ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỀN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối: D (Đáp án - thang điểm gồm 04 trang)

ĐÁP ÁN - THANG ĐIỂM

Câu	Đáp án	Điểm
I	1. (1,0 điểm) Khảo sát	
(2,0 điểm)	Khi $m=0, y=x^4-2x^2$. • Tập xác định: $D=\mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y'=4x^3-4x; y'=0 \Leftrightarrow x=\pm 1 \text{ hoặc } x=0$.	0,25
	Hàm số nghịch biến trên: $(-\infty; -1)$ và $(0;1)$; đồng biến trên: $(-1;0)$ và $(1; +\infty)$. - Cực trị: Hàm số đạt cực tiểu tại $x = \pm 1$, $y_{CT} = -1$; đạt cực đại tại $x = 0$, $y_{CD} = 0$. - Giới hạn: $\lim_{x \to -\infty} y = \lim_{x \to +\infty} y = +\infty$.	0,25
	- Bằng biến thiên:	0,25
	• Đồ thị: V	0,25
	2. (1,0 điểm) Tìm m	
	Phương trình hoành độ giao điểm của (C_m) và đường thẳng $y = -1$: $x^4 - (3m+2)x^2 + 3m = -1$. Đặt $t = x^2$, $t \ge 0$; phương trình trở thành: $t^2 - (3m+2)t + 3m + 1 = 0$	0,25
	$\Leftrightarrow t = 1 \text{ hoặc } t = 3m + 1.$	0,25
	Yêu cầu của bài toán tương đương: $\begin{cases} 0 < 3m + 1 < 4 \\ 3m + 1 \neq 1 \end{cases}$	0,25
	$\Leftrightarrow -\frac{1}{3} < m < 1, \ m \neq 0.$	0,25
II (2 0 #:3)	1. (1,0 điểm) Giải phương trình	
(2,0 điểm)	Phương trình đã cho tương đương: $\sqrt{3}\cos 5x - (\sin 5x + \sin x) - \sin x = 0$ $\Leftrightarrow \frac{\sqrt{3}}{2}\cos 5x - \frac{1}{2}\sin 5x = \sin x$	0,25
	$\Leftrightarrow \frac{\sqrt{3}}{2}\cos 5x - \frac{1}{2}\sin 5x = \sin x$ $\Leftrightarrow \sin\left(\frac{\pi}{3} - 5x\right) = \sin x$	0,25

Đáp án	Điểm
$\Leftrightarrow \frac{\pi}{3} - 5x = x + k2\pi \text{ hoặc } \frac{\pi}{3} - 5x = \pi - x + k2\pi.$	0,25
Vậy: $x = \frac{\pi}{18} + k\frac{\pi}{3}$ hoặc $x = -\frac{\pi}{6} + k\frac{\pi}{2}$ $(k \in \mathbb{Z})$.	0,25
2. (1,0 điểm) Giải hệ phương trình	1
Hệ đã cho tương đương: $\begin{cases} x + y + 1 - \frac{3}{x} = 0\\ (x + y)^2 - \frac{5}{x^2} + 1 = 0 \end{cases}$	0,25
$\Leftrightarrow \begin{cases} x+y=\frac{3}{x}-1\\ \left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}+1=0 \end{cases} \Leftrightarrow \begin{cases} x+y=\frac{3}{x}-1\\ \frac{4}{x^2}-\frac{6}{x}+2=0 \end{cases}$	0,25
$\Leftrightarrow \begin{cases} \frac{1}{x} = 1 \\ x + y = 2 \end{cases} \text{ hoặc } \begin{cases} \frac{1}{x} = \frac{1}{2} \\ x + y = \frac{1}{2} \end{cases}$	0,25
$\Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases} \text{ hoặc } \begin{cases} x = 2 \\ y = -\frac{3}{2}. \end{cases}$	0,25
Nghiệm của hệ: $(x; y) = (1; 1)$ và $(x; y) = \left(2; -\frac{3}{2}\right)$.	
Tính tích phân	
$\text{D} x t = e^x, \ dx = \frac{dt}{t}; \ x = 1, \ t = e; \ x = 3, \ t = e^3.$	0,25
$I = \int_{e}^{e^{3}} \frac{dt}{t(t-1)} = \int_{e}^{e^{3}} \left(\frac{1}{t-1} - \frac{1}{t}\right) dt$	0,25
$= \ln t-1 _{e}^{e^{3}} - \ln t _{e}^{e^{3}}$	0,25
$= \ln(e^2 + e + 1) - 2.$	0,25
Tính thể tích khối chóp	
Hạ $IH \perp AC$ $(H \in AC) \Rightarrow IH \perp (ABC)$; IH là đường cao của tứ diện $IABC$. $\Rightarrow IH // AA' \Rightarrow \frac{IH}{AA'} = \frac{CI}{CA'} = \frac{2}{3} \Rightarrow IH = \frac{2}{3}AA' = \frac{4a}{3}.$ $AC = \sqrt{A'C^2 - A'A^2} = a\sqrt{5}, BC = \sqrt{AC^2 - AB^2} = 2a.$ Diện tích tam giác ABC : $S_{\Delta ABC} = \frac{1}{2}AB.BC = a^2$. Thể tích khối tứ diện $IABC$: $V = \frac{1}{3}IH.S_{\Delta ABC} = \frac{4a^3}{9}$.	0,50

Câu	Đáp án	Điểm
	Hạ $AK \perp A'B$ $(K \in A'B)$. Vì $BC \perp (ABB'A')$ nên $AK \perp BC \implies AK \perp (IBC)$. Khoảng cách từ A đến mặt phẳng (IBC) là AK .	0,25
	$AK = \frac{2S_{\Delta AA'B}}{A'B} = \frac{AA'.AB}{\sqrt{A'A^2 + AB^2}} = \frac{2a\sqrt{5}}{5}.$	0,25
V	Tìm giá trị lớn nhất, nhỏ nhất	
(1,0 điểm)	Do $x + y = 1$, nên: $S = 16x^2y^2 + 12(x^3 + y^3) + 9xy + 25xy$ = $16x^2y^2 + 12[(x + y)^3 - 3xy(x + y)] + 34xy = 16x^2y^2 - 2xy + 12$.	0,25
	Xét hàm $f(t) = 16t^2 - 2t + 12$ trên đoạn $\left[0; \frac{1}{4}\right]$	
	$f'(t) = 32t - 2; \ f'(t) = 0 \iff t = \frac{1}{16}; \ f(0) = 12, \ f\left(\frac{1}{16}\right) = \frac{191}{16}, \ f\left(\frac{1}{4}\right) = \frac{25}{2}.$	0,25
	$\max_{\left[0;\frac{1}{4}\right]} f(t) = f\left(\frac{1}{4}\right) = \frac{25}{2}; \min_{\left[0;\frac{1}{4}\right]} f(t) = f\left(\frac{1}{16}\right) = \frac{191}{16}.$	
	Giá trị lớn nhất của S bằng $\frac{25}{2}$; khi $\begin{cases} x+y=1\\ xy=\frac{1}{4} \end{cases} \Leftrightarrow (x;y) = \left(\frac{1}{2};\frac{1}{2}\right)$.	0,25
	Giá trị nhỏ nhất của S bằng $\frac{191}{16}$; khi $\begin{cases} x+y=1\\ xy=\frac{1}{16} \end{cases}$	0,25
	$\Leftrightarrow (x;y) = \left(\frac{2+\sqrt{3}}{4}; \frac{2-\sqrt{3}}{4}\right) \text{ hoặc } (x;y) = \left(\frac{2-\sqrt{3}}{4}; \frac{2+\sqrt{3}}{4}\right).$	
VI.a	1. (1,0 điểm) Viết phương trình đường thẳng	
(2,0 điểm)	Toạ độ A thoả mãn hệ: $\begin{cases} 7x - 2y - 3 = 0 \\ 6x - y - 4 = 0 \end{cases} \Rightarrow A(1;2).$	0,25
	B đối xứng với A qua M , suy ra $B = (3, -2)$.	
	Đường thẳng BC đi qua B và vuông góc với đường thẳng $6x - y - 4 = 0$. Phương trình $BC: x + 6y + 9 = 0$.	0,25
	Toạ độ trung điểm N của đoạn thẳng BC thoả mãn hệ: $\begin{cases} 7x - 2y - 3 = 0 \\ x + 6y + 9 = 0 \end{cases} \Rightarrow N\left(0; -\frac{3}{2}\right).$	0,25
	$\Rightarrow \overrightarrow{AC} = 2.\overrightarrow{MN} = (-4; -3); \text{ phương trình đường thẳng } AC: 3x - 4y + 5 = 0.$	0,25
	2. (1,0 điểm) Xác định toạ độ điểm D	
	$\overrightarrow{AB} = (-1;1;2)$, phương trình AB : $\begin{cases} x = 2 - t \\ y = 1 + t \\ z = 2t. \end{cases}$	0,25
	D thuộc đường thẳng $AB \Rightarrow D(2-t;1+t;2t) \Rightarrow \overrightarrow{CD} = (1-t;t;2t)$.	0,25

Câu	Đáp án	Điểm
	Véc tơ pháp tuyến của mặt phẳng (P) : $\vec{n} = (1;1;1)$. C không thuộc mặt phẳng (P) .	0,50
	$CD//(P) \Leftrightarrow \overrightarrow{n}.\overrightarrow{CD} = 0 \Leftrightarrow 1.(1-t) + 1.t + 1.2t = 0 \Leftrightarrow t = -\frac{1}{2}. \text{ Vây } D\left(\frac{5}{2}; \frac{1}{2}; -1\right).$	
VII.a	Tìm tập hợp các điểm	
(1,0 điểm)	$\text{Dặt } z = x + yi \ (x, y \in \mathbb{R}); \ z - 3 + 4i = (x - 3) + (y + 4)i.$	0,25
	Từ giả thiết, ta có: $\sqrt{(x-3)^2 + (y+4)^2} = 2 \Leftrightarrow (x-3)^2 + (y+4)^2 = 4$.	0,50
	Tập hợp điểm biểu diễn các số phức z là đường tròn tâm $I(3;-4)$ bán kính $R=2$.	0,25
VI.b	1. (1,0 điểm) Xác định toạ độ điểm M	
(2,0 điểm)	Gọi điểm $M(a;b)$. Do $M(a;b)$ thuộc (C) nên $(a-1)^2 + b^2 = 1$; $O \in (C) \implies IO = IM = 1$.	0,25
	Tam giác IMO có $\widehat{OIM} = 120^{\circ}$ nên $OM^2 = IO^2 + IM^2 - 2IO.IM.\cos 120^{\circ} \Leftrightarrow a^2 + b^2 = 3.$	0,25
	Toạ độ điểm M là nghiệm của hệ $\begin{cases} (a-1)^2 + b^2 = 1 \\ a^2 + b^2 = 3 \end{cases} \Leftrightarrow \begin{cases} a = \frac{3}{2} \\ b = \pm \frac{\sqrt{3}}{2}. \end{cases} $ Vậy $M = \left(\frac{3}{2}; \pm \frac{\sqrt{3}}{2}\right).$	0,50
	2. (1,0 điểm) Viết phương trình đường thẳng	
	Toạ độ giao điểm I của Δ với (P) thoả mãn hệ: $\begin{cases} \frac{x+2}{1} = \frac{y-2}{1} = \frac{z}{-1} \Rightarrow I(-3;1;1). \\ x+2y-3z+4=0 \end{cases}$	0,25
	Vector pháp tuyến của (P) : $\vec{n} = (1;2;-3)$; vector chỉ phương của Δ : $\vec{u} = (1;1;-1)$.	0,25
	Đường thẳng d cần tìm qua I và có vecto chỉ phương $\vec{v} = [\vec{n}, \vec{u}] = (1; -2; -1)$.	0,25
	Phương trình d : $\begin{cases} x = -3 + t \\ y = 1 - 2t \\ z = 1 - t. \end{cases}$	0,25
VII.b	Tìm các giá trị của tham số m	
(1,0 điểm)	Phương trình hoành độ giao điểm: $\frac{x^2 + x - 1}{x} = -2x + m \iff 3x^2 + (1 - m)x - 1 = 0 (x \neq 0).$	0,25
	Phương trình có hai nghiệm phân biệt x_1 , x_2 khác 0 với mọi m .	0,25
	Hoành độ trung điểm I của AB : $x_I = \frac{x_1 + x_2}{2} = \frac{m-1}{6}$.	0,25
	$I \in Oy \iff x_I = 0 \iff \frac{m-1}{6} = 0 \iff m = 1.$	0,25

