Homework 7 for MATH 104

Due: Tuesday, October 31, 9:30am in class

Problem 1

- (a) Suppose $\sum a_n x^n$ has finite radius of convergence R and that $a_n \ge 0$ for all n. Show that if the series converges at R, then it also converges at -R.
- (b) Give an example of a power series whose interval of convergence is exactly (-1, 1].

Problem 2

Show that $\sum_{n=1}^{\infty} \frac{x^n}{n^2 2^n}$ has radius of convergence 2 and that the series converges uniformly to a continuous function on [-2, 2].

Problem 3

- (a) Let (f_n) be a sequence of continuous functions $f_n : S \to \mathbb{R}$, $S \subseteq \mathbb{R}$ which converges uniformly on S. Show that if (x_n) is a sequence in S such that $x_n \to x \in S$, then $\lim_n f_n(x_n) = f(x)$.
- (b) Is the converse of (a) true, that is, is it true that if $f_n(x_n)$ converges to f(x) whenever (x_n) converges to x in S, then (f_n) converges uniformly to f?

Problem 4

Let $\mathcal{B}(\mathbb{R})$ be the set of all bounded functions $f : \mathbb{R} \to \mathbb{R}$, i.e. there exists a real number $M \ge 0$ such that $|f(x)| \le M$ for all $x \in \mathbb{R}$.

(a) Define a function $d: \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \to \mathbb{R}^{\geqslant 0}$ by

$$d(f,g)=\sup\{|f(x)-g(x)|:\ x\in [a,b]\}.$$

Show that d defines a metric on $\mathcal{B}(\mathbb{R})$.

- (b) Show that a sequence (f_n) of bounded real functions $f_n : \mathbb{R} \to \mathbb{R}$ converges uniformly to a function $f : \mathbb{R} \to \mathbb{R}$ if and only if $f_n \to f$ with respect to the metric d. Show that the limit function f is bounded, too.
- (c) Show that the metric space $(\mathcal{B}(\mathbb{R}), d)$ is complete.
- (d) Is $(\mathcal{B}(\mathbb{R}), d)$ compact?