Question number	Answer		Mark
18(a)	Mass equal (to mass of electron)	(1)	
	• Charge equal and opposite (to charge of electron)	(1)	
	• Lepton number (equal and) opposite (to lepton number of electron)	(1)	3
18 (b)	Curvature more in top half of picture	(1)	
	• Particle moving slower after passing through lead plate because		
	energy lost, so moving from lower half to top half	(1)	
	• (Applying FLHR,) field into page		
	(mark dependent on an indication of correct direction of	(1)	
	positron motion)	(1)	3
18 (c) (i)	• Use of conversion factor 1.6×10^{-19} C	(1)	
	• Use of $E_k = \frac{1}{2} mv^2$	(1)	
	• Calculated speed = 2.8×10^9 (m s ⁻¹), which is greater than the	(1)	2
	speed of light (so it must be relativistic)	(1)	3
	Example of calculation		
	$E_k = 23 \times 10^6 \text{ eV} \times 1.6 \times 10^{-19} \text{ C} = 3.7 \times 10^{-12} \text{ J}$		
	$3.7 \times 10^{-12} \text{ J} = 0.5 \times 9.11 \times 10^{-31} \text{ kg} \times v^2$		
	$v = 2.8 \times 10^9 \mathrm{m \ s^{-1}}$		
18 (c) (ii)	• Use of $E = pc$ (ecf for E from (c)(i))	(1)	
	• Use of $r = p/Bq$	(1)	
	• $B = 2.1 \text{ T}$	(1)	3
	Do not award MP1 if $p = mv$ calculated using v from part (i)		
	Example of calculation		
	$3.7 \times 10^{-12} \text{ J} = p \times 3.00 \times 10^8 \text{ m s}^{-1}$		
	$p = 1.2 \times 10^{-20} \mathrm{N} \mathrm{s}$		
	$0.037 \text{ m} = 1.2 \times 10^{-20} \text{ N s } / B \times 1.6 \times 10^{-19} \text{ C}$		
	B = 2.1 T		

18 (d)	• Use of $E_k = \frac{1}{2} mv^2$	(1)	
	• Use of $\Delta E = c^2 \Delta m$	(1)	
	• Use of $E = hf$	(1)	
	• $f = 1.2 \times 10^{20} \text{ Hz}$	(1)	4
	Example of calculation		
	$E_k = 2 \times 0.5 \times 9.11 \times 10^{-31} \text{ kg} \times (1.5 \times 10^7 \text{ m s}^{-1})^2$		
	$= 2.0 \times 10^{-16} \mathrm{J}$		
	$\Delta E = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 2 \times 9.11 \times 10^{-31} \text{ kg}$		
	$= 1.64 \times 10^{-13} \mathrm{J}$		
	Total energy = $1.64 \times 10^{-13} \text{ J} + 2.0 \times 10^{-16} \text{ J} = 1.64 \times 10^{-13} \text{ J}$		
	Energy for one gamma photon = 8.2×10^{-14} J		
	$8.2 \times 10^{-12} \text{ J} = 6.63 \times 10^{-34} \text{ J s} \times f$		
	$f = 1.2 \times 10^{20} \mathrm{Hz}$		

16

Total for question 18