Seminarul 6

- 1. Intr-un joc, se aruncă trei monede. Un jucător câștigă 1 euro pentru fiecare apariție a unui cap și pierde 8 euro în cazul aparitiei a trei pajuri. Calculati pentru suma de bani a jucătorului: functia de repartitie, valoarea medie si deviatia standard.
- 2. Un jucător de darts ochește discul roșu (denumit "bullseye") cu centrul în centrul țintei și diametru 1 cm. La o aruncare, distanța dintre centrul țintei și punctul nimerit de săgeata jucătorului urmează distribuția uniformă pe intervalul [a,b], unde $0 \le a < b$, cu valoarea medie $\frac{3}{2}$ cm și deviația standard $\frac{\sqrt{3}}{2}$ cm. Aruncările jucătorului sunt independente. Determinați:
- a) probabilitatea ca jucătorul să nimerească discul roșu;
- b) probabilitatea ca jucătorul să nimerească de 2 ori discul roșu din 10 aruncări.

Funcția de densitate pentru distribuția uniformă Unif[a,b] este $f: \mathbb{R} \to \mathbb{R}$ definită prin $f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$.

- 3. Fie $X \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{pmatrix}$ și Ω spațiul de selecție. Fie $(X_n)_n$ un şir de variabile aleatoare independente definite pe Ω , care au aceeași distribuție ca X.
- a) Fie, pentru $n \in \mathbb{N}^*$, v.a. $Y_n(\omega) = \begin{cases} 1, & \operatorname{dacă} X_n(\omega) \leq 3 \\ 0, & \operatorname{dacă} X_n(\omega) > 3 \end{cases}$, $\omega \in \Omega$.

Ce distribuție are Y_n ? Spre ce valoare converge a.s. şirul $\left(\frac{1}{n}(Y_1 + ... + Y_n)\right)_n$?

b) Pentru $n \in \mathbb{N}^*$, fie

$$Z_n: \Omega \to [0,1]$$
 $Z_n(\omega) = \frac{\#\{i \in \{1,\dots,n\} : X_i(\omega) \le 3\}}{n}.$

Ce relație avem între $Y_1 + ... + Y_n$ și Z_n ? Folosind a), determinați limita a.s. pentru $(Z_n)_n$.

- 4. Durata (în minute) a unei plăți pentru o factură la un ghișeu într-o bancă urmează distribuția continuă Unif[1,3]. Stiind că duratele oricăror plăți sunt independente, demonstrați că:
- i) media aritmetică a duratelor plăților a n facturi converge a.s. la 2 minute, când $n \to \infty$.
- ii) media geometrică a duratelor plăților a n facturi converge a.s. la $\frac{3\sqrt{3}}{e}$ minute, când $n \to \infty$. iii) media armonică a duratelor plăților a n facturi converge a.s. la $\frac{2}{\ln 3}$ minute, când $n \to \infty$.
- 5. Un computer este conectat la două imprimante: I_1 and I_2 . Computerul trimite printarea unui document lui I_1 cu probabilitatea 0,4, respectiv lui I_2 cu probabilitatea 0,6. Știind că a fost aleasă imprimanta I_1 , un poster A_2 este printat în T_1 secunde, unde T_1 are distribuția $Exp(\frac{1}{5})$. Știind că a fost aleasă imprimanta I_2 , un poster A2este printat în T_2 secunde, unde T_2 are distribuția uniformă Unif[4,6]. Un inginer solicită printarea unui poster A2 de pe computer.
- a) Calculați probabilitatea ca timpul de printare a posterului să fie mai mic decât 5 secunde.
- b) Calculati valoarea medie pentru timpul (în secunde) de printare a posterului.
- **6.** Fie v.a. $U \sim Unif[1,3]$. Să se calculeze $E(U^2)$. Folosind rezultatul obținut, să se justifice de ce U^2 nu urmează distribuția Unif[1,9]!
- 7. Fie v.a. independente $U_1, U_2 \sim Unif[0,3]$. Să se calculeze $V(U_1 + U_2)$. Folosind rezultatul obținut, să se justifice de ce $U_1 + U_2$ nu urmează distribuția Unif[0,6]!
- 8. Timpii de funcționare (în ore) a două baterii sunt două variabile aleatoare independente $X \sim Unif[0,2]$ și $Y \sim Exp(1)$. Fie $T = \min\{X,Y\}$ timpul de funcționare a bateriilor legate în serie. Calculați: P(X < 0.5), $P(T > 1), P(T < 1|X \ge 1).$