班级自动化 7 班 🗎	学号 姓名_彭尚品_	教师签字
实验日期2023/9/2	25 预习成绩	总成绩

实验名称 用示波器观测磁滞回线

- -. 实验目的
 - 1、认识并掌握6在滞石在滞回线和石在化曲线65相究会
- 2. 学钥形波器测线基本磁化曲线和磁滞回线 3. G开究不同材料的动态石效滞回线的区别,并确定特定频率下各个材料的 私人经和然硕力
- 二. 实验预习
- 1. 剩磁、矫顽力、基本磁化曲线、动态磁滞回线的定义。
- ①和石兹:对一个石兹场中的林料指数省外石兹场后,其表现的石兹越左强度
- ②矢行顶力:使改在化的铁石在质失去石在1生而必须加的石在物强度
- ③基标在化曲线:由一系列稳定的磁滞回线的顶点连成的曲线
- 田动态石兹港回线:铁石兹度在交变石兹的石兹化下所得的 B-H关系曲线
 - 2. 示波器测量的 X 轴信号 U_x 是谁的电压? 和磁场强度 H 是什么关系 (写出公式)? 示波器 测量的 Y轴信号 U_y 是谁的电压?和磁感应强度 B 是什么关系(写出公式)?

$$L$$
 U_X 是 R 的 电压 $H = \frac{N}{LR}$ U_X 2、 U_Y 是 电容 C 两 総 配 $B = \frac{R_1C}{N_2S}$ U_C

三. 实验现象及数据记录

样品 1: 饱和磁滞回线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
 50 II-	10,0	46	36	mV U _X	723	556	343	143	-30.7	-97.3	-157	-257	-344	-524
50 Hz	Ω	kr	MF	U_Y	37.0	35.4	31.8	23.8	g.oo	1,00	-6.20	-16.2	-23.4	-318
					11	12	13	14	15	16	17	18	19	20
				U_X	-751	-471	-277	-57.}	103	169	2 76	383	516	649
				U_{Y}	-36.2	-33 _. 4	- 29,0	-15.4	2.20	10.2	20.2	27.0	32.6	354

样品 1: 基本磁化曲线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
50 Hz	10.0			ml/ U _X	751	529	396	289	223	203	143	166	76.0	16,0
SU HZ	N	ka	μF	wV U _Y	37.0	33.0	28.2	21.4	17-0	14-6	11.0	7.80	5.40	2-20

样品 2: 饱和磁滞回线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
50 11-	たの	l	7.6	U_X	1-78 V	124 V	727 mV	227 mV	-73.3 mV	-273 mV	-373 mV	-573 mV	-940 mV	-1.79 V
50 Hz	Ω	ks	μF	U_Y	32.6	31.0	28.2	24,2	19.0	10.2	600 MV	-13.0	-23,0	-31.4
					11	12	13	14	15	16	17	18	19	20
				U_X	-1-17 V	-740 mV	-340 mV	-6.67 mV	20 mV	460 mV	610 mV	943 mV	1.29 V	154 V
				U_Y	-29.4	-27.0	-24.2	-18.6	-9.8	10.2	18.2	25,0	29.4	31,0

样品 2: 基本磁化曲线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
50 H	5.0	87	7.6	U_X	1-78 V	1-43	1.19	927 mV	793 mV	577 mV	443 mV	393 mv	277 mV	193 mV
50 Hz	Л	ks	M	U_{Y}	326 mV	30b mV	29.0 mV	266 mV	250 mV	226 mV	190 mv	17:0 mV	13.4 mV	8.20 mV

教师	姓名
签字	Wi

四. 数据处理及作图

先根据公式 $H = \frac{N_1}{LR_1} U_X$ 和 $B = \frac{R_2C}{N_2S} U_C$ 计算 H 和 B

其中: N₁=N₂=150 样品 1: L=0.130m S=1.24*10⁻⁴m², 样品 2: L=0.075m S=1.20*10⁻⁴m²

保存在列表B和H中,进行画图

一、样品1的饱和磁滞回线

结果:

 $B[0.33, 0.32, 0.28, 0.21, 0.08, 0.01, -0.06, -0.14, -0.21, -0.28, -0.32, -0.3, -0.26, -0.14, 0.02, 0.09, 0.18, 0.24, 0.29, 0.32] \\ H[83.42, 64.15, 39.58, 16.5, -3.54, -11.23, -18.12, -29.65, -39.69, -60.46, -86.65, -54.35, -31.96, -6.61, 11.88, 19.5, 31.85, 44.19, 59.54, 74.88]$

图形:

剩磁: $B_r = 0.08T$ 矫顽力: Hc = 8.9 A/m

二、样品1的基本磁化曲线

结果:

B[0.33, 0.29, 0.25, 0.19, 0.15, 0.13, 0.1, 0.07, 0.05, 0.02] H[86.65, 61.04, 45.69, 33.35, 25.73, 23.42, 16.5, 13.38, 8.77, 1.85]

图形:

三、样品2的饱和磁滞回线

结果:

 $B[1.2, 1.14, 1.04, 0.89, 0.7, 0.37, 0.0, -0.48, -0.84, -1.15, -1.08, -0.99, -0.89, -0.89, -0.68, -0.36, 0.37, 0.67, 0.92, 1.08, 1.14] \\ H[712.0, 496.0, 290.8, 90.8, -29.32, -109.2, -149.2, -229.2, -376.0, -716.0, -468.0, -296.0, -136.0, -2.67, 84.0, 184.0, 244.0, 377.2, 516.0, 616.0]$

图形:

四、样品2的基本磁化曲线

结果:

B[1.16, 1.09, 1.03, 0.95, 0.89, 0.8, 0.68, 0.6, 0.48, 0.29] H[410.77, 330.0, 274.62, 213.92, 183.0, 133.15, 102.23, 90.69, 63.92, 44.54]

图形:

五. 实验结论及现象分析

六. 讨论问题

- 1. 某两种材料的磁滞回线,一个很宽一个很窄,它们各属于哪类磁性材料? 分别可以应用于什么场合?
- 2. 一钢制部件不慎被磁化,请设计一种退磁方案。答:
- 1、磁滞回线较宽的是硬磁材料,其剩磁和矫顽力大,适合做永磁体; 磁滞回线很窄的是软磁材料,其剩磁和矫顽力小,易于磁化,也易于退磁,适合制作变压器、 电动机和发电机的铁芯。
- 2. 可将其置于线圈中,首先在线圈中通以足够大电流,使磁铁达到饱和状态。然后,边来回改变电流方向边减小电流大小,直至电流减为0。