Exos

3) Le but de cet exercice est de démontrer le *théorème* fondamental de l'algèbre avec des méthodes homotopiques. Soient n > 1 et

$$p(z) := z^n + a_1 z^{n-1} + ... + a_n$$

un polynôme à cœfficients dans \mathbb{C} . On suppose que p(z) n'a pas de racine dans \mathbb{C} .

a) Pour tout nombre $r\geq 0$ et tout polynôme q sans racine sur le cercle $\{|z|=r\}$, on définit un lacet $\gamma(q,r)$ de \mathbb{S}^1 basé en 1 par

$$s \longmapsto \gamma(q,r)(s) := \frac{q(re^{2i\pi s})/q(r)}{|q(re^{2i\pi s})/q(r)|}.$$

Montrer que $[\gamma(p, r)] = [c_1] \in \pi_1(\mathbb{S}^1, 1)$.

Exos

b) Pour tout $t \in [0, 1]$ on considère le polynôme

$$p_t(z) := z^n + t(a_1 z^{n-1} + ... + a_n).$$

Montrer que si r est suffisamment grand, les polynômes p_t n'ont aucune racine sur le cercle $\{|z|=r\}$.

- c) Montrer que $\gamma(p_0, r) = \omega_n$.
- d) En déduire que si r est suffisamment grand alors $[\gamma(p,r)] = n \in \mathbb{Z}$. Conclure.

Le théorèm du point fixe de Brouwer

Exos

- 4) Le but de cet exercice est de démontrer le théorème de Borsuk-Ulam en dimension 2 : soit $f: \mathbb{S}^2 \to \mathbb{R}^2$ continue, alors il existe une paire de points antipodaux x et -x de \mathbb{S}^2 tels que f(x) = f(-x).
- a) Montrer le théorème en dimension 1 : si $f: \mathbb{S}^1 \to \mathbb{R}$ est continue alors il existe une paire de points antipodaux x et -x de \mathbb{S}^1 tels que f(x) = f(-x).

On se place désormais en dimension 2 et on suppose l'hypothèse (*H*) suivante :

il existe $f: \mathbb{S}^2 \to \mathbb{R}^2$ continue telle que pour tout point $x \in \mathbb{S}^2$, $f(x) \neq f(-x)$.

b) Soient $g: \mathbb{S}^2 \to \mathbb{S}^1$ l'application définie par

$$g(x) := \frac{f(x) - f(-x)}{|f(x) - f(-x)|}$$

et $\eta:[0,1]\to\mathbb{S}^2$ le lacet défini par

$$\eta(s) = (\cos 2\pi s, \sin 2\pi s, 0).$$

On considère le lacet $\gamma := g \circ \eta$. Montrer que pour tout $s \in [0, \frac{1}{2}]$, on a

$$\gamma(s+\frac{1}{2})=-\gamma(s)$$

Le théorème du point fixe de Brouwer

Exos

c) Soit $x_0 = (1,0,0) \in \mathbb{S}^2$. Quitte a effectuer un changement de base dans $\mathbb{R}^2 \cong \mathbb{C}$, on peut toujours supposer $g(x_0) = (1,0)$. Soit $\widetilde{\gamma}: I \to \mathbb{R}$ le relevé de γ tel que $\widetilde{\gamma}(0) = 0$. Montrer qu'il existe un entier impair n tel que

$$\forall s \in [0, \frac{1}{2}], \qquad \widetilde{\gamma}(s + \frac{1}{2}) = \widetilde{\gamma}(s) + \frac{n}{2}.$$

- d) Montrer en s'appuyant sur la question précédente que $[\gamma] \in \pi_1(\mathbb{S}^1, 1)$ n'est pas trivial.
- e) En admettant que \mathbb{S}^2 est simplement connexe¹, en déduire contradiction avec l'hypothèse (H).
- f) Soit $A \subset \mathbb{R}^2$ un sous-espace quelconque. Montrer \mathbb{S}^2 et A ne sont pas homéomorphes.

¹ceci sera démontré dans la leçon consacrée au théorème de Van Kampen, TA5, corollaire 1.