

(11)Publication number:

08-245828

(43)Date of publication of application: 24.09.1996

(51)Int.CI.

C08K 5/09 C08K 5/098 C08L101/00 H01M 6/18

(21)Application number: 07-077291

08.03.1995

(71)Applicant: MITSUBISHI CHEM CORP

(72)Inventor: WATANABE MASAYOSHI

UE MAKOTO

(54) POLYMER COMPOSITE

(57)Abstract:

(22)Date of filing:

PURPOSE: To obtain a polymer composite useful as a solid electrolyte which does not corrode and is stable over long.

CONSTITUTION: This composite comprises a polymer and salts which are originally liquid at ordinary temp. but have been solidified by the polymer, the salts comprising an aliphatic quaternary ammonium salt of an organic carboxylic acid and a lithium salt of the acid. It is suitable for use as a solid electrolyte for electrochemical devices which has long—term reliability. It is also utilizable as an antistatic material or antistatic shield for electronic devices so as to take advantage of its ionic conductivity.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-245828

(43)公開日 平成8年(1996)9月24日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI			技術表示箇所
C08K 5/09	KAR		C08K	5/09	KAR	
5/098	KAR			5/098	KAR	
C08L 101/00			C08L	101/00		
H 0 1 M 6/18			H 0 1 M	6/18	E	

審査請求 未請求 請求項の数5 FD (全 4 頁)

(21)出顧番号 特願平7-77291 (71)出願人 000005968

平成7年(1995)3月8日

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 渡辺 正義

神奈川県横浜市西区老松町30-3-401

(72)発明者 宇恵 誠

茨城県稲敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内

(74)代理人 弁理士 岡田 数彦

(54) 【発明の名称】 高分子化合物複合体

(57)【要約】

(22)出願日

【目的】腐食性がなくかつ経時的に安定な固体電解質と しての高分子化合物複合体を提供する。

【構成】高分子化合物で常温溶融塩を固体化させた高分子化合物複合体であって、常温溶融塩が有機カルボン酸の脂肪族四級アンモニウム塩とリチウム塩との混合物から成る。

【効果】本発明の高分子化合物複合体は、長期間の信頼性に耐える電気化学的デバイス用の固体電解質として好適である。また、そのイオン伝導性を利用して電子機器の帯電防止材や静電気シールド材として利用することが出来る。

【特許請求の範囲】

【請求項1】 高分子化合物で常温溶融塩を固体化させ た高分子化合物複合体であって、常温溶融塩が有機カル ボン酸の脂肪族四級アンモニウム塩とリチウム塩との混 合物から成ることを特徴とする高分子化合物複合体。

【請求項2】 常温溶融塩が、有機カルボン酸の脂肪族 四級アンモニウム塩1モルに対しリチウム塩を0.1~ 10 モルの割合で混合して成る請求項1記載の高分子化 合物複合体。

【請求項3】 高分子化合物の割合が、常温溶融塩に対 10 し髙分子化合物を構成するモノマーユニットとして1~ - 80 モル%である請求項1記載の高分子化合物複合体。

【請求項4】 有機カルボン酸の脂肪族四級アンモニウ ム塩が、安息香酸トリエチルメチルアンモニウム塩、安 息香酸テトラエチルアンモニウム塩、安息香酸トリブチ ルメチルアンモニウム塩、酢酸トリブチルメチルアンモ ニウム塩および酢酸トリエチルメチルアンモニウム塩よ り選ばれた少なくとも1種である請求項1又は2記載の 高分子化合物複合体。

【請求項5】 リチウム塩が、酢酸リチウム、安息香酸 20 リチウムおよびビス (トリフルオロメチルスルホニル) イミド酸リチウムより選ばれた少なくとも1種である請 求項1又は2記載の高分子化合物複合体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高分子化合物複合体に 関するものであり、詳しくは、電気化学的デバイスの固 体電解質および電子機器の帯電防止材や静電気シールド 材として利用することが出来る高分子化合物複合体に関 するものである。

[0002]

【従来の技術】従来より、リチウム一次電池、リチウム 二次電池、電解コンデンサー、電気二重層コンデンサ ー、エレクトロクロミック表示素子などの電気化学的デ バイスの電解質としては、例えば、ガンマーブチロラク トン、N, N-ジメチルホルムアミド、プロピレンカー ボネート、テトラヒドロフラン等の液体溶媒に、例え ば、過塩素酸リチウム、ホウフッ化テトラエチルアンモ ニウム、フタル酸テトラメチルアンモニウム等のイオノ ーゲンとしてのイオン性化合物を溶解した電解液が使用 されている。

【0003】しかしながら、電解液は、漏液が発生し易 く、また、揮発し易く、長期間の信頼性に欠けるという 欠点を有している。一方、固体電解質は、この様な欠点 がなく、上記の電気化学的デバイスに使用すると、製造 工程の簡略化を図れると共に、デバイス自身の軽薄短小 化を図ることが出来る。特に、髙分子固体電解質は、柔 軟性、軽量性、弾性、薄膜成形性、加工性、透明性など に優れており、電気自動車用髙エネルギー電池やICカ

る (渡辺、電気化学、62巻、304頁、1994 年)。

【0004】上記の高分子固体電解質としては、ポリエ チレンオキサイド、ポリプロピレンオキサイド等のポリ エーテル系髙分子化合物に、リチウムスルホンイミド、 LiClO、、LiCF,SO,等のアルカリ金属塩を 複合させた固体電解質(Salt-in-Polyme r型)が研究されてきたが、イオン伝導性は、高分子鎖 の熱運動に起因することが明らかになり、アモルファス 化など種々の試みがなされてきたものの、イオン伝導性 と形状安定性の面から技術的な限界に至っている。

【0005】そこで、イオン伝導性はイオン性液体が担 い、力学的特性は髙分子が担うという機能分離型の髙分 子固体電解質 (Polymer-in-Salt型)の 概念が二つの研究グループより独立に提案された。その 一つは、常温溶融塩として知られているN-ブチルピリ ジニウムハロゲン化物とハロゲン化アルミニウムとの錯 体を髙分子化合物で固定化したものである(渡辺ら、

J. C. S. Chem. Commun. 、929頁、1 993年)。そして、他の一つは、2種以上のリチウム 塩を混合した過冷却液体を髙分子化合物で固定化したも oras (C. A. Angells, Nature, 3 62巻、137頁、1993年)。

【0006】しかしながら、前者の複合体は、ハロゲン 化物イオンによる腐食性に問題があり、後者の複合体 は、熱力学的に不安定な過冷却液体を固定化したもので あるから、経時的に結晶化するという問題点がある。 [0007]

【発明が解決しようとする課題】本発明は、斯かる実情 に鑑みなされたものであり、その目的は、腐食性がなく 且つ経時的に安定な固体電解質としての高分子化合物複 台体を提供するにある。

[0008]

【課題を解決するための手段】すなわち、本発明の要旨 は、高分子化合物で常温溶融塩を固体化させた高分子化 合物複合体であって、常温溶融塩が有機カルボン酸の脂 肪族四級アンモニウム塩とリチウム塩との混合物から成 ることを特徴とする高分子化合物複合体に在する。

【0009】以下、本発明を詳細に説明する。上記の有 機カルボン酸の脂肪族四級アンモニウム塩は、有機カル ボン酸の共役陰イオンと脂肪族四級アンモニウム陽イオ ンとから成る。上記の有機カルボン酸としては、総炭素 数が1~10のカルボン酸、具体的には、例えば、ギ 酸、酢酸、プロピオン酸、酪酸、イソ酪酸、カプリン 酸、メタクリル酸などの脂肪族モノカルボン酸、例え ば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジ ピン酸、セバシン酸、マレイン酸、イタコン酸などの脂 肪族多価カルボン酸、例えば、安息香酸、サリチル酸な どの芳香族モノカルボン酸、例えば、フタル酸、トリメ ード等の薄型製品の内蔵電池などに応用が考えられてい 50 リット酸、ピロメリット酸などの芳香族多価カルボン酸

を例示することが出来る。これらの中で好ましい有機カ ルボン酸は酢酸および安息香酸である。

【0010】脂肪族第四級アンモニウムとしては、一つ のアルキル基の炭素数が1~10のテトラアルキルアン モニウム、例えば、テトラメチルアンモニウム、テトラ エチルアンモニウム、テトラブチルアンモニウム、テト ラヘキシルアンモニウム、トリエチルメチルアンモニウ ム、トリブチルメチルアンモニウム、トリブチルエチル アンモニウム、トリメチルデシルアンモニウム等を例示 することが出来る。これらの中で好ましい脂肪族第四級 10 アンモニウムは、トリエチルメチルアンモニウム、トリ ブチルメチルアンモニウム等の非対称テトラアルキルア ンモニウムである。

【0011】有機カルボン酸の脂肪族四級アンモニウム 塩としては、具体的に、安息香酸トリエチルメチルアン モニウム塩、安息香酸テトラエチルアンモニウム塩、安 息香酸トリブチルメチルアンモニウム塩、酢酸トリブチ ルメチルアンモニウム塩、酢酸トリエチルメチルアンモ ニウム塩などが挙げられる。これらの有機カルボン酸の 脂肪族四級アンモニウム塩は、1種または2種以上の混 20 合物として使用される。

【0012】リチウム塩としては、有機酸のリチウム塩 または無機酸のリチウム塩が挙げられる。有機酸のリチ ウム塩としては、例えば、酢酸リチウム、トリフルオロ 酢酸リチウム、安息香酸リチウム、トリフルオロメタン スルホン酸リチウム、p-トルエンスルホン酸リチウ ム、ビス(トリフルオロメチルスルホニル)イミド酸リ チウム、トリス(トリフルオロメチルスルホニル)炭素 酸リチウム等が挙げられ、無機酸のリチウム塩として は、例えば、LiNO,, LiSCN, LiClO,, 30 LiClO, LiBF, LiPF, LiAs F。, LiShF。等が挙げられる。 これらの中で好ま しいリチウム塩は、酢酸リチウム、安息香酸リチウム、 ビス(トリフルオロメチルスルホニル)イミド酸リチウ ム等の有機酸リチウム塩である。

【0013】常温溶融塩は、上記の1種以上の有機カル ボン酸の脂肪族四級アンモニウム塩と1種以上のリチウ ム塩を混合することにより得られる。その混合比は、混 合する塩の種類により決定されるが、高温にて両者が相 溶し、室温に冷却しても固化しない混合比である。一般 40 的には、有機カルボン酸の脂肪族四級アンモニウム塩1 モルに対し、リチウム塩は0.1~10モル、好ましく は0.2~2.0モルの割合で使用される。

【0014】高分子化合物としては、常温溶融塩をフィ ルム又は注型品状に固体化し得るものであれば何れの高 分子化合物であってもよいが、好ましくは合成髙分子化 合物である。具体的には、ポリ塩化ビニル、ポリアクリ ロニトリル、ポリメタクリル酸メチル、ポリフッ化ビニ リデン等のポリビニル系高分子化合物、ポリオキシメチ レン、ポリエチレンオキシド、ポリプロピレンオキシド 50 Hz、温度範囲25~-10℃でセルのインピーダンス

等のポリエーテル系高分子化合物、ナイロン6、ナイロ ン66等のポリアミド系髙分子化合物、ポリエチレンテ レフタレート等のポリエステル系高分子化合物、ポリカ ーボネート系高分子化合物またはアイオネン系高分子化 合物などが挙げられるが、ポリ塩化ビニル、ポリアクリ ロニトリル、ポリエチレンオキシド及びアイオネン系高 分子化合物が好ましい。

【0015】常温溶融塩と髙分子化合物との配合比は、 互いに相溶する範囲内であれば何れの混合比であっても よいが、一般的には、高分子化合物の使用割合は、常温 溶融塩に対し、髙分子化合を構成するモノマーユニット として1~80モル%、好ましくは5~20モル%であ る。ここで、モノマーユニットとして1モル%とは、ボ リ塩化ビニルを例にとると、常温溶融塩1モルに対し、 ポリ塩化ビニルのモノマー単位で0.01モル含んだポ リ塩化ビニルの量を示し、ポリ塩化ビニルの分子量(重 合度)とは無関係に決定される値である。

【0016】髙分子化合物複合体としては、上記常温溶 融塩中に高分子化合物を直接加え加熱溶解して冷却する か、または、適当な有機溶媒中で両者を混合し成形した 後、減圧乾燥などの方法で溶媒を留去して得られる。ま た、上記溶融塩中でモノマーを重合させて高分子化合物 複合体を得ることも可能である。

【0017】高分子化合物複合体は、漏液の問題がな く、腐食性もなく、安定なので、長期間の信頼性に耐え る電気化学的デバイス用の固体電解質となる。また、そ のイオン伝導性を利用して電子機器の帯電防止材や静電 気シールド材として利用することが出来る。

[0018]

【実施例】以下、本発明を実施例により更に詳細に説明 するが、本発明は、その要旨を超えない限り、以下の実 施例に何ら限定されるものではない。

【0019】実施例1

窒素雰囲気下のグローブボックス中で、ポリ塩化ビニル (PVC; 重合度1000) をテトラヒドロフランに溶 解して3重量%の溶液とした。また、安息香酸トリエチ ルメチルアンモニウム塩 (TEMAB)、酢酸リチウム (LiOAc) 及びピス(トリフルオロメチルスルホニ ル) イミド酸リチウム (LiTFSI)を7:2:1モ ル比に混合し、約150℃で加熱溶融し、均一な液体を 得た。これを予め冷却しておいたステンレス板と接触さ せて急冷し、常温溶融塩を得た。

【0020】上記のPVC溶液に常温溶融塩をPVCの モノマーユニットとして5モル%となる様に溶解し、キ ャスト法により高分子化合物複合体の薄膜を得た。この 髙分子化合物複合体をよく研磨したステンレス電極間に 直径1cm、厚さ1mmのテフロン性スペーサーを介し て挟み、密閉型導電率測定用セル、インピーダンスアナ ライザー及び恒温槽を使用して、周波数範囲5~13M

を発振レベル500mVにしてイオン伝導率を測定し た。25℃に於けるイオン伝導率は、10⁻¹Scm⁻¹で あった。6ヶ月保存してもステンレスの腐食は認められ なかった。

【0021】なお、実施例1で得られた高分子化合物複 合体について、異なる温度に於けるイオン伝導率を測定 し、常温溶融塩の温度-イオン伝導率の相関図として図 1に示した。また、参考例1として、実施例1で使用し た常温溶融塩のみについても上記と同様にイオン伝導率 を測定し、図1に示した。図1から明らかな様に、高分 子化合物による複合化によっても、イオン伝導率は殆ど 低下しないことが分かる。

【0022】実施例2

窒素雰囲気下のグローブボックス中で、ポリアクリロニ トリル (PAN) をN, N-ジメチルホルムアミドに溶 解して20重量%溶液を得た。このPAN溶液に実施例 1で得られた常温溶融塩をPANのモノマーユニットと して1. 0モル%となる様に溶解し、キャスト法により 高分子化合物複合体の薄膜を得た。実施例1と同様にし て、この高分子化合物複合体の薄膜について25℃に於 20 材や静電気シールド材として利用することも出来る。 けるイオン伝導率を測定したところ、10-15cm-1で あった。6ヵ月保存後のステンレスの腐食も認められな かった。

*【0023】実施例3

窒素雰囲気下のグローブボックス中で、ポリエチレンオ キシド(PEO:重合度5700)をメチルエチルケト ンに溶解し、10重量%溶液を得た。このPEO溶液に 実施例1で得えられた常温溶融塩をPEOのモノマーユ ニットとして20モル%となる様に溶解し、キャスト法 により高分子化合物複合体の薄膜を得た。実施例1と同 様にして、この高分子化合物複合体の薄膜について25 °Cに於けるイオン伝導率を測定したところ、10-3Sc m-1であった。6ヵ月保存後のステンレスの腐食も認め られなかった。

[0024]

【発明の効果】以上説明した本発明の髙分子化合物複合 体は、漏液の問題がなく、腐食性もなく、安定なので、 長期間の信頼性に耐えることが出来、リチウム一次電 池、リチウム二次電池、電解コンデンサー、電気二重層 コンデンサー、エレクトロクロミック表示素子などの電 気化学的デバイス用の固体電解質として好適である。ま た、そのイオン伝導性を利用して、電子機器の帯電防止

【図面の簡単な説明】

【図1】常温溶融塩の温度-イオン伝導率の相関図であ る。

【図1】

