C	ontents		<pre>#define mp(a, b) make_pair(a, b)</pre>				
1		$egin{array}{c c} 1 & \#d \ 1 & \#d \ 1 & \#d \end{array}$	<pre>efine F first efine S second efine mt make_tuple efine gt(t, i) get<i>(t)</i></pre>				
2		$egin{array}{c c} 1 & \#d \ 1 & \#d \ 2 & \texttt{fo} \end{array}$	<pre>efine iceil(a, b) (((a) + (b) - 1) / (b)) efine tomax(a, b) ((a) = max((a), (b))) efine printv(a, b) {bool pvaspace=false; \ r(auto pva : a){ \ if(pvaspace) b << " "; pvaspace=true;\</pre>				
3	3.1 Dijkstra	3 3 5 b 3 3 4	<pre>b << pva;\ << "\n";} #define TEST ing namespace std;</pre>				
4	4.1 KMP	$\begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$ ty	<pre>ing namespacegnu_pbds; pedef long long ll; pedef unsigned long long ull; pedef long double ld;</pre>				
5	5.1 Vector Operations	5 us	<pre>pedef long double ld; ing pii = pair<int, int="">; ing pll = pair<ll, ll="">; ing pdd = pair<ld, ld="">;</ld,></ll,></int,></pre>				
6	Number Theory 6.1 Prime Sieve	6 us	<pre>ing tiii = tuple<int, int="" int,="">;</int,></pre>				
7	DP Trick 7.1 Dynamic Convex Hull		nst 11 MOD = 1000000007; nst 11 MAX = 2147483647;				
8	8.1 Fibonacci 6 8.2 Catalan 6 8.3 Geometry 7 8.4 Prime Numbers 7	6 os 6 6 7 7 7 }	<pre>mplate < typename A, typename B > tream& operator < < (ostream& o, pair < A, B > p) { return o << '(' << p.F << ',' << p.S << ') '; t main() {</pre>				
1	Template		StarBurstStream				
1.	1 Default Code	}	return 0; }				
//	#define NDEBUG	1.5	2 .vimrc				
	<pre>nclude <bits stdc++.h=""> nclude <bits extc++.h=""></bits></bits></pre>	:s	et nu et ai et cursorline				
#d	<pre>efine StarBurstStream ios_base:: sync_with_stdio(false); cin.tie(0); cout. tie(0); efine iter(a) a.begin(), a.end()</pre>	:s :s	et tabstop=4 et shiftwidth=4 et mouse=a et expandtab CursorLine cterm=none ctermbg=DarkMagenta				
#d #d	<pre>efine riter(a) a.rbegin(), a.rend() efine lsort(a) sort(iter(a)) efine gsort(a) sort(riter(a))</pre>	2	Data Structure				
#d	<pre>efine pb(a) push_back(a) efine eb(a) emplace_back(a) efine pf(a) push_front(a)</pre>	2.	1 Binary Indexed Tree				
#d	efine pob pop_back() efine pof pop_front()		mplate <typename t=""> ruct BIT{</typename>				

```
private:
  vector<T> bit;
  int lowbit(int x){
    return x & (-x);
public:
  explicit BIT(int sz){
    bit.resize(sz + 1);
  void modify(int x, T v){
    for(; x < bit.size(); x += lowbit(x))</pre>
   bit[x] += v;
  T get(int x){
    T ans = T();
    for(; x; x -= lowbit(x)) ans += bit[x];
    return ans;
  }
};
```

2.2 Disjoint Set Union-Find

```
vector<int> dsu, rk;
void initDSU(int n){
  dsu.resize(n);
 rk.resize(n);
 for(int i = 0; i < n; i++) dsu[i] = i, rk[
}
int findDSU(int x){
  if(dsu[x] == x) return x;
  dsu[x] = findDSU(dsu[x]);
  return dsu[x];
}
void unionDSU(int a, int b){
  int pa = findDSU(a), pb = findDSU(b);
  if(rk[pa] > rk[pb]) swap(pa, pb);
  if(rk[pa] == rk[pb]) rk[pb]++;
  dsu[pa] = pb;
}
```

2.3 Segment Tree

```
template < typename T >
struct Node {
    T v = 0, tag = 0;
    int sz = 1, l = -1, r = -1;
    T rv() {
        return v + tag * sz;
    }
    void addTag(T t) {
        tag += t;
    }
};
```

```
template < typename T>
T pullValue(T b, T c){
  return b + c;
template < typename T>
void pull(Node<T> &a, Node<T> &1, Node<T> &r
 a.v = pullValue(1.rv(), r.rv());
  a.sz = 1.sz + r.sz;
}
template < typename T>
void push(Node<T> &a, Node<T> &l, Node<T> &r
  1.addTag(a.tag);
 r.addTag(a.tag);
 a.v = a.rv();
  a.tag = 0;
template < typename T>
struct SegmentTree{
  vector < Node < T >> st;
  int cnt = 0;
  explicit SegmentTree(int sz){
    st.resize(4 * sz);
  int build(int 1, int r, vector<T>& o){
    int id = cnt++;
    if(1 == r){
      st[id].v = o[1];
      return id;
    }
    int m = (1 + r) / 2;
    st[id].1 = build(1, m, o);
    st[id].r = build(m + 1, r, o);
    pull(st[id], st[st[id].1], st[st[id].r])
    return id;
  }
  void modify(int 1, int r, int v, int L,
   int R, int id){
    if(1 == L \&\& r == R){
      st[id].addTag(v);
      return;
    }
    int M = (L + R) / 2;
    if(r <= M) modify(l, r, v, L, M, st[id].</pre>
    else if(l > M) modify(l, r, v, M + 1, R,
    st[id].r);
    else{
      modify(1, M, v, L, M, st[id].1);
      modify(M + 1, r, v, M + 1, R, st[id].r
   );
```

```
    pull(st[id], st[st[id].1], st[st[id].r])
;

}

T query(int 1, int r, int L, int R, int id
) {
    if(1 == L && r == R) return st[id].rv();
    push(st[id], st[st[id].1], st[st[id].r])
;
    int M = (L + R) / 2;
    if(r <= M) return query(1, r, L, M, st[id].1);
    else if(1 > M) return query(1, r, M + 1, R, st[id].r);
    else {
        return pullValue(query(1, M, L, M, st[id].1), query(M + 1, r, M + 1, R, st[id].r));
    }
}

};
```

3 Graph

3.1 Dijkstra

```
//The first element in pair should be edge
   weight, and the second should be vertex
vector<vector<pii>> g;
int n;
int dijkstra(int start, int end){
  priority_queue<pii, vector<pii>, greater<</pre>
   pii>> q;
  for(pii p : g[start]){
    q.push(p);
  q.push(mp(0, start));
  vector<int> dis(n, -1);
  dis[start] = 0;
  vector<int> visit(n);
  while(q.size()){
    int v = q.top().S;
    int d = q.top().F;
    if(v == end) break;
    q.pop();
    if(visit[v]) continue;
    visit[v] = true;
    for(pii p : g[v]){
      if(visit[p.S]) continue;
      if(dis[p.S] == -1 \mid \mid d + p.F < dis[p.S]
   ]){
        dis[p.S] = d + p.F;
        q.push(mp(dis[p.S], p.S));
    }
  return dis[end];
}
```

3.2 Floyd-Warshall

```
vector<vector<int>> g;
int n;

void floydwarshall(){
  for(int k = 0; k < n; k++)
    for(int i = 0; i < n; i++)
      for(int j = 0; j < n; j++)
        if(g[i][k] != -MAX && g[k][j] != -
      MAX && (g[i][j] == -MAX || g[i][k] + g[k]
      ][j] < g[i][j]))
        g[i][j] = g[i][k] + g[k][j];
}</pre>
```

3.3 Kruskal

```
int kruskal(){
   int ans = 0;
   lsort(e);
   initDSU();
   for(auto& i : e){
      int a = i.S.F, b = i.S.S;
      if(findDSU(a) == findDSU(b)) continue;
      ans += i.F;
      unionDSU(a, b);
   }
   return ans;
}
```

3.4 Tarjan SCC

```
vector<vector<int>> g;
vector<int> st;
vector<bool> inst;
vector<int> scc;
vector<int> ts, low;
int tmp = 0;
int sccid = 0;
void initSCC(int n){
  tmp = 0;
  sccid = 0;
  st.clear();
  g.clear();
  g.resize(2 * n + 1);
  inst.clear();
  inst.resize(2 * n + 1);
  scc.clear();
  scc.resize(2 * n + 1);
  ts.clear();
  ts.resize(2 * n + 1, -1);
  low.clear();
  low.resize(2 * n + 1);
void dfs(int now){
  st.eb(now);
  inst[now] = true;
  ts[now] = ++tmp;
```

```
low[now] = ts[now];
  for(int i : g[now]){
    if(ts[i] == -1){
      dfs(i);
      low[now] = min(low[now], low[i]);
    else if(inst[i]) low[now] = min(low[now
   ], ts[i]);
  if(low[now] == ts[now]){
    sccid++;
    int t;
    do{
      t = st.back();
      st.pob;
     inst[t] = false;
     scc[t] = sccid;
    while(t != now);
  }
}
3.5
    \mathbf{SPFA}
```

```
const 11 INFINITE = 2147483647;
int n;
vector<vector<pii>> g;
int spfa(int start, int end){
  vector<int> dis(n, INFINITE);
  int start;
  cin >> start;
  dis[start] = 0;
 queue < int > q;
  q.push(start);
  vector < bool > inq(n);
  inq[start] = true;
  vector<int> cnt(n);
  while(!q.empty()){
    int v = q.front();
    q.pop();
    inq[v] = false;
    for(pii p : g[v]){
      if(!(dis[p.F] == INFINITE || dis[v] +
   p.S < dis[p.F])) continue;</pre>
      cnt[p.F]++;
      if(cnt[p.F] >= n) return -INFINITE; //
   negetive cycle
      dis[p.F] = dis[v] + p.S;
      if(!inq[p.F]){
        inq[p.F] = true;
        q.push(p.F);
      }
    }
```

```
}
return dis[end];
}
```

4 String

4.1 KMP

```
vector<int> f;
void build(string& t){
  f.clear();
  f.resize(t.size());
  int p = -1;
  f[0] = -1;
  for(int i = 1; i < t.size(); i++){</pre>
    while (p != -1 \&\& t[p + 1] != t[i]) p = f
    if(t[p + 1] == t[i]) f[i] = p + 1;
    else f[i] = -1;
    p = f[i];
  }
}
int kmp(string& s, string& t){
  int ans = 0;
  int p = -1;
  for(int i = 0; i < s.size(); i++){
    while (p != -1 \&\& t[p + 1] != s[i]) p = f
    if(t[p + 1] == s[i]) p++;
    if(p + 1 == t.size()){
      ans++;
      p = f[p];
  }
  return ans;
```

4.2 Z Value

```
vector<int> z;

void build(string s, int n){
   z.clear();
   z.resize(n);
   int l = 0;
   for(int i = 1; i < n; i++){
      if(l + z[l] >= i) z[i] = min(z[l] + l -
      i, z[i - l]);
      while(i + z[i] < n && s[z[i]] == s[i + z
      [i]]) z[i]++;
      if(i + z[i] > l + z[l]) l = i;
   }
}
```

4.3 Longest Palindromic Substring

```
#define T(x) ((x) % 2 ? s[(x) / 2] : '.')
string s;
```

```
int L;
int ex(int 1, int r){
  int i = 0;
  while (1 - i) = 0 \& r + i < L \& T(1 - i)
   == T(r + i)) i++;
  return i;
}
int lps(string ss){
  s = ss;
  L = 2 * s.size() + 1;
  int mx = 0;
  int center = 0;
  vector<int> r(L);
  int ans = 1;
  r[0] = 1;
  for(int i = 1; i < L; i++){
    int ii = center - (i - center);
    int len = mx - i + 1;
    if(i > mx){
      r[i] = ex(i, i);
      center = i;
      mx = i + r[i] - 1;
    }
    else if(r[ii] == len){
      r[i] = len + ex(i - len, i + len);
      center = i;
      mx = i + r[i] - 1;
    else r[i] = min(r[ii], len);
    ans = max(ans, r[i]);
  return ans - 1;
}
```

5 Geometry

5.1 Vector Operations

```
return mp(a.F / b, a.S / b);
template < typename T>
T dot(pair<T, T> a, pair<T, T> b){
  return a.F * b.F + a.S * b.S;
template < typename T>
T cross(pair<T, T> a, pair<T, T> b){
  return a.F * b.S - a.S * b.F;
}
template < typename T>
T abs2(pair<T, T> a){
  return a.F * a.F + a.S * a.S;
5.2 Convex Hull
template < typename T>
pair<T, T> operator-(pair<T, T> a, pair<T, T</pre>
  return mp(a.F - b.F, a.S - b.S);
template < typename T>
T cross(pair<T, T> a, pair<T, T> b){
  return a.F * b.S - a.S * b.F;
template < typename T>
vector<pair<T, T>> getConvexHull(vector<pair</pre>
   <T, T>>& pnts){
  int n = pnts.size();
  lsort(pnts);
  vector<pair<T, T>> hull;
  hull.reserve(n);
  for(int i = 0; i < 2; i++){
    int t = hull.size();
    for(pair<T, T> pnt : pnts){
      while(hull.size() - t >= 2 && cross(
   hull.back() - hull[hull.size() - 2], pnt
   - hull[hull.size() - 2]) <= 0){
        hull.pop_back();
      }
      hull.pb(pnt);
    hull.pop_back();
```

reverse(iter(pnts));

return hull;

}

6 Number Theory

6.1 Prime Sieve

```
vector<int> prime;
vector<int> p;
void sieve(int n){
  prime.resize(n + 1, 1);
  for(int i = 2; i <= n; i++){
    if(prime[i] == 1){
      p.push_back(i);
      prime[i] = i;
    }
  for(int j : p){
      if((ll)i * j > n || j > prime[i])
      break;
      prime[i * j] = j;
    }
}
```

7 DP Trick

7.1 Dynamic Convex Hull

```
const 11 INF = 1LL << 60;</pre>
template < typename T>
struct Line{
 mutable T a, b, r = 0;
 Line(T a, T b) : a(a), b(b){}
  bool operator < (Line < T > 1) const{
    return a < 1.a;
  bool operator < (T v) const{</pre>
    return r < v;
  }
};
template < typename T>
T divfloor(T a, T b){
  return a / b - ((a ^ b) < 0 && a % b);
}
template < typename T>
struct DynamicHull{
  multiset <Line <T>, less <>> s;
  int size(){
    return s.size();
  bool intersect(typename set<Line<T>>::
   iterator a, typename set<Line<T>>::
   iterator &b){
    if(b == s.end()){}
      a \rightarrow r = INF;
```

```
return false;
    if(a->a == b->a){
       if(a->b > b->b) a->r = INF;
       else a \rightarrow r = -INF;
    else{
       a \rightarrow r = divfloor(b \rightarrow b - a \rightarrow b, a \rightarrow a - b)
    ->a);
    }
    return a->r >= b->r;
  }
  void insert(T a, T b){
    Line<T> l(a, b);
    auto it = s.insert(1), after = next(it),
     before = it;
    while(intersect(it, after)) after = s.
    erase(after);
    if(before != s.begin() && intersect(--
    before, it)){
       it = s.erase(it);
       intersect(before, it);
    while((it = before) != s.begin() && (--
    before) -> r >= it -> r) intersect(before, it
     = s.erase(it));
  T query(T v){
    Line<T> 1 = *s.lower_bound(v);
    return 1.a * v + 1.b;
};
```

8 Numbers and Math

8.1 Fibonacci

8.2 Catalan

$$C_0 = 1, C_n = \sum_{i=0}^{n-1} C_i C_{n-1-i}$$
$$C_n = C_n^{2n} - C_{n-1}^{2n}$$

0	1	1	2	5	14
5	42	132	429	1430	4862
10	16796	58786	208012	742900	2674440
15	9694845	35357670	129644790	477638700	1767263190

8.3 Geometry

• Heron's formula:

The area of a triangle whose lengths of sides is a,b,c and s = (a+b+c)/2 is $\sqrt{s(s-a)(s-b)(s-c)}$.

• Vector cross product:

$$v_1 \times v_2 = |v_1||v_2|\sin\theta = (x_1 \times y_2) - (x_2 \times y_1).$$

• Vector dot product:

$$v_1 \cdot v_2 = |v_1||v_2|\cos\theta = (x_1 \times y_1) + (x_2 \times y_2).$$

8.4 Prime Numbers

First 50 prime numbers:

1	2	3	5	7	11	13	17	19	23	29
11	31	37	41	43	47	53	59	61	67	71
21	73	79	83 137 191	89	97	101	103	107	109	113
31	127	131	137	139	149	151	157	163	167	173
41	179	181	191	193	197	199	211	223	227	229
	' <u>-</u>		_							

Very large prime numbers:

 $1000001333 \quad 1000500889 \quad 2000000659 \quad 900004151 \quad 850001359$

8.5 Number Theory

• Inversion:

$$aa^{-1} \equiv 1 \pmod{m}$$
. a^{-1} exists iff $gcd(a, m) = 1$.

• Linear inversion:

$$a^{-1} \equiv (m - \lfloor \frac{m}{a} \rfloor) \times (m \mod a)^{-1} \pmod{m}$$

• Fermat's little theorem:

$$a^p \equiv a \pmod{p}$$
 if p is prime.

• Euler function:

$$\phi(n) = n \prod_{p|n} \frac{p-1}{p}$$

• Euler theorem:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
 if $\gcd(a, n) = 1$.

• Extended Euclidean algorithm:

$$ax + by = \gcd(a, b) = \gcd(b, a \mod b) = \gcd(b, a - \lfloor \frac{a}{b} \rfloor b) = bx_1 + (a - \lfloor \frac{a}{b} \rfloor b)y_1 = ay_1 + b(x_1 - \lfloor \frac{a}{b} \rfloor y_1)$$

• Divisor function:

$$\sigma_x(n) = \sum_{d|n} d^x. \quad n = \prod_{i=1}^r p_i^{a_i}.$$

$$\sigma_x(n) = \prod_{i=1}^r \frac{p_i^{(a_i+1)x} - 1}{p_i^x - 1} \text{ if } x \neq 0. \quad \sigma_0(n) = \prod_{i=1}^r (a_i + 1).$$

• Chinese remainder theorem:

$$x \equiv a_i \pmod{m_i}$$
.

$$M = \prod_{i=1}^{n} m_i$$
. $M_i = M/m_i$. $t_i = M_i^{-1}$.

$$x = kM + \sum a_i t_i M_i, k \in \mathbb{Z}.$$