Esomi Simulati:

Exercisio 1:

Esercizio 1 (10 punti, minimo 6)

Progettate un disco rotante a uniforme resistenza la cui tensione ideale σ sia costante. Lo spessore iniziale al raggio zero è b_0 . In particolare, determinate

- lo spessore b_{rmax} al raggio massimo r_{max},
- la massa equivalente da aggiungere al raggio r_{max} per ottenere un disco "finito" equivalente al disco ideale di raggio infinito.

L'equazione di equilibrio (con l'usuale notazione per le variabili) è

$$\frac{d}{d_{rr}}(\sigma_r r b) - \sigma_c b = -\rho \omega^2 r^2 b$$

In prima approssimazione l'integrale $\int e^{-Ax^2}x^2dx$ vale

$$\int e^{-Ax^2} x^2 dx \cong \frac{\sqrt{\pi}}{4A^{2/3}} - \frac{e^{-Ax^2}}{2A} x$$

Dati: $\rho = 7800 \text{ kg/m}^3$; $\sigma = 500 \text{ MPa}$; $\omega = 10000 \text{ rpm}$; $r_{max} = 300 \text{ mm}$; $b_0 = 80 \text{ mm}$

· . 60 1047,2 Real

Soll'equilibres sul concur elementore

lun-6

= - Pwz t. tol8.6.0/C

Olivanoli

Explications la sen Votre

7.5.016 + 56.6 + 56.6.015 - 6.5 = - Pw262.5

Le
$$F_c$$
 is f_c is f_c is f_c in f_c in

$$\frac{1}{16} = \int \omega^{2} \cdot 2\pi \cdot b_{3} \cdot \left[\frac{\sqrt{\pi}}{4 \cdot 4^{2/3}} - \frac{2}{24} \cdot \mathcal{V} \right] \frac{1}{\sqrt{\pi}} = \frac{-4 \cdot \mathcal{V}^{2}}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4} \cdot 2^{1/3}} - \frac{2}{24} \cdot \mathcal{V} = \frac{-4 \cdot \mathcal{V}^{2}}{\sqrt{4}} + \frac{2}{24} + \frac{2}{2$$