杭州电子科技大学 2008 年攻读硕士研究生入学考试

〈〈数据结构〉〉 试题

\\ 双加州// 风赵
(试题共 5 大题, 共 4 页 150分)
姓名
[所有答案必须写在答题纸上,做在试卷或草稿纸上无效!]
[所有合采必须与任合赵纨工,似任诚仓以平间以工儿从:]
一. 选择题 (每选 2 分, 共 32 分)
1. 从逻辑上可以把数据结构分成()。
a. 动态结构和静态结构 b. 顺序组织和链式组织
c. 线性结构和非线性结构 d. 基本类型和组合类型
2. 线性表在()情况下适于使用链表结构实现。
a. 不需修改线性表的结构 b. 需不断对线性表进行删除、插入
c. 需经常修改线性表中结点值 d. 线性表中含有大量结点
3. 栈和队列的一个共同点是()。
a. 都是先进先出 b. 都是先进后出
c. 只允许在端点处插入和删除元素 d. 没有共同点
4. 对二叉排序树() 可得到有序序列。
a. 按层遍历 b. 前序遍历
c. 中序遍历 d. 后序遍历
5. 若某二叉树有 n₀个叶子结点,有 n₁个结点仅有一个孩子,则该二叉
树的总结点数是()。
a. n_0+n_1 b. $2n_0+n_1$
c. $2n_0+n_1+1$ d. $2n_0+n_1-1$
6. 己知某二叉树的先序遍历次序为 abcdefg 中序遍历次序为 cdebgfa。
则:其后序遍历次序为();层次遍历次序为()。
a. abcdefg b. abcfdge
c. cdegbfa d. edcgfba
7. 任何一个连通图的生成树()。
a. 只有一棵 b. 有一棵或多棵
c. 一定有多棵 d. 可能不存在

8. 图示的三棵二叉树中()为最优二叉树。 9. 哈希表的查找效率取决于() . a. 哈希函数 b. 处理冲突的方法。 c. 哈希表的装填因子。 d. 以上都是 10. 静态查找表和动态查找表的区别在于()。 a. 前者是顺序存储, 而后者是链式存储 b. 前者只能进行查找操作,而后者可进行查找、插入和 删除操作 c. 前者只能顺序查找, 而后者可做折半查找 d. 前者可被排序, 而后者不能被排序 11. 若从二叉树的根结点到其它任一结点的路径上所经过的结点序列 按其关键字递增有序,则该二叉树是()。 a. 二叉排序树 b. 赫夫曼树 c. 堆 d. 平衡二叉树 12. 在下列排序方法中, () 平均时间复杂度为 0(nlogn), 最坏 情况下时间复杂度为 0(n²); () 所有情况下时间复杂度均为 0(nlogn); 当记录的个数 n 较大时, 若仅需排定前 m 元素的位置 (m 远小于 n)时,下列方案中()为佳; 当初始记录依关键字 有 序时下列方案中()为佳。 a. 希尔排序 b. 快速排序 c. 堆排序 d. 直接插入排序 e. 简单选择排序 f. 基数排序 填空题 (每空2分,共34分) 1. 数据结构通常有下列 4 类基本结构: ____、线性结构、树型 结构、图型结构。

结构、图型结构。
2. 若二叉树的第 i 层存在,则二叉树的第 i 层上至少有______个

2. 若二义树的第 i 层存在,则二义树的第 i 层上至少有______个结点,至多有______个结点,深度为 k 的二义树至多有______个

4-2

结点。
3. 栈和队列是的线性表。
4. n个顶点的连通图至少有条边,至多有条边。
5. 对于无向图的存储结构有,
6. 关键路径是 AOE 网中源点到汇点的
7. 一棵m阶的B.树,所有非终端结点至多有
根结点至少有二棵子树,除根外的其它非终端结点至少
有
8. 已知一组待排序的记录关键字初始排列如下: 45, 67, 23, 64,
12, 68, 09, 34, 46, 77, 25, 36. 若为之进行升序排序,则:
一趟快速排序的结果是:
一趟希尔排序(初始步长为3)的结果是;
一趟基数排序的结果是;
建立初始堆(小顶堆)的结果是。

三. 问答题(每题8分,共40分)

- 1. 已知,某森林的先序遍历次序为 a b c d e g f h i j k 中序遍历次序为 b d g e f c a h k j i 试画出用二叉链表描述的该森林,并为之建立中序线索。
- 2. 根据插入次序 10, 40, 70, 50, 60, 65 建立平衡的二叉排序树。
- 3. 设有向图如下:

- a. 试画出该图的邻接表。
- b. 根据你的邻接表,给出 DFS 及 BFS 次序。
- c. 画出该图的十字链表。
- 4. 己知 Hash 函数为 H (K) = K mod 13 , 散列地址为 0 -14,

用开放定址法的二次探测再散列处理冲突(d_i=1²,-1²,2²,-2²·····)

- a. 给出关键字 (32, 5, 76, 34, 98, 12, 3, 61, 19, 48) 在散列地址的分布。
- b. 指出平均成功的查找长度是多少?
- c. 指出平均失败的查找长度是多少?

4-3

- 5. 依次将关键字 56, 34, 37, 2, 65, 11, 96, 45 插入到一棵初始状态为空的 2-3 树中。
 - a. 请画出该 B-树。
 - b. 再画出先后删除 96、2 的该 B-树的变化图。

四. 算法分析: (共8分)

阅读以下过程:

回答以下问题:

- a. 算法的功能?
- b. 当初始数据依关键字递增有序时关键字的比较次数是多少?
- c. 当初始数据依关键字递减有序时关键字的比较次数是多少?
- d. 算法的时间复杂度?

五. 算法设计 (每题 12 分, 共 36 分)

- 1. 若栈结构的存储采用带头结点的单链表实现,写出链栈的初始化、入 栈和出栈的过程。
- 2. 写一算法,判断有向图是否有回路。
- 3. 设有带头结点的非空中序线索二叉树 T (T 指向头结点, 头结点的左指针 1child 指向根结点, 头结点的右指针 rchild 指向中序线索二叉树中最后访问的结点), 若指针 p 指向其中某个结点, 试写出插入 p 的中序后继 s 结点的算法。

注: 结点结构为:

4-4