```
In [17]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [18]: df=pd.read_csv("4_drug200 (1).csv")
df
```

Out[18]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [19]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

	00-000					
#	Column	Non-Null Count	t Dtype			
0	Age	200 non-null	int64			
1	Sex	200 non-null	object			
2	BP	200 non-null	object			
3	Cholesterol	200 non-null	object			
4	Na_to_K	200 non-null	float64			
5	Drug	200 non-null	object			
<pre>dtypes: float64(1), int64(1), object(4)</pre>						
memory usage: 9.5+ KB						

In [20]: df.describe()

Out[20]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [21]: sns.pairplot(df)

Out[21]: <seaborn.axisgrid.PairGrid at 0x2596e966a90>

In [22]: sns.displot(df['Age'])

Out[22]: <seaborn.axisgrid.FacetGrid at 0x259c1e1f9a0>

In [23]: df1=df.drop(['Sex'],axis=1)
 df1

Out[23]:

	Age	ВР	Cholesterol	Na_to_K	Drug
0	23	HIGH	HIGH	25.355	drugY
1	47	LOW	HIGH	13.093	drugC
2	47	LOW	HIGH	10.114	drugC
3	28	NORMAL	HIGH	7.798	drugX
4	61	LOW	HIGH	18.043	drugY
195	56	LOW	HIGH	11.567	drugC
196	16	LOW	HIGH	12.006	drugC
197	52	NORMAL	HIGH	9.894	drugX
198	23	NORMAL	NORMAL	14.020	drugX
199	40	LOW	NORMAL	11.349	drugX

200 rows × 5 columns

```
In [24]: sns.heatmap(df1.corr())
```

Out[24]: <AxesSubplot:>


```
In [25]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [26]: y=df['Age']
x=df1.drop(['Age','BP','Cholesterol','Drug'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
print(x_train)
```

```
Na to K
27
       9.381
112
       9.170
130
      20.489
69
      24.276
      25.969
125
. .
          . . .
117
      10.103
172
      17.225
      25.893
185
169
      11.262
63
       8.370
```

[140 rows x 1 columns]

```
In [27]: model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_
```

Out[27]: 46.531395227472174

```
In [28]: coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff
```

Out[28]:

Coefficient

Na_to_K -0.071192

```
In [29]: prediction=model.predict(x_test)
    plt.scatter(y_test, prediction)
```

Out[29]: <matplotlib.collections.PathCollection at 0x259c1fb2ca0>


```
In [30]: model.score(x_test,y_test)
```

Out[30]: -0.041694123836048425

In [32]: from sklearn.linear_model import Ridge,Lasso

```
In [33]: rr = Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[33]: Ridge(alpha=10)

```
In [34]: rr.score(x_test,y_test)
```

Out[34]: -0.04170334355486549

```
In [35]: la = Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[35]: Lasso(alpha=10)

```
In [36]: la.score(x_test,y_test)
```

Out[36]: -0.04975954502177338

In []: