A Closer Look at the Robustness of Visionand-Language Pre-trained Models

Linjie Li, Zhe Gan, Jingjing Liu

Image: Single image

Language: Textual Descriptions

• Pre-trained multimodal Transformers have achieved SOTA performance across a wide range of V+L tasks

Image: Single image

Language: Textual Descriptions

Pre-trained multimodal Transformers have achieved SOTA performance across a wide range of V+L tasks

How robust are these pre-trained V+L Models?

Similar Data Distribution

Little-to-None Linguistic Variations

Original Q: What is in the basket? A: Remote

Rephrasing Q: What can be seen inside the basket? A: Remote

Logical Transformation Q: Is remote in the basket? A: Yes

Standard V+L Tasks

- VQA VCR NLVR2
- Visual Entailment
- Referring Expressions
- Image-Text Retrieval
- Image Captioning

Without Visual Content Manipulations

A Closer Look At the Robustness of Vision-and-Language Pre-trained Models

- The first systematical examination of pre-trained V+L model robustness over 4 generic robustness types
 - Linguistic Variation
 - Logical Reasoning
 - Visual Content Manipulation
 - Answer Distribution Shift
- We present MANGO (Multimodal Adversarial Noise GeneratOr)
 - A generic and efficient adversarial training approach
 - Surpasses SOTA on 7 out of 9 robustness benchmarks by a large margin

Preliminary: Robust Evaluation of V+L VQA Models

- VQA-CP [Agrawal et al. CVPR 2018]
 - The first VQA robustness benchmark on answer distribution shift
 - Constructed by reshuffling original VQA train and test splits
 - Previous methods focusing on VQA-CP
 - Auxiliary model as regularizer [NeurIPS 19, EMNLP 19]
 - Additional supervision with human-generated attention maps [ICCV 19, EMNLP 20]
 - Synthesize counterfactual examples as data augmentation [CVPR 2020]
- Recent work: GQA-OOD [Kervadec et al. arXiv Preprint 2020]
 - Designed based on a fine-grained reorganization of GQA dataset

Preliminary: Robust Evaluation of \(\formall +\formall \) VQA Models

- Linguistic Variation
 - VQA-Rephrasings [Shah et al. CVPR 2019] collects human-generated rephrasings of original VQA question
- Logical Reasoning
 - VQA-LOL [Gokhale et al. ECCV 2020] with logical combination of Y/N questions
 - VQA-Introspect [Selvaraju et al. CVPR 2020] with high-level reasoning questions and low-level perceptual questions
 - GQA [Hudson and Manning CVPR 2019] with rule-based questions to analyze reasoning skills of VQA model
- Visual Content Manipulation
 - IV-VQA and CV-VQA [Agarwal et al. CVPR 2020] introduces manipulated images with irrelevant objects removed

Robust VQA Benchmarks

Compilation of 9 diverse VQA datasets covering 4 types of robustness

Linguistic Variation (Lingual)

VQA-Rephrasings

Logical Reasoning (Reason)

- VQA-LOL Compose
 VQA-Introspect
- VQA-LOL Supplement
 GQA

Visual Content Manipulation (Visual)

- IV-VQA
- CV-VQA

Answer Distribution Shift (Answer)

- VQA-CP v2
- GQA-OOD

Robust VQA Benchmarks

Туре	Benchmark	Metric	Q Type	Trai	n		7	/al	Т	est
- J P		_,,	C -JP -	Source	#IQ	len(Q)	#IQ	len(Q)	#IQ	len(Q)
Lingual	VQA-Rep. [58]	Acc.	All	VQA v2 [20] train	444K	6.20	162K	7.15	-	-
	VQA-LOL Comp. [18]	Acc.	Y/N	VQA v2 train	444K	6.20	43K	12.09	291K	12.12
Reason	VQA-LOL Supp. [18]	Acc.	Y/N	VQA v2 train	444K	6.20	9K	15.15	669K	15.19
Reason	VQA-Intro. [56]	M√S√	All	VQA v1 [6] train	248K	6.21	-	-	95K	6.36
	GQA [26]	Acc.	All	-	943K	8.76	132K	8.77	13K	8.51
Visual	IV-VQA [2]	#flips	All	VQA v2 train	444K	6.20	120K	5.85	-	_
visuai	CV-VQA [2]	#flips	Num.	VQA v2 train	444K	6.20	4K	5.83	-	-
Anguian	VQA-CP v2 [3]	Acc.	All	-	438K	6.14	-	-	220K	6.31
Answer	GQA-OOD [32]	Acc.	All	GQA train	943K	8.76	51K	8.09	3K	7.70

Table 1: Detailed descriptions of each downstream benchmark, including robustness type, evaluation metric, question type, training data source and statistics on train, val, test data in terms of number of Image-Question pairs (#IQ) and average question length (len(Q)). We use the training data provided with the benchmark unless specified otherwise. Results on val split are reported when test split is not available. Acc. is short for Accuracy. $M \checkmark S \checkmark$ is a consistency measure between main questions and sub-questions in VQA-Introspect. #flips is the number of predictions mismatched before and after visual content manipulation.

Robust VQA Benchmarks

Туре	Benchmark	Metric	Q Type	Trai	n			/al	Т	est
- J F			C -71	Source	#IQ	len(Q)	#IQ	len(Q)	#IQ	len(Q)
Lingual	VQA-Rep. [58]	Acc.	All	VQA v2 [20] train	444K	6.20	162K	7.15	-	-
	VQA-LOL Comp. [18]	Acc.	Y/N	VQA v2 train	444K	6.20	43K	12.09	291K	12.12
Reason	VQA-LOL Supp. [18]	Acc.	Y/N	VQA v2 train	444K	6.20	9K	15.15	669K	15.19
Reason	VQA-Intro. [56]	M√S√	All	VQA v1 [6] train	248K	6.21	-	-	95K	6.36
	GQA [26]	Acc.	All	-	943K	8.76	132K	8.77	13K	8.51
Visual	IV-VQA [2]	#flips	All	VQA v2 train	444K	6.20	120K	5.85	-	-
visuai	CV-VQA [2]	#flips	Num.	VQA v2 train	444K	6.20	4K	5.83	-	-
Λησινος	VQA-CP v2 [3]	Acc.	All	-	438K	6.14	-	-	220K	6.31
Answer	GQA-OOD [32]	Acc.	All	GQA train	943K	8.76	51K	8.09	3K	7.70

Table 1: Detailed descriptions of each downstream benchmark, including robustness type, evaluation metric, question type, training data source and statistics on train, val, test data in terms of number of Image-Question pairs (#IQ) and average question length (len(Q)). We use the training data provided with the benchmark unless specified otherwise. Results on val split are reported when test split is not available. Acc. is short for Accuracy. $M \checkmark S \checkmark$ is a consistency measure between main questions and sub-questions in VQA-Introspect. #flips is the number of predictions mismatched before and after visual content manipulation.

Preliminary: Pre-trained V+L Models

Preliminary: Pre-trained V+L Models

Baseline: Gaussian Noise Augmentation

Adversarial Noise Generator

Adversarial Noise Generator

Maximize for Adv. Noise Generator

Adversarial Noise Generator

$$\mathcal{L}_{std}(oldsymbol{ heta}, oldsymbol{\phi}_v) = \mathcal{L}_{ ext{BCE}}(f_{oldsymbol{ heta}}(oldsymbol{v}, oldsymbol{w}), oldsymbol{y})$$

$$\mathcal{R}_{at}(m{ heta}, m{\phi}_v) = \mathcal{L}_{ ext{BCE}}(f_{m{ heta}}(m{v} + g_{m{\phi}_v}(m{lpha}), m{w}), m{y})$$
 perturbed inputs $+ \mathcal{L}_{kl}(f_{m{ heta}}(m{v} + g_{m{\phi}_v}(m{lpha}), m{w}), f_{m{ heta}}(m{v}, m{w}))$

KL Divergence between clean inputs and perturbed inputs

Adversarial Noise Generator

Perturbations generated via a small neural network

Random Masking

Motivation: significant mismatch in the distribution of question lengths and image regions between training and test splits of robustness benchmarks

- Benchmarks: 9 Robust VQA benchmarks + standard VQA v2
- Methods for comparison:
 - SOTA task-specific state of the art
 - UNITER-B and UNITER-L
 - VILLA-B and VILLA-L
 - MANGO-B and MANGO-L applying MANGO to UNITER-pretrained models
 - MANGO-VB and MANGO-VL applying MANGO to VILLA-pretrained models

			Lingual		Reaso	n		Vis	ual	Ans	swer	
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	M√ S√↑	Acc. ↑	#flips ↓	#flips↓	Acc. ↑	Acc. ↑	Acc. ↑
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69
2	Uniterb	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70
3	$MANGO_B$	42.80	65.80	56.22	56.49	58.33	60.65	7.32	38.11	47.52	55.15	73.24
4	VILLAB	42.37	65.35	54.90	56.17	58.29	60.26	7.07	38.28	46.39	54.11	73.59
5	$MANGO_{VB}$	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45
6	UNITERL	43.37	67.64	58.60	55.95	57.64	60.30	8.20	36.66	50.98	53.65	73.82
7	$\mathbf{M}\mathbf{A}\mathbf{N}\mathbf{G}\mathbf{O}_{\mathbf{L}}$	45.27	68.33	59.45	60.50	62.14	61.10	6.69	35.52	52.76	56.40	74.26
8	VILLAL	44.33	68.16	58.66	58.29	62.00	61.38	6.70	37.55	49.10	55.26	74.69
9	M ANGO $_{VL}$	45.31	68.27	61.49	58.83	62.60	61.41	6.73	35.64	52.55	56.08	74.20

			Lingual					Visual		Answer		
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	M√ S√↑	Acc. ↑	#flips ↓	#flips ↓	Acc. ↑	Acc. ↑	Acc. ↑
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69
2	Uniterb	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70
3	$MANGO_B$	42.80	65.80	56.22	56.49	58.33	60.65	7.32	38.11	47.52	55.15	73.24
4	VILLAB	42.37	65.35	54.90	56.17	58.29	60.26	7.07	38.28	46.39	54.11	73.59
5	$Mango_{VB}$	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45

- UNITER-B establishes a strong baseline
- MANGO-B achieves across-the-board performance lift on all benchmarks over UNTIER-B, including VQA v2
- MANGO-VB outperforms VILLA-B on 7 out of 9 robustness benchmarks, but is 25% faster

			Lingual		Reaso	n		Vis	sual	Ans	wer	
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	M√ S√↑	Acc. ↑	#flips ↓	#flips ↓	Acc. ↑	Acc. ↑	Acc. ↑
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69
2	Uniterb	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70
3	$MANGO_B$	42.80	65.80	56.22	56.49	58.33	60.65	7.32	38.11	47.52	55.15	73.24
4	VILLAB	42.37	65.35	54.90	56.17	58.29	60.26	7.07	38.28	46.39	54.11	73.59
5	$MANGO_{VB}$	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45
6	Uniter _L	43.37	67.64	58.60	55.95	57.64	60.30	8.20	36.66	50.98	53.65	73.82
7	$\mathbf{M}\mathbf{A}\mathbf{N}\mathbf{G}\mathbf{O}_{\mathbf{L}}$	45.27	68.33	59.45	60.50	62.14	61.10	6.69	35.52	52.76	56.40	74.26
8	VILLAL	44.33	68.16	58.66	58.29	62.00	61.38	6.70	37.55	49.10	55.26	74.69
9	$Mango_{VL}$	45.31	68.27	61.49	58.83	62.60	61.41	6.73	35.64	52.55	56.08	74.20

- Scaling up to large model size, we observe consistent performance improvement as in other V+L pretraining works
- MANGO further pushes the margins of performance gain across all benchmarks

			Lingual		Reaso	n		Vis	sual	An	swer	
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	M√ S√↑	Acc. ↑	#flips ↓	#flips ↓	Acc. ↑	Acc. ↑	Acc. ↑
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69
2	UNITERB	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70
	$Mango_B$	42.80	65 80	56 22	56 49	58 33	60.65	7 32.	32 11	47.52	55 15	73.24
4	VILLAB	42.37	+11.74	+12.50	+9.96	+12.55	60.26	+0.84	+42.9	5.39	+3.70	73.59
5	MANGOVB	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45
	UNITERL	43.37	67.64	58.60	55.95	57.64	60.30	8.20	36.66	50.98	53.65	73.82
7	$Mango_L$	45.27	68.33	59.45	60.50	62.14	61.10	6.69	35.52	52.76	56.40	74.26
8	VILLAL	44.33	68.16	58.66	58.29	62.00	61.38	6.70	37.55	49.10	55.26	74.69
9	$Mango_{VL}$	45.31	68.27	61.49	58.83	62.60	61.41	6.73	35.64	52.55	56.08	74.20

- Comparison with SOTA, MANGO pushes state-of-the-art performance by a large margin on 7 out of 9 benchmarks
- On VQA-CP v2 and GQA, the SOTA methods exploit additional task-specific information (for example, scene graphs)

A Closer Look at Robustness: Lingual

			Lingual		Reaso	n		Visual		Answer		
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	M√S√↑	Acc. ↑			Acc. ↑	Acc. ↑	Acc. ↑
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69
2	Uniterb	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70
3	$MANGO_B$	42.80	65.80	56.22	56.49	58.33	60.65	7.32	38.11	47.52	55.15	73.24
4	VILLAB	42.37	65.35	54.90	56.17	58.29	60.26	7.07	38.28	46.39	54.11	73.59
5	$MANGO_{VB}$	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45

- Excessive variations of textual inputs seen during pre-training may help UNITER defending model robustness
- Random masking introduced from the text modality enables more diverse adversarial examples for MANGO, compared to VILLA

A Closer Look at Robustness: Reason

			Lingual		Reaso	n		Visual		Answer		
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	$\overline{M\checkmark S\checkmark \uparrow}$	Acc. ↑			Acc. ↑	Acc. ↑	Acc. ↑
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69
2	UNITERB	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70
3	$MANGO_B$	42.80	65.80	56.22	56.49	58.33	60.65	7.32	38.11	47.52	55.15	73.24
4	VILLAB	42.37	65.35	54.90	56.17	58.29	60.26	7.07	38.28	46.39	54.11	73.59
5	$MANGO_{VB}$	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45

- UNITER suffers on VQA-LOL, especially VQA-LOL Supplement
- VILLA brings performance lift on all 4 reasoning benchmarks
- MANGO-VB outperforms VILLA-B, especially on VQA-LOL, whose question length is much longer than that in VQA v2

A Closer Look at Robustness: Visual

			Lingual					Vis	sual	Ans	swer	
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	M√S√↑	Acc. ↑	#flips ↓	#flips ↓	Acc. ↑	Acc. ↑	Acc. ↑
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69
2	Uniterb	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70
3	$MANGO_B$	42.80	65.80	56.22	56.49	58.33	60.65	7.32	38.11	47.52	55.15	73.24
4	VILLAB	42.37	65.35	54.90	56.17	58.29	60.26	7.07	38.28	46.39	54.11	73.59
5	$MANGO_{VB}$	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45

- Diverse images seen during pre-training may help UNITER defending model robustness
- MANGO-B, VILLA-B, MANGO-VB performs on par to each other

A Closer Look at Robustness: Answer

			Lingual		Reaso	n		Vis	sual	Answer			
	Model		VQA- Rep.	VQA-LOL Comp.	VQA-LOL Supp.	VQA- Intro.	GQA	IV- VQA	CV- VQA	VQA- CP v2	GQA- OOD	VQA v2	
		Meta-Ave. ↑	Acc. ↑	Acc. ↑	Acc. ↑	M√S√↑	Acc. ↑			Acc. ↑	Acc. ↑	Acc. ↑	
1	SOTA	N/A	56.59	48.99	50.54	50.05	63.17	7.53	78.44	69.52	52.70	74.69	
2	UNITERB	40.98	64.56	54.54	50.00	56.80	59.99	8.47	40.67	46.93	53.43	72.70	
3	$MANGO_B$	42.80	65.80	56.22	56.49	58.33	60.65	7.32	38.11	47.52	55.15	73.24	
4	VILLAB	42.37	65.35	54.90	56.17	58.29	60.26	7.07	38.28	46.39	54.11	73.59	
5	M ANGO $_{VB}$	43.08	65.91	55.44	57.58	58.94	60.73	7.43	38.25	48.63	55.79	73.45	

- VILLA suffers on VQA-CP v2, with performance degradation comparing to UNITER
- MANGO outperforms VILLA on both benchmarks, with better generalizability to challenging OOD datasets

			VQA-	VQA-LOL	VQA-LOL	IV-	VQA-CP
Modality		Method	Rep.	Comp.	Supp.	VQA	v2
•			Acc. ↑	Acc. ↑	Acc. ↑	#flips↓	Acc. ↑
None	1	None	64.56	54.54	50.00	8.47	47.29
	2	GN	65.17	54.46	50.68	8.45	47.29
Image	3	AN	65.42	54.59	52.54	7.52	47.38
	4	Mango	65.51	56.67	55.20	7.39	47.51
	5	GN	64.73	53.66	54.59	8.46	46.59
Text	6	AN	65.36	54.12	52.95	7.99	47.09
	7	Mango	65.63	55.79	56.54	7.53	47.45
Both	8	Mango	65.80	56.22	56.49	7.32	47.52

			VQA-	VQA-LOL	VQA-LOL	IV-	VQA-CP
Modality		Method	Rep.	Comp.	Supp.	VQA	v2
_			Acc. ↑	Acc. ↑	Acc. ↑	#flips↓	Acc. ↑
None	1	None	64.56	54.54	50.00	8.47	47.29
	2	GN	65.17	54.46	50.68	8.45	47.29
Image	3	AN	65.42	54.59	52.54	7.52	47.38
	4	Mango	65.51	56.67	55.20	7.39	47.51
	5	GN	64.73	53.66	54.59	8.46	46.59
Text	6	AN	65.36	54.12	52.95	7.99	47.09
	7	Mango	65.63	55.79	56.54	7.53	47.45
Both	8	Mango	65.80	56.22	56.49	7.32	47.52

[•] Adding Gaussian noise (GN) to multimodal embeddings is not always helpful

			VQA-	VQA-LOL	VQA-LOL	IV-	VQA-CP
Modality		Method	Rep.	Comp.	Supp.	VQA	v2
·			Acc. ↑	Acc. ↑	Acc. ↑	#flips↓	Acc. ↑
None	1	None	64.56	54.54	50.00	8.47	47.29
	2	GN	65.17	54.46	50.68	8.45	47.29
Image	3	AN	65.42	54.59	52.54	7.52	47.38
	4	Mango	65.51	56.67	55.20	7.39	47.51
Text	5	GN	64.73	53.66	54.59	8.46	46.59
	6	AN	65.36	54.12	52.95	7.99	47.09
	7	Mango	65.63	55.79	56.54	7.53	47.45
Both	8	Mango	65.80	56.22	56.49	7.32	47.52

- Adding Gaussian noise (GN) to multimodal embeddings is not always helpful
- Adversarial Noise (AN) brings universal performance improvements over GN

		VQA-	VQA-LOL	VQA-LOL	IV-	VQA-CP
	Method	Rep.	Comp.	Supp.	VQA	v2
		Acc. ↑	Acc. ↑	Acc. ↑	#flips↓	Acc. ↑
1	None	64.56	54.54	50.00	8.47	47.29
2	GN	65.17	54.46	50.68	8.45	47.29
3	AN	65.42	54.59	52.54	7.52	47.38
4	Mango	65.51	56.67	55.20	7.39	47.51
5	GN	64.73	53.66	54.59	8.46	46.59
6	AN	65.36	54.12	52.95	7.99	47.09
7	Mango	65.63	55.79	56.54	7.53	47.45
8	Mango	65.80	56.22	56.49	7.32	47.52
	3 4 5 6 7	 None GN AN MANGO GN AN MANGO MANGO 	Method Rep. Acc. ↑ 1 None 64.56 2 GN 65.17 3 AN 65.42 4 MANGO 65.51 5 GN 64.73 6 AN 65.36 7 MANGO 65.63	Method Rep. Comp. Acc. ↑ Acc. ↑ 1 None 64.56 54.54 2 GN 65.17 54.46 3 AN 65.42 54.59 4 MANGO 65.51 56.67 5 GN 64.73 53.66 6 AN 65.36 54.12 7 MANGO 65.63 55.79	Method Rep. Comp. Supp. Acc. ↑ Acc. ↑ Acc. ↑ 1 None 64.56 54.54 50.00 2 GN 65.17 54.46 50.68 3 AN 65.42 54.59 52.54 4 MANGO 65.51 56.67 55.20 5 GN 64.73 53.66 54.59 6 AN 65.36 54.12 52.95 7 MANGO 65.63 55.79 56.54	Method Rep. Comp. Supp. VQA Acc. ↑ Acc. ↑ Acc. ↑ #flips ↓ 1 None 64.56 54.54 50.00 8.47 2 GN 65.17 54.46 50.68 8.45 3 AN 65.42 54.59 52.54 7.52 4 MANGO 65.51 56.67 55.20 7.39 5 GN 64.73 53.66 54.59 8.46 6 AN 65.36 54.12 52.95 7.99 7 MANGO 65.63 55.79 56.54 7.53

- Adding Gaussian noise (GN) to multimodal embeddings is not always helpful
- Adversarial Noise (AN) brings universal performance improvements over GN
- Through random masking, MANGO is better than using AN alone

		VQA-	VQA-LOL	VQA-LOL	IV-	VQA-CP
	Method	Rep.	Comp.	Supp.	VQA	v2
		Acc. ↑	Acc. ↑	Acc. ↑	#flips↓	Acc. ↑
1	None	64.56	54.54	50.00	8.47	47.29
2	GN	65.17	54.46	50.68	8.45	47.29
3	AN	65.42	54.59	52.54	7.52	47.38
4	Mango	65.51	56.67	55.20	7.39	47.51
5	GN	64.73	53.66	54.59	8.46	46.59
6	AN	65.36	54.12	52.95	7.99	47.09
7	Mango	65.63	55.79	56.54	7.53	47.45
8	Mango	65.80	56.22	56.49	7.32	47.52
	3 4 5 6 7	 None GN AN MANGO GN AN MANGO MANGO 	Method Rep. Acc. ↑ 1 None 64.56 2 GN 65.17 3 AN 65.42 4 MANGO 65.51 5 GN 64.73 6 AN 65.36 7 MANGO 65.63	Method Rep. Comp. Acc. ↑ Acc. ↑ 1 None 64.56 54.54 2 GN 65.17 54.46 3 AN 65.42 54.59 4 MANGO 65.51 56.67 5 GN 64.73 53.66 6 AN 65.36 54.12 7 MANGO 65.63 55.79	Method Rep. Comp. Supp. Acc. ↑ Acc. ↑ Acc. ↑ 1 None 64.56 54.54 50.00 2 GN 65.17 54.46 50.68 3 AN 65.42 54.59 52.54 4 MANGO 65.51 56.67 55.20 5 GN 64.73 53.66 54.59 6 AN 65.36 54.12 52.95 7 MANGO 65.63 55.79 56.54	Method Rep. Acc. ↑ Comp. Acc. ↑ Supp. Acc. ↑ VQA 1 None 64.56 54.54 50.00 8.47 2 GN 65.17 54.46 50.68 8.45 3 AN 65.42 54.59 52.54 7.52 4 MANGO 65.51 56.67 55.20 7.39 5 GN 64.73 53.66 54.59 8.46 6 AN 65.36 54.12 52.95 7.99 7 MANGO 65.63 55.79 56.54 7.53

- Adding Gaussian noise (GN) to multimodal embeddings is not always helpful
- Adversarial Noise (AN) brings universal performance improvements over GN
- Through random masking, MANGO is better than using AN alone
- Empirically, MANGO on both modalities performs on par with on single modality

Task	LXMERT	Ours
VQA-Rep.	67.20	68.61
VQA-LOL Comp.	49.34	53.83
VQA-LOL Supp.	47.33	53.54
GQA	59.78	60.06
GQA-OOD	53.86	54.94
VQA v2	72.31	72.70

 MANGO is also generalizable to two-stream backbone LXMERT, with universal performance lift

Model	$NLVR^2$	RefCOCO	RefCOCOg	VE
UNITERB	77.52	80.55	74.41	78.44
$MANGO_B$	78.36	80.95	75.37	78.87

 MANGO can be also applied to other standard V+L tasks, with performance improvements over baseline

Conclusion

- First known systematic study on robustness of pre-trained V+L models
- A simple yet efficient adversarial training method to enhance model robustness:
 MANGO
- MANGO advances SOTA on 7 out of 9 robustness benchmarks by a large margin

