Aula 3

Sistemas de Numeração

Índice

- Sistemas numéricos binário, octal e hexadecimal.
- Conversão entre os sistemas numéricos
- Códigos com sistema binário

Representação dos sistemas númericos

- □ Numeração decimal = 10_{10} = 10_d
- Numeração binária = 10₂ = 10_b
- □ Numeração octal = $10_8 = 10_0$
- Numeração hexadecimal = 10₁₆ = 10_h

Base numérica

Numeração decimal = base 10 Numeração binária = base 2 Numeração octal = base 8 Numeração hexadecimal = base 16

Notação posicional

Valor atribuído a um símbolo dependente da posição em que ele se encontra no conjunto de símbolos que representa uma quantidade.

Sistema numérico decimal

Valor do número

Valor do número

Conversão Binário - Decimal

$$0101_{b} = 5_{d}$$

Conversão Decimal - Binário

Conversão para decimal

Então $147_{d} = 10010011_{b}$

Conversão binário para decimal de números fracionários.

Ex.: Converter o número 10,011_b para decimal

Segue-se os mesmos passo vistos anteriormente, observando que após a vírgula, os expoentes da base se tornam negativos

8,375

Conversão decimal para binário de números fracionários.

Ex.: Converter o número 8,375_d para binário.

1º Obtenção da parte inteira

2º Obtenção da parte fracionária

$$\begin{array}{c|c}
0,375 \\
x & 2 \\
0 \leftarrow 0,750 \\
0,750 \\
0,750 \\
x & 2 \\
1 \leftarrow 1,500 \\
0,500
\end{array}$$

Composição da parte inteira + fracionária 1000,011_h

Exercício 1 - Converter os números a seguir de binário>decimal>binário

- a) $10_{\rm b}$
- b) 1101_b
- c) 101010_{b}
- d) 0111,11_b
- e) 11111,011_b
- f) 10000001_b

Exercício 2 - Converter os números a seguir de decimal>binário>decimal

- a) 2_d
- b) 13_d
- c) 44_d
- d) $7,75_{d}$
- e) $31,325_{d}$
- f) 129_d

		0
		1
		2
		3
		4
		5
		6
		7
	1	0
	1	1
	•	•••
	1 2	7
	2	0
	•••	•••
	7	7
1	0	0

_
000
001
010
011
100
101
110
111

O sistema numérico octal foi muito utilizado em informática como uma alternativa mais compacta ao binário na programação em linguagem de máquina.

Hoje, o sistema hexadecimal é mais utilizado como alternativa ao binário.

1024

	0
	1
	2
	3
	2 3 4 5 6
	5
	6
	7
1	7
1	1
•••	
1	7
2	0
•••	
7	7
0	0

32

Conversão Octal - Decimal $2741_o = 1505_d$

+

+ 448

1505

Conversão Decimal - Octal

Então $147_d = 223_o$

Exercício 1 - Converter os números a seguir de octal>decimal>octal

- a) 27_o
- b) 176_o
- c) 425_0
- d) 3461_o
- e) 45326_o

Exercício 2 – Converter os números a seguir de decimal>octal>decimal

- a) 23_d
- b) 126_d
- c) 277_{d}
- d) 1841_d
- e) 19158_d

Sistema numérico hexadecimal

Valor do número

Conversão hexadecimal - Decimal

$$A7F6_h = 42889_d$$

Sistema numérico hexadecimal

Conversão Decimal - Hexadecimal

Conversão para decimal

$$\begin{array}{ccc}
B & 1 \\
x & x \\
\underline{16^1 \, 16^0} \\
176 + 1 & = 177
\end{array}$$

Então
$$177_d = B1_h$$

Sistema numérico hexadecimal

Exercício 1 – Converter os números a seguir de hexadecimal>decimal>hexadecimal

- a) 27_h
- b) 1C6_h
- c) $A25_h$
- d) $D4E1_h$

Exercício 2 – Converter os números a seguir de decimal>hexadecimal>decimal

- a) 39_d
- b) 454_d
- c) 2597_d
- d) 54497_d

Conversão Binário - Octal

Conversão Octal - Binário

545_o
5 4 5
101 100 101
101100101_b

Conversão Binário - Hexadecimal

Conversão Hexadecimal - Binário

D8B_h

D 8 B

1101 1000 1011

110110001011_b

0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	Е
1	1	1	1	F

5A3_h
5 A 3
101 1010 0011
10110100011_b

Conversão Octal - Hexadecimal

Converter octal para binário, depois de binário para hexadecimal

Conversão Hexadecimal - Octal

Converter hexadecimal para binário, depois de binário para octal

Conversão Octal – Hexadecimal - Octal

Exercício 1 - Converter octal para hexadecimal

- a) 32_{0}
- b) 437_o
- c) 5721_o
- d) 652_o

Exercício 2 - Converter hexadecimal para octal

- a) $1A_h$
- b) 11F_h
- c) BD1_h
- d) $1AA_h$

□ São grupos de símbolos representados por números, letras ou palavras que estabelecem uma determinada característica ou combinação entre dois sistemas de numeração.

Código 9876543210:

É um código binário que converte cada dígito decimal em um conjunto de 10 bits, onde o valor 1 assume a posição correspondente ao número decimal, e o restante é completado com o valor 0

Decimal	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	1	0
2	0	0	0	0	0	0	0	1	0	0
3	0	0	0	0	0	0	1	0	0	0
4	0	0	0	0	0	1	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0
6	0	0	0	1	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	0	0	0	0

□ Código BCD 8421

Binary-coded decimal 8421 é um sistema de codificação de números decimais em binários de quatro bits. Os valores 8421 são respectivamente os valores de 2 elevado ao valor de sua posição (3,2,1,0). Este código assume apenas 10 dígitos, variando de 0 a 9.

Decimal	2^3 (8)	2^2 (4)	2^1 (2)	2^0 (1)
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Código Gray

O código Gray é um sistema de código binário onde apenas um bit varia de um número para outro. Este sistema de codificação surgiu quando os circuitos lógicos digitais se realizavam com válvulas termoiônicas e dispositivos eletromecânicos. Os contadores necessitavam de potências muito elevadas e geravam ruído quando vários bits modificavam-se simultâneamente. O uso do código Gray garantiu que qualquer mudança variaria apenas um bit.

Código Gray

Dígito decimal	Código Gray	Dígito decimal	Código Gray
0	0000	8	1100
1	0001	9	1101
2	0011	10	1111
3	0010	11	1110
4	0110	12	1010
5	0111	13	1011
6	0101	14	1001
7	0100	15	1000

Códigos Alfanuméricos

- Código ASCII American Standard Code for Information Intercharge. É um código alfanumérico usado para obter informações pelo computador. Seus 7 bits fornecem 128 combinações, das quais 96 se referem a caracteres de impressão e 32 a comandos de controle.
- Esta tabela mostrou ser insuficiente para outras exigências, como a necessidade de padronizar a representação de caracteres acentuados, caracteres usados em molduras de janelas de texto e outros. Sendo assim, surge a tabela ASCII de 8 bits (code pages), englobando a representação de 256 caracteres. Os primeiros 128 caracteres são idênticos ao da tabela ASCII de 7 bits e os demais variam de acordo com as necessidades da língua em cada país. No Brasil é utilizada a página de código 850.

Código ASCII de 7 bits

v.v v v			X ₅ X ₄			
$X_3X_2X_1X_0$	010	011	100	101	110	111
0000	SP	0	@	P		р
0001	1	1	A	Q	a	q
0010	=	2	В	R	b	r
0011	#	3	C	S	c	S
0100	\$	4	D	T	d	t
0101	%	5	E	U	е	u
0110	&	6	F	V	f	v
0111		7	G	W	g	w
1000	(8	Н	X	h	x
1001)	9	I	Y	i	у
1010	*	:	J	Z	j	Z
1011	+	;	K		k	
1100	,	<	L		l	
1101	-	=	M		m	
1110		>	N		n	
1111	1	?	О		0	

Código ASCII de 8 bits

Código ASCII de 7 bits mais os símbolos da tabela abaixo.

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F
8	Ç	ü	é	â	ä	à	å	Ç	ê	ë	è	ï	î	ì	Ä	8
9	É	æ	Æ	ô	ö	ò	û	ù	ij	Ö	Ü	¢	£	¥	R	f
Α	á	í	ó	ú	ñ	ñ	<u>a</u>	0	ż	-	-	1/2	14	i	~	>>
В			8	I	1	1	Ħ	П	7	1	Ш	ส	n	Ш	4	1
C	, L	, L	Ť	ŀ		+	F	II	L	Γī	11	ΤĪ	I	=	11	Ŧ
D	ш	Ŧ	П	П	E	F	П	#	÷	N.	Г		-	ı	I	
Е	ct	β	Г	π	Σ	σ	Д	τ	₫	8	Ω	δ	00	ø	€	n
F	≡	±	<u>></u>	<u><</u>	ſ	J	÷	×	0	i (#)	000	J	n	2		

Código 2 entre 5

O **código 2 entre 5** possui sempre dois bits iguais a 1 dentro de seus 5 bits.

123456

Decimal	2 entre 5
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

O código de barras é dividido em 95 partes com o mesmo tamanho, seja em um conjunto de listras pretas ou brancas. O computador lê o código e identifica as colunas que têm cor ou não, com zero para as áreas de maior reflexão de luz (listras brancas) e um para áreas de melhor reflexão de luz (listras pretas), que resulta em um número de 95 dígitos.

Código Johnson

O **Código Johnson** (Johnson-Mobius) é um código especial utilizado na construção do Contador de Johnson.

Este código permite a simplicidade de criação de contadores, e por isto é utilizado em sistemas digitais de alta velocidade.

Dígito decimal	Código Johnson	Dígito decimal	Código Johnson
0	00000	5	11111
1	00001	6	11110
2	00011	7	11100
3	00111	8	11000
4	01111	9	10000

Código 7 segmentos para display catodo comum

Díg.	7 Segm
0	1111110
1	0110000
2	1101101
3	1111001
4	0110011
5	1011011
6	0011111
7	1110000
8	1111111
9	1111011