Estrutura de Dados Matriz Unidimensional

- 1) Monte um algoritmo que crie uma matriz chamada TabLetras composta de 50 elementos do tipo caracter, em seguida faça a carga da matriz e calcule exiba de quantidade de cada vogal encontrada na matriz TabLetras.
- 2) Faça um algoritmo que crie uma matriz inteira com 10 elementos. Carregue esta matriz utilizando o comando leia. Em seguida pesquise e exiba o maior e o menor elemento da matriz.
- 3) Monte um algoritmo que crie uma matriz chamada TabPeso com 30 elementos do tipo real e realize os seguintes processos computacionais:
 - Carga da Matriz TabPeso
 - Pesquise o maior e o menor peso
 - Calcular a Média dos pesos
 - Calcular a quantidade de pesos acima e abaixo da média
 - Exibir os dados calculados
- 4) relação abaixo representa as notas finais de 30 alunos.

	Aluno 1	Aluno 2	Aluno 3	Aluno 4	Aluno 5	•••••	Aluno 30	
Media	6,0	7,0	7,5	8,0	10,0		6,5	

Monte um algoritmo que Faça a <u>definição e a implementação de uma estrutura de dados matriz</u> com o propósito de armazenar as médias dos respectivos alunos e em seguida calcule e exiba:

- A média da turma
- A quantidade de alunos com nota abaixo da média da turma
- A quantidade de alunos com nota acima da média da turma
- A quantidade de alunos aprovados (considere para aprovação nota igual ou superior a 5,0)
- A quantidade de alunos reprovados (considere para reprovação nota inferior a 3,0)
- A quantidade de alunos para exame (considere para exame nota acima de 3,0 e abaixo de 5,0)

Estrutura de Dados Matriz Bidimensional

1. Faça uma aplicação que carregue uma matriz bidimensional (5 x 5) de inteiros e em seguida calcule e exiba a soma dos elementos da diagonal principal e o produto da diagonal secundaria.

2. O desenho abaixo representa um tabuleiro de xadrez onde os números representam as peças: 1 – peão, 2 – bispo, 3 – torre, 4 – rei, 5 – rainha 0- nenhuma peça. Considere que existem várias peças espalhadas pelo tabuleiro. Monte uma aplicação que crie uma matriz bidimensional, faça a entrada de dados e em seguida calcule exiba o total de cada peça.

1	4	4	2	1	0	0	0
1	2	2	4	1	0	1	4
0	5	5	4	1	3	0	5
0	0	5	3	5	4	2	0
3	2	4	5	5	5	0	0
1	4	5	0	4	4	3	5
0	0	1	0	3	3	0	1
1	4	0	2	2	2	5	0

3. A matriz abaixo contém, em cada linha, as cinco notas de provas obtidas por um aluno durante o período letivo. O índice das linhas corresponde ao número do aluno. Assim, por exemplo, o aluno 3 obteve as notas 5,0 7,5 8,0 8,0 7,0.

	1	2	3	4	5	
1	6,0	7,0	7,5	8,0	10,0	
2	9,0	8,0	7,0	8,0	8,0	
3	5,0	7,5	8,0	8,0	7,0	
4	5,0	6,0	8,0	8,0	7,0	NOTAS
5	6,0	10,0	10,0	9,0	7,0	
30	8,0	9,0	9,5	7,5	9,0	

Desenvolva uma aplicação que faça a entrada de dados para a matriz NOTAS e em seguida faça um processamento que exiba os dados conforme modelo abaixo:

Número do Aluno	Média Aluno
1	99,99
2	99,99
3	99,99
	•
•	•

Média da Turma: 99,99

Qtde. de Alunos Abaixo da Média da Turma: 99 Qtde. de Alunos Abaixo da Média da Turma: 99 4. Uma universidade pretende realizar um levantamento estatístico sobre o vestibular. Para tal, resolveu computar os seguintes dados para cada um dos seus dez cursos.

				Código do Curso						$\overline{}$		
	1	2	3	4	5	6	7	8	9	10		
Número de Vagas	40	40	20	30	40	20	40	20	40	20		
Número de Candidatos do Sexo Masculino	60	30	60	27	90	15	32	10	28	60		
Número de Candidatos do Sexo Feminino	20	32	10	22	20	90	33	60	28	65		

Faça um algoritmo para ler estes dados, em seguida calcule e exiba:

- o número de candidatos por vaga para cada curso
- a porcentagem de candidatos do sexo feminino para cada curso
- a porcentagem de candidatos do sexo masculino para cada curso
- o número total de candidatos no vestibular
- o número médio de candidatos por vaga para todos os cursos da universidade (soma total do número de candidatos de todos os cursos/soma total do número de vagas de todos os cursos)
- o curso que teve a menor procura de candidatos do sexo masculino
- o curso que teve a maior procura de candidatos do sexo feminino