

Fracture modes in orthogonal cutting model.

Energy spent to form new surface when chip generates, $G_{\rm f}^{\rm sep}$, Energy spent in forming new surface for chip serration, $G_{\rm f}^{\rm serr}$.

For isotropic linear elastic material fracture toughness, $G_{\rm f}$ can be defined as:

$$G_{\rm f}^{({\rm sep, serr})} = \frac{1 - \nu^2}{E} K_{\rm Ic, IIc}^2,$$
 for plane strain (1)

Tool- Workpiece.

Meshed geometry (a) workpiece (b) tool.

Force Distribution

Cutting force evolution versus time for $\alpha=0^\circ,\,a_c=$ 0.1 mm, and $V_c=$ 200 m/min.

Temperature Distribution

Tool chip interface temperature evolution versus time for $\alpha=-7^{\circ},~a_c=0.3$ mm, and $V_c=800$ m/min.

Comparison of SDEG for Two Sets of Johnson-Cook Parameters

SDEG results (a) Johnson-Cook parameters- I (b) Johnson-Cook parameters - II for $\alpha=5,~a_c=0.3$ mm, and $V_c=800$ m/min.

Change in Fracture Toughness for Chip Serration

Different chip morphology for different (a) $G_{\rm f}^{\rm serr} = 20000~{\rm J/m^2}$ (b) $G_{\rm f}^{\rm serr} = 24000~{\rm J/m^2}$ (c) $G_{\rm f}^{\rm serr} = 28000~{\rm J/m^2}$, for $G_{\rm f}^{\rm sep} = 14000{\rm J/m^2}$, $\alpha = 10^{\circ}$, $a_{\rm c} = 0.3~{\rm mm}$, and $V_{\rm c} = 800~{\rm m/min}$.