Computer Architecture and Organization Laboratory Department of Computer Science and Technology, IIEST

Experiment No: 2 (Design of Carry-Look-Ahead adder)

Objective: To design

- 1. 4-bit carry lookahead adder (CLA) using half adders/full adders,
- 2. A 16-bit CLA using 4-bit CLAs.

The basic unit of a CLA is shown in Figure 1(a).

 $p_i = x_i + y_i$ (or $x_i \oplus y_i$) is carry propagare and $g_i = x_i y_i$ is carry generate.

Figure 1(b) shows the *n*-bit CLA. The logic circuit for c_i s are in CLA circuits.

For 4-bit CLA,

```
\begin{split} c_0 &= g_0 + p_0 c_{in} \\ c_1 &= g_1 + p_1 c_0 = g_1 + p_1 g_0 + p_1 p_0 c_{in} \\ c_2 &= g_2 + p_2 c_1 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_{in} \\ c_3 &= g_3 + p_3 c_2 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_{in} \end{split}
```


a) CLA full adder block

b) n-bit carry-look-ahead adder

Figure 1: Carry look ahead adder

Task 1:

- 1. Contruct 4 modules as in Figure 1(a) (can use half adder).
- 2. Simplyfy the expressions for c_0 , c_1 , c_2 and c_3 assuming $c_{in} = 0$.
- 3. Design CLA circuits -that is, realize c_0 , c_1 , c_2 and c_3 .
- 4. Design the CLA as in Figure 1(b) and verify a part of its truth table.

16-bit adder (Figure 2) can be implemented with cascade of 4-bit CLAs.

Figure 2: Cascaded carry look ahead adder

$\underline{\text{Task } 2}$:

Report on the design of a 16-bit CLA as in Figure 2.