EXHIBIT S

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 2 of 11 PageID #: 6152

```
1
                 UNITED STATES DISTRICT COURT
 2.
              FOR THE EASTERN DISTRICT OF TEXAS
 3
                      MARSHALL DIVISION
                           ---000---
 4
      NETLIST, INC.,
                                 )
 5
              Plaintiff.
 6
      vs.
                                ) Case No.
      MICRON TECHNOLOGY, INC.; ) 2:22-cv-203-JRG-RSP
 7
 8
      MICRON SEMICONDUCTOR
 9
      PRODUCTS, INC.; MICRON )
10
      TECHNOLOGY TEXAS LLC,
11
              Defendants.
12
13
14
15
            VIDEOTAPED DEPOSITION OF HAROLD STONE, Ph.D.
16
                       REMOTE PROCEEDINGS
                     MONDAY, JUNE 26, 2023
17
18
19
20
      STENOGRAPHICALLY REPORTED BY:
21
      ANDREA M. IGNACIO, CSR, RPR, CRR, CCRR, CLR ~ CSR
22
      LICENSE NO. 9830
23
      JOB NO. 5968770
24
      PAGES 1 - 208
25
                                                   Page 1
```

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 3 of 11 PageID #: 6153

1	you what's happening. Look at Figure 2.20, page 79.	13:39
2	Okay. On this page, a wave is sent from the left	13:39
3	where there you see the ZO, and it goes out to	13:39
4	where there's a junction. At the junction, it's	13:39
5	reflected back, and part of the wave goes forward	13:39
6	straight; part of it goes to the left. That's what	13:40
7	you're dealing with with physics.	13:40
8	And that happens when you're connected to the	13:40
9	die, regardless of what happens on the die, whether	13:40
10	there is a port array connected to it or not.	13:40
11	So what happens is that the wave propagates	13:40
12	on the die along the stub or to the port array, and it	13:40
13	bounces back again. So those waves are going back and	13:40
14	forth and back and forth, and that's what causes the	13:40
15	noise that you saw in the earlier figure.	13:40
16	Let me go back to 2.19. Do you see that	13:40
17	noise there? Each bump or change is a result of a	13:40
18	reflection, and the reflections come from the port	13:40
19	arrays, the data arrays on the ports. They also come	13:40
20	from the stubs if they don't have a data port	13:40
21	connected, and they come from the points where there's	13:40
22	a branch.	13:41
23	So changing things by removing or adding	13:41
24	devices only changes the noise, unless you don't have	13:41
25	a multi unless there are no stubs or no drivers.	13:41
	Pag	ge 94

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 4 of 11 PageID #: 6154

1	Then you then you can get a predictable wave. And	13:41
2	that has that even has reflections, but it looks	13:41
3	different.	13:41
4	So that's my testimony.	13:41
5	Q Okay. Let me see if I understand something.	13:41
6	Is it your testimony that the connection	13:41
7	between a TSV and a stub is electrical communication?	13:41
8	A Yeah. This demonstrates it, because the wave	13:41
9	travels on that.	13:41
10	Q Okay. What does the word "electrical	13:41
11	communication" mean to you?	13:41
12	A Electrical connection. That's I got that	13:41
13	from the patent. I can show you where he says that.	13:41
14	Q Okay. Show me.	13:41
15	A Okay. The patent the is what exhibit?	13:41
16	Q Exhibit 9, sir.	13:42
17	A Okay. I'll open the Exhibit 9.	13:42
18	So I have the '060 patent up. I'll I will	13:42
19	find that reference that says that it connects	13:42
20	makes the association between electrical communication	13:43
21	and electrical connection.	13:43
22	I would like you to look at column 17.	13:43
23	Q Okay. I'm there.	13:43
24	A I'm looking at line 65. Line 65 reads:	13:43
25	"Forming the electrical connections places	13:43
	Pa	ge 95

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 5 of 11 PageID #: 6155

1	the die interconnects in" "communication with the	13:43
2	respective drivers."	13:44
3	Okay. Now, let's see. There may be	13:44
4	additional I would like to look at. Now, continuing	13:44
5	on from that point, it says:	13:44
6	"In some embodiments, forming the electrical	13:44
7	connections can comprise forming electrical	13:44
8	connections between the die interconnects and a data	13:44
9	conduit."	13:44
10	Okay.	13:44
11	Q I'm sorry to interrupt, but can I ask a	13:44
12	clarifying question?	13:44
13	A And see, that that well, actually,	13:44
14	that's not so relevant. It's the previous sentence	13:44
15	that I read:	13:44
16	"Forming the electrical connections places	13:44
17	the die interconnects in electrical communication with	13:44
18	the respective drivers."	13:44
19	So what we've done is we if you connect a	13:44
20	die interconnect to a one of the levels in the	13:45
21	figure, you now are connecting to some conductor.	13:45
22	That conductor will carry a wave when you when you	13:45
23	drive it. It has capacitance. It has a load.	13:45
24	And whether or not that conductor is is	13:45
25	attached to a data port, you will see the wave go down	13:45
	Pag	ge 96

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 6 of 11 PageID #: $6156\,$

1	that conductor. At the end, it will bounce bounce	13:45
2	back, and you'll see that as noise. Moreover, the	13:45
3	capacitance on the conductor will load the driver.	13:45
4	So in every way, forming the electrical	13:45
5	connection and placing this piece of a of a metal	13:45
6	on the on an array, it will form to an electrical	13:45
7	communication. That's what you'll get. Electrical	13:45
8	connection is electrical communication in this sense.	13:45
9	Q Okay. But can I ask a clarifying question?	13:46
10	So on line 65, column 17, it says:	13:46
11	"Forming the electrical connection places the	13:46
12	die interconnects in electrical communication with the	13:46
13	respective drivers."	13:46
14	Right?	13:46
15	That's talking about the drivers on the	13:46
16	control die; right?	13:46
17	A That's correct.	13:46
18	Q Okay. So it's not talking about electrical	13:46
19	communication with the array dies; right?	13:46
20	A No. I disagree.	13:46
21	Q Why?	13:46
22	A You you will understand that the VIA is	13:46
23	now connected to the to the array die, because	13:46
24	there may be metal there. There may be a metal a	13:46
25	metal pathway.	13:46
	Pag	ge 97

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 7 of 11 PageID #: 6157

1	Q I understand.	13:46
2	But you're saying that this specific	13:46
3	disclosure that equates electrical connection with	13:46
4	electrical communication discusses array dies.	13:46
5	And I'm pointing out to you that it	13:46
6	specifically says drivers, and these are drivers in	
7	the control die; right?	13:47
8	A Yeah, but that's fine. The driver is in	
9	communication with whatever the the VIA is	13:47
10	connected to on that die.	13:47
11	Q Does the passage mention electrical	13:47
12	communication with array dies?	13:47
13	MR. RUECKHEIM: Object to the form.	13:47
14	THE WITNESS: Does the it just it just	13:47
15	did. That's what it says.	13:47
16	MR. TEZYAN: Q. Where does it say "array	13:47
17	die" in this paragraph, sir?	13:47
18	A Just a moment.	13:47
19	Okay. There is a reference to this in	13:48
20	column 8 at line 57.	13:48
21	Q And I don't mean to cut you off, sir, but the	13:48
22	question was about paragraph the paragraph starting	13:48
23	on line 60 of column 17.	13:48
24	And the question was: Where in that	13:48
25	paragraph that you claim provides support for your	13:48
	Pag	ge 98

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 8 of 11 PageID #: 6158

1	but long answer, is it your testimony that the driver	15:47
2	size doesn't depend on how many transistors are	15:48
3	actively being used?	15:48
4	A The driver size in this patent is taught to	15:48
5	be the area of the driver or the physical dimensions	15:48
6	of the driver. And so it does not depend on the	15:48
7	number of transistors that are actually being used.	15:48
8	Q Okay. So if only two of the ten transistors	15:48
9	are used to drive a load, is the physical size of the	15:48
10	driver determined by the ten transistors or the two	15:48
11	transistors?	15:48
12	A Are you saying that you'll never use	15:48
13	transistors? Is that your assumption?	15:48
14	Q No.	15:48
15	I'm just saying for purposes of my	15:48
16	hypothetical, right, you have a driver that's composed	15:48
17	of ten transistors; right?	15:48
18	A I understand.	15:48
19	Q Okay. And for the particular load that's on	15:48
20	this driver, you're using two of the ten transistors	15:49
21	for driving.	15:49
22	Does that make sense?	15:49
23	A That makes sense.	15:49
24	Q Okay. So if only two of the ten transistors	15:49
25	are used to drive a load, is the physical size of the	15:49
	Page	e 146

Case 2:22-cv-00203-JRG-RSP Document 116-2 Filed 07/14/23 Page 9 of 11 PageID #: 6159

1	driver determined by the ten transistors or the two	15:49
2	transistors?	15:49
3	A I asked a question: Do you ever turn on all	15:49
4	ten transistors?	15:49
5	Q You could. But in this situation, you're	15:49
6	just using two.	15:49
7	A I think you answered my question. If you can	15:49
8	turn on all ten, the driver size is related to the	15:49
9	load that you can drive. And if you're going to drive	15:49
10	ten transistors, you have to have enough area to	15:49
11	dissipate the power they generate. And once you have	15:49
12	that area, even if you only use two, you've got the	15:49
13	area, because you're committed to the area for the	15:49
14	ten.	15:49
15	Q Okay. So the answer to my question is that	15:49
16	if you have a driver that's composed of ten	15:49
17	transistors, regardless of whether you're driving two	15:49
18	or ten of them, the driver size is ten transistors?	15:50
19	A No. The driver size is the physical	15:50
20	dimension of the driver.	15:50
21	Q Okay. Sorry. I withdraw the question.	15:50
22	So let me just ask the original question	15:50
23	again: If only two of the ten transistors are used to	15:50
24	drive a load, is the physical size of the driver	15:50
25	determined by the ten transistors?	15:50
	Page	e 147

1	A I don't know exactly, but the answer is it	15:50
2	could be.	15:50
3	Q Okay. When would it not be determined by	15:50
4	those ten transistors?	15:50
5	A Ask your question again, because I think I	15:50
6	misunderstood it.	15:50
7	Q Sure.	15:50
8	The the question is and I think I know	15:50
9	the answer, based on your testimony, but I just want	15:50
10	to make sure we're absolutely clear.	15:50
11	So if only two of the ten transistors are	15:50
12	used to drive a load, is the physical size of the	15:50
13	drive the driver determined by ten transistors or	15:51
14	two transistors?	15:51
15	A My answer is going to be determined by the	15:51
16	two transistors, because the size of the driver has to	15:51
17	be able to dissipate the power of whatever is in	15:51
18	there. And if those two transistors are driving like	15:51
19	mad, and that would might be the case, then you	15:51
20	have to make enough area to dissipate the heat.	15:51
21	You just told me that you're never going to	15:51
22	drive the other eight, if I understand the hypothesis.	15:51
23	Q No.	15:51
24	So	15:51
25	A Okay.	15:51
	Page	· 148

1 CERTIFICATE OF STENOGRAPHIC REPORTER 2. 3 I, ANDREA M. IGNACIO, hereby certify that the witness in the foregoing remote deposition was by me 4 5 sworn to tell the truth, the whole truth, and nothing but the truth in the within-entitled cause; 6 7 That said remote deposition was taken in 8 shorthand by me, a disinterested person, at the time 9 and place therein stated, and that the testimony of the said witness was thereafter reduced to 10 11 typewriting, by computer, under my direction and 12 supervision; 13 That before completion of the deposition, 14 review of the transcript [] was [x] was not 15 If requested, any changes made by the requested. 16 deponent (and provided to the reporter) during the 17 period allowed are appended hereto. I further certify that I am not of counsel or 18 19 attorney for either or any of the parties to the said 2.0 deposition, nor in any way interested in the event of 21 this cause, and that I am not related to any of the 22 parties thereto. 23 Dated: June 27, 2023 2.4 25 ANDREA M. IGNACIO, RPR, CRR, CCRR, CLR, CSR No. 9830 Page 206