ИТОГИ МОНИТОРИНГА МНОГОЛЕТНИХ ИЗМЕНЕНИЙ ОРНИТОФАУНЫ И НАСЕЛЕНИЯ ПТИЦ

ВЛИЯНИЕ КЛИМАТА НА ДОЛГОВРЕМЕННУЮ ДИНАМИКУ ЧИСЛЕННОСТИ ПТИЦ В БАЛТИЙСКОМ РЕГИОНЕ

Л.В. Соколов, М.Ю. Марковец, А.П. Шаповал

Биологическая станция «Рыбачий» Зоологического института РАН leonid-sokolov@mail.ru

THE IMPACT OF CLIMATE ON THE LONG-TERM FLUCTUATION OF BIRD NUMBERS IN THE BALTIC REGION

L.V. Sokolov, M.Yu. Markovets, A.P. Shapoval

Biological Station Rybachy, Zoological Institute RAS; leonid-sokolov@mail.ru

Сторонники «климатической» концепции склонны объяснять колебания численности животных, включая птиц, преимущественно изменениями климата, которые охватывают длинные периоды (порядка десятилетий и столетий). Считается, что определенные периодические флуктуации климата могут определять многолетние квазипериодические изменения численности птиц (Соколов, 2010). Такие изменения климата могут влиять как непосредственно на смертность и выживаемость птиц в популяции, так и на их продуктивность и успешность восстановления численности популяции (Паевский, 2008).

Однако для выявления влияния климата на долговременную динамику численности птиц необходимо проводить длительный мониторинг за состоянием популяций птиц в одном и том же районе исследования. Такого рода мониторинг вот уже на протяжении 60 лет ведется сотрудниками биологической станции «Рыбачий» Зоологического института РАН на Куршской косе Балтийского моря, через которую весной и осенью мигрируют миллионы птиц. В результате в настоящее время в распоряжении биостанции имеется огромный по объему (около 3 млн. окольцованных особей) банк данных кольцевания, который большей частью обработан и проанализирован (Соколов, Шаповал, 2014).

Основной целью данной работы было выявление влияния климата на долговременные колебания численности как локальных, гнездящихся на Куршской косе, так и транзитных популяций птиц, обитающих в Балтийском регионе.

МАТЕРИАЛ И МЕТОДЫ

Анализировались данные отлова птиц большими ловушками «Рыбачинского» типа, ежегодно функционирующими в период с конца марта по конец октября на территории полевого стационара «Фрингилла» биологической станции «Рыбачий», расположенной на Куршской косе Балтийского моря (55°05′ N, 20°44′ E) в период с 1957 по 2015 гг. (Payevsky, 2000). Были исследованы наиболее распространенные в Балтийском регионе виды, как оседлые, так и мигрирующие преимущественно в Европу и в Африку (табл. 1, 2).

Численность локальных популяций обычно оценивается с помощью разного рода маршрутных учетов птиц или поиска и картирования гнезд на контролируемой территории (Bibby et al., 2000). В то время как численность птиц на пролете исследователи пытаются оценить с помощью визуальных наблюдений в местах массовой миграции (Bildstein, 1998; Verhelst et al., 2011). «Рыбачинские» ловушки дают возможность произвести корректную оценку многолетней динамики численности не только локальных, но и транзитных, популяций у целого ряда видов (Соколов, 1999, 2007; Sokolov et al., 2000, 2001; Соколов и др., 2005, 2002). Численность местных популяций в данной работе оценивалась по количеству молодых особей, пойманных в две больших ловушки, ориентированных на северо-восток и юго-запад, в период с 1 июня по 20 августа, а транзитных популяций — в одну ловушку, ориентированную входом на северовосток, с 21 августа по 31 октября.

Рис. 1. Динамика и тренды среднемесячных температур воздуха в Калининградской обл. Тренд показан сглаженной линией (полином 3-ей степени).

Fig. 1. Long-term dynamics and trends monthly temperatures in Kaliningrad region. Trend are shown by the curved line (third degree polynomial).

В качестве показателей изменения климата в нашем районе исследования были использованы средние региональные температуры воздуха и глобальный индекс NAO (Северо-Атлантическое Колебание). Погода и климат Европы в существенной степени определяется атмосферной циркуляцией воздушных масс над Северной Атлантикой, представленной двумя системами низкого (Исландский минимум) и высокого давления (Азорский максимум). Стандартизованная разность давления между этими двумя центрами действия атмосферы и характеризуется индексом NAO. Этот индекс отражает динамику интенсивности циркуляции атмосферы не только над Северной Атлантикой, но и над обширными областями Европы, Северной Америки и северными областями Азии и Северного Ледовитого океана (Hurrell, 1995; Hurrell et al., 2001). Западный перенос воздушных масс с Атлантики, прежде всего в зимний период и в марте, во многом определяет температурный режим, уровень осадков и ледовые и уровневые условия Балтийского и Баренцева морей. Нами использовался объединенный зимне-весенний (январь-март) индекс NAO. Ежемесячные индексы NAO доступны на сайте Национального Океанического и Атмосферного Климатического Центра: http://www.cpc.ncep.noaa.gov/data/teledoc/teleindcalc.shtml. Показатели региональной температуры воздуха были взяты с сайта: http://www.tutiempo.net/en/.

Долговременные тренды численности популяций оценивались с помощью линейной регрессии. Для выявления связи между данными мониторинга и климатическими параметрами использовался коэффициент ранговой корреляции Спирмена с помощью программы StatSoft STATISTICA 10.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Изменение климата в Балтийском регионе

На протяжении последних 60 лет климат в Балтийском регионе заметно менялся, если судить по колебаниям локальной температуры воздуха и глобального погодного индекса NAO (рис.1, 2). Наиболее теплые зимы и весны наблюдались в по-

Рис. 2. Динамика и тренд погодно-климатического индекса Северо-Атлантического Колебания (NAO) в зимне-весенний период. Тренд показан сглаженной линией (полином 3-ей степени). Fig. 2. Long-term dynamics and trend of North Atlantic Oscillation index (NAOI) for January-March.

Trend are shown by the curved line (third degree polynomial).

Puc. 3. Динамика и тренды численности молодых птиц у оседлых (A) и инвазионных (Б) видов на Куршской косе. Fig. 3. Long-term dynamics and trend of young birds numbers in settled (A) and irruptive (B) species on the Courish Spit.

следние два десятилетия 20-го века и, частично, в 1960-е гг. Наиболее низкая температура воздуха в апреле, когда идет массовая миграция птиц в исследуемом регионе, приходилась на 1970-е гг. (рис. 1). В последние годы наметилась тенденция к некоторому похолоданию в зимний и весенний периоды в Балтийском регионе. Температура июня, когда происходит массовое гнездование птиц на Куршской косе, не имела какого-либо выраженного тренда на протяжении всего периода исследования (рис. 1).

Долговременная динамика численности локальных и транзитных популяций

Численность популяций птиц, гнездящихся на Куршской косе, существенно колебалась за время исследования. В одни периоды она заметно возрастала, в другие сильно падала. У оседлых видов — хохлатой синицы (*Parus cristatus*) и болотной гачички (*P. palustris*) наибольшая численность наблюдалась в 1980-е гг. и начале нынешнего века (рис. 3). У ближних мигрантов высокая численность популяций имела место в 60-е и 80-е гг. прошлого века, а также в первое десятилетие нашего столетия (рис. 4). У дальних мигрантов высокая численность популяций наблюдалась в те же периоды, что и у ближних (рис. 5).

Значимые положительные тренды динамики численности гнездовых популяций выявлены у двух оседлых видов и одного инвазионного пухляка (*P. montanus*), у двух ближних мигрантов

Puc. 4. Динамика и тренды численности молодых птиц у ближних мигрантов на Куршской косе. Fig. 4. Long-term dynamics and trend of young birds numbers in short-distance migrants on the Courish Spit.

— горихвостки-чернушки (*Phoenicurus ochruros*) и пеночки-теньковки (*Phylloscopus collybita*) и одного дальнего мигранта — мухоловки-пеструшки (*Ficedula hypoleuca*) (табл. 1). Только у зяблика (*Fringilla*

coelebs) выявлен значимый отрицательный тренд гнездовой численности (табл. 1).

Численность пролетных популяций осенью в целом имела сходную динамику с локальными по-

Puc. 5. Динамика и тренды численности молодых птиц у дальних мигрантов на Куршской косе. Fig. 5. Long-term dynamics and trend of young birds numbers in long-distance migrants on the Courish Spit.

пуляциями Куршской косы (рис. 4, 5). У ближних и дальних мигрантов в большинстве случаев можно выделить три периода подъема численности — в 60-е и 80-е гг. прошлого века и в начале нашего столетия. У инвазионных видов — московки (*P. ater*) пики максимальной численности наблюдались в 60-е и 80-е гг. прошлого века, в то время как у ополовника (*Aegithalos caudatus*), наоборот, в начале нынешнего века (рис. 3). У всех видов, за исключением серой мухоловки (*Muscicapa striata*), выявлена значимая положительная связь между численностью гнездовых и пролетных популяций (табл. 3).

У пролетных популяций значимые положительные тренды численности выявлены у подавляющего большинства ближних мигрантов и только у одного дальнего мигранта — серой славки (Sylvia communis) и одного инвазионного вида — ополовника (табл. 2). Значимые отрицательные тренды численности отмечаются у одного ближнего мигранта — зяблика и двух дальних мигрантов — обыкновенной кукушки (Cuculus canorus) и серой мухоловки (табл. 2).

Связь численности популяций с температурным режимом

Численность местных популяций у всех исследованных видов, за исключением кукушки, была значимо связана либо с весенней локальной температурой воздуха, либо с зимне-весенним индексом NAO (табл. 1). В годы с теплой и ранней весной численность местных популяций существенно увеличивалась за счет появления большого количества молодых особей после успешного размножения. Интересно, что температурный режим в июне, когда происходит массовое вылупление птенцов, не оказывал заметного влияния на численность молодых птиц в послегнездовой период.

Численность транзитных популяций осенью у большинства видов, за исключением пухляка также была значимо положительно связана с весенним температурным режимом в Балтийском регионе или индексом NAO (табл. 2). С июньской температурой такой связи обнаружено не было ни у одного вида.

Таблица 1. Связь количества местных молодых особей, пойманных в послегнездовой период, с годом и температурным режимом в Балтийском регионе в 1959–2005 гг. (r_s — коэффициент ранговой корреляции Спирмена, р — уровень достоверности).

Table 1. Correlation between numbers of the local young birds in postbreeding period and year, NAO index, temperatures in the Baltic Region, 1959–2005 (r_s_Spearman's rank correlation coefficient, p — significance level).

Виды	Статус	Год		Т С апрель		Т⁰С май		Т°С июнь		NAO январь- март	
		r _s	p	r _s	p						
Parus cristatus	О	0.705	0.000	0.477	0.001	0.356	0.014	0.105	0.482	0.609	0.000
Parus palustris	О	0.453	0.001	0.424	0.003	0.462	0.001	0.231	0.118	0.289	0.050
Parus montanus	И	0.653	0.000	0.365	0.012	0.454	0.001	-0.033	0.825	0.567	0.000
Accipiter nisus	БМ	0.107	0.427	0.291	0.047	0.109	0.468	-0.097	0.514	0.348	0.016
Parus major	БМ	-0.087	0.518	0.614	0.000	0.170	0.253	0.040	0.792	0.519	0.000
Parus caeruleus	БМ	-0.057	0.701	0.305	0.037	0.006	0.969	0.014	0.925	0.375	0.009
Fringilla coelebs	БМ	-0.290	0.028	0.324	0.026	0.213	0.150	0.011	0.939	0.148	0.320
Phoenicurus ochruros	БМ	0.687	0.000	0.468	0.001	0.229	0.122	0.008	0.958	0.381	0.008
Phylloscopus collybita	БМ	0.323	0.027	0.204	0.168	0.471	0.001	-0.047	0.751	0.395	0.006
Sylvia atrricapilla	БМ	0.188	0.206	0.223	0.131	0.472	0.001	0.112	0.452	0.424	0.003
Cuculus canorus	ДМ	-0.141	0.294	0.011	0.940	0.058	0.699	-0.093	0.533	0.057	0.704
Motacilla alba	ДМ	-0.022	0.885	0.303	0.038	0.150	0.315	-0.161	0.279	0.034	0.818
Ficedula hypoleuca	ДМ	0.347	0.008	0.514	0.000	0.297	0.042	0.135	0.367	0.633	0.000
Muscicapa striata	ДМ	0.188	0.232	0.185	0.240	0.393	0.010	0.097	0.539	0.140	0.377
Phylloscopus trochilus	ДМ	0.115	0.395	0.218	0.141	0.326	0.025	0.005	0.973	0.387	0.007
Sylvia communis	ДМ	0.170	0.254	0.445	0.002	0.417	0.004	0.218	0.141	0.231	0.119
Sylvia borin	ДМ	-0.080	0.595	0.341	0.019	0.227	0.124	0.123	0.409	0.222	0.133

Примечание: Значимые коэффициенты Спирмана выделены жирным шрифтом. О — оседлые виды, И — инвазионные виды, БМ — ближние мигранты, ДМ — дальние мигранты.

Note: Significant values of Spearman's rank correlation are shown bold. O — sedentary species, Π — irruptive species, Π — short-distance migrants, Π — long-distance migrants.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты долговременного мониторинга за гнездящимися и пролетными популяциями птиц, проводимого с помощью больших ловушек на Куршской косе Балтийского моря, убедительно показывают, что на протяжении последних 60 лет произошли существенные изменения как в фенологических явлениях, так и в численности популяций у целого ряда видов. И связаны эти изменения в первую очередь с заметными колебаниями климата, которые наблюдаются на протяжении прошлого и нынешнего веков (рис. 1, 2). Если в Европе наблюдается ранняя и теплая весна, то многие виды птиц, как ближние, так и дальние мигранты прилетают в район своего гнездования на 15-30 дней раньше, нежели в годы с холодной весной (Соколов, 2006, 2010). Ранее мы выдвинули гипотезу, что в периоды потепления климата, птицы не только раньше достигают своих мест гнездования, но и начинают весеннюю миграцию с мест зимовки не только в Европе, но и в Африке, в более ранние календарные даты (Sokolov, Kosarev, 2003). К сходному выводу независимо от нас пришел и английский исследователь Коттон (Cotton, 2003). В настоящее время появляется все больше прямых доказательств, что действительно сроки отлета ближних и дальних мигрантов с зимовок могут существенно изменяться под воздействием внешних факторов среды (Kosarev, Sokolov, 2007; Fouquet et al., 2009; Tottrup et al., 2012; Kristensen et al., 2013; Bussière et al., 2015; Соколов, Цвей, 2016).

Результаты многолетнего мониторинга за гнездовыми популяциями свидетельствуют о том, что в периоды потепления климата мигрирующие виды птиц не только раньше прилетают в район гнездования, но и раньше приступают к размножению (Sokolov, Payevsky, 1998; Соколов, 2006, 2010). В такие периоды численность у многих видов птиц, как правило, возрастает, благодаря появлению на свет большего количества молодых особей. Известно, что в годы с теплой и ранней весной успешность гнездования у целого ряда видов птиц существенно возрастает (Соколов, 1999, 2010; Паевский, 2008).

Таблица 2. Связь количества пролетных молодых особей, пойманных в осенний период, с годом и температурным режимом в Балтийском регионе в 1959–2005 гг. (r_s — коэффициент ранговой корреляции Спирмена, p — уровень достоверности).

Table 2. Correlation between numbers of the transient young birds in autumn and year, NAO index, temperatures in the Baltic Region, 1959–2005 (r_s Spearman's rank correlation coefficient, p — significance level).

Виды	Статус	Год		T°C апрель		Т⁰С май		Т°С июнь		NAO январь- март	
		r _s	p	r_s	p	r_s	p	r_s	p	r_s	p
Parus montanus	И	-0.166	0.254	0.129	0.377	0.105	0.471	0.021	0.884	-0.028	0.847
Parus ater	И	0.188	0.197	0.372	0.008	0.257	0.075	-0.111	0.448	0.487	0.000
Aegithalos caudatus	И	0.470	0.001	0.420	0.003	0.232	0.109	0.103	0.483	0.190	0.191
Accipiter nisus	БМ	0.246	0.060	0.309	0.034	0.236	0.110	-0.022	0.882	0.400	0.005
Parus major	БМ	0.683	0.000	0.462	0.001	0.371	0.010	0.094	0.528	0.550	0.000
Parus caeruleus	БМ	0.761	0.000	0.587	0.000	0.270	0.060	0.068	0.642	0.708	0.000
Regulus regulus	БМ	0.608	0.000	0.373	0.008	0.186	0.202	-0.114	0.434	0.479	0.000
Troglodytes troglodytes	БМ	0.794	0.000	0.436	0.002	0.165	0.263	0.117	0.425	0.477	0.000
Erithacus rubecula	БМ	0.644	0.000	0.404	0.004	0.260	0.071	0.090	0.539	0.364	0.010
Fringilla coelebs	БМ	-0.270	0.039	0.004	0.980	0.041	0.783	0.043	0.773	0.012	0.935
Phoenicurus ochruros	БМ	0.513	0.000	0.237	0.101	0.158	0.277	0.177	0.222	0.298	0.038
Phylloscopus collybita	БМ	0.675	0.000	0.331	0.020	0.388	0.006	0.075	0.606	0.389	0.006
Sylvia atrricapilla	БМ	0.655	0.000	0.368	0.009	0.266	0.065	0.108	0.461	0.427	0.002
Cuculus canorus	ДМ	-0.381	0.003	-0.180	0.226	0.051	0.734	0.052	0.728	-0.121	0.419
Motacilla alba	ДМ	-0.113	0.443	-0.136	0.356	0.067	0.649	0.117	0.428	-0.198	0.178
Ficedula hypoleuca	ДМ	-0.140	0.288	0.295	0.044	0.114	0.445	-0.109	0.467	0.179	0.228
Muscicapa striata	ДМ	-0.353	0.013	-0.026	0.859	0.011	0.937	-0.020	0.891	-0.017	0.908
Phylloscopus trochilus	ДМ	0.081	0.540	0.179	0.228	0.280	0.050	0.049	0.744	0.333	0.022
Sylvia communis	ДМ	0.554	0.000	0.317	0.026	0.287	0.045	0.054	0.713	0.320	0.025
Sylvia borin	ДМ	0.237	0.101	0.209	0.149	0.080	0.582	-0.014	0.925	0.225	0.120

Примечание: см. табл. 1.

Note: as table 1.

Это касается в первую очередь северных популяций, которые не сталкиваются с дефицитом пищи в период выкармливания птенцов из-за так называемого явления асинхронности сроков массового появления на свет насекомых и птенцов, описанного голландскими исследователями (Both, Visser, 2001). Для балтийских популяций, в отличие от центрально- или южно-европейских, потепление климата в весенний период сказывается весьма благоприятно на численности птиц (Соколов, 1999, 2007; Sokolov, 2000; Sokolov et al., 2001).

Многолетний мониторинг за гнездовыми и пролетными популяциями на Куршской косе показал, что у как у оседлых видов, так и большинства ближних и дальних мигрантов наблюдался значительный рост численности птиц в последние два десятилетия прошлого и в начале нынешнего века, когда температура апреля и мая была наиболее высокой (рис. 1, 3, 4). Определенные различия в долговременной динамике численности популяций у ближних и дальних мигрантов, по-видимому, связаны с тем, что рано прилетающие виды в большей степени выигрывают от потепления климата, в первую очередь затрагивающее зимние и первые весенние месяцы, нежели поздно прилетающие виды. Температура мая в нашем регионе исследования имела заметно менее выраженный положительный тренд, нежели апрельская температура (рис. 1). В результате у дальних мигрантов, как сроки прилета, так и сроки гнездования, изменились в меньшей степени, нежели у ближних мигрантов, что, в свою очередь, оказало меньшее влияние на успешность их размножения, по сравнению с рано прилетающими видами.

Итак, благодаря длительному мониторингу за гнездовыми и пролетными популяциями, проводимому на Куршской косе Балтийского моря с помощью ежегодного отлова птиц «рыбачинскими» ловушками, нам удалось выяснить, что изменения климата оказывают весьма существенное влияние

Таблица 3. Связь количества молодых особей, пойманных в послегнездовой и осенний периоды в 1959–2005 гг. (r_s — коэффициент ранговой корреляции Спирмена, p — уровень достоверности). **Table 3.** Correlation between numbers of the young birds in postbreeding and autumn periods, 1959–2005 (r_s Spearman's rank correlation coefficient, p — significance level).

D	Стотио	Год				
Виды	Статус	r _s	p			
Parus montanus	И	0.574	0.001			
Accipiter nisus	БМ	0.796	0.000			
Parus major	БМ	0.334	0.022			
Parus caeruleus	БМ	0.368	0.048			
Fringilla coelebs	БМ	0.337	0.020			
Phoenicurus ochruros	БМ	0.495	0.000			
Phylloscopus collybita	БМ	0.617	0.000			
Sylvia atrricapilla	БМ	0.499	0.000			
Cuculus canorus	ДМ	0.439	0.002			
Motacilla alba	ДМ	0.445	0.002			
Ficedula hypoleuca	ДМ	0.640	0.000			
Muscicapa striata	ДМ	0.256	0.102			
Phylloscopus trochilus	ДМ	0.454	0.001			
Sylvia communis	ДМ	0.386	0.007			
Sylvia borin	ДМ	0.658	0.000			

Примечание: см. табл. 1.

Note: as table 1.

на численность популяций у разных видов, ведущих как оседлый образ жизни, так и мигрирующих на ближние и дальние расстояния.

БЛАГОДАРНОСТИ

Авторы благодарны всем сотрудникам Биологической станции «Рыбачий» и волонтерам, которые принимали участие в отлове и кольцевании птиц в разные периоды времени. Работа частично поддержана грантами РФФИ (№ 16-04-00761, 16-04-01773) при участии Зоологического института РАН (гостема, регистрационный номер АААА-А16-116123010004-1).

ЛИТЕРАТУРА

Паевский В.А., 2008. Демографическая структура и популяционная динамика певчих птиц. М.: КМК, 235 с.

Соколов Л.В., 1999. Популяционная динамика воробьиных птиц // Зоол. журн. Т. 78. № 3. С. 311–324.

Соколов Л.В., 2006. Влияние глобального потепления климата на сроки миграций и гнездования воробьиных птиц в XX веке // Зоол. журн. Т. 86. № 3. С. 317–341.

Соколов Л.В., 2007. Глобальное потепление климата и динамика численности пролетных популяций птиц в Европе // Материалы Росс. науч. совещ. «Динамика численности птиц в наземных ландшафтах». М.: ИПЭЭ РАН, с. 8–24.

Соколов Л.В., 2010. Климат в жизни растений и животных. — СПб: Тесса. 343 с.

Соколов Л.В., Ефремов В.Д., Морозов Ю.Г., Марковец М.Ю., Шаповал А.П., 2005. Многолетний мониторинг численности воробъиных птиц на Куршской косе Балтийского моря // Труды Звенигород. биол. станции. Т. 4. М.: изд-во МГУ, с. 203–210.

Соколов Л.В., Тропп Э.А., Морозов Ю.Г., Ефремов В.Д., 2002. Влияние климата на многолетние флуктуации численности воробъиных птиц // Докл. Акад. Наук. Т. 384. № 3. С. 426–429

Соколов Л.В., Шаповал А.П. 2014. Орнитологические исследования на Куршской косе. Природа Калининградской области. Ключевые природные комплексы // Калининград: Исток, с. 110–125.

Соколов Л.В., Цвей А.Л. 2016. Механизмы контроля сроков весенней миграции у птиц // Зоол. журн. Т. 95. № 11. С. 1362–1376.

Bibby C.J., Burgess N.D., Hill D.A., Mustoe S., 2000. Bird Census Techniques. 2nd edition. London: Acad. Press.

Bildstein K.L., 1998. Long-term counts of migrating raptors: a role for volunteers in wildlife research // J. Wildlife Manag. Vol. 62. P. 435–445.

Both C., Visser M.E., 2001. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird // Nature. Vol. 411. P. 296–298.

Bussière E.M., Underhill L.G., Altwegg R., 2015. Pattern of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change // Global Change Biology. Vol. 21. No. 6. P. 2179– 2190.

- Cotton P.A., 2003. Avian migration phenology and global climate change // Proc. Nat. Acad. Science. Vol. 100. No. 21. P. 12219–12222.
- Fouquet M., Schricke V., Fouque C., 2009. Greylag Geese *Anser anser* depart earlier in spring: an analysis of goose migration from western France over the years 1980–2005 // J. Wildfowl. Vol. 59. P. 143–151.
- Hurrell J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation // Science. Vol. 269. P. 676–679.
- Hurrell J.W., Kushnir Y., Visbeck M., 2001. The North Atlantic Oscillation // Science. Vol. 291. P. 603–605.
- Kosarev V., Sokolov L.V., 2007. Weather influences the beginning of spring migration of White storks (*Ciconia ciconia*) in Africa: several years of satellite telemetry // Abst. Bird Migr. and Glob. Change Conf. Algeciras, Spain. Fundacion Migres. P. 23.
- Kristensen M.W., Tøttrup A.P. and Thorup K., 2013. Migration of the Common Redstart (*Phoenicurus phoenicurus*): a Eurasian songbird wintering in highly seasonal conditions in the west African Sahel // Auk. Vol. 130. P. 258–264.
- Payevsky V.A., 2000. Rybachy-type trap. In: P. Busse (Ed) Bird Station Manual. Gdańsk: Gdańsk Univ. P. 20–24.
- Sokolov L.V., 2000. Spring ambient temperature as an important factor controlling timing of arrival, breeding, postfledging dispersal and breeding success of Pied Flycatch-

- ers *Ficedula hypoleuca* in Eastern Baltic // Avian Ecol. Behav. Vol. 5. P. 79–104.
- Sokolov L.V., Kosarev V.V., 2003. Relationship between timing of arrival of passerines to the Courish Spit and North Atlantic Oscillation index (NAOI) and precipitation in Africa // Proc. Zool. Inst. RAS. Vol. 299. P. 141–154.
- Sokolov L.V., Payevsky V.A., 1998. Spring temperatures influence year-to-year variations in the breeding phenology of Passerines on the Courish spit // Avian Ecol. Behav. Vol. 1. P. 22–36.
- Sokolov L.V., Baumanis J., Leivits A., Poluda A.M., Yefremov V.D., Markovets M.Yu., Shapoval A.P., 2001. Changes in numbers of passerines in Europe in the second half of 20th century // Avian Ecol. Behav. Vol. 6. P. 44–45.
- Sokolov L.V., Yefremov V.D., Markovets M.Yu., Shapoval A.P., Shumakov M.E., 2000. Monitoring of numbers of passage populations of passerines over 42 years (1958-1999) on the Courish Spit of the Baltic Sea // Avian Ecol. Behav. Vol. 4. P. 31–53.
- Tøttrup A.P., Klaassen R.H.G., Kristensen M.W., Strandberg R., Vardanis Y., Lindström Å., Rahbek C., Alerstam T., Thorup K., 2012. Drought in Africa caused delayed arrival of European songbirds // Science. Vol. 338. P. 1307.
- Verhelst B., Jansen J., Vansteelant W., 2011. South West Georgia: an important bottleneck for raptor migration during autumn // Ardea. Vol. 99. P. 137–146.