Francisco Javier García Rubio

DNI: 48304194-P

Ejercicios Tema 2 AIC

1.

Realizar la evolución temporal del computador teniendo en cuenta que consta de:

- 2 unidades funcionales de carga de 1 ciclo.
- 3 unidades de almacenamiento de 2 ciclos.
- 1 de suma/resta de 3 ciclos.
- 2 de multiplicación de 9 ciclos.
- Emisión ordenada y finalización ordenada.
- Puede captar, emitir y finalizar 3 instrucciones por ciclo de reloj.
- Puede decodificar 2 instrucciones por ciclo.
- El fragmento de código es el siguiente:

Add r1,r2,r3

Sub r1,r2,r3

Lw r4, 0(r1)

Sw 0(r4), r3

Mul r2, r3, r4

Mul r6,r7,r8

Mul r9,r8,r10

Add r8,r9,r6

Add r9,r8,10

Lw r9, 0(r8)

Instrucción	IF	ID/ISS	EX	ROB	WB
Add r1,r2,r3	1	2	3	6	7
Sub r1,r2,r3	1	2	7	10	11
Lw r4, 0(r1)	1	3	12	13	14
Sw 0(r4), r3	2	3	15	17	18
Mul r2, r3, r4	2	4	18	27	28
Mul r6,r7,r8	2	4	5	14	28
Mul r9,r8,r10	3	5	6	15	28
Add r8,r9,r6	3	5	29	32	33
Add r9,r8,r10	3	6	33	36	37
Lw r9, 0(r8)	4	6	34	35	38

2.

Dada la siguiente tabla de reservas de un cauce multifuncional:

	T0	T1	T2	Т3	T4
S1	А	А	А	В	А
S2	В	AB			А
S 3	В	А			В
S4	А	В	А		В

- a. Calcula las latencias prohibidas.
- b. Determina los vectores de colisiones cruzadas.
- c. Determina las matrices de colisión.
- d. Obtener el diagrama de estados.

a.

$$F_{AA} = \{1, 2, 3\}$$

$$F_{AB} = \{1, 2, 3\}$$

$$F_{BA} = \{1, 3\}$$

$$F_{BB} = \{3, 4\}$$

b.

$$V_{AA} = (0111)$$

$$V_{AB} = (0111)$$

$$V_{BA} = (0101)$$

$$V_{BB} = (1100)$$

C.

$$\mathsf{M}_\mathsf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathsf{M}_\mathsf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

