	العلامة	
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	2x0,25 0,5	$Cr_2O_7^{-2} / Cr^{3+}, CO_2 / H_2C_2O_4 : (ox/red) : \frac{1}{1} - i/1$ $-i/1$
3.0	2×0,25	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
3.0	0,25 0,25	$x_{\max}=2\times 10^{-4} \text{ mol}$: ومنه المتفاعل المحد هو $H_2C_2O_4$ وبالتالي $H_2C_2O_4$ وبالتالي $H_2C_2O_4$ ومنه المحمية : $v_{rel}=\frac{1}{V}\frac{dx}{dt}$. وحدة الحجوم $v_{rel}=\frac{1}{V}\frac{dx}{dt}$. وحدة الحجوم $u_{H_2C_2O_4}=u_{01}-3x$: الدينا من جدول التقدم $u_{H_2C_2O_4}=u_{01}-3x$: الدينا من جدول التقدم $v_{H_2C_2O_4}=u_{01}-3x$
	0,25 0,25	$v_{Vcl} = -\frac{1}{3} \times \frac{d[H_2C_2O_4]}{dt}$ ومنه $\frac{dx}{dt} = \frac{-V}{3} \times \frac{d[H_2C_2O_4]}{dt}$ ومنه
	0,25	$v_{12 \min} = -\frac{1}{3} \times \frac{(0-3,1) \times 10^{-3}}{20,8-0} = 5.0 \times 10^{-5} (mol/L.min)$: المريف زمن نصف التفاعل : هو الزمن اللازم لبلوغ التفاعل نصف تقدمه
	0,25	$[H_2C_2O_4]_{t_{1/2}} = \frac{C_1V_1}{V} - \frac{3\frac{X_{\max}}{2}}{V} = \frac{12\times10^{-3}\times50\times10^{-3}}{0.1} - \frac{3\times2\times10^{-4}}{0.2} = 3\times10^{-3}\text{mol/1}$ $t_{1/2} = 5.6\text{min}: من البيان نجد = 5.6\text{min}$

المة الم	العلا	ting to to to to to
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	2×0,25	$u_E + u_c = 0 \Rightarrow RC rac{du_c}{dt} + u_c = 0 \Rightarrow rac{du_c}{dt} + rac{u_c}{RC} = 0$ أ- إيجاد المعادلة التفاضلية: $u_E + u_c = 0 \Rightarrow RC rac{du_c}{dt} + u_c = 0$
		$u_c(t) = Ae^{at}$ و بالتعويض في المعادلة التفاضلية $u_c(t) = Ae^{at}$ و بالتعويض في المعادلة التفاضلية $u_c(t) = Ae^{at}$
	3×0,25	$A\alpha e^{\alpha t} + \frac{A}{RC}e^{\alpha t} = 0 \Rightarrow Ae^{\alpha t}(\alpha + \frac{1}{RC}) = 0, Ae^{\alpha t} \neq 0 \Rightarrow \alpha + \frac{1}{RC} = O \Rightarrow \alpha = -\frac{1}{RC}$: نجد $u_c(0) = A = E \Rightarrow u_c(t) = Ee^{-\frac{t}{RC}}$
	0,25	$E_c=rac{1}{2}\mathit{CE}^2e^{-rac{2rac{J}{\mathit{Ke}}}}$: عبارة الطاقة -2
	0,25	${ m E}_0{=}140 \mu { m J}:$ الطاقة العظمى للمكثفة: من البيان نجد الطاقة العظمى المكثفة المكثفة المكثفة المكثفة المكثفة المكثفة العظمى المكثفة المكثفة العظمى المكثفة المكثفة العظمى المكثفة العظمى المكثفة المكثفة العظمى المكثفة العظمى المكثفة المكثفة العظمى المكثفة الم
3.5		: ب $-$ معادلة المماس $E_{C}(t)=at+b, a=rac{dE_{c}}{dt}, t=0 \Rightarrow rac{dE_{C}}{dt}=rac{-CE^{2}}{ au}e^{-\frac{2}{\tau}} \Rightarrow a=-rac{CE^{2}}{ au}$
	0,25×3	$E_{c}(0) = \frac{1}{2}CE^{2} \Rightarrow E_{c}(t) = -\frac{CE^{2}}{\tau}t + \frac{1}{2}CE^{2} \Rightarrow -\frac{CE^{2}}{\tau}t + \frac{1}{2}CE^{2} = 0$ $\Rightarrow -\frac{CE^{2}}{\tau}t = \frac{1}{2}CE^{2} \Rightarrow t = \frac{\tau}{2}$
	0,25	$rac{ au}{2} = 1 \Rightarrow au = 2ms$: $ au = -$
	0,25	$ au=RC\Rightarrow C=rac{ au}{R}=2 imes10^{-6}F=2\mu F$: حساب سعة المكثفة
	0.25	: حرمن تناقص الطاقة إلى النصف $E(t_{1/2}) = \frac{E_0}{2} \Rightarrow \frac{1}{2} \mathcal{C}E^2 e^{-2\frac{t_{1/2}}{\tau}} = \frac{1}{42} \mathcal{C}E^2 \Rightarrow e^{-2\frac{t_{1/2}}{\tau}} = \frac{1}{2} \Rightarrow -2\frac{t_{1/2}}{\tau} = -\ln 2 \Rightarrow t = \frac{\tau}{2} \ln 2$
	0,25	$egin{array}{cccccccccccccccccccccccccccccccccccc$

امة	العلا	عناصر الإجابة على الموضوع الأول						
مجموع	مجزأة	• • •						
						<u>(3 نقاط) :</u>	التمرين الثالث	
	0,25		($C_1 = \frac{n}{V} = \frac{m}{MV}$	$\frac{1}{7} = 1,5 \times 10^{-2}$	$2 mot/L$: C_1	أ-أ- حساب	
	0,25	C	$CH_3COOH_{(ac)}$	$+ H_2 O_{(t)} = CH$	$H_3COO^+_{(ag)} + .$	$H_3O^+{}_{(ag)}$: ادلة	ب- كتابة المع	
				- 147			حــ حدول تق	
		عادثة	الم	CH ₃ COOH ₆	$(a_0) + H_2 O_{(1)} =$	= CH ₃ COO ⁺ (m		
		الحالة	التقدم	,		كميات الما		
	2×0,25	ابتدائية	x -0	n ₀		0	0	
	·	انتقالية	X	n o x	بو فر ة	X	Х	
		نهائية	X_{eq}	n ₀ -x _{eq}		X _{eq}	\mathbf{x}_{eq}	
			: 13	مدول التقدم لديا		. 1 .	د- التعبير عن	
3.0	0,25				$n_{H_{\xi}C^{-}}=X_{\xi}$	$_{eq} = \left[H_3 O^{+} \right]_{eq} \times$	$V = 10^{-PH} \times V$	
] 5.0			[CH ₂ COO ⁻]]	X	4×1 0 ^{−4}		
	0,25	$PK_a = PII - 1c$	og <u>⊏</u> <i>CH₃COOH</i>	$\frac{1}{ _{eq}} = PII - \log \frac{1}{n_0}$	$\frac{-3q}{-x_{eq}} = 3,3 - \log q$	$\frac{1}{1,2\times10^{-2}-4\times10}$	<u></u>	
						اللة التفاعل:	أ 3−أ− كتابة مع	
	0,25			CH_3COC	$OH_{(eg)} + NH_{3(g)}$	$_{g)} = CH_3COO^{-1}$	$(aq) + NH_4^+(aq)$	
						ت التوازن k :	ب-حساب ثابن	
	0,25×2	$K = \frac{\left[CH_{3}COO^{-}\right]_{eq} \times \left[NH_{4}^{+}\right]_{eq}}{\left[CH_{3}COOII\right]_{eq} \times \left[NII_{3}\right]_{eq}} \times \frac{\left[H_{3}O^{+}\right]}{\left[H_{3}O^{+}\right]} = \frac{K_{e1}}{K_{a2}} = \frac{10^{-pk_{a1}}}{10^{-pka_{2}}} = 10^{pka2-pka1} = 2,75 \times 10^{4}$						
					$\tau_{gg} = \frac{\sqrt{1}}{1+\sqrt{1+\frac{1}{2}}}$	$rac{\overline{K}}{\sqrt{K}}$: علاقة	جــ إثبات الـ	
	0,25	$K = \frac{\left[CH_3COC\right]}{\left[CH_3COC\right]}$	$\left[O^{-} \right]_{cq} \times \left[NH_{4}^{+} \right]$ $\left[OH \right]_{cq} \times \left[NH_{3} \right]$		$\Rightarrow \sqrt{K} = \frac{X_0}{n_0 - 1}$	$\underset{X_{cq}}{\overset{cq}{\Rightarrow}} x_{cq} = n_0$	$\sqrt{K} - x_{\delta q} \sqrt{K}$	
	0,25	$x_{cq}\left(1+\sqrt{K}\right) =$	0	11 411	11 411	-		
			اعل تام ۔	ومنه التف $ au_{\omega}$ =	$= \sqrt{\frac{2,75 \times 10^{3}}{100}}$	= 0.99 = 1	د- حساب _{eq} د	
	0,25		,		$1+\sqrt{2,75}\times10$) *	•	

امة	العلا	ting to the target and the
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
_	0,25	التمرين الرابع: (03.5) نقطة) -1 التمرين الرابع: (03.5) التمرين الرابع: (03.5) التمرين المسار مستقيم والسرعة متزايدة فالحركة مستقيمة متغيرة بانتظام.
	0.25	$ ext{v=at+v}_0: ext{v=bt+b}$ ، ونظريا لدينا $ ext{v=bt+b}$
	0,25	$a = \beta = \frac{\Delta v}{\Delta t} = 2 m / s^2$
	0,25	$AB = \frac{(20+10)}{2} \times 5 = 75m$: ب- حساب المسافة AB : نَمثل مساحة شَبه المنحرف \Rightarrow
	الرسم 0,25	: F مساب شدهٔ -/2 الله P
		ندرس الجملة في معلم غاليلي مرتبط بسطح الأرض : بتطبيق القانون الثاني لنيوبن ، وبالإسقاط على محور الحركة : $\vec{F} + \vec{f} + \vec{P} + \vec{R}_{x} = m\vec{a}$
	0,25	$F - f - mg\sin\alpha = ma \Rightarrow F = m(a + g\sin\alpha) + f$
	0,25	$F = 170(2+10\times0,174) + 500 = 1135,8N$
	0,25	$m \overrightarrow{g} = m \overrightarrow{a} \Leftrightarrow \overrightarrow{a} = \overrightarrow{g}$: معادلة المسار : بتطبيق القانون الثاني لنيوبن : $-/3$
3,5	0,25	$a_x=0m/s^2$ الحركة مستقيمة منتظمة $x=v_c\coslpha t(1)$ الحركة الحر
	0,25	$a_y = -g$ $a_y = -rac{1}{2}gt^2 + v_a \sin \alpha t$ و الحركة م م بانتظام $-*$
	0,25	: من (1) نجد $t = \frac{x}{v_{c} \cos \alpha}$ نجد التعويض في (2) نجد
	0,25	$y = -\frac{g}{2v_c^2 \cos^2 \alpha} x^2 + \tan \alpha x$
	0,25	$y = -8,24 \times 10^{-3} x^2 + 0,176 x$ $\Rightarrow p = -8,24 \times 10^{-3} x^2 + 0,176 x$ $\Rightarrow p = -8,24 \times 10^{-3} x^2 + 0,176 x$ $\Rightarrow p = -8,24 \times 10^{-3} x^2 + 0,176 = 9,8 m$ $\Rightarrow p = -8,24 \times 10^{-3} x^2 + 0,176 = 0$
	0,25	$-8,24 \times 10^{-3} x_{F}^{2} + 0,176 x_{F} + 9,8 = 0$ $\Lambda = 0,254 \Rightarrow \sqrt{\Lambda} = 0,6 \Rightarrow x_{1F} = 47,1 m$ $x_{2F} = -25,73 m < 0$
		. ومنه $x_{_{\mathcal{P}}}=47.1m\succ d$ ومنه الدارج يجتاز الخندق

العلامة		
مجموع	مجزأة	عناصر الإجابة على الموضوع الأول
	0,25	التمرين الخامس: (3,5 نقطة) S -/1 تمثيل القوى:
	0,25	2/- المرجع المناسب لدراسة حركة القمر الاصطناعي : هو المرجع المركزي الأرضى
	0,25	تعرُيفه : هومرجع مركزه مركز الأرض ولمه ثلاث محاور توازي محاور المرَجع المركزي الشمسي .
	2x0,25	. عبارة السرعة : بنطبيق القانون الثاني لنيونن و الإسقاط على المحور الناظمي . $\dot{F}=m\dot{a}\Leftrightarrow F=m_s a_n\Leftrightarrow Grac{M_T imes m_s}{(R_T+h)^2}=m_s imesrac{v^2}{(R_T+h)}$
	0,25	$v = \sqrt{\frac{GM_T}{R_T + h}}$
2.5	0,25	$v = \sqrt{\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{(6380 + 35800) \times 10^3}} = 3080, 24 \text{m/s}$
3,5	0,25	: عبارة الدور: $T = \frac{2\pi (R_{\tau} + h)}{v} = 2\pi \sqrt{\frac{(R_{\tau} + h)^3}{GM_{\tau}}}$
	0,25	$T = 6,28\sqrt{\frac{(6380 + 35800)^3 \times 10^9}{6,67 \times 10^{-11} \times 6 \times 10^{24}}} = 85996,54s \approx 24h$ قيمة الدور:
	2x0,25	 ب- نعم يمكن اعتبار هذا القمر جيومستقر لأن جهة دورانه بجهة دوران الأرض ودوره يساوى دور الأرض حول نفسها .
	0,25	5/- قَانُونَ كُبَلِرُ الثَّالَثُ : النسبة بين مربع دور القمر ومكعب البعد بين مركزي القمر والأرض
	2x0,25	$T^2 = rac{4\pi^2 (R_T + h)^3}{CM_T} \Rightarrow rac{T^2}{(R_T + h)^3} = rac{4\pi^2}{CM_T} = k pprox 10^{-13} : الإثبات : 10^{-13}$

العلامة العلامة						
امه مجموع		عناصر الإجابة على الموضوع الأول				
	0,25	التمرين التجريبي: (03.5 نقطة) -1 النواة المشعة : هي نواة غير مستقرة تتفكك تلقائيا لتصدر جسيمات ($\beta \cdot \alpha$) مصحوبة في الغالب بالشعاع γ .				
	0,25	 النظّائر : هي أنوية لنفس العنصر الكيميائي تتفق في العدد الذري Z وتختلف في العدد الكتلي A (لاختلافها في عدد النيترونات) . 				
	0,25	\sim كتابة المعادلة : $Na + rac{23}{11} Na + rac{23}{11} Na + rac{24}{11} Na$ ب \sim كتابة المعادلة نقكك نواة الصوديوم \sim 24 \sim \sim \sim \sim معادلة نقكك نواة الصوديوم \sim 24 \sim				
	0,25 2x0,25	Z=12 ، $Z=12$ ،				
	0,25	$n_0 = 10^{5} \mathrm{mol}$: من البيان نجد $t=0$ عند $t=0$ عند $t=0$ من البيان نجد $n_0 = 10^{5} \mathrm{mol}$				
3, 5	0,25 0,25	$-$ ب $-$ زمن نصف العمر : هو المزمن الملازم لتفكك نصف عدد الأنوية الأبتدائية . $-$ قيمته : بيانيا نجد : $t_{1/2} = 15h$.				
	2×0,25	$N(t)=N_0e^{-\lambda t}=n(t) imes N_A=n_0N_Ae^{-\lambda t} \Rightarrow n(t)=n_0e^{-\lambda t}$ اثبات العلاقة: -3				
	0,25	$n_1(6h) = 10^{-5} e^{-15} = 7.6 \times 10^{-6} mo_1 : n_1(6h) = -10^{-5} e^{-15} = 7.6 \times 10^{-6} mo_1 : n_1(6h)$				
	2×0,25	$n_2 ightarrow V_2 = 10mL$ $n_1 ightarrow V$: ومنه $V = \frac{n_1 imes V_2}{V} = 5L$				
		n_2				

لمة	العا	عناصر الإجابة على الموضوع الثاني				
مجموع	مجزأة					
		التمرين الأول (3.5 نقطة):				
		$_{1}^{3}H+_{1}^{2}H\longrightarrow _{Z}^{A}X+_{0}^{1}n$ عَتَابِهُ المعادلة أ $-$ أ كتَابِهُ المعادلة أ				
	0.25	$\Lambda = (2+3)-1=4$ حسب قانونا صودي: $A=(2+3)-1=4$				
		4_2He النواة البنث $Z=(1+1)-0=2$				
	0.25	${}_{1}^{3}H + {}_{1}^{2}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n$				
	0.25	ب- يتعلق زمن نصف العمر بنوع النظير المشع.				
	0.25	2-أ- طاقة ربط النواة هي الطاقة الواجب إعطاؤها لنواة ساكنة لتفكيكها إلى نوياتها الساكنة.				
	0.25	$\mathrm{E}_{\mathrm{I}}({}_{Z}^{A}X^{\prime})=\left[\;Z\;m_{\mathrm{p}}+\left(\;\Lambda\text{-}Z\right)\;m_{\mathrm{n}}+m\left({}_{Z}^{A}X\right) ight]\;C^{2}$ عبارتها:				
		$\mathrm{E_{l}}\left({}_{1}^{2}H ight)=\left(1.00728+1.00866-2.0155 ight)\! imes931.5=2.226\mathrm{MeV}$. فيمنها:				
3.5	0.25×3	$E_1({}^3H) = (1,00728 + 2 \times 1,00866 - 3,0155) \times 931,5 = 8,477 \text{ MeV}$				
		$E_{1}({}_{2}^{4}He) = (2\times1,00728 + 2\times1,00866 - 4,0015)\times931,5 -28,29 \text{ MeV}$				
		قيمة طاقة الربط لكل نوية: 20 ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع ع				
	0.25×2	$\frac{E_1\binom{4}{2}He}{4} = \frac{28,29}{4} = 7,072 MeV / nuc \qquad \frac{E_1\binom{2}{1}H}{2} = \frac{2,226}{2} = 1,113 MeV / nuc$				
	0.25	$\frac{E_I({}_1^3II)}{3} = \frac{8,477}{3} = 2,826 MeV / nuc$				
	0.25	النواة الأكثر استقرار هي 4116.				
		$\Delta E = \Delta E_1 - \Delta E_2 = \left(E_1 \left({}_1^3 H \right) + E_1 \left({}_1^2 H \right) \right) - E_1 \left({}_2^4 H c \right)$ الطاقة المحررة: $\Delta E = \Delta E_1 - \Delta E_2 = \left(E_1 \left({}_1^3 H \right) + E_1 \left({}_1^2 H \right) \right) - E_1 \left({}_2^4 H c \right)$				
	0.25	$E_{B5} = \Delta E = (2,226+8,4777) - 28,29 = -17,59 MeV$				
		الإشارة السالبة تعنى أن الجملة تقدم طاقة للوسط الخارجي.				
		$N(_1^2H) + N(_1^3H) = (\frac{1}{2} + \frac{1.5}{3}) \times 6.02 \times 10^{23} = 6.02 \times 10^{23} (noy)$				
	0.25	$E_{lib} = N\Delta E = 6.02 \times 10^{23} \times 17.59 = 105.89 \times 10^{23} MeV$				

امتحان الباكالوريا دورة: جوان 2013 الإجابة النموذجية لموضوع مادة: الفيزياء/شعبة (رياضيات+ تقني رياضي)

رمة ا	العا	عناصر الإجابة على الموضوع الثاني				
مجموع	مجزأة	حاصر الإجابة على الموصوع النافي				
		التمرين الثاني (3.5 نقطة):				
	2×0.25	$rac{di}{dt}=rac{1}{R}rac{du_R}{dt}$ و $i=rac{u_R}{R}$ و $i=rac{u_R}{R}$ المعادلة التقاضلية $i=1$				
	0.25	$\frac{du_R}{dt} + (\frac{r+R}{L})u_R = \frac{RE}{L}$ و هنه:				
	0.25	حلها: لدينا $u_R(t) = \frac{B}{A}(1 - e^{-At})$ ومنه $u_R(t) = \frac{B}{A}(1 - e^{-At})$ بالتعويض نجد -2				
	2×0.25	$Be^{-At}\left(1 - \frac{r+R}{AL}\right) + \frac{B}{A}\binom{r+R}{L} - \frac{RE}{L} = 0 \Rightarrow A = \frac{r+R}{L}, B = \frac{ER}{L}$				
	الرسم 0.25	Y_2 $-\hat{i}-3$				
		Y_1				
	0.25	$\mathbf{u}_{\mathrm{R}}=0$: فإن $\mathbf{u}_{\mathrm{R}}=0$ لأن لما $\mathbf{u}_{\mathrm{R}}=0$ فإن المنحني $\mathbf{u}_{\mathrm{R}}=0$				
3.5	0.25	$u_{ m b}={ m E}$: فإن ${ m L}=0$ يمثل ${ m u}_{ m b}$ لأن لما				
	0.25	$E=10~{ m V}:$ (2) من البيان $E=10~{ m V}:$				
	0.25	$u_{\scriptscriptstyle h}(t o\infty)=rac{rE}{R+I}=1V\Rightarrow r=rac{R}{E-1}=10\Omega$: (2) من البيان				
		$ m u_b = u_R$: عند النقطة $ m C = rac{t_C}{\ln(rac{2R}{R-r})}$ عند النقطة $ m C$ يكون $ m C$				
	0.25	$ au = rac{t_C}{\ln(rac{2R}{R-r})}$: وهنه $rac{E}{R+r}(r + \mathrm{Re}^{-rac{t}{r}}) = rac{ER}{R+r}(1 - e^{-rac{t}{r}})$				
	0.25	$ au-10~\mathrm{ms}$				
	0.25	$ au=rac{L}{R+r}\Rightarrow L= au(R+r)=1.0H$: ناتية الو شيعة:				

نة	العلاه	11-11 - 1			
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني			
		التمرين الثالث: (03.5 نقطة)			
	0,25	1- أ- طبيعة الحركة: بما أن المسار مستقيم والسرعة متزايد فالحركة م. م بانتظام.			
	0.25	$h=rac{8 imes80}{2}=320m$: ب $-$ الارتفاع: من البيان			
	0.25	g=a . و منه بالإسقاط على المحول $g=m$ a $g=m$ a $g=m$. و منه بالإسقاط على المحول			
	0.25×2 0.25 الرسم	\mathbf{z} ومعادلة البيان (السُكل $\mathbf{v} = \mathbf{\beta} \mathbf{t}$ ونظريا $\mathbf{v} = \mathbf{a} \mathbf{t} = \mathbf{g} \mathbf{t}$ ومعادلة البيان (السُكل $\mathbf{v} = \mathbf{b} \mathbf{t}$			
	0.25	2− أ− تمثيل القوى : P			
		ب- المعادلة التفاضلية:			
3,5	2×0.25	Z $mg - kv^2 = m \frac{dv}{dt}$: نجد Oz نجد $P + f - m$ a			
3,3	0.25	$rac{dv}{dt} = g(1 - rac{v^2}{eta^2})$: ورهي من الشكل $rac{dv}{dt} = g(1 - rac{k}{mg}v^2)$			
		$eta = \sqrt{m rac{\mathcal{G}}{k}}$:			
	0,25	$v_{_{ m lim}}=\sqrt{mrac{g}{k}}=eta$ المقدار eta پمنگ ${ m V}_{ m lim}$ لأن -3			
	0,25	$ m v_{Hm} = 40~m/s$ أ. فيمة السرعة الحنية: $ m v_{Hm} = 40~m/s$			
	0,25	$egin{bmatrix} [k] = rac{[M][L][T]^{-2}[T]^2}{ L ^2} = & [M][L]^{-1} \end{bmatrix}$ ومن $k = rac{mg}{v_{ m lim}}$:k ب. وحدة			
		ومنه وحدة k هي: kg/m .			
	0,25	$k = \frac{80 \times 9.8}{40^2} \approx 0.5 kg / m$:k فَيمة			

امة	العلا	عناصر الإجابة على الموضوع الثاني							
مجموع	مجزأة	حداصر ، ۾ چاپ حتی انسونسوخ اندني							
			التمرين الرابع: (3نقاط)						
	0,25	CH_3COC	$H_{(ac)} + H_2 0$	$_{(D)} = CH_3COO$	$-(2q) + H_3 O^+(3)$	4 الانحلال : (وو	1. أ– معادل		
	0,25		, -g., -		-	_	$\begin{bmatrix} O^{+} \Big _{eq} \\ C_{-} \end{bmatrix}$ ب		
	0,25			$C_{a} = \frac{\left[H_{3}O^{+}\right]_{e}}{\tau_{cs_{j}}}$	$\frac{\varsigma}{0.0158} = \frac{10^{-3.8}}{0.0158} = 1$		استناج a		
							2. أ- جدول تقد		
		ادلة		CH₃COOH	$\frac{(aq)}{(aq)} + HO^{-}(aq)$		$1 + H_2 O_{(l)}$		
		حالة الجملة	التقدم			كميات الما			
	0.75	حالة إبتدائية حالة إنتقالية	x-0	n ₀₁	n ₀₂	0	 يوفرة		
		حالة نهائية	X X _E	n ₀₁ -x n ₀₁ x _E	n ₀₂ -x n ₀₂ x _E	X XE	ا بوبرو		
	0,25	_ ^ •		$E(V_E-18mL)$			ــــــــــــــــــــــــــــــــــــ		
	0,25				$C_s = \frac{C_t \times 1}{V}$	$V_{tE} = 10^{-2} mot$	ر. ا-حساب C _a ا		
	0,25		[[t	<i>CH₃COO</i> ⁻] CH₃COOH] =1	$10^{PH-PK_a} = 10^0$	عن النسبة : 1=	3- أ- التعبير ء		
	0,25			_	قدم X:	النسبة بدلالة الن	ب- التعبير عن		
3,0			$\frac{\left[CH_{3}COO^{-}\right]}{\left[CH_{3}COOH\right]} = \frac{x}{n_{\text{al}} - x} = 1$						
	0,25	$x = \frac{n_{01}}{2} = \frac{c_a \times v_e}{2} = \frac{10^{-2} \times 18 \times 10^{-3}}{2} = 9 \times 10^{-5} mol$							
	0,25	عل	au=ومنه تفا	$\frac{X}{X_{\text{max}}} = \frac{X}{n_{02}} = \frac{9}{9}$	$\frac{\times 10^{-5}}{\times 10^{-5}} = 1$: \sim	ة التقدم النهائ	د- حساب نسب		
							المعايرة تام .		

نمة	الْعلا	
مجموع	مجزأة	عناصر الإجابة على الموضوع الثاني
	0,25	التمرين الخامس: (3,5 نقطة)
	5453	$\stackrel{ ightarrow}{a}$ تمثیل شعا التسارع $-{f 1}$
		بما أن حركة القمر (S) حول الأرض حركة دائرية منتظمة فإن تسارعه تسارع ناظمي
		$\stackrel{\rightarrow}{a}$ عبارة شعاع التسارع $\stackrel{\rightarrow}{a}$ لحركة القمر الإصطناعي -2
	2×0,25	$\overrightarrow{a} = \overrightarrow{a}_n = \frac{v^2}{n} \cdot \overrightarrow{n}$
	الرسم 0,25	r −3 عبارة سرعته −3
	0,23	نطبق القانون الثاني لنيوتن في المرجع الجيومركزي الذي نعتبره
	0.00	غاليليا
	2×0,25	$\sum \overrightarrow{F}_{ext} = \overrightarrow{F} = m. \overrightarrow{a}$
	0,25 0,25	$ec{F}=G.rac{M_T.m_S}{r^2}.\stackrel{ ightarrow}{n}$ امن قانون الجذب العام لدينا:
		$\overrightarrow{F}=G.rac{M_T.m_S}{r^2}.\stackrel{1}{n}=m_Srac{v^2}{r}.\stackrel{ o}{n}$ ناعلاقتین نجد: من العلاقتین نجد
3,5		$\Leftarrow v = \sqrt{\frac{G.M_T}{\pi}} v^2 = G.\frac{M_T}{\pi}$: e ais
	0,25	r r r r r r r r r r
		v بالسرعة الثابتة v بالسرعة الثابتة $2\pi . r$
	0.25	ومنه: $2\pi . r = v.T$
	0,25	$\frac{T^2}{r^3} = 9,85 \times 10^{-14} s^2.m^{-3}$: إثبات أن
	0,25	$T = \frac{24}{14.55} = 1,65h = 5938,14s$ نحسب دور هذا القمر الإصطناعي:
	2×0,25	14,55
		$r = R_T + h = 7100Km = 71 \times 10^5 m$ $T^2 = (5938.14)^2$
		$\frac{T^2}{r^3} = \frac{(5938,14)^2}{(71 \times 10^5)^3} = 9,85 \times 10^{-14} s^2.m^3$ و منه:
		M_T إستنتاج كتلة الأرض M_T :
	0,25	$rac{4.\pi^2}{G.M_T} = 9.85 imes 10^{-14}$:و منه: $v = rac{2\pi.r}{T}$ $v = \sqrt{rac{G.M_T}{r}} \Leftarrow rac{T^2}{r^3} = rac{4.\pi^2}{G.M_T}$
		$V = \sqrt{\frac{r}{r}}$. $M_T = 6 imes 10^{24} Kg$: نجد كتلة الأرض
		$M_T = 0 \times 10^{-1}$ ایجد کنده الارض: $M_T = 0 \times 10^{-1}$

العلامة		عناصر الإجابة على الموضوع الثاني							
مجموع	مجزأة		ِع الناتي	, جابه عل <i>ی ا</i> نموضو	حداصر اد				
		التمرين التجريبي (3.0 نقاط)							
			<u>. </u>		اعل :	1/- جدول تقدم التق			
			المعا	2C1O ⁻ (aq)	_(aq) = 2C1 نميات المادة بالمول	+ O _{2(g}			
	0,25	حالة الجملة حالة ابندائية	التقدم X=0		تميات المادة بالمول [
	.,	حالة انتقالية	X	n_0 $n_0 2x$	2x	x			
		حالة نهائية	X _{max}	n ₀ -2x _{max}	2x _{max}	X _{max}			
			Шах		$\begin{bmatrix} CIO \end{bmatrix}_{t=8sem}$				
	0,25		[CIO ⁻],	_	$1/1: 0_1 = 30^{\circ}\text{C}: $				
	0,25		$\begin{bmatrix} CIO^- \end{bmatrix}_{t=8.set}$	_1,25mol/l	:0 ₂ =40°C: (من المنحنى (2)			
	0,25			•	مرعة الحجمية : ه				
		:	جدول التقدم لدينا		L at				
	0,25				$X = \frac{n_0 - n_{CIC}}{2} \Rightarrow$. 201			
	0,25		$\frac{dx}{dt} = -\frac{v}{2} \frac{d \left[CIO^{-} \right]}{dt} \Rightarrow v_{vol} = -\frac{1}{2} \frac{d \left[CIO^{-} \right]}{dt}$						
			1 (0 0.75)		يمتها عند Osem ــ				
	0,25	$v_{1(30^{\circ}C)} = -\frac{1}{2} \times \frac{(0-2.75)}{(20-0)} = 6.875 \times 10^{-2} mol. I^{-1}.scm^{-1} : (1)$							
3,0	0,25	$v_{2(40^{\circ}C)} = -\frac{1}{2} \times \frac{(0-2,75)}{(12-0)} = 1,146 \times 10^{-1} mol. I^{-1} scm^{-1} : (2)$							
	0,25	د- نعم هذه النتائج تبرر ماكتب على اللاصقة (يحفظ في مكان بارد) - درجة الحرارة عامل حركي تزيد من سرعة التفاعل .							
			$\begin{bmatrix} CIO & \end{bmatrix}_{(30)}$		- - -				
			$V_{-}(vol.30^{\circ}C_{-},t=0)$	$_{sem}$ \prec v $_{(vol)}$	$(40^{\circ}C, t=0 sem)$				
	0,25	نصف تقدمه	لبلوغ تقدم التفاعل د	هو الزمن اللازم ا	من نصف التفاعل:	3/- تعريف زه النهائي .			
		·	$\frac{a_0}{v} - \frac{2\frac{x_y}{2}}{v} = \left[CIO^{-1}\right]$	•	· \2/	– من المنحنى			
	0.25	$\left[ClO^{-}\right]_{_{1\!2\!2}}=\left[$	CIO^{-}] ₀ $-\frac{[CIO^{-}]}{2}$	$\frac{1}{0} = \frac{\left[CIO^{-}\right]_{0}}{2} = 1.3$	375 <i>mol 1</i>				
	0,25		_	_	: t _{1/2} =7,2sem ق هو غاز نثائي ال				