BÀI TẬP GIẢI TÍCH CHƯƠNG 2

Nguyễn Đức Ngà

Ngày 16 tháng 2 năm 2023

Bài 1. Sử dụng quy tắc trung điểm với m=4 và n=2, tính gần đúng thể tích của phần không gian giới hạn bởi mặt z=f(x,y), các mặt phẳng đứng $x=1,\ x=2,\ y=1,\ y=2$, và mặt phẳng ngang z=0.

(a)
$$f(x,y) = 4x + 2y$$
;

(b)
$$f(x,y) = 16x^2 + \frac{y}{2}$$
.

Bài 2. Sử dụng quy tắc trung điểm với m = n = 4, tính gần đúng tích phân $\iint\limits_R f(x,y) dA$ biết giá trị của hàm f(x,y) được cho trong bảng sau.

	у				
x	9	9.5	10	10.5	11
8	9.8	5	6.7	5	5.6
8.5	9.4	4.5	8	5.4	3.4
9	8.7	4.6	6	5.5	3.4
9.5	6.7	6	4.5	5.4	6.7
10	6.8	6.4	5.5	5.7	6.8

Bài 3. Tính tích phân $\iint\limits_R f(x,y) dA$ sau trên miền được chỉ ra.

(a)
$$f(x,y) = 6y^2 - 2x$$
, R: $0 \le x \le 1$, $0 \le y \le 2$.

(b)
$$f(x, y) = xy \cos(y)$$
, $R: -1 \le x \le 1$, $0 \le y \le \pi$.

(c)
$$f(x,y) = e^{x-y}$$
, $R: 0 \le x \le \ln 2$, $0 \le y \le \ln 2$.

(d)
$$f(x,y) = xye^{xy^2}$$
, $R: 0 \le x \le 2$, $0 \le y \le 1$.

(e)
$$f(x,y) = \frac{xy^3}{x^2 + 1}$$
, $R: 0 \le x \le 1$, $0 \le y \le 2$.

Bài 4. Sử dụng định lý Fubini, tính tích phân

$$\int_{0}^{2} \int_{0}^{1} \frac{x}{1+xy} dx dy.$$

Bài 5. Tính tích phân $\iint\limits_R f(x,y) dA$ sau trên miền được chỉ ra.

(a)
$$f(x,y) = 2x + 5y$$
, R: $0 \le x \le 1$, $x^3 \le y \le x^3 + 1$.

(b)
$$f(x,y) = 1$$
, $R: 0 \le x \le \pi/2$, $\sin(x) \le y \le \sin(x) + 1$.

(c)
$$f(x,y) = xy$$
, $R: y^2 - 1 \le x \le \sqrt{1 - y^2}$, $-1 \le y \le 1$.

(d) $f(x,y) = \sin(y)$, trong đó R là tam giác có các đỉnh là (0,0), (0,3), (3,0).

(e)
$$f(x,y) = y - x$$
, trong đó R là hình vuông $|x| + |y| \le 1$.

Bài 6. Đổi thứ tự các tích phân sau

(a)
$$\int_{0}^{1} \int_{2}^{4-2x} dy dx$$
.

(b)
$$\int_{0}^{2} \int_{y-2}^{0} dx dy$$
.

(c)
$$\int_{0}^{1} \int_{x-1}^{1-x} x \, dy \, dx$$
.

(d)
$$\int_{0}^{\ln 2} \int_{e^{y}}^{2} dx dy.$$

(e)
$$\int_{0}^{3} \int_{1}^{e^{y}} (x+y) dx dy.$$

Bài 7. Tính diện tích của miền phẳng dưới đây nhờ một thứ tự tích phân phù hợp.

Bài 8. Tính Jacobian của các phép đổi biến sau.

(a)
$$x = u + 2v$$
, $y = -u + v$.

(b)
$$x = u^3$$
, $y = v/u^2$.

(c)
$$x = e^{2u-v}$$
, $y = e^{u-v}$.

(d)
$$x = u \cos(v)$$
, $y = u \sin(v)$.

(e)
$$x = ue^{v}$$
, $y = e^{-v}$.

Bài 9. Sử dụng phép đổi biến x = -u + v, y = v để tính các tích phân sau, biết R là hình bình hành với các đỉnh là (0,0), (1,0), (2,1), (1,1).

(a)
$$\iint_{\mathbb{R}} (y-x) dA$$
.

(b)
$$\iint\limits_{R} (y^2 - xy) dA.$$

Bài 10. Sử dụng phép đổi biến x = u, y = v/5 để tính các tích phân sau, biết R là miền giới hạn bởi elipse $x^2 + 25y^2 = 1$.

(a)
$$\iint_{P} \sqrt{x^2 + 25y^2} dA$$
.

(b)
$$\iint_{R} (x^2 + 25y^2)^2 dA$$
.

Bài 11. Tính các tích phân sau bằng cách chuyển sang tọa độ cực.

(a)
$$\int_{0}^{3} \int_{0}^{\sqrt{9-y^2}} (x^2 + y^2) dx dy$$
.

(b)
$$\int_{0}^{6} \int_{0}^{y} x dx dy.$$

(c)
$$\int\limits_{-1}^{1} \int\limits_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2}{(1+x^2+y^2)^2} dx dy.$$

(d)
$$\int_{1}^{2} \int_{x}^{\sqrt{2x-x^2}} \frac{1}{(x^2+y^2)^2} dy dx$$
.

(e)
$$\iint\limits_{R} \frac{e^{\sqrt{x^2+y^2}}}{\sqrt{x^2+y^2}} dA, \text{ d and R là miền chứa } (x,y) \text{ thỏa mãn } 1 \leq x^2+y^2 \leq 4.$$

Bài 11. Tính tích phân bội ba $\iint\limits_{B} f(x,y,z) dV$ trong các trường hợp sau.

(a)
$$f(x, y, z) = 2x + 3y^2 + 4z$$
, B: $0 \le x \le 1$, $0 \le y \le 2$, $0 \le z \le 3$.

(b)
$$f(x, y, z) = xy + yz + zx$$
, B: $1 \le x \le 2$, $0 \le y \le 2$, $1 \le z \le 3$.

(c)
$$f(x,y,z) = 2x + 5y + 7z$$
, B: $0 \le x \le 1$, $0 \le y \le -x + 1$, $1 \le z \le 2$.

(d)
$$f(x, y, z) = x + 2yz$$
, B: $0 \le x \le 1$, $0 \le y \le x$, $0 \le z \le 5 - x - y$.

(e)
$$f(x, y, z) = x^2 + y^2 + z^2$$
, B: $0 \le x \le 2$, $0 \le y \le 2x$, $0 \le z \le 4 - x - y$.

Bài 12. Tính tích phân $\iiint\limits_{B} f(x,y,z) dV$ bằng cách chuyển sang tọa độ trụ.

(a)
$$f(x, y, z) = z$$
, B: $x^2 + y^2 \le 9$, $x \ge 0$, $y \ge 0$, $0 \le z \le 1$.

(b)
$$f(x, y, z) = xz^2$$
, B: $x^2 + y^2 \le 16$, $x \ge 0$, $y \le 0$, $-1 \le z \le 1$.

(c)
$$f(x, y, z) = xy$$
, B: $x^2 + y^2 \le 1$, $x \ge 0$, $x \ge y$, $-1 \le z \le 1$.

(d)
$$f(x, y, z) = e^{\sqrt{x^2 + y^2}}$$
, B: $x^2 + y^2 \le 4$, $x \le y\sqrt{3}$, $y \le 0$, $z \le z \le 3$.

(e)
$$f(x, y, z) = \sqrt{x^2 + y^2}$$
, B: $1 \le x^2 + y^2 \le 9$, $y \ge 0$, $0 \le z \le 1$.

Bài 13. Tính tích phân $\iiint\limits_{\mathbb{R}} f(x,y,z) dV$ bằng cách chuyển sang tọa độ cầu.

(a)
$$f(x, y, z) = z$$
, B: $x^2 + y^2 + z^2 \le 1$, $z \ge 0$.

(b)
$$f(x, y, z) = x + y$$
, B: $1 \le x^2 + y^2 + z^2 \le 2$, $z \ge 0$, $y \ge 0$.

(c)
$$f(x,y,z) = 2xy$$
, B: $\sqrt{x^2 + y^2} \le z \le \sqrt{1 - x^2 - y^2}$, $x \ge 0$, $y \ge 0$.

(d)
$$f(x,y,z) = \frac{xyz}{x^2 + y^2 + z^2}$$
, $B: x^2 + y^2 + z^2 \le a^2$, $x,y,z \ge 0$.

(e)
$$f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$$
, B là miền giới hạn bởi mặt cầu $x^2 + y^2 + z^2 = z$.

Bài 14. Viết công thức tính thể tích của phần không gian bên trong mặt cầu $x^2 + y^2 + z^2 = 16$ và ngoài mặt trụ $x^2 + y^2 = 4$ như một tích phân bội ba trong hệ tọa độ trụ và hệ tọa độ cầu.

Bài 15. Tính thể tích phần không gian giới hạn bởi các mặt $x^2 + y^2 = 4$, z = 0, x + z = 3.

Bài 16. Tính thể tích phần không gian ở góc phần tám thứ nhất giới hạn bởi mặt $z = 4 - x^2 - y$.

Bài 17. Tính thể tích phần không gian ở góc phần tám thứ nhất giới hạn bởi các mặt $x+z=1,\ y+2z=2.$

Bài 18. (a) Sử dụng tọa độ cực, chứng minh rằng (a > 0)

$$\frac{\pi}{4}\left(1-e^{-\alpha^2}\right) \leq \int_{0}^{\alpha} \int_{0}^{\alpha} e^{-x^2-y^2} dxdy \leq \frac{\pi}{4}.$$

(b) Sử dụng hệ thức $(\int\limits_0^\alpha e^{-x^2}dx)(\int\limits_0^\alpha e^{-y^2}dy)=\int\limits_0^\alpha\int\limits_0^\alpha e^{-x^2-y^2}dxdy$, chứng minh rằng

$$\frac{1}{2}\sqrt{\pi(1-e^{-a^2})} \le \int_{0}^{a} e^{-x^2} dx \le \frac{\sqrt{\pi}}{2}.$$

(c) Dựa vào ý (b), tính giới hạn $\lim_{a\to +\infty}\int\limits_0^a e^{-x^2} dx$.

Mục tiêu của Bài 19 và Bài 20 là chứng minh công thức quen biết sau đây

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Bài 19. Sử dụng công thức $\frac{1}{1-r}=1+r+r^2+\cdots$ với |r|<1, chứng minh rằng

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dx dy = \sum_{n=1}^{\infty} \frac{1}{n^{2}}.$$

Bài 20. Xét tích phân

$$I = \int_0^1 \int_0^1 \frac{1}{1 - xy} dx dy.$$

(a) Sử dụng phép đổi biến $x=\mathfrak{u}-\mathfrak{v},\ y=\mathfrak{u}+\mathfrak{v},$ chứng minh rằng

$$I = 2 \iint_{D} \frac{1}{1 - u^2 + v^2} dv du,$$

trong đó D là hình vuông với các đỉnh (0,0), (1/2,1/2), (1,0), (1/2,-1/2).

(b) Bằng cách chia hình vuông D thành hai phần theo đường chéo nối (1/2,1/2) với (1/2,-1/2), chứng minh rằng

$$I = \int_{0}^{1/2} \int_{-u}^{u} \frac{1}{1 - u^2 + v^2} dv du + \int_{1/2}^{1} \int_{u-1}^{1-u} \frac{1}{1 - u^2 + v^2} dv du.$$

(c) Sử dụng công thức $\int\limits_{-z}^{z} \frac{1}{a^2+t^2} dt = \frac{2}{a}\arctan\left(\frac{z}{a}\right)$, chứng minh rằng

$$I = \underbrace{\int\limits_0^{1/2} \frac{2}{\sqrt{1-u^2}} \arctan\left(\frac{u}{\sqrt{1-u^2}}\right) du}_{I_1} + \underbrace{\int\limits_{1/2}^1 \frac{2}{\sqrt{1-u^2}} \arctan\left(\frac{1-u}{\sqrt{1-u^2}}\right) du}_{I_2}.$$

(d) Tính các tích phân I_1 và I_2 nhờ các phép đổi biến $\mathfrak{u}=\sin(\theta)$ và $\mathfrak{u}=\cos(2\theta)$ tương ứng.

6