2)
$$(10011001)_2 = 1 \times 2^7 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = (153)_{10}$$

4)
$$(01000100)_2 = 1 \times 2^6 + 1 \times 2^2 = (68)_{10}$$

1)
$$(37)_{10} = (100101)_2$$

$$(65)_{10} = (1000001)_2$$

1.4 2), $Y_2 = \overline{A} \, \overline{B} + \overline{B} \, \overline{C} + A \, \overline{C}$ $= \overline{A} \, \overline{B} \, (C + \overline{C}) + (A + \overline{A}) \overline{B} \, \overline{C} + A \, (B + \overline{B}) \overline{C}$ $= \overline{A} \, \overline{B} \, C + \overline{A} \, \overline{B} \overline{C} + A \overline{B} \, \overline{C} + A \, B \overline{C}$

所以A、B、C取001、000、100、110时Y₂=1

1)
$$\sqrt{A+BC+D} = \overline{A} \bullet (\overline{BC}) \bullet \overline{D} = \overline{A} \bullet (\overline{B}+\overline{C}) \bullet \overline{D}$$

4),
$$Y_2 = \overline{A} \overline{B} + \overline{A} B + A \overline{B} + A B$$

$$= \overline{A} (B + \overline{B}) + A (B + \overline{B})$$

$$= \overline{A} + A$$

$$= 1$$

Α	В	С	Y1	Y2	
0		0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	1	1	
1	0	0	1	1	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	0	0	

$$Y_1 = Y_2$$

1.6
$$\begin{cases} Y_1 = \overline{A \oplus B \oplus C} \\ Y_2 = ABC + A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C \end{cases}$$

$$Y_{1} = \overline{A \oplus B \oplus C} = \overline{(A\overline{B} + \overline{A}B) \oplus C} = (A\overline{B} + \overline{A}B)\overline{C} + \overline{(A\overline{B} + \overline{A}B)}C$$
$$= \overline{A\overline{B}\overline{C} + \overline{A}B\overline{C} + ABC + \overline{A}\overline{B}C} = \overline{Y_{2}}$$

Α	В	С	Y1	Y2	
	U	0	1	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	$Y_1 = Y_2$
1	0	0	0	1	
1	0	1	1	0	
		0			
1	1	1	0	1	

1.8 1),
$$Y_1 = AB + BC + CA$$

$$= AB(C + \overline{C}) + (A + \overline{A})BC + A(B + \overline{B})C$$

$$= ABC + AB\overline{C} + \overline{A}BC + A\overline{B}C$$

4),
$$Y_4 = \overline{AB + AD + BC} = (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{D}) \cdot (B + \overline{C})$$

$$= \overline{AB} + \overline{A} \, \overline{C} + \overline{B} \, \overline{C} \, \overline{D}$$

$$= \overline{AB}(CD + \overline{CD} + C\overline{D} + \overline{CD}) + \overline{A} \, \overline{C}(BD + \overline{BD} + B\overline{D} + \overline{BD}) + (A + \overline{A})\overline{B} \, \overline{C} \, \overline{D}$$

$$= \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, D + \overline{A} \, B \, \overline{C} \, \overline{D} + \overline{A} \, B \, \overline{C} \, D + \overline{A} \, B \, C \, D$$

1.9 1),
$$A(\overline{A} + B) + B(B + C) + B$$

= $AB + B + BC + B$
= B

$$4) \cdot (A + AB + ABC) \cdot (A + B + C)$$

$$= A(1 + B + BC) \cdot (A + B + C)$$

$$= A \cdot (A + B + C)$$

$$= A + AB + AC$$

$$= A$$

1)、
$$(A + \overline{B})\overline{C} + \overline{\overline{D}}$$

反函数为 $(\overline{A} \cdot B) + \overline{\overline{C} \cdot D} = \overline{A}B + C + \overline{D}$

3)、
$$A\overline{B} + \overline{C} + \overline{A}D$$

反函数为 $(\overline{A} + \overline{B} \bullet C) \bullet (A + \overline{D}) = (\overline{A} + B + \overline{C})(A + \overline{D})$
 $= \overline{A} \, \overline{D} + AB + B\overline{D} + A\overline{C} + \overline{C} \, \overline{D}$
 $= \overline{A} \, \overline{D} + AB + B\overline{D} + \overline{A} \, \overline{D} + A\overline{C} + \overline{C} \, \overline{D}$ 消去多余项
 $= \overline{A} \, \overline{D} + AB + \overline{A} \, \overline{D} + A\overline{C} = \overline{A} \, \overline{D} + AB + A\overline{C}$

1)
$$(A + \overline{B})\overline{C + \overline{D}}$$

反函数为
$$(A+\overline{B})\overline{C+\overline{D}} = \overline{(A+\overline{B})} + \overline{C+\overline{D}} = \overline{A}B + C + \overline{D}$$

3)
$$\sqrt{AB+C}+\overline{A}D$$

反函数为

$$\overline{AB} + \overline{C} + \overline{AD} = \overline{AB} + \overline{C} \bullet \overline{AD} = (\overline{A} + B + \overline{C})(A + \overline{D})$$

$$= \overline{A} \overline{D} + AB + B\overline{D} + A\overline{C} + \overline{C} \overline{D}$$

$$= \overline{A} \overline{D} + AB + B\overline{D} + \overline{A} \overline{D} + A\overline{C} + \overline{C} \overline{D} \qquad \text{消去多余项}$$

$$= \overline{A} \overline{D} + AB + \overline{A} \overline{D} + A\overline{C} = \overline{A} \overline{D} + AB + A\overline{C}$$

$$Y = \overline{A} + C$$

1.11
$$Y = \overline{A}\overline{C} + \overline{B}C + \overline{B}\overline{D}$$
d),

$$\overline{AC}$$

$$AB \quad CD \quad QO \quad O1 \quad 11 \quad 10$$

$$00 \quad 1 \quad 1 \quad 1 \quad 1$$

$$01 \quad 1 \quad 0 \quad 0$$

$$11 \quad 0 \quad 0$$

$$10 \quad 1 \quad 0$$

$$\overline{BC}$$

1.11
$$Y = \overline{A}\overline{C} + \overline{B}C + \overline{A}\overline{B} + \overline{B}\overline{D}$$

$$d), \qquad = \overline{A}\overline{C} + \overline{B}C + \overline{B}\overline{D}$$

$$\overline{A}\overline{C}$$

3)
$$Y = A\overline{B} + B\overline{C}\overline{D} + ABD + \overline{A}B\overline{C}D$$

AB	CD	00	01	11	10
00	$D \overline{C}$				
01	DX	1	1	AD	
11		1	1	1	
10		1	1	1	1
				\overline{AB}	

$$Y = A\overline{B} + B\overline{C} + AD$$

4),
$$\begin{cases} F(A,B,C,D) = \sum m(0,1,2,3,4,5,6) \\ AB + AC = 0 \end{cases}$$

AB	_ CD	$\overline{A}\overline{C}$	04	\overline{AB}	10	
AD \	CD	00	01	1k 11	10	_
00		1	1	1	1	$=\overline{A}\overline{D}$
01		1	1		1	ΛD
11		X	×	×	×	
10				×	×	_

$$\begin{cases} F = \overline{A}\overline{B} + \overline{A}\overline{C} + \overline{A}\overline{D} \\ AB + AC = 0 \end{cases}$$

1.15 3)

$$F(A,B,C,D) = \sum m(0,1,4,9,12,13) + \sum d(2,3,6,10,11,14)$$

