







$$(-3\sqrt{2})-4(3)(-3M+2)$$



# Review Materi



3 SIN 4/8

V3.2.4+2

#### **Teras Matriks**







Teras (trace) dari matriks persegi  ${}_{n}A_{n}$  dilambangkan dengan tr(A).

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Teras tidak lain adalah penjumlahan dari unsur diagonal matriks persegi

$$A = \begin{bmatrix} 2 & 7 & 10 \\ 11 & -1 & 5 \\ 2 & 8 & 9 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 9 = 10$$

### **Sifat Teras Matriks**

$$tr(A^T) = tr(A)$$
 — 01



$$tr(AB) = tr(BA)$$

Untuk sembarang matriks riil  ${}_{m}A_{n}$  dan  ${}_{n}B_{m}$ 

$$tr(A + B)$$

$$=$$

$$tr(A) + tr(B)$$



$$tr(cA) = c \cdot tr(A)$$

Untuk sembarang skalar c

#### **Determinan Matriks**





Determinan matriks persegi  ${}_{n}A_{n}=\left[a_{ij}\right]_{n\times n}$  dilambangkan dengan |A| atau  $\det(A)$  dan didefinisikan sebagai berikut.

- Untuk n = 1,  $det(A) = a_{11}$
- Untuk n = 2,  $det(A) = a_{11}a_{22} a_{12}a_{21}$
- Untuk n > 2:
  - $|A| = \sum_{j=1}^{n} a_{ij}C_{ij}$  untuk sembarang baris ke i atau
  - $|A| = \sum_{i=1}^{n} a_{ij}C_{ij}$  untuk sembarang kolom ke j
  - $C_{ij} = (-1)^{i+j} |A_{ij}|$
  - $A_{ij}$  adalah matriks minor; anak matriks A yang dibuang baris ke-i dan kolom ke-j

#### Contoh







$$A = [3]$$
$$det(A) = 3$$

$$B = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
$$det(B) = (2 \cdot 3) - (1 \cdot 5) = 6 - 5 = 1$$

$$C = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

 $|A| = \sum_{i=1}^{n} a_{ij}C_{ij}$  untuk sembarang kolom ke - j

Misal, kolom kedua sebagai tumpuan:

$$|C| = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$

$$|C| = 1(-1)^{1+2} \det \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} + 1(-1)^{2+2} \det \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} + (-1)(-1)^{3+2} \det \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$|C| = (1 \cdot (-1) \cdot 1) + (1 \cdot 1 \cdot 3) + ((-1) \cdot (-1) \cdot 1)$$

$$|C| = (-1) + 3 + 1 = 3$$

#### **Sifat-Sifat Determinan**

- 1. Jika  $_{n}A_{n}$ , matriks diagonal,  $|A|=\prod_{i=1}^{n}a_{ii}=a_{11}\times a_{22}\times \cdots \times a_{nn}$
- 2. Jika  $_{n}A_{n}$ , matriks segitiga atas/bawah,  $|A|=\prod_{i=1}^{n}a_{ii}=a_{11}\times a_{22}\times \cdots \times a_{nn}$
- 3. Jika  $I_n$  adalah matriks identitas,  $|I_n| = 1$
- 4. Jika A memiliki baris/kolom yang seluruh unsurnya bernilai 0, |A| = 0
- 5. Jika A memiliki sedikitnya dua baris atau dua kolom yang unsurnya sama, |A|=0
- 6. Jika A dan B adalah matriks persegi yang berukuran sama,  $|AB| = |A| \times |B|$
- 7. Jika matriks B diperoleh dengan cara menukar posisi dari dua buah baris/kolom matriks A, maka |B| = -|A|
- 8. Jika matriks B memiliki unsur yang sama dengan matriks A kecuali pada satu baris ke i,  $b_i = c a_i$ , |B| = c |A|
- 9. Jika c adalah sebuah konstanta dan A ialah matriks persegi,  $|cA| = c^n |A|$





$$A^{3}C^{2}A^{8} = 9^{3}+5^{8}+7^{c}$$
 $5^{c} = 54718,32.$ 







 $\times_{1} + 2_{A} = 3\sqrt{5 + 2AB}$ =  $9\sqrt{12}$ 





$$A = \begin{bmatrix} 55 & -22 \\ 21 & 63 \end{bmatrix}; B = \begin{bmatrix} 75 & 24 \\ 125 & -48 \end{bmatrix}; C = \begin{bmatrix} -3 & 0 & 0 \\ -7 & 5 & 0 \\ 4 & -9 & -2 \end{bmatrix}$$

Tentukan:

4. 
$$|B'|$$

7. 
$$|-5B|$$

9. 
$$|A'B|$$

10. 
$$|AB'|$$

11. 
$$|A'B'|$$

12. 
$$|A' + B|$$

13. 
$$|A + B'|$$





$$A = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 3 & 2 \\ -2 & 1 & 4 \end{bmatrix}; B = \begin{bmatrix} -2 & -5 & 3 \\ 1 & 1 & 0 \\ 2 & 4 & -2 \end{bmatrix}$$

#### Tentukan:

- 1. |A| dengan menjadikan kolom 1 sebagai tumpuan
- 2. |B| dengan menjadikan baris 2 sebagai tumpuan





Jika 
$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & 5 \\ 1 & 0 & 4 \end{bmatrix}$$
, tentukan  $|A|$ 

Tentukan juga |B| dengan B yang diperoleh dari A dengan:

- Mempertukarkan kolom pertama dengan ketiga
- 2. Mengalikan kolom ketiga dengan -4
- Mengalikan kolom pertama dengan 3 dan kolom ketiga dengan  $-\frac{1}{3}$
- Menambahkan dua kali kolom ketiga terhadap kolom pertama
- Menambahkan minus tiga kali baris kedua terhadap baris ketiga
- 6. Mengalikan semua unsur dengan ½





Jika A, B, dan C matriks berordo n dengan |A| = 3; |B| = 2; |C| = 2 Tentukan:

1. 
$$|A^4|$$

2. 
$$|-2A|$$

3. 
$$|2A^{-1}|$$

4. 
$$|(2A)^{-1}|$$

5. 
$$-3|B^{-1}|$$

6. 
$$|(A^{-1})^2|$$

7. 
$$|(A^2)^{-1}|$$

9. 
$$|A^{-1}B^{-1}|$$

10. 
$$|A^{-1}B'|$$

11. 
$$|ABA'|$$

12. 
$$|BAB^{-1}|$$

13. 
$$|(AB^2)^{-1}|$$

14. 
$$|(AB^{-1})^2|$$

15. 
$$|A'B^{-1}C^{-1}(A^3)^{-1}|$$

16. 
$$|A^2B'C^{-1}B^3(A^{-1})'|$$

17. 
$$|A^3(B'C')^{-1}B^{-2}(A^{-1})'|$$





Untuk dua matriks sembarang A dan B yang berordo n, jelaskan apakah:

1. 
$$|A' + B| = |A + B'|$$

2. 
$$|A'B'| = |AB| = |A'B| = |AB'|$$

3. 
$$|A' + B| = |A'| + |B|$$





Jelaskan apakah pernyataan di bawah ini benar atau salah; jika salah berikan contohnya.

- 1. |-A| = -|A|
- 2. |2A| = 2|A|
- 3.  $|A^2| = |AA'|$
- 4. |BAB'| = |A| jika B matriks orthogonal
- 5. |A| = -1 jika A' = A
- 6. Jika |A| = 0, maka A = 0
- 7. Jika |A| = |B|, maka A = B
- 8. Jika A matriks persegi, maka  $|AA'| \ge 0$
- 9. Jika A matriks idempoten, dan  $A \neq I$ , maka |A| = 0
- 10. Jika A matriks orthogonal, maka |A| = 1 atau |A| = -1



## **THANKS**







Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide as attribution





