Detecting Inconsistencies in Distributed Data

Wenfei Fan Floris Geerts Shuai Ma Heiko Müller

Agenda

Inconsistencies in Distributed Data

Problem Statement & Complexity

Detection Algorithms

Experimental Results

Conclusion & Outlook

CFDs

Data Quality & Data Cleaning

Data quality tools support two methods for data cleaning:

- Detect data of poor quality (detection).
- Modify data of poor quality (repair).

Integrity constraints restrict valid database states, e.g., functional dependencies (FD).

Constraint violations highlight errors (inconsistencies).

How to express that [CC, ZIP → Street], but only for U.K. (CC=44) and Netherlands (CC=31)?

CFDs (cont.)

Conditional Functional Dependencies (CFDs)

CFDs **extend FDs** with conditions to **restrict their scope** and allow for **more expressive** *data quality rules*.

Example:

Bohannon, Fan, Geerts, Jia, Kementsietsidis, ICDE 2007.

Inconsistencies

Constraint Violations

	CC	$ZIP \rightarrow$	Street
$\boldsymbol{\varphi}$	44	-	-
	31	-	-

Name	Title	CC	AC	Phone	Street	City	ZIP
Sam	DMTS	44	131	2501984	Princess Str.	EDI	EH2 4HF
Philip	DMTS	44	131	4459011	Crichton Str.	EDI	EH4 8LE
Adam	VP	44	131	1326184	Mayfield Rd.	EDI	EH4 8LE
Joe	MTS	01	908	9075271	Queensway Drive	NYC	07974
Bob	DMTS	01	908	7732134	57 th St.	МН	07974
Jef	DMTS	31	20	7464774	Muntplein	AMS	1012 WR
Steven	MTS	31	20	4521633	Spuistraat	AMS	1012 WR
Bram	MTS	31	10	8974638	Kruisplein	ROT	3012 CC

Inconsistencies

Constraint Violations

	CC	$ZIP \rightarrow$	Street
φ	44	-	-
	31	-	-

Note

Tuples that match the LHS of a pattern tuple are potential inconsistencies (*matching* or *relevant* tuples).

Name	Title	CC	AC	tuple are poten		
Sam	DMTS	44	131	(matchin	g or <i>rele</i>	
Philip	DMTS	44	131	4459011	Crichton St	
Adam	VP	44	131	1326184	Mayfield Ro	
Joe	MTS	01	908	9075271	Queensway	
Bob	DMTS	01	908	7732134	57 th St.	
Jef	DMTS	31	20	7464774	Muntplein	

31

31

20

10

Ad. EDI EH4 8LE By Drive NYC 07974 MH 07974 AMS 1012 WR
MH 07974
AMS 1012 WR
7.11.13
AMS 1012 WR
ROT 3012 CC

Steven

Bram

MTS

MTS

Spuistraat

Kruisplein

4521633

8974638

Inconsistencies

Constraint Violations

	CC	$ZIP \rightarrow$	Street
$\boldsymbol{\varphi}$	44	-	-
	31	-	-

Violations

Matching tuples with *identical LHS* value, but *different RHS* value.

Name	Title	CC	AC	value, but <i>alfferent RHS</i> value.					
Sam	DMTS	44	131	2501984	Princess Str.	EDI	EH2 4HF		
Philip	DMTS	44	131	4459011	Crichton Str.	EDI	EH4 8LE		
Adam	VP	44	131	1326184	Mayfield Rd.	EDI	EH4 8LE		
Joe	MTS	01	908	9075271	Queensway Drive	NYC	07974		
Bob	DMTS	01	908	7732134	57 th St.	МН	07974		
Jef	DMTS	31	20	7464774	Muntplein	AMS	1012 WR		
Steven	MTS	31	20	4521633	Spuistraat	AMS	1012 WR		
Bram	MTS	31	10	8974638	Kruisplein	ROT	3012 CC		

Inconsistencies (cont.)

We distinguish two types of CFDs

Constant CFDs

Variable CFDs

Inconsistencies (cont.)

We distinguish two types of CFDs

Constant CFDs

Variable CFDs

Inconsistencies (cont.)

We distinguish two types of CFDs

Constant CFDs

Variable CFDs

Violations

Constant CFDs are violated by a single tuple.

Variable CFDs are violated by at least two tuples.

Validation

Detecting Constraint Violations

In a **centralized setting** violations of a set of CFDs can be detected using **two SQL queries**.

How to detect violations in a distributed setting?

Validation (cont.)

Detecting Constraint Violations (cont.)

	Name	Title	CC	AC	Phone	Street	City	ZIP
	Sam	DMTS	44	131	2501984	Princess Str.	EDI	EH2 4HF
D_1	Philip	DMTS	44	131	4459011	Crichton Str.	EDI	EH4 8LE
	Bob	DMTS	01	908	7732134	57 th St.	МН	07974
	Jef	DMTS	31	20	7464774	Muntplein	AMS	1012 WR

D_2	Name	Title	CC	AC	Phone	Street	City	ZIP
	Joe	MTS	01	908	9075271	Queensway Drive	NYC	07974
	Steven	MTS	31	20	4521633	Spuistraat	AMS	1012 WR
	Bram	MTS	31	10	8974638	Kruisplein	ROT	3012 CC

Name	Title	CC	AC	Phone	Street	City	ZIP
Adam	VP	44	131	1326184	Mayfield Rd.	EDI	EH4 8LE

Validation (cont.)

Detecting Constraint Violations (cont.)

	Name	Title	CC	AC		Violati	ons		
	Sam	DMTS	44	131	inconsistent tupies may be distributed				
D_1	Philip	DMTS	44	131					
	Bob	DMTS	01	908					
	Jef	DMTS	31	20	7464774	Muntplein	AMS	1012 WR	

D_2	Name	Title	CC	AC	Phone	Street	City	ZIP
	Joe	MTS	01	908	9075271	Queensway Drive	NYC	07974
	Steven	MTS	31	20	4521633	Spuistraat	AMS	1012 WR
	Bram	MTS	31	10	8974638	Kruisplein	ROT	3012 CC

D ₃	Name	Title	СС	AC	Phone	Street	City	ZIP
	Adam	VP	44	131	1326184	Mayfield Rd.	EDI	EH4 8LE

Validation (cont.)

Detecting Constraint Violations (cont.)

In a centralized setting violations of a set of CFDs can be detected using two SQL queries.

How to detect violations in a distributed setting?

Data shipment required to detect violations.

Contributions

- 1) Violation detection as *optimization problem*.
- 2) Establish complexity bounds.
- 3) *Efficient algorithms* for violation detection.

Problem Statement

Detecting Inconsistencies in Distributed Data

Given a set of CFDs $\Sigma = \{\varphi_1, ..., \varphi_n\}$, and a fragmented relation $D = \{D_1, ..., D_k\}$.

Detecting Inconsistencies in Distributed Data

Given a set of CFDs $\Sigma = \{\varphi_1, ..., \varphi_n\}$, and a fragmented relation $D = \{D_1, ..., D_k\}$.

Find all violations of CFDs $\varphi \in \Sigma$ in **D** with ...

- minimal data shipment (number of tuples), or
- minimal overall response time (shipment + local detection).

Complexity

The problem is **NP-complete** in either setting!

Distributed Data

Fragmentation of data

Horizontal fragmentation partitions D based on Boolean predicates $\sigma_1, ..., \sigma_k$ such that:

- a) fragments are pair-wise disjoint, and
- **b)** original relation **D** results from $\sigma_1 \cup ... \cup \sigma_k$.

Each fragment resides at different network site.

Algorithm

Validating Horizontally Partitioned Data

Single CFD

Local Validation of CFDs

In two cases data shipping can be avoided.

1) Constant CFDs

2) Partitioning Condition

	CC	Title	\rightarrow	Salary
<i>(</i> 2	-	DMTS		-
$\boldsymbol{\varphi}$	-	MTS		-
	-	VP		-

$$\sigma_1$$
: Title = 'DMTS'

$$\sigma_2$$
: Title = 'MTS'

$$\sigma_3$$
: Title = 'VP'

Validation of CFDs involving Shipments

All algorithms are based on four main steps:

Algorithm Outline

- Broadcast local statistics
- Decide on coordinator(s)
- Ship data to coordinator(s)
- Violation detection at coordinator(s)

Validation of CFDs involving Shipments

All algorithms are based on four main steps:

Central approach

Ship all relevant tuples to a single site (coordinator).

Detect violations at coordinator site.

CentralDetect 1 Broadcast local statistics 2 Decide on coordinator 3 Ship data to coordinator 4 Violation detection at coordinator

Central approach (cont.)

	СС	ZIP →	Street
$\boldsymbol{\varphi}$	44	-	-
	31	-	-

	Name	Title	CC	AC	Phone	Street	City	ZIP
	Sam	DMTS	44	131	2501984	Princess Str.	EDI	EH2 4HF
D_1	Philip	DMTS	44	131	4459011	Crichton Str.	EDI	EH4 8LE
	Bob	DMTS	01	908	7732134	57 th St.	МН	07974
	Jef	DMTS	31	20	7464774	Muntplein	AMS	1012 WR
	Name	Title	CC	AC	Phone	Street	City	ZIP
D	Joe	MTS	01	908	9075271	Queensway Drive	NYC	07974
D_2	Steven	MTS	31	20	4521633	Spuistraat	AMS	1012 WR

3

Kruisplein 3012 CC **Bram MTS** 31 10 8974638 **ROT**

Title CC AC **Phone Street** City ZIP Name Adam **VP** 44 131 1326184 Mayfield Rd. **EDI EH48LE**

Central approach (cont.)

Ship all relevant tuples to a single site (coordinator).

Detect violations at coordinator site.

CentralDetect

- Broadcast local statistics
- Decide on coordinator
- Ship data to coordinator
- 4 Violation detection at coordinator

Central approach (cont.)

Ship all relevant tuples to a single site (coordinator).

Detect violations at coordinator site.

CentralDetect

- Broadcast local statistics
- Decide on coordinator
- 3 Ship data to coordinator
- 4 Violation detection at coordinator

Central approach (cont.)

Ship all relevant tuples to a single site (coordinator).

Detect violations at coordinator site.

Pattern coordinator

S₅ ? S₄ S₃

Leverage structure of pattern tableau.

- Assign coordinator for individual pattern tuples.
- Distribute detection process to multiple coordinators.

PatternDetect

- Broadcast local statistics
- Decide on coordinator(s)
- Ship data to coordinator(s)
- 4 Violation detection at coordinator(s)

Pattern coordinator (cont.)

How to ensure that tuples matching multiple pattern tuples are counted and send only once?

How to ensure that we don't miss any violations?

Pattern coordinator (cont.)

How to ensure that tuples matching multiple pattern tuples are counted and send only once?

How to ensure that we don't miss any violations?

Pattern coordinator (cont.)

How to ensure that tuples matching multiple pattern tuples are counted and send only once?

How to ensure that we don't miss any violations?

Pattern coordinator (cont.)

Each tuples accounts for (and is send to the coordinator of) the **first matching pattern tuple**.

Preferred order has constants before wildcards ('-').

Example:

ORDER BY A, B

Α	В	\rightarrow	С
-	b		-
а	b		-
-	-		_

Α	В	\rightarrow	С
-	-		-
а	b		-
-	b		-

Pattern coordinator (cont.)

	Name	Title	CC	AC	Phone	Street	City	ZIP
	Sam	DMTS	44	131	2501984	Princess Str.	EDI	EH2 4HF
D_1	Philip	DMTS	44	131	4459011	Crichton Str.	EDI	EH4 8LE
	Bob	DMTS	01	908	7732134	57 th St.	МН	07974
	Jef	DMTS	31	20	7464774	Muntplein	AMS	1012 WR
			00		21		0.1	710
	Name	Title	CC	AC	Phone	Street	City	ZIP
D	Joe	MTS	01	908	9075271	Queensway Drive	NYC	07974
D_2	Steven	MTS	31	20	4521633	Spuistraat	AMS	1012 WR
	Bram	MTS	31	10	8974638	Kruisplein	ROT	3012 CC
	Name	Title	CC	AC	Phone	Street	City	ZIP
D_3	Adam	VP	44	131	1326184	Mayfield Rd.	EDI	EH4 8LE

Pattern coordinator (cont.)

S₅ ? S₂

Leverage structure of pattern tableau.

- Assign coordinator for individual pattern tuples.
- Distribute detection process to multiple coordinators.

PatternDetect

- 1 Broadcast local statistics
- Decide on coordinator(s)
- Ship data to coordinator(s)
- 4 Violation detection at coordinator(s)

Pattern coordinator (cont.)

Leverage structure of pattern tableau.

- Assign coordinator for individual pattern tuples.
- Distribute detection process to multiple coordinators.

PatternDetect

- Broadcast local statistics
- Decide on coordinator(s)
- 3 Ship data to coordinator(s)
- 4 Violation detection at coordinator(s)

Pattern coordinator (cont.)

Leverage structure of pattern tableau.

- Assign coordinator for individual pattern tuples.
- Distribute detection process to multiple coordinators.

Pattern Mining

Impact of the presence of wildcards

For **sparse tableaus** (e.g., **FDs**) partitioning has minor (or no) impact.

Extend pattern tableau by instantiating wildcards with frequent pattern tuples.

MinePatternDetect

- 1a Mine locally for frequent patterns above given threshold
- 1b Exchange patterns and statistics
- 1c Construct extended pattern tableau

2 ...

Note

Can significantly reduce shipment.

Multiple CFDs

Validating a set of CFDs

Given a set of CFDs $\Sigma = \{\varphi_1, ..., \varphi_n\}$.

SeqDetect:

Sequentially executing one of the previous algorithms.

ClustDetect:

Reduce unnecessary data shipment by leveraging structure of **embedded FDs**.

- Merge CFDs that overlap on LHS.
- Sequentially validate merged CFDs.

Experiments

Scalability with |D|

Experiments (cont.)

Scalability with |Tp|

Experiments (cont.)

Impact of mining on shipment

Conclusion

Conclusion

Validating CFDs over distributed data requires data shipment.

Reduce shipment and response time by leveraging **pattern tableau** and structure of **embedded FD**.

Outlook

Develop validation algorithms for vertically (and horizontally) partitioned data.

Agenda

- ✓ Inconsistencies in Distributed Data
- ✓ Problem Statement & Complexity
- ✓ Detection Algorithms
- ✓ Experimental Results
- ✓ Conclusion & Outlook

