AG_C3: Distanz- und Geschwindigkeitsmessung

Salmir Delalic (0947919)

Elvis Dzafic (0527177)

Thomas Pinetz (1227026)

Kristina Schiechl (0726448)

Andreas Seiwaldstätter (1025541)

Ziele

- Marker in den Eingabebildern wiederfinden (SURF)
- Statischen Hintergrund ausblenden und gesuchtes Objekte hervorheben
- Zurückgelegte Distanz ermitteln (Anhand des Pixel/mm Verhältnisses)
- Bewegungsgeschwindigkeit anhand der Bildinformationen ungefähr ausrechnen

Zwei Eingabebilder und ein Marker

Voraussetzungen:

- Statischer Hintergrund
- Keine Bewegungsunschärfe
- Genügend große Auflösung
- Ausreichende Helligkeit und Kontrast

Marker:

- Eindeutig erkennbarer Marker (kommt nur einmal im Bild vor)
- Größe in ausgedruckter Form (auf Eingabebild) bekannt

SURF-Detektion

Marker finden ≠ Marker wiederfinden

SURF-Detektion Fehlerquellen

SURF-Detektion

Marker detektieren

Mittels SURF wird der Marker im Bild erkannt

Anschließend wird eine Bounding Box um den Marker gelegt. Falsche Features im Bild werden dabei nicht beachtet.

Nun kann das Pixel/mm Verhältnis anhand der bekannten Größe des Markers, ermittelt werden

Subtrahieren der beiden Bilder

Subtrahieren der beiden Bilder und anschließendes schwarz/weiß setzen

Durchschnitt der weißen Pixel pro Bildhälfte wird errechnet und anschließend die Distanz zwischen den beiden ermittelt

Zusammenführung der Ergebnisse

Aufteilung in mehrere Funktionen:

- Marker-Wiedererkennung und Ermittlung des Pixel/mm Verhältnisses
- Überarbeitung der Eingabebilder
- Pixelentfernung zwischen den Objekten
- Umrechnung in Zentimeter und Berechnung der Geschwindigkeit.

Danke für Ihre Aufmerksamkeit