AA203 Optimal and Learning-based Control

Iterative LQR and differential dynamic programming

LQR-style algos for optimal control

- Linear tracking problems
- LQR with cross-quadratic cost and affine dynamics
- Non-linear tracking problems
- Using LQR techniques to solve non-linear optimal control problems
 - Iterative LQR
 - Differential dynamic programming
- Readings: lecture notes and references therein

Linear tracking problems

• Imagine you are given a *nominal trajectory*

$$(\overline{\boldsymbol{x}}_0, ..., \overline{\boldsymbol{x}}_N), (\overline{\boldsymbol{u}}_0, ..., \overline{\boldsymbol{u}}_{N-1})$$

- Assume nominal trajectory satisfies linear dynamics
- Linear tracking problem; find policy to minimize cost

$$\frac{1}{2}(x_N - \overline{x}_N)^T H(x_N - \overline{x}_N) + \frac{1}{2} \sum_{k=0}^{N-1} [(x_k - \overline{x}_k)^T Q(x_k - \overline{x}_k) + (u_k - \overline{u}_k)^T R(u_k - \overline{u}_k)]$$

• Then define deviation variables

$$\delta \pmb{x}_k \coloneqq \pmb{x}_k - \overline{\pmb{x}}_k$$
 and $\delta \pmb{u}_k \coloneqq \pmb{u}_k - \overline{\pmb{u}}_k$

and solve standard LQR with respect to deviation variables

LQR with cross-quadratic cost & affine dynamics

Consider the LQR problem with the generalized cost

$$\frac{1}{2}\boldsymbol{x}_k^T Q_k \boldsymbol{x}_k + \frac{1}{2}\boldsymbol{u}_k^T R_k \boldsymbol{u}_k + \boldsymbol{u}_k^T H_k \boldsymbol{x}_k + \boldsymbol{q}_k^T \boldsymbol{x}_k + \boldsymbol{r}_k^T \boldsymbol{u}_k + c_k$$

and dynamics

$$\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k + \boldsymbol{d}_k$$

We can derive an affine optimal feedback law for this system via DP recursion

LQR with cross-quadratic cost & affine dynamics

The cost-to-go at time k takes the form

$$\frac{1}{2}\boldsymbol{x}_k^T P_k \boldsymbol{x}_k + \boldsymbol{p}_k^T \boldsymbol{x}_k + p_k$$

• Optimal control takes the form $oldsymbol{u}_k^* = oldsymbol{l}_k + L_k oldsymbol{x}_k$ with

$$l_k = -(R_k + B_k^T P_{k+1} B_k)^{-1} (\mathbf{r}_k + \mathbf{p}_{k+1}^T B_k + \mathbf{d}_k P_{k+1} B_k)$$
$$L_k = -(R_k + B_k^T P_{k+1} B_k)^{-1} (B_k^T P_{k+1} A_k + H_k)$$

 Equations for the constant/linear/quadratic cost-to-go terms are unwieldy but not hard to derive, and are given in the lecture notes

Nonlinear tracking problems

• Imagine you are given a feasible nominal trajectory

$$(\overline{x}_0, \dots, \overline{x}_N), (\overline{u}_0, \dots, \overline{u}_{N-1})$$

- The tracking cost is still quadratic, but the dynamics are now nonlinear $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k)$
- To apply LQR, we can linearize around the nominal trajectory

$$egin{aligned} oldsymbol{x}_{k+1} &pprox f(ar{oldsymbol{x}}_k, ar{oldsymbol{u}}_k) + rac{\partial f}{\partial oldsymbol{x}}(ar{oldsymbol{x}}_k, ar{oldsymbol{u}}_k)(oldsymbol{x}_k - ar{oldsymbol{x}}_k) + rac{\partial f}{\partial oldsymbol{u}}(ar{oldsymbol{x}}_k, ar{oldsymbol{u}}_k)(oldsymbol{u}_k - ar{oldsymbol{u}}_k) \ A \end{aligned}$$

• And apply LQR to the deviation variables (with dynamics $\delta \overline{x}_{k+1} = A \delta \overline{x}_k + B \delta \overline{u}_k$)

Non-linear optimal control problem

Consider now non-linear optimal control problem

$$\min_{\mathbf{u}} \sum_{k=0}^{N-1} c(\mathbf{x}_k, \mathbf{u}_k)$$
subject to $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k)$

Can we apply LQR-techniques to approximately solve it?

Iterative LQR

• Imagine you are given a feasible nominal trajectory

$$(\overline{\boldsymbol{x}}_0,...,\overline{\boldsymbol{x}}_N),(\overline{\boldsymbol{u}}_0,...,\overline{\boldsymbol{u}}_{N-1})$$

Linearize the dynamics around feasible trajectory

$$m{x}_{k+1}pprox f(ar{m{x}}_k,ar{m{u}}_k) + rac{\partial f}{\partial m{x}}(ar{m{x}}_k,ar{m{u}}_k)(m{x}_k-ar{m{x}}_k) + rac{\partial f}{\partial m{u}}(ar{m{x}}_k,ar{m{u}}_k)(m{u}_k-ar{m{u}}_k)$$

And Taylor expand cost function around feasible trajectory

$$c(\delta \boldsymbol{x}_k, \delta \boldsymbol{u}_k) = c_k + \underbrace{c_{\boldsymbol{x},k}^T}_{\boldsymbol{q}_k} \delta \boldsymbol{x}_k + \underbrace{c_{\boldsymbol{u},k}^T}_{\boldsymbol{r}_k} \delta \boldsymbol{u}_k + \frac{1}{2} \delta \boldsymbol{u}_k^T \underbrace{c_{\boldsymbol{u}\boldsymbol{u},k}^T}_{R_k} \delta \boldsymbol{u}_k + \frac{1}{2} \delta \boldsymbol{x}_k^T \underbrace{c_{\boldsymbol{x}\boldsymbol{x},k}^T}_{Q_k} \delta \boldsymbol{x}_k + \delta \boldsymbol{u}_k^T \underbrace{c_{\boldsymbol{u}\boldsymbol{x},k}^T}_{H_k} \delta \boldsymbol{x}_k$$

Iterative LQR

• By optimizing over deviation variables (using results for LQR with cross-quadratic cost & affine dynamics), we obtain new solution:

$$\{\overline{\boldsymbol{x}}_k + \delta \boldsymbol{x}_k^*\}$$
 and $\{\overline{\boldsymbol{u}}_k + \delta \boldsymbol{u}_k^*\}$

 We can then re-linearize and Taylor expand around this new trajectory, and iterate!

Iterative LQR

- Backward pass (k = N to 0):
 - Compute locally linear dynamics, locally quadratic cost around nominal trajectory
 - Solve local approximation of DP recursion to compute control law
 - Compute cost-to-go
- Forward pass (k = 0 to N):
 - Use control law to update nominal trajectory
- Iterate until convergence

Algorithmic details

- Need to make sure that the new state / control stay close to the linearization point
 - Add extra penalty on deviations
- Need to decide on termination criterion
 - For example, one can stop when improvement is "small"
- Method can get stuck in local minima → "good" initialization is often critical
- Cost matrices may not be positive definite
 - Regularize them until they are

Differential Dynamic Programming (DDP)

 iLQR first approximates dynamics and cost, then performs exact DP recursion

DDP instead approximates
DP recursion directly

Differential Dynamic Programming(DDP)

In detail, define the change in cost to go at timestep k under a perturbation $(\delta x_k, \delta u_k)$ as:

$$Q_k(\delta \boldsymbol{x}_k, \delta \boldsymbol{u}_k) := c(\overline{\boldsymbol{x}}_k + \delta \boldsymbol{x}_k, \overline{\boldsymbol{u}}_k + \delta \boldsymbol{u}_k) + J_{k+1}(f(\overline{\boldsymbol{x}}_k + \delta \boldsymbol{x}_k, \overline{\boldsymbol{u}}_k + \delta \boldsymbol{u}_k))$$

Using a 2nd order Taylor Expansion,

$$Q_k(\delta \boldsymbol{x}_k, \delta \boldsymbol{u}_k) \approx Q_k(0, 0) + \underbrace{\nabla Q_k^{\top}(\delta \boldsymbol{x}_k, \delta \boldsymbol{u}_k)}_{\text{first order terms}} + \underbrace{\frac{1}{2}(\delta \boldsymbol{x}_k, \delta \boldsymbol{u}_k)^{\top} \nabla^2 Q_k(\delta \boldsymbol{x}_k, \delta \boldsymbol{u}_k)}_{\text{second order terms}}$$

Differential Dynamic Programming(DDP)

The optimal control perturbation is

$$\delta \boldsymbol{u}_k^* = \operatorname{argmin}_{\delta \boldsymbol{u}} Q(\delta \boldsymbol{x}_k, \delta \boldsymbol{u})$$

Expanding the approximation, one gets

$$Q_{k}(\delta \boldsymbol{x}_{k}, \delta \boldsymbol{u}_{k}) \approx Q_{k}(0, 0) + \underbrace{Q_{x,k}^{\top} \delta \boldsymbol{x}_{k} + Q_{u,k}^{\top} \delta \boldsymbol{u}_{k}}_{\text{first order terms}} + \underbrace{\frac{1}{2} \delta \boldsymbol{x}_{k}^{\top} Q_{xx,k} \delta \boldsymbol{x}_{k} + \frac{1}{2} \delta \boldsymbol{u}_{k}^{\top} Q_{uu,k} \delta \boldsymbol{u}_{k} + \delta \boldsymbol{x}_{k}^{\top} Q_{xu,k} \delta \boldsymbol{u}_{k}}_{\text{second order terms}}$$

4/20/20 AA 203 | Lecture 5

Differential Dynamic Programming(DDP)

Find where the derivative is equal to zero:

$$Q_{u,k} + Q_{ux,k}\delta \mathbf{x}_k + Q_{uu,k}\delta \mathbf{u}_k = 0$$

$$\implies \delta \mathbf{u}_k^* = -Q_{uu,k}^{-1} Q_{u,k} - Q_{uu,k}^{-1} Q_{ux,k} \delta \mathbf{x}_k$$

As was the case with LQR, the optimal control has the form

$$\delta \boldsymbol{u}_k^* = \boldsymbol{l}_k + L_k \delta \boldsymbol{x}_k$$

Algorithm proceeds via same forward/backward passes as iLQR

Next time

• Intro to RL

