Activités de recherche et d'enseignement

Gautier Appert

mai, 2021

Objectif : analyser la structure statistique de données de grande dimension.

Apprentissage non supervisé

• Critère des k-means dans un Hilbert séparable et généralisations.

Objectif : analyser la structure statistique de données de grande dimension.

- Critère des *k*-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.

Objectif : analyser la structure statistique de données de grande dimension.

- lacktriangle Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste

Objectif : analyser la structure statistique de données de grande dimension.

- ① Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste
- **②** Etiquetage non supervisé des parties d'un signal $X \in \mathbb{R}^d$ (une image).

Objectif : analyser la structure statistique de données de grande dimension.

- $oldsymbol{0}$ Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste
- **2** Etiquetage non supervisé des parties d'un signal $X \in \mathbb{R}^d$ (une image).
 - Distorsion du type k-means généralisés $\mathbb{E}\Big(\min\Big\{\Big\|X \sum_{j \in A} c_j\Big\|^2: A \subset \llbracket 1, k \rrbracket, \bigsqcup_{j \in A} \operatorname{supp}(c_j) = \llbracket 1, d \rrbracket\Big\}\Big).$

Objectif : analyser la structure statistique de données de grande dimension.

- $oldsymbol{0}$ Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste
- **2** Etiquetage non supervisé des parties d'un signal $X \in \mathbb{R}^d$ (une image).
 - Distorsion du type k-means généralisés $\mathbb{E}\Big(\min\Big\{\Big\|X-\sum_{j\in A}c_j\Big\|^2:\ A\subset \llbracket 1,k\rrbracket,\ \bigsqcup_{j\in A}\operatorname{supp}(c_j)=\llbracket 1,d\rrbracket\Big\}\Big).$
 - Bornes de généralisation.

Objectif : analyser la structure statistique de données de grande dimension.

- $oldsymbol{0}$ Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste
- **2** Etiquetage non supervisé des parties d'un signal $X \in \mathbb{R}^d$ (une image).
 - Distorsion du type k-means généralisés $\mathbb{E}\Big(\min\Big\{\Big\|X \sum_{j \in A} c_j\Big\|^2: \ A \subset \llbracket 1, k \rrbracket, \ \bigsqcup_{j \in A} \operatorname{supp}(c_j) = \llbracket 1, d \rrbracket\Big\}\Big).$
 - Bornes de généralisation.
 - Algorithme associé de compression avec perte.

Objectif : analyser la structure statistique de données de grande dimension.

- $oldsymbol{0}$ Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste
- **2** Etiquetage non supervisé des parties d'un signal $X \in \mathbb{R}^d$ (une image).
 - Distorsion du type k-means généralisés $\mathbb{E}\Big(\min\Big\{ \Big\| X \sum_{j \in A} c_j \Big\|^2 : A \subset \llbracket 1, k \rrbracket, \bigsqcup_{j \in A} \operatorname{supp}(c_j) = \llbracket 1, d \rrbracket \Big\} \Big).$
 - Bornes de généralisation.
 - Algorithme associé de compression avec perte.
 - Représentation des images par un ensemble aléatoire de fragments, package R/C++

Objectif : analyser la structure statistique de données de grande dimension.

- $oldsymbol{0}$ Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste
- **2** Etiquetage non supervisé des parties d'un signal $X \in \mathbb{R}^d$ (une image).
 - Distorsion du type k-means généralisés $\mathbb{E}\Big(\min\Big\{ \Big\| X \sum_{j \in A} c_j \Big\|^2 : A \subset \llbracket 1, k \rrbracket, \bigsqcup_{j \in A} \operatorname{supp}(c_j) = \llbracket 1, d \rrbracket \Big\} \Big).$
 - Bornes de généralisation.
 - Algorithme associé de compression avec perte.
 - Représentation des images par un ensemble aléatoire de fragments, package R/C++
- Analyse syntaxique d'un ensemble aléatoire de labels.

Objectif : analyser la structure statistique de données de grande dimension.

- $oldsymbol{0}$ Critère des k-means dans un Hilbert séparable et généralisations.
 - Bornes de généralisation non asymptotiques et inégalités PAC-Bayésiennes en dimension infinie.
 - Interprétations et extensions du critère. Relation avec l'estimation de la loi des données, quantification vectorielle de probabilités conditionnelles (clustering de bags of words), critère robuste
- **2** Etiquetage non supervisé des parties d'un signal $X \in \mathbb{R}^d$ (une image).
 - Distorsion du type k-means généralisés $\mathbb{E}\Big(\min\Big\{\Big\|X \sum_{j \in A} c_j\Big\|^2: A \subset \llbracket 1, k \rrbracket, \bigsqcup_{j \in A} \operatorname{supp}(c_j) = \llbracket 1, d \rrbracket\Big\}\Big).$
 - Bornes de généralisation.
 - Algorithme associé de compression avec perte.
 - Représentation des images par un ensemble aléatoire de fragments, package R/C++
- Analyse syntaxique d'un ensemble aléatoire de labels.
 - Classification de labels et compression à base de grammaires.

Bornes de généralisations sur l'excès de risque des k-means

Minimiseur du risque empirique: $\widehat{C} \in \arg\min_{C \in H^k} \frac{1}{n} \sum_{i=1}^n \min_{j \in [1,k]} \|X_i - C_j\|^2$ vérifie

Bornes de généralisations sur l'excès de risque des k-means

Minimiseur du risque empirique: $\widehat{C} \in \arg\min_{C \in \mathcal{H}^k} \frac{1}{n} \sum_{i=1}^n \min_{j \in [\![1,k]\!]} \|X_i - C_j\|^2$ vérifie

$$\mathbb{E}_{X_1,\ldots,X_n} \big[\mathbb{E}_X \big(\min_{j \in [1,k]} ||X - \widehat{C}_j||^2 \big) \big]$$

$$\leq \inf_{C \in H^k} \mathbb{E}_X \left(\min_{j \in \llbracket 1, k \rrbracket} \|X - C_j\|^2 \right) + 16 B^2 \log \left(\frac{n}{k} \right) \sqrt{\frac{k \log(k)}{n}}.$$

Amélioration de [Biau et al 2008], [Fefferman et al, 2016] et [Klochkov et al 2020]

Bornes non asymptotiques, indépendantes de la dimension

Bornes de généralisations sur l'excès de risque des k-means

Minimiseur du risque empirique: $\widehat{C} \in \arg\min_{C \in \mathcal{H}^k} \frac{1}{n} \sum_{i=1}^n \min_{j \in [\![1,k]\!]} \|X_i - C_j\|^2$ vérifie

$$\mathbb{E}_{X_1,\dots,X_n} \big[\mathbb{E}_{X} \big(\min_{j \in \llbracket 1,k \rrbracket} \lVert X - \widehat{C}_j \rVert^2 \big) \big]$$

$$\leq \inf_{C \in H^k} \mathbb{E}_X \left(\min_{j \in \llbracket 1, k \rrbracket} \|X - C_j\|^2 \right) + 16 B^2 \log \left(\frac{n}{k} \right) \sqrt{\frac{k \log(k)}{n}}.$$

Amélioration de [Biau et al 2008], [Fefferman et al, 2016] et [Klochkov et al 2020]

Bornes non asymptotiques, indépendantes de la dimension

Principes de la preuve:

Bornes de généralisations sur l'excès de risque des k-means

Minimiseur du risque empirique: $\widehat{C} \in \arg\min_{C \in \mathcal{H}^k} \frac{1}{n} \sum_{i=1}^n \min_{j \in [\![1,k]\!]} \|X_i - C_j\|^2$ vérifie

$$\mathbb{E}_{X_1,\dots,X_n} \big[\mathbb{E}_{X} \big(\min_{j \in [\![1,k]\!]} \lVert X - \widehat{C}_j \rVert^2 \big) \big]$$

$$\leq \inf_{C \in H^k} \mathbb{E}_X \left(\min_{j \in \llbracket 1, k \rrbracket} \|X - C_j\|^2 \right) + 16 B^2 \log \left(\frac{n}{k} \right) \sqrt{\frac{k \log(k)}{n}}.$$

Amélioration de [Biau et al 2008], [Fefferman et al, 2016] et [Klochkov et al 2020]

Bornes non asymptotiques, indépendantes de la dimension

Principes de la preuve:

• Reparamétrisation linéaire de la fonction de perte dans un RKHS:

$$||X - C_j||^2 = \langle \theta_j(C_j), W(X) \rangle$$

Bornes de généralisations sur l'excès de risque des k-means

Minimiseur du risque empirique: $\widehat{C} \in \arg\min_{C \in \mathcal{H}^k} \frac{1}{n} \sum_{i=1}^n \min_{j \in [\![1,k]\!]} \|X_i - C_j\|^2$ vérifie

$$\mathbb{E}_{X_1,\dots,X_n} \big[\mathbb{E}_{X} \big(\min_{j \in [\![1,k]\!]} \lVert X - \widehat{C}_j \rVert^2 \big) \big]$$

$$\leq \inf_{C \in H^k} \mathbb{E}_X \left(\min_{j \in \llbracket 1, k \rrbracket} \|X - C_j\|^2 \right) + 16 B^2 \log \left(\frac{n}{k} \right) \sqrt{\frac{k \log(k)}{n}}.$$

Amélioration de [Biau et al 2008], [Fefferman et al, 2016] et [Klochkov et al 2020]

Bornes non asymptotiques, indépendantes de la dimension

Principes de la preuve:

- Reparamétrisation linéaire de la fonction de perte dans un RKHS: $||X C_i||^2 = \langle \theta_i(C_i), W(X) \rangle$
- $\|X C_j\|^2 = \langle \theta_j(C_j), W(X) \rangle$
- Inégalités PAC-Bayésiennes en dimension infinie

Bornes de généralisations sur l'excès de risque des k-means

Minimiseur du risque empirique: $\widehat{C} \in \arg\min_{C \in H^k} \frac{1}{n} \sum_{i=1}^n \min_{j \in [1,k]} \|X_i - C_j\|^2$ vérifie

$$\mathbb{E}_{X_1,\dots,X_n} \big[\mathbb{E}_{X} \big(\min_{j \in [\![1,k]\!]} \lVert X - \widehat{C}_j \rVert^2 \big) \big]$$

$$\leq \inf_{C \in H^k} \mathbb{E}_X \left(\min_{j \in \llbracket 1, k \rrbracket} \|X - C_j\|^2 \right) + 16 B^2 \log \left(\frac{n}{k} \right) \sqrt{\frac{k \log(k)}{n}}.$$

Amélioration de [Biau et al 2008], [Fefferman et al, 2016] et [Klochkov et al 2020]

Bornes non asymptotiques, indépendantes de la dimension

Principes de la preuve:

- Reparamétrisation linéaire de la fonction de perte dans un RKHS: $||X C_i||^2 = \langle \theta_i(C_i), W(X) \rangle$
- Inégalités PAC-Bayésiennes en dimension infinie
- Chaining PAC-Bayésien \Longrightarrow séquence de perturbations gaussiennes $\rho_{\theta} \in \mathcal{M}^{1}_{+}(\mathbb{R}^{\mathbb{N}})$ indéxées par $\theta \in H$

Etude des k-means dans un Hilbert séparable Extension du critère quadratique des k-means

Extension du critère quadratique des *k*-means

ullet Information k-means \Longrightarrow clustering d'un histogramme $ho_X \sim \mathbb{P}_{
ho_X}$

$$\inf_{q_1,...,q_k \in \left(\mathbb{L}^1_{+,1}(v)\right)^k} \mathbb{E} \left(\min_{j \in \llbracket 1,k \rrbracket} \mathcal{K}(q_j,p_X) \right),$$

où
$$\mathbb{L}^1_{+,1}(v)=\left\{q\in\mathbb{L}^1(v):\,q\geq0,\int\!q\,\mathrm{d}v=1
ight\}$$

Extension du critère quadratique des *k*-means

ullet Information k-means \Longrightarrow clustering d'un histogramme $ho_X \sim \mathbb{P}_{
ho_X}$

$$\inf_{q_1,\dots,q_k\in\left(\mathbb{L}^1_{+,1}(v)\right)^k}\mathbb{E}\Big(\min_{j\in\llbracket 1,k\rrbracket}\mathcal{K}\big(q_j,p_X\big)\Big),$$

où
$$\mathbb{L}^1_{+,1}(v)=\left\{q\in\mathbb{L}^1(v):\,q\geq 0,\int\!q\,\mathrm{d}v=1
ight\}$$

Algorithme de Lloyd:

Extension du critère quadratique des *k*-means

ullet Information k-means \Longrightarrow clustering d'un histogramme $ho_X \sim \mathbb{P}_{
ho_X}$

$$\inf_{q_1,\dots,q_k \in \left(\mathbb{L}^1_{+,1}(v)\right)^k} \mathbb{E}\left(\min_{j \in \llbracket 1,k \rrbracket} \mathcal{K}(q_j,p_X)\right),$$

où
$$\mathbb{L}^1_{+,1}(v)=\left\{q\in\mathbb{L}^1(v):q\geq 0, \int\!q\,\mathrm{d}v=1
ight\}$$

Algorithme de Lloyd:

Centroids optimaux

$$q_j^{\star,\ell} = Z_j^{-1} \exp \Big\{ \mathbb{E} \big[\log(p_X) \mid \ell(X) = j \big] \Big\}, \qquad j \in \llbracket 1, k
rbracket,$$

Extension du critère quadratique des *k*-means

ullet Information k-means \Longrightarrow clustering d'un histogramme $p_X \sim \mathbb{P}_{p_X}$

$$\inf_{q_1,\dots,q_k \in \left(\mathbb{L}^1_{+,1}(v)\right)^k} \mathbb{E}\left(\min_{j \in \llbracket 1,k \rrbracket} \mathcal{K}(q_j,p_X)\right),$$

où
$$\mathbb{L}^1_{+,1}(v)=\left\{q\in\mathbb{L}^1(v):\,q\geq 0,\int\!q\,\mathrm{d}v=1
ight\}$$

Algorithme de Lloyd:

• Centroids optimaux

$$q_j^{\star,\ell} = Z_j^{-1} \exp \Big\{ \mathbb{E} \big[\log(p_X) \mid \ell(X) = j \big] \Big\}, \qquad j \in \llbracket 1, k
rbracket,$$

Classification optimale

$$\ell_q^{\star}(x) = \arg\min_{j \in [\![1,k]\!]} \mathcal{K}(q_j,p_x), \qquad x \in \mathcal{X}$$

Extension du critère quadratique des *k*-means

ullet Information k-means \Longrightarrow clustering d'un histogramme $p_X \sim \mathbb{P}_{p_X}$

$$\inf_{q_1,...,q_k \in \left(\mathbb{L}^1_{+,1}(\nu)\right)^k} \mathbb{E}\left(\min_{j \in \llbracket 1,k \rrbracket} \mathcal{K}(q_j,p_X)\right),$$

où
$$\mathbb{L}^1_{+,1}(v)=\left\{q\in\mathbb{L}^1(v):q\geq 0, \int\! q\,\mathrm{d}v=1
ight\}$$

Algorithme de Lloyd:

Centroids optimaux

$$q_j^{\star,\ell} = Z_j^{-1} \exp \Big\{ \mathbb{E} \big[\log(p_X) \mid \ell(X) = j \big] \Big\}, \qquad j \in \llbracket 1, k
rbracket,$$

Classification optimale

$$\ell_q^{\star}(x) = \arg\min_{j \in [\![1,k]\!]} \mathcal{K}(q_j,p_x), \qquad x \in \mathcal{X}$$

Article

New bounds for k-means and Information k-means. Submitted. arXivpreprint, 2021.

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \overset{\text{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \overset{\text{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

Etude de la fragmentation d'un signal $X_1, \dots, X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

Etude de la fragmentation d'un signal $X_1,\dots,X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

Distorsion:
$$\Re(B,C) = \mathbb{E}\left(\min_{A \in \mathcal{T}_B} \|X - \sum_{j \in A} C_j\|^2\right) \text{ avec}$$

$$\mathfrak{T}_B = \left\{ A \subset \llbracket 1, k \rrbracket : \bigsqcup_{j \in A} B_j = \llbracket 1, d \rrbracket \right\}$$

Etude de la fragmentation d'un signal $X_1,\dots,X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

Distorsion:
$$\Re(B,C) = \mathbb{E}\left(\min_{A \in \mathcal{T}_B} \|X - \sum_{j \in A} C_j\|^2\right) \text{ avec}$$

$$\mathfrak{T}_B = \left\{ A \subset \llbracket 1, k \rrbracket : \bigsqcup_{j \in A} B_j = \llbracket 1, d \rrbracket \right\}$$

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

$$\mathcal{R}(B,C) = \mathbb{E}\left(\min_{A \in \mathcal{T}_B} \left\| X - \sum_{j \in A} C_j \right\|^2\right) \text{ avec}$$

$$\mathcal{T}_B = \left\{ A \subset [\![1,k]\!] : \bigsqcup_{j \in A} B_j = [\![1,d]\!] \right\}$$

- Invention d'un nouvel algorithme de compression avec perte (du type Lempel Ziv):
 - on minimise la surface totale de recouvrement $\sum_{j=1}^k \mathbb{P}_{\mathcal{S}}(B_j)$ des fragments, à distorsion fixée $\mathcal{R}(B,\mathcal{C}) \leq \alpha$.

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

• Allocation de plusieurs centroids (à supports disjoints) pour un même signal $X_i \implies \text{partitionnement/fragmentation du signal}$.

Distorsion: $\Re(B,C) = \mathbb{E}\left(\min_{A \in \mathcal{T}_B} \left\|X - \sum_{j \in A} C_j\right\|^2\right) \text{ avec}$

$$\mathfrak{T}_B = \left\{ A \subset \llbracket 1, k \rrbracket : \bigsqcup_{j \in A} B_j = \llbracket 1, d \rrbracket \right\}$$

- Invention d'un nouvel algorithme de compression avec perte (du type Lempel Ziv):
 - on minimise la surface totale de recouvrement $\sum_{j=1}^k \mathbb{P}_{\mathcal{S}}(B_j)$ des fragments, à distorsion fixée $\mathcal{R}(B,\mathcal{C}) \leq \alpha$.
 - Ne dépend pas de la géométrie du capteur.

Etude de la fragmentation d'un signal $X_1,...,X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

• Allocation de plusieurs centroids (à supports disjoints) pour un même signal $X_i \implies \text{partitionnement/fragmentation du signal}$.

Distorsion:

$$\mathcal{R}(B,C) = \mathbb{E}\left(\min_{A \in \mathcal{T}_B} \left\| X - \sum_{j \in A} C_j \right\|^2\right) \text{ avec}$$

$$\mathcal{T}_B = \left\{ A \subset \llbracket 1, k \rrbracket : \bigsqcup_{j \in A} B_j = \llbracket 1, d \rrbracket \right\}$$

- Invention d'un nouvel algorithme de compression avec perte (du type Lempel Ziv):
 - on minimise la surface totale de recouvrement $\sum_{j=1}^k \mathbb{P}_{\mathcal{S}}(B_j)$ des fragments, à distorsion fixée $\mathcal{R}(B,\mathcal{C}) \leq \alpha$.
 - Ne dépend pas de la géométrie du capteur.
 - Forme aléatoire des fragments (arbitraire et dépendant de l'échantillon).

Etude de la fragmentation d'un signal $X_1,...,X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Fragmentation

$$\begin{split} & \text{Distorsion:} \\ \mathcal{R}(B,C) = \mathbb{E}\Big(\min_{A \in \mathcal{T}_B} \left\| X - \sum_{j \in A} C_j \right\|^2 \Big) \text{ avec} \\ & \mathcal{T}_B = \Big\{ A \subset \llbracket 1,k \rrbracket \, : \, \bigsqcup_{j \in A} B_j = \llbracket 1,d \rrbracket \Big\} \end{split}$$

- Invention d'un nouvel algorithme de compression avec perte (du type Lempel Ziv):
 - on minimise la surface totale de recouvrement $\sum_{j=1}^k \mathbb{P}_{\mathcal{S}}(B_j)$ des fragments, à distorsion fixée $\mathcal{R}(B,\mathcal{C}) \leq \alpha$.
 - Ne dépend pas de la géométrie du capteur.
 - Forme aléatoire des fragments (arbitraire et dépendant de l'échantillon).
 - Nombre de fragments paramétrable

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \overset{\text{i.i.d}}{\sim} \mathbb{P}_X$

Borne de généralisation sur la fragmentation

$$\mathcal{M}(S) = \left\{ (B, C)_{j=1}^k : B_j \subset [1, d], C_j \in [-a, a]^{B_j}, \sum_{j=1}^k \mathbb{P}_S(B_j) \leq \frac{8}{3}, |\mathcal{T}_{B, K}| \geq 2 \right\},\,$$

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \stackrel{\text{i.i.d}}{\sim} \mathbb{P}_X$

Borne de généralisation sur la fragmentation

 $\mathcal{M}(\mathcal{S}) = \left\{ (B,C)_{j=1}^k : B_j \subset \llbracket 1,d \rrbracket, C_j \in [-a,a]^{B_j}, \sum_{j=1}^k \mathbb{P}_{\mathcal{S}}(B_j) \leq \underline{\$}, |\mathfrak{T}_{B,K}| \geq 2 \right\},$ With probability at least $1 - \delta$, for any $(B,C) \in \mathcal{M}(\mathbb{S})$,

$$\Re(B,C) - \overline{\Re}(B,C) \le a^2 \mathcal{O}\left(\log\left(\frac{n}{8K}\right)\sqrt{\frac{8K^2\log(k/K)}{n}} + \sqrt{\frac{k^2 + \log(\delta^{-1})}{n}}\right),$$

avec $\mathcal{R}(B,C)$ la distorsion empirique.

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \stackrel{\text{i.i.d}}{\sim} \mathbb{P}_X$

Borne de généralisation sur la fragmentation

 $\mathcal{M}(\mathcal{S}) = \left\{ (B,C)_{j=1}^k : B_j \subset \llbracket 1,d \rrbracket, C_j \in [-a,a]^{B_j}, \sum_{j=1}^k \mathbb{P}_{\mathcal{S}}(B_j) \leq \underline{\$}, |\mathfrak{T}_{B,K}| \geq 2 \right\},$ With probability at least $1 - \delta$, for any $(B,C) \in \mathcal{M}(\mathbb{S})$,

$$\Re(B,C) - \overline{\Re}(B,C) \le a^2 \mathcal{O}\left(\log\left(\frac{n}{8K}\right)\sqrt{\frac{8K^2\log(k/K)}{n}} + \sqrt{\frac{k^2 + \log(\delta^{-1})}{n}}\right),$$

avec $\mathcal{R}(B,C)$ la distorsion empirique.

Etude de la fragmentation d'un signal $X_1, \ldots, X_n \overset{\text{i.i.d}}{\sim} \mathbb{P}_X$

Borne de généralisation sur la fragmentation

$$\mathfrak{M}(\mathbb{S}) = \left\{ (B,C)_{j=1}^k : B_j \subset \llbracket 1,d \rrbracket, C_j \in [-a,a]^{B_j}, \sum_{j=1}^k \mathbb{P}_{\mathcal{S}}\big(B_j\big) \leq \textcolor{red}{\mathbb{S}}, |\mathbb{T}_{B,K}| \geq 2 \right\},$$
 With probability at least $1-\delta$, for any $(B,C) \in \mathfrak{M}(\mathbb{S}),$

$$\Re(B,C) - \overline{\Re}(B,C) \le a^2 \mathcal{O}\left(\log\left(\frac{n}{8K}\right)\sqrt{\frac{8K^2\log(k/K)}{n}} + \sqrt{\frac{k^2 + \log(\delta^{-1})}{n}}\right),$$

avec $\Re(B,C)$ la distorsion empirique.

ullet Bornes non asymptotiques, indépendantes de la dimension \Longrightarrow application sur des images haute résolution, pas de réduction de dimension.

Etude de la fragmentation d'un signal $X_1, \dots, X_n \overset{ ext{i.i.d}}{\sim} \mathbb{P}_X$

Borne de généralisation sur la fragmentation

$$\mathcal{M}(\mathcal{S}) = \left\{ (B,C)_{j=1}^k : B_j \subset \llbracket 1,d \rrbracket, C_j \in [-a,a]^{B_j}, \sum_{j=1}^k \mathbb{P}_{\mathcal{S}} (B_j) \leq \textcolor{red}{\$}, |\mathbb{T}_{B,K}| \geq 2 \right\},$$
 With probability at least $1-\delta$, for any $(B,C) \in \mathcal{M}(\mathcal{S})$,

$$\Re(B,C) - \overline{\Re}(B,C) \le a^2 \mathcal{O}\left(\log\left(\frac{n}{8K}\right)\sqrt{\frac{8K^2\log\left(k/K\right)}{n}} + \sqrt{\frac{k^2 + \log(\delta^{-1})}{n}}\right),$$

avec $\Re(B,C)$ la distorsion empirique.

- ullet Bornes non asymptotiques, indépendantes de la dimension \Longrightarrow application sur des images haute résolution, pas de réduction de dimension.
- Le rôle de 8 dans la borne offre une justification alternative à notre algorithme de compression avec perte.

Etude de la fragmentation d'un signal $X_1, \dots, X_n \overset{\text{i.i.d}}{\sim} \mathbb{P}_X$

Borne de généralisation sur la fragmentation

 $\mathcal{M}(\mathcal{S}) = \left\{ (B,C)_{j=1}^k : B_j \subset \llbracket 1,d \rrbracket, C_j \in [-a,a]^{B_j}, \sum_{j=1}^k \mathbb{P}_{\mathcal{S}} \big(B_j \big) \leq \$, |\mathfrak{T}_{B,K}| \geq 2 \right\},$ With probability at least $1-\delta$, for any $(B,C) \in \mathcal{M}(\mathcal{S}),$

$$\Re(B,C) - \overline{\Re}(B,C) \le a^2 \mathcal{O}\left(\log\left(\frac{n}{8K}\right)\sqrt{\frac{8K^2\log(k/K)}{n}} + \sqrt{\frac{k^2 + \log(\delta^{-1})}{n}}\right),$$

avec $\overline{\mathbb{R}}(B,C)$ la distorsion empirique.

- \bullet Bornes non asymptotiques, indépendantes de la dimension \Longrightarrow application sur des images haute résolution, pas de réduction de dimension.
- Le rôle de S dans la borne offre une justification alternative à notre algorithme de compression avec perte.
- Package R "PatchProcess" sur github: https://github.com/GautierAppert/PatchProcess, codé en R et C++

Etude de la fragmentation d'un signal $X_1,\dots,X_n \overset{\mathsf{i.i.d}}{\sim} \mathbb{P}_X$

Borne de généralisation sur la fragmentation

 $\mathcal{M}(\mathbb{S}) = \left\{ (B,C)_{j=1}^k : B_j \subset \llbracket 1,d \rrbracket, C_j \in [-a,a]^{B_j}, \sum_{j=1}^k \mathbb{P}_{\mathcal{S}} (B_j) \leq \frac{8}{3}, |\mathfrak{T}_{B,K}| \geq 2 \right\},$ With probability at least $1 - \delta$, for any $(B,C) \in \mathcal{M}(\mathbb{S})$,

$$\Re(B,C) - \overline{\Re}(B,C) \le a^2 \mathcal{O}\left(\log\left(\frac{n}{8K}\right)\sqrt{\frac{8K^2\log(k/K)}{n}} + \sqrt{\frac{k^2 + \log(\delta^{-1})}{n}}\right),$$

avec $\overline{\mathbb{R}}(B,C)$ la distorsion empirique.

- ullet Bornes non asymptotiques, indépendantes de la dimension \Longrightarrow application sur des images haute résolution, pas de réduction de dimension.
- Le rôle de 8 dans la borne offre une justification alternative à notre algorithme de compression avec perte.
- Package R "PatchProcess" sur github: https://github.com/GautierAppert/PatchProcess, codé en R et C++

Article

From k-means to k-fragments : local vector quantization, 2021, en préparation.

Output de la fragmentation

Output de la fragmentation

Output de la fragmentation

Output de la fragmentation

Output de la fragmentation

Output de la fragmentation

Output de la fragmentation

Output de la fragmentation

Figure: Label syntaxique permettant l'idenfication de translations.

Figure: Label syntaxique permettant l'idenfication de translations.

Figure: Label syntaxique permettant l'idenfication de translations.

Figure: Identification d'une rotation à l'aide du label syntaxique.

Article

Syntax analysis for unsupervised signal classification, 2021, en préparation

Figure: Identification d'une rotation à l'aide du label syntaxique.

Article

Syntax analysis for unsupervised signal classification, 2021, en préparation

Enseignements effectués

Thèmes enseignés

- Statistiques inférentielles (appli avec R) et intro au Machine learning (L2, L3, M1, 2ieme année école d'ingénieur).
- Probabilités et théorie de la mesure (L3, 1ère année école d'ingénieur).
- Analyse réelle (L1, L2).

Enseignements effectués

Thèmes enseignés

- Statistiques inférentielles (appli avec R) et intro au Machine learning (L2, L3, M1, 2ieme année école d'ingénieur).
- Probabilités et théorie de la mesure (L3, 1ère année école d'ingénieur).
- Analyse réelle (L1, L2).

Enseignements (travaux dirigés)

- ENSAE ParisTech:
 - Statistiques 1 et 2, 2ème année
 - Probabilités, 1ère année
 - Intro au Machine Learning, 2ème année
- Université Paris Saclay, Orsay:
 - Mesure, intégration et Probabilités, L3 maths (magistère)
 - Modélisation Statistique, 2ème année ENSTA ParisTech
 - Analyse réelle et Probabilités, L1 Bio
- Université Paris 1 Panthéon-Sorbonne
 - Statistiques, L2 MIASHS
 - Probabilités, L3 MIASHS
 - Méthodes Numériques, L2 MIASHS
 - Techniques de Calcul, L1 MIASHS