MA327 Turma Y - 1S 2009 - Prova 3

Nome:	RA:	3	0/06	/2009
Nome.	1671.	9	<i>J </i> UU	/ 4000

- 1. (10pts) Escreva as definições de autovetor generalizado, autoespaço generalizado, e de matriz diagonalizável.
- 2. Considere as matrizes $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = A^*$ e C = AB.
 - (a) (10pts) Determine se A é uma matriz normal.
 - (b) (10pts) Sem calcular o polinômio característico de C, determine se a matriz C é ortogonalmente diagonalizável ou não.
- 3. Seja V um espaço vetorial de dimensão finita com produto interno e $T:V\to V$ uma transformação linear. Escreva uma demonstração ou dê um contra exemplo para mostrar se as afirmações abaixo são verdadeiras ou falsas.
 - (a) (10pts) Se W é subespaço de V, então R_W é diagonalizável e seus possíveis autovalores são ± 1 .
 - (b) (10pts) Se $T = -T^*$ e v é um autovetor de T, então T(v) = 0.
- 4. (30pts) Considere a matriz $A=\begin{bmatrix}0&0&1+2i\\0&5&0\\1-2i&0&0\end{bmatrix}$. Encontre uma matriz unitária P e uma matriz diagonal D tal que $D=PAP^{-1}$.
- 5. Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x+y-z,y,z).
 - (a) (10pts) Determine se existe base de \mathbb{R}^3 formada por autovetores de T.
 - (b) (20pts) Encontre uma base do \mathbb{R}^3 formada por ciclos de autovetores generalizados de T e obtenha a forma canônica de Jordan de T.

Existem 10 pontos extras. Bom trabalho!