COMP270: 3D Computational Geometry Worksheet 2

- 1. A quaternion q to rotate through an angle θ is written as $q = [w \ v] = [\cos(\frac{\theta}{2}) \ \sin(\frac{\theta}{2}) \widehat{n}]$.
 - a. Construct a quaternion to rotate 30° about the *x*-axis.
 - b. What is the magnitude of this quaternion?
 - c. What is its conjugate, q^* ?
 - d. Assume the quaternion is used to rotate points from object space to world space. What would the position of the point p = (0.5, -0.7, 2.3) be under this rotation?
- 2. Compute a quaternion that performs twice the rotation of the quaternion $\begin{bmatrix} 0.965 & (0.149 & -0.149 & 0.149) \end{bmatrix}$.
- 3. Consider the quaternions:

$$a = [0.233 \quad (0.060 \quad -0.257 \quad -0.935)]$$

 $b = [-0.752 \quad (0.286 \quad 0.374 \quad 0.459)]$

- a. Compute the dot product $a \cdot b$.
- b. Compute the quaternion product *ab*.
- c. Compute the difference from a to b.
- 4. An object initially had its axes and origin coincident with the world axes and origin. It was first rotated 30° about the y-axis, and then -22° about the world x-axis.
 - a. What is the matrix that can be used to transform column vectors from object space to world space?
 - b. What about the matrix to transform vectors from world space to object space?
 - c. Express the object's z-axis using world coordinates.
- 5. Construct a 4x4 matrix to translate by $\begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$.
- 6. Construct a 4x4 matrix to rotate 20° about the x-axis and then translate by $\begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$.
- 7. Construct a matrix to translate by $\begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$ and then rotate 20° about the *x*-axis.
- 8. An axis aligned bounding box (AABB) is the smallest box whose edges are aligned with the coordinate axes that entirely contains a geometric object, defined by its minimum and maximum vertices p_{min} and p_{max} . AABBs are commonly used to accelerate the collision testing process.

Describe (in English and/or pseudocode) how one might test for the following intersections, giving an example of when each might be used:

- a. Two AABBs.
- b. A plane and an AABB.
- c. A ray (line) and an AABB.

Some bounding boxes, from https://developer.mozilla.org/en-us/docs/Games/Techniques/3D collision detection