

Chapter 6 Dynamic Programming

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- . Given nobjects $I = \{(w_i, v_i): i=1,...,n\}$ and a Knapsack
- . Item iweighs $w_i > 0$ kilograms and has value $v_i > 0$.
- . Knapsack has capacity of W kilograms.
- . Feasible Sol: $S \subseteq I$ s.t. $\sum_{j \in S} w_i$
- . Goal: fill knapsack so as to maximize total SUM of values: $\sum_{j \in S} V_i$

Ex: $S = \{3, 4\}$ has value 40.

W = 11

Input

#	value	weight_
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i / w_i .

Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow \text{greedy not optimal}$.

Dynamic Programming: 1st approach

Def. OPT(i) = max profit subset of items 1, ..., i. (Which Ordering?)

- . Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1}
- . Case 2: OPT selects item i. (Which sub-problems must recursively be invoked?)
 - accepting item i does not immediately imply that we will have to reject other items k < i.
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion: Need more sub-problems, i.e. more parameters than just index i

Dynamic Programming: Adding a New Variable

Def. For any fixed pair $i \in I$ and $w \in \{0,1,...,W\}$ consider:

```
OPT(i, w) = max profit subset of items 1, ..., i with weight parameter w.
```

- . Case 1: OPT does not select item i.
 - OPT selects best of sub-probl { 1, 2, ..., i-1 } using weight limit w
- . Case 2: OPT selects item i
 - . new weight limit = $w w_i$
 - . OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i,w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1,w) & \text{if } w_i > w \\ max{OPT(i-1,w)} & v_i + OPT(i-1, w - w_i) \end{cases} \text{ otherwise}$$

$$Case 1 \qquad Case 2$$

Q. How to fill-up the matrix M(i, w), for all i = 1..n; w = 0..W??

Answer: Nice Ordering Property

In order to compute row i, you need the values of rows j < i only!

Knapsack Problem: Bottom-Up

Knapsack. Fill up an $n \times W$ array. The good ordering for sub-problems

Inizialization of the First row: no Items in the solution!

To compute M[i,w], we only need values M[i-1,w] and M[i-1,w-w_i]... They are already there!

```
Input: n, W, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>

for w = 0 to W
    M[0, w] = 0

for i = 1 to n
    for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```


Knapsack Algorithm

V	W + 1
---	-------

		0	1	2	3	4	5	6	7	8	9	10	11
	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- . Not polynomial in input size!
- . "Pseudo-polynomial."
- . Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

SELF TESTS at HOME You should write on your notes

- Formalize the definition of Knapsack Problem
- Give a rigorous proof of the optimality of the OPT(i,w)
 recursive formula in the first case (when i does not belong to
 the optimal solution). Hint: Use Exchange argument and
 Contradiction
- Give a concrete instance with at least 6 items. For any given entry M[i,w] find excactly which are the (only) two previous entries required by the computation of M[i,w]
- Did you understand well why the proposed Dyn Programming for this problem is not polynomial? Give a formal argument for this issue.