1 Directional Derivatives

1.1 Recall Partial Derivatives:

FIGURE 14.18 Figures 14.16 and 14.17 combined. The tangent lines at the point $(x_0, y_0, f(x_0, y_0))$ determine a plane that, in this picture at least, appears to be tangent to the surface.

For z = f(x, y), we have

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}$$

FIGURE 14.18 Figures 14.16 and 14.17 combined. The tangent lines at the point $(x_0, y_0, f(x_0, y_0))$ determine a plane that, in this picture at least, appears to be tangent to the surface.

1.2 Definition of Directional Derivatives:

Definition: For z = f(x, y), given a unit vector $\vec{u} = (u_1, u_2)$,

Remarks:

(1)
$$\frac{\partial f}{\partial x}(a,b) = D_{(1,0)}f(a,b), \qquad \frac{\partial f}{\partial y}(a,b) = D_{(0,1)}f(a,b).$$

(2) For any $\vec{u} \neq \vec{0}$,

$$D_{\vec{u}}f(a,b) = \lim_{s \to 0} \frac{f((a,b) + s(u_1, u_1)) - f(a,b)}{s\sqrt{u_1^2 + u_2^2}}.$$

1.3 Geometrical Interpretation of $D_{\vec{u}}f$:

Given z = f(x, y) and a unit vector $\vec{u} \neq \vec{0}$, let

$$g(t) = f((x_0, y_0) + t\vec{u})$$
 for $t \in [-1, 1]$,

then g forms a curve on the surface of f passing through $(x_0, y_0, f(x_0, y_0))$.

$$D_{\vec{u}}(f)(x_0, y_0) = \lim_{t \to 0} \frac{f((x_0, y_0) + t\vec{u}) - f(x_0, y_0)}{t}$$
$$= \lim_{t \to 0} \frac{g(t) - g(0)}{t}$$
$$= g'(0),$$

Therefore, $D_{\vec{u}}(f)(x_0, y_0)$ is the slope of the tangent line of the curve $f((x_0, y_0) + t\vec{u})$ at $(x_0, y_0, f(x_0, y_0))$.

Example. Given $f(x,y) = x^2 + y^2$, $\vec{u} = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Find $D_{\vec{u}}f(1,1)$.

Example. Given $f(x,y) = x^2 - y^2$, $\vec{u} = (3,4)$. Find $D_{\vec{u}}f(1,1)$.

Computation Remark: If f is partial differentiable at (a, b), then for any vector $\vec{v} = (v_1, v_2)$, usually

$$D_{\vec{u}}f(a,b) = (f_x(a,b), f_y(a,b)) \cdot \frac{\vec{v}}{\|\vec{v}\|}.$$

Particularly, if \vec{v} is a unit vector, i.e. $||\vec{v}||=1$, then

$$D_{\vec{v}}f(a,b) = (f_x(a,b), f_y(a,b)) \cdot (v_1, v_2)$$
$$= v_1 f_x(a,b) + v_2 f_y(a,b)$$
$$= \nabla f(a,b) \cdot \vec{v},$$

where we define ∇f (or denoted by grad f)

$$\nabla f = (f_x, f_y)$$

to be the gradient vector of f.

Example. Given $f(x,y) = x^2 + y^2$, $\vec{u} = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Find $D_{\vec{u}}f(1,1)$.

Example $f(x,y) = xe^y + \cos(xy)$. Find directional derivative of f at P(2,0) along $\vec{u} = 3\vec{i} - 4\vec{j}$.

1.4 Directions along which f changes most rapidly or unchanges

Example Find the direction in which $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$

- (1) increases most rapidly at (2, 1).
- (2) decreases most rapidly at (2, 1).
- (3) what are the direction of zera change of f at (1,1)?

Example Find the direction in which $f(x,y) = xe^y + \cos(xy)$

- (1) increases most rapidly at (2,0).
- (2) decreases most rapidly at (2,0).
- (3) what are the direction of zera change of f at (2,0)?

2 Differentiable

Definition z = f(x, y) is differentiable at point (x_0, y_0) if

Remarks:

- ullet If f is differentiable, then f is directional differentiable along any direction.
- If f is differentiable at P, then f is continuous at P.
- Directional differentiability can not guarantee continuity.

Example Let

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- (1) Show f is directional differentiable at (0,0) along any direction. Say $\vec{u}=(a,b)$ with $a^2+b^2=1$.
- (2) Show f is not differentiable.
- (3) Check $\nabla f(0,0) \cdot \vec{u}$ and $D_{\vec{u}}(0,0)$.