

derivatives of hyperbolic functions

Canonical name DerivativesOfHyperbolicFunctions

Date of creation 2013-03-22 14:32:18 Last modified on 2013-03-22 14:32:18 Owner alozano (2414) Last modified by alozano (2414)

Numerical id 5

Author alozano (2414) Entry type Derivation Classification msc 26A09 In this entry we compute the derivative of the hyperbolic functions $\sinh(x)$ and $\cosh(x)$.

Recall that by definition:

$$\sinh(x) := \frac{e^x - e^{-x}}{2}$$

 $\cosh(x) := \frac{e^x + e^{-x}}{2}$.

Therefore:

$$\frac{d}{dx}\sinh(x) = \frac{d}{dx}\left(\frac{e^x - e^{-x}}{2}\right)$$

$$= \frac{1}{2} \cdot \frac{d}{dx}\left(e^x - e^{-x}\right)$$

$$= \frac{1}{2} \cdot \left(e^x - (-e^{-x})\right)$$

$$= \frac{e^x + e^{-x}}{2}$$

$$= \cosh(x).$$

Similarly $\frac{d}{dx}\cosh(x) = \sinh(x)$. Using the quotient rule, we compute the derivative of $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$:

$$\frac{d}{dx}\tanh(x) = \frac{\cosh^2(x) - \sinh^2(x)}{\cosh^2(x)} = \frac{1}{\cosh^2(x)}$$

where we have used the equality $\cosh^2(x) - \sinh^2(x) = 1$.