AI Ethics: Explainability of Machine Learning

CS229: Machine Learning Carlos Guestrin Stanford University

©2022 Carlos Guestrin

Three Waves of the Rise in Opioid Overdose Deaths

The Pain Was Unbearable. So Why Did Doctors Turn Her Away?

A sweeping drug addiction risk algorithm has become central to how the US handles the opioid crisis. It may only be making the crisis worse.

ML Models More and More Complex

4

When is a model ready to deploy?

Hard to understand when models are working

(for the right reasons) and not working!!

Isn't test accuracy enough?

A User Study on Test Accuracy

Train a neural network to predict wolf v. husky

Wolf

Train a neural network to predict wolf v. husky

Explanations for neural network prediction

Test accuracy may not capture critical issues

- Bad data
- Biases
- Poor performance in critical cases

• ...

Examining Models

Debugging is One Reason to Examine Models

- Examining models:
 - Why a model makes particular predictions
 - What alternative predictions are possible
 - How robust/stable are predictions
 - What data supports predictions
- Examining models for debugging: discover bad, unexpected or unstable behavior
 - Typically not discovered by accuracy in train/test data

Examining Models to Detect Algorithmic Bias

- Evaluate multiple fairness criteria
- Verify how/if decisions depend on sensitive features
- Discover what groups are privileged/disadvantaged by predictions

Examine Models for Recourse

- In opioid overdose risk case, patient deemed risky had no way to discover why
 - Or how to fix bad data
- Understanding why could enable individuals to:
 - Address data issues
 - Change their actions to change outcomes

Interpretability in ML

Giving humans a **mental model** of the machine's model behavior

Learning Interpretable Models (c.f., Lethan & Rudin 2015)

Accuracy vs Interpretability

Post-hoc Explanations

• Given a (huge, complex) model, provide human explanations for predictions

LIME: Local, Interpretable Model-Agnostic Explanations

Model agnostic→ Ignore any internal structure

Explaining predictions lobal decision may be very complicat

Explaining prediction books simpler...

Explaining predictionsery locally, decision looks linear

"Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16. S229: Machine Learning

Explaining prediction locally, decision looks linear

LIME: Learn locally sparse linear model around each prediction

"Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16. CS229: Machine Learning

LIME – Key Ideas

- 1. Pick a model class interpretable by humans
- 2. Locally approximate global (blackbox) model
 - Simple model globally bad, but locally good

Sparse linear Explanations

- 1. Sample points around x_i
- 2. Use complex model to predict labels for each sample
- 3. Weigh samples according to distance to x_i
- 4. Learn new simple model on weighted samples
- 5. Use simple model to explain

Interpretable representations

30 ©2022 Carlos Guestrin CS229: Machine Learning

Interpretable representation: images

31

Explaining prediction of Inception Neural Network

$$P() = 0.32$$

CS229: Machine Learning

Achieving target metric may not be enough

LIME applied to 20 newsgroups

Prediction Prob.

Achieving target metric may not be enough

Fixing bad classifiers

©2022 Carlos Guestrin

©2022 Carlos Guestrin

Did explanations help with wolf problem?

More Examples

39
Q2022 Carlos Guestrin CS29, Machine Learning

LIME: Learn locally sparse linear model around each prediction

"Why should I trust you?": Explaining the Predictions of Any Classifier. Ribeiro, Singh & G. KDD 16. S229: Machine Learning

Anchors: Sufficient Conditions

Conditions under which classifier makes same prediction

Anchors: High-Precision Model-Agnostic Explanations. Ribeiro, Singh & G. AAAI 18

Salary Prediction

Feature	Value
Age	$37 < Age \le 48$
Workclass	Private
Education	≤ High School
Marital Status	Married
Occupation	Craft-repair
Relationship	Husband
Race	Black
Sex	Male
Capital Gain	0
Capital Loss	0
Hours per week	< 40
Country	United States

Salary Prediction: LIME vs Anchors

Anchors for Images: Classification

Anchor for Beagle

Anchors for Visual Question Answering

What is the mustache made of?	Banana
-------------------------------	--------

How many bananas are in the picture? 2

Anchors for Visual Question Answering

What is the mustache made of?	Banana
What is the ground made of?	Banana
What is the hair made of?	Banana
What is the picture of?	Banana
What was the head of the US?	Banana

How many bananas are in the picture?	2
How many are in the picture?	2
How many people in the picture?	2
Are there many animals in the picture?	2
How many is too many?	2

Adversarial Bug Discovery

Find closest input with different prediction

Oversensitivity in image classification

Adversary not distinguishable by human

→ Unlikely to be a real-world issue (except for attacks)

Explaining and Harnessing Adversarial Examples. Goodfellow, Shlens & Szegedy 2015

What type of road sign is shown?

STOP

The biggest city on the river Rhine is Cologne, Germany with a population of more than 1,050,000 people. It is the second-longest river in Central and Western Europe, at about 1,230 km.

How long is the Rhine?

1,230 km

What type of road sign is shown? Which type of road sign is shown?

STOP

Do not enter

The biggest city on the river Rhine is Cologne, Germany with a population of more than 1,050,000 people. It is the second-longest river in Central and Western Europe, at about 1,230 km.

How long is the Rhine? How long is the Rhine??

1,230 km More than 1,050,000

Goal: Find semantically-equivalent adversarial examples

Semantically-equivalent

Use paraphrasing model [Lapata et al. 2017]

Adversarial

Changes correct model prediction

What color is the tray?	Pink
What colour is the tray?	Green
Which color is the tray?	Green
What color is it?	Green
What color is the tray?	Pink
How color is the tray?	Green
	-

Semantically Equivalent Adversarial Rules for Debugging NLP Models. Ribeiro, Singh & G. ACL 18_{CS229: Machine Learning}

Closing the Loop with Simple Data

Augment by applying validated SEARs to training data

Typical challenges with explainability methods

- Explanations to simplistic
- Not focused on information needs for task
- Unstable
- Not causal

•