$12n_{0876} (K12n_{0876})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5u^{19} - 38u^{18} + \dots + 4b - 40, \ -4u^{19} + 33u^{18} + \dots + 4a + 38, \ u^{20} - 8u^{19} + \dots - 84u + 8 \rangle \\ I_2^u &= \langle 6a^5u^3 + 8a^4u^3 + \dots + 2a - 2, \ -2a^4u^3 + a^3u^3 + \dots + 15a + 9, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_3^u &= \langle -u^{12} - u^{11} - 8u^{10} - 8u^9 - 23u^8 - 23u^7 - 28u^6 - 27u^5 - 11u^4 - 10u^3 + 2u^2 + b, \\ &- u^{10} - 8u^8 - 23u^6 - 28u^4 + u^3 - 12u^2 + a + 2u, \\ &u^{14} + 10u^{12} + 39u^{10} + 74u^8 - 2u^7 + 68u^6 - 9u^5 + 24u^4 - 11u^3 - 2u + 1 \rangle \\ I_4^u &= \langle u^2 + b + 2u + 2, \ -u^3 - u^2 + a - 3u - 2, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_5^u &= \langle -u^3 - u^2 + b - 2u - 1, \ 2u^3 + 2u^2 + a + 5u + 3, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle \\ I_6^u &= \langle b + u - 1, \ 2a - u + 1, \ u^2 - u + 2 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 68 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 5u^{19} - 38u^{18} + \dots + 4b - 40, -4u^{19} + 33u^{18} + \dots + 4a + 38, u^{20} - 8u^{19} + \dots - 84u + 8 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{19} - \frac{33}{4}u^{18} + \dots + \frac{401}{4}u - \frac{19}{2} \\ -\frac{5}{4}u^{19} + \frac{19}{2}u^{18} + \dots - \frac{207}{2}u + 10 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{5}{4}u^{19} - \frac{35}{4}u^{18} + \dots + \frac{103}{4}u - \frac{3}{2} \\ \frac{3}{4}u^{19} - \frac{9}{2}u^{18} + \dots + \frac{41}{2}u - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -u^{19} + \frac{13}{2}u^{18} + \dots - 10u + \frac{1}{2} \\ \frac{1}{2}u^{18} - 3u^{17} + \dots - \frac{67}{2}u + 4 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} \frac{7}{4}u^{19} - \frac{51}{4}u^{18} + \dots + \frac{633}{4}u - 17 \\ -\frac{3}{4}u^{19} + 6u^{18} + \dots - 161u + 18 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} -\frac{9}{4}u^{19} + \frac{69}{4}u^{18} + \dots - \frac{1071}{4}u + 27 \\ \frac{5}{4}u^{19} - 9u^{18} + \dots + 86u - 8 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} -\frac{9}{4}u^{19} + \frac{69}{4}u^{18} + \dots - \frac{147}{2}u + \frac{17}{2} \\ -u^{19} + \frac{15}{2}u^{18} + \dots - \frac{159}{2}u + 8 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\overset{\backprime}{=}\overset{\backprime}{u^{19}} - 8u^{18} + 42u^{17} - 163u^{16} + 506u^{15} - 1312u^{14} + 2893u^{13} - 5517u^{12} + 9157u^{11} - 13296u^{10} + 16896u^9 - 18758u^8 + 18092u^7 - 15031u^6 + 10601u^5 - 6223u^4 + 2945u^3 - 1076u^2 + 282u - 46u^2 + 280u^2 + 28$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{20} - 11u^{19} + \dots - 44u + 8$
c_2, c_8, c_{10}	$u^{20} - 3u^{19} + \dots - 3u + 1$
<i>c</i> 3	$u^{20} + u^{19} + \dots + 9u^2 + 1$
c_5,c_9	$u^{20} + 3u^{19} + \dots + 4u + 1$
c_6, c_7, c_{11} c_{12}	$u^{20} + 8u^{19} + \dots + 84u + 8$

Crossings	Riley Polynomials at each crossing
c_1,c_4	$y^{20} + 9y^{19} + \dots + 48y + 64$
c_2, c_8, c_{10}	$y^{20} - 15y^{19} + \dots - y + 1$
<i>c</i> ₃	$y^{20} + 9y^{19} + \dots + 18y + 1$
c_5, c_9	$y^{20} - 19y^{19} + \dots + 6y + 1$
$c_6, c_7, c_{11} \\ c_{12}$	$y^{20} + 22y^{19} + \dots + 240y + 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.615618 + 0.809804I		
a = 0.149188 - 1.170140I	-0.57301 - 3.95011I	-2.11978 + 4.63331I
b = 0.085977 + 1.072180I		
u = 0.615618 - 0.809804I		
a = 0.149188 + 1.170140I	-0.57301 + 3.95011I	-2.11978 - 4.63331I
b = 0.085977 - 1.072180I		
u = 0.931383 + 0.280268I		
a = 1.201130 - 0.003287I	-0.03598 + 5.05200I	-0.41236 - 3.99248I
b = -0.170316 + 0.290909I		
u = 0.931383 - 0.280268I		
a = 1.201130 + 0.003287I	-0.03598 - 5.05200I	-0.41236 + 3.99248I
b = -0.170316 - 0.290909I		
u = 0.746449 + 0.775861I		
a = -0.471110 + 1.236680I	1.47378 - 10.55160I	0.34887 + 7.91165I
b = -0.100180 - 1.158660I		
u = 0.746449 - 0.775861I		
a = -0.471110 - 1.236680I	1.47378 + 10.55160I	0.34887 - 7.91165I
b = -0.100180 + 1.158660I		
u = 0.733781 + 0.211411I		
a = -1.008810 - 0.357032I	-2.40729 - 0.59322I	-4.18556 - 0.45547I
b = 0.277449 - 0.014017I		
u = 0.733781 - 0.211411I		
a = -1.008810 + 0.357032I	-2.40729 + 0.59322I	-4.18556 + 0.45547I
b = 0.277449 + 0.014017I		
u = -0.024618 + 1.249360I		
a = 0.348669 + 0.434224I	4.75638 - 1.46611I	2.62808 + 4.96498I
b = 0.033771 - 1.123880I		
u = -0.024618 - 1.249360I		
a = 0.348669 - 0.434224I	4.75638 + 1.46611I	2.62808 - 4.96498I
b = 0.033771 + 1.123880I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.259646 + 1.352180I		
a = 0.352486 - 0.235426I	2.47957 - 4.10039I	3.08727 - 0.58697I
b = -0.865270 + 0.246592I		
u = 0.259646 - 1.352180I		
a = 0.352486 + 0.235426I	2.47957 + 4.10039I	3.08727 + 0.58697I
b = -0.865270 - 0.246592I		
u = 0.240761 + 0.325217I		
a = -0.616636 - 1.071860I	-0.172616 - 0.899774I	-3.76752 + 7.66615I
b = -0.002796 + 0.413272I		
u = 0.240761 - 0.325217I		
a = -0.616636 + 1.071860I	-0.172616 + 0.899774I	-3.76752 - 7.66615I
b = -0.002796 - 0.413272I		
u = 0.23882 + 1.63854I		
a = -0.282035 - 0.978235I	9.5379 - 14.3084I	2.45273 + 7.13980I
b = -0.02878 + 3.04561I		
u = 0.23882 - 1.63854I		
a = -0.282035 + 0.978235I	9.5379 + 14.3084I	2.45273 - 7.13980I
b = -0.02878 - 3.04561I		
u = 0.19941 + 1.65855I		
a = 0.329642 + 0.850090I	7.82775 - 7.13457I	0.46687 + 4.13636I
b = -0.11179 - 2.80281I		
u = 0.19941 - 1.65855I		
a = 0.329642 - 0.850090I	7.82775 + 7.13457I	0.46687 - 4.13636I
b = -0.11179 + 2.80281I		
u = 0.05874 + 1.80462I		
a = -0.252521 - 0.599270I	16.5920 - 2.0882I	-4.99860 + 4.75350I
b = -0.11806 + 2.38692I		
u = 0.05874 - 1.80462I		
a = -0.252521 + 0.599270I	16.5920 + 2.0882I	-4.99860 - 4.75350I
b = -0.11806 - 2.38692I		

$$\text{II. } I_2^u = \\ \langle 6a^5u^3 + 8a^4u^3 + \dots + 2a - 2, \ -2a^4u^3 + a^3u^3 + \dots + 15a + 9, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3a^{5}u^{3} - 4a^{4}u^{3} + \dots - a + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3a^{5}u^{3} - 4a^{4}u^{3} + \dots - \frac{5}{2}a^{2} + 1 \\ 5a^{5}u^{3} + 7a^{4}u^{3} + \dots - a - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 4a^{5}u^{3} + \frac{11}{2}a^{4}u^{3} + \dots - \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2a^{5}u^{3} + \frac{3}{2}a^{4}u^{3} + \dots + \frac{5}{2}a - \frac{1}{2} \\ -3a^{5}u^{3} + \frac{3}{2}a^{4}u^{3} + \dots - \frac{17}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2a^{5}u^{3} + a^{4}u^{3} + \dots + 4a - 1 \\ -a^{5}u^{3} + \frac{11}{2}a^{4}u^{3} + \dots - 12a - \frac{5}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{17}{2}a^{5}u^{3} + \frac{27}{2}a^{4}u^{3} + \dots - 4a - 4 \\ -\frac{21}{2}a^{5}u^{3} - 17a^{4}u^{3} + \dots + 5a + \frac{15}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4a^5u^3 + 6a^5u^2 - 8a^4u^3 + 6a^5u + 8a^4u^2 - 6a^3u^3 + 4a^5 + 8a^4u + 24a^3u^2 - 4u^3a^2 + 6a^4 + 20a^3u + 30a^2u^2 + 12a^3 + 26a^2u + 20u^2a + 2u^3 + 14a^2 + 14au + 12u^2 + 6a + 2u$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^4 + u^3 + u^2 + 1)^6$
c_2, c_8, c_{10}	$u^{24} - u^{23} + \dots - 1188u + 328$
c_3	$u^{24} + 3u^{23} + \dots - 3996u + 648$
c_5, c_9	$u^{24} + 5u^{23} + \dots + 168u + 8$
c_6, c_7, c_{11} c_{12}	$(u^4 - u^3 + 3u^2 - 2u + 1)^6$

Crossings	Riley Polynomials at each crossing	
c_1, c_4	$(y^4 + y^3 + 3y^2 + 2y + 1)^6$	
c_2, c_8, c_{10}	$y^{24} - 15y^{23} + \dots - 453584y + 107584$	
<i>c</i> ₃	$y^{24} - 3y^{23} + \dots - 5750352y + 419904$	
c_5, c_9	$y^{24} - 7y^{23} + \dots - 7776y + 64$	
c_6, c_7, c_{11} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^6$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = 0.103728 - 1.096500I	-2.06694 - 1.74886I	-1.65348 - 2.34394I
b = -1.09009 + 1.02540I		
u = -0.395123 + 0.506844I		
a = 0.16699 + 1.52687I	-2.06694 + 4.57907I	-1.65348 - 7.47354I
b = 0.83629 - 1.36113I		
u = -0.395123 + 0.506844I		
a = -1.78646 + 0.12907I	-2.06694 - 1.74886I	-1.65348 - 2.34394I
b = -0.283051 + 0.216704I		
u = -0.395123 + 0.506844I		
a = 1.63057 - 0.79455I	-2.06694 + 4.57907I	-1.65348 - 7.47354I
b = 0.357314 - 0.054366I		
u = -0.395123 + 0.506844I		
a = -0.39246 - 1.95028I	4.93480 + 2.83021I	2.00000 - 9.81749I
b = 0.628050 + 0.462471I		
u = -0.395123 + 0.506844I		
a = 1.17687 + 1.78486I	4.93480 + 2.83021I	2.00000 - 9.81749I
b = -0.547258 - 1.222920I		
u = -0.395123 - 0.506844I		
a = 0.103728 + 1.096500I	-2.06694 + 1.74886I	-1.65348 + 2.34394I
b = -1.09009 - 1.02540I		
u = -0.395123 - 0.506844I		
a = 0.16699 - 1.52687I	-2.06694 - 4.57907I	-1.65348 + 7.47354I
b = 0.83629 + 1.36113I		
u = -0.395123 - 0.506844I		
a = -1.78646 - 0.12907I	-2.06694 + 1.74886I	-1.65348 + 2.34394I
b = -0.283051 - 0.216704I		
u = -0.395123 - 0.506844I		
a = 1.63057 + 0.79455I	-2.06694 - 4.57907I	-1.65348 + 7.47354I
b = 0.357314 + 0.054366I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 - 0.506844I		
a = -0.39246 + 1.95028I	4.93480 - 2.83021I	2.00000 + 9.81749I
b = 0.628050 - 0.462471I		
u = -0.395123 - 0.506844I		
a = 1.17687 - 1.78486I	4.93480 - 2.83021I	2.00000 + 9.81749I
b = -0.547258 + 1.222920I		
u = -0.10488 + 1.55249I		
a = 0.104373 - 0.975826I	11.93650 + 4.57907I	5.65348 - 7.47354I
b = 0.81052 + 3.36343I		
u = -0.10488 + 1.55249I		
a = -1.045950 - 0.024912I	4.93480 + 6.32793I	2.00000 - 5.12960I
b = 1.324300 + 0.197152I		
u = -0.10488 + 1.55249I		
a = -0.617508 + 0.929773I	11.93650 + 4.57907I	5.65348 - 7.47354I
b = 0.28030 - 2.29404I		
u = -0.10488 + 1.55249I		
a = -0.145302 + 1.200950I	11.93650 + 1.74886I	5.65348 + 2.34394I
b = -0.31108 - 3.25723I		
u = -0.10488 + 1.55249I		
a = 0.079320 - 0.763538I	4.93480 + 6.32793I	2.00000 - 5.12960I
b = -0.58732 + 3.42729I		
u = -0.10488 + 1.55249I		
a = 0.225836 - 0.692087I	11.93650 + 1.74886I	5.65348 + 2.34394I
b = 1.08202 + 1.93847I		
u = -0.10488 - 1.55249I		
a = 0.104373 + 0.975826I	11.93650 - 4.57907I	5.65348 + 7.47354I
b = 0.81052 - 3.36343I		
u = -0.10488 - 1.55249I		
a = -1.045950 + 0.024912I	4.93480 - 6.32793I	2.00000 + 5.12960I
b = 1.324300 - 0.197152I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.10488 - 1.55249I		
a = -0.617508 - 0.929773I	11.93650 - 4.57907I	5.65348 + 7.47354I
b = 0.28030 + 2.29404I		
u = -0.10488 - 1.55249I		
a = -0.145302 - 1.200950I	11.93650 - 1.74886I	5.65348 - 2.34394I
b = -0.31108 + 3.25723I		
u = -0.10488 - 1.55249I		
a = 0.079320 + 0.763538I	4.93480 - 6.32793I	2.00000 + 5.12960I
b = -0.58732 - 3.42729I		
u = -0.10488 - 1.55249I		
a = 0.225836 + 0.692087I	11.93650 - 1.74886I	5.65348 - 2.34394I
b = 1.08202 - 1.93847I		

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{10} + 8u^{8} + 23u^{6} + 28u^{4} - u^{3} + 12u^{2} - 2u \\ u^{12} + u^{11} + \dots + 10u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \\ u^{13} + u^{12} + \dots + 10u^{2} - 2u \\ u^{13} + u^{12} + \dots + 10u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{12} - 9u^{10} - 31u^{8} - 51u^{6} + 2u^{5} - 40u^{4} + 7u^{3} - 12u^{2} + 6u \\ -u^{13} + u^{12} + \dots - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{11} + 9u^{9} + 30u^{7} + 45u^{5} - u^{4} + 29u^{3} - 4u^{2} + 6u - 3 \\ u^{10} + 7u^{8} + 17u^{6} + 16u^{4} - 2u^{3} + 4u^{2} - 3u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + 7u^{7} + 17u^{5} + 17u^{3} - u^{2} + 6u - 2 \\ u^{12} + u^{11} + \dots + 2u^{2} - 4u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{13} - u^{12} + \dots + 6u + 1 \\ u^{12} - u^{11} + \dots - u + 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= -u^{13} + 2u^{12} - 8u^{11} + 17u^{10} - 24u^9 + 51u^8 - 37u^7 + 60u^6 - 43u^5 + 12u^4 - 41u^3 - 15u^2 - 11u + 6$$

Crossings	u-Polynomials at each crossing
c_1	$u^{14} - 3u^{13} + \dots + 7u^2 + 1$
c_2, c_{10}	$u^{14} - u^{13} + \dots - u + 1$
c_3	$u^{14} - u^{12} + \dots + 22u + 29$
c_4	$u^{14} + 3u^{13} + \dots + 7u^2 + 1$
<i>C</i> ₅	$u^{14} + u^{13} + \dots + 4u^2 + 1$
c_{6}, c_{7}	$u^{14} + 10u^{12} + \dots - 2u + 1$
<i>c</i> ₈	$u^{14} + u^{13} + \dots + u + 1$
<i>c</i> ₉	$u^{14} - u^{13} + \dots + 4u^2 + 1$
c_{11}, c_{12}	$u^{14} + 10u^{12} + \dots + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{14} + 11y^{13} + \dots + 14y + 1$
c_2, c_8, c_{10}	$y^{14} - 11y^{13} + \dots + 5y + 1$
<i>c</i> ₃	$y^{14} - 2y^{13} + \dots + 1082y + 841$
c_5, c_9	$y^{14} - 3y^{13} + \dots + 8y + 1$
c_6, c_7, c_{11} c_{12}	$y^{14} + 20y^{13} + \dots - 4y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.311609 + 0.942763I		
a = 0.291653 + 1.169250I	7.09672 + 0.19743I	7.21171 - 0.40759I
b = -0.737119 - 1.186440I		
u = -0.311609 - 0.942763I		
a = 0.291653 - 1.169250I	7.09672 - 0.19743I	7.21171 + 0.40759I
b = -0.737119 + 1.186440I		
u = 0.161029 + 1.344040I		
a = 0.433516 + 0.120817I	2.08475 - 4.90341I	-1.06931 + 6.62394I
b = -0.916757 + 0.574654I		
u = 0.161029 - 1.344040I		
a = 0.433516 - 0.120817I	2.08475 + 4.90341I	-1.06931 - 6.62394I
b = -0.916757 - 0.574654I		
u = 0.23888 + 1.43943I		
a = -0.435879 + 0.255328I	3.18169 + 0.60898I	-3.58539 - 1.80775I
b = 0.231007 - 1.380650I		
u = 0.23888 - 1.43943I		
a = -0.435879 - 0.255328I	3.18169 - 0.60898I	-3.58539 + 1.80775I
b = 0.231007 + 1.380650I		
u = -0.293216 + 0.377036I		
a = -1.27142 - 2.57328I	5.21647 + 1.94152I	5.99803 - 0.90958I
b = 0.845482 + 0.700844I		
u = -0.293216 - 0.377036I		
a = -1.27142 + 2.57328I	5.21647 - 1.94152I	5.99803 + 0.90958I
b = 0.845482 - 0.700844I		
u = -0.09214 + 1.54037I		
a = -0.305542 + 0.999070I	11.88620 + 3.33387I	5.15657 - 1.10675I
b = -0.50480 - 2.83803I		
u = -0.09214 - 1.54037I		
a = -0.305542 - 0.999070I	11.88620 - 3.33387I	5.15657 + 1.10675I
b = -0.50480 + 2.83803I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.376292 + 0.105089I		
a = 1.06759 + 1.35883I	-2.11738 + 2.98340I	-1.73215 - 4.07562I
b = 0.290833 + 0.885340I		
u = 0.376292 - 0.105089I		
a = 1.06759 - 1.35883I	-2.11738 - 2.98340I	-1.73215 + 4.07562I
b = 0.290833 - 0.885340I		
u = -0.07924 + 1.76897I		
a = 0.220085 - 0.669149I	17.0648 + 1.9156I	10.52053 + 0.88434I
b = 0.29136 + 2.47039I		
u = -0.07924 - 1.76897I		
a = 0.220085 + 0.669149I	17.0648 - 1.9156I	10.52053 - 0.88434I
b = 0.29136 - 2.47039I		

IV. $I_4^u = \langle u^2 + b + 2u + 2, -u^3 - u^2 + a - 3u - 2, u^4 + u^3 + 3u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + 3u + 2 \\ -u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + 2u \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + u^{2} + 3u + 2 \\ -u^{2} - u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u^{2} + 3u + 2 \\ -u^{2} - u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - 2u^{2} - 3u - 4 \\ u^{2} + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u^{2} - 3u - 3 \\ 2u^{2} + u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 3u + 1 \\ -u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 2

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^4 + u^3 + u^2 + 1$
c_{2}, c_{8}	$u^4 - 2u^3 + u^2 - 3u + 4$
<i>c</i> ₃	$u^4 - 3u^3 + u^2 + 2u + 1$
c_5, c_9	$(u-1)^4$
c_6, c_7, c_{11} c_{12}	$u^4 - u^3 + 3u^2 - 2u + 1$
c_{10}	$(u+1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^4 + y^3 + 3y^2 + 2y + 1$
c_2, c_8	$y^4 - 2y^3 - 3y^2 - y + 16$
<i>c</i> ₃	$y^4 - 7y^3 + 15y^2 - 2y + 1$
c_5, c_9, c_{10}	$(y-1)^4$
c_6, c_7, c_{11} c_{12}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = 0.95668 + 1.22719I	4.93480	2.00000
b = -1.108990 - 0.613156I		
u = -0.395123 - 0.506844I		
a = 0.95668 - 1.22719I	4.93480	2.00000
b = -1.108990 + 0.613156I		
u = -0.10488 + 1.55249I		
a = 0.043315 + 0.641200I	4.93480	2.00000
b = 0.60898 - 2.77934I		
u = -0.10488 - 1.55249I		
a = 0.043315 - 0.641200I	4.93480	2.00000
b = 0.60898 + 2.77934I		

$$V. \\ I_5^u = \langle -u^3 - u^2 + b - 2u - 1, \ 2u^3 + 2u^2 + a + 5u + 3, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{3} - 2u^{2} - 5u - 3 \\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{3} - 2u^{2} - 5u - 2 \\ u^{3} + 2u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3u^{3} + 2u^{2} + 7u + 4 \\ -u^{3} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - 3u + 1 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 3u + 2 \\ u^{2} + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{3} + 2u^{2} + 5u + 3 \\ -u^{3} - u^{2} - 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 2

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^4 + u^3 + u^2 + 1$
c_2, c_8	$(u+1)^4$
<i>c</i> ₃	$u^4 + u^3 + 3u^2 + 2u + 1$
c_5, c_9	$u^4 + 2u^3 + 3u^2 + 3u + 2$
$c_6, c_7, c_{11} \\ c_{12}$	$u^4 - u^3 + 3u^2 - 2u + 1$
c_{10}	$u^4 - 2u^3 + u^2 - 3u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^4 + y^3 + 3y^2 + 2y + 1$
c_2,c_8	$(y-1)^4$
$c_3, c_6, c_7 \\ c_{11}, c_{12}$	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_5,c_9	$y^4 + 2y^3 + y^2 + 3y + 4$
c_{10}	$y^4 - 2y^3 - 3y^2 - y + 16$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I	4.09.400	2 00000
a = -1.30849 - 1.94753I b = 0.351808 + 0.720342I	4.93480	2.00000
u = -0.395123 - 0.506844I		
a = -1.30849 + 1.94753I	4.93480	2.00000
$\frac{b = 0.351808 - 0.720342I}{u = -0.10488 + 1.55249I}$		
a = 0.808493 + 0.270093I	4.93480	2.00000
b = -0.851808 - 0.911292I		
u = -0.10488 - 1.55249I	4.00.400	2 00000
-	4.93480	2.00000
a = 0.808493 - 0.270093I $b = -0.851808 + 0.911292I$	4.93480	2.00000

VI.
$$I_6^u = \langle b+u-1, \ 2a-u+1, \ u^2-u+2 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u - \frac{1}{2} \\ -u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u + \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} \frac{1}{2}u - \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} \frac{1}{2}u - \frac{1}{2} \\ -u - 1 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u + 2 \\ -2 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} -\frac{3}{2}u + \frac{3}{2} \\ u - 3 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} -\frac{1}{2}u + \frac{1}{2} \\ u - 1 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} -\frac{1}{2}u + \frac{1}{2} \\ u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 2

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4	$u^2 - u + 2$
c_2, c_8, c_{10}	$(u+1)^2$
c_5, c_9	$(u-1)^2$
c_6, c_7, c_{11} c_{12}	$u^2 + u + 2$

Crossings	Riley Polynomials at each crossing	
$c_1, c_3, c_4 \\ c_6, c_7, c_{11} \\ c_{12}$	$y^2 + 3y + 4$	
c_2, c_5, c_8 c_9, c_{10}	$(y-1)^2$	

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.50000 + 1.32288I		
a = -0.250000 + 0.661438I	4.93480	2.00000
b = 0.50000 - 1.32288I		
u = 0.50000 - 1.32288I		
a = -0.250000 - 0.661438I	4.93480	2.00000
b = 0.50000 + 1.32288I		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 2)(u^{4} + u^{3} + u^{2} + 1)^{8}(u^{14} - 3u^{13} + \dots + 7u^{2} + 1)$ $\cdot (u^{20} - 11u^{19} + \dots - 44u + 8)$
c_2, c_{10}	$((u+1)^{6})(u^{4}-2u^{3}+u^{2}-3u+4)(u^{14}-u^{13}+\cdots-u+1)$ $\cdot (u^{20}-3u^{19}+\cdots-3u+1)(u^{24}-u^{23}+\cdots-1188u+328)$
c_3	$(u^{2} - u + 2)(u^{4} - 3u^{3} + u^{2} + 2u + 1)(u^{4} + u^{3} + 3u^{2} + 2u + 1)$ $\cdot (u^{14} - u^{12} + \dots + 22u + 29)(u^{20} + u^{19} + \dots + 9u^{2} + 1)$ $\cdot (u^{24} + 3u^{23} + \dots - 3996u + 648)$
c_4	$(u^{2} - u + 2)(u^{4} + u^{3} + u^{2} + 1)^{8}(u^{14} + 3u^{13} + \dots + 7u^{2} + 1)$ $\cdot (u^{20} - 11u^{19} + \dots - 44u + 8)$
c_5	$((u-1)^6)(u^4 + 2u^3 + \dots + 3u + 2)(u^{14} + u^{13} + \dots + 4u^2 + 1)$ $\cdot (u^{20} + 3u^{19} + \dots + 4u + 1)(u^{24} + 5u^{23} + \dots + 168u + 8)$
c_6, c_7	$(u^{2} + u + 2)(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{8}(u^{14} + 10u^{12} + \dots - 2u + 1)$ $\cdot (u^{20} + 8u^{19} + \dots + 84u + 8)$
c_8	$((u+1)^{6})(u^{4}-2u^{3}+u^{2}-3u+4)(u^{14}+u^{13}+\cdots+u+1)$ $\cdot (u^{20}-3u^{19}+\cdots-3u+1)(u^{24}-u^{23}+\cdots-1188u+328)$
c_9	$((u-1)^{6})(u^{4} + 2u^{3} + \dots + 3u + 2)(u^{14} - u^{13} + \dots + 4u^{2} + 1)$ $\cdot (u^{20} + 3u^{19} + \dots + 4u + 1)(u^{24} + 5u^{23} + \dots + 168u + 8)$
c_{11}, c_{12}	$(u^{2} + u + 2)(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{8}(u^{14} + 10u^{12} + \dots + 2u + 1)$ $\cdot (u^{20} + 8u^{19} + \dots + 84u + 8)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{2} + 3y + 4)(y^{4} + y^{3} + 3y^{2} + 2y + 1)^{8}(y^{14} + 11y^{13} + \dots + 14y + 1)$ $\cdot (y^{20} + 9y^{19} + \dots + 48y + 64)$
c_2, c_8, c_{10}	$((y-1)^6)(y^4 - 2y^3 + \dots - y + 16)(y^{14} - 11y^{13} + \dots + 5y + 1)$ $\cdot (y^{20} - 15y^{19} + \dots - y + 1)(y^{24} - 15y^{23} + \dots - 453584y + 107584)$
c_3	$(y^{2} + 3y + 4)(y^{4} - 7y^{3} + 15y^{2} - 2y + 1)(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)$ $\cdot (y^{14} - 2y^{13} + \dots + 1082y + 841)(y^{20} + 9y^{19} + \dots + 18y + 1)$ $\cdot (y^{24} - 3y^{23} + \dots - 5750352y + 419904)$
c_5,c_9	$((y-1)^6)(y^4 + 2y^3 + y^2 + 3y + 4)(y^{14} - 3y^{13} + \dots + 8y + 1)$ $\cdot (y^{20} - 19y^{19} + \dots + 6y + 1)(y^{24} - 7y^{23} + \dots - 7776y + 64)$
c_6, c_7, c_{11} c_{12}	$(y^{2} + 3y + 4)(y^{4} + 5y^{3} + \dots + 2y + 1)^{8}(y^{14} + 20y^{13} + \dots - 4y + 1)$ $\cdot (y^{20} + 22y^{19} + \dots + 240y + 64)$