

Winning Space Race with Data Science

Francisco Stigliano 26-April-2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - EDA with data visualization
 - Building Folium powered interactive maps
 - Building a Plotly Dash powered Dashboard
 - Classification predictive analysis
- Summary of all results
 - EDA
 - Interactive Analysis
 - Predictive Analysis

Introduction

- Project background and context:
 - Space tourism will be a big thing. Companies must find the way to create the most sustainable
 way to take people to space. Leading this race is SpaceX with the Falcon 9 Rockets. Each launch
 costs SpaceX about 62 million dollars a much smaller value when compared with the 165 million
 dollars that other providers must spend. The reason for the difference? Reusability! The first stage
 of the rocket can be reused as long as it lands.
- Problems you want to find answers
 - The goal of the project is to predict if the first stage of the SpaceX Falcon9 rocket will land successfully.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX REST API
 - Web Scrapping from Wikipedia
- Perform data wrangling
 - OHE for Machine Learning and data cleaning of null, nan values and irrelevant collumns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN, SVM and DT models were built, trained and evaluated

Data Collection

Sources

- Wikipedia Web Scraping Using BeautifulSoup
- Information provided by the SpaceX REST API
 - Launches
 - Rocket Used
 - Payload Delivered
 - Launch and Landing info
 - Landing Outcome (if it landed or if an unscheduled rapid disassembly happened)

Data Collection – SpaceX API

 SpaceX REST API for Data Collection

GitHub - SpaceX API requests

Data Collection - Scraping

 Web Scraping Wikipedia pages

Github - WebScraping

Data Wrangling

Github - Data Wrangling

EDA with Data Visualization

• Github- Viz

EDA with SQL

- Some queries performed:
 - Displaying singular and combined categories
 - Listing the successful events
 - Ranking the outcomes on a given interval

Github - SQL

Build an Interactive Map with Folium

• Github - Folium

Build a Dashboard with Plotly Dash

• Github - Plotly Dash

Predictive Analysis (Classification)

- Both the SVM and the KNN got an accuracy score of 83.3%, the highest amongst the 4 models trained.
- The SVM also has the best under the curve performance at 0.958

Github - Machine Learning

Results

- SVM, KNN and LR work well in terms of accuracy
- Heavy payloads generally landing to fail
- The success rate of launches and landings as risen throughout the years
- Orbit GEO, HEO, SSO, ES L1 has provides the best rate for sucess

Flight Number vs. Launch Site

CCAFS SLC 40 Launches have the best performance

Payload vs. Launch Site

 Showing the correlation between launch Site and the payload mass

Success Rate vs. Orbit Type

• Success rate of each orbit

Flight Number vs. Orbit Type

• Types of orbit for each flight number.

Payload vs. Orbit Type

 A scatter plot that explain the relationship between the payload mass and the orbit chosen

Launch Success Yearly Trend

 Launch success has experienced an uprising trend throughout the years

All Launch Site Names

• Find the names of the unique launch sites

%sql select distinct(LAUNCH_SITE) from SPACEXTBL

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- %sql select * SPACEXTBL where LAUNCH_SITE like 'CCA%' limit 5

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- Total payload carried by boosters from NASA
- % select sum(PAYLOAD_MASS_KG_) from PACEXTBL where CUSTOMER = NASA (CRS)

45596

Average Payload Mass by F9 v1.1

- Average payload mass carried by booster version F9 v1.1
- %sql select avg(PAYLOAD_MASS_KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928.400000

First Successful Ground Landing Date

- Dates of the first successful landing outcome on ground pad
- %sql select min(DATE) from SPACEXTBL where Landing_Outcome O 'Success (ground pad)'

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 Names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

> F9 FT B1022 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- Total number of successful and failure mission outcomes
- %sql select count(MISSION_OUTCOME) from SPACEXTBL where
 MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

100

Boosters Carried Maximum Payload

- Names of the booster which have carried the maximum payload mass
- %sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS_KG_ = (select max(PAYLOAD_MASS_KG_) from SPACEXTBL)

```
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1060.3
```

2015 Launch Records

- Failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- %sql select* from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
17:54:00	F9 FT B1029.1	VAFB SLC-4E	Iridium NEXT 1	9600	Polar LEO	Iridium Communications	Success	Success (drone ship)
05:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
04:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
21:39:00	F9 FT B1023.1	CCAFS LC- 40	Thaicom 8	3100	GTO	Thaicom	Success	Success (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Ranking the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- %sql select* from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT B1023.1	21:39:00	2016-05- 27
Success	SKY Perfect JSAT Group	GTO	4696	JCSAT-14	CCAFS LC- 40	F9 FT B1022	05:21:00	2016-05- 06
Success	NASA (CRS)	LEO (ISS)	3136	SpaceX CRS-8	CCAFS LC- 40	F9 FT B1021.1	20:43:00	2016-04- 08
Success	Orbcomm	LEO	2034	OG2 Mission 2 11 Orbcomm-OG2 satellites	CCAFS LC- 40	F9 FT B1019	01:29:00	2015-12- 22
	Success	SKY Perfect JSAT Success NASA (CRS) Success	GTO SKY Perfect JSAT Success LEO (ISS) NASA (CRS) Success	4696 GTO SKY Perfect JSAT Group Success 3136 LEO (ISS) NASA (CRS) Success	JCSAT-14 4696 GTO SKY Perfect JSAT Group Success SpaceX CRS-8 3136 LEO (ISS) NASA (CRS) Success OG2 Mission 2 11 Orbcomm-OG2 2034 LEO Orbcomm Orbcomm Success	40 Inaicom 8 3100 GTO Inaicom Success CCAFS LC- 40 JCSAT-14 4696 GTO SKY Perfect JSAT Group Success CCAFS LC- 40 SpaceX CRS-8 3136 LEO (ISS) NASA (CRS) Success CCAFS LC- 40 OG2 Mission 2 11 Orbcomm-OG2 2034 LEO (ISS) Orbcomm Success	F9 FT B1023.1 40 Inaicom 8 3100 GTO Inaicom Success F9 FT B1022 CCAFS LC- 40 JCSAT-14 4696 GTO SKY Perfect JSAT Group Success F9 FT B1021.1 CCAFS LC- 40 SpaceX CRS-8 3136 LEO (ISS) NASA (CRS) Success F9 FT B1019 CCAFS LC- 40 OG2 Mission 2 11 Orbcomm-OG2 2034 LEO (ISS) Orbcomm Success	21:39:00 F9 FT B1023.1 40 Inaicom 8 3100 GTO Inaicom Success 05:21:00 F9 FT B1022 CCAFS LC- 40 JCSAT-14 4696 GTO SKY Perfect JSAT Group Success 20:43:00 F9 FT B1021.1 CCAFS LC- 40 SpaceX CRS-8 3136 LEO (ISS) NASA (CRS) Success 01:29:00 F9 FT B1019 CCAFS LC- OG2 Mission 2 11 Orbcomm-OG2 2034 LEO Orbcomm Success

Launch Site Location

Successful vs Unsuccessful launches on a map

Distances from launch site to proximities

Success Percentages by Launch Site

Success Rate by Site

Payload Mass vs Outcome

Classification Accuracy

Confusion Matrix

Conclusions

- SVM, KNN and LR can all be used to predict the landing outcome with the same accuracy
- Heavier Payloads generally perform worse than lighter ones
- The success of SpaceX Landings has been increasing throughout the years
- Some launch sites have better performance, such as the KSC LS 39A. This might be because sites like this generally are used for launches with lighter payloads
- Some orbits like the GEO,HEO,SSO,ES L1 have better rates than other, the reasons for these orbital differences were not studied.

