

Alignments

Trace
$$\sigma = \langle a,d,b,e,h \rangle$$

Alignments

Example

Trace
$$\sigma = \langle a,d,b,e,h \rangle$$

How to know which alignment is best?

Apply a cost function:

Move in log	+1
Move in model	+1
Equal move in both	±0
Different move in both	+∞

$$\delta_{\gamma_d} = 10$$

Trace

ACDF

ADCEG

AFG

FDCA

C

Apply alignment-based conformance checking and apply the cost function in order to find an optimal alignment

Alignments Exercise 1a

Apply alignment-based conformance checking and calculate the cost function for the given traces.

Trace	δ
ACDF	
ADCEG	
AFG	
FDCA	
С	

ν, =	σ_1	Α	С	D	F			
$\gamma_1 =$	N	Α	С	D	F	•		
						E		
$\gamma_2 =$	N	Α	>>	С	D	>>	G	
	σ_3	Α	>>	>> D	F	G		
$\gamma_3 =$	N	Α	С	D	F	>>		
	σ_4	>>	>>	>>	F	D	С	Α
$\gamma_4 =$	N	Α	С	D	F	>>	>>	>>
$\gamma_5 =$				>>				
	N	Α	С	D	F	•		

Alignments Exercise 1a

Apply alignment-based conformance checking and calculate the cost function for the given traces.

Trace	δ
ACDF	0
ADCEG	3
AFG	3
FDCA	6
С	3

a. —	σ_1	Α	С	D	F			
$\gamma_1 =$	N	Α	С	D	F			
	σ_2	Α	D	С	>>	E	G	
$\gamma_2 =$	N	Α	>>	С	D	>>	G	
	σ_3	Α	>>	>>	F	G		
$\gamma_3 =$	N	Α	С	D	F	>>	•	
	σ_4	>>	>>	>>	F	D	С	А
$\gamma_4 =$	N	Α	С	D	F	>>	>>	>>
	σ_5	>>	С	»	»			
$\gamma_5 =$	N	Α	С	D	F	•		

Alignments Exercise 1b

Determine the fitness of the process model above and the observed traces by considering the alignments.

#	Trace	δ
200	ACDF	0
120	ADCEG	3
100	AFG	3
80	FDCA	6
10	С	3

$\gamma_1 =$	σ_1	Α	С	D	F			
	N	Α	С	D	F	•		
	σ_2	Α	D	С	>>	Е	G	
$\gamma_2 =$	N	Α	>>	С	D	>>	G	•
–		Α						
$\gamma_3 =$	N	Α	С	D	F	>>		
		>>						
$\gamma_4 =$	N	Α	С	D	F	>>	>>	>>
<i>γ</i> ₅ =	σ_5	>>	С	>>	>>			
	N	Α	С	D	F			

Alignments Exercise 1b

Determine the fitness of the process model above and the observed traces by considering the alignments.

What is the worst valid alignment with the shortest path from initial state to final state?

σ_1	Α	С	D	F	>>	>>	>>	>>
N	*	*	>>	>>	Α	С	D	F

$$\delta = 8$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))} = 1 - \frac{0}{8} = 1$$

Christian-Albrechts-Universität zu Kiel

Determine the fitness of the process model above and the observed traces by considering the alignments. What is the worst valid alignment with the shortest path from initial state to final state?

σ_1				
N				

$$\delta =$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))}$$

Christian-Albrechts-Universität zu Kiel

Determine the fitness of the process model above and the observed traces by considering the alignments. What is the worst valid alignment with the shortest path from initial state to final state?

σ_2					
Ν					

$$\delta =$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))}$$

Determine the fitness of the process model above and the observed traces by considering the alignments.

What is the worst valid alignment with the shortest path from initial state to final state?

σ_2	А	D	С	Е	G	>>	>>	>>	>>
N	>>	>>	>>	>>	>>	Α	С	D	G

$$\delta = 9$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))} = 1 - \frac{3}{9} = 0.6667$$

Christian-Albrechts-Universität zu Kiel

 $\delta = 3$

Determine the fitness of the process model above and the observed traces by considering the alignments. What is the worst valid alignment with the shortest path from initial state to final state?

σ_3				
N				

$$\delta =$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))}$$

$$\delta = 3$$

Determine the fitness of the process model above and the observed traces by considering the alignments.

What is the worst valid alignment with the shortest path from initial state to final state?

σ_3	А	F	G	>>	*	>>	>>
N	>>	>>	>>	Α	С	D	F

$$\delta = 7$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))} = 1 - \frac{3}{7} = 0.5714$$

Christian-Albrechts-Universität zu Kiel

Determine the fitness of the process model above and the observed traces by considering the alignments.

What is the worst valid alignment with the shortest path from initial state to final state?

σ_4	F	D	С	А	>>	>>	*	>>
	>>							

$$\delta = 8$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))} = 1 - \frac{6}{8} = 0.25$$

Christian-Albrechts-Universität zu Kiel

Determine the fitness of the process model above and the observed traces by considering the alignments. What is the worst valid alignment with the shortest path from initial state to final state?

σ_4				
Ν				

$$\delta =$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))}$$

Christian-Albrechts-Universität zu Kiel

$$\delta = 3$$

Determine the fitness of the process model above and the observed traces by considering the alignments.

What is the worst valid alignment with the shortest path from initial state to final state?

σ_5			
N			

$$\delta =$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))}$$

Christian-Albrechts-Universität zu Kiel

 $\delta = 3$

Determine the fitness of the process model above and the observed traces by considering the alignments.

What is the worst valid alignment with the shortest path from initial state to final state?

σ_5	С	*	*	*	>>
N	>>	Α	С	D	F

$$\delta = 5$$

$$fitness(\sigma, N) = 1 - \frac{\delta(\lambda_{opt}^{N}(\sigma))}{\delta(\lambda_{worst}^{N}(\sigma))} = 1 - \frac{3}{5} = 0.8$$

Determine the fitness of the process model above and the observed traces by considering the alignments.

#	Trace	$\delta(\lambda_{opt}^N(\sigma))$	$\delta(\lambda_{worst}^{N}(\sigma))$	$fitness(\sigma, N)$
200	ACDF	0	8	1
120	ADCEG	3	9	6/9
100	AFG	3	7	4/7
80	FDCA	6	8	$^{1}/_{4}$
10	С	3	5	$^{2}/_{5}$

$$fitness(L,N) = 1 - \frac{\Sigma_{\sigma \in L} L(\sigma) \times \delta\left(\lambda_{opt}^{N}(\sigma)\right)}{\Sigma_{\sigma \in L} L(\sigma) \times \delta\left(\lambda_{worst}^{N}(\sigma)\right)} = 1 - \frac{0 + 360 + 300 + 480 + 30}{1600 + 1080 + 700 + 640 + 50} = 0.713$$

Petri Net Construction

Exercise 2a

Christian-Albrechts-Universität zu Kiel

If possible draw a Petri net that has exactly two optimal alignments with replay fitness of $^6/_7$, given the trace $\sigma_i = \langle a, d, e \rangle$

	best:								
σ_i	σ_i a \gg d e								
N	а	b	d	е					
σ_i	σ_i a \gg d e								
Ν	а	С	d	е					

worst:

σ_i	а	d	e	>>>	>>	>>	>>
N	>>	>>	>>	а	С	d	е

Petri Net Construction

If possible draw a Petri net that has exactly two optimal alignments with replay fitness of 1, given the trace $\sigma_{ii} = \langle a, b, c, d \rangle$.

Not possible.

In order for $fitness(\sigma_{ii}, N) = 1$, the expression $\delta(\lambda_{opt}^N(\sigma_{ii}))$ has to be zero. This will only be the case if the alignment fits perfectly with synchronous moves only. Exactly one alignment can fulfil this requirement.

σ_{ii}	а	b	С	d
N	а	b	С	d

Example

Christian-Albrechts-Universität zu Kiel

Trace
$$\sigma$$
 =< a,b,c,d >

σ	а	b	С	d
Ν	а	b	С	d

Objective: Find shortest path from top left (initial state before first log move) to bottom right (final state of last log move).

Diagonal arcs result in a synchronous move

CAU

Christian-Albrechts-Universität zu Kiel

Example

Trace
$$\sigma = < a,c,d >$$

σ	а	>>	С	d
Ν	а	b	С	d

Activity *b* not in log.

Vertical arcs result in a skip move in the log

Example

Christian-Albrechts-Universität zu Kiel

Trace
$$\sigma = < a,c,b,d >$$

σ	а	>>>	С	b	d
N	a	b	С	>>	d

Activity *b* and *c* are switched.

Horizontal arcs result in a skip move in the model

CAU

Exercise 3a

CAU

Exercise 3b

CAU

Exercise 3b

CAU

Exercise 3c

