Yau Mathematical Competition 2018 Probability and Statistics Overall

Problem 1 (Probability) Let *X* be a real valued random variable such that

$$\mathbb{E}f(X+1) = \mathbb{E}(Xf(X))$$

for all smooth function f with compact support.

(1) Show that *X* has a rapidly vanishing positive tail probability, i.e.,

$$\mathbb{P}\left\{X>N\right\}\leq\frac{1}{N!}.$$

(2) Use (1) or otherwise to show that X has the standard Poisson distribution P(1).

Problem 2 (Statistics) Let X_1, \dots, X_m be a random sample from a $N(\mu_1, \sigma_1^2)$ distribution and let Y_1, \dots, Y_n be another random sample from $N(\mu_2, \sigma_2^2)$. Further, assume that

- (a) X_1, \dots, X_m and Y_1, \dots, Y_n are independent;
- (b) $m \ge 2$ and $n \ge 2$;
- (c) μ_1 and μ_2 are real, and σ_1 and σ_2 are positive.

Finally, the parameters are all unknown.

- (1) How to test $H_0: \sigma_1^2 \leq \sigma_2^2$ versus $H_1: \sigma_1^2 > \sigma_2^2$?
- (2) If we cannot assume that the distributions for the X_i 's and Y_i 's are normal, how would you test whether the two samples come from the same distribution?