MATH 437: Homework 3 James Della-Giustina

Problem 1

Consider the following linear program:

Maximize
$$2x_1 + 3x_2 = z$$

subject to $x_1 + 3x_2 \le 6$
 $3x_1 + 2x_2 \le 6$
 $x_1, x_2 \ge 0$

- (a) State the problem in a canonical feasible form.
- (b) Determine all the basic solutions of the problem (you will have 4 variables, any 2 of them can be basic, so there will be total of $\binom{4}{2} = 6$ basic solutions). Classify each of the basic solutions as feasible or infeasible.
- (c) Solve graphically the original linear program.
- (d) Illustrate how all the basic solutions (both feasible and infeasible) are represented on the 2-dimensional graphical solution space.
- (e) Use the simplex algorithm to solve the program in the canonical form.

Solution 1. (a) Our program in canonical feasible form is:

Minimize
$$-2x_1 - 3x_2 = -z$$

subject to $x_1 + 3x_2 + x_3 = 6$
 $3x_1 + 2x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

(b) A table of all basic solutions and their feasibility is shown below in Table 1.1:

x_B	x_N	x =	Feasibility	z
x_3, x_4	x_1, x_2	(0,0,6,6)	CPF	0
x_1, x_2	x_3, x_4	$\left(\frac{6}{7}, \frac{12}{7}, 0, 0\right)$	CPF	$-\frac{48}{7}$
x_1, x_3	x_2, x_4	(2,0,4,0)	CPF	-4
x_1, x_4	x_2, x_3	(6,0,0,-12)	Infeasible	-12
x_2, x_3	x_1, x_4	(0,3,-3,0)	Infeasible	-9
x_2, x_4	x_1, x_3	(0,2,0,6)	CPF	-6

Table 1.1: Considering all $\binom{4}{2}$ basic solutions, their feasibility, and the value of the objective function at that point.

(c) Figure 1 is the graphical representation of our problem: Clearly, we can see that the point $\left(\frac{6}{7},\frac{12}{7}\right)$ gives us an optimal solution with $z=\frac{48}{7}$.

Figure 1: A graphical representation of the feasible region for Problem 1 with CPF at (0,0), (2,0), (0,2), and $(\frac{6}{7},\frac{12}{7})$.

- (d) Since we are in \mathbb{R}^n with n=2, then by definition each basic solution is the intersection of n=2 constraints. Therefore, it is clear that each solution is the intersection of two lines defined by our constraints.
- (e) We formulate our problem in tableau form:

$$\begin{bmatrix}
z & x_1 & x_2 & x_3 & x_4 & b \\
-1 & -2 & -3 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 & 6 \\
0 & 3 & 2 & 0 & 1 & 6
\end{bmatrix}$$

Since $x_2 < x_1$, we choose x_2 to be our incoming basic variable. Our ratios are $\frac{6}{3} = 2$ for row R_2 and $\frac{6}{2} = 3$ for row R_3 and so we choose to pivot on x_2 in R_3 meaning x_3 is our outgoing basic variable. We perform the following row operations:

$$R_2 + R_1 \rightarrow R_1$$

$$\frac{1}{3}R_2 \rightarrow R_2$$

$$-2R_2 + R_3 \rightarrow R_3$$

Which gives us the current tableau:

$$\begin{bmatrix} z & x_1 & x_2 & x_3 & x_4 & b \\ \hline -1 & -1 & 0 & 1 & 0 & 6 \\ \hline 0 & \frac{1}{3} & 1 & \frac{1}{3} & 0 & 2 \\ 0 & \frac{7}{3} & 0 & -\frac{2}{3} & 1 & 2 \end{bmatrix}$$

All cost coefficients are not non-negative and so we choose x_1 as an incoming basic variable. Since $\frac{2}{1/3} = 6$ for row R_2 and $\frac{2}{7/3} = \frac{6}{7}$ for row R_3 , we choose the last row to pivot on. The

following row operations are performed:

$$\frac{3}{7}R_3 \rightarrow R_3$$
$$-\frac{1}{3}R_3 + R_2 \rightarrow R_2$$
$$R_3 + R_1 \rightarrow R_1$$

Which gives us a final tableau form:

	z	x_1	x_2	x_3	x_4	b
	-1	0	0	$\frac{5}{7}$	$\frac{3}{7}$	$\frac{48}{7}$
	0	0	1	$\frac{3}{7}$	$-\frac{1}{7}$	$\frac{12}{7}$
	0	1	0	$-\frac{2}{7}$	$\frac{3}{7}$	$\frac{6}{7}$

Since all cost coefficients $c_j > 0$, then we have reached our optimality stopping condition. Letting $x_N = (x_3, x_4)$ equal to 0 and $x_B = (x_1, x_2)$ equal to \bar{b} , we see that $(x_1, x_2) = \left(\frac{12}{7}, \frac{6}{7}\right)$ gives us a minimal value of $z = -\frac{48}{7}$; which is exactly the solution we found in parts (b) and (c).

Problem 2

Suppose that a linear program is given in a canonical feasible form:

$$-z + 0x_B + \bar{c}^T x_N = -\bar{z}_0,$$

$$Ix_B + \bar{A}x_N = \bar{b}.$$

Carefully prove that the basic feasible solution corresponding to the above form is the unique minimal feasible solution if $\bar{c}_j > 0$ for all non-basic variables.

Solution 2. First we will show that the basic feasible solution x^* corresponding to the above form is a minimizer. Then we will show that the minimal feasible solution is unique. To see that x^* is a minimizer, note that

$$z = \bar{z}_0 + 0x_B + \bar{c}^T x_N.$$

If we change values of our basic variables, the value of z does not change. Since $x_N = 0$ and since we have non-negativity constraints, we can only increase the values of our non-basic variables. Since $\bar{c}^T > 0$, increasing the value of any non-basic variable increases the objective value z. So x^* is a minimizer.

To see that x^* is a unique minimizer, first note that if we change any non-basic variable then the value of the objective function increases. Since we must satisfy

$$Ix_B + \bar{A}x_N = \bar{b},$$

if we change the values of the basic variables then we must change the values of the non-basic variables. Then x^* is the unique minimizer.

Problem 3

Suppose that a linear program is given in a canonical feasible form:

$$-z + 0x_B + \bar{c}^T x_N = -\bar{z}_0,$$

$$Ix_B + \bar{A}x_N = \bar{b}.$$

As usual, we will let \bar{a}_{ij} denote the elements of the matrix \bar{A} and let \bar{A}_s denote the column of the matrix \bar{A} that corresponds to the variable x_s .

Suppose that the column of the matrix \bar{A} that corresponds to a non-basic variable x_s contains a positive element (using mathematical notation, the set $\{i \mid \bar{a}_{is} > 0\}$ is not empty). Let

$$\bar{x}_s = \frac{\bar{b}_r}{\bar{a}_{rs}} = \min_{\{i | \bar{a}_{is} > 0\}} \frac{\bar{b}_i}{\bar{a}_{is}}.$$

Let \bar{x} be a vector obtained by the following process:

- For each non-basic variable $j \neq s$, keep $\bar{x}_j = 0$.
- Let $\bar{x}_B = \bar{b} \bar{A}_s \bar{x}_s$.

Please carefully prove that the solution \bar{x} is feasible. On the way to the solution, please illustrate what is happening on an example.

Solution 3. To show that \bar{x} is feasible, we must verify that $A\bar{x} = \bar{b}$ and $\bar{x} \geq 0$.

$$A\bar{x} = I\bar{x}_B + \bar{A}\bar{x}_N = I(\bar{b} - \bar{A}_s\bar{x}_s) + \bar{x}_s\bar{A}_s = \bar{b} + \bar{A}_s\bar{x}_s - \bar{A}_s\bar{x}_s = \bar{b}.$$

Now we will verify that $\bar{x} \geq 0$. Since $\bar{b} \geq 0$, we know that \bar{x}_s is a ratio of positive numbers. So $\bar{x}_s > 0$. Each non-basic variable \bar{x}_j such that $j \neq s$ is zero. By our assignment of \bar{x}_s we have

$$\bar{A}_s \bar{x}_s = (\bar{a}_{1s}, \bar{a}_{2s}, \dots, \bar{a}_{ms})^T \min_{\{i | \bar{a}_{is} > 0\}} \frac{\bar{b}_i}{\bar{a}_{is}}.$$

We may note that for each j = 1, ..., m such that $\bar{a}_{js} > 0$, we have

$$\left(\bar{A}_s \bar{x}_s\right)_j = \min_{\{i \mid \bar{a}_{is} > 0\}} \frac{\bar{b}_i}{\bar{a}_{is}} \bar{a}_{js} \le \frac{\bar{b}_j}{\bar{a}_{js}} \bar{a}_{js} = \bar{b}_j.$$

Then for each j = 1, ..., m such that $\bar{a}_{js} > 0$, we have that

$$(\bar{x}_B)_j = (\bar{b} - \bar{A}_s \bar{x}_s)_j = \bar{b}_j - (\bar{A}_s \bar{x}_s)_j \ge \bar{b}_j - \bar{b}_j = 0.$$

For each $j=1,\ldots,m$ such that $\bar{a}_{js}\leq 0$, we have $(\bar{x}_B)_j=(\bar{b}-\bar{A}_s\bar{x}_s)_j=\bar{b}_j-\bar{a}_{js}\bar{x}_s\geq \bar{b}_j\geq 0$. Since $\bar{x}_j\geq 0$ for each $j=1,\ldots,n$, we have $\bar{x}\geq 0$.

Example 1. Consider a problem with the following form where $x = (0, 0, 6, 6)^T$, $x_B = (x_3, x_4)^T = (6, 6)^T$, $x_N = (x_1, x_2)^T = (0, 0)^T$, and $\bar{b} = (6, 6)^T$:

$$\begin{bmatrix}
z & x_1 & x_2 & x_3 & x_4 & b \\
-1 & -2 & -3 & 0 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 & 6 \\
0 & 3 & 2 & 0 & 1 & 6
\end{bmatrix}.$$

Suppose s = 1. Then $A_s = (1,3)^T$ contains a positive element. And

$$\bar{x}_1 = \frac{\bar{b}_r}{\bar{a}_{r1}} = \min_{\{i \mid \bar{a}_{i1} > 0\}} \frac{\bar{b}_i}{\bar{a}_{i1}} = \frac{\bar{b}_r}{\bar{a}_{21}} = \frac{6}{3} = 2.$$

Since x_2 is non-basic, we let $\bar{x}_2 = 0$. And we let $\bar{x}_B = (\bar{x}_3, \bar{x}_4)^T = \bar{b} - \bar{A}_s \bar{x}_s = (6, 6)^T - 2(1, 3)^T = (4, 0)^T$. Therefore, $\bar{x} = (2, 0, 4, 0)^T \ge 0$. Then

$$A\bar{x} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 3 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix} = \bar{b}.$$

References

 $[1] \quad \text{Frederick Hillier and Gerald Lieberman. } \textit{Introduction to Operations Research}. \ 11 \text{th ed. McGraw-Hill Education, } 2021.$