# Final Review for Chapters 1 and 2

These images should help in analyzing the problems.
Use upper case when typing an instruction or a HEX value.
Put ONE space between operands in the instructions

| Pul Oi     | VE S | bace be      | rwee   | snobe   | :I di | ius ii   | I LII | ems    | uctio  | 0115   |
|------------|------|--------------|--------|---------|-------|----------|-------|--------|--------|--------|
| Name       | Form | at           |        |         |       | Ex       | amp   | le     |        |        |
| ADD        | R    | 111          | L2     | 3       |       |          | 0     |        | 2      | 1      |
| SUB        | R    | 162          | 24     | 3       |       |          | 0     |        | 2      | 1      |
| ADDI       | 1    | 58           | 0      |         |       | 100      |       |        | 2      | 1      |
| SUBI       | 1    | 83           | 6      |         |       | 100      |       |        | 2      | 1      |
| LDUR       | D    | 198          | 36     |         | 10    | 0        |       | 0      | 2      | 1      |
| STUR       | D    | 198          | 34     |         | 10    | 0        |       | 0      | 2      | 1      |
| Field size |      | 11 or 1      | 0 bits | 5 bits  | 6     | 5 or 4   | bits  | 2 bits | 5 bits | 5 bits |
| R-format   | R    | opco         | de     | Rm      |       | sha      | amt   |        | Rn     | Rd     |
| I-format   | I    | opco         | de     |         | ir    | nmediat  | е     |        | Rn     | Rd     |
| D-format   | D    | opco         | de     |         | addr  | ess      |       | _op2   | Rn     | Rt     |
| Name       |      |              |        |         |       | Fields   |       |        |        |        |
| Field size |      | 6 to 11 bits | 5 to   | 10 bits | 50    | r 4 bits | 2 bit | s 5    | bits   | 5 bits |
| R-format   | R    | opcode       |        | Rm      |       | sham     | t     |        | Rn     | Rd     |
| I-format   | 1    | opcode       |        | im      | medi  | ate      |       |        | Rn     | Rd     |
| D-format   | D    | opcode       |        | addre   | SS    |          | op2   | 2      | Rn     | Rt     |
| B-format   | В    | opcode       |        |         |       |          | addre | ss     |        |        |
| CB-format  | СВ   | opcode       |        |         |       | addres   | s     |        |        | Rt     |
| IW-format  | IW   | opcode       |        |         |       | immedia  | ate   |        |        | Rd     |

| Mnemonic 🗖 | Format 🗖 | Width | Binary      |
|------------|----------|-------|-------------|
| LDUR       | D        | 11    | 11111000010 |
| STUR       | D        | 11    | 11111000000 |
| MOVK       | IM       | 9     | 111100101   |
| BR         | R        | 11    | 11010110000 |
| LSL        | R        | 11    | 11010011011 |
| LSR        | R        | 11    | 11010011010 |
| MOVE       | IM       | 9     | 110100101   |
| SUBI       | I        | 10    | 1101000100  |
| SUB        | R        | 11    | 11001011000 |
| CBNZ       | СВ       | 8     | 10110101    |
| CBZ        | СВ       | 8     | 10110100    |
| BL         | В        | 6     | 100101      |
| ANDI       | I        | 10    | 1001001000  |
| ADDI       | I        | 10    | 1001000100  |
| ADD        | R        | 11    | 10001011000 |
| AND        | R        | 11    | 10001010000 |
| B.Cond     | СВ       | 8     | 01010100    |
| В          | В        | 6     | 000101      |

Associate the line of code with the category

| Triple the value of X1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Multiply by 33      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| /·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                 |
| To the state of th | _ I                 |
| T I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ I                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | '                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Create the 2s complement of register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Integer divide by 8 |
| Create the 2s complement of register X3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Integer divide by 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integer divide by 8 |

## Possible answers



| We need to call procedure <b>calculateBonus</b> A - What line of code will call our procedure                                                                                          |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| You have a procedure that needs to save 3 registers X2, X3, are 64 bit registers.                                                                                                      |                           |
| When you enter the procedure you need to modify the stack save these registers. put registers in order from lowest to hard B - What lines of code would be used to create the space or | ighest                    |
| // need space for 3 64 bit                                                                                                                                                             | t registers               |
| // save register X2                                                                                                                                                                    |                           |
| // save register X3                                                                                                                                                                    |                           |
| // save register X6                                                                                                                                                                    |                           |
| C - at the end of the procedure the registers and the stack r are those lines of code?                                                                                                 | need to be restored. What |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
|                                                                                                                                                                                        |                           |
| D - What is the line of code to return from a procedure                                                                                                                                |                           |
| // return from procedure                                                                                                                                                               |                           |
|                                                                                                                                                                                        |                           |

#### 8 points 3

List 4 different kinds of **R** - Type instructions.

Include any registers, addresses or immediate values needed. Make it look like a real line of code.

Edit View Insert Format Tools Table  $I_{\triangleright}$   $\blacksquare$   $\vee$   $\sqrt{x}$   $\longleftrightarrow$ 

p









14 points

This table lists either the Op Code or the Operation to be executed. Either Determine the Hex value for the instruction or figure out what Operation is to be performed. Use ALL CAPS for the HEX or the OPERATOR and the REGISTER

| Op Code  | Operator            |                  |  |  |  |
|----------|---------------------|------------------|--|--|--|
| D37DF02A | ,                   |                  |  |  |  |
|          | ignore shamt        |                  |  |  |  |
| 8B0A000A | ADD x10, x0, x10    | ADD x10, x0, x10 |  |  |  |
| F8400149 |                     |                  |  |  |  |
|          |                     |                  |  |  |  |
|          | LDUR x11, [x10, #8] |                  |  |  |  |
|          | STUR x11, [x10, #0] |                  |  |  |  |
| F8008149 |                     |                  |  |  |  |
|          | BR x30              |                  |  |  |  |

Write the code to support a WHILE loop. Register X4 must be initialized to 0 by you, Register X5 will be the loop index and you must initialize it to 19

```
let max = 19;
let index = 0;
while (index < max) {</pre>
    // whatever
    index++;
}
```

Edit View Insert Format Tools Table

$$\underline{T}_{\emptyset}$$
 $\blacksquare$ 
 $\sqrt{x}$ 

р











6

10 points

Given this line of Code (which is an R Format) what are the values for the respective fields

|                  |        | opcode | immediate | Rn | Rd | Hex<br>Value |
|------------------|--------|--------|-----------|----|----|--------------|
| SUBI SF<br>#0x30 | P, SP, |        |           |    |    |              |

| 7 | 12 | point |
|---|----|-------|

For the following convert HEX to unsigned Decimal and Decimal to HEX. Use capital letters for A-F and no commas for the decimal numbers

| 1. | Convert 0x1234 to decimal                                                               |
|----|-----------------------------------------------------------------------------------------|
| 2. | Covert 1234 to Hex                                                                      |
| 3. | Convert -555 to 16-bit Binary. (answer will contain 16 bits)                            |
| 4. | Convert 0000 1110 0011 0011 to Decimal.                                                 |
| 5. | Convert (assume we have an 8-bit integer) 1110 0111 from SIGNED  Binary and to UNSIGNED |

8 5 points

What are the classic components of a computer

| Memory | У |
|--------|---|
|--------|---|

| vacuum | tubes  |
|--------|--------|
|        |        |
|        | vacuum |

electricity

Control

### Match the abbreviation with the measurement



10 10 points



The cells in Yellow are steps along the way which you will need to solve for the Green cells.

Do NOT include commas or spaces, If the answer does not have a decimal portion do not include it. DO include the leading zero is answer is less than 1

BAD BAD BAD

12,000,000 12.0 12.10 12 000 000 .4 0.40

GOOD

12000000 12 12.1 12000000 0.4 0.4



|              |                                      | Run Time                             | 0.0002 secs                |                      |                                |
|--------------|--------------------------------------|--------------------------------------|----------------------------|----------------------|--------------------------------|
| # of Cycles  | # of<br>Instructions                 | Instr Type                           | Cycles per<br>Instructions | % of<br>Instructions | CPI for<br>Instruction<br>Type |
|              | 500,000                              | Add/Mov<br>Instr                     | 1                          |                      |                                |
|              | 250,000                              | Branch                               | 2                          |                      |                                |
|              | 500,000                              | Multiply                             | 3                          | 0.4                  | 1.2                            |
| Total Cycles | Total # of<br>Instructions           |                                      |                            |                      | Average CPI                    |
|              | Clock Rate<br>GHz                    | Clock Rate<br>(cycles /<br>sec)      |                            |                      |                                |
|              | Cycle Time<br>(Sec/Cyc)<br>x 10 ^-12 | Clock Cycle<br>Time (sec /<br>cycle) |                            |                      |                                |

Given three pieces of information about the application parameters calculate the missing piece. If number is less then 1 include the leading 0. Only include the significant fractional portion, no trailing zeros. Do not include commas or spaces. 0.5, 1.55, 2, 1.7

| 0.5, 1.55, 2, | 1.7               |                       |          |
|---------------|-------------------|-----------------------|----------|
| СРІ           | # of Instructions | Clock Rate Cycles/Sec | CPU Time |
| 2.25          | 200000000         | 90000000              | 0.5      |
| 3             | 100000000         | 100000000             |          |
| 1.5           | 100000000         |                       | 0.3      |
| 1.5           | 125000000         |                       | 0.75     |
| 3.5           |                   | 350 000 000           | 1.25     |
| 4             |                   | 5 000 000             | 120      |
|               | 150 000 000       | 5 000 000             | 66       |
|               | 12 000            | 240 000               | 0.3      |



Order chips from slowest to fastest

Slowest

- 5 ns seconds per cycle
- iii 5 x 10<sup>-15</sup> seconds per cycle
- 200 ns seconds per cycle
- 50.0 Ghz cycles per second
- 1.8 GHz cycles per second

fastest

13 <sub>12 points</sub>



The cells in Yellow are steps along the way which you will need to solve for the Green cells.

## Processor B runs App X

|              |                            | Run Time                     | 0.0002 secs                |                      |                                                           |
|--------------|----------------------------|------------------------------|----------------------------|----------------------|-----------------------------------------------------------|
| # of Cycles  | # of<br>Instructions       | s Instr Type                 | Cycles per<br>Instructions | Pct of Instr<br>Type | (you<br>will<br>need to<br>know<br>% of<br>Instr<br>Type) |
|              | 500,000                    | Add/Move                     | 1                          | %                    |                                                           |
|              | 150,000                    | Branch                       | 2                          | %                    | .30                                                       |
|              | 200,000                    | Multiply                     | 3                          | %                    |                                                           |
|              | 150,000                    | Floating<br>Point            | 4                          | %                    |                                                           |
| Total Cycles | Total # of<br>Instructions |                              |                            |                      | Averag<br>e CPI                                           |
|              | Clock Rate<br>(GHz)        | Clock Rate<br>(cycles / sec) |                            |                      |                                                           |
|              | Cycle Time<br>(Sec/Cyc)    | Cycle Time<br>(sec / cycle)  |                            |                      |                                                           |

| Application A on Computer A                                                                                                       |                  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| CPU Time (secs) 20.00                                                                                                             |                  |  |  |  |
| Cycles                                                                                                                            | 70.00E+9         |  |  |  |
| Cycle Rate (cycles / sec)                                                                                                         | 3.50E+9          |  |  |  |
| We have created a new chip and have tested Application A. It runs in 12 secs and requires an additional 20% in instruction cycles |                  |  |  |  |
| Application A on Computer B                                                                                                       |                  |  |  |  |
| CPU Time (secs)                                                                                                                   | 12.00            |  |  |  |
| Cycles (enter whole number no decimals)                                                                                           | 10 <sup>9</sup>  |  |  |  |
| Cycle Rate (enter whole number no decimals)                                                                                       | x10 <sup>9</sup> |  |  |  |

Compare Performance of Chip X to Chip Z

| Tice of Chip A to Chip Z                                                                                          | 1                                                         |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| Chip X                                                                                                            | Chip Z                                                    |  |  |  |  |
| 27 000 000 000                                                                                                    |                                                           |  |  |  |  |
| 4.2 GHz                                                                                                           | 3.5 GHz                                                   |  |  |  |  |
|                                                                                                                   |                                                           |  |  |  |  |
| If the new chip design for Computer Z <b>decreases</b> instruction cycles by 20% and has a cycle time of 3.5 GHz, |                                                           |  |  |  |  |
| •                                                                                                                 | Sec                                                       |  |  |  |  |
| •                                                                                                                 |                                                           |  |  |  |  |
| ·                                                                                                                 | Secs                                                      |  |  |  |  |
| application faster? (X or                                                                                         |                                                           |  |  |  |  |
|                                                                                                                   | Chip X  27 000 000 000  4.2 GHz  gn for Computer Z decrea |  |  |  |  |

| Application A on (                                                                                                               | Computer A  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| CPU Time (secs)                                                                                                                  | 12.00       |  |  |
| Cycles                                                                                                                           | 30.00E+9    |  |  |
| Cycle Rate<br>(cycles / sec)                                                                                                     | GHz         |  |  |
| We have created a new chip and have tested Application A. It runs in 8 secs and requires an additional 1/3 in instruction cycles |             |  |  |
| Application A on Computer B                                                                                                      |             |  |  |
| CPU Time (secs)                                                                                                                  | 8.00        |  |  |
| Cycles                                                                                                                           | Giga Cycles |  |  |
| Cycle Time                                                                                                                       | GHz         |  |  |

Convert Clock Rate to Clock Cycle or Clock Cycles to Clock Rate If you are given the Clock Rate: cycles / sec (2MHz, 4,000,000,  $5 \times 10^6$ ) determine the Clock Cycle Time: sec / cycle ( $500 \times 10^{-9}$ ,  $250 \times 10^{-9}$ ,  $200 \times 10^{-9}$ ) respectively.

i.e. if answer is  $800 \times 10^{-9}$  your response will just be 800.00

| Clock Rate               | Clock<br>Cycles | Exponen<br>t |  |
|--------------------------|-----------------|--------------|--|
| 12.00 x 10 <sup>6</sup>  |                 |              |  |
| 166.66 x 10 <sup>6</sup> |                 | -9           |  |
| MHz                      | 200.00          | -9           |  |
| 2,000,000.00             |                 | -9           |  |
| 1 MHz                    |                 |              |  |
| MHz                      | 100.00          | -9           |  |

Given the Cycles per Instruction Type. Determine The CPI per Instruction Type and the Average CPI. All answers should have TWO decimal places. Even if the second decimal is 0.

Examples 2.00, 1.50, 1.66, 0.10, 0.25

| Instruction<br>Type              | Add | Store | Branc<br>h | FP  |                 |
|----------------------------------|-----|-------|------------|-----|-----------------|
| Cyles per<br>Instruction<br>Type | 1   | 2     | 4          | 4   |                 |
| Instruction<br>Type Mix          | 50% | 20%   | 20%        | 10% |                 |
| CPI per<br>Instruction<br>Type   |     |       |            |     | Averag<br>e CPI |