Chemometrics MA4605

Week 6. Lecture 11. Calibration methods

October 10, 2011

- Most analyses are now performed by instrumental methods.
 Instrumental methods can perform analyses that are difficult or impossible by classical methods.
- The usual procedure: the equipment will take a measured volume of a sample, dilute it appropriately, conduct one or more reactions on it, and determine the concentration of analyte produced in the reactions.
- The concentration of analyte in the sample is *known* and it is used to determine the calibration graph.

- Take a calibration sample with known but different concentrations.
- Based on measurements plot response curve.
- Is it linear?
- Make prediction for concentration between calibrated points.

Questions

- Is the calibration graph linear?
- What is the best straight line fitting the data?
- What are the errors and confidence limits?

The correlation coefficient

Product-moment correlation coefficient

$$r = \frac{\sum_{i} \{(x_i - \overline{x})(y_i - \overline{y})\}}{\{[\sum_{i} (x_i - \overline{x})^2] \cdot [\sum_{i} (y_i - \overline{y})^2]\}^{\frac{1}{2}}}$$

Measure of linearity

It can be shown that the correlation coefficient satisfies -1 < r < +1 and when $|r| \approx 1$ then the relation is close to linear.

Example 5.3.1

Standard aqueous solutions of fluorescein are examined in a fluorescence spectrometer, and yield the following fluorescence intensities:

Fluorescence intensities	2.1	5.0	9.0	12.6	17.3	21.0	24.7
Concentration	0	2	4	6	8	10	12

Determine the correlation coefficient, r.

$$r = \frac{\sum_{i} \{(x_{i} - \overline{x})(y_{i} - \overline{y})\}}{\{[\sum_{i} (x_{i} - \overline{x})^{2}] \cdot [\sum_{i} (y_{i} - \overline{y})^{2}]\}^{\frac{1}{2}}}$$
$$= \frac{216.2}{\sqrt{112 \cdot 418.28}} = \frac{216.2}{216.44} = 0.9989$$

Computations in R

```
Intensities (Y) < -c(2.1,5.0,9.0,12.6,17.3,21.0,24.7)
Concentration (X) < -c(0,2,4,6,8,10,12)
The function in R that calculates the correlation coefficient is: cor(x,y) = cor(y,x)
> cor(Concentration .Intensities)
```

[1] 0.9988796

In analytical practice calibration graphs frequently give r-values greater than 0.99.

Test r for significance

 H_0 : correlation is zero.

The test statistics
$$t = \frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{|0.9988796|\sqrt{7-2}}{\sqrt{1-0.9988796^2}} = 47.19669$$

follows a t-dist with n-2=5 df.

We can test for significance this value using the **cor.test()**.

> cor.test(Concentration ,Intensities)

Pearson's product-moment correlation

data: Conc and Int

t = 47.1967, df = 5, p-value = 8.066e-08

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.992073 0.999842

sample estimates:

cor

0.9988796

Regression plot

The regression plot can be obtained in R using:

> plot(Concentration ,Intensities)

We shall assume that the straight-line calibration graph takes the algebraic form:

$$\mathbf{v} = \alpha + \beta \cdot \mathbf{x}$$

It can be shown that the estimates for α and β in the above equation, are given by:

Slope of least squares line: b= $\frac{\sum_{i}[(x_{i}-\overline{x})\cdot(y_{i}-\overline{y})]}{\sum_{i}(x_{i}-\overline{x})^{2}}$

Intercept of least squares line: $a = \overline{y} - b\overline{x}$

Calculate the slope and the intercept of the regression line for the data given in the previous example.

b=
$$\frac{\sum_{i}[(x_{i}-\overline{x})\cdot(y_{i}-\overline{y})]}{\sum_{i}(x_{i}-\overline{x})^{2}} = \frac{216.2}{112}$$
=1.93
a= $\overline{y} - b\overline{x}$ =13.1-(1.93)6=13.1-11.58=1.52

The regression estimates can be obtained in R using $Im(y \sim x)$:

> summary(Im(Intensities \sim Concentration))

Call:

 $Im(formula = Int \sim Conc)$

Residuals:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.5179	0.2949	5.146	0.00363	**
Conc	1.9304	0.0409	47.197	8.07e-08	***

Residual standard error: 0.4328 on 5 degrees of freedom Multiple R-squared: 0.9978, Adjusted R-squared: 0.9973

F-statistic: 2228 on 1 and 5 DF, p-value: 8.066e-08