fft ou judo or sport lie (in. - 1ωη =-1, ωη=1 Oba ω, ..., ωη-1, ωη-1, ενω σίλ η F(η) come μο μίω σίλο $-1\omega^n$ ω_n : (ω) ω ω (ω) (ω) (ω) (ω) (ω) (ω) εω (ω) : Level La, $a_{o}\omega_{o}$ $a_{i}\omega_{i}$ $a_{\gamma}\omega_{\gamma}$... $a_{n-1}\omega_{n-1}$ $a_{0}\omega_{0}$ $a_{1}\omega_{1}$ $a_{2}\omega_{2}$... $a_{n-1}\omega_{1}\omega_{1}$ יל מאנו חים אשסתם כון בלפוב וצנוטוע : a_{o}^{ω} a_{1}^{ω} a_{r}^{ω} a_{r}^{ω} a_{r}^{ω} a_{r-1}^{ω} a_{r-1}^{ω

 $F(x) = \sum_{i=0}^{\frac{n}{\gamma}-1} a_{i}^{i} x^{i} + \sum_{i=0}^{\frac{n}{\gamma}-1} a_{i+1}^{i} x^{i+1} = \sum_{i=0}^{\frac{n}{\gamma}-1} a_{i}^{i} x^{i} + \sum_{i=0}^{\frac{n}{\gamma}-1} a_{i+1}^{i} x^{i} x^{i} + \sum_{i=0}^{\frac{n}{\gamma$ $\sum_{i=1}^{n} a_{ii} \approx^{i} + \sum_{i=1}^{n} a_{ii+1} \approx^{i}$ F(n!) Pricus F(n!) $= F_{e}(\alpha') + \alpha F_{o}(\alpha')$

 $F(-n) = F_e(n^r) - nF_e(n^r)$

recursive
$$FFT(A, h) \longrightarrow T(h)$$

if $(n=1)$
return A

else

Ye recursive $FFT(A_0, \frac{n}{r}) \longrightarrow T(\frac{n}{r})$

For $(i=0, i < \frac{n}{r}, i++)$

Y: $Y_0 = Y_0 = [i] + \omega \times [i]$

Y: $Y_0 = Y_0 = [i] - \omega \times [i]$

Y: $Y_0 = Y_0 = [i] - \omega \times [i]$

Y: $Y_0 = Y_0 = [i] - \omega \times [i]$
 $Y_0 = \omega \times \omega_0^0$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$
 $Y_0 = \psi \times [i] + \omega \times [i]$

fiburacci heap

J'in me

fibunacci beap min _ heap Lunction 0(1) o (log n) add O (legn) O (logn) delete 0(1) 0(1) get min 0(1) (logn) debete min لكالدان هر م تداى مهاوت ا هر معولى دارند، مهروت سرتسک می سده مستولد color Amothized: (ان کاریکروای به هدر زی تو جهور سرای توسی شک وی درند: $O(F) = \frac{\sum O(k;)}{:}$

limetrees Prim Prim Jacon : اسد حدى رأس لا راد مراري المراري العمر مراي مرس من من من المعمال على الما المرسي . ما به معنی تواریس راس سرده او در منت ساحه سنده ما نبول , معنی واننه R رایج دری ال عمر الدی کستره ی کاور ما رانس الفاک add all edges from s' to R while (R not empty) { il heap issing e extract min from R; (e) Olleg (E) digitalis [V[e.f]!=V[e.s]) { 3) 4) O(1) a assume that e.s is out of VT (5) O(1) ← V[e·s] ← T __ aild all edges from e.s to R 6) O(1) add e to tree 8) . -) O(V+ Elag E) (Sup) (Vus)

أليوس Prim (الما أما دول في عرب عربي كالم الما الله و كسيد : روس مربه می ان سرای راده می واده می مرای در ای حروش دو فی او می دو به دو ب هر کن او FH مرکردهم و براس س ۲۰ min رامدانس ، دادم : 0 0 0 راسادن العناى له الله مساء راس ענדול FH בינוץ 1) Init weights in FH with edges from s to any of them 2) while $(R \text{ not empty}) \longrightarrow O(v)$ 3) $e \leftarrow extract min \longrightarrow O(log v)$ 0(1) overall O(vleg v) add e to tree $\longrightarrow O(1)$ delete Ve from FH (hegv) for each edge from Ve to FH vortices: $e' \longrightarrow O(E)$? or if needed Decrease key $Ve' \xrightarrow{FH} O(I)$ O(E)I Seever. - Usur very $O(v \log V + E)$ Units resulting