## ${\bf Robotique\ industrielle} \\ {\bf TD\ n°2: Mod\'elisation\ g\'eom\'etrique\ directe}$

## Exercice 1. Modèle géométrique direct d'un robot SCARA

Soit le robot série 4 axes RRPR décrit par la figure ci-dessous. Ce robot est représenté à gauche dans la configuration où les coordonnées articulaires  $q_1$ ,  $q_2$ ,  $q_3$  et  $q_4$  sont nulles et à droite dans une configuration quelconque (et vu du haut).



- 1.a. Placer les repères R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> sur le schéma.
- 1.b. Calculer  ${}^{0}\mathbf{T}_{P}$
- 1.c. Vérifier la validité de vos calculs sur quelques configurations particulières.
- 1.d. Exprimer l'orientation de l'organe terminal à l'aide des angles nautiques.
- 1.e. Représenter la projection du domaine atteignable  $D_P$  de ce robot dans le plan  $O_0\vec{x}_0\vec{y}_0$  sachant que les butées articulaires sont les suivantes :

$$q_1 \in \left[ -\frac{2\pi}{3} , \frac{2\pi}{3} \right] ; q_2 \in \left[ -\frac{2\pi}{3} , \frac{2\pi}{3} \right]$$

G. Laurent Page 1 sur 2

## Exercice 2. Modèle géométrique direct d'un porteur anthropomorphe

Soit le robot série 3 axes RRR décrit par la figure ci-dessous. Ce robot est complètement tendu à la verticale quand les coordonnées articulaires  $q_1$ ,  $q_2$  et  $q_3$  sont nulles.



- 2.a. Placer les repères  $R_1$ ,  $R_2$  et  $R_3$  sur le schéma.
- 2.b. Calculer la matrice de transformation permettant de passer du repère  $R_0$  au repère  $R_P$ .
- 2.c. Vérifier la validité de vos calculs sur quelques configurations particulières.
- 2.d. Exprimer l'orientation de l'organe terminal à l'aide des angles nautiques.
- 2.e. Représenter la coupe du domaine atteignable  $D_P$  de ce robot dans le plan  $O_0\vec{x}_0\vec{z}_0$  sachant que les butées articulaires sont les suivantes :

$$q_1 \in [-\pi \ , \ \pi] \ ; \ q_2 \in [-\pi/2 \ , \ \pi/2] \ ; \ q_3 \in [-\pi/2 \ , \ \pi/2]$$

G. Laurent Page 2 sur 2