INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT165 8-bit parallel-in/serial-out shift register

Product specification
File under Integrated Circuits, IC06

December 1990

8-bit parallel-in/serial-out shift register

74HC/HCT165

FEATURES

- · Asynchronous 8-bit parallel load
- · Synchronous serial input
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT165 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT165 are 8-bit parallel-load or serial-in shift registers with complementary serial outputs (Q_7 and $\overline{Q_7}$) available from the last stage. When the parallel load (PL) input is LOW, parallel data from the D_0 to D_7 inputs are loaded into the register asynchronously.

When \overline{PL} is HIGH, data enters the register serially at the D_s input and shifts one place to the right $(Q_0 \to Q_1 \to Q_2,$ etc.) with each positive-going clock transition. This feature allows parallel-to-serial converter expansion by tying the Q_7 output to the D_S input of the succeeding stage.

The clock input is a gated-OR structure which allows one input to be used as an active LOW clock enable (\overline{CE}) input. The pin assignment for the CP and \overline{CE} inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of input \overline{CE} should only take place while CP HIGH for predictable operation. Either the CP or the \overline{CE} should be HIGH before the LOW-to-HIGH transition of \overline{PL} to prevent shifting the data when \overline{PL} is activated.

APPLICATIONS

• Parallel-to-serial data conversion

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBUL	PARAWEIER	CONDITIONS	НС	нст	UNII	
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	$CP \text{ to } Q_7 \overline{Q}_7$		16	14	ns	
	\overline{PL} to Q_{7}, \overline{Q}_{7}		15	17	ns	
	D_7 to Q_{7} , \overline{Q}_7		11	11	ns	
f _{max}	maximum clock frequency		56	48	MHz	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	35	35	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_I = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

8-bit parallel-in/serial-out shift register

74HC/HCT165

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	PL	asynchronous parallel load input (active LOW)
7	\overline{Q}_7	complementary output from the last stage
9	Q ₇	serial output from the last stage
2	СР	clock input (LOW-to-HIGH edge-triggered)
8	GND	ground (0 V)
10	D _s	serial data input
11, 12, 13, 14, 3, 4, 5, 6	D ₀ to D ₇	parallel data inputs
15	CE	clock enable input (active LOW)
16	V _{CC}	positive supply voltage

8-bit parallel-in/serial-out shift register

74HC/HCT165

FUNCTION TABLE

OPERATING MODES			INPUT	S	Q _n REC	SISTERS	OUTPUTS		
	PL	CE	СР	Ds	D ₀ -D ₇	Q_0	Q ₁ -Q ₆	Q ₇	\overline{Q}_7
parallel load	L L	X X	X X	X X	L H	L H	L-L H-H	L H	H L
serial shift	H H	L L	↑ ↑	l h	X X	L H	q ₀ -q ₅ q ₀ -q ₅	q ₆ q ₆	$\frac{\overline{q}_6}{q_6}$
hold "do nothing"	Н	Н	Х	X	Χ	q_0	q ₁ -q ₆	q ₇	q ₇

Note

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
 - ${\bf q}$ = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition
 - X = don't care
 - ↑ = LOW-to-HIGH clock transition

8-bit parallel-in/serial-out shift register

74HC/HCT165

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

						TEST CONDITIONS						
SYMBOL	DADAMETED	74HC										
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay $\overline{\text{CE}}$, CP to Q_7 , \overline{Q}_7		52 19 15	165 33 28		205 41 35		250 50 43	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay $\overline{\text{PL}}$ to $\overline{\text{Q}}_7$, $\overline{\overline{\text{Q}}}_7$		50 18 14	165 33 28		205 41 35		250 50 43	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay D_7 to Q_7 , \overline{Q}_7		36 13 10	120 24 20		150 30 26		180 36 31	ns	2.0 4.5 6.0	Fig.6	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	parallel load pulse width; LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _{rem}	removal time PL to CP, CE	100 20 17	22 8 6		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.6	
t _{su}	set-up time D _s to CP, CE	80 16 14	11 4 3		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _{su}	set-up time CE to CP; CP to CE	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _{su}	set-up time D _n to PL	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	

8-bit parallel-in/serial-out shift register

74HC/HCT165

SYMBOL					T _{amb} (°		TEST CONDITIONS				
	PARAMETER				74HC			WAVEFORMS			
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _h	hold time D _s to CP, CE D _n to PL	5 5 5	6 2 2		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.6
t _h	hold time CE to CP CP to CE	5 5 5	-17 -6 -5		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.6
f _{max}	maximum clock pulse frequency	6 30 35	17 51 61		5 24 28		4 20 24		MHz	2.0 4.5 6.0	Fig.6

8-bit parallel-in/serial-out shift register

74HC/HCT165

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D _n	0.35
Ds	0.35
CP	0.65
CP CE	0.65
PL	0.65

8-bit parallel-in/serial-out shift register

74HC/HCT165

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER			7	Γ _{amb} (°0		TEST CONDITIONS				
SYMBOL		74HCT									WAVEFORMS
STIVIBUL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay CE, CP to Q ₇ , Q ₇		17	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{PL} to $\overline{Q_7}$, $\overline{\overline{Q}_7}$		20	40		50		60	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay D_7 to Q_7 , \overline{Q}_7		14	28		35		42	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	16	6		20		24		ns	4.5	Fig.6
t _W	parallel load pulse width; LOW	20	9		25		30		ns	4.5	Fig.6
t _{rem}	removal time PL to CP, CE	20	8		25		30		ns	4.5	Fig.6
t _{su}	set-up time D _s to CP, CE	20	2		25		30		ns	4.5	Fig.6
t _{su}	set-up time CE to CP; CP to CE	20	7		25		30		ns	4.5	Fig.6
t _{su}	set-up time D _n to PL	20	10		25		30		ns	4.5	Fig.6
t _h	hold time D _s to CP, CE; D _n to PL	7	-1		9		11		ns	4.5	Fig.6
t _h	hold time CE to CP, CP to CE	0	-7		0		0		ns	4.5	Fig.6
f _{max}	maximum clock pulse frequency	26	44		21		17		MHz	4.5	Fig.6

8-bit parallel-in/serial-out shift register

74HC/HCT165

AC WAVEFORMS

Fig.6 Waveforms showing the clock (CP) to output (Q_7 or \overline{Q}_7) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

Fig.7 Waveforms showing the parallel load (\overline{PL}) pulse width, the parallel load to output (Q_7 or \overline{Q}_7) propagation delays, the parallel load to clock (CP) and clock enable (\overline{CE}) removal time.

8-bit parallel-in/serial-out shift register

74HC/HCT165

Fig.9 Waveforms showing the set-up and hold times from the serial data input (D_s) to the clock (CP) and clock enable (\overline{CE}) inputs, from the clock enable input (\overline{CE}) to the clock input (CP) and from the clock input (\overline{CE}).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.