HEC-RAS Water Quality Test Data Sets

HEC-RAS Water Quality User's Manual

Exported on 10/18/2023

Table of Contents

1	Example: Nutrient Simulation Module - OrgN->NH4->NO3	. 4
1.1	Organic N (OrgN) → Ammonia Nitrogen NH4(NH4) → Nitrate NO3 (NO3)	. 4
1.2	Parameters and Initial Conditions	. 4
1.2.1	Analytic Solutions for OrgN→NH4	. 6
1.3	Analytic Solutions	. 6
1.4	Settings and Parameters	. 7
1.5	Comparison of Model and Analytic Solution	. 8
	Example: Nutrient Simulation Module - Atmospheric Reaeration to Organics with Dissolved Oxygen	

Placeholder

1 Example: Nutrient Simulation Module - OrgN->NH4->NO3

1.1 Organic N (OrgN) → Ammonia Nitrogen NH₄(NH4) → Nitrate NO₃ (NO3)

NSMI simulates the transformations of organic nitrogen (OrgN), ammonium (NH₄), and nitrate (NO3). There is a stepwise transformation form OrgN to NH4, and on to NO3. Release of nutrients from (and settling of nitrogen to) the bed may also be important. Algae interact with both organic and inorganic forms of nitrogen through algal death, respiration and uptake of nutrients. The block diagram below shows sources and sinks for Organic Nitrogen (OrgN) to Ammonium Nitrogen (NH4) to Nitrate (NO3). The pathway for this test is shown in blue.

1.2 Parameters and Initial Conditions

Symbol	Description	Units	Value
OrgN	Organic Nitrogen	mg/L	State variable
NH4	NH₄ Nitrogen	mg/L	State variable
NH4	NO ₃ Nitrogen	mg/L	State variable

Symbol	Description	Units	Value
$OrgN_0$	Organic Nitrogen (initial concentration)	mg/L	8
$NH4_0$	NH ₄ Nitrogen (initial concentration)	mg/L	1
$NO3_0$	NO ₃ Nitrogen (initial concentration)	mg/L	0
$k_{on}(T)$	Organic N hydrolysis rate OrgN → NH ₄	1/day	0.3
$ heta_{k_{on}}$	k _{on} Temperature correction factor	unitless	1.047
$k_{nit}(T)$	Nitrification rate NH ₄ → NO ₃	1/day	1
$ heta_{k_{nit}}$	k _{nit} Temperature correction factor	unitless	1.083
$k_{dnit}(T)$	Denitrification rate NO ₃ → atm	1/day	0
$k_{dp}(T)$	Phytoplankton algae mortality rate Ap → OrgN	1/day	0
$k_{db}(T)$	Benthic algae mortality rate Ab → OrgN	1/day	0
$k_{rp}(T)$	Phytoplankton algae respiration rate $Ap \rightarrow NH4$	1/day	0
$k_{rb}(T)$	Benthic algae base respiration rate Ab → NH4	1/day	0
μ_p	Growth rate for phytoplankton algae NH4 → Ap	1/day	0

Symbol	Description	Units	Value
μ_b	Growth rate for benthic algae NH4 → Ab	1/day	0
$r_{nb}(T)$	Benthic algae uptake rate NH4 → Ab	1/day	0
r_{nh4}	Sediment release rate of NH4 Bed ↔ NH4	g – N/m²/day	0
U_{SON}	Organic N settling velocity OrgN → Bed	m/day	0
T	Water Temperature	С	25
и	Stream velocity	m/s	1
D	Dispersion coefficient	m ² /s	0

.

1.2.1 Analytic Solutions for OrgN→NH4

1.3 Analytic Solutions

$$OrgN = OrgN_o e^{-k_{on}t}$$

$$NH4(t) = NH4_o e^{-k_{nit}t} + \frac{k_{on}OrgN_o}{(k_{nit} - k_{on})} (e^{-k_{on}t} - e^{k_{nit}t})$$

1.4 Settings and Parameters

Symbol	Description	Units	Value
OrgN	Concentration of Organic N	mg/L	State variable
NH4	Concentration of NH ₄	mg/L	State variable
NO3	Concentration of NO ₃	mg/L	State variable
$OrgN_o$	Initial concentration of organic nitrogen	mg/L	8
$NH4_o$	Initial concentration of NH ₄	mg/L	1
$NO3_o$	Initial concentration of NO ₃	mg/L	0
U_{son}	Organic N settling rate	m/day	0
k_{on}	Organic N hydrolysis rate	1/day	0.3
k_{nit}	Nitrification rate	1/day	1
r_{nh4}	Sediment release rate of NH4	m/day	0
k_{dnit}	Denitrification rate	1/day	0
v_{son}	Sediment denitrification velocity	m/day	0
$ heta_{kon}$	Temperature correction factor	unitless	1.047
$ heta_{knit}$	Temperature correction factor	unitless	1.083
T	Water temperature	С	25
и	Stream velocity	m/s	1

Symbol	Description	Units	Value
D	Dispersion coefficient	m ² /s	0

1.5 Comparison of Model and Analytic Solution

placeholder

2 Example: Nutrient Simulation Module - Atmospheric Reaeration to Organics with Dissolved Oxygen

A block diagram is shown below. There are only two rate rate constants, the oxygen re-aeration rate (k_{ah}) and the BOD decay rate (k_{bod}) .