

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CAMPUS APUCARANA

Lista de Exercícios - Cálculo II - Engenharia Química - Profa Adriana Camila (extraída do livro CÁLCULO - vol 2, James Stewart)

Integrais Duplas

- 1) Considere o retângulo $R = \{(x, y) \mid 0 \le x \le 6, \ 0 \le y \le 4\}.$
- a) Estime o volume do sólido que está abaixo da superfície z=xy e acima do retângulo R. Utilize a soma de Riemann com m=3, n=2 e tome como ponto amostral o canto superior direito de cada sub-retângulo.
- b) Use a regra do Ponto Médio para estimar o volume do sólido da parte (a).
- **2)** Considere o retângulo $R = [0, \pi] \times [0, \pi]$.
- a) Use a soma de Riemann com m=n=2 para estimar o valor de $\int \int_R \sin(x+y) dA$. Tome como pontos amostrais os cantos inferiores esquerdos.
- b) Use a regra do Ponto Médio para dar uma estimativa da integral do item (a).
- 3) É dada a tabela de valores de uma função f(x,y) definida em $R = [1,3] \times [0,4]$.
- a) Estime $\iint_R f(x,y)dA$ utilizando a Regra do Ponto Médio com m=n=2.
- b) Estime a integral dupla com m = n = 4, escolhendo como pontos amostrais os pontos mais distantes da origem.

				у		
		0	1	2	3	4
	1,0	2	0	-3	-6	-5
	1,5	3	1	-4	-8	-6
x	2,0	4	3	0	-5	-8
	2,5	5	5	3	-1	-4
	3,0	7	8	6	3	0

4) Calcule as integrais duplas.

a)
$$\iint_R 3 \, dA$$
, $R = \{(x, y) \mid -2 \le x \le 2, \ 1 \le y \le 6\}$

b)
$$\int \int_{R} (4-2y)dA$$
, $R = [0,1] \times [0,1]$

5) Calcule as integrais iteradas.

a)
$$\int_{1}^{3} \int_{0}^{1} (1+4xy) \ dxdy$$
 b) $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(x) \cos(y) \ dydx$

c)
$$\int_{0}^{2} \int_{0}^{1} (2x+y)^{8} dxdy$$
 d) $\int_{1}^{4} \int_{1}^{2} \left(\frac{x}{y} + \frac{y}{x}\right) dydx$ e) $\int_{0}^{1} \int_{0}^{1} (u-v)^{5} dudv$ f) $\int_{0}^{2} \int_{0}^{\pi} r \sin^{2}\theta d\theta dr$

6) Calcule as integrais duplas.

a)
$$\iint_R (6x^2y^3 - 5y^4) dA$$
, $R = \{(x, y) \mid 0 \le x \le 3, \ 0 \le y \le 1\}$

b)
$$\int \int_R \frac{xy^2}{x^2+1} dA$$
, $R = \{(x,y) \mid 0 \le x \le 1, -3 \le y \le 3\}$

c)
$$\iint_R x \sin(x+y) dA$$
, $R = [0, \pi/6] \times [0, \pi/3]$

d)
$$\iint_R xy e^{x^2y} dA$$
, $R = [0, 1] \times [0, 2]$

- 7) Esboce o sólido cujo volume é dado pela integral $\int_0^1 \int_0^1 (4-x-2y) \ dxdy$.
- 8) Determine o volume do sólido que se encontra abaixo do plano 3x + 2y + z = 12 e acima do retângulo $R = \{(x, y) \mid 0 \le x \le 1, -2 \le y \le 3\}.$
- 9) Determine o volume do sólido que está abaixo do parabolóide elíptico $\frac{x^2}{4} + \frac{y^2}{9} + z = 1$ e acima do retângulo $R = [-1, 1] \times [-2, 2]$.
- 10) Encontre o volume do sólido delimitado pelo paraboloide $z=2+x^2+(y-2)^2$ e pelos planos $z=1,\ x=1,\ x=-1,\ y=0$ e y=4.
- **11)** Determine o valor médio da função $f(x,y) = x^2y$ sobre o retângulo com vértices (-1,0),(-1,5),(1,5),(1,0).
 - 12) Calcule as integrais iteradas.

a)
$$\int_0^1 \int_0^{x^2} (x+2y)dydx$$

b)
$$\int_0^1 \int_{x^2}^x (1+2y)dydx$$

c)
$$\int_0^{\pi/2} \int_0^{\cos\theta} e^{\sin\theta}drd\theta$$

13) Calcule as integrais duplas.

a)
$$\int \int_D x^3 y^2 dA$$
, $D = \{(x, y) \mid 0 \le x \le 2, -x \le y \le x\}$

b)
$$\int \int_D x \, dA$$
, $D = \{(x, y) \mid 0 \le x \le \pi, \ 0 \le y \le \sin x\}$

c)
$$\int \int_D y^2 e^{xy} dA$$
, $D = \{(x, y) \mid 0 \le y \le 4, \ 0 \le x \le y\}$

d)
$$\int \int_D x \cos y \ dA$$
, D é limitada por $y=0, \ y=x^2, \ x=1$

e)
$$\int \int_D y^3 dA$$
, D é a região triangular com vértices $(0,2),(1,1)$ e $(3,2)$

f)
$$\int \int_D (2x-y) dA$$
, D é limitada pelo círculo de centro na origem e raio 2

- 14) Determine o volume dos sólidos.
- a) Abaixo do paraboloide $z=x^2+y^2$ e acima da região delimitada por $y=x^2$ e $x=y^2$.
- b) Abaixo da superfície z = xy e acima do triângulo com vértices (1,1), (4,1) e (1,2).
- c) Limitado pelos planos coordenados e pelo plano 3x + 2y + z = 6.
- d) Delimitado pelos cilindros $z=x^2,\,y=x^2$ e pelos planos $z=0,\,y=4.$
- e) Limitado pelo cilindro $x^2 + y^2 = 1$ e pelos planos y = z, x = 0, z = 0 no primeiro octante.
- 15) Esboce a região de integração e mude a ordem de integração.

a)
$$\int_0^4 \int_0^{\sqrt{x}} f(x,y) \ dy dx$$

b)
$$\int_0^3 \int_{-\sqrt{9-y^2}}^{\sqrt{9-y^2}} f(x,y) \ dxdy$$

c)
$$\int_{1}^{2} \int_{0}^{\ln x} f(x, y) \, dy dx$$

16) Calcule a integral trocando a ordem de integração.

a)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$

b)
$$\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} \, dy dx$$

17) Expresse D como a união de regiões do tipo I ou do tipo II e calcule a integral $\int \int_D x^2 dA$.

- 18) Esboce a região cuja área é dada pela integral $\int_{\pi}^{2\pi} \int_{4}^{7} r dr d\theta$ e calcule-a.
- 19) Calcule a integral dada colocando-a em coordenadas polares.
- a) $\int \int_D xy \ dA$, onde D é o disco com centro na origem e raio 3.
- b) $\int \int_R \cos(x^2 + y^2) dA$, onde R é a região acima do eixo x e dentro da circunferência $x^2 + y^2 = 9$.

3

c) $\int \int_D e^{-x^2-y^2} dA$, onde D é a região delimitada pelo semicírculo $x=\sqrt{4-y^2}$ e o eixo y.

20) Utilize a integral dupla para calcular a área da região.

a) Um laço da rosácea $r = \cos 3\theta$

b) A região interior a ambos os círculos $r = \cos \theta$ e $r = \sin \theta$.

21) Utilize coordenadas polares para determinar o volume do sólido dado.

a) Abaixo do cone $z=\sqrt{x^2+y^2}$ e acima do disco $x^2+y^2\leq 4$

b) Delimitado pelo hiperboloide $-x^2 - y^2 + z^2 = 1$ e pelo plano z = 2

c) Uma esfera de raio a

d) Acima do cone $z = \sqrt{x^2 + y^2}$ e abaixo da esfera $x^2 + y^2 + z^2 = 1$

22) Calcule a integral iterada, convertendo-a antes para coordenadas polares.

a)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) dy dx$$
 b) $\int_{0}^{1} \int_{y}^{\sqrt{2-y^2}} (x+y) dx dy$

b)
$$\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) dx dy$$

Respostas:

- **1)** a) 288 b) 144 **2)** a) $\pi^2/2$ b) 0
- **3)** a) -6 b) 3, 5 **4)** a) 60 b) 3

- **5)** a) 10 b) 1 c) 261.632/45 d) $\frac{21}{2} \ln 2$ e) 0 f) π

- **6)** a) $\frac{21}{2}$ b) $9 \ln 2$ c) $\frac{1}{2} (\sqrt{3} 1) \frac{1}{12} \pi$ d) $\frac{1}{2} (e^2 3)$

- **8**) 47, 5
- 9) $\frac{166}{27}$
- 10) $\frac{64}{3}$

- **11)** $\frac{5}{6}$ **12)** a) $\frac{9}{20}$ b) $\frac{3}{10}$ c) e-1

- **13)** a) $\frac{256}{21}$ b) π c) $\frac{1}{2}e^{16} \frac{17}{2}$ d) $\frac{1}{2}(1 \cos 1)$ e) $\frac{147}{20}$ f) 0

- **14)** a) $\frac{6}{35}$ b) $\frac{31}{8}$
- 15)

- (a) $\int_0^2 \int_{y^2}^4 f(x,y) dx dy$
- (b) $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} f(x,y) dy dx$
- **16)** a) $\frac{1}{6}(e^9 1)$ b) $\frac{1}{3} \ln 9$
- **17**) 1

18) $A = \frac{33\pi}{2}$

- **19)** a) 0 b) $\frac{1}{2}\pi \sin 9$ c) $\frac{\pi}{2}(1 e^{-4})$
- **20)** a) $\frac{\pi}{12}$ b) $\frac{1}{8}(\pi 2)$

- **21)** a) $\frac{16}{3}\pi$ b) $\frac{4}{3}\pi$ c) $\frac{4}{3}\pi a^3$ d) $\frac{2\pi}{3}\left(1-\frac{1}{\sqrt{2}}\right)$
- **22)** a) $\frac{1}{2}\pi(1-\cos 9)$ b) $\frac{2\sqrt{2}}{3}$