Indian Institute of Technology Kharagpur

CS60094: Computational Number Theory, Spring 2023 Mid-Semester Examination

22 February 2023	CSE 107, 2PM - 4PM	TOTAL MARKS = 60
Answer exactly five questions	Keep your answers clear and concise. State	e all assumptions you make.
/		
Let r_{i+1} denote the remain	computed by the repeated Euclidean division der obtained by the <i>i</i> -th division (that is emputation proceeds as $gcd(r_0, r_1) = gcd(r_0, r_1)$) for some $k \ge 1$.	s, in the <i>i</i> -th iteration of the
	(r_1) requires exactly k Euclidean divisions, so the number: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + k$	
2. Let $m \in \mathbb{N}$ and a_1, a_2, \dots, a_t algorithm to compute these using at most $3t$ modular m	$x \in \mathbb{Z}_m^*$. Suppose that we want to compute modular inverses with just one call to the extultiplications (modulo m).	$a_1^{-1}, a_2^{-1}, \dots, a_t^{-1}$. Describe an ended Euclidean algorithm and
3 Solve the following system of	f congruences:	
/	$x \equiv 17 \pmod{36}$	
	$x \equiv 28 \pmod{40}$	
	$x \equiv 3 \pmod{15}$	
1. In the class, we have seen by solutions of $f(x) \equiv 0 \pmod{p^{c}}$ to proofs modulo p^{2c} .	now to lift solutions to congruences of the e^{e+1}). You will now modify the method sligh	form $f(x) \equiv 0 \pmod{p^r}$ to the atly to lift roots of $f(x)$ modulo
	nial with integer coefficients, $e \in \mathbb{N}$ and z a how we can compute all values of k for which	
(b) Given that the only sol of Part (a) to compute	ution to $2x^3 + 4x^2 + 3 \equiv 0 \pmod{25}$ is 14 (mod all the solutions of $2x^3 + 4x^2 + 3 \equiv 0 \pmod{6}$	od 25), use the lifting procedure 25).
		G + G
5. Let g and g' be two primitive	re roots modulo an odd prime p . Prove that	:
(a) gg' is not a primitive re	pot modulo p .	
(b) $g^e \pmod{p}$ is a quadra	tic residue modulo p if and only if e is even.	
		5+2+5 =

22 February 2023

- 6. Let $m \in \mathbb{N}$ be a modulus with a primitive root.

 (a) Prove that a is a primitive root modulo m if and only if $a^{\phi(m)/p} \not\equiv 1 \pmod{m}$ for every prime divisor
 - p of $\phi(m)$.

 (b) Design an algorithm that, given $a \in \mathbb{Z}_m^*$ and the prime factorisation of $\phi(m)$ determines whether or not a is a primitive root modulo m.

6 + 6 = 12

- 7. (a) Show that the polynomial $f(x) = x^3 + x^2 + 2$ is irreducible over \mathbb{F}_3 .
 - (b) Define F₂₇ = F₃₃ = F₃(θ) where θ is a root of f(x) i.e., θ³ + θ² + 2 = 0. Determine whether γ = θ + 1 is a primitive element of F₂₇.
 Hint: |F₂₇^{*}| = 26 = 2 × 13. The order of any element in F₂₇^{*} must be one of the following: 1, 2, 13, 26.
 (c) Is δ = θ² ∈ F₂₇ a normal element of F₂₇?

- (d) Is either γ or δ primitive normal?

2+4+4+2=12