Anéis - Continuação

José Antônio O. Freitas

MAT-UnB

16 de setembro de 2020

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m > 1 é um subanel de \mathbb{Z} .

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y \in B$ e $x \cdot y \in B$ para todos x, $y \in B$.

Prova: FAZER!!!!!

Exemplos

COLOCAR EXEMPLOS

Um homomorfismo do anel $(A, +, \cdot)$ no anel (B, \oplus, \otimes) é uma função $f: A \to B$ que satisfaz:

i)
$$f(x+y) = f(x) \oplus f(y)$$
, para todos x , $y \in A$;

ii)
$$f(x \cdot y) = f(x) \otimes f(y)$$
, para todos $x, y \in A$.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e seja $f: A \to B$ um homomorfismo. Então:

i)
$$f(0_A) = 0_B$$

ii)
$$f(-x) = -f(x)$$
, para todo $x \in A$.

Prova:

i) Fazendo $x = y = 0_A$, temos

$$f(0_A) = f(0_A + 0_A) = f(0_A) \oplus f(0_A)$$

Somando $-f(0_A)$ em ambos os lados obtemos

$$f(0_A) \oplus (-f(0_A)) = (f(0_A) \oplus f(0_A)) \oplus (-f(0_A))$$
$$0_B = f(0_A) \oplus 0_B$$
$$f(0_A) = 0_B$$

ii) Temos $0_B = f(0_A) = f(x + (-x)) = f(x) \oplus f(-x)$. Assim somando -f(x) em ambos os lados obtemos

$$0_B \oplus (-f(x)) = [f(x) \oplus f(-x)] + (-f(x))$$
$$-f(x) = f(-x) \oplus (f(x) \oplus (-f(x)))$$
$$f(-x) = -f(x)$$

como queríamos.

Seja $f: A \rightarrow B$ um homomorfismo, onde A e B são anéis. Dizemos que

- i) f é um epimorfismo se f for sobrejetora.
- ii) f é um monomorfismo se f for injetora.
- iii) f é um isomorfismo se f for bijetora.
- iv) Quando A = B e f é um isomorfismo, então f é um automorfismo.

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis. Então o subconjunto de A definido por

$$\ker(f) = \{x \in A \mid f(x) = 0_B\}$$

é chamado de kernel ou núcleo de f.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e $f: A \to B$ um homomorfismo de anéis. Então:

- i) ker(f) é um subanel de A.
- ii) $f \in injetora se$, e somente se, $ker(f) = \{0_A\}$.

Prova:

i) Primeiro note que sendo f é um homomorfismo então $f(0_A) = 0_B$. Logo $0_A \in \ker(f)$, isto é, $\ker(f) \neq \emptyset$. Agora dados $x, y \in \ker(f)$ precisamos mostrar que $x - y \in \ker(f)$ e $xy \in \ker(f)$, e para mostrar isso basta mostrar que $f(x - y) = 0_B$ e $f(xy) = 0_B$. Inicialmente como $x, y \in \ker(f)$ daí $f(x) = f(y) = 0_B$. Assim

$$f(x - y) = f(x + (-y)) = f(x) \oplus f(-y) = f(x) \oplus (-f(y)) = 0_B \oplus 0_B = 0_B$$

$$f(xy) = f(x) \otimes f(y) = 0_B \otimes 0_B = 0_B$$

Logo $x - y \in \ker(f)$ e $xy \in \ker(f)$. Portanto $\ker(f)$ é um subanel de A.

ii) Primeiro suponha que f é injetora e vamos mostrar que $ker(f) = \{0_A\}$. Para isso seja $x \in ker(f)$. Então

$$f(x)=0_B,$$

mas f sendo um homomorfismo temos $f(0_A) = 0_B$. Daí

$$f(x)=0_B=f(0_A).$$

E como f é injetora, por hipótese, segue que $x = 0_A$. Logo $ker(f) = \{0_A\}$.

Agora suponha que $\ker(f) = \{0_A\}$ e vamos mostrar que f é injetora. Para isso sejam x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$. Daí

$$f(x_1) = f(x_2) f(x_1) \oplus (-f(x_2)) = 0_B f(x_1) \oplus f(-x_2) = 0_B f(x_1 - x_2) = 0_B$$

Logo $x_1 - x_2 \in \ker(f) = \{0_A\}$. Com isso $x_1 - x_2 = 0_A$, isto é, $x_1 = x_2$. Portanto f é injetora.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e seja $f: A \to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$ possui inverso multiplicativo, então f(x) tem inverso e

$$[f(x)]^{-1} = f(x^{-1}).$$

Prova:

i) Incialmente como num anel a unidade é única, para mostrar que *B* possui unidade basta mostrar que

$$y \otimes f(1_A) = y = f(1_A) \otimes y$$

para todo $y \in B$. Sendo assim, seja $y \in B$. Como f é sobrejetor então existe $x \in A$ tal que f(x) = y. Assim

$$y \otimes f(1_A) = f(x) \otimes f(1_A) = f(x \cdot 1_A) = f(x) = y$$

$$f(1_A) \otimes y = f(1_A) \otimes f(x) = f(1_A \cdot x) = f(x) = y$$

para todo $y \in B$. Portanto B possui unidade e

$$1_B = f(1_A).$$

ii) Novamente, devido á unicidade do inverso em um anel, para mostrar que f(x) possui inverso basta mostrar que

$$f(x)\otimes f(x^{-1})=1_B=f(x^{-1})\otimes f(x)$$

desde que $x \in A$ possua inverso multiplicativo. Sendo assim suponha que $x \in A$ possui inverso multiplicativo. Seja x^{-1} o inverso multiplicativo de x em A. Temos

$$f(x) \otimes f(x^{-1}) = f(x \cdot x^{-1}) = f(1_A) = 1_B$$

 $f(x^{-1}) \otimes f(x) = f(x^{-1} \cdot x) = f(1_A) = 1_B$

Portanto f(x) possui inverso multiplicativo e

$$[f(x)]^{-1} = f(x^{-1}),$$

como queríamos.

