

MATEMÁTICA I SECCIÓN: U1

CLASE N° 1

Capítulo 0

Números reales

Números naturales (\mathbb{N}): 1, 2, 3, 4....

Números enteros (\mathbb{Z}): ..., -3, -2, -1, 0 ,1, 2, 3, 4...

Números racionales (\mathbb{Q}): cualquier número racional r se puede expresar de la siguiente manera

 $r = \frac{m}{n}$, donde m y n son enteros y $n \neq 0$.

Algunos ejemplos de los números racionales son: $\frac{1}{2}$; $-\frac{3}{7}$; $46 = \frac{46}{1}$; $0.17 = \frac{17}{100}$

Números irracionales (I): $\sqrt{3} \approx 1,7320508...$; $\sqrt[3]{2} \approx 1,259921...$; $\pi \approx 3,1415926...$

Números reales (\mathbb{R}): $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$

CONTRACTOR OF THE PARTY OF THE

CAPÍTULO 0

La recta numérica

<u>Intervalos</u>

Un intervalo se define como un subconjunto de números reales que esta comprendido entre dos números cualesquiera a y b.

Clasificación de los intervalos

Sean $a, b \in \mathbb{R}$ tales que $a \le b$

a) El intervalo abierto de extremos *a* y *b* es el conjunto:

$$(a,b) = \{x \in \mathbb{R} / a < x < b\}$$

b) El intervalo cerrado de extremos *a* y *b* es el conjunto:

$$[a,b] = \{x \in \mathbb{R} / a \le x \le b\}$$

c) El intervalo semi-abierto por la izquierda (semi-cerrado por la derecha) de extremos a y b es el conjunto:

$$(a,b] = \{x \in \mathbb{R} / a < x \le b\}$$

CONTRACTOR OF THE PROPERTY OF

CAPÍTULO 0

d) El intervalo semi-cerrado por la izquierda (semi-abierto por la derecha) de extremos a y b es el conjunto:

$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$(a, \infty) = \{x \in \mathbb{R} / a < x\}$$

$$ii. [a, \infty) = \{x \in \mathbb{R} / a \le x\}$$

iii.
$$(-\infty, a) = \{x \in \mathbb{R} / x < a\}$$

iv.
$$(-\infty, a] = \{x \in \mathbb{R} / x \le a\}$$

$$(-\infty,\infty)=\mathbb{R}$$

Ejemplo: Exprese cada intervalo en términos de desigualdades y luego grafíquelos

a)
$$[-1,2)$$

$$= \{x \in \mathbb{R} / -1 \le x < 2\}$$

$$b) \quad \left[\frac{3}{2},4\right]$$

$$= \left\{ x \in \mathbb{R} \, / \, \frac{3}{2} \le x \le 4 \right\}$$

$$(-3,\infty)$$

$$= \{x \in \mathbb{R} / -3 < x\}$$

■ CAPÍTULO 0

Operaciones con intervalos

- ► Unión: $I_1 \cup I_2 = \{x \in \mathbb{R} \mid x \in I_1 \lor x \in I_2\}$
- ► Intersección: $I_1 \cap I_2 = \{x \in \mathbb{R} \mid x \in I_1 \land x \in I_2\}$
- ightharpoonup Diferencia: $I_1 I_2 = \{x \in \mathbb{R} \ / \ x \in I_1 \ \land \ x \notin I_2\}$

Ejemplos:

Dado los intervalos: [-2,5); [2,7] y $(3,\infty)$, determinar:

a)
$$[-2,5) \cup [2,7]$$

Solución:

$$[-2,5) \cup [2,7] = [-2,7]$$

b)
$$[-2,5)$$
 ∩ $[2,7]$

$$[-2,5) \cap [2,7] = [2,5)$$

Solución:

$$[-2,5) - [2,7] = [-2,2)$$

d)
$$[2,7] - [-2,5)$$

$$[2,7] - [-2,5) = [5,7]$$

e)
$$\{(3, \infty) \cup [2,7]\} \cap [-2,5)$$

Solución:

$$\{(3,\infty) \cup [2,7]\} = [2,\infty)$$

Así, $\{(3,\infty) \cup [2,7]\} \cap [-2,5) = [2,5)$

$$f$$
 $(3, \infty) \cap [-2, 5) \cap [2,7]$

$$(3, \infty) \cap [-2, 5) \cap [2,7] = (3,5)$$

Sistema de coordenadas rectangulares o cartesiano

Se construye de la siguiente manera:

Se trazan dos rectas perpendiculares (ejes de coordenadas).

29/11/2021 Prof. Robert Espitia 11

Ejemplo:

Dibujar un sistema de coordenadas cartesianas y situar los siguientes puntos:

- *a*) (-5,2)
- $b) \left(\frac{3}{2},1\right)$
- (0,-4)
- *d*) (2,−3)
- e) $\left(\frac{-5}{2},0\right)$
- $(-\sqrt{2}, -\pi)$

- a) (-5,2)
- $\frac{b}{(3,1)}$
- (0,-4)
- (2,-3)
- e) $\left(\frac{-5}{2},0\right)$
- $(-\sqrt{2}, -\pi)$

Criterio de la recta vertical.

Una curva es la gráfica de una función si y solo si ninguna recta vertical la corta más de una vez.

Ejemplos:

La gráfica de una función

No es la gráfica de una función

29/11/2021 Prof. Robert Espitia 14