jac McCarty³, Joseph Izraelevitz², Tamara Lehman², Iris Bahar⁴

Background

On-Chip, Trusted

Off-Chip, Untrusted

On-Chip, Trusted

Off-Chip, Untrusted

Contribution

Samuel Thomas

Kidus Workneh, Joseph University of Colorado Boulder Izraelevitz, Tamara Lehman

Jac McCarty

R. Iris Bahar

QR code to the paper!

A Midsummer Night's Tree

Biased Physical Page Allocation

struct free_area { 0 *n* - 1 n


```
struct free_area {
   0
  n - 1
```


Evaluation

Hardware Overhead

	Volatile Overhead	Non-Volatile Overhead
AMNT	96 bytes	64 bytes
Anubis, ISCA19	37 kB	64 bytes
BMF, MICRO21	768 bytes	4 kB

Recovery

https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory-200-series-brief.html

Intel® Optane™ Persistent Memory 200 Series Enables Fast Tiered Memory, Delivering 32 Percent More Bandwidth on Average¹ with up to 6 TB Total Memory per Socket².

$SKU^{^{\dagger}}$	128 GB	256 GB	512 GB
USER CAPACITY [†]	126.7 GB	253.7 GB	507.7 GB
BANDWIDTH 67% READ; 33% WRITE 15W 64B	1.06 GB/s	1.41 GB/s	1.15 GB/s

	128GB	256GB	512GB	•••	128TB
64B words to fetch	38.3M	76.7M	153.4M		39.3B
time to recover (leaf)	1.89 sec	2.84 sec	6.9 sec		30 min
time to recover (AMNT)	0.03 sec	0.04 sec	0.11 sec		32 sec

Conclusion

