LAMPIRAN

1 Lampiran A: Detail Arsitektur HTR Recognizer

Lampiran ini menyajikan spesifikasi lengkap arsitektur Hybrid CNN-Transformer yang digunakan sebagai HTR Recognizer dalam framework GAN-HTR. Detail ini melengkapi ringkasan high-level yang disajikan pada Bab III (Metodologi).

1.1 Spesifikasi Lengkap CNN Backbone

Tabel 1: Detail arsitektur CNN Backbone untuk ekstraksi fitur visual

Layer	Type	Spec	Output Shape	Params	
Block 1: I	Block 1: Initial Feature Extraction				
conv1_1	Conv2D	32 filters, 3×3, stride 1, ReLU	(H, W, 32)	896	
conv1_2	Conv2D	32 filters, 3×3, stride 1, ReLU	(H, W, 32)	9,248	
bn1	BatchNorm	-	(H, W, 32)	128	
pool1	MaxPool2D	2×2	(H/2, W/2, 32)	0	
Block 2: N	Mid-Level Fear	tures			
conv2_1	Conv2D	64 filters, 3×3, stride 1, ReLU	(H/2, W/2, 64)	18,496	
conv2_2	Conv2D	64 filters, 3×3, stride 1, ReLU	(H/2, W/2, 64)	36,928	
bn2	BatchNorm	-	(H/2, W/2, 64)	256	
pool2	MaxPool2D	2×2	(H/4, W/4, 64)	0	
Block 3: H	High-Level Fea	ntures with Residual			
conv3_1	Conv2D	128 filters, 3×3, stride 1, ReLU	(H/4, W/4, 128)	73,856	
conv3_2	Conv2D	128 filters, 3×3, stride 1, ReLU	(H/4, W/4, 128)	147,584	
residual3	Add	Skip connection from conv3_1	(H/4, W/4, 128)	0	
bn3	BatchNorm	-	(H/4, W/4, 128)	512	
pool3	MaxPool2D	2×2	(H/8, W/8, 128)	0	
Block 4: I	Deep Features				
conv4_1	Conv2D	256 filters, 3×3, stride 1, ReLU	(H/8, W/8, 256)	295,168	
conv4_2	Conv2D	256 filters, 3×3, stride 1, ReLU	(H/8, W/8, 256)	590,080	
residual4	Add	Skip connection from conv4_1	(H/8, W/8, 256)	0	
bn4	BatchNorm	-	(H/8, W/8, 256)	1,024	
pool4	MaxPool2D	2×2	(H/16, W/16, 256)	0	
Block 5: F	inal Feature I	Extraction			
conv5_1	Conv2D	512 filters, 3×3, stride 1, ReLU	(H/16, W/16, 512)	1,180,160	
conv5_2	Conv2D	512 filters, 3×3, stride 1, ReLU	(H/16, W/16, 512)	2,359,808	
bn5	BatchNorm	-	(H/16, W/16, 512)	2,048	
Projection	Projection Layer (proj_ln)				
proj	Conv2D	512 filters, 1×1 (projection)	(H/16, W/16, 512)	262,656	
proj_ln	LayerNorm	-	(H/16, W/16, 512)	1,024	
reshape	Reshape	Flatten spatial dims	(W/16, 512)	0	
	Total CNN Parameters: 4,979,872				

Catatan Implementasi:

• Input shape: (128, 1024, 1) — grayscale images

- Residual connections: Setiap 2 conv layers untuk mencegah vanishing gradient
- BatchNorm: Setelah setiap block untuk stabilitas training
- Activation: ReLU untuk non-linearity
- Pooling strategy: Max pooling 2×2 untuk spatial downsampling progresif
- Final output: (64, 512) sequence untuk Transformer input

1.2 Spesifikasi Lengkap Transformer Encoder

Tabel 2: Detail arsitektur Transformer Encoder untuk sequence modeling

Component	Specification	Parameters	Notes		
Positional Encoding	Positional Encoding				
Encoding Type	Sinusoidal	0 (learned)	Fixed sin/cos encoding		
Max Sequence Len	256	-	Supports up to 256 timesteps		
Transformer Layer Config	guration (6 layers)				
Num Layers	6	-	Stacked encoder layers		
Model Dimension (d_{model})	512	-	Feature dimension		
Num Attention Heads	8	-	Multi-head attention		
Head Dimension (d_k)	64	-	d _{model} / num_heads		
FFN Dimension (d_{ff})	2048	-	$4 \times d_{model}$		
Dropout Rate	0.20	-	Applied to attention & FFN		
Per-Layer Components					
Multi-Head Attention	8 heads, 64 dims each	1,048,576	Q, K, V projections + output		
LayerNorm (post-attn)	d_{model} =512	1,024	Normalization		
FFN Layer 1	$512 \rightarrow 2048$, ReLU	1,050,624	Expansion		
FFN Layer 2	$2048 \rightarrow 512$	1,049,088	Projection back		
LayerNorm (post-FFN)	d_{model} =512	1,024	Normalization		
Residual Connections 2 per layer		0	Skip connections		
Total per Layer:			3,150,336		
Total 6 Layers: 18,902,016					

1.3 CTC Output Layer

Tabel 3: Detail CTC output layer dan decoding

Component	Specification	Parameters
Output Dense Layer	$512 \rightarrow 95$ (vocab size)	48,735
Activation	Softmax	0
Vocab Size	95 characters	-
	Total Output Layer:	48,735

Character Set (95 characters):

• Lowercase: a-z (26 chars)

• Uppercase: A-Z (26 chars)

• Digits: 0-9 (10 chars)

• Punctuation: 30 symbols (.,;;!?'"-/()[]@#\$%&*+<>=_~)

• Special: BLANK token, SPACE, newline

1.4 Model Summary

Tabel 4: Ringkasan total parameter HTR Recognizer

Component	Parameters
CNN Backbone	4,979,872
Transformer Encoder (6 layers)	18,902,016
CTC Output Layer	48,735
Total Trainable Parameters	23,930,623
Model Size (FP32)	~96 MB

2 Lampiran B: Detail Konfigurasi Training Recognizer

2.1 Optimizer Configuration

Tabel 5: Detail konfigurasi AdamW optimizer

Parameter	Value	Justification
Base Learning Rate	3×10 ⁻⁴	Optimal for Transformer (Vaswani et al. 2017)
Beta1 (β_1)	0.9	Standard Adam momentum
Beta2 (β_2)	0.999	Standard Adam RMSProp term
Epsilon (ε)	1×10 ⁻⁸	Numerical stability
Weight Decay	1×10 ⁻⁴	L2 regularization (decoupled from gradient)
Gradient Clipping	clipnorm=1.0	Prevent exploding gradients

2.2 Learning Rate Schedule

Tabel 6: Cosine annealing learning rate schedule

Parameter Value		Description	
Schedule Type	Cosine Annealing	Smooth decay without oscillation	
Warmup Steps	1000	Linear warmup from 0 to base LR	
Max Learning Rate	3×10 ⁻⁴	Reached after warmup	
Min Learning Rate	1×10 ⁻⁶	Final LR at end of training	
Total Steps	50,000	Based on dataset size and epochs	
Restart	No	Single cosine curve	

2.3 Data Augmentation

Tabel 7: Detail data augmentation pipeline

Augmentation	Parameters	Probability		
Photometric Augmentation				
Brightness Adjustment	factor [0.8, 1.2]	0.5		
Contrast Adjustment	factor [0.8, 1.2]	0.5		
Gamma Correction	gamma [0.8, 1.2]	0.3		
Noise Injection	Noise Injection			
Gaussian Noise	mean=0, std [0.01, 0.05]	0.4		
Salt & Pepper Noise	amount [0.001, 0.01]	0.2		
Geometric Augmentation				
Elastic Transform	0.2			
Slight Rotation	angle [-2°, +2°]	0.3		
Slight Shear	shear [-0.1, +0.1]	0.2		

2.4 Regularization Techniques

Tabel 8: Regularization strategies

Technique	Configuration	Purpose
Dropout	rate=0.20	Applied after attention and FFN layers
Label Smoothing	ε=0.1	Soft targets for CTC loss
Weight Decay	1×10 ⁻⁴	L2 regularization on model weights
Early Stopping	patience=15 epochs	Prevent overfitting, monitor val CER
Model Checkpoint Save best val CER		Keep best performing weights

3 Lampiran C: Detail Implementasi Numerik dan Efisiensi

3.1 Stabilisasi Numerik CTC Loss

Tabel 9: Teknik stabilisasi numerik untuk CTC loss computation

Teknik	Implementation	Rationale
Log-Space Computation	Use log-probabilities	Prevent underflow in probability
		multiplication
LogSumExp Trick	Numerically stable summation	Avoid overflow/underflow in exponential
Label Smoothing	ε =0.1 on targets	Prevent overconfident predictions
Loss Normalization	Divide by sequence length	Consistent loss across varying lengths
Value Clipping	Max CTC loss = 50.0	Prevent extreme values in logging
Precision	FP32 (pure float32)	Critical for log-space stability
Gradient Clipping	clipnorm=1.0	Prevent gradient explosion

3.2 Justifikasi Presisi Numerik FP32

Tabel 10: Perbandingan FP16/Mixed vs Pure FP32 untuk CTC computation

Aspect	FP16/Mixed Precision	Pure FP32
CTC Log-Prob	Underflow saat exp(-50)	Stable hingga exp(-100)
Gradient Balance	Loss component dominance	Balanced multi-loss gradients
Convergence	Unstable, oscillating	Smooth, stable convergence
Visual Quality	Suboptimal	Superior quality
Speed	+30-40% faster	Baseline speed
Memory	-40% usage	Baseline memory
Decision Pure FP32 chosen: stability > speed trade-or		eed trade-off

3.3 Efisiensi Komputasi

Tabel 11: Profiling waktu eksekusi per komponen (per batch)

Component	Time (ms)	Percentage	GPU Util
Data Loading	15	15%	CPU-bound
Generator Forward	25	25%	85%
Discriminator Forward	10	10%	75%
Recognizer Forward (frozen)	20	20%	80%
Loss Computation	5	5%	60%
Backward Pass	20	20%	90%
Optimizer Step	5	5%	70%
Total per Iteration	100	100%	Avg 78%

Optimization Opportunities:

- Data loading: Implemented prefetch buffer (2 batches ahead)
- Mixed precision: NOT used due to stability concerns
- Batch size: Limited by GPU memory (2 per GPU on RTX 4090)
- Recognizer: Feature extraction cached for GT images

4 Lampiran D: Dokumentasi Desain Software

Lampiran ini menyajikan detail arsitektur software framework GAN-HTR yang mendukung reproduktifitas dan ekstensibilitas penelitian. Konten ini melengkapi metodologi penelitian yang disajikan pada Bab III dengan fokus pada aspek implementasi software engineering.

4.1 Prinsip Desain Modular

Tabel 12: Prinsip desain modular dan implementasinya

Prinsip	Definisi	Implementasi	
Loose Coupling	Komponen independen dengan	Interface-based communication,	
	minimal dependencies	not direct implementation	
High Cohesion	Fungsi terkait grouped dalam	Data processing functions dalam	
	modul yang sama	satu Data module	
Abstraction Layers	Abstract interfaces untuk	Generator interface: U-Net,	
	implementasi berbeda	ResNet, atau custom	
		architectures	
Dependency Injection	Runtime configuration of	Components receive	
	dependencies	dependencies via	
		constructor/config	

4.2 Komponen Inti Framework

Tabel 13: Mapping komponen inti ke modules/classes

Component	Module Path	Key Classes/Functions
Generator	<pre>src/models/generator.py</pre>	<pre>UNetGenerator, build_generator()</pre>
Discriminator	src/models/discriminator.py	DualModalDiscriminator
Recognizer	src/models/recognizer.py	HTRRecognizer, freeze_recognizer()
Loss Functions	src/losses/	PixelLoss, RecFeatLoss, CTCLoss
Data Pipeline	src/data/	DataLoader, Augmentation
Training Loop	src/training/trainer.py	GANTrainer, train_step()

4.3 Sistem Konfigurasi Hierarkis

Tabel 14: Hierarki konfigurasi dan lokasi file

Level	File	Content
Base Config	configs/base.yaml	Default architecture, model dimensions
Experiment Config	configs/experiment/*.yaml	HPO results, loss weights, specific settings
Environment Config	configs/env/*.yaml	Data paths, GPU settings, storage locations
Runtime Override	Command-line args	Quick parameter adjustments via argparse

Configuration Inheritance Example:

```
# configs/experiment/hpo_best.yaml
base: configs/base.yaml # Inherit from base
# Override specific parameters
loss_weights:
   pixel: 120.0
   rec_feat: 80.0
   adv: 2.5
   ctc: 10.0 # monitoring only

training:
   batch_size: 2
   epochs: 100
```

4.4 Testing Framework

Tabel 15: Testing strategy dan coverage

Test Type	Location	Coverage
Unit Tests	tests/unit/	Individual components (models, losses, data)
Integration Tests	tests/integration/	Full pipeline, end-to-end workflow
Smoke Tests	tests/smoke/	Quick validation (5 epochs, 100 samples)
Performance Tests	tests/performance/	Timing, memory profiling

4.5 Dependency Management

Framework menggunakan Poetry untuk dependency management:

```
# Core dependencies (pyproject.toml)
[tool.poetry.dependencies]
python = "^3.9"
tensorflow = "^2.15.0"
numpy = "^1.24.0"
optuna = "^3.5.0"
mlflow = "^2.10.0"
[tool.poetry.group.dev.dependencies]
```

```
pytest = "^7.4.0"
black = "^23.0.0"
flake8 = "^6.1.0"
```

4.6 MLOps Integration

Tabel 16: MLOps tools dan integrasi

Tool	Purpose	Integration
MLflow	Experiment tracking	Auto-logging params, metrics, artifacts
Optuna	Hyperparameter optimization	TPE sampler, SQLite database
TensorBoard	Real-time monitoring	Loss curves, image samples
Git	Version control	Auto-commit hash logging in MLflow
Poetry	Dependency management	Reproducible environments

5 Lampiran E: Detail Teknik Stabilitas Training

5.1 Gradient Stabilization

Tabel 17: Comprehensive gradient stabilization techniques

Technique	Configuration	Effect
Gradient Clipping	clipnorm=1.0 (global norm)	Prevents exploding gradients
Loss Scaling	Not used (FP32 only)	N/A for pure FP32 training
Gradient Accumulation	Not used (batch size=2 fits)	N/A for current setup
Gradient Checkpointing	Not used (memory sufficient)	N/A

5.2 Loss Balancing Strategies

Tabel 18: Multi-loss balancing implementation

Strategy	Implementation	Rationale
Static Weights	From HPO: pixel=120, rec_feat=80, adv=2.5	Optimal balance found via B
		Optimization
CTC Annealing	Warmup 2 epochs: weight 0→10	Gradual introduction to preven
		collapse
Loss Normalization	Divide by batch size & sequence length	Consistent scale across batches
Component Monitoring	Log individual losses separately	Detect imbalance during training

5.3 Mode Collapse Prevention

Tabel 19: Strategies untuk mencegah mode collapse

Strategy	Description
Adversarial Weight Control	Keep adv_loss_weight 5.0 (proven via HPO)
Label Smoothing	Factor 0.9 for discriminator targets (real=0.9, fake=0.1)
Discriminator Regularization	Instance noise injection (std=0.05 at epoch start, decay)
Diversity Regularization	Not explicitly used (pixel + rec_feat losses provide diversity)
Early Warning System	Monitor PSNR drop below 5 dB → trigger alert