ARCOS Group

uc3m | Universidad Carlos III de Madrid

Lesson 2 Representation of information

Computer Structure Bachelor in Computer Science and Engineering

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

Introduction Computer

▶ A computer is a machine designed to process data.

Instructions are applied and results are obtained.

Introduction Computer

▶ A computer is a machine designed to process data.

- Instructions are applied and results are obtained.
- ▶ The data/information can be of different types.

Introduction Computer

▶ A computer is a machine designed to process data.

- Instructions are applied and results are obtained.
- ▶ The data/information can be of different types.
- A computer uses only one representation: binary.

Introduction Information representation

▶ The use of a representation allows the transformation of different types of information into binary (and vice versa).

Introduction

Characteristics of the information representation

- ▶ A computer handles a finite set of values
 - Binary type (two states)
 - Finite (bounded representation)
 - Number of bits of the computer word (32/64) or bit (1), nibble (4), byte (8), half w., double w., ...
 - ▶ With n bits, 2n different values can be encoded

- There are some types of information that are infinite
 - Impossible to represent all values of natural numbers, real numbers, etc.

▶ The chosen representation has limitations.

Example 1: the Google calculator with 15 digits...

http://www.20minutos.es/noticia/415383/0/google/restar/error/

Example 2: color depth...

I bit	2 colors
4 bits	16 colors
8 bits	256 colors

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Example 2: color depth...

I bit	2 colors
4 bits	16 colors
8 bits	256 colors

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Example 2: color depth...

I bit	2 colors
4 bits	16 colors
8 bits	256 colors

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

We need...

▶ To know possible representations:

We need...

▶ To know possible representations:

- ▶ To know the characteristics of theses representations:
 - Limitations

We need...

▶ To know possible representations:

- ▶ To know the characteristics of theses representations:
 - Limitations

▶ To know how work with the selected representation:

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

- A number is defined by a ordered list of digits, each of which is affected by a scaling factor that depends on the position it occupies in the list.
- Given a numbering base b,a number X is defined as the list of digits:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ with a list of associated weights:

$$P = (... b^2 b^1 b^0 b^{-1} b^{-2} ...)_b$$

Its value is:

$$V(X) = \sum_{i=-\infty}^{+\infty} b^{i} \cdot x_{i} = \cdots b^{2} \cdot x_{2} + b^{1} \cdot x_{1} + b^{0} \cdot x_{0} + b^{-1} \cdot x_{-1} + b^{-2} \cdot x_{-2} \cdots$$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binary

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binary

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $16^3 16^2 16^1 16^0$

From binary to hexadecimal:

- ▶ Group by 4 bits, right to left
- Each 4 bits is the value of a hexadecimal digit

Decimal

Binary

$$X = 0 \mid 0 \mid 0 \mid$$
... $2^3 \mid 2^2 \mid 2^1 \mid 2^0 \mid$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Exercise

▶ To represent 342 in binary:

Exercise (solution)

▶ To represent 342 in binary:

▶ With 3 binary digits, up to 8 symbols can be represented:

▶ How many values can be represented with n bits?

▶ How many bits are needed to represent m 'values'?

With n bits, if the minimum representable value corresponds to the number 0, what is the maximum representable numerical value?

- ▶ How many values can be represented with n bits?
 - **2**ⁿ
 - E.g.: with 4 bits up to 16 values can be represented
- ▶ How many bits are needed to represent m 'values'?
 - $ightharpoonup \left[\text{Log2(n) round up} \right]$
 - E.g.: 6 bits are required to represent 35 values
- With n bits, if the minimum representable value corresponds to the number 0, what is the maximum representable numerical value?
 - ▶ 2ⁿ-1

Exercise

▶ To compute the value of (23 ones):

Exercise (solution)

▶ To compute the value of (23 ones):

$$X = 2^{23} - 1$$

Tip:

$$X = 2^{23} - 1$$

Example: operations

▶ Add in binary:

27

Example: operations

Add in binary:

Subtract in binary:

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical

29

- Natural and integer
- 2. Fixed point
- 3. Floating point (IEEE 754 standard)

Alphanumeric representation

- ▶ Each character is encoded as one byte.
- With n bits \Rightarrow up to 2^n characters can be encoded:

# bits	# characters	Includes	Example
6	64	 26 letter: az 10 number: 09 punctuation: .,;: specials: + - [BCDIC
7	128	 adds uppercases and control characters 	ASCII
8	256	 adds accented letters, ñ, semigraphic characters 	EBCDIC ASCII extended
16	34.168	 add support for Chinese, Arabic, 	UNICODE

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	æ	096	
001	(included)	SOH	033	1	065	Ā	097	α
002	•	STX	034	0	066	В	098	b
003	×	ETX	035	#	067	C	099	c
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&z	070	F	102	f
007	(beep)	BEL	039	1	071	G	103	g
008	12	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	I	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	•	076	L	108	1
013	(carriage return)	CR	045	_	077	M	109	m
014	រា	SO	046		078	N	110	n
015	₩.	SI	047	/	079	0	111	0
016	D	DLE	048	0	080	P	112	p
017		DC1	049	1	081	Q	113	q
018	1	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	Ş	NAK	053	5	085	U	117	u
022	MAKES .	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>↑</u>	CAN	056	8	088	X	120	x
025	1	EM	057	9	089	Y	121	У
026		SUB	058	;	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '. '	093	1	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	-
031	(cursor down)	US	063	?	095		127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

control characters

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033		065	A	097	α
002	•	STX	034	**	066	В	098	b
003	♥	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	r	071	G	103	g
800	12	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	្រា	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017	4400	DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	cakes	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027	←	ESC	059	;	091	[123	. {
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	Phys
031	(cursor down)	US	063	?	095	******	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

distance between uppercase and lowercase letters

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033	1	065	A	097	α
002	•	STX	034	n	066	В	098	b
003	*	ETX	035	#	067	C	099	С
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	t	071	G	103	g
800		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	. 73	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017	-400	DCl	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	11	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	CARCES	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u></u>	CAN	056	8	088	X	120	x
025	Į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	· {
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093	1	125	}
030	(cursor up)	RS	062	>	094	^	126	~
031	(cursor down)	US	063	?	095		127	

97-65=32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

conversion of a number to a character

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	(0)	096	
001	O	SOH	033	1	065	A	097	α
002	9	STX	034	n	066	В	098	ь
003	♥	ETX	035	#	067	C	099	С
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	t	071	G	103	g
008		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	_	077	M	109	m
014	ji –	SO	046		078	N	110	n
015	☼	SI	047	1	079	0	111	О
016	-	DLE	048	0	080	P	112	p
017	-400	DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	MAKES	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	=	093]	125	}
030	(cursor up)	RS	062	>	094	^	126	rhui
031	(cursor down)	US	063	?	095	anana .	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

Curiosity: Display "image" with characters

HHHHCHCCCCCCHHHHHH88X888888X8CC8X77X7XXX888888XX8HHHHHH8X88 88HH@@@@@@@@@mmmmmmmmem@H8XX8888ZZX8H@@m@@@@@m@@@@HHH88HHH888

http://www.typorganism.com/asciiomatic/

Character strings

1000 00110011 1001 01101100 ••• 1008 10100011

Fixed-length string:

2. Variable-length string with delimiter:

3. Variable-length strings with length in header:

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings

2. Numerical

- Natural and integer
- 2. Fixed point
- 3. Floating point (IEEE 754 standard)

Numerical representation

- Classification of real numbers:
 - Naturals: 0, 1, 2, 3, ...
 - ▶ Integers: ... -3, -2, -1, 0, 1, 2, 3,
 - Rational: fractions (5/2 = 2,5)
 - Irrational: $2^{1/2}$, π , e, ...
- Infinite sets but finite representation space:
 - Impossible to represent all
- Characteristics of the representation used:
 - Represented element: Natural, integer, ...
 - Representation range: Interval between minor and major not representable
 - Resolution of representation:
 Difference between a representable number and the following one.
 It represents the maximum error committed. It can be cte. or variable.

Most used binary representation systems

- A. (Pure) binary natural
- B. Sign-Magnitude
- c. One's complement (Ca I)

integer

- D. Two's complement (Ca 2)
- E. Biased 2ⁿ⁻¹-1
- F. Floating point: IEEE 754 standard

(Pure) binary or unsigned binary [natural numbers]

Positioning system with base 2 and without fractional part.

$$V(X) = \sum_{i=0}^{n-1} 2^i \cdot X_i$$

- Representation range: [0, 2ⁿ -1]
- Resolution: I unit

Comparative example (3 bits)

Decimal	Pure Binary		
+7	111		
+6	110		
+5	101		
+4	100		
+3	011		
+2	010		
+1	001		
+0	000		
-0	N.A.		
- l	N.A.		
-2	N.A.		
-3	N.A.		
-4	N.A.		
-5	N.A.		
-6	N.A.		
-7	N.A.		

Signed binary number or Sign-Magnitude [integer numbers]

• One bit (S) is reserved for the sign $(0 \Rightarrow +; I \Rightarrow -)$

Si
$$x_{n-1} = 0$$
 $\mathbf{v}(x) = \sum_{i=0}^{n-2} 2^{i} \cdot \mathbf{x}_{i}$ \Rightarrow $\mathbf{v}(x) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot \mathbf{x}_{i}$ Si $x_{n-1} = 1$ $\mathbf{v}(x) = -\sum_{i=0}^{n-2} 2^{i} \cdot \mathbf{x}_{i}$

- Representation range: [-2ⁿ⁻¹ +1, 2ⁿ⁻¹ -1]
- Resolution: | unit
- Ambiguity of zero + complex hw. for subtraction

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	
+7	111	N.A.	
+6	110	N.A.	
+5	101	N.A.	
+4	100	N.A.	
+3	011	011	
+2	010	010	
+1	001	001	
+0	000	000	
-0	N.A.	100	
-1	N.A.	101	
-2	N.A.	110	
-3	N.A.	111	
-4	N.A.	N.A.	
-5	N.A.	N.A.	
-6	N.A.	N.A.	
-7	N.A.	N.A.	

Example

▶ Can we represent 745₁₀ in sign-magnitude with 10 bits?

- ▶ Can we represent 745₁₀ in sign-magnitude with 10 bits?
- With 10 bits the range in sign-magnitude is: $[-2^9+1,...,-0,+0,....2^9-1] \Rightarrow [-511,511]$ then, we cannot represent 745

One's complement (to the base minus one) [integer] (1/3)

Positive number: is represented in pure binary with n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot X_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot X_{i}$$

- Representation range (+): [0, 2ⁿ⁻¹ 1]
- Resolution: I unit

One's complement (to the base minus one) [integer] (2/3)

Negative number:

- Complemented to the base minus one.
- The number X < 0 is represented as $2^n X I$ with n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i} + 1$$

- Representation range (-): [-(2ⁿ⁻¹-1), -0]
- Resolution: I unit

One's complement (to the base minus one) [integer] (3/3)

- Example: For $n=4 \Rightarrow$ the value $+3_{10} = 0011_2$
- Example: For $n=4 \Rightarrow$ the value $-3_{10} = 1100_2$
 - → I (sign bit and also part of magnitude)
 - C a $I(3) \Rightarrow 2^4 00II_2 I = 2^4 3 I = I2 \Rightarrow II00_2$
 - Representation range: [-2ⁿ⁻¹+1,2ⁿ⁻¹-1]
 - Resolution: I unit
 - Zero has a double representation (+0 y -0)
 - Symmetrical range

Ones' complement

Positive numbers have a 0 in the most significant bit.

Negative numbers have a I in the most significant bit.

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	One's complement
+7	111	N.A.	N.A.
+6	110	N.A.	N.A.
+5	101	N.A.	N.A.
+4	100	N.A.	N.A.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	N.A.	100	111
-1	N.A.	101	110
-2	N.A.	110	101
-3	N.A.	111	100
-4	N.A.	N.A.	N.A.
-5	N.A.	N.A.	N.A.
-6	N.A.	N.A.	N.A.
-7	N.A.	N.A.	N.A.

Example

With n = 5 bits and using one's complement:

▶ How is represented X = 5?

▶ How is represented X = -5?

- ▶ What is the value of 00111 in 1's complement?
- What is the value of 11000 in 1's complement?

With n = 5 bits and using one's complement:

- ▶ How is represented X = 5?
 - Because is positive then is like (pure) binary
 - ▶ 00101
- ▶ How is represented X = -5?
 - ▶ Because is negative, then 5 is complemented to one (00101)
 - **III0I0**
- What is the value of 00111 in 1's complement?
 - Because is positive then its value is 7
- What is the value of 11000 in 1's complement?
 - Because is negative, then is complemented and is 00111 (7)
 - ▶ The value is -7

Two's complement (complement to the base) [integer] (1/3)

Positive number: is represented in pure binary with n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Representation range (+): [0, 2ⁿ⁻¹ 1]
- Resolution: I unit

Two's complement (complement to the base) [integer] (2/3)

Negative number:

- Complemented to the base.
- The number X < 0 is represented as $2^n X$ with n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i}$$

- Representation range (-): [-2ⁿ⁻¹, -1]
- Resolution: I unit

Two's complement (complement to the base) [integer] (3/3)

Tip:
$$C a 2 (X) = X$$

 $C a 2 (-X) = C a I (X) + I$

- Example: For $n=4 \Rightarrow +3 = 0011_2$
- Example: For $n=4 \Rightarrow -3 = 1101_2$
 - ▶ $I \Rightarrow$ (sign bit and also part of magnitude)
 - C a 2 (3) = C a 2(00|1₂) = 2^4 3 = $13 \Rightarrow 1101_2$
 - Representation range: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Resolution: Lunit
 - 0 has only one representation (∄ -0)
 - Asymmetric range

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	One's complement	Two's complement
+7	111	N.A.	N.A.	N.A.
+6	110	N.A.	N.A.	N.A.
+5	101	N.A.	N.A.	N.A.
+4	100	N.A.	N.A.	N.A.
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0	N.A.	100	111	N.A.
-1	N.A.	101	110	Ш
-2	N.A.	110	101	110
-3	N.A.	111	100	101
-4	N.A.	N.A.	N.A.	100
-5	N.A.	N.A.	N.A.	N.A.
-6	N.A.	N.A.	N.A.	N.A.
-7	N.A.	N.A.	N.A.	N.A.

Two's complement with 32-bits

```
0000 \dots 0000 \ 0000 \ 0000 \ 0000_{2c} =
                                                  0_{(10)}
0000 \dots 0000 \ 0000 \ 0000 \ 0001_{2c} =
                                                  1_{(10)}
0000 \dots 0000 \ 0000 \ 0000 \ 0010_{2c} =
                                               2_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1101_{2c} = 2,147,483,645_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1110_{2c} = 2,147,483,646_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1111_{2c} = 2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000_{2c} = -2,147,483,648_{(10)}
1000 \dots 0000 \ 0000 \ 0001_{2c} = -2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000 \ 0010_{2c} = -2,147,483,646_{(10)}
1111 \dots 1111 \quad 1111 \quad 1111 \quad 1101_{2c} = -3_{(10)}
1111 \dots 1111 \quad 1111 \quad 1111 \quad 1110_{2c} = -2_{(10)}
1111 \dots 1111 \quad 1111 \quad 1111 \quad 1111_{2c} = -1_{(10)}
```

Biased 2ⁿ⁻¹-1 representation [integer]

- X value with n bits is represented as X + 2ⁿ⁻¹-I
- ▶ Bias refers to the value 2ⁿ⁻¹-1

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} - (2^{n-1} - 1)$$

- Representation range: [-(2ⁿ⁻¹-1), 2ⁿ⁻¹]
- Resolution: Lunit
- There is no ambiguity with 0

Comparative example (3 bits)

Decimal	Pure Binary	Sign-Magnitude	One's complement	Two's complement	Biased-3
+7	111	N.A.	N.A.	N.A.	N.A.
+6	110	N.A.	N.A.	N.A.	N.A.
+5	101	N.A.	N.A.	N.A.	N.A.
+4	100	N.A.	N.A.	N.A.	Ш
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.A.	100	111	N.A.	N.A.
-1	N.A.	101	110	111	010
-2	N.A.	110	101	110	001
-3	N.A.	111	100	101	000
-4	N.A.	N.A.	N.A.	100	N.A.
-5	N.A.	N.A.	N.A.	N.A.	N.A.
-6	N.A.	N.A.	N.A.	N.A.	N.A.
-7	N.A.	N.A.	N.A.	N.A.	N.A.

Example

Indicate the representation of the following numbers, giving a brief justification of your answer:

- 1. -32 in one's complement with 6 bits
- 2. -32 in two's complement with 6 bits
- 3. -10 in sign-magnitude with 5 bits
- 4. + 14 in two's complement with 5 bits

- With 6 bits **is not representable** in IC: $[-2^{6-1}+1,...,-0,+0,....2^{6-1}-1]$
- 2. |C + | -> |00000
- 3. Sign=I, magnitude=I0I0 -> II0I0
- 4. Positive -> IC=2C=SM -> 01110

Contents

I. Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- 1. Alphanumeric
 - Characters
 - 2. Strings

2. Numerical

62

- Natural and integer
 - Arithmetic operations
- 2. Fixed point
- 3. Floating point (IEEE 754 standard)

Comparison of arithmetic in B, 1C and 2C

	Binary	One's complement	Two' complement
Add	10110 01100 100010	same as binary	same as binary
Subtract	10110 01100 01010	add and if there is Cn-I then add Cn-I to total	add and if there is Cn-I then discard it

In hardware, it is easier to operate with complement

Comparison of arithmetic in B, 1C and 2C why add the carry to the result in 1C

Correction of the result by adding the carry...

Comparison of arithmetic in B, 1C and 2C why discard the carry in 2C

Correction of the result by discarding the carry...

Comparison of arithmetic in B, 1C and 2C

	Binary	One's complement	Two' complement
Detect	The result needs I bit more	Adding ++ is -, Adding is +	Adding ++ is -, Adding is +
overflow	There are Cn	Cn <> Cn-I	Cn <> Cn-I
Sign extension	00 10110	11*10110 00*00110	114°10110 004°00110
•••	•••	•••	•••

Example

- Using 5 bits, compute the following additions in 1's complement:
 - a) 4 + 12
 - b) 4-12
 - c) **-4-12**

By using 5 bits in I's complement the result is:

```
a) 4 + 12
```

00100

01100

 $10000 \Rightarrow -15 \Rightarrow \text{negative!} \Rightarrow \text{overflow}$

- ▶ By using 5 bits in I's complement the result is:
 - b) 4 12

00100

10011

10111 ⇒ -8

- By using 5 bits in I's complement the result is:
 - c) -4 12

11011 10011

 $101110 \Rightarrow 6$ bits are needed \Rightarrow overflow

Contents

I. Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- 1. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

More representation necessities...

How to represent?

Very large numbers: 30.556.926.000₍₁₀₎

Very small numbers: 0.000000000529177₍₁₀₎

Fractional numbers: 1.58567

Reminder **Example of failure...**

- Ariane 5 explosion (first flight)
 - Sent by ESA in June 1996
 - Cost of development:10 years and 7 billion dollars

- Exploded 40 seconds after launch, at 3700 meters altitude.
- ▶ Failure due to total loss of altitude information:
 - ▶ The inertial reference system software performed the conversion of a 64-bit floating point real value to a 16-bit integer value.
 - The number to be stored was greater than 32767 (the largest 16-bit signed integer) and a conversion failure and exception occurred.

Fixed point [racionals]

The position of the binary point is fixed and the weights associated with the decimal places are used.

Example:

$$|00|.|0|0 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

Fractional values in binary with fixed point

Example with 6 bits:

- Example: $10,1010_{(2} = 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.62510$
- Using this fixed point, the range is:
 □ [0 a 3.9375 (almost 4)]

Fractional powers of 2

i	2-i	
0	1.0	1
1	0.5	1/2
2	0.251/4	
3	0.125	1/8
4	0.0625	1/16
5	0.03125	1/32
6	0.015625	
7	0.0078125	
8	0.00390625	
9	0.001953125	5
10	0.0009765625	

Contents

Introduction

- Motivation and goals
- 2. Positional (numeral) systems

2. Representations

- I. Alphanumeric
 - Characters
 - 2. Strings
- 2. Numerical
 - Natural and integer
 - 2. Fixed point
 - 3. Floating point (IEEE 754 standard)

Floating-point numbers

- ▶ Each number has a mantissa and an exponent
- Scientific notation (in decimal): normalized form
 - Only one digit different to 0 on the left of decimal point
- The number is adapted to the order of magnitude of the value to be represented, by translating the decimal point by using the exponent

Scientific notation in binary

- Normalized form:
 One I (only one digit) in the left of the binary point
 - Normalized: 1.0001×2^{-9} ,
 - Not normalized: 0.0011×2^{-8} , 10.0×2^{-10}

IEEE 754 Floating Point Standard [rationals]

- Floating point standard used in most computers.
- Characteristics (unless special cases):
 - Exponent: excess-k with bias k = 2 num_bits_in_exponent I I
 - Mantissa: sign-magnitude, normalized, with implicit bit
- Different formats:
 - ▶ Single precision: 32 bits (sign: I, exponent: 8, mantissa: 23 and bias: 127)
 - ▶ **Double precision**: 64 bits (sign: I, exponent: II, mantissa: 52 and bias: 1023)
 - Quad-precision: 128 bits (sign: I, exponent: 15, mantissa: 112 and bias: 16383)

Normalization and implicit bit

Normalization

In order to normalize the mantissa, the exponent is adjusted to have a most significant bit of value I

```
Example: 00010000000010101 \times 2^3 (is not) 1000000000101010000 \times 2^0 (now it is)
```

Implicit bit

Once normalized, since the most significant bit is 1, it is **not** stored to leave space for one more bit (increases accuracy).

▶ This makes it possible to represent mantissa with one bit more

IEEE Standard 754 (single precision)

▶ The value is computed (unless special cases) as:

$$N = (-1)^{S} \times 2^{E-127} \times I.M$$

where:

S = 0 for positive numbers, S = I for negative numbers

0 < E < 255 (E=0 y E=255 are special cases)

Special cases:

$$(-1)^s \times 0.$$
mantissa $\times 2^{-126}$

Exponent	Mantissa	Special value
0 (0000 0000)	0	+/- 0 (depends on sign)
0 (0000 0000)	≠ 0	Number NOT normalized
255 (1111 1111)	≠ 0	NaN (0/0, sqrt(-4),)
255 (1111 1111)	0	+/- infinite (depends on sign)
1-254	Any	Normalized number (no special)

$$(-1)^s \times 1.mantissa \times 2^{exponent-127}$$

Examples

S	E	M	N
I	00000000	000000000000000000000000000000000000000	-0 (Exception 0) E=0 y M=0.
I	01111111	000000000000000000000000000000000000000	$-2^{0} \times 1.0_{2} = -1$
0	10000001	111000000000000000000000000000000000000	$+2^2 \times 1.111_2 = +2^2 \times (2^0 + 2^{-1} + 2^{-2} + 2^{-3}) = +7.5$
0	11111111	000000000000000000000000000000000000000	∞ (Exception $∞$) E=255 y M=0
0	11111111	100000000000000000000000000000000000000	NaN (Not a Number) E=255 y M≠0.

Example

Example (solution)

a) Calculate the value in decimal associated to this number
 0 10000011 11000000000000000000
 represented in IEEE 754 single precision

- a) Sign bit: $0 \Rightarrow (-1)^0 = +1$
- b) Exponent: $10000011_2 = 131_{10} \Rightarrow E 127 = 131 127 = 4$

The decimal value is $+1 \times 2^4 \times 1.75 = +28$

Exercise

b) Represent the number -9 using IEEE 754 single precision

Exercise (Solution)

b) Represent the number -9 using IEEE 754 single precision

$$-9_{10} = -1001_2 = -1001_2 \times 2^0 = -1.001_2 \times 2^3$$
 (normalized mantissa)

- a) Sign: negative ⇒ S=I
- Exponent: 3+127 (bias) = $130 \implies 10000010$

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:
 - Largest normalized:

- Smallest not normalized :
- Largest not normalized:

 $(-1)^s * 0.mantisa * 2^{-126}$

Exponent	Mantissa	Special value
0	≠ 0	Not normalized
1-254	any	Normalized

(-I)^s * I.mantisa * 2^{exponente-127}

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:

Largest normalized:

- Smallest not normalized :
- Largest not normalized :

Tip:

$$X = 2 - 2^{-23}$$

- Range of representable magnitudes (regardless of sign):
 - Smallest normalized:

Largest normalized:

- Smallest not normalized :
- Largest not normalized :

Exercise

How many floats (single precision floating point numbers) are between I and 2 (not included)?

How many float (single precision floating point numbers) are between 2 and 3 (not included)?

Exercise (Solution)

- How many floats (single precision floating point numbers) are between I and 2 (not included)?

 - Between I and 2 there are 2²³ numbers
- How many float (single precision floating point numbers) are between 2 and 3 (not included)?

 - ▶ Between 2 and 3 there are 2²² numbers

Discrete representation

Variable resolution:
 denser near zero, less towards infinity

Representable numbers

(b) Floating point numbers

Example 1 inaccuracy

Example 2 inaccuracy

▶ How does C performs a division?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Equal\n");
 else printf("Not equal\n");
 return (0);
```

Example 2 inaccuracy

How does C performs a division?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Equal\n");
 else printf("Not equal\n");
 return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
Not equal
```

Example 2 inaccuracy

▶ How does C performs a division?

```
t2.c
        #include <stdio.h>
        int main ()
          float a;
                             double
float
          a = 3.0/7.0;
          if (a == 3.0/7.0)
               printf("Equal\n");
          else printf("Not equal\n");
          return (0);
```

\$ gcc -o t2 t2.c \$./t2 Not equal

Example 3 inaccuracy

The associative property is not always satisfied a + (b + c) = (a + b) + c?

```
#include <stdio.h>

int main ()
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

Example 3 inaccuracy

The associative property is not always satisfied a + (b + c) = (a + b) + c?

```
#include <stdio.h>

int main ( )
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

```
$ gcc -o t1 t1.c
$ ./t1
(x+y)+z = 1.000000
x+(y+z) = 0.000000
```

Floating-point is not associative

Floating-point is not associative

$$x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, z = 1.0$$

$$(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0$$

$$= (0.0) + 1.0 = 1.0$$

▶ Floating point operations are not associatives

- Results are approximated
- ▶ 1.5×10^{38} is so much larger than 1.0
- ▶ 1.5×10^{38} + 1.0 in floating point representation is still 1.5×10^{38}

Example $int \rightarrow float \rightarrow int$

```
if (i == (int)((float) i)) {
    printf("true");
}
```

- Not always prints "true"
- Most integer values (specially larger ones) don't have an exact floating point representation
- What about double?

Example

- ▶ The number 133000405 in binary is:
- When is normalized:

 - > S = 0 (positive)
 - \rightarrow e = 26 \rightarrow E = 26 + 127 = 153
- The normalized number stored is:

 - \rightarrow 111111011010110110011010 \times 2³ = 133000400

Example $float \rightarrow int \rightarrow float$

```
if (f == (float)((int) f)) {
    printf("true");
}
```

- Not always true
- Numbers with decimals do not have integer representation

Rounding

- Rounding removes less significant digits from a number to obtain an approximate value.
- Types of rounding:
 - ▶ Round to + ∞
 - ▶ Round it "up": $2.001 \rightarrow 3$, $-2.001 \rightarrow -2$
 - ▶ Round to ∞
 - ▶ Round it "down": $1.999 \rightarrow 1, -1.999 \rightarrow -2$
 - Truncate
 - ▶ Discard last bits: $1.299 \rightarrow 1.2$
 - Round to nearest (ties to even)
 - \triangleright 2.4 \rightarrow 2, 2.6 \rightarrow 3, -1.4 \rightarrow -1
 - If number falls midway then it is rounded to the nearest value with an even least significant digit (+23.5 \rightarrow +24 \leftarrow +24.5; -23.5 \rightarrow -24 \leftarrow -24.5)

Rounding

- Rounding means losing accuracy.
- Rounding occurs:
 - When moving to a representation with fewer representables:
 - E.g.: A value from double to single precision
 - ► E.g.: A floating point value to integer
 - When performing arithmetic operations:
 - ▶ E.g.: After adding two floating-point numbers (using guard bits)

Guard bits

- Guard digits are used to improve accuracy:
 - FP hardware internally includes additional bits for operations
 - After operation, guard bits are eliminated: rounding
- \triangleright Example: 2.65 x 10⁰ + 2.34 x 10²

	WITHOUT guard bits	WITH guard bits
I equalize exponents	$0.02 \times 10^2 + 2.34 \times 10^2$	0.0265×10^{2} + 2.3400×10^{2}
2 add	2.36×10^{2}	2.3665×10^{2}
3 round	2.36×10^{2}	2.37×10^{2}

Floating point operations

- bbA <
- Subtract
 - Check zero values.
 - 2. Equalize exponents (shift smaller number to the right).
 - 3. Add/subtract mantissa.
 - Normalize the result.
- Multiply
- Divide
 - Check zero values.
 - 2. Add/subtract exponents.
 - 3. Multiply/divide mantissa (taking into account the sign).
 - 4. Normalize the result.
 - 5. Rounding the result.

Additions and subtractions: Z=X+Y y Z=X-Y

Multiplication: Z=X*Y

Division: Z=X/Y

Exercise

Using the IEEE 754 format, add 7.5 and 1.5 step by step.

To binary + 1.5 = 7.5 **Equalize** $1.111*2^{2} + 1.1*2^{0}$ exponents $| . | | | | *2^2 + 0.0 | | *2^2 =$ **bbA** $10.010*2^2 =$ 4) 1.0010*23 Adjust exponents

Representation of the numbers

Splitting exponents and mantissas, and adding implicit bit

Add mantissas

Normalize result...

There is carry, non-normalized mantissa

Normalize result...

There is carry, non-normalized mantissa

▶ Eliminate the implicit bit and store the result

Exercise

Using the IEEE 754 format, multiply 7.5 and 1.5 step by step.

Representation of the numbers

128

Splitting exponents and mantissas, and adding implicit bit

The implicit bit is included

Multiply: add exponents and multiply mantissas

Multiply: remove one bias from exponent (there are two)

	7.5 → 0 10000001	1.1110000000000000000000000000000000000
X	1.5 → 0 01111111	1.1000000000000000000000000000000000000
	0 100000000	0.1101000000000000000000000000000000000
	- 0111111	
	0 10000001	0.1101000000000000000000000000000000000

Multiply: normalize result...

Multiply: normalize result...

	7.5 →	0	10000001	Ι.	111000000000000000000000000000000000000
X	1.5 →	0	0111111	1.	100000000000000000000000000000000000000
	11.25	0	10000010	1.	011010000000000000000
		لـــــا			

Eliminate the implicit bit and store the result

IEEE 754 Evolution

- ▶ 1985 IEEE 754
- ▶ 2008 IEEE 754-2008 (754+854)
- ▶ 2011 ISO/IEC/IEEE 60559:2011 (754-2008)

Name	Common name	Base	Digits	E min	E max	Notes	Decimal digits	Decimal E max
binary16	Half precision	2	10+1	-14	+15	storage, not basic	3.31	4.51
binary32	Single precision	2	23+1	-126	+127		7.22	38.23
binary64	Double precision	2	52+I	-1022	+1023		15.95	307.95
binary128	Quadruple precision	2	112+1	-16382	+16383		34.02	4931.77
decimal32		10	7	-95	+96	storage, not basic	7	96
decimal64		10	16	-383	+384		16	384
decimal 128		10	34	-6143	+6144		34	6144

http://en.wikipedia.org/wiki/IEEE_floating_point

ARCOS Group

uc3m | Universidad Carlos III de Madrid

Lesson 2 Representation of information

Computer Structure Bachelor in Computer Science and Engineering

