CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Cache Organization

Lecture No.- 10

Topics to be Covered

Topic

Array Access with Cache

Topic

Multilevel Cache

Topic: Questions on Cache and Array

- Cache Size = 16 bytes
- Block size = 4 bytes
- Array in main memory int A[10], each element is 2 bytes

Topic: Questions on Cache and Array

- · Cache Size = 32 bytes > no of blocks in Cache = 32B = 8 blocks
- Block size = 4 bytes -
- Array in main memory int A[20], each element is 2 bytes

no of elements per block =
$$\frac{UB}{2D}$$
 = 2 no of overlapping blocks = $10-8$ = 2

if array is accessed 4 times, then total no. of hits & issessing

	1st access	2nd access	329	yth
Miss	10	2+2=4	4	16
rit	10			

1 miss per block

Total hits = 58 total miss = 22

Consider a machine with a byte addressable main memory of 2¹⁶ bytes. #Q. Assume that a direct mapped data cache consisting of 32 lines of 64 bytes each is used in the system. A 50×50 two-dimensional array of bytes is stored in the main memory starting from memory location 1100H. Assume that the data cache is initially empty. The complete array is accessed twice. Assume that the contents of the data cache do not change in between the two accesses.

How many data cache misses will occur in total?

no. of blocks in cache = 32 | array size = 50 x 50 = 2500 element = 2500 Bytes

block size = 64B

no. of blocks to store array = 2500B = 40

	ast access	2nd access	Total
no. of miss	40	8 *2 = 16	40+16 = 556

no. of overlapping blocks = 40 - 32 = 8

[MCQ]

#Q. Which of the following lines of the data cache will be replaced by new blocks in accessing the array for the second time?

blocks

- A line 4 to line 11
- B line 4 to line 12
- line 0 to line 7
- line 0 to line 8

#Q. A CPU has a 32KB direct mapped cache with 128 byte-block size. Suppose A is two-dimensional array of size 512 × 512 with elements that occupy 8-bytes each. Consider the following two C code segments, P1 and P2.

[NAT]

#Q. P1 and P2 are executed independently with the same initial state, namely, the array A is not in the cache and i, j, x are in registers. Let the number of cache misses experienced by P_1 be \underline{M}_1 and that for P_2 be \underline{M}_2 . The value of M_1 is :

for P1, one miss per block = no. of miss for P1 (M) = 214

array size = $512 \times 512 = 2^{18}$ elements = $2^{18} \times 8B = 2^{18}$ no. of blocks needed to store array = $\frac{2^{18}B}{128B} = \frac{2^{21}}{2^{7}} = \frac{14}{2}$

.

#Q. P1 and P2 are executed independently with the same initial state, namely, the array A is not in the cache and i, j, x are in registers. Let the number of cache misses experienced by P_1 be M_1 and that for P_2 be M_2 . The value of M_2 is :

no. of elements per block =
$$\frac{128B}{8B}$$
 = 16
no. of blocks needed to store one row = $\frac{512}{16}$ = 2^5 = 32

no-of blocks in cm =
$$\frac{32 \text{ KB}}{128 \text{ B}} = 2^8 = 256$$

		Cache	Block two mm to cm
CPU accesses elements	[0] [0] A	niss	A 0 0 to A 0 15 => >c
	A [I] [O]	171:55	A10 & A115=>x+32
	ACZJCOJ	11	Azo to Az 15=> x+84
11 —	A[3][0]	11	A30 to A3 15 =>>C+96
	<i>f</i>		
_1/	AC87CO)	11	Aso to As 15 => (x+256)
			block with element Aoo A 015
			A00 A 015

cache is very small & array is very big hence in Column wise access, for new elements old blocks will be replaced without any list.

hence 1 miss per element, Cache will experience.

No. of miss for P2 $(M2) = \frac{2^{18}}{2}$

Topic: Goal of Using Cache

-suse multilevel cache

- → Use small cache -1. Minimize Access Time
- 2. Maximize Hit Rate
- 3. Minimize Miss Penalty

Topic: Multilevel Cache

Topic: Average Access Time Multilevel Cache

Simultaneous access:-
$$tang = H_1t_1 + (1-H_1) \left[H_2 * t_2 + (1-H_2) t_{mm} \right]$$

Hierchical accession
$$t_{avg} = H_1 * t_1 + (1 - H_1) \left[H_2 * (t_1 + t_2) + (1 - H_2) (t_1 + t_2 + t_{mm}) \right]$$

$$= H_{1}t_{1} + (I-H_{1})H_{2}(t_{1}+t_{2}) + (I-H_{1})(I-H_{2})(t_{1}+t_{2}+t_{mm})$$
or

$$= t_1 + (1-H_1) \left[t_2 + (1-H_2) t_{mm} \right]$$

$$= t_1 + (1-H_1) \left[t_2 + (1-H_1) (1-H_2) t_{mm} \right]$$

$$= t_1 + (1-H_1) \left[t_2 + (1-H_1) (1-H_2) t_{mm} \right]$$

Ans = 22.75

#Q. Consider a 3-level memory hierarchy with L1 cache, L2 cache and a main memory. The hit ratios of L1 is 90% and of L2 is 95%. The access times of L1, L2 and main memory are IShS,60ns and 350ns respectively. The average memory access time is _____ns?

use hierarchical access:

Tavg =
$$15 + (1-0.9) \left[60 + (1-0.95) 350 \right]$$

= $15 + 0.1 \left[60 + 0.05 + 350 \right]$
= 22.75 ns

2 mins Summary

Topic

Array Access with Cache

Topic

Multilevel Cache

Happy Learning

THANK - YOU