Design and Analysis of Algorithms

L23: Job Scheduling

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 2: Sec 4.1, 4.3, 4.4
- Text book 1: Sec 9.1-5.4 Levitin
- RI: Introduction to Algorithms
 - Cormen et al.

Example Case

- In college fest which starts at 9:00am, there are a number of available events as below to participate, and each event takes I unit of time (e.g. 1hr).
 - Each event has different awards values
 - Each event has its own closing timeline.

Event	Closing	Award
Mimcry	12:00	200
Drama	11:00	100
Painting	12:00	90
Dance	10:00	50
JAM	11:00	125
Singing	10:00	60

Deadline
3
2
3
1
2
1

Q: What is the max award you can get?

Greedy Job Scheduling

- A set of n jobs to run on a computer
- Each job i has a deadline $d_i \ge 1$ and profit $p_i \ge 0$
- There is only one computer
- Each job takes one unit of time (simplification)
- Profit is earned when job is completed by deadline
- Find the subset of jobs that maximizes the profit, i.e. Maximize $\Sigma_{i \in J}$ P_i

Note: It belongs to subset paradigm since we are looking at subset of jobs.

Example: Job Scheduling

Job	Profit	Dead -line
1	100	2
2	10	1
3	15	2
4	27	1

Optimal Solution: 1,4

Feasible Solutions	Profit
1	100
2	10
3	15
4	27
1,2	110
1,3	115
1,4	127
2,3	25
3,4	42

Job Scheduling: Greedy Approach

- What should be the optimization measure to schedule the next job?
- First attempt:
 - Choose $\Sigma_{i \in J}$ P_i as the optimization measure
 - i.e. choose a job that increases this value maximum
 - Subject to constraint of the deadline i.e. J (set of jobs) should be feasible solution.
 - How to choose jobs:
 - Order jobs in decreasing order of profit
 - Choose job one at a time as per this order and add to the solution if solution remains feasible.

Job Scheduling: Greedy Approach

Job	Pro fit	De ad- line
1	100	2
2	10	1
3	15	2
4	27	1

- Application of First Greedy approach
 - Job 1 is added to J. Feasible { 1 }
 - Next: Job 4 is considered as per order.
 - Is set $J = \{1, 4\}$ feasible.
 - -Yes if 4-1, No if 1-4
 - Thus $\{1, 4\}$ is feasible solution.
 - Next: Job 3 is considered,
 {1,4,3} is infeasible, thus J remains {1,4}
 - Next: Job 2 is considered
 {1,4,2} is infeasible thus J remains {1,4}
 - The max profit is 127 for $J=\{1,4\}$
- Time complexity:
 - n! to evaluate feasibility for a given set

Job Scheduling: Feasible Solution

- How to determine that a given set of jobs constitute feasible solution.
- Try out all possible permutations in jobs J
 - Check for each permutation if jobs can be scheduled meeting the deadlines.
- Easy to check or a given permutation $\sigma=i_1,i_2,...,i_k$
 - Job i_q must be completed by time q, $1 \le q \le k$
 - If for some job i_q , $q>d_{i_q}$, then job i_q is not completed by d_{i_q} .
- When |J|=k, all k! permutations must be checked
- Can we find one permutation that meets the need?
 - Order the jobs in non-decreasing order of deadlines

Proof for Feasible Solution

• Theorem 1:

- Let J be the set of k jobs and $\sigma=i_1, i_2, ..., i_k$ is a permutation of jobs in J such that $d_{i_1} \le d_{i_2} \le ... \le d_{i_k}$. Then J is a feasible solution if and only if (iff) the jobs in J can be processed in the order σ without violating any deadline.

• Theorem 2:

 The greedy method describes above always obtains an optimal solution to the job scheduling problem.

Algo High Level

```
Algo GreedyJob(int d[], set J, int n) {
   // J is set of jobs that can be completed in deadlines d [ ]
   J = \{ 1 \}
   for i=2 to n {
      if all jobs in J U \{i\} can be completed, then
         // by their deadlines
         J = J U \{i\}
```

Algo-I: Job Scheduling

```
int JobSchedule2(int d[], int j[], int n) {
 //n \ge 1, and deadlines d[i] \ge 1, 1 \le i \le n
 //Jobs are ordered such that their profits are in non-
 increasing order i.e. p[1] \ge p[2] \ge ... \ge p[n].
 //J[i] is the ith job in the optimal solution with k \le n jobs
 // At algo termination, d[J[i]] \le d[j[i+1]], 1 \le i < k
 // Initialize
 d[0] = 0 // fictitious job with deadline of 0
 // allows for job insertion at position 1 later.
 J[0] = 0 // this job is boundary and can't be scheduled
 J[1] = 1 // start with job 1 with highest profit
 k = 1 // job set size is 1 to start with
```

Algo1: Job Scheduling

```
for (i=2; i \le n; i++) {
 // consider jobs in non-increasing order of p [i]
 // find pos for J[i] and check for feasibility of insertion
 int r = k //job set size
 while ((d[J[r]]>d[i]) &&(d[J[r]!=r))
    r-; //find position where job i can be considered.
 if ((d[J[r]]≤d[i]) &&(d[J[r]>r)){
    //insert i into J[]
    for (int q=k; q \ge (r+1); q--)
       J[q+1]=J[q] // increase deadline of jobs by 1.
    J[r+1]=i
    k++ // since job i is feasible, increase the set size.
 }//end if
}//end for i
return k
```

Algo-1: Time Complexity

- For loop run n times.
 - Each job needs to be considered.
- if K is the value of max deadline, then
 - Inside while loop plus for loop (for shifting slots) may run K times.
- Time complexity: (nK)
- Considering K is of order of n (if all jobs can be scheduled)
- Time complexity: (n²)

Algo-2: Job Scheduling

```
//Approach: schedule a job in the slot where it meets deadline.
// If no slot is available before deadline, then job is not scheduled.
// jobs are ordered in non-increasing order as per deadlines.
int JobSchedule-1(int d[], int j[], int n) {
 //n \ge 1, and deadlines d[i] \ge 1, 1 \le i \le n
 //Jobs are ordered such that their profits are in non-
 increasing order i.e. p[1] \ge p[2] \ge ... \ge p[n].
 //Job[i] is ith job in the optimal solution with k≤n jobs
 // At algo termination, d[Job[i]] \leq d[job[i+1]],
 1 \le i < k
 // Initialization
 k=0; // size of Job schedule
  for i=1 to n
     slot[i]=False // all slots are initialized to false
```

Algo-2: Job Scheduling

```
for (i=1; i \le n; i++)
 // consider jobs in non-increasing order of p [i]
 //check if any slot available before deadline
 while (j=d[i]; j>0; j-) {
    //find position where job i can be considered.
    if (slot[j] == False{
     //Add jobs to the slot
      slot[j] = True;
      Job[j] = i;
      k++;
      break
    }//end if
 }//end while
} // end for
return k
```

Algo-2: Time Complexity

- For loop run n times.
 - Each job needs to be considered.
- if K is the value of max deadline, then
 - while loop may run K times.
- Time complexity: (nK)
- Considering K is of order of n (if all jobs can be scheduled)
- Time complexity: O (n²)

Union-Find Approach

- Using set based Union-Find approach
 - It is almost O(n)
- Union-Find approach
- Consider the set of n elements which are known.
- All these elements put in an array and their id can be the array index i.e.
 - $-a[i] = x_i # i^{th}$ element is s_i .
- Elements are divided into groups (sets)
 - Initially, each element is a group by itself.
- Two kinds of operations:
 - Find the group to which element belongs
 - Merge the two groups

Union-Find Approach

- Two operations given below are performed in arbitrary order
 - Find(i): return the group id containing element xi.
 - Union(A, B): Combine the (set) group A with (set) group B to form a new group.
 - Give a unique name to this group. All elements of this new group will have this group id.
 - This could be one of earlier groups as well i.e.
 - -The new names should conflict with other names.
- Goal: Design an efficient data structure that will support any sequence of these two operations.

Union-Find Approach

- Approach I:
 - Keep $\underline{Find}(i)$ efficient. Since all elements are accessible at the i^{th} index in array,
 - This can take O(1) time. Essentially, a trivial operation.
 - $\underline{Union}(A, B)$ is expected to take more time.
 - Either change the id of all elements of A to that of B or vice versa.
 - Typically, take the smaller set and change group identity of these elements to that of larger set.
- Time complexity: O(nlog₂n)
 - Each time an element's group is changed, group size at least doubles.

- Approach 2:
 - Make $\underline{Union}(A, B)$ efficient at the cost of $\underline{Find}(i)$.
 - Make Union operation takes constant time and improve upon the time taken by <u>Find</u>.
 - Use the indirect addressing for union to make it in 0 (1) time.
 - Each entry in the array has two parts
 - -Identity of element i.e. group id or value.
 - -Pointer which is initially Nil.
 - Union(A,B) is performed by making the pointer of B to point to A.
 - After several union operations, data structures becomes like a tree.

Fig: Representation for Union Find problem

- The element at root of the Tree is the identify of group.
- To find the group of an element, follow the path till the root of the tree.

- Take the tree with smaller number of nodes to point to root of the tree of larger number of nodes.
- This requires storing the number of elements in the tree at the root as well.
- On Union operation, update the pointer of smaller tree and count at the larger tree.
 - Break the tie arbitrarily

- Basic idea: Balance and collapse the tree
 - Union operation still takes O(1) time
 - Changing the pointer (1) time
 - Updating the count (1) time
 - -Thus, \circ (1) + \circ (1) = \circ (1)

- Theorem: When balancing is used, the tree of height h will contain at least 2h nodes.
- Proof outline
 - First union operation results in tree of height 1 with two elements.
 - Consider A is height h_A and B is of height h_B .
 - Let A is larger tree. Thus, on merging B, root of B points to root of A.
 - If $h_A > h_B$, then A's height remains h_A i.e. unchanged
 - Otherwise, height of tree becomes $h_{\rm B} + 1$
 - Thus, with increase in height of I, the size of tree has at least doubled.
- Thus, time taken for a $\underline{Find}(X)$ operation is $O(\log_2 n)$

- Further improvement
- Any time we do a find operation, change the pointers of all the nodes in the path to directly point to the root of the tree.
 - This is called **path compression**.
- Traversing the path takes only double the number of steps, and thus
 - Time complexity of find remains the same.
- Time complexity with path compression for m operations is given by
 - O(mlog*n), where log*n is iterated logarithm function

Iterated Logarithm

Iterated logarithm function is defined as

```
\log^* n = 1 + \log^* (\lceil \log_2 n \rceil)
loq*2=1 (Given)
log*4=log*22
        =1+\log^*(\lceil \log_2(2^2 \rceil))
        =1+\log^*2=1+1=2
log*16=log*24
        =1+\log^*(\lceil \log_2 2^4 \rceil)
        =1+\log^*4=1+2=3
log*65536=log*216
        =1+\log^*(\lceil \log_2 2^{16} \rceil)
        =1+\log^*16=1+3=4
loq*2^{65536}=1+loq*65536 = 5 (very large n)
```

Fast Job Scheduling (Union-Find)

- Let i denote the timeslot i
 - At the start time, each time slot is its own set
- There are m timeslots, where

```
m = min(n, max(d_i))
```

- i.e. the latest deadline
- Each set of k slots has a value F(k) for all slots i set k
 - F(k): Stores highest free timeslot before this time
 - F(k): Defined only for root node in set
- Initially all slots are free

Summary

• ?