SEMINARUL 6

Aplicații liniare. Dependență și independență liniară. Baze

- 1. Verificați dacă următoarele funcții sunt K- morfisme și în caz afirmativ determinați nucleul și imaginea:
 - a) $f_1: \mathbb{R}^2 \to \mathbb{R}^2$, $f_1(x, y) = (x y, 2x + y)$, $K = \mathbb{R}$;
 - b) $f_2: \mathbb{R}^2 \to \mathbb{R}^2$, $f_2(x,y) = (2+x,2+y)$, $K = \mathbb{R}$;
 - c) $f_3: \mathbb{R}^3 \to \mathbb{R}^2$, $f_3(x, y, z) = (3xy, z y)$, $K = \mathbb{R}$;
 - d) $f_4: \mathbb{C} \to \mathbb{C}, f_4(z) = \bar{z}, K = \mathbb{C};$
 - e) $f_5: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, $f_5(z_1, z_2) = z_1 z_2$, $K = \mathbb{C}$;
 - f) $f_6: M_2(\mathbb{R}) \to \mathbb{R}$, $f_6(A) = \text{det}A$, $K = \mathbb{R}$;
 - $\mathrm{g)}\ f_7\colon \mathbb{R}^3 \to M_2(\mathbb{R}),\, f_7(x,y,z) = \left(\begin{array}{cc} x & y \\ z & 0 \end{array}\right),\, K = \mathbb{R};$
 - h) $f_8 \colon \mathbb{C}[X] \to \mathbb{C}$, $f_8(f) = f(z_0)$, $K = \mathbb{C}$, unde $z_0 \in \mathbb{C}$ fixat;
- 2. Fie $f_3: \mathbb{R}^3 \to \mathbb{R}^3$, $f_3(x, y, z) = (x y, y z, z x)$,
 - a) Arătați că $f \in End_{\mathbb{R}}(\mathbb{R}^3)$.
 - b) Determinați Kerf și Imf.
- 3. Fie $f_3: \mathbb{R}^3 \to \mathbb{R}^3$, $f_3(x, y, z) = (x + 2y, y + z, x 2z)$,
 - a) Arătați că $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ și determinați Ker f și Im f.
 - b) Arătați că $(-1,\frac{1}{2},-\frac{1}{2})\in \operatorname{Ker} f$ și $(3,1,1)\in \operatorname{Im} f.$
- 4. Determinați \mathbb{R} -subspațile lui \mathbb{R}^3 generate de următoarele mulțimi:
 - a) $\{(1,0,0)\}$
 - b) {(1,0,0),(0,1,0)}
 - c) $\{(0,1,-1),(1,0,2)\}$
 - d) $\{(2,2,0),(0,1,0),(1,0,0)\}$
 - e) $\{(0,1,-1),(1,0,2),(1,3,-1)\}$
 - f) $\{(0,1,0),(1,0,0),(0,0,1)\}$
- 5. a) Considerăm sistemul de vectori $\mathfrak{a} = [\nu_1, \nu_2, \nu_3]$ din \mathbb{R}^3 , unde

$$v_1 = (1, 2, -1), v_2 = (3, 2, 4), v_3 = (-1, 2, -6).$$

Arătați că a este liniar dependent.

b) Determinați $a \in \mathbb{R}$ astfel incât sistemul format din vectorii

$$v_1 = (1, -2, 0, -1), v_2 = (2, 1, 1, 0), v_3 = (0, \alpha, 1, 2)$$

să fie liniar dependent.

c) Determinați $a \in \mathbb{R}$ astfel incât sistemul format din vectorii

$$v_1 = (a, 1, 1), v_2 = (1, a, 1), v_3 = (1, 1, a)$$

să poată forma o bază a lui \mathbb{R}^3 .

6. În \mathbb{R} -spațiul vectorial \mathbb{R}^3 considerăm sistemul de vectori $\mathfrak{a}=[\nu_1,\nu_2,\nu_3],$ unde

$$v_1 = (1,2,3), v_2 = (0,2,3), v_3 = (0,0,3).$$

Arătați că $\mathfrak a$ este o bază a lui $\mathbb R^3$ peste $\mathbb R$ și determinați coordonatele lui $\mathfrak v=(1,1,1)$ în aceasta bază.

7. În \mathbb{R} -spațiul vectorial \mathbb{R}^4 considerăm sistemul de vectori $\mathfrak{a}=[\nu_1,\nu_2,\nu_3,\nu_4],$ unde

$$v_1 = (1, 2, -1, 2), v_2 = (1, 2, 1, 4), v_3 = (2, 3, 0, -1), v_4 = (1, 3, -1, 0).$$

Arătați că $\mathfrak a$ este o bază a lui $\mathbb R^4$ peste $\mathbb R$ și determinați coordonatele lui $\mathfrak v=(2,3,2,10)$ în aceasta bază.