Assignment 7

Aryan Choudhary - 170152 Abhinav Sharma - 180017

Atmospheric Science Experiment

We will first construct a network graph G(V,E) and then we will use maximum flow in this network to solve the given problem.

Construction of G(V,E)-

The set of vertices in G consists of m+n+2 element:

- i) the source s.
- ii) the set of vertices $a_1, a_2, ..., a_n$, where vertex a_i represents the ith condition in the atmosphere.
- iii) the set of vertices $b_1, b_2, ..., b_m$, where vertex b_i represents the jth balloon.
- iv) the sink t.

The edges in G are the following:

- i) There is an edge $s \to a_i \ \forall \ i \in [1, n]$. The capacity of each of these edges is k.
- ii) There is an edge $a_i \to b_j$, if balloon b_j can measure the condition a_i , i.e. $a_i \in S_j$. The capacity of each of these edges is 1.
- iii) There is an edge $b_i \to t \ \forall j \in [1, m]$. The capacity of each of these edges is 2.

Proof of correctness

Observe that all the edge capacities in G are integers. Therefore, using integral flow theorem, we can assume that flow through each edge in G is integral.

Lemma 1 - For every possible way of measuring n conditions using m balloons such that each balloon measures at most 2 conditions and each condition is measured by at most k balloons, there exist a valid s-t flow in G.

→ Consider a possible way of measuring conditions with given constraint-

Let, $C = \{(a_i, b_j) | 1 \le i \le n, 1 \le j \le m, \text{ balloon } b_j \text{ measures condition } a_i\}$

Initially, for all edges in G, flow through the edge is 0. We assign flow(f) in G as follows-

- i) For all edges (a_i, b_j) , such that $(a_i, b_j) \in C$, let $f(a_i, b_j) = 1$. Since, capacity of all such edges is 1, this flow satisfies capacity constraint.
- ii) For all edges (s, a_i) , $(1 \le i \le n)$, $f(s, a_i)$ equals to the number of balloons which measures condition i. Since, atmost k balloon can measure condition i, $f(s, a_i) \le k$. Therefore, this also satisfies capacity constraint.
- iii) For all edges (b_j, t) , $(1 \le j \le m)$, $f(b_j, t)$ equals the number of conditions measured by balloon j. Since, each balloon can measure at 2 conditions, capacity constraint is satisfied for these edges.

Consider the node a_i $(1 \le i \le n)$, total outgoing flow $(f_{out}(a_i))$ from this node is -

$$f_{out}(a_i) = \sum_{j:(a_i,b_j)\in C} f(a_i,b_j)$$

Since, $\forall (a_i, b_j) \in C$, $f(a_i, b_j) = 1$. Therefore,

 $\implies f_{out}(a_i) = \text{number of balloons that measure condition i}$

Since, the only incoming flow in a_i ($f_{in}(a_i)$) is through edge (s, a_i) and $f(s, a_i)$ equals to the number of balloons which measures condition i. Therefore,

$$\implies f_{out}(a_i) = f_{in}(a_i)$$

```
Consider the node b_j (1 \le j \le m), total incoming flow (f_{in}(b_j)) to this node is f_{in}(b_j) = \sum_{i:(a_i,b_j)\in C} f(a_i,b_j)
```

Since, $\forall (a_i, b_j) \in C$, $f(a_i, b_j) = 1$. Therefore,

 $\implies f_{in}(b_i) = \text{number of conditions measured by balloon j}$

Since, the only outgoing flow from b_j ($f_{out}(b_j)$) is through edge (b_j , t) and $f(b_j, t)$ equals to the number of conditions measured by balloon j. Therefore,

```
\implies f_{in}(b_j) = f_{out}(b_j)
```

Hence, it is proved that all the capacity constraints as well as conservation constraints are satisfied by the flow f. Therefore, f is a valid flow in G.

Lemma 2 - For any valid s-t flow in G, there exist a way to measure the n conditions using m balloons such that any balloon b_j measure conditions only from set S_j and does not measure more than 2 conditions. Also, each condition can be measured by atmost k balloons.

 \rightarrow Consider any valid flow f in G. Also consider a way to measure condition using balloons such that a balloon b_i measures condition a_i if and only in $f(a_i, b_i)=1$.

A balloon b_j measure a_i only if $f(a_i, b_j)=1$. This means balloon b_j measures condition a_i , only if there exist an edge $(a_i \to b_j)$ and it measures condition a_i exactly once. From the construction of network G, it can be seen that $(a_i \to b_j)$ is an edge only if $a_i \in S_j$. Therefore, b_j measures condition a_i , only if $a_i \in S_j$.

The number of conditions measured by balloon b_j is equal to number of edges (a_i, b_j) such that $f(a_i, b_j)=1$.

- \implies number of conditions measured by balloon $b_j = \sum_{i:a_i \in S_j} f(a_i, b_j)$
- Also, incoming flow at b_j , $f_{in}(b_j) = \sum_{i:a_i \in S_i} f(a_i, b_j)$. Therefore,
- \implies number of conditions measured by balloon $b_j = f_{in}(b_j)$

Using conservation constraint at node b_j , since f is a valid flow,

- \implies number of conditions measured by balloon $b_j = f_{out}(b_j)$
- \implies number of conditions measured by balloon $b_j = f(b_j, t) \le 2$ (since, capacity of edge $(b_j, t) = 2$)
- \implies number of conditions measured by balloon $b_i \leq 2$

Condition a_i is measured by balloon b_j if and only if flow through edge (a_i, b_j) is 1. Therefore, number of balloons that measure condition a_i is equal to the number of edges (a_i, b_j) such that $f(a_i, b_j) = 1$.

- number of balloons that measure condition $a_i = \sum_{j:f(a_i,b_j)=1} f(a_i,b_j)$
- \implies number of balloons that measure condition $a_i = f_{out}(a_i) = f_{in}(a_i) = f(s, a_i)$
- \implies number of balloons that measure condition $a_i = f(s, a_i) \le k$ (using capacity constraint on edge (s, a_i))

In lemma 1 we proved that for all valid ways to measuring n conditions using m balloons there exists a valid s-t flow in G. In lemma 2 we proved that all s-t flow in G represent one way to measure n conditions using m balloons.

Result $1 \to \text{Using Lemma 1}$ and Lemma 2, we can say that there exist a way to measure n atmospheric conditions using m balloons, such that each balloon b_j $(1 \le j \le m)$ measures at most 2 conditions and only from set S_j and also each condition is measured by atmost k balloons if and only if there exist a corresponding valid flow in the above network G.

Therefore, there exist a way to measure atmospheric conditions such that each condition is measured by exactly k different balloons if there exist a flow in network G, such that flow through each of the edge (s, a_i) $(1 \le i \le n)$ is equal to k. This is because the amount of flow through the edge (s, a_i) is equivalent to the number of balloons measuring the condition i (as shown in above proof). This implies that the total flow in G must be k^*n .

Now, consider the cut (S,T) in G , such that $S = \{s\}$ and $T = V - \{s\}$, where V is the set of all vertices in G. The capacity(P) of this cut is-

 $P = \sum_{1 \le i \le n} c(s, a_i)$ where, $c(s, a_i)$ is the capacity of edge (s, a_i)

 $\Longrightarrow \overline{P} = \overline{kn} \ge \text{min-cut}(G)$ where, min-cut(G) represent the capacity of min-cut in G

Since max-flow = min-cut. Therefore - Result 2 \rightarrow max-flow in G \leq P = kn

Using Result 1 and Result 2, we can say that there exist a way to measure the atmospheric condition satisfying the given constraints if and only if max-flow in G = kn.

Complexity analysis

Construction of network G takes time which is equal to the number of edges(E) added in G.

$$|E| = m + n + \sum_{j=1}^{m} S_j.$$

Further, we can compute max-flow in G using edmond-karp algorithm in $O(|V||E|^2)$, where |V| = m + n + 2. Hence, it is a polynomial time algorithm.