PRISMS-PF Mechanics (Infinitesimal Strain)

Consider a strain energy expression of the form:

$$\Pi(\varepsilon) = \int_{\Omega} \frac{1}{2} \varepsilon : C : \varepsilon \ dV \tag{1}$$

where ε is the infinitesimal strain tensor, $C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$ is the fourth order elasticity tensor and (λ, mu) are the Lame parameters.

1 Governing equation

Considering variations on the displacement u of the from $u + \alpha w$, we have

$$\delta\Pi = \frac{d}{d\alpha} \int_{\Omega} \frac{1}{2} \epsilon(u + \alpha w) : C : \epsilon(u + \alpha w) \ dV \bigg|_{\alpha = 0}$$
 (2)

$$= -\int_{\Omega} \nabla w : C : \epsilon \ dV + \int_{\partial \Omega} w \cdot [C : \epsilon \cdot n] \ dS \tag{3}$$

$$= -\int_{\Omega} \nabla w : \sigma \ dV + \int_{\partial \Omega} w \cdot (\sigma \cdot n) \ dS \tag{4}$$

$$= -\int_{\Omega} \nabla w : \sigma \ dV + \int_{\partial\Omega} w \cdot t \ dS \tag{5}$$

where $\sigma = C : \varepsilon$ is the stress tensor and $t = \sigma \cdot n$ is the surface traction.

The minimization of the variation, $\delta\Pi=0$, gives the weak formulation of the governing equation of mechanics:

$$\int_{\Omega} \nabla w : \sigma \ dV - \int_{\partial \Omega} w \cdot t \ dS = 0 \tag{6}$$

If surface tractions are zero:

$$R = \int_{\Omega} \nabla w : \sigma \ dV = 0 \tag{7}$$

2 Residual expressions

In PRISMS-PF, two sets of residuals are required for elliptic PDEs (such as this one), one for the left-hand side of the equation (LHS) and one for the right-hand side of the equation (RHS). We solve R = 0 by casting this in a form that can be solved as a matrix inversion problem. This will involve a brief detour into the discretized form of the equation. First we derive an expression for the solution, given an initial guess, u_0 :

$$0 = R(u) = R(u_0 + \Delta u) \tag{8}$$

where $\Delta u = u - u_0$. Then, applying the discretization that $u = \sum_i w^i U^i$, we can write the following linearization:

$$\frac{\delta R(u)}{\delta u} \Delta U = -R(u_0) \tag{9}$$

The discretized form of this equation can be written as a matrix inversion problem. However, in PRISMS-PF, we only care about the product $\frac{\delta R(u)}{\delta u} \Delta U$. Taking the variational derivative of R(u) yields:

$$\frac{\delta R(u)}{\delta u} = \frac{d}{d\alpha} \int_{\Omega} \nabla w : C : \epsilon(u + \alpha w) \ dV \bigg|_{\alpha = 0}$$
(10)

$$= \int_{\Omega} \nabla w : C : \frac{1}{2} \frac{d}{d\alpha} \left[\nabla (u + \alpha w) + \nabla (u + \alpha w)^{T} \right] dV \bigg|_{\alpha = 0}$$
(11)

$$= \int_{\Omega} \nabla w : C : \frac{d}{d\alpha} \nabla (u + \alpha w) \ dV \bigg|_{\alpha=0} \quad (due \ to \ the \ symmetry \ of \ C)$$
 (12)

$$= \int_{\Omega} \nabla w : C : \nabla w \ dV \tag{13}$$

In its discretized form $\frac{\delta R(u)}{\delta u} \Delta U$ is:

$$\frac{\delta R(u)}{\delta u} \Delta U = \sum_{i} \sum_{j} \int_{\Omega} \nabla N^{i} : C : \nabla N^{j} dV \ \Delta U^{j}$$
(14)

Moving back to the non-discretized form yields:

$$\frac{\delta R(u)}{\delta u} \Delta U = \int_{\Omega} \nabla w : C : \nabla(\Delta u) dV \tag{15}$$

Thus, the full equation relating u_0 and Δu is:

$$\int_{\Omega} \nabla w : \underbrace{C : \nabla(\Delta u)}_{r^{LHS}} dV = -\int_{\Omega} \nabla w : \underbrace{\sigma}_{r_{ux}} dV$$
(16)

The above values of r_{ux}^{LHS} and r_{ux} are used to define the residuals in the following input file: applications/mechanics/equations.h