Squeeze Theorem $\delta \varepsilon$ Lazy Proof

Jeremy Chow

10/23/18

The squeeze theorem stated that $a(x) \leq b(x) \leq c(x)$, $\lim_{x \to k} a(x) = L$ and $\lim_{x \to k} c(x) = L$, then $\lim_{x \to k} b(x) = L$. In order to prove this theorem, we need to show that for any $\varepsilon > 0$, there exists $\delta > 0$ such that $0 < |x - k| < \delta$ implies $|b(x) - L| < \varepsilon$.

Given by the situation,

$$|a(x) - L| < \varepsilon$$
 for δ_1 and

$$|c(x) - L| < \varepsilon \text{ for } \delta_2.$$

Let $\delta^* > \max\{\delta_1, \delta_2\}$ so both statements holds true.

The lowest that a(x) will be is given by $L - a(x) < \varepsilon$, $L - \varepsilon < a(x)$.

The highest that c(x) will be is given by $c(x) - L < \varepsilon$, $c(x) < L + \varepsilon$.

So we have

$$L - \varepsilon < a(x) \le b(x) \le c(x) < L + \varepsilon,$$

$$L - \varepsilon < b(x) < L + \varepsilon$$

which can be rewritten as

$$|b(x) - L| < \varepsilon.$$

Hence, by the $\delta \varepsilon$ definition of sequence convergence, $\lim_{x\to k} b(x) \to L$ if $a(x) \le 1$

$$b(x) \le c(x), \lim_{x \to k} a(x) \to L \text{ and } \lim_{x \to k} c(x) \to L. \text{ QED}$$