IESTI01 - TinyML

Embedded Machine Learning

16. Introduction to TensorFlow Lite and TFL-Micro

Prof. Marcelo Rovai
UNIFEI

Introduction to TFLite

Inference at the Edge

Train a model

Convert model

Optimize model

Deploy model at Edge Make inferences at Edge

Train a model

Convert model

Optimize model

Deploy model at Edge Make inferences at Edge

Train a model

Convert model

Optimize model

Deploy model at Edge Make inferences at Edge

Pruning

Pruning

PRUNING SYNAPSES

Pruning

More info: An introduction to weight pruning by Tivadar Danka

Quantization is an optimization that works by reducing the precision of the numbers used to represent a model's parameters, which by default are 32-bit floating point numbers. This results in a:

- ✓ smaller model size,
- better portability (*) and
- faster computation.

	Floating-point Baseline
MobileNet v1 1.0 224	71.03%
MobileNet v2 1.0 224	70.77%
Resnet v1 50	76.30%

	Floating-point Baseline	Post-training Quantization (PTQ)*
MobileNet v1 1.0 224	71.03%	69.57%
MobileNet v2 1.0 224	70.77%	70.20%
Resnet v1 50	76.30%	75.95%

PTQ is the most common method of quantization. You can also apply QAT (Quantization-aware training), where the parameters are quantized during training.

	Floating-point Baseline	Post-training Quantization (PTQ)	Accuracy Drop
MobileNet v1 1.0 224	71.03%	69.57%	▼1.46%
MobileNet v2 1.0 224	70.77%	70.20%	▼ 0.57%
Resnet v1 50	76.30%	75.95%	▼ 0.35%

More info: How to accelerate and compress neural networks with quantization

Key Differences

Topology

Weights

Binary Size

Distributed Compute

Developer Background

Variable

Variable

Unimportant

Needed

ML Researcher

Fixed

Fixed

High Priority

Not Needed

Application Developer

Training	Yes	No	No
Inference	Yes (but inefficient on edge)	Yes (and efficient)	Yes (and even more efficient)
How Many Ops	~1400	~130	~50
Native Quantization Tooling + Support	No	Yes	Yes

Needs an OS	Yes	Yes	No
Memory Mapping of Models	No	Yes	Yes
Delegation to accelerators	Yes	Yes	No

Base Binary Size	3MB+	100KB	~10 KB
Base Memory Footprint	~5MB	300KB	20KB
Optimized Architectures	X86, TPUs, GPUs	Arm Cortex A, x86	Arm Cortex M, DSPs, MCUs

Optimization and Quantization

Minimizing compression loss

TensorFlow Workflow

Converting

```
Size: 2.1Mb
 1 converter = tf.lite.TFLiteConverter.from keras model(model)
                                                                              TF Model
 1 tflite model = converter.convert()
INFO:tensorflow:Assets written to: /tmp/tmprqr8kgp4/assets
 1 # Save .tflite model
 2 open("/content/cifar10.tflite", "wb").write(tflite_model)
                                                                          TFLite Model
673324
                                               Size: .63Mb
```

Converting from a saved model

```
Size: 2.1Mb
                                                                                   TF Model
      1 model_path = '/content/cifar_10_model.h5
[81]
      1 model cifar10 = tf.keras.models.load model(model path)
[82]
[83]
        converter = tf.lite.TFLiteConverter.from keras model(model cifar10)
[84]
      1 tflite model = converter.convert()
     INFO:tensorflow:Assets written to: /tmp/tmp6fwji5s /assets
     INFO:tensorflow:Assets written to: /tmp/tmp6fwji5s /assets
Save tflite model
                                             Size: .63Mb
                                                                                   TFLite Model
      1 open("/content/cifar10.tflite", "wb").write(tflite model)
[85]
     673324
```

Dynamic range quantization

The simplest form of post-training quantization statically quantizes only the weights from floating point to integer, which has 8-bits of precision:

```
1 converter = tf.lite.TFLiteConverter.from keras model(model)
[74]
      2 converter.optimizations = [tf.lite.Optimize.DEFAULT]
      3 tflite quant model = converter.convert()
     INFO:tensorflow:Assets written to: /tmp/tmpyyiq46sj/assets
     INFO:tensorflow:Assets written to: /tmp/tmpyyiq46sj/assets
                                               Size: .18Mb
[75]
      1 # Save .tflite model
      2 open("/content/cifar10 quant.tflite", "wb").write(tflite quant model)
     177232
```


Cifar_10.tflite

Cifar_10.h5

Generating a TF Lite for Micro Model

To convert the TensorFlow Lite quantized model into a C source file that can be loaded by TensorFlow Lite for Microcontrollers on MCUs, we simply need to use the Linux **xxd** tool to convert the .tflite file into a .cc file.

```
1 MODEL_TFLITE = 'cifar10_quant_model.tflite'
2 MODEL_TFLITE_MICRO = 'cifar10_quant_model.cc'
3 !xxd -i {MODEL_TFLITE} > {MODEL_TFLITE_MICRO}
4 REPLACE_TEXT = MODEL_TFLITE.replace('/', '_').replace('.', '_')
5 !sed -i 's/'{REPLACE_TEXT}'/g_model/g' {MODEL_TFLITE_MICRO}
```

```
1 !cat {MODEL_TFLITE_MICRO}

0x02, 0x15, 0x01, 0xd1, 0x02, 0xe9, 0xee, 0x07, 0x2d, 0x18, 0xfe, 0x01, 0x1c, 0xfa, 0x03, 0xf6, 0x0c, 0xf2, 0xed, 0xed, 0x06, 0xf2, 0xfa, 0xda, 0x0f, 0xf1, 0x06, 0x0e, 0xee, 0xf8, 0x01, 0x0e, 0x07, 0x3, 0xf7, 0x30, 0xf7, 0xfa, 0xf7, 0x0a, 0x09, 0xff, 0x12, 0x02, 0xfb, 0x01, 0x14, 0xf8, 0x07, 0xd8, 0xfd, 0x0b, 0x01, 0x1e, 0xc3, 0x10, 0x20, 0x2c, 0x0f, 0xf1, 0x04, 0x10, 0x05, 0x2a, 0xd9, 0xf3, 0x0a, 0x00, 0xfd, 0xe0, 0xda, 0x1a, 0xfb, 0xea, 0xfd, 0xf5, 0x0a, 0x00, 0xff, 0xe8, 0xf3, 0xe4, 0x03, 0x15, 0x04, 0x0d, 0xff, 0xdb, 0xd9, 0x06, 0x0b, 0xda, 0xdb, 0xf9, 0x00, 0x03, 0x0b, 0x08, 0x03, 0x03, 0x25, 0xf9, 0xd5, 0x02, 0x0e, 0x0a, 0xf1, 0xf7, 0x09, 0x0d, 0x0c, 0xb6, 0x12, 0x08, 0x02, 0xf8, 0x04, 0x02, 0x17, 0x10, 0x0e, 0xdf, 0x01, 0xd0, 0xff, 0x0d, 0xff, 0x0d, 0xff, 0x01, 0x10, 0x05, 0xf0, 0xfb, 0xdd, 0x21, 0xfe, 0xfd, 0x0c, 0xf1, 0x01, 0x09, 0xf9, 0x06, 0x12, 0xf6, 0x01, 0xf6, 0x02, 0xf1, 0x02, 0xf7, 0x0a, 0x05, 0xf0, 0xfb, 0xdd, 0x21, 0xfe, 0xfd, 0xec, 0xdf, 0x04, 0x03, 0xf9,
```

```
0x04, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x5f, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x14, 0x00, 0x00, 0x04, 0x00, 0x00,
```

Image Classification (inference) using TF-Lite Code Time!

CNN_Cifar_10_TFLite.ipynb

Reading Material

Main references

- Harvard School of Engineering and Applied Sciences CS249r: Tiny Machine Learning
- Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard
- Introduction to Embedded Machine Learning (Coursera)
- <u>Text Book: "TinyML" by Pete Warden, Daniel Situnayake</u>

I want to thank <u>Shawn Hymel</u> and Edge Impulse, <u>Pete Warden</u> and <u>Laurence</u> <u>Moroney</u> from Google, and especially Harvard professor <u>Vijay Janapa Reddi</u>, Ph.D. student <u>Brian Plancher</u> and their staff for preparing the excellent material on TinyML that is the basis of this course at UNIFEI.

The IESTI01 course is part of the <u>TinyML4D</u>, an initiative to make TinyML education available to everyone globally.

Thanks And stay safe!

