Chapitre 5: VECTEURS, DROITES ET PLANS DE L'ESPACE

I. Vecteurs de l'espace

1) Notion de vecteur dans l'espace

Définition : Un vecteur de l'espace est défini par une direction de l'espace, un sens et une norme (longueur).

Propriétés (rappels): Soient A, B, C et D quatre points de l'espace.

- (1) $\overrightarrow{AB} = \overrightarrow{CD}$, si et seulement si, ABDC est un parallélogramme
- (2) D est l'image de C par la translation de vecteur \overrightarrow{AB} si et seulement si $\overrightarrow{AB} = \overrightarrow{CD}$
- (3) Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$
- (4) Règle du parallélogramme : $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ si et seulement si ABCD est un parallélogramme.
- (5) A, B et C sont alignés si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ($\Leftrightarrow \overrightarrow{AB} = k.\overrightarrow{AC}$)
- (6) (AB) et (CD) sont parallèles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

2) Combinaisons linéaires de vecteurs de l'espace

Définition : Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace.

Tout vecteur de la forme $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$, avec α , β et γ réels, est appelé combinaison linéaire des vecteurs

Méthode: Représenter des combinaisons linéaires de vecteurs donnés

► Vidéo https://youtu.be/Z83z54pkGqA

A l'aide du cube ci-contre, représenter les vecteurs \vec{a}, \vec{b} et \vec{c} donnés par :

$$\vec{a} = \overrightarrow{AB} + \overrightarrow{CG} + \overrightarrow{FH}$$

$$\vec{b} = 2\overrightarrow{AB} + \overrightarrow{BD} - \overrightarrow{FC}$$

$$\vec{c} = \frac{1}{2}\overrightarrow{AD} + \overrightarrow{EF} + \overrightarrow{BF} - \overrightarrow{AC}$$

<u>Méthode</u>: Exprimer un vecteur comme combinaisons linéaires de vecteurs

Vidéo https://youtu.be/14FeV0-otP4

Dans le parallélépipède ci-contre, M est le centre du rectangle ABCD. Exprimer les vecteurs \overrightarrow{CE} , \overrightarrow{MG} et \overrightarrow{MF} comme combinaisons linéaires des vecteurs \overrightarrow{AM} , \overrightarrow{AB} et \overrightarrow{AE} .

II. Droites et plan de l'espace

1) Règles d'incidence

Propriétés :

(1) Par deux points distincts de l'espace, passe une unique droite

(2) Par trois points non alignés A, B et C, passe un unique plan noté (ABC)

(3) Si deux points distincts A et B appartiennent à un plan \mathcal{F} , alors la droite (AB) est incluse dans le plan \mathcal{F} .

(4) Dans chaque plan de l'espace, toutes les règles de la géométrie plane s'appliquent.

2) Caractérisation vectorielle d'une droite

<u>Définition</u>: On appelle **vecteur** directeur de d tout vecteur non nul qui possède la même direction que la droite d.

<u>Propriété</u>: Soit A un point de l'espace et \vec{u} un vecteur non nul de l'espace. La **droite** d passant par A et de vecteur directeur \vec{u} est l'ensemble des points M tels que les vecteurs \overrightarrow{AM} et \vec{u} sont colinéaires.

<u>Propriété</u>: Deux droites de l'espace de vecteurs directeurs respectifs \vec{u} et \vec{v} sont parallèles si et seulement si les vecteurs \vec{u} et \vec{v} sont colinéaires.

3) Caractérisation d'un plan de l'espace

<u>Propriétés</u>: Deux vecteurs non nuls et non colinéaires déterminent la direction d'un plan.

Propriété : Soit un point A et deux vecteurs de l'espace \vec{u} et \vec{v} non colinéaires.

L'ensemble des points M de l'espace tels que $\overrightarrow{AM} = x \vec{u} + y \vec{v}$, avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$ est le plan passant par A et dirigé par \vec{u} et \vec{v} .

Remarque: Dans ces conditions, le triplet $(A; \vec{u}, \vec{v})$ est un repère du plan. On dit que (\vec{u}, \vec{v}) est une base du plan.

Remarque:

Un plan est donc totalement déterminé par un point et deux vecteurs non colinéaires.

4) Vecteurs coplanaires.

Des éléments de l'espace situés dans un même plan sont dits coplanaires.

<u>Définition</u>: Des vecteurs sont dits **coplanaires**, si et seulement si, leurs représentants de même origine A ont leurs extrémités dans un même plan passant par A.

Propriétés:

- (1) Trois vecteurs \vec{u} , \vec{v} et \vec{w} sont **coplanaires** si et seulement si, il existe trois réels a, b et c tous non nuls tels que $a \vec{u} + b \vec{v} + c \vec{w} = 0$.
- (2) Trois vecteurs \vec{u} , \vec{v} et \vec{w} ne sont coplanaires pas si et seulement si, l'égalité $a \vec{u} + b \vec{v} + c \vec{w} = 0$ implique a = b = c = 0.

Remarque: Si \vec{u} et \vec{v} ne sont pas colinéaires, alors \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si \vec{w} est combinaison linéaire de \vec{u} et \vec{v} .

Méthode: Démontrer que des vecteurs sont coplanaires ou non.

On considère le cube précédent ABCEFGH.

- 1) Les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} sont-ils coplanaires?
- 2) Les vecteurs \overrightarrow{AD} , \overrightarrow{CF} et \overrightarrow{BG} sont-ils coplanaires ?

2) CF = CB + BC + GF CF = -AD + BG-AD CF = -2AD + BG

III. Positions relatives de droites et de plans de l'espace

1) Positions relatives de deux droites

Propriété: Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires.

• Si d et d' coplanaires alors :

• strictement parallèles

Dans ces deux cas, les vecteurs \vec{u} et \vec{v} sont colinéaires.

• Si d et d' non coplanaires alors !

pas colinéaires.

Exemple:

ABCDEFGH est un cube.

- Les droites (EG) et (FG) appartiennent au même plan (EFG) et sont sécantes en G.
- Les droites (AD) et (FG) appartiennent au même plan (ADG) et sont parallèles.
- Les droites (AD) et (CG) sont non coplanaires.

2) Positions relatives de deux plans

Propriété: Deux plans de l'espace sont soit sécants soit parallèles.

${\mathscr P}$ et ${\mathscr P}'$ parallèles	Fet F' sécants
Deux plans sont parallèles lorsqu'ils sont confondus ou qu'ils n'ont aucun point commun.	Deux plans sont sécants si et seulement ils ne sont pas parallèles. Ils se coupent alors selon une droite
$ \frac{\vec{v}}{\vec{v}} = \frac{\vec{v}}{\vec{u}} \times \frac{\vec{v}}{\vec{v}} = \frac{\vec{v}}{\vec{v}} \times \frac{\vec{v}}{v$	30 - W

Exemple:

ABCDEFGH est un parallélépipède rectangle.

- Les plans (BCG) et (BCE) sont sécants suivant la droite (BC).
- Les plans (ABC) et (EFG) sont parallèles

Propriété: Deux plans déterminés par le même couple de vecteurs non colinéaires sont parallèles.

<u>Conséquence</u>: Pour démontrer que deux plans sont parallèles, il suffit de montrer que deux vecteurs non colinéaires de l'un des plans sont respectivement colinéaires à deux vecteurs non colinéaires de l'autre.

Méthode : Démontrer que deux plans sont parallèles capacité 6 p55

3) Positions relatives d'une droite et d'un plan

Propriété: Une droite et un plan de l'espace sont soit sécants soit parallèles.

(1) La droite d est parallèle au plan P si et seulement si les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires.

Propriété : Une droite d est parallèle à un plan $\mathcal P$ si et seulement si d est incluse dans \mathcal{P} ou si d et \mathcal{P} n'ont aucun point commun.

(2) La droite d est sécante au plan 9 si et seulement si les vecteurs u. v et w sont linéairement indépendants.

Exemple:

ABCDEFGH est un cube.

- La droite (GI) et le plan (ABC) sont sécants en I.
- La droite (EG) est incluse dans le plan (EFG).
- La droite (EG) et le plan (ABC) sont parallèles.

V. Bases et repères de l'espace

1) Base de l'espace

<u>Définition</u>: Soit \vec{i} , \vec{j} et \vec{k} trois vecteurs **non coplanaires** de l'espace.

On appelle base de l'espace le triplet $(\vec{i}, \vec{j}, \vec{k})$.

Propriété: Soit $(\vec{i}, \vec{j}, \vec{k})$ une base de l'espace.

Pour tout vecteur \vec{u} , il existe un unique triplet (x; y; z) tel que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$.

Méthode: Reconnaitre une base de l'espace

Vidéo https://voutu.be/5a9pE6XQna4

ABCDEFGH est un cube.

- 1) Reconnaître une base de l'espace.

Méthode: Démontrer l'alignement par décomposition de vecteurs dans une base
Vidéo https://youtu.be/i4jDkJNtzZg
ABCDEFGH est un cube. Soit I le milieu de $[AH]$ et J le point de $[FI]$ tel que $\overrightarrow{FJ} = \frac{2}{3} \overrightarrow{FI}$ Démontrer que les points E , J et C sont alignés. An F et F ont colonione
EJ = EF+ FJ = AB + 3 FI = AB + 3 (FE + EH+ HI) = AB + 3 (-AB + AD+ 2 HA) = AB + 3 (-AB + AD+ 2 HA) = AB + 3 (-AB + AD+ 2 HA) + AB + 3 (-AB + AD+ 2 HA) + AB + 3 (-AB + AB+ AB+ AB+ AB+ AB+ AB+ AB+ AB+ AB+
$= \frac{1}{3}AB + \frac{2}{3}(-AB + AD + \frac{1}{2}(-AE - AD)) = \frac{1}{3}AB + \frac{2}{3}AB - \frac{2}{6}AE - \frac{2}{6}AD$ $= \frac{1}{3}AB + \frac{2}{3}AD - \frac{1}{3}AE \qquad E = \frac{1}{3}E\hat{c}$
EC = EA + AB + BC = AB + AD - AE ES et El sont colineauxe donc 2) Repère de l'espace ES et C sont olique
Définition : Soit \vec{i} , \vec{j} et \vec{k} trois vecteurs non coplanaires. O est un point de l'espace.
On appelle repère de l'espace le quadruplet $(0; \vec{\imath}, \vec{\jmath}, \vec{k})$.

Remarques : - 0 est appelé l'origine du repère.

- La décomposition $\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$ donne les coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ du point M_*

- De même, la décomposition $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ donne les coordonnées $\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}$ du vecteur \vec{u} .1

Méthode : Lire des coordonnées dans l'espace

Vidéo https://youtu.be/PZeBXIhNBAk

Soit un parallélépipède ABCDEFGH.

I est le milieu de $\lceil CG \rceil$.

M et N sont définis par : $\overrightarrow{NF} = 2\overrightarrow{FG}$ et $\overrightarrow{BM} = \overrightarrow{CB} + \overrightarrow{CI}$

1) Dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$, donner les coordonnées de tous les points de la figure.

2) Placer le point
$$K(1; 3; -1)$$
.

Points de la figure.

2) Placer le point
$$K(1;3;-1)$$
.

$$A\begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad f3\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad C\begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad D\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$C\begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad H\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad I\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad I\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Propriété: Soit $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ deux points dans un repère $(0; \vec{i}, \vec{j}, \vec{k})$. (1) Le vecteur \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} {}^{AB} & {}^{AA} \\ {}^{YB} - {}^{YA} \\ {}^{ZB} - {}^{ZA} \end{pmatrix}$ (2) Le milieu I du segment [AB] a pour coordonnées $(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2})$ Méthode: Démontrer, avec les coordonnées, la coplanarité de quatre points (capacité 12 p60) Le plan est muni d'un repère $(0; \vec{i}, \vec{j}, \vec{k})$. On considère les points A(2;-1;4), B(6;-7;0), C(1;0;1) et D(13;-16;5). 1) Démontrer que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires. 2) Démontrer que les point A, B, C et D sont coplanaires. 01-47-6 donc OCAB = -4 00 AZ अर्के = - 6 पून्टे AR AAC me sout 105 2) AD (TB) Mg AD ext CL de AB et Ac Mg Ja, BER to a AB+BAR=AD. 11= 4d-1B -15=-6d+1B 1=-4d-3B 12=-4B 11=-4d-1B (11=4 a-1B & AD; AB, AC North Coplanate Méthode: Démontrer, avec les coordonnées, que des vecteurs forment une base (capacité 13 p60) Dans une base $(\vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les vecteurs $\vec{u}(1; -3; 5)$, $\vec{v}(4; 2; 1)$ et $\vec{w}(0; 2; 1)$. 1) Démontrer que les vecteurs \vec{u} et \vec{v} forment une base d'un plan. 2) Démontrer que les vecteurs \vec{u} , \vec{v} et \vec{w} forment une base de l'espace. My u et v sont non colineaure Der = 4 2 il st 4 + 2 3 3 done il et v sont non edinesire it et is forment enre bose du plan 2) Mg ii, it et iv sont non coplanavre Roisonement por l'absurdi: remposors que ii, i et iè sont coponais Jack BERtelque W= qui+BV $\begin{array}{l} (2) \begin{cases} 3 + 4\beta = 0 \\ -3x + 2\beta = 2 \end{cases} \\ (5x + \beta = 1) \end{cases} \begin{cases} \alpha = -4\beta \\ -3\lambda + 2\beta = 2 \end{cases} \\ (5x + \beta = 1) \end{cases} \begin{cases} \alpha = -4\beta \\ -19\beta = 1 \end{cases} \\ (3) \begin{cases} \alpha = -4\beta \\ \beta = -4\beta \end{cases} \\ (3) \begin{cases} \alpha = -4\beta \\ \beta = -4\beta \end{cases} \\ (4) \begin{cases} \alpha = -4\beta \\ \beta = -4\beta \end{cases} \\ (5) \begin{cases} \alpha = -4\beta \\ \beta = -4\beta \end{cases} \end{cases}$ Done ii, it et it rout non cofbraire, donc ils forment une base de l'exper

Méthode: Déterminer les coordonnées d'un vecteur dans une base (capacité 14 p61)

7

VI. Représentation paramétrique d'une droite

Propriété: L'espace est muni d'un repère $(0; \vec{\imath}, \vec{\imath}, \vec{k})$.

Soit une droite d passant par un point $A \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$ et de vecteur directeur $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

On a : $M \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in d \Leftrightarrow \text{Il existe un réel } t \text{ tel que} \begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases}$

Remarque:

Ce système s'appelle une **représentation paramétrique** de la droite d.

Démonstration:

 $M \in d \iff \vec{u} \text{ et } \overrightarrow{AM} \text{ sont colinéaires}$

$$\Leftrightarrow \text{Il existe un réel } t \text{ tel que } \overrightarrow{AM} = t\overrightarrow{u} \iff \begin{pmatrix} x - x_A \\ y - y_A \\ z - z_A \end{pmatrix} = t \begin{pmatrix} a \\ b \\ c \end{pmatrix} \iff \begin{cases} x - x_A = at \\ y - y_A = bt \\ z - z_A = ct \end{cases} \iff \begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases}$$

Méthode: Utiliser la représentation paramétrique d'une droite

Vidéo https://youtu.be/smCUbzJs9xo

L'espace est muni d'un repère $(0; \vec{i}, \vec{j}, \vec{k})$.

Soit les points $A \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ et $B \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$. Déterminer les coordonnées du point d'intersection de la droite (AB) avec le plan de repère $(O; \vec{\imath}, \vec{\jmath})$.

$$A(2;3;-1) \vec{AB}(\frac{7}{3})$$

nepresentation parametrique:

2) Soit Mbl point d'intersection de (AB) avec le plan (0; i, i) 2) Don On soit que 3M=0

$$\begin{cases} 3c = 2-t \\ 4s = 3-6t \\ 0 = -1+3t \end{cases} \begin{cases} x = 2-1/3 \\ 4s = 3-2 \\ t = 1/3 \end{cases}$$

$$\begin{cases} 2e = 5/3 \\ 4e = 1 \\ t = 1/3 \end{cases}$$