1.8 The current flowing past a point in a device is shown in Fig. 1.25. Calculate the total charge through the point.

Figure 1.25

For Prob. 1.8.

1.12 If the current flowing through an element is given by

$$i(t) = \begin{cases} 3tA, & 0 & \le t < 6 \text{ s} \\ 18A, & 6 & \le t < 10 \text{ s} \\ -12A, & 10 & \le t < 15 \text{ s} \\ 0, & t \ge 15 \text{ s} \end{cases}$$

Plot the charge stored in the element over 0 < t < 20 s.

1.14 The voltage v across a device and the current i through it are

$$v(t) = 10 \cos 2t \text{ V}, \qquad i(t) = 20(1 - e^{-0.5t}) \text{ mA}$$

Calculate:

- (a) the total charge in the device at t = 1 s
- (b) the power consumed by the device at t = 1 s.

- **1.16** Figure 1.27 shows the current through and the voltage across an element.
 - (a) Sketch the power delivered to the element for t > 0.
 - (b) Find the total energy absorbed by the element for the period of 0 < t < 4s.

t (s)

Figure 1.27 For Prob. 1.16.

2.14 Given the circuit in Fig. 2.78, use KVL to find the branch voltages V_1 to V_4 .

Figure 2.78 For Prob. 2.14.

2.20 Determine i_o in the circuit of Fig. 2.84.

Figure 2.84 For Prob. 2.20.

2.32 Find i_1 through i_4 in the circuit in Fig. 2.96.

Figure 2.96 For Prob. 2.32.

2.46 Find *I* in the circuit of Fig. 2.110.

Figure 2.110 For Prob. 2.46.