Análisis de presencias con procesos de puntos

Particularidades

Gerardo Martín

2022-06-29

La variable de respuesta

Regresión lineal

- $\cdot \ W$ son mediciones de peso en Kg
- · Modelo lineal:

$$W = \alpha + \beta E dad + \beta_{Sexo}$$

· Modelo predice peso en Kg

Modelos de nicho y distribución

- · Mediciones: coordenadas de presencia
- · ¿Qué unidades produce el modelo estadístico?

Modelos de nichos y distribución

- · Modelación correlativa
 - · Desconexión relativa entre análisis y predicción
 - · Confuso poner en perspectiva las unidades de predicción
- · Procesos de puntos resuelven la desconexión
 - · Datos: Puntos en Área de estudio dividida en unidades

Intensidad

· Variable de respuesta en procesos de puntos

$$\lambda(x) = y$$

- $\lambda =$ Número promedio de puntos/unidad espacial (píxel)

Intensidad promedio:

$$\bar{\lambda} = \frac{2+2+1+1+1+4+6}{36} = \frac{17}{36} = 0.47$$

Denominador es el número de unidades espaciales

Figure 1: Ejemplo de modelo Poisson de un patrón de puntos (Baddeley et al. 2016).

Supuestos

¿Qué son los supuestos?

- Postulados, premisas, cosas/hechos que se dan por sentados
 Todos hacemos suposiciones y casi todas estan mal (Einstein)
 - · Identificar bajo qué condiciones podemos estar equivocadxs

Tipos de supuestos

 $\textbf{Estadísticos} \text{ - Supuestos} \rightarrow \textbf{Errores potenciales} \rightarrow \textbf{Soluciones}$ potenciales

 ${\bf Biológicos} \mbox{ - Supuestos estadísticos} \mbox{ } \rightarrow \mbox{ Problema de estudio} \mbox{ } \rightarrow \mbox{ Interpretaciones}$

Supuestos estadísticos

- · Variable analizada / Modelo estadístico
- · Significado de los resultados
- \cdot MPPs o diferentes supuestos estadísticos
 - · Distribución estadística de presencias
 - · Independencia
 - Sesgo observacional

Supuestos estadísticos - Ejemplos

Media aritmética

· Valor más probable en distribución normal

Supuestos estadísticos - Ejemplos

Supuestos de MPPs

- · Intensidad de puntos promedio $(\lambda(u))$ tiene distribución Poisson
- · Los puntos son independientes
- \cdot $\lambda(u)$ es log-lineal

Dependencia espacial

Autocorrelación

Puntos se repelen ightarrow Puntos son independientes ightarrow Puntos se atraen

Autocorrelación

Moran-*I* > 1

Autocorrelación

Moran- $l \approx 0$

Número de vecinos

- \cdot Verificar, medir supuesto o Proponer soluciones
- · Pruebas estadísticas
 - K Ripley
 - · L Besag

Causas de la autocorrelación

Autocorrelación - causas

Τú

Autocorrelación - causas

Los bichos

Autocorrelación - corrección

· Combinar geoestadística con regresión:

$$\log \lambda(u) = \alpha + \beta_1 x_1 + \dots + \gamma(s) + \varepsilon$$

- x_i son las covariables ambientales (afectan media de λ)
 - \cdot γ es el efecto del espacio (Lo que x no explica)

Modelos para diferentes procesos de puntos

- · Puntos se repelen Modelos de interacción
- · Puntos aleatorios Modelos Poisson
- · Puntos moderadamente agregados Modelos de interacción
- · Puntos altamente agregados Modelos log-Cox Gaussianos, Clúster

Todos implementados en spatstat