Содержание

1	Комплексные числа. Определение	2
2	Комплексные числа. Геометрия и картинки	4
3	Поле направления и экспонента	5
4	Кубические уравнения	6
5	Преобразования плоскости	7
6	Вращаем Землю	8
7	Геометрия Фано	9
8	Загоночная контрольная	9
9	Лог. КЛІІІ-2019 9.1 Плакат	9 11
10	Решения	11
11	Источники мудрости	13

Цель

Рассказать про комплексный числа, преобразование Мёбиуса, кватернионы, вращения, роторы, октонионы, гиперболическую и проективную геометрию.

ччч

1. Комплексные числа. Определение

Определение 1. Комплексное число — это вектор на плоскости.

- 1. Длина вектора модуль комплексного числа, |z|.
- 2. Угол между вектором и горизонатльной осью аргумента комплексного числа, $\arg z$.
- 3. Горизонтальная составляющая вектора действительная часть, $\operatorname{Re} z$.
- 4. Вертикальная составляющая вектора мнимая часть, действительное число, ${\rm Im}\,z$.
- 1.1 Поехали.
 - 1. Для комплексных чисел 1+i и 3+4i найди |z|, arg z, Re z, Im z.
 - 2. Нарисуй числа 1+i, 3+4i, 3-i, -3i.

Действия:

- 1. Сложение комплексных чисел сложение векторов.
- 2. Умножение комплексных чисел длины векторов умножаются, аргументы складываются.
- 3. Сопряжение z^* комплексного числа отражение относительно горизонтальной оси.
- 1.2 Базируясь на геометрическом определении умножения, ответь на вопросы:
 - 1. Чему равняется $(1+i)^2$? $(1+i)^{43}$?
 - 2. Почему $i^2 = -1$?
 - 3. Чему равняется произведение z = 6 + 3i на i?

Наивное умножение комплексных чисел. Раскрываем скобки и упрощаем по принципу $i^2 = -1$.

- 1.3 Нарисуй процесс умножение произвольного z на 3+4i. А именно, нарисуй 3z, 4iz, (3+4i)z и по рисунку объясни, почему (3+4i)z=3z+4iz.
- 1.4 1. У комплексного числа $w = \sqrt{11} + 5i$ найди |w|, $|w|^2$, Arg w, Re w, Im w, w^* , ww^* .
 - 2. Найди $(3+5i)\cdot(3+3i),$ (1+i)/(1-i),
 - 3. Найди $(\sqrt{3}+i)^{43}$, $(1-i)^{2018}$;
 - 4. Найди $(\cos(20^\circ) + i\sin(20^\circ)) \cdot (\cos(10^\circ) + i\sin(10^\circ));$
 - 5. Найди $(\cos(20^\circ) + i\sin(20^\circ))/(\cos(10^\circ) + i\sin(10^\circ));$
- **1.5** Реши уравнения $z^2=-1$, $z^2+6z+10=0$, $z^6=64$, (z-1)/(z+1)=1+3i.
- **1.6** Найди суммы $1+i+i^2+i^3+i^4+\ldots+i^{2019}$, $(1+i)+(1+i)^2+(1+i)^3+(1+i)^4+\ldots+(1+i)^{2020}$.
- 1.7 Бесконечно живущая черепаха за первый день проходит 10 км на север. Затем каждый день она поворачивает на 90° налево и снижает скорость на 20%. К какой точке она приближается?

К какой точке стремится черепах, если она поворачивает на 60° ?

1.8 Найди сумму углов между векторами и горизонтальной осью.

1.9 На плоскости нарисована кошечка. Что прозойдет с кошечкой, если каждую точку кошечки домножить на комплексное число $1/\sqrt{2}+i/\sqrt{2}$?

2. Комплексные числа. Геометрия и картинки

- **2.1** Рассмотрим произвольный четырёхугольник. Снаружи каждой стороны четырёхугольника построим квадрат. Назовём отрезки, соединяющие центры противоположных квадратов, MN и KL.
 - 1. Найди угол между MN и KL.
 - 2. Найди отношение длин MN и KL.
- 2.2 Нарисуй на комплексной плоскости множества

1.
$$|z| = 4$$
;

2.
$$|z-2+3i| > 5$$
;

3. Re
$$z = 3$$
;

4.
$$\text{Im } z < 6$$
;

5.
$$1 < |2z - 6| < 2$$
;

6.
$$|z-1|^2 + |z+1|^2 < 8$$
;

7.
$$|z-1|+|z+1| \le 2$$
;

8.
$$|\operatorname{Re} z| < |z|$$
;

9.
$$|z - i| = |z - (3 + 2i)|$$
;

10.
$$Re((1+i)z) > 2$$
;

11. Re
$$\left(\frac{z-1-i}{z+1+i}\right) = 0$$
;

12. Im
$$\left(\frac{z-1-i}{z+1+i}\right) = 0$$
;

2.3 Нарисуй на комплексной плоскости траектории, $t \to z(t)$, для $t \in \mathbb{R}$, отметив стрелкой направление:

1.
$$t \rightarrow 6 + it$$
;

2.
$$t \to t + 2 + 7i$$
;

3.
$$t \to t + 2 + it$$
;

4.
$$t \rightarrow t + it^2$$
;

5.
$$t \to \cos t + i \sin t$$
;

6.
$$t \rightarrow t \cdot (\cos t + i \sin t)$$
;

7.
$$t \to t \cdot (\cos t - i \sin t)$$
;

- **2.4** Нарисуй комплексные числа z_1 и z_2 с единичной длиной и аргументами $\pi/4$ и $\pi/2$.
 - 1. Запиши z_1 , z_2 и $z_1 + z_2$ в виде a + bi.
 - 2. Найди $\tan 3\pi/8$;

3. Поле направления и экспонента

Определение 2. Если z(t) — положение точки в момент t, то $\dot{z}(t)$ или z'(t) — мгновенная скорость точки (вектор).

Определение 3. Поле направления — в каждой точки плоскости нарисован вектор скорости движения точки.

- 3.1 Нарисуй поле направления для каждого случая:
 - 1. $\dot{z}(t) = 1$;

- 4. $\dot{z}(t) = -z(t)$;
- 7. $\dot{z}(t) = 2 z(t)$;

2. $\dot{z}(t) = i$:

5. $\dot{z}(t) = iz(t)$:

3. $\dot{z}(t) = z(t)$;

6. $\dot{z}(t) = -iz(t)$;

8. $\dot{z}(t) = 2 - iz(t)$;

Определение 4. Экспонента $\exp(t)$ — функция z(t) со свойствами z(0) = 1, $\dot{z}(t) = z(t)$. Экспонента $\exp(it)$ — функция z(t) со свойствами $z(0)=1, \dot{z}(t)=iz(t).$

- 3.2 Докажи, что
 - 1. $\exp(1) \approx 1.01^{100}$;
 - 2. $\exp(2) = \exp(1) \cdot \exp(1)$;
 - 3. $\exp(3) = \exp(1) \cdot \exp(1) \cdot \exp(1)$;
- 3.3 Найди
 - 1. $\exp(i\pi/3)$;

- 3. Формула Эйлера! $\exp(i\pi)$; 5. $\exp(i\pi/3) \cdot \exp(i\pi/2)$;

2. $\exp(i\pi/2)$;

- 4. $\exp(it)$;
- 3.4 Запиши комплексные числа с помощью экспоненты
 - 1. 1 + i;
 - 2. $\sqrt{3} + i$;
 - 3. $\sqrt{3} i$:
 - 4. 6*i*;
- 3.5 Реши уравнения
 - 1. $z^2 = 6$:

5. $z^2 = -4i$:

9. $z^5 = 32$:

2. $z^2 = -9$;

- 6. $z^2 + 4z + 13 = 0$;
- 10. $z^6 = i$;

3. $z^2 = 4i$: 4. $z^3 = -27$:

- 7. $\frac{z+i+2}{z-i-3} = 4i;$
- 8. $z^3 + z^2 + z 3 = 0;$ 11. $z^7 = 1 i;$

4. Кубические уравнения

4.1 Найди все значения многозначной функции

1.
$$8^{1/3}$$
;

2.
$$i^{1/3}$$
;

3.
$$(1+i)^{1/3}$$
;

4.
$$(\sqrt{3}+i)^{1/3}$$
;

4.2 Реши системы

1.
$$\begin{cases} x + y + xy = 5 \\ x^2 + y^2 = 5 \end{cases}$$

2.
$$\begin{cases} xy(x+y) = 30\\ x^3 + y^3 = 35 \end{cases}$$

3.
$$\begin{cases} x^2 + 3xy + y^2 = 79 \\ xy + y + x = 23 \end{cases}$$
;

4.
$$\begin{cases} x^3 + y^3 = 10 \\ y \cdot x = 2 \end{cases}$$
;

4.3 Реши кубическое уравнение

1.
$$z^3 - 15z - 4 = 0$$
;

2.
$$z^3 - 15z - 10 = 0;$$
 3. $z^3 - 6z - 6 = 0;$

3.
$$z^3 - 6z - 6 = 0$$

4.4 Подбери число t так, чтобы при замене z=w+t в записи исчезло слагаемое w^2 :

1.
$$z^3 + 21z^2$$
;

2.
$$z^3 - 9z^2$$
;

3.
$$z^3 + 6z^2$$
;

Определение 5. Экспонента $\exp(a+bi)=\exp(a)\cdot\exp(b)$ — функция z(t) со свойствами z(0)=1, $\dot{z}(t)=$ $(a+bi)\cdot z(t)$.

5. Преобразования плоскости

Нарисуй исходное множество A и его образ f(A) для случаев

- 5.1 1. $A = \{|z 1| = 1\}, f(z) = z^2;$
 - 2. $A = \{ \text{Re } z = 1 \}, f(z) = z^2;$
 - 3. $A = \{ \text{Im } z = 1 \}, f(z) = z^2;$
 - 4. $A = {\text{Im } z = (\text{Re } z)^2}, f(z) = z^2;$
 - 5. $A = \{ \text{Re } z = 4 \}, f(z) = (1+i)z;$
 - 6. $A = \{ \text{Re } z = 4 \}, f(z) = \exp(z);$

- 7. $A = \{ \text{Im } z = 4 \}, f(z) = \exp(z);$
- 8. $A = \{ \text{Re } z = 4 \}, f(z) = 1/\bar{z};$
- 9. $A = \{ \text{Im } z = 4 \}, f(z) = 1/\bar{z};$
- 10. $A = \{ \text{Im } z = 0 \}, f(z) = 1/\bar{z};$
- 11. $A = \{|z| = 2\}, f(z) = 1/\bar{z};$

Определение 6. Комплексная инверсия $f: z \to 1/z$;

Геометрическая инверсия (просто инверсия): $f:z\to 1/\bar{z}$ и обобщение.

- 5.2 Нарисуй окружность с центром Q и радиусом r. Нарисуй точки A и B внутри окружности и их образы \tilde{A} и \tilde{B} после инверсии.
 - 1. Найди подобные треугольники.
 - 2. Найди длину $\tilde{A}\tilde{B}$, если QA=4, QB=6, r=10, AB=5.
- 5.3 Свойства инверсии:
 - 1. Что получится, если инверсию применить два раза?
 - 2. Во что переходит сама окружность при инверсии?
- 5.4 Нарисуй окружность с центром ${\cal Q}$ и радиусом r. Во что перейдёт при инверсии:
 - 1. Прямая ℓ , проходящая через центр окружности Q.
 - 2. Прямая ℓ , не проходящая через центр окружности Q.
- 5.5 Миша С. выполняет инверсию точки A относительно окружности радиуса m с центром в точке Q и получает точку \tilde{A}_1 . Серёжа Л. выполняет инверсию той же точки A относительно окружности радиуса s с центром в точке Q и получает точку \tilde{A}_2 .
 - 1. Как будут соотносится длины отрезков $Q\tilde{A}_1$ и $Q\tilde{A}_2$? Как зависит это отношение от выбора точки A?
 - 2. Объясни содержательную разницу между инверсией Миши С. и Серёжи Л.
- 5.6 Нарисуй окружность с центром Q и радиусом r. Во что перейдёт при инверсии:
 - 1. Окружность w, проходящая через центр исходной окружности Q.
 - 2. Окружность w, не проходящая через центр иходной окружности Q.

6. Вращаем Землю

Определение 7. Действие $Ref_a(v)$ — это отражение (reflection) вектора v относительно прямой (в 2D) или плоскости (в 3D), перпендикулярной вектору a.

- 6.1 Вектор a имеет единичную длину, а вектор v произвольную. Какой смысл имеют объекты $a\cdot v$, $a\cdot va$?
- **6.2** Вектор a имеет единичную длину, а вектор v произвольную.
 - 1. Запиши отражение $Ref_a(v)$ используя проекцию $a \cdot va$;
 - 2. Чему равно aa?
 - 3. Запиши отражение $Ref_a(v)$ используя геометрическое умножение.
- **6.3** Какой геометрический смысл имеет пара отражений подряд $Ref_b(Ref_a(v))$ на плоскости?
- **6.4** Какой геометрический смысл имеет пара отражений подряд $Ref_b(Ref_a(v))$ в пространстве?
- 6.5 Рассмотрим два вектора a=(1,0,1) и b=(1,1,1). Рассмотрим поворот $Rot_{ab}()$, поворачивающий все вектора на удвоенный угол $\angle(a,b)$ с осью вращения ортогональной плоскости (a,b). Во что перейдёт вектор v=(1,2,3) после поворота $Rot_{ab}(v)$?

7. Геометрия Фано

Количество точек и прямых на проективной плоскости порядка такого-то?

8. Загоночная контрольная

- 1. Подели и умножь комплексные числа и кватернионы:
 - a) (1+3i)(2-5i)

B)
$$(1+2i+3j+4k)(4+3i+2j+k)$$

6) (3+5i)/(3+4i)

- r) (2+5i+4k)/(-3+4j).
- 2. Черепаха стартует в точке 0. В первую минуту она движется со скоростью один километр в минуту. Каждую последующую минуту она поворачивает на 60 градусов по часовой стрелке и увеличивает свою скорость в два раза. Где черепаха окажется через час?
- 3. Реши в комплексных числах уравнение $z^6 = -64$.
- 4. Нарисуй множество $A = \{ \text{Re } z = 3 \}$ и его образ f(A) для функции $f(z) = 1/\bar{z}$.
- 5. Рассмотри произвольный четырёхугольник ABCD. С помощью комплексных чисел (или иначе) найди отношение суммы квадратов диагоналей к сумме квадратов средних линий.

9. Лог. КЛШ-2019

- 1. Было 29 школьников, от 8-го до 10-го класса и одна храбрая семиклассница. Комплексное число вектор на плоскости. Сложение и вычитание. Изобразите 3+4i, 5i, -6+i, -8. Длина и аргумент. Многозначная функция. Геометрическое умножение. Находим $(1+i)^{44}$. Геометрически считаем $i \cdot i$, $(5+6i) \cdot i$. Наивное умножение. Геометрически интерпретируем наивное умножение $z \cdot (3+4i)$. Рисуем число $\cos 40^\circ + i \sin 40^\circ$. Делим через домножение на сопряжённое. Делим геометрически. Находим сумму конечной геометрической прогрессии комплексных чисел.
- 2. Повторили основные мысли. Два варианта записи чисел. Явно z=a+bi, через длину и угол с косинусом и синусом. Решили задачу про сумму углов. Разобрал окружность с центром не в нуле. Далее школьники решали и сдавали номера.
- 3. Решили задачу про сумму квадратов через явное представление z=a+bi. Дальше пообсуждали, что разумно сделать после решения задачи. Придумать более простой метод. Придумать более универсальный метод. Проверить, работает ли старый метод, если пошевилить задачу. Пошевелили нашу задачу и пришли к выводу, что геометрическо множество точек Z таких, что $AZ^2 + BZ^2 = const$ это окружность. Влад, решивший дома задачу по геометрии с произвольным четырёхугольником, начал излагать её. Чтобы ускорить процесс, я изложил за него. Затем кратко рассказал про кривые. И школьники рисовали кривые.
- 4. Рисовали поле направлений. Хороший образ: нарисовать стрелочки ветра и куда несёт парашутиста. Определили две экспоненты: $\exp(t)$ и $\exp(it)$. Посчитали вместе примерно $\exp(1)$, $\exp(2)$. Перевели запись $\exp(it)$ для хороших t в координатную форму. Подытожили три формы записи комплексных чисел.

- 5. Повторили три формы записи комплексных чисел. Эффективнее всего решать уравнения табличкой. Хотя до этого процесса мы дошли только в конце. Берём исходное число записываем его в виде $27 \exp(120^\circ + 360^\circ k)$. Пишем длину, угол. Далее табличкой пишем то же самое для нескольких k. Затем в общей записи и в примерах делим угол на три, а из длины извлекаем кубический корень. Изображаем четыре кандидата, замечаем, что три кандидата совпадают. Записываем каждого кандидата в координатной форме записи. После этого школьники решали сами задачи на нахождение корней. Из-за не оптимального рассказа после перерыва ещё раз изложил алгоритм решения.
- 6. Вспомнили экспоненту для действительных чисел, $\exp(t)$, экспоненту от чисто мнимых, $\exp(it)$. И определили экспоненту от комплексных чисел $\exp(a+bi)$. Доказали через выделение полного квадрата, что дискриминант работает для квадратного уравнения. Многие школьники немного удивлённо узнали, что дискриминант это то, что остаётся в правой части после умножения уравнения на 4 и выделения полного квадрата. Далее я рассказал про симметричную замену. И пример, где симметричная замена в системе не работает, но создаёт мостик до кубического уравнения. Начали решать кубическое уравнение. Схематично обозначил окончание. Надо было взять хорошие коэффициенты. Плохие коэффициенты от фонаря резкое препятствие!
- 7. Реакция на критику: парты появились. Немного темно увы. Мотивационное: квантовые вычисления и преобразование Лоренца. Решали 5.1. Разобрали вместе 1 пункт, задал 2, 3, 5, 6. Шло тяжело. Разобрал 2. Напомнил про то, что такое $\exp(a+bi)$.
- 8. Преобразования кошки для w=2z, $\exp(2+\pi iz)$, iz, $\operatorname{Re} z$, (1+i)z. Начали преобразовывать координатную сетку при преобразовании $w=z^2$.
- 9. Возвели комплексную кошку в квадрат. Получили глаз. Дома её никто в квадрат не возводил, но после моего начала решения и просьбы продолжить, нашлись те, кто смог продолжить. Проговорили формулу и геометрический смысл сопряжения. Школьники сами решили, как записать формулами симметрию относительно вертикальной оси и биссектрисы первой четверти. Определили геометрическую инверсию относительно окружности. Инвертировали 5 данных точек относительно данной окружности.
- 10. Кристина дома вывела формулу для инверсии с центром в 0 и радиусом R. Упростили формулу. Затем я вывел формулу для инверсии относительно произвольной окружности. Это было ошибочным решением: далее мы её не используем, и толку от вывода слишком мало. Далее школьники решали и сдавали геометрические задачи из 5-го листка.
- 11. Боря + Михаил Шнитке показывали и обсуждали видео от 3blue1brown. Про пи и комплексные числа, https://www.youtube.com/watch?v=NaL_Cb42WyY. Затем уже без комментариев, но с русскими субтитрами смотрели видео про гипотезу Римана, https://www.youtube.com/watch?v=sD0NjbwqlYw.
- 12. Оказалось, что больше половины школьников не знают, что такое скалярное произведение. Начали с того, как умножать число на вектор. Затем рассмотрели скалярное произведение. На конкретном примере, с вектором b, лежащим на оси, убедились в формуле $a \cdot b = |a| \cdot |b| \cdot \cos(a,b)$. Затем ввёл внешнее произведение как бивектор. Шло тяжело. Посчитали во сколько раз отличается $a \wedge b$ от $x \wedge y$ на плоскости. Упростили выражение для $a \wedge b$ в трёхмерном пространстве.
- 13. Повторили, что такое бивектор. Ввели геометрическое умножение. Умножая вектора на плоскости получили комплексные числа. Умножая вектора в пространстве получили кватернионы. Переобозначили базисные бивекторы как i,j и k.

14. Повторили геометрическое умножение. Доказали, что два отражения на плоскости дают поворот. Далее я доказал, что два отражения в пространстве также дают поворот. Для единичного вектора aи произвольного вектора v осознали смысл выражений $a \cdot v, a \cdot va$. Записали отражение с помощью скалярного произведения: $v-2(a\cdot v)v$. И заметив, что aa=1, перешли к формуле -ava. Далее выяснили, что поворот задаётся формулой bavab. Всё. Я постарался обратить внимание, что baэто кватернион.

9.1. Плакат

10. Решения
1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8. $(4+2i)(3+i) = 10+10i, \pi/4.$
1.9 . Кошка повернётся на $\pi/4$ против часовой стрелки относительно начала координат
2.1.
2.2.
2.3.
2.4.
3.1.
3.2.
3.3.
3.4.
3.5.

4.1.
4.2.
4.3.
4.4.
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
6.1. Число $a\cdot v$ — длина (со знаком) проекции v на a , вектор $a\cdot va$ — сама проекция v на a .
6.2.
6.3.
6.4.
6.5.

11. Источники мудрости

передалать потом в bib-файл

- 1. Кратко про геометрию Фано, https://www.youtube.com/watch?v=CRqso5-uLfI
- 2. How to build hyperbolic soccer ball, http://theiff.org/images/IFF_HypSoccerBall.pdf
- 3. Chaim Goodman-Strauss, Compass and Straightedge in the Poincaré Disk
- 4. Mann, DIY hyperbolic course, https://math.berkeley.edu/~kpmann/DIY%20hyperbolic%20course.pdf
- 5. 3blue1brown, Quaternions visualized, https://www.youtube.com/watch?v=d4EgbgTm0Bg
- 6. Grant Sanderson, Visualizing quaternions, https://eater.net/quaternions
- 7. https://www.quantamagazine.org/the-octonion-math-that-could-underpin-physics-20180720/, есть pdf-ка с картинками умножения на кватернионов и октонионов.
- 8. Hanson, Visualizing quaternions, примеры про ремень, мячик, Apollo
- 9. https://brilliant.org/wiki/complex-numbers-in-geometry/
- 10. Прасолов, Геометрия Лобачевского
- 11. Slerp, wiki, https://en.wikipedia.org/wiki/Slerp
- 12. Wiki, 3d rotation, https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
- 13. Fano plane, https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spaces-the-fano-plane/
- 14. Lam, Search finite Fano plane of order 10, https://www.maa.org/sites/default/files/pdf/upload_library/22/ Ford/Lam305-318.pdf, связка с латинскими квадратами
- 15. http://kahrstrom.com/mathematics/documents/OnProjectivePlanes.pdf, геометрия как точки и линии