2. Probeklausur in Experimentalphysik 1

Prof. Dr. C. Pfleiderer Wintersemester 2015/16 19. Januar 2016

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (5 Punkte)

Während einer langen Messung versucht ein Physiker, kleine Papierknäuel in einen Mülleimer zu werfen.

- (a) Der Mülleimer ist jetzt $l_1 = 5$ m von der Abwurfposition entfernt. Der obere Rand des Mülleimers ist auf gleicher Höhe $h_0 = 1$ m wie die Abwurfposition. Mit welcher Geschwindigkeit v muss man werfen um unter einem Abwurfwinkel von $\alpha = 30^{\circ}$ den Mülleimer zu treffen?
- (b) Nun soll das Papierknäuel erneut aus einer anderen Höhe und Entfernung geworfen werden und von der Wand hinter dem Mülleimer abprallen. Der Abstand des Mülleimers zur Wand beträgt $l_2=2$ m. An der Wand trifft das Knäuel waagrecht auf und wird dann mit halber Geschwindigkeit reflektiert. Der Abwurfwinkel ist $\alpha=17^{\circ}$. Geworfen wird mit v=10,5m/s. In welcher Höhe H vom Boden gemessen an der Wand muss das Knäuel auftreffen?

Hinweis: $\sin 2\alpha = 2\sin \alpha\cos \alpha$

Aufgabe 2 (4 Punkte)

Eine Straßenlaterne mit der Masse 20kg ist an der Mitte eines masselosen Seils zwischen zwei Häusern aufgehängt. Das Seil hat an beiden Seiten einen Winkel von $\Phi = 80^{\circ}$ zur Hauswand.

- (a) Zeichnen Sie das Kräftediagramm der am Aufhängepunkt A der Lampe angreifenden Kräfte. Schreiben Sie die Kräfte als Vektoren auf.
- (b) Welche Beträge haben die auf die Befestigungspunkte B wirkenden Kräfte?
- (c) Was passiert, wenn man versucht das Seil horizontal zu spannen (d.h $\phi \to 90^{\circ}$)?

Aufgabe 3 (5 Punkte)

Bei einer Federpistole wird die Feder mit der Federkonstante k = 90,0Nm um die Strecke $y_1 = 16,0$ cm zusammengedrückt bis sie einrastet. Dann wird eine Kugel der Masse m = 100g auf die Feder gelegt (Bild I) und anschließend vertikal nach oben geschossen.

- (a) Berechne, an welcher Stelle y_2 die Kugel die größte Geschwindigkeit hat (Bild II).
- (b) Berechnen Sie diese höchste Geschwindigkeit.
- (c) Was ist die maximale Höhe y_3 , die die Kugel erreicht(Bild III)?

Aufgabe 4 (5 Punkte)

Ein Block der Masse M_h gleite ohne Reibung auf einem Tisch. Der Block sei über ein Seil mit einer zweiten, hängenden Masse M_v verbunden. Dabei wird die Masse M_v durch die Gravitation beschleunigt. Eine Kugel mit Masse m und Radius R befindet sich auf dem oberen Block in Ruhe. Sobald sich M_v bewegt, rollt die Kugel ohne zu Rutschen auf dem oberen Block.

- (a) Schreiben Sie die Bewegungsgleichungen für die drei Massen hin.
- (b) Stellen Sie die Zwangsbedingungen für die Situation auf und finden Sie damit die resultierenden Beschleunigungen der Masse M_v und des Schwerpunktes der Kugel!

Aufgabe 5 (6 Punkte)

Ein dünner homogener Stab (Länge L, Masse m) schwebt im kräftefreien Raum und wird im Abstand x = L/4 von seinem Schwerpunkt S von einer Kugel der gleichen Masse m und der Geschwindigkeit $\vec{v_1}$ vollkommen elastisch getroffen. Berechnen Sie das Verhältnis zwischen Translations- und Rotationsenergie des gesamten Systems (Stab und Kugel) nach dem Stoß. ($Hinweis: \Theta_{Stab} = \frac{1}{12}mL^2$)

Aufgabe 6 (6 Punkte)

Ein Schiff der Masse $m_s=20000$ t fährt von der Nordsee (Salzwasser $\rho_1=1,03\frac{\rm g}{\rm cm^3}$) in den Hamburger Hafen (Süßwasser $\rho_2=1,0\frac{\rm g}{\rm cm^3}$).

- (a) Wie ändert sich der Tiefgang des Schiffes? Begründung, keine Rechnung!
- (b) Nachdem das Schiff im Hafen Last abgeladen hat, liegt es wieder genauso tief im Wasser wie in der Nordsee. Wie schwer muss die Last gewesen sein?
- (c) Durch das Entladen des Schiffes wurde es zu einer harmonischen Schwingung angeregt. Hierfür soll das Schiff als Quader mit der Grundfläche $A=30\mathrm{m}^2$ angenommen werden. Reibung und Bewegung des Wassers sind zu vernachlässigen. Stellen sie die Differentialgleichung auf und bestimmen sie daraus die Periodendauer der Schwingung.

Aufgabe 7 (4 Punkte)

Betrachten Sie die eindimensionale Masse-Feder-Kette.

- (a) Schreiben Sie die Bewegungsgleichung für das Masseelement am Ort x_i und die Auslenkung ψ_i auf.
- (b) Leiten Sie für die beiden Kräfte mit Hilfe des Mittelwertsatzes der Differentialrechnung $\frac{f(c)-f(b)}{c-b}=f'$ die Wellengleichung für die Masse-Feder-Kette her. Geben Sie die Kreisfrequenz der Schwingung an.