AOD Lista 2 Wojciech Bajurny

Zadanie 1- wariacja problemu transportowego

Model:

 $\label{eq:ZbiorF} Zbior\ F = \{Firma_1,...,Firma_n\}$ $\ Zbior\ L = \{Lotnisko_1,...,Lotnisko_m\}$ $\ upperLimit_f - gorny\ limit\ produkcji\ danej\ firmy\ (w\ galonach)$ $\ lowerLimit_l - nasz\ cel,\ zapotrzebowanie\ lotniska\ na\ paliwo\ (w\ galonach)$ $\ fuelCost_{l,f} - koszt\ produkcji\ i\ dostawy\ paliwa\ na\ dane\ lotnsko\ l\ przez\ firmef$

Zmienne decyzyjne:

 $x_{l,f}$ - ilość paliwa dostarczonego do lotniska ze zbioru L wyprodukowanego przez firmę ze zbioru F i , gdzie $f \in \{Firma_1,...,Firma_n\}$, a $l \in \{Lotnisko_1,...,Lotnisko_m\}$, natomiast n i m to liczba odpowiednio firm i lotnisk (dostawców i odbiorców)

Ograniczenia:

-ograniczenie dla podaży:
$$\sum\limits_{l}^{m}x_{\mathrm{f,l}} <= \mathrm{upperLimit_f}$$

-ograniczenie dla zapotrzebowanie: $\sum_{f}^{n} x_{f,l}$ = lowerLimit_l

Funkcja celu:

$$f_{min} = \sum_{l}^{m} \sum_{f}^{n} (fuelCost_{l,f} * x_{l,f})$$

Odpowiedzi:

- a) Objective: totalCost = 8525000 (MINimum)
- b) Tak, wszystkie firmy dostarczają paliwo.
- c) Możliwości firmy 1 i 3 zostały wyczerpane. Firmie 2 pozostało zasobów na wyprodukowanie 385000 galonów ponad limit.

Model:

Zbiór N = $\{n_1,...,n_n\}$; - wierzchołki travelCost_{i,j∈ n} - koszt połączenia (dystans) travelTime_{i,j∈ n} - czas połączenia maxTime - nieprzekraczalny czas

Zmienna decyzyjna

 $\mathbf{x}_{i,j\in\ n}$ – czy przejeżd
żamy przez dane miasto (0 – nie, 1 – tak)

Ograniczenia:

Miasto początkowe:
$$\sum_{l=1}^{n} x_{np,i} - \sum_{l=1}^{n} x_{i,np} = 1$$
 (np - indeks miasta początkowego)

Miasto końcowe:
$$\sum_{l=1}^{n} x_{nl,i} - \sum_{l=1}^{n} x_{i,nl} = -1$$
 (nk - indeks miasta końcowego)

$$N \setminus \{nb,np\}$$
 $N \setminus \{nb,np\}$

Inne miasta:
$$\sum_{l=1}^{N} x_{m,i} - \sum_{l=1}^{N} x_{i,m} = 0$$
 (m - indeks miasta z pozostałych

miast)

Czas:
$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i,j} * travelTime_{i,j} <= maxTime;$$

Funkcja celu (dla travelCost != 0):

$$f_{\min} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i,j} *travelCost_{i,j}$$

Wynik dla przykładu (miasto 7->4)

Wynik: 7->9->4;

Ograniczenie na całkowitoliczbowość jest konieczne, w innym przypadku wyniki są niepoprawne (Zad2NotInt.txt). Jednocześnie jeśli usuniemy jednak ograniczenie na całkowitoliczbowość - otrzymujemy wynik optymalny, prawidłowy.

Model:

Zbiór P =
$$\{p_1,...p_n\}$$

Zbiór Z =
$$\{z_1,...,z_m\}$$

upperLimit $_{p,z}$ – górny limit radiowozów na daną dzielnicę i zmianę lowerLimit $_{p,z}$ – dolny limit radiowozów na daną dzielnicę i zmianę lowerLimit P_{p-} dolny limit radiowozów na daną dzielnicę lowerLimit Z_{z-} dolny limit radiowozów na daną zmianę n,m- liczba dzielnic/zmian

Zmienne decyzyjne:

k - liczba radiowozów (to będziemy minimalizować)

 $x_{p,z}$ - liczba radiowozów przeznaczonych na daną dzielnicę i zmianę, $p \in P$, a $z \in Z$;

Ograniczenia:

-ograniczenie minimun radiowozów na zmianę: $\sum_{z=1}^{m} x_{p,z}$ >=lowerLimit Z_z

-ograniczenie minumum radiowozów na dzielnicę: $\sum_{p=1}^{n} x_{p,z}$ >=lowerLimitP_p

-ograniczenie radiowozów na daną zmianę/dzielnicę pomiędzy min a max: lowerLimit $_{\rm p,z}$ <= $x_{\rm p,z}$ <=upperLimit $_{\rm p,z}$

-ograniczenie na radiowozy na zmianie mniej niż wszystkie radiowozy:

$$\sum_{l=1}^{n} \mathbf{X}_{\mathbf{p},\mathbf{z}} < = \mathbf{k}$$

Funkcja celu:

 f_{min} = k; <- minimalizujemy pulę radiowozów

Całkowicie radiowozów: totalCars = 20

p∖z	z1	z2	z3
p1	2	7	5
p2	3	6	7
p3	5	7	6

Model:

zbiór N = {1,...,n}
zbiór M = {1,...,m}
zbiór Containers = pary (n,m)
containerPresent_{n,m} - zmienna mówiąca, czy na danym polu mamy
kontener (1) czy nie (0)
cameraRange - zasięg kamer

Zmienna decyzyjna:

- $x_{n,m}$ - zmienna mówiąca, czy na danym polu mamy kamerę (1) czy nie (0)

Ograniczenia:

- -ograniczenie, że jeśli na danym polu jest kontener, nie może tam być kamery: containerPresent_{n,m}=1 -> $x_{n,m}$ =0;
- -ograniczenie, że każdy kontener w zasięgu min. 1 kamery (dla każdej pary n,m ze zbioru Containers:

$$\begin{array}{ccc} \mathit{min}(\mathit{n}+\mathit{cameraRange},|\mathit{N}|) & \mathit{min}(\mathit{m}+\mathit{cameraRange},|\mathit{M}|) \\ & \sum_{i=\mathit{max}(\mathit{n}-\mathit{cameraRange},1)} X_{i,\mathit{m}} + \sum_{i=\mathit{max}(\mathit{m}-\mathit{cameraRange},1)} X_{\mathit{n},\mathit{j}} > = 1; \\ i = \mathit{max}(\mathit{m}-\mathit{cameraRange},1) & i = \mathit{max}(\mathit{m}-\mathit{cameraRange},1) \end{array}$$

Funkcja celu:

```
\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} - \text{chcemy zminimalizować liczbę kamer};
```

Przykłady:

1) n,m=5; cameraRange=1;

```
Containers={(1,1),(1,5),(2,1),(2,4),(2,5),(3,2),(4,2),(5,1),(5,5)} Liczba kamer: 6; Kamery: (1,2),(1,4),(2,2),(3,5),(4,1),(5,4)
```

2)jak wyżej, cameraRange=2;

Liczba kamer: 3; Kamery: (3,1), (3,5), (2,2)

Model:

Zbiór P = $\{p_1,...p_n\}$

Zbiór M = $\{m_{1,...,}m_{l}\}$

pricePerKgSell $_p$ - cena sprzedaży kg produktu machineAccessTime $_m$ - max czas działania maszyny w godzinach pricePerHourOfWork $_m$ - koszt pracy maszyny na godzinę pricePerKgMake $_m$ - koszt materiałów na produkcję kg produktu maxDemand $_p$ - maksymalny tygodniowy popyt w kg produktu machineTimeForProdukct $_{p,m}$ - ile czasu w minutach maszyna m potrzebuje na zrobienie 1 kg produktu p

Zmienna decyzyjna:

x_p>=0 - ilość kg produktu p

Ograniczenia:

-ograniczenie na maksymalny popyt na dany produkt: x_p <=maxDemand $_p$

-ograniczenie na czas działania maszyny:

 $\sum_{p=1}$ machineTimeForProduct_{p,m}*x_p/60 <= machineAccessTime_m (dla każdej

maszyny ze zbioru M)

Funkcja celu:

$$f_{\text{max}} = \sum_{p=1}^{n} (x_p * \text{pricePerKgSell}_p) - \sum_{p=1}^{n} (x_p * \text{pricePerKgMake}_p) - \sum_{p=1}^{n} (x_p * \text{pricePerKgMake}_p) - \sum_{p=1}^{n} (\text{machineTimeForProduct}_{p,m}/60) * x_p * \text{pricePerHourOfWork}_m)$$

Zysk: profit = 3632.5

Produkcja:

No. Column name St Activity Lower bound Upper bound	Marginal
1 x[p1] B 125 0	
2 x[p2] B 100 0	
3 x[p3] B 150 0	
4 x[p4] B 500 0	

2,3 i 4 produkt wykorzystują maksymalnie popyt - zysk/kg największy.