

数学分析习题课讲义 (谢惠民) 解答

作者: 邹文杰 时间:2024/11/03

目录

第一章 微分学基本定理

1.1 定理

定理 1.1 (Cauchy 中值定理)

设函数 f,g 在 [a,b] 上连续, 在 (a,b) 上可微, 且满足条件 $g(b)-g(a)\neq 0$ 和 $f'^2(x)+g'^2(x)\neq 0, \forall x\in (a,b),$ 则存在 $\xi\in (a,b)$,使得 $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}.$

证明 引进记号 $\lambda = \frac{f(b) - f(a)}{g(b) - g(a)}$.

我们的目的是要证明存在 $\xi \in (a,b)$, 使得

$$f'(\xi) - \lambda g'(\xi) = 0 \tag{1.1}$$

这里要说明, 如有 $g'(\xi) = 0$, 则由上式可见也有 $f'(\xi) = 0$, 这与条件 $f'^2(x) + g'^2(x) \neq 0$, $\forall x \in (a, b)$ 相矛盾. 因此有了(??)之后, 就一定有 $g'(\xi) \neq 0$, 从而可以由它推出定理中所要的等式.

由(??)出发试作辅助函数

$$F(x) = f(x) - \lambda g(x)$$

然后计算

$$F(a) = f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g(a) = \frac{f(a)g(b) - f(b)g(a)}{g(b) - g(a)},$$

$$F(b) = f(b) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g(b) = \frac{f(a)g(b) - f(b)g(a)}{g(b) - g(a)}.$$

可见有 F(a) = F(b). 然后对 F(x) 在区间 [a,b] 上应用 Rolle 定理, 就知道存在 $\xi \in (a,b)$, 使得 $F'(\xi) = 0$. 这就是 要证明的结果(??).

定理 1.2 (Rolle 中值定理)

设 f 在 [a,b] 上连续, 在 (a,b) 上可微, 且有 f(a) = f(b), 则存在 $\xi \in (a,b)$, 使得 $f'(\xi) = 0$.

证明 若 f 是区间 [a,b] 上的常值函数,则在 (a,b) 的每一点上有 f'(x)=0. 因此可以在 (a,b) 中任取一点作为 ξ . 否则,由有界闭区间上连续函数的值域定理知,f 在 [a,b] 上取到自己的最大值 M 和最小值 m,且有 m < M.由于有题设条件 f(a)=f(b),因此在 m 和 M 中.至少有一个与函数在端点的值不同.这就是说,至少有一个最值是在 (a,b) 中取到的.设这个最值点为 $\xi \in (a,b)$.由于在区间的内点处取到的最值也就是极值,而函数 f 又在 (a,b) 上可微,因此可以用费马定理,知道 $f'(\xi)=0$.

定理 1.3 (Rolle 中值定理在无限区间上的推广)

设 f 在 $(a, +\infty)$ 上连续, 在 $(a, +\infty)$ 上可微, 且 $\lim_{x \to +\infty} f(x) = f(a)$, 证明: 存在 $\xi \in (a, +\infty)$, 使得 $f'(\xi) = 0$.

证明 证法一: 若存在 $x_0 > a$, $f(x'_0) < f(a)$, 由连续函数介值定理可知, 存在 $\eta \in (\min\{x_0, x'_0\}, \max\{x_0, x'_0\})$, 使得 $f(\eta) = f(a)$. 这与 $\forall x > a$, 有 $f(x) \neq f(a)$ 矛盾.

任取 $x_1 > a$,则 $f(x_1) > f(a)$. 又因为 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = f(a) < f(x_1)$,所以由极限的局部保号性可知,存在 $x_2 > x_1$,使得 $f(x_2) < f(a) < f(x_1)$. 从而由连续函数的介值定理可知,存在 $x_3 \in (x_1, x_2)$,使得 $f(x_3) = f(a)$. 于是根据有限区间上的 Rolle 中值定理 (定理 ??) 可知,存在 $\xi \in (a, x_3)$,使得 $f'(\xi) = 0$.

证法二: 令 $x = \tan t$, 在 $t \in [\arctan a, \frac{\pi}{2}]$ 上定义

由 $\lim_{x\to a} f(x) = f(a)$ 及 $f \in C[a, +\infty)$ 可得

$$g\left(\frac{\pi}{2}\right) = f(a) = \lim_{x \to +\infty} f(x) = \lim_{t \to \frac{\pi}{2}} f(\tan t) = \lim_{t \to \frac{\pi}{2}} g(t)$$

因此, 再结合 $f \in C[a,+\infty)$ 且 $f \in C^1(a,+\infty)$ 可知, $g \in C[\arctan a,\frac{\pi}{2}]$ 且 $g \in C^1(\arctan a,\frac{\pi}{2})$

又 $g(\arctan a) = g(\frac{\pi}{2})$, 从而根据有限区间上的 Rolle 中值定理 (定理 ??) 可知, 存在 $\xi \in (\arctan a, \frac{\pi}{2})$, 使得

$$g'(\xi) = \sec^2 \xi \, f'(\tan \xi) = 0$$

由于 $g \in C^1(\arctan a, \frac{\pi}{2})$,所以 $g'(\xi) = \sec^2 \xi f'(\tan \xi)$ 一定有定义. 再结合 $\sec^2 \xi \neq 0$ 可知, $f'(\xi) = 0$.

定理 1.4 (Darboux 定理)

设f在区间I上可微,则f'具有介值性质.

 \bigcirc

1.2 命题

命题 1.1

单调函数只有第一类间断点.

命题 1.2

导函数不存在第一类间断点.

命题 1.3

在区间上的导函数如果单调,则一定连续.

证明 事实上,由命题??可知,导函数不存在第一类间断点,而又由命题??可知,单调函数只有第一类间断点.故该导函数一定连续.

命题 1.4

如果已知 f 在区间 I 上连续并且 $\exists x_0, y_0 \in I$ 且 $|f(x_0) - f(y_0)| \ge a > 0$, 那么对 $\forall k \in \mathbb{N}_+$ 且 $k \ge 2$, 令 $b = \frac{a}{k} > 0$, $m = \left[\frac{f(y_0) - f(x_0)}{b}\right] \ge k($ 不超过 $\frac{f(y_0) - f(x_0)}{b}$ 的最大整数). 则可以得到 $[x_0, y_0]$ 的一个划分

$$\Delta: y_0 = x_m > x_{m-1} > \cdots > x_1 > x_0.$$

满足

$$f(x_i) = f(x_0) + b \cdot i$$
, $f(x_i) - f(x_{i-1}) \ge b = \frac{a}{k}$, $\forall i = 1, 2 \dots, m$.

并且一定存在正整数 i_0 , 使得 $x_{i_0}-x_{i_0-1} \leq \frac{y_0-x_0}{m} (\leq \frac{y_0-x_0}{k} \leq \frac{y_0-x_0}{2})$.

注 若知道 $y_0 - x_0$ 和 $f(y_0) - f(x_0)$ 具有某些等式或不等式关系,则可以进一步放缩 $x_{i_0} - x_{i_0-1} \le \frac{y_0 - x_0}{m}$. 使得 x_{i_0}, x_{i_0-1} 符合我们要求的式子,进而得到我们需要找的充分近的两个点就是 x_{i_0}, x_{i_0-1} .(具体例子见命题??)

笔记 (1) 要求 $k \ge 2$ 是因为: 必须要保证划分 Δ 中至少有 3 个分点, 至少能将区间 $[x_0, y_0]$ 分成 2 部分 (若 $k \le 1$,则划分 Δ 最多只会将区间 $[x_0, y_0]$ 分成 1 部分, 相当于没有对原区间进行划分).

 $(2)m \ge k$ 是因为: 由 $|f(x_0) - f(y_0)| \ge a > 0$, 可得 $m = \left[\frac{f(y_0) - f(x_0)}{\frac{a}{k}}\right] > \frac{f(y_0) - f(x_0)}{\frac{a}{k}} - 1 \ge k - 1$, 又由于 $m, k \in \mathbb{N}_+$, 所以 $m \ge k$.

证明 不妨设 $x_0 < y_0, f(x_0) < f(y_0)$. 注意到

$$f(x_0) < f(x_0) + b \cdot m = f(x_0) + b \cdot \left[\frac{f(y_0) - f(x_0)}{b} \right] \le f(x_0) + b \cdot \frac{f(y_0) - f(x_0)}{b} = f(y_0).$$

从而

$$f(x_0) < f(x_0) + b \cdot (m-1) < f(x_0) + b \cdot m \le f(y_0), \not\equiv \forall m \ge k \ge 2.$$

由连续函数介值定理可知, $\exists x_{m-1} \in (x_0, y_0)$, 使得

$$f(x_{m-1}) = f(x_0) + b \cdot (m-1).$$

进而,我们有

$$f(x_0) < f(x_0) + b \cdot (m-2) < f(x_0) + b \cdot (m-1) = f(x_{m-1})$$
.

再由连续函数介值定理可知, $\exists x_{m-2} \in (x_0, y_0)$, 使得

$$f(x_{m-2}) = f(x_0) + b \cdot (m-2).$$

依此类推,可得 $[x_0, y_0]$ 的一个划分

$$\Delta: y_0 = x_m > x_{m-1} > \cdots > x_1 > x_0$$

根据划分方式, 可知 $f(x_i) - f(x_{i-1}) \ge b, \forall i = 1, 2 \cdots, m$. 并且一定存在正整数 $i_0 \in \{1, 2 \cdots, m\}$, 使得 $x_{i_0} - x_{i_0-1} \le \frac{y_0 - x_0}{m}$. 否则对 $\forall i \in \{1, 2 \cdots, m\}$, 有 $x_i - x_{i-1} > \frac{y_0 - x_0}{m}$. 从而 $y_0 - x_0 = \sum_{i=1}^m (x_i - x_{i-1}) > \sum_{i=1}^m \frac{y_0 - x_0}{m} = y_0 - x_0$ 矛盾. 再结合 $m \ge k$ 可知, $x_{i_0} - x_{i_0-1} \le \frac{y_0 - x_0}{m} \le \frac{y_0 - x_0}{k}$.

m k 字际问题中由于 k 取不同值得到的结论差别不大, 因此一般直接取 k=2, 得到下述推论.

推论 1.1

如果已知 f 在区间 I 上连续并且 $\exists x_0, y_0 \in I$ 且 $|f(x_0) - f(y_0)| \ge a > 0$, 那么令 $m = \left[\frac{f(y_0) - f(x_0)}{\frac{a}{2}}\right] \ge 2$ (不超过 $\frac{f(y_0) - f(x_0)}{\frac{a}{2}}$ 的最大整数). 则可以得到 $[x_0, y_0]$ 的一个划分

$$\Delta: y_0 = x_m > x_{m-1} > \cdots > x_1 > x_0.$$

满足

$$f(x_i) = f(x_0) + \frac{a}{2} \cdot i$$
, $f(x_i) - f(x_{i-1}) \ge \frac{a}{2}$, $\forall i = 1, 2 \cdots, m$.

并且一定存在正整数 i_0 , 使得 $x_{i_0} - x_{i_0-1} \le \frac{y_0 - x_0}{m} (\le \frac{y_0 - x_0}{2})$.

 $\dot{\mathbf{r}}$ 记忆这个推论的使用条件、结论和证明方法, 以后遇到类似条件就可以使用这个推论进行尝试. 证明 令上一个命题证明中的 k=2, 立得.

命题 1.5 (一致连续的充要条件)

函数 f 在区间 I 上一致连续的充分必要条件是: 对每一个 $\varepsilon > 0$, 存在正数 N, 使得当 $x, y \in I, x \neq y$ 且

$$\left| \frac{f(x) - f(y)}{x - y} \right| > N$$

时, 成立 $|f(x) - f(y)| < \varepsilon$.

拿 笔记 必要性 (⇒) 的证明主要应用了推论??, 只要在反证法的基础上利用推论??, 再结合已知条件找到合适的 $N(5, x_0, y_0, T, E)$ 即可完成证明.

必要性 (⇒) 的证明思路分析:先运用反证法假设 $\exists \varepsilon_0 > 0, \forall N > 0, \exists x, y \in I$ 且 $\left| \frac{f(x) - f(y)}{x - y} \right| > N$,使得 $|f(x)-f(y)| \geq \varepsilon_0$. 我们要找的矛盾就是 f 在区间 I 上不一致连续, 则根据一致连续的否命题可知, 只要对 $\forall n \in \mathbb{R}$ \mathbb{N}_{+} , 存在 $x_{k_{0}}, x_{k_{0}-1} \in I$ 且 $\left| x_{k_{0}} - x_{k_{0}-1} \right| < \frac{1}{n}$, 使得 $\left| f\left(x_{k} \right) - f\left(x_{k-1} \right) \right| \geq \frac{\varepsilon_{0}}{2}$. 就能得到 f 在区间 I 上不一致连续. 由假设可知, 对某个特定的 N > 0(若 N 不固定, 则通过不同 N 找到的 x,y 之间没有联系, 更难以找到充分近的 x',x'', 因此我们现将 N 固定下来), 存在两点 $x_{0},y_{0} \in I$ 且 $\left| \frac{f\left(x_{0} \right) - f\left(y_{0} \right)}{x_{0} - y_{0}} \right| > N$, 使得 $\left| f\left(x_{0} \right) - f\left(y_{0} \right) \right| \geq \varepsilon_{0}$. 再根据推 论??, 我们可以通过对区间 $[x_0,y_0]$ 作划分去找出比较靠近的两点 x_{i_0},x_{i_0-1} . 此时有 $x_{k_0}-x_{k_0-1}\leq \frac{y_0-x_0}{m}$. 只要再 取一个特殊的 N 使得 $x_{k_0} - x_{k_0-1} \le \frac{1}{n}$ 成立就能得到证明.

证明 (\Leftarrow) 设对 $\forall \varepsilon > 0$, $\exists N > 0$, 使得当 $x, y \in I$, $x \neq y$ 且 $\left| \frac{f(x) - f(y)}{x - y} \right| > N$ 时, 有 $|f(x) - f(y)| < \varepsilon$. 假设 f 在区间 I 上非一致连续, 则 $\exists \varepsilon_0 > 0$, 使得取 $\delta = \frac{\varepsilon_0}{N} > 0$, 当 $x, y \in I$ 且 $|x - y| < \delta$ 时, 有

$$|f(x) - f(y)| \ge \varepsilon_0.$$

从而此时 $\left| \frac{f(x) - f(y)}{x - y} \right| > \frac{\varepsilon_0}{\delta} = N$. 于是此时, 必有 $|f(x) - f(y)| < \varepsilon$, 这与上述 $|f(x) - f(y)| \ge \varepsilon_0$ 矛盾. 故 f 在区间 I 上一致连续.

(⇒) 假设
$$\exists \varepsilon_{0} > 0, \forall N > 0, \exists x, y \in I \text{ } \exists \left| \frac{f(x) - f(y)}{x - y} \right| > N,$$
 使得 $|f(x) - f(y)| \ge \varepsilon_{0}$.

则 $\forall n \in \mathbb{N}_{+},$ 取 $N = n\varepsilon_{0}, \exists x_{0}, y_{0} \in I \text{ } \exists \left| \frac{f(x_{0}) - f(y_{0})}{x_{0} - y_{0}} \right| > N = n\varepsilon_{0},$ 使得 $|f(x_{0}) - f(y_{0})| \ge \varepsilon_{0}$.

不妨设 $x_{0} < y_{0}, f(x_{0}) < f(y_{0}).$ 再令 $m = \left[\frac{f(y_{0}) - f(x_{0})}{\frac{\varepsilon_{0}}{2}} \right] \ge 2($ 不超过 $\frac{f(y_{0}) - f(x_{0})}{\frac{\varepsilon_{0}}{2}}$ 的最大整数),则

$$f(x_{0}) < f(x_{0}) + \frac{(m-1)\varepsilon_{0}}{2} < f(x_{0}) + \frac{m\varepsilon_{0}}{2} = f(x_{0}) + \frac{\varepsilon_{0}}{2} \left[\frac{f(y_{0}) - f(x_{0})}{\frac{\varepsilon_{0}}{2}} \right] \le f(x_{0}) + f(y_{0}) - f(x_{0}) = f(y_{0}).$$

由连续函数的介值定理可知, $\exists x_{m-1} \in (x_0, y_0)$, 使得

$$f(x_{m-1}) = f(x_0) + \frac{(m-1)\varepsilon_0}{2}.$$

于是,我们有

$$f\left(x_{0}\right) < f\left(x_{0}\right) + \frac{\left(m-2\right)\varepsilon_{0}}{2} < f\left(x_{0}\right) + \frac{\left(m-1\right)\varepsilon_{0}}{2} = f\left(x_{m-1}\right).$$

再由连续函数的介值定理可知, $\exists x_{m-2} \in (x_0, y_0)$, 使得

$$f(x_{m-2}) = f(x_0) + \frac{(m-2)\varepsilon_0}{2}.$$

依此类推,可得 $[x_0,y_0]$ 的一个划分

$$\Delta: y_0 = x_m > x_{m-1} > \cdots > x_1 > x_0.$$

根据划分方式, 可知 $f(x_k) - f(x_{k-1}) \ge \frac{\varepsilon_0}{2}$, $k = 1, 2, \cdots, m$. 并且一定存在正整数 $k_0 \in \{1, 2, \cdots, m\}$, 使得 x_{k_0} $x_{k_0-1} \le \frac{y_0-x_0}{m}$. 否则 $\forall k \in \{1,2\cdots,m\}$, 都有 $x_k-x_{k-1} > \frac{y_0-x_0}{m}$. 从而 $y_0-x_0 = \sum_{k=1}^m (x_k-x_{k-1}) > \sum_{k=1}^m \frac{y_0-x_0}{m} = \sum_{k=1}^m (x_k-x_{k-1})$

m+1, 可得 $f(y_0)-f(x_0)<\frac{(m+1)\varepsilon_0}{2}$. 因此

$$x_{k_0}-x_{k_0-1} \leq \frac{y_0-x_0}{m} < \frac{f\left(y_0\right)-f\left(x_0\right)}{mn\varepsilon_0} < \frac{\left(m+1\right)\varepsilon_0}{2mn\varepsilon_0} < \frac{1}{n}.$$

综上可知, 对 $\forall n \in \mathbb{N}_+$, 存在 $x_{k_0}, x_{k_0-1} \in I$ 且 $\left| x_{k_0} - x_{k_0-1} \right| < \frac{1}{n}$, 使得 $\left| f\left(x_k \right) - f\left(x_{k-1} \right) \right| \geq \frac{\varepsilon_0}{2}$. 这与 f 在区间 I 上一致连续矛盾. 故原命题成立.

命题 1.6 (Cantor 定理在开区间上的推广)

有界开区间 (a,b) 上的连续函数 f 在 (a,b) 上一致连续的充分必要条件是存在两个有限的单侧极限 $f(a^+)$ 和 $f(b^-)$.

证明

证 先证充分性. 在闭区间 [a, b] 上构造辅助函数

$$F(x) = \begin{cases} f(a^+), & x = a, \\ f(x), & x \in (a, b), \\ f(b^-), & x = b. \end{cases}$$

则可以看出 $F \in C[a,b]$. 对 F 应用 Cantor 定理, 可见 F 在 [a,b] 上一致连续. 因此 f 在 (a,b) 上也一致连续. (这与例题 5.3.3 的第一个证明完全相同.)

§5.4 一致连续性与 Cantor 定理

141

再证必要性. 不妨只写出存在 $f(a^+)$ 的证明. 对 $\varepsilon > 0$, 由于 f 在 (a,b) 上一致连续, 因此存在 $\delta > 0$, 使得当 $x',x'' \in (a,b)$, 且 $|x'-x''| < \delta$ 时, 成立 $|f(x') - f(x'')| < \varepsilon$.

因此当 $x', x'' \in (a, a + \delta)$ 时, 就有 $|f(x') - f(x'')| < \varepsilon$ 成立. 应用关于右侧极限的 Cauchy 收敛准则 (命题 4.2.5), 可见存在极限 $f(a^+)$.

命题 1.7

设 f 在 [a,b] 上二阶可微, 且 $|f(x)| \le A, |f''(x)| \le B$, 证明: $|f'(x)| \le \frac{2A}{b-a} + \frac{B(b-a)}{2}$.

 $\widehat{\mathbf{Y}}$ 笔记 积累这种想法: 利用 Taylor 定理将 n 阶可导函数 f(x) 在特殊点处 (本题是端点处) 的函数值分别在 x(x) 可取到所有能展开的点) 处展开, 再根据 x 的任意性得到 $k(k=0,1,\cdots,n)$ 阶导数 $f^{(k)}(x)$ 的相关结论.

证明 (将 f(a) 和 f(b) 分别在 x 点处展开) 由 Taylor 定理可知, 对 $\forall x \in (a,b), \exists \xi \in (a,x), \eta \in (x,b)$, 使得

$$f(a) = f(x) + f'(x)(a - x) + \frac{f''(\xi)}{2}(a - x)^2, f(b) = f(x) + f'(x)(b - x) + \frac{f''(\eta)}{2}(b - x)^2.$$

上述两式相减得

$$f(b) - f(a) = f'(x)(b - a) + \frac{f''(\eta)}{2}(b - x)^2 - \frac{f''(\xi)}{2}(a - x)^2.$$
 (1.2)

从而结合 $|f(x)| \leq A, |f''(x)| \leq B,$ 对 $\forall x \in (a,b)$ 有

$$|f'(x)| \leq \left| \frac{f(b) - f(a)}{b - a} \right| + \left| \frac{f''(\xi)(a - x)^2 - f''(\eta)(b - x)^2}{2(b - a)} \right| \leq \frac{2A}{b - a} + \frac{B}{2(b - a)} [(a - x)^2 + (b - x)^2].$$

又根据抛物线的性质易知 $(a-x)^2 + (b-x)^2 < (b-a)^2, x \in (a,b)$. 代入到上式有

$$|f'(x)| < \frac{2A}{b-a} + \frac{B(b-a)}{2}.$$

最后再结合 f'(x) 的连续性, 可知对 $\forall x \in [a,b]$, 均有 $|f'(x)| \leq \frac{2A}{b-a} + \frac{B(b-a)}{2}$.

注 上述命题中将 |f(x)| 的条件改为 f(a) = f(b), 可以得到下面的推论.

推论 1.2

设
$$f$$
 在 $[a,b]$ 上二阶可微, 且 $f(a) = f(b), |f''(x)| \le B$, 证明: $|f'(x)| \le \frac{B(b-a)}{2}$.

证明 只需将(??)式改为

$$f'(x)(b-a) + \frac{f''(\eta)}{2}(b-x)^2 - \frac{f''(\xi)}{2}(a-x)^2 = 0.$$

再根据上述命题同理证明, 就可以得到 $|f'(x)| \leq \frac{B(b-a)}{2}$.

命题 1.8

设 f 在 [a,b] 上可微, 在 (a,b) 上二阶可微, 证明: 存在 $\xi \in (a,b)$, 使成立

$$f'(b) - f'(a) = f''(\xi)(b - a).$$

(注意: 这里没有假定 $f' \in C[a,b]$)

- 笔记 (1) 因为本题没有假定 $f' \in C[a,b]$, 所以不能直接使用各种中值定理证明中值点的存在性 (也就不能使用 K值法构造辅助函数证明). 因此只能利用反证法、假设不存在中值点、再构造辅助函数(构造辅助函数的方法见下述 (2)), 然后分析函数的性态找到矛盾.
 - (2) 这类中值问题因为条件不够, 导致无法使用各种中值定理的问题, 所以不能通过K 值法或解微分方程法构 造辅助函数. 而这类问题构造辅助函数的想法实际上与证明 Lagrange 中值定理中构造辅助函数的想法类似. 构 造的辅助函数 g(x) 需要满足:g(a) = g(b) = C(C) 为某已知常数), 且 $g'(\xi) = 0$ 恰好就是需要证明的等式或者 g'(a) = g'(b) = C(C) 为某已知常数), 且 $g''(\xi) = 0$ 恰好就是需要证明的等式.(构造的辅助函数具体形式一般就两 种, 见推论中的 $g_1(x), g_2(x)$)
 - (3) 也可以构造 $g(x) = f'(x) \frac{f'(b) f'(a)}{b a}(x a)$ 作为辅助函数, 此时有 g(a) = g(b) = f'(a), 然后同理进 行证明 $g'(x) = f''(x) - \frac{f'(b) - f'(a)}{1 - f'(a)}$ 即可

注 记忆这种构造辅助函数的方式. 证明 令 $g(x) = f(x) - \frac{f'(b) - f'(a)}{b - a} \cdot \frac{(x - a)^2}{2}$,则 $g'(x) = f'(x) - \frac{f'(b) - f'(a)}{b - a}(x - a)$,且 g'(a) = g'(b) = f'(a). (因为只有 $g \in D(a,b)$,而 g 不一定在 a、b 处连续,所以不能使用 Rolle 中值定理直接得到 $g''(\xi) = 0$)

(反证) 假设 g''(x) > 0 或 $g''(x) < 0, \forall x \in (a,b)$. 当 g''(x) > 0 时, 对 $\forall x \in (a,b)$, 有 f'(x) 在 (a,b) 上严格递增. 任取 $c \in (a,b)$, 则 f'(c) > f'(a) = f'(b). 又由 Darboux 定理可知, 存在 $d \in (c,b)$, 使得 f'(c) > f'(d) > f'(b). 这 与 f'(x) 在 (a,b) 上严格递增矛盾. 于是 g''(x) > 0, 对 $\forall x \in (a,b)$ 不成立. 同理可得 g''(x) < 0, 对 $\forall x \in (a,b)$ 也不

成立. 故一定存在 $\xi \in (a,b)$, 使得 $g''(\xi) = 0$. 又因为 $g''(x) = f''(x) - \frac{f'(b) - f'(a)}{b - a}$, 所以 $f''(\xi) = \frac{f'(b) - f'(a)}{b - a}$. 即 $f'(b) - f'(a) = f''(\xi)(b - a)$. 注 将上述命题推广可以得到下面一个命题.

设 $f \in D^k[a,b] \cap D^{k+1}(a,b)$, 则存在 $\xi \in (a,b)$, 使成立

$$f^{(k)}(b) - f^{(k)}(a) = f^{(k+1)}(\xi)(b-a).$$

筆记 记忆这个推论构造辅助函数的方式以及这个推论的结论

证明 证明这个命题只需要构造辅助函数 $g_1(x) = f(x) - \frac{f^{(k)}(b) - f^{(k)}(a)}{b - a} \cdot \frac{(x - a)^k}{k!}$, 则有 $g_1^{(k)}(a) = g_1^{(k)}(b) = g_1^{(k)}(a)$

 $f^{(k)}(a)$. 然后只需要仿造上一个命题的证明: 存在 $\xi \in (a,b)$, 使得 $g_1^{(k+1)}(\xi) = f^{(k+1)}(\xi) - \frac{f^{(k)}(b) - f^{(k)}(a)}{b-a} = 0$ 即可.

或者构造辅助函数 $g_2(x) = f^{(k)}(x) - \frac{f^{(k)}(b) - f^{(k)}(a)}{b - a}(x - a)$. 则有 $g_2^{(k)}(a) = g_2^{(k)}(b) = f^{(k)}(a)$. 然后只需要同理证明: 存在 $\xi \in (a,b)$, 使得 $g_2(\xi) = f^{(k+1)}(\xi) - \frac{f^{(k)}(b) - f^{(k)}(a)}{b - a} = 0$ 即可.

命题 1.9

设 f 在 $(-\infty, +\infty)$ 上二阶可微, 且有界, 证明: 存在 ξ , 使成立 $f''(\xi) = 0$.

 $\widehat{\Sigma}$ 笔记 当 f''(x) > 0 时, f(x) 是下凸函数, 在 $(-\infty, +\infty)$ 上一定会发散到无穷.(即 f(x) 的增速越来越快, 不会出现类似 arctanx 那种情况)

注 如果 $f \in D(-\infty, +\infty)$, 且有界. 那么得不到 f'(x) 在 $(-\infty, +\infty)$ 上有零点.(例如, f(x) = arctanx)

证明 (反证) 假设结论不成立,则 f''(x) > 0 或 f''(x) < 0 恒成立. 不妨设 $f''(x) > 0, x \in (-\infty, +\infty)$. 则 f'(x) 在 \mathbb{R} 上严格单调递增. 若 $f'(0) \geq 0$,则对 $\forall a > 1$,都有 $f'(a) > f'(1) > f'(0) \geq 0$.从而对 $\forall x > 1$,根据 Lagrange 中值定理,可知,存在 $\eta \in (1,x)$,使得

$$f(x) - f(0) = f'(\eta)(x - 1) > f'(1)(x - 1).$$

令 $x \to +\infty$, 得 $f(x) \to +\infty$. 这与 f(x) 有界矛盾. 同理 f'(0) < 0 也不成立. 于是假设不成立, 命题即证.

命题 1.10

若
$$x_1, x_2, a_1, a_2, b_1, b_2 \in \mathbb{R}$$
,且 $x_2 - a_2 > 0, b_2 - a_2 > 0$,则 $\frac{x_1 - a_1}{x_2 - a_2} < \frac{b_1 - a_1}{b_2 - a_2} \Leftrightarrow \frac{x_1 - a_1}{x_2 - a_2} < \frac{b_1 - x_1}{b_2 - x_2}$

证明

$$\frac{x_1 - a_1}{x_2 - a_2} < \frac{b_1 - a_1}{b_2 - a_2}$$

$$\Leftrightarrow (x_1 - a_1) (b_2 - a_2) < (b_1 - a_1) (x_2 - a_2)$$

$$\Leftrightarrow (x_1 - a_1) (b_2 - x_2 + x_2 - a_2) < (b_1 - a_1) (x_2 - a_2)$$

$$\Leftrightarrow (x_1 - a_1) (b_2 - x_2) + (x_1 - a_1) (x_2 - a_2) < (b_1 - a_1) (x_2 - a_2)$$

$$\Leftrightarrow (x_1 - a_1) (b_2 - x_2) < (b_1 - a_1 + a_1 - x_1) (x_2 - a_2)$$

$$\Leftrightarrow (x_1 - a_1) (b_2 - x_2) < (b_1 - x_1) (x_2 - a_2)$$

$$\Leftrightarrow (x_1 - a_1) (b_2 - x_2) < (b_1 - x_1) (x_2 - a_2)$$

$$\Leftrightarrow \frac{x_1 - a_1}{x_2 - a_2} < \frac{b_1 - x_1}{b_2 - x_2}$$

1.3 例题

例题 1.1 设 f 在 (0,+∞) 上二阶可微, 且已知

$$M_0 = \sup\{|f(x)| \mid x \in (0, +\infty)\}$$
 $\Re M_2 = \sup\{|f''(x)| \mid x \in (0, +\infty)\}$

为有限数. 证明: $M_1 = \sup\{|f'(x)| \mid x \in (0, +\infty)\}$ 也是有限数, 并满足不等式

$$M_1 \leq 2\sqrt{M_0M_2}$$
.

证明 $\forall x, t > 0$, 由于 f 在 $(0, +\infty)$ 上二阶可微, 根据 Taylor 定理, 将 f(x+t) 在 x 处展开得, 存在 $\xi \in (x, x+t)$, 使得

$$f(x+t) = f(x) + f'(x)t + \frac{f''(\xi)}{2}t^2$$

由此有估计

$$|tf'(x)| = |f(x+t) - f(x) - \frac{f''(\xi)}{2}t^2| \le 2M_0 + \frac{M_2}{2}t^2$$

这样就得到

$$|f'(x)| \leqslant \frac{2M_0}{t} + \frac{M_2}{2}t$$

这对每个 $x,t \in (0,+\infty)$ 都成立. 两边对x取上确界, 就有

$$M_1 \leqslant \frac{2M_0}{t} + \frac{M_2}{2}t$$

这对每个 $t \in (0, +\infty)$ 都成立. 因此, M_1 为有限数. 为了得到最好的估计,可以取 $t = 2\sqrt{\frac{M_0}{M_0}}$, 使右边和达到最小,即 有

$$M_1 \leqslant 2\sqrt{M_0M_2}$$
.

注 将上述例题中的区间从 $(0,+\infty)$ 改为 $(-\infty,+\infty)$. 可以得到更好的估计 $M_1 \leqslant \sqrt{M_0 M_2}$. 即下面一个例题. 例题 1.2 设 f 在 $(-\infty, +\infty)$ 上二阶可微, 且已知

$$M_0 = \sup\{|f(x)| \mid x \in (0, +\infty)\} \pi M_2 = \sup\{|f''(x)| \mid x \in (0, +\infty)\}$$

为有限数. 证明: $M_1 = \sup\{|f'(x)| \mid x \in (0, +\infty)\}$ 也是有限数, 并满足不等式

$$M_1 \leq \sqrt{2M_0M_2}$$
.

证明 由于 $f \in D^2(-\infty, +\infty)$, 对 $\forall x \in (-\infty, +\infty)$, t > 0, 根据 Taylor 中值定理, 分别将 f(x+t), f(x-t) 在 x 处展开 可得, 存在 $\xi_1 \in (x - t, x), \xi_2 \in (x, x + t)$, 使得

$$f(x-t) = f(x) + f'(x)(-t) + \frac{f''(\xi_1)}{2}(-t)^2, f(x+t) = f(x) + f'(x)t + \frac{f''(\xi_2)}{2}t^2.$$

上面两式相减,可得

$$f(x+t) - f(x-t) = 2tf'(x) + \frac{f''(\xi_2)}{2}t^2 - \frac{f''(\xi_1)}{2}t^2.$$

从而 $f'(x) = \frac{f(x+t) - f(x-t)}{2t} + \frac{t[f''(\xi_1) - f''(\xi_2)]}{4}$. 于是

$$|f'(x)| \leq \frac{|f(x+t) - f(x-t)|}{2t} + \frac{|t[f''(\xi_1) - f''(\xi_2)]|}{4} \leq \frac{M_0}{t} + \frac{tM_2}{2}.$$

上式对 $\forall x \in (-\infty, +\infty), t > 0$ 都成立, 并且上式右边与 x 无关. 两边同时对 x 取上确界, 就有

$$M_1 \leqslant \frac{M_0}{t} + \frac{tM_2}{2}.$$

这对每个 t > 0 都成立. 取 $t = \sqrt{\frac{2M_0}{M_2}}$, 则有

$$M_1 \leqslant \sqrt{2M_0M_2}$$
.

例题 1.3 设 f 在 [a,b] 上二阶可微. 证明: 存在 $\xi \in (a,b)$, 使得

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{1}{4}(b-a)^2 f''(\xi).$$

证明 证法一: 写出 f(a), f(b) 在点 $\frac{a+b}{2}$ 处的 Taylor 展开式:

$$f(a) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(\frac{a-b}{2}\right) + \frac{1}{2}f''(\eta_1)\left(\frac{b-a}{2}\right)^2, \eta_1 \in \left(a, \frac{a+b}{2}\right)$$
$$f(b) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(\frac{b-a}{2}\right) + \frac{1}{2}f''(\eta_2)\left(\frac{b-a}{2}\right)^2, \eta_2 \in \left(\frac{a+b}{2}, b\right)$$

然后将两式相加,就有

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{1}{8}(b-a)^2 \left[f''(\eta_1) + f''(\eta_2)\right]$$
 (1.3)

又 $\min\{f''(\eta_1), f''(\eta_2)\} \le \frac{1}{2}[f''(\eta_1) + f''(\eta_2)] \le \max\{f''(\eta_1), f''(\eta_2)\}$, 故由 Darboux 定理 (定理??) 可知, 存

在 $\xi \in (\min \{\eta_1, \eta_2\}, \max \{\eta_1, \eta_2\}),$ 使得

$$f''(\xi) = \frac{1}{2} [f''(\eta_1) + f''(\eta_2)]$$

再结合(??)可得

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{1}{4}(b-a)^2 f''(\xi).$$

证法二 (K值法构造辅助函数): 记常数 $\lambda = \frac{4\left[f(a) + f(b) - 2f\left(\frac{a+b}{2}\right)\right]}{(b-a)^2}$, 令

$$F(t) = f(t) + f(a) - 2f\left(\frac{t+a}{2}\right) - \lambda \frac{(t-a)^2}{4}$$

则 F(b)=F(a)=0. 由 Rolle 中值定理可知, 存在 $\eta\in(a,b)$, 使得 $F'(\eta)=0$, 即

$$f'(\eta) - f'\left(\frac{\eta + a}{2}\right) = \frac{\lambda}{2}(\eta - a) \tag{1.4}$$

而由 Lagrange 中值定理可知, 存在 $\xi \in (\frac{\eta + a}{2}, \eta)$, 使得

$$f'(\eta) - f'\left(\frac{\eta + a}{2}\right) = \frac{f''(\xi)}{2}(\eta - a)$$

将其代入(??)式可得, $\left[\frac{f''(\xi)}{2} - \frac{\lambda}{2}\right](\eta - a) = 0$. 从而 $\lambda = f''(\xi)$, 即有

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{1}{4}(b-a)^2 f''(\xi).$$

注 K 值法构造辅助函数: 首先令 $\lambda = f''(\xi)$, 代入

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{1}{4}(b-a)^2 f''(\xi).$$

得 $\lambda = \frac{4\left[f\left(a\right) + f\left(b\right) - 2f\left(\frac{a+b}{2}\right)\right]}{\left(b-a\right)^2}$,然后将需要证明的式子全部移到等式左边,将 $f''(\xi)$ 换成 λ ,并将式中常数 a 或 b 改为变量 t 即可得到我们需要构造的辅助函数:

$$F(t) = f(t) + f(a) - 2f\left(\frac{t+a}{2}\right) - \lambda \frac{(t-a)^2}{4}$$

然后再反复利用 Rolle 中值定理即可得到结论.

证法三: 作辅助函数

$$\varphi\left(x\right) = f\left(x + \frac{b-a}{2}\right) - f\left(x\right)$$

由 Lagrange 中值定理可知, 存在 $\eta \in \left(a, \frac{a+b}{2}\right)$, 使得

$$\frac{\varphi\left(\frac{a+b}{2}\right) - \varphi\left(a\right)}{\frac{1}{2}\left(b-a\right)} = \varphi'\left(\eta\right) = f'\left(\eta + \frac{b-a}{2}\right) - f'\left(\eta\right) \tag{1.5}$$

再次由 Lagrange 中值定理可知, 存在 $\xi \in \left(\eta, \eta + \frac{b-a}{2}\right)$, 使得

$$\frac{f'\left(\eta + \frac{b-a}{2}\right) - f'\left(\eta\right)}{\frac{1}{2}\left(b-a\right)} = f'\left(\xi\right) \tag{1.6}$$

结合(??)(??)式可得

$$f'(\xi) = \frac{f'\left(\eta + \frac{b-a}{2}\right) - f'(\eta)}{\frac{1}{2}(b-a)} = \frac{\varphi'(\eta)}{\frac{1}{2}(b-a)} = \frac{\varphi\left(\frac{a+b}{2}\right) - \varphi(a)}{\frac{1}{4}(b-a)^2} = \frac{f(b) - 2f\left(\frac{a+b}{2}\right) + f(a)}{\frac{1}{4}(b-a)^2}$$

整理即得结论.

1.4 练习

▲ 练习 1.1 设 $f \in C[0,1]$, 在 (0,1) 上可微, 并且 f(0) = 0, f(1) = 1. 又设 k_1, k_2, \dots, k_n 是满足 $k_1 + k_2 + \dots + k_n = 1$ 的 n 个正数. 证明: 在 (0,1) 中存在 n 个互不相同的数 t_1, t_2, \dots, t_n , 使得

$$\frac{k_1}{f'(t_1)} + \frac{k_2}{f'(t_2)} + \dots + \frac{k_n}{f'(t_n)} = 1$$

证明 由介值定理知, 可以在 (0,1) 中插入 $x_1, x_2, \dots, x_n - 1$, 使得

$$0 = x_0 < x_1 < x_2 < \cdots < x_n - 1 < x_n = 1$$

同时满足

$$f(x_1) = k_1, f(x_2) = k_1 + k_2, \dots, f(x_{n-1}) = k_1 + k_2 + \dots + k_{n-1}$$

在区间 (x_{i-1}, x_i) 上用拉格朗日中值定理, 有存在 $t_i \in (x_{i-1}, x_i)$, 使得

$$k_i = f(x_{i-1}) - f(x-i) = f'(t_i)(x_{i-1} - x_i), i = 1, 2, \dots, n.$$

这样就有

$$\frac{k_1}{f'(t_1)} + \frac{k_2}{f'(t_2)} + \dots + \frac{k_n}{f'(t_n)} = (x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1}) = 1.$$

- 练习 1.2 用 Rolle 定理解决以下问题 (在方程中出现的系数均为实数):
 - (1) 证明: 方程 $e^x = ax^2 + bx + c$ 的不同实根不多于 3 个;
 - (2) 证明: 方程 $4ax^3 + 3bx^2 + 2cx = a + b + c$ 在 (0,1) 内至少有一个根;
 - (3) 若 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ 有 n+1 个 (不同) 实根, 证明: $f(x) \equiv 0$.

 - (4) 若 $2a^2 \le 5b$, 证明: 方程 $x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0$ 不可能有 5 个不同的实根. (5) 证明: Legendre 多项式 $P_n(x) = \frac{1}{2^n n!} \left[\left(x^2 1 \right)^n \right]^{(n)}$ 在 (-1,1) 内有 n 个不同实根.
 - (6) 证明: *Laguerre*(拉盖尔) 多项式 $L_n(x) = e^x (x^n e^{-x})^{(n)}$ 有 n 个不同正根.

证明 (1)(反证法) 令 $f(x) = e^x - (ax^2 + bx + c)$, 假设原方程在 \mathbb{R} 上有 4 个不同实根 x_1, x_2, x_3, x_4 , 且 $x_1 < x_2 < x_3 < x_4$. 则

$$f(x_1) = f(x_2) = f(x_3) = f(x_4) = 0$$

由 Rolle 中值定理知, 存在 $\xi_i \in (x_i, x_{i+1}), i = 1, 2, 3$, 使得

$$f'(\xi_1) = f'(\xi_2) = f'(\xi_3) = 0$$

由 Rolle 中值定理知, 存在 $\eta_i \in (\xi_i, \xi_{i+1}), i = 1, 2$, 使得

$$f''(\eta_1) = f''(\eta_2) = 0$$

由 Rolle 中值定理知, 存在 $\zeta \in (\eta_1, \eta_2)$, 使得

$$f'''(\zeta) = e^{\zeta} = 0$$

这与 e^x 在 \mathbb{R} 上没有零点矛盾, 故原方程的不同实根不多于 3 个.

- (2) 令 $f(x) = 4ax^4 + 3bx^3 + 2cx^2 (a+b+c)x$, 则 f(0) = f(1) = 0. 由 Rolle 中值定理知, 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$. 从而 ξ 就是原方程在 (0,1) 的一个根.
 - (3) 由 Rolle 中值定理知, 存在 $\xi_i \in (x_i, x_{i+1})$, 使得

$$f'(\xi_1) = f'(\xi_2) = \cdots = f'(\xi_n) = 0$$

反复利用 Rolle 中值定理,得

$$f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + 2a_2 x + a_1 \neq n$$
 (1.7)

$$f''(x) = n(n-1)a_n x^{n-2} + (n-1)(n-2)a_{n-1} x^{n-3} + \dots + 3! \quad a_3 x + a_2 = 0 + n - 1 + s$$
 (1.8)

$$f^{(n-1)}(x) = n!a_n x + (n-1)!a_{n-1} \hat{q}_2 \hat{q}_3$$
(1.9)

$$f^{(n)}(x) = a_n n! \uparrow 1 \uparrow \text{s.}$$
 (1.10)

从而 $a_n = 0$, 代入(??)得, $a_{n-1} = 0$. 依次类推可得, $a_n = a_{n-1} = \cdots = a_1 = a_0 = 0$. 故 $f(x) \equiv 0$.

(4)(反证法) 令 $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$. 假设原方程有 5 个不同的实根, 即 f(x) = 0 有 5 个不同的实根. 则反复利用 Rolle 中值定理可得, $f'''(x) = 60x^2 + 24ax + 6b$ 有 2 个不同的实根.

从而 $\Delta = (24a)^2 - 4 \times 60 \times 6b > 0$, 这与 $2a^2 \le 5b$ 矛盾. 故原方程不可能有 5 个不同的实根.

(5) $\Diamond f(x) = (x^2 - 1)^n$. 则 $f(x) = (x - 1)^n (x + 1)^n$ 为 2n 次多项式, 且 $x = \pm 1$ 分别为 f(x) 的 n 重根.

从而 f'(x) 以 ± 1 为 n-1 重根, 且由 Rolle 中值定理知, 存在 $\xi_1^{(1)} \in (-1,1)$, 使得 $f'(\xi_1^{(1)}) = 0$.

进而 f''(x) 以 ±1 为 n-2 重根, 且由 Rolle 中值定理知, 存在 $\xi_1^{(2)} \in (-1, \xi_1^{(1)}), \xi_2^{(2)} \in (\xi_1^{(1)}, 1)$, 使得 $f''(\xi_i^{(2)}) = 0$, i = 1, 2. 即 f''(x) 在 (-1, 1) 存在两个互异的实根.

重复以上操作 n 次, 可得 $f^{(n)}(x)$ 不再以 ± 1 为根, 且 $f^{(n)}(x)$ 在 (-1,1) 内有 n 个互异的实根.

事实上, 可知

$$P_n(x) = \frac{1}{2^n n!} \left[\left(x^2 - 1 \right)^n \right]^{(n)} = \frac{1}{2^n n!} f^{(n)}(x)$$

从而 $P_n(x)$ 在 (-1,1) 内也有 n 个互异的实根. 又因为 $P_n(x)$ 为 n 次多项式函数, 所以若 $P_n(x)$ 有 n+1 个不同的实根,则根据练习(??)第 (2) 题可知, $P_n(x)$ $\equiv 0$ 矛盾. 故 $P_n(x)$ 在 (-1,1) 内只有 n 个互异的实根.

(6) 令 $f(x) = x^n e^{-x}$, 显然 0 是 f(x) 的 n 重根. 并且

$$f'(x) = \frac{x^n + nx^{n-1}}{e^x}$$
$$f''(x) = \frac{x^n + 2nx^{n-1} + n(n-1)x^{n-2}}{e^x}$$

 $f^{(n)}(x) = \frac{P_n(x)}{e^x}$, 其中P(x) 是关于x的n次多项式

从而 $f^{(k)}(x) = \frac{P_{n,k}(x)}{e^x}$, 其中 $P_{n,k}(x)$ 是关于x的n次多项式, $k = 0, 1, \cdots, n$. 于是

$$\lim_{x \to +\infty} f^{(k)}(x) = \lim_{x \to +\infty} \frac{P_{n,k}(x)}{e^x} = 0, k = 0, 1, \dots, n$$

又由 0 是 f 的 n 重根可知,0 是 $f^{(k)}(x)$ 的 n-k 重根, $k=0,1,\dots,n$.

由 $f(0) = \lim_{x \to +\infty} f(x) = 0$ 及推广的 Rolle 中值定理 (定理??) 可得, 存在 $\xi_1^{(1)} \in (0, +\infty)$, 使得 $f'(\xi_1^{(1)}) = 0$.

进而 $f'(0) = \lim_{x \to +\infty} f'(x) = f'\left(\xi_1^{(1)}\right) = 0$, 再运用推广的 Rolle 中值定理 (定理??) 可得, 存在 $\xi_1^{(2)} \in \left(0, \xi_1^{(1)}\right), \xi_2^{(2)} \in \left(\xi_1^{(1)}, 1\right)$, 使得 $f''\left(\xi_1^{(2)}\right) = f''\left(\xi_2^{(2)}\right) = 0$. 即 f''(x) 存在两个不同的正根.

于是反复利用推广的 Rolle 中值定理 (定理??) 可得, $f^{(n)}(x)$ 存在 n 个不同的正根.

练习 1.3 若 f 在 [a,b] 上满足在 Rolle 中值定理中的条件 (即 $f \in C[a,b]$ 且 f(a) = f(b)), $f'_{+}(a)f'_{-}(b) > 0$. 证明: f'(x) = 0 在 (a,b) 中至少有两个根.

证明 令 F(x) = f(x) - f(a),则 F(a) = F(b) = 0 且 $F'_{+}(a)F'_{-}(b) > 0$. 不妨设 $F'_{+}(a) > 0$, $F'_{-}(b) > 0$,则由极限的局部保号性知,存在 $a < a_1 < b_1 < b$,使得 $F(a_1) > F(a) = 0$, $F(b_1) < F(b) = 0$.

从而由介值定理可知, 存在 $c \in (a_1, b_1)$, 使得 F(c) = F(a) = F(b) = 0.

于是由 Rolle 中值定理可得, 存在 $x_1 \in (a,c), x_2 \in (c,b)$, 使得 $F'(x_1) = F'(x_2) = 0$. 即 $f'(x_1) = f'(x_2) = 0$. 故 f'(x) = 0 在 (a,b) 中至少有两个根.

▲ 练习 1.4 设 f 在 [a,b] 上连续, 在 (a,b) 上可微, 且有 0 < a < b 成立. 证明: 存在 $\xi \in (a,b)$, 使

$$f(b) - f(a) = \ln \frac{b}{a} \cdot \xi f'(\xi).$$

$$\frac{f\left(b\right) - f\left(a\right)}{\ln b - \ln a} = \frac{f\left(b\right) - f\left(a\right)}{g\left(b\right) - g\left(a\right)} = \cdot \xi f'\left(\xi\right)$$

整理即得 $f(b) - f(a) = \ln \frac{b}{a} \cdot \xi f'(\xi)$

△ 练习 **1.5** 设 f 在 [a,b] 上可微, 证明: 存在 $\mathcal{E} \in (a,b)$, 使

$$2\xi[f(b) - f(a)] = (b^2 - a^2)f'(\xi)$$

(若应用 Cauchy 中值定理,则要讨论其条件不满足的情况.)

笔记 因为 Cauchy 中值定理 (定理??) 的条件 $f'^2(x) + g'^2(x) \neq 0$ 对 $\forall x \in (a,b)$ 可能不满足, 所以不能直接使用 Cauchy 中值定理证明. 但是可以利用 Cauchy 中值定理证明中的思路, 构造类似的辅助函数

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(x) - g(a)]$$

使得 F(a) = F(b) = 0, 再运用 Rolle 中值定理得到证明

证明 令

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b^2 - a^2} \left[x^2 - a^2 \right]$$

则 F(a) = F(b) = 0 且 $F(x) \in C^1[a,b]$. 从而由 Rolle 中值定理可得, 存在 $\xi \in (a,b)$, 使得 $F'(\xi) = f'(\xi)$ —

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(\xi) - f(a)}{g(b) - g(\xi)}$$

笔记 因为导函数 g'(x) 在区间 (a,b) 中无零点, 所以如果存在 $\xi \in (a,b)$ 满足结论, 则 $g'(\xi) \neq 0$, $g(b) - g(\xi) \neq 0$. $\ddot{\pi}$ $g(b) - g(\xi) = 0$, 则由 Rolle 中值定理可知, 存在 $\eta \in (\xi, b)$, 使得 $g'(\eta) = 0$. 这与 g'(x) 在区间 (a, b) 中无零 点矛盾.

因此, 要证明的结论等价于: 存在 $\xi \in (a,b)$, 使得

$$F'(\xi) = f'(\xi) [g(b) - g(\xi)] - g'(\xi) [f(\xi) - f(a)] = 0$$

从而只要构造出相应的辅助函数 F(x), 使得 F(a) = F(b) 且 F'(x) = f'(x)[g(b) - g(x)] - g'(x)[f(x) - f(a)] = 0, 再利用 Rolle 中值定理即可证明结论. 直接观察可得, 需要构造的辅助函数为 F(x) = [f(x) - f(a)][g(b) - g(x)]. 再将上述思路严格化即可得证.

证明 令 F(x) = [f(x) - f(a)][g(b) - g(x)], 则 F(a) = F(b) 且 F 在 [a,b] 上连续, 在 (a,b) 上可微. 由 Rolle 中值 定理可得,存在 $\xi \in (a,b)$,使得

$$F'(\xi) = f'(\xi) [g(b) - g(\xi)] - g'(\xi) [f(\xi) - f(a)] = 0$$
(1.11)

根据 g'(x) 在区间 (a,b) 中无零点知, $g'(\xi) \neq 0$, $g(b) - g(\xi) \neq 0$. 若 $g(b) - g(\xi) = 0$, 则由 Rolle 中值定理可知, 存在 $\eta \in (\xi, b)$, 使得 $g'(\eta) = 0$. 这与 g'(x) 在区间 (a, b) 中无零点矛盾.

因此,由(??)整理可得

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(\xi) - f(a)}{g(b) - g(\xi)}$$

练习 1.7 7. 设 f(x) 在 $[0,+\infty)$ 上可微, 且 $0 \le f(x) \le \frac{x}{1+x^2}$. 证明: 存在 $\xi > 0$, 使得 $f'(\xi) = \frac{1-\xi^2}{(1+\xi^2)^2}$.

笔记 注意到, 只需要构造出相应的辅助函数 F(x), 使得 $F'(x) = f'(x) - \frac{1-x^2}{(1+x^2)^2}$. 再利用 Rolle 中值定理即可得 到结论. 运用常数变易法求解一阶常微分方程构造辅助函数:

考虑微分方程 $y'=-\frac{1-x^2}{(1+x^2)^2}$,两边同时积分解得 $y=\frac{x}{(1-x^2)^2}$. 故可构造辅助函数 $F(x)=f(x)-\frac{x}{(1-x^2)^2}$. 证明 令 $F(x)=f(x)-\frac{x}{(1-x^2)^2}$,由条件可知,

$$0 \le f(0) \le 0,$$

$$0 \le f(+\infty) \le \lim_{x \to +\infty} \frac{x}{1 + x^2}$$

由迫敛性可知, $f(0) = f(+\infty) = 0$. 从而根据推广的 *Rolle* 中值定理 (定理??) 可得, 存在 $\xi \in (0, +\infty)$, 使得 $F'(\xi) = f'(\xi) - \frac{1-x^2}{(1+x^2)^2} = 0$. 整理即得结论. 练习 1.8 对于

$$(1)f(x) = ax^2 + bx + c(a \neq 0),$$

$$(2)f(x) = \frac{1}{x}(x > 0),$$

$$(2)f(x) = \frac{1}{x}(x > 0),$$

十算在公式
$$f(x + \Delta x) - f(x) = f'(x + \theta \Delta x) \Delta x$$
 中的 θ , 并求极限 $\lim_{\Delta x \to 0} \theta$.

证明 (1) 代入得

$$[a(x + \Delta x)^2 + b(x + \Delta x) + c] - (ax^2 + bx + c) = [2a(x + \theta \Delta x) + b] \Delta x$$

解得 $\theta = \frac{1}{2}$. (2) 代入得

$$\frac{1}{x + \Delta x} - \frac{1}{x} = -\frac{\Delta x}{(1 + (x + \theta \Delta x)^2)}$$

化简可得

$$\Delta x \cdot \theta^2 + 2\theta x - x = 0$$

练习 **1.9** 证明: 当 $x \ge 0$ 时有 $\sqrt{x+1} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}}$, 其中 $\frac{1}{4} \le \theta(x) \le \frac{1}{2}$, 且具有性质

$$\lim_{x \to 0^+} \theta(x) = \frac{1}{4}, \lim_{x \to +\infty} \theta(x) = \frac{1}{2}$$

证明 由 Lagrange 中值定理, 存在 $\theta(x) \in (0,1)$, 使得

$$\sqrt{x+1} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}}$$

由此得

$$2\sqrt{x+\theta(x)} = \frac{1}{\sqrt{x+1} - \sqrt{x}} = \sqrt{x+1} + \sqrt{x}$$

进而

$$\theta(x) = \frac{1}{4} \left[\sqrt{x+1} + \sqrt{x} \right]^2 - x = \frac{1}{4} + \frac{1}{2} \left[\sqrt{x(x+1)} - x \right]$$
 (1.12)

由于

$$\sqrt{x(x+1)} - x = \frac{x}{\sqrt{x(x+1)} + x} \le \frac{x}{\sqrt{x^2} + x} = \frac{1}{2}$$

再结合(??)可得, $\frac{1}{4} \le \theta(x) \le \frac{1}{2}$. 又由(??)直接可得

$$\lim_{x \to 0^+} = \frac{1}{4}, \lim_{x \to +\infty} = \frac{1}{2}$$

练习 1.10 设 f 在区间 [a,b] 上可微. 证明: 若 f(a) 是 f 的最大值, 则 $f'_+(a) \leq 0$: 若 f(b) 是 f 的最大值, 则 $f'_{-}(b) \ge 0.$

证明 若 f(a) 是 f 的最大值, 则 $\forall x \in [a,b]$, 有 $f(x) \geq f(a)$. 从而

$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} \le 0$$

若 f(b) 是 f 的最大值, 同理可得

$$f'_{-}(b) = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} \geqslant 0$$

△ 练习 **1.11** 证明: 当且仅当 $|x| \le \frac{1}{\sqrt{2}}$ 时, 成立 2 arcsin $x = \arcsin(2x\sqrt{1-x^2})$.

证明 $\diamondsuit f(x) = 2\arcsin x - \arcsin(2x\sqrt{1-x^2}), |x| \le \frac{1}{\sqrt{2}}.$ 则

$$f'(x) = \frac{2}{\sqrt{1 - x^2}} - \frac{2\sqrt{1 - x^2} - \frac{2x^2}{\sqrt{1 - x^2}}}{\sqrt{1 - 4x^2(1 - x^2)}} = \frac{2}{\sqrt{1 - x^2}} - \frac{2(1 - 2x^2)}{\sqrt{1 - x^2}\sqrt{(2x^2 - 1)^2}} = 0$$

从而 $f(x) \equiv C(其中 C 为常数)$. 又因为 f(0) = 0, 所以 $f(x) \equiv 0$.

▲ 练习 1.12 设函数 f 在区间 I 上二阶可微, 且 $f''(x) \equiv 0$. 问: f 是什么函数?

解 f 为线性函数, 理由如下:

由 f''(x) = 0 可知, f'(x) = C, 其中 C 为常数. 任取 $x_0 \in I$, 对 $\forall x \in I$, 由拉格朗日中值定理可得, 存在 $\xi \in (\min\{x_0, x\}, \max\{x_0, x\})$, 使得

$$f(x) = f'(\xi)(x - x_0) + f(x_0)$$

△ 练习 1.13 证明: 在有界开区间 (a, b) 上无界的可微函数的导数也一定无界.

证明 假设 $\exists M > 0, \forall x \in (a,b)$, 有 |f'(x)| < M. 任取 $x_0 \in (a,b)$, 对 $\forall x \in (a,b)$. 由拉格朗日中值定理可知, 存在 $\xi \in (min\{x_0,x\}, max\{x_0,x\})$, 使得

$$|f(x)| = |f'(\xi)(x - x_0) + f(x_0)| \le M(b - a) + |f(x_0)|$$

因此, f(x) 在区间 (a,b) 上有界. 这与 f(x) 在有界开区间 (a,b) 上无界矛盾.

▲ 练习 1.14 设 f 在 (0,a) 上可微, $f(0^+) = +\infty$. 证明: f'(x) 在点 x = 0 的右侧无下界.

证明 任取 $x_0 > 0$, 由 $f(0^+) = +\infty$ 可知, $\exists 0 < \delta < x_0 \text{ s.t. } \forall x \in (0, \delta)$, 有 $f(x) > f(x_0)$.

从而当 $x \in (0, \delta)$ 时,有

$$\frac{f(x) - f(x_0)}{x - x_0} < \frac{f(x) - f(x_0)}{-x_0} < 0$$

$$f'(x_0) = \lim_{x \to 0^+} \frac{f(x) - f(x_0)}{x - x_0} \leqslant \lim_{x \to 0^+} \frac{f(x) - f(x_0)}{-x_0} = \frac{f(x_0)}{x_0} - \frac{f(0^+)}{x_0} = -\infty$$

故 f'(x) 在点 x = 0 的右侧无下界.

证明 因为 f 不是常值函数, 所以存在 $c \in (a,b)$, 使得 $f(c) \neq f(a)$.

若 f(c) > f(a) = f(b),则由拉格朗日中值定理可知,存在 $\xi \in (a,c)$,使得

$$f'\left(\xi\right) = \frac{f\left(c\right) - f\left(a\right)}{c - a} > 0$$

若 f(c) < f(a) = f(b),则由拉格朗日中值定理可知,存在 $\eta \in (c,b)$,使得

$$f'(\eta) = \frac{f(b) - f(c)}{b - c} > 0$$

练习 1.16 设 f 在 [0,1] 上连续, 在 (0,1) 上二阶可微, 又知连接点 A(0,f(0)) 和 B(1,f(1)) 的直线段与曲线 y=f(x) 交于点 C(c,f(c)), 其中 0 < c < 1. 证明: 在 (0,1) 内存在一点 ξ , 使 $f''(\xi) = 0$.

证明 令 F(x) = f(x) - [f(1) - f(0)]x - f(0),则由条件可知,F(0) = F(1) = F(c) = 0. 从而用两次 Roll 中值定理可得,存在 $\xi \in (0,1)$,使得 $f''(\xi) = 0$.

练习 1.17 设 f 在 [a,b] 上连续, 在 (a,b) 上可微, 且 f'(x) 无零点. 证明: 存在 $\xi, \eta \in (a,b)$, 使得

$$\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a}e^{-\eta}$$

证明 证法一: 由拉格朗日中值定理可知, 存在 $\eta \in (a,b)$, 使得

$$e^{\eta} = \frac{e^b - e^a}{b - a}$$

于是取 $\xi = \eta \in (a,b)$, 则

$$\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a}e^{-\eta} = 1$$

证法二: 一方面, 由 Lagrange 中值定理可知, 存在 $\xi \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{(b - a)(e^b - e^a)} = \frac{f'(\xi)}{e^b - e^a}$$
(1.13)

另一方面, 由 Cauchy 中值定理可知, 存在 $\eta \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{(b - a)(e^b - e^a)} = \frac{f'(\eta)}{b - a}e^{-\eta}$$
(1.14)

结合(??)(??)整理即得

$$\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a}e^{-\eta} \tag{1.15}$$

- 练习 **1.18** 设 f 在 [0,1] 上连续, 在 (0,1) 上可微, f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$. 证明:

(1) 存在 $\eta \in (\frac{1}{2}, 1)$, 使 $f(\eta) = \eta$; (2) 对任何实数 λ , 存在 $\xi \in (0, \eta)$, 使 $f'(\xi) - \lambda(f(\xi) - \xi) = 1$. 证明 (1) 令 g(x) = f(x) - x, 则 $g(\frac{1}{2}) = 1 > 0$, g(1) = -1 < 0. 由零点存在定理可知, 存在 $\eta \in (\frac{1}{2}, 1)$, 使得 $g(\eta) = 0$.

(2) 对 $\forall \lambda \in \mathbb{R}$, 令 $F(x) = e^{-\lambda x} [f(x) - x]$, 则 $F'(x) = \frac{f'(x) - 1 - \lambda [f(x) - x]}{e^{2\lambda x}}$. 由 (1) 可知, $F(0) = F(\eta) = 0$. 由 Rolle 中值定理可知, 存在 $\xi \in (0, \eta)$, 使得

$$F'(\xi) = \frac{f'(\xi) - 1 - \lambda [f(\xi) - \xi]}{e^{2\lambda \xi}} = 0$$

从而 $f'(\xi) - \lambda(f(\xi) - \xi) = 1$.

△ 练习 1.19 设 f 为区间 I 上的可微函数. 证明: f' 为 I 上的常值函数的充分必要条件是 f 为线性函数. 证明 充分性显然, 下证必要性. 设 $f'(x) \equiv C$, 其中 C 为某一常数. $\forall x \in I$, 任取固定点 $x_0 \in I$, 由 Lagrange 中值定 理可知, 存在 $\xi \in (\min\{x_0, x\}, \max\{x_0, x\})$, 使得

$$f(x) = f'(\xi)(x - x_0) + f(x_0) = C(x - x_0) + f(x_0).$$

故 f(x) 为线性函数.

▲ 练习 1.20 用间接法求函数 $f(x) = \sin x^3$ 的带 Peano 余项的 Maclaurin 公式, 要求写出直到 x^{13} 项的系数然后利 用这个公式计算出函数 f(x) 在点 x = 0 的直到 13 阶的各阶导数值. 证明

$$\sqrt[3]{\sin x^3} = \left(x^3 - \frac{1}{3!}x^9 + \frac{1}{5!}x^{15} + o\left(x^{15}\right)\right)^{\frac{1}{3}}$$

$$= x\left(1 - \frac{1}{3!}x^6 + \frac{1}{5!}x^{12} + o\left(x^{12}\right)\right)^{\frac{1}{3}}$$

$$= x\left[1 + \frac{1}{3}\left(-\frac{1}{3!}x^6 + \frac{1}{5!}x^{12} + o\left(x^{12}\right)\right) - \frac{\frac{1}{3} \cdot \frac{2}{3}\left(-\frac{1}{3!}x^6 + \frac{1}{5!}x^{12} + o\left(x^{12}\right)\right)^2}{2!} + o\left(x^{12}\right)\right]$$

$$= x\left[1 - \frac{x^6}{18} + \frac{x^{12}}{360} - \frac{1}{324}x^{12} + o\left(x^{12}\right)\right]$$

$$= x - \frac{x^7}{18} - \frac{1}{3240}x^{13} + o\left(x^{13}\right)$$

由 Taylor 展开式的唯一性可知

$$f'(0) = 1, f^{(k)}(0) = 0, k = 2, 3, 4, 5, 6, 8, 9, 10, 11, 12$$

$$f^{(7)}(0) = -\frac{1}{18}, f^{(13)}(0) = -\frac{1}{3240}$$

练习 1.21 计算 arcsin x 的带 Peano 余项的 Maclaurin 公式.

证明 由于

$$(1+x)^{\alpha} = 1 + \sum_{k=0}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$$

所以令 $\alpha = -\frac{1}{2}$, 用 $-x^2$ 替换 x 得

$$\frac{1}{\sqrt{1-x^2}} = 1 + \sum_{k=1}^{+\infty} \frac{(-1)^k \frac{1}{2} \frac{3}{2} \cdots \frac{2k-1}{2}}{k!} (-x^2)^k = 1 + \sum_{k=1}^{+\infty} \frac{1 \cdot 3 \cdots (2k-1)}{2^n \cdot k!} x^{2k} = 1 + \sum_{k=1}^{+\infty} \frac{(2k-1)!!}{(2k)!!} x^{2k}$$

从而

$$\arcsin x = \int_0^x \frac{1}{\sqrt{1-t^2}} dt = \int_0^x \left[1 + \sum_{k=1}^{+\infty} \frac{(2k-1)!!}{(2k)!!} t^{2k}\right] dt = x + \sum_{k=1}^{+\infty} \frac{(2k-1)!!}{(2k)!!(2k+1)} x^{2k+1}$$

于是 arcsin x 带 Peano 余项的 Taylor 展开为:

$$\arcsin x == x + \sum_{k=1}^{n} \frac{(2k-1)!!}{(2k)!!(2k+1)} x^{2k+1} + o(x^{2n+1})$$

练习 1.22 计算 $f(x) = \frac{\arcsin x}{\sqrt{1-x^2}}$ 的带 Peano 余项的 Maclaurin 公式.

证明 令 $y = \frac{\arcsin x}{\sqrt{1 - xy}}$, 两边对 x 求导可得

$$\sqrt{1 - x^2}y' - \frac{xy}{\sqrt{1 - x^2}} = \frac{1}{\sqrt{1 - x^2}}$$

$$\mathbb{F}(1 - x^2)y' = 1 + xy$$

显然 $y = \frac{\arcsin x}{\sqrt{1-xy}}$ 为奇函数, 根据 Taylor 定理可知, 不妨设 $y = \sum_{n=0}^{\infty} a_{2n-1}x^{2n-1}$, 代入上式, 得

$$a_1 + \sum_{n=1}^{\infty} \left((2n+1)a_{2n+1} - (2n-1)a_{2n-1} \right) x^{2n} = 1 + \sum_{n=1}^{\infty} a_{2n-1} x^{2n}$$

对比系数可得

$$\begin{cases} a_1 = 1 \\ (2n+1)a_{2n+1} = 2na_{2n} \end{cases}$$

于是可得 $a_{2n+1}=\frac{(2n)!!}{(2n+1)!!}, n=0,1,2,\cdots$. 从而 $y=\frac{\arcsin x}{\sqrt{1-xy}}$ 有 Peano 余项的麦克劳林公式为

$$f(x) = x + \frac{2}{3}x^3 + \frac{4!!}{5!!}x^5 + \dots + \frac{(2n)!!}{(2n+1)!!}x^{2n+1} + o(x^{2n+1})$$

练习 **1.23** 估计下列近似公式的绝对误差: (1)
$$e^x \approx 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$
, 当 $0 \le x \le 1$; (2) $\sin x \approx x - \frac{x^3}{6}$, $||x|| \le \frac{1}{2}$;

$$(2)\sin x \approx x - \frac{x^3}{6}, ||x| \le \frac{1}{2};$$

(3)
$$\tan x \approx x + \frac{x^3}{3}, \, \stackrel{\text{def}}{=} |x| \le \frac{1}{10};$$

(4)
$$\sqrt{1+x} \approx 1 + \frac{x}{2} - \frac{x^2}{8}$$
, 当 $0 \le x \le 1$. 证明 由带有拉格朗日余项的麦克劳林公式得

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}$$

可得绝对误差为

$$(1)|R(x)| == \frac{|f^{(n+1)}(\xi)|}{(n+1)!}|x|^{n+1}$$

$$(1)|R(x)| = \left|\frac{e^{\xi}}{(n+1)!}x^{n+1}\right| \leq \frac{e}{(n+1)!};$$

$$(2)|R(x)| = \left|\frac{\sin\xi}{4!}x^4\right| \leq \frac{1}{4! \cdot 2^4} = \frac{1}{384};$$

$$(3)|R(x)| = \left|\frac{\tan^{(4)}x}{4!}x^4\right| \leq \left|\frac{\tan^{(4)}(0.1)}{4!}0.1^4\right| \approx 0.004286\left((\tan x)^{(4)} \div (-0.1, 0.1) \right) \perp 单调递增);$$

$$(4)|R(x)| \leq \frac{\left|f^{(3)}(1)\right|}{3!} \approx 0.011.$$
练习 **1.24** 若函数 f 在某点 x_0 的任意阶 $Taylor$ 多项式均恒等于 0 , 是否可推出 $f(x) \equiv 0$?(参考例题 $6.2.4$ 的结论.

解 不能, 反例 (详细见谢惠民上册 P169-170 例题 6.2.4):

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} &, x \neq 0 \\ 0 &, x = 0 \end{cases}, f^{(n)}(0) = 0$$

▲ 练习 1.25 设 f 在 [-1,1] 上有任意阶导数, $f^{(n)}(0) = 0, \forall n \in \mathbb{N}_4$, 且存在常数 $C \geq 0$, 使得对所有 $n \in \mathbb{N}^+$ 和 $x \in [-1,1]$ 成立不等式 $|f^{(n)}(x)| \le n!C^n$. 证明: $f(x) \equiv 0$.

证明 若 C < 1, 则 $\forall x \in [-1,1]$, 由 Taylor 定理可知, 存在 $\theta_1 \in (0,1)$, 使得

$$|f(x)| = \left| \sum_{i=0}^{n} \frac{f^{(i)}(0)}{i!} x^{i} + \frac{f^{(n+1)}(\theta_{1}x)}{(n+1)!} x^{n+1} \right| = \left| \frac{f^{(n+1)}(\theta_{1}x)}{(n+1)!} x^{n+1} \right| \leqslant C^{n+1}$$

上式对任意 $n \in \mathbb{N}_+$ 都成立, 令 $n \to +\infty$, 则 $f(x) \equiv 0, \forall x \in [-1,1]$. 若 $C \geq 1$, 则对 $\forall x \in (-\frac{1}{2C}, \frac{1}{2C}), \forall k \in \mathbb{N}$, 根据 Taylor 定理可知, 存在 $\theta_2 \in (0,1)$, 使得

$$\left| f^{(k)}(x) \right| = \left| \sum_{i=k}^{n+k} \frac{f^{(i)}(0)}{i!} x^i + \frac{f^{(n+k)}(\theta_2 x)}{(n+k)!} x^{n+k} \right| = \left| \frac{f^{(n+k)}(\theta_2 x)}{(n+k)!} x^{n+k} \right| \leqslant C^{n+k} \frac{1}{(2C)^{n+k}} = \frac{1}{2^{n+k}}$$

上式对任意 $n \in \mathbb{N}$ 都成立, 令 $n \to +\infty$, 则 $f^{(k)}(x) \equiv 0, \forall x \in (-\frac{1}{2C}, \frac{1}{2C}), \forall k \in \mathbb{N}$. 根据 $f^{(k)}$ 的连续性可 知, $f^{(k)}(-\frac{1}{2C}) = f^{(k)}(\frac{1}{2C}) = 0$. 故 $f^{(k)}(x) \equiv 0, \forall x \in [-\frac{1}{2C}, \frac{1}{2C}], \forall k \in \mathbb{N}$. 构造数集

$$A = \left\{\alpha \in \left[-1,0\right) \mid f^{(n)}\left(x\right) \equiv 0, \forall x \in \left[\alpha,0\right], \forall n \in \mathbb{N}\right\}, B = \left\{\beta \in \left(0,1\right] \mid f^{(n)}\left(x\right) \equiv 0, \forall x \in \left[0,\beta\right], \forall n \in \mathbb{N}\right\}$$

显然数集 A,B 有界. 根据已证结论可知, $-\frac{1}{2C} \in A$, $\frac{1}{2C} \in B$,故 $A,B \neq \emptyset$. 由确界存在定理可知,数集 A,B 都存在上、下确界. 设 $a=\inf A,b=\sup B$,则根据已证结论可知, $-1 \leq a < b \leq 1$.

我们断言 $a \in A, b \in B$, 先证 $b \in B$. 由 $b = \sup B$ 可知, 对 $\forall 0 < \beta_1 < b$, 都存在 $\beta_1 < \beta_0 < b$, 使得 $\beta_0 \in B$. 再根 据数集 B 的定义可知, $\beta_1 \in B$. 从而对 $\forall 0 < \beta_1 < b$, 都有 $f^{(k)}(x) \equiv 0, \forall x \in [0,\beta_1]$, $\forall k \in \mathbb{N}$. 于是对 $\forall x \in (0,b)$, 都 有 $f^{(k)}(x) \equiv 0, \forall k \in \mathbb{N}$.

进而, 由 $f^{(k)}(x)$, $\forall k \in \mathbb{N}$ 的连续性可知

$$f^{(k)}(b) = \lim_{x \to b^{-}} f(x) = 0, \forall k \in \mathbb{N}$$

因此, $\forall x \in (0,b]$,都有 $f^{(k)}(x) \equiv 0, \forall k \in \mathbb{N}$.故 $b \in B$,同理可证 $a \in A$.

我们再断言必有 a=-1,b=1. 先证 b=1. 若 b<1, 取 $\delta=\min\left\{\frac{1}{2C},1-b\right\}$, 则 $\forall x\in[b,b+\delta], \forall k\in\mathbb{N}$, 根据 Taylor 定理可知, 存在 $\theta_0\in(0,1)$, 使得

$$\left| f^{(k)}(x) \right| = \left| \sum_{i=k}^{n+k} \frac{f^{(i)}(b)}{i!} (x-b)^i + \frac{f^{(n+k)}(b+\theta_0(x-b))}{(n+k)!} (x-b)^{n+k} \right|$$

$$= \left| \frac{f^{(n+k)}(b+\theta_0(x-b))}{(n+k)!} (x-b)^{n+k} \right|$$

$$\leqslant C^{n+k} \delta^{n+k} \leqslant C^{n+k} \frac{1}{(2C)^{n+k}} = \frac{1}{2^{n+k}}$$

上式对任意 $n \in \mathbb{N}$ 都成立,令 $n \to +\infty$,则 $f^{(k)}(x) \equiv 0, \forall x \in [b, b+\delta]$.又因为我们已经证得对 $\forall x \in (0, b]$,都有 $f^{(k)}(x) \equiv 0, \forall k \in \mathbb{N}$,所以对 $\forall x \in (0, b+\delta]$,都有 $f^{(k)}(x) \equiv 0, \forall k \in \mathbb{N}$.故 $b+\delta \in B$,这与 $b=\sup B$ 矛盾.因此,b=1. 类似可证 a=-1.从而根据数集 A,B的定义可知

$$f^{(k)}\left(x\right) \equiv 0, \forall x \in \left[-1, 1\right], \forall k \in \mathbb{N}$$

综上可知,f(x) ≡ 0,x ∈ (-1,1).

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|$$

 $rac{\textcircled{2}}{2}$ 笔记 已知插值点条件:f(a), f(b), f'(a) = f'(b) = 0. 由插值定理可知, 插值多项式为 3 次, 余项为 4 阶导数. 但题目条件只有 f 二阶可微, 微分条件不够, 因此, 需要分段插值 (靠近哪边就在哪边插值). 又因为没有其它约束条件, 所以需要找一个公共点能同时在两边都能插值并且能据此推出结论.(显然这个公共点为 $\frac{a+b}{2}$)

证明 证法一: 根据带 Lagrange 余项的 Taylor 定理, 将 f(x) 在 a,b 点处分别展开并代入 $x = \frac{a+b}{2}$ 可知, 存在 $\xi_1 \in (a, \frac{a+b}{2}), \xi_2 \in (\frac{a+b}{2}, b)$, 使得

$$f(\frac{a+b}{2}) = f(a) + \frac{f''(\xi_1)}{2!} (\frac{b-a}{2})^2$$
$$f(\frac{a+b}{2}) = f(b) + \frac{f''(\xi_2)}{2!} (\frac{b-a}{2})^2$$

两式相减可得

$$\frac{4}{(b-a)^2}[f(b)-f(a)] = \frac{f''(\xi_1)-f''(\xi_2)}{2} \leqslant \frac{|f''(\xi_1)|+|f'(\xi_2)|}{2} \leqslant \max\{|f''(\xi_1)|,|f''(\xi_2)|\}$$

取 $\xi = \xi_i$, 其中 $|f''(\xi_i)| = \max\{|f''(\xi_1)|, |f''(\xi_2)|\}$, 则有

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|$$

证法二 (插值定理和 K 值法): 根据插值定理,f(x) 分别代入插值点 f(a), f'(a) = 0 和 f(b), f'(b) = 0, 并代入 $x = \frac{a+b}{2}$ 可知, 存在 $\xi_1 \in (a, \frac{a+b}{2}), \xi_2 \in (\frac{a+b}{2}, b)$, 使得

$$f(\frac{a+b}{2}) = f(a) + \frac{f''(\xi_1)}{2!} (\frac{b-a}{2})^2$$
$$f(\frac{a+b}{2}) = f(b) + \frac{f''(\xi_2)}{2!} (\frac{b-a}{2})^2$$

两式相减可得

$$\frac{4}{(b-a)^2}[f(b)-f(a)] = \frac{f''(\xi_1)-f''(\xi_2)}{2} \leqslant \frac{|f''(\xi_1)|+|f'(\xi_2)|}{2} \leqslant \max\{|f''(\xi_1)|,|f''(\xi_2)|\}$$

取 $\xi = \xi_i$, 其中 $|f''(\xi_i)| = \max\{|f''(\xi_1)|, |f''(\xi_2)|\}$, 则有

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|$$

▲ 练习 1.27 (1) 设 f 在 (a,b) 上可微. 试问对每个点 ξ ∈ (a,b), 是否一定存在两个点 x_1,x_2 ∈ (a,b), 使得

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi)$$

(2) 设 f 在 (a,b) 上可微, 且在某点 $\xi \in (a,b)$ 处有 $f''(\xi) > 0$. 证明: 存在两个点 $x_1, x_2 \in (a,b)$, 使得成立

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi)$$

Ŷ 笔记 思路分析: (2) 中要证结论等价于: 存在两个点 $x_1, x_2 \in (a, b)$, 使得成立

$$f'(\xi)(x_2 - x_1) = f(x_2) - f(x_1)$$

$$\Leftrightarrow f(\xi)(x_2 - \xi) - f'(\xi)(x_1 - \xi) = f(x_2) - f(x_1)$$

$$\Leftrightarrow f(x_1) - f'(\xi)(x_1 - \xi) = f(x_2) - f'(\xi)(x_2 - \xi)$$

根据题目条件和 Taylor 定理, 我们构造辅助函数 $F(x) = f(x) - g(x) - \varepsilon = f(x) - f'(\xi)(x - \xi) - f(\xi) - \varepsilon$, 则原结论等价于证明: 存在两个点 $x_1, x_2 \in (a, b)$, 使得成立 $GF(x_1) = F(x_2) = C$, 其中 C 某一常数. 再根据介值定理或零点存在定理找到符合条件的 x_1, x_2 即可.

证明 (1) 不一定, 反例: $f(x) = x^3$ 在 (-1, 1). 对 $\xi = 0, \forall x_1, x_2 \in (-1, 1)$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{x_2^3 - x_1^3}{x_2 - x_1} > 0 = f'(\xi)$$

(2) 因为 f''(x) > 0, 根据导数定义和极限的局部保号性可知, 存在 $\delta > 0$, 使得 $\forall x \in (\xi - \delta, \xi)$, 有 $f'(x) < f'(\xi)$. 以及 $\forall y \in (\xi, \xi + \delta)$, 有 $f'(x) > f'(\xi)$. 在 $(\xi - \delta, \xi)$ 和 $(\xi, \xi + \delta)$ 中任取固定点 x_1 和 y_1 . 由 Taylor 定理, 分别将 $f(x_1)$ 和 $f(y_1)$ 在点 ξ 处展开, 从而存在 $x_0 \in (x_1, \xi), y_0 \in (\xi, y_1)$, 使得

$$f(x_1) = f(\xi) + f'(x_0)(x_1 - \xi)$$

$$f(y_1) = f(\xi) + f'(y_0)(y_1 - \xi)$$

 $\diamondsuit g(x) = f'(\xi)(x - \xi) + f(\xi), \mathbb{M}$

$$f(x_1) - g(x_1) = [f'(x_0) - f'(\xi)](x_1 - \xi) > 0$$

$$f(x_2) - g(x_2) = [f'(y_0) - f'(\xi)](y_1 - \xi) > 0$$

$$\mathbb{R} \varepsilon = \min\{\frac{f(x_1) - g(x_1)}{2}, \frac{f(y_1) - g(y_1)}{2}\}, \diamondsuit F(x) = f(x) - g(x) - \varepsilon, \mathbb{M}\}$$

$$F(x_1) \geqslant \frac{f(x_1) - g(x_1)}{2} > 0$$

$$F(y_1) \geqslant \frac{f(y_1) - g(y_1)}{2} > 0$$

$$F(\xi) = f(\xi) - \varepsilon = -\varepsilon < 0$$

根据零点存在定理可知,存在 $x_3 \in (x_1, \xi), y_3 \in (\xi, y_1)$,使得

$$F(x_3) = F(y_3) = 0$$

故

$$f(x_3) - g(x_3) = f(y_3) - g(y_3)$$

$$\Rightarrow f(x_3) - f(\xi)(x_3 - \xi) = f(y_3) - f'(\xi)(y_3 - \xi)$$

$$\Rightarrow \frac{f(x_3) - f(y_3)}{x_3 - y_3} = f'(\xi)$$

注 用类似的方法可证当 $f''(\xi) < 0$ 时命题也是成立的.

▲ 练习 1.28 设 f 在 $[a,+\infty)$ 上二阶可微, 且 $f(x) \ge 0$, $f''(x) \le 0$. 证明: 在 $x \ge a$ 时 $f'(x) \ge 0$.

证明 (反证法) 假设存在 $x_0 \in [a, +\infty)$, 使得 $f'(x_0) < 0$. 则对 $\forall x > x_0$, 都有 $f(x) < f(x_0)$. 根据 Taylor 定理可知, 对 $\forall x > x_1$, 都存在 $\xi \in (x_0, x)$, 使得

$$f(x) = f(x_0) + f'(\xi)(x - x_0) \leqslant f(x_0) + f'(x_0)(x - x_0)$$
 任取 $x > x_0 - \frac{f(x_0)}{f'(x_0)}$,则由上式可知

$$f(x) \le f(x_0) + f'(x_0)(x - x_0) < 0$$

这与 $\forall x \in [a, +\infty)$, 有 $f(x) \ge 0$ 矛盾.

▲ 练习 1.29 设 f 在 (-1,1) 上 n+1 阶可微, $f^{(n+1)}(0) \neq 0, n \in \mathbb{N}_+$, 在 0 < |x| < 1 上有

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + \frac{f^{(n)}(\theta x)}{n!}x^n,$$
 $\sharp + 0 < \theta < 1$

证明: $\lim_{\theta \to 0} \theta = \frac{1}{n+1}$. 证明 根据题设可知

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + \frac{f^{(n)}(\theta x)}{n!}x^n, \not \sharp + 0 < \theta < 1$$

从而

$$\frac{f^{(n)}(\theta x) - f^{(n)}(0)}{x} = \frac{n!}{x^{n+1}} \left[f(x) - f(0) - f'(0) x - \dots - \frac{f^{(n-1)}(0)}{(n-1)!} x^{n-1} - \frac{x^n}{n!} f^{(n)}(0) \right]$$
(1.16)

由带 Peano 余项的 Taylor 展开式可知

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(0)}{(n+1)!}x^{n+1} + o\left(x^{n+1}\right)$$

将其代入(??)式得

$$\frac{f^{(n)}\left(\theta x\right) - f^{(n)}\left(0\right)}{x} = \frac{n!}{x^{n+1}} \left[\frac{f^{(n+1)}\left(0\right)}{(n+1)!} x^{n+1} + o\left(x^{n+1}\right) \right] = \frac{f^{(n+1)}\left(0\right)}{n+1} + \frac{n! \cdot o\left(x^{n+1}\right)}{x^{n+1}}$$

两边同时令 $x \to 0$, 再结合导数定义可得

$$f^{(n+1)}(0) \cdot \lim_{x \to 0} \theta = \lim_{x \to 0} \theta \cdot \frac{f^{(n)}(\theta x) - f^{(n)}(0)}{\theta x} = \lim_{x \to 0} \frac{f^{(n)}(\theta x) - f^{(n)}(0)}{x}$$
$$= \lim_{x \to 0} \left[\frac{f^{(n+1)}(0)}{n+1} + \frac{n! \cdot o(x^{n+1})}{x^{n+1}} \right] = \frac{f^{(n+1)}(0)}{n+1}$$

又由于 $f^{(n+1)}(0) \neq 0$, 故 $\lim_{x\to 0} \theta = \frac{1}{n+1}$.

▲ 练习 **1.30** 证明: 在 $|x| \le 1$ 时存在 $\theta \in (0,1)$, 使得 $\arcsin x = \frac{x}{\sqrt{1-(\theta x)^2}}$, 且有 $\lim_{x\to 0} \theta = \frac{1}{\sqrt{3}}$.

证明 由 Lagrange 中值定理可得, 存在 $\theta \in (0,1)$, 使得

$$\arcsin x - \arcsin 0 = \frac{x}{\sqrt{1 - (\theta x)^2}}$$

由上式解得

$$\theta = \frac{\sqrt{1 - \left(\frac{x}{\arcsin x}\right)^2}}{x}$$

而

$$\lim_{x \to 0} \frac{\sqrt{1 - \left(\frac{x}{\arcsin x}\right)^2}}{x} = \lim_{x \to 0} \frac{\sqrt{\arcsin^2 x - x^2}}{x \arcsin x}$$

$$= \lim_{x \to 0} \frac{\sqrt{\left(x + \frac{x^3}{3} + o\left(x^3\right)\right)^2 - x^2}}{x^2}$$

$$= \lim_{x \to 0} \frac{\sqrt{\frac{x^4}{3} + o\left(x^4\right)}}{x^2} = \frac{1}{\sqrt{3}}$$

练习 **1.31** 设 f 在 $O_{\delta}(x_0)$ 上 n 阶可微, 且 $f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) \neq 0$. 证明: 当 $0 < |h| < \delta$ 时, 成立 $f(x_0 + h) - f(x_0) = hf'(x_0 + \theta h), 0 < \theta < 1$, 且成立 $\lim_{h \to 0} \theta = \frac{1}{n^{\frac{1}{n-1}}}$.

证明 由 Lagrange 中值定理可得, 当 $0 < |h| < \delta$ 时, 成立

$$f(x_0 + h) - f(x_0) = hf'(x_0 + \theta h), 0 < \theta < 1$$

由带 Peano 余项的 Taylor 公式分别将 $f(x_0+h)$, $f'(x_0+\theta h)$ 在 x_0 处展开得

$$f(x_0 + h) = f(x_0) + f'(x_0 + \theta h) h$$
$$f'(x_0 + \theta h) = f'(x_0) + \frac{f^{(n)}(x_0)}{(n-1)!} (\theta h)^{n-1} + o(h^{n-1})$$

对比上面两等式可得

$$\frac{f^{(n)}(x_0)}{(n-1)!}h^n\left(\theta^{n-1} - \frac{1}{n}\right) = o(h^n)$$

$$\Rightarrow \theta^{n-1} = \frac{(n-1)!}{f^{(n)}(x_0)} \cdot \frac{o(h^n)}{h^n} + \frac{1}{n}$$

上式两边同时令 $h \to 0$, 得 $\lim_{h \to 0} \theta^{n-1} = \lim_{h \to 0} \left[\frac{(n-1)!}{f^{(n)}(x_0)} \cdot \frac{o(h^n)}{h^n} + \frac{1}{n} \right] = \frac{1}{n}$, 故 $\lim_{h \to 0} \theta = \frac{1}{n^{\frac{1}{n-1}}}$.

△ 练习 1.32 设有 n 个实数 a_1, a_2, \dots, a_n 满足

$$a_1 - \frac{1}{3}a_2 + \dots + (-1)^{n-1}\frac{a_n}{2n-1} = 0$$

证明: 方程 $a_1 \cos x + a_2 \cos 3x + \dots + a_n \cos(2n-1)x = 0$ 在区间 $(0, \frac{\pi}{2})$ 中至少有一个根.

证明 令 $f(x) = a_1 \sin x + \frac{a_2}{3} \sin 3x + \dots + \frac{a_n}{2n-1} \sin (2n-1)x$, 则

$$f(0) = 0 = a_1 - \frac{a_2}{3} + \dots + (-1)^{n-1} \frac{a_n}{2n-1} = f\left(\frac{\pi}{2}\right)$$

根据 *Rolle* 中值定理可知, 存在 $\xi \in (0, \frac{\pi}{2})$, 使得 $f'(\xi) = 0$. 故原方程 $a_1 \cos x + a_2 \cos 3x + \cdots + a_n \cos(2n-1)x = 0$ 在区间 $(0, \frac{\pi}{2})$ 中至少有一个根.

▲ 练习 1.33 设 $c \neq 0$, 证明: 方程 $x^5 + ax^4 + bx^3 + c = 0$ 至少有两个根不是实根.

证明 (反证法) 假设原方程至多只有一个根不是实根,则由虚根的成对定理可知,原方程不存在虚根,即原方程的 5 个根均为实根. 再由 Vieta 定理可知,a,b,c 都是实数. 令 $f(x) = x^5 + ax^4 + bx^3 + c$, 下面分情况讨论:

(i) 若 f(x) 有 5 个不同的实根,则由 Rolle 中值定理可知,f'(x) 存在 4 个互异的实根. 而 $f'(x) = x^2(5x^2 + 4ax + 3b)$. 显然 0 是 f'(x) 的二重根,这与 f'(x) 存在 4 个互异的实根矛盾.

(ii) 若 f(x) 只含有二重根不含三重根,则

① 当 f(x) 只含有一个二重根时,不妨设 $f(x) = (x - x_1)^2(x - x_2)(x - x_3)(x - x_4)$,其中 x_1, x_2, x_3, x_4 两两互异.则 x_1 一定是 f'(x) 的一个实根.又因为 $f(0) = c \neq 0$,所以 $x_1, x_2, x_3, x_4 \neq 0$.于是 x_1 为 f'(x) 的一个非零实根.又由 Rolle 中值定理可知, f'(x) 存在 3 个互异的实根且都不等于 x_1 .从而 f'(x) 的非零实根至少有 3 个.而由 $f'(x) = x^2(5x^2 + 4ax + 3b)$ 可知, f'(x) 最多只含有 2 个非零实根.这与 f'(x) 的非零实根至少有 3 个矛盾.

② 当 f(x) 含有两个二重根时,不妨设 $f(x) = (x - x_1)^2(x - x_2)^2(x - x_3)$,其中 x_1, x_2, x_3 两两互异.则 x_1, x_2

一定是 f'(x) 的两个实根. 又因为 $f(0) = c \neq 0$, 所以 $x_1, x_2, x_3 \neq 0$. 于是 x_1, x_2 为 f'(x) 的两个非零实根. 又由 Rolle 中值定理可知, f'(x) 存在 2 个互异的实根且都不等于 x_1, x_2 从而 f'(x) 的非零实根至少有 3 个. 而由 $f'(x) = x^2(5x^2 + 4ax + 3b)$ 可知, f'(x) 最多只含有 2 个非零实根. 这与 f'(x) 的非零实根至少有 3 个矛盾.

(iii) 若 f(x) 含有三重根但不含四重根,则

① 当 f(x) 含有一个三重根和一个二重根时,不妨设 $f(x) = (x-x_1)^3(x-x_2)^2$,其中 x_1,x_2 两两互异.则由 $f(0) = c \neq 0$ 可知, $x_1,x_2 \neq 0$. 从而 x_1 是 f'(x) 的非零二重实根, x_2 是 f'(x) 的非零一重实根.而由 $f'(x) = x^2(5x^2+4ax+3b)$ 可知,f'(x) 最多只含有 2 个非零实根. 这与 f'(x) 含有 3 个非零实根矛盾.

② 当 f(x) 只含有一个三重根时,不妨设 $f(x) = (x-x_1)^3(x-x_2)(x-x_3)$,其中 x_1,x_2,x_3 两两互异.则 x_1 一定是 f'(x) 的一个实根.又因为 $f(0) = c \neq 0$, 所以 $x_1,x_2,x_3 \neq 0$. 于是 x_1 为 f'(x) 的非零二重实根.又由 Rolle 中值定理 可知, f'(x) 存在 2 个互异的实根且都不等于 x_1 . 从而 f'(x) 的非零实根至少有 3 个. 而由 $f'(x) = x^2(5x^2 + 4ax + 3b)$ 可知, f'(x) 最多只含有 2 个非零实根. 这与 f'(x) 的非零实根至少有 3 个矛盾.

(iv) 若 f(x) 含有四重根,则

不妨设 $f(x) = (x - x_1)^4 (x - x_2)$, 则由 $f(0) = c \neq 0$ 可知, $x_1, x_2 \neq 0$. 从而 x_1 是 f'(x) 的非零三重实根. 而由 $f'(x) = x^2 (5x^2 + 4ax + 3b)$ 可知,f'(x) 最多只含有 2 个非零实根. 这与 f'(x) 的非零实根至少有 3 个矛盾.

综上可知,原方程至少有两个根不是实根.

▲ 练习 1.34 设 $a \neq 0$, 证明: 方程 $x^{2n} + a^{2n} = (x + a)^{2n}$ 只有一个实根 x = 0.

证明 不妨设 a = 1, 否则用 ax 代替 x.

当x > 0时,我们有

$$(x+1)^{2n} = x(x+1)^{2n-1} + (x+1)^{2n-1} > x \cdot x^{2n-1} + 1^{2n-1} = x^{2n} + 1$$

当x < 0时,我们有

$$(x+1)^{2n} = x(x+1)^{2n-1} + (x+1)^{2n-1} < x \cdot x^{2n-1} + 1^{2n-1} = x^{2n} + 1$$

而当x=0时,方程两边相等.因此,方程只有一个实根x=0.

▲ 练习 1.35 设 f 在 [a,b] 上连续, 在 (a,b) 上可微, 且满足条件

$$f(a)f(b) > 0, f(a)f\left(\frac{a+b}{2}\right) < 0$$

证明: 对每个实数 k, 在 (a,b) 内存在点 ξ , 使成立 $f'(\xi) - kf(\xi) = 0$.

证明 对每个实数 k, 设 $F(x) = \frac{f(x)}{e^{kx}}$, 则由题目条件可知, $F \in C[a,b] \cap D(a,b)$, 并且

$$F(a) F(b) > 0, F(a) F\left(\frac{a+b}{2}\right) < 0$$

由零点存在定理可知, 存在 $\eta_1 \in (a, \frac{a+b}{2}), \eta_2 \in (\frac{a+b}{2}, b)$, 使得

$$F(\eta_1) = f(\eta_2) = 0$$

再由 Rolle 中值定理可知, 存在 $\xi \in (\eta_1, \eta_2)$, 使得

$$F'\left(\xi\right) = \frac{f'\left(\xi\right) - kf\left(\xi\right)}{e^{k\xi}}$$

故对每个实数 k, 在 (a,b) 内存在点 ξ , 使成立 $f'(\xi) - kf(\xi) = 0$.

练习 1.36 设 $f(x) = \sum_{i=1}^{n} c_i e^{\lambda_i x}$, 其中 $\lambda_1, \dots, \lambda_n$ 为互异实数, c_1, \dots, c_n 不同时为 0. 证明 f 的零点个数小于 n.

证明 数学归纳法: 当n=1 时, $f(x)=c_0e^{\lambda_0x}$, 其中 $c_0\neq 0$. 此时, f 的零点个数小于 1, 故结论对 n=1 成立. 假设结论已对 n-1 成立, 考虑 n 的情形.

设 $f(x) = \sum_{i=1}^n c_i e^{\lambda_i x}$, 其中 $\lambda_1, \cdots, \lambda_n$ 为互异实数, c_1, \cdots, c_n 不同时为 0. 再设 $g(x) = f(x) e^{-\lambda_n x} = \sum_{i=1}^{n-1} c_i e^{\lambda_i x} + c_n$, 则 g(x) 和 f(x) 有相同的零点集. 假设 f(x) 有 n 个不同的零点,则 g(x) 也有 n 个不同的零点. 根据 Rolle 中值定理可知,g'(x) 有 n-1 个不同的零点. 但 $g'(x) = \sum_{i=1}^{n-1} c_i (\lambda_i - \lambda_n) e^{\lambda_i x}$,而且 $\lambda_1 - \lambda_n, \lambda_2 - \lambda_n, \cdots, \lambda_{n-1} - \lambda_n$ 是 n-1

个两两互异的非零实数, 由此又可得, $c_1(\lambda_1-\lambda_n)$, $c_2(\lambda_2-\lambda_n)$, \cdots , $n-1(\lambda_{n-1}-\lambda_n)$ 不同时为零. 故根据归纳假设可 知,g'(x) 的零点个数小于n-1. 这与g(x) 也有n 个不同的零点矛盾. 所以假设不成立, 从而 f(x) 的零点个数小于 n. 即结论对 n 成立. 由数学归纳法知. 原结论成立.

▲ 练习 1.37 (1) 设 f 在 [0,1] 上可微, f(0) = 0, $f(x) \neq 0$, $\forall x \in (0,1)$, 证明: 存在 $\xi \in (0,1)$, 使成立

$$2\frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}.$$

(2) 设 f 在 [0,1] 上可微, f(0) = 0, $f(x) \neq 0$, $\forall x \in (0,1)$, 证明: 对每个 $\alpha \neq 0$, 存在 $\xi \in (0,1)$, 使成立

$$|\alpha|\frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}.$$

笔记 由 $f(x) \neq 0, \forall x \in (0,1),$ 可以自然想到

$$|\alpha| \frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}$$

$$\Leftrightarrow |\alpha| f'(\xi) f(1-\xi) = f(\xi) f'(1-\xi)$$

$$\Leftrightarrow |\alpha| f'(\xi) f(1-\xi) - f(\xi) f'(1-\xi) = 0$$

因此, 我们容易想到构造辅助函数 $F(x) = [f(x)]^{|\alpha|} f(1-x)$. 从而

$$F'(x) = |\alpha| [f(x)]^{|\alpha|-1} f'(x) f(1-x) - [f(x)]^{|\alpha|} f'(1-x)$$

$$= [f(x)]^{|\alpha|-1} [|\alpha| f'(x) f(1-x) - f(x) f'(1-x)]$$

$$= [f(x)]^{|\alpha|} f(1-x) \left[|\alpha| \frac{f'(x)}{f(x)} - \frac{f'(1-x)}{f(1-x)} \right]$$

就是我们想要的形式, 再利用 Rolle 中值定理就能得到证明,

证明 (1) 是 (2) 的特殊情形, 我们只证 (2).

设
$$F(x) = [f(x)]^{|\alpha|} f(1-x)$$
, 则由 $f(0) = 0$ 可知, $F(0) = F(1) = 0$. 又 $f(x) \neq 0$, $\forall x \in (0,1)$, 从而
$$F'(x) = |\alpha| [f(x)]^{|\alpha|-1} f'(x) f(1-x) - [f(x)]^{|\alpha|} f'(1-x)$$
$$= [f(x)]^{|\alpha|-1} [|\alpha| f'(x) f(1-x) - f(x) f'(1-x)]$$
$$= [f(x)]^{|\alpha|} f(1-x) \left[|\alpha| \frac{f'(x)}{f(x)} - \frac{f'(1-x)}{f(1-x)} \right]$$

根据 Rolle 中值定理可得, $\exists \xi \in (0,1)$ s.t. $F'(\xi) = 0$. 再结合 $f(\xi)$, $f'(1-\xi) \neq 0$, 可知

$$|\alpha|\frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}.$$

▲ 练习 1.38 设 f 在 [a,b] 上连续, 在 (a,b) 上可微, 但不是线性函数, 证明: 存在 $\mathcal{E}, \eta \in (a,b)$, 使成立

$$f'(\xi) > \frac{f(b) - f(a)}{b - a} > f'(\eta).$$

结论 若已知 $f \in C[a,b] \cap D(a,b)$,则我们有一个解决中值问题常用的辅助函数:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

即用 f(x) 减去其在区间 [a,b] 上的两个端点 (a,f(a)),(b,f(b)) 连线所构成的线性函数.

且F(x)具有如下基本性质:

 $1.F \in C[a,b] \cap D(a,b);$

$$2.F(a) = F(b) = 0$$
:

$$2.F(a) = F(b) = 0;$$

$$3.F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

笔记 利用上述辅助函数, 原命题等价于证明: 存在 $\xi, \eta \in (a, b)$, 使得 $F'(\xi) > 0, F'(\eta) < 0$. 这种一阶导数问题我 们联想到 Lagrange 中值定理, 但是如果只使用 F(x) 的两个端点 a,b, 结合 Lagrange 中值定理, 我们最多只能得 到一个使得 F(x) 函数值为 0 的中值点, 得不到原命题. 因此, 我们需要在 (a,b) 内再找一点 x_0 , 并且 $F(x_0) \neq 0$, 否 则得不到原命题的不等号. 又因为 f(x) 不是线性函数, 所以 F(x) 在 [a,b] 上不恒为 0. 从而一定存在 $x_0 \in (a,b)$, 使得 $F(x_0) \neq 0$. 再分别在 $(a, x_0), (x_0, b)$ 上使用 Lagrange 中值定理即可得到原命题.

证明 令 $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$,则 F(a) = F(b) = 0. 又由 f(x) 不是线性函数可知,F(x) 在 [a,b] 上不恒为零.从而一定存在 $x_0 \in (a,b)$,使得 $F(x_0) \neq 0$.

不妨设 $F(x_0) > 0$, 则由 Lagrange 中值定理可得, 存在 $\xi \in (a, x_0), \eta \in (x_0, b)$, 使得

$$F'(\xi) = \frac{F(x_0) - F(a)}{x_0 - a} = \frac{F(x_0)}{x_0 - a} > 0$$

$$F'(\eta) = \frac{F(x_0) - F(b)}{x_0 - b} = \frac{F(x_0)}{x_0 - b} < 0$$

$$F'(\eta) = \frac{F(x_0) - F(b)}{x_0 - b} = \frac{F(x_0)}{x_0 - b} < 0$$

再结合 $F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$, 可得

$$f'(\xi) > \frac{f(b) - f(a)}{b - a} > f'(\eta).$$

▲ 练习 1.39 设 f 在 [a,b] 上二阶可微, f(a) = f(b) = 0, 且在某点 $c \in (a,b)$ 处有 f(c) > 0.

证明: 存在 $\xi \in (a,b)$, 使 $f''(\xi) < 0$.

证明 根据 Lagrange 中值定理可知, 存在 $x_1 \in (a,c), x_2 \in (c,b)$, 使得

$$f'(x_1) = \frac{f(c) - f(a)}{c - a} = \frac{f(c)}{c - a} > 0$$

$$f'(x_2) = \frac{f(c) - f(b)}{c - b} = \frac{f(c)}{c - b} < 0$$

又因为 $f \in D[a.b]$, 所以对 f'(x) 在 (x_1, x_2) 上使用 Lagrange 中值定理可得, 存在 $\xi \in (x_1, x_2)$, 使得

$$f''(\xi) = \frac{f'(x_1) - f'(x_2)}{x_1 - x_2} < 0.$$

- ▲ 练习 1.40 解决以下问题:
 - (1) 设 f 在 [a,b] 三阶可微, 且有 f(a) = f'(a) = f(b) = 0, 证明: 对每个 $x \in [a,b]$, 存在 $\xi \in (a,b)$, 使成立

$$f(x) = \frac{f'''(\xi)}{3!}(x-a)^2(x-b).$$

(2) 设 f 在 [0,1] 上五阶可微, 且有 f(1/3) = f(2/3) = f(1) = f'(1) = f''(1) = 0, 证明: 对每个 $x \in [0,1]$, 存在 $\xi \in (0,1)$, 使成立

$$f(x) = \frac{f^{(5)}(\xi)}{5!} \left(x - \frac{1}{3} \right) \left(x - \frac{2}{3} \right) (x - 1)^3.$$

(3) 设 f 在 [a,b] 上三阶可微, 证明: 存在 $\xi \in (a,b)$, 使成立

$$f(b) = f(a) + \frac{1}{2}(b-a)[f'(a) + f'(b)] - \frac{1}{12}(b-a)^3 f'''(\xi).$$

(4) 设 f 在 [a,b] 上二阶可微, 证明: 对每个 $c \in (a,b)$, 有 $\xi \in (a,b)$, 使成立

$$\frac{1}{2}f''(\xi) = \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-a)(c-b)}.$$

- 笔记 K 值法 (待定常数法) 的典型应用.
 - 证明 (1)
 - (2)
 - (3)
 - (4)
- ▲ 练习 1.41 设 0 < a < b, f 在 [a, b] 上可微, 证明: 存在 ξ ∈ (a, b), 使成立

$$\frac{1}{a-b} \begin{vmatrix} a & b \\ f(a) & f(b) \end{vmatrix} = f(\xi) - \xi f'(\xi).$$

证明 证法一 (利用 Cauchy 中值定理): 由 Cauchy 中值定理可知, 存在 $\xi \in (a,b)$, 使得

$$\frac{1}{a-b} \begin{vmatrix} a & b \\ f(a) & f(b) \end{vmatrix} = \frac{af(b) - bf(a)}{a-b} = \frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac{1}{b} - \frac{1}{a}} = \frac{\frac{\xi f'(\xi) - f(\xi)}{\xi^2}}{-\frac{1}{\varepsilon^2}} = f(\xi) - \xi f'(\xi).$$

笔记 令 $k = \frac{1}{a-b} \begin{vmatrix} a & b \\ f(a) & f(b) \end{vmatrix} = \frac{af(b)-bf(a)}{a-b}.$

Step1: 考虑微分方程
$$y-xy'=k$$
, 利用一阶线性微分方程常数变易法解得 $y=k+cx$.
Step2: 分离常数 $c=\frac{y-k}{x}$, 常数变易得构造函数 $c(x)=\frac{f(x)-k}{x}$.
证法二 (解微分方程构造辅助函数): 令 $k=\frac{1}{a-b}\begin{vmatrix} a & b \\ f(a) & f(b) \end{vmatrix} = \frac{af(b)-bf(a)}{a-b}$, 构造辅助函数 $F(x)=$

 $\frac{f(x)-k}{x}$,则 $F(a)=F(b)=\frac{f(b)-f(a)}{b-a}$. 由 Rolle 中值定理可得,存在 $\xi\in(a,b)$, 使得

$$F'\left(\xi\right) = \frac{\xi f'\left(\xi\right) - f\left(\xi\right) + k}{r^2} = 0.$$

从而

$$\frac{1}{a-b} \begin{vmatrix} a & b \\ f(a) & f(b) \end{vmatrix} = k = f(\xi) - \xi f'(\xi).$$

练习 1.42 设 f 在区间 [a,b] 上连续, 在 (a,b) 上 n 次可微, 设 $a=x_0 < x_1 < \cdots < x_n = b$, 证明: 存在 $\xi \in (a,b)$, 使 成立

$$\Delta = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & x_n^{n-1} \\ f(x_0) & f(x_1) & \cdots & f(x_n) \end{vmatrix} = \frac{f^{(n)}(\xi)}{n!} \prod_{i>j} (x_i - x_j).$$

证明 记
$$\lambda = \frac{n!}{\prod_{i>j} (x_i - x_j)} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & x_n^{n-1} \\ f(x_0) & f(x_1) & \cdots & f(x_n) \end{vmatrix}$$
, 并构造函数

$$g(t) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & t \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & t^{n-1} \\ f(x_0) & f(x_1) & \cdots & f(t) \end{vmatrix} - \frac{\lambda}{n!} \prod_{i>j} (x_i - x_j) (t - x_0) (t - x_1) \cdots (t - x_{n-1}).$$

则 $g(x_0) = g(x_1) = \cdots = g(x_n) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi \in (a,b)$, 使得 $g^{(n)}(t) = 0$.

$$g^{(n)}(t) = \begin{vmatrix} 1 & 1 & \cdots & 1^{(n)} \\ x_0 & x_1 & \cdots & (t)^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & (t^{n-1})^{(n)} \\ f(x_0) & f(x_1) & \cdots & f^{(n)}(t) \end{vmatrix} - \lambda \prod_{i>j} (x_i - x_j) = \begin{vmatrix} 1 & 1 & \cdots & 0 \\ x_0 & x_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & 0 \\ f(x_0) & f(x_1) & \cdots & f^{(n)}(t) \end{vmatrix} - \lambda \prod_{i>j} (x_i - x_j)$$

$$= f^{(n)}(t) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & x_{n-1}^{n-1} \end{vmatrix} - \lambda \prod_{i>j} (x_i - x_j).$$

故
$$g^{(n)}(\xi) = f^{(n)}(\xi)$$
 $\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & x_{n-1}^{n-1} \end{vmatrix}$ $-\lambda \prod_{i>j} (x_i - x_j) = 0..$ 即
$$\Delta = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_0 & x_1 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{n-1} & x_1^{n-1} & \cdots & x_n^{n-1} \\ f(x_0) & f(x_1) & \cdots & f(x_n) \end{vmatrix} = \frac{f^{(n)}(\xi)}{n!} \prod_{i>j} (x_i - x_j).$$

练习 1.43 设 f 在 $[a, +\infty)$ 上可微, 且 $\lim_{x \to \infty} f'(x) = \infty$, 证明: f 在 $[a, +\infty)$ 上非一致连续.

证明 证法一: 不妨设 $\lim_{x\to +\infty} f'(x) = +\infty$, 则对 $\forall N > 0, \exists X > 0$, 使得当 a > X 时, 有 $f'(a) > \max\{N, 1\}$.

从而由 Lagrange 中值定理可知, $\exists \xi \in (a, a+1)$, 使得

$$\frac{f(a+1) - f(a)}{(a+1) - a} = f'(\xi) > N.$$

$$\mathbb{E}f(a+1) - f(a) = \frac{f(a+1) - f(a)}{(a+1) - a} = f'(\xi) > 1.$$

根据一致连续的充要条件可知,f 在 $[a,+\infty)$ 上非一致连续

证法二 (反证): 假设 f 在 $[a,+\infty)$ 上一致连续, 则 $\forall \varepsilon > 0, \exists h > 0$, 使得当 $x,y \in [a,+\infty)$ 且 |x-y| < h 时, 有 $|f(x) - f(y)| < \varepsilon$. 固定 ε ,h. 从而对 $\forall x_0 \in [a, +\infty)$, 我们有 $|f(x_0) - f(x_0 + h)| < \varepsilon$.

于是由 Lagrange 中值定理可知, $\exists \xi \in (x_0, x_0 + h)$, 使得

$$|f'(\xi)| = \left|\frac{f(x_0) - f(x_0 + h)}{h}\right| < \frac{\varepsilon}{h}$$

即 $-\frac{\varepsilon}{h} \leqslant f'(\xi) \leqslant \frac{\varepsilon}{h}$. 令 $x_0 \to +\infty$, 此时 $\xi \to +\infty$. 则有 $-\frac{\varepsilon}{h} \leqslant \lim_{\xi \to +\infty} f'(\xi) \leqslant \frac{\varepsilon}{h}$. 这与 $\lim_{x \to +\infty} f'(x) = \infty$ 矛盾. 练习 **1.44** 设 f 在 (0,a] 上可微, 又存在有限极限 $\lim_{x \to 0^+} \sqrt{x} f'(x)$, 证明: f 在 (0,a] 上一致连续. 证明 根据条件可设 $\lim_{x \to 0^+} \sqrt{x} f'(x) = l < \infty$. 对 $\forall x, y \in (0,a]$ 且 $x \neq y$. 由 Cauchy 中值定理可知, $\exists \xi \in (x,y)$,使得 $2\sqrt{\xi} f'(\xi) = \frac{f(x) - f(y)}{\sqrt{x} - \sqrt{y}}$.

令
$$x, y \to 0^+$$
, 此时 $\xi \to 0^+$. 则有 $\lim_{\substack{x,y \to 0^+ \\ x \neq y}} \frac{f(x) - f(y)}{\sqrt{x} - \sqrt{y}} = 2 \lim_{\xi \to 0^+} \sqrt{\xi} f'(\xi) = 2l$.

令 $x, y \to 0^+$, 此时 $\xi \to 0^+$. 则有 $\lim_{\substack{x,y \to 0^+ \\ x \neq y}} \frac{f(x) - f(y)}{\sqrt{x} - \sqrt{y}} = 2 \lim_{\substack{\xi \to 0^+ \\ x \neq y}} \sqrt{\xi} f'(\xi) = 2l$. 从而 $\lim_{\substack{x,y \to 0^+ \\ x \neq y}} |f(x) - f(y)| = 2l \lim_{\substack{x,y \to 0^+ \\ x \neq y}} |\sqrt{x} - \sqrt{y}| = 0$. 由 Cauchy 收敛准则, 可知 $\lim_{\substack{x \to 0^+ \\ x \neq y}} f(x)$ 存在. 根据 Cantor 定

理在开区间上的推广可知 f(x) 在 (0,a] 上一致连续.

练习 **1.45** 设 f 在 $[a, +\infty)$ 上可微, 且 $\lim_{x \to +\infty} f'(x) = 0$, 证明: $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

证明 由于 $\lim_{x\to +\infty} x = +\infty$, $\lim_{x\to +\infty} f'(x) = 0$, 故根据 L'Hospital 法则则有 $\lim_{x\to +\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} f'(x) = 0$. 练习 **1.46** 对分别满足以下两个条件的 f, 设已知 f(1) = 1, 求 f(2):

$$(1) x f'(x) + f(x) = 0, \forall x > 0,$$

$$(2) x f'(x) - f(x) = 0, \forall x > 0.$$

证明 (1) 令
$$g(x) = xf(x)$$
, 则 $g'(x) = xf'(x) + f(x) = 0$, $\forall x > 0$. 从而 $g'(x) = 0$, $\forall x > 0$. 于是 $xf(x) = g(x) \equiv C$. 因此 $f(x) = \frac{C}{x}$ 再将 $f(1) = 1$ 代入,可得 $C = 1$. 故 $f(2) = \frac{C}{2} = \frac{1}{2}$. (2) 令 $g(x) = \frac{f(x)}{x}$, 则 $g'(x) = \frac{xf'(x) - f(x)}{x^2} = 0$, $\forall x > 0$.

(2)
$$\diamondsuit g(x) = \frac{f(x)}{x}$$
, $\mathbb{N} g'(x) = \frac{xf'(x) - f(x)}{x^2} = 0, \forall x > 0$.

从而
$$g'(x) = 0, \forall x > 0$$
. 于是 $\frac{f(x)}{x} = g(x) \equiv C$. 因此 $f(x) = Cx$.

再将 f(1) = 1 代入, 可得 C = 1. 故 f(2) = 2C = 2.

▲ 练习 1.47 设当 $x \in [0,a]$ 时有 $|f''(x)| \leq M$. 又已知 f 在 (0,a) 中取到最大值. 证明: $|f'(0)| + |f'(a)| \leq Ma$. 证明 根据已知条件可设 $f(x_0) = \max_{x \in (0,a)} f(x), x_0 \in (0,a)$. 则 $f'(x_0) = 0$.

根据 Taylor 中值定理, 可知存在 $\xi \in (0, x_0), \eta \in (x_0, a)$, 使得

$$f'(0) = f'(x_0) + f''(\xi)(-x_0) = -f''(\xi)x_0, f'(a) = f'(x_0) + f''(\eta)(a - x_0) = f''(\eta)(a - x_0).$$

于是

$$|f'(0)| + |f'(a)| = |f''(\xi)x_0| + |f''(\eta)(a - x_0)| \le Mx_0 + M(a - x_0) = Ma.$$

△ 练习 1.48 设 f 在 ℝ 上无限次可微, $f\left(\frac{1}{n}\right) = \frac{n^2}{n^2 + 1}$, 计算 $f^{(k)}(0)$, $\forall k \in \mathbb{N}_+$.

拿 笔记 证法一思路:根据函数的光滑性直接将其两边在 x=0 处 Taylor 展开再比较系数就可以直接得到结果. 证法二思路:由 $f\left(\frac{1}{n}\right) = \frac{n^2}{n^2+1} = \frac{1}{1+\frac{1}{n^2}}$ 可以想到到 f(x) 的形式可能与 $\frac{1}{1+x^2}$ 类似. 而我们根据 f 的连续性

再结合导数定义不难得到 $f(0)=1, f'(0)=(\frac{1}{1+x^2})'\Big|_{x=0}=0$, 于是我们猜想 $f^{(k)}(0)=(\frac{1}{1+x^2})^{(k)}\Big|_{x=0}$, 因此我们构 造辅助函数 $g(x)=f(x)-\frac{1}{1+x^2}$. 只需要证明 $g^{(k)}(0)=0, \forall k\in\mathbb{N}_+$ 即可. 又因为 $g^{(k)}(0)=0$ 要对任意正整数 k 都成立, 所以自然想到使用数学归纳法, 再利用反证法结合 Taylor 中值定理就能得到证明.

(证明类似问题的想法: 先根据已知的函数点列猜想函数在这些点附近的具体形式, 再尝试证明函数在这些点 附近的函数值(导数值)与我们猜想的具体函数的函数值(导数值)相等.证明方式就是利用两者作差构造辅助函 数,然后只需证明辅助函数在这些点附近的函数值(导数值)为0即可)

注 本题的条件可以削弱为对 $\forall k \in \mathbb{N}$, 有 $f^{(k)}(0)$ 存在. 结论也成立.

证明 证法一:由于 $f \in C^{\infty}(\mathbb{R})$, 因此根据 Taylor 中值定理分别将 f(x), $\frac{1}{1+x^2}$ 在 $\frac{1}{n}$ 处展开可得

$$f(\frac{1}{n}) = f(0) + f'(0)\frac{1}{n} + \frac{f''(0)}{2}\frac{1}{n^2} + \dots + \frac{f^{(k)}(0)}{k!}\frac{1}{n^k} + \dots$$
$$\frac{n^2}{n^2 + 1} = \frac{1}{1 + \frac{1}{n^2}} = 1 - \frac{1}{n^2} + \frac{1}{n^4} + \dots + (-1)^m \frac{1}{n^{2m}} + \dots$$

其中 $k, m \in \mathbb{N}_+$. 又因为 $f\left(\frac{1}{n}\right) = \frac{n^2}{n^2 + 1}$, 所以比较上面两式系数, 可得 $f^{(k)}(0) = \begin{cases} k!, & k \mod 4 = 0 \\ 0, & k 为 奇数 = k! \cos \frac{k\pi}{2}. \\ -k!, & k \mod 4 = 2 \end{cases}$

证法二:设 $g(x) = f(x) - \frac{1}{1+x^2}$,则 $g \in C^{\infty}(\mathbb{R})$,且 $g(\frac{1}{n}) = 0$, $\forall n \in \mathbb{N}_+$. 因此当 k = 1 时,有 $g(0) = \lim_{n \to \infty} g(\frac{1}{n}) = 0$. (数学归纳法) 假设 $g(0), g'(0), \dots, g^{(k-1)}(0) = 0$,考虑 $g^{(k)}(0)$,(反证) 假设 $g^{(k)}(0) = c \neq 0$.

则由 Taylor 中值定理, 可知对 $\forall x \in \mathbb{R}$, 都有

$$g(x) = \frac{g^{(k)}(0)}{k!}x^k + o(x^{k+1}) = \frac{c}{k!}x^k + o(x^{k+1}).$$

于是 $\lim_{x\to 0} \frac{g(x)}{x^k} = \lim_{x\to 0} (\frac{c}{k!} + o(x)) = \frac{c}{k!} \neq 0$. 进而由 Heine 归结原理, 可知 $\lim_{n\to\infty} n^k g(\frac{1}{n}) = \frac{c}{k!} \neq 0$. 但是对 $\forall n \in \mathbb{N}_+$,都有 $g(\frac{1}{n}) = 0$. 从而 $\lim_{n\to \infty} n^k g(\frac{1}{n}) = \lim_{n\to \infty} 0 = 0$ 矛盾. 故 $g^{(k)}(0) = 0$. 因此由数学归纳法, 可知 $g^{(k)}(0) = 0$, $\forall k \in \mathbb{N}_+$.

🕏 笔记 证法二中倒代换的目的是使得作变换后多项式的系数与 x 的次数相匹配.(原方程左式各项的系数与 x 的次 数顺序相互颠倒)

证法三中的均值不等式放缩是: $x^{2k-2} + x^{2k} > 2\sqrt{x^{4k-2}} = 2x^{2k-1}$. (分项放缩是指将原方程左式的正系数项和 **负系数项分开**. 再比较两者之间的大小)

证法四中的凑平方技巧需要积累.

证明 证法一 (错位相减求和):设 $p(x) = x^{2n} - 2x^{2n-1} + 3x^{2n-2} - \cdots - 2nx + 2n + 1$. 则当 $x \le 0$ 时, 显然有 p(x) > 0. 当 x > 0 时, 我们有

$$p(x) = x^{2n} - 2x^{2n-1} + 3x^{2n-2} - \dots - 2nx + 2n + 1, xp(x) = x^{2n+1} - 2x^{2n} + 3x^{2n-1} - \dots - 2nx^2 + (2n+1)x.$$

上面两式相加,可得

$$(1+x)p(x) = x^{2n+1} - x^{2n} + x^{2n-1} - \dots - x^2 + x + 2n + 1 = \frac{x(1+x^{2n+1})}{1+x} + 2n + 1.$$

从而

$$p(x) = \frac{x(1+x^{2n+1})}{(1+x)^2} + \frac{2n+1}{1+x} > 0.$$

综上所述, 对 $\forall x \in (-\infty, +\infty)$, 都有 p(x) > 0. 故方程 $x^{2n} - 2x^{2n-1} + 3x^{2n-2} - \cdots - 2nx + 2n + 1 = 0$ 无实根.

证法二 (倒代换):: 设 $p(x) = x^{2n} - 2x^{2n-1} + 3x^{2n-2} - \cdots - 2nx + 2n + 1$. 则当 $x \le 0$ 时, 显然有 p(x) > 0. 因此原方程无非正实根.

当
$$x > 0$$
 时, 令 $x = \frac{1}{y}$, 即 $y = \frac{1}{x} > 0$. 将其代入原方程, 可得

$$(2n+1)y^{2n} - 2ny^{2n-1} + (2n-1)y^{2n-2} - \dots - 2y + 1 = 0.$$

令
$$f(y) = y^{2n+1} - y^{2n} + y^{2n-1} - \dots - y^2 + y = \frac{y(1+y^{2n+1})}{1+y}, y > 0$$
. 又因为 $f'(y) = (2n+1)y^{2n} - 2ny^{2n-1} + (2n-1)y^{2n-2} - \dots - 2y + 1, y > 0$. 所以原方程无正实根等价于 $f'(y) = \frac{d}{dy} \frac{y(1+y^{2n+1})}{1+y} = \frac{1+(2n+2)y^{2n+1}+(2n+1)y^{2n+2}}{(1+y)^2}$ 在 $(0,+\infty)$ 上无零点.

而对 $\forall y > 0$, 都有 $f'(y) = \frac{1 + (2n+2)y^{2n+1} + (2n+1)y^{2n+2}}{(1+y)^2} > 0$. 故 f'(y) 在 $(0,+\infty)$ 无零点. 因此原方程无正实根.

综上所述, 方程 $x^{2n} - 2x^{2n-1} + 3x^{2n-2} - \cdots - 2nx + 2n + 1 = 0$ 无实根.

证法三(分项放缩):注意到

$$2x^{2n-1} + 4x^{2n-3} + \dots + 2nx = \sum_{k=1}^{n} 2(n+1-k)x^{2k-1}$$

$$\stackrel{\text{biff}}{\leqslant} \sum_{k=1}^{n} (n+1-k) \left(x^{2k-2} + x^{2k} \right) = n + \sum_{k=2}^{n} (n+1-k)x^{2k-2} + \sum_{k=1}^{n} (n+1-k)x^{2k}$$

$$= n + \sum_{k=1}^{n} (n-k)x^{2k} + \sum_{k=1}^{n} (n+1-k)x^{2k} = n + \sum_{k=1}^{n} \left[(n+1-k) + (n-k) \right] x^{2k}$$

$$\stackrel{\text{constant}}{\leqslant} 2n + 1 + \sum_{k=1}^{n} (2n+1-2k)x^{2k} = 2n + 1 + (2n-1)x^2 + \dots + x^{2n}.$$

故 $x^{2n}-2x^{2n-1}+3x^{2n-2}-\cdots-2nx+2n+1>0$. 因此方程 $x^{2n}-2x^{2n-1}+3x^{2n-2}-\cdots-2nx+2n+1=0$ 无实根.

证法四(凑平方):注意到

$$x^{2n} - 2x^{2n-1} + 3x^{2n-2} - \dots - 2nx + 2n + 1$$

$$= (0+1)x^{2n} - 2x^{2n-1} + (1+2)x^{2n-2} - \dots + ((n-1)+n)x^2 - 2nx + (n+(n+1))$$

$$= \left(x^n - x^{n-1}\right)^2 + 2\left(x^{n-1} - x^{n-2}\right)^2 + \dots + n\left(x-1\right)^2 + (n+1) \geqslant n+1 > 0.$$

因此方程 $x^{2n}-2x^{2n-1}+3x^{2n-2}-\cdots-2nx+2n+1=0$ 无实根.(并且当且仅当x=1 时方程左边取到最小值n+1).

쑠习 1.50 设 f 在 [a,b] 上可微, f'(a) = f'(b), 证明: 存在 $\xi \in (a,b)$, 使成立

$$f'(\xi) = \frac{f(\xi) - f(a)}{\xi - a}.$$

显然 C(x) 在 x=a 处不连续可微, 因此我们需要构造分段函数 $g(x)=\begin{cases} \dfrac{f(x)-f(a)}{x-a}, & a < x \leq b \\ f'(a), & x=a \end{cases}$,这样才能使其 满足在 [a,b] 上连续可微.

(2)(实际上(??)式的化简利用的是分式不等式的变形技巧)(??)式的化简证明:

$$\frac{f(x) - f(a)}{x - a} < \frac{f(b) - f(a)}{b - a}$$

$$\Leftrightarrow [f(x) - f(a)] (b - a) < [f(b) - f(a)] (x - a)$$

$$\Leftrightarrow [f(x) - f(a)] (b - x + x - a) < [f(b) - f(a)] (x - a)$$

$$\Leftrightarrow [f(x) - f(a)] (b - x) + [f(x) - f(a)] (x - a) < [f(b) - f(a)] (x - a)$$

$$\Leftrightarrow [f(x) - f(a)] (b - x) < [f(b) - f(a) + f(a) - f(x)] (x - a)$$

$$\Leftrightarrow [f(x) - f(a)] (b - x) < [f(b) - f(x)] (x - a)$$

$$\Leftrightarrow \frac{f(x) - f(a)}{x - a} < \frac{f(b) - f(x)}{b - x}$$

(??)式的目的就是凑出含有 $\frac{f(b)-f(x)}{b-r}$ 的式子, 这样令 $x\to b^-$ 就可以得到 f'(b). 就能进一步利用题目中的 f'(a) = f'(b) 条件.

注 (??)式的化简也可以利用一个小技巧: 如果 $\frac{a}{b} > \frac{c}{d} > 0$, 那么 $\frac{a-c}{b-d} > \frac{a}{b}$.

证: 设 a = bm, c = dn, 由假设 m > n, 则

$$\frac{a-c}{b-d} - \frac{a}{b} = \frac{bm-dn}{b-d} - m = \frac{d(m-n)}{b-d} > 0.$$

故 $\frac{a-c}{b-d} > \frac{a}{b}$. 只要取对应的 a,b,c,d 就可得到(??)式. 证明 设 $g(x) = \begin{cases} \frac{f(x)-f(a)}{x-a}, & a < x \le b \\ f'(a), & x = a \end{cases}$,则 $g \in D[a,b]$.(反证) 假设 g'(x) 在 (a,b) 无零点,不妨设其恒正.则由

$$g(x) < g(b) \Leftrightarrow \frac{f(x) - f(a)}{x - a} < \frac{f(b) - f(a)}{b - a} \Leftrightarrow \frac{f(x) - f(a)}{x - a} < \frac{f(b) - f(x)}{b - x}.$$
 (1.17)

$$g(b) = \frac{f(b) - f(a)}{b - a} \le f'(b) = f'(a) = g(a).$$

这与 g(x) 在 [a,b] 上严格递增矛盾. 故假设不成立. 因此一定存在 $\xi \in (a,b)$, 使得 $g'(\xi) = 0$. 由于

$$g'(x) = \frac{(x-a)f'(x) - f(x) + f(a)}{(x-a)^2}.$$

所以
$$f'(\xi) = \frac{f(\xi) - f(a)}{\xi - a}$$
.

结论 关于中值问题的一

(1) 满足各种中值定理条件的中值问题:

1. 如果题目中需要证明的等式中不止一个部分含有所求中值点 \mathcal{E} (例如本题), 那么证明这个问题的想法第一 步一般都是先解微分方程, 再常数变易构造辅助函数 (注意: 这样构造出来的函数需要保证其可微性, 即可能需要 在求解出来的函数的间断点处补充定义,进而保证其可微性.例如本题),再根据构造的辅助函数进行证明.后续可 能的证明思路一般有两种:(i) 若已知某些点处的原函数值相同, 则直接用中值定理进行证明:(ii) 若不知道两个点 及以上的原函数的值相同,则可以通过分析函数性态找到中值点.(这里可能需要反证,也可能分析函数性态后利 用中值定理找到中值点)

2. 如果题目中需要证明的等式中只有最高阶导数部分含有中值点 (例如, $f(x) = \frac{f'''(\xi)}{3!}(x-a)^2(x-b)$), 那 么第一步一般都是利用 K 值法构造辅助函数, 再根据构造的辅助函数进行证明.

- (2) 不满足各种中值定理条件的中值问题: 若题目条件满足推论??的条件, 则一般先构造出推论??中的辅助函 数,再使用反证法进行证明.
- ▲ 练习 1.51 设 f 在 [a,b] 上连续, 在 (a,b) 上可微, 又有 $c \in (a,b)$ 使成立 f'(c) = 0, 证明: 存在 $\xi \in (a,b)$, 满足

$$f'(\xi) = \frac{f(\xi) - f(a)}{b - a}$$

证明 证法一 (分析函数性态反证): 令 $g(x) = \frac{f(x) - f(a)}{e^{\frac{x}{b-a}}}$, 则 $g \in C[a,b] \cap D(a,b)$, 且 g(a) = 0.

(反证) 假设 g'(x) 在 (a,b) 上无零点,则 g'(x) > 0 或 g'(x) < 0 在 (a,b) 上恒成立.不妨设 g'(x) > 0 在 (a,b)上恒成立,则 g(x) 在 (a,b) 上严格递增. 再结合 $g \in C[a,b]$, 可知 g(x) 在 [a,b] 上严格递增.

于是
$$\frac{f(c) - f(a)}{e^{\frac{c}{b-a}}} = g(c) > g(a) = 0$$
. 又由 $g'(x) = \frac{f'(x) - \frac{f(x) - f(a)}{b-a}}{e^{\frac{x}{b-a}}}$, 再结合 $f'(c) = 0, c \in (a, b)$ 可知

$$g'(c) = \frac{-\frac{f(c) - f(a)}{b - a}}{e^{\frac{c}{b - a}}} = -\frac{1}{b - a} \cdot \frac{f(c) - f(a)}{e^{\frac{c}{b - a}}} = -\frac{1}{b - a}g(c) < 0.$$

这与 g'(x)>0 在 (a,b) 上恒成立矛盾. 故 g'(x) 在 (a,b) 上至少存在一个零点. 即存在 $\xi\in(a,b)$, 使得

$$g'(\xi) = \frac{f'(\xi) - \frac{f(\xi) - f(a)}{b - a}}{\varrho \frac{\xi}{b - a}} = 0.$$

因此 $f'(\xi) - \frac{f(\xi) - f(a)}{b - a}$. 证法二 (利用中值定理正向证明):设 $g(x) = e^{-\frac{x}{b-a}}(f(x) - f(a))$, 则 g 在 [a,b] 上连续, 在 (a,b) 上可导. 且 g(a) = 0, g(c)g'(c) < 0. 由拉格朗日中值定理, 知存在 $\xi_0 \in (a, c)$, 使得

$$g'(\xi_0) = \frac{g(c) - g(a)}{c - a} = \frac{g(c)}{c - a}.$$

此时有 $g'(\xi_0)g'(c) < 0$. 根据导函数的介值性, 存在 $\xi \in (\xi_0,c) \subset (a,b)$, 使得 $g'(\xi) = 0$. 又由于

$$g'(x) = e^{-\frac{x}{b-a}} \left(f'(x) - \frac{f(x) - f(a)}{b-a} \right).$$

 $x_1, x_2 \in (a, b)$, 使成立

$$\frac{f'(x_1)}{f(x_1)} = \alpha \frac{f'(x_2)}{f(x_2)}.$$

证明

▲ 练习 1.53

证明

▲ 练习1.54

证明

▲ 练习1.55

证明

▲ 练习 1.56

证明

▲ 练习 1.57

证明

▲ 练习 1.58

证明

练习 1.59

证明

▲ 练习 1.60

证明

- ▲ 练习1.61
 - 证明
- ▲ 练习 1.62
 - 证明