CHJ. Introduction to Number Theory

×5.1 Divisors

In this section, reculling the delimition of "divide" >
obef: Let n and d in integer, 170.

d n is a divide n. there exists an integer of satisfier n -de

ex) Since 4=3.11. 3 divide 4 = 314=17

· leatures

- o.If n and d are positive integers and din. then den.
- The quotient con't be greater than the number of divisions.
- o whether an integer d>0 divides an integer n of not.

 Obtain a wileye explicit to and tempinder r

 with n=46+r (0<+<4)
- · Prime number
 - Def: An integer greater than I whose only positive divisors are reself and I
 ←> composite number
- o Discrimination
 - 1. If a positive integer n is composite, test whether any of the integers 2.3.....n -1 div N.
 - A positive integer n > 1 ts composite. If and only if n has a divisor d c 2 ≤ d≤ In.)
 ⇒ if not. n is prime number.

> proof) Let I can be $n = ab \ge a^2 \Rightarrow \sqrt{n} \ge a$.

- P I a is prime. How den. destr
- satisfyling da, then dealth. so delin

- · Tundamental Theorem of Arithmetic.
- o Def: Any integer in greater than I can be uniquely expressed as a product of different primes, except that the order of the prime factors is reversed.
 - -> Natural number can be factored into prime numbers.

 $n=p_1p_2\cdots p_i,$ where the p_k are primes and $p_1\leq p_2\leq\cdots\leq p_i,$ and $n=p_1'p_2'\cdots p_j',$ where the p_k' are primes and $p_1'\leq p_2'\leq\cdots\leq p_j',$ then i=j and $p_k=p_k'\qquad \text{for all } k=1,\ldots,i.$

- · The number of primes is infinite.
- o.god and lom
- o glenter common divisor

Def: largest positive integer that divides both mand a gcd cm.n)

- Is when we check to see in fraction man is in lawest terms.

Θ(3) Θ(3)

- o Least common multiple
 - Def: Smallest integer that is divisible by both m.n integer. Ichilm.n)
 - □ Let m. n be integer (m>1.n>1), with prime

 Factorizations m= p₁a₁ p₂a₄... p₁a₅. n= p₁b₁ p₂b₂... p₁b₁

 |cm (m.n) = p₁ |max(n.b.) ... p |max(a₆.b.) ... p₁ |max(a₆.b.)

 |cx) 82230 = 2th · 8^t · 5^t · 1th · 11th

 |q50 |nqb = 2th · 8^t · 5th · 11th · 11th

CMC 82320. 950746) = 24.32.51.11.11

o godcm.n). Icmc m.n)=mn