Lab Report2

Shivam Shilvant- EE24BTECH11057 Mohit - EE24BTECH11041

January 29, 2025

Objective

- 1. Observing the RC response for the square wave input in steady and transient state
 - RC==T
 - RC>>T
 - RC<<T

Apparatus

- Capacitor $(1\mu F)$, Resistor (100Ω) , Breadboard
- Cathode Ray Oscilloscope (CRO)
- Signal Generator (1 channel)
- Probes and Connecting Wires

Procedure

1. Form a circuit using the resistor and capacitor in series

- 1. Connect the signal generator at the input i.e, at A and ground probe at C
- 2. Connect the probe of CRO at the output i.e, at B and ground probe at D.
- 3. Adjust the time period and observe the reponse of RC series circuit for different time periods.

Theory

• From kirchhof's circuit law the governing equation is given by,

$$V_{in}(t) = I(t)R + V_c(t) \tag{1}$$

$$I(t) = C\frac{dV_c}{dt} \tag{2}$$

finally,

$$V_{in}(t) = RC\frac{dV_c}{dt} + V_c(t)$$
(3)

- We have to the equation (3) in two parts
 - 1. During Charging $(V_{in}(t) = V_{high})$

- The differential equation becomes:

$$V_{high} = RC\frac{dV_c}{dt} + V_c(t) \tag{4}$$

- Solve using the integrating factor method or by inspection:

$$V_c(t) = V_{final} + (V_{initial} - V_{final})e^{-\frac{t}{\tau}}$$
 (5)

- $-V_{final} = V_{high}$
- $-\tau = RC$
- 2. During Discharging $(V_{in}(t) = V_{low})$
 - The differential equation becomes:

$$V_{low} = RC\frac{dV_c}{dt} + V_c(t) \tag{6}$$

- Solve using the integrating factor method or by inspection:

$$V_c(t) = V_{final} + (V_{initial} - V_{final})e^{-\frac{t}{\tau}}$$
 (7)

- $-V_{final} = V_{low}$
- $-\tau = RC$

1 Observing RC response in steady state

1.1 When $\tau = T$

• Figures

• Observation

- The capacitor never charges or discharges completely. it just exponentially charges and discharges in every half cycle
- It never reaches the V_{high} or V_{low}
- The capacitor voltage will appear as a smoothed waveform, lagging behind the input and transitioning exponentially.

1.2 When $RC \ll T$

• Figures

• Observation

- The capacitor gets fully charged and fully discharged in each cycle as $RC \ll T$
- It almost follows the square wave form

1.3 When $RC \gg T$

• Figures

• Observation

- The capacitor in the circuit acts as a low-pass filter.
- The capacitor is not able to pick up with the rapid change between $+{\rm V}$ and -V of the square wave.

2 Observing RC response in transition state

Procedure

- Same as previously described but now we will pass only for 5 time periods from function generator
- We have set the CRO to one time event capture mode

2.1 When $\tau=T$

• Figures

• Observation

- The capacitor never charges or discharges completely. it just exponentially charges and discharges in every half cycle
- initially it charges and in the second half it discharges but not compltely
- and the cycle goes on continuing untill steady state

2.2 When $RC \ll T$

• Figures

• Observation

- The capacitor gets fully charged and fully discharged in each cycle as $RC \ll T$
- $-\,$ It almost follows the square wave form

2.3 When $RC \gg T$

• Figures

• Observation

- Initially the capacitor is not able to pick up with change in square waveform
- niether it get charged nor discharged hence it appeare to be flat