Integral tripla

Cálculo Diferencial e Integral III Suzana M. F. de Oliveira

Índice

- Revisão
- Integrais triplas
 - Caixas retangulares
 - Regiões mais gerais
 - Cálculo de volume
 - Outras ordens (direções)
 - Coordenadas cilíndricas e esféricas
- Resumo
- Bibliografia

Revisão

Revisão

- Funções vetoriais
 - Derivadas parciais
 - Plano tangente
 - Área de superfícies paramétricas

$$S = \iint_{R} \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\| dA$$

- Comparação
 - Integral simples
 - Função f(x)
 - Intervalo fechado finito do eixo x

Área sob a curva e comprimento de curva

Volume sob a superfície, área de superfície, área da região R

- Comparação
 - Integral simples
 - Função f(x)
 - Intervalo fechado finito do eixo x
 - Integral dupla
 - Função f(x,y)
 - Região fechada finita R no plano xy

- Comparação
 - Integral simples
 - Função f(x)
 - Intervalo fechado finito do eixo x
 - Integral dupla
 - Função f(x,y)
 - Região fechada finita R no plano xy
 - Integral tripla
 - Função f(x,y,z)
 - Região sólida fechada G de um sistema de coordenadas xyz

G é um sólido finito

Pense que a função é da densidade (kg/m³), a integral tripla da a massa do corpo.

Volume = ΔV_k

G não pode se estender indefinidamente em alguma direção

- Definição
 - Divida G em n subcaixas
 - Planos paralelos aos planos coordenados
 - Descarte as caixas com parte fora de G
 - Escolha um ponto arbitrário (x_k*,y_k*,z_k*)
 - O volume da subcaixa $k \in \Delta V_k$
 - Forme o produto

$$f(x_k^*, y_k^*, z_k^*) \Delta V_k$$

Volume = ΔV_k

- Definição
 - Aplique a soma de Riemann

$$\sum_{k=1}^{n} f(x_k^*, y_k^*, z_k^*) \Delta V_k$$

Assuma infinitas subcaixas:

$$\iiint_{C} f(x, y, z) dV = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}) \Delta V_{k}$$

Propriedades

$$\iiint_G cf(x, y, z) dV = c \iiint_G f(x, y, z) dV \quad (c \text{ uma constante})$$

$$\iiint_G [f(x, y, z) + g(x, y, z)] dV = \iiint_G f(x, y, z) dV + \iiint_G g(x, y, z) dV$$

$$\iiint_G [f(x, y, z) - g(x, y, z)] dV = \iiint_G f(x, y, z) dV - \iiint_G g(x, y, z) dV$$

$$\iiint_G [f(x, y, z) - g(x, y, z)] dV = \iiint_G f(x, y, z) dV - \iiint_G g(x, y, z) dV$$

- Sub-regiões

$$\iiint\limits_G f(x, y, z) \, dV = \iiint\limits_{G_1} f(x, y, z) \, dV + \iiint\limits_{G_2} f(x, y, z) \, dV$$

- Integrais triplas em caixas retangulares
 - Teorema de Fubini:
 - Seja G a caixa retangular definida pelas desigualdades:

$$a \le x \le b$$
, $c \le y \le d$, $k \le z \le l$

Se f for contínua na região G, então:

Podem ser calculadas por três integrações sucessivas

$$\iiint\limits_C f(x, y, z) dV = \int_a^b \int_c^d \int_k^l f(x, y, z) dz dy dx$$

Além disso, a integral iterada pode ser feita em qualquer ordem

- Integrais triplas em caixas retangulares
 - Exercício: Calcule a integral tripla na caixa retangular

retangular
$$-1 \le x \le 2, 0 \le y \le 3, 0 \le z \le 2$$

$$\iiint_C 12xy^2z^3 dV$$

- Integrais triplas em caixas retangulares
 - Exercício: Calcule a integral tripla na caixa retangular

$$-1 \le x \le 2, \ 0 \le y \le 3, \ 0 \le z \le 2 \qquad \iiint_G 12xy^2z^3 \, dV$$

$$\iiint_{G} 12xy^{2}z^{3} dV = \int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} 12xy^{2}z^{3} dz dy dx$$

$$= \int_{-1}^{2} \int_{0}^{3} \left[3xy^{2}z^{4} \right]_{z=0}^{2} dy dx = \int_{-1}^{2} \int_{0}^{3} 48xy^{2} dy dx$$

$$= \int_{-1}^{2} \left[16xy^{3} \right]_{y=0}^{3} dx = \int_{-1}^{2} 432x dx$$

$$= 216x^{2}|_{z=0}^{2} = 648$$

$$=216x^2\big]_{-1}^2=648$$

Regiões mais gerais

- Regiões mais gerais
 - Sólido simples em xy
 - Suponha que g₁(x, y) e g₂(x, y) sejam contínuas em R e que g₁(x, y) ≤ g₂(x, y) em R

Superfícies podem se tocar, mas não podem se intersectar

- Regiões mais gerais
 - Teorema: Seja G um sólido simples em xy com superfície superior z = g₂(x, y) e superfície inferior z = g₁(x, y), e seja R a projeção de G no plano xy. Se f(x, y, z) for contínua em G, então

$$\iiint\limits_{G} f(x, y, z) dV = \iint\limits_{R} \left[\int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) dz \right] dA$$

- Regiões mais gerais
 - Determinação dos Limites de Integração: sólido simples em xy
 - Encontre uma equação $z = g_2(x, y)$ para a superfície superior e uma equação $z = g_1(x, y)$ para a superfície inferior de G
 - Faça um esboço bidimensional da projeção R do sólido no plano xy.

- Regiões mais gerais
 - Exemplo: Seja G a cunha no primeiro octante seccionada do sólido cilíndrico $y^2 + z^2 \le 1$ pelos planos y = x e x = 0. Calcule: $\iiint z \, dV$

- Regiões mais gerais
 - Exemplo: Seja G a cunha no primeiro octante seccionada do sólido cilíndrico $y^2 + z^2 \le 1$ pelos planos y = x e x = 0. Calcule: $\iiint_{z \, dV}$

$$\iiint\limits_{G} z \, dV = \iint\limits_{R} \left[\int_{0}^{\sqrt{1 - y^2}} z \, dz \right] dA$$

- Regiões mais gerais
 - Exemplo: Seja G a cunha no primeiro octante seccionada do sólido cilíndrico $y^2 + z^2 \le 1$ pelos planos y = x e x = 0. Calcule: \iint

$$\iiint_{G} z \, dV = \int_{0}^{1} \int_{0}^{y} \int_{0}^{\sqrt{1-y^{2}}} z \, dz \, dx \, dy = \int_{0}^{1} \int_{0}^{y} \frac{1}{2} z^{2} \bigg|_{z=0}^{\sqrt{1-y^{2}}} \, dx \, dy$$

$$= \int_{0}^{1} \int_{0}^{y} \frac{1}{2} (1 - y^{2}) \, dx \, dy = \frac{1}{2} \int_{0}^{1} (1 - y^{2}) x \bigg|_{x=0}^{y} \, dy$$

$$= \frac{1}{2} \int_{0}^{1} (y - y^{3}) \, dy = \frac{1}{2} \left[\frac{1}{2} y^{2} - \frac{1}{4} y^{4} \right]_{0}^{1} = \frac{1}{8}$$

$$y^{2} + z^{2} = 1$$

$$(z = \sqrt{1 - y^{2}})$$

$$x = 0$$

$$x = 0$$

- Calculando volume
 - Assumindo função contante 1

Similar ao cálculo da área com a integral dupla

volume de
$$G = \iiint_G dV$$

- Calculando volume
 - Exercício: **Defina** a integral tripla para calcular o volume do sólido contido no cilindro e entre os planos

$$x^2 + y^2 = 9$$

$$z = 1 e x + z = 5$$

- Calculando volume
 - Exercício: Defina a integral tripla para calcular o volume do sólido contido no cilindro e entre os planos

$$x^2 + y^2 = 9$$
 $z = 1 e x + z = 5$

volume de
$$G = \iiint_G dV = \iiint_R \left[\int_1^{5-x} dz \right] dA$$

- Calculando volume
 - Exercício: Defina a integral tripla para calcular o volume do sólido contido no cilindro e entre os planos

$$x^2 + y^2 = 9$$
 $z = 1 e x + z = 5$

volume de
$$G = \int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{1}^{5-x} dz \, dy \, dx$$

- Calculando volume
 - Exercício: Defina a integral tripla para calcular o volume do sólido delimitado pelos paraboloides

$$z = 5x^2 + 5y^2$$
 e $z = 6 - 7x^2 - y^2$

A projeção R é obtida ao se determinar onde os paraboloides se intersectam

- Calculando volume
 - Exercício: Defina a integral tripla para calcular o volume do sólido delimitado pelos paraboloides

$$z = 5x^2 + 5y^2$$
 e $z = 6 - 7x^2 - y^2$

Achando R (igualando z)

$$5x^2 + 5y^2 = 6 - 7x^2 - y^2$$
 $2x^2 + y^2 = 1$

Cilindro elíptico

- Calculando volume
 - Exercício: Defina a integral tripla para calcular o volume do sólido delimitado pelos paraboloides

$$z = 5x^2 + 5y^2$$
 e $z = 6 - 7x^2 - y^2$

Achando R (igualando z)

$$5x^2 + 5y^2 = 6 - 7x^2 - y^2$$
 $2x^2 + y^2 = 1$

Integral tripla

Volume de
$$G = \iiint_G dV = \iiint_R \left[\int_{5x^2 + 5y^2}^{6 - 7x^2 - y^2} dz \right] dA$$

= $\int_{-1/\sqrt{2}}^{1/\sqrt{2}} \int_{-\sqrt{1 - 2x^2}}^{\sqrt{1 - 2x^2}} \int_{5x^2 + 5y^2}^{6 - 7x^2 - y^2} dz \, dy \, dx$

- Integrando em outras ordens (direção)
 - Sólido simples XZ $\iiint f(x, y, z) dV = \iiint \left[\int_{g_1(x, z)}^{g_2(x, z)} f(x, y, z) dy \right] dA$

Indica onde fica a base

Sólido simples yz

sólido simples em xz

Coordenadas cilíndricas

FONTE: https://sites.google.com/site/calculovectorialhakim/_/rsrc/1431822664058/coordenadas-cilindricas-y-esfericas/a13.png

- Coordenadas cilíndricas
 - Exemplo: **Defina** como é feito o calculo do volume do sólido limitado pelo hemisfério $z = \sqrt{25 x^2 y^2}$, pelo plano xy e pelo cilindro $x^2 + y^2 = 9$

- Coordenadas cilíndricas
 - Exemplo: **Defina** como é feito o calculo do volume do sólido limitado pelo hemisfério $z = \sqrt{25 x^2 y^2}$, pelo plano xy e pelo cilindro $x^2 + y^2 = 9$

$$V = \iiint\limits_{G} dV = \iint\limits_{R} \left[\int_{0}^{\sqrt{25 - r^2}} dz \right] dA$$

- Coordenadas cilíndricas
 - Exemplo: **Defina** como é feito o calculo do volume do sólido limitado pelo hemisfério $z = \sqrt{25 x^2 y^2}$, pelo plano xy e pelo cilindro $x^2 + y^2 = 9$

$$V = \iiint_G dV = \iiint_R \left[\int_0^{\sqrt{25 - r^2}} dz \right] dA$$

$$= \int_0^{2\pi} \int_0^3 \int_0^{\sqrt{25-r^2}} r \, dz \, dr \, d\theta$$

Coordenadas esféricas

$$\iiint\limits_{G} f(\rho, \theta, \phi) dV = \iiint\limits_{\substack{\text{limites} \\ \text{apropriados}}} f(\rho, \theta, \phi) \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$x = \rho \cos(\theta) \sin(\phi)$$

$$y = \rho \sin(\theta) \sin(\phi)$$

$$z = \rho \cos(\phi)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Resumo

- Integrais triplas
 - Caixas retangulares
 - Forma mais geral
 - Cálculo de da área

Resumo

- Exercícios de fixação:
 - Seção 14.5
 - Exercícios de compreensão 14.5
 - 1-12
 - Seção 14.6
 - Exercícios de compreensão 14.6

Resumo

- Próxima aula:
 - Mudança de variável em integrais múltiplas
 - Jacobiano

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; BIVENS, Irl; DAVIS, Stephen.
 Cálculo, v. 2. 10a ed. Porto Alegre: Bookman, 2012.
 - Seção 14.5, 14.6