Probability and Statistics

Michele Caprio

Department of Computer Science, University of Manchester Manchester Centre for AI Fundamentals

COMP 64101 – Reasoning and Learning under Uncertainty
Lecture 1

Topics: Probability

"I know it's Tuesday. It's a good day for math!"

Max Mintz

Topics: Probability

"I know it's Tuesday. It's a good day for math!"

Max Mintz

- Discrete vs Continuous Distributions (Murphy, 2023, § 2.1.2 2.1.3)
- Bayes' Rule (Murphy, 2023, § 2.1.5 2.1.6)
- Some Common Probability Distributions (Murphy, 2023, § 2.2 2.3)
 - Mixture of Gaussians (Murphy, 2023, § 28.2.1)
- Markov Chains (Murphy, 2023, § 2.6)
- On Your Own: The Exponential Family (Murphy, 2023, § 2.4) and Divergences between probabilities (Murphy, 2023, § 2.7)

Topics: Statistics

"I know it's Monday. It's a good day for math!"

Max Mintz

- (Some Concepts of) Bayesian Statistics (Murphy, 2023, § 3.2)
- (Some Concepts of) Frequentist Statistics (Murphy, 2023, § 3.3)
- Maximum Likelihood Estimator and the EM Algorithm (Murphy, 2023, § 6.5.3)
- On Your Own: Hypotheses Testing (Murphy, 2023, § 3.10)

Probability Space

• To talk about probability, we need to introduce the probability space

$$(\Omega,\mathcal{F},\mathbb{P})$$

Probability Space

To talk about probability, we need to introduce the probability space

$$(\Omega, \mathcal{F}, \mathbb{P})$$

- ullet Ω is the sample space (possible outcomes from an experiment)
- $\mathcal F$ is the event space (σ -algebra), a collection of subsets of Ω
- ullet $\mathbb{P}:\mathcal{F}
 ightarrow [0,1]$ is the probability measure

(Kolmogorovian) Probability Axioms

- $\mathbb{P}(E) \geq 0$, for all $E \in \mathcal{F}$
- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mathbb{P}(E_i)$

(Kolmogorovian) Probability Axioms

- $\mathbb{P}(E) \geq 0$, for all $E \in \mathcal{F}$
- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mathbb{P}(E_i)$
 - Only Finite Additivity: Subjectivist Approach to Probability de Finetti (1974, 1975)
 - Super/Subadditivity: Imprecise Approach to Probability Walley (1991);
 Augustin et al. (2014)

- Outcomes of the experiment constitute a countable set
- Example: We flip a coin twice

- Outcomes of the experiment constitute a countable set
- Example: We flip a coin twice
- $\Omega = \{\omega_1 = (H, H), \omega_2 = (H, T), \omega_3 = (T, H), \omega_4 = (T, T)\}$
- $\bullet \ \mathcal{F}=2^{\Omega} \text{, so } |\mathcal{F}|=2^4=16$
- $\mathbb{P}(\{\omega_i\}) = 1/4$, $i \in \{1, ..., 4\}$, and the probability of the other sets in \mathcal{F} follows by additivity

- Can we assign a number to each element of Ω (i.e. to each outcome of our experiment of interest)?
- Yes, via a Random Variable (rv)

$$X:\Omega\to\mathbb{R}$$

• In this case is discrete because Ω is countable

- Can we assign a number to each element of Ω (i.e. to each outcome of our experiment of interest)?
- Yes, via a Random Variable (rv)

$$X:\Omega \to \mathbb{R}$$

- In this case is discrete because Ω is countable
- Example cont'd: Number of Heads via rv

$$X(\omega_1) = 2$$
, $X(\omega_2) = X(\omega_3) = 1$, $X(\omega_4) = 0$

- Random Variable need not assign only numbers to the outcomes of the experiment
- In general, we call state space \mathcal{X} the range¹ of rv X, i.e. $\mathcal{X} = X(\Omega)$

¹The image of the domain Ω of X under X.

- Random Variable need not assign only numbers to the outcomes of the experiment
- In general, we call state space $\mathcal X$ the range¹ of rv X, i.e. $\mathcal X=X(\Omega)$
- ullet We immediately obtain the probability of any given state in $a\in\mathcal{X}$ as

$$p_X(a) \equiv \mathbb{P}(X=a) = \mathbb{P}[X^{-1}(a)], \quad X^{-1}(a) := \{\omega \in \Omega : X(\omega) = a\}$$

- p_X is called the probability mass function (pmf) for rv X
- Can be represented by a histogram or some parametric function

- Random Variable need not assign only numbers to the outcomes of the experiment
- In general, we call state space \mathcal{X} the range¹ of rv X, i.e. $\mathcal{X} = X(\Omega)$
- ullet We immediately obtain the probability of any given state in $a\in\mathcal{X}$ as

$$p_X(a) \equiv \mathbb{P}(X=a) = \mathbb{P}[X^{-1}(a)], \quad X^{-1}(a) := \{\omega \in \Omega : X(\omega) = a\}$$

- p_X is called the probability mass function (pmf) for rv X
- Can be represented by a histogram or some parametric function

Example cont'd: pmf is

•
$$p_X(0) = \mathbb{P}(\{(H, H)\}) = 1/4$$

•
$$p_X(1) = \mathbb{P}(\{(H, T), (T, H)\}) = 1/2$$

•
$$p_X(2) = \mathbb{P}(\{(T, T)\}) = 1/4$$

¹The image of the domain Ω of X under X.

Continuous Random Variables

- Experiments with continuous outcome
- $\Omega \subseteq \mathbb{R}$, and $X(\omega) = \omega$, so that $\mathcal{X} = \Omega$
- **Example:** The duration of some event (in seconds), so $\Omega = \{t \in \mathbb{R}_+ : t \leq T_{\mathsf{max}}\}$
- ullet Letting event space ${\mathcal F}$ be a power set when Ω is uncountable may be too large
 - \bullet Use Borel σ -algebra
 - ullet On $\mathbb R$, it is the σ -algebra generated by semi-closed intervals $(-\infty,b]$

σ -algebra

A collection \mathcal{F} of subsets of Ω such that

- $\emptyset, \Omega \in \mathcal{F}$
- $E \in \mathcal{F} \implies E^c \in \mathcal{F}$
- $\{E_n\}_{n=1}^{\infty} \subset \mathcal{F} \implies \cup_n E_n, \cap_n E_n \in \mathcal{F}$

- Let $\Omega = \mathbb{R}$, and call ℓ the Lebesgue measure
 - ullet ℓ measures the length of intervals on the Real line

- Let $\Omega = \mathbb{R}$, and call ℓ the Lebesgue measure
 - ullet measures the length of intervals on the Real line
- We assume $\mathbb{P} \ll \ell$, i.e. $\ell(E) = 0 \implies \mathbb{P}(E) = 0$, $E \in \mathcal{F}$
- The Radon-Nykodim derivative $d\mathbb{P}/d\ell = p$ is the pdf of our continuous ry X
 - RND is a function on $\mathcal{X} = \Omega = \mathbb{R}$ such that, for any $E \in \mathcal{F}$,

$$\mathbb{P}(E) = \int_{E} p(x)\ell(dx) = \int_{E} p(x)dx$$

• E is an interval, e.g. E = [a, b], a < b

- Let $\Omega = \mathbb{R}$, and call ℓ the Lebesgue measure
 - ullet measures the length of intervals on the Real line
- We assume $\mathbb{P} \ll \ell$, i.e. $\ell(E) = 0 \implies \mathbb{P}(E) = 0$, $E \in \mathcal{F}$
- The Radon-Nykodim derivative $d\mathbb{P}/d\ell = p$ is the pdf of our continuous ry X
 - RND is a function on $\mathcal{X} = \Omega = \mathbb{R}$ such that, for any $E \in \mathcal{F}$,

$$\mathbb{P}(E) = \int_{E} p(x)\ell(dx) = \int_{E} p(x)dx$$

- E is an interval, e.g. E = [a, b], a < b
- cdf is defined as

$$F(x) \equiv \mathbb{P}(X \le x) = \int_{-\infty}^{x} p(x') dx'$$

- Let $\Omega = \mathbb{R}$, and call ℓ the Lebesgue measure
 - ullet measures the length of intervals on the Real line
- We assume $\mathbb{P} \ll \ell$, i.e. $\ell(E) = 0 \implies \mathbb{P}(E) = 0$, $E \in \mathcal{F}$
- The Radon-Nykodim derivative $d\mathbb{P}/d\ell = p$ is the pdf of our continuous rv X
 - RND is a function on $\mathcal{X} = \Omega = \mathbb{R}$ such that, for any $E \in \mathcal{F}$,

$$\mathbb{P}(E) = \int_{E} p(x)\ell(dx) = \int_{E} p(x)dx$$

- E is an interval, e.g. E = [a, b], a < b
- cdf is defined as

$$F(x) \equiv \mathbb{P}(X \le x) = \int_{-\infty}^{x} p(x') dx'$$

• These notions can be generalized to \mathbb{R}^n , and to more complex sample spaces

Conditional Probability

• Consider events E_1 and E_2 , and suppose $\mathbb{P}(E_2) > 0$. Then, conditional probability of E_1 given E_2 is

$$\mathbb{P}(E_1 \mid E_2) := \frac{\mathbb{P}(E_1 \cap E_2)}{\mathbb{P}(E_2)}$$

• In turn, $\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1 \mid E_2)\mathbb{P}(E_2) = \mathbb{P}(E_2 \mid E_1)\mathbb{P}(E_1)$

Conditional Probability

• Consider events E_1 and E_2 , and suppose $\mathbb{P}(E_2) > 0$. Then, conditional probability of E_1 given E_2 is

$$\mathbb{P}(E_1 \mid E_2) := \frac{\mathbb{P}(E_1 \cap E_2)}{\mathbb{P}(E_2)}$$

- In turn, $\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1 \mid E_2)\mathbb{P}(E_2) = \mathbb{P}(E_2 \mid E_1)\mathbb{P}(E_1)$
- Conditional probability measures how likely an event E_1 is, given that event E_2 has happened

Conditional Probability

• Consider events E_1 and E_2 , and suppose $\mathbb{P}(E_2) > 0$. Then, conditional probability of E_1 given E_2 is

$$\mathbb{P}(E_1 \mid E_2) := \frac{\mathbb{P}(E_1 \cap E_2)}{\mathbb{P}(E_2)}$$

- In turn, $\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1 \mid E_2)\mathbb{P}(E_2) = \mathbb{P}(E_2 \mid E_1)\mathbb{P}(E_1)$
- Conditional probability measures how likely an event E_1 is, given that event E_2 has happened
- Law of total probability: if $\{A_i\}_{i=1}^n$ is a partition of Ω , i.e. $\bigsqcup_{i=1}^n A_i = \Omega$ then for all $B \subseteq \Omega$,

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \mid A_i) \mathbb{P}(A_i)$$

A Note on Independent Events

• E_1 and E_2 are independent events if

$$\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1)\mathbb{P}(E_2)$$

• If both $\mathbb{P}(E_1) > 0$ and $\mathbb{P}(E_2) > 0$, this is equivalent to

$$\mathbb{P}(E_1 \mid E_2) = \mathbb{P}(E_1), \quad \mathbb{P}(E_2 \mid E_1) = \mathbb{P}(E_2)$$

A Note on Independent Events

• E_1 and E_2 are independent events if

$$\mathbb{P}(E_1 \cap E_2) = \mathbb{P}(E_1)\mathbb{P}(E_2)$$

• If both $\mathbb{P}(E_1) > 0$ and $\mathbb{P}(E_2) > 0$, this is equivalent to

$$\mathbb{P}(E_1 \mid E_2) = \mathbb{P}(E_1), \quad \mathbb{P}(E_2 \mid E_1) = \mathbb{P}(E_2)$$

• E_1 and E_2 are conditionally independent given E_3 if

$$\mathbb{P}(E_1 \cap E_2 \mid E_3) = \mathbb{P}(E_1 \mid E_3)\mathbb{P}(E_2 \mid E_3)$$

Bayes' Theorem

• Consider events E_1 and E_2 , and suppose $\mathbb{P}(E_1), \mathbb{P}(E_2) > 0$. Then, Bayes' rule is

$$\mathbb{P}(\textit{E}_1 \mid \textit{E}_2) = \frac{\mathbb{P}(\textit{E}_2 \mid \textit{E}_1)\mathbb{P}(\textit{E}_1)}{\mathbb{P}(\textit{E}_2)}$$

• Discrete case with $|\mathcal{X}| = K$,

$$p(X = k \mid E) = \frac{p(E \mid X = k)p(X = k)}{\sum_{k'=1}^{K} p(E \mid X = k')p(X = k')}$$

ullet Continuous case, e.g. with $\mathcal{X}=\mathbb{R}$,

$$p(x \mid E) = \frac{p(E \mid x)p(x)}{\int_{\mathcal{X}} p(E \mid x')p(x')dx'}$$

Common Discrete Distributions

- Let $\mathcal{X} = \{1, ..., K\}$
- Binomial: $X \sim \text{Bin}(N, \mu), \ p(x) = \binom{N}{x} \mu^x (1 \mu)^{N-x}$
 - $\binom{N}{x} := \frac{N!}{(N-x)!x!}$ and $\mu \in [0,1]$
 - Number x of successes in a sequence of N independent experiments, each asking a yes—no question, and having success probability μ

Common Discrete Distributions

- Let $\mathcal{X} = \{1, ..., K\}$
- Binomial: $X \sim \text{Bin}(N, \mu), \ p(x) = \binom{N}{x} \mu^x (1 \mu)^{N-x}$
 - $\binom{N}{x} := \frac{N!}{(N-x)!x!}$ and $\mu \in [0,1]$
 - Number x of successes in a sequence of N independent experiments, each asking a yes—no question, and having success probability μ
- Categorical: $X \sim \text{Cat}(\theta)$, $p_X(k) = \theta_k$
 - $m{ heta}$ is a probability vector, and hence belongs to unit simplex $\Delta^{K-1}\subset\mathbb{R}^K$
 - $p_X(k) = \theta_k \to \text{probability that } X \text{ is equal to } k$; such probability is the k^{th} entry of parameter θ
 - Fundamental for Classification Problems

Common Discrete Distributions

- Let $\mathcal{X} = \{1, ..., K\}$
- Binomial: $X \sim \text{Bin}(N, \mu)$, $p(x) = \binom{N}{x} \mu^x (1 \mu)^{N-x}$
 - $\binom{N}{x} \coloneqq \frac{N!}{(N-x)!x!}$ and $\mu \in [0,1]$
 - Number x of successes in a sequence of N independent experiments, each asking a yes—no question, and having success probability μ
- Categorical: $X \sim \text{Cat}(\theta)$, $p_X(k) = \theta_k$
 - heta is a probability vector, and hence belongs to unit simplex $\Delta^{K-1} \subset \mathbb{R}^K$
 - $p_X(k) = \theta_k \to \text{probability that } X \text{ is equal to } k$; such probability is the k^{th} entry of parameter θ
 - Fundamental for Classification Problems
- Poisson: $X \sim \text{Po}(\lambda)$, $p(x) = e^{-\lambda} \frac{\lambda^x}{x!}$
 - $\lambda > 0$; here $\mathcal{X} = \mathbb{N}_0$
 - Probability of a given number x of events occurring in a fixed interval of time if these events occur with a known constant mean rate λ and independently of the time since the last event

Common Continuous Distributions on subsets of $\mathbb R$

- Gamma: $X \sim \text{Ga}(a,b), \ p(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-xb}$
 - a, b > 0 and $\mathcal{X} = \mathbb{R}_+$
 - $\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt$, which is equal to (a-1)! if $a \in \mathbb{N}_0$

Common Continuous Distributions on subsets of $\mathbb R$

- Gamma: $X \sim Ga(a,b)$, $p(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-xb}$
 - a, b > 0 and $\mathcal{X} = \mathbb{R}_+$
 - $\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt$, which is equal to (a-1)! if $a \in \mathbb{N}_0$
- Beta: $X \sim \text{Beta}(a, b), \ p(x) = \frac{1}{B(a, b)} x^{a-1} (1 x)^{b-1}$
 - a, b > 0 and $\mathcal{X} = [0, 1]$
 - $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

Common Continuous Distributions on \mathbb{R}

- Gaussian: $X \sim \mathcal{N}(\mu, \sigma^2)$, $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
 - $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}_+$
 - Ubiquitous in science; parly because of the Central Limit Theorem
 - Standard Normal: $\mu = 0$, $\sigma = 1$

Common Continuous Distributions on R

- Gaussian: $X \sim \mathcal{N}(\mu, \sigma^2)$, $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
 - $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}_+$
 - Ubiquitous in science; parly because of the Central Limit Theorem
 - Standard Normal: $\mu = 0$, $\sigma = 1$
- Problem with the Gaussian distribution: sensitive to outliers
 - Probability decays exponentially fast with the (squared) distance from the center
 - Solution: more robust distributions, Laplace, Student t, Cauchy

The Holy Grail

• Multivariate Normal: $X \sim \mathcal{N}(\mu, \Sigma)$, $p(x) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right]$ • $\mu \in \mathbb{R}^D$, $\Sigma \in \mathbb{R}^{D \times D}$

The Holy Grail

- Multivariate Normal: $X \sim \mathcal{N}(\mu, \Sigma)$, $p(x) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right]$
 - $\mu \in \mathbb{R}^D$, $\Sigma \in \mathbb{R}^{D \times D}$
 - Full Covariance Matrix: D(D+1)/2 parameters; we divide by 2 since Σ is symmetric
 - Diagonal covariance matrix: D parameters, and 0s in the off-diagonal terms
 - Spherical covariance matrix: $\Sigma = \sigma^2 I_D$, so only one free parameter σ

The Holy Grail

- Multivariate Normal: $X \sim \mathcal{N}(\mu, \Sigma)$, $p(x) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right]$
 - $\mu \in \mathbb{R}^D$, $\Sigma \in \mathbb{R}^{D \times D}$
 - Full Covariance Matrix: D(D+1)/2 parameters; we divide by 2 since Σ is symmetric
 - Diagonal covariance matrix: D parameters, and 0s in the off-diagonal terms
 - Spherical covariance matrix: $\Sigma = \sigma^2 I_D$, so only one free parameter σ

Strong suggestion: Read chapter 2.3

Mixture of Gaussians

- Gaussian mixture model (GMM): $p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mu_k, \Sigma_k)$
 - If we let the number of mixture components grow sufficiently large, a GMM can approximate any smooth distribution over \mathbb{R}^D
 - GMMs are often used for unsupervised clustering of real-valued data samples $x_n \in \mathbb{R}^D$

Matrix Distributions (Not Necessarily Square Matrices)

• Matrix Normal: $X \sim \mathcal{MN}(M, U, V)$; property:

$$\operatorname{\mathsf{vec}}(X) \sim \mathcal{N}(\operatorname{\mathsf{vec}}(M), V^{-1} \otimes U)$$

- mean value: $M \in \mathbb{R}^{n \times p}$
- covariance among rows: $U \in \mathbb{R}^{n \times n}$ positive definite
- ullet precision among columns: $V \in \mathbb{R}^{p imes p}$ positive definite

•
$$\otimes$$
 is the Kroneker product, so $V^{-1} \otimes U = \begin{bmatrix} v_{11}^{\mathsf{inv}} U & \cdots & v_{1p}^{\mathsf{inv}} U \\ \vdots & \ddots & \vdots \\ v_{p1}^{\mathsf{inv}} U & \cdots & v_{pp}^{\mathsf{inv}} U \end{bmatrix}$

Useful when dealing with black-and-white pictures

Matrix Distributions (Square Matrices)

- Wishart: $X \sim Wi(S, \nu)$
- Scale matrix: $S \in \mathbb{R}^{D \times D}$ positive definite
- Degrees of freedom: $\nu > D-1$
- Property: $x_n \sim \mathcal{N}(0, \Sigma)$ i.i.d. $\implies S = \sum_{n=1}^N x_n x_n^\top \sim \mathsf{Wi}(\Sigma, N)$
- Useful to model our uncertainty when estimating covariance matrices

Dirichlet Distribution (Unit Simplex)

•
$$X \sim \text{Dir}(\alpha)$$
, $p(x) = \frac{\Gamma(\alpha_0)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K x_k^{\alpha_k - 1}$

- $\alpha \in \Delta^{K-1}$ and $\alpha_0 = \sum_{k=1}^K \alpha_k$
- α_0 controls the strength of the distribution (how peaked it is), and the α_k 's control where the peak occurs
- Mean: $\mathbb{E}(x_k) = \alpha_k/\alpha_0$

 Useful to quantify epistemic and aleatoric uncertainties in classification problems

- Let $(x_t)_{t\in\mathbb{N}}$ be a sequence of elements of \mathbb{R}^D
- Markov property: $p(x_{t+\tau} \mid x_1, \dots, x_t) = p(x_{t+\tau} \mid x_t)$

- Let $(x_t)_{t\in\mathbb{N}}$ be a sequence of elements of \mathbb{R}^D
- Markov property: $p(x_{t+\tau} \mid x_1, \dots, x_t) = p(x_{t+\tau} \mid x_t)$
- In turn, we have that $p(x_1, ..., x_T) = p(x_1) \prod_{t=2}^T \underbrace{p(x_t \mid x_{t-1})}_{\text{transition function}}$
 - This is a Markov model (MM)
- If $p(x_t \mid x_{t-1})$ is indep. of time, the MM is called stationary

- Let $\mathcal{X} = \{1, \dots, K\}$, so that the MM is a finite-state Markov chain
- Transition function $p(X_t \mid X_{t-1})$ can be written as a $K \times K$ transition matrix A
 - $A_{ii} = p(X_t = j \mid X_{t-1} = i)$
 - Stochastic matrix: Each row i is such that $\sum_i A_{ij} = 1$

- Let $\mathcal{X} = \{1, \dots, K\}$, so that the MM is a finite-state Markov chain
- Transition function $p(X_t \mid X_{t-1})$ can be written as a $K \times K$ transition matrix A
 - $A_{ij} = p(X_t = j \mid X_{t-1} = i)$
 - Stochastic matrix: Each row *i* is such that $\sum_i A_{ij} = 1$
- *n*-step transition matrix $A_{ij}(n) := p(X_{t+n} = j \mid X_t = i)$
- Chapman-Kolmogorov:

$$A_{ij}(m+n) = \sum_{k=1}^K A_{ik}(m) A_{kj}(n)$$

or equivalently, A(m+n) = A(m)A(n), and so $A(n) = A^n$

- Let $\mathcal{X} = \{1, \dots, K\}$, so that the MM is a finite-state Markov chain
- Transition function $p(X_t \mid X_{t-1})$ can be written as a $K \times K$ transition matrix A
 - $A_{ij} = p(X_t = j \mid X_{t-1} = i)$
 - Stochastic matrix: Each row i is such that $\sum_i A_{ij} = 1$
- *n*-step transition matrix $A_{ij}(n) := p(X_{t+n} = j \mid X_t = i)$
- Chapman-Kolmogorov:

$$A_{ij}(m+n) = \sum_{k=1}^K A_{ik}(m) A_{kj}(n)$$

or equivalently, A(m+n) = A(m)A(n), and so $A(n) = A^n$

MLE for this MM: (Murphy, 2023, § 2.6.3.1)

- Stationary distribution: intuitively, it is the long term distribution over states
- A: one-step transition matrix
- $\pi_t(j) = p(X_t = j)$: prob. of being in state j at time t
- π_0 : initial distribution over states

- Stationary distribution: intuitively, it is the long term distribution over states
- A: one-step transition matrix
- $\pi_t(j) = p(X_t = j)$: prob. of being in state j at time t
- π_0 : initial distribution over states
- Then, $\pi_1(j) = \sum_i \pi_0(i) A_{ij}$, or in matrix notation, $\pi_1 = \pi_0 A$
- Stationary distribution: π such that $\pi = \pi A$
 - To compute it, solve the eigenvector equation $A^{\top}v=v$, and put $\pi=v$,
 - v is an eigenvector with eigenvalue 1
 - More general way of finding π : (Murphy, 2023, § 2.6.4.1)
- Stationary distributions need not always exist (Murphy, 2023, § 2.6.4.3 - 2.6.4.4)

Statistics

- Probability theory: modeling the distribution over observed data outcomes D given known parameters θ by computing $p(D \mid \theta)$
- Statistics: inverse problem. Infer the unknown parameters θ given observations, i.e. compute $p(\theta \mid D)$

Bayesian Statistics: Basic Concepts

- Parameter θ as unknown (rv), and data D as fixed and known
- Represent uncertainty about θ , after seeing data D, by computing the posterior distribution via Bayes' rule

$$p(\theta \mid D) = \frac{p(\theta)p(D \mid \theta)}{\int_{\Theta} p(\theta')p(D \mid \theta')d\theta'} \propto p(\theta)p(D \mid \theta)$$

- Prior: $p(\theta)$, represents beliefs about parameter before seeing the data
- Likelihood: $p(D \mid \theta)$, represents beliefs about what data we expect to see, for each setting of the parameters
- Marginal likelihood: $p(D) = \int_{\Theta} p(\theta')p(D \mid \theta')d\theta'$, normalization constant, crucial in Bayesian Model Selection (BMS)
- Example: see (Murphy, 2023, § 3.2.1)
 - If we assume iid data, then $p(D \mid \theta) = \prod_{y \in D} p(y \mid \theta)$
 - $p(y \mid \theta)$: distributions we introduced before, e.g. a Binomial

Bayesian Statistics: MAP

Maximum A Posteriori estimate (MAP):

$$\hat{\theta}_{\mathsf{map}} = \argmax_{\theta \in \Theta} p(\theta \mid D) = \argmax_{\theta \in \Theta} [\log p(\theta) + \log p(D \mid \theta)]$$

- It is the posterior mode (most probable value)
- Confront it with the MLE

$$\argmax_{\theta \in \Theta} p(D \mid \theta) = \argmax_{\theta \in \Theta} \log p(D \mid \theta)$$

- An extra component coming from the prior $p(\theta)$
- ullet If we use uniform prior $p(heta) \propto 1$, MAP = MLE

Bayesian Statistics: MAP

Maximum A Posteriori estimate (MAP):

$$\hat{\theta}_{\mathsf{map}} = \argmax_{\theta \in \Theta} p(\theta \mid D) = \argmax_{\theta \in \Theta} [\log p(\theta) + \log p(D \mid \theta)]$$

- It is the posterior mode (most probable value)
- Confront it with the MLE

$$\mathop{\arg\max}_{\theta\in\Theta}p(D\mid\theta)=\mathop{\arg\max}_{\theta\in\Theta}\log p(D\mid\theta)$$

- An extra component coming from the prior $p(\theta)$
- If we use uniform prior $p(\theta) \propto 1$, MAP = MLE
- In the case of probability models having missing data and/or hidden variables, we can compute MAP or MLE via the expectation maximization (EM) algorithm (Murphy, 2023, § 6.5.3)

Bayesian Statistics: HDRs

• First find threshold p^* such that

$$1 - \alpha = \int_{\{\theta \in \Theta: p(\theta|D) > p^*\}} p(\theta \mid D) d\theta$$

- $\alpha \in [0,1]$ chosen by the user
- Then define the Highest Density Region (HDR) as:

$$C_{\alpha}(D) = \{\theta \in \Theta : p(\theta \mid D) \ge p^{\star}\}$$

- It is the narrowest parameter region containing $100 \times (1-\alpha)\%$ of the posterior probability mass
- Crucial in Uncertainty Quantification research Coolen (1992)

Bayesian Statistics: Posterior Predictive

Posterior Predictive Distribution:

$$p(y \mid D) = \int_{\Theta} p(y \mid \theta) p(\theta \mid D) d\theta$$
 (1)

- Given the data D we observed, it tells us what is the probability that the next observation is some value y
- Laplace's rule of succession: see (Murphy, 2023, § 3.2.1.8)
- A Bayesian approach allows us to disentangle between EU and AU

Bayesian Statistics: Posterior Predictive

- In ML: interested in predicting outcomes y given input features x
- Use conditional probability of the form $p(y \mid x, \theta)$ (e.g. coming from a neural network)
- (Conditional) likelihood is $p(D \mid \theta) = \prod_{(x,y) \in D} p(y \mid x, \theta)$

Bayesian Statistics: Posterior Predictive

- In ML: interested in predicting outcomes y given input features x
- Use conditional probability of the form $p(y \mid x, \theta)$ (e.g. coming from a neural network)
- (Conditional) likelihood is $p(D \mid \theta) = \prod_{(x,y) \in D} p(y \mid x, \theta)$
- Eq. (1) then becomes

$$p(y \mid x, D) = \int_{\Theta} p(y \mid x, \theta) p(\theta \mid D) d\theta$$

- By integrating out the unknown parameters, we reduce the chance of overfitting
 - We are computing the weighted average of predictions from an infinite number of models

Frequentist Statistics: Basic Concepts

- Frequentist statistics: uncertainty by calculating how a quantity estimated from data (e.g. a parameter) would change if the data were changed
 - Captured by the sampling distribution of an estimator
- This notion of variation across repeated trials: uncertainty modeling by the frequentist approach

Frequentist Statistics: Sampling Distribution

- Estimator: decision procedure that specifies what action to take given some observed data D
 - Parameter estimation: the action space is to return a parameter vector via function δ , so $\hat{\theta} = \delta(D)$, e.g. the MLE
- Sampling distribution of an estimator: distribution of results we would see if we applied the estimator multiple times to different datasets sampled from some distribution
 - \bullet Parameter estimation: it is the distribution of $\hat{\theta},$ viewed as a random variable that depends on the random sample D

Frequentist Statistics: Sampling Distribution

• Sample S different datasets, each of size N, from the true model $p(x \mid \theta^*)$ to generate

$$\tilde{D}^{(s)} = \{x_n \sim p(x_n \mid \theta^*)\}_{n=1}^N, \quad s \in \{1, \dots, S\}$$

- ullet Denote this $ilde{D}^{(s)} \sim heta^{\star}$ for brevity
- Apply the estimator δ to each $\tilde{D}^{(s)}$ to get a set of estimates $\{\hat{\theta}^{(s)} = \delta(\tilde{D}^{(s)})\}_{s=1}^S$
- Sampling distribution:

$$p_{\mathsf{sample}}(\theta \mid \{\tilde{D}^{(s)}\}_{s=1}^{S}) = \frac{1}{S} \sum_{s=1}^{S} \mathsf{Dirac}(\theta - \hat{\theta}^{(s)})$$

• $p_{\mathsf{sample}}(\theta \mid \{\tilde{D}^{(s)}\}_{s=1}^S) \xrightarrow{S \to \infty} p(\delta(\tilde{D}) = \theta \mid \tilde{D} \sim \theta^{\star})$

Frequentist Statistics: Parametric Bootstrap

- When estimator is a complex function of the data, or when sample size small: approximate sampling distribution using the bootstrap
- Since θ^* is unknown, generate each sampled dataset using $\hat{\theta} = \delta(D)$ instead of θ^* ,

$$\tilde{D}^{(s)} = \{x_n \sim p(x_n \mid \hat{\theta})\}_{n=1}^N, \quad s \in \{1, \dots, S\}$$

The rest stays the same

Frequentist Statistics: Asymptotic Normality of sampling distribution of MLE

Theorem

Under various technical conditions, we have

$$\sqrt{N}(\hat{\theta}_{\mathsf{MLE}} - \theta^{\star}) \xrightarrow[N \to \infty]{\mathsf{dist}} \mathcal{N}(0, F(\theta^{\star})^{-1}),$$

where $F(\theta^*)$ is the Fisher information matrix (Murphy, 2023, § 3.3.4)

 As the sample size goes to infinity, the sampling distribution of the MLE will converge to a Gaussian centered on the true parameter, with a precision equal to the Fisher information

Frequentist Statistics: Drawbacks

- Frequentist Statistics has some counterintuitive properties (Murphy, 2023, § 3.3.5 - 3.3.6)
- Popular because easy, taught at UG level, sometimes faster to implement than Bayesian
- "Inside every Non-Bayesian, there is a Bayesian struggling to get out", D. Lindley, cf. Jaynes (2002)
- CAREFUL: Bayesian approach is only as correct as its modeling assumptions
 - Check sensitivity of the conclusions to the choice of prior (and likelihood): BMS

Selecting the Prior: Conjugate Priors

- A prior $p(\theta) \in \mathcal{F}$ is a conjugate prior for a likelihood function $p(D \mid \theta)$ if the posterior is in the same parameterized family as the prior, i.e. $p(\theta \mid D) \in \mathcal{F}$
- ullet That is, ${\mathcal F}$ is closed under Bayesian updating
- Conjugate priors simplify the computation of the posterior (Murphy, 2023, § 3.4)

Selecting the Prior: Noninformative Priors

- When we have little or no domain specific knowledge, desirable to use a noninformative prior, to "let the data speak for itself"
- No unique way to define such priors, and they all encode some kind of knowledge
 - Better to use the term minimally informative prior (Murphy, 2023, § 3.5)

Selecting the Prior: Hierarchical Priors

- Parameters ξ of the prior distribution $p(\theta)$ are called hyperparameters
- \bullet If unknown, put a prior on them; this defines a hierarchical Bayesian model $\xi \to \theta \to D$
- Assume the prior on the hyper-parameters is fixed, so the joint distribution has the form

$$p(\xi, \theta, D) = p(\xi)p(\theta \mid \xi)p(D \mid \theta)$$

- Use hierarchical approach when we have J>1 related datasets D_j , each with their own parameters θ_j
- Inferring $p(\theta_j \mid D_j)$ independently for each group j can give poor results if D_j is a small dataset
- A hierarchical Bayesian model lets us borrow statistical strength from groups with lots of data to help groups with little data
 - (Murphy, 2023, § 3.6)

Selecting the Prior: Empirical Bayes

- Computationally convenient approximation of hierarchical Bayes
- First compute a point estimate of the hyperparameters, $\hat{\xi}$, and then compute the conditional posterior, $p(\theta \mid \hat{\xi}, D)$
- For example, type II MLE

$$\hat{\xi}_{\mathsf{MML}}(D) = \operatorname*{arg\,max}_{\xi} p(D \mid \xi) = \operatorname*{arg\,max}_{\xi} \int_{\theta} p(D \mid \theta) p(\theta \mid \xi) \mathrm{d}\theta$$

- Once we have estimated $\hat{\xi}$, we compute the posterior $p(\theta \mid \hat{\xi}, D)$ in the usual way (Murphy, 2023, § 3.7)
- Notice that we are "cheating": we use data twice, once to form our prior belief, and once again for our likelihood

Other Statistical Concepts

Model selection: we have a set of different models \mathcal{M} , each of which may fit the data to different degrees, and each of which may make different assumptions

- How to pick the best model from this set, or to average over all of them
- Assumed that the "true" model is in M (Murphy, 2023, § 3.8)

- We assume that we do not have a specific alternative model in mind
- We see if the data we observe is "typical" of what we might expect if our model were correct (Murphy, 2023, § 3.9)

References I

- Thomas Augustin, Frank P. A. Coolen, Gert de Cooman, and Matthias C. M. Troffaes. *Introduction to imprecise probabilities*. John Wiley & Sons,, West Sussex, England, 2014.
- Frank P. A. Coolen. Imprecise highest density regions related to intervals of measures. *Memorandum COSOR*, 9254, 1992.
- Bruno de Finetti. *Theory of Probability*, volume 1. New York: Wiley, 1974.
- Bruno de Finetti. *Theory of Probability*, volume 2. New York: Wiley, 1975.
- Edwin T. Jaynes. *Probability Theory. The Logic of Science*. Cambridge University Press: Cambridge, 2002.
- Kevin P. Murphy. *Probabilistic Machine Learning: Advanced Topics*. MIT Press, 2023. URL http://probml.github.io/book2.

References II

Peter Walley. Statistical reasoning with imprecise probabilities, volume 42 of Monographs on Statistics and Applied Probability. London: Chapman and Hall, 1991.