Announcements Feb 25

- Keeps tabs on your grades in TSquare
- WebWork 2.3 and 2.5 due Thursday
- Homework 5 due in class Friday (use a computer)
- Quiz 5 on 2.3 and 2.5 in class Friday
- Midterm 2 in class Friday Mar 11 on Chapters 2 & 3
- Office Hours Tuesday and Wednesday 2-3, after class, and by appt in Skiles 244 or 236
- LA Office Hours: Scott Mon 12-1, Yashvi Mon 2-3, Baishen Wed 4-5, Matt Thu 3-4, Shivang Fri 10:30-11 + 12:30-1
- Math Lab, Clough 280
 - Regular hours: Mon/Wed 11-5 and Tue/Thu 11-5
 - Math 1553 hours: Mon-Thu 5-6 and Tue/Thu 11-12
 - LA hours: Matt Tue 11-12, Scott Tue 5-6, Baishen Thu 11-12, Yashvi/Shivang Thu 5-6

Section 2.8

Subspaces of \mathbb{R}^n

Subspaces

A subspace of \mathbb{R}^n is a subset V with:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u+v is also in V.
- 3. If u is in V and c is in \mathbb{R} , then $cu \in V$.

Examples

Spans are subspaces

Fact. Any $\mathrm{Span}\{v_1,\ldots,v_k\}$ is a subspace.

Why?

Note the following.

• If $V=\mathrm{span}\{v_1,v_2,\ldots,v_k\}$, say V is the subspace generated by $v_1,v_2,\ldots,v_k.$

Which are subspaces?

Poll

Which are subspaces? For those that are not subspaces, which part of the definition fails?

- 1. $\left\{ \left(\begin{array}{c} a \\ b \end{array} \right) \text{ in } \mathbb{R}^2 \,|\, a = 0 \right\}$
- $2. \left\{ \left(\begin{array}{c} a \\ b \end{array} \right) \text{ in } \mathbb{R}^2 \,|\, a+b=0 \right\}$
- 3. $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \,|\, ab = 0 \right\}$
- 4. $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \,|\, ab \neq 0 \right\}$
- 5. $\left\{ \left(\begin{array}{c} a \\ b \end{array} \right) \text{ in } \mathbb{R}^2 \,|\, a, b \text{ rational} \right\}$

Subspaces are spans

Fact. Every subspace V is equal to some span.

Why?

Column Space and Null Space

 $A = m \times n$ matrix.

Col(A) =column space of A =span of the columns of A

 $\operatorname{Nul}(A)=\operatorname{null}$ space of $A=\operatorname{set}$ of solutions to Ax=0

Example.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Then
$$Col(A) =$$

$$Nul(A) =$$

Column Space and Null Space

$$A=m\times n$$
 matrix.

$$\operatorname{Col}(A) = \operatorname{subspace} \operatorname{of}$$

$$\mathrm{Nul}(A) = \mathsf{subspace}$$
 of

Why?

Note that it is easier to check that $\mathrm{Nul}(A)$ is a subspace than it is to check that $\mathrm{Nul}(A)$ is a span.

Bases

$$V = \text{subspace of } \mathbb{R}^n$$

A basis for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

- 1. $V = \operatorname{span}\{v_1, \dots, v_k\}$
- 2. the v_i are linearly independent

$$\dim(V) = \text{dimension of } V = k$$

Q. What is one basis for \mathbb{R}^2 ? \mathbb{R}^n ?

Bases for Nul(A) and Col(A)

Q. Find bases for Nul(A) and Col(A)

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Bases for Nul(A) and Col(A)

In general:

- our usual parametric solution for Ax=0 gives a basis for $\mathrm{Nul}(A)$
- the pivot columns of A form a basis for $\operatorname{Col}(A)$

Warning! Not the pivot columns of the reduced matrix.

Fact. If $A = n \times n$ matrix, then:

A is invertible $\Leftrightarrow \operatorname{Col}(A) =$