This state encodes the whole sentence

Forwarded as initial hidden state to decoder

Seq2seq is trained end-to-end

Seq2seq with attention of all

Attention output **Attention** distribution Attention scores Encoder

Attention in equations

Denote encoder hidden states $\mathbf{h}_1,\dots,\mathbf{h}_N\in\mathbb{R}^k$ and decoder hidden state at time step t $\mathbf{s}_t\in\mathbb{R}^k$

The attention scores \mathbf{e}^t can be computed as dot product

$$\mathbf{e}^t = [\mathbf{s}^T\mathbf{h}_1, \dots, \mathbf{s}^T\mathbf{h}_N]$$

Then the attention vector is a linear combination of encoder states

$$\mathbf{a}_t = \sum_{i=1}^N oldsymbol{lpha}_i^t \mathbf{h}_i \in \mathbb{R}^k$$
 , where $oldsymbol{lpha}_t = \operatorname{softmax}(\mathbf{e}_t)$

Attention variants

- Basic dot-product (the one discussed before): $e_i = s^T h_i \in \mathbb{R}$
- Multiplicative attention: $e_i = s^T W h_i \in \mathbb{R}$
 - \bigcirc $W \in \mathbb{R}^{d_2 \times d_1}$ weight matrix
- Additive attention: $e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$
 - \circ $extbf{W}_1 \in \mathbb{R}^{d_3 imes d_1}, extbf{W}_2 \in \mathbb{R}^{d_3 imes d_2}$ weight matrices
 - \circ $v \in \mathbb{R}^{d_3}$ weight vector

Attention advantages

- "Free" word alignment
- Better results on long sequences

Image source: Neural Machine Translation by Jointly Learning to Align and Translate

The Encoder Side

the word in each position flows through its own path in the encoder 24

The Encoder Side

the word in each position flows through its own path in the encoder 25

The Transformer: quick overview

- Proposed in 2017 in paper <u>Attention is All You Need</u> by Ashish Vaswani et al.
- No recurrent or convolutional layers, only attention
- Beats seq2seq in machine translation task
 - 28.4 BLEU on the WMT 2014 English-to-German translation task
- Much faster
- Uses **self-attention** concept

Self-Attention

Self-Attention at a High Level

"The animal didn't cross the street because it was too tired"

- What does "it" in this sentence refer to?
- We want self-attention to associate "it" with "animal"

 Self-attention is the method the Transformer uses to bake the "understanding" of other relevant words into the one we're currently processing

Self-Attention at a High Level

What are the query, key, value vectors?

They're abstractions that are useful for calculating and thinking about attention.

STEP 2:

calculate a score

(score each word of the input sentence against the current word) Input

Embedding

Queries

Keys

Values

Score

STEP 5:

multiply each value vector by the softmax score

STEP 6:

sum up the weighted value vectors

Self-Attention

STEP 1: create Query, Key, Value

STEP 3: divide by $\sqrt{d_k}$

STEP 2: calculate scores

STEP 4: softmax

STEP 5: multiply each value vector by the softmax score

STEP 6: sum up the weighted value vectors

Multi-Head Attention

Attention vs. Multi-Head Attention

Attention: a weighted average

Multi-Head Attention:

parallel attention layers with different linear transformations on input and output.

Performance: WMT 2014 BLEU

	EN-DE	EN-FR
GNMT (orig)	24.6	39.9
ConvSeq2Seq	25.2	40.5
Transformer*	28.4	41.8

^{*}Transformer models trained >3x faster than the others.

Research Challenges

- Constant 'path length' between any two positions.
- Unbounded memory.
- Trivial to parallelize (per layer).
- Models Self-Similarity.
- Relative attention provides expressive timing, equivariance, and extends naturally to graphs.

Positional Encoding

Positional Encoding: why sin and cos?

$$\vec{p_t}^{(i)} = f(t)^{(i)} = \begin{cases} \sin(\omega_k t), & \text{if } i = 2k \\ \cos(\omega_k t), & \text{if } i = 2k + 1 \end{cases}$$

$$\omega_k = \frac{1}{10000^{2k/d}} \qquad \vec{p_t} = \begin{cases} \sin(\omega_1 . t) \\ \cos(\omega_1 . t) \\ \sin(\omega_2 . t) \\ \cos(\omega_2 . t) \\ \vdots \\ \sin(\omega_{d/2} . t) \\ \cos(\omega_{d/2} . t) \\ \cos(\omega_{d/2} . t) \end{cases}$$
 t stays for position in the original sequence k is the index of the element in the positional vector

$$\sin(\omega_2.t)$$
 $\cos(\omega_2.t)$
 \vdots

Layer Normalization

Layer Normalization

Like BatchNorm

but normalize along all features representing latent vector

More info:

<u>Layer Normalization</u>

The Decoder

The Decoder Side

The Decoder Side

BERT

Bidirectional Encoder Representations from Transformers

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

Dataset:

Model:

Objective:

Predict the masked word (langauge modeling)

2 - Supervised training on a specific task with a labeled dataset.

BERT

BERT: base and large

BERT vs. Transformer

	THE TRANSFORMER	BERT	
		Base BERT	Large BERT
Encoders	6	12	24
Units in FFN	512	768	1024
Attention Heads	8	12	16

Model inputs

Transformer Block in BERT

the word in each position flows through its own path in the encoder 55

Model inputs

Identical to the Transformer up until this point

Why is BERT so special?

Model outputs

For sentence classification we focus on the first position (that we passed [CLS] token to)

BERT

Image source: http://jalammar.github.io/illustrated-bert/

Model inputs

0.1% Aardvark BERT: pre-training Use the output of the Possible classes: masked word's position All English words 10% Improvisation to predict the masked word 0% Zyzzyva FFNN + Softmax 512 **BERT** Randomly mask 512 15% of tokens [MASK] in Let's stick this skit [CLS] Input this skit Image source: http://jalammar.github.io/illustrated-bertfcls] to improvisation in

BERT: pre-training

- "Masked Language Model" approach
- To make BERT better at handling relationships between multiple sentences, the pre-training process includes an additional task:
 - "Given two sentences (A and B), is B likely to be the sentence that follows A, or not?"

Image source: http://jalammar.github.io/illustrated-bert/

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B

- <u>Transformer</u>
- OpenAl Transformer
- ELMO
- BERT
- BERTology
- GPT
- <u>GPT-2</u>
- <u>GPT-3</u>

Outro

- Transformer is novel and very powerful architecture
- It is worth it to understand how Self-Attention works
- BERT is variant of Decoders from Transformer for variety of tasks
- GPT are even bigger and better in metrics but they are made by corporations