NoSQL在腾讯应用实践

吴悦

邮箱: joywu@tencent.com

微博: t.qq.com/iwuyue

相册的烦恼

Qzone的特点

Sns Game的不同

交叉访问 更新频繁 放大效应

中小APP的需求

LAMP (Linux+Apache+Mysql+Php)

应对之策

相册的烦恼

• File System - TFS

QZONE 的特 点

NoSQL- TDB/TSSD

SNS Game的 不同

NoSQL— CMEM

第三方APP的 需求

SQL Cluster – CDB

NoSQL-TDB

- 07年研发
- 海量索引管理
- 快速迁移

TDB-系统框架

• C.H.M结构

海量索引管理-大表逻辑空间

- 大表
 - 表示一个业务可见的表空间

APD 架构平台部

海量索引管理-小表设计

- 小表
 - 分成16个page
 - 每个page是一个hash文件
- 裸设备Direct IO读写
 - 页对应裸设备的特定位置
- 独立写缓存
 - 不能完全相信OS的异步写
 - 可控制写缓存大小
 - 控制写速度

快速搬迁

• 以16MB PAGE为单位进行搬迁

效果

- 索引存储
 - Qzone 5000亿条记录
 - 传统B树设计需500*32G
 - 大表设计需500M
- 空洞
 - 基本无空洞,空间利用率到85%
- IO
 - -80%的记录一次IO

NoSQL - TMEM

- 09年研发
- 高性能
- 内存可靠性

Memory 特殊性

- 很高的随机读写性能
 - 单机300W + IO/PS
- 易失性存储
 - 掉电后,数据丢失

TMEM-高性能接入+实时备份

- KCCD,解决接入能力
- TFS, 做数据流水+镜像

NoSQL-TSSD

- 10年研发
- 随机写入

SSD 特殊性

- 支持很高的读取IOPS
 - 300GB SSD盘
 - 随机读取4KB,可达30K/S
- 随机写稳定性和寿命不佳
 - 写入放大
 - 300GB的SSD盘
 - 顺序写入: 300GB*3000 = 900TB
 - 随机写入: (300GB*3000)(4KB/512KB) = 7TB

TSSD-随机转顺序

- PAGE-MAPPING技术
- 回收算法

阶段小结

SATA (TFS)

持久化 大量读,新增 存储100T+

相册, 头像, 邮件, 网盘

SAS (TDB)

持久化 大量读少量写 存储10+T

Qzone 日 志 SSD (TSSD)

持久临时并存 大量读大量写 存储1+T

信息中心、

MEM (TMEM)

持久临时并存 大量读大量写 存储10+G

农牧场、 胡来三国、

根据IO访问密度选择存储

存储介质	价格(\$)	容量(GB)	IOPS	每GB IOPS	每GB成本(\$)
SATA	200	2000	100	1/20	0.10
SAS	370	600	200	1/3	0.62
SSD	1000	600	30000	50	1.67
RAM	440	32	800,000	25,000	13.75

• 计算各种介质适合的IO访问密度

存储介质	每GB IOPS区间	系统
SATA	(0,0.31]	TFS
SAS	(0.31,0.9]	TDB
SSD	(0.9,1664]	TSSD
DRAM	(1664, ∞]	TMEM

开放的挑战

- 接口的挑战!
- 如何在存储层之上兼容标准接口?
 - Posix
 - Mysql
 - Memcached, redis

CFS - 像ext3一样使用TFS

CMEM – 像Memcached一样使用 NoSQL

CDB - 像Mysql一样使用NoSQL

解决方案总结

ArchSummit

中国·深圳 2012.08

INTERNATIONAL ARCHITECT SUMMIT

全球架构师峰会 详情请访问: architectsummit.com

- •3天 •6场主题演讲
- 3场圆桌论坛 9场专题会议
- •国内外**30**余家IT、互联网公司的**50**多位来自一线的讲师齐聚一堂

OCOM

杭州站 · 2012年10月25日~27日

QCon北京站官方网站和资料下载

www.qconbeijing.com