

Robust Fitting using RANSAC

slide credit

 Svetlana Lazebnik, Sanja Fidler, Kristen Grauman, Ioannis Gkioulekas, Kris Kitani, James Hays, Fredo Durand, Rick Szeliski, Andrew Zisserman, Kyros Kutulakos

Overview

- Interest point detection
 - Harris, LoG, Scale space
- Invariant descriptors
 - SIFT
- Basic (nearest neighbor based) matching
 - ratio test, bidirectional criterions
- Fitting of 2D transformations (models)
 - affine, homography
- Today: RANSAC for robust fitting

Motivation: mosaics

Extract features

- Extract features
- Compute putative matches

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - *Verify* transformation (search for other matches consistent with *T*)

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - *Verify* transformation (search for other matches consistent with *T*)

Recall: Scale Invariant Feature Transform (SIFT) descriptor [Lowe 2004]

Interest points and their scales and orientations (random subset of 50)

SIFT descriptors

Recall: SIFT (preliminary) matches

Not all of these are valid matches!

http://www.vlfeat.org/overview/sift.html

Outliers

- Outliers can hurt the quality of our parameter estimates, e.g.,
 - an erroneous pair of matching points from two images
 - an edge point that is noise, or doesn't belong to the line we are fitting.

Outliers affect least squares fit

Outliers affect least squares fit

RANSAC

- RANdom SAmple Consensus (Fischler, Bolles 1981)
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line (transformation) won't have much support from rest of the points (matches).

Least-squares fit

 Randomly select minimal subset of points

- Randomly select minimal subset of points
- 2. Hypothesize a *model*

- Randomly select minimal subset of points
- 2. Hypothesize a *model*
- 3. Compute *error* function

- Randomly select minimal subset of points
- 2. Hypothesize a *model*
- 3. Compute *error* function
- 4. Select points consistent with model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute *error* function
- 4. Select points consistent with model
- 5. Repeat hypothesize-and-verify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute *error* function
- 4. Select points consistent with model
- Repeat
 hypothesize-and-verify loop

Uncontaminated sample

- Randomly select minimal subset of points
- 2. Hypothesize a *model*
- 3. Compute *error* function
- 4. Select points consistent with model
- 5. Repeat hypothesize-and-verify loop

- Randomly select minimal subset of points
- 2. Hypothesize a *model*
- 3. Compute *error* function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

RANSAC for line fitting

Repeat (trials):

- Draw k points uniformly at random
- Fit line to these k points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- Stopping criterion accept the line:
 - option 1: if there are d or more inliers
 - option 2: after *n* trials

Refit line using all inliers

How many trials for RANSAC?

To ensure good chance of finding true inliers, need sufficient number of trials, S.

- Let P be to the total prob. of success after S trials.
- Let p be prob. that a given match is valid (inlier rate)
- Prob. that all k random samples in one trial are inliers: pk
- Prob. that all S trials will fail:

$$1-P = (1-p^k)^{S}$$

Required minimum number of trials:

$$S = \log(1-P) / \log(1-p^k)$$

for P = 0.99:

k	р	S
3	0.5	35
6	0.6	97
6	0.5	293
7	0.2	359776
7	0.1	46051700

RANSAC for line fitting

Repeat (trials):

- Draw k points uniformly at random
- Fit line to these k points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- Stopping criterion accept the line:
 - option 1: if there are d or more inliers
 - option 2: after *n* trials
 - option 3 (dynamic): after ~ log(1-P) / log(1-pk) trials
 - » where p is the best found inlier rate

Refit using all inliers

That is an example fitting a *model* (line)...

What about fitting a *transformation* (translation)?

RANSAC: General form

- RANSAC loop:
- Randomly select a seed group on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers
- Keep (and refine) the transformation with the largest number of inliers

→ `true' inliers

→ `true' outliers

true translation

- seed match
- model inliers
- model outliers

- seed match
- model inliers
- → model outliers
- estimated translation

- seed match
- model inliers
- model outliers

- seed match
- model inliers
- → model outliers
- estimated translation

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

Slide credit: Lana Lazebnik

RANSAC popular extensions

- Pro-SAC (speed)
 - Rank matches by their quality and sample with non-uniform distribution.
- LO-SAC (precision)
 - Perform local optimization on inliers of each promising model
- MLE-SAC (robustness)
 - Maximize the likelihood rather than the number of inliers
- many others...

Recap

- Feature-based alignment
 - 2D transformations
 - model fitting
 - RANSAC