Python no Muerde

Yo Sí.

por Roberto Alsina

Este libro está disponible bajo una licencia CC-by-nc-sa-2.5.

Es decir que usted es libre de:

Copiar, distribuir, exhibir, y ejecutar la obra

Hacer obras derivadas

Bajo las siguientes condiciones:

Atribución — Usted debe atribuir la obra en la forma especificada por el autor o el licenciante.

No Comercial — Usted no puede usar esta obra con fines comerciales.

Compartir Obras Derivadas Igual — Si usted altera, transforma, o crea sobre esta obra, sólo podrá distribuir la obra derivada resultante bajo una licencia idéntica a ésta.

El texto completo de la licencia está en el apéndice "LICENCIA" al final del libro.

La "solpiente" fue creada por Pablo Ziliani, y licenciada bajo una licencia CC-by-sa-2.5, más detalles en http://creativecommons.org/licenses/by-sa/2.5/ar/

Autor: Roberto Alsina <ralsina@netmanagers.com.ar>

Versión: 8e80f80bdea9

Introducción

Introducción

Requisitos

Éste es un libro sobre Python ¹. Es un libro que trata de explicar una manera posible de usarlo, una manera de tomar una idea de tu cabeza y convertirla en un programa, que puedas usar y compartir.

1 ¿Por qué Python? Porque es mi lenguaje favorito. ¿De qué otro lenguaje podría escribir?

¿Qué necesitás saber para poder leer este libro?

El libro no va a explicar la sintaxis de python, sino que va a asumir que la conocés. De todas formas, la primera vez que aparezca algo nuevo, va a indicar dónde se puede aprender más sobre ello. Por ejemplo:

Creamos una lista con los cuadrados de los números pares cuadrados = [x^{**2} for x in numeros if $x^{*}2 == 0$]

Referencia

Eso es una comprensión de lista

En general esas referencias van a llevarte al Tutorial de Python en castellano. Ese libro contiene toda la información acerca del lenguaje que se necesita para poder seguir éste.

Cuando una aplicación requiera una interfaz gráfica, vamos a utilizar PyQt 2 . No vamos a asumir ningún conocimiento previo de PyQt pero tampoco se va a explicar en detalle, excepto cuando involucre un concepto nuevo.

Por ejemplo, no voy a explicar el significado de setEnabled pero sí el concepto de signals y slots cuando haga falta.

Convenciones

- PyQt es software libre, es multiplataforma, y es muy potente y fácil de usar. Eso no quiere decir que las alternativas no tengan las mismas características, pero quiero enfocarme en programar, no en discutir, y yo prefiero PyQt. Si preferís una alternativa, este libro es libre: podés hacer una versión propia!
- 3 PyQt tiene una excelente documentación de referencia para esas cosas.

Convenciones

Las variables, funciones y palabras reservadas de python se mostrarán en el texto con letra monoespaciada. Por ejemplo, for es una palabra reservada.

Los fragmentos de código fuente se va a mostrar así:

```
# Creamos una lista con los cuadrados de los números impares cuadrados = [ x**2 for x in numeros if x*2 > 0 ]
```

Los listados extensos o programas completos se incluirán sin cajas, mostrarán números de líneas e indicarán el nombre del mismo:

cuadrados.py

```
1 # Creamos una lista con los cuadrados de los números impares
2 cuadrados = [ x**2 for x in numeros if x%2 > 0 ]
```

Lenguaje

Las discusiones acerca de como escribir un libro técnico en castellano son eternas. Que en España se traduce todo todo todo. Que en Argentina no. Que decir "cadena de caracteres" en lugar de string es malo para la ecología.

Por suerte en este libro hay un único criterio superador que ojalá otros libros adopten: Está escrito como escribo yo. Ni un poquito distinto. No creo que siquiera califique como castellano, como mucho está escrito en argentino. Si a los lectores de la ex madre patria les molesta el estilo... tradúzcanlo.

Мара

Dentro de lo posible, voy a intentar que cada capítulo sea autocontenido, explicando un tema sin depender demasiado de los otros, y terminando con un ejemplo concreto y funcional.

Éstos son los capítulos del libro, con breves descripciones.

Convenciones

1. Introducción

2. Pensar en python

Programar en python, a veces, no es como programar en otros lenguajes. Acá vas a ver algunos ejemplos. Si te gustan... python es para vos. Si no te gustan... bueno, el libro es barato... capaz que Java es lo tuyo..

3. La vida es corta

Por eso, hay muchas cosas que no vale la pena hacer. Claro, yo estoy escribiendo un editor de textos así que este capítulo es pura hipocresía...

4. Las capas de una aplicación

Batman, los alfajores santafesinos, el ozono... las mejores cosas tienen capas. Cómo organizar una aplicación en capas.

5. Documentación y testing

Documentar es testear. Testear es documentar.

6. La GUI es la parte fácil

Lo difícil es saber que querés. Lamentablemente este capítulo te muestra lo fácil. Una introducción rápida a PyQt.

7. Diseño de interfaz gráfica

Visto desde la mirada del programador. Cómo hacer para no meterse en un callejón sin salida. Cómo hacerle caso a un diseñador.

8. Un programa útil

Integremos las cosas que vimos antes y usémoslas para algo.

9. Instalación, deployment y otras yerbas

Hacer que tu programa funcione en la computadora de otra gente

10. Cómo crear un proyecto de software libre

¿Cómo se hace? ¿Qué se necesita? ¿Me conviene? Las respuestas son "depende", "ganas" y "a veces". O "así", "una idea" y "sí". O sea, no sé. Pero veamos.

11. Rebelión contra el Zen

Cuándo es mejor implícito que explícito? ¿Cuándo es algo lo suficientemente especial para ser, realmente, especial?

12. Herramientas

Programar tiene más en común con la carpintería que con la arquitectura.

13. Conclusiones, caminos y rutas de escape

¿Y ahora qué?

Este es un diagrama de dependencias. Cada capítulo tiene flechas que lo conectan desde los capítulos que necesitás haber leído anteriormente.

Con suerte será un grafo acíclico.

La línea de puntos significa 'no es realmente necesario, pero...'

Este libro se lee siguiendo las flechas.

Acerca del Autor

Habrá que pedirle a alguien que ponga algo no demasiado insultante.

Acerca del Autor

Contenidos

Introduccion	4
Requisitos	4
Convenciones	5
Lenguaje	5
Mapa	5
Acerca del Autor	7
Pensar en Python	11
Get/Set	11
Singletons	15
Loops y medios loops	19
Switches	20
Patos y Tipos	21
Genéricos	23
Decoradores	26
Claro pero corto pero claro	31
Lambdas vs alternativas	33
Ternarios vs ifs	35
Pedir perdón o pedir permiso	36
La vida es Corta	39
El Problema	40
Twill	42
Bottle	44
Autenticación	47
Storm	53
HTML / Templates	59

Acerca del Autor

Backend	63
Conclusiones	67
Las Capas de una Aplicación	69
Proyecto	70
El Problema	70
Capa de Datos: Diseño	71
El Tablero	72
Las Fichas	72
El Jugador	72
Documentación y Testing	73
Docstrings	73
Doctests	75
Cobertura	81
Mocking	82
La GUI es la Parte Fácil	85
Programación con Eventos	85
Signals / Slots	85
Ventanas / Diálogos	85
Acciones	85
Proyecto	85
Diseño de Interfaz Gráfica	86
Un Programa Útil	88
Proyecto	88
Instalación, Deployment y Otras Yerbas	89
Cómo Crear un Proyecto de Software Libre	90
Rebelión Contra el Zen	91

Acerca del Autor

Herramientas	92
Conclusiones, Caminos y Rutas de Escape	93
Licencia de este libro	94
Agradecimientos	102
El Meta-Libro	103

Pensar en Python

Lo triste es que esta pobre gente trabajó mucho más de lo necesario, para producir mucho más código del necesario, que funciona mucho más lento que el código python idiomático correspondiente.

Phillip J. Eby en Python no es Java

Nuestra misión en este capítulo es pensar en qué quiere decir Eby con "código python idiomático" en esa cita. Nunca nadie va a poder hacer un pythonómetro que te mida cuán idiomático es un fragmento de código, pero es posible desarrollar un instinto, una "nariz" para sentir el "olor a python", así como un enófilo 4 aprende a distinguir el aroma a clavos de hierro-níquel número 7 ligeramente oxidados en un Cabernet Sauvignon. 5

- 4 En mi barrio los llamábamos curdas.
- 5 Con la esperanza de ser un poco menos pretencioso y/o chanta, si Zeus quiere.

Y si la mejor forma de conocer el vino es tomar vino, la mejor forma de conocer el código es ver código. Este capítulo no es exhaustivo, no muestra todas las maneras en que python es peculiar, ni todas las cosas que hacen que tu código sea "pythonic" — entre otros motivos porque *no las conozco* — pero muestra varias. El resto es cuestión de gustos.

Get/Set

Una instancia de una clase contiene valores. ¿Cómo se accede a ellos? Hay dos maneras. Una es con "getters y setters", y estas son algunas de sus manifestaciones:

```
# Un getter te "toma" (get) un valor de adentro de un objeto y
# se puede ver así:
x1 = p.x()
x1 = p.get_x()
x1 = p.getX()
# Un setter "mete" un valor en un objeto y puede verse así:
p.set_x(x1)
p.setX(x1)
```

Otra manera es simplemente usar un miembro x de la clase:

$$p.x = x1$$

 $x1 = p.x$

La ventaja de usar getters y setters es el "encapsulamiento". No dicta que la clase tenga un miembro x, tal vez el valor que yo ingreso via setX es manipulado, validado, almacenado en una base de datos, o tatuado en el estómago de policías retirados con problemas neurológicos, lo único que importa es que luego cuando lo saco con el getter me dé lo que tenga que dar (que no quiere decir "me dé lo mismo que puse").

Muchas veces, los getters/setters se toman como un hecho de la vida, hago programación orientada a objetos => hago getters/setters.

Bueno, no.

Analogía rebuscada

En un almacén, para tener un paquete de yerba, hay que pedírselo al almacenero. En un supermercado, para tener un paquete de yerba, hay que agarrar un paquete de yerba. En una farmacia (de las grandes), para obtener un paquete de yerba hay que agarrar un paquete de yerba, pero para tener un Lexotanil hay que pedirlo al farmacéutico.

En Java o C++, la costumbre es escribir programas como almacenes, porque la alternativa es escribir supermercados donde chicos de 5 compran raticida.

En Python, la costumbre es escribir programas como supermercados, porque se pueden convertir en farmacias apenas decidamos que tener raticida es buena idea.

Imaginemos que estamos escribiendo un programa que trabaja con "puntos" o sea coordenadas (X,Y), y que queremos implementarlos con una clase. Por ejemplo:

Listado 1

```
1 class Punto(object):
2  def init (self, x=0, y=0):
```

```
3
           self.set x(x)
 4
           self.set y(y)
 5
 6
       def x(self):
 7
           return self. x
 8
 9
       def y(self):
           return self._y
10
11
12
       def set x(self,x):
13
           self._x=x
14
15
       def set y(self,y):
16
           self. y=y
```

Esa es una implementación perfectamente respetable de un punto. Guarda X, guarda Y, permite volver a averiguar sus valores... el problema es que eso no es python. Eso es C++. Claro, un compilador C++ se negaría a procesarlo, pero a mí no me engañan tan fácil, eso es C++ reescrito para que parezca python.

¿Por qué eso no es python? Por el obvio abuso de los métodos de acceso (accessors, getter/setters), que son completamente innecesarios.

Si la clase punto es simplemente esto, y nada más que esto, y no tiene otra funcionalidad, entonces prefiero esta:

Listado 2

```
1 class Punto(object):
2    def __init__(self, x=0, y=0):
3         self.x=x
4    self.y=y
```

No sólo es más corta, sino que su funcionalidad es completamente equivalente, es más fácil de leer porque es obvia (se puede leer de un vistazo), y hasta es más eficiente.

La única diferencia es que lo que antes era p.x() ahora es p.x y que $p.set_x(14)$ es p.x=14, que no es un cambio importante, y es una mejora en legibilidad.

Es más, si la clase punto fuera solamente ésto, podría ni siquiera ser una clase, sino una namedtuple:

Listado 3

1 Punto = namedtuple('Punto', 'x y')

Y el comportamiento es *exactamente el del listado 2* excepto que es aún más eficiente.

Nota

Es fundamental conocer las estructuras de datos que te da el lenguaje. En Python eso significa conocer diccionarios, tuplas y listas y el módulo collections de la biblioteca standard.

Por supuesto que siempre está la posibilidad de que la clase Punto evolucione, y haga otras cosas, como por ejemplo calcular la distancia al origen de un punto.

Si bien sería fácil hacer una función que tome una namedtuple y calcule ese valor, es mejor mantener todo el código que manipula los datos de Punto dentro de la clase en vez de crear una colección de funciones ad-hoc. Una namedtuple es un reemplazo para las clases sin métodos o los struct de C/C++.

Pero... hay que considerar el programa como una criatura en evolución. Tal vez al comenzar con una namedtuple *era suficiente*. No valía la pena demorar lo demás mientras se diseñaba la clase Punto. Y pasar de una namedtuple a la clase Punto del listado 2 es sencillo, ya que la interfaz que presentan es idéntica.

La crítica que un programador que conoce ${\rm OOP}^{\ 6}$ haría (con justa razón) es que no tenemos encapsulamiento. Que el usuario accede directamente a Punto.x y Punto.y por lo que no podemos comprobar la validez de los valores asignados, o hacer operaciones sobre los mismos, etc.

Objetos, pero me niego a usar la abreviatura POO porque pienso en ositos.

Muy bien, supongamos que queremos que el usuario pueda poner sólo valores positivos en x, y que los valores negativos deban ser multiplicados por -1.

En la clase del listado 1:

Listado 4

Singletons

```
class PuntoDerecho(Punto):

'''Un punto que solo puede estar a la derecha del eje Y'''

def set_x(self, x):
    self._x = abs(x)
```

Pero... también es fácil de hacer en el listado 2, sin cambiar la interfaz que se presenta al usuario:

Listado 5

```
1 class PuntoDerecho(object):
2    '''Un punto que solo puede estar a la derecha del eje Y'''
3
4    def get_x(self):
5       return self._x
6
7    def set_x(self, x):
8        self._x = abs(x)
9
10    x = property(get_x, set_x)
```

Obviamente esto es casi lo mismo que si partimos del listado 1, pero con algunas diferencias:

- La forma de acceder a x o de modificarlo es mejor print p.x en lugar de print p.x(). Sí, es cuestión de gustos nomás.
- No se hicieron los métodos para y por ser innecesarios.

Esto es importante: de ser necesarios esos métodos en el futuro es fácil agregarlos. Si nunca lo son, entonces el listado 1 tiene dos funciones inútiles.

Sí, son dos funciones cortas, que seguramente no crean bugs pero tienen implicaciones de performance, y tienen un efecto que a mí personalmente me molesta: separan el código que hace algo metiendo en el medio código que no hace nada.

Si esos métodos son funcionalmente nulos, cada vez que están en pantalla es como una franja negra de censura de 5 líneas de alto cruzando mi editor. Es *molesto*.

Singletons

Singletons

En un lenguaje funcional, uno no necesita patrones de diseño porque el lenguaje es de tan alto nivel que terminás programando en conceptos que eliminan los patrones de diseño por completo.

Slava Akhmechet

Una de las preguntas más frecuentes de novicios en python, pero con experiencia en otros lenguajes es "¿cómo hago un singleton?". Un singleton es una clase que sólo puede instanciarse una vez. De esa manera, uno puede obtener esa única instancia simplemente reinstanciando la clase.

Hay varias maneras de hacer un singleton en python, pero antes de eso, dejemos en claro **qué** es un singleton: un singleton es una variable global "lazy".

En este contexto "lazy" quiere decir que hasta que la necesito no se instancia. Excepto por eso, no habría diferencias visibles con una variable global.

El mecanismo "obvio" para hacer un singleton en python es un módulo, que son singletons porque así están implementados.

Ejemplo:

```
>>> import os
>>> os.x=1
>>> os.x
1
>>> import os as os2
>>> os2.x
1
>>> os2.x=4
>>> os.x
4
>>>
```

No importa cuantas veces importe os (o cualquier otro módulo), no importa con qué nombre lo haga, siempre es el mismo objeto.

Por lo tanto, podríamos poner todos nuestros singletons en un módulo (o en varios) e instanciarlos con import y funciones dentro de ese módulo.

Ejemplo:

singleton1.py

```
1 # -*- coding: utf-8 -*-
2
3 cosa = []
4
5 def misingle():
6    return cosa
>>> import singleton1
>>> uno=singleton1.misingle()
>>> print uno
[]
>>> uno.append('xx')
>>> print dos
['xx']
```

Como pueden ver, uno y dos son el mismo objeto.

Una alternativa es no usar un singleton, sino lo que Alex Martelli llamó un Borg:

```
class Borg:
```

```
__shared_state = {}
def __init__(self):
    self.__dict__ = self.__shared_state
```

¿Cómo funciona?

```
>>> a=Borg()
>>> b=Borg()
>>> a.x=1
>>> print b.x
```

Si bien a y b no son el mismo objeto por lo que no son realmente singletons, el efecto final es el mismo.

Por último, si andás con ganas de probar magia más potente, es posible hacer un singleton usando metaclases, según esta receta de Andres Tuells:

```
1 ## {{{ http://code.activestate.com/recipes/102187/ (r1)
2 """
3 USAGE:
4 class A:
```

Singletons

```
__metaclass__ = Singleton
 5
 6
       def __init__(self):
 7
           self.a=1
8
9 a=A()
10 b=A()
11 a is b #true
12
13
   You don't have access to the constructor,
14 you only can call a factory that returns always
   the same instance.
15
16
17
18
   _global_dict = {}
19
20
   def Singleton(name, bases, namespace):
21
        class Result:pass
22
       Result. name = name
        Result. bases = bases
23
       Result. dict = namespace
24
       _global_dict[Result] = Result()
25
26
        return Factory(Result)
27
28
29
   class Factory:
30
        def init (self, key):
31
           self. key = key
        def call (self):
32
33
            return global dict[self. key]
34
35
   def test():
36
        class A:
           __metaclass__ = Singleton
37
           def __init__(self):
38
                self.a=1
39
40
       a=A()
41
       a1=A()
42
       print "a is a1", a is a1
43
        a.a=12
44
        a2=A()
```

Loops y medios loops

```
45     print "a.a == a2.a == 12", a.a == a2.a == 12
46     class B:
47          __metaclass__ = Singleton
48     b=B()
49     a=A()
50     print "a is b",a==b
51 ## end of http://code.activestate.com/recipes/102187/ }}}
```

Seguramente hay otras implementaciones posibles. Yo opino que Borg al **no** ser un verdadero singleton, es la más interesante: hace lo mismo, son tres líneas de código fácil, *eso es python*.

Loops y medios loops

Repetirse es malo.

Anónimo

Repetirse es malo.

Anónimo

Hay una estructura de control que Knuth llama el "loop n y medio" (n-and-half loop). Es algo así:

Switches

iSe sale por el medio! Como siempre se pasa al menos por una parte del loop (A), Knuth le puso "loop n y medio".

Ésta es la representación de esta estructura en Python:

```
while True:
    frob(gargle)
    # Cortamos?
    if gargle.blasted:
        # Cortamos!
        break
    refrob(gargle)
```

No, no quiero que me discutan. Ésa es la forma de hacerlo. No hay que tenerle miedo al break! En particular la siguiente forma me parece mucho peor:

```
frob(gargle)
# Seguimos?
while not gargle.blasted:
    refrob(gargle)
    frob(gargle)
```

Es más propensa a errores. Antes, podía ser que frob(gargle) no fuera lo correcto. Ahora no solo puede ser incorrecto, sino que puede ser incorrecto o inconsistente, si cambio solo una de las dos veces que se usa.

Claro, en un ejemplo de juguete esa repetición no molesta. En la vida real, tal vez haya 40 líneas entre una y otra y no sea obvio que esa línea se repite.

Switches

Hay una cosa que muchas veces los que programan en Python envidian de otros lenguajes... switch (o case).

Sí, Python no tiene un "if multirrama" ni un "goto computado" ni nada de eso. Pero ... hay maneras y maneras de sobrevivir a esa carencia.

Esta es la peor:

```
if codigo == 'a':
    return procesa_a()
if codigo == 'b':
    return procesa b()
```

```
:
:
etc.

Esta es apenas un cachito mejor:

if codigo == 'a':
    return procesa_a()
elif codigo == 'b':
    return procesa_b()
:
:
etc.

Esta es la buena:

procesos = {
    'a': procesa_a,
    'b': procesa_b,
    :
    etc.
}
```

return procesos[codigo]()

Al utilizar un diccionario para clasificar las funciones, es mucho más eficiente que una cadena de if. Es además muchísimo más fácil de mantener (por ejemplo, podríamos poner procesos en un módulo separado).

Patos y Tipos

"Estás en un laberinto de pasajes retorcidos, todos iguales."

Will Crowther en "Adventure"

"Estás en un laberinto de pasajes retorcidos, todos distintos."

Don Woods en "Adventure"

Observemos este fragmento de código:

Patos y Tipos

```
def diferencia(a,b):
    # Devuelve un conjunto con las cosas que están
    # en A pero no en B
    return set(a) - set(b)
```

Set

Un set (conjunto) es una estructura de datos que almacena cosas sin repeticiones. Por ejemplo, set([1,2,3,2]) es lo mismo que set([1,2,3]).

También soporta las típicas operaciones de conjuntos, como intersección, unión y diferencia.

Ver también: Sets en la biblioteca standard

Es obvio como funciona con, por ejemplo, una lista:

```
>>> diferencia([1,2],[2,3]) set([1])
```

¿Pero es igual de obvio que funciona con cadenas?

```
>>> diferencia("batman","murciélago")
set(['b', 't', 'n'])
```

¿Por qué funciona? ¿Es que las cadenas están implementadas como una subclase de list? No, la implementación de las clases str o unicode es completamente independiente. Pero son *parecidos*. Tienen muchas cosas en común.

```
>>> l=['c','a','s','a']
>>> s='casa'
>>> l[0] , s[0]
('c', 'c')
>>> l[-2:] , s[-2:]
(['s', 'a'], 'sa')
>>> '-'.join(l)
'c-a-s-a'
```

```
>>> '-'.join(s)
'c-a-s-a'
>>> set(l)
set(['a', 'c', 's'])
>>> set(s)
set(['a', 'c', 's'])
```

Para la mayoría de los usos posibles, listas y cadenas son *muy* parecidas. Y resulta que son lo bastante parecidas como para que en nuestra función diferencia sean completamente equivalentes.

Un programa escrito sin pensar en "¿De qué clase es este objeto?" sino en "¿Qué puede hacer este objeto?", es un programa muy diferente.

Para empezar, suele ser un programa más "informal" en el sentido de que simplemente asumimos que nos van a dar un objeto que nos sirva. Si no nos sirve, bueno, habrá una excepción.

Al mismo tiempo que da una sensación de libertad (iHey, puedo usar dos clases sin un ancestro común!) también puede producir temor (¿Qué pasa si alguien llama hacerpancho(Perro())?). Pues resulta que ambas cosas son ciertas. Es posible hacer un pancho de perro, en cuyo caso es culpa del que lo hace, y es problema suyo, no un error en la definición de hacerpancho.

Esa es una diferencia filosófica. Si hacerpancho verifica que la entrada sea una salchicha, siempre va a producir *por lo menos* un pancho. Nunca va a producir un sandwich con una manguera de jardín en el medio, pero tampoco va a producir un sandwich de portobelos salteados con ciboulette.

Es demasiado fácil imponer restricciones arbitrarias al limitar los tipos de datos aceptables.

Y por supuesto, si es posible hacer funciones genéricas que funcionan con cualquier tipo medianamente compatible, uno evita tener que implementar veinte variantes de la misma función, cambiando sólo los tipos de argumentos. Evitar esa repetición descerebrante es uno de los grandes beneficios de los lenguajes de programación dinámicos como python.

Genéricos

Supongamos que necesito poder crear listas con cantidades arbitrarias de objetos, todos del mismo tipo, inicializados al mismo valor.

Comprensión de lista

En las funciones que siguen, [tipo() for i in range(cantidad)] se llama una comprensión de lista, y es una forma más compacta de escribir un for para generar una lista a partir de otra:

```
resultado=[]
for i in range(cantidad):
    resultado.append(tipo())
```

No conviene utilizarlo si la expresión es demasiado complicada.

Ver también: Listas por comprensión en el tutorial de Python

Un enfoque ingenuo podría ser este:

```
def listadestr(cantidad):
    return ['' for i in range(cantidad)]

def listadeint(cantidad):
    return [0 for i in range(cantidad)]

# Y así para cada tipo que necesite...

Los defectos de esa solución son obvios. Una mejor solución:
def listadecosas(tipo, cantidad):
```

return [tipo() for i in range(cantidad)]

Esa es una aplicación de programación genérica. Estamos creando código que solo puede tener un efecto cuando, más adelante, lo apliquemos a un tipo. Es un caso extremo de lo mostrado anteriormente, en este caso literalmente el tipo a usar *no importa*. iCualquier tipo que se pueda instanciar sin argumentos sirve!

Desde ya que es posible — como diría un programador C++ — "especializar el template":

```
def templatelistadecosas(tipo):
    def listadecosas(cantidad):
        return [tipo() for i in range(cantidad)]
```

return listadecosas

```
>>> listadestr=templatelistadecosas(str)
>>> listadeint=templatelistadecosas(int)
>>>
>>> listadestr(10)
['', '', '', '', '', '', '', '', '']
>>> listadeint(10)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

El truco de ese fragmento es que templatelistadecosas crea y devuelve una nueva función cada vez que la invoco con un tipo específico. Esa función es la "especialización" de templatelistadecosas.

Otra forma de hacer lo mismo es utilizar la función functools.partial de la biblioteca standard:

```
import functools
def listadecosas(tipo, cantidad):
    return [tipo() for i in range(cantidad)]

listadestr=functools.partial(listadecosas, (str))
listadeint=functools.partial(listadecosas, (int))
```

Este enfoque para resolver el problema es más típico de la así llamada "programación funcional", y partial es una función de orden superior (higher-order function) que es una manera de decir que es una función que se aplica a funciones.

¿Notaron que todo lo que estamos haciendo es crear funciones muy poco específicas?

Por ejemplo, listadecosas también puede hacer esto:

import random

Después de todo... ¿Quién dijo que tipo era un tipo de datos? ¡Todo lo que hago con tipo es tipo()!

O sea que tipo puede ser una clase, o una función, o cualquiera de las cosas que en python se llaman callables.

lambdas

lambda define una "función anónima". EL ejemplo usado es el equivalente de

```
def f():
    return random.randint(0,100)
listaderandom=functools.partial(listadecosas, f)
```

La ventaja de utilizar lambda es que, si no se necesita reusar la función, mantiene la definición en el lugar donde se usa y evita tener que buscarlo en otra parte al leer el código.

Más información

Decoradores

En un capítulo posterior vamos a ver fragmentos de código como este:

```
151 @bottle.route('/')
152 @bottle.view('usuario.tpl')
153 def alta():
154 """Crea un nuevo slug"""
```

Esos misteriosos @algo son decoradores. Un decorador es simplemente una cosa que se llama pasando la función a decorar como argumento. Lo que en matemática se denomina "composición de funciones".

Usados con cuidado, los decoradores mejoran mucho la legibilidad de forma casi mágica. ¿Querés un ejemplo? Así se vería ese código sin decoradores:

```
def alta():
    """Crea un nuevo slug"""
    :
    :
```

```
# UGH
alta = bottle.route('/')(bottle.view('usuario.tpl')(alta))
```

¿Cuándo usar decoradores? Cuando querés cambiar el comportamiento de una función, y el cambio es:

- Suficientemente genérico como para aplicarlo en más de un lugar.
- Independiente de la función en sí.

Como decoradores no está cubierto en el tutorial vamos a verlos con un poco de detalle, porque es una de las técnicas que más diferencia pueden hacer en tu código.

Los decoradores se podrían dividir en dos clases, los "con argumentos" y los "sin argumentos".

Los decoradores sin argumentos son más fáciles, el ejemplo clásico es un "memoizador" de funciones. Si una función es "pesada", no tiene efectos secundarios, y está garantizado que *siempre* devuelve el mismo resultado a partir de los mismos parámetros, puede valer la pena "cachear" el resultado. Ejemplo:

deco.py

```
1 # -*- coding: utf-8 -*-
2
3 def memo(f):
4
       cache={}
5
       def memof(arg):
6
           if not arg in cache:
7
               cache[arg]=f(arg)
8
           return cache[arg]
       return memof
9
10
11 @memo
12 def factorial(n):
13
       print 'Calculando, n = ',n
14
       if n > 2:
15
           return n * factorial(n-1)
16
       else:
17
           return n
18
19 print factorial(4)
```

```
21 print factorial(5)
22 print factorial(3)

¿Qué sucede cuando lo ejecutamos?

$ python codigo/1/deco.py
Calculando, n = 4
Calculando, n = 3
Calculando, n = 2
24
24
Calculando, n = 5
120
6
```

20 print factorial(4)

Resulta que ahora no siempre se ejecuta factorial. Por ejemplo, el segundo llamado a factorial(4) ni siquiera entró en factorial, y el factorial(5) entró una sola vez en vez de 4. 7

Usando un cache de esta forma, la versión recursiva puede ser más eficiente que la versión iterativa, dependiendo de con qué argumentos se las llame (e ignorando los problemas de agotamiento de pila).

Hay un par de cosas ahí que pueden sorprender un poquito.

- memo toma una función f como argumento y devuelve otra (memof). Eso ya lo vimos en genéricos.
- cache queda asociada a memof, para cada función "memoizada" hay un cache separado.

Eso es así porque es local a memo. Al usar el decorador hacemos factorial = memo(factorial) y como **esa** memof tiene una referencia al cache que se creó localmente en esa llamada a memo, ese cache sigue existiendo mientras memof exista.

Si uso memo con otra función, es otra memof y otro cache.

Los decoradores con argumentos son... un poco más densos. Veamos un ejemplo en detalle.

Consideremos este ejemplo "de juguete" de un programa cuyo flujo es impredecible $^{8}\,$

8 Sí, ya sé que realmente es un poco predecible porque no uso bien random. Es a propósito ;-)

deco1.py

```
1 # -*- coding: utf-8 -*-
 2 import random
 3
 4 def f1():
 5
       print 'Estoy haciendo algo importante'
 6
 7 def f2():
 8
       print 'Estoy haciendo algo no tan importante'
 9
10 def f3():
11
       print 'Hago varias cosas'
12
       for f in range(1,5):
13
           random.choice([f1,f2])()
14
15 f3()
Al ejecutarlo hace algo así:
$ python codigo/1/decol.py
Hago varias cosas
Estoy haciendo algo no tan importante
```

Si no fuera tan obvio cuál función se ejecuta en cada momento, tal vez nos interesaría saberlo para poder depurar un error.

Un tradicionalista te diría "andá a cada función y agregále logs". Bueno, pues es posible hacer eso sin tocar cada función (por lo menos no mucho) usando decoradores.

deco2.py

```
1 # -*- coding: utf-8 -*-
2 import random
3
4 def logger(nombre):
5    def wrapper(f):
```

Estoy haciendo algo importante

Estoy haciendo algo no tan importante Estoy haciendo algo no tan importante

```
def f2(*args):
 6
 7
               print '===> Entrando a', nombre
 8
               r=f(*args)
 9
               print '<=== Saliendo de',nombre</pre>
10
               return r
           return f2
11
12
       return wrapper
13
14 @logger('F1')
15 def f1():
16
       print 'Estoy haciendo algo importante'
17
18 @logger('F2')
19 def f2():
20
       print 'Estoy haciendo algo no tan importante'
21
22 @logger('Master')
23 def f3():
24
       print 'Hago varias cosas'
25
       for f in range(1,5):
26
           random.choice([f1,f2])()
27
28 f3()
¿Y qué hace?
$ python codigo/1/deco2.py
===> Entrando a Master
Hago varias cosas
===> Entrando a F1
Estoy haciendo algo importante
<=== Saliendo de F1
===> Entrando a F1
Estoy haciendo algo importante
<=== Saliendo de F1
===> Entrando a F2
Estoy haciendo algo no tan importante
<=== Saliendo de F2
===> Entrando a F2
Estoy haciendo algo no tan importante
<=== Saliendo de F2
```

Claro pero corto pero claro

<=== Saliendo de Master

Este decorador es un poco más complicado que memo, porque tiene dos partes.

Recordemos que un decorador tiene que tomar como argumento una función y devolver una función 9 .

9 No es estrictamente cierto, podría devolver una clase, o cualquier cosa x que soporte x(f) pero digamos que una función.

Entonces al usar logger en f1 en realidad no voy a pasarle f1 a la función logger si no al **resultado** de logger ('F1')

Eso es lo que hay que entender, así que lo repito: iNo a logger sino al resultado de logger ('F1')!

En realidad logger no es el decorador, es una "fábrica" de decoradores. Si hago logger('F1') crea un decorador que imprime ===> Entrando a F1 y <=== Saliendo de F1 antes y después de llamar a la función decorada.

Entonces wrapper es el decorador "de verdad", y es comparable con memo y f2 es el equivalente de memof, y tenemos exactamente el caso anterior.

Claro pero corto pero claro

Depurar es dos veces más difícil que programar. Por lo tanto, si escribís el código lo más astuto posible, por definición, no sos lo suficientemente inteligente para depurarlo.

Brian W. Kernighan

Una de las tentaciones de todo programador es escribir código corto ¹⁰. Yo mismo soy débil ante esa tentación.

Esta peculiar perversión se llama "code golfing". Y es muy divertida, si no se convierte en un modo de vida.

```
Código Corto

j=''.join

seven_seg=lambda z:j(j(' _ |_ |_ || |'[ord(\
"u[cd*\]Rml"[int(a)])/u%8*2:][:3]for a in z)+\
```

El problema es que el código se escribe una sola vez, pero se lee cientos. Cada vez que vayas a cambiar algo del programa, vas a leer más de lo que escribís. Por lo tanto es fundamental que sea fácil de leer. El código *muy* corto es ilegible. El código demasiado largo *también*.

Funciones de 1000 líneas, ifs anidados de 5 niveles, cascadas de condicionales con 200 ramas... todas esas cosas son a veces tan ilegibles como el ejemplo anterior.

Lo importante es lograr un balance, hacer que el código sea corto, pero *no demasiado corto*. En python hay varias estructuras de control o de datos que ayudan en esa misión.

Consideremos la tercera cosa que aprende todo programador: iteración. En python, se itera sobre listas 11 por lo que no sabemos, a priori, la posición del ítem que estamos examinando, y a veces es necesaria.

11 No exactamente, se itera sobre iterables, valga la redundancia, pero los podemos pensar como listas.

Malo:

```
index=0
happy_items=[]
for item in lista:
    if item.is_happy:
        happy_items.append(index)
    index+=1

Mejor:
happy_items=[]
for index, item in enumerate(lista):
    if item.is happy:
```

Lambdas vs alternativas

```
happy items.append(index)
```

Mejor si te gustan las comprensiones de lista:

```
happy_items=[ index for (index, item) in enumerate(lista) \
   if item.is_happy ]
```

Tal vez demasiado:

```
filter(lambda x: x[0] if x[1].is happy else None, enumerate(lista))
```

¿Por qué demasiado? Porque **yo** no entiendo que hace a un golpe de vista, necesito "desanidarlo", leer el lambda, desenredar el operador ternario, darme cuenta de qué filtra, ver a qué se aplica el filtro.

Seguramente otros, mejores programadores sí se dan cuenta. En cuyo caso el límite de "demasiado corto" para ellos estará más lejos.

Sin embargo, el código no se escribe para uno (o al menos no se escribe sólo para uno), sino para que lo lean otros. Y no es bueno hacerles la vida difícil al divino botón, o para ahorrar media línea.

Nota

La expresión ternaria u operador ternario se explica en Ternarios vs ifs

Lambdas vs alternativas

En ejemplos anteriores he usado lambda. ¿Qué es lambda? Es otra manera de definir una función, nada más. En lo que a python respecta, estos dos fragmentos son exactamente lo mismo:

```
suma = lambda a,b: a+b

def suma(a,b):
    return a+b
```

Lambda tiene una limitación: Su contenido solo puede ser una expresión, es decir, algo que "devuelve un resultado". El resultado de esa expresión es el resultado del lambda.

Lambdas vs alternativas

¿Cuando conviene usar lambda, y cuándo definir una función? Más allá de la obviedad de "cuando lambda no alcanza, usá funciones", en general, me parece más claro usar funciones, a menos que haya un excelente motivo.

Por otro lado, hay veces que queda muy bonito como para resistirse, especialmente combinado con filter:

```
# Devuelve los items mayores que 0 de una lista filter (lambda x: x > 0 , lista)
```

Pero yo probablemente haría esto:

```
# Devuelve los items mayores que 0 de una lista [ x for x in lista if x > 0 ]
```

¿Es uno más legible que el otro? No lo sé. Si sé que el primero tiene un "gusto" más a programación funcional, mientras que el segundo es más únicamente python, pero es cuestión de preferencias personales.

Usar lambda en el medio de líneas de código o como argumentos a funciones puede hacer que la complejidad de la línea pase el umbral de "expresivo" a "farolero", y disminuye la legibilidad del código.

Un caso en el que lambda es mejor que una función es cuando se usa una única vez en el código y el significado es obvio, porque insertar definiciones de funciones "internas" en el medio del código arruina el flujo.

import random

Me parece más elegante que esto:

Ternarios vs ifs

Especialmente en un ejemplo real, donde f1 se va a definir en el medio de un algoritmo cualquiera con el que no tiene nada que ver.

Como el lector verá... me cuesta elegir. En general, trato de no usar lambda a menos que la alternativa sea farragosa y ensucie el entorno de código.

Ternarios vs ifs

El operador ternario en python es relativamente reciente, apareció en la versión 2.5 y es el siguiente:

```
>>> "A" if True else "B"
'A'
>>> "A" if False else "B"
'B'
```

Es una forma abreviada del if que funciona como expresión (se evalúa y devuelve un valor).

La forma general es:

```
VALOR1 if CONDICION else VALOR2
```

Si CONDICION es verdadera, entonces la expresión devuelve VALOR1, si no, devuelve VALOR2.

¿Cuál es el problema del operador ternario?

Sólo se puede usar cuando no te importe no ser compatible con python 2.4. Acordáte que hay (y va a haber hasta el 2013 por lo menos) versiones de Linux en amplio uso con python 2.4

Si ignoramos eso, hay casos en los que simplifica mucho el código. Tomemos el ejemplo de un argumento por default, de un tipo modificable a una función. Ésta es la versión clásica:

class c:

```
def f(self, arg = None):
    if arg is None:
        self.arg = []
    else:
        self.arg = arg
```

Y esta es la versión "moderna":

Pedir perdón o pedir permiso

```
class c:
    def f(self, arg = None):
        self.arg = 42 if arg is None else arg
```

¿La ventaja? iSe lee de corrido! "self.arg es 42 si arg es None, si no, es arg"

Nota

La versión realmente obvia:

```
>>> class c:
... def f(self, arg=[]):
... self.arg=arg
```

Tiene el problema de que... no funciona. Al ser [] modificable, cada vez que se llame a instancia.f() sin argumentos se va a asignar **la misma lista** a instancia.arg. Si luego se modifica su contenido en alguna instancia... iSe modifica en **todas las instancias!** Ejemplo:

```
>>> c1=c()
>>> c1.f()
>>> c2=c()
>>> c2.f()
>>> c1.arg.append('x')
>>> c2.arg
['x']
```

Sí, es raro. Pero tiene sentido si se lo piensa un poco. En python la asignación es únicamente decir "este nombre apunta a este objeto".

El [] de la declaración es un objeto único. Estamos haciendo que self.arg apunte a **ese** objeto cada vez que llamamos a c.f.

Con un tipo inmutable (como un string) esto no es problema.

Pedir perdón o pedir permiso

"Puede fallar."

Tu Sam

No hay que tener miedo a las excepciones. Las cosas pueden fallar, y cuando fallen, es esperable y deseable que den una excepción.

¿Cómo sabemos si un archivo se puede leer? ¿Con os.stat("archivo")? ¡No, con open("archivo","r")!

Por ejemplo, esto no es buen python:

esnumero.py

```
1 # -*- coding: utf-8 -*-
2
3 import string
4
5 def es numero(x):
       '''Verifica que x sea convertible a número'''
6
7
       s = str(x)
8
       for c in s:
9
           if c not in string.digits+'.'
10
               return False
11
           return True
12
13 s=raw input()
14 if es numero(s):
15
       print "El doble es ", float(s)*2
16 else:
17
       print "No es un numero"
```

Eso lo que muestra es miedo a que falle float(). ¿Y sabés qué? float está mucho mejor hecha que mi es numero...

Esto es mucho mejor Python:

```
s = raw_input()
try:
    print "El doble es ",2 * float(s)
except ValueError:
    print "No es un número"
```

Esto está muy relacionado con el tema de "duck typing" que vimos antes. Si vamos a andarnos preocupando por como puede reaccionar cada uno de los elementos con los que trabajamos, vamos a programar de forma completamente

Pedir perdón o pedir permiso

burocrática y descerebrante.

Lo que queremos es tratar de hacer las cosas, y manejar las excepciones como corresponda. ¿No se pudo calcular el doble? ¡Ok, avisamos y listo!

No hay que programar a la defensiva, hay que ser cuidadoso, no miedoso.

Si se produce una excepción que no te imaginaste, está **bien** que se propague. Por ejemplo, si antes en vez de un ValueError sucediera otra cosa, **queremos enterarnos**.

Faltan subsecciones? Se pueden agregar si la idea surge viendo los otros capítulos.

La vida es Corta

Hasta que cumple veinticinco, todo hombre piensa cada tanto que dadas las circunstancias correctas podría ser el más jodido del mundo. Si me mudara a un monasterio de artes marciales en China y estudiara duro por diez años. Si mi familia fuera masacrada por traficantes colombianos y jurara venganza. Si tuviera una enfermedad fatal, me quedara un año de vida y lo dedicara a acabar con el crimen. Si tan sólo abandonara todo y dedicara mi vida a ser jodido.

Neal Stephenson (Snow Crash)

A los veinticinco, sin embargo, uno se da cuenta que realmente no vale la pena pasarse diez años estudiando en un monasterio, porque no hay WiFi y no hay una cantidad ilimitada de años como para hacerse el Kung Fu.

De la misma forma, cuando uno empieza a programar cree que cada cosa que encuentra podría rehacerse mejor. Ese framework web es demasiado grande y complejo. Esa herramienta de blog no tiene exactamente los features que yo quiero. Y la reacción es "iYo puedo hacerlo mejor!" y ponerse a programar furiosamente para demostrarlo.

Eso es bueno y es malo.

Es bueno porque a veces de ahí salen cosas que son, efectivamente, mucho mejores que las existentes. Si nadie hiciera esto, el software en general sería una porquería.

Es malo porque la gran gran mayoria de las veces, tratando de implementar el framework web número 9856, que es un 0.01% mejor que los existentes, se pasa un año y no se hace algo original que realmente puede hacer una diferencia.

Por eso digo que "la vida es corta". No es que sea corta, es que es demasiado corta para perder tiempo haciendo lo que ya está hecho o buscándole la quinta pata al gato. Hay que sobreponerse a la tristeza de que nunca vamos a usar 100% programas hechos por nosotros y nuestros amigos, y aplicar la fuerza en los puntos críticos, crear las cosas que no existen, no las que ya están.

Antes de decidirse a empezar un proyecto hay que preguntarse muchas cosas:

¿Me va a dejar plata?

El Problema

- ¿Qué es lo nuevo de este proyecto?
- ¿Tengo alguna idea de implementación que nadie tuvo?
- ¿Tengo alguna idea de interface original?
- ¿Por qué alguien va a querer usar eso?
- ¿Tengo tiempo y ganas de encarar este proyecto?
- ¿Me voy a divertir haciéndolo?

Las más importantes son probablemente la última y la primera. La primera porque de algo hay que vivir, y la última porque es suficiente. Si uno decide que sí, que va a encarar un proyecto, hay que tratar de programar lo menos posible.

Una de las tentaciones del programador es afeitar yaks ¹²: es una actividad inútil en sí misma, que uno espera le dé beneficios más adelante.

12 Frase inventada por Carlin Vieri

Yo estoy escribiendo este libro que tiene links a URLs. Yo quiero que esas URLs sean válidas para siempre. Entonces necesito poder editarlas **después** de que se imprima el libro y me gustaría un "acortador" de URLs donde se puedan editar. Como no lo encuentro lo escribo.

Si siguiera con "y para eso necesito hacer un framework web, y un módulo para almacenar los datos"... estoy afeitando yaks.

Para poder hacer A, uno descubre que necesita B, para B necesita C. Cuando llegás a D... estás afeitando yaks.

Si necesitás B para lograr A, entonces, buscá una B en algún lado, y **usala**. Si realmente no existe nada parecido, entonces ahora tenés dos proyectos. Pensá si te interesa más A o B, y si podés llevar los dos adelante. Es un problema.

En este capítulo lo que vamos a hacer es aprender a no reinventar la rueda. Vamos a elegir un objetivo y vamos a lograrlo sin afeitar ningún yak. Vas a ver como creamos un programa útil con casi nada de código propio.

El Problema

Recibí algunas quejas acerca de que algunos links en mis libros no funcionaban cuando fueron publicados.

El Problema

Para el próximo libro que estoy escribiendo, le propuse a mi editor crear un sitio para registrar las referencias mencionadas

Usando referencias ascii cortas y únicas a lo largo del libro, es facil proveer un servicio sencillo de redirección a la URL de destino, y arreglarlo cuando cambie (simplemente creando un alerta de email si la redirección da error 404).

Tarek Ziadé en URI s in Books

Ya que no tengo editor, lo voy a tener que hacer yo mismo. Me parece una buena idea, va a ser útil para este proyecto, no encuentro nada hecho similar ¹³, es un buen ejemplo del objetivo de este capítulo... ivendido!

El que me hizo ver esa cita de Tarek Ziadé fué Martín Gaitán. Con el capítulo ya escrito, Juanjo Conti me han hecho notar http://a.gd

Una vez decidido a encarar este proyecto, establezcamos las metas:

- Un redirector estilo tinyURL, bit.ly, etc.
- · Que use URLs cortas y mnemotécnicas.
- Que el usuario pueda editar las redirecciones en cualquier momento.
- Que notifique cuando la URL no sirva, para poder corregirla.

Además, como metas "ideológicas":

- · Un mínimo de afeitado de yaks.
- Que sea un programa relativamente breve.
- Código lo más simple posible: no hay que hacerse el piola, porque no quiero mantener algo complejo.
- Cada vez que haya que hacer algo: buscar si ya está hecho (excepto el programa en sí; si no, el capítulo termina dentro de dos renglones).

Separemos la tarea en componentes:

- Una función que dada una URL genera un slug ¹⁴
- Un componente para almacenar las relaciones slug => URL
- Un sitio web que haga la redirección

- Un mecanismo de edición de las relaciones
- Slug es un término que ví en Django: un identificador único formado con letras y números. En este caso, es la parte única de la URL.

Veamos los componentes elegidos para este desarrollo.

Twill

Una de las cosas interesantes de este proyecto me parece hacer que el sistema testee automáticamente las URLs de un usuario.

Una herramienta muy cómoda para estas cosas es Twill que podría definirse como un lenguaje de testing de sitios web.

Por ejemplo, si todo lo que quiero es saber si el sitio www.google.com funciona es tan sencillo como:

```
go http://www.google.com
code 200
```

Y así funciona:

```
$ twill-sh twilltest.script
>> EXECUTING FILE twilltest.script
AT LINE: twilltest.script:0
==> at http://www.google.com.ar/
AT LINE: twilltest.script:1
--
1 of 1 files SUCCEEDED.
```

Ahora bien, twill es demasiado para nosotros. Permite almacenar cookies ¹⁵, llenar formularios, y mucho más. Yo tan solo quiero lo siguiente:

- Como problema adicional, almacena cookies en el archivo que le digas. Serio problema de seguridad para una aplicación web.
 - 1. Ir al sitio indicado.
 - 2. Testear el código (para asegurarse que la página existe).
 - Verificar que un texto se encuentra en la página (para asegurarse que ahora no es un sitio acerca de un tema distinto).

O sea, solo necesito los comandos twill code y find. Porque soy buen tipo, podríamos habilitar notfind y title.

Todos esos comandos son de la forma comando argumento con lo que un parser de un lenguaje "minitwill" es muy fácil de hacer:

pyurl3.py

```
8 from twill.commands import go, code, find, notfind, title
9 def minitwill(url, script):
10
       '''Dada una URL y un script en una versión limitada
11
       de twill, ejecuta ese script.
12
       Apenas una línea falla, devuelve False.
13
       Si todas tienen éxito, devuelve True.
14
15
16
       Ejemplos:
17
18
       >>> minitwill('http://google.com','code 200')
19
       ==> at http://www.google.com.ar/
20
       True
21
22
       >>> minitwill('http://google.com','title bing')
23
       ==> at http://www.google.com.ar/
24
       title is 'Google'.
25
       False
26
       . . .
27
28
       go (url)
29
       for line in script.splitlines():
30
           cmd,arg = line.split(' ',1)
31
           trv:
32
               if cmd in ['code','find','notfind','title']:
33
                   # Si line es "code 200", esto es el equivalente
34
                   # de code(200)
35
                   r = globals()[cmd](arg)
36
           except:
37
               return False
       return True
38
39
```

Veamos minitwill en acción:

Bottle

```
>>> minitwill('http://www.google.com','code 200')
==> at http://www.google.com.ar/
True
>>> minitwill('http://www.google.com','code 404')
==> at http://www.google.com.ar/
False
>>> minitwill('http://www.google.com','find bing')
==> at http://www.google.com.ar/
False
>>> minitwill('http://www.google.com','title google')
==> at http://www.google.com.ar/
title is 'Google'.
False
>>> minitwill('http://www.google.com','title Google')
==> at http://www.google.com.ar/
title is 'Google'.
True
```

Bottle

Esto va a ser una aplicación web. Hay docenas de frameworks para crearlas usando Python. Voy a elegir casi al azar uno que se llama Bottle porque es sencillo, sirve para lo que necesitamos, y es un único archivo. Literalmente se puede aprender a usar en una hora.

¿Qué Páginas tiene nuestra aplicación web?

- / donde el usuario se puede autenticar o ver un listado de sus redirecciones existentes.
- /SLUG/edit donde se edita una redirección (solo para el dueño del slug).
- /SLUG/del para eliminar una redirección (solo para el dueño del slug).
- /SLUG/test para correr el test de una redirección (solo para el dueño del slug).
- /SLUG redirige al sitio deseado.
- /static/archivo devuelve un archivo (para CSS, imágenes, etc)
- /logout cierra la sesión del usuario.

Bottle

Empecemos con un "stub", una aplicación bottle mínima que controle esas URLs. El concepto básico en bottle es:

- · Creás una función que toma argumentos y devuelve una página web
- Usás el decorador @bottle.route para que un PATH de URL determinado llame a esa función.
- Si querés que una parte de la URL sea un argumento de la función, usás :nombrearg y la tomás como argumento (ej: ver en el listado, función borrar)

Después hay más cosas, pero esto es suficiente por ahora:

pyurl1.py

```
1 # -*- codina: utf-8 -*-
2 '''Un acortador de URLs pero que permite:
3
4 * Editar adonde apunta el atajo más tarde
5 * Eliminar ataios
6 * Definir tests para saber si el atajo es válido
7
8 '''
10 # Usamos bottle para hacer el sitio
11 import bottle
12
13 @bottle.route('/')
14 def alta():
15
       """Crea un nuevo slug"""
16
       return "Pagina: /"
17
18 @bottle.route('/:slug/edit')
19 def editar(slug):
       """Edita un slug"""
20
21
       return "Editar el slug=%s"%slug
22
23 @bottle.route('/:slug/del')
24 def borrar(slug):
       """Elimina un slug"""
25
26
       return "Borrar el slug=%s"%slug
27
```

```
28 # Un slug está formado sólo por estos caracteres
29 @bottle.route('/(?P<slug>[a-zA-Z0-9]+)')
30 def redir(slug):
       """Redirigir un slug"""
31
       return "Redirigir con slug=%s"%slug
32
33
34 @bottle.route('/static/:filename')
35 def static file(filename):
36
       """Archivos estáticos (CSS etc)"""
37
       bottle.send file(filename, root='./static/')
38
39 if __name__=='__main__':
       """Ejecutar con el server de debug de bottle"""
40
41
       bottle.debug(True)
       app = bottle.default_app()
42
43
44
       # Mostrar excepciones mientras desarrollamos
45
       app.catchall = False
46
       # Ejecutar aplicación
47
48
       bottle.run(app)
```

Para probarlo, alcanza con python pyurl1.py y sale esto en la consola:

```
$ python pyurl1.py
Bottle server starting up (using WSGIRefServer())...
Listening on http://127.0.0.1:8080/
Use Ctrl-C to quit.
```

Apuntando un navegador a esa URL podemos verificar que cada función responde en la URL correcta y hace lo que tiene que hacer:

La aplicación de prueba funcionando.

Autenticación

Bottle es un framework WSGI. WSGI es un standard para crear aplicaciones web. Permite conectarlas entre sí, y hacer muchas cosas interesantes.

En particular, tiene el concepto de "middleware". ¿Qué es el middleware? Es una aplicación intermediaria. El pedido del cliente va al middleware, este lo procesa y luego se lo pasa a tu aplicación original.

Un caso particular es el middleware de autenticación, que permite que la aplicación web sepa si el usuario está autenticado o no. En nuestro caso, ciertas áreas de la aplicación sólo deben ser accesibles a ciertos usuarios. Por ejemplo, un atajo sólo puede ser editado por el usuario que lo creó.

Todo lo que esta aplicación requiere del esquema de autenticación es saber:

- 1. Si el usuario está autenticado o no.
- Cuál usuario es.

Vamos a usar AuthKit con OpenID. De esa manera vamos a evitar una de las cosas más molestas de las aplicaciones web, la proliferación de cuentas de usuario.

Al usar OpenID, no vamos a tener ningún concepto de usuario propio, simplemente vamos a confiar en que OpenID haga su trabajo y nos diga "este acceso lo está haciendo el usuario X" o "este acceso es de un usuario sin autenticar".

¿Cómo se autentica el usuario?

Yahoo

Ingresa yahoo.com

Google

Ingresa https://www.google.com/accounts/o8/id 16

Otro proveedor OpenID

Ingresa el dominio del proveedor o su URL de usuario.

O se crean botones "Entrar con tu cuenta de google", etc.

Luego OpenID se encarga de autenticarlo via Yahoo/Google/etc. y darnos el usuario autenticado como parte de la sesión.

Hagamos entonces que nuestra aplicación de prueba soporte OpenID.

Para empezar, se "envuelve" la aplicación con el middleware de autenticación. Es necesario importar varios módulos nuevos ¹⁷. Eso significa que todos los pedidos realizados ahora se hacen a la aplicación de middleware, no a la aplicación original de bottle.

Esta aplicación de middleware puede decidir procesar el pedido ella misma (por ejemplo, una aplicación de autenticación va a querer procesar los errores 401, que significan "No autorizado"), o si no, va a pasar el pedido a la siguiente aplicación de la pila (en nuestro caso la aplicación bottle).

- 17 Hasta donde sé, necesitamos instalar:
 - AuthKit
 - Beaker
 - PasteDeploy
 - PasteScript
 - WebOb
 - Decorator

pyurl2.py

```
9 # Middlewares
10 from beaker.middleware import SessionMiddleware
11 from authkit.authenticate import middleware
12 from paste.auth.auth tkt import AuthTKTMiddleware
13
21 if __name__=='__main__':
       """Ejecutar con el server de debug de bottle"""
22
23
       bottle.debug(True)
24
       app = bottle.default app()
25
26
       # Mostrar excepciones mientras desarrollamos
27
       app.catchall = False
28
29
       app = middleware(app,
30
                    enable=True,
31
                    setup method='openid'.
32
                    openid store type='file',
33
                    openid store config=os.getcwd(),
```

Para entender esto, necesitamos ver como es el flujo de una conexión standard en Bottle (o en casi cualquier otro framework web). ¹⁸

Este diagrama es 90% mentira. Por ejemplo, en realidad route no llama a pyurl2.alta sino que la devuelve a app que después la ejecuta. Sin embargo, digamos que es metafóricamente cierto.

Una conexión a la URL "/".

- 1. El usuario hace un pedido via HTTP pidiendo la URL "/"
- La aplicación web recibe el pedido, ve el PATH y pasa el mismo pedido a route.
- 3. La función registrada para ese PATH es pyurl2.alta, y se la llama.
- 4. pyurl2.alta devuelve datos, pasados a un mecanismo de templates o HTML directo al cliente, pero eso no es lo habitual.

5. De una manera u otra, se devuelve el HTML al cliente, que vé el resultado de su pedido.

Al "envolver" app con un middleware, es importante que recordemos que app ya no es la misma de antes, tiene código nuevo, que proviene de AuthKit. ¹⁹ El nuevo "flujo" es algo así (lo nuevo está en linea de puntos en el diagrama):

Nuevamente es muy mentiroso, estamos ignorando completamente el middleware de sesión, y sin eso AuthKit no funciona. Como excusa: iEs con fines educativos! todo lo que hacen las sesiones para nosotros es que AuthKit tenga un lugar donde guardar las credenciales del usuario para el paso 6.

Una conexión a la URL "/" con AuthKit.

- 1. El usuario hace un pedido via HTTP pidiendo la URL "/"
- 2. La aplicación web recibe el pedido, ve el PATH y pasa el mismo pedido a route.
- 3. La función registrada para ese PATH es pyurl2.alta, y se la llama.
- 4. Si pyurl2.alta decide que esta página no puede ser vista, sin estar autenticado, entonces en vez de mandar datos al template, pasa una excepción a app (Error 401).

pyurl2.py

```
23 @bottle.route('/')
24 def alta():
25    """Crea un nuevo slug"""
26    if not 'REMOTE_USER' in bottle.request.environ:
27        bottle.abort(401, "Sorry, access denied.")
28    return "Pagina: /"
29
```

- 5. Si app recibe un error 401, en vez de devolverlo al usuario, le dice a AuthKit: "hacete cargo". Ahí Authkit muestra el login, llama a yahoo o quien sea, verifica las credenciales, y una vez que está todo listo...
- Vuelve a llamar a pyurl2.alta pero esta vez, además de el request original hay unas credenciales de usuario, indicando que hubo un login exitoso.
- 7. pyurl2.alta devuelve datos, pasados a un mecanismo de templates o HTML directo al cliente, pero eso no es lo habitual.
- 8. De una manera u otra, HTML se devuelve al cliente, que vé el resultado de su pedido.

Para que el usuario pueda cerrar su sesión, implementamos logout:

pyurl2.py

```
14 @bottle.route('/logout')
15 def logout():
16    bottle.request.environ['paste.auth_tkt.logout_user']()
17    if 'REMOTE_USER' in bottle.request.environ:
18         del bottle.request.environ['REMOTE_USER']
19    bottle.redirect('/')
20
```

¿Funciona?

El sitio muestra una pantalla de login (Es fea porque es la que viene por default)

Tal vez, el proveedor de OpenID pide usuario/password

Por una única vez se pide autorizar al otro sitio.

Estamos autenticados y nuestra aplicación de prueba funciona como antes.

Storm

Es obviamente necesario guardar las relaciones usuario/slug/URL en alguna parte. Lo obvio es usar una base de datos. Lo inteligente es usar un ORM.

A favor de usar un ORM:

No se usa SQL directo, lo que permite hacer todo (o casi) en Python. El programa queda más "limpio" al no tener que cambiar de contexto todo el tiempo.

En contra de usar un ORM:

Es una dependencia extra, te ata a un producto que tal vez mañana "desaparezca". Puede tener una pérdida de performance con respecto a usar la base de datos en forma directa.

Storm

No me parece grave: Si tenemos cuidado y aislamos el ORM del resto de la aplicación, es posible reemplazarlo con otro más adelante (o eliminarlo y "bajar" a SQL o a NoSQL).

Por lo tanto, en el espíritu de "no inventes, usá", vamos a usar un ORM. En particular vamos a usar Storm, un ORM creado por Canonical, que me gusta ²⁰.

20 Me gusta más Elixir pero es bastante más complicado para algunas cosas.

En esta aplicación los requerimientos de base de datos son mínimos. Necesito poder guardar algo como (url,usuario,slug,test) y poder después recuperarlo sea por slug, sea por usuario.

Necesito que el slug sea único. Todos los demás campos pueden repetirse. ²¹

21 Sería bueno que la combinación usuario+url lo fuera pero lo veremos más adelante.

Veamos código. Primero, definimos lo que Storm requiere.

```
39 # Usamos storm para almacenar los datos
40 from storm.locals import *
41
42 # FIXME: tengo que hacer más consistentes los nombres
43 # de los métodos.
44
45 class Atajo(object):
46
       '''Representa una relación slug <=> URL
47
48
       Miembros:
49
50
       id
              = Único, creciente, entero (primary key)
51
       url
              = la URL original
52
       test
             = un test de validez de la URL
53
       user = el dueño del atajo
54
       activo = Si este atajo está activo o no.
                Nunca hay que borrarlos, sino el ID puede volver
55
                atrás y se "recicla" una URL. iMalo, malo, malo!
56
       status = Resultado del último test (bien/mal)
57
58
       ultimo = Fecha/hora del último test
       1.1.1
59
```

```
60
61
      # Hacer que los datos se guarden via Storm
      storm table = "atajo"
62
63
      id
            = Int(primary=True)
64
      url
            = Unicode()
65
      test = Unicode()
66
      user = Unicode()
67
      activo = Bool()
68
      status = Bool()
69
      ultimo = DateTime()
70
71
```

Veamos ahora el __init__ de esta clase. Como "truco", se guarda automáticamente en la base de datos al crearse:

```
62 def init (self, url, user, test=''):
63
           '''Exigimos la URL y el usuario, test es opcional,
64
           id es automático.'''
65
66
           # Hace falta crear esto?
67
           r = self.store.find(Atajo, user = user, url = url)
68
           self.url = url
69
           self.user = user
70
           self.activo = True
71
           # Test por default, verifica que la página exista.
72
           self.test = u'code 200'
           if r.count():
73
74
               # FIXME: esto creo que es una race condition
75
               # Existe la misma URL para el mismo usuario,
76
               # reciclamos el id y el test, pero activa.
77
               viejo = r.one()
78
               Atajo.store.remove(viejo)
79
               self.id = viejo.id
80
               self.test = viejo.test
81
           self.store.add(self)
82
           # Autosave/flush/commit a la base de datos
83
           self.save()
84
85
      def save(self):
```

Storm

```
86 '''Método de conveniencia'''
87 Atajo.store.flush()
88 Atajo.store.commit()
89
90
```

¿Y de dónde sale self.store? De un método de inicialización que hay que llamar antes de poder crear una instancia de Atajo:

```
106
        @classmethod
107
        def init db(cls):
108
            # Creamos una base SQLite
109
            if not os.path.exists('pyurl.sqlite'):
110
                cls.database = create database(
111
                     "sqlite:///pyurl.sqlite")
112
                cls.store = Store (cls.database)
113
                try:
114
                    # Creamos la tabla
115
                    cls.store.execute ('''
116
                    CREATE TABLE atajo (
117
                         id INTEGER PRIMARY KEY,
118
                         url VARCHAR,
119
                         test VARCHAR,
120
                         user VARCHAR,
121
                         activo TINYINT,
122
                         status TINYINT.
123
                         ultimo TIMESTAMP
                     ) ''' )
124
125
                    cls.store.flush()
126
                    cls.store.commit()
127
                except:
128
                    pass
129
            else:
130
                cls.database = create database(
131
                     "sqlite:///pyurl.sqlite")
132
                cls.store = Store (cls.database)
133
134
135
```

El código "original", es decir, convertir URLs a slugs y viceversa es bastante tonto:

```
135 # Caracteres válidos en un atajo de URL
        validos = string.letters + string.digits
136
137
138
        def slug(self):
139
            '''Devuelve el slug correspondiente al
140
            ID de este atajo
141
142
            Básicamente un slug es un número en base 62,
            representado usando a-zA-ZO-9 como "dígitos",
143
144
            v dado vuelta:
145
146
            Más significativo a la derecha.
147
148
            Ejemplo:
149
150
            100000 => '4aA'
151
            100001 => '5aA'
152
            . . .
153
            S = 11
154
155
            n = self.id
156
            while n:
157
                s += self.validos[n%62]
158
                n = n // 62
159
            return s
160
161
        @classmethod
162
        # FIXME: no estoy feliz con esta API
163
        def get(cls, slug = None, user = None, url = None):
            ''' Dado un slug, devuelve el atajo correspondiente.
164
            Dado un usuario:
165
                Si url es None, devuelve la lista de sus atajos
166
167
                Si url no es None , devuelve *ese* atajo
            111
168
169
170
            if slug is not None:
```

Storm

```
i = 0
171
172
                for p,l in enumerate(slug):
173
                    i += 62 ** p * cls.validos.index(l)
174
                return cls.store.find(cls, id = i,
175
                    activo = True).one()
176
177
            if user is not None:
                if url is None:
178
179
                    return cls.store.find(cls, user = user,
180
                        activo = True)
181
                else:
182
                    return cls.store.find(cls, user = user,
183
                        url = url, activo = True).one()
184
185
        def delete(self):
            '''Eliminar este objeto de la base de datos'''
186
187
            self.activo=False
            self.save()
188
189
190
        def run test(self):
            '''Correr el test con minitwill y almacenar
191
192
            el resultado'''
193
            self.status = minitwill(self.url, self.test)
194
            self.ultimo = datetime.datetime.now()
195
            self.save()
196
iVeámoslo en acción!
>>> from pyurl3 import Atajo
>>> Atajo.initDB()
>>> al = Atajo(u'http://nomuerde.netmanagers.com.ar',
    u'unnombredeusuario')
>>> a1.slug()
'h'
>>> a1 = Atajo(u'http://www.python.org',
    u'unnombredeusuario')
>>> a1.slug()
101
>>> Atajo.get(slug='b').url
u'http://nomuerde.netmanagers.com.ar'
```

```
>>> [x.url for x in Atajo.get(user=u'unnombredeusuario')]
[u'http://nomuerde.netmanagers.com.ar',
u'http://www.python.org']
Y desde ya que todo está en la base de datos:
sqlite> .dump
PRAGMA foreign keys=0FF;
BEGIN TRANSACTION;
CREATE TABLE atajo (
                     id INTEGER PRIMARY KEY,
                     url VARCHAR,
                     test VARCHAR,
                     user VARCHAR
                 );
INSERT INTO "atajo" VALUES(1, http://nomuerde.netmanagers.com.ar',
NULL, 'unnombredeusuario');
INSERT INTO "atajo" VALUES(2, 'http://www.python.org', NULL,
'unnombredeusuario'):
COMMIT:
```

HTML / Templates

BlueTrip te da un conjunto razonable de estilos y una forma común de construir un sitio web para que puedas saltear la parte aburrida y ponerte a diseñar.

http://bluetrip.org

Soy un cero a la izquierda en cuanto a diseño gráfico, HTML, estética, etc. En consecuencia, para CSS y demás simplemente busqué algo fácil de usar y lo usé. Todo el "look" del sitio va a estar basado en BlueTrip, un framework de CSS.

Dado que no pienso diseñar mucho, igracias BluTrip!

Necesitamos 3 páginas en HTML:

- · Bienvenida (invitado):
 - Ofrece login.
 - Explica el servicio.

- · Bienvenida (usuario):
 - · Ofrece crear nuevo atajo
 - Muestra atajos existentes (ofrece edición/eliminar/status)
 - · Ofrece logout
- · Edición de atajo:
 - · Cambiar donde apunta (URL).
 - · Cambiar test.
 - Probar test.
 - · Eliminar.

No voy a mostrar el detalle de cada página, mi HTML es básico, sólo veamos algunas capturas de las páginas:

Pantalla de invitado.

Pantalla de usuario.

Usuario editando un atajo.

Como las páginas son en realidad generadas con el lenguaje de templates de bottle, hay que pensar qué parámetros se pasan, y usarlos en el template. Luego, se le dice a bottle que template usar.

Tomemos como ejemplo la página usuario.tpl, que es lo que vé el usuario registrado en el sitio y es la más complicada. Explicación breve de la sintaxis de los templates 22 :

22 Si no te gusta, es fácil reemplazarlo con otro motor de templates.

- {{variable}} se reemplaza con el valor de variable.
- {{funcion()}} se reemplaza con el resultado de funcion()
- {{!cosa}} es un reemplazo inseguro. En los otros, se reemplaza < con < etc. para prevenir problemas de seguridad.
- Las líneas que empiezan con % son Python. Pero....

Hay que cerrar cada bloque con %end (porque no podemos confiar en la indentación). Ejemplo:

Ignorando HTML aburrido, es algo así:

usuario.tpl

```
25 %if mensaje:
          26
27
          {{!mensaje}}
28
          29
      %end
30 </div>
31
32 <div style="float: right; text-align: left; width: 350px;">
33
      <form>
34
      <fieldset>
35
          <le><legend>Crear nuevo atajo:</legend></le>
          <div>
36
          <label for="url">URL a acortar:</label>
37
          <input type="text" name="url" id="url"></div>
38
39
          <button class="button positive">Crear</button>
40
      </fieldset>
41
      </form>
42 </div>
43
44 <div style="float:left;text-align: right; width: 350px;">
45 <table style="width:100%:">
    <caption>Atajos Existentes
46
47
     <thead>
       Atajo Acciones 
48
```

```
49
     </thead>
50
     % for atajo in atajos:
51
      52
       % if atajo.status:
53
        <img src="weather-clear.png" alt="Success"</pre>
54
          align="MIDDLE"/>
55
        <a href="{{atajo.url}}">{{atajo.slug()}}</a>
       % else:
56
        <img src="weather-storm.png" alt="Failure"
57
58
          align="MIDDLE"/>
59
        <a href="{{atajo.url}}">{{atajo.slug()}}</a>
60
       % end
61
       <a href="/{{atajo.slug()}}/edit">Editar</a>&nbsp;/&nbsp;
62
       <a href="/{{atajo.slug()}}/del">Eliminar</a>&nbsp;/&nbsp;
63
       <a href="/{{atajo.slug()}}/test">Probar</a>
64
      65
     %end
66
```

La pantalla para usuario no autenticado es un caso particular: la genera AuthKit, no Bottle, por lo que hay que pasar el contenido como parámetro de creación del middleware:

pyurl3.py

```
344
        app = middleware(app,
345
            enable=True,
346
            setup method='openid'.
347
            openid store type='file',
348
            openid template file=os.path.join(os.getcwd(),
            'views', 'invitado.tpl'),
349
350
            openid store config=os.getcwd(),
351
            openid path signedin='/')
352
```

Backend

Vimos recién que al template usuario.tmpl hay que pasarle:

- Un mensaje (opcional) con una clasemensaje que define el estilo.
- Una lista atajos conteniendo los atajos de este usuario.

También vemos que el formulario de acortar URLs apunta a esta misma página con lo que la función deberá:

- Ver si el usuario está autenticado (o dar error 401)
- Si recibe un parámetro url, acortarlo y dar un mensaje al respecto.
- Pasar al template la variable atajos con los datos necesarios.

```
151 @bottle.route('/')
152 @bottle.view('usuario.tpl')
153 def alta():
154
        """Crea un nuevo slug"""
155
156
        # Requerimos que el usuario esté autenticado.
        if not 'REMOTE_USER' in bottle.request.environ:
157
158
            bottle.abort(401, "Sorry, access denied.")
159
        usuario=bottle.request.environ['REMOTE USER'].decode('utf8')
160
161
        # Data va a contener todo lo que el template
162
        # requiere para hacer la página
163
        data={}
164
165
        # Esto probablemente debería obtenerse de una
166
        # configuración
167
        data['baseurl'] = 'http://localhost:8080/'
168
169
        # Si tenemos un parámetro URL, estamos en esta
170
        # funcion porque el usuario envió una URL a acortar.
171
172
        if 'url' in bottle.request.GET:
173
            # La acortamos
174
            url = bottle.request.GET['url'].decode('utf8')
175
            a = Atajo(url=url, user=usuario)
176
            data['short'] = a.slug()
            data['url'] = url
177
178
179
            # La probamos
180
            a.run test()
181
```

```
182
            # Mensaje para el usuario de que el acortamiento
183
            # tuvo éxito.
184
            data['mensaje'] = u'''La URL
185
            <a href="%(url)s">%(url)s</a> se convirtió en:
            <a href="%(baseurl)s%(short)s">
186
            %(baseurl)s%(short)s</a>'''%data
187
188
189
            # Clase CSS que muestra las cosas como buenas
190
            data['clasemensaje']='success'
191
        else:
192
            # No se acortó nada, no hay nada para mostrar.
193
            data['url']=None
194
            data['short']=None
195
            data['mensaje']=None
196
197
        # Lista de atajos del usuario.
198
        data ['atajos'] = Atajo.get (user = usuario)
199
200
        # Crear la página con esos datos.
201
        return data
Las demás páginas no aportan nada interesante:
                                                              pyurl3.py
263 @bottle.route('/:slug/edit')
264 @bottle.view('atajo.tpl')
265 def editar(slug):
        """Edita un slug"""
266
267
        if not 'REMOTE_USER' in bottle.request.environ:
268
            bottle.abort(401, "Sorry, access denied.")
269
        usuario=bottle.request.environ['REMOTE USER'].decode('utf8')
270
271
        # Solo el dueño de un atajo puede editarlo
272
        a = Atajo.get(slug)
```

a.url = bottle.request.GET['url'].decode('utf-8')

bottle.abort(404, 'El atajo no existe')

Atajo no existe o no sos el dueño

if not a or a.user != usuario:

if 'url' in bottle.request.GET:
 # El usuario mandó el form

273

274

275

276277

278279

```
a.activo = 'activo' in bottle.request.GET
280
281
            a.test = bottle.request.GET['test'].decode('utf-8')
282
            a.save()
283
            bottle.redirect('/')
284
285
        return {'atajo':a,
286
                'mensaje':'',
287
                }
288
289 @bottle.route('/:slug/del')
290 def borrar(slug):
291
        """Elimina un slug"""
        if not 'REMOTE_USER' in bottle.request.environ:
292
            bottle.abort(401, "Sorry, access denied.")
293
294
        usuario=bottle.request.environ['REMOTE USER'].decode('utf8')
295
296
        # Solo el dueño de un atajo puede borrarlo
297
        a = Atajo.get(slug)
298
        if a and a.user == usuario:
299
            a.delete()
300
        # FIXME: pasar un mensaje en la sesión
301
        bottle.redirect('/')
302
303 @bottle.route('/:slug/test')
304 def run test(slug):
305
        """Corre el test correspondiente a un atajo"""
306
        if not 'REMOTE USER' in bottle.request.environ:
            bottle.abort(401, "Sorry, access denied.")
307
308
        usuario=bottle.request.environ['REMOTE USER'].decode('utf8')
309
310
        # Solo el dueño de un atajo puede probarlo
311
        a = Ataio.get(slug)
        if a and a.user == usuario:
312
313
            a.run test()
314
        # FIXME: pasar un mensaje en la sesión
315
        bottle.redirect('/')
316
317 # Un slug está formado sólo por estos caracteres
318 @bottle.route('/(?P<slug>[a-zA-Z0-9]+)')
319 def redir(slug):
```

Conclusiones

```
"""Redirigir un slug"""
320
321
322
        # Buscamos el atajo correspondiente
323
        a = Atajo.get(slug=slug)
324
        if not a:
325
            bottle.abort(404, 'El atajo no existe')
326
        bottle.redirect(a.url)
327
328 # Lo de /:filename es para favicon.ico :-)
329 @bottle.route('/:filename')
330 @bottle.route('/static/:filename')
331 def static_file(filename):
        """Archivos estáticos (CSS etc)"""
332
333
334
```

Conclusiones

En este capítulo se ve una aplicación web, completa, útil y (semi)original. El código que hizo falta escribir fue... unas 250 líneas de python.

Obviamente esta aplicación no está lista para ponerse en producción. Algunos de los problemas obvios:

- Necesita un robots.txt para no pasarse la vida respondiendo a robots
- · Se puede optimizar mucho
- Necesita protección contra DOS (ejemplo, limitar la frecuencia de corrida de los tests)

Y hay muchos features posibles:

- Opcionalmente redirigir en un IFrame y permitir cosas como comentarios acerca de la página de destino.
- · Estadísticas de uso de los links.
- Una página pública "Los links de Juan Perez" (y convertirlo en http://del.icio.us).
- Soportar cosas que no sean links si no texto (y convertirlo en un pastebin).
- Soportar imágenes (y ser un image hosting).

Conclusiones

- Correr tests periódicamente.
- Notificar fallas de test por email.

Todas esas cosas son posibles... y quien quiera hacerlas, puede ayudar!

Este programa es open source, y tiene un proyecto en googlecode: http://py-corta.googlecode.com . Visiten y ayuden!

Las Capas de una Aplicación

"Que tu mano izquierda no sepa lo que hace tu mano derecha"

Anónimo

En el capítulo anterior cuando estaba mostrando el uso del ORM puse

Si tenemos cuidado y aislamos el ORM del resto de la aplicación, es posible reemplazarlo con otro más adelante (o eliminarlo y "bajar" a SQL o a NoSQL).

¿Qué significa, en ese contexto, "tener cuidado"? Bueno, estoy hablando básicamente de lo que en inglés se llama multi-tier architecture.

Sin entrar en detalles formales, la idea general es decidir un esquema de separación en capas dentro de tu aplicación.

Siguiendo con el ejemplo del ORM: si todo el acceso al ORM está concentrado en una sola clase, entonces para migrar el sistema a NoSQL alcanza con reimplementar esa clase y mantener la misma semántica.

Algunos de los "puntos" clásicos en los que partir la aplicación son: Interfaz/Lógica/Datos y Frontend/Backend.

Por supuesto que esto es un formalismo: Por ejemplo, para una aplicación puede ser que todo twitter.com sea el backend, pero para los que lo crean, twitter.com a su vez está dividido en capas.

Yo no creo en definiciones estrictas, y no me voy a poner a decidir si un método específico pertenece a una capa u otra, normalmente uno puede ser flexible siempre que siga al pie de la letra tres reglas:

Una vez definida que tu arquitectura es en capas "A"/"B"/"C"/"D" (exagerando, normalmente dos o tres capas son suficiente):

- Las capas son una lista ordenada, se usa hacia abajo.
 - Si estás en la capa "B" usás "C", no "A".
- Nunca dejes que un componente se saltee una capa.

Si estás en la capa "A" entonces podés usar las cosas de la capa "B". "B" usa "C". "C" usa "D". Y así. Nunca "A" usa "C". Eso es joda.

Proyecto

• Tenés que saber en qué capa estás en todo momento.

Apenas dudes "¿estoy en B o en C?" la respuesta correcta es "estás en el horno."

¿Cómo sabemos en qué capa estamos? Con las siguientes reglas:

- 1. Si usamos el ORM estamos en la capa datos.
- Si el método en el que estamos es accesible por el usuario, estamos en la capa de interfaz.
- 3. Si not 1 and not 2 estamos en la capa de lógica.

No es exactamente un ejemplo de formalismo, pero este libro tampoco lo es.

Proyecto

Vamos a hacer un programa dividido en capas capas, interfaz/lógica/datos. Vamos a implementar dos veces cada capa, para demostrar que una separación clara independiza las implementaciones y mejora la claridad conceptual del código.

El Problema

Pensemos en juegos de tablero multijugador. ¿Cómo definirías el juego de damas de forma muy genérica?

- · Hay un tablero de NxN
- · Hay X cantidad de fichas de cada color.
- Las fichas comienzan el juego en cierta posición.
- · Hay dos jugadores
- Cada jugador tiene un turno en el que puede mover ciertas fichas según reglas específicas.
- Luego de una movida, tal vez alguna ficha se sague del tablero.
- Luego de una movida, tal vez alguna ficha sea reemplazada por otra.

Ok, ahora pensemos en ajedrez. O en go. O en ta-te-ti...

Capa de Datos: Diseño

iResulta que todos esos juegos se pueden describir de exactamente la misma manera!

Entonces dividamos esta teórica aplicación en capas:

- Interfaz: muestra el tablero y las fichas. Acepta las movidas.
- Lógica: procesa las movidas que manda la interfaz, las valida y acepta o rechaza.
- Datos: Luego de que una movida es validada, guarda un historial de las mismas, y el estado del tablero y las fichas.

Vamos a implementar esta aplicación de una manera... peculiar. Cada capa va a ser implementada dos veces, de maneras lo más distintas posible.

La manera más práctica de implementar estas cosas es de atrás para adelante:

FIXME hacer diagrama

Datos -> Lógica -> Interfaz

Capa de Datos: Diseño

Necesitamos describir completamente y de forma genérica todos estos juegos.

Qué tenemos en común:

Fichas

Son objetos que tienen un tipo ("alfil negro", "cruz", "piedrita blanca"), una posición en el tablero (o no), y un dueño.

Jugadores

Los dueños de las fichas. Juegan por turno. Aplican acciones a las fichas. Tienen un nombre.

Tablero

Donde se ponen las fichas. Tiene una cantidad de posiciones donde una ficha puede ponerse. Esas posiciones se pueden representar en una superficie.

Creo que con esos elementos puedo representar cualquier juego de tablero común. 23

La ventaja que tengo al ser el autor del libro es que si no es así vengo, edito la lista, y parece que tengo todo clarísimo desde el principio. No es el caso.

El Tablero

El Tablero

Las Fichas

El Jugador

Documentación y Testing

Documentación y Testing

"Si no está en el manual está equivocado. Si está en el manual es redundante"

Califa Omar, Alejandría, Año 634.

¿Pero cómo sabemos si el programa hace exactamente lo que dice el manual?

Bueno, pues *para eso* (entre otras cosas) están los tests ²⁴. Los tests son la rama militante de la documentación. La parte activa que se encarga de que ese manual no sea letra muerta e ignorada por perder contacto con la realidad, sino un texto que refleja lo que realmente existe.

24 También están para la gente mala que no documenta.

Si la realidad (el funcionamiento del programa) se aparta del ideal (el manual), es el trabajo del test chiflar y avisar que está pasando. Para que esto sea efectivo tenemos que cumplir varios requisitos:

- Los tests tienen que poder detectar todos los errores. (cobertura)
- Los tests tienen que ser ejecutados ante cada cambio, y las diferencias de resultado explicadas. (integración)
- El programador y el documentador y el tester (o sea uno) tiene que aceptar que hacer tests es necesario. Si se lo ve como una carga, no vale la pena: vas a aprender a ignorar las fallas, a hacer "pasar" los tests, a no hacer tests de las cosas que sabés que son difíciles. (ganas)

Por suerte en Python hay muchas herramientas que hacen que testear sea, si no divertido, por lo menos tolerable.

Docstrings

Tomemos un ejemplo zonzo: una función para traducir al rosarino 25 .

Este ejemplo surgió de una discusión de PyAr. El código que contiene es tal vez un poco denso. No te asustes, lo importante no es el código, si no lo que hay alrededor.

Documentación y Testing

Lenguaje Rosarino

Inventado (o popularizado) por Alberto Olmedo, el rosarino es un lenguaje en el cual la vocal acentuada X se reemplaza por XgasX con el acento al final (á por agasá, e por egasé, etc).

```
Algunos ejemplos:
```

```
rosarino => rosarigasino
té => té (no se expanden monosílabos)
brújula => brugasújula
queso => quegaseso
```

Aquí tenemos una primera versión, que funciona sólo en palabras con acento ortográfico:

gaso1.py

```
1 # -*- coding: utf-8 -*-
 2 import re
 3 import unicodedata
 5 def gas(letra):
      '''Dada una letra X devuelve XgasX excepto si X es una vocal acentuada,
 7
       en cuyo caso devuelve la primera X sin acento.
 9
      El uso de normalize lo saqué de google.
10
      return u'%sgas%s'%(unicodedata.normalize('NFKD', letra).\
11
12
       encode('ASCII', 'ignore'), letra)
13
14
15 def gasear(palabra):
      '''Dada una palabra, la convierte al rosarino'''
16
17
      # El caso obvio: acentos.
18
      # Lo resolvemos con una regexp
19
20
       # Uso \xel etc, porque así se puede copiar y pegar en un
21
22
       # archivo sin importar el encoding.
```

```
23
24     if re.search(u'[\xe1\xe9\xed\xf3\xfa]',palabra):
25         return re.sub(u'([\xe1\xe9\xed\xf3\xfa])',
26         lambda x: gas(x.group(0)),palabra,1)
27     return palabra
```

Esas cadenas debajo de cada def se llaman docstrings y *siempre* hay que usarlas. ¿Por qué?

- Es el lugar "oficial" para explicar qué hace cada función
- · iSirven como ayuda interactiva!

```
>>> import gaso1
>>> help(gaso1.gas)
```

Help on function gas in module gaso1:

gas(letra)

Dada una letra X devuelve XgasX excepto si X es una vocal acentuada, en cuyo caso devuelve la primera X sin acento.

El uso de normalize lo saqué de google.

- Usando una herramienta como epydoc se pueden usar para generar una guía de referencia de tu módulo (imanual gratis!)
- · Son el hogar de los doctests.

Doctests

"Los comentarios mienten. El código no."

Ron Jeffries

Un comentario mentiroso es peor que ningún comentario. Y los comentarios se vuelven mentira porque el código cambia y nadie edita los comentarios. Es el problema de repetirse: uno ya dijo lo que quería en el código, y tiene que volver a explicarlo en un comentario; a la larga las copias divergen, y siempre el que está equivocado es el comentario.

Un doctest permite **asegurar** que el comentario es cierto, porque el comentario tiene código de su lado, no es sólo palabras.

Y acá viene la primera cosa importante de testing: Uno quiere testear **todos** los comportamientos intencionales del código.

Si el código se supone que ya hace algo bien, aunque sea algo muy chiquitito, es el momento ideal para empezar a hacer testing. Si vas a esperar a que la función sea "interesante", ya va a ser muy tarde. Vas a tener un déficit de tests, vas a tener que ponerte un día sólo a escribir tests, y vas a decir que testear es aburrido.

¿Cómo sé yo que esa regexp en gaso1.py hace lo que yo quiero? ¡Porque la probé! Como no soy el mago de las expresiones regulares que las saca de la galera y le andan a la primera, hice esto en el intérprete interactivo (reemplacé la funcion gas con una versión boba):

```
>>> import re
>>> palabra=u'cámara'
>>> print re.sub(u'([\xe1\xe9\xed\xf3\xfa])',
... lambda x: x.group(0)+'gas'+x.group(0),palabra,1)
```

cágasámara

¿Y como sé que la función gas hace lo que quiero? Porque hice esto:

```
>>> import unicodedata
>>> def gas(letra):
...     return u'%sgas%s'%(unicodedata.normalize('NFKD',
...     letra).encode('ASCII', 'ignore'), letra)
>>> print gas(u'á')
agasá
>>> print gas(u'a')
agasa
```

Si no hubiera hecho ese test manual no tendría la más mínima confianza en este código, y creo que casi todos hacemos esta clase de cosas, ¿o no?.

El problema con este testing manual ad hoc es que lo hacemos una vez, la función hace lo que se supone debe hacer (al menos por el momento), y nos olvidamos.

Por suerte no tiene Por qué ser así, gracias a los doctests.

De hecho, el doctest es poco más que cortar y pegar esos tests informales que mostré arriba. Veamos la versión con doctests:

gaso2.pv

```
1 # -*- coding: utf-8 -*-
 2 import re
 3 import unicodedata
 5 def gas(letra):
 6
       '''Dada una letra X devuelve XgasX excepto si X es una vocal acentuada,
 7
       en cuyo caso devuelve la primera X sin acento.
 9
       El uso de normalize lo saqué de google.
10
       \xe1 y \\xe1 son "a con tilde", los doctests son un poco
11
12
       quisquillosos con los acentos.
13
14
       >>> gas(u'\xe1')
15
       u'agas\\xe1'
16
17
       >>> gas(u'a')
18
       u'agasa'
19
       . . .
20
21
       return u'%sgas%s'%(unicodedata.normalize('NFKD', letra).\
22
       encode('ASCII', 'ignore'), letra)
23
24
25 def gasear(palabra):
26
       '''Dada una palabra, la convierte al rosarino
27
28
       \xel y \\xel son "a con tilde", los doctests son un poco
29
       quisquillosos con los acentos.
30
31
       >>> gasear(u'c\xelmara')
32
       u'cagas\\xelmara'
33
       111
34
35
36
       # El caso obvio: acentos.
       # Lo resolvemos con una regexp
37
38
39
       # Uso \xel etc, porque así se puede copiar y pegar en un
40
       # archivo sin importar el encoding.
41
42
       if re.search(u'[\xe1\xe9\xed\xf3\xfa]',palabra):
43
           return re.sub(u'([\xe1\xe9\xed\xf3\xfa])',
44
               lambda x: gas(x.group(0)),palabra,1)
45
       return palabra
```

Eso es todo lo que se necesita para implementar doctests. ¡En serio!. ¿Y cómo hago para saber si los tests pasan o fallan? Hay muchas maneras. Tal vez la que más me gusta es usar Nose, una herramienta cuyo único objetivo es hacer que testear sea más fácil.

0K

Lo que hizo nose es "descubrimiento de tests" (test discovery). Toma la carpeta actual o el archivo que indiquemos (en este caso gaso2.py), encuentra las cosas que parecen tests y las usa. El parámetro —with-doctest es para que reconozca doctests (por default los ignora), y el -v es para que muestre cada cosa que prueba.

De ahora en más, cada vez que el programa se modifique, volvemos a correr el test suite (eso significa "un conjunto de tests"). Si falla alguno que antes andaba, es una regresión, paramos de romper y la arreglamos. Si pasa alguno que antes fallaba, es un avance, nos felicitamos y nos damos un caramelo.

Dentro del limitado alcance de nuestro programa actual, lo que hace, lo hace bien. Obviamente hay muchas cosas que hace mal:

```
>>> import gaso2
>>> gaso2.gasear('rosarino')
'rosarino'
>>> print 'OH NO!'
OH NO!
```

¿Qué hacemos entonces? ¡Agregamos un test que falla! Bienvenido al mundo del TDD o "Desarrollo impulsado por tests" (Test Driven Development). La idea es que, en general, si sabemos que hay un bug, seguimos este proceso:

- · Creamos un test que falla.
- Arreglamos el código para que no falle el test.
- Verificamos que no rompimos otra cosa usando el test suite.

Un test que falla es **bueno** porque nos marca qué hay que corregir. Si los tests son piolas, y cada uno prueba una sola \cos^{26} , entonces hasta nos va a indicar qué parte del código es la que está rota.

Un test que prueba muchas cosas juntas no es un buen test, porque al fallar no sabés por qué. Eso se llama granularidad de los tests y es muy importante.

Entonces, el problema de gaso2.py es que no funciona cuando no hay acentos ortográficos. &Solución? Una función que diga donde está el acento prosódico en una palabra 27 .

Y en este momento agradezcan que esto es castellano, que es un idioma casi obsesivo compulsivo en su regularidad.

Modificamos gasear así:

gaso3.py

```
24 def gasear(palabra):
25
       '''Dada una palabra, la convierte al rosarino
26
27
       \xel y \\xel son "a con tilde", los doctests son un poco
28
       quisquillosos con los acentos.
29
30
       >>> gasear(u'c\xe1mara')
31
       u'cagas\\xelmara'
32
33
       >>> gasear(u'rosarino')
34
       u'rosarigasino'
35
       1.1.1
36
37
       # El caso obvio: acentos.
38
39
       # Lo resolvemos con una regexp
40
41
       # Uso \xel etc, porque así se puede copiar y pegar en un
       # archivo sin importar el encoding.
42
43
44
       if re.search(u'[\xe1\xe9\xed\xf3\xfa]',palabra):
45
           return re.sub(u'([\xe1\xe9\xed\xf3\xfa])',
46
               lambda x: gas(x.group(0)),palabra,1)
47
       # No tiene acento ortográfico
```

```
48
       pos = busca acento(palabra)
49
       return palabra[:pos]+gas(palabra[pos])+palabra[pos+1:]
50
51 def busca acento(palabra):
       '''Dada una palabra (sin acento ortográfico).
52
       devuelve la posición de la vocal acentuada.
53
54
55
       Sabiendo que la palabra no tiene acento ortográfico,
56
       sólo puede ser grave o aguda. Y sólo es grave si termina
57
       en 'nsaeiou'.
58
59
       Ignorando diptongos, hay siempre una vocal por sílaba.
60
       Ergo, si termina en 'nsaeiou' es la penúltima vocal, si no,
61
       es la última.
62
63
       >>> busca acento('casa')
64
       1
65
66
       >>> busca acento('impresor')
67
       6
68
       . . .
69
70
       if palabra[-1] in 'nsaeiou':
71
72
           # Palabra grave, acento en la penúltima vocal
73
           # Posición de la penúltima vocal:
74
           pos=list(re.finditer('[aeiou]',palabra))[-2].start()
75
       else:
76
           # Palabra aguda, acento en la última vocal
77
           # Posición de la última vocal:
78
           pos=list(re.finditer('[aeiou]',palabra))[-1].start()
79
80
       return pos
```

¿Notaste que agregar tests de esta forma no se siente como una carga?

Es parte natural de escribir el código, pienso, "uy, esto no debe andar", meto el test como creo que debería ser en el docstring, y de ahora en más sé si eso anda o no.

Cobertura

Por otro lado te da la tranquilidad de "no estoy rompiendo nada". Por lo menos nada que no estuviera funcionando exclusivamente por casualidad.

Por ejemplo, gaso1.py pasaría el test de la palabra "la" y gaso2.py fallaría, pero no porque gaso1.py estuviera haciendo algo bien, sino porque respondía de forma afortunada.

Cobertura

Es importante que nuestros tests "cubran" el código. Es decir que cada parte sea usada por lo menos una vez. Si hay un fragmento de código que ningún test utiliza nos faltan tests (o nos sobra código ²⁸)

El código muerto en una aplicación es un problema serio, molesta cuando se intenta depurar porque está metido en el medio de las partes que sí se usan y distrae.

La forma de saber qué partes de nuestro código están cubiertas es con una herramienta de cobertura ("coverage tool"). Veamos una en acción:

[ralsina@hp python-no-muerde]\$ nosetests --with-coverage --with-doctest \
 -v gaso3.py buscaacento1.py

Doctest: gaso3.gas ... ok
Doctest: gaso3.gasear ... ok

Doctest: buscaacentol.busca acento ... ok

Name	Stmts	Exec	Cover	Missing
buscaacento1	6	6	100%	
encodings.ascii	19	0	0%	9-42
gaso3	10	10	100%	
TOTAL	35	16	45%	

Ran 3 tests in 0.018s

0K

Al usar la opción —with-coverage, nose usa el módulo coverage.py para ver cuáles líneas de código se usan y cuales no. Lamentablemente el reporte incluye un módulo de sistema, encodings.ascii lo que hace que los porcentajes no sean correctos.

Mocking

Una manera de tener un reporte más preciso es correr coverage report luego de correr nosetests:

[ralsina@hp python-no-muerde]\$ coverage report

Name	Stmts	Exec	Cover
buscaacento1	6	6	100%
gaso3	10	10	100%
T0TAL	16	16	100%

Ignorando encodings.ascii (que no es nuestro), tenemos 100% de cobertura: ese es el ideal. Cuando ese porcentaje baje, deberíamos tratar de ver qué parte del código nos estamos olvidando de testear, aunque es casi imposible tener 100% de cobertura en un programa no demasiado sencillo.

Coverage también puede crear reportes HTML mostrando cuales líneas se usan y cuales no, para ayudar a diseñar tests que las ejerciten.

FIXME: mostrar captura salida HTML

Mocking

La única manera de reconocer al maestró del disfraz es su risa. Se ríe "jo jo jo".

Inspector Austin, Backyardigans

A veces para probar algo, se necesita un objeto, y no es práctico usar el objeto real por diversos motivos, entre otros:

- Puede ser un objeto "caro": una base de datos.
- Puede ser un objeto "inestable": un sensor de temperatura.
- Puede ser un objeto "malo": por ejemplo un componente que aún no está implementado.
- Puede ser un objeto "no disponible": una página web, un recurso de red.
- \bullet Simplemente quiero "separar" los tests, quiero que los errores de un componente no se propaguen a otro. 29
- Estamos haciendo doctests de un método de una clase: la clase no está instanciada al ejecutar el doctest.

Mocking

Esta separación de los elementos funcionales es lo que hace que esto sea "unit testing": probamos cada unidad funcional del código.

Para resolver este problema se usa mocking. ¿Qué es eso? Es una manera de crear objetos falsos que hacen lo que uno quiere y podemos usar en lugar del real.

Una herramienta sencilla de mocking para usar en doctests es minimock.

Apartándonos de nuestro ejemplo por un momento, ya que no se presta a usar mocking sin inventar nada ridículo, pero aún así sabiendo que estamos persiguiendo hormigas con aplanadoras...

mock1.py

```
3 def largo de pagina(url):
       '''Dada una URL, devuelve el número de caracteres que la página tiene.
5
       Basado en código de Paul Prescod:
6
       http://code.activestate.com/recipes/65127-count-tags-in-a-document/
 7
8
       Como las páginas cambian su contenido periódicamente,
9
       usamos mock para simular el acceso a Internet en el test.
10
11
      >>> from minimock import Mock, mock
12
13
      Creamos un falso URLOpener
14
15
      >>> opener = Mock ('opener')
16
17
       Creamos un falso archivo
18
19
       >>> file = Mock ('file')
20
21
       El metodo open del URLopener devuelve un falso archivo
22
23
       >>> opener.open = Mock('open', returns = _file)
24
25
       urllib.URLopener devuelve un falso URLopener
26
27
       >>> mock('urllib.URLopener', returns = opener)
28
29
       El falso archivo devuelve lo que yo quiero:
30
31
       >>> file.read = Mock('read', returns = '<h1>Hola mundo!</h1>')
32
```

Mocking

La GUI es la Parte Fácil

Empezar a crear la interfaz gráfica de una aplicación es como empezar a escribir un libro. Tenés un espacio en blanco, esperando que hagas algo, y si no sabés qué es lo que querés poner ahí, la infinitud de los caminos que se te abren es paralizante.

Este capítulo no te va a ayudar en absoluto con ese problema, si no que vamos a tratar de resolver su opuesto: sabiendo qué querés hacer, cómo se hace?

Vamos a aprender a hacer programas sencillos usando PyQt, un toolkit de interfaz gráfica potente, multiplataforma, y relativamente sencillo de usar.

Programación con Eventos

Signals / Slots

Ventanas / Diálogos

Acciones

Proyecto

Vamos a hacer una aplicación completa. Como esto es un libro de Python y no específicamente de PyQt, no va a ser *tan* complicada. Veamos un escenario para entender de dónde viene este proyecto.

Supongamos que estás usando tu computadora y querés escuchar música. Supongamos también que te gusta escuchar radios online.

Hoy en día hay varias maneras de hacerlo:

- · Ir al sitio de la radio.
- Utilizar un reproductor de medios (Amarok, Banshee, Media Player o similar)
- Usar RadioTray

Resulta que mi favorita es la tercera opción por varios motivos que no vienen al caso. Nuestro proyecto es crear una aplicación similar, minimalista y fácil de entender.

Diseño de Interfaz Gráfica

¿Cómo se hace una estatua de un elefante? Empezás con un bloque de mármol y sacás todo lo que no parece un elefante.

Anónimo.

¿Siendo un programador, qué sabe uno de diseños de interfaces? La respuesta, al menos en mi caso es poco y nada. Sin embargo, hay unos cuantos principios que ayudan a que uno no cree interfaces *demasiado* horribles, o a veces hasta agradables.

· Aprender de otros.

Estamos rodeados de ejemplos de buenas y malas interfaces. Copiar es bueno.

· Contenerse.

Tenemos una tendencia natural a crear cabinas de Concord. No te digo que no está buena la cabina de un Concord, lo que te digo es que para hacer tostadas es demasiado.

En general, dado que uno no tiene la habilidad (en principio) de crear asombrosas interfaces, lo mejor es crear lo menos posible. iLo que no está ahí no puede estar *tan* mal!

· Pensar mucho antes.

Siempre es más fácil agregar y mantener un feature bien pensado, con una interfaz limitada, que tratar de hacer que funcione una pila de cosas a medio definir.

Si no sabés *exactamente* cómo funciona tu aplicación, no estás listo para hacer una interfaz usable para ella. Sí podés hacer una de prueba.

· Tirá una.

Hacé una interfaz mientras estás empezando. Después tirála. Si hiciste una clara separación de capas eso debería ser posible.

· Pedí ayuda.

Si tenés la posibilidad de que te de una mano un experto en usabilidad, usála. Sí, ya sé que vos podés crear una interfaz que funcione, eso es lo *fácil*, lo difícil es crear una interfaz que alguien quiera usar.

Diseño de Interfaz Gráfica

Más allá de esos criterios, en este capítulo vamos a tomar la interfaz creada en el capítulo anterior y la vamos a rehacer, pero bien. Porque esa era la de desarrollo, y la vamos a tirar.

Un Programa Útil

Este es el temido "capítulo integrador" en el que vamos a tomar todo lo que vimos hasta ahora y tratar de crear algo interesante. Repasemos qué se supone que tenemos en nuestra caja de herramientas...

- Una colección enorme de software que podemos aprovechar en vez de escribirlo nosotros.
- Capacidad de separar nuestra aplicación en capas, para que los componentes sean reemplazables.
- La convicción de que testear y documentar el código es importante.
- · Sabemos hacer interfaces gráficas y/o web.
- · Sabemos usar un ORM.
- · Diversas cosas menores que nos cruzamos por el camino.

Proyecto

Vamos a hacer un sistema de integración continua al estilo Hudson para proyectos python.

Tal vez no tenga tantos features, pero va a ser suficiente para la mayoría de los casos.

Instalación, Deployment y Otras Yerbas

Instalación, Deployment y Otras Yerbas

En este momento (primera mitad del 2010) la situación de los mecanismos de deployment disponibles para python es bastante caótica. Hay media docena de maneras de acercarse al tema.

- Podés usar distutils (viene en la stdlib)
- Podés usar setuptools
- Podés usar distribute (reemplaza a setuptools)

Cómo Crear un Proyecto de Software Libre

Cómo Crear un Proyecto de Software Libre

Rebelión Contra el Zen

Rebelión Contra el Zen

Herramientas

Herramientas

Conclusiones, Caminos y Rutas de Escape

Conclusiones, Caminos y Rutas de Escape

LA OBRA (TAL COMO SE DEFINE MÁS ABAJO) SE PROVEE BAJO LOS TÉRMINOS DE ESTA LICENCIA PÚBLICA DE CREATIVE COMMONS ("CCPL" O "LICENCIA"). LA OBRA ESTÁ PROTEGIDA POR EL DERECHO DE AUTOR Y/O POR OTRAS LEYES APLICABLES. ESTÁ PROHIBIDO CUALQUIER USO DE LA OBRA DIFERENTE AL AUTORIZADO BAJO ESTA LICENCIA O POR EL DERECHO DE AUTOR.

MEDIANTE EL EJERCICIO DE CUALQUIERA DE LOS DERECHOS AQUÍ OTORGADOS SOBRE LA OBRA, USTED ACEPTA Y ACUERDA QUEDAR OBLIGADO POR LOS TÉRMINOS DE ESTA LICENCIA. EL LICENCIANTE LE CONCEDE LOS DERECHOS AQUÍ CONTENIDOS CONSIDERANDO QUE USTED ACEPTA SUS TÉRMINOS Y CONDICIONES.

1. Definiciones

- a. "Obra Colectiva" significa una obra, tal como una edición periódica, antología o enciclopedia, en la cual la Obra, en su integridad y forma inalterada, se ensambla junto a otras contribuciones que en sí mismas también constituyen obras separadas e independientes, dentro de un conjunto colectivo. Una obra que integra una Obra Colectiva no será considerada una Obra Derivada (tal como se define más abajo) a los fines de esta Licencia.
- b. "Obra Derivada" significa una obra basada sobre la Obra o sobre la Obra y otras obras preexistentes, tales como una traducción, arreglo musical, dramatización, ficcionalización, versión fílmica, grabación sonora, reproducción artística, resumen, condensación, o cualquier otra forma en la cual la Obra puede ser reformulada, transformada o adaptada. Una obra que constituye una Obra Colectiva no será considerada una Obra Derivada a los fines de esta Licencia. Para evitar dudas, cuando la Obra es una composición musical o grabación sonora, la sincronización de la Obra en una relación temporal con una imagen en movimiento ("synching") será considerada una Obra Derivada a los fines de esta Licencia.
- c. "Licenciante" significa el individuo o entidad que ofrece la Obra bajo los términos de esta Licencia.
- d. "Autor Original" significa el individuo o entidad que creó la Obra.

- e. "Obra" significa la obra sujeta al derecho de autor que se ofrece bajo los términos de esta Licencia.
- f. "Usted" significa un individuo o entidad ejerciendo los derechos bajo esta Licencia quien previamente no ha violado los términos de esta Licencia con respecto a la Obra, o quien, a pesar de una previa violación, ha recibido permiso expreso del Licenciante para ejercer los derechos bajo esta Licencia.
- g. "Elementos de la Licencia" significa los siguientes atributos principales de la licencia elegidos por el Licenciante e indicados en el título de la Licencia: Atribución, NoComercial, CompartirDerivadasIgual.
- 2. Derechos de Uso Libre y Legítimo. Nada en esta licencia tiene por objeto reducir, limitar, o restringir cualquiera de los derechos provenientes del uso libre, legítimo, derecho de cita u otras limitaciones que tienen los derechos exclusivos del titular bajo las leyes del derecho de autor u otras normas que resulten aplicables.
- 3. Concesión de la Licencia. Sujeto a los términos y condiciones de esta Licencia, el Licenciante por este medio le concede a Usted una licencia de alcance mundial, libre de regalías, no-exclusiva, perpetua (por la duración del derecho de autor aplicable) para ejercer los derechos sobre la Obra como se establece abajo:
 - a. para reproducir la Obra, para incorporar la Obra dentro de una o más Obras Colectivas, y para reproducir la Obra cuando es incorporada dentro de una Obra Colectiva;
 - b. para crear y reproducir Obras Derivadas;
 - c. para distribuir copias o fonogramas, exhibir públicamente, ejecutar públicamente y ejecutar públicamente por medio de una transmisión de audio digital las Obras, incluyendo las incorporadas en Obras Colectivas;
 - d. para distribuir copias o fonogramas, exhibir públicamente, ejecutar públicamente y ejecutar públicamente por medio de una transmisión de audio digital las Obras Derivadas;

Los derechos precedentes pueden ejercerse en todos los medios y formatos ahora conocidos o a inventarse. Los derechos precedentes incluyen el derecho

de hacer las modificaciones técnicamente necesarias para ejercer los derechos en otros medios y formatos. Todos los derechos no concedidos expresamente por el Licenciante son reservados, incluyendo, aunque no sólo limitado a estos, los derechos presentados en las Secciones 4 (e) y 4 (f).

- 4. **Restricciones.** La licencia concedida arriba en la Sección 3 está expresamente sujeta a, y limitada por, las siguientes restricciones:
 - a. Usted puede distribuir, exhibir públicamente, ejecutar públicamente o ejecutar públicamente la Obra en forma digital sólo bajo los términos de esta Licencia, y Usted debe incluir una copia de esta Licencia o de su Identificador Uniforme de Recursos (Uniform Resource Identifier) con cada copia o fonograma de la Obra que Usted distribuya, exhiba públicamente, ejecute públicamente, o ejecute públicamente en forma digital. Usted no podrá ofrecer o imponer condición alguna sobre la Obra que altere o restrinja los términos de esta Licencia o el ejercicio de los derechos aquí concedidos a los destinatarios. Usted no puede sublicenciar la Obra. Usted debe mantener intactas todas las notas que se refieren a esta Licencia y a la limitación de garantías. Usted no puede distribuir, exhibir públicamente, ejecutar públicamente públicamente en forma digital la Obra con medida tecnológica alguna que controle el acceso o uso de la Obra de una forma inconsistente con los términos de este Acuerdo de Licencia. Lo antedicho se aplica a la Obra cuando es incorporada en una Obra Colectiva, pero esto no requiere que la Obra Colectiva, con excepción de la Obra en sí misma, quede sujeta a los términos de esta Licencia. Si Usted crea una Obra Colectiva, bajo requerimiento de cualquier Licenciante Usted debe, en la medida de lo posible, quitar de la Obra Colectiva cualquier crédito requerido en la cláusula 4(d), conforme lo solicitado. Si Usted crea una Obra Derivada, bajo requerimiento de cualquier Licenciante Usted debe, en la medida de lo posible, quitar de la Obra Derivada cualquier crédito requerido en la cláusula 4(d), conforme lo solicitado.
 - b. Usted puede distribuir, exhibir públicamente, ejecutar públicamente
 o ejecutar públicamente en forma digital una Obra Derivada sólo
 bajo los términos de esta Licencia, una versión posterior de esta
 Licencia con los mismos Elementos de la Licencia, o una licencia de
 Creative Commons iCommons que contenga los mismos Elementos
 de la Licencia (v.g., Atribución,

NoComercial, CompartirDerivadasIgual 2.5 de Japón). Usted debe incluir una copia de esta licencia, o de otra licencia de las especificadas en la oración precedente, o de su Identificador Uniforme de Recursos (Uniform Resource Identifier) con cada copia o fonograma de la Obra Derivada que Usted distribuya, exhiba públicamente, ejecute públicamente o ejecute públicamente en forma digital. Usted no podrá ofrecer o imponer condición alguna sobre la Obra Derivada que altere o restrinja los términos de esta Licencia o el ejercicio de los derechos aquí concedidos a los destinatarios, y Usted debe mantener intactas todas las notas que refieren a esta Licencia y a la limitación de garantías. Usted no puede distribuir, exhibir públicamente, ejecutar públicamente o ejecutar públicamente en forma digital la Obra Derivada con medida tecnológica alguna que controle el acceso o uso de la Obra de una forma inconsistente con los términos de este Acuerdo de Licencia. Lo antedicho se aplica a la Obra Derivada cuando es incorporada en una Obra Colectiva, pero esto no requiere que la Obra Colectiva, con excepción de la Obra Derivada en sí misma, quede sujeta a los términos de esta Licencia.

- c. Usted no puede ejercer ninguno de los derechos a Usted concedidos precedentemente en la Sección 3 de alguna forma que esté primariamente orientada, o dirigida hacia, la obtención de ventajas comerciales o compensaciones monetarias privadas. El intercambio de la Obra por otros materiales protegidos por el derecho de autor mediante el intercambio de archivos digitales (file-sharing) u otras formas, no será considerado con la intención de, o dirigido a, la obtención de ventajas comerciales o compensaciones monetarias privadas, siempre y cuando no haya pago de ninguna compensación monetaria en relación con el intercambio de obras protegidas por el derecho de autor.
- d. Si usted distribuye, exhibe públicamente, ejecuta públicamente o ejecuta públicamente en forma digital la Obra o cualquier Obra Derivada u Obra Colectiva, Usted debe mantener intacta toda la información de derecho de autor de la Obra y proporcionar, de forma razonable según el medio o manera que Usted esté utilizando: (i) el nombre del Autor Original si está provisto (o seudónimo, si fuere aplicable), y/o (ii) el nombre de la parte o las partes que el Autor Original y/o el Licenciante hubieren designado

para la atribución (v.g., un instituto patrocinador, editorial, publicación) en la información de los derechos de autor del Licenciante, términos de servicios o de otras formas razonables; el título de la Obra si está provisto: en la medida de lo razonablemente factible v. si está provisto, el Identificador Uniforme de Recursos (Uniform Resource Identifier) que el Licenciante especifica para ser asociado con la Obra, salvo que tal URI no se refiera a la nota sobre los derechos de autor o a la información sobre el licenciamiento de la Obra; y en el caso de una Obra Derivada, atribuir el crédito identificando el uso de la Obra en la Obra Derivada (v.g., "Traducción Francesa de la Obra del Autor Original." o "Guión Cinematográfico basado en la Obra original del Autor Original"). Tal crédito puede ser implementado de cualquier forma razonable; en el caso, sin embargo, de Obras Derivadas u Obras Colectivas, tal crédito aparecerá, como mínimo, donde aparece el crédito de cualquier otro autor comparable y de una manera, al menos, tan destacada como el crédito de otro autor comparable.

- e. Para evitar dudas, cuando una Obra es una composición musical:
 - i. Derechos Económicos y Ejecución bajo estas Licencias. El Licenciante se reserva el derecho exclusivo de colectar, ya sea individualmente o vía una sociedad de gestión colectiva de derechos (v.g., SADAIC, ARGENTORES), los valores (royalties) por la ejecución pública o por la ejecución pública en forma digital (v.g., webcast) de la Obra si esta ejecución está principalmente orientada a, o dirigida hacia, la obtención de ventajas comerciales o compensaciones monetarias privadas.
 - ii. Derechos Económicos sobre Fonogramas. El Licenciante se reserva el derecho exclusivo de colectar, ya sea individualmente, vía una sociedad de gestión colectiva de derechos (v.g., SADAIC, AADI-CAPIF), o vía una agencia de derechos musicales o algún agente designado, los valores (royalties) por cualquier fonograma que Usted cree de la Obra ("versión", "cover") y a distribuirlos, conforme a las disposiciones aplicables del derecho de autor, si su distribución de la versión (cover) está principalmente orientada a, o dirigida hacia, la obtención de ventajas

comerciales o compensaciones monetarias privadas.

f. Derechos Económicos y Ejecución Digital (Webcasting). Para evitar dudas, cuando la Obra es una grabación sonora, el Licenciante se reserva el derecho exclusivo de colectar, ya sea individualmente o vía una sociedad de gestión colectiva de derechos (v.g., SADAIC, ARGENTORES), los valores (royalties) por la ejecución pública digital de la Obra (v.g., webcast), conforme a las disposiciones aplicables de derecho de autor, si esta ejecución está principalmente orientada a, o dirigida hacia, la obtención de ventajas comerciales o compensaciones monetarias privadas.

5. Representaciones, Garantías y Limitación de Responsabilidad

A MENOS QUE SEA ACORDADO DE OTRA FORMA Y POR ESCRITO ENTRE LAS PARTES. EL LICENCIANTE OFRECE LA OBRA "TAL Y COMO SE LA ENCUENTRA" Y NO OTORGA EN RELACIÓN A LA OBRA NINGÚN TIPO DE REPRESENTACIONES O GARANTÍAS. SEAN EXPRESAS. IMPLÍCITAS O LEGALES; SE EXCLUYEN ENTRE OTRAS, SIN LIMITACIÓN. LAS GARANTÍAS SOBRE LAS CONDICIONES. CUALIDADES. TITULARIDAD O EXACTITUD DE LA OBRA. ASÍ COMO TAMBIÉN. LAS GARANTÍAS SOBRE LA AUSENCIA DE ERRORES U OTROS DEFECTOS, SEAN ESTOS MANIFIESTOS O LATENTES, PUEDAN O NO DESCUBRIRSE. ALGUNAS JURISDICCIONES NO PERMITEN LA EXCLUSIÓN DE GARANTÍAS IMPLÍCITAS. POR TANTO ESTAS EXCLUSIONES PUEDEN NO APLICÁRSELE A USTED.

6. Limitación de Responsabilidad. EXCEPTO EN LA EXTENSIÓN REQUERIDA POR LA LEY APLICABLE, EL LICENCIANTE EN NINGÚN CASO SERÁ REPONSABLE FRENTE A USTED, CUALQUIERA SEA LA TEORÍA LEGAL, POR CUALQUIER DAÑO ESPECIAL, INCIDENTAL, CONSECUENTE, PUNITIVO O EJEMPLAR, PROVENIENTE DE ESTA LICENCIA O DEL USO DE LA OBRA, AUN CUANDO EL LICENCIANTE HAYA SIDO INFORMADO SOBRE LA POSIBILIDAD DE TALES DAÑOS.

7. Finalización

 a. Esta Licencia y los derechos aquí concedidos finalizarán automáticamente en caso que Usted viole los términos de la misma.
 Los individuos o entidades que hayan recibido de Usted Obras Derivadas u Obras Colectivas conforme a esta Licencia, sin

- embargo, no verán finalizadas sus licencias siempre y cuando permanezcan en un cumplimiento íntegro de esas licencias. Las secciones 1, 2, 5, 6, 7, y 8 subsistirán a cualquier finalización de esta Licencia.
- b. Sujeta a los términos y condiciones precedentes, la Licencia concedida aquí es perpetua (por la duración del derecho de autor aplicable a la Obra). A pesar de lo antedicho, el Licenciante se reserva el derecho de difundir la Obra bajo diferentes términos de Licencia o de detener la distribución de la Obra en cualquier momento; sin embargo, ninguna de tales elecciones servirá para revocar esta Licencia (o cualquier otra licencia que haya sido, o sea requerida, para ser concedida bajo los términos de esta Licencia), y esta Licencia continuará con plenos efectos y validez a menos que termine como se indicó precedentemente.

8. Misceláneo

- a. Cada vez que Usted distribuye o ejecuta públicamente en forma digital la Obra o una Obra Colectiva, el Licenciante ofrece a los destinatarios una licencia para la Obra en los mismos términos y condiciones que la licencia concedida a Usted bajo esta Licencia.
- b. Cada vez que Usted distribuye o ejecuta públicamente en forma digital una Obra Derivada, el Licenciante ofrece a los destinatarios una licencia para la Obra original en los mismos términos y condiciones que la licencia concedida a Usted bajo esta Licencia.
- c. Si alguna disposición de esta Licencia es inválida o no exigible bajo la ley aplicable, esto no afectará la validez o exigibilidad de los restantes términos de esta Licencia, y sin necesidad de más acción de las partes de este acuerdo, tal disposición será reformada en la mínima extensión necesaria para volverla válida y exigible.
- d. Ningún término o disposición de esta Licencia se considerará renunciado y ninguna violación se considerará consentida a no ser que tal renuncia o consentimiento sea por escrito y firmada por las partes que serán afectadas por tal renuncia o consentimiento.
- e. Esta Licencia constituye el acuerdo integral entre las partes con respecto a la Obra licenciada aquí. No hay otros entendimientos, acuerdos o representaciones con respecto a la Obra que no estén

especificados aquí. El Licenciante no será obligado por ninguna disposición adicional que pueda aparecer en cualquier comunicación proveniente de Usted. Esta Licencia no puede ser modificada sin el mutuo acuerdo por escrito entre el Licenciante y Usted.

Agradecimientos

Agradecimientos

Sin las siguientes personas este libro no sería lo que es (iasí que a llorar al ziggurat!) En ningún orden:

- Pablo Ziliani
- · Andrés Gattinoni
- Juan Pedro Fisanotti
- · Lucio Torre
- Darío Graña
- · Sebastián Bassi
- · Leonardo Vidarte
- · Daniel Moisset
- Ernesto Savoretti
- El que me olvidé. ¡Sí, ése!

El Meta-Libro

"Escribir es un asunto privado."

Goldbarth

Una de las intenciones de este experimento escribir-un-libro fue hacerlo "en publico". ¿Porqué?

- Me gusta mucho el open source. Trato de aplicarlo en muchas cosas, aún en aquellas en las que no se hace habitualmente. Por ejemplo, si bien no acepto colaboraciones para el libro, si acepto parches.
- En mi experiencia, si hay gente que le interesa un proyecto mío, entonces es más probable que no lo deje pudrirse por abandono. Creí (aparentemente con razón) que a la gente de PyAr le interesaría este proyecto. Ergo, le vengo poniendo pilas.
- Los últimos quince años metido en proyectos open source y diez años de blog me han convertido en una especie de exhibicionista intelectual. Idea que me pasa por el bocho la tiro para afuera. O la hago código, o la hago blog, o algo. Este libro es algo así, tuve la idea, no la puedo contener en mi cabeza, la tengo que mostrar.

Y uno de los efectos de querer mostrar el libro mientras lo hacía es que *tengo* que poder mostrarlo y no tiene que ser algo demasiado vergonzoso estéticamente y tiene que poder leerse cómodamente.

Como ya es casi natural para mí escribir reStructured text (hasta los mails me suelen salir como reSt válido), busqué algo por ese lado.

Para generar PDFs, elegí rst2pdf porque es mío y si no hace exactamente lo que yo quiero... lo cambio para que lo haga 30

De hecho, usarlo para este proyecto me ha permitido arreglar por lo menos cinco bugs :-)

Para el sitio, la solución obvia era Sphinx, pero... me molestan algunas cosas (menores) de incompatibilidad con docutils (especialmente la directiva class), que hacen que un documento Sphinx sólo se pueda procesar con Sphinx.

Entonces, buscando alternativas encontré rest2web de Michael Foord que es **muy** fácil de usar y flexible.

Al ser este un libro de programación, tiene algunos requerimientos particulares.

Código

Es necesario mostrar código fuente. Rst2pdf lo soporta nativamente con la directiva code-block pero no es parte del restructured text standard. En consecuencia, tuve que emparchar rest2web para que la use 31

Gráficos

Hay algunos diagramas. Los genero con la excelente herramienta Graphviz. Los quiero generar en dos formatos, PNG para web PDF para el PDF, por suerte graphviz soporta ambos.

Build

Quiero que cuando cambia un listado se regeneren el sitio y los PDF. Quiero que cuando cambia el estilo del PDF se regenere este pero no el sitio. Quiero que todo eso se haga solo.

Sí, podría haber pensado en algo basado en Python pero, realmente para estas cosas, la respuesta es make. Será medio críptico de a ratos, pero hace lo que hace.

Por ejemplo, así se reconstruye el PDF de un gráfico:

Feedback

Como toda la idea es tener respuesta, hay que tener como dejarla. Comentarios en el sitio via disqus.

Tipografía

Es complicado encontrar un set de fuentes modernas, buenas, y coherentes. Necesito por lo menos bold, italic, bold italic para el texto y lo mismo en una variante monoespaciada.

Las únicas familias que encontré tan completas son las tipografías DejaVu y Vera. Inclusive hay una DejaVu Thin más decorativa que me gustó para los títulos

HTML

Soy un queso para el HTML, así que tomé prestado un CSS llamado LSR de http://rst2a.com. Para que la estética quede similar a la del libro usé TypeKit (lamentablemente me limita a 2 tipografías, así que no pude usar Dejavu Thin en los títulos/citas).

Server

No espero que tenga mucho tráfico. Y aún si lo tuviera no sería problema: *es un sitio en HTML estático* por lo que probablemente un pentium 3 pueda saturar 1Mbps. Lo puse directamente en el mismo VPS que tiene mi blog.

Por suerte la directiva es completamente genérica, funciona para HTML igual que para PDF. Esto es lo que tuve que agregar al principio de r2w.py:

Versionado

No hay mucho para discutir, cualquiera de los sitios de hosting libres para control de versiones serviría. Usé mercurial (porque quería aprenderlo mejor) sobre googlecode (porque es mi favorito).

Por supuesto que toda la infraestructura usada está en el mismo repositorio de mercurial que el resto del libro.

Licencia

La elección de licencia para un trabajo es un tema personal de cada uno. Creo que la que elegí es *suficientemente libre*, en el sentido de que prohíbe las cosas que no quiero que se hagan (editar el libro y venderlo) y permite las que me interesa permitir (copiarlo, cambiarlo).

Por supuesto, al ser yo el autor, siempre es posible obtener permisos especiales para cualquier cosa *pidiéndolo*. Tenés el 99% de probabilidad de que diga que sí.