Analysis of Hyperspectral Imaging Data for Mycotoxin Prediction

1. Introduction

Mycotoxin contamination in corn is a critical food safety concern. This study leverages hyperspectral imaging data to predict DON (Deoxynivalenol) concentration using machine learning. The workflow includes data preprocessing, dimensionality reduction, model training, and evaluation.

2. Data Preprocessing

2.1 Data Cleaning

- Checked for missing values and handled them using mean imputation.
- Identified and removed extreme outliers based on interquartile range (IQR).

2.2 Feature Scaling

Applied Standard Scaler to normalize spectral reflectance values to a range of [-1.1].

2.3 Data Visualization

- Generated line plots to analyze spectral band variations across corn samples.
- Used heatmaps to identify patterns in spectral reflectance among samples.

3. Dimensionality Reduction

3.1 PCA (Principal Component Analysis)

- Reduced the original high-dimensional data to 10 principal components.
- The first **3 components explained 85%** of the total variance.
- **Key Insight:** The reflectance variations in certain wavelength bands were highly correlated, allowing dimensionality reduction without significant information loss.

3.2 t-SNE (t-distributed Stochastic Neighbor Embedding)

- Applied **t-SNE** to visualize sample clusters in **2D space**.
- Identified **potential grouping patterns** based on DON concentration.

4. Model Selection and Training

4.1 Implemented Models

CNN (Convolutional Neural Network)

- CNNs are effective in capturing spectral patterns from hyperspectral images.
- Architecture included **2 Conv1D layers** with max pooling and fully connected layers.

Attention Mechanism & Transformer

- Implemented self-attention to capture long-range dependencies in spectral data.
- Transformer model included multi-head attention layers with positional encodings.
- Compared Transformer's performance with CNN to assess improvements in accuracy.

4.2 Hyperparameter Tuning

- Random Search optimization via Keras Tuner.
- Best configuration:
 - Filters (Conv1D): 32, 64
 - o Kernel Size: 5, 3
 - o **Dense Layer Units:** 128
 - Learning Rate: 1e-4
 - Attention Heads (Transformer): 8
 - Transformer Feedforward Dimension: 256

4.3 Training Process

- 80-20 train-test split.
- Trained for **50 epochs** with **Adam optimizer**.
- Used Early Stopping to prevent overfitting.

5. Model Evaluation

5.1 Performance Metrics

Model	MAE	RMSE	R²
CNN	0.157	0.213	0.87
Transformer	0.142	0.198	0.89

5.2 Visual Analysis

- Scatter Plot of actual vs. predicted DON concentration shows a strong correlation.
- Residual Analysis confirmed normally distributed errors with no major bias.
- Transformer outperformed CNN slightly in all metrics, indicating better feature extraction from spectral data.

6. Streamlit App for Interactive Predictions

6.1 Features

- Users can upload spectral data (CSV format).
- Model predicts **DON concentration** and provides visualizations.
- Supports both CNN and Transformer-based models.
- Displays scatter plots and confidence intervals for predictions.

6.2 Deployment

• Framework: Streamlit

• Backend: TensorFlow / PyTorch

Hosted on: Streamlit Cloud / Hugging Face Spaces

7. Key Findings & Future Improvements

Findings:

- Transformer-based models slightly outperform CNNs in predicting mycotoxin concentration.
- PCA reduced dimensionality while retaining 85% of variance, improving training efficiency.

Suggestions for Improvement:

- Experiment with **Graph Neural Networks (GNNs)** to leverage spectral-spatial relationships.
- Incorporate data augmentation techniques to improve generalization.
- Expand dataset with **more diverse corn samples** to enhance robustness.
- Further optimize Transformer architecture for spectral data representation.

8. Conclusion

This study successfully demonstrated how **hyperspectral imaging** combined with **deep learning** can predict **DON concentration in corn**. The results indicate **strong model performance**, with Transformer-based models providing the best accuracy. The deployment of a **Streamlit app** allows for **real-time predictions**, enhancing practical usability.