Chapitre 17, 18 et 19 - TD - 11 mai 2020

TD 19 - Exercice 1

Soit $E = \mathbb{R}^3$. Soit \mathscr{B} la base canonique de E et \mathscr{B}' la base de E formée des vecteurs $v_1 = (-1, 1, -3)$, $v_2 = (3, 2, 1)$ et $v_3 = (2, 1, 1)$ dans la base \mathscr{B} .

- 1. Calculer la matrice du vecteur (5,1,2) dans la base \mathcal{B}' .
- 2. Calculer la matrice dans la base \mathcal{B}' de l'endomorphisme f défini dans \mathcal{B} par f(x,y,z)=(2x+z,x-3y,-x+z).
- 3. Calculer la matrice de l'endomorphisme g défini par $g(v_i) = i.v_i$ pour i = 1, 2, 3 dans les bases \mathcal{B} et \mathcal{B}' .

	Lu	met	ni ce	de	de	aus C) est	rases	B' ((di pul)
	el	mot	aure)) , & (ur) p(Uz	(us)		
		7 B'		P) =	/-5 :/-4	-3	5 X	(110,0) (0,1,0)		
01	110) - 81	[-1, 1	13		-2 -5	-2	_ 1 /x1 _ 2 /	(0,0,1)		
			, ,	1.		1000		Person	2)	
	LU	mah	ele	de (5	ias	S(my)	oun		
	M	mati	_ 1(7 b R	, ())= (.	1 -6	9 /	×U1 ×U2	
	01		<u> </u>	D) D	-CDA (4 000	7	j ? J	~U3	
) W1	us lee	bar	RB.	1	Anie	cal	ouls,	· u hou	ie
		fle	11/=	1-1	11 -	-6u	2 + -	7113	0	res re ruivre

TD 17 - Exercice 6

Soit *E* l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui s'écrivent $\forall x \in \mathbb{R}$, $f(x) = (ax^2 + bx + c)e^{4x}$ avec $(a, b, c) \in \mathbb{R}^3$.

- 1. Montrer que E est un sous-espace vectoriel de dimension finie de l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$.
- 2. Soit D l'application définie sur E par $D: f \longmapsto f'$. Montrer que D est un automorphisme de E. Déterminer son application réciproque.

	1. E est l'euremble des fonctions f. 112 - 12 que	
	sécurent tell, flx)= ax2e4x+bxe4x ce4x	
	avec (a,b,c) E/R3	
	Donc [= = Ved (x1-> x24n, x1-> xe4x, x1->e4x)	
	car du l'ensemble des combinaisons l'inéaires des	
	3 Janctions 92:20 x2e 44, gins ne41, gozenseix	
	Alors Eest un ser de dinnensianfinie de F (IR	, 1/2
	Bonus: or chardre la dimension de E:	
D	Dina $\times g_0 + \beta g_1 + \delta g_2 = \overline{0}^3$ avec $(\times 1\beta, 8) \in \mathbb{R}^3$	
יייני	alors $\forall x \in \mathbb{R}$, $\forall g_0(x) + \beta g_1(n) + \forall g_2(n) = 0$	
	-13 V K G R , 1 (M C 13 K T 1 K) C	
	=> VREIR, X+BX+(x2=0) care ====================================	
	11M All marme est out in a rulement is ses	
	cuefficients sont muls danc X-B-8-0	
	cuefficients sont muls danc X=B=8=0 alors (4279142) est like : c'est une base de	E
	donc dim E = 3	
2		
ĺ		

Det l'Equiséait fortantsetcletx
Det f Et qui s'écrit f(n) = (a n'+5x+c) et n'elle avec a, b, c e/2 - Alors, fost de n'hobe mule
et g'(x) = (40 x² + (2a+4b)x + (4b+c))e4x pour x EIR
Dare DE Can Plat combination Contract of
Dane PEE can f'est cerulsi naisar l'inéaure de 309, 42
Dest ou défine de E dans E.
Soit fifz EE, XEIR,
Soit fifz EE, & EIR, D(xfitfz) = &fi+fz = & D(faltD(fz)) alors Destinéaire au Caderwation edlinéaire
alors Destinéaire au la dervation esténéaux
Donc Dest un endomorphisme de E
JEKUN => D[]=02=> J=0 over [E=
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
40=0 (10)
(2) (40 = 0) Car (92,9190) extibre
(4b+ c= 0 /= 5
ce que prouve ter D- of OE ?
Donc Dest lan andanophime injectif d'un
esjace de dimension fini alons Dest byects
et Dest un automorphisme de E

TD 18 - Exercice 2

Déterminer la nature des séries
$$\sum a_n$$
 suivantes :
 a) $a_n = \ln\left(\frac{n^3+1}{n^3+2}\right)$ b) $a_n = \int_0^1 t^n \sin(\pi t) \, dt$ c) $a_n = \ln\left(\frac{2}{\pi} \operatorname{Arctan}\left(\frac{n^2+1}{n}\right)\right)$ d) $a_n = \frac{2^n+n}{\ln n+3^n}$, e) $a_n = \frac{n!}{n^n}$, f) $a_n = \frac{1}{n} + \ln\left(1-\frac{1}{n}\right)$,

a)
$$a_n = \ln\left(\frac{n^3 + 1}{n^3 + 2}\right)$$

$(n^2 + 2)$
On a $\forall n \in \mathbb{N}$, $0 < \frac{m^3 + 1}{m^3 + 2} < 1$ danc $\forall n \in \mathbb{N}$ and $0 < \frac{m^3 + 1}{m^3 + 2} = \ln\left(\frac{m^3 + 2}{m^3 + 1}\right) > 0$
$-an = ln \left(\frac{n^3 + 1}{n^3 + 1} \right) = ln \left(1 + \frac{1}{n^3 + 1} \right)$
On sait que $\ln(1+u) = u + o(u)$ avec $u = 1$ alar $-au = 1 + o(1)$ 1 1 1 1 1 1 1 1 1 1
$= \frac{1}{1 + \infty} \frac{1}{M^3 + 1} + \frac{1}{M^3 + 1} + \frac{1}{M^3} = \frac{1}{M^3 + 1} + \frac{1}{M^3}$ $= \frac{1}{1 + \infty} \frac{1}{M^3 + 1} + \frac{1}{M^3 + 1} + \frac{1}{M^3} = \frac{1}{M^3 + 1} + \frac{1}{M^3 + 1} = \frac{1}{M^3 + 1} = \frac{1}{M^3 + 1} = \frac{1}{M^3 + 1} + \frac{1}{M^3 + 1} = $
Et est une série de Riemann Et a over d=3 > 1 dans elle conerge Alas par critère d'équivalence
des séries à termes/ortifs 2-au cenerge Donc 2 au converge

b)
$$a_n = \int_0^1 t^n \sin(\pi t) dt$$

On encacre Cen: jour EE Lon 3 O \leq Sin (the). E'' \leq L''' \leq L''' \leq Constante \leq O \leq 1 alous \leq O \leq an \leq 1 \leq 1 On integre au fai faities: On jose u (61= EM+1)
et v (r 1= sin (# 6) que sont de Pane e sun [8,1)
don on jeur affiguer le trénème d'intégration jajatus:
an = [Emiliant Jones Jones Jones John Coctit de de l'antique de l'antique de l'antique de l'antique l'antique de l'antique d' In EM, $e_{m} = \pi$ (1 t_{m+1} co (#t) dt.

On encume l'integrale: [seu $t \in lon$] $/t_{m}$ cos(#t) $/ \leq t_{m+1}$ l'intégrale est avisante et $0 \leq 1$ alas $/ \int 1 t_{m+1}^{m+1} \cos(\pi t) dt / \leq \int 1 t_{m+1}^{m+1} \cos(\pi t) / \cot(\pi t) dt$ Cequi clonne $|a_n| \leq \frac{\pi}{n+1} \int_{n+2}^{n+2} \int_{-\infty}^{\infty} \frac{1}{(n+1)(n+2)} \int_{n^2}^{\infty}$ Alars In Ear, an zo et an < II Lo série E nº est une serie de Riemann consequite Alors par le culére de conja raison des séries à termes portifs I am ort consequite

c)
$$a_n = \ln\left(\frac{2}{\pi}\operatorname{Arctan}\left(\frac{n^2+1}{n}\right)\right)$$

d)
$$a_n = \frac{2^n + n}{\ln n + 3^n}$$
,

e)
$$a_n = \frac{n!}{n^n}$$
,

f)
$$a_n = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$$
,

TD 18 - Exercice 7

On pose
$$u_0 = v_0 = 0$$
 et pour tout $n \in \mathbb{N}^*$,
$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n \quad \text{ et } \quad v_n = u_n - u_{n-1}.$$

- 1. Déterminer un équivalent de (v_n) et en déduire la nature de $\sum v_n$.
- 2. En déduire que la suite (u_n) est convergente.

TD 18 - Exercice 6

Soit $\alpha > 0$, on définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = \alpha$ et pour $n \in \mathbb{N}$, $u_{n+1} = u_n e^{-\frac{1}{u_n}}$.

- 1. Étudier la suite (u_n) .
- 2. Comparer la série $\sum u_n$ à une série géométrique et en déduire sa nature.

