

German University in Cairo

Mechatronics Lab (MCTR704)

Size-Based Sorting Machine

Project No. [1]

Name: Mostafa Ahmed Kashaf I.D. #: 46-5456 Group: T-29

Name: Omar Ashraf Fetouh

I.D. #: 46-20497Group: T-29

Table of Contents

Project Description	. Page 3
Solidworks Design	. Page 4
Mechanical Components 2D Projections with Dimensions	. Page 6
Project Components list and PDF Description	. Page 10
Pneumatic Circuit	Page 15

Project Description

The aim of the project is to sort two different sizes of objects by height using actuators and sensors. As shown in figure (a, b) and according to the numbering of figure (c): The objects will be supplied from the magazine (8) to the cylinder (1) where the cylinder will extend and feed the object to the position where height measuring will take place; In front of the wall, above the end effector (5). After the height is measured using the sensor, cylinder (3) will place the suitable chamber of end effector (6) under the hole made in the table. Then cylinder (2) (which is normally extended) will take action by retracting its end effector (5) exposing the whole and making the object fall in the chamber chosen by cylinder (3) where the objects will fall in end effector's (6) proper chamber. End effector (6) is a box with 2 chambers; one for the short objects and the other for the tall ones. The objects will keep on stacking above each other in the box as the process continues.

The signal of whether it's a short or tall object will come from 2 vertically collinear sensors: if only the lower sensor is sensing the object, its labeled as short; if both the sensors are sensing the object, its labeled as tall and actions are taken accordingly whether its short or tall as explained above.

Solid works Design: 3D Schematic Diagram

Figure (a)

Figure (b)

Part number	Name
1	Single acting cylinder for feeding
2	First double acting cylinder for opening the hole that the objects will fall from
3	Second double acting cylinder that adjusts the right chamber of box (6) according to the object's height
4	End effector of feeding cylinder
5	End effector of cylinder (2) acting as a gate for the hole
6	End effector of cylinder (3) where the objects will get sorted
7	Table where the whole system is mounted
8	Magazine used as a storage to feed the system with objects that will be sorted
0	screws

Figure (c)

Mechanical Components 2D Projections with Dimensions

Project Components list and PDF Description

Components	Quantity
16x100 Pneumatic Cylinder	3
24V Relay	8
Reed Switch	6
IR Sensor	2
5/2 way Solenoid Valve	3

Pneumatic Cylinder

The cylinders will be used to feed the pieces and direct them to their designated places, hence a low-pressure cylinder will be used.

Specifications

Bore	e size [mm]	8	10	12	16	20	25
Туре		Pneumatic					
Action		Double acting, Double rod					
Fluid				A	ir		
Proof pres	sure	1.5 MPa					
Max. opera	ating pressure	1.0 MPa					
Min. operating	Rubber bumper	0.1 MPa	0.1 MPa 0.08 MPa 0.05 MPa				
pressure	Air cushion	- 0.08 MPa 0.05 MPa					
Ambient and fluid		Without auto switch: -20 °C to 80 °C (No freezing)					
temperature		With auto switch: -10 °C to 60 °C (No freezing)					
Lubricant		Not required (Non-lube)					
Stroke len	gth tolerance		+1.0	mm		+1.4	mm
Piston spe	ed	50 to 1500 mm/s					
Cushion		Rubber bumper					
Cusilion		 Air cushion 					
Allowable	Rubber bumper	0.02 J	0.03 J	0.04 J	0.09 J	0.27 J	0.4 J
kinetic energy	Air cushion	_	0.17 J	0.19 J	0.4 J	0.66 J	0.97 J

Standard Strokes

Bore size Standard stroke [mm]*2+4		Max. stroke*3 [mm]
8*1	10.05.40.50.80.400	100
10	10, 25, 40, 50, 80, 100	100
12	10.05 10.50.90 100 105 160 200	200
16	10, 25, 40, 50, 80, 100, 125, 160, 200	200
20	10, 25, 40, 50, 80, 100, 125, 160, 200, 250, 300	500
25	10, 25, 40, 50, 80, 100, 125, 160, 200, 250, 300	500

^{*1} Not available with air cushion.

The available with all cost of request.
 The minimum stroke with air cushion is 25 mm.

Universal Relay 24 VDC 10 A 4 Pins

The relays will be used for each reed switch and sensor to be able to observe and control the position of the cylinders.

Pins	4
Outline Dimension.	
Contact form	1a
Contact form (resistance)	
Coil voltage (DC)	24 V
Coil power (DC)	0,36 W
Close voltage	≤ 75% V
Release voltage	≥ 10% V
Strength between Contacts	
Strength Contacts and coils	
Contact resistance	≤ 50 mΩ
Insulation resistance	≥ 500 mΩ
Ambient temperature	-40 - 70 Celsius degree
Mechanical life	
Electrical life	
Mounting form	PCB
Weight	
Application	Mete , Range hood
Operation temperature and humidity	
Storage temperature and humidity	
Dimension drawing with tolerance	Out dimension ≤ 1 mm, Tolerance: ± 0.2 mm; ≤ 1~5 mm, Tolerance: ± 0.3 mm
	Out dimension > 5 mm, Tolerance: ± 0.4 mm
Tolerance of mounting hole	± 0.1 mm

Reed Switch

The reed switch is needed to be able to know if the cylinders are completely extended or retracted.

■ EXTERNAL DIMENSIONS (Unit: mm)

■ APPLICATIONS

- Automotive electronic devices
- Control equipment
- Communication equipment
- Measurement equipment
- Household appliances

■ ELECTRICAL CHARACTERISTICS

Rated value	Unit
10~40	AT
5min	AT
200max	mΩ
150min	VDC
10 ⁹ min	Ω
0.4max	pF
1.0	VA
24 (AC)	٧
0.1	A
0.3	A
	10~40 5min 200max 150min 10 ⁹ min 0.4max 1.0 24 (%C) 0.1

IR Sensor

The IR sensors will be used to know whether the object is big or small.

Specifications

Parameter	typical	units	
Number of thermojunctions	100		
Active area	0,5	mm ²	
Die size	2,2 x 2,2	mm ²	
Resistance of thermopile (Rth)	50±15	ΚΩ	
Sensitivity	110±20	V/W 1)	
Temp. Coeff. Of sensitivity	-0,52±0,08	%/K	
Specific Detectivity	2,1 *10E8	cm.Hz½/W 1)	
noise equivalent power	0,35	nW 1)	
Noise voltage	37	nV/Hz½	
Time constant	40±10	ms (63%)	
Temperature range (sensor)	-20 - + 100	°C	
Storage temperature	-40 - +100	°C	
Filter (high pass)	5,5	μm	

¹⁾ at 500 K dc

Reference Thermistor (SMTIR9902 only)
Resistance

1,000 ±0,004 KΩ (@ 0 °C

5/2 Way Solenoid Valve

This valve controls the cylinders (extend or retract) when operated by the solenoid.

Orifice	DN 6.0
Body material	PA (Polyamide)
Seal material	NBR
Media	Lubricated and non-lubricated dry air; neutral gases (10 µm-filtor)
Media temperature	-10 to +50 °C
Ambient temperature	-10 to +55 °C
Manual override	As a standard feature
Port connection	Flange for MP12 (please see illustration)
Pneumatic module	Type MP12 with G1/8, Push-in connection Ø 8 mm
Voltage	24 V DC
Voltage tolerance	±10%
Nominal power	2W, 1W
Duty cycle	Continuous operation (100%)
Electrical connection	Tag connector acc. to DIN EN 175301-803 (previously DIN 43650) Form C Type 2306
Protection class	IP 65 (with cable plug)
Weight	95g
Mounting	with 2 screws M3x30
Installation	Any, proforably solonoid system upright

Monhás	Yender	Panhar	Item Ma
Connection module	right	G S/B	
		NPT D/B	655 113
	lett	G 10	655 104
		NPT 3/8	600 111
Progrestic basic module 2 valves	push in connection (8.8 mm	without check valvo	188 617
		with integrated check valve with R-channel	156 633
		with integrated check salve with R and 5-channel	156 683
	connection G 1/8	without sheck valve	106 600
		with integrated check valve with Endramed	186 636
		with integrated check valve with R and S-channel	166 633
	connection NPT 1/8	without check valve	156 631
		with intograted chack value with R-channol	154 631
		with integrated check valve with R and S-channel	186 654
Progressic basic module 4 valves	push-in connection (8.8 mm)	without check valve	186 686
		with integrated check valve with R-channel	156 562
		with integrated check valve with R and 5-channel	106 601
	connection G 5/8	without sheek valve	106 607
		with integrated check value with first servel	186 663
		with integrated check valve with R and S-channel	156 560
	NFT 1/0	without check valve	154 654
		with intograted chack value with R-channol	124 664
		with integrated check valve with R and S-channel	186 661
Covering plate		for unused valve positions	683 783

5/2-way solenoid valve without cable plug

				Response times		Response times	
Circuit function	Orifice [mm]	QNn value air [i/min]	Pressure range [bar]	Power consumption [W]	Opening [ms]	Closing [ms H	Hem no. 24 V DC
H 0/2-way valve	6	700	1.0 - 100	2	20	12	106 828
C 4 2			1.0 - 100	2	20	12	163 0308
14 11 /12			2.0 - 10	2	20	12	156 337
5112			20 - 10	2	20	12	158 942 ⁹
			2.0 - 8.0	1	20	17	156 827
			2.0 - 8.0	1	20	12	158 943 ⁿ

"shroice with applicay pilet aix

Pneumatic Circuit

Pneumatic Step Diagram and Description

- > Draw the pneumatic step diagram based on your project's operation, as shown in the example below.
- > Explain your provided pneumatic step diagram; the sequence andthe project's operation.
- **Example for the pneumatic step diagram**

Controller Operating Panel/ Classic Control Implementation

As you already have the information for each component (power supply, solenoids, relays, I/O terminals...), you can configure the size of the panel you need for your project. Implement the classic control by using the fluidSim software

An example for a panel configuration is shown below:

