

Lecture 6.5 - Supervised Learning
Classification - Discriminative Models - The
Perceptron

Erik Bekkers

(Bishop 4.1.7)

Slide credits: Patrick Forré and Rianne van den Berg

The Perceptron Algorithm

- ► Input: Z ∈ R
- targets: $t \in \{C_1, C_2\}$ $\rightarrow t \in \{-1, 1\}$ 2 classes
- Prediction: $y(\mathbf{x}) = f(\mathbf{w}^T \phi(\mathbf{x}))$ $f(a) = \begin{cases} / & , a \ge 0 \\ -/ & , a < 0 \end{cases}$
- For correct classification: find \mathbf{w} such that for all (x_n, t_n) :

Perceptron criterion: $E_P(\mathbf{w}) = -\sum_{n \in \mathcal{M}} w^T \phi(\mathbf{x}_n) t_n$

$$\mathcal{M}: \{ n: \mathbf{W}^{\mathsf{T}} \phi_n f_n < 0 \}$$

Perceptron: Stochastic Gradient Descent

ullet Stochastic Gradient Descent (SGD). For each misclassified \mathbf{x}_n :

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w})$$
$$= \mathbf{w}^{(\tau)} + \eta (\phi_n b_n)$$

◆If X is linearly separable, then perceptron SGD will converge

Figure: for $\mathbf{x_n}$ in C_1 : add $\phi(\mathbf{x}_n)$ to \mathbf{w} , for $\mathbf{x_n}$ in C_2 : subtract $\phi(\mathbf{x}_n)$ from \mathbf{w} . SGD for perceptron criterion (Bishop 4.7)

Machine Learning 1

Problems: Perceptron

- Perceptron only works for 2 classes
- There might be many solutions depending on the initialization of w and on the order in which data is presented in SGD
- If dataset is not linearly separable, the perceptron algorithm will not converge.
- Based on linear combination of fixed basis functions.

Machine Learning 1