

B41 Oct 25 Lec 1 Notes

Definition:

A function whose partial derivatives exist and ave continuous, is said to be of class C'. We can define Cⁿ for a times continuously differentiable

Exil: Does it always happen that fxy = fyx?

$$f(x,y) = \begin{cases} \frac{xy^3 - x^3y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases}$$

For
$$(x,y) \neq (0,0)$$
,

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(\frac{xy^3 - x^3y}{x^2 + y^2} \right) = \frac{-x^4y - 4x^2y^3 + y^5}{(x^2 + y^2)^2}$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{xy^3 - x^3y}{x^2 + y^2} \right) = \frac{xy^4 + 4x^3y^2 - x^5}{(x^2 + y^2)^2}$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(\frac{xy^3 - x^3y}{x^2 + y^2} \right) = \frac{xy^4 + 4x^3y^2 - x^5}{(x^2 + y^2)^2}$$

$$\frac{\partial f}{\partial x} (0,0) = \frac{\Omega_{inn}}{h + 0} \frac{f(h,0) - f(0,0)}{h} = \frac{\Omega_{inn}}{h + 0} = \frac{\frac{6h}{h^2} - 0}{h} = 0$$

$$\frac{\partial f}{\partial y} (0,0) = \frac{\Omega_{inn}}{h + 0} \frac{f(0,h) - \frac{\partial f}{\partial x}(0,0)}{h} = \frac{\Omega_{inn}}{h + 0} = 0$$

$$\frac{\partial^2 f}{\partial x^2} (0,0) = \frac{\Omega_{inn}}{h + 0} \frac{\frac{\partial f}{\partial x}(0,h) - \frac{\partial f}{\partial x}(0,0)}{h} = \frac{\Omega_{inn}}{h + 0} = 0$$

$$\frac{3x}{3x} (0,0) = \frac{2x}{x+0} + \frac{3x}{x} (0,0) = \frac{2x}{x+0} + \frac{3x}{x} (0,0) = \frac{2x}{x} - \frac{x^2}{x^2} - 0$$

$$\frac{\partial^{2} f}{\partial y \partial x} (0,0) = \lim_{h \to 0} \frac{\partial f}{\partial y} (1,0) - \frac{\partial f}{\partial y} (0,0) = \lim_{h \to 0} -\frac{h^{2}}{h} = -1$$

The ovem:

If f(x,y) is of class C^2 (i.e. f is twice continuously differentiable), then the mixed partial derivatives are equal, that is,

.1.e., Suppose f is a real-valued function of two variables ,x,y and f(x,y) is defined on an open subset . Uof R2.

Suppose further that both the second-order mixed partial derivatives fxy (x,y) and fyx (x,y) exist and are continuous on U. Then we have:

$$\frac{\partial^2 f}{\partial y^{\partial x}} = \frac{\partial^2 f}{\partial x \partial y}$$
 on all of U

Proof:

$$(x_0, y_0 + \Delta y) \qquad (x_0 + \Delta x, y_0 + \Delta y)$$

$$C \qquad + D$$

$$A \qquad + \qquad - B$$

$$(x_0, y_0) \qquad (x_0 + \Delta x, y_0)$$

$$\frac{3^{4}f}{3\times3^{3}g}(x_{0},y_{0}) = \frac{2^{6}g}{3\times}(x_{0},y) - \frac{3^{6}g}{3\times}(x_{0},y_{0})$$

$$= \frac{2^{6}g}{3\times3^{3}g} - \frac{2^{6}g}{3\times3^{3}$$

 $= \frac{\partial^2 f}{\partial y \partial x} (x_0.y_0)$

The ovem:

Suppose f is a function of n variables defined on an open subset U of Rⁿ. Suppose all mixed partials with a certain number of differentiations in each input variable exist and are continuous on U. Then all the mixed partials are continuous and don't depend on the order of the differentiation.

Ex 2:

Let (x,y) be Cartesian coordinates in the plane and let (r,0) be polar coordinates.

- (i) If z = f(x,y) is a function on the plane, express the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- (ii) Express 32 in Cartesian coordinates.

(i) By chain rule, using x=rcos0, y=rsin0
$$\left(\frac{\partial t}{\partial r}, \frac{\partial t}{\partial \theta}\right) = \left(\frac{\partial t}{\partial x}, \frac{\partial t}{\partial y}\right) \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \left(\frac{\partial t}{\partial x}, \frac{\partial t}{\partial y}\right) \begin{bmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

OR
$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} = -r \frac{\partial z}{\partial x} \cos \theta + r \frac{\partial z}{\partial y} \sin \theta$$

(ii)
$$\frac{\partial^2 \tau}{\partial r^2} = \frac{\partial}{\partial r} \left(\frac{\partial \tau}{\partial r} \right)$$

$$= \frac{\partial}{\partial r} \left(\frac{\partial \tau}{\partial r} \cos \theta + \frac{\partial \tau}{\partial y} \sin \theta \right)$$

$$= \frac{\partial}{\partial r} \left(\frac{\partial \tau}{\partial x} \cos \theta + \frac{\partial \tau}{\partial y} \sin \theta \right)$$

$$= \frac{\partial}{\partial r} \left(\frac{\partial \tau}{\partial x} \cos \theta + \frac{\partial}{\partial x} \cos \theta + \frac{\partial}{\partial y} \sin \theta \right)$$

$$= \left(\frac{\partial^2 \tau}{\partial x^2} \cos \theta + \frac{\partial^2 \tau}{\partial x^2} \sin \theta \right) \cos \theta + \left(\frac{\partial^2 \tau}{\partial x^2} \cos \theta + \frac{\partial^2 \tau}{\partial y^2} \sin \theta \right) \sin \theta$$

$$= \frac{\partial^2 \tau}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 \tau}{\partial x^2} \sin \theta \cos \theta + \frac{\partial^2 \tau}{\partial y^2} \sin^2 \theta$$

$$= \frac{\partial^2 \tau}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 \tau}{\partial x^2} \sin \theta \cos \theta + \frac{\partial^2 \tau}{\partial y^2} \sin^2 \theta$$

$$= \left(\frac{x^2}{r^2} \frac{\partial^2 \tau}{\partial x^2} + 2 \frac{y^2}{r^2} \frac{\partial^2 \tau}{\partial x^2} + \frac{y^2}{r^2} \frac{\partial^2 \tau}{\partial y^2} \right)$$

$$= \frac{1}{x^2 + y^2} \left(x^2 \frac{\partial^2 \tau}{\partial x^2} + 2xy \frac{\partial^2 \tau}{\partial x^2} + 2xy \frac{\partial^2 \tau}{\partial x^2} + 2xy \frac{\partial^2 \tau}{\partial x^2} \right)$$
and similarly for $\frac{\partial}{\partial r} \left(\frac{\partial \tau}{\partial y} \right)$

Definition: Heat Equation

If temperature
$$T = T(x,y,z,t)$$
, $\frac{\partial T}{\partial t} = \alpha^2 \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$

Definition: Wave Equation

$$\frac{\partial u}{\partial t} = \alpha^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

Definition: Laplace's Equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$