Light Up Por Ricardo Anido S Brasil Timelimit: 8

Light Up (Iluminar - em português) é um enigma ou jogo definido em uma placa retangular dividida em quadrados menores. Alguns quadrados desta placa são "vazios" (quadrados brancos na figura abaixo) e outros quadrados são "barreiras" (quadrados escuros na figura abaixo). Um quadrado que indica uma barreira pode ter um número inteiro i associado a ele $(0 \le i \le 4)$.

Figura: (a) Puzzle com 6 linhas, 7 colunas e 7 barreiras; (b) uma solução para o enigma.

Neste puzzle o objetivo é "iluminar" todos os quadrados vazios, colocando lâmpadas em alguns dos quadrados (as lâmpadas são representadas como círculos na figura). Cada lâmpada ilumina o quadrado em que está além de todos os quadrados alinhados com ele, horizontalmente ou verticalmente até um quadrado que contenha uma barreira ou até o fim do tabuleiro.

Uma configuração vencedora satisfaz as seguintes condições:

- todos os quadrados vazios devem ser acesos;
- a luz não pode ser acesa por outra lâmpada;
- todos os quadrados numerados como barreira devem ter exatamente o número de lâmpadas adjacentes a eles (nos seus quatro lados acima, abaixo, e para o lado);
- quadrados que indicam uma barreira não numerados podem ter qualquer número de lâmpadas adjacentes a eles.

Você deve escrever um programa para determinar o menor número de lâmpadas que são necessárias para alcançar uma configuração vencedora.

Entrada

A entrada contém vários casos de teste. A primeira linha de um caso de teste contém dois números inteiros \mathbf{N} , \mathbf{M} indicando respectivamente o número de linhas e o número de colunas da placa ($1 \le \mathbf{N} \le 7$, $1 \le \mathbf{M} \le 7$). A segunda linha contém um \mathbf{B} inteiro que indica o número de quadrados do tipo barreira ($0 \le \mathbf{B} \le \mathbf{N} \times \mathbf{M}$). Cada uma das \mathbf{B} linhas seguintes descrevem uma barreira, que contém três inteiros \mathbf{R} , \mathbf{C} e \mathbf{K} , representando, respectivamente, o número da linha ($1 \le \mathbf{R} \le \mathbf{N}$), o número da coluna ($1 \le \mathbf{C} \le \mathbf{M}$) e o número da barreira (- $1 \le \mathbf{K} \le 4$). $\mathbf{K} = -1$ significa que a barreira é não numerada. O final da entrada é indicado por $\mathbf{N} = \mathbf{M} = 0$.

Saída

Para cada caso de teste da entrada seu programa deverá produzir uma linha de saída, contendo ou um inteiro indicando o menor número de lâmpadas necessárias para alcançar uma configuração vencedora caso

ela existir. Caso contrário, seu programa deverá imprimir a mensagem 'No solution', conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
2 2	2
0	No solution
2 2	8
1	
2 2 1	
6 7	
7	
2 3 -1	
3 3 0	
4 2 1	
5 4 3	
5 6 2	
1 7 -1	
6 5 -1	
0 0	

ACM/ICPC South America Contest 2005.