Experiment

A model with a one-layer bidirectional LSTM (Table 1) was trained for 25 epochs on the SST-2 dataset for sentiment analysis. The SST-2 dataset has only two sentiments, positive and negative. The cross-entropy objective function was minimized using gradient descent with the stochastic gradient descent optimizer (SGD) with momentum set to 0.9, a learning rate of 0.005, and the batch size set to 64. Early stopping was applied by saving the model at the best cross-validation accuracy during the 25 epochs. The final test accuracy of the trained model reached over 80% accuracy (83.526% accuracy).

Figure 1: Model with one layer bidirectional LSTM Learning Curves

Neural Network Architecture Details

Following the homework details, a sequence model with a bidirectional LSTM (Table. 1) was implemented for sentiment analysis. The model converts an input sentence $w_1,...,w_M$, where $w_i \in V$, the vocab, to a sequence of GloVe embeddings $g_1,...,g_M$. These GloVe embeddings are input to the one-layer bidirectional LSTM, where h_0,c_0 are initialized to zeros. The hidden state at the last time step h_M is fed to an affine layer to compute the sentiment score (positive or negative).

Design Details	
Layer	Structure
Input Details	Input Size: Sequence Length x Batch Size
Embedding Layer	Vocabulary Size: 18005
	Embedding Dimension: 100
LSTM	Input Size: 100
	Hidden Dimension: 128
	Number of Layers: 1
	Bidirectional: True
FC_{out}	Input Dimension: 256 (2x Hidden Dim)
	Output Dimension: 2

Table 1: Neural Network Architecture Descriptions