Increasing whiff rate for Pitcher X

Or, how Pitcher X learned to stop worrying, throw less fastballs, and trust his changeup

Ken Schroeder schroeder.w.ken@gmail.com

Dataset, goals

The study in question uses a dataset of all pitches from a real-life MLB pitcher from the 2021 baseball season. For this presentation we are hoping to help Pitcher X make strategic and mechanical changes with the hope of improving the probability of batters swinging and missing on pitches for the 2022 season.

Dataset is available at: https://github.com/KenSchroeder/Baseball/pitcherX2021.csv

All programming done in Python. Some tables made in Excel.

Overview

- 1. What is whiff rate? Does it matter?
- 2. Context, context, context
- 3. Improving Whiff Rate
- 4. Conclusions

What is Whiff Rate? Does it Matter?

What is whiff rate?

Whiff rate is percentage of pitches a batter swings at and misses. In 2021 qualified pitchers whiff rate ranged between 8.1-16.6% and league average was 11.3%. Pitcher X would be expected to elicit a swing and miss on 11.6% of pitches in the dataset.

Does it matter?

Yes, it matters.

Take a look at the 2021 whiff rate leaderboard. You'll note that among qualified pitchers, both the NL leader (Corbin Burnes - 16.6%) and AL leader (Robbie Ray - 15.5) won the Cy Young Award for their league. In fact, in none of the last 5 full seasons has the Cy Young winner finished outside his league's top 3 on the swinging strikes leaderboard. Whiff rate is clearly correlated with success. Additionally swinging strikes correlates well year to year.

Conclusion

This is a stat we are very interested in improving for pitcher X.

Overview

- 1. What is whiff rate? Does it matter?
- 2. Context, context, context
- 3. Improving Whiff Rate
- 4. Conclusions

Context: Key takeaways

If we wish to improve the whiff rate for pitcher X, we need to understand the contexts of each pitch.

The base whiff rate of a 0-2 pitch vs. a right handed batter is not the same as a 3-0 pitch vs. a left handed batter. Count, batter side, and pitch count must be taken into account as we attempt to improve the whiff rate for Pitcher X.

As such, i has to be noted that for some combinations of count, batter side, and pitch thrown there is simply not enough data to make any conclusions (e.g. Pitcher X only threw 2 changeups vs right handed batters on a full count.)

Whiff Probabilities - by Pitch, Hand

Observe that 80% of changeups were thrown against left-handed batters.

Whiff Probabilities - by Pitch, Hand

			Ove	rall		
Pitch	N	%	%vL	SwingProb	MissProb	WhiffProb
Fastball	1087	40.0%	38.3%	0.478	0.225	0.086
Cutter	789	29.1%	37.9%	0.571	0.341	0.139
Change	422	15.5%	80.3%	0.502	0.397	0.153
Curve	418	15.4%	36.6%	0.362	0.373	0.110
Total	2716	-	44.4%	0.491	0.308	0.116

			vs. Left		
Pitch	N	% Thrown	SwingProb	MissProb	WhiffProl
Fastball	416	34.5%	0.423	0.233	0.069
Cutter	299	24.8%	0.610	0.266	0.125
Change	339	28.1%	0.499	0.377	0.148
Curve	153	12.7%	0.320	0.315	0.092
Total	1207	-	0.477	0.292	0.108

vs. Right								
Pitch	N	% Thrown	SwingProb	MissProb	WhiffProb			
Fastball	671	44.5%	0.512	0.221	0.097			
Cutter	490	32.5%	0.547	0.386	0.147			
Change	83	5.5%	0.518	0.481	0.172			
Curve	265	17.6%	0.386	0.406	0.121			
Total	1509	-	0.502	0.321	0.122			

Platoon effects are real. For all pitches, right handers were more likely to whiff.

Overall								
Count	N	%	%vL	SwingProb	MissProb	WhiffProb		
0-0	716	26.4%	46.5%	0.282	0.286	0.065		
0-1	364	13.4%	44.2%	0.509	0.348	0.138		
0-2	165	6.1%	45.5%	0.517	0.397	0.131		
1-0	256	9.4%	51.6%	0.473	0.305	0.114		
1-1	276	10.2%	43.1%	0.532	0.352	0.139		
1-2	257	9.5%	38.9%	0.601	0.337	0.151		
2-0	79	2.9%	54.4%	0.471	0.252	0.090		
2-1	148	5.4%	43.9%	0.655	0.294	0.146		
2-2	242	8.9%	37.6%	0.669	0.291	0.149		
3-0	20	0.7%	50.0%	0.113	0.182	0.022		
3-1	54	2.0%	51.9%	0.603	0.252	0.110		
3-2	139	5.1%	36.0%	0.773	0.198	0.129		
Overall	2716	-	44.4%	0.491	0.308	0.116		

Overall								
Count	N	%	%vL	SwingProb	MissProb	WhiffProb		
0-0	716	26.4%	46.5%	0.282	0.286	0.065		
0-1	364	13.4%	44.2%	0.509	0.348	0.138		
0-2	165	6.1%	45.5%	0.517	0.397	0.131		
1-0	256	9.4%	51.6%	0.473	0.305	0.114		
1-1	276	10.2%	43.1%	0.532	0.352	0.139		
1-2	257	9.5%	38.9%	0.601	0.337	0.151		
2-0	79	2.9%	54.4%	0.471	0.252	0.090		
2-1	148	5.4%	43.9%	0.655	0.294	0.146		
2-2	242	8.9%	37.6%	0.669	0.291	0.149		
3-0	20	0.7%	50.0%	0.113	0.182	0.022		
3-1	54	2.0%	51.9%	0.603	0.252	0.110		
3-2	139	5.1%	36.0%	0.773	0.198	0.129		
Overall	2716	-	44.4%	0.491	0.308	0.116		

Whiff probabilities can be dramatically different based on count. A 1-2 pitch is almost seven times as likely to be whiffed at than a 3-0 pitch.

Overall								
Count	N	%	%vL	SwingProb	MissProb	WhiffProb		
0-0	716	26.4%	46.5%	0.282	0.286	0.065		
0-1	364	13.4%	44.2%	0.509	0.348	0.138		
0-2	165	6.1%	45.5%	0.517	0.397	0.131		
1-0	256	9.4%	51.6%	0.473	0.305	0.114		
1-1	276	10.2%	43.1%	0.532	0.352	0.139		
1-2	257	9.5%	38.9%	0.601	0.337	0.151		
2-0	79	2.9%	54.4%	0.471	0.252	0.090		
2-1	148	5.4%	43.9%	0.655	0.294	0.146		
2-2	242	8.9%	37.6%	0.669	0.291	0.149		
3-0	20	0.7%	50.0%	0.113	0.182	0.022		
3-1	54	2.0%	51.9%	0.603	0.252	0.110		
3-2	139	5.1%	36.0%	0.773	0.198	0.129		
Overall	2716	-	44.4%	0.491	0.308	0.116		

Sample size: We have 716 cracks at 0-0 to figure out how to improve the whiff rate. There were only twenty 3-0 pitches.

- Players generally avoid swinging on 0-0, 3-0 counts but tend to make contact when they
 do
- Players swing more later in the count.
- Whiffs are more common as strikes increase. Less common with 0 or 3 balls.

	Sw	ring								
iti.	STRIKES									
В		0	1	2						
Α	0	0.28	0.51	0.52						
L	1	0.47	0.53	0.6						
L	2	0.47	0.66	0.67						
S	3	0.11	0.6	0.77						

	Mi	SS		
8			STRIKES	ì
В		0	1	2
Α	0	0.29	0.35	0.4
L	1	0.31	0.35	0.34
L	2	0.25	0.29	0.29
S	3	0.18	0.25	0.2

Overview

- 1. What is whiff rate? Does it matter?
- 2. Context, context, context
- 3. Improving Whiff Rate
- 4. Conclusions

Improving Whiff Rates

Are there situations where Pitcher X is throwing certain pitches suboptimally?

- What does optimal look like?
 - Game theory suggests optimization occurs when all pitches produce the same whiff rate
 - For individual pitches, certain mechanical factors could also improve performance
- Remember: Context, context, context
 - From earlier slides, we know that all pitches do not present equal whiff opportunities.
 - Count, pitch type, batter hand appear to have significant influence

Throw Less Fastballs vs. Lefties (and more changeups!)

- There are no counts where the fastball is the pitch most likely to whiff a lefty
- Consider the 1-0 pitch (table below):
 - Changeups are thrown as often as fastballs but are over twice as likely to draw a whiff
 - Cutters are significantly more effective as well with similar usage
- The fastball is similarly ineffective at upping whiff probability vs. righties. Ranked as the least effective pitch in all counts but 1-1

vs. Lefties, Count: 1-0									
	N	%	SwingProb	MissProb	WhiffProb				
FASTBALL	41	31%	45%	0.186	0.056				
CUTTER	42	32%	53%	0.269	0.109				
CHANGEUP	44	33%	39%	0.377	0.133				
CURVEBALL	5	4%	16%	0.541	0.073				

Throw Less Fastballs vs. Lefties (and more changeups!)

- The only counts a fastball isn't the least likely pitch to whiff a lefty are 0-0, and 1-1
- Both times it beats a curveball by less than 1%.
- Fastball is always a below average pitch with regards to whiff rates.

		Fastball Per	formance vs. Lefties	, by count		
Count	N	Best Pitch	WhiffProb (Best)	WhiffProb (FB)	Diff	Rank
0-0	333	Changeup	0.092	0.043	-0.049	3/4
0-1	161	Changeup	0.149	0.114	-0.035	LAST
0-2	75	Changeup	0.155	0.082	-0.073	LAST
1-0	132	Changeup	0.133	0.056	-0.077	LAST
1-1	119	Changeup	0.152	0.107	-0.045	3/4
1-2	100	Curveball	0.195	0.100	-0.095	LAST
2-0	43	Changeup	0.118	0.000	-0.118	LAST
2-1	65	Changeup	0.133	0.098	-0.035	LAST
2-2	91	Changeup	0.206	0.138	-0.068	LAST
3-0	10	7	0.143	0.006	-0.137	270
3-1	28	Cutter	0.126	0.074	-0.052	LAST
3-2	50	Changeup	0.191	0.066	-0.125	LAST
Overall	1207	Changeup	0.148	0.069	-0.079	LAST

Throw the changeup vs. righties (and less fastballs!)

- The changeup was thrown significantly less often vs. righties than lefties (5.5% vs. 28.1%)
- It is the most effective whiff-inducing pitch (17.2%). Even though it is expected to be swung at as often as a fastball, it is over TWICE as likely to be whiffed at if a swing is made than a fastball (48.1% vs 22.1%) and also more likely than a cutter or curve
 - o In spite of this the only two counts where a change was thrown at least ten times were 1-2 and 2-2. Thrown 3% of time in other counts.
 - In all cases, the changeup more than holds its own.
- Pitcher X is needlessly limiting himself to being effectively a three-pitch pitchers for 80% of his pitches vs. righties

	VS.	Righties	s, 1-1 or 2-2 o	counts	
	N	%	SwingProb	MissProb	WhiffProb
FASTBALL	139	45.1%	0.626	0.231	0.124
CUTTER	76	24.7%	0.634	0.350	0.161
CHANGEUP	44	14.3%	0.554	0.488	0.178
CURVEBALL	49	15.9%	0.623	0.333	0.149
Total	308	-	0.617	0.313	0.145

	VS	. Righti	es, other co	unts	
	N	%	SwingProb	MissProb	WhiffProb
FASTBALL	532	44.3%	0.483	0.218	0.090
CUTTER	414	34.5%	0.531	0.393	0.145
CHANGEUP	39	3.2%	0.478	0.472	0.164
CURVEBALL	216	18.0%	0.332	0.423	0.114
Total	1201	-	0.472	0.323	0.116

Be more aggressive on full counts

- Batters swing on 77% of full count pitches, by far the most of any pitch
 - In spite of swinging so often, batters only miss ~20% of the time, second lowest of any pitch (only 3-0 is lower)
- In addition to mixing up pitches, an opportunity exists to throw more selectively
 - o In spite of the fact that batters are most likely to swing at a 3-2 pitch, it is the pitch where Pitcher X puts the ball in the heart of the plate most often

Swing	STRIKES			
В		0	1	2
Α	0	0.28	0.51	0.52
L	1	0.47	0.53	0.6
L	2	0.47	0.66	0.67
S	3	0.11	0.6	0.77

Heart	2		STRIKES	
В		0	1	2
A	0	0.161	0.104	0.115
L	1	0.145	0.101	0.093
L	2	0.203	0.155	0.091
S	3	0.1	0.093	0.209

Be more aggressive on full counts

- Batters swing on 77% of full count pitches, by far the most of any pitch
 - In spite of swinging so often, batters only miss ~20% of the time, second lowest of any pitch (only 3-0 is lower)
- In addition to mixing up pitches, an opportunity exists to throw more selectively
 - o In spite of the fact that batters are most likely to swing at a 3-2 pitch, it is the pitch where Pitcher X puts the ball in the heart of the plate most often

Swing	STRIKES			
В		0	1	2
Α	0	0.28	0.51	0.52
L	1	0.47	0.53	0.6
L	2	0.47	0.66	0.67
S	3	0.11	0.6	0.77

Heart		STRIKES			
В		0	1	2	
Α	0	0.161	0.104	0.115	
L	1	0.145	0.101	0.093	
L	2	0.203	0.155	0.091	
S	3	0.1	0.093	0.209	

The two pitches with the highest swing probability are 2-2 and 3-2. On 2-2 pitches Pitcher X throws a pitch in the heart of the plate only 9% of the time to take advantage (fewest of all pitches). On 3-2 pitches he throws a pitch down the middle over 20% of the time.

Throw the curveball harder, and with more spin

- ReleaseSpeed and SpinRate help in most circumstances against both handed batting.
- For curveballs more than any other pitch, higher release speed and spin rate have a greater chance of being whiffed at.
- Release speed and spin rate are well correlated.

How to improve the changeup

- Could batters discern from arm angle that a changeup is coming? Would that make it less effective?
- While the changeup is pitch with the highest whiff probability, it appears there may be room to make it even better.

Looking at 0-1 counts, there appears to be a relationship between ReleaseHeight and whiff probability. Perhaps because the pitch is better disguised?

Overview

- 1. What is whiff rate? Does it matter?
- 2. Context, context, context
- 3. Improving Whiff Rate
- 4. Conclusions

Conclusions

Some suggestions to increase the whiff rate of pitcher X:

- 1. Less fastballs (and more changeups), especially vs. lefties.
- 2. More changeups (and less fastballs), especially vs. righties.
- 3. Be more aggressive on 3-2 counts, move away from heart of plate to take advantage of batter aggressiveness
- 4. Throw the curveball harder
- 5. Consider a higher release point on changeups to more closely mimic other pitch release points.

What we left out?

- For the sake of simplicity, we only looked at whiff rate. However, in real life we know that what happens to a ball once put in play is not insignificant.
 - A high variance pitch could produce a lot of dingers AND a lot of whiffs.
 - The chain of all time strikeout leaders in MLB history goes Ruth, Mantle, Stargell, Jackson. That's a nice list.
- Called strikes (especially later in the count) are also valuable and are not included. In fact, no outcomes were noted in the dataset.
- Sequencing of pitches was ignored. Changeups in particular are valuable because of the change of pace. If they were thrown all the time they'd become slow fastballs.
- Sample sizes were very small in certain cases.

Thank you!

Ken Schroeder schroeder.w.ken@gmail.com