Segunda Lista de Problemas **Segunda Parte**

Matemáticas para las Ciencias Aplicadas I Facultad de Ciencias, UNAM

> Flores Morán Julieta Melina Zarco Romero José Antonio

> > 7 de octubre de 2023

1. Ejercicio 5

Utilice una aproximación cuadrática local apropiada para aproximar tan 61° y compare el resultado con el producido directamente por su utilidad de cálculo.

2. Ejercicio 10

 $\sin \pi x$

Encuentre los polinomios de Maclaurin de orden n=0,1,2,3,4, y luego encuentre los polinomios de Maclaurin enésimos para la función en notación sigma.

3. Ejercicio 20

$$\frac{1}{x+2}$$
; $x_0 = 3$

Encuentre los polinomios de Taylor de orden n=0,1,2,3,4 alrededor de $x=x_0$ y luego encuentre el enésimo polinomio de Taylor para la función en notación sigma.

4. Ejercicio 36

$$\frac{1}{e}$$
; precisión de tres decimales

Utilice el método del ejemplo 7 para aproximar la expresión dada a la precisión especificada. Verifique su respuesta con la producida directamente por su utilidad de cálculo.

5. Ejercicio 40

- (a) La figura adjunta muestra un sector de radio r y ángulo central 2α . Suponiendo que el ángulo α es pequeño, utilice la aproximación cuadrática local de $\cos \alpha$ en $\alpha = 0$ para demostrar que $x \approx r\alpha^2/2$.
- (b) Suponiendo que la Tierra es una esfera de radio 4000mi, use el resultado del inciso (a) para aproximar la cantidad máxima en la que un arco de 100mi a lo largo del ecuador divergirá de su cuerda.

6. Identidad de Euler

Aplicar las definiciones de las funciones exponencial natural, seno y coseno como series de Taylor para demostrar la identidad de Euler:

$$exp(i\theta) = \cos(\theta) + i\sin(\theta)$$

y deducir, de aquí, que:

$$exp(i\pi) + 1 = 0$$