T1 (7.13)

Question:

- 7.13 本题考察子句和蕴含语句之间的关系。
 - a. 证明子句($\neg P_1 \lor \cdots \lor \neg P_m \lor Q$) 逻辑等价于蕴含语句($P_1 \land \cdots \land P_m$) $\Rightarrow Q$ 。
 - b. 证明每个子句(不管正文字的数量)都可以写成 $(P_1 \land \cdots \land P_m) \Rightarrow (Q_1 \lor \cdots \lor Q_n)$ 的形式,其中 P_i 和 Q_i 都是命题词。由这类语句构成的知识库是表示为**蕴含范式**或称 **Kowalski**)范式(Kowalski,1979)。
 - c. 写出蕴含范式语句的完整归结规则。

Answer:

a.

$$egin{aligned} \left(
eg P_1 ee \ldots ee
eg P_m ee Q
ight) \ &\equiv \left(\left(
eg P_1 ee \ldots ee
eg P_m
ight) ee Q
ight) \ &\equiv \left(
eg \left(
eg P_1 ee \ldots ee
eg
eg P_m
ight)
ight)
ightarrow Q \ &\equiv \left(\left(
eg P_1 ee \ldots \wedge
eg P_m
ight)
ight)
ightarrow Q \ &\equiv \left(\left(
eg P_1 ee \ldots \wedge
eg P_m
ight)
ightarrow Q
ight) \end{aligned}$$

b.

每一个字句都有正文字和负文字,使用 P_i 和 Q_i 代表符号,

将所有的负文字写为 $\neg P_1, \neg P_2, \ldots, \neg P_m$

将所有正文字写为 Q_1, Q_2, \ldots, Q_n ,

子句为:

$$(\neg P_1 \lor \neg P_2 \lor \cdots \lor P_m \lor Q_1 \lor Q_2 \lor \cdots \lor Q_n) \diamondsuit Q = Q_1 \lor Q_2 \lor \cdots \lor Q_n$$

由(a), 子句可以写作 $(P_1 \wedge \cdots \wedge P_m) \rightarrow Q$

即:
$$(P_1 \wedge \cdots \wedge P_m) \rightarrow (Q_1 \vee \cdots \vee Q_n)$$

(c)

C.

T2

Question:

证明前向链接算法的完备性。

Answer:

算法到达不动点之后,不会出现新的推理

考虑 inferred 表的最终状态,参与推理过程的每个符号为 true,其他为 false,把推理表看做一个逻辑模型m

原始KB中每个限定子句在M中都为真:

- 假设存在某个子句 $a_1 \wedge \ldots \wedge a_k \to b$ 在m中为false
- 则 $a_1 \wedge \ldots \wedge a_k$ 在m中为true,b在m中为false
- 与算法已经到达一个不动点矛盾,因此KB中每个确定子句在该模型中都为真

m是KB的一个模型

如果 KB|=q,q在KB的所有模型中必为true,包括m

q在m中为真即在inferred表中为真,因此每一个被蕴含的语句q必然会被算法推导出来