# 6 Stetige Funktionen

In diesem Kapitel N= IR oder C, sowie D= K

Def. 6.1: Sei  $f: D \to K$  Funktion and  $x^*$  Berührpunkt von D. Wenn sor alle Folgen  $(x_n)_{n \in \mathbb{N}}$  in D gilt

lim xn = x\* => lim f(xn)=y\*,

down sagt man "f hat in x\* den Grenzwert y\*"

und schreibt  $\lim_{x\to x^*} f(x) = y^*$ .

Bem: Für x\* & D gilt,
Wenn lim, f(x) exestiert, dann mußer gleich f(x) sein

Wenn K=R und D nach oben unbeschrönlit ist, dann schreiben wir  $\lim_{x\to +\infty} f(x) = y^*$ ,

$$\lim_{n\to\infty} f(x^n) = \lambda_*$$

In diesem Fall ist auch  $\pm \infty$  für  $y^*$  zugelassen. Analog für  $\lim_{x\to -\infty} f(x) = y^*$ , wenn D nach unten unbeschränlich ist.

BSP: (i) Sei f: IR > IR, x -> ax + b

In jedem x\* e IR existient ein

Grenzwert von f und er ist gleich f(x\*).

Bew: Sci  $(x_n)_{n \in \mathbb{N}}$  eine Folge mit lim  $x_n = x^*$ .

Dann gilt  $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (a \times_n + b) = a \cdot \lim_{n \to \infty} x_n + b$ 

$$= a \times * + b = f(x*)$$

(ii) Sei f: TR-> PR, XH> LX] (Floor / , Größte ganze +ld.") In Punkt x\* = 1 existient der Grønzwert lim P(x) nicht.



Bew: Wähle Testfolge xn = 1- 1 and  $x = 1 + \frac{1}{n}$  mit  $\lim x_n = 1$ 

Dann gift  $\lim_{n\to\infty} f(x_n) = 0$ und  $\lim_{n\to\infty} f(x_n) = 1$ 

(iii) Sei F: R: 808 -> R, x +>1 Der Punkt x\*=0 ist Berührpunkt des Definitionebereiches und somit finden wir

(iv) 
$$\lim_{x\to\infty} \frac{1}{x} = 0$$
,  $\lim_{x\to\infty} x^2 = +\infty$  and  $\lim_{x\to\infty} \frac{1}{x}$  exaction night

#### Satz 6.2:

Scien von f, g: D-> K Funktionen, x\* Berührpunkt von D und lim f(x) = a, lim g(x) = b. Dann gilt

(iv) 
$$\lim_{x\to x^+} (f(x)/g(x)) = \frac{a}{b}$$
 für  $b\neq 0$ 

(v) 
$$\lim_{x\to\infty} |f(x)| = |a|$$

(vi) Wenn 
$$K = C$$
, dann gilt:

golw. 
$$\lim_{\kappa \to \kappa} \operatorname{Re}(f(\kappa)) = u / \lim_{\kappa \to \kappa} \operatorname{Im}(f(\kappa)) = v$$
.

#### Satz 6.3:

Sei 
$$F: D \rightarrow K, g: F \rightarrow K \text{ mit } F(D) \subseteq F. Dam gitt Wann  $\lim_{x \to x^*} f(x) = y^* \text{ und } \lim_{x \to x^*} g(y) = z^*,$$$

dann 
$$\lim_{x\to x^*} g(f(x)) = z^*$$
.

Def. 6.4:

Sei DEK und f: D->K

- f heißt stetig in  $x^* \in D$ , wenn  $\lim_{x \to x} f(x) = f(x^*)$ ,
   f heißt stetig, falls f in allen Punkten  $x^* \in D$  stetig ist

Bop .: (fortgesetzt)

- (i) ... ist in jedem Punkt x\* & IR stetig, also fist stetig
- (ii) ... ist in jedem Punkt x e R \ Z stetig

  und unotetig auf Z, also f ist nicht stetig
- (iii) ... ist stetig acct ihrem Definitionsbereich, also stetig

DEF. 6.5:

Sei f: D-> K stetig und x\* Berührpunkt, ober nicht Ekment von

Wenn  $\lim_{x\to x^*} f(x) = y^*$  existient, so ist die Funktion

F: Dugx3 -> K, x -> gf(x) für xeD

stetig und wir sagen, f läst sich stetig auf x\* fortsetzen."

### Satz 6.6:

Scien  $f,g:D \mapsto K$  stetig in  $x^* \in D$ . Donn gitt  $f \neq g, f, g$ ,  $\lambda \cdot f, \frac{f}{g}$ , |f| stetig in  $x^*$ , for  $\lambda \in K$  for  $g(x^*) \neq 0$ 

Und f stating in zeD genou down wern Re(7) and In(7) stating in z.

## Satz 6.7:

Sei f: D->K und g: F->K mit f(D) = E.

Donn gilt four gof: D-> K, x+> g(f(x)): Wenn f stetig in x\* und g stetig in f(x\*), dann ist g of stetig in x\*

Folgerung:

Alle Polynomfunktionen sind in ihrem Definitionsbereich stetig