Efficient Factorization with Compressed Sparse Tensors

Shaden Smith George Karypis

University of Minnesota

Department of Computer Science & Engineering
shaden@cs.umn.edu

Tensor Introduction

- Tensors are the generalization of matrices to $\geq 3D$
- Tensors have m dimensions (or modes) and are $I_1 \times ... \times I_m$.

Canonical Polyadic Decomposition (CPD)

• We compute matrices $\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(m)}$, each with F columns

- Usually computed via alternating least squares (ALS)
- Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the core computation of each iteration

Uncompressed Tensors

Γi	j	k	ı	v -
1	1	1	2	1.
1	1	1	3	1.
1	2	1	3	3.
1	2	2	1	8.
2	2	1	1	1.
2	2	1	3	3.
2	2	2	2	8

Uncompressed Tensors – MTTKRP

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathcal{X}(i,j,k) \left[\mathbf{A}^{(2)}(j,:) * \mathbf{A}^{(3)}(k,:) \right]$$

Can we do better?

• Consider three nonzeros in the fiber $\mathcal{X}(i,j,:)$ (a vector)

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathcal{X}(i,j,k_1) \left[\mathbf{A}^{(2)}(j,:) * \mathbf{A}^{(3)}(k_1,:) \right]$$

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathcal{X}(i,j,k_2) \left[\mathbf{A}^{(2)}(j,:) * \mathbf{A}^{(3)}(k_2,:) \right]$$

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathcal{X}(i,j,k_3) \left[\mathbf{A}^{(2)}(j,:) * \mathbf{A}^{(3)}(k_3,:) \right]$$

Can we do better?

• Consider three nonzeros in the fiber $\mathcal{X}(i,j,:)$ (a vector)

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathcal{X}(i,j,k_1) \left[\mathbf{A}^{(2)}(j,:) * \mathbf{A}^{(3)}(k_1,:) \right]$$

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathcal{X}(i,j,k_2) \left[\mathbf{A}^{(2)}(j,:) * \mathbf{A}^{(3)}(k_2,:) \right]$$

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathcal{X}(i,j,k_3) \left[\mathbf{A}^{(2)}(j,:) * \mathbf{A}^{(3)}(k_3,:) \right]$$

A little factoring...

$$\mathbf{A}^{(1)}(i,:) \leftarrow \mathbf{A}^{(1)}(i,:) + \mathbf{A}^{(2)}(j,:) * \left[\sum_{x=1}^{3} \mathcal{X}(i,j,k_{x}) \mathbf{A}^{(3)}(k_{x},:) \right]$$

SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit

Data Structure

- Fibers are sparse vectors
- Slice $\mathcal{X}(i,:,:)$ is almost a CSR matrix...
- ullet But, we need m representations of ${\mathcal X}$

Compressed Sparse Fiber (CSF)

MTTKRP with a CSF Tensor

Objective

- We want to perform MTTKRP on each tensor mode with only one CSF representation
- There are three types of nodes in a tree: root, internal, and leaf
 - Each will have a tailored algorithm
 - root and leaf are special cases of internal

$$\mathbf{A}^{(4)}(I,:) \leftarrow \mathbf{A}^{(4)}(I,:) + \mathcal{X}(I,j,k,l) \left[\mathbf{A}^{(1)}(I,:) * \mathbf{A}^{(2)}(J,:) * \mathbf{A}^{(3)}(k,:) \right]$$

• The leaf nodes determine the output location

• Hadamard products are pushed down the tree

• Hadamard products are pushed down the tree

• Hadamard products are pushed down the tree

• Leaves designate write locations

• Leaves designate write locations

The traversal continues...

The traversal continues...

• The traversal continues...

The traversal continues...

• The traversal continues...

$$\sum_{\boldsymbol{\mathcal{X}}(i,j,:,:)} \mathbf{A}^{(2)}(j,:) * \left[\sum_{\boldsymbol{\mathcal{X}}(i,j,k,:)} \mathbf{A}^{(3)}(k,:) * \left(\sum_{\boldsymbol{\mathcal{X}}(i,j,k,:)} \boldsymbol{\mathcal{X}}(i,j,k,l) \mathbf{A}^{(4)}(l,:) \right) \right]$$

• Inner products are accumulated in a buffer

• Inner products are accumulated in a buffer

• Hadamard products are then propagated up the CSF tree

• Hadamard products are then propagated up the CSF tree

ullet Results are written to ${f A}^{(1)}$

• The traversal continues...

• The traversal continues...

• Partial results are kept in buffer

• Inner products are accumulated in a buffer

• Inner products are accumulated in a buffer

ullet Results are written to ${f A}^{(1)}$

ullet Internal nodes use a combination of CSF-ROOT and CSF-LEAF

• Hadamard products are pushed down to the output level

Parallelism - Tiling

- For p threads, we do a p-way tiling of each tensor mode
- Distributing the tiles allows us to eleminate the need for mutexes

Datasets

Dataset	I ₁	I_2	I ₃	nnz
NELL-2	12K	9K	28K	77M
Beer	33K	66K	960K	94M
Netflix	480K	18K	2K	100M
Delicious	532K	17M	3M	140M
NELL-1	3M	2M	25M	143M
Amazon	5M	18M	2M	1.7B

Storage Comparison

Serial Comparison

MTTKRP

Conclusions

Compressed Sparse Fiber

- \bullet CSF uses 58% less memory than SPLATT while maintaining 81% of its performance
- CSF and related algorithms are now included in SPLATT

http://cs.umn.edu/~splatt/