

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina)

jon.montalban@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Ikurra eta polarizazioa
- 2. Diodo motak
- 3. Ezaugarri kurbak
- 4. Diodoen portaeraren hurbilketa linealak
- 5. Diododun zirkuituen ebazpidea
- 6. Diodoen aplikazioak

1. IKURRA ETA POLARIZAZIOA

- PN juntura Ohikoena Si
- Biterminala
- Pasiboa (Ez du elikadurarik behar)
- Ez da trukakorra Alde positibo eta negatiboa
- o Ikurra:

o Polarizazioa:

ZP

Zuzeneko polarizazioa Alderantzizko polarizazioa A.P.

2. DIODO MOTAK

o Diodo artezleak

- Z.P → Korrontea eroan
- A.P → Korronterik ez (normalean)

- Z.P → Korrontea eroan eta argia eman
- A.P → Korronte eta argirik ez

o Fotodiodo

- $Z.P \rightarrow Korronterik ez$
- A.P → Argia sumatu eta korrontea eroan

o Zener

- Z.P → Korrontea eroan
- A.P → Korronterik ez (normalean)
- Zener gunea → Korrontea eroan

3. EZAUGARRI KURBAK

o Diodo artezlea

- Erlazio esponentziala
- Z.P → Atalase edo atari tentsioa: 0.7 V inguru
- A.P → Korronte oso txikia, ia nulua: asetasun korrontea
- A.P → Haustura tentsioa (Zener Diodoa)

• Portaera ekuazioa

$$I_D = I_S \cdot \left(e^{\frac{qV_D}{kT}} - 1 \right)$$

o LED diodoa

• Atari tentsioa: 1.7-2.2V

3. EZAUGARRI KURBAK

o Zener diodoa

- Artezlearen antzekoa
- Erlazio esponentziala
- Z.P → Atalase edo atari tentsioa: 0.7 V inguru
- A.P → Korronte oso txikia, ia nulua: asetasun korrontea
- A.P-n Zener tentsioa → Korrontea eroan

4. DIODOEN PORTAERAREN HURBILKETA LINEALAK

o Diodo artezlea

- 1. Hurbilketa (diodo ideala)
 - o Z.P: Zirkuitulabur bezala eroan
 - A.P ez du eroaten
 - Hurbilketarik aldenduena
 - o Zehaztasun txikiena

Z. P.:
$$A \bullet \longrightarrow B$$

Ekuazioa Baldintza

$$V_D = 0 \qquad \Big| \qquad I_D \ge 0$$

(zirkuitulaburra)

A. P.:
$$A \stackrel{I_D = 0}{\longleftarrow} E$$

$$I_D = 0$$
 $V_D \le 0$ (zirkuitu irekia)

4. DIODOEN PORTAERAREN HURBILKETA LINEALAK

o Diodo artezlea

- 2. Hurbilketa
 - o Z.P: Zirkuitulabur bezala 0.7 V-tik
 - A.P ez du eroaten
 - o Atari tentsioa kontutan hartzen du

Modeloa zirkuituan

Z. P.:
$$A \stackrel{I_D}{\longleftarrow} B$$

Ekuazioa Baldintza

$$V_D = 0.7 \text{ V} \mid I_D \ge 0$$

A. P.:
$$\frac{I_D = 0}{4}$$

$$A \xrightarrow{I_D = 0} B$$

$$I_D = 0 \qquad | V_D \le 0.7 \text{ V}$$

(zirkuitu irekia)

4. DIODOEN PORTAERAREN HURBILKETA LINEALAK

o Diodo artezlea

- 3. Hurbilketa
 - Z.P: Zirkuitulabur bezala 0.7 V-tik korrontea handitu tentsioarekin
 - A.P ez du eroaten

Modeloa zirkuituan

$$V_{D} = 0.7 + rI_{D}$$

Ekuazioa Baldintza

$$V_D = 0.7 + rI_D \mid I_D \ge 0$$

 $(r \approx 0.5 \Omega - 1 \Omega)$

r barne-erresistentzia, parametro ezaguna

$$\mathbf{A. P.:} \quad A \stackrel{I_D = 0}{\longleftarrow} \quad A$$

$$I_D = 0 \quad \middle| \quad V_D \le 0,7 \text{ V}$$

(zirkuitu irekia)

4. DIODOEN PORTAERAREN HURBILKETA

LINEALAK

$$A \bullet \begin{array}{c} I_D \\ + V_D \end{array} - B = \begin{array}{c} I_Z \\ - V_{ZD} \end{array} + C$$

o Zener diodoa

- Hurbilketa bakarra (2. hurbilketa)
 - o Z.P: Zirkuitulabur bezala 0.7V-tik
 - A.P:
 - Ez du eroaten tentsio baxuetan
 - o Alderantzizko korrontea V_z gainditzean

 $+ V_{D} = -V_{Z}$

5. DIODODUN ZIRKUITUEN EBAZPIDEA

o Zenbakizko ebazpidea:

- 1. Aukeratu diodoarentzat hurbilketa
- 2. Sorgailuen arabera, aurreikusi adarretako korronteen noranzkoa edo finkatu arbitrarioki
- 3. Korronte horien arabera, egin diodoen polarizazioari buruzko hipotesi bat
- 4. Egindako hipotesiaren eta aukeratutako hurbilketaren arabera, ordezkatu diodoak dagozkien elementuekin
- 5. Ebatzi zirkuitua
- 6. Egiaztatu hipotesiaren zuzentasuna, aztertu hipotesiei dagozkien baldintzak betetzen ote diren.
- 7. Baldintzak betetzen badira, egindako hipotesia zuzena da; amaitu da prozesua eta zirkuitua ebatzita dago
- 8. Baldintzak betetzen ez badira, okerreko hipotesia egin dugu. Beraz, kalkulatutako soluzioak ez du balio eta hipotesi berri bat egin behar dugu, 3. pausotik aurrerako atal guztiak errepikatuz.

5. DIODODUN ZIRKUITUEN EBAZPIDEA

o Ebazpide grafikoa

$$I_D = I_S \cdot \left(e^{\frac{qV_D}{kT}} - 1 \right)$$

$$E_{Th} = R_{Th}I_D + V_D$$

$$I_D = \frac{E_{Th}}{R_{Th}} - \frac{1}{R_{Th}} \cdot V_D$$

Karga zuzena

5. DIODODUN ZIRKUITUEN EBAZPIDEA

o Ebazpide grafikoa

- Betetzen diren bi ekuazio ditugu
 - Diodoaren ezaugarri grafikoak
 - Karga zuzena

o Artezgailuak

- AC-ko tentsio bat (balio positiboak eta negatiboak dituena) soilik balio positiboak edo soilik balio negatiboak dituen tentsio bihurtzen duten zirkuituak
- Ekipo elektroniko gehienek artezgailuren bat dute entxufeko tentsio sinusoidala DC-ko maila jakin bateko tentsio bihurtzeko.
 - Entxufeko seinalea 220 V RMS eta 50 Hz-tako seinale sinusoidala da. Gehienetan transformadore baten bidez seinalearen maila jaitsi egiten da.
 - o Transformadoreek, ekipo elektronikoa eta sare elektrikoaren arteko isolamendu elektrikoa ahalbidetzen

o Uhin erdiko artezgailua

 $v_{in} > 0$

• Etenduran $v_{in} < 0$

o Tentsio iturria uhin erdiko artezgailua

 $v_{in} \ge v_{out}$ diodoa kondukzioan

 $v_{in} < v_{out}$ diodoa etenduran

 $V_{D} < 0$

o Uhin osoko artezgailua edo zubi artezgailua

 $v_{in} > 0$ D_1 eta D_2 kondukzioan

 $v_{in} < 0$ D₃ eta D₄ kondukzioan

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina)

jon.montalban@ehu.eus