Neural Networks: Learning

Quiz, 5 questions

1 point

1.

You are training a three layer neural network and would like to use backpropagation to compute the gradient of the cost function. In the backpropagation algorithm, one of the steps is to update

$$\Delta_{ij}^{(2)} := \Delta_{ij}^{(2)} + \delta_i^{(3)} * (a^{(2)})_j$$

for every i, j. Which of the following is a correct vectorization of this step?

$$\Delta^{(2)} := \Delta^{(2)} + (a^{(2)})^T * \delta^{(3)}$$

$$igtriangledown \Delta^{(2)} := \Delta^{(2)} + \delta^{(3)} * (a^{(2)})^T$$

$$igtriangledown \Delta^{(2)} := \Delta^{(2)} + (a^{(3)})^T * \delta^{(2)}$$

$$igtriangledown \Delta^{(2)} := \Delta^{(2)} + \delta^{(3)} * (a^{(3)})^T$$

1 point

2.

Suppose **Theta1** is a 5x3 matrix, and **Theta2** is a 4x6 matrix. You set **thetaVec = [Theta1(:); Theta2(:)]**. Which of the following correctly recovers **Theta2**?

reshape(thetaVec(16:39),4,6)

reshape(thetaVec(15:38),4,6)

(25/2017	Coursera Online Courses From Top Universities. Join for Free Coursera	
Neural Ne	reshape(thetaVec(16:24),4,6) works: Learning	
Quiz, 5 questions	reshape(thetaVec(15:39),4,6)	
	reshape(thetaVec(16:39),6,4)	
	1 point	
		$(\theta-\epsilon)$
	et $J(heta)=2 heta^3+2$. Let $ heta=1$, and $\epsilon=0.01$. Use the formula $rac{J(heta+\epsilon)-J(heta)}{2\epsilon}$ sumerically compute an approximation to the derivative at $ heta=1$. What value get? (When $ heta=1$, the true/exact derivati ve is $rac{dJ(heta)}{d heta}=6$.)	
	8	
	5.9998	
	6.0002	
	6	
	1 point	
	Which of the following statements are true? Check all that apply.	
	Computing the gradient of the cost function in a neural network has same efficiency when we use backpropagation or when we numer compute it using the method of gradient checking.	
	For computational efficiency, after we have performed gradient ch	ecking
	verify that our backpropagation code is correct, we usually disable gradient checking before using backpropagation to train the netwo	
	Using gradient checking can help verify if one's implementation of backpropagation is bug-free.	

	Gradient checking is useful if we are using one of the advanced
Neural Netwo	rksptil Ratining hods (such as in fminunc) as our optimization
Quiz, 5 questions	algorithm. However, it serves little purpose if we are using gradient
	descent

descent.		
1 point		
5.		
Which	of the following statements are true? Check all that apply.	
	Suppose we have a correct implementation of backpropagation, and are training a neural network using gradient descent. Suppose we plot $J(\Theta)$ as a function of the number of iterations, and find that it is increasing rather than decreasing. One possible cause of this is that the learning rate α is too large.	
	If we are training a neural network using gradient descent, one reasonable "debugging" step to make sure it is working is to plot $J(\Theta)$ as a function of the number of iterations, and make sure it is decreasing (or at least non-increasing) after each iteration.	
	Suppose that the parameter $\Theta^{(1)}$ is a square matrix (meaning the number of rows equals the number of columns). If we replace $\Theta^{(1)}$ with its transpose $(\Theta^{(1)})^T$, then we have not changed the function that the network is computing.	
	Suppose we are using gradient descent with learning rate α . For logistic regression and linear regression, $J(\theta)$ was a convex optimization problem and thus we did not want to choose a learning rate α that is too large. For a neural network however, $J(\Theta)$ may not be convex, and thus choosing a very large value of α can only speed up convergence.	
	I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code	
	Enter your legal name	
	Submit Quiz	

Neural Networks: Learning

Quiz, 5 questions

