Table of Common Probability Distributions

Discrete Distributions

Distribution	Notation	PMF	$E\{X\}$	$var\{X\}$
binomial	$X \sim bin(n,p)$	$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, \dots, n$	np	np(1-p)
Poisson	$X \sim \mathrm{poi}(\lambda)$	$\mathbf{p}(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \ x \geqslant 0$	λ	λ
geometric	$X \sim \mathrm{geo}(p)$	$p(x) = p(1-p)^{x-1}, x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
negative binomial	$X \sim nbin(r,p)$	$p(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \ x \geqslant r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
hypergeometric	$X \sim hgeo(n, N, m)$ $p = \frac{m}{N}$	$p(x) = \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{n}}, \ x = 0, \dots, m$	np	$\frac{N-n}{N-1} \cdot np(1-p)$

Continuous Distributions

Distribution	Notation	PDF	$E\{X\}$	$var\{X\}$
uniform	$X \sim U(a,b)$	$f(x) = \begin{cases} \frac{1}{b-a} & a \leqslant x \leqslant b\\ 0 & \text{otherwise} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
normal	$X \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$	μ	σ^2
exponential	$X \sim \exp(\lambda)$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geqslant 0\\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
gamma	$X \sim \mathrm{gamma}(\lambda, \alpha)$	$\Gamma(\alpha) = \int_0^{\infty} e^{-x} x^{\alpha - 1} \mathrm{d}x$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
beta	$X \sim beta(a,b)$	$f(x) = \begin{cases} \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)} & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$ $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$