Project: Cross-validation for model selection

Diego Urdapilleta de la Parra

March 3, 2025

Background

Setup and preliminary definitions

Let $\mathcal{D}_n := \{(y_i, \boldsymbol{x}_i) : i \in [n]\}$ be a set of independent data points drawn from a distribution $\mathbb{P}_{y,\boldsymbol{x}}$ for $(y,\boldsymbol{x}) \in \mathbb{R}^{1+p}$. We treat the \boldsymbol{x}_i as predictors of the outcome y_i , and we assume a linear model

$$y = X\beta + e$$

where $\boldsymbol{X} = [\boldsymbol{x}_1 \ \boldsymbol{x}_2 \ \cdots \ \boldsymbol{x}_n]^{\top} \in \mathbb{R}^{n \times p}$ is the design matrix, $\boldsymbol{y} = [y_1 \ y_2 \ \cdots \ y_n]^{\top}$, and \boldsymbol{e} is a mean-zero random vector with $\text{Cov}(\boldsymbol{e}) = \sigma_2 \boldsymbol{I}_n$.

In the context of competing models

Define

$$\mathcal{L}_n\left(\alpha, \mathcal{D}_n\right) = \frac{1}{n} \sum_{i=1}^n \left(\boldsymbol{x}_i^{\top} \boldsymbol{\beta} + e_i - \boldsymbol{x}_{i\alpha}^{\top} \hat{\boldsymbol{\beta}}_{\alpha} \right)^2$$

Lemma 1

$$\mathbb{E}\left[\mathcal{L}_{n}\left(\alpha, \mathcal{D}_{n}\right) \middle| \boldsymbol{X}\right] = \sigma^{2} + \frac{1}{n} d_{\alpha} \sigma^{2} + \frac{1}{n} \left|\left|M_{\alpha} \boldsymbol{X} \boldsymbol{\beta}\right|\right|^{2}$$

Proof.

$$\mathbb{E}\left[\mathcal{L}_{n}\left(()\,\alpha,\mathcal{D}_{n}\right),\boldsymbol{y},\boldsymbol{X}\right]=$$