RYERSON UNIVERSITY

Research Methods

Quantitative, Qualitative Methods and Experimental Computer Science

Topics of Interest

- Teaching is dangerous
- Categories of Research
- Problems with these categories
- The monkey analogy
- Why Research?

Teaching is Dangerous

- You are responsible for the 3 pillars as an academic.
- One of the pillars is teaching and can take up all your available time.
- But it is also very rewarding and can tempt you into the life of teaching focus.
- (It shames me to say) this decision would be a mistake in our current system.

Research Career

Research Method Categories

- We have to thank Psychology for helping us with this.
- Research methods are generally categorized as either
 - Quantitative, or
 - Qualitative
- This may or may not be applicable to your work

Qualitative Research

- Concentrates on collecting and analyzing subjective data
- Usually the perceptions of the people involved
- Intention is to illuminate perceptions and, thus, gain
 - greater insight (explain why) and
 - Knowledge (reproduce or recognize).

Complexity Problem

 Research indicating influences of philosophers on one another after Kant (1724-1804)

Subjectivity Problem

What this monkey doing?

Quantitative Research

- Concentrates on what can be measured.
- Involves collecting and analyzing objective data
- Usually involves some form of math
 - Statistical
 - Calculus
 - Discrete

Causality Problem

- Data taken from 20 year study of 2438 middleaged Welsh men's shaving habits discovered that the unshaven are;
 - Less likely to be married
 - More likely to be blue-collar
 - Had a 45% higher death rate
 - Had a 70% higher risk of stroke
 - Were shorter
 - More likely to suffer from Angina
- Conclusion: Not shaving causes these problems?

Quantity vs. Quality

	Qualitative Research	Quantitative Research
Type of reasoning	Inductive (infer general from specific)	Deductive (infer specific from general)
Link with concepts	identifies concepts from situation	Has predetermined concepts and investigates relationships
Action	Usually only describes the action in a situation	tests relationships between concepts on performing an action
Outcome	illuminates the situation by adding examples	accepts or rejects proposed theory
Approach to validity	truth seen as context bound (socially constructed)	truth seen as objective and universal

Quantity vs Quality

Quantitative

- We have an hypothesis that monkeys will put bananas to their ears
- We gave bananas to monkeys
- If we say banana to ear == "Monkeycide"
- We counted xx instances of Monkeycide over yy trials
- Our hypothesis is accepted if xx > 0

Qualitative

- We saw monkeys pick up bananas
- We observed the monkeys placing bananas to their ears
- From observation we have the concept: "Monkeycide"
- Monkeys Jenny, Irene and Blake exhibited Monkeycide

Why Research?

- Research is conducted to solve problems
 - Descriptive (find facts)
 - Exploratory (identify patterns)
 - —Analytical (explain why or how)
 - Predictive (forecast the likelihood of particular events)
 - Problem Solving (improve current practice)

Descriptive Research

- Purpose
 - To describe the way things are or were accurately
- Two main types
 - Surveys
 - Observations

Surveys

- Two reasonable ways of doing it
 - Questionnaire
 - Relies on carefully composed questions
 - Interview
 - Face-to-face
 - Electronically (phone, chat, email, etc.)

Situational Observation

- Set up a situation and talk to people about what they are doing when they are dealing with the situation.
- You are not a participant
- Setting can be
 - Naturally occurring
 - Simulated
 - Something in between

The Setting

E*X

Exploratory Research

- Done when a problem is not clearly defined
- Exploratory research helps determine the best
 - research design,
 - data collection method and
 - selection of subjects.

The "Oh Crap!" moment

Analytical Research

- Seeks to explain the reasons behind a particular occurrence by discovering causal relationships.
- Once causal relationships have been discovered, the search then shifts to factors that can be changed (variables) in order to influence the chain of causality.
- You poke at it to see what makes it tic!

This may not be easy

Predictive Research

 Seeks to forecast the likelihood of particular phenomena occurring under the given circumstances.

Problem Solving Research

- A form of problem solving based on increasing knowledge through observation and reflection, then following this with a deliberate intervention intended to improve practice.
- You examine current practices and change them (not necessarily for the better)
- Mostly a Social Science format

Computer Science Contribution to Research Methods

- Experimental Computer Science (ECS)
- ECS is the creation of, or the experimentation on HW/SW systems
 - Known as computational artifacts (CA).

Artifacts

- People-created things with
 - Meaning (the thing has a name and expectations)
 - Functionality (the thing does something)
 - Observability (the thing has an observable behaviour)
- Representative of
 - a class of similar things
 - Subject of a study
 - Apparatus for a study

Example Computational Artifacts

- computers, phones, robots...
- compilers, editors, FB
- Programming languages, architectures, protocols, and methodologies (objectorientation, ...)
- Normally Complex
 - Hard to make
 - Dynamic behaviour

What do we use CAs for?

- Measurement and Experimentation tool (quantitative results)
 - Example: implementation of algorithms
- Proof of concept
 - Example: "Cut, Copy, Paste" metaphors
- Proof of existence
 - Example: computer mouse

Our process (generally) is:

- Form a hypothesis
- Construct a model
- Make a prediction
- Design an experiment
- Collect data
- Analyze results with respect to prediction

Challenges

- What if the result does not match the prediction?
 - Change the predictions based on the evidence
 - Do nothing
 - Learn something
- What if I don't want to experiment at all?
 - Early CS study of 400 papers showed that <40% had any experimental validation (50% for SE papers)

