Flash Attention

Question 1 0 / 1 pts

Tri Dao mentions in the talk that softmax computation can be broken down into smaller independent pieces as follows.

How can the parameters like alpha and beta be obtained?

Tiling

Decomposing large softmax into smaller ones by scaling.

$$\operatorname{softmax}([A_1, A_2]) = [\alpha \operatorname{softmax}(A_1), \ \beta \operatorname{softmax}(A_2)].$$

$$\operatorname{softmax}([A_1,A_2]) \ \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \alpha \ \operatorname{softmax}(A_1) \ V_1 + \beta \ \operatorname{softmax}(A_2) \ V_2 \,.$$

swer

Maintain additional statistics such as m and I

ered

They come from pre-processing where matrices are broken down

alpha and beta only rely on local information, so they can be computed completely independently

Perform final normalization in CPU

Megatron LM

Question 1

0 / 1 pts

The following diagram shows how Megatron-LM splits its computation for the feed-forward layer.

Why not compute Y as $[X1 X2] * [A1 A2]^T$?

Because X is very small in practice

wer

Because GeLU is non-linear

ed

- Because we need to gather them for Z anyway
- Because CUDA is faster with duplicate input

DeepSpeed ZeRo

ct!

Question 1

1 / 1 pts

 M_3

The diagram below indicates how ZeRO would partition parameters across multiple GPUs. Which of the following is INCORRECTLY describing the approach?

- If there are N parameters, each GPU holds N/4 parameters
- Model weights are not broadcasted
- Green boxes are for Adam
- Gradient values are updated after completing forward pass

Block Attention

Question 1

1 / 1 pts

The following diagram depicts position re-encoding of KV states. When we move KV states from position 1-4 to 101-104, which of the following should be performed?

Q1 Q2 Q3 Q4 K1 K2 K3 K4

Feed-forward and others

Feed-forward and others

	1		
X1	X2	ХЗ	X4
101	102	103	104

- Rotate query states
- Rotate value states
- Re-compute part of feed-forward
- Re-compute part of attention scores

Cache Blend

Question 1

1 / 1 pts

CacheBlend proposes *KV deviation* to recompute cross attention selectively. Which of the following layers (among Layer 1, 2, and 3) are most crucial in computing KV deviation?

- Layer 3
- Layer 2
- Layer 1

ct!

2036

Kishu Question 1 0 / 1 pts Suppose I have the following Python code. Which of the following is a proper Co-variable? a = 1 a = 1 b = 2 c = 3 mylist1 = [a, b] mylist2 = [b, c] swered (mylist1, mylist2) (mylist1, a, b) (mylist2, b, c) No correct answers on this list Answer (a, b, c mylist1, mylist2)

Question 1 For efficient iterations, Orca aims to merge as many operations as possible. Which of the following operations can be merged between two prompts (P1 and P2)? P1's feed-forward (for token 10) and P2's feed-forward (for token 11) P1's decoding (for token 10) and P2's decoding (for token 11) P1's prefill and P2's decoding P1's prefill (length 10) and P2's prefill (length 20)

Question 1

1 / 1 pts

We aim to obtain an embedding through mean pooling. Which of the following will be the output?

- [2140]
- [214001231122]
- [1 1 2.67 1.67]
- [1122]

Question 1	1 / 1 pts		
According to this training data, which of the following words is LEAST LIKELY to appear around the word "quick".			
The quick brown fox jumps over the lazy dog	(quick, the) (quick, brown) (quick, fox)		
O fox			
Obrown			
jumps			