

Contents lists available at ScienceDirect

Data in Brief

Data Article

Datasets for phishing websites detection

Grega Vrbančič^{a,*}, Iztok Fister Jr.^a, Vili Podgorelec^a

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, Maribor SI-2000, Slovenia

ARTICLE INFO

Article history: Received 25 September 2020 Revised 9 October 2020 Accepted 15 October 2020 Available online 23 October 2020

Keywords:
Phishing websites
Classification
Computer security
Optimization

ABSTRACT

Phishing stands for a fraudulent process, where an attacker tries to obtain sensitive information from the victim. Usually, these kinds of attacks are done via emails, text messages, or websites. Phishing websites, which are nowadays in a considerable rise, have the same look as legitimate sites. However, their backend is designed to collect sensitive information that is inputted by the victim. Discovering and detecting phishing websites has recently also gained the machine learning community's attention, which has built the models and performed classifications of phishing websites. This paper presents two dataset variations that consist of 58,645 and 88,647 websites labeled as legitimate or phishing and allow the researchers to train their classification models, build phishing detection systems, and mining association rules.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

E-mail addresses: grega.vrbancic@um.si (G. Vrbančič), iztok.fister1@um.si (I. Fister Jr.), vili.podgorelec@um.si (V. Podgorelec).

Social media: y (G. Vrbančič)

^{*} Corresponding author.

Specifications Table

Subject	Computer Science
Specific subject area	Artificial Intelligence
Type of data	csv file
How data were acquired	Data were acquired through the publicly available lists of phishing and legitimate websites, from which the features presented in the datasets were extracted.
Data format	Raw: csv file
Parameters for data collection	For the phishing websites, only the ones from the PhishTank registry were included, which are verified from multiple users. For the legitimate websites, we included the websites from publicly available, community labeled and organized lists [1], and from the Alexa top ranking websites.
Description of data collection	The data is comprised of the features extracted from the collections of websites addresses. The data in total consists of 111 features, 96 of which are extracted from the website address itself, while the remaining 15 features were extracted using custom Python code.
Data source location	Worldwide
Data accessibility	Repository name: Mendeley Data Data identification number: 10.17632/72ptz43s9v.1 Direct URL to data: https://doi.org/10.17632/72ptz43s9v.1
Related research article	Vrbančič, Grega, Iztok Fister Jr, and Vili Podgorelec. "Parameter setting for deep neural networks using swarm intelligence on phishing websites classification." International Journal on Artificial Intelligence Tools 28.06 (2019): 1960008. DOI:10.1142/S021821301960008X

Value of the Data

- These data consist of a collection of legitimate, as well as phishing website instances. Each website is represented by the set of features that denote whether the website is legitimate or not. Data can serve as input for the machine learning process.
- Machine learning and data mining researchers can benefit from these datasets, while also
 computer security researchers and practitioners. Computer security enthusiasts can find these
 datasets interesting for building firewalls, intelligent ad blockers, and malware detection
 systems.
- This dataset can help researchers and practitioners easily build classification models in systems preventing phishing attacks since the presented datasets feature the attributes which can be easily extracted.
- Finally, the provided datasets could also be used as a performance benchmark for developing state-of-the-art machine learning methods for the task of phishing websites classification.

1. Data Description

The presented dataset was collected and prepared for the purpose of building and evaluating various classification methods for the task of detecting phishing websites based on the uniform resource locator (URL) properties, URL resolving metrics, and external services. The attributes of the prepared dataset can be divided into six groups:

- attributes based on the whole URL properties presented in Table 1,
- attributes based on the domain properties presented in Table 2,
- attributes based on the URL directory properties presented in Table 3,
- attributes based on the URL file properties presented in Table 4,
- attributes based on the URL parameter properties presented in Table 5, and
- attributes based on the URL resolving data and external metrics presented in Table 6.

Table 1Dataset attributes based on URL.

Nr.	Attribute	Format	Description	Values
1	qty_dot_url	Number of "." signs	Numeric	
2	qty_hyphen_url	Number of "-" signs	Numeric	
3	qty_underline_url	Number of "_" signs	Numeric	
4	qty_slash_url	Number of "/" signs	Numeric	
5	qty_questionmark_url	Number of "?" signs	Numeric	
6	qty_equal_url	Number of "=" sings	Numeric	
7	qty_at_url	Number of "@" signs	Numeric	
8	qty_and_url	Number of "&" signs	Numeric	
9	qty_exclamation_url	Number of "!" signs	Numeric	
10	qty_space_url	Number of " " signs	Numeric	
11	qty_tilde_url	Number of "7" signs	Numeric	
12	qty_comma_url	Number of "," signs	Numeric	
13	qty_plus_url	Number of "+" signs	Numeric	
14	qty_asterisk_url	Number of "*" signs	Numeric	
15	qty_hashtag_url	Number of "#" signs	Numeric	
16	qty_dollar_url	Number of "\$" signs	Numeric	
17	qty_percent_url	Number of "%" signs	Numeric	
18	qty_tld_url	Top level domain character length	Numeric	
19	length_url	Number of characters	Numeric	
20	email_in_url	Is email present	Boolean	[0, 1]

Table 2Dataset attributes based on domain URL.

Nr.	Attribute	Format	Description	Values
1	qty_dot_domain	Number of "." signs	Numeric	
2	qty_hyphen_domain	Number of "-" signs	Numeric	
3	qty_underline_domain	Number of "_" signs	Numeric	
4	qty_slash_domain	Number of "/" signs	Numeric	
5	qty_questionmark_domain	Number of "?" signs	Numeric	
6	qty_equal_domain	Number of "=" signs	Numeric	
7	qty_at_domain	Number of "@" signs	Numeric	
8	qty_and_domain	Number of "&" signs	Numeric	
9	qty_exclamation_domain	Number of "!" signs	Numeric	
10	qty_space_domain	Number of " " signs	Numeric	
11	qty_tilde_domain	Number of "signs	Numeric	
12	qty_comma_domain	Number of "," signs	Numeric	
13	qty_plus_domain	Number of "+" signs	Numeric	
14	qty_asterisk_domain	Number of "*" signs	Numeric	
15	qty_hashtag_domain	Number of "#" signs	Numeric	
16	qty_dollar_domain	Number of "\$" signs	Numeric	
17	qty_percent_domain	Number of "%" signs	Numeric	
18	qty_vowels_domain	Number of vowels	Numeric	
19	domain_length	Number of domain characters	Numeric	
20	domain_in_ip	URL domain in IP address format	Boolean	[0, 1]
21	server_client_domain	"server" or "client" in domain	Boolean	[0, 1]

The first group is based on the values of the attributes on the whole URL string, while the values of the following four groups are based on the particular sub-strings, as presented in Figure 1. The last group attributes are based on the URL resolve metrics as well as on the external services such as Google search index.

The dataset in total features 111 attributes excluding the target *phishing* attribute, which denotes whether the particular instance is legitimate (value 0) or phishing (value 1). We prepared two variations of the dataset, the one where the total number of instances is 58,645 and the balance between the target classes in more or less balanced with 30,647 instances labeled as phishing websites and 27,998 instances labeled as legitimate. The second variant of the dataset

Table 3Dataset attributes based on URL directory.

Nr.	Attribute	Format	Description	Values
1	qty_dot_directory	Number of "." signs	Numeric	
2	qty_hyphen_directory	Number of "-" signs	Numeric	
3	qty_underline_directory	Number of "_" signs	Numeric	
4	qty_slash_directory	Number of "/" signs	Numeric	
5	qty_questionmark_directory	Number of "?" signs	Numeric	
6	qty_equal_directory	Number of "=" signs	Numeric	
7	qty_at_directory	Number of "@" signs	Numeric	
8	qty_and_directory	Number of "&" signs	Numeric	
9	qty_exclamation_directory	Number of "!" signs	Numeric	
10	qty_space_directory	Number of " " signs	Numeric	
11	qty_tilde_directory	Number of "signs	Numeric	
12	qty_comma_directory	Number of "," signs	Numeric	
13	qty_plus_directory	Number of "+" signs	Numeric	
14	qty_asterisk_directory	Number of "*" signs	Numeric	
15	qty_hashtag_directory	Number of "#" signs	Numeric	
16	qty_dollar_directory	Number of "\$" signs	Numeric	
17	qty_percent_directory	Number of "%" signs	Numeric	
18	directory_length	Number of directory characters	Numeric	

Table 4Dataset attributes based on URL file name.

Nr.	Attribute	Format	Description	Values
1	qty_dot_file	Number of "." signs	Numeric	
2	qty_hyphen_file	Number of "-" signs	Numeric	
3	qty_underline_file	Number of "_" signs	Numeric	
4	qty_slash_file	Number of "/" signs	Numeric	
5	qty_questionmark_file	Number of "?" signs	Numeric	
6	qty_equal_file	Number of "=" signs	Numeric	
7	qty_at_file	Number of "@" signs	Numeric	
8	qty_and_file	Number of "&" signs	Numeric	
9	qty_exclamation_file	Number of "!" signs	Numeric	
10	qty_space_file	Number of " " signs	Numeric	
11	qty_tilde_file	Number of "signs	Numeric	
12	qty_comma_file	Number of "," signs	Numeric	
13	qty_plus_file	Number of "+" signs	Numeric	
14	qty_asterisk_file	Number of "*" signs	Numeric	
15	qty_hashtag_file	Number of "#" signs	Numeric	
16	qty_dollar_file	Number of "\$" signs	Numeric	
17	qty_percent_file	Number of "%" signs	Numeric	
18	file_length	Number of file name characters	Numeric	

Fig. 1. Separation of the whole URL string into sub-strings.

is comprised of 88,647 instances with 30,647 instances labeled as phishing and 58,000 instances labeled as legitimate, the purpose of which is to mimic the real-world situation where there are more legitimate websites present. The distribution between the classes of both dataset variants is presented in Figure 2.

Table 5Dataset attributes based on URL parameters.

Nr.	Attribute	Format	Description	Values
1	qty_dot_params	Number of "." signs	Numeric	
2	qty_hyphen_params	Number of "-" signs	Numeric	
3	qty_underline_params	Number of "_" signs	Numeric	
4	qty_slash_params	Number of "/" signs	Numeric	
5	qty_questionmark_params	Number of "?" signs	Numeric	
6	qty_equal_params	Number of "=" signs	Numeric	
7	qty_at_params	Number of "@" signs	Numeric	
8	qty_and_params	Number of "&" signs	Numeric	
9	qty_exclamation_params	Number of "!" signs	Numeric	
10	qty_space_params	Number of " " signs	Numeric	
11	qty_tilde_params	Number of "signs	Numeric	
12	qty_comma_params	Number of "," signs	Numeric	
13	qty_plus_params	Number of "+" signs	Numeric	
14	qty_asterisk_params	Number of "*" signs	Numeric	
15	qty_hashtag_params	Number of "#" signs	Numeric	
16	qty_dollar_params	Number of "\$" signs	Numeric	
17	qty_percent_params	Number of "%" signs	Numeric	
18	params_length	Number of parameters characters	Numeric	
19	tld_present_params	TLD ¹ present in parameters	Boolean	[0, 1]
20	qty_params	Number of parameters	Numeric	-

Table 6Dataset attributes based on resolving URL and external services.

Nr.	Attribute	Format	Description	Values
1	time_response	Domain lookup time response	Numeric	
2	domain_spf	Domain has SPF 2	Boolean	[0, 1]
3	asn_ip	ASN ³	Numeric	
4	time_domain_activation	Domain activation time (in days)	Numeric	
5	time_domain_expiration	Domain expiration time (in days)	Numeric	
6	qty_ip_resolved	Number of resolved IPs	Numeric	
8	qty_nameservers	Number of resolved NS ⁴	Numeric	
9	qty_mx_servers	Number of MX ⁵ servers	Numeric	
10	ttl_hostname	Time-To-Live (TTL)	Numeric	
11	tls_ssl_certificate	Has valid TLS 6/SSL 7certificate	Boolean	[0, 1]
12	qty_redirects	Number of redirects	Numeric	
13	url_google_index	Is URL indexed on Google	Boolean	[0, 1]
14	domain_google_index	Is domain indexed on Google	Boolean	[0, 1]
15	url_shortened	Is URL shortened	Boolean	
16	phishing	Is phishing website	Boolean	[0, 1]

2. Experimental Design, Materials and Methods

In the process of preparing the phishing websites datasets variants presented in [2], we followed common steps which were also used in the dataset preparation process of similar datasets presented by Mohammad et al. [3] and Abdelhamid et al. [4]. 1234567

¹ Top-Level Domain

² Sender Policy Framework

³ Autonomous System Number

⁴ Name Server

⁵ Mail eXchanger

⁶ Transport Layer Security

⁷ Secure Socket Layers

Fig. 2. The distribution between classes for both dataset variations. The *dataset_full* denotes the larger dataset, while the *dataset_small* denotes the smaller dataset variation. The target class 0 denotes legitimate websites while the target class 1 denotes the phishing websites.

In the manner of such preparation process, we firstly collected a list of a total of 30,647 confirmed phishing URLs from the Phishtank [5] website. On the other hand, the list of legitimate URLs was obtained from Alexa ranking website⁸ from which we gathered 58,000 legitimate website URLs. Additionally, we have also obtained the list of 27,998 community labeled and organized URLs [1], which are the URLs pointing to the objectively reported news and are in that manner also legitimate.

From the URL lists of phishing and legitimate websites, we prepared, as already presented, two variants of the dataset. The smaller, more balanced dataset <code>dataset_small</code> comprises instances of extracted features from Phishtank URLs and instances of extracted features from community labeled and organized URLs representing legitimate ones. On the other hand, the larger, more unbalanced dataset consists of all of the instances from the <code>dataset_small</code> and the additional instances of extracted features from Alexa top sites URL list.

The complete process of extracting the features from the list of collected website addresses was conducted automatically, using a Python script. The extracting process is outlined in Algorithm 1. Such procedure was conducted in total two times, each time given different set of website addresses as already described. The final outcome reflects in two csv files containing extracted features. The csv files are handy and easy to work with various tools and programming libraries.

⁸ https://www.alexa.com

Algorithm 1 Feature extraction process

```
Input: URLs
                                                                                    ▷ Array of URLs.
   Input: signs
                                                                           Array of signs to count.
   Output: dataset.csv
                                                                            Do Output csv document.
1: i \leftarrow 0
2: totalURLs \leftarrow lenght(URLs)
                                                                ▶ Get the number of URLs in array.
3: while i < totalURLs do
      url \leftarrow URLs(i)
4:
5.
      countsUrl \leftarrow getCounts(url, signs)
                                                                  for substring in splitURL(url) do
                                                          ▶ Iterate through the sub-strings of URL.
6:
          countsSubstring \leftarrow getCounts(substrings, signs)
                                                                  Get signs and character counts.
7:
8.
      end for
      measuredFeatures \leftarrow fetchFeatures(url)
                                                              Get features from external services.
9:
      toCsv(countsUrl, countsSubstring, measuredFeatures)
10:
                                                                               ▶ Append row to csv.
      i \leftarrow i + 1
11.
12: end while
```

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

Authors acknowledge the financial support from the Slovenian Research Agency (Research Core Funding No. P2-0057).

References

- [1] C. Lab, Others, Url testing lists intended for discovering website, Censorship (2014). https://github.com/citizenlab/test-lists
- [2] G. Vrbancic, I.J. Fister, V. Podgorelec, Parameter setting for deep neural networks using swarm intelligence on phishing websites classification, Int. J. Artif. Intell.Tools 28 (6) (2019) 28, doi:10.1142/S021821301960008X.
- [3] R.M. Mohammad, F. Thabtah, L. McCluskey, An assessment of features related to phishing websites using an automated technique, in: Internet Technology And Secured Transactions, 2012 International Conference for, IEEE, 2012, pp. 492–497.
- [4] N. Abdelhamid, A. Ayesh, F. Thabtah, Phishing detection based associative classification data mining, Expert Syst. Appl. 41 (13) (2014) 5948–5959, doi:10.1016/j.eswa.2014.03.019.
- [5] OpenDNS, PhishTank data archives, 2018, Available at https://www.phishtank.com/, Accessed: 2018-01-17