Concours marocain 2006 PSI math 2

EXERCICE

1. Par définition de l'isomorphisme entre matrice et application linéaire on a: $\mathcal{M}_{\mathcal{B}}(u^3 + u) = A^3 + A = 0$, donc $u^3 + u = 0$ et $\mathcal{M}_{\mathcal{B}}(u) = A \neq 0$, donc $u \neq 0$.

2.

- a) Par l'absurde : Si u ést injectif alors u est bijective (dimension finie) , donc si $u^3 + u = 0$ alors en composant par u^{-1} , $u^2 + Id = 0$, . Ainsi $A^2 = -I_3$, et donc $\det(A^2) = \det(-I_3)$, d'où $\det(A)^2 = -1$ ce qui est impossible, donc u n'est pas injective.
- b) $u \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$, donc dim(Ker(u)) ≤ 3 . D'après la question précédente u est injective, donc dim(Ker(u)) $\neq 0$ et comme $u \neq 0$ Ker(u) $\neq \mathbb{R}^3$ et donc dim(Ker(u)) $\neq 3$, d'où

$$\dim(\operatorname{Ker}(u)) \in \{1, 2\}$$

3.

- la somme est directe: soit $x \in \text{Ker}(u) \cap \text{Ker}(u^2 + Id)$ on a donc u(x) = 0 et $x = -u^2(x)$ et donc x = -u(0) = 0, donc $\text{Ker}(u) \cap \text{Ker}(u^2 + Id) = \{0\}$
- elle est égale à E: Soit $x \in E$ on montre $x \in \text{Ker}(u) \oplus \text{Ker}(u^2 + Id)$
 - analyse: si x = k + v avec $u(k) = \overrightarrow{0}$ et $u^2(v) = -v$ on a: u(x) = u(v) et $u^2(v) = u^2(x)$ donc $v = -u^2(x)$ et $k = x + u^2(x)$
 - vérification : si $k = x + u^2(x)$ et $v = -u^2(x)$ on a bien : x = k + v , $u(k) = (u + u^3)(x) = \overrightarrow{0}$ et $u^2(v) = -u^4(x) = -u\left(u^3(x)\right) = v$ (en utilisant deux fois $u^3 + u = 0$)
- donc $E = \operatorname{Ker}(u) \oplus \operatorname{Ker}(u^2 + Id)$

Donc $\dim(\text{Ker}(u^2 + Id)) = \dim(E) - \dim(\text{Ker}(u)) = 3 - \dim(\text{Ker}(u)) \in \{1, 2\}, \text{ car } \dim(\text{Ker}(u)) \in \{1, 2\}$

$$\dim(\operatorname{Ker}(u^2 + Id)) \in \{1, 2\}$$

4.

a)Soit $x \in F = \text{Ker}(u^2 + Id)$, on montre que $u(x) \in \text{Ker}(u^2 + Id)$: on a $u^2(x) + x = 0$, donc en composant par $u : u^3(x) + u(x) = u(0) = 0$, donc $(u^2 + Id)(u(x)) = 0$, d'où

$$F$$
 est stable par F .

On peut aussi vérifier que u et $u^2 + Id$ commutent et dire que le noyau de l'un est stable par l'autre.

- b) si x est élément de F on a par définition de F: $u^2(x) = -x$ et donc $v^2(x) = -x \Longrightarrow v^2 = -Id_F$.
- **c**) $\det(v^2) = \det(-Id_F) = (-1)^{\dim(F)}$, or $\det(v^2) = \det(v)^2 \ge 0$, et $\dim(F) \in \{2,3\}$, d'où $\overline{\dim(F) = 2}$
- **d)**Soit λ une valeur propre réelle de v, et x un vecteur propre associé, alors $v(x) = \lambda x$ et donc $v^2(x) = v(\lambda x) = \lambda v(x) = \lambda^2 x$, or $v^2 = -Id$ d'où comme $x \neq \overrightarrow{0}$: $\lambda^2 = -1$, impossible dans \mathbb{R} .

5.

a) Par stabilité de F e_3' est aussi dans F .

Soit λ , μ réels tels que $\lambda e_2' + \mu e_3' = 0$, on compose par u, d'où $\lambda e_3' - \mu e_2' = 0$, car $u(e_2') = e_3'$ et $u(e_3') = u^2(e_2') = v^2(e_2') = -e_2'$, On obtient alors le système:

$$\begin{cases} \lambda e_2' + \mu e_3' = 0 \\ -\mu e_2' + \lambda e_3' = 0 \end{cases}$$

On élimine $e_3': (\lambda^2 + \mu^2) e_2' = \overrightarrow{0}$. e_2' étant non nul $\lambda^2 + \mu^2 = 0$, et comme on a des réels $\lambda = \mu = 0$

b)Comme $Card(\mathcal{B}') = \dim(E) = 3$, pour montrer que c'est une base, il suffit de montrer qu'elle est libre:

soit α, β, γ des réels tels que $\alpha e'_1 + \beta e'_2 + \gamma e'_3 = 0$, si on compose par u, on obtient : $\beta e'_3 - \gamma e'_2 = 0$ car $u(e'_1) = 0, u(e'_2) = e'_3, u(e'_3) = -e'_2$, or la famille (e'_2, e'_3) est libre, donc $\beta = \gamma = 0$ et par suite $ae'_1 = 0$, d'où comme $e'_1 \neq 0$ a = 0, donc la famille \mathcal{B}' est libre.

 \mathcal{B}' est une base

$$B = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right)$$

par définition \underline{A} et \underline{B} sont semblables

toute matrice 3×3 non nulle vérifiant $A^3 + A = 0$ est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

PROBLEME

Première partie.

1.

a) On décompose A dans la base canonique $A = \sum_{(i,j) \in [[1,n]]^2} a_{k,l} E_{k,l}$ donc:

$$AE_{i,j} = \sum_{(i,j) \in [[1,n]]^2} a_{k,l} E_{k,l} E_{i,j}$$

or si $l \neq i$ on a $E_{k,l}E_{i,j} = 0$ et si i = l $E_{k,l}E_{i,j} = E_{k,j}$

$$AE_{i,j} = \sum_{k=1}^{n} a_{k,i} E_{k,j}$$

de même

$$E_{i,j}A = \sum_{(i,j)\in[[1,n]]^2} a_{k,l}E_{i,j}E_{k,l} = \sum_{(i,j)\in[[1,n]]^2} a_{k,l}\delta_{k,j}E_{i,l} = \sum_{l=1}^n a_{j,l}E_{i,l}$$

$$E_{i,j}A = \sum_{l=1}^n a_{j,l}E_{i,l}$$

On a : $AE_{i,j}$ est une matrice ayant toutes ses colonnes nulles sauf la colonne j qui est égal à la colonne i de A.

On a : $E_{i,j}A$ est une matrice ayant toutes ses lignes nulles sauf la ligne i qui est égal à la ligne j de A b)

$$AM = MA \Longrightarrow AM - MA = 0 \Longrightarrow \forall (i, j) \in [[1, n]]^2 AE_{i,j} = E_{i,j}A$$

donc d'après le calcul précédent

$$AM = MA \Longrightarrow \forall (i,j) \in [[1,n]]^2 \sum_{k=1}^n a_{k,i} E_{k,j} = \sum_{l=1}^n a_{j,l} E_{i,l}$$

or on a la base canonique de $\mathcal{M}_n(\mathbb{C})$. Donc si k=i et l=j la coordonnée sur $E_{i,j}$ est la même donc $a_{i,j}=a_{j,j}$. Dans tous les autres cas $(k,i)\neq (i,l)$ et donc $a_{k,i}=0$ et $a_{j,l}=0$

Donc les $a_{i,i}$ sont tous égaux et les autres termes sont tous nuls. D'où $M = \lambda I_n$.

Réciproquement si $M = \lambda I_n$ on vérifie sans problème que pour toute matrice A la relation AM = MA estr vraie.

Remarque : on peut aussi "dessiner" des matrices pour voir les coefficients associés:

2.

a) La trace est linéaire et
$$Tr(E_{k,j}) = \delta_{k,j}$$
 donc $Tr(AE_{i,j}) = Tr\left(\sum_{k=1}^{n} a_{k,i}E_{k,j}\right) = a_{j,i}$.

$$Tr(AE_{i,j}) = a_{j,i}$$

b)
$$Tr(AM) = 0 \Longrightarrow \forall (i, j) \in [[1, n]]^2 : Tr(AE_{i, j}) = 0 \text{ donc} : \forall (i, j) \in [[1, n]]^2 : a_{j, i} = 0$$

$$(\forall M \in \mathcal{M}_n(\mathbb{R}), Tr(AM) = 0) \Longrightarrow A = 0$$

la réciproque est évidente.

- 3. Question de cours : Si on pose $A = (a_{i,j}), B = (b_{i,j}), AB = (c_{i,j}), BA = (d_{i,j}), \text{ on a:} \forall (i,j) \in [[1,n]]^2$ $c_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j}$ et $Tr(AB) = \sum_{i=1}^n c_{i,i} = \sum_{i=1}^n \sum_{k=1}^n a_{i,k} b_{k,i}$ et on a aussi: $Tr(BA) = \sum_{i=1}^n d_{i,i} = \sum_{i=1}^n \sum_{k=1}^n b_{i,k} a_{k,i}$, en échangeant les indices i et k, on a bien give Tr(AB) = Tr(BA)
- 4. Le produit par une matrice inversible conserve le rang et la transposition conserve le rang , donc rg(PMQ) = rg(M) et $rg(P^tMQ) = rg(^tM) = rg(M)$
- 5. $\det(PMQ) = \det(P) \det(M) \det(Q)$, donc $u_{P,Q}$ conserve le déterminant si et seulement si $\det(P) \det(Q) = 1$. De même pour $v_{P,Q}$, puisque $\det({}^tM) = \det(M)$.

Deuxième partie.

1. Comme le corps de base est $\mathbb C$, le polynôme caractéristique est de la forme :

$$\varkappa(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} tr(M) + \sum_{i=2}^{n-2} \alpha_i \lambda^i + \det(M)$$

donc en identifiant les coefficients de λ^{n-1} et λ^0 : si M et $\Phi(M)$ ont le même polynôme caractéristique ils ont même déterminant et même trace.

- 2. C'est une conséquence de la propriété admise au début de la 2ème partie.
- 3. Soit $(i,j) \in [[1,n]]^2$

a)Si
$$\Phi = u_{P,Q}$$
, alors $Tr(PE_{i,j}Q) = Tr(\Phi(E_{i,j})) = Tr(E_{i,j})$ car Φ conserve la trace. Si $\Phi = v_{P,Q}$, alors $Tr(PE_{i,j}Q) = Tr(\Phi(^tE_{i,j})) = Tr(^tE_{i,j}) = Tr(E_{i,j})$.

$$Tr(PE_{i,j}Q) = Tr(E_{i,j})$$

b)On a Tr(AB) = Tr(BA) donc $\forall (i,j) \in [[1,n]]^2$: $Tr(PE_{i,j}Q) = Tr(QPE_{i,j})$ donc d'après la question précédente $\forall (i,j) \in [[1,n]]^2$: $Tr((I_n - PQ)E_{i,j}) = 0$ Le calcul fait au I.2.b) donne $PQ - I_n = 0$, d'où $Q = P^{-1}$.

4. D'après tout ce qui précède on conclut que les endomorphismes qui conservent le polynôme caractéristique sont de la forme $u_{P,P^{-1}}$ ou $v_{P,P^{-1}}$

Réciproquement si $\Phi(M) = PMP^{-1}$, $\det(PMP^{-1} - \lambda In) = \det(P\{M - \lambda I_n\}P^{-1}) = \det(P)\det(M - \lambda I_n)\det(P^{-1}) = \det(P - \lambda I_n)$ et de même si $\Phi(M) = P^tMP^{-1}$ car $\det(^tM - \lambda I_n) = \det(M - \lambda I_n)$ en transposant.

un endomorphisme conserve le déterminant ssi il est du type $u_{P,P^{-1}}$ ou $v_{P,P^{-1}}$

a) Φ est linéaire (vérification immédiate), d'autre part soit:

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 on a:

5.

$$\Phi(M) = \left(\begin{array}{cc} a+d & 0 \\ 0 & a+d \end{array} \right) - \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

Φ est un isomorphisme

b)On cherche $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$ non nulle et λ réel telle que :

$$\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \lambda \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

- Si $b \neq 0$ ou $c \neq 0$ on a $\lambda = -1$. Puis si $\lambda = -1$ le système équivaut à a + d = 0. -1 est valeur propre et le sous espace propre associé est l'hyperplan d'équation a + d = 0. Il est donc de dimension 3.
- si $\lambda \neq -1$ on a b = c = 0 et $d = \lambda a, a = \lambda d$ donc $d = \lambda^2 a$, si $\lambda = 1$ on a Vect $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ si $\lambda \neq 1$, a = 0 donc d = 0 absurde
- La somme des dimensions des sous espaces propres est $3+1=4=\dim\left(\mathcal{M}_2\left(\mathbb{R}\right)\right)$.

Φ est diagonalisable

c)soit: $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, donc $\Phi(M) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, il est clair que ces deux matrices ont même polynôme caractéristique : ad - bc

d) on cherche $P=\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right)$ telle que $\forall M$, $\Phi(M)=P^tMP^{-1}$ qui équivaut à $\forall M$ $\phi(M)P=P^tM$ Soit :

$$\forall (a, b, c, d) \left(\begin{array}{cc} \alpha d - \gamma b & \beta d - \delta b \\ -\alpha c + \gamma a & -bc + \delta a \end{array} \right) = \left(\begin{array}{cc} \alpha a + \beta b & \alpha c + \beta d \\ \gamma a + \delta b & \gamma c + \delta d \end{array} \right)$$

Les coefficients doivent être égaux : si a=1,b=c=d=0 on a : $\alpha=\delta=0$, si b=1,a=c=d=0 on a $\delta=0$ et $\gamma=-\beta$...

 $P=\left(\begin{array}{cc} 0 & \beta \\ -\beta & 0 \end{array}\right)$, inversible pour $\beta\neq 0$, et on vérifie alors que P est solution.

une solution est
$$P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Troisième partie.

Attention ici Φ n'est pas supposée être linéaire.

1.

a) On a $\Phi(A)\Phi(B)$ et AB ont même polynôme carctéristique donc, comme à la question II.1, $\Phi(A)\Phi(B)$ et AB ont même trace, en particulier

$$\forall \, (i,j) \in [[1,n]]^{-2}, \, Tr(\Phi(E_{i,j})\Phi(E_{k,l})) = Tr(E_{i,j}E_{k,l}) = Tr(\delta_{j,k}E_{i,l}) = \delta_{j,k}Tr(E_{i,l}) = \delta_{j,k}\delta_{i,l}.$$

la trace est nulle sauf si j = k et i = l.

b)On a $Card(\Phi(E_{i,j})) = n^2 = \dim(\mathcal{M}_n(\mathbb{C}))$, pour montrer que c'est une base il suffit alors de montrer qu'elle est libre.

En effet soit $(\lambda_{i,j})$ des nombres complexes tels que $\sum_{(i,j)\in[[1,n]]} \lambda_{i,j} \Phi(E_{i,j}) = 0$, on a donc pour tout (k,l): $Tr\left(\sum_{(i,j)\in[[1,n]]} \lambda_{i,j} \Phi(E_{i,j}) + \sum_{(i,j)\in[[1,n]]} \lambda_{i,j} \Phi(E_{i,j}) + \sum_{(i,j)\in[[1,n]} \lambda_{i,j} \Phi(E_{i,j}) + \sum_{(i,j)\in[[1,n]]} \lambda_{i,j} \Phi(E_{i,j}) + \sum_{(i,j)\in[[1,n]} \lambda_$

0. Donc d'après la linéarité de la trace et la relation précédente : $\sum_{(i,j)\in[[1,n]]} \lambda_{i,j}\delta_{j,k}\delta_{i,l} = 0 \text{ . Dans la } \sum_{j} \text{ tous les termes}$

sont nuls sauf celui pour i=l,j=k il reste donc : $\forall \, (k,l) \in \left[\left[1,n \right] \right]^2$: $\lambda_{l,k}=0$ d'où

la famille
$$(\phi(E_{i,j})_{(i,j)\in[[1,n]]^2}$$
 est libre

2

a) pour toutes matrices A, B et tous indices i, j on a par linéarité de la trace et en utilisant le calcul précédent :

$$Tr((\Phi(A+B) - \Phi(A) - \Phi(B))\Phi(E_{i,j})) = Tr(\Phi(A+B)\Phi(E_{i,j}) - \Phi(A)\Phi(E_{i,j}) - \Phi(B)\Phi(E_{i,j}))$$

$$= Tr(\Phi(A+B)\Phi(E_{i,j})) - Tr(\Phi(A)\Phi(E_{i,j})) - Tr(\Phi(B)\Phi(E_{i,j}))$$

$$= Tr((A+B)E_{i,j}) - Tr(AE_{i,j}) - Tr(BE_{i,j}))$$

$$= 0$$

b)Comme la trace est linéaire $M - > Tr((\Phi(A+B) - \Phi(A) - \Phi(B))M)$ est aussi linéaire de plus

$$Tr\left((\Phi(A+B) - \Phi(A) - \Phi(B))M\right) = 0$$

est vérifié pour toute matrice de la base $(\phi(E_{i,j})_{(i,j)\in[[1,n]]^2}$, donc la relation est vérifiée pour toute les matrices $M \in \mathcal{M}_n(\mathbb{C})$. D'après la question I.2.b), on conclut que $\Phi(A+B) - \Phi(A) - \Phi(B) = 0$.

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2, \Phi(A+B) = \Phi(A) + \Phi(B)$$

3. Soit $\lambda \in \mathbb{C}$ et $A \in \mathcal{M}_n(\mathbb{C})$, on montre comme dans la question précédente que: $Tr((\Phi(\lambda A) - \lambda \Phi(A))\Phi(E_{i,j})) = 0$, puis on en déduit que $\forall M$, $Tr((\Phi(\lambda A) - \lambda \Phi(A))M)) = 0$ et donc que: $\Phi(\lambda A) - \lambda \Phi(A)$, d'où Φ est linéaire

Soit alors $A \in \text{Ker }(\Phi)$, donc $\forall (i,j) \in [[1,n]]^2$, $Tr(AE_{i,j}) = Tr(\Phi(A)\Phi(E_{i,j})) = 0$, et toujours avec la question I.2 A = 0. Φ est injective, de plus c'est un endomorphisme en dimension finie, alors

Φ est un un automorphisme

4. $E_{i,j}^2 = E_{i,j} E_{i,j} = \delta_{i,j} \delta_{j,i} = 0$ car $i \neq j$, donc le polynôme carctéristique de $E_{i,j}^2$ est $(-\lambda)^n$ d'après l'hypothèse sur Φ .

Le polynôme caractéristique est scindé donc $\Phi\left(E_{i,j}\right)^2$ est trigonalisable, et la matrice triangulaire T semblable à $\Phi\left(E_{i,j}\right)^2$ n'a que des zéros sur la diagonale (la seule valeur propre).

$$\operatorname{On} \mathbf{a} \, T = \left(\begin{array}{ccccc} 0 & t_{1,2} & t_{1,3} & \cdots & t_{1,n} \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & t_{n-1,n} \\ 0 & \cdots & \cdots & 0 & 0 \end{array} \right) \operatorname{d}'\operatorname{où} \, T^2 = \left(\begin{array}{cccccc} 0 & 0 & t'_{1,3} & \cdots & t'_{1,n} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & t'_{n-2,n} \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{array} \right) \cdots$$

- Si pour T on a $\forall j \leq i$, $t_{i,j} = 0$ alors si $T^2 = (t'_{i,j}) : t'_{i,j} = \sum_{k=1}^n t_{i,k} t_{k,j} = \sum_{k=i+1}^n t_{i,k} t_{k,j}$ car pour $k \leq i$ $t_{k,i} = 0$. Donc si $j \leq i+1$ on a pour tout k $t_{k,j} = 0$ et donc $t'_{i,j} = 0$
- Par récurrence sur p si on suppose $T^p = (\tau_{i,j})$ avec $\tau_{i,j} = 0$ si $j \leq i + p 1$ on a $T^{p+1} = (\tau'_{i,j})$ avec $\tau'_{i,j} = \sum_{k=1}^n t_{i,k} \tau_{k,j} = \sum_{k=i+1}^n t_{i,k} t_{k,j} = 0$ si $j \leq i + p$
- On a donc $T^n = 0$ et donc $\Phi(E_{i,i})^{2n} = 0$

$$\forall i \neq j$$
, $\phi(E_{i,j})$ est nilpotente

- 5. G existe (et est unique) car Φ est bijective vérifiant $\Phi(G) = I_n$
 - a) D'après l'hypothèse de la partie III, AG et $\Phi(A)\Phi(G)=\Phi(A)$ ont même polynôme caractéristique..
 - **b)**D'après le calcul du I1a on a $E_{i,j}G$ est une matrice ayant toutes ses lignes nulles sauf la ligne i qui est égal à la ligne j de G, d'où det $(G \lambda I_n) = (-1)^n \lambda^{n-1} (\lambda g_{j,i})$. (écrire la matrice)
 - c) Pour $i \neq j$, la matrice $\Phi(E_{i,j})$ est nilpotente, donc son polynôme caractéristique est $(-\lambda)^n$. Les deux polynômes caractéristiques sont égaux donc $g_{j,i} = 0$, d'où G est diagonale.

D'autre part, G^2 et $\Phi(G) = I_n$ ont même polynôme caractéristique d'après 5.a) avec A = G or G est diagonale donc $G^2 = diag(g_{1,1}^2, \ldots, g_{n,n}^2)$ et l'égalité des polynômes caractéristiques donnent $(-1)^n(\lambda - 1)^n = (-1)^n\prod_{i=1}^n(\lambda - g_{i,i}^2)$, d'où $g_{i,i}^2 = 1$ et par suite $G^2 = I_n$.

6.

a)Soit $A \in \mathcal{M}_n(\mathbb{C})$, le polynôme caractéristique de $\psi(A)$ est celui de $\Phi(AG)$ définition de ψ . c'est donc celui de AG^2 (III.5.a) donc celui de A (car $G^2 = I_n$) Donc Ψ conserve le polynôme caractéristique.

b) Ψ conserve le polynôme caractéristique,donc d'après la 2ème partie $\exists P$ inversible telle que $\Psi = u_{P,P^{-1}}$ ou $\Psi = v_{P,P^{-1}}$,

Or
$$\psi(A) = \Phi(AG)$$
 donc si $A = MG$ on a : $\psi(MG) = \Phi(MG^2) = \Phi(M)$ (toujours $G^2 = I_n$)

donc $\Phi(M) = \Psi(MG) = u_{P,P^{-1}}(MG) = PMGP^{-1}$ ou $\Phi(M) = \Psi(MG) = v_{P,P^{-1}}(MG) = P^t(MG)P^{-1}$. Or G est diagonale donc ${}^tG = G$ et donc ${}^t(MG) = {}^tG^tM = G^tM$

il existe P inversible tel que
$$\Phi(M) = PMGP^{-1}$$
 ou PG^tMP^{-1}

7.

a) $\Phi(A)\Phi(B)$ et AB ont la même trace (ils ont même polynôme caractéristique) or $\Phi(A)\Phi(B) = PAGP^{-1}PBGP^{-1} = PAGBGP^{-1}$ ou $\Phi(A)\Phi(B) = PG^tAP^{-1}PG^tBP^{-1}$.

Or deux matrices semblables ont même trace donc

• dans le premier cas

$$Tr(AB) = Tr(PAGBGP^{-1}) = Tr(AGBG)$$

• dans le second cas

$$Tr(AB) = Tr(PG^tAG^tBP^{-1}) = Tr(G^tAG^tB) = Tr(B^tGA^tG)$$

car la transposition conserve la trace et ${}^tG = G$ donc

$$Tr(AB) = Tr(BGAG) = Tr((BG)(AG)) = Tr((AG)(BG)) = Tr(AGBG)$$

• dans les deux cas :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2, Tr(AGBG) = Tr(AB)$$

danger : :on ne peut pas commuter et dire comme Tr(PQ) = Tr(QP) alors $Tr(AGBG) = Tr(ABG^2) = Tr(AB)$ car il n'est pas possible de choisir P et Q pour regrouper les deux facteurs G.

contre exemple :
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$, $G = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $tr(AB) = ae + bg + cf + dh$ et $Tr(AGBG) = ae - bg - cf + dh$

b)D'après la question précédente on a : $\forall A \in \mathcal{M}_n(\mathbb{C})$, Tr((GBG - B)A) = 0, d'après la question I.2.b) on en déduit GBG - B = 0.

c) pour toute matrice B on a GBG = B donc $GB = BG^{-1} = BG$ (car $G^2 = I_n$) G commutent avec toutes les matrices donc d'après I.1.b) il existe λ tel que $G = \lambda I_n$, or $G^2 = I_n$, d'où $\lambda \in \{-1, 1\}$.

$$\exists \varepsilon \in \{-1,1\} , G = \varepsilon I_n$$

8. On a donc d'après 6.b $\Phi(M) = \varepsilon PMP^{-1}$ ou εP^tMP^{-1} . c'est à dire $\Phi = \varepsilon u_{p,p^{-1}}$ ou $\varepsilon v_{PP^{-1}}$

Réciproquement si $w = \varepsilon u_{P,P^{-1}}$, on a: $\chi_{w(A)w(B)} = \chi_{\varepsilon PAP^{-1}\varepsilon PBP^{-1}} = \chi_{PABP^{-1}} = \chi_{AB}$ car deux matrices semblables ont même polynôme caractéristique.

Le même raisonnement est encore valable pour le cas où $w = \varepsilon v_{PP-1}$.