1. (8 punti) Considera il linguaggio

$$L = \{0^m 1^n \mid m/n \text{ è un numero intero}\}.$$

Dimostra che L non è regolare.

- 2. (8 punti) Per ogni linguaggio L, sia prefix $(L) = \{u \mid uv \in L \text{ per qualche stringa } v\}$. Dimostra che se L è un linguaggio context-free, allora anche prefix(L) è un linguaggio context-free.
- 3. (8 punti) Una Turing machine con alfabeto binario è una macchina di Turing deterministica a singolo nastro dove l'alfabeto di input è $\Sigma = \{0,1\}$ e l'alfabeto del nastro è $\Gamma = \{0,1,\bot\}$. Questo significa che la macchina può scrivere sul nastro solo i simboli 0,1 e blank: non può usare altri simboli né marcare i simboli sul nastro.

Dimostra che che le Turing machine con alfabeto binario machine riconoscono tutti e soli i linguaggi Turing-riconoscibili sull'alfabeto $\{0,1\}$.

4. (8 punti) Supponiamo che un impianto industriale costituito da m linee di produzione identiche debba eseguire n lavori distinti. Ognuno dei lavori può essere svolto da una qualsiasi delle linee di produzione, e richiede un certo tempo per essere completato. Il problema del bilanciamento del carico (LOADBALANCE) chiede di trovare un assegnamento dei lavori alle linee di produzione che permetta di completare tutti i lavori entro un tempo limite k.

Più precisamente, possiamo rappresentare l'input del problema con una tripla $\langle m, T, k \rangle$ dove:

- m è il numero di linee di produzione;
- T[1...n] è un array di numeri interi positivi dove T[j] è il tempo di esecuzione del lavoro j;
- \bullet k è un limite superiore al tempo di completamento di tutti i lavori.

Per risolvere il problema vi si chiede di trovare un array A[1...n] con gli assegnamenti, dove A[j] = i significa che il lavoro j è assegnato alla linea di produzione i. Il tempo di completamento (o makespan) di A è il tempo massimo di occupazione di una qualsiasi linea di produzione:

$$\operatorname{makespan}(A) = \max_{1 \leq i \leq m} \sum_{A[j] = i} T[j]$$

LOAD BALANCE è il problema di trovare un assegnamento con makespan minore o uguale al limite superiore k:

LOADBALANCE = $\{\langle m, T, k \rangle \mid$ esiste un assegnamento A degli n lavori su m linee di produzione tale che makespan $(A) \leq k\}$

Figura 1: Esempio di assegnamento dei lavori $T = \{1, 1, 2, 2, 2, 3, 3, 4\}$ su 3 linee con makespan 7.

- (a) Dimostra che LOADBALANCE è un problema NP.
- (b) Dimostra che LOADBALANCE è NP-hard, usando SETPARTITIONING come problema NP-hard di riferimento.