20. Sor- oszlop- és determinánsrang, ezek viszonya és kiszámítása. Összeg és szorzat rangja. Lineáris egyenletrendszer mátrixegyenletes alakja, a megoldhatóság és az oszlopok alterének kapcsolata. Az egyértelmű megoldhatóság feltétele n × n együtthatómátrix esetén.

Sor-, oszlop-, és determináns rang

Def: Legyen $A \in \mathbb{R}^{n \times k}$ mátrix. Az A sorrangja s(A) = k ha az A sorvektoraiból kiválasztható k lin.ftn de k + 1 nem.

Az A oszloprangja o(A) = k ha az A oszlopvektoraiból kiválasztható k lin.ftn de k+1 nem.

Az A determinánsrangja A legnagyobb nemnulla determinánsú négyzetes részmátrixának mérete, jele: d(A).

Megf: (1) $o(A) = s(A^{\top})$.

(2) Ha A_1, A_2, \ldots ill. A^1, A^2, \ldots jelöli rendre A sorait és oszlopait, akkor $s(A) = \dim(A_1, A_2, \ldots)$ és $o(A) = \dim(A^1, A^2, \ldots)$.

Biz: (1): A transzponált sorai a mátrix oszlopainak felelnek meg.

(2) A sorok által generált altér egy bázisát választhatjuk a sorvektorokból. Ez a bázis a sorok egy maximális méretű lin.ftn részhalmaza. Ezért ennek a bázisnak az elemszáma s(A), vagyis a sorvektorok által generált altér dimenziója.

Az oszlopokra vonatkozó állítást hasonló érvelés igazolja.

Ezek viszonya és kiszámítása

Megf: (1) $o(A) = s(A^{\top})$.

(2) Ha A_1, A_2, \ldots ill. A^1, A^2, \ldots jelöli rendre A sorait és oszlopait, akkor $s(A) = \dim(A_1, A_2, \ldots)$ és $o(A) = \dim(A^1, A^2, \ldots)$.

Állítás: ESÁ során a sorrang és az oszloprang sem változik.

Biz: Láttuk, hogy ESÁ során a sorok által generált altér nem változik, így a dimenziója is ugyanannyi marad.

ESÁ hatására az oszlopok közti lineáris összefüggések sem változnak, ezért oszlopok egy halmaza pontosan akkor lin.ftn ESÁ előtt, ha ugyanezen oszlophalmaz lin.ftn ESÁ után.

Megf: Ha A RLA mátrix, akkor s(A) = o(A) = v1-ek száma.

Biz: A v1-ekhez tartozó oszlopok az oszlopok által generált altér bázisát alkotják, így o(A) a v1-ek száma.

RLA mátrix csupa 0 sorait elhagyva a maradék (v1-t tartalmazó) sorok lin.ftn-ek, hisz egyik se áll elő a többi lin.komb-jaként. Ezért s(A) is a v1-ek száma, tehát s(A) = o(A).

Köv: Tetsz. A mátrix esetén s(A) = o(A).

Biz: Legyen A' az A-ból ESÁ-okkal kapott RLA mátrix. Ekkor s(A) = s(A') = o(A') = o(A).

Állítás: $(s(A) \ge k) \iff (d(A) \ge k)$

Biz: \Rightarrow : Tfh van k lin.ftn sor, ezek alkossák az A' mátrixot. Ekkor k = s(A') = o(A'): A'-nek van k lin.ftn oszlopa. Alkossák ezek az A'' mátrixot. Így o(A'') = k = s(A''), tehát A'' az A egy k méretű nemnulla determinánsú négyzetes részmátrixa, azaz $d(A) \ge k$.

Állítás: $(s(A) \ge k) \iff (d(A) \ge k)$ Biz: \Leftarrow : Tfh A" egy k méretű nemnulla determinánsú négyzetes részmátrix. Az inverzről tanultaknál láttuk, hogy A" sorai lin.ftn-ek. Ezért az A" sorainak megfelelő A-beli sorok is lin.ftn-ek, vagyis $s(A) \ge k$. Köv: Tetsz. A mátrixra s(A) = o(A) = d(A). Biz: Ha s(A) = k, akkor az előző állítás miatt $d(A) \ge k$. Ha pedig d(A) = k, akkor $s(A) \ge k$. Ezért s(A) = d(A). Korábban láttuk, hogy s(A) = o(A).

Köv: Tetsz. A mátrixra s(A) = o(A) = d(A). **Def:** Az $A \in \mathbb{R}^{n \times k}$ mátrix rangja r(A) = s(A).

Rang meghatározása:

ESÁ-okkal képzett RLA mátrix v1-ei száma.

Összeg és szorzat rangja

Lemma: Ha $A, B \in \mathbb{R}^{n \times k}$, akkor $r(A + B) \le r(A) + r(B)$. Biz: Tfh $\underline{a}_1, \dots, \underline{a}_{r(A)}$ az A lin.ftn sorai és $\underline{b}_1, \dots, \underline{b}_{r(B)}$ a B lin.ftn sorai. Ekkor az $\underline{a}_1, \dots, \underline{a}_{r(A)}$ sorvektorok generálják A minden sorát, és a $\underline{b}_1, \dots, \underline{b}_{r(B)}$ sorok generálják B minden sorát. Mivel A+B minden sorát generálják A sorai és B sorai, ezért A+Bsorait generálják az $\underline{a}_1, \dots, \underline{a}_{r(A)}, \underline{b}_1, \dots, \underline{b}_{r(B)}$ vektorok is. Az A+B sorvektorai által generált altér dimenziójára tehát $r(A+B) \le r(A) + r(B)$ teljesül. **Lemma:** $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times \ell} \Rightarrow r(AB) \leq \min(r(A), r(B))$. Biz: Láttuk, hogy AB minden sora a B sorainak lin.komb-ja, ezért AB sorvektorai által generált altér része a B sorvektorai által generált altérnek. Így az első altér dimenziója nem lehet nagyobb a másodikénál, vagyis $r(AB) = s(AB) \le s(B) = r(B)$. Hasonlóan, AB minden oszlopa az A oszlopainak lin.komb-ja, tehát az AB oszlopai által generált altér dimenziója nem nagyobb az A oszlopai által generáltnál: $r(AB) = o(AB) \le o(A) = r(A)$. Innen a tétel állítása közvetlenül adódik.

Lineáris egyenletrendszer mátrixegyenletes alakja

A mátrixokat a lineáris egyenletrendszerek módszeres megoldásához vezettük be, majd különféle hasznos dolgokat tudtunk meg a róluk. Fel tudjuk-e használni ezt a tudást a lineáris egyenletrendszerekkel kapcsolatos problémák megoldása során? Hát persze. Figyeljük meg, hogy a lineáris egyenletrendszer voltaképp egy mátrixegyenlet.

Megf: Az (A|b) kib.egyhómx-hoz tartozó lineáris egyenletrendszer ekvivalens az $Ax = \underline{b}$ mátrixegyenlettel, ahol A az együtthatómátrix, \underline{b} a konstansokat, $\underline{x} = (x_1, \dots, x_n)^{\top}$ pedig az ismeretleneket tartalmazó oszlopvektor.

Lineáris egyenletrendszerek, már megint

Példa:

$$x_1 - 3x_3 + 5x_4 = -6$$

 $7x_1 + 2x_2 + 3x_3 = 9$ \leftrightarrow $\begin{pmatrix} 1 & 0 - 3 & 5 \\ 7 & 2 & 3 & 0 \\ 0 & 1 & 7 - 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ \leftrightarrow $A\underline{x} = \underline{b}$

Megf: Az $(A|\underline{b})$ kib.egyhómx-hoz tartozó lineáris egyenletrendszer ekvivalens az $A\underline{x} = \underline{b}$ mátrixegyenlettel, ahol A az együtthatómátrix, \underline{b} a konstansokat, $\underline{x} = (x_1, \dots, x_n)^{\top}$ pedig az ismeretleneket tartalmazó oszlopvektor.

Kínzó kérdés: Mit jelent mátrix-vektor terminológiában, hogy az $A\underline{x} = \underline{b}$ lineáris egyenletrendszer megoldható?

Frappáns válasz: A kérdés voltaképpen az, hogy mikor található olyan \underline{x} oszlopvektor (konkrét számokkal), amire $A\underline{x} = \underline{b}$ teljesül. **Láttuk:** Tetsz. A, C mátrixra (C előáll AB = C alakban) \iff (C minden oszlopa az A oszlopainak lin.komb-ja)

Köv: Ha
$$A$$
 oszlopai $A^1, \ldots,$ akkor $(\exists \underline{x} : A\underline{x} = \underline{b}) \iff (\underline{b} \in \langle A^1, \ldots \rangle) \iff (\langle A^1, \ldots \rangle = \langle \underline{b}, A^1, \ldots \rangle) \iff (\dim \langle A^1, \ldots \rangle = \dim \langle \underline{b}, A^1, \ldots \rangle)$

Az egyértelmű megoldhatóság feltétele n × n együtthatómátrix esetén

Lineáris egyenletrendszerek érdekes speciális esete, ha az egyenletek és ismeretlenek száma megegyezik. Ilyenkor az együtthatómátrix négyzetes. Korábban láttuk, hogy n ismeretlen esetén legalább n egyenlet szükséges ahhoz, hogy a megoldás egyértelmű legyen. Kínzó kérdés: Lehet-e következtetni a megoldás egyértelműségére pusztán az együtthatómátrix alapján?

Válasz: Ez a kérdés csak négyzetes együtthatómátrix érdekes. Állítás: Ha $A \in \mathbb{R}^{n \times n}$: $(A\underline{x} = \underline{b} \text{ egyért. megoldható}) \iff (|A| \neq 0)$ Biz: \Rightarrow : Tfh $|A| \neq 0$. Ekkor A oszlopai nem lineárisan függetlenek, ezért A oszlopainak valamely nemtriviális lineáris kombinációja $\underline{0}$ -t ad: $\exists \underline{y} \neq \underline{0} : A\underline{y} = \underline{0}$. Ezért ha \underline{x} az $A\underline{x} = \underline{b}$ megoldása, akkor $A(\underline{x} + \underline{y}) = A\underline{x} + A\underline{y} = \underline{b} + \underline{0} = \underline{b}$ miatt $\underline{x} + \underline{y}$ is megoldása. Tehát az $A\underline{x} = \underline{b}$ mátrixegyenletnek nincs egyértelmű megoldása.

Biz: \Rightarrow : Tfh $|A| \neq 0$. Ekkor A oszlopai nem lineárisan függetlenek, ezért A oszlopainak valamely nemtriviális lineáris kombinációja $\underline{0}$ -t ad: $\exists \underline{y} \neq \underline{0}$: $A\underline{y} = \underline{0}$. Ezért ha \underline{x} az $A\underline{x} = \underline{b}$ megoldása, akkor $A(\underline{x} + \underline{y}) = A\underline{x} + A\underline{y} = \underline{b} + \underline{0} = \underline{b}$ miatt $\underline{x} + \underline{y}$ is megoldás. Tehát az $A\underline{x} = \underline{b}$ mátrixegyenletnek nincs egyértelmű megoldása. $\Leftarrow: |A| \neq 0$, ezért A-nak van inverze. Így $\begin{bmatrix} A\underline{x} = \underline{b} \end{bmatrix} \iff \begin{bmatrix} \underline{x} = (A^{-1}A)\underline{x} = A^{-1}(A\underline{x}) = A^{-1}\underline{b} \end{bmatrix}$, azaz \underline{x} egyértelmű.