Chapitre 18 - Séries numériques

1 Sommes partielles d'une série

1.1 Sommes partielles, somme et reste

Définition 1.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels ou complexes.

On appelle série de terme général u_n , notée $\sum u_n$, la suite $(S_n)_{n\in\mathbb{N}}$ où $S_n=\sum_{k=0}^n u_k$.

 S_n s'appelle la somme partielle d'indice n.

Si la série converge, sa limite s'appelle somme de la série et on la note $\lim_{n\to+\infty} S_n = \lim_{n\to+\infty} \sum_{k=0}^n u_k = \sum_{k=0}^{+\infty} u_k$

On appelle reste d'ordre n, $R_n = \sum_{k=0}^{+\infty} u_k - S_n = \sum_{k=n+1}^{+\infty} u_k$.

Exemple 1.1. Soit $a \in \mathbb{R}$. La série $\sum_{n=0}^{\infty} \frac{a^n}{n!}$ est convergente et sa somme vaut $\sum_{n=0}^{+\infty} \frac{a^n}{n!} = e^a$. C'est la série exponentielle.

Proposition 1.1. Pour tout entier n_0 , les séries $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant n_0} u_n$ sont de même nature.

1.2 Linéarité de la somme

Proposition 1.2. Si $\sum u_n$ et $\sum v_n$ sont deux séries convergentes, et si $\alpha \in \mathbb{K}$ est un scalaire, alors $\sum (\alpha u_n + v_n)$ est convergente et $\sum_{k=0}^{+\infty} (\alpha u_n + v_n) = \alpha \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n$

Proposition 1.3. Si $\sum u_n$ est une série convergente, alors $\sum \overline{u_n}$ est convergente et $\overline{\left(\sum_{n=0}^{+\infty} u_n\right)} = \sum_{n=0}^{+\infty} \overline{u_n}$

Proposition 1.4. Une série $\sum u_n$ est convergente si et seulement si les séries $\sum \mathcal{R}e(u_n)$ et $\sum \mathcal{I}m(u_n)$ convergent.

En cas de convergence, on a $\sum\limits_{n=0}^{+\infty}u_n=\sum\limits_{n=0}^{+\infty}\mathcal{R}e\,u_n+i\sum\limits_{n=0}^{+\infty}\mathcal{I}m\,u_n$

1.3 Limite du terme général d'une série convergente

Théorème 1.5.

Si $\sum u_n$ est une série convergente, alors le terme général $(u_n)_{n\in\mathbb{N}}$ est une suite convergente vers 0.

1.4 Séries géométriques

Théorème 1.6. La série $\sum q^n$ avec $q \in \mathbb{C}$ converge si et seulement si |q| < 1.

Corollaire 1.7. Si la série $\sum q^n$ converge, alors sa somme est $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

1.5 Télescopage

Proposition 1.8. La suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si la série $\sum (u_{n+1}-u_n)$ converge.

2 Séries à termes positifs

2.1 Théorème de la limite monotone

Théorème 2.1.

Une série à termes réels positifs converge si et seulement si la suite de ses sommes partielles est majorée.

Remarque 2.1. Une série à termes réels positifs est croissante.

2.2 Critère de comparaison

Théorème 2.2. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites positives et si pour tout n, $u_n \leq v_n$, alors la convergence de $\sum v_n$ implique celle de $\sum u_n$ et de plus,

$$\sum_{n=0}^{+\infty} u_n \leqslant \sum_{n=0}^{+\infty} v_n.$$

Théorème 2.3. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites positives et si pour tout n, $u_n \leqslant v_n$, alors, $\sum u_n$ diverge $\Longrightarrow \sum v_n$ diverge.

2.3 Critère d'équivalence

Théorème 2.4. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles positives. Si $u_n \underset{+\infty}{\sim} v_n$, alors $\sum v_n$ converge $\iff \sum u_n$ converge.

2.4 Comparaison à une intégrale

Théorème 2.5. Si f est une fonction décroissante et continue sur $[n_0, +\infty[$, alors on a pour $n \geqslant n_0 + 1$:

$$\int_{n}^{n+1} f(t) dt \leqslant f(n) \leqslant \int_{n-1}^{n} f(t) dt$$

ce qui donne :

$$\int_{n_0+1}^{n+1} f(t) \ dt \leqslant \sum_{k=n_0+1}^{n} f(k) \leqslant \int_{n_0}^{n} f(t) \ dt$$

2.5 Séries de Riemann

Définition 2.1. On appelle série de Riemann, les séries de la forme $\sum \frac{1}{n^{\alpha}}$ avec $\alpha \in \mathbb{R}$.

Théorème 2.6. La série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

2.6 Comparaison à une série géométrique

Exercice 2.1. Montrer le théorème suivant pour une série $\sum u_n$ à termes strictement positifs :

« Si
$$\dfrac{u_{n+1}}{u_n} \leqslant q$$
 pour tout $n \geqslant n_0$ avec $0 < q < 1$, alors la série $\sum u_n$ converge.

Si
$$\dfrac{u_{n+1}}{u_n}\geqslant q$$
 pour tout $n\geqslant n_0$ avec $q>1$, alors la série $\sum u_n$ diverge. »

2.7 Comparaison à une série de Riemann

Exercice 2.2. Montrer le théorème suivant pour une série $\sum u_n$ à termes positifs.

« Si il existe lpha>1 tel que $(u_n imes n^lpha)_{n\in\mathbb{N}}$ est bornée, alors $\sum u_n$ converge.

Si il existe
$$\alpha \leqslant 1$$
 et $K > 0$ tel que $u_n \geqslant \frac{K}{n^{\alpha}}$, alors $\sum u_n$ diverge. »

3 Séries absolument convergentes

3.1 Convergence absolue

Définition 3.1. On dit qu'une série $\sum u_n$ est absolument convergente si la série à termes réels positifs $\sum |u_n|$ est convergente.

Théorème 3.1. Une série absolument convergente est convergente.

Corollaire 3.2. Si $\sum u_n$ est une série absolument convergente, alors $\left|\sum_{n=0}^{+\infty} u_n\right| \leqslant \sum_{n=0}^{+\infty} |u_n|$

3.2 Convergence absolue par comparaison

Théorème 3.3. Soit (u_n) une suite réelle ou complexe et v_n une suite à termes strictement positifs. Si $u_n = O(v_n)$ et si $\sum v_n$ converge, alors $\sum u_n$ est absolument convergente donc convergente.

4 Développement décimal d'un nombre réel

Définition 4.1. Soit x un nombre réel positif, on appelle valeur décimale approchée par défaut à 10^{-n} près de x le nombre $x_n = 10^{-n} \lfloor 10^n x \rfloor$ et valeur décimale approchée par excès à 10^{-n} près le nombre $y_n = 10^{-n} (\lfloor 10^n x \rfloor + 1) = x_n + 10^{-n}$. On a alors $x_n \leqslant x_{n+1} \leqslant x < y_{n+1} \leqslant y_n$.

Proposition 4.1. Soit $x \in \mathbb{R}$. Les suites des valeurs décimales approchées par défaut et par excès de x sont adjacentes et convergent vers x.

Définition 4.2. Soit x un nombre réel positif et n un entier naturel, on appelle développement décimal de x l'écriture de $x-\lfloor x\rfloor$ comme somme de la série convergente $x-\lfloor x\rfloor=\sum_{n=1}^{+\infty}\frac{a_n}{10^n}$ où la $n^{\text{ième}}$ décimale de x après la virgule définie par $a_n=10^n(x_n-x_{n-1})$ est un entier entre 0 et 9. On peut écrire $x=\lfloor x\rfloor+\overline{0,a_1a_2a_3\ldots a_n\ldots}$

Remarque 4.1. On a pour tout entier
$$n_0$$
, $\sum_{n=n_0}^{+\infty} \frac{9}{10^n} = 9 \times \frac{1}{10^{n_0}} \times \frac{1}{1 - \frac{1}{10}} = \frac{1}{10^{n_0-1}}$.

Alors, le nombre x = 0, 123499999999999... (avec une suite infinie de 9) vaut x = 0, 1235 et la suite des chiffres de son développement décimal est 1, 2, 3, 5, 0, 0, 0, 0, 0, ...

Proposition 4.2. Le développement décimal d'un réel positif est propre : c'est-à-dire que la suite des (a_n) ne se stabilise pas à 9 au-delà d'un certain rang.

Proposition 4.3. Tout nombre décimal a 2 développements l'un propre et l'autre impropre.

Théorème 4.4.

Un nombre x est décimal si et seulement la suite de son développement décimal (a_n) est nulle à partir d'un certain rang.

Un nombre positif x est rationnel si et seulement si la suite (a_n) de son développement décimal est périodique à partir d'un certain rang.

Théorème 4.5. Pour tout nombre $x \in [0,1[$, il existe une unique suite d'entiers $(a_n)_{n \in \mathbb{N}^*}$ telle que

$$x=\sum_{n=1}^{+\infty}rac{a_n}{10^n}$$
 , $orall n\in\mathbb{N}^*$, $a_n\in\llbracket 0,9
rbracket$ et (a_n) n'est pas stationnaire à 9.

On a $a_n = |10^n x| - 10|10^{n-1}x|$. On l'appelle le développement décimal illimité propre de x.