Tutorial 1: Solutions

1. How is the unit step function u(t) related to (i) $\delta(t)$ and (ii) ramp function r(t)?

(i)
$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$
 or $\delta(t) = \frac{du(t)}{dt}$. (ii) $r(t) = \int_{-\infty}^{t} u(\tau) d\tau = \int_{0}^{t} u(\tau) d\tau$.

2. For a signal x(t) = 3u(t) - u(t-2), sketch and label

3. For x(t) = u(t+2) - 2u(t) + u(t-1), sketch and label

4. For $x(t) = \delta(t+3) - 2\delta(t-3)$, sketch and label

5. Sketch and label $x(t) = e^{-t}u(t) + e^{-t}u(t-2) + e^{t-4}u(t-4)$.

6. Find the signal that has an even and an odd component shown below.

We know that $x_e(t) = \frac{1}{2} \big[x(t) + x(-t) \big]$ and $x_o(t) = \frac{1}{2} \big[x(t) - x(-t) \big]$. Therefore we have $x(t) = x_e(t) + x_o(t)$.

7. Consider a sinusoidal signal $x(t) = A\cos(\omega t)$. Determine the average value, the average power and the root mean square of x(t).

The average value is given by $\frac{1}{T} \int_{-T/2}^{T/2} x(t) dt = \frac{1}{T} \int_{-T/2}^{T/2} A \cos(\omega t) dt = \frac{A}{\omega T} \left[\sin \omega t \right]_{-T/2}^{T/2}$

$$= \frac{A}{\omega T} \left[\sin \left(\frac{\omega T}{2} \right) - \sin \left(-\frac{\omega T}{2} \right) \right] = \frac{A}{\pi} \sin \pi = 0.$$

The average power is given by

$$\frac{1}{T} \int_{-T/2}^{T/2} x^2(t) dt = \frac{1}{T} \int_{-T/2}^{T/2} A^2 \cos^2(\omega t) dt = \frac{A^2}{2T} \int_{-T/2}^{T/2} 1 + \cos(2\omega t) dt$$

$$= \frac{A^2}{2T} \left[\left(\frac{T}{2} \right) - \left(-\frac{T}{2} \right) \right] + \frac{A^2}{4\omega T} \left[\sin\left(\frac{2\omega T}{2}\right) - \sin\left(-\frac{2\omega T}{2}\right) \right] = \frac{A^2}{2} + \frac{A^2}{8\pi} \left[\sin(2\pi) + \sin(2\pi) \right] = \frac{A^2}{2}$$

The root mean square is $\frac{A}{\sqrt{2}}$.

8. Are the following systems with or without memory, causal of noncausal?

(i) y(t) = 2u(t): without memory, causal

(ii) $y(t) = \sin(u(t))$: without memory, causal

(iii) $y(t) = \sin(u(t+1))$: with memory, noncausal

(iv) $y(t) = e^{t-2}u(t-2)$: with memory, causal

9. Is the system represented by y(t) = 1/x(t) linear and time-invariant?

The system output-input is described by y(t) = 1/x(t).

If the input is $x_l(t)$ then the output will be $y_l(t) = 1/x_l(t)$.

If the input is $x_2(t)$ then the output will be $y_2(t) = 1/x_2(t)$.

However if the input is $ax_1(t) + bx_2(t)$ then the output will be

$$\frac{1}{ax_1(t) + bx_2(t)} \neq ay_1(t) + by_2(t)$$
. Therefore the system is nonlinear.

If the input is $x(t-t_o)$ then the output will be $y(t-t_o) = 1/x(t-t_o)$. Hence the system is time invariant.

10. Consider a linear system with an input-output pairs shown below.

Is the system time invariant?

By inspection $x_2(t) = 2x_1(t-1)$ but $y_2(t) \neq 2y_1(t-1)$. Therefore the system is time varying.

Can we compute the response to the inputs $x_3(t)$ and $x_4(t)$?

The system is linear and $x_3(t) = x_1(t) - x_2(t)/2$. So we can compute the response to $x_3(t)$ as follows

However the response of $x_4(t)$ cannot be computed since the system is time varying.

(ii) If $y_1(t)$ is the response of another system that is linear time-invariant when the input is $x_1(t)$ find the response to the unit step function.

If the input is $x(t-t_o)$ the response will be $y(t-t_o)$ since the system is linear time-invariant. A step function can be constructed by

$$u(t) = \sum_{n=1}^{\infty} x_1(t-2n).$$

The output is therefore $y(t) = \sum_{n=1}^{\infty} y_1(t-2n)$

