Feuille d'exercices : réduction d'endomorphismes

Exercice 1 (Existence valeur propre) Soit la matrice

$$A = \left(\begin{array}{ccc} 1 & 3+a & 1\\ 0 & 1 & 3+a\\ 1 & 0 & -1 \end{array}\right).$$

Existe-t-il un réel a tel que la matrice ait 1 comme valeur propre?

Exercice 2 (Vrai/faux)

- 1. En dimension finie, un endomorphisme admet un nombre fini de vecteurs propres.
- 2. Si A est diagonalisable, alors A^2 est diagonalisable.
- 3. Si A^2 est diagonalisable, alors A est diagonalisable.
- 4. Tout endomorphisme d'un espace vectoriel réel de dimension impaire admet au moins une valeur propre.
- 5. La somme de deux matrices diagonalisables est diagonalisable.

Exercice 3 (Diagonalisation de matrices) Diagonaliser les matrices suivantes :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}.$$

On donnera aussi la matrice de passage de la base canonique à la base de vecteurs propres.

Exercice 4 (Diagonalisation 2x2) Soit $A = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{R})$. Donner une condition nécessaire et suffi-

sante pour que A soit diagonalisable.

Exercice 5 (Application à des suites récurrentes) Soit A la matrice $\begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$.

- 1. Diagonaliser A.
- 2. Calculer A^n en fonction de n.
- 3. On considère les suites (u_n) , (v_n) et (w_n) définies par leur premier terme u_0 , v_0 et w_0 et les relations suivantes :

$$\begin{cases} u_{n+1} &= -4u_n - 6v_n \\ v_{n+1} &= 3u_n + 5v_n \\ w_{n+1} &= 3u_n + 6v_n + 5w_n \end{cases}$$

pour
$$n \ge 0$$
. On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$. Exprimer X_{n+1}

en fonction de A et X_n . En déduire u_n , v_n et w_n en fonction de n.

Exercice 6 (Racine cubique) Soit $A = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$.

Montrer que A est diagonalisable et calculer ses valeurs propres. En déduire qu'il existe une matrice B telle que $B^3 = A$.

Exercice 7 (Sans calcul) Soit la matrice $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{pmatrix}$

$$\left(\begin{array}{ccccc} 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{array}\right).$$

- 1. Déterminer, sans calculer le polynôme caractéristique, les valeurs propres de A. A est-elle diagonalisable?
- 2. Plus généralement, donner une condition nécessaire et suffisante pour qu'une matrice de rang 1 soit diagonalisable.

Exercice 8 (Puissance n-ième) Soit A la matrice suivante :

$$A = \left(\begin{array}{rrr} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{array}\right).$$

- 1. Démontrer que A est diagonalisable et donner une matrice P inversible et une matrice D diagonale telles que $A = PDP^{-1}$.
- 2. En déduire la valeur de A^n pour tout $n \in \mathbb{N}$.

Exercice 9 (Diagonalisation dans \mathbb{C}) Soit R_{θ} la matrice suivante :

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Diagonaliser R_{θ} dans le corps des complexes.

Exercice 10 (Sous-espaces stables et endomorphismes qui commutent) Soit E un \mathbb{K} -espace vectoriel et u, v deux endomorphismes de E.

1. Démontrer que si $u \circ v = v \circ u$, alors Im(u) et $\ker(u)$ sont stables par v.

Exercice 11 (Diagonalisation d'un endomorphisme) Soit $n \in \mathbb{N}^*$. On pose, pour $P \in \mathbf{R}_n[X], \varphi(P) = P - (X+1)P'$.

- 1. Justifier que φ définit un endomorphisme de $\mathbf{R}_n[X]$.
- 2. Déterminer les valeurs propres de φ et justifier que φ est diagonalisable.

Exercice 12 Soit J la matrice de $M_n(\mathbb{R})$ définie par

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (1) & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

- 1. Déterminer un polynôme annulateur de J de degré 2.
- 2. Montrer que J est diagonalisable et déterminer ses valeurs propres (et leurs multiplicités).
- 3. En déduire la valeur du déterminant

$$\begin{vmatrix} a & & (b) \\ & \ddots & \\ (b) & & a \end{vmatrix}.$$

Exercice 13 Soit $A = \begin{pmatrix} -1 & 2 & 1 \\ 2 & -1 & -1 \\ -4 & 4 & 3 \end{pmatrix}$.

- 1. Calculer A^n .
- 2. Soit $U_0 = \begin{pmatrix} -2\\4\\1 \end{pmatrix}$ et $(U_n)_{n \in \mathbb{N}}$ définie par la relation $U_{n+1} = AU_n$. Calculer U_n en fonction de n.
- 3. Soit $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$. Résoudre le système différentiel $\frac{\mathrm{d}X}{\mathrm{d}t} = AX.$

Exercice 14 (Trigonalisation) Soit $A = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}$

- 1. Calculer le polynôme caractéristique de A.
- 2. Trigonaliser A.

Exercice 15 (Géométrie) Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ la symétrie orthogonale par rapport à la première bissectrice. Déterminer géométriquement les vecteurs propres, les valeurs propres, la trace et le déterminant de f.

Exercice 16 (Endomorphisme nilpotent) Soit f un endomorphisme nilpotent (c'est-à-dire : il existe $p \in \mathbb{N}$ tel que $f^p = 0$). Montrer que f admet comme seule valeur propre 0. En déduire que si f est diagonalisable et nilpotent, alors f = 0.