1.

(1)

從圖表中可以得知, motel_pct 與 newrelprice(100relprice)之間並無相關性

<u>(2)</u>	
	(1)
	motel_pct
newrelprice	-12211.9*
	(-2.09)
_cons	166.7***
	(3.82)
N	25

t statistics in parentheses

預測狀況斜率應為正值,當經爭對 手每間客房收取的價格百分比越高時, 我方汽車旅館的入住率相對來說會提 高,也就是當經爭對手提高诶間價格收 取的百分比時,顧客就會進行價格比 較,從而選擇我方的汽車旅館居住。

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

(4)

X /	(1)
	motel_pct
repair	-13.24*
	(-2.22)
_cons	79.35***
	(25.16)
N	25

t statistics in parentheses

當 repair=0 時,motel_pct=79.35

. di _b[_cons]+ _b[repair]*0
79.35

當 repair=1 時,motel_pct=66.114

. di _b[_cons]+ _b[repair]*1
66.114286

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

2.

入住率會隨著時間的不同而有所變化,大概在第9個月、第15個月、第 23個月時雙方的入住率都下滑,而相較之下我方汽車旅館的入住率普遍都比競 爭對手來的高。

motel_pct	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
comp_pct _cons		.2027119 12.90686		0.000 0.111	.4452978 -5.299896	1.283981 48.09987

95%區間估計值為 [0.4452978, 1.283981]

(2)

當 comp_pct 為 70 時,motel_pct 為 81.91474

```
clear
     cd "C:\Users\user\OneDrive\桌面"
2
3
     use "C:\Users\user\OneDrive\桌面\motel"
4
5
     //(1.1)
     gen newrelprice = relprice/100
6
7
     twoway (scatter motel_pct newrelprice)(line motel_pct newrelprice)
8
9
     reg motel_pct newrelprice
10
11
     esttab using "1.2.rtf"
12
13
     //(1.3)
14
15
     //(1.4)
16
     reg motel_pct repair
     esttab using "1.4.rtf"
17
18
     di _b[_cons]+ _b[repair]*1
19
     di _b[_cons]+ _b[repair]*0
20
21
     //(2.1)
22
     twoway(scatter motel_pct comp_pct time)(line motel_pct comp_pct time)
23
     reg motel_pct comp_pct
24
25
     //(2.2)
26
     di _b[_cons]+ _b[ comp_pct]*70
```

3.

(1)

	Variable	0bs	Mean	Std. dev.	Min	Max
	advanced	1,200	.2141667	.410414	0	1
	alcbev	1,200	7.158092	18.01358	0	333.33
	appar	1,200	27.5337	50.23839	0	575.33
	college	1,200	.3075	.4616507	0	1
	entert	1,200	49.818	65.64827	0	814.33
П	food	1,200	114.4431	72.6575	9.63	476.67
	foodaway	1,200	49.27085	65.28361	0	1179
	health	1.200	84,14707	124,5632	a	1402.89
	income	1,200	72.14264	41.65228	10	200
	smsa	1,200	.8875	.3161124	0	1

monthly food expenditure during past quarter per person, $\mbox{\ensuremath{\$}}$

	Percentiles	Smallest		
1%	18.295	9.63		
5%	31.3	9.63		
10%	40.745	12.74	0bs	1,200
25%	57.78	13.96	Sum of wgt.	1,200
50%	99.8		Mean	114.4431
		Largest	Std. dev.	72.6575
75%	145.555	433.33		
90%	209.685	433.33	Variance	5279.112
95%	260	462.22	Skewness	1.354445
99%	361.11	476.67	Kurtosis	5.373787

household monthly income during past year, \$100 $$\operatorname{units}$$

	Percentiles	Smallest		
1%	11.995	10		
5%	18.915	10		
10%	24.46	10.43	0bs	1,200
25%	40	10.58	Sum of wgt.	1,200
50%	65.29		Mean	72.14264
		Largest	Std. dev.	41.65228
75%	96.915	199.17		
90%	129.955	199.33	Variance	1734.912
95%	157.355	199.53	Skewness	.8455717
99%	189.375	200	Kurtosis	3.322891

FOOD 統計量:

平均值: 114.4431 中位數: 99.8 最小值: 9.63 最大值: 476.67

標準差: 72.6575

INCOME 統計量:

平均值: 72.14264 中位數: 65.29 最小值: 10 最大值: 200 標準差: 41.65228

reg food income

Source	SS	df	MS		r of obs		1,200 52.89
Model Residual	267625.41 6062029.78	1 1,198	267625.43 5060.1250	3 R-squ	> F ared	= = = ! =	0.0000 0.0423
Total	6329655.19	1,199	5279.1119	_	Adj R-squared Root MSE		0.0415 71.135
food	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
income _cons	.3586867 88.5665	.049321 4.108188	7.27 21.56	0.000 0.000	.26192 80.506		.455452 96.62654

(3)

reg ln_food ln_income

Source	SS	df	MS	Number o		1,200
Model Residual	16.9590002 493.406139	1 1,198	16.9590002	R-square	d =	0.0000 0.0332
Total	510.365139	1,199	.425658999	- Adj R-sq 9 Root MSE		0.0324 .64176
ln_food	Coefficient	Std. err.	t	P> t [95% conf.	interval]
ln_income _cons	.1863054 3.778932	.0290335 .1203492	6.42 31.40		1293432 .542814	.2432675 4.015051

(4)

reg food ln_income

Source	SS	df	MS		Number of obs F(1, 1198) Prob > F R-squared Adj R-squared Root MSE		1,200
Model Residual	240525.871 6089129.32	1 1,198	240525.873 5082.74568	L Prob B R-sq			47.32 0.0000 0.0380 0.0372
Total	6329655.19	1,199	5279.11192	_			71.293
food	Coefficient	Std. err.	t	P> t	[95% coi	nf.	interval]
ln_income _cons	22.18738 23.56848	3.225332 13.3696	6.88 1.76	0.000 0.078	15.85940 -2.661950		28.51531 49.79892

reg food income R-square: 0.0423

reg ln_food ln_income R-square: 0.0332

reg food In income R-square: 0.0380

三種模型裡,reg food income 看起來最符合資料分配,當我們的收入越多時,自然而然對於食物的支出也就會越高。

```
1
      clear
 2
      cd "C:\Users\user\OneDrive\桌面"
 3
      use "C:\Users\user\OneDrive\桌面\cex5_small"
 4
 5
      //(3.1)
      sum, detail
 6
 7
      sum food, detail
 8
      sum income, detail
 9
10
      //(3.2)
      reg food income
11
12
13
      //(3.3)
14
      gen ln_food = log(food)
15
      gen ln_income = log(income)
16
      reg ln_food ln_income
17
18
      //(3.4)
19
      reg food ln_income
20
21
      //(3.5)
      global ests="log_lin log_log lin_lin"
22
23
24 ☐ foreach m of global ests{
25
          quietly{
26
              estimates restore `m'
27
              capture drop res_`m'
              predict res_`m', residual
28
29
          }
30
          di e(estimates_title)
31
          jb res_`m'
          di ""
32
33
34
```

(1)

	b	se	t	p	
prbarr	-0.050***	0.004	-13.499	0.000	
prbpris	0.024***	0.007	3.451	0.001	
prbconv	-0.003***	0.000	-8.005	0.000	
polpc	3.077***	0.260	11.838	0.000	
_cons	0.033***	0.003	10.051	0.000	

因此我們可以看到,監禁及警察對於犯罪率具有正向影響;而逮捕機率及 定罪機率對於犯罪率有負向影響,其中警察數量可以解釋的方式是由於犯罪率 過高的問題,因此需要派出更多警察維持治安(此有內生性問題產生)。

(2)

crmrte	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
prbarr _cons		.0039428 .0013869	-9.63 31.19	0.000 0.000	045693 .0405287	

(3)

	b	se	t	р
prbarr	-0.043***	0.005	-8.322	0.000
prbpris	0.007	0.005	1.377	0.169
prbconv	-0.002***	0.000	-7.587	0.000
polpc	2.562***	0.193	13.305	0.000
c.prbarr#c~r	0.007**	0.003	2.677	0.008
density	0.008***	0.001	13.435	0.000
urban	-0.001	0.003	-0.446	0.656
cons	0.027***	0.003	10.298	0.000

從這裡可以看出,當逮捕機率逐漸往上提升時,反而會具有反效果,造成 犯罪機率提高;而當伊格地區的人口密度越高時,相對的犯罪率也會隨之上 升。

 dy/dx	std. err.	t	P> t	[95% conf.	interval]
_	Delta-method std. err.	t	P> t	[95% conf.	intervall

邊際影響值為 -0.390411

(7)

model	R^2	adjusted R^2	AIC	SC	RMSE
1	0.31	0.30105	-3486.27928	-3464.05068	0.01515
2	0.34	0.33510	-3516.74873	-3490.07441	0.01478
3	0.35	0.34868	-3528.76031	-3497.64027	0.01462
4	0.47	0.46036	-3646.27199	-3610.70624	0.01331
5	0.68	0.67205	-3959.05600	-3919.04452	0.01038

```
cd "C:\Users\user\OneDrive\桌面"
2
     use "C:\Users\user\OneDrive\桌面\crime"
3
5
6
     reg crmrte prbarr prbpris prbconv polpc
7
     estout, cell("b(star fmt(3)) se t p")
8
9
     //(2)
10
     predict y_hat, xb
11
     reg crmrte prbarr
12
13
     //(3)
14
      reg crmrte prbarr prbpris prbconv polpc c.prbarr#c.prbarr density urban
15
     estout, cell("b(star fmt(3)) se t p")
16
17
      //(4)
18
     margin, dydx(prbarr)
19
20
      //(7)
21
     global x_1 prbarr prbpris prbconv polpc
22
      global x_2 $x_1 c.prbarr#c.prbarr
23
      global x_3 $x_1 c.prbarr#c.prbarr c.prbpris#c.prbpris
24
     global x_4 $x_1 c.prbarr#c.prbarr c.prbpris#c.prbpris c.prbconv#c.prbconv
25
     global x_5 $x_1 c.prbarr#c.prbarr c.prbpris#c.prbpris c.prbconv#c.prbconv density
26
27
   □foreach a of numlist 1/5 {
28
         local x = "${x_a'}"
           di "現在的迴歸式: `x'"
29
30
           eststo est_`a': reg crmrte `x'
31
32
33
     esttab, mti drop(*) r(2) ar2(5) aic(5) bic(5) scalar(rmse) sfmt(5)
```