

Микросборка приемопередатчика по стандарту RS-485 с гальванической развязкой 2011BB024, K2011BB024, K2011BB024K

ГГ – год выпуска НН – неделя выпуска

Основные характеристики микросборки:

- Напряжение источника питания, U_{CC} , $5.0 \pm 10 \%$ B;
- Выходное напряжение высокого уровня, U_{OH}, на выходе OUT не менее 0.7•U_{CC}:
- Выходное напряжение низкого уровня U_{OL}, на выходе OUT не более 0,4 В;
- Выходное напряжение дифференциальное, U_{OD_TXD}, на выходах Y, Z передатчика RS-485 от 1,5 до 4,5 В;
- Пороговое дифференциальное напряжение, U_{тн}, на входах A и B от минус 200 до минус 50 мВ;
- Ток потребления в состоянии пониженного энергопотребления, I_{CC}, не более 560 мкА;
- Динамический ток потребления, Іосс, не более 170 мА;
- Скорость передачи битов данных,
 V_{DR}, не более 25 Мбит/с;
- Температурный диапазон:

Обозначение	Диапазон
2011BB024	минус 60 – 85 °C
K2011BB024	минус 60 – 85 °C
K2011BB024K	0 – 70 °C

Тип корпуса:

– 20-выводной металлокерамический корпус МК 4140.20-1.

Области применения микросборки

Микросборка 2011BB024 (далее – МСБ) предназначена для использования в аппаратуре специального назначения, в качестве приемопередатчика сигналов цифрового интерфейса RS-485. МСБ может использоваться для создания устройств высоковольтной гальванической развязки.

1 Структурная блок-схема

Приемопередатчик по стандарту RS-485 с гальванической развязкой

Рисунок 1 – Структурная блок-схема МСБ

2 Условное графическое обозначение

Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 – Описание выводов

№ вывода корпуса	Обозначение вывода	Функциональное назначение вывода
1	NC	Не используется
2, 3	U _{CC1}	Питание приемопередатчика
4	IN	Вход логического информационного сигнала передатчика
5	OUT	Выход логического информационного сигнала приемника
6	EN	Вход разрешения работы логического интерфейса приемника
7,8	GND1	Общий
9	NC	Не используется
10	INIT	Вход выбора начального состояния выхода OUT. Подключать к шине «Общий» или шине «Питание»
11,12	GND2	Общий
13	Α	Прямой вход приемника RS-485
14	В	Инверсный вход приемника RS-485
15	nRE	Вход разрешения выхода кодера аналогового сигнала (активный низкий уровень)
16	DE	Вход разрешения выхода передатчика RS-485
17	Z	Инверсный выход передатчика RS-485
18	Y	Прямой выход передатчика RS-485
19	U _{CC2}	Питание приемопередатчика RS-485
20	NC	Не используется

4 Указания по применению и эксплуатации

Очищающие растворители, применяемые для очистки МСБ, предназначенных для автоматизированной сборки аппаратуры – по ГОСТ РВ 20.39.412.

МСБ следует устанавливать на печатные платы вплотную с приклейкой к плате без дополнительного крепления с последующей распайкой выводов.

Перечень материалов, рекомендуемых для применения при приклейке МСБ на печатные платы – по ОСТ 11 073.063.

При ремонте аппаратуры и измерении параметров МСБ замену МСБ необходимо проводить только при отключенных источниках питания.

Типовые схемы включения МСБ приведены на рисунках 5 – 7/

Запрещается подведение каких-либо электрических сигналов (в том числе шин «Питание», «Общий») к выводам микросборок, не используемым согласно таблице.

Выводы INIT подключать к шине «Общий» или шине «Питание».

5 Описание функционирования

Функциональные схемы приемопередатчиков по стандартам RS-485, RS-422 с гальванической развязкой представлена на рисунках 3 и 4 соответственно.

Рисунок 3 — Функциональная схема приемопередатчика логического интерфейса — интерфейса RS-485

Рисунок 4 — Функциональная схема в режиме приемопередатчика логического интерфейса — интерфейсаRS-422

МСБ предназначена для преобразования передаваемого сигнала интерфейса RS-485 в дифференциальный импульсный сигнал, подаваемый на первичную обмотку развязывающего трансформатора, а также преобразования принимаемого импульсного сигнала со вторичной обмотки трансформатора в выходной сигнал интерфейса RS-485. МСБ используется для создания устройств высоковольтной гальванической развязки передаваемых сигналов с использованием импульсного трансформатора.

МСБ содержит цифровой интерфейс, изолированный с помощью импульсного трансформатора от интерфейса RS-485/422. При использовании МСБ можно создать гальванически развязанную дуплексную линию связи RS-422 (при раздельных выводах A и Y, B и Z) или получить двухпроводную линию связи RS-485, если попарно соединить выводы A с Y и B с Z.

При включении питающих напряжений изолированных частей на состояние МСБ оказывает влияние логическое состояние входа INIT. Для задания низкого логического уровня его рекомендуется соединять с общей шиной, а для задания высокого логического уровня — с шиной питания. Поведение МСБ при включении и выключении питающих напряжений приведено в таблице 2. Время установления логических состояний не превышает 20 мс.

Приемопередатчик имеет систему подтверждения, которая обеспечивает соответствие логических уровней на входе и выходе приемопередатчика после

© АО «ПКК Миландр»

сбоев в цепях питания или линии связи. При отключении питания на одной из частей изолирующего интерфейса МСБ, выход другой части, у которой питание есть, через 20 мс переходит в логическое состояние, соответствующее состоянию на входе INIT. После восстановления линии связи и питания МСБ, схема подтверждения в течении 20 мс восстанавливает состояние МСБ, которое было до сбоев.

Таблица истинности МСБ приведена в таблице 2.

Таблица 2 – Таблица истинности работы МСБ 2011ВВ024

Передатч	Передатчик RS-485/422							
11		Входы				Выходы		
U _{CC1}	U _{CC2}	DE	nRE	EN	IN	Υ	Z	
PU	PU	1	X	1	1	1	0	
PU	PU	1	X	1	0	0	1	
PU	PU	1	X	0	X	1	0	
Х	PU	0	X	X	X	Z	Z	
PD	PU	1	X	X	X	1	0	
Х	PD	Х	X	Х	X	Z	Z	

Приемник RS-485/422

11	11	Входы					Выход
U _{CC1}	U _{CC2}	DE	nRE	EN	INIT	A – B	OUT
PU	PU	X	0	1	Х	≤ – 200 мB	0
PU	PU	Х	0	1	Χ	≥ – 50 MB	1
PU	PU	X	0	1	Х	А и В закорочены	1
PU	PU	X	0	1	Х	А и В в обрыве	1
PU	PU	X	Х	0	0	X	0
PU	PU	X	Х	0	1	X	1
PU	PU	1	1	1	0	X	1
PU	PU	0	1	1	0	X	0
PU	PU	Х	1	Χ	1	X	1
PD	Х	Х	Х	Х	Х	X	Z
PU	PD	Х	Х	Х	0	X	0
PU	PD	Х	Х	Х	1	X	1

Примечание – Обозначения в таблице:

Х – любое состояние 0 или 1;

Z – высокий импеданс на выходе;

PU – питание подается;

PD – питание отсутствует.

6 Типовые схемы включения

Типовые схемы включения МСБ приведены на рисунках 5 – 7.

МК – микроконтроллер/блок/устройство;

D1 – МСБ 2011BB024

Рисунок 5 — Типовая схема включения МСБ 2011ВВ024, при которой приемник и передатчик интерфейса RS-485 постоянно включены

МК – микроконтроллер/блок/устройство;

D1 – MCE 2011BB024;

D2 – МСБ 2011BB014

Рисунок 6 – Типовая схема включения МСБ 2011ВВ024, при которой приемник интерфейса RS-485 постоянно включен, передатчик управляется с помощью дополнительной МСБ 2011ВВ014

МК – микроконтроллер/блок/устройство;

D1 – МСБ 2011ВВ24;

А – дополнительная гальваническая развязка (оптопара, емкостная развязка и т.д.)

Рисунок 7 – Типовая схема включения МСБ 2011ВВ024, при которой приемник интерфейса RS-485 постоянно включен, передатчик управляется с помощью дополнительной гальванической развязки

7 Предельно-допустимые характеристики

Таблица 3 – Предельно-допустимые режимы эксплуатации и предельные электрические режимы

	а де	Норма параметра				
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно- допустимый режим		Предельный режим		
	Бу 06с	не менее	не более	не менее	не более	
Напряжение источника питания, В	Ucc	4,5	5,5	_	6	
Входное напряжение высокого уровня, В, на входах DE, nRE, IN, EN	U _{IH}	2,0	Ucc	_	U _{CC} + 0,3	
Входное напряжение низкого уровня, В, на входах DE, nRE, IN, EN	U _{IL}	0	0,8	- 0,3	_	
Входное напряжение, В, на выводах А, В	U_{I_R}	- 7	12	_	_	
Напряжение, прикладываемое к выводам Y, Z	U_Y , U_Z	-7	12	_	_	
Входное напряжение дифференциальное, В, на входах A, B	U _{ID}	_	± 15	_	± 20	
Пороговое напряжение дифференциальное, мВ, на входах A, B	U _{TH} *	- 200	- 50	_	_	
Выходной ток низкого уровня, мА, на выходе OUT	I _{OL}	_	1	_	_	
Выходной ток высокого уровня, мА, на выходе OUT	I _{OH}	– 1	-	_	_	
Скорость передачи битов данных, Мбит/с	V_{DR}	-	25	_	_	
Сопротивление нагрузки, Ом, на выводах Y, Z	RL	54	_	_	_	
Емкость нагрузки, пФ, на выходах OUT, Y, Z	CL	_	50	_	200	

^{*} $U_{TH} = U_A - U_B$

8 Электрические параметры

Таблица 4 – Электрические параметры МСБ при приемке и поставке

Наименование параметра,	нное чение етра	_	ома метра	атура ı, °С
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное напряжение высокого уровня на выходе OUT, В	U _{ОН}	0,7·U _{CC}	-	
Выходное напряжение низкого уровня на выходе OUT, В	U _{OL}	_	0,4	
Выходное напряжение дифференциальное, В, на выходах Y, Z при: - R _L = 54 Ом; - R _L = 100 Ом	U _{OD_TXD}	1,5	4,5	
Разность выходного напряжения дифференциального, В, логической «1» и логического «0» на выходах Y, Z при: — R _L = 54 Ом; — R _L = 100 Ом	ΔU_{OD_TXD}	-	0,2	
Выходное напряжение синфазное, В, на выходах Y, Z при: - R _L = 54 Ом; - R _L = 100 Ом	U _{OC_TXD}	_	3	
Разность выходного напряжения синфазного, В, логической «1» и логического «0» на выходах Y, Z при: — R _L = 54 Ом; — R _L = 100 Ом	ΔU _{OC_TXD}	-	0,2	25,
Входной ток, мкА, на входах A, B	I _I	- 200	200	85, - 60
Входной ток низкого, высокого уровней, мкА, на входах DE, nRE, IN, EN, INIT	I _{IH} , I _{IL}	- 10	10	
Выходной ток в состоянии «Выключено», мкА, на выходах Y, Z	l _{oz}	- 10	10	
Ток короткого замыкания, мА, на выходах Y, Z, при $U_Y(U_Z) = 12$ B; $U_Y(U_Z) = -7$ В	I _{os}	_	250	
Минимальный ток короткого замыкания, мА, на выходах Y, Z, при: $U_Y(U_Z)$ = 4,5 B; $U_Y(U_Z)$ = 1 B	I _{OSmin}	20	_	
Ток потребления в состоянии пониженного энергопотребления, мкА, при $U_{DE}=0$ В, $U_{nRE}=U_{CC}$	Icc	_	560	
Динамический ток потребления, мА	locc	_	170	
Время задержки распространения при включении, выключении, нс, от входа IN до выходов Y, Z	t _{PHL1} , t _{PLH1}	_	40	
Время задержки распространения при включении, выключении, нс, от входа A, B до выхода OUT	t _{PHL2} , t _{PLH2}	_	80	

Наименование параметра,		-	ома метра	ратура ы, °С
единица измерения, режим измерения	Буквенное обозначени параметра	не менее	не более	Темпера среды
Время задержки включения, нс, по сигналу EN	t _{DHL}	_	800	
Время задержки выключения, нс, по сигналу EN	t _{DLH}	_	250	25,
Время нарастания, спада сигнала, нс, на выходах Y и Z при R _L = 100 Ом на выходе OUT	t _r , t _f	_	10	85, - 60
Время срабатывания сторожевого таймера системы подтверждения, мс	t _{WDT}	0,2	20	

9 Справочные данные

- Значение собственной резонансной частоты 2,8 кГц;
- − Рабочее напряжение изоляции 2 кВ при температуре 85 °C;
- Температура срабатывания тепловой защиты 160 °C;
- Тепловое сопротивление кристалл-окружающая среда не более 22,6 °C/Вт;
- Значения предельно-допустимых одиночных импульсов напряжения (ОИН) приведены в таблице 5;
- Токи потребления, разделенные по шинам питания U_{CC1}, U_{CC2}, приведены в таблице 6.

Таблица 5 – Предельно-допустимые значения ОИН

Tun pu ipono	Длительность ОИН, мкс				
Тип вывода	0,1	1,0	10,0		
	Предельно-д	опустимое напряжен	ие ОИН, В		
Входы	1750	400	300		
Выходы	1200	500	300		
Цепь питания	2000	1000	500		
	Предельно-д	допустимая энергия (ОИН, мДж		
Входы	2,8	1,5	7,7		
Выходы	1,4	2,3	8,0		
Цепь питания	4,1	11	28		

Таблица 6 – Токи потребления, разделенные по шинам питания Ucc1, Ucc2

	ное ение тра	Норма па	ξο	
Наименование параметра, единица измерения	Буквенное обозначение параметра	не менее	не более	Температур а среды, °С
Ток потребления в состоянии пониженного энергопотребления, мкА, - по выводу Ucc1; - по выводу Ucc2	Icc ₁	-	280	25, 85, – 60
Динамический ток потребления, мА, - по выводу Ucc1; - по выводу Ucc2	locc1	_	50 120	25, 85, – 60

10 Типовые зависимости

Рисунок 8 – Зависимость тока потребления в состоянии «Выключено» от температуры при напряжении питания 5,5 В

Рисунок 9 – Зависимость тока потребления в состоянии «Выключено» от температуры при напряжении питания 4,5 В

Рисунок 10 — Зависимость динамического тока потребления от температуры при напряжении питания 5.0 B, R_L = 54 OM, f_C = 12,5 МГц

Рисунок 11 – Зависимость выходного напряжения дифференциального от температуры при напряжении питания 4,5 В

Рисунок 12 – Зависимость времени задержки распространения при включении, выключении от входа In до выходов Y, Z от температуры при напряжении питания 4,5 B

Рисунок 13 – Зависимость времени задержки распространения при включении, выключении, от входов A, B до выхода Out для от температуры при напряжении питания 4,5 B

Рисунок 14 – Зависимость динамического тока потребления от скорости передачи данных при температуре 25 °C, R_L = 54 Ом, напряжении питания 5,0 В

11 Габаритный чертеж

Рисунок 15 – МСБ в корпусе МК 4140.20-1

12 Информация для заказа

Обозначение МСБ	Маркировка	Тип корпуса	Температурный диапазон
2011BB024	2011BB024	MK 4140.20-1	минус 60 – 85 °C
K2011BB024	K2011BB024	MK 4140.20-1	минус 60 – 85 °C
K2011BB024K	K2011BB024∙	MK 4140.20-1	0 – 70 °C

МСБ с приемкой «ВП» маркируются ромбом. МСБ с приемкой «ОТК» маркируются буквой «К».

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	17.12.2014	0.1.0	Введена впервые	
2	26.03.2015	0.1.1	Исправлены блок-схема, условное графическое обозначение, описание выводов	2, 3
3	04.06.2015	2.0.0	Приведение в соответствие с ТУ и КД	По тексту
4	09.06.2015	2.1.0	Введены типономиналы К2011ВВ024, К2011ВВ024К	По тексту
5	17.08.2015	2.2.0	Исправления на рисунке 5	6
6	14.09.2015	2.3.0	Исправлен рисунок 2. Добавлены комментарии на рисунке 5. Добавлены справочные данные	3 7 10
7	02.10.2015	2.4.0	Исправлен рисунок 5	7
8	12.11.2015	2.5.0	Исправлены рисунки 3, 4	5
9	09.03.2017	2.6.0	Приведение в соответствие с ТУ и КД	По тексту
10	06.12.2017	2.7.0	Добавлен раздел «Указания по применению и эксплуатации». Добавлены типовые схемы включения. Исправления в разделе «Описание функционирования»	4 – 8