This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-140655

(43) Date of publication of application: 17.05.2002

(51)Int.CI.

GO6F 19/00

H01L 21/304

H01L 21/306

H01L 21/3205

(21)Application number: 2000-340364

(71)Applicant: HITACHI LTD

(22)Date of filing:

02.11.2000

(72)Inventor: OTAKE ATSUSHI

KOBAYASHI KINYA

(54) SIMULATION FOR FLATTENING SEMICONDUCTOR WAFER

(57)Abstract:

PROBLEM TO BE SOLVED: To develop a simulation method for fast evaluating CMP abrasive unevenness and to apply the simulation method to a dummy pattern design.

SOLUTION: Exposure mask data are divided and made into bitmap with resolution capable of displaying minimum linewidth by 4 to 10 dots to calculates a CMP abrasive rate distribution. Thus, it is possible to fast evaluate CMP abrasive unevenness and to realize the dummy pattern design within a practical period.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(II)特許出願公開番号 特開2002-140655

(P2002-140655A)

(43)公開日 平成14年5月17日(2002.5.17)

(51) Int.Cl.7	•	識別記号	F I			テーマコード(参考)
G06F	19/00	110	G 0 6 F	19/00	110	5 F O 3 3
H01L	21/304	6 2 2	H01L	21/304	6 2 2 R	5 F O 4 3
	21/306		•	21/306	N	_
	21/3205			21/88	k	
			審査請	求 未請求	請求項の数8	OL (全 8 頁)

(21)出願番号	特願2000-340364(P2000-340364)	(71)出願人 000005108 株式会社日立製作所
(22)出顧日	平成12年11月2日(2000.11.2)	東京都千代田区神田駿河台四丁目6番地 (72)発明者 大嶽 敦
		茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内
		(72)発明者 小林 金也 茨城県日立市大みか町七丁目1番1号 株
		式会社日立製作所日立研究所内
		(74)代理人 100075096
		弁理士 作田 康夫

最終頁に続く

(54) 【発明の名称】 半導体ウエハの平坦化シミュレーション

(57)【要約】

【課題】CMP研磨ばらつきを高速に評価するシミュレーション手法を開発し、ダミーパターン設計に適用可能とする。

【解決手段】本発明では、露光マスクデータを分割した上、最小配線幅を 4~10ドットで表すことができる解像度でビットマップ化し、CMP研磨レート分布を求める。

【効果】本発明によれば、CMP研磨ばらつきの評価が 高速に可能となり、ダミーパターン設計を実用的な時間 内で実現できる。

CMPレートの評価が可能であることが分かった。これにより、必要以上に処理データ量を増やすことなく高速な処理が可能となる。

【0011】好ましくは、上記分割領域の大きさを0.25 mm~2.5mmとすることを特徴とするCMPシミュレーション方法が提供される。

【0012】好ましくは、成膜される膜が03-TEOS (Tet raethylorthosilicate) 膜、p (plasma) -TEOS膜、高密度プラズマCVD膜、スピンコート絶縁膜、窒化シリコン膜、めっきCu膜、タングステン膜および窒化チタン膜あるいはこれらの組み合わせであることを特徴とするCMPシミュレーション方法が提供される。これにより、様々な膜種およびこの組み合わせに対してCMP研磨シミュレーションが可能となる。

【0013】好ましくは、マスクデータ中にダミーパターンを導入することを特徴とするCMPシミュレーション方法が提供される。これにより、ダミーパターンを導入した場合の研磨ばらつきのシミュレーションが可能となる。

【0014】好ましくは、ダミーパターンの形状を変化させデータ量が少なく上記初期研磨速度r0(i,j)のばらつきを極小とするダミーパターン形状を探索することを特徴とするCMPシミュレーション方法が提供される。これにより、従来多大な時間を必要としたダミーパターン形状最適化が迅速に実行可能となる。

【0015】好ましくは上記シミュレーション方法を実行するための処理を行うコンピュータプログラムを格納した記録媒体が提供される。

【0016】好ましくは、上記CMPシミュレーション手法を用い、最適化ダミーパターン形状を導出し左記ダミーパターン形状を導入した露光マスクを用いて製造されることを特徴とする半導体装置が提供される。これにより、平坦性に優れたウエハを実験試行なしに形成することができる。

[0017]

【発明の実施の形態】 (実施例1) 図1に本発明にかかるCMP研磨レートのシミュレーション方法のフロー図を示す。図1について以下に説明する。

【0018】最初にデポする膜種を設定する。膜の種類によって、パターン上に形成される凸領域の形状が変化する。本実施例では03-TEOS膜とする。

【0019】次に分割したマスクデータを一つ読み込む。マスクデータはここではベクトル型(線分の集合としてチップ上の配線等が表現されている)のデータである。このマスクデータをビットマップに変換する。一般的にはビットマップ化することにより、ベクトルデータに比較して使用記憶領域が増大する。そこで、チップ上の凹凸を二値化し、凹を0, 凸を1として表現する。また、チップ全体を一度に処理せず分割して処理する。これにより使用メモリ領域は数10~数100メガバイト程度

に抑制できる。

【0020】次に膜デポ後の凸部形状を予測する。この 手順について図2を用いて以下に説明する。図2では配 線1上にコンフォーマルに形成される03ーTEOS膜を例と して取り上げた。配線1上にコンフォーマルな膜2が形成 されると配線1上面から見た凸形状の領域が配線幅に比 較して拡大したように見える。この凸領域の拡大幅δは コンフォーマルな膜の場合には $\delta = a \cdot (\pi/4)$ で表され ると仮定する(ここで、a:デポ膜厚)。これは、コンフ ォーマルな膜の場合にはデポ膜の断面形状が4分円とし て近似できることによる。左記に従い、配線周囲をδだ け太らせたものがデポ後の上面から見た凸領域3となる (図3)。凸領域3にならない部分は全て凹領域4として 取り扱う。ビットマップの値は凸領域3の場合には~ 1′、凹領域4の場合には'0'を割り当てる。また、凸領 域3同志が重なった領域についてはビットマップの値を' 1'とする。このような処理をビットマップ化された全配 線パターンに対して実施する。図4にビットマップ化し たマスクデータ(配線データ)及び左記のデータに絶縁膜 デポ処理を実施したビットマップを示す(チップ上から の上面投影図に相当)。図4における白色部分がビット マップの値が 1 となっている部分である。

【0021】次に凸部面積率の計算を実施する。本実施例ではビットマップデータ中の'1'(凸領域)に相当する部分が全ピクセル数に対して何個有るかを求めることに相当する。本実施例では、ビットマップデータを50um×50umの領域に区切り各領域をi,jで番号付けし、各領域において凸領域のビットをカウントすることで凸部面積率A(i,j)を求めている。

【0022】以上の一連の操作をマスクデータ全てについて実施する。これにより、与えられたマスクデータ全領域について面積率A(i,j)が求まる。ここで求めたA(i,j)から CMP研磨レート分布r(i,j)を求めることができる。A(i,j)からr(i,j)を求める方法については、現在までに種々のモデルが報告されている。これらのモデルを選択して研磨レート分布が記録・出力される。最も単純には初期の研磨レートr(i,j) $\infty A(i,j)$ となり、r(i,j) を点i,j を中心とする半径 $1\sim2$ mmの範囲で平均化することにより求めることができる。

【0023】ベクトルデータとビットマップ化したデータを比較した場合、次のようなメリットがある。ベクトルデータの場合では、膜デポ後の凸領域同志の重なりを求めるために多数の交点計算が必要になり、また面積を求める手順も複雑になる(図5)。ビットマップでは、単に凸領域の、1、の部分をカウントすることで凸部の面積率を求めることができる。配線パターンの種類にもよるが、0.25um~1umの配線が混在する8mm角のテストチップにおいてビットマップデータの場合はベクトルデータに比較し処理時間が1/2~1/5程度であった。

【0024】上記のように本実施例によれば、絶縁膜デ

ポ後の研磨レート分布を迅速に評価することができる。 【0025】(実施例2)上記実施例において、ビットマップの解像度として最小配線幅を4~10ドットで表現する解像度に設定した場合について説明する。図6に一般的な論理LSIについてビットマップ表現により求めた凸部面積率とベクトル表現した場合との誤差を示す。図6より4~10ドットで最小配線が表現されていれば誤差は数パーセント以内となることが分かる。

【0026】以上のように本実施例によれば、必要以上に処理データ量を増やすことなく高速な処理が可能となる。

【0027】(実施例3)請求項1における分割領域の大きさは、10mm角までのチップの場合、0.25mm~2.5mmとすることが望ましい。計算機の能力によってこの値は変化するが、1ギガバイト以下の記憶容量では、0.25mm~2.5mmとすることでより高速なシミュレーションが可能となる。

【0028】(実施例4)実施例1において、成膜される膜が03-TEOS (Tetraethylorthosilicate) 膜, p (plasma)-TEOS膜, 高密度プラズマCVD膜, スピンコート絶縁膜, 窒化シリコン膜, めっきCu膜, タングステン膜および窒化チタン膜あるいはこれらの組み合わせであっても成膜モデルを変更することにより対応可能である。特定の膜の断面形状を実験により調べることは容易であるので、この結果をモデルに取込むことで様々膜に対応することができる。

【0029】(実施例5)実施例1において、マスクデータにダミーパターンを追加して解析した場合について図7を用いて説明する。本実施例においては実施例1におけるフロー図1のビットマップ変換後にダミーパターンを導入する。ダミーパターンの形状は予め定めておく。上記実施例1と同様の手順によりシミュレーションを実施することによって、研磨レート分布を得ることができる。図8は、ダミーパターン導入前後における研磨レート分布を示したものである。対象としたパターンは0.25um~1umまでの配線を含む6×6mmのテストパターンである。ダミーパターンの導入により研磨レートのばらつきが改善されていることが分かる。ダミー導入の有無に関わらず計算に要した時間は0.5GFlopsのコンピュー

タを用いて2.5時間以内であった。

【0030】以上のように本実施例によれば、ダミーパターンの導入効果を実用的な時間内で評価可能であることが分かった。

【0031】(実施例6)実施例5において、シミュレーションで得られる研磨レート分布を評価し、研磨レートばらつきが既定値以下であった場合にダミーパターン形状を変更して、シミュレーションを繰り返すことによってダミーパターン形状の最適化が可能である(図9)。1種類のダミー形状に関する計算時間が数時間程度のケースでは実験を繰り返すことなく最適なダミーパターン形状を実用的な時間内で求めることができる。また、求めたダミーパターン形状を露光マスクに反映することで、迅速に最適ダミーパターンが導入された半導体装置を製造することが可能となる。

[0032]

【発明の効果】本発明によれば、CMP研磨ばらつきの 評価が高速に可能となり、ダミーパターン設計を実用的 な時間内で実現できる。

【図面の簡単な説明】

【図1】本発明に係るCMPシミュレーション方法(1)を説明する図。

【図2】絶縁膜デポ形状の評価(1)を説明する図。

【図3】絶縁膜デポ形状の評価(2)を説明する図。

【図4】絶縁膜デポ形状の評価(3)を説明する図。

【図5】絶縁膜デポ形状の評価(4)を説明する図。

【図6】解像度と誤差評価を説明する図。

【図7】本発明に係るダミーパターン評価方法を説明する図。

【図8】本発明に係るダミーパターン評価方法を説明する図。

【図9】シミュレーションで得られる研磨レート分布を評価し、研磨レートばらつきが既定値以下であった場合にダミーパターン形状を変更して、シミュレーションを繰り返すことによってダミーパターン形状の最適化が可能であることを説明する図。

【符号の説明】

1…ウエハ上の配線、2…ウエハ上にデポした絶縁膜、3 …凸領域、4…凹領域。

【図2】

図 2

【図4】

図 4

【図6】

図 6

白色部分が凸領域(ビットマップの値=1)。 黒色部分が凹領域(ビットマップの値=0)。 絶縁膜デポにより凸領域が増大。

(7)

[図8]

フロントページの続き

Fターム(参考) 5F033 HH11 HH19 HH33 PP26 QQ48 RR04 RR06 RR09 SS01 SS04 . SS15 UU07 XX01 5F043 AA01 DD16 DD24 DD30 FF07