Judgment

Analytic judgments are those that become evident by conceptual analysis.

$$\begin{array}{ccc} J_1 & \dots & J_n \\ \hline & J_c & \end{array}$$

1. Syntax: well-formed

E.g.

$$\frac{}{T \text{ wf}} \qquad \frac{A \text{ wf} \quad B \text{ wf}}{A \bigcirc B \text{ wf}}$$

- 2. **Semantics**: true
 - 1. **I**: *introduce* a connective
 - 2. **E**: *extract* info out of a pure connective

E.g.

$$\frac{A \quad B}{A \wedge B} \wedge I \qquad \frac{A \wedge B}{A} \wedge E_1$$

Hypothetical Reasoning

Given P, Q holds.

1. \Rightarrow *I*: Internalizing a reasoning process.

E.g.

$$\frac{P_1 \quad P_2}{\frac{\dots}{Q}}$$

$$P_1, P_2 \Rightarrow Q$$

Note that *P*s and *Q*s cease to exist in the conclusion, thus "internalized".

1. \Rightarrow *E*: modus ponens

Properties of assumtions (structural)

Weakening: assumptions can be unused

$$\frac{\overline{A} u \quad \text{(unused)} \underline{-} w}{B \Rightarrow A} \Rightarrow I^w$$

$$\frac{B \Rightarrow A}{A \Rightarrow B \Rightarrow A} \Rightarrow I^u$$

Contraction: assumptions can be used multiple times

Substitution: TODO

Context

Notice the two dimensional rule of $\Rightarrow I$:

$$\frac{P_1 \quad P_2}{\frac{\cdots}{Q}}$$

$$P_1, P_2 \Rightarrow Q$$

It's kind of awkward to keep this hypothetical strcture around. Instead, we write

$$\frac{\Gamma, h_1: P_1, h_2: P_2 \vdash Q}{\Gamma \vdash P_1, P_2 \Rightarrow Q}$$

Note that we declare

$$\frac{x:A\in\Gamma}{\Gamma\vdash A}x$$

By following the same principle, we can rewrite Weakening and Contraction.

Weakening:

$$\frac{\Gamma \vdash B}{\Gamma, x : A \vdash B}$$

Contraction:

$$\frac{\Gamma, x: A \vdash B}{\Gamma, x: A, y: A \vdash B}$$

Substitution:

$$\frac{\Gamma, x: A \vdash C \quad \Gamma \vdash A}{\Gamma \vdash C}$$

Local Soundness/Completeness

Local in the sense that these properties only discuss a **single connective**, not the whole system. It's a weak witness that this system makes sense.

1. **Local Soundness**: the combination of intro and elim is not too strong, i.e. they don't allow us to infer more than what's already known.

E.g. the proof

$$\frac{\begin{array}{c|c} \Gamma \vdash A & \Gamma \vdash B \\ \hline \hline \begin{array}{c} \Gamma \vdash A \times B \\ \hline \end{array} \times I$$

collapses to

$$\frac{\Gamma \vdash A}{\Gamma \vdash A}$$

so there's no additional information provided by the intro and elim rules.

2. **Local Completeness**: the combination of intro and elim is sufficiently strong, in terms of rebuilding the info we have.

E.g. there's no information loss in the rebuild process of the connective $A \times B$

$$\frac{\Gamma \vdash A \times B}{\Gamma \vdash A} \times E_1 \qquad \frac{\Gamma \vdash A \times B}{\Gamma \vdash B} \times E_2$$

$$\frac{\Gamma \vdash A \times B}{\Gamma \vdash A \times B} \times I$$

C.H.

- Propositions Types
- Proof Programs
- Nat. Ded. λ -calculus

Importance:

- 1. Guiding program language design
- 2. Basis of Type Theory
- 3. Proving logic consistency by looking at programs

Typing Judgment

$$\Gamma \vdash M : A$$

Given some assumptions in the context Γ ,

- *M* is a proof term corresponding to the proposition *A*.
- M is a program that has a type A.

C.H.:
$$\Gamma \vdash A$$
 iff $\Gamma \vdash M : A$

Example: conjunction

$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash N : B}{\Gamma \vdash \langle M, N \rangle : A \land B} \land I \qquad \frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M.1 : A} \qquad \frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M.2 : B}$$

Example: implication

$$\frac{\Gamma, x: A \vdash \lambda x: A.M: B}{\Gamma \vdash M: A \to B} \Rightarrow I^{x} \qquad \frac{\Gamma \vdash M: A \to B}{\Gamma \vdash MN: B} \Rightarrow E$$

Thm (Local Soundness)

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash N : B}{\frac{\Gamma \vdash \langle M, N \rangle : A \land B}{\Gamma \vdash \langle M, N \rangle . 1 : A}} \text{ collapses to } \frac{\Gamma \vdash M : A}{\Gamma \vdash M : A}$$

$$\frac{\Gamma, x : A \vdash M : B}{\frac{\Gamma \vdash \lambda x : A . M : A \rightarrow B}{\Gamma \vdash (\lambda x : A . M) N : B}} \Rightarrow E \text{ collapses to } \frac{\Gamma \vdash M [N/x] : B}{\Gamma \vdash M [N/x] : B}$$

- 1. Logic: not gaining any information through this intro and elim detour.
- 2. **Program**: type is **preserved** through this detour.

The "collapse" can then be written as:

Reduction $\langle M, N \rangle.1 \Longrightarrow M$ and $(\lambda x : A.M)N \Longrightarrow M[N/x]$.

Thm (Subject Reduction)

If
$$\Gamma \vdash M : A$$
 and $M \Longrightarrow M'$, then $\Gamma \vdash M' : A$

Thm (Local Completeness)

$$\frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M : A \land B} \land E_1 \qquad \frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M.2 : B} \land E_2$$

$$\frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M : A \land B} \Rightarrow I^x$$

$$\frac{\Gamma \vdash M : A \rightarrow B}{\Gamma \vdash M : A \rightarrow B} \Rightarrow I^x$$

$$\frac{\Gamma \vdash M : A \rightarrow B}{\Gamma \vdash M : A \rightarrow B} \Rightarrow I^x$$

This exhibits the actual structure (i.e. expands its internal term/proof structure) of M while preserving the type.

Insight:

- Proof Reduction Program Reduction
- Normalizing Proofs Normalizing Programs

Compare both proofs

TODO fill in the blanks

$$\vdash \lambda x : A \land A.(\lambda y : A.y)x.2 : A \land A \rightarrow A$$

Disjunction

Let's now expand the previous example to disjunction.

Rules

$$\begin{split} \frac{\Gamma \vdash M : A}{\Gamma \vdash \iota_1 M : A \lor B} \lor I_1 & \frac{\Gamma \vdash M : B}{\Gamma \vdash \iota_2 M : A \lor B} \lor I_2 \\ \frac{\Gamma \vdash M : A \lor B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, x : B \vdash N_2 : C}{\Gamma \vdash \text{cases } M \text{ of } \iota_1 x \Rightarrow N_1 \mid \iota_2 x \Rightarrow N_2 : C} \lor E \end{split}$$

Local Soundness

TODO Fill in the blanks

 $\Gamma \vdash case$

Modal Logic S4

Truth is living in the moment - here and now.

Validity is living forever and everywhere.

- Brigitte Pientka

"The world is full of possibilities, but not today."

Necessity Modality $\Box A$

> Note what I originally wrote as $\Gamma \vdash A$ is now $\Gamma \vdash A$ true to make a clear distinction between **validity** and **true**.

Validity

- If $\varepsilon \vdash A$ true then A valid
- If A valid then $\Gamma \vdash A$ true

Notice how the second rule allows weakening while the first rule does not. This means that **validity does not depend on any local assumptions**.

Judgment

 $\Delta; \Gamma \vdash A \text{ true}$

- Δ the **global** context. It contains valid assumptions that holds **forever**.
- Γ the **local** context. It contains assumptions that hold **here and now**.

So, the definition of validity can be written as:

$$\frac{y: A \text{ true} \in \Gamma}{\Delta; \Gamma \vdash A \text{ true}} \qquad \frac{x: A \text{ valid} \in \Delta}{\Delta; \Gamma \vdash A \text{ true}}$$

Now we start to introduce the modality \square :

$$\frac{\Delta; \cdot \vdash A \text{ true}}{\Delta; \Gamma \vdash \Box A \text{ true}} \Box I$$

Just as \rightarrow is internalizing reasoning on implication, \square is internalizing reasoning on validity.

T law (reflexivity).

$$\frac{\cdot; x: \Box A \vdash A \text{ true}}{\cdot; \cdot \vdash \Box A \to A \text{ true}} \to I^x$$

i.e. If it's true everywhere and forever, then it's also true here and now.

A detour

One may be tempted to define \square_E as such

$$\frac{\Delta; \Gamma \vdash \Box A}{\Delta; \Gamma \vdash A}$$

Let's see if it's locally complete as a sanity check.

$$\Delta; \Gamma \vdash \Box A \text{ true}$$

should be able to expand to

$$\Delta; \Gamma \vdash \Box A \text{ true}$$

$$\frac{\frac{\dots}{\Delta; \cdot \vdash A \text{ true}}}{\frac{\Delta; \Gamma \vdash \Box A \text{ true}}{}{\Box I}} \Box I$$

Boom!

The correct solution

A let-style definition!

And now we have

1. (Substitution) If Δ ; Γ , x: A true $\vdash C$ true and Δ ; $\Gamma \vdash A$ true, then Δ ; $\Gamma \vdash C$ true. e.g.

$$(\text{box } N)[M/x] = \text{box } N$$

2. (Modal Substitution) If Δ , u: A valid; $\Gamma \vdash C$ true and Δ ; $\cdot \vdash A$ true, then Δ ; $\Gamma \vdash C$ true. e.g.

$$(\text{box } N)[M/u] = \text{box } (N[M/u])$$

Now let's try to rephrase locally soundness

$$\frac{\Delta; \cdot \vdash M : A \text{ true}}{\Delta; \Gamma \vdash \text{box } M : \Box A \text{ true}} \Box I \qquad \Delta, u : A \text{ valid}; \Gamma \vdash N : C \text{ true}}{\Delta; \Gamma \vdash \text{let box } u \coloneqq \text{box } M \text{ in } N : C \text{ true}} \Box E^u$$

collapses to

$$\Delta$$
; $\Gamma \vdash N \llbracket M/u \rrbracket : C$

Real Programming Example

This function does not do anything if you only pass it an integer. It just sits there, not producing anything meaningful.

How to avoid this situation and force it generate a real function?

```
1 nth: int -> □(bool_vec -> bool)
2 nth 0 = box (fun v -> hd v)
3 nth (S n) =
4 let box r = nth n in box (fun v -> r (tl v))
```

In this case, box makes sure the function generated does not depend on int.

Compare

```
1 nth 1
2 = fun v → tl (nth 0 v)
3 = fun v → tl (hd v)
```

with

```
1 nth 1
2 = let box r = nth 0 in box (fun v → r (tl v))
3 = let box r = box (fun v → hd v) in (fun v → r (tl v))
4 = box (fun v → (fun v0 → hd v0) (tl v))
```

Notice how the returned function is not a closure over n.

However, if you compare these two functions you still find the latter one not satisfying cuz it's returning a redex and it's in a box so it get stuck.

Contextual types to the rescue!

Contextual types

Previously, we wrote $\Box A$ to mean A starts with an empty context, which is not sufficient in many cases. So instead, let's allow specifying a context Γ for A .
 Add eggs, flour, sugar Add (a liquid)
To type , it's eggs, flour, sugar ⊩ liquid
Or in a more PL setting,
fun $x \to \square + x$, you can see the hole here accepts an $x : \text{int} \Vdash \text{int}$