Analysis of Clocked (Synchronous) Sequential Circuits

- Now that we have flip-flops and the concept of memory in our circuit, we might want to determine what a circuit is doing.
- The behavior of a clocked sequential circuit is determined from its inputs, outputs and state of the flip-flops (i.e., the output of the flip-flops).
- The analysis of a clocked sequential circuit consists of obtaining a table of a diagram of the time sequences of inputs, outputs and states.
 - E.g., given a current state and current inputs, how will the state and outputs change when the next active clock edge arrives???

Analysis Procedure

- We have a basic procedure for analyzing a clocked sequential circuit:
 - Write down the equations for the outputs and the flip-flop inputs.
 - Using these equations, derive a state table which describes the next state.
 - Obtain a state diagram from the state table.
- □ It is the state table and/or state diagram that specifies the behavior of the circuit.
- □ Notes:
 - The flip-flop input equations are sometimes called the excitation equations.
 - The state table is sometimes called a transition table.
- We can best illustrate the procedure by doing examples...

Analysis Example

Consider the following circuit. We want to determine how it will behave.

Observations: The circuit has two inputs **A** and **B**, one output **Z** (it happens that the output is equal to one of the flip flop outputs).

Analysis Example - More Observations

- Observations: The circuit has two flip-flops (different types) with outputs Q_0 and Q_1 (This implies that there are as many as 4 different states in the circuit, namely $Q_0Q_1 = 00$, 01, 11, 10).
- Observations: The circuit output depends on the current state (flip-flop outputs) only.

Analysis Example - Flip-Flop Input Equations and Output Equations

- We write down Boolean expressions for the FF inputs and the circuit outputs.
- Done in terms of the circuit inputs and the current state (flip-flop outputs) of the system.

Analysis Example - State Table

Using the FF input equations, we can build a table showing the FF inputs (this is the first step in creating the state table):

Current State	J	$_0K_0$		T_1				
Q_0Q_1	AB = 00	01	10	11	AB = 00	01	10	11
00	01	00	00	10	0	1	1	0
01	01	00	00	10	1	0	0	1
10	01	00	00	10	1	0	0	1
11	01	00	00	10	0	1	1	0

$$Z = Q_1$$

$$J_0 = AB$$

$$K_0 = A'B'$$

$$T_1 = A \oplus B \oplus Q_0 \oplus Q_1$$

Analysis Example - State Table Continued

We now have the FF input values, and know the FF behavior (for both JKFF and TFF):

Current State	J_0K_0			T_1				
Q_0Q_1	AB = 00	01	10	11	AB = 00	01	10	11
00	01	00	00	10	0	1	1	0
01	01	00	00	10	1	0	0	1
10	01	00	00	10	1	0	0	1
11	01	00	00	10	0	1	1	0

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$Q^{'}(t)$
JH	(FF	Behavior

$$egin{array}{c|c} T & Q(t+1) \\ \hline 0 & Q(t) \\ \hline 1 & Q'(t) \\ \hline ext{TFF Behavior} \\ \hline \end{array}$$

 \square We can then determine the next FF output values:

Current State Q_0Q_1	Next	State	e Q_0	Next State Q_1				
	AB = 00	01	10	11	AB = 00	01	10	11
00	0	0	0	1	0	1	1	0
01	0	0	0	1	0	1	1	0
10	0	1	1	1	1	0	0	1
11	0	1	1	1	1	0	0	1

Analysis Example - State Table Summarized

We can (finally) write the next state information and the output values (based on current state and input values) in the state table format:

Current State Q_0Q_1	Next S	tate	Q_0Q	Output Z				
	AB = 00	01	10	11	AB = 00	01	10	11
00	00	01	01	10	0	0	0	0
01	00	01	01	10	1	1	1	1
10	01	10	10	11	0	0	0	0
11	01	10	10	11	1	1	1	1

state table

Observation: The output **Z** (in this example) is only a function of the current state; it does not depend on the inputs.

Analysis Example - State Table Alternative Representation

We can also write the state table in a slightly different (tabular) format if we choose. The information presented is the same.

Curre	nt State	Inp	out	Next	State	Output
Q_0	Q_1	A	B	Q_0	Q_1	Z
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	1
0	1	1	0	0	1	1
0	1	1	1	1	0	1
1	0	0	0	0	1	0
1	0	0	1	1	0	0
1	0	1	0	1	0	0
1	0	1	1	1	1	0
1	1	0	0	0	1	1
1	1	0	1	1	0	1
1	1	1	0	1	0	1
1	1	1	1	1	1	1

alternative state table

State Diagram

Another way to illustrate the behavior of a clocked sequential circuit is with a state diagram.

State Diagram Explained

- Each "bubble" (state bubble) in the state diagram represents one state of the system.
 - The flip-flop outputs that correspond to that state are labeled inside of the bubble.
- Each edge leaving a bubble represents a possible transition to another state once the active clock edge arrives.
 - The edges are labeled with the input values that cause the transition to occur.
- \square In this state diagram, the **output values** are **labeled** inside of the state bubbles.
 - We can do this because the outputs are only a function of the current state in this example.