Empirical Asset Pricing: Problem Set 3

Wanxin Chen

January 29, 2019

0.1 Exercise 1

0.1.1 a

If the CAPM holds, γ_0 should equal to the risk-free rate $E(r_f)$, or say the expected return of zero-correlation asset $E(r_z)$. γ_M should equal to the expected market return minus risk-free rate $E(r_m) - r_f$.

ECON676: Empirical Asset Pricing

0.1.2 b

Table 1 shows the average of the estimates of γ_0 and γ_M and their standard errors and t-statistics using the following regression.

$$R_{it} = \gamma_{0t} + \gamma_{Mt}b_{iM} + n_{it}$$

We cannot reject the hypothesis that the proxy for the market portfolio is mean variance efficient since we expect average γ_0 is bigger than 0 and we can reject average γ_0 is equal to 0. Although we cannot reject γ_M is equal to 0, we also cannot reject γ_M is not equal to 0 and we cannot reject γ_M is bigger than 0. Thus, we cannot reject the hypothesis that the proxy for the market portfolio is mean variance efficient.

Coefficient	$\hat{\gamma}$	$\mathrm{s}(\hat{\gamma})$	$\mathrm{t}(\hat{\gamma})$
γ_0	0.8076	0.1878	4.3002
γ_M	0.2216	0.2527	0.8769

Table 1: Summary Results For The Regression: $R_{it} = \gamma_{0t} + \gamma_{Mt}b_{iM} + n_{it}$

0.1.3 c

Table 2 shows the estimates of γ_0 and γ_M and their standard errors using the following regression.

$$ave(R_i) = \gamma_{0t} + \gamma_M b_{iM} + n_i$$

The estimates of γ_0 and γ_M are different from the average estimates in part b. The standard errors of estimates of γ_0 and γ_M are much smaller than the average estimates in part b. The estimates are different because there are some missing data in different industries and when we calculate the average, we assume there is no missing data. When using the average returns of portfolios over time, the underlying assumption is returns of market, or say γ_0 and γ_M do not change over time. Although this method gives less standard errors of estimates of γ_0 and γ_M , I think the assumption makes little sense. Thus I think the first method is superior.

Coefficient	$ar{\hat{\gamma}}$	$\mathrm{s}(ar{\hat{\gamma}})$
γ_0	0.9078	0.0927
γ_M	0.1234	0.0846

Table 2: Summary Results For The Regression: $ave(R_i) = \gamma_{0t} + \gamma_M b_{iM} + n_i$

0.1.4 d

Figure 1 is the plot of average portfolios' returns against their betas. From the plot, we can see a weak positive relationship. The plot should indicate a positive linear relationship between returns and betas with positive intercept.

Figure 1: Portfolio returns against beta

0.1.5 ϵ

If CAPM holds, γ_{size} and $\gamma_{B/M}$ should equal to 0 because there should be no compensation to size factor or BE/ME factor.

0.1.6 f

The reason why size and BE/ME characteristics should be lagged values is that we can only know the past characteristics of an asset so we can only give a fair price of an asset based on its past characteristics. Table 3 shows the average of the estimates of γ_0 , γ_M , γ_{size} and $\gamma_{B/M}$ and their standard errors and t-statistics. We cannot reject the hypothesis that the proxy for the market portfolio is mean variance efficient because we cannot reject the hypothesis γ_{size} is equal to 0 and $\gamma_{B/M}$ is equal to 0 at 5% significance level. Furthermore, we expect average γ_0 is bigger than 0 and we can reject average γ_0 is equal to 0. Although we cannot reject γ_M is equal to 0, we also cannot reject γ_M is not equal to 0 and we cannot reject γ_M is bigger than 0. Thus, we cannot reject the hypothesis that the proxy for the market portfolio is mean variance efficient.

Coefficient	$ar{\hat{\gamma}}$	$\mathrm{s}(ar{\hat{\gamma}})$	$\mathrm{t}(ar{\hat{\gamma}})$
γ_0	0.9921	0.3037	3.2671
γ_M	0.0377	0.2209	0.1707
γ_{size}	-0.0259	0.0403	-0.6435
$\gamma_{B/M}$	0.0175	0.0738	0.2379

Table 3: Summary Results For The Regression: $R_{it} = \gamma_{0t} + \gamma_{Mt}b_{iM} + \gamma_{sizet}ln([size]_{t-1}) + \gamma_{B/Mt}ln([BE/ME]_{t-1}) + n_{it}$