Notes on Mathematics

David K. Zhang

Last modified January 15, 2022

List of Definitions

Cartesian Product, $A \times B$	1
Relation, Binary Relation, a R b	1
Function, Domain, Codomain, $f: A \to B$, $f(x) \dots \dots \dots \dots \dots \dots \dots \dots$	1
Identity Function, id_A	1
Cartesian Product, $\prod_{i \in I} A_i$	1
Metric, Distance Function	3
Metric Space	3
Continuity	3
Group	4
Abelian Group	4
Rng	5
Zero Rng, Trivial Rng	6
Nonzero Rng, Nontrivial Rng	6
Ring	6
Commutative Ring	6

List of Theorems

Multiplying by Zero Yields Zero		5
---------------------------------	--	---

Set Theory

Definition: Cartesian Product, $A \times B$

Let *A* and *B* be sets. The *Cartesian product* of *A* and *B*, denoted by $A \times B$, is the set of all ordered pairs (a, b) consisting of an element $a \in A$ followed by an element $b \in B$.

 $A \times B := \{(a, b) : a \in A \text{ and } b \in B\}$

Definition: Relation, Binary Relation, a R b

Let *A* and *B* be sets. A *relation* between *A* and *B*, also known as a *binary relation* between *A* and *B*, is a subset $R \subseteq A \times B$ of their Cartesian product.

Given $a \in A$ and $b \in B$, we write a R b to denote that $(a, b) \in R$. If this is the case, then we say that R relates a to b.

If A = B, then instead of saying that R is a relation *between* A and A, we simply say that R is a binary relation *on* A.

For example, the less-than relation < is a binary relation on the set $\mathbb N$ of natural numbers. We write 3 < 4 to indicate that the ordered pair $(3,4) \in \mathbb N \times \mathbb N$ is an element of the relation <.

Definition: Function, Domain, Codomain, $f: A \rightarrow B$, f(x)

Let *A* and *B* be sets. A *function* from *A* to *B* is a binary relation $f \subseteq A \times B$ between *A* and *B* that has the following property: for each $x \in A$, there exists a unique $y \in B$ such that $x \notin A$. We call the set *A* the *domain* of the function f, and we call *B* the *codomain* of f.

We write $f: A \to B$ to denote that f is a function from A to B, and given $x \in A$, we write f(x) to denote the unique element of B that is related to x by f.

Definition: Identity Function, id_A

Let *A* be a set. The *identity function* on *A* is the function $id_A : A \to A$ defined by $id_A(a) := a$ for all $a \in A$.

Definition: Cartesian Product, $\overline{\prod_{i \in I} A_i}$

Let I be an index set, and let $\{A_i\}_{i\in I}$ be an indexed family of sets. The *Cartesian product* of $\{A_i\}_{i\in I}$, denoted by $\prod_{i\in I}A_i$, is the set of all functions $f:I\to\bigcup_{i\in I}A_i$ such that $f(i)\in A_i$ for all $i\in I$.

$$\prod_{i \in I} A_i \coloneqq \left\{ f \, : \, I \to \bigcup_{i \in I} A_i \, \middle| \, \forall i \in I \, : \, f(i) \in A_i \right\}$$

Topology

Definition: Metric, Distance Function

Let X be a set. A *metric* on X, also known as a *distance function* on X, is a function d: $X \times X \to \mathbb{R}$ that satisfies the following requirements:

- *Positive-definiteness*: $d(x, y) \ge 0$ for all $x, y \in X$, and d(x, y) = 0 if and only if x = y.
- *Symmetry*: d(x, y) = d(y, x) for all $x, y \in X$.
- Triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Definition: Metric Space

A *metric space* is an ordered pair (X, d) consisting of a set X and a metric d on X.

Definition: Continuity

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is **continuous** at a point $x_0 \in X$ if, for every $\epsilon > 0$, there exists $\delta > 0$, such that for all $x \in X$, if $d_X(x, x_0) < \delta$, then $d_Y(f(x), f(x_0)) < \epsilon$.

Group Theory

Definition: Group

A *group* is an algebraic structure $\langle G; 1, ^{-1}, \cdot \rangle$ consisting of:

- a set *G*, called the *underlying set*;
- a distinguished element $1 \in G$, called the *identity element*;
- a unary operation $^{-1}: G \to G$, written as $x \mapsto x^{-1}$, called *inversion*;
- a binary operation \cdot : $G \times G \to G$, written as $(x, y) \mapsto x \cdot y$, called the *group operation* or *group product*;

satisfying the following requirements:

- Associative property: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in G$.
- *Identity property*: $1 \cdot x = x \cdot 1 = x$ for all $x \in G$.
- Inverse property: $x \cdot x^{-1} = x^{-1} \cdot x = 1$ for all $x \in G$.

Definition: Abelian Group

An *abelian group* is a group $\langle G; 1, ^{-1}, \cdot \rangle$ that satisfies the following additional requirement:

• Commutative property: $x \cdot y = y \cdot x$ for all $x, y \in G$.

Ring Theory

In this chapter, we introduce a new class of algebraic structures, called rngs and rings, whose study is collectively called *ring theory*. Rngs and rings are more complicated than groups because their definition involves not one, but two binary operations.

Definition: Rng

A *rng* (pronounced as "*rung*") is an algebraic structure $\langle R; 0, -, +, \cdot \rangle$ consisting of:

- a set *R*, called the *underlying set*;
- a distinguished element $0 \in R$, called the *zero element*;
- a unary operation $-: R \to R$, written as $x \mapsto -x$, called *negation*;
- a binary operation $+: R \times R \to R$, written as $(x, y) \mapsto x + y$, called *addition*;
- a binary operation $\cdot : R \times R \to R$, written as $(x, y) \mapsto x \cdot y$, called *multiplication*;

satisfying the following requirements:

- *Additive structure*: $\langle R; 0, -, + \rangle$ is an abelian group.
- Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in R$.
- *Left distributivity*: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ for all $x, y, z \in R$.
- *Right distributivity*: $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$ for all $x, y, z \in R$.

The key ingredient in the definition of a rng is *distributivity*, which establishes a link between two different binary operations. We begin our study of rngs by proving a simple (but important) result to demonstrate the utility of the distributive property.

Multiplying by Zero Yields Zero

Theorem: Let $\langle R; 0, -, +, \cdot \rangle$ be a rng. For any $x \in R$, we have $0 \cdot x = x \cdot 0 = 0$.

Proof: Let $x \in R$ be given. Because 0 is the identity element of the abelian group $\langle R; 0, -, + \rangle$, we have 0 = 0 + 0. Using left distributivity, it follows that $0 \cdot x = (0 + 0) \cdot x = (0 \cdot x) + (0 \cdot x)$, and by canceling one copy of $0 \cdot x$ on both sides, we conclude that $0 \cdot x = 0$. We similarly apply

right distributivity to the expression $x \cdot 0 = x \cdot (0+0) = (x \cdot 0) + (x \cdot 0)$ to conclude that $x \cdot 0 = 0$.

Definition: Zero Rng, Trivial Rng

The *zero rng* or *trivial rng* is the rng $\langle \{0\}; 0, -, +, \cdot \rangle$ whose underlying set is a singleton containing the distinguished element 0, and whose operations are defined by $-0 = 0 + 0 = 0 \cdot 0 = 0$.

Definition: Nonzero Rng, Nontrivial Rng

A rng is *nonzero* or *nontrivial* if its underlying set contains more than one element.

Definition: Ring

A *ring* is an algebraic structure $\langle R; 0, 1, -, +, \cdot \rangle$ consisting of:

- a set *R*, called the *underlying set*;
- a distinguished element $0 \in R$, called the *zero element*;
- a distinguished element $1 \in R$, called the *identity element*;
- a unary operation $-: R \to R$, written as $x \mapsto -x$, called *negation*;
- a binary operation $+: R \times R \to R$, written as $(x, y) \mapsto x + y$, called *addition*;
- a binary operation $\cdot : R \times R \to R$, written as $(x, y) \mapsto x \cdot y$, called *multiplication*;

satisfying the following requirements:

- *Rng structure*: $\langle R; 0, -, +, \cdot \rangle$ is a rng.
- *Identity*: $1 \cdot x = x \cdot 1 = x$ for all $x \in R$.

Definition: Commutative Ring

A *commutative ring* is a ring *R* that satisfies the following additional requirement:

• Commutativity: $x \cdot y = y \cdot x$ for all $x, y \in R$.