ANDPEOY MONAXOY AFIOPEITOY (XAPAN. ΘΕΟΦΙΛΟΠΟΥΛΟΥ)

KAOHIHTOY BYZANTINHS MOYSIKHS

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΒΥΖΑΝΤΙΝΗΣ ΜΟΥΣΙΚΗΣ

Γ΄ ἔκδοσις βελτιωμένη

ΒΙΒΛΙΟΠΩΛΕΙΟΝ Β. ΡΗΓΟΠΟΥΛΟΥ ΚΑΣΤΡΙΤΣΙΟΥ $9 - \Theta$ ΕΣΣΑΛΟΝΙΚΗ 1979

'Η ἄνευ ἐγγράφου ἀδείας τοῦ συγγραφέως μερικὴ ἢ δλικὴ ἀνατύπωσις τοῦ παρόντος ἀπαγορεύεται.

Πῶν γνήσιον ἀντίτυπον φέρει τὴν ἰδιόχειρον ὑπογραφὴν τοῦ συγγραφέως.

Aproposar en

ПРОЛЕГОМЕНА

Τὸ πληθος τῶν, λίαν ἐκτενῶν καὶ μεγάλην διαφορὰν καὶ ἀνοφοιομορφίαν ἐμφανιζόντων, θεωρητικῶν βιβλίων τῆς Βυζαντινῆς Μουσικῆς, ἐδημιούργει μεγάλας δυσκολίας εἰς τὴν ἐκμάθησιν τῶν ἀπαραιτήτων μουσικῶν γνώσεων καὶ κυρίως εἰς μαθητὰς μὲ μετρίαν μόρφωσιν, ὥστε οὕτοι νὰ μὴ δύνανται νὰ συγκρατήσουν τὴν συνέχειαν καὶ λεπτολογίαν τῆς Θεωρίας ταύτης.

Τοῦτο ἀκριβῶς ἄθησεν ἡμᾶς εἰς τὴν σύνθεσιν ένός, κατὰ τὸ δυνατόν, περιληπτικοῦ θεωρητικοῦ τῆς Μουσικῆς, κατανοητοῦ καὶ ἐφαρμοσίμου καὶ ὑπὸ τῶν πλέον ἀπλοϊκῶν μαθητῶν, οἱ ὁποῖοι θὰ ἐπεθύμρον καὶ ἤθελον νὰ ἐκμάθουν, τὴν ἀπύγκριτον εἰς ὡραιότητα καὶ ἀπαράμιλλον εἰς ἔκφρασιν καὶ τέχνην, πατροπαράδοτον Μουσικὴν ἡμῶν, ἡ ὁποία, ἐπειδὴ ἐκαλλιεργήθη περισσότερον κατὰ τοὺς χρόνους τῆς Βυζαντινῆς Αὐτοκρατορίας, ἀνομάσθη Βυζαντινὴ Μουσικὴ καὶ ἐπειδὴ δι' αὐτῆς ἐμελοποιήθησαν οἱ ἀθάνατοι Ἐκκλησιαστικοὶ ὕμνοι ἔλαβε τὴν προσωνυμίαν Ἐκκλησιαστικὴ Βυζαντινὴ Μουσική.

Η ἀνὰ χεῖρας θεωρία, μὲ τὰ ἀπαραίτητα γυμνάσματά της, ἐὰν μετὰ προσοχῆς μελετᾶται καὶ μεθοδικῶς παραδίδεται, δὖναται νὰ καταρτίση μαθητὰς μουσικοὺς καὶ τελείους ἱεροψάλτας, μὲ ὅλας τὰς πρὸς τοῦτο ἀπαραιτήτους γνώσεις, ἐντὸς βραχυτάτου χρονικοῦ διαστήματος.

"Ως έκ τῆς πείρας έγνωρίσαμεν, ἐπὶ σειρὰν ἐτῶν παραδίδοντες αὐτὴν ἐν τῆ 'Αθωνιάδι 'Εκκλησιαστικῆ Σχολῆ τοῦ 'Αγίου 'Όρους, ἐν τῆ δποία, ἐπειδὴ οἱ μαθηταὶ ἡμῶν ἦσαν πεφορτισμένοι μὲ πολλὴν καὶ ποικίλην ὅλην μαθημάτων καὶ πρὸς οἰκονομίαν χρόνου, ἐσυντομεύσαμεν τὴν θεωρίαν παραλείποντες τὰς πολλὰς λεπτολογίας καὶ ἀναλύσεις αὐτῆς, κυρίως εἰς τὰ σημεῖα τῆς ἐκφράσεως καὶ περιγραφῆς τοῦ ρυθμοῦ ἐν ἐκτάσει.

'Αλλά καὶ εἰς ὅλα τὰ γυμνάσματα καὶ τὰς παραγομένας μικτὰς κλίμακας καὶ ἐξ αὐτῶν δημιουργούμενα «σαρκιὰ» καὶ «μακάμια» ὡς καὶ τὰ διάφορα ρυθμικὰ μέτρα «οὐσούλ, δοὺμ τὲκ» κλπ. διὰ τὰ ὁποῖα ἠσχολήθησαν διάφοροι ἐμβριθεῖς καὶ πολυμαθέστεροι ἡμῶν διδάσκαλοι τῆς Μουσικῆς, ἐπειδὴ ἐθεωρήσαμεν πάντα ταῦτα ὡς καθαρὰν φιλολογίαν τῆς Μουσικῆς καὶ ἐκ τοῦ ὅτι καὶ ἡμεῖς δὲν διαθέτομιν τὸν πρὸς τοῦτο ἀπαιτούμενον χρόνον, παρελείψαμεν, εὐελπιστοῦντες ὅτι ἔτεροι, πολλῷ κάρωνες ἡμῶν, θὰ συμπληρώσωσι τὰ ἡμέτερα κενά.

Διὰ τὰς ἐλλείψεις ἡμῶν ταύτας αἰτοῦμεν τὴν συγγνώμην τῶν ἐνδιαφερομένων καθ' ὅτι ἐν σπουδῆ πολλῆ προέβημεν εἰς τὴν παροῦσαν ἔκδοσιν.

"Αγιον "Όρος κατά 'Ιανουάριον (1969) αλξθ'

*Ο Πονήσας ΑΝΔΡΕΑΣ ΜΟΝΑΧΟΣ (Χαράλ. Θεοφιλόπουλος) Δάφνη *Αγίου *Όρους

EPFA TOY AYTOY:

- 1) Ίστορία Ίερᾶς Μονῆς Σίμωνος Πέτρας Αγίου Όρους
- 2) «ΤΟ ΑΓΙΟΝ ΟΡΟΣ». Έργον μνημειῶδες περιέχον περιληπτικὴν ἱστορίαν τῶν Ἱερῶν Μονῶν καὶ λοιπῶν καθιδρυμάτων τοῦ Προπυργίου τῆς Ὀρθοδοξίας καὶ τοῦ Ἔθνους ἡμῶν.
- 3) Μετάφρασις τοῦ βιβλίου αὐτοῦ εἰς τὴν ᾿Αγγλικὴν
- 4) Πλήρης «ΟΔΗΓΟΣ & ΛΕΥΚΩΜΑ ΤΟΥ ΑΓΙΟΥ ΟΡΟΥΣ»
- 5) » μετάφρ. είς τὴν 'Αγγλικὴν
- 6) » » » Γερμανικήν
- 7) » » » Γαλλικήν
- 8) «ΙΕΡΑ ΑΣΜΑΤΑ ΤΗΣ ΘΕΙΑΣ ΛΕΙΤΟΥΡΓΙΑΣ» πλήρης Θ. Λειτουρ.
- 9) » » τοῦ «ΟΡΘΡΟΥ» πλουσία συλλογή τῶν ἀσμάτων τῆς Ἱερᾶς ᾿Ακολουθίας.
- 10) «Η ΑΛΗΘΕΊΑ» «ΣΥΜΒΟΥΛΟΣ ΠΝΕΥΜΑΤΙΚΟΎ ΠΡΟΣΑΝΑΤΟ-ΛΙΣΜΟΥ».

βιβλίον διδακτικώτατον, ήθικόν, άπαραίτητον διὰ πᾶσαν χριστιανικήν οἰκογένειαν, ὑποδεικνύον τὰ καθήκοντα καὶ τὰς ὑποχρεώσεις ἔναντι τοῦ Θεοῦ καὶ τῶν ἀνθρώπων.

ΕΙΣΑΓΩΓΗ

Τὶ καλεῖται Μουσική.

Α.΄ Μουσική εἶναι ἡ τέχνη τῶν ἤχων, ἤτοι, μανθάνομεν νὰ προφέρωμεν μὲ τέχνην τὴν φωνήν μας.

Ή Μουσικὴ ἀναλύει άρμονικὰ ὅλα τὰ συναισθήματα τῆς ζωῆς καὶ ἐπιδρᾶ συναισθηματικῶς εἰς τὰς ψυχὰς τῶν ἀνθρώπων, δηλ. διεγείρει τὴν αἴσθησιν τοῦ ἐσωτερικοῦ μας κόσμου.

Μὲ τὴν μουσικὴν ὁ ἄνθρωπος ἐκφράζει τὴν χαράν του, τὴν λύπην του καὶ γενικῶς φανερώνει τὸν ἐσωτερικόν του κόσμον—τήν καρδίαν του.

Διὰ τὴν ἐκδήλωσιν τῆς χαρᾶς εύρίσκει τόνους (φωνὰς) χαρούμενους. Αἱ λύπαι του πάλιν ἐξωτερικεύονται μὲ λυπηρὰ τραγούδια καὶ μοιρολόγια. Ο ἄνθρωπος εἰς τὴν βαθυτέραν του ἀνάγκην νὰ προσευχηθῆ ἐντονώτερον, νὰ ἐπικοινωνήση διὰ τοῦ καλυτέρου τρόπου μὲ τὸν Δημιουργὸν καὶ Θεόν του, νὰ τὸν εὐχαριστήση, νὰ τὸν παρακαλέση καὶ νὰ ζητήση τὴν παντοδύναμον Αὐτοῦ προστασίαν, ψάλλει ὕμνους.

Ή Μουσική είναι θεῖον δῶρον καὶ μετέχομεν εἰς αὐτὸ ὅλοι οἱ ἄνθρωποι ἐξ ἀδιδάκτου—χωρὶς κανεὶς νὰ μᾶς διδάξη—εἶναι μία πάγκοινος διεθνής γλῶσσα, τῆς ὁποίας τελειστέραν δὲν δύναται νὰ ἐπινοήση ἀνθρωπίνη διάνοια.

Έκαστος λαός, εἰς τήν ἐποχήν του, ἀναλόγως μὲ τὸν βαθμὸν τοῦ πολιτισμοῦ του καὶ τῶν ἄλλων συνθηκῶν διαβιώσεώς του (ἐλευθερία, δουλεία, ἐπίδρασις ξένων πολιτισμῶν, κλιματολογικαὶ συνθῆκαι καὶ διάφορα ἄλλα περιστατικὰ) ἐκαλλιέργησεν, ὡς ἠδύνατο, τὴν μουσικήν του, εἰς τὴν ὁποίαν ἔδωσε τὴν χαρακτηριστικὴν μορφὴν καὶ τεχνοτροπίαν, διὰ τῶν ὁποίων μέσων φανεροῦται ἡ ἐσωτερικὴ ψυχικὴ διάθεσίς του—ἐπιθυμία τῆς καρδίας—.

Β.΄ Ή Μουσική ἥτις ἐκαλλιεργήθη κατὰ τοὺς χρόνους τῆς Βυζαντινῆς Αὐτοκρατορίας λέγεται: **Βυζαντινὴ Μουσική**.

Ή Βυζαντινή Μουσική, μὲ βάσιν τὴν μουσικὴν τῶν Αρχαίων Ἑλλήνων: Τοῦ Πυθαγόρου, τοῦ ᾿Αναξαγόρου, Νικομάχου, Πινδάρου. Εὐκλείδου, Βακχείου, Πλουτάρχου, ᾿Αριστοξένου, τῆς Σαπφοῦς καὶ πλείστων ἄλλων Μουσουργῶν, ἀνεπτύχθη ἰδιαιτέρως καὶ ἤρχισε νὰ πλουτίζεται ἀπὸ τὸν 4ον μ.χ. αἰῶνα, ὅταν ἐπεκράτησεν ὁ χριστιανισμὸς καὶ ἔγινεν ἡ μουσικὴ τῶν ἀριστουργημάτων, προϊόντων τῆς θρησκευτικῆς ποιήσεως, τῆς ἱερᾶς ὑμνωδίας.

Γ.΄ 'Η Βυζαντινή μουσική, μὲ τὴν ὁποίαν γίνεται ἡ ὑμνῷδία εἰς τὴν 'Ορθόδοξον χριστιανικὴν 'Εκκλησίαν, λέγεται: Βυζαντινή 'Εκκλησιαστική Μουσική.

$MEPO\Sigma$ A.

Κεφάλαιον Α.΄ Τὰ στοιχεῖα τῆς Μουσικῆς

- 1) Τὰ θεμελιώδη συστατικά της μουσικής είναι:
 - α) **Ο ί φθόγγοι**: Δηλ. οί κατάλληλοι διὰ τὴν μουσικὴν ἥχοι ἢ φωναί.
 - β) Ό χρόνος: Τὸ μέσον προσδιορισμοῦ τῆς διαρκείας τῶν φθόγγων, διότι ἄλλοι φθόγγοι διαρκοῦν πολύ, ἄλλοι, ὁλίγον, όλιγώτερον, περισσότερον κλπ. καὶ
- γ) Ἡ ἔκφρασις ἢ προφορά: Δηλ. τὸ χρῶμα, τὸ ὕφος καὶ γενικὰ ὁ τρόπος μὲ τὸν ὁποῖον προφέρεται ἔκαστος φθόγγος, διότι ἕνας φθόγγος δύναται νὰ ἐκφρασθῆ σιγά, δυνατά, σιγώτερα, δυνατώτερα, μαλακά, σκληρά, μὲ προοδευτικὴν αὕξησιν ἢ ἐλάττωσιν τῆς ἐντάσεώς του καὶ μὲ πολλοὺς ἄλλους φωνητικοὺς χρωματισμούς.

α) Οί φθόγγοι

2) Κατάλληλοι διὰ τὴν μουσικὴν ἡχοι (φωναὶ) εἶναι ἐκεῖνοι τῶν ὁποίων ἕκαστος ἔχει ὡρισμένον ὕψος, δηλ. ὡρισμένην ὀξύτητα καὶ διακρίνονται μεταξύ των, διότι ἄλλοι εἶναι ὑψηλότεροι καὶ ἄλλοι χαμηλότεροι, πλὴν ἔχουν ὡρισμένην βάσιν, ὥστε φθόγγος λέγεται, ἡχος ὅστις ἔχει ὡρισμένον ὕψος.

Παραγωγή φθόγγων

3) Οἱ φθόγγοι παράγονται μὲ τὴν φωνὴν τοῦ ἀνθρώπου καὶ μὲ τὰ μουσικὰ ὅργανα. Ἡ μουσικὴ τῆς ὁποίας οἱ φθόγγοι παράγονται μέ τὴν φωνὴν τοῦ ἀνθρώπου, λέγεται φωνητική. Ἐνῷ ὅταν παράγονται μὲ τὰ ὅργανα, λέγεται ὀργανική. Ἡ φωνὴ τοῦ ἀνθρώπου σπανίως ὑπερβαίνει τοὺς 15 φθόγγους, ἐνῷ τὰ ὅργανα ἀναλόγως τοῦ εἴδους ἑκάστου (βιολί, πιάνο, ἀκκορντεὸν κλπ) παράγουν ἄνω τῶν 24 φθόγγων ἤτοι τρεῖς κλίμακες ἢ διαπασῶν.

Τὶ λέγεται μουσική ἔκτασις

4) Τὸ σύνολον τῶν φθόγγων ἀπὸ τὸν χαμηλότερον (βαθύτερον) ἔως τὸν ὑψηλότερον (ὀξύτερον), ὅπου δύναται νὰ συλλάβη ἡ ἀκοή μας,

λέγεται μουσική ἔκτασις, διότι ὑπάρχουν ήχοι τοὺς ὁποίους δὲν δύναται νὰ συλλάβη ἡ ἀκοὴ μας, ἀλλὰ διαπιστώνεται ἡ ὕπαρξίς των μὲ ἐπιστημονικὰ μὲσα (παλμόμετρα, ἠχοσυλλέκτας κλπ.). Ἑπομένως τὸ σύνολον τῶν φθόγγων ὅπου δύναται μὲ εὐχέρειαν νὰ παράγη μία ἀνθρώπινος φωνή, λέγεται φωνητικὴ ἔκτασις τῆς μουσικῆς. Καὶ τὸ σύνολον τῶν φθόγγων ὅπου παράγει ἕνα μουσικὸν ὅργανον, λέγεται ἔκτασις ὀργανικὴ τῆς μουσικῆς, ὥστε ἔχομεν δύο εἰδῶν ἐκτάσεις, τὴν φωνητικὴν καὶ τὴν ὀργανικήν.

5) Έπτὰ κατὰ σειρὰν φθόγγοι, τῶν ὁποίων ὁ πρῶτος κατέχει τὸ κέντρον τῆς μουσικῆς ἐκτάσεως, εἰς τὴν Βυζ. μουσικήν, ἔχουν τὰ ἑξῆς ὀνόματα: Νη, Πα, Βου, Γα, Δι, Κε, Ζω, εἰς δὲ τὴν Εὐρωπαϊκήν, λέγονται μὲ τὰ ἑξῆς ὀνόματα: Do, Re, Mi, Fa, Sol, La, Si.

'Απὸ τοὺς ἑπτὰ αὐτοὺς φθόγγους ὁ Νη είναι ὁ χαμηλότερος, ἀμέσως ὀξύτερος ἀπὸ τὸν Νη είναι ὁ Πα καὶ ἀπὸ τὸν Πα ὁ Βου κ.ο.κ.,

Ή σειρὰ τῶν φθόγγων ὅταν ἀναβαίνη διαδοχικῶς, ἀπὸ τὸν χαμηλότερον εἰς τόν ὑψηλότερον, λέγεται ἀνιοῦσα διαδοχή, Καὶ ἀντιθέτως ὅταν καταβαίνη ἀπὸ τὸν ὑψηλότερον εἰς τοὺς χαμηλοτέρους, λέγεται κατιοῦσα διαδοχή.

Περὶ ἀντιφωνίας

6) Εὰν κατὰ τήν ἀνιοῦσαν διαδοχὴν τῶν 7 φθόγγων: Ν, Π, Β, Γ, Δ, Κ, Ζ μετὰ ἀπὸ τὸν Ζ ἐκφωνήσωμεν ἕνα εἰσέτι φθόγγον, τὸν ἀμέσως ὀξύτερον, θὰ διαπιστώσωμεν ὅτι εἶναι ἀπολὕτως ὅμοιος μέ τὸν Ν τὸν πρῶτον φθόγγον τῆς βάσεως, πλὴν σὲ ὑψηλότερον ἐπίπεδον ὀξύτητος. Λόγω δὲ τῆς ἀκουστικῆς αὐτῆς ὁμοιότητος, ὁ ὄγδοος οὐτος φθόγγος, λαμβάνει τὸ ὄνομα τοῦ πρώτου καὶ λέγεται Ν΄ μὲ τὴν διαφορὰν ὅτι προσθέτομεν μίαν ὀξεῖαν, πρὸς διάκρισιν τῆς ὀξύτητός του ἔναντι τοῦ πρώτου.

Ή ἀκουστικὴ ὁμοιότης τοῦ πρώτου καὶ τοῦ ὀγδόου, ἐκ τῆς σειρᾶς τῶν 8 διαδοχικῶν φθόγγων Ν Π Β Γ Δ Κ Ζ Ν΄ λέγεται ἀντιφωνία.

Τὸ αὐτὸ ἐννοῶμεν ὅταν λέγωμεν ὅτι ὁ Ν΄ εἶναι ἡ ἐπὶ τὸ ὀξὸ ἀντιφωνία τοῦ Ν, ἢ ὁ Ν ἄνευ ὀξείας εἶναι ἡ ἐπὶ τὸ βαρὸ ἀντιφωνία τοῦ Ν΄ φέροντος ὀξεῖαν, ὅπερ ἰσχύει καὶ δι' ὅλους τοὺς φθόγγους, οἵτινες διὰ τοῦ ἀντιστοίχου αὐτῶν ὀγδόου ὁμοίου των σχηματίζουν ἀντιφωνίαν ὡς π. χ. ὁ Π—Π΄ ὁ Β—Β΄ κλπ.

Περὶ τῆς Διαπασών μουσικῆς κλίμακος

7) 'Η συνεχής διαδοχή τῶν ὀκτὰ φθόγγων: Ν Π Β Γ Δ Κ Ζ Ν΄ τῶν ὁποίων ὁ πρῶτος μὲ τὸν ὄγδοον ἀποτελοῦν ἀντιφωνίαν, λέγεται κλίμαξ ἢ ὀκταφωνία ἢ διαπασῶν. 'Ο πρῶτος φθόγγος ἀποτελεῖ τὴν

βάσιν τῆς κλίμακος καὶ λέγεται τονικός, ὁ δὲ ὄγδοος ἀποτελεῖ τὴν κορυφὴν τῆς κλίμακος καὶ λέγεται τελικός. Τὸ σχῆμα τῆς κλίμακος ὁμοιάζει μὲ τὴν κοινῶς λεγομένην σκάλα καὶ ἑκάστη βαθμὶς (σκαλὶ) εἶναι καὶ ἕνας φθόγγος π. χ

Σχῆμα Α΄

Περί τρόπου άναβάσεως καί καταβάσεως της Κλίμακος

8) 'Η ἀνάβασις καὶ ἡ κατάβασις εἰς τὴν παρούσαν κλίμακα ὅταν γίνεται διαδοχικῶς ἀπὸ τὴν μίαν βαθμίδα εἰς τὴν ἄλλην, λέγεται συνεχής. Καὶ ὅταν γίνεται ἀνωμάλως αὕτη, δηλ. μίαν βαθμίδα λέγωμεν καὶ μίαν ἥ περισσοτέρας ἀφίνωμεν —πηδῶμεν—, λέγεται ὑπερβατή. 'Ωστε ἔχομεν δύο εἰδῶν ἀναβάσεις τὴν συνεχῆ καὶ τὴν ὑπερβατήν. 'Η ἐπανάληψις τοῦ ἰδίου φθόγγου, λέγεται ταὐτοφωνία.

Περὶ ἐπεκτάσεως τῆς Διαπασῶν Κλίμακος

9) "Όταν πρὸς κατάρτισιν μιᾶς μελφδίας δὲν ἀρκοῦν οἱ ὀκτὼ φθόγγοι τῆς Διαπασῶν καὶ πρὸς τοῦτο ἀπαιτοῦνται περισσότεροι ὑψηλότεροι καὶ χαμηλότεροι φθόγγοι, τότε διὰ νὰ ἐπιτύχωμεν τοῦτο ἐπεκτείνομεν τὴν διαπασῶν κλίμακα, μεταβάλλοντες τὴν κορυφὴν αὐτῆς εἰς βάσιν νέας ὀξυτέρας κλίμακος προσθέτοντες ἐπί τοῦ Ν΄ μὲ ὀξεῖαν ἑτέρους φθόγγους μὲ τὰς αὐτὰς ὀνομασίας ἤτοι Ν΄ Π΄ Β΄ Γ΄ Δ΄ κλπ. ὁπόταν θὰ ἔχομεν αὕξησιν τῆς κλίμακος ἐπὶ τὸ ὀξὺ ὅσας φωνὰς θέλομεν. Ἐὰν πάλιν λάβωμεν τὴν βάσιν τῆς παρούσης κλίμακος τὸν Ν ἄνευ ὀξείας, ὡς κορυφὴν νέας χαμηλοτέρας τοιαύτης ἤτοι Ν Ζ Κ Δ, θὰ ἔχωμεν αὕξησιν τῆς διαπασῶν ἐπὶ τὸ βαρὺ κλπ.

Διὰ τοῦ τρόπου αὐτοῦ προσθέτοντες εἰς τὴν διαπασῶν κλίμακα 4 φωνὰς ἢ φθόγγους ἄνωθεν καὶ 4 κάτωθεν, διπλασιάζομεν αὐτὴν καὶ σχηματίζομεν οὕτω τὴν Δὶς Διαπασῶν Κλίμακα. Καὶ κατὰ τὸν τρόπον αὐτὸν δυνάμεθα νὰ σχηματίσωμεν μίαν ἢ περισσοτέρας κλίμακας ἀπὸ τὴν κορυφὴν καὶ ἐπάνω καὶ ὡσαύτως ἀπὸ τὴν βάσιν καὶ κάτω.

Ή ἀρχικὴ καὶ μεσαία κλίμαξ Ν—Ν΄ λέγεται μέση διαπασών. Ἡ κλίμαξ ὅπου σχηματίζεται μὲ βάσιν τὴν κορυφὴν τῆς μέσης διαπασών, λέγεται Ὀξεῖα διαπασών. Καὶ ἡ κλίμαξ, ἥτις σχηματίζεται μὲ κορυφὴν τὴν βάσιν τῆς μέσης διαπασών, λέγεται Βαρεῖα διαπασών. Ὠστε ἔχομεν τρεῖς διαπασών: Τὴν Βαρεῖαν ἢ ὑπάτην, τὴν Μέσην, καὶ τὴν Ὁξεῖαν ἢ νήτην διαπασών. Αἱ τρεῖς αὐται διαπασών κλίμακες ἀποτελοῦν τὴν ἔκτασιν τῆς ὀργανικῆς μουσικῆς, ἥτις ἐπεκτείνεται πέραν τῆς δὶς διαπασών καὶ τρὶς διαπασών κλίμακος.

Ποία ή ἕκτασις τῆς Ἐκκλησιαστικῆς Μουσὶκῆς καὶ εἰς τὶ διακρίνεται;

- 10) 'Η 'Εκκλησιαστική Μουσική ἐπειδή δὲν ἐκτελεῖται μὲ μουσικὰ ὄργανα, ἀλλὰ μόνον μὲ τὴν φωνὴν τοῦ ἀνθρώπου, λέγεται φωνητική μουσική, καὶ περιορίζεται εἰς τὴν ἔκτασιν τῆς ἀνθρωπίνου φωνῆς, ἥτις εἶναι ἴση μὲ δύο ὀκταφωνίας ἤ μία δὶς διαπασῶν.
 - 11) ή δίς διαπασών διακρίνεται είς τρεῖς φωνητικάς περιοχάς :
- α) Τὴν Ὑπάτην, ἥτις περιλαμβάνει τοὺς φθὸγγους Δι καὶ Κε τῆς βαρείας διαπασῶν, ἐκ τῶν ὁποίων ἀποτελεῖται καὶ ἡ βάσις αὐτῆς.

- β) Τὴν Μέσην, ἥτις ἀρχίζει ἀπὸ τόν Ζω τῆς βαρείας διαπασῶν καὶ τελειώνει εἰς τὸν Κε τῆς μέσης τοιαύτης, καὶ
- γ) Τὴν 'Οξεΐαν ἢ Νήτην, ἥτις ἀρχίζει ἀπὸ τὸν Ζω τῆς μέσης, καὶ τελειώνει εἰς τὸν Δι τῆς ὀξείας διαπασῶν, ἥτις ἀποτελεῖ καὶ τὴν κορυφήν π. χ.

φθόγγοι βαρ. διαπ.				φθόγγοι μέσης διαπ.				φ	φθόγγοι ὀξείας διαπ.					
Δ	K	Z	N	П	В	Γ	Δ	K	$\overline{\mathbf{Z}'}$	N	П	B'	Γ΄	Δ'
1	Ύπ	άτη		M	Ιέση	διατ	ασῶ	v	·Oξ	εῖα ἡ	Nή	τη δι	απασ	ων
. ——	Α.	΄ δ	ιαπα	σῶν				B.'	δι	απι	ασά	õν		1

"Ωστε ή δὶς διαπασῶν κλίμαξ ἔχει φθόγγους καὶ ἀπὸ τὰς τρεῖς περιοχὰς τῆς ἐκτάσεως τῆς ὀργανικῆς μουσικῆς.

Ύποδιαίρεσις της μουσικής κλίμακος

12) Ἡ κλίμαξ, ἥτις ἀποτελεῖται ἀπὸ ὀκτὰ φθόγγους ἢ φωνάς — μὲ τὸν τῆς ἀντιφωνίας—, λέγεται διαπασῶν.

Ή ἀπόστασις ἥτις χωρίζει τὸν ἕνα φθόγγον ἀπὸ τὸν ἄλλον ὀνομάζεται τόνος ἢ διάστημα. Οἱ τόνοι διαφέρουν ἀναμεταξύ των κατὰ τὴν ποσότητα, καὶ γιὰ νὰ διακρίνομεν τὸν ἕνα ἀπὸ τὸν ἄλλον χωρίζομεν αὐτοὺς εἰς μικρὰ τεμάχια, διὰ ὁριζοντίων γραμμῶν, τὰ ὁποῖα ὀνομάζονται κόμματα ἢ γραμμαί. Καὶ οὕτω διακρίνομεν τοὺς τόνους εἰς διαφόρους κατηγορίας ἢτοι: Εἰς τόνον μείζονα, ἐλάσσονα, καὶ ἐλάχιστον.

Ύπὸ Πατριαρχικής μουσικής Ἐπιτροπής, οἱ τόνοι οὐτοι τὸ 1881 καθωρίσθησαν ὡς ἑξής: Ὁ μείζων τόνος μὲ γραμμὰς ἢ κόμματα 12, ὁ ἐλάσσων μὲ 10 καὶ ὁ ἐλάχιστος μὲ 8.

"Ωστε ή διαπασῶν κλίμαξ ἀποτελεῖται ἀπὸ ὀκτώ φθόγγους ἢ φωνὰς ἢ χορδάς, οἵτινες σχηματίζουν έπτὰ τόνους. Διαιρουμένη δὲ ἡ κλίμαξ εἰς δύο ἴσα μέρη σχηματίζει δύο ὅμοια τετράχορδα, ἕκαστον τῶν ὁποίων περιέχει τρεῖς τόνους διαφόρους κατὰ τὴν ἀξίαν, δηλ. ἕνα μείζονα, ἕνα ἐλάσσονα καὶ ἕνα ἐλάχιστον, καὶ εἰς τὸ μέσον ἔχει ἕνα μείζονα τόνον ὅστις λέγεται διαζευκτικός, διότι ἐνώνει τὰ δύο τετράχορδα καὶ οὕτω σχηματίζεται μία πλήρης διαπασῶν κλίμαξ ἀξίας 72 τμημάτων τὰ ὁποῖα διακρίνομεν εἰς μικρὰς ὁριζοντίους γραμμὰς ὡς ἑξῆς:

Ωστε ή μουσική κλίμαξ διαιρεῖται εἰς τετράχορδα, τὰ τετράχορδα εἰς τόνους καὶ οἱ τόνοι εἰς γραμμάς καὶ κόμματα

Περί της δίς διαπασών κλίμακος

13) Έὰν πρὸς καταρτισμὸν ἐνὸς μουσικοῦ μαθήματος κάμνη χρείαν νὰ μεταχειρισθώμεν περισσοτέρας φωνὰς ἢ χορδάς, τῶν τῆς διαπασῶν κλίμακος, τότε, ὡς εἴπομεν ἀνωτέρω, προσθέτομεν ἔνα τετράχορδον ἐπὶ τὸ ὀξὺ καὶ ἔνα ἐπὶ τὸ βαρὺ καὶ διπλασιάζοντες οὕτω τὴν διαπασῶν κλίμακα σχηματίζομεν τὴν Δὶς διαπασῶν, ἥτις ἀποτελεῖται ἀπό δύο ὀκταφωνίας μὲ βάσιν τὸν Δι τῆς βαρείας καὶ κορυφὴν τὸν Δι τῆς ὀξείας διαπασῶν, ὡς ἑξῆς:

Α.΄ 'Οκταφωνία							Β.΄ 'Οκταφωνία						
Δ K	. 2	ZN	T :	Π	В	7	Δ]	K 2	Z' N	1′]	П′ І	3′ 1	-΄ Δ
12	10	∞	12	10	∞	12	12	10	∞	12	10	8	12
Α΄ Τετράχορδον διαζευ Β΄ Τετράχορδον διαζευ. Γ΄ Τετράχορδον Δ Τετράχορδον Σχήμα Δ΄													

Κεφάλαιον Β.΄

Τὰ σημεῖα τῆς μουσικῆς γραφῆς

- 14) Διὰ νὰ παραστήσωμεν γραφικῶς τοὺς φθόγγους καὶ ὅ,τι ἄλλο χρειάζεται πρὸς κατάρτισιν μουσικῆς μελωδίας, χρησιμοποιῶμεν ὡρισμένα σημεῖα. Ἡ μουσικὴ τῶν ἀρχαίων Ἑλλήνων ἐγράφετο μὲ τὰ γράμματα τῆς ἀλφαβήτου ἀκέραια, ἀντεστραμμένα ἢ ἠκρωτηριασμένα. Ἡ Βυζαντινὴ καὶ ἡ Εὐρωπαϊκὴ μουσικὴ εἴχον διαφορετικὰ σημεῖα γραφῆς, εἰς διαφόρους ἐποχάς. Ἡ μουσικὴ ἄλλων ἀνατολικῶν λαῶν (π. χ. τῶν Κινέζων) ἔχει ἰδικόν της τρόπον γραφῆς, ὅπως ἄλλα εἴναι τὰ σημεῖα τῆς Εὐρωπαϊκῆς καὶ διαφορετικὰ τῆς Βυζαντινῆς μουσικῆς.
- 15) Τὰ σημεῖα ὅπου χρησιμοποιεῖ σήμερον ἡ Βυζαντινὴ μουσικὴ καθιερώθησαν κατὰ τὸ ἔτος 1815 ἀπὸ τὸ Οἰκουμενικὸν Πατριαρχεῖον, κατόπιν εἰσηγητικῆς ἐκθέσεως τῶν τριῶν Μουσικοδιδασκάλων: Χρυσάνθου Μητροπολίτου Προύσης, Γρηγορίου πρωτοψάλτου καὶ Χουρμουζίου Χαρτοφύλακος τῆς Μεγάλης τοῦ Χριστοῦ Ἐκκλησίας. Γενικῶς δὲ τὸ γραφικὸν τοῦτο σύστημα ὀνομάζεται σημειογραφία ἢ παρασημαντικὴ τῆς Βυζαντινῆς μουσικῆς.
- 16) Τὰ σημεῖα τῆς γραφῆς τῆς Βυζαντινῆς μουσικῆς εἶναι τὰ έξῆς: α) Μαρτυρίαι, β) φθογγόσημα ἢ χαρακτῆρες ποσότητος, γ) σημεῖα τοῦ χρόνου ἢ ἔγχρονοι ὑποστάσεις, καὶ δ) τὰ σημεῖα τῆς ἐκφράσεως ἢ

άγρονοι ύποστάσεις η χαρακτήρες ποιότητος. Μὲ τὰς μαρτυρίας καὶ τὰ φθογγόσημα άναγιγνώσκονται οί φθόγγοι, μὲ τὰ σημεῖα τοῦ χρόνου καθορίζεται ή διάρκεια αὐτῶν καὶ μὲ τὰ σημεῖα τῆς ποιότητος, ὁ τρόπος τῆς ἐκφράσεως ἢ προφορᾶς αὐτῶν. Τὰ φθογγόσημα, ὡς θὰ ἴδωμεν κατωτέρω, ἔχουσι τριπλην άξίαν ήτοι: ποσοτικήν-ποσότητος -, χρονικήν - διαρκείας - και εκφραστικήν - ποιότητος -.

α) Αί Μαρτυρίαι

17) Είς τὰ μουσικὰ μαθήματα (κείμενα) οἱ φθόγγοι δὲν γράφονται μὲ τὰ ὀνόματά των, άλλὰ παριστάνονται μὲ ὁρισμένα συμβολικὰ σημεΐα. Τὰ σημεῖα αὐτὰ λέγονται: Μαρτυρίαι. "Εκαστος φθόγγος έχει την μαρτυρίαν του. Έκάστη μαρτυρία αποτελείται από ενα σύμβολον καί τὸ ἀρχικὸν γράμμα τοῦ φθόγγου τὸν ὁποῖον παριστάνει. Εἰς τοὺς 15 φθόγγους τῆς δὶς διαπασῶν ἀντιστοιχοῦν αἱ ἑξῆς μαρτυρίαι:

- 18) "Οπως οί φθόγγοι τῆς δὶς διαπασῶν (§ 11) τοιουτοτρόπως καὶ αί μαρτυρίαι διακρίνονται:

α) Εἰς μαρτυρίας τῶν φθόγγων τῆς Ὑπάτης
$$\overset{0}{\Delta}$$
 $\overset{q}{\chi}$ $\overset{0}{\chi}$ $\overset{q}{\eta}$ $\overset{g}{\chi}$ $\overset{g}{\eta}$ $\overset{g$

Λί μαρτυρίαι τῶν φθόγγων τῆς ὑπάτης ἔχουν τὸ γράμμα τοῦ φθόγγου κάτωθεν του συμβόλου, αί δὲ μαρτυρίαι τῆς μέσης ἔγουν τὸ γράμμα ἄνωθεν του συμβόλου, ώς καὶ αί μαρτυρίαι τῆς Νήτης, αίτινες ἐπὶ πλέον λαμβάνουν μίαν ὀξεῖαν ἄνωθεν τοῦ γράμματος, καὶ δι' αὐτοῦ τοῦ τρόπου γνωρίζομεν είς ποίαν φωνητικήν περιοχήν ἀνήκει έκάστη μαρτυρία καὶ ὁ φθόγγος τὸν ὁποῖον παριστάνει αὕτη.

Αί μαρτυρίαι οὐδεμίαν φωνητικήν άξίαν ἔχουσιν οὐδὲ ἀπαγγέλλονται, άλλὰ δεικνύουν άπλῶς τὸν φθόγγον, ὅστις θὰ ληφθῆ ὡς βάσις του μαθήματος, είς ενδιάμεσα δε σημεία τιθέμεναι δεικνύουν τον προ αὐτῶν φθόγγον καὶ εἰς τὸ τέλος τὴν κατάληξιν.

β) Τὰ φθογγόσημα ἢ χαρακτῆρες ποσότητος

19) Τὰ σημεῖα τὰ ὁποῖα ἀντιθέτως πρὸς τὰς μαρτυρίας ἔχουσι φωνητικήν άξίαν δηλ. προφέρονται μὲ φωνήν, λέγονται φθογγόσημα ή χαρακτήρες ποσότητος. Τὰ φθογγόσημα είναι δέκα καὶ διακρίνονται είς τρεῖς κατηγορίας:

- α) είς φθογγόσημον ταὐτοφωνίας ὅπερ είναι τὸ ίσον καὶ ώς εκ του ονόματος αύτου ούτε αναβαίνει ούτε καταβαίνει με άξίαν φωνης: (0)
 - β) είς φθογγόσημα ἀναβάσεως (5).

1.	τὸ ὀλίγον		μὲ	ἀξίαν	φωνῆς	(1)
2.	ή πεταστή	S	»	>>	»	(1)
3.	τὰ κεντήματα	**	»	>>	*	(1)
4.	τὸ κέντημα	•	>>	>	»	(β)
5.	ή ὑψηλὴ	,	»	*	»	(δ)
είς	φθογγόσημα κα	ταβάσεως (4).				

καί γ) είς φθογγόσημα καταβάσεως (4)

1.	ή ἀπόστροφος	•	»	>>	*	(1)	
2.	ή ύπορροή		»	»	»	(β)	1+1
3.	τὸ ἐλαφρόν	\boldsymbol{C}	»	*	»	(β)	
4.	ή χαμηλή	4	»	»	*	(δ)	

Τὰ σημεῖα αὐτὰ λέγονται χαρακτῆρες ποσότητος, καθότι φανερώνουν είς τὸν ἀνωτέρω πίνακα τὴν ποσοτικὴν αὐτῶν ἀξίαν μόνον.

20) Τὰ φθογγόσημα δὲν ἐκφράζουν μόνον τοὺς φθόγγους, ἀλλ' έχουν ἐπίσης χρονικήν καὶ ἐκφριιστικὴν ἢ ποιοτικὴν ἀξίαν, ὥστε μετέχουν τῶν σημείων τοῦ χρόνου καὶ τῆς ἐκφράσεως (ἕκαστον τούτων ἔχει ώρισμένην χρονικήν άξίαν και ίδίαν ποιοτικήν προφοράν).

*Αξία τῶν χαρακτήρων τῆς ποσότητος

- 21) Τὸ φθογγόσημον τῆς ταὐτοφωνίας τὸ ἴσον ἐκφράζει τὸν πρὸ αὐτοῦ ὑπάρχοντα φθόγγον ἢ τὴν μαρτυρίαν π.χ. ζ ή ή ζ π κλπ. 'Από τὰ φθογγόσημα ἀναβάσεως: τὸ ὀλίγον _____, ή πεταστή 📞, καὶ τὰ κεντήματα 📭 ἐκφράζουν τὸν ἀμέσως δξύτερον φθόγγον δν σημειοῖ, ὁ πρὸ αὐτῶν φθόγγος ἢ μαρτυρία π.χ. $\mathring{\eta}$ $\mathring{\eta}$ κλπ. Τὰ φθογγόσημα ταῦτα ἐπειδὴ κατὰ τὴν ἀνάβασιν διαδέχονται ένα τό άλλο ανήκουν είς την συνεχή ανάβασιν. Τὸ κέντημα 🛊 έχει ἀξίαν δύο φωνῶν ὑπερβατῶς ἀπὸ τὸν πρὸ αὐτοῦ φθόγγον ἢ μαρτυρίαν καὶ ἡ ὑψηλὴ 🗸 4 φωνὰς ὑπερβατῶς. Παραδείγματα τοῦ κεντήματος καὶ τῆς ὑψηλῆς δὲν ἔχομεν, καθ' ὅτι οὐδέποτε γράφονται ταῦτα μόνα των, άλλ' ευρίσκονται έν συνθέσει με άλλους μουσικούς χαρακτήρας ποσότητος.
 - 22) Από τὰ φθογγόσημα καταβάσεως: ἡ ἀπόστροφος 🥕 ἐκφράζει

Συνθέσεις φθογγοσήμων

- 23) Απὸ τὰ 10 φθογγόσημα: Τὰ κεντήματα , τὸ κέντημα , καὶ ἡ ὑψηλὴ Ζόὲν γράφονται μόνα των, ἀλλὰ μετὰ τοῦ ἴσου τοῦ ὀλίγου, τῆς πεταστῆς , τῆς ἀποστρόφου , τῆς χαμηλῆς , καὶ ἀποτελοῦν τὰ σύνθετα φθογγόσημα. Συνθέσεις φθογγοσήμων ἔχομεν τριῶν εἰδῶν:
- α). Τὴν παραθετικήν, τῆς ὁποίας οἱ φθόγγοι προφέρονται διαδοχικῶς ὁ εἰς μετὰ τὸν ἄλλον ὡς ἑξῆς : $\overset{\pi}{q}$ $\overset{\pi}{\smile}$ $\overset{\pi}{\circ}$ κλπ.
- β) Τὴν ἐνεργητικήν, κατὰ τὴν ὁποίαν ὑπολογίζεται ἡ συνολικὴ ἀξία τῶν φθόγγων ήτοι: $\frac{1}{2}$ $\frac{1}{3}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ κλπ. καὶ
- γ) Τὴν παραπληρωματικήν, εἰς τὴν ὁποίαν ἕνα ἀπὸ τὰ συντιθέμενα φθογγόσημα δὲν ὑπολογίζεται καὶ χάνει τὴν ποσοτικήν του ἀξίαν ἤτοι:

Πίναξ συνθέτων φθογγοσήμων

24) α) Ταὐτοφωνίας $\frac{1}{6}$, β) συνεχοῦς ἀναβάσεως : $\frac{1}{2}$ καὶ γ) ὑπερβατῆς ἀναβάσεως : $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ κλπ.

- α) 'Απλής καταβάσεως: Δ, β) συνεχούς καταβάσεως:
- γ) Ύπερβατής καταβάσεως : Δ 3 Δ 3 Δ 3 Καταβάσεως καὶ δ) μικτὰ ἀναβάσεως καὶ καταβάσεως : Δ 3 Δ 1 Δ 1 Δ 1 Κλπ.

Εδῶ παραθέτομεν διάφορα γυμνάσματα

Γύμγασμα . Αον

- 1) $\stackrel{\Pi\alpha}{q} \stackrel{Bov}{\longleftarrow} \stackrel{\Gamma\alpha}{\longleftarrow} \stackrel{\Delta\iota}{\longleftarrow} \stackrel{K\epsilon}{\longleftarrow} \stackrel{Z\omega}{\longleftarrow} \stackrel{N\eta}{\longleftarrow} \stackrel{\Pi\alpha}{\longleftarrow} \stackrel{\pi'}{q}$ $\stackrel{\Pi}{}_{\alpha} \stackrel{N\eta}{\longleftarrow} \stackrel{Z\omega}{\longleftarrow} \stackrel{K\epsilon}{\longleftarrow} \stackrel{\Delta\iota}{\longleftarrow} \stackrel{K\epsilon}{\longleftarrow} \stackrel{Z\omega}{\longleftarrow} \stackrel{N\eta}{\longleftarrow} \stackrel{\Pi\alpha}{\longleftarrow} \stackrel{\pi'}{\longleftarrow} \stackrel{\pi'}{\longrightarrow} \stackrel{$

Τὸ αὐτὸ

Μὲ κεντήματα, πεταστήν και ὑπορροήν

Ασκησις παραλλαγής μετά μέλους

Κυ ρι ε ε λε ε η η σο ον $\overset{\pi}{q}$ Κυ ρι ε ε λε ε η η σο ον $\overset{\pi}{q}$ Την Τι μι ω τε ε ραν των Χε ρου βι ιμ $\overset{\pi}{q}$ και εν δο ξο τε ε ε ε ρα αν α σιγ κρι ι τως των Σε ρα φιμ $\overset{\pi}{q}$ την α δι α φθο ρω ως Θε ον Λο ο γον τε κου ου σαν $\overset{\pi}{\ddot{\alpha}}$ την ον τως Θε ο το κον Σε με γα λυ υ νο ο μεν $\overset{\pi}{q}$

'Ανάβασις καὶ κατάβασις ἀνὰ δύο φωνὰς

Γύμνασμα ύπερβατώς κατά δύο φθόγγους (διαστήματα τρίτης)

Καταβάσεις ύπερβατώς κατά τρεῖς φθόγγους (διαστήματα τετάρτης)

(Διαστήματα πέμπτης)

(Διάστημα έκτης)

Ετερα με έγχρόνους και άχρόνους υποστάσεις

'Αντικένωμα μὲ άπλην, γοργόν καὶ σιωπὴν

Μὲ Δίγοργον καὶ Βαρεῖαν

19) \$\frac{\pi}{q} \left(-5 \left(

Τρίγοργον μέ βαρεῖαν

20) \$\frac{\pi}{q} \left(= \frac{\tau}{-\tau} \left(- \tau \frac{\tau}{-\tau} \left(- \tau \frac{\tau}{\tau} \right) \left(

Τρίγοργον μὲ βαρεῖαν καὶ κλάσμα

'Αντικένωμα μὲ ἡμίσειαν σιωπὴν

Γυμνάσματα μὲ γοργὰ παρεστιγμένα

α) μὲ ἡμίγοργον καὶ ἀντικένωμα

β) Τριημίγοργον μὲ βαρεῖαν καὶ ἀπλην

'Αναλύσεις γοργῶν παρεστιγμένων

$$(a)$$
 ἡμιγόργου (a) (b) (a) (b) (a) (b) (a) (a) (b) (a) (a)

β) τριημιγόργου

26)
$$\frac{\pi}{q}$$
 = $\frac{\pi}{q}$ =

27)
$$\frac{\pi}{q} = 5 - 1$$
; = 5 - 1; = 5

Κεφάλαιον Γ.΄ Περὶ χρόνου

- 25) Καθώς εἴπομεν ἀνωτέρω τὰ φθογγόσημα ἐκτὸς τῆς ποσοτικῆς των ἀξίας ἔχουν καὶ ὡρισμένην χρονικὴν ἀξίαν καὶ ἄς εἴδωμεν πρῶτον τὶ εἶναι χρόνος. Εἰς ἕνα μουσικὸν κείμενον, ὅλοι οἱ φθόγγοι δὲν εἴναι τῆς ἰδίας διαρκείας, ἀλλ' ἀναλόγως μὲ τὴν ἐξέλιξιν τῆς μελφδίας, ἄλλοι φθόγγοι διαρκοῦν πολύ, ἄλλοι περισσότερον, ἄλλοι ὀλίγον καὶ ἄλλοι ὀλιγώτερον κλπ. Ἡ καταμέτρησις τῆς χρονικῆς διαρκείας τῶν φθόγγων λέγεται χρόνος.
- 26) Συνήθως τὸ μέτρημα τοῦ χρόνου γίνεται μὲ ἰσοχρόνους ρυθμικὰς κινήσεις τῆς χειρός πρὸς τὰ ἄνω καὶ πρὸς τὰ κάτω. Ἡ πρὸς τὰ ἄνω κίνησις τῆς χειρὸς λέγεται ἄρσις καὶ ἡ πρὸς τὰ κάτω κίνησις τῆς χειρὸς λέγεται θέσις. Ἡ θέσις καὶ ἡ ἄρσις πρέπει νὰ εἶναι ἱσης διαρκείας. Μία θέσις καὶ μαζῆ μία ἄρσις ἀποτελοῦν ἕνα μουσικὸν χρό-

νον. "Ωστε ή θέσις καὶ ή ἄρσις είναι τὰ δύο ίσα ήμιχρόνια ένὸς μουσικού χρόνου.

- 27) "Εὰν τὸ χέρι μας ὅπερ κάμνει τὰς κινήσεις τῆς θέσεως καὶ τῆς ἄρσεως, κτυπα εἰς ἑκάστην θέσιν εἰς ἔνα σταθερὸν ἐμπόδιον (λ. χ. εἰς τὸ θρανίον ἢ τό γόνυ κλπ.) ἔκαστος κτῦπος ἰσοδυναμεῖ μὲ ἕνα μουσικὸν χρόνον, διότι διὰ νὰ ἐπακολουθήση ὁ ἐπόμενος κτῦπος πρέπει τὸ χέρι μας νὰ κινηθῆ προηγουμένως πρὸς τὰ ἄνω καὶ νὰ κάμη τὴν κίνησιν τῆς ἄρσεως.
- 28) "Ολοι οί χρόνοι μιᾶς μελφδίας πρέπει νὰ εἶναι μεταξύ των ἴσης διαρκείας, ὡς τὸ ἐκκρεμὲς τοῦ ὡρολογίου, ὑπάρχει δὲ πρὸς τοῦτο καὶ εἰδικὸν μηχάνημα, λεγόμενον χρονόμετρον ἢ μετρονόμος τοῦ ΜΑΙLTSEL τοῦ ὁποίου αἰ κινήσεις ὁμοιάζουν μὲ ἐκκρεμμὲς ὡρολογίου.
- 29) Τὰ ἁπλᾶ φθογγόσημα: τὸ ἴσον , ὀλίγον , ἡ πεταστή , ἡ ἀπόστροφος , τὸ ἐλαφρὸν , καὶ ἡ χαμηλὴ , ἐκτὸς τῆς ποσοτικῆς των ἀξίας ἔχουν καὶ χρονικὴν ἀξίαν ἑνὸς χρόνου ἕκαστον καὶ τὰ σύνθετα φθογγόσημα, ἐκτὸς τοῦ συνεχοῦς ἐλαφροῦ ἔχουν ἔνα χρόνον δι' ἕκαστον φθργγον π.χ. 1) τὸ καὶ ἔχουν ἀξίαν ἐνὸς χρόνου. 2) Τὸ ἔχει ἀξίαν 1+1 χρόνου. 3) τὸ ἔχει ἀξίαν ένὸς καὶ ἑνὸς καὶ ἑνὸς χρόνου καταβάσεως καὶ ἑνὸς ἀναβάσεως.
- 30) Όταν είναι ἀνάγκη ἕνας φθόγγος νὰ διαρκέση ὁλιγώτερον ἢ περισσότερον τοῦ ἐνὸς χρόνου τότε χρησιμοποιοῦνται τὰ ἑξῆς σημεῖα, ἄτινα λέγονται σημεῖα τοῦ χρόνου ἢ ἔγχρονοι ὑποστάσεις:
 - 1. τὸ κλάσμα 🤝 μὲ ἀξίαν ένὸς μουσικοῦ χρονου
 - 2. ἡ ἀπλῆ * » » » » »
 - 3. τὸ γοργὸν 🔽 » » ἡμίσεως » »
 - 4. τό ἀργὸν ¬ » » ἑνὸς » »
 - 5. ή παῦσις ***** » » » »
 - 6. δ σταυρός +
 - 7. ή κορωνίς 🗥
 - 8. τὸ ὑφὲν 🧼

Τὰ σημεῖα τοῦ χρόνου ἐκτὸς ἀπὸ τὴν παῦσιν, γράφονται ἐπάνω ἢ ὑποκάτω τῶν φθογγοσήμων, τῶν ὁποίων πρέπει νὰ ἀλλάξη ἡ χρονικὴ ἀξία.

Περὶ ἀξίας τῶν σημείων τοῦ χρόνου

31) Τὸ κλάσμα, δὲν γράφεται εἰς τὰ κεντήματα, τὸ κέντημα, τὴν ὑψηλὴν καὶ τὴν ὑπορροήν, εἰς δὲ τὰ λοιπὰ γράφεται ἐπάνω, πλὴν τῆς

πεταστῆς εἰς ῆν γράφεται ὑποκάτω, καὶ εἰς τὰς συνθέσεις $\frac{1}{2}$ αὐτὰς κατ' ἐξαίρεσιν. Εἰς τὸ φθογγόσημον ὅπου τίθεται τὸ κλάσμα αὐξάνει τὴν διάρκειαν αὐτοῦ κατὰ ἕνα χρόνον ἐπὶ πλέον, δηλ. ἕνα χρόνον διὰ τὸν μουσ. χαρακτῆρα καὶ ἕνα διὰ τὸ κλάσμα π. χ. $\frac{1}{2}$ χρόνοι $\frac{1}{$

- 25) Γοργὸν παρεστιγμένον. Τὸ γοργὸν ὅταν ἔχει στιγμὴν ἀριστερὰ τη δεξιὰ Γ΄ λέγεται γοργὸν παρεστιγμένον. Γοργὸν ἀριστερὰ παρεστιγμένον λέγεται ἡμίγοργον. Γοργὸν δεξιὰ παρεστιγμένον λέγεται τριημίγοργον. Φθογγόσημον μὲ ἡμίγοργον ἔχει χρονικὴν ἀξίαν $\frac{1}{3}$ τοῦ χρόνου, ἤτοι, διαιρεῖ τὸν χρόνον εἰς τρία καὶ κατέχει τὸ $\frac{1}{3}$ τοῦ χρόνου τοῦ πρὸ αὐτοῦ φθογγοσήμου π.χ. $\frac{1}{2/3} + \frac{1}{3}$, ἐνῶ τὸ τριημίγοργον κατέχει τὰ $\frac{2}{3}$ τοῦ χρόνου τοῦ πρὸ αὐτοῦ φθογγοσήμου ῆτοι : $\frac{1}{3} + \frac{2}{3}$ μὲ τὰ παρεστιγμένα γοργὰ ὁ χρόνος διαιρεῖται εἰς τρία ἴσα μέρη π.χ. $\frac{1}{3} + \frac{1}{3}$ ἢ $\frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ κλπ. $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ κλπ. $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ κλπ. $\frac{1}{3} + \frac{1}{3} +$

γοργὸν ἔχει μίαν ἢ περισσοτέρας ἀπλᾶς, μετὰ τὴν ἐκτέλεσιν τοῦ παρεστιγμένου γοργοῦ, ὁ φθόγγος του διαρκεῖ ἀναλόγως ἕνα ἢ περισσοτέρους χρόνους $\pi.\chi$. 1) $\frac{1}{2/3+1}\frac{1}{3}$ $\frac{1}{2/3+2}\frac{1}{3}$ $\frac{1}{3}$

Δίγοργ.ον

36) Τό δίγοργον εἶναι σύνθετον ἀπὸ δύο ἡνωμένα γοργὰ $\overline{}$, καὶ δὲν γράφεται, ὡς καὶ τὸ γοργόν, εἰς τὴν πεταστήν, τὸ κέντημα καὶ τὴν ὑψηλὴν, εἰς δὲ τὰ λοιπὰ γράφεται ἐπάνω καὶ διαιρεῖ τὸν χρόνον εἰς τρία ἴσα μέρη οὕτω: $\frac{1}{3}$ $\frac{1}{3}$ κ.ο.κ.

Δίγοργον παρεστιγμένον το ἀριστερὰ ἢ δεξιὰ το μέσον το διαιρεῖ τὸν χρόνον εἰς τέσσαρα ἴσα μέρη καὶ ἀφαιρεῖ ἢ προσθέτει τέταρτα τοῦ χρόνου ἀπὸ τὸν πρὸ αὐτοῦ φθόγγον, ἀναλόγως τῆς θέσεως ἢν θὰ λάβη ἡ παραστιγμὴ π. χ. 1) $\frac{1}{2/4}$ $\frac{1}{4}$ καὶ 3) $\frac{1}{4}$ $\frac{1}{4$

*Αναλύσεις γοργών παρεστιγμένων

Α΄ Συνεπτυγμένα Αναλελυμένα $\frac{\pi}{q} = \frac{\pi}{q} = \frac{\pi}{q}$ Τριημίγορ-

$$\text{yov } \stackrel{\pi}{\text{q}} = \frac{\Gamma}{1/3} = \frac{1}{1/3} = \frac{1}{1/$$

Β΄ Δίγοργον παρεστιγμένον

$$\alpha) \begin{array}{c} \pi \\ q \\ 2/4 \\ 1/4 \\$$

$$\gamma$$
) $\frac{\pi}{q}$ = $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

38) Τὸ τρίγοργον εἶναι σύνθετον ἀπὸ τρία ἡνωμένα γοργὰ καὶ γράφεται ὅπου καὶ τὸ δίγοργον, διαιρεῖ δὲ τὸν χρόνον εἰς τέσσαρα ἴσα μέρη ὡς ἑξῆς: $\frac{1}{4}$ \frac

Τὸ τετράγοργον διαιρεῖ τόν χρόνον εἰς $\frac{5}{5}$, τὸ πεντάγοργον εἰς $\frac{6}{6}$, κ.ο.κ. πλὴν δὲν χρησιμοποιοῦνται ταῦτα ὑπὸ τῆς Ἐκκλησιαστικῆς Μουσικῆς καὶ μελφδίας, ἀλλὰ μόνον εἰς δημώδη ἄσματα καὶ τραγούδια.

- 39) Σημεῖον τοῦ χρόνου εἶναι α) τὸ ᾿Αργόν ϶, ὅπερ εἶναι ἀριστερόστροφον γοργὸν καὶ γράφεται μὲν μόνον ἐπάνω εἰς τὸ ὀλίγον μὲ τὰ κεντήματα ὑποκάτω , ἐνεργεῖ δὲ πρῶτον εἰς τὰ κεντήματα, ὡς γοργὸν καὶ κατόπιν εἰς τὸ ὀλίγον ὡσὰν κλάσμα π.χ. $\frac{\pi}{q}$ $\frac{1}{1/2}$ $\frac{1}{1/2}$ κλπ. β) Τὸ ἐπίαργον , διὰ τοῦ ὁποίου, τὸ ὀλίγον ἀποκτᾶ ἀξίαν ἐπὶ πλέον δύο χρόνων ἤτοι: $\frac{\pi}{q}$ $\frac{\pi}$
- 40) Ἡ παῦσις ὑ, γράφεται εἰς τὴν ἀρχὴν τῆς μουσικῆς γραμμῆς ἢ εἰς ἐνδιάμεσά της σημεῖα, μεταξὺ δύο φθυγγοσήμων ἢ καὶ εἰς τὸ τέλος ἑνὸς μουσικοῦ τεμαχίου, προκειμένου νὰ περάση χρονικόν τι διάστημα μεγαλύτερον ἢ μικρότερον τοῦ ἑνὸς χρόνου ἄνευ ἀπαγγελίας φθόγγου, ἐν σιωπῆ.

Αἱ παύσεις σημειώνονται μὲ τὴν βαρεῖαν καὶ μὲ μίαν ἢ περισσοτέρας ἀπλᾶς π.χ.

τον χρόνον της παύσεως είς δύο η τρία καὶ περισσότερα μέρη, ἀναλόγως τοῦ γοργοῦ η της παραστιγμης την ὁποίαν θὰ φέρη καὶ οὕτω σχηματίζονται παύσεις διαρκείας 1/4, 1/2, 8/4, 2, 1/4 κ.ο.κ. χρόνων. Οἱ χρόνοι αὐτοὶ λέγονται κενοὶ φωνης η μελωδίας.

- 41) Ό Σταυρὸς +, γράφεται μεταξὺ δύο φθογγοσήμων καὶ εἶναι παῦσις τῆς ἄρσεως ἢ ἑνὸς τελευταίου τμήματος τῆς ἄρσεως τοῦ χρόνου τοῦ προηγουμένου φθόγγου. Ἡ διάρκεια τῆς παύσεως μὲ τὸν σταυρὸν εἶναι ἀκαθόριστος, πλὴν ἐλαχίστη —τὸ πολὺ ἕως ἥμισυ χρόνον— ἕως ὅτου λάβωμεν μίαν εἰσπνοὴν (ἀναπνοήν), ὥστε ὁ φθόγγος τοῦ ἑπομένου φθογγοσήμου νὰ ἄρχεται μὲ νέον πνεῦμα (νέαν ἀναπνοὴν) π. χ.
- 42) ή κορωνίς καὶ τὸ ὑφὲν εἶναι σημεῖα τῆς Εὐρωπαϊκῆς μουσικῆς. Καὶ ἡ μὲν κορωνὶς σημαίνει ὅτι δυνὰμεθα νὰ κρατήσωμεν τοὺς φθόγγους ἢ τὰς παύσεις ὅπου τὴν δέχονται περισσότερον ἀπὸ τήν κανονικήν των ἀξίαν παρατείνοντες τὴν χρονικὴν αὐτῶν διάρκειαν κατὰ τὴν θέλησίν μας π.χ. Υ Τὸ δὲ ὑφὲν συνδέει τοὺς φθόγγους τὸν ἕνα μετὰ τοῦ ἄλλου καὶ δὲν προφέρονται κεχωρισμένως, ἀλλ' ὡσὰν νὰ εἶναι φθογγόσημα μὲ ἀπλᾶς π.χ. η πα-βου ου βου γα α ἢ τη δι
- 43) Έκ τῶν 8 σημείων τοῦ χρόνου, τὰ 5 δεικνύουν ὡρισμένον χρόνον καὶ ὁρίζουν ἀπ' εὐθείας τὴν πρόσθετον χρονικὴν διάρκειαν εἰς ἕκαστον μουσικὸν χαρακτῆρα, καὶ λέγονται ἀπόλυτα, τὰ δὲ λοιπὰ 3 δὲν ἔχουν ὡρισμένην χρονικὴν ὑπόστασιν καὶ λέγονται σχετικά.

Κεφάλαιον Δ.΄

Περὶ ἐκφράσεως ἢ ποιότητος καὶ τῶν σημείων αὐτῆς

44) Εἴδομεν ἀνωτέρω ὅτι ἕκαστος φθόγγος δύναται νὰ προφερθῆ μὲ διαφόρους τρόπους, οἱ ὁποῖοι τὸν χρωματίζουν ἀναλόγως. Αὐτὸ λέγεται ἔκφρασις ἢ ποιότης τοῦ φθόγγου. Μὲ τὴν ἔκφρασιν ἔχομεν τὸν τρόπον ν' ἀποφύγωμεν τὴν ξηρότητα ἥτις, προκύπτει ὅταν ὅλοι οἱ φθόγγοι μιᾶς μελωδίας, ἀπὸ τὴν ἀρχὴν ἕως τὸ τέλος προφέρονται μο-

νοτόνως ἢ ξηρῶς ἄνευ χρωματισμοῦ τινος ἰδιαιτέρου. ᾿Απ᾽ ἐναντίας, ἐἀν εἰς ἕκαστον φθόγγον ἀποδοθἢ ἡ ἀπαιτουμένη ποιότης ἢ προφορά, τότε εἰς ἄλλους φθόγγους θὰ ἔχωμεν ἰδιαιτέρους τονισμοὺς καὶ εἰς ἄλλους μεταπτώσεις, εἰς ἄλλα μέρη τῆς μελωδίας λεπτοὺς χρωματισμοὺς καὶ εἰς ἄλλα δυναμικὰς ἀντιθέσεις καὶ οὕτω ἀποφεύγοντας τὴν ξηρότητα τῆς προφορᾶς δίδομεν διὰ τῆς ἐκφράσεως καὶ τῶν σημείων αὐτῆς ἰδιαιτέραν ζωὴν καὶ γλυκύτητα εἰς τὰς μουσικὰς συνθέσεις. Πρὸς τοῦτο μεταχειριζόμεθα σημεῖά τινα μὲ τὴν ὀνομασίαν Σημεῖα ἐκφράσεως ἢ χαρακτῆρες ποιότητος, καὶ ἐπειδὴ δὲν ἔχουν καμμίαν σχέσιν μὲ τὸν χρόνον, λέγονται καὶ ἄχρονοι ὑποστάσεις καὶ εἰσὶ ταῦτα:

	1)	ή	βαρεῖα	J
	2)	τò	ψηφιστὸν	\
	3)	>>	δμαλὸν	
	4)	»	ἀντικένωμα	
	5)	>>	ἕτερον ἢ σύνδεσμος	~
αì	6)	»	ἐνδόφωνον	فنهنه

Ποία ή άξία των σημείων της εκφράσεως

- 45) Ἡ βαρεῖα ἐκτὸς τῶν κεντημάτων, καὶ τῆς ὑπορροῆς, γράφεται πρὸ ὅλων τῶν φθογγοσήμων καὶ διακρίνομεν δύο χρήσεις τῆς βαρείας α) τὸ φθογγόσημον, ὅπερ φέρει πρὸ αὐτοῦ βαρεῖαν, προφέρεται ζωηρότερον τῶν ἄλλων π.χ. $\frac{\pi}{q}$, καὶ β) ἡ βαρεῖα χάνει τὴν ἐκφραστικήν της ἀξίαν ὅταν μὲ μίαν ἢ περισσοτέρας ἁπλᾶς σχηματίζει τὰς παύσεις \mathbf{v}
- 47) Τὸ ὁμαλὸν , γράφεται κάτωθεν τοῦ ἴσου καὶ τοῦ ὀλίγου καὶ προσδίδει ἐλαφρὺν κυματισμὸν τῆς φωνῆς λ . χ. $\frac{\pi}{q}$

- 49) Τὸ ἕτερον λέγεται καὶ σύνδεσμος, διότι συνδέει τὰ φθογγόσημα εἰς τὰ ὁποῖα ὑποκάτω τίθεται καὶ προφέρεται μὲ ἐλαφρὺν λαρυγγισμὸν λ. χ. Υ Π΄ Ετερον συνήθως συνδέει φθογγόσημα χρονικῆς ἀξίας τριῶν ἢ περισσοτέρων χρόνων μὲ ἐπόμενον ἔγγοργον ἢ ὅχι φθογγόσημον καταβάσεως ὡς λ.χ. Κλπ. Ὁ χαρακτὴρ ὅστις δέχεται περισσοτέρους τοῦ ἐνὸς χρόνους, λέγεται μακρός, ἡ δὲ διάρκεια τοῦ μακροῦ λέγεται τονὴ καὶ προφέρεται μαλακά, ἀχωρίστως, τοῦ προηγουμένου μὲ τὸν ἐπόμενον φθόγγον εἰς τὴν αὐτὴν ἀναπνοήν.
- 50) Τὸ ἐνδόφωνον ΄΄΄, γράφεται μόνον σὲ φθογγόσημα καταβάσεως καὶ ἀπαιτεῖ ὁ φθόγγος των νὰ ἀπαγγελθῆ μὲ κλειστὸ στόμα, διὰ τῆς ῥινὸς εἰς ὅλην τὴν χρονικήν των διάρκειαν π.χ. ä

 κλησιαστικὴ μουσικὴ σήμερον δὲν τὸ μεταχειρίζεται.

Έκφραστική ίδιότης των χαρακτήρων ποσότητος

- 51) Όλα τὰ φθογγόσημα ἐκτὸς τῆς ποσοτικῆς καὶ χρονικῆς των ἀξίας ἔχουν καὶ ἐκφραστικήν τοιαύτην,—τὸ λεγόμενον πνεδμα—.
- α) 'Ο φθόγγος τοῦ τοῦ τοῦ ολίγου, τῆς αποστρόφου, τοῦ ελαφροῦ καὶ τῆς χαμηλῆς, προφέρονται μὲ φυσικὴν ἔντασιν τῆς φωνῆς, οὕτε σιγά, οὕτε δυνατὰ ἀλλ' ἐλεύθερα καί ἀνεπηρέαστα.
- β) Ο φθόγγος τής \mathbf{v} ἐκφέρεται μὲ ζωηρότητα, δηλ. ἀρχίζει ἀπὸ τὸ φυσικόν του ὕψος, ἐκφεύγει ὀλίγον ὀξύτερον καὶ ἀμέσως ἐπανέρχεται εἰς αὐτό, ὥστε νὰ δημιουργήται ἡ ἐντύπωσις πετάγματός τινος τῆς φωνῆς. Οὕτως ἡ γραμμὴ \mathbf{q} δύναται νὰ ἀναληθῆ κατὰ προσέγγισιν οὕτω \mathbf{q} ἐὰν ἡ πεταστὴ ἔχει ἀξίαν 2 χρόνων ἡ ἐκτέλεσις τοῦ χρωματισμοῦ αὐτῆς γίνεται μεταξὸ τῶν δύο χρόνων, ὡς π.χ. \mathbf{q} $\mathbf{$
- γ) Ὁ φθόγγος τῶν κεντημάτων, προφέρεται ἠπίως καὶ είς τὴν ἰδίαν ἀναπνοὴν μὲ τὸν προηγούμενον καὶ ἐπόμενον φθόγγον, ὥστε οἱ τρεῖς οὐτοι φθόγγοι νὰ ἀκούωνται ἕκαστος ὡσὰν συνέχεια τοῦ προηγουμένου του, μὲ ἔντασιν ἥτις μειώνεται εἰς τὸν μεσαῖον φθόγγον τῶν κεντημάτων ὡς ἑξῆς: π φ σπα α ρει ει ει σαν τη μα τω ων το ο α α σμα τη
- ε) Τὸ κέντημα καὶ ἡ ὑψηλὴ λαμβάνουν τὴν ἐκφραστικὴν ἰδιότητα τοῦ ὀλίγου καὶ τῆς πεταστῆς μετὰ τῶν ὁποίων συντίθενται: _____ κλπ.
- στ) Ὁ φθόγγος τῶν 5 5 5 5 5 κλπ. προφέρεται μὲ τὴν ἐκφραστικὴν ἰδιότητα τῆς πεταστῆς.
 - ζ) Ὁ φθόγγος τοῦ ἴσου ἐπὶ τοῦ ὀλίγου 🚾 ἐκφέρεται ἐντονώτε-

ρον τοῦ ἀπλοῦ ἴσου π.χ.
$$\frac{6}{λ}$$
 $\frac{1}{τε}$ $\frac{1}{ε}$ ρι ρι ρε ε ρε ρεμ

- η) Ὁ πρῶτος φθόγγος εἰς τὰς συνθέσεις αὐτὰς 🤼 ἐκφέρεται ἡπίως, ὁ δὲ δεύτερος λαμβάνει τὴν ἐκφραστικὴν ἀξίαν τῆς πεταστῆς.
- θ) Εἰς τὰς συνθέσεις κλπ. τὸ ὀλίγον δὲν ἔχει καμμίαν ἀξίαν, οὕτε ποσοτικὴν οὕτε χρονικήν, οὕτε ἐκφραστικήν, μόνον χρησιμεύει ὡς στήριγμα τῶν ἐν αὐτῷ τιθεμένων μουσικῶν χαρακτήρων οἵτινες ἔχουν ἐκφραστικὴν κλπ. ἰδιότητα, καθώς ἀνωτέρω εἴπομεν.
- ι) Οἱ φθόγγοι τῶν ἀκολούθων συνθέσεων προφέρονται μὲ. τὴν ἐκφραστικὴν ἀξίαν τοῦ ὀλίγου καὶ τῶν κεντημάτων. Εἰς τὴν σύνθεσιν αὐτὴν προηγοῦνται τὰ κεντήματα καὶ εἰς αὐτὴν ἔπονται τοῦ ὀλίγου, καὶ
- ια) Εἰς τὸ τὸ ἴσον ἔχει τὴν ἰδικήν του ἐκφραστικὴν ἀξίαν ἐνῶ ὁ φθόγγος τῆς ἀποστρόφου προφέρεται ἡπιώτερον. Όταν δμως εἰναι ἀνάγκη νὰ δώσωμεν εἰς τὰ φθογγόσημα διαφορετικὴν ἔκφρασιν ἐκείνης τὴν ὁποίαν αὐτὰ φανερώνουσι, τότε μεταχειριζόμεθα τὰ εἰδικὰ σημεῖα τῆς ἐκφράσεως ἢ χαρακτῆρας ποιότητος, ὡς ἀνεφέραμεν καὶ ἐμάθομεν παραπάνω.

<u>Κεφάλαιον Ε.΄</u> Ύφέσεις καὶ Διέσεις

52) Όρισμός καὶ διάκρισις ὑφέσεων καὶ διέσεων. Καθὼς εἴπομεν εἰς τὸ πρῶτον Κεφάλαιον, ἕκαστος φθόγγος κατέχει εἰς τὴν φυσικὴν κλίμακα ὡρισμένον ὕψος καὶ οἱ τόνοι διαφέρουν ἀλλήλοις κατὰ τὸ μέγεθος, ὥρισαν αὐτοὺς—οἱ διδάσκαλοι —, ἀριθμητικῶς, μὲ 12, 10 καὶ 8 γραμμὰς ἢ κόμματα ἥτοι εἰς τόνους μείζονας, ἐλάσσονας και ἐλαχίστους, καὶ ὅπως δυνάμεθα νὰ προσθέσωμεν ἢ ἀφαιρέσωμεν χρονικὴν διάρκειαν, διὰ τῶν εἰδικῶν σημείων, εἰς οἱονδήποτε μουσ. χαρακτῆρα θέλομεν, παρομοίως δυνάμεθα νὰ μεγαλώσωμεν ἢ σμικρύνωμεν τὸ διάστημα οἱουδήποτε τόνου θέλομεν. Διὰ νὰ ἐπιτύχωμεν δὲ τοῦτο πρέπει νὰ μεταβάλωμεν ἐπὶ τὸ βαρὺ ἢ ἐπὶ τὸ ὀξὺ τὴν θέσιν ἑνὸς ἐκ τῶν φθόγγων, οἱ ὁποῖοι σχηματίζουν τὸ διάστημα τοῦ τόνου. Οὕτω διὰ νὰ αὐξήσωμεν τὸ διάστημα Β—Γ, πρέπει νὰ μεταβάλωμεν τὸν φθόγγον Β, ἔπὶ τὸ βαρὺ ἢ τὸν φθόγγον Γ, ἔπὶ τὸ ὀξύ.

Ή μεταβολὴ φθόγγου τινὸς ἐπὶ τὸ βαρὺ λέγεται ὕφεσις, καὶ ἡ μεταβολὴ αὐτοῦ ἐπὶ τὸ ὀξὸ λέγεται δίεσις. Καὶ ἐπειδὴ εἶναι δυνατὸν —τοὐλάχιστον θεωρητικῶς—νὰ διαιρέσωμεν τὸν τόνον εἰς τριτημόρια καὶ τεταρτημόρια, δυνάμεθα νὰ ἔχωμεν ὑφέσεις καὶ διέσεις τριτημορίους ($\frac{1}{3}$ ἢ $\frac{2}{3}$ τοῦ τόνου) καὶ τεταρτημορίους ($\frac{1}{4}$ ἢ $\frac{2}{4}$ ἢ $\frac{3}{4}$ τοῦ τόνου).

Επειδή δὲ ή διὰ τῆς φωνῆς ἐκτέλεσις καὶ ἀπόδοσις τῶν μικροτάτων τούτων ὑποδιαιρέσεων τοῦ τόνου εἶναι δυσχερής καὶ μᾶλλον ἀδύνατος, διὰ τοῦτο εἰς τὴν Βυζαντινὴν μουσικὴν εὕχρηστοι εἶναι μόνον αἱ ἡμιτόνιοι ὑφέσεις καὶ διέσεις, αἱ δὲ ἄλλαι σπανιώτατα συναντῶνται.

53) Αί ήμιτόνιοι, τριτημόριοι, καὶ τεταρτημόριοι ὑφέσεις καὶ διέσεις ἔχουν ὡς ἀκολούθως:

Ύφέσεις			Διέσεις
'Ημιτόνιος	م	1/2	ď
Τριτημόριος	\$	1/4	ď
Τεταρτημόριος	*o	3, 4	o*

Καὶ ἡ μὲν ἡμίτονος ὕφεσις $^{\rho}$, ὅταν τεθῆ ἐπὶ φθόγγου τινος μεταβάλλει ἐπὶ τὸ βαρὺ κατὰ ἕν ἡμιτόνιον τὴν φυσικὴν ὀξύτητα τοῦ φθόγγου αὐτοῦ, καὶ ἐπειδὴ ἕκαστος διαχωρίζει δύο διαστήματα ἢ τόνους (π.χ. ὁ φθόγγος B, διαχωρίζει τοὺς τόνους Π, B καὶ B, Γ, ὁ Γ,

διαχωρίζει τοὺς τόνους $B-\Gamma$ καὶ $\Gamma-\Delta$ κ.ο.κ.), ἡ ὕφεσις μεταβάλλει τὰ διαστήματα τῶν τόνων αὐτῶν, διότι αὐξάνει τὸ ε̈ν καὶ ἐλαττώνει τὸ ἄλλο κατὰ ε̈ν ἡμιτόνιον $\pi.\chi$.

Οὕτω εἰς τὸ βαρὸ τετράχορδον Π B Γ Δ , τὸ διά-

Οὕτω εἰς τὸ βαρὺ τετράχορδον Π B Γ Δ , τὸ διάστημα $\Pi - B$ εἶναι κανονικῶς τόνος ἐλάσσων, τὸ δὲ $B - \Gamma$ τόνος ἐλάχιστος. Ἐὰν ὅμως θέσωμεν εἰς τὸν B, ὕφεσιν ἡμιτόνιον, ὁ B; μεταβάλλεται καὶ γίνεται βαρύτερος κατὰ εν ἡμιτόνιον. Τὸ δὲ $B - \Gamma$ δὲν εἶναι πλέον τόνος ἐλάχιστος ἀλλὰ ἔχει αὐξηθῆ μὲ τὴν προσθήκην ἑνὸς ἡμιτονίου, τὸ ὁποῖον ἀφηρέθη ἀπὸ τὸ διάστημα $\Pi - B$.

Έπίσης εἰς τὸ ὀξὺ τετράχορδον Π΄ Ν΄ Ζ΄ Κ, τὸ διάστημα Ν΄—Ζ΄ εἶναι τόνος ἐλάχιστος, τὸ δὲ Ζ – Κ τόνος ἐλάσσων. Ἐὰν ὅμως θέσωμεν εἰς τὸν Ζ΄ ὕφεσιν ἡμιτόνιον, τότε ὁ Ζ γίνεται βαρύτερος κατὰ εν ἡμιτόνιον καὶ τὸ διάστημα Ζ – Κ δὲν εἶναι πλέον τόνος ἐλάσσων, ἀλλ' ἔχει σμικρυνθῆ κατὰ εν ἡμιτόνιον τὸ δὲ Ν—Ζ δὲν εἶναι τόνος ἐλάχιστος, ἀλλ' ἔχει προσαυ-

ξηθή κατὰ εν ήμιτόνιον, ὅπερ ἀφηρέθη ἀπὸ τὸν τόνον K-Z. Ἐὰν δὲ ἀντὶ ήμιτονίου ὑφέσεως χρησιμοποιήσωμεν ὕφεσιν ένὸς τετάρτου \mathfrak{P} , ἢ τριῶν τετάρτων \mathfrak{P} , ὁ φθύγγος ἐπὶ τοῦ ὁποίου γράφεται ἡ ὕφεσις αὐτή, βαρύνεται κατὰ εν ἢ τρία τεταρτημόρια τοῦ τόνου.

54) Διὰσεις ἡμιτόνιοι κλπ. Ἡ δὲ ἡμιτόνιος δίεσις σ, ὅταν τεθῆ εἰς φθόγγον τινὰ μεταβάλλει ἐπὶ τὸ ὀξὺ κατὰ ἕν ἡμιτόνιον τὴν φυσικὴν ὀξύτητα τοῦ φθόγγου ἐκείνου. Καὶ ἐπειδὴ ἕκαστος φθόγγος διαχωρίζει δύο διαστήματα ἢ τόνους, ἡ δίεσις ὅπως καὶ ὕφεσις, μεταβάλλει τὰ διαστήματα αὐτά, διότι ἐλαττώνει τὸ ἕν καὶ αὐξάνει τό ἄλλο κατὰ ἕν ἡμιτόνιον. Οὕτω εἰς τὸ ὀξὺ τετράχορδον: Π΄ Ν΄ Ζ΄ Κ, τὸ διάστημα Π—Ν κανονικῶς εἰναι τόνος μείζων, τὸ δὲ Ν΄—Ζ΄, τόνος ἐλάχιστος. Ἐὰν ὅμως θέσωμεν εἰς τὸν Ν΄ δίεσιν ἡμίτονον, ὁ Ν΄ γίνεται ὀξύτερος κατὰ ἕν ἡμίτονον. Οὕτω τὸ διάστημα Π΄—Ν΄ δὲν εἰναι πλέον τόνος μείζων, ἀλλ' ἔχει σμικρυνθῆ κατὰ ἕν ἡμίτονον, ὁ δὲ τόνος Ν΄ – Ζ΄, δὲν εἰναι πλέον τόνος ἐλάχιστος, ἀλλ' ἔχει αὐξηθῆ κατὰ ἕν ἡμίτονον, τὸ ὁποῖον ἀφήρεσεν ἀπὸ τὸ διάστημα Π΄—Ν΄ π.χ.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6	N'
32233	14	άZ
333233	8	Ì
22223	10	Z'I
23233	10	K

12 Γ | Γ | Β | Β | Β | Π

Σχῆμα ΣΤ΄

Τὸ αὐτὸ παρατηρῶμεν καὶ εἰς τὸ βαρὺ τετράχορδον : Π, Β, Γ, Δ, ὅταν θέσωμεν εἰς τὸν Γ, δίεσιν ἡμιτόνιον, τὸ διάστημα Δ—Γ, μεταβάλλεται εἰς ἡμιτόνιον, τὸ δὲ Γ—Β γίνεται μεγαλύτερον κλπ. Ἐὰν δὲ ἀντὶ ἡμιτονίου διέσεως χρησιμοποιήσωμεν δίεσιν ένὸς τριτημορίου ἢ τριῶν ễ, ễ, ὁ φθόγγος εἰς τὸν ὁποῖον τίθεται ἡ δίεσις αὕτη, ὀξύνεται κατὰ εν ἢ τρία τεταρτημόρια τοῦ τόνου.

55) Έκτασις τῆς ἐνεργείας τῶν ὑφέσεων καὶ διέσεων. Ἡ ὕφεσις καὶ δίεσις ὅταν τεθῆ εἰς χαρακτῆρα ἔχωντα περισσότερον τοῦ ἐνὸς χρόνου εἴτε συνεπτυγμένου εἴτε ἀνεπτυγμένου, ἐνεργεῖ καὶ ἰσχύει δι' ὅλους τοὺς χρόνους ἐκείνους π.χ. Απ, ἐκτὸς ὅμως τῆς περιπτώσεως αὐτῆς ἡ ὕφεσις καὶ ἡ δίεσις περιορίζουν τὴν ἐνέργειάν των ἐπὶ ἑνὸς μόνον χαρακτῆρος, δι' ὅκαὶ λέγονται μερικαί.

56) Ἐκτὸς τῶν διέσεων καὶ ὑφέσεων αὐτῶν ἤτοι τῶν μερικῶν, ἔχομεν καὶ ἑτέραν τοιαύτην, ἥτις καλεῖται γενική, ὕφεσις γενική, 9 , 1 / $_{2}$ τόνου καὶ δίεσις γενικὴ 5 1 / $_{2}$ τόνου. Τὰ σημεῖα ταῦτα τίθενται εἰς ὡρισμένον φθόγγον καὶ ἡ μὲν γενικὴ ὕφεσις τίθεται

ἐπὶ τοῦ Κ, και ζητεῖ τὸν πρῶτον ἀνιόντα δηλ. τὸν Ζ, μὲ δίεσιν $^1/_2$ τοῦ τόνου, ἐπεκτείνει δὲ τὴν ἐνέργειαν αὐτῆς ἐπὶ τοῦ αὐτοῦ φθόγγου Ζ, εἰς ὅλην τὴν ἔκτασιν τοῦ μουσικοῦ κειμένου ἐκείνου. Ἡ γενικὴ δίεσις 5 , τίθεται ἐπὶ τοῦ Γ, καὶ ζητεῖ τὸν πρῶτον κατιόντα φθόγγον δηλ. τὸν Β, μὲ δίεσιν $^1/_2$ τοῦ τόνου καὶ ἐπεκτείνεται ἡ ἐνέργεια αὐτῆς ἐπὶ τοῦ αὐτοῦ φθόγγου Γ, εἰς δλόκληρον τὴν πορείαν τοῦ μαθήματος, ἕως ὅτου εὑρεθῆ ἕτερον φθορικὸν σημεῖον καὶ λύση αὐτήν. Τὸ αὐτὸ ἰσχύει καὶ διὰ τὴν ὕφεσιν διὸ καὶ λέγονται γενικαί.

$MEPO\Sigma$ B.

Ή σύνθεσις τοῦ Βυζαντινοῦ μέλους

57) Τὰ σημεῖα ἄπερ μέχρι τοῦδε ἐδιδάχθημεν ἀποτελοῦν τὴν ἐξωτερικὴν ὄψιν τῆς Βυζαντινῆς μουσικῆς, καὶ τώρα πρέπει νὰ μάθωμεν τὴν ἐσωτερικὴν ὄψιν καὶ σύνθεσιν, ἥτις συγκροτεῖ τὸ μέλος τῆς Βυζαντινῆς μουσικῆς. Τὰ ἀποτελοῦντα τὴν σύνθεσιν αὐτὴν στοιχεῖα εἰναι τὰ ἑξῆς: α) Τὸ Γένος, β) Τὸ Σύστημα, γ) Ὁ Ἡχος, δ) Τὸ Είδος, ε) Ἡ Χρονική ἀγωγή, καὶ στ) Ὁ Ῥυθμός.

Κεφάλαιον ΣΤ.΄ Τὸ Γένος

- 58) Τὸ γένος προκύπτει καὶ δημιουργεῖται ἐκ τῆς διαφορᾶς τῶν τονιαίων διαστημάτων. 'Ως εἴδομεν ἀνωτέρω, ἡ μουσικὴ κλίμαξ ἀποτελεῖται ἀπὸ δύο ὅμοια τετράχορδα, ἕκαστον τῶν ὁποίων ἔχει 4 φθόγγους καὶ 3 διαστήματα, ἢ τόνους (ἐλάσσονα, ἐλάχιστον, μείζονα), ἐφ' ὅσον ὅμως δύνανται νὰ μεταβληθῶσι, διὰ τῶν ὑφέσεων καὶ διέσεων, τὰ τονιαῖα διαστήματα τοῦ τετραχόρδου, τὸ μὲν νὰ ἐλαττωθῆ, τὸ δὲ νὰ αὐξηθῆ, κατὰ τὸ δοκοῦν μας, τότε θὰ ἔχωμεν διάφορα τονιαῖα διαστήματα, ἐξ ὅσων ἕως τώρα ἐγνωρίσαμεν, καὶ αἱ τοιαῦται ἢ τοιαῦται διατάξεις καὶ μεταβολαὶ τῶν διαστημάτων τοῦ τετραχόρδου ἐν τῆ μουσικῆ λέγονται γένος. Τὰ γένη ἐν τῆ Ἐκκλησιαστικῆ Βυζαντινῆ Μουσικῆ εἶναι τρία: τὸ διατονικόν, τὸ χρωματικόν, καὶ τὸ ἐναρμόνιον.
- 59) Έκαστον γένος ἔχει ἰδίαν κλίμακα, ἁπάντων δὲ τῶν κλιμάκων κοινὸν γνώρισμα εἶναι, ὅτι διαιροῦνται αὖται εἰς δύο ὅμοια τετράγορδα, τὸ μὲν βαρύ, τὸ δὲ ὀξύ, διεζευγμένα μὲ τόνον μείζονα, καὶ διαφέροντα ἀλλήλων ἀναλόγως τοῦ γένους εἰς ὃ ἀνήκουσιν. Ἐπίσης καὶ εἰς τὰ τρία γένη ταῦτα παρατηρῶμεν ὅτι εἰς τὰ δύο ὅμοια τετράχορδα ἔχομεν δύο εἰδῶν φθόγγους: Ἐκείνους οἱ ὁποῖοι ἀποτελοῦν τοὺς σκε-

λετὸύς, καὶ ἐπειδὴ είναι ἀμετακίνητοι λέγονται ἐστῶτες π.χ. εἰς τὸ διατονικὸν γένος ὁ $\Pi-\Delta$ καὶ ὁ $K-\Pi'$ καὶ Ἐκείνους ποὺ μετακινοῦνται δηλ. οἱ ἐνδιάμεσοι π.χ. ὁ $B-\Gamma$ καὶ ὁ Z'-N', οὖτοι λέγονται κινούμενοι, καθότι διὰ τῶν ὑφέσεων καὶ διέσεων μεταφέρονται ἀπὸ τὰς φυσικὰς θέσεις των.

60) Οἱ φθόγγοι καὶ εἰς τὰ τρία γένη παριστάνονται διὰ τῶν αὐτῶν γραμμάτων Π, Β, Γ, Δ, κλπ. οὐχὶ ὅμως μὲ τὰ ἴδια συμβολικὰ σημεῖα, τὰ ὁποῖα ἐμάθομεν, ἀλλ' ἕκαστον γένος ἔχει ἴδια συμβολικὰ σημεῖα, ἄτινα λέγονται μαρτυρίαι ἑκάστου γένους.

'Εκτὸς τῶν μαρτυριῶν, ὑπάρχουν σημεῖά τινα, μὲ τὰ ὁποῖα γίνεται ἡ μεταβολὴ τοῦ μέλους καὶ μετάβασις αὐτοῦ ἀπὸ γένους εἰς γένος. Τὰ σημεῖα ταῦτα λέγονται φθοραί. "Ωστε ἔκαστον γένος ἔχει: α) ἰδικήν του κλίμακα, ἰδικάς του μαρτυρίας καὶ ἰδίας φθοράς.

Α.΄ Περὶ Διατονικοῦ Γένους

- 61) Τὸ Διατονικὸν Γένος, περιλαμβάνει ήχους 4: Τὸν Πρῶτον, τὸν Πλάγιον τοῦ πρώτου, τὸν Τέταρτον καὶ τὸν Πλάγιον τοῦ τετάρτου. Τὰ τετράχορδα τοῦ διατονικοῦ γένους ἀποτελοῦνται ἕκαστον ἀπὸ τόνον ἐλάσσονα, ἐλάχιστον καὶ μείζονα: Π 10 Β 8 Γ 12 Δ κλπ. Μαρτυρίαι τοῦ διατονικοῦ γένους είναι 15. Καὶ φθοραὶ αὐτοῦ είναι ὀκτώ: Σ, ρ ξ φ ς δ ξ ς ν, ἐκάστη τῶν ὁποίων τίθεται εἰς ώρισμένον φθόγγον καὶ ἐπομένως αἱ φθοραὶ αὐται δεικνύουν, ὅχι μόνον τὸ γένος ἀλλὰ καὶ ὡρισμένον φθόγγον.
- 62) Τὸ διατονικὸν γένος είναι τὸ ἀρχαιότερον ὅλων καὶ φυσικώτερον κατὰ τὴν διαίρεσιν τῶν τόνων, διὸ λαμβάνεται ὡς βάσις τῶν ἄλλων γενῶν καὶ ἡ κλίμαξ αὐτοῦ ὀνομάζεται φυσική, εἰς αὐτὸ δὲ ἀνήκουσιν αἱ περισσότεραι μελφδίαι τῆς Βυζαντινῆς μουσικῆς.

Γυμνάσματα 'Αναστασιματαρίου

Β.΄ Περὶ Χρωματικοῦ Γένους

63) Τὸ Χρωματικὸν Γένος ἔχει δύο ἤχους, τὸν Δεύτερον καὶ τὸν Πλάγιον τοῦ δευτέρου, καὶ δι' ἔκαστον ἦχον ἐξ αὐτῶν ἔχει ἰδίαν κλίμακα: α) τὴν σύντονον χρωματικήν, διὰ τὸν πλάγιον τοῦ δευτέρου καὶ β) τὴν μαλακὴν χρωματικήν, διὰ τὸν δεύτερον. Γενικῶς δὲ ἡ χρωματικὴ κλίμαξ περιλαμβάνει διαστήματα μεγαλύτερα τοῦ μείζονος τόνου καὶ μικρότερα τοῦ ἐλαχίστου τοιούτου ἐκ τῶν τοῦ διατονικοῦ γένους, ἐπειδὴ π.χ. τοῦ διατον. γένους τὰ διαστήματα είναι: Π 10 Β 8 Γ 12 Δ,

Κ 10 Z 8 N 12 Π , ἐνῶ τῆς συντόνου χρωματικῆς κλίμακος τὰ διαστήματα εἶναι : Π 6 B 20 Γ 4 Δ , K 6 Z 20 N 4 Π . δηλ. τὸ Π —B, K—Z, εἶναι ἡμιτόνια, τὸ B - Γ καὶ Z - N εἶναι τριημιτόνια καὶ πλέον τοῦ ἡμιολίου τὸ δὲ Γ - Δ καὶ N'— Π' εἶναι λεῖμμα τόνου, καὶ τὸ Δ —K, εἶναι διαζευκτικὸς μὲ ἀξίαν μείζονος τόνου π . χ . εἶς τὴν αὐτὴν σύντονον χρωματικὴν κλίμακα ἔχομεν δύο ὑφέσεις καὶ δύο διέσεις. (Σχῆμα Z')

64) Ἡ μαλακή χρωματικὴ κλίμαξ, τὴν ὁποίαν μεταχειρίζεται ὁ Δεύτερος ἦχος, ἀρχίζει ἀπὸ τὸν Δ, καὶ ἐπὶ μὲν τὸ βαρὺ κατέρχεται ἕως τοῦ Ν ἐπὶ δὲ τὸ ὀξὺ ἀνέρχεται μέχρι τοῦ Ν΄. Ἡ κλίμαξ αὕτη περιέχει δύο ὑφέσεις μίαν ἐπὶ τοῦ Π ρ καὶ ἐτέραν ἐπὶ τοῦ Κ ρ. Τοιουτοτρόπως σχηματίζει δύο τετράχορδα ὅμοια: Ν Π Β Γ καὶ Δ Κ Ζ Ν. Τὸ εἰς αὐτὰ διάστημα, ὡς διακριτικὸν τοῦ γένους, εἶναι μεγαλύτερον τοῦ μείζονος τόνου, ἤτοι τὸ Π 14 Β καὶ Κ 14 Ζ, (κατὰ τὸ πόρισμα τῆς Πατριαρχικῆς μουσικῆς Ἐπιτροπῆς τοῦ 1881) ἀριθμητικῶς παρίσταται ἡ κλίμαξ ὡς ἐξῆς:

N Π Π Β Β Γ 8 14 8 Δ Κ Κ Ζ Ζ Ν

δηλ. ἔχομεν τόνους ἐλαχίστους καί τριημιτονίους, ὁ δὲ τόνος Γ—Δ είναι διαζευκτικός μείζων μὲ αξίαν 12 κομμάτων.

καὶ αἱ δύο αὐταὶ κλίμακες ή τε σύντο- Β΄ νος καὶ ἡ μαλακή εἶναι ἐξ όλοκλήρου χρω- π ματικαί.

Σχήμα Ζ΄

6

20

65) Μαρτυρίαι καὶ φθοραὶ χρωματικαί. Αἱ μαρτυρίαι τῆς πρώτης χρωματικῆς κλί-

μακος, ώς διακριτικά σημεῖα ἔχουν α) — καὶ β) $_{\varnothing}$ τὰ ὁποῖα ἑνούμενα μὲ τὰ ἀρχικὰ γράμματα τῶν ὀνομάτων τῶν φθόγγων σχηματίζουν τὰς ἑξῆς χρωματικὰς μαρτυρίας τῆς κλίμακος: $_{\varnothing}^{\pi}$ $_{\varnothing}^{\varphi}$ $_{\varnothing}^{\varphi}$ (τετράχορδον βαρὺ) $_{\varnothing}^{\chi}$ $_{\varnothing}^{\varphi}$ $_{\varnothing}^{\varphi}$ $_{\varnothing}^{\varphi}$ (τετράχορδον ὀξὺ) αἱ δὲ φθοραὶ τοῦ χρωματικοῦ γένους εἶναι τέσσαρες: δύο τῆς συντόνου χρωματικῆς κλίμακος τοῦ Πλ. β΄ 1) $_{\varnothing}^{\varphi}$ καὶ 2) $_{\varnothing}^{\varphi}$, καὶ δύο τῆς μαλακῆς: 1) $_{-\Theta}^{\varphi}$ καὶ 2) $_{\varnothing}^{\varphi}$ $_{\varphi}^{\varphi}$ $_{\varphi}^{\varphi}$

Δ Γ Β Π, ὅπου δὲ τεθῶσιν αἱ φθοραὶ αὐται μεταβάλλουν τὸν φθόγγον ἐκεῖνον καἱ ἡ μὲν φθορὰ → θέλει τὸν φθόγγον Π ἡ δὲ ϭ τὸν φθόγγον Δ, αἱ δὲ ἄλλαι δύο χρωματικαὶ φθοραἱ, ἡ μὲν → τίθεται εἰς τοὺς φθόγγους Ν Β Δ Ζ, ἡ δὲ ϭ εἰς τοὺς Π Γ Κ Ν καὶ ἀπαιτοῦν καὶ αἱ δύο αὖται φθοραὶ μέλος χρωματικόν, μὲ τὰ διαστήματα τῆς δευτέρας μαλακῆς λεγομένης κλίμακος τοῦ Β.΄ Ἦχου.

66) Γ. Περὶ Ἐναρμονίου Γένους. Τὸ Ἐναρμόνιον Γένος περιλαμβάνει εἰς ἔκαστον τετράχορδον δύο μείζονας τόνους καὶ ἕνα ἡμιτόνιον, ἐπίσης μίαν δίεσιν εἰς τὸ βαρὺ τετράχορδον ἐπὶ τοῦ φθόγγου Β΄ καὶ μίαν ὕφεσιν εἰς τὸ ὀξὺ τετράχορδον ἐπὶ τοῦ. Ζρ. Τὰ οὕτω σχηματιζόμενα δύο τετράχορδα —Π Β Γ Δ - Κ Ζ Ν Π— εἰναι ὅμοια, καθότι περιλαμβάνουσι καθὲν δύο μείζονας τόνους καὶ ἕνα ἡμιτόνιον, ἀνόμοια δέ, διότι εἰς τὸ βαρὺ τετράχορδον ἡμιτόνιον εἶναι τὸ δεύτερον ἀπὸ τῆς βάσεως διάστημα ἐνῶ εἰς τὸ ὀξὺ εἶναι τὸ πρῶτον ἀπὸ τῆς βάσεως διάστημα, ὡς βλέπομεν τοῦτο εἰς τὴν κατωτέρω κλίμακα τοῦ γένους

αὐτοῦ, ἐν ἦ παρατηροῦμεν ἀριθμητικῶς καὶ τὰ διαστήματα αὐτῆς (κατὰ τὴν γνώμην τῆς Πατριαρχικῆς Ἐπιτροπῆς τοῦ 1881). Π 12 Β 6 Γ 12 Δ, Κ 6 Ζ 12 Ν 12 Π. Ἐξετάζοντες τὰ διαστήματα τῆς ἐναρμονίου κλίμα-

Έξετάζοντες τὰ διαστήματα τῆς έναρμονίου κλίμακος, βλέπομεν ὅτι σχηματίζει αὕτη ἀπὸ τοῦ Ν, τρία ὅμοια τετράχορδα ἤτοι: Ν Π Β Γ—Γ Δ Κ Ζ – Ζ Ν Π Β. Τὰ τετράχορδα ταῦτα εἶναι συνημμένα ἀλλήλλοις, ἐφ᾽ ὅσον ὁ τελευταῖος φθόγγος τοῦ ἐνὸς γίνεται βάσις τοῦ ἐπομένου τετραχόρδου. Τοῦτο κατὰ τοὺς ἀρχαίους ἐλέγετο συναφή. Ἔκαστον ἐξ αὐτῶν ὁδεύει κατὰ τόνον μείζονα, μείζονα καὶ ἡμιτόνιον (12 - 12 - 6) ἤτοι κατὰ τριφωνίαν ὁμοίαν.

διάστημα Π 12 Β γίνεται μείζων τόνος τὸ δὲ Β 6 Γ ἡμιτόνιον, ἐὰν δὲ τεθῃ ἡ φθορὰ αὐτὴ εἰς τὸν Β θέλει αὐτὸν ἐν ὑφέσει, ὁπόταν τὸ διά-

12

12

6

12

12

6

12

Σχημα Θ'

Διαζευκτ.

Z'

K

Δ

Γ

В

στημα Π 6 Β γίνεται ήμιτόνιον τὸ δὲ Β 12 Γ τόνος μείζων. Ἐπὶ ἄλλου δὲ τινὸς φθόγγου ἐὰν εὐρεθἢ ἡ ἐναρμόνιος φθορὰ ἀπαιτεῖ νὰ θεωρήσωμεν τὸν φθόγγον αὐτὸν ὡς Γ, καὶ νὰ σχηματίσωμεν ἀναλόγως τὰ διαστήματα. Ἐπίσης ἀντὶ τῆς ἐναρμονίου φθορᾶς χρησιμοποιεῖται πολλάκις εἰς μέλη ἐναρμόνια (κυρίως τοῦ Γ.΄ ἤχου) ἡ γενικὴ ὕφεσις καὶ γενικὴ δίεσις $^{\circ}$ ἢ $^{\circ}$.

68) Αἱ τρεῖς Χρόαι καὶ τὶ καλεῖται χρόα. Ἐξετάζοντες προηγουμένως τὰς κλίμακας τῶν τριῶν γενῶν εἴπομεν, ὅτι σχηματίζονται μὲ ὑφέσεις καὶ διέσεις τιθεμένας ἐπὶ ἑνὸς ἢ δύο ἀπὸ τοὺς φθόγγους ἑκάστου τετραχόρδου. Ἐφ' ὅσον δὲ δυνάμεθα νὰ θέσωμεν ὕφεσιν ἢ δίεσιν εἰς οἱονδήποτε φθόγγον τῆς φυσικῆς κλίμακος, ἐκ τούτου εἰναι δυνατὸν νὰ παραχθῶσι ποικιλίαι κλιμάκων ἢ εἰδικαὶ διαιρέσεις τῶν γενῶν. Ἡ εἰδικὴ διαίρεσις τοῦ γένους ὀνομάζεται εἰς τὴν ἀρχαίαν Ἑλληνικὴν μουσικὴν Χρόαι πολλαί, (ὁ Χρύσανθος εἰς τὸ μέγα θεωρητικὸν § 271-275 ὑπολογίζει αὐτὰς εἰς 740 ἐν ὅλω) ἐξ αὐτῶν ἡ Βυζαντινὴ μουσικὴ μεταχειρίζεται μόνον τρεῖς τὰς ἑξῆς: 1) ὁ ζυγὸς ϫ΄, 2) τὸ κλιτὸν ϫ καὶ 3) ἡ σπάθη — Α. α) 'Ο ζυγὸς ἢ διπλὴ δίεσις ϫ΄, δει-

κνύει ποιότητα χρωματικήν, καὶ τίθεται ἐπὶ τοῦ φθόγος γου Δ, ζητεῖ δὲ τὸν Γο δίεσιν, τὸν Β, εἰς τὴν θέσιν του καὶ τὸν Πο δίεσιν. Τοιουτοτρόπως σχηματίζει τὸ διάστημα Δ-Γ ἡμίτονον ἢ τριτημόριον μείζονος τόνου (4), τὸν Γ-Β τριημιτόνιον (16) καὶ τὸν Β-Π ἡμίτονον ἢ τριτημόριον μείζονος τόνου (4) καὶ τὸ Π-Ν τριημιτόνιον (18), ὡς τὸ ἀκόλουθον σχῆμα Ι΄ αὐτοῦ. Ἐπομένως ὁ ζυγὸς ἔχων βάσιν τὸν Δ, ἐνεργεῖ ἐπὶ τὸ βαρὸ καὶ δεσπόζει ὁλοκλήρου πενταχόρδου (Δ Γ Β Π Ν) ἡ δὲ ἐνέργεια αὐτοῦ διαρκεῖ ἕως ὅτου λύση αὐτὴν ἄλλη τις φθορά. Μαρτυρίαι τῶν φθόγγων τῆς χρόας αὐτῆς εἶναι αἱ εἰς τὸ ἄνω σχῆμα σημειούμεναι. Παράδειγμα τοῦ Ζυγοῦ ε΄:

π ε ε φρι ξαν Α δου ου πυ λω ω ροι ε κ πλυ νον με τοις δα κρυ σι ι μου Σω τὴρ κ ο τι ρε ρυ πω μαι εν πολ λαι αις α μαρ τι ι αις ε ἢ το ε ε λε ε ο ος

ου 'ου ου περ α μαρ τω λων 💆

β) Τὸ Κλιτὸν ἢ ἡμίφθορον Α, δεικνύει ποιότητα ἐναρμόνιον, κανονικώς τίθεται ἐπὶ τοῦ φθόγγου Δ, καὶ ζητεῖ τὸν Γ δίεσιν, τὸν Β δίεσιν καὶ τὸν Π εἰς τὴν θέσιν του, δηλ. Δ 4 Γ΄, τριτημόριον μείζονος τόνου, τὸν Γ 12 Β΄, τόνον μείζονα, τὸ δὲ Β 14 Π, τριημιτόνιον, ὡς τὸ κατωτέρω σχῆμα. Κατά ταῦτα τὸ κλιτὸν βάσιν ἔχει τὸν Δ, ἐνεργεῖ ἐπὶ τὸ βαρὺ καὶ δεσπόζει ἐπὶ τοῦ τετραχόρδου Δ Γ Β Π, έπὶ δὲ τὸ ὀξὺ τετράχορδον οὐδεμίαν ἐπίδρασιν ἔχει. Έαν τεθή ή φθορά αὐτὴ ἐπὶ ἄλλου φθόγγου πρέπει νὰ θεωρήσωμεν αὐτὸν ὡς Δ, καὶ ἀναλόγως νὰ μεταβάλλωμεν τὰ διαστήματα. Τὸ κλιτὸν συνιστᾶ μικρὰς μουσικάς γραμμάς. Κλίμαξ καὶ παράδειγμα κλιτού. Σχήμα ΙΑ΄

 $\stackrel{\times}{q}$ $\stackrel{\times}{\sim}$ $\stackrel{\times}$ π των π ε π ρα γ με ε ν ω ω ν μ οι οι. δει ει ν ων γ ? Δ μη με ποι μη ην α γα θε δι α α χω ρη η η σης ς οι οι οι οι μοι τι πε πον θα ο τα α α λα ας

γ) Ἡ Σπάθη (ὑφεσοδίεσις), δεικνύει ποιότητα μᾶλλον ἐναρμονίου γένους. Τίθεται συνήθως ἐπὶ τοῦ φθόγγου K, ἢ Γ , καὶ ζητεῖ τὸν πρῶτον ἀνιόντα φθόγγον $\frac{-\phi_1}{K}$ ύφεσιν, τὸν δὲ πρῶτον κατιόντα δίεσιν. Τοιουτοτρόπως όταν ή σπάθη εδρίσκεται ἐπὶ τοῦ Κ, σχηματίζει τὸ διάστημα Κ 4 Ζ, ήμιτόνιον ή τριτημόριον μείζονος τόνου, κατ' ἀκολουθίαν αὐξάνει τὸ διάστημα Ζ 14 Ν εἰς τριημιτόνιον, τὸ Κ 4 Δ, πάλιν 4, τὸ δὲ Δ 20 Γ, ἐπίσης είς τριημιτόνιον. Όταν δὲ ἡ σπάθη τεθῆ ἐπὶ τοῦ Γ, περίπτωσις σπανία, σχηματίζει τὰ διαστήματα Γ-Δ Σχήμα 1Β'

20

69) Μεταβολή κατά τόνον. Έξ ὅσων εἴπομεν διὰ τὰ τρία γένη καὶ τὰς κλίμακας αὐτῶν, ἐξάγεται ὅτι ἕκαστον μέλος ἀκολουθεῖ κανονικῶς ὁρισμένην κλίμακα. Πολλάκις ὅμως συμβαίνουσιν εἰς τὴν πορείαν του μέλους διάφοροι μεταβολαί. Καὶ α) ἔχομεν μεταβολὴν κατὰ τόνον, ήτοι μετάβασιν ἀπὸ ένὸς τόνου εἰς ἔτερον, ἐνῶ τὸ γένος μένει τὸ αὐτό, γίνεται δὲ ἡ μετάβασις αὐτή, ὅταν φθορὰ τοῦ γένους τεθῆ οὐχὶ εἰς τὸν φυσικόν αὐτῆς φθύγγον, ἀλλ' εἰς ἄλλόν τινα. Ἐπὶ παραδείγματι, ἐὰν είς μέλος διατονικόν θέσωμεν είς τὸν Δ, τὴν φθορὰν τοῦ Π Θ, τὸ μὲν γένος μένει τὸ αὐτό, γίνεται ὅμως μεταβολὴ κατὰ τόνον καὶ ἀλλάσει ή σειρά τῶν διαστημάτων. Εἰς τὴν περίπτωσιν αἢτὴν θὰ θεωρήσωμεν τὸν Δ, ώς Π καὶ μὲ τὴν βάσιν αὐτὴν θὰ κανονίσωμεν ἀπὸ τοῦ σημείου αὐτοῦ τὰ διαστήματα, εἴτε ἐν ἀναβάσει, εἴτε ἐν καταβάσει. Ἐπίσης ἐὰν ἔχωμεν μέλος χρωματικόν καὶ θέσωμεν τὴν φθορὰν αὐτὴν σ οὐχὶ εἰς τὸν φυσικὸν αὐτῆς φθόγγον Δ ἢ Π΄, ἀλλ' εἰς ἄλλον τινα, οἶον τὸν κάτω Π, τὸ μὲν γένος μένει τὸ αὐτό, γίνεται ὅμως μεταβολὴ κατὰ τόνον και άλλάσσει ή σειρά των διαστημάτων. Είς την περίπτωσιν αὐτην θὰ θεωρήσωμεν τὸν Π, ώς Δ καὶ μὲ τὴν βάσιν αὐτὴν θὰ κανονίσωμεν τὰ λοιπὰ διαστήματα, εἴτε ἐν ἀναβάσει εἴτε ἐν καταβάσει.

Ή κατὰ τόνον μεταβολὴ λέγεται καὶ μετάθεσις, κατὰ τὴν μετάθεσιν αί μαρτυρίαι ὑφίστανται ἀνάλογον τροποποίησιν. Οὕτω εἰς τὸ πρώτον παράδειγμα ή μαρτυρία τοῦ Δ, δὲν θὰ εἶναι ή κανονική μαρτυρία $\frac{\Delta}{i}$, ἀλλὰ θὰ γραφῆ οὕτω $\frac{\Delta}{i}$ καὶ τὸ μὲν Δ δηλοῖ ὅτι ὁ φθόγγος εἶναι Δ, τὸ κάτωθεν ὅμως συμβολικὸν σημεῖον $\frac{\Delta}{i}$ (ήμιφὶ) δεικνύει, ὅτι ὁ Δ μετεβλήθη εἰς Π, καὶ μὲ τὴν βάσιν αὐτὴν κανονίζονται αἱ μαρτυρίαι τῶν λοιπῶν φθόγγων οἶον $\frac{\Delta}{i}$ $\frac{\lambda}{i}$ $\frac{\lambda}{i}$ κλπ. Όμοίως εἰς τὸ δεύτερον παράδειγμα ἡ μαρτυρία τοῦ Π, δὲν θὰ εἶναι κανονικὴ μαρτυρία $\frac{\pi}{i}$, ἀλλὰ θὰ γραφῆ οὕτω $\frac{\pi}{i}$, καὶ τὸ μὲν Π, δηλοῖ ὅτι ὁ φθόγγος εἶναι Π, τὸ κάτωθεν ὅμως συμβολικὸν σημεῖον δεικνύει ὅτι ὁ Π, μετεβλήθη εἰς $\frac{\Delta}{i}$, καὶ μὲ τὴν βάσιν αὐτὴν θὰ κανονίζωνται αἱ μαρτυρίαι καὶ τῶν λοιπῶν φθόγγων ῆτοι $\frac{\pi}{i}$ $\frac{\delta}{i}$ $\frac{\Delta}{i}$ κλπ.

Ή κατὰ τόνον μετάθεσις ἐξακολουθεῖ εἰς τὸ μέλος ἕως ὅτου λύση αὐτὴν ἄλλη τις φθορά, ὁπότε ἐπανέρχεται εἰς τοὺς ἀρχικοὺς αὐτοῦ τόνους. Παραδείγματα μεταβολῆς καὶ μεταθέσεως τόνων κλπ.

70) Ἡ κατὰ γένος μεταβολὴ ἢ μετάθεσις τοῦ μέλους ἀπὸ τὸ ἕνα γένος εἰς τὸ ἄλλον. Οὕτω μέλος διατονικὸν δύναται νὰ μετατραπῆ, εἰς χρωματικὸν καὶ ἐναρμόνιον, καὶ μέλος χρωματικὸν νὰ μεταβληθῆ εἰς διατονικὸν καὶ ἐναρμόνιον κλπ. ἡ τοιαύτη μετάβασις τῶν γενῶν γίνεται διὰ τῶν φθορῶν. Οὕτω, μέλος διατονικὸν μετατρέπεται εἰς χρωματικὸν καὶ ἐναρμόνιον, ἐὰν τεθῆ ἐν αὐτῷ φθορὰ χρωματικὴ ἢ ἐναρμόνιος, καὶ μέλος ἐναρμόνιον μετατρέπεται εἰς διατονικὸν ἢ χρωματικόν, ἐὰν τεθῆ φθορὰ χρωματικὴ ἢ διατονικὴ κλπ. Ἐὰν ἡ φθορά, ἡ ἐπιφέρουσα τὴν μεταβολὴν εἰς τὸ μέλος, τεθῆ ὅχι εἰς τὸν κανονικὸν αὐτῆς φθόγγον, ἄλλὶ εἰς ἄλλον τινα, τότε τὸ τοιοῦτον λέγεται παραχορδή.

"Όταν γίνεται μεταβολή κατά γένος, αί μαρτυρίαι παρακολουθούν την είς τὸ μέλος μεταβολήν αὐτού, δηλ. είναι διατονικαί μὲν διὰ τὸ

διατονικόν τετράχορδον, χρωματικαί διὰ τὸ χρωματικόν καί ἐναρμόνιοι διά τὸ ἐναρμόνιον. Καὶ οὕτω δυνάμεθα νὰ εἴπωμεν ὅτι τὸ μέλος, εἰς ώρισμένας αὐτοῦ γραμμάς χρησιμοποιεί κλίμακα μικτήν, της δποίας τὸ εν τετράχορδον είναι διατονικόν και τὸ ἄλλο χρωματικόν ἢ ἐναρμόνιον άναλόγως. Ή ἐπαναφορὰ εἰς τὸ ἀρχικὸν μέλος γίνεται μὲ φθορὰν του γένους είς δ. ανήκει τὸ αρχικὸν μέλος. 'Εὰν υποτεθή ὅτι τὸ άρχικὸν μέλος, με μίαν φθοράν μεταβή εἰς ἔτερον γένος καὶ ἀπο ἐκεῖνο διὰ νέας φθορᾶς εἰς ἔτερον, ἡ διπλῆ αὕτη δέσις λύεται μὲ φθορὰν τοῦ άρχικου γένους του μέλους καὶ ἐπαναφέρει αὐτὸ εἰς τὰ ἴδια. Δύναται έπίσης νὰ γίνη μεταβολή κατά γένος καὶ κατὰ τόνον συγχρόνως, ή όποία λύεται ἐπίσης μὲ φθοράν, ἥτις ἐπαναφέρει τὸ μέλος εἰς τὸ ἀρχικόν γένος καὶ τὸν κανονικὸν τόνον, $\pi.\chi$. $\frac{\pi}{q}$ δο ξα τοις σοις π α θη μα σι Χρι στε ἢ ἢ Ω ω πως ο λα ος υ α νο μος $\frac{\xi}{q}$ ο α πει θης και πο νη ρα βου λευ σα με νος $\frac{\pi}{q}$ ταις α στρα α πτου ου ου ου σαι αις $\ddot{\ddot{\alpha}}$ $\ddot{\ddot{\alpha}}$ $\ddot{\ddot{\alpha}}$ κλπ. τε νο ουν εις τα δε ξι α παι ε πε βλε πον και ουκ ην ο επι γι νώ σκων με ς και δει ει ει ει πνο ον φα νε ρα πα ρι ι στα αν ται αι π

72) Συνοψίζοντες τοὺς χαρακτηρισμοὺς τῶν γενῶν, λέγομεν ὅτι, οἰαδήποτε Βυζαντινὴ μελφδία ἀνήκει εἰς ἕνα ἀπὸ τὰ τρία γένη τῆς μουσικῆς ῆτοι: τὸ διατονικόν, τὸ χρωματικὸν ἢ τὸ ἐναρμόνιον, πολλάκις ὅμως εἰς ἕν καὶ τὸ αὐτὸ μέλος γίνεται ἐναλλαγὴ καὶ χρῆσις καὶ τῶν τριῶν γενῶν. Ἔκαστον γένος, ὡς εἴπομεν σχηματίζει ὡρισμένας κλίμακας καὶ ἔχει ἰδίας μαρτυρίας καὶ φθοράς. Αἱ φθοραὶ εἶναι ἐν ὅλφ δέκα ἕξ, ῆτοι ὀκτὰ διατονικαὶ αἱ ἑξῆς: Σρ ξρ καὶ δρ ξρ καὶ ν π δ το δρ κοὶ ν κοὶ ν

χρωματικαὶ πέντε :
$$\frac{1}{\pi}$$
 χ Δ $\frac{1}{\pi}$ γ $\frac{1}{\pi}$ Δ $\frac{1}{\pi}$ $\frac{1}{\pi}$ χ Δ καὶ ἐναρμόνιοι τρεῖς : $\frac{1}{\pi}$ $\frac{1$

Έκαστον γένος ἢ χρόα ἔχει ἰδιαιτέραν μελφδικὴν ποιότητα.

Κλίμακες, Μαρτυρίαι καὶ διαστήματα (μὲ ἀριθμητικὴν ἀξίαν) τῶν τριῶν γενῶν καὶ τῶν τριῶν χροῶν τῆς Βυζαντινῆς Μουσικῆς.

Κεφάλαιον Ζ΄

Β.΄ Τὸ σύστημα ἐν τῆ Βυζαντινῆ Μουσικῆ

73) Εἰς τὴν § 6 καὶ 7 ἐμάθομεν ὅτι ἡ μουσικὴ κλίμαξ ἀποτελεῖται ἀπὸ σειρὰν φθόγγων καὶ 7 διαστημάτων καὶ ὅτι δυνάμεθα νὰ ἔχωμεν πολλὰς ὁμοίας κλίμακας ἐπὶ τὸ ὀξὸ καὶ ἐπὶ τὸ βαρὸ μὲ τὸν αὐτὸν ἀριθμὸν φθόγγων καὶ τὴν αὐτὴν ἀναλογίαν διαστημάτων. Δυνάμεθα ὅμως νὰ ἔχωμεν καὶ σειρὰν μὲ ὀλιγωτέρους φθόγγους καὶ διαστήματα, ἡ ὁποία νά ἐπαναλαμβάνεται ἐπὶ τὸ ὀξὸ καὶ τὸ βαρὸ μὲ τὸν αὐτὸν ἀριθμὸν φθόγγων καὶ τήν αὐτὴν ἀναλογίαν διαστημάτων. Ἐκ τῆς καταρτίσεως τοιαύτης σειρᾶς προκύπτει τὸ σύστημα, ὅπερ κατὰ τὸν Εὐ-

κλείδην είναι σειρά διαστημάτων περισσοτέρων τοῦ ένός. «Σύστημα» είναι σειρά φθόγγων ἢ διαστημάτων, ἥτις ἐπαναλαμβάνεται ὁμοίως ἐπὶ τὸ ὀξὺ καὶ τὸ βαρύ.

Συμφώνως ὄθεν τῷ ὁρισμῷ τούτῳ, δυνάμεθα νὰ ἔχωμεν σύστημα ἀποτελούμενον ἀπὸ διαστήματα δύο ἢ τρία ἢ τέσσαρα ἢ πέντε κλπ. ἤτοι ἀπὸ φθόγγους 3 ἢ 4 ἢ 5 ἢ 6 κλπ. Ἡ Βυζαντινὴ μουσικὴ ἔχει ἐν χρήσει εἰς τὰ μέλη αὐτῆς συστήματα τρία: α) Τὸ ὀκτάχορδον, β) τὸ πεντάχορδον καὶ γ) τὸ τετράχορδον, εἶναι δὲ γνωστὰ ταῦτα παλαιόθεν, ἀπὸ τὴν θεωρίαν τῶν Ἦρχαίων Ἑλλήνων.

74) Τὸ ὀκτάχορδον ἢ διαπασῶν σύστημα, εἶναι περισσότερον εὔχρηστον ἀπὸ ὅλα καὶ ὀνομάζεται διαπασῶν ἢ ἑπταφωνία ἐπειδὴ ἀποτελεῖται ἀπὸ ὀκτὼ φθόγγους, οἱ ὁποῖοι σχηματίζουν ἑπτὰ τονιαῖα διαστήματα. Οὕτω ἡ διατονικὴ κλίμαξ Π Β Γ Δ Κ Ζ Ν Π, ἐπαναλαμβανομένη
ἐπὶ τὸ ὀξὺ καὶ τὸ βαρὺ μὲ τὸν αὐτὸν ἀριθμὸν φθόγγων καὶ τὴν αὐτὴν
ἀναλογίαν διαστημάτων, εἶναι σύστημα ὀκτάχορδον ἢ διαπασῶν. Εἰς τὸ
σύστημα αὐτὸ ὁ πρῶτος φθόγγος Π τῆς μέσης διαπασῶν, ἀντιστοιχεῖ
καὶ συμπίπτει μὲ τὸν ὄγδοον φθόγγον τοῦ Π΄ τῆς ὀξείας διαπασῶν καὶ
τἀνάπαλιν. Τὰ αὐτὰ ἐν ἀναλογία ἰσχύουν καὶ διὰ τοὺς λοιποὺς φθόγγους. Εἰς ἑκάστην κλίμακα τοῦ συστήματος τούτου, ὁ πρῶτος φθόγγος
ὅστις εἶναι ἡ βάσις τῆς κλίμακος, ὁ αὐτὸς συγχρόνως εἶναι ἡ ἀνωτάτη
βαθμὶς διὰ τὸν σχηματισμὸν βαρυτέρας κλίμακος, ὡς καὶ ὁ ἀνώτατος
φθόγγος ἑκάστης κλίμακος ἀποτελεῖ τήν βάσιν ὀξυτέρας τοιαύτης.

'Ολίγα τινὰ περὶ τοῦ Τροχοῦ, ὅστις ἦτο ἐν χρήσει ὑπὸ τῶν Βυζαντινῶν μουσικῶν διδασκάλων

Οί διδάσκαλοι τῆς Βυζαντινῆς μουσικῆς ἐχρησιμοποίουν πρὸς εὐκολίαν τῶν μαθητῶν σχῆμα τροχοῦ ἢ κύκλου τὸν ὁποῖον ἐχώριζον τέσσαρες διάμετροι εἰς ὀκτώ τμήματα. Ἐπὶ τῆ βάσει τοῦ σχήματος τούτου ἐδιδάσκοντο οἱ ἀρχάριοι τὴν παραλλαγὴν ἐν ἀναβάσει καὶ καταβάσει κατὰ τὸ πεντάχορδον σύστημα.

Ο Τροχὸς (ἢ πεντάχορδον σύστημα) περιέχει τέσσαρα διαστήματα ἢ τόνους ἢ πέντε φθόγγους ὡς Πα—Βου Γα—Δι—Πα, κατὰ τε τα τη τω τε

τοὺς ἀρχαίους ἕλληνας. Ύπὸ τῶν βυζαντινῶν παριστάνοντο τὰ διαστήματα ταῦτα εἰς μὲν τὴν ἀνάβασιν διὰ τῶν τεσσάρων πολλυσυλλάβων λέξεων ἄλλαμες, μεαμες, λαλα, ἄγια, εἰς δὲ τὴν κατάβασιν διὰ τῶν ἑξῆς: ααμες, μεχεαμες, αμεαμες, μεαγιε, αὖται δὲ αί ὀκτὰ λέξεις λέγονται φθόγγοι τοῦ τροχοῦ.

Τροχὸς

A ha ha
$$\ddot{q}$$
 he a hes \ddot{m} ha \ddot{n} a \ddot{n} \ddot{n}

Τὰ σημεῖα η καὶ ζ προφέρονται ὡς ν. Καὶ τὸ μὲν η εὐρίσκεται ήνωμένον μὲ τὸ γράμμα α, τὸ δὲ ζ μὲ τὸ ε. Οἱ πολυσύλλαβοι οὖτοι φθόγγοι τῆς Βυζαντινῆς μουσικῆς ἑρμηνεύονται ὡς ἑξῆς: Τὸ αηηαζες παράγεται ἐκ τοῦ ἄνα ἄνες (ὁ Ἄναξ = βασιλεὺς) κλητικὴ ὧ Ἄνα. Ἄνες (ἄφες=συγχώρησον), τὸ ζεαζες ἐκ τοῦ ναὶ ἄνες, τὸ ηαηα ἐκ

τοῦ ἄνα ἄνα, καὶ τὸ ἄγια (σῶσον δὴ) ἐκ τοῦ Ἅγιε, ἐπομένως οἱ φθόγγοι αὐτοὶ ἀποτελοῦν τὴν ἑξῆς εὐχήν:

« Αναξ ἄνες, ναὶ ἄνες ἄναξ, ἄναξ ἄγιε »

- ἢ "Ανα ἄνες, ναὶ ἄνες ὁ "Ανα, "Ανα "Αγιε
- ο Θεὲ άφες συγχώρησον καὶ άφες ο Θεέ, Θεὲ Αγιε.

Ή παραλαγή ἐπὶ τοῦ τροχοῦ γίνεται ὡς ἑξῆς: ᾿Αρχίζοντες ἀπὸ τοῦ φθόγγου αλλαμες ἢ προχωροῦμεν πρὸς τὰ δεξιὰ τοῦ τροχοῦ κατὰ σειρὰν ὀξυτέρους φθόγγους μεαμες ΄΄, λαλα ἰί, καὶ ἄγια ΄΄ ἀπὸ τοῦ ἢ ἐπιστρέφοντες κατ' εὐθεῖαν εἰς τὸ ἀντίθετον τοῦ τροχοῦ εδρίσκομεν τὸν βαρύτερον τοῦ ἄγια κατὰ ἕνα φθόγγον (ὡς δεικνύει ὁ ἐπ' αὐτοῦ χαρακτὴρ τῆς ἀποστρόφου), ααμες ΄΄, καὶ προχωροῦντες κατὰ σειρὰν προφέρομεν τοὺς ἐπιλοίπους ἐπὶ τὸ βαρὺ φθόγγους μεχέαμες ΄΄ λτος αμεαμες ἡ μεαγιε ἡ ἀπὸ τοῦ μεάγιε ἡ ἐπιστρέφοντες κατ' εὐθεῖαν εἰς τὸ ἀντίθετον τοῦ τροχοῦ, εὐρίσκομεν καὶ πάλιν τὸν αμεαμες ἡ ὁ ὁποῖος εἶναι ὀξύτερος τοῦ μεάγιε ἡ κατὰ ἕνα φθόγγον (ὡς δεικνύει ὁ ἐπ' αὐτοῦ χαρακτὴρ τοῦ ὀλίγου) καὶ οὕτω καταλήγομεν εἰς τὸν φθόγγον ἀπὸ τοῦ ὁποίου καὶ ἡρχίσαμεν.

"Όταν δὲ θελήσωμεν νὰ ὁδεύσωμεν πρὸς τὸ ὀξύτερον ἐλθόντες εἰς τὸν Καὶ οὕτω βαίνομεν πρὸς ὀξυτέρους φθόγγους.

Όταν δὲ θελήσωμεν νὰ κατέλθωμεν πρὸς τὸ βαρὰ ἐλθόντες εἰς τὸν ἢ δὲν ἐπιστρέφομεν εἰς τὸν ἢ ἀλλ' εἰς τὸν καὶ οὕτω κατερχόμεθα πρὸς βαρυτέρους φθόγγους.

Έκαστος φθόγγος ἀπαγγέλεται κατὰ δύο τρόπους π.χ. ὁ Πα ἐν ἀναβάσει λέγεται αλλαίες ἐν καταβάσει δὲ αίεαίες, ὁ Βου ἐν ἀναβάσει λέγεται ίεαίες ἐν καταβάσει δὲ ίεχέαίες, ὁ Γα ἐν ἀναβάσει λέγεται λαλα ἐν καταβάσει δὲ ἄαίες, ὁ Δι ἐν ἀναβάσει ἄγιε ἐν καταβάσει δὲ ἰέαγιε.

75) Τὸ πεντάχορδον σύστημα ἢ τροχός. Είναι σειρὰ ἀπὸ πέντε φθόγγους οἱ ὁποῖοι σχηματίζουν διαστήματα τέσσαρα. Τὸ πεντάχορδον σύστημα ὀνομάζεται καὶ τετραφωνία, ὑπὸ δὲ τῶν βυζαντινῶν ὀνομάζεται τροχός. Κατὰ τὸ σύστημα τοῦτο, ἔχομεν σειρὰν 5 φθόγγων ἤτοι Π Β Γ Δ Κ, ἥτις ἐπαναλαμβάνεται ἐπὶ τὸ ὀξὺ καὶ τὸ βαρὺ μὲ τὸν αὐτὸν

ἀριθμὸν φθόγγων καὶ τὴν αὐτὴν ἀκριβῶς ἀναλογίαν διαστημάτων. Εἰς τὴν πεντάφωνον αὐτὴν κλίμακα ὁ ὀξύτερος φθόγγος Κ, λαμβάνεται ὡς βάσις (ὡς Π), διὰ ν' ἀρχίσωμεν νέον ὅμοιον πεντάχορδον ἐν ἀναβάσει μὲ διαστήματα ἀκριβῶς τὰ αὐτὰ πρὸς τὰ τοῦ πρώτου πενταχὸρδου, καὶ ὁ βαρύτερος φθόγγος Π λαμβάνεται ὡς ὁ ὀξύτερος φθόγγος (ὡς Κ), διὰ τὸν σχηματισμὸν νέου πενταχόρδου ἐν καταβάσει μὲ τὰ αὐτὰ ἀκρι-

,		4			٠	-Δ΄	
Mapzupiau -cou An. Anarraigny		I	12		8	AT TX 6:9	map rupion
					10	8	reoxon Kerserson
		54.05 F: C > E NY X: 0 4:02 15.05 EM > 20.05 AX	10		12	व गं	٦ ٨
Kaipas uare 20 Alamasion			12		12	1	で
			8		8	71	Z -
	20 (K		10		10	マスなど。	Ž.
	rutu global roj Blaz		12,		12	9 4 3	Khipper vor even grapich
			12.		12.	-	6-
			8		8	12/8	4
			10		10	1	° ×
			12		12	9	\(\frac{1}{2}\)
	'ે ૧ ∀ઇ		8		1 49 1	1	2 2 K
			10			2	
		K	10		8	- K	
		Sı	12		10	9	
		z×	ingra	1,	Δ'.	*	

βῶς διαστήματα τοῦ πρώτου πενταχόρδου ἐν καταβάσει. Ἐπομένως ὁ μὲν πρῶτος φθόγγος τοῦ συστήματος τούτου ἀντιστοιχεῖ ἀκριβῶς πρὸς τὸν πέμπτον, τὸν ἕνατον, τὸν 13ον κλπ. εἴτε ἐπὶ τὸ ὀξὺ εἴτε ἐπὶ τὸ βαρύ. Τὸ αὐτὸ ἰσχύει καὶ διὰ τοὺς λοιποὺς φθόγγους.

Τὸ πεντάχορδον σύστημα συμφωνεῖ, κατὰ τὰ διαστήματα μὲ τοὺς πρώτους 5 φθόγγους τοῦ ὀκταχόρδου Π B Γ Δ K. Οὕτω εἰς τὴν διατονικὴν κλίμακα ἀπὸ τοῦ Π , ὡς βάσις ἕως τοῦ ἀντιστοίχου νητοειδοῦς B' ἔχομεν τὰ ἑξῆς διαστήματα μὲ τὴν ἀριθμητικὴν αὐτῶν παράστασιν : Π 10 B 8 Γ 12 Δ 12 K 10 Z' 8 N' 12 Π' 10 B', κατὰ δὲ τὸν τροχὸν ἔχομεν : Π 10 Π 8 Π 12 Π 12 Π 12 Π 12 Π 13 Π 14 Π 15 Π 15 Π 16 Π 16 Π 16 Π 17 Π 16 Π 17 Π 17 Π 18 Π 18 Π 19 Π 19 Π 19 Π 10 Π 1

δεύτερον πεντάχορδον κατὰ τὸ τελευταῖον διάστημα Π΄ — Β΄, ὅπερ κατὰ μὲν τὸ διαπασῶν εἶναι τόνος ἐλάσσων, κατὰ δὲ τὸ πεντάχορδον τόνος μείζων. Ἡ διαφορὰ γίνεται μεγαλυτέρα ἐὰν προχωρήσωμεν ἐπὶ τὸ ὀξὸ κατὰ εν ἀκόμη πεντάχορδον κλπ. Ὁμοίως, ἐὰν ἀπὸ τὸν Π΄ καταβῶμεν διατονικῶς 5 φθόγγους Π΄ Ν΄ Ζ΄ Κ Δ, κατὰ μὲν τὸ διαπασῶν θὰ ἔχωμεν διαστήματα Π 12 Ν 8 Ζ Ζ 10 Κ 12 Δ, κατὰ δὲ τὸν τροχὸν θὰ καταβῶμεν ἀπὸ τὸν Π, ὡς Κ : Κ 12 Δ 12 Γ 8 Β Β 10 Π.

Αί δὲ μαρτυρίαι τῶν φθόγγων κατὰ τὸ σύστημα τοῦτο συμφωνοῦν ἀνὰ πέντε. Οὕτω εἰς τὰς μαρτυρίας τοῦ πρώτου διατονικοῦ πενταχὸρδου ἐν ἀναβάσει q λ γη ζ q, συμφωνοῦν αὶ μαρτυρίαι τοῦ δευτέρου ἐπὶ τὸ ὀξὸ ὁμοίου πενταχόρδου. χ ζ γ π δ σ q, η ζ q. μ σ.

76) Τὸ τετράχορδον σύστημα, ἢ τριφωνία, εἶναι σειρὰ 4 φθόγγων, οἱ ὁποῖοι σχηματίζουν διαστήματα τρία. Οὕτω ἡ σειρὰ τῶν φθόγγων ν π β Γ, ἐπαναλαμβάνεται μὲ τὸν αὐτὸν ἀριθμὸν φθογγων καὶ τὴν αὐτὴν ἀναλογίαν διαστημάτων, περικλείει διαστήματα τρία καὶ εἶναι σύστημα τετράχορδον. Ἑπομένως εἰς τὸ σύστημα αὐτὸ ἔχομεν ἐπανάληψιν ἐπὶ τὸ ὸξὺ καὶ τὸ βαρὺ τετραφθόγγου κλίμακος, εἰς τὴν ὁποίαν ὁ ὸξύτερος φθόγγος Γ, λαμβάνεται ὡς βάσις (ὡς ν), διὰ νὰ ἀρχίση νέον ὅμοιον τετράχορδον ἐν ἀναβάσει μὲ διαστήματα ἀκριβῶς τὰ αὐτά, μὲ τὰ τοῦ πρώτου τετραχόρδου. Καὶ ὁ βαρύτερος φθόγγος ν, λαμβάνεται ὡς ὁ ὀξύτερος (ὡς Γ) διὰ νὰ σχηματίση νέον ὅμοιον τετράχορδον ἐν καταβάσει μὲ διαστήματα ἀκριβῶς τὰ αὐτὰ πρὸς τὰ τοῦ πρώτου τετραχόρδου Ἑπομένως ὁ πρῶτος φθόγγος τοῦ συστήματος τούτου εἶναι

ὄμοιος μὲ τὸν τέταρτον, τὸν ἔβδομον, τὸν δέκατον κλπ. εἴτε ἐν ἀναβάσει εἴτε ἐν καταβάσει.

Είς τὸ σύστημα τοῦτο τὸ πρῶτον τετράχορδον συμφωνεί, ώς πρός τὰ διαστήματα τής διαπασών κλίμακος καὶ τὰ τοῦ τροχου, τὰ δὶαστήματα ὅμως τοῦ δευτέρου τετραχόρδου ἐπὶ τὸ ὀξὺ διαφέρουν ἀπὸ τὰ άντίστοιχα διαστήματα του όκταχόρδου καί τοῦ πενταχόρδου, καθότι ή δευτέρα διατονική κλίμαξ τοῦ τετραχόρδου βαίνει, ὁ Γ, ώς ν, ώς καὶ τὸ πρῶτον τετράχορδον, δηλ. $\Gamma \Delta K Z$, ώς $N \Pi B \Gamma$, ήτοι, $\Gamma \Delta$ 12 10 ἐνῶ κατὰ τὸ διαπασῶν καὶ τὸν τροχὸν τὰ διαστήματα αὐτῶν βαίνουν, ὡς Γ 12 Δ 12 Κ Κ 10 Ζ, όμοίως καὶ εἰς τὴν κατάβασὶν Ἡ παραλλαγή κατά τὸ τετράχορδον σύστημα γίνεται με την εκφώνησιν σειρας τεσσάρων φθόγγων, έξ ων ό τελευταῖος γίνεται άρχὴ δευτέρας όμοίας σειρας, έν άναβάσει ώς έξης:

νπβΓπβΓπβΓπβΓ

καὶ ἀπὸ τὸ πρῶτον τετράχορδον ἐν καταβάσει: Γ β π ν β π ν β π ν β π ν κ.ο.κ. Αἱ δὲ μαρτυρίαι τοῦ συστήματος τούτου συμφωνοῦν \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} ἀνά τέσσαρες, ἐν ἀναβάσει: ν π β Γ , Γ Δ κ Z, Z ν' π' β' \mathcal{A} \mathcal{A}

77) Μεταβολή κατὰ σύστημα. Έκαστον μέλος ἐξ ἐπόψεως μὲν διαστημάτων ἀνήκει εἰς ἕν ἀπὸ τὰ τρία γένη τῆς Μουσικῆς, ἀναλόγως δὲ τῆς κλίμακος ῆν ἀκολουθεῖ, ὑπάγεται εἰς ἕν ἀπὸ τὰ τρία συστήματα: τὸ 8)χορδον, τὸ 5)χορδον, ἢ 4)χορδον καὶ ὅπως ἔχωμεν μεταβολὴν κατὰ τόνον καὶ κατὰ γένος, οὕτως ἔχομεν καὶ μεταβολὴν κατὰ σύστημα ἢ μετάβασιν ἀπὸ τοῦ ἐνὸς εἰς τὸ ἄλλον τοιοῦτον. Καὶ αὐτὴν τὴν μεταβολὴν προκαλοῦν αἱ φθοραί, δημιουργοῦσαι ἀναλόγως μεταθέσεις, ὁπόταν ὡρισμένοι φθόγγοι τῆς κλίμακος γίνονται βαρύτεροι ἢ ὀξύτεροι κλπ. Εἰς περίπτωσιν μεταβολῆς τοῦ συστήματος καὶ αἱ μαρτυρίαι τῶν φθόγγων θὰ μεταβληθῶσιν ἀναλόγως.

Κεφάλαιον Η.΄

Γ.΄ Περὶ ἐννοίας καὶ ἀριθμοῦ τῶν ἤχων

78) 'Ως ἀνωτέρω εἴπομεν, πάντα τὰ μέλη τῆς Βυζαντινῆς Μουσικῆς ἀνήκουν εἰς τὰ τρία γένη αὐτῆς ἤτοι τὸ Διατονικόν, τὸ Χρωματικὸν καὶ τὸ Ἐναρμόνιον. Εἰναι δυνατὸν ὅμως ἕκαστον μέλος, εἰς οἱονδήποτε γένος καὶ ἄν ἀνήκη, νὰ ἀκολουθῆ, διάφορον πορείαν, τάξιν καὶ σύνθεσιν. Ἐπειδὴ ἡ βάσις ἀπὸ τὴν ὁποίαν ἀρχίζει, ἡ πλοκὴ τῶν ἀναβάσεων καὶ καταβάσεων, ἡ ἔκτασις εἰς ὀξεῖς καὶ βαρεῖς φθόγγους, αἱ καταλήξεις καὶ ἄλλα τοιαῦτα γνωρίσματα δύνανται νὰ διαφέρουν ἀναλόγως τοῦ μέλους καὶ νὰ χωρίζουν τοῦτο τὸ μέλος ἀπὸ ἐκεῖνο, τοιουτοτρόπως ἐν τῆ ἐξελίξει τῆς μουσικῆς, ἐμορφώθησαν βαθμηδόν, διάφοροι τρόποι κατὰ τοὺς ὁποίους ὁδεύει τὸ μέλος, εἴτε Διατονικὸν εἴτε Χρωματικὸν ἢ Ἐναρμόνιον,

Οἱ τρόποι οὖτοι ἐν τῆ Βυζαντινἢ μουσικῆ ἀνομάζονται ἣχοι. εν τῆ Κατὰ τὸν ὁποῖον προβαίνει τὸ μέλος, μὲ ώρισμένα διακριτικὰ γνωρίσματα. Επομένως δύο μέλη ἀνήκοντα εἰς τὸ αὐτὸ γένος, δύνανται νὰ διαφέρουν κατὰ τὸν ἦχον, ᾿Αναφέρεται δὲ

ὅτι εἰς τὴν ἀρχαίαν Ἑλληνικὴν μουσικὴν οἰ ἦχοι ἦσαν 15, καὶ ὀνομάζοντο τρόποι (ἐξ οὐ καὶ τροπάριον), ἐξ αὐτῶν ὃμως ἡ Ἐκκλησιαστικὴ μουσικὴ παρέλαβε μόνον 8, τοὺς καταλληλοτέρους, διὰ σεμνὰ μέλη μὲ τὰ ὁποῖα νὰ ἐκφράζῃ λόγους προσευχῆς, ὕμνους καὶ δοξολογίας, καὶ ἀπέκλεισε τὰ θορυβώδη, ἐλευθέρια, θηλυπρεπῆ καὶ ἄσεμνα ἄσματα.

Περί τάξεως και διαιρέσεως των ήχων

79) Οἱ ὀκτὼ ἤχοι ἔχουν τὰ ἑξῆς ὀνόματα:

Πρώτος Πλάγιος τοῦ Πρώτου Δεύτερος Πλάγιος τοῦ Δευτέρου

Τρίτος Βαρύς

Τέταρτος Πλάγιος τοῦ Τετάρτου

Οί ήχοι αὐτοὶ διακρίνονται ἀπ' ἀλλήλων, ἀφ' ένὸς μὲν κατὰ τὸ γένος καὶ ἀφ' ἑτέρου εἰς ἄλλα τινα γνωρίσματα. Καὶ διὰ μὲν τὸ γένος, ὁ Πρῶτος, ὁ Τέταρτος καὶ οἱ πλάγιοί των ἀνήκουν εἰς τὸ Διατονικὸν γένος. Ὁ Δεύτερος καὶ ὁ πλάγιός του, εἰς τὸ Χρωματικὸν γένος, καὶ ὁ Τρίτος καὶ Βαρύς, εἰς τὸ Ἐναρμόνιον.

*Ως πρὸς τὰ λοιπὰ γνωρίσματα, σί ἦχοι διακρίνονται εἰς κυρίους καὶ εἰς πλαγίους. *Ο Πρῶτος, ὁ Δεύτερος, ὁ Τρίτος καὶ ὁ Τέταρτος εἰναι κύριοι ἦχοι, οἰ δὲ λοιποὶ εἰναι πλάγιοι, ὡς καὶ αὶ κλήσεις αὐτῶν πλὴν τοῦ Βαρέως, ὅστις ἀμφισβητῆται μεταξὺ κυρίου καὶ πλαγίου.

80) Ἡ τάξις τῶν ὀκτὼ ἤχων, καθ᾽ ἢν ὀνομάζονται, ὁ μὲν πρῶτος, ὁ δὲ δεύτερος κλπ. προῆλθε πιθανῶς, ἀπὸ τὴν σειρὰν τῶν φθόγγων, τοὺς ὁποίους χρησιμοποιεῖ ἔκαστος τούτων, ὡς βάσιν του. Οὕτω ὁ πρῶτος ἦχος, παλαιότερον ὡς βάσιν του εἰχε τὸν φθόγγον Κ, ὁ δεύτερος τὸν Δ, ὁ τρίτος τὸν Γ, ὁ τέταρτος τὸν Β καὶ τὸν Δ. Οἱ δὲ πλάγιοἱ των ἐπλαγίαζον τὴν βάσιν αὐτῶν κατὰ τέσσαρας φθόγγονς ἐπὶ τὸ βαρὺ ἀπὸ τὴν βάσιν τοῦ κυρίου αὐτῶν ἤχου, ἢτοι ὁ πλάγιος τοῦ πρώτου τὸν Π, ἔναντι τῆς βάσεως τοῦ Κ τοῦ κυρίου ἤχου αὐτοῦ. ὁ πλάγιος τοῦ δευτέρου τὸν Ν ὡς Π, ἕναντι τοῦ Δ βάσεως τοῦ Β.΄ ἀπὸ τὸν Π εἰς τὸν Κ, εὑρίσκομαι φυσικῶς τὸν φθόγγον Δ, φυσικὴν βάσιν τοῦ δευτέρου ἤχου, ὁ βαρὺς τὰν Ζ΄ ἔναντι τοῦ Γ βάσεως τοῦ τρίτου ἢχου (ἄν καὶ κατ᾽ ἄλλους ὁ βαρὺς φαίνεται ὡς κύριος ἦχος), ἀλλ᾽ ὡς ἐκ τῆς φυσικῆς βάσεως αὐτοῦ τίποτε δὲν μᾶς ἐμποδίζει νὰ παραδεχθῶμεν ὅτι εἶναι πλάγιος τοῦ τρίτου ἥχου. Καὶ ὁ πλάγιος τοῦ τετάρτου τὸν Ν ἕναντι τῆς δευτέρας βάσεως τοῦ τετάρτου ἢχου τὸν Δ.

Περὶ συστατικών τών ήχων

- 81) Διακριτικά καὶ κύρια γνωρίσματα τῶν ἤχων εἶναι τὰ συστατικὰ ἑνὸς ἑκάστου, ἤτοι τὸ ἀπήχημα, ἡ κλίμαξ, οἱ δεσπόζοντες φθόγγοι καὶ αἱ καταλήξεις.
- α) Τὸ ἀπήχημα. Εἶναι ἀπαγγελία ὡρισμένων φθόγγων ἐκ τῆς βάσεως τῆς κλίμακος πρὸς σχηματισμὸν τοῦ ἤχου κατὰ τὸν ὁποῖον θὰ ψαλῆ τὸ μέλος, ἐν ἀρχῆ ἑκάστου τροπαρίου ἢ μουσικοῦ κειμένου.
- β) Ἡ κλίμαξ, κατὰ τὴν ὁποίαν πρόκειται νὰ ψαλῆ τὸ μέλος, ἥτις θὰ ἀνήκει εἰς ἕνα ἀπὸ τὰ τρία γένη τῆς μουσικῆς καὶ θά προσδιορίζη τὴν βάσιν, τονικὴν καὶ μελφδικήν, δηλ. τὸ ἴσον πόθεν θὰ ἀρχίση καὶ πῶς θὰ ὁδεύη τὸ μέλος ἐντὸς τῶν πλαισίων τῆς κλίμακος τοῦ ἤχου αὐτοῦ. Ὁ αὐτὸς ἦχος δύναται νὰ μεταχειρίζηται και περισσοτέρας τῆς μιᾶς κλίμακος (ὡς ὁ βαρὺς καὶ ὁ πλάγιος τοῦ τετάρτου τὴν διατονικὴν καὶ τὴν ἐναρμόνιον κλπ.)
- γ) Δεσπόζοντες φθόγγοι. Είναι ἐκεῖνοι, τοὺς ὁποίους μεταχειρίζονται περισσότερον τῶν ἄλλων, ἀκούονται συχνότερον καὶ τρόπον τινα κυριαρχοῦν καὶ δεσπόζουν τοῦ μέλους, δεικνύουν δὲ τὴν ποιότητα καὶ ἀποτελοῦν τὸν σκελετὸν τοῦ ἤχου. Ἐνῶ οἱ ἄλλοι φθόγγοι λέγονται ὑπερβάσιμοι δηλ. τοὺς ἀποφεύγει καὶ ὑπερπηδῷ τὸ μέλος καὶ ἤκιστα κάμνει χρῆσιν αὐτῶν. Οἱ δεσπόζοντες φθόγγοι είναι κατὰ κανὸνα σταθεροὶ καὶ ἀμετακίνητοι εἰς τὴν θέσιν τῆς φυσικῆς των ὀξύτητος, ἐνῶ οἱ ὑπερβάσιμοι είναι ἀσταθεῖς καὶ ἕλκονται πρὸς τοὺς πλησίον αὐτῶν δεσπόζοντας φθόγγους, τοῦτο δὲ λέγεται ἕλξις. Γίνεται δὲ ἕλξις ὅταν κατόπιν δεσπόζοντος φθόγγου ἀκολουθεῖ συνεχὴς (κατὰ ἕνα φθόγγον) ἀναβασις ἢ κατάβασις μὲ ἄμεσον ἐπιστροφὴν εἰς τὸν δεσπόζοντα φθόγγον, καὶ σημειώνεται αὕτη μὲ ὕφεσιν ἢ δίεσιν ἐπὶ τοῦ φθόγγου ὅστις

ύφίσταται τὴν ἔλξιν π.χ. $\stackrel{6}{\sim}$ $\Sigma_{\rm U}$ $\stackrel{}{\sim}$ $\stackrel{}{\sim}$

δ) Αί Καταλήζεις μαζύ μὲ τὸ ἀπήχημα, είναι τὰ κυριότερα χαρακτήριστικὰ γνωρίσματα τοῦ ἤχου. Καταλήξεις δὲ ἐν τἢ μουσικἢ λέγονται τὰ σημεῖα τῆς στίξεως τοῦ μέλους καὶ ἀντιστοιχοῦν, πρὸς μὲν τὸ κόμμα ἡ ἀτελὴς κατάληξις, πρὸς τὴν ἄνω στιγμὴν ἡ ἐντελὴς κατάληξις καὶ πρὸς τὴν τελείαν, ἡ τελικὴ λεγομένη κατάληξις, καὶ μὲ τοῦτο δύναται ἡ μελοποίησις νὰ φανερώνη τὰς περιόδους τῆς ἐννοίας, κατὰ τὴν ἔκφρασιν τῆς ποιήσεως τοῦ τροπαρίου, εἰς δὲ τὸ τέλος τοῦ μέλους,

ή δριστική τοιαύτη, ἐκτὸς τῶν ἀργῶν μαθημάτων, ὡς εἶναι τὰ χερουβικὰ κλπ. ὡς καὶ εἰς τὰ προσόμοια τὰ ὁποῖα ἀκολουθοῦν ὡρισμένον τύπον ἐκφράσεως καὶ καταλήξεων. Τελικὴ κατάληξις λέγεται κυρίως ἐκεῖ ποὺ τελειώνει ἕκαστον τροπάριον. "Όταν δὲ ἔχομεν σειρὰν τροπαρίων εἰς τὸ τέλος τοῦ τελευταίου τροπαρίου κάμνωμεν ἰδιαιτέραν κατάληξιν, ἥτις εἶναι ἐκτενεστέρα τῶν ἄλλων καὶ λέγεται ὁριστική.

Περὶ ἐκτάσεως μελφδτκῶν θέσεων καὶ ἤθους τῶν ἡχων

- 82) Ἐκτὸς τῶν ἀναφερθέντων χαρακτηριστικῶν ἀνευρίσκομεν εἰς ἕκαστον ἡχον καὶ ἄλλα τινα, τὰ ὁποῖα εἰσίν: Ἡ ἔκτασις τοῦ ἡχου, αἱ ἰδιάζουσαι μελωδικαὶ θέσεις καὶ τὸ ἡθος αὐτοῦ.
- α) Έκτασις τοῦ ἤχου, είναι ἡ περιοχὴ τῶν φθόγγων, βαρυτέρων καὶ ὀξυτέρων, ἐντὸς τῆς ὁποίας κινεῖται κατὰ τὸ πλεῖστον τὸ μέλος αὐτοῦ, είναι δηλαδὴ τὸ μεγαλύτερον ὅριον τῶν ἀναβάσεων καὶ καταβάσεων τὰς ὁποίας ἕκαστος ἦχος συνήθως χρησιμοποιεῖ.

Ή ἔκτασις τῶν ἤχων εἶναι διάφορος πλὴν ὅμως ἐν τῇ Βυζαντινῇ μουσικῇ, δὲν ἐξέρχεται ποτὲ ἀπὸ τὰ ὅρια τῆς δὶς διαπασῶν κλίμακος. Ἐνίστε δὲ τὸ μέλος ἑνὸς ἤχου δὲν χρησιμοποιεῖ τὴν συνήθη εἰς αὐτὸν ἔκτασιν, ἀλλὰ περιορίζεται εἰς μικροτέραν περιοχὴν τόνων, ἤτοι δύο ἢ τεσσάρων ἢ πέντε κλπ. Εἰς τοιαύτην περίπτωσιν ὁ ἦχος χαρακτηρίζεται ὡς δίφωνος, ἢ τετράφωνος ἢ πεντάφωνος κλπ.

β) Θέσεις δὲ εἰς ἕνα ήχον εἶναι ὡρισμέναι μελῳδικαὶ γραμμαί, αἵτινες συχνὰ χρησιμοποιοῦνται καὶ ἀπαντῶνται εἰς τὰ μέλη αὐτοῦ. Λί θέσεις αὖται διορθώθησαν βαθμηδὸν ἀπὸ τῆς ἀρχαιότητος καὶ διεσώθησαν μέχρις ἡμῶν διὰ μέσου τῶν αἰώνων διὰ τῆς ἀδιακόπου μουσικῆς παραδόσεως.

Καὶ εἰς μὲν τὰ σύντομα μέλη αἱ ιδιάζουσαι θέσεις εἶναι σύντομοι καὶ διακρίνονται διὰ τὴν ἁπλότητα τῶν γραμμῶν των, ἐνῶ εἰς τὰ ἀργὰ μέλη εἶναι ἐκτενέστεραι καὶ συνθετικώτεραι. Εἰς ἤχους δὲ τοῦ αὐτοῦ γένους παρατηρούνται πολλάκις ὅμοιαι μελφδικαὶ θέσεις.

γ) *Ηθος δὲ τῆς μελφδίας λέγεται ἡ διάθεσις τὴν ὁποίαν ἐκφρά- ζει τὸ μέλος καὶ τὴν ὁποίαν ζητεῖ νὰ μεταδώση εἰς τοὺς ἀκούοντας.

Είναι δὲ εὔκολον νὰ ἀντιληφθῶμεν ὅτι αἱ διάφοροι μελφδίαι ἐκφράζουν ποικίλας ψυχικὰς διαθέσεις, ἀναλόγους πρὸς τὴν ἔννοιαν τοῦ κειμένου, διὰ τοῦτο καὶ διεγείρουν εἰς τοὺς ἀκούοντας διάφορα ἑκάστοτε συναισθήματα καὶ κατασκευάζουν εἰς τὴν ψυχὴν ἀνάλογον ἦθος, ἐκ τούτου προῆλθε καὶ ἡ ὁνομασία ἦθος.

Κατὰ ταῦτα, δύο μέλη δύνανται νὰ διαφέρουν καὶ κατὰ τὰ ἄλλα ἀλλὰ καὶ κατὰ τὸ ἦθος. Διακρίνομεν δὲ εἰς τὰ μέλη τῶν ἤχων τρία κυρίως ἤθη: Τὸ διασταλτικόν, τὸ συσταλτικὸν καὶ τὸ ἡσυχαστικόν.

Καὶ διασταλτικὸν μὲν λέγεται ἐκ τοῦ μεγαλώνω ἢ ἐξαίρω κάτι περισσότετερον ἀπὸ ὅ,τι εἶναι, χαρμόσυνον κλπ. οἵτινες ἐμπνέουν ἐνθουσιασμὸν καὶ φρόνημα ἀνδρικὸν καὶ γενναῖον.

Τὸ συσταλτικὸν ἀντιθέτως (ἐκ τοῦ συστέλλω - μαζεύω - περιορίζω) ἐκφράζει συναισθήματα πένθους, μετανοίας, ταπεινώσεως, οἴκτου, ἀγάπης καὶ ὅσα ἄλλα ἐμπνέουν συστολήν.

Τὸ δὲ ἡσυχαστικὸν ἡθος κεῖται μεταξὺ διασταλτικοῦ καὶ συσταλτικοῦ καὶ ἐκφράζει συναισθήματα γαλήνης καὶ εἰρήνης, ἐμπνέει δὲ εἰς τὴν ψυχὴν διάθεσιν ἤρεμον.

Έκ τῶν τριῶν τούτων εἰδῶν τοῦ ἢθους διακρίνομεν καὶ διαχωρίζομεν τὰ μέλη τῆς Ἐκκλησίας μας ἤτοι τοὺς ἐκκλησιαστικοὺς ὕμνὸυς εἰς μέλη: α) δοξολογήσεως τοῦ Κυρίου, εἰς ὁμολογίαν εὐγνωμοσύνης, διὰ τὰς εὐεργεσίας καὶ δωρεὰς τοῦ Θεοῦ, ἐξύμνησιν τῶν κατορθωμάτων τῆς Πίστεως καὶ ἐν γένει ὅσα ἐξαίρουν καὶ ἀναπτερώνουν τὸ φρόνημα τοῦ χριστιανοῦ.

- β) Ύμνους μετανοίας καὶ ἐπικλήσεως τοῦ θείου ἐλέους καὶ διδασκαλίας καταστελλούσας πᾶσαν ἔπαρσιν, ὑποδεικνυούσας δὲ τὴν ἀγάπην, τὴν μακροθυμίαν, τὴν ὑπομονὴν κλπ. καὶ
- γ) Ύμνους διδακτικούς περιέχοντας συμβουλάς καὶ ἐνθαρρύνσεις πρὸς τὸν βίον τῆς ἁρετῆς καὶ δεικνύοντες τὴν ἁγιότητα καὶ τὰ παραδείγματα τῶν ἁγίων.

Έπίσης παράγοντες τοῦ ἤθους είναι οἱ φθόγγοι ἀναλόγως, ἐὰν οὖτοι εἶναι μακροὶ παράγουν ἦθος ἡσυχαστικόν, ἐὰν δὲ οὖτοι εἶναι βραχεῖς μὲ τὴν γοργότητα τῆς ἀπαγγελίας των παράγουν ἦθος διασταλτικὸν κλπ.

83) Μαρτυρίαι τῶν ἤχων. Προκειμένου νὰ συντάξωμεν ἢ ἀπαγγείλωμεν ἕνα μουσικὸν κείμενον θὰ θέσωμεν πρῶτον τὴν μαρτυρίαν ἥτις φανερώνει τὸν ἦχον. Ἔκαστος ἦχος ἔχει τὴν μαρτυρίαν του καὶ πλησίον αὐτῆς σημειώνεται συνήθως καὶ ὁ φθόγγος, ὅστις χρησιμεύει ὡς βάσις καὶ ἀφετηρία τοῦ μέλους.

"Όταν ἕνα μέλος ἔχη ὡς βάσιν οὐχὶ τὴν κανονικὴν τοῦ ἤχου βά-

σιν, άλλὰ ἄλλην τινα, τότε σημειώνεται αὕτη παραπλεύρως τῆς ἀρκτικῆς μαρτυρίας.

*Επίσης ὅταν εἰς ἕνα μέλος θέλωμεν νὰ δώσωμεν ὡρισμένον φθόγγον μὲ ὕφεσιν ἢ δίεσιν, σημειώνομεν παραπλεύρως τῆς ἀρκτικῆς μαρτυρίας τὸν φθόγγον αὐτὸν μὲ ὕφεσιν ἢ δίεσιν π. χ. ἦχος ὁ Κρ, ἦχος ὁ Νσ. Μὲ τὸν τρόπον αὐτὸν δηλώνομεν εἰς μὲν τὸ πρῶτον μέλος ὅτι ὁ Κε θὰ εἶναι διαρκῶς μὲ ὕφεσιν, εἰς δὲ τὸ δεύτερον ὁ Νθὰ εἶναι εἰς ὅλην τὴν διάρκειαν αὐτοῦ μὲ δίεσιν.

Μεταβολή κατ' ήχον. Ἐπίσακτα μέλη.

84) Εἰς τὰ μέλη τῶν μουσικῶν κειμένων σύνηθες φαινόμενον εἶναι ἡ μεταβολὴ κατ' ἡχον, ἡ μετάβασις τοῦ μέλους ἀπὸ ένὸς ἥχου εἰς τὸν ἄλλον, εἴτε τοῦ αὐτοῦ γένους εἴτε ἄλλου. Τοῦτο ἐπιτυγχάνεται διὰ μέσου τῶν φθορικῶν σημείων ἑκάστου ἥχου. Καὶ ὅταν μὲν τὸ μέλος μεταβαίνει εἰς ἡχον τοῦ αὐτοῦ γένους δὲν εἶναι πολὺ αἰσθητὴ ἡ μεταβολή, περισσότερον δὲ γίνεται αἰσθητὴ αὕτη ὅταν τὸ μέλος μεταβαίνει εἰς ἄλλο γένος καὶ μάλιστα ὅταν συγχρύνως γίνεται καὶ μεταβολὴ κατὰ τύνον, ἡ ὁποία λέγεται καὶ παραχορδή.

Ή μεταβολή κατ' ήχον καὶ κατὰ τόνον ἐπανέρχεται εἰς τὸν ἀρχικόν της ήχον καὶ τόνον καὶ πάλιν διὰ νέου φθορικοῦ σημείου, ὅπερ παύει καὶ ἀναιρεῖ τὴν ἐνέργειαν τοῦ πρὸ αὐτοῦ τοιούτου.

Εἰς μέλη τινα ὡρισμένων ἤχων εὑρίσκομεν μονιμοτέραν μεταβολήν, ἥτις διαρκεῖ ἀπ' ἀρχῆς μέχρι τέλους τοῦ τροπαρίου ἢ καὶ σειρὺς ὁλοκλήρου τροπαρίων π.χ. εἰς τὸ Κάθισμα «Τὸν Τάφον σου Σωτὴρ», ὅπερ εἰναι ἤχος α΄ τίθεται εὐθὺς ἐξ ἀρχῆς ἢ φθορὰ τοῦ β΄ ἤχου καὶ ψάλλεται κατὰ τὴν κλίμακα τοῦ β΄ ἤχου. Τὰ μέλη αὐτὰ ὀνομάζονται, ἑπείσακτα ἢ ἐπεισαγωγικά, ἡ τοιαύτη μεταβολὴ δηλοῦται εὐθὺς ἐξ ἀρχῆς μὲ τὴν κανονικὴν μαρτυρίαν τοῦ ἤχου παραπλεύρως τῆς ὁποίας γράφεται ὁ φθόγγος, ὁ χρησιμεύων ὡς βάσις, ἐπὶ τοῦ ὁποίου τίθεται καὶ ἡ φθορὰ τοῦ ἤχου, εἰς τὸν ὁποῖον μεταβαίνει τὸ μέλος, π.χ. τὸ Κάθισμα «Τὸν Τάφον σου Σωτὴρ» ἔχει ἀρκτικήν μαρτυρίαν τοῦ ἤχου τοιαύτην: ἦχος $\frac{L}{Q}$ ὅπερ σημαίνει ὅτι ὁ Κε γίνεται ὡς Δι, καὶ ὁ ἦχος ἀπὸ Α΄ μεταβάλλεται εἰς Β΄. Τὸ δὲ μέλος τοῦ ᾿Απολυτικίου τοῦ Ἁγίου Νικολάου «Κανόνα Πίστεως», ἔχει ἀρκτικὴν μαρτυρίαν τοῦ ἡχου τοιαύτην: ἦχος $\frac{L}{Q}$ ὅπερ σημαίνει ὅτι ὁ ἦχος ἀπὸ Δ΄ μεταβάλλεται εἰς Β΄.

Κεφάλαιον Θ.΄

Δ. Τὰ εἴδη τοῦ μέλους

85) Ἡ διάκρισις τῶν μελῶν εἰς εἴδη. Τὰ ἱερὰ ἄσματα, ἄπερ ψάλλονται ἐν τῆ Ἐκκλησία εἶναι ποικιλωτάτης μορφῆς, συνθέσεως καὶ ἐμπνεύσεως, ἄλλα πεζά, καὶ ἄλλα ποιητικά, κατὰ διαφόρους αἰῶνας καὶ ἀπὸ διαφόρους ποιητὰς καὶ μουσικοὺς συντεθέντα καὶ μελοποιηθέντα. Εἶναι δὲ γνωστὰ ὑπὸ διαφόρους χαρακτηριστικὰς ὀνομασίας, ἤτοι : Κεκραγάρια, Στιχηρά, Προσόμοια, Δοξαστικά, ᾿Απολυτίκια, Καθίσματα, Θεοτοκία, Εὐλογητάρια, ᾿Αντίφωνα, Πολυέλαιοι, Κανόνες, Εἰρμοί, Καταβασίαι, Μαρτυρικά, Μεγαλυνάρια, Ἦξαποστειλάρια, Αἶνοι, Δοξολογίαι, Τυπικά, Μακαρισμοί, Κοντάκια, Χερουβικά, Κοινωνικὰ κλπ. ᾿Απὸ τὰ διάφορα τροπάρια ἄλλα μὲν λέγονται : α) Ἰδιόμελα, ἐπειδὴ ψάλλονται κατὰ ἴδιον τρόπον, καὶ ἄλλα β) Προσόμοια, ἐπειδὴ ψάλλονται κατὰ τὸ πρότυπον ὡρισμένων τροπαρίων, ἄτινα ὀνομάζονται Πρόλογοι, ἢ Αὐτόμελα. Καὶ εἰς μὲν τὰ Ἰδιόμελα ἀνήκουν ἄπαντες οἱ ὕμνοι ὅπου ἔχουν συντεθῆ ἀπλῶς ἐπὶ ἤχου τινός, ὅπως εἶναι τὰ τροπάρια ὅπου ψάλλονται εἰς τὴν Λιτὴν τῶν ἑορτῶν κλπ.

Ένεκα διαφόρων λόγων, ή Βυζαντινή μουσική κατά τήν μακράν έξέλιξίν της, εμόρφωσε μέλη με εκτασιν μεγαλυτέραν καὶ ἄλλα μὲ εκτασιν μικροτέραν, (ήτις καθορίζεται ἀναλόγως τῆς ἐκτάσεως τὴν ὁποίαν λαμβάνουν αἱ συλλαβαὶ τῶν λέξεων τοῦ κειμένου).

- β) Προσόμοια λέγονται τὰ τροπάρια ὅπου ψάλλονται εἰς ὡρισμένον μέτρον ὅπως εἰναι τὸ «'Ως γενναῖον ἐν μάρτυσι», τὸ «Τῶν Οὐρανίων Ταγμάτων» κλπ.
- γ) Στιχηραρικὰ λέγοντα τὰ τροπάρια τῶν ὁποίων προηγεῖται στῖχος ὡς εἶναι τὰ στιχηρὰ τοῦ Σαββὰτου ἐσπέρας ὅπου λέγομεν πρὸ τοῦ τροπαρίου «ὁ Κύριος ἐβασίλευσεν...» κλπ.
- δ) Είρμολογικὰ λέγονται, οἱ ὕμνοι ἢ τροπάρια τὰ ὁποῖα ψάλλονται ἀπαραλλάκτως ὅπως ψάλλεται τὸ πρῶτον αὐτῶν δηλ. εἰς τοὺς κανόνας τὸ προπάριον τὸ ὁποῖον εἶναι ἐντὸς εἰσαγωγικῶν π.χ. «Σοῦ ἡ τροπαιοῦχος δεξιὰ» ἢ «Ἐν βυθῷ κατέστρωσέ ποτε» κλπ. τὰ ὁποῖα ψάλλονται σύντομα σὲ ἀγωγὴν χρόνου συντόμου καὶ ὀλίγον ἀργότερον ψάλλονται αἱ λεγόμεναι Καταβασίαι (¹) ὅπως εἶναι τὸ «᾿Ανοίξω τὸ στόμα μου» καὶ οἱ λεγόμενοι «Καλοφωνικοὶ Εἰρμοί».

⁽¹⁾ Καταβασίαι λέγονται διότι οἱ ψάλται τῆς 'Αγίας Σοφίας ἐν Κων)πόλει, ὅταν ἔψαλλον αὐτὰς κατέβαινον ἀπὸ τὸν χορὸν εἰς τὸ δάπεδον εἰς ἔνδειξιν ἰδιαιτέρου σεβασμοῦ.

Τὸ είρμολογικὸν μέρος είναι τὸ ἀρχαιότερον καὶ γνησιώτερον βυζαντινὸν μέλος.

Στιχηραρικά καὶ είρμολογικά μέλη ἔχουν συνθέσει:

- α) Ἰωάννης ὁ Τραπεζούντιος ὁ Πρωτοψάλτης.
- β) Πέτρος ὁ Πελοποννήσιος, οἵτινες ὁμοῦ συνέθεσαν τὸ 'Αναστασιματάριον, τὴν Κυψέλην, τὸ Εἰρμολόγιον καὶ πολλοὺς Καλοφωνικοὺς Εἰρμοὺς ἀκμάσαντες περὶ τὰ τέλη τοῦ ΙΗ΄ μὲ ἀρχὰς τοῦ ΙΘ΄ αἰῶνος (1780—1810).

Κατὰ τὴν ἰδίαν χρονικὴν περίοδον ἤκμασαν καὶ οἱ: Μουσικοδιδάσκαλοι Ἰάκωβος ὁ Πρωτοψάλτης συνθέτης τῶν ἀργῶν Δοξασταρίων καὶ Χουρμούζιος ὁ Μέγας Χαρτοφύλαξ συνθέτης τῶν Δοξαστικῶν τῶν ᾿Αποστίχων καὶ ἄλλων μαθημάτων ἀργῶν καὶ συντόμων.

' ε) Τὸ Παπαδικὸν εἶδος εἶναι ὅλα τὰ ἀργὰ μαθήματα ἤτοι: Χερουβικά, Κοινωνικά, Ἄξιον ἐστὶν καὶ ἄλλα ἀργὰ μαθήματα.

Τοιαῦτα μαθήματα ἔχουν συνθέσει πολλοὶ μουσικοδιδάσκαλοι ἐκ τῶν παλαιῶν καὶ τῶν νεωτέρων δείγματα τῶν ὁποίων δύνανται οἱ μαθητευόμενοι νὰ λάβωσι ἐκ τῶν Χερουβικῶν καὶ Κοινωνικῶν Πέτρου τοῦ Πελοποννησίου, Δανιὴλ τοῦ Πρωτοψάλτου, Γρηγορίου τοῦ Πρωτοψάλτου, Θεοδώρου Φωκαέως, Νικολάου Σμύρνης, Πέτρου Ἐφεσίου, Πέτρου Βυζαντίου κλπ. Ἔργα τεχνικῶς ἀθάνατα καὶ ἀσυγκρίτως καλύτερα τῶν τοιούτων τῶν νεωτέρων. ᾿Ασκήσεις τούτων νὰ γίνωσι ἀπὸ τὰ κείμενα τῶν ὡς ἄνω διδασκάλων.

Κεφάλαιον Ι.΄

Ε.΄ Ή Χρονική Αγωγή

86) Ή διάρκεια ἐκάστου μουσικοῦ χρόνου δὲν εἶναι ὡρισμένη, διότι δυνάμεθα νὰ δώσωμεν εἰς ἕνα χρόνον περισσοτέραν καὶ εἰς ἄλλον ὀλιγωτέραν. ᾿Απὸ τὴν διάρκειαν τοῦ χρόνου ἐξαρτᾶται τὸ μέλος ἐὰν θὰ εἶναι γοργὸν (γρήγορον) ἡ ἀργόν καὶ ἡ ταχύτης ἢ ἡ βραδύτης τοῦ μέλους ὀνομάζεται Χρονικὴ ᾿Αγωγή.

Τοιαύτας άγωγάς ἔχομεν ἕξ είδῶν:

- 1. Τὴν βραδυτάτην Υπίτις ἀντιστοιχεῖ μὲ 50 περίπου κτύπους τὸ 1΄ λεπτόν.
- 2. Τὴν βραδεῖαν χ ἢ ἐπίαργον, ἥτις ἀντιστοιχεῖ μὲ 60-80 περ. κτ. τὸ 1΄ λεπτόν.

- 3. Την μετρείαν ζ΄ ήτις άντιστοιχεῖ μὲ 80-100 περ. κτ. τὸ 1΄ λεπτ.
- 4. Τὴν μέσην
- » » 100-120 »» » 120-180 » » 120-180 » 5. Την ταχεῖαν 1′
- 6. Τὴν ταχυτάτην 💃 ἢ χῦμα 👺 » 180-240 »

Αί τρεῖς πρῶται είναι ἀργαὶ καῖ αί ἄλλαι τρεῖς είναι σύντομοι.

Αἱ σχέσεις τῶν διαφόρων ἀγωγῶν μεταξύ των εἶναι ὡς ἑξῆς:

α) Είς χρόνος τῆς βραδυτάτης ἀγωγῆς ἰσοδυναμεῖ πρὸς δύο χρόνους τῆς μετρίας, πρὸς τέσσαρας τῆς ταχείας καὶ ὀκτώ τῆς ταχυτάτης π.χ.

$$\vec{x} = \vec{x} \quad \underline{\quad} \quad \mathbf{xai} \quad \vec{x} \quad \underline{\quad} \quad \underline{\quad} \quad \mathbf{xai} \quad \vec{x} \quad \underline{\quad} \quad \underline{\quad$$

β) Είς χρόνος τῆς βραδείας ἀγωγῆς ἰσοδυναμεῖ πρὸς ἕνα καὶ ἥμισυ τῆς μετρίας, τρεῖς τῆς ταχείας καὶ εξ τῆς ταχυτάτης, π.χ.

γ) Είς ἕνα χρόνον τῆς μετρίας άγωγῆς ἀντιστοιχοῦν δύο φγόνοι τῆς ταχείας καὶ τέσσαρες τῆς ταχυτάτης, π.χ.

$$\vec{x} = \vec{x} = \vec{x} = \vec{x}$$

καὶ πρὸς καλυτέραν κατανόησιν παριστάνομεν τὴν μετρίαν ἀγωρὴν μὲ τὸν ἀριθμὸν $\frac{4}{4}$, τὴν βραδυτάτην μὲ $\frac{8}{4}$, τὴν βραδεῖαν μὲ $\frac{6}{4}$ ήτοι τὸ εν καὶ ήμισυ τῆς μετρίας, τὴν μέσην με $\frac{3}{4}$ ήτοι τὸ εν καὶ ήμισυ τῆς μετρίας καὶ τὴν ταχεῖαν μὲ $\frac{2}{4}$ καὶ τὴν ταχυτάτην μὲ τὸ $\frac{1}{4}$ τῆς μετρίας. $\stackrel{\frown}{\times}$ $\stackrel{\frown}{\underset{4}{\overset{}}}$ $\stackrel{\frown}{\underset{4}{\overset{}}}$

ή δὲ ταχυτάτη είναι τὸ διπλάσιον τῆς ταχείας.

*Απὸ τὰς πλέον συνηθισμένας ἀγωγὰς εἶναι ἡ μετρία 🏅, ἡ μέση ταχεῖα ς.

Μὲ ἀπόλυτον ἀκρίβειαν δυνάμεθα νὰ καθορίσωμεν τὰς ἀγωγὰς διὰ τοῦ Μετρονόμου.

Η διάρκεια τῶν χρονικῶν ἀγωγῶν ὡς καὶ τὰ διαστήματα τῶν τόνων καθωρίσθησαν ύπὸ τῆς Πατριαρχικῆς Ἐπιτροπῆς τοῦ 1881.

Είς τὸ μέγα Θεωρητικὸν τοῦ Χρυσάνθου μόνον δύο άγωγαὶ άναφέρονται ώς ἀκαθόριστοι ή μετρία 🖁 καὶ ή ταχεία 🛴 .

"Αλλοι διδάσκαλοι τὰς προσδιορίζουν μὲ διάφορον μέτρον, τοῦτο συμβαίνει ἴσως διότι ἀναλόγως τὸν καιρόν, τὸν τόπον καὶ τὴν τελετὴν ἐλάμβανον διαφόρους ὁρισμοὺς μέτρων.

Κεφάλαιον ΙΑ.΄

ΣΤ.΄ Ό Ρυθμός

87) α) 'Ο Ρυθμός είναι τὸ κύριον στοιχεῖον τῆς μουσικῆς. Όλοι οἱ λαοὶ τὸν γνωρίζουν καὶ τὸν ἀντιλαμβάνονται προτοῦ νὰ ἐννοήσουν τὴν ἀξίαν τῆς μελωδίας καὶ είναι ἀρεστὸς εἰς ὅλους.

Ό ρυθμός είσχωρεῖ εἰς τὰ βάθη τῆς ψυχῆς καὶ ἐπιδρῷ εἰς τὸ νευρικὸν σύστημα εὐεργετικῶς, κάμνει τὰ πάντα νὰ κινοῦνται, χωρὶς νὰ θέλωμεν, κινοῦνται τὰ χέρια μας, κτυποῦν τὰ πόδια μας καὶ ἐὰν εἰναι χορευτικὸς κάμνει νὰ πλημμυρίση μέσα μας ἡ χαρὰ καὶ μᾶς παροτρύνει εἰς τὸν χορόν.

Οἱ ἀρχαῖοι Ἔλληνες τὴν εὕρεσιν τοῦ μέτρου καὶ τοῦ ρυθμοῦ τὴν ἀπέδιδον εἰς τὸν Θεὸν (τὸν ᾿Απόλλωνα). «Τοῦ μέτρου εὑρετὴς ὁ ᾿Απόλλων. Μέτρου δὲ πατὴρ ρυθμὸς ἀπὸ ρυθμοῦ γὰρ ἔσχε τὴν ἀρχὴν. Θεὸς δὲ τὸ μέτρον ἀνεφθέγξατο» (Λογγίνου σχόλια εἰς ἐγχειρ. Ἡφαιστίωνος σελ. 82) καὶ εἰς τὴν μουσικήν των θεωρίαν ἡ ρυθμικὴ κατεῖχεν ἐξαιρετικὴν θέσιν, ὡς ἀναφέρει ὁ ᾿Αριστόξενος (ὁ μεγαλύτερος θεωρητικὸς μουσικὸς τῆς ἀρχαίας Ἑλληνικῆς μουσικῆς τέχνης 350—300 π.χ.)

Ό μουσικός ρυθμός είναι γνωστός ἀπό τῆς ἀρχαιότητος, πολλοὶ δὲ ἀπὸ τοὺς Ἑλληνας θεωρητικοὺς (ὡς ὁ ᾿Αριστόξενος, ὁ ᾿Αριστείδης, ὁ Κοἴντιλιανός, Βακχεῖος ὁ Γέρων κ.ἄ.) ὁμιλοῦν εἰς τὰ συγγράμματά των περὶ αὐτοῦ. Ὁ Νικόμαχος λέγει ρυθμός εἶναι «χρόνων εὕτακτος σύνθεσις», ὁ Πλάτων λέγει: «Τῆ δὴ τῆς κινήσεως τάξει, ρυθμός ὄνομα εἰη», ὁ ᾿Αριστείδης ὁ Κοϊντιλιανὸς λέγει: «χρὴ καὶ μελωδίαν θεωρεῖσθαι καὶ ρυθμὸν καὶ λέξιν, ὅπως ἄν τὸ τέλειον τῆς ἀδῆς ἀπεργάζηται». Κατὰ δὲ τὴν γνώμην πολλῶν, ὁ ρυθμὸς προηγήθη καὶ αὐτῆς τῆς μουσικῆς, διότι τὴν ἔννοιαν τοῦ ρυθμοῦ ἔχει ὁ ἄνθρωπος ἀνέκαθεν ἐκ διαφόρων φυσικῶν ρυθμικῶν κινήσεων (ἀναπνοή, σφιγμός, βάδισμα κλπ.) δυνάμεθα δὲ νὰ εἴπωμεν ὅτι ὁ ρυθμὸς εἶναι τό νεῦρον τοῦ μέλους καὶ ὡς ἕλεγον οἱ παλαιοὶ διδάσκαλοι ὁ χρόνος εἶναι ἡ ψυχὴ τοῦ μέλους καὶ ὁ ρυθμὸς εἶναι ἡ ψυχὴ τοῦ χρόνου.

Τὶ καλείται Ρυθμός

88) 'Ακούοντες μίαν μελφδίαν ή μελετώντες ένα μουσικόν κείμε-

νον, βλέπομεν ὅτι τὸ σύνολον τῶν χρόνων μοιράζεται εἰς τοὺς φθόγ-γους μὲ τρόπον πολυποίκιλον.

Είς τὴν παρατηρουμένην αὐτὴν διαφορετικὴν διάρκειαν τῶν φθόγγων ὑπάρχει κάποια σχέσις κανονική, ἥτις ὡσὰν ἀποτέλεσμα ἔχει νὰ τὴν κινῇ μὲ τάξιν ἀντιληπτὴν καὶ ἀπὸ τὸν πλέον ἀμαθῆ ἀκροατήν. Ἡ τοιαύτη σχέσις καὶ εὐταξία εἰς τὴν μουσικὴν λέγεται ρυθμός. Ὠστε ρυθμὸς εἰς τὴν μουσικὴν καλεῖται ἡ διαδοχὴ χρονικῶν διαρκειῶν μὲ ὡρισμένην τάξιν.

85) "Ολαι αί μελφδίαι δὲν ἔχουν τὸν ἴδιον ρυθμόν; ἀλλὰ καὶ εἰς μικρὰ ἀκόμη τμήματα τῆς αὐτῆς μελφδίας ὑπάρχουν διάφοροι ρυθμοί.

Οί ρυθμοὶ διακρίνονται μεταξύ των ἐκ μιᾶς χαρακτηριστικῆς ὁμάδος ἀπὸ ὡρισμένον ἀριθμὸν μικρῶν χρόνων, ὅστις ἐπαναλαμβάνεται μὲ τὴν ἰδίαν ἢ διαφορετικὴν σύνθεσιν ἀπὸ τὴν ἀρχὴν ἕως τέλους τῆς μελωδίας καὶ τὴν χωρίζει εἰς μικρὰ ἰσόχρονα τμήματα π.χ.

*Εὰν δι' ἔνα ρυθμὸν ἡ δμὰς ἀποτελεῖται ἀπὸ δύο χρόνους ὡς ἑξῆς:

$$C$$
 $\tilde{\eta}$ \tilde{C} $\tilde{\eta}$ \tilde{C} $\tilde{\eta}$ \tilde{C} $\tilde{\kappa}\lambda\pi$.

δι' ἕνα ἄλλον ρυθμόν ἀποτελεῖται ἀπό τρεῖς χρόνους:

δι' άλλον ρυθμόν ἀποτελεῖται ἀπό τέσσαρας χρόνους:

Τὰ ἰσόχρονα τμήματα τοῦ μουσικοῦ κειμένου χωρίζονται μὲ μίαν κάθετον γραμμήν, ἥτις λέγεται διαστολὴ π.χ.

Τὸ τμῆμα τοῦ μουσικοῦ κειμένου, ὅπερ εὑρίσκεται μεταξὺ δύο διαστολῶν (καθέτων γραμμῶν) λέγεται μέτρον.

$$\pi \chi$$
. $\ddot{\beta}$ $=$ $\frac{1}{\mu \epsilon \tau \rho o \nu}$ $=$ $\frac{1}{\mu \epsilon \tau \rho o \nu}$ $=$ $\frac{1}{\mu}$ $=$ $\frac{1}{\lambda}$

Τὸ μέτρον ἀναλόγως τοῦ ἀριθμοῦ τῶν χρόνων ὅπου περιέχει λέγεται: ὅταν ἔχη 2 χρόνους μέτρον δίσημον

Έπομένως τὸ ὡς ἀνωτέρω μέτρον εἶναι δίσημον.

Τὰ μέτρα διακρίνονται εἰς ἀπλᾶ καὶ σύνθετα.

'Απλᾶ μέτρα είναι τὰ τρία πρῶτα, ἤτοι τὰ δίσημα, τρίσημα καὶ τετράσημα. Σύνθετα δὲ ὅλο ἐκεῖνα ὅπου γίνονται μὲ τὴν ἕνωσιν δύο ἢ περισσοτέρων ἀπλῶν μέτρων, ὡς ὁ πεντάσημος ὅστις ἀποτελεῖται ἀπὸ ἕνα τρίσημον καὶ ἕνα δίσημον, ὁ ἑξάσημος ἀπὸ δύο τρισήμους ἢ τρεῖς δισήμους ἢ ἕνα τετράσημον καὶ ἕνα δίσημον κ.ο.κ. π.χ.

- 1) - - | [†] | - | - | [†] - - | - | [†] - - | πεντάσημος
- 2) $\kappa\lambda\pi$. $\xi\xi\dot{\alpha}\sigma\eta\mu\sigma\varsigma$.

Συστατικά του Ρυθμού

- 90) Συστατικά τοῦ ρυθμοῦ είναι: οἱ χρόνοι, οἱ πόδες καὶ ἡ ρυθμικὴ ἀγωγή.
 - α) Οί χρόνοι είναι άπλοῖ καὶ σύνθετοι.

'Απλοῦς χρόνος είναι ἡ μικροτέρα μονὰς χρόνου, ἥτις δὲν ὑποδιαιρεῖται ἐν τῷ ρυθμῷ παρὰ μόνον πολλαπλασιάζεται. 'Ωνομάζετο παρὰ τῶν ἀρχαίων χρόνος βραχὺς ἢ χρόνος πρῶτος ἢ σημεῖον καὶ ἐγράφετο οὕτω U.

Σύνθετος χρόνος είναι ὁ διπλάσιος ἢ τριπλάσιος ἢ τετραπλάσιος τοῦ ἀπλοῦ ἢ ελαχίστου χρόνου.

*Ο διπλάσιος τοῦ ἐλαχίστου ἀνομάζετο μακρὸς ἢ δίσημος καὶ ἐγράφετο μὲ τὸ σημεῖον —.

· Έπομένως τὰ σημῖα U — ἐφανέρωναν ἕνα χρόνον βραχὺν καὶ ἕνα μακρόν, ἀντιστρόφως δὲ — U ἕνα μακρὸν καὶ ἕνα, βραχὺν ἢ U U — δύο βραχεῖς καὶ ἕνα μακρὸν κλπ.

'Ο τρίσημος ἐσημειοῦτο L ἢ Δ, ὁ τετράσημος Δ καὶ ὁ πεντάσημος Δ κλπ.

91) Αἱ ὁμάδες τῶν χρόνων ὀνομάζονται μέτρον ἢ πόδες. Ἔκαστος ποὺς ἀναλόγως τοῦ ἀριθμοῦ τῶν χρόνων ὀνομάζεται 2]σημος, 3]σημος, 4]σημος, 5]σημος κλπ.

Οί χρόνοι τοῦ ρυθμικοῦ ποδὸς δὲν καταμετροῦνται ὡς οἱ ἀπλοῖ μὲ θέσιν καὶ ἄρσιν ἀλλ' ἄλλος λαμβάνεται εἰς τὴν θέσιν καὶ ἄλλος εἰς τὴν ἄρσιν.

Ή θέσις καὶ ἡ ἄρσις ἐγράφετο μὲ τὰ ἐξῆς σημεῖα Ο καὶ Ι δεικνύουν δὲ καὶ τὰ δύο χρόνον ἐλάχιστον καὶ τὸ ὅμικρον λαμβάνεται

πάντοτε ός θέσις τὸ δὲ ἰῶτα ός ἄρσις, ὅστε ἕνα ὅμικρον ἥ ἕνα ἰῶτα φανερώνουν ὅτι τὸ μέλος ἔχει ρυθμὸν δίσημον: ΟΙ ἢ ΟΙΙ ρυθμὸν τρίσημον, ΟΙΙΙ τετράσημον κλπ.

Όταν δὲ οἱ χρόνοι εἶναι διπλάσιοι τοῦ ἐλαχίστου ἢ τριπλάσιοι ἢ τετραπλάσιοι, τότε ἐπὶ τῶν σημείων αὐτῶν προσθέτομεν ἀναλόγως στιγμὰς ἐπὶ τοῦ ὅμικρον ἢ ἐπὶ τοῦ ἰῶτα: π.χ.

Πόδες ἢ χρόνοι ἀπλοῖ: ΟΙ = δίσημος.
ΟΙΙ = τρίσημος.
ΟΙΙΙ = τετράσημος.

Πόδες η χρόνοι σύνθετοι:

ΟΙ = τρίσημος δύο θέσεις καὶ μία ἄρσις
Οἱ = τρίσημος μία θέσις καὶ δύο ἄρσεις
Οἱ = τετράσημος δύο θέσεις καὶ δύο ἄρσεις
Οἱ = πεντάσημος τρεῖς θέσεις καὶ δύο ἄρσεις
Οἱἱ = ξξάσημος δύο θέσ. καὶ τέσ. ἄρσεις
Οἱἱ = ξξάσημος τέσ. θέσεις καὶ δύο ἄρσεις
Οἱἱ = ξξάσημος τέσ. θέσεις καὶ δύο ἄρσεις
Οἰοὶ = ξξάσημος τέσ. θέσεις καὶ δύο ἄρσεις
Οἰοὶ = ξξάσημος τέσ. θέσεις καὶ δύο ἄρσεις

92) Ή ρυθμική άγωγή είναι ή ίδια με την χρονικην (Κεφ. Ι΄), διὰ τῆς ὁποίας κανονίζομεν την βραδυτέραν ή ταχυτέραν ἀπαγγελίαν τῶν ρυθμῶν καὶ χρόνων τοῦ μέλους.

Συνηθέστεροι καὶ εὐχρηστότεροι ἐν τῆ Βυζαντινῆ μουσική ρυθμοὶ είναι οἱ δίσημοι, τρίσημοι καὶ τετράσημοι.

Εἰς τὸν δίσημον (2]σημον) ἕκαστος ποὺς ἔχει μίαν θέσιν καὶ μίαν ἄρσιν.

*Ο πρώτος ποὺς ὅστις λαμβάνεται εἰς τὴν θέσιν τονίζεται ζωηρότερον τοῦ δευτέρου ὅστις λαμβάνεται εἰς τὴν ἄρσιν. Τὸ αὐτὸ πρέπει νὰ γίνεται εἰς τὸν τρίσημον καὶ τετράσημον ὅπου κτυπῶμεν ἕνα εἰς τὴν βάσιν καὶ δύο ἢ τρεῖς ἀναλόγως εἰς τὸν ἀέρα.

Ένίστε τὸ μέλος ἔχει τὸν πρῶτον πόδα ἐλλειπῆ δηλ. ἔχει ἕνα μόνον χρόνον, τότε τὸν ἐλλείποντα πρῶτον χρόνον ἀναπληροῖ ἡ ἁπλῆ γραφομένη ὡς παῦσις • ό κενὸς αὐτὸς χρόνος ὅπου προσθέτομεν ὀνομάζεται λεῖμμα ρυθμοῦ, ἀλλὰ καὶ ὁλύκληροι πόδες δύνανται νὰ

θεώρηθῶσιν ὡς τοιοῦτοι ὅταν σημειώνονται εἰς τὸ μέσον ἢ τὸ τέλος τοῦ μέλους $|\mathbf{l} \cdots |$ $|\mathbf{l} |$ $|\mathbf{l} \cdots |$ κλπ.

Εἰς τὴν Βυζαντινήν μουσικὴν οἱ ρυθμοὶ ἐν ἀρχῆ γράφονται διὰ τῶν ἑξῆς σημείων ΟΙ, ΟΙΙ, ΟΙΙΙ ἢ Οἱ ἱ ἢ Οἱ ἱ κλπ. ἐνῶ εἰς τὴν Εὐρωπαϊκὴν σημειώνονται ὡς ἑξῆς διὰ τῶν κλασματικῶν ἀριθμῶν 2/4 ἢ 2/8, ἢ 3/4 ἢ 2/3 ἢ 4/2 ἢ 4/4 ἢ 4/8 κλπ.

Κατὰ τοὺς ἀρχαίους προγόνους ήμῶν οἱ κυριώτεροι ρμθμοὶ ἡσαν καὶ ἐγράφοντο ὡς ἑξῆς:

Δίσημος U U η ---

Τρίσημος ή Ἰαμβικοί πόδες

Τετράσημος ἢ δακτυλικοὶ πόδες

Τονισμός των ποδων

93) Οἱ χρόνοι ἑκάστου ποδὸς δὲν τονίζονται ὅλοι ἐξ ἴσου. Ἡ θέσις τονίζεται ζωηρότερον καὶ λέγεται ἰσχυρότερον μέρος. Ἡ ἄρσις τονίζεται ὀλιγώτερον καὶ λέγεται ἀσθενὲς μέρος.

Είς τοὺς ἀπλοὺς πόδας 2]σήμους, 3]σήμους καὶ 4]σήμους ἰσχυρὸν μέρος εἶναι μόνον ὁ πρῶτος χρόνος οἱ δὲ ἄλλοι εἶναι ἀσθενῆ μέρη:

$$\pi.\chi.$$
 $q \stackrel{\pi}{\smile} \stackrel{\iota}{\smile} | \ddot{\eta} \stackrel{\pi}{q} \stackrel{\iota}{\smile} \stackrel{\iota}$

Οί σύνθετοι πόδες χωρίζονται μὲ διπλὰς διαστολὰς π.χ.

'Ασκήσεις ρυθμοῦ ΟΙ 🖫 2]σημος

2) \(\langle - \cup | \cup

Ρυθμός ΟΙ 🚆 2]σημος 2/4

4) % - "+ | - " | - " | - " | - " + | - " + | -

Ρυθμός ΟΙ 2]σημος 2/4

Ρυθμός ΟΙΙ 3]σημος

p :: | :: - (

3]σημος με γοργόν

Ρυθμός ΟΙΙΙ 4]σημος

9) $\frac{\pi}{q}$ | $\frac{\Delta}{q}$ | \frac

4]4 Μὲ γοργὸν Ο Ï 🛪

Ρυθμός ΟΙΙΙ 🛪

11) ** | しった | ー し | しった | ー で

Ρυθμός ΟΪ Ţ Μὲ δίγοργον καὶ παῦσιν

12) # 1/ - 5 m - 1/ -

Ρυθμός Ο Ι΄ 🤼 Μὲ δίγοργον

13) # | (- 5 " -) (- 5 " -

Ρυθμός Ο Ι΄ 🚆 Μὲ τρίγοργον

Τὸ αὐτὸ 14 γύμνασμα ἐὰν προσθέσωμεν παῦσιν γίνεται ρυθμὸς τετράσημος

Γύμνασμα μετά μέλους ρυθμού ΟΙΙ 3]4 💢

Γύμνασμα 4]σήμου

Κυ ρι ε ε λε η σον δ Πα ρα σχου Κυ ρι ε χ

η Κυ ρι ε ε κε κρα ξα προ ο ος σε ει σα α κου σον μου ου Κυ υ υ υ ρι ι ι ε η

Έκ τοῦ συντόμου Είρμολογικοῦ ΟΙΙΙ 🤟

Ε πι τοις ει ρη κο σι μοι ο δευ σω μεν εις τας αυ λας του Κυ ρι ι ου δί ευ φραν θη μου το Πνε ευ μα συγ χαι ρει η καρ δι. ι α σ

Οἱ μαθηταὶ δύνανται, τῆ ὑποδείξει τοῦ διδασκάλου, νὰ κάμνουν ἀσκήσεις καὶ νὰ χωρίζουν γυμνάσματα εἰς ρυθμικοὺς πόδας δισήμους, τρισήμους κλπ. ἀπὸ τὸ 'Αναστασιματάριον, τὸ Εἰρμολόγιον κλπ. μουσικὰ κείμενα τῶν 'Εκκλησιαστικῶν μελῶν.

Ενταύθα παραθέτομεν Σχολικόν ἄσμα είς ρυθμόν

Φ ευ γει το σκο τος φθα νει αυ γη η νε αν λαμ βα νει λαμ ψιν η γη η πα λιν το λα λον ψαλ λει πτη νο ον πα α σμα και υ μνον ε ω θι νο ον πα

Ή πρώτη διαστολή χωρίζει τὸν τρίσημον καὶ ὁ ἐπτάσημος σημειοῦται διὰ δύο διαστολῶν ὅπου ὁλοκληροῦται ἔκαστος ρυθμικὸς πούς, ἐπειδή ὡς εἴπομεν ἀνωτέρω οἱ ρυθμικοὶ πόδες πέραν τοῦ τετρασήμου εἶναι σύνθετοι, ἀποτελούμενοι ἀπὸ δισήμους, τρισήμους καὶ τετρασήμους κλπ.

Καὶ τὸ κατωτέρω δημώδες ἄσμα ἐπίσης είς 7]σημον Επίτριτον

B α σι ι λο πουλ αρ μα α τω νε ε ε ο λο χρυ ση φιρ γα α δα δι βα νει κα λε ε βα νει ει ει λ πα νια με τα α ξω τα α α λ

Καὶ ἔτερον ἄσμα εἰς 4]σημον Ο Ι Ι = $\overset{\sim}{\smile}$ $\overset{\sim}{\Box}$ $\overset{\hookrightarrow}{\Box}$ $\overset{\sim}{\Box}$ $\overset{\sim}{\Box}$ $\overset{\sim}{\Box}$ $\overset{\sim}{\Box}$ $\overset{\sim}{\Box}$ $\overset{\sim}{\Box}$

Το αχ το α α α τε λει ω ω το ο πο τε δεν τε ε ε λει ει ει ει ω νει π το αχ το α α α τε λει ω ω το ο πο τε δεν τε ε ε λει ει ει ει ω νει π κα τε λυ σα α αν τα σπλα αχ να α α μου π κα τε λυ σα α αν τα σπλα αχ να μου ου και ε γι να α α νε ε ε σκο νι π

Έπωδὸς

Συ σαι Μαλ τα και αι αι Α αλ ζε ε ρι συ σαι δι κο ο ο μου ου αμ ται ρι

$MEPO\Sigma \Gamma$

Περί των όκτω ήχων της Βυζ. μουσικης περιληπτικώς

Κεφάλαιον ΙΒ.

Περὶ τοῦ Α.΄ "Η χου

'Ο Α.΄ Ήχος ἀνήκει εἰς τὸ Διατονικὸν γένος καὶ κλίμακα, μαρτυρίας και φθοράς έχει του διατονικού γένους.

'Υπὸ τῶν ἀρχαίων ἀνομάζετο Δώρειος.

'Αρκτικήν μαρτυρίαν εἰς τὰ μουσικὰ κείμενα ἔχει: α) τὴν 🧯 Πα ἡ ὁποία ὁρίζει ὡς βάσιν τὸν φθόγγον Πα καὶ β) τὴν $\frac{2}{\ddot{q}}$ $\stackrel{?}{=}$ ἢ $\frac{2}{\ddot{q}}$ Κε Κλίμαξ Α΄ Ήχου ὁπόταν ὡς βάσιν θὰ λάβη τὸν Κε ἐπειδὴ ὑψώνεται ἀπὸ τὴν βάσιν τοῦ φθόγγον Πα κατὰ τέσσα-

σχηματίζομεν τὰς κλίμακας ὅλων τῶν γενῶν καὶ τῶν ἤχων.

> Τάς καταλήξεις όλων των ήχων θά διδαχθωσιν, οί μαθηταί ὑπὸ τοῦ διδασκάλου, ἐκ τοῦ 'Αναστασιματαρίου και λοιπών μουσικών κειμένων.

> Είς τὸν ήχον αὐτὸν ἀνήκουσι τὰ περισσότερα ἐκκλησιαστικὰ μέλη, ἀργὰ καὶ σύντομα.

Πρόλογοι του Α.΄ ηχου είναι: «Των Ούρα-

νίων Ταγμάτων», «Πανεύφημοι Μάρτυρες», «΄Ω τοῦ παραδόξου θαύματος», «Τοῦ λίθου σφραγισθέντος», «Τῆς ἐρήμου πολίτης», «Σοῦ ἡ τροπαιούχος δεξιά», «Χριστός γεννᾶται δοξάσατε», «'Αναστάσεως ἡμέρα», «Τὸν Τάφον σου Σωτὴρ» καὶ ὅλοι οἱ Εἰρμοὶ τῶν Κανόνων κλπ τοῦ ἤχου αὐτοῦ.

Περὶ τοῦ Β.΄ "Η χου

"Ο Δεύτερος Ήχος ἀνήκει εἰς τὸ χρωματικὸν γένος. "Ο ήχος οὖτος κατὰ τὴν ἀρχαιότητα ἐλέγετο Λύδιος. Ἡ κλίμαξ τὴν ὁποίαν μεταχειρίζεται λέγεται μαλακὴ χρωματικὴ καὶ μὲ τὰ διαστήματά της ἔχει ὡς ἑξῆς:

'Αρκτική μαρτυρία αὐτοῦ εἶναι ἡ ἐκ τοῦ φθόγγου Βου ἀρχομένη καὶ γράφεται οὕτω Τοῦ ἤχου διὰ νὰ πάρωμεν τὴν βάσιν λέγοντας Β-Γ-Δ ΄΄΄ γε ε ἢ μόνον τὸν φθόγγον ΄΄΄ ὁπόταν θὰ ἀρχίσωμεν ἀπ' εὐθείας ἀπὸ τὸν Δι. Εἰς ώρισμένα ἀργὰ παπαδικὰ λεγόμενα μαθήματα ἔχομεν τὴν ἑξῆς μαρτυρίαν ΄΄΄ Πα τότε σημαίνει ὅτι ὁ φθόγγος Δι θὰ γίνη Πα μὲ πλίμακα τοῦ Πλ. Δευτέρου ἤχου, τὴν ὁποίαν μεταγειρίζεται

Δευτέρου ήχου, την δποίαν μεταχειρίζεται ό Δεύτερος ήχος εἰς ὅλα τὰ εἰρμολογικὰ μέλη σὐτοῦ.

Περὶ τοῦ Γ.΄ "Ηχου

΄ Ο Τρίτος ήχος ἀνήκει εἰς τὸ ἐναρμόνιον γένος. Ἡ ὡς κατωτέρω κλίμαξ αὐτοῦ παριστάνει τὰ διαστήματα τῶν φθόγγων, τὰς μαρτυρίας καὶ τὰς φθορὰς αὐτοῦ ὡς ἑξῆς:

Ή κλίμαξ αὕτη όδεύει κατὰ τριφωνίαν καὶ μεταχειρίζεται αὐτὴν καὶ ὁ Βαρὺς ἐναρμόνιος ἦχος.

Τὴν βάσιν λαμβάνομεν προφέροντες τὸν φθόγγον Γα 📆 🥌 ἢ

Παρ' δλον δτι τὰ μέλη εἰς τρίτον ήχον εἰναι ὀλίγα, προλόγους ὅμως ἔχει ἀρκετούς: «Μεγάλη τῶν Μαρτύρων σου Χριστὲ ἡ δύναμις», «Θείας πίστεως ὁμολογία», «Τὴν ὡραιότητα», «Επεσκέψατο ἡμᾶς», «Ἐν πνεύματι τῷ Ιερῷ», «'Ο οὐρανὸν τοῖς ἄστροις», «Τὸν νυμφῶνα σου βλέπω», «Τὸν ληστὴν αὐθημερόν», «'Η Παρθένος σήμερον» κλπ.

Ο ήχος αὐτὸς ὑπὸ τῶν ἀρχαίων ἐκαλεῖτο Φρύγιος.

Κλίμαξ τοῦ ἐναρμονίου γένους, μαρτυρίαι καὶ φθοραί, ὅταν ἡ φθορὰ τοῦ «ἀτζὲμ» τίθεται εἰς τὸν \mathbf{Z}^{\wp} καὶ εἰς τὸν \mathbf{B}^{\wp} ποίαν μεταβολὴν λαμβάνει.

Τὴν κλίμακα αὐτὴν μεταχειρίζεται καὶ ὁ Πλ. Α...

Περὶ τοῦ Δ.΄ Ήχου

"Ο Τέταρτος Ήχος ἀνήκει εἰς τὸ διατονικὸν γένος καὶ ἑπομένως κλίμακα, μαρτυρίας καὶ φθορὰς ἔχει τοῦ αὐτοῦ γένους καὶ διακρίνεται ἀπὸ τὰς καταλήξεις καὶ τοὺς δεσπόζοντος φθόγγους, οἱ ὁποῖοι διαφέρουν ἀπὸ τοὺς τοιούτους τῶν ἄλλων ἤχων τοῦ διατονικοῦ γένους : ἀπὸ τὸν Α.΄ τὸν Πλ. Α.΄ καὶ τὸν Πλ. Δ.΄.

'Αρκτική μαρτυρία τοῦ Δ΄. ἤχου εἶναι αὐτὴ $\frac{\Delta}{\mathring{\Pi}}$ Δι ἢ $\frac{\Delta}{\mathring{\Pi}}$ Πα. 'Η πρώτη ἀρχίξει ἀπὸ τὸν φθόγγον Δι καὶ ἡ δευτέρα ἀρχίζει ἀπὸ τὸν Πα, καὶ ἡ $\frac{\Delta}{\mathring{\Pi}}$ \mathbf{A} ἡ ὁποία ἀρχίζει ἀπὸ τὸν φθόγγον Βου.

'Απὸ τὰς μαρτυρίας αὐτὰς λαμβάνεται ἡ βάσις τοῦ δ.' ἤχου.

Οἱ ἀρχαῖοι τὸν ἦχον αὐτὸν ἀνόμαζον Μιξολύδιον.

Δεσπόζοντες φθόγγοι είς τὰ είρμολογικὰ είναι ὁ Δ καὶ ὁ B καὶ είς τὰ ἀργὰ κλπ. ὁ Δ , ὁ Π , ὁ B καὶ ὁ B.

Πρόλογοι τοῦ δ.΄ ἤχου εἶναι: «'Ως γενναῖον ἐν μάρτυσιν», «'Εδωκας σημείωσιν», «'Ο ἐξ ὑψίστου κληθείς», «'Ηθελον δάκρυσιν ἐξαλεῖψαι», «Κατεπλάγη Ἰωσήφ», «Ταχὺ προκατάλαβε», «'Ο ὑψωθεὶς ἐν τῷ Σταυρῷ», «'Επεφάνης σήμερον» καὶ πολλὰ ἄλλα.

Ό Τέταρτος ήχος ἔχει τὸ πλέον πανηγυρικὸν καὶ σοβαρὸν ὕφος τόσον εἰς τὰ ἀργὰ ὅσον καὶ εἰς τὰ εἰρμολογικὰ=σύντομα—μαθήματα, εἰς τὰ ὁποῖα, ἐπειδὴ κυριαρχεῖ περισσότερον τῶν ἄλλων φθόγγων ὁ Β καὶ λαμβὰνει ὕφεσιν ὁ φθόγγος Κ, καὶ τὸ μέλος πλησιάζει πρὸς τὸν δεύτερον ήχον ὀνομάζεται λέγετος,—διότι τὸ μέλος του ὁδεύει μεταξὺ Δευτέρου ήχου καὶ Τετάρτου—.

Περὶ τοῦ Πλ. Α.΄ "Η χου

*Ο Πλάγιος του Λ.΄ *Ηχος ἀνήκει ὡς καὶ ὁ Πρῶτος εἰς τὸ διατονικὸν γένος καὶ ἡ κλίμαξ, μαρτυρίαι καὶ φθοραὶ εἶναι κατὰ πάντα ὅμοιαι μὲ τὸν κύριον ἡχον αὐτοῦ τὸν Πρῶτον.

*Επίσης ἀρκτικὰς μαρτυρίας ἔχει τὰς αὐτὰς μὲ τὸν Πρῶτον, ἀπὸ τὸν ὁποῖον διακρίνεται ἐκ τῶν καταλήξεων.

Ό Πλάγιος τοῦ Α,΄ συνήθως δέχεται ἐπὶ τοῦ φθόγγου $Z^{\mathcal{P}}$ τὴν φθορὰν τοῦ ἐναρμονίου γένους \mathcal{P} , ὁπόταν ὁ Z' προφέρεται μὲ ὕφεσιν καὶ τότε μεγαλώνει τὸ διάστημα Z-N καὶ μικραίνει τὸ διάστημα Z-K κατὰ ἡμιτόνιον.

Ό Πλ. Α.΄ δεχόμενος την φθοράν $^{\mathcal{O}}$ τοῦ ἐναρμονίου γένους ἐπὶ τοῦ φθόγγου $\mathbf{B}^{\mathcal{O}}$ τότε θέλει τὸν φθόγγον αὐτὸν ώσὰν νὰ ἔχη δίεσιν καὶ πλησιάζει αὐτὸν πρὸς τὸν φθόγγον Γ καὶ τὸ διάστημα Π — \mathbf{B} ἀπὸ 10 γραμμὰς ἢ κόμματα ὅπου είναι γίνεται Π 12 \mathbf{B} καὶ \mathbf{B} 6 Γ , τότε καὶ αἱ μαριυρίαι μεταβάλλονται ὡς ἀναγράφονται αὐται εἰς τὴν ἐναρμόνιον κλίμακα.

Πρόλογοι τοῦ ἤχου τούτου εἶναι ὀλίγοι : «Χαίροις ᾿Ασκητικῶν», «Θσιε Πάτερ», «Τον συνάναρχον Λόγον», «Ἦπον καὶ ἀναβάτην» κλπ.

Εἰς τὸν Πλ. Α.΄ πολλοὶ διδάσκαλοι ἔχουν συνθέσει ὁραίας δοξολογίας, λειτουργικά, «Ἄξιον ἐστιν», πανηγυρικώτατα.

Ό ήχος αὐτὸς εἶναι χαρμόσυνος ἀλλὰ καὶ πολὺ πάθος ἐκφράζει καὶ γίνεται πένθιμος.

Κατά τούς άρχαίους ἀνομάζετο Ύποδώριος.

Περὶ τοῦ Πλ. Β. "Η χου

Ό Πλάγιος τοῦ Δευτέρου ἀνήκει εἰς τὸ χρωματικὸν γένος καὶ ἔχει κλίμακα ἰδικήν του, ἡ ὁποία λέγεται Σύντονος χρωματική, ὡς παραθέτομεν αὐτὴν κατωτέρω:

'Αρκτικαὶ μαρτυρίαι τοῦ Πλ. Β.' ἤχου είναι ἡ Π καὶ θέλει ὡς βάσιν του τὸν φθύγγον Π καὶ λ ΄΄ Π΄ καὶ θέλει ὡς βάσιν του τὸν φθόγγον Δ.

Εἰς τὰ εἰρμολογικὰ μέλη του ὁ Πλ. Β.΄ δανείζεται τὰς μαρτυρίας τοῦ Β.΄ ἤχου καὶ σημειώνεται ἡ μαρτυρία τῆς βάσεως ὡς ἑξῆς: $\frac{1}{2}$ $\frac{1}{2}$ καὶ ἀρχίζει ἡ πρώτη ἀπὸ τὸν Βου τοῦ Δευτέρου ἤχου καὶ ἡ δευτέρα ἀπὸ τὸν Δι.

Ο Πλ. Β.΄ εἶναι πλούσιος ἀπὸ ἔντεχνα μέλη καὶ προλόγους. Σχεδὸν σὲ ὅλα τὰ τροπάρια ὅλων τῶν ἤχων συναντῶνται χρωματισμοὶ καὶ θέσεις τοῦ ἤχου τούτου.

Οἱ κυριώτεροι τῶν προλόγων εἶναι: «"Ολην ἀποθέμενοι», «Ἐκ γαστρὸς ἐτέχθης», «Αἱ ᾿Αγγελικαὶ προπορεύεσθε», «Τριήμερος ᾿Ανέστης Χριστέ», «᾿Αγγελικαὶ Δυνάμεις» καὶ ἄλλα πολλά.

Οί ἀρχαῖοι μουσικοὶ ἀνόμαζον αὐτόν Ύπολύδιον.

Ο Διδάσκαλος θὰ πρέπει νὰ προσέξη εἰς τὴν παράδοσιν τῆς παρούσης κλίμακος.

Οἱ δὲ μαθηταὶ πρέπει νὰ προσέξουν ὅλως ἰδιαιτέρως καὶ νὰ μάθουν νὰ προφέρουν μὲ ἀκρίβειαν τὰ διαστήματα τῆς κλίμακος αὐτῆς, διότι, ἐὰν μάθουν καλῶς τὴν κλίμακα αὐτὴν τότε μὲ μεγάλην εὐκολίαν θὰ μάθουν ὅλας τὰς ἄλλας.

Περὶ τοῦ Βαρέως "Ηχου

Ό Βαρὺς Ήχος ἀνήκει εἰς τὸ ἐνπρμόνιον γένος καὶ κλίμακα, μαρτυρίας καὶ φθορὰς μεταχειρίζεται τὰς αὐτὰς μὲ τὸν Τρίτον ἦχον, τοῦ ὁποίου φέρεται ὡς πλάγιος καὶ κατ' ἄλλους είναι κύριος ἦχος.

Ο Βαρύς ὅταν ψάλλεται ὡς διατονικὸς μεταχειρίζεται τὴν κλίμακα τοῦ Πρώτου ἤχου καὶ εἰς τὰ σύντομα μέλη, εἰρμολογικά, δοξολογίας κλπ. διακρίνεται τοῦ Πρώτου ἀπὸ τὰς καταλήξεις, αἱ τελικαὶ τῶν ὁποίων καταλήγουν εἰς τὸν φθόγγον Ζ, ὁπόταν ἔχομεν τὸν λεγόμενον πρωτόβαρυν.

Αρκτικαὶ μαρτυρίαι τοῦ Πρωτόβαρου ήχου είναι : ζ ἢ ᾳ ΄΄΄ ζ
καὶ τοῦ ἐναρμονίου είναι : Τα Ξ Ζω
ἐκ τοῦ φθόγγου ἡ ΄΄ ἢ ἔ
ῖε

Πρόλογοι όλίγοι ὑπάρχουν καὶ εἰς τὸν ἡχον αὐτὸν ὡς καὶ εἰς τὸν Τρίτον, πλὴν ὅμως ὑπάρχουν ἔντεχνα μαθήματα καὶ ἀριστουργήματα σὲ ἀργὰ καὶ σύντομα μέλη, δοξολογίας, ὡς εἶναι τὸ «"Ανωθεν οἱ Προφῆται» κλπ.

Οἱ ἀρχαῖοι ἐκάλουν αὐτὸν Ύποφρύγιον.

Ό ήχος αὐτὸς ὅταν είναι ἐναρμόνιος μεταχειρίζεται τὴν ἐν τῷ Τρίτῳ ήχῳ κλίμακα. (Σχῆμα Κ΄).

. Περὶ τοῦ Πλαγίου Δ.' Ήχου

Ό Πλάγιος Τέταρτος Ήχος ἀνήκει εἰς τὸ διατονικὸν γένος καί ὡς ἐκ τούτου κλίμακα ἔχει τήν φυσικὴν διατονικὴν τοιαύτην, ὡς καὶ μαρτυρίας καὶ φθορὰς ὡς θὰ ἴδωμεν εἰς τὴν κατωτέρω κλίμακά του.

'Αρκτική μαρτυρία του Πλ. Δ.' είναι ἡ λ ζ Νη καὶ θέλει τὸν φθόγγον Νη ὡς βάσιν καὶ τὴν λ ζ Τ λ λ ζ Τα , ἡ ὁποία

μεταθέτει τὸν φθόγγον Νη εἰς τὸ ὕψος τοῦ Γα καὶ ὁδεύει ἀπὸ τὸν Γα τὸ μέλος κλπ. τὸ ἀπήχημα καὶ ὡς βάσις.

Πρόλογοι εἰς τὸν ἦχον αὐτὸν εἶναι πολλοί: «Ὁ τοῦ παραδόξου θαύματος», «Τὶ ὑμᾶς καλέσωμεν», «᾿Αμέτρητος ὁπὰρχει», «Ὁ ἐν Ἐδὲμ παράδεισος ποτὲ», «Τὴν σοφίαν καὶ Λόγον», «Τῇ ὑπερμάχω στρατηγῷ», «Τὸ προσταχθὲν μυστικῶς», «Ἦς ἀπαρχὰς τῆς φύσεως», «Κύριε εἰ καὶ κριτηρίω», «᾿Ανέστης ἐκ νεκρῶν» κλπ. Καταβασίας.

Ο ήχος αὐτὸς ἔχει τὰ σοβαρώτερα καὶ ώραιότατα μουσικὰ μέλη, ἀργὰ καὶ σύντομα, δοξαστικά, δοξολογίας, ἀριστουργήματα τέχνης καὶ μάλιστα ὅταν ἐναρμονίζηται μὲ τὸν Τρίτον ήχον, τότε μεταβάλει τὴν ἑαυτοῦ κλίμακα καὶ τὰς μαρτυρίας, οὕτω:

ΜΕΡΟΣ Δ΄.

Ή ὀρθογραφία της βυζαντινης μουσικης.

§ 114. Ἡ βυζαντινή παρασημαντική ἀκολουθεῖ ὡρισμένους κανόνας δρθογραφίας, άναλόγους πρός τούς γλωσσικούς δρθογραφικούς κανόνας. ή δρθή μουσική γραφή συντελεί μέν είς την όρθην και άκριβη παράστασιν και του ποσού της μελωδίας και του ποιου, καθοδηγεί δὲ τὸν ψάλλοντα διὰ ν' άποδώση πιστώς διά τῆς φωνῆς τὸ μέλος, τὸ ὁποῖον γράφουν οί γαρακτήρες και αί διάφοροι ύποστάσεις. Πρέπει λοιπόν νά θεωρηθή ἀπαραίτητος ή γνώσις τής μουσικής ὀρθογραφίας. Καὶ είναι μὲν ἄριστος τρόπος διὰ τὴν ἐκμάθησίν της ἡ ἐνδελεχής μελέτη τῶν βυζαντινῶν μουσικῶν κειμένων. Ἐκ παραλλήλου όμως χρησιμεύει και ή μελέτη τῶν ὀρθογραφικῶν κανόνων, οί όποιοι συνάγονται έκ της σπουδης των κειμένων τούτων. 'Επειδή δὲ βάσις τῆς βυζαντινῆς παρασημαντικῆς είναι οἱ δέκα ποσοτικοί χαρακτήρες, οί όποιοι συντίθενται πρός άλλήλους κατά ποικίλους τρόπους καὶ προσλαμβάνουν, άναλόγως τῆς άνάγκης, άλλοτε ὑπρστάσεις ἐγχρόνους ἢ ἀχρόνους καὶ ἄλλοτε διάφορα φθορικά σημεία, διά τοῦτο ἡ ὕλη τοῦ μέρους τούτου δύναται νὰ κατανεμηθή εἰς δύο κεφάλαια, ἄτινα εἶναι α) ή δρθογραφία του ίσου και των ανιόντων χαρακτήρων καὶ β) Ἡ ὀρθογραφία τῶν κατιόντων χαρακτήρων. Εἰς τὰ κεφάλαια αὐτὰ θὰ περιληφθοῦν καὶ τὰ ἀφορῶντα τὴν ὀρθογραφίαν τῶν ἐγχρόνων καὶ ἀχρόνων ὑποστάσεων, ἐφ' ὅσον αὐταὶ δὲν ὑπάρχουν μόναι, ἀλλὰ κατὰ κανόνα συνδέονται μὲ τοὺς χαρακτήρας ποσότητος. 'Ως πρός δὲ τὰς μαρτυρίας (τῶν φθόγγων καὶ τῶν ἤχων), εἴπαμεν εἰς τὰ προηγούμενα πᾶν δ,τι ἀφορᾶ τὴν ὀρθογραφίαν των καὶ διὰ τοῦτο ἐνταῦθα δὲν θὰ γίνη λόγος περὶ αὐτῆς.

Ή ὀρθογραφία του ἔσου καὶ τῶν ἀνιόντων χαρακτήρων.

§ 115. Όρθογραφία τοῦ ἴσου. α) Τὸ ἴσον εἶναι σύνηθες συστατικὸν τῆς βυζαντινῆς μουσικῆς γραφῆς. Τὸ μέλος δύναται ν' ἀρχίζη μὲ ἴσον, καθὼς καὶ νὰ καταλήγη εἰς ἴσον. Πρὸ τοῦ ἴσου προηγεῖται οἰοσδήποτε χαρακτήρ, ἐκτὸς πεταστῆς ἔπειτα δὲ ἀπὸ αὐτὸ ἀκολουθεῖ ὁποιοσδήποτε χαρακτήρ. Τὰ αὐτὰ ἀκριδῶς ἰσχύουν καὶ διὰ τὸ ὀλίγον, τὴν ἀπόστροφον καὶ τὸ ἐλαφρόν, μὲ μόνην τὴν ἐξαίρεσιν ὅτι πρὸ κατιόντων χαρακτήρων προηγεῖται καὶ πεταστή.

ρακτήρων προηγεῖται καὶ πεταστή.
β) Τὸ ἴσον γράφεται εἴτε μόνον, εἴτε συνηνωμένον μὲ ὁλίγον (σπανιώτατα) ἢ πεταστὴν ἢ κεντήματα ἢ ἀπόστροφον (). Εἰς τὴν πρώτην περίπτωσιν μετὰ τὸ ἴσον ἀκολουθεῖ πάντοτε ἴσον $(π.χ. \frac{χ}{χ})$ $\frac{1}{η}$ $\frac{1}{η}$

(1) Διά τὴν σύνθεσιν τοῦ ἴσου ἢ ἄλλων χυρακτήρων μὲ πεταστὴν θὰ γίνη λόγος κατωτέρω (§ 117).

⁽²⁾ Τὰ παραδείγματα εἰς τὸ κεφάλαιον τοῦτο, καθώς καὶ εἰς ἄλλα κεφάλαια, ἔχομεν σταχυολογήσει ἀπὸ ἀνεγνωρισμένα μουσικὰ κείμενα, ὁποῖα εἰναι τὸ ᾿Αναστασιματάριον Πέτρου καὶ Ἰωάννου, τὸ Εἰρμολόγιον Ἰωάννου, τὸ Λοξαστάριον Πέτρου, τὸ Δοξαστάριον Ἰακώβου κλπ.

γ) Τὸ ἴσον δέχεται ἰδιαιτέραν συλλαβὴν λέξεως, ὅπως καὶ οἱ ἄλλοι κύριοι χαρακτῆρες (§ 21). Ἐνίοτε ὅμως (εἰς μέλη στιχηραρικὰ καὶ ἀργά, σπανιώτερον δὲ καὶ εἰς εἰρμολογικά) δὲν ἔχει ἰδίαν συλλαβήν, ἀλλ' ἐκτείνει τὸ φωνῆεν ἢ τὴν δίφθογγον τοῦ προηγουμένου χαρακτῆρος(³). Τοῦτο γίνεται ἰδίως, ὅταν τὸ ἴσον τίθεται ἀντὶ χρονικοῦ σημείου (κλάσματος ἢ άπλῆς), ἐπειδὴ ὁ προηγούμενος χαρακτὴρ δὲν ἐπιδέχεται τοιοῦτον σημεῖον. Οὕτω ἔχομεν γραμμὰς ὡς αἱ ἑξῆς κοι το

προ ο το καὶ εἰς τὸ δεύτερον τὸ τον ετέθησαν ἀντὶ κλάσματος, ὁποῖον δὲν ἐπιδέχεται ὁ πρὸ αὐτῶν χαρακτήρ. Ἰσον μὲ κεντήματα ἐπὶ ὁλίγου (καὶ πὸ ἄλλοτε λαμβάνει ίδιαν συλλαβὴν καὶ ἄλλοτε ἐκτείνει τὴν προηγουμένην. Παραδείγματα

δ) 'Απὸ τὰ χρονικὰ σημεῖα τὸ ἴσον δέχεται τὸ κλάσμα, τὴν ἀπλῆν καὶ τὰ πολλαπλάσια αὐτῆς (ε πλῆν, τριπλῆν), τὸ γορ-

⁽³⁾ Γενικῶς πρέπει νὰ ἔχωμεν ὑπ' ὄψιν, ὅτι οἱ ὀρθογραφικοὶ κανόνες ὅσον ἀφορῷ τὰς συλλαβὰς, τὰς ὁποίας λαμβάνουν οἱ χαρακτῆρες, δὲν ἰσχύουν πάνιστε εἰς τὰ ἀργὰ μέλη' διότι εἰς αὐτὰ αἱ συλλαβαὶ ἐκτείνονται κ τὰ κανόνα εἰς πολλοὺς χρόνους καὶ χαρακτῆρας (§ 56).

γόν καὶ τὰς ὑποδιαιρεσεις αὐτοῦ (δίγοργον, τρίγοργον). Καὶ τὸ μὲν κλάσμα γράφεται ἐπάνω τοῦ ἴσου ἡ ἀπλῆ πάντοτε κάτωθεν καὶ ἡνωμένη μὲ ἀντικένωμα τὰ δὲ πολλαπλάσια τῆς ἀπλῆς πάντοτε ὑποκάτω τοῦ ἴσου, συνηνωμένα ἐνίοτε μὲ ἔτερον. "Οταν τὸ ἴσον φέρῃ κλάσμα ἢ διπλῆν, ἀκολουθεῖ ὁποιοσδήποτε χαρακτήρ. "Όταν δὲ φέρῃ ἀντικένωμα καὶ ἀπλῆν, ἀκολουθεῖ πάντοτε κατιών μετὰ γοργοῦ μὴ ἔχων ἰδίαν συλλαβήν (π. χ.). "Όταν ὅμως ὁ κατιών ἔχῃ ἰδίαν συλλαβήν, τότε

τὸ ἴσον λαμβάνει μόνον κλάσμα $(\pi.\chi. \frac{\chi}{q} \frac{-i \pi}{\delta o})$

την τε καὶ ἐπάνω τοῦ ἴσου καὶ ὑποκάτω αὐτοῦ, τὸ δὲ δίγοργον καὶ τρίγοργον ἐπάνω αὐτοῦ.

Χαρακτήρ φέρων βαρείαν ή ψηφιστόν ή όμαλον δὲν λαμβάνει ποτὲ γοργόν ή διπλῆν ή τριπλῆν. Χαρακτήρ φέρων ἔτερον δὲν λαμβάνει γοργόν.

ε) Τὸ ἴσον συντίθεται μὲ ὅλας τὰς ἀχρόνους ὑποστάσεις, ἐκτὸς τοῦ ἐνδοφώνου. Καὶ ἡ μὲν βαρεῖα γράφεται πρὸ τοῦ ἴσου ἣ ἄλλων φωνητικῶν χαρακτήρων. Λαμβάνει δὲ τὸ ἴσον βαρεῖαν, ὅταν ἀκολουθῆ κατιὼν μὲ τὴν αὐτὴν συλλαβήν. Παραδεί-

κλπ. "Όταν τὸ μετὰ βαρείας ἴσον εἶναι δίχρονον, ἀκολου-

θεῖ συνήθως ὑπορροή (π.χ.) (-----). "Οταν δὲ ὁ ἀκολουθῶν κατιών (ἀπόστροφος ἢ ἐλαφρὸν ἢ συνεχὲς ἐλαφρόν) ἔχη ἰδιαιτέραν συλλαβήν, τότε τὸ ἴσον δὲν λαμβάνει βαρεῖαν. Παραδείγματα: π. σω ω τι σον Αἱ ἄλλαι ὑποστάσεις γράφονται κάτωθεν τοῦ ἴσου, εἴτε μόναι, είτε συνοδευόμεναι ύπὸ σημείου χρονικοῦ τιθεμένου άνωθεν ἢ κάτωθεν τοῦ ἴσου (καὶ $\stackrel{\checkmark}{\smile}$ καὶ $\stackrel{\checkmark}{\smile}$ καὶ $\stackrel{\checkmark}{\smile}$ _____). "Επειτα ἀπὸ ἴσον μονόχρονον μετὰ ψηφιστοῦ ἀκολουθοῦν κατιόντες δύο ἡ περισσότεροι ἐπίσης μονόχρονοι())(4). Ο δεύτερος όμως δύναται να είναι καὶ δίχρονος (Μετὰ τὸν πρῶτον κατιόντα δύνανται ν' ἀκολουθοῦν δύο ἀπόστροφοι μὲ προγραφομένην βαρεῖαν (). "Όταν μετὰ τὸ ἴσον ἀκολου θῆ ὑπορροὴ ἔγγοργος ἢ συνεχὲς ἐλαφρόν, τὸ ἴσον δὲν δέ-χεται ψηφιστόν, ἀλλὰ γράφεται ἁπλοῦν ἢ συντίθεται μὲ 😘 👡). "Επειτα ἀπὸ ἴσον δίχρονον μετὰ ψηφιστοῦ ἀκολουθοῦν ἰσόχρονοι μὲ αὐτὸ κατιόντες () Δύναται δμως δ δεύτερος κατιών να εΐναι καὶ μονόχρονος () Είς τὴν γραφὴν τὸ ἴσον δὲν είναι δίχρονον, άλλά κρατεῖ ἕνα καὶ ἥμισυν χρόνον (ἕνεκα τοῦ ἀκολουθοῦντος γοργού). Έπειτα ἀπὸ ἴσον μετὰ πεταστής δίχρονον ἀκολουθοῦν κατιόντες μονόχρονοι ἢ ὑπορροὴ έγγοργος ἢ συνεχὲς ἐλαφρὸν ()

⁽⁴⁾ Είς τινα μουσικά κείμενα εύρίσκομεν και ίσον η όλίγον φέροντα ψηφιστόν, ακολουθούντα δὲ ένα μόνον κατιόντα.

32. 320 Kal 320 2200 Kal

Ψηφιστόν εύρίσκομεν καὶ κάτωθεν τῆς συνθέσεως ἴσου καὶ πεταστῆς μετὰ κλάσματος (). Τῶν ἀνωτέρω περιπτώσεων παραθέτομεν παραδείγματα.

$$\frac{\pi}{Q}$$
 $\frac{\pi}{Q}$ $\frac{\pi$

Τὸ ἀντικένωμα ὑπὸ τὸ ἴσον εἶναι πάντοτε συνηνωμένον μὲ ἀπλῆν ἐνίοτε δὲ προγράφεται βαρεῖα, ὅπως καὶ εἰς τὴν σύνθε-

σιν ισου με πεταστήν καὶ ἀντικένωμα καὶ ἀπλῆν, καὶ ἴσου μὲ διπλῆν καὶ ἔτερον (Ε΄ Εἰς τὰς συνθέσεις αὐτὰς ἀκολουθεῖ κατιὼν μὲ τὴν αὐτὴν συλλαδήν τοῦ ἴσου. Ἐ- ὰν ὅμως ὁ κατιὼν φέρῃ ἰδιαιτέραν συλλαδήν, τὸ ἴσον δὲν δέ- χεται σημεῖον ποιότητος. Κατιὼν ἐπίσης ἀκολουθεῖ, ὅταν τὸ ἴσον φέρῃ ψηφιστὸν ἢ ὁμαλόν. Τὸ δὲ ἔτερον (ἢ σύνδεσμος) συνδέει δύο ἢ τρεῖς χαρακτῆρας φέροντας τὴν αὐτὴν συλλα-δήν, ἐκ τῶν ὁποίων ὁ δεύτερος καὶ ὁ τρίτος εἶναι πάντοτε ἴσον. Καὶ τὸ ὁμαλὸν τίθεται ἐνίοτε ὑπὸ ἴσον μονόχρονον ἤ δίχρονον καὶ ἀκολουθεῖ κατιών ἢ ἐνώνει δύο ἢ τρεῖς χαρακτῆρας φέροντας τὴν αὐτὴν συλλαδήν, ἐξ ῶν ὁ δεύτερος καὶ ὁ τρίτος εἶναι πάντοτε ἴσον. Ἐν τοιαύτῃ περιπτώσει προτάσσεται καὶ

στ΄) Ύφεσις ἢ δίεσις συνήθως δὲν τίθεται ἐπὶ τοῦ ἴσου διότι τὰ σημεῖα αὐτὰ πολλάκις τίθενται εἰς τὸν πρὸ αὐτοῦ χαρακτῆρα, ὁπότε ἰσχύουν καὶ διὰ τὸ ἴσον, κατὰ τὰ ἐν § 28 λεχθέντα. Δέχεται ὅμως τὸ ἴσον ὁποιανδήποτε φθοράν, ἄνωθεν ἢ κάτωθεν.

§ 116. 'Ορθογραφία το ῦ ὁλίγου. α) Τὸ ὀλίγον καὶ ἡ ἀπόστροφος εἶναι οἱ εὐχρηστότεροι ἀπὸ ὅλους τοὺς ποσοτικοὺς χαρακτῆρας. Γράφεται δὲ καὶ μόνον καὶ εἰς ποικίλας συνθέσεις μὲ ἄλλους χαρακτῆρας (ἰδὲ § 12 καὶ 13), ὁπότε ῆ διατηρεῖ τὴν ποσοτικήν του δύναμιν ἢ χρησιμεύει ἀπλῶς διὰ νὰ βαστάζη τοὺς ἐπ' αῦτοῦ χαρακτῆρας, χωρὶς νὰ ἔχη ἄλλην τινὰ ἐνέργειαν. Ἐνίοτε δέ, ἐνῷ χάνει τὴν ποσοτικήν του δύναμιν ἀποκτῷ ποιοτικὴν τοιαύτην (ἰδὲ § 21).

β) Τὸ δλίγον ἐπιδέχεται πάντοτε ἰδιαιτέραν συλλαβὴν λέξεως μόνον δὲ εἰς μέλη ἀργοσύντομα καὶ ἀργὰ συμβαίνει πολλάκις νὰ συνεχίζη τὸ προηγούμενον φωνῆεν ἢ δίφθογγον.

Όταν ἔχωμεν συνεχη ἀνάβασιν με ιδιαιτέραν συλλαβήν είς ἔκαστον φθόγγον, αι συλλαβαι ἐκφέρονται με ὀλίγον (π. χ.

 $\frac{\pi}{q}$ του τι $\frac{\pi}{\mu}$ ου $\frac{\pi}{\sigma s}$). "Όταν ἀκολουθ $\hat{\eta}$ εἷς κατι-

ών, άντι όλιγου τίθεται πεταστή και άντι διχρόνου όλιγου τίθεται δίχρονος πεταστή. Παραδείγματα

συνεχή ἀνάβασιν δύο ἢ περισσότεροι χαρακτήρες ἔχουν τὴν αὐτὴν συλλαβήν, τότε μετὰ τὸ πρῶτον ὀλίγον γράφομεν κεντήματα, ἔπειτα δὲ ἐναλλὰξ ὀλίγον ἢ κεντήματα, καθ' ὄν τρόπον δεικνύουν τὰ ἀκόλουθα παραδείγματα

"Όταν εἰς συνεχή ἀνάβασιν ἐκάστη συλλαβή κρατῆ δύο χαρακτήρας, χρησιμοποιοῦμεν δι' ἑκάστην ὀλίγον μὲ

ναβάσεως δίχρονοι ή φέροντες άντικένωμα ἐκφέρονται πάντοτε με όλίγον καὶ οὐχὶ με κεντήματα, μολονότι ἐκτείνουν την προηγουμένην συλλαβήν, έπειδή τὰ κεντήματα δὲν ἐπιδέχονται προσθετικὰ χρονικὰ σημεῖα, οὕτε ἀντικένωμα. Παραδείγματα π χε ε ε π Σ_{α} αλ κλπ. Διὰ τὸν αὐτὸν λόγον εἰς συιεχῆ άνάβασιν με διχρόνους χαρακτήρας καί την αὐτην συλλαβὴν τίθεται πάντοτε ὀλίγον (π.χ. 6)) Έπίσης θέτομεν όλίγον άντὶ κεντημάτων, μολονότι διήκει ή αὐτὴ συλλαβή, ἐκεῖ ὅπου δύναται νὰ γίνη σύγχυσις είς την γραφήν (οὕτω ἀντὶ γράφομεν _____). Είς γραμμάς ώς αἱ ἀκόλουθοι, μολονότι ἔχομεν ἐπέκτασιν τῆς αὐτῆς συλλαβῆς, δὲν τίθενται κεντήματα, άλλὰ πάντοτε όλίγον

γ) Σημεία χρόνου τὸ ὀλίγον λαμβάνει ὅσα καὶ τὸ ἴσον (§ 115 δ) καὶ εἰς τὴν αὐτὴν θέσιν ἄνωθεν ἢ κάτωθεν. Ἐπὶ πλέον ὅμως λαμβάνει ἄνωθεν τὸ ἀργόν, τὸ δίαργον καὶ τὸ τρίαργον, ὁπότε ὑπὸ τὸ ὀλίγον εὑρίσκονται κεντήματα (, , , , , , , , , , ,). "Οταν τὸ ὀλίγον εἶναι ἔγγοργον καὶ φέρῃ κάτωθεν ἀντικένωμα, τὸ γοργὸν γράφεται ἄνωθεν (,). Эταν

δὲ τὸ ὀλίγον φέρη βαρεῖαν ἢ συνδέεται δι' ἐτέρου μὲ ἀκολουθοῦντα ἀνιόντα ἢ ἴσον, δὲν ἐπιδέχεται οὐδὲν σημεῖον χρόνου. "Όταν δὲ φέρη ψηφιστὸν ἢ ὁμαλόν, δέχεται ἄνωθεν μόνον κλάσμα (______).

δ) 'Αχρόνους δὲ ὑποστάσεις δέχεται τὸ ὀλίγον ὅσας καὶ τὸ ίσον τὴν μὲν βαρεῖαν ἔμπροσθεν, τὰς δὲ λοιπὰς κάτωθεν. 'Ολίγον μὲ κεντήματα κάτωθεν, ἐὰν ἔχη ἄχρονόν τινα ὑπόστασιν, αὐτὴ ἐννοεῖται διὰ τὸ ὀλίγον (π.χ.) ἐὰν δὲ τὰ κεντήματα εἶναι ἄνωθεν, ἡ ἄχρονος ὑπόστασις λογίζεται δι' αὐτά (😂). Κατόπιν όλίγου φέροντος βαρεῖαν ἢ ὁμαλὸν ἢ ψηφιστὸν ἢ ἀντικένωμα ἀκολουθεῖ κατιών με την αύτην ή ίδιαιτέραν συλλαβήν. Τὸ έτερον συνδέει τὸ ὀλίγον μὲ ἴσον ἢ ἀνιόντα φέροντα τὴν αὐτὴν συλλαβήν. Διὰ τὸ ὀλίγον μὲ ἀντικένωμα καὶ ἀπλῆν ἰσχύουν όσα και διά τὸ ἴσον μὲ τὰ αὐτὰ σημεῖα (§ 115 ε). Ψηφιστὸν δὲ λαμβάνει τὸ ὀλίγον, ὅταν ἀκολουθοῦν δύο ἢ περισσότεροι κατιόντες ()). Καὶ τὸ δίχρονον ὁλίγον λαμβάνει ψηφιστόν, ὅταν ἀκολουθούν κατιόντες, έκ των όποιων τουλάχιστον ό πρώτος είναι δίχρονος () Δι' άλλας περιπτώσεις Ισχύουν όσα εἴπαμεν διὰ τὸ ἴσον μετὰ ψηφιστοῦ (§ 115 ε). "Οταν κατόπιν όλίγου ἀκολουθἢ κατιὼν μὲ βαρεῖαν, τὸ όλίγον δὲν δέχεται ἄχρονον ὑπόστασιν (--) 5)(5). 'Ομαλόν δὲ λαμβάνει τὸ ὀλίγον κάτωθεν, συχνότατα εἰς καταλήξεις, ἀκολουθεῖ δὲ κατιών ἢ ἴσον (____ > ___ > συνεχή ἀνάβασιν, μετὰ τὴν ὁποίαν ἀκολουθεῖ κατάβασις μὲ νέαν συλλαβήν, ἡ τελευταία ἐπὶ τὸ ὀξύ συλλαβή λαμβάνει όλίγον με άντικένωμα ή όλίγον με ίσον ἔγγοργον καὶ ὁμαλὸν κάτωθεν()η)η). "Ηδη πα-

⁽⁵⁾ Ἡ γραμμὴ — Το πρέπει ἀσφαλῶς νὰ θεωρηθῆ ἀνορθόγραφος, δεδομένου ὅτι ἡ ποιότης τοῦ ἀντικενώματος ἐμποδίζει τὴν
ποδοσιν τῆς ἀμέσως ἀκολουθούσης βαρείας.

ραθέτομεν παραδείγματα. 6 β χα α α ρι Α ε ε πι ι ι ι JU bi i o o o o o di di ai m Aman ex $\frac{1}{\delta o} \times \epsilon_{i} \epsilon_{i} \qquad \frac{\pi}{q} \tau_{\eta \zeta} \Pi_{\alpha \rho} \quad \theta \epsilon \quad \epsilon \quad \epsilon \quad \nu_{\delta} \qquad \frac{\pi}{q} \quad \delta_{\delta} \qquad \frac{\pi}{q}$ ο δο ο ο ον η τε ε ε ρα αν

ε) Τὸ ὁλίγον, εἶτε μόνον εὑρίσκεται, εἴτε ἐν συνθέσει μὲ ἄλλους χαρακτῆρας, δέχεται καὶ ὕφεσιν καὶ δίεσιν καὶ παντὸς γένους φθοράν, γραφομένην ἄνωθεν ἢ κάτωθεν. Κατόπιν ὁλίγου ἢ ἄλλου χαρακτῆρος φέροντος ὕφεσιν ἀκολουθεῖ κατιών ἢ ἴσον κατόπιν δὲ χαρακτῆρος φέροντος δίεσιν ἀκολουθεῖ ἀνιών ἢ ἴσον. Εἰς σύνθεσιν τοιαύτην ἡ φθορὰ εἶναι διὰ τὸ ὀλίγον, εἰς τοιαύτην δὲ διὰ τὰ κεντήματα εἰς τοιαύτην ὅμως δύναται νὰ εἶναι εἴτε διὰ τὸ ὀλίγον, εἴτε διὰ τὰ κεντήματα (ἐπειδὴ τὸ ψηφιστὸν ἐμποδίζει νὰ τεθῆ κάτωθεν φθο-

ρά). Αἱ φθοραὶ τίθενται καὶ ἐπάνω εἰς μαρτυρίας (π. χ.) $\frac{2}{2}$ $\frac{2}{3}$ $\frac{2}{3}$). Εἰς τὰς συνθέσεις αὐτὰς $\frac{2}{3}$ $\frac{2}{3}$ ή ὕφεσις εἶναι διὰ τὸ ὀλίγον.

§ 117. 'Ο ρθο γραφία τῆς πεταστῆς. α) 'Η πεταστή, ὡς ἐκ τῆς ποιότητός της (§ 22), ἔχει ιδιάζουσαν θέσιν εἰς τὴν μουσικὴν γραφήν, ὅπως καὶ τὰ κεντήματα καὶ ἡ ὑπορροή. Τὸ μέλος δύναται ν' ἀρχίζη, ὅχι ὅμως καὶ νὰ καταλήγη μὲ πεταστήν. Πρὸ αὐτῆς δύναται νὰ ὑπάρχη ὁποιοσδήποτε ἄλλος χαρακτήρ' κατόπιν ὅμως αὐτῆς μόνον κατιών.

β) Ἡ πεταστὴ συντίθεται μὲ ὅλους τοὺς χαρακτῆρας, ἐκτὸς κεντημάτων (§ 12 καὶ 13). Εἴτε διατηρεῖ δέ, εἴτε μή, τὴν ποσοτικήν της ἀξίαν, πάντοτε ὅμως προσθέτει τὴν ποιοτικήν της δύναμιν. Ἐπιδέχεται δὲ ἰδίαν συλλαβὴν λέξεως. Ἐνίοτε ὅμως τὸ σύμπλεγμα πεταστῆς καὶ ἴσου ἐπεκτείνει τὴν συλλαβὴν προηγουμένου χαρακτῆρος διχρόνου καὶ ἑνώνεται μὲ αὐτὸν διὰ

συνδέσμου. Παραδείγματα:

Κατὰ τὸν Χρύσανθον (Θεωρητ. μέγα § 139) ή πεταστή «τίθεται ἔμπροσθεν κατιόντος χαρακτήρος μόνη οὖσα μετὰ δὲ κλάσματος, πολλῶν». Κατὰ τὸν κανόνα τοῦτον εἰς μονόχρονον πεταστήν ἀκολουθεῖ εἶς κατιών, μονόχρονος ἡ δίχρονος εἰς δίχρονον δὲ ἀκολουθοῦν καὶ εἶς καὶ περισσότεροι κατιόν-

τες. Παραδείγματα $\frac{1}{\pi}$ Δο ξχ Π χ τρι χαι Υ ι ω ω $\ddot{\Lambda}$ σου

προσλη
$$\varphi$$
θει ση φ α θυ μεν τες ως φ ε δει

> κλπ. Τὰ αὐτὰ ἀκριβῶς ἰσχύουν καὶ διὰ τὰς ει ξας α αυ

συνθέσεις πεταστής με όποιονδήποτε χαρακτήρα.

Έν τούτοις ὁ ἀνωτέρω ὀρθογραφικὸς κανών δὲν φαίνεται νὰ τηρῆται πάντοτε. Οὕτω εἰς μαθήματα μουσικὰ τοῦ Πέτρου,

τοῦ Ἰακώβου, τοῦ Γρηγορίου, τοῦ Μανουήλ, τοῦ Χουρμουζίου καὶ ἄλλων ευρίσκομεν πεταστήν μονόχρονον ἀκολουθουμένην και ἀπὸ δύο και ἀπὸ τρεῖς κατιόντας. Παραδείγματα: - (Μανουήλ Χρυσάφου), χ. Χρι ι ω γας (Χουρμουζίου Χαρτοφ.) κλπ. Συχνότατα έξ άλλου ή μονόχρονος πεταστή ἀκολουθεῖται ἀπὸ δύο ήμιχρονίους ἀποστρόφους (55 καὶ 55 κλπ.). Ο κατόπιν μονοχρόνου πεταστής κατιών δύναται να έχη ίδίαν συλλαβήν ή νά συνεχίζη την συλλαβήν της πεταστής. Παραδείγματα π σε γαρ μη π τε ρα π δευ τε π δευ τε π κλπ. π κλπ. π κλπ. Κατόπιν πεταστής δύναται νι άκολουθή κατιών συνηνωμένος μὲ πεταστήν. Παραδείγματα: $\frac{\Delta}{\ddot{\alpha}}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$ κλπ. Είς τὰ παραδείγματα αὐτὰ ἡ πρώτη πεταστή εὑρίσκεται εἰς τὴν ἄρσιν τοῦ ρυ θμικοῦ ποδός(6). Είς μονόχρονον πεταστὴν δύνανται \mathbf{v} ἀ

⁽⁶⁾ Είς μαθήματα τοῦ Ἰαχώβου ἀργὰ στιχηραρικὰ μονόχρονος πεταστή μὲ ἀκολουθοῦντας πολλοὺς κατιόντας λαμβάνεται συχνότατα εἰς ἄρσιν ρυθμικοῦ ποδὸς (),), ὁπότε ὅμως ὀρθότερον ἀντὶ πεταστῆς θὰ ἔπρεπε νὰ χρησιμοποιῆται ὀλίγον μὲ ἀντικένωμα.

κολουθοῦν δύο ἀπόστροφοι μὲ μίαν συλλαβήν, προηγουμένης ὅμως βαρείας ($\pi.\chi._{\frac{\varkappa}{q}}$ το ε ε λε ε

- γ) 'Απὸ τὰ σημεῖα χρόνου ἡ πεταστὴ καὶ πᾶσα σύνθεσις αὐτῆς δέχεται μόνον κλάσμα κάτωθεν καὶ ἁπλῆν μὲ ἀντικένωμα (\rightarrow). Κατόπιν πεταστῆς δύναται νὰ ἀκολουθῆ παῦσις ($\pi.\chi$. 6 ον ως δρε
- ε) Ύφέσεις καὶ φθοραὶ τίθενται καὶ ἄνωθεν καὶ κάτωθεν τῆς πεταστῆς. Δίεσις εἰς πεταστὴν δὲν τίθεται, ἴσως ἐπειδὴ μετ' αὐτὴν ἀκολουθεῖ κατιών (§ 116 ε).
- § 118. Όρθογραφία τῶν κεντημάτων. α) Τὰ κεντήματα δὲν ἔχουν ἰδίαν ὑπόστασιν, ἀλλ' ἐξαρτῶνται ἀχωρίστως ἀπὸ τὸν προηγούμενον χαρακτῆρα. Διὰ τοῦτο οὕτε ἀρχίζει, οὕτε τελειώνει μέλος τι μὲ κεντήματα. Πρὸ αὐτῶν τίθεται οἰοσδήποτε χαρακτὴρ ἐκτὸς πεταστῆς ἔπειτα δὲ ἀπὸ αὐτὰ δύναται νὰ ὑπάρχῃ οἱοσδήποτε χαρακτήρ, ἐκτὸς κεντημάτων καὶ ὑπορροῆς. ᾿Απὸ ἀπόψεως ρυθμοῦ τὰ κεντήματα δὲν γίνονται ποτὲ ἀρχὴ ποδός, πάντοτε δὲ λαμβάνονται εἰς τὴν ἄρσιν τοῦ ρυθμικοῦ ποδός (§ 68 β).

κλπ. Συνήθως ἐπὶ τοῦ ὀλίγου γράφονται τὰ κεντήματα, ὅταν ἀκολουθῆ κατιών ἄνευ ὀλίγου δὲ, ὅταν ἀκολουθῆ ἴσον ἢ ἀνιών. Δὲν τηρεῖται ὅμως πάντοτε ὁ κανὼν

αὐτός. Παραδείγματα
$$\frac{1}{6}$$
 χυ τω $\frac{1}{6}$ δυ ο ος $\frac{1}{6}$ $\frac{1}{6}$

- γ) Τὰ κεντήματα δὲν ἐπιδέχονται ιδίαν συλλαβήν (ἐκτὸς εἰς κρατήματα), κατὰ κανόνα δὲ ἐκτείνουν τὸ φωνῆεν τοῦ προηγουμένου χαρακτῆρος (ὅρα καὶ § 22 β). "Οπου ἀπαιτεῖται ὀλίγον, κεντήματα δὲν τίθενται. 'Αντὶ κεντημάτων ὅμως τίθεται εἴς τινας περιπτώσεις ὀλίγον (ὅρα § 116 β). Κατὰ κανόνα ἔπειτα ἀπὸ κεντήματα δὲν ἀκολουθοῦν κεντήματα, ἔστω καὶ ἀν συνεχίζεται ἡ αὐτὴ συλλαβή. Συλλαβὴ συνοδευομένη ἀπὸ εὐφωνικόν τι σημεῖον ? ἢ [ι ἢ χ (π.χ. ?α [ιε χο) δὲν ἐκφέρεται ποτὲ μὲ κεντήματα ἢ ὑπορροήν.
- δ) 'Απὸ τὰ χρονικὰ σημεῖα τὰ κεντήματα ἐπιδέχονται μόνον γοργὸν καὶ τὰς ὑποδιαιρέσεις του (κλπ.), καθώς καὶ ἀργὸν καὶ τὰ πολλαπλάσια αὐτοῦ (κλπ.), καθώς καὶ ἀργὸν καὶ τὰ πολλαπλάσια αὐτοῦ (κλπ.). Συχνότατα τὰ κεντήματα χρησιμοποιοῦν γοργὸν παρεστιγμένον, καὶ εἰδικῶς τὸ τριημίγοργον (ξλα ἀτὴν τὴν γραμμὴν καὶ ἀπαγγελία τοῦ ἀκολουθοῦντος ἴσου μὲ βαρεῖαν. 'Επειδὴ τὰ κεντήματα δὲν ἐπιδέχονται προσθήκην χρόνου, διὰ τοῦτο, ἐὰν χρειασθῆ νὰ κρατήσωμεν περισσοτέρους χρόνους εἰς τὰ κεντήματα, γράφομεν κατόπιν αὐτῶν ἴσον μὲ τὴν αὐτὴν συλλαβὴν καὶ μὲ ὅσους χρόνους θέλομεν, ὀπότε τὸ ἴσον συνεχίζει (ζωηρότερον ὅμως) τὴν φωνὴν τῶν κεντημάτων. Εἰς κεντήματα οὕτε προηγεῖται, οὕτε ἀκολουθεῖ ποτε ἔγγοργος χαρακτήρ.
 - ε) Αχρόνους δὲ ὑποστάσεις λαμβάνουν τὰ κεντήματα ἀφ'

ένὸς τὸ ἔτερον (κλπ.) καὶ άφ' έτέρου το ψηφιστόν. "Όταν τὰ κεντήματα έχουν ψηφιστόν, χάνουν την συνήθη ποιότητά των καί λαμβάνουν ἀπαγγελίαν ζωηράν(⁷). Διά νά λάβουν τά κεντήματα ψηφιστόν, τίθενται άπαραιτήτως ἐπὶ ὀλίγου κλπ.), πάντοτε ἄνευ γοργοῦ, ἀκολουθοῦν δὲ κατιάντες δύο ἢ περισσότεροι, ἐνίοτε καὶ εἶς μόνον δίχρονος. Οι κατιόντες αὐτοι έχουν την ιδίαν με τὰ κεντήματα συλλαβήν ή συλλαβήν ίδικήν των. Παραδείγματα: $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$ κλπ. "Όταν μετά τὰ κεντήματα άκολουθη είς μόνον μονόχρονος κατιών ή τοιοῦτος συνηνωμένος με άχρονον ύπόστασιν, τότε τὰ κεντήματα δέν ἐπιδέχονται ψηφιστόν. Παραδείγματα $\frac{6}{χ}$ εν $\frac{1}{μχρ}$ τυ $\frac{3}{σι}$ $\frac{3}{π}$ τρεις $\frac{3}{π}$ $\frac{1}{π}$ $\frac{1}$ $\frac{1}{π}$ $\frac{1}{π}$ $\frac{1}{π}$ $\frac{1}{π}$ $\frac{1}{π}$ $\frac{1}{π}$ " — κλπ.

Έὰν κατόπιν κεντημάτων πρέπη ν' ἀκολουθη ὑπορροὴ η συνεχὲς ἐλαφρόν, τότε ἀντὶ κεντημάτων τίθεται ὀλίγον (ἐπει-δὴ κατόπιν κεντημάτων δὲν ἀκολουθεῖ ὑπορροὴ ἢ συνεχὲς ἐ-

λαφρόν). Παραδείγματα.

⁽⁷⁾ Καὶ χωρίς ψηφιστόν τὰ κεντήματο λαμβάνουν ζωηρὰν ἀπαγγελίαν εἰς τοιαύτην γραμμὴν χ χα α θυ πο ο σχο συνήθη εἰς τὰ χρωματικὰ μέλη, καὶ τοῦτο διότι κατ' ἐξαίρεσιν εὐρίσκονται ρυθμικῶς εἰς θέσιν καὶ ὅχι εἰς ἄρσιν.

στ΄) Ύφέσεις καὶ διέσεις καὶ φθοραὶ τίθενται εἰς τὰ κεντήματα καὶ ἄνωθεν καὶ κάτωθεν. Συνήθης είναι ἡ γραφὴ κεντη-

- § 119. 'Ο ρθογραφία τοῦ κεντήματος καὶ τῆς ὑψηλῆς. α) Τὸ κέντημα καὶ ἡ ὑψηλὴ δὲν γράφονται μόνα, ἀλλὰ πάντοτε εἰς σύνθεσιν μὲ ὀλίγον ἢ πεταστήν (βλέπε § 12 καὶ 13). Ποιότητα δὲ οἱ δύο αὐτοὶ χαρακτῆρες λαμβάνουν τὴν τοῦ ὀλίγου ἢ τῆς πεταστῆς, μὲ τὰ ὁποῖα εἶναι συνηνωμένοι (§ 21 καὶ 22). Τὸ μέλος δύναται ν' ἀρχίζη μὲ σύνθεσιν κεντήματος ἢ ὑψηλῆς δὲν εὑρίσκομεν ὅμως νὰ τελειώνη μὲ τοιαύτην τινὰ σύνθεσιν, παρὰ μόνον κεντήματος μὲ ὀλίγον(——).
- β) 'Ως πρὸς τὰς συλλαβάς, τὰς ὁποίας λαμβάνει τὸ κέντημα καὶ ἡ ὑψηλή, ἰσχύουν τὰ λεχθέντα προηγουμένως περὶ ὀλίγου καὶ πεταστῆς (§ 116 καὶ 117), τοὺς περὶ τῶν ὁποίων κανόνας ἀκολουθοῦν αἱ συνθέσεις κεντήματος ἢ ὑψηλῆς μὲ ὀλίγον ἢ πεταστήν.
- γ) Χρονικά σημεῖα τὸ κέντημα καὶ ἡ ὑψηλή, ὅταν εἶναι συνηνωμένα μὲ ὀλίγον, λαμβάνουν ὅσα καὶ τὸ ὀλίγον (§ 116 γ), ἐκτὸς τοῦ ἀργοῦ καὶ τῶν πολλαπλασίων του ὅταν δὲ εἶναι συνηνωμένα μὲ πεταστήν, λαμβάνουν ὅσα καὶ ἡ πεταστή (§ 117 γ). Καὶ τὸ μὲν κλάσμα λαμβάνει τοιαύτας θέσεις

τριπλη κάτωθεν τοῦ ὀλίγου (κλπ.), τὸ δὲ

⁽⁸⁾ Τὸ ὅτι ἔπειτα ἀπὸ κεντήματα δὲν δύναται ν' ἀκολουθῆ ὑπορροὴ ἢ συνεχὲς ἐλαφρὸν ἐξηγεῖται ἐκ τοῦ ὅτι ἡ ὑπορροὴ καὶ ἡ ἀπόστροφος τοῦ συνεχοῦς ἐλαφροῦ δὲν ἐπιδέχονται ἰδίαν συλλαβὴν, ἐξαρτῶνται δὲ ἀπὸ τὸν προηγούμενον χαρακτῆρα, ὅστις διὰ τοῦτο δὲν δύναται νὰ είναι κεντήματα. Διότι καὶ αὐτὰ ἐξαρτῶνται ἀπὸ τὸν προηγούμενον χαρακτῆρα καὶ δὲν λαμβάνουν ἰδιαιτέραν συλλαβήν.

- δ) 'Απὸ δὲ τὰς ἀχρόνους ὑποστάσεις τὸ κέντημα καὶ ἡ ὑψη-λὴ δέχονται ὄσας καὶ τὸ ὀλίγον (§ 116 δ), ὅταν εἶναι συντεθειμέναι μὲ ὀλίγον, ἢ ὅσας καὶ ἡ πεταστή (§ 117 δ), ὅταν εἶναι συντεθειμένα μὲ πεταστήν.
- ε) Ύφέσεις καὶ διέσεις καὶ φθοραὶ τίθενται καὶ ἄνωθεν καὶ κάτωθεν τοῦ κεντήματος καὶ τῆς ὑψηλῆς καὶ ἀναλόγως τῆς συνθέσεως αὐτῶν μὲ ὀλίγον ἢ πεταστήν (§ 116 ε καὶ § 117 ε).

ΚΕΦΑΛΑΙΟΝ ΕΙΚΟΣΤΟΝ ΠΡΩΤΟΝ

Ή όρθογραφία τῶν κατιόντων χαρακτήρων.

§ 120. Όρθο γραφία τῆς ἀποστρόφου. α) 'Απὸ τοὺς κατιόντας χαρακτῆρας ἡ ἀπόστροφος εἶναι ἡ μόνη δεικνύουσα κατάβασιν κατὰ ἕνα φθόγγον καὶ δι' αὐτὸ εἶναι εἰς μεγάλην χρῆσιν εἰς ὁποιονδήποτε σημεῖον τοῦ μέλους. Γράφεται δὲ εἴτε μόνη, εἴτε ἐν συνθέσει μὲ ἄλλους χαρακτῆρας, ἐκτὸς κεντήματος, ὑψηλῆς καὶ ὑπορροῆς. Περὶ τῆς ποσοτικῆς καὶ ποιοτικῆς ἀξίας τῶν συνθέσεων τῆς ἀποστρόφου εἴπαμεν τὰ δέοντα εἰς § 12, 13, 21 καὶ 22. Εἰς τὴν σύνθεσιν μὲ ὀλίγον, ἀπαντῶσαν σπανιώτατα, ἀκολουθεῖ πάντοτε ἴσον. Εἰς δὲ τὴν σύνθεσιν μὲ πεταστήν() ἀκολουθεῖ πάντοτε κατιών. Καὶ εἰς τὴν σύνθεσιν μὲ κεντήματα ἐπὶ ὀλίγου () ἀκολουθεῖ κατιών, ἐκτὸς ὑπορροῆς καὶ συνεχοῦς ἐλαφροῦ (§ 118 ε εἰς ὑποσημ.). "Οταν δύο ἀπόστροφοι ἔχουν τὴν αὐτὴν συλλαβήν, γράσους πάντον συλλαβήν, γράσους εχουν τὴν αὐτὴν συλλαβήν, γράσους πάντον συλλαβήν, γράσους εχουν τὴν αὐτὴν συλλαβήν, γράσους εχους ελαφροῦς εχουν τὴν συλλαβήν, γράσους εχους εχους εχους εχους εχους εχους εχους εχους εχους εχουν τὴν συλλαβήν, γράσους εχους εχ

φονται καὶ οὕτω
$$\frac{1}{3}$$
 $(π.χ. $\frac{1}{3}$ $\frac{\pi}{\delta i}$ $\frac{\pi}{i}$ $\frac{\pi}{\alpha}$ $\frac{\pi}{\varphi\theta_2}$).$

β) Ἡ ἀπόστροφος ἐπιδέχεται πάντοτε ἰδιαιτέραν συλλαβήν. Εἰς τὸ συνεχὲς ἐλαφρὸν ὅμως ἡ ἀπόστροφος δὲν ἔχει ποτὲ ἰδίαν συλλαβήν, ἀλλ' ἐκτείνει τὴν συλλαβὴν τοῦ προηγουμένου χαρακτῆρος. Εἰς συνεχῆ κατάβασιν δύναται μία συλλαβὴ νὰ

______). "Αλλοτε μία ἀπόστροφος συνεχίζει τὴν συλλαβὴν προηγουμένης ἀποστρόφου ἢ ἴσου (π.χ. χ ς ξ δρα α . Είς τὴν περίπτωσιν αὐτὴν ἡ δευτέρα συλλαβή τῆς καταβάσεως ἔχει ἀπαγγελίαν ὀλιγώτερον ζωηρὰν άπό την πρώτην. γ) Χρονικά σημεία ή ἀπόστροφος λαμβάνει πάντα, ἐκτὸς τοῦ ἀργοῦ καὶ τῶν πολλαπλασίων του. Καὶ τὸ μὲν κλάσμα γράφεται μόνον ἄνωθεν (🔾). ἡ ἁπλῆ μόνον κάτωθεν, μόνη η μὲ ἀντικένωμα () ή διπλη καὶ ἡ τριπλη κάτωθεν, μόναι ἢ μὲ ἕτερον ()) τὸ γοργὸν καὶ ἄνωθεν καὶ κάτωθεν (5 -), αἴ δὲ ὑποδιαιρέσεις του ἄνωθεν (5 5). 'Αντί κλάσματος ή ἀπόστροφος λαμβάνει ἀπλην, συνήθως ὅταν προηγηται αὐτης χαρακτήρ μὲ βαρεῖαν () ή χαρακτήρ μὲ ψηφιστόν καὶ μετ' αὐτόν ἀπόστροφος (π.χ. 📁 🤼), διήκῃ δὲ ή αὐτή συλλαβή εἰς τοὺς χαρακτῆρας αὐτούς. Παρα-Δ λ8 8 8 8 8 σχ α δείγματα' π Κυ υ υ οι ι χ κλπ. Δὲν φυλάττεται όμως πάντοτε ό κανών αὐτός. Η ἀπόστροφος δέχεται καὶ δύο χρονικά σημεῖα ἄνωθεν γοργόν, κάτωθεν δὲ ἀπλῆν ἢ διπλῆν (5 5), ὁπότε δὲν ἔχει συνήθως ίδιαν συλλαβήν, άλλά συνεχίζει την συλλαβήν του προηγουμένου χαρακτήρος. Παραδείγματα 🕺 – -16-22 τω ω τη ης

δ) 'Αχρόνους ὑποστάσεις ἡ ἀπόστροφος δέχεται πάσας, μηδὲ τοῦ ἐνδοφώνου ἐξαιρουμένου. Καὶ ἡ μὲν βαρεῖα προγράφεται, ὅπως καὶ εἰς ἄλλους χαρακτῆρας, ἀκολουθεῖ δὲ συχνότατα ἀπόστροφος μὲ τὴν αὐτὴν συλλαβήν. Παραδείγματα

ἀκολουθῆ ὑπορροὴ ἔγγοργος, ἡ ἀπόστροφος ἄλλοτε τίθεται μόνη καὶ ἄλλοτε μὲ βαρεῖαν. Παραδείγματα

"Όταν πολλαί ἀπόστροφοι λαμβάνουν ἀνὰ δύο τὴν αὐτὴν συλλαβήν, πρὸ ἐκάστου ζεύγους τίθεται βαρεῖα. Π. χ.

οἷον ὅταν αὶ ἐν συνεχεία ἀπόστροφοι ἔχουν ιδιαιτέραν συλλαβὴν ἑκάστη, ἢ δὲν ἀποτελοῦν ζεύγη μὲ τὴν αὐτὴν συλλαβὴν κατὰ ζεῦγος, ἢ παρεντίθεται ἀπόστροφος δίχρονος, ἢ μία συλλαβὴ ἀνήκῃ εἰς ἀποστρόφους περισσοτέρας τῶν δύο, βαρεῖα δὲν προτάσσεται. Ἐπίσης δὲν τί-

θεται βαρεῖα μετὰ τὰς συνθέσεις αὐτὰς $\frac{1}{2}$ $\frac{1}{2}$ κλπ. καὶ ἀντιστρόφως, αὶ συνθέσεις αὐταὶ δὲν λαμβάνουν ψηφιστόν, ὅταν ἀκολουθῆ βαρεῖα μὲ κατιόντα. Παραδείγματα $\frac{1}{2}$ $\frac{1$

'Ορθογραφία κατιόντων χαρακτήρων

τάβασιν αί δύο τελευταῖαι ἀπόστροφοι ἔχουν τὴν αὐτὴν συλλαβήν, τίθεται πρὸ αὐτῶν βαρεῖα. Παραδείγματα

Τὸ ὁμαλὸν πολλάκις ξνώνει ἀπόστροφον μὲ ἴσον, ὁπότε οί δύο χαρακτῆρες ἔχουν τὴν αὐτὴν συλλαβήν. Δύναται δὲ καὶ

κλπ. Ψηφιστόν δὲ ὅταν πρόκειται νὰ λάβη ἡ ἀπόστροφος, τίθεται χάριν συμμετρίας ἐπὶ ὀλίγου (ἐπειδὴ τὸ σῶμα τῆς ἀποστρόφου εἶναι δυσανάλογον μὲ τὸ τοῦ ψηφιστοῦ) καὶ ἀκολουθοῦν κατιόντες. Ἐὸν δὲ λάβη καὶ κλάσμα, τίθεται τοῦτο εἴτε ἐπὶ τῆς ἀποστρόφου, εἴτε ὑπὸ τὸ

όλίγον. Παραδείγματα
$$\chi$$
 ον πρε ε ε ε σδι χ χ

τερον συνδέει ἀπόστροφον μὲ ἴσον ἢ μὲ ἀνιόντα. Παρα-

Διὰ τὴν ἀπόστροφον μὲ ἀντικένωμα καὶ ἁπλῆν () ἰσχύουν ὅσα καὶ διὰ τὸ ἴσον καὶ το ἐλίγον εἰς ὁμοίαν περίπτωσιν (§ 115 ε). Τὸ δὲ ἐνδόφωνον λαμβάνει ἡ ἀπόστροφος ἔχουσα κάτωθεν χρονικὸν σημεῖον (ἰδὲ ἄσκησιν 60, σελ. 90).

- ε) Ύφέσεις καὶ διέσεις καὶ φθορὰς λαμβάνει ἡ ἀπόστροφος καὶ ἄνωθεν καὶ κάτωθεν (διέσεις συνήθως κάτωθεν). Εἰς τὴν σύνθεσιν αὐτὴν ἡ δίεσις εἶναι διὰ τὴν ἀπόστροφον.
- § 121. Όρθογραφία τῆς ὑπορροῆς. α) Ἡ ὑπορροή, ὅπως τὰ κεντήματα, δὲν ἔχει καὶ αὐτὴ ἰδίαν ὑπόστασιν, ἀλλ' ἐξαρτᾶται ἀπὸ τὸν προηγούμενον χαρακτῆρα (§ 22-γ). Διὰ τοῦτο εἰς τὴν ἀρχὴν μέλους δὲν τίθεται ποτὲ ὑπορροή τίθεται ὅμως ἐν τέλει. Τῆς ὑπορροῆς προηγεῖται οἱοσδήποτε χαρακτήρ, ἐκτὸς κεντημάτων. Κατόπιν δὲ ὑπορροῆς δύναται ν' ἀκολουθῆ καὶ ἄλλη ὑπορροὴ καὶ οἱοσδήποτε χαρακτήρ, ἀκόμη καὶ κεντήματα. Ἡ ὑπορροὴ συντίθεται μὲ ὀλίγον (σπα-

νιώτατα), ὁπότε ἀκολουθεῖ ἴσον (, καὶ μὲ πεταστήν, ὁπότε ἀκολουθεῖ κατιών (,), εὐρίσκεται δὲ καὶ ἐπὶ ὁλίγου ὁμοῦ μὲ κεντήματα, ὁπότε ἀκολουθεῖ ἴσον ἡ κατιών, ἐκτὸς ὑπορροῆς καὶ συνεχοῦς ἐλαφροῦ (καὶ καὶ .

καὶ <u>Γ</u>,).

β) Ἡ ὑπορροὴ κατὰ κανόνα συνεχίζει τὴν πρὸ αὐτῆς συλλαβὴν καὶ δὲν λαμβάνει ἰδικήν της τοιαύτην, παρὰ μόνον εἰς κρατήματα (βλέπε καὶ § 22 γ). Ἐὰν εἶναι ἀνάγκη ὁ δεύτερος φθόγγος τῆς ὑπορροῆς νὰ λάβῃ ἰδίαν συλλαβήν, τότε ἀντὶ ὑπορροῆς τίθεται συνεχὲς ἐλαφρόν.

Κατόπιν ὑπορροῆς μὲ γοργὸν ἡ ἀνάβασις κατὰ ἕνα φθόγγον μὲ τὴν αὐτὴν συλλαβὴν λαμβάνει συνήθως κεντήματα. Παρα-

κλπ. Εἰς ἄλλας ὅμως περιπτώσεις, οἶον

όταν ὁ μετὰ τὴν ὑπορροὴν ἀνιὼν φέρῃ προσθετικὸν σημεῖον χρόνου ἢ ἄχρονον ὑπόστασιν, ἢ ὅταν μετ' αὐτὸν ἀκολουθῇ ἴσον, ἢ ὅταν ἡ πρώτη μετὰ τὴν ὑπορροὴν συλλαβὴ πρέπῃ ρυθμικῶς νὰ ληφθῇ εἰς θέσιν καὶ οὐχὶ εἰς ἄρσιν, τότε ἡ ἀνάβασις λαμβάνει ὀλίγον. Γπεραδείγματα.

πιν ύπορροής μὲ δίγοργον ἡ ἀνάβασις κατὰ ἔνα φθόγγον καὶ μὲ τὴν αὐτὴν συλλαβὴν ἐκφέρεται μὲ ὀλίγον. Π. χ.

νιόντα ἀκολουθῆ ἔγχρονος χαρακτήρ, ἡ ἀνάβασις λαμβά-

νει ἀντὶ ὀλίγου κεντήματα. Π. χ.
$$\pi$$
 δο ον τε ες

α δί ι ο . Είς συνεχη κατάβασιν με την αὐτην συλ-

λαβήν τίθενται άλλεπάλληλοι ύπορροαί. Παραδείγματα

γ) Σημεία χρόνου ή ὑπορροή δέχεται ἀφ' ἐνὸς τὴν ἀπλῆν καὶ τὰ πολλαπλάσια αὐτῆς, καὶ ἀφ' ἑτέρου τὸ γοργὸν καὶ τὰς ὑποδιαιρέσεις του. Κλάσμα λαμβάνει μόνον εἰς σύνθεσιν μὲ

κλάσμα εἰς τὸν δεύτερον φθόγγον τῆς ὑπορροῆς. 'Απλῆ καὶ διπλη τίθενται κάτωθεν της ύπορροης και είναι διά τὸν δεύτερον φθόγγον της. Τὸ δὲ γοργὸν τίθεται μόνον ἄνωθεν καὶ εἶναι διὰ τὸν πρῶτον φθόγγον. Δίγοργον καὶ τρίγοργον ἐπίσης τίθεται ἄνωθεν. Πολλάκις ή ὑπορροή φέρει δύο χρονικά σημεΐα άνωθεν γοργόν διά τὸν πρώτον φθόγγον, ἢ δίγοργον διά τούς δύο αὐτῆς φθόγγους, κάτωθεν δὲ ἄπλῆν ἢ διπλῆν 🗐 🍶 κλπ.), ή ὁποία αὐξάνει κατὰ ἕνα ἢ δύο χρόνους τὴν διάρκειαν τοῦ δευτέρου φθόγγου. Πολλαί καὶ ποικίλαι είναι αί περιπτώσεις, κατά τάς όποίας ύπορροή ἔγγοργος ευρίσκεται κατόπιν πεταστής ή άλλου χαρακτήρος φέροντος βαρεῖαν ἢ ψηφιστόν (🤝 💮 💮 🎺 🎼 δ) 'Απὸ δὲ τὰς ἀχρόνους ὑποστάσεις ἡ ὑπορροἡ δέχεται τὸ ἕτερον (π.χ. (π.χ.), τὸ ἀντικένωμα μὲ άπλην (καὶ 🥌 ΄) καὶ τὸ ἐνδόφωνον, γραφόμενον κάτωθεν της ύπορροης φερούσης καί χρονικά σημεία βη ή ὑπορροή, μόνον ἐὰν εὑρίσκεται ἐπὶ ὀλίγου (). "Ολαι αὐταὶ αὶ ὑποστάσεις ἐνεργοῦν εἰς τὸν δεύτερον φθόγγον τῆς ὑπορροῆς. Παραδείγματα: Γ. οι ι ρρε ε ε κ ρε εμ ε γγ α

- ε) Ύφέσεις καὶ διέσεις καὶ φθορὰς λαμβάνει ἡ ὑπορροἡ ἄ-νωθεν μὲν διὰ τὸν πρῶτον αὐτῆς φθόγγον, κάτωθεν δὲ διὰ τὸν δεύτερον (π. χ. κλπ.). Εἰς τὴν σύνθεσιν αὐτὴν ἡ δίεσις εἶναι διὰ τὸν δεύτερον φθόγγον τῆς ὑπορροῆς.
- § 122. Όρθο γραφία το ῦ ἐλαφρου. α) Τὸ ἐλαφρὸν εἶναι ὁ μόνος χαρακτὴρ ὁ δεικνύων κατάβασιν ὑπερβατὴν κατὰ δύο φθόγγους. Χρησιμοποιεῖται δὲ εἰς οἰονδήποτε σημεῖον τοῦ μέλους καὶ δύναται νὰ προηγῆται αὐτοῦ ἢ ν' ἀκολουθῆ οἱοσδήποτε χαρακτήρ. Τὰς συνθέσεις τοῦ ἐλαφροῦ ἐσημειώσαμεν ἀλλαχοῦ (§ 12 καὶ 13). Διὰ τὴν σύνθεσιν ἐλαφροῦ μὲ ὀλίγον ἢ πεταστὴν ἰσχύουν ὅσα καὶ διὰ τὴν ἀπόστροφον (§ 120).
- β) Τὸ ἐλαφρὸν ἐπιδέχεται πάντοτε ἰδιαιτέραν συλλαβήν. Ἐπέκτασις δὲ τῆς συλλαβῆς του ἐν ἀναβάσει καὶ καταβάσει ἀκολουθεῖ τοὺς αὐτοὺς κανόνας, τοὺς ὁποίους ἀκολουθεῖ τὸ ἴσον, τὸ ὀλίγον καὶ ἡ ἀπόστροφος. Διὰ τὴν περίπτωσιν ἐλαφροῦ ἀκολουθουμένου ὑπὸ κεντημάτων (καὶ καὶ οχύσουν ὅσα εἴπαμεν εἰς § 118 β.
- γ) Χρονικά σημεῖα τὸ ἐλαφρὸν δέχεται τὸ κλάσμα, γραφόμενον ἄνωθεν (🔾), κάτωθεν δὲ εἰς σύνθεσιν μὲ πεταστὴν ή δλίγον μὲ ψηφιστόν (Καὶ 😅 τὴν ἀπλῆν κάτωθεν καὶ ήνωμένην μὲ ἀντικένωμα () τὴν διπλῆν καὶ τριπλῆν κλπ., γραφομένας κάτωθεν (κλπ.) τὸ γοργόν, άνωθεν η κάτωθεν. Ἐπίσης λαμβάνει άνωθεν δίγοργον ή τρίγοργον. Εἰς συνεχὲς ἐλαφρὸν δὲν τίθεται γοργόν. Κατόπιν ἐλαφροῦ φέροντος ἀπλῆν καὶ ἀντικένωμα ἀκολουθεῖ κατιών μὲ γοργόν. Ἐπίσης, ὅταν τὸ ἐλαφρὸν φέρῃ διπλῆν ἢ τριπλῆν καὶ ἔτερον, ἀκολουθεῖ κατιὼν μετὰ ἢ ἄνευ γοργοῦ. Δύο χρονικὰ σημεία συγχρόνως δέν λαμβάνει συνήθως τὸ έλαφρόν, οὔτε ή χαμηλή. Ἐὰν δὲ χρειασθῆ νὰ λάβη τὸ ἐλαφρὸν ἢ ἡ χαμηλή γοργόν, νὰ προστεθή δὲ εἰς τὴν φωνὴν αὐτῶν χρονικὴ διάρκεια **ἑνὸ**ς ἢ περισσοτέρων χρόνων, τότε ἄνωθεν μὲν γράφεται γοργόν, ἐν συνεχεία δὲ τίθεται ἴσον, εἰς τὸ ὁποῖον δίδομεν χρονικήν διάρκειαν όσην ἀπαιτεῖ ή ἐπέκτασις τῆς συλλαβῆς τοῦ ἐ-

λαφροῦ ἢ τῆς χαμηλῆς (π. χ. ἀντὶ $\stackrel{\leftarrow}{\sim}$ ἢ $\stackrel{\leftarrow}{\searrow}$ γράφομεν συνήθως $\stackrel{\leftarrow}{\sim}$ ἢ $\stackrel{\leftarrow}{\searrow}$). Εἰς τὴν περίπτωσιν αὐ-

τὴν τὸ ἴσον ἐκτείνει τὴν συλλαβὴν τοῦ ἐλαφροῦ ἢ τῆς χα-μηλῆς.

δ) 'Αχρόνους δὲ ὑποστάσεις τὸ ἐλαφρὸν δέχεται τὴν βαρεῖαν, ὁπότε ἀκολουθεῖ κατιών, τὸ ὁμαλόν, ὁπότε πολλάκις ἀκολουθεῖ ἴσον, τὸ ἀντικένωμα μὲ ἁπλῆν, ὁπότε ἀκολουθεῖ ἔγγοργος κατιών, καὶ τέλος τὸ ἔτερον καὶ τὸ ψηφιστόν. Διὰ νὰ λά-δῃ ψηφιστόν, τίθεται τὸ ἐλαφρὸν ἐπὶ ὀλίγου, ἀκολουθεῖ δὲ κα-

'Ορθογραφία κατιόντων χαρακτήρων

β) Ἡ χαμηλὴ ἐπιδέχεται πάντοτε ἰδιαιτέραν συλλαβήν, ἀκολουθεῖ δὲ τοὺς ὀρθογραφικοὺς κανόνας, εἰς τοὺς ὁποίους ὑπόκεινται οἱ κύριοι χαρακτῆρες.

γ) Σημεῖα χρονικά καὶ ὑποστάσεις ἀχρόνους ἡ χαμηλὴ δέχεται ὅσας καὶ τὸ ἐλαφρὸν καὶ εἰς τὴν αὐτὴν μὲ ἐκεῖνο θέσιν (§ 122 γ, δ) ἐπίσης ὑφέσεις καὶ διέσεις καὶ φθορὰς παντὸς γένους.

Κεφάλαιον ΙΓ.΄

'Ολίγα τινὰ διὰ τὸν Ἱεροψάλτην καὶ τὸ ἡθός του

"Απὸ τοὺς πρώτους χρόνους τοῦ Χριστιανισμοῦ, συνήρχοντο οἱ πιστοὶ ἐπὶ τὸ αὐτὸ εἰς ἱερὰς Συνάξεις καὶ μὲ ἀναγνώσεις ἐκ τῆς 'Αγίας Γραφῆς, ὕμνους καὶ ἱερὰς ψαλμῳδίας ἐδόξαζον καὶ ἐλάτρευον τὸν Θεόν. «'Εν ψαλμοῖς καὶ ὕμνοις καὶ ἀδαῖς πνευματικαῖς, ὕμνουν, εὐλόγουν καὶ ἐδοξολόγουν τὸν Κύριον». (Πράξ. 'Αποστόλων).

Είς τὰς ἱερὰς ψαλμφδίας, συμμετεῖχεν ὅλον τὸ ἐκκλησίασμα, βραδύτερον ὅμως, ὅταν ἤρχισαν νὰ αὐξάνουν οἱ χριστιανοὶ καὶ διεμορφώθησαν αἱ ἱεραὶ τελεταὶ καὶ ᾿Ακολουθίαι, τότε ἐγένετο διαχωρισμὸς τῶν ἐν τῇ Ἐκκλησία ἱερῶν διακονημάτων, καὶ ἡ ψαλμφδία ἀνετέθη εἰς τοὺς ἱεροψάλτας, οἱ ὁποῖοι εἶχον εἰδικὴν πρὸς τοῦτο χειροθεσίαν, διεχωρίσθησαν ἀπὸ τὸν λιιὸν καὶ ἀνέβησαν ἐπὶ ἀναβάθρου, τὸ ὁποῖον ἀνο-

μάσθη 'Αναλόγιον καὶ ἀργότερον καθιερώθη νὰ περιβάλωνται τὸ ράσον καὶ μετὰ τῶν 'Αναγνωστῶν, Κανοναρχῶν, Νεωκόρων, 'Υποδιακόνων καὶ Διακόνων ἀπετέλουν καὶ ἀποτελοῦν τὸν κατώτερον Κλῆρον, οὐχὶ ὡς ἐπάγγελμα, ἀλλ' ὡς Διακόνημα καὶ ἱερὸν λειτούργημα.

'Ο ψάλτης είναι ὁ ἐκπρόσωπος τοῦ λαοῦ πρὸς τὸν Θεόν, ὁ ὁποῖος δίδει τὰς ἀποκρίσεις εἰς τὸν ἱερέα καὶ τὸν διάκονον καὶ συμπροσεύχεται μετ' αὐτῶν ὑπὲρ τοῦ περιεστῶτος λαοῦ καὶ τοῦ σύμπαντος κόσμου.

Έκ τούτου, ἕκαστος ἀντιλαμβάνεται τὰς εὐθύνας τὰς ὁποίας ἐπωμίζεται ὁ περιβαλλόμενος τὸν ἱερὸν τρίβωνα τοῦ ἱεροψάλτου, ὁ ὁποῖος πρέπει νὰ εἶναι ψυχή τε καὶ σώματι καθαρός.

Νὰ ψάλη συνετῶς, μὲ προσοχὴν καὶ εὐλάβειαν οὕτως ὥστε καὶ ἡ στάσις καὶ ὅλος ὁ τρόπος αὐτοθ νὰ προκαλή τὸ δέος καὶ τὴν εὐλά-βειαν τῶν πιστῶν.

Ψάλλων, δεν πρέπει νὰ κινῆ, οὕτε χεῖρας οὕτε πόδας, πολὺ δὲ περισσότερον τὸ σῶμα του μὲ ἀτάκτους καὶ θεατρικὰς κινήσεις, ὡς συνηθίζουν τινὲς νὰ κάμνουν

Ο ψάλτης, πρέπει νὰ είναι σώματι καὶ πνεύματι ὑγιής, δὲν πρέπει νὰ ψάλη μὲ ἀτάκτους φωνάς, καθὼς ὁρίζει καὶ ἡ Πενθέκτη Οἰκουμενικὴ Σύνοδος, ἀλλὰ μὲ πραεῖαν καὶ ταπεινὴν φωνήν, διὰ νὰ ἀποδίδη τήν ἔννοιαν τῶν ψαλλομένων.

Μὲ τὴν γλῶτταν καὶ τὸν λάρυγγα, νὰ συμψάλη καὶ ὁ νοῦς, ἵνα μή, ὡς λέγει ὁ ἱερὸς 'Υμνογράφος, «τῆ μὲν γλώττη ἄσματα φθεγγόμενος τῆ δὲ ψυχῆ ἄτοπα λογιζόμενος», ἀλλ' ἐν μιῷ άρμονίᾳ σώματος, ἤτοι καρδίας, ψυχῆς καὶ νοός, προσφέρη τοὺς ὕμνους και ᢤδὰς πνευματικάς, ὡς θυμίαμα ἐνώπιον τοῦ Θεοῦ καὶ τότε πληροῦται καὶ οὖτος τῆς τοῦ Θεοῦ χάριτος καὶ μεταφέρη αὐτὴν πρὸς τὸν λαόν, ὡς λέγει ὁ ἱερὸς Χρυσόστομος «μάθε ψάλλειν καὶ ὄψει τοῦ πράγματος τήν ἡδονήν οἱ ψάλλοντες γὰρ Πνεύματος 'Αγίου πληροῦνται, ὥσπερ οἱ ἄὸοντες τὰς σατανικὰς ὁδὰς πνεύματος ἀκαθάρτου» (ὁμιλ. ΙΘ΄ πρὸς 'Εφεσ.)

Μόνον τοιουτοτρόπως ψάλλων, γίνεται μεσίτης τῶν ἐκκλησιαζομένων πρὸς τὸν Θεόν, ἐπειδὴ καθὼς λέγουν οἱ Ἅγιοι Πατέρες, ὅταν ὁ ψάλτης διακόψη τὴν συνοχὴν τῆς σκέψεώς του ἐκ τῶν ἀδομένων, τότε παύει νὰ ἔχη πνευματικὴν ἐπικοινωνίαν μὲ τὸν Θεὸν καὶ νὰ εἶναι ἐκπρόσωπος Αὐτοῦ πρὸς τόν λαόν.

Αί παρατάσεις τής φωνής ἄνευ μέτρου—κορῶνες ἢ κορωνίδες καὶ λοιπὰ σημεῖα τής Εὐρωπαϊκής μουσικής—δὲν ἔχουν θέσιν ἐν τἢ Ἐκκλησία τοῦ Χριστοῦ, ἡ δὲ ἀκριβὴς ἐκτέλεσις τῆς Βυζαντινής μουσικής στηρίζεται κυρίως εἰς τὴν ἐκτέλεσιν τῶν χρόνων καὶ ρυθμικῶν ποδῶν, ἄνευ τῆς τηρήσεως τῶν ὁποίων, δὲν ἀποδίδονται τὰ ἀριστουργήματα

τῶν μουσικῶν μαθημάτων, τῶν παλαιῶν κυρίως μουσικοδιδασκάλων, ὡς εἶναι τὰ δοξαστικὰ Ἰακώβου τοῦ πρωτοψάλτου, οἱ πολυέλαιοι Πέτρου τοῦ Πελοποννησίου, Χουρμουζίου τοῦ Χαρτοφύλακος κ. ἄ. θαυμάσια ὄντως ἔργα μουσικῆς τέχνης.

Ό ψάλτης, πρέπει ἀπαραιτήτως νὰ ἔχη ἐκτὸς τῆς μορφώσεως καὶ τὸ φυσικὸν δῶρον τοῦ Θεοῦ, νὰ εἰναι καλλίφωνος, τὸ μὲν διὰ νὰ καταλαμβάνη τὸ βάθος καὶ τὸ ὕψος τῆς ἐννοίας τῶν ψαλλομένων, τὸ δὲ νὰ ἀποδίδη μὲ σοβαρὰν καὶ μεγαλοπρεπῆ γλυκύτητα τὰ ψαλλόμενα, διὰ νὰ τέρπη καὶ εὐχαριστῆ τοὺς πιστοὺς καὶ νὰ μὴ προκαλῆ τὴν ἀηδίαν ἐκ τῆς παραφώνου κακοφωνίας αὀτοῦ.

Ό ψάλτης, διὰ νὰ ἔχη αὐστηρὸν ἐκκλησιαστικὸν ὕφος, πρέπει νὰ ψάλη μόνον εἰς τὸν οἰκον τοῦ Θεοῦ - τὴν Ἐκκλησίαν—καὶ νὰ μὴ τραγωδῷ εἰς τὸν οἰκον τοῦ Σατανᾶ—εἰς τὰ διάφορα κέντρα—, ἐπειδὴ οὐδεμίαν σχέσιν ἔχουν αὐτὰ τὰ δύο «Τὶς ἐπικοινωνία φωτὶ σκότους, Χριστοῦ πρὸς Βελίαρ;» καὶ «Οὐδεὶς δύναται δυσὶ κυρίοις δουλεύειν». "Όταν ψάλη καὶ μετὰ τραγουδῷ, ἀσφαλῶς καὶ τὸ μυαλό του καὶ τὸ ὕφος του θὰ εἶναι ἀνάμικτον ἀπὸ θέσεις τῶν ψαλτικῶν καὶ θέσεις τῶν τραγωδίων, ἀλλὰ καὶ ὁ ἴδιος θὰ εἶναι κράμα καὶ συνοθὴλευμα ἤθους καὶ ὕφους καὶ «ἢ τοῦ ἑνὸς ἀνθέξεται καὶ τοῦ ἑτέρου καταφρονήση ἢ τὸν ἕνα ἀγαπήση καὶ τὸν ἕτερον μισήση, οὐ δύνασθε Θεῷ δουλεύειν καὶ μαμωνῷ» (Ματθ. ζ΄ 24).

Ό ψάλτης πρέπει νὰ εἶναι ἐγκρατής, νηφάλιος καὶ ἀφωσιωμένος μετὰ ζήλου εἰς τὸ ἱερὸν ἔργον του, διὰ νὰ μετέχη μὲ ἐπίγνωσιν εἰς τὰς προσευχὰς καὶ τὴν ὑπούργησιν, ὑπ' αὐτοῦ, τῶν Θείων μυστηρίων. Καὶ πρὸς ἀποφυγὴν λαθῶν, πάντοτε πρέπει νὰ ψάλη «ἀπὸ δειφθέρας», μέσα ἀπὸ τὸ βιβλίον.

Ό Ναός, είναι οίκος Θεοῦ, ἐν ῷ ἀναπέμπονται ὕμνοι καὶ προσφέρονται ἀναίμακτοι θυσίαι, δὲν πρέπει λοιπόν, ἀγαπητοὶ ψάλται, νὰ μεταβάλωμεν αὐτὸν εἰς καπηλεῖον ἢ θέατρον μὲ τὰς ἀτάκτους κινήσεις, μὲ τὰς φωνασκίας καὶ θηλυπρεπῆ μέλη, ὅπου μερικοὶ νεωτερίζοντες εἰσάγουν εἰς τὴν Ἐκκλησίαν ἄσματα τραγουδωειδῆ, διότι τοῦτο ἀποτελεῖ πραγματικὴν ἀσέβειαν, καθὼς λέγει ὁ ἱερὸς Ἱερώνυμος «ἀφείλομεν ψάλλειν τῷ Θεῷ οὐχὶ φωνῆ, ἀλλ' ἐν τῆ καρδία καὶ οὐχ οὕτως ὥσπερ ἐν τραγωδία ἐπιτηδεύεσθαι, διαθρύπτεσθαι, παρέχειν ἄσματα ἀκούειν ἐν τῆ Ἐκκλησία θεατρικά. Τοὐναντίον προσήκει ἄδειν μετὰ μέλους καὶ συνέσεως» (ὑπόμν. πρὸς Ἐφεσ. V, 19).

Ό ψάλτης πρέπει νὰ ἔχη τὸ σῶμα του εὐθυτενές, νὰ πέρνη ἐλεύθερα ἀναπνοὴν καὶ νὰ προφέρη καθαρὰ τὰ ἱερὰ λόγια καὶ ὅλα τὰ φωνήεντα. Ἡ ἔντασις τῆς φωνῆς νὰ εἶναι μετρία καὶ ὅταν λαμβάνη τὴν βάσιν διὰ νὰ ἀρχίση τὴν ψαλμωδίαν θὰ πρέπει πρῶτον νὰ ὑπολογίζη

τὴν ἔκτασιν τῆς φωνῆς του καὶ κατὰ τόν Νικόλαον πρωτοψάλτην Σμύρνης, ὁ ψάλτης πρέπει νὰ ἔχη δύο φωνὰς περισσότερον τοῦ μεγαλυτέρου ὕψους τῆς ὅλης ἐκτάσεως τῆς ψαλμφδίας. Καὶ ἐὰν ἀπέναντί του ἔχη ἀδυνατώτερον ψάλτην, πρέπει νὰ τὸν βοηθῆ μὲ χαμηλότερα καὶ κανονικὰ ἴσα, καθ' ὅτι «μείζων πασῶν τῶν ἀρετῶν είναι ἡ διάκρισις».

Καὶ ἕνα ἀκόμη πλεονέκτημα τῶν κανονικῶν καὶ ὑπολογισμένων βάσεων, εἶναι, ὅτι ἡ φωνὴ ἐκτελεῖ ὅλας τὰς μουσικὰς ἐνεργείας καὶ λαρυγγισμοὺς μὲ ἀπόλυτον φυσικότητα, δίδει χάριν καὶ ἐμφανίζει, ενα μέτριον ψάλτην, ὡς ἄριστον καλλιτέχνην. Ἐνῶ ἀντιθέτως τὰ ὑψηλὰ ἴσα βιάζουν τὴν φωνὴν καὶ ξεσχίζουν τὸν λάρυγγα καὶ ὁ πλέον καλλίφωνος ψάλτης χάνει τὴν γλυκύτητα τῆς φωνῆς του, χάνει τὴν ἀξίαν του καὶ γίνεται ἀποκρουστικὸς καὶ ἄν ἀκόμη εἶναι μεμυημένος εἰς ὅλην τὴν μουσικὴν τέχνην καὶ ἐπιστήμην, διότι χάνει τὴν φυσικότητα τῆς προφορᾶς καὶ ὅταν συνεχίζη νὰ ψάλη μὲ ὑπερέντασιν χάνει καὶ τὴν φυσικὴν ἀντοχήν του.

Καὶ τέλος, φωνὴ ἡ ὁποία ἐξέρχεται ἀβιάστως καὶ φυσικῶς, σχηματίζεται δὲ ἐντέχνως καὶ καλλιεργῆται καταλλήλως, ἵνα μὴ ὑπερμέτρως καταπονῆται, οὕτε φθείρεται οὕτε γηράσκει εὐκόλως.

Πολλοὶ ἄνθρωποι ἔχουν τὸ φυσικὸν χάρισμα τῆς φωνῆς, ἀλλὰ ἐπειδὴ ἐκ νεότητος αὐτῶν ἐπιδίδονται εἰς καταχρήσεις, δὲν φυλάγονται ἀπὸ ἀλίπαστα, καρικεύματα, σάλτσες, πιπέρια, τσιγάρα καὶ οἰνοπνευματώδη ποτά, ἔφθειραν καὶ κατέστρεψαν τὴν ὡραίαν αὐτῶν φωνήν.

Ἐνῷ ἄλλοι μεθοδικῶς καλλιεργήσαντες ἀνέπτυξαν τὴν φωνὴν αὐτῶν καὶ διὰ τῆς ἐγκρατείας ἐγένοντο ψάλται περιωπῆς καὶ ἀναφωνοῦν μὲ τὸν Προφ. Δαυΐδ «Αἴνει ἡ ψυχή μου τὸν Κύριον, αἰνέσω Κύριον ἐν τῆ ζωῆ μου, ψαλῷ τῷ Θεῷ μου ἕως ὑπάρχω» (Ψαλμ. ΙΜΕ΄ 145).

Κεφάλαιον ΙΔ.΄

Περί καταρτίσεως Βυζαντινής Χορφδίας

- α) Ἡ ἱερὰ ὑμνῷδία τῆς Βυζαντινῆς Μουσικῆς, δὲν ἐκτελεῖται μόνον ὑπὸ ἑνὸς ψάλτου, ἀλλὰ δύναται νὰ ἐκτελῆται ὑπὸ πολλῶν, ταὐτοχρόνως ψαλλόντων ἐπὶ μιᾶς καὶ τῆς αὐτῆς μουσικῆς γραμμῆς καὶ τοῦτο ἐπιτυγχάνεται κατόπιν πολλῆς προετοιμασίας καὶ συμφώνου παραδόσεως μὲ ὁμοιόμορφον μουσικὴν κατάρτισῖν.
- β) Ὁ χορὸς δύναται νὰ ἀποτελῆται ἀπὸ τρεῖς καὶ πλέον ψάλτας καλῶς ἐκγυμνασμένους, μὲ τὴν αὐτὴν μουσὶκὴν παράδοσιν καὶ κυρίως ὡς πρὸς τήν ἐκτέλεσιν τῶν χαρακτήρων τῆς ποιότητος, αἱ ἀναλύσεις

τῶν ὁποίων πρέπει μὲ τὸν ἴδιον τρόπον νὰ ἑρμηνεύωνται καὶ ἐκτελῶνται ὑπὸ πάντων ὁμοίως, τότε ἐπέρχεται ὁμοφωνία καὶ ἐπιτυγχάνεται συμφωνία ἐν πολυφωνία.

- γ) Τοὺς ψάλτας, ἐὰν εἶναι οὖτοι πέντε, ἀπαραιτήτως θὰ πρέπει νὰ πλαισιώνουν τρεῖς τοὺλάχιστον ἰσοκράται καὶ εἶς κανονάρχης.
- δ) Οἱ ἰσοκράται πρέπει νὰ εἶναι τόσον καλῶς κατηρτισμένοι, ὅστε θὰ πρέπει ἐκ τῶν προτέρων νὰ λαμβάνουν καὶ νὰ δίδουν τήν βάσιν εἰς τὸν ψάλτην, οὐδέποτε νὰ προπορεύωνται καὶ θὰ πρέπει νὰ εἶναι ετοιμοι νά ξεκουράσουν τοὺς ψάλτας παραλαμβὰνοντες τὴν κατάληξιν, ἵνα εως ὅτου πάρη ἀναπνοὴν ὁ ψάλτης ἢ οἱ ψάλται, μὴ διακόπτηται τὸ μέλος.
- ε) Κατά τὸν τρόπον αὐτὸν δυνάμεθα νὰ καταρτίσωμεν Βυζαντινὴν χορφδίαν μὲ 100 καὶ πλέον καλλιφώνους ψάλτας μὲ ἀνάλογον ἀριθμὸν ἰσοκρατῶν, ἀλλὰ ἀπαραιτήτως θὰ πρέπει νὰ διακρίνωνται ἐπὶ ταπεινότητι φρονήματος.

Ή χορφδία, τοῦ ἐν Κων]πόλει ἱεροῦ Ναοῦ τῆς τοῦ Θεοῦ Σοφίας, ἀπετελεῖτο ἐξ ὁγδοήκοντα ἱεροψαλτῶν ἑκατέρωθεν.

Κατὰ τὰς ἀρχὰς τοῦ ΙΘ΄ αἰῶνος, ὁ 'Αγιορείτης Χρύσανθος Βατοπαιδινὸς 'Αρχιμανδρίτης ἐν Κων]πόλει, ἐξεπόνησε σύστημα ἐναρμονίσεως τῆς Βυζαντινῆς μουσικῆς κατὰ τὸ ὁποῖον, εἰς τὴν πρώτην γραμμὴν τῶν μουσικῶν κειμένων, θὰ ἀκολουθῆ δευτέρα συνηχητικὴ γραμμὴ κατὰ δύο φωνὰς χαμηλότερον τῆς πρώτης καὶ οἱ ἰσοκράται θὰ συνηχοῦν μὲ τὴν ἑκάστοτε διδομένην εἰς αὐτούς, ὑπὸ τῶν ἱεροψαλτῶν, βάσιν καὶ οὕτω θὰ συμψάλουν, τὸ μεγαλύτερον μέρος, ἕως 60% τῶν ἱεροψαλτῶν εἰς τὴν πρώτην γραμμήν, οἱ ὑπόλοιποι εἰς τὴν δευτέραν, κατὰ δύο φωνάς, χαμηλοτέραν γραμμὴν καὶ ἀνάλογος ἀριθμὸς ἰσοκρατῶν μὲ τὴν ἑκάστοτε βάσιν.

Τὸ σύστημα αὐτό, διὰ δύο λόγους, δὲν εὐδοκήμησε τότε, τὸ μὲν διότι κατεπολεμήθη ὑπὸ τῆς Πατριαρχικῆς ἐπὶ τούτου Ἐπιτροπῆς, ὡς νεωτεριστικόν, τὸ δὲ ὅτι δὲν ὑπῆρχον ἔντυπα βιβλία καὶ θὰ ἔπρεπε νὰ ἐκτυπωθοῦν νέα τοιαῦτα, καὶ ὡς ἐκ τούτου ἐπειδὴ οἱ ἀντίπαλοί του ἤσαν κατὰ πολὺ ἱσχυρότεροι δὲν ἦδυνήθη νὰ ἐπικρατήση.

Ήμεῖς μελετήσαντες τὸ Σύστημα τοῦτο, ἐθέσαμεν εἰς ἐφαρμογὴν ἐν ἀρχῆ, ἐν τῆ ᾿Αθωνιάδι Ἐκκλησιαστικῆ Σχολῆ. Ἦπὶ ἕνα Ἑξάμηνον παρεδώσαμεν αὐτὸ εἰς τοὺς προχωρημένους μαθητάς μας, καὶ τὰ ἀποτελέσματα ήσαν θαυμάσια, ἀλλ᾽ εὑρόντες καὶ ἡμεῖς, ὡς ὁ ἀνωτέρω, ἀντίδρασιν ἐξηναγκάσθημεν νὰ σταματήσωμεν τὴν παράδοσιν τοῦ συστήματος τούτου, ἄν καὶ οἱ μαθηταί μας ήσαν κατενθουσιασμένοι καὶ μὲ πολλὴν λύπην ἐδέχθησαν τὴν διακοπὴν τοῦ συστήματος τῆς συνητικῆς γραμμῆς, ὡς εἴχομεν ὀνομάσει αὐτό.

Έχομεν κληρονομήσει την πλουσιωτέραν εἰς ἀπόδοσιν καὶ ἀρμονίαν Μουσικήν, ἡ ὁποία ἐὰν ἐναρμονισθῆ κατὰ τό, ὡς ἀνωτέρω, σύστημα θὰ ἐπιβληθῆ πάσης ἄλλης διότι ἔχει ἀσυγκρίτως καλυτέραν ἀπόδοσιν τῆς μέχρι σήμερον ἐν χρήσει, καὶ πρὸς τοῦτο χρειάζεται πνεῦμα κατανοήσεως καὶ συνεργασίας μεταξὺ τῶν ἀγαπώντων τὴν προαγωγὴν τῆς Βυζαντινῆς Μουσικῆς ἐπὶ τὰ βελτίω, ἀγαπητῶν συναδέλφων καὶ καθηγητῶν αὐτῆς,

Καὶ τότε δὲν θὰ ἔχουν λόγον οἱ νεωτερίζοντες νὰ ἐκτρέπωνται τῆς πατροπαραδότου κληρονομίας ἡμῶν—τῆς Βυζαντινῆς Μουσικῆς—εἰς τὴν τετράφωνον Εὐρωπαϊκὴν καὶ πάντι ξένην πρὸς τὸ Ἑλληνικὸν Γένος Μουσικήν, ἡ ὁποία μόνον διὰ ἑπτανησιωτικὰς καντάδας καὶ τραγώδια είναι κατάλληλος καὶ οὐχὶ διὰ τὴν Ἑκκλησίαν τοῦ Χριστοῦ καὶ τὴν Θείαν λατρείαν τοῦ Ύψίστου.

Διὰ τῆς ἐνηρμονισμένης Βυζαντινῆς Μουσικῆς, ὅταν ἐκτελῆται αὕτη μὲ τοὺς ἐπιστημονικοὺς κανόνας, μὲ ἥπιον ὕφος καὶ ταπεινὴν φωνήν, τόση κατάνυξις καὶ εὐλάβεια καταλαμβάνει τὸ ἐκκλησίασμα, ὥστε νομίζει κανείς, ὅτι, εὑρίσκεται εἰς τὰ οὐράνια καὶ ὑμνεῖ τὸν Θεὸν μὲ τοὺς ᾿Αγίους ᾿Αγγέλους Αὐτοῦ.

"Όθεν ἐπιθυμίαν καὶ εὐχὴν ἐκφράζομεν, ὅπως, εὐαρεστηθοῦν, οἱ ἀδελφοὶ Μουσικοδιδάσκαλοι καὶ θελήσουν νὰ συνεργασθῶσι, διὰ τὴν καλλιτέραν ἐναρμόνισιν τῆς πατρίου ἡμῶν Βυζαντινῆς Μουσικῆς πρὸς δόξαν Πατρός, Υἱοῦ καὶ Πνεύματος 'Αγίου, τοῦ ἑνὸς Τρισυποστάτου Θεοῦ ἡμῶν. 'Αμήν.

ΠΗΓΑΙ ΚΑΙ ΒΟΗΘΗΜΑΤΑ

Χρυσάνθου Μαδυτινού 'Αρχιεπισκόπου Δυραχίου «Μέγα Θεωρητικόν».

'Αλεξάνδρου Φωκαέως «Θεωρία Βυζαντινής Μουσικής».

*Ανδρέου Τσικνοπούλου «Γραμματική Βυζαντινής Μουσικής».

Μισαήλ Μισαηλίδου «Θεωρία Βυζαντινής Μουσικής».

Νικολάου πρ. Σμύρνης «Θεωρητικόν».

Κοσμά Μαδυτινού Αρχιεπισκόπου Πελαγωνίας «Ποιμενικός Αὐλός».

Μέθοδος τῶν τριῶν Διδασκάλων: Γρηγορίου Πρωτοψάλτου—Χουρμουζίου Χαρτοφύ- [λακος καὶ Χρυσάνθου Μητροπολίτου Προύσης.

Γεωργίου Λεσβίου «Είσαγωγή είς Θεωρητικόν».

Πέτρου τοῦ Βυζαντίου «Θεωρητικόν».

'Αγαθ. Κυριαζίδου Χρυσοπολίτου «Αί δύο Μέλισσαι».

'Ιωάννου Θωΐδου Περιοδικόν «Μουσικός Κόσμος»

Δ. Γ. Παναγιωτοπούλου «Θεωρία και πράξις της Βυζαντινης Εκκλ. Μουσικης».

'Αβραάμ Εὐθυμιάδη «Στοιχειώδη Μαθήματα».

Χρυσάνθου Βατοπαιδινού 'Αρχιμανδρίτου «Θεωρητικόν περὶ ἐναρμονίσεως Βυζαντινῆς [Μουσικῆς» καὶ πολλὰ ἄλλα.

ПЕРІЕХОМЕ N А

Προλεγόμενα	Σεί	λiς 3	
Είσαγωγή: Τὶ καλείται Μουσική	>>	> 5	
ΜΕΡΟΣ Α΄			
Κεφάλαιον Α΄. Τὰ Στοιχεία τῆς Μουσικῆς			
Οἱ φθόγγοι, ὁ χρόνος, ἡ ἔκφρασις ἡ προφορὰ	»	6	
Παραγωγή φθόγγων	»	6	
Τὶ λέγεται Μουσική ἔκτασις	>>	6	
Περί 'Αντιφωνίας	>>	6	
Περί τῆς Διαπασῶν Μουσικῆς Κλίμακος	>>	7	
Περί τρόπου ἀναβάσεως και καταβάσεως τῆς μουσικῆς κλίμακος	»	8	
Περὶ ἐπεκτάσεως τῆς Διαπασῶν κλίμακος	»	9	
Ύποδιαίρεσις τῆς μουσικῆς κλίμακος	»	10	
Περί τῆς Δὶς Διαπασῶν κλίμακος	»	10	
Κεφάλαιον Β΄			
Τὰ Σημεῖα τῆς μουσικῆς γραφῆς	»	11	
Αί Μαρτυρίαι—Τὰ Φθογγόσημα ἢ χαρακτῆρες ποσότητος	>>	12	
'Αξία τῶν χαρακτήρων τῆς ποσότητος	»	13	
Σύνθεσις Φθογγοσήμων - Πίναξ Συνθέτων φθογγοσήμων	»	14	
Διάφορα Γυμνάσματα	>	15-16	
Ασκησις παραλλαγής μετά μέλους	»	16	
Ανάβασις καὶ κατάβασις ἀνὰ δύο φωνὰς	»	17	
Διαστήματα τρίτης, πέμπτης, ἕκτης	»	18	
Γυμνάσματα με άχρόνους και έγχρόνους ύποστάσεις	»	18	
Αντικένωμα με άπλην, γοργόν και σιωπήν, με δίγοργον και βαρείαν	»	19	
Τρίγοργον μὲ βαρεῖαν—Τρίγοργον μὲ βαρεῖαν καὶ κλάσμα—'Αντικέ- [νωμα μὲ ἡμισείαν σιωπὴν	>	20°	
Γυμγάσματα μὲ γοργὰ παρεστιγ μένα— 'Ανά λυσις <mark>γοργ</mark> ᾶν παρεστιγμέν <mark>α</mark> ν	»	21	
Κεφάλαιον Γ΄. Περί χρόνου			
Περὶ ἀξίας τῶν σημείων τοῦ χρόνου	>>	22-26	
Κεφάλαιον Δ΄			
Περί εκφράσεως ή ποιότητος καί τῶν σημείων αὐτής	` >> ·	27-30	
Κεφάλαιον Ε'			
Υφέσεις και Διέσεις	»	31-33	

MEPOE B

Ή Σύνθεσις τοῦ Βυζαντινοῦ μέλους

Κεφάλαιον ΣΤ΄

A *	TA	Thus
A.	10	Γένος

A 10 12705		
Περί Διατονικού γένους—Περί Χρωματικού γένους—Περί Έναρμο- [νίου γένους καί των κλιμάκων, μαρτυριών καί φθορών αὐτών Σε	λiς	34-3
Αί Τρείς Χρόαι καὶ τὶ καλείται Χρόα	>>	38-42
Κλίμακες, Μαρτυρίαι καὶ Διαστήματα		
Κεφάλαιον Ζ΄		
Β΄ Τὸ Σύστημα ἐν τζι Βυζαντινζι Μουσικζι	*	43
'Ολίγα τινά περί τροχού παλαιού-Τό πεντάχορδον σύστημα ή τροχός	»	44-49
Κεφάλαιον Η΄		
Γ΄ Περὶ ἐννοίας καὶ ἀριθμοῦ τῶν ἥχων	»	50
Περί Τάξεως και διαιρέσεως των ήχων	»	51-52
Περί ἐκτάσεως μελφδικῶν θέσεων και ήθους ήχων	»	53-54
Μεταβολή κατ' ήχον. 'Επίσακτα μέλη	*	55
Κεφάλαιον Θ΄		
Δ΄ Τὰ Εξδη τοῦ μέλους	»	56
Κεφάλαιον Ι'		
Ε΄ 'Η Χρονική άγωγή	>>	55-57
Κεφάλαιον ΙΑ΄		
ΣΤ΄ 'Ο Ρυθμός-Τί καλείται ρυθμός	»	59-60
Συστατικά του ρυθμου	»	61-66
Γυμνάσματα μέλους μετά ρυθμού	»	67-69
MEPOE I'		
Κεφάλαιον ΙΒ΄		
Περί τῶν ὀκτὰ ήχων τής Βυζαντινής Μουσικής περιληπτικώς καὶ [τῶν κλιμάκων, μαρτυριῶν καὶ φθορῶν αὐτῶν	»	70-75
ΜΕΡΟΣ Δ΄		
Κεφάλαιον ΙΓ'		
'Ολίγα τινὰ διὰ τὸν Ἱεροψάλτην καὶ τὸ ἤθός του	» .	76-78
Κεφάλαιον ΙΔ΄		
Περί καταρτίσεως Βυζαντινής Χορφδίας	»	79-81