Lead Scoring Case Study

Team – Vaishnavi Herur & Ujwal Mishra Submission – 21st May, 2024

Problem Statement

- ✓ An education company, X Education, wants to improve its lead conversion rate.
- ✓ The typical lead conversion rate at X education is around 30%.
- ✓ They aim to identify the most potential leads (hot leads) to focus their sales efforts more efficiently.
- ✓ The company needs a model to assign lead scores to prioritize leads for follow-up, <u>aiming for an 80% conversion rate</u>

Note: Conversion rate is for example, if, say, they acquire 100 leads in a day, only about 30 of them are converted

Business Objective

- > Build a logistic regression model to predict lead conversion probabilities.
 - Assign lead scores based on these probabilities.
 - Use the lead scores to prioritize leads for follow-up
- > Increase lead conversion rate from the current 30% to 80%.
- Improve efficiency and effectiveness of the sales team.
 - Identify hot leads for more targeted sales efforts.

Solution Methodology

- 1. Data cleaning and data manipulation.
 - Check and handle duplicate data.
 - Check and handle NA values and missing values.
 - Drop columns, if it contains large amount of missing values and not useful for the analysis.
 - Imputation of the values, if necessary.
 - Check and handle outliers in data.
- 2. EDA
 - Univariate data analysis
 - Bivariate data analysis

- 3. Model building
- Feature Scaling & Dummy Variables and encoding of the data.
- Classification technique: logistic regression used for the model making and prediction.
- · Validation of the model.
- 4. Model presentation.
- 5. Conclusions and recommendations.

Data Cleaning and Manipulation

- > Shape of data set: Rows 9240 | Columns 37
- Columns with high % of <u>null values ~30% and above</u> are dropped
 - 'Last Activity', 'What matters most to you in choosing a course', 'Tags', 'Lead Quality', 'Lead Profile', 'Asymmetrique Activity Index', 'Asymmetrique Profile Index', 'Asymmetrique Activity Score', 'Asymmetrique Profile Score'
- > Columns with <u>no variance or having only single value</u> are dropped
 - 'Magazine', 'Receive More Updates About Our Courses', 'Get updates on DM Content',
 'Update me on Supply Chain Content', 'I agree to pay the amount through cheque'
- Columns which are of <u>no relevance</u> are dropped
 - 'City', 'A free copy of Mastering The Interview', 'Last Notable Activity'

Data Cleaning and Manipulation

- > These columns are dropped due to data imbalance. Refer the univariate analysis
 - 'Do Not Email', 'Do Not Call', 'Search', 'Newspaper Article', 'X Education Forums', 'Newspaper', 'Digital Advertisement', 'Through Recommendations'
- > Data in these columns has been bucketed based on similarity and redundancy
 - 'Lead Origin', 'Lead Source', 'Specialization'

Handling Outlier Data

Handling Outlier Data

Univariate Analysis

Univariate Analysis

Data Cleaning and Manipulation

Data Cleaning and Manipulation

Bivariate Analysis

Bivariate Analysis

Specialization

Publ

Bivariate Analysis

- ✓ <u>Lead Origin</u>: Leads coming from a "Landing Page Submission," about 36.17% of them end up converting into customers, while the remaining 63.83% do not convert. This indicates that while landing page submissions are effective in attracting leads, there's still room for improvement in converting these leads into customers.
- ✓ <u>Lead Source</u>: The data suggests that while around 60.08% of leads from Google did not convert, approximately 39.92% did convert. This indicates that Google is a significant source of leads, but there is still potential to improve conversion rates by optimizing strategies targeting leads from this platform.
- ✓ <u>Specialization</u>: The provided data indicates that among leads with a management specialization, approximately 44.70% ended up converting into customers, while the remaining 55.30% did not convert. This suggests that while there is some success in converting leads with a management specialization, there may be opportunities to further enhance conversion rates within this group.
- ✓ <u>Current occupation</u>: The data indicates that 33.29% of unemployed leads convert into customers, while 66.71% do not. This suggests that while there is some potential in targeting unemployed individuals, the conversion rate is relatively low, highlighting a need for tailored strategies or support to better engage and convert this demographic

Bivariate Analysis (Continuous)

Bivariate Analysis (Continuous)

<u>Total Visits</u> - This slight difference suggests that there's a small increase in the average number of visits for leads who eventually converted, indicating a potential trend towards higher engagement among converting leads.

<u>Total time spent on website</u> - Leads who did not convert (Converted=0) spent approximately 330 seconds (or about 5.5 minutes) on the website, whereas those who did convert (Converted=1) spent significantly more time, around 734 seconds (or about 12.2 minutes). This suggests a substantial difference in engagement levels between converting and non-converting leads, with converting leads spending notably more time on the website.

<u>Page view per visit</u> - On average, both converting (Converted=1) and non-converting (Converted=0) leads have a similar number of page views per visit, with converting leads having a slightly higher average of approximately 2.29 page views per visit compared to 2.29 for non-converting leads. This suggests that there's not a significant difference in the average number of pages viewed per visit between converting and non-converting leads.

Heatmap

- ➤ There is a moderate positive correlation (correlation coefficient = 0.3546) between the total number of visits and the total time spent on the website, indicating that leads who visit the website more often tend to spend more time on it.
- ➤ There is a strong positive correlation (correlation coefficient = 0.7552) between the total number of visits and the average page views per visit, suggesting that leads who visit the website more often tend to view more pages per visit

Model Building

- > Splitting dataset into train and test
- > The first basic step for regression is performing a train-test split, we have chosen 70:30 ratio.
- ➤ Use RFE for Feature Selection
- > Running RFE with 15 variables as output
- > Building Model by removing the variable whose p-value is greater than 0.05 and vif value is greater than 5
- ➤ Overall accuracy 79.39%

Dummy variables created for categorical variables
'Lead Origin'
'Lead Source'

'What is your current

✓ Dropping the following columns

'Specialization_No Selection' 'Lead Origin_Lead Add Form'

due to multi collinearity

'Page Views Per Visit',

'Specialization'

occupation'

ROC Curve

Conclusion

Top 3 variables that contribute most towards probability of lead getting converted

- > Total time spend on the website (1.053)
- Lead Source_Reference(0.9118)
- What is your current occupation_Working Professional(0.7711)

The company should focus on building strategy around the following

- > Engaging and informative website content that keeps visitors longer can significantly enhance conversion rates
- Leveraging customer testimonials, referral programs, and encouraging satisfied customers to spread the word can be beneficial strategies
- > Aggressively perform marketing addressing working professional