Statistical Optimization for AI and Machine Learning

Preface

This book covers optimization techniques pertaining to machine learning and generative AI, with an emphasis on producing better synthetic data with faster methods, some not even involving neural networks. NoGAN for tabular data is described in detail, along with full Python code, and case studies in healthcare, insurance, cybersecurity, education, and telecom. This low-cost technique is a game changer: it runs 1000x faster than generative adversarial networks (GAN) while consistently producing better results. Also, it leads to replicable results and auto-tuning.

Many evaluation metrics fail to detect defects in synthesized data, not because they are bad, but because they are poorly implemented: due to the complexity, the full multivariate version is absent from vendor solutions. In this book, I describe an implementation of the full version, tested on numerous examples. Known as the multivariate Kolmogorov-Smirnov distance (KS), it is based on the joint empirical distributions attached to the datasets, and work in any dimension on categorical and numerical features. Python libraries, both for NoGAN and KS, are now available and presented in this book.

A very different synthesizer also discussed, namely NoGAN2, is based on resampling, model-free hierarchical methods, auto-tuning, and explainable AI. It minimizes a particular loss function, also without gradient descent. While not based on neural networks, it nevertheless shares many similarities with GAN. Thus you can use it as a sandbox to quickly test various features and hyperparameters before adding the ones that work best, to GAN. Even though NoGAN and NoGAN2 don't use traditional optimization, gradient descent is the topic of the first chapter. Applied to data rather than math functions, there is no assumption of differentiability, no learning parameter, and essentially no math. The second chapter introduces a generic class of regression methods covering all existing ones and more, whether your data has a response or not, for supervised or unsupervised learning. I use gradient descent in this case.

One chapter is devoted to NLP, featuring an efficient technique to process large amounts of text data: hidden decision trees, presenting some similarities with XGBoost. A similar technique is used in NoGAN. Then I discuss other GenAI methods and various optimization techniques, including feature clustering, data thinning, smart grid search and more. Multivariate interpolation is used for time series and geospatial data, while agent-based modeling applies to complex systems.

Methods are accompanied by enterprise-grade Python code, also available on GitHub. Chapters are mostly independent from each other, allowing you to read in random order. The style is very compact, and suitable to business professionals with little time. Jargon and arcane theories are absent, replaced by simple English to facilitate the reading by non-experts, and to help you discover topics usually made inaccessible to beginners. While state-of-the-art research is presented in all chapters, the prerequisites to read this book are minimal: an analytic professional background, or a first course in calculus and linear algebra.

About the author

Vincent Granville is a pioneering GenAI scientist and machine learning expert, co-founder of Data Science Central (acquired by a publicly traded company in 2020), Chief AI Scientist at MLTechniques.com, former VC-funded executive, author and patent owner – one related to LLM. Vincent's past corporate experience includes Visa, Wells Fargo, eBay, NBC, Microsoft, and CNET.

Vincent is also a former post-doc at Cambridge University, and the National Institute of Statistical Sciences (NISS). He published in *Journal of Number Theory*, *Journal of the Royal Statistical Society* (Series B), and *IEEE Transactions on Pattern Analysis and Machine Intelligence*. He is the author of multiple books, available here, including "Synthetic Data and Generative AI" (Elsevier, 2024). Vincent lives in Washington state, and enjoys doing research on stochastic processes, dynamical systems, experimental math and probabilistic number theory. He recently launched a GenAI certification program, offering state-of-the-art, enterprise grade projects to participants. The program, based on his books, is discussed here.

Contents

T	Mai	th-free, Parameter-free Gradient Descent Algorithm	- (
	1.1	Introduction	7
	1.2	Gradient descent and related optimization techniques	8
		1.2.1 Implementation details	8
		1.2.2 General comments about the methodology and parameters	11
		1.2.3 Mathematical version of gradient descent and orthogonal trajectories	12
	1.3	Distribution of minima and the Riemann Hypothesis	
		1.3.1 Root taxonomy	
		1.3.2 Studying root propagation with synthetic math functions	
	1.4	Python code	
		1.4.1 Contours and orthogonal trajectories	
		1.4.2 Animated gradient descent starting with 100 random points	
		1.4.2 Annhaced gradient descent starting with 100 fandon points	10
2	Mac	chine Learning Cloud Regression and Optimization	21
	2.1	Introduction: circle fitting	21
		2.1.1 Previous versions of my method	22
	2.2	Methodology, implementation details and caveats	23
		2.2.1 Solution, R-squared and backward compatibility	23
		2.2.2 Upgrades to the model	24
	2.3	Case studies	$\frac{1}{25}$
		2.3.1 Logistic regression, two ways	$\frac{25}{25}$
		2.3.2 Ellipsoid and hyperplane fitting	26
		2.3.2.1 Curve fitting: 250 examples in one video	26
		2.3.2.2 Confidence region for the fitted ellipse: application to meteorite shapes	$\frac{20}{27}$
		2.3.2.3 Python code	28
		2.3.3 Non-periodic sum of periodic time series: ocean tides	34
		2.3.3.1 Numerical instability and how to fix it	
		v	
		V	
		2.3.4 Fitting a line in 3D, unsupervised clustering, and other generalizations	
		2.3.4.1 Example: confidence region for the cluster centers	
		2.3.4.2 Exact solution and caveats	
		2.3.4.3 Comparison with K-means clustering	
		2.3.4.4 Python code	
	2.4	Connection to synthetic data: meteorites, ocean tides	44
3	AS	imple, Robust and Efficient Ensemble Method	45
•	3.1	Introduction	
	3.2	Methodology	
	0.2		
		3.2.2 NLP case study: summary and findings	47
		3.2.3 Parameters	48
		3.2.4 Improving the methodology	48
	2.2	· 0	
	3.3	Implementation details	48
		3.3.1 Correcting for bias	48
		3.3.1.1 Time-adjusted scores	49
		3.3.2 Excel spreadsheet	49
	o .	3.3.3 Python code and dataset	49
	3.4	Model-free confidence intervals and perfect nodes	53
		3.4.1 Interesting asymptotic properties of confidence intervals	53

4	Nev	v Interpolation Methods for Synthetization and Prediction	55
	4.1	First method	55
		4.1.1 Example with infinite summation	56
		4.1.2 Applications: ocean tides, planet alignment	57
		4.1.3 Problem in two dimensions	58
		4.1.4 Spatial interpolation of the temperature dataset	59
	4.2	Second method	61
		4.2.1 From unstable polynomial to robust orthogonal regression	62
		4.2.2 Using orthogonal functions	62
		4.2.3 Application to regression	62
	4.3	Python code	63
		4.3.1 Time series interpolation	63
		4.3.2 Geospatial temperature dataset	66
		4.3.3 Regression with Fourier series	
_	a	ALAS TELL TO A COLUMN LOCATION	= -1
5	-	thetic Tabular Data: Copulas vs enhanced GANs	71
	5.1	Sensitivity analysis, bias reduction and other uses of synthetic data	
	5.2	Using copulas to generate synthetic data	
		5.2.1 The insurance dataset: Python code and results	
	- 0	5.2.2 Potential improvements	
	5.3	Synthetization: GAN versus copulas	
		5.3.1 Parameterizing the copula quantiles combined with gradient descent	
	٠,	5.3.2 Feature clustering to break a big problem into smaller ones	
	5.4	Deep dive into generative adversarial networks (GAN)	
		5.4.1 Open source libraries and references	
		5.4.2 Synthesizing medical data with GAN	
		5.4.2.1 Hyperparameters	
		5.4.2.2 GAN: Main steps	
		5.4.3 Initial results	
		5.4.4 Fine-tuning the hyperparameters	
		5.4.5 Enhanced GAN: methodology and results	
		5.4.6 Feature clustering via hierarchical clustering or connected components	
	5.5	Comparing GANs with the copula method	
		5.5.1 Conclusion: getting the best out of copulas and GAN	
	5.6	Data synthetization explained in one picture	
	5.7	Python code: GAN to synthesize medical data	
		5.7.1 Classification problem with random forests	
		5.7.2 GAN method	
		5.7.3 GAN Evaluation and post-classification	93
6	\mathbf{Cos}	t-effective Generative AI with NoGAN	94
	6.1	Introduction	94
	6.2	Description and architecture	95
		6.2.1 Binning the feature space	95
		6.2.2 Data synthetization	96
		6.2.3 Computing the multivariate ECDF	96
		6.2.4 Evaluating the quality	97
	6.3	Results and discussion	98
		6.3.1 Telecom dataset	98
		6.3.2 The circle dataset	
	6.4	Potential improvements	100
		6.4.1 The original idea behind NoGAN	
		6.4.2 Auto-tuning the hyperparameters, missing values	
	6.5	Conclusion	
	6.6	Python implementation	
_		· ·	
7			110
	7.1	Methodology	
		7.1.1 Base algorithm	
		7.1.2 Loss function	
		7.1.3 Hyperparemeters and convergence	
		7.1.4 Acknowledgments	113

	7.2	Case studies
		7.2.1 Synthesizing the student dataset
		7.2.2 Synthesizing the Telecom dataset
		7.2.3 Other case studies
		7.2.4 Auto-tuning the hyperparameters
		7.2.5 Evaluation with multivariate ECDF and KS distance
	7.3	Conclusion
	7.4	Python implementation
8	The	ee Simple Optimization Techniques
0	8.1	ee Simple Optimization Techniques131Feature clustering
	0.1	8.1.1 Method and case study
	8.2	
	0.2	Speed-up AI Training with Stochastic Thinning
		8.2.2 The abalone dataset
		8.2.3 Stochastic thinning with fractional training sets
		8.2.4 Linear regression
		8.2.4.1 Conclusions
		8.2.4.2 Potential improvement
		8.2.5 Time series
		8.2.6 Neural networks
		8.2.6.1 Conclusions
		8.2.6.2 Jump-starting neural networks with regression
		8.2.7 Python code
		8.2.7.1 Stochastic thinning for regression
		8.2.7.2 Stochastic thinning for neural networks
	8.3	Smart Grid Search for Faster Hyperparameter Tuning
		8.3.1 Introduction to hybrid distributions
		8.3.2 Case study: parametric copulas to synthesize data
		8.3.2.1 Brief overview of the copula method
		8.3.2.2 Sampling from a zeta-geometric distribution
		8.3.3 Smart grid search: viable alternative to gradient descent
		8.3.4 Python code
9	Цол	v to Fix a Failing Generative Adversarial Network
9	9.1	Context
	9.1	GAN enhancements techniques
	9.4	9.2.1 Linear transform to decorrelate features
		9.2.2 WGAN with PCA transform and standardization
	0.2	
	9.3	Front-end enhancements to GAN technology
	9.4	Evaluating synthetizations
		9.4.1 Loss function history log
		9.4.2 Histograms: real versus synthetic data
		9.4.3 Summary statistics: real versus synthetic data
	9.5	Python code for home-made GAN
10	Mis	cellaneous Topics 164
		Agent-based Modeling: Simulating Aggregative Processes
		10.1.1 Introduction
		10.1.2 Atom size distribution
		10.1.2.1 Core algorithm: single simulation path
		10.1.2.2 Time scale
		10.1.2.3 Averaging across multiple simulations
		10.1.2.4 Collision graphs
		10.1.3 Python implementation
	10.9	Fraud Detection and Cybersecurity: Balancing Datasets
	10.2	10.2.1 Project description
		10.2.2 Solution
		10.2.3 Python code with SQL queries
	10.3	Advances in Applied Statistical Engineering
	10.0	10.3.1 Traditional statistics versus new machine learning approach
		10.3.2 How to build small samples that outperform big data

	10.3.2.1 Extrapolating confidence intervals beyond the observed data			. 176	
		10.3.2.2 Beating the laws of randomness to reduce costs by factor 10		. 177	
	10.3.3	The power of smart resampling: case study		. 177	
	10.3.4	Best Practices		. 178	
	10.3.5	Python code		. 178	
\mathbf{A}	Open Sour	rce Python Libraries		182	
В	B Glossary: GAN and Tabular Data Synthetization			186	
Bibliography					
In	Index				

replicability	A replicable neural network is one that can produce the exact same results when run multiple times on the same data, regardless of the platform. Usually controlled by a seed parameter: using the same seed leads to the same results.
scaling	A transformation that keeps the values of each feature within the same range, or with the same variance in the real data, before using GAN. A measurement, whether in yards or miles, will be scale-free after the transformation. It can dramatically improve the quality of the generated data. Inverse scaling is then applied to the generated data, after the GAN synthetization.
seed	Parameter used to initialize the various random number generators involved in the GAN architecture, typically one for each Python library that generates random numbers. It produces replicable results, at least with CPU implementations. In GPU, the problem is different.
stopping rule	A criterion to decide when to stop training a GAN, typically when an epoch produces an unusually good synthetization, based on quality evaluation metrics such as the KS distance. It produces much better results than stopping after a fixed number of epochs.
synthetization	Production of generated observations, also called synthetic data, with statistical properties mimicking those computed on a pre-specified real data set.
tabular data	Data arranged in tables, where columns represent features, and rows represent observations. Typically used for transactional data. Time series are treated with specific algorithms.
training set	The portion of your real data used to train your synthesizer. The other part is called the validation set, and used to evaluate the quality of the synthetic data (how well it mimics real data). This setting known as holdout allows you to test you synthetisizer on future data and avoid overfitting.
transform	Similar to transformers in large language models. Consists of using an invertible transform on your real data prior to GAN processing, to improve GAN performance. You need to apply the inverse transform on the generated data, after GAN. Example of transforms: scaling, PCA, standardization (transformed features having the same variance and zero mean), and normalization (to eliminate skewness).
validation set	See training set.
vanishing gradient	When the gradient gets close to zero in a gradient descent algorithm, it can prevent further progress towards locating the optimum. In the worst case, this may completely stop the neural network from further training.
Wasserstein loss	The GAN Wasserstein loss function seeks to increase the gap between the scores for real and generated data. It is one of the many loss functions to improve the gradient descent algorithm, avoiding mode collapse and similar problems in some synthetizations.
WGAN	Wasserstein GAN, based on the Wasserstein loss function.

Bibliography

- [1] Insaf Ashrapov. Tabular gans for uneven distribution. *Preprint*, pages 1–11, 2020. arXiv:2010.00638 [Link].
- [2] Caglar Aytekin. Neural networks are decision trees. *Preprint*, pages 1–8, 2022. arXiv:2210.05189 [Link].
- [3] Fabiola Banfi, Greta Cazzaniga, and Carlo De Michele. Nonparametric extrapolation of extreme quantiles: a comparison study. Stochastic Environmental Research and Risk Assessment, 36:1579–1596, 2022. [Link].
- [4] Paul Beale. Statistical Mechanics. Academic Press, third edition, 2011. 165
- [5] Marc G. Bellemare et al. The Cramer distance as a solution to biased Wasserstein gradients. *Preprint*, pages 1–20, 2017. arXiv:1705.10743 [Link]. 118
- [6] Anthony J Bishara, Jiexiang Li, and Thomas Nash. Asymptotic confidence intervals for the Pearson correlation via skewness and kurtosis. British Journal of Mathematical and Statistical Psychology, pages 165–185, 2018. [Link]. 175
- [7] Ali Borji. Pros and cons of GAN evaluation measures: New developments. *Preprint*, pages 1–35, 2021. arXiv:2103.09396 [Link]. 78
- [8] Wei Chen and Mark Fuge. Synthesizing designs with interpart dependencies using hierarchical generative adversarial networks. *Journal of Mechanical Design*, 141:1–11, 2019. [Link]. 113
- [9] Fida Dankar et al. A multi-dimensional evaluation of synthetic data generators. *IEEE Access*, pages 11147–11158, 2022. [Link]. 156
- [10] Alvaro Figueira and Bruno Vaz. Survey on synthetic data generation, evaluation methods and GANs. New Insights in Machine Learning and Deep Neural Networks, 2022. MDPI [Link]. 78
- [11] Vincent Granville. Stochastic Processes and Simulations: A Machine Learning Perspective. MLTechniques.com, 2022. [Link]. 140
- [12] Vincent Granville. Generative AI: Synthetic data vendor comparison and benchmarking best practices. *Preprint*, pages 1–13, 2023. MLTechniques.com [Link]. 96, 99, 110, 118, 156
- [13] Vincent Granville. Gentle Introduction To Chaotic Dynamical Systems. MLTechniques.com, 2023. [Link]. 177
- [14] Vincent Granville. Synthetic Data and Generative AI. Elsevier, 2024. [Link]. 8, 14, 35, 38, 39, 42, 53, 58, 63, 71, 73, 75, 83, 156, 167, 176
- [15] Vincent Granville, Mirko Krivanek, and Jean-Paul Rasson. Simulated annealing: A proof of convergence. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16:652–656, 1996. 120, 139
- [16] Hui Guo et al. Eyes tell all: Irregular pupil shapes reveal gan-generated faces. Preprint, pages 1–7, 2021. arXiv:2109.00162 [Link]. 71
- [17] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. O'Reilly, third edition, 2023. 44
- [18] Radim Halir and Jan Flusser. Numerically stable direct least squares fitting of ellipses. *Preprint*, pages 1–8, 1998. [Link]. 26, 28
- [19] Markus Herdin. Correlation matrix distance, a meaningful measure for evaluation of non-stationary MIMO channels. *Proc. IEEE 61st Vehicular Technology Conference*, pages 1–5, 2005. [Link]. 78
- [20] Christian Hill. Learning Scientific Programming with Python. Cambridge University Press, 2016. [Link].
- [21] Pavel Krapivsky, Sidney Redner, and Eli Ben-Naim. A Kinetic View of Statistical Physics. Cambridge University Press, 2010. [Link]. 165

- [22] Jogendra Nath Kundu et al. GAN-Tree: An incrementally learned hierarchical generative framework for multi-modal data distributions. *IEEE/CVF International Conference on Computer Vision*, pages 8190–8199, 2019. arXiv:1908.03919 [Link]. 113
- [23] Nicolas Langrené and Xavier Warin. Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. *Computational Statistics & Data Analysis*, 162:1–16, 2021. [Link]. 95, 96, 119
- [24] Gary R. Lawlor. A l'Hospital's rule for multivariable functions. *Preprint*, pages 1–13, 2013. arXiv:1209.0363 [Link]. 56
- [25] Tengyuan Liang. Estimating certain integral probability metric (IPM) is as hard as estimating under the IPM. *Preprint*, pages 1–15, 2019. arXiv:1911.00730 [Link]. 119
- [26] Hui Liu et al. A new model using multiple feature clustering and neural networks for forecasting hourly PM_{2.5} concentrations. *Engineering*, 6:944–956, 2020. [Link]. 76, 83, 132
- [27] Mario Lucic et al. Are GANs created equal? a large-scale study. *Proc. NeurIPS Conference*, pages 1–10, 2018. [Link]. 78
- [28] Christoph Molnar. Interpretable Machine Learning. Christoph Molnar.com, 2022. [Link]. 71
- [29] Michael Naaman. On the tight constant in the multivariate Dvoretzky–Kiefer–Wolfowitz inequality. Statistics & Probability Letters, 173:1–8, 2021. [Link]. 95, 119
- [30] Guillermo Navas-Palencia. Optimal binning: mathematical programming formulation. *Preprint*, pages 1–21, 2020. arXiv:2001.08025 [Link]. 46
- [31] Sergey I. Nikolenko. Synthetic Data for Deep Learning. Springer, 2021. 78
- [32] Peter Olver. Complex Analysis and Conformal Mapping. Preprint, 2022. University of Minnesota [Link][Mirror]. 13
- [33] Alfred R.Osborne. Multidimensional Fourier series. International Geophysics, 97:115–145, 2010. [Link]. 63
- [34] A Rény. On the theory of order statistics. Acta Mathematica Academiae Scientiarum Hungaricae, 4:191–231, 1953. 175
- [35] Mahesh Shivanand and all. Fitting random regression models with Legendre polynomial and B-spline to model the lactation curve for Indian dairy goat of semi-arid tropic. *Journal of Animal Breeding and Genetics*, pages 414–422, 2022. [Link]. 63
- [36] Joshua Snoke et al. General and specific utility measures for synthetic data. *Journal of the Royal Statistical Society Series A*, 181:663–688, 2018. arXiv:1604.06651 [Link]. 44
- [37] Bharath Sriperumbudur et al. On the empirical estimation of integral probability metrics. *Electronic Journal of Statistics*, pages 1550–1599, 2012. [Link]. 119
- [38] Chang Su, Linglin Wei, and Xianzhong Xie. Churn prediction in telecommunications industry based on conditional Wasserstein GAN. *IEEE International Conference on High Performance Computing, Data, and Analytics*, pages 186–191, 2022. IEEE HiPC 2022 [Link]. 100, 113, 155, 156
- [39] Chris Tofallis. Fitting equations to data with the perfect correlation relationship. *Preprint*, pages 1–11, 2015. Hertfordshire Business School Working Paper[Link]. 22
- [40] D. Umbach and K.N. Jones. A few methods for fitting circles to data. *IEEE Transactions on Instrumentation and Measurement*, 52(6):1881–1885, 2003. [Link]. 23, 26
- [41] D. A. Vaccari and H. K. Wang. Multivariate polynomial regression for identification of chaotic time series. Mathematical and Computer Modelling of Dynamical Systems, 13(4):1–19, 2007. [Link]. 26
- [42] Fengyun Wang and all. Bivariate Fourier-series-based prediction of surface residual stress fields using stresses of partial points. *Mathematics and Mechanics of Solids*, 2018. [Link]. 63
- [43] Lei Xu and Kalyan Veeramachaneni. Synthesizing tabular data using generative adversarial networks. *Preprint*, pages 1–12, 2018. arXiv:1811.11264 [Link]. 78
- [44] Jinsung Yoon et al. GAIN: Missing data imputation using generative adversarial nets. *Preprint*, pages 1–10, 2018. arXiv:1806.02920 [Link]. 113
- [45] Changgang Zheng et al. Reward-reinforced generative adversarial networks for multi-agent systems. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 6:479–488, 2021. arXiv:2103.12192 [Link].

Index

activation function, 79, 120, 154	cross-validation, 24, 80, 110, 173
AdaBoost, 45	curse of dimensionality, 58
Adam, 154	curve fitting, 35
Adam gradient descent, 80	
adversarial learning, 71	data distillation, 100
agent-based modeling, 164	decision tree, 45
AI art, 72	decorrelatation, 88
algorithmic bias, 72	decorrelation, 82, 88
analytic function, 13	deep comparison, 156
assignment problem, 101	deep neural network, 79, 94, 120
asymptotic approximation, 174	diffusion model, 100
augmented data, 44	dimensionality reduction, 25
auto-tuning, 101, 112, 118, 120	disaggregation, 57
autocorrelation function, 178	discrete Fourier series, 62
,	discrete orthogonal functions, 62
batch, 101, 112, 114, 120	distribution
batch size (neural networks), 155	logistic, 25
Bayesian hierarchical models, 113	distribution function, 174
Bayesian inference, 53	dot product, 23
Beatty sequences, 177	dummy variable, 45, 79, 95, 112
binning	•
optimum binning, 46, 95	ECDF empirical distribution, 111
bisection method, 148	eigenvalue, 22
boosted trees, 73	EM algorithm, 44, 76
bootstrapping, 24, 72, 102, 174, 178	empirical density function, 119
	empirical distribution, 25, 63, 72, 94, 148, 156, 174,
categorical feature, 112	176
Cauchy-Riemann equations, 13	multivariate, 110, 113, 119, 173
CDF regression, 26	empirical quantiles, 88, 147
central limit theorem, 174	ensemble methods, 45, 73
collision theory, 165	epoch, 79, 82, 95
color transparency, 29	epoch (neural networks), 138, 154
computer vision, 21	explainable AI, 22, 44, 71, 89, 95, 110, 120, 134
confidence interval, 53, 174	exponential decay, 49
confidence level, 176	
confidence region, 24, 38, 72	feature attribution, 71
dual region, 53	feature clustering, 76, 82, 83, 88, 100, 131, 132, 134,
conformal map, 23	138
connected components, 83, 132	feature importance, 71
contour level, 8, 13	feature selection, 24
contour lines, 8	Fisher transform, 175
convergence	Fourier series, 62
absolute, 55	fractional training set, 134, 135
conditional, 55	
copula, 72, 89, 94, 99, 113, 121, 147, 156	GAN (generative adversarial networks), 44, 71, 76, 88,
Frank, 72, 78	94
Gaussian, 72	Gaussian mixture model, 94
correlation matrix distance, 78, 83, 88, 156	see GMM, 44
Cramér's V, 112	general linear model, 22
credible interval, 53	generalized linear model, 22
critical line (number theory) 8 56	generative adversarial networks, 94, 110, 154

see GAN, 44	mode collapse, 102, 156
generative model, 44	model identifiability, 24
geometric distribution, 146	modulus (complex number), 8
GIS, 59	moment estimation method, 147
GMM (Gaussian mixture model), 75, 76, 88, 89	multidimensional Fourier series, 63
gradient descent, 12, 101, 111, 120, 139, 149, 154, 156	multinomial distribution, 96, 172
gradient operator, 24	multiple root, 56
Gram-Schmidt orthogonalization, 62	1 /
graph	natural language processing, 45
connected components, 83, 132	neural network
undirected, 83, 132	activation function, 79
greedy algorithm, 55	epoch, 79
grid search, 100, 147, 148	neuron, 79
grid 50arch, 100, 147, 140	NLP (natural language processing), 45
Hadamard product, 15, 111	node (decision tree), 46, 73
Hellinger distance, 72, 88, 89, 94, 119	perfect node, 53
Hermite polynomials, 62	usable node, 47
hidden decision trees, 45, 46	node (interpolation), 56, 119
hierarchical Bayesian model, 121	node (interpolation), 60, 110
hierarchical clustering, 83, 132	ordinary least squares, 62
hierarchical deep resampling, 110, 113	orthogonal function, 62
hierarchical GAN, 113	orthogonal trajectory, 8
holdout, 113	overfitting, 24, 72, 78
holdout method, 173	0.102111011116, = 1, 1=, 10
Hungarian algorithm, 101	Pandas, 172
	parametric bootstrap, 29, 38, 44, 72
hybrid distribution, 146	partial derivative, 56
hyperparameter, 38, 78, 96, 112, 173	partial least squares, 22
ill-conditioned problem, 35	partial principal component analysis, 155
imputation (missing values), 72, 113	power-geometric distribution, 147
influential feature, 134	prediction interval, 24
	predictive power, 46, 53, 71
influential observation, 134	principal component analysis, 71, 95, 100, 113
integral probability metrics, 119	probability density function, 174
inverse transform sampling, 147, 148	probability density function, 114
K-means clustering, 40, 41	quantile, 95
key-value pair, 46, 95	empirical, 72, 148
Kolmogorov-Smirnov distance, 94, 97, 112, 113, 119,	quantile function, 63, 95, 114, 174, 176
156, 173	quantile regression, 24
Kolmogorov-Smirnov test, 72	qualitie regression, 21
kriging, 55	R-squared, 24, 44
Kilging, 55	random search, 148
label feature, 118	regression splines, 22
Lagrange multiplier, 24	reinforcement learning, 83, 89, 120
Lasso regression, 24	rejection sampling, 73
latent variables, 79	ReLU function, 79
learning rate, 10, 78, 83, 88, 139, 154	resampling, 102
	Riemann Hypothesis, 7, 56
LightGBM, 78, 88 link function, 22, 25	Riemann zeta function, 8, 56, 146
	Rényi's representation, 175
log-polar map, 23	recity's representation, 170
logistic distribution, 25	saddle point, 10, 13
logistic regression, 25	SDV (Python library), 77
unsupervised, 42	seed (random number generator), 73, 78, 82, 112, 154
loss function, 79, 82, 88, 100, 101, 111, 112, 120, 154	Shapley value, 71
maximum contrast estimation 147	sigmoid function, 79
maximum contrast estimation, 147	simulated annealing, 120
mean squared error, 24, 39	
medoid, 40 Managana traistan 28	singular value decomposition, 22
Mersenne twister, 38	Sklar's theorem, 72
minimum modulus principle, 13	smart grid search, 101
missing values, 101	softmax (activation function), 154
mixture model, 38, 54, 119	spline regression, 63

```
square root (matrix), 82
steepest descent, 12
stochastic gradient descent, 79
stopping rule, 159
Sturm-Liouville theory, 62
SVD (Python library), 88
\mathrm{swap},\,111,\,120
swarm optimization, 36
synthetic data, 22, 36, 38, 55, 61, 72, 147
TabGAN (Python library), 78
tensor, 112
TensorFlow, 78, 112
textcolor, 44
time series
    non-periodic, 34
total least squares, 22
total variation distance, 101, 156
training set, 95, 173
transformer, 100, 120
unsupervised learning, 42
validation set, 24, 72, 95, 98, 113, 134, 173
vanishing gradient, 112
Wasserstein GAN, 100, 120, 155
Wasserstein loss, 156
weighted least squares, 22
weighted regression, 25
white noise, 36
wide data, 63, 83, 133
zeta distribution, 146
zeta-geometric distribution, 145
```