1 (a) State the SI base units of force.

.....[1]

(b) Two wires each of length l are placed parallel to each other a distance x apart, as shown in Fig. 1.1.

Fig. 1.1

Each wire carries a current *I*. The currents give rise to a force *F* on each wire given by

$$F = \frac{KI^2l}{X}$$

where K is a constant.

(i) Determine the SI base units of K.

units of *K*[2]

(ii) On Fig. 1.2, sketch the variation with x of F. The quantities I and l remain constant.

Fig. 1.2 [2]

(iii) The current I in both of the wires is varied.

On Fig. 1.3, sketch the variation with I of F. The quantities x and l remain constant.

Fig. 1.3 [1]

2 (a) A student walks from A to B along the path shown in Fig. 2.1.

Fig. 2.1

The student takes time *t* to walk from A to B.

(i)	State the quantity, apart from t , that must be measured in order to determine the average value of			
	1. speed,			
	[[1]		
	2. velocity.			
(ii)	Define acceleration.	. • .		

(b) A girl falls vertically onto a trampoline, as shown in Fig. 2.2.

Fig. 2.2

The trampoline consists of a central section supported by springy material. At time t = 0 the girl starts to fall. The girl hits the trampoline and rebounds vertically. The variation with time t of velocity v of the girl is illustrated in Fig. 2.3.

Fig. 2.3

the motion of the girl, calculate

(i) the distance fallen between time t = 0 and when she hits the trampoline,

distance = m [2]

	(ii)	the average acceleration during the rebound.
		acceleration = ms ⁻² [2]
(c)	(i)	Fig. 2.3 to compare, without calculation, the accelerations of the girl before and after the rebound. Explain your answer.
		[2]
	(ii)	Fig. 2.3 to compare, without calculation, the potential energy of the girl at $t=0$ and $t=1.85\mathrm{s}$. Explain your answer.
		[2]

3	(a)	(i)	State the principle of conservation of momentum.
---	-----	-----	--

.....[2]

(ii) State the difference between an elastic and an inelastic collision.

.....[1]

(b) An object A of mass 4.2 kg and horizontal velocity 3.6 m s⁻¹ moves towards object B as shown in Fig. 3.1.

Fig. 3.1

Object B of mass $1.5\,\mathrm{kg}$ is moving with a horizontal velocity of $1.2\,\mathrm{m\,s^{-1}}$ towards object A.

The objects collide and then both move to the right, as shown in Fig. 3.2.

Fig. 3.2

Object A has velocity v and object B has velocity $3.0 \,\mathrm{m \, s^{-1}}$.

(i) Calculate the velocity v of object A after the collision.

(ii) Determine whether the collision is elastic or inelastic.

(a)	Def	ine
	(i)	stress,
		[1]
	(ii)	strain.
/ b\	The	Voung modulus of the motel of a wire in 0.17 The trees postional area of the
(b)	wire	e Young modulus of the metal of a wire is 0.17 TPa. The cross-sectional area of the e is 0.18 mm ² .
		wire is extended by a force F . This causes the length of the wire to be increased by 95%.
	Cal	culate
	(i)	the stress,
	(!!)	stress = Pa [4]
	(ii)	the force <i>F</i> .
		F = N [2]

5 (a)	Exp	lain the principle of superposition.	
			[2]
(b)		nd waves travel from a source S to a point X along two paths SX and SPX wn in Fig. 5.1.	, as
		Fig. 5.1	
	(i)	State the phase difference between these waves at X for this to be the position	of
		1. a minimum,	
		phase difference = unit unit	[1]
		2. a maximum.	
		phase difference = unit	[1]
	(ii)	The frequency of the sound from S is 400 Hz and the speed of sound is 320 m Calculate the wavelength of the sound waves.	s ⁻¹ .
		wavelength = n	n [2]
ı	(iii)	The distance SP is 3.0 m and the distance PX is 4.0 m. The angle SPX is 90°. Suggest whether a maximum or a minimum is detected at point X. Explain y answer.	
			[2]

6 (a) Define potential difference (p.d.).

.....[1]

(b) A battery of electromotive force 20 V and zero internal resistance is connected in series with two resistors R₁ and R₂, as shown in Fig. 6.1.

Fig. 6.1

The resistance of $\rm R_2$ is $600\,\Omega.$ The resistance of $\rm R_1$ is varied from 0 to $400\,\Omega.$

Calculate

(i) the maximum p.d. across R₂,

maximum p.d. = V [1]

(ii) the minimum p.d. across R₂.

 $minimum \ p.d. = \ \dots \qquad V \ [2]$

(a)	Two	isotopes of uranium are uranium-235 ($^{235}_{92}$ U) and uranium-238 ($^{238}_{92}$ U).	
	(i)	Describe in detail an atom of uranium-235.	
			•
	/::\		J
	(11)		
(b)	Who	en a uranium-235 nucleus absorbs a neutron, the following reaction may occur:	
		$^{235}_{92}U + ^{W}_{X}n \rightarrow ^{148}_{57}La + ^{Z}_{Y}Q + 3^{W}_{X}n$	
	(i)	Determine the values of Y and Z.	
		Y=	
		Z=	1
	(ii)		
		[2]
		(ii) (b) Whe	 (i) Describe in detail an atom of uranium-235. (ii) With reference to the two forms of uranium, explain the term <i>isotopes</i>. (b) When a uranium-235 nucleus absorbs a neutron, the following reaction may occur: 235 U + W/X n → 148 / 57 La + Z/Q + 3W/X n (i) Determine the values of Y and Z. Y =