

Figure 1: The HH ($\sigma_{\phi\phi,\mathrm{dB}}$, left) and VV ($\sigma_{\theta\theta,\mathrm{dB}}$, right) polarized RCS for the PEC almond of length L= 9.936 in at frequency f = 3.5 GHz.

Figure 2: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the PEC almond of length L= 9.936 in at frequency f = 5.125 GHz.

Figure 3: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the PEC almond of length L= 9.936 in at frequency f = 7 GHz.

Figure 4: The HH ($\sigma_{\phi\phi,dB}$, left) and VV ($\sigma_{\theta\theta,dB}$, right) polarized RCS for the PEC almond of length L= 9.936 in at frequency f = 10.25 GHz.

The above RCS results are that of the reference measurement and simulation data in the benchmark suite. They are the same as those plotted in Figs. 11-12 of [1].

Notes

- 1. The measurement data are provided at every $0.25^{\rm o}$ in the azimuthal range; the simulation data are at every $0.5^{\rm o}$.
- 2. The $L\approx 20~{\rm in}$ almond's measurement data were actually obtained at half the frequency of the $L\approx 10~{\rm in}$ almond for each case and shifted down by 10log4 dB [1].
- 3. The simulation data were calculated by using the ARCHIE-AIM code, a frequency-domain FFT-accelerated integral-equation solver developed at UT Austin [2]-[4], and are the same as the finest mesh (\approx 0.6-mm average edge length) results in [1].

References

- [1] J. T. Kelley, D. A. Chamulak, C. C. Courtney, and A. E. Yılmaz, "EM programmers notebook-Rye Canyon RCS measurements of benchmark almond targets" in *IEEE Ant. Popag. Soc. Mag.*, 2019.
- [2] M. F. Wu, G. Kaur, and A. E. Yılmaz, "A multiple-grid adaptive integral method for multi-region problems," *IEEE Trans. Antennas Propag.*, vol. 58, no. 5, pp. 1601-1613, May 2010.
- [3] F. Wei and A. E. Yılmaz, "A more scalable and efficient parallelization of the adaptive integral method part I: algorithm," *IEEE Trans. Antennas Propag.*, vol. 62, no.2, pp. 714-726, Feb. 2014.
- [4] J. W. Massey, V. Subramanian, C. Liu, and A. E. Yılmaz, "Analyzing UHF band antennas near humans with a fast integral-equation method," in *Proc. EUCAP*, Apr. 2016.