

FinFET and other New Transistor Technologies

**Chenming Hu
Univ. of California**

May 4 2011 NY Times Front Page

NY Times news article:

- Intel will use 3D FinFET for 22nm
- Most radical change in decades
- There is a competing SOI technology

Other Background Info

- TSMC, IBM...new transistors soon
- Since 2001 ITRS shows FinFET and ultra-thin-body UTB-SOI as the two successor MOSFETs
- SOITEC UTB-SOI recently available
- IBM 2009 5nm UTB SOI paper

New MOSFET Structures

FinFET

UTBSOI

Ultra Thin Body SOI

Good Old MOSFET Nearing Limits

V_t , S (swing) and I_{off} are sensitive to L_g & dopant variations.

- high design cost
- high V_{dd} , hence high power usage

Finally painful enough for change.

Power Consumption Problems

1. Not just a chip and package thermal issue.
2. ICs use a few % of world's electricity today and
 - Power per chip is growing.
 - IC units in use also growing.
3. If power consumption is not reduced, industry future growth is at risk.

Want Low V_t and Low I_{off}

Need smaller
 S and less
variations of
 S and V_t

How V_t Variation & S Got So Bad

MOSFET becomes “resistor” at very small L — Drain competes with Gate to control the channel barrier.

Reducing EOT is Not Enough

**Gate cannot control the
leakage current paths
that are far from the gate.**

One of Two Ways to Better V_t and S

The gate controls a thin body from more than one side.

FinFET body is a thin fin →

N. Lindert et al., DRC paper II.A.6, 2001

FinFET- 1999

**Undoped Body. 30nm etched thin fin.
V_t set with gate work-function (SiGe).**

X. Huang et al., IEDM, p. 67, 1999

State-of-the-Art FinFET on Zuk Si

FinFET is “Easy” to Scale

10nm Lg AMD
2002 IEDM

5nm Lg TSMC
2004 VLSI Symp

3nm Lg KAIST
2006 VLSI Symp

because leakage is well suppressed if

Fin thickness = or < Lg

- Thin fin can be made with the same Lg patterning/etching tools.

Second Way to Better V_t and S

Ultra-thin-body SOI (UTB-SOI) →

No leakage path far from the gate.

Y-K. Choi, IEEE EDL, p. 254, 2000

Most Leakage Flows >5nm Below Surface

Leakage Current Density

Y-K. Choi et al., IEEE Electron Device Letters, p. 254, 2000

Chenming Hu, July 2011

Silicon Body Needs to be $< L_g/3$

For good swing and device variation

UTB-SOI

3nm Silicon Body, Raised S/D

Y-K. Choi et al, VLSI Tech. Symposium, p. 19, 2001

State-of-the-Art 5nm Thin-Body SOI

ETSOI, IBM
K. Cheng et al, IEDM, 2009

Both Thin-Body Transistors Provide

- Better swing.
- S & V_t less sensitive to L_g and V_d .
- No random dopant fluctuation.
- No impurity scattering.
- Less surface scattering (lower E_{eff}).

- Higher on-current and lower leakage
- Lower V_{dd} and power consumption
- Further scaling and lower cost

Back-Gate Bias Option

UTB-SOI

FinFET

Similarities

- 1996: UC Berkeley proposed to DARPA two “25nm Transistors”. Both of them
- use body thickness as a new scaling parameter
- can use undoped body for high μ and no RDF
- 1999: demonstrated FinFET
2000: demonstrated UTB-SOI (Ultra-Thin Body)
- Since 2001: ITRS highlights FinFET and UTBSOI
- Now: Intel will use Trigate FinFET.
Soitec readies +-0.5nm substrates for UTBSOI
- Both FinFET & UTBSOI better than planar bulk!

Main Differences

- FinFET body thickness $\sim L_g$. Investment by fabs
UTBSOI thickness $\sim 1/3 L_g$. Investment by Soitec
- FinFET has clear long term scalability. UTBSOI may be ready sooner depending on each firm's readiness with FinFET.
- FinFET has larger Ion or can use lower Vdd.
UTBSOI has a good back-gate bias option.

UTBSOI

FinFET

What May Happen

- **FinFET** will be used at 22nm by Intel and later by more firms through and beyond 10nm.
- Some firms may use **UTBSOI** to gain/protect market at 20 or 18nm if FinFET is not option.

If so, competition between **FinFET** and **UTBSOI** will bring out the best of both.

If not----- back to first bullet.

BSIM Family Compact Models

Berkeley Short-channel IGFET Models

- **BSIM4**
- **BSIMSOI**
- **BSIM-MG for FinFETs: in CMC standardization process**
- **BSIM-IMG for UTB-SOI**

FinFET BSIM Compact Model Verified

- FinFET Fabricated at TSMC.
- $L_g = 30 \text{ nm}-10\mu\text{m}$

M. Dunga, 2008 VLSI Tech Sym

Global fitting with 30nm-10um FinFETs

Global fitting with 30nm-10um FinFETs

Global fitting with 30nm-10um FinFETs

Temperature Model Verified for FinFET

Reduce C

$$f \cdot C \cdot V_{dd}^2$$

Reduce all capacitances.

Vacuum-Sheath Interconnect

- $C_{TOTAL} \propto \text{Delay}$, $C_M \propto \text{Crosstalk Noise}$

Dielectric Beam

Etch Stop layer

Metal

Load Capacitance : C_O

Mutual Capacitance : C_M

Total Capacitance : C_{TOTAL}

J. Park, Electronics Letters, p. 1294, 2009

Effective k of Vacuum-Sheath Interconnects

J. Park, Electronics Letters, p. 1294, 2009

Chenming Hu, July 2011

Vacuum Spacer to Reduce C_{GC}

- C_{GOX} : Gate Oxide Capacitance
- C_{GC} : Gate-to-Contact Capacitance

Vacuum Spacer Self-Aligned Contact

20nm MOSFET comparison

Oxide Spacer	Vacuum Spacer Self-aligned contact (SAC)
Inverter Delay, ps (1)	6.15 (5.05) (0.82)
Inverter switching energy, fJ (1)	24.2 (18.8) (0.78)
Relative Area	1 0.7

J. Park, IEEE EDL, p.1368, 2009

Future Low Voltage Green Transistor

How to reduce V_{dd} to 0.15V?

1. Reduce $V_{dd} - V_t$ to < 0.1V with high-mobility-channel material, or sub-threshold circuits.
2. Reduce V_t to 50mV. Need a device that is free of the 60mV/decade turn-off limit.

Origin of the 60mV/decade Limit

A potential barrier controls the electron flow.

Leakage current is determined by Boltzmann distribution or 60 mV/decade, limiting MOSFET, bipolar, graphene MOSFET...

So, let electrons go **through**, not **over**, the energy barrier → **semiconductor tunneling** or **MEMS**

Semiconductor Band-to-Band Tunneling: generating electron/hole pairs

A known mechanism of leakage current since 1985.

Called Gate Induce Drain Leakage (**GIDL**).

J. Chen, P. Ko, C. Hu, IEDM 1985

Green Transistor --Simulation

C. Hu, 2008 VLSI-TSA, p.14, April, 2008

Abrupt turn-on due to over-lap of valence/conduction bands; adjustable turn-on voltage.

C. Hu, 2008 VLSI-TSA, p.14, April, 2008

Reduce Vdd by Reducing Eg

Simulated impact of Eg scaling

Vdd scales down faster than Eg.

Simulated gFET Inverter VTC

Good voltage gain at 0.1V

Hetero-junction gFET

- Strained Si on Ge has 0.18eV “effective tunneling Eg”.
- III-V.

A. Bowonder, Intern'l Workshop Junction Tech., 2008

Summary

- FinFET and UTB-SOI are viable new sub-22nm transistors.
- Different performances, investment costs, wafer costs, scaling barriers.
- Their BSIM SPICE models are available – free ☺
- Capacitance and tunnel gFET are potential opportunities.