

# **Simulink for AUTOSAR:**

# **Best Practices**

李智慧 高级技术咨询顾问





#### What is AUTOSAR?

#### AUTomotive Open System ARchitecture



Partnership
 Consisting of more than
 180 companies from the
 global automotive industry

Latest update:

http://www.autosar.org/partners/current-partners/

Objective:
 Establish an open standard for automotive E/E architecture





# **Agenda**

#### Simulink for AUTOSAR - Introduction

- Workflows
- Capabilities

#### Simulink for AUTOSAR – User Stories

Production Code Generation with Embedded Coder

#### Simulink for AUTOSAR – Best Practices

Best Practices for using Simulink for AUTOSAR

#### Summary & Conclusions



# Simulink & Stateflow for Behavior Modeling, **Embedded Coder for Production Code**





# **Workflows**

### 1. Top-Down, 2. Bottom-Up, 3. Mixed





# **Capabilities**





# **Agenda**

#### Simulink for AUTOSAR - Introduction

- Workflows
- Capabilities

#### Simulink for AUTOSAR – User Stories

Production Code Generation with Embedded Coder

#### Simulink for AUTOSAR – Best Practices

Best Practices for using Simulink for AUTOSAR

#### Summary & Conclusions



# Long-term Successful Collaboration with

Volkswagen...

2012

2007





...from a "Proof of Concept" project

...to series production across brands



#### More User Stories...

# Market Situation and Rollout Strategies: **Volvo Cars** Model-Based Design based on AUTOSAR in an Electrical Systems Engineering Environment at Volvo Cars VOLVO UTOSAR: Premium Conference 2011-05-11, Dennis Selin, Guido Sandr sue date: 2011-04-15, Security Class: Proprietary







# **Agenda**

#### Simulink for AUTOSAR - Introduction

- Workflows
- Capabilities

#### Simulink for AUTOSAR – User Stories

Production Code Generation with Embedded Coder

#### Simulink for AUTOSAR – Best Practices

Best Practices for using Simulink for AUTOSAR

#### Summary & Conclusions



# #1 Decide strategy for migrating existing Simulink models to AUTOSAR

- Clean sheet start
- Start with existing Simulink models
- Maintain one model for AUTOSAR and non-AUTOSAR





#### **#2 Use one AUTOSAR workflow**

- Select top-down or bottom-up approach
- Round-trip works best with one clear owner of data

- Select tools that best support your workflow and AUTOSAR concepts
- Select simplest approach for applying AUTOSAR configuration to your Simulink model





# #3 Decide data management

- Will Simulink or AUTOSAR tools manage data?
- Will projects or teams define and manage data?
- How will change management be handled?





# **#4 Establish modeling standards**

- For Simulink and AUTOSAR
  - Base it on your workflow and data management
  - Use Simulink Model
     Advisor to enforce
     modeling style early in
     model development







# #5 Simulate before you generate code

- Take advantage of **early verification** through simulation
  - Make sure SWC implementation is correct early
  - Simulate multiple SWC's together in Simulink before code integration
  - Use SIL and PIL to verify the generated code at the unit level before RTE generation





# #6 Plan ahead for ISO 26262 – Determine how

#### AUTOSAR process will address safety-standards

- Products supported for ISO 26262 tool qualification include:
  - Embedded Coder
  - Simulink V&V
  - Simulink Design Verifier
  - PolySpace
- Artifacts certified by TÜV SÜD
  - Requires use of V&V workflow
- ISO 26262 Advisory Service available







# #7 Use Simulink to migrate legacy code to AUTOSAR

#### Reuse of Legacy Code

- Integration for simulation, production code generation
- Can generate AUTOSAR RTE API access points





## #8 Automate, automate, automate

– Use API's for workflow automation!

#### Manual process is difficult due to:

- The complexity of the standard, naming conventions
- Iterative work cycles with AUTOSAR
- Complex code APIs and XML file definitions

 Use documented MATLAB APIs to configure SWCs in Simulink

```
%% Setup AUTOSAR Configuration
programmatically

model = 'rtwdemo_autosar_counter';

% Modify AUTOSAR Properties
autosarProps =
autosar.api.getAUTOSARProperties(model);
set(autosarProps, 'Input', 'IsService',
true);
set(autosarProps, 'XmlOptions',
'ArxmlFilePackaging','SingleFile');
```



# #9 Use production code generation

- Hand coding AUTOSAR is painful (Code and description)

```
void Runnable simple alg Step(void)
 real Trtb Gain;
                                                                 <RUNNABLE-ENTITY UUID="aef16585-a355-494f-accd-1a548ca22e27">
 real T rtb Delay;
                                                                 <SHORT-NAME>Runnable_simple_alg_Step</SHORT-NAME>
 real T rtb Delay1;
                                                                   <MINIMUM-START-INTERVAL>0</MINIMUM-START-INTERVAL>
                                                                    <CAN-BE-INVOKED-CONCURRENTLY>false</CAN-BE-INVOKED-CONCURRENTLY>
 real_T rtb_TmpSignalConversionAtFast_i;
                                                                    <DATA-READ-ACCESSS>
 if (simple_alg_M->Timing.TaskCounters.TID[1] == 0) {
                                                                     <VARIABLE-ACCESS>
                                                                      <SHORT-NAME>IN_Slow_in_Slow_in</SHORT-NAME>
  Rte_Receive_Fast_in_Fast_in(&rtb_TmpSignalConversionAtFast_i);
                                                                 </RUNNABLE-ENTITY>
  rtb_Delay = simple_alg_DWork.Delay_DSTATE;
  rtb Delay1 = simple alg DWork.Delay1 DSTATE;
  rtb Gain = simple alg DWork.Delay2 DSTATE;
  rtb Gain = (((rtb TmpSignalConversionAtFast i + simple alg DWork.Delay DSTATE) + simple alg DWork.Delay1 DSTATE) +
             rtb Gain) * simple alg P.Gain Gain;
  if (simple_alg_M->Timing.TaskCounters.TID[2] == 0) {
   simple alg B.RateTransition = rtb Gain;
                                                                                  <SENDER-RECEIVER-INTERFACE>
                                                                                    <SHORT-NAME>Out1</SHORT-NAME>
  simple_alg_DWork.Delay_DSTATE = rtb_TmpSignalConversionAtFast_i;
                                                                                      <IS-SERVICE>false</IS-SERVICE>
  simple alg DWork.Delay1 DSTATE = rtb Delay;
                                                                                     <DATA-ELEMENTS>
  simple alg DWork.Delay2 DSTATE = rtb Delay1;
                                                                                       <VARIABLE-DATA-PROTOTYPE>
                                                                                         <SHORT-NAME>Out1</SHORT-NAME>
 if (simple_alg_M->Timing.TaskCounters.TID[2] == 0) {
                                                                                       </VARIABLE-DATA-PROTOTYPE>
  Rte | Write Runnable simple alg Step Out1 Out1 (simple alg B.RateTransition
                                                                                    </DATA-ELEMENTS>
              + Rte_IRead_Runnable_simple_alg_Step_Slow_in_Slow_in());
                                                                                  </SENDER-RECEIVER-INTERFACE>
 rate scheduler();
```



# **#10 Actively plan for migration**

- Tools and standards are changing rapidly
  - Account for:
    - New versions of AUTOSAR
    - New versions of Simulink
  - Consider:
    - How often to upgrade
    - What will drive upgrade





Source: AUTOSAR, 6th Open Conference 11.13.2013

\*R4.2.1 has been released in 2014 MATLAB 2015b supports this revision



# Best practices for using Simulink with AUTOSAR

- Decide strategy for migrating existing Simulink models to AUTOSAR
- Use one AUTOSAR workflow
- Decide data management
- Establish modeling standard
- Simulate before code generation
- Plan ahead for ISO 26262
- Use Simulink to migrate legacy code to AUTOSAR
- Automate, automate, automate
- Use production code generation
- Actively plan for migration



# **Agenda**

#### Simulink for AUTOSAR - Introduction

- Workflows
- Capabilities

#### Simulink for AUTOSAR – User Stories

Production Code Generation with Embedded Coder

#### Simulink for AUTOSAR – Best Practices

Best Practices for using Simulink for AUTOSAR

Summary & Conclusions



# **Summary**

- Simulink and Embedded Coder provide extensive AUTOSAR capabilities out-of-the-box, along with API's for workflow automation
- Leading automotive companies are successfully deploying AUTOSAR for production by leveraging MathWorks tools and industry experience
- Take advantage of best practices for deploying AUTOSAR with Production Code Generation to accelerate your projects while reducing risk and improving quality



# Thank you for your attention!



Accelerating the pace of engineering and science