

Un espacio vectorial es una estructura algebraica creada a partir de un canjunto no vacio; una operación interna (suma definida para los elementos del canjunto) y una operación externa (producto por un escalar definida entre dicho conjunto y cuerpo matemática) El espacio vectorial se denota por: (U, K, t, ...), o simplemente (V, t, ...). Las dos operaciones tienen sus propias propiedades.

Suma de dos elementos en V:

Asociativa: (u+v) + w = u (v+w) + u v, w = V

Commutativa: utv = vt u tu vev

Existencia elemento neutro: Es un vector al que llamaremos O tal que si VeV, entonces V+O=V O+V=V+O=V +VEV

Existencia elemento opuesto: Para todo vector vel, existe un vector al que llamaremos opuesto y designaremos como: -vel, tal que v+ (-v)=0

Producto par un escalar

Si ack y vel, entonces a vel (B)

Asociativa: (a·v) u = a (v·u) a (Px) = (aB)x

Distributiva: Cat v) u = a·u + v·u a(x+y) = ax + ay
Distributiva (vectores): a(u+v) = a·u + a·v (x+p)=xx+px

Elemento inidad: Si veV, entonces 1·v=v

*
$$V = \{ \begin{pmatrix} x \\ y \end{pmatrix} | x y y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ y \end{pmatrix} | x y y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ y \end{pmatrix} | x y y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ y \end{pmatrix} | x y y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y \in \mathbb{R} \}$$

$$V = \{ \begin{pmatrix} x \\ 3 \end{pmatrix} | x y$$

Ayala Avila Bran Esaí 15V2

Scribe .

Ayala Avila Brian Esaú 15V2

Apolo Arila Brian Frad (1542

espacio vectorial. Se dice que el vector w es una combinación tineal de los vectores vi, vz, vr * Demostrar que (2,1,3) es una combinación lineal de: (1, 5, -7), C1, 1, 2) 4 C1, -4, -5). $(2,1,3) = K_1(1,5,-7) + K_2(1,1,2) + K_3(1,-4,-5)$ (2,1,3) = (K,,5K,,-7K,)+(K2, K2,2K2)+(K3,-4K3,-5K3) (2,1,3)=(K,+K2+K3,5K,+K2-4K3,-7K,+2K2-5K3) $\{K_1+K_2+K_3=2$ 5K,+K2-4K3=1 \$ 1 -4 1 1 1 2 5 1 -4 1 F, (-5)+F2 > F2 0 -4 -9 1-9 F2 (-1/4) +0 F2 -7 2 -5 ,3 F, (7) HF3 -> F3 0 9 2 17 1 1 1 2 F2 (-1)+F, ->F, 1 0 -5/4 -44 0 1 $\frac{9}{4} \frac{19}{4}$ 0 1 $\frac{9}{4} \frac{19}{4}$ 0 1 $\frac{9}{4} \frac{19}{4}$ 0 9 2 1 17 $\frac{17}{4} = \frac{7}{4} = \frac{19}{4} = \frac{19}{4$ $\begin{bmatrix} 1 & 0 & -5/4 & -1/4 & 7 & +5 & 5/4 & +7 & -5+ & 1 & 0 & 0 & -2/43 \\ 0 & 1 & 9/4 & 9/4 & 7 & 7 & -9/4 & +7 & -5+ & 0 & 1 & 0 & 135/43 \\ -0 & 0 & 1 & -13/43 & 7 & -9/4 & +7 & -5+ & 0 & 1 & 0 & 135/43 \\ \end{bmatrix}$ Comprobación $\frac{2}{73} + \frac{135}{73} + \frac{13}{73} = \frac{146}{73} = \frac{2}{73} = \frac{2}$ Solvain: K1 = -2/73, K2 = 135/73 4 K3 = 13/73 $\overline{V} = +\frac{2}{73} \overline{V}_1 + \frac{135}{73} \overline{V}_2 + \frac{13}{73} \overline{V}_3$ * [28 21] en combinación tineal de [5 -1], [7 2] 4 [13] 28 21 2 a 5 -1 + b 7 2 + c 1 3 28 21 = 5a+7b+c -a+2b+3c 7 -7 0] 7a+2b-c Jatab-c

Ayala Avila Brian Esaú 15V2

r 5	atA	6+	C= .	28	100	le l	* 1	B.L	100	201	050	wil	2	9	B	W				,						1	
	a + 2						* 7	2																			
	a + 2						* 3	3																			
	1	1-																									I
	2.8	7	1	T														7									T
	21	2	3				28	(8)	3							0		7	3			42	+	15	1		
	-7	2	-1	1	2					31	7	-	75	(1)	(-:	21)	- 1:	1/3	-21	1						1,0	-1
a = _	-		-1	+ ;	-	-	_	-	-	-	1-1	-		-	-		_		_	-	minimum party	_	-	_	1	2 :	=-
	5	7	1	H	2	- 2	-1.)-	5(2	17	- +	LC	-1)	(-1)	-	(=)	77-	+ L	(-1)(=	7.	21	(7)	7			8
		2	3	-																-						-	+
	1 7	2	-1	-																						-	+
				-	4													4	4					-			
	5	28	l.																								L
	-1	21	3		14				0			-															L
b=_	7	-4	-1	1	5	[(3	21)	(-1)	-(3	16	4)	-2	8 [0	-1)((-1)	-3(7)	1+	L	-1)	(-7)-	210	7)		42	0
		84		1									0	34												8	1
	5	7	28																								
	-1	2	21				5 (-	-56	1			7	1-1	40)					28	(-	16)				
	4	2	-7		5	(2)	(-7)-7	1(:	1	- 7	TO	-1)	(-7)	-2	167	1	+ 2						בני		250	2
C = -		84								-			8	INDAM				1001							- 5	8	_
	1	07											0	1												0	1
	-							1	-	G					2												
	Dolu	Ciov	1	C	1 = -	- 2	ı	1	0 =	3		4	C	=	ن										DATE:		
	1	-		7		-	r			-			, 1	-												-	
	-2	5	- 1		+	2	-	7		2	+	- 3	5	1		3			2								
		1	0	1			L	2	1) _				-1		0 -	,										
	1	-		7		-			Tille.					_		10			-								
		-10	2	4	+	4	3:	5	10	1		3		9	-	1	28	3	.1								
		-14	0	1		-	10		0			-3		0_			7	C		1							
																			-	1							
C	ompi	obo	icio	^																							
	1																										
m 1	. 5a	17	b 1	-	28				张:	2	-0	1	21	+	30	= 2	1		A	3	,	7	af	21	0 - 0		-7
	- 1	2)+7							-							(3)		1								(3)	
		10+		-							100	وستعصيه				= 2										= -7	
			8=			1					-	,				21	-	1				-1					
		-	0 =	~	0								-			- 1	-						-	7			1
		++	-	+	-											-						H					
		1	-	1		-	×	4	-7	Kı	+2	Kz	-5	K	3 =	5		-									-
							1							1		1	. \										
					-	7	1-	2	-	+	2/	13	5)-	5	(15)	2	-	3								-
					1		1	73	1		1	7	3	1		17:	3 -)	1								
					15																					= 1	
				-	-																						
							1	4	+2	70	-	65	5	13	1	3											

Scribe

Ayala Avila Brian Esaí 15V2

```
si c=1, a+3c=0 y b-2c=0 + a=+3c y b=2c
 - 3 1 - 3 - 11 - 3 + 14 - 11 0
 -3 2 + 2 2 + 2 = -6+4+2 = 0 Linealmente Dep.
    [3] [-5] [19] [-9-10+19] [0]
* Demostrar que los vectores son linealmente dependientes.
 a= (3,4) u b= (6,8)
    a (3,4)+ B (6,8) = (0,0)
    - 3 a + 6 B = 0 (+4) - - 12 d - 24 B = 0
      4 a + 8 3 = 0 (3) 12 a + 24 3 = 0
                         0 = 0
  * 4a+83=0 - 4a=-87, si P=1 + 4a=-8(1)
  * st a - 2 = 4(-2) = -8B = B = 1
Como existe al menos a to, entonces a y b son Linealmente O
* Demostrar que los vectores son linealmente independientes.
 a= (2,-1) 4 b= (3,1)
 a (2,-1)+B (3,1) = (0,0)
  -D .2 a + 3 B = 0 > b = 13
  46000 x +3+0 10 10 10 10 10
 2 x + 3 = 0 - (0-3 P) + B=0 = 0-3(0)
  2a=0-37
                              deleg shap com
 0-3P -0,3B+B=0 = 0
 5 B = 0 B= 0 a= B= 0 - a u b son
             Demension
                               Linealmen Indep.
* Diga en coda caso si los vectores son linealmente lad o Dep.
 A= (1, -2,6) B= (1,1,1) C= (-3,4,5)
   Long XA + 4B + 2 C s sale
 x (1,-2,6)+4(1,1,1)+2(-3,4,5)=(0,0,0)
 [x+y-32=0
 1-2× +4++2 = 0 -> det= -2 1 4 = [(1)(5)-4(1)] - [(-2)(5)-4(6)]-3[(-2)-6]
  (6x 4y +5z = 0 | 6 | 5 | = 59 +0 Linealmente Ind
          alon de W es menor e squal of mais
```

Scribe

Ayala Avila Brian Esaí 15V2

+ Si el número de vectores es tinito, la dimensión es un número na tural y se dice que la base es finita, de la contrario es infinita. Teorema: En un espacio o subespacio de dimension m entonces: * Conjunto de mas de m vectores nunca puede ser linealmente indpe. * Comunto de menos de m vectores nunca puede ser sistema apnerador. Transformación Lineal Sean V y W espacios vectoriales. Una trans- $T:V \to W$ formación lineal T de V en W es una función que asigna a cada vector ve V un vector Único Tvev y que satisface, para cada u y v en V y cada escalar a. T (u+v)=Tu+Tv * T (av) = aTV Propiedades -TC-V)=-T(U) -T(U-V)=T(U)-T(V) - T (Ov) = W * Sea T: R2 + R3 definida por T x = x ty u= x, V= x2 , u+v= x, +x2 - T (u+v)= T x, +x2 L 4, 142 L 4, 142 [x, + x2] = (x, +x2) + (y, +y2) | x, +y, +x2+y2 [4, +42] (x, +x2) + (4, +42) = | x, -4, + x2-42 L 3 (41+42)] L 341+42 xityi x, tyz x,-4, + x2-42 a(x2+42) (dx2)+(ey2) dx2+dy2 T (dv) = T dx2 = (dx2)-(dx2) = dx2-dx2 = d (x2+42) (3 x 42)] L 3 d 42 Ld (342) [ays] Xztyz =d x2-42 342

Scribe

Bibliografia * cb. mty. itesm. mx/ma1010/materiales/ma1010-17a pdf. * https://aga.frba.utn.edu-ar/nucleo-e-imagen-clasificaciónde - las - transformaciones - lineales/ * https://aga.frba.utn.edu.ar/conjunto-generador-li-y-ld-basedimension/ * http://www.ehu.eus/juancarlos.govostizaga/apayo/esp vectorial. htm * https://youtu.be/Ej4ZOWsWK18 * https://youtu.be/57JZB-K25GY * https://youtu.be/UEr91J2IPBW. * https://sites.google.com/site/sistemasalgebralineal/unidad-4--espacios - vectoriales / base - y - dimension - de - un -espacio - vectorial * https://personales.unican.es/campson/espacios_vectoriales2.pdf * https://es.slideshare.net/mobile/Manuel Alejandro Garral/base-ydimension - de-los - espocios - vectoriales * http://www.dicis.ugto.mx/profesores/chema/documentas/Algebra % 20 Lineal/ Algebra _ lineal_7. pdf * http://www.portalhuarpe.com/Medhime 20/ Nucas % 200A/Espacios % 20 Vectoriales/ Algebra - Lineal/ Algebra OA3/ Conjunto-vectores - Linea lmente-independiente. Xhtml https://youtu.be/t3T5jb2U468 * https://youtu.be/vwROOPnCCrY * https://youtu.be/2wGCJBtmPWI * https://yatube/qTizwFb3UNY * https://youtu.be/n6ZbDKquQoA * https://youtu.be/10jwxDYjOf8 * https://www.superprof.es/apuntes/escolar/maternaticas/analitica/ vectores/combinación-lineal-de-vectores. html * https://youtu.be/_4czztm N941 * https://youtu.be/Y4xwiJt8PKY * https://youtu.be/UlsQir8CXas * https://yatu.be/fBVxuCLXGOw * https:// www. slideshare. net/mobile/freddytipanl/espacios-vecto rialesq 2017 https://sites.google com/site/sistemasolgebralineal/unidad-4--espacios-vectoriales/definicion-de-subespacio-vectorial-y-suspropiedades