Homework 02

Aaron Wang

January 31 2025

1. **Divisibility tests.** Define, for all k > 0,

$$D_k = \{w \in \{0,...,9\}^* | w \text{ is the decimal representation of a multiple of } k\}$$

where ε is considered to represent the number 0. For example, the strings ε , 0, 88, and 088 all belong to D_2 , but 99 and 099 do not.

(a) Prove that D_2 is regular by writing a DFA for D_2 .

(b) Prove that D_3 is regular by writing a DFA for D_3 .

(c) Prove that D_6 is regular. An explicit DFA is not necessary.

From the DFA of D_2 and D_3 , we know that they are regular. Notice that for any number w, w is a multiple of 6 if and only if w is a multiple of 2 and 3. Thus, we can represent D_6 as:

$$D_6 = \{w \in \{0,...,9\}^* | w \text{ is the decimal representation of a multiple of 2 and 3}\} = D_2 \cap D_3$$

Thus D_6 is regular as it is the intersection of D_2 and D_3 .¹

 $^{^1{\}rm Theorem}$ from class: If A and B are regular languages, then $A\cap B$ is also regular.

2. Nondeterminism. Consider the following NFA N_2 (same as in Figure 1.31), which accepts a string iff the third-to-last symbol is a 1:

(a) Use the subset construction (Theorem 1.39) to convert N_2 to a DFA M. You may omit curly braces and commas when naming states; for example, instead of $\{1, 2, 3, 4\}$ you may write 1234. (Hint: the DFA should be equivalent to the one in Figure 1.32.)

(b) Why are the states in Figure 1.32 named q_{abc} where $a,b,c\in\{\mathtt{0},\mathtt{1}\}$?

This is because abc represents the last 3 characters that have been read such that it is 1 if 1 was read and 0 otherwise. where a is the third-to-last symbol, b is the second-to-last symbol, and c is the last symbol.

(c) In Example 1.30, Sipser asks what happens if you modify N_2 into the following NFA - let's call it N_2' :

This now accepts the string if 1 is the last, second-to-last, or third-to-last character.

(d) Use the subset construction (Theorem 1.39) to convert N'_2 to a DFA M'.

²If nothing has been read yet, aka no "symbols" yet, we assume symbols to be 0

- 3. Procrustean closure properties. Let Σ be an alphabet, and let $L_3 = \{\text{theory}, \text{of}, \text{computing}\}\$ be an example language.
 - (a) For any $w = w_1 w_2 \cdots w_{n-1} w_n$, define

$$STRETCH(w_1w_2\cdots w_n) = w_1w_1w_2w_2\cdots w_{n-1}w_{n-1}w_nw_n.$$

This induces an operation on languages,

$$STRETCH(L) = \{STRETCH(w) | w \in L\}.$$

For example,

$$STRETCH(L_3) = \{tthheeorryy, ooff, ccoommppuuttiinngg\}.$$

Prove that if L is a regular language, then STRETCH(L) is also regular.

If L is regular, we have an NFA without ε transitions N for L s.t. $N=(Q,\Sigma,\delta,s,F)$. Construct $N'=(Q',\Sigma,\delta',s,F)$ to recognize STRETCH(L)

- 1. $Q' = Q \cup (\Sigma_{\varepsilon} \times Q)$. This way we have the regular states and a state for every transition.
- 2. Σ does not change.
- 3. Define δ' so if q is an original state $(q \in Q)$, it will give transition state(s) and vice versa.

$$\delta'\Big(q,a\Big) = \begin{cases} (a,\delta(q,a)) & q \in Q \\ q_{\text{next(s)}} & \text{s.t. } (a,q_{\text{next(s)}}) = q \\ \emptyset & \text{otherwise} \end{cases}$$

- 4. s does not change.
- 5. F does not change.

Let $L = \{\text{in}, \text{out}\}$ as an example.³

STRETCH(L)

By proof of construction STRETCH(L) is regular.

³States without transitions were ommited from drawing

(b) For any $w = w_1 w_2 \cdots w_{n-1} w_n$ with $n \geq 2$, define

$$CHOP(w_1w_2\cdots w_{n-1}w_n)=w_2\cdots w_{n-1}.$$

This induces an operation on languages,

$$CHOP = \{CHOP(w) | w \in L \text{ and } |w| \ge 2\}.$$

For example,

$$CHOP(L_3) = \{ heor, \varepsilon, omputin \}.$$

Prove that if L is a regular language, then $\operatorname{CHOP}(L)$ is also regular.

If L is regular, we have an NFA without ε transitions N for L s.t. $N = (Q, \Sigma, \delta, s, F)$. Construct $N' = (Q', \Sigma, \delta', s', F')$ to recognize CHOP(L)

- 1. $Q' = Q \cup \{s'\}$ is Q with a new start state.
- 2. Σ does not change.
- 3. Define δ' as the same as before with the addition of ε transitions from s' to every state that s originally went to and any other transition a from s' maps to \emptyset

$$\delta'(q, a) = \begin{cases} \delta(q, a) & q \neq s' \\ \cup_{x \in \Sigma} \delta(s, x) & q = s' \land a = \varepsilon \\ \emptyset & q = s' \land a \neq \varepsilon \end{cases}$$

- 4. s' is the new start state.
- 5. $F' = \{q | \exists q_f \in F(\exists a \in \Sigma(q_f \in \delta(q, a)))\}$ is the set of all states that were originally one transition away from the end.

Let $L = \{in, out\}$ as an example.

CHOP(L)

By proof of construction $\mathrm{CHOP}(L)$ is regular.

⁴This is important for edge cases in which random ε transitions mess up construction of N'. We know such an N without ε always exists b/c an equivalent DFA exists for N and an equivalent DFA is an equivalent NFA without ε transitions