De Cifris a Perugia

M. Giulietti

Dipartimento di Matematica e Informatica Università degli Studi di Perugia

Chi siamo

- Giorgio Faina PO MAT/03
- Massimo Giulietti PA MAT/03
- Fernanda Pambianco PA MAT/03
- Stefano Marcugini PA INF/01
- Marco Baioletti RU INF/01
- Daniele Bartoli RTD MAT/03
- Francesco Peverini stagista presso GSEC

Attività

- Ricerca: pura ed applicata
- Didattica: curriculum specifico della laurea magistrale in Matematica
- Public engagement: parte attiva di progetti di awareness nelle scuole (es. PLS), progetti museali (Vision); interventi presso mostre ed esposizioni (es. Enigma: Cifrare e decifrare: linguaggi nascosti, tenutasi presso la provincia di Perugia)

Ricerca pura

Teoria dei Codici e Crittografia legate alle Geometrie di Galois e alla Geometria algebrica in caratteristica positiva

- Secret Sharing Schemes
- Codici MDS da curve ellittiche
- Codici di ricoprimento da curve ellittiche
- Codici algebrico geometrici da curve di genere superiore (in particolare massimali)
- Codici lineari come n-insiemi di PG(r,q)

Secret Sharing

$$\Gamma \subset \mathcal{P}(X)$$

struttura d'accesso

Se

$$\eta: X \cup \{s\} \rightarrow PG(r,q)$$

è tale che $\{x_1, x_2, \ldots, x_n\} \in \Gamma$ se e solo se $\eta(s) \in \langle \eta(x_1), \eta(x_2), \ldots, \eta(x_n) \rangle$ allora esiste un secret sharing schemes perfetto ideale dove l'insieme dei possibili segreti è q

Strutture multilivello

 Brickell (1989): condizione sufficiente di esistenza per un sss ideale per struttura d'accesso a t livelli con livello di sicurezza 1/q:

$$q > t \cdot {\#X \choose t}$$

problema: stessa sicurezza, più partecipanti

Alcuni risultati

- t = 2: caratterizzazione #X = q + 1 + t per q dispari (Beato-G.-Faina)
- t=3: $\#X=\frac{1}{8}(q-1)(\sqrt{q}+1)$ per q quadrato dispari (G. Vincenti)
- t = 4: q potenza quarta, $\sqrt[4]{q} \equiv 2 \pmod{3}$

$$\#X = \frac{1}{96}(\sqrt[2]{q})(\sqrt[4]{q} - 3)$$

per $\sqrt[4]{q} \equiv 1 \pmod{4}$,

$$\#X = \frac{1}{24}(\sqrt[2]{q})(\sqrt[4]{q} - 3)$$

per $\sqrt[4]{q} \equiv 1 \pmod{4}$ (Bartoli-G.)

Curve Ellittiche e Codici MDS

 $[n,k,d]_{q^-}$ codici MDS non estendibili sono equivalenti ad *archi* completi di PG(n-k-1,q) di cardinalità n

arco di PG(r,q): punti ad r+1 ad r+1 indipendenti

arco completo: massimale rispetto all'inclusione

\mathcal{X} curva ellittica

χ curva ellittica

$$X : Y^2 = X^3 + AX + B$$

$$G = \mathcal{X}(\mathbb{F}_q)$$

• per un sottogruppo K di indice m con (3, m) = 1

$$S = K \oplus Q, \qquad Q \notin K$$

è un arco

X curva ellittica

$$\mathcal{X}: Y^2 = X^3 + AX + B$$

$$G = \mathcal{X}(\mathbb{F}_a)$$

$$S = K \oplus Q$$
, $Q \notin K$

è un arco

Quando è completo?

G ciclico $m \mid q-1$ m primo

$$G$$
 ciclico $m \mid q-1$ m primo

$$S = \{R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ per qualche } t \in \mathbb{F}_q^*\}$$

$$G$$
 ciclico $m \mid q-1$ m primo

$$S = \{R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ per qualche } t \in \mathbb{F}_q^*\}$$

G ciclico $m \mid q-1$ m primo

$$S = \{R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ per qualche } t \in \mathbb{F}_q^*\}$$

P=(a,b) allineato con $(x,y),(u,v)\in S$ se esistono $x,y,u,v,t,z\in \mathbb{F}_q$ con

G ciclico
$$m \mid q-1$$
 m primo

$$S = \{R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ per qualche } t \in \mathbb{F}_q^*\}$$

P=(a,b) allineato con $(x,y),(u,v)\in S$ se esistono $x,y,u,v,t,z\in \mathbb{F}_q$ con

$$\begin{cases} y^2 = x^3 + Ax + B \\ v^2 = u^3 + Au + B \end{cases}$$

G ciclico
$$m \mid q-1$$
 m primo

$$S = \{R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ per qualche } t \in \mathbb{F}_q^*\}$$

P=(a,b) allineato con $(x,y),(u,v)\in S$ se esistono $x,y,u,v,t,z\in \mathbb{F}_q$ con

$$\begin{cases} y^2 = x^3 + Ax + B \\ v^2 = u^3 + Au + B \\ \alpha(x, y) = dt^m \\ \alpha(u, v) = dz^m \end{cases}$$

G ciclico $m \mid q-1$ m primo

$$S = \{R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ per qualche } t \in \mathbb{F}_q^*\}$$

P = (a, b) allineato con $(x, y), (u, v) \in S$ se esistono $x, y, u, v, t, z \in \mathbb{F}_q$ con

$$\begin{cases} y^2 = x^3 + Ax + B \\ v^2 = u^3 + Au + B \\ \alpha(x, y) = dt^m \\ \alpha(u, v) = dz^m \\ \det \begin{pmatrix} a & b & 1 \\ x & y & 1 \\ u & v & 1 \end{pmatrix} = 0 \end{cases}$$

G ciclico $m \mid q-1$ m primo

$$S = \{R \in \mathcal{X} \mid \alpha(R) = dt^m \text{ per qualche } t \in \mathbb{F}_q^*\}$$

P = (a, b) allineato con $(x, y), (u, v) \in S$ se esistono $x, y, u, v, t, z \in \mathbb{F}_q$ con

$$C_P: \begin{cases} y^2 = x^3 + Ax + B \\ v^2 = u^3 + Au + B \\ \alpha(x, y) = dt^m \\ \alpha(u, v) = dz^m \\ \det \begin{pmatrix} a & b & 1 \\ x & y & 1 \\ u & v & 1 \end{pmatrix} = 0$$

Anbar-G.

se m è un divisore primo di q-1 con $m<\sqrt[4]{q/64}$, allora esiste un arco completo di PG(2,q) di cardinalità al più

$$m + \lfloor \frac{q - 2\sqrt{q} + 1}{m} \rfloor + 31$$

Anbar-G.

se m è un divisore primo di q-1 con $m<\sqrt[4]{q/64}$, allora esiste un arco completo di PG(2,q) di cardinalità al più

$$m + \lfloor \frac{q - 2\sqrt{q} + 1}{m} \rfloor + 31 \qquad \sim q^{3/4}$$

codimensione generale

Bartoli-G.-Platoni

se m è un divisore primo di q-1 con $m<\sqrt[4]{q/64}$, allora esiste un arco completo di PG(N,q) di cardinalità

$$k \le (\lceil (N+1)/2 \rceil - 1)(\#S - 1) + 2\frac{m+1}{N-1} + 2(N+1)$$

codimensione generale

Bartoli-G.-Platoni

se m è un divisore primo di q-1 con $m<\sqrt[4]{q/64}$, allora esiste un arco completo di PG(N,q) di cardinalità

$$k \le (\lceil (N+1)/2 \rceil - 1)(\#S - 1) + 2\frac{m+1}{N-1} + 2(N+1) \sim (\lceil (N+1)/2 \rceil - 1)q^{3/4}$$

codimensione generale

Bartoli-G.-Platoni

se m è un divisore primo di q-1 con $m<\sqrt[4]{q/64}$, allora esiste un arco completo di PG(N,q) di cardinalità

$$k \leq (\lceil (N+1)/2 \rceil - 1)(\#S - 1) + 2\frac{m+1}{N-1} + 2(N+1) \sim (\lceil (N+1)/2 \rceil - 1)q^{3/4}$$

se m è un divisore primo di q-1 con $m<\sqrt[4]{q/64}$, allora esiste un codice MDS di codimensione r e raggio di ricoprimento r-1 con lunghezza al massimo

$$\sim (\lceil r/2 \rceil - 1)q^{3/4}$$
.

Ricerca applicata

- algoritmi su curve ellittiche: miglioramenti algoritmo di Miller per il calcolo del Weil pairing (Baioletti)
- Blockchain e PSD2: Revised Payments Service Directive: A Blockchain-based Implementation Model (Peverini presso GSEC)
- Watermarking in relazione al potenziamento di immagini di tipo medico (TAC senza mezzo di contrasto).

Didattica

Laurea Magistrale in Matematica Curriculum "MATEMATICA PER LA SICUREZZA INFORMATICA"

Piano di Studi

1.0	11.6
I Anno - I Semestre	I Anno - II Semestre
Algebra Commutativa	Analisi M /or
e Computazionale Mat/02	Funzionale Mat/05
Geometria Mat /02	Crittografia e
Differenziale Mat/03	Applicazioni Mat/03
Programmazione II Inf/01	Probabilità e Man /06
	Statistica II Mat/06
Teoria dei Codici Mat/03	Sicurezza Informatica Inf/01
II Anno - I Semestre	II Anno - II Semestre
Geometria Algebrica Mat/03	Combinatorics Mat/03
Modelli Matematici	Modellistica Mat /00
per le Applicazioni Mat/07	Numerica Mat/08
Calcolabilità e Complessità Inf/01	Ulteriori Attività
Computazionale Inf/01	formative
Approssimazione Mat/08	TESI
Numerica e Applicazioni Mat/00	LSI

 Geometria Differenziale, Analisi Funzionale, Probabilità e Statistica, Modelli Matematici per le Applicazioni

Programmazione II

• Informatica: Sicurezza Informatica

Calcolabilità e Complessità Computazionale

Algebra Commutativa e Computazionale

Crittografia e Applicazioni

Matematica: Teoria dei Codici

Combinatorics

Geometria Algebrica

Teoria dei Codici

Codici lineari e multinsiemi di spazi proiettivi. Curve algebriche su campi finiti, campi di funzioni. Codici Reed-Solomon. Codici algebrico-geometrici. Codici di Goppa one-point. Codici hermitiani. Cenni alle curve ellittiche in crittografia.

Crittografia e Applicazioni

Crittografia classica. Segretezza perfetta. Prodotto di crittosistemi. Cifrari a blocchi: DES, AES. Funzioni hash in crittografia. Funzioni hash iterate. La costruzione di Merkle-Damgard e algoritmi SHA. Crittografia a chiave pubblica. Crittosistema di ElGamal. Curve ellittiche. Firma digitale. Schema di firma di ElGamal. DSA e Elliptic Curves DSA. Secret sharing schemes.

Sicurezza Informatica

Storia della Sicurezza Informatica. Policies, Metodi di autenticazione, Concept of trust and trustworthiness, Principles of Secure Design, Defensive Programming, Threats and Attacks, Network Security, Cryptography.

Esami caratterizzanti di Matematica

Principali argomenti caratterizzanti

- Crittografia e Applicazioni:
 Curve ellittiche Realizzazioni Geometriche di SSS
- Teoria dei Codici: Codici Algebrico-Geometrici
- Geometria Algebrica: Anche su campi finiti Curve ellittiche

Stages e tirocini formativi

Grazie alla collaborazione con l'analogo percorso di Trento

 Stages/Tirocini curriculari presso aziende ed istituzioni di prestigio: fondazione GSEC e Aruba

Stage post laurea presso Poste Italiane