期中考试示例

1. Which of the follow	(C)₽			
A. (101001110) ₂	B. (517) ₈	C. (337) ₁₀	D. (14D))16⁴¹	
2. The 8-bit two's-com	plement representation :	for the decimal num	ber (-52) ₁₀ is	s(<mark>B</mark>).	ų
A. 10110100	B. 11001100	C. 11110100	D. 1000	1100↩	
3. In a positional numb	oer system, the radix is r	If we have 300/13=	20, then r≒(C).₽	
A. 4	B. 5 C. 6	D. 7+)		
4. If number [A] two3-co	mplement≕(10010011), wi	hich of the followin;	g expressions	s is correct? (₽
A. [A] onest-complem	ent = (01101100)	B. [A] ones '-compleme	rat = (111011	.01) +	
C. [A] signed-magnitu	_{de} = (01101101)	D. [A] signed-magnitu	de = (111011	01) ↔	
5. In an 8-bit digital	system, if number [A]tw	o 3-complement=1111100	1 and [B]two?	s-complement = 011	11101,
then [A+B] two §-cor	nplement <mark>≾</mark> D).≁				
A. (01110110, o	verflow) B. (10)000111, not overflo	w) +		
C. (10000111, o	verflow) D. (0:	l 110110, not overflo	w) +		
6. For the Decimal nur	mber 17, <u>Which</u> one is N	OT correct in the fo	llowing code	es? (D)
A. (0001 0111)8421	В. (0100 1010)вкс	.ss-3 C. (11001) Gmy	D. (0	0001 0111)2421 -	ų.
7. An open-drain outpu	ıt cannot <u>output</u> (B) level direct	ly.₊□		
A. LOW	B. HIGH	C. <u>Hi</u> Z	D. all abo	ve are wrong+	

- 15. If logic function $F = \sum_{ABC} (1, 2, 3, 6)$, $G = \sum_{ABC} (0, 2, 3, 4, 5, 7)$, then $F \cdot G = ($
 - A. 0

- B. 1 C. A'B D. AB'↔
- 16. For a combination logic circuit, the timing waveforms of inputs A, B, C and output F are shown as Figure 3. The standard representations of the logic function is $F = (A -) \cdot \Psi$

- A. $\Sigma_{ABC}(2, 3, 6, 7)$ B. $\Sigma_{ABC}(1, 2, 5, 6)$ C. $\Sigma_{ABC}(0, 1, 4, 5)$ D. $\Sigma_{ABC}(0, 1, 6, 7) \leftarrow$

Figure 3₽

- 17. Given the circuit shown in Figure 4, the output enables A and B of three-state buffers will meet some constraint condition. Its constraint equation is (D). 📲
 - A. X+Y=1

B. X+Y=0

- C. XY=1 D. XY=0₽

Figure 4₽

- 18. The output signal of (A
-) circuit is 1-out-of-M code.₽

A, binary decoder

B. binary encoder

C. seven-segment decoder

- D. decimal encoder-
- 19. According to the circuit as shown in Figure 5, the output F is (
 - A. $\Sigma_{ABCI}(1, 3, 4, 6, 8, 11, 12, 13, 14)$
 - B. $\Sigma_{ABCD}(1, 4, 5, 6, 8, 11, 12, 13, 14) \leftarrow$

 $\mathbb{H}^{\mathbb{J}}$

- C. $\Sigma_{ABCZ}(1, 2, 3, 4, 9, 11, 12, 13, 14)$
- D. all above are wrong-

Figure 5₽

20. Which of the following expressions has no hazard?).. A. F=A•C+A'•D'+B•C'•DB. F=A•B+A'•D'+B•D' $C. F=A \cdot C + A' \cdot D' + B \cdot C' \cdot D + C \cdot D'$ D. F=A•C+A'•D'+B•C'•D+A'•B•C'... 21. Complete the timing diagram for the given circuit. Assume that both gates have a propagation delay of $5\,\mathrm{ns}$... (A) .. W × Z w В., A × z Z С \mathbf{D}_{cr}

22. Given the circuit shown in Figure 6, when the inputs on DATA_L is 0010, the outputs DST1 and DST2 are√

 $(\square \square)$

A. 0010, 1111

B.0010,0000

C.0000,0010

D.1111,0010₽

Figure 6+

23. The solutions for the following logic equation ACD+BD=B+CD is (D)-4

A.
$$\sum_{A,B,C,D} (5,7,11,14,15)$$

B.
$$\sum_{A,B,C,D} (0,1,2,8,9,10) \neq$$

C.
$$\sum_{A,B,C,D} (0,1,2,5,7,8,9,10,11,14,15)$$

D. all above are wrong-

24. The 74x 148 is a MSI 8-input priority encoder that resolves priority among eight active-low inputs, IO L-I7 L, where I7 L has the highest priority. It produces active-low address output A2 L-A0 L. The output A2-L, A1-L, A0-L of the circuit in Figure 7 is (

25. The output logic function of the circuit shown as Figure 8 can be expressed by $F(X,Y,Z) = (D) \cdot \psi$

Figure 7

Figure 8₽

A. ∏xyz(0,1,3,5,7) B. ∏xyz(1,3,5) C. ∏xyz(2,4,6) D. ∏xyz(0,2,4,6,7)₽

得分↩ ←

『二、多项选择题(每小题4分,共20分)↓

下面各小题中,每小题有多个选项是正确的,请把正确选项的字母**按题号顺序 填在下面的模线上。(评分标准:每小题 4 分,全对得 4 分,选得不全得 2 分,选 项有错或不选不得分)** ₽

Among the four options given in each question, there are multiple options that are correct. 4 points for all selections, 2 points for incomplete selections, and 0 points for wrong choices or no answers.

- 1. Given the circuit shown in Figure 9, its output expression F = (A C D). ₽
- A. F=(ABCD)'

B. F=(AB)'·(CD)' *

C. F=A'+B'+C'+D'

D. F=((A'+B')'·(C'+D')')'₽

Figure 9₽

- 2. The unused inputs for CMOS NOR Gate should be connected (__BCD_). ←
 - A. VCC
- B.GND
- C.0.5KΩtoGND
- D. Tie to the used input₽

- 3. Which statements are correct? (BC
 - A. One truth table is only corresponding to one logic function and its expression $\mathord{ riangleleft}$
 - B. There is no static 1 hazards in complete sum form. ₽
 - C. Two logic function can not be the same if they have different truth table.
- 4. Under minimal cost principle, which expression is the minimal sum for $F = \sum_{ABCD} (0,1,2,3,10) + d(4,5,8,11,12)?$

(A B C) ←

A,
$$F = A'C' + B'C'$$
 B, $F = A'B' + B'C'$ C, $F = A'B' + B'D'$

$$C.F = A'B' + B'D$$

- 5. Which statements are incorrect? (ABCD) ←
 - A. The minimal expression is the minimal form with sum of products.
 - B. Circuits only composed by AND, OR and NOT gates must be combinational logic circuit. ←
 - C. The sum of essential prime implicants must be the minimal sum.
 - D. There is only one form of the minimal sum for a logic function.

三、**组合电路设计**(共5分)↓

₽

Combinational Circuit Design≠

4

Design a combinational circuit with a 3-bit unsigned numbers inputs $A(A=A_2A_1A_0)$, and a 6-bit unsigned number output Y (Y=Y₅Y₄Y₃Y₂Y₁Y₀), and to realize the function Y=A²+1. Finished the truth table.

A₂₽	A_{1}	A₀₽	Y₃€	Y₊€	Y ₃ € ⁷	Y₂¢ [□]	Y₁₽	Y₀€	٥
042	0₽	0₽	0₽	0₽	0₽	0₽	0₽	1€	٦
042	0₽	1₽	0₽	0₽	0₽	0₽	1€	0€	٦
0.₽	1₽	0₽	0₽	0₽	0₽	1₽	0₽	1€	٦
042	1₽	1₽	0₽	0₽	1€	0₽	1€	0€	٦
1₽	0₽	0₽	0₽	1€	0€	0€	0€	1€	٥
1₽	0₽	1₽	0€	1€	1€	0€	1€	0€	٦
1₽	1 ₽	0₽	1€	0€	0€	1€	0€	1€	٦
1∻	1₽	1₽	10	10	0₽	0₽	1€	0€	Ç