

Optimización

Formulación matemática

Docente: Cristian Guarnizo Lemus

Contenido

- 1. Definición formal de la optimización
- 2. Conocimientos matemáticos.
- 3. Condiciones de optimalidad en problemas suaves sin restricciones.

Curvas de Nivel

Problema de optimización simple

$$\min_{\mathbf{x}} f(\mathbf{x})$$

Función objetivo

s.t.
$$c_i(x) = 0, \forall i \in E$$
 Restricciones de igualdad

$$c_i(x) \leq 0, \forall i \in I$$
 Restricciones de desigualdad

Ejemplo:

$$\min_{\mathbf{x}}(x_1-2)^2 + (x_2-1)^2$$

Conjunto de soluciones Factibles RI y RD

C2

$$x_1 + x_2 \le 2$$
 $x_2 \le 2 - x_{1 \text{ C3}}$

Solución optima,

Problema de optimización no-lineal

Formulación general:

$$\min_{\mathbf{x} \in D} f(\mathbf{x})$$

s.t.
$$c_i(x) = 0, i \in E$$

 $c_i(x) \le 0, i \in I$

$$\mathbf{x} = [x_1, x_2, ..., x_n]^{\mathsf{T}} \in D \subseteq \mathbb{R}^n$$
 un vector (punto)

D conjunto anfitrión

 $f: D \to R$ función objetivo

 $c_i: D \to R$ funciones de restricción $\forall i \in E \cup I$

E el conjunto índice de las restricciones de igualdad

I el conjunto índice de las restricciones de desigualdad

Las restricciones y el conjunto anfitrión define el conjunto factible, esto es, el conjunto de todas las soluciones factibles:

$$\Omega = \{ x \in D | c_i(x) \le 0 \ \forall i \in I, c_i(x) = 0 \ \forall i \in E \}$$

Formulación equivalente:

$$\min_{\mathbf{x}\in\Omega}f(\mathbf{x})$$

n Sentido Humano

Cual es una solución optima?

- Solución en el perímetro del conjunto factible
- a) x^* es una solución local sí $x^* \in \Omega$ y una vecindad $N(x^*)$ de x^* existe: $f(x^*) \leq f(x) \forall x \in N(x^*) \cap \Omega$
- b) x^* es una solución local estricta sí $x^* \in \Omega$ y una vecindad $N(x^*)$ de x^* existe: $f(x^*) < f(x) \forall x \in N(x^*) \cap \Omega$, $x \neq x^*$
- c) x^* es una solución global sí $x^* \in \Omega$ y $f(x^*) \le f(x) \ \forall x \in \Omega$

Solución optima: ejemplos

a) Mínimo global estricto

c) Un mínimo local estricto, no hay mínimo global.

b) Dos mínimos locales estrictos, donde uno es un mínimo global estricto.

d) Cada $x \in [a, b]$ es un mínimo global y local sin mínimo estricto.

Chequeo

- Escribir la definición general de un problema de optimización.
- Definición de una solución local y global de un problema de optimización?
- Que es el conjunto factible de un problema de optimización?
- Puede una solución ser el punto interior de un conjunto factible? Sobre su perímetro? Por fuera del conjunto factible? – Dibujar una figura explicativa.

Contenido

- 1. Definición formal de la optimización
- Conocimientos matemáticos.
- 3. Condiciones de optimalidad en problemas suaves sin restricciones.

Problema de optimización no-lineal

Formulación general:

$$\min_{\mathbf{x}\in D}f(\mathbf{x})$$

s.t.
$$c_i(x) = 0, i \in E$$

 $c_i(x) \le 0, i \in I$

$$\mathbf{x} = [x_1, x_2, ..., x_n]^\mathsf{T} \in D \subseteq \mathbb{R}^n$$
 un vector (punto)

D conjunto anfitrión

 $f: D \to R$ función objetivo

 $c_i: D \to R$ funciones de restricción $\forall i \in E \cup I$

E el conjunto índice de las restricciones de igualdad

I el conjunto índice de las restricciones de desigualdad

Las restricciones y el conjunto anfitrión define el conjunto factible, esto es, el conjunto de todas las soluciones factibles:

$$\Omega = \{ x \in D | c_i(x) \le 0 \ \forall i \in I, c_i(x) = 0 \ \forall i \in E \}$$

Formulación equivalente:

$$\min_{\mathbf{x}\in\Omega}f(\mathbf{x})$$

Sentido Humano

Derivada direccional

Definición:

Sea $f: D \to R$, $D \subseteq R^n$, $x \in D$ y $p \in R^n$ con ||p|| = 1.

f es diferenciable en el punto $x = x_a$ en la dirección \boldsymbol{p} si el limite,

$$D(f, \mathbf{p})|_{\mathbf{x}=\mathbf{x}_a} = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x}_a + \varepsilon \mathbf{p}) - f(\mathbf{x}_a)}{\varepsilon} =: \nabla_{\mathbf{p}} f(\mathbf{x}_a)$$

D(f, p) es llamada la derivada direccional de f en la dirección p. Rapidez de cambio de la función f en la dirección p ubicada en el punto x_a .

$$\nabla_{\boldsymbol{p}} f(\boldsymbol{x}_a) = \nabla f \cdot \boldsymbol{p}$$

Gradiente

Definición:

La primera derivada de una función continua escalar es llamada gradiente de f en el punto x:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} |_{\mathbf{x}} \\ \vdots \\ \frac{\partial f}{\partial x_n} |_{\mathbf{x}} \end{bmatrix}.$$

El vector gradiente también indica la dirección en la cual crece la función (pendiente en el punto x) Observaciones:

Si x es función de t, se aplica la regla de la cadena:

$$\left. \frac{df}{dt} \right|_{x(t)} = \nabla f(x)^{\mathsf{T}} \left. \frac{dx}{dt} \right|_{t} = \sum_{i=1}^{n} \left. \frac{\partial f}{\partial x_{i}} \right|_{x(t)} \left. \frac{\partial x_{i}}{\partial t} \right|_{t}.$$

La derivada direccional esta relacionada con el gradiente:

$$D(f(\mathbf{x}), \mathbf{p}) = \nabla_{\mathbf{p}} f(\mathbf{x}) = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{p}) - f(\mathbf{x})}{\varepsilon} = \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{p}$$

Vigilada Mineducación

Hessiana (matriz)

Definición:

• La segunda derivada de una función continua escalar diferenciable dos veces es una matriz simétrica llamada Hessiana, H(x):

$$H(x) = \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \dots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 x_n} & \dots & \frac{\partial^2 f}{\partial x_n^2} \\ x & & & \end{bmatrix}.$$

Condiciones suficientes y necesarias

 Condición necesaria: Declaración A es una condición necesaria para la declaración B sí (y solo sí) la falsedad de A garantiza la falsedad de B. En notación matemática: not A ⇒ not B.

 Condición suficiente: Declaración A es una condición suficiente para la declaración B si (y solo si) la verdad de A garantiza la verdad de B. En notación matemática: A ⇒ B.

Condiciones suficientes y necesarias

- Si la declaración A es una condición necesaria para la declaración B, entonces B es una condición suficiente para la declaración A.
 - not $A \Longrightarrow \text{not } B \text{ implica } B \Longrightarrow A$
- Si la declaración A es una condición suficiente para la declaración B, entonces B es una condición necesaria para la declaración A.
 - $-A \Longrightarrow B \text{ implica not } B \Longrightarrow \text{not } A$

Condiciones suficientes y necesarias

- En optimización queremos verificar fácilmente las condiciones de un punto candidato
 - es un optimo local (condición suficiente para optimalidad es suficiente)
- no es una condición optima (condición necesaria es violada) Idealmente queremos condiciones que sean necesarias y suficientes para un optimo local (o mejor aun para global).

Condiciones suficientes y necesarias: ejemplos

• Ejemplo simple: sea $x \in R$ y $y = x^2$.

Declaración A "x es positivo" y declaración B "y es positivo"

- A es suficiente para B.

Prueba: A verdadero $\Leftrightarrow x > 0 \Rightarrow x^2 > 0 \Rightarrow y > 0 \Leftrightarrow B$ verdadero.

- A no es necesario para B.

Prueba: contra ejemplo

 $x = -1 \Rightarrow y = x^2 = 1$, entonces B es verdadero y A es falso.

Chequeo

- Que funciones son continuas, diferenciables, continuas y diferenciables?
- Como se define la derivada direccional de una función? Como esta la derivada parcial relacionada con la derivada direccional?
- Cual es la definición del gradiente y la Hessiana de una función?

Contenido

- 1. Definición formal de la optimización
- Conocimientos matemáticos.
- 3. Condiciones de optimalidad en problemas suaves sin restricciones.

Optimización sin restricciones

Problema de optimización sin restricciones:

Caso especial para el cual el conjunto factible $\Omega = R^n$

$$\min_{\mathbf{x}\in \mathbb{R}^n}f(\mathbf{x})$$

• x^* es solución local sí $x^* \in \mathbb{R}^n$ y un vecindario $N(x^*)$ de x^* existe:

$$f(\mathbf{x}^*) \leq f(\mathbf{x}), \forall \mathbf{x} \in N(\mathbf{x}^*)$$

Queremos condiciones fáciles de evaluar

Necesaria: si x^* es optimo entonces las condiciones se satisfacen.

Suficiente: si la condición esta satisfecha entonces x^* es optimo.

Idealmente ambos son necesarios y suficientes!

Universitaria Reacreditada en Alta Calidad Condiciones necesarias de primer orden

Teorema (Condiciones necesarias de primer orden):

Sea f continuamente diferenciable y sea $x^* \in \mathbb{R}^n$ un minimizador local de f, entonces

$$\nabla f(x^*) = \mathbf{0}$$

Prueba:

Como x^* es un minimizador local de f, para cada $p \in$ R^n , existe un $\tau > 0$, tal que $f(\mathbf{x}^* + \varepsilon \mathbf{p}) \ge f(\mathbf{x}^*) \forall \varepsilon \in [0, \tau]$

By the definition of the directional derivative:

$$\nabla_{\boldsymbol{p}} f(\boldsymbol{x}^*) = \lim_{\varepsilon \to 0} \frac{f(\boldsymbol{x}^* + \varepsilon \boldsymbol{p}) - f(\boldsymbol{x}^*)}{\varepsilon} = \nabla f(\boldsymbol{x}^*)^T \boldsymbol{p} \ge 0$$
 (1)

The special choice, $p = -\nabla f(x^*)$, leads to

$$\nabla f(\mathbf{x}^*)^T \mathbf{p} = -\nabla f(\mathbf{x}^*)^T \nabla f(\mathbf{x}^*) = -\|\nabla f(\mathbf{x}^*)\|^2 \le 0 \quad \text{(norm property)}$$
 (2)

(1) and (2)
$$\Rightarrow \nabla f(x^*) = 0$$
.

Puntos estacionarios

- Sea f continuamente diferenciable y $x \in R^n$. Si $\nabla f(x^*) = 0$ se mantiene, entonces x^* es llamado un punto estacionario de f.
- Esta condición es necesaria, pero no una condición suficiente para un mínimo local.
- Ejemplo: $f(x) = -x^2$ posee un solo punto estacionario en $x^* = 0$, debido que $\nabla f(x^*) = -2x^* = 0$. Este punto no es un mínimo sino un máximo global.

Punto de ensilladura

- Un punto estacionario no tiene que ser un mínimo o un máximo. Este punto estacionario es llamado un punto de ensilladura (saddle point).
- Ejemplo: el gradiente de $f(x) = x_1^2 x_2^2$ es $\nabla f(x) = [2x_1, -2x_2]^\mathsf{T}$. Entonces, $x^* = \mathbf{0}$ es el único punto estacionario. Como f es curvada positiva en la dirección x_1 y negativamente curvada en la dirección x_2 , x^* es un punto de ensilladura.

Condiciones necesarias de segundo orden

Teorema (condiciones necesarias de segundo orden):

Sea f dos veces diferenciable y sea $x^* \in \mathbb{R}^n$ un minimizador local de f, entonces

- 1. $\nabla f(\mathbf{x}^*) = \mathbf{0}$, 2. $\nabla^2 f(\mathbf{x}^*)$ es semidefinida positiva.

Estas condiciones son solamente necesarias pero no suficientes

- El único punto estacionario de $f(x) = x^3$ es $x^* = 0$, con $\nabla f(0) = 0$, $\nabla^2 f(0) = 0$ 0. Se cumplen ambas condiciones. $x^* = 0$ no es un mínimo local pero si es un punto de ensilladura.
- El único punto estacionario de $f(x) = -x^4$ es $x^* = 0$, con $\nabla f(0) = 0$, $\nabla^2 f(0) = 0$. Se satisfacen las dos condiciones. Pero $x^* = 0$ no es un mínimo local sino un máximo local.

Condiciones necesarias de segundo orden: demostración

Sea f dos veces diferenciable y sea $x^* \in \mathbb{R}^n$ un minimizador local de f.

Asumir $\nabla^2 f(x^*)$ no es semidefinida positiva.

Entonces,
$$\exists \boldsymbol{p} \in R^n : \boldsymbol{p}^\mathsf{T} \nabla^2 f(\boldsymbol{x}^*) \boldsymbol{p} < 0$$

La expansión de Taylor en x^* nos da

$$f(\mathbf{x}^* + \epsilon \mathbf{p}) = f(\mathbf{x}^*) + \epsilon \nabla f(\mathbf{x}^*)^\mathsf{T} \mathbf{p} + \frac{1}{2} \epsilon^2 \mathbf{p}^\mathsf{T} \nabla^2 f(\mathbf{x}^*) \mathbf{p} + O(\epsilon^3).$$

 x^* es un mínimo local y entonces la condición necesaria de primer orden

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

Para ϵ lo suficientemente pequeño, $O(\epsilon^2)$ domina sobre $O(\epsilon^3)$. Debido que $\mathbf{p}^{\mathsf{T}}\nabla^2 f(\mathbf{x}^*)\mathbf{p} < 0 \rightarrow f(\mathbf{x}^* + \epsilon \mathbf{p}) < f(\mathbf{x}^*)$

Somos Innovación Tecnológica con Sentido Humano

Condiciones suficiente para optimalidad

Teorema (condiciones suficientes para optimalidad): Sea f dos veces diferenciable y sea $x^* \in \mathbb{R}^n$, sí

- 1. $\nabla f(\mathbf{x}^*) = \mathbf{0}$, 2. $\nabla^2 f(\mathbf{x}^*)$ es definida positiva.

Entonces x^* es un minimizador local estricto de f.

Observación:

- $f(x) = x^4$ tiene en x = 0 su (único) mínimo global estricto. Además, $\nabla f(0) = 0$ y $\nabla^2 f(0) = 0$ se mantienen, entonces la segunda condición del teorema se viola.
- Por eso, las condiciones mencionadas en el teorema son suficientes pero no necesarias.

Condiciones de optimalidad para problemas suaves

- Condiciones de optimalidad están en un punto, no para todo \mathbb{R}^n .
- Todos los conjuntos mostrados son subconjuntos.
- Las condiciones necesarias de primer orden excluyen los puntos no estacionarios.
- Las condiciones necesarias de segundo orden excluyen algunos puntos y algunos máximos locales, pero no todos.

Sentido Humano

Chequeo

- Que es un punto estacionario? Existen diferentes tipos de puntos estacionarios?
- Cuales son las condiciones necesarias de primer orden para problemas suaves sin restricciones?
- Cuales son las condiciones necesarias de segundo orden para problemas suaves sin restricciones?
- Cuales son las condiciones suficientes de segundo orden para problemas suaves sin restricciones?

1 Gracias!

