1 Advection-diffusion-reaction equation in Flow123d

1.1 Physical model

On the domain Ω^d of dimension $d \in \{1, 2, 3\}$, we consider a system of mass balance equations in the following form:

$$\partial_t(\vartheta c^i) + \operatorname{div}(\boldsymbol{q}c^i) - \operatorname{div}(\vartheta \mathbb{D}^i \nabla c^i) = F(c^1, \dots, c^s) \quad \text{on } \Omega^d.$$
 (1)

The principal unknown is the concentration c^i $[kg/m^3]$ of a substance $i \in \{1, \ldots, s\}$, which means weight of the substance in unit volume of the water. Other quantities are:

- ϑ [-] is the porosity, i.e. fraction of space occupied by water and the total volume.
- $q [ms^{-1}]$ is the Darcy flux or the *macroscopic* water velocity. It is related to the *microscopic* water velocity v by the relation $q = \vartheta v$.
- The hydrodynamic dispersivity tensor \mathbb{D}^i $[m^2s^{-1}]$ has the form

$$\mathbb{D}^i = D^i_m \tau \mathbb{I} + |\boldsymbol{v}| \big(\alpha^i_T \mathbb{I} + (\alpha^i_L - \alpha^i_T)\big) \frac{\boldsymbol{v} \times \boldsymbol{v}}{|\boldsymbol{v}|^2},$$

which models (isotropic) molecular diffusion, and dispersion in longitudal and transversal direction to the flow. Here $D_m^i \ [m^2 s^{-1}]$ is the molecular diffusion coefficient of the *i*-th substance (usual magnitude in clear water is 10^{-9}), $\tau = \vartheta^{1/3}$ is the tortuosity (by Millington and Quirk [1961]), α_L^i and α_T^i is the longitudal and the transversal dispersivity [m], respectively.

• The reaction term F(...) is currently neglected.

In lower dimensions d=1,2, equation (1) represents transport processes in planar or channel fractures whose cross-cut δ^d ([m] for 2D and [m²] for 1D) is negligible with respect to the dimensions of the physical domain.

Boundary conditions. The physical boundary $\partial\Omega^d$ is decomposed into two parts:

$$\Gamma_D(t) = \{ \boldsymbol{x} \in \partial \Omega^d \mid \boldsymbol{q}(t, \boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) < 0 \},$$

$$\Gamma_N(t) = \{ \boldsymbol{x} \in \partial \Omega^d \mid \boldsymbol{q}(t, \boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) \ge 0 \},$$

where n stands for the unit outward normal vector to $\partial \Omega^d$. On the inflow part Γ_D , concentrations have to be prescribed (Dirichlet boundary condition):

$$c^{i}(t, \boldsymbol{x}) = c_{D}^{i}(t, \boldsymbol{x}) \text{ on } \Gamma_{D}(t),$$

while on Γ_N we impose homogeneous Neumann boundary condition:

$$-\mathbb{D}^{i}(t, \boldsymbol{x})\nabla c^{i}(t, \boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) = 0 \text{ on } \Gamma_{N}(t).$$

Communication between dimensions. Transport of substances is considered also on interfaces of physical domains with adjacent dimensions. Denoting c_{d+1} , c_d the concentration of a given substance in Ω^{d+1} and Ω^d , respectively, the comunication on the interface between Ω^{d+1} and Ω^d is described by:

$$q^{c} = \sigma^{c}(c_{d+1} - c_{d}) + \begin{cases} q^{w}c_{d+1} & \text{if } q^{w} \ge 0, \\ q^{w}c_{d} & \text{if } q^{w} < 0, \end{cases}$$
 (2)

where q^c is the concentration flux from d+1 to d dimensions, σ^c is a transition parameter, q^w is water flux from d+1 to d dimensions. Equation (2) is incorporated as a boundary condition for the problem on Ω^{d+1} :

$$-\mathbb{D}\nabla c_{d+1}\cdot \boldsymbol{n} + q^w c_{d+1} = q^c$$

and a source term in Ω^d :

$$f_d^c = \frac{\delta_{d+1}}{\delta_d} (\sigma^c + |q^w|) (c_{d+1} - c_d).$$