(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-22539

(43)公開日 平成10年(1998)1月23日

(51) Int.Cl.

HO1L 41/107

體別記号

庁内整理番号

FΙ

H01L 41/08

技術表示箇所

審査請求 未請求 請求項の数2 FD (全 5 頁)

(21)出願書号

(22)出顯日

特願平8-192830

平成8年(1996)7月2日

(71)出頭人 000149734

株式会社大真空

兵庫県加古川市平岡町新在家宇灣野1389番

(72) 発明者 依田 祥一

兵庫県加古川市平岡町新在家字橋野1389番

地 株式会社大真空内

(54) 【発明の名称】 圧電トランス、及び圧電トランス部品

(57)【要約】

【課題】 性能を劣化させることなく、薄型化を容易と する信頼性の高い圧電トランスを提供する。

【解決手段】 圧電素子1の所定領域に駆動電極11及 び出力電極13を設けることにより、その圧電素子に駆 動部分と発電部分とを画して設けた圧電トランスにおい て、前記圧電トランスの振動節部近傍に薄板状のクッシ ョン片2,2を接合材により接合し、前記圧電トランス に接合されたクッション片をさらに回路基板4に接合し て搭載した。

【特許請求の範囲】

【請求項1】 圧電素子の所定領域に駆動電極及び出力 電極を設けることにより、その圧電素子に駆動部分と発 電部分とを画して設けた圧電トランスにおいて、前記圧 電トランスの振動節部近傍に薄板状のクッション片を接 合材により接合し、前記圧電トランスに接合されたクッ ション片をさらに回路基板上に接合して搭載した事を特 徴とする圧電トランス。

1

【請求項2】 特許請求項1記載の圧電トランスにおい て、痔板状のクッション片が前記圧電トランスの振動節 10 部近傍に、予め、接合されている事を特徴とする圧電ト ランス部品。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子機器等において交 流電圧を変圧する圧電トランスに関するものである。

【従来の技術】圧電トランスは、巻線型の電磁トランス に比べて、(1)構造が簡単で小型化が可能である。

(2) 出力側の短絡事故に対し、自動的に入力抵抗が増 20 大し、焼損等の危険性がない。 (3) 昇圧比が高くとれ る。 (4) 電磁誘導がない。等の利点を有しており、近 年実用化に向けての開発が進んでいる。

【0003】図5に示すように代表的な圧電トランスと してローゼン型の圧電トランスが挙げられるが、圧電素 子1は矩形板状で、この素子の長手方向の主面片側半分 1Aには厚み方向の一対の入力電極11(裏面について は図示せず) を形成し、他の半分1 B はその端面に出力 電極13を形成している。 前者は厚み方向に、後者は長 手方向にそれぞれ分極されている。一般に厚み方向に入 30 載も容易に行える。 力電極が形成された部分を駆動部、出力電極が形成され た他の半分を発電部と称している。この電極形成された 圧電素子1にリード線L1, L2を介して交流電圧を印 加すると、例えば1モードと称される全波長振動の強い 機械振動が起こる。なお、励振時には振動の節領域が現 れ、支持体 S, Sは機械振動の減衰を少なくするためこ の振動の節領域に取り付けられている。そして前述のリ ード線L1, L2もこの入力電極側の節領域に半田等の 導電性接合材により取り付けられている。 これにより発 電部の出力電極13では圧電効果で高い交流電圧を得る ことができ、半田付けされたリード線L3により取り出 す。上述の支持体Sは一般的にはゴム状の弾性体が用い られ、中空形状をしており、この中空部分に圧電素子1 を圧入して貫通させて、弾性により圧電素子の表裏面並 びに側面を挟持固定している。

[0004]

【発明が解決しようとする課題】しかしながら、前記支 持体Sの構成では、高さが必要であり、装置全体として の厚みが増し、薄型化ができない。さらに、支持体Sの 中空部分に圧電素子を挿入する事から、組み立て作業も 50

手間がかかり、自動化などにも対応できないものであっ た。また、圧電トランス上面は前記支持体Sで覆われる 面積が増して圧電トランスからの放熱性が低下したり、 当該部分からの機械的エネルギーの損失が大きかった。 【0005】本発明は上記問題点を解決するためになさ れたもので、性能を劣化させることなく、薄型化を容易 とする信頼性の高い圧電トランスを提供することを目的 とするものである。

[0006]

【課題を解決するための手段】上記問題点を解決するた めに、本発明による圧電トランスは、圧電素子の所定領 域に駆動電極及び出力電極を設けることにより、その圧 電素子に駆動部分と発電部分とを画して設けた圧電トラ ンスにおいて、前記圧電トランスの振動節部近傍に薄板 状のクッション片を接合材により接合し、前配圧電トラ ンスに接合されたクッション片をさらに回路基板上に接 合して搭載した。

【0007】このため、振動節部近傍のクッション片に より、わずかに生じる振動も吸収し、圧電素子の機械振 動の減衰がきわめて少なくなる。そして、接合材によ り、圧電トランスの振動節部近傍からずれることなく、 かつ、回路基板に確実に支持される。また、支持部材と してのクッション片が圧電トランスを覆う面積も少ない ため、薄型化が実現できるほか、圧電トランスからの放 熱性がよく、熱による性能の劣化がない。

【0008】また、薄板状のクッション片が前記圧電ト ランスの振動節部近傍に、予め、接合した。

【0009】このため、圧電トランスと支持体とを一体 としたユニットの形態とることができ、回路基板への搭

[0010]

【実施例】次に、本発明による第1の実施例を図面とと もに、λモードで駆動する圧電トランスを例にとり説明 する。図1は本発明の第1の実施例を示す圧電トランス の分解斜視図であり、図2は図1の圧電トランスを搭載 した状態の斜視図である。尚、従来の実施例と同様の部 分については同番号を付した。

【0011】圧電素子1は長方形板状に切断加工されて いる。この圧電素子1の長手方向中央部を境にして、駆 動部1Aと発電部1Bとに分けられている。 駅動部1A は表裏主面には銀あるいは銀パラジウム等の入力電極1 1 (裏面については図示せず) が設けられ、板厚方向に 分極処理が施されている。この表裏面の入力電極にはえ モード振動の場合の振動の節領域にあたる位置に、リー ド線L1, L2が半田等の導電性接合材により導電接合 されている。発電部1Bの端面には出力電極13が形成 され、この発電部1Bは長手方向に分極処理がなされて いる。この出力電極13にはリード線L3が同じく導電 性接合材により導電接合されている。

【0012】圧電素子1を支持するクッション片2,2

はシリコン系樹脂、あるいはウレタン系樹脂等のからな る矩形状の弾性体からなり、前記クッション片の長手方 向の幅寸法は圧電素子の幅寸法とほぼ同じ寸法に設定さ れている。そして、前記クッション片を接合材により、 圧電素子1の下側の振動節部にて接合した後、前記クッ ション片の裏面側にも接合材を塗布し、回路基板4の所 望の位置に接合して搭載する。

【0013】尚、圧電素子の下側の振動節部に、予め、 クッション片を接合したものを圧電トランス部品として 供給することにより、ユーザー側で振動節部を考慮する 10 ことなく回路基板への搭載が容易に行える。図3は本発 明の第2の実施例を示す斜視図である。圧電素子1の下 側の振動節部に、予め、クッション片21,21,2 1, 21が接合され、かつリード線L1, L2, L3が 接続されている。このため、ユニットとしての形態がよ り確立され利便性が向上する。また、クッション片21 を多点(第2の実施例では4点)に分割した構成である ため、圧電トランスの放熱性がより向上し、クッション 片による圧電トランスの振動抑制もより減少する。

【0014】次に、本発明による第3の実施例を、 λモ 20 ードで駆動する積層型の圧電トランスを例にとり説明す る。図4は本発明の第3の実施例を示す圧電トランスの 斜視図である。

【0015】積層型圧電素子3は、複数の圧電素子31 ・・3 πが厚み方向に積層されて一体化された構造とな っており、長方形板状に切断加工されている。そして、 この積層型圧電素子3の長手方向中央部を境にして、駆 動部3Aと発電部3Bとに分けられている。 駆動部3A は表裏主面、並びに各圧電素子31・・3nの間に、銀あ るいは銀パラジウム等の入力電極31₁・・31_nが設け 30 られている。そして、各圧電素子の表裏で極が異なるよ うに構成するため、各電極の一部を切り欠き331(切 り欠きは、各圧電素子の表裏で切り欠きの位置をずら せ、同極の電極の切り欠きは同位置とする)により、そ れぞれの入力電極を一つとばしに補助電極34(異極の 補助電極については図示せず)により接続し、板厚方向 に分極処理が施されている。入力電極311の振動の節 領域にあたる位置と、振動節領域に形成された補助電極 34とに、リード線し1、 L2が半田等の導電性接合材 により導電接合されている。発電部3Bの端面には出力 40 L1, L2, L3 リード線

電極33が形成され、この発電部1Bは長手方向に分極 処理がなされている。 この出力電極33にはリード線L 3が同じく導電性接合材により導電接合されている。

【0016】積層型圧電素子3を支持するクッション片 2, 2はシリコン系樹脂、あるいはウレタン系樹脂等の からなる矩形状の弾性体からなり、前記クッション片の 長手方向の幅寸法は圧電素子の幅寸法とほぼ同じ寸法に 設定されている。そして、前記クッション片を接合材に より積層型圧電素子3の振動の振動節部にて接合した 後、前記クッション片の裏面側にも接合材を塗布し、回 路基板4の所望の位置に接合して搭載する。

[0017]

【発明の効果】特許請求項1によれば、振動節部近傍の クッション片により、わずかに生じる振動も吸収し、圧 電素子の機械振動の減衰がきわめて少なくなる。 そし て、接合材により、圧電トランスの振動節部近傍からず れることなく、かつ、回路基板に確実に支持される。ま た、支持部材としてのクッション片が圧電トランスを覆 う面積も少ないため、薄型化が実現できるほか、圧電ト ランスからの放熱性がよく、熱による性能の劣化がな

【0018】特許請求項2によれば、圧電トランスと支 持体とを一体としたユニットの形態とることができ、回 路基板への搭載も容易に行える。

【図面の簡単な説明】

【図1】本発明の第1の実施例を示す圧電トランスの斜 視図である。

【図2】図1の圧電トランスを搭載した状態の斜視図で ある。

【図3】本発明の第2の実施例を示す圧電トランスの斜 視図である。

【図4】本発明の第3の実施例を示す圧電トランスの斜 視図である。

【図5】従来例を示す斜視図である。

【符号の説明】

1,3・・・圧電素子

11, 31, 32 · · · 入力電極

13,33・・・出力電極

2, 21・・・支持体

【図2】

[図3]

【図4】

