MAP670L - Validation

Chosen article: "Uniform convergence may be unable to explain generalization in deep learning, Vaishnavh Nagarajan and J. Zico Kolter (2019)"

Group 5 David Admète, Benjamin Cohen

Exercise 1:

Title: Nearly vacuous uniform convergence bound can hide good generalization.

Summary: The goal of this exercise is to present an example of a linear classifier in which uniform convergence bound does not behave like generalization error. More precisely, we will show that the given classifier has a small generalization error, but a tightest algorithm-dependent uniform convergence bound close to 1.

Notations: Let $(\mathcal{X}, \|\cdot\|)$ a K+D dimensional normed vector space, with $\|\cdot\|$ the Euclidean norm. Each element $x \in \mathcal{X}$ is noted (x_1, x_2) with $x_1 \in \mathbb{R}^K$ and $x_2 \in \mathbb{R}^D$. Let $m \in \mathbb{N}^*$ the size of the training sets. All the training sets considered are elements of $(\mathcal{X} \times \{-1, 1\})^m$, with $\{-1, 1\}$ the two classes of the problem. $u \in \mathbb{R}^K$ determines the center of the classes, and $\|u\|^2 = 1/m$. Let \mathcal{D} a distribution on $\mathcal{X} \times \{-1, 1\}$ such that if $(x, y) \sim D$, y is uniformly drawn from $\{-1, 1\}$, $x_1 = 2y \cdot u$, and $x_2 \sim \mathcal{N}(0, \frac{16}{D}I_D)$ independently. For a set A, $\mathbb{I}(A)$ is the characteristic function of A

We consider a linear classifier on \mathcal{X} with weights $w=(w_1,w_2)\in\mathbb{R}^K\times\mathbb{R}^D$ initialized to origin. For $x\in\mathcal{X}$, the hypothesis h learned by the classifier satisfies $h(x)=w_1x_1+w_2x_2$. Given a training set $S=\{(x^{(i)},y^{(i)})\}_{i\in\llbracket 1,m\rrbracket}$ of independent samples, the learning algorithm takes one gradient step of learning rate 1 to maximize $y\cdot h(x)$ for each $(x,y)\in S$. h_S denotes the hypothesis function learned on S. We will note $S_i=\{(x^{(j)},y^{(j)})\}_{j\neq i}$. We denote $\mathcal{L}:\mathbb{R}\times\{-1,1\}\to\{0,1\}$ the 0-1 loss, taking as argument (y',y) with y' the classifier's output and y the true label, and returning 0 if yy'>0 else 1. The expected loss is $\mathcal{L}_{\mathcal{D}}(h):=\mathbb{E}_{(x,y)\sim D}[\mathcal{L}(h(x),y)]$. The empirical loss on the set S of size m is $\hat{\mathcal{L}}_S(h):=\frac{1}{m}\sum_{i=1}^m \mathcal{L}(h(x^{(i)}),y^{(i)})$. Let's set $\varepsilon>0$ and $0<\delta<1/4$ two small quantities.

Recall that the generalization error is the smallest value $\varepsilon_{\text{gen}}(m,\delta)$ such that $\Pr_{S \sim \mathcal{D}^m}[\mathcal{L}_{\mathcal{D}}(h_S) - \hat{\mathcal{L}}_S(h_S)] \leq \varepsilon_{\text{gen}}(m,\delta) \geq 1-\delta$. The tightest algorithm-dependent uniform convergence bound, which will be called u-a bound, is the smallest value $\varepsilon_{\text{u-a}}$ such that there exists S_{δ} satisfying $\varepsilon_{\text{u-a}}(m,\delta) \geq \sup_{(S,S')\in S_{\delta}^2} \left|\mathcal{L}_{\mathcal{D}}(h_{S'}) - \hat{\mathcal{L}}_S(h_{S'})\right|$, with S_{δ} such that $\Pr_{S\sim\mathcal{D}^m}[S\in S_{\delta}] \geq 1-\delta$.

Accepted lemma A. For $\alpha > 0$, $a = (a_1, ..., a_n) \in \mathbb{R}^n$ and $\gamma \sim \mathcal{N}(0, I_n)$:

$$\exists C(\alpha) > 0, \quad \Pr_{\gamma \sim \mathcal{N}(0, I_n)} [|a \cdot \gamma| \geqslant C(\alpha) ||a||] \leqslant \alpha.$$

Accepted lemma B. For $D \geqslant \frac{8}{\delta}$ and $Z \sim \mathcal{N}(0, \frac{1}{D}I_D)$:

$$\Pr_{Z \sim \mathcal{N}(0, \frac{1}{D}I_D)} \left[\frac{1}{2} \leqslant \|Z\|^2 \leqslant \frac{3}{2} \right] \geqslant 1 - \delta.$$

Questions:

- 1. The aim of the first question is to prove that for D large enough, $\varepsilon_{\rm gen}(m,\delta) \leqslant \varepsilon$.
 - (a) Suppose that the training set $S = \{(x^{(i)}, y^{(i)})\}_{i \in [1, m]}$. Justify that $w_1 = 2m \cdot u$ and $w_2 = \sum_{i=1}^m y^{(i)} x_2^{(i)}$. Deduce that for all $i \in [1, m]$:

$$y^{(i)}h_S(x^{(i)}) = 4 + ||x_2^{(i)}||^2 + y^{(i)}x_2^{(i)} \sum_{j \neq i} y^{(j)}x_2^{(j)}.$$

(b) Let note $\sigma_i = \sum_{j \neq i} y^{(j)} x_2^{(j)}$. Using the lemma A, show that for D large enough:

$$\Pr_{S \sim \mathcal{D}^m} \left[\left| y^{(i)} x_2^{(i)} \sigma_i \sqrt{\frac{D}{16(m-1)}} \right| < \|x_2^{(i)}\| C(\delta/3m) \right] \geqslant 1 - \frac{\delta}{3m}.$$

(c) Using question 1a and then question 1b, deduce that for D large enough,

$$\Pr_{S \sim \mathcal{D}^m} \left[\hat{\mathcal{L}}_S(h_S) = 0 \right] \geqslant 1 - \frac{2\delta}{3}.$$

 $\textit{Hint: You can condition on the event studied in 1b to bound} \ \Pr \left[|y^{(i)} x_2^{(i)} \sigma_i| \geqslant 4 \right].$

(d) Let $(z, \tilde{y}) \sim \mathcal{D}$ independent from S. Prove that there exists $C'(\varepsilon, m)$ such that for $D > C'(\varepsilon, m)$:

$$\mathcal{L}(h_S(z), \tilde{y}) \leqslant \mathbb{1}\left(\left\{|z_2 \cdot w_2| \geqslant \|w_2\|C(\varepsilon)\sqrt{16/D}\right\}\right) + \mathbb{1}\left(\left\{\|w_2\|^2/16 \notin \left[\frac{m}{2}, \frac{3m}{2}\right]\right\}\right).$$

Hint: With \overline{A} and \overline{B} be the events inside the two indicator functions respectively, study $\tilde{y}h_S(z)(\omega)$ for $\omega \in \overline{A} \cap \overline{B}$.

(e) Show from all the previous questions that $\Pr_{S \sim \mathcal{D}^m} [\mathcal{L}_{\mathcal{D}}(h_S) - \hat{\mathcal{L}}_S(h_S) \leqslant \varepsilon] \geqslant 1 - \delta$ for D large enough. Deduce that $\varepsilon_{\text{gen}} \leqslant \varepsilon$.

Hint: Study $\mathbb{E}_{(z,\tilde{y})\sim\mathcal{D}}[\mathcal{L}(h_S(z),\tilde{y})]$ by applying the expectation on question 1d.

- 2. The aim of the second question is to prove that for D large enough, $\varepsilon_{\text{u-a}}(m, \delta) \geqslant 1 \varepsilon$. For a training set $S = \{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$ with $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$, we note $S_{\text{neg}} = \{(x_{\text{neg}}^{(1)}, y^{(1)}), ..., (x_{\text{neg}}^{(m)}, y^{(m)})\}$ with $x_{\text{neg}}^{(i)} = (x_1^{(i)}, -x_2^{(i)})$.
 - (a) Using the same reasoning as in question 1c, prove that for D large enough:

$$\Pr_{S \sim \mathcal{D}^m} \left[\hat{\mathcal{L}}_{S_{\text{neg}}}(h_S) = 1 \right] \geqslant 1 - \frac{2\delta}{3}.$$

(b) Deduce from the previous questions, prove that if S_{δ} satisfies $\Pr_{S \sim \mathcal{D}^m}[S \in S_{\delta}] \geqslant 1 - \delta$, we have for D large enough:

2

$$\Pr_{S \sim \mathcal{D}^m} \left[\{ S \in \mathcal{S}_{\delta} \} \ \cap \ \{ S_{\text{neg}} \in \mathcal{S}_{\delta} \} \ \cap \ \{ \mathcal{L}_{\mathcal{D}}(h_S) \leqslant \varepsilon \} \ \cap \ \{ \hat{\mathcal{L}}_{S_{\text{neg}}}(h_S) = 1 \} \right] > 1.$$

Conclude on question 2 and the exercise.

Solution 1:

1. (a) As the weights are initialized to 0 and the learning rate is equal to 1, applying the learning algorithm is equivalent to compute the gradient of $w_j \mapsto \sum_{i=1}^m y^{(i)} (w_1 x_1^{(i)} + w_2 x_2^{(i)})$ for $j \in \{1, 2\}$. As $\sum_{i=1}^m y^{(i)} x_1^{(i)} = 2m \cdot u$, we have $w_1 = 2m \cdot u$. The gradient calculation is immediate for $w_2 = \sum_{i=1}^m y^{(i)} x_2^{(i)}$. Let $i \in [1, m]$.

$$y^{(i)}h_S(x^{(i)}) = y^{(i)}(w_1x_1^{(i)} + w_2x_2^{(i)})$$

$$= y^{(i)}2mu \cdot 2y^{(i)}u + y^{(i)}\left(\sum_{j=1}^m y^{(j)}x_2^{(j)}\right) \cdot x_2^{(i)}$$

$$= 4m \underbrace{\|u\|^2}_{1/m} + \|x_2\|^2 + y^{(i)}x_2^{(i)}\sum_{j\neq i} y^{(j)}x_2^{(j)}.$$

(b) Let us note $\tilde{\sigma}_i = \sqrt{D/(16(m-1))}\sigma_i$. Notice that $\tilde{\sigma}_i \sim \mathcal{N}(0, I_n)$, and that σ_i and $x_2^{(i)}$ are independent. First, if we fix $x_2^{(i)}$, thanks to the lemma A, we have:

$$\Pr_{S_{i} \sim \mathcal{D}^{m-1}} \left[\left| y^{(i)} x_{2}^{(i)} \tilde{\sigma}_{i} \right| < \| x_{2}^{(i)} \| C(\delta/3m) \right] \geqslant 1 - \frac{\delta}{3m}.$$

We also have $\Pr_S[E_i] = \mathbb{E}_{x_2^{(i)}}[\mathbb{E}_S[\mathbb{1}(E_i)|x_2^{(i)}]] = \mathbb{E}_{x_2^{(i)}}[\Pr_{S_i}[E_i]]$. As $\Pr_{S_i}[E_i] \geqslant 1 - \frac{\delta}{3m}$, we obtain $\Pr_S[E_i] \geqslant 1 - \frac{\delta}{3m}$.

(c) Combining results of questions 1a and questions 1b, we obtain :

$$\Pr_{S \sim \mathcal{D}^{m}} \left[\hat{\mathcal{L}}_{S}(h_{S}) = 0 \right] \geqslant 1 - \sum_{i=1}^{m} \Pr_{S \sim \mathcal{D}^{m}} \left[y^{(i)} h(x^{(i)}) \leqslant 0 \right] \\
= 1 - \sum_{i=1}^{m} \Pr_{S \sim \mathcal{D}^{m}} \left[4 + \|x_{2}^{(i)}\|^{2} + y^{(i)} x_{2}^{(i)} \sigma_{i} \leqslant 0 \right] \\
\geqslant 1 - \sum_{i=1}^{m} \Pr_{S \sim \mathcal{D}^{m}} \left[\left| y^{(i)} x_{2}^{(i)} \sigma_{i} \right| \geqslant 4 \right].$$

By taking $D > 16mC(\delta/(3m))^2$, and conditioning on event E_i :

$$\begin{split} \Pr_{S \sim \mathcal{D}^m} \left[\left| y^{(i)} x_2^{(i)} \sigma_i \right| \geqslant 4 \right] &= \Pr_{S \sim \mathcal{D}^m} \left[\left| y^{(i)} x_2^{(i)} \sigma_i \right| \geqslant 4 \ \middle\| \ E_i \right] \Pr_{S \sim \mathcal{D}^m} \left[E_i \right] \\ &+ \Pr_{S \sim \mathcal{D}^m} \left[\left| y^{(i)} x_2^{(i)} \sigma_i \right| \geqslant 4 \ \middle\| \ \overline{E}_i \right] \Pr_{S \sim \mathcal{D}^m} \left[\overline{E}_i \right] \\ &\leqslant \Pr_{S \sim \mathcal{D}^m} \left[\left\| x_2^{(i)} \right\| \underbrace{\sqrt{\frac{16m}{D}} C(\delta/(3m))}_{C(\delta/(3m))} \geqslant 4 \right] + \Pr_{S \sim \mathcal{D}^m} \left[\overline{E}_i \right]. \end{split}$$

As $\Pr[\|x_2^{(i)}\| \geqslant 4] \leqslant \frac{\delta}{3m}$, and $\Pr[\overline{E}_i] \leqslant \frac{\delta}{3m}$, we obtain the desired result.

(d) Let $\overline{\mathcal{A}}$ and $\overline{\mathcal{B}}$ be the events inside the two indicator functions respectively, and $D > C'(\varepsilon, m) = 384mC(\varepsilon)^2$. For $\omega \in \overline{\mathcal{A}} \cap \overline{\mathcal{B}}$, omitting the ω dependency for clarity purposes, we have :

$$\tilde{y}h_S(z) = 4 + \tilde{y}z_2 \cdot w_2$$

$$\geqslant 4 - |z_2 \cdot w_2|$$
as $\omega \in \overline{A}$

$$\geqslant 4 - |w_2||C(\varepsilon)\sqrt{16/D}$$
as $\omega \in \overline{B}$

$$\geqslant 4 - C(\varepsilon)\sqrt{384m/D} \geqslant 3 > 0.$$

Then, $\mathcal{L}(h_S(z), \tilde{y})(\omega) = 0$. So as we can write $\Omega = \{\mathcal{A} \cap \mathcal{B}\} \sqcup \{\overline{\mathcal{A}} \cap \mathcal{B}\} \sqcup \overline{\mathcal{B}}$, we have $\mathcal{L}(h_S(z), \tilde{y}) \leq 1 \times \mathbb{1}(\overline{\mathcal{A}} \cap \mathcal{B}) + 0 \times \mathbb{1}(\mathcal{A} \cap \mathcal{B}) + 1 \times \mathbb{1}(\overline{\mathcal{B}})$. Thus, we finally obtain $\mathcal{L}(h_S(z), \tilde{y}) \leq \mathbb{1}(\overline{\mathcal{A}}) + \mathbb{1}(\overline{\mathcal{B}})$.

(e) Let take D satisfying all the previous constraints, which is possible because it is a finite number of lower bounds on D.

$$\Pr_{S \sim \mathcal{D}^m} [\mathcal{L}_{\mathcal{D}}(h_S) - \hat{\mathcal{L}}_S(h_S) \leqslant \varepsilon] \geqslant \Pr_{S \sim \mathcal{D}^m} [\{\mathcal{L}_{\mathcal{D}}(h_S) \leqslant \varepsilon\} \cap \{\hat{\mathcal{L}}_S(h_S) = 0\}]
= 1 - \Pr_{S \sim \mathcal{D}^m} [\{\mathcal{L}_{\mathcal{D}}(h_S) > \varepsilon\} \cup \{\hat{\mathcal{L}}_S(h_S) > 0\}]
\geqslant 1 - \Pr_{S \sim \mathcal{D}^m} [\mathcal{L}_{\mathcal{D}}(h_S) > \varepsilon] - \Pr_{S \sim \mathcal{D}^m} [\hat{\mathcal{L}}_S(h_S) > 0].$$

By question 1c, $\Pr_{S \sim \mathcal{D}^m}[\hat{\mathcal{L}}_S(h_S) > 0] \leq 1 - \frac{2}{3}\delta$. Using the previous question we have $\mathcal{L}(h_S(z), \tilde{y}) \leq \mathbb{1}(\overline{\mathcal{A}}) + \mathbb{1}(\overline{\mathcal{B}})$. Remark that from the one hand \mathcal{A} is a function of z and S, whereas on the other hand \mathcal{B} is only a function of S. As by the lemma A, $\Pr_{(z,\tilde{y})\sim\mathcal{D}}(\overline{\mathcal{A}}) \leq \varepsilon$, by applying the expectation on the result question 1d, we have :

$$\underset{(z,\tilde{y})\sim\mathcal{D}}{\mathbb{E}}[\mathcal{L}(h_S(z),\tilde{y})] \leqslant \underset{(z,\tilde{y})\sim\mathcal{D}}{\Pr}(\overline{\mathcal{A}}) + \mathbb{1}(\overline{\mathcal{B}}) \leqslant \varepsilon + \mathbb{1}(\overline{\mathcal{B}}).$$

Then $\{\mathbb{E}_{(z,\tilde{y})\sim\mathcal{D}}[\mathcal{L}(h_S(z),\tilde{y})] > \varepsilon\} \cap \mathcal{B} = \emptyset$. So $\Pr_{S\sim\mathcal{D}^m}[\mathbb{E}_{(z,\tilde{y})\sim\mathcal{D}}[\mathcal{L}(h_S(z),\tilde{y})] > \varepsilon] \le \Pr_{S\sim\mathcal{D}^m}[\overline{\mathcal{B}}] \le \frac{\delta}{3}$ by the lemma B. Finally:

$$\Pr_{S \sim \mathcal{D}^m} [\mathcal{L}_{\mathcal{D}}(h_S) - \hat{\mathcal{L}}_S(h_S) \leqslant \varepsilon] \geqslant 1 - \frac{2}{3}\delta - \frac{1}{3}\delta = 1 - \delta.$$

Then by definition, $\varepsilon_{\text{gen}}(m, \delta) \leq \varepsilon$.

2. (a) Let $i \in [1, m]$. By slightly adapting the beginning of question 1c, we have :

$$\Pr_{S \sim \mathcal{D}^m} \left[\hat{\mathcal{L}}_{S_{\text{neg}}}(h_S) = 1 \right] \geqslant 1 - \sum_{i=1}^m \Pr_{S \sim \mathcal{D}^m} \left[4 - \|x_2^{(i)}\|^2 - y^{(i)} x_2^{(i)} \sigma_i > 0 \right].$$

Conditioning on the event $\{\|x_2^{(i)}\|^2 \ge 8\}$ and choosing $D > 32m \ln(6m/\delta)$, we have :

$$\begin{split} &\Pr_{S \sim \mathcal{D}^m} \left[4 - \|x_2^{(i)}\|^2 - y^{(i)} x_2^{(i)} \sigma_i > 0 \right] \\ &= \Pr_{S \sim \mathcal{D}^m} \left[4 - \|x_2^{(i)}\|^2 - y^{(i)} x_2^{(i)} \sigma_i > 0 \; \Big| \; \|x_2^{(i)}\|^2 \geqslant 8 \right] \Pr_{S \sim \mathcal{D}^m} \left[\|x_2^{(i)}\|^2 \geqslant 8 \right] \\ &\quad + \Pr_{S \sim \mathcal{D}^m} \left[4 - \|x_2^{(i)}\|^2 - y^{(i)} x_2^{(i)} \sigma_i > 0 \; \Big| \; \|x_2^{(i)}\|^2 < 8 \right] \Pr_{S \sim \mathcal{D}^m} \left[\|x_2^{(i)}\|^2 < 8 \right] \\ &\leqslant \Pr_{S \sim \mathcal{D}^m} \left[\left| y^{(i)} x_2^{(i)} \sigma_i \right| > 4 \right] + \Pr_{S \sim \mathcal{D}^m} \left[\|x_2^{(i)}\|^2 < 8 \right] \leqslant \frac{2\delta}{3m}. \end{split}$$

Then we finally find $\Pr_{S \sim \mathcal{D}^m} \left[\hat{\mathcal{L}}_{S_{\text{neg}}}(h_S) = 1 \right] \geqslant 1 - \sum_{i=1}^m \frac{2\delta}{3m} = 1 - \frac{2\delta}{3}$.

(b) Let S_{δ} such that $\Pr_{S \sim \mathcal{D}^m}[S \in S_{\delta}] \geqslant 1 - \delta$:

$$\begin{split} &\Pr_{S \sim \mathcal{D}^m} \left[\{ S \in \mathcal{S}_{\delta} \} \ \cap \ \{ S_{\text{neg}} \in \mathcal{S}_{\delta} \} \ \cap \ \{ \mathcal{L}_{\mathcal{D}}(h_S) \leqslant \varepsilon \} \ \cap \ \{ \hat{\mathcal{L}}_{S_{\text{neg}}}(h_S) = 1 \} \right] \\ &\geqslant 1 - \Pr_{S \sim \mathcal{D}^m} \left[S \notin \mathcal{S}_{\delta} \right] - \Pr_{S \sim \mathcal{D}^m} \left[S_{\text{neg}} \notin \mathcal{S}_{\delta} \right] \\ &\qquad - \Pr_{S \sim \mathcal{D}^m} \left[\mathcal{L}_{\mathcal{D}}(h_S) > \varepsilon \right] - \Pr_{S \sim \mathcal{D}^m} \left[\hat{\mathcal{L}}_{S_{\text{neg}}}(h_S) \neq 1 \right]. \end{split}$$

The first two probabilities are less than δ by assumption on S_{δ} , as S_{neg} follows the same distribution than S. The last ones are also less than δ as we respectively showed in questions 1e and 2a. Then the left hand term is greater than $1-4\delta>0$ as $\delta<1/4$. Then, for a given S_{δ} , there exists S^* such that all conditions in the left hand term are satisfied. Finally, by definition of the u-a bound, $\varepsilon_{\text{u-a}}(m,\delta) \geq |\mathcal{L}_{\mathcal{D}}(h_{S^*}) - \hat{\mathcal{L}}_{S^*_{\text{neg}}}(h_{S^*})| \geq 1-\varepsilon$. In this simple case, we have thus shown that by varying the setup parameters, we can obtain a uniform convergence bound arbitrarily close to 1 (so nearly vacuous), simultaneously with an arbitrarily small generalisation bound. This raises the important point highlighted in the paper: even the tightest uniform convergence does not behave like the generalization error.

Appendix:

Proof of lemma A. First, let us show the Chernoff bound, i.e. that for $z \sim \mathcal{N}(0, \sigma^2)$, we have $\Pr_{z \sim \mathcal{N}(0, \sigma^2)}[|z| > \alpha] \leq 2 \exp(-\alpha^2/(2\sigma^2))$. By Markov inequality, we have :

$$\Pr_{z \sim \mathcal{N}(0,\sigma^2)}[z > \alpha] = \Pr_{z \sim \mathcal{N}(0,\sigma^2)}\left[e^{sz} > e^{s\alpha}\right] \leqslant e^{-s\alpha} \mathop{\mathbb{E}}_{z \sim \mathcal{N}(0,\sigma^2)}\left[e^{sz}\right] \leqslant \exp\left[\frac{\sigma^2 s^2}{2} - s\alpha\right].$$

Minimizing the right hand term according to s, and applying the same process on $-z \sim \mathcal{N}(0, \sigma^2)$, we obtain the Chernoff bound.

Then, for $z_1, ..., z_n$ independent with $z_i \sim \mathcal{N}(0, \sigma_i^2)$, we obtain by independence :

$$\Pr_{z_i \sim \mathcal{N}(0, \sigma_i^2)} \left[\left| \sum_{i=1}^n z_i \right| \geqslant \alpha \right] \leqslant 2 \exp\left(-\frac{\alpha^2}{2 \sum_{i=1}^n \sigma_i^2} \right).$$

Finally, applying this inequality with $z = a \cdot \gamma$, with $\gamma \sim \mathcal{N}(0, I_n)$, we obtain:

$$\Pr_{\gamma \sim \mathcal{N}(0, I_n)} [|\gamma \cdot a| \geqslant \alpha] \leqslant 2 \exp\left(-\frac{\alpha^2}{2\|a\|^2}\right).$$

Thus, we find the expected result with $C(\alpha) = \sqrt{2 \ln \frac{2}{\alpha}}$.

Proof of lemma B. Let $Z \sim \mathcal{N}(0, \frac{1}{D}I_D)$, we have :

$$\begin{split} \Pr_{Z \sim \mathcal{N}(0, \frac{1}{D}I_D)} \left[\|Z\|^2 \notin \left[\frac{1}{2}, \frac{3}{2} \right] \right] &= \Pr_{Z \sim \mathcal{N}(0, \frac{1}{D}I_D)} \left[\left| \|Z\|^2 - 1 \right| > \frac{1}{2} \right] \\ &= \Pr_{Z \sim \mathcal{N}(0, \frac{1}{D}I_D)} \left[\frac{1}{D} \left| \left\| Z\sqrt{D} \right\|^2 - \underbrace{D}_{\mathbb{E}[Y]} \right| > \frac{1}{2} \right] \\ &\stackrel{\text{B.T.}}{\leqslant} \frac{\mathbb{V}(Y)/D^2}{(1/2)^2} &= \frac{8}{D} \leqslant \delta \quad \text{for} \quad D \geqslant \frac{8}{\delta}. \end{split}$$