בחינה II

שאלה 1

- $A\cup B$ וכך ש $x\in A$ כמו-כן, נתון ש $x\in A$ קבוצות ויהי א כך ש $x\in A$ וכך ש $x\in A$ הייו א. א. יהיו א פקולה ל- $A\setminus \{x\}$
 - .1 הדגם קבוצות B,A ואיבר x שמקיימים את נתוני השאלה.
 - . הוכח כי $A \cup B$ היא קבוצה אינסופית.

תשובה

- , $A\setminus\{x\}=\{2,3,4,\dots\}$, $x\not\in B$ אז $B=\{0\}$, x=1 , $A={\bf N}$ א. 1. א. 1. ניקח למשל $A\setminus\{x\}$ את $A\setminus\{x\}$ את $A\cup B=\{0,1,2,3,\dots\}$ ו- $A\cup B=\{0,1,2,3,\dots\}$ את $A\cup B$
 - $A\cup B$ היא אינסופית, עלינו למצוא קבוצה שחלקית ממש ל- 20. כדי להוכיח ש- $A\cup B$ היא אינסופית, עלינו למצוא התנאים האלה. $A\cup B$. נראה כי $A\setminus \{x\}\subseteq A\cup B$ שלן, אכן, אם $A\setminus \{x\}\subseteq A\cup B$ אכן, אם $A\setminus \{x\}$ אינסופית אינסופית אינסופית ממש ל- $A\setminus \{x\}$

 $A\setminus\{x\}\subset A\cup B$ - מכאן ש- $x\in A\setminus\{x\}$ אבל אבל $x\in A$, (שכן, $x\in A\cup B$) מכאן ש- $A\setminus\{x\}$ לכן, $A\setminus B$ היא קבוצה חלקית ממש ל- $A\cup B$. לפי הנתון, היא גם שקולה ל- $A\cup B$, לכן (על-פי ההגדרה), $A\cup B$ היא קבוצה אינסופית.

. $P(K)\setminus P(L)$ שייך גם לקבוצה , $\{K\}$ שייך לכן האיבר , $\{K\}$ השייך לכן האיבר , אונף , אונף

נניח שקיים איבר נוסף $k'\neq k'$ כך ש- $k'\in K\setminus L$ אז הקבוצות השונות $\{k'\},\{k\}\neq P(L)$, אז הקבוצות השונות ל- $\{k'\},\{k\}\neq P(L)$, $\{k'\},\{k\}\neq P(L)$, איברים שנים $\{k'\},\{k\}\neq P(L)$ יש שני איברים שונים כלומר, $\{k'\},\{k\}\neq P(K)\setminus P(L)$, שלפיו, זו קבוצה בת איבר אחד.

1

 $K \setminus L = \{k\}$ ולכן, $K \setminus L$ של האיבר היחיד של לכן k

שאלה 2

בחינה II

- נטרלי. e שבה , * שבה ביחס לפעולה איברים חבורה $G = \{e, a, b, c\}$ א. תהי (10) א. $a*b*a \neq c$
 - :כך: Δ כך: על הקבוצה $A=N\setminus\{1\}$ מגדירים פעולה בינרית (15)

$$.x\Delta y = (x-2)(y-2) + 2$$
 , $x, y \in A$ לכל

אלו מהתכונות שבהגדרת מושג החבורה מקיימת פעולה זו! נמק כל טענותיך.

תשובה

, אכן, a*b ומ- a*b ומה הוא שונה מ- a*b אכן, א. נעיר קודם שהאיבר a*b

. נתנון b=e שם האל נקבל ש-a*e , ועל-ידי צמצום a משמאל נקבל ש-a*e , אז

. שוב סתירה - a=e שוב - a*b=a, נקבל - ועל-ידי אמצום - a*b=a*b, אז הידי אם - a*b=a*b

.a*b=c או a*b=e

 $a*b*a \neq c$ לכן, a*b*a = (a*b)*a = e*a = a אם, a*b*a = e

אז a*b=c שכן, אם $c*a\neq c$ מתקיים. a*b*a=(a*b)*a=c*a אז a*b=c אם a*b=c מתקיים , a=e אז a*b=c אז a*b=c אז a*a=c*a

 $a*b*a \neq c$, לכן, בכל מקרה,

ב. 1. סגירות

עלינו לבדוק אם לכל $x,y\in A$, מתקיים $x,y\in A$. לפי הנתון x היא קבוצת כל המספרים השלמים שגדולים מ- 2 או שווים לו. אכן, אם x,y שלמים, גם המספר, המספרים השלמים שגדולים מ- 2 או שווים לו. אכן, אם (x-2)(y-2)+2, הוא שלם (כי סכומים ומכפלות של מספרים שלמים הם שוב, מספרים שלמים). כמו-כן, מאחר ש- 2 $x \ge 2$ ו- $x \ge 2$ נובע כי $x \ge 2$ בובע כי $x \ge 2$ וובע כי $x \ge 2$ בובע כי $x \ge 2$ וובע כי $x \ge 2$ בובע כי $x \ge 2$ וובע כי $x \ge 2$ בובע כי $x \ge 2$

 $x\Delta y\in A$ לכן $x\Delta y\geq 2$ ולכן ש- מספר שלם ו- $(x-2)(y-2)+2\geq 2$ ומכאן ש- Δ מקיימת את תכונת הסגירות.

2. קיבוציות

: מתקיים $x, y, z \in A$

$$(x\Delta y)\Delta z$$
 = $[(x\Delta y) - 2](z - 2) + 2 =$

$$= [(x - 2)(y - 2) + 2 - 2](z - 2) + 2 = (x - 2)(y - 2)(z - 2) + 2$$
כמו-כו,

3. קיום איבר נטרלי

2 II בחינה

אנו מחפשים איבר x = e כך שלכל $x \in A$ יתקיים $x \in A$ כך שלכל פרט, איבר כזה $x \in A$ אנו מחפשים איבר $e \in A$ לכן $e \in A$, פרט, אמור לקיים $e \in A$ לכן $e \in A$ לכן $e \in A$, פרט, אמור לקיים $e \in A$

לכן, אם יש איבר נטרלי אז הוא בהכרח 3.

 $3 \in A$ כעת נוכיח שהוא אכן נטרלי. ברור כי

, $x\Delta 3=(x-2)(3-2)+2=x-2+2=x$ וכמו-כן, $\Delta 3=(x-2)(3-2)+2=x-2+2=x$. $\Delta 3=(x-2)(x-2)+2=x-2+2=x$

4. קיום איבר נגדי

y עלינו לבדוק אם לכל $x\in A$ קיים $x\in A$ קיים נגדי $x\in A$ עלינו לבדוק אם לכל למספר $y\in A$ קיים לכן, y=3/2 , לכן, y=3/2 , אז y=2=3/2 , אז y=2/2 , אמור להיות מספר שלם. y=7/2

לכן, לא לכל איבר של A יש נגדי, ולכן, התכונה הרביעית מהגדרת החבורה לא מתקיימת.

שאלה 3

- על. f א. f א. (9 נקי) א. (9 נקי
- (א נקי) ב. f אינה פונקציה חד-חד-ערכית.
- (8 נקי) ג. $f \circ g$ אינה פונקציה חד-חד-ערכית.

תשובה

f(x)=y -ש כדי להוכיח ש- f(x)=y -ש כדי להוכיח ש- f(x)=y -ש לכל אלנו להראות שלכל $y\in \mathbb{N}$ כדי להוכיח ש- f(g(n))=n-1 נבחר מספר כלשהו, f(g(y+1))=(y+1)-1=y נקבל: f(g(y+1))=(y+1)-1=y (אור)

ב. טענה זו לא נכונה. נוכיח זאת על-ידי דוגמה נגדית.

 $g: \mathbf{N} \to \mathbf{N}$. תהי f(n) = n , $n \in \mathbf{N}$. לכל $f: \mathbf{N} \to \mathbf{N}$. תהי g(n) = n - 1 . פונקציה שמוגרת כך: g(n) = n - 1 .

אז, לכל f אבל f היא פונקציה , f(g(n))=f(n-1)=n-1 מתקיים , מתקיים , מתקיים . חד-חד-ערכית.

3 בחינה II

 $f \circ g$ על-ידי הפונקציה על-ידי הפונקציה $n \geq 2$, n על-ידי הפונקציה לשים לב שתמונות המספרים הטבעיים. לכן, המספר n=1 (שגם עליו מוגדרת g המספרים הטבעיים. לכן, המספר אלא שלא נתון מהי תמונתו), מותאם על-ידי פונקציה זו, לאיבר שהתקבל כבר, כתמונה של מספר g מספר g מכאן ש-g אינה חד-חד-ערכית. כעת, נוכיח זאת בצורה מדויקת. g נוכיח שקיים מקור נוסף ל-g מאחר ש-g אוכיח g הרי ש-g נוכיח שקיים מקור נוסף ל-g (g מאחר ש-g). g הרי ש-g לכן, מהנתון נובע כי g (g (g) g (g)

. לכונה. והטענה והיטענה חד-חד-ערכית, והטענה נכונה. $(f \circ g)(1) = (f \circ g)(k+1)$

שאלה 4

תהי f איזומטריה של המישור ויהיו C ,B ,A ויהיו במישור.

f שבת שבת נקודת וכי f(B)=C כי , f(A)=B ידוע כי

AB ועל האנך האמצעי לקטע O נמצאת על האנך האמצעי לקטע (נקיO א. הוכח כי O נמצאת על האנך האמצעי לקטע

. הוכח כי f היא סיבוב לא טריוויאלי.

תשובה

א. נתון ש- O נמצאת על האנך האמצעי . f(O)=O כדי להוכיח ש- O נמצאת על האנך האמצעי . $\overline{OA}=\overline{OB}$. מספיק להראות ש- \overline{OA}

$$. \overline{OA} \stackrel{?}{=} \overline{f(O)f(A)} \stackrel{f(A)=B-1}{=} \overline{f(O)=O}$$
 אכן,

. $\overline{OB} = \overline{OC}$ - נראה ש- BC נראה לקטע לקטע לקטע על האנך מצאת על נמצאת לחוכיח ש- O

$$\overline{OB}$$
 $\stackrel{\circ}{=}$ $\overline{f(O)f(B)}$ $\stackrel{f(B)=C-1}{=}$ $\stackrel{f(O)=O}{=}$ $\stackrel{\circ}{OC}$ אכן,

ב. מהנתון נובע מיד כי f אינה איזומטרית הזהות, שכן f והנקודות f והנקודות f הן שונות ב. מהרת היו קוויות). לכן, מאחר ש- f נקודת שבת של f, נובע כי f היא סיבוב לא טריוויאלי אן שיקוף. (לאיזומטריות מהסוגים האחרים אין נקודות שבת).

אם f שיקוף, אז f מנתוני השאלה f, שכן, כל שיקוף הוא נגדי לעצמו. אבל מנתוני השאלה f מתקבל כי f, זו סתירה, כי כאמור, הנקודות f, f, הן שונות. לפיכך f אינה שיקוף, ולכן, בהכרח, f היא סיבוב לא טריוויאלי.

4 II בחינה

שאלה 5

- נתונה מערכת האקסיומות הבאה, אשר מושגי היסוד שלה הם ״נקודה״, ״ישר״ (כקבוצה של נקודות) והיחס ״נמצאת על״.
 - 1.יש בדיוק חמש נקודות.
 - 2.לכל שתי נקודות קיים ישר יחיד אשר הן נמצאות עליו.
 - P -ש כך שר אחד לפחות ישר אחד כך ש-3.3 לכל לער וולכל לפחות אחד כך ש-1.3 נמצאת אינו ואין לו נקודה משותפת עם ℓ
 - (6 נקי) א. הוכח כי המערכת היא חסרת סתירה.
 - (6 נקי) ב. הוכח כי המערכת היא בלתי תלויה.
 - (6 נקי) ג. הוכח כי המערכת אינה קטגורית.
- 7 נקי) ד. נתון מודל למערכת (3,2,1) שבו לא כל הנקודות נמצאות על ישר אחד. הוכח כי במודל זה, כל נקודה נמצאת על שלושה ישרים שונים לפחות.

תשובה

- א. כדי להוכיח שהמערכת היא חסרת סתירה, עלינו להדגים מודל שמקיים את כל אקסיומות א. כדי להוכיח שהמערכת. נבחר למשל מודל שקבוצת נקודותיו היא $\{a,b,c,d,e\}$ המערכת. נבחר למשל מודל שקבוצת נקודותיו היחיד שלו הוא $\ell=\{a,b,c,d,e\}$ (ראה המחשה). מודל זה מקיים את כל אקסיומות המערכת (שים לב שאקסיומה 3 מתקיימת באופן ריק), לכן המערכת היא חסרת סתירה .
- ב. כדי להוכיח שהמערכת בלתי תלויה, עלינו להראות שכל אחת משלוש האקסיומות אינה נובעת מן האקסיומות האחרות.
- המודל המוגדר על-ידי ההמחשה • • מקיים את אקסיומות 3,2 אך אינו מקיים את אקסיומה 1, לכן אקסיומה 1 אינה נובעת מן האקסיומות האחרות.
- המודל המוגדר על-ידי ההמחשה המודל המוגדר על-ידי ההמחשה המודל אינו המודל לכן אקסיומה 2 אינה נובעת מן האקסיומה 2, לכן אקסיומה 2 אינה נובעת מן האקסיומה 2, לכן אקסיומה 2, אינה נובעת מן האקסיומות האחרות.
- המודל המוגדר על-ידי ההמחשה המחשה מקיים את אקסיומות 2,1 אך אינו מקיים את אקסיומה 3, לכן אקסיומה 3 אינה נובעת מן האקסיומות האחרות. לכן, המערכת היא בלתי תלויה.
- ג. כדי להראות שהמערכת לא קטגורית, יש למצוא שני מודלים לא שקולים המקיימים אותה. על מודל אחד הצבענו בפתרון לסעיף א'. גם המודל המוגדר על-ידי ההמחשה (a,b,c,d,e) מודל אחד הצבענו בפתרון לסעיף א'. גם המודל המוגדר על-ידי ההמחשה (a,b,c,d,e) והישרים שלו הם (a,b,c,d,e) והישרים שלו הם מקיים את כל אקסיומות המערכת, אך אינו שקול למודל הראשון, כי יש בו שישה ישרים. מכאן שהמערכת אינה קטגורית. (הערה: מודל אחר, שבו לא כל הנקודות נמצאות על ישר אחד ניתן להגדיר על-ידי ההמחשה).
- ד. נבחר נקודה a במודל הנתון. נוכיח שהיא נמצאת על שלושה ישרים לפחות. מאקסיומה 1 ידוע b -ו a שקיימת עוד נקודה, נקרא לה b מאקסיומה 2 נובע שקיים ישר ℓ_1 , שעליו נמצאות

בחינה II

(שים לב שלא בהכרח מתקיים $\ell_1 = \{a,b\}$, כי ייתכן שיש עוד נקודות על ישר זה). מאחר שלא (שים לב שלא בהכרח מתקיים לו היימת נקודה בשינה על ℓ_1 אקסיומה בטיחה מבטיחה בל הנקודות נמצאות על ישר אחד, קיימת נקודה לו שינה על ℓ_1

 $\begin{array}{c|c} \ell_3 & \ell_2 \\ \hline & \ell_{1} \end{array}$

של ישר ℓ_2 שעליו נמצאות הנקודות a ו- c וכן, קיומו של ישר ℓ_2 שעליו נמצאות הנקודות c וכן, ℓ_1 כי c נמצאות על c וברור ש- ℓ_2 שונה מ- ℓ_1 שונה מ- ℓ_1 אך לא ℓ_2 אך לא ℓ_2 אך לא ℓ_2 ומצאת עליו, נמצאת על ℓ_1 (אם ℓ_2 נמצאת עליו, ℓ_1 הנקודה ℓ_1 לא נמצאת על ℓ_2 (אם ℓ_1 ומכאן ℓ_2 וומכאן ℓ_3 עובר דרך ℓ_1 ו- ℓ_3 (כמו ℓ_3 , ℓ_4), ואז, מאקסיומה ℓ_3 נובע כי ℓ_4 ומכאן

a שמכיל את ℓ_3 נמצאת על ℓ_1 -בסתירה לבחירת (c מאקסיומה 3 נובע קיומו של ישר ℓ_1 -בסתירה לבחירת (c ישר זה שונה מ- ℓ_1 ו- ℓ_2 כי לישרים אלה יש נקודות ואין לו נקודות משותפות עם ℓ_3 ישר זה שונה מל שלושה ישרים שונים ℓ_3 , ℓ_2 , אשר ℓ_3 משותפות עם ℓ_3 , כך הוכחנו את קיומם של שלושה ישרים שונים ℓ_3 , לכן, כל נקודה במודל זה עליהם. אותו שיקול ניתן להפעיל לגבי בל נקודה אחרת במודל, לכן, כל נקודה במודל זה נמצאת על שלושה ישרים לפחות.

שאלה 6

החילוק של n ב- 6 היא 4 וגם שארית החילוק (נקי) א. יהי n מספר טבעי. ידוע כי שארית החילוק של n ב- n של n ב- n של n ב- n היא 4. מהי שארית החילוק של n ב- n של n

: מתקיים השוויון הבא מספר מספר באינדוקציה שלכל הוכח באינדוקציה שלכל מספר בעיn

$$2^{n+1} + 2^{n+2} + \dots + 2^{2n} = 2^{n+1}(2^n - 1)$$

תשובה

א. מהנתון, ובהתאם למשפט החלוקה עם שארית, נובע שקיים $k\in \mathbf{N}_0$ כך ש- $k\in \mathbf{N}_0$ כך ש- n-4 מכן ש- n-4 בא מכן ש- n-4 בא מכן ש- n-4 במספר ש- n-4 במספרים הראשוניים במספרים הראשוניים n-4 למכפלה של גורמים ראשוניים. מכאן ש- n-4 מתחלק במספרים אלה מופיעים בפרוק של n-4 למכפלה של גורמים ראשוניים. מכאן ש- n-4 מתחלק ב- n-4 שלם כך ש- n-4 שלם כך ש- n-4 ולכן, n-4=30, דבר שמוכיח ששארית החילוק של n-4 ב- n-4 מרחלק של n-4 שארית החילוק של n-4 ב- n-4 מרחלק שלם פרים אוניים אוני

נעיר קודם שעבור כל n טבעי, באגף השמאלי של השוויון מופיע סכום כל החזקות העוקבות נעיר קודם שעבור כל n+1 החל מהחזקה ה- n+1 וכלה בחזקה ה- n+1

עבור n=1, באגף שמאל, עלינו לחבר את בל החזקות של 2, החל מהחזקה ה- n=1 וכלה בחזקה ה- $2\cdot 1$ בחזקה ה- $2\cdot 1$. ברור שאז, באגף זה נמצא רק $2\cdot 1$, ואילו באגף ימין מופיע n=1 מכאן שהטענה נכונה עבור n=1.

. $2^{n+1}+2^{n+2}+\cdots+2^{2n}=2^{n+1}(2^n-1)$ כלומר, n כלומר, עבור n כלומר, נניח כי הטענה נכונה עבור n כלומר, n כלומר, n כלומר, n כלומר, n בוכיח שהטענה נכונה עבור n כלומר, n כלומר, n

ה בחינה II בחינה

(שים לב שבאגף שמאל, מופיעות כל החזקות העוקבות של 2, החל מהחזקה ה- n+1 ועד החזקה ה- 2 את אגף שמאל:

$$\begin{array}{l} 2^{n+2} \,+\, 2^{n+3} \,+\, \cdots \,+\, 2^{2n} \,+\, 2^{2n+1} \,+\, 2^{2n+2} \,=\, \\ &=\, -2^{n+1} \,+\, \underbrace{2^{n+1} \,+\, 2^{n+2} \,\cdot\, \cdots \,+\, 2^{2n}}_{2^{n+1}(2^n-1) \,-\, \cdots \,\, \cdots \,\, \cdots \,\, \cdots \,\, \cdots} \,+\, 2^{2n+1} \,+\, 2^{2n+2} \,=\, \\ &=\, -2^{n+1} \,+\, 2^{n+1}(2^n-1) \,+\, 2^{2n+1} \,+\, 2^{2n+2} \,=\, \\ &=\, -2^{n+1} \,+\, 2^{2n+1} \,-\, 2^{n+1} \,+\, 2^{2n+1} \,+\, 2^{2n+2} \,=\, \\ &=\, -2^{n+1} \,+\, 2^{2n+1} \,-\, 2^{n+1} \,+\, 2^{2n+2} \,=\, \\ &=\, -2 \cdot 2^{n+1} \,+\, 2 \cdot 2^{2n+1} \,+\, 2^{2n+2} \,=\, \\ &=\, -2^{n+2} \,+\, 2^{2n+2} \,+\, 2^{2n+2} \,=\, 2 \cdot 2^{2n+2} \,-\, 2^{n+2} \,=\, \\ &=\, 2^{2n+3} \,-\, 2^{n+2} \,=\, 2^{n+2}(2^{n+1}-1) \end{array}$$

לכן, n+1 מסוים, קיבלנו שהטענה נכונה גם עבור n מסוים, קיבלנו הנכונה גם עבור n+1, לכן, מעקרון האינדוקציה, נובע שהטענה נכונה לכל n טבעי.

7 II בחינה