1615. Maximal Network Rank

Description

There is an infrastructure of $\begin{bmatrix} n \end{bmatrix}$ cities with some number of $\begin{bmatrix} roads \end{bmatrix}$ connecting these cities. Each $\begin{bmatrix} roads[i] = [a_i, b_i] \end{bmatrix}$ indicates that there is a bidirectional road between cities $\begin{bmatrix} a_i \end{bmatrix}$ and $\begin{bmatrix} b_i \end{bmatrix}$.

The **network rank** of **two different cities** is defined as the total number of **directly** connected roads to **either** city. If a road is directly connected to both cities, it is only counted **once**.

The maximal network rank of the infrastructure is the maximum network rank of all pairs of different cities.

Given the integer n and the array roads, return the maximal network rank of the entire infrastructure.

Example 1:

Input: n = 4, roads = [[0,1],[0,3],[1,2],[1,3]]
Output: 4
Explanation: The network rank of cities 0 and 1 is 4 as there are 4 roads that are connected to either 0 or 1. The road between 0 and 1 is only counted once.

Example 2:


```
Input: n = 5, roads = [[0,1],[0,3],[1,2],[1,3],[2,3],[2,4]]
Output: 5
Explanation: There are 5 roads that are connected to cities 1 or 2.
```

Example 3:

```
Input: n = 8, roads = [[0,1],[1,2],[2,3],[2,4],[5,6],[5,7]]
Output: 5
Explanation: The network rank of 2 and 5 is 5. Notice that all the cities do not have to be connected.
```

Constraints:

- 2 <= n <= 100
- 0 <= roads.length <= n * (n 1) / 2
- roads[i].length == 2
- $\emptyset \ll a_i$, $b_i \ll n-1$
- a i != b i
- Each pair of cities has at most one road connecting them.