Tutorial 2 - Q2

Monday, September 22, 2025 10:14 AM

Question 2 Check that all of the following AR(2) processes are causal stationary:

a)
$$X_t = -1.4X_{t-1} - 0.65X_{t-2} + \epsilon_t$$

b)
$$X_t = 0.45X_{t-1} + 0.25X_{t-2} + \epsilon_t$$
,

c)
$$X_t = 1.2X_{t-1} - 0.75X_{t-2} + \epsilon_t$$
,

where ϵ_t W.N. with $E(\epsilon_t)=0$ and $Var(\epsilon_t)=\sigma_\epsilon^2$. Calculate and display $\rho(k)$, k=0,1,2,...,9.

Usually we have to check whether the conditions of Theorem 3.3 are fulfilled or not. For an AR(2) model $X_t=\phi_1X_{t-1}+\phi_2X_{t-2}+\epsilon_t$

P7

these conditions are equivalent to all of the following simple conditions on the coefficients

(i) $\phi_1 + \phi_2 < 1$,

(ii) $\phi_2 - \phi_1 < 1$,

(iii) $-1 < \phi_2 < 1$.

Using these conditions it is easy to check whether an AR(2) model is causal stationary or not. An AR(2) model is stationary if conditions (i)-(iii) all hold. It is not stationary if one (or,more) of these conditions does not hold.

(a) $X_{t} = -1.4 X_{t-1} - 0.65 X_{t-1} + G_{t}$

(i)
$$\phi_1 + \phi_2 = -1.4 - 0.65 = -2.05 < 1$$

(ii)
$$\emptyset_2 - \emptyset_1 = -0.65 + 1.4 = 0.75 < 1$$

Since all 3 conditions hold, then Xt is causal stationary.

(b)
$$X_t = 0.45 X_{t-1} + 0.25 X_{t-2} + \epsilon_t$$

(i)
$$\phi_1 + \phi_2 = 0.45 + 0.25 = 0.741$$

Since all 3 conditions hold, then X+ is causal stationary.

$$X_{t} = 1.2 \times_{t-1} - 0.75 \times_{t-2} + \epsilon_{t}$$

Since all 3 conditions hold, then Xt is causal stationary.

To find the ACF at different lag k, we use the following for AR(k) processes:

$$\rho(0) = 1$$

$$\rho(\pm 1) = \frac{1}{1 - 1}$$

$$\rho(\pm 1) = \frac{1}{1 - 1}$$

$$\rho(\pm 1) = 1 + 1$$

$$\rho(\pm 1) = 1$$

$$\rho(\pm 1) =$$

(0)	Lag k	0	1	2	3	4	5	6	7	8	9
	$\rho(k)$	1.000	-0.848	0.537	-0.201	-0.067	0.225	-0.271	0.233	-0.150	0.059