Đồ họa máy tính

Tuần 10: Phương pháp đặc tả đối tượng ba chiều

Nội dung

10.1. Mô hình khung dây

10.2. Mô hình biểu diễn mặt cong

10.1. Mô hình khung dây

10.1.1. Các dạng hình học cơ bản

Điểm & Đoạn thẳng

Điểm được xác định bởi (x, y, z)

Đoạn được xác định bởi $P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2)$

Polyline

Được xác định bởi $P_0, P_1, ..., P_N$

Polygon

Được xác định bởi $P_0, P_1, ..., P_N, P_0$

10.1. Mô hình khung dây

10.1.2. Khung dây

Khung dây gồm
Vertices, Edges, Polygons.

Quản lý khung dây bởi

Vertex table, Edge table, Polygon table.

- 10.2.1. Phương trình mặt phẳng
- 10.2.2. Polygon mesh
- 10.2.3. Quadrilateral mesh
- 10.2.4. Quadratic surface

10.2.1. Phương trình mặt phẳng

$$Ax + By + Cz + D = 0$$

$$(A/D)x_k + (B/D)y_k + (C/D)z_k = -1, \qquad k = 1, 2, 3$$

$$A = \begin{vmatrix} 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{vmatrix} \qquad B = \begin{vmatrix} x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_3 \end{vmatrix}$$

$$C = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \qquad D = - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

$$A = y_1(z_2 - z_3) + y_2(z_3 - z_1) + y_3(z_1 - z_2)$$

$$B = z_1(x_2 - x_3) + z_2(x_3 - x_1) + z_3(x_1 - x_2)$$

$$C = x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$$

 $D = -x_1(y_2z_3 - y_3z_2) - x_2(y_3z_1 - y_1z_3) - x_3(y_1z_2 - y_2z_1)$

10.2.2. Polygon mesh

10.2.3. Quadrilateral mesh

10.2.4. Quadratic surface

Sphere

$$x^{2} + y^{2} + z^{2} = r^{2}$$

$$x = r \cos \phi \cos \theta, \qquad -\pi/2 \le \phi \le \pi/2$$

$$y = r \cos \phi \sin \theta, \qquad -\pi \le \theta \le \pi$$

$$z = r \sin \phi$$

10.2.4. Quadratic surface

Ellipsoid

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 = 1$$

$$x = r_x \cos \phi \cos \theta, \quad -\pi/2 \le \phi \le \pi/2$$

$$y = r_y \cos \phi \sin \theta, \quad -\pi \le \theta \le \pi$$

$$z = r_z \sin \phi$$

10.2.4. Quadratic surface

Hyperboloid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

10.2.4. Quadratic surface

Paraboloid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = cz$$

10.2.4. Quadratic surface

Elliptic Cylinder

10.2.4. Quadratic surface

Hyperbolic Paraboloid

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = cz$$

10.2.4. Quadratic surface

Elliptic Cone

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$