Software Verification Master Programme in Computer Science

Mário Pereira mjp.pereira@fct.unl.pt

Nova School of Science and Technology, Portugal

October 14, 2025

Lecture 6

based on previous editions by João Seco, Luís Caires, and Bernardo Toninho also based on lectures by Andrei Paskevich and Claude Marché

Verification of Imperative Programs (3/n)

- 1. Loop invariants recap
- 2. Case study: fast exponentiation
- 3. Case study: the McCarthy 91 function
- 4. Sorting algorithms
- 5. Verification with bounded integers

Loop invariants – recap

```
let max array (a: array int) : int
 requires { 0 < a.length }</pre>
  ensures { forall k. 0 <= k < a.length -> a[k] <= result }</pre>
= let ref m = a[0] in
 let ref i = 1 in
 while i < a.length do
    variant { ??? }
    invariant { ??? }
    invariant { ??? }
    if m < a[i] then
    m <- a[i];
    i <- i + 1
 done:
 m
```

```
let max array (a: array int) : int
 requires { 0 < a.length }</pre>
  ensures { forall k. 0 <= k < a.length -> a[k] <= result }</pre>
= let ref m = a[0] in
 let ref i = 1 in
 while i < a.length do
    variant { a.length - i }
    invariant { ??? }
    invariant { ??? }
    if m < a[i] then
    m <- a[i];
    i <- i + 1
 done:
 m
```

```
let max array (a: array int) : int
  requires { 0 < a.length }</pre>
  ensures { forall k. 0 <= k < a.length -> a[k] <= result }</pre>
= let ref m = a[0] in
  let ref i = 1 in
  while i < a.length do
    variant { a.length - i }
    invariant { 1 <= i <= a.length }</pre>
    invariant { ??? }
    if m < a[i] then
    m <- a[i];
    i <- i + 1
  done:
  m
```

```
let max array (a: array int) : int
  requires { 0 < a.length }</pre>
  ensures { forall k. 0 <= k < a.length -> a[k] <= result }</pre>
= let ref m = a[0] in
  let ref i = 1 in
  while i < a.length do
    variant { a.length - i }
    invariant { 1 <= i <= a.length }</pre>
    invariant { forall k. 0 <= k < i -> a[k] < m }</pre>
    if m < a[i] then
    m <- a[i];
    i <- i + 1
  done:
  m
```

```
predicate sorted (a: array int)
= forall i j. 0 <= i <= j < a.length -> a[i] <= a[j]</pre>
let bin search (a: array int) (value: int) : (pos: int)
  requires { 0 <= a.length /\ sorted a }</pre>
  ensures { 0 <= pos -> pos < a.length /\ a[pos] = value }</pre>
  ensures { pos < 0 -> forall i. 0 <= i < a.length -> a[i] <> value }
= let ref low = 0 in
  let ref high = a.length in
  while low < high do
    variant { high - low }
    invariant { ??? }
    invariant { ??? }
    invariant { ??? }
    let ref mid = div (high + low) 2 in
    if a[mid] < value then low <- mid + 1
    else if value < a[mid] then high <- mid
    else (* value = a\lceil mid \rceil *) return mid
  done:
  -1
```

```
predicate sorted (a: array int)
= forall i j. 0 <= i <= j < a.length -> a[i] <= a[j]</pre>
let bin search (a: array int) (value: int) : (pos: int)
  requires { 0 <= a.length /\ sorted a }</pre>
  ensures { 0 <= pos -> pos < a.length /\ a[pos] = value }</pre>
  ensures { pos < 0 -> forall i. 0 <= i < a.length -> a[i] <> value }
= let ref low = 0 in
  let ref high = a.length in
  while low < high do
    variant { high - low }
    invariant { 0 <= low <= high <= a.length }</pre>
    invariant { ??? }
    invariant { ??? }
    let ref mid = div (high + low) 2 in
    if a[mid] < value then low <- mid + 1
    else if value < a[mid] then high <- mid
    else (* value = a\lceil mid \rceil *) return mid
  done:
  -1
```

```
predicate sorted (a: array int)
= forall i j. 0 <= i <= j < a.length -> a[i] <= a[j]</pre>
let bin_search (a: array int) (value: int) : (pos: int)
  requires { 0 <= a.length /\ sorted a }</pre>
  ensures { 0 <= pos -> pos < a.length /\ a[pos] = value }</pre>
  ensures { pos < 0 -> forall i. 0 <= i < a.length -> a[i] <> value }
= let ref low = 0 in
  let ref high = a.length in
  while low < high do
    variant { high - low }
    invariant { 0 <= low <= high <= a.length }</pre>
    invariant { forall k. 0 <= k < low -> a[k] <> value }
    invariant { forall k. high <= k < a.length -> a[k] <> value }
    let ref mid = div (high + low) 2 in
    if a[mid] < value then low <- mid + 1
    else if value < a[mid] then high <- mid
    else (* value = a\lceil mid \rceil *) return mid
  done:
  -1
```

```
predicate sorted (a: array int)
= forall i j. 0 <= i <= j < a.length -> a[i] <= a[j]</pre>
let bin_search (a: array int) (value: int) : (pos: int)
  requires { 0 <= a.length /\ sorted a }</pre>
  ensures { 0 <= pos -> pos < a.length /\ a[pos] = value }</pre>
  ensures { pos < 0 -> forall i. 0 <= i < a.length -> a[i] <> value }
= let ref low = 0 in
  let ref high = a.length in
  while low < high do
    variant { high - low }
    invariant { 0 <= low <= high <= a.length }</pre>
    invariant { forall k. 0 <= k < a.length -> a[k] = value -> low <= k < high }</pre>
                 (* low >= high -> a[k] <> value *)
    let ref mid = div (high + low) 2 in
    if a[mid] < value then low <- mid + 1
    else if value < a[mid] then high <- mid
    else (* value = a\lceil mid \rceil *) return mid
  done:
  -1
```

Case study: fast exponentiation

Compute an exponent of an integer using fewer multiplications:

- $|\log(n)|$ squares
- $|\log(n)|$ multiplications

Repeated squaring: to compute b^{2^n} , for some positive n, we compute a square n times (e.g. $3^{16} = 3^{2^4} = (3^2)^8 = 9^8 = (9^2)^4 = (81^2)^2 = 6561^2 = 43046721$).

Magical property:

$$x^{n} = \begin{cases} x \times (x^{2})^{\frac{n-1}{2}} & \text{if } n \text{ is odd} \\ \\ (x^{2})^{\frac{n}{2}} & \text{if } n \text{ is even} \end{cases}$$

Exponentiation as a pure function in Why3:

```
let rec function exp (x: int) (n: int) : int
  requires { n >= 0 }
  variant { n }
= if n = 0 then 1
  else x * exp x ( n - 1)
```

```
Now, the actual implementation:
let fast_exp (x: int) (n: int) : int
= let ref r = 1 in
  let ref c = x in
  let ref i = n in
  while i > 0 do
    variant { i }
    invariant { 0 <= i <= n }</pre>
    invariant { r * exp c i = exp x n }
    if mod i 2 <> 0 then begin
        r \leftarrow r * c;
        i <- i - 1
    end;
    c \leftarrow c * c;
    i <- div i 2;
  done;
  r
```

Now, the actual implementation + specification:

```
let fast exp (x: int) (n: int) : int
 requires { n >= 0 }
  ensures { result = exp x n }
= let ref r = 1 in
 let ref c = x in
 let ref i = n in
 while i > 0 do
   variant { i }
    invariant { 0 <= i <= n }</pre>
    invariant { r * exp c i = exp x n }
    if mod i 2 <> 0 then begin
        r <- r * c:
        i <- i - 1
    end;
    c \leftarrow c * c;
    i <- div i 2;
 done;
 r
```

```
while i > 0 do
   variant { ??? }
   invariant { ??? }
   invariant { ??? }
   if mod i 2 <> 0 then begin
        r <- r * c;
        i <- i - 1
   end;
   c <- c * c;
   i <- div i 2;
done;</pre>
```

```
while i > 0 do
   variant { i }
   invariant { ??? }
   invariant { ??? }
   if mod i 2 <> 0 then begin
       r <- r * c;
       i <- i - 1
   end;
   c <- c * c;
   i <- div i 2;
done;</pre>
```

```
while i > 0 do
  variant { i }
  invariant { 0 <= i <= n }
  invariant { ??? }
  if mod i 2 <> 0 then begin
      r <- r * c;
      i <- i - 1
  end;
  c <- c * c;
  i <- div i 2;
done;</pre>
```

```
while i > 0 do
   variant { i }
   invariant { 0 <= i <= n }
   invariant { r * exp c i = exp x n }
   if mod i 2 <> 0 then begin
        r <- r * c;
        i <- i - 1
   end;
   c <- c * c;
   i <- div i 2;
done;</pre>
```

Fast exponentiation – auxiliary lemma

Magical property:

$$x^{n} = \begin{cases} x \times (x^{2})^{\frac{n-1}{2}} & \text{if } n \text{ is odd} \\ \\ (x^{2})^{\frac{n}{2}} & \text{if } n \text{ is even} \end{cases}$$

Auxiliary lemma:

```
let rec lemma exp_lemma (x n: int)
  requires { n >= 0 }
  variant { n }
  ensures { mod n 2 = 0 -> exp x n = exp (x * x) (div n 2) }
  ensures { mod n 2 <> 0 -> exp x n = x * exp (x * x) (div (n-1) 2) }
=
```

21

Fast exponentiation – auxiliary lemma

Magical property:

$$x^{n} = \begin{cases} x \times (x^{2})^{\frac{n-1}{2}} & \text{if } n \text{ is odd} \\ \\ (x^{2})^{\frac{n}{2}} & \text{if } n \text{ is even} \end{cases}$$

Auxiliary lemma:

```
let rec lemma exp_lemma (x n: int)
  requires { n >= 0 }
  variant { n }
  ensures { mod n 2 = 0 -> exp x n = exp (x * x) (div n 2) }
  ensures { mod n 2 <> 0 -> exp x n = x * exp (x * x) (div (n-1) 2) }
  eif mod n 2 = 0 && n > 1 then exp_lemma x (n - 2);
  if mod n 2 <> 0 && n > 1 then exp_lemma x (n - 2)
```

Case study: the McCarthy 91 function

McCarthy 91 function

$$M(n) = \left\{ \begin{array}{ll} n-10 & \text{if } n > 100 \\ \\ M(M(n+11)) & \text{if } n \leq 100 \end{array} \right.$$

Interesting facts:

- M(n) = 91, forall $n \le 100$
- M(n) = n 10, forall n > 100.

(Homework: prove this by induction on n.)

A recursive implementation in Why3:

Sorting algorithms

Sorting – rationale

Sorting algorithms often iteratively traverse the data structure gradually sorting its elements.

Loop invariants capture the transient status of the sorting algorithm.

We illustrate that using Selection sort.

Selection sort

Selection sort – implementation

```
let selection_sort (a: array int)
  let min = ref 0 in
  for i = 0 to length a - 1 do
    min := i;
    for j = i + 1 to length a - 1 do
      if a[j] < a[!min] then min := j</pre>
    done;
    label L in
    if !min <> i then swap a !min i;
  done
```

Selection sort – specification

```
let selection_sort (a: array int)
  ensures { sorted a
  let min = ref 0 in
  for i = 0 to length a - 1 do
    (* a[0..i[is sorted; now find minimum of a[i..n[*)]
    invariant { sorted sub a 0 i /\
        forall k1 k2: int. 0 \le k1 \le i \le k2 \le length a \rightarrow a[k1] \le a[k2]
    min := i:
    for j = i + 1 to length a - 1 do
      invariant {
        i <= !min < j && forall k: int. i <= k < j -> a[!min] <= a[k] }
      if a[j] < a[!min] then min := j</pre>
    done:
   label L in
    if !min <> i then swap a !min i;
  done
```

A digression on run-time errors

Some operations can fail if their safety preconditions are not met:

- arithmetic operations: division par zero, overflows, etc.
- memory access: NULL pointers, buffer overruns, etc.
- assertions

A correct program must not fail:

 $\{P\}\ e\ \{Q\}$ if we execute e in a state that satisfies P, then there will be no run-time errors and the computation either diverges or terminates normally in a state that satisfies Q

A new kind of expression:

```
e ::= \dots
| assert R fail if R does not hold
```

The corresponding weakest precondition rule:

$$\operatorname{WP}(\operatorname{\mathtt{assert}} R,Q) \ \equiv \ R \wedge Q \ \equiv \ R \wedge (R \to Q)$$

The second version is useful in practical deductive verification.

Selection sort – not quite done yet!

What if selectionSort just fills the array with zeros?

The specification we wrote is still provable!

The need for a better specification:

- the elements of the sorted array
- are a permutation of the
- elements in the input array

Selection sort – a complete specification

```
let selection sort (a: array int)
  ensures { sorted a /\ permut_all (old a) a }
  let min = ref 0 in
  for i = 0 to length a - 1 do
    (* a[0..i[is sorted; now find minimum of a[i..n[*)]
    invariant { sorted_sub a 0 i /\ permut_all (old a) a /\
        forall k1 k2: int. 0 \le k1 \le i \le k2 \le length a \rightarrow a[k1] \le a[k2]
    min := i:
    for j = i + 1 to length a - 1 do
      invariant {
        i <= !min < j && forall k: int. i <= k < j -> a[!min] <= a[k] }
      if a[j] < a[!min] then min := j</pre>
    done:
   label L in
    if !min <> i then swap a !min i;
  done
```

Selection sort – permutation of elements

Notation old a:

- the elements of the array at function call point
- the pre-state

Verification with bounded integers

Back to binary search

```
predicate sorted (a: array int)
= forall i j. 0 <= i <= j < a.length -> a[i] <= a[j]</pre>
let bin search (a: array int) (value: int) : (pos: int)
  requires { 0 <= a.length /\ sorted a }</pre>
  ensures { 0 <= pos -> pos < a.length /\ a[pos] = value }</pre>
  ensures { pos < 0 -> forall i. 0 <= i < a.length -> a[i] <> value }
= let ref low = 0 in
  let ref high = a.length in
  while low < high do
    variant { high - low }
    invariant { 0 <= low <= high <= a.length }</pre>
    invariant { forall k. 0 <= k < a.length -> a[k] = value ->
                  low \le k < high 
    let ref mid = div (high + low) 2 in
    if a[mid] < value then low <- mid + 1
    else if value < a[mid] then high <- mid
    else (* value = a\lceil mid \rceil *) return mid
  done:
  -1
```

A famous bug

In (high + low) / 2, what happens if

- high == MAX_INT
- low == MAX_INT 1?

INTEGER OVERFLOW!

Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts are Broken

Joshua Bloch, Software Engineer (02/06/2006)

So, have we been proving erroneous programs?

Verification and Arithmetic

Until now all our proofs have assumed mathematical integers

unbounded arithmetic

Our reasoning is sound, provided the code executes using arbitrary precision integers.

- why3 extract -D ocam164 bin_search.mlw
- Use an external library of arbitrary precision integers

What if we want to use 32-bit or 64-bit integers?

What do we know about our implementations?

- Overflow?
- What happens? (Modulo arith., saturated arith., abrupt termination, etc.)

Verification with Machine Integer

Goal: prove that a program is safe with respect to overflows.

32-bit signed integers in two-complement representation: integers between -2^{31} and $2^{31}-1$.

If the mathematical result of an operation fits in the range, that is the computed result.

Otherwise, an overflow occurs:

• Behavior depends on language and environment.

A program is safe wrt overflow if no overflow can occur.

Verification with Machine Integers

Idea: Replace all arith. operations by methods with preconditions.

```
x+y becomes int32_add(x, y), and so on:
```

```
let int32_add (x y: int) : int
  requires { -2_147_483_648 <= x+y <= 2_147_483_647 }
  ensures { r = x+y }
= x+y</pre>
```

Not great: range constraints of integer must be added explicitly everywhere...

Verification with Machine Integers

Better Idea: Replace int with a range type int32:

```
type int32 = < range -0x8000_0000 0x7fff_fffff >
function to_int (x : int32) : int = int32'int x
```

The to_int function is a projection back to int.

Why3 features other models of precision: Int63, Int64, UInt64, etc.

Can even replace operations by custom methods:

```
predicate in_bounds (n:int) = min <= n <= max

val (+) (a:int32) (b:int32) : int32
  requires { [@expl:integer overflow] in_bounds (a + b) }
  ensures { result = a + b }</pre>
```

Beware! There is an implicit conversion from int32 to int.

Binary Search – Overflow

```
predicate sorted (a: array int32)
= forall i j. 0 <= i <= j < a.length -> a[i] <= a[j]</pre>
let bin_search (a: array int32) (value: int32) : (pos: int32)
  requires { 0 <= a.length /\ sorted a }</pre>
  ensures { 0 <= pos -> pos < a.length /\ a[pos] = value }</pre>
  ensures { pos < 0 -> forall i. 0 <= i < a.length -> a[i] <> value }
= let ref low = 0:int.32 in
  let ref high = a.length in
  while low < high do
    variant { high - low }
    invariant { 0 <= low <= high <= a.length }</pre>
    invariant { forall k. 0 <= k < a.length -> a[k] = value ->
                  low <= k < high }
    let ref mid = (high + low) / (2:int32) in
    if a[mid] < value then low <- mid + 1
    else if value < a[mid] then high <- mid
    else (* value = a\lceil mid \rceil *) return mid
  done:
  -1
```

Binary Search – No Overflow

```
predicate sorted (a: array int32)
= forall i j. 0 <= i <= j < a.length -> a[i] <= a[j]</pre>
let bin_search (a: array int32) (value: int32) : (pos: int32)
  requires { 0 <= a.length /\ sorted a }</pre>
  ensures { 0 <= pos -> pos < a.length /\ a[pos] = value }</pre>
  ensures { pos < 0 -> forall i. 0 <= i < a.length -> a[i] <> value }
= let ref low = 0:int.32 in
  let ref high = a.length in
  while low < high do
    variant { high - low }
    invariant { 0 <= low <= high <= a.length }</pre>
    invariant { forall k. 0 <= k < a.length -> a[k] = value ->
                  low <= k < high }
    let ref mid = low + (high - low) / (2:int32) in
    if a[mid] < value then low <- mid + 1
    else if value < a[mid] then high <- mid
    else (* value = a\lceil mid \rceil *) return mid
  done:
  -1
```

Verification with Machine Integers

Caveat: Reasoning with machine integers in this way is challenging.

What if we want to reason with overflow?

Do we really need to always prove absence of overflow?

```
let incr (x: int32) : int32
= x + 1
```

If some variable c

- is initially set to 0
- is only incremented using method incr
- it would take 584 years to reach overflow.

Verification with Machine Integers

Caveat: Reasoning with machine integers in this way is challenging.

What if we want to reason with overflow?

Do we really need to always prove absence of overflow?

```
let incr (x: int32) : int32
= x + 1
```

A solution: "How to avoid proving the absence of integer overflows".

M. Clochard, J-C. Filliâtre, and A. Paskevich (VSTTE 2015).
General idea:

- only require the absence of overflow during the first n steps
- *n* being large enough for all practical purposes.