Allegro: GPU Simulation Acceleration for Machine Learning Workloads

Euijun Chung, Seonjin Na, Hyesoon Kim

HPArch (High Performance Architecture Lab) @ Georgia Tech

GPUs and Architectural Simulators

Nvidia's H100 GPU

Evaluation & Validation

GPU Simulator

IPC
Cache Hit Rate
Num of Instrs
Memory Access
TLB Hit Rate

. . .

Motivation: GPU Simulators are too slow

TABLE I
THROUGHPUT AND SLOWDOWN OF GPU SIMULATORS.

	Real GPU	Macsim	GPGPU-Sim	MGPUSim
Simulation Rate (KIPS)	4103750	50.5	12.5	27
Relative	328300	4.04	1	2.16
GPT-2: Generate 100 tokens	0.925 sec	20.88 hrs	3.52 days	1.63 days

*Real GPU: RTX 2080

- → **A few days** to generate **one sentence** with 100 tokens with GPT-2
- → Reducing the workload size is a huge problem to solve
- → Allegro's solution: **Kernel-wise Sampling** with execution statistics

Observations: 1. High Homogeneity

TABLE II

TOP 5 TIME-CONSUMING GPU KERNELS IN RESNET50 [14] WORKLOAD.

Kernel Name	# Calls	Total Time (ns)
cudnn_infer_volta_scudnn_winograd_128x	19625	1185625785
explicit_convolve_sgemm	3925	964880834
cudnn_infer_volta_scudnn_winograd_128x	7850	897755249
volta_sgemm_128x64_nn	23550	709594145
winograd::generateWinogradTilesKernel	7850	595149925

- √ Highly repeated kernel calls
- √ Good opportunity for efficient sampling

Observations: 1. High Homogeneity

TABLE II TOP 5 TIME-CONSUMING GPU KERNELS IN RESNET50 [14] WORKLOAD.

Kernel Name	# Calls	Total Time (ns)
cudnn_infer_volta_scudnn_winograd_128x	19625	1185625785
explicit_convolve_sgemm	3925	964880834
cudnn_infer_volta_scudnn_winograd_128x	7850	897755249
volta_sgemm_128x64_nn	23550	709594145
winograd::generateWinogradTilesKernel	7850	595149925

- Kernel names on the top of each subplot.
- Red dotted lines are normal distribution with same mean and variance.
- ✓ Narrow execution time distributions
- → Clustering & Sampling

Applying Central Limit Theorem (CLT)

Central Limit Theorem.

Let $\{X_1, ..., X_m\}$ be a sequence of m independent and identically distributed (i.i.d.) random variables following $N(\mu, \sigma^2)$.

Then, the sampled mean converges to $N(\mu, \sigma^2/m)$ as $m \to \infty$.

Applying Central Limit Theorem (CLT)

Central Limit Theorem.

Let $\{X_1, ..., X_m\}$ be a sequence of m independent and identically distributed (i.i.d.) random variables following $N(\mu, \sigma^2)$.

Then, the sampled mean converges to $N(\mu, \sigma^2/m)$ as $m \to \infty$.

✓ Can we ensure i.i.d.-ness of GPU kernels?

Observations: 2. Cache-Unfriendliness

GPU Cache Hierarchy.

Source: https://cvw.cac.cornell.edu/gpu-architecture/gpu-memory_levels

- ✓ Cache Flushing between kernel calls
- → No difference in the L1 hit rate
- → Small difference in the L2 hit rate

Allegro's sampling algorithm

error := execution time difference between **full** and **sampled simulation** m_{min} := minimum # of samples s.t. **error** < **error bound** ϵ .

For 95% confidence, m_{min} to ensure **error** < **error bound** ϵ :

$$m_{min} := max \left\{ \left\lceil \left(\frac{1.96 \sigma}{\epsilon} \right)^2 \right\rceil, 30 \right\}$$

Where $\mu =$ mean and $\sigma =$ stdev of execution times.

- \rightarrow Clustering: Compare m_{min} with a threshold recursively.
- \rightarrow **Sampling**: Randomly sample m_{min} kernel calls from each cluster.

Evaluation Setups

GPU: Nvidia RTX 2080 (Volta architecture), CUDA 11.8

HW Profiler: Nsight-Systems

List of used workloads:

- 7 Transformer/CNN based models
- Python-based implementations from HuggingFace

Name	# Kernels	Workload Description
Bert	1858800	Performing sequence classification on 10,000
		premise/hypothesis pairs using the BERT-
		Medium-MNLI model.
Bloom	51834362	Generating 1,000 sentences, each with a length
		of 100 tokens, using the Bloom model.
Deit	792850	Classifying 3,925 ImageNet datasets using
		the Data-efficient image Transformer (DeiT)
		model.
Gemma	9079126	Generating 1,000 sentences, each with a length
		of 100 tokens, from the GEMMA language
		model.
GPT-2	34981000	Generating 1,000 sentences, each with a length
		of 100 tokens, from the GPT-2 model.
Olmo-bitnet	2544766	Generating 10 sentences, each with a length of
		100 tokens, from the OLMo-Bitnet language
		model.
ResNet50	2812741	Classifying 13,400 ImageNet datasets using
		the ResNet50 model.
Gemma GPT-2 Olmo-bitnet	9079126 34981000 2544766	Classifying 3,925 ImageNet datasets using the Data-efficient image Transformer (DeiTimodel). Generating 1,000 sentences, each with a length of 100 tokens, from the GEMMA language model. Generating 1,000 sentences, each with a length of 100 tokens, from the GPT-2 model. Generating 10 sentences, each with a length of 100 tokens, from the OLMo-Bitnet language model. Classifying 13,400 ImageNet datasets using

Evaluation: Speedup and Error

Speedup for $\epsilon = 1\%$ to $\epsilon = 25\%$ Average ~1000x Speedup

Error for $\epsilon = 1\%$ to $\epsilon = 25\%$ Average 0.057% Error

Evaluation: Comparison

Random Sampling:

Randomly sample kernels until achieving the same speedup as Allegro

Limitations

- √ Homogeneity and i.i.d. assumptions:
 - The error may exceed the error bound ϵ
- ✓ Non-ML workloads with small number of kernel calls:
 - Ex) Rodinia Suite: typically involves only a few kernel calls
- ✓ Cache warm-ups effects:
 - Applies to all methodologies aiming for speed-up by sampling

Allegro's contributions

- Analysis of the latest ML workloads' characteristics on GPUs
 Homogeneity and cache-unfriendly nature
- 2. Propose a **statistical approach** to effectively reduce the workload size Central Limit Theorem (CLT) for calculating **error bounds**
- 3. Propose **clustering** and **sampling** method for ML workloads ~922x performance boost with high accuracy (0.057% error)
 - Tested 7 latest ML workloads on Macsim

Summary of **Allegro**

- √ Homogeneous and cache-unfriendly nature of ML workloads
- √ Sampling based on i.i.d. behavior of GPU kernels
- √ Statistical bounds on sampling errors
- ✓ GPU Simulation with **7 latest ML workloads**

- Euijun Chung, Seonjin Na, Hyesoon Kim
- HPArch (High Performance Architecture Lab

