



### **Machine Learning**

Problemas de Clasificación

Jose Luis Paniagua Jaramillo jlpaniagua@uao.edu.co





- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias





- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  Astrin de Carforión
  - Matriz de Confusión
- Referencias





- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias





- La clasificación es un tipo de aprendizaje supervisado, donde el obietivo es predecir resultados con valores discretos (variables categóricas o etiquetas).
- Con base en datos pasados, se busca predecir la categoría o clase a la cual pertenece un dato nunca antes visto.

### Ejemplo

#### filtro de correos spam.

Podemos entrenar un modelo con un lote de correos electrónicos etiquetados debidamente como spam y no spam para predecir si un nuevo correo que llega pertenece a una categoría o la otra.



#### Clasificación Binaria



#### Datos:

- clase 1: círculos.
- clase 2: cruces.
- 18 datos(training samples) para cada una de las clases

- Cuando la tarea de clasificación requiere clasificar 2 clases, el problema se denomina Clasificación Binaria.
- Cuando la tarea de clasificación requiere clasificar 3 o mas clases, el problema se denomina Clasificación Multiclase.
- Cuando los datos se pueden separar por una recta, el problema se denomina ademas Linealmente Separable

#### ACREDI NonMA Occadente











- Estos algoritmos permiten realizar clasificación binaria.
- Estos algoritmos naturalmente estan diseñados para clasificar datos que se pueden separar linealmente. Sin embargo, se pueden modificar para clasificar datos separables de forma no lineal.





- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias

### Perceptron I







$$X = [x_0, x_1, \dots, x_n]$$

$$W = [w_0, w_1, \dots, w_n]$$

$$f(w, x) = \sum_{i=1}^n w_i x_i = W^T X$$

$$output = \begin{cases} 1, & f(w, x) \ge 0 \\ 0, & f(w, x) < 0 \end{cases}$$

#### Algoritmo de Aprendizaje

El entrenamiento del perceptron se realiza mediante la función de costo MSE y el Gradiente Descendente.

## Perceptron II





Ejemplo:

Haberman's Survival Data Set

https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival







- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias

### Logistic Regression I







$$X = [x_0, x_1, \dots, x_n]$$
$$W = [w_0, w_1, \dots, w_n]$$

$$SUM = \sum_{i=1}^{n} w_i x_i = W^T X$$

### Sigmoid:

$$output = \frac{1}{1 + e^{w^T x}}$$

La regresión logisitca se usa para estimar la probabilidad de que un dato pertenezca a una clase en particular.

# Logistic Regression II





#### Sigmoid Funtion

$$\hat{p} = h_W(X) = \frac{1}{1 + e^{-t}} = \sigma(t)$$



La Regresión Logisitca toma como entrada una combinación lineal de las variables y genera como salida un valor numérico entre 0 v 1.

$$\hat{\mathbf{y}} = \begin{cases} 0 & \text{if } \hat{p} < 0.5\\ 1 & \text{if } \hat{p} \ge 0.5 \end{cases}$$

# Logistic Regression III





### Algoritmo de Aprendizaje

La función de costo para la regresión logística es una función probabilistica.

$$c(\mathbf{w}) \begin{cases} -log(\hat{p}) & \text{if } y = 1 \\ -log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$$

 La función de costo es convexa, lo cual garantiza que el Gradiente Descendente puede encontrar el mínimo global.

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} log(\hat{p}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{p})]$$

## Logistic Regression IV



Ejemplo:

banknote authentication Data Set

 $\verb|https://archive.ics.uci.edu/ml/datasets/banknote+authentication|\\$ 







- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias

# Support Vector Machine (SVM) I







- El objetivo es encontrar un margen de separación, cuyo ancho queda determinado por los datos mas cercanos de cada clase.
- La linea que maximiza el margen es la optima para el modelo.





### Algoritmo de Aprendizaje

 La función de costo de una SVM surge de la distancia entre los planos que definen el margen de la frontera de decision.

$$w_0 + w^T x_{pos} = 1$$
  
 $w_0 + w^T x_{neg} = -1$   
 $w^T (x_{pos} - x_{neg}) = 2$   
 $\frac{w^T (x_{pos} - x_{neg})}{||w||} = \frac{2}{||w||}$ 

El objetivo es maximizar la distancia (margen) entre los planos negativo y positivo.

# Support Vector Machine (SVM) III



Ejemplo:

Pima Indians Diabetes Dataset

#### https:

 $// {\tt raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv} \\$ 



# Support Vector Machine (SVM) IV





#### Hiperparametros

Son valores de configuraciones utilizadas durante el proceso de entrenamiento de un modelo de aprendizaje automático.





$$C = 100$$

$$C = 1$$





- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias

#### Kernel SVM I







Un clasificador lineal solo puede separar puntos por medio de una linea recta.

#### Kernel SVM II





Una forma de utilizar clasificadores lineales para problemas no linealmente separables es añadir mas variables a partir de las ya existentes pero aumentando su grado.





$$X_2 = X_1^2$$

#### Kernel SVM III





#### kernel trick

el *kernel trick* hace posible obtener los mismos resultados que se obtienen al añadir mas variables (polynomial features)









- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias





- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias

#### Matriz de Confusión I







- TN: true negatives es el numero de datos clasificados por el modelo como negativos y son realmente negativos.
- FN: false negatives es el numero de datos clasificados por el modelo como negativo, pero son realmente positivos.
- TP: true positives es el numero de datos clasificados por el modelo como positivos y son realmente positivos.
- FP: false positives: es el numero de datos clasificados por el modelo como positivos y son realmente negativos.

### Matriz de Confusión II





#### **Precision**

Mide la precisión de las predicciones positivas.

$$precision = \frac{TP}{TP + FP}$$

### Recall (sensibilidad)

Mide la proporción de instancias positivas que el clasificador detecta correctamente

$$recall = \frac{TP}{TP + FN}$$

#### Matriz de Confusión III





### Ejemplo:

Para el modelo kernel sym y los datos no linealmente separables calcular:

- La Matriz de Confusión
- La Precisión
- La Sensibilidad





- Problemas de Clasificación
  - Clasificación
  - Perceptron
  - Logistic Regression
  - SVM
  - Kernel SVM
- Medidas de Desempeño
  - Matriz de Confusión
- Referencias

#### Referencias







#### Aurélien Géron.

Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O'Reilly Media, 2019.

https://scikit-learn.org/stable/index.html