2 A pendulum of length *l* swings in a vertical plane. The string hits a peg placed at a distance *h* vertically below the point of suspension as shown. This makes the pendulum shorter for part of its motion.

(a) Determine the time period T for the whole oscillation when $h = 0.25 \,\mathrm{m}$.

$$l = 1.00 \,\mathrm{m}$$

(b)	A student suggests	that an	approximate	relationship	between	T and h i	s given	bv
10,		tilut ull	appromittate	Totationip	OCCII CCII	I wild it I	5 51 1 011	

$$T^2 = \frac{\pi^2}{g} \left(2l - h \right)$$

Devise a plan to test the validity of the relationship using a graphical method. Include the use of a stopwatch and any additional apparatus as required.

(6)

(c) Another student suggests determining *T* by setting up a light gate attached to a data logger.

Discuss whether this modification would improve the investigation.

(3)