# Университет ИТМО

# Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

# Лабораторная работа № 3 по дисциплине "Теория автоматов"

Канонический метод структурного синтеза

Вариант: 1

Выполнил: Чебыкин И. Б.

Группа: Р3301

Проверяющий: Ожиганов А. А.

# 1 Описание работы

Цель – практическое освоение метода перехода от абстрактного автомата к структурному автомату

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Для синтеза структурного автомата использовать функционально полную систему логических элементов И, ИЛИ, НЕ и автомат Мура, обладающий полнотой переходов и полнотой выходов. Синтезированный структурный автомат представить в виде ПАМЯТИ и КОМБИНАЦИОННОЙ СХЕМЫ.

### 2 Выполнение

#### 2.1 Исходный автомат

| δ     | $a_1$ | $a_2$ | $a_3$ | λ     | $a_1$ | $a_2$ | $a_3$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| $z_1$ | $a_2$ | $a_3$ | $a_1$ | $z_1$ | $w_2$ | $w_2$ | $w_1$ |
| $z_2$ | $a_1$ |       | $a_2$ | $z_2$ | $w_1$ |       | $w_2$ |

### 2.2 Переход к структурному автомату

#### Кодирование входных и выходных сигналов

Закодируем входные сигналы:

| $T_1$ | $X_1$ |
|-------|-------|
| $Z_1$ | 0     |
| $Z_2$ | 1     |

Для минимизации произведем следующие вычисления:

$$W_1 = 2$$

$$W_2 = 3$$

Закодируем выходной сигнал с наибольшим числом повторений как 0 и другой как 1:

| $T_2$ | $Y_1$ |
|-------|-------|
| $W_2$ | 0     |
| $W_1$ | 1     |

#### Кодирование состояний автомата и получение таблицы переходов

Посчитаем количество переходов в состояние автомата и согласно упорядоченному по убыванию списку закодируем состояния автомата:

| $T_3$ | $Q_1$ | $Q_2$ |
|-------|-------|-------|
| $a_1$ | 0     | 0     |
| $a_2$ | 0     | 1     |
| $a_3$ | 1     | 0     |

По таблицам с исходными данными и таблицам 1-3 строим таблицу переходов и таблицу выходов структурного автомата.

$$P_1 P_2 = \delta(Q_1 Q_2 x_1)$$

| $T_4$ $x_1 \backslash Q_1 Q_2$ | 00 | 01 | 10 |
|--------------------------------|----|----|----|
| 0                              | 01 | 10 | 00 |
| 1                              | 00 | _  | 01 |

$$y_1 = \lambda(Q_1 Q_2 x_1)$$

| $T_5  x_1 \backslash Q_1 Q_2$ | 00 | 01 | 10 |
|-------------------------------|----|----|----|
| 0                             | 0  | 0  | 1  |
| 1                             | 1  | _  | 0  |

$$y_1 = 1 \lor 4$$

#### RS-триггер

По таблице 4, согласно таблицам 1-3 строим таблицу функции переключения RS-триггера:  $R_1S_1R_2S_2=\mu(Q_1Q_2x_1)$ 

| $x_1 \backslash Q_1 Q_2$ | 0  | 0  | 0  | 1  | 1  | 0  |
|--------------------------|----|----|----|----|----|----|
| 0                        | -0 | 01 | 01 | 10 | 10 | -0 |
| 1                        | -0 | -0 |    | _  | 10 | 01 |

ДНФ:

 $R1 = 4 \vee 5$ 

S1 = 2

R2 = 2

 $S2 = 0 \vee 5$ 

В итоге для RS-триггера получаем:

 $y1 = 1 \vee 4$ 

 $R1 = 4 \vee 5$ 

S1 = 2

R2 = 2

 $S2 = 0 \vee 5$ 

Синтезированный структурный автомат в виде комбинационной схемы и памяти:



Проверка:

| Входящий сигнал  |      |         | z2 (1)  | z1 (0)  | z1 (0)  | z2 (1)  | z1 (0)  | z1 (0)  |
|------------------|------|---------|---------|---------|---------|---------|---------|---------|
| Состояние        | Исх. | a1 (00) | a1 (00) | a2 (01) | a3 (10) | a2 (01) | a3 (10) | a1 (00) |
|                  | Tp.  |         | 00      | 01      | 10      | 01      | 10      | 00      |
| Выходящий сигнал | Исх. |         | w1 (1)  | w2 (0)  | w2 (0)  | w2 (0)  | w2 (0)  | w1 (1)  |
| Выходящий сигнал | Tp.  |         | 1       | 0       | 0       | 0       | 0       | 0       |

### ЈК-триггер

По таблице 4, согласно таблицам 1-3 строим таблицу функции переключения ЈК-триггера:  $J_1K_1J_2K_2=\mu(Q_1Q_2x_1)$ 

ДНФ:

J1 = 2

 $K1 = 4 \lor 5$ 

 $J2 = 0 \vee 5$ 

| $x_1 \backslash Q_1 Q_2$ | 0  | 0  | 0  | 1  | 1  | 0  |
|--------------------------|----|----|----|----|----|----|
| 0                        | 0- | 1- | 1- | -1 | -1 | 0- |
| 1                        | 0- | 0- | _  | _  | -1 | 1- |

$$K2 = 2$$

В итоге для ЈК-триггера получаем:

$$y1 = 1 \vee 4$$

$$J1 = 2$$

$$K1 = 4 \lor 5$$

$$J2 = 0 \vee 5$$

$$K2 = 2$$



Проверка:

| Входящий сигнал  |      |         | z2 (1)  | z1 (0)  | z1 (0)  | z2 (1)  | z1 (0)  | z1 (0)  |
|------------------|------|---------|---------|---------|---------|---------|---------|---------|
| Состояние        | Исх. | a1 (00) | a1 (00) | a2 (01) | a3 (10) | a2 (01) | a3 (10) | a1 (00) |
|                  | Tp.  |         | 00      | 01      | 10      | 01      | 10      | 00      |
| Выходящий сигнал | Исх. |         | w1 (1)  | w2 (0)  | w2 (0)  | w2 (0)  | w2 (0)  | w1 (1)  |
|                  | Tp.  |         | 1       | 0       | 0       | 0       | 0       | 0       |

### Т-триггер

По таблице 4, согласно таблицам 1-3 строим таблицу функции переключения Т-триггера:  $T_1T_2=\mu(Q_1Q_2x_1)$ 

| $x_1 \backslash Q_1 Q_2$ | 00 | 01 | 10 |
|--------------------------|----|----|----|
| 0                        | 01 | 11 | 10 |
| 1                        | 00 | _  | 11 |

ДНФ:

 $T_1 = 2 \vee 4 \vee 5$ 

 $T_2 = 0 \vee 2 \vee 5$ 

В итоге для Т-триггера получаем:

 $y_1 = 1 \vee 4$ 

 $T_1 = 2 \vee 4 \vee 5$ 

 $T_2 = 0 \lor 2 \lor 5$ 

Синтезированный структурный автомат в виде комбинационной схемы и памяти:



Проверка:

| Входящий сигна   | Л    |         | z2 (1)  | z1 (0)  | z1 (0)  | z2 (1)  | z1 (0)  | z1 (0)  |
|------------------|------|---------|---------|---------|---------|---------|---------|---------|
| Состояние        | Исх. | a1 (00) | a1 (00) | a2 (01) | a3 (10) | a2 (01) | a3 (10) | a1 (00) |
|                  | Tp.  |         | 00      | 01      | 10      | 01      | 10      | 00      |
| Выходящий сигнал | Исх. |         | w1 (1)  | w2 (0)  | w2 (0)  | w2 (0)  | w2 (0)  | w1 (1)  |
|                  | Tp.  |         | 1       | 0       | 0       | 0       | 0       | 0       |

### D-триггер

По таблице 4, согласно таблицам 1-3 строим таблицу функции переключения D-триггера:  $D_1D_2=\mu(Q_1Q_2x_1)$ 

| $x_1 \backslash Q_1 Q_2$ | 00 | 01 | 10 |
|--------------------------|----|----|----|
| 0                        | 01 | 10 | 00 |
| 1                        | 00 | _  | 01 |

ДНФ:

$$D_1 = 2$$

$$D_2 = 0 \vee 5$$

В итоге для D-триггера получаем:

$$y_1 = 1 \lor 4$$

$$D_1 = 2$$

$$D_2 = 0 \vee 5$$

Синтезированный структурный автомат в виде комбинационной схемы и памяти:



### Проверка:

| Входящий сигна   | лл   |         | z2 (1)  | z1 (0)  | z1 (0)  | z2 (1)  | z1 (0)  | z1 (0)  |
|------------------|------|---------|---------|---------|---------|---------|---------|---------|
| Состояние        | Исх. | a1 (00) | a1 (00) | a2 (01) | a3 (10) | a2 (01) | a3 (10) | a1 (00) |
|                  | Tp.  |         | 00      | 01      | 10      | 01      | 10      | 00      |
| Выходящий сигнал | Исх. |         | w1 (1)  | w2 (0)  | w2 (0)  | w2 (0)  | w2 (0)  | w1 (1)  |
|                  | Tp.  |         | 1       | 0       | 0       | 0       | 0       | 0       |

# 3 Вывод

В ходе выполнения данной лабораторной работы был изучен метод перехода от абстрактного автомата к структурному.