MATLAB EXPO 2017

Big Data and Machine Learning Using MATLAB

Seth DeLand & Amit Doshi MathWorks

Data Analytics

Turn large volumes of complex data into actionable information source: <u>Gartner</u>

Customer Example: Gas Natural Fenosa

Energy Production Optimization

Opportunity

 Allocate demand among power plants to minimize generation costs

Analytics Use

- Data: Central database for historical power consumption and price data, weather forecasts, and parameters for each power plant
- Machine Learning: Develop price simulation scenarios
- Optimization: minimize production cost

Benefit

- Reduced generation costs
- White-box solution for optimizing power generation

User Story

Unit Commitment

Predictive and Prescriptive Analytics

MATLAB EXPO 2017

Big Data Analytics Workflow

Access and Explore Data

Preprocess Data

Develop Predictive Models

Integrate Analytics with Systems

Example: Working with Big Data in MATLAB

Objective: Create a model to predict the cost of a taxi ride in New York City

Inputs:

- Monthly taxi ride log files
- The local data set is small (~20 MB)
- The full data set is big (~21 GB)

Approach:

- Access Data
- Preprocess and explore data
- Develop and validate predictive model (linear fit)
 - Work with subset of data for prototyping and then run on spark enabled hadoop with full data
- Integrate analytics into a webapp

Example: Working with Big Data in MATLAB

Demo: Taxi Fare Predictor Web App

Taxi Fare Estimator

Origin:	,
Destination:	

Estimate Fare >

Big Data Analytics Workflow: Data Access and Pre-process

Access and Explore Data

Preprocess Data

Data Access and Pre-processing – Challenges

Challenges

- Data aggregation
 - Different sources (files, web, etc.)
 - Different types (images, text, audio, etc.)
- Data clean up
 - Poorly formatted files
 - Irregularly sampled data
 - Redundant data, outliers, missing data etc.
- Data specific processing
 - Signals: Smoothing, resampling, denoising, Wavelet transforms, etc.
 - Images: Image registration, morphological filtering, deblurring, etc.
- Dealing with out of memory data (big data)

Data preparation accounts for about 80% of the work of data scientists - Forbes

Data Analytics Workflow: Big Data Access and Pre-processing

Download 2015 Taxi Data from Web using 'websave' in parallel

```
parfor i=1:12
    fileName = ['taxiData2015_', num2str(i)]
    url = ['https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2016-0',num2str(i), '.csv']
    websave fileName, url)
end
```

MATLAB EXPO ___.

Next: Access Big Data from MATLAB

datastore

Tabular text files

Images

Excel spreadsheets

– (SQL) Databases

HDFS (Hadoop)

- S3 - Amazon

R2014b

R2015a

R2015b

R2016a

Get data in MATLAB

What if the data is saved in HDFS?

Or Data is stored in a Database

Connect to the database application

```
conn = database('taxiDemo', 'root', 'matlab', ...
'Vendor', 'MYSQL', ...
'Server', 'localhost', ...
'PortNumber', 3306);
```

Create a database datastore and import data of interest

```
sqlquery = ['select pickuptime, dropofftime, trip_distance,'...
    'payment_type, fare_amount from taxiData'];
ds = databaseDatastore(conn,sqlquery, 'ReadSize',100000);
```


Data Access: Summary

Servers and Databases

Business and Transactional Data

- Repositories SQL, NoSQL, etc.
- File I/O Text, Spreadsheet, etc.
- Web Sources RESTful, JSON, etc.

Engineering, Scientific and Field Data

- Real-Time Sources Sensors,GPS, etc.
- File I/O Image, Audio, etc.
- Communication Protocols OPC
 (OLE for Process Control), CAN
 (Controller Area Network), etc.

Software

Process data which doesn't fit into memory

Access and Explore
Data

Preprocess Data

Develop Predictive Models

Integrate Analytics with Systems

Pre-processing Big Data

tall arrays in R2016b

- New data type designed for data that doesn't fit into memory
- Lots of observations (hence "tall")
- Looks like a normal MATLAB array
 - Supports numeric types, tables, datetimes, strings, etc...
 - Supports several hundred functions for basic math, stats, indexing, etc.
 - Statistics and Machine Learning Toolbox support (clustering, classification, etc.)

tall arrays R2016b

- Automatically breaks data up into small "chunks" that fit in memory
- Tall arrays scan through the dataset one "chunk" at a time
- Processing code for tall arrays is the same as ordinary arrays

tall arrays R2016b

- With Parallel Computing Toolbox, process several "chunks" at once
- Can scale up to clusters with MATLAB Distributed Computing Server

Demo: Working with Tall Arrays

Data Access and pre-processing – challenges and solution

Challenges

- Data aggregation
 - Different sources (files, web, etc.)
 - Different types (images, text, audio, etc.)
- Data clean up
 - Poorly formatted files
 - Irregularly sampled data
 - Redundant data, outliers, missing data etc.
- Data specific processing
 - Signals: Smoothing, resampling, denoising, Wavelet transforms, etc.
 - Images: Image registration, morphological filtering, deblurring, etc.
- Dealing with out of memory data (big data)

MATLAB makes it easy to work with business and engineering data

- Point and click tools to access variety of data sources
- High-performance environment for big data
- Built-in algorithms for data preprocessing including sensor, image, audio, video and other real-time data

Data Analytics Workflow: Develop Predictive Models using Big Data

Access and Explore

Data

Preprocess Data

Develop Predictive Models

Integrate Analytics with Systems

Machine Learning

Machine learning uses data and produces a program to perform a task

Task: Human Activity Detection

Consider Machine/Deep Learning When

Problem is too complex for hand written rules or equations **Object Recognition** Speech Recognition **Engine Health Monitoring**

Because algorithms can

learn complex nonlinear relationships

Program needs to adapt with changing data

Weather Forecasting

Energy Load Forecasting

Stock Market Prediction

update as more data becomes available

Program needs to scale

IoT Analytics

Taxi Availability

Airline Flight Delays

learn efficiently from very large data sets

Different Types of Learning

Different Types of Learning

Machine Learning with Big Data

R2016b

- Descriptive statistics (skewness, tabulate, crosstab, cov, grpstats, ...)
- K-means clustering (kmeans)
- Visualization (ksdensity, binScatterPlot; histogram, histogram2)
- Dimensionality reduction (pca, pcacov, factoran)
- Linear and generalized linear regression (fitlm, fitglm)
- Discriminant analysis (fitcdiscr)

R2017a

- Linear classification methods for SVM and logistic regression (fitclinear)
- Random forest ensembles of classification trees (TreeBagger)
- Naïve Bayes classification (fitcnb)
- Regularized regression (lasso)
- Prediction applied to tall arrays

Demo: Training a Machine Learning Model

Demo: Training a Machine Learning Model

Regression Learner

Regression Learner

App to apply advanced regression methods to your data

- Added to Statistics and Machine Learning Toolbox in R2017a
- Point and click interface no coding required
- Quickly evaluate, compare and select regression models
- Export and share MATLAB code or trained models

Classification Learner

App to apply advanced classification methods to your data

- Added to Statistics and Machine Learning Toolbox in R2015a
- Point and click interface no coding required
- Quickly evaluate, compare and select classification models
- Export and share MATLAB code or trained models

and Many More MATLAB Apps for Data Analytics

Distribution Fitting

System Identification

Signal Analysis

Wavelet Design and Analysis

Neural Net Fitting

Neural Net Pattern Recognition

Training Image Labeler

and many more...

Tuning Machine Learning Models

Get more accurate models in less time

Automatically select best machine leaning "features"

R2016b

NCA: Neighborhood Component Analysis

Automatically fine-tune machine learning parameters

R2016b

Hyperparameter Tuning

Machine Learning Hyperparameters


```
SVMModel = fitcsvm(X,Y,'OptimizeHyperparameters','auto');
```

Tune a typical set of hyperparameters for this model

```
SVMModel = fitcsvm(X,Y,'OptimizeHyperparameters','all');
```

Tune all hyperparameters for this model

Bayesian Optimization in Action

Big Data Analytics Workflow: Developing Predictive models

MATLAB enables domain experts to do Data Science

Challenges

- Lack of data science expertise
- Feature Extraction How to transform data to best represent the system?
 - Requires subject matter expertise
 - No right way of designing features
- Feature Selection What attributes or subset of data to use?
 - Entails a lot of iteration Trial and error
 - Difficult to evaluate features
- Model Development
 - Many different models
 - Model Validation and Tuning
- Time required to conduct the analysis

- Easy to use apps
- Wide breadth of tools to facilitate domain specific analysis
- Examples/videos to get started
- Automatic MATLAB code generation
- High speed processing of large data sets

Back to our example: Working with Big Data in MATLAB

Objective: Create a model to predict the cost of a taxi ride in New York City

Inputs:

- Monthly taxi ride log files
- The local data set is small (~20 MB)
- The full data set is big (~25 GB)

Approach:

- Acecss Data
- Preprocess and explore data
- Develop and validate predictive model (linear fit)
 - Work with subset of data for prototyping
 - Scale to full data set on a cluster

Data Analytics Workflow: Develop Predictive Models using Big Data

Access and Explore
Data

Preprocess Data

Develop Predictive Models

Integrate Analytics with Systems

Demo: Taxi Fare Predictor Web App

Taxi Fare Estimator

Origin:

Destination:

Estimate Fare

MATLAB Production Server

- Server software
 - Manages packaged MATLAB programs and worker pool
- MATLAB Runtime libraries
 - Single server can use runtimes from different releases
- RESTful JSON interface
- Lightweight client libraries
 - C/C++, .NET, Python, and Java

Integrate analytics with systems

Product Support for Spark

Deployment Offerings

- Deploy "tall" programs
 - Create Standalone Applications: MATLAB Compiler
- MATLAB API for Spark
 - Create Standalone Applications: MATLAB Compiler
 - Functionality beyond tall arrays
 - For advanced programmers familiar with Spark
 - Local install of Spark to run code in MATLAB
 - Installed on same machine as MATLAB single node, Linux

Data Analytics Workflow

Access and Explore
Data

Preprocess Data

Develop Predictive Models

Integrate Analytics with Systems

MATLAB EXPO 2017

Resources to learn and get started

mathworks.com/big-data

mathworks.com/machine-learning

MathWorks Services

Consulting

- Integration
- Data analysis/visualization
- Unify workflows, models, data

www.mathworks.com/services/consulting/

Training

- Classroom, online, on-site
- Data Processing, Visualization, Deployment, Parallel Computing

www.mathworks.com/services/training/

MathWorks Training Offerings

Machine Learning with MATLAB

INTERMEDIATE

This two-day course focuses on data analytics and machine learning techniques in MATLAB using functionality within Statistics and Machine Learning Toolbox™ and Neural Network Toolbox™. The course demonstrates the use of unsupervised learning to discover features in large data sets and supervised learning to build predictive models. Examples and exercises highlight techniques for visualization and evaluation of results. Topics include:

- Importing and organizing data
- Finding natural patterns in data
- Building predictive models
- Evaluating and improving the model

Prerequisites: MATLAB Fundamentals

Interfacing MATLAB with C Code

INTERMEDIATE

This one-day course covers details of interfacing MATLAB with user-written C code. Topics include:

- Source MEX-files
- Data exchange between MATLAB and MEX-files
- The MATLAB engine interface

Prerequisites: *MATLAB Fundamentals* and a basic working knowledge of the C programming language

http://www.mathworks.com/services/training/

Accelerating the pace of engineering and science

Speaker Details

Email:

seth.deland@mathworks.com

amit.doshi@mathworks.in

LinkedIn:

https://in.linkedin.com/in/amit-doshi

https://www.linkedin.com/in/seth-deland

Contact MathWorks India

Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.

MATLAB EXFL