The Lecture Title

Scribe: Your Name

Date: Day, Mon, Date Year

1 Unit 3 - Group Theory and Friends

Definition. A **group** is a set A and an binary operation \cdot (we denote this $G = (A, \cdot)$) where the following four properties hold:

- 1. Closure. A is closed under \cdot , that is, if elements $a_1, a_2 \in A$ then $a_1 \cdot a_2 \in A$.
- 2. Associativity. The operation \cdot is associative, that is, if elements $a,b,c \in A$, then $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 3. *Identity.* There exists an element $e \in A$ such that $e \cdot a = a \cdot e = a$.
- 4. *Inverse.* There exists an element $a^{-1} \in A$ for any element a such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Note that *commutativity* is **NOT** a necessary property of a group. We call groups such that for elements $a, b \in A$ such that $a \cdot b = b \cdot a$ are *abelian* or commutative.

Here are some examples of sets that are groupsThis is a group. /not groups:

- $G = (\mathbb{Z}, +)$. Yes! All these properties hold.
- $G = (\mathbb{Z}, \times)$. No! 0 does not have a multiplicative inverse, and in fact, no element has an inverse other than ± 1 .
- $G = (\mathbb{Q}, \times)$. No! 0 does not have a multiplicative iverse.
- $G = (\mathbb{R}, +)$. Yes! Same reasons as the first group.
- $G = (\{\text{set of all 2-by-2 matrices with integer elements}\}, \cdot)$ No! Not all of these matrices are invertible (have determinant zero).
- $G = (\{\text{set of all 2-by-2 matrices with determinant 1}\}, \cdot)$. Yes! This is actually a special group, SL(2).

Definition. A **subgroup** H of G is $H = (B, \cdot)$ where $B \subseteq A$. These groups must have the same operation, and H must also be a group.

The Lecture Title Page 2

An example of a subgroup: $(5\mathbb{Z}, +)$ is a subgroup of the group $(\mathbb{Z}, +)$, as it retains all the properties of \mathbb{Z} .

Defintion. A **coset** $a \cdot H$ of a subgroup H is the set of elements $\{a \cdot h | h \in H\}$ and $a \in G$.

For example, take the example $2+5\mathbb{Z}=\{2,7,12,17,\ldots,-3,-8,-13,-18\ldots\}$. These are the integers that are $\equiv 2 \mod 5$. Similarly, we can form three other unique cosets (that are 1, 3, and 4 mod 5). Note that cosets are **not** generally groups, as this coset is clearly not a group (no identity, not closed under addition, etc.)

Let's consider the following statements:

- Cosets $a \cdot H \cap b \cdot H = \emptyset$ if $a \neq b$. This is not always true as a counterexample, consider $2 + 5\mathbb{Z}$ and $7 + 5\mathbb{Z}$.
- If $a \cdot H \cap b \cdot H \neq \emptyset$, then $a \cdot H = b \cdot H$.
- If *H* is finite, $|a \cdot H| = |H|$. This is true -
- Every $g \in G$ is in $a \cdot H$ for some a. Obviously not always true, but if it were, we could actually solve for a.

If ALL of these statements are true, then we can conclude that |G| is divisble by $a \cdot H$, and furthermore, |H||G|.