Практика 2

Приклад 2.1. Вимірявши 40 випадково відібраних після виготовлення деталей, знайшли вибіркову середню, що дорівнює 15 см. Із надійністю $\gamma = 0.99$ побудувати довірчий інтервал для середньої величини всієї партії деталей, якщо генеральна дисперсія дорівнює 0.09 см².

Приклад 2.2. Маємо такі дані про розміри основних фондів (у млн грн.) на 30-ти випадково вибраних підприємствах, що задано у вигляді інтервального ряду із довжиною кроку h=2 млн грн. знайти довірчий інтервал для \overline{X}_{Γ} , якщо $\sigma_{\Gamma}=5$ млн грн. та надійність $\gamma=0,999$

h=2 млн.грн.	2-4	4-6	6-8	8-10
n_i	9	7	10	4

Приклад 2.3. Якого значення має набувати надійність оцінки γ , щоб за обсягу вибірки n =100 похибка її не перевищувала 0,01 при σ_{Γ} =5.

Приклад 2.4. Визначити обсяг вибірки n, за якого похибка $\varepsilon = 0.01$ гарантується з імовірністю 0,999, якщо $\sigma_{\Gamma} = 5$

Приклад 2.5. Випадково вибрана партія з двадцяти приладів була випробувана щодо терміну безвідмовної роботи кожного з них t_i . Результати випробувань наведено у вигляді дискретного статистичного розподілу:

t_i	100	170	240	310	380
n_i	2	5	10	2	1

З надійністю $\gamma = 0,99$ побудувати довірчий інтервал для «а» (середнього часу безвідмовної роботи приладу).

Приклад 2.6. У таблиці наведено відхилення діаметрів валиків, оброблених на верстаті, від номінального розміру:

h=5 мк	0-5	5-10	10-15	15-20	20-25
n_i	15	75	100	50	10

³ надійністю $\gamma=0.99$ побудувати довірчий інтервал для $\bar{X}_{\Gamma}=a$.

Приклад 2.7. Перевірена партія однотипних телевізорів x_i на чутливість до відеопрограм n_i , дані перевірки наведено як дискретний статистичний розподіл:

n_i MKB	200	250	300	350	400	450	500	550
x_i	2	5	6	7	5	2	2	1

3 надійністю $\gamma=0,99$ побудувати довірчий інтервал для $D_{\Gamma},\sigma_{\Gamma}.$

Приклад 2.8. Побудувати довірчі інтервали для σ_{Γ} з надійністю $\gamma=0.99$ якщо n=30 , S=4.5 .

Приклад 2.9. Одержано дані зі 101 навмання вибраних підприємств щодо зростання виробітку на одного робітника x_i (у % відносно попереднього року), які мають такий інтервальний статистичний розподіл:

$x_i, \%; h = 10$	80-90	90-100	100-110	110-120	120-130
n_i	3	14	60	20	4

Використовуючи нерівність Чебишова, побудувати довірчий інтервал для \overline{X}_{Γ} , якщо відоме значення $\sigma_{\Gamma}=5\%$ з надійністю $\gamma=0,99$.

Приклад 2.10. Задані розміри основних фондів x_i на 30-ти підприємствах дискретним статистичним розподілом:

x_i , млн. грн.	3	5	7	9
n_i	9	7	10	4

Використовуючи нерівність Чебишова з надійністю $\gamma = 0,99$, побудувати довірчий інтервал для \overline{X}_{\varGamma} .