МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ по дисциплине "Частотные методы"

по теме: ЛИНЕЙНАЯ ФИЛЬТРАЦИЯ

Студент:

Группа R3236 Поляков A.A.

Предподаватель:

к.т.н., доцент Перегудин А.А.

Санкт-Петербург 2024

СОДЕРЖАНИЕ

1	ИСХ	ИСХОДНЫЙ КОД		
2	ЗАДАНИЕ 1. СПЕКТРАЛЬНОЕ ДИФФЕРЕНЦИРОВАНИЕ			4
	2.1	Лирическое вступление		
2.2 Графики компонент Фурье-образа сигнала и			ки компонент Фурье-образа сигнала и его	
		спектр	ральной производной	5
	2.3	2.3 Графики для сравнения		
	2.4	Делаем выводы		
3	ЗАДАНИЕ 1. ЛИНЕЙНЫЕ ФИЛЬТРЫ			8
	3.1	Фильтр первого порядка		8
		3.1.1	Испытания	8
		3.1.2	Выводы	9
	3.2	Специальный фильтр		18
		3.2.1	Испытания	18
		3.2.2	Выводы	19
4	ЗАДАНИЕ 2. ГЛАДИМ БИРЖЕВЫЕ ДАННЫЕ			22
	4.1	4.1 Сравнительные графики исходного и фильтрованного сигналов 22		

1 ИСХОДНЫЙ КОД

Онлайн версию кода здесь нет, потому что делал основные вычисления в live-script матлабовских, в репозитории можно найти исходники.

Особо много кода я не писал, скорее пытался красиво запрогать графики... Основные фишки кода были помечены сразу там в комментариях, поэтому прошу всех желающих заглянуть под капот непосредственно

2 ЗАДАНИЕ 1. СПЕКТРАЛЬНОЕ ДИФФЕРЕНЦИРОВАНИЕ

2.1 Лирическое вступление

В данном задании мы рассматриваем сигнал y=sin(t) с небольшим шумом уже знакомого вида - a*(rand(size(t))-0.5)

Для начала найдём численную производную от зашумлённого сигнала через поэлементную формулу:

$$\frac{y(k+1) - y(k)}{dt}$$

Найдём численную спектральную производную от зашумлённого сигнала, использую свойство Фурье-оператора:

$$\mathbb{F}(\frac{df}{dt}) = 2\pi i \nu \mathbb{F}(f)$$

То есть, сначала мы получаем Фурье-образ от обычного сигнала, потом домнажаем поэлементно на константы, это нас сразу сводит в Фурье-образ производной от сигнала, а теперь возвращаемся в мир обыкновенных сигналов с помощью обратного преобразования Фурье.

2.2 Графики компонент Фурье-образа сигнала и его спектральной производной

Рисунок 1 — Фурье-образ численной производной сигнала

Рисунок 2 — Спектральная производная

2.3 Графики для сравнения

Рисунок 3 — Истинная производная

Рисунок 4 — Численная производная

Рисунок 5 — Спектральная производная

2.4 Делаем выводы

Если не приближать и не рассматривать эти три графика вблизи, то кажется, что численная и спектральная - *просто гармонический шум...* Если подобрать удачные отрезки рассмотрения, то прослеживается тот факт, что они очень сильно хотят напоминать график оригинальной производной, но не могут. Думаю, что основное достижение сейчас - это то, что **мы смогли получить производную** без численного приближения только с помощью оператора Фурье и прямого, обратного преобразования.

3 ЗАДАНИЕ 2. ЛИНЕЙНЫЕ ФИЛЬТРЫ

Возьмём шумный сигнал из прошлой лабы, но будем применять оружие покрупнее:

$$u = g + b*(rand(size(t))-0.5) + c*sin(d*t);$$

3.1 Фильтр первого порядка

Линейный фильтр первого порядка мы зададим следующим образом:

$$W_1(p) = \frac{1}{Tp+1}$$

Берём d=c=0, также зададим постоянную времени T>0 для фильтра. Тогда в этом пункте мы будем работать со следующей версией шумного сигнала:

$$u = g + b*(rand(size(t))-0.5)$$

...из чего сразу следует, что у нас добавляется только "случайный" шум.

3.1.1 Испытания

Построим сравнительные графики исходного и фильтрованного сигналов, графики модулей их Фурье-образов, а также АЧХ и ФЧХ фильтра. Чтобы возможно упростить общий анализ, я свёл все эти графики в подграфики.

Рисунок 6 — Испытание 1

3.1.2 Выводы

Давайте исследовать влияние постоянной времени T и значения параметра a на эффективность фильтрации. Возможно это не слишком заметно, но параметр a у нас влияет на добавление белого шума и как бы мы не пытались увеличивать его амплитуду, - фильтр все равно более менее хорошо справлялся с таким шумом. Но фильтр в первую очередь справлялся из-за хорошо подобранной постоянной времени - больше единицы ставить не было смысла, потому что результат плачевный. Поэтому подбирая на ощупь в пределах [0;1] с шагом 0.1 можно было достичь приемлимых результатов.

Рисунок 7 — Испытание 2

Рисунок 8 — Испытание 3

Рисунок 9 — Испытание 4

Рисунок 10 — Испытание 5

Рисунок 11 — Испытание 6

Рисунок 12 — Испытание 7

Рисунок 13 — Испытание 8

Рисунок 14 — Испытание 9

3.2 Специальный фильтр

Выберем только b=0, остальные будут как-то заданы. Теперь мы уже имеем дело с двумя компонентами шума - случайным и гармоническим:

$$u = g + b*(rand(size(t))-0.5) + c*sin(d*t);$$

3.2.1 Испытания

Рисунок 15 — Испытание 1

Рисунок 16 — Испытание 2

3.2.2 Выводы

Чисто эмпирическим путём удалось выяснить, что похоже, равенство $T_2=T_3$ - даёт очень хорошие результаты. Также при этом T_1 должен быть меньше двух остальных коэффциентов, и не сллишком равен им... Поэтому все испытания проводились примерно с таким соотношением.

При большом c мы получаем гармонический шум с большой амплитудой, коэффициенты фильтрации для которого подбираются на глаз куда сложнее, нежели для амплитуд небольших. То же самое было и с параметром d, но дело не в этом. При небольшом c результат фильтрации выходит самым гладким и точным, а при увелечении потери от оригинала как будто значительно увеличиваются.

Рисунок 17 — Испытание 3

Рисунок 18 — Испытание 4

4 ЗАДАНИЕ 3. ГЛАДИМ БИРЖЕВЫЕ ДАННЫЕ

Выбираем какую-нибудь котировку ценной бумаги, у меня матлаб ругался на акции РосНефти по неизвестной мне причине, поэтому пришлось брать базовую базу, а именно всеми любимые зелёные бумажки (Сбербанк). На этом сайте задали временной промежуток в 4 года и скачали .csv файл, с которым будем работать далее.

4.1 Сравнительные графики исходного и фильтрованного сигналов

Рисунок 19 — Изначальный график котировки

Получается, что каждый из подграфиков ниже нужно читать следующим образом: сначала мы сглаживаем "днями то есть минимальный единичный отрезок при фильтрации на оси икс - это день, потом неделя, месяц, год. Так как данные у меня взяты за 4 года, то при апроксимации по годам итоговый график совсем плывёт и почти ничего не показывает, потому что для него слишком мало данных - всего 4 точки(4 года).

Рисунок 20 — Сглаживания по всем Т