Self-Assessment Quiz: Derivatives, Rates of Change, Tangent Line & Rules

Ungraded Quiz - For Practice and Understanding

Q1. The derivative of a function f(x) represents:

- (a) The area under the curve
- (b) The instantaneous rate of change of f(x)
- (c) The total change in f(x) over an interval
- (d) The slope of the secant line

Q2. The slope of the tangent line to f(x) at x = a is:

- (a) f(a)
- (b) f'(a)
- (c) $\frac{f(a)}{a}$
- (d) $\frac{f(a+h)-f(a)}{h}$

Q3. The derivative of $f(x) = 3x^2 + 2x - 5$ is:

- (a) 3x + 2
- (b) 6x + 2
- (c) $x^2 + 2$
- (d) 6x

Q4. The expression $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ defines:

- (a) The derivative of f at a
- (b) The integral of f
- (c) The tangent line to f
- (d) The average rate of change

Q5. The instantaneous rate of change of y = f(x) at x = a equals:

- (a) $\frac{\Delta y}{\Delta x}$
- (b) $\frac{dy}{dx}$
- (c) $\frac{y}{x}$
- (d) $\frac{f(a+h)}{a}$

Q6. The derivative of a constant function f(x) = c is:

(a) c

- (b) 0
- (c) x
- (d) Undefined

Q7. If $f(x) = x^3$, then f'(x) =:

- (a) $3x^2$
- (b) 2x
- (c) $x^2 + 3$
- (d) $x^3 + 1$

Q8. The tangent line to f(x) at x = a can be written as:

- (a) y = f(a)x + f'(a)
- (b) y = f'(a)x + a
- (c) y f(a) = f'(a)(x a)
- (d) y = f(x) + f'(x)

Q9. If $y = 5x^4 - 2x^3 + 7$, then $\frac{dy}{dx}$ is:

- (a) $20x^3 6x^2$
- (b) $4x^3 3x^2$
- (c) $5x^3 2x^2$
- (d) $20x^2 6x$

Q10. The derivative of $\sin x$ is:

- (a) $\cos x$
- (b) $-\sin x$
- (c) $-\cos x$
- (d) $\tan x$

Q11. The derivative of $\cos x$ is:

- (a) $\sin x$
- (b) $-\sin x$
- (c) $\tan x$
- (d) $\sec^2 x$

Q12. If $f(x) = e^x$, then f'(x) =:

- (a) e^x
- (b) xe^{x-1}
- (c) $\ln(e)x$
- (d) 1

Q13. The derivative of $\ln x$ is:

- (a) x
- (b) $\frac{1}{x}$
- (c) $\ln(x-1)$
- (d) $\frac{1}{x^2}$

Q14. If $f(x) = 3x^2 - 4x + 1$, find f'(2).

- (a) 8
- (b) 12 4 = 8
- (c) 2
- (d) 4

Q15. The derivative of $f(x) = \frac{1}{x}$ is:

- (a) 1
- (b) $\frac{1}{x^2}$
- $(c) -\frac{1}{x^2}$
- (d) x^{-1}

Answers (for self-check):

 $1(b),\,2(b),\,3(b),\,4(a),\,5(b),\,6(b),\,7(a),\,8(c),\,9(a),\,10(a),\,11(b),\,12(a),\,13(b),\,14(b),\,15(c)$