ELEC1601

Introduction to Computer Systems

- You have no choice...
 - It is a core unit

- You want to understand how computers work
 - Not how to use MS Word/send email...

- You want to understand how computers work
 - Not how to use MS Word/send email...
- What is inside a computer
- How could you design your own computer
 - Make the best better
- How does a computer 'talk' to other devices
 - Hardware vs software
- How do you use a computer efficiently

What is involved in understanding computers

- You may already have your favourite programming language
 - You are talking to them
- But circuit only understands 0's and 1's
 - We will learn how to bridge the gap

Why do people like this course?

You want to understand how computers work

Why do people like this course?

Why do people like this course?

You want to understand how computers work

• Fun

Practical

Fun/Practical

Learn how to control a real-chip

- We use an Arduino
 - You should build skills and methodologies to talk to any computer

Fun/Practical

Learn how to control a real-chip

- We use an Arduino
 - You should build skills and methodologies to talk to any computer

Fun/Practical (e.g. lab1)

Course scenario

We just bought one of these

- How does it work? How do we use it? How can I use it to achieve something special? What can I connect it to?
- Propose your teams solution to the boss

https://canvas.sydney.edu.au/courses/17907/pages/the-learning-environment?module item id=577646#course-scenario

Course scenario

- Lectures
 - Understand circuit/architecture
- Lab
 - Program it bottom up

Program Counter Assembly Binary ALU Machine Instructions Registers Octal Hexadecimal Digital Gates Memory Floating point Machine

Learning Objectives

A demonstrate that you understand how computers work, from the digital logic level to how they execute basic programs,

B. design, build, configure, program and test an electronic system for a specific engineering problem observing common professional practice,

C. write reports about the design process and its results, and

D. engage in **team-based** design and creative tasks to solve an engineering problem.

 \wedge

- Content should always be linked to these objectives
- We are here to help you achieve

Additional Learning Objectives

We want to help you to learn how to learn

What are your learning strategies?

- Why?
- What does an engineer do?

- Why?
- What does an engineer do?
 - Solve problems
- What does an engineer need to be able to do this?

- Why?
- What does an engineer do?
 - Solve problems
- What does an engineer need to be able to do this?
 - Learn by themselves
 - Calm under uncertainties

You are going to run a marathon

- How did you study for your HSC/VCE/IBAC/A-levels?
- What was the single most effective thing you did?

- Example learning strategy
 - Lectures
 - Attend
 - Tutorials
 - Attend
 - Do exercises as instructed by tutor
 - Labs
 - Attend
 - Complete as much as possible during lab session
 - Write lab report afterwards
 - Exam
 - Study during STUVAC
 - Make sure you complete all past lecture quizzes
 - Extra last minute study before relevant exam
 - Go to any 'exam consultation sessions' organised by lecturer

 We want you to experience new options that can potentially help you to learn better.

Dual-process theories of reasoning

- Brain processes in two ways
- System 1:
 - Intuitive/instantaneous
 - Walk down street
 - What is 2+2?
 - Effortless
- System 2:
 - Invoked when system 1 fails to solve problem
 - Tries to create a rational answer
- You are not learning when you are using system 1

A better learning strategy

- Lectures
 - Prepare for lectures
 - Not at the last moment
 - Distributed practice better
 - Attend
 - Participate diligently/actively
 - Be willing to make mistakes
- Tutorials
 - Prepare for lectures
 - Attend
 - Do exercises as instructed by tutor
 - Participate diligently/actively
 - Be willing to make mistakes
 - Be willing to get ahead/go beyond/ask tutor more questions

A better learning strategy

- Labs
 - Prepare for lab in advance
 - Attend
 - Complete as much as possible during lab session
 - Build your team
 - Use the demonstrators
 - Write lab report afterwards

A better learning strategy

- Exam
 - Study throughout semester
 - Have a study plan for exam period starting during STUVAC
 - Make sure you complete all past lecture quizzes
 - DO NOT DEPEND ON THIS
 - Extra last minute study before relevant exam
 - Go to any 'exam consultation sessions' organised by lecturer
 - Only if they can help you
 - Use your friends
 - Use the discussion forum

- We want you to prepare before a lecture.
 - Really? Why?

- We want you to prepare before a lecture.
 - Really? Why?
 - So you can work in lecture
 - Active participation
 - Talk to partners.
- Lectures only contain a subset of the information in Canvas.

- Tutorials should follow lectures
 - You are introduced to ideas, but build on it in tutorials.
 - Harder questions
 - More help

- Labs arguably separate
 - More practical
 - But it should all come together at the end

Bureaucratic stuff

Your life for this course

https://canvas.sydney.edu.au/

(https://canvas.sydney.edu.au/courses/17907)

How do I pass?

When	Item	Туре	Marks	Total
Whole Class Session Preparation (Submit before session starts)	Prepare whole class session activities and multiple-choice problem sequence	Individual	1 mark per week. Weeks 2-5 and 7- 12	10
Mid-term exam (Week 6, during whole class session)	Multiple choice questions	Individual	20	20
Tutorial Preparation and Participation (Submit before tute starts)	Prepare with multiple-choice problem sequence and participate	Individual	1 mark per week. Weeks 3-8 and 10- 13	10
Lab report Weeks 3-6. One per team member. Submit before start of next lab.	Document about one lab session	Individual	5	5
Project (Submit before start of last lab session)	Report	Group	7.5	7.5
	Demo	Group	3	3
	Presentation	Group	3	3
	Personal Contr.	Individual	1.5	1.5
Final exam (Exam week)	Multiple choice and open questions	Individual	40	40
Total				100

There is no minimum required in any of the assessments. All of them are added to obtain the final course mark. It follows a brief description of the requirements for each of the assessments.

How do I pass?

- Why marks for lecture/tutorial preparation?
 - How do I get them?
 - What if I am late?
- Lab reports (weeks 3-6)
 - One per team member. Submit before start of next lab
 - Up to two team members can submit
 - Teams of 4

- Why marks for lecture/tutorial preparation?
 - How do I get them?
 - What if I am late?
- Lab reports (weeks 3-6)
 - One per team member. Submit before start of next lab
 - Up to two team members can submit
 - Teams of 4
- More lab reports than labs?

- Why marks for lecture/tutorial preparation?
 - How do I get them?
 - What if I am late?
- Lab reports (weeks 3-6)
 - One per team member. Submit before start of next lab
 - Up to two team members can submit
 - Teams of 4
- More lab reports than labs?
 - Engineer allowed to make mistake
 - Fail, can fix later

- Why marks for lecture/tutorial preparation?
 - How do I get them?
 - What if I am late?
- Lab reports (weeks 3-6)
 - One per team member. Submit before start of next lab
 - Up to two team members can submit
 - Teams of 4
- Do I need to join a team?

- Why marks for lecture/tutorial preparation?
 - How do I get them?
 - What if I am late?
- Lab reports (weeks 3-6)
 - One per team member. Submit before start of next lab
 - Up to two team members can submit
 - Teams of 4
- Do I need to join a team?
 - Yes

- Final exam
 - I may have already passed the unit before taking the exam?

How this course is structured/What you need to do each week

- Know what week you are in
 - Do not get behind
 - Do not do the wrong tasks

 https://canvas.sydney.edu.au/courses/17907/pages/week-2?module item id=577682

Plagiarism

Taken very seriously at university

Edstem

https://edstem.org/courses/3739/discussion/

- Ask questions
- Answer other questions
- Does not matter if your answers are incorrect
 - Discussion will improve them

Electronic Device Strategy

How good are Apple/Samsung/Huawei Engineers?

What do you think there goal is?

Electronic Device Strategy

Can you really multi-task?

Handwriting or tablet in lectures?

Top 10 Study Techniques

• https://canvas.sydney.edu.au/courses/17907/pages/strategies-for-sophisticated-learners

Back to computers

What is a computer system

What is a computer system

- Something you communicate through keyboard/mouse/touchscreen
- Supporter of apps
- Something that does mass arithmetic instructions
- Something that integrates inputs and computation
- A collection of digital logic that can execute machine instructions

What is a computer system

- Something you communicate through keyboard/mouse/touchscreen
- Supporter of apps
- Something that does mass arithmetic instructions
- Something that integrates inputs and computation
- A collection of digital logic that can execute machine instructions

An electronic brain??

Exercise

• https://canvas.sydney.edu.au/courses/17907/pages/1-dot-6-1-micros-in-the-news

Structure of a computer system

Structure of a Computer System

What is a program

- Written in a programming language
- Meaning defined by language

```
// Definition of class Program
public class Program {
    // Definition of the method main
    public static void main(String[] args) {
        String message;

        // Initialization message to print
        message = new String("This is my first program");

        // Print message
        System.out.println(message);
     } // End of method main
} // End of class Program
```

Program to execution

Sequence of steps

Translation from a Java Program to an Executable

Assembly language

- Human readable machine language
- Map directly to binary digits

```
; Start the data section
        .data
        .asciz "Hello world\n" ; Message to print through serial p
msg:
ort
                               ; Start the code section
        .text
        .global main
                                ; Declare main as global symbol
       ldi r26, lo8(msg)
                               ; Load low 8 bits of address of msg
main:
       ldi r27, hi8(msg)
                                ; Load high 8 bits of address of ms
                                ; push the 16 bits to the stack
       push r26
       push r27
       call printf
                                ; call function to print msg
                                ; Remove data from the stack
       pop r27
        pop r26
                                ; Finish the program
        ret
```

Can you program in assembly language?

- Yes...
- You can write extremely efficient code
 - But...You need to understand the processor in detail
 - You may not be smarter than a compiler...

Program execution

- Yes...
- You can write extremely efficient code
 - But...You need to understand the processor in detail
 - You may not be smarter than a compiler...

Abstraction

Transistors, Microcode, Assembly Code, C++, Executable programs, Apps,
Instruction Set Architecture, Driver, Java, Hardwired control, Gates,
Operating System, Circuit, Library code, Silicon Chip

Are all computers the same?

Structure of a Computer System

von Neumann and Harvard Architectures

Hardware Computer Organization for the Software Professional Arnold S. Berger