

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

INDEFINITE INTEGRALS

Illustration

1. If
$$\int \!\! rac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx = a\sin 2x + C$$
 then $a =$

A.
$$-\frac{1}{2}$$

B.
$$\frac{1}{2}$$

$$C. - 1$$

Answer: A

2. If
$$\dfrac{1+\cos 8x}{\tan 2x-\cot 2x}dx=a\cos 8x+C$$
,then a=

A.
$$-\frac{1}{16}$$

B.
$$\frac{1}{8}$$

c.
$$\frac{1}{16}$$

D.
$$-\frac{1}{8}$$

Answer: C

3.
$$\int \frac{\sin x + \cos x}{\sin(x - \alpha)} dx$$
 is equal to

A.
$$(\cos lpha - \sin lpha)(x-lpha) + (\cos lpha + \sin lpha) {\log |\sin (x-a)|} + C$$

B.
$$(\cos lpha + \sin lpha)(x-lpha) + (\cos lpha + \sin lpha) {\log |\sin (x-a)|} + C$$

C.
$$(\cos lpha + \sin lpha)(x+lpha) + (\cos lpha + \sin lpha) {\log |\sin (x+a)|} + C$$

D. none of these

Answer: A

Watch Video Solution

4. If $\int \frac{\sin x}{\sin(x-lpha)} dx = Ax + B \log \sin(x-lpha) + C$, then the value of (A,B) , is

A. $(-\cos\alpha,\sin\alpha)$

B. $(\cos \alpha, \sin \alpha)$

 $\mathsf{C}.\,(\,-\sinlpha,\coslpha)$

D. $(\sin \alpha, \cos \alpha)$

Answer: B

5. Evaluate:
$$\int \frac{1}{\sin(x-a)\sin(x-b)} dx$$

A.
$$\frac{1}{\sin(a-b)}\log\left|\frac{\sin(x-a)}{\sin(x-b)}\right| + C$$

$$\operatorname{B.} - rac{1}{\sin(a-b)} \log \left| rac{\sin(x-a)}{\sin(x-b)} \right| + C$$

$$\mathsf{C}.\log\sin(x-a)\mathrm{sin}(x-b)+C$$

D.
$$\log \left| \frac{\sin(x-a)}{\sin(x-b)} \right| + C$$

Answer: A

6. The value of
$$\sqrt{2} \int \frac{\sin x}{\sin \left(x - \frac{\pi}{4}\right)} dx$$
 , is

A.
$$x + \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + C$$

$$|B.x - \log \left| \cos \left(x - \frac{\pi}{4} \right) \right| + C$$

$$|C.x + \log \left| \cos \left(x - \frac{\pi}{4} \right) \right| + C$$

D.
$$x - \log \left| \sin \left(x - \frac{\pi}{4} \right) \right| + C$$

Answer: A

Watch Video Solution

7. If
$$\int \!\! rac{\cos^4 x}{\sin^2 x} dx = A \cot x + B \sin 2x + rac{C}{2} x + D$$
, then

A.
$$A = -2, B = 1/4$$

B.
$$B = -1/4, C = -3$$

C.
$$B = 1/4, C = -3$$

D. none of these

Answer: B

8. If
$$I = \int \frac{\cos 2x - \cos 2\alpha}{\sin a - \sin \alpha} dx$$
, then I equals

A.
$$2\sin x - x\cos \alpha + C$$

B.
$$2\cos x - 2x\sin \alpha + C$$

$$\mathsf{C.}\,2\cos x + 2\sin \alpha + C$$

D.
$$2\sin x + x\cos \alpha + C$$

Answer: B

Watch Video Solution

- 9. $\int \tan x \tan 2x \tan 3x dx$ is equal to
 - A. $\frac{1}{3} \log |\sec 3x| \frac{1}{2} \log |\sec 2x| + \log |\sec x| + C$
 - B. $\frac{1}{3}\log|\sec 3x| \frac{1}{2}\log|\sec 2x| \log|\sec x| + C$
 - C. $\frac{1}{3} \log |\sec 3x| + \frac{1}{2} \log |\sec 2x| + \log |\sec x| + C$
 - D. none of these

Answer: B

10.
$$\int\!\!e^x(1+x)\mathrm{sec}^2(xe^x)dx=f(x)+\$$
 Constant , then f (x) is equal to

A. $\cos(xe^x)$

 $B.\sin(xe^x)$

 $\mathsf{C.}\,2 an^{-1}\,x$

D. $tan(xe^x)$

Answer: D

Watch Video Solution

11. Evaluate: $\int\!\!e^{3\log x} ig(x^4+1ig)^{-1}\,dx$

A.
$$\log(x^4 + 1) + C$$

$$\mathsf{B.} \; \frac{1}{4} \mathrm{log} \big(x^4 + 1 \big) + C$$

$$\mathsf{C.} - \log \bigl(x^4 + 1 \bigr) + C$$

D. none of these

Watch Video Solution

12. The primitive of the function

$$f(x)=igg(1-rac{1}{x^2}igg)a^{x+rac{1}{x}}x,\ >0$$
, is

A.
$$\frac{a^{x^+\frac{1}{x}}}{\log_e a}$$

B.
$$a^{x+\frac{1}{x}}\log_e a$$

C.
$$\frac{a^{x+\frac{1}{x}}}{r}\log_e a$$

D.
$$\frac{a^{x+\frac{1}{x}}}{\log_e a}$$

Answer: A

Watch Video Solution

13. $\int \frac{2}{\left(e^{x}+e^{-x}\right)^{2}}dx$ is equal to

C.
$$-1$$

 $A. - \log_2 e$

 $B. - \log_e 2$

A. $\frac{-e^{-x}}{e^x+e^{-x}}+C$

 $\mathsf{B.} - \frac{1}{e^x + e^{-x}} + C$

 $\mathsf{C.} - \frac{1}{\left(e^x + 1\right)^2} + C$

D. $\frac{1}{e^x - e^{-x}} + C$

Watch Video Solution

14. If $\int \!\! rac{2^{1/x}}{x^2} dx = a 2^{1/x} + C$, then a=

Answer: A

Answer: A

15.
$$\int \!\! x^2 e^{x^3} \cos\!\left(e^{x^3}\right) \! dx$$
 is equalto

A.
$$\sin\!\left(e^{x^3}
ight) + C$$

B.
$$3\sin\!\left(e^{x^3}\right) + C$$

$$\mathsf{C.}\,\frac{1}{3}\mathrm{sin}\!\left(e^{x^3}\right) + C$$

D.
$$e^x \sin\!\left(e^{x^3}\right) + C$$

Answer: C

16.
$$\int \sin x d(\cos x)$$
 is equal to

$$A. \frac{1}{2}\sin 2x - x + C$$

B.
$$rac{1}{2} igg(rac{1}{2} {\sin 2x} - xigg) + C$$

$$\mathsf{C.}\,\frac{1}{2}\bigg(\frac{\sin 2x}{2} + x\bigg) + C$$

D. none of these

Answer: B

Watch Video Solution

17. The value of
$$\int \!\! \left(x+rac{1}{x}
ight)^{3/2} \! \left(rac{x^2-1}{x^2}
ight)\! dx$$
 , is

A.
$$\frac{2}{3} \left(x + \frac{1}{x} \right)^{3/2} + C$$

B.
$$rac{2}{5}igg(x+rac{1}{x}igg)^{5/2}+C$$

C.
$$2{\left(x+rac{1}{x}
ight)^{1/2}}+C$$

D. none of these

Answer: B

B.
$$\frac{3}{n+3} an^{n/3+1}x+C$$

A. $\frac{3}{n+3} \tan^{n/3+1} x + C$

C. $\frac{3}{n+1} \tan^{n/3+1} x + C$

Answer: B

Watch Video Solution

19. The value of $\int rac{1}{x^2(x^4+1)^{3/4}} dx$, is

. The value of
$$\int rac{1}{x^2(x^4+1)^{3/4}} dx$$
 , is

$$\mathsf{B.} - \left(1 + \frac{1}{x^4}\right)^{1/4}$$

$$\mathsf{C.} - \frac{1}{4} \bigg(1 + \frac{1}{x^4} \bigg)^{1/4}$$

D. none of these

A. $\left(1 + \frac{1}{r^4}\right)^{1/4}$

Answer: B

20. If
$$\int rac{\sqrt{5+x^{10}}}{x^{16}} dx = a \left(1+rac{5}{x^{10}}
ight)^{3/2} + C$$
,then a=

A.
$$-\frac{1}{25}$$

B.
$$\frac{1}{75}$$

$$\mathsf{C.}-\frac{1}{75}$$

D.
$$-\frac{1}{150}$$

Answer: C

21. If
$$\int \frac{e^x-1}{e^x+1} dx = f(x)+C$$
, then f(x) is equal to

A.
$$2\log(e^x+1)+C$$

B.
$$\log(e^{2x}-1)+C$$

C.
$$2\log(e^x + 1) - x + C$$

D.
$$\log(e^{2x} + 1) + C$$

Answer: C

Watch Video Solution

22. The value of
$$\int \frac{1 + \log x}{\sqrt{\left(x^x\right)^2 - 1}} dx$$
 is

A.
$$\sec^{-1}(x^x) + C$$

$$\mathsf{B.}\log\!\left|x^x+\sqrt{x^{2x}-1}
ight|+C$$

$$\mathsf{C.} \log \Bigl| x^x - \sqrt{x^{2x} - 1} \Bigr| + C$$

D. none of these

Answer: A

Watch Video Solution

23. $I=\int \!\! rac{1}{\left(a^2-b^2x^2
ight)^{3/2}} \! dx$ is equal to

A.
$$\dfrac{x}{\sqrt{a^2-b^2x^2}}+C$$

B.
$$\dfrac{x}{a^2\sqrt{a^2-b^2x^2}}+C$$

C.
$$\dfrac{ax}{\sqrt{a^2-b^2x^2}}+C$$

D. none of these

Answer: B

Watch Video Solution

24.
$$\int \frac{(\tan^{-1} x)^3}{1 + x^2} dx$$
 is equal to

A.
$$3(an^{-1}x)^2+C$$

$$\mathsf{B.}\,\frac{\left(\tan^{-1}x\right)^4}{4}+C$$

C.
$$\left(\tan^{-1}x\right)^4+C$$

D. none of these

Answer: B

Match Wides Colution

25. Let
$$I_n=\int\!\! an^nxdx,\,n>1$$
. $I_4+I_6=a an^5x+bx^5+C$, where C

is a constant of integration, then the ordered pair (a,b) is equal to

A.
$$\left(\frac{1}{5}, -1\right)$$

$$\mathsf{B.}\left(-\frac{1}{5},0\right)$$

C.
$$\left(-\frac{1}{5},1\right)$$
D. $\left(\frac{1}{5},0\right)$

Answer: d

Watch Video Solution

26. If
$$\int\!\!\sin^5x\cos^4xdx=A\cos^9x+B\cos^7x+C\cos^5x+D$$
 , then

$$9A + 7B + 5C =$$

A. 1

B. 0

C. -1

D. none of these

Answer: B

Watch Video Solution

27. If $\int\!\!\cos^7xdx=A\sin^7x+B\sin^5x+C\sin^3x+\sin x+k$, then

A.
$$A = \frac{1}{7}, B = \frac{3}{5}, C = -1$$

B.
$$A = -\frac{1}{7}, B = \frac{3}{5}, C = -1$$

C.
$$A = \frac{-1}{7}, B = \frac{1}{5}, C = -1$$

D.
$$A = \frac{1}{7}, B = \frac{3}{5}, C = 1$$

Answer: B

28. If
$$\int_{\cos^8 x}^{\sin^4 x} dx = a \tan^7 x + b \tan^5 x + C$$
, then

$$C.7a + 5b = 0$$

D.
$$5a + 7b = 0$$

Answer: A

Watch Video Solution

29. If
$$\int \frac{dx}{\sqrt{\sin^3 x \cos^5 x}} = a \sqrt{\cot x} + b \sqrt{\tan^3 x} + c$$
, then

A.
$$\dfrac{-2}{\sqrt{\tan x}}+\dfrac{2}{3}(\tan x)^{3/2}+C$$

B.
$$\frac{2}{\sqrt{\tan x}} \frac{2}{3} (\tan x)^{3/2} + C$$

C.
$$\frac{-2}{\sqrt{\tan x}} + \frac{2}{3}(\tan x)^{1/3} + C$$

D. none of these

Answer: A

Watch Video Solution

- **30.** If $\int\!\!\sec^{4/3}c\mathrm{cosec}^{8/3}xdx=a(\tan x)^{-5/3}+b(\tan x)^{1/3}+C$, then 5a

+b=

- A. 3
- B.-3
- C. 0
- D. 1

Answer: C

Watch Video Solution

31. The value of $\int \!\! \frac{\sin x + \cos x}{3 + \sin 2x} dx$, is

C.
$$m=1/n$$

D. m = -1/n

A. $\frac{1}{4} \log \left(\frac{2 + \sin x - \cos x}{2 - \sin x + \cos x} \right) + C$

 $B. \frac{1}{2} \log \left(\frac{2 + \sin x}{2 - \sin x} \right) + C$

 $\mathsf{C.}\,\frac{1}{4}\!\log\!\left(\frac{1+\sin x}{1-\sin x}\right) + C$

Watch Video Solution

32. If $\int\!\!\sqrt{rac{x}{a^3-x^3}}dx=m\sin^{-1}\left(rac{x}{a}
ight)^n+C$, then

D. none of these

Answer: A

A.m = n

B. m = -n

Watch Video Solution

Answer: C

33. If
$$\displaystyle \int \!\! \sqrt{\frac{x^4}{a^6+x^6}} dx = g(x) + C$$
 ,then g (x)=

A.
$$rac{1}{3}\mathrm{log}ig|x^3-\sqrt{a^6+x^6}ig|$$

$$\operatorname{B.log}\!\left|x^3+\sqrt{a^6+x^6}\right|$$

C.
$$rac{1}{3}\mathrm{log}ig|x^3+\sqrt{a^6+x^6}ig|$$

D. none of these

Answer: C

34. If
$$\int \frac{1}{x^2+2x+2} dx = f(x)+C$$
 , then f (x)=

A.
$$tan^{-1}(x+1)$$

B.
$$2 \tan^{-1}(x+1)$$

C.
$$-\tan^{-1}(x+1)$$

D.
$$3 \tan^{-1}(x+1)$$

Answer: A

Watch Video Solution

35. What is $\int \frac{dx}{x(x^7+1)}$ equal to?

A.
$$\log\!\left(\frac{x^7}{x^7+1}\right) + C$$

$$\mathsf{B.}\,\frac{1}{7}\!\log\!\left(\frac{x^7}{x^7+1}\right) + C$$

$$\mathsf{C.}\log\!\left(\frac{x^7+1}{x^7}\right) + C$$

D.
$$\frac{1}{7} \log \left(\frac{x^7 + 1}{x^7} \right) + C$$

Answer: B

B.
$$\frac{1}{3} \tan^{-1} \left(\frac{x+2}{3} \right)$$

A. $\log(x^2 + 4x + 13) + C$

D.
$$\dfrac{2x+4}{\left(x^2+4x+13\right)^3}+C$$

C. $\log(2x + 4) + C$

Answer: B

Watch Video Solution

37. If
$$\int \frac{1}{\sqrt{2ax-x^2}} dx = fog(x) + C$$
 , then

A.
$$f(x) = \sin^{-1} x$$
, and $g(x) = \frac{x+a}{a}$

$$\mathsf{B.}\, f(x) = \sin^{-1} x, \ \text{ and } \ g(x) = \frac{x-a}{a}$$

C.
$$f(x)=\cos^{-1}x, \ \ ext{and} \ \ g(x)=rac{x-a}{a}$$
D. $f(x)=\tan^{-1}x \ \ ext{and} \ \ g(x)=rac{x-a}{a}$

Answer: B

38. Evaluate
$$\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$
.

$$\mathsf{A}.\sin^{-1}(\sin x - \cos c) + C$$

B.
$$\sqrt{2}\sin^{-1}(\sin x - \cos x) + C$$

C.
$$\sqrt{2}\cos^{-1}(\sin x - \cos x) + C$$

D. none of these

Answer: B

39. If
$$\int \frac{4x+1}{x^2+3x+2} dx = a \log |x+1| + b \log |x+2| + C$$
, then

B.
$$a + b = 4$$

$$D.b = 2a$$

Answer: B

Watch Video Solution

40. The value of $\int \frac{1}{x + \sqrt{x-1}} dx$, is

A.
$$\log(x+\sqrt{x-1})+\sin^{-1}\sqrt{\frac{x-1}{x}}+C$$

$$B.\log(x+\sqrt{x-1})+C$$

$$\mathsf{C.}\logig(x+\sqrt{x-1}ig) - rac{2}{3} an^{-1}igg(rac{2\sqrt{x}-1+1}{\sqrt{3}}igg) + C$$

D. none of these

Answer: C

41. If $\int \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx = \frac{1}{12} \tan^{-1} (3 \tan x) + C$, then the value of ab, is

B. 12

C.39

D. 36

Answer: B

42.
$$\int \frac{1}{1+3\sin^2 x} dx$$
 is equal to

A.
$$rac{1}{3} an^{-1}ig(3 an^2xig)+C$$

B.
$$rac{1}{2} an^{-1}(2 an x)+C$$

$$\mathsf{C}.\tan^{-1}(\tan x) + C$$

D. none of these

Answer: B

Watch Video Solution

43.
$$\int \frac{1}{7+5\cos x} dx =$$

A.
$$\frac{1}{\sqrt{6}} an^{-1}\left(\frac{1}{\sqrt{6}} anrac{x}{2}
ight)+C.$$

$$\mathsf{B.} \; \frac{1}{\sqrt{3}} \tan^{-1} \! \left(\frac{1}{\sqrt{3}} \! \tan \! \frac{x}{2} \right) + C$$

C.
$$\frac{1}{4} \tan^{-1} \left(\frac{x}{2} \right) + C$$

D.
$$\frac{1}{7}\tan^{-1}\left(\tan\frac{x}{2}\right) + C$$

Answer: A

Watch Video Solution

44. $\int \frac{1}{\cos x + \sqrt{3} \sin x} dx$ equals

A.
$$\dfrac{1}{\sqrt{2}}\mathrm{log}\!\left|\mathrm{tan}\!\left(\dfrac{x}{2}-\dfrac{3\pi}{8}\right)\right|+C$$

A. $\log \tan \left(\frac{\pi}{2} + \frac{\pi}{12}\right) + C$

B. $\log \tan \left(\frac{x}{2} - \frac{\pi}{12}\right) + C$

C. $\frac{1}{2}$ log tan $\left(\frac{x}{2} + \frac{\pi}{12}\right) + C$

D. $\frac{1}{2}$ log tan $\left(\frac{x}{2} - \frac{\pi}{12}\right) + C$

Watch Video Solution

45. $\int \frac{1}{\cos x - \sin x} dx$ is equal to

B. $\frac{1}{\sqrt{2}} \log \left| \cot \frac{x}{2} \right| + C$

C. $\frac{1}{\sqrt{2}}\log|\tan(\frac{x}{2}-\frac{\pi}{8})+C$

D. $\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$

Answer: d

Answer: C

46.
$$\int \frac{1}{\sin x + \cos x + \sqrt{2}} dx$$
 equals

$$A. - \frac{1}{\sqrt{2}} \tan \left(\frac{x}{2} + \frac{\pi}{8} \right) + C$$

B.
$$\frac{1}{\sqrt{2}}\tan\left(\frac{x}{2}+\frac{\pi}{8}\right)$$

$$C. \frac{1}{\sqrt{2}}\cot\left(\frac{x}{2} + \frac{\pi}{8}\right)$$

D.
$$-\frac{1}{\sqrt{2}}\cot\left(\frac{x}{2}+\frac{\pi}{8}\right)$$

Answer: d

47.
$$\int \frac{3\sin x + 2\cos x}{3\cos x + 2\sin x} dx = ax + b\log|3\cos x + 2\sin x| + C$$
, then (a ,b)

A.
$$a = \frac{5}{13}$$
, $b = -\frac{12}{13}$

B.
$$a = \frac{12}{13}, b = -\frac{5}{13}$$

C.
$$a = \frac{12}{13}, b = \frac{5}{13}$$

D.
$$a = \frac{-12}{5}, b = \frac{-5}{13}$$

Answer: B

Watch Video Solution

48. $\int \frac{\sin x + 8\cos x}{4\sin x + 6\cos x} dx =$

A.
$$x+rac{1}{2}\mathrm{log}|4\sin x+6\cos x|+C$$

B.
$$2x + \log \lvert 2\sin x + 3\cos x \rvert + C$$

C.
$$x + 2\log |2\sin x + 3\cos x| + C$$

D.
$$rac{1}{2}\mathrm{log}|4\sin x + 6\cos x| + C$$

Answer: a

A.
$$rac{\sin x + x \cos x}{x \sin x + \cos x} + C$$

Answer: a

$$\frac{\cos x}{\cos x} + C$$

50. $\int \frac{x^2}{\left(x\sin x + \cos x\right)^2} dx$ is equal to

A. $\frac{1}{2} \left(x \cos^{-1} x - \sqrt{1 - x^2} \right) + C$

B. $\frac{1}{2} \left(x \cos^{-1} x - \sqrt{1 + x^2} \right) + C$

C. $\frac{1}{2} \left(x \cos^{-1} x - \sqrt{1 - x^2} \right) + C$

D. $\frac{1}{2} \left(x \cos^{-1} x - \sqrt{1 + x^2} \right) + C$

Watch Video Solution

$$+C$$

$$+C$$

$$+C$$

$$\mathsf{B.}\; \frac{\sin x - x \cos x}{x \sin x + \cos x} + C$$

$$+ C$$

$$\mathsf{C.}\ \frac{\sin x - x \cos x}{x \sin x - \cos x} + C$$

D. none of these

Answer: b

51.
$$\int \{\sin(\log_e x) + \cos(\log_e x)\} dx$$
 is equal to

A.
$$\sin(\log_e x) + \cos(\log_e x) + C$$

B.
$$x \sin(\log_e x) + C$$

$$\mathsf{C}.\,x\cos(\log_e x) + C$$

D. none of these

Answer: B

52.
$$\iint \log(\log x) + \frac{1}{(\log x)^2} dx = x\{f(x) - g(x)\} + C$$
, then

A.
$$f(x) = \log(\log x), g(x) = \frac{1}{\log x}$$

B.
$$f(x) = \log x, g(x) = rac{1}{\log x}$$

C.
$$f(x) = \frac{1}{\log x}$$
, $f(x) = \log(\log x)$

D.
$$f(x) = rac{1}{x \log x}, g(x) = rac{1}{\log x}$$

Answer: A

Watch Video Solution

53.
$$\int\!\!e^{ an^{-1}x}igg(1+rac{x}{1+x^2}igg)dx$$
 is equal to

A.
$$rac{1}{2}xe^{ an^{-1}x}+C$$

B.
$$rac{1}{2}e^{ an^{-1}x}+C$$

C.
$$xe^{ an^{-1}x}+C$$

D.
$$e^{ an^{-1}x} + C$$

Answer: c

A.
$$e^{-x} \sec x + C$$

B. $e^{-x} \tan x + C$

$$\mathsf{C.} - e^{-x} \tan x + C$$

D. none of these

Answer: D

Watch Video Solution

55. $\int (x+1)^2 e^x dx$ is equal to

A. $xe^x + C$

 $B. x^2 e^x + C$

C. $(x+1)e^x + C$

D. $(x^2 + 1)e^x + C$

Answer: D

56.
$$\int e^x (1 - \cot x + \cot^2 x) dx =$$

A.
$$e^x \cot x + C$$

$$B. -e^x \cot x + C$$

$$\mathsf{C}.\,e^x\mathrm{cosec}\,\,x+C$$

$$D = e^x \operatorname{cosec} x + C$$

Answer: B

Watch Video Solution

57. $\left\{ \frac{\log x - 1}{1 + \left(\log x\right)^2} \right\}^2$ dx is equal to

$$A. \frac{x}{\left(\log x\right)^2 + 1} + C$$

$$\mathsf{B.}\,\frac{xe^x}{1+x^2}+C$$

$$\mathsf{C.}\,\frac{x}{1+x^2}+C$$

$$D. \frac{\log x}{(\log x)^2 + 1} + C$$

Answer: A

Watch Video Solution

58. If
$$\int\!\!e^xigg(rac{1-\sin x}{1-\cos x}igg)dx=f(x)+\$$
 Constant, then f(x) is equal to

A.
$$e^x \cot\left(\frac{x}{2}\right) + C$$

$$\mathsf{B.}\,e^{\,-x}\cot\!\left(\frac{x}{2}\right) + C$$

$$\mathsf{C.} - e^x \cot\left(rac{x}{2}
ight) + C$$

$$\mathsf{D.} - e^{\,-\,x}\cot\left(\frac{x}{2}\right) + C$$

Answer: C

$$u=\int\!\!e^{ax}\sin$$
 bx dx and $v=\int\!\!e^{ax}\cos$ bx dx then $\left(u^2+v^2
ight)\left(a^2+b^2
ight)$

A.
$$2e^{ax}$$

$$C_{\cdot} 2e^{2ax}$$

 $B. e^{2ax}$

D.
$$bxe^{ax}$$

Answer: b

Watch Video Solution

If

60.

 $an^{-1}\Bigl(rac{u}{v}\Bigr) + an^{-1}\Bigl(rac{b}{a}\Bigr)$ equals

If $u=\int\!\!e^{ax}\sin$ bx dx and $v=\int^{e^{ax}}\cos$ bx dx,then

C.
$$b^2x^2$$

D. \sqrt{bx}

Answer: a

Watch Video Solution

61. If
$$\int \frac{x^2+4}{x^4+16}dx=\frac{1}{k} an^{-1}\Big(\frac{x^2-4}{kx}\Big)+c$$
 then $k=$ (i) $\sqrt{2}$ (ii) $4\sqrt{2}$ (iii) $2\sqrt{2}$ (iv) 2

A. 4

B. $2\sqrt{2}$

C. 2

D. $\sqrt{2}$

Answer: b

62. Evaluate:
$$\int \frac{1}{\cos^6 x + \sin^6 x} dx$$

A.
$$\tan^{-1}(\tan x + \cot x) + C$$

$$B. \tan^{-1}(\cot x - \tan x) + C$$

$$\mathsf{C}.\tan^{-1}(\tan x - \cot x) + C$$

Answer: c

63. If
$$I=\int\!\!\frac{e^x}{e^{4x}+e^{2e}+1}dx$$
. $J=\int\!\!\frac{e^{-x}}{e^{-4x}+e^{-2x}+1}dx$. Then for an arbitrary constant c, the value of $J-I$ equal to

A.
$$rac{1}{2} \mathrm{log} igg(rac{e^{4x} - e^{2x} + 1}{e^{4x} + e^{2x} + 1} igg) + C$$

B.
$$\frac{1}{2} \log \left(\frac{e^{2x} + e^x + 1}{e^{2x} - e^x + 1} \right) + C$$

C.
$$\frac{1}{2} \log \left(\frac{e^{2x} + e^x + 1}{e^{2x} + e^x + 1} \right) + C$$

D.
$$\frac{1}{2} ext{log} \left(rac{e^{2x} + e^{2x} + 1}{e^{2x} + e^{2x} + 1}
ight) + C$$

Answer: c

Watch Video Solution

Solved Example

1.
$$\int rac{1+x^4}{\left(1-x^4
ight)^{3/2}} dx$$
 is equal to

A.
$$\dfrac{1}{\sqrt{x^2-rac{1}{x^2}}}+C$$

$$\mathsf{B.}\,\frac{1}{\sqrt{\frac{1}{x^2}-x^2}}+C$$

C.
$$\dfrac{1}{\sqrt{\dfrac{1}{x^2}+x^2}}+C$$

D. none of these

Answer: B

2.
$$\int \frac{1}{\sqrt{x^2+2}} d(x^2+1)$$
 is equal to

A.
$$2\sqrt{x^2+2}+C$$

$$\mathsf{B.}\,2\sqrt{x^2+2}+C$$

C.
$$\frac{1}{(x^2+2)^{3/2}}+C$$

Answer: A

Watch Video Solution

3. Integration of f (x) $=\sqrt{1+x^2}$ with respect to x^2 , is

A.
$$\displaystyle rac{2}{3} \displaystyle rac{\left(1+x^2
ight)^{3/2}}{r} + C$$

B.
$$\frac{2}{3} (1+x^2)^{3/2} + C$$

C.
$$\frac{2x}{3} ig(1+x^2ig)^{3/2} + C$$

D. none of these

Answer: B

Watch Video Solution

4. $\int \frac{1}{x\sqrt{1-x^3}} dx$ is equal to

A.
$$\displaystyle rac{1}{3} \mathrm{log} \Bigg| rac{\sqrt{1-x^3-1}}{\sqrt{1-x^3}+1} \Bigg| + C$$

B.
$$\frac{1}{2} \log \left| \frac{\sqrt{1-x^2}+1}{\sqrt{1}-x^2} - 1 \right| + C$$

c.
$$\frac{1}{3} \log \left| \frac{1}{\sqrt{1-r^3}} \right| + C$$

D. none of these

Answer: a

- **5.** If $\int rac{\sqrt{\cot x}}{\sin x \cos x} dx = P \sqrt{\cot x} + Q$, then P equals
 - A. 1

$$C. -1$$

$$D.-2$$

Answer: D

Watch Video Solution

6. If
$$f\left(\frac{3x-4}{3x+4}\right)=x+2$$
, then $\int f(x)dx$ is equal to

A.
$$e^{x+2} \log_e \left| \frac{3x-4}{3x+4} \right|$$

$$\mathrm{B.} - \frac{8}{3}\mathrm{log}_e|1-x| + \frac{2}{3}x + C$$

C.
$$\frac{8}{3}\log_e|x-1| + \frac{x}{3} + C$$

D. none of these

Answer: B

7.
$$\int \!\! x^x (1+\log_e x) \mathrm{d} x$$
 is equal to

A.
$$x^x \log_e x + C$$

$$\mathrm{B.}\, ex^x + C$$

$$\mathsf{C}.\,x^x+C$$

Answer: C

Watch Video Solution

8. The value of $\int \!\! rac{dx}{x^{rac{1}{5}} \left(1+x^{rac{4}{5}} ight)^{rac{1}{2}}}$ is

A.
$$\sqrt{1+x^{4/5}}+C$$

B.
$$\frac{5}{2}\sqrt{1+x^{4/5}}+C$$

$$\mathsf{C.}\, x^{4/5} \sqrt{1 + x^{4/5}} + C$$

D. none of these

Answer: b

Watch Video Solution

9. Evaluate: $\int \frac{x^{\frac{5}{2}}}{\sqrt{1+x^7}} dx$

A.
$$rac{2}{7}\mathrm{log}ig|x^{7/2}+\sqrt{1+x^7}ig|+C$$

$$\mathsf{B.} \ \frac{1}{2} \mathsf{log} \bigg| \frac{x^7 + 1}{x^7 - 1} \bigg| + C$$

$$\operatorname{C.}2\sqrt{1+x^7}+C$$

D. none of these

Answer: a

Watch Video Solution

10. $\int 7^{7^x} \cdot 7^{7^x} \cdot 7^x \ dx =$

A.
$$rac{7^{7^{7^x}}}{\left(\log_e 7
ight)^3} + C$$

 $\mathsf{B.}\,\frac{7^{7^{r^{*}}}}{\left(\log_{e}7\right)^{2}}+C$

 $\mathsf{C.}\,7^{7^{7^x}}.\,(\log7)^3+C$

D. none of these

Answer: A

11. The value of
$$\int rac{1}{\sin\left(x-rac{\pi}{3}
ight)\cos x} dx$$
 , is

A.
$$2\log \lvert \sin x + \sin \cdot (x - \pi/3)
vert + C$$

$$|\operatorname{B.2log}| \sec x \sin \left(x - \frac{\pi}{3}\right) | + C$$

C.
$$2\log \left|\sin x - \sin \left(x - \frac{\pi}{3}\right)\right| + C$$

D. none of these

Answer: b

12. The value of
$$\int \frac{\log_e\left(x+\sqrt{x^2}+1\right)}{\sqrt{x^2+1}} dx$$
 is

A.
$$2\log_e\!\left(x+\sqrt{x^2+1}
ight)+C$$

B.
$$\left\{\log_e\left(x+\sqrt{x^2+1}
ight)
ight\}^2+C$$

$$\mathsf{C.}\log\!\left(x+\sqrt{x^2+1}
ight)+C$$

Answer: B

13. The value of
$$\int rac{\sqrt{1+x}}{x} dx$$
 , is

A.
$$2\sqrt{1+x} + \log \left| rac{\sqrt{1+x}}{\sqrt{1+x+1}}
ight| + C$$

$$\operatorname{B.}2\sqrt{1+x}+C$$

$$\mathsf{C.}\log_{e}\left|rac{\sqrt{1+x}-1}{\sqrt{1+x+1}}
ight|+C$$

D.
$$\frac{\sqrt{1+x}-1}{\sqrt{1+x}+1}+C$$

Watch Video Solution

14. If $\int \frac{\cos 4x+1}{\cot x-\tan x}dx=k\cos 4x+c$, then k= (A) $-\frac{1}{4}$ (B) $-\frac{1}{2}$ (C) $-\frac{1}{8}$

(D) none of these

A.
$$A=rac{1}{8}, B\in R$$

B.
$$A=-rac{1}{8}, B\in R$$

C.
$$A=rac{1}{4}, B\in R$$

D. none of these

Answer: b

Watch Video Solution

15. The value of $\int \frac{x^7}{(1-x^2)^5} dx$ is

C.
$$\dfrac{1}{a^2\sin^2x+b^2\sin^2x}$$
D. $\dfrac{1}{a^2\cos^2x-b^2\sin^2x}$

A. $\dfrac{x^8}{\left(1-x^2\right)^4}+C$

B. $\frac{1}{8} \frac{x^8}{(1-x^2)^4} + C$

c. $\frac{1}{8} \frac{x^4}{(1-x^2)^4} + C$

Watch Video Solution

A. $\frac{1}{a^2 \sin^2 x + b^2 \cos^2 x}$

16. If $\int \!\! f(x) \sin x \cos x dx = rac{1}{2(a^2-b^2)} \mathrm{log} |f(x)| + C$,then f (x)=

D. none of these

Answer: B

Answer: a

17. The value of $\int \frac{dx}{x^n(1+x^n)^{\frac{1}{n}}}$ is equal to

A.
$$\dfrac{1}{1-n}igg\{1+\dfrac{1}{x^n}igg\}^{1-\frac{1}{n}}+C$$

$$\mathsf{B.} \ \frac{1}{1+n} \bigg\{ 1 - \frac{1}{x^n} \bigg\}^{1-\frac{1}{n}} + C$$

$$\mathsf{C.} - rac{1}{1-n}igg\{1-rac{1}{x^n}igg\}^{1-rac{1}{n}} + C$$

D.
$$-\frac{1}{1+n} \left\{ 1 + \frac{1}{x^n} \right\}^{1-\frac{1}{n}} + C$$

Answer: A

Watch Video Solution

18. If $\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = \sin^{-1} \left(\frac{\sin x + \cos x}{a} \right) + C$ then a =

A. 2

B. 3

C. 4

Answer: B

Watch Video Solution

19. The value of $\int \left(3x^2 anrac{1}{x}-x\sec^2rac{1}{x}
ight)dx$ is

A.
$$x^3 an \frac{1}{x} + C$$

$$\mathrm{B.}\,x^2\ \tan\!\frac{1}{x} + C$$

$$\operatorname{\mathsf{C.}} x \ \tan \frac{1}{x} + C$$

D. none of these

Answer: A

20. If
$$\int \!\! x \log \! \left(1 + \frac{1}{x} \right) \! dx$$

$$=f(x).\log_e(x+1)+g(x){\log_e x^2xLx}+C$$
 , then

A.
$$f(x)=rac{x^2}{2}$$

$$\mathtt{B.}\,g(x) = \log_e x$$

D.
$$L = \frac{1}{2}$$

Answer: d

21.
$$\int \frac{e^{(x^2+4Inx)}-x^3e^{x^2}}{x-1}dx$$
 equals to

A.
$$\left(rac{e^{3Inx}-e^{Inx}}{2x}
ight)\!e^{x^2}+C$$

B.
$$rac{(x-1)xe^{x^2}}{2}+C$$

C.
$$rac{\left(x^2-1
ight)}{2x}e^{x^2}+C$$

Answer: d

Watch Video Solution

22. The value of the integral $\int \!\! rac{x \sin x^2 e^{\sec x^2}}{\cos^2 x^2} dx$, is

A.
$$\frac{1}{2}e^{\sec x^2}+C$$

$$\mathsf{B.}\,\frac{1}{2}e^{\sin x^2}+C$$

C.
$$rac{1}{2}\mathrm{sin}\,x^2e^{\mathrm{cos}^2\,x^2}+C$$

D. none of these

Answer: a

Watch Video Solution

23. $\int \frac{1}{(x-1)\sqrt{x^2-1}} dx$ equals

A. $rac{\pi}{3}(x-3)^{3/2}+C$

 $\mathsf{A.} - \sqrt{\frac{x-1}{x+1}} + C$

 $\mathsf{B.}\,\sqrt{\frac{x-1}{x+1}}+C$

 $\mathsf{C.}\,\sqrt{\frac{x+1}{x-1}}+C$

 $\mathrm{D.} - \sqrt{\frac{x+1}{x-1}} + C$

Watch Video Solution

24. $\int \sqrt{x-3} \{\sin^{-1}(Inx) + \cos^{-1}(Inx)\} dx$ is equal to

Answer: D

D. none of these

C. does not exist

Answer: c

25. The value of $\int \frac{1-x^7}{x(1+x^7)} dx$ is equal to

A.
$$a = 1, b = \frac{2}{7}$$

B.
$$a = -1, b = \frac{2}{7}$$

C.
$$a = 1, b = -\frac{2}{7}$$

D.
$$a = -1, b = -\frac{2}{7}$$

Answer: c

26. Evaluate:
$$\frac{\sin^3 x dx}{(\cos^4 x + 3\cos^2 x + 1)\tan^{-1}(\sec x + \cos x)}$$

A.
$$\tan^{-1}(\sec x + \cos x) + C$$

$$\mathsf{B.}\log_e\!\left|\tan^{-1}(\sec x + \cos x)\right| + C$$

$$\mathsf{C.} \frac{1}{\left(\sec x + \cos x\right)^2} + C$$

Answer: b

Watch Video Solution

27.
$$\int \frac{(x-x^5)^{\frac{1}{5}}}{x^6} dx$$

A.
$$\displaystyle rac{5}{24} igg(rac{1}{x^4}-1igg)^{6/5} + C$$

B.
$$rac{5}{24}igg(1-rac{1}{x^4}igg)^{6/5}+C$$
C. $-rac{5}{24}igg(1-rac{1}{x^4}igg)^{6/5}+C$

D. none of these

Answer: C

B.
$$\frac{1}{2} \log_e \left(an^2 x + \sqrt{1 + an^4 x} \right) + C$$

$$\frac{1}{2}\log(\tan^2 x)$$

C.
$$rac{1}{4} \mathrm{log} \Big(\mathrm{tan}^2 \, x + \sqrt{1 + \mathrm{tan}^4 \, x} \Big) + C$$

A. $\log_e\Bigl(an^2x+\sqrt{1+ an^4x}\Bigr)+C$

D. none of these

Answer: B

Watch Video Solution

29. If
$$\int \sqrt{rac{\cos^3 x}{\sin^{11} x}}\,dx=\,-\,2\Big(A an^{9/2}\,x+B an^{5/2}\,x\Big)+C,$$
 then find

A and B.

A.
$$A = \frac{1}{0}, B = -\frac{1}{5}$$

B.
$$A = \frac{1}{9}, B = \frac{1}{5}$$

C. $A = -\frac{1}{9}, B = \frac{1}{5}$

Answer: B

30.
$$\int \frac{f(x) \cdot g'(x) - f'(x)g(x)}{f(x) \cdot g(x)} \{\log g(x) - \log f(x)\} dx$$

A.
$$\log_e\!\left\{rac{g(x)}{f(x)}
ight\} + C$$

B.
$$rac{1}{2}igg\{\log_erac{g(x)}{f(x)}igg\}^2+C$$

C.
$$rac{g(x)}{f(x)} {
m log}_e rac{g(x)}{f(x)} + C$$

Answer: b

31.
$$\int rac{f(x)\cdot g'(x)-f'(x)g(x)}{f(x)\cdot g(x)}\{\log g(x)-\log f(x)\}\,dx$$

A.
$$f(x)g(x)\mathrm{log}\{f(x)g(x)\}+C$$

B.
$$rac{1}{2}[\log\{f(x)g(x)\}]^2+C$$

C.
$$\left[\log\{f(x)g(x)\}
ight]^2 + C$$

D.
$$\log\{f(x)g(x)\} + C$$

Answer: b

Watch Video Solution

32. $\int (x^x)^x (2x\log_e x + x) dx$ is equal to

A.
$$x(x^x) + C$$

$$B.(x^x) + C$$

C.
$$x^x$$
. $\log_e x + C$

D. none of these

Answer: B

33. Let the equation of a curve passing through the point (0,1) be given b

$$y=\int\!\! x^2 e^{x^3} dx.$$
 If the equation of the curve is written in the form

$$x=f(y)$$
, then f(y) is

A.
$$\sqrt{\log_e(3y-2)}$$

B.
$$\sqrt[3]{\log_e(3y-2)}$$

C.
$$\sqrt[3]{\log_e(2-3y)}$$

D. none of these

Answer: b

Watch Video Solution

34. Evaluate: $\int \frac{1}{\sin^4 x + \cos^4 x} dx$

A.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\tan 2x}{\sqrt{2}} \right) + C$$

B.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{1 + \cos 2x}{\sqrt{2}} \right) + C$$

C.
$$\dfrac{1}{\sqrt{2}} an^{-1}igg(\dfrac{ an x+\cot x}{\sqrt{2}}igg)+C$$
D. $\sqrt{2} an^{-1}igg(\dfrac{\sqrt{ an}x+\sqrt{\cot}x}{\sqrt{2}}igg)+C$

Answer: A

Watch Video Solution

35.
$$\int \frac{\sec x}{\sqrt{\sin(2x+\alpha)+\sin\alpha}} dx$$

B. $\sqrt{2\seclpha(\tan x - anlpha)} + C$

A.
$$\sqrt{\sec \alpha (\tan x + \tan \alpha)} + C$$

C.
$$\sqrt{2\seclpha(anlpha- anlpha)}+C$$

D. none of these

Answer: a

36. Let $\int \!\! e^x \{f(x) - f'(x)\} dx = \phi(x)$. then, $\int \!\! e^x f(x) dx$ is equal to

A.
$$\phi(x) + e^x f(x)$$

B.
$$\phi(x) - e^x f(x)$$

C.
$$rac{1}{2}\{\phi(x)-e^xf'(x)\}$$

D.
$$rac{1}{2}\{\phi(x)+e^xf'(x)\}$$

Answer: C

Watch Video Solution

37. If $\displaystyle \int \!\! rac{1}{x+x^5} dx = f(x) + c$,then evaluate $\displaystyle \int \!\! rac{x^4}{x+x^5} dx$

A.
$$\log x - f(x) + C$$

$$\mathsf{B.}\, f(x) + \log x + C$$

$$\mathsf{C}.\, f(x) - \log x + C$$

D. none of these

Watch Video Solution

38. If $\int\!\!f(x)dx=F(x),$ then $\int\!\!x^3f\!\left(x^2\right)\!dx$ is equal to :

A.
$$rac{1}{2}igg[x^2\{F(x)\}^2-\int\!\!\{F(x)\}^2dxigg]$$

B.
$$rac{1}{2}igg[x^2Fig(x^2ig)-\int\!\!\! Fig(x^2ig)dig(x^2ig)igg]$$

C.
$$\frac{1}{2}\left[x^2F(x)-\frac{1}{2}\int \{F(x)\}^2dx\right]$$

D. none of these

Answer: b

Watch Video Solution

39. If n is a positive odd integer, then $\int \!\! |x^n| dx =$

A.
$$\left| rac{x^{n+1}}{n+1}
ight| + C$$

B.
$$\dfrac{x^{n+1}}{n+1}+C$$
C. $\dfrac{|x^n|}{n+1}+C$

Answer: c

Watch Video Solution

40. If
$$\int\!\!e^{ax}\cos bxdx=rac{e2x}{29}f(x)+C$$
 , then f" (x)=

$$\mathsf{B.}-29f(x)$$

$$\mathsf{D.}-25f(x)$$

Answer: d

41. $\int \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$ is equal to

$$\begin{aligned} & \text{A.} \ \frac{1}{2} \left\{ x + \frac{1}{2\sqrt{2}} \log \left| \frac{\sqrt{2} + \sin 2x}{\sqrt{2} - \sin 2x} \right| \right\} + C \\ & \text{B.} \ \frac{1}{2} \left\{ x + \frac{1}{2\sqrt{2}} \log \left| \frac{1 + \sin 2x}{1 - \sin 2x} \right| \right\} + C \\ & \text{C.} \ \frac{1}{2} \left\{ x + \frac{1}{2\sqrt{2}} \log \left| \frac{\sqrt{2} + \sin 2x}{\sqrt{2} - \sin 2x} \right| \right\} + C \end{aligned}$$

D.
$$rac{1}{2} \left\{ x + rac{1}{2\sqrt{2}} \mathrm{log} \left| rac{1+\sqrt{2}\sin 2x}{1-\sqrt{2}\sin 2x} \right|
ight\} + C$$

Answer: c

42. If
$$\int\!\!f(x)dx=2\{f(x)\}^3+C$$
 , then f (x) is

A.
$$\frac{x}{2}$$

B.
$$x^3$$

$$\mathsf{C.} \, \frac{1}{\sqrt{x}}$$

D.
$$\sqrt{\frac{x}{3}}$$

Answer: d

Watch Video Solution

43. Let g (x) be a differentiable function satisfying $\frac{d}{dx}\{g(x)\}=g(x)\ \ {\rm and}\ \ g(0)=1\ ,\ {\rm then}\ \ g(x)\bigg(\frac{2-\sin 2x}{1-\cos 2x}\bigg)dx\ \ {\rm is\ equal}$ to

A.
$$g(x)\cot x + C$$

$$B. - g(x)\cot x + C$$

$$\mathsf{C.} \; \frac{g(x)}{1-\cos 2x} + C$$

D. none of these

Answer: b

44. If
$$\int\!\! g(x)dx=g(x)$$
, then the value of the integral $\int\!\! f(x)g(x)\{f(x)+2f'(x)\}dx$ is

A.
$$f(x) g(x) + C$$

B.
$$\{f(x)\}^2 g(x) + C$$

C.
$$\{f(x) - f'(x)\}g(x) + C$$

D.
$$\{f(x)\}^2 g(x) + C$$

Answer: b

45. If
$$\int_{-1}^{1} \frac{1}{\sin^4 x} dx = \frac{1}{2} \tan x + A \tan^{-1} \{f(x)\} + C$$
, then

A.
$$A=rac{1}{2\sqrt{2}}$$
 and $f(x)=\sqrt{2}\tan x$

B.
$$A = \sqrt{2}$$
 and $f(x) = \sqrt{2} \tan x$

C.
$$A = -\sqrt{2}$$
 and $f(x) = \sqrt{2} \tan x$

Answer: A

Watch Video Solution

46. $\int \sin 2x \log_e \cos x dx$ is equal to

A.
$$\left(rac{1}{2} + \log_e \cos x
ight)\!\cos^2 x + C$$

 $\operatorname{B.}\cos^2 x.\log_e \cos x + C$

C.
$$\left(rac{1}{2} + \log_e \cos x
ight)\!\cos^2 x + C$$

D. none of these

Answer: C

47. Let f(x) be a polynomial of degree three f(0) = -1 and f(1) = 0.

Also, 0 is a stationary point of f(x). If f(x) does not have an extremum at

$$x=0, ext{ then the value of integral } \int rac{f(x)}{x^3-1} dx, ext{ is}$$

A.
$$\frac{x^2}{2} + C$$

B. x+C

C.
$$\frac{x^3}{6} + C$$

D. nome of these

Answer: b

48.
$$\int \frac{1}{x(1+\sqrt[3]{x})^2} dx$$
 is equal to

A.
$$3igg\{\logigg(rac{x^{1/3}}{1+x^{1/3}}igg)+rac{1}{1+\sqrt[3]{x}}igg\}+C$$

$$\mathsf{B.}\, 3 \bigg\{ \log \bigg(\frac{x^{1/3}}{1 + x^{1/3}} \bigg) + \frac{1}{1 + x^{1/3}} \bigg\} + C$$

$$\mathsf{C.}\,3\bigg\{\log\bigg(\frac{x^{1/3}}{1+x^{1/3}}\bigg)-\frac{1}{1+x^{1/3}}\bigg\}+C$$

Answer: a

Watch Video Solution

49. Let
$$f(x)=\int\!\! rac{x^2}{(1+x^2)ig(1+\sqrt{1+x^2}ig)}dx$$
 and $f(0)=0$ then $f(1)$ is

A.
$$\log_e (1 + \sqrt{2})$$

B. $\log_e \left(1 + \sqrt{2}\right) - \frac{\pi}{4}$

$$\mathsf{C.}\log_eig(1+\sqrt{2}ig)+rac{\pi}{4}$$

D. none of these

Answer: b

$$f''(x) = f(x)$$
 then f(4) equals

50. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and

51. If $\int rac{1}{(x+1)(x-2)} dx = A \log_e(x+1) + B \log_e(x-2) + C$, then

A.
$$\displaystyle rac{5ig(e^8+1ig)}{2e^4}$$

B.
$$\frac{5(e^8-1)}{2e^4}$$

C.
$$\frac{2e^4}{5(e^8-1)}$$
D. $\frac{2e^4}{5(e^8+1)}$

Answer: b

Watch Video Solution

A + B = ?

Answer: A

Watch Video Solution

52.
$$\int \frac{x^4+1}{x^6+1} dx$$
 is equal to

A.
$$\tan^{-1} x + \frac{1}{3} \tan^{-1} x^3 + C$$

B.
$$\tan^{-1} x - \frac{1}{3} \tan^{-1} x^3 + C$$

C.
$$-\tan^{-1}x - \frac{1}{3}\tan^{-1}x^3 + C$$

D. none of these

Answer: a

Watch Video Solution

53. $\int \frac{x^{2-1}}{x\sqrt{x^4+3x^2}+1} \mathrm{d} \mathsf{x}$ is equal to

A. $\sqrt{2}\sin^{-1}\left\{rac{\sqrt{2}x}{x^2+1}
ight\}+C$

D. none of these

Answer: a

Watch Video Solution

D. none of these

A. $\log_e\left|x+rac{1}{x}+\sqrt{x^2+rac{1}{x^2}+3}
ight|+C$

 $\mathsf{B.}\log_{e}\Bigl|x-rac{1}{x}+\sqrt{x^2+rac{1}{x^2}-3}\Bigr|+C$

 $\mathsf{C.}\log_e\!\left|x+\sqrt{x^2+3}
ight|+C$

- **54.** $\int \frac{1-x^2}{(1+x^2)\sqrt{1+x^4}} dx$ is equal to
- B. $\frac{1}{\sqrt{2}}\sin^{-1}\left\{\frac{\sqrt{2}x}{x^2+1}\right\}$
- C. $\frac{1}{2} \sin^{-1} \left\{ \frac{\sqrt{2}x \cdot}{x^2 + 1} \right\} + C$
- Answer: b

55. If
$$I=\int\!\!\frac{\sin 2x}{\left(3+4\cos x
ight)^3}dx$$
 , then I=

A.
$$\frac{3\cos x + 8}{(3 + 4\cos x)^2} + C$$

$$\operatorname{B.} \frac{3 + 8\cos x}{16(3 + 4\cos x)^2} + C$$

$$\mathsf{C.}\,\frac{3+\cos x}{\left(3+4\cos x\right)^2}+C$$

D.
$$\dfrac{3-8\cos x}{16(3+4\cos x)^2}+C$$

Answer: b

56.
$$\int \frac{\left\{x + \sqrt{x^2 + 1}\right\}}{\sqrt{x^2 + 1}} dx$$
 is equal to

A.
$$\left\{x+\sqrt{x^2+1}
ight\}^n+C$$

B.
$$\frac{1}{n} \left\{ x + \sqrt{x^2 + 1} \right\}^n + C$$

C.
$$rac{1}{n+1}\Big\{x+\sqrt{x^2+1}\Big\}^{n+1}+C$$

D. none of these

Answer: b

Watch Video Solution

57. If $\int \!\! f(x) dx = f(x), ext{ then } \int \!\! \{f(x)\}^2 dx$ is equal to

A.
$$\frac{1}{2}\{f(x)\}^2$$

B.
$$\left\{f(x)\right\}^3$$

$$\mathsf{C.}\,\frac{\left|f(x)\right|^3}{3}$$

D.
$$\left\{f(x)\right\}^2$$

Answer: a

58. Evaluate $\int \frac{\cos x - \sin x}{\cos x + \sin x} (2 + 2\sin 2x) dx$

A.
$$\sin 2x + C$$

B.
$$\cos 2x + C$$

C.
$$\tan 2x + C$$

D. none of these

Answer: a

Watch Video Solution

59. $\int \frac{dx}{(2x-7)\sqrt{x^2-7x+12}}$ is equal to

A.
$$2\sec^{-1}(2x-7)+C$$

B.
$$\sec^{-1}(2x-7) + C$$

C.
$$\frac{1}{2}$$
sec⁻¹ $(2x-7)+C$

D. none of these

Answer: b

Watch Video Solution

60. The value of $\int \!\! x \log x (\log x - 1) dx$ is equal to

A.
$$2(x\log x - x)^2 + C$$

$$\mathsf{B.}\,\frac{1}{2}(x\log x-x)^2+C$$

$$\mathsf{C.} \left(x \log x \right)^2 + C$$

D.
$$\frac{1}{2}(x\log x)^3 + C$$

Answer: b

61.
$$\int (1+x-x^{-1})e^{x+x^{-1}}dx =$$

A.
$$(x+1)e^{x+x^{-1}}+C$$

B. $(x-1)e^{x+x^{-1}} + C$

 $\mathsf{C.} - x e^{x + x^{-1}} + C$

D. $xe^{x+x^{-1}}+C$

Answer: D

Watch Video Solution

62. If $I_n = \int \!\! (\ln x)^n dx$ then $I_n + n I_{n-1}$

A. $(x \log x)^n$

 $B. x(\log x)^n$

 $\mathsf{C}.\,n(\log x)^n$

 $D. (\log x)^{n-1}$

Answer: b

63. The value of
$$\int rac{\sin^2 x \cos^2 x}{\left(\sin^3 x + \cos^3 x
ight)^2} dx$$
 , is

A.
$$\frac{1}{3(1+\tan^3 x)}$$

$$\mathsf{B.} - \frac{1}{3(1+\tan^3 x)}$$

$$\mathsf{C.} \, \frac{1}{1 + \tan^3 x}$$

$$D. - \frac{1}{1 + \tan^3 x}$$

Answer: B

64. The integral
$$\int \frac{\sec^2 x}{(\sec x + \tan x)^{\frac{9}{2}}} dx$$
 equals (for some arbitrary

$$(\sec x + \tan x)^{rac{1}{2}} \left\{ rac{1}{11} - rac{1}{7} (\sec x + an x)^2
ight\} + K = rac{1}{(\sec x + an x)^{rac{1}{11}}} \left\{ rac{1}{11} - rac{1}{7} (\sec x + an x)^2
ight\} + K$$

$$(\sec x + \tan x)^{\frac{1}{11}} \left\{ \frac{1}{11} + \frac{1}{7} (\sec x + \tan x)^{2} \right\} + K$$

$$rac{(\sec x + an x)^{rac{1}{2}}}{(\sec x + an x)^{rac{11}{2}}}igg\{rac{1}{11} + rac{1}{7}(\sec x + an x)^2igg\} + K$$

Answer: c

A. $1 - \frac{\pi}{4}$

C. $\tan 1 + \frac{\pi}{4}$

D. $\tan 1 + 1$

B. $\frac{\pi}{4}$

Watch Video Solution

Watch Video Solution

A. $-rac{1}{(\sec x + \tan x)^{11/2}}igg\{rac{1}{11} - rac{1}{7}(\sec x + \tan x)^2igg\} + K$

 $\mathsf{B.}\, \frac{1}{(\sec x + \tan x)^{11/2}} \bigg\{ \frac{1}{11} - \frac{1}{7} (\sec x + \tan x)^2 \bigg\} + K$

 $\mathsf{C.} - \frac{1}{\left(\sec x + \tan x\right)^{11/2}} \bigg\{ \frac{1}{11} - \frac{1}{7} (\sec x + \tan x)^2 \bigg\} + K$

D. $\displaystyle rac{1}{\left(\sec x + \tan x
ight)^{11/2}} igg\{ rac{1}{11} - rac{1}{7} (\sec x + \tan x)^2 igg\} + K$

65. If $f(x) = \int \frac{x^2 + \sin^2 x}{1 + x^2} sex^2 x dx$ and f(0) = 0 then f(1) = 0

atti video Solution

66. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{dP}{dx}=100-12\sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is (1) 3000 (2) 3500 (3) 4500 (4) 2500

A. 2500

B. 3000

C. 3500

D. 4500

Answer: c

67. If
$$\int\!\!f(x)dx=\psi(x)$$
 , then $\int\!\!x^5f\!\left(x^3\right)\!dx$

A.
$$rac{1}{3}x^3igg\{x^3\phiig(x^3ig)-\int\!\!\!x^2\phiig(x^3ig)dxigg\}+C$$

B. $rac{1}{3}x^3\phi(x^3)-3\int\!\!\!x^3\phi(x^3)dx+C$

C. $rac{1}{3}x^3\phi(x^3)-\int\!\!\!x^2\phi(x^3)dx+C$

D. $rac{1}{3}\Big\{x^3\phi(x^3)-\int\!\!\!x^3\phi(x^3)dx\Big\}+C$

Answer: c

Watch Video Solution

68. The integral $\int \left(1+x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx$ is equal to

A.
$$(x+1)e^{x+rac{1}{x}}+C$$

$$\mathsf{B.} - xe^{x + \frac{1}{x}} + C$$

$$\mathsf{C.}\,(x-1)e^{x+\frac{1}{x}}+C$$

D.
$$xe^{x+rac{1}{x}}+C$$

Answer: d

69. if
$$\int rac{1-5\sin^2x}{\cos^5x\sin^2x}dx = rac{f(x)}{\cos^5x} + c$$
 then $f(x)$

 $A.-\cot x$

 $B.-\csc x$

C. cosec x

D. cot x

Answer: d

70.
$$\int (x^{7m} + x^{2m} + x^m) \left(2x^{6m} + 7x^m + 14\right)^{\frac{1}{m}} dx$$

A.
$$rac{\left(7x^{7m}+2x^{2m}+14x^m
ight)^{rac{m+1}{m}}}{14(m+1)}+C$$

B.
$$rac{\left(2x^{7m}+14x^{2m}+7x^m
ight)^{rac{m+1}{m}}}{14(m+1)}+C$$

c.
$$rac{\left(2x^{7m}+7x^{2m}+14x^m
ight)^{rac{m+1}{m}}}{14(m+1)}+C$$

D.
$$\dfrac{\left(7x^{7m}+2x^{2m}+x^m
ight)^{rac{m+1}{m}}}{14(m+1)}+C$$

Watch Video Solution

71. $\int \frac{x}{\sqrt{1+x^2+\sqrt{{(1+x^2)}^3}}} dx$ is equal to

A.
$$rac{1}{2}In\Big(1+\sqrt{1+x^2}\Big)+C$$

B.
$$\dfrac{-2}{3\Big(1+\sqrt{1+x^2}\Big)^{3/2}}+C$$

C.
$$2ig(1+\sqrt{1+x^2}ig)+C$$

$$\operatorname{D.}2\sqrt{1+\sqrt{1+x^2}}+C$$

Answer: d

Watch Video Solution

72. $\int\!\!\sqrt{x-3} ig(\sin^{-1}(Inx)+\cos^{-1}(Inx)ig)dx$ is equal to

Watch Video Solution

A. $rac{\pi}{3}(x-3)^{3/2}+C$

D. none of these

B. 0

C. 1

Answer: d

73. The integral
$$\int \left(1+x-rac{1}{x}
ight)e^{x+rac{1}{x}}dx$$
 is equal to

5. The integral
$$\int (1+x-\frac{1}{x})e^{-x} dx$$
 is equal to

A.
$$xe^{x+x^{-1}}+C$$

$$\mathsf{C.}\,(x+1)e^{x+x^{-1}}+C$$

D. $(x-1)e^{x+x^{-1}}+C$

 $\mathsf{B.} - xe^{x+x^{-1}} + C$

Answer: a

74.
$$\int \!\! e^{x^4} ig(x + x^3 + 2x^5ig) e^{x^2} dx$$
 is equal to

A.
$$\dfrac{1}{2}xe^{x^2}e^{x^4}+C$$

B.
$$\frac{1}{2}x^2e^{x^4} + C$$

$$\mathsf{C.}~\frac{1}{2}e^{x^2}e^{x^4}+C$$

D.
$$rac{1}{2} x^2 e^{x^2} e^{x^4} + C$$

Answer: d

75.
$$\int \left[\sin(101x) \cdot \sin^{99} x\right] dx$$

A.
$$\frac{1}{100}\sin(100x)(\sin x)^{100} + C$$

B.
$$\frac{1}{100}\cos(100x)(\sin x)^{100} + C$$

C.
$$\frac{1}{100}\cos(100x)(\cos x)^{100} + C$$

D.
$$\frac{1}{100}\sin(100x)(\sin x)^{101} + C$$

Answer: a

Watch Video Solution

- **76.** Suppose $\int \frac{1-7\cos^2 x}{\sin^7 x \cos^2 x} dx = \frac{g(x)}{\sin^7 x} + c$ where C is arbitrary constant of integration.then find value of $g^{\,\prime}(0) + g^{\,\prime\,\prime}\Big(rac{\pi}{4}\Big)$
 - A. sin x
 - B. cos x
 - C. tan x
 - D. cot x

Answer: c

77.
$$\int (x^2+x) \left(x^{-8}+2x^{-9}\right)^{1/10} dx$$
 is equal to

A.
$$\displaystyle rac{5}{11}ig(x^2+2xig)^{11/10}+C$$

B.
$$\frac{5}{11}(x+1)^{11/10} + C$$

C.
$$\frac{6}{7}(x+1)^{11/10} + C$$

D.
$$\frac{11}{5}(x^2+2x)^{11/10}+C$$

Answer: A

Watch Video Solution

78. If
$$\int \frac{2}{(2-x)^2} \left(\frac{2-x}{2+x}\right)^{1/3} dx = \lambda \left(\frac{2+x}{2-x}\right)^{\mu} + c$$
 where λ and μ are rational number in its simplest form then $\left(\lambda + \frac{1}{\mu}\right)$ is equal to

A. 1

B. 2

C. 3

Answer: c

Watch Video Solution

79. Let f(x) be a quadratic function such that f(0)=1 and $\int\!\! rac{f(x)}{x^2{(x+1)}^3}dx$ is a rational function, then the value of f'(0) is

A. 0

B. 2

C. 3

D. 5

Answer: c

80.
$$\int \frac{x}{\sqrt{1+x^2+\sqrt{1+x^2}^3}} dx$$
 is equal to

A.
$$rac{1}{2}In\Big(1+\sqrt{1+x^2}\Big)+C$$

B.
$$\dfrac{-2}{3\Big(1+\sqrt{1+x^2}\Big)^{3/2}}+C$$
C. $2\Big(1+\sqrt{1+x^2}\Big)+C$

 $\mathsf{D.}\,2\sqrt{1+\sqrt{1+x^2}}+C$

Answer: d

$$\int_{\mathbb{R}^{2}} \left(x-1\right)(x-\log x) dx \text{ is a given to}$$

81.
$$\int e^x \frac{(x-1)(x-\log x)}{x^2} dx$$
 is equal to

11.
$$\int e^x \frac{dx}{dx} dx$$
 is equal to

$$x^2$$

A. $e^x \left(\frac{x - \ln x}{x} \right) + C$

 $\mathsf{B.}\,e^x\bigg(\frac{x-\mathrm{In}\ x+1}{x}\bigg)+C$

$$\mathsf{C.}\,e^x\Big(rac{x-\mathrm{In}\ x}{x}\Big)+C$$

D. $e^x \left(rac{x - ext{In} \ x - 1}{x}
ight) + C$

$$+C$$

Answer: d

Watch Video Solution

82. If $I = \int \!\! x^{27} ig(6x^2 + 5x + 4 ig) ig(x^2 + x + 1 ig)^6 dx = f(x) + C$, then f(x) is equal to

A.
$$rac{1}{7}ig(x^6 + x^5 + x^4ig)^7$$

B.
$$rac{1}{7}ig(6x^5+5x^4+4x^3ig)^7$$

C.
$$rac{1}{7}ig(6x^6+5x^5+4x^4ig)^7$$

D. $rac{1}{7}ig(x^5+x^4+x^3ig)^7$

Answer: a

Watch Video Solution

83. Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, if $\int \frac{f(x)}{x^2(1+x)^2} dx$ is a rational function then the value

- A. 584
- B. 521
- C. 520
- D. 583

Answer: b

Watch Video Solution

A.
$$I=e^{ an^{-1}x}ig(an^{-1}xig)+C$$

B.
$$I=e^{ an^{-1}x}\Bigl(\sec^{-1}\sqrt{1+x^2}\Bigr)^2+C$$

Evaluate:

C.
$$I=rac{1}{2}e^{ an^{-1}x}ig(an^{-1}xig)^2+C$$

D.
$$I=e^{ an^{-1}x}\Big(ext{cosec}^{-1}\sqrt{1+x^2}\Big)^2+C$$

Answer: b

Watch Video Solution

85.
$$\int \!\! x^2 rac{\left(x \sec^2 x + \tan x
ight)}{\left(x \tan x + 1
ight)^2} dx =$$

A.
$$\dfrac{-x}{(\tan x + 1)} + 2 |\operatorname{In}| x \sin x + \cos x| + C$$

B.
$$\dfrac{-x^2}{(x\tan x + 1)} + 2|\sin x + \cos x| + C$$

C.
$$rac{-x^2}{(x an x+1)}+2|\sin x+\cos x|+C$$

D. none of these

Answer: b

86.
$$\int \!\! rac{mx^{m+2n-1}-nx^{n-1}}{x^{2m+2n}+2x^{m+n}+1} dx$$
 is equal to

A.
$$rac{-x^m}{x^{m+n}+1}+C$$

B.
$$rac{-x^n}{x^{m+n}+1}+C$$

C.
$$rac{-x^n}{x^{m+n}+1}+C$$

D.
$$\frac{x^m}{x^{m+n}+1}+C$$

Answer: c

Watch Video Solution

87.
$$\int \frac{1}{\tan x + \cot x + \sec x + \csc x} dx$$
 is equal to

A.
$$\frac{1}{2}(\sin x + \cos x + x) + C$$

$$\mathsf{B.}\ \frac{1}{2}(\sin x - \cos x - x) + C$$

$$\mathsf{C.}\ \frac{1}{2}(\cos x - x\sin x) + C$$

D. none of these

Answer: d

88.
$$\int \frac{x^2(1 - \ln x)}{(\ln x)^4 - x^4} dx$$
 is equal to

A.
$$\frac{1}{2} \ln \left(\frac{x}{\ln x} \right) - \frac{1}{4} \ln \left(\ln^2 x - x^2 \right) + C$$

$$\mathsf{B.} \ \frac{1}{4} \mathrm{In} \bigg(\frac{\mathrm{In} x - x}{\mathrm{In} \ \ x + x} \bigg) - \frac{1}{2} \mathrm{tan}^{-1} \bigg(\frac{\mathrm{In} \ \ x}{x} \bigg) + C$$

$$\mathsf{C.} \ \frac{1}{4} \mathrm{In} \Big(\frac{\mathrm{In} \ \ x + x}{\mathrm{In} \ \ x - x} \Big) + \frac{1}{2} \mathrm{tan}^{-1} \Big(\frac{\mathrm{In} \ \ x}{x} \Big) + C$$

D.
$$\frac{1}{4} \operatorname{In} \left(\frac{\operatorname{In} \ x - x}{\operatorname{In} \ x + x} \right) + \frac{1}{2} \operatorname{tan}^{-1} \left(\frac{\operatorname{In} \ x}{x} \right) + C$$

Answer: b

89. The integral $\int \frac{2x^{12}+5x^9}{\left(x^5+x^3+1\right)^3}dx$ is equal to (where C is a constant of integration)

A.
$$\dfrac{-x^5}{\left(x^5+x^3+1
ight)^2}+C$$

B.
$$\frac{-x^{10}}{2(x^5+x^3+1)^2}+C$$

C.
$$rac{x^5}{2{(x^5+x^3+1)}^2}+C$$

D.
$$\frac{-x^{10}}{2(x^5+x^3+1)^2}$$

Answer: N/A

Watch Video Solution

- **90.** If $\int \frac{1}{\cos^3 x \sqrt{2\sin 2x}} dx = (\tan x)^A + C(\tan x)^B + k$, where k is a constant of integration , the A+B+C equals
 - A. $\frac{16}{5}$
 - B. $\frac{27}{5}$
 - c. $\frac{7}{10}$
 - D. $\frac{27}{10}$

Answer: A

91. If
$$\int \!\! rac{dx}{x^3(1+x^6)^{rac{2}{3}}} = f(x)ig(1+x^6ig)^{rac{1}{3}} + C$$
 where, C is a constant of

integration, then the function f(x) is equal to

A.
$$-\frac{1}{2}$$

$$\mathsf{B.}-\frac{1}{6}$$

$$\mathsf{C.}-rac{6}{x}$$

$$\mathsf{D.}-\frac{x}{2}$$

Answer: A

92. The integral
$$\int \frac{1}{(1+\sqrt{x})\sqrt{x-x^2}} dx$$
 is equal to (where C is the constant of integration)

$$\mathsf{A.} - 2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} + C$$

$$\mathsf{B.} - 2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C$$

$$\mathsf{C.} - \sqrt{rac{1+\sqrt{x}}{1+\sqrt{x}}} + C$$
 $\mathsf{D.} \, 2\sqrt{rac{1+\sqrt{x}}{1-\sqrt{x}}} + C$

Answer: B

Watch Video Solution

Section II - Assertion Reason Type

1. Let F(x) be an indefinite integral of $\sin^2 x$

Statement I The function F(x) satisfies $F(x+\pi)=F(x)$ for all real x.

Because

Statement II $\sin^2(x+\pi)=\sin^2x, ext{ for all real x.}$

A. Statement - 1 True , Statement -2 is True , Statement -2 is a correct

explanation for Statement -1.

B. Statement - 1 is True, Statement -2 is True, Statement -2 is a correct

explanation for Statement -1.

- C. Statement 1 True , Statement 2 is False.
- D. Statement 1 is False, Statement 2 is True.

Watch Video Solution

2. Statement - 1 : The value of the integral

$$\int \frac{e^{3x} + e^x}{e^{4x} + 1} dx$$
 is $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{e^x - e^{-x}}{\sqrt{2}} \right) + C$

Statement -2: A primitive of the function f (x) $= rac{x^2+1}{x^4+1}$ is $1 + \left(rac{x^2-1}{x^2-1}
ight)$

$$\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{x^2-1}{\sqrt{2}x}\right).$$

- A. Statement 1 True , Statement -2 is True , Statement -2 is a correct explanation for Statement -1.
- B. Statement 1 is True, Statement 2 is True, Statement 2 is a correct explanation for Statement 1.
- C. Statement 1 True , Statement 2 is False.
- D. Statement 1 is False, Statement 2 is True.

3. Statement -1 : If
$$I_1=\int\!\!rac{e^x}{e^{4x}+e^{2x}+1}dx$$
 and

$$I_2 = \int \frac{e^{-x}}{e^{-4x} + e^{-2x} + 1} dx$$
, then

$$I_2 - I_1 = rac{1}{2} \mathrm{log}igg(rac{e^{2x} - e^x + 1}{e^{2x} + e^x + 1}igg) + C$$

where C is an arbitrary constant.

Statement -2 : A primitive of f(x)
$$= \frac{x^2-1}{x^4+x^2+1}$$
 is

$$\frac{1}{2}\log\left(\frac{x^2-x+1}{x^2+x+1}\right).$$

- A. Statement 1 True, Statement 2 is True, Statement 2 is a correct explanation for Statement 1.
- B. Statement 1 is True, Statement 2 is True, Statement 2 is a correct explanation for Statement 1.
- C. Statement 1 True , Statement 2 is False.
- D. Statement 1 is False, Statement 2 is True.

Exercise

1.
$$\int \frac{1}{\sin(x-a)\cos(x-b)} dx$$
 is equal to

A.
$$\frac{1}{\sin(a-b)}\log\left|\frac{\sin(x-a)}{\cos(x-b)}\right|+C$$

B.
$$\dfrac{1}{\cos(a-b)} \! \log \! \left| \dfrac{\sin(x-a)}{\cos(x-b)} \right| + C$$

C.
$$\frac{1}{\sin(a+b)} \log \left| \frac{\sin(x-a)}{\cos(x-b)} \right| + C$$

D.
$$\dfrac{1}{\cos(a+b)} \log \left| \dfrac{\sin(x-a)}{\cos(x-b)} \right| + C$$

Answer: B

2.
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
 is equal to

A.
$$x \tan \frac{x}{2} + C$$

B.
$$x \cot \frac{x}{2} + C$$

$$\mathsf{C}.\log(1+\cos x)+C$$

$$D.\log(1+\sin x)+C$$

Answer: a

Watch Video Solution

3. The integral $\int \frac{1}{(1+x^2)\sqrt{1-x^2}} dx$ is equal to

A.
$$\frac{1}{2} an^{-1}\left(\frac{\sqrt{2}x}{\sqrt{1-x^2}}\right)$$

B.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{2}x}{\sqrt{1+x^2}} \right)$$

C.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\sqrt{2}x}{\sqrt{1-x^2}} \right)$$

D. none of these

Answer: c

4.
$$\int \frac{2^x}{\sqrt{1-4^x}} dx = k \sin^{-1} 2^x + c$$
, then k =

$$\mathsf{B.}\; \frac{1}{2} \!\log 2$$

$$\mathsf{C.}\ \frac{1}{2}$$

D.
$$\frac{1}{\log 2}$$

Answer: d

5.
$$\int e^{ an^{-1}x} igg(1+rac{x}{1+x^2}igg) dx$$
 is equal to

A.
$$xe^{ an^{-1}x}+C$$

B.
$$x^2e^{ an^{-1}x}+C$$

c.
$$\frac{1}{x}e^{\tan^{-1}x} + C$$

Watch Video Solution

- **6.** If $\int \frac{1}{x\sqrt{1-x^3}}dx=a\log\left|\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right|+b,$ then aisequal $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) $-\frac{1}{3}$ (d0 $-\frac{2}{3}$
 - A. 1/3
 - B.2/3
 - C. 1/3
 - D. 2/3

Answer: a

Watch Video Solution

7. $\int \frac{xe^x}{(1+x)^2} dx$ is equal to

B.
$$e^x(x+1)+C$$
C. $-rac{e^x}{{(x+1)}^2}+C$

A. $\frac{e^x}{x+1}+C$

$$(x+1)^2$$
 D. $\dfrac{e^x}{1+x^2}+C$

Answer: a

Watch Video Solution

8. $\int e^{x \log a} \cdot e^x dx$ is equal to

 $\mathsf{B.}\,\frac{\left(ae\right)^x}{\log(ae)}$

C. $\frac{e^x}{1 + \log a}$

D. none of these

A. $(ae)^x$

Answer: B

9. if
$$\int\!\!g(x)dx=g(x),$$
 then $\int\!\!g(x)\{f(x)+f'(x)\}dx$ is equal to

A.
$$g(x)f(x)-g(x)f'(x)+C$$

$$B. g(x)f'(x) + C$$

$$C. q(x) f(x) + C$$

$$\mathsf{D}.\, q(x)f^2(x) + C$$

Answer: c

10. If
$$\int \frac{1}{(\sin x + 4)(\sin x - 1)} dx$$

$$A=Arac{1}{ anrac{x}{x}-1}+B an^{-1}\{f(x)\}+C.$$
 Then,

A.
$$A=rac{1}{5}, B=rac{-2}{5\sqrt{15}}, f(x)=rac{4\tan x+3}{\sqrt{15}}$$

B.
$$A=-rac{1}{5}, B=rac{1}{\sqrt{15}}, f(x)=rac{4\tan(x/2)+1}{\sqrt{15}}$$

C.
$$A=rac{2}{5}, B=rac{-2}{5}, f(x)=rac{4\tan x+1}{5}$$
D. $A=rac{2}{5}, B=rac{-2}{5\sqrt{15}}, f(x)=rac{4\tan x/2+1}{\sqrt{15}}$

Answer: d

Watch Video Solution

11.
$$\int\!\!\cos^3xe^{\log{(\sin x)}}\,dx$$
 is equal to

$$A. - \frac{\sin^4 x}{4} + C$$

$$B. - \frac{\cos^4 x}{4} + C$$

C.
$$rac{e^{\sin x}}{4} + C$$

D. none of these

Answer: B

12.
$$\int \{1+2\tan x(\tan x+\sec x)\}^{1/2}dx$$
 is equal to

A.
$$\log \sec x (\sec x - \tan x) + C$$

$${\tt B.}\log\csc(\sec x + \tan x) + C$$

$$\mathsf{C}.\log\sec x(\sec x + \tan x + C)$$

$$\mathsf{D}.\log(\sec x + \tan x) + C$$

Answer: c

13.
$$\int \frac{1}{\left(\left(x-1
ight)^3\left(x+2
ight)^5
ight)^{rac{1}{4}}}dx$$
 is equal to

$$\int \left(\left(x-1
ight)^3 \left(x+2
ight)^5
ight)^{rac{\gamma}{4}}$$

A.
$$rac{4}{3}igg(rac{x-1}{x+2}igg)^{1/4}+C$$

B.
$$\dfrac{4}{3} \left(\dfrac{x+2}{x-1}\right)^{1/4} + C$$

C.
$$\frac{1}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C$$

D.
$$rac{1}{3}igg(rac{x+2}{x-1}igg)^{1/4}+C$$

Answer: a

Watch Video Solution

14. $\int \frac{\sqrt{x^2+1} \left[\log \left(x^2+1\right)-2 \log x\right]}{x^4} dx$ is equal to

A.
$$rac{1}{3}igg(1+rac{1}{x^2}igg)^{1/2}igg[logigg(1+rac{1}{x^2}igg)+rac{2}{3}igg]+C$$

$$\mathsf{B.}\,\frac{1}{3}\bigg(1+\frac{1}{x^2}\bigg)^{3/2}\bigg[\log\!\left(1+\frac{1}{x^2}\right)-\frac{2}{3}\bigg]+C$$

$$\mathsf{C.}\,\frac{2}{3}\bigg(1+\frac{1}{x^2}\bigg)^{3/2}\bigg[\log\!\left(1+\frac{1}{x^2}\right)+\frac{2}{3}\bigg]+C$$

D. none of these

Answer: b

Watch Video Solution

15. $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$ is equal to.

A.
$$2\sqrt{\tan x} + C$$

B.
$$2\sqrt{\cot x} + C$$

$$\mathsf{C.}\,\frac{\sqrt{\tan x}}{2} + C$$

Answer: A

Watch Video Solution

16. $\int \frac{\sin x - \cos x}{\sqrt{1 - \sin 2x}} e^{\sin x} \cos x dx$ is equal to

A.
$$e^{\sin x} + C$$

B.
$$e^{\sin x - \cos x} + C$$

C.
$$e^{\sin x + \cos x} + C$$

D.
$$e^{\cos x - \sin x} + C$$

Answer: a

17. Evaluate
$$\int \!\! e^{3\log x} ig(x^4+1ig)^{-1} dx$$

$$\mathsf{A.}\log(x^4+1)+C$$

B.
$$\frac{1}{4}\log(x^4+1) + C$$

$$\mathsf{C.} - \log(x^4 + 1)$$

Answer: b

Watch Video Solution

18. $\int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx$ is equal to

A.
$$\dfrac{5^{5^x}}{\left(\log 5\right)^3} + C$$

$$\mathtt{B.}\, 5^{5^{5^x}} (\log 5)^3 + C$$

$$\mathsf{C.}\,\frac{5^{5^{5^x}}}{\left(\log 5\right)^3}+C$$

D. none of these

Answer: C

Watch Video Solution

19. If $\int \frac{1}{1+\sin x} dx = an \Big(\frac{x}{2} + a \Big) + b$ then

A.
$$a=-rac{\pi}{4},b\in R$$

B.
$$a=rac{\pi}{4},b\in R$$

C.
$$a=rac{5\pi}{4},b\in R$$

D. none of these

Answer: a

Watch Video Solution

20. The value of $\int [f(x)g''(x) - f''(x)g(x)]dx$ is equal to

A.
$$\frac{f(x)}{g'(x)}$$

B. f'(x)g(x) - f(x)g'(x)

C. f(x)g'(x) - f(x)g(x)

D. f(x)g'(x) + f'(x)g(x)

Answer: c

Watch Video Solution

21. If $\int (\sin 2x - \cos 2x) dx = \frac{1}{\sqrt{2}} \sin(2x - a) + b$ then

A.
$$a=rac{5\pi}{4},b\in R$$

B.
$$a=-rac{5\pi}{4},b\in R$$

C.
$$a=rac{\pi}{4},b\in R$$

D. none of these

Answer: b

22.
$$\int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} dx$$
 is equal to

A.
$$rac{2}{3}\mathrm{sin}^{-1} \Bigl(\mathrm{cos}^{3/2x} \Bigr) + C$$

B.
$$rac{3}{2} \mathrm{sin}^{-1} \Bigl(\mathrm{cos}^{3/2x} \Bigr) + C$$

C.
$$rac{2}{3} \mathrm{cos}^{-1} \Bigl(\mathrm{cos}^{3/2} \, x \Bigr) + C$$

Answer: c

23.
$$\int \frac{\cos 2x}{\left(\sin x + \cos x\right)^2} dx$$
 is equal to

A.
$$\frac{-1}{\sin x + \cos} + C$$

$$B.\log(\sin x + \cos x) + C$$

$$C.\log(\sin x - \cos x) + C$$

$$\mathsf{D.}\log(\sin x + \cos x)^2 + C$$

Watch Video Solution

24. If
$$\int \!\! rac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} dx = Ax + B \ln ig(9e^{2x} - 4 ig) + C$$
, then

A.
$$A=-rac{3}{2}, B=rac{35}{36}, C=0$$

B.
$$A = \frac{35}{36}, B = -\frac{3}{2}, C \in R$$

$$\mathsf{C.}\,A=\ -\,\frac{3}{2},B=\frac{35}{36},C\in R$$

D. none of these

Answer: c

Watch Video Solution

25. If
$$\int\!\!f(x)\!\sin x\cos xdx=rac{1}{2(b^2-a^2)}\!\log\{f(x)\}+C$$
 then f(x) is equal

to

$$o^2 \cos^2 x$$

A.
$$\dfrac{1}{a^2\sin^2x+b^2\cos^2x}$$

B.
$$\frac{1}{a^2\sin^2 x - b^2\cos^2 x}$$

C.
$$\frac{1}{a^2\cos^2 x + b^2\sin^2 x}$$

D.
$$\frac{1}{a^2\cos^2 x - b^2\sin^2 x}$$

Answer: a

Watch Video Solution

26.
$$\int \frac{x+2}{(x^2+3x+3)\sqrt{x+1}} dx$$
 is equal to

A.
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3(x+1)}} \right)$$

B.
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{(\sqrt{x+1})} \right)$$
C. $\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{x+1}} \right)$

D. none of these

Answer: b

Watab Vodan Cal

watch video Solution

27. The value of
$$\int \frac{\left(x-x^3\right)^{1/3}}{x^4} dx$$
 is

$$J$$
 x^4

A.
$$\frac{3}{8} \left(\frac{1}{x^2} - 1 \right)^{4/3} + C$$

B.
$$-rac{3}{8}igg(rac{1}{x^2}-1igg)^{4/3}+C$$
C. $rac{1}{8}igg(1-rac{1}{x^2}igg)^{4/3}+1$

D. none of these

Answer: B

$$C(mA - m)^{1/4}$$

8.
$$\int \frac{(x^4-x)^{1/4}}{x^2} dx$$
 is equal to

28.
$$\int \frac{\left(x4-x\right)^{1/4}}{x^5} dx$$
 is equal to

A.
$$\frac{4}{15} \left(1 - \frac{1}{x^3} \right)^{5/4} + C$$

B.
$$rac{4}{5}igg(1-rac{1}{x^3}igg)^{5/4}+C$$

C.
$$\frac{4}{15} \left(1 + \frac{1}{x^3} \right)^{5/4} + C$$

Answer: a

Watch Video Solution

- **29.** Integrate the functions $f'(ax+b)[f(ax+b)]^n$
 - A. $\frac{1}{n+1}\{f(ax+b)\}^{n+1}+C$, for all n except n =-1
 - B. $\dfrac{1}{n+1}\{f(ax+b)\}^{n+1}+C$, for all n
 - C. $\frac{1}{a(n+1)}\{f(ax+b)\}^{n+1}+C$ for all n except n =- 1
 - D. $\dfrac{1}{a(n+1)}\{f(ax+b)\}^{n+1}+C$, for all n

Answer: c

Watch Video Solution

 $30. \int \frac{dx}{\sqrt{\sin^3 x \cos x}} = ?$

A.
$$\dfrac{-2}{\sqrt{ an x}} + C$$
B. $2\sqrt{ an x} + C$

C.
$$\frac{2}{\sqrt{\tan x}} + C$$

D.
$$-2\sqrt{\tan x}+C$$

Answer: a

Watch Video Solution

31. The value of the integral $\int_{1-x^4}^{1+x^2} dx$ is equal to

$$J + u$$

A.
$$\tan^{-1}x^2 + C$$

B.
$$\dfrac{1}{\sqrt{2}} an^{-1}igg(\dfrac{x^2-1}{\sqrt{2}x}igg)$$
C. $\dfrac{1}{2\sqrt{2}}\logigg(\dfrac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}igg)+C$

D. none of these

Answer: b

32. If $l^r(x)$ means $\log \log \log \ldots x$ being repeated r times, then

$$\int \left[\left(x l(x) l^2(x) l^3(x) \, l^r(x)
ight]^{-1} \! dx$$
 is equal to :

A.
$$l^{r+1}(x) + C$$

$$\mathsf{B.}\,\frac{l^{r+1}(x)}{r+1}+C$$

$$\mathsf{C}.\,l^r(x)+C$$

D. none of these

Answer: a

Watch Video Solution

33. $\int \!\! x^{-2/3} \Big(1 + x^{1/2} \Big)^{-5/3}$ dx is equal to

A.
$$3ig(1+x^{-1/2}ig)^{-1/3}+C$$

B.
$$3ig(1+x^{-1/2}ig)^{-2/3}+C$$

C.
$$3ig(1+x^{1/2}ig)^{-2/3}+C$$

Answer: b

Watch Video Solution

34.
$$\int \frac{x^3 - 1}{x^3 + x} dx$$
 is equal to:

A.
$$x-\log x+\log (x^2+1)- an^{-1}x+C$$

$${\sf B.}\,x - \log x + \frac{1}{2}{\log(x^2+1)} - \tan^{-1} x + C$$

$$\mathsf{C.}\,x + \log x + \frac{1}{2}\mathrm{log}\big(x^2 + 1\big) + \tan^{-1} x + C$$

D. none of these

Answer: b

35.
$$\int \frac{\cos x + x \sin x}{x^2 + x \cos x} dx = \dots$$

A.
$$\log(x(x + \cos x)) + C$$

$$\mathsf{B.}\log\!\left(\frac{x}{x+\cos x}\right) + C$$

$$\mathsf{C.}\log\!\left(rac{x+\cos x}{x}
ight)$$

Answer: b

Watch Video Solution

$$36. \int \frac{\cos 2x}{\cos x} dx =$$

$$\mathsf{A.}\,2\sin x + \log(\sec x + \tan x) + C$$

$$B. 2\sin x - \log(\sec x - \tan x) + C$$

$$\mathsf{C.}\,2\sin x - \log(\sec x + \tan x) + C$$

D. none of these

Answer: C

Watch Video Solution

37. $\int \frac{dx}{x(x^n+1)}$ is equal to

A.
$$\frac{1}{n} \log \left(\frac{x^n}{x^n + 1} \right) + C$$

$$B. \frac{1}{n} \log \left(\frac{x^n + 1}{x^n} \right)$$

$$\mathsf{C.}\log\Bigl(rac{x^n}{x^n+1}\Bigr)+C$$

D. none of these

Answer: a

Watch Video Solution

38. $\int \frac{a^{\sqrt{x}}}{\sqrt{x}} dx$ is equal to

A.
$$rac{a^{\sqrt{x}}}{\log a} + C$$

 $\operatorname{B.} \frac{2a^{\sqrt{x}}}{\log a} + C$

C. $2a^{\sqrt{x}}$. $\log a + C$

D. none of these

Answer: B

Watch Video Solution

39. If
$$\int\!\! rac{dx}{5-4\cos x} = A an^{-1}(B an x/2) + C$$
, then

A.
$$A=1, B=3$$

B.
$$A=2/3, B=3$$

C.
$$A = -1, B = 1/3$$

D.
$$A=1/3, B=2/3$$

Answer: B

40. If
$$I = \int \frac{dx}{x^4 \sqrt{x^2 + x^2}}$$
, then I equals

A.
$$rac{1}{a^4}igg\{rac{1}{x}\sqrt{a^2+x^2}-rac{1}{3x^3}\sqrt{a^2+x^2}igg\}+C$$

B.
$$rac{1}{a^4} igg\{ rac{1}{x} \sqrt{a^2 + x^2} - rac{1}{3x^3} ig(a^2 + x^2 ig)^{3/2} ig\} + C$$

$$\mathsf{C.} \; \frac{1}{a^2} \bigg\{ \frac{1}{x} \sqrt{a^2 + x^2} - \frac{1}{2\sqrt{x}} \big(a^2 + x^2\big)^{3/2} \bigg\} + C$$

Answer: b

Watch Video Solution

41. The value of the integral $\int \frac{\log(x+1) - \log x}{x(x+1)} dx$ is

A.
$$\frac{1}{2}[\log(x+1)]^2 + \frac{1}{2}(\log x)^2 + \log(x+1)\log x + C$$

B.
$$-\frac{1}{2} \left[\left\{ \log(x+1) \right\}^2 + (\log x)^2 \right] + \log(x+1) \cdot \log x + C$$

C.
$$\frac{1}{2}[\log(1+1/x)]^2+C$$

D. none of these

Watch Video Solution

42. But for all arbitrary constants, $\int\!\!\sqrt{\frac{1+\sin\theta-\sin^2\theta-\sin^3\theta}{2\sin\theta-1}}d\theta$ is equal to

A.

$$rac{1}{2}\sqrt{\sin heta-\cos2 heta}+rac{3}{4\sqrt{2}}{\log_e}ig|(4\sin heta+1)+2\sqrt{2}\sqrt{\sin heta-\cos2 heta}ig|$$

B.

$$rac{1}{2}\sqrt{\sin heta+\cos2 heta}+rac{3}{4\sqrt{2}}{
m log}_eig|(4\sin heta-1)+2\sqrt{2}\sqrt{\sin heta+\cos2 heta}ig|$$

C.
$$rac{1}{2\sqrt{2}}\sqrt{\sin heta-\cos2 heta}+rac{3}{4}\mathrm{log}_eig|(4\sin heta+1)-\sqrt{\sin heta-\cos2 heta}ig|$$

D.
$$rac{1}{2}\sqrt{\sin heta+\cos2 heta}+rac{3}{4\sqrt{2}}\mathrm{log}_eig|4\sin heta+1-\sqrt{\sin heta-\cos2 heta}ig|$$

Answer: a

View Text Solution

43. If $x^2
eq n\pi - 1, n \in N$. Then, the value of

$$\int x \sqrt{\frac{2\sin(x^2+1) - \sin 2(x^2+1)}{2\sin(x^2+1) + \sin 2(x^2+1)}} dx \text{ is equal to:}$$

A.
$$\log \left| rac{1}{2} \mathrm{sec} \left(x^2 + 1
ight) \right|$$

$$\operatorname{\mathsf{B.log}}\left|\operatorname{sec}\left(rac{x^2+1}{2}
ight)
ight|$$

C.
$$\frac{1}{2}$$
log $\left|\sec\left(x^2+1\right)\right|$

D. none of these

Answer: b

Watch Video Solution

44. Given f(x)
$$= \begin{vmatrix} 0 & x^2 - \sin x & \cos x - 2 \\ \sin x - x^2 & 0 & 1 - 2x \\ 2 - \cos x & 2x - 1 & 0 \end{vmatrix} \int f(x) \ \mathrm{d}x$$
 is equal

to

A.
$$rac{x^3}{3}-x^2\sin x+\sin 2x+C$$

B.
$$\frac{x^3}{3} - x^2 \sin x - \cos 2x + C$$

C.
$$\frac{x^3}{3} - x^2 \cos x - \cos 2x + C$$

Answer: d

Watch Video Solution

45. $\int rac{1}{x^{1/2}(1+x^2)^{5/4}} dx$ is equal to

A.
$$\dfrac{-2\sqrt{x}}{4\sqrt{1+x^2}}+C$$

$$\operatorname{B.} \frac{2\sqrt{x}}{4\sqrt{1+x^2}} + C$$

$$\operatorname{C.}\frac{-\sqrt{x}}{4\sqrt{1+x^2}}+C$$

D.
$$\dfrac{\sqrt{x}}{4\sqrt{1+x^2}}+C$$

Answer: b

46.
$$\int \frac{x^2}{(a+bx^2)^{5/2}} dx$$
 is equal to

A.
$$-rac{1}{3a}igg(rac{x^2}{a+bx^2}igg)^{3/2}+C$$

B.
$$\dfrac{1}{3a} igg(\dfrac{x^2}{a+bx^2}igg)^{3/2} + C$$

C.
$$rac{1}{2a} igg(rac{x^2}{a+bx^2}igg)^{2/3} + C$$

Answer: B

Watch Video Solution

47.
$$\int \frac{\sin^3 x}{(1+\cos^2 x)\sqrt{1+\cos^2 x+\cos^2 x+\cos^4 x}} dx$$
 is equal to

$$\mathsf{A.}\sec^{-1}(\sec x + \cos x) + C$$

$$\mathsf{B.}\sec^{-1}(\sec x - \cos x) + C$$

$$\mathsf{C.}\sec^{-1}(\sec x - \tan x) + C$$

D. none of these

Answer: a

View Text Solution

48. $\int \frac{1}{\sqrt{\sin^3 x \sin(x+lpha)}} dx$ is equal to

A.
$$2\csc \alpha \sqrt{\cos \alpha + \sin \alpha \tan x} + C$$

$$\mathsf{B.} - 2\mathsf{cosec} \quad \alpha \sqrt{\cos \alpha + \sin \alpha \cot x} + C$$

C.
$$\csc \alpha \sqrt{\cos \alpha + \sin \alpha \cot x} + C$$

D. none of these

Answer: b

View Text Solution

49. The antiderivative of $\frac{3^x}{\sqrt{1-9^x}}$ with respect to x is

A.
$$(\log_3 e)\sin^{-1}(3^x) + C$$

B.
$$\sin^{-1}(3^x) + C$$

C.
$$(\log_3 e) \cos^{-1}(3^x)$$

Answer: a

Watch Video Solution

50. Integration of $\frac{1}{\sqrt{x^2-9}}$ with respect to (x^2+1) is equal to

A.
$$\sqrt{x^2+9}+C$$

$$\mathsf{B.} - \frac{1}{\sqrt{x^2 + 9}} + C$$

$$\mathsf{C.}\,2\sqrt{x^2+9}+C$$

D. none of these

Answer: c

51.

lf

$$\int \! rac{\sin heta - \cos heta}{(\sin heta + \cos heta) \sqrt{\sin heta \cos heta + \sin^2 heta \cos^2 heta}} d heta = \operatorname{cosec}^{-1}(f(heta)) + C$$

then

A.
$$f(\theta) = \sin 2\theta + 1$$

B.
$$f(\theta) = 1 - \sin 2\theta$$

$$\mathsf{C.}\,f(\theta)=\sin2\theta-1$$

D. none of these

Answer: a

View Text Solution

52. The primitive of the function f (x) $=(2x+1)|\cos x|$, when

$$rac{\pi}{2} < x < \pi$$
 is given by

A. $\cos x + x \sin x$

$$B.-\cos x - x\sin x$$

 $C. x \sin x - \cos x$

D. none of these

Answer: b

Watch Video Solution

53. The primitive of the function $f(x)=(2x+1)|\sin x|$, where

$$\pi < x < 2\pi$$
 is

$$\mathsf{A}.-(2x+1){\cos x}+2\sin x+C$$

$$\mathsf{B.}\,(2x+1)\!\cos x-2\sin x+C$$

$$\mathsf{C.}\,(x^2+x)\!\cos x+C$$

D. none of these

Answer: D

54. Let
$$\int \sqrt{\frac{5-x}{2+x}} dx$$
 equal

A.
$$\sqrt{x+2}\sqrt{5-x}+3\sin^{-1}\sqrt{rac{x+2}{3}}+C$$

$$\mathsf{B.}\,\sqrt{x+2}\sqrt{5-x}+7\sin^{-1}\sqrt{\frac{x+2}{7}}+C$$

C.
$$\sqrt{x+2}\sqrt{5-x}+5\sin^{-1}\sqrt{rac{x+2}{5}}+C$$

Answer: b

View Text Solution

55. The value of the integral $\int \frac{x \sin x^2 e^{\sec x^2}}{\cos^2 x^2} dx$, is

A.
$$\frac{1}{2}e^{\sec x^2} + C$$

$$\mathsf{B.} \; \frac{1}{2} e^{\sin x^2} + C$$

C.
$$\frac{1}{2}\mathrm{sin}\,x^2e^{\cos^2x^2}+C$$

D. none of these

Answer: a

Watch Video Solution

56. $\int \frac{x^2 - 1}{x\sqrt{(x^2 + \alpha x + 1)}(x^2 + \beta x + 1)} dx$ is equal to

$$\mathsf{A}.\log \left\{ \frac{\sqrt{x^2 + \alpha x + 1} + \sqrt{x^2 + \beta x + 1}}{\sqrt{x}} \right\} + C$$

$$\mathsf{B.}\, 2\log \bigg\{\frac{\sqrt{x^2+\alpha x+1}-\sqrt{x^2+\beta x+1}}{\sqrt{x}}\bigg\} + C$$

$$\mathsf{C.log}igg\{\sqrt{x^2+lpha x+1}-\sqrt{x^2+eta x+1}igg\}+C$$

D. none of these

Answer: a

View Text Solution

57. Evaluate: $\int \frac{e^{2x} - 2e^x}{e^{2x} + 1} dx$

A.
$$\log(e^{2x}+1) - \tan^{-1}(e^x) + C$$

B. $\frac{1}{2}\log(e^{2x}+1)-\tan^{-1}(e^x)+C$

C. $\frac{1}{2} \log (e^{2x} + 1) - 2 \tan^{-1}(e^x) + C$

D. none of these

Answer: C

Watch Video Solution

58. $\int \frac{1}{\cos x - \sin x} dx$ is equal to

A.
$$\frac{1}{\sqrt{2}} \mathrm{log} \left| \mathrm{tan} \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + C$$

B.
$$\frac{1}{\sqrt{2}} \log \left| \cot \frac{x}{2} \right| + C$$

C.
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{3\pi}{8} \right) \right| + C$$

D.
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{\pi}{8} \right) \right| + C$$

Answer: A

59.
$$\int \frac{a^{x/2}}{\sqrt{a^{-2}-a^x}} dx$$
 is equal to

A.
$$\frac{1}{\log a}\sin^{-1}(a^x)$$

B.
$$\frac{1}{\log a} \tan^{-1}(a^x)$$

C.
$$2\sqrt{a^{-x}-a^x}$$

D.
$$\log(a^x-1)$$

Answer: a

60.
$$\int \frac{f'(x)}{f(x)\log\{f(x)\}} dx =$$

A.
$$\frac{f(x)}{\log^2 f(x)} + C$$

$$\log\{f(x)\}$$

B.
$$f(x)\log f(x) + C$$

C.
$$\log\{\log f(x)\} + C$$

D.
$$\frac{1}{\log\{\log f(x)\}} + C$$

Answer: C

Watch Video Solution

61.
$$\int \frac{e^x}{(1+e^x)(2+e^x)} dx$$

A.
$$\log\!\left(\frac{e^x+1}{e^x+2}\right)+C$$

B.
$$\log\left(\frac{e^x+2}{e^x+1}\right)+C$$

c.
$$\frac{e^x + 1}{e^x + 2} + C$$

D.
$$\frac{e^x + 2}{e^x + 1} + C$$

Answer: A

62.
$$\int \!\! rac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} dx i sequa < o \ \, rac{1}{2} \sqrt{1+x} C \ \, ext{(b)} \ \, rac{2}{3} (1+x)^{rac{x}{2}} + C \ \, \sqrt{1+x} + c \, ext{(d)} \, rac{3}{2} (1+x)^{rac{3}{2}} + C$$

A.
$$\frac{1}{2}\sqrt{1+x} + C$$

$$\overline{+x}$$
 +

B.
$$\frac{2}{3}(1+x)^{3/2} + C$$

$$\mathsf{C.}\,\sqrt{1+x}+C$$

D.
$$2(1+x)^{3/2}+C$$

Answer: b

Watch Video Solution

Chapter Test

1. The integral
$$\int \frac{2x-3}{(x^2+x+1)^2} dx$$
 is equal to

$$\int \left(x^2+x+1
ight)^2$$

A.
$$-\frac{8x+7}{x^2+x+1} - \frac{16}{2\sqrt{2}} \tan^{-1} \left(\frac{2x+1}{3}\right) + C$$

A.
$$-rac{1}{x^2+x+1}-rac{3}{3\sqrt{3}} an^{-1}\left(rac{3}{3}
ight)+C$$
B. $-rac{1}{x^2+x+1}-rac{4}{3} an^{-1}(4x+3)+C$

$$x^2+x+1$$
 3 C. $rac{1}{2(x^2+x+1)}-rac{(2x+1)^2}{(x^2+x+1)^2}+C$

D.
$$\frac{1}{4(x^2+x+1)} + \frac{2}{3} an^{-1}(2x+1) + C$$

Watch Video Solution

2. If
$$\int rac{x an^{-1} x}{\sqrt{1+x^2}} dx = \sqrt{1+x^2} f(x) + A \ln \left|x+\sqrt{x^2+1}
ight| + c$$
 then

A.
$$f(x) = \tan^{-1} x$$
, $A = -1$

B.
$$f(x) = \tan^{-1} x$$
, $A = 1$

C.
$$f(x) = 2 \tan^{-1} x$$
, $A = -1$

D.
$$f(x) = 2 \tan^{-1} x$$
, $A = 1$

Answer: c

3.
$$If\int\!\!x\log\Bigl(1+rac{1}{x}\Bigr)dx=f(x)\log(x+1)+g(x)x^2+Ax+C,$$
 then $f(x)=rac{1}{2}x^2$ (b) $g(x)=\log x$ $A=1$ (d) none of these

4. If
$$\int\!\! rac{xe^x}{\sqrt{1+e^x}} dx = f(x)\sqrt{1+e^x} - 2\log g(x) + c$$
, then

A. $f(x)=rac{1}{2}x^2$

 $B. q(x) = \log x$

D. none of these

C. A = 1

Answer: d

A.
$$f(x) = x - 1$$

A.
$$f(x) = x - 1$$

A.
$$f(x) = x - 1$$

A.
$$f(x)=x-1$$

$$\mathsf{B.}\, g(x)=rac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}-1}$$

$$x-1$$

 $\mathsf{C.}\,g(x) = rac{\sqrt{1+e^x}+1}{\sqrt{1+e^x}-1}$

D. f(x) = 2(x+2)

$$x - 1$$

Answer: d

5. The value of the integral
$$\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx$$
 is

5. The value of the integral
$$\int \frac{\cos x + \cos x}{\sin^2 x + \sin^4 x} dx$$
 is (A) $\sin x - 6 \tan^{-1}(\sin x) + C$ (B) $\sin x - 2(\sin x)^{-1} + C$ (C)

$$\sin x - 2(\sin x)^{-1} - 6\tan^{-1}(\sin x) + C$$
 (D)

$$\sin x - 2(\sin x)^{-1} + 5\tan^{-1}(\sin x) + C$$

A.
$$\sin x - 6 \tan^{-1} (\sin x) + C$$

$$\texttt{B.} \sin x - 2(\sin x)^{-1} + C$$

$$\mathsf{C}. \sin x - 2(\sin x)^{-1} 6 \tan^{-1} (\sin x) + C$$

$$\mathsf{D}. \sin x - 2(\sin x)^{-1} + 5 \tan^{-1}(\sin x) + C$$

Answer: c

Watch Video Solution

6. If $\displaystyle \int \frac{1}{(x^2+1)(x^2+4)} dx = A an^{-1} x + B an^{-1} rac{x}{2} + C$, then

A.
$$A=1/3, B=\,-\,2/3$$

B. A = -1/3, B = 2/3

C.A = -1/3, B = 1/3

D. A = 1/3, B = -1/6

Answer: A

Watch Video Solution

7. If
$$\int\!\!\log\!\left(\sqrt{1-x}+\sqrt{1+x}
ight)\!dx=xf(x)+Ax+B\sin^{-1}x+C$$
, then

A.
$$f(x) = \log \left(\sqrt{1-x} + \sqrt{1+x} \right)$$

 $\mathsf{C}.B = 2/3$

B.A = 1/3

D. B = -1/2

Answer: a

8. If
$$\int \frac{x^5}{\sqrt{1+x^3}} dx$$
 is equal to

A.
$$rac{2}{9}ig(1+x^3ig)^{5/2} + rac{2}{3}ig(1+x^3ig)^{3/2} + C$$

B.
$$rac{2}{9}ig(1+x^3ig)^{3/2}-rac{2}{3}ig(1+x^3ig)^{1/2}+C$$

$$|C| \cos \left| \sqrt{x} + \sqrt{1 + x^3} \right| + C$$

D.
$$x^2 \log(1+x^3) + C$$

Answer: b

Watch Video Solution

9. The value of $\int\!\!e^{\sec x}\cdot\sec^3xig(\sin^2x+\cos x+\sin x+\sin x\cos xig)dx$ is

A.
$$\int e^{\sec x} \cdot (\sec^2 x + \sec x \tan x)$$

B.
$$e^{\sec x} + C$$

C.
$$e^{\sec x}(\sec x + \tan x) + C$$

D. none of these

Answer: c

Watch Video Solution

10. $\int rac{2x^2+3}{(x^2-1)(x^2+4)} dx = a \log \left(rac{x+1}{x-1}
ight) + b an^{-1} rac{x}{2}$, then (a,b) is

A.
$$(-1/2, 1/2)$$

B.
$$(1/2, 1/2)$$

$$\mathsf{C.}\,(\,-1,1)$$

D.
$$(1, -1)$$

Answer: a

Watch Video Solution

11. Let $f(x)=rac{x}{(1+x^n)^{rac{1}{n}}}$ for $n\geq 2$ and g(x)=(f(ofo...of)(x) Then $\int\!\!x^{n-2}g(x)dx$ equals

B.
$$\frac{1}{n-1}(1+nx^n)^{1-\frac{1}{n}}+k$$

C.
$$\dfrac{1}{n(n-1)}(1+nx^n)^{1+\frac{1}{n}}+k$$

D.
$$\frac{1}{n-1}(1+nx^n)^{1+\frac{1}{n}}+k$$

A. $\frac{1}{n(n-1)}(1+nx^n)^{1-\frac{1}{n}}+k$

Answer: a

Watch Video Solution

12. The value of
$$\int \frac{(ax^2-b)dx}{x\sqrt{c^2x^2-(ax^2+b)^2}}$$
 is equal to

$$\int x\sqrt{c^2x^2-\left(ax^2+b
ight)^2}$$

A.
$$\sin^{-1}\left(\frac{ax+\frac{b}{x}}{c}\right)+k$$

$$\mathsf{B.}\sin^{-1}\!\left(rac{ax^2+rac{b}{x^2}}{c}
ight)+k$$

$$\mathsf{C.}\cos^{-1}\!\left(rac{ax+b/x}{c}
ight)+k$$

D.
$$\cos^{-1}\left(\frac{ax^2+\frac{b}{x^2}}{c}\right)+k$$

Answer: a

13. Evaluate:
$$\int \!\! e^x rac{1+nx^{n-1}-x^{2n}}{(1-x^n)\sqrt{1-x^{2n}}} dx$$

A.
$$\frac{e^{x}\sqrt{1-x^{n}}}{1-x^{n}}+C$$

B.
$$\frac{e^x\sqrt{1+x^{2n}}}{1-x^{2n}}+C$$

C.
$$rac{e^x\sqrt{1+x^{2n}}}{1-x^{2n}}+C$$

D.
$$rac{e^x\sqrt{1-x^{2n}}}{1-x^n}+C$$

Answer: d

14.
$$\int \frac{x \cos x + 1}{\sqrt{2x^3 e^{\sin x} + x^2}} dx$$

A. In
$$\left| rac{\sqrt{2xe^{\sin x}+1}-1}{\sqrt{2xe^{\sin x}+1}+1}
ight| + C$$

B. In
$$\left| rac{\sqrt{2xe^{\sin x}-1}-1}{\sqrt{2xe^{\sin x}-1}+1}
ight| + C$$

C. In
$$\left| rac{\sqrt{2xe^{\sin x}-1}+1}{\sqrt{2xe^{\sin x}-1}-1}
ight| + C$$
D. In $\left| rac{\sqrt{2xe^{\sin x}+1}+1}{\sqrt{2xe^{\sin x}-1}+1}
ight| + C$

Answer: A

Watch Video Solution

15.
$$\int rac{x^3}{\left(1+x^2
ight)^{1/3}} dx$$
 is equal to

A.
$$rac{20}{3}ig(1+x^2ig)^{2/3}ig(2x^2-3ig)+C$$

B.
$$rac{3}{20}ig(1+x^2ig)^{2/3}ig(2x^2-3ig)+C$$

C.
$$\frac{3}{20} (1+x^2)^{2/3} (2x^2+3) + C$$

D. none of these

Answer: b

16.
$$\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B \log(\sin(x-\alpha)) + C$$
 then find out $A\&B$

A.
$$A=\sinlpha, B=\coslpha$$

B.
$$A = \cos \alpha, B = -\sin \alpha$$

C.
$$A=\coslpha, B=\sinlpha$$

Answer: c

17. What is
$$\int \frac{x^4 - 1}{x^2 + \sqrt{x^4 + x^2 + 1}} dx$$
 equal to ?

A.
$$\dfrac{x}{\sqrt{x^4+x^2+1}}+C$$

$$\mathsf{B.}\,\frac{\sqrt{x^4+x^2+1}}{x}+C$$

$$\mathsf{C.}\,\frac{2x}{\sqrt{x^4+x^2+1}}+C$$

D.
$$\dfrac{\sqrt{x^4+x^2+1}}{2x}+C$$

Answer: b

Watch Video Solution

18. $\int \frac{x-1}{(x+1)\sqrt{x^3+x^2+x}} dx$ is equal to

A.
$$an^{-1}\sqrt{rac{x^2+x+1}{x}}+C$$

B.
$$2 an^{-1}\sqrt{rac{x^2+x+1}{x}}+C$$

C.
$$3 an^{-1}\sqrt{rac{x^2+x+1}{x}}+C$$

D. none of these

Answer: b

Watch Video Solution

19. $\int \frac{1+x^2}{x\sqrt{1+x^4}} dx$ is equal to

A.
$$-\log \left|x-rac{1}{x}+\sqrt{\left(x-rac{1}{x}
ight)^2}-2
ight|+C$$

B.
$$\dfrac{-x}{\sqrt{1-x^4}}+C$$
C. $\dfrac{2x}{\sqrt{1-x^4}}+C$

D.
$$\frac{-2x}{\sqrt{1-x^4}} + C$$

Answer: a

A. $\frac{x}{\sqrt{1-x^4}} + C$

$$-dx$$
 is equal to

20.
$$\int \frac{1+x^4}{(1-x^4)^{3/2}} dx$$
 is equal to

 $\mathsf{B.} - \log \left| x - \frac{1}{x} + \sqrt{\left(x - \frac{1}{x}\right)^2} + 2 \right| + C$

 $\mathsf{C.-log} \left| x - rac{1}{x} + \sqrt{\left(x - rac{1}{x}
ight)^2} - 2
ight| + C$

Answer: b

Watch Video Solution

D. none of these

21. If
$$\displaystyle \int \!\! rac{1}{x^3+x^4} dx = rac{A}{x^2} + rac{B}{x} + \log \! \left| rac{x}{x+1}
ight| + C$$
 , then

A.
$$A = \frac{1}{2}, B = 1$$

B.
$$A = 1, B = -\frac{1}{2}$$

C.
$$A = -\frac{1}{2}, B = 1$$

Answer: C

Watch Video Solution

22. Let
$$f(x) = \int \frac{1}{(1+x^2)^{3/2}} dx$$
 and f(0)=0 then f(1)=

A.
$$-\frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{\sqrt{2}}$$

$$\mathsf{C.}\,\sqrt{2}$$

D. none of these

Answer: b

Watch Video Solution

23. $\int (x)^{rac{1}{3}} igg(7\sqrt{1+3\sqrt{x^4}} igg) dx$ is equal to

A.
$$\frac{21}{32}\Big\{1+\sqrt[3]{x^4}\Big\}^{8/7}+C$$

B.
$$\frac{32}{21}\Big\{1+\sqrt[3]{x^4}\Big\}^{8/7}+C$$

C.
$$rac{7}{32} \Big\{ 1 + \sqrt[3]{x^4} \Big\}^{8/7} + C$$

D. none of these

Answer: a

Watch Video Solution

24. $\int \frac{1}{(a^2+x^2)^{3/2}} dx$ is equal to

A.
$$\dfrac{x}{a^2\sqrt{a^2+x^2}}+C$$

B.
$$\frac{x}{(a^2+x^2)^{3/3}}+C$$

c.
$$\frac{1}{a^2 \sqrt{a^2 + x^2}} + C$$

Answer: a

Watch Video Solution

25. $\int \frac{1}{x(x^4-1)} dx$ is equal to

A.
$$\frac{1}{4} \log \left| \frac{x^4}{x^4 - 1} \right| + C$$

$$B. \frac{1}{4} \log \left| \frac{x^4 - 1}{x^4} \right| + C$$

$$\left| \mathsf{C.} \log \left| rac{x^4 - 1}{x^4}
ight| + C
ight|$$

$$\mathsf{D.}\log\left|\frac{x^4}{x^4-1}\right|+C$$

Answer: B

26.
$$\int \frac{1+x}{1+3\sqrt{x}} dx$$
 is equal to

A.
$$rac{3}{5}x^{5/3} + x - rac{3}{4}x^{4/3} + x + C$$

B.
$$rac{3}{5}x^{5/3} - rac{3}{4}x^{4/3} + C$$

C.
$$rac{3}{5}x^{5/3} - rac{3}{4}x^{4/3} + C$$

Answer: a

Watch Video Solution

27.
$$\int \frac{1}{(x+1)^2 \sqrt{x^2+2x+2}} dx$$
 is equal to

A.
$$\dfrac{\sqrt{x^2+2x+2}}{x+1}+C$$

$$\mathsf{B.} \ \frac{\sqrt{x^2+2x+2}}{\left(x+1\right)^2} + C$$

$$\mathsf{C.}\,\frac{-\sqrt{x^2+2x+2}}{\left(x+1\right)^2}+C$$

D. none of these

Answer: c

Watch Video Solution

28. $\int \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} dx$ is equal to

A.
$$\frac{x^2}{\sqrt{x^2-1}}+C$$

B.
$$-\frac{x^2}{\sqrt{x^2-1}} + C$$

C.
$$\frac{\sqrt{x^2-1}}{x^2}+C$$

$$\mathsf{D.} - \frac{\sqrt{x^2 - 1}}{x^2} + C$$

Answer: d

Watch Video Solution

29. $\int \frac{\sqrt{x}}{1+4\sqrt{x^3}} dx$ is equal to

A.
$$rac{4}{3} \Big[1 + x^{3/4} + \log_e \Big(1 + x^{3/4} \Big) \Big] + C$$

B.
$$rac{4}{3} \Big[1 + x^{3/4} - \log_e \Big(1 + x^{3/4} \Big) \Big] + C$$

C.
$$rac{4}{3} \Bigl[1 + x^{3/4} + \log_e \Bigl(1 + x^{3/4} \Bigr) \Bigr] + C$$

Answer: B

Watch Video Solution

30. $\int \frac{x + 3\sqrt{x^2} + 6\sqrt{x}}{x(1 + 3\sqrt{x})} dx$

A.
$$rac{3}{2}x^{2/3} + 6 an^{-1}x^{1/6} + C$$

B.
$$\frac{3}{2}x^{2/3} - 6\tan^{-1}x^{1/6} + C$$

$$\mathsf{C.} - rac{3}{2} x^{2/3} - 6 an^{-1} x^{1/6} + C$$

D. none of these

Answer: a

