Introduction to Bayesian Data Analysis Tutorial 8 - Solutions

- (1) (a) $Var[y_{i,j}|\mu,\tau^2]$ extra element of variability in first sampling a group.
 - (b) $Cov[y_{i_1,j},y_{i_2,j}|\theta_j,\sigma^2]=0$ - given the group membership, we assume data are independent. $Cov[y_{i_1,j},y_{i_2,j}|\mu,\tau^2]>0$ - not knowing the group membership, then $y_{i_2,j}$ is informative about $y_{i_1,j}$ because they come from the same subpopulation.

Our answers in (c) are in line with our intuition in parts (a) and (b)

(d)

$$\begin{split} p(\mu|\theta_{1},...,\theta_{m},\sigma^{2},\tau^{2},\mathbf{y}_{1},...,\mathbf{y}_{m}) &= \frac{p(\mu)\times p(\theta_{1},...,\theta_{m},\sigma^{2},\tau^{2},\mathbf{y}_{1},...,\mathbf{y}_{m}|\mu)}{p(\theta_{1},...,\theta_{m},\sigma^{2},\tau^{2},\mathbf{y}_{1},...,\mathbf{y}_{m})} \\ &= \frac{p(\mu)p(\mathbf{y}_{1},...,\mathbf{y}_{m}|\theta_{1},...,\theta_{m},\sigma^{2},\tau^{2},\mu)p(\theta_{1},...,\theta_{m},\sigma^{2},\tau^{2}|\mu)}{p(\mathbf{y}_{1},...,\mathbf{y}_{m}|\theta_{1},...,\theta_{m},\sigma^{2},\tau^{2})p(\theta_{1},...,\theta_{m},\sigma^{2},\tau^{2})} \\ &= \frac{p(\mu)p(\mathbf{y}_{1},...,\mathbf{y}_{m}|\theta_{1},...,\theta_{m},\sigma^{2})p(\theta_{1},...,\theta_{m}|\sigma^{2},\tau^{2},\mu)p(\sigma^{2},\tau^{2}|\mu)}{p(\mathbf{y}_{1},...,\mathbf{y}_{m}|\theta_{1},...,\theta_{m},\sigma^{2})p(\theta_{1},...,\theta_{m}|\sigma^{2},\tau^{2},\mu)p(\sigma^{2},\tau^{2})} \\ &= \frac{p(\mu)p(\theta_{1},...,\theta_{m}|\tau^{2},\mu)p(\sigma^{2}|\tau^{2},\mu)p(\tau^{2}|\mu)}{p(\theta_{1},...,\theta_{m}|\tau^{2})p(\sigma^{2}|\tau^{2})p(\tau^{2})} \\ &= \frac{p(\mu)p(\theta_{1},...,\theta_{m}|\tau^{2})p(\tau^{2}|\mu)}{p(\theta_{1},...,\theta_{m}|\tau^{2})p(\tau^{2}|\mu)} \\ &= p(\mu|\theta_{1},...,\theta_{m},\tau^{2}) \end{split}$$

where the second to last line assumes independence between the (hyper)parameters, τ^2 , σ^2 and μ .

The result in (d) means that posterior inference on μ does not depend directly on the data $\mathbf{y}_1, ..., \mathbf{y}_m$, but rather on the posterior draws of the parameters $\theta_1, ..., \theta_m$ and τ^2 . The result is analogous to a one-sample normal model, where $\theta_1, ..., \theta_m$ are i.i.d samples from a normal population, and μ and τ^2 are the unknown population mean and variance.

(2) (a) This is the R-code to implement the Gibbs sampler:

```
mu0<-75 ; g02<-100
del0.sens < -c(rep(-4,4),rep(-2,4),rep(0,4),rep(2,4),rep(4,4));
t02.sens < -rep(c(10,50,100,500),5)
s20<-100; nu0<-2
##### starting values
ybarA<-75.2
sA<-7.3
ybarB<-77.5
sB<-8.1
nA < -nB < -16
mu<- (ybarA + ybarB )/2</pre>
del<- (ybarA- ybarB )/2
##### Gibbs sampler
MU<-DEL<-S2<-array(NA,c(20,5000))
for (i in 1:20)
{
del0<-del0.sens[i]
t02<-t02.sens[i]
set.seed(1)
for(s in 1:5000)
   ##update s2
      s2<-1/rgamma(1,(nu0+nA+nB)/2,
                           (nu0*s20+(nA-1)*sA^2+nA*((mu+del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(nB-1)*sB^2+nB*((mu-del)-ybarA)^2+(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(mu-del)-(m
    ##update mu
      var.mu < - 1/(1/g02 + (nA + nB)/s2)
      mean.mu \leftarrow var.mu \leftarrow mu0/g02 + nA*(ybarA-del)/s2 + nB*(ybarB+del)/s2)
      mu<-rnorm(1,mean.mu,sqrt(var.mu))</pre>
      ##update del
      var.del < - 1/(1/t02 + (nA + nB)/s2)
      mean.del \leftarrow var.del*(del0/t02 + nA*(ybarA-mu)/s2 - nB*(ybarB-mu)/s2)
      del<-rnorm(1,mean.del,sqrt(var.del))</pre>
      ##save parameter values
      MU[i,s] \leftarrow mu; DEL[i,s] \leftarrow del; S2[i,s] \leftarrow s2
       }
}
> apply(DEL,1,function(x) mean(x<0))</pre>
```

(i) Values for $Pr(\delta_0 < 0|\mathbf{Y})$ are more sensitive across δ_0 values for lower τ_0^2 values, that is, as we are firmer on our prior beliefs for the value of δ .

$ au_0^2$	δ_0					
	_	-2		2	4	
10	0.90	0.84	0.77	0.68	0.58	
50	0.82	0.80	0.78	0.77	0.75	
100	0.80	0.79	0.79	0.78	0.77	
500	0.79	0.84 0.80 0.79 0.79	0.79	0.79	0.78	

Table 1: $Pr(\delta_0 < 0|\mathbf{Y})$

(ii) All 95% confidence intervals for δ contain zero, and the intervals are of similar width for different combinations of δ_0 and τ_0^2 .

$ au_0^2$	δ_0						
	-4	-2	0	2	4		
10	(-4.2, 0.91)	(-3.8, 1.2)	(-3.4, 1.6)	(-3.1, 2.0)	(-2.7, 2.4)		
50	(-4.0, 1.5)	(-3.9, 1.6)	(-3.8, 1.7)	(-3.7, 1.1)	(-3.6, 1.8)		
100	(-4.0, 1.6)	(-3.9, 1.6)	(-3.9, 1.7)	(-3.8, 1.7)	(-3.8, 1.7)		
500	(-4.0, 1.6)	(-3.9, 1.7)	(-3.9, 1.7)	(-3.9, 1.7)	(-3.9, 1.7)		

Table 2: 95% posterior confidence intervals for δ

(iii) Prior correlation between θ_A and θ_B :

$$Cov(\theta_A, \theta_B) = Cov(\mu + \delta, \mu - \delta)$$

$$= E[(\mu + \delta)(\mu - \delta)] - E[(\mu + \delta)]E[(\mu - \delta)]$$

$$= E[\mu^2 - \delta^2] - (\mu_0 - \delta_0)(\mu_0 + \delta_0)$$

$$= \mu_0^2 + \gamma_0^2 - \delta_0^2 - \tau_0^2 - \mu_0^2 - \delta_0^2$$

$$= \gamma_0^2 - \tau_0^2$$

$$Cor(\theta_A, \theta_B) = \frac{Cov(\theta_A, \theta_B)}{SD(\theta_A) \times SD(\theta_B)} = \frac{\gamma_0^2 - \tau_0^2}{\gamma_0^2 + \tau_0^2}$$

The posterior correlations are a lot smaller than the prior correlations and decrease in size as τ_0^2 increases, that is, as we assume higher prior variance on δ (see Table 3).

τ_0^2	Prior	δ_0					
		-4	-2	0	2	4	
10	0.82	0.0914	0.0943	0.0944	0.0917	0.0862	
50	0.33	0.0179	0.0181	0.0182	0.0181	0.0178	
100	0.00	0.0074	0.075	0.0076	0.0076	0.0075	
500	-0.67	-0.0012	-0.0011	-0.0011	-0.0011	-0.0011	

Table 3: Posterior correlation between θ_A and θ_B

(b) For all prior opinions, $Pr(\delta_0 < 0|\mathbf{Y}) > 50\%$, which indicates that $\theta_B > \theta_A$, even if the prior belief on δ is greater than zero, and plots of the posterior density of δ are less diffuse than plots of the prior density on δ , so we are firmer in our beliefs on the value of δ and hence the relationship between θ_A and θ_B after incorporating the data into our inference.