

Horizon 2020 European Union funding for Research & Innovation

Pinocchio

Fast forward & inverse dynamics

Nicolas Mansard (CNRS)

Gurus

Justin Carpentier (INRIA)

Roy Featherstone (IIT)

WWW Material

- Web site
 - https://stack-of-tasks.github.io/pinocchio
- Doxygen
 - Documentation tab on github.io
- Tutorials:
 - Practical exercices in the documentation

Also use the ? In Python

Contributing to Pinocchio

- GitHub project
 - https://github.com/stack-of-tasks/pinocchio

Post issues for contributing

- We are looking for doc-devs!
 - Feedback some material as a thank-you note
 - In the doc: "examples" is waiting for you

C++ / Python

- □ C++ Library
 - Fast, careful implementation
 - Using curiously recursive template pattern (CRTP)
 - You likely don't want to develop code there
 - Using it is not so complex (think Eigen)
- Python bindings
 - A 1-to-0.99 map from C++ API to Python API
 - Start by developing in Python
 - Beware of the lack of accuracy ... speed is ok

Modeling and optimizing

- Pinocchio is a modeling library
 - Not an application
 - Not a solver
 - Some key features directly available
- You don't want the solver inside Pinocchio
 - Inverse dynamics: TSID
 - Planning and contact planning: HPP
 - Optimal control: Crocodyl
 - Optimal estimation, reinforcement learning, inverse kinematics, contact simulation ...

List of features

- URDF parser
- Forward kinematics and Jacobians
- Mass, center of mass and gen.inertia matrix
- Forward and inverse dynamics
- Model display (with Gepetto-viewer)
- Collision detection and distances (with HPP-FCL)
- Derivatives of kinematics and dynamics
- Type templatization and code generation

TSID

- Pinocchio for
 - Computing the inertia matrix, jacobians, kinematics

- Formulation of tasks
- Contact models
- QP resolution

HPP planner

- Pinocchio for
 - Geometry, collision (hpp-fcl)
 - Projectors with inverse kinematics
 - Balance constraint with dynamics

- Pinocchio encapsulated in hpp-Pinocchio
- Stochastic exploration algorithm (RRT)
- Contact checking
- Re-arrangement algorithms

Crocoddyl

- Pinocchio for
 - Kinematics and dynamics
 - And their derivatives
 - Display with Gepetto-viewer

- DDP optimizer
- Task/cost formulation

Representing the physical world

This is a point

This is not a point
This is the representation of a point

Representing the physical world

- Pinocchio is a model
 - Of course, models are wrong
- The way you represent geometry matters
- Example of SO(3)
 - r is a map from E(3) to E(3)
 - R is a othonormal positive matrix
 - w is a 3D vector
 - q is a quaternion represented as a 4D vector
 - Roll-Pitch-Yaw & other Euler angles should not be used

Pinocchio bases

Basics

- Urdf model
- Kinematic tree
- Forward kinematics
- Display
- Spatial algebra

Kinematic tree

- Inside robot model:
 - joints: joint types and indices
 - names: joint names
 - jointPlacements: constant placement wrt parent
 - parents: hierarchy of joints representing the tree
- No bodies
 - masses and geoms are attached as tree decorations
- First joint represent the universe
 - If nq==7 then len(rmodel.joints)==8

Kinematic tree

Direct geometry

$$M(q) = \begin{bmatrix} l_1 \cos(q_1) + l_2 \cos(q_1 + q_2) \\ l_1 \sin(q_1) + l_2 \sin(q_1 + q_2) \end{bmatrix}$$

Direct geometry

The geometric model is a tree of joints and bodies

$$\mathbf{M}(\mathbf{q}) = \mathbf{M}_1 \oplus \mathbf{M}_1(\mathbf{q}_1) \oplus \mathbf{M}_2 \oplus \ldots \oplus \mathbf{M}_4 \oplus \mathbf{M}_4(\mathbf{q}_4) \oplus \mathbf{M}_e$$

Direct and inverse functions

Direct geometry

$$h: q \to h(q)$$
, C^1 continuous function

Direct kinematics

$$v: q, \dot{q} \rightarrow v (q, \dot{q}) = J(q) \dot{q}$$

- Inverse geometry
 - Ill defined, singular points
 - Numerical inversion by Newl
- Integration of the descent
 - Robot trajectory
 - Quadratic problem at each step

cent

Display

- Gepetto-viewer is a display server
 - Python can create a client to this server

- Gepetto-viewer does not know the kinematic tree
 - Pinocchio must place the bodies
 - RobotWrapper is doing that for you (not in C++)

Spatial algebra

- M: placement in SE3
- □ v: "spatial" velocity of SE3
 - $\dot{M} = v \times M$
- \square α : "spatial" acceleration in SE3
 - $\nu \in M^6 = se(3)$
 - $\alpha \in M^6 = se(3)$
 - $\alpha = \dot{v}$
- □ φ: "spatial" force in SE3
 - □ Power $P = \langle \phi | \nu \rangle = {}^{A}\phi^{T} {}^{A}\nu \in R$
 - $\ \ \, \textbf{$\square$} \ \, \eta \in F^6 : momentum$
- Y: "spatial" inertia in SE3
 - \mathbf{u} $\eta = \mathbf{Y} \mathbf{v}$
 - \bullet $\phi = Y \alpha$

Placement

Displacements

Velocities

Acceleration

Derivatives

$$\frac{A}{dt}v = \frac{d}{dt} A_V + A_{V_A} \times A_V$$

$$\frac{A}{dt}\phi = \frac{d}{dt} A + A v_A \times A \phi$$

Inertias

Model and data

- Pinocchio. Model should be constant
 - Kinematic tree, joint model, masses, placements ...
 - Plain names used here
- Pinocchio. Data is modified by the algorithms
 - oMi, v, a
 - J, Jcom

 - tau, nle
- 1 Model, several Data

$$\min_{X,U} l_T(x_T) + \sum_{t=0}^{T-1} l(x_t, u_t)$$

1 model

s.t.
$$\boldsymbol{x}_{t+1} = f(\boldsymbol{x}_t, \boldsymbol{u}_t)$$

Forward kinematics

Forward kinematics

pinocchio.forwardKinematics(rmodel,rdata, q,vq,aq)

Compute all the joint placements in data.oMi

- M = data.oMi[-1] : last placement
- □ R = M.rotation
- □ p = M.translation

NumPy Array vs Matrix

- Pinocchio works with NumPY.Matrix
 - R is a matrix
 - p is a 1d matrix: p.shape == (3,1)
 - You can multiply R*p

- NumPy works better with Array
 - np.zeros([3,3]) is an array
 - You cannot multiply array
 - Use np.dot or obtain a coefficient-wise multiplication
- SciPy works with array too

SciPy optimizer

from scipy.optimize import fmin_slsqp fmin_slsqp?

SciPy optimizer

- Make the optimization problem a class:
 - Problem parameters in the ___init___
 - Cost method taking x as input
 - Constraint and callback method if need be

SciPy optimizer

```
class OptimProblem:
     def __init_ (self,rmodel):
           # Put your parameters here
            self.rmodel = rmodel
           self.rdata = self.rmodel.createData()
      def cost(self,x): return sum(x**2)
      def callback(self,x): print(self.cost(x))
pbm = OptimProblem(robot.model)
fmin slsqp(x0=x0,func=pbm.cost,callback=pbm.callback)
```


Frames &+

Joint and frames

- Joint frames
 - Skeleton of the kinematic chain
 - Computed by forward kinematics in rdata.oMi

- "Operational" frames
 - Added as decoration to the tree
 - Placed with respect to a joint parent
 - Stored in rmodel.frames
 - Computed by updateFramePlacements in rdata.oMf

Joint limits

- Parsed from urdf
- In rmodel.lowerPositionLimits and rmodel.upperPositionLimits

Beware, infinity by default

Log and difference

Position versus placement

- Difference of positions
 - residuals = p-p*

- Diffence of rotations
 - \square residuals = $\log_3(R^TR^*)$

- Diffence of placements
 - \square residuals = $\log_6(M^{-1}M^*)$

Free flyer joint

- Revolute joint
 - lacksquare q of dimension one, $v_q=\dot{q}$
- □ Free flyer

Integrate and differenciate

$$q_{next} = pinocchio.integrate(q, v_q) \in Q$$

$$q_{next} = q \oplus v_q$$

$$\Delta q = v_q = \text{pinocchio.difference}(q_1, q_2) \in T_{q1}Q$$

$$\Delta q = q_2 (-) q_1$$

Integrate and differenciate

On a Matrix Lie Group

$$q \oplus v_q = Matrix(q) exp(skew(v_q)) = Q Exp(v_q)$$

$$q_2(-) q_1 = log(Q_2^{-1} Q_1)$$

Optimization with Q / TQ

 \square q = (x,y,z, \underline{q} , ...) with \underline{q} unitary

What is the result with a solver?

Solution 1: normalized

def constraint_q(self, x):

return norm(x[3:7])-1)

Solution 2: reparametrize

- We represent q
 - as the displacement v_q
 - \square from a reference configuration q_0

$$q = q_0 \oplus v_q$$

Random configuration

pinocchio.randomConfiguration(rmodel)

Horizon 2020 European Union funding for Research & Innovation

Part II Differencial kinematics

Working in manifolds

Manifold-to-manifold maps

- Function f:
 - From manifold to manifold
 - \square M: $q \in Q \rightarrow M(q) \in SE3$
- \Box Derivative F_x
 - From tangent to tangent
 - $\square M_q : V_q \in TQ \rightarrow V \in M^6$
- - □ J: from vector to vector

Consequence

- You should know in which tangent space you work
 - Typically at the local point, or at the origin

$$v(q,v_q) = J(q) v_q$$

- In Pinocchio,
 the velocity are often represented locally
 - Velocity of the free flyer in the frame of the hip

Finite differences

Robot jacobian

Joint jacobian

- Computed by two steps:
 - computeJointJacobians(rmodel,rdata,q)

getJointJacobian(rmodel,rdata,IDX,LOCAL/GLOBAL)

From local to global

Frame jacobian

Just add the additional displacement

4 steps

ComputeJointJacobian updateFramePlacements getFrameJacobian

Cost jacobian

Chain rule

$$Cost(q) = log(M(q))$$

$$Cost = log o M$$

$$Cost_q = log_M M_q$$

Log jacobian

Computed in pinocchio

Pinocchio.Jlog

Free-flyer reparam

- □ Recall $q = q_0 \oplus v_q = r(v_q)$
- \Box c(v_q) = log(M(r(v_q)))

- Chain rule ...
 - \neg r(v) = integrate(q_0 ,v)
 - \square R_v = dIntegrate_dv (q₀,v)
 - Not implemented yet in Pinocchio
 - But it is the inverse of dDiffence which is implemented

Horizon 2020 European Union funding for Research & Innovation

Part III Dynamics

Dynamics of articulated bodies

Dynamic equation of the robot

$$M(q)\dot{v}_q + c(q, v_q) + g(q) = \tau_q$$

Dynamics of articulated bodies

Dynamic equation of the robot

$$M(q)\dot{v}_q + c(q, v_q) + g(q) = \tau_q$$

- Actuation of the robot
 - ullet Fixed manipulator: $au_q = au_m$

 - Robot in contact: $\tau_q = S^T \tau_m + J^T \phi$

An intuition of M?

RNEA algorithm

Other algorithms

CRBA

□ ABA

ComputeAllTerms

RNEA with forces

Contact inverse dynamics

Optimization problem

$$\min_{\tau,\varphi} \|M\dot{v}_q + b(q,v_q) - \tau - J^T\varphi\|$$

Optimization problem

- OptimProblem class
- With a x2var function that makes the dispatch

It is a linear problem: we should not use NLP

See TSID tomorrow

