Problem Set 1

Both theory and programming questions are due Thursday, September 15 at 11:59PM. Please download the .zip archive for this problem set, and refer to the README.txt file for instructions on preparing your solutions. Remember, your goal is to communicate. Full credit will be given only to a correct solution which is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also help you conceptualize the key idea of the problem.

We will provide the solutions to the problem set 10 hours after the problem set is due, which you will use to find any errors in the proof that you submitted. You will need to submit a critique of your solutions by Tuesday, September 20th, 11:59PM. Your grade will be based on both your solutions and your critique of the solutions.

Collaborators: None.

Problem 1-1. [15 points] Asymptotic Practice

For each group of functions, sort the functions in increasing order of asymptotic (big-O) complexity:

(a) [5 points] Group 1:

$$f_1(n) = n^{0.999999} \log n$$

$$f_2(n) = 10000000n$$

$$f_3(n) = 1.000001^n$$

$$f_4(n) = n^2$$

Your Solution: 2, 1, 4, 3 Wrong, correct anwser is 1, 2, 4, 3

(b) [5 points] Group 2:

$$f_1(n) = 2^{2^{1000000}}$$

$$f_2(n) = 2^{100000n}$$

$$f_3(n) = \binom{n}{2}$$

$$f_4(n) = n\sqrt{n}$$

Your Solution: 1, 4, 3, 2

(c) [5 points] Group 3:

$$f_1(n) = n^{\sqrt{n}}$$

$$f_2(n) = 2^n$$

$$f_3(n) = n^{10} \cdot 2^{n/2}$$

$$f_4(n) = \sum_{i=1}^n (i+1)$$

Your Solution: 4, 3, 2, 1 Wrong, correct anwser is 4, 1, 3, 2

Problem 1-2. [15 points] Recurrence Relation Resolution

For each of the following recurrence relations, pick the correct asymptotic runtime:

(a) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) & = & \Theta(x) & \text{for } c \leq 2, \\ T(c,y) & = & \Theta(y) & \text{for } c \leq 2, \text{ and} \\ T(x,y) & = & \Theta(x+y) + T(x/2,y/2). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 3 Wrong, correct anwser is 2

(b) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) & = & \Theta(x) & \text{for } c \leq 2, \\ T(c,y) & = & \Theta(y) & \text{for } c \leq 2, \text{ and} \\ T(x,y) & = & \Theta(x) + T(x,y/2). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 5 Wrong, correct anwser is 3

Problem Set 1 3

(c) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) & = & \Theta(x) & \text{for } c \leq 2, \\ T(x,y) & = & \Theta(x) + S(x,y/2), \\ S(c,y) & = & \Theta(y) & \text{for } c \leq 2, \text{ and} \\ S(x,y) & = & \Theta(y) + T(x/2,y). \end{array}$$

- 1. $\Theta(\log n)$.
- $2. \Theta(n).$
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 5 Wrong, correct anwser is 2

Peak-Finding

In Lecture 1, you saw the peak-finding problem. As a reminder, a peak in a matrix is a location with the property that its four neighbors (north, south, east, and west) have value less than or equal to the value of the peak. We have posted Python code for solving this problem to the website in a file called ps1.zip. In the file algorithms.py, there are four different algorithms which have been written to solve the peak-finding problem, only some of which are correct. Your goal is to figure out which of these algorithms are correct and which are efficient.

Problem 1-3. [16 points] Peak-Finding Correctness

- (a) [4 points] Is algorithm1 correct?
 - 1. Yes.
 - 2. No.

Your Solution: Yes

- (b) [4 points] Is algorithm2 correct?
 - 1. Yes.
 - 2. No.

Your Solution: Yes

- (c) [4 points] Is algorithm3 correct?
 - 1. Yes.

Problem Set 1

2. No.

Your Solution: No

- (d) [4 points] Is algorithm4 correct?
 - 1. Yes.
 - 2. No.

Your Solution: Yes

Problem 1-4. [16 points] Peak-Finding Efficiency

- (a) [4 points] What is the worst-case runtime of algorithm1 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - $2. \Theta(n).$
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 3

- (b) [4 points] What is the worst-case runtime of algorithm2 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - $2. \Theta(n).$
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 5

- (c) [4 points] What is the worst-case runtime of algorithm3 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - $2. \Theta(n).$
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 2

Problem Set 1 5

(d) [4 points] What is the worst-case runtime of algorithm 4 on a problem of size $n \times n$?

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 2

Problem 1-5. [19 points] Peak-Finding Proof

Please modify the proof below to construct a proof of correctness for the most efficient correct algorithm among algorithm2, algorithm3, and algorithm4.

The following is the proof of correctness for algorithm1, which was sketched in Lecture 1.

We wish to show that algorithm1 will always return a peak, as long as the problem is not empty. To that end, we wish to prove the following two statements:

1. If the peak problem is not empty, then algorithm1 will always return a location. Say that we start with a problem of size $m \times n$. The recursive subproblem examined by algorithm1 will have dimensions $m \times \lfloor n/2 \rfloor$ or $m \times (n - \lfloor n/2 \rfloor - 1)$. Therefore, the number of columns in the problem strictly decreases with each recursive call as long as n > 0. So algorithm1 either returns a location at some point, or eventually examines a subproblem with a non-positive number of columns. The only way for the number of columns to become strictly negative, according to the formulas that determine the size of the subproblem, is to have n = 0 at some point. So if algorithm1 doesn't return a location, it must eventually examine an empty subproblem.

We wish to show that there is no way that this can occur. Assume, to the contrary, that algorithm1 does examine an empty subproblem. Just prior to this, it must examine a subproblem of size $m \times 1$ or $m \times 2$. If the problem is of size $m \times 1$, then calculating the maximum of the central column is equivalent to calculating the maximum of the entire problem. Hence, the maximum that the algorithm finds must be a peak, and it will halt and return the location. If the problem has dimensions $m \times 2$, then there are two possibilities: either the maximum of the central column is a peak (in which case the algorithm will halt and return the location), or it has a strictly better neighbor in the other column (in which case the algorithm will recurse on the non-empty subproblem with dimensions $m \times 1$, thus reducing to the previous case). So algorithm1 can never recurse into an empty subproblem, and therefore algorithm1 must eventually return a location.

6 Problem Set 1

2. If algorithm1 returns a location, it will be a peak in the original problem. If algorithm1 returns a location (r_1, c_1) , then that location must have the best value in column c_1 , and must have been a peak within some recursive subproblem. Assume, for the sake of contradiction, that (r_1, c_1) is not also a peak within the original problem. Then as the location (r_1, c_1) is passed up the chain of recursive calls, it must eventually reach a level where it stops being a peak. At that level, the location (r_1, c_1) must be adjacent to the dividing column c_2 (where $|c_1 - c_2| = 1$), and the values must satisfy the inequality $val(r_1, c_1) < val(r_1, c_2)$.

Let (r_2, c_2) be the location of the maximum value found by algorithm1 in the dividing column. As a result, it must be that $val(r_1, c_2) \leq val(r_2, c_2)$. Because the algorithm chose to recurse on the half containing (r_1, c_1) , we know that $val(r_2, c_2) < val(r_2, c_1)$. Hence, we have the following chain of inequalities:

$$val(r_1, c_1) < val(r_1, c_2) \le val(r_2, c_2) < val(r_2, c_1)$$

But in order for algorithm1 to return (r_1, c_1) as a peak, the value at (r_1, c_1) must have been the greatest in its column, making $val(r_1, c_1) \ge val(r_2, c_1)$. Hence, we have a contradiction.

Your Solution:

As we have worked out in the 1-4, the most effecient algorithm amog algorithm2, 3, 4 must be algorithm4. Because the oder of growth for algorithm 4 is linear. The modifications for the algorithm 4 proof are as below: Modification 1: the number of columns and rows reduce to the half alternatively. But the problem demensions strictly decrease as the algorithm 4; Modification 2: algorithm 4 will not have negative number of columns and rows. Modification 3; The location algorithm 4 returns must be the 1D demension peak in that row or column. Modification 4: Since we don't know about the location is the maxium of perticular row or column, we can use the bestSeen variable to transmit the inequality for the statement 2. The modified proof goes like this:

Statement 1: as long as the peak problem matrix is not empty, algorithm 4 will aways return a location. Say that we start with a problem of size $m \times n$. The first recursive subproblem examined by algorithm 4 will have the demensilns $\lfloor m/2 \rfloor \times n$ and $\lfloor m/2 - 1 \rfloor \times n$. But the next recursice subproblem comes from dividing the columns into half instead of rows. In other words, the next demensions of the recursive subproblems will be $\lfloor m/2 \rfloor \times \lfloor n/2 \rfloor$ and $\lfloor m/2 - 1 \rfloor \times \lfloor n/2 - 1 \rfloor$. Therefor the numbers of rows and columns strictly decrease in an alternative order as long as m and n > 0. So algorithm 4 will either returns a location at some point, or eventually examines a subproblem with a non-postive number of columns and rows. The algorithm will not return a location only if the subproblem is empty.

We wish to show this scenario will happen in no way. Assume, to the contrary, that algorithm 4 does examine an empty subproblem. Just prior to this, it must examines a subproblem of one or two rows or columns. If the subproblem is a single row, then the maximum of the row will be the definitely be the peak for the problem and be returned by algorithm 4. If the

Problem Set 1 7

problem has two rows, there are then two possibilities: either the maximum of the central row is a peack and be returned or the maximum of the central row have better neighbor thus the problem is reduced to the single row case. For columns, the proof process is almost identical. So textttalgorithm 4 will can never recurse into an empty subproblem thus will always return a location.

Statement 2: the location algorithm 4 returns is a peak in the original problem. The location (r_1, c_1) returned by the algorithm 4 must be the peak in a subproblem and the peak must locate on the edge of the subproblem. Also, if the bestSeen location is (r_2, c_2) , then

$$val(r_1, c_1) > val(r_2, c_2)$$

.

Let (r_3, c_3) is the location adjacent to (r_1, c_1) but outside the subproblem. Since the locaiton (r_1, c_1) is a peak on the subproblem edge, we only need to prove $val(r_1, c_1) > val(r_3, c_3)$ to make sure (r_1, c_1) is the peak of the original problem. Because (r_3, c_3) must have been examined by the recursive algorithm and a part of bestSeen variable,

$$var(r_3, c_3) < var(r_2, c_2)$$

. So we can get

$$var(r_1, c_1) > var(r_2, c_2) > var(r_3, c_3)$$

safely. Thus the location algorithm 4 returns is the peak for the original problem.

Problem 1-6. [19 points] Peak-Finding Counterexamples

For each incorrect algorithm, upload a Python file giving a counterexample (i.e. a matrix for which the algorithm returns a location that is not a peak).

Your Solution:couterexample for algorithm 3

```
 \begin{aligned} & \text{problemMatrix} = [\\ & [0,\,0,\,0,\,0,\,0,\,6,\,5,\,0,\,0,\,0\,\,,\,0,\,0,\,0],\\ & [0,\,0,\,2,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0],\\ & [0,\,0,\,4,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0],\\ & [0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0],\\ & [0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0],\\ & ] \end{aligned}
```