Отчёт по работе 2.2.1

Исследование взаимной диффузии газов Карташов Константин Б04-005

І. Аннотация

Цель работы:

- 1. регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов
- 2. определение коэффициента диффузии по результатам измерений

В работе используются:

- ⊳ измерительная установка
- ⊳ форвакуумный насос
- ⊳ баллон с газом (Не)
- ⊳ манометр
- ⊳ источник питания
- ⊳ магазин сопротивлений
- ⊳ гальванометр
- ⊳ секундомер

II. Теоретическая часть

і. Необходимые теоретические знания для проведения эксперимента

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (концентрационной) диффузии.

Диффузия в системе, состоящей из двух компонентов a и b, подчиняется закону Фика: плотности потока компонентов $j_{a,b}$ (количество частиц, пересекающих единичную площадку в единицу времени) пропорциональны градиентам их концентраций $\nabla n_{a,b}$, что в одномерном случае можно записать как:

$$j_a = -D_{ab} \frac{\partial n_a}{\partial x}, \quad j_b = -D_{ba} \frac{\partial n_b}{\partial x}$$
 (1)

где $D_{ab}=D_{ba}=D$ - коэффициент взаимной диффузии компонентов

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление P и температура T в условиях опыта предполагаются неизменными: $P = (n_{He} +$

 $n_B k_B$, T = const, где n_{He} , n_B – концентрации диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_B = \Delta n_{He}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов (остановимся на гелии)

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала $(n_{He} \ll n_{\rm B})$. Кроме того, атомы гелия существенно легче молекул, составляющих воздух $(\mu_{He} \ll \mu_{N_2}, \mu_{O_2})$, значит и их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц гелия на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен:

$$D = \frac{1}{3}\lambda \langle v \rangle,\tag{2}$$

где $\langle v \rangle = \sqrt{\frac{8RT}{\pi \mu}}$ — средняя тепловая скорость частиц примеси, $\lambda = \frac{1}{n_0 \sigma}$ — их длина свободного пробега, n_0 — концентрация рассеивающего фона, σ — сечение столкновения частиц примеси с частицами фона.

В общем случае необходимо учитывать диффузию каждого из компонентов. Более подробное рассмотрение показывает, что для бинарной смеси формула (2) сохраняется, если:

- 1. Под λ понимать величину $\lambda=\frac{1}{n_\Sigma\sigma}$, где $n_\Sigma=n_{He}+n_B=\frac{P}{k_{\rm B}T}$ полная концентрация частиц
- 2. Под $\langle v \rangle$ понимать среднюю относительную скорость частиц разных сортов.

Таким образом, теория предсказывает, что коэффициент диффузии бинарной смеси обратно пропорционален давлению в системе, и не зависит от пропорций компонентов, что и предлагается проверить в работе экспериментально $(D \propto \frac{1}{P})$

Для исследования взаимной диффузии используется установка, изображенная на рисунке 1. Два сосуда с примерно одинаковыми объемами $V_1 \approx V_2 \equiv V$ соединены трубкой длины 1 и сечения S. Сосуды заполнены смесью двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии концентрации каждого из компонентов в обоих сосудах с течением времени выравниваются.

Рассмотрим этот процесс. Решение задачи упрощается, если сделать несколько допущений:

- 1. Пренебрежем объемом соединительной трубки, поскольку он мал по сравнению с объемами сосудов
- 2. Концентрацию газов в каждом из сосудов будем считать постоянной по всему объему сосуда
- 3. Предположим, что процесс выравнивания концентраций происходит в основном благодаря диффузии в трубке

Тогда диффузионный потом в любом сечении трубки одинаков, поэтому $J=-DS(\partial n/\partial x)$ не меняется вдоль трубки, следовательно:

$$J = -DS \frac{n_1 - n_2}{l} \tag{3}$$

Обозначим через Δn_1 и Δn_2 изменения в объемах V за время Δt . Тогда $V_1\Delta n_1$ равно изменению количества компонента в объеме V_1 , а $V_2\Delta n_2$ – изменению этого компонента в V_2 . Из закона сохранения вещества $V_1\Delta n_1 = -V_2\Delta n_2$. Тогда получим:

$$V\frac{dn_1}{dt} = -DS\frac{n_1 - n_2}{l}, \quad V\frac{dn_2}{dt} = DS\frac{n_1 - n_2}{l}$$
 (4)

Вычтя уравнения друг из друга, найдем:

$$\frac{n_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS(\frac{2}{V}) \tag{5}$$

Интегрируя, получим:

$$n_1 - n_2 = (n_1 - n_2)_0 e^{(-t/\tau)} (6)$$

где $(n_1-n_2)_0$ – разность концентраций в начальный момент времени, $\tau=\frac{V}{2}\frac{l}{SD}$ – постоянная времени процесса, определяемая геометрией установки и величиной коэффициента диффузии D.

Для проверки применимости квазистационарного течения убедимся, что время τ много больше характерного времени диффузии одной частицы вдоль трубки длиной $l\colon t_{\rm диф} \sim \frac{l^2}{D} \ll \tau$.

Для измерения концентраций применяются датчики теплопроводности D_1 и D_2 (см. рис. 1) и используется зависимость теплопроводности газовой смеси от её состава. Тонкая проволока радиуса $r_{\rm np}$, протянутая вдоль оси цилиндра радиуса $R_{\rm q}$, нагревается током. Тепло от проволоки к стенке цилиндра передаётся главным образом вследствие теплопроводности газа, находящегося внутри цилиндра. Количество тепла переданного стенке цилиндра в единицу времени, определяется по формуле

$$Q = \varkappa \frac{2\pi L}{\ln(R_{\text{II}}/r_{\text{fip}})} (T_1 - T_2) \tag{7}$$

где \varkappa - теплопроводность, L - длина нити, T_1, T_2 - температуры проволочки и стенки. При Q=const температура проволоки и её сопротивление определяются теплопроводностью газа и, следовательно, его составом. Для измерения разности концентраций газов используется мостовая схема, представленная на рисунке 2 (см. описание установки).

При разности концентраций, равной 15%, поправка к линейному закону не превышает 0,5%, что для наших целей достаточно.

В процессе диффузии разность концентраций убывает по экспоненциальному закону. По тому же закону изменяются во времени показания гальванометра:

$$U = U_0 e^{-t/\tau} \tag{8}$$

Измеряя экспериментально зависимость U(t), можно получить характерное время процесса τ , откуда определить коэффициент диффузии D.

іі. Контрольные вопросы

Вопрос 1: Покажите, что в условиях опыта концентрацию газов можно считать постоянной по всему объёму сосуда V_1 (и V_2).

Ответ.

Bonpoc 2: Почему следует ожидать, что график зависимости D от 1/P должен иметь вид прямой линии?

Ответ.

III. Экспериментальная часть

і. Устройство экспериментальной установки

Рис. 1: Установка для исследования взаимной диффузии газов

Установка состоит из двух сосудов $V_1 \approx V_2 \equiv V$, соединенных краном K_3 , форвакуумного насоса, манометра M и системы напуска гелия, включающей в себя краны K_6 , K_6' , K_7 . Дополнительный кран K_6' служит для вакуумной изоляции установки от системы подачи гелия. Для подачи воздуха в установку служит кран K_5 . Сосуды V_1 и V_2 и порознь и вместе можно соединять как с системой напуска гелия, так и с форвакуумным насосом. Для этого служат краны K_1 , K_2 , K_4 , K_5 . Манометр M регистрирует давление газа, до которого заполняют тот или другой сосуды. Краны K_4 , K_5 и K_6' обладают повышенной вакуумплотностью и хорошо изолируют установку от протечек.

В силу того, что в сосуд требуется подавать малое давление гелия, кран K_6 снабжен дозатором. Подробный разрез крана K_6 приведен на рисунке 3.

На рисунке 2 приведена схема электричского соединения D_1 и D_2 – сопротивления проволок датчиков парциального давления, которые состовляют одно плечо моста. Второе плечо моста состовляют сопротивления r_1 , R_1 , r_2 , R_2 , $r_1 \ll R_1$, $r_2 \ll R_2$, R_1 и R_2 спаренные, их подвижные контакты находятся на общей оси. Оба они используются для грубой регулировки моста. Точная балансировка моста выполняется потенциометром R. Последовательо с гальванометром Γ , стоящим в диагонали моста, поставлен магазин сопротивления M_R . Когда мост балансируют, магазин сопротивлений выводят на ноль.

Рис. 2: Мостовая схема с датчиками теплопроводности для измерения разности концентраций газов

Рис. 3: Кран K_6

іі. Ход работы

1. Ознакомимся со схемой установки. Перепишем параметры установки:

$$V_1 = V_2 = V = 775 \pm 10 \text{ cm}^3, \ \frac{L}{S} = 5, 3 \pm 0.1 \text{ cm}^{-1}$$

проверим, что краны K_4 , K_5 K_6' закрыты перед началом откачки.

- 2. Включим питание электрической схемы установки. Откроем краны K_1 , K_2 , K_3 . Поскольку манометр измеряет разность давления внутри резервуаров с атмосферным в $\frac{\text{кгc}}{\text{сm}^2}$ необходимо записать показание манометра при полностью откачанном сосуде $P_0 = 99, 5 \frac{\text{кгc}}{\text{см}^2}$ (оно равно атмосферному) и в дальнейшем постоянно вычитать из него показания прибора, тем самым будет найдено давление внутри установки.
- 3. Очистим установку от всех газов, которые в ней есть. Для этого откроем кран K_4 . Включим форвакуумный насос и соединим его с установкой, повернув ручку крана K_5 длинным концом рукоятки влево (на установку). Откачаем установку до давления ≈ 0.1 торр, что достигается непрерывной работой насоса в течение 3–5 минут. Для прекращения откачки ручку крана K_5 поставим длинным концом вверх, выключим насос
- 4. Напустим в установку воздух до рабочего давления (вначале $P \approx 40$ торр), открыв кран K_5 , чтобы сбалансировать мост на рабочем давлении. Сбалансируем мост.
- 5. Заполним установку рабочей смесью согласно порядку предложенному в указании к работе: в сосуде V_2 должен быть воздух, а в сосуде V_1 смесь воздуха с гелием.
- 6. Проведём измерения. Для этого откроем кран K_3 , заснимем на видео процесс падения напряжения на гальванометре на 40-50% Будем продолжать аналогичные измерения при различных значениях $P_{\rm pa6}$ в интервале 40-200 торр. Результаты измерений приведены во вложении 1.

7. Для каждого из давлений построим графики, откладывая по оси абсцисс время, а по оси ординат - логарифм от показаний гальванометра.

ііі. Проведение измерений

При разных значениях P_{Σ} замерим зависимость показаний вольтметра u от времени, а также вычислим $\ln u$ для построения графика $\ln u(t)$. Взяв логарифм от формулы (??) получим $\ln(u) = \ln(u_0) + t/\tau$. То есть коэффициент наклона графика $\alpha = 1/\tau$.

Измерение 1. Возьмём $P_{\Sigma} = 40$ торр. Получим зависимость показаний вольтметра от времени:

$\mid t \mid$	5	10	15	20	25	30
v	1356	1355	1344	1329	1300	1268
t	35	40	45	50	55	60
v	1237	1207	1180	1158	1124	1098
t	65	70	75	80	85	90
v	1072	1045	1028	997	969	946
t	95	100	105	110	115	120
v	924	902	880	858	839	819
t	125	130	135	140	145	150
v	799	778	759	741	722	705
t	155	160	165	170	175	180
v	688	669	653	638	620	607

Измерение 2. Возьмём $P_{\Sigma}=80$ торр. Получим зависимость показаний вольтметра от времени:

$ \mid t \mid $	5	10	15	20	25	30	35
v	901	899	887	874	868	848	834
t	40	45	50	55	60	65	70
v	819	808	797	783	772	760	747
$\mid t \mid$	75	80	85	90	95	100	105
v	737	727	716	706	694	684	679
t	110	115	120	125	130	135	140
v	666	656	646	636	625	616	609
$\mid t \mid$	145	150	155	160	165	170	175
v	599	592	584	575	566	557	549
$\mid t \mid$	180	185	190	195	200	205	210
v	542	539	528	518	511	503	498

Измерение 3. Возьмём $P_{\Sigma}=120$ торр. Получим зависимость показаний вольтметра от времени:

t	5	10	15	20	25	30	35
v	777	773	766	757	749	740	731
t	40	45	50	55	60	65	70
v	723	714	706	699	692	685	677
$ \mid t \mid $	75	80	85	90	95	100	105
v	669	662	656	647	642	633	627
t	110	115	120	125	130	135	140
v	622	614	607	603	596	589	586
t	145	150	155	160	165	170	175
v	580	573	568	563	554	550	544
t	180	185	190	195	200	205	210
v	539	534	528	525	520	516	508

Измерение 4. Возьмём $P_{\Sigma}=160$ торр. Получим зависимость показаний вольтметра от времени:

t	5	10	15	20	25	30	35
v	744	741	735	730	724	718	712
t	40	45	50	55	60	65	70
v	706	700	692	686	679	673	668
$ \mid t \mid $	75	80	85	90	95	100	105
v	663	657	653	645	641	634	632
t	110	115	120	125	130	135	140
v	626	621	614	610	604	602	596
t	145	150	155	160	165	170	175
v	591	587	581	576	571	569	565
t	180	185	190	195	200	205	210
v	561	557	552	549	545	540	537

Измерение 5. Возьмём $P_{\Sigma}=200$ торр. Получим зависимость показаний вольтметра от времени:

$\mid t \mid$	5	10	15	20	25	30	35
v	616	616	613	607	604	598	591
t	40	45	50	55	60	65	70
v	585	580	577	571	567	562	557
$\mid t \mid$	75	80	85	90	95	100	105
v	554	550	547	540	537	533	530
$\mid t \mid$	110	115	120	125	130	135	140
v	525	523	518	514	513	508	504
$\mid t \mid$	145	150	155	160	165	170	175
v	502	498	494	494	490	487	483
t	180	185	190	195	200	205	210
v	482	477	476	470	468	464	464

IV. Выводы