Energy Demand Forecasting

Nirajan Bekoju

Problem Formulation

27555

HOURLY DEMAND

MODEL

Prediction:

Next Week Hourly Forecast

7*24=168 Hour

	datetime	Demand	(MW)
0	2020-01-01 00:00:00		445.8
1	2020-01-01 01:00:00		424.5
2	2020-01-01 02:00:00		423.5
3	2020-01-01 03:00:00		418.8
4	2020-01-01 04:00:00		414.8

Energy Demand Time Series Plot

Energy Demand Decomposition

Multiplicative seasonal decomposition of First 500 Data Points

Seasonality in a Year

July (7) Highest Energy Demand

April (4) and October(10) Relatively Lower Energy Demand

Seasonality in a Day

3pm - 8pm Highest Energy Demand

1am - 5am Relatively Lower Energy Demand

Periodogram

High Variance observed

Daily and Annual Period

Hybrid Model

1 Week Forecast

Actual Demand
Predicted Demand
1 week forecast

mae	374.23
rmse	19.345

Forecasting Using Lag Features

ACF and PACF

Highly correlated with lag 24

Almost all lags are significant as they are outside the confidence interval

ACF and PACF

Random Forest Regressor

Train Test Split

160 Week Training

1 Week Validation

1 Week Prediction

Validation

train mae	18.53
val_mae	124.63

1 Week Forecast

