

Tecnologías de la Información

Carlos Sebastian Tonato Coronel

Estadística

Informe Parcial 02

NRC: 22129

Fecha de entrega: 02-07-2025

• Tamaño de muestra

Calcule el tamaño de muestra para la población de 138 estudiantes e indique que muestra tomaría y por qué.

$$n = \frac{z^2 p \ q \ N}{e^2 \ (N-1) + \ z^2 p \ q}$$

N	138		
z	95	1,96	3,8416
p	0,9		
q	0,1		
e	0,1	0,01	
n3=	27,80873	66 28	

N	138		
Z	90	1,65	2,7225
p	0,9		
q	0,1		
e	0,1	0,01	
n3=	20,936796	6 21	

Después de realizar los 12 cálculos con distintos datos y aplicándolos correctamente a la formula yo escojo la muestra de 28 porque tiene un mayor porcentaje de acierto con 95% por encima del 21. Entonces n será igual a 28.

• Técnicas de Muestreo

Tabla de datos de la pregunta 8.-Califique de 1 a 100 la publicidad que encuentra en los medios de comunicación sobre el uso de aplicaciones para aprender idiomas

000	70	019	80	038	70	057	30	076	60	095	68	114	90	133	80
001	60	020	50	039	85	058	90	077	20	096	50	115	80	134	15
002	50	021	30	040	40	059	80	078	48	097	10	116	60	135	30
003	40	022	55	041	78,8	060	80	079	70	098	75	117	70	136	90
004	80	023	85	042	50	061	65	080	60	099	75	118	90	137	90
005	80	024	85	043	80	062	100	081	30	100	75	119	90		
006	20	025	75	044	70	063	70	082	50	101	60	120	20		
007	15	026	75	045	60	064	40	083	67	102	50	121	25		
008	80	027	80	046	50	065	50	084	80	103	68	122	90		
009	83	028	90	047	50	066	50	085	78	104	70	123	50		
010	40	029	85	048	70	067	10	086	80	105	85	124	90		
011	90	030	90	049	90	068	95	087	85	106	90	125	60		
012	85	031	90,5	050	20	069	75	088	36	107	80	126	80		
013	68	032	87	051	50	070	60	089	30	108	70	127	90		
014	90	033	50	052	23	071	40	090	35	109	80	128	50		
015	75	034	40	053	65,5	072	70	091	90	110	10	129	90		
016	80	035	70	054	100	073	80	092	70	111	80	130	30		
017	40	036	50	055	80	074	60	093	80	112	15	131	20		
018	70	037	70	056	20	075	15	094	80	113	70	132	50		

Promedio 63,2304348 General

Muestreo Aleatorio Simple Calculadora

Promedio 60,3214286

44	70
42	50
111	80
15	75
129	90
83	67
71	40
122	90
88	36
97	10
13	68
54	100
81	30
29	85
35	70
89	30
22	55
119	90
10	40
59	80
25	75

45	60
52	23
113	70
33	50
135	30
57	30
68	95

Muestreo Aleatorio Simple Tabla

5ta Columna, 3ra Fila

Promedio	71,05357
1 I Ulliculu	11,03331

118	90
85	78
16	80
88	36
87	85
117	70
72	70
44	70
47	50
40	40
15	75
1	60
106	90
55	80
29	85
0	70
11	90
30	90
123	50
113	70
20	50
69	75
53	65,5
61	65
111	80
114	90
105	85
33	50

Muestreo Sistemático

N=	138	
n=	28	
k=	4,92857143=	
r=	-1.5	

5

Pomedio	69,91071
· oilicaio	03,31071

3	40
8	80
13	68
18	70
23	85
28	90
33	50
38	70
43	80
48	70
53	65,5
58	90
63	70
68	95
73	80
78	48
83	67
88	36
93	80
98	75
103	68
108	70
113	70
118	90
123	50
128	50
133	80
0	70

Por medio de estas técnicas de muestreo se obtuvieron lo siguientes resultados, donde se puede ver que el mejor método es el de Calculadora por su baja diferencia con el promedio general

u=	63,23										
X Calculadora	60,32	dif=	-2,91								
X Tabla	71,05	dif=	7,82								
X Muestreo Sistemático	69,91	dif=	6,68								

• Técnicas de muestreo por Estratos

00	70	19	80	00	70	19	30	38	60	57	68	16	90	35	80
01	60	20	50	01	85	20	90	39	20	58	50		80	36	15
			30	02			80		48					37	30
02	50	21			40	21		40		59	10		60		
03	40	22	55	03	78,8	22	80	41	70	00	75	19	70	38	90
04	80	23	85	04	50	23	65	42	60	01	75	20	90	39	90
05	80	24	85	05	80	24	100	43	30	02	75	21	90		
06	20	25	75	06	70	25	70	44	50	03	60	22	20		
07	15	26	75	07	60	26	40	45	67	04	50	23	25		
08	80	27	80	08	50	27	50	46	80	05	68	24	90		
09	83	28	90	09	50	28	50	47	78	06	70	25	50		
10	40	29	85	10	70	29	10	48	80	07	85	26	90		
11	90	30	90	11	90	30	95	49	85	08	90	27	60		
12	85	31	90,5	12	20	31	75	50	36	09	80	28	80		
13	68	32	87	13	50	32	60	51	30	10	70	29	90		
14	90	33	50	14	23	33	40	52	35	11	80	30	50		
15	75	34	40	15	65,5	34	70	53	90	12	10	31	90		
16	80	35	70	16	100	35	80	54	70	13	80	32	30		
17	40	36	50	17	80	36	60	55	80	14	15	33	20		
18	70	37	70	18	20	37	15	56	80	15	70	34	50		

SubgrupoN1	N=	38
SubgrupoN2	N=	60
SubgrupoN3	N=	40

Primero se realiza una regla de 3 de la siguiente manera:

Para así obtener el n que se utiliza en cada subgrupo

Subgrupo N1

Muestreo Aleatorio Simple Calculadora

Muestreo Aleatorio Simple Tabla

4ta Columna, 6ta Fila

Muestreo Sistemático

r=(1,5)

30	90
12	85
20	50
13	68
36	50
29	85
32	87
24	85

16	80
28	90
10	40
32	87
24	85
5	80
21	30
13	68

1	60
6	20
11	90
16	80
21	30
26	75
31	90,5
36	50

Subgrupo N2

Muestreo Aleatorio
Simple Calculadora

Muestreo Aleatorio Simple Tabla

3ra Columna, 6ta Fila

49	85
46	80
37	15
18	20
47	78
17	80
32	60
33	40
30	95
9	50
21	80
51	30

Muestreo Sistemático

r=(1,5)

1	85
6	70
11	90
16	100
21	80
26	40
31	75
36	60
41	70
46	80
51	30
56	80

Subgrupo N3

Muestreo Aleatorio Simple Calculadora

28	80
4	50
10	70
14	15

Muestreo Aleatorio Simple Tabla

3ra Columna, 6ta Fila

25	50
37	30
18	60
17	80

Muestreo Sistemático

r=(1,5)

1	75
6	70
11	80
16	90

8	90
7	85
27	60
6	70

32	30
33	20
30	50
9	80

21	90
26	90
31	90
36	15

Con estas técnicas aplicadas en los 3 subgrupos se procede a hacer un promedio por técnica, no por subgrupo de lo cual tenemos esta tabla

u=	63,23		
X Calculadora	64,79	dif=	1,56
X Tabla	59,75	dif=	-3,48
X Muestreo			
Sistemático	69,84	dif=	6,61

• Pruebas de Hipótesis para una Muestra

Pruebas de Hipótesis para una Muestra Grande

1. El promedio general de la calificación que dieron los estudiantes a la publicidad en los medios de comunicación sobre el uso de apps para aprender idiomas es de 63,23 puntos con una desviación de 23,59. Se toma una muestra de 98 personas, donde se sabe que el promedio es de 63,5 puntos con una desviación de 22,35. Trabaje con un alpha de 0,05 y pruebe las hipótesis:

Datos:

Media poblacional	63,23
Desviación estándar	23,95
Tamaño de muestra	98
Media muestral	63,5
α	0,05

a) El promedio es diferente a 63,23 puntos

1.. Ho:
$$\mu = 63,23$$

H1:
$$\mu \neq 63,23$$

$$2.. \alpha = 0.05$$

Punto crítico:
$$0.95/2 = 0.475 \rightarrow \pm 1.96$$

3..
$$Z = \frac{\bar{x} - u}{\sigma / \sqrt{n}} = \frac{63.5 - 63.23}{23.59 / \sqrt{98}}$$

Valor Z calculado = 0.11

- 4.. Ho se acepta si $-1.96 \le Z \le 1.96$
- 5.. Ho se acepta; el promedio general es igual a 63,23 puntos.

b) El promedio es mayor o igual a 63,23 puntos

1.. Ho:
$$\mu \ge 63,23$$

H1:
$$\mu$$
 < 63,23

$$2.. \alpha = 0.05$$

Punto crítico:
$$0.5 - 0.05 = 0.4500 \rightarrow -1.65$$

5.. Ho se acepta; el promedio general no es menor a 63,23 puntos.

c) El promedio es menor o igual a 63,23 puntos

1.. Ho:
$$\mu \le 63,23$$

H1:
$$\mu > 63,23$$

$$2.. \alpha = 0.05$$

Punto crítico:
$$0.5 - 0.05 = 0.4500 \rightarrow +1.65$$

5.. Ho se acepta; el promedio general no es mayor a 63,23 puntos.

Pruebas de Hipótesis para una Muestra Pequeña

2. Se tiene que el promedio general que dieron los estudiantes a la publicidad en los medios de comunicación sobre el uso de apps para aprender idiomas es de 63,23 puntos con una desviación de 23,59. Se toma una muestra de 19 estudiantes, donde se sabe que el promedio es de 67 puntos con una desviación de 21,06. Trabaje con el alpha de 0,10 y pruebe las hipótesis:

Datos:

μ	63,23
$\bar{\mathbf{x}}$	67
S	23,59
n	19
α	0,10
gl	18

a) El promedio es diferente a 63,23 puntos:

1.. Ho:
$$\mu = 63,23$$

H₁: $\mu \neq 63,23$

$$2.. \alpha = 0.10$$

Punto crítico: gl=n-1=19-1=18=±1,734

3.. Cálculo de t:

$$t = \frac{\bar{x} - u}{s / \sqrt{n}} = t = (67 - 63,23) / (23,59 / \sqrt{19}) = 0,78$$

- 4.. Se acepta Ho si -1,734 \leq t \leq 1,734
- 5.. Se acepta Ho; el promedio general es igual a 63,23 puntos.

b) El promedio es mayor a 63,23 puntos:

- 1. Ho: $\mu = 63,23$ H₁: $\mu > 63,23$
- 2. $\alpha = 0.10$

Punto crítico: gl=n-1=19-1=18=+1,330

t calculado: 0,78

5. Se acepta Ho; el promedio general no es mayor a 63,23 puntos.

0,78

1,330

c) El promedio es menor a 63,23 puntos:

1. Ho:
$$\mu = 63,23$$

H₁: $\mu < 63,23$

2.
$$\alpha = 0.10$$

Punto crítico: gl=n-1=19-1=18=-1,330

3.
$$t = \frac{\bar{x} - u}{s / \sqrt{n}} =$$

t calculado: 0,78

4. Se acepta Ho si
$$t \ge -1,330$$

5. Se acepta Ho; el promedio general no es menor a 63,23 puntos

Pruebas de Hipótesis para una Proporción

3. El porcentaje de estudiantes que califica con un valor mayor a 50 puntos la publicidad de las aplicaciones para aprender idiomas es de 70%. Si se realizó una encuesta a 98 estudiantes y 62 contestaron el dato mencionado. Utilizando un alfa de 0.10, se desea probar las siguientes hipótesis:

Datos:

$$\bullet \quad \pi = 0.70$$

•
$$X = 62$$

•
$$n = 98$$

•
$$p = 0.63$$

•
$$\alpha = 0.10$$

a) La proporción de la población es igual a 63,23 puntos

1. Ho:
$$\pi = 0.70$$

$$H_1$$
: $\pi \neq 0.70$

2.
$$\alpha = 0.10$$

Punto Crítico =
$$0.99/2 = 0.475 \rightarrow \pm 1.65$$

3.
$$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}} =$$

$$Z = (0.63 - 0.70) / \sqrt{(0.70(1 - 0.70)/98)} = -1.51$$

5. Se acepta H₀: La proporción de personas que contestan por arriba de 50 puntos es igual al 70%

1. Ho:
$$\pi \ge 0.70$$

H₁:
$$\pi$$
 < 0.70

2.
$$\alpha = 0.10$$

Punto crítico =
$$0.05 - 0.10 = 0.4000 \rightarrow -1.29$$

$$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}} =$$

$$Z = (0.63 - 0.70) / \sqrt{(0.70(1 - 0.70)/98)} = -1.51$$

5. Se acepta Ho: La proporción de personas no es menor al 70%

c) La proporción de la población es menor a 63,23 puntos

1. Ho:
$$\pi \leq 0.70$$

H₁:
$$\pi > 0.70$$

2.
$$\alpha = 0.10$$

Punto crítico =
$$0.05 - 0.10 = 0.4000 \rightarrow +1.29$$

$$Z = (0.63 - 0.70) / \sqrt{(0.70(1 - 0.70)/98)} = -1.51$$

-1,51

1,29

4. H₀ se acepta si $Z \le 1.29$

5. Se acepta H₀: La proporción de personas no es mayor al 70%

Pruebas de Hipótesis para 2 muestras

Pruebas de Hipótesis para 2 muestras grandes

1. Se toma 2 muestras de estudiantes de la ESPE de las que se sabe el promedio de la primera muestra es de 60 con una desviación de 23,64 y la muestra representa 60 estudiantes. El promedio de la segunda muestra es de 65 con una desviación de 2,57 y representa 40 estudiantes. Trabajar con un alpha de 0,05 y pruebe las siguientes hipótesis.

Datos:

$\bar{x}1$	$\bar{x}2$	s1	s2	n1	n2
60	65	23.84	25.57	50	40

a) El promedio de la primera muestra es mayor al de la segunda muestra.

1. Ho: $\bar{x}1 \le \bar{x}2$ H1: $\bar{x}1 > \bar{x}2$

= -0.99

2. $\alpha = 0.05$ Punto Crítico: $0.50 - 0.05 = 0.4500 \rightarrow +1.65$

4. Ho se acepta si $Z \le 1.65$

5. Ho se acepta; el promedio de la muestra 1 no es mayor al promedio de la muestra 2.

b) El promedio de la primera muestra es menor al de la segunda muestra.

1. Ho: $\bar{x}1 \ge \bar{x}2$

H1:
$$\bar{x}1 < \bar{x}2$$

2. $\alpha = 0.05$

Punto Crítico:

$$0.50 - 0.05 = 0.4500 \rightarrow -1.65$$

3.
$$Z = \frac{\text{u1-u2}}{\sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}}} = \frac{65 - 60}{\sqrt{\frac{(23.64)^2}{60} + \frac{(25.57)^2}{40}}} =$$

- 4. Ho se acepta si $Z \ge -1.65$
- 5. Ho se acepta; el promedio de la muestra 1 no es menor al promedio de la muestra 2.

c) El promedio de la primera muestra es diferente al de la segunda muestra.

1. Ho: $\bar{x}1 = \bar{x}2$

H1:
$$\bar{x}1 \neq \bar{x}2$$

2.
$$\alpha = 0.05$$

Punto Crítico:

$$0.95 / 2 = 0.475 \rightarrow \pm 1.96$$

1,96

3.
$$Z = \frac{\text{u1-u2}}{\sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}}} = \frac{60-65}{\sqrt{\frac{(23.64)^2}{60} + \frac{(25.57)^2}{40}}} =$$

$$= -0.99$$

- 4. Ho se acepta si $-1.96 \le Z \le 1.96$
- 5. Ho se acepta; el promedio de la muestra 1 es igual al promedio de la muestra 2.

Pruebas de Hipótesis para 2 muestras pequeñas independientes

2. Se toma 2 muestras de estudiantes de la ESPE de las que se sabe el promedio de la primera muestra es de 67 con una desviación de 21,06 y la muestra representa 19 estudiantes. El promedio de la segunda muestra es de 60 con una desviación de 23,64 y representa 10 estudiantes. Trabajar con un alpha de 0,10 y pruebe las siguientes hipótesis.

Datos:			
u1=	67	u2=	60
S1=	21,06	S2=	23,64
n1=	19	n2=	10
α=	0,10		

a) El promedio de la primera muestra es mayor al de la segunda muestra.

1.. Ho: $u1 \le u2$

H1: u1 > u2

 $2.. \alpha = 0.10$

Punto crítico: $n1+n2-2 = 27 \rightarrow +1,314$

^{3...} $Sp^2 = \frac{(n1-1)S1^2 + (n2-1)S2^2}{n1+n2-2} = \frac{(19-1)(21,06)^2 + (10-1)(23,64)^2}{10+19-2} =$

$$=481,97$$

$$t = \frac{X1 - X2}{\sqrt{Sp^2(\frac{1}{n_1} + \frac{1}{n_2})}} = \frac{67 - 60}{\sqrt{481,97(\frac{1}{19} + \frac{1}{10})}} = 0.82$$

0,82

-1,314

- 4.. Ho se acepta si $t \le 1,314$
- 5.. Ho se acepta; el promedio de la muestra 1 no es mayor al promedio de la muestra 2.

b) El promedio de la primera muestra es menor al de la segunda muestra.

1.. Ho:
$$u1 \ge u2$$

H1:
$$u1 < u2$$

$$2... \alpha = 0.10$$

Punto crítico:
$$n1+n2-2 = 27 \rightarrow -1,314$$

^{3...}
$$Sp^2 = \frac{(n1-1)S1^2 + (n2-1)S2^2}{n1+n2-2} =$$

$$=481,97$$

$$t = \frac{X1 - X2}{\sqrt{Sp^2(\frac{1}{n_1} + \frac{1}{n_2})}} =$$

$$=0.82$$

5.. Ho se acepta; el promedio de la muestra 1 no es menor al promedio de la muestra 2.

c) El promedio de la primera muestra es diferente al de la segunda muestra.

1.. Ho:
$$u1 = u2$$

H1:
$$u1 \neq u2$$

$$2.. \alpha = 0.10$$

Punto crítico:
$$n1+n2-2 = 27 = \pm 1,703$$

3..

$$Sp^2 = \frac{(n1-1)S1^2 + (n2-1)S2^2}{n1+n2-2} =$$

$$=481,97$$

$$t = \frac{X1 - X2}{\sqrt{Sp^2(\frac{1}{n_1} + \frac{1}{n_2})}} =$$

- 4.. Ho se acepta si $-1,703 \le t \le 1,703$
- 5.. Ho se acepta; el promedio de la muestra 1 es igual al promedio de la muestra 2.

Pruebas de Hipótesis para 2 muestras pequeñas dependientes

3. Se tiene los siguientes datos. Trabaje con un alpha de 0,05 y prueba las hipótesis:

N	Antes	Después	d	[d^2]
1	70	50	20	400
2	60	50	10	100
3	50	30	20	400
4	40	55	-15	225
5	65	85	-20	400
6	75	85	-10	100
7	50	75	-25	625
8	50	75	-25	625
9	60	80	-20	400
10	70	90	-20	400
			-85	3675

a) El promedio de la diferencia es mayor a 0

1.. Ho:
$$ud \le 0$$

H1:
$$ud > 0$$

$$2.. \alpha = 0.05$$

Punto crítico:
$$n-1 = 9 \rightarrow +1,833$$

$$Sd = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} = \sqrt{\frac{3675 - \frac{(-85)^2}{10}}{10 - 1}} =$$

$$= 18,11$$

$$t = \frac{Promediod}{Sd/\sqrt{n}} = \frac{-9}{18,11/\sqrt{10}} =$$

$$=-1,48$$

- 4.. Ho se acepta si $t \le 1,833$
- 5.. Ho se acepta; el promedio ud no es mayor a 0

b) El promedio de la diferencia es menor a 0

1.. Ho:
$$ud \ge 0$$

H1:
$$ud < 0$$

$$2.. \alpha = 0.05$$

Punto crítico: $n-1 = 9 \rightarrow -1,833$

$$Sd = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} =$$

$$= 18,11$$

$$t = \frac{Promediod}{Sd/\sqrt{n}} =$$

$$=-1,48$$

4.. Ho se acepta si $t \ge -1,833$

5.. Ho se acepta; el promedio ud no es menor a 0

c) El promedio de la diferencia es diferente a 0

1.. Ho: ud = 0

H1: $ud \neq 0$

 $2.. \alpha = 0.05$

Punto crítico: $n-1 = 10-1 = 9 = \pm 2,262$

3..

$$Sd = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} =$$

= 18,11

$$t = \frac{Promediod}{Sd/\sqrt{n}} =$$

$$=-1,48$$

- 4.. Ho se acepta si $-2,262 \le t \le 2,262$
- 5.. Ho se acepta; el promedio ud es igual a 0

Pruebas de Hipótesis para 2 proporciones

4. Se sabe que, de un grupo de estudiantes de Ing. en software de 60, 35 estudiantes calificaron por arriba de 50 puntos a la publicidad de las aplicaciones para aprender idiomas. De otro grupo de estudiantes de Ing. en TIC's de 40, 20 calificaron por arriba de 50 puntos a la publicidad de las aplicaciones para aprender idiomas. Trabaje con un alpha de 0,01 y pruebe las siguientes hipótesis.

	Datos	:	
n1=	60	n2=	40
x1=	35	x2=	20

p1=	0,58 p2=	0,5
-----	----------	-----

a) La proporción de la población de estudiantes de software es igual a la proporción de la población de TIC's

1. H0:
$$\pi 1 = \pi 2$$

H1: $\pi 1 \neq \pi 2$

2.
$$\alpha = 0.01$$

Punto crítico: $0.99/2 = 0.4950 = \pm 2.58$

3. $Z = \frac{p_1 - p_2}{\sqrt{\frac{p_c(1-p_c)}{n_1} + \frac{p_c(1-p_c)}{n_2}}} = \frac{0,58 - 0,5}{\sqrt{\frac{0,55(1 - 0,55)}{60} + \frac{0,55(1 - 0,55)}{40}}} =$

Z calculado = 0.82

- 4. Se acepta H0 si $-2.58 \le Z \le 2.58$
- 5. Ho se acepta; la proporción de software es igual a la de TIC's.

b) La proporción de estudiantes de software es mayor a la de TIC's

1. H0: $\pi 1 \le \pi 2$

H1: $\pi 1 > \pi 2$

Punto crítico: 0.5 - 0.01 = 0.4900 = +2.33

Z calculado = 0.82

- 4. Se acepta H0 si $Z \le 2,33$
- 5. Ho se acepta; la proporción de software no es mayor a la de TIC's.
- c) La proporción de estudiantes de software es menor a la de TIC's
- 1. H0: $\pi 1 \ge \pi 2$

H1: $\pi 1 < \pi 2$

2.
$$\alpha = 0.01$$

Punto crítico:
$$0.5 - 0.01 = 0.4900 = -2.33$$

3.
$$Z = \frac{p_1 - p_2}{\sqrt{\frac{p_2(1-p_2)}{n_1} + \frac{p_2(1-p_2)}{n_2}}} =$$

Z calculado = 0.82

