Sample statistic: a sample characteristic such as a sample mean \bar{x} , sample standard deviation s, sample proportion \bar{p} , etc. The value of the stat is used to estimate the value of the corresponding population parameter. Sampling distribution: a probability distribution consisting of all possible values of a sample statistic. Point estimator: The sample statistic that provides the point estimate of the population parameter. We refer to the sample mean as the point estimator of the population mean, the sample standard deviation s as the point estimator of the population standard deviation and the sample proportion as the point estimator of the population proportion p. The numerical value obtained is called the point estimate. μ = population mean. Central Limit Theorem: in selecting random samples of size n from a population the sampling distribution of the sample mean \bar{x} or proportion \bar{p} can be approximated by a normal distribution as sample size become large (typically $n \ge 30$). Recall $\bar{p} = x/n$, x=# of elements of interest in the sample, n=sample size, N=population. Sampling Distribution of \bar{p} : the probability distribution of all the possible values of the sample proportion, \bar{p} .

Expected Value of \bar{p}	Standard Deviation of \bar{x} (Standard Error)	Standard Deviation of \bar{x} (Standard Error)	Standard Deviation of \bar{p} (Standard Error)	Standard Deviation of \bar{p} (Standard Error)
$E(\overline{p})=p$	$Finite\ Population$	$In finite\ Population$	$Finite\ Population$	$In finite\ Population$
Expected Value of $ar{x}$ $E(\overline{x}) = \mu$	$\sigma_{\overline{x}} = \sqrt{rac{N-n}{N-1}} igg(rac{\sigma}{\sqrt{n}}igg)$	$\sigma_{\overline{x}} = rac{\sigma}{\sqrt{n}}$	$\sigma_{\overline{p}} = \sqrt{rac{N-n}{N-1}} \sqrt{rac{p(1-p)}{n}}$	$\sigma_{\overline{p}} = \sqrt{rac{p(1-p)}{n}}$
$L(w) - \mu$	Use when $n/N > .05$		Use when $n/N > .05$	

Interval Estimate (aka Confidence Interval): an estimate of a population parameter that provides an interval believed to contain the value of the parameter. Margin of Error: the + value added and subtracted from a point estimate to develop an interval estimate. Interval Estimate, General Form: Point Estimate ± Confidence Coeff. * Std Error [together = Margin of Error]. Sigma of Known: historical data or other info provide a good value for the population standard deviation prior to sampling. Confidence level: if an interval estimation procedure provides intervals such that 95% of the intervals formed using the procedure will include the population parameter, the interval is said to be constructed with 95% confidence. Confidence Coefficient: the confidence level expressed as a decimal. Level of Significance: the probability that an interval estimate will generate an interval that does *not* contain the population parameter. Alpha $\alpha = 1$ – Confidence Coeff. Sigma σ Unknown: the more common case when no good basis exists for estimating the population standard deviation prior to taking the sample. T-distribution: a family of probability distributions that can be used to sav things about a population mean whenever population standard deviation is unknown. Degrees of Freedom: a parameter of the tdistribution based on sample size n. df = n - 1. Converting to Standard Normal Random Variable: Z = (x - Mean) / Std DevLookup z score in Prob table. Resulting value is the probability.

Interval Estimate of a Population Mean: σ Known	Values for Common Confidence Levels			
$_{-}$, σ	Confidence Level	α	lpha/2	$z_{lpha/2}$
$\overline{x}\pm z_{lpha/2} rac{1}{\sqrt{n}}$	90%	.10	.05	1.645
\sqrt{n}	95%	.05	.025	1.960
	99%	.01	.005	2.576
Interval Estimate of a Population Proportion Interval		Estimate of a Population Mean: σ Unknown		
$\overline{p}\pm z_{lpha/2}\sqrt{rac{\overline{p}\left(1-\overline{p} ight)}{n}}$		$\overline{x}\pm t_{lpha/2}$	$s \frac{s}{\sqrt{n}}$	

Steps of Hypothesis Testing:

Step 1: Develop the null and alternate hypothesis

Step 2: Specify the level of significance (α)

Step 3: Collect the sample data and compute the value of the test statistic p-Value Approach

Step 4: Use the test statistic to compute the p-value

Step 5: Reject H_0 if the p-value $\leq \alpha$

Step 6: Interpret the statistical conclusion in the context of the application

Hypothesis Test: a statistical argument to show evidence of a theory about a population using sample data. Five parts:

- 1. **Hypotheses**: H₀: null hypothesis, opposite of the alternative. Ha: alternative hypothesis, what we are trying to
- 2. **Test Statistic**: a formula that we plug our sample data into and get out one number.
- 3. **p Value**: a probability
- 4. **Rejection Rule**: Reject H_0 if p value $\leq \alpha$ (significance level)

5. Conclusion: Reject H₀, we can conclude H_a. **OR** Do not reject H₀, we cannot conclude H_a.

Type I Error: the error of rejecting H₀ when it is true. Type II Error: the error of not rejecting H₀ when it is false.

Level of Significance: tolerance for a Type I error. Often set at alpha $\alpha = .05$

Summary of Hypothesis test about a Mean: σ Known

	Lower Tail Test	Upper Tail Test	Two Tailed Test
Hypothesis:	$H_0: \mu \ge \mu_0$ $H_a: \mu < \mu_0$	$H_0: \mu \le \mu_0$ $H_0: \mu > \mu_0$	$H_0: \mu = \mu_0$ $H_0: \mu \neq \mu_0$
Test Statistic:	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$
p-value Approach: p-value	P(Z < z)	1 - P(Z < z)	2P(Z < z) or $2(1 - P(Z < z))$ whichever is smaller
Rejection Rule	Reject H_0 if p-value $\leq \alpha$	Reject H_0 if p-value $\leq \alpha$	Reject H_0 if p-value $\leq \alpha$

Summary of Hypothesis Tests about a Population Mean: Sigma σ Unknown

	Lower Tail Test	Upper Tail Test	Two Tailed Test
Hypothesis:	$H_0: \mu \ge \mu_0$ $H_a: \mu < \mu_0$	$H_0: \mu \le \mu_0$ $H_0: \mu > \mu_0$	$H_0: \mu = \mu_0$ $H_0: \mu \neq \mu_0$
Test Statistic:	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$ With n-1 df	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$ With n-1 df	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$ With n-1 df
p-value Approach: p-value	P(T > t)	P(T > t)	2P(T > t)
Rejection Rule	Reject H_0 if p-value $\leq \alpha$	Reject H_0 if p-value $\leq \alpha$	Reject H_0 if p-value $\leq \alpha$

Summary of Hypothesis Tests About a Population Proportion

	Lower Tail Test	Upper Tail Test	Two-Tailed Test
Hypotheses	$H_0\colon\! p\geq p_0$	$H_0\colon\! p\leq p_0$	$H_0\!:\!p=p_0$
· ·	$H_{ m a}$: $p < p_0$	$H_{ m a} \colon p > p_0$	$H_{\mathrm{a}} \mathpunct{:} p eq p_0$
Test Statistic	$z=rac{\overline{p}-p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}$	$z=rac{\overline{p}-p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}$	$z=rac{\overline{p}-p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}$
Rejection Rule:	$\mathrm{Reject} H_0 \mathrm{if} p ext{-value} \leq lpha$	$\mathrm{Reject} H_0 \mathrm{if} p ext{-value} \leq lpha$	$\mathrm{Reject} H_0 \mathrm{if} p ext{-value} \leq lpha$

p-Value Approach