Osnovi Računarske Inteligencije

Markovljevi Procesi Odlučivanja

Predavač: Aleksandar Kovačević

Slajdovi preuzeti sa kursa CS188, University of California, Berkeley

http://ai.berkeley.edu/

Ne-Determinističke Pretrage

Primer: Mrežasti Svet (Grid World)

- Problem sličan lavirinintu
 - Agent živi na mreži polja
 - Zidovi mu blokiraju put
- Kretanje uz smetnje: ishodi akcija nisu uvek onakvi kakve očekujemo
 - Za naš primer: 80% puta akcija Napred vodi nas na Napred (ako tamo nema zida)
 - 10% puta akcija Napred nas vodi na Levo, a 10% na Desno (akcija Napred nas nikad ne vodi unazad).
 - Ako je zid tamo gde treba da nas odvede rezultat akcije, agent ostaje u mestu.
- Agent dobija nagradu za svaki korak koji napravi
 - Malu nagradu "postojanja" (living reward) za svaki korak (nagrada može biti negativna tj. kazna)
 - Velike nagrade dolaze na kraju (pozitivne ili negativne)
- Cilj: maksimizovati sumu nagrada

Mrežasti Svet - Akcije

Deterministički Mrežasti Svet

Markov Decision Processes, MDPs

MDP je definisan sa:

- o Skupom stanja s ∈ S
- o Skupom akcija a ∈ A
- o Funkcijom prelaza (*transition function*) T(s, a, s')
 - o Verovatnoća da a iz s vodi u s' tj. $P(s' \mid s, a)$
- o Funkcija nagrade (*reward function*) R(s, a, s')
- o Početnim stanjem
- o Može, ali ne mora, krajnjim (terminalnim) stanjem

MDPs su ne-deterministički problemi pretrage

- Jedan način da se reše je Expectimax
- o Uskoro ćemo prikazati drugi način

Demo Mrežasti Svet – Ručno Kretanje

Šta je Markovljevo Svojstvo u MDP?

- "Markovljevo" generalno znači da ako posmatramo trenutno stanje, prošlost i budućnost su nezavisni (ishod akcije koju sad radimo ne zavisi toga koje smo akcije radili pre nje).
- Za MDP, "Markovljevo svojstvo" znači da ishodi akcija zavise samo od stanja u kome ih radimo

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 Ovo je kao kod stabla pretraživanja, čvorovi naslednici zavise samo od akcija u trenutnom čvoru, ne istorije akcija do njega.

Andrey Markov (1856-1922)

MDP – Primer

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf

MPD - Primer

Politike (Policies)

- Kod determinističkih pretraga tražili smo plan tj. niz akcija koje nas vode od starta do cilja.
- Za MDPs, treba nam optimalna
- o politika $\pi^*: S \to A$
 - o Politika π za svako stanje kaže koju akciju treba da radimo.
 - Optimalna politika je ona koja, ako je pratimo, maksimizuje očekivanu korisnost.
 - Ako imamo eksplicitnu politiku onda je agent koji je prati refleks agent (*reflex agent*) – ne replanira samo prati politiku.

Na slici je optimalna politika kad važi R(s, a, s') = -0.03 za sva ne-terminalna stanja

Optimalne Politike Za Date Nagrade (tačnije kazne)

$$R(s) = -2.0$$

Primer: Trka Automobilom

Primer: Trka Automobilom

Autonomni automobil želi da ode što dalje što brže

Tri stanja: Cool (Hladan), Warm (Topao), Overheated (Pregrejan)

Dve akcije: Slow (Sporo), Fast (Brzo) 0.5 Ako idemo brzo dupliramo nagradu 1.0 Fast Slow -10 +1 0.5 Warm Slow +2 0.5 **Fast** 0.5 Overheated 1.0

Stablo Pretraživanja za Primer Trke

MDP – Stablo Pretraživanja

Stablo liči na ono koje smo koristili za Expectimax

Korisnosti Sekvenci Akcija

Korisnosti Sekvenci Akcija

 Ako imamo neke sekvence nagrada koje dobijamo, koje od sekvenci bi naš agent trebalo da preferira?

Manje ili više? [1, 2, 2] ili [2, 3, 4]

o Sad ili kasnije? [0, 0, 1] ili [1, 0, 0]

Preference su vrlo zdravo-razumske

Hoćemo što veću nagradu što pre moguće

Zanemarivanje nagrada (Discounting)

- o Razumno je da želimo da maksimizujemo sumu nagrada
- Razumno je da su nam nagrade koje dobijamo sad važnije od onih koje dobijamo kasnije (1M\$ danas vs. 1M\$ kada imamo 90 godina)
- o Jedno rešenje: vrednosti nagrada opadaju eksponencijalno

1

Vrednost sad

 γ

Vrednost u sledećem koraku

 γ^2

Vrednost posle dva koraka

Zanemarivanje

Kako radimo zanemarivanje?

 Svaki put kada se spustimo za nivo množimo faktorom zanemarivanja

Zašto radimo zanemarivanje?

- Nagrade koje dobijamo pre verovatno više doprinose ukupnoj korisnosti nego one kasnije
- Pomaže nam kod konvergencije algoritama (uzimamo bez dokaza, a algoritmi će biti dati u nastavku)

o Primer: faktor zanemarivanja 0.5

- \circ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
- \circ U([1,2,3]) < U([3,2,1])

Kviz: Zanemarivanje

Ako je dato:

- o Akcije su: Istok, Zapad i Izlaženje (moguće samo u stanjima izalaza a i e)
- o Prelazi: deterministički
- o Napomena: bodove u stanjima a i e dobijamo tek kada uradimo akciju Izlaženje koja sigurno uspeva.
- o Pitanje 1: Za γ = 1, koja je optimalna politika?

- o Pitanje 2: Za γ = 0.1,koja je optimalna politika?
- o Pitanje 3: Za koje γ su Zapad i Istok jednako dobre kad smo u stanju d?

Beskonače Korisnosti?!

Problem: Šta ako igra nema kraj? Da li onda dobijamo beskonačne nagrade?

- Rešenje:
 - Konačni horizont: (slično kao pretraga za zadatu dubinu)
 - Završavamo sekvence akcija (epizode) posle T koraka (npr. negativna nagrada "postojanja")
 - Politika π sad zavisi od vremena koje nam "otkucava"
 - Zanemarivanje: koristimo faktor $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Manje γ znači manji "horizont" fokusiramo se samo na ono što nam je sada blizu
- Ovako smo ograničili korisnost tj. obezbedili da je ona uvek manja od neke konstante pa nije beskonačna
- Apsorbujuće stanje: garancija da će svaka politika stići u terminalno stanje kad tad (npr. Pregrejano kod primera sa Trkom)

Beskonače Korisnosti?!

Dokaz za:

■ Zanemarivanje: koristimo faktor $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Na osnovu sledećeg tvrđenja vezanog za beskonačne geometrijske redove:

$$\sum_{t=0}^{\infty} \gamma^t a = \frac{a}{1-\gamma}, a = const, |\gamma| < 1$$

• i čijenice da možemo da r_t ograničimo (tj. zamenimo) sa nekom maksimalnom nagradom R_{max} dobijamo:

$$\sum_{t=0}^{\infty} \gamma^t r_t \le \sum_{t=0}^{\infty} \gamma^t R_{max} \le \frac{R_{max}}{1 - \gamma}$$

Rezime: Definicija MDP

MDP je definisan sa:

- o Skupom stanja S
- o Početnim stanjem s₀
- o Skupom akcija A
- o Prelazima P(s'|s,a) (ili T(s,a,s'))
- o Nagradama R(s,a,s') (i zanemarivanjem γ)

MDP vrednosti koje izračunavamo:

- o Politika = koju akciju odabrati u kom stanju
- o Korisnost = suma nagrada uz zanemarivanje

Rešavanje MDP

Optimalne Vrednosti za MDP

Optimalna Vrednost (korisnost) za stanje s:

V*(s) = očekivana korisnost ako krenemo iz s i dalje radimo uvek optimalne akcije

Optimalna Vrednost (korisnost) q-stanja (s,a):

Q*(s,a) = očekivana korisnost ako uradimo akciju a u stanju s (koja ne mora da bude optimalna), ali dalje radimo uvek optimalne akcije

Optimalna politika:

π*(s) = optimalna akcija u stanju s
 Drugim rečima uvek vraća akciju koja je optimalna baš za stanje u kome se nalazimo

Slika Demoa – Mrežasti Svet V Vrednosti

Šum (slučajnost za akcije) = 0.2 Zanemarivanje = 0.9 Nagrada postojanja = 0

Slika Demoa – Mrežasti Svet Q Vrednosti

Šum (slučajnost za akcije) = 0.2 Zanemarivanje = 0.9 Nagrada postojanja = 0

Vrednosti Stanja

- Važna operacija: izračunavamo (expectimax) vrednost stanja
 - o Očekivanu nagradu uz optimalne akcije
 - o To je prosečna suma nagrada uz zanemarivanje
 - o Ovo je vrednost koju je izračunavao expectimax!
- Rekurzivna definicija vrednosti:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Vrednosti Stanja

Rekurzivna definicija vrednosti:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Date formule nazivaju se Belmanove (*Bellman*) jednakosti ili
 Belmanove promene (*Bellman updates*)

Stablo Pretraživanja za Trku

Stablo Pretraživanja za Trku

Stablo Pretraživanja za Trku

- Ako bi koristili expectimax, imali bi previše posla!
- Problem: Stanja se ponavljaju
 - Ideja: Izračunavati potrebne vrednosti samo jednom
- Problem: Stablo ide do beskonačnosti
 - Ideja: Radimo izračunavanja do ograničene dubine, ali malo po malo povećavamo dubinu dok promena vrednosti ne bude zanemarljiva
 - Napomena: duboki nivoi stabla nam nisu mnogo važni ako je γ < 1

Vrednosti Ograničene Vremenom

- o Ideja: vezujemo vrednosti za vreme
- o Definišemo $V_k(s)$ kao optimalnu vrednost u s ako se igra završava za k koraka
 - o To je vrednost koju bi s dobio od expectimax algoritma sa ograničenom dubinom k

k=0

Šum = 0.2 Zanemarivanje = 0.9 Nagrada postojanja = 0

k=1

Šum = 0.2 Zanemarivanje = 0.9 Nagrada postojanja = 0

k=2

Posmatramo stanje s koje sa vrednošću 0.72. Objasnićemo kako smo dobili ovu rednost.

V(s)=maxQ(s,a) a=north, south, east, west

Nećemo računati sve Q (iako bi trebalo) već samo ono koje će u ovoj situaciji sigurno biti maksimalno, a to je Q(s,east).

Q(s,east)=0.8*(0+0.9*1)+ +0.1*0+0.1*0=0.72

Akcija east uspeva 0.8 puta, a 0.1 će biti north ili south.

Šum = 0.2 Zanemarivanje = 0.9 Nagrada postojanja = 0

Šum = 0.2 Zanemarivanje = 0.9 Nagrada postojanja = 0

Šum = 0.2 Zanemarivanje = 0.9 Nagrada postojanja = 0

$$k=8$$

Izračunavanje Vrednosti Ograničenih Vremenom

Algoritam: Iteriranje Vrednosti (Value Iteration)

Iteriranje Vrednosti

- \circ Krećemo sa $V_0(s) = 0$: broj koraka k=0 pa igra traje 0 poteza pa imamo 0 vrednosti
- \circ Za izračunate vrednosti $V_k(s)$ računamo jedan nivo dole expectimax algoritma:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

o Ponavljamo do konvergencije

- o Teorema (bez dokaza): algoritam konvergira ka optimalnim vrednostima
 - o Generalna ideja: aproksimacije vrednosti se polako "popravljaju" do optimalnih
 - o Politika može da konvregira mnogo pre vrednosti (o tome kasnije)

Primer: Iteriranje Vrednosti

Pretpostavimo da nemamo zanemarnivanje.

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 $V_2(cool) = max(Q(cool,slow),Q(cool,fast))$

Q(cool,slow)=1*(1+1*0)=3

Q(cool,fast)=0.5(2+1*0)+0.5(2+1*0)=3.5

 $V_2(cool) = max(Q(cool,slow),Q(cool,fast)=max(3,3)=)=3.5$