Azzolini Riccardo 2019-02-25

Funzioni

1 Funzione

Siano $X,Y\subseteq\mathbb{R}$. Una legge che associa ad ogni elemento $x\in X$ uno e un solo elemento $y\in Y$ si dice **funzione** da X in Y e si scrive

$$f: X \to Y$$
$$x \to y = f(x)$$

- X è il **dominio** di f.
- Y è il **codominio** di f. Di solito si sceglie $Y = \mathbb{R}$.

2 Immagine

L'**immagine** di $f: X \to Y$ è

$$Im(f) = f(X) = \{ y \in Y : \exists x \in X, \ y = f(x) \}$$

2.1 Esempi

• f(x) = x

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to y = x$$

$$f(\mathbb{R}) = \mathbb{R}$$

•
$$f(x) = x^2$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to x^2$$

$$f(\mathbb{R}) = [0, +\infty)$$

•
$$f(x) = \frac{1}{x}$$

$$f: X \to \mathbb{R} \quad \text{con } X = (-\infty, 0) \cup (0, +\infty)$$

$$f(X) = (-\infty, 0) \cup (0, +\infty)$$

•
$$f(x) = \sqrt{x}$$

$$f: X \to \mathbb{R}$$
 con $X = [0, +\infty)$
$$f(X) = [0, +\infty)$$

3 Grafico

Sia $f: X \to Y$. Il **grafico** di f è

$$\{(x,y) \in \mathbb{R}^2 : y = f(x)\}$$

dove $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

3.1 Esempi

4 Funzioni limitate

Sia $f: X \to Y$ una funzione. f si dice **limitata superiormente** (**inferiormente**) se $\exists M \in \mathbb{R}$ tale che $f(x) \leq M$ ($f(x) \geq M$) $\forall x \in X$, cioè se l'insieme immagine f(X) è limitato superiormente (inferiormente).

Se f è limitata sia superiormente che inferiormente, si dice **limitata**.

5 Massimo e minimo

Sia $f: X \to Y$.

- Un numero $M \in \mathbb{R}$ si dice **massimo** (globale o assoluto) di f se $\exists x_0 \in X$ tale che $M = f(x_0) \ge f(x) \quad \forall x \in X$, cioè se $M = \max f(X)$.
- Un numero $m \in \mathbb{R}$ si dice **minimo** (**globale** o **assoluto**) di f se $\exists x_1 \in X$ tale che $m = f(x_1) \le f(x) \quad \forall x \in X$, cioè se $m = \min f(X)$.

Osservazione: Massimo e minimo sono unici, ma possono corrispondere a più ascisse.

5.1 Esempi

- $f(x) = x^2$ $\nexists \max f$ $\min f = 0, x_1 = 0$
- $f(x) = \sin x$ $\max f = 1$, $x_0 = \frac{\pi}{2} + 2k\pi$ $k \in \mathbb{Z}$ $\max f = 1$, $x_0 = \frac{3}{2}\pi + 2k\pi$ $k \in \mathbb{Z}$

6 Funzioni iniettive, suriettive e biiettive

Sia $f: X \to Y$.

- f si dice **iniettiva** se $\forall x_1, x_2 \in X$, con $x_1 \neq x_2$, si ha $f(x_1) \neq f(x_2)$, o, equivalentemente, se $f(x_1) = f(x_2) \implies x_1 = x_2$.
- Se f(X) = Y, f si dice suriettiva.
- Se f è sia iniettiva che suriettiva, si dice **biiettiva**.

Osservazione: Se si sceglie come codominio Y l'immagine f(X), allora f è suriettiva.

7 Funzione composta

Siano $f: X \to \mathbb{R} \ \text{e} \ g: Y \to \mathbb{R}$. Se $f(X) \subseteq Y$,

$$g \circ f: X \to \mathbb{R}$$

 $x \to g(f(x))$

si dice funzione composta.

Se è possibile considerare sia $g \circ f$ che $f \circ g$, in generale si avrà che $g \circ f \neq f \circ g$.

7.1 Esempi

- $f(x) = x^2$ g(x) = x + 1 $(g \circ f)(x) = g(f(x)) = x^2 + 1$ $(f \circ g)(x) = f(g(x)) = (x + 1)^2 = x^2 + 2x + 1$
- $f(x) = \sin x$ $g(x) = 2x^2$ $(g \circ f)(x) = g(f(x)) = 2\sin^2 x$ $(f \circ g)(x) = f(g(x)) = (x+1)^2 = \sin(2x^2)$