Theory

Basis

We utilise a complete basis of the form, $\mathcal{B} = \{|\phi_i\rangle\}_{i=1}^N$, where the basis functions are represented in coordinate-space in the form

$$\phi_i(r,\Omega) = \frac{1}{r} \varphi_{k_i,\ell_i}(r) Y_{\ell_i}^{m_i}(\Omega) \quad \text{for} \quad i = 1,\dots, N$$
 (1)

where the radial functions, $\mathcal{R} = \{|\varphi_{k_i,\ell_i}\rangle\}_{i=1}^N$ form a complete basis for the radial function space, in the limit as $N \to \infty$. We utilise a Laguerre basis for the set of radial functions which, for $k = 1, 2, \ldots$ and where $\ell \in \{0, 1, \ldots\}$, are of the following form in coordinate-space

$$\varphi_{k,\ell}(r) = N_{k,\ell}(2\alpha_{\ell}r)^{\ell+1} \exp(-\alpha_{\ell}r) L_{k-1}^{2\ell+1}(2\alpha_{\ell}r)$$
(2)

where $\alpha_{\ell} \in (0, \infty)$ are arbitrarily chosen constants, where $N_{k,\ell}$ are the normalisation constants, given by

$$N_{k,\ell} = \sqrt{\frac{\alpha_{\ell}(k-1)!}{(k+\ell)(k+2\ell)!}}$$
 (3)

and where $L_{k-1}^{2\ell+1}$ are the generalised Laguerre polynomials.

Overlap Matrix Elements

The overlap matrix elements, $B_{i,j}$, are of the form

$$B_{i,j} = \langle \phi_i | \phi_j \rangle = \langle \frac{1}{r} \varphi_{k_i,\ell_i} | \frac{1}{r} \varphi_{k_j,\ell_j} \rangle \langle Y_{l_i}^{m_i} | Y_{l_j}^{m_j} \rangle = \langle \frac{1}{r} \varphi_{k_i,\ell_i} | \frac{1}{r} \varphi_{k_j,\ell_j} \rangle \delta_{l_i,l_j} \delta_{m_i,m_j}$$
(4)

where

$$\langle \frac{1}{r} \varphi_{k_{i},\ell} | \frac{1}{r} \varphi_{k_{j},\ell} \rangle = \begin{cases}
1, & \text{if } k_{i} = k_{j} \\
-\frac{1}{2} \sqrt{1 - \frac{\ell(\ell+1)}{(k_{i}+\ell)(k_{i}+\ell+1)}}, & \text{if } k_{j} = k_{i}+1 \\
\langle \frac{1}{r} \varphi_{k_{j},\ell} | \frac{1}{r} \varphi_{k_{i},\ell} \rangle, & \text{if } k_{i} = k_{j}+1 \\
0, & \text{otherwise}
\end{cases} (5)$$

Kinetic Matrix Elements

The kinetic matrix elements, $K_{i,j}$, are of the form

$$K_{i,j} = \langle \phi_i | \hat{K} | \phi_j \rangle = \alpha^2 (\delta_{k_i, k_j} - \frac{1}{2} \langle \frac{1}{r} \varphi_{k_i, \ell_i} | \frac{1}{r} \varphi_{k_j, \ell_j} \rangle) \delta_{l_i, l_j} \delta_{m_i, m_j}.$$
 (6)

Spherically-Symmetric Potential Matrix Elements

For a spherically symmetric potential, $V(r,\Omega)=V(r)$, the potential matrix elements can be calculated numerically to be of the form

$$V_{i,j} = \langle \phi_i | \hat{V} | \phi_j \rangle = \langle \frac{1}{r} \varphi_{k_i,\ell_i} | \hat{V} | \frac{1}{r} \varphi_{k_j,\ell_j} \rangle \, \delta_{l_i,l_j} \delta_{m_i,m_j}$$

$$(7)$$

where

$$\langle \frac{1}{r} \varphi_{k_i,\ell_i} | \hat{V} | \frac{1}{r} \varphi_{k_j,\ell_j} \rangle = \int_0^\infty dr \, \varphi_{k_i,\ell_i}(r) V(r) \varphi_{k_j,\ell_j}(r). \tag{8}$$

1 H₂⁺ Potential-Energy Curves

Details of Relevant Theory and Code

Axially-Symmetric Potential

The axially-symmetric potential of the H_2^+ molecule, with two nuclei at $\mathbf{R} = (0, 0, \pm \frac{R}{2})$, can be written in the form

$$V(r,\Omega) = -\left(\frac{1}{\|\mathbf{r} + \mathbf{R}\|} + \frac{1}{\|\mathbf{r} - \mathbf{R}\|}\right)$$
(9)

which can be written alternatively, using the multipole expansion, in the form

$$V(r,\Omega) = -2\sum_{\lambda \in E} \sqrt{\frac{4\pi}{2\lambda + 1}} \frac{r_{<}^{\lambda}}{r_{>}^{\lambda + 1}} Y_{\lambda}^{0}(\Omega)$$

$$\tag{10}$$

where $r_{<} = \min(r, \frac{R}{2})$, $r_{>} = \max(r, \frac{R}{2})$, and where $E = \{0, 2, 4, ...\}$ is the set of even integers. Note that in computational implementations, we truncate this sum at some term, λ_{max} . Whence, it follows that the matrix elements for this potential can be calculated numerically to be of the form

$$V_{i,j} = \langle \phi_i | \hat{V} | \phi_j \rangle = -2 \sum_{\lambda \in E}^{\lambda_{\text{max}}} \left(\int_0^\infty dr \, \varphi_{k_i,\ell_i}(r) \frac{r_{<}^{\lambda}}{r_{>}^{\lambda+1}} \varphi_{k_j,\ell_j}(r) \right) \left(\sqrt{\frac{4\pi}{2\lambda + 1}} \, \langle Y_{\ell_i}^{m_i} | Y_{\lambda}^0(\Omega) | Y_{\ell_j}^{m_j} \rangle \right)$$

$$\times \delta_{\pi_i,\pi_i} \delta_{m_i,m_i}$$

$$(11)$$

where $\pi_i = (-1)^{\ell_i}$ is the parity quantum number.

Basis Symmetry

Due to the axial symmetry of the H_2^+ potential, and thus the Hamiltonian for the electron in this molecule, we may choose a symmetrised basis $\mathcal{B}^{(m,\pi)}$ with specified azimuthal angular momentum, m, and parity, π . Furthermore, due to the computational constraints, we restrict our basis to having $\{N_\ell\}_{\ell=0}^{\ell_{\max}}$ radial functions per ℓ , with exponential falloffs $\{\alpha_\ell\}_{\ell=0}^{\ell_{\max}}$. For simplicity, we select $N_\ell = N_0$, and $\alpha_\ell = \alpha_0$, for each $\ell = 0, \ldots, \ell_{max}$.

- 1.1 Comparison with Accurate Potential-Energy Curve for $1s\sigma_a$.
- 1.2 Comparison with Accurate Potential-Energy Curve for $2p\sigma_u$.

${f 2}$ ${f H}_2^+$ Vibrational Wave Functions

Details of Relevant Theory and Code

- 2.1 Vibrational Wave Functions for $1s\sigma_a$ PEC.
- 2.2 Lowest-Energy, $\nu = 0$, Vibrational Wave Functions for $1s\sigma_g$ PEC, for each Isotopologue of H_2^+ .