Домашняя работа 3 вариант 82

Выполнил: Васильев Артём, Р3119

V/V	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂
e ₁	0		5			2	2	1			2	1
e ₂		0		1		2	1					1
e ₃	5		0	5	2		1	4	1	4	4	1
e ₄		1	5	0		2	2		3			2
e ₅			2		0			3	1			1
e ₆	2	2		2		0	1					
e ₇	2	1	1	2		1	0	2			5	3
e ₈	1		4		3		2	0		3		5
e 9			1	3	1				0	2		
e ₁₀			4				·	3	2	0		
e ₁₁	2		4				5				0	
e ₁₂	1	1	1	2	1		3	5				0

1. S = {e₁}

 $S = \{e_1, e_3\}$

 $S = \{e_1, e_3, e_4\}$

 $S = \{e_1, e_3, e_4, e_6\}$

 $S = \{e_1, e_3, e_4, e_6, e_2\}$

 $S = \{e_1, e_3, e_4, e_6, e_2, e_{12}\}$

 $S = \{e_1, e_3, e_4, e_6, e_2, e_{12}, e_5\}$

 $S = \{e_1, e_3, e_4, e_6, e_2, e_{12}, e_5, e_9\}$

 $S = \{e_1, e_3, e_4, e_6, e_2, e_{12}, e_5, e_9, e_{10}\}$

 $S = \{e_1, e_3, e_4, e_6, e_2, e_{12}, e_5, e_9, e_{10}, e_8\}$

 $S = \{e_1, e_3, e_4, e_6, e_2, e_{12}, e_5, e_9, e_{10}, e_8, e_7\}$

 $S = \{e_1, e_3, e_4, e_6, e_2, e_{12}, e_5, e_9, e_{10}, e_8, e_7, e_{11}\}$

Ребро ($e_{11}e_1$) найдено, гамильтонов цикл будет

2. Построение графа пересечений G'

До перенумерации	e ₁	e ₃	e ₄	e ₆	e ₂	e ₁₂	e ₅	e ₉	e ₁₀	e ₈	e ₇	e ₁₁
После перенумерации	e ₁	e ₂	e ₃	e ₄	e ₅	e_6	e ₇	e ₈	e 9	e ₁₀	e ₁₁	e ₁₂

3. Матрица с перенумерованными вершинами:

V/	W	e ₁	e ₃	e ₄	e ₆	e ₂	e ₁₂	e ₅	e ₉	e ₁₀	e ₈	e ₇	e ₁₁
V/	V	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂
e ₁	e ₁	0	х	0	1	0	1	0	0	0	1	1	1
e ₃	e ₂		0	х	0	0	1	1	1	1	1	1	1
e ₄	e ₃			0	х	1	1	0	1	1	0	1	0
e ₆	e ₄				0	х	0	0	0	0	0	1	0
e ₂	e ₅					0	х	0	0	0	0	1	0
e ₁₂	e ₆						0	х	0	0	1	1	0
e ₅	e ₇							0	х	0	1	0	0
e ₉	e ₈								0	х	0	0	0
e ₁₀	e 9									0	х	0	0
e ₈	e ₁₀										0	х	0
e ₇	e ₁₁											0	Х
e ₁₁	e ₁₂												0

Определим p_{212} , для чего в матрице R выделим подматрицу R_{212} . Ребро (e_2e_{12}) пересекается с (e_1e_4) , (e_1e_6) , (e_1e_{10}) , (e_1e_{11})

Определим p_{211} , для чего в матрице R выделим подматрицу R_{211} . Ребро (e_2e_{11}) пересекается с (e_1e_4), (e_1e_6), (e_1e_{10})

Определим p_{210} , для чего в матрице R выделим подматрицу R_{210} . Ребро (e_2e_{10}) пересекается с (e_1e_4) , (e_1e_6) , (e_1e_{10})

Определим p_{29} , для чего в матрице R выделим подматрицу R_{29} . Ребро (e_2e_9) пересекается с (e_1e_4) , (e_1e_6)

Определим p_{28} , для чего в матрице R выделим подматрицу R_{28} . Ребро (e_2e_8) пересекается с (e_1e_4) , (e_1e_6)

Определим p_{27} , для чего в матрице R выделим подматрицу R_{27} . Ребро (e_2e_7) пересекается с (e_1e_4) , (e_1e_6)

Определим p_{26} , для чего в матрице R выделим подматрицу R_{26} . Ребро (e_2e_6) пересекается с (e_1e_4)

Определим p_{311} , для чего в матрице R выделим подматрицу R_{311} . Ребро (e_3e_{11}) пересекается $c(e_1e_4)$, (e_1e_6) , (e_1e_{10}) , (e_2e_{10}) , (e_2e_9) , (e_2e_8) , (e_2e_7) , (e_2e_6)

Определим p_{39} , для чего в матрице R выделим подматрицу p_{39} . Ребро (p_{39}) пересекается p_{39} , (p_{20}), (p_{20}), (p_{20}), (p_{20}), (p_{20})

Определим p_{38} , для чего в матрице R выделим подматрицу p_{38} . Ребро p_{38} пересекается p_{38} (p_{28}), p_{38} (p_{38}), p_{38} ($p_{$

Определим p_{36} , для чего в матрице R выделим подматрицу p_{36} . Ребро p_{36} пересекается p_{36} , p_{46} , p_{46

Матрица графа пересечений рёбер: 011100111110001

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		P ₂₁₂	P ₁₄	P ₁₆	p ₁₁₀	P ₁₁₁	P ₂₁₁	P ₂₁₀	P ₂₉	P ₂₈	P ₂₇	P ₂₆	p ₃₁₁	p ₃₉	P ₃₈	P ₃₆
1	P ₂₁₂	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
2	P ₁₄	1	1	0	0	0	1	1	1	1	1	1	1	1	1	1
3	P ₁₆	1	0	1	0	0	1	1	1	1	1	0	1	1	1	1
4	P ₁₁₀	1	0	0	1	0	1	1	0	0	0	0	1	0	0	1
5	P ₁₁₁	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
6	P ₂₁₁	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0
7	p ₂₁₀	0	1	1	1	0	0	1	0	0	0	0	1	0	0	1
8	P ₂₉	0	1	1	0	0	0	0	1	0	0	0	1	0	0	1
9	P ₂₈	0	1	1	0	0	0	0	0	1	0	0	1	1	0	1
10	P ₂₇	0	1	1	0	0	0	0	0	0	1	0	1	1	1	1
11	P ₂₆	0	1	0	0	0	0	0	0	0	0	1	1	1	1	1
12	P ₃₁₁	0	1	1	1	0	0	1	1	1	1	1	1	0	0	0
13	P ₃₉	0	1	1	0	0	0	0	0	1	1	1	0	1	0	0
14	P ₃₈	0	1	1	0	0	0	0	0	0	1	1	0	0	1	0
15	P ₃₆	0	1	1	1	0	0	1	1	1	1	1	0	0	0	1

4. Построение семейства Ψ_{G}

В первой строке находим первый нулевой элемент, он на позиции 6

 $M_{167} = M_{16} \text{ V } r_7 = 1111111000000000 \text{ V } 011100100001001 = 1111111100001001, J' = \{8, 9, 10, 11, 12, 13, 14, 15\}$

 $M_{1678} = M_{167} \ v \ r_8 = 1111111100001001 \ v \ 011000010001001 = 1111111110001001, \ J' = \{9, 10, 11, 12, 13, 14, 15\}$

 $\begin{aligned} &\mathsf{M}_{\text{16789}} = \mathsf{M}_{\text{1678}} \,\mathsf{V} \,\, r_9 = 1111111110001001 \,\,\mathsf{V} \,\, 011000001001101 = 1111111111001101, \,\mathsf{J}' \\ &= \{10,\,11,\,12,\,13,\,14,\,15\} \end{aligned}$

 $\begin{array}{l} M_{1\,6\,7\,8\,9\,10} = M_{1\,6\,7\,8\,9} \ V \ r_{10} = 1111111111001101 \ V \ 011000000101111 = \\ 11111111111111111, \ J' = \{11, \ 12, \ 13, \ 14, \ 15\} \end{array}$

 $\mathsf{M_{1678910\,11}} = \mathsf{M_{16789\,10}} \, \mathsf{V} \, r_{11} = 11111111111111111 \, \mathsf{V} \, 0100000000011111 = 11111111111111111$

```
\psi_1 = \{u_{212}, u_{211}, u_{210}, u_{29}, u_{28}, u_{27}\}
```

 $\mathsf{M}_{^{1\,6\,7\,8\,9\,10\,12}} = \mathsf{M}_{^{1\,6\,7\,8\,9\,10\,11}} \, \mathsf{V} \, \, r_{12} = 11111111111111111 \, \mathsf{V} \, \, \mathsf{0}111001111111000 = 1111111111111111111$

$\psi_2 = \{u_{212}, u_{211}, u_{210}, u_{29}, u_{28}, u_{311}\}$

 $\mathsf{M}_{1\,6\,7\,8\,9\,10\,15} = \mathsf{M}_{1\,6\,7\,8\,9\,10\,11\,12\,13} \,\,\mathsf{V} \,\,r_{15} = 111111111111111111 \,\,\mathsf{V} \,\,011100111110001 = 11111111111111111 \,\,\mathsf{Bce} \,\,1$

$\psi_3 = \{u_{212}, u_{211}, u_{210}, u_{29}, u_{28}, u_{36}\}$

$\Psi_4 = \{u_{14}, u_{16}, u_{110}, u_{111}\}$

$\Psi_5 = \{u_{16}, u_{14}, u_{110}, u_{111}\}$

 $\mathsf{M}_{3\;2\;4\;11}$ = $\mathsf{M}_{3\;2\;4}$ V $\mathsf{r}_{11}=11110111111111111$ V 010000000011111 = 1111011111111111 - есть незакрытые нули

$\Psi_6 = \{u_{110}, u_{14}, u_{16}, u_{111}\}$

В 5 строке ищем первый нулевой элемент, он находится на позиции 2 $M_{5\,2}$ = r_5 V $r_2=1000100000000000$ V 11000111111111111=110011111111111 $M_{5\,2\,3}$ = $M_{5\,2}$ V $r_3=11001111111111111$ V 101001111101111=111011111111111 $M_{5\,2\,3\,4}$ = $M_{5\,2\,3}$ V $r_4=11101111111111111$ V 100101100001001=11111111111111111 - все 1

$\Psi_7 = \{u_{111}, u_{14}, u_{16}, u_{110}\}$

$\Psi_8 = \{u_{111}, u_{14}, u_{16}, u_{211}\}$

$\Psi_9 = \{u_{111}, u_{14}, u_{16}, u_{210}\}$

```
\Psi_{10} = \{u_{111}, u_{14}, u_{16}, u_{311}\}
         \Psi_{11} = \{u_{111}, u_{14}, u_{16}, u_{36}\}
         В 6 строке ищем первый нулевой элемент, он находится на позиции 1
         M_{61} = r_6 \ V \ r_1 = 011101000000000 \ V \ 111111000000000 = 11111110000000000
         M_{6157} = M_{615} \vee r_2 = 1111111000000000 \vee 011100100001001 = 1111111100001001
         \mathsf{M}_{\texttt{61578}} = \mathsf{M}_{\texttt{6157}} \, \mathsf{V} \, \, r_2 = 1111111100001001 \, \, \mathsf{V} \, \, 011000010001001 = 1111111110001001
         \mathsf{M}_{\texttt{615789}} = \mathsf{M}_{\texttt{61578}} \, \mathsf{V} \, r_2 = 1111111110001001 \, \mathsf{V} \, 011000001001101 = 1111111111001101
         M_{6\ 1\ 5\ 7\ 8\ 9\ 10}=M_{6\ 1\ 5\ 7\ 8\ 9}\ V\ r_2=11111111111001101\ V\ 011000000101111=
         1111111111101111
         M_{6\ 1\ 5\ 7\ 8\ 9\ 10\ 11} = M_{6\ 1\ 5\ 7\ 8\ 9\ 10} V r_{2} = 111111111111111 V 010000000011111 =
         1111111111111111
                                    \Psi_{12} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}\}
         1111111111111111
                                  \Psi_{13} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}, u_{311}\}
         111111111111111
                                  \Psi_{14} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}, u_{39}\}
         1111111111111111
                                  \Psi_{15} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}, u_{38}\}
         M_{6\ 1\ 5\ 7\ 8\ 9\ 10\ 15}=M_{6\ 1\ 5\ 7\ 8\ 9\ 10} V r_{15}=111111111111111111 V 011000000110010=
         1111111111111111
                                    \Psi_{16} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{36}\}
         При большем номере строки не смогут закрыть 0 в 5 позиции
Все множества:
         \psi_1 = \{u_{212}, u_{211}, u_{210}, u_{29}, u_{28}, u_{27}\}
         \psi_2 = \{u_{212}, u_{211}, u_{210}, u_{29}, u_{28}, u_{311}\}
         \psi_3 = \{u_{212}, u_{211}, u_{210}, u_{29}, u_{28}, u_{36}\}
         \Psi_4 = \{u_{14}, u_{16}, u_{110}, u_{111}\}
         \Psi_5 = \{u_{16}, u_{14}, u_{110}, u_{111}\}
         \Psi_6 = \{u_{110}, u_{14}, u_{16}, u_{111}\}
         \Psi_7 = \{u_{111}, u_{14}, u_{16}, u_{110}\}
         \Psi_8 = \{u_{111}, u_{14}, u_{16}, u_{211}\}
         \Psi_9 = \{u_{111}, u_{14}, u_{16}, u_{210}\}
         \Psi_{10} = \{u_{111}, u_{14}, u_{16}, u_{311}\}
         \Psi_{11} = \{u_{111}, u_{14}, u_{16}, u_{36}\}
         \Psi_{12} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}\}
         \Psi_{13} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}, u_{311}\}
         \Psi_{14} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}, u_{39}\}
         \Psi_{15} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{26}, u_{38}\}
         \Psi_{16} = \{u_{211}, u_{212}, u_{111}, u_{210}, u_{29}, u_{28}, u_{27}, u_{36}\}
```

5. Для всех множеств построим матрицу значений критерия $\alpha_{v\delta} = |\psi_v| + |\psi_\delta| - |\psi_v \cap \psi_\delta|$:

	ψ1	ψ2	ψ₃	ψ₄	ψ₅	ψ ₆	ψ7	ψ8	ψ9	ψ10	ψ_{11}	ψ12	ψ 13	ψ14	ψ 15	ψ16
ψ1	0	7	7	10	10	10	10	9	9	10	10	7	9	9	9	8
ψ2		0	7	10	10	10	10	9	9	9	10	9	9	10	10	9
ψ₃			0	10	10	10	10	9	9	10	9	9	10	10	10	8
ψ4				0	4	4	4	5	5	5	5	11	11	11	11	10

ψ5			0	4	4	5	5	5	5	10	11	11	11	10
ψ ₆				0	4	5	5	5	5	10	11	11	11	10
ψ7					0	5	5	5	5	10	11	11	11	10
ψ8						0	5	5	5	10	10	10	10	9
ψ9							0	5	5	10	10	10	10	9
ψ10								0	5	10	10	11	11	10
ψ11									0	10	11	11	11	9
ψ12										0	8	8	8	8
ψ13											0	9	9	9
ψ ₁₄												0	9	9
ψ15													0	9
ψ ₁₆														0

 $\max \alpha_{\gamma\delta} = \mathsf{a}_{412} = 11$

 $\Psi_4 = \{u_{14}, u_{16}, u_{110}, u_{111}\}$

 $\Psi_{12} = \{u_{211},\, u_{212},\, u_{111},\, u_{210},\, u_{29},\, u_{28},\, u_{27},\, u_{26}\}$

В суграфе Н, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ_4 , проводим внутри гамильтонова цикла, а в ψ_{12} – вне его:

Удалим из сем-ва множеств те, которые вошли в Ψ_4 и Ψ_{12}

 $\psi_1 = \{\}$

 $\psi_2 = \{u_{311}\}$

 $\psi_3 = \{u_{36}\}$

 $\Psi_4 = \{\}$

 $\Psi_5 = \{\}$

 $\Psi_6 = \{\}$

 $\Psi_7 = \{\}$

 $\Psi_8 = \{\}$

 $\Psi_9 = \{\}$

 $\Psi_{10} = \{u_{311}\}$

 $\Psi_{11} = \{u_{36}\}$

 $\Psi_{12} = \{\}$

 $\Psi_{13} = \{u_{311}\}$

 $\Psi_{14} = \{u_{39}\}$

 $\Psi_{15} = \{u_{38}\}$

Ψ₁₆ = {u₃₆} Получим

