Übungsblatt 1

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. Sei $M = \mathbb{R}^2 \setminus \{(x,0) : x \geq 0\}$. Dies ist eine offene Teilmenge von \mathbb{R}^2 , daher haben wir auf M den Standard-Atlas $\mathcal{A}_{std} = \{(M, \mathrm{id})\}$. Sei $\phi : M \to (0, \infty) \times (0, 2\pi)$ definiert durch

$$\phi^{-1}: (0, \infty) \times (0, 2\pi) \to M, \quad \phi^{-1}(r, \theta) = (r \cos \theta, r \sin \theta).$$

Bestimmen Sie ϕ und zeigen Sie, dass dies eine Karte ist, die mit der Standardkarte (M, id) verträglich ist.

Aufgabe 2. Sei $M = S^n \subset \mathbb{R}^{n+1}$ und sei für $\alpha \in \{1, \dots, n+1\}$, $\epsilon \in \{\pm 1\}$ die Hemisphäre $U_{\alpha,\epsilon} = \{x \in S^n \mid \epsilon x^{\alpha} > 0\}$ gegeben.

a) Zeigen Sie, dass

$$\phi_{\alpha,\epsilon}: U_{\alpha,\epsilon} \to \mathbb{R}^n, \quad \phi(x^1,\ldots,x^{n+1}) = (x^1,\ldots,\widehat{x^{\alpha}},\ldots,x^{n+1})$$

eine Karte auf S^n definiert.

- b) Zeigen Sie weiter, dass $\mathcal{A} = \{(U_{\alpha,\epsilon}, \phi_{\alpha,\epsilon}) \mid \alpha \in \{1, \dots, n+1\}, \epsilon \in \{\pm 1\}\}$ einen glatten Atlas auf S^n definiert. Geben Sie genau die Definitions- und Bildbereiche der jeweiligen Kartenwechsel an.
- c) Zeigen Sie, dass $\tilde{\mathcal{A}} = \mathcal{A} \cup \{(S^n \setminus \{S\}, \phi_S)\}$ ein glatter Atlas ist. Hier bezeichnet $\phi_S : S^n \setminus \{S\} \to \mathbb{R}^n$ die Stereographische Projektion vom Südpol. Geben Sie genau die Definitions- und Bildbereiche der jeweiligen Kartenwechsel an.

Aufgabe 3. Sei $(M^n, [\mathcal{A}])$ eine differenzierbare Mannigfaltigkeit, $p \in M$, und $(\tilde{U}, \tilde{\phi}) \in [\mathcal{A}]$ eine Karte mit $p \in \tilde{U}$. Zeigen Sie, dass zu gegebenem r > 0 eine mit $(\tilde{U}, \tilde{\phi})$ glatt verträgliche Karte (U, ϕ) mit folgenden Eigenschaften existiert:

- $p \in U, U \subset \tilde{U}$ und $\phi(p) = 0$. (Wir sagen, die Karte (U, ϕ) ist zentriert um p.)
- $\phi(U) = B_r(0) = \{x \in \mathbb{R}^n \mid ||x|| < r\}$, die offene Kugel mit Radius r.
- **Aufgabe 4.** a) Sei M eine Menge. Zeigen Sie: Verträglichkeit induziert eine Äquivalenzrelation auf der Menge der n-dimensionalen glatten Atlanten auf M und die Äquivalenzklasse $[\mathcal{A}]$ eines n-dimensionalen Atlas \mathcal{A} ist gegeben durch den maximalen Atlas, der \mathcal{A} enthält.
 - b) Sei $M = \mathbb{R}$ und sei $\mathcal{A} = \{(\mathbb{R}, \psi)\}$ gegeben durch $\psi : \mathbb{R} \to \mathbb{R}, \psi(x) = x^3$. Zeigen Sie, dass dies ein glatter Atlas auf \mathbb{R} ist. Sind \mathcal{A} und der Standard-Atlas $\mathcal{A}_{std} = \{(\mathbb{R}, \mathrm{id}_{\mathbb{R}})\}$ verträgliche Atlanten?
 - Abgabe am Donnerstag, 14.04.2016 in der Vorlesung.
 - Die Studienleistung erbringen Sie, indem Sie regelmäßig und aktiv an den Übungen teilnehmen, mindestens einmal vorrechnen und bei den Hausaufgaben 50% der möglichen Punkte erzielen (alle Aufgaben werden gleich gewichtet, daher sind sie ohne Punkte versehen).