2.1 Matrix Operations

定理1:矩陣加法

令A、B、C三個矩陣大小相同,r、s為 scalar (純量),則滿足

- 1. 交換律 (commutative law)
 - A + B = B + A
- 2. 結合律 (associative law)

$$(A + B) + C = A + (B + C)$$

3. 分配律 (distribution law)

$$r(A+B) = rA + rB$$

$$(r+s)A = rA + sB$$

$$r(sA) = (rs)A$$

4. A + 0 = A

定義:

如果 A 是 m × n 矩陣,B 是 n × p 矩陣(行是 $b_1,...,b_p$),則 AB 為 m × p 矩陣(行是 $Ab_1,...,Ab_p$),即可寫成

$$AB = A[\boldsymbol{b_1} \quad \boldsymbol{b_2} \quad \dots \quad \boldsymbol{b_p}] = [A\boldsymbol{b_1} \quad A\boldsymbol{b_2} \quad \dots \quad A\boldsymbol{b_p}]$$

矩陣乘法 (Matrix Multiplication)

AB 矩陣的行都是 A 矩陣的行以 B 矩陣的行為權重的線性組合 (linear combination)

定理2:矩陣乘法

令A是m×n矩陣,B、C在各定義所示的和或積有定義,則滿足

1. 結合律 (associative law)

$$A(BC) = (AB)C$$

2. 分配律 (distribution law)

$$A(B+C) = AB + AC$$

$$(B + C)A = BA + CA$$

- 3. r(AB) = (rA)B = A(rB), r 為 scalar (純量)
- 4. $I_m A = A = A I_n$, I_p 代表 p × p 的單位矩陣 (identity matrix)
- 5. 無交換律 (commutative law): AB ≠ BA

矩陣乘法補充

AB = 0 時,不代表 A = 0 或 B = 0,但 det(A) = 0 或 det(B) = 0

定理3:轉移矩陣

令A、B在各定義所示的和或積有定義,則滿足

- 1. $(A^T)^T = A$
- 2. $(A + B)^T = A^T + B^T$
- 3. $(rA)^T = rA^T$, r 為 scalar (純量)
- 4. $(AB)^T = B^T A^T$

矩陣乘積後再轉置等於矩陣轉置後再逆序乘積

2.2 The Inverse of a Matrix

反矩陣

$$A^{-1}A = AA^{-1} = I$$

定理 4: 求二階反矩陣

讓 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 。若 $ad - bc \neq 0$ 且 A 是可逆的 (invertible),則可寫成

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

若 ad - bc = 0,則代表 A 不可逆 (not invertible)。

定理5:

若 A 是可逆的 (invertible) $n \times n$ 矩陣,則對於任何 \mathbf{b} in \mathbb{R}^n ,方程式 $A\mathbf{x} = \mathbf{b}$ 都有一個唯一解 (unique solution) $\mathbf{x} = A^{-1}\mathbf{b}$ 。

定理 6:

- 1. 若 A 是可逆 (invertible) 矩陣,則 A^{-1} 也是可逆的: $(A^{-1})^{-1} = A$
- 2. 若 A、B、AB 是可逆 (invertible) 矩陣,則 AB 的反矩陣會等於 B 的反矩陣乘以 A 的反矩陣: $(AB)^{-1}=B^{-1}A^{-1}$

矩陣乘積後再取反矩陣等於取反矩陣後再逆序乘積

3. 若 $A \cdot A^T$ 是可逆 (invertible) 矩陣,則 A^T 的反矩陣會等於 A 的反矩陣再轉置 (transpose): $(A^T)^{-1} = (A^{-1})^T$

基本矩陣 (Elementary Matrix)

- 1. 對一個 $m \times n$ 的矩陣 A 執行基本列運算 (elementary row reduction),結果可看為 A 左方乘上一個 $m \times m$ 的特殊矩陣 E 所得,即 EA。此特殊矩陣 E 矩陣被稱為基本矩陣 (elementary matrix),而獲取方式是對 I_m 執行相同的基本列運算。
- 2. 任何基本矩陣 (elementary matrix) E 都是可逆的 (invertible)。 E 的反矩陣是能將 E 轉換為 I 的基本矩陣。

定理7:方陣定理

若且唯若(if and only if)一個 $n \times n$ 的矩陣 A 的列等價於與 I_n ,則 A 是可逆的(invertible),且任何將 A 簡化為 I_n 的基本列運算(elementary row reduction)序列也會將 I_n 轉換為 A^{-1}

(此定理延伸出求得反矩陣的演算法)

求反矩陣的演算法(Algorithm for Finding A^{-1})

寫出增廣矩陣 $[A \ I]$,若 $[A \ I]$ 可經由基本列運算 (elementary row reduction) 轉換成 $[I \ A^{-1}]$ 即代表 A 是可逆的 (invertible),否則 A 沒有反矩陣。

演算法流程:

若將 A 簡化 I 的基本列運算(elementary row reduction)序列為 $(E_5E_4E_3E_2E_1)$,則在 $[A\ I]$ 左方乘上 $(E_5E_4E_3E_2E_1)$,則所得的矩陣為 $[I\ A^{-1}]$,如下所示:

$$(E_5E_4E_3E_2E_1)[A \quad I] = [(E_5E_4E_3E_2E_1)A \quad (E_5E_4E_3E_2E_1)I]$$

= $[(E_5E_4E_3E_2E_1)A \quad E_5E_4E_3E_2E_1] = [I \quad A^{-1}]$

2.3 Characterizations of Invertible Matrices

定理 8:可逆矩陣定理(The Invertible Matrix Theorem)

以下幾點具有等價性(全符合或全不符合,不存在部分符合)

A 是 n x n 的方陣 (square matrix)

- 1. A 是可逆 (invertible) 矩陣
- 2. A的列等價於 n×n 的單位矩陣

A可經由基本列運算轉換為 n×n 的單位矩陣

- 3. A有n個軸元位置 (pivot position)
- 4. Ax = 0 只有平凡解 (trivial solution)
- 5. A的行構成一個線性獨立 (linearly independent) 的集合
- 6. 線性變換 (linear transformation) $x \mapsto Ax$ 是一對一 (one-to-one)
- 7. 對於任何 **b** in \mathbb{R}^n , $A\mathbf{x} = \mathbf{b}$ 都有至少一個解
- 8. A 的行生成 (span) \mathbb{R}^n
- 9. 線性變換 (linear transformation) $x \mapsto Ax$ 從 \mathbb{R}^n 到 \mathbb{R}^n 是滿射 (onto),
- 10. 有一個 n × n 的矩陣 C, 使得 CA=I
- 11. 有一個 n×n 的矩陣 C, 使得 CA=I
- 12. A^T 是可逆 (invertible) 矩陣

方陣的反矩陣

由定理 8 的 10.及 11.可知,當 $A \times B$ 是方陣(square matrix)時,若 AB = I,則 $A \times B$ 皆可逆(invertible),且 $B = A^{-1} \times A = B^{-1}$

定理9:線性變換的反矩陣

令 $T: \mathbb{R}^n \to \mathbb{R}^n$ 是線性變換 (linear transformation)、A 為 T 的標準矩陣 (standard matrix)。若且唯若 A 是可逆 (invertible) 矩陣時,T 是可逆的 (invertible)。此時線性 變換 (linear transformation) $S: S(\mathbf{x}) = A^{-1}\mathbf{x}$ 是滿足式 $1 \cdot 2$ 的唯一函數。

$$S(T(x)) = x, x \text{ in } \mathbb{R}^n - \text{ } \text{ } \text{ } 1$$

 $T(S(x)) = x, x \text{ in } \mathbb{R}^n - \text{ } \text{ } \text{ } 2$

中英對照表

英文	中文
Diagonal matrix	對角矩陣
Main diagonal	主對角線
Zero matrix	零矩陣
Equal	等於
Sum	總和
Scalar multiple	純量乘法
Identity matrix	單位矩陣
Transpose	轉移、轉置
Invertible	可逆
Inverse	逆、反
Elementary matrix	初等矩陣、基本矩陣
Square matrix	方陣