Non-linear State Space Models

Table of Contents

1- state space models + RNN

- adding latent variable to RNN
- adding RNN to state space

2-Normalizing Flow

- normalizing kalman filter
- normalizing flow + RNN

3- why combination of state space models + RNN is beneficial?

4- Ideas

 non-linear state space models using normalizing flow

1- state space models + RNN

- adding latent variable to RNN
 - adding RNN to state space

1) Adding latent Variable to RNN

[1] Bayer, J. and Osendorfer, C., 2014. **Learning stochastic recurrent networks**. *arXiv preprint arXiv:1411.7610*.

[2] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. and Bengio, Y., 2015. **A recurrent latent variable model for sequential data**. *arXiv preprint arXiv:1506.02216*.

RNN:

$$\mathbf{h}_{t} = f_{\theta} \left(\mathbf{x}_{t}, \mathbf{h}_{t-1} \right)$$

$$p(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{T}) = \prod_{t=1}^{T} p(\mathbf{x}_{t} \mid \mathbf{x}_{< t})$$

$$p(\mathbf{x}_{t} \mid \mathbf{x}_{< t}) = g_{\tau}(\mathbf{h}_{t-1}),$$

Variational RNN:

$$\begin{split} \mathbf{z}_t &\sim \mathcal{N}(\boldsymbol{\mu}_{0,t}, \operatorname{diag}(\boldsymbol{\sigma}_{0,t}^2)) \\ & \text{where } [\boldsymbol{\mu}_{0,t}, \boldsymbol{\sigma}_{0,t}] = \varphi_{\tau}^{\operatorname{prior}}(\mathbf{h}_{t-1}), \\ \mathbf{x}_t \mid \mathbf{z}_t &\sim \mathcal{N}(\boldsymbol{\mu}_{x,t}, \operatorname{diag}(\boldsymbol{\sigma}_{x,t}^2)) \\ & \text{where } [\boldsymbol{\mu}_{x,t}, \boldsymbol{\sigma}_{x,t}] = \varphi_{\tau}^{\operatorname{dec}}(\varphi_{\tau}^{\mathbf{z}}(\mathbf{z}_t), \mathbf{h}_{t-1}), \\ \mathbf{h}_t &= f_{\theta} \left(\varphi_{\tau}^{\mathbf{x}}(\mathbf{x}_t), \varphi_{\tau}^{\mathbf{z}}(\mathbf{z}_t), \mathbf{h}_{t-1} \right), \end{split}$$

1) Adding latent Variable to RNN

Variational RNN

(b) Generation

(c) Recurrence

(d) Inference

[3] Krishnan, R.G., Shalit, U. and Sontag, D., 2015. **Deep kalman filters**. *arXiv preprint arXiv:1511.05121*.

[4] Krishnan, R., Shalit, U. and Sontag, D., 2017, February. **Structured inference networks for nonlinear state space models.** In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 31, No. 1).

Gaussian State Space model:

$$z_t \sim \mathcal{N}(G_{\alpha}(z_{t-1}, \Delta_t), S_{\beta}(z_{t-1}, \Delta_t))$$
 (Transition) (1)

$$x_t \sim \Pi(F_\kappa(z_t))$$
 (Emission) (2)

linear State Space model:

$$G_{\alpha}(z_{t-1}) = G_t z_{t-1}, S_{\beta} = \Sigma_t, F_{\kappa} = F_t z_t,$$

posterior distribution $p(z_1, \ldots z_T | x_1, \ldots, x_T, u_1, \ldots, u_T)$ becomes intractable to compute.

Stochastic Backpropagation: (VAE)

$$\log p_{\theta}(x) = \log \int_{z} \frac{q_{\phi}(z|x)}{q_{\phi}(z|x)} p_{\theta}(x|z) p_{0}(z) dz \ge \int_{z} q_{\phi}(z|x) \log \frac{p_{\theta}(x|z) p_{0}(z)}{q_{\phi}(z|x)} dz$$
$$= \underset{q_{\phi}(z|x)}{\mathbb{E}} \left[\log p_{\theta}(x|z) \right] - \text{KL}\left(q_{\phi}(z|x) || p_{0}(z) \right) = \mathcal{L}(x; (\theta, \phi)),$$

[5] Salinas, D., Flunkert, V., Gasthaus, J. and Januschowski, T., 2020. **DeepAR: Probabilistic forecasting with autoregressive recurrent networks**. *International Journal of Forecasting*, 36(3), pp.1181-1191.

[6] Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y. and Januschowski, T., 2018. **Deep state space models for time series forecasting.** *Advances in neural information processing systems*, *31*, pp.7785-7794.

adding state space to rnn

Datasets	Methods	2-weeks		3-weeks		4-weeks	
		p50Loss	p90Loss	p50Loss	p90Loss	p50Loss	p90Loss
electricity	auto.arima	0.283	0.109	0.291	0.112	0.30	0.11
	ets	0.121	0.101	0.130	0.110	0.13	0.11
	DeepAR	0.153	0.147	0.147	0.132	0.125	0.080
	DeepState	0.087	0.05	0.085	0.052	0.085	0.057
traffic	auto.arima	0.492	0.280	0.492	0.289	0.501	0.298
	ets	0.621	0.650	0.509	0.529	0.532	0.60
	DeepAR	0.177	0.153	0.126	0.096	0.219	0.138
	DeepState	0.168	0.117	0.170	0.113	0.168	0.114

Table 1: Data efficiency. Evaluation on electricity and traffic datasets with increasing training range. The forecast is evaluated on 7 days.

Parameter learning:

The state space model is fully specified by the parameters:

$$\Theta_t = (\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0, \boldsymbol{F}_t, \boldsymbol{g}_t, \boldsymbol{a}_t, b_t, \sigma_t)$$

2-Normalizing Flow

- normalizing kalman filter
- normalizing flow + RNN

[7] de Bézenac, E., Rangapuram, S.S., Benidis, K., Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson, H., Gallinari, P. and Januschowski, T., 2020. **Normalizing Kalman Filters for Multivariate Time Series Analysis.** *Advances in Neural Information Processing Systems*, 33.

[8] Rasul, K., Sheikh, A.S., Schuster, I., Bergmann, U. and Vollgraf, R., 2020. **Multi-variate probabilistic time series forecasting via conditioned normalizing flows.** *arXiv preprint arXiv:2002.06103*.

3- why combination of state space models + RNN is beneficial?

- 1) The only source of variability in RNN is conditional output variability. This is a problem for highly variable, highly structured (high signal-to-noise ratio).
- 2) Incorporation of structural assumptions + data efficient.
- 3) Long-term forecast with effective uncertainty estimation.

4-Ideas

 non-linear state space models using normalizing flow [6] Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y. and Januschowski, T., 2018. **Deep state space models for time series forecasting.** *Advances in neural information processing systems*, *31*, pp.7785-7794.

[7] de Bézenac, E., Rangapuram, S.S., Benidis, K., Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson, H., Gallinari, P. and Januschowski, T., 2020. **Normalizing Kalman Filters for Multivariate Time Series Analysis.** *Advances in Neural Information Processing Systems*, 33.

[3] Krishnan, R.G., Shalit, U. and Sontag, D., 2015. **Deep kalman filters**. *arXiv preprint arXiv:1511.05121*.

[7] de Bézenac, E., Rangapuram, S.S., Benidis, K., Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson, H., Gallinari, P. and Januschowski, T., 2020. **Normalizing Kalman Filters for Multivariate Time Series Analysis.** *Advances in Neural Information Processing Systems*, 33.

[9] Kingma, D.P. and Welling, M., 2013. **Auto-encoding variational bayes.** *arXiv preprint arXiv:1312.6114*.

[10] Rezende, D. and Mohamed, S., 2015, June. **Variational inference with normalizing flows.** In *International Conference on Machine Learning* (pp. 1530-1538). PMLR.

- approximate posterior distributions using normalizing flows
- An interesting question is whether using the idea of the universality of normalizing flows one can transform q(z|x) to be equal (or arbitrarily close) to p(z|x) and thus attain equality in the lower bound. Such a result leads to a consistency result for the learned model, stemming from the consistency of maximum likelihood

Thank you.

