Week 3: Exoplanet Interiors and Atmospheres

Atmospheres

Primary vs. Secondary

Jupiter Earth

Saturn Venus

Secondary Atmospheres

Sources

- outgassing (volcanic)
- evaporation & sublimation

Sinks

- condensation
- thermal escape
- solar wind stripping
- chemical rxns on surface

Terrestrial Atmospheres

Atmospheric Escape

<u>average</u> thermal energy >

$$v_{atom} \approx \sqrt{\frac{T}{m}}$$

$$v_{atom} \approx \sqrt{\frac{T}{m_{atom}}}$$
 $v_{esc} \approx \sqrt{\frac{M_{planet}}{r_{planet}}}$

escape velocity

Detecting Exoplanet Atmospheres

Planet Composition

- Density = mass / volume
- Volume of sphere = 4/3*pi*r^3
- Expressed in g/cm³

Planet Composition

Transit → **Radius**

Radial Velocity → Mass

Planet Composition: Example

Earth Radius: 6.37 x 10⁸ cm

Earth Mass: 5.97 x 10^27 g

Earth volume = (4/3)*pi*radius^3 = 1.08 x10^27 cm^3 Earth density = mass/volume ~5.5 g/cm^3

Planet Composition: Exoplanets

Composition of Kepler-10b

