

Credit

Home Credit Indonesia

By: Samuel Akwila

Intro

The loan is one of the most important products of the finance's business. All the loan companies are trying to figure out effective business strategies to persuade customers/lenders to apply their loans. However, there are some borrowers behave negatively after their application are approved.

In today's world there are many risks involved in loan companies, so as to reduce their capital loss; companies should perform the risk and assessment analysis of the individual before sanctioning loan. In the absence of this process there are many chances that this loan may turn into bad loan in near future. Loan companies hold huge volumes of lender behavior related data from which they are unable to arrive at a decision point i.e. if an applicant can eligible or not.

For more info: sakwila96@gmail.com

You can visit our notebook:
https://github.com/samuelakwila/Home-Credit-
lndonesia-Virtual-
lnternship/blob/main/HCl_Credit_Loan_Prediction.ipynb

Table of contents

1

System Overview

Describe and explanation about the company's loan system

2

Data Analysis

Exploratory Data Analysis

3

Data Preparation

Data preprocessing

4

Model Prediction

Deploy machine learning model

5

Solutions

Final product of this project

6

Action Items

Recommendations

Mission statement

All the keywords you have to know:

- Credit Loan problems
- Binary Classification (Good / Bad Borrower)
- Log Regression, ROC-AUC, Accuracy

Linkedin: linkedin.com/in/samuel-akwila-942a34132

Contact: sakwila96@gmail.com

Samuel Akwila

I am passionate about Data Science and looking for an opportunity to exploit my current skills and become a prominent Data Scientist.

Loan System Overview

Money Loan Company

Problem Statement

Company need to understand customer behavior and predict whether potential customers are eligible for loans and keeping low credit risk as to increase company revenue.

Problem vs solution

Problem

Borrower's bad behaviour after their application are approved

Solution

Predict the secure loan before application is approved

Data Analysis

Exploratory Data Analysis

The loan's problem

We get the imbalance data which have 91,93% good borrower (282.682) and 8,07% (24.825) bad borrower

Data Preparation

How we handle this data

Next Step - Prepare Data

Handling Class Imbalance

SVM SMOTE

Split Data Train & Test

Train: Test = 80: 20

Machine Learning Model

Decision Tree, KNN, Gradient Boosting, Logistic Regression, Random Forest, XGBoost

Model Prediction

Handling imbalance data

Evaluation Models

Model	Akurasi	AUC
KNN	60,71%	58,02%
Decision Tree	79,60%	54,19%
XGBoost	88,16%	55,32%
Gradient Boosting	88,03%	55,16%
Random Forest	90,78%	52,07%
Logistic Regression	90,40%	53,87%
Logistic Regression Tunned	90,10%	95,50%

Predict	Actual	
	Bad	Good
Bad	55000	1537
Good	4437	528

Feature Importance

5

Solution

Final product of this project

Predict the Borrower With Credit Score

Saving money from the Bad Borrower

Bad borrower rate potentially decrease by - 91.0% from the previous 8.1% to 0.8% after action based on predictive modeling as 2458 borrower (before model there were 24825 bad borrower from total 307511 loan)

Action Item

Recommendations

Action Items

Hope this project could help this company to improve :

Feature Importance	Characteristics (value)	Action Item
House Type	Rented Apartment, with parents	Prioritized borrower that has Rented Apartment and with parents.
FondKapremont	Spec Account	Prioritized borrower which has spec account FondKapremont.
Name Contract	Cash loans	Prioritized borrower who contract on cash loans.
Flag Document	3	Prioritized borrower who has 3 documents.

Thanks!

