

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Cálculo III

07 de Agosto de 2017

(1) Calcule a integral de linha, onde C é a curva dada:

a)
$$\int_C y^3 ds$$
, $C: x = t^3$, $y = t$, $0 \le t \le 2$.

b)
$$\int_C xy^4 ds$$
, C é a metade direita do círculo $x^2 + y^2 = 16$.

c)
$$\int_C x \operatorname{sen} y ds$$
, C é o segmento de $(0,3)$ até $(4,6)$.

(2) Determine se F é um campo conservativo ou não. Em caso positivo, encontre uma função ϕ tal que $F = \nabla \phi$.

a)
$$F(x,y) = (2x - 3y, -3x + 4y - 8)$$

b)
$$F(x,y) = (e^x \cos y, e^x \sin y)$$

c)
$$F(x,y) = (ye^x + \sin y, e^x + x \cos y)$$

(3) Calcule a integral $\int_C F \cdot dr$, onde:

a)
$$F(x,y) = (e^{x-1}, xy)$$
 e $C: r(t) = (t^2, t^3)$, $0 \le t \le 1$.

b)
$$F(x, y, z) = (x, y, xy) \in C : r(t) = (\cos t, \sin t, t), 0 \le t \le \pi.$$

c)
$$F(x,y) = (e^y + ye^x, xe^y + e^x)$$
 e $C: r(t) = (\operatorname{sen}(\frac{\pi t}{2}), \ln t), 1 \le t \le 2$.

d)
$$F(x,y) = (2xy, x^2 + \cos y)$$
 e $C: r(t) = (t, t\cos(\frac{t}{3})), 0 \le t \le \pi$.

(4) Calcule $\oint_C y dx - x dy$, onde C é a cardióide de equação polar $r(\theta) = 2(1 + \cos \theta)$ $(0 \le \theta \le 2\pi)$ e equação paramétrica $\overrightarrow{r}(\theta) = (2\cos t + \cos 2t + 1, 2\sin t + \sin 2t)$:

O exercício a seguir está respondido como exemplo no livro do Stewart. Pesquise.

- (5) Considere o campo de forças $\overrightarrow{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$, definido para $(x,y) \neq (0,0)$.
 - a) Calcule o trabalho realizado pelo campo \overrightarrow{F} numa partícula que se move ao longo de uma circunferência de raio R.

- b) Usando o Teorema de Green e a parte a), mostre que $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r} = 2\pi$ para toda curva fechada simples C, suave por partes, que circunda a origem.
- b) Considere D a região por $\{(x,y)/0 < x^2 + y^2 \le R^2\}$. Mostre que

$$\int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = 0$$

Por que isto não contradiz o Teorema de Green?

- (6) Considere o campo de forças $\overrightarrow{F}(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$, definido para $(x,y) \neq (0,0)$.
 - a) Calcule o trabalho realizado pelo campo \overrightarrow{F} numa partícula que se move ao longo de uma circunferência de raio R.
 - b) Considere D a região delimitada pela circunferência de centro em (0,0) e raio R menos a origem. Esta região é descrita por $\{(x,y)/0 < x^2 + y^2 \le R^2\}$. Mostre que

$$\int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = 0$$

c) Usando o Teorema de Green e a parte a), mostre que $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r} = 0$ para toda curva fechada simples C, suave por partes, que circunda a origem.

Dica: aqui o teorema de Green não pode ser usado diretamente com b) - Por quê?

Gabarito

- (1) a) $\frac{145\sqrt{145}-1}{54}$.
 - b) $\frac{8192}{5}$.
 - c) $\frac{5}{9}[\sin 9 \sin 3 6\cos 9]$.
- (2) a) Conservativo. $\phi(x,y) = 2y^2 8y + k$
 - b) Não é conservativo.
 - c) Conservativo. $\phi(x,y) = ye^x + x \operatorname{sen} y + k$
- (3) a) $\frac{11}{8} \frac{1}{e}$.
 - b) 0.
 - c) $\ln 2 1$.
 - d) $\frac{\pi^4}{4}$.
- $(4) -12\pi$.