Jointly Efficient and Optimal Algorithms for Logistic Bandits

Louis Faury¹, Marc Abeille¹, Kwang-Sung Jun², Clément Calauzènes¹

Logistic Bandits

Repeated game with structured binary feedback.

• The agent tries to minimize its cumulative pseudo-regret:

$$\mathsf{Regret}(T) := T \max_{a \in \mathcal{A}} \mu(a^{\top} \boldsymbol{\theta_{\star}}) - \sum_{t=1}^{T} \mu(\boldsymbol{a_{t}}^{\top} \boldsymbol{\theta_{\star}}) \;.$$

Logistic Bandits

Repeated game with structured binary feedback.

• The agent tries to minimize its cumulative pseudo-regret:

$$\mathsf{Regret}(T) := T \max_{a \in \mathcal{A}} \mu(a^{\top} \boldsymbol{\theta}_{\star}) - \sum_{t=1}^{T} \mu(\boldsymbol{a_{t}}^{\top} \boldsymbol{\theta}_{\star}) \; .$$

- → Highly relevant for practical applications,
- Neat study of non-linearity in parametric bandits.

Statistical efficiency

$$\boldsymbol{\kappa}_{\star} = \frac{1}{\min_{\boldsymbol{a} \in \mathcal{A}} \dot{\mu}(\boldsymbol{a}^{\top} \boldsymbol{\theta}_{\star})}$$

- → problem-dependent,
- \rightsquigarrow "distance" to linear model,
- \leadsto typically large ($\approx 10^3, 10^4$).

Statistical efficiency

$$\boldsymbol{\kappa_{\star}} = \frac{1}{\min_{\boldsymbol{a} \in \mathcal{A}} \dot{\mu}(\boldsymbol{a}^{\top}\boldsymbol{\theta_{\star}})} \; .$$

- → problem-dependent,
- \leftrightarrow typically large ($\approx 10^3, 10^4$).

- Towards minimax optimality with respect to d, T and κ_{\star} :
 - [Filippi et al. 2010]: $\operatorname{Regret}(T) = \tilde{\mathcal{O}}(\kappa_{\star} d\sqrt{T})$,
 - [Faury et al. 2020]: $\operatorname{Regret}(T) = \tilde{\mathcal{O}}(\ d\sqrt{T})$,
 - [Abeille et al. 2021]: Regret $(T) = \tilde{\Omega}(d\sqrt{T/\kappa_{\star}}) \leftarrow \text{minimax-optimal}.$

Statistical efficiency

$$\boldsymbol{\kappa_{\star}} = \frac{1}{\min_{\boldsymbol{a} \in \mathcal{A}} \dot{\mu}(\boldsymbol{a}^{\top}\boldsymbol{\theta_{\star}})} \; .$$

- → problem-dependent,
- \leftrightarrow typically large ($\approx 10^3, 10^4$).

- Towards minimax optimality with respect to d, T and κ_{\star} :
 - [Filippi et al. 2010]: $\operatorname{Regret}(T) = \tilde{\mathcal{O}}(\kappa_{\star} d\sqrt{T})$,
 - [Faury et al. 2020]: $\operatorname{Regret}(T) = \tilde{\mathcal{O}}(\ d\sqrt{T})$,
 - [Abeille et al. 2021]: $\mathsf{Regret}(T) = \tilde{\Omega}(d\sqrt{T/\kappa_\star}) \leftarrow \mathsf{minimax\text{-}optimal}.$

Computational Efficiency

- Computational inefficiency of statistically optimal algorithms:
 - batch computation of maximum likelihood estimators (MLEs),
 - confidence sets are expensive to maintain (non-ellipsoidal),

Computational Efficiency

- Computational inefficiency of statistically optimal algorithms:
 - batch computation of maximum likelihood estimators (MLEs),
 - confidence sets are expensive to maintain (non-ellipsoidal),

can we achieve computational efficiency without sacrificing statistical tightness?

Computational Efficiency

- Computational inefficiency of statistically optimal algorithms:
 - batch computation of maximum likelihood estimators (MLEs),
 - confidence sets are expensive to maintain (non-ellipsoidal),

can we achieve computational efficiency without sacrificing statistical tightness?

- Yes! Introducing the ECOLog.
 - new efficient estimator for θ_{\star} ,
 - associated with tight confidence regions.

ECOLog

ECOLog estimator:

$$\theta_{t+1} = \operatorname{argmin}_{\Theta} \ell_{t+1}(\theta) + \frac{1}{2} \|\theta - \theta_t\|_{\mathbf{W}_t}^2.$$

- current log-loss ℓ_{t+1} for freshest point.
- local quadratic lower-bounds for past data:

$$\begin{split} &\sum_{s=1}^t \ell_s(\theta) \approx \frac{1}{2} \| \boldsymbol{\theta} - \boldsymbol{\theta}_t \|_{\mathbf{W}_t}^2 \;, \\ &\text{with } \mathbf{W}_t \leftarrow \mathbf{W}_{t-1} + \dot{\mu} (a_{t-1}^\top \boldsymbol{\theta}_t) a_{t-1} a_{t-1}^\top \;. \end{split}$$

- Efficient procedure;
- \rightsquigarrow strongly convex objective with cheap $\mathcal{O}(d^2)$ gradient computations.

ECOLog: confidence sets

Theorem (Confidence Regions)

Let $\delta \in (0,1]$ and:

$$C_t(\delta) := \left\{ \left\| \theta - \theta_t \right\|_{\mathbf{W}_t}^2 \lessapprox d \log(t/\delta) \right\} ,$$

Under mild conditions:

$$\mathbb{P}(\forall t \geq 1, \ \theta_{\star} \in \mathcal{C}_t(\delta)) \geq 1 - \delta$$
.

- → ellipsoidal confidence set,
- \rightsquigarrow sufficient statistics $(\theta_t, \mathbf{W}_{t+1})$ are cheap to update,
- → as tight as [Abeille et al. 2021],

Results

- Combining ECOLog with existing planning mechanism:

Algorithm	Regret Bound	Cost Per-Round	Minimax	Efficient
GLM-UCB	$\widetilde{\mathcal{O}}\left(\kappa_{\star}d\sqrt{T}\right)$	$\mathcal{O}\left(d^2 \mathcal{A} T ight)$	×	×
[Filippi et al. 2010]	(((((((((((((((((((
GLOC, OL2M	~ (
[Jun et al. 2017]	$\widetilde{\mathcal{O}}\left(\kappa_{\star}d\sqrt{T}\right)$	$\mathcal{O}\left(d^2 \mathcal{A} \right)$	×	✓
[Zhang et al. 2016]				
OFULog-r	$\tilde{\Theta}\left(d\sqrt{T/\kappa_{\star}}\right)$	$\mathcal{O}\left(d^2 \mathcal{A} T ight)$		
[Abeille et al. 2021]	$\left(a\sqrt{1/N_{\star}}\right)$	$O(a \mathcal{A} I)$		^
(ada-)OFU-ECOLog	$\tilde{\Theta}\left(d\sqrt{T/\kappa_{\star}}\right)$	$\widetilde{\mathcal{O}}\left(d^2 \mathcal{A} \right)$./	./
(this paper)	$O\left(a\sqrt{1/\kappa_{\star}}\right)$	$C(a \mathcal{A})$		

[✓] joint statistical and computational efficiency,

[✓] compatible with Thompson Sampling strategies.

See you at the poster!