Recall from last time: Linear Classifier

$$f(x,W) = Wx + b$$

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Class 1: 1 <= L2 norm <= 2

Class 2: Everything else

Class 1:

Three modes

Class 2:

Everything else

Recall from last time: Linear Classifier

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TO DO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function.
 (optimization)

 $\min_{\mathbf{W}} Loss(y, \hat{y})$

where y is the true label and \hat{y} is the predicted label

	A	
1		
	No.	

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores f(x,W)=Wx are:

	1			3
		THE		
	A	9/		
1				
1		*	en non	

2.5

frog -1.7

car

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a average of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

How do we choose L_i ?

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Squared Error (L2)

L1 Loss

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the

scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

3.2 cat

1.3

2.2

5.1 car

4.9

2.5

-1.7 frog

2.0

-3.1

cat

3.2

1.3

2.2

car

5.1

4.9

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

2.5
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the

scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

		1		A	
		9	0	~\	
	A				
1					
E			Applied to	Single Property	
		Mary Control	Carl State		

cat	3.2
car	5.1
frog	-1.7

Losses: 2.9

1.3

4.9

2.0

O

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

= 0

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$egin{aligned} L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ &= \max(0, \, 2.2 - (-3.1) + 1) \end{aligned}$$

- $= \max(0, 2.2 (-3.1) + 1) + \max(0, 2.5 (-3.1) + 1)$
- $= \max(0, 6.3) + \max(0, 6.6)$
- = 6.3 + 6.6
- = 12.9

 cat
 3.2
 1.3
 2.2

 car
 5.1
 4.9
 2.5

 frog
 -1.7
 2.0
 -3.1

 Losses:
 2.9
 0
 12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$
$$= 5.27$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to loss if car scores change a bit?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max({\color{red} 0}, s_j - s_{y_i} + 1)$$

Q: what is the min/max possible loss?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What if the sum was over all classes? (including j = y_i)

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What if we used mean instead of sum?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

$$f(x,W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W also has L = 0!

2.2

2.5

3.2 cat 5.1 car

frog

4.9 2.0 -1.7

2.9 Losses:

1.3

-3.1

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Before:

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

= 0

With W twice as large:

$$= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1)$$

$$= \max(0, -6.2) + \max(0, -4.8)$$

$$= 0 + 0$$

= 0

$$f(x,W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W also has L = 0!

How do we choose between W and 2W?

Regularization

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

Regularization

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L2 regularization likes to "spread out" the weights

$$w_1^T x = w_2^T x = 1$$

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

froq -1.7

Q: What is the min/max possible loss L_i?
A: min 0, max infinity

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

froq -1.7

Q2: At initialization all s will be approximately equal; what is the loss?

A: $\log(C)$, eg $\log(10) \approx 2.3$

Softmax vs. SVM

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a **score function**: $s=f(x;W)\stackrel{\text{e.g.}}{=}Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

$$w^* = \arg\min_{w} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, w), y_i) + R(w)$$
$$= \arg\min_{w} g(w)$$

$$w^* = \arg\min_{w} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, w), y_i) + R(w)$$

$$= \arg\min_{w} g(w)$$

How to find best weights
$$w^* = \arg\min_{w} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, w), y_i) + R(w)$$

$$= \arg\min_{w} g(w)$$
Idea #1: Closed Works for som regression) but in (even for or

Works for some models (linear regression) but in general very hard (even for one-layer net)

$$w^* = rg \min_{w} rac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, w), y_i) + R(w)$$
 $= rg \min_{w} g(w)$

Idea #1: Closed Form Solution

Works for some models (linear regression) but in general very hard (even for one-layer net)

Idea #2: Random Search

Try a bunch of random values for w, keep the best one Extremely inefficient in high dimensions

$$w^* = \arg\min_{w} \frac{1}{N} \sum_{i=1}^{N} \ell(f(x_i, w), y_i) + R(w)$$
 Idea #1:

$$= \arg\min_{w} g(w)$$

Idea #1: Closed Form Solution

Works for some models (linear regression) but in general very hard (even for one-layer net)

Idea #2: Random Search

Try a bunch of random values for w, keep the best one Extremely inefficient in high dimensions

Idea #3: Go downhill

Start somewhere random, take tiny steps downhill and repeat Good idea!

Which way is downhill?

Recall from single-variable calculus:

$$g'(w) = \lim_{h \to 0} \frac{g(w+h) - g(w)}{h}$$

If w is a scalar the **derivative** tells us how much g will change if w changes a little bit

Which way is downhill?

Recall from single-variable calculus:

$$g'(w) = \lim_{h \to 0} \frac{g(w+h) - g(w)}{h}$$

If w is a scalar the **derivative** tells us how much g will change if w changes a little bit

And multivariable calculus:

$$\frac{\partial g}{\partial w_i}(w) = \lim_{h \to 0} \frac{g(w + h\hat{e}_i) - g(w)}{h} \quad \nabla g(w) = \left(\frac{\partial g}{\partial w_1}(w), \dots, \frac{\partial g}{\partial w_K}(w)\right)$$

If w is a vector then we can take partial derivatives with respect to each component

$$\nabla g(w) = \left(\frac{\partial g}{\partial w_1}(w), \dots, \frac{\partial g}{\partial w_K}(w)\right)$$

The **gradient** is the vector of all partial derivatives; it has the same shape as w

Which way is downhill?

Recall from single-variable calculus:

$$g'(w) = \lim_{h \to 0} \frac{g(w+h) - g(w)}{h}$$

If w is a scalar the **derivative** tells us how much g will change if w changes a little bit

And multivariable calculus:

$$\frac{\partial g}{\partial w_i}(w) = \lim_{h \to 0} \frac{g(w + h\hat{e}_i) - g(w)}{h} \quad \nabla g(w) = \left(\frac{\partial g}{\partial w_1}(w), \dots, \frac{\partial g}{\partial w_K}(w)\right)$$

If w is a vector then we can take partial derivatives with respect to each component

$$\nabla g(w) = \left(\frac{\partial g}{\partial w_1}(w), \dots, \frac{\partial g}{\partial w_K}(w)\right)$$

The **gradient** is the vector of all partial derivatives; it has the same shape as w

Useful fact: The gradient of g at w gives the **direction of** steepest increase thus we need -ve gradient

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

The simple algorithm behind all deep learning

Initialize w randomly

While true:

Compute gradient abla g(w) at current point

$$w = w - \alpha \nabla g(w)$$

Move downhill a little bit.

The simple algorithm behind all deep learning

Initialize w randomly

While true:

Compute gradient $\,
abla g(w) \,$ at current point

Move downhill a little bit: $w = w - \alpha \nabla g(w)$

Learning rate: How big each step should be

The simple algorithm behind all deep learning

In practice we **estimate** the gradient using a small **minibatch** of data (Stochastic gradient descent)

Move downhill a little bit:

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

Initialize w randomly While true: Compute gradient abla g(w) at current point w=w-lpha
abla g(w)

Learning rate: How big each step should be

The simple algorithm behind all deep learning

In practice we **estimate** the gradient using a small **minibatch** of data (Stochastic gradient descent)

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

Initialize w randomly

While true:

Compute gradient $\,
abla g(w) \,$ at current point

Move downhill a little bit:

 $w = w - \alpha \nabla g(w)$

The **update rule** is the formula for updating the weights at each iteration; in practice people use fancier rules (momentum, RMSProp, Adam, etc)

Learning rate: How big each step should be