Research Notes

Nonparametric Estimation using SOS-Convexity

Prof. John Lafferty Students: YJ Choe, Max Cytrynbaum, Wei Hu

1 Introduction

(YJ will write out this section summerizing our first-day discussion when he has time.)

2 SOS-Convex Regression

Given $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$ for i = 1, ..., n, recall that we have the equivalence between the following optimization problems:

minimize
$$\sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$
s.t. f is convex. (1)

minimize
$$\sum_{i=1}^{n} (y_i - z_i)^2$$
s.t. $z_j \ge z_i + \beta_i^T(\mathbf{x}_j - \mathbf{x}_i) \quad \forall i, j = 1, ..., n.$ (2)

In particular, we can reduce the infinite-dimensional problem (1) into a finite-dimensional quadratic program (QP) (2), which can be efficiently solved. The solution to (2) can be viewed as a piecewise-linear convex function.

Here, we attempt to derive the analogous equivalence, i.e. find an equivalent convex optimization problem to the following infinite-dimensional problem:

minimize
$$\sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$
 (3)

s.t. f is an SOS-convex polynomial of degree 2d.

Denote the vector of basis monomials up to degree d by $\mathbf{v}_d(\mathbf{x}) = (1, x_1, \dots, x_p, x_1 x_2, \dots, x_p^d)$, where $\mathbf{x} = (x_1, \dots, x_p)$. Also, let $s = \binom{2d+p}{p}$ denote the length of this vector for degree 2d. Then, we may replace f with a coefficient vector $\boldsymbol{\theta} \in \mathbb{R}^s$, such that

$$f(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{v}_{2d}(\mathbf{x}).$$

Note the one-to-one correspondence between f and θ . Further, as done with the convex program, we introduce the auxiliary variable $\mathbf{z} = (z_1, \dots, z_n)$ so that

$$f(\mathbf{x}_i) = \boldsymbol{\theta}^T \mathbf{v}_{2d}(\mathbf{x}_i) = z_i \quad \forall i = 1, \dots, n.$$
 (4)

We can write this more concisely by introducing the matrix

$$V = V(\mathbf{x}_1, \dots, \mathbf{x}_n) = \begin{bmatrix} \mathbf{v}_d(\mathbf{x}_1) \\ \vdots \\ \mathbf{v}_d(\mathbf{x}_n) \end{bmatrix}_{n \times s}$$

so that (4) simply becomes

$$V\boldsymbol{\theta} = \mathbf{z}.\tag{5}$$

So we have a linear constraint on the coefficient θ that is equivalent to saying that the polynomial interpolates the points $\{(\mathbf{x}_i, z_i)\}_{i=1}^n$. Analogously, we can rewrite the objective to be

$$\sum_{i=1}^{n} (y_i - z_i)^2 = \|\mathbf{y} - \mathbf{z}\|^2$$
 (6)

where $\mathbf{y} = (y_1, ..., y_n)$ and $\mathbf{z} = (z_1, ..., z_n)$.

Now we want to rewrite the constraint that $f(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{v}_d(\mathbf{x})$ is SOS-convex. Recall that p is SOS-convex if and only if

$$\mathbf{u}^T H_{\boldsymbol{\theta}}(\mathbf{x}) \mathbf{u} = \mathbf{v}_d(\mathbf{x}, \mathbf{u})^T Q \mathbf{v}_d(\mathbf{x}, \mathbf{u})$$
 (7)

and

$$Q \succeq 0 \tag{8}$$

where Q is a symmetric $r \times r$ matrix with $r = \binom{d+2p}{2p}$, $H_{\theta}(\mathbf{x})$ is the Hessian polynomial matrix of $p(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{v}_d(\mathbf{x})$, and $\mathbf{u} = (u_1, \dots, u_p)$.

Note first that (7) is an equality in the space of *polynomials* on 2p variables: \mathbf{x} and \mathbf{u} . Also, (8) suggests that the convex optimization program that we attempt to build is a semidefinite program (SDP).

It is important to note that, in this case where f is a polynomial, the Hessian $H_{\theta}(\mathbf{x})$ is easy to compute – in fact, the coefficients of each entry of the Hessian are a linear function of the coefficient θ of the original polynomial f. For a multinomial index $\alpha = (\alpha_1, \dots, \alpha_p) \in \mathbb{N}^p$ on \mathbf{x} such that $\sum_{j=1}^p \alpha_j \leq d$, recall that the Hessian of \mathbf{x}^{α} with respect to x_i and x_j is

$$\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \mathbf{x}^{\alpha} = \alpha_i \alpha_j \mathbf{x}^{\alpha'_{i,j}}$$

where $\alpha'_{i,j} = (\alpha_1, \dots, \alpha_i - 1, \dots, \alpha_j - 1, \dots, \alpha_p)$ for $i \neq j$ and $\alpha'_{i,i} = (\alpha_1, \dots, \alpha_i - 2, \dots, \alpha_p)$. Note that if $\alpha_i = 0$ for any i then the Hessian is zero anyway.

(7) is not a valid semidefinite constraint yet, because it is an equality between two polynomials. This means we want to equate the *coefficients* of the two polynomials on (\mathbf{x}, \mathbf{y}) . Note first that

$$\mathbf{u}^T H_{\boldsymbol{\theta}}(\mathbf{x}) \mathbf{u} = \sum_{i,j=1}^p \left(\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f(\mathbf{x}) \right) u_i u_j. \tag{9}$$

Then, there is at most one term (zero iff the partial derivative is zero) for each $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p) \in \mathbb{N}^p$ such that $\sum_{k=1}^p \alpha_k \leq d$, and for each $i, j = 1, \dots, p$. For each of these cases, we give a multinomial index $\boldsymbol{\gamma}_{\boldsymbol{\alpha},i,j} \in \mathbb{N}^{2p}$ on (\mathbf{x},\mathbf{u}) , and $\boldsymbol{\gamma}_{\boldsymbol{\alpha},i,j}$ will have a few specific properties: the first p coordinates are precisely $\boldsymbol{\alpha}'_{i,j}$, which sum up to at most d-2, and the last p coordinates are all zero except at the (p+i)th and the (p+j)th coordinate (only at the (p+i)th if i=j). The first corresponds to the fact that the Hessian can have at most degree d-2, and the second to the fact that each term has exactly one degree on u_i and u_j . Thus, we have

$$\mathbf{u}^{T} H_{\theta}(\mathbf{x}) \mathbf{u} = \sum_{\alpha} \sum_{i,j} H_{\theta}(\alpha, i, j) (\mathbf{x}, \mathbf{u})^{\gamma_{\alpha, i, j}}$$
(10)

where $H_{\theta}(\boldsymbol{\alpha}, i, j)$ represents the scalar coefficient for the term $(\mathbf{x}, \mathbf{u})^{\gamma_{\boldsymbol{\alpha}, i, j}}$.

Further, we can express the right-hand side in terms of their coordinates in the following way. First define the coordinate matrix B_{γ} for each multi-index $\gamma \in \mathbb{N}^{2p}$ up to degree 2d such that

$$\mathbf{v}_d(\mathbf{x}, \mathbf{u}) \mathbf{v}_d(\mathbf{x}, \mathbf{u})^T = \sum_{\gamma} B_{\gamma}(\mathbf{x}, \mathbf{u})^{\gamma}.$$

Note that the matrices B_{γ} are simply "constants", i.e. they do not depend on the data or the program variables. With this, the right-hand side becomes

$$\mathbf{v}_{d}(\mathbf{x}, \mathbf{u})^{T} Q \mathbf{v}_{d}(\mathbf{x}, \mathbf{u}) = \operatorname{tr}(Q \mathbf{v}_{d}(\mathbf{x}, \mathbf{u}) \mathbf{v}_{d}(\mathbf{x}, \mathbf{u})^{T})$$

$$= \langle Q, \mathbf{v}_{d}(\mathbf{x}, \mathbf{u}) \mathbf{v}_{d}(\mathbf{x}, \mathbf{u})^{T} \rangle$$

$$= \langle Q, \sum_{\gamma} B_{\gamma}(\mathbf{x}, \mathbf{u})^{\gamma} \rangle$$

$$= \sum_{\gamma} \langle Q, B_{\gamma} \rangle (\mathbf{x}, \mathbf{u})^{\gamma}$$
(11)

where $\langle A, B \rangle = \operatorname{tr}(A^T B) = \sum_{i,j} A_{ij} B_{ij}$ is the matrix inner product. Note that Q is symmetric.

Then, we can equate the coefficients of (10) and (11) to obtain:

$$\left\langle Q, B_{\gamma_{\alpha,i,j}} \right\rangle = H_{\theta}(\alpha, i, j) \quad \forall \; \alpha, i, j$$
 (12)

$$\langle Q, B_{\gamma} \rangle = 0$$
 for all other γ (13)

Putting (5), (6), (8), (12), and (13) together, (3) can be restated as the following problem:

minimize
$$\|\mathbf{y} - \mathbf{z}\|^2$$

s.t. $V\boldsymbol{\theta} = \mathbf{z}$
 $\langle Q, B_{\boldsymbol{\gamma}_{\boldsymbol{\alpha},i,j}} \rangle = H_{\boldsymbol{\theta}}(\boldsymbol{\alpha}, i, j) \quad \forall \; \boldsymbol{\alpha}, i, j$
 $\langle Q, B_{\boldsymbol{\gamma}} \rangle = 0$ for all other $\boldsymbol{\gamma}$
 $Q \succeq 0$

(14) is almost an SDP, except that the objective is quadratic. But in general, we can introduce another auxiliary variable t to restate the problem as

minimize
$$t$$

s.t. $\|\mathbf{y} - \mathbf{z}\|^2 \le t$
 $V\boldsymbol{\theta} = \mathbf{z}$
 $\langle Q, B_{\boldsymbol{\gamma}_{\boldsymbol{\alpha},i,j}} \rangle = H_{\boldsymbol{\theta}}(\boldsymbol{\alpha}, i, j) \quad \forall \, \boldsymbol{\alpha}, i, j$
 $\langle Q, B_{\boldsymbol{\gamma}} \rangle = 0$ for all other $\boldsymbol{\gamma}$
 $Q \succeq 0$ (15)

Then, we are left with a quadratic inequality constraint. Fortunately, the following allows us to convert this into a semidefinite constraint.

Fact 2.1 For any $\mathbf{x}, \mathbf{q} \in \mathbb{R}^p$ and $r \in \mathbb{R}$, $\mathbf{x}^T \mathbf{x} + \mathbf{q}^T \mathbf{x} + r \leq 0$ if and only if $\begin{bmatrix} I & -\mathbf{x} \\ -\mathbf{x}^T & -\mathbf{q}^T \mathbf{x} - r \end{bmatrix} \succeq 0$.

Proof: For any $\mathbf{y} \in \mathbb{R}^p$ and $z \in \mathbb{R}$,

$$\begin{bmatrix} \mathbf{y}^T & z \end{bmatrix} \begin{bmatrix} I & -\mathbf{x} \\ -\mathbf{x}^T & -\mathbf{q}^T \mathbf{x} - r \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ z \end{bmatrix} = \mathbf{y}^T \mathbf{y} - 2z\mathbf{x}^T \mathbf{y} - z^2(\mathbf{q}^T \mathbf{x} + r)$$
$$= \|\mathbf{y} - z\mathbf{x}\|^2 - z^2(\mathbf{x}^T \mathbf{x} + \mathbf{q}^T \mathbf{x} + r).$$

If $\mathbf{x}^T\mathbf{x} + \mathbf{q}^T\mathbf{x} + r \leq 0$, then this is nonnegative for all $\mathbf{y} \in \mathbb{R}^p$ and $z \in \mathbb{R}$. Otherwise, one can find $\mathbf{y} \in \mathbb{R}^p$ and $z \in \mathbb{R}$ such that this is strictly negative.

Thus,

$$\|\mathbf{y} - \mathbf{z}\|^{2} \le t \iff \mathbf{z}^{T}\mathbf{z} - 2\mathbf{y}^{T}\mathbf{z} + (\mathbf{y}^{T}\mathbf{y} - t) \le 0$$
$$\iff \begin{bmatrix} I & -\mathbf{z} \\ -\mathbf{z}^{T} & 2\mathbf{y}^{T}\mathbf{z} - \mathbf{y}^{T}\mathbf{y} + t \end{bmatrix} \succeq 0.$$

Note that the last relation is a linear matrix inequality (LMI), i.e. it says that a linear combination of symmetric matrices is positive semidefinite.

Thus, we can now write (15) into a semidefinite program:

minimize
$$t$$
s.t.
$$\begin{bmatrix}
I & -\mathbf{z} \\
-\mathbf{z}^T & 2\mathbf{y}^T\mathbf{z} - \mathbf{y}^T\mathbf{y} + t
\end{bmatrix} \succeq 0$$

$$V\boldsymbol{\theta} = \mathbf{z}$$

$$\langle Q, B_{\boldsymbol{\gamma}_{\boldsymbol{\alpha},i,j}} \rangle = H_{\boldsymbol{\theta}}(\boldsymbol{\alpha}, i, j) \quad \forall \; \boldsymbol{\alpha}, i, j$$

$$\langle Q, B_{\boldsymbol{\gamma}} \rangle = 0 \quad \text{for all other } \boldsymbol{\gamma}$$

$$Q \succeq 0$$

$$(16)$$

where the two semidefinite constraints can be restated – if necessary – into one semidefinite constraint

$$\begin{bmatrix} I & -\mathbf{z} \\ -\mathbf{z}^T & 2\mathbf{y}^T\mathbf{z} - \mathbf{y}^T\mathbf{y} + t \end{bmatrix} \succeq 0.$$

Finally, note that the entire program depends on the degree of the SOS-convex polynomial that we started off with: 2d.

Further Questions

- 1. What is the program size? Is it tractable?
- 2. Can the zero constraints be simplified?
- 3. For any given d, is the program feasible? What is the behavior of the objective t_d ?
- 4. How can SDP hierarchy (e.g. by Lasserre) help choosing/removing d?

References

- [BV] BOYD, S. and VANDENBERGHE, L. (2009). Convex Optimization. Cambridge University Press.
- [Lasserre] Lasserre, J. B. (2009). Moments, Positive Polynomials and Their Applications. Vol. 1. World Scientific.