21-9-2021

Proyecto 1

Martínez Coronel Brayan Yosafat

3CM17 Introducción a los microcontroladores FERNANDO AGUILAR SÁNCHEZ

Objetivo

Diseñe un móvil controlado vía infrarrojo, solo controle movimiento hacia atrás y hacia adelante como lo indican las flechas.

Introducción teórica

Puente H

Un Puente en H es un circuito electrónico que generalmente se usa para permitir a un motor eléctrico DC girar en ambos sentidos, avance y retroceso. Son ampliamente usados en robótica y como convertidores de potencia. Los puentes H están disponibles como circuitos integrados, pero también pueden construirse a partir de componentes discretos.

El término "puente H" proviene de la típica representación gráfica del circuito. Un puente H se construye con 4 interruptores (mecánicos o mediante transistores). Cuando los interruptores S1 y S4 están cerrados (y S2 y S3 abiertos) se aplica una tensión positiva en el motor, haciéndolo girar en un sentido. Abriendo los interruptores S1 y S4 (y cerrando S2 y S3), el voltaje se invierte, permitiendo el giro en sentido inverso del motor.

Con la nomenclatura que estamos usando, los interruptores S1 y S2 nunca podrán estar cerrados al mismo tiempo, porque esto cortocircuitaría la fuente de tensión. Lo mismo sucede con S3 y S4.

Desarrollo experimental

Diseñe un móvil controlado vía infrarrojo, solo controle movimiento hacia atrás y hacia adelante como lo indican las flechas.

Estructura del programa

Código A

/****************

This program was created by the CodeWizardAVR V3.46a Automatic Program Generator

© Copyright 1998-2021 Pavel Haiduc, HP InfoTech S.R.L. http://www.hpinfotech.ro

Project : Version :

Date : 13/11/2021

Author : Company : Comments:

Chip type : ATmega8535 Program type : Application

AVR Core Clock frequency: 1.000000 MHz

Memory model : Small

```
External RAM size : 0
Data Stack size
                   : 128
*************************************
#include <mega8535.h>
#include <delay.h>
#define IZQ PINB.0
#define DER PINB.1
#define ARRIBA PINB.2
#define ABAJO PINB.3
// Declare your global variables here
void main(void)
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRA=(1<<DDA7) | (1<<DDA6) | (1<<DDA5) | (1<<DDA4) | (1<<DDA3) | (1<<DDA2) |
(1<<DDA1) | (1<<DDA0);
// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0
PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) |
(0 < PORTA2) \mid (0 < PORTA1) \mid (0 < PORTA0);
// Port B initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) |
(0 < < DDB1) \mid (0 < < DDB0);
// State: Bit7=P Bit6=P Bit5=P Bit4=P Bit3=P Bit2=P Bit1=P Bit0=P
PORTB=(1<<PORTB7) | (1<<PORTB6) | (1<<PORTB5) | (1<<PORTB4) | (1<<PORTB3) |
(1<<PORTB2) | (1<<PORTB1) | (1<<PORTB0);
// Port C initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
```

```
DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) |
(0 < < DDC1) \mid (0 < < DDC0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) |
(0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);
// Port D initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | (0<<DDD2) |
(0 < < DDD1) \mid (0 < < DDD0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) |
(0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<CS01) |
| (0 < < CS00);
TCNT0=0x00;
OCR0 = 0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Disconnected
// OC1B output: Disconnected
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
```

```
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) |
(0 < < WGM10);
TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) |
(0 < < CS10);
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH = 0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0<<AS2;
TCCR2=(0<<WGM20) | (0<<COM21) | (0<<COM20) | (0<<WGM21) | (0<<CS21)
| (0 < < CS20);
TCNT2=0x00;
OCR2 = 0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (0<<TOIE1) |
(0 < < OCIE0) \mid (0 < < TOIE0);
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);
MCUCSR = (0 < < ISC2);
// USART initialization
// USART disabled
```

```
UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | (0<<UCSZ2) |
(0 < RXB8) \mid (0 < TXB8);
// Analog Comparator initialization
// Analog Comparator: Off
// The Analog Comparator's positive input is
// connected to the AINO pin
// The Analog Comparator's negative input is
// connected to the AIN1 pin
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIC) | (0<<ACIS1) |
(0 < < ACISO);
SFIOR=(0<<ACME);
// ADC initialization
// ADC disabled
ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) |
(0 < ADPS1) \mid (0 < ADPS0);
// SPI initialization
// SPI disabled
SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) |
(0 < < SPR1) \mid (0 < < SPR0);
// TWI initialization
// TWI disabled
TWCR = (0 < TWEA) | (0 < TWSTA) | (0 < TWSTO) | (0 < TWEN) | (0 < TWIE);
while (1)
   {
     if(IZQ == 0) {
       PORTA = 0xff;
       delay_ms(25);
       PORTA = 0x00;
       delay_ms(475);
     else if(DER == 0) {
        PORTA = 0xff;
        delay_ms(50);
```

```
PORTA = 0x00;

delay_ms(450);

} else if(ARRIBA == 0) {

PORTA = 0xff;

delay_ms(75);

PORTA = 0x00;

delay_ms(425);

} else if(ABAJO == 0) {

PORTA = 0xff;

delay_ms(100);

PORTA = 0x00;

delay_ms(400);

}

}
```

Código B

/****************

This program was created by the CodeWizardAVR V3.46a Automatic Program Generator

© Copyright 1998-2021 Pavel Haiduc, HP InfoTech S.R.L.

© Copyright 1998-2021 Pavel Haiduc, HP InfoTech S.R.L. http://www.hpinfotech.ro

Project : Version :

Date : 13/11/2021

Author : Company : Comments:

Chip type : ATmega8535 Program type : Application

AVR Core Clock frequency: 1.000000 MHz

Memory model : Small

External RAM size : 0
Data Stack size : 128

```
************************************
#include <mega8535.h>
#include <delay.h>
#define ARRIBA 0x5
#define ABAJO 0xA
#define IZQ 0x2
#define DER 0x1
#define ENTRADA PINB.0
int contador = 0, i = 0;
// Declare your global variables here
void main(void)
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRA=(1<<DDA7) | (1<<DDA6) | (1<<DDA5) | (1<<DDA4) | (1<<DDA3) | (1<<DDA2) |
(1<<DDA1) | (1<<DDA0);
// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0
PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) |
(0 < PORTA2) \mid (0 < PORTA1) \mid (0 < PORTA0);
// Port B initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | (0<<DDB2) |
(0 < < DDB1) \mid (0 < < DDB0);
// State: Bit7=P Bit6=P Bit5=P Bit4=P Bit3=P Bit2=P Bit1=P Bit0=P
PORTB=(1<<PORTB7) | (1<<PORTB6) | (1<<PORTB5) | (1<<PORTB4) | (1<<PORTB3) |
(1<<PORTB2) | (1<<PORTB1) | (1<<PORTB0);
```

```
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
```

// Port C initialization

```
DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) |
(0 < < DDC1) \mid (0 < < DDC0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) |
(0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);
// Port D initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | (0<<DDD2) |
(0 < < DDD1) \mid (0 < < DDD0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) |
(0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<CS01) |
| (0 < < CS00);
TCNT0=0x00;
OCR0 = 0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Disconnected
// OC1B output: Disconnected
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
```

```
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) |
(0 < < WGM10);
TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) |
(0 < < CS10);
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH = 0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0<<AS2;
TCCR2=(0<<WGM20) | (0<<COM21) | (0<<COM20) | (0<<WGM21) | (0<<CS21)
| (0 < < CS20);
TCNT2=0x00;
OCR2 = 0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (0<<TOIE1) |
(0 < < OCIE0) \mid (0 < < TOIE0);
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);
MCUCSR = (0 < < ISC2);
// USART initialization
// USART disabled
```

```
UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | (0<<UCSZ2) |
(0 < RXB8) \mid (0 < TXB8);
// Analog Comparator initialization
// Analog Comparator: Off
// The Analog Comparator's positive input is
// connected to the AINO pin
// The Analog Comparator's negative input is
// connected to the AIN1 pin
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIC) | (0<<ACIS1) |
(0 < < ACISO);
SFIOR=(0<<ACME);
// ADC initialization
// ADC disabled
ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) |
(0 < ADPS1) \mid (0 < ADPS0);
// SPI initialization
// SPI disabled
SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) |
(0 < < SPR1) \mid (0 < < SPR0);
// TWI initialization
// TWI disabled
TWCR = (0 < TWEA) | (0 < TWSTA) | (0 < TWSTO) | (0 < TWEN) | (0 < TWIE);
while (1)
     contador = 0;
     for (i = 0; i < 500; i++) {
       if (ENTRADA == 1) contador++;
       delay_ms(1);
     }
     if(contador >= 15 && contador <= 35) {
```

```
PORTA = IZQ;
} else if(contador >= 40 && contador <= 60) {
    PORTA = DER;
} else if(contador >= 65 && contador <= 85) {
    PORTA = ARRIBA;
} else if(contador >= 90 && contador <= 110) {
    PORTA = ABAJO;
} else {
    PORTA = 0x00;
}
}</pre>
```

Observaciones y Conclusiones

Este fue un proyecto extraño, se noto la dificultad, no fue sencillo como las otras prácticas, pero que nos diera tanto tiempo fue un alivio porque no he tenido tanto por otras materias, sin embargo, creo que algo rescatable de esto es que al final de cuentas, el código no queda realmente tan complejo, y el circuito tampoco, espero terminar más pronto el proyecto 2.

Bibliografía

Puente H: https://es.wikipedia.org/wiki/Puente_H_(electr%C3%B3nica)