Ansys

Ansys Fluent Simulation Report

Analyst	FungKC
Date	3/17/2022 08:59 PM

Table of Contents

1 System Information

2 Geometry and Mesh

2.1 Mesh Size

2.2 Mesh Quality

2.3 Orthogonal Quality

3 Simulation Setup

3.1 Physics

3.1.1 Models

3.1.2 Material Properties

3.1.3 Cell Zone Conditions

3.1.4 Boundary Conditions

3.1.5 Reference Values

3.2 Solver Settings

4 Run Information

5 Solution Status

6 Report Definitions

7 Plots

System Information

Application	Fluent	
Settings	3d, pressure-based, standard k-epsilon	
Version	21.2.0-10201	
Source Revision	fcb749f05e	
Build Time	May 28 2021 13:53:41 EDT	
CPU	Intel(R) Core(TM) i5-6500	
os	Windows	

Geometry and Mesh

Mesh Size

Cells	Faces	Nodes
322236	651633	57585

Mesh Quality

Name	Туре	Min Orthogonal Quality	Max Aspect Ratio
solid	Tet Cell	0.018633459	122.87998

Orthogonal Quality

Simulation Setup

Physics

Models

Model	Settings
Space	3D
Time	Steady
Viscous	Standard k-epsilon turbulence model
Wall Treatment	Standard Wall Functions

Material Properties

- Fluid	
— air	
Density	1.225 kg/m^3
Cp (Specific Heat)	1006.43 J/(kg K)
Thermal Conductivity	0.0242 W/(m K)
Viscosity	1.7894e-05 kg/(m s)
Molecular Weight	28.966 kg/kmol
Thermal Expansion Coefficient	0
Speed of Sound	none
- Solid	
aluminum	
Density	2719 kg/m^3
Cp (Specific Heat)	871 J/(kg K)
Thermal Conductivity	202.4 W/(m K)

Cell Zone Conditions

- Fluid		
- solid		
Material Name	air	
Specify source terms?	no	
Specify fixed values?	no	
Frame Motion?	no	
Laminar zone?	no	
Porous zone?	no	
3D Fan Zone?	no	

Boundary Conditions

Inlet	
inlet	
Velocity Specification Method	Magnitude, Normal to Boundary
Reference Frame	Absolute
Velocity Magnitude [m/s]	15
Supersonic/Initial Gauge Pressure [Pa]	0
Turbulent Specification Method	Intensity and Viscosity Ratio
Turbulent Intensity [%]	5
Turbulent Viscosity Ratio	10
Outlet	
outlet	
Backflow Reference Frame	Absolute
Gauge Pressure [Pa]	0
Pressure Profile Multiplier	1
Backflow Direction Specification Method	Normal to Boundary
Turbulent Specification Method	Intensity and Viscosity Ratio
Backflow Turbulent Intensity [%]	5
Backflow Turbulent Viscosity Ratio	10

Backflow Pressure Specification	Total Pressure
Build artificial walls to prevent reverse flow?	no
Radial Equilibrium Pressure Distribution	no
Average Pressure Specification?	no
Specify targeted mass flow rate	no
- Wall	
- wall-solid	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
- walls	
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5

Reference Values

Area	1 m^2
Density	1.225 kg/m^3
Enthalpy	0 J/kg
Length	1 m
Pressure	0 Pa
Temperature	288.16 K
Velocity	1 m/s
Viscosity	1.7894e-05 kg/(m s)
Ratio of Specific Heats	1.4
Yplus for Heat Tran. Coef.	300

Solver Settings

Equations	
Flow	True
Turbulence	True
Numerics	
Absolute Velocity Formulation	True
 Pseudo Transient Explicit Relaxation Factors 	
Density	1
Body Forces	1
Turbulent Kinetic Energy	0.75
Turbulent Dissipation Rate	0.75
Turbulent Viscosity	1
Explicit Momentum	0.5
Explicit Pressure	0.5

 Pressure-Velocity Coupling 	
Туре	Coupled
Pseudo Transient	True
 Discretization Scheme 	
Pressure	Second Order
Momentum	Second Order Upwind
Turbulent Kinetic Energy	Second Order Upwind
Turbulent Dissipation Rate	Second Order Upwind
Solution Limits	
Minimum Absolute Pressure [Pa]	1
Maximum Absolute Pressure [Pa]	5e+10
Minimum Temperature [K]	1
Maximum Temperature [K]	5000
Minimum Turb. Kinetic Energy [m^2/s^2]	1e-14
Minimum Turb. Dissipation Rate [m^2/s^3]	1e-20
Maximum Turb. Viscosity Ratio	100000

Run Information

Number of Machines	1
Number of Cores	4
Case Read	9.234 seconds
Iteration	494.98 seconds
AMG	350.531 seconds
Virtual Current Memory	1.05395 GB
Virtual Peak Memory	1.17952 GB
Memory Per M Cell	2.81549

Solution Status

Iterations: 350

	Value	Absolute Criteria	Convergence Status
continuity	0.0004968384	1e-06	Not Converged
x-velocity	1.956772e-08	1e-06	Converged
y-velocity	1.940563e-08	1e-06	Converged
z-velocity	7.06298e-08	1e-06	Converged
k	0.001122223	1e-06	Not Converged
epsilon	0.000122071	1e-06	Not Converged

Report Definitions

drag	4.087551
lift	-11.58494

Plots

Residuals

drag-rplot

drag-rplot

iterations

lift-rplot

lift-rplot

