Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Systèmes Linéaires Continus Invariants

SLCI1 - Bode

Résumé

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Objectifs

Prévoir la réponse en régime permanent d'un système de fonction de transfert H(p) à une entrée sinusoïdale $e(t)=e_0\sin(\omega t)$ avec $\omega=2\pi f=\frac{2\pi}{r}$:

$$s(t) = s_0 \sin(\omega t + \varphi) \quad ; \quad t_{\varphi} = \frac{\varphi}{\omega} < 0$$

$$\begin{cases} s_0 = |H(j\omega)|e_0\\ \varphi = \arg(H(j\omega)) \end{cases}$$

Diverses représentations de $H(j\omega)$

Bode	Black (-Nichols)	Nyquist
Abscisses : ω Ordonnées 1 : $G_{db}(\omega)$ Ordonnées 2 : $\varphi(\omega)$	Abscisses : $arphi(\omega)$ Ordonnées : $G_{db}(\omega)$	Abscisses : $\operatorname{Re}ig(H(j\omega)ig)$ Ordonnées : $\operatorname{Im}ig(H(j\omega)ig)$
$G_{db}(\omega) = 20 \log H(j\omega) $ $\varphi(\omega) = \arg H(j\omega)$		$H(j\omega) = \mathbf{Re}(H(j\omega)) + j\mathbf{Im}(H(j\omega))$

Spécificités dans Bode

Produit de fonctions

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Systèmes du premier ordre

Réponse harmonique générale

$$H(p) = \frac{K}{1 + Tp} = \frac{K}{1 + \frac{p}{\omega_0}} \quad ; \quad \omega_0 = \frac{1}{T}$$

$$e(t) = e_0 \sin(\omega t) u(t)$$
 ; $E(p) = e_0 \frac{\omega}{p^2 + \omega^2}$

$$S(p) = \frac{Ke_0}{1 + T^2\omega^2} \left[\frac{\omega}{p^2 + \omega^2} - \omega T \frac{p}{p^2 + \omega^2} + \omega T \frac{1}{\frac{1}{T} + p} \right]$$

$$s(t) = \frac{Ke_0}{1 + T^2\omega^2}\omega Te^{-\frac{t}{T}}u(t) + \frac{Ke_0}{\sqrt{1 + T^2\omega^2}}\sin(\omega T + \varphi)u(t) \quad ; \quad \varphi = -\tan^{-1}(\omega T)$$

$$s(t) = \frac{Ke_0}{1 + T^2\omega^2}\omega T e^{-\frac{t}{T}}u(t) + s_0\sin(\omega t + \varphi)u(t)$$

Régime transitoire

Régime permanent

Caractéristiques de la sortie en régime permanent

$$s(t) = |\mathbf{H}(\mathbf{j}\boldsymbol{\omega})|e_0\sin(\omega t + \boldsymbol{\varphi})$$

$$|H(j\omega)| = \frac{K}{\sqrt{1 + T^2 \omega^2}}$$
; $\varphi = -\tan^{-1}(\omega T)$

Diagramme de Bode en gain

$$G_{db} = 20 \log |H(j\omega)| = 20 \log K - 10 \log (1 + T^2 \omega^2)$$

$$H(p) = \frac{K}{1 + Tp}$$

$$\omega_c \approx \omega_0 = \frac{1}{T}$$

$$\omega_{c_0} = \omega_0 \sqrt{K^2 - 1}$$

$$\omega_{c_0}^{asympt} = \omega_0 K$$

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Diagramme de Bode en phase

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Systèmes du second ordre

$$H(p) = \frac{K}{1 + \frac{2z}{\omega_0}p + \frac{1}{{\omega_0}^2}p^2}$$

Caractéristiques de la sortie en régime permanent

$$s(t) = |\mathbf{H}(\mathbf{j}\boldsymbol{\omega})|e_0\sin(\omega t + \boldsymbol{\varphi})$$

$$|H(j\omega)| = \frac{K}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(2z\frac{\omega}{\omega_0}\right)^2}} \quad ; \quad \varphi = -\cos^{-1}\left(\frac{1 - \frac{\omega^2}{\omega_0^2}}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(2z\frac{\omega}{\omega_0}\right)^2}}\right)$$

Diagramme de Bode en gain

$$G_{db}(\omega_0) = G_0 - 20\log(2z)$$

$$Si K > 1: \omega_{c_0} = \omega_0 \sqrt{(1 - 2z^2) + \sqrt{(1 - 2z^2)^2 + (K^2 - 1)}}$$

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Diagramme de Bode en phase

$$\varphi(\omega_0)=-\frac{\pi}{2}$$

Page **7** sur **12**

Dernière mise à jourSLCI 1Denis DEFAUCHY28/08/2022BodeRésumé

Bilan

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Utilisation d'un diagramme de Bode

 $G_{db} = 20 \log |H(j\omega)| \Leftrightarrow |H(j\omega)| = 10^{\frac{G_{db}}{20}}$

Prenons deus entrées de pulsations différentes

 $H(p) = \frac{10}{1+p}$

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Page **10** sur **12**

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Identification

Principe

Imposer des entrées	$e(t) = e_i \sin(\omega_i t)$; $\begin{cases} e_i \\ \omega_i \end{cases}$ choisis
Mesurer les sorties	$s(t) = s_i \sin\left(\omega_i (t + t_{\varphi_i})\right)$
Calculer les points des diagrammes de gain et de phase pour ω_i	$\begin{cases} G_i = 20 \log \left(\frac{s_i}{e_i} \right) \\ \varphi_i = \omega_i t_{\varphi_i} < 0 \end{cases}$
Tracer les diagrammes de Bode en gain et	$\begin{cases} G_i = f(\omega_i) \\ \varphi_i = f(\omega_i) \end{cases}$
phase	$(\varphi_i = f(\omega_i))$
Identifier les caractéristiques du système	

Imposó	Pulsation	ω_1	ω_2	 ω_n
Imposé	Amplitude entrée	e_1	e_2	 e_n
Mesuré	Amplitude sortie	s_1	s_2	 s_n
	Déphasage temporel	t_{φ_1}	t_{φ_2}	 t_{φ_n}
Calculé	Gain	G_1	G_2	G_n
Calcule	Phase	φ_1	φ_2	φ_n

Dernière mise à jour	SLCI 1	Denis DEFAUCHY
28/08/2022	Bode	Résumé

Identification

Identification de l'ordre du système					
Pente du gain aux hautes pulsations	Phase aux hautes pulsations	Ordre du système			
−20 db/dec	$\varphi_{\infty} = -90^{\circ}$	1° ordre			
-40 db/dec	$arphi_{\infty} = -180^{\circ}$	2° ordre			

Identification des coefficients du système				
1° ordre $H(p) = \frac{K}{1 + Tp}$	$H(p) = \frac{2^{\circ} \text{ ordre}}{1 + \frac{2z}{\omega_0} p + \frac{1}{\omega_0^2} p^2}$			
Trouver G_0 : Asymptote horizontale				
Calculer $K=10^{rac{G_0}{20}}$				
Trouver ω_c : Intersection des 2 asymptotes de gain ; $\varphi=-45^\circ$)	Trouver ω_0 : Intersection des 2 asymptotes de gain $(\omega \to 0 \& \omega \to \infty)$; $\varphi = -90^\circ$ Mesurer $G(\omega_0)$			
Calculer : $T = \frac{1}{\omega_c}$	Calculer $\mathbf{Z} = \frac{10^{\frac{G_0 - G(\omega_0)}{20}}}{2}$			

On peut utiliser la résonnance d'un second ordre si présente :

$$\begin{cases} G_r = 20 \log \left(\frac{K}{2z\sqrt{1-z^2}}\right) \Leftrightarrow \begin{cases} \mathbf{z} = \sqrt{1 - \frac{K^2}{10^{\frac{G_r}{10}}}} \\ \omega_r = \omega_0 \sqrt{1-2z^2} \end{cases} \Leftrightarrow \begin{cases} \mathbf{z} = \sqrt{1 - \frac{K^2}{10^{\frac{G_r}{10}}}} \\ \boldsymbol{\omega_0} = \frac{\omega_r}{\sqrt{1-2z^2}} \end{cases}$$