Chi-Square Test

Contingency Table Analysis: A Chi-Square Test for Independence

	First Classification Category					
Second Classification Category	1	2	3	4	5	Row Total
1	O ₁₁	O_{12}	O_{13}	O_{14}	O ₁₅	\mathbf{R}_{1}
2	O_{21}	O_{22}	O_{23}	O_{24}	O_{25}	$\mathbf{R_2}$
3	O_{31}	O_{32}	O_{33}	O ₃₄	O_{35}	\mathbb{R}_3
4	O_{41}	O_{42}	O_{43}	O ₄₄	O_{45}	\mathbf{R}_{4}
5	O_{51}	O_{52}	O_{53}	O_{54}	O_{55}	\mathbf{R}_{5}
Column Total	$\mathbf{C_1}$	$\mathbf{C_2}$	C ₃	C ₄	C ₅	n

Contingency Table Analysis: A Chi-Square Test for Independence

A and B are independent if: $P(A \cap B) = P(A) \times P(B)$.

If the first and second classification categories are independent:Eij = (Ri)(Cj)/n

Null and alternative hypotheses:

H0: The two classification variables are independent of each other

H1: The two classification variables are not independent

Chi-square test statistic for independence:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Degrees of freedom: df=(r-1)(c-1)

Expected cell count:
$$E_{ij} = \frac{R_i C_j}{n}$$

Chi-Square Test for Equality of Proportions

Tests of equality of proportions across several populations are also called **tests of homogeneity.**

In general, when we compare c populations (or r populations if they are arranged as rows rather than columns in the table), then the Null and alternative hypotheses:

H0:
$$p1 = p2 = p3 = ... = pc$$

H1: Not all pi, I = 1, 2, ..., c, are equal

Chi-square test statistic for equal proportions:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Degrees of freedom: df = (r-1)(c-1)

Expected cell count
$$E_{ij} = \frac{R_i C_j}{n}$$