

# CREATING MOUSE-TRACKING EXPERIMENTS AND ANALYZING MOUSE-TRACKING DATA

Pascal Kieslich (University of Mannheim) & Dirk Wulff (University of Basel) Workshop at the EADM Summer School 2018 in Salzburg, Austria

#### Workshop agenda

#### Mouse-tracking introduction (Monday)

- General introduction
- Your task
- Develop & present experimental design

#### Creating mouse-tracking experiments (Tuesday)

- Introduction to OpenSesame & mousetrap-os plugin
- Build & preregister experiment
- Run experiments

#### Analyzing mouse-tracking data (Wednesday)

- Introduction to R & mousetrap package
- Covering both basic and advanced analyses and visualizations
- Analyze your data

#### Preparations (before the workshop)

- Read book chapter by <u>Kieslich et al. (in press)</u>
- Outline two example experiments in your group (meeting the outlined requirements) and describe them in a paragraph
- Upload your ideas in one file name 'GroupX.doc' onto OSF (<u>Project Ideas</u>)



# DAY 1: MOUSE-TRACKING INTRODUCTION

Pascal Kieslich (University of Mannheim)
Workshop at the EADM Summer School 2018 in Salzburg, Austria

#### Mouse-tracking introduction (Monday)

- □ 13:00-14:30 General introduction to mouse-tracking
  - Paradigm and assumptions
  - Implementation and analysis
  - Previous applications
- □ 14:30-15:00 Introduction to task
  - Type of experiments considered
  - Your tasks during the workshop
- 15:00-17:00 Develop experimental design conceptually
- 17:00-18:00 Present experimental design in plenum



## Paradigm & assumptions

#### Paradigm & assumptions

- Mouse-tracking (aka. response dynamics)
  - **□** Continuous recording of mouse movements
  - while participants decide between different spatially separated options on a screen



#### Assumptions

- Cognitive processing continuously revealed in motor responses (Spivey & Dale, 2006)
- "Hand in motion reveals mind in motion" (Freeman et al., 2011)
- Mouse movements reveal tentative commitments to and conflict between choice options during decision process

#### Seminal article by Spivey et al. (2005)

- Study on spoken word recognition
  - Instruction: "Click the candle"
- Spatial attraction of hand movement
  - Greater towards phonologically similar distractor ("candy")
  - Than towards phonologically dissimilar distractor ("dice")
- Evidence
  - Suggests parallel processing of auditory input activating competing representations



#### Main applications

- Mouse-tracking allows for testing psychological theories
- Two major applications (cf. review by Stillman et al., 2018)
  - Provides fine-grained measure for amount of conflict between response options
    - → test predictions about which factors (contextual factors, individual differences) influence amount of conflict for specific decision
  - Assess temporal development of conflict and its resolution
     → test models that make predictions how decisions unfold over time
     (e.g., decide between single vs. dual process models)

#### **Application domains**

- Application of mouse-tracking in a growing number of psychological domains (Reviews by Freeman, in press; Stillman et al., 2018)
  - Semantic processing (e.g., Spivey et al., 2005; Dale & Duran, 2011)
  - Social cognition (e.g., Freeman et al., 2008; Freeman & Ambady, 2011)
  - Learning and memory (e.g., Dale et al., 2008; Koop & Criss, 2016)
  - Self-control (e.g., Sullivan et al., 2015; Stillman et al., 2017)
- In the last years also extended to JDM research
  - Intertemporal choice (Dshemuchadse et al., 2013)
  - Moral dilemmas (Koop, 2013)
  - Decisions under risk (Koop & Johnson, 2013)
  - Social dilemmas (Kieslich & Hilbig, 2014)
  - Judgmental biases (Szaszi et al., 2018; Travers et al., 2016)



Replication study of Dale et al. (2007)

#### Animal categorization task

- Typical exemplars only share features with correct category (e.g., cat as mammal)
- Atypical exemplars share both features with correct and competing category (e.g., whale with mammal and fish)



#### Main hypothesis

- Increased competition when categorizing atypical exemplars
- Mouse trajectories with deviation towards competing category
- Replication study (Kieslich & Henninger, 2017)
  - Same material (translated into German) and procedure, but higher resolution and different aspect ratio
  - $\sim$  N = 60 students from the University of Mannheim
  - Material, data, and analyses at <a href="https://github.com/pascalkieslich/mousetrap-resources">https://github.com/pascalkieslich/mousetrap-resources</a>

#### Methodological considerations

- General challenge when designing a mouse-tracking study
  - Movements should reflect developing commitment not information search (≠ eye-tracking or Mouselab)
    - → minimize amount of new information after tracking onset
  - Preferences should not develop before tracking starts
    - → critical information should only be made available at the last moment
- Mouse start positions should be comparable across trials
  - Participants have to click on a centered button to start the trial
  - Exactly identical start positions across trials achieved by resetting mouse or by computational alignment during analysis
- Counterbalancing positions across trials / participants
  - Vary which option is presented on which side (left vs. right)
  - Can be done between trials or between participants (depending on study)



#### Typical analyses steps

#### Calculate **Preprocess** Inspect Aggregate Compare Filter trials Trial-level Plot of Potential Comparison of

- Alignment of trajectories
- Remapping of trajectories
- Time (and space) normalization
- indices (e.g., MAD for curvature)
- Dynamic measures (e.g., development of acceleration over time)
- individual trajectories
- Distribution of trial-level indices
- Identification of chaotic trajectories
- aggregation of trajectories and trial measures
- Per participant and condition
- measures and trajectories
- Typically between experimental conditions in within designs

Analyses steps implemented in the mousetrap R package

More information: http://pascalkieslich.github.io/mousetrap/

Available from CRAN: install.packages("mousetrap")

Data preparation: Remapping and alignment



#### Data preparation: Time normalization

- □ Trials with differing response time vary regarding number of recorded coordinates
- To permit averaging across trials: time-normalization (cf. Spivey et al., 2005)
- Each trajectory divided into 101 equally spaced time steps using linear interpolation



Constant sampling rate → Absolute time

Time normalization
Relative time steps

#### Time-normalized trajectories per condition



#### Average time-normalized trajectories



#### Selected measures for trajectory curvature



Measures of curvature quantify perpendicular distance between observed trajectory and an idealized straight line

- Maximum absolute
   deviation (MAD)
   McKinstry, Dale, & Spivey (2008)
- Average deviation (AD) Koop & Johnson (2011)
- Area under curve (AUC) Spivey, Grosjean, & Knoblich (2005)

#### Typical analyses steps

## Preprocess Calculate Inspect Aggregate Compare

- Filter trials
- Alignment of trajectories
- Remapping of trajectories
- Time (and space) normalization
- Trial-level indices (e.g., MAD for curvature)
- Dynamic measures (e.g., development of acceleration over time)
- Plot of individual trajectories
- Distribution of trial-level indices
- Identification of chaotic trajectories
- Potential aggregation of trajectories and trial measures
- Per participant and condition
- Comparison of measures and trajectories
- Typically between experimental conditions in within designs

Analyses steps implemented in the mousetrap R package

More information: <a href="http://pascalkieslich.github.io/mousetrap/">http://pascalkieslich.github.io/mousetrap/</a>

Available from CRAN: install.packages("mousetrap")

#### Comparison of (maximum) absolute deviations

- MAD larger for atypical exemplars
  - $d_z = 0.87, p < .001$
  - $BF_{10} = 1.57 * 10^6$
- AD larger for atypical exemplars
  - $d_7 = 0.87, p < .001$
  - $BF_{10} = 1.78 * 10^6$



Error bars represent 1 SEM.

#### Average x-positions per time step



#### Selected mouse-tracking measures

| Measure                          | Definition                                             | Possible interpretation                        | Example                  |
|----------------------------------|--------------------------------------------------------|------------------------------------------------|--------------------------|
| Maximum absolute deviation (MAD) | Maximum deviation from idealized trajectory            | Maximum attraction of non-chosen option        | McKinstry et al. (2008)  |
| Average<br>Deviation (AD)        | Mean deviation from idealized trajectory               | Average attraction of non-chosen option        | Koop & Johnson<br>(2011) |
| Area under curve (AUC)           | Geometric area between actual and idealized trajectory | Total attraction of non-<br>chosen option      | Spivey et al. (2005)     |
| x-flips<br>(xpos_flips)          | Number of directional changes along x-axis             | Instability, reversal of the momentary valence | Koop & Johnson (2013)    |
| x-reversals (xpos_reversals)     | Number of crossings of the y-axis                      | General reversal of preference                 | Koop & Johnson<br>(2013) |

#### Analytical and theoretical challenges

- Interpretation of measures still needs to be validated
- Multitude of mouse-tracking measures available
  - Often highly correlated in practice
  - There is no standard yet which measure should be used
    - ensure that result does not depend on the specific measure used
    - → decide which is the measure of interest a priori / conduct preregistered replications of your findings
- Consider effects of aggregation by inspecting distribution of trajectories and indices on the trial level

#### Smooth competition vs. abrupt shifts

- □ Different assumptions about response process (e.g., Hehman et al., 2015)
  - Single process
    - "smooth graded competition" in all trials
    - Continuous competition between response options
  - Dual process
    - "abrupt shifts" / Change of Mind in some trials: Initial movement towards one option, then reversal and choice of other option
    - Straight movements in other trials
- Statistical analysis of AUC or MAD distribution (Freeman & Dale, 2013)
  - "smooth graded competition" → unimodal
  - "abrupt shifts" 

    bimodal



#### Methods for assessing bimodality and trajectory shapes

Bimodality coefficient (BC, e.g., Pfister et al., 2013)

BC = 
$$\frac{m_3^2 + 1}{m_4 + 3 \cdot \frac{(n-1)^2}{(n-2)(n-3)}}$$

- Bimodal, if **BC** > **0.555**
- Hartigan's dip statistic (HDS, Hartigan & Hartigan, 1985)
  - Statistical test (H0: Distribution is unimodal)
  - If p < .05, distribution is multimodal (i.e., at least bimodal)

#### Assessment of bimodality

- Distribution of standardized MAD
- □ Bimodality coefficient (*BC*)
  - $BC_{\text{typical}} = .61$ ;  $BC_{\text{atypical}} = .59$
  - Indicates bimodality as BC > .555
- Also influenced by setup of study (cf. design factors)



#### Assessing distribution of individual trajectory shapes

- Assess distribution of trajectory shapes (Wulff et al., in press)
  - Bimodality analyses so far focus on a single measure only
  - New analyses proposed taking complete **trajectory shape** into account
  - General question: is aggregate trajectory representative of individual trajectories
    - or are there **different types** of trajectories on the trial level?
- Visualization tools
  - Animations
  - Heatmaps and difference maps
- Analyses tools
  - Clustering
  - Prototype allocation

### Heatmap of raw trajectories



Heatmap of raw trajectories (smoothed)



Difference map for typical vs. atypical condition



Prototype recognition (Wulff et al., in press)

#### Specify set of prototypes

Set of prototypes based on clustering results of the meta-analysis by Wulff et al. (in prep.)



#### Spatialize trajectories

Resample trajectories to small number of points distributed equally across space

#### Assign trajectories to prototypes

- Compute dissimilarity between every trajectory and prototype
- Assign trajectory to prototype with smallest distance
- (Potentially exclude trajectories where smallest distance is too large)

#### Prototype allocation for replication experiment



#### Classification frequencies per condition

- Relative frequency of prototype classification differs for conditions
  - $\chi^2 = 57.9, p < .001$
- Atypical condition predicts occurrence of types that indicate more conflict
  - in ordinal mixed regression model on trial level
  - with random intercept per participant
  - z = 6.74, p < .001





# Previous applications

Focusing on JDM research

# Mouse-tracking

# **Application domains**

- Application of mouse-tracking in a growing number of psychological domains (Reviews by Freeman, in press; Stillman et al., 2018)
  - Semantic processing (e.g., Spivey et al., 2005; Dale & Duran, 2011)
  - Social cognition (e.g., Freeman et al., 2008; Freeman & Ambady, 2011)
  - Learning and memory (e.g., Dale et al., 2008; Koop & Criss, 2016)
  - Self-control (e.g., Sullivan et al., 2015; Stillman et al., 2017)
- In the last years also extended to JDM research
  - Intertemporal choice (Dshemuchadse et al., 2013)
  - Moral dilemmas (Koop, 2013)
  - Decisions under risk (Koop & Johnson, 2013)
  - Social dilemmas (Kieslich & Hilbig, 2014)
  - Judgmental biases (Szaszi et al., 2018; Travers et al., 2016)

# **Preferential decision making**

Validation experiment (Koop & Johnson, 2013, Exp. 1)

- Decisions between affective images
  - Task: Which of two images do you prefer?
  - Pictures from IAPS database: provides norms for pleasantness ratings
  - Creation of pairs where difference in preferences is systematically varied



# **Preferential decision making**

Validation experiment (Koop & Johnson, 2013, Exp. 1)

- Decisions between affective images
  - Increase in difference of a priori preference ratings leads to
    - Decrease in trajectory curvature
    - Decrease in maximum absolute deviation (MAD)



#### Basic structure

- □ Social dilemma (Dawes 1980; Van Lange et al., 2013)
  - Individuals can choose between two options
    - Defection
    - Cooperation
- □ Standard social dilemma: **Prisoner's dilemma game** (PDG; Rapoport & Chammah, 1965)

|          |            | Play       | er 1    |
|----------|------------|------------|---------|
|          |            | cooperates | defects |
| Player 2 | cooperates | 100   100  | 200   0 |
|          | defects    | 0   200    | 50   50 |

## Spontaneous cooperation?

- □ Theoretical proposition (Rand et al., 2012, 2014)
  - People are spontaneously inclined to cooperate
  - Defection requires effortful deliberation
- Empirical test using response times
  - Idea: spontaneous = fast, deliberative = slow
  - Mixed results (e.g., Rand et al., 2014; meta-analysis by Rand, 2016; Registered replication report, 2017)
  - Other factors may influence speed (e.g., guessing, information search)
- Experiment using mouse-tracking (Kieslich & Hilbig, 2014)
  - When deciding to defect, mouse movements should be more curved towards non-chosen option (cooperation)
  - When deciding to **cooperate**, mouse movements should be less curved towards non-chosen option (defection)

# Mouse-tracking experiment (Kieslich & Hilbig, 2014)

- □ Lab experiment (N = 115)
  - at the University of Mannheim
  - implementation in OpenSesame (Mathôt et al., 2012) in combination with
    - mousetrap plug-ins for mouse-tracking (Kieslich & Henninger, 2017)
    - psynteract plug-ins for interactive experiments (Henninger, Kieslich, & Hilbig, 2017)
- Participants play 15 two-person social dilemma games
  - without receiving feedback
  - random order
  - incentivized (5 interactions paid out, Ø payout: 2.56 €)
- Social dilemma games
  - 5 x prisoner's dilemma game (PDG)
  - 5 x chicken game
  - 5 x stag hunt game

#### Decision 9 of 15

|                           | You choose Option A | You choose Option B |                           |
|---------------------------|---------------------|---------------------|---------------------------|
| Person 2 chooses Option A | 100   100           | 200   0             | Person 2 chooses Option A |
| Person 2 chooses Option B | 0   200             | 50   50             | Person 2 chooses Option B |
|                           | You choose Option A | You choose Option B |                           |

Please choose between Option A and B.

Start

# Average time-normalized response trajectories



# Maximum deviation per decision



- Main effect of decision
  - MAD significantly higher for defection than for cooperation
- Effect replicated
  - With different measures
  - With filtered trials
  - With linear mixed model on trial level

# Predicting individual differences in conflict

- Individual differences in conflict: Differences should be stronger for individuals high in Honesty-Humility
  - Dispositional cooperativeness
  - Basic personality factor in the HEXACO personality model (Ashton & Lee, 2007)
- Significant interaction between HH and decision



# Mouse-tracking challenges

#### Experimental control over comparison dimension

- Mouse-tracking tasks usually involves "correct"/desired response option
   + comparison dimension is experimentally manipulated
- Here final choice constitutes comparison dimension of interest
  - loss of experimental control
  - use of different games to achieve variation in cooperation rates

#### Complexity and amount of information

- Amount of information and complexity of decision considerably higher than in previous tasks
- Mouse movements more noisy (e.g., reading movements in some trials)
  - Current solution: analyses replicated with and without problematic trials
  - Ideal solution: simpler task design with less information
     → working on conceptual replication in binary public goods game, also taking into account the newly proposed analytical approaches (prototype mapping)

#### **Action selection**

#### Simon effect and conflict adaptation (Scherbaum et al., 2010)

#### Mouse-tracking in Simon task

- Participants have to click on left vs. right option depending on the stimulus
   (e.g., left if number < 5, otherwise right)</li>
- Position of stimulus varied (left vs. right) so that desired response and position are either congruent or incongruent

#### Results

- Simon effect: larger deviations in incongruent than in congruent trials
- Conflict adaptation: Simon effect reduced if previous trial was incongruent





Reanalysis from Scherbaum & Kieslich (in press)

#### **Action selection**

#### Time continuous multiple regression (Scherbaum et al., 2010)

#### Time continuous multiple regression

- □ Criterion: mouse movement angles on the XY plane (≈ movement direction)
- Separate regressions per time step and participant
- Reveals temporal order and strength with which each predictor influences preference development

#### Predictors

- Task relevant
  - Direction (left/right)
- Task irrelevant
  - stimulus location (left/right)
  - previous response (left/right)
  - congruency sequence (same/different)



Average  $\beta$  weights per time step and predictor.

#### **Design factors**

#### Overview

- Researchers face a number of design choices
   when creating mouse-tracking experiments
  - Starting procedure (static, restricted initiation time, dynamic)
  - Cursor speed settings (velocity & acceleration)
  - Indicate response via click vs. touch
- Some authors have given recommendations about designing mouse-tracking studies (Fischer & Hartmann, 2014; Hehman et al., 2015)
- Empirical validation studies are being conducted (Scherbaum & Kieslich, in press; Kieslich et al., in preparation)

#### **Design factors**

#### Preliminary summary of findings

#### Response indication

□ Click on button leads to larger effects than touch – effect related to higher proportion of trials with extreme movements to non-chosen option

#### Mouse sensitivity settings

- Did not significantly influence effect of interest in static setup although default settings generally lead to more extreme curvature than reduced mouse speed
- Reducing mouse speed becomes relevant for dynamic start condition to ensure stimulus information can be acquired during upwards movement

#### Starting procedure

- Restricting maximum initiation time led to larger effects a dynamic start or restricting maximum response time only influenced shape but not effect size
- However, restricting initiation times also led to largest proportion of excluded trials (and seemed to be challenging for some participants)

Method (Scherbaum & Kieslich, in press)

#### Mouse-tracking in Simon task

- Participants click on left vs. right option depending on stimulus (left if number < 5, otherwise right)</li>
- Position of stimulus varied (left vs. right) so that desired response and position are either congruent or incongruent
- Variation starting procedure
  - Dynamic: move upwards to display stimulus (data from Scherbaum et al., 2010)
  - Static: stimulus displayed after fixed interval of 200 ms (typical duration of movement initiation in dynamic condition) (new data)



Discrete effects: Results for average deviation

- Simon effect and congruency sequence effect replicated in both conditions
- No significant interaction of theoretically important effects with starting procedure



Error bars represent 1 SEM.

#### Dynamic effects: Time-continuous angle regression

 Time continuous multiple regression predicting vertical movement angle at each time point

#### Predictors

- location (congruency)
- congruency sequence (same / different)
- previous response (same / different)
- Effects stronger and more temporarily distinct in dynamic starting condition



Average  $\beta$  weights per time step and predictor. Lines indicate segments of  $\beta$  weights significantly > 0.

#### Movement consistency

- Smooth and consistent upwards movement in dynamic starting condition
- Participants in static starting condition often stay at bottom of screen for more than half of the trial before moving upwards quickly



#### **Self-control**

Food choices (Sullivan et al., 2015)



#### **Decisions under risk**

#### Basic paradigm

- Risky choice / decisions under risk
  - Which of the two gambles do you want to play?

| Gamble A                                                 | Gamble B                                                 |
|----------------------------------------------------------|----------------------------------------------------------|
| You have a 50% chance of winning \$90, otherwise nothing | You have a 90% chance of winning \$50, otherwise nothing |

- □ Gamble A: "risky"
  - Higher amount, lower probability of winning
- Gamble B: "safe"
  - Lower amount, higher probability of winning

## **Decisions under risk**

**x-flips** (Koop & Johnson, 2013, Exp. 2)



#### **Decisions under risk**

#### Combining mouse- and eye-tracking (Koop & Johnson, 2013, Exp. 3)

attributes

- Change in x-position ( $\Delta x$ ) as function of transitions of attention
  - $\triangle x > 0$ : movement towards safe gamble
  - $\Delta x < 0$ : movement towards risky gamble
- Evidence accumulation model
  - Predict momentary preference based on visual input
  - Mean correlation between predicted preference and x-position is r = .78
- **Conclusions** 
  - Visual attention to probability and outcome information predicts mouse response
  - Mouse movements largely reflect quality of acquired information





# Your experiments

# Mouse-tracking introduction (Monday)

- 13:00-14:30 General introduction to mouse-tracking
  - Paradigm and assumptions
  - Implementation and analysis
  - Previous applications
- 14:30-15:00 Introduction to task
  - Type of experiments considered
  - Your tasks during the workshop
- 15:00-17:00 Develop experimental design conceptually
- □ 17:00-18:00 Present experimental design in plenum

# Your tasks during the workshop

- Goal of workshop
  - Design, build, pre-register, run, and analyze a mouse-tracking experiment
  - In small groups
- Monday
  - Develop experimental design (task, manipulation, hypotheses, measures)
  - Present experimental design in plenum
- Tuesday
  - Build experiment
  - Register experiment at OSF
  - Participate in experiments
- Wednesday
  - Analyze and visualize your data
  - Discuss your results
- Saturday
  - Present results

# Type of experiments

- In the experiment, participants complete a number of trials that involve decisions of the same structure
- In each trial, participants have to decide between two options by clicking on the corresponding button (two-alternative forced choice task, 2AFC)
- Between trials, the stimulus to be decided upon varies (usually)
   and / or the two response categories
- The stimulus (and/or the response options in case they vary) should be simple (e.g., a single word, a picture)

# Implementation & analysis

#### Software

- Custom extensions for experimental software
  - Code based implementations, e.g., in E-Prime or MATLAB
  - Also need scripts for preprocessing the data
  - Require programming skills
- MouseTracker (Freeman & Ambady, 2010)
  - Stand-alone program
  - Relatively easy to use, but limited in features and flexibility
  - Free of charge but closed source, Windows only



- □ Mousetrap (Kieslich & Henninger, 2017; Kieslich, Wulff et al., in preparation)
  - Drag & drop plugins for experimental software OpenSesame
  - R package mousetrap for preprocessing and analysis
  - Open source, free of charge, cross-platform
  - Available from <a href="http://pascalkieslich.github.io/mousetrap/">http://pascalkieslich.github.io/mousetrap/</a>





# Software for the workshop

- To create mouse-tracking experiments, first install OpenSesame. It is available from <a href="http://osdoc.cogsci.nl/3.2/download/">http://osdoc.cogsci.nl/3.2/download/</a>.
- To install the mousetrap plugin for OpenSesame, follow the instructions at <a href="https://github.com/pascalkieslich/mousetrap-os#installation">https://github.com/pascalkieslich/mousetrap-os#installation</a>. Please make sure to install the latest version of OpenSesame (3.2.4) and the development version of the mousetrap-os plugin.
- To analyze mouse-tracking data install R (https://www.r-project.org/) and RStudio (https://www.rstudio.com/products/rstudio/download/).
- Afterwards, please run the following command in R to install the required packages: install.packages(c("readbulk", "mousetrap"))

# Thank you!

Questions and comments are highly appreciated!

Now & via email: <u>kieslich@psychologie.uni-mannheim.de</u> <u>dirk.wulff@gmail.com</u>

Mousetrap-os plugins: <a href="https://github.com/pascalkieslich/mousetrap-os">https://github.com/pascalkieslich/mousetrap-os</a>

Mousetrap R package: <a href="http://pascalkieslich.github.io/mousetrap/">http://pascalkieslich.github.io/mousetrap/</a>

#### Thanks:

Felix Henninger, co-developer of mousetrap-os plugin and R package Jonas Haslbeck & Michael Schulte-Mecklenbeck, co-developers of mousetrap R package

Mila Rüdiger and Monika Wiegelmann for data collection and testing