Self-supervised Deep RL

발표자

- 이름 : 박덕근 (deuk guen)
 - 소속 : 한국디지털미디어 고등학교 해킹방어과 재학
- 관심분야
 - Deep-Learning
 - GAN
 - Data pipe-line
- 연락처
 - dkyoung2004@naver.com

Abstract

기존 딥러닝 문제들은 Labeling이 된 다량의 데이터를 학습시키는 방식으로 모델을 구현했다.

그것이 "지도 학습"이니까..

Abstract

더 정밀한 예측 가중치를 위해서는 많은 양의 데이터를 필요로 하는데, 라벨링에 많은 자원이 할애되는 단점이 존재한다.

이 때문에 자체적으로 labeling없이 가중치의 정밀도 확보를 목표로 하는 여러 알고리즘이 나오게 된다.

첫번째 접근, clustering

라벨링 없이 답을 찾게 하면 어떨까? 데이터 간의 유사도를 통해서 스스로 데이터 군집을 형성한다는 것 말이다. 이것은 clustering 방식이며, 최근 들어서 융합하려는 움직임이 생기고 있다.

2번째 접근 few-shot siam net

Deep neural networks를 사용하여 특징을 추출하는 점에서 본 주제와 밀접하게 연관이 있다고 볼 수 있다.

라벨링 없이 CNN에 값을 넣고, 검증 손실함수값을 최소화 하게끔 하는 CNN의 특성에 기인하여, 각각 데이터간 범주의 코사인 유사도를 손실값으로 선정하여 범주에 따른 객체의 특징을 얻어냄에 있다.

Self-supervised learning

지금까지 이해한 바로는, 라벨값이 주어지지 않은 데이터셋에서 범주를 구분하는 함수를 만들어내는 알고리즘이다. 인 것 같은데,

이를 강화학습에 적용하면 최적화를 위해 각각의 방법이 최선인가, 아닌가, 를 정해진 정책없이 분석하는 모양새인것 같다. 센서를 통해 각각의 장애물이나 코너를 맞닥뜨렸을때, 자신이 예상한 action과 reward, 그리고 실제로 일어난 것에 대한 오차를 찾 으면서, 수정해 나가는 방식. 새로운 시각이다.

논문 요약

Self-supervised의 최적화 방식은 (예측상황 – 실제상황)^2 에서 현재에 좀 더 집중하느냐 아니면 미래를 더 예측해야 하느냐 에 서 갈린다.

본 논문에서 역시 충돌을 최소화 하는 방향으로 환경, 정책, 행동등을 예측하고, 실험체가 맞닥뜨린 실제상황과 얼마냐 유사했는지, 그리고 나서 유기적으로 분석하는 것으로 보인다.

3번째 접근, graph Neural network

What is Autonomous learning?

	논문명	Published in	연구 주제	특징	Dataset
1	Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation	2018 IEEE International Conference on Robotics and Automation	로봇 네비게이션 계산그 래프 일반화를 통한 자기-지도 강화학습	RC카와 환경의 상호작용으로 실험을 하여 검증한 점,	
2	Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks	https://arxiv.or g/pdf/1406.69 09.pdf	라벨링 없는 데이터를 CNN에서 뽑아낸 특징으 로 분류하였다.	CNN임에도 불구하고, 라벨링없이 분석을 진행하였 다는 점.	
3	Mastering the game of Go without human knowledge				

저번 시간 피드백

- 1. 먼저 너무 추상적인 주제이다. 축소해보거라
 - -바둑으로 우선 국한 시켰습니다
- 2.큰 주제 아래에 작은 주제들을 위치 시켜라.
 - -1. 바둑 알고리즘 논문읽기
 - -2. 실제 바둑 데이터셋, 혹은 강화학습으로 사전 데이터 셋 없이 만든 코드 확인
 - -3. self-supervised learning 적용

알파제로는 DNN을 사용한다. (기호로는 f_{θ}) 또한, 상태 s와 이에 대한 기존의 데이터를 입력 값으로 가집니다.

아웃풋으로는 움직임에 대한 가능성, 그리고 s에 대한 승리확률을 가져온다 합니다.

논문에서 제시한 용어 정리, v는 스칼라, 현 상태 s에서 승리 가능성을 수치화 한 것. p는 현 상태 s에서의 움직임 a 각각의 가능성을 수치화 한 벡터입니다.

또한 $\mathsf{DNN}(f_{\theta})$ 은 정책 네트워크와 가치 네트워크로 이루어져 있습니다.

그리고 배치 정규화와 rectifier nonlinearities 가 있는 합성곱 층의 residual block으로 이루어져 있습니다.

*residual block

스스로 플레이하며 강화학습하는 알파제로

이때,MCTS(몬테카를로)알고리즘을 각 상태 s에 적용하여 문제를 푼다고 합니다.

MCTS에서는 정책 π 를 각 플레이마다 수정하는 방식으로 나아 갑니다.

이것은 기존의 몬테카를로 근사 입니다.

답을 찾아내기 어려울 때에, 난수를 이용하여 함수의 값을 확률적 으로 계산한다.

- ->어디까지나 "근사"다.
- ->횟수가 늘어날 수록 함수의 값에 "유사"해진다.

의사 결정을 위한 "체험적 탐색 알고리즘 " 으로, 주로 게임을 할 때에 자주 사용됩니다.

개념 자체에 대한 이해를 쉽게 하자면, 무작위로 수(움직임)을 뿌리고, 그 중에서 플레이어를 승리로 이끌었던 수를 따라가면서 왕도를 탐색하는 방식입니다.

- -> 승리 하는 방향의 전략으로 편향이 된다는 점.
- -> 그러므로 의외성이 돋보이는 조커픽은 보기가 힘들다는것이 함정.

탐색트리의 형태를 띄고 있습니다.

Selection

- Root에서 child로 내려가면서 leaf까지 도착합니다.
- 두가지 목표를 달성해야 하는데.
 - 새로운 방식을 찾아본다
 - 기존의 방식에서 가장 최적화된 방식을 찾는다.

Selection

Expansion(확장)

- 아무런 수확이 없이 종료가 될 경우에는 새로운 방식이 필요합 니다.
- 이때, 완전히 랜덤인 자식노드로 빈도와 승률이 0인 노드를 추가 하여 선택해보는 확장 단계를 거칩니다.

Simulation

- 위에서 생성된 랜덤 노드로 위에서 말한 전체과정을 원하는 만큼 반복합니다.
- 또한 위에 과정에서는 복사본 트리를 사용하여 원본 트리에는 영향을 끼치지 않는 방향으로 진행합니다.

Backpropagation

- 시뮬레이션의 결과로
- 승,패
- 빈도수
- 그리고 총 점수를 부모노드에 반영 시킵니다. 1대1로.
- 그리고 최종적으로 바뀐 점수들은 트리에 반영됩니다.

Backpropagation

Figure 1

- 우선 스스로 게임을 합니다.
- 그리고 가장 마지막에 업데이트된 f_{θ} 를 사용합니다.
- 또한 MCTS는 각각의 수 마다 작동됩니다.
- MCTS로 부터 가장 높은 승률의 수를 택합니다..
- 또한 마지막 상태 S에서 승자를 계산합니다.

Figure 1 -b-

- Input: raw position s(t)
- Output : move probability, value(현재의 상태에서 승자의 확률)
- 합성곱 층을 지난다고 합니다. (CNN)
- 다음 착수에 대한 예상의 유사도를 최대화 하는 것, 승자에 대한 오차를 최소화 하는 것에 주안점을 둔다.

구동 원리

뉴럴넷은 다음 착수에 대한 예상과 승자에 대한 예측의 정밀 도를 올리기 위해 업데이트 한다.

이렇게 최적화된 알고리즘으로 MCTS에서 사용하는 승리확률 과 다음 착수에 대한 예상을 합 니다.

MCTS in Alpha zero

각 시뮬에서 최대의 이익을 가 져다 주는 Q함수 구동

근데 여기서, 이전의 가능성 P 와 방문 횟수로 산정하는 신뢰 도 U를 만들어 반영한다.

MCTS in Alpha zero

종단노드는 확장됨과 동시에 뉴럴넷으로 관련있는 상태 s를 계산합니다.

Probability인 P는 큐함수와 신뢰도 U의 합산 결과입니다.

NN의 적용

Improvements to context based self-supervised learning

TN Mundhenk, D Ho, BY Chen - Proceedings of the IEEE ..., 2018 - openaccess.thecvf.com ... context. We start with a baseline of patch based arrangement context learning and go from there ... toolkits. Self-supervised learning methods create a protocol whereby the computer can learn to teach itself a supervised task. For ...

☆ 99 Cited by 70 Related articles All 9 versions >>

Just go with the flow: Self-supervised scene flow estimation

H Mittal, B Okorn, D Held - ... of the IEEE/CVF Conference on ..., 2020 - openaccess.thecvf.com Page 1. Just Go with the Flow: Self-Supervised Scene Flow Estimation ... Self-supervised + supervised training - KITTI results: Finally, we show the value of combining our self-supervised learning method with a small amount of supervised learn- ing, compared to only ...

☆ 99 Cited by 20 Related articles All 7 versions >>>

S4I: Self-supervised semi-supervised learning

X Zhai, A Oliver, A Kolesnikov... - Proceedings of the IEEE ..., 2019 - openaccess.thecvf.com Beside the above patch-based methods, there are self-supervised techniques that employ image-level ... is the exemplar loss from [6] that encourages the model to learn a representation ... Finally, [3] proposes a learning procedure that alternates be- tween clustering images in ...

\$\frac{1}{12}\$ \square \text{DD}\$ Cited by 206 Related articles All 10 versions \$\text{SD}\$

Prnet: Self-supervised learning for partial-to-partial registration

Y Wang, JM Solomon - arXiv preprint arXiv:1910.12240, 2019 - arxiv.org

... Our method is also self-supervised, in the sense that no labeled data is needed ... trained on representations learned by PRNet can achieve comparable results to supervised learning methods in ... DGCNN with 5 dynamic EdgeConv layers and a Transformer to learn co-contextual ...

☆ ワワ Cited by 59 Related articles All 6 versions >>>

Self-supervised learning with geometric constraints in monocular video: Connecting flow, depth, and camera

Y Chen, C Schmid... - Proceedings of the IEEE ..., 2019 - openaccess.thecvf.com

... In this work we introduce a self-supervised geometric learning framework, GLNet, which aims to integrate the advantages of modern deep-learning based self-supervised systems - (a) training without ... [51] couple the learning of monocular ... [41] additionally learn rigid motion ...

☆ 99 Cited by 61 Related articles All 9 versions >>>

Distilling visual priors from self-supervised learning

B Zhao, X Wen - European Conference on Computer Vision, 2020 - Springer

... In this paper, we go one step further by exploring the capability of contrastive learning under the data-deficient setting ... The first phase is to learn a teacher model which obtains a rich visual representation from the dataset using self-supervised learning ...

☆ 99 Cited by 2 Related articles All 6 versions

Self-supervised learning model for skin cancer diagnosis

관련사례 전무