UPDATES

July 18, 2024

Notes

- new TGUS equation in place
- new data in place 391 usable tests

parameter	ç	S	s	r	k	â	c	k	S	s	<i>r</i> ↓	S	С	tgus
Metolachlor OA	6	3	3	Α	17	1	65	0	2	4	0	2		18.5
Metolachlor ESA	7	4	3	A	9	13	65	0	2	4	0	2		17.6
Metolachlor ESA	7	4	3	Α	9	13	65	0	2	4	0	2		12.9
Metolachlor OA	6	3	3	Α	17	1	65	0	2	4	0	2		20.9
Oxadiazon	1	5	3	Α	3	1	4	1	0	0	0	2		2.1
Metolachlor OA	6	3	3	Α	17	1	4	0	2	4	0	2		22.5
Metolachlor OA	6	3	3	Α	17	1	65	0	2	4	0	2		18.5
Metolachlor OA	6	3	3	Α	17	1	4	0	2	4	0	2		20
Metolachlor ESA	7	4	3	Α	9	13	4	0	2	4	0	2		19.6
Metolachlor ESA	7	4	3	Α	9	13	4	0	2	4	0	2		14.8
Metolachlor ESA	7	4	3	Α	9	13	65	0	2	4	0	2		12.9
Carbaryl	2	16	2	E	3	1	2	1		2	0	2		0.5
Atrazine	2	75	2	C	1	3	1	1	2	3	0	2		6.6
Carbaryl	2	16	2	E	3	1	75	0		2	0	2		0.3
Metolachlor ESA	7	4	3	Α	9	13	4	0	2	4	0	2		19.6
Simazine	2	60	2	C	1	1	2	1	2	3	0	2	1	4.4

```
def tgus(shl, app, det, om, bulk, koc):
calculates tgus equation from soil and pesticide parameters
returns: tgus, result from equation
args: shl, soil halflife for pesticide [m3/Mg]
      app, pesticide application rate [mg/m2]
      det, pesticide detection limit [mg/m3]
      om, soil organic matter fraction
      bulk, soil bulk density [Mg/m3]
      koc, partitioning coefficient for pesticide
t = 100 # current assumption, [days]
pf = 0.004 # current assumption
phi = app / (det * 0.01)
foc = 0.6 * om / 100
xi = (pf * phi) / (foc * bulk)
tgus = round(0.025 * shl * (np.log10(xi/koc)) - 0.0075*t,1)
```

New dataset, more complex TGUS equation

Results - binary classification accuracy (detected or nondetected)

- All: GUS, TGUS, drainage class, aquifer vulnerability
- **GUS Focus**: GUS, drainage class, aquifer vulnerability
- TGUS Focus: TGUS, drainage class, aquifer vulnerability
- **US Focus**: GUS, TGUS

	Avg. Train %	Avg. Validation %	Avg. Test %	Best Sc. Train %	Best Sc. Validation %	Best Sc. Test %
All	97.3	95.7	94.2	96.2	97.4	98.7
GUS Focus	94.5	95	92.4	93.6	93.6	97 . 5
TGUS Focus	97.3	95.4	92.8	96.6	94.9	97.5
US Focus	97.1	96.5	93.2	97.4	93.6	98.7

• All is statistically best performer (t-tests), otherwise no differences

Feature Importances (FI)

- averaged over 50 iterations -> consistent pattern
- GUS vs TGUS
 - o TGUS has more FI alone
 - TGUS has more FI with just GUS
 - o TGUS has less FI with all values...confusing
- if we look further...

Add in Drainage Class

- TGUS shares predictive info with drainage class
- testing accuracy roughly same: 94.2%
 - o need to investigate further

Add in Aquifer Vulnerability

- TGUS shares predictive info with aquifer vulnerability
- testing accuracy roughly same: 93.6%
 - o need to investigate further

What this tells us

- GUS remains unchanged, ~0.42-0.44
- TGUS capturing more of drainage class and aquifer vulnerability
 - o ...how much??

TGUS and **GUS** alone

Results - binary classification accuracy (detected or nondetected)

	Avg. Train %	Avg. Validation %	Avg. Test %	Best Sc. Train %	Best Sc. Validation %	Best Sc. Test %
GUS Alone	90.7	92.8	89.5	90.2	89.7	93.7
TGUS Alone	97	95.8	93.1	95.7	96.2	98.7

- TGUS performs just as well alone without drainage class or aquifer vulnerability
- GUS does not...

Moving Forward

- better understand what TGUS is not capturing
- find the best model is
- verify no errors in results