平成 27 年度 卒業研究発表会

MinCamlのK正規化の形式的検証

B2TB2512 水野雅之

工学部 情報知能システム総合学科 住井・松田研究室

2016年3月11日

研究目的

MinCamlのK正規化の正当性を検証

- ・証明を簡潔に
 - 余帰納的意味論
 - ・ド・ブラン インデックス
- スケーラビリティの確保
 - 半自動証明

アウトライン

- 1 研究背景
- 2 MinCaml
- 3 意味論の定義
- 4 束縛の表現
- 5 正当性の検証
- 6 結論

アウトライン

- 1 研究背景
- 2 MinCaml
- 3 意味論の定義
- 4 束縛の表現
- 5 正当性の検証
- 6 結論

関連研究

CompCert(Leroy et al.)

Cコンパイラの正当性の検証

Chlipala POPL 2010

非純粋関数型言語処理系の正当性の検証

	CompCert	Chlipala 2010
	副作用 入出力	高階関数 副作用
×	N引数の構文 高階関数	N 引数の構文 入出力

N引数の構文の難しさ

```
Inductive t :=
   | App : list t -> t.
list の中が positive でないかもしれない
Definition list t := t \rightarrow t.
Definition oops t :=
  match t with
  | App f => f t
  | => t
  end.
(* 矛盾! *)
Check (oops (App oops) : False).
```

入出力の難しさ

- 文面から評価結果が定まらない
 - e.g. read_line ()
- 出力結果を区別
 - ・以下のプログラムは等価か?

```
print_endline "hoge"

while true do
    print_endline "hoge"

done

done
```

アウトライン

- 1 研究背景
- 2 MinCaml
- 3 意味論の定義
- 4 束縛の表現
- 5 正当性の検証
- 6 結論

MinCamlの特徴

住井による教育用コンパイラ (FDPE 2005)

- OCamlで 2000 行程度
- 本格的な処理系
 - 非純粋な関数型言語
 - 型推論
 - 定数畳み込み等の最適化

- 高階関数
- •N引数の構文
- 副作用
- 外部関数呼び出し(入出力)

```
M, N ::=
\vdots
\mathbf{let} \ \mathbf{rec} \ x \ y_1 \ \cdots \ y_n = M \ \mathbf{in} \ N
M \ N_1 \ \cdots \ N_n
(M_1, \ \cdots, M_n)
\mathbf{let} \ (M_1, \ \cdots, M_n) = M \ \mathbf{in} \ N
\mathbf{Array.create} \ M \ N
M_1.(M_2)
M_1.(M_2) \leftarrow M_3
```

- 高階関数
- •N引数の構文
- 副作用
- 外部関数呼び出し(入出力)

```
M, N ::=
     let rec x y_1 \cdots y_n = M in N
     M N_1 \cdots N_n
     (M_1, \cdots, M_n)
     let (M_1, \cdots, M_n) = M in N
     Array.create M N
     M_1.(M_2)
     M_1.(M_2) \leftarrow M_3
```

- 高階関数
- •N引数の構文
- 副作用
- 外部関数呼び出し(入出力)

```
M, N ::=
     let rec x y_1 \cdots y_n = M in N
     M N_1 \cdots N_n
     (M_1, \cdots, M_n)
     let (M_1, \cdots, M_n) = M in N
     Array.create M N
     M_1.(M_2)
     M_1.(M_2) \leftarrow M_3
```

- 高階関数
- •N引数の構文
- 副作用
- 外部関数呼び出し(入出力)

```
M, N ::=
     let rec x y_1 \cdots y_n = M in N
     M N_1 \cdots N_n
     (M_1, \cdots, M_n)
     let (M_1, \cdots, M_n) = M in N
     Array.create M N
     M_1.(M_2)
     M_1.(M_2) \leftarrow M_3
```

内部設計

- 様々なコンパイルフェーズ
- 疎結合

http://esumii.github.io/min-caml/index8.html

K正規化

全ての部分式に名前を付ける

束縛に関する操作

K正規化

全ての部分式に名前を付ける

束縛に関する操作

期待される正当性

K正規化後の項を評価してみる

$$\lambda x.\lambda y.\lambda z. \ x+y+z$$

$$\lambda x.\lambda y.\lambda z.$$

let $a = x + y$ in $a + z$

定理 1

項 t が値 v に評価される場合、項 t を K 正規化した結果 K(t) は値 v を K 正規化した結果 K(v) に評価される

定理 2

項 t の評価が停止しない場合、項 t を K 正規化した結果 K(t) の評価は停止しない

アウトライン

- 1 研究背景
- 2 MinCaml
- 3 意味論の定義
- 4 束縛の表現
- 5 正当性の検証
- 6 結論

大ステップ意味論

比較的単純な プログラム変換の検証に適する

が

無限ループとエラーの区別が困難

例:型無しラムダ計算

構文 t ::= b $\mid x$ $\mid \lambda x. t$ $\mid t t$

$$v ::= b \\ | \lambda x. t$$

意味論

大ステップ意味論の問題点

エラー

無限ループ

 $\mathbf{true} \ \mathbf{true} \ \rlap{\sl} \ \emph{v}$ 適用できる規則が無い

$$(\lambda x.xx)(\lambda x.xx) \not \Downarrow v$$

有限回の規則適用で導出できない

区別できない

余帰納的大ステップ意味論(1/2)

余帰納的定義(Leroy 2006)

$$\frac{t_1 \Uparrow}{t_1 t_2 \Uparrow} \qquad \frac{t_1 \Downarrow v_1 \quad t_2 \Uparrow}{t_1 t_2 \Uparrow}$$

$$\underline{t_1 \Downarrow \lambda x. \ t_0 \quad t_2 \Downarrow v_2 \quad [x \mapsto v_2] t_0 \Uparrow}$$

$$\underline{t_1 \Downarrow \lambda x. \ t_0 \quad t_2 \Downarrow v_2 \quad [x \mapsto v_2] t_0 \Uparrow}$$

余帰納的大ステップ意味論(2/2)

エラー

無限ループ

true true **%**

$$(\lambda x.xx)(\lambda x.xx) \uparrow$$

適用できる規則がない

無限回の規則適用を許す

区別できる

入出力を含む言語への拡張

どのような入出力を行ったかを表す ラベルを付与

```
read\_line () \Downarrow "hoge" / read\_line () = "hoge"
```

```
while true do () done \uparrow / \epsilon
```

```
(while true do
print_endline "hoge"
done) ↑
/ print_endline "hoge" · · ·
```

区別できる

アウトライン

- 1 研究背景
- 2 MinCaml
- 3 意味論の定義
- 4 束縛の表現
- 5 正当性の検証
- 6 結論

名前による表現

∞等価性の議論が面倒

$$\lambda x.\lambda y. \ x \simeq \lambda a.\lambda b. \ a$$

fresh な名前が必要になる

• 束縛の関係を乱さないよう変数名を選ぶ

$$[x \mapsto z](\lambda z. \ x) \simeq \lambda z'. \ z$$

$$\not\simeq \lambda z. \ z$$

ド・ブラン インデックス

何番目の束縛かで変数を表現

• 内側から外側へ数える

$$\lambda x.\lambda y.\lambda z. \ xz(yz)$$
 $\lambda.\lambda.\lambda. \ 2\ 0\ (1\ 0)$

α 等価な式は構文的に等価

• 名前の freshness から解放

$$\frac{\lambda x.\lambda y.\ x}{\lambda a\ \lambda b\ a}$$
 $\lambda.\lambda.\ 1$

シフト

自由変数のインデックスをずらす

 $\uparrow^d t$

束縛の付け替え

$$(\lambda x. \ x) \ (\lambda x. \ y)$$

$$(\lambda. 0) (\lambda. 1)$$

let
$$a = \lambda x$$
. x in let $b = \lambda x$. y in a b

let
$$_{-} = \lambda$$
. 0 in
let $_{-} = \uparrow^{1} (\lambda$. 1) in
1 0

K正規化の実装

```
Fixpoint knormal e :=
  match e with
  | Exp.Var x => K.Var x
  | Exp.Abs e => K.Abs (knormal e)
  | Exp.App e1 e2 =>
     K.Let (knormal e1)
        (K.Let (shift 1 (knormal e2))
        (App 1 0))
end.
```

アウトライン

- 1 研究背景
- 2 MinCaml
- 3 意味論の定義
- 4 束縛の表現
- 5 正当性の検証
- 6 結論

コンパイラの検証

言語拡張のたび全ての証明の修正が必要

```
Inductive t :=
   | Var : nat -> t
:
Proof.
   intros t.
   induction t.
   Case "Var".
```

```
Inductive t :=
  | Int : Z -> t
  | Var : nat -> t
Proof.
  intros t.
  induction t.
  Case "Nat".
  Case "Var".
```

Coqの証明自動化機能

構文の違いを自動証明で吸収

```
tactic1 で生じたサブゴール全てに tactic2 を適用
tactic_1; tactic_2
f_equal
                       t_1 \ t_2 \cdots t_n = t'_1 \ t'_2 \cdots t'_n b t_1 = t'_1, \ t_2 = t'_2 \cdots
solve[tactic_1|\cdots|tactic_n] どれかでサブゴールを閉じられるなら閉じる
Lemma shift_0 : forall e c,
  shift c \ 0 \ e = e.
Proof.
  intros e.
  induction e; intros ?; simpl;
     f_equal;
     solve [ apply shift_var_0 | eauto ].
Qed.
```

拡張性の評価

プリミティブ、if、let を追加

	構文	証明の行数
拡張前	变数 匿名関数 関数適用	110
拡張後	20 種類	141

高いスケーラビリティを示した

アウトライン

- 1 研究背景
- 2 MinCaml
- 3 意味論の定義
- 4 束縛の表現
- 5 正当性の検証
- 6 結論

結論

K正規化をCoqで検証できた

- ・ド・ブラン インデックス、余帰納的大ステップ意味論の採用で証明が簡潔に
- 証明自動化による再利用性の高い証明

今後の課題

さらに言語を拡張し、MinCamlと同等に

- 組や複数引数の関数
- 配列
- 外部関数呼び出し

K正規化以外の検証