Aljabar Linier [KOMS119602] - 2022/2023

5.1 - Determinan Matriks

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Pertemuan 5 (Oktober 2022)

Tujuan pembelajaran

Setelah pembelajaran ini, Anda diharapkan dapat:

- menjelaskan konsep determinan suatu matriks;
- \odot menghitung determinan dari matriks (3 \times 3);
- menjelaskan interpretasi geometris determinan matriks (2×2) ;
- lacktriangle menjelaskan interpretasi geometris determinan matriks (3×3) ;
- menjelaskan penggunaan determinan dalam penyelesaian sistem persamaan liner;
- menggunakan permutasi untuk menghitung determinan;

Good math skills are developed by doing lots of problems.

Part 1: Definisi formal dari determinan

Definisi formal matriks determinan

Diberikan matriks persegi $A = [a_{ij}]$ dengan ukuran $n \times n$.

Kita dapat menetapkan *scalar* ke matriks *A*, sebagai fungsi dari entri matriks persegi. Ini disebut determinant dari matriks *A*.

Determinan matriks A dilambangkan dengan |A|, dan seringkali ditulis sebagai berikut:

```
\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
```

Determinan matriks orde 1 dan 2

Untuk n = 1, 2, determinan matriks didefinisikan sebagai:

$$|a_{11} = a_{11}|$$
 and $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$

Example

Tentukan determinan matriks berikut:

$$\begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} 4 & -5 \\ -6 & 3 \end{bmatrix}$$

Part 2: Determinan dari matriks 2×2

Determinan dari matriks 2 × 2

Given a matrix:

$$A = \begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$$

Di sekolah menengah, Anda mungkin telah mempelajari bahwa determinan dari matriks (ukuran 2×2) didefinisikan sebagai

$$A_1B_2-A_2B_1$$

dan dinotasikan dengan:

$$|A| = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$$

Contoh motivasi: aplikasi penentu yang penting

Perhatikan lagi sistem persamaan linier dalam dua variabel:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

- ullet Sistem memiliki tepat <u>satu solusi</u> ketika $A_1B_2-A_2B_1
 eq 0$
- Sistem memiliki tidak ada solusi atau banyak solusi ketika $A_1B_2 A_2B_1 = \overline{0}$

Contoh motivasi: aplikasi penentu yang penting

Perhatikan lagi sistem persamaan linier dalam dua variabel:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

- Sistem memiliki tepat <u>satu solusi</u> ketika $A_1B_2 A_2B_1 \neq 0$
- Sistem memiliki <u>tidak ada solusi atau banyak solusi</u> ketika $A_1B_2 A_2B_1 = \overline{0}$

Matriks koefisien
$$\begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$$
 has determinant $= A_1B_2 - A_2B_1$.

Remark. Determinan dari matriks koefisien menentukan jumlah solusi dari sistem yang diberikan. Sistem memiliki solusi unik jika $D \neq 0$.

Aplikasi untuk persamaan linear

Memecahkan sistem dengan eliminasi variabel:

$$A_1B_2x + B_1B_2y = B_2C_1$$

$$A_2B_1x + B_1B_2y = B_1C_2$$

$$(A_1B_2 - A_2B_1)x = B_2C_1 - B_1C_2$$

$$x = \frac{B_2C_1 - B_1C_2}{A_1B_2 - A_2B_1}$$

Sehingga:

$$B_2C_1 - B_1C_2 = \begin{vmatrix} C_1 & B_1 \\ C_2 & B_2 \end{vmatrix} = N_x \text{ and } A_1B_2 - A_2B_1 = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = D$$

Hence,
$$x = \frac{N_x}{D}$$

Penerapan pada sistem persamaan linear

Nilai y dapat ditemtukan dengan cara serupa:

$$A_1 A_2 x + A_2 B_1 y = A_2 C_1$$

 $A_1 A_2 x + A_1 B_2 y = A_1 C_2$

$$(A_2B_1 - A_1B_2)y = A_2C_1 - A_1C_2$$
$$x = \frac{A_2C_1 - A_1C_2}{A_2B_1 - A_1B_2} = \frac{A_1C_2 - A_2C_1}{A_1B_2 - A_2B_1}$$

Sehingga:

$$A_1C_2 - A_2C_1 = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} = N_y \text{ and } A_1B_2 - A_2B_1 = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = D$$

Jadi,
$$y = \frac{N_y}{D}$$

Contoh

Selesaikan sistem berikut menggunakan determinan:

$$\begin{cases} 3x - 4y = -10 \\ -x + 2y = 2 \end{cases}$$

Solusi:

$$N_{x} = \begin{vmatrix} -10 & -4 \\ 2 & 2 \end{vmatrix} = -20 - (-8) = -12$$

$$N_{y} = \begin{vmatrix} 3 & -10 \\ -1 & 2 \end{vmatrix} = 6 - 10 = -4$$

$$D = \begin{vmatrix} 3 & -4 \\ -1 & 2 \end{vmatrix} = 6 - 4 = 2$$

Jadi,
$$x = \frac{-12}{2} = -6$$
 and $y = \frac{-4}{2} = -2$.

Kesimpulan

Diberikan:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

dengan matriks koefisien $\begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$ memiliki determinan tak-nol (artinya, SPL memiliki solusi tunggal).

Solusinya:

$$x = \frac{N_x}{D}$$
 and $y = \frac{N_y}{D}$

where
$$N_x = \begin{vmatrix} C_1 & B_1 \\ C_2 & B_2 \end{vmatrix}$$
, $N_y = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}$, and $D = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$.

Interpretasi geometris

Matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ dapat dilihat sebagai "pengaturan" dari:

- vektor baris: $\begin{bmatrix} a & b \end{bmatrix}$ dan $\begin{bmatrix} c & d \end{bmatrix}$
- atau, vektor kolom: $\begin{bmatrix} a \\ c \end{bmatrix} dan \begin{bmatrix} b \\ d \end{bmatrix}$

Matriks mendefinisikan apa yang disebut *transformasi linier* dari kuadrat satuan (dicetak hijau) yang dibentuk oleh *vektor basis* $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ dan $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, sehubungan dengan:

- vektor baris, ditunjukkan oleh jajaran genjang merah; atau
- vektor kolom, ditunjukkan oleh jajaran genjang biru

Kedua jajar genjang memiliki luas yang sama.

Contoh

Diberikan matriks $A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$.

Gambarlah dua jajar genjang yang mendefinisikan transformasi persegi satuan terhadap masing-masing vektor baris dan vektor kolom.

Solution:

Bagian 3: Determinan matriks ukuran 3×3

Determinan matriks ukuran 3 × 3

Diberikan matriks:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Determinan dari matriks di atas didefinisikan sebagai:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

Bentuk alternatif untuk determinan matriks orde-3

Determinan dari matriks di atas didefinisikan sebagai:

$$\begin{aligned} \det(A) &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} \\ &= a_{11}(a_{22}a_{23} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \\ &= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

Formula ini dapat digambarkan sebagai berikut:

Contoh

Tentukan determinan matriks
$$A = \begin{bmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{bmatrix}$$

Solusi:

Dengan menggunakan diagram

$$det(A) = 3(5)(4) + 2(-1)(2) + (1)(-4)(-3) - 1(5)(2) - 2(-4)(4)(-3)(-3)$$

= 60 - 4 + 12 - 10 + 32 - 9 = 81

Dengan menggunakan bentuk alternatif

$$\begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} = 1 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} + 3 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix}$$
$$= 1 \begin{vmatrix} 5 & -1 \\ -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} -4 & -1 \\ 2 & 4 \end{vmatrix} + 3 \begin{vmatrix} -4 & 5 \\ 2 & -3 \end{vmatrix}$$
$$= 1(20 - 3) - 2(-16 + 2) + 3(12 - 10) = 17 + 28 - 6 = 39$$

Penerapan pada sistem persamaan linear

Diketahui sistem persamaan linier berikut:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z &= b_1 \\ a_{21}x + a_{22}y + a_{23}z &= b_2 \\ a_{31}x + a_{32}y + a_{33}z &= b_3 \end{cases}$$

Kita dapat melakukan perhitungan serupa seperti pada kasus matriks (2×2) , untuk menemukan solusi sistem.

The coefficient matrix of the system is given by: $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

Sistem memiliki solusi unik hanya jika $D = \det(A) \neq 0$. Solusinya diberikan oleh:

$$x = \frac{N_x}{D}, \quad y = \frac{N_y}{D}, \quad z = \frac{N_z}{D}$$

dimana N_x , N_y , dan N_z diperoleh dengan mengganti kolom ke-1, ke-2,

dan ke-3 dari A dengan vektor konstanta $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$.

$$\begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix}$$
.

Interpretasi geometris

Dalam \mathbb{R}^3 , vektor u_1 , u_2 , dan u_3 menentukan paralelepiped, yang merupakan hasil

transformasi kubus satuan menggunakan vektor $\{u_1, u_2, u_3\}$.

Catatan.

Misal u_1, u_2, \ldots, u_n adalah vektor di \mathbb{R}^n . Maka:

$$S = \{a_1u_1 + a_2u_2 + \dots + a_nu_n : 0 \le a_i \le 1 \text{ for } i = 1, \dots, n\}$$

$$V(S) = nilai mutlak det(A)$$

Bagian 4: Determinan dengan orde sembarang (secara kombinatorial)

Pola dalam rumus determinan

Dapatkah Anda menemukan pola dari rumus-rumus determinan berikut?

• Untuk matriks
$$2 \times 2$$
: $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ maka
$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

• Untuk matriks 3×3 : $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ maka:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

Kita akan mempelajari pola-pola ini!

Tanda (paritas) permutasi

Diberikan urutan elemen: $\sigma=j_1j_2\ldots j_n$, permutation dari σ didefinisikan sebagai susunan objek di σ dalam urutan tertentu.

Himpunan semua permutasi dari objek n dilambangkan dengan S_n .

Invers di σ adalah sepasang bilangan bulat (i, k), sehingga i > k tetapi i mendahului k di σ .

 σ disebut:

- ullet permutasi genap, jika ada jumlah inversi genap di σ ;
- permutasi ganjil, sebaliknya.

Tanda atau paritas dari permutasi σ didefinisikan oleh:

$$\operatorname{sgn}(\sigma) = egin{cases} 1 & ext{if } \sigma ext{ is even} \ -1 & ext{if } \sigma ext{ is odd} \end{cases}$$

Contoh: tanda permutasi

Diberikan permutasi $\sigma=35412$ dalam S_5 . Apakah tanda dari σ ?

Solusi:

- 3 angka (3, 4 dan 5) mendahului 1;
- 3 angka (3, 4 dan 5) mendahului 2;
- 1 angka (5) mendahului 4;
- tidak ada angka yang mendahului 3 atau 4

Karena 3+3+1=7 ganjil, maka σ adalah permutasi ganjil. Oleh karena itu

$$\operatorname{sgn}(\sigma) = -1$$

Latihan:

- **①** Cari tanda permutasi: $\epsilon = 123 \dots n$ dalam S_n .
- 2 Temukan tanda setiap permutasi dalam S_2 dan S_3 .
- **3** Benarkah di S_n , setengah dari permutasinya genap, dan setengahnya ganjil?

Permutasi untuk menghitung determinan (1)

Diberikan matriks $n \times n$ $A = [a_{ij}]$ pada suatu *lapangan* K.

Pertimbangkan produk dari elemen n dari A (di sini, $j_1j_2...j_n$ adalah permutasi dari 123...n):

$$a_{1j_1}a_{2j_2}\ldots a_{nj_n}$$

such that:

- satu dan hanya satu elemen berasal dari setiap baris A; dan
- satu dan hanya satu elemen berasal dari setiap kolom A.

Q: Berapa banyak produk yang berbeda dari bentuk $a_{1j_1}a_{2j_2}\dots a_{nj_n}$ yang ada?

A: Ada n! produk seperti itu, karena ada n! permutasi dari $j_1j_2 \cdots j_n$.

Permutasi untuk menghitung determinan (2)

Determinan dari matriks $n \times n$ $A = [a_{ij}]$ didefinisikan sebagai: jumlah semua produk n! $a_{1j_1}a_{2j_2}\dots a_{nj_n}$, di mana setiap produk dikalikan dengan tanda $\sigma = j_1j_2\dots j_n$.

$$|A| = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1j_1} a_{2j_2} \dots a_{nj_n}$$

atau, ini dapat ditulis sebagai:

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \ a_{1\sigma(1)} a_{2j\sigma(2)} \dots a_{n\sigma(n)}$$

Permutasi untuk menghitung determinan (3)

- ① Diketahui $A = [a_{11}]$, maka $det(A) = a_{11}$.
- ② Diketahui $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, lalu $\det(A) = a_{11}a_{22} a_{12}a_{21}$.

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

bersambung...