Componenti combinatori speciali

Architettura degli elaboratori

M. Favalli

Engineering Department in Ferrara

Sommario

Decoder

Multiplexer

Componenti speciali

- Si é descritto un approccio top-down al progetto di reti combinatorie
- Alcune funzioni sono di utilizzo talmente comune da essere state inserite in librerie di progetto utilizzabili in maniera bottom-up
- Vedremo alcuni fra i piú rilevanti di questi componenti

Sommario

Decoder

Multiplexer

Decoder

Componente con n ingressi $\{x_{n-1}, x_{n-2},, x_0\}$ e 2^n uscite $\{y_{2^n-1}, y_{2^n-2},, y_0\}$

Si ha $y_k = 1$ se $k = \sum_{i=0}^{n-1} x_i 2^i$ e 0 altrimenti (qui la somma é quella aritmetica)

In pratica l'uscita il cui indice é codificato come numero binario dalla configurazione in ingresso si porta a 1

Quindi viene prodotto in uscita un codice detto del tipo 1-out-of-n, ovvero le uscite sono tutte a 0 salvo una

Decoder

$$n = 1$$

<i>x</i> ₀	<i>y</i> ₁	<i>y</i> ₀	Equazioni
0	0	1	$y_0=x_0'$
1	1	0	$y_1 = x_0$

n = 2

x_1, x_0	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	<i>y</i> ₀	Equazioni
00	0	0	0	1	$y_0 = x_1' x_0'$
01	0	0	1	0	$y_1 = x_1' x_0$
10	0	1	0	0	$y_2 = x_1 x_0'$
11	1	0	0	0	$y_3=x_1x_0$

Struttura a livello gate

Si tratta di una rete a un livello Il costo di un decoder non é trascurabile: $l = n2^n$

Si vedranno in seguito alcuni accorgimenti per ridurlo

Applicazioni

I decoder possono essere utilizzati per produrre, sulla base del valore di x, un segnale di abilitazione per uno di 2^n oggetti diversi (ad esempio celle di memoria)

In questi casi *x* assume il significato di un indirizzo

Sintesi di forme canoniche SP mediante decoder

- Un decoder mette a disposizione tutti i possibili termini prodotto corrispondenti alle configurazioni di {x₀, x₁,, x_{n-1}}
- Lo si puó quindi utilizzare per realizzare la forma canonica SP qualsiasi funzione f_i di n variabili
- Questo puó essere fatto semplicemente connettendo a una porta logica OR le uscite del decoder corrispondenti a mintermini di f_i

Sintesi di forme canoniche SP mediante decoder: esempio

Esempio:
$$f_0 = ab' + a'b$$
 e $f_1 = (ab)' = a'b' + ab' + a'b$

Sintesi di forme canoniche SP mediante decoder: ROM

- La memoria a sola lettura puó essere vista come modello computazionale di una rete combinatoria
 - data f: {0,1}ⁿ ⇒ {0,1}^m, si possono intepretare gli ingressi come indirizzi di una memoria che contiene parole di dimensione m
 - per una configurazione i degli ingressi, la configurazione delle uscite $[f_0(i), f_1(i),, f_{m-1}(i)]$ puó essere interpretata come mem[i]
- Le memorie ROM (Read Only Memory) sono realizzate (dal punto di vista logico) proprio con la sintesi di forme canoniche SP mediante decoder

Decoder con segnale di abilitazione

- Un segnale di *enable* (*en*) puó essere messo in prodotto logico con ciascuna uscita
- Esempio (n = 2): $y_0 = x_1' x_0' en$, $y_1 = x_1' x_0 en$, $y_2 = x_1 x_0' en$, $y_3 = x_1 x_0 en$
- Consente di mettere tutte le uscite a 0
- Questo consente la connessione gerarchica di piú decoder con un numero di ingressi minore di n per formare un unico decoder a n ingressi

Decodifica multilivello

- Consideriamo per semplicitá il caso a 2 livelli e si supponga che siano disponibili decoder con k e j ingressi (k + j = n)
- Il decoder puó essere formato con:
 - un decoder a k ingressi le cui uscite forniscono i segnali di enable a 2^k decoder a j ingressi
 - il primo decoder riceve in ingresso i primi k ingressi e i secondi i rimanenti n k = j
 - costo $I = (k+1)2^k + 2^k(j+1)2^j = 2^k(k+1+(j+1)2^k)$
 - puó anche mettere al primo livello un decoder da j ingressi e
 2^j decoder a k ingressi al secondo livello

Decodifica multilivello

Esempio: n = 4, k = j = 2

Il costo di questa realizzazione é pari a I=12+4*12=60, il costo di un singolo decoder a 4 ingressi é I=64

Il guadagno aumenta al crescere di n

Esercizi

 Si realizzi un decoder a 5 ingressi disponendo di decoder a 2 e a 3 ingressi, si confronti il costo delle due alternative possibili

Sommario

Decoder

Multiplexer

Multiplexer

- Il multiplexer é un componente che ha $2^n + n$ ingressi partizionati fra:
 - ingressi dati $\{x_0, x_1,, x_{2^n-1}\}$
 - ingressi di selezione $\{s_0, s_1,, s_{n-1}\}$
- L'uscita é data da $y = x_i \mid i = \sum_{j=0}^{n-1} s_j 2^j$ (la somma é quella aritmetica)
- Tradotto in un espressione booleana si ha $y = \sum_{i=0}^{2^n-1} p_i x_i$ (ove p_i é il termine prodotto corrispondente alla configurazione i e la somma é quella logica)

Il multiplexer come blocco di selezione

Il multiplexer puó essere visto come un componente che riporta in uscita il valore dell'ingresso dati selezionato dagli ingressi di selezione

Esempi

$$n = 1$$
$$y = x_0 s_0' + x_1 s_0$$

$$n = 2$$

$$y = x_0 s_1' s_0' + x_1 s_1' s_0 + x_2 s_1 s_0' + x_3 s_1 s_0$$

Realizzazioni al livello gate e al livello switch

Il ruolo del MPX nella sintesi

- Si supponga di considerare una generica funzione in cui nella tabella della veritá non sono riportati zeri e uni, ma il valore f(i) di ciascuna riga i
- Possiamo generalizzare quanto visto per la forma canonica SP e scrivere

$$f(a_0, a_1, a_2,, a_{n-1}) = \sum_{i=0}^{2^n-1} p_i f(i)$$

ove p_i é il termine prodotto di n variabili corrispondente alla configurazione i

- proprosizione: f vale 1 se sono nella configurazione i-ma e f(i) = 1
- Come si puó osservare, questa é l'equazione di un MPX con i valori di f(i) come ingressi

Il ruolo del MPX nella sintesi

- f puó essere implementata con un MPX in cui gli ingressi di selezione sono connessi ai segnali (a_i) corrispondenti alle variabili della funzione e gli ingressi dati sono connessi ai valori di f(i)
- Il MPX é quindi in grado di realizzare una qualsiasi funzione di n variabili
- É in effetti una rete programmabile che viene usata nelle FPGA per avere celle programmabili, ovvero celle che sono in grado di realizzare una qualsiasi funzione di 4 o 5 variabili

Esempio

Si realizzi con un MPX una funzione che vale 1 quando 2 dei suoi 3 ingressi sono a 1

Tabella di veritá

İ	$a_2 a_1 a_0$	f
0	000	0
1	001	0
2	010	0
3	011	1
4	100	0
5	101	1
6	110	1
7	111	0

Realizzazione gerarchica di multiplexer

- É possibile realizzare MPX con a n bit di selezione $(a_{n-1},....,a_0)$ e 2^n ingressi dati $(d_0,....,d_{2^n-1})$ utilizzando MPX con un numero di bit di selezione k < n
- Supponiamo di disporre di MPX a k e j ingressi di selezione (k + j = n)
- Si puó realizzare un MPX a due livelli nel seguente modo:
 - si dispone un primo livello di 2^k MPX a j bit di selezione ciascuno
 - agli ingressi dati di questi MPX si connettono ordinatamente i 2^n ingressi dati $(2^k 2^j = 2^{k+j} = 2^n)$
 - i j bit di minor peso degli ingressi di selezione $(a_{j-1},....,a_0)$ vanno invece connessi agli ingressi di selezione di tali MPX
 - le uscite di tali MPX vengono connesse ai 2^k ingressi dati del MPX che realizza l'uscita i cui bit di selezione (locali) sono connessi ordinatamente ai rimanenti k bit di selezione $(a_{n-1},....,a_j)$

Esempio

Si realizzi un MPX a 8 ingressi dati e 3 bit di selezione disponendo di MPX a 2 ingressi dati e 1 bit di selezione e di MPX a 4 ingressi dati e 2 bit di selezione

$$j = 2 k = 1$$

$$i = 1 k = 2$$

Conclusioni

- Si sono visti due componenti, il decoder e il multiplexer, che sono ampiamente utilizzati nel progetto dei sistemi digitali
- Si sono viste alcune applicazioni rilevanti come la ROM o le celle usate negli FPGA