# Seasonal time series

FORECASTING USING ARIMA MODELS IN PYTHON



James Fulton
Climate informatics researcher



#### Seasonal data

- Has predictable and repeated patterns
- Repeats after any amount of time

# Seasonal decomposition









# Seasonal decomposition



time series = trend + seasonal + residual

# Seasonal decomposition using statsmodels

```
# Import
from statsmodels.tsa.seasonal import seasonal_decompose
# Decompose data
decomp_results = seasonal_decompose(df['IPG3113N'], freq=12)
type(decomp_results)
```

statsmodels.tsa.seasonal.DecomposeResult

# Seasonal decomposition using statsmodels

```
# Plot decomposed data
decomp_results.plot()
plt.show()
```



# Finding seasonal period using ACF



# Identifying seasonal data using ACF



# Detrending time series

```
# Subtract long rolling average over N steps
df = df - df.rolling(N).mean()
# Drop NaN values
df = df.dropna()
```



# Identifying seasonal data using ACF

```
# Create figure
fig, ax = plt.subplots(1,1, figsize=(8,4))

# Plot ACF
plot_acf(df.dropna(), ax=ax, lags=25, zero=False)
plt.show()
```



#### ARIMA models and seasonal data



# Let's practice!

FORECASTING USING ARIMA MODELS IN PYTHON



# SARIMA models

FORECASTING USING ARIMA MODELS IN PYTHON



James Fulton
Climate informatics researcher



#### The SARIMA model

Seasonal ARIMA = SARIMA

- Non-seasonal orders
  - p: autoregressive order
  - d: differencing order
  - q: moving average order

#### $SARIMA(p,d,q)(P,D,Q)_S$

- Seasonal Orders
  - P: seasonal autoregressive order
  - D: seasonal differencing order
  - Q: seasonal moving average order
  - S: number of time steps per cycle

#### The SARIMA model

ARIMA(2,0,1) model:

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + m_1 \epsilon_{t-1} + \epsilon_t$$

SARIMA(0,0,0)(2,0,1)<sub>7</sub> model:

$$y_t = a_7 y_{t-7} + a_{14} y_{t-14} + m_7 \epsilon_{t-7} + \epsilon_t$$

# Fitting a SARIMA model

```
# Imports
from statsmodels.tsa.statespace.sarimax import SARIMAX
# Instantiate model
model = SARIMAX(df, order=(p,d,q), seasonal_order=(P,D,Q,S))
# Fit model
results = model.fit()
```

# Seasonal differencing

Subtract the time series value of one season ago

$$\Delta y_t = y_t - y_{t-S}$$

# Take the seasonal difference
df\_diff = df.diff(S)

# Differencing for SARIMA models



Time series



# Differencing for SARIMA models



First difference of time series

# Differencing for SARIMA models



First difference and first seasonal difference of ime series

# Finding p and q



# Finding P and Q



# Plotting seasonal ACF and PACF

```
# Create figure
fig, (ax1, ax2) = plt.subplots(2,1)
# Plot seasonal ACF
plot_acf(df_diff, lags=[12,24,36,48,60,72], ax=ax1)
# Plot seasonal PACF
plot_pacf(df_diff, lags=[12,24,36,48,60,72], ax=ax2)
plt.show()
```

# Let's practice!

FORECASTING USING ARIMA MODELS IN PYTHON



# Automation and saving

FORECASTING USING ARIMA MODELS IN PYTHON



James Fulton
Climate informatics researcher



## Searching over model orders

```
import pmdarima as pm
results = pm.auto_arima(df)
Fit ARIMA: order=(2, 0, 2) seasonal_order=(1, 1, 1, 12); AIC=nan, BIC=nan, Fit time=nan seconds
Fit ARIMA: order=(0, 0, 0) seasonal_order=(0, 1, 0, 12); AIC=2648.467, BIC=2656.490, Fit time=0.062
Fit ARIMA: order=(1, 0, 0) seasonal_order=(1, 1, 0, 12); AIC=2279.986, BIC=2296.031, Fit time=1.171
Fit ARIMA: order=(3, 0, 3) seasonal_order=(1, 1, 1, 12); AIC=2173.508, BIC=2213.621, Fit time=12.487
Fit ARIMA: order=(3, 0, 3) seasonal_order=(0, 1, 0, 12); AIC=2297.305, BIC=2329.395, Fit time=2.087
Total fit time: 245.812 seconds
```



# pymarima results

print(results.summary())

#### Statespace Model Results

| ===========              | .==========                                      |                              |                                |
|--------------------------|--------------------------------------------------|------------------------------|--------------------------------|
| Dep. Variable:           | real values                                      | No. Observations:            | 300                            |
| Model:                   | SARIMAX(2, 0, 0)                                 | Log Likelihood               | -408.078                       |
| Date:                    | Tue, 28 May 2019                                 | AIC                          | 822.156                        |
| Time:                    | 15:53:07                                         | BIC                          | 833.267                        |
| Sample:                  | 01-01-2013                                       | HQIC                         | 826.603                        |
| Model:<br>Date:<br>Time: | SARIMAX(2, 0, 0)<br>Tue, 28 May 2019<br>15:53:07 | Log Likelihood<br>AIC<br>BIC | -408.078<br>822.156<br>833.267 |

- 10-27-2013

Covariance Type: opg

|                         | coef     | std err  | z           | P> z      | [0.025   | 0.975]    |  |  |
|-------------------------|----------|----------|-------------|-----------|----------|-----------|--|--|
| ar.L1                   | 0.2189   | 0.054    | 4.072       | 0.000     | 0.114    | 0.324     |  |  |
| ar.L2                   | 0.1960   | 0.054    | 3.626       | 0.000     | 0.090    | 0.302     |  |  |
| sigma2                  | 0.8888   | 0.073    | 12.160      | 0.000     | 0.746    | 1.032     |  |  |
|                         |          |          |             |           |          |           |  |  |
| Ljung-Box (Q):          |          | 32.10    | Jarque-Bera | (JB):     | 0.02     |           |  |  |
| <pre>Prob(Q):</pre>     |          |          | 0.81        | Prob(JB): |          | 0.99      |  |  |
| Heteroskedasticity (H): |          |          | 1.28        | Skew:     |          | -0.02     |  |  |
| Prob(H) (two-sided):    |          |          | 0.21        | Kurtosis: |          | 2.98      |  |  |
| ========                | ======== | ======== | =======     | ========= | ======== | ========= |  |  |

#### Warnings

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

results.plot\_diagnostics()



# Non-seasonal search parameters



## Non-seasonal search parameters

```
results = pm.auto_arima( df,  # data

d=0,  # non-seasonal difference order

start_p=1,  # initial guess for p

start_q=1,  # initial guess for q

max_p=3,  # max value of p to test

max_q=3,  # max value of q to test

)
```

<sup>&</sup>lt;sup>1</sup> https://www.alkaline <sup>2</sup> ml.com/pmdarima/modules/generated/pmdarima.arima.auto\_arima.html



### Seasonal search parameters

```
results = pm.auto_arima( df, # data
                         # non-seasonal arguments
                    . . . ,
                    seasonal=True, # is the time series seasonal
                    m=7, # the seasonal period
                    D=1, # seasonal difference order
                    start_P=1, # initial guess for P
                    start_Q=1, # initial guess for Q
                    max_P=2, # max value of P to test
                    max_Q=2, # max value of Q to test
```

#### Other parameters

# Saving model objects

```
# Import
import joblib
# Select a filepath
filepath = 'localpath/great_model.pkl'
# Save model to filepath
joblib.dump(model_results_object, filepath)
```

# Saving model objects

```
# Select a filepath
filepath ='localpath/great_model.pkl'

# Load model object from filepath
model_results_object = joblib.load(filepath)
```

# **Updating model**

# Add new observations and update parameters
model\_results\_object.update(df\_new)

# Update comparison



# Let's practice!

FORECASTING USING ARIMA MODELS IN PYTHON



# SARIMA and Box-Jenkins

FORECASTING USING ARIMA MODELS IN PYTHON



James Fulton
Climate informatics researcher



#### **Box-Jenkins**



#### Box-Jenkins with seasonal data

- Determine if time series is seasonal
- Find seasonal period
- Find transforms to make data stationary
  - Seasonal and non-seasonal differencing
  - Other transforms



### Mixed differencing

- D should be 0 or 1
- d + D should be 0-2



### Weak vs strong seasonality



- Weak seasonal pattern
- Use seasonal differencing if necessary



- Strong seasonal pattern
- Always use seasonal differencing

### Additive vs multiplicative seasonality



- Additive series = trend + season
- Proceed as usual with differencing



- multiplicative series = trend x season
- Apply log transform first np.log

### Multiplicative to additive seasonality



## Let's practice!

FORECASTING USING ARIMA MODELS IN PYTHON



## Congratulations!

FORECASTING USING ARIMA MODELS IN PYTHON



James Fulton
Climate informatics researcher



#### The SARIMAX model

- S seasonal
- A autoregressive
- I integrated
- M moving average
- X exogenous

### Time series modeling framework

- Test for stationarity and seasonality
- Find promising model orders
- Fit models and narrow selection with AIC/BIC
- Perform model diagnostics tests
- Make forecasts
- Save and update models



### Further steps

- Fit data created using arma\_generate\_sample()
- Tackle real world data! Either your own or examples from statsmodels

### Further steps

- Fit data created using arma\_generate\_sample()
- Tackle real world data! Either your own or examples from statsmodels
- More time series courses here

<sup>1</sup> https://www.statsmodels.org/stable/datasets/index.html



## Good luck!

FORECASTING USING ARIMA MODELS IN PYTHON

