SPECIFICATION

SPEC. NO.:	REV:	2.0	
------------	------	-----	--

DATE: 05.15. 2013

PRODUCT NAME: ZW6201

	APPROVED	CHECKED	PREPARED	DCC ISSUE
NAME				

ZW6201

Wi-Fi SIP Module Spec Sheet

Revision History

Date	Revision Content	Revised By	Version
2011/08/22	-Initial released	Andy	1.0
2011/09/27	-Modify physical dimensions	Andy	1.1
2011/10/19	-Modify block diagram	Andy	1.2
2011/12/23	-Add Power Consumption	Andy	1.3
2012/01/12	-Modify dimension	Andy	1.4
2012/03/09	-Add packing information	Andy	1.5
2012/03/19	-More info to recommended footprint	Andy	1.6
2012/05/03	-Pin description revised	Bart	1.7
2012/05/18	-Modify Recommended Footprint	Dort	1.8
2012/05/16	-Modify Physical Dimensions	Bart	1.0
2012/07/20	-Modify Physical Dimensions	Bart	1.9
2013/05/15	- Modify Recommended Footprint	Bart	2.0

Contents

Сс	ntents	2
1.	Introduction	3
2.	Features	4
3.	Deliverables	5
	3.1 Deliverables	5
	3.2 Regulatory certifications	5
4.	General Specification	6
	4.1 Wi-Fi RF Specification	6
	4.2 Voltages	7
	4.2.1 Absolute Maximum Ratings	7
	4.2.2 Recommended Operating Ratings	7
5.	Pin Assignments	8
	5.1 PCB Pin Outline	8
	5.2 Pin Definition	8
6.	Dimensions	11
	6.1 Physical Dimensions	11
	6.2 Recommended Footprint	12
7.	External clock reference	13
	7.1 SDIO Pin Description	13
8.	Host Interface Timing Diagram	14
	8.1 Power-up Sequence Timing Diagram	14
	8.2 SDIO Default Mode Timing Diagram	14
	8.3 SDIO High Speed Mode Timing Diagram	15
9.	Recommended Reflow Profile	16
10	.Packing Information	17
	10.1 Label	
	10.2 Dimension	
	10.3 MSL Level / Storage Condition	20

1. Introduction

AMPAK Technology would like to announce a low-cost and low-power consumption module which has all of the Wi-Fi functionalities. The highly integrated ZW6201 module makes the possibilities of web browsing, VoIP, headsets and other applications. With seamless roaming capabilities and advanced security, ZW6201 can also interact with different vendors' 802.11b/g/n Access Points in the wireless LAN.

This wireless module complies with IEEE 802.11 b/g/n standard and it can achieve up to a speed of 72.2Mbps with single stream in 802.11n draft, 54Mbps as specified in IEEE 802.11g, or 11Mbps for IEEE 802.11b to connect to the wireless LAN. The integrated module provides SDIO interface for Wi-Fi.

This compact module is a total solution for Wi-Fi technologies. The module is specifically developed for Smart phones and Portable devices.

2. Features

- Single-band 2.4GHz IEEE 802.11b/g/n
- Supports standard interfaces SDIO v2.0(50MHz, 4-bit and 1-bit) and generic SPI(up to 50MHz)
- Integrated ARM Cortex-M3TM CPU with on-chip memory enables running IEEE802.11 firmware that can be field-upgraded with future features.
- Supports per packet Rx antenna diversity
- Security:
 - i. Hardware WAPI acceleration engine
 - ii. AES and TKIP in hardware for faster data encryption and IEEE 802.11i compatibility
 - iii. WPA^{TM} and $WPA2^{TM}$ (Personal) support for powerful encryption and authentication

A simplified block diagram of the module is depicted in the figure below.

3. Deliverables

3.1 Deliverables

The following products and software will be part of the product.

- Module with packaging
- Evaluation Kits
- Software utility for integration, performance test.
- Product Datasheet.
- Agency certified pre-tested report with the adapter board.

3.2 Regulatory certifications

The product delivery is a pre-tested module, without the module level certification. For module approval, the platform's antennas are required for the certification.

4. General Specification

4.1 Wi-Fi RF Specification

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25 ℃

Feature	Description		
Product Name	ZW6201 Wi-Fi SIP Module		
WLAN Standard	IEEE 802.11b/g/n, WiFi compliant		
Host Interface	SDIO		
Dimension	L x W x H: 9.5 x 9.5 x 1.5 (typical) mm		
Frequency Range	2.412 GHz ~ 2.4835 GHz (2.4 GHz ISM Band)		
Number of Channels	11 for North America, 13 for Europe, and 14 for Japan		
Modulation	802.11b : DQPSK, DBPSK, CCK		
Modulation	802.11g/n : OFDM /64-QAM,16-QAM, QPSK, BPSK		
	802.11b /11Mbps : 16 dBm \pm 1.5 dB @ EVM \leq -9dB		
Output Power	802.11g /54Mbps : 15 dBm \pm 1.5 dB @ EVM \leq -25dB		
	802.11n /65Mbps : 14 dBm \pm 1.5 dB @ EVM \leq -28dB		
	- MCS=0 PER @ -85 ± 1dBm, typical		
	- MCS=1 PER @ -84 ± 1dBm, typical		
Dogoivo Consitivity	- MCS=2 PER @ -82 ± 1dBm, typical		
Receive Sensitivity (11n,20MHz)	- MCS=3 PER @ -80 ± 1dBm, typical		
@10% PER	- MCS=4 PER @ -77 ± 1dBm, typical		
@10701 LIT	- MCS=5 PER @ -73 ± 1dBm, typical		
	- MCS=6 PER @ -71 ± 1dBm, typical		
	- MCS=7 PER @ -69 ± 1dBm, typical		
	- 6Mbps PER @ -87 ± 1dBm, typical		
	- 9Mbps PER @ -86 ± 1dBm, typical		
	- 12Mbps PER @ -85 ± 1dBm, typical		
Receive Sensitivity (11g)	- 18Mbps PER @ -83 ± 1dBm, typical		
@10% PER	- 24Mbps PER @ -81 ± 1dBm, typical		
	- 36Mbps PER @ -78 ± 1dBm, typical		
	- 48Mbps PER @ -74 ± 1dBm, typical		
	- 54Mbps PER @ -72 ± 1dBm, typical		
	- 1Mbps PER @ -90 ± 1dBm, typical		
Receive Sensitivity (11b)	- 2Mbps PER @ -89 ± 1dBm, typical		
@8% PER	- 5.5Mbps PER @ -87 ± 1dBm, typical		
	- 11Mbps PER @ -84 ± 1dBm, typical		

Data Rate	802.11b : 1, 2, 5.5, 11Mbps
Dala hale	802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps
Data Rate	802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps
(20MHz ,Long GI,800ns)	
Data Rate	802.11n : 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65,72.2Mbps
(20MHz ,short GI,400ns)	
Maximum Input Level	802.11b : -10 dBm
Maximum input Level	802.11g/n : -20 dBm
Operating temperature	-30 ℃ to 85 ℃
I I	Operating Humidity 10% to 95% Non-Condensing
Humidity	Storage Humidity 5% to 95% Non-Condensing

4.2 Voltages

4.2.1 Absolute Maximum Ratings

Symbol	Description	Min.	Max.	Unit
VBAT	Input supply Voltage	-0.5	6.5	V
VDDIO	Digital/Bluetooth/SDIO/SPI I/O Voltage	-0.5	4.1	V

4.2.2 Recommended Operating Ratings

Test conditions: At room temperature 25 ℃				
Symbol	Min.	Тур.	Max.	Unit
VBAT	3.0	3.6	4.8	V
VDDIO	1.7	1.8	1.92	V
VDDIO	2.97	3.3	3.6	V

Note: The voltage of VDDIO is depended on system I/O voltage.

Test conditions: At operating temperature -10 °C ~65 °C				
Symbol	Min.	Тур.	Max.	Unit
VBAT	3.0	3.6	4.8	V
VDDIO	1.7	-	3.35	V

Note: VDDIO operating voltage range from 1.7V to 3.35V at operating temperature is guaranteed.

5. Pin Assignments

5.1 PCB Pin Outline

< TOP VIEW >

5.2 Pin Definition

NO	Name	Туре	Description
1	WLAN_ANT	I/O	RF signal I/O port
2	GND	_	Ground
3	NC	_	Floating (Don't connected to ground)
4	NC		Floating (Don't connected to ground)
5	NC	_	Floating (Don't connected to ground)
6	NC	_	Floating (Don't connected to ground)
7	NC	_	Floating (Don't connected to ground)
8	GND	_	Ground
9	OSC_IN	I	XTAL oscillator input
10	OSC_OUT	0	XTAL oscillator output
11	GND	_	Ground
12	NC	_	Floating (Don't connected to ground)
13	NC	_	Floating (Don't connected to ground)
14	GND	_	Ground
15	GND		Ground
16	GND		Ground
17	GND	_	Ground

18	VIO	1	Digital I/O Voltage input
19	CLK_32K	I	Sleep clock (32.768KHz) input
20	SDIO_DATA_2	I/O	SDIO data line 2
21	SDIO_DATA_0	I/O	SDIO data line 0
22	SDIO_CLK	I	SDIO clock
23	SDIO_CMD	I/O	SDIO command line
24	SDIO_DATA_1	I/O	SDIO data line 1
25	SDIO_DATA_3	I/O	SDIO data line 3
26	VIN_LDO	I	Internal DC-DC regulator input
27	GND	_	Ground
28	SR_VLX	0	Internal DC-DC regulator output
29	GND	_	Ground
30	VBAT	I	DC voltage input
31	WL_RST_N	I	Active low WLAN reset signal
32	GND	_	Ground
33	GND	_	Ground
34	GND	_	Ground
35	GND	_	Ground
36	NC	_	Floating (Don't connected to ground)
37	GND		Ground
38	GND		Ground
39	GND		Ground
40	GND		Ground
41	GND	_	Ground
42	GND	_	Ground
43	NC	_	Floating (Don't connected to ground)
44	GND	_	Ground
45	NC	_	Floating (Don't connected to ground)
46	NC	_	Floating (Don't connected to ground)
47	NC	_	Floating (Don't connected to ground)
48	NC		Floating (Don't connected to ground)
49	GPIO_1	I/O	WL_Host Wake,
50	GPIO_0	I/O	Mode selection, Low for SDIO, High for SPI mode
51	NC		Floating (Don't connected to ground)
52	GND	_	Ground
53	GND		Ground
54	GND	_	Ground
55	GND	_	Ground

56	GND	_	Ground
57	GND	_	Ground
58	GND		Ground
59	GND	_	Ground
60	GND	_	Ground
61	GND	_	Ground

6. Dimensions

6.1 Physical Dimensions

(Unit: mm)

< TOP VIEW > < Side View > 9.5 +/- 0.1 9.5 +/- 0.1 1.7 (MAX)

< TOP VIEW >

6.2 Recommended Footprint

(Unit: mm)

< TOP VIEW >

7. External clock reference

External LPO signal characteristics

Parameter	LPO Clock	Units
Nominal input frequency	32.768	kHz
Frequency accuracy	±30	ppm
Duty cycle	30 - 70	%
Input signal amplitude	1600 to 3300	mV, p-p
Signal type	Square-wave or sine-wave	-
Input impodence	>100k	Ω
Input impedance	<5	pF
Clock jitter (integrated over 300Hz - 15KHz)	<1	Hz

7.1 SDIO Pin Description

The ZW6201 supports SDIO version 1.2 for both 1-bit (25 Mbps), 4-bit modes (100 Mbps), and high speed 4-bit (50 MHz clocks – 200 Mbps). It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO pin. This 'out-of-band' interrupt signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force the control of the gated clocks from within the WLAN chip is also provided.

- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B)
- Function 1 Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize / ByteCount = 512B)

SDIO Pin Description

SI	O 4-Bit Mode	SD 1-Bit Mode SPI Mode		SPI Mode		
DATA0	Data Line 0	DATA Data Line		DO	Data Output	
DATA1	Data Line 1 or	IRQ	O Intervient		Interrupt	
DATAI	Interrupt	INQ	Interrupt	IRQ	Interrupt	
DATA2	Data Line 2 or	RW	Read Wait	NC	Not Used	
DATAZ	Read Wait	1100				
DATA3	Data Line 3	NC	Not Used	CS	Card Select	
CLK	Clock	CLK	Clock	SCLK	Clock	
CMD	Command Line	CMD	Command Line	DI	Data Input	

8. Host Interface Timing Diagram

8.1 Power-up Sequence Timing Diagram

WL_RST_N: Low asserting Reset for WLAN Core. This pin must be driven high or low (not left floating).

8.2 SDIO Default Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are refferred to mini	mum VIH and	d maximum VI	L ^b)		
Frequency-Data Transfer mode	fPP	0	-	25	MHz
Frequency-Identification mode	fOD	0	-	400	kHz
Clock low time	tWL	10	-	-	ns
Clock high time	tWH	10	-	-	ns
Clock rise time	tTLH	-	-	10	ns
Clock low time	tTHL	-	-	10	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	tISU	5	-	-	ns
Input hold time	tIH	5	-	-	ns
Outputs: CMD, DAT (referenced to CLK)					
Output delay time - Data Transfer mode	tODLY	0	-	14	ns
Output delay time - Identification mode	tODLY	0	-	50	ns

a. Timing is based on CL ≤ 40pF load on CMD and Data.

b. $min(Vih) = 0.7 \times VDDIO$ and $max(Vil) = 0.2 \times VDDIO$.

8.3 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are refferred to mini	mum VIH and	d maximum VI	L ^b)		
Frequency-Data Transfer mode	fPP	0	-	50	MHz
Frequency-Identification mode	fOD	0	-	400	kHz
Clock low time	tWL	7	-	-	ns
Clock high time	tWH	7	-	-	ns
Clock rise time	tTLH	-	-	3	ns
Clock low time	tTHL	-	-	3	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	tISU	6	-	-	ns
Input hold time	tIH	2	-	-	ns
Outputs: CMD, DAT (referenced to CLK)					
Output delay time - Data Transfer mode	tODLY	-	-	14	ns
Output hold time	tOH	2.5	-	-	ns
Total system capacitance (each line)	CL	-	-	40	pF

a. Timing is based on CL \leq 40pF load on CMD and Data.

b. min(Vih) = 0.7 x VDDIO and max(ViI) = 0.2 x VDDIO.

9. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature : <250 °C Number of Times : ≤2 times

10. Packing Information

10.1 Label

Label A → Anti-static and humidity notice

Label B → MSL caution / Storage Condition

Caution This bag contains MOISTURE-SENSITIVE DEVICES If blank, see adjacent bar code label
Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH)
2. Peak package body temperature: °C # blank, see adjacent bar code label
After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
a) Mounted within:hours of factory conditions If blank, see adjacent bar code label ≤30°C/60% RH, or
b) Stored per J-STD-033
4. Devices require bake, before mounting, if:
 a) Humidity Indicator Card reads >10% for level 2a - 5a devices or >60% for level 2 devices when read at 23 ± 5°C
b) 3a or 3b are not met
If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure
Bag Seal Date:
Note: Level and body temperature defined by IPC/JEDEC J-STD-020

Label C → Inner box label .

10.2 Dimension

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.20 .
- 2. Carrier camber is within 1 mm in 250 mm.
- 3. Material: Black Conductive Polystyrene Alloy.
- 4. All dimensions meet EIA-481-D requirements.
- 5. Thickness: 0.30±0.05mm.
- 6. Packing length per 22" reel: 98.5 Meters.(1:3)
- 7. Component load per 13" reel: 1500 pcs.

Proprietary & Confidential Information

10.3 MSL Level / Storage Condition

Caution This bag contains MOISTURE-SENSITIVE DEVICES Do not open except under controlled conditions
 Calculated shelf life in sealed bag: 12 months at< 40℃ and < 90% relative humidity(RH)
225 © 240 © 250 © 260 © 2. Peak package body temperature:
 After bag is opened, devices that will be subjected to reflow solder or other high temperature process must a) Mounted within: 48 hours of factory conditions <30°C/60% RH, OR b) Stored at <10% RH
 Devices require bake, before mounting, if: a)Humidity Indicator Card is>10%when read at 23±5℃ b)3a or 3b not met
5. If baking is required, devices may be baked for 24 hours at 125±5°C
Note: If device containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure
Bag Seal Date: See-SEAL DATELABEL
Note:Level and body temperature defined by IPC/JEDED J-STD-020

※NOTE: Accumulated baking time should not exceed 96hrs