Modeling Distributed Programming

This first practical session contains several questions, and exercises, in order to assess your understanding in the: Basics on Modeling Distributed Systems

1.	Why is it useful to use a model for characterizing a distributed system? Give at least two arguments.						
2.	Say whether the following statements are True , False or Cannot say :						
	• Achieving cooperation towards a consistent state is one of the main difficulties in distributed programming;						
	• Peer-to-Peer systems require a central entity to make them work;						
	• In a system of N nodes, atomic commitment for such system is still achievable if only one node experience a crash.						
3.	Sketch a proof of how to obtain an agreement algorithm from atomic broadcast and vice-versa. What you might conclude with that proof?						
4.	Explain the following terms and give one use-case where it might be useful.						
	• Best-effort Broadcast						
	• Reliable Broadcast						
	Total-order Broadcast						

5. An example of a partially asynchronous system is a wired network where there exist an upperbound in the latency of messages U_{latency} among links between nodes. Considering that every node in such network contains an implementation of an agreement algorithm, sketch a mechanism to compute/approximate U_{latency} in the network.

LSINF2345		Modeling Dist	Modeling Distributed Programming			
Sep	tembre 2020			_	Autho	r: RCG, PVR
	Define, in a forma class.	al way, the transition	function f	in the model	of distributed	systems seen in