Syntaks og semantik

Lektion 7

4 marts 2008

Forord

PDA

Pushdown-automater
Automater med stacke

3 Grammatikker

Chomsky-hierarkiet

Chomsky-hierarkiet

PDA

Definition 2.13: En pushdown-automat (PDA) er en 6-tupel

 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

Q: en endelig mængde af tilstande

Σ : input-alfabetet

□ Γ : stack-alfabetet

 $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$: transitionsfunktionen

6 $q_0 \in Q$: starttilstanden

 $lackbox{0} F \subseteq Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $w_1, w_2, \ldots, w_m \in \Sigma_\varepsilon$, $r_0, r_1, \ldots, r_m \in Q$ og $s_0, s_1, \ldots, s_m \in \Gamma^*$ således at $w = w_1 w_2 \ldots w_m$ og

② for alle $i=0,1,\ldots,m-1$ findes $a,b\in\Gamma_{\varepsilon}$ og $t\in\Gamma^*$ som opfylder $s_i=at,s_{i+1}=bt$ og $(r_{i+1},b)\in\delta(r_i,w_{i+1},a)$, og

 $im \in \Gamma$.

Automater med stacke Grammatikker Chomsky-hierarkiet

3/17

PDA

 $0) \underbrace{-\varepsilon, \varepsilon \to \$}_{\varepsilon, \varepsilon \to \$} \xrightarrow{(q_1)}_{\varepsilon, \$ \to \varepsilon} \xrightarrow{(q_2)}_{\varepsilon, \$ \to \varepsilon}$ $\underbrace{a, \varepsilon \to a}_{a, b \to \varepsilon}$

Genkender sproget

 $\{w \in \{a,b\}^* \mid \text{antallet af } a \text{ i } w = \text{antallet af } b \text{ i } w\}$

 $b, \varepsilon \rightarrow b$

At læse strengen abba:

PDA Automater med stacke Chomsky-hierarkiet

CFG der genererer det Definition: Et sprog siges at være kontekstfrit hvis der findes en

PDA der genkender det Sætning 2.20: Et sprog er kontekstfrit hvis og kun hvis der findes en

at bevise CFG \Rightarrow PDA:

q_{loop} til sigselv er der transitioner der Fra $q_{ ext{start}}$ til $q_{ ext{loop}}$ pushes startsymbolet fra G på stacken. Fra Lav en CFG G om til en ("generaliseret") PDA med 3 tilstande:

- ekspanderer en variabel i G til en af dens højresider i Gs produktioner,
- forsøger at matche en terminal fra input med en terminal fra stacken.

stacken er tom. Fra q_{loop} til q_{accept} er der en transition der kun er tændt når

at bevise PDA ⇒ CFG: Senere i dag

Grammatikkei Chomsky-hierarkiet 5/17

PDA

Automater med stacke

Chomsky-hierarkiet

7/17

PDA

Automater med stacke

 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene ei Definition: En automat med k stacke, for $k \in \mathbb{N}_0$, er en 6-tupe

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- $oxed{a} \delta: Q imes \Sigma_{arepsilon} imes \Gamma_{arepsilon}^{k} o \mathcal{P}(Q imes \Gamma_{arepsilon}^{k}):$ transitionsfunktionen
- $oldsymbol{\circ} q_0 \in Q$: starttilstanden
- $lackbox{0} F \subseteq Q$: mængden af accepttilstande
- k = 0 : NFA
- k = 1 : PDA
- $k \ge 2$: Turing-maskine!
- to stacke er nok!

Definition: En grammatik er en 4-tupel $G = (V, \Sigma, R, S)$, hvor delene

PDA

Automater med stacke

Grammatikker

Chomsky-hierarkiet

- V : en endelig mængde af variable
- **2** Σ : en endelig mængde af terminaler, med $V \cap \Sigma = \emptyset$
- $lacksquare R: (V \cup \Sigma)^+ o \mathcal{P}ig((V \cup \Sigma)^*ig):$ produktioner
- S∈ V : startvariablen
- alle produktioner på formen $A \rightarrow \varepsilon$, $A \rightarrow a$ eller $A \rightarrow aB$, for $A, B \in V$ og $a \in \Sigma$: regulær grammatik
- alle produktioner på formen $A \rightarrow w$, for $A \in V$ og $w \in (V \cup \Sigma)^*$: kontekstfri grammatik
- alle produktioner på formen $uAv \rightarrow uwv$, for $A \in V$ og $u, v, w \in (V \cup \Sigma)^*$: kontekst-sensitiv grammatik

Eksempel på en kontekst-sensitiv grammatik:

$$S \rightarrow aBSc \mid abc \qquad Ba \rightarrow aB \qquad Bb \rightarrow bb$$

Generere sproget $\{a^nb^nc^n\mid n\in\mathbb{N}_+\}$

ı	\supset	∪,∘,*	lukning:	inisme	determ-										
ja	ja	ja		skrænkning	ingen ind-		automater	endelige		grammatikker	regulære		sprog	regulære	Type 3
nej	nej.	ja			indskrænkning vides ikke		automater	pushdown-		grammatikker	kontekstfrie		sprog	kontekstfrie	Type 2
ja a	ja	ja			vides ikke	Turing- maskiner	begrænsede	lineært	grammatikker	sensitive	kontekst-	sprog	sensitive	kontekst-	Type 1
nej 8/17	ja	ja		skrænkning	ingen ind-		maskiner	Turing-		grammatikker	generelle	sprog	enumerable	rekursivt	Type 0

Kontekstfrie og ikke kontekstfrie sprog

Ethvert sprog genkendt af en PDA er kontekstfrit Pumpelemmaet for kontekstfrie sprog

PDA ⇒ CFG

Pumpelemmaet

9/17

en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$. Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ . Da findes

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- Sørg for at P kun har én accepttilstand q_a og at stacken tømmes før P går i qa.
- **2** Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom
- **3** Lad $S = A_{q_0q_a}$. Voilà!

PDA ⇒ CFG Pumpelemmaet

en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$. Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ . Da findes

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

Sørg for at P kun har én accepttilstand q_a og at stacken tømmes før P går i q_a.

 $q_e \xrightarrow{\varepsilon, a \to \varepsilon} q_e$ for alle $a \in \Sigma$, og $q_e \xrightarrow{\varepsilon, \$ \to \varepsilon} q_a$. transitioner: $q_s \xrightarrow{\varepsilon,\varepsilon \to \$} q_0$, $q \xrightarrow{\varepsilon,\varepsilon \to \varepsilon} q_e$ for alle $q \in F$, Nyt stacksymbol \$. Tre nye tilstande: q_s , q_e og q_a . Nye

Sørg for at enhver transition enten pusher eller popper.

- Erstat enhver transition $q \xrightarrow{a,b \to c} r \mod q \xrightarrow{a,b \to \varepsilon} q_1 \xrightarrow{\varepsilon,\varepsilon \to c} r$ Erstat enhver transition $q \xrightarrow{a,\varepsilon \to \varepsilon} r \mod q \xrightarrow{a,\varepsilon \to x} q_1 \xrightarrow{\varepsilon,x \to \varepsilon} r$
- for et eller andet symbol $x \in \Gamma$.

PDA ⇒ CFG Pumpelemmaet

11/17

en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$. Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ . Da findes

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- **2** Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom
- (terminering)
- Lav en produktion $A_{pp} \to \varepsilon$ for alle $p \in Q$ (term Lav en produktion $A_{pq} \to A_{pr}A_{rq}$ for alle $p, q, r \in Q$ (rekursion)
- For alle $p, q, r, s \in Q$: Hvis $p \xrightarrow{a, \varepsilon \to t} r \text{ og } s \xrightarrow{b, t \to \varepsilon} q$ for nogle $a,b\in\Sigma_{\varepsilon}$ og et $t\in\Gamma$: Lav en produktion $A_{pq}
 ightarrow aA_{rs}b$. (produktion)
- der skal argumenteres for at dette giver det rigtige resultat!

12/17

 $PDA \Rightarrow CFG$ Pumpelemmaet

Sætning 2.34: For ethvert kontekstfrit sprog A findes der et (naturligt) tal ρ således at ethvert ord $s \in A$ der har længde mindst ρ kan opsplittes i fem stykker, s = uvxyz, med

- |vy| > 0 og $|vxy| \le p$,
- og således at ordene $uv^i xy^i z \in A$ for alle $i \in \mathbb{N}_0$.

Anvendelse: Vis a sproget X ikke er kontekstfrit:

Antag at X er kontekstfrit. Så må det opfylde pumpelemmaet. Lad p være pumpelængden.

Find en streng s som

- har $|s| \ge p$, dvs. bør kunne pumpes,
- men som ikke kan pumpes, ligegyldigt hvordan man opsplitter s = uvxyz.

Modstrid!

PDA ⇒ CFG

13/17

Pumpelemmaet

PDA ⇒ CFG

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$

- Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| | s \in P(A), A \in V\}$
- 2 Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A$ med $|s| \ge p$. |V| er antallet af variable i G.

PDA ⇒ CFG Pumpelemmaet

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| | s \in P(A), A \in V\}$
- ② Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A$ med $|s| \ge p$.
- a Lad τ være et af de parsetræer for s der har færrest punkter. τ har højde mindst |V|+1.

Lad h være højden af τ . Hvert punkt i τ har højst b sønner, så τ har højst b^h blade. Tegnene i s står i bladene, så s har længde højst b^h . Men $|s| > b^{|V|}$, så h > |V|.

15/17

Pumpelemmaet

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$

- Lad *b* være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- ② Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A \text{ med } |s| \ge p$.
- ② Lad τ være et af de parsetræer for s der har færrest punkter. τ har højde mindst |V| + 1.
- **a** Lad ℓ være en sti i τ af længde mindst |V| + 2.
- ℓ indeholder mindst |V| + 1 variable (og én terminal), så blandt de sidste |V| + 1 variable i ℓ er der en der forekommer to gange. Kald den R.
- ⓐ Lad x være den delstreng af s der deriveres af den sidste forekomst af R. Strengen der deriveres af den næstsidste forekomst af R kan da skrives vxy, og s = uvxyz.

 Dvs. $R \stackrel{*}{\Rightarrow} x$, $R \stackrel{*}{\Rightarrow} vRy \stackrel{*}{\Rightarrow} vxy$, og $S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uvRyz \stackrel{*}{\Rightarrow} uvxyz$.

PDA ⇒ CFG Pumpelemmaet

Lad x være den delstreng af s der deriveres af den sidste forekomst af R. Strengen der deriveres af den næstsidste forekomst af R kan da skrives vxy, og s = uvxyz.

- ② Den næstsidste forekomst af R er blandt de sidste |V|+1 variable i ℓ , så deltræet med dette R som rod har højde højst |V|+1, så $|vxy| \le b^{|V|+1} = p$. Fejl i bogen!
- **②** Ved at erstatte deltræet med det *næstsidste R* som rod, med deltræet med det *sidste R* som rod fås derivationen $S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uxz$. Dvs.
- $uxz = uv^0xy^0z \in A$
- |vy| > 0, for ellers ville s = uxz, og det parsetræ for uxz vilige har lavet er mindre end det vi startede med. Modstrid til (3).
- ② Ved at erstatte deltræet med det sidste R som rod, med deltræet med det næstsidste R som rod fås derivationen S ⇒ uRz ⇒ uvRyz ⇒ uv²Ry²z ⇒ uv²xy²z.
 Ved at gentage dette fås derivationer til uvixyiz for alle i ∈ N.