

CREDIT EDA CASE STUDY

PROBLEM STATEMENT

When the company receives a loan application, the company must decide for loan approval based on the applicant's profile. Two types of risks are associated with the bank's decision:

- If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
- If the applicant is not likely to repay the loan, i.e., he/she is likely to default, then approving the loan may lead to a financial loss for the company.

STEPS TO PERFORM EDA ANALYSIS

- Data Understanding
 - Data reading and data types: To read 'application_data.csv' and 'previous_application.csv' and understand its data types
 - BFS domain terms for better data understanding
- Data Cleaning and Manipulation
 - Handling missing values
 - Standardizing values
 - Handling "null" values
- * Explain the results of univariate, segmented univariate, bivariate analysis, etc. in business terms
- Find the top 10 correlation for the Client with payment difficulties
- ❖ Visualizations to explain the numerical/categorical variables

pre_app.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1670214 entries, 0 to 1670213
Data columns (total 37 columns):
Column Non-Null

app_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

VIEW ON THE DATA SET

- 'application_data.csv' or 'app_data' contains all the information of the client at the time of application. The data is about whether a client has payment difficulties
- 'previous_application.csv' or 'pre_app' contains information about the client's previous loan data. It contains the data whether the previous application had been Approved, Cancelled, Refused or Unused offer

HANDLING MISSING VALUES

- Sorted 'application_data' column in terms of maximum count of 'null' values
- For the total 300k rows of data few columns have more than 50% of the rows empty
- Its best practice to remove them before getting started with our analysis

app_data.isnull().sum().sort_values(ascending=False)

EXT_SOURCE_3	60965
AMT_REQ_CREDIT_BUREAU_YEAR	41519
AMT_REQ_CREDIT_BUREAU_QRT	41519
AMT_REQ_CREDIT_BUREAU_MON	41519
AMT_REQ_CREDIT_BUREAU_WEEK	41519
AMT_REQ_CREDIT_BUREAU_DAY	41519
AMT_REQ_CREDIT_BUREAU_HOUR	41519
NAME_TYPE_SUITE	1292
DEF_60_CNT_SOCIAL_CIRCLE	1021
OBS_30_CNT_SOCIAL_CIRCLE	1021
DEF_30_CNT_SOCIAL_CIRCLE	1021
OBS_60_CNT_SOCIAL_CIRCLE	1021
EXT_SOURCE_2	660
AMT_GOODS_PRICE	278
AMT_ANNUITY	12
CNT_FAM_MEMBERS	2
DAYS_LAST_PHONE_CHANGE	1
FLAG_DOCUMENT_18	0

STANDARDIZING VALUES

 Converting column values for DAYS_BIRTH and DAYS_EMPLOYED from days to years

 Plotting them into histogram and box plot for a quick analysis on its data distribution

ANALYZING TARGET DISTRIBUTION

• As per the data plotted in this pie chart using 'application_data' dataframe, we can infer that we have in total of 8.1% defaulters

 Further provide insights on why the variables are important for differentiating the clients with payment difficulties with all other cases

Analyzing TARGET data distribution

UNIVARIATE ANALYSIS ON APP_DATA

NAME_FAMILY_STATUS distribution across Target 1 and Target 0

UNIVARIATE ANALYSIS ON APP_DATA

OCCUPATION_TYPE distribution across Target 1 and Target 0

UNIVARIATE ANALYSIS ON APP_DATA

UNIVARIATE ANALYSIS ON PREV_DATA

Loan Status for previous application

We can see that most of the applications have been approved

Next we can see they are either cancelled or refused

Loan Status for Previous Applications

LOAN TYPES FOR PREVIOUS APPLICATION

UNIVARIATE ANALYSIS ON CASH LOAN PURPOSE

As we can see from above bar chart most of the cash loans are taken for Repairs

BIVARIATE ANALYSIS ON APP_DATA

 From above bar plot we can see that those from low- and middle-income groups who don't own a realty are more likely to default with their loan payments

BIVARIATE ANALYSIS ON APP_DATA

NAME_EDUCATION_TYPE and NAME_FAMILY_STATUS

BIVARIATE ANALYSIS ON PREV_DATA

The rejection rate for cash loans above 500k seems higher

Anything up to 400k seems to be getting processed

MULTIVARIATE ANALYSIS

AMT_CREDIT & AMT_ANNUITY are directly proportional The loan applications are distributed across all age groups

AMT_CREDIT & AMT_ANNUITY are directly proportional
The AMT_ANNUITY is inversely proportion or having
negative causation with DAYS_EMPLOYED, means customers
who are employed for a long time are more likely to repay
on-time

TOP 10 CORRELATION FOR THE CLIENT WITH PAYMENT DIFFICULTIES

MT_GOODS_PRICE & AMT_CREDIT show good correlation of up to 0.987251. Thus, for consumer requesting for high loan credit have high goods price

Customers with high CNT_FAM_MEMBERS are likely to have more CNT_CHILDREN, thus showing that they might falls under defaulters because of family commitments

	levei_u	levei_1	
84	AMT_INCOME_TOTAL	SK_ID_CURR	0.001739
126	AMT_CREDIT	SK_ID_CURR	0.000364
128	AMT_CREDIT	AMT_INCOME_TOTAL	0.342796
168	AMT_ANNUITY	SK_ID_CURR	0.000070
170	AMT_ANNUITY	AMT_INCOME_TOTAL	0.418954
1758	FLAG_DOCUMENT_21	FLAG_DOCUMENT_16	0.000170
1759	FLAG_DOCUMENT_21	FLAG_DOCUMENT_17	0.000299
1760	FLAG_DOCUMENT_21	FLAG_DOCUMENT_18	0.000565
1761	FLAG_DOCUMENT_21	FLAG_DOCUMENT_19	0.000437
1762	FLAG_DOCUMENT_21	FLAG_DOCUMENT_20	0.000399

level 0

level_0	level_1	Correlation_TARGET0
OBS_60_CNT_SOCIAL_CIRCLE	OBS_30_CNT_SOCIAL_CIRCLE	0.998508
AMT_GOODS_PRICE	AMT_CREDIT	0.987251
CNT_FAM_MEMBERS	CNT_CHILDREN	0.878575
LIVE_REGION_NOT_WORK_REGION	REG_REGION_NOT_WORK_REGION	0.861812
DEF_60_CNT_SOCIAL_CIRCLE	DEF_30_CNT_SOCIAL_CIRCLE	0.859331
LIVE_CITY_NOT_WORK_CITY	REG_CITY_NOT_WORK_CITY	0.830366
AMT_GOODS_PRICE	AMT_ANNUITY	0.776686
AMT_ANNUITY	AMT_CREDIT	0.771309
FLAG_DOCUMENT_6	FLAG_DOCUMENT_3	0.486443
FLAG_DOCUMENT_8	FLAG_DOCUMENT_3	0.461069

MERGE TWO DATAFRAMES

- Merging App_Data and Prev_Data to understand the data for customers who are re-applying for loan
- Infer some analysis based on which their previous loan application was approved or rejected and what might be different in the current application

df_merged.info()

<class 'pandas.core.frame.DataFrame'>

```
Int64Index: 1413608 entries, 0 to 1413607
Data columns (total 18 columns):
    Column
                         Non-Null Count
                                            Dtype
    SK ID CURR
                         1413608 non-null
                                           int64
    TARGET
                         1413608 non-null
                                           int64
                                           object
    CODE GENDER
                         1413608 non-null
                         1413608 non-null float64
    AMT_INCOME TOTAL
                         1413608 non-null float64
    AMT CREDIT X
                         1413608 non-null float64
    AMT ANNUITY X
                                           object
    NAME TYPE SUITE
                         1410082 non-null
    NAME INCOME TYPE
                         1413608 non-null
                                           object
    NAME EDUCATION TYPE
                         1413608 non-null
                                           object
    NAME FAMILY STATUS
                         1413608 non-null
                                           object
                         1413608 non-null float64
    DAYS BIRTH
                         1140025 non-null float64
    DAYS EMPLOYED
                                           object
    OCCUPATION TYPE
                         1413608 non-null
    SK ID PREV
                         1413608 non-null
                                           int64
                         1106420 non-null float64
    AMT ANNUITY y
                         1413608 non-null float64
    AMT APPLICATION
    AMT CREDIT y
                         1413607 non-null float64
    CODE REJECT REASON
                         1413608 non-null
                                           object
dtypes: float64(8), int64(3), object(7)
memory usage: 204.9+ MB
```

MERGED DATAFRAME ANALYSIS

• With this we can infer that "SYSTEM" CODE_REJECT_REASON has the highest count across applicants across age band upto close to 50 years

MERGED DATAFRAME ANALYSIS

- In this we can infer that "SCOFR" CODE_REJECT_REASON" is the most common rejection reason across all OCCUPATION_TYPE customers
- Low-skill Laborers have the maximum rejections across all rejection's types, and we can infer that as they have daily and inconsistent wages, they are more likely to get their loan applications rejected

MERGED DATAFRAME ANALYSIS

- In this we can infer that Unemployed customers are more likely to default as they dont have an income to repay the loan on time and are risky
- Also, women on Maternity Leave are more likely to become defaulters as they might be on unpaid leave

CONCLUSION

- Defaulter's rate is 8.7%
- Cash loan types tend to have higher rejection rate when compared to Revolving loans
- Low-skill Laborers have the maximum rejections
- Women on Maternity Leave are more likely to become defaulters
- "SCOFR" CODE_REJECT_REASON" is the most common rejection reason across all OCCUPATION_TYPE customers
- Laboure occupation type by far has the highest rate for facing the difficulty with the loan repayments
- MT_GOODS_PRICE & AMT_CREDIT show good correlation of up to 0.987251
- Customers with high CNT_FAM_MEMBERS are likely to have more CNT_CHILDREN
- Customers who are employed for a long time are more likely to repay on-time
- Low and middle-income groups who don't own a house/reality, are more likely to default on their payments