Fundamentals of Stan

StanCon 2023

Instructor:

Charles Margossian Flatiron Institute

Flatiron Institute & Duke University

Teaching Assistant:

Manny Mokel

Outline

- Review of Bayesian Analysis
- Markov chain Monte Carlo
- The Stan language

Example: Bayesian linear regression Example: Disease transmission model

Logistics

An R notebook to do the exercises can be found at:

https://github.com/charlesm93/stanTutorial

You can run the R code on your local machine or on the Colab cloud server.

1

Review of Bayesian Analysis

Defined as a joint distribution

$$p(\theta, y)$$

over observed variables y and unknowns θ .

Defined as a joint distribution

$$p(\theta, y) = p(\theta)p(y \mid \theta)$$

over observed variables y and unknowns θ .

Defined as a joint distribution

$$p(\theta, y) = p(\theta)p(y \mid \theta)$$

over observed variables y and unknowns θ .

 $p(y \mid \theta)$ is the *likelihood*:

For a fixed θ , defines a data generating process.

Defined as a joint distribution

$$p(\theta, y) = p(\theta)p(y \mid \theta)$$

over observed variables y and unknowns θ .

 $p(y \mid \theta)$ is the *likelihood*:

For a fixed θ , defines a data generating process.

 $p(\theta)$ is the prior:

quantitative assumptions and understanding about θ information from previous analysis regularization tool

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser_©¹, Michel J. Counotte_©¹, Charles C. Margossian_©², Garyfallos Konstantinoudis_©³, Nicola Low_©¹, Christian L. Althaus¹, Julien Riou_©^{1,4}*

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser $_0^1$, Michel J. Counotte $_0^1$, Charles C. Margossian $_0^2$, Garyfallos Konstantinoudis $_0^3$, Nicola Low $_0^1$, Christian L. Althaus $_1^1$, Julien Riou $_0^{1.4*}$

Likelihood:

Epidemiological model of the disease dynamic Measurement model: test results, hospital deaths.

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser_©¹, Michel J. Counotte_©¹, Charles C. Margossian_©², Garyfallos Konstantinoudis_©³, Nicola Low_©¹, Christian L. Althaus¹, Julien Riou_©^{1,4}*

Likelihood:

Epidemiological model of the disease dynamic Measurement model: test results, hospital deaths.

Prior:

Constraints on interpretable parameters Meta-analysis for asymptomatic rate

Given observations y, want to learn about θ

Given observations y, want to learn about θ Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

Given observations y, want to learn about θ Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

For some transformation f of the parameters θ , can learn

$$p(f(\theta) \mid y)$$

Given observations y, want to learn about θ

Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

For some transformation f of the parameters θ , can learn

$$p(f(\theta) \mid y)$$

f may be predictions about the future, a useful summary (e.g. R_0 infection rate), etc.

Given observations y, want to learn about θ

Proposition: Learn a posterior distribution

$$p(\theta \mid y) = \frac{p(\theta)p(y \mid \theta)}{p(y)}$$

For some transformation f of the parameters θ , can learn

$$p(f(\theta) \mid y)$$

f may be predictions about the future, a useful summary (e.g. R_0 infection rate), etc.

The variance in $p(f(\theta) \mid y)$ accounts for both the modeled noise and the uncertainty in our estimation of θ .

Example: normal-normal model

$$p(\theta) = \text{normal}(\mu, \tau)$$

 $p(y_n \mid \theta) = \text{normal}(\theta, \sigma)$

Suppose we have N i.i.d observations y_1, y_2, \dots, y_N .

Example: normal-normal model

$$p(\theta) = \text{normal}(\mu, \tau)$$

 $p(y_n \mid \theta) = \text{normal}(\theta, \sigma)$

Suppose we have N i.i.d observations y_1, y_2, \dots, y_N . Then

$$p(\theta \mid \mathbf{y}) = \text{normal}\left(\frac{\mu/\tau^2 + N\bar{y}/\sigma^2}{1/\tau^2 + N/\sigma^2}, \frac{1}{1/\tau^2 + N/\sigma^2}\right)$$

Example: normal-normal model

$$\begin{array}{rcl} p(\theta) & = & \operatorname{normal}(\mu, \tau) \\ p(y_n \mid \theta) & = & \operatorname{normal}(\theta, \sigma) \end{array}$$

Suppose we have N i.i.d observations y_1, y_2, \dots, y_N . Then

$$p(\theta \mid \mathbf{y}) = \text{normal}\left(\frac{\mu/\tau^2 + N\bar{y}/\sigma^2}{1/\tau^2 + N/\sigma^2}, \frac{1}{1/\tau^2 + N/\sigma^2}\right)$$

In practice, the posterior is <u>not</u> tractable.

Need to estimate summary quantities: expectation values, variance, quantiles, \cdots

Bayesian learning

Suppose we obtain data over two observations, y_1 and y_2 .

Bayesian learning

Suppose we obtain data over two observations, \mathbf{y}_1 and \mathbf{y}_2 . Then the following two procedure are equivalent,

(1)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1, \mathbf{y}_2)$.

or

(2)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1)$
- Use $p(\theta \mid \mathbf{y}_1)$ as a new prior.
- Compute the posterior $\tilde{p}(\theta \mid \mathbf{y}_2)$.

Bayesian learning

Suppose we obtain data over two observations, \mathbf{y}_1 and \mathbf{y}_2 . Then the following two procedure are equivalent,

(1)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1, \mathbf{y}_2)$.

or

(2)

- Start with a prior $p(\theta)$.
- Compute the posterior $p(\theta \mid \mathbf{y}_1)$
- Use $p(\theta \mid \mathbf{y}_1)$ as a new prior.
- Compute the posterior $\tilde{p}(\theta \mid \mathbf{y}_2)$.

$$\tilde{p}(\theta \mid \mathbf{y}_2) = p(\theta \mid \mathbf{y}_1, \mathbf{y}_2)$$

Model

Likelihood $p(y\mid\theta)$

Prior $p(\theta)$

Model

Likelihood $p(y \mid \theta)$

Prior $p(\theta)$

Inference

Approximate $p(f(\theta) \mid y)$

Criticize

Does the model capture the info we care about?

If not, how can we improve the model?

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser $_0^1$, Michel J. Counotte $_0^1$, Charles C. Margossian $_0^2$, Garyfallos Konstantinoudis $_0^3$, Nicola Low $_0^1$, Christian L. Althaus $_1^1$, Julien Riou $_0^{1.4*}$

The published model is the \sim 15th iteration.

Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe

Anthony Hauser $_0^1$, Michel J. Counotte $_0^1$, Charles C. Margossian $_0^2$, Garyfallos Konstantinoudis $_0^3$, Nicola Low $_0^1$, Christian L. Althaus $_1^1$, Julien Riou $_0^{1.4*}$

The published model is the \sim 15th iteration.

Grinsztajn et al. Bayesian workflow for disease transmission model in Stan, Statistics in Medicine (2021)

Gelman et al. Bayesian workflow, arXiv:2011.01808 (2020)