Image Stitching and Alignment

Multiple Images

- So far, algorithms deal with a single, static image
- ❖ In the real world, a static pattern is a rarity, continuous motion and change are the rule
- Human eyes are well-equipped to take advantage of motion or change in an image sequence
- Stitching (Alignment) and Motion
 - ☐ Stitching has a "global" model all pixel movement can be explained by a simple mathematic model (far field, pure rotational, pure translation)
 - □ 2D motion field is a "local" model pixels by themselves (similarity in a local neighborhood only)

General Taxonomy

- Camera motion and the Scene is static
 - Driving, panorama
 - ☐ Near field (hard) vs. Far field (easy)
 - ☐ General camera motion (hard) vs. special camera motion (e.g., rotation only, easier)
 - General scene (hard) vs. special scene (planar, easier)
- * Object motion and the camera is stationary
 - Surveillance
 - Background modeling and subtraction
- * Both camera and object are moving
 - Sports video, driving, diving, etc.

Alignment

- Homographies
- Rotational Panoramas
- RANSAC
- Global alignment
- Warping
- Blending

Motivation: Recognition

Motivation: medical image registration

Motivation: Mosaics

Getting the whole picture

□ Consumer camera: 50° x 35°

Motivation: Mosaics

- Getting the whole picture
 - □ Consumer camera: 50° x 35°
 - ☐ Human Vision: 176° x 135°

Motivation: Mosaics

- Getting the whole picture
 - □ Consumer camera: 50° x 35°
 - ☐ Human Vision: 176° x 135°

Motion models

- * What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- perspective?

Image Warping

* image filtering: change range of image

* image warping: change domain of image

$$\Leftrightarrow g(x) = f(h(x))$$

Image Warping

* image filtering: change range of image

$$\Leftrightarrow g(x) = h(f(x))$$

* image warping: change *domain* of image

Parametric (global) warping

* Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

Image Warping

Siven a coordinate transform x' = h(x) and a source image f(x), how do we compute a transformed image g(x') = f(h(x))?

Forward Warping

Send each pixel f(x) to its corresponding location x' = h(x) in g(x')

What if pixel lands "between" two pixels?

Forward Warping

Send each pixel f(x) to its corresponding location x' = h(x) in g(x')

- What if pixel lands "between" two pixels?
- Answer: add "contribution" to several pixels, normalize later (splatting)

Inverse Warping

Get each pixel g(x') from its corresponding location x' = h(x) in f(x)

What if pixel comes from "between" two pixels?

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

nearest neighbor, bilinear...

Bilinear interpolation

Sampling at f(x,y):

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic (interpolating)
 - □ sinc / FIR
- Needed to prevent "jaggies" and "texture crawl"

2D coordinate transformations

$$\star$$
 translation: $x' = x + t$ $x = (x,y)$

• rotation:
$$x' = R x + t$$

$$\Rightarrow$$
 similarity: $x' = s R x + t$

$$\Rightarrow$$
 affine: $x' = A x + t$

- * perspective: $\underline{x}' \cong H \underline{x}$ $\underline{x} = (x, y, 1)$ (\underline{x} is a homogeneous coordinate)
- * These all form a nested *group* (closed w/ inv.)

Homogeneous Coordinates

- consistent representation for all linear transform (including translation)
- can be concatenated & pre-computed

$$(x, y) \rightarrow (wx, wy, w), w \neq 0$$

 $(wx, wy, w) \rightarrow (wx / w, wy / w)$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = (TRS) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\boldsymbol{h}_x & 0 \\ s\boldsymbol{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- * Affine transformations are combinations of ...
 - Linear transformations, and
 - ☐ Translations
- Parallel lines remain parallel

Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Projective transformations:
 - ☐ Affine transformations, and
 - ☐ Projective warps
- Parallel lines do not necessarily remain parallel

Affine model approximates perspective projection of planar objects.

• Assuming we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

• Assuming we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

$$\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & \cdots & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_i \\ y'_i \\ \cdots \end{bmatrix}$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for (x_{new}, y_{new})

Panoramas

Obtain a wider angle view by combining multiple images.

age from S. Seitz

How to stitch together a panorama?

- Basic Procedure
 - ☐ Take a sequence of images from the same position
 - > Rotate the camera about its optical center
 - Compute transformation between second image and first
 - ☐ Transform the second image to overlap with the first
 - ☐Blend the two together to create a mosaic
 - ☐(If there are more images, repeat)
- ...but wait, why should this work at all?
 - What about the 3D geometry of the scene?
 - Why aren't we using it?

Panoramas: generating synthetic views

Can generate any synthetic camera view as long as it has **the same center of projection!**

Image reprojection

- * The mosaic has a natural interpretation in 3D
 - ☐ The images are reprojected onto a common plane
 - ☐ The mosaic is formed on this plane
 - ☐ Mosaic is a *synthetic wide-angle camera*

Homography

- * How to relate two images from the same camera center?
 - how to map a pixel from PP1 to PP2?
- * Think of it as a 2D **image warp** from one image to another.
- A projective transform is a mapping between any two PPs with the same center of projection
 - rectangle should map to arbitrary quadrilateral
 - parallel lines aren't
 - but must preserve straight lines
- called Homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$
p H p

Homography

To apply a given homography H

- Compute $\mathbf{p'} = \mathbf{Hp}$ (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{p}'$$

Homography

To **compute** the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of **H** are the unknowns...

Number of measurements required

- At least as many independent equations as degrees of freedom required
- **Example:**

$$\lambda \begin{bmatrix} x' \\ yx' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ H_{2}x & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2 independent equations / point

8 degrees of freedom

 $4x2 \ge 8$

Solving for homographies

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- \bullet Can set scale factor i=1. So, there are 8 unknowns.
- Set up a system of linear equations:

$$Ah = b$$

- *where vector of unknowns $h = [a,b,c,d,e,f,g,h]^T$
- ❖ Need at least 8 eqs, but the more the better...
- Solve for h. If overconstrained, solve using least-squares:

$$\min \|Ah-b\|^2$$

❖Work well if i is not close to 0 (not recommended!)

$$H = \begin{bmatrix} h^{1T} \\ h^{2T} \\ h^{3T} \end{bmatrix}$$

$$\mathbf{x}_{ii}^{\prime\prime} \mathbf{\times} \mathbf{H} \mathbf{x}_{i} = 0 \qquad \mathbf{x}_{i}^{\prime} = (x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime})^{\mathsf{T}} \quad \mathbf{H} \mathbf{x}_{i} = \begin{pmatrix} \mathbf{h}^{1\mathsf{T}} \mathbf{x}_{i} \\ \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} \\ \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} - w_{i}^{\prime} \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} \end{pmatrix}$$

$$\mathbf{x}_{i}^{\prime} \mathbf{\times} \mathbf{H} \mathbf{x}_{i} = \begin{pmatrix} y_{i}^{\prime} \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} - w_{i}^{\prime} \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} \\ w_{i}^{\prime} \mathbf{h}^{1\mathsf{T}} \mathbf{x}_{i} - x_{i}^{\prime} \mathbf{h}^{3\mathsf{T}} \mathbf{x}_{i} \\ x_{i}^{\prime} \mathbf{h}^{2\mathsf{T}} \mathbf{x}_{i} - y_{i}^{\prime} \mathbf{h}^{1\mathsf{T}} \mathbf{x}_{i} \end{pmatrix}$$

$$\begin{bmatrix} 0^{\mathsf{T}} & -w_i' \mathbf{x}_i^{\mathsf{T}} & y_i' \mathbf{x}_i^{\mathsf{T}} \\ w_i' \mathbf{x}_i^{\mathsf{T}} & 0^{\mathsf{T}} & -x_i' \mathbf{x}_i^{\mathsf{T}} \\ -y_i' \mathbf{x}_i^{\mathsf{T}} & x_i' \mathbf{x}_i^{\mathsf{T}} & 0^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{pmatrix} = 0$$

$$A_i h = 0$$

- Equations are linear in h $A_i h = 0$
- Only 2 out of 3 are linearly independent (indeed, 2 eq/pt)

$$\begin{bmatrix} 0^{\mathsf{T}} & -w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ 0^{\mathsf{T}} & -w_{i}'\mathbf{x}_{i} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ w_{i}'\mathbf{x}_{i}^{\mathsf{T}} & 0^{\mathsf{T}} & -x_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} & 0^{\mathsf{T}} & -x_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} & x_{i}'\mathbf{x}_{i}^{\mathsf{T}} & 0^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} & y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{i}'\mathbf{x}_{i}^{\mathsf{T}} \\ -y_{$$

• Holds for any homogeneous representation, e.g. $(x_i, y_i, 1)$

❖ Solving for H

$$\begin{bmatrix} A_1 \\ A_2 \\ A \\ h = 0 \\ A_3 \\ \text{size A is 8x9 or 12x9, but rank 8} \end{bmatrix}$$

Trivial solution is $h=0_9^T$ is not interesting 1-D null-space yields solution of interest pick for example the one with $\|h\|=1$

Over-determined solution

Find approximate solution

- Additional constraint needed to avoid 0, e.g. $\|\mathbf{h}\| = 1$
- Ah=0 not possible, so minimize $\|Ah\|$

DLT algorithm

Objective

Given $n \ge 4$ 2D to 2D point correspondences $\{x_i \leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i' = Hx_i$

Algorithm

- (i) For each correspondence $x_i \leftrightarrow x_i$ compute A_i . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices A_i into a single 2nx9 matrix A_i
- (iii) Obtain SVD of A. Solution for h is last column of V
- (iv) Determine H from h

changing camera center

Planar scene (or far away)

- ❖ PP3 is a projection plane of both centers of projection, so we are OK!
- This is how big aerial photographs are made

Outliers

- *Outliers can hurt the quality of our parameter estimates, e.g.,
 - □ an erroneous pair of matching points from two images
 - □ an edge point that is noise, or doesn't belong to the line we are fitting.

Example: least squares line fitting

Assuming all the points that belong to a particular line are known

Outliers affect least squares fit

Outliers affect least squares fit

RANSAC

*RANdom Sample Consensus

Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.

❖ Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC

RANSAC loop:

- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

How Many Trials?

- \diamond Well, theoretically it is C(n,p) to find all possible p-tuples
- Very expensive

```
1 - (1 - (1 - \varepsilon)^p)^m

\varepsilon: fraction of bad data

(1 - \varepsilon): fraction of good data

(1 - \varepsilon)^p: all p samples are good

1 - (1 - \varepsilon)^p: at least one sample is bad

(1 - (1 - \varepsilon)^p)^m: got bad data in all m tries

1 - (1 - (1 - \varepsilon)^p)^m: got at least one good p set in m tries
```


How Many Trials (cont.)

- * Make sure the probability is high (e.g. >95%)
- given p and epsilon, calculate m

p	5%	10	20	25	30	40	50
		%	%	%	%	%	%
1	1	2	2	3	3	4	5
2	2	2	3	4	5	7	11
3	2	3	5	6	8	13	23
4	2	3	6	8	11	22	47
5	3	4	8	12	17	38	95

Best Practice

- Randomized selection can completely remove outliers
- *"plutocratic"
- Results are based on a small set of features

- LS is most fair, everyone get an equal say
- *"democratic"
- But can be seriously influenced by bad data
- Use randomized algorithm to remove outliers
- Use LS for final "polishing" of results (using all "good" data)
- Allow up to 50% outliers theoretically

Extract features

- Extract features
- Compute *putative matches*

- Extract features
- Compute putative matches
- Loop:
 - $lue{}$ Hypothesize transformation T (small group of putative matches that are related by T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
 - $lue{}$ Hypothesize transformation T (small group of putative matches that are related by T)
 - $lue{}$ Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
 - $lue{}$ *Hypothesize* transformation T (small group of putative matches that are related by T)
 - □ *Verify* transformation (search for other matches consistent with *T*)

Panoramas

* What if you want a 360° field of view?

Cylindrical panoramas

Steps

- Project each image onto a cylinder (warp)
- Estimate motion (a pure translation now)
- Blend
- Optional: project it back (unwarp)
- Output the resulting mosaic

Cylindrical Panoramas

- * Map image to cylindrical or spherical coordinates
 - need *known* focal length
 - ☐ Work only if a single tilt (e.g., camera on tripod)

Image 384x300

f = 180 (pixels)

f = 280

Determining the focal length

- 1. Initialize from homography *H* (see text or [SzSh'97])
- 2. Use camera's EXIF tags (approx.)
- 3. Use a tape measure
- 4. Try and error ©

Practical Methods for F

- Use program jhead (http://www.sentex.net/~mwandel/jhead/)
- Mac, Windows, and Linux
- Sample outputs

```
File name : 0805-153933.jpg
File size : 463023 bytes
File date : 2001:08:12 21:02:04
Camera make : Canon
```

Camera model : Canon PowerShot S100
Date/Time : 2001:08:05 15:39:33

Resolution : 1600 x 1200

Flash used : No

Focal length: 5.4mm (35mm equivalent: 36mm)

CCD Width : 5.23mm

Exposure time: 0.100 s (1/10)

Aperture : f/2.8 Focus Dist. : 1.18m

Metering Mode: center weight

Jpeg process : Baseline

Calculating F

- * With image resolution (width x height), CCD width and f
 - \Box f*(width/CCD width) or 5.4*(1600/5.23) = 1652 (pixels)
- With equivalent f (35mm film is 36mmx24mm)
 - \square (equivalent f)*(width/36) or 36*(1600/36) = 1600 (pixels)
- If you don't have the above (more often than not), guess!
 - □ No zoom f ~ (picture width in pixels)
 - \square 2x zoom f ~ 2 * (picture width in pixels)

Cylindrical projection

Cylindrical warping

Given focal length f and image center (x_c, y_c)

$$\theta = (x_{cyl} - x_c)/f$$

$$h = (y_{cyl} - y_c)/f$$

$$\hat{x} = \sin \theta$$

$$\hat{y} = h$$

$$\hat{z} = \cos \theta$$

$$x = f\hat{x}/\hat{z} + x_c$$

$$y = f\hat{y}/\hat{z} + y_c$$

Spherical warping

Given focal length f and image center (x_c, y_c)

$$\theta = (x_{cyl} - x_c)/f$$

$$\varphi = (y_{cyl} - y_c)/f$$

$$\hat{x} = \sin \theta \cos \varphi$$

$$\hat{y} = \sin \varphi$$

$$\hat{z} = \cos \theta \cos \varphi$$

$$x = f\hat{x}/\hat{z} + x_c$$

$$y = f\hat{y}/\hat{z} + y_c$$

3D rotation

Rotate image before placing on unrolled sphere

Radial distortion

Correct for "bending" in wide field of view lenses

$$\hat{r}^2 = \hat{x}^2 + \hat{y}^2$$

$$\hat{x}' = \hat{x}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4)$$

$$\hat{y}' = \hat{y}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4)$$

$$x = f\hat{x}'/\hat{z} + x_c$$

$$y = f\hat{y}'/\hat{z} + y_c$$

Fisheye lens

* Extreme "bending" in ultra-wide fields of view

$$\hat{r}^2 = \hat{x}^2 + \hat{y}^2$$

 $(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi) = s(x,y,z)$

uations become

$$x' = s\phi \cos \theta = s\frac{x}{r} \tan^{-1} \frac{r}{z},$$

$$y' = s\phi \sin \theta = s\frac{y}{r} \tan^{-1} \frac{r}{z},$$

Image Stitching

- 1. Align the images over each other
 - \square camera pan \leftrightarrow translation on cylinder
- 2. Blend the images together

Assembling the panorama

Stitch pairs together, blend, then crop

Problem: Drift

Error accumulation

- □ small (vertical) errors accumulate over time
- \square apply correction so that sum = 0 (for 360° pan.)

Problem: Drift

- □ add another copy of first image at the end image
- \Box this gives a constraint: $y_n = y_1$
- there are a bunch of ways to solve this problem
 - > add displacement of $(y_1 y_n)/(n-1)$ to each image after the first
 - \triangleright compute a global warp: y' = y + ax
 - > run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as "bundle adjustment"

Full-view (360° spherical) panoramas

Full-view Panorama

Texture Mapped Model

Global alignment

- Register *all* pairwise overlapping images
- Use a 3D rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- *Infer* overlaps based on previous matches (incremental)
- Optionally *discover* which images overlap other images using feature selection (RANSAC)

Bundle adjustment formulations

Confidence / uncertainty of point i in image j

All pairs optimization:
$$E_{\text{all-pairs-2D}} = \sum_{i} \sum_{jk} c_{ij} c_{ik} \|\tilde{\boldsymbol{x}}_{ik}(\hat{\boldsymbol{x}}_{ij}; \boldsymbol{R}_{j}, f_{j}, \boldsymbol{R}_{k}, f_{k}) - \hat{\boldsymbol{x}}_{ik}\|^{2},$$

$$Map 2D point i in image j to 2D point in image k$$

$$(9.29)$$

Full bundle adjustment, using 3-D point positions

$$E_{\text{BA-2D}} = \sum_{i} \sum_{j} c_{ij} \|\tilde{\boldsymbol{x}}_{ij}(\boldsymbol{x}_i; \boldsymbol{R}_j, f_j) - \hat{\boldsymbol{x}}_{ij}\|^2,$$

$$Map 3D \text{ point } i \text{ in to } 2D \text{ point } i \text{ in image } i$$

$$(9.30)$$

Bundle adjustment using 3-D ray:

$$E_{\text{BA-3D}} = \sum_{i} \sum_{j} c_{ij} \|\tilde{x}_{i}(\hat{x}_{ij}; R_{j}, f_{j}) - x_{i}\|^{2},$$
(9.31)

All-pairs 3-D ray formulation:

$$E_{\text{all-pairs-3D}} = \sum_{i} \sum_{jk} c_{ij} c_{ik} \|\tilde{\boldsymbol{x}}_{i}(\hat{\boldsymbol{x}}_{ij}; \boldsymbol{R}_{j}, f_{j}) - \tilde{\boldsymbol{x}}_{i}(\hat{\boldsymbol{x}}_{ik}; \boldsymbol{R}_{k}, f_{k})\|^{2}. \tag{9.32}$$

Projected point
$$ilde{x}_{ij} \sim K_j R_j x_i$$
 and $x_i \sim R_j^{-1} K_j^{-1} \tilde{x}_{ij}, \longleftarrow$ 3

