SeqXGPT: Sentence-Level Al-Generated Text Detection

Accepted by EMNLP2023

DOI: 10.48550/arXiv.2310.08903

目录

- ●一、背景
- ●二、相关研究
- ●三、本文工作
- ●四、实验
- ●五、创新思路

一.背景

•LLM的发展和流行可能导致其被滥用

•文档级检测已不满足检测需求

- ●检测方法
 - 1) 仅以文本为数据集的监督式学习训练数据: [文本,标签]

2) 利用模型固有特征

token、token对数概率、token排名......

- ●检测任务
 - 1) 确定模型的二分检测
 - 2) 混合模型的二分检测
 - 3) 混合模型的多类型检测

- ●检测任务
 - 1) 确定模型的二分检测
 - 2) 混合模型的二分检测
 - 3) 混合模型的多类型检测

- ●检测任务
 - 1) 确定模型的二分检测
 - 2) 混合模型的二分检测
 - 3) 混合模型的多类型检测

●检测策略

- 1) 文档级检测策略
- 2) 句子级检测策略--句子分类
- 3) 句子级检测策略--单词序列标记

三.本文工作

●1.构建句子级别的检测数据集

●2.SeqXGPT模型架构

1.构建句子级别的检测数据集

●文本来源

XSum 的新闻文章

IMDB 的社交媒体帖子、网络文本

PubMed 和 Arxiv 的科学文章

SQuAD 的技术文档

原始文本数据

1.构建句子级别的检测数据集

●标签标注

标签格式:

BMES标签-来源

B-: begin

M-: middle

E-: end

S-: single

GPT2

GPT-Neo

GPT-J

LLaMA

GPT-3

human

如: B-human

●对数概率的提取与对齐

$$II_{\theta n}(x_i) = log p_{\theta n}(x_i|x < i)$$

●对数概率的提取与对齐 $\mathbf{X}_{\theta 1}$: 81:GPT2-XI $||_{\theta_1}(\mathbf{x}_{\theta_1})$: θ2:GPT-Neo $\mathbf{X}_{\theta 2}$: $||_{\theta 2}(\mathbf{x}_{\theta 2})$: θ3:GPTJ_J text S $\mathbf{X}_{\theta 3}$: Od:/ LaMa $||_{\theta 3}(\mathbf{x}_{\theta 3})$: \mathbf{X}_{04} : $||_{\theta 4}(\mathbf{x}_{\theta 4})$:

●对数概率的提取与对齐

●对数概率的提取与对齐

结果:

同一段文本在4个白盒模型上获取对数概率 得到4个word级对数概率特征

●特征编码

●卷积层

●卷积层

- ●特征编码
 - ●Transformer层

使用2层Transformer层进行特征编码,提取上下文的特征

输入: CNN层输出的4个[64,seq_len]矩阵 经过转制和拼接后,形成[seq_len,4*64]矩阵 经过两层Transformer encoder

输出: [seq_len,4*64]矩阵

●特征编码

•线性分类层

输入: [seq_len,4*64]的矩阵

经过全连接神经网络

输出: 24维向量(24个标签)

●白盒模型:

GPT2-xI (1.5B), GPT-Neo (2.7B), GPT-J (6B) and LLaMA (7B).

●评估指标:

Precision (P.) :反映准确率

Recall (R.) :反映覆盖率

Macro-F1 Score :结合以上两个衡量指标的综合得分

●基线方法

对数概率log p(x)

DetectGPT

Sniffer

RoBERTa

-SentRoBERTa

-Seq-RoBERTa

[1] MITCHELL E, LEE Y, KHAZATSKY A, 等. 2023. DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature [2] LI L, WANG P, REN K, 等. 2023. Origin Tracing and Detecting of LLMs[EB/OL]. arXiv[2025-04-10]. http://arxiv.org/abs/2304.14072. [3] LIU Y, OTT M, GOYAL N, 等. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach[EB/OL]. arXiv[2025-04-15]. http://arxiv.org/abs/1907.11692.

•句子级检测:

•句子级检测:

					Different A	IGT Ori	gins					
			GPT-	-2		GPT-Neo						
Method	P.(AI)	R.(AI)	P.(H.)	R.(H.)	Macro-F1	P.(AI)	R.(AI)	P.(H.)	R.(H.)	Macro-F1		
$\log p(x)$	82.2	74.9	43.1	53.9	63.1	81.2	67.8	34.2	51.7	57.5		
DetectGPT	80.9	55.4	32.7	62.4	54.3	82.6	44.2	29.1	71.2	49.4		
Sent-RoBERTa	89.3	96.9	88.1	66.5	84.4	89.8	95.6	82.7	66.0	83.0		
SeqXGPT	99.3	97.9	94.5	97.1	97.2	99.5	98.2	94.8	98.1	97.6		

基于固定模型的二分检测

•句子级检测:

	Different AIGT Origins												
	GPT-2		GPT-2-Neo		GPT-J		LLaMA		GPT-3		Human		
Method	P.	R.	P.	R.	P.	R.	P.	R.	P.	R.	P.	R.	Macro-F1
Sniffer	47.5	56.3	48.4	42.9	39.0	33.5	41.8	16.0	52.8	55.4	51.2	67.2	44.7
Sent-RoBERTa	38.6	48.9	36.9	27.6	34.9	28.7	57.5	33.6	65.5	97.1	89.4	91.6	52.9
Seq-RoBERTa	42.1	81.4	45.3	30.9	61.6	21.6	75.5	82.0	90.3	98.9	94.6	90.1	64.9
SeqXGPT	99.2	97.9	99.3	98.2	97.6	96.8	95.8	90.8	94.1	93.7	90.7	95.2	95.7
w/o Transformer	92.4	93.1	92.7	88.9	93.3	62.1	82.1	14.3	22.7	0.2	42.0	95.7	56.9
w/o CNN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.8	100.0	6.6

基于混合模型的多类检测与消融实验

•句子级检测:

Method	Mixed AIGT Origins									
Method	P.(AI)	R.(AI)	P.(H.)	R.(H.)	Macro-F1					
Sniffer	83.2	92.7	67.8	45.3	71.0					
Sent-RoBERTa	97.3	97.9	93.5	91.8	95.1					
Seq-RoBERTa	96.4	98.5	95.0	88.9	94.6					
SeqXGPT	98.2	97.1	91.4	94.5	95.3					

基于混合模型的二分检测

• 文档级检测:

Method	Different AIGT Origins												
	GPT-2		GPT-2-Neo		GPT-J		LLaMA		GPT-3		Human		
	P.	R.	P.	R.	P.	R.	P.	R.	P.	R.	P.	R.	Macro-F1
Sniffer	76.5	96.6	86.0	83.1	75.0	74.2	92.9	7.0	79.5	83.1	53.4	87.2	67.5
Sent-RoBERTa	45.2	73.0	39.7	46.5	28.3	21.5	72.4	10.5	73.4	100.0	97.4	92.0	53.4
Seq-RoBERTa	50.4	85.5	42.1	40.0	42.4	26.5	62.6	72.0	85.7	99.0	85.9	36.5	57.9
SeqXGPT	100.0	99.0	100.0	99.0	99.5	96.5	96.8	90.0	94.5	86.5	77.6	93.5	94.2

基于混合模型的多类检测

• 文档级检测:

Method						Differ	ent AI	GT Or	igins				
	GPT-2		GPT-2-Neo		GPT-J		LLaMA		GPT-3		Human		
	P.	R.	P.	R.	P.	R.	P.	R.	P.	R.	P.	R.	Macro-F1
Sniffer	4.1	80.0	59.9	44.1	21.5	41.2	54.9	14.5	73.0	53.7	35.8	60.0	36.1
Sent-RoBERTa	30.3	35.0	13.6	27.4	24.3	25.3	35.1	27.5	61.7	94.4	75.1	19.1	35.2
Seq-RoBERTa	46.2	64.2	22.7	40.1	60.7	19.8	74.5	75.9	86.2	99.3	89.5	78.4	60.6
SeqXGPT	99.5	98.4	99.1	83.6	95.5	95.0	91.6	89.1	96.5	91.0	83.1	94.0	92.8

基于混合模型的多类检测,使用分布外数据集测试

五.创新思路

●1.情感特征

●2.信息熵

●3.使用双向模型

●4.文本分类&SeqXGPT