Package 'multiwave'

October 13, 2022

October 13, 2022						
Version 1.4						
Date 2019-05-06						
Title Estimation of Multivariate Long-Memory Models Parameters						
Maintainer Sophie Achard <sophie.achard@gipsa-lab.fr></sophie.achard@gipsa-lab.fr>						
Description Computation of an estimation of the long-memory parameters and the long-run covariance matrix using a multivariate model (Lobato (1999) <doi:10.1016 s0304-4076(98)00038-4="">; Shimotsu (2007) <doi:10.1016 j.jeconom.2006.01.003="">). Two semi-parametric methods are implemented: a Fourier based approach (Shimotsu (2007) <doi:10.1016 j.jeconom.2006.01.003="">) and a wavelet based approach (Achard and Gannaz (2016) <doi:10.1111 jtsa.12170="">).</doi:10.1111></doi:10.1016></doi:10.1016></doi:10.1016>						
License GPL (>= 2)						
LazyData true						
NeedsCompilation no						
Author Sophie Achard [aut, cre], Irene Gannaz [aut]						
Repository CRAN						
Date/Publication 2019-05-06 07:20:09 UTC						
R topics documented:						
brainHCP						
compute_nj						
DWTexact						
fivarma						
K_eval						
mfw 10 mfw_cov_eval 12						
mfw eval						
mww						
mww cov eval						

2 multiwave-package

mult	iwave-package	pa	time ran ctiv	ıet	ers				,	_				•					
Index																			32
	vfracdiff																		30
	varma																		
	toeplitz_nonsym																		
	scaling_function																		
	psi_hat_exact scaling_filter																		
	mww_wav_eval																		
	mww_wav_cov_eva																		
	mww_wav																		
	mww_eval																		

Description

This package computes an estimation of the long-memory parameters and the long-run covariance matrix using a multivariate model (Lobato, 1999; Shimotsu 2007). Two semi-parametric methods are implemented: a Fourier based approach (Shimotsu 2007) and a wavelet based approach (Achard and Gannaz 2014).

Details

Package: multiwave
Type: Package
Version: 1.0
Date: 2015-09-17
License: GPL (>= 2)

Author(s)

Sophie Achard and Irene Gannaz

Maintainer: Sophie Achard <sophie.achard@gipsa-lab.fr>, Irene Gannaz <irene.gannaz@insa-lyon.fr>

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

multiwave-package 3

```
rho<-0.4
cov <- matrix(c(1,rho,rho,1),2,2)</pre>
d < -c(0.4, 0.2)
J <- 9
N <- 2<sup>J</sup>
resp <- fivarma(N, d, cov_matrix=cov)</pre>
x <- resp$x
long_run_cov <- resp$long_run_cov</pre>
#### Compute wavelets this is also included in the functions without _wav
res_filter <- scaling_filter('Daubechies',8);</pre>
filter <- res_filter$h
M <- res_filter$M
alpha <- res_filter$alpha</pre>
LU <- c(1,11)
if(is.matrix(x)){
    N \leftarrow dim(x)[1]
    k \leftarrow dim(x)[2]
}else{
    N \leftarrow length(x)
    k <- 1
mat_x <- as.matrix(x,dim=c(N,k))</pre>
## Wavelet decomposition
xwav <- matrix(0,N,k)</pre>
    for(j in 1:k){
         xx \leftarrow mat_x[,j]
         resw <- DWTexact(xx,filter)</pre>
         xwav_temp <- resw$dwt</pre>
         index <- resw$indmaxband</pre>
         Jmax <- resw$Jmax</pre>
         xwav[1:index[Jmax],j] <- xwav_temp;</pre>
## we free some memory
new_xwav <- matrix(0,min(index[Jmax],N),k)</pre>
    if(index[Jmax]<N){</pre>
         new_xwav[(1:(index[Jmax])),] <- xwav[(1:(index[Jmax])),]</pre>
    xwav <- new_xwav
    index <- c(0, index)
##### Compute the wavelet functions
res_psi <- psi_hat_exact(filter,J)</pre>
psih<-res_psi$psih
```

4 brainHCP

```
grid<-res_psi$grid</pre>
##### Estimate using Fourier ###########
m <- floor(N^{0.65}) ## default value of Shimotsu
res_mfw <- mfw(x,m)</pre>
res_d_mfw<-res_mfw$d
res_rho_mfw<-res_mfw$cov[1,2]</pre>
### Eval MFW
res_mfw_eval <- mfw_eval(d,x,m)</pre>
res_mfw_cov_eval <- mfw_cov_eval(d,x,m)</pre>
##### Estimate using Wavelets ###########
## Using xwav
if(dim(xwav)[2]==1) xwav<-as.vector(xwav)</pre>
res_mww_wav <- mww_wav(xwav,index,psih,grid,LU)</pre>
### Eval MWW_wav
res_mww_wav_eval <- mww_wav_eval(d,xwav,index,LU)</pre>
res_mww_wav_cov_eval <- mww_wav_cov_eval(d,xwav,index,psih,grid,LU)</pre>
## Using directly the time series
res_mww <- mww(x,filter,LU)</pre>
\verb"res_d_mww<-res_mww\$d"
res_rho_mww<-res_mww$cov[1,2]</pre>
### Eval MWW_wav
res_mww_eval <- mww_eval(d,x,filter,LU)</pre>
res_mww_cov_eval <- mww_cov_eval(d,x,filter,LU)</pre>
```

brainHCP

Time series obtained by an fMRI experiment on the brain

Description

Time series for each region of interest in the brain. These series are obtained by SPM preprocessing.

```
data(brainHCP)
```

compute_nj 5

Format

A data frame with 1200 observations on the following 89 variables.

Source

```
contact S. Achard (sophie.achard@gipsa-lab.fr)
```

References

M. Termenon, A. Jaillard, C. Delon-Martin, S. Achard (2016) Reliability of graph analysis of resting state fMRI using test-retest dataset from the Human Connectome Project, *Neuroimage*, Vol 142, pages 172-187.

Examples

```
data(brainHCP)
## maybe str(brainHCP) ; plot(brainHCP) ...
```

compute_nj

Wavelets coefficients utilities

Description

Computes the number of wavelet coefficients at each scale.

Usage

```
compute_nj(n, N)
```

Arguments

n sample size. N filter length.

Value

nj number of coefficients at each scale.

J Number of scales.

Author(s)

S. Achard and I. Gannaz

6 DWTexact

References

- G. Fay, E. Moulines, F. Roueff, M. S. Taqqu (2009) Estimators of long-memory: Fourier versus wavelets. *Journal of Econometrics*, vol. 151, N. 2, pages 159-177.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
DWTexact, scaling_filter
```

Examples

```
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
n <- 5^10
N <- length(filter)
compute_nj(n,N)</pre>
```

DWTexact

Exact discrete wavelet decomposition

Description

Computes the discrete wavelet transform of the data using the pyramidal algorithm.

Usage

```
DWTexact(x, filter)
```

Arguments

x vector of raw data

filter Quadrature mirror filter (also called scaling filter, as returned by the scaling_filter

function)

Value

dwt computable Wavelet coefficients without taking into account the border effect.

indmaxband vector containing the largest index of each band, i.e. for j > 1 the wavelet coef-

ficients of scale j are dwt(k) for $k \in [indmaxband(j-1)+1, indmaxband(j)]$

and for j = 1, dwt(k) for $k \in [1, indmaxband(1)]$.

Jmax largest available scale index (=length of indmaxband).

DWTexact 7

Note

This function was rewritten from an original matlab version by Fay et al. (2009)

Author(s)

S. Achard and I. Gannaz

References

- G. Fay, E. Moulines, F. Roueff, M. S. Taqqu (2009) Estimators of long-memory: Fourier versus wavelets. *Journal of Econometrics*, vol. 151, N. 2, pages 159-177.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
scaling_filter
```

```
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
u <- rnorm(2^10,0,1)
x <- vfracdiff(u,d=0.2)

resw <- DWTexact(x,filter)
xwav <- resw$dwt
index <- resw$indmaxband
Jmax <- resw$Jmax

## Wavelet scale 1
ws_1 <- xwav[1:index[1]]
## Wavelet scale 2
ws_2 <- xwav[(index[1]+1):index[2]]
## Wavelet scale 3
ws_3 <- xwav[(index[2]+1):index[3]]
### upto Jmax</pre>
```

8 fivarma

_				
1	1ν	a	rn	าล

simulation of FIVARMA process

Description

Generates N observations of a realisation of a multivariate FIVARMA process X.

Usage

Arguments

N number of time points.

d vector of parameters of long-memory.

cov_matrix matrix of correlation between the innovations (optional, default is identity).

VAR array of VAR coefficient matrices (optional).

VMA array of VMA coefficient matrices (optional).

skip number of initial observations omitted, after applying the ARMA operator and

the fractional integration (optional, the default is 2000).

Details

Let $(e(t))_t$ be a multivariate gaussian process with a covariance matrix cov_matrix. The values of the process X are given by the equations:

$$VAR(L)U(t) = VMA(L)e(t),$$

and

$$diag((1-L)^d)X(t) = U(t)$$

where L is the lag-operator.

Value

x vector containing the N observations of the vector ARFIMA(arlags, d, malags)

process.

long_run_cov matrix of covariance of the spectral density of x around the zero frequency.

d vector of parameters of long-range dependence, modified in case of cointegra-

tion.

Author(s)

S. Achard and I. Gannaz

K_eval

References

- R. J. Sela and C. M. Hurvich (2009) Computationally efficient methods for two multivariate fractionnally integrated models. *Journal of Time Series Analysis*, Vol 30, N. 6, pages 631-651.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
varma, vfracdiff
```

Examples

```
rho1 <- 0.3
rho2 <- 0.8
cov <- matrix(c(1,rho1,rho2,rho1,1,rho1,rho2,rho1,1),3,3)
d <- c(0.2,0.3,0.4)

J <- 9
N <- 2^J
VMA <- diag(c(0.4,0.1,0))
### or another example VAR <- array(c(0.8,0,0,0.6,0,0,0.2,0,0,0,0.4,0,0,0.5),dim=c(3,3,2))
VAR <- diag(c(0.8,0.6,0))
resp <- fivarma(N, d, cov_matrix=cov, VAR=VAR, VMA=VMA)
x <- resp$x
long_run_cov <- resp$long_run_cov
d <- resp$d</pre>
```

K_eval

Evaluation of function K

Description

Computes the function K as defined in (Achard and Gannaz 2014).

Usage

```
K_eval(psi_hat,u,d)
```

Arguments

psi_hat	Fourier transform of the wavelet mother at values u
u	grid for the approximation of the integral
d	vector of long-memory parameters.

10 mfw

Details

 K_{eval} computes the matrix K with elements

$$K(d_l,d_m) = \int u^{(d_l+d_m)} |\mathsf{psi_hat}(u)|^2 du$$

Value

value of function K as a matrix.

Author(s)

S. Achard and I. Gannaz

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
psi_hat_exact
```

Examples

```
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
M <- res_filter$M
alpha <- res_filter$alpha
res_psi <- psi_hat_exact(filter,J=10)
K_eval(res_psi$psih,res_psi$grid,d=c(0.2,0.2))</pre>
```

mfw

multivariate Fourier Whittle estimators

Description

Computes the multivariate Fourier Whittle estimators of the long-memory parameters and the long-run covariance matrix also called fractal connectivity.

```
mfw(x, m)
```

mfw 11

Arguments

- x data (matrix with time in rows and variables in columns).
- m truncation number used for the estimation of the periodogram.

Details

The choice of m determines the range of frequencies used in the computation of the periodogram, $\lambda_j=2\pi j/N,\,j=1,\ldots$, m. The optimal value depends on the spectral properties of the time series such as the presence of short range dependence. In Shimotsu (2007), m is chosen to be equal to $N^{0.65}$.

Value

d estimation of the vector of long-memory parameters.

cov estimation of the long-run covariance matrix.

Author(s)

S. Achard and I. Gannaz

References

- K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes *Journal of Econometrics* Vol. 137, N. 2, pages 277-310.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mfw_eval, mfw_cov_eval
```

```
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d <- c(0.4,0.2)
J <- 9
N <- 2^J

resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov

m <- 57 ## default value of Shimotsu 2007
res_mfw <- mfw(x,m)</pre>
```

12 mfw_cov_eval

mfw_cov_eval

multivariate Fourier Whittle estimators

Description

Computes the multivariate Fourier Whittle estimator of the long-run covariance matrix (also called fractal connectivity) for a given value of long-memory parameters d.

Usage

```
mfw_cov_eval(d, x, m)
```

Arguments

d vector of long-memory parameters (dimension should match dimension of x)

x data (matrix with time in rows and variables in columns)

m truncation number used for the estimation of the periodogram

Details

The choice of m determines the range of frequencies used in the computation of the periodogram, $\lambda_j = 2\pi j/N, j = 1,...$, m. The optimal value depends on the spectral properties of the time series such as the presence of short range dependence. In Shimotsu (2007), m is chosen to be equal to $N^{0.65}$.

Value

long-run covariance matrix estimation.

Author(s)

S. Achard and I. Gannaz

References

- K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes *Journal of Econometrics* Vol. 137, N. 2, pages 277-310.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mfw_eval, mfw
```

mfw_eval 13

Examples

```
### Simulation of ARFIMA(0,\code{d},0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d <- c(0.4,0.2)
J <- 9
N <- 2^J

resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov

m <- 57 ## default value of Shimotsu
G <- mfw_cov_eval(d,x,m) # estimation of the covariance matrix when d is known</pre>
```

mfw_eval

evaluation of multivariate Fourier Whittle estimator

Description

Evaluates the multivariate Fourier Whittle criterion at a given long-memory parameter value d.

Usage

```
mfw_eval(d, x, m)
```

Arguments

d vector of long-memory parameters (dimension should match dimension of x).

x data (matrix with time in rows and variables in columns).

m truncation number used for the estimation of the periodogram.

Details

The choice of m determines the range of frequencies used in the computation of the periodogram, $\lambda_j=2\pi j/N,\,j=1,\ldots$, m. The optimal value depends on the spectral properties of the time series such as the presence of short range dependence. In Shimotsu (2007), m is chosen to be equal to $N^{0.65}$.

Value

multivariate Fourier Whittle estimator computed at point d.

Author(s)

S. Achard and I. Gannaz

14 mww

References

- K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes *Journal of Econometrics* Vol. 137, N. 2, pages 277-310.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mfw_cov_eval, mfw
```

Examples

```
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d <- c(0.4,0.2)
J <- 9
N <- 2^J

resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov

m <- 57 ## default value of Shimotsu
res_mfw <- mfw(x,m)
d <- res_mfw$d
G <- mfw_eval(d,x,m)
k <- length(d)
res_d <- optim(rep(0,k),mfw_eval,x=x,m=m,method='Nelder-Mead',lower=-Inf,upper=Inf)$par</pre>
```

mww

multivariate wavelet Whittle estimation

Description

Computes the multivariate wavelet Whittle estimation for the long-memory parameter vector d and the long-run covariance matrix, using DWTexact for the wavelet decomposition.

```
mww(x, filter, LU = NULL)
```

mww 15

Arguments

x data (matrix with time in rows and variables in columns).

filter wavelet filter as obtain with scaling_filter.

LU bivariate vector (optional) containing L, the lowest resolution in wavelet decom-

position U, the maximal resolution in wavelet decomposition. (Default values

are set to L=1, and U=Jmax.)

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

Value

d estimation of vector of long-memory parameters.

cov estimation of long-run covariance matrix.

Author(s)

S. Achard and I. Gannaz

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mww_eval, mww_cov_eval,mww_wav,mww_wav_eval,mww_wav_cov_eval
```

```
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d <- c(0.4,0.2)
J <- 9
N <- 2^J

resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov

## wavelet coefficients definition
res_filter <- scaling_filter('Daubechies',8);</pre>
```

16 mww_cov_eval

```
filter <- res_filter$h
M <- res_filter$M
alpha <- res_filter$alpha
LU <- c(2,11)
res_mww <- mww(x,filter,LU)</pre>
```

mww_cov_eval

multivariate wavelet Whittle estimation of the long-run covariance matrix

Description

Computes the multivariate wavelet Whittle estimation of the long-run covariance matrix given the long-memory parameter vector d, using DWTexact for the wavelet decomposition.

Usage

```
mww_cov_eval(d, x, filter, LU)
```

Arguments

d vector of long-memory parameters (dimension should match dimension of x).x data (matrix with time in rows and variables in columns).

filter wavelet filter as obtain with scaling_filter.

LU bivariate vector (optional) containing L, the lowest resolution in wavelet decom-

position U, the maximal resolution in wavelet decomposition.

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

Value

long-run covariance matrix estimation.

Author(s)

S. Achard and I. Gannaz

mww_eval 17

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mww, mww_eval,mww_wav,mww_wav_eval,mww_wav_cov_eval
```

Examples

```
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)</pre>
d < -c(0.4, 0.2)
J <- 9
N <- 2^J
resp <- fivarma(N, d, cov_matrix=cov)</pre>
x \leftarrow resp$x
long_run_cov <- resp$long_run_cov</pre>
## wavelet coefficients definition
res_filter <- scaling_filter('Daubechies',8);</pre>
filter <- res_filter$h
M <- res_filter$M
alpha <- res_filter$alpha
LU <- c(2,11)
res_mww <- mww_cov_eval(d,x,filter,LU)</pre>
```

mww_eval

evaluation of multivariate wavelet Whittle estimation

Description

Evaluates the multivariate wavelet Whittle criterion at a given long-memory parameter vector d using DWTexact for the wavelet decomposition.

```
mww_eval(d, x, filter, LU = NULL)
```

18 mww_eval

Arguments

d	vector of long-memory parameters (dimension should match dimension of x).
X	data (matrix with time in rows and variables in columns).
filter	wavelet filter as obtain with scaling_filter.
LU	bivariate vector (optional) containing L, the lowest resolution in wavelet decomposition U, the maximal resolution in wavelet decomposition. (Default values are set to L=1 and Ll=Tmax.)

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

Value

multivariate wavelet Whittle criterion.

Author(s)

S. Achard and I. Gannaz

References

- E. Moulines, F. Roueff, M. S. Taqqu (2009) A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series. *Annals of statistics*, vol. 36, N. 4, pages 1925-1956
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mww, mww_cov_eval,mww_wav,mww_wav_eval,mww_wav_cov_eval
```

```
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d <- c(0.4,0.2)
J <- 9
N <- 2^J

resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov</pre>
```

mww_wav

mww_wav

multivariate wavelet Whittle estimation for data as wavelet coefficients

Description

Computes the multivariate wavelet Whittle estimation of the long-memory parameter vector d and the long-run covariance matrix for the already wavelet decomposed data.

Usage

```
mww_wav(xwav, index, psih, grid_K, LU = NULL)
```

Arguments

xwav	wavelet coefficients matrix (with scales in rows and variables in columns).
index	vector containing the largest index of each band, i.e. for $j>1$ the wavelet coefficients of scale j are $\operatorname{dwt}(k)$ for $k\in[\operatorname{indmaxband}(j-1)+1,\operatorname{indmaxband}(j)]$ and for $j=1,\operatorname{dwt}(k)$ for $k\in[1,\operatorname{indmaxband}(1)].$
psih	the Fourier transform of the wavelet mother at values grid_K.
grid_K	the grid for the approximation of the integral in K.
LU	bivariate vector (optional) containing L , the lowest resolution in wavelet decomposition U , the maximal resolution in wavelet decomposition. (Default values are set to $L=1$, and $U=J\max$.)

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

20 mww_wav

Value

d estimation of the vector of long-memory parameters.cov estimation of the long-run covariance matrix.

Author(s)

S. Achard and I. Gannaz

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mww_eval, mww_cov_eval,mww,mww_wav_eval,mww_wav_cov_eval
```

```
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)</pre>
d < -c(0.4, 0.2)
J <- 9
N <- 2<sup>J</sup>
resp <- fivarma(N, d, cov_matrix=cov)</pre>
x <- resp$x
long_run_cov <- resp$long_run_cov</pre>
## wavelet coefficients definition
res_filter <- scaling_filter('Daubechies',8);</pre>
filter <- res_filter$h
LU <- c(2,11)
### wavelet decomposition
if(is.matrix(x)){
     N \leftarrow dim(x)[1]
     k \leftarrow dim(x)[2]
}else{
     N <- length(x)
     k <- 1
x \leftarrow as.matrix(x,dim=c(N,k))
      ## Wavelet decomposition
      xwav <- matrix(0,N,k)</pre>
```

mww_wav_cov_eval 21

```
for(j in 1:k){
           xx \leftarrow x[,j]
            resw <- DWTexact(xx,filter)</pre>
           xwav_temp <- resw$dwt</pre>
            index <- resw$indmaxband</pre>
            Jmax <- resw$Jmax</pre>
           xwav[1:index[Jmax],j] <- xwav_temp;</pre>
      }
      ## we free some memory
     new_xwav \leftarrow matrix(0,min(index[Jmax],N),k)
      if(index[Jmax]<N){</pre>
            new_xwav[(1:(index[Jmax])),] <- xwav[(1:(index[Jmax])),]</pre>
      xwav <- new_xwav
      index <- c(0, index)
##### Compute the wavelet functions
res_psi <- psi_hat_exact(filter,10)</pre>
psih <- res_psi$psih</pre>
grid <- res_psi$grid</pre>
res_mww <- mww_wav(xwav,index, psih, grid,LU)</pre>
```

mww_wav_cov_eval

multivariate wavelet Whittle estimation of the long-run covariance matrix

Description

Computes the multivariate wavelet Whittle estimation of the long-run covariance matrix given the long-memory parameter vector d for the already wavelet decomposed data.

Usage

```
mww_wav_cov_eval(d, xwav, index,psih,grid_K, LU)
```

Arguments

d	vector of long-memory parameters (dimension should match dimension of xwav).
xwav	wavelet coefficients matrix (with scales in rows and variables in columns).
index	vector containing the largest index of each band, i.e. for $j>1$ the wavelet coefficients of scale j are $dwt(k)$ for $k \in [indmaxband(j-1)+1, indmaxband(j)]$ and for $j=1, dwt(k)$ for $k \in [1, indmaxband(1)]$.
psih	the Fourier transform of the wavelet mother at values grid_K
grid_K	the grid for the approximation of the integral in K
LU	bivariate vector (optional) containing L, the lowest resolution in wavelet decomposition U, the maximal resolution in wavelet decomposition.

22 mww_wav_cov_eval

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

Value

Long-run covariance matrix estimation.

Author(s)

S. Achard and I. Gannaz

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mww, mww_eval,mww_wav,mww_wav_eval,mww_cov_eval
```

```
### Simulation of ARFIMA(0,d,0)
rho<-0.4
cov <- matrix(c(1,rho,rho,1),2,2)</pre>
d < -c(0.4, 0.2)
J <- 9
N <- 2<sup>J</sup>
resp <- fivarma(N, d, cov_matrix=cov)</pre>
x \leftarrow resp$x
long_run_cov <- resp$long_run_cov</pre>
## wavelet coefficients definition
res_filter <- scaling_filter('Daubechies',8);</pre>
filter <- res_filter$h
M <- res_filter$M
alpha <- res_filter$alpha
LU <- c(2,11)
### wavelet decomposition
if(is.matrix(x)){
     N \leftarrow dim(x)[1]
```

mww_wav_eval 23

```
k \leftarrow dim(x)[2]
}else{
     N \leftarrow length(x)
     k <- 1
x \leftarrow as.matrix(x,dim=c(N,k))
      ## Wavelet decomposition
      xwav \leftarrow matrix(0,N,k)
      for(j in 1:k){
           xx \leftarrow x[,j]
            resw <- DWTexact(xx,filter)</pre>
            xwav_temp <- resw$dwt</pre>
            index <- resw$indmaxband</pre>
            Jmax <- resw$Jmax</pre>
           xwav[1:index[Jmax],j] <- xwav_temp;</pre>
      }
      ## we free some memory
     new_xwav <- matrix(0,min(index[Jmax],N),k)</pre>
      if(index[Jmax]<N){</pre>
            new_xwav[(1:(index[Jmax])),] <- xwav[(1:(index[Jmax])),]</pre>
      }
      xwav <- new_xwav
      index <- c(0, index)
##### Compute the wavelet functions
res_psi <- psi_hat_exact(filter,10)</pre>
psih<-res_psi$psih
grid<-res_psi$grid</pre>
res_mww <- mww_wav_cov_eval(d,xwav,index, psih, grid,LU)</pre>
```

mww_wav_eval

multivariate wavelet Whittle estimation for data as wavelet coefficients

Description

Evaluates the multivariate wavelet Whittle criterion at a given long-memory parameter vector d for the already wavelet decomposed data.

Usage

```
mww_wav_eval(d, xwav, index, LU = NULL)
```

Arguments

d xwav vector of long-memory parameters (dimension should match dimension of x). wavelet coefficients matrix (with scales in rows and variables in columns).

24 mww_wav_eval

index	vector containing the largest index of each band, i.e. for $j>1$ the wavelet coefficients of scale j are $dwt(k)$ for $k\in[indmaxband(j-1)+1,indmaxband(j)]$ and for $j=1,dwt(k)$ for $k\in[1,indmaxband(1)]$.
LU	bivariate vector (optional) containing L, the lowest resolution in wavelet decomposition U, the maximal resolution in wavelet decomposition. (Default values are set to L=1, and U=Jmax.)

Details

L is fixing the lower limit of wavelet scales. L can be increased to avoid finest frequencies that can be corrupted by the presence of high frequency phenomena.

U is fixing the upper limit of wavelet scales. U can be decreased when highest frequencies have to be discarded.

Value

multivariate wavelet Whittle criterion.

Author(s)

S. Achard and I. Gannaz

References

- E. Moulines, F. Roueff, M. S. Taqqu (2009) A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series. *Annals of statistics*, vol. 36, N. 4, pages 1925-1956
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
mww, mww_cov_eval,mww_wav,mww_eval,mww_wav_cov_eval
```

```
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d <- c(0.4,0.2)
J <- 9
N <- 2^J

resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov

## wavelet coefficients definition
res_filter <- scaling_filter('Daubechies',8);</pre>
```

psi_hat_exact 25

```
filter <- res_filter$h
LU <- c(2,11)
### wavelet decomposition
if(is.matrix(x)){
     N \leftarrow dim(x)[1]
     k \leftarrow dim(x)[2]
}else{
     N \leftarrow length(x)
     k <- 1
x \leftarrow as.matrix(x,dim=c(N,k))
      ## Wavelet decomposition
      xwav <- matrix(0,N,k)</pre>
      for(j in 1:k){
           xx \leftarrow x[,j]
           resw <- DWTexact(xx,filter)</pre>
           xwav_temp <- resw$dwt</pre>
            index <- resw$indmaxband</pre>
            Jmax <- resw$Jmax</pre>
           xwav[1:index[Jmax],j] <- xwav_temp;</pre>
      ## we free some memory
      new_xwav <- matrix(0,min(index[Jmax],N),k)</pre>
      if(index[Jmax]<N){</pre>
           new_xwav[(1:(index[Jmax])),] <- xwav[(1:(index[Jmax])),]</pre>
      }
      xwav <- new_xwav
      index <- c(0, index)
res_mww <- mww_wav_eval(d,xwav,index,LU)</pre>
res_d \leftarrow optim(rep(0,k),mww_wav_eval,xwav=xwav,index=index,LU=LU,
           method='Nelder-Mead',lower=-Inf,upper=Inf)$par
```

psi_hat_exact

discrete Fourier transform of the wavelet

Description

Computes the discrete Fourier transform of the wavelet associated to the given filter using scaling_function. The length of the Fourier transform is equal to the length of the grid where the wavelet is evaluated.

```
psi_hat_exact(filter,J=10)
```

26 scaling_filter

Arguments

filter	wavelet filter as obtained with scaling_filter.
--------	---

J 2[^]J corresponds to the size of the grid for the discretisation of the wavelet. The

default value is set to 10.

Value

psih Values of the discrete Fourier transform of the wavelet.
grid Frequencies where the Fourier transform is evaluated.

Author(s)

S. Achard and I. Gannaz

References

- G. Fay, E. Moulines, F. Roueff, M. S. Taqqu (2009) Estimators of long-memory: Fourier versus wavelets. *Journal of Econometrics*, vol. 151, N. 2, pages 159-177.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
DWTexact, scaling_filter
```

Examples

```
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
psi_hat_exact(filter,J=6)</pre>
```

scaling_filter

wavelet scaling filter coefficients

Description

Computes the filter coefficients of the Haar or Daubechies wavelet family with a specific order

```
scaling_filter(family, parameter)
```

scaling_function 27

Arguments

family Wavelet family, 'Haar' or 'Daubechies'

parameter Order of the Daubechies wavelet (equal to twice the number of vanishing mo-

ments). The value of parameter can be 2,4,8,10,12,14 and 16.

Value

h Vector of scaling filter coefficients.M Number of vanishing moments.

alpha Fourier decay exponent.

Author(s)

S. Achard and I. Gannaz

References

- G. Fay, E. Moulines, F. Roueff, M. S. Taqqu (2009) Estimators of long-memory: Fourier versus wavelets. *Journal of Econometrics*, vol. 151, N. 2, pages 159-177.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

DWTexact

Examples

```
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
M <- res_filter$M
alpha <- res_filter$alpha</pre>
```

scaling_function

scaling function and the wavelet function

Description

Computes the scaling function and the wavelet function (for compactly supported wavelet) using the cascade algorithm on the grid of dyadic integer 2^{-J}

```
scaling_function(filter, J)
```

28 toeplitz_nonsym

Arguments

filter wavelet filter as obtained with scaling_filter.

J value of the largest scale.

Value

phi Scaling function.psi Wavelet function.

Note

This function was rewritten from an original matlab version by Fay et al. (2009)

Author(s)

S. Achard and I. Gannaz

References

- G. Fay, E. Moulines, F. Roueff, M. S. Taqqu (2009) Estimators of long-memory: Fourier versus wavelets. *Journal of Econometrics*, vol. 151, N. 2, pages 159-177.
- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
DWTexact, scaling_filter
```

Examples

```
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
scaling_function(filter,J=6)</pre>
```

toeplitz_nonsym

Transform a vector in a non symmetric Toeplitz matrix

Description

Transform a vector in a non symmetric Toeplitz matrix

```
toeplitz_nonsym(vec)
```

varma 29

Arguments

vec input vector.

Value

the corresponding matrix.

Author(s)

S. Achard and I. Gannaz

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
scaling_function
```

Examples

```
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
Htmp <- toeplitz_nonsym(filter)</pre>
```

varma

simulation of multivariate ARMA process

Description

generates N observations of a k-vector ARMA process

Usage

```
varma(N, k = 1, VAR = NULL, VMA = NULL, cov_matrix = diag(k), innov=NULL)
```

Arguments

N number of time points.

k dimension of the vector ARMA (optional, default is univariate)

VAR array of VAR coefficient matrices (optional).

VMA array of VMA coefficient matrices (optional).

cov_matrix matrix of correlation between the innovations (optional, default is identity).

innov matrix of the innovations (optional, default is a gaussian process).

30 vfracdiff

Value

vector containing the N observations of the k-vector ARMA process.

Author(s)

S. Achard and I. Gannaz

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
fivarma, vfracdiff
```

Examples

```
rho1 <- 0.3
rho2 <- 0.8
cov <- matrix(c(1,rho1,rho2,rho1,1,rho1,rho2,rho1,1),3,3)

J <- 9
N <- 2^J
VMA <- diag(c(0.4,0.1,0))
### or another example VAR <- array(c(0.8,0,0,0,0.6,0,0,0,0.2,0,0,0,0,0.4,0,0,0,0.5),dim=c(3,3,2))
VAR <- diag(c(0.8,0.6,0))
x <- varma(N, k=3, cov_matrix=cov, VAR=VAR, VMA=VMA)</pre>
```

vfracdiff

simulation of vector fractional differencing process

Description

Given a vector process x and a vector of long memory parameters d, this function is producing the corresponding fractional differencing process.

Usage

```
vfracdiff(x, d)
```

Arguments

```
initial process.
```

d vector of long-memory parameters

vfracdiff 31

Details

Given a process x, this function applied a fractional difference procedure using the formula:

$$diag((1-L)^d)x,$$

where L is the lag operator.

Value

vector fractional differencing of x.

Author(s)

S. Achard and I. Gannaz

References

- S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. *Journal of Time Series Analysis*, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.
- K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes *Journal of Econometrics* Vol. 137, N. 2, pages 277-310.
- S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. *Journal of Statistical Software*, Vol 89, N. 6, pages 1-31.

See Also

```
varma, fivarma
```

```
rho1 <- 0.3
rho2 <- 0.8
cov <- matrix(c(1,rho1,rho2,rho1,1,rho1,rho2,rho1,1),3,3)
d <- c(0.2,0.3,0.4)

J <- 9
N <- 2^J
VMA <- diag(c(0.4,0.1,0))
### or another example VAR <- array(c(0.8,0,0,0.6,0,0,0.2,0,0,0,0.4,0,0,0.5),dim=c(3,3,2))
VAR <- diag(c(0.8,0.6,0))
x <- varma(N, k=3, cov_matrix=cov, VAR=VAR, VMA=VMA)
vx<-vfracdiff(x,d)</pre>
```

Index

* datagen	brainHCP,4
fivarma,8	
varma, <u>29</u>	<pre>compute_nj, 5</pre>
vfracdiff, 30	DWT
* datasets	DWTexact, 6, 6, 26–28
brainHCP,4	fivarma, 8, <i>30</i> , <i>31</i>
* nonparametric	1 1 vai ma, 6, 50, 51
DWTexact, 6	K_eval, 9
mfw, 10	_ ,
mfw_cov_eval, 12	mfw, 10, <i>12</i> , <i>14</i>
mfw_eval, 13	mfw_cov_eval, <i>11</i> , 12, <i>14</i>
mww, 14	mfw_eval, <i>11</i> , <i>12</i> , 13
mww_cov_eval, 16	multiwave (multiwave-package), 2
mww_eval, 17	multiwave-package, 2
mww_wav, 19	mww, 14, <i>17</i> , <i>18</i> , <i>20</i> , <i>22</i> , <i>24</i>
<pre>mww_wav_cov_eval, 21</pre>	mww_cov_eval, 15, 16, 18, 20, 22, 24
<pre>mww_wav_eval, 23</pre>	mww_eval, 15, 17, 17, 20, 22, 24
* package	$mww_wav, 15, 17, 18, 19, 22, 24$
multiwave-package, 2	mww_wav_cov_eval, 15, 17, 18, 20, 21, 24
* ts	mww_wav_eval, 15, 17, 18, 20, 22, 23
compute_nj,5	noi hat asset 10.25
DWTexact, 6	psi_hat_exact, <i>10</i> , 25
fivarma,8	scaling_filter, 6, 7, 26, 26, 28
K_eval, 9	scaling_function, 27, 29
mfw, 10	
mfw_cov_eval, 12	toeplitz_nonsym, 28
mfw_eval, 13	•
mww, 14	varma, 9, 29, 31
mww_cov_eval, 16	vfracdiff, <i>9</i> , <i>30</i> , 30
mww_eval, 17	
mww_wav, 19	
<pre>mww_wav_cov_eval, 21</pre>	
<pre>mww_wav_eval, 23</pre>	
psi_hat_exact, 25	
scaling_filter, 26	
scaling_function, 27	
toeplitz_nonsym, 28	
varma, 29	
vfracdiff.30	