FIRING EVENT DETECTION & CLASSIFICATION ON DROSOPHILA SENSILLUM RECORDING DATA

Haoyang Rong

Significance of odor detection

Marcus C. Stensmyr, et al., "A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila", Cell 151 (6), 1345–1357 (2012).

Roote, J., Prokop, A. (2013). How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3 (Bethesda) 3, 353-8

Three Stages of Olfactory System

Peripheral Olfactory Neurons

Leal Lab, UC Davis

Chih-Ying Su , et al., "Non-synaptic inhibition between grouped neurons in an olfactory circuit" , Nature, 2012

Sensillum Recording

A Sensillum's Response to Ethyl Acetate

Sensillum ab2

Abrupt Change of Firing Pattern

Basic Task

How do we detect and differentiate different firing events?

Sensillum ab2

Baseline Activity

- Most dominant feature in this case: amplitude
- How a simplest approach fails

Intense response

A third class of firing activity

Sub-threshold "oscillations"

Sub-threshold "oscillations"

Can you give an estimation about firing rate?

Comparing with baseline

More about classification

Mixed spikes

More features to consider

Modeling "Oscillations"

Modeling "Oscillations"

Can it be a mixture of large and small neuron activity?

Summary

Basic task

Classify mixed spikes

Model "Oscillations"