Step Controller / Perturbance

- Control Action: Change any settable quantity on any controllable device existing in the power-flow base case.
- Basic Requirements
 - 1. Value changes by %, absolute, or relative to original value.
 - 2. Time input: start time
- Examples
 - 1. Step load up 5% at t_1
 - 2. Open branch at t_1
 - 3. Increase P_{qen} by 25 MW at t_1

Ramp Controller / Perturbance

- Control Action: Change any non-binary settable quantity on any controllable device existing in the power-flow base case.
- Basic Requirements
 - 1. Value changes by %, absolute, or relative to original value.
 - 2. Time inputs: start time, ramp A time, hold time, ramp B time
 - 3. NOTE: For single ramp operation, hold time and ramp B time are zero.
- Examples
 - 1. Ramp P_{gen} +5% at t_1 over t_2 seconds
 - 2. Ramp P_{gen} to 60 MW from t_1 to t_2 , hold for t_3 seconds, then ramp down 5 MW over t_4 seconds.

Definite Time Controller (Digital Relay)

- Control Action: Change the status bit on any controllable device existing in the power-flow base case based on any other value in the system.
- Basic Requirements
 - Binary or 'Analog' settable reference input(s) (bus voltage, MW output, system frequency ...)
 - 2. Threshold inputs: set level L_S (turn on), reset level L_R (turn off)
 - 3. Time inputs: set time (time $\pm L_S$ before turning on), reset time (time $\mp L_R$ before turning off), reclose time (time required after a reset before a set can be performed)
 - 4. NOTE: reclose time can be set to zero, but will only act on next time step.
- Feature Requests
 - 1. Ability to add custom control law
 - 2. Ability to use arbitrary Inputs
 - 3. Ability to trigger Steps or Ramps
- Basic Example: Using a voltage sensitive base case with an available shunt cap; ramp real power of a load. When bus voltage at the cap drops below 0.95 PU for 30 seconds, insert cap.
- Advanced Example: Using a voltage sensitive base case with a wind power plant (WWP) and an available shunt cap on the low side of the WPP transformer; ramp WPP up and commensurate hydro down. When WPP high-side voltage drops below 0.95 for 30 seconds **AND** WPP MW export is positive, insert cap.

Capacitor Group (Cap Bank)

- Control Action: Change status bit(s) on a finite set of shunt capacitors existing in the power-flow base case.
- Basic Requirements
 - 1. Group can have a variable amount of capacitors.
 - 2. Capacitor status controllable via bus voltage.
 - 3. Order of Caps switched in can be defined.
- Feature Requests
 - 1. Ability to add custom control law
 - 2. Ability to use arbitrary Inputs
- Examples
 - 1. (?)
 - 2. (?)

Generator Group (Discrete Power Plant)

- Control Action: Change values on a finite set of generators existing in the power-flow base case.
- Basic Requirements
 - 1. Group can have a variable amount of generators.
- Feature Requests
 - 1. Ability to add custom control law
 - 2. Ability to use arbitrary Inputs
- Examples
 - 1. (?)
 - 2. (?)

Power Plant Agent

- Control Action: Change a single generator object in the base case such that it **acts** like multiple generators.
- Basic Requirements
 - 1. Change Pmax, Qmax, H, Pm ...
- Feature Requests
 - 1. Ability to add custom control law
 - 2. Ability to use arbitrary Inputs
- Examples
 - 1. (?)
 - 2. (?)

Automatic Generator Control

- Control Action: Change Pref based on ACE
- Basic Requirements
 - 1. ...
- Feature Requests
 - 1. Ability to add custom control law
 - 2. Ability to use arbitrary Inputs
- Examples
 - 1. (?)
 - 2. (?)