Operations on Functions I

- * If $f:A \to B$ is any function and $C \subset A$ a subset, then we can define the restriction $f|_{C}$ as the function $f|_{C}:C \to B$ with $f|_{C}(w) = f(a)$ for $a \in C$.
- * For two functions $f: A \rightarrow B$ and $g: B \rightarrow C$ we can define the composition 90 f as the function 90 f: $A \rightarrow C$ with 90 f (a) = g (f(a)), L "g after f"
- * For any set D and functions $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R} \setminus \{0\}$ we can define the quotient $\frac{f}{g}$ as the function $\frac{f}{g}: D \to \mathbb{R}$ with $\frac{f}{g}(n) = \frac{f(n)}{g(n)}$.

Remarks:

* A restriction of the domain does not change the function values.

* In general got & fog. Sometimes only one of the two is defined.

* In a quotient $\frac{d}{g}$ it is important that the range of g does not contain 0, because $\frac{d}{g}(n) = \frac{f(n)}{g(n)}$ is not defined at any point n with g(n) = 0.

This is why we require $g: D \to R \setminus \{0\}$ with codomain $|R \setminus \{0\}|$.

Examples

Formider the function $h: R\setminus \{0\} \to R\setminus \{0\}$ $R \mapsto \frac{1}{R}$ and the set $D = \{R \in R \mid R > 0\}$. The graph of $h|_{D}$ is a part of the graph of h,

* For the functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ we can define $n \mapsto \min(n)$ $n \mapsto \min(n)$ $n \mapsto n^2 + 1$ $\frac{f}{g}(n) = \frac{f(n)}{g(n)} = \frac{-\sin(n)}{n^2 + 1} \quad \text{for all } n \in \mathbb{R}, \text{ because } g(n) \neq 0 \text{ for all } n \in \mathbb{R}, \text{ i.e. o is not in the range of } g.$

* For
$$f$$
, g and has before we can write the quotient $\frac{f}{g}$ as a composition: $\frac{f}{g} = f \cdot (h \circ g)$,

because
$$(f \cdot (h \circ g))(n) = f(n) \cdot (h \circ g)(n)$$

$$= f(n) \cdot h(g(n))$$

$$= f(n) \cdot \frac{1}{g(n)} = \frac{f(n)}{g(n)}$$

$$= \frac{nin(n)}{n^2+1}$$

In fact, we have quite generally $\frac{1}{q} = b \cdot (h \circ q)$ for functions fund g with $h(u) = \frac{1}{\kappa}$.

Intervals

Many subsets of R can ricely be written in terms of intervals.

An interval I is a subset of R with the following property;

if a \in I and b \in I and if c \in R lies between a and b, then c \in I,

i.e. (a< cand c< l) or (b< c and c< a)

Examples

* { RER | n > 0 and n < 5}

endpoints not included

* $\{n \in \mathbb{R} \mid n \geq -3 \text{ and } n \leq -1\}$

endpoints included

* { $u \in \mathbb{R} | u^2 > 1$ } is not an interval because it has a gap

Lyap

(1) its endpoints
(2) whether the endpoints are included or not, an interval is characterized by:

Notation for intervals!

For a & R and b & R with a < b we write

(a, b) for { u \in R | u > a and u < b } endpoints not included, one interval

[a,b] for $\{R \in \mathbb{R} \mid R \geq a \text{ and } R \leq b\}$ endpoints included, closed interval

for {nell nea and nel} (a,b] for {nER | n>a and n \le b} one endpoint included, half open interval

When a = b we also write [a, a] = {a} aut containing only one point. We also use the following notations: for ER

 $(-\infty, a) = \{n \in \mathbb{R} \mid n < a\}$ an open interval

 $(-\alpha, \alpha] = \{n \in \mathbb{R} \mid n \leq \alpha\}$ a closed interval

 $(a, s) = \{ a \in \mathbb{R} | a > a \}$ an open interval

[a,es) = {REIR | 22a} a closed interval

 $(-\infty,\infty) = \mathbb{R}$ an open and closed interval

Remarks

as and -as denote infinity and regative infinity. These are not numbers in R. Note that as and -as are never included in an interval.