

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>

КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>

Лабораторная работа № 4

Дисциплина: Моделирование

Тема: «Обслуживающий аппарат»

Студент: Гасанзаде М.А.

Группа ИУ7-76Б

Оценка (баллы)

Преподаватель: Рудаков И.В.

Москва. 2020 г.

СОДЕРЖАНИЕ

І. АНАЛИТИЧЕСКАЯ ЧАСТЬ	3
Цель работы	3
Равномерное распределение	3
Нормальное распределение	3
Пошаговый подход	4
Событийная модель	4
ІІ. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	5
Без повторов, 1000 заявок	5
Входные данные:Выходные данные:	5
Входные данные: Выходные данные: 10% повторов, 10000 заявок.	5
Входные данные:Выходные данные:	6
Входные данные:Выходные данные:	6
Входные данные:Выходные данные:Равномерный закон ОА, 0% повторов, 10000 заявок	7
Входные данные:Выходные данные:	7
Входные данные:Выходные данные:СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	8

І. АНАЛИТИЧЕСКАЯ ЧАСТЬ.

Цель работы

Необходимо смоделировать систему, состоящую из генератора, памяти, и обслуживающего аппарата. Генератор подаёт сообщения, распределенные по равномерному закону, они приходят в память и выбираются на обработку по закону из ЛР2. Количество заявок конечно и задано. Предусмотреть случай, когда обработанная заявка возвращается обратно в очередь. Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Реализовать двумя способами: используя пошаговый и событийный подходы.

• нормальное распределение с ЛР2 (вариант 2)

Равномерное распределение

Случайная величина имеет непрерывное равномерное распределение на отрезке [a,b] , где $a,b \in \mathbb{R}$, если её плотность $f_{x}(x)$ имеет вид:

$$f_{X}(x) = \begin{cases} \frac{1}{b-a}, x \in [a,b], \\ 0, x \notin [a,b] \end{cases}$$

Интегрируя определённую выше плотность, получаем:

$$F_{\scriptscriptstyle X}(x) \equiv \mathbf{P}(X \leq x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x < b. \\ 1, & x \geq b \end{cases}$$

Нормальное распределение

При одномерном случае задаётся функцией плотности вероятности:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}},$$

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ =0 и стандартным отклонением σ =1 .

Функция распределения:

$$\frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x - \mu}{\sqrt{2 \, \sigma^2}} \right) \right]$$

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием $\mu=0$ и стандартным отклонением $\sigma=1$.

Пошаговый подход

Заключается в последовательном анализе состояний всех блоков системы в момент $t+\Delta t$. Новое состояние определяется в соответствии с их алгоритмическим описанием с учётом действия случайных факторов. В результате этого анализа принимается решение о том, какие системные события должны имитироваться на данный момент времени. Основной недостаток: значительные затраты и опасность пропуска события при больших Δt .

Событийная модель

Состояния отдельных устройств изменяются в дискретные моменты времени. При использовании событийного принципа, состояния всех блоков системы анализируются лишь в момент возникновения какого либо события. Момент наступления следующего события, определяется минимальным значением из списка событий.

II. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данном разделе будет рассмотрен вывод программы.

Без повторов, 1000 заявок

Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 1000
repeat_percentage = 0
step = 0.01
```

Выходные данные:

Максимальная длина очереди в event_model: 4

Максимальная длина очереди в step model: 4

10% повторов, 1000 заявок

Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 1000
repeat_percentage = 10
step = 0.01
```

Выходные данные:

Максимальная длина очереди в event model: 6

```
Максимальная длина очереди в step model: 7
```

10% повторов, 10000 заявок

Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 10000
repeat_percentage = 10
step = 0.01
```

Выходные данные:

Максимальная длина очереди в event model: 7

Максимальная длина очереди в step model: 7

50% повторов, 10000 заявок

Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 10000
repeat_percentage = 50
step = 0.01
```

Выходные данные:

Максимальная длина очереди в event model: 2271

Максимальная длина очереди в step model: 2217

100% повторов, 10000 заявок

Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 10000
repeat_percentage = 100
step = 0.01
```

Выходные данные:

Максимальная длина очереди в event model: 7223

Максимальная длина очереди в step model: 7365

Равномерный закон ОА, 0% повторов, 10000 заявок

Входные данные:

```
generator = EvenDistribution(5, 6)
processor = EvenDistribution(3, 6)

total_tasks = 10000
repeat_percentage = 0
step = 0.01
```

Выходные данные:

Mаксимальная длина очереди в event_model: 1

Максимальная длина очереди в step model: 1

Равномерный закон ОА, 100% повторов, 10000 заявок Входные данные:

```
generator = EvenDistribution (5, 6)
```

```
processor = EvenDistribution(3, 6)
total_tasks = 10000
repeat percentage = 100
step = 0.01
  Выходные данные:
```

Максимальная длина очереди в event model: 8173

Максимальная длина очереди в step model: 8199

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- «SÜREKLİ (CONTINUOUS) OLASILIK DAĞILIMLARI» URL:
 https://acikders.ankara.edu.tr/pluginfile.php/116949/mod_resource/content/1/6-Surekli%20Olasilik%20Dagilimi.pdf (дата обращения 22.10.2020)
- 2. «Normal Dağılım ve Veri Bilimi'ndeki Yeri» URL:
 https://medium.com/datarunner/normaldagilim-589846bb850a (дата обращения 22.10.2020)
- **3.** «Hafta 8- Sürekli Dagılımlar_1.pdf» URL: http://endustri.eskisehir.edu.tr/nerginel/%C4%B0ST244/icerik/Hafta%208-%20S%C3%BCrekli%20Dag%C4%B11%C4%B1mlar_1.pdf (дата обращения 22.10.2020)