

Reinforcement Learning Notes

Learn from trying!

Author: occupymars **Date:** June. 20, 2025

Version: 0.1

Contents

Chapter	1 Reinforcement Learning Basics	1
1.1	Markov Decision Process	1
1.2	Value Function	1
1.3	Solving Value Function	2
1.4	Action Value Function	2
1.5	Bellman Optimality Equation	3
Chapter	2 From LQR to RL	4
2.1	LOR and Value function	4

Chapter 1 Reinforcement Learning Basics

Introduction			
Markov Decision Process	Action Value Function		
Value Function	Bellman Optimality Equation		
Solving Value Function			

1.1 Markov Decision Process

State and Action can describe a robot state respect to the environment and actions to move around, \mathcal{S} , \mathcal{A} are states and actions a robot can take, when taking an action, state after may not be deterministic, it has a probability. We use a transition function $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to [0,1]$ to denote this, $T(s,a,s') = P(s' \mid s,a)$ is the probability of reaching s' given s and a. For $\forall s \in \mathcal{S}$ and $\forall a \in \mathcal{A}$, $\sum_{s' \in \mathcal{S}} T(s,a,s') = 1$.

Reward $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, r(s, a) depends on current state and action. And the reward may also be stochastic, given state and action, the reward has probability $p(r \mid s, a)$.

Policy $\pi(a \mid s)$ tells agent which actions to take at every state, $\sum_a \pi(a \mid s) = 1$.

This can build a Markov Decision Process, (S, A, T, r) from the *Trajectory* $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \ldots)$, which has probability of:

$$P(\tau) = \pi(a_0 \mid s_0) \cdot P(s_1 \mid s_0, a_0) \cdot \pi(a_1 \mid s_1) \cdot P(s_2 \mid s_1, a_1) \cdots$$

We then define *Return* as the total reward $R(\tau) = \sum_t r_t$, the goal of reinforcement learning is to find a trajectory that has the largest return. The trajectory might be infinite, so in order for a meaningful formular of its return, we introduce a discount factor $\gamma < 1$, $R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t$. For large γ , the robot is encouraged to explore, for small one to take a short trajectory to goal.

Markov system only depend on current state and action, not the history one (but we can always augment the system).

1.2 Value Function

Value Function is the value of a state, from that state, the expected sum reward (return).

The formular of value function is:

$$V^{\pi}(s_0) = \mathbb{E}_{a_t \sim \pi(s_t)}[R(\tau)] = \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$
 (1.1)

If we divede the trajectory into two parts, s_0 and τ' , we get the returns

$$R(\tau) = r(s_0, a_0) + \gamma \sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) = r(s_0, a_0) + \gamma R(\tau')$$

Put it back into the value function, using law of total expectation:

$$\mathbb{E}[X] = \sum_{a} \mathbb{E}[X \mid A = a] p(a) = \mathbb{E}_a \left[\mathbb{E}[X \mid A = a] \right]$$

we get:

$$V^{\pi}(s_{0}) = \mathbb{E}_{a_{t} \sim \pi(s_{t})}[r(s_{0}, a_{0}) + \gamma R(\tau')]$$

$$= \mathbb{E}_{a_{0} \sim \pi(s_{0})}[r(s_{0}, a_{0})] + \gamma \mathbb{E}_{a_{t} \sim \pi(s_{t})}[R(\tau')]$$

$$= \mathbb{E}_{a_{0} \sim \pi(s_{0})}[r(s_{0}, a_{0})] + \gamma \mathbb{E}_{a_{0} \sim \pi(s_{0})}\left[\mathbb{E}_{s_{1} \sim P(s_{1}|a_{0}, s_{0})}[\mathbb{E}_{a_{t} \sim \pi(s_{t})}[R(\tau') \mid s_{1}, a_{0}]]\right]$$

$$= \mathbb{E}_{a_{0} \sim \pi(s_{0})}[r(s_{0}, a_{0})] + \gamma \mathbb{E}_{a_{0} \sim \pi(s_{0})}\left[\mathbb{E}_{s_{1} \sim P(s_{1}|a_{0}, s_{0})}[V^{\pi}(s_{1})]\right]$$

$$= \mathbb{E}_{a \sim \pi(s)}\left[r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim P(s_{1}|a_{0}, s_{0})}[V^{\pi}(s_{1})]\right]$$

$$(1.2)$$

before we put s_1 to the right as the condition, it is stochastic, inside the $E_{s_1 \sim p(s_1|s_0,a_0)}$ scope it is deterministic, then we can get $V^{\pi}(s_1)$, as it needs the state to be deterministic.

The discrete formular is (get rid of the notation of time) so called **Bellman Equation**:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V^{\pi}(s') \right], \forall s \in S$$

$$(1.3)$$

And if we write r(s,a) as $\sum_r p(r\mid s,a)r$, then

$$p(r \mid s, a) = \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$

We can also get

$$p(s' \mid s, a) = \sum_{r \in \mathcal{R}} p(s', r \mid s, a)$$

combined we get

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) \left[r + \gamma V^{\pi}(s') \right]$$

$$(1.4)$$

If the reward depend solely on the next state s', then

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \sum_{s' \in \mathcal{S}} P(s' \mid s, a) \left[r(s') + \gamma V^{\pi}(s') \right]$$
 (1.5)

Let

$$r^{\pi}(s) = \sum_{a \in \mathcal{A}} \sum_{r} p(r \mid s, a) r$$

$$p^{\pi}(s'\mid s) = \sum_{a\in\mathcal{A}} p(s'\mid s, a)$$

rewirte 1.3 into the vector form:

$$V^{\pi} = r^{\pi} + \gamma P^{\pi} V^{\pi} \tag{1.6}$$

$$\text{where } V^\pi = [V^\pi(s_1), \dots, V^\pi(s_n)]^\top \in \mathbb{R}^n, r^\pi = [r^\pi(s_1), \dots, r^\pi(s_n)]^\top \in \mathbb{R}^n, \text{ and } P^\pi \in \mathbb{R}^{n \times n} \text{ with } P^\pi_{ij} = p^\pi(s_j \mid s_i).$$

1.3 Solving Value Function

Next, we need to solve the value function, first way is closed-form solution:

$$V^{\pi} = \left(I - \gamma P^{\pi}\right)^{-1} r^{\pi}$$

Some properties: $I - \gamma P^{\pi}$ is invertible, $(I - \gamma P^{\pi})^{-1} \geq I$ which means every element of this inverse is nonnegative. For every vector $r \geq 0$, it holds that $(I - \gamma P^{\pi})^{-1} r^{\pi} \geq r \geq 0$, so if $r_1 \geq r_2$, $(I - \gamma P^{\pi})^{-1} r_1^{\pi} \geq (I - \gamma P^{\pi})^{-1} r_2^{\pi}$

However, this method need to calculate the inverse of the matrix, that need some numerical algorithms. We can use a iterative solution:

$$V_{k+1} = r^{\pi} + \gamma P^{\pi} V_k$$

as
$$k \to \infty$$
, $V_k \to V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}$.

1.4 Action Value Function

Similarly to value function, *Action Value Function* is the value of an action at state s, from that state, take that action, the expected sum reward (return). We use $V^{\pi}(s)$ to denote value function, and $Q^{\pi}(s,a)$ to denote action value, their connection is:

$$V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) Q^{\pi}(s, a)$$
 (1.7)

The action value function is given as:

$$Q^{\pi}(s_{0}, a_{0}) = r(s_{0}, a_{0}) + \mathbb{E}_{a_{t} \sim \pi(s_{t})} \left[\sum_{t=1}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{a_{t} \sim \pi(s_{t})} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_{t}, a_{t}) \right]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{a_{t} \sim \pi(s_{t})} [R(\tau')]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim p(s_{1}|s_{0}, a_{0})} \left[\mathbb{E}_{a_{t} \sim \pi(s_{t})} [R(\tau') \mid s_{1}] \right]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim p(s_{1}|s_{0}, a_{0})} [V^{\pi}(s_{1})]$$

$$= r(s_{0}, a_{0}) + \gamma \mathbb{E}_{s_{1} \sim p(s_{1}|s_{0}, a_{0})} \left[\sum_{a_{1} \in \mathcal{A}} \pi(a_{1} \mid s_{1}) Q^{\pi}(s_{1}, a_{1}) \right]$$

$$(1.8)$$

Then the bellman equation of action value is:

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} P(s' \mid s,a) V^{\pi}(s')$$

= $r(s,a) + \gamma \sum_{s'} P(s' \mid s,a) \sum_{a' \in \mathcal{A}} \pi(a' \mid s') Q^{\pi}(s',a')$ (1.9)

Note that we can always write r(s,a) as $\sum_r p(r\mid s,a)r$ if it is stochastic, and it follows the same notation in the book *Math of Reinforcement Learning*.

Rewrite 1.9 into vector form:

$$Q^{\pi} = \tilde{r}^{\pi} + \gamma P^{\pi} \Pi^{\pi} Q^{\pi} \tag{1.10}$$

where $\tilde{r}^{\pi}_{(s,a)} = \sum_{r} p(r \mid s, a) r$, $P^{\pi}_{(s,a),s'} = p(s' \mid s, a)$, $\Pi_{s',(s',a')} = \pi(a' \mid s')$.

1.5 Bellman Optimality Equation

Bellman Optimality Equation is given by:

$$V(s) = \max_{\pi(s) \in \Pi(s)} \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[\sum_{r} p(r \mid s, a) r + \gamma \sum_{s'} P(s' \mid s, a) V^{\pi}(s') \right]$$

$$= \max_{\pi(s) \in \Pi(s)} \sum_{a \in \mathcal{A}} \pi(a \mid s) Q(s, a)$$
(1.11)

Chapter 2 From LQR to RL

Introduction

LQR Problem

Reinforcement Learning iLQR and DDP

2.1 LQR and Value function

Given a linear model $x_{t+1} = f(x_t, u_k) = A_t x_t + B_t u_t + C_t$. We want to optimize:

$$\min_{u_1,\dots,u_T} c(x_1,u_1) + c(f(x_1,u_1),u_2) + \dots + c(f(f(\dots)),u_T)$$

where we denotes

$$c(x_t, u_t) = \frac{1}{2} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T C_t \begin{bmatrix} x_t \\ u_t \end{bmatrix} + \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T c_t$$

and

$$f(x_t, u_t) = F_t \begin{bmatrix} x_t \\ u_t \end{bmatrix} + f_t$$

We first do the **Backward Recursion**, solve for u_T only, then the action value function (or the negitive cost function, here we take them with same sign) is:

$$Q(x_T, u_T) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} x_T \\ u_T \end{bmatrix}^T C_T \begin{bmatrix} x_T \\ u_T \end{bmatrix} + \begin{bmatrix} x_T \\ u_T \end{bmatrix}^T c_T$$

Get the derivative respect to u_T , which is:

$$\nabla_{u_T} Q(x_T, u_T) = C_{u_T, x_T} x_T + C_{u_T, u_T} u_T + c_{u_T}^T = 0$$

so we can get $K_T = -C_{u_T,u_T}^{-1}C_{u_T,x_T}, k_T = -C_{u_T,u_T}^{-1}c_{u_T}.$

And we get the policy (which is a linear policy): $u_T = K_T x_T + k_T$. Because u_T is fully determined by x_T , we can eliminate it via substitution:

$$V(x_T) = \mathrm{const} + \frac{1}{2} \begin{bmatrix} x_T \\ K_T x_T + k_T \end{bmatrix}^T C_T \begin{bmatrix} x_T \\ K_T x_T + k_T \end{bmatrix} + \begin{bmatrix} x_T \\ K_T x_T + k_T \end{bmatrix}^T c_T$$

Open the equation:

$$\begin{split} V(\boldsymbol{x}_{T}) &= \text{const} + \frac{1}{2} \boldsymbol{x}_{T}^{T} \boldsymbol{V}_{T} \boldsymbol{x}_{T} + \boldsymbol{x}_{T}^{T} \boldsymbol{v}_{T} \\ \boldsymbol{V}_{T} &= \boldsymbol{C}_{\boldsymbol{x}_{T}, \boldsymbol{x}_{T}} + \boldsymbol{C}_{\boldsymbol{x}_{T}, \boldsymbol{u}_{T}} \boldsymbol{K}_{T} + \boldsymbol{K}_{T}^{T} \boldsymbol{C}_{\boldsymbol{u}_{T}, \boldsymbol{x}_{T}} + \boldsymbol{K}_{T}^{T} \boldsymbol{C}_{\boldsymbol{u}_{T}, \boldsymbol{u}_{T}} \boldsymbol{K}_{T} \\ \boldsymbol{v}_{T} &= \boldsymbol{c}_{\boldsymbol{x}_{T}} + \boldsymbol{C}_{\boldsymbol{x}_{T}, \boldsymbol{u}_{T}} \boldsymbol{k}_{T} + \boldsymbol{K}_{T}^{T} \boldsymbol{C}_{\boldsymbol{u}_{T}} + \boldsymbol{K}_{T}^{T} \boldsymbol{C}_{\boldsymbol{u}_{T}, \boldsymbol{u}_{T}} \boldsymbol{k}_{T} \end{split}$$

Use x_{T-1} and u_{T-1} to substitute the action value equation:

$$Q(x_{T-1}, u_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T C_{T-1} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T C_{T-1} + V(f(x_{T-1}, u_{T-1}))$$

$$V(x_T) = \text{const} + \frac{1}{2} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T V_T F_{T-1} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T V_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T F_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_{T-1}^T v_T f_{T-1} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T f_$$

So the action value function is:

$$Q(x_{T-1}, u_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T Q_{T-1} \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix} + \begin{bmatrix} x_{T-1} \\ u_{T-1} \end{bmatrix}^T q_{T-1}$$

where

$$Q_{T-1} = C_{T-1} + F_{T-1}^T V_T F_{T-1}$$
$$q_{T-1} = c_{T-1} + F_{T-1}^T V_T f_{T-1} + F_{T-1}^T v_T$$

get the derivative:

$$\nabla_{u_{T-1}}Q(x_{T-1},u_{T-1}) = Q_{u_{T-1},x_{T-1}}x_{T-1} + Q_{u_{T-1},u_{T-1}}u_{T-1} + q_{u_{T-1}}^T = 0$$

where

$$u_{T-1} = K_{T-1}x_{T-1} + k_{T-1}$$

$$K_{T-1} = -Q_{u_{T-1}, u_{T-1}}^{-1}Q_{u_{T-1}, x_{T-1}}$$

$$k_{T-1} = -Q_{u_{T-1}, u_{T-1}}^{-1}q_{u_{T-1}}$$

So we can continue the substitution process to the first control u_0 , with the information of x_0 , we start a **Forward Recursion**, $u_t = K_t x_t + k_t$, $x_{t+1} = f(x_t, u_t)$ to get the future states.

We can wirte the Backward Recursion as algorithm:

Algorithm 1: Backward Pass for Value Function Computation

$$\begin{array}{lll} \textbf{1 for } t = T \ to \ 1 \ \textbf{do} \\ \textbf{2} & \mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{F}_t; \\ \textbf{3} & \mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}; \\ \textbf{4} & Q(x_t, u_t) = \mathrm{const} + \frac{1}{2} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} x_t \\ u_t \end{bmatrix} + \begin{bmatrix} x_t \\ u_t \end{bmatrix}^T \mathbf{q}_t; \\ \textbf{5} & u_t \leftarrow \arg\min_{u_t} Q(x_t, u_t) = \mathbf{K}_t x_t + \mathbf{k}_t; \\ \textbf{6} & \mathbf{K}_t = -\mathbf{Q}_{u_t, u_t}^{-1} \mathbf{Q}_{u_t, x_t}; \\ \textbf{7} & \mathbf{k}_t = -\mathbf{Q}_{u_t, u_t}^{-1} \mathbf{q}_{u_t}; \\ \textbf{8} & \mathbf{V}_t = \mathbf{Q}_{x_t, x_t} + \mathbf{Q}_{x_t, u_t} \mathbf{K}_t + \mathbf{K}_t^T \mathbf{Q}_{u_t, x_t} + \mathbf{K}_t^T \mathbf{Q}_{u_t, u_t} \mathbf{K}_t; \\ \textbf{9} & \mathbf{v}_t = \mathbf{q}_{x_t} + \mathbf{Q}_{x_t, u_t} \mathbf{k}_t + \mathbf{K}_t^T \mathbf{q}_{u_t} + \mathbf{K}_t^T \mathbf{Q}_{u_t, u_t} \mathbf{k}_t; \\ \textbf{10} & V(x_t) = \mathrm{const} + \frac{1}{2} x_t^T \mathbf{V}_t x_t + x_t^T \mathbf{v}_t; \\ \textbf{11 end} \end{array}$$

We can generalize it to stochastic case, where system dynamic with a gaussian noise (control is still deterministic), beacuse the expectation of gaussian is zero for linear and constant for quadratic cost $(\mathbb{E}[x_{t+1}^{\top}Vx_{t+1}] = (Ax_t + Bu_t)^{\top}V(Ax_t + Bu_t) + tr(VW)$, so when minimizing it is ignored).

For the nonlinear case, we linearlize it with reference point:

$$f(\mathbf{x}_{t}, \mathbf{u}_{t}) \approx f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

$$c(\mathbf{x}_{t}, \mathbf{u}_{t}) \approx c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) + \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

$$+ \frac{1}{2} \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}^{T} \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}}^{2} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \begin{bmatrix} \mathbf{x}_{t} - \hat{\mathbf{x}}_{t} \\ \mathbf{u}_{t} - \hat{\mathbf{u}}_{t} \end{bmatrix}$$

and use

$$\bar{f}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}, \, \bar{c}(\delta \mathbf{x}_t, \delta \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Now we can run LQR with it, this is called *iLQR*, we get $u_t = K_t(x_t - \hat{x}_t) + k_t + \hat{u}_t$, this is an approximation of Newton's method for solving the entire cost function over the horizon. And if we linearlize the dynamic with second order information:

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} + \frac{1}{2} \left(\nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} \right) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}$$

it is called **DDP**.