ANNEXE FILTRAGE

- Fonctions de transfert -
- Schéma de filtres actifs -
- Abaques Bessel, Butherworth, Tchebycheff -

Tableau VI. - Fonctions de transfert et courbes de réponse en amplitude et temps de propagation des circuits élémentaires du 1° et du 2° ordres servant à la synthèse des filtres en cascade. Courbes de réponse Paramètres usuels Fonction de transfert $F(p) = V_2/V_1$ Type de filtre $\omega_0 = 1/a$ K2/4 1 Passe-bas ap + 1 Premier ordre ap $\tau = \frac{1}{1 + s^2 \omega^2}$ Passe-haut ap + 1 1/2/4 $\omega_0 = 1/a$ $\tau = \frac{2a}{1 + a^2 \omega^2}$ *ap* – 1 Passe-tout ap + 1 $Q = \sqrt{a/b}$ $\omega_0^2 = 1/a$ Passe-bas Deuxième ordre sans zéro de transmission $Q = \sqrt{a/b}$ $\omega_0^2 = 1/a$ ap^2 Passe-haut $\omega_m' \stackrel{.}{\approx} \omega_0$ $Q = \sqrt{s/b}$ $\omega_0^2 = 1/s$ $\omega_m = \omega_0$ $V_m = 1$ 14/41 bρ Passe-bande $ap^2 + bp + 1$ $Q = \sqrt{a/b}$ M/M $\omega_0^2 = 1/a$ $ap^2 - bp + 1$ Passe-tout $ap^2 + bp + 1$

 $Q = \sqrt{a/b}$

 $\omega_0^2 \equiv 1/a$

τ identique aux

filtres de 2° ordre

sans zéro de transmission

 $\frac{p^2 + \omega_{\infty}^2}{ap^2 + bp + 1}$

Passe-bas: ω₀ < ω_∞

Passe-haut:ω₀ > ω_∞

Réjecteur: $\omega_0 = \omega_\infty$

Deuxlema ordra avec zéro de transmission

Passe-bas Passe-haut

et

réjecteur

MM

Réjecteur

MA

Passe-bas

Passe-haut

Tableau VII. - Principe de réalisation d'un filtre en cascade.

Les cellules 1, 2, ... n/2 si n est pair et 1, 2, ... (n-1)/2 si n est impair sont des circuits biquadratiques dont les schémas les plus utiles sont donnés dans les tableaux VIII, IX et X et l'allure des réponses individuelles dans le tableau VI. Dans les tableaux XI à XXI figurent également les valeurs V_m et ω_m permettant d'effectuer un réglage précis, cellule par cellule. La demière cellule des filtres d'ordre n impair est un circuit du premier ordre dont le schéma est indiqué en @ (passe-bas), @ (passe-haut) et @ (passe-tout).

I filtre d'ordre a pair

II filtre d'ordre a impeir

Schéma de la cellule (n + 1)/2	- Fonction de transfert	Paramètres
V ₁ C ₁ V ₂	$\frac{V_2}{V_1} = \frac{1}{RC\rho + 1}$	RC ω₀ = 1
@ pesse-bas		
V ₁ Z _R V ₂	$\frac{V_2}{V_1} = \frac{RC\rho}{RC\rho + 1}$	RC ω ₀ = 1
(P passe-haut		
V_1 $\frac{R}{-\frac{1}{2}C}$ $\frac{1}{2}V_2$	$\frac{V_2}{V_1} = \frac{1 - RCp}{1 + RCp}$	$RC\omega_0=1$
© passa-tout		

Tableau VIII. - Filtres actifs du 2° ordre à un amplificateur opérationnel et à réaction positive.

- Les circuits (a) à (c) sont le plus simples possible (cellules de Sallen et Key). La variation de r permet d'ajuster (2) indépendamment de 000-
- Si $r_2 \ll R$, la dispersion de la valeur des éléments est de quelques Q^2 . Les sensibilités sont alors:
 - $S^{0}_{z_i}$ faibles (quelques unités au maximum), S^{0}_{A} proportionnelles à Q^{2} .
- Si r/R est augmenté, tout en restant faible devant l'unité, la dispersion des éléments est fortement réduite sans que les sensibilités $S_{z_i}^0$ ne soient trop augmentées (optimisation de Saraga, [l.b. 74] en Doc. E 3132).
- e Les circuits (d) à (d) (cellules de Sedra) sont plus complexes et nécessitent des composants appairés dans les doubles T. Il en résulte une plus faible sensibilité S_A^Q , qui devient de l'ordre de grandeur de Q, et une dispersion faible de la valeur des éléments (de l'ordre de grandeur de Q); mais les sensibilités S_{A}^Q sont augmentées et deviennent du même ordre de grandeur que Qde grandeur que Q.

Toutes les sensibilités $S^{\bullet 0}$ sont faibles (< 1).

Schémes	Fonction de transfert	Paramètres
Passo bes	$\frac{V_2}{V_1} = \frac{1 + \alpha}{R^2 C_1 C_2 p^2 + R p (2 C_2 - \alpha C_1) + 1}$	$R^{2}C_{1}C_{2}\omega_{0}^{2} = 1$ $\alpha = \frac{c_{2}}{c_{1}}$ $Q = \frac{\sqrt{C_{1}C_{2}}}{2C_{2} - \alpha C_{1}}$ Si $c_{2} = \alpha = 0$: $C_{1} = 4Q^{2}C_{2}$
V. SR. V.	$\frac{V_2}{V_1} = \frac{R_1 R_2 C^2 \rho^2 + C \rho (2R_1 - \alpha R_2) + 1}{R_1 R_2 C^2 \rho^2 + C \rho (2R_1 - \alpha R_2) + 1}$	$R_1 R_2 C^2 \omega_0^2 = 1$ $\alpha = \frac{r_2}{r_1}$ $Q = \frac{\sqrt{R_1 R_2}}{2 R_1 - \alpha R_2}$ Si $r_2 = \alpha = 0$: $R_1 = R_2/4$ Q
R, C A V, EC SR, V,	$\frac{V_2}{V_1} = \frac{(1+\alpha)R_2Cp}{R_1R_2C^2p^2 + Cp(3R_2 - \alpha R_1) + 1 + \frac{R_2}{R_1}}$	$R_1 R_2 C^2 \omega_0^2 = 1 + \frac{R_2}{R_1}$ $\alpha = \frac{r_2}{r_1}$ $Q = \frac{\sqrt{R_2 (R_1 + R_2)}}{3 R_2 - \alpha R_1}$ Si $r_2 = \alpha = 0$: $R_1 = (9 Q^2 - 1)$

	Tableau XI Filtres de Bessel.				
n and	Cellule	V _m	ω _m	$F^{-1}(p) = V_1/V_2$	
2	1			$0.6180 p^2 + 1.3616 p + 1$	
3	1 2		-	0,477 1 p^2 + 0,999 6 p + 1 0,756 p + 1	
4	1 2	1,02	0,768	0,388 9 p^2 + 0,774 2 p + 1 0,488 9 p^2 + 1,339 6 p + 1	
5	1 2 3	1,09	1,116	0,412 8 p^2 + 1,140 1 p + 1 0,324 5 p^2 + 0,621 5 p + 1 0,665 p + 1	
6	1 2 3	1,17	1,376	0,388 7 p^2 + 1,221 7 p + 1 0,350 4 p^2 + 0,968 6 p + 1 0,275 6 p^2 + 0,513 0 p + 1	
7	1° 2 -3 4	1,25	1,595	0,339 4 p^2 + 1,094 4 p + 1 0,301 0 p^2 + 0,830 3 p + 1 0,238 0 p^2 + 0,433 2 p + 1 0,593 p + 1	
8	1 2 3 4	1,34	1,787	0.316 1 p^2 + 1.111 2 p + 1 0.297 9 p^2 + 0.975 3 p + 1 0.262 1 p^2 + 0.720 2 p + 1 0.208 7 p^2 + 0.372 7 p + 1	
9	1 2 3 4 5	1,42	1,962	0.283 4 p^2 + 1.024 3 p + 1 0.263 5 p^2 + 0.871 0 p + 1 0.185 4 p^2 + 0.325 7 p + 1 0.231 0 p^2 + 0.631 9 p + 1 0.538 p + 1	

On remarque que les filtres de Bessel ont une courbe de réponse en bande passante pratiquement indépendante de l'ordre du filtre.

2:

فصييم سا

<i>n</i>	Cellule	V _m	w _{im}	$F^{-1}(p) = V_1/V_2$
2	1			$p^2 + 1,4142p + 1$
3	1 2	1,15	0,707	p ² + 1,000 0 p + 1 p + 1
4	1 2	1,41	0,840	$p^2 + 1.8477p + 1$ $p^2 + 0.7653p + 1$
5	1 2 3	1,70	0,899	$p^2 + 1.6180p + 1$ $p^2 + 0.6180p + 1$ p + 1
6	1 2 3	1,99	0,930	$p^2 + 1.931 8 p + 1$ $p^2 + 1.414 2 p + 1$ $p^2 + 0.517 6 p + 1$
7	1 2 3	1,02 2,30	0,471 0,949	$p^2 + 1,8019p + 1$ $p^2 + 1,2469p + 1$ $p^2 + 0,4450p + 1$ p + 1
8	1 2 3 4	1,08 2,61	0,618 0,961	$p^2 + 1,9615p + 1$ $p^2 + 1,6629p + 1$ $p^2 + 1,1111p + 1$ $p^2 + 0,3901p + 1$
9	1 2 3 4	1,15 2,92	0,707 0,969	$ \rho^2 + 1.8793 \rho + 1 $ $ \rho^2 + 1.5320 \rho + 1 $ $ \rho^2 + 1.0000 \rho + 1 $ $ \rho^2 + 0.3472 \rho + 1 $ $ \rho + 1 $

n	Cellule	V _m	ω _m	$F^{-1}(\rho) = V_1/V_2$
2	1	1,01	0.707	$0.301 \ 7 \ p^2 + 0.715 \ 8 \ p + 1$
3	1 2	· 1,44	1,104	$0,591 \ 8 \ p^2 + 0,573 \ 6 \ p + 1$ $1,031 \ p + 1$
4	1 2	2,24	1,091	0.751 8 p^2 + 0.397 2 p + 1 1,605 3 p^2 + 2.047 5 p + 1
5	1 2 3	3,32 1,09	1,067 0,505	0,836 8 p^2 + 0,278 7 p + 1 1,572 5 p^2 + 1,371 2 p + 1 1,855 p + 1
6	1 2 3	4,66 1,43	1,050 0,707	3,797 0 p^2 + 3,250 6 p + 1 0,885 4 p^2 + 0,203 1 p + 1 1,436 0 p^2 + 0,899 9 p + 1
7	1 2 3 4	6,25 1,04 1,91	1,038 0,315 0,801	0,915 3 p^2 + 0,153 4 p + 1 3,028 3 p^2 + 2,056 0 p + 1 1,327 6 p^2 + 0,623 7 p + 1 2,654 p + 1
8	1 2 3 4	8,09 2,50 1,30	1,030 0,855 0,517	6.867 5 p^2 + 4.417 8 p + 1 0.935 0 p^2 + 0.119 6 p + 1 1.251 7 p^2 + 0.456 1 p + 1 2.402 6 p^2 + 1.310 3 p + 1
9	1 2 3 4	1,67 10,19 1,03 3,18	0,631 1,024 0,228 0,890	2,009 8 p^2 + 0,894 4 p + 1 0,948 5 p^2 + 0,095 6 p + 1 4,966 5 p^2 + 2,711 2 p + 1 1,198 5 p^2 + 0,348 1 p + 1

n	Cettule	V _m '	ω _m	$F^{-1}(\rho) = V_1/V_2$
2		1,05	0,707	$0.659 5 p^2 + 0.940 2 p + 1$
3	1 2	1,78	0,972	0,875 3 p^2 + 0,548 3 p + 1 1,596 p + 1
4	1 2	2,98	1,001	0.940 2 p^2 + 0.329 7 p + 1 2.805 7 p^2 + 2.375 5 p + 1
5	1 2 3	1,30 4,57	0,552 1,005	2.097 4 p^2 + 1,229 6 p + 1 0,965 4 p^2 + 0,216 1 p + 1 2,759 p + 1
6	1 2 3	6,53 1,88	1,005 0,707	6.369 5 p^2 + 3.691 7 p + 1 0.977 4 p^2 + 0.151 8 p + 1 1.694 8 p^2 + 0.719 1 p + 1
7	1 2 3 4	8,85 1,22 2,62	1,004 0,383 0,791	0.984 1 p^2 + 0.112 1 p + 1 3.938 8 p^2 + 1.818 2 p + 1 1.477 3 p^2 + 0.471 9 p + 1 3.903 p + 1
8	1 2 3	11,54 1,69 3,50	1,004 0,538 0,842	11,356 8 p^2 + 4,980 9, p + 1 0,988 2 p^2 + 0,086 2 p + 1 2,788 2 p^2 + 1,036 7 p + 1 1,348 9 p^2 + 0,335 1 p + 1
9	1 2 3	2,27 1,20 14,58 4,50	0,637 0,294 1,003 0,877	2,209 7 p^2 + 0,671 7 p + 1 6,396 2 p^2 + 2,385 0 p + 1 0,990 8 p^2 + 0,068 2 p + 1 1,266 8 p^2 + 0,251 3 p + 1

	Tableau XVIII		neff d'ondulation en	bande passante de 1 dB.
n	Cellule	V _m	ω _m	$F^{-1}(\rho) = V_1/V_2$
2	1	1,12	0,707	$0.907 \ 0 \ p^2 + 0.995 \ 6 \ p + 1$
3	1 2	2,08	0,933	1,005 8 p ² + 0,497 0 p + 1 2,023 p + 1
4	1 2	3,59 1,01	0,973 0,228	1,013 6 p^2 + 0,282 8 p + 1 3,579 1 p^2 + 2,411 3 p + 1
5	1 2 3	1,49 5,57	0,565 0,986	2,329 3 p^2 + 1,091 1 p + 1 1,011 8 p^2 + 0,181 0 p + 1 3,454 p + 1
6	1 2 3	8,01 2,25	0,991 0,707	8,018 8 p^2 + 3,721 7 p + 1 1,009 3 p^2 + 0,125 5 p + 1 1,793 0 p^2 + 0,609 2 p + 1
7	1 2 3 4	1,40 3,19 10,91	0,402 0,787 0,994	4,339 3 p^2 + 1,606 1 p + 1 1,530 3 p^2 + 0,391 9 p + 1 1,007 3 p^2 + 0,092 0 p + 1 4,868 p + 1
8	1 2 [©] 3 _© 4	4,29 2,02 14,24	0,838 0,544 0,995	14,232 6 p^2 + 5,009 8 p + 1 1,382 0 p^2 + 0,275 5 p + 1 2,933 7 p^2 + 0,875 4 p + 1 1,005 8 p^2 + 0,070 4 p + 1
9	1 2 3 4	1,37 2,76 18,03 5,54	0,312 0,639 0,996 0,873	7,024 2 p^2 + 2,103 3 p + 1 2,280 1 p^2 + 0,556 6 p + 1 1,004 7 p^2 + 0,055 6 p + 1 1,289 6 p^2 + 0,205 4 p + 1 6,276 p + 1

