互换性与测量技术 B 实验指导书

(机械设计学部)

武汉理工大学机电工程学院 实验中心

2016年3月10日

注意事项

- 一、 学生在上实验课前,应认真阅读实验指导书和实验装置、仪器设备的介绍,了解实验目的、测量方法、测量步骤和测量结果的处理。
- 二、学生应按规定时间来做实验。进入实验室后,按要求签名报到。如有特殊情况,必须办理请假手续, 并尽快利用空闲时间补做实验。
- 三、学生在做实验过程中,应该保持良好的学习环境,爱护室内公共卫生,遵守实验室相关规定。
- 四、在开始实验时,应严格遵守操作规程,听实验指导老师讲解操作全过程后,方可开展实验,使用仪器和量具。填写实验记录要认真仔细,独立完成每项实验的全部测量过程。
- 五、在实验教学过程中,如发生事故,应停止实验,及时通报,经实验指导老师查明原因,排除故障后, 再恢复实验的正常进行。
- 六、实验完毕,应将使用过的量具、仪器、附件和工件的金属表面擦洗干净,归还原处,主动清理实验现 场后,经指导老师认可同意,方可离开实验室。
- 七、实验报告应在规定的时间内,交给实验指导老师批阅。
- 八、本实验室为开放性实验室,与实验指导老师预约后,可以利用空闲时间开设不作要求的实验,熟悉仪器设备的使用和操作,加深基本概念理解,提高检测动手能力。

目 录

实验一 长度尺寸的测量	4
实验二 表面粗糙度的测量	10
实验三 导轨直线度误差测量	16
实验四 齿轮齿圈径向跳动的测量	21
实验五 齿轮分度圆齿厚偏差测量	24

实验一 长度尺寸的长度

长度尺寸的测量器具很多,大致分为两类:一类是有刻度线和标尺的测量器具和仪器,如游标量具、分厘量具、表类及各种测微仪,使用这些器具和仪器能够测得工件的实际尺寸大小或其偏差;另一类是量规,如各种极限量规。用量规不能测得工件实际尺寸的大小,只能确定被测工件是否在极限尺寸范围内。随着现代科学技术的发展,光栅、激光、数显、计算机等新技术已广泛用于长度测量中。本实验仅对长度测量中常用的最基本的仪器进行学习和了解。

一、实验目的

- 1、学习机械和光学比较仪的结构原理及其使用方法。
- 2、了解测量技术中常用度量指标。
- 3、学会使用量块。

二、 仪器的介绍与测量原理

机械、光学比较仪主要用于长度比较测量,可测量圆柱形、球形等物体的直径及零件的长度尺寸。用 这类仪器测量时,先用量块将仪器标尺或指针调到零位,那么被测尺寸相当于量块尺寸的偏差就可从仪器 刻度标尺上读得。

1. 扭簧比较仪

扭簧比较仪外形如图 1-1 (a) 所示,它是由测微仪和测量底座组成。扭簧测微仪式利用扭簧作为传动放大机构,将测量杆的直线位移转变为指针的角位移。图 1-1 (b) 是它的工作原理示意图。它的主要元件是弹簧片由中间向两端左右扭曲而成的扭簧片 2。扭簧片的一端连接在机壳的连接柱上,另一端连接在弹性杠杆 3 的一个支臂上。杠杆 3 的另一端与测杆 4 的上部接触。指针 1 粘在扭簧片的中部。测量时,测杆 4 向上或向下移动。从而推动杠杆 3 摆动。当杠杆 3 摆动时将使扭簧片 2 拉伸或缩短,引起扭簧片移动,因而使指针 1 偏转。在表盘上指示出相应的测量杆位移值。

仪器的刻度值为 $1\mu m$,标尺的示值范围为 $\pm 100\mu m$,仪器的测量范围为 $0\sim 180 mm$ 。其放大倍数约为 1000 (倍)。

(a) 外形图

(b) 工作原理

图 1-1 扭簧比较仪

1. 立柱; 2. 底座; 3. 微调螺钉; 4. 细调螺母; 5. 细调锁紧螺钉; 6. 测头; 9. 工作台; 10. 指示表 11. 横臂; 12. 横臂锁紧螺钉; 14. 测头提升杠杆

2. 立式光学比较仪

立式光学比较仪也叫立式光学计。其外形结构如图 1-2(a) 所示。它由底座、横臂、光学计管、投影筒和工作台等部分组成。

图 1-2 (a) 光学比较仪外形图

图 1-2 (b) 测量原理

1. 光源; 2. 反射镜; 3 微调(光管下面,图中看不见); 4. 微调凸轮螺钉; 5 光管锁紧螺钉; 6 测头; 7. 工作台; 8. 底座; 9. 立柱; 10. 投影筒; 11. 横臂; 12. 横臂锁紧螺钉; 13. 横臂升降螺母; 14. 侧头起升杠杆

该仪器利用光学正切杠杆放大原理,如图 1-2 (b) 所示。从物镜焦平面上的焦点 c 发出的光,经物镜后变成一束平行光到达平面反射镜 P,若平面反射镜与主光轴垂直,则光线按原路反射回来,即发射光 c 与像点 \mathbf{c}' 重合。图中,若测杠因被测尺寸的变化而产生微小位移 S,使平面镜 P 转动角 α 则反射光束与入射光束间的夹角为 2α ,发射光束汇集于像点 \mathbf{c}' , c 与 \mathbf{c}' 之间的距离 \mathbf{l} (标尺像相应的移动距离)

$$l = cc' = ftan2\alpha$$

式中: ƒ为物镜的焦距; α为偏转角。

微小位移 $S = btan\alpha$

b为测杆到支点的距离.

那么,光杠杆的放大比 $K = \frac{l}{S} = \frac{f tan2\alpha}{b tan\alpha} \approx \frac{2f}{b}$ (由于 α 角一般比较小)

当f = 200mm,b = 5mm时,K = 80,当光学仪目镜放大倍数为 12 倍,则仪器总放大倍数为 $12 \times 80 = 960$

图 1-3 光学比较仪光路图

图 1-4 投影筒影屏上标尺的像

由光源 1 发出的光线 1 经反光镜 2 全反射,通过棱镜折射、照亮分划板 3(在物镜焦平面上)左半部的标尺(共 200 格,分度值为 $1\mu m$)而继续前进,再经直角转向棱镜 5 折向物镜 6。由于分划板位于物镜的焦平面上,所以光线经物镜平行射在反射镜 7 上,又由于反射镜正好对着物镜,因此,光线又按原光路系统反射回去,使分划板的标尺成像在分划板的另一半面上。此面中间刻了一条固定指示线,当反射镜 7 处于水平位置时,指标线正好对准标尺线的零刻线,如图 1-2(b) 所示 \mathbf{c}' 。当被测尺寸变动使测杆 8 推动反射镜 7 绕其支点转过某一角度时,则分划板上的标尺将向上(或向下)移动一相应距离 $\mathbf{c}\mathbf{c}^{'}$ 。此移动量在投影筒 10 (图 1-4) 上按标尺刻线移动的格数及符号读出。

三、测量步骤

1. 选择测量头

根据被测工件形状选择测量头,使量头与工件成点接触或线接触。量头形式有球形、刃形、平面形, 而球形量头使用最多。本实验选用球形测头,并将球形测头装在测杆下端。

2. 组合量块

按被测件的基本尺寸或极限尺寸组合量块。其组合原则:为了减少组合误差,应选用尽可能少的量块来组成所需的尺寸。一般是从所需尺寸的末位数开始选择。将选好的量块用汽油棉花略为擦去表面防锈油,则表面遗留的一层极薄油膜有利于研合,但表面上不得有尘埃或棉花纤维,用少许压力将两块工作面相互推合。

3. 调整仪器

擦净仪器工作台,将量块置于仪器工作台中心位置;并使其上测量面中点对准测头。然后,按粗调、细调、微调顺序调整仪器。

- (1) 粗调 松开螺钉 12,转动升降螺母 13,调整横臂 11 上下移动,使测头与量块中心接触(注意:勿 使量块在测头下挪动,以免划伤工作面),从刻度盘 10(或投影筒 10的影屏)上观察,让指 针出现在刻度盘上+50~90μm 范围内,锁紧螺钉 12。
 - (2)细调 松开指示表(或光管)锁紧螺钉5,转动凸轮4,使指针较准确对"零",然后锁紧螺钉5。
 - (3) 微调 转动微调螺钉 3 (在光管下面中间部位),使指针对准零位。轻轻按动提升杠杆 14,使测头 起落数次,当指针指示稳定后,抬起量头,取下量块。

4. 进行测量

- (1)将工件表面擦拭干净,双手握住被测工件,放在工作台上进行操作,并在测头下面缓慢地来回移动 (注意:要使工件圆柱面始终与工作台平面接触,不许有任何倾斜),记下指示表上指针所指的最 大读数(即读数转折点,注意正负号),即为被测件相对量块尺寸的偏差值。
- (2) 对所指定部位进行测量(见实验报告书测量部位图),把测得数据填入实验记录中。
- (3)测量结束后,取下被测工件,放上量块组复查零位,其误差不得超过±0.5μm,否则重新测量。。
- (4) 判断零件是否合格。零件各截面实际尺寸均在图纸给定的极限尺寸范围内为合格。

四、注意事项

- 1. 操作小心,不得有任何碰撞。调整时观察指针位置,不应超出标尺示值范围。
- 2. 从量块盒取出量块时,用竹镊子夹出,注意保护量块工作面,不得划伤或掉落地上。用后未清洗上油不能放回量块盒。
 - 3. 测量结束前,不应拆开量块组,以备随时校对零位。

五、思考题:

- 1. 用比较仪能否进行绝对测量?
- 2. 测量时,量块是按等使用还是按级使用?

请按下列表格填写实验记录:

实验一 长度尺寸的测量

仪	岩	名	称	测量	量 范	围	示 值	范围	5) 度值	Ī
IX.	विद्यो					mm		mm			mm
		名	称		基	本尺寸及	及极限偏差		Ē	F	
被测	工件			通		端	止	端	I_1	I_2	I_3
	2 				3		III	IV	I		I — III V
测量	轴 径 向	道 1—1		 2		端 —3	袓	皮 测 件 实	际 尺	/ mm	
数据	I — I						通	最大Φ			
记 录	II—II						端	最小Φ			
/ μm	III—III						止	最大Φ			
	IV—IV						端	最小Φ			
评定		通 端止 端									
结果		被测工件									
实 學	<u></u>					 指	导教师	ĵ			

实验二、 表面粗糙度的测量

表面粗糙度的测量方法有光切法,光波干涉法及触针法(又称针描法)等,工厂常用的还有粗糙度样板直接和被测工件对照的比较法,以及利用塑性和可铸性材料将被测工件加工表面的加工痕迹复印下来,然后再测量复印的印模的印模法。

一、实验目的

- 1.建立对表面粗糙度的感性认识;
- 2.了解用双管显微镜测量表面粗糙度的原理及方法。

二、实验内容

用双管显微镜测量表面粗糙度的 R_z 和 R_v 值。

三、测量原理及仪器说明

双管显微镜是以光切法原理,利用被测表面能反射光的特性,根据"光切法原理"制成的光学仪器,用目镜或照相的方法测量各种零件外表面粗糙度,故又名光切法显微镜。这类仪器一般用于测量 0.8-80 微米的表面粗糙度 R_z 和 R_y 值。需要时,也可通过测出轮廓图形上各点的坐标值或使用照相装置拍摄被测轮廓图形,然后找出中线,计算其轮廓算术平均偏差 R_a 值。

图 2-1 光切显微镜

1-光源; 2-立柱; 3-锁紧螺钉; 4-微调手轮; 5-横臂; 6-升降螺母; 7-底座; 8-纵向千分尺 9-工作台固紧螺钉; 10-横向千分尺; 11-工作台; 12-物镜组; 13-手柄; 14-壳体; 15-测微刻度套筒; 16-目镜; 17-照相机安装孔

仪器外型如图 2-1 所示,它由底座 7,支柱 2,横臂 5,测微目镜 16,可换物镜 12 及工作台 11 等部分

组成。

仪器备有四种不同倍数(7X,14X,30X,60X)物镜组,被测表面粗糙度大小(估测)来选择相应倍数的物镜组(见表 2-1)。

物镜放大	总放大倍	目镜视场	物镜与工	测量范围	换算系数	
倍数 N	数	直 径	件距离	Rz (μm)	E(µm/	
		(mm)	(mm)		格)	
7X	60X	2.5	9.5	30~30	1.25	
14X	120X	1.3	2.5	6.3~20	0.63	
30X	260X	0.6	0.2	0.2 1.6~6.3		
60X	510X	0.3	0.04	0.8~1.6	0.147	

表 2-1 双管显微镜测量参数

图 2-2 光切显微镜工作原理

光切法的基本原理

光切显微镜由两个镜管组成(如图2-2(a)),一个是投射照明镜管,另一个为观察镜管,两镜管轴线互成90°。从光源发出的光线经聚光镜、狭缝及物镜后,在被测表面形成一束平行的光带,这束光带以45°的倾斜角投射到具有微小峰谷的被测表面上。波峰在S点、波谷则在S'点产生反射,通过观察镜管的物镜,分别成象在分划板上的a与a'点,在目镜中就可以观察到一条与被测表面相似的弯曲亮带。由图2-2a)可知,a至a'点影象(峰到谷)之间的距离h'与被测表面实际微观不平度峰谷间的高h之间的关系:

$$h = \frac{h' \cos 45^{\circ}}{N}$$

式中,h'为45°方向上的影像高度;N为物镜放大倍数。

图2-3 测微目镜结构图

影像高度 h' 是用测微目镜头来测量的,由于测微目镜视场中的十字线与测微读数方向成 45°, 当十字 线中的任一直线与影像峰、谷相切来测量波高时(图 2-2b)。

有 h' = h'' c o s 4 h'' 为十字线移动距离

测微目镜头是本仪器重要结构之一(其内部构造如图2-3a)。它的固定分划板玻璃片上有8条等分刻线的标尺;活动分划板玻璃片上刻有一双刻线和相互垂直的十字线。当转动测微套筒来移动活动分划板时,移动量可由测微套筒上读出。当测微套筒转动一圈时(100 格),十字线和双刻线便相对固定的标尺正好移动一个刻度间距。测量时转动测微鼓轮,使测微目镜中十字线的横线与波峰对准,记下第一个读数,然后移动十字线对准波谷(虚线位置),记下第二个读数,取二次读数之差(测微鼓轮转过的格数)即 Δh 值。

刻度套筒每转一格,十字线在目镜视场内沿移动方向移动的距离为 $K\mu m$,习惯上把这个移动距离称为格值,即, $h'' = K \cdot \Delta h$ 。每台仪器的 K 值不一定都相同,测量前先要仔细阅读仪器说明书(本仪器 K 值为17.5 μm),或者按标准刻度尺在不同放大倍数下测定仪器的格值,再算出不同放大倍数下的分度值。

$$\Leftrightarrow E = \frac{K}{2N} \qquad h = E \cdot \Delta h$$

式中h为零件表面不平度的高度; Δh 为刻度套筒上读数差(套筒转过的格数,见图 2-3b); E 为刻度套筒的分度值,或称为换算系数,它与投射角,目镜测微器的结构和物镜放大倍数有关,可在表 2-1 中查取。

四、测量方法与步骤

1. 准备工作

按图纸要求或目测初步估计被测表面 R_z 值范围,选择适当放大倍数物镜并安装在仪器上。将擦净的被测工件安放在工作台上进行初步调整,使被测工件表面的加工纹路方向,与镜管轴线夹角的平分线垂直。

2. 接通电源

3. 调整仪器

1) 按被测表面轮廓特点,确定取样长度 l,几种常用的机械加工方法的最小测量长度见表 2-2。

表 2-2

表面轮廓的特点	取样长度1(mm)	评定长度 Ln(mm)			
比较规则和均匀(如	2.5	(1~3) 1			
车、铣、刨)	2.3	(1~3) 1			
不很规则和均匀(如	0.9	(2, 6)1			
精车、磨)	0.8	(2~6)1			
很不规则和均匀(如	0.25	(6. 17)1			
精磨、研)	0.23	(6~17)1			
极不规则和均匀	0. 08				
(如细研、细抛光)	0.00				

- 2) 粗调节:用手拖住横臂 5,松开锁紧钉 3。旋转升降螺母 6,使镜头 12对准被测表面上方,上下移动横臂 5,直到在目镜中看到绿色光带和光面轮廓不平度的影象(图 2-3b),然后旋紧螺钉 3,调节中要避免物镜与被测表面发生碰撞。
- 3)细调节:在目镜中观察,转动微调手轮 4 和光带位置调节旋钮(在仪器左侧,图上未标),使视场中央出现最狭窄且一边最清晰的光带。
- 4) 松开工作台螺钉 9,转动工作台 11,使工作台纵向移动方向与光带平行。移动工件,使加工纹路(刀纹方向)与光带垂直,锁紧工作台螺钉 9。
- 5)细调目镜,使视场中央十字线最清晰。转动测微目镜头,使十字线的水平线和光带轮廓中线平行(图 2-4a),并以此水平线做为测量的基准线,旋转测微目镜头的刻度套筒 15,使目镜中十字线的水平线(基准线)分别与轮廓的谷底和峰顶相切(图 2-4b 和 c)。在取样长度 l 内,从刻度筒 15 中读出 5 个峰和 5 个谷的数值(单位为"格"),记载在实验记录中。然后按下式算出 10 点的平均高度值 Rz。

(a) 十字线的水平线和光带轮廓中线平行

(b) 水平线与轮廓谷底相切

(c) 水平线与轮廓的峰顶相切

$$R_z = E \cdot \left| \frac{\sum h_{\text{life}} - \sum h_{\text{res}}}{5} \right|$$

$$R_{_{\mathrm{y}}} = E \cdot \left| h_{_{\!arprojemax}} - h_{_{\!arprojemin}} \right|$$

- 6) 纵向移动工作台,按上述步骤在评定长度内,测出几个取样长度的 Rz 的值,取其平均值作为被测表面的微观不平度十点的高度 R_z 值。
 - 7) 填好实验报告,判断零件的适用性。

五、思考题:

- 1.什么是 R_z 、 R_v 和 R_a 参数? 用双管显微镜也能测量 R_a 参数吗?
- 2.为什么光带上、下边缘不能同时达到清晰程度?

请按下列表格填写实验记录:

实验二 表面粗糙度测量

	名 称			测量	R_z	μm
仪 器				范围		
DV HH	目镜放	大倍数		物镜放	大倍数	
	物方视	场直径		分度值 /	(μm/格)	
被测	编号	取	样 长 度 / mm	实际测量	R_z 的允许值 / μm	
零件						
			测量数据记	录 / 格		
	五个	、 最高点(峰)		五个最低	点(谷)
h_I				h_2		
h_3				h_4		
h_5				h_6		
h_7				h_8		
h_9				h_{10}		
数	$R_Z = E \times \left \sum_{i=1}^{n} \sum_{j=1}^{n} \left \sum_{i=1}^{n} \sum_{j=1}^{n} \left \sum_{i=1}^{n} \sum_{j=1}^{n} \left \sum_{j=1}^{n} \sum_{i=1}^{n} \left \sum_{j=1}^{n} \left \sum_{i=1}^{n} \left \sum_{j=1}^{n} \left \sum_{$	$\frac{h_{\mathbb{A}} - \sum h_{\mathbb{A}}}{5} =$				
据						
处	$R_{y} = E \cdot h_{\text{lift}} $	$-h_{ m pmin} =$				
理						$\mu {f m}$
评定						
结果						
实验				指导		
日期				教师		

实验三 导轨直线度误差测量

用节距法测量车床导轨在垂直平面内的直线度误差。

一,实验目的

- 1. 加深对直线度公差与误差的定义及特征的理解。
- 2. 学习直线度误差的测量及数据处理方法。
- 3. 了解光学合像水平仪的结构,原理及使用方法。

二,实验仪器设备

车床导轨, 光学合像水平仪

三,用光学合像水平仪测量直线度误差

1, 仪器的结构与工作原理

光学合像水平仪广泛应用于精密机械工业中。可测量工件表面的直线度,平面度和设备安装的正确性, 也可测量工件的微小倾角。

如图 3-1 所示, 仪器的测量范围为 0-5mm/m。分度值为 0.01mm/m

光学合像水平仪是一种精密测角仪器,用自然水平面作为测量基准。其外形及结构原理如图 3-1(a)(d)

图 3—1 光学合像水平仪结构及其工作原理示意图 1. 观察窗; 2. 刻度盘; 3. 旋钮; 4. 刻度尺; 5. 水准器; 6. 杠杆; 7. 棱镜

所示,它的水准器 5 是一个密封的玻璃管,管内注入精馏乙醚,并留有一定量的空气,以形成气泡。管的内壁在长度方向具有一定的曲率半径。气泡在管中停住时,气泡的位置必然垂直于重力方向。就是说,当水平仪倾斜时,气泡本身并不倾斜,而始终保持水平位置。利用这个原理,将水平仪放在桥板上使用,便

能测出实际被测直线上相距一个桥板跨距的两点间的高度差。

测量时,光学合像水平仪水准器 5 中的气泡两端经棱镜 7 反射的两半象从观察窗 1 观察。当桥板两端相对于自然水平面无高度差时,水准器 5 处于水平位置,则气泡在水准器 5 的中央,位于棱镜 7 两边的对称位置,因此从观察窗看到两半象合象(如图 3-1b 所示)。如果桥板两端相对于自然水平面有高度差,则水平仪倾斜一个角度,因此气泡不在水准器 5 的中央,从观察窗 1 看到两半象是错开的(如图 3-1c 所示)

为了测出被测两点的高度差数值,调节旋钮,使得长的半边象逐渐缩短;短的半边象逐渐增长,直到两半边象合象(如图 3-1b 所示)。也就是使气泡返回到棱镜 7 两边的对称位置。此时,转动旋钮 3 带动刻度盘 2 转过的格数,就是合象水平仪在一米长度倾斜的高度差。

2, 读数方法

合像水平仪的气泡调到合象后,即可进行读数。水平仪读数有两部分组成:一是刻度盘 2;二是侧面的刻度尺 4。刻度盘 2 转动一圈(转动 100 格),侧面的刻度尺 4 移动一格。如果以刻度盘 2 上格数作为读数单位,那么水平仪读数的百位数取刻度尺 4 标线所指刻度的整数部分;十位数和个位数直接从刻度盘 2 读出。例如:刻度尺 4 标线所指刻度位于 2 和 3 之间;刻度盘 2 所指刻度是 91 格,则水平仪的读数为 291 格。

3, 测量步骤

- 1) 将长度为 1400mm 的导轨和跨距为 140mm 的桥板用汽油擦洗干净,等距离取十个测量点(导轨两端各 去掉 70mm, 将导轨分成九段)
- 2) 将分度值为 0.01mm/m 的光学合象水平仪放在桥板上,先后置于被测导轨的两端,调整下面的三个螺钉,使导轨大致处于水平状态。

图 3-2 用水平仪测量直线度误差时的示意图

- 3) 沿被测导轨把桥板移动到导轨的一端(如图 3-2 所示的 0—1 位置),开始测量。分别测出这十点中的 所有后一点相对于其前一点的高度。注意每次移动桥板时,应使桥板的支承在前后位置上首尾相连, 而且水平仪不得相对于桥板产生移动。
- 4) 把测量数据依次填入实验报告中,并用作图法按最小条件求出导轨在垂直平面内的直线读误差。

4, 数据处理

数据处理可采用计算法或作图法。以下介绍作图法。作图法的具体步骤如下。

- 1) 选择合适的 x 轴, y 轴放大比例。x 坐标代表测量点序或测量位置, 纵坐标 y 代表相对于测量基准的量值, 即高度差的累积值。
- 2) 根据各测量点的累积值描点。用折线将各点连接起来,得出被测导轨近似轮廓曲线。

3) 用最小包容区域判别法来评定直线度误差。由两平行直线包容实际线时,三个接触点的位置应符合"两高夹一低"(高一低一高)或"两低夹一高"(低一高一低)的相间准则。这样,两个平行理想直线间沿纵坐标方向的距离 f' 为被测表面实际线的直线度误差(由于 f' 和 f 之间所夹的 α 角度很小,为计算方便可以忽略不计,所以 f=f')。

合象水平仪的分度值为 0.01mm/m, 相当于在 1m 长度上的高度差为 0.01mm。当两测量点间距离(桥板跨距)为 140mm 时, 那末水平仪实际分度值为 0.01/1000×140mm/格。

4)将误差值f(格)折算成线性值f(mm),并判断该导轨是否合格。

例 用分度值为 0.01mm/m 的合象水平仪测量长度为 1400mm 的导轨的直线度误差。所采用的桥板跨距为 140mm, 将导轨分成 9 段进行测量, 测得值列入下表。

桥板位置	测点序号											
彻彻亚且	0	1	2	3	4	5	6	7	8	9		
水平仪读数(格) a _i	0	226.5	227.9	225.2	223.2	225.7	222.4	228.0	225.1	222.7		
简化读数(格) $\Delta_i = a_i - a$	0	+1.5	+2.9	+0.2	-1.8	+0.7	-2.6	+3.0	+0.1	-2.3		
累积值(格) $h_j = \sum_{i=1}^{j} \Delta_i$	0	+1.5	+4.4	+4.6	+2.8	+3.5	+0.9	+3.9	+4.0	+1.7		

注: 本例取 a=225.0 格

在坐标纸上以横坐标 x 代表测点序号或跨距长度 (mm),纵坐标 y 代表各测点的简化读数 h_j 的累积值 (格)。作出被测导轨近似轮廓曲线(见图 3-3 中)。

图 3-3 被测导轨的近似轮廓曲线及图解直线度误差

在图3-3上作通过两个低极点(0,0)和(6,0.9)的直线,再作这两个低极点之间的一个高极点(3,4.6)且平行于低极点连线的直线,得到最小包容区域。在图上量出或计算出该区域的宽度为4.15格,此距离就是被测导轨的直线度误差 f(格)。因此,按最小条件评定的直线度误差

$$f = \frac{0.01}{1000} \times 140 \times 4.15 = 0.00581 mm f = \frac{0.01}{1000} \times 140 \times 4.15 = 0.00581 mm$$

四, 思考题

- 1. 评定直线度误差有几种方法? 哪种方法误差值最小?
- 2. 本实验中的直线度误差按什么方向计取? 为什么?

请按下列表格填写实验记录:

实验三 导轨直线度误差测量

が B	足	名	Ħ	沵			桥板	反 跨	距			
仪 器 一 分			度(直			实际	分度	值			
测量数据记录和处理												
测量点序		0	1	2	3	4	5	6	7	8	9	
测量位置 / mm												
水平仪读数	(/	格										
简化后读数	[/	格										
累积值 / 格												
直线度误差	£ /	mm										
	扌	安最小	包容	区域》	法作图	并通过	计计算	求直续	线度误	差 f		
+ 10 - 1	24)급 <i>스</i> / 1	- III						
直线度公	差	t=0.0	<i>6тт</i>		评定结							
实验日期					指导教	师						

实验四、齿轮齿圈径向跳动的测量

一、 实验内容

用齿轮跳动检查仪测量齿轮的齿圈径向跳动误差。

二、实验目的

- 1. 了解测量齿圈径向跳动的目的与意义。
- 2. 熟悉齿圈径向跳动的测量方法。
- 3. 能够进行数据处理,作出正确的判断。

图 4-1 齿轮径向跳动测量

图 4-2 卧式齿圈径向跳动测量仪

1-滑台移动手轮; 2-滑台锁紧手柄; 3-底座; 4-滑台; 5-锁紧螺钉; 6-顶尖架; 7-顶尖移动手柄; 8-升降螺母; 9-顶尖; 10-顶尖锁紧螺钉; 11-被测齿轮; 12-测头; 13-指示表拨动手柄; 14-指示表; 15-立柱; 16-立柱固紧螺钉

三、仪器介绍及测量原理

齿轮径向跳动主要用于评定由齿轮几何偏心所引起的径向误差。通常在齿轮跳动检查仪上进行测量。测量时,将测头插入齿槽中部,如图 4-1 所示,从指示表上读数。逐齿测量一圈,其最大与最小读数之差即为齿圈径向跳动量。

仪器结构如图 4-2 所示。它主要是由底座 3,滑台 4,顶尖架 6,升降螺母 8,手柄 13,指示表 14等组成,仪器测量范围:齿轮模数 1-6mm 最大直径 300mm 仪器指示表分度值 0.001mm

四、 测量步骤

1.安装齿轮

将被测齿轮套在心轴上,心轴装在仪器的两顶尖之间,拧紧螺钉 2 和 10,心轴与顶尖间的松紧要适当,能灵活转动而没有轴向窜动。

2.选择测量头

有球形测头和锥形测头,本实验使用锥形测头,仪器配有 M1-1.5、M1.75-2、M4-6 三种规格,根据被测齿轮模数选相应测头,装入指示表测杆下端。

(以上两步骤一般由指导老师进行)

3.指示表调整

反时针拨动手柄 13。转动立柱调节螺母 8,将千分表测头 12 插入齿槽中,使其与齿轮两齿侧面接触, 并使千分表小指针出量程中锻。反复拨动手柄 13,待示值稳定后转动表盘使指针对零。

4.开始测量。

记下第一齿读数,顺时针拨动手柄 13, 抬起侧头, 转动被测齿轮一齿, 再放下侧头, 待示值稳定后再进行读数。按上述方法, 逐齿测量一圈, 记下千分表读数, 将读数添在报告中。取其中最大与最小值之差, 即为齿圈径向跳动量。

5.绘制误差曲线

以指示表读数为纵坐标,可作出一封闭的误差曲线,如图 4-1 所示。曲线最高点与最低点沿纵坐标方向的距离为 F_r

五、 注意事项

- 1. 拨动手柄放下千分表时,用力均匀平稳,不可冲撞。
- 2. 测完一周后,回到测量的第一齿,指针指向初读数,否则应检查原因(测头连接等部位是否松动?)调整后重新测量。

六、思考题

- $1.F_r$ 是评定齿轮哪项要求的检验指标?
- $2. F_r$ 产生的主要原因是什么?

请按下列表格填写实验记录:

实验四 齿轮齿圈径向跳动的测量

仪 器	名	称	模数		最大直流	径 / mm	分度值 / mm			
1人 66										
被测齿车	论 模数 m	齿数 Z	齿形角α	变位系数 X		精度等	级	编号		
测量数据记录/μm										
齿序	读数	齿序	读数	齿序	读	数	齿序	读数		
1		8		15			22			
2		9		16			23			
3		10		17			24			
4		11		18			25			
5		12		19			26			
6		13		20			27			
7		14		21	21		28			
公差			误差 F _r			评定结	果			
				•		•				

误差曲线

实验日期 指导教师

实验五 齿轮分度圆齿厚偏差测量

一、实验目的

- 1.掌握测量齿轮齿厚的方法;
- 2.加深理解齿厚偏差的意义。

二、实验内容

用齿轮游标卡尺测量齿轮的厚度偏差。

三. 仪器介绍及测量原理

齿轮齿厚偏差 E_s 是指在分度圆柱面上法向齿厚的实际值与公称值之差。 E_s 的大小间接地反映齿轮传动时的齿侧间隙的大小。齿轮的齿厚通常用齿轮游标卡尺测量,如图 5-1 所示。

图5-1 齿厚游标卡尺示意图

1- 水平主尺; 2-垂直主尺; 3、4-游框; 5、6-游框紧固螺钉7、8-微调螺旋; 9、10-微调紧固螺钉; 11-量爪; 12-定位高度尺

齿厚游标卡尺由两套互相垂直的游标尺组成,其原理以及读数方法与普通游标卡尺相同,垂直游标卡尺用于控制测量部分(分度圆至齿顶圆)的弦齿高,水平游标尺用于测量所测部位(分度圆)的弦齿厚(实际)。齿轮游标尺的分度值 0.02mm,测量模数有 1~22mm 和 1~26mm 两种。

四、测量步骤:

1. 用外径千分尺或游标卡尺测量齿顶圆的实际直径 d_a , 并计算出理论的齿顶圆半径 r_a

$$r_a = \frac{1}{2}m(z+2) =$$

2. 按下式计算出分度圆处公称弦齿高 \bar{h} 与公称弦齿厚 \bar{s}

$$\overline{h} = m \left[1 + \frac{z}{2} \left(1 - \cos \frac{90^{\circ}}{z} \right) \right] \qquad \overline{h} = m \left[1 + \frac{z}{2} \left(1 - \cos \frac{90^{\circ}}{z} \right) \right] \qquad \overline{s} = mz \sin \frac{90^{\circ}}{z} \overline{s} = mz \sin \frac{90^{\circ}}{z}$$

式中, m—齿轮模数 (mm) z—齿轮齿数

考虑到定位基准(齿顶圆)可能有加工误差,测量时 \bar{h} 应根据齿顶圆直径的实际偏差加以修正。 求出被测齿轮的实际分度圆弦齿高 \bar{h}' 。 \bar{h}'

- 3. 将弦齿高尺寸 \bar{h} ',在垂直游标尺上定位。即:用微调螺钉将垂直游标尺的高度尺定位(调整)到所要求的弦齿高 \bar{h} '尺寸上,并紧固螺钉。
- 4. 将齿轮游标尺置于被测齿轮上,使垂直游标尺的高度尺的顶端,与齿顶正中接触,然后移动水平游标 尺,使其两卡脚与齿廓接触,从水平游标尺上读出弦齿厚的实际尺寸(用透光法判断接触状况)。
 - 5. 在圆周上四个等距离的齿上进行测量,并将读数记入报告中。
 - 6. 将测得的实际齿厚引减去公称齿厚示, 即为齿厚偏差, 其值在齿厚极限偏差范围内为合格。

五、思考题

- 1. 测量齿轮齿厚偏差的目的是什么?
- 2. 弦齿高 h'为何与齿顶圆半径有关?

请按下列表格填写实验记录:

实验五 分度圆齿厚偏差的测量

量具				分 月	度 值						
里 共				分第							
	编号	模数 m	占	数 Z	齿形	角α	变	位系数 X	精度等级		
被											
	被测	理论齿顶圆台	半径 $r_a =$	$\frac{1}{2}m(z+2)$	=						
测	参数	实测齿顶圆半径 $r'_a = \frac{1}{2}d'_a$ $r'_a = \frac{1}{2}d'_a =$									
齿	计算 / mm	实 测 分 度 圆 弦 齿 高 $\bar{h}' = m \left[1 + \frac{z}{2} (1 - \cos \frac{90^{\circ}}{z}) \right] - (r_a - r'_a)$									
64		$\overline{h'} = m \left[1 + \frac{z}{2} \left(1 - \cos \frac{90^{\circ}}{z} \right) \right] - \left(r_a - r_a' \right) =$									
轮		理论分度圆盘	玄齿厚家	$= mz \sin \frac{90^{\circ}}{z}$	=						
			测 量 :	结 果 / m	m						
		测得	 值	齿厚极限偏差							
齿 序	实 测 齿	京厚	齿厚偏差 。	E_s	齿 侧隙 代		E_{ss}	E_{si}			
1											
2											
3											
4											
评定结果		,			- 1				,		
实验日期				指导	教师						