

deeplearning.ai

Probability and Bayes' Rule

Outline

- Probabilities
- Bayes' rule (Applied in different fields, including NLP)
- Build your own Naive-Bayes tweet classifier!

Introduction

Corpus of tweets

Tweets containing the word "happy"

Probabilities

Corpus of tweets

 $A \rightarrow Positive tweet$

$$P(A) = P(Positive) = N_{pos} / N$$

Probabilities

Corpus of tweets

 $A \rightarrow Positive tweet$

$$P(A) = N_{pos} / N = 13 / 20 = 0.65$$

Probabilities

Tweets containing the word "happy"

 $B \rightarrow$ tweet contains "happy".

$$P(B) = P(happy) = N_{happy} / N$$

$$P(B) = 4 / 20 = 0.2$$

Probability of the intersection

$$P(A \cap B) = P(A, B) = \frac{3}{20} = 0.15$$

deeplearning.ai

Bayes' Rule

Conditional Probabilities

$$P(A \mid B) = P(Positive \mid "happy")$$

$$P(A \mid B) = 3 / 4 = 0.75$$

Conditional Probabilities

$$P(B \mid A) = 3 / 13 = 0.231$$

Conditional probabilities

Probability of B, given A happened

Looking at the elements of set \underline{A} , the chance that one also belongs to set \underline{B}

Conditional probabilities

$$P(\text{Positive}|\text{"happy"}) =$$

$$\frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$$

Bayes' rule

$$P(\text{Positive} | \text{``happy''}) = \frac{P(\text{Positive} \cap \text{``happy''})}{P(\text{``happy''})}$$

$$P(\text{"happy"}|\text{Positive}) = \frac{P(\text{"happy"} \cap \text{Positive})}{P(\text{Positive})}$$

Quiz

Objective: Derive Bayes' rule from the equations given on the last slide.

Question:

From the equations presented below, express the probability of a tweet being positive given that it contains the word happy in terms of the probability of a tweet containing the word happy given that it is positive

$$P(\text{Positive} | \text{``happy"}) = \frac{P(\text{Positive} \cap \text{``happy"})}{P(\text{``happy"})} \qquad P(\text{``happy"}|\text{Positive}) = \frac{P(\text{``happy"} \cap \text{Positive})}{P(\text{Positive})}$$

$$P(\text{"happy"}|\text{Positive}) = \frac{P(\text{"happy"} \cap \text{Positive})}{P(\text{Positive})}$$

Type: Multiple Choice, single answer

Options and solution:

 $P(\text{Positive} | \text{``happy''}) = P(\text{``happy''} | \text{Positive}) \times \frac{P(\text{Positive})}{P(\text{``happy''})}$

That's right. You just derived Bayes' rule.

 $P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{"happy"})}{P(\text{Positive})}$

 $P(\text{Positive}|\text{``happy"}) = P(\text{``happy"} \cap \text{Positive}) \times \frac{P(\text{Positive})}{P(\text{``happy"})} \text{ Your result should not include any intersection probabilities.}$

The ratio is upside-down in this equation.

 $P(\text{Positive}|\text{"happy"}) = P(\text{"happy"} \cap \text{Positive}) \times \frac{P(\text{"happy"})}{P(\text{Positive})}$ Your result should not include any intersection probabilities.

@ deeplearning.ai

Bayes' rule

$$P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$$

Quiz: Bayes' Rule Applied

Objective: Compute conditional probability using Bayes Rule

Question:

Question:
$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$
 Here, again, is Bayes' rule:

Suppose that in your dataset, 25% of the positive tweets contain the word 'happy'. You also know that a total of 13% of the tweets in your dataset contain the word 'happy', and that 40% of the total number of tweets are positive. You observe the tweet: "happy to learn NLP". What is the probability that this tweet is positive?

Type: Multiple Choice, single answer

Options and solution:

A: P(Positive | "happy") = 0.77 That's right. You just applied Bayes' rule.

B: P(Positive | "happy") = 0.08 Oops, looks like you might have the ratio of P(X) and P(Y) upside-down.

C: P(Positive | "happy") = 0.10 Remember to calculate the ratio in the formula for Bayes' rule.

D: P(Positive | "happy") = 1.92 Did you use the probability of a tweet being positive? Remember that a fractional probability must be between 0 and 1.

Summary

Conditional probabilities ———— Bayes' Rule

•
$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$

deeplearning.ai

Naïve Bayes Introduction

Naïve Bayes for Sentiment Analysis

Positive tweets

I am happy because I am learning NLP I am happy, not sad.

Negative tweets

I am sad, I am not learning NLP I am sad, not happy

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	13	12

$P(w_i \mid class)$

P(w_i | class)

leg
).25
).25
.08
Λ
.08
.08
0.08
.17

Naïve Bayes

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

word	Pos	Neg
	0.20	0.20
am	0.20	0.20
happy	0.14	0 10
because	0.10	0.05
learning	0 10	0.10
NLP	0.10	0.10
sad	0.10	0.10
not	0.10	0.15

Summary

• Naive Bayes inference condition rule for binary classification

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

Table of probabilities

deeplearning.ai

Laplacian Smoothing

Laplacian Smoothing

$$P(w_i|class) = \frac{freq(w_i, class)}{N_{class}}$$

class ∈ {Positive, Negative}

$$P(w_i|class) = \frac{freq(w_i, class) + 1}{N_{class} + V_{class}}$$

 N_{class} = frequency of all words in class

 V_{class} = number of unique words in class

Introducing $P(w_i | \text{class})$ with smoothing

Summary

• Laplacian smoothing to avoid $P(w_i|class) = 0$

Naïve Bayes formula

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

deeplearning.ai

Log Likelihood, Part 1

Ratio of probabilities

word	Pos	Neg	ratio
	0.19	0.20	
am	0.19	0.20	
happy	0.14	0.10	
because	0.10	0.05	
learning	0.10	0.10	
NLP	0.10	0.10	i
sad	0.10	0.15	
not	0.10	0.15	U. 6

$$ratio(w_i) = \frac{P(w_i \mid Pos)}{P(w_i \mid Neg)}$$

$$\frac{\text{freq}(w_i, 1) + 1}{\text{freq}(w_i, 0) + 1}$$

Naïve Bayes' inference

class ∈ {pos, neg}
w -> Set of m words in a tweet

$$\frac{P(pos)}{P(neg)} \left| \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} \right| > 1$$

- A simple, fast, and powerful baseline
- A probabilistic model used for classification

Log Likelihood

$$\frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

- Products bring risk of underflow
- log(a * b) = log(a) + log(b)

•
$$log(\frac{P(pos)}{P(neg)}\prod_{i=1}^{n}\frac{P(w_i|pos)}{P(w_i|neg)}) \Rightarrow log\frac{P(pos)}{P(neg)} + \sum_{i=1}^{n}log\frac{P(w_i|pos)}{P(w_i|neg)}$$

log prior + log likelihood

Calculating Lambda

tweet: I am happy because I am learning.

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(a\lambda(1)) = llog \frac{0.04}{0.04} = log(1) = 0$$

word	Pos	Neg	λ
l	0.05	0.05	
am	0.04	0.64	—
нарру	9.09	0.01	
because	0.01	0.01	
learning	0.03	0.01	
NLP	0.02	0.02	
sad	0.01	0.09	
not	0.02	0.03	-U. 4

Summing the Lambdas

doc: I am happy because I am learning.

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(\text{happy}) = log \frac{0.09}{0.01} \approx 2.2$$

word	Pos	Neg	λ
I	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	-
because	0.01	0.01	
learning	0.03	0.01	
NLP	0.02	0.02	
sad	0.01	0.09	
not	0.02	0.03	-U. 4

Summary

Word sentiment

$$ratio(w) = \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

deeplearning.ai

Log Likelihood, Part 2

Log Likelihood

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^{m} \lambda(w_i)$$

log likelihood =
$$0 + + + + + + + = 0$$

0 2.2 0 0 0 1.1 3.3

word	Pos	Neg	λ
	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-2.2
not	0.02	0.03	-0.4

Log Likelihood

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} > 0$$

Summary

Tweet sentiment:

$$log \prod_{i=1}^{m} ratio(w_i) = \sum_{i=1}^{m} \lambda(w_i) > 0$$

deeplearning.ai

Training Naïve Bayes

Outline

Five steps for training a Naïve Bayes model

Step 0: Collect and annotate corpus

Positive tweets

I am happy because I am learning Nam happy, not sad. @NLP

Negative tweets

I am sad, I am not learning NLP
I am sad, not happy!!

Lowercase

Remove punctuation, urls, names

Remove stop words

Stemming

Tokenize sentences

Positive tweets

[happi, because, learn, NLP] [happi, not, sad]

Negative tweets

[sad, not, learn, NLP] [sad, not, happi]

Step 1: Preprocess

Positive tweets

[happi, because, learn, NLP]

[happi, not, sad]

Negative tweets

[sad, not, learn, NLP] [sad, not, happi]

Step 2: Word count freq(w, class)

word	Pos	Neg	
happi	2	1	_
because	1	0	
learn	1	1	
NLP	1	1	
sad	1	2	
not	1	2	
N _{class}	7	7	_

freq(w, class)

word	Pos	Neg
happi	2	1
because	1	0
learn	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	7	7

Step 3:
$$P(w|class)$$

$$V_{class} = 6$$

$$\frac{freq(w, class) + 1}{N_{class} + V_{class}}$$

P(w pos)	Step 4:
$\lambda(w) = I_0 a \xrightarrow{\gamma}$	Get
P(w neg)	lambda

word	Pos	Neg	λ
happy	0.23	0.15	0.43
because	0.15	0.07	0.6
learning	80.0	80.0	0
NLP	80.0	80.0	0
sad	0.08	0.17	-0.75
not	0.08	0.17	-0.75

Step 5: Get the D_{pos} = Number of positive tweets

 D_{neg} = Number of negative tweets

$$logprior = log \frac{D_{pos}}{D_{neg}}$$

If dataset is balanced, $D_{pos} = D_{neg}$ and logprior = 0.

Summary

- 1. Get or annotate a dataset with positive and negative tweets
- 2. Preprocess the tweets: process_tweet(tweet) \rightarrow [w₁, w₂, w₃, ...]
- 3. Compute freq(w, class)
- 4. Get P(w | pos), P(w | neg)
- 5. Get $\lambda(w)$
- 6. Compute logprior = log(P(pos) / P(neg))

deeplearning.ai

Testing Naïve Bayes

Outline

- Predict using a N\u00e4ive Bayes Model
- Using your validation set to compute model accuracy

Predict using Naïve Bayes

- log-likelihood dictionary $\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$ $logprior = log \frac{D_{pos}}{D_{neg}} = 0$
- Tweet: [I, pass, the NLP, interview]

$$score = -0.01 + 0.5 - 0.01 + 0 + logprior = 0.48$$

$$pred = score > 0$$

Testing Naïve Bayes

• $X_{val} Y_{val} \lambda logprior$

$$score = predict(X_{val}, \lambda, logprior)$$

$$pred = score > 0$$

$$\begin{array}{c} pred = score > 0 \\ \begin{bmatrix} 0.5 \\ -1 \\ 1.3 \\ \vdots \\ score_m \end{bmatrix} > 0 = \begin{bmatrix} 0.5 > 0 \\ -1 > 0 \\ 1.3 > 0 \\ \vdots \\ score_m > 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ pred_m \end{bmatrix}$$

Testing Naïve Bayes

• $X_{val} Y_{val} \lambda logprior$

$$score = predict(X_{val}, \lambda, logprior)$$

$$pred = score > 0$$

$$\frac{1}{m}\sum_{i=1}^{m}(pred_i == Y_{val_i})$$

$$\begin{bmatrix} \underline{0} \\ \underline{1} \\ 1 \\ \vdots \\ pred_m \end{bmatrix} == \begin{bmatrix} \underline{0} \\ \underline{0} \\ 1 \\ \vdots \\ Y_{val_m} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{0} \\ \frac{1}{1} \\ \vdots \\ pred_m == Y_{val_m} \end{bmatrix}$$

Summary

- X_{val} Y_{val} Performance on unseen data
- ullet Predict using λ and logprior for each new tweet
- Accuracy $\longrightarrow \frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$
- What about words that do not appear in $\lambda(w)$?

deeplearning.ai

Applications of Naïve Bayes

$$P(pos|tweet) \approx P(pos)P(tweet|pos)$$

$$P(neg|tweet) \approx P(neg)P(tweet|neg)$$

$$\frac{P(pos|tweet)}{P(neg|tweet)} = \frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

Author identification:

$$\frac{P(\mathbf{book})}{P(\mathbf{book})}$$

Spam filtering:

$$\frac{P(\text{spam}|\text{email})}{P(\text{nonspam}|\text{email})}$$

Information retrieval:

$$P(\text{document}_{\mathbf{k}}|\text{query}) \propto \prod_{i=0}^{|query|} P(\text{query}_{\mathbf{i}}|\text{document}_{\mathbf{k}})$$

Retrieve document if $P(\text{document}_k|\text{query}) > \text{threshold}$

"Icon made by Vector Market from www.flaticon.com"

Word disambiguation:

$$\frac{P(\text{river}|\text{text})}{P(\text{money}|\text{text})}$$

Bank:

"Pictures with CC"

Naïve Bayes Applications

- Sentiment analysis
- Author identification
- Information retrieval
- Word disambiguation
- Simple, fast and robust!

deeplearning.ai

Naïve Bayes Assumptions

Outline

- Independence
- Relative frequency in corpus

Naïve Bayes Assumptions

Independence

"It is sunny and hot in the Sahara desert."

Naïve Bayes Assumptions

"It's always cold and snowy in ____."

spring?? summer? fall?? winter??

Naïve Bayes Assumptions

Relative frequencies in corpus

Summary

- Independence: Not true in NLP
- Relative frequency of classes affect the model

Error Analysis

Outline

- Removing punctuation and stop words
- Word order
- Adversarial attacks

Processing as a Source of Errors: Punctuation

Tweet: My beloved grandmotherX

processed_tweet: [belov, grandmoth]

Processing as a Source of Errors: Removing Words

Tweet: This is not good, because your attitude is not even close to being nice.

processed_tweet: [good, attitude, close, nice]

Processing as a Source of Errors: Word Order

Tweet: I am happy because I do not go.

Tweet: I am not happy because I did go.

Adversarial attacks

Sarcasm, Irony and Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]

Summary

- Removing punctuation
- Removing words
- Word order
- Adversarial attacks