Oszacowanie ciągu śmigła

1. Sposób pierwszy

- 1. źródła:
 - 1. https://www.grc.nasa.gov/WWW/K-12/airplane/propth.html
 - 2. https://www.grc.nasa.gov/WWW/K-12/airplane/propanl.html
 - 3. http://www.dept.aoe.vt.edu/~lutze/AOE3104/thrustmodels.pdf

Siła ciągu równa jest różnicy ciśnień przed i za śmigłem razy powierzchnia rotującego śmigła:

$$F = \Delta p \cdot A$$
,

gdzie Δp - różnica ciśnień przed i za śmigłem, A - powierzchnia rotującego śmigła. Z prawa Bernoulli'ego ciśnienie przed śmigłem jest sumą ciśnienia statycznego p_0 oraz ciśnienia wynikającego z prędkości pojazdu:

$$p_{przed} = p_0 + \frac{\rho \cdot v_0^2}{2}$$

Analogicznie za śmigłem:

$$p_e = p_0 + \frac{\rho \cdot v_e^2}{2}$$

gdzie v_e - prędkość powietrza za śmigłem.

$$\Delta p = p_e - p_{przed}$$

podstawiając poprzednie wzory otrzymujemy:

$$\Delta p = \frac{1}{2} \rho \cdot [v_e^2 - v_0^2].$$

Następnie mnożąc obie strony przez A otrzymujemy:

$$F = \frac{1}{2} \rho \cdot A \cdot [v_e^2 - v_0^2]$$

Z drugiej strony, siła ciągu równa jest masie przepływającego powietrza w danym czasie

$$(rac{\partial m}{\partial t} = \dot{m})$$
 razy różnica prędkości:
$$F = \dot{m} \cdot [v_e - v_0].$$

$$F = \dot{m} \cdot [v_a - v_o].$$

Masa przepływającego powietrza wynosi:

$$\dot{m} = \rho \cdot v_p \cdot A$$
,

gdzie ρ - gęstość powietrza, v_p - prędkość powietrza przepływającego newline przez śmigło, A - powierzchnia śmigła Wstawiając to do poprzedniego równania otrzymujemy:

$$F = \rho \cdot v_p \cdot A \cdot [v_e - v_0]$$

Korzystająć z powstałych równań:

$$\begin{cases} F = \frac{1}{2} \rho \cdot A \cdot [v_e^2 - v_p^2] \\ F = \rho \cdot v_p \cdot A \cdot [v_e - v_0] \end{cases}$$

i rozwązując je ze względu na v_p otrzymujemy

$$v_p = \frac{1}{2} [v_0 - v_e],$$

czyli prędkość powietrza przepływającego przez śmigło jest średnią arytmetyczną prędkości powietrza przed i za śmigłem.

Zdefiniujmy przyrost prędkości powietrza przy przechodzeniu przez śmigło:

$$\Delta v = v_p - v_0 \Rightarrow v_p = v_0 + \Delta v$$

Jak pamietamy:

$$v_p = \frac{1}{2} [v_0 - v_e] \Rightarrow 2v_p = v_0 + v_e \Rightarrow v_e = 2v_p - v_0$$

Łączą to razem otrzymujemy:

$$v_e = v_0 + 2 \cdot \Delta v$$

Teraz do równania: $F = \frac{1}{2} \rho \cdot A \cdot [v_e^2 - v_0^2]$ możemy wstawić równanie $v_e = v_0 + 2 \cdot \Delta v$.

Otrzymamy:

$$F = \frac{1}{2} \rho \cdot A \cdot [(v_0 + 2 \cdot \Delta v)^2 - v_0^2]$$

Po uporządkowaniu:

$$2\rho \cdot A \cdot (\Delta v)^2 + 2\rho \cdot A \cdot \Delta v \cdot v_0 - F = 0$$

Wyróżnik uzyskanego równania kwadratowego:

$$\sqrt{\Delta} = 2 \cdot \sqrt{\rho^2 A^2 v_0^2 + 2\rho AF}$$

Rozwiązanie:

$$\Delta v = \frac{1}{2} \left(-v_0 \pm \sqrt{\frac{2F}{\rho A} + v_0^2} \right)$$

Wybieramy rozwiązanie ze znakiem '+' - zmiana musi być dodatnia. Dodatkowo, rozważmy sytuację, w której v_0 równe jest 0 - przypadek ciągu statycznego. Otrzymujemy:

$$\Delta v = \sqrt{\frac{F}{2\rho A}}$$

Moc zużywana przez silnik wykorzystywana jest na poruszenie powietrza przez śmigło z daną siła (tu siłą ciągu):

$$P = F v_p \Rightarrow P = F (v_0 + \Delta v)$$
, ale $v_0 = 0$, wiec $P = F \Delta v \Rightarrow P = F * \sqrt{\frac{F}{2 \rho A}} = \frac{F^{3/2}}{\sqrt{2 \rho A}}$.

Ostatecznie:

$$F = P^{2/3} (2A\rho)^{1/3}$$

2. Sposób drugi

1. źródło:

 $1. \ \, \underline{https://www.electricrcaircraftguy.com/2014/04/propeller-static-dynamic-thrust-equation-background.html}$

Wzór pochodzi bezpośrednio ze strony, o której mówi się w filmiku, do którego link dostałem od Pana. Autor wzoru opisuje pół empiryczną drogę, którą go otrzymał:

$$F = \rho \cdot (\pi \frac{d^2}{4}) \cdot (RPM \cdot p)^2 \cdot (\frac{d}{3.29546 \cdot p})^{1.5}$$

3. Porównanie

1. Dane – przyjęte na potrzeby szacowania:

Ciąg śmigła									
Napięcie pracy U [V]	12								
Pobór prądu I[A]	0,7								
Moc silnika I*U [W]	8,4								
Sprawność	0,9								
Rozmiar śmigła d [cal]	6	=	0,1524	[m]					
Skok śmigła p [cal]	4	=	0,1016	[m]					
Obroty na minutę RPM	8000	=	133,333333333	[obr/s]					
Gęstość powietrza rho [kg/m^3]	1,293								
Średnica śmigła [cal]	6	=	0,1524	[m]					
Szacowana masa pojazdu m	1,2	[kg]							
prędkość śmigła v =RPM*p	13,55	[m/s]							

Sposób pierwszy:						
Siła ciągu [N]	F=	$F = P^{2/3} \left(2 \cdot \rho \pi \frac{d^2}{4} \right)^{1/3}$	1,39			
Szacowane przyspieszenie pojazdu	a=F/m	1,15				

Sposób drugi:						
Siła ciągu [N]	F=	$F = \rho \cdot (\pi \frac{d^2}{4}) \cdot (RPM \cdot p)^2 \cdot (\frac{d}{3.29546 \cdot p})^{1.5}$	1,32	[N]		
Szacowane przyspieszenie pojazdu	a=F/m	1,1				