Linux编程技术

第7章 线程

——线程概述

主 讲: 王小银

- 线程,又被称为轻量级进程(Lightweight Process, LWP),是计算机中独立运行的最小单位,运行时占用很少的系统资源。
- 一个进程可以拥有一个或多个线程, 同一进程的多个线程共享同一地址空间, 因此代码段、数据段是共享的。

线程共享资源

共享变量 文件描述符表 信号及信号处理程序 文件 用户ID和组ID

线程私有资源

线程ID 寄存器 栈 信号屏蔽字 调度优先级

线程与进程基本操作的对比

Linux编程技术

	AP II	<u> </u>
应用功能	发展	进程
创建	pthread_create	fork, vfork
退出	return、pthread_exit	exit、return、_exit
等待	pthread_join	wait、 waitpid
取消/终止	pthead_cancel	abort
读取ID	pthread_self	getpid
调度策略	SCHED_OTHER、SCHED_FIFO、SCHED_RR	SCHED_OTHER、SHCED_FIFO、SCHED_RR
通信机制	信号量、信号、互斥锁、条件变量、读写锁	匿名管道、命名管道、信号、消息队列、信号量、共享内存

线程的分类

Linux编程技术

- 线程分为两种: 用户级线程(User-Level Thread)和内核级线程(Kernel-Level Thread)
- 用户级线程是由进程负责调度管理。
- 内核级线程是由操作系统支持和管理。
- 用户级线程与内核级线程的区别:
 - (1) 能否被操作系统感知;
 - (2) 线程的创建、撤消和调度是否需要操作系统内核的支持;
 - (3) 执行系统调用指令时所属进程是否会被中断;
 - (4) CPU调度单位;
 - (5) 程序实体。

谢谢大家!