Problema 831

Un triangle té vèrtex A fix en una circumferència i el costat \overline{BC} oposat de longitud constant, és una corda variable de la circumferència.

Determineu el lloc geomètric del centre de la circumferència dels nou punts dels triangles.

Ortega y Sala, M. (1940): <u>Geometría</u>. Tomo II (Complementos y ejercicios) Obra elegida para el ingreso en las Academias Militares. 17 Edición.

Solució de Ricard Peiró i Estruch:

El centre O_e de la circumferència dels nou punts:del triangle $\stackrel{\triangle}{ABC}$ és igual al punt mig del segment format pel circumcentre O i l'ortocentre H.

O és un punt fix.

A és un punt fix.

Siga K el punt mig del segment \overline{AO} . K és un punt fix.

L'angle A és un angle constant.

Vegem que el segment AH és constant.

$$\angle ABH = 90^{\circ} - A$$
, $\angle BAH = 90 - B$. Aleshores, $\angle BHA = 180 - C$.

Aplicant el teorema dels sinus al triangle ABH:

$$\frac{\overline{AH}}{\cos A} = \frac{c}{\sin C}$$

Aplicant el teorema dels sinus al triangle \overrightarrow{ABH} :

$$\frac{a}{\sin A} = \frac{c}{\sin C}.$$

Aleshores, $\overline{AH} = a \frac{\cos A}{\sin A}$, aleshores, \overline{AH} és constant. Per tant, el lloc geomètric de H és la circumferència de centre A i radi $a \frac{\cos A}{\sin A}$.

 $\overline{KO_e}\,$ és la paral·lela mitjana del triangle $\,A\overset{\Delta}{HO}\,.\,$

Aleshores,
$$\overline{KO_e} = \frac{1}{2}\overline{AH} = \frac{1}{2}a\frac{\cos A}{\sin A}$$
. K fix.

Aleshores, O_e recorre la circumferència de centre K i radi $\frac{1}{2} \frac{\cos A}{\sin A} a$.