Q. 7 For the following grammar

 $D \rightarrow TL$;

 $L \rightarrow L$, id I id

 $T \rightarrow int \mid float$

- 1) Remove left recursion (if required)
- 2) Find first and follow for each non terminal for Resultant grammar
- 3) Construct LL(1) parsing table
- 4) Parse the following string (show stack actions clearly) and draw parse input: int id, id;

Ans.:

1. Remove left recursion

$$L \rightarrow id L'$$

$$L' \rightarrow , id L' | \in$$

2. FIRST and FOLLOW for each non-terminal for resultant grammar.

$$D \rightarrow TL$$
;

$$L \rightarrow id L'$$

$$L' \rightarrow , id L' \in$$

$$T \rightarrow int |float|$$

$$FIRST(T) = \{int, float\}$$

$$FIRST(D) = FIRST(T) = \{int, float\}$$

FIRST (L) = {id}
FIRST (L') = {,,
$$\in$$
}
FOLLOW (D) = {\$}
FOLLOW (L) = {;}
FOLLOW (T) = {id}
FOLLOW (L') = {;}

3. LL(1) parsing table

	int	float	id	,	11 0 74	\$
D	$D \rightarrow TL$;	$D \rightarrow TL$;	V.	V 1	- 301	
L	-		$L \rightarrow idL'$	The same distribution		
L'	War 1917 day	$C \rightarrow bC$	NOUNCE THE	$L' \rightarrow , idL'$	L'→∈	118.7
T	$T \rightarrow int$	$T \rightarrow float$		The state of the s		

4. Parsing of given input string int id, id;

\$ D

int id, id; $D \rightarrow TL$;

\$;LT

int id, id; $T \rightarrow int$

\$; L int

int id, id;

\$;L

 $id, id ; L \rightarrow idL'$

\$; L' id

id, id;

4;L'

, id;

\$; L' id;

, id;

\$;L'

id;

 $L \rightarrow idL'$

\$; L' id;

id;

\$; L'

 $L \rightarrow \in$

\$;

Accepted

Test whether grammar is LL(1) or not & construct parsing table.

S → AaAb I BbBa

 $A \rightarrow \epsilon$

 $B \rightarrow \epsilon$.

FIRST (AaAb) = FIRST (A) –
$$\{\epsilon\} \cup$$
 FIRST (aAb) = $\{a\}$

FIRST (BbBa) = FIRST (B) –
$$\{\epsilon\} \cup$$
 FIRST (bBa) = $\{b\}$

FIRST (AaAb)
$$\cap$$
 FIRST (BbBa) = {a} \cap {b} = ϕ

Hence the grammar is LL(1).

For parsing table,

FIRST (S) = FIRST (AaAb)
$$\cup$$
 FIRST (BbBa) = {a} \cup {b} = {a, b}
FIRST (A) = { ϵ }
FIRST (B) = { ϵ }
FOLLOW (S) = {\$}
Using S \rightarrow AaAb we get :

FOLLOW (A) = FIRST
$$(aAb) = \{a\}$$
 and

FOLLOW (A) = FIRST (b) =
$$\{b\}$$

FOLLOW (A) =
$$\{a, b\}$$

$$S \rightarrow BbBa$$

FOLLOW (B) = FIRST (bBa) =
$$\{b\}$$

FOLLOW (B) = FIRST (a) =
$$\{a\}$$

$$FOLLOW(B) = \{a, b\}$$

Parsing table for the grammar

•	a	b	\$
S	$S \rightarrow AaAb$	$S \rightarrow BbBa$	
A	$A \rightarrow \varepsilon$	$A \rightarrow \epsilon$,
В	$B \rightarrow \epsilon$	$B \rightarrow \varepsilon$	4.

Q. 13 Test whether the following grammar is LL (1) or not. Construct predictive parsing tal S→ 1AB I ∈ A→ 1AC I 0C B→ 0S C→ 1

Ans.:

FIRST(S) =
$$\{1, \in \}$$

FIRST (A) = $\{1, 0\}$
FIRST (B) = $\{0\}$
FIRST(C) = $\{1\}$
FOLLOW (A) = $\{FIRST(C) \cup FIRST(B)\} = \{1, 0\}$
FOLLOW (B) = FOLLOW(S) = $\{\$\}$
FOLLOW (C) = FOLLOW (A) = $\{1, 0\}$

The parsing table is constructed from above FIRST and FOLLOW functions.

	1	0	\$
S	$S \rightarrow 1AB$		S→ε
A	$A \rightarrow 1AC$	A→0C	
В		B →0S	Non
С	C→1		

No duplicate entries in parsing table Hence the given grammar is LL(1).

```
Find out FIRST and FOLLOW set for all the Nonterminals
Q. 14
        S → AcB | cbB | Ba
        A \rightarrow da \mid BC
        B→gl∈
       C → hIE
Ans.:
           FIRST(C) = \{h, \in\}
          FIRST (B) = \{g, \in \}
          FIRST (A) = \{d \cup FIRST(B) \cup FIRST(C)\} = \{d, g, h, \in \}
           FIRST(S) = \{FIRST(A) \cup c \cup FIRST(B) \cup a\} = \{a, c, d, g, h, \in \}
      FOLLOW(A) = \{c\}
       FOLLOW(C) = FOLLOW(A) = \{c\}
      FOLLOW (B) = \{a \cup FIRST(c) \cup \$\} = \{a, h, \$\}
      FOLLOW(S) = FOLLOW(B) = \{a, h, \$\}
```

Q. 15 Draw parsing table for Table Driven Parser for the given grammar. Is the grammar LL(1

$$A \rightarrow AaBIx$$
 $B \rightarrow BCbICy$ $C \rightarrow CcI \in$

D

Ans.: Grammar is not suitable for LL(1) parsing.

As Left recursive grammar cannot be LL(1) grammar.

After removing left recursion the grammar will be

$A \rightarrow x A'$	$First (A) = \{x\}$	Follow $(A) = \{\$\}$
A'→ aBA' l∈	First (A') = $\{a, \in \}$	Follow (A')= {\$}
$B \rightarrow CyB'$	First (B) = $\{c, y, \in\}$	Follow (B)= $\{a,\$\}$
B'→ CbB'l∈	First (B') = $\{c,b,\in\}$	Follow (B') = $\{a,\$\}$
C→C'	First (C) = $\{c, \in\}$	Follow (C)= $\{b, y\}$
		- 45 (COL) (1)

 $C' \rightarrow cC' \in First(C') = \{c, \in\} Follow(C') = \{b,y\}$

The parsing table:

	a a	b	С,	X	y	\$
A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	altigram and	$A \rightarrow xA'$		An i
A'	A'→aBA'					A'→∈
В	$B \rightarrow CyB'$	The transfer	B → CyB'		$B \rightarrow CyB'$	$B \rightarrow CyB'$
B'	B'→CbB'	B'→CbB'	B'→CbB'	~ " * "		B'→CbB'
	B'→∈				eg i rk	B'→ ∈
C		C→C'	C→C'	<i>.</i>	C→ C'	
C'		C'→cC'	C'→cC'		C'→cC'	
igit.		C' → ∈	Plant - Mills		C' → ∈	" Ep. "

As there are multiple entries in each column the given grammar is not LL(I).

Construct an LALR (1) parsing table for the following grammar: Q. 23

S → Aa I bAc I dc I bda

 $A \rightarrow d$.

Ans.: Augmented grammar is:

Ans.: Augmented grammar is:

$$0 \quad S' \rightarrow S$$
 $1 \quad S \rightarrow Aa$
 $2 \quad S \rightarrow bAc$
 $3 \quad S \rightarrow dc$
 $4 \quad S \rightarrow bda$
 $5 \quad A \quad \rightarrow d$
 $I_o: S' \rightarrow S, \$$
 $S \rightarrow Aa, \$$

$$S \rightarrow b \cdot da, \$$$

$$A \rightarrow \cdot d, c$$

$$I_{4} : goto (I_{0}, d)$$

$$S \rightarrow d \cdot c, \$$$

$$A \rightarrow d \cdot , a$$

$$I_{5} : goto (I_{2}, a) : S \rightarrow Aa \cdot , \$$$

$$I_{6} : goto (I_{3}, A) : S \rightarrow bA \cdot c, \$$$

$$I_{7} : goto (I_{3}, d)$$

$$S \rightarrow bd \cdot a, \$$$

$$A \rightarrow d \cdot , c$$

$$I_{8} : goto (I_{4}, c) : S \rightarrow dc \cdot , \$$$

$$I_{9} : goto (I_{6}, c) : S \rightarrow bAc \cdot , \$$$

$$I_{10} : goto (I_{7}, a) : S \rightarrow bda \cdot , \$$$

LALR (1) parsing table, there is no canonical collection that have identical LR (1) items.

Parsing Table for the grammar:

L			Action								
L		a		b	c		d	\$	S	A	
)		S	3	-	S	4		1	2	
1		7.			1.01	(1)	1	Accept			
2		S_5									
3						S	$\sqrt{}$		6		
4		R ₅		e de la	S ₈		T	,			
5	T		Ī.				T	R ₁			
6	T			T	$\overline{S_9}$		T				
7	1	S ₁₀		[]	R_5		T				
8							T	R ₃			
9			•					R ₃			
0							Γ	R ₄			

Write SLR parsing table for : S \rightarrow T , T \rightarrow CC , C \rightarrow cC , C \rightarrow d. Q. 27

Ans.:

Parsing Table

		Ac		go to)	
	c	d	\$	S	T	C
I_0	S ₃	S ₄	7 4 12	<u> </u>	1	2
I ₁	, page	6	Accept			
I_2	S ₃	S ₄				5
I_3	· v	S ₄			in the	6.
I_4		r ₄		7	, in	
I_5	- 1	THE S	r ₂	. *	1	-
I_6	S ₃	S ₄	r ₃			5

Q. 3(b) Construct LL(1) Parsing table for the following grammar. Also show moves made by input string: abba. (7 Marks)

 $S \rightarrow aBa$

 $B \rightarrow bB \mid \epsilon$

Ans.: Consider a LL (1) Parsing Table for the given grammar

 $S \rightarrow aBa$

Parsing table:

	A	В	\$
S	S → aBa		
В	$B \rightarrow \epsilon$	$B \rightarrow bB$	*

Sequence of moves made by the parser for input "abba".

Stack	Input	Output
\$S	abba\$	$S \rightarrow aBa$
\$aBa	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aBb	bba\$	-
\$aB	ba\$	$B \rightarrow bB$
\$aBb	ba\$	
\$aB	a\$	$B \rightarrow \epsilon$
\$a	a\$	9,000
\$	\$	Accept, successful completion

Outputs: $S \rightarrow aBa \ B \rightarrow bB \ B \rightarrow bB \ B \rightarrow \epsilon$

Derivation (left-most) : S⇒aBa⇒abBa⇒abba

Fig. 1-Q. 3(b): Parse tree for string "abba"

Q. 2(b)(OR) Construct CLR parsing table for following grammar.

A -> bS | c

(7 Marks)

Ans. :

Step 1 : Augument grammer

$$R_0: S^1 \rightarrow S$$

$$R_1: S \rightarrow aSA$$

$$R_2: S \rightarrow \in$$

$$R_3: A \rightarrow bS$$

$$R_4:A\to C$$

losure:

$$S^1 \! \to \! \cdot S$$

$$S \rightarrow aSA$$

$$S \rightarrow \cdot$$

$$I_1$$
: goto (I_0, S)

$$S^1 \rightarrow S$$

$$I_2$$
: goto (I_0, a)

$$S \rightarrow a \cdot SA$$

$$S \rightarrow .aSA$$

$$S \rightarrow \cdot$$

$$I_3$$
: goto (I_2, S)

$$S \rightarrow aS \cdot A$$

$$A \rightarrow \cdot bs$$

$$A \rightarrow c$$

$$I_2 \approx : goto(I_2, a)$$

$$S \rightarrow a \cdot SA$$

$$S \rightarrow aSA$$

$$I_4$$
: goto (I_3, A)

$$S \rightarrow aSA$$
.

R₁

 $L_5: goto (I_3, b)$ $A \to b \cdot s$ $S \to aSA$ $S \rightarrow \cdot$ I_6 : goto (I_3 , C) $A \rightarrow C$ \$ R_4 I_7 : goto (I_5, S) $A \rightarrow bS$ \$ R_3 $I_2 \approx \text{goto } (I_5, a)$ $S \rightarrow a \cdot SA$ b, c $S \to \cdot \, aSA$ b, c $S \rightarrow \cdot$ b, c

	a	b	С	\$	S	Α
0	S_2				1	
1				Rol accept		
2	S ₂				3	
3		S ₅	S ₆	•		4
4				R ₁	1 - 1	
5	S ₂	7	W.		7	
6				R ₄		
7				R ₄		

Given grammer is CLR because in CLR table each cell contain single entry.