Advanced Data Journalism: Doing More with R

Class 2: Joins and Strings

Andrew Ba Tran

Let's start out with two data frames: x and y

```
x \leftarrow data.frame(id=c(1,2,3), x=c("x1", "x2", "x3"))
X
  id x
1 1 x1
2 2 x2
3 3 x3
y \leftarrow data.frame(id=c(1,2,4), y=c("y1", "y2", "y4"))
  id y
1 1 y1
2 2 y2
3 4 y4
```


left_join()

id x y
1 1 x1 y1
2 2 x2 y2
3 3 x3 <NA>

left_join(x, y)

Two data frames: x and y but with different column names

```
x <- data.frame(id=c(1,2,3), x=c("x1", "x2", "x3"))
x

id x
1 1 x1
2 2 x2
3 3 x3

y <- data.frame(new_id=c(1,2,4), y=c("y1", "y2", "y4"))
y</pre>
```

new_id y
1 y1

2 y2

4 y4

```
x <- data.frame(id=c(1,2,3),
                                                 1 1 x1
                x=c("x1", "x2", "x3"))
Х
y \leftarrow data.frame(id=c(1,2,4,2),
                y=c("y1", "y2", "y4", "y5"))
У
left_join(x, y)
```

```
2 2 x2
3 3 x3
id y
1 1 y1
2 2 y2
3 4 y4
4 2 y5
 id x
1 1 x1
2 2 x2 y2
3 2 x2
4 3 x3 <NA>
```

id x

left_join(x, y)

right_join()

right_join(x, y)

full_join()

full_join(x, y)

inner_join()

inner_join(x, y)

anti_join()

anti_join(x, y)

stringr package

Key stringr functions In this section, we will learn the following stringr functions:

```
str_to_upper() str_to_lower() str_to_title()
str_trim() str_squish()
str_c()
str_detect()
str_subset()
str_sub()
```

test_text <- "tHiS iS A rANSOM noTE!"</pre>

```
test_text <- "tHiS iS A rANSOM noTE!"

str_to_upper(test_text)</pre>
[1] "THIS IS A RANSOM NOTE!"
```

```
test_text <- "tHiS iS A rANSOM noTE!"

str_to_upper(test_text)

str_to_lower(test_text)

[1] "THIS IS A RANSOM NOTE!"

[1] "this is a ransom note!"</pre>
```

```
test_text <- "tHiS is A rANSOM noTE!"

str_to_upper(test_text)

str_to_lower(test_text)

str_to_title(test_text)

[1] "THIS IS A RANSOM NOTE!"

[1] "THIS IS A RANSOM NOTE!"

[1] "THIS IS A RANSOM NOTE!"

[1] "THIS IS A RANSOM NOTE!"</pre>
```

test_text <- " trim both "

```
test_text <- " trim both "

test_text

[1] " trim both '</pre>
```

```
test_text <- " trim both "

test_text

[1] " trim both '

test_text

[1] "trim both"</pre>
```

```
test_text <- " trim both "

test_text

str_trim(test_text, side="both")

str_trim(test_text, side="left")

str_trim(test_text, side="left")

str_trim(test_text, side="right")

messy_text <- " sometimes you get this "</pre>
[1] " trim both "

[1] " trim both"
```

```
test_text <- " trim both "

test_text

test_text

str_trim(test_text, side="both")

str_trim(test_text, side="left")

str_trim(test_text, side="left")

str_trim(test_text, side="right")

messy_text <- " sometimes you get this "

str_squish(messy_text)</pre>
[1] " trim both "

[2] " trim both "

[3] " trim both "

[4] " trim both "

[5] " trim both "

[6] " trim both "

[7] " trim both "

[8] " trim both "

[9] " trim both "

[1] " trim both "

[2] " trim both "

[3] " trim both "

[4] " trim both "

[5] " trim both "

[6] " trim both "

[7] " trim both "

[8] " trim both "

[9] " trim both "

[1] " trim both "

[2] " trim both "

[3] " trim both "

[4] " trim both "

[5] " trim both "

[6] " trim both "

[7] " trim both "

[8] " trim both "

[9] " trim both "

[1] " trim both "

[2] " trim both "

[3] " trim both "

[4] " trim both "

[5] " trim both "

[6] " trim both "

[7] " trim both "

[8] " trim both "

[9] " trim both "

[1] " trim both "

[2] " trim both "

[3] " trim both "

[4] " trim both "

[5] " trim both "

[6] " trim both
```

Concatenate strings into one

text_a <- "one"

```
text_a <- "one"

text_b <- "two"</pre>
```

```
text_a <- "one"

text_b <- "two"

text_a
```

```
text_a <- "one"

text_b <- "two"

text_a

text_b</pre>
```

```
text_a <- "one"

text_b <- "two"

text_a

text_b

str_c(text_a, text_b)</pre>
[1] "one"

[1] "two"

[1] "onetwo"
```

```
text_a <- "one"

text_b <- "two"

text_a

text_b

text_b

str_c(text_a, text_b)

str_c(text_a, text_b, sep="-")</pre>
[1] "one"

[1] "two"

[1] "one-two"
```

```
text_a <- "one"

text_b <- "two"

text_a

text_b

text_b

str_c(text_a, text_b)

str_c(text_a, text_b, sep="-")

str_c(text_a, text_b, sep=" and a ")</pre>
[1] "one"

[1] "two"

[1] "onetwo"

[1] "one-two"

[1] "one and a two"

[1] "on
```

```
text_a <- "one"

text_b <- "two"

text_a

text_b

str_c(text_a, text_b)

str_c(text_a, text_b, sep="-")

str_c(text_a, text_b, sep=" and a ")

str_c(text_a, " and a ", text_b)

[1] "one"

[1] "two"

[1] "onetwo"

[1] "one-two"

[1] "one and a two"

[1] "on
```

```
text_a <- "one"

text_b <- "two"

text_a

text_b

str_c(text_a, text_b)

str_c(text_a, text_b, sep="-")

str_c(text_a, text_b, sep=" and a ")

str_c(text_a, " and a ", text_b)

[1] "one"

[1] "two"

[1] "onetwo"

[1] "one-two"

[1] "one and a two"

[1] "on
```

```
test_text <- "Hello world"
```

```
test_text <- "Hello world"

test_text

[1] "Hello world"</pre>
```

```
test_text <- "Hello world"

test_text

str_sub(test_text, start = 6)

[1] "Hello world"

[1] " world"</pre>
```

```
test_text <- "Hello world"

test_text

str_sub(test_text, start = 6)

str_sub(test_text, end = 5) <- "Howdy"

[1] "Hello world"

[1] "Hello world"
</pre>
```

```
test_text <- "Hello world"

test_text

str_sub(test_text, start = 6)

str_sub(test_text, end = 5) <- "Howdy"

test_text

cn <- "Kemp County, Georgia"

[1] "Hello world"

[1] "Kemp County"

[1] "Hello world"

[1] "Howdy world"

[2] "Howdy world"

[3] "Howdy world"

[4] "Howdy world"

[5] "Howdy world"

[6] "Howdy world"

[7] "Howdy world"

[8] "Howdy world"

[9] "Howd
```

```
test_text <- "Hello world"

test_text

str_sub(test_text, start = 6)

str_sub(test_text, end = 5) <- "Howdy"

test_text

cn <- "Kemp County, Georgia"

cn</pre>
```

- [1] "Hello world"
- [1] " world"
- [1] "Howdy world"
- [1] "Kemp County, Georgia"

```
test_text <- "Hello world"

test_text

str_sub(test_text, start = 6)

str_sub(test_text, end = 5) <- "Howdy"

test_text

cn <- "Kemp County, Georgia"

cn

str_replace(cn, " County, .*", "")</pre>
```

[1] "Hello world"
[1] " world"
[1] "Howdy world"
[1] "Kemp County, Georgia"
[1] "Kemp"

```
test_text <- "Hello world"

test_text

str_sub(test_text, start = 6)

str_sub(test_text, end = 5) <- "Howdy"

test_text

cn <- "Kemp County, Georgia"

cn

str_replace(cn, " County, .*", "")</pre>
```

```
[1] "Hello world"
[1] " world"
[1] "Howdy world"
[1] "Kemp County, Georgia"
[1] "Kemp"
```

More functions in stringr and more info on regular expressions here.

parse_number()

(from the readr package)

messy_numbers <- c("\$5.00", "9,343,200", "6.0%

messy_numbers <- c("\$5.00", "9,343,200", "6.0% [1] "\$5.00" "9,343,200" "6.0%"

messy_numbers

```
messy_numbers <- c("$5.00", "9,343,200", "6.0% [1] "$5.00" "9,343,200" "6.0%"

messy_numbers [1] 5 9343200 6

parse_number(messy_numbers)
```

readr::parse_number()

(just give me the numbers)

Advanced Data Journalism: Doing More with R

Class 2: Pivots and Dates

Andrew Ba Tran

TIDY DATA is a standard way of mapping the meaning of a dataset to its structure.

-HADLEY WICKHAM

In tidy data:

- each variable forms a column
- each observation forms a row
- each cell is a single measurement

Wickham, H. (2014). Tidy Data. Journal of Statistical Software 59 (10). DOI: 10.18637/jss.v059.i10

When working with tidy data, we can use the same tools in similar ways for different datasets...

...but working with untidy data often means reinventing the wheel with one-time approaches that are hard to iterate or reuse.

make friends with tidy data.

Let's start out with a simple data frame

2 rows x 3 columns

```
id x y z
1 1 a c e
2 2 b d f
```


pivot_longer()

df id x y z
1 1 a c e
2 2 b d f

```
# A tibble: 6 \times 3
    id key val
 <dbl> <chr> <chr>
1
     1 x
             а
     1 y
             С
3
     1 z
             е
     2 x
           b
     2 y
             d
     2 z
             f
```

```
# A tibble: 6 \times 3
    id key val
 <dbl> <chr> <chr>
      1 x
             а
     1 y
             С
3
     1 z
             е
      2 x
             b
5
      2 y
             d
      2 z
             f
 id x y z
1 1 a c e
2 2 b d f
```

```
# A tibble: 6 \times 3
df %>%
  pivot longer(cols=x:z,
               names_to="key",
               values_to="val")
df %>%
 pivot_longer(cols=2:4,
               names_to="key",
               values_to="val")
```

```
id key val
 <dbl> <chr> <chr>
     1 x
             а
     1 y
             С
     1 z
             е
     2 x
           b
     2 у
             d
     2 z
             f
# A tibble: 6 \times 3
    id key val
 <dbl> <chr> <chr>
     1 x
             а
     1 y
             С
     1 z
     2 x
            b
     2 y
           d
     2 z
             f
```

wide

state ducks fish birds
1 TX 23 6 99
2 NY 39 30 3
3 FL 47 20 64

```
# A tibble: 9 \times 3
  state animals total
 <chr> <chr>
                <dbl>
        ducks
                   23
1 TX
2 TX
        fish
                    6
3 TX
        birds
                   99
4 NY
        ducks
                   39
5 NY
        fish
                   30
6 NY
        birds
                    3
7 FL
        ducks
                   47
8 FL
        fish
                   20
9 FL
        birds
                   64
```

```
# A tibble: 9 \times 3
  state animals total
 <chr> <chr>
                <dbl>
1 TX
        ducks
                   23
2 TX
        fish
                     6
3 TX
        birds
                   99
4 NY
        ducks
                    39
5 NY
        fish
                    30
        birds
6 NY
                     3
7 FL
        ducks
                   47
8 FL
        fish
                   20
9 FL
        birds
                   64
  state ducks fish birds
     TX
           23
                 6
                      99
1
2
     NY
           39
                30
                        3
           47
3
     FL
                20
                      64
```

```
# A tibble: 9 \times 3
  state animals total
 <chr> <chr>
                <dbl>
1 TX
        ducks
                    23
        fish
2 TX
                     6
        birds
                    99
3 TX
4 NY
        ducks
                    39
        fish
                    30
5 NY
6 NY
        birds
                     3
7 FL
        ducks
                    47
        fish
                    20
8 FL
9 FL
        birds
                    64
# A tibble: 9 \times 3
  state animals totals
  <chr> <chr>
                  <dbl>
1 TX
        ducks
                     23
2 TX
        fish
                      6
3 TX
        birds
                     99
4 NY
        ducks
                     39
5 NY
        fish
                     30
6 NY
        birds
                      3
7 FL
                     47
        ducks
8 FL
        fish
                     20
9 FL
        birds
                     64
```

state ducks fish birds
1 TX 23 6 99
2 NY 39 30 3
3 FL 47 20 64

```
# A tibble: 9 \times 3
  state animals total
 <chr> <chr>
                <dbl>
        ducks
                   23
1 TX
2 TX
        fish
                    6
3 TX
        birds
                   99
4 NY
        ducks
                   39
5 NY
        fish
                   30
6 NY
        birds
                    3
7 FL
        ducks
                   47
8 FL
        fish
                   20
9 FL
        birds
                   64
```

#	A tibl	ole:	9	×	3	
#	Groups:		state		tе	[3]
	state an		mals		total	
	<chr></chr>	<chr< td=""><td>:></td><td></td><td><0</td><td>dbl></td></chr<>	:>		<0	dbl>
1	TX	duck	s			23
2	TX	fish	1			6
3	TX	bird	ds			99
4	NY	duck	s			39
5	NY	fish	ı			30
6	NY	bird	ls			3
7	FL	duck	s			47
8	FL	fish	1			20
9	FL	biro	ds			64

#	A tib	ole: 9 ×	4	
#	Groups	s: stat	te [3]	
	state	animals	total	percent
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	TX	ducks	23	18
2	TX	fish	6	4.7
3	TX	birds	99	77.3
4	NY	ducks	39	54.2
5	NY	fish	30	41.7
6	NY	birds	3	4.2
7	FL	ducks	47	35.9
8	FL	fish	20	15.3
9	FL	birds	64	48.9

```
# A tibble: 9 \times 4
df <- data.frame(state=c("TX", "NY", "FL"),</pre>
                                                # Groups: state [3]
                 ducks=c(23, 39, 47),
                                                  state animals total percent
                 fish=c(6,30,20),
                                                  <chr> <chr>
                                                                <dbl>
                                                                        <dbl>
                 birds=c(99,3,64))
                                                                         18
                                                1 TX
                                                        ducks
                                                                   23
df %>%
                                                2 TX
                                                        fish
                                                                          4.7
                                                                    6
  pivot longer(cols=ducks:birds,
                                                3 TX
                                                        birds
                                                                   99
                                                                         77.3
               names to="animals",
                                                        ducks
                                                                   39
                                                                         54.2
                                                4 NY
               values to="total") %>%
                                                                         41.7
                                                5 NY
                                                        fish
                                                                   30
  group by(state) %>%
                                                6 NY
                                                        birds
                                                                    3
                                                                          4.2
                                                7 FL
                                                                         35.9
 mutate(percent=
                                                        ducks
                                                                   47
           round(total/sum(total)*100,1))
                                                                         15.3
                                                8 FL
                                                        fish
                                                                   20
                                                9 FL
                                                        birds
                                                                   64
                                                                         48.9
```

pivot_wider()

df_long <- df

#	A tib	ole: 9 ×	4	
#	Groups: state [3]			
	state	animals	total	percent
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	TX	ducks	23	18
2	TX	fish	6	4.7
3	TX	birds	99	77.3
4	NY	ducks	39	54.2
5	NY	fish	30	41.7
6	NY	birds	3	4.2
7	FL	ducks	47	35.9
8	FL	fish	20	15.3
9	FL	birds	64	48.9

```
# A tibble: 9 \times 5
# Groups:
           state [3]
  state total ducks fish birds
 <chr> <dbl> <dbl> <dbl> <dbl>
1 TX
          23 18
                    NA
                          NA
2 TX
              NA
                          NA
           6
                     4.7
3 TX
          99
              NA
                    NA
                          77.3
4 NY
              54.2
          39
                    NA
                          NA
5 NY
          30
              NA
                    41.7
                          NA
6 NY
              NA
                    NA
                           4.2
7 FL
          47
              35.9
                    NA
                          NA
8 FL
          20
              NA
                    15.3
                          NA
9 FL
          64
             NA
                          48.9
                    NA
```

```
# A tibble: 9 \times 5
# Groups:
            state [3]
  state total ducks fish birds
  <chr> <dbl> <dbl> <dbl> <dbl>
1 TX
           23 18
                     NA
                           NA
                           NA
2 TX
            6
               NA
                      4.7
3 TX
           99
               NA
                     NA
                           77.3
               54.2
4 NY
           39
                     NA
                           NA
5 NY
           30
               NA
                     41.7
                           NA
6 NY
               NA
                     NA
                            4.2
7 FL
           47
               35.9
                     NA
                           NA
8 FL
           20
               NA
                     15.3
                           NA
9 FL
           64
              NA
                     NA
                           48.9
# A tibble: 9 \times 4
# Groups:
            state [3]
  state animals total percent
  <chr> <chr>
                <dbl>
                        <dbl>
1 TX
        ducks
                   23
                         18
                          4.7
2 TX
        fish
                    6
                         77.3
3 TX
        birds
                   99
4 NY
        ducks
                   39
                         54.2
5 NY
                         41.7
        fish
                   30
6 NY
        birds
                          4.2
                    3
7 FL
                   47
                         35.9
        ducks
8 FL
        fish
                   20
                         15.3
```

9 FL

birds

64

48.9

```
# A tibble: 9 \times 5
# Groups:
            state [3]
  state total ducks fish birds
  <chr> <dbl> <dbl> <dbl> <dbl>
1 TX
           23 18
                     NA
                           NA
                           NA
2 TX
            6
               NA
                      4.7
3 TX
           99
              NA
                     NA
                           77.3
               54.2
4 NY
           39
                     NA
                           NA
5 NY
           30
               NA
                     41.7
                           NA
6 NY
               NA
                     NA
                            4.2
7 FL
           47
               35.9
                     NA
                           NA
8 FL
           20
               NA
                     15.3
                           NA
9 FL
           64
              NA
                     NA
                           48.9
# A tibble: 9 \times 3
# Groups:
            state [3]
  state animals percent
  <chr> <chr>
                  <dbl>
1 TX
        ducks
                   18
2 TX
        fish
                    4.7
                   77.3
3 TX
        birds
4 NY
        ducks
                   54.2
5 NY
                   41.7
        fish
6 NY
        birds
                    4.2
7 FL
                   35.9
        ducks
8 FL
        fish
                   15.3
9 FL
        birds
                   48.9
```

```
df long <- df %>%
  pivot longer(cols=ducks:birds,
               names to="animals",
               values to="total") %>%
  group by(state) %>%
  mutate(percent=
           round(total/sum(total)*100,1))
df long %>%
  pivot wider(names from="animals",
              values from="percent")
df long %>%
  select(-total) %>%
  pivot wider(names from="animals",
              values from="percent")
```

```
# A tibble: 9 \times 5
# Groups:
           state [3]
  state total ducks fish birds
  <chr> <dbl> <dbl> <dbl> <dbl>
1 TX
          23 18
                    NA
                          NA
                          NA
2 TX
            6
             NA
                     4.7
3 TX
          99
             NA
                    NA
                          77.3
          39 54.2
4 NY
                    NA
                          NA
5 NY
          30
              NA
                    41.7
                          NA
6 NY
              NA
                    NA
                           4.2
7 FL
          47
              35.9
                    NA
                          NA
8 FL
          20
              NA
                    15.3
                          NA
9 FL
          64
             NA
                    NA
                          48.9
# A tibble: 3 \times 4
# Groups:
           state [3]
  state ducks fish birds
 <chr> <dbl> <dbl> <dbl>
1 TX
         18
                4.7 77.3
2 NY
         54.2 41.7
                   4.2
3 FL
         35.9 15.3 48.9
```

```
df long <- df %>%
  pivot longer(cols=ducks:birds,
               names to="animals",
               values to="total") %>%
  group by(state) %>%
  mutate(percent=
           round(total/sum(total)*100,1))
df long %>%
  pivot wider(names from="animals",
              values from="percent")
df long %>%
  select(-total) %>%
  pivot wider(names from="animals",
              values from="percent") %>%
  mutate(birds fish diff=
           birds-fish)
```

```
# A tibble: 9 \times 5
# Groups:
           state [3]
  state total ducks fish birds
 <chr> <dbl> <dbl> <dbl> <dbl>
          23 18
                    NA
                          NA
1 TX
2 TX
            6
             NA
                     4.7
                          NA
3 TX
          99
             NA
                    NA
                          77.3
4 NY
          39 54.2
                    NA
                          NA
5 NY
           30
              NA
                    41.7
                          NA
6 NY
              NA
                    NA
                           4.2
7 FL
          47 35.9
                    NA
                          NA
8 FL
           20
             NA
                    15.3
                          NA
9 FL
          64 NA
                    NA
                          48.9
# A tibble: 3 \times 5
# Groups: state [3]
  state ducks fish birds birds fish diff
 <chr> <dbl> <dbl> <dbl>
                                   <dbl>
1 TX
        18
               4.7 77.3
                                    72.6
         54.2 41.7 4.2
2 NY
                                   -37.5
3 FL
         35.9 15.3 48.9
                                    33.6
```

```
df long <- df %>%
  pivot longer(cols=ducks:birds,
               names to="animals",
               values to="total") %>%
  group by(state) %>%
  mutate(percent=
           round(total/sum(total)*100,1))
df long %>%
  pivot wider(names from="animals",
              values from="percent")
df long %>%
  select(-total) %>%
  pivot wider(names from="animals",
              values from="percent") %>%
  mutate(birds fish diff=
           birds-fish)
```

```
# A tibble: 9 \times 5
# Groups:
           state [3]
  state total ducks fish birds
  <chr> <dbl> <dbl> <dbl> <dbl>
          23 18
                    NA
                          NA
1 TX
2 TX
            6
             NA
                     4.7
                          NA
3 TX
          99
             NA
                    NA
                          77.3
4 NY
          39 54.2
                    NA
                          NA
5 NY
           30
              NA
                    41.7
                          NA
6 NY
              NA
                    NA
                           4.2
7 FL
          47 35.9
                    NA
                          NA
8 FL
           20
             NA
                    15.3
                          NA
9 FL
          64 NA
                    NA
                          48.9
# A tibble: 3 \times 5
# Groups: state [3]
  state ducks fish birds birds fish diff
 <chr> <dbl> <dbl> <dbl>
                                   <dbl>
1 TX
         18
               4.7 77.3
                                    72.6
         54.2 41.7 4.2
2 NY
                                   -37.5
3 FL
         35.9 15.3 48.9
                                    33.6
```

df_long <- df

#	A tib	ole: 9 ×	4	
#	Groups: state [3]			
	state	animals	total	percent
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	TX	ducks	23	18
2	TX	fish	6	4.7
3	TX	birds	99	77.3
4	NY	ducks	39	54.2
5	NY	fish	30	41.7
6	NY	birds	3	4.2
7	FL	ducks	47	35.9
8	FL	fish	20	15.3
9	FL	birds	64	48.9

A tibble: 3×7 # Groups: state [3] state total ducks total fish total birds percent ducks percent fish percent ...1 <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>18 1 TX 23 6 99 4.7 77.3 39 54.2 4.2 2 NY 30 3 41.7 3 FL 47 20 64 35.9 15.3 48.9

A tibble: 3×7 # Groups: state [3] state total ducks total fish total birds percent ducks percent fish percent ...1 <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>18 1 TX 23 6 99 4.7 77.3 39 54.2 4.2 2 NY 30 3 41.7 3 FL 47 20 64 35.9 15.3 48.9

... with abbreviated variable name ¹percent birds

lubridate package

library(lubridate)


```
First
                                                               Last
                                                                        birthday birthday clean
library(lubridate)
                                                   Charlie
                                                                        10-31-06
                                                                                     2006-10-31
                                                              Brown
data <- data.frame(First=c("Charlie", "Lucy", 2</pre>
                                                      Lucy van Pelt
                                                                        2/4/2007
                                                                                     2007-02-04
                  Last=c("Brown", "van Pelt", 3 Peppermint
                                                             Patty June 1, 2005
                                                                                     2005-06-01
                  birthday=c("10-31-06", "2/4
data %>%
 mutate(birthday clean=mdy(birthday))
```

Reading dates

Order of elements in date-time	Parse function
year, month, day	ymd()
year, day, month	ydm()
month, day, year	mdy()
day, month, year	dmy()
hour, minute	hm()
hour, minute, second	hms()
year, month, day, hour, minute, second	ymd_hms()

Accessing date parts

Date component	Function		
Year	year()		
Month	month()		
Week	week()		
Day of year	yday()		
Day of month	mday()		
Day of week	wday()		
Hour	hour()		
Minute	minute()		
Second	ymd_hms()		
Time zone	ymd_hms()		

```
data <- data.frame(First=c("Charlie", "Lucy",

Last=c("Brown", "van Pelt",
birthday=c("10-31-06", "2/4]

data

First Last birthday

1 Charlie Brown 10-31-06

2 Lucy van Pelt 2/4/2007

3 Peppermint Patty June 1, 2005
```

```
First
                                                                Last
                                                                          birthday birthday clean
data <- data.frame(First=c("Charlie", "Lucy",</pre>
                                                                          10-31-06
                                                                                       2006-10-31
                                                     Charlie
                                                                Brown
                   Last=c("Brown", "van Pelt",
                                                       Lucy van Pelt
                                                                          2/4/2007
                                                                                       2007-02-04
                   birthday=c("10-31-06", "2/4
                                                3 Peppermint
                                                                Patty June 1, 2005
                                                                                       2005-06-01
data %>%
 mutate(birthday_clean=mdy(birthday))
```

	First	Last	birthday	${\tt birthday_clean}$	month
1	Charlie	Brown	10-31-06	2006-10-31	10
2	Lucy	van Pelt	2/4/2007	2007-02-04	2
3	Peppermint	Patty	June 1, 2005	2005-06-01	6

	First	Last	birthday	birthday_clean	month year
1	Charlie	Brown	10-31-06	2006-10-31	10 2006
2	Lucy	van Pelt	2/4/2007	2007-02-04	2 2007
3	Peppermint	Patty	June 1, 2005	2005-06-01	6 2005

	First	Last	birthday	${\tt birthday_clean}$	month year	week
1	Charlie	Brown	10-31-06	2006-10-31	10 2000	5 44
2	Lucy	van Pelt	2/4/2007	2007-02-04	2 200	7 5
3	Peppermint	Patty	June 1, 2005	2005-06-01	6 200	5 22

Advanced Data Journalism: Doing More with R

Class 2: Visualizations

Andrew Ba Tran

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms—visual marks that represent data points

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

You only need two lines of code, really.

The rest is just extra customization.

```
ggplot(data = <DATA>) +

<GEOM_FUNCTION> (mapping=aes( <MAPPINGS>),
stat = <STAT> , position= <POSITION>) +

<COORDINATE_FUNCTION> +

<FACET_FUNCTION> +

<SCALE_FUNCTION> +

<THEME_FUNCTION>
```

```
burgers

ggplot(burgers, aes(x=employee, y=time, fill=employee)) +
    geom_col(position="stack")
```

	employee	time	age	interest	where
1	Bob	25	42	cooking	front
2	Gene	30	11	music	front
3	Linda	60	39	wine	front
4	Louise	20	9	chaos	front
5	Tina	50	13	horses	front

Layers


```
ggplot(burgers) +
  geom_point(aes(x=employee, y=time, fill=employee, color=emp
```



```
ggplot(burgers) +
  geom_col(aes(x=time, y=employee), stat="identity")
```



```
disney <- read_csv("data/disney_movies_total_gross.csv")
glimpse(disney)

Rows: 579</pre>
```

```
disney <- read csv("data/disney movies total gross.csv")</pre>
glimpse(disney)
Rows: 579
Columns: 6
$ movie title
                           <chr> "Snow White and the Seven Dwarfs", "Pinocchio...
$ release date
                           <chr> "Dec 21, 1937", "Feb 9, 1940", "Nov 13, 1940"...
$ genre
                           <chr> "Musical", "Adventure", "Musical", "Adventure...
                           <chr> "G", "G", "G", "G", NA, "G", NA, "G", NA...
$ MPAA rating
$ total gross
                          <chr> "$184,925,485", "$84,300,000", "$83,320,000",...
$ inflation adjusted gross <chr>> "$5,228,953,251", "$2,188,229,052", "$2,187,0...
disney <- disney %>%
  mutate(release date=mdy(release date),
          total gross=parse number(total gross),
          inflation adjusted gross=parse number(inflation adjusted gross))
glimpse(disney)
Rows: 579
Columns: 6
$ movie title
                           <chr> "Snow White and the Seven Dwarfs", "Pinocchio...
```

<date> 1937-12-21, 1940-02-09, 1940-11-13, 1946-11-...

<chr> "Musical", "Adventure", "Musical", "Adventure...
<chr> "G", "G", "G", "G", NA, "G", NA, "G", NA...

<dbl> 184925485, 84300000, 83320000, 65000000, 8500...

\$ inflation adjusted gross <dbl> 5228953251, 2188229052, 2187090808, 107851057...

\$ release date

\$ MPAA_rating
\$ total gross

\$ genre

Disney animated movie gross profit Adjusted for inflation

Data: Source Goes Here

```
disney %>%
  ggplot(aes(x=release date,
             y=inflation adjusted gross)) +
  geom point() +
  scale x date(limits=c(ymd("1980-01-01"),
                              ymd("2020-01-01")
                     labels=scales::date format
  scale y continuous(limits=c(0, 100000000),
                     labels=scales::dollar form
  facet wrap(~genre) +
  labs(title="Disney animated movie gross profi
  labs(subtitle="Adjusted for inflation") +
  labs(y="", x="") +
  labs(caption="Data: Source Goes Here") +
  theme(strip.background = element rect(colour
  theme(legend.key = element rect(fill = "white
  theme minimal()
```

Disney animated movie gross profit Adjusted for inflation

Data: Source Goes Here

