Assignment 7

Jiaqi Wang

December 13, 2023

1 Exercise 10.7.6

Problem 1.1 Let $P: \mathbb{N} \to \{\text{blue}, \text{orange}\}\$ be a sequence taking values in the set with exactly the two elements blue and orange. Assume that

for all
$$k \in \mathbb{N}$$
,
there exists $m \ge k$,
 $P_m = \text{blue}$. (*)

Show that there is a subsequence of $P:\mathbb{N}\to\{\text{blue},\text{orange}\}$ for which every term equal blue.

Proof. We construct a index sequence $n : \mathbb{N} \to \mathbb{N}$ inductively such that for all $\ell \in \mathbb{N}$, $P_{n_{\ell}} =$ blue and $n_{\ell} < n_{\ell+1}$.

Base step:

Choose k=0 in (*), then there exists $m \ge 0$, such that $P_m =$ blue. Obtain such m. Set $n_0 = m$.

Inductive step:

Suppose we have defined n_0, \ldots, n_ℓ for some $\ell \in \mathbb{N}$ such that $P_{n_0} = \text{blue}, \ldots, P_{n_\ell} = \text{blue}$ and $n_0 < \cdots < n_\ell$. Choose $k = n_\ell + 1$ in (*), then there exists $m \ge n_\ell + 1 > n_\ell$ such that $P_m = \text{blue}$. Obtain such m. Choose $n_{\ell+1} = m$. Then $P_{n_{\ell+1}} = \text{blue}$ and $n_{\ell+1} > n_\ell$.

By induction, we have defined $n : \mathbb{N} \to \mathbb{N}$ such that for all $\ell \in \mathbb{N}$, $P_{n_{\ell}} = \text{blue}$ and $n_{\ell} < n_{\ell+1}$. Then $P_{n_{\ell}} = \text{blue}$ for all $\ell \in \mathbb{N}$.

2 Exercise 11.6.1

Problem 2.1 Let $V, \|\cdot\|$ be a normed linear space and let A be the closed ball of radius 1 aroudn the origin, i.e.

$$A := \{ v \in V \mid ||v|| \le 1 \}.$$

Show that the set A is closed
<i>Proof.</i> Need to show that A is closed, i.e. $V \setminus A$ is open.
3 Exercise 11.6.2
Problem 3.1 Show that the interval $[0,1)$ is neither open nor closed (seen as a subset of the normed linear space (\mathbb{R}, \cdot)).
Proof.
4 Exercise 11.6.4
Problem 4.1 Consider the following line \mathbb{R}^2
$L := \{ (x, y) \in \mathbb{R}^2 \mid x + 2y = 1 \}.$
Show that L is a closed subset of \mathbb{R}^2 and that L is complete.

Proof.