Author: Jesus Silva-Rodriguez, PhD student, Renewable Power Grid Lab, University of Houston.

Profile link: https://rpglab.github.io/people/Jesus-SilvaRodriguez/

Offshore Hydrogen Supergrid Parameters

CP^E: Energy consumption ratio of each electrolyzer: <u>53 [kWh/kg H₂]</u> [1]

CPFC: Hydrogen consumption ratio of each fuel cell: 20 [kWh/kg H₂] [2] [3]

 P_{rated}^{E} : Power rating of each electrolyzer: <u>250 [kW]</u> [3]

 P_{rated}^{FC} : Power rating of each fuel cell: <u>250 [kW]</u> [3]

CapEx^E: Capital cost associated with each electrolyzer: 800 [\$/kW] [1]

OpEx^E: Yearly operational cost associated with each electrolyzer: 16 [\$/kW/yr] [1]

 $CapEx^{FC}$: Capital cost associated with each fuel cell: 1180 [\$/kW] [3]

OpEx^{FC}: Yearly operational cost associated with each fuel cell: 15.34 [\$/kW/yr] [3]

CapEx^{PL}: Capital cost associated with a single power line: 2.02M [\$/km] [4]

 $C_w^{DC_1}$: Converter station cost for each wind farm: 220 [\$/kW] [5]

CDC2: Converter station cost for the onshore substation/hydrogen super center: 92 [\$/kW] [5]

 η^{DC} : Efficiency of converters: <u>0.99</u> [5]

OpEx^{PL}: Yearly operational cost associated with a single power line: 10,100 [\$/km/yr] [4]

CapEx^{HP}: Capital cost associated with a single hydrogen pipeline: <u>0.96M [\$/km]</u> [4]

OpEx^{HP}: Yearly operational cost associated with a single hydrogen pipeline: 67200 [\$/km/yr] [4]

 $C^{Co_{hi}}$: Cost of high-pressure compressor for hydrogen super center: 4717 [\$-h/kg H₂] [6]

 $C^{Co_{lo}}$: Cost of low-pressure compressors for each wind farm: 4717 [\$-h/kg H₂] [6]

CapEx^{HS}: Capital cost associated with hydrogen storage system: <u>55.5 [\$/kg H₂]</u> [7]

OpExHS: Yearly operational cost associated with hydrogen storage system: 44,783 [\$/yr] [7]

 $P_{lim.w}^{PL}$: Power thermal limit of a single power line: 1000 [MW] [4]

 H_{lim}^{HP} : Hydrogen transmission limit of each hydrogen pipeline: $30,000 \, [\text{kg H}_2/\text{h}] \, [2] \, [4]$

 HS_{min} : Minimum amount of hydrogen that must be stored in hydrogen storage system: $0 \text{ [kg H}_2]$

 HS_{max} : Maximum amount of hydrogen that can be stored in hydrogen storage system: $\underline{202,500 \text{ [kg H}_2]}$ [7]

 V_0 : Voltage at onshore substation: 320 [kV] [5]

r: Resistance per unit length of all power lines: $0.011 [\Omega/\text{km}]$ [5]

 p_{Ow}^{lo} : Low pressure set points for each wind farm at the hydrogen super center: 100 [bar]

 p_0^{hi} : High pressure set point at onshore substation: 200 [bar]

Author: Jesus Silva-Rodriguez, PhD student, Renewable Power Grid Lab, University of Houston.

Profile link: https://rpglab.github.io/people/Jesus-SilvaRodriguez/

 λ : Coefficient of friction of all pipelines: 0.02 [8]

T: Gas temperature inside pipelines: 300 [K]

 Z^{hi} : Hydrogen compressibility factor at high pressure: 1.133 [9]

 Z^{lo} : Hydrogen compressibility factor at low pressure: <u>1.067</u> [9]

 ρ^{hi} : Hydrogen density at high pressure: 38.642 [kg/m₃] [8] [9]

 ρ^{lo} : Hydrogen density at low pressure: 20.25 [kg/m³] [8] [9]

D^{hi}: Diameter of high-pressure pipeline: 1219.2 [mm]

D^{lo}: Diameter of low-pressure pipelines: 914.4 [mm]

 CP_{hi}^{C} : Energy consumption ratio of hydrogen compressor at high pressure: 3.3 [kWh/kg H₂] [6]

 CP_{lo}^{C} : Energy consumption ratio of hydrogen compressor at low pressure: 3.3 [kWh/kg H₂] [6]

References

- [1] IRENA, "Hydrogen from Renewable Power: Technology Outlook for the Energy Transition," 2018. [online] Available: https://irena.org/publications/2018/Sep/Hydrogen-from-renewable-power
- [2] Hydrogen and Fuel Cell Technologies Office, "Hydrogen Storage," *Energy.gov*, [Online], Available: https://www.energy.gov/eere/fuelcells/hydrogen-storage
- [3] M. A. Semeraro, "Renewable energy transport via hydrogen pipelines and HVDC transmission lines," *Energy Strategy Reviews*, vol. 35, 2021
- [4] B. Miao, L. Giordano, S. H. Chan, "Long-distance renewable hydrogen transmission via cables and pipelines," *International Journal of Hydrogen Energy*, vol. 46, issue 36, 2021, pp. 18699-18718.
- [5] S. Lauria, M. Schembari, F. Palone, M. Maccioni, "Very long distance connection of gigawatt-size offshore wind farms: extra high-voltage AC versus high-voltage DC cost comparison," *IET Renewable Power Generation*, 2016, pp. 713-720.
- [6] G. Parks, R. Boyd, J. Cornish, R. Remick, "Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs," *NREL*, May 2014, [Online], Available: https://www.nrel.gov/docs/fy14osti/58564.pdf
- [7] D.D. Papadias, R.K. Ahluwalia, "Bulk storage of hydrogen," vol. 46, issue 70, 2021, pp. 34527-34541.
- [8] T. Włodek, M. Łaciak, K. Kurowska and Ł. Węgrzyn. "Thermodynamic analysis of hydrogen pipeline transportation selected aspects," *AGH Drilling, Oil, Gas*, 2016.
- [9] M. Klell, "Storage of Hydrogen in the Pure Form," *Handbook of Hydrogen Storage: New Materials for Future Energy Storage*, Wiley, pp. 1-37, March 2010.