TD-2: plus court chemin dans un graphe

Exercice 1. On considère la grille suivante sur laquelle on peut se déplacer en vertical et en horizontal avec un coût de 1 pour passer d'une case à une case voisine, et les cases noires ne sont pas accessibles. On veut trouver un plus-court-chemin de s à t. Appliquez l'algorithme de Dijkstra pour trouver un plus-court-chemin de s à t. Veuillez à faire le "pire" choix de sommet à explorer lorsqu'il y a un choix à faire. Quel est le nombre de sommets explorés.

On définit trois fonctions d'estimation, h_e , h_m , et h_p sur l'ensemble des cases :

- $h_e(u)$ est la distance Euclidienne de la case u à t.
- $h_m(u)$ est la distance de Manhattan de la case u à t, i.e., la distance en nombre de déplacement sur la grille s'il n'y avait pas de cases noires.
- $h_p(u)$ est la distance parfaite de la case u à t, i.e., la vrai distance de u à t. Pour chacune des trois fonctions d'estimation :
- 1. Est-elle une borne inférieur de la vrai distance? Prouvez votre réponse.
 - 2. Est-elle consistante? Prouvez votre réponse.
 - 3. Si la réponse est oui aux deux questions précédentes, alors appliquez A* avec cette fonction comme fonction d'estimation. Veuillez à faire le "pire" choix de sommet à explorer lorsqu'il y a un choix à faire. Quel est le nombre de sommets explorés.

Exercice 2. Soit G = (V, E) un graphe orienté représentant un réseau de communication. Chaque arête $(u, v) \in E$ a un poids 0 < r < 1 qui représente la probabilité que le canal (u, v) transmette l'information de u à v sans erreur. Donnez un algorithme qui trouve le chemin avec le plus grand probabilité de succès de transmission d'un sommet s à un sommet t.

Exercice 3. Soit G = (V, E) un η -graphe orienté avec $\eta > 0$. Notons s le sommet source et t un sommet accessible depuis s. Soient $\widehat{h_1}$ et $\widehat{h_2}$ deux fonctions d'estimations vérifiant les deux hypothèses de borne inférieur et de consistance. On suppose que $\widehat{h_1}$ est un estimateur strictement plus fin que $\widehat{h_2}$:

$$\forall v \in V, \ \widehat{h_1}(v) > \widehat{h_2}(v)$$

Notons A_1^* respectivement A_2^* l'algorithme A^* utilisant la fonction d'estimation $\widehat{h_1}$, respectivement $\widehat{h_2}$, sur le graphe G pour trouver un plus-court-chemin de s à t. On veut montrer que tout sommet exploré par A_1^* est aussi exploré A_2^* .

- Supposons par l'absurde qu'il existe un sommet exploré par A₁* mais pas par A₂*, et notons u ∈ V le premier sommet que A₁* a exploré et qui n'a pas été exploré par A₂*. Montrez que u n'est pas le sommet source s.
- 2. Montrez que u a été marqué ouvert par A_2^* .

- 3. Notons d_2 le variable d'utilisé par A_2^* . Montrez que A_2^* affecte $\delta(s,u)$ à $u.d_2$. (Indication : considérez la relaxation de l'arête qui a permis de marquer u ouvert)
- 4. Si on note \hat{f}_2 la fonction d'évaluation utilisée par A_2^* . Montrez qu'au moment où u est marqué ouvert par A_2^* , on a $\hat{f}_2(u) < \delta(s,t)$.
- 5. Montrez que l'inégalité de la question d'avant est toujours valide au moment où A_2^* marque t fermé.
- 6. Conclure.

Exercice 4. Prouvez que lorsque le graphe est donné sous forme de listes d'adjacence alors la complexité asymptotique de l'algorithme de Dijkstra est $O(|V|^2)$ où V est l'ensemble des sommets du graphe.

Exercice 5. Soit G = (V, E) un η -graphe orienté avec $\eta > 0$, et t et s deux sommets tel que t soit accessible depuis s. Soit \hat{h} une fonction d'estimation parfaite, i.e., pour tout $v \in V$, $\hat{h}(v) = \delta(v, t)$.

- 1. \hat{h} est-elle consistante?
- 2. Notons γ le nombre minimal de sommets sur un plus-court-chemin de s à t. Montrez que A^* explore au moins γ sommets pour trouvez un plus-court-chemin de s à t.
- 3. Donnez un exemple où A^* peut explorer strictement plus que γ sommets.
- 4. Donnez un exemple où A^* explore exactement γ sommets quelque soit le choix de sommet à explorer en cas de plusieurs choix possibles. Donnez une condition suffisante sur le graphe pour que cette situation se produise.