# Organizační úvod

Přednášky budou nahrávány, referáty ne.

Kontaktovat přes e-mail slavikova@karlin.mff.cuni.cz

Teoretické příklady odevzdávat přes Moodle.

## 1 Prvočísla

### Definice 1.1 (Dělitel)

Číslo  $d \in \mathbb{Z}$  nazýváme dělitelem čísla  $n \in \mathbb{Z}$ , značeno  $d \div n$ , pokud existuje  $k \in \mathbb{Z}$  splňující n = kd.

### Definice 1.2 (Prvočíslo)

Řekněme, že  $n \in \mathbb{N}$  je prvočíslo, pokud n > 1 a jeho jediní kladní dělitelné jsou  $1 \ge n$ .

 $Nap \check{r} \hat{\imath} k lad$  (Několik prvních prvočísel)

 $2, 3, 5, 7, 11, 13, 17, \dots$ 

## Věta 1.1 (Základní věta aritmetiky)

Každé přirozené číslo  $n \geq 2$  lze zapsat právě jedním způsobem jako součin prvočísel ve tvaru:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

 $k \in N, p_1 < p_2 < \dots < p_k jsou prvočísla, \alpha_1, \dots, \alpha_k \in \mathbb{N}$ 

Například

$$2020 = 2^2 \cdot 5 \cdot 101(k = 3, p_1 = 2, p_2 = 5, p_3 = 101, \alpha_1 = 2, \alpha_2 = 1, \alpha_3 = 1)$$

 $D\mathring{u}kaz$ 

1. krok = existence rozkladu (indukcí):

Pro n=2 zjevně platí  $2=2^1$   $(k=1,p_1=2,\alpha_1=1).$ 

Předpokládejme, že tvrzení platí pro všechna  $2 \le x \le n$ . Pokud je n+1 prvočíslo, pak  $n+1=(n+1)^1$   $(k=1,p_1=n+1,\alpha_1=1)$ . Pokud není, pak  $n+1=a\cdot b$ , kde  $1 < a \le b < n+1$ . Podle indukčního předpokladu lze a i b rozložit na prvočísla. Zápis rozkladu n+1 pak bude sjednocením všech prvočísel a součtem příslušných  $\alpha$ , pokud se prvočísla vyskytují v a i b. (V přednášce byl zaveden zápis bez mocnin, kde prvočísla nemusí být různá, a pak proveden součin.)

2. krok = jednoznačnost rozkladu:

## Lemma 1.2 (Euklidovo lemma (bez důkazu))

Nechť  $a,b \in \mathbb{Z}$  a nechť p je prvočíslo takové, že  $p \mid ab$ . Pak  $p \mid a$  nebo  $p \mid b$ .

Použijeme důkaz sporem. Předpokládejme, že tvrzení neplatí. Vybereme nejmenší z přirozených čísel, pro které rozklad není jednoznačný. Označme ho n.

$$n = q_1 \cdots q_l = r_1 \cdot r_m \ (q_1, \dots, q_l, r_1, \dots, r_m$$
prvočísla)

A není pravda, že  $(r_1, \ldots, r_m)$  je permutací  $(q_1, \ldots, q_l)$ .

Protože  $q_1 \mid n$ , pak  $q_1 \mid r_1 \cdots r_m$  a podle Euklidova lemmatu  $q_1$  dělí alespoň jedno z čísel  $r_1, \ldots r_m$ . BÚNO  $q_1 \mid r_1$ , tedy  $q_1 = r_1$ . Vydělením n číslem  $q_1$  dostaneme menší přirozené číslo, které nemá jednoznačný rozklad.  $(\frac{n}{q_1} = q_2 \cdots q_l = r_2 \cdots r_m)$ .

#### Věta 1.3

Prvočísel je nekonečně mnoho.

 $D\mathring{u}kaz$ 

Důkaz sporem. Předpokládejme, že prvočísel je konečně mnoho, a označme p největší prvočíslo. Definujeme:

$$n_p = 2 \cdot 3 \cdot 5 \cdot \cdots \cdot p + 1$$

Pak  $n_p > p$  a  $n_p$  dává zbytek 1 po dělení všemi prvočísly, tedy není ani jedním dělitelné. Tedy  $n_p$  nemá prvočíselný rozklad. se základní větou aritmetiky.

Poznámka

Důkaz nedává konstrukci vyššího prvočísla, pouze dokazuje jeho existenci.

Například

Mezi 1 a 100 je 25 prvočísel.

Mezi  $10^7$  a  $10^7 + 100$  jsou pouze 2 prvočísla.

 $Označme \Pi(N) počet prvočísel \leq N.$ 

Existují konstanty  $c_1, c_2 > 0$  takové, že

$$\frac{c_1}{\log N} \le \frac{\Pi(N)}{N} \le \frac{c_2}{\log N}$$

Poznámko

Prvočísel je nekonečně mnoho, ale "řídnou". Musí tedy existovat dlouhé úseky bez prvočísel.

Například

Interval  $[n!+2,\dots,n!+n]$ neobsahuje žádné prvočíslo. (Jelikož k-té číslo je dělitelné k+1.)

# 2 Čísla racionální a iracionální

### Definice 2.1 (Racionální a iracionální číslo)

Číslo  $x \in \mathbb{R}$  je racionální, pokud ho lze zapsat ve tvaru  $x = \frac{p}{q}, \ q \in \mathbb{N}, \ p \in \mathbb{Z}.$ 

Číslo  $y \in \mathbb{R}$  je iracionální, pokud není racionální.

Například (Z přednášky)

 $\sqrt{2}$  je iracionální.

#### Věta 2.1

Nechť  $n \in \mathbb{N}$  je taková, že  $\sqrt{n} \notin \mathbb{N}$  (tedy n není druhou mocninou přirozeného čísla). Pak  $\sqrt{n}$  je iracionální.

### Věta 2.2 (Referát 1)

Existují iracionální čísla a,b taková, že  $a^b$  je racionální. (Text: skripta z MA, str. 14-15.)

*Příklad* (Teoretický příklad 1)

Nechť  $n \in \mathbb{N}$  a nechť  $a_1, \ldots, a_n$  jsou kladná reálná čísla, taková, že  $a_1 \cdot \cdots \cdot a_n = 1$ .

Dokažte, že

$$(1+a_1)\cdot\cdots\cdot(1+a_n)\geq 2^n.$$