9/

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-096810

(43)Date of publication of application: 14.04.1998

(51)Int.CI.

G02B 5/20 B41M 5/00 C08G 77/60 D06P 5/00 G03F 7/004 // B41J 2/01 C09D 11/00

(21)Application number: 08-252116

(22)Date of filing:

25.09.1996

(71)Applicant:

SHARP CORP

(72)Inventor: KAN

KAN REIGEN

ENOMOTO KAZUHIRO

(54) PRODUCTION OF COLOR FILTER

(57)Abstract

PROBLEM TO BE SOLVED: To easily produce an excellent high-definition color filter without mixing of colors, irregular colors or fracture in a pattern in simple processes at a low cost by forming a photosensitive layer comprising polysllane on a substrate and exposing the layer with UV rays to form a latent image of a pattern.

SOLUTION: First, methylphenyl polysilane is dissolved in toluene to prepare a toluene soln. having about 15 % concn. The soln, is applied by spin coating on a glass substrate to form a polysilane layer 2 having 2 pm film thickness after dried. Then the polysilane layer 2 is exposed to UV rays 4 from a high pressure mercury lamp through a photomask 3 having transmission patterns for R, G and B colors to forfin a latent image of the color pattern. Then color inks 5 are used to color the latent image of the color pattern of three (R, G and B) colors in one process by ink jet method. Thereby, the number of processes can be largely decreased.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the

examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-96810

(43)公開日 平成10年(1998) 4月14日

(51) Int.Cl. ⁶		識別記号		FI			,			
G 0 2 B	5/20	101		G 0	2 B	5/20	101			
B41M	5/00			B 4	1 M	5/00		F		
C 0 8 G	77/60			C 0	8 G	77/60				
D 0 6 P	5/00			D 0	6 P	5/00		D		
G03F	7/004	5 2 2		G 0	3 F	7/004		5 2 2		
		•	審査請求	未請求	旅館	項の数3	OL	(全 5 頁)	最終頁に	続く
(21)出願番号		特願平8-252116		(71)	(71)出願人 000005049					
						シャー	プ株式	会社		
(22)出顧日		平成8年(1996)9月25日				大阪府	大阪市	阿倍野区長池	即22番22号	
				(72)	発明者	育 韓 礼	元			
			•		•	大阪府		阿倍野区長池 社内	1町22番22号	シ
			•	(72)	発明者	榎本	和弘		•	
						大阪府 ャープ		阿倍野区長池 社内	1町22番22号	シ
				(74)	代理人	、 弁理士	梅田	勝		
		,								

(54) 【発明の名称】 カラーフィルターの製造方法

(57)【要約】

【課題】 表示装置用カラーフィルターの製造において、混色、色むら、パターンくずれなどの問題があった。そこで本発明は、優れた髙精細の表示装置用カラーフィルターを単純な工程で容易に低コストで製造できる方法を提供する。

【課題の解決手段】 基板上に設けられたポリシランからなる感光層を選択的に紫外線露光してカラーパターンの潜像を形成した後、親水性カラーインクを用いてインクジェット方式によりR, G, B3色を一回の工程で着色する。

【特許請求の範囲】

【請求項1】 基板上に設けられたポリシランからなる 感光層を紫外線露光することによって、カラーパターン の潜像を形成する工程と、親水性インクを用いたインク ジェット方式により着色する工程とを有することを特徴 とするカラーフィルターの製造方法。

【請求項2】 前記ポリシランが構造式(1)で表わさ れることを特徴とする請求項1に記載のカラーフィルタ 一の製造方法。

【化1】

$$\begin{array}{ccc} & R_1 & R_3 \\ \hline + S_1 & S_1 & M \\ \hline R_2 & R_4 & \end{array}$$
 (I)

(式中、R₁、R₂、R₃及びR₄は、同一または異なっ て、炭素数1~12の脂肪族炭化水素残基、芳香族炭化 水素残基、および脂環式炭化水素残基のいずれでもよ く、これらの基は置換基を有してもよく、mおよびnは 整数である。)

【請求項3】 前記親水性インクに含まれる着色材料 が、塩基性染料であることを特徴とする請求項1乃至2 に記載のカラーフィルターの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、カラーフィルター の製造方法に関し、特に表示装置用カラーフィルターの 製造方法に関する。

[0002]

【従来の技術】従来、表示装置用カラーフィルターの製 造方法としては、染色法、顔料分散法、電着法および印 30 刷法が一般的に用いられている。

【0003】まず、染色法について以下に説明する。最 初に、天然高分子材料のゼラチン、グリュウ、カゼイ ン、あるいは、合成高分子材料のPVA(ポリピニルア ルコール)、 PVP (ポリビニルピロリドン)、アクリ ルなどをベースとした感光性の材料を基板上に塗布・乾

【0004】つぎに、フォトマスクを用いて紫外線で露 光、現像すること(フォトリソグラフィ法)によりパター ン化する。

【0005】次に、基板を染色液に浸漬させることによ って、パターン化によって形成された可染領域に染料が 吸着・拡散し、色を呈する。以上の工程を3回繰り返す ことによりR、G、Bを順に構成することによって、カ ラーフィルターを製造する。

【0006】顔料分散法は、あらかじめ顔料により調色 された感光性のレジストを用いる。この種のレジストの ベースポリマーとしては、重合型のアクリル樹脂と架橋 型のPVAが挙げられる。このレジストを基板上に塗布 し、染色法と同様に、フォトリソグラフィ法によリパタ 50 色のたびに液中への浸漬が繰り返されると、ポリシラン

ーン化する。以上の工程を繰り返すことによりR,G. Bを構成し、カラーフィルターを製造する。

【0007】電着法は、基板上に形成されたITO膜 (InTiO膜) をフォトリソグラフィ法で所定のパタ ーンにエッチングし、これを電極として電気泳動電着で 色材を電極に膜形成する方式であり、電極と色材を変え ることによりR.G.Bの3色を構成し、カラーフィル ターを製造する。

【0008】印刷法は、種々の方式があるが、いずれも 10 ガラス基板に粘度の高いインクをオフセット印刷する工 程をR, G, Bの色毎に3回繰り返すだけであり、比較 的製造工程は簡単である。

【0009】上記方法以外に、インクジェット方式でカ ラーフィルターを製造する方法が特開平7-17491 5号公報に提案されている。これは基板上に1工程で R, G, Bの3色のインクを印刷でき、工程が簡単であ るという特徴を有する。

【0010】また、染色法に含まれる一方法であるが、 基板上に塗布したポリシラン層に染料で染色しカラーフ 20 ィルターを製造する方法が、特開平5-188215号 公報に開示されている。この方法はポリシランに紫外線 を照射するとシラノール基が発生し、照射部のポリシラ ンが疎水性から親水性に変化することを利用する。すな わち、基板上にポリシランを塗布・乾燥し、フォトマス クで紫外線を照射した後、染色液中に浸漬して親水性に 変化した紫外線照射部を染色する。この工程をR,G, Bの3回繰り返して3色を構成し、カラーフィルターを 製造する。

[0011]

【発明が解決しようとする課題】上記方法のうち、イン クジェット方式以外はいずれの方法も、R, G, Bの3 回の工程を繰り返す必要があり、工程数が多く複雑であ るという問題がある。

【0012】さらに染色法には、各色の染色後には混色 を防止するために防染膜を形成しなければならないので 一層工程が複雑になり、製造コストが高くなるという問 題がある。

【0013】また印刷法には、粘性の高いインクを使用 するのでパターンの端部がくずれたり、ずれたりし、そ 40 のために所定のパターンを精度よく形成することができ ないという問題が加わる。

【0014】インクジェット方式は、ガラス基板上に R, G, Bの3色のインクを1工程で印刷する際、ガラ ス基板上ではインクが浸透しないので乾燥が遅く、混色 やにじみの問題が発生するという問題がある。

【0015】特開平5-188215号公報に開示され ているポリシラン層に染色する方法では、上記染色法と 同じ問題に加え、以下の問題があることが分かった。す なわち、ボリシラン層と基板との接着力は弱いので、染

1

膜のはがれが発生しやすく、これはカラーフィルターのパターン不良となった。特に、高精細のパターンを形成する際には製造歩留まりが悪くなるという問題が生じた。

【0016】以上のように、それぞれの方法に問題があり、いまだ満足できるカラーフィルターの製造方法はなかった。

【0017】本発明の目的は上述の問題を解決して、混色、色むら、パターンくずれのない優れた高精細のカラーフィルターを、単純な工程で容易に低コストで製造で 10 きるカラーフィルターの製造方法を提供することである。

[0018]

【課題を解決するための手段】上記目的を達成するために、基板上に設けられたボリシランからなる感光層を紫外線露光することによって、パターンの潜像を形成する工程と、親水性インクを用いたインクジェット方式により着色する工程とを有することを特徴とする。

【0019】また、前記ポリシランが構造式(I)で表わされるものを使用することが好ましい。

[0020]

【化2】

$$\begin{array}{ccc}
& \begin{array}{ccc}
R_1 & R_3 \\
& & \end{array} & (I) \\
& & R_2 & R_4
\end{array}$$

【0021】 (式中、 R_1 、 R_2 、 R_3 及び R_4 は、同一または異なって、炭素数 $1\sim12$ の脂肪族炭化水素残基、芳香族炭化水素残基、および脂環式炭化水素残基のいずれでもよく、これらの基は置換基を有してもよく、mお 30よびnは整数である。)

このポリシラン樹脂は有機溶媒可溶性であり、透明均一な薄漠でコーティング可能なものであればよい。また、このポリシラン層の厚さは $1\sim10~\mu\,\mathrm{m}$ とすることが好ましい。

【0022】上記のボリシランを溶解する有機溶媒は、ボリシランを溶解可能な蒸発性有機溶媒であれば特に限定されるものではない。中でもボリシランにとって良溶媒であり、溶解度の大きいトルエン、キシレンが好ましい。

【0023】また、ポリシラン層に対して紫外線露光を行った場合、紫外線露光された部分のポリシラン層は、疎水性から親水性に変化する。一方、露光されていない部分のポリシラン層は疎水性の状態を保持する。これにより、親水性のカラーパターン潜像が形成される。なお、紫外線照射線量は0.5~10J/cm²とすることが好ましい。

【0024】また、前記親水性インクに含まれる着色材 レッドイン・料が、塩基性染料であることが好ましい。一般的に、塩 C.I. Basic l 基性染料は紫外線照射でボリシラン層中に形成されるシ 50 グリセリン

ラノール基と相互作用することによりボリシラン層に吸着すると考えられる。紫外線露光されていない部分のボリシラン層は疎水性であるので、親水性ボリシラン層に付着した親水性インクがにじみ出すことがない。そのため、R, G, Bの混色のない高精細なカラーパターンが形成可能となる。

【0025】本発明に用いるインクジェット用インクは水溶性染料を添加物を含む水溶液にト10%で溶解して作製する。この場合、添加物としては、グリセリン、ジエチルグリコール、ジエチルグリコール、ジエチルグリコールモノブチルエーテル、各種アルコール類、アセトニトリルなどが挙げられる。また、添加物100部(重量部、以下同じ)に対して、水200~2000部を混合したものを用いることが好ましい。

[0026]

【発明の実施の形態】

(実施の形態1) 本発明の表示装置用カラーフィルターの製造上の工程を示す模式図を図1に示す。

【0027】まず、図1(a)に示すように、メチルフ 20 エニルポリシランをトルエンに溶解して濃度が15%程度のトルエン溶液を作った。この溶液をガラス基板上に スピンコートし、乾燥後の膜厚が 2μ mのポリシラン層 2を形成した。

【0028】次いで、図1(b)に示すように、ポリシラン層2に対して、R,G,Bの透過パターンが形成されたフォトマスク3を通して、高圧水銀灯を用いて4J/cm²の光量の紫外線4を照射することで、カラーパターン潜像を形成した。

【0029】この後、図1(c)に示すように、下記に示すカラーインク5を用いてインクジェット方式で、このカラーパターンの潜像に対してR,G,Bの3色を1回の工程で着色する。インクジェット方式としては、通常用いられるパブルジェット型やピエゾジェット型のいずれを用いてもよい。また、使用するインクジェット装置は、ノズル面にR,G,Bが横並びであるノズル列を有し、コンピュータなどによる制御によって、所定の位置に所定の色をノズルから吐出することができるため、着色面積及び着色パターンを任意に設定することができる。表示装置用カラーフィルターを生産する上で、生産性を考慮するとノズル列に対して垂直方向に走査して、同時にR,G,Bを着色できるので、R,G,Bの着色パターンをライン状に形成することが好ましい。

26部

【0030】 グリーンインク

C. I. Basic Yellow7 0.5部
C. I. Basic Blue1 0.5部
グリセリン 2.6部
水 6.3部
レッドインク
C. I. Basic Red12 1部

5

水 63部

ブルーインク

C. I. Basic Blue26 1部 グリセリン 2 6部 水 6 3部

図1 (d) に示すように、ここまで製造したカラーフィルターを乾燥した後、カラーパターン以外部分にブラックマトリックス6を形成してカラーフィルターを完成した。

【0031】ブラックマトリックスの形成方法として 10 は、樹脂ブラックでコーティングする方法、黒色油性インクを用いて着色する方法、または着色したポリシラン 層を全面露光した後に黒色水溶性インクで着色する方法 などを用いることができる。

【0032】このようにして得られたカラーフィルターを光学顕微鏡により観察したところ、ボリシラン層のはがれ、混色、色むら、端部パターンのくずれなどの問題は観察されなかった。

【0033】製造したカラーフィルターの可視吸収スペクトルを測定したところ、各色染料の最大吸収波長にお 20 ける透過率は1%以下であり、ポリシラン層が十分着色されていた。

【0034】さらに、上記のカラーフィルターを用いて、カラー液晶パネルを作製した。図2(a)は、カラー液晶パネルの断面図を示し、図2(b)は、カラー液晶パネルの透視斜視図を示す。カラー液晶パネルは、透明性絶縁基板からなる薄膜トランジスタ(TFT)基板22と対向基板23とを対向配置し、シール材24を介して貼り合わせて、液晶を封入して液晶層33を形成した構造、すなわちTFT基板22と対向基板23とによ30り液晶層33を挟持した構造になっている。

【0035】上記TFT基板22上には、マトリクス状に画素電極25が形成されると共に、信号電極26、および走査電極27が形成されている。これら信号電極26および走査電極27の交点付近には、薄膜トランジスタ(TFT)28が設けられており、このTFT28に上記画素電極25が接続されている。

【0036】一方、対向基板23上には、上記のように して形成したカラーパターン30及びブラックマトリッ クス31を有したカラーフィルターの上に共通電極であ 40 るITO膜29、および配向膜34が形成されている。

【0037】さらにTFT基板22と対向基板23の外側両面に偏光板35が設けられ、図2に示すようなカラー液晶パネルが完成される。

【0038】本実施の形態ではボリシラン膜としてメチルフェニルボリシランを用いたが、エチルフェニルボリシラン、ブチルフェニルボリシラン、ジブチルボリシラン、ジペンチルボリシラン、メチルブチルボリシラン、ピフェニルメチルボリシラン、メチルトリルボリシラン、トリメチルフェニルボリシジシラン、ジフェニルジ 50

メチルボリジシラン、ジへキシルボリシラン、シクロへ キシルメチルボリシランでもよい。

【0039】(実施の形態2)下記のカラーインクを用いること以外は実施例1と同様にして、カラーフィルターを得た。ポリシラン層のはがれが観察されず、透過率は1%以下で、カラーフィルターとして十分着色された。

【0040】 グリーンインク

C. I. Basic green4 1部 アセトニトリル 26部 63部 水 レッドインク 1部 C. I. Basic Red1 26部 アセトニトリル ж 63部 ブルーインク 1部 C. I. Basic Bluel アセトニトリル 26部 63部

上記実施例に記載された染料の以外に、塩基性染料のColor Index(C.1.)としては、ベーシック・レッド2、ベーシック・レッド27、ベーシック・バイオレット3、ベーシック・バイオレット7、ベーシック・ブルー3、ベーシック・ブルー77、ベーシック・ブルー124、ベーシック・グリーン1、ベーシック・イエロー11、ベーシック・バイオレット21などを使用してもよい。

[0041]

【発明の効果】本発明では、インクジェットブリント方式で着色することにより、液に浸漬する工程がなく、ボリシラン膜はがれが発生しない。上記カラーパターン潜像が形成されたボリシラン層に対して、インクジェットブリント方式でR, G, Bの3色に対応する親水性インクを用いて1回の工程で着色を行うことにより、着色されたボリシランパターンを得ることができる。従って、工程数が大幅に減少できる。

【0042】また、構造式(I)で示されるポリシランは有機溶媒によく溶解し、膜の形成性もよいため、均一な感光層が形成できる。

【0043】本発明による表示装置用カラーフィルターの製造方法を採用により、R,G,Bの混色がなく、ポリシラン層の膜はがれなどの問題を生じず、かつ、3色同時着色できる単純な工程で、安価で高精細なカラーフィルターを提供することができる。

【図面の簡単な説明】

【図1】本発明の表示装置用カラーフィルターの製造工程を示す模式図である。

【図2】本発明の表示装置用カラーフィルターの断面図 及び透視斜視図である。

【符号の説明】

- 1 ガラス基板
- 2 ポリシラン層
- 3 マスクパターン
- 4 紫外線
- 5 カラーインク
- 6 ブラックマトリックス
- 22 薄膜トランジスタ基板
- 23 対向基板
- 24 シール材
- 25 画素電極

26 信号電極

27 走査電極

28 薄膜トランジスタ

29 ITO膜

30 カラーパターン

31 ブラックマトリックス

33 液晶層

3 4 配向膜

35 偏光板

10

[図1]

7

【図2】

フロントページの続き

(51) Int. Cl. 6

識別記号

// B41J 2/01

C 0 9 D 11/00

FΙ

C 0 9 D 11/00

B41J 3/04

101Y