SSID: zenguest Password: password

WOMEN WHO

Artificial Intelligence Study Group

Twitter: @wwcodemanila FB: fb.com/wwcodemanila

#WWCodeManila #AI #StudyGroup

New Member's Introduction

OUR MISSION

Inspiring women to excel in technology careers.

OUR VISION

A world where women are representative as technical executives, founders, VCs, board members and software engineers.

STUDY GROUP

Study groups are events where women can come together and help each other learn and understand a specific programming language, technology, or anything related to coding or engineering.

GUIDELINES

- If you have a question, just **ask**
- If you have an idea, share it
- Make friends and learn from your study groupmates
- Do not recruit or promote your business

REVIEW

- Training set, testing set, validation set
- Overfitting, underfitting

REVIEW DECISION TREES

Overfitting in Decision Trees

- Recursive algorithm
 - keeps splitting until all subsets are pure
- Can always classify training examples perfectly
- Doesn't work on new data

Size of tree (number of nodes)

Avoid Overfitting

- Don't grow a tree that is too large or has singleton subsets
 - Set maximum tree depth, max no. of features, etc.

Avoid Overfitting

- Don't grow a tree that is too large or has singleton subsets
 - Set maximum tree depth, max no. of features, etc.
- Remove nodes that are too specific to training data
- Grow tree, then prune (based on validation set)
 - For each node:
 - "pretend" remove node + all its children
 - Measure performance on validation set
 - Remove nodes that give you the biggest improvement
 - Repeat until further pruning is harmful

Decision Trees Pros and Cons

Pros

- Interpretable; humans can easily understand
- Easily handles irrelevant attributes
- Easily handles missing data
- Compact after pruning
- Very fast at testing time (O(depth))
- Can handle categorical and continuous data with ease
 - C4.5 is an extension of ID3 that handles continuous data and implements pruning

Cons

- Only Axis Aligned Splits
- Greedy selection of best attribute
 - Does NOT always result in the optimal tree!
- Finding the optimal tree
 would be too time consuming
 - exponentially many trees to compare
- Prone to Overfitting

For more tutorials: annalyzin.

TOPIC FOR TODAY RANDOM FORESTS

- Wisdom of the Crowd?
- While visiting a livestock fair, Francis Galton (19th century) was intrigued by a simple weight-guessing contest.

- Wisdom of the Crowd?
- While visiting a livestock fair, Francis Galton (19th century) was intrigued by a simple weight-guessing contest.
- The visitors were invited to guess the weight of an ox.

- Wisdom of the Crowd?
- While visiting a livestock fair, Francis Galton (19th century) was intrigued by a simple weight-guessing contest.
- The visitors were invited to guess the weight of an ox.
- Hundreds of people participated in this contest but no one individual managed to guess the exact weight: **1,198 lbs**.

- What surprised Galton was the **average of all the guesses** came quite close to the exact weight → 1,197 lbs!

- What surprised Galton was the **average of all the guesses** came quite close to the exact weight → 1,197 lbs!
- **Rationale:** Combining different (poor) classifiers can exploit their individual advantages in order to achieve an overall performance that is better than by using each of them separately.

- What surprised Galton was the **average of all the guesses** came quite close to the exact weight → 1,197 lbs!
- **Rationale:** Combining different (poor) classifiers can exploit their individual advantages in order to achieve an overall performance that is better than by using each of them separately.
- **Poor/Weak Learners** models that are slightly better than random guessing (e.g. decision trees, perceptrons)

- Grow K different decision trees
 - 1. Pick a random subset S_k ($k \in \{1, ..., K\}$) of training examples S
 - 2. Grow a full tree T_k (no pruning)
 - on a subset of d features from a total of D features ($d \ll D$)
 - compute gain based on S_k instead of S

- Grow K different decision trees

- 1. Pick a random subset S_k ($k \in \{1, ..., K\}$) of training examples S
- 2. Grow a full tree T_k (no pruning)
 - on a subset of d features from a total of D features ($d \ll D$)
 - compute gain based on S_k instead of S

- Given a new data point x

- 1. Classify x using each of the trees T_1, \dots, T_K
- 2. Use majority vote, i.e. which class was predicted most often

Random Forest Simplified

- Simple, but state-of-the-art
- Image Classification
- Object Detection
- Object Tracking
- Human/ Hand Pose Estimation
- etc.

Why use Random Forest?

- RFs require almost no input preparation
 - RFs can handle binary, categorical, numeric input without need for scaling
- RFs perform implicit feature selection
- RFs are quick to train
- Simplicity
- RFs can be grown in parallel
- Very little hyperparameters to tune
- Can handle multi-class classification seamlessly

Drawbacks of Random Forest

- Model size can be *huge*, and might be slow to evaluate
- More trees → better, typically, but slower!
- Black box? (Not to us anymore, at least!)

Partner/Group/Individual Presentation

Random Forest for MNIST Dataset

Kaggle Digit Recognizer

- https://www.kaggle.com/c/digit-recognizer
- Join Kaggle's digit recognizer competition
- Submit your predictions using Random Forest Classifier
- Pataasan ng score/rank!

Random Forest in Python

- Use scikit-learn's RandomForestClassifier() method
- Focus on optimizing parameters using cross validation
 - Try different values for parameters n_estimator, criterion, etc.
 - For cross validation, use cross_val_score and get the mean of the resulting cross validation scores
- As you increase the number of trees, evaluation gets slower.
 - Parallelization might help to speed things up (hint: tweak n_job)
- Feature binarization might also help.

References

Decision Tree Lecture by Victor Lavrenko (Youtube)
Random Forests Video by Siraj Raval

T.I.L.

SHARE IT! In front!

On Twitter: @wwcodemanila

Or FB: fb.com/wwcodemanila

Don't forget to tag WWCodeManila so we can retweet or share it.

Feedback Form

https://goo.gl/YzSqcS

Please don't rate the event on meetup.

Not helpful. It is best to just tell your concerns via the feedback form. We are a building a community not a Yelp restaurant.

THANK YOU:)