EE 619

Radio Frequency Microelectronic Chip Design Endsem Exam

4th May 2021, 3.00pm-6.00pm

1. For the given collpits oscillator, prove that the condition of oscillation is $g_m.R_P=4$ and $C_1=C_2$ (3 M)

2. For oscillation stability prove that $\Theta + \Theta$ is between 0 and 180 degree. (3 M)

3. The simplified Hartely architecture shown incorporates mixers having a voltage conversion gain of A_{mix} and infinite input impedance. Taking into account only the noise of the two resistors, compute the noise figure of the receiver with respect to a source resistance of R_S at an IF of $1/R_1C_1$. (3 M)

4. In the given figure, find the voltage conversion gain (A_{VC}) of the mixer in dB. Assume that the resonant tank circuit (LRC) will sufficiently allow the (ω_{RF} - ω_{LO}) frequency component and reject others. Given, g_m of the MOSFETS is 2mS, R=3K Ω , V_{bias}=1V, V_{thn}=0.5V, Amplitude of the square wave of LO=1.2V,(LO oscillated between 0 and 1.2 with frequency ω_{LO}). (Assume VDD = 1.2V)

5. For the given architecture, derive the expression of Image Rejection Ratio (IRR) as a function of ε and $\Delta\Theta$. Hence prove that IRR $\approx \frac{4}{\varepsilon^2 + \Delta\Theta^2}$ if $\Delta\Theta << 1$ rad and $\varepsilon << 1$ rad.(Assume one LO waveform is expressed as $\sin \omega_{Lo} t$ and the other as $(1+\varepsilon).\cos(\omega_{Lo} t + \Delta\Theta)$ due to mismatches)

6. Design a class-B RF power amplifier to deliver an output power of 5.1dBm at f_0 =2.45GHz. The bandwidth is 500MHz.Assume V_{DD} =1.8V, V_{th} =0.6V (Threshold voltage of NMOS) $\mu_n C_{ox}$ =200 μ A/V².(Assume input AC source v_{gs} =0.2cos(ω t). Tabulate the values of R_{load} , L, C, W/L of transistor M. Draw the voltage waveform at R_{load} and current waveform I_d of transistor M of at least one cycle. Clearly label the amplitudes. (6 M)

7. A Hilbert transform of a signal $m(t) \leftarrow \rightarrow m_h(t)$ with the relation (2 M)

 $m_h(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{m(t)}{t-\tau} d\tau$ and $M_H(f) = -jsgn(f) \cdot M(f)$ show that for a upper sideband modulated signal resulting from m(t) and $\cos(2\pi f_c t)$ is given by $s(t) = \frac{1}{2} [m(t)\cos(2\pi f_c t) - mh(t)\sin(2\pi f_c t)]$

8. The below figure shows the concept of Heterodyne Transmitter. Signal conversion happens in two steps as shown. The frequency of up-conversion is f_0 =5GHz. Units in spectrum are in MHz. Assume that f_1 =1GHz and f_2 =4GHz . The spectrum of I signal is real. The Q spectrum is 90 degrees phase shifted version of I spectrum (Imaginary). The I and Q signals are at base band(Close to DC). Our goal is to have final PA transmitter spectrum at 5GHz.

b. Sketch the characteristics of the desired BPF?(Center frequency & Stopband) (2M)

