Практическая работа №3 по основам цифрового представления изображений

Выполнила: Жолнерович Арина, Б03-202в Репозиторий с кодом: тут

В этой практической работе нужно было выполнить сжатие изображения по стандарту JPEG

Алгоритм сжатия:

- 1. Получение сжимаемого изображения
- 2. Формирование блоков 8х8

Далее работа осуществляется с каждым блоком отдельно

3. Прямое преобразование ДКП (функция directDCT())

После преобразования получаем матрицу частотных коэффициентов (ЧК)

4. Деление полученной матрицы ЧК на матрицу квантования

В данной работе матрица квантования выглядела так:

3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

Матрица квантования

5. Обнуление коэффициентов матрицы ЧК (функция iteration())

Выполнялось умножение матрицы на матрицу-маску, заполненную нулями в порядке, обратному зиг-заг сканировани.

Было сделано 12 итераций — получено 12 сжатых изображений

- **6.** Обратное квантование умножение матрицы, полученной после шага 5, на матрицу квантования
- **7.** Обратное преобразование ДКП (функция invertDCT())

Далее из матриц 8х8 собирается сжатое изображение

8. Вычисление уровня сжатия изображения (функция compressRatio())

Исходное изображение

Результат сжатия

Нетрудно заметить, что на 6 итерации изображение искажается (захватываем среднечастотные коэффициенты). Оно становится менее, чётким, появляются артефакты. На 10 итерации можно разглядеть «блоки 8х8» (приближаемся к васокочастотным коэффициентам), особенно хорошо квадраты различимы на 12 итерации. Также голова белки начинает сливаться с кустом, находящимся на заднем плане изображения. Отсюда делаем вывод, что недостаток формата JPEG состоит в том, что при сжатии теряется информация о высоких частотах, т.е контрастные изображения (к примеру снимки текстов — белый фон, чёрные буквы) будут сильно искажаться.

По полученным данным построим несколько зависимостей

Зависимость между количеством задействованных коэффициентов и качеством изображения

Зависимость между уровнем сжатия и качеством изображения

