

Wydział Informatyki

### Projekt nr 4 Z przedmiotu Rachunek Macierzowy

"Wartości i wektory własne. Dekompozycja na wartości osobliwe"

Jacek Tyszkiewicz i Michał Godek Autor:

Kierunek studiów: Informatyka

### Spis treści

| 1. | War   | tości i wektory własne. Dekompozycja na wartości osobliwe                                                                   | 3  |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------|----|
|    | 1.1.  | Cel projektu                                                                                                                | 3  |
|    | 1.2.  | Zadania                                                                                                                     | 3  |
|    | 1.3.  | Wypisać lub narysować macierz A.                                                                                            | 5  |
|    | 1.4.  | Obliczyć i wypisać/narysować macierz $AA^T$ $(n \times n)$                                                                  | 5  |
|    | 1.5.  | Obliczyć (korzystając z biblioteki) wartości własne $\lambda_i$ i wektory własne $U_i$ macierzy $AA^T$ .                    | 6  |
|    | 1.6.  |                                                                                                                             | 6  |
|    | 1.7.  | Obliczyć macierz $V$ wykorzystując własność $V=A^TUS^{-1}$                                                                  | 7  |
|    | 1.8.  | Wypisać macierz $[V_1 \ V_2 \ \dots \ V_m]^T$ (czyli wektory $V_i$ jako wiersze)                                            | 7  |
|    | 1.9.  | Obliczyć i wypisać/narysować macierz $A^TA$ $(m \times m)$                                                                  | 7  |
|    | 1.10. | Obliczyć (korzystając z biblioteki) wartości własne $\lambda_i$ i wektory własne $V_i$ macierzy $A^TA$ .                    | 8  |
|    | 1.11. | Wypisać macierz wektorów własnych $[V_1\ V_2\ \dots\ V_m]^T$ oraz macierz diagonalną $S$ taką, że $S_{ii}=\sqrt{\lambda_i}$ | 8  |
|    | 1.12. | Obliczyć macierz $U$ korzystając z własności $U=AVS^{-1}$ , pamiętając że $S_{ii}^{-1}=$                                    | 0  |
|    | 1 10  | $\frac{1}{S_{ii}}$                                                                                                          | 9  |
|    |       | Wypisać macierz $[U_1\ U_2\ \dots\ U_m]$                                                                                    | 9  |
|    | 1.14. | Porównać uzyskane dwie dekompozycje (z $AA^T$ oraz $A^TA$ )                                                                 | 9  |
|    | 1.15. | Wyznaczyć: $\dim R(A)$ oraz $\dim N(A)$ , gdzie $R(A)$ to przestrzeń obrazu ope-                                            |    |
|    |       | ratora $A$ a $N(A)$ to jego jadro (null space)                                                                              | 10 |

2 SPIS TREŚCI

J. Tyszkiewicz, M. Godek "Wartości i wektory własne. Dekompozycja na wartości osobliwe"

### 1. Wartości i wektory własne. Dekompozycja na wartości osobliwe

#### 1.1. Cel projektu

Celem projektu jest ręczne przeprowadzenie rozkładu SVD ( $A = USV^T$ ) dla dowolnej macierzy prostokątnej  $A \in \mathbb{R}^{n \times m}$  przy użyciu wybranego języka programowania, z wykorzystaniem podstawowych operacji algebry liniowej oraz bibliotek numerycznych.

#### 1.2. Zadania

- 1. Wypisać lub narysować (np. spy (A) w MATLAB) macierz A.
- **2.** Obliczyć i wypisać/narysować macierz  $AA^T$   $(n \times n)$ .
- 3. Obliczyć (korzystając z biblioteki) wartości własne  $\lambda_i$  i wektory własne  $U_i$  macierzy  $AA^T$ .
- **4.** Zbudować macierz wektorów własnych  $[U_1\ U_2\ \dots\ U_n]$  oraz diagonalną macierz S taką, że  $S_{ii}=\sqrt{\lambda_i}$ .
- 5. Obliczyć macierz V wykorzystując własność  $V=A^TUS^{-1}.$
- **6.** Wypisać macierz  $[V_1 \ V_2 \ \dots \ V_m]^T$  (czyli wektory  $V_i$  jako wiersze).
- 7. Obliczyć i wypisać/narysować macierz  $A^TA$   $(m \times m)$ .
- 8. Obliczyć (korzystając z biblioteki) wartości własne  $\lambda_i$  i wektory własne  $V_i$  macierzy  $A^TA$ .
- 9. Wypisać macierz wektorów własnych  $[V_1 \ V_2 \ \dots \ V_m]^T$  oraz macierz diagonalną S taką, że  $S_{ii} = \sqrt{\lambda_i}$ .
- 10. Obliczyć macierz U korzystając z własności  $U=AVS^{-1}$ , pamiętając że  $S_{ii}^{-1}=\frac{1}{S_{ii}}$ .

4 1.2. Zadania

- **11.** Wypisać macierz  $[U_1 \ U_2 \ \dots \ U_m]$ .
- 12. Porównać uzyskane dwie dekompozycje (z  $AA^T$  oraz  $A^TA$ ).
- 13. Wyznaczyć:  $\dim R(A)$  oraz  $\dim N(A)$ , gdzie R(A) to przestrzeń obrazu operatora A, a N(A) to jego jądro (null space).

#### 1.3. Wypisać lub narysować macierz A.

#### 1.4. Obliczyć i wypisać/narysować macierz $AA^T$ $(n \times n)$ .

J. Tyszkiewicz, M. Godek "Wartości i wektory własne. Dekompozycja na wartości osobliwe"

1.5. Obliczyć (korzystając z biblioteki) wartości własne  $\lambda_i$  i wektory własne  $U_i$  macierzy  $AA^T$ .

```
wartosci_wlasne, wektory_wlasne = la.eigh(AAT)
  indeksy_sortowania = np.argsort(wartosci_wlasne)[::-1]
  wartosci_wlasne = wartosci_wlasne[indeksy_sortowania]
  wektory_wlasne = wektory_wlasne[:, indeksy_sortowania]
  print("Wartości własne λ<sub>i</sub> macierzy A·A<sup>T</sup>:")
  print(wartosci_wlasne)
  print("\nWektory własne Ui (kolumny macierzy U):")
  print(wektory_wlasne)
Wartości własne \lambda_i macierzy A \cdot A^T:
[ 1.86722494e+01 7.61863674e+00 2.46396324e+00 4.27237224e-01 6.94573724e-16 -1.17867187e-17]
Wektory własne U_i (kolumny macierzy U):
[[-0.59390984 -0.57165236  0.25529267 -0.18762865  0.46915437  0.
[-0.10435984 -0.52391629 -0.07491713 0.12325528 -0.68042914 0.48045029]
0.58571911 -0.21669841 0.77436266 -0.06774007 0.02896509 0.07006921]]
```

1.6. Zbudować macierz wektorów własnych  $[U_1 \ U_2 \ \dots \ U_n]$  oraz diagonalną macierz S taką, że  $S_{ii} = \sqrt{\lambda_i}$ .

```
S_diag = np.sqrt(np.clip(wartosci_wlasne, 0, None))
  S = np.zeros((n, m))
  np.fill_diagonal(S, S_diag[:min(n, m)])
  print('Macierz U:')
  print(wektory_wlasne)
  print('\nMacierz S:')
  print(5)
[[-0.59390984 -0.57165236 0.25529267 -0.18762865 0.46915437 0.
[-0.10435984 -0.52391629 -0.07491713 0.12325528 -0.68042914 0.48045029]
[-0.20070058 \ -0.0455066 \quad 0.20141986 \ -0.28402251 \ -0.53271118 \ -0.74338985]
[ 0.58571911 -0.21669841  0.77436266 -0.06774007  0.02896509  0.07006921]]
[[4.32113982 0.
                          0.
          2.76018781 0.
                          0.
[0.
          0. 1.56970164 0.
                  0. 0.65363386]
```

J. Tyszkiewicz, M. Godek "Wartości i wektory własne. Dekompozycja na wartości osobliwe"

### 1.7. Obliczyć macierz V wykorzystując własność $V=A^TUS^{-1}$ .

```
# Wyciągnij tylko te kolumny U, które odpowiadają niezerowym wartościom singularnym r = np.sum(S_diag > 1e-12)  # liczba niezerowych wartości
U_r = wektory_wlasne[:, :r]
S_r_inv = np.diag(1.0 / S_diag[:r])

V = A.T @ U_r @ S_r_inv

V, _ = np.linalg.qr(V)

print("Macierz V:")
print(V)

Macierz V:
[[-0.89638583    0.34190289    0.07551881    -0.27183039]
[    0.12867524    -0.37909523    -0.04992386    -0.91500661]
[    -0.15556544    -0.12582912    -0.97621261    0.08351864]
[    -0.39463212    -0.8506211    0.19701131    0.28617438]]
```

### 1.8. Wypisać macierz $[V_1 \ V_2 \ \dots \ V_m]^T$ (czyli wektory $V_i$ jako wiersze).

```
print("Macierz V wypisana wierszami:")
for i, wiersz in enumerate(V):
    print(f"V_{i+1}^T =", np.round(wiersz, 4)) # zaokrąglenie do 4 miejsc

Macierz V wypisana wierszami:
V_1^T = [-0.8964 0.3419 0.0755 -0.2718]
V_2^T = [ 0.1287 -0.3791 -0.0499 -0.915 ]
V_3^T = [-0.1556 -0.1258 -0.9762 0.0835]
V_4^T = [-0.3946 -0.8506 0.197 0.2862]
```

#### 1.9. Obliczyć i wypisać/narysować macierz $A^TA$ ( $m \times m$ ).

J. Tyszkiewicz, M. Godek "Wartości i wektory własne. Dekompozycja na wartości osobliwe"

### 1.10. Obliczyć (korzystając z biblioteki) wartości własne $\lambda_i$ i wektory własne $V_i$ macierzy $A^TA$ .

```
ATA = A.T @ A

wartosci_wlasne_V, wektory_wlasne_V = la.eigh(ATA)

indeksy_sortowania_V = np.argsort(wartosci_wlasne_V)[::-1]

wartosci_wlasne_V = wartosci_wlasne_V[indeksy_sortowania_V]

wektory_wlasne_V = wektory_wlasne_V[:, indeksy_sortowania_V]

print("Wartości własne λi macierzy AT·A:")

print(wartosci_wlasne_V)

print("\nWektory własne Vi (kolumny macierzy V):")

print(wektory_wlasne_V)

Wartości własne λi macierzy AT·A:

[18.67224937 7.61863674 2.46396324 0.42723722]

Wektory własne Vi (kolumny macierzy V):

[[ 0.89638583 0.34190289 0.07551881 -0.27183039]

[-0.12867524 -0.37909523 -0.04992386 -0.91500661]

[ 0.15556544 -0.12582912 -0.97621261 0.08351864]

[ 0.39463212 -0.8506211 0.19701131 0.28617438]]
```

### 1.11. Wypisać macierz wektorów własnych $[V_1 \ V_2 \ \dots \ V_m]^T$ oraz macierz diagonalną S taką, że $S_{ii} = \sqrt{\lambda_i}$ .

```
# 1. Wypisz macierz V<sup>T</sup> - czyli wektory własne V<sub>1</sub> jako wiersze print("Macierz wektorów własnych V<sub>1</sub><sup>T</sup> (wierszami):")
for i, kolumna in enumerate(wektory_wlasne_V.T): # kolumny jako wiersze print(f"V_{i+1}<sup>T</sup> =", np.round(kolumna, 4))

# 2. Oblicz macierz diagonalną S na podstawie λ<sub>i</sub> (dla A<sup>T</sup>·A)
S_diag_V = np.sqrt(np.clip(wartosci_wlasne_V, 0, None)) # dla bezpieczeństwa S_macierz_V = np.diag(S_diag_V)

# 3. Wypisz przekątną macierzy S
print("\nPrzekątna macierzy S (pierwiastki z λ<sub>i</sub>):")
print(np.round(S_diag_V, 4))

Macierz wektorów własnych V<sub>i</sub><sup>T</sup> (wierszami):
V_1<sup>T</sup> = [ 0.8964 -0.1287 0.1556 0.3946]
V_2<sup>T</sup> = [ 0.3719 -0.3791 -0.1258 -0.8506]
V_3<sup>T</sup> = [ 0.0755 -0.0499 -0.9762 0.197 ]
V_4<sup>T</sup> = [ -0.2718 -0.915 0.0835 0.2862]

Przekątna macierzy S (pierwiastki z λ<sub>i</sub>):
[4.3211 2.7602 1.5697 0.6536]
```

## 1.12. Obliczyć macierz U korzystając z własności $U=AVS^{-1}$ , pamiętając że $S_{ii}^{-1}=\frac{1}{S_{ii}}$ .

```
r = np.sum(wartosci_wlasne_V > 1e-12)

V_r = wektory_wlasne_V[:, :r]
S_r_inv = np.diag(1.0 / np.sqrt(wartosci_wlasne_V[:r]))

U_odtworzone = A @ V_r @ S_r_inv
```

#### **1.13.** Wypisać macierz $[U_1 \ U_2 \ \dots \ U_m]$ .

```
print("Macierz U obliczona z AVS-1:")
print(np.round(U_odtworzone, 4))

Macierz U obliczona z AVS-1:
[[ 0.5939 -0.5717 -0.2553 -0.1876]
[ 0.4369  0.3689 -0.4889  0.6465]
[ 0.1044 -0.5239  0.0749  0.1233]
[ 0.2007 -0.0455 -0.2014 -0.284 ]
[ 0.2493  0.4622 -0.2235 -0.6681]
[ -0.5857 -0.2167 -0.7744 -0.0677]]
```

### 1.14. Porównać uzyskane dwie dekompozycje (z $AA^T$ oraz $A^TA$ ).

J. Tyszkiewicz, M. Godek "Wartości i wektory własne. Dekompozycja na wartości osobliwe"

# 1.15. Wyznaczyć: $\dim R(A)$ oraz $\dim N(A)$ , gdzie R(A) to przestrzeń obrazu operatora A, a N(A) to jego jądro (null space).

```
    R(A) (range) – przestrzeń kolumn, ranga = liczba niezerowych wartości singularnych.
    N(A) (null space) – jądro operatora.
    rank = np.linalg.matrix_rank(A, tol=1e-10)
        dim_range = rank
        dim_null = m - rank
        print(f'dim R(A) = {dim_range}')
        print(f'dim N(A) = {dim_null}')
    dim R(A) = 4
        dim N(A) = 0
```

#### 3. Wyniki

- Macierze  $U, \Sigma$  i V zostały obliczone i porównane przy użyciu dwóch metod.
- Obie metody dają spójne wyniki (z uwzględnieniem możliwej zmiany znaku wektorów własnych).
- Wymiary przestrzeni obrazów i jądra zostały zidentyfikowane:
  - Ranga (Rank) = liczba niezerowych wartości singularnych.
  - **Jadro** (Null space) = przestrzeń odpowiadająca zerowym wartościom singularnym.

#### Wnioski:

- Rozkład SVD pozwala precyzyjnie analizować strukturę macierzy, nawet jeśli nie jest kwadratowa.
- SVD daje wgląd w:
  - kierunki największej wariancji (istotne w PCA),
  - rangi i stabilność numeryczną macierzy,
  - możliwość kompresji i aproksymacji macierzy (np. przez obcięcie do największych singularnych).
- Różne metody prowadzą do tych samych wartości singularnych, co świadczy o matematycznej spójności i możliwości wyboru metody zależnie od kontekstu.