Queueing Theory and Simulation, lecture 13

Nicky van Foreest

June 22, 2021

Contents

Status and Plan	1
2 N policy for the $M/M/1$ queue	1
3 N policy for the $M/G/1$ queue.	3
1 Status and Plan	
I.1 Plan	
• Past: recursions	
– Numerical methods to compute $p(n) (= \pi(n))$ for $M^X/M/1$.	
- Recursion to compute $p(n)$ (= $\pi(n)$) for $M/G/1$.	
• Now: Simple queueing control.	
– Compute the long-run average cost of an $M/M/1$ (first) and a $M/G/1$ (under an N policy.	second)
 We use many of the concepts we developed earlier. 	
 A set of highly elegant and very useful ideas. 	
• Next:	
– An open network of $M/M/c$ queues	
– Fixed points of the (vector) equation $\lambda = \gamma + \lambda P$ and $v = c + Pv$.	

2 N policy for the M/M/1 queue

2.1 Model

- Jobs arrive as a Poisson proces with rate λ .
- Service times are iid, $S \sim \text{Exp}(\mu)$.
- $\rho = \lambda/\mu < 1$, system is stable

- As soon as the server becomes idle, it switches off
- The server pays $K \in \mathbb{C}$ to switch on
- The server pays $h \in \text{per unit time per job in the system}$.

2.2 Problem for N policy

Three steps:

- \bullet System starts empty, pay jobs until N in system.
- Pay K to switch on
- As long as jobs are present, pay each of them

Which N minimes the long-run average cost?

2.3 Steps to Solve:

- Start at zero, find expected cost W(q) to hit q.
- Start at some level q, find expected time T(q) until empty
- Start at some level q, find expected cost V(q) until empty
- Combine all components and apply renewal reward.

We start with finding an expression for T(q) and V(q).

2.4 Analysis, expected time T(q) to hit 0

- If there were no stochasticity, the net outflow is $\mu \lambda$, hence $T(q) = q/(\mu \lambda)$.
- But there is stochasticity!
- Use recursion! With this:

$$T(q) = \frac{1}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} T(q+1) + \frac{\mu}{\lambda + \mu} T(q-1). \tag{1}$$

- To solve, guess the form T(q) = aq + b, and substitute.
- $T(0) = 0 \implies b = 0$. Solving for a gives

$$T(q) = \frac{q}{\mu - \lambda}. (2)$$

2.5 Analysis, expected cost V(q) to hit 0.

• Recursion, $\alpha = \lambda/(\lambda + \mu), \beta = \mu/(\lambda + \mu),$

$$V(q) = h \frac{q}{\lambda + \mu} + \alpha V(q+1) + \beta V(q-1). \tag{3}$$

- To solve, guess the form $V(q) = aq^2 + bq + c$.
- $V(0) = 0 \implies c = 0$. Solving for a, b gives

$$V(q) = \frac{h}{2} \frac{1}{\mu - \lambda} q^2 + \frac{h}{2} \frac{\lambda + \mu}{(\mu - \lambda)^2} q.$$
 (4)

2.6 Application to M/M/1

- Average number of jobs in system is E[L].
- Hence, average pay is $h \to [L]$.
- Set K = 0
- C(1)? $C(1) = 1/\lambda + T(1)$.
- Renewal reward h E[L] = V(1)/C(1).
- Exercise: show that $V(1)/C(1) = h\rho/(1-\rho)$.

2.7 Analysis, expected cost W(q) to move to q

• Recursion:

$$W(q) = W(q-1) + h\frac{q-1}{\lambda} = h\frac{q(q-1)}{2\lambda}.$$
 (5)

2.8 Analysis, expected cycle time

ullet Expected time to start at 0, wait until level N is hit, switch on, process jobs until empty, and restart.

$$C(N) = N/\lambda + T(N).$$

2.9 Long-run average cost

• Final result

$$\frac{W(N) + K + V(N)}{C(N)} = \frac{W(N) + K + V(N)}{N/\lambda + T(N)}.$$

3 N policy for the M/G/1 queue.

3.1 Analysis

- Unlike the M/M/1 queue: there is no memoryless during service times.
- Focus on job departure times. The inter-arrival times are Exp, so still memoryless.
- Solving is similar to the M/M/1 queue
- But, deal with costs due to arrivals during a service time.

3.2 Analysis, expected time T(q) to hit 0

- Y jobs arrive during a service.
- Use recursion:

$$T(q) = E[S] + E[T(q + Y - 1)].$$
 (6)

- Substitute the guess T(q) = aq + b.
- Using that T(0) = 0, solving for a, b gives

$$T(q) = \frac{\mathsf{E}[S]}{1 - \lambda \,\mathsf{E}[S]} q.$$

• Check that this is $q/(\mu - \lambda)$ for M/M/1.

3.3 Analysis, expected cost V(q) to hit 0.

• Use recursion:

$$V(q) = U(q) + E[V(q + Y - 1)]. (7)$$

• U(q) is expected cost of jobs waiting during a service S.

$$U(q) = hq \, \mathsf{E} \, [S] + \, \mathsf{E} \, [H(S)]$$

• $\mathsf{E}[H(S)]$ is expected cost of new jobs entering during the service.

3.4 Analyis: cost of new arrivals

- Suppose s amount of service remains.
- When a new job arrives, we pay it immediately hs, but nothing while it is in the system.
- What can happen during a period $\delta \ll 1$?
 - P [no new arrival] = $1 \lambda \delta$, pay $U(s \delta)$
 - P [one new arrival] = $\lambda \delta$, pay $hs + U(s \delta)$
 - Neglect multiple arrivals as probability is $o(\delta)$.
- Hence:

$$\begin{split} H(s) &= (1 - \lambda \delta) \cdot 0 + \lambda \delta \cdot hs + H(s - \delta) + o(\delta), \\ H'(s) &= \lambda hs, \quad H(0) = 0, \\ H(s) &= \lambda hs^2/2 \\ \mathbb{E}\left[H(S)\right] &= \lambda h \, \mathbb{E}\left[S^2\right]/2. \end{split}$$

- 3.5 Analysis, expected cost V(q) to hit 0.
 - Hence

$$\begin{split} V(q) &= U(q) + \, \mathsf{E} \left[V(q+Y-1) \right] \\ &= hq \, \mathsf{E} \left[S \right] + \, \mathsf{E} \left[H(S) \right] + \, \mathsf{E} \left[V(q+Y-1) \right] \\ &= hq \, \mathsf{E} \left[S \right] + \lambda h \, \mathsf{E} \left[S^2 \right] / 2 + \, \mathsf{E} \left[V(q+Y-1) \right]. \end{split}$$

- Substitute $V(q) = aq^2 + bq + c$, and solve for a, b, c, with boundary condition V(0) = 0.
- After some work this gives

$$V(q) = \frac{h}{2} \frac{\mathsf{E}[S]}{1 - \rho} q^2 + h \frac{1 + \rho C_s^2}{2} \frac{\mathsf{E}[S]}{(1 - \rho)^2} q.$$

3.6 Long-run average cost

• Final result

$$\frac{W(N) + K + V(N)}{C(N)} \tag{8}$$

$$= h \frac{1 + C_s^2}{2} \frac{\rho^2}{1 - \rho} + h\rho + h \frac{N - 1}{2} + K \frac{\lambda(1 - \rho)}{N}.$$
 (9)

- Setting N = 1 gives the PK formula
- Optimal N^* :

$$N^* \approx \sqrt{\frac{2\lambda(1-\rho)K}{h}} \to \sqrt{\frac{2\lambda K}{h}}, \text{ as } \mathsf{E}[S] \to 0.$$

• These are the Economic Production Quantity (EPQ) and Economic Order Quantity (EOQ) formulas.