Introduction of Deep Reinforcement Learning (RL

Hung-yi Lee

Supervised Learning → RL

It is challenging to label data in some tasks.

Outline

What is RL? (Three steps in ML)

Policy Gradient

Actor-Critic

Reward Shaping

No Reward: Learning from Demonstration

Machine Learning ≈ Looking for a Function

Example: Playing Video Game

Space invader

Termination: all the aliens are ki or your spaceship is destroyed.

Example: Playing Video Game

Example: Playing Video Game

Find an actor maximizing expected reward.

Example: Learning to play Go

Example: Learning to play Go

Find an actor maximizing expected reward.

Machine Learning is so simple

Step 2: define loss from training data

Step 3: optimization

Step 1: Function with Unknown

- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network : each action corresponds to a

Step 2: Define "Loss"

Step 2: Define "Loss"

Start with observation s_1

Observation s_2

Observatio

After many turns

This is an *epi*

Total reward (return):

What we

Step 3: Optimization

How to do the optimization here is

 $R(\tau) = \sum r_{i}$

Outline

To learn more about policy gradien https://youtu.be/W8XF3ME8G2I

What is RL? (Three steps in ML)

Policy Gradient

Actor-Critic

Reward Shaping

No Reward: Learning from Demonstration

• Make it take (or don't take) a specific action \hat{a} giv specific observation s.

Take action \hat{a}

$$L = e$$

Don't take action \hat{a}

$$\theta^* = \underset{\theta}{argmin} L$$

$$L = e_1 - e_2$$
 $\theta^* = argmin L$

Training Data

Training Data

Short-sighted Version!

Version 0 Env Actor Env "right" Reward Reward r_1 0

- An action affects the subsequent observations and thus subsequent rewards.
- Reward delay: Actor has to sacrifice immediate reward to gain more long-term reward.
- In space invader, only "fire" yields positive reward, so vision

Training Date

$$s_1$$
 s_2 s_3 s_N $\{s_1, a_1\}$ $A_1 = \{a_1, a_2, a_3\}$ a_3 a_4 $\{s_2, a_2\}$ a_4 $\{s_3, a_3\}$ a_4 $\{s_4, a_1\}$ $\{s_2, a_2\}$ $\{s_3, a_3\}$ $\{s_4, a_1\}$ $\{s_4, a_1\}$ $\{s_4, a_2\}$ $\{s_4, a_2\}$ $\{s_4, a_4\}$ $\{s_4, a_4$

 $G_2 = r_2 + r_3 + \dots + r_N$

 $G_3 = r_3 + \dots + r_N$

 $G_t = \sum r$

N

Training Date

$$s_1$$
 s_2 s_3 s_N $\{s_1, a_1\}$ $A_1 = a_1$ a_2 a_3 a_3 a_4 $\{s_2, a_2\}$ a_4 $\{s_3, a_3\}$ a_5 $\{s_1, a_1\}$ $\{s_2, a_2\}$ $\{s_3, a_3\}$ $\{s_3, a_3\}$ $\{s_3, a_3\}$ $\{s_4, a_5\}$ $\{s_3, a_3\}$ $\{s_4, a_5\}$ $\{s_4, a_5\}$ $\{s_4, a_5\}$ $\{s_5, a_6\}$ $\{s_7, a_8\}$ $\{s_7, a_8\}$ $\{s_8, a_8\}$

Discount factor $\gamma < 1$

 $G_1' = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$

Good or bad reward is "relative" If all the $r_n \geq 10$

$$r_n = 10$$
 is negative ...

Minus by a baseline b

Training Date

$$\{s_1, a_1\} \quad A_1 =$$

$$\{s_2, a_2\} \quad A_2 =$$

$$\{s_3, a_3\}$$
 $A_3 =$

$$\{s_N, a_N\}$$
 $A_N =$

$$G'_t = \sum_{i=1}^{N} \gamma^{n-i}$$

- Initialize actor network parameters $heta^0$
- For training iteration i = 1 to T

 - Using actor θ^{i-1} to interact Obtain data $\{s_1,a_1\},\{s_2,a_2\},...,\{s_N,a_N\}$ Compute $A_1,A_2,...,A_N$

 - Compute loss L
 - $\theta^i \leftarrow \theta^{i-1} \eta \nabla L$

Data collection is in the loop" of training iteration

Each time you update the model parameters, you need to

- Initialize actor network parameters $heta^0$
- For training iteration i = 1 to T
- **Experience of**

- Using actor θ^{i-1} to interact
 Obtain data $\{s_1, a_1\}, \{s_2, a_2\}, ..., \{s_N, a_N\}$ Compute $A_1, A_2, ..., A_N$
- Compute loss L

$$\bullet \theta^i \leftarrow \theta^{i-1} - \eta \nabla I$$

May not be good for θ^i

棋魂第八集

※ 小馬步飛: 跟將棋一樣,將棋子放在斜一格: 大馬步飛則是放在斜好幾格。

棋魂第八集

- Initialize actor network parameters $heta^0$
- For training iteration i = 1 to T
 - Using actor θ^{i-1} to interact
 - Obtain data $\{s_1, a_1\}, \{s_2, a_2\}, ..., \{s_N, a_N\}$
 - Compute $A_1, A_2, ..., A_N$
 - Compute loss L

•
$$\theta^i \leftarrow \theta^{i-1} - \eta \nabla L$$
 Trajectory of θ^{i-1}

May not observe

On-policy v.s. Off-policy

- The actor to train and the actor for interacting is the same. → On-policy
- Can the actor to train and the actor for interacting be different? → Off-policy

In this way we do not have to collection data after each ur

Off-policy → Proximal Policy Optimization (PPO)

 The actor to train has to know its difference from the actor to interact.

video:

https://youtu.be/OAKAZhFmYoI

Not apply to everyone

Collection Training Data: **Exploration**

The actor needs to have randomness during data collection.

We never knowhat would h

OpenAl - PPO

https://blog.openai.com penai-baselines-ppo/

Outline

What is RL? (Three steps in ML)

Policy Gradient

Actor-Critic

Reward Shaping

No Reward: Learning from Demonstration

Critic

$$G_1' = r_1 + \gamma r_2 + \gamma^2 r_3 +$$

- Critic: Given actor θ , how good it is when observing s (an taking action a)
- Value function $V^{\theta}(s)$: When using actor θ , the discounted cumulated reward expects to be obtained after seeing s

 $V^{\theta}(s)$ is sm

The output values of a critic depend on the actor avaluate

How to estimate $V^{\theta}(s)$

Monte-Carlo (MC) based approach

The critic watches actor heta to interact with the environmer

After seeing s_a ,

Until the end of the episode, the cumulated reward is G'_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G'_{b}

$$s_b \rightarrow V^{\theta} \rightarrow V^{\theta}(s_b) \leftarrow$$

How to estimate $V^{\pi}(s)$

Temporal-difference (TD) approach

MC v.s. TD

[Sutton, \ Example

The critic has observed the following 8 episodes

•
$$s_a, r = 0, s_b, r = 0$$
, END

- $s_h, r = 1$, END
- $s_h, r = 1$, END
- $s_b, r = 1$, END
- $s_h, r = 1$, END
- $s_h, r = 1$, END
- $s_h, r = 1$, END
- $s_b, r = 0$, END

 $V^{\theta}(s_b) = 3/4$

 $V^{\theta}(s_a) = ? 0? 3/4?$

Monte-Carlo: $V^{\theta}(s_a) = 0$

Temporal-difference:

$$V^{\theta}(s_a) = V^{\theta}(s_b) + r$$

(Assume $\gamma = 1$, and the

Version 3.5

Version 3.5

Version 3.5

$$\{s_t, a_t\}$$
 $A_t = G'_t - V^{\theta}(s_t)$

(You sample the actions based on a distribution)

$$A_t > 0$$

 a_t is better than a

$$A_t < 0$$

 a_t is worse than a

lust a cample

$$r_t + V^{\theta}(s_{t+1}) - V^{\theta}$$

Version 4

 $\{s_t, a_t\}$ $A_t = G'_t - V^{\theta}(s_t)$

Tip of Actor-Critic

The parameters of actor and critic can be shared.

Outlook: Deep Q Network (DQN)

Video:

https://youtu.be/o_g9JUMw1Oc

https://youtu.be/2-zGCx4iv_k

Outline

What is RL? (Three steps in ML)

Policy Gradient

Actor-Critic

Reward Shaping

No Reward: Learning from Demonstration

Sparse Reward

$$A_t = r_t + V^{\theta}(s_{t+1}) - V$$

s_1	S_2	s_3		s_N
a_1	a_2	a_3	••••	a_N
r_1	r_2	r_3		r_N

Training Data

$$\{s_1, a_1\}$$
 A_1
 $\{s_2, a_2\}$ A_2
 $\{s_3, a_3\}$ A_3
 \vdots \vdots
 $\{s_N, a_N\}$ A_N

If $r_t = 0$ in most cases

We don't know act are good or bad.

e.g., robot arm to bolt on the screws

The developers define extra

Reward Shaping

VizDoom

https://openreview.net/forum?id=Hk3mPK5gg¬eId=Hk3mPK5gg

Visual Doom Al Competition @ CIG 2016

Reward Shaping

VizDoom https://openreview.net/forum?id=Hk3mPK5gg¬eId=Hk3mPK5gg

Parameters	Description	FlatMap CIG
living	Penalize agent who just lives	-0.008 / acti
health_loss	Penalize health decrement	-0.05 / uni
ammo_loss	Penalize ammunition decrement	-0.04 / uni
health_pickup	Reward for medkit pickup	0.04 / uni
ammo_pickup	Reward for ammunition pickup	0.15 / uni
dist_penalty	Penalize the agent when it stays	-0.03 / actio
dist_reward	Reward the agent when it moves	9e-5 / unit dist

Reward Shaping - Curiosity

Obtaining extra reward when the agent sees something new (but meaningful).

Curiosity Driven Exploration by Self-Supervised Prediction

ICML 2017

Deepak Pathak, Pulkit Agrawal, Alexei Efros, Trevor Darrell UC Berkeley

Outline

What is RL? (Three steps in ML)

Policy Gradient

Actor-Critic

Reward Shaping

No Reward: Learning from Demonstration

Motivation

- Even define reward can be challenging in some tasks.
- Hand-crafted rewards can lead to uncontrolled behavior.

Three Laws of Robotics:

- 1. A robot may not injure a human being or, thro inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by huma except where such orders would conflict with the
- 3. A robot must protect its own existence as long protection does not conflict with the First or Second

restraining individual human behavior and sacrifi

Imitation Learning

Actor can interact with the environment, but reward function is not available

We have demonstration of the expert.

 $\{\hat{\tau}_1, \hat{\tau}_2, \dots, \hat{\tau}_K\}$

Each $\hat{\tau}$ is a trajectory of the export.

Self driving: rehuman driver

Robot: grab tl

Isn't it Supervised Learning?

Self-driving cars as example

Problem: The experts only

Yes, also known a **Behavior Cloning**

More problem

The agent will converse every behavior, irrelevant action

Inverse Reinforcement Learning

optimal actor.

Inverse Reinforcement Learning

- Principle: *The teacher is always the best*.
- Basic idea:
 - Initialize an actor
 - In each iteration
 - The actor interacts with the environments to obta some trajectories.
 - Define a reward function, which makes the trajectories of the teacher better than the actor.
 - The actor learns to maximize the reward based on the new reward function.
 - Output the reward function and the actor learned fro

Framework of IRL

Ry Rainforcement les

= Discriminator

GAN

Robot

• How to teach robots? https://www.youtube.com/watch?v=DEGbtj

Robot

Chelsea Finn, Sergey Levine, Piet Abbeel, Guided Cost Learning: De Inverse Optimal Control via Polici Optimization, ICMIhtt 20161.berkeley.e

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn, Sergey Levine, Pieter Abbeel UC Berkeley

To Learn More ...

Visual Reinforcement Learning with Imagined Goals, NIPS 201

https://arxiv.org/abs/180

Skew-Fit: State-Covering Self-Supervised Reinforcement Learn ICML 2020 https://arxiv.org/abs/190

Concluding Remarks

What is RL? (Three steps in ML)

Policy Gradient

Actor-Critic

Sparse Reward

No Reward: Learning from Demonstration