Math 251 - Exercise Set 2 Zehra's Solutions

March 17, 2024

1 Theorems and Definitions that are used in the solutions

• $p \in \partial S$. \iff for every r > 0, $B(p,r) \cap S \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^m \setminus S) \neq \emptyset$.

2 Solutions

- 1. Let $A \subseteq \mathbb{R}^n$ and $p \in \mathbb{R}^n$. Show that $p \in \bar{A} \Leftrightarrow B(p, \varepsilon) \cap A \neq \emptyset$ for all $\varepsilon > 0$.
- 2. (a) Show that \mathbb{R}^n is an open set by using the definition of open sets.

Proof:

Let $p \in \mathbb{R}^n$.

Then for every r > 0, $B(p, r) \subset \mathbb{R}^n$.

Thus \mathbb{R}^n is an open set.

(b) Show that \mathbb{R}^n is a closed subset of \mathbb{R}^n by using problem 1.

Proof:

Let $p \in \partial \mathbb{R}^n$.

Then for every r > 0, $B(p,r) \cap \mathbb{R}^n \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus \mathbb{R}^n) \neq \emptyset$.

Then $B(p,r) \cap \mathbb{R}^n \neq \emptyset$ and $B(p,r) \cap \emptyset \neq \emptyset$.

Thus $p \in \mathbb{R}^n$.

Thus \mathbb{R}^n is a closed subset of \mathbb{R}^n .

3. Show that the empty set \emptyset is both an open and a closed subset of \mathbb{R}^n .

Proof:

Let $p \in \emptyset$.

Then for every r > 0, $B(p, r) \cap \emptyset = \emptyset$.

Thus \emptyset is an open subset of \mathbb{R}^n .

Let $p \in \partial \emptyset$.

Then for every r > 0, $B(p,r) \cap \emptyset \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus \emptyset) \neq \emptyset$.

Then $B(p,r) \cap \emptyset \neq \emptyset$ and $B(p,r) \cap \mathbb{R}^n \neq \emptyset$.

Thus $p \in \emptyset$.

Thus \emptyset is a closed subset of \mathbb{R}^n .

(**Note:** As we can see from problems 2 and 3, \emptyset and \mathbb{R}^n are both open and closed subsets of \mathbb{R}^n .)

4. (a) Let A and B be subsets of \mathbb{R}^n . If A and B are closed then show that both $A \cap B$ and $A \cup B$ are closed as well.

Proof:

Let $p \in \partial A \cap \partial B$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$ and $B(p,r) \cap B \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus B) \neq \emptyset$.

Then $B(p,r) \cap (A \cap B) \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus (A \cap B)) \neq \emptyset$.

Thus $p \in \partial(A \cap B)$.

Thus $A \cap B$ is a closed subset of \mathbb{R}^n .

(b) If $\{A_i\}_{i\in I}$ is a collection of closed subsets of \mathbb{R}^n then show that $\bigcap_{i\in I} A_i$ is closed, too.

Proof:

Let $p \in \bigcap_{i \in I} \partial A_i$.

Then for every r > 0, $B(p,r) \cap A_i \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A_i) \neq \emptyset$ for all $i \in I$.

Then $B(p,r) \cap \bigcap_{i \in I} A_i \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus \bigcap_{i \in I} A_i) \neq \emptyset$.

Thus $p \in \partial \bigcap_{i \in I} A_i$.

Thus $\bigcap_{i \in I} A_i$ is a closed subset of \mathbb{R}^n .

5. Let $A, B \subseteq \mathbb{R}^n$. Prove the following:

(a) int(int(A)) = int(A),

Proof:

Let $p \in int(int(A))$.

Then there exists r > 0 such that $B(p, r) \subseteq int(A)$.

Thus $p \in int(A)$.

Thus $int(int(A)) \subseteq int(A)$.

Let $p \in int(A)$.

Then there exists r > 0 such that $B(p, r) \subseteq A$.

Because $B(p,r) \subseteq A$, $B(p,r) \subseteq \operatorname{int}(A)$.

Thus $p \in \operatorname{int}(\operatorname{int}(A))$.

(b) $\overline{(\overline{A})} = \overline{A}$,

Proof:

Let $p \in \overline{\overline{A}}$.

Then for every r > 0, $B(p, r) \cap \overline{A} \neq \emptyset$.

Then for every r > 0, $B(p, r) \cap A \neq \emptyset$.

Then $p \in \overline{A}$.

Thus $\overline{A} \subseteq \overline{A}$.

Let $p \in \overline{A}$.

Then for every r > 0, $B(p, r) \cap A \neq \emptyset$.

Then for every r > 0, $B(p, r) \cap \overline{A} \neq \emptyset$.

Then $p \in \overline{A}$.

Thus $\overline{A} \subseteq \overline{A}$.

(c) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$,

Proof:

Let $p \in (A \cap B)^{\circ}$.

Then there exists r > 0 such that $B(p, r) \subseteq A \cap B$.

Then there exists s > 0 such that $B(p, s) \subseteq A$ and $B(p, s) \subseteq B$.

Then $p \in A^{\circ}$ and $p \in B^{\circ}$.

Thus $p \in A^{\circ} \cap B^{\circ}$.

Thus $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$.

(d) $R^n = A^{\circ} \cup \partial A \cup \text{ext}(A)$, where $A^{\circ} \cap \partial A = \emptyset$, $A^{\circ} \cap \text{ext}(A) = \emptyset$, $\partial A \cap \text{ext}(A) = \emptyset$,

Proof:

Let $p \in \mathbb{R}^n$.

Then $p \in A^{\circ}$ or $p \in \partial A$ or $p \in \text{ext}(A)$.

Thus $\mathbb{R}^n = A^{\circ} \cup \partial A \cup \operatorname{ext}(A)$.

Let $p \in A^{\circ} \cap \partial A$.

Then there exists r > 0 such that $B(p,r) \subseteq A$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then $p \in \text{ext}(A)$.

Thus $A^{\circ} \cap \partial A = \emptyset$.

(e) $\overline{A \cup B} = \overline{A} \cup \overline{B}$,

Proof:

Let $p \in \overline{A \cup B}$.

Then for every r > 0, $B(p, r) \cap (A \cup B) \neq \emptyset$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ or $B(p,r) \cap B \neq \emptyset$.

Then $p \in \overline{A}$ or $p \in \overline{B}$.

Thus $p \in \overline{A} \cup \overline{B}$.

Thus $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.

(f) $\overline{A} = \bigcap \{ K \subseteq \mathbb{R}^n | K \text{ is closed and } A \subseteq K \}$

Proof:

Let $p \in \overline{A}$.

Then for every r > 0, $B(p, r) \cap A \neq \emptyset$.

Let K be a closed subset of \mathbb{R}^n such that $A \subseteq K$.

Then for every r > 0, $B(p, r) \cap K \neq \emptyset$.

Then $p \in K$.

Thus $\overline{A} \subseteq K$. Thus $\overline{A} \subseteq \bigcap \{K \subseteq \mathbb{R}^n | K \text{ is closed and } A \subseteq K\}$.

Let $p \in \bigcap \{K \subseteq \mathbb{R}^n | K \text{ is closed and } A \subseteq K\}.$

Then for every r > 0, $B(p,r) \cap K \neq \emptyset$ for all $K \subseteq \mathbb{R}^n$ such that K is closed and $A \subseteq K$.

Then for every r > 0, $B(p, r) \cap A \neq \emptyset$.

Thus $p \in \overline{A}$.

Thus $\bigcap \{K \subseteq \mathbb{R}^n | K \text{ is closed and } A \subseteq K\} \subseteq \overline{A}$.

(g) A is open \Leftrightarrow A $\cap \partial$ A = \emptyset .

Proof:

 \Rightarrow Suppose A is open.

Let $p \in A \cap \partial A$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then $p \in \partial A$.

Thus $A \cap \partial A = \emptyset$.

 \Leftarrow Suppose $A \cap \partial A = \emptyset$.

Let $p \in A$.

Then for every r > 0, $B(p, r) \subseteq A$.

Thus A is open.

- 6. Let $A, B \subseteq \mathbb{R}^n$. Determine if each of the following holds. If it does prove it. Otherwise give a counterexample.
 - (a) $(A \cup B)^{\circ} \subseteq A^{\circ} \cup B^{\circ}$,

Proof:

Let $p \in (A \cup B)^{\circ}$.

Then there exists r > 0 such that $B(p, r) \subseteq A \cup B$.

Then there exists s > 0 such that $B(p,s) \subseteq A$ or $B(p,s) \subseteq B$.

Then $p \in A^{\circ}$ or $p \in B^{\circ}$.

Thus $(A \cup B)^{\circ} \subseteq A^{\circ} \cup B^{\circ}$.

(b) $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$,

Proof:

Let $p \in A^{\circ} \cup B^{\circ}$.

Then $p \in A^{\circ}$ or $p \in B^{\circ}$.

Then there exists r > 0 such that $B(p,r) \subseteq A$ or $B(p,r) \subseteq B$.

Then $B(p,r) \subseteq A \cup B$.

Thus $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$.

(c) $A \cap B \subseteq (A \cap B)$,

Proof:

Let $p \in A \cap B$.

Then $p \in A$ and $p \in B$.

Thus $p \in A \cap B$.

Thus $A \cap B \subseteq (A \cap B)$.

(d) $(A \cap B) \subseteq A \cap B$

Proof:

Let $p \in (A \cap B)$.

Then $p \in A$ and $p \in B$.

Thus $p \in A \cap B$.

Thus $(A \cap B) \subseteq A \cap B$.

(e) If $A \subseteq B$ then $\partial A \subseteq \partial B$,

Proof:

 \Rightarrow Suppose $A \subseteq B$.

Let $p \in \partial A$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then for every r > 0, $B(p,r) \cap B \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus B) \neq \emptyset$.

Then $p \in \partial B$.

Thus $\partial A \subseteq \partial B$.

 \Leftarrow Suppose $\partial A \subseteq \partial B$.

Let $p \in \partial A$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then for every r > 0, $B(p,r) \cap B \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus B) \neq \emptyset$.

Then $p \in \partial B$.

Thus $\partial A \subseteq \partial B$.

(f) If $A \subseteq B$ then $ext(A) \subseteq ext(B)$,

Proof:

 \Rightarrow Suppose $A \subseteq B$.

Let $p \in \text{ext}(A)$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then for every r > 0, $B(p,r) \cap B \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus B) \neq \emptyset$.

Then $p \in \text{ext}(B)$.

Thus $ext(A) \subseteq ext(B)$.

 \Leftarrow Suppose $ext(A) \subseteq ext(B)$.

Let $p \in \text{ext}(A)$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then for every r > 0, $B(p,r) \cap B \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus B) \neq \emptyset$.

Then $p \in \text{ext}(B)$.

Thus $\operatorname{ext}(A) \subseteq \operatorname{ext}(B)$.

(g) A is closed $\Leftrightarrow \partial A \subseteq A$,

Proof:

 \Rightarrow Suppose A is closed.

Let $p \in \partial A$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then $p \in A$.

Thus $\partial A \subseteq A$.

 \Leftarrow Suppose $\partial A \subseteq A$.

Let $p \in \partial A$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then $p \in A$.

Thus $\partial A \subseteq A$.

(h) If $A \subseteq B$ then $A' \subseteq B'$,

Proof:

 \Rightarrow Suppose $A \subseteq B$.

Let $p \in A'$.

Then for every r > 0, $B(p,r) \cap A \setminus \{p\} \neq \emptyset$.

Then for every r > 0, $B(p, r) \cap B \setminus \{p\} \neq \emptyset$.

Then $p \in B'$.

Thus $A' \subseteq B'$.

 \Leftarrow Suppose $A' \subseteq B'$.

Let $p \in A'$.

Then for every r > 0, $B(p, r) \cap A \setminus \{p\} \neq \emptyset$.

Then for every r > 0, $B(p, r) \cap B \setminus \{p\} \neq \emptyset$.

Then $p \in B'$.

Thus $A' \subseteq B'$.

(i) $int(A) = A^{\circ}$,

Proof:

Let $p \in int(A)$.

Then there exists r > 0 such that $B(p, r) \subseteq A$.

Then $p \in A^{\circ}$.

Thus $int(A) = A^{\circ}$.

(j) $\partial A \subseteq A'$.

Proof:

Let $p \in \partial A$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then for every r > 0, $B(p, r) \cap A \setminus \{p\} \neq \emptyset$.

Then $p \in A'$.

Thus $\partial A \subseteq A'$.

(k) $\partial(A) \subseteq \partial A$ (Hint: If $B \subseteq \mathbb{R}^n$, then $\partial B = B \cap \mathbb{R}^n \setminus B$).

Proof:

Let $p \in \partial(A)$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then for every r > 0, $B(p,r) \cap A \neq \emptyset$ and $B(p,r) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$.

Then $p \in \partial A$.

- 7. Find the interior, exterior, closure, boundary, derived set and the set of isolated points for the following sets:
 - (a) \emptyset , \mathbb{R}^n

$$\operatorname{int}(\emptyset) = \emptyset, \operatorname{ext}(\emptyset) = \mathbb{R}^n, \overline{\emptyset} = \emptyset, \partial \emptyset = \emptyset, I(\emptyset) = \emptyset, \emptyset' = \emptyset.$$

(b) Any finite subset A of Euclidean n-space.

Solution:

$$\operatorname{int}(A) = \emptyset$$
, $\operatorname{ext}(A) = \mathbb{R}^n$, $\overline{A} = A$, $\partial A = A$, $I(A) = A$, $A' = A$.

(c) $(-1, 5) \subseteq R$,

Solution:

$$\operatorname{int}((-1,5)) = (-1,5), \ \operatorname{ext}((-1,5)) = \mathbb{R} \setminus [-1,5], \ \overline{(-1,5)} = [-1,5], \ \partial(-1,5) = \{-1,5\}, \ I((-1,5)) = \emptyset, \ (-1,5)' = \{-1,5\}.$$

(d) $S = \{(x,y) \mid -1 < x < 5, y = 0\}$ in \mathbb{R}^2 , i.e. the interval (-1,5) on the x-axis in the plane. the plane,

Solution:

$$\inf(S) = \emptyset, \ \text{ext}(S) = \mathbb{R}^2 \setminus [-1, 5], \ \overline{S} = S \cup \{(-1, 0), (5, 0)\}, \ \partial S = \{(-1, 0), (5, 0)\}, \ I(S) = \emptyset, S' = \{(-1, 0), (5, 0)\}.$$

(e) $R^2 \setminus \{(0,0)\},$

Solution:

$$\inf(R^2 \setminus \{(0,0)\}) = R^2 \setminus \{(0,0)\}, \ \exp(R^2 \setminus \{(0,0)\}) = \{(0,0)\}, \ \overline{R^2 \setminus \{(0,0)\}} = R^2, \ \partial(R^2 \setminus \{(0,0)\}) = \{(0,0)\}, \ I(R^2 \setminus \{(0,0)\}) = \emptyset, \ (R^2 \setminus \{(0,0)\})' = \{(0,0)\}.$$

(f) $A = \{(x, y, z) \in \mathbb{R}^3 | 0 \le x < 1, y^2 + z^2 \le 1\}.$

Solution:

 $\begin{array}{l} \operatorname{int}(A) = \{(x,y,z) \in \mathbb{R}^3 | 0 \leq x < 1, y^2 + z^2 < 1\}, \ \operatorname{ext}(A) = \{(x,y,z) \in \mathbb{R}^3 | x < 0 \ \operatorname{or} \ x \geq 1 \ \operatorname{or} \ y^2 + z^2 > 1\}, \ \overline{A} = \{(x,y,z) \in \mathbb{R}^3 | 0 \leq x \leq 1, y^2 + z^2 \leq 1\}, \ \partial A = \{(x,y,z) \in \mathbb{R}^3 | x = 0 \ \operatorname{or} \ x = 1, y^2 + z^2 = 1\}, \ I(A) = \emptyset, \ A' = \{(x,y,z) \in \mathbb{R}^3 | x = 0 \ \operatorname{or} \ x = 1, y^2 + z^2 = 1\}. \end{array}$

(g) For $a \in \mathbb{R}$, $A = \{(x, y) \in \mathbb{R}^2 \mid x = a, a < y < 1\}$.

Solution:

 $\begin{array}{l} \operatorname{int}(A) = \emptyset, \ \operatorname{ext}(A) = \mathbb{R}^2 \setminus \{(a,y) \in \mathbb{R}^2 \mid a < y < 1\}, \ \overline{A} = \{(x,y) \in \mathbb{R}^2 \mid x = a, a \leq y \leq 1\}, \\ \partial A = \{(a,y) \in \mathbb{R}^2 \mid a = y \ \operatorname{or} \ y = 1\}, \ I(A) = \emptyset, \ A' = \{(a,y) \in \mathbb{R}^2 \mid a = y \ \operatorname{or} \ y = 1\}. \end{array}$

8. Let

 $A = \{(x,y) | -2 \le x \le 2 \text{ with } x \ne 0, 0 < y \le 4\} \cup \{(0,y) | 0 < y < 1 \text{ or } 3 < y \le 4\} \cup \{(3,0),(4,0)\}.$

(a) Find the interior A° of A. Is A an open set? Why?

Solution:

 $A^\circ = \{(x,y) \in \mathbb{R}^2 | -2 < x < 2 \text{ with } x \neq 0, 0 < y < 4\} \cup \{(0,y) | 0 < y < 1 \text{ or } 3 < y < 4\} \cup \{(3,0),(4,0)\}.$

A is not an open set because A contains some of its boundary points.

(b) Write $\mathbb{R}^2 \setminus A$.

Solution:

 $\mathbb{R}^2 \setminus A = \{(x,y) \in \mathbb{R}^2 | x < -2 \text{ or } x > 2 \text{ or } x = 0 \text{ and } 0 < y \le 1 \text{ or } 3 < y < 4 \text{ or } x = 3 \text{ or } x = 4 \text{ and } y = 0\}.$

(c) Write the formula for the exterior of a set and use it to find ext(A).

Solution:

$$\operatorname{ext}(A) = \mathbb{R}^2 \setminus \overline{A} = \mathbb{R}^2 \setminus A.$$

(d) Write the formula for the boundary ∂A of A and use it to find ∂A . Is A a closed set? Why?

Solution:

$$\partial A = \overline{A} \cap \overline{(\mathbb{R}^2 \setminus A)} = \overline{A} \cap \overline{A} = \overline{A}.$$

A is a closed set because A contains all of its boundary points.

(e) Write a formula for the closure of A and use it to find A.

Solution:

$$\overline{A} = A$$
.

(f) Find the set I(A) of all isolated points of A.

Solution:

$$I(A) = \emptyset$$
.

(g) Find the derived set A' of A.

Solution:

$$A' = \emptyset$$
.

since $A^{\circ} = A$ and $A' = \emptyset$, A is not a perfect set.