as4 AAD 2015/2016 Lecture 04

DIVIDE & WAVER

Split problem into subproblems, solve sub problems can sively, combine the solutions.

$$T(n) = T(n-1) + \theta(n)$$

$$= > T(n) = \theta(u^2)$$
worst

 $T(n) = T(n-1) + \theta(n)$ $\Rightarrow insut$

MERGE SONT

split Half 0-0-0-0-0-0-0-0-0

menge

QUICK GONT

$$T(n) = T(n_1) + T(n_2) + O(n)$$

→0→0→0→0→0→0→0 gatition $0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$ 50 6

=7
$$T(n)=0$$
 ($n(a_{3}n)$ best can $n_{1}=n_{2}$
 $T(n)=0$ (n^{2}) worst can $n_{3}=1$, $n_{2}=n-2$

merge (megesort left) (megesort right)
where (left, right) = split xs

Pseudo code Hosburl Vate

merge (x:xs) (nj:ys) =

{ x:(mage xs y:ys) if xsy

nj:(mage x:xsys) othawise.

Excluded during lecture.

Lemma

split and merge have worst-care ventime {(n):0(n).

Thm:

The worst case vuntime of nergesort is $\Theta(n \log n)$.

Proof

The worst-case vantime of mergesont is $T(n) = 2T(n/2) + f(n), \quad \text{where}$

I(m)=O(n) is the worst-ask time for many and split.

De apply the Maste Theorem with a = b = 2.

Becomen $f(n) \in \Theta(n^{\log_{10} n}) = \Theta(n)$ it follows that $T(n) = \Theta(n^{\log_{10} n}) = \Theta(n \log_{10} n).$

Lemma

Thum

inschousof has wast- case untime O (n2).

Proof

By the iteration medhod

$$T(n) = T(n-1) + f(n)$$

= $T(n-2) + f(n-1) + f(n)$
:

$$= \sum_{i=0}^{n-1} d(m-i) = O\left(\sum_{i=0}^{n-1} m-i\right) = O(n^2)$$

Lemma

Theorem

quicksoft has wast-core venture
$$O(n^2)$$
 and best-care venture $O(n \log n)$.

Part

$$T(m) = T(m-1) + T(0) + f(n)$$

$$\vdots$$

$$= (m-1)T(0) + \sum_{n=0}^{\infty} f(n-i)$$

$$= \left(\frac{m-1}{n} \right) = \left(\frac{m-1}{n} \right) = \left(\frac{m^2}{n^2} \right)$$

Best con:
$$M_1 = \frac{n}{2}$$
 and $M_2 = \frac{n}{2}$ in every recursion $T(n) = 2T(n(2) + f(n))$

$$= T(n) = \Theta(n \log n).$$