The Blockchain Backbone Model

Presented by Dionysis Zindros

What we'll talk about

- The blockchain backbone
- The mathematical theory that governs bitcoin, ethereum, litecoin, monero, bitcoin cash, ethereum classic, zcash, doge and hundreds of other cryptocurrencies (Originally called the "bitcoin backbone", but really quite generic)
- The **algorithmic parts** of blockchains
- The **consensus layer** of blockchains
- The nature of a blockchain: What a blockchain is
- What problem do blockchains solve?
- Proof-of-work blockchains only!
 (Not proof-of-stake such as Cardano, Decred)

What we won't talk about

- Blockchains are a complicated subject
- Many engineering and science problems are open
- We won't talk about engineering challenges
- We will only speak about one model
- Here we treat the problem in the closed setting of computer science theory
- We won't be concerned with implementation details
- Blockchains deal with a lot more than the consensus layer, including the application layer
- We won't speak about specific cryptocurrencies
- We will make many simplifying assumptions
- We won't prove anything today -- I will talk only about definitions

The Blockchain Backbone

- The first theory formalizing the security of bitcoin & cryptocurrencies
- Best model we have so far
- It answers the question: Why is bitcoin secure?
- This question was not answered in the original Bitcoin paper!
- Invented and published in EUROCRYPT '15 by
 Juan Garay, Aggelos Kiayias, and Nikos Leonardos
- Revisited and published in CRYPTO '17 by same authors
- One of the most significant works after Nakamoto's original paper

A peer-to-peer network of money

A peer-to-peer network of money

What's a peer-to-peer network of money?

- Every node on the network knows how much money is in **every** account
- When someone pays someone else, they generate a *transaction* -- *tx*
- The tx subtracts money from one account and adds it to another
- tx are broadcast to everyone
- By receiving tx, nodes can update their view of others' accounts
- A tx can only be created by the owner sending the money:
 It needs a digital signature

Most importantly: The network is **decentralized**. There is **no trusted third party**! (Everything is very easy if we have a trusted bank or PayPal)

Assumption: Time is discrete

We think of time as happening in **discrete rounds**: 1, 2, 3, ..., *r*

Information (transactions) appears in rounds

The network is **synchronous**:

A message sent by an honest party during round r is received at round r + 1 by all other honest parties. One round in practice corresponds to the time needed to traverse the whole network.

The adversary

- The adversary can be anything
- Modelled as an arbitrary probabilistic polynomial-time Turing Machine
- This analysis is powerful:
 We do not say what attacks we have in mind!
- The protocol is secure against **any attack** we may not even think of!
- There is only **one adversary**
- The adversary controls multiple parties
- All of them coordinate together to attack the protocol
- Parties controlled by the adversary can communicate arbitrarily during a round

Assumption: The adversary controls arbitrary nodes

Assumption: The network is Sybil attackable

The Sybil attack

The Sybil attack captures the fact that the adversary can:

- Fake IP addresses
- Fake e-mail addresses, Facebook accounts, Gmail accounts
- Fake phone numbers

Generally, we cannot rely on any centralized service or network heuristic! We cannot simply take a vote by counting.

The parties

- There are *n* parties in total
- t < n are controlled by one adversary (corrupted)
- *n t* < *n* are honest
- Each party wishes to publish some *tx* to the rest
- There's new tx coming in by honest parties during various rounds

The consensus problem

- It may take some time for tx to travel on the network
- How can the parties agree which tx happened first?
- This question is crucial for security:
 If a tx did/didn't happen, a party may/may not have sufficient money!
- tx validity depends on past tx

time t = 1

Eve really has 1 BTC

Bob & Alice think
Eve has 1 BTC

time t = 2

Eve spends her 1 BTC to buy coffee from Alice

Sends transaction tx₁ to **Alice**

...simultaneously...

time t = 2

Eve spends the same 1 BTC to pay back herself

Sends transaction tx₂ to Bob

Alice and Bob exchange the transactions on the network and see a double spend!

The two transactions are irreconcilable. Which one is the right one?

Simple ideas don't work

"Oldest transaction is the right one. Reject the newer double spend!"

Bob and Alice don't agree on which transaction happened first!

Alice thinks tx₁ happened first. Bob thinks tx₂ happened first.

Simple ideas don't work

"If you see a double spend, you know it's a bad actor! Reject the transaction!"

How long do you wait until you know there has been *no double spend*?

What if **Eve** bought a cup of coffee from **Alice**? When does **Alice** deliver the coffee?

Simple ideas don't work

"Wait for some constant time Δ .

If no double spend has occurred within time Δ , accept the transaction.

If a double spend occurs within time Δ , reject both transactions.

If a double spend occurs after time Δ , reject the double spend."

Eve creates tx_1 and sends it to both **Alice** and **Bob** at time t = 0. Then **Eve** sends tx_2 to Bob at time $t = \Delta - 1$, rendering tx_1 invalid according to **Bob**. Eve sends tx_2 to **Alice** at time $t = \Delta + 1$, rendering tx_1 valid according to **Alice**.

Alice thinks tx₁ is valid, but **Bob** thinks tx₁ is invalid.

We need a better protocol!

What is the form of such protocol?

We need to define what code each node will run

The code must:

- Injection: Allow "publishing" a local tx
- Reading: When locally asked "what tx have happened?", returns a ledger

A *ledger* is an *ordered list of tx*This is the **local view** of the honest party

Desired properties of a ledger

1. Liveness

If I "inject" a transaction, it will *eventually* appear in the *ledger* of *all honest parties*

2. Persistence

If a transaction appears in a certain position *i* within an honest party's ledger, it will appear *in the same position* for *all* honest parties

Liveness & Persistence

- The solution is easy if we give up one of the properties. How?
- Without liveness:

Always return an empty ledger.

tx injected will *never* appear in any ledger.

Persistence is trivially satisfied.

• Without persistence:

Append all tx you see on network to ledger immediately.

Parties won't agree about order of tx.

Liveness is trivially satisfied.

Assumption: Total connectivity

Each node is **connected to everyone** else

In particular: all honest parties are directly connected to each other

Not true in practice, but realistic model: All nodes are connected *indirectly*; a message is broadcast, then relayed. Allows us to abstract out the notion of relaying.

Summary: The network model

- 1. The network is **synchronous**:
 - A message by an honest party at round r is delivered to all parties at r + 1
- 2. The network is **reliable**:
 - The adversary cannot drop honest messages
- 3. The network is **Sybil attackable**:
 - The adversary can inject arbitrarily many messages
 - The adversary can send different messages to different parties
- 4. Parties do not have pre-known identities:
 - The adversary can reorder and shuffle network messages

The execution

- Every party is modelled as an Interactive Turing Machine
- Execution is coordinated by a special PPT TM, the environment Z
- The environment captures the notion of "rounds" (an iteration of Z)
- For every round, it invokes each honest party
 - It gives it network messages from the previous round
 - It receives from it a network message to be delivered in the next round
- At the end of each round, it invokes the adversary (a "rushing adversary")
- The adversary can see all honest party messages, reorder them, or inject fake ones (Sybil attack), but not delete them. The changes may be different for each honest party.
- The new modified messages are delivered to honest parties at the next round
- Parties can keep local state

The environment

```
tampered_messages = [\epsilon, \epsilon, ..., \epsilon]
for round = 1 to poly(\kappa)
  for i = 1 to n - t
    next_messages[i] = P[i](tampered_messages[i])
  end for
  tampered_messages = A(next_messages)
  for m in next_messages
    for i = 1 to n - t
      assert(m in tampered_messages[i])
    end for
  end for
end for
```

The random oracle (RO) model

- A truly random function H with output {0, 1}^k
 is chosen before the beginning of the execution
- Any party can query the function
- The function is shared among all honest parties and the adversary
- It gives the *same* output for the same input even if asked by different parties
- We think of it as a *cryptographically secure hash function*

The honest majority assumption

- We try to capture that the adversary has less computational power than the honest parties combined
- This is how we will distinguish the honest opinion from the adversarial opinion
- Computational power cannot be Sybil attacked
- We allow q RO queries per round for each honest party
- We allow the adversary tq RO queries per round
- We require:

adversarial parties

honest parties

$$t \le (1 - \delta)(n - t)$$
a small gap

(the honest majority equation)

Summary: Our assumptions

- The network is synchronous, connected, Sybil-attackable
- The analysis is in the random oracle model
- The majority of computational power is honest at all times
- We don't analyze incentives
- The number of parties is constant

Many of these assumptions can be lifted, but the analysis becomes more complex (e.g. the "constant number of parties" assumption is relaxed in follow-up work)

Proof-of-Work (PoW)

How can we prove that we hold certain computational power?

- Give a fresh input to RO
- If the output is sufficiently small, we have (probabilistically) proven that we have expended some of our q RO queries
- We can use this mechanism for voting
- Let T be the bound required, then we want:

(the proof-of-work equation)

• H(x) and T are both κ -bit strings compared as binary numbers

A block

- Contains an ordered sequence of transactions
- The order must be valid (no double spends)
- Contains some proof-of-work, proving computational power has been expedited in creating it: H(B) < T

A blockchain

- A sequence of blocks
- Each block contains the hash of its parent
- A block could not have been generated before its parent (Why?)
- Therefore, blocks are generated in order
- A block buried under sufficient other blocks is voted on by computational power

Mining

- Each honest party adopts a blockchain C
- Not all honest parties necessarily adopt the same chain (we would like that, but we cannot ensure it due to the consensus problem)
- During each round, each honest party attempts to extend their adopted chain
- ...by creating a new block B on top of C such that CB is a valid chain
- B points to C[-1]
- B must contain valid PoW. It contains some nonce ctr to achieve the PoW.
- B contains a vector of tx x that the honest party wishes to inject and have not yet been included
- If honest party is successful in finding B, it broadcasts CB to the network

Algorithm 3 The proof of work function, parameterized by q, T and hash functions $H(\cdot), G(\cdot)$. The input is (x, \mathcal{C}) . 1: function pow (x, \mathcal{C}) if $C = \varepsilon$ then injection ▶ Determine proof of work instance 2: $s \leftarrow 0$ 3: else 4: $\langle s', x', ctr' \rangle \leftarrow \text{head}(\mathcal{C})$ 5: $s \leftarrow H(ctr', G(s', x'))$ 7: end if $ctr \leftarrow 1$ 8: $B \leftarrow \varepsilon$ 9: $h \leftarrow G(s,x)$ 10: while (etr < q) do 11: \triangleright This $H(\cdot)$ invocation subject to the q-bound (if (H(ctr, h) < T)) then 12: **PoW equation** 13: break 14: end if 15: $ctr \leftarrow ctr + 1$ 16: end while 17: $\mathcal{C} \leftarrow \mathcal{C}B$ ▷ Extend chain 18: return \mathcal{C} 19:

20: end function

Validating a chain

- Check that the transactions it contains form a valid sequence
- Check the proof-of-work of each block
- Check that each block points to its parent

Algorithm 1 The chain validation predicate, parameterized by q, T, the hash functions $G(\cdot), H(\cdot)$, and the content validation predicate $V(\cdot)$. The input is \mathcal{C} .

```
1: function validate(C)
           b \leftarrow V(\mathbf{x}_{\mathcal{C}}) validate transaction sequence
                                                                          \triangleright The chain is non-empty and meaningful w.r.t. V(\cdot)
           if b \wedge (\mathcal{C} \neq \varepsilon) then
 3:
                 \langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})
 4:
                s' \leftarrow H(ctr, G(s, x))
 5:
 6:
                repeat
                                                                                 validate chain ancestry
                       \langle s, x, ctr \rangle \leftarrow \text{head}(\mathcal{C})
 7:
                      if validblock<sub>q</sub><sup>T</sup>(\langle s, x, ctr \rangle) \land (H(ctr, G(s, x)) = s') then
 8:
                                                                                                                                 ▶ Retain hash value
 9:
                            \mathcal{C} \leftarrow \mathcal{C}^{[1]} validate block PoW
                                                                                                                      \triangleright Remove the head from \mathcal{C}
10:
                      else
11:
                            b \leftarrow \text{False}
12:
                      end if
13:
                 until (\mathcal{C} = \varepsilon) \vee (b = \text{False})
14:
           end if
15:
           return (b)
16:
17: end function
```

The Longest Chain Rule

- Which chain should I adopt?
- The longest chain! (In terms of number of blocks, not number of tx!)
- Why? It contains the most accumulated proof-of-work
- This signifies that a lot of computational power is vouching for it
- Hence it will be what the honest parties believe!
 (intuitively -- exact property formulated below)

Algorithm 2 The function that finds the "best" chain, parameterized by function $\max(\cdot)$. input is $\{C_1, \ldots, C_k\}$.

- 1: function maxvalid(C_1, \ldots, C_k) $temp \leftarrow \varepsilon$
- for i = 1 to k do

 - if $validate(C_i)$ then
- $temp \leftarrow \max(C_i, temp)$ 5:
 - end if
- end for return temp

4:

6:

- 9: end function

The blockchain backbone protocol

- Maintain a blockchain
- When seeing other blockchains on the network, adopt the longest one
- Mine on top of longest chain
- If mining successful, broadcast mined chain

Algorithm 4 The Bitcoin backbone protocol, parameterized by the input contribution function $I(\cdot)$ and the chain reading function $R(\cdot)$. At the onset it is assumed "init= True". 1: if (init) then $C \leftarrow \varepsilon$ $st \leftarrow \varepsilon$ 3: $round \leftarrow 1$ 5: $init \leftarrow False$ 6: else 7: $\mathcal{C} \leftarrow \mathsf{maxvalid}(\mathcal{C}, \mathsf{any} \; \mathsf{chain} \; \mathcal{C}' \; \mathsf{found} \; \mathsf{in} \; \mathsf{Receive}())$ if INPUT() contains READ then 8: write $R(\mathcal{C})$ to OUTPUT() 9: ▶ Produce necessary output before the POW stage. ledger reading end if 10: $\langle st, x \rangle \leftarrow I(st, \mathcal{C}, round, INPUT(), RECEIVE())$ \triangleright Determine the x-value. 11: $C_{\text{new}} \leftarrow \text{pow}(x, \mathcal{C})$ injection 12: if $\mathcal{C} \neq \mathcal{C}_{new}$ then 13: $C \leftarrow C_{\text{new}}$ 14: Diffuse(C)▶ Broadcast the chain in case of adoption/extension. 15: else 16: $Diffuse(\perp)$ ▷ Signals the end of the round to the diffuse functionality. 17: end if 18: $round \leftarrow round + 1$ 19:

20: end if

An honest execution

- Consider: What happens if all parties are honest?
- An honest party finds a block, broadcasts it
- The rest of the network adopts the new chain, as it is longer
- Another honest party finds a new block, broadcasts it...
- The chain keeps growing and is the same among all honest parties
- The rate of growth corresponds to the parameters T, q, n

Blockchain forks

- Sometimes two blocks will be mined at the same round by two honest parties
- Any of the two alternatives can be adopted by honest parties
 - Which one is chosen by the adversary, as they control the network!
- The tie will be broken when a next block is found
- Then the longest chain will be unique again
- This is why we want the probability of block finding to be small

Successful rounds

We call a round...

- successful if (at least) an honest party finds a block
- uniquely successful if exactly one honest party finds a block

It's possible that the adversary will also find blocks during successful or uniquely successful rounds.

f \(\text{\text{!!}} \) Pr[round r is successful]

 $= q(n - t) T / 2^{\kappa}$

$$= 1 - (1 - T / 2^{\kappa})^{q(n-t)}$$

Blockchains have three security properties

1. Chain growth

The chain adopted by an honest party grows

2. Chain quality

Large chunks of an honestly adopted chain contain honest blocks

3. Common prefix

All honestly adopted chains share a large common prefix

Theorem: **For all PPT adversaries** *A*, the properties hold with *overwhelming probability* in the security parameter.

Chain growth

Consider an honest party P.

If P has adopted chain C_1 at round r, and C_2 at round r + s, then

$$|C_2| \ge |C_1| + T S$$

(the chain growth equation)

τ is the **chain velocity**. This property holds for sufficiently large *s*.

Intuition for Chain Growth

Consider a successful round with a block by party P₁.

During a successful round, the chain of all honest parties grows.

- The chain of P₁ grows by the new block
- Consider P₂
 - o If P₂ is successful, their chain also grows by *their* new block
 - o If P₂ is unsuccessful, their chain grows because they receive P₁'s extension
- The adversary cannot harm this due to Longest Chain Rule

Intuition for Chain Growth

- Consider a sequence of s rounds
- Each round has a probability f of being successful
- In expectation, f s rounds will be successful
- Hence the chain will grow by approximately f s blocks
- Therefore $\tau \cong f$

The full proof is by induction on the number of rounds and a Chernoff bound with overwhelming probability in *s*

Chain quality

Consider an honestly adopted chain C. For any *i*,

C[i: i + ℓ] contains at least μ ℓ honest blocks

μ is the proportion of honest blocks. This property holds for sufficiently large ℓ.

Common prefix

Let P_1 , P_2 be two honest parties and consider a round r at which their adopted chains are C_1 and C_2 . Then $C_1[:-k]$ is a prefix of C_2 and vice versa:

$$C_2[:|C_1[:-k]|] = C_1[:-k]$$

(the common prefix equation)

This property holds for sufficiently large *k*.

Intuition for Common Prefix

- Consider an adversary who double spends
- They have to extend a chain faster than the honest parties
- This is impossible if the honest chain is large enough.

Implementing the Ledger functionality

Now that we have a blockchain, it's easy...

- Take C[:-k] and obtain its transactions
- Return that ledger!

Proof of Liveness

Suppose we wish to inject a *tx* starting at round *r*

- By the Chain Growth property, the chain will keep growing
- After s rounds, there will be a growth by τ s new blocks
- For sufficiently large s ("eventually"), we have that τ s μ ≥ 1
- Therefore, after s rounds, an honestly generated block B will be adopted by all honest parties
- Due to *Chain Growth*, B will eventually be buried under *k* blocks
- It will then be reported in the ledger

Proof of Persistence

Suppose a transaction is reported in the ledger of an honest party P₁

- Then it is in C₁[:-k] of P₁
- Suppose it is reported at a different position by some other party P₂
- Then it is in C₂[:-k] of P₂
- But this means C₁[:-k] does not share a prefix with C₂[:-k]
- This violates the Common Prefix property!

References

- Juan Garay, Aggelos Kiayias, and Nikos Leonardos.
 <u>The bitcoin backbone protocol: Analysis and applications</u>.
 In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 281–310. Springer, 2015.
- Juan Garay, Aggelos Kiayias, and Nikos Leonardos.
 The bitcoin backbone protocol with chains of variable difficulty.
 In Annual International Cryptology Conference, pages 291–323. Springer, 2017.

Thanks! Questions?

Only some rights reserved