• 知识丛林 •

再介绍一种新的回归方法

-分段线性回归

・倪加勋

在1986年第3期《统计与决策》杂志上,我曾 经介绍过一种单调回归的方法。近年来随着计算机 科学的发展, 国外数理统计中应用回归这一分支也 得到很快的发展。例如,多元回归,过去由于计算 工作量比较大,在应用上受到了一定的限制,而现 在则已有大量的统计软件可供使用, 而且有许多软 件如minitab, spss等已经可用于微机,这些软件 使用方便,并不需要掌握某种程序语言,只要学会几 个简单的指令,把数据输入,很快能得到计算结果, 因此回归方法的应用也日益广泛。此外除了传统的 圆归方法以外,还提出了一些新的方法,可以把一些 比较复杂的问题设法转化成比较简单的方法。这里 要介绍的一种方法也是近年来新提出的。叫作分段 线性回归法 (piecewise Linear regression)。

一、什么是分段线性回归和它的提出

因为客观现象之间的联系总是很复杂的,常常 不可能是简单直线关系, 因而使用线性回归的方法 就受到限制, 若使用非线性方法, 即使手头有计算 功能很大的计算机可供使用, 但是用什么曲线去拟 合总是要人来判断决定,而这也不是很容易的,目前 传统的方法是根据经验来判断,然后在计算机上试 行拟合,并计算其残差,要使残差达到最小或使确 定系数r⁸的值尽可能大(趋近于1)为好。然而这种 方法也并不常常有效。原因是。(1)曲线的形式比 较难找, (2)即使能找出一些特殊的曲线函数形式, 往往没有现成的软件。但我们知道使用回归方法的 本质就是要通过所取得的资料中变量之间的关系, 从中汲取有用的信息为我们所用。这些信息有时可 以通过直观的观察取得。我们常用散布(点)图就是 直观提取信息的一种重要方法。现在我们通过二个。 图例来说明分段线性回归方法的提出,设因变量 Y,与自变量X之间散布(点),参图(1)和图(2)。

显然,图(1)和图(2)均 不呈直线关系, 图(1)为一下 凹的曲线, 但曲线的形式尚不能 肯定,图(2)则是一个不连续的 函数,使用传统的方法就比较困 难,但是以图上看来我们可以发 现二个图形有一个共同的地方, 在图(1)自变量X以A为 分 界 点, 把数据分成两段, 这二段分 别呈线性关系,在图(2)中以 D 点为分界点也把数据分成二段,

前后也分别呈线性关系。因此这就启发我们若能区 别不同阶段分别用线性回归方法来进行拟合和进行 回归分析,也许能起到较好的效果,而且方法也比 较简单, 因为解线性回归一般均有现成的计算机软 件,即使是多元回归也比较容易计算。所以分段线 性回归方法实际上就是设法把一比较复杂的曲线, 把它分段制成线性的处理方法。

二、分段线性回归的具体进行方法

我们了解了分段回归的基本思路以后, 当遇到 这种情况时, 当然可以把搜集到的数据分成几段, 然后分别使用简单线性回归的方法, 但是这样做有 两个缺点,一是要把数据重新整理,有时也比较麻 烦, 二是把一个总的样本分割成几个样本后往往样 本的容量太小, 因而每个子样本的自由度很小, 在 对回归系数假设检验时,往往是不显著的,分段线性 回归方法是借助于多元回归分析中的指示变 量, (石的书上也称虚拟变量)使之成为一个多元线性 回归,这样就有统计软件可供使用。如果只有分成 二段,则一般情况下只有二个自变量和一个因变量 的线性回归, 借助于普遍的计算器也不难计算, 现, 在分几种情况来谈。

1、有一个转折点的分段线性回归。以图(1) 的情况为例,回归曲线在A处为转折点,前后可分 成二段直线,设一般的线性回归模型为;

E(Y)= $\beta_0+\beta_1x_1$ 现在我们用一个指示变量 x_2 , $\varphi x_1 < A$ 时 $x_2 = 0$, $x_1 > A$ 时 $x_2 = 1$, 那么这一数据的分段线性回归方程可写成。

$$E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 (x_1 - A) x_2$$
 (1)

显然,当 $x_1 < A$ 时,把 $x_2 = 0$ 代入公式(1),上面的回归函数 就 成为: $E(Y) = f_0 + f_1 x_1$ 即以 f_0 为截距 f_1 为斜率的 — 条 直 线,当 $x_1 > A$ 时

把 $x_2 = 1$ 代入(1)式,其回归函数就成为:

E(Y) =
$$\beta_0 + \beta_1 x_1 + \beta_2 (x_1 - A)$$

= $\beta_0 - \beta_2 A + (\beta_1 + \beta_2) x_1$

这是以 $\beta_0 - \beta_2 A$ 为 截 距, $\beta_1 + \beta_2$ 为 斜 率 的一 条 直线。理论上三元线性回归是由因变量 Y和自变 量 X_1 、 x_2 组成的一个三维空间,为了直观起见,这是 投影在 Y和 x_1 平面上的二条直线,见图 (3)

2、二个以上转折点的情况。上面的分段 回 归 方法也可以推广到二个转折点以上,只要增加指示

阳(3)一个转折点的分段线性回归

变量即可,现在假设有A和C二个转折点,这时 就把曲线分割成三段直线,这时的回归模型可写成:

$$E(Y) = \frac{1}{4} + \frac{1}{1}x_1 + \frac{1}{1}x_2 + \frac{1}{1}x_1 - A + x_2 + \frac{1}{1}x_2 + \frac{1}{1}x_1 + \frac{1}{1}x_2 + \frac{1}{1}x_1 + \frac{1}{1}x_1 + \frac{1}{1}x_2 + \frac{1}{1}x_1 + \frac{1}{1}x_1 + \frac{1}{1}x_2 + \frac{1}{1}x_1 + \frac{1}x_1 + \frac{1}{1}x_1 + \frac{1}{1}x_1 + \frac{1}{1}x_1 + \frac{1}{1}x_1 + \frac{1}{$$

定义指示变量x2和x3为:

者 $x_1 > A$ 时, $x_2 = 1$

若x << A时, x2 = 0

又: 若 $x_1 > C$ 时 $x_3 = 1$

。 若X₁<C时 x₃=0

很显然,若x < A时,把 $x_2 = 0$ 及 $x_3 = 0$ 代入方程 (2)得 $E(Y) = \beta_0 + x\beta_1$,若 $C > x_1 > A$ 时,把 $x_2 = 1$ 和 $x_3 = 0$ 代入方程(2)得, $E(Y) = \beta_0 - \beta_2 A$ +($\beta_1 + \beta_2$) x_1 , 若x > C时,把 $x_2 = 1$ 和 x_3 =1代入方程(2)得:

E(Y) = $(β_0 - β_2A - β_8C) + (β_1 + β_2 + β_8)x_1$, 这是三条不同截距和斜率的三条直线,分别代表各 线段的情况,可用图示如下。

图(4)二个转折点的分段线性回归

3、回归函数为不连续的情况。即如图(2)中 所示那样,分段直线在D处有一个跳跃点。在这种 情况下,可以用二个指示变量,设D处为跳跃点, 则线性回归方程可写成。

E(Y) =
$$\beta_0 + \beta_1 x_1 + \beta_2 (x_1 - D) x_2 + \beta_3 x_3$$
 (3)

定义指示变量x₃, x₈为; 若x₁>D, 则x₂=1, x₈=1 若x₁<D时, 则x₂=0, x₃=0。显然, 在x₁<D时, 把x₂=x₈=0代入方程(3)得 $E(Y) = \rho_0 + \rho_1 x_1$ 、

若 $x_1 > D$ 时,把 $x_2 = x_3 = 1$ 代入方程(3)得。 E(Y) = ($\beta_0 - \beta_2 D + \beta_3$) + ($\beta_1 + \beta_2$) x_1 ,该直线的截距为 $\beta_0 - \beta_2 D + \beta_3$, 斜率为 $\beta_1 + \beta_2$,这时的图形可以表示如下。

图(5)有一个不连续点的分段线性回归

三、分段线性回归的一个例子

现在我们用一个具体的例子来说明分段线性回 归的用法。设有一工厂利用回归方法研究产品的单

位成本(Y)与生产的批量(x)之间的关系,一般说来,生产的批量增加,则单位产品的成本下降,另外该厂有一台比较高级的新机器,当批量超过500件时可以使用,使成本有较大的降低,但若批量低于500件时,使用这机器并不合算,因而生产批量在超过500件使用新机器时有一转折点,从取得的数据也说明这一点。

根据下表资料可用一个转折点的分段 回归,其转折点为 $x_1 = 500$,令 x_2 为一 指示变量,当 $x_1 > 500$ 时, $x_2 = 1$,x < 500时, $x_2 = 0$,其分段回归函数应为。 E(Y)= $\rho_0 + \beta_1 x_1 + \beta_2$ ($x_1 - 500$) x_2 令 $x'_2 = (x_1 - 500)x_2$ 则上式可写成。 E(Y)= $\beta_0 + \beta_1 x_1 + \beta_2 x'_2$

批号i	单位产品成本(元) y ;	生产批量(件)x;
1	2.57	650
2	4.40	340
3	4.52	400
4	1,39	800
5	4.75	300
6	3,55	570
. 7	2.49	720
8	3.77	480

图(6) 生产批量与单位成本之间的散点图 👼

以上是一个典型的三元线性回归方程形式, 我 们可以用解三元回归方程方法求正规方程。

$$\begin{cases} \Sigma Y = nb_0 + b_1 \Sigma x_1 + b_2 \Sigma x_2' \\ \Sigma x_1 Y = b_0 \Sigma x_1 + b_1 \Sigma x_1^2 + b_2 \Sigma x_1 x_2' \\ \Sigma x_2' Y = b_0 \Sigma x_2' + b_1 \Sigma x_1 x_2' + b_2 \Sigma x_2'^2 \end{cases}$$

计算表

Y i	Х1	X' =	YX ₁	YX'2	ΣX_1^2	$\Sigma X'_{2}^{2}$	$\Sigma X_1 X_1'$
		X ₁ -50	0)X2				
2,57	650	150	1670.5	385.5	422500	22500	97500
4.4	340	0	1496	0	115600	0	0
4.52	400	0	1808	0	160000	0	0
1.39	800	300	1112	417	640000	90000	24000
4.75	300	0	1425	0	900000	0	0
3.55	570	- 70	2023.5	248.5	324900	4900	39900
2.49	720	220	1792.8	547.8	518400	48400	158400
3.77	480	0	1809.6	0	230400	0	0
27.44	4260	740	13137 4	1598 8	2501800	165800	535800

故正规方程为

$$\begin{cases} 8b_0 + 4260b_1 + 740b_2 = 27.44 \\ 4260b_0 + 2501800b_1 + 535800b_2 = 13137.4 \\ 740b_0 + 535800b_1 + 165800b_2 = 1598.8 \end{cases}$$

解方程得b_● = 5.89545 b₁ = 0.00395 b₂ = -0.00389

故所求得分段线性回归方程为:

 $Y = 5.89545 - 0.00395x_1 - 0.00389 (x_1 - 500) x_2$

假设我们要分别预计生产批量为440以及660件时的单位产品成本。当生产批量为440件时,x2=0,单位产品成本预计为:

 $Y = 5.89545 - 9.00395 (440) = 4.15745 元, 当生产批量为660件时, <math>x_2 = 1$, 因此预计的单位成本为 Y = 5.89545 + 0.00389 (500) - (0.00395 + 0.00389)660 = 2.66605元。如果分段的数日比较多时,线性回归的变量也随着增多,当然用手工计算就比较困难了,但是正如前面已经提到,有大量的现成统计软件可以使用,也容易取得计算结果。

(作者单位 中国人民大学统计研究室)

