# Covid 19 analysis

Jie Shen

2023-09-24

## File and Data

This is a R Markdown document for **COVID 19 project for China**. The data used in this project can be found at "https://github.com/CSSEGISandData/COVID-19/tree/master/csse\_covid\_19\_data/csse\_covid\_19\_time\_series". Please visit the site for detailed data description.

## Project goal

The project is to discover patterns and trends from Covid data in China. I want to explore things like the Covid cases and deaths trends over the years, and what states are best and worst.

# Packages needed

Be sure the following packages are installed first:

- tidyverse
- ggplot2

# **Load Packages**

```
library(tidyverse)
library(ggplot2)
library(forcats)
library(lubridate)
```

## Import Data and clean up

```
#Import data from webnsite
url_in<-"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid
file_names<-c("time_series_covid19_confirmed_global.csv","time_series_covid19_deaths_global.csv")
urls=str_c(url_in, file_names)
global_cases<-read_csv(urls[1])</pre>
```

```
## Rows: 289 Columns: 1147
## -- Column specification -------
## Delimiter: ","
         (2): Province/State, Country/Region
## dbl (1145): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/20, 1/26/20, 1/27/20,...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
global_deaths<-read_csv(urls[2])</pre>
## Rows: 289 Columns: 1147
## -- Column specification -------
## Delimiter: ","
         (2): Province/State, Country/Region
## dbl (1145): Lat, Long, 1/22/20, 1/23/20, 1/24/20, 1/25/20, 1/26/20, 1/27/20,...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
Now let's take a look and do some clean up
# Take a look
head(global cases)
## # A tibble: 6 x 1,147
## 'Province/State' 'Country/Region' Lat Long '1/22/20' '1/23/20' '1/24/20'
                                  <dbl> <dbl> <dbl>
## <chr>
                  <chr>
                                                        <dbl>
                                                                   <dbl>
## 1 <NA>
                 Afghanistan
                                   33.9 67.7
                                                  0
                                                           0
                                                   0
                                   41.2 20.2
                                                            0
## 2 <NA>
                 Albania
                                                                       Λ
                 Algeria
Andorra
## 3 <NA>
                                   28.0 1.66
                                                   0
## 4 <NA>
                                   42.5 1.52
                                                   0
                                                             Ο
                                                                       0
## 5 <NA>
                  Angola
                                   -11.2 17.9
                                                    0
                                                             0
                                                                       0
                   Antarctica
                                  -71.9 23.3
## 6 <NA>
                                                    0
                                                             0
## # i 1,140 more variables: '1/25/20' <dbl>, '1/26/20' <dbl>, '1/27/20' <dbl>,
      '1/28/20' <dbl>, '1/29/20' <dbl>, '1/30/20' <dbl>, '1/31/20' <dbl>,
      '2/1/20' <dbl>, '2/2/20' <dbl>, '2/3/20' <dbl>, '2/4/20' <dbl>,
     '2/5/20' <dbl>, '2/6/20' <dbl>, '2/7/20' <dbl>, '2/8/20' <dbl>,
     '2/9/20' <dbl>, '2/10/20' <dbl>, '2/11/20' <dbl>, '2/12/20' <dbl>,
      '2/13/20' <dbl>, '2/14/20' <dbl>, '2/15/20' <dbl>, '2/16/20' <dbl>,
## #
      '2/17/20' <dbl>, '2/18/20' <dbl>, '2/19/20' <dbl>, '2/20/20' <dbl>, ...
head(global_deaths)
## # A tibble: 6 x 1,147
    'Province/State' 'Country/Region' Lat Long '1/22/20' '1/23/20' '1/24/20'
                  <chr>
    <chr>
                                   <dbl> <dbl>
                                                 <dbl>
                                                        <dbl>
                                                                   <dbl>
## 1 <NA>
                  Afghanistan
                                   33.9 67.7
                                                  0
                                                             0
                                                                       Λ
## 2 <NA>
                  Albania
                                   41.2 20.2
                                                    0
                                                             0
                                                                       0
                                                   0
                                                             0
                                                                       0
## 3 <NA>
                 Algeria
                                   28.0 1.66
## 4 <NA>
                  Andorra
                                   42.5 1.52
                                                   0
                                                                       0
```

-11.2 17.9

Angola

## 5 <NA>

0

0

0

```
## 6 <NA>
                      Antarctica
                                       -71.9 23.3
## # i 1,140 more variables: '1/25/20' <dbl>, '1/26/20' <dbl>, '1/27/20' <dbl>,
       '1/28/20' <dbl>, '1/29/20' <dbl>, '1/30/20' <dbl>, '1/31/20' <dbl>,
       '2/1/20' <dbl>, '2/2/20' <dbl>, '2/3/20' <dbl>, '2/4/20' <dbl>,
## #
       '2/5/20' <dbl>, '2/6/20' <dbl>, '2/7/20' <dbl>, '2/8/20' <dbl>,
## #
      '2/9/20' <dbl>, '2/10/20' <dbl>, '2/11/20' <dbl>, '2/12/20' <dbl>,
## #
      '2/13/20' <dbl>, '2/14/20' <dbl>, '2/15/20' <dbl>, '2/16/20' <dbl>,
       '2/17/20' <dbl>, '2/18/20' <dbl>, '2/19/20' <dbl>, '2/20/20' <dbl>, ...
## #
# Need to pivot dates to rows
global_cases<-global_cases %>%
  pivot_longer(cols= -c("Province/State", "Country/Region", Lat, Long),
                       names_to="date",
                       values_to="cases")
head(global_cases)
## # A tibble: 6 x 6
     'Province/State' 'Country/Region'
##
                                         Lat Long date
                                                           cases
     <chr>>
                      <chr>>
                                       <dbl> <dbl> <chr>
                                                           <dbl>
## 1 <NA>
                      Afghanistan
                                        33.9 67.7 1/22/20
                                                               0
                                        33.9 67.7 1/23/20
## 2 <NA>
                     Afghanistan
                                                               0
                                        33.9 67.7 1/24/20
## 3 <NA>
                     Afghanistan
                                                               0
## 4 <NA>
                     Afghanistan
                                        33.9 67.7 1/25/20
                                                               0
## 5 <NA>
                     Afghanistan
                                        33.9 67.7 1/26/20
                                                               0
## 6 <NA>
                     Afghanistan
                                        33.9 67.7 1/27/20
                                                               0
# Do similar things to global deaths
global_deaths<-global_deaths %>%
 pivot_longer(cols= -c("Province/State", "Country/Region", Lat, Long),
                       names_to="date",
                       values_to="deaths")
# Combine global cases and deaths
global<- global_cases %>%
        full_join(global_deaths) %>%
        mutate(date=mdy(date)) %>%
        rename (Country_Region='Country/Region',
              Province_State ='Province/State')
## Joining with 'by = join_by('Province/State', 'Country/Region', Lat, Long,
## date)'
# Take a look again
head(global)
## # A tibble: 6 x 7
    Province_State Country_Region Lat Long date
                                                          cases deaths
##
                                   <dbl> <dbl> <date>
                                                          <dbl> <dbl>
     <chr>
                    <chr>
## 1 <NA>
                                    33.9 67.7 2020-01-22
                    Afghanistan
## 2 <NA>
                                    33.9 67.7 2020-01-23
                   Afghanistan
                                                              Ω
                                                                     0
## 3 <NA>
                                    33.9 67.7 2020-01-24
                                                              0
                                                                     0
                   Afghanistan
## 4 <NA>
                   Afghanistan
                                    33.9 67.7 2020-01-25
                                                              0
                                                                     0
                                    33.9 67.7 2020-01-26
## 5 <NA>
                   Afghanistan
                                    33.9 67.7 2020-01-27
                                                                     0
## 6 <NA>
                   Afghanistan
                                                              0
```

```
# US data has "Combined_Key". Add this to global data too.
global<-global%>%
  unite("Combined Key",
       c("Province_State", "Country_Region"),
       sep=", ",
       na.rm=TRUE,
       remove=FALSE
  )
# US data has "Combined_Key". Add this to global data too.
global<-global%>%
  unite("Combined_Key",
       c("Province_State", "Country_Region"),
       sep=", ",
       na.rm=TRUE,
       remove=FALSE
  )
# Take another look
head(global)
## # A tibble: 6 x 8
##
     Combined_Key Province_State Country_Region
                                                    Lat Long date
                                                                          cases deaths
                                                                                 <dbl>
##
     <chr>>
                   <chr>
                                  <chr>
                                                  <dbl> <dbl> <date>
                                                                          <dbl>
## 1 Afghanistan
                  <NA>
                                                   33.9 67.7 2020-01-22
                                  Afghanistan
                                                                              0
                                                                                     0
## 2 Afghanistan
                  <NA>
                                  Afghanistan
                                                   33.9
                                                         67.7 2020-01-23
                                                                              0
                                                                                     0
## 3 Afghanistan
                  <NA>
                                  Afghanistan
                                                   33.9
                                                         67.7 2020-01-24
                                                                              0
                                                                                     0
## 4 Afghanistan
                  <NA>
                                  Afghanistan
                                                   33.9
                                                         67.7 2020-01-25
                                                                              0
                                                                                     0
## 5 Afghanistan
                  <NA>
                                  Afghanistan
                                                   33.9
                                                         67.7 2020-01-26
                                                                              0
                                                                                     0
## 6 Afghanistan
                  <NA>
                                  Afghanistan
                                                   33.9 67.7 2020-01-27
                                                                                     0
# Summary statistics
summary(global)
```

```
Combined_Key
                        Province_State
                                            Country_Region
##
                                                                      Lat
##
    Length: 330327
                        Length: 330327
                                            Length: 330327
                                                                        :-71.950
                                                                 Min.
    Class : character
                        Class : character
                                            Class : character
                                                                 1st Qu.: 3.934
   Mode :character
                        Mode :character
                                                                 Median: 21.513
##
                                            Mode :character
##
                                                                 Mean
                                                                        : 19.719
##
                                                                 3rd Qu.: 40.464
##
                                                                Max.
                                                                        : 71.707
##
                                                                 NA's
                                                                        :2286
##
                            date
                                                  cases
                                                                       deaths
         Long
##
    Min.
           :-178.12
                       Min.
                               :2020-01-22
                                             Min.
                                                                   Min.
                                                                                  0
    1st Qu.: -42.60
                       1st Qu.:2020-11-02
                                              1st Qu.:
                                                                                  3
##
                                                            680
                                                                   1st Qu.:
    Median: 20.94
##
                       Median :2021-08-15
                                             Median:
                                                          14429
                                                                   Median:
                                                                                150
##
    Mean
           : 22.18
                       Mean
                               :2021-08-15
                                             Mean
                                                         959384
                                                                   Mean
                                                                             13380
    3rd Qu.: 90.36
                       3rd Qu.:2022-05-28
                                              3rd Qu.:
                                                         228517
                                                                   3rd Qu.:
                                                                               3032
##
   Max.
           : 178.06
                       Max.
                               :2023-03-09
                                             Max.
                                                     :103802702
                                                                   Max.
                                                                           :1123836
    NA's
           :2286
```

We can see the earliest date is 2020-01-22 and the latest is 2023-03-09.

Since tt's unfair to compare the numbers from big population state to a small state, I also want to see cases and deaths per populations. I found the population data set on the same github website.

```
# Import population data
uid_lookup_url="https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/UID
uid=read_csv(uid_lookup_url)
## Rows: 4321 Columns: 12
## -- Column specification ----
## Delimiter: ","
## chr (7): iso2, iso3, FIPS, Admin2, Province_State, Country_Region, Combined_Key
## dbl (5): UID, code3, Lat, Long_, Population
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
# After looking through the columns, exclude unwanted columns %>%
uid <- uid %- select (-c(Lat, Long_, Combined_Key, iso2, iso3, code3, Admin2, UID, FIPS))
# Add population column to global data
global<-global%>%
  full_join(uid, by=c("Province_State", "Country_Region"))
# Take another look
head(global)
## # A tibble: 6 x 9
##
    Combined_Key Province_State Country_Region Lat Long date
                                                                       cases deaths
                                         <dbl> <dbl> <date>
                                                                       <dbl> <dbl>
##
     <chr>>
                 <chr>
                                 <chr>
                                Afghanistan 33.9 67.7 2020-01-22
Afghanistan 33.9 67.7 2020-01-23
## 1 Afghanistan <NA>
                                                                           0
                                                                                  0
## 2 Afghanistan <NA>
                                                                                  0
## 3 Afghanistan <NA>
                                Afghanistan
                                                 33.9 67.7 2020-01-24
                                                                           0
                                                                                  0
## 4 Afghanistan <NA>
                                Afghanistan
                                                 33.9 67.7 2020-01-25
                                                                           0
                                                                                  0
                                Afghanistan
## 5 Afghanistan <NA>
                                                                                  0
                                                 33.9 67.7 2020-01-26
                                                                           0
## 6 Afghanistan <NA>
                                 Afghanistan
                                                 33.9 67.7 2020-01-27
                                                                                  0
## # i 1 more variable: Population <dbl>
```

## Analysis

Get per state and total Country numbers

```
# Get a China data frame
CN<-global%>%filter(Country_Region=="China")

# China by state total cases, deaths, and death per million population
CN_by_state<-CN%>%
group_by( Country_Region,Province_State, date) %>%
summarise(cases=sum(cases), deaths=sum(deaths), Population = sum(Population)) %>%
mutate(death_per_mill = deaths/Population*1000000) %>%
ungroup()
```

```
## 'summarise()' has grouped output by 'Country_Region', 'Province_State'. You can
## override using the '.groups' argument.
```

```
#Take a look
tail(CN_by_state)
## # A tibble: 6 x 7
##
     Country_Region Province_State date
                                              cases deaths Population
##
     <chr>>
                    <chr>
                                              <dbl> <dbl>
                                                                 <dbl>
                                   <date>
## 1 China
                    Zhejiang
                                   2023-03-05 11848
                                                         1
                                                              64567588
## 2 China
                                   2023-03-06 11848
                                                              64567588
                    Zhejiang
                                                          1
## 3 China
                    Zhejiang
                                   2023-03-07 11848
                                                             64567588
                                                         1
## 4 China
                    Zhejiang
                                   2023-03-08 11848
                                                         1
                                                             64567588
## 5 China
                    Zhejiang
                                   2023-03-09 11848
                                                         1
                                                             64567588
## 6 China
                                                        NA 1411778724
                    <NA>
                                   NA
                                                 NA
## # i 1 more variable: death_per_mill <dbl>
# China Totals
CN totals<- CN%>%
  group by (Country Region, date) %>%
  summarise(cases=sum(cases), deaths=sum(deaths), Population = sum(Population)) %>%
  mutate(death_per_mill = deaths/Population*1000000) %>%
  arrange(death_per_mill) %>%
 ungroup()
## 'summarise()' has grouped output by 'Country_Region'. You can override using
## the '.groups' argument.
#Take a look
tail(CN_totals)
## # A tibble: 6 x 6
    Country_Region date
                                 cases deaths Population death_per_mill
##
##
     <chr>
                    <date>
                                 <dbl> <dbl>
                                                    <dbl>
                                                                   <dbl>
## 1 China
                    2023-03-05 4903524 101054
                                                      NA
                                                                      NA
## 2 China
                    2023-03-06 4903524 101055
                                                      NA
                                                                      NA
                    2023-03-07 4903524 101055
## 3 China
                                                      NA
                                                                      NA
## 4 China
                    2023-03-08 4903524 101055
                                                      NA
                                                                      NA
## 5 China
                    2023-03-09 4903524 101056
                                                                      NA
                                                      NA
## 6 China
                    NA
                                    NA
                                           NA 1411778724
                                                                      NA
```

#### Visualization CN totals

```
# Visualize CN totals
options(repr.plot.width=30, repr.plot.height=10)
CN_totals %>%
  filter(cases>0) %>%
  ggplot(aes(x=date, y=cases)) +
  geom_line(aes(color="cases")) +
  geom_point(aes(color="cases")) +
```

```
geom_line(aes(y=deaths, color="deaths")) +
geom_point(aes(y=deaths, color="deaths")) +
scale_y_log10() +
scale_x_date(date_labels = "%y-%b", date_breaks = "4 month") +
theme(legend.position='bottom', axis.text=element_text(angle=90, size=10)) +
labs(title="COVID 19 in China - total cases and deaths", y=NULL)
```

## COVID 19 in China - total cases and deaths



## How about new cases and new deaths?

<chr>

<chr>

##

When looking at trends, it's good to see how many new cases and new deaths. Let's add those columns

<dbl> <dbl>

<dbl>

<date>

```
## 1 China
                    Zhejiang
                                   2023-03-05 11848
                                                             64567588
## 2 China
                                   2023-03-06 11848
                                                             64567588
                    Zhejiang
                                                         1
## 3 China
                    Zhejiang
                                   2023-03-07 11848
                                                             64567588
## 4 China
                    Zhejiang
                                   2023-03-08 11848
                                                             64567588
                                                         1
## 5 China
                    Zhejiang
                                   2023-03-09 11848
                                                         1
                                                             64567588
## 6 China
                                                        NA 1411778724
                    <NA>
                                   NA
                                                 NA
## # i 3 more variables: death per mill <dbl>, new cases <dbl>, new deaths <dbl>
tail(CN_totals)
## # A tibble: 6 x 8
    Country_Region date
                                 cases deaths Population death_per_mill new_cases
     <chr>
                    <date>
                                 <dbl> <dbl>
                                                   <dbl>
                                                                  <dbl>
                                                                             <dbl>
## 1 China
                    2023-03-05 4903524 101054
                                                                     NA
                                                                                 0
                                                      NA
## 2 China
                    2023-03-06 4903524 101055
                                                      NA
                                                                     NA
                                                                                 0
## 3 China
                    2023-03-07 4903524 101055
                                                      NA
                                                                     NA
                                                                                 0
                                                      NA
## 4 China
                    2023-03-08 4903524 101055
                                                                     NA
                                                                                 0
## 5 China
                    2023-03-09 4903524 101056
                                                      NA
                                                                     NA
                                                                                0
## 6 China
                                                                               NA
                                           NA 1411778724
                                                                     NA
                    NA
                                    NA
## # i 1 more variable: new deaths <dbl>
```

### Visualize new cases and deaths in China

```
# Visualize China totals
options(repr.plot.width=30, repr.plot.height=10)
CN_totals %>%
  filter(cases>0) %>%
  ggplot(aes(x=date, y=new_cases)) +
  geom_line(aes(color="new_cases")) +
  geom_point(aes(color="new_cases")) +
  geom_line(aes(y=deaths, color="new_deaths")) +
  geom_point(aes(y=deaths, color="new_deaths")) +
  scale_y_log10() +
  scale_x_date(date_labels = "%y-%b", date_breaks = "4 month") +
  theme(legend.position='bottom', axis.text=element_text(angle=90, size=10)) +
  labs(title="COVID 19 in China - new cases and deaths", y=NULL)
```

```
## Warning in self$trans$transform(x): NaNs produced
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning in self$trans$transform(x): NaNs produced
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 1 row containing missing values ('geom_line()').
## Warning: Removed 3 rows containing missing values ('geom_point()').
```





## What are the worst and best states in China?

### CN by states

Let's see which states are best/worst (in term of death/population)

```
CN_state_totals <- CN_by_state %>%
  group_by(Province_State) %>%
  summarize(cases=max(cases),
    deaths= max(deaths),
    Population=max(Population),
    cases_per_thou=1000*cases/Population,
    deaths_per_thou=1000*deaths/Population)
CN_state_totals %>% slice_min(deaths_per_thou,n=10)
```

```
## # A tibble: 10 x 6
      Province_State cases deaths Population cases_per_thou deaths_per_thou
##
##
      <chr>
                      <dbl>
                              <dbl>
                                         <dbl>
                                                          <dbl>
                                                                           <dbl>
##
    1 Jiangsu
                       5075
                                  0
                                      84748016
                                                         0.0599
                                                                      0
                       1276
                                  0
                                       7202654
                                                        0.177
                                                                      0
##
    2 Ningxia
##
    3 Qinghai
                        782
                                  0
                                       5923957
                                                         0.132
                                                                      0
    4 Tibet
                                  0
                                       3648100
                                                        0.451
                                                                      0
##
                       1647
##
    5 Zhejiang
                      11848
                                  1
                                      64567588
                                                         0.183
                                                                      0.0000155
##
    6 Shanxi
                       7167
                                  1
                                      34915616
                                                        0.205
                                                                      0.0000286
##
    7 Guangxi
                      13371
                                  2
                                      50126804
                                                        0.267
                                                                      0.0000399
    8 Inner Mongolia 8847
                                      24049155
                                                        0.368
                                                                      0.0000416
                                  1
##
```

```
## 9 Jiangxi
                      3423
                                 2
                                     45188635
                                                       0.0757
                                                                    0.0000443
## 10 Liaoning
                      3547
                                 2
                                     42591407
                                                       0.0833
                                                                    0.0000470
```

#### CN\_state\_totals %>% slice\_max(deaths\_per\_thou,n=10)

```
## # A tibble: 10 x 6
##
     Province_State cases deaths Population cases_per_thou deaths_per_thou
##
                                                                         <dbl>
      <chr>
                       <dbl>
                              <dbl>
                                         <dbl>
                                                         <dbl>
                     2876106
                                                                     1.80
##
  1 Hong Kong
                             13467
                                       7496988
                                                      384.
## 2 Macau
                        3547
                                121
                                        649342
                                                        5.46
                                                                     0.186
## 3 Hubei
                       72131
                               4515
                                      57752557
                                                        1.25
                                                                     0.0782
## 4 Shanghai
                       67040
                                595
                                      24870895
                                                        2.70
                                                                     0.0239
                                                                     0.000914
## 5 Beijing
                       40774
                                 20
                                      21893095
                                                        1.86
## 6 Hainan
                       10483
                                      10081232
                                                        1.04
                                                                     0.000595
## 7 Heilongjiang
                                      31850088
                                                        0.207
                                                                     0.000565
                        6603
                                 18
## 8 Chongqing
                       14715
                                 11
                                      32054159
                                                        0.459
                                                                     0.000343
## 9 Henan
                        9948
                                 23
                                      99365519
                                                        0.100
                                                                     0.000231
## 10 Tianjin
                        4392
                                 3
                                      13866009
                                                        0.317
                                                                     0.000216
```

## visualize state of interest

I want to visualize the top 3 worst states

```
state<- "Hong Kong"
CN by state %>%
  filter(Province State==state) %>%
  ggplot(aes(x=date, y=cases)) +
  geom_line(aes(color="cases")) +
  geom_point(aes(color="cases")) +
  geom_line(aes(y=deaths, color="deaths")) +
  geom_point(aes(y=deaths, color="deaths")) +
  scale_y_log10() +
  scale_x_date(date_labels = "%y-%b", date_breaks = "4 month") +
  theme(legend.position='bottom', axis.text=element_text(angle=90, size=10)) +
  labs(title=str_c("COVID 19 in ", state," - total cases and deaths"), y=NULL)
```

```
## Warning: Transformation introduced infinite values in continuous y-axis
## Transformation introduced infinite values in continuous y-axis
```

<sup>##</sup> Transformation introduced infinite values in continuous y-axis

<sup>##</sup> Transformation introduced infinite values in continuous y-axis





```
state<- "Macau"
CN_by_state %>%
filter(Province_State==state) %>%
ggplot(aes(x=date, y=cases)) +
geom_line(aes(color="cases")) +
geom_point(aes(color="cases")) +
geom_line(aes(y=deaths, color="deaths")) +
geom_point(aes(y=deaths, color="deaths")) +
scale_y_log10() +
scale_x_date(date_labels = "%y-%b", date_breaks = "4 month") +
theme(legend.position='bottom', axis.text=element_text(angle=90, size=10)) +
labs(title=str_c("COVID 19 in ", state," - total cases and deaths"), y=NULL)
```

## Warning: Transformation introduced infinite values in continuous y-axis
## Transformation introduced infinite values in continuous y-axis

## COVID 19 in Macau – total cases and deaths



```
state<- "Hubei"
CN_by_state %>%
filter(Province_State==state) %>%
ggplot(aes(x=date, y=cases)) +
geom_line(aes(color="cases")) +
geom_point(aes(color="cases")) +
geom_line(aes(y=deaths, color="deaths")) +
geom_point(aes(y=deaths, color="deaths")) +
scale_y_log10() +
scale_x_date(date_labels = "%y-%b", date_breaks = "4 month") +
theme(legend.position='bottom', axis.text=element_text(angle=90, size=10)) +
labs(title=str_c("COVID 19 in ", state," - total cases and deaths"), y=NULL)
```



