10 Cuestiones de TEORIA (6 puntos) . Puntuación: BIEN:+0.6 puntos. MAL: -0.15 puntos, N.C: 0

- En el circuito con diodos de la figura, y para los datos que se indican, señale la respuesta VERDADERA. DATOS: Ve = 8V; V1= 2V; Diodo D1: Vy = 0.7V
 - [A] Vs = 0V
 - [B] Vs = 2V
 - [C] Vs = 2.7V
 - D La corriente por las dos resistencias es idéntica, ya que forman un divisor

I= I(+I)

V= = 51/

1

Fo R2

FO R2

FO R2

FO Sat

del diodo: Vs = V1 + Vr = 2 +0.7 = 2.2V

En el circuito de la figura hay dos subcircuitos digitales hechos con diodos, transistores y resistencias: el 1), con entradas A y B, y salida C; y el 2), con entrada D, y salida F. Suponiendo que se conecta C y D, señale la respuesta FALSA:

DATOS: V_{γ} = 0.7V (para todos los diodos); V_{BEON} = 0.7V , V_{CESAT} = 0.2V (para el transistor).

- [A] Cuando las entradas son A = B = "1" (5V), entonces $V_C = V_D = 1.4V$.
- [B] Cuando D1 y/o D2 conduce, entonces no puede conducir ni D3 ni el transistor.
- [C] Cuando A ="1" y B = "0", $V_F = 0.2V$.
- [D] El circuito en conjunto actúa como una puerta NAND de las entradas.
- Se tiene un transistor bipolar de silicio NPN en un circuito que se encuentra polarizado en la región de saturación y su corriente de colector es de 25mA. Indique cuál de las siguientes afirmaciones respecto a este 0.5 + VCE = VCB + VBE + VCB = VCE - VBE VCB = 0.2 - 0.7 = -0.5 V transistor es FALSA:

DATOS: V_{BEON}=0.7V; V_{CESAT}=0.2V

- [A] Su corriente de colector es: $I_C = I_{E}-I_B$
- [B] Su corriente de colector es: $I_C < \beta \times I_B$
- [C] Su tensión colector-base es: V_{CB} = 0.5V
- [D] La potencia que disipa el transistor (P = $I_C \times V_{CE}$) tiene un valor de 5mW, aproximadamente.

- El circuito de la figura puede ser utilizado como un inversor lógico, con entradas de tensión de 0V y 5V correspondientes al "0" y al "1" lógicos, respectivamente. ¿Cuál será el valor mínimo que deberá tener R2 para que el circuito trabaje correctamente en conmutación? (es decir, que pueda alcanzar la saturación)
 - [A] $R2_{MIN} = 0.5k\Omega$
 - [B] $R2_{MIN} = 1k\Omega$
 - [C] $R2_{MIN} = 2k\Omega$
 - [D]) $R2_{MIN} = 3k\Omega$
- β: 100 R1= $270k\Omega$
 - Vcc= 5V

Datos:

 V_{BEON} = 0.7, V_{CESAT} =0.2V

VI=OV -> T CORTE -> UCE = 5 V

 $I_{B} = \frac{5-0.7}{290} \approx 0.016 \text{ mA} \rightarrow \text{ en el l'unite con saturaciai},$ $\beta I_{B} = I_{CMT} \rightarrow 16 = \frac{5-0.2}{R_{2}} \rightarrow R_{2} = 3k_{D}$ $\beta ara R_{2} \geqslant 3k_{D} \rightarrow sat$

Acerca del transistor MOSFET, señale la respuesta FALSA.

- [A] En la zona óhmica, la corriente varía cuadráticamente en función de V_{GS} $\mathcal{Z}_{K}(\mathcal{V}_{GS} \mathcal{V}_{T})$
- Los transistores MOSFET de canal N son más rápidos en la conmutación debido a que los electrones tienen mayor movilidad que los huecos.
- Para evitar la ruptura de la capa thinox del transistor, se suele utilizar un circuito recortador a dos niveles en el terminal de puerta, diseñado con diodos.
- En los transistores PMOS, a partir de un determinado potencial negativo en V_{GS} se forma el canal por acumulación de huecos, lo que permite la conducción cuando V_{DS} <0.

- Dadas las curvas del transistor MOSFET con las zonas (A,B,C,D) indique la respuesta FALSA.
- [A] En conmutación, el transistor funcionaría alternativamente entre las zonas A y D
 - En la zona B, el transistor se comporta como una resistencia variable en función de V_{GS}.
- [C] En la zona B, cerca del origen, podemos usar la expresión óhmica aproximada: I_{DS}≈2K(V_{GS}- V_T)V_{DS}
- [D] La parábola que delimita las zonas C y D viene dada por la expresión V_{DS} = V_{GS}-V_T

Comminai: entre A (corte) y & (Rineal)

- En el circuito de polarización de la figura, indique la afirmación CORRECTA sobre el punto Q del transistor MOSFET. Parámetros del transistor: $V_T = 2V$, $K = 2mA/V^2$
- [A] $V_{GS} = 6V$, $I_{DS} = 8mA$, $V_{DS} = 2V$
- [B] El transistor está cortado, pues la corriente de puerta es 0.
- [C] $V_{GS} = 4V$, $I_{DS} = 9mA$, $V_{DS} = 1V$
- [D]) $V_{GS} = 4V$, $I_{DS} = 8mA$, $V_{DS} = 2V$

Vos = Von - Fos RD Vos = 10 - (8 x 1) = 2V YOS > VGS - V7 -> OK, Sab.

En las tablas adjuntas se indican algunas de las características eléctricas de dos familias lógicas genéricas A y B. A partir de ellas, indique la respuesta CORRECTA (la notación X→Y indica salida X conectada a entrada Y):

	Fami	lia A		
V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}	
2 V	0.8 V	2.7 V	0.5 V	
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}	
20 μΑ	- 0.36 mA	-400 μA	8 mA	
	Fami	ilia B		
V_{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}	
2 V	0.8 V	2.4 V	0.4 V	
I_{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}	
40 µA	- 1.6mA	-400 μA	16 mA	

- [A] El margen de ruido A→B es de 0.7 V. ~0.3 V
- [B] El fan-out A→B es de 20. 5
- [C] El fan-out B→A es de 44. —
- [D] El margen de ruido B→A es de 0.4V.

NMB>A { NML = VILMAZ - Volumez = 0.8-0.4 = 0.41 NMB = VOKING - VIHUNG = 2.4-2=0.41 NMB = = min (NML, NMH) = 0.4V

Queremos conectar una salida TTL de colector abierto con una entrada CMOS alimentada a 12 V. Indique la respuesta correcta:

Familia A (TTL colector abierto)						
V_{OLmax}	I _{OHmax (fugas)}	I _{OLmax}				
0.4 V	100 μΑ	24 mA				

F	Familia B (CMOS +12V)						
V_{IHmin}	V _{IHmin} V _{ILmax} I _{IHmax} I _{ILmax}						
8.4 V	3.6 V	10 pA	-10 pA				

[A]

Tenemos que añadir una resistencia de pull-up conectada entre la salida y 12 V.

[B] La conexión puede ser directa.

Se necesita un buffer TTL para poder suministrar la corriente necesaria en las entradas CMOS. [C]

Tenemos que añadir una resistencia de pull-up conectada entre la salida y 5 V. [D]

10. Dado el siguiente circuito secuencial síncrono, diseñado con puertas y un biestable D, señale la afirmación CORRECTA sobre la frecuencia máxima de funcionamiento:

Parámetros temporales: Biestables: (Set up: t_{su} = 5 ns, Hold: t_h = 2 ns, t_{phl} = 20 ns, t_{phl} = 18 ns), Puertas: (t_{phl} = 10 ns, $tp_{LH} = 8 \text{ ns}$).

[A] 22 Mhz

[B] 55 Mhz

[C] 40 Mhz

[D] 18 Mhz

Time = tpdberrable + tpd combracional + tsu todbiciable = max (tphe, toke) = 20 ms

tod combhacanal = 3 x tod querra = 3 x lons = 30ns

tpd puestA = máx (tpHL, tpLH) = lons

trus 5 mg

Truin = 20 + 30 + 5 = 55 mg

1 = 103 × 10 = 18 MHz

Hay gre adapter los "1"

Von ? SiHmin (comos)

- Como la salida TTA ya es

clecror abserto, no hace falta porrer

un buffer, basta con la R

(PÁGINA INTENCIONADAMENTE EN BLANCO)

Apellidos:

Soluciones

Nombre:

PROBLEMA (4 PUNTOS)

El circuito digital de la Figura 1, diseñado con transistores MOSFET, tiene dos entradas (A, B) y una salida (F).

Nota: En zona óhmica (lineal) utilice la expresión aproximada $R_{ON} \approx 1/(2K(V_{GS} - V_T))$

Pa	rámetros transistores:
V	r = 1 V
K	$= 1 \text{ mA/V}^2$

[A] **(0.5 Puntos)** Rellene la siguiente tabla de verdad e indique la expresión lógica de F en función de las entradas A y B.

В	F
0	1
1	1
0	1
1	0
	B 0 1 0 1

Figura 1

[B] (1.5 Puntos) Suponga que $V_A = V_B = 5V$ ("1" lógico).

Nota: como el circuito es digital, los transistores funcionan en commutación, entre corte y zona lineal (R_{on}).

 Dibuje el circuito eléctrico equivalente (sustituya cada transistor por R_{on} o un interruptor abierto) y realice los cálculos necesarios para completar la tabla siguiente. Considere la misma R_{on} para los dos transistores.

Ron 2 $\frac{1}{2\times 1(5-1)} = 0.125 \times R$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ Ron 3 $\frac{3}{2}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{5\times 2Rau}{(10+2Rau)} = \frac{1.25}{10+0.25} = 0.42 \text{ V}$ $V_F = \frac{1.25}{10+0.25} =$

• Complete la siguiente tabla sobre el funcionamiento del circuito.

$R_{on}(k\Omega)$	Zona T1	Zona T2	V _F (Volt)	Consumo estático (mW)
0.125	lineal	loneal	0.12	2.45

[C] (1.2 Puntos) Suponga que se modifica el circuito del apartado A) como se muestra en la Figura 2.

C.1) (0.2 Puntos) Indique el tipo de salida del circuito:

Drenados abierso

C.2) (0.5 Puntos) Suponga que se conectan 2 circuitos como el anterior, tal y como muestra la Figura 3. Indique la expresión lógica de F en función de las entradas (A, B, C, D). Justifique brevemente la respuesta.

$$F: ano-cableada de las salidas Observe que T3
 $F: F: F: F: \overline{A\cdot B} \cdot \overline{(\overline{C\cdot D})} = (A\cdot B) \cdot \overline{(C\cdot D)}$ inorierre la Nand$$

C.3) (0.5 Puntos) Calcule el rango de Rpu (Rpu_{min} ≤ Rpu ≤ Rpu_{max}). Utilice los siguientes parámetros del fabricante:

 V_{OLmax} = 0.5V, V_{OHmin} = 4.5V, I_{OLmax} = 24mA, I_{OHmax} (fugas) = 100 μ A

$$\frac{5 - Volmax}{Jolmax} \leq Rpu \leq \frac{5 - Vollmin}{2x Johnax}$$

$$\frac{5 - 0.5}{24} \leq Rpu \leq \frac{5 - 4.5}{0.2}$$

[D] (0.8 Puntos) Se desea controlar el encendido de un LED con el circuito digital de la Figura 2. Complete el esquema de la figura adjunta y calcule los elementos externos necesarios.

El LED se alimenta a +20V y tiene las siguientes características: I_{LED} = 20mA; V_{LED} = 2V.

A

DNI

0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9

			_		_		
_	TS I	N	L	200		C	7
_	I J	IV				U	U

Examen Primer parcial - 25/04/2016

Apellidos Solucy bues

Nombre

Marque así

Así NO marque

NO BORRAR, corregir con Typex

1	a —	b	C	d
2	a	b	C	d
3	a	b	C	d
4	a	b	c	d
5	a	b	С	d
6	a ===	b	С	d
7	a	b	c	d ===
8	a	b	c	d ===
9	a ====	b	С	d

B

DNI

0	O	0	0	O	0	O	O
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9

ETSINF - Tco

Examen Primer parcial - 25/04/2016

Apellidos Johnson

Nombre

Marque así

Así NO marque

NO BORRAR, corregir con Typex

1	a —	b	C	d
2	a	b	C	d
3	a	b	C	d
4	a = 3	b	С	d
5	a	b	С	d ===
6	a	b	С	d ===
7	a	b	С	d
8	a	b	С	d
9	a	b	С	d ====

