¹H(³⁴Si,p):resonances **2012Im01**

2012Im01: a 34 Si beam at 4.4(12) MeV/nucleon was produced by projectile fragmentation of a 63 MeV/nucleon 40 Ar primary beam and was separated by the RIKEN projectile fragment separator (RIPS). The secondary target was a 10.9(5) mg/cm² polyethylene film. Particles were detected and identified by a Δ E-E telescope (FWHM=130 keV) consisting of three silicon detectors mounted at 0°. Measured excitation function of proton elastic scattering for $\theta_{lab} < 10^{\circ}$ using thick target inverse kinematics. Deduced E_R , L-transfer, Γ_p , and Γ from R-matrix analysis for 8 states in 35 P, which are isobaric analog resonances (IAR) of 35 Si states.

³⁵P Levels

E(level) [†]	Γ	L	S [‡]	Comments
14938 24	<12.7 keV	0		E_R =2783 24, Γ_p =4.6 keV 28, Γ =4.6 keV 81 in 2012Im01.
15161 <i>3</i>	<4.4 keV	3	0.63 16	$E_R=3006\ 2$, $\Gamma_p=1.6\ keV\ 4$, $\Gamma=1.6\ keV\ 28\ in\ 2012Im01$. IAR of the $7/2^-$ g.s. of
				35 Si.
15306 24	<30.4 keV	2	0.19 15	$E_R=3151\ 24$, $\Gamma_p=3.3\ keV\ 27$, $\Gamma=10.4\ keV\ 200\ in\ 2012Im01$.
15964 <i>18</i>	84 keV 25	2	0.79 20	$E_R=3809 \ 18$, $\Gamma_p=26.7 \ \text{keV} \ 69 \ \text{in} \ 2012 \text{Im} 01$.
16145 <i>36</i>	0.35 MeV 9	1	1.37 32	E_R =3990 36, Γ_p =185 keV 43, Γ =354 keV 87 in 2012Im01.
16605 <i>44</i>	0.22 MeV 15	0	0.45 28	$E_R=4450 \ 44$, $\Gamma_p=58.4 \ \text{keV} \ 370$, $\Gamma=215 \ \text{keV} \ 150 \ \text{in} \ 2012 \ \text{Im} 01$.
17254 <i>12</i>	<11.6 keV	2	0.04 1	$E_R = 5099 \ 12$, $\Gamma_p = 3.8 \ \text{keV} \ 9$, $\Gamma = 3.8 \ \text{keV} \ 78 \ \text{in} \ 2012 \text{Im} 01$.
17355 <i>15</i>	32 keV 22	1	0.12 7	$E_R = 5200 \ 15$, $\Gamma_p = 20.9 \ \text{keV} \ 120 \ \text{in} \ 2012 \text{Im} 01$.

[†] Excitation energies are deduced by evaluators from $E_R + S_p(^{35}P) = 12155.1$ 20 (2021Wa16). E_R given in 2012Im01 are in center of mass system.

1

[‡] Spectroscopic factors are derived from Γ_p using the formula from 1968Th07 as described in 2012Im01.