King Saud University

College of Science

Department of Mathematics

151 Math Exercises

(3,3)

Methods of Proof

"Mathematical Induction"

(STRONG INDUCTION)

Malek Zein AL-Abidin

<u>1443ھ</u> 2022

Strong Induction

STRONG INDUCTION To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that the proposition P(1) is true.

INDUCTIVE STEP: We show that the conditional statement

 $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Exercises

1. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1 = 3$$
, $a_2 = 6$, $a_n = a_{n-1} + a_{n-2}$ (*) $: \forall n \ge 3$

Prove that $3 \mid a_n \text{ for all positive integers } n$, $\forall n \geq 1$

Solution: Let P(n) be the proposition , P(n): $3|a_n$, $\Rightarrow a_n = 3c : c \in \mathbb{N}$

BASIS STEP: When
$$n=1 \Rightarrow 3| a_1: a_1=3=3(1) \Rightarrow \therefore P(1)$$
 is true

When
$$n = (2)$$
: $3 \mid a_2 : a_2 = 6 = 3(2) \implies P(2)$ is true

INDUCTIVE STEP: Let $k \ge 2$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k+1) is also true?

$$a_{k+1} = 3c \Rightarrow 3|a_{k+1} \quad (\text{ our goal }) ??$$

$$from\ (*)\ \Rightarrow\ a_{k+1} = a_k + a_{k-1}$$
 (**)

:
$$P(k) \& P(k-1)$$
 both are true, (from inductive hypothesis **) \Rightarrow

from
$$P(k) \Rightarrow 3 \mid a_k \Rightarrow a_k = 3c_1 : c_1 \in \mathbb{N}$$

from
$$P(k-1) \Rightarrow 3 \mid a_{k-1} \Rightarrow a_{k-1} = 3c_2 : c_2 \in \mathbb{N}$$

by subist.into(**)

$$a_{k+1} = a_k + a_{k-1} = 3c_1 + 3c_2 = 3(c_1 + c_2) = 3c$$

: $c = (c_1 + c_2) \in \mathbb{N}$

$$\therefore a_{k+1} = 3c \implies 3 \mid a_{k+1} \implies P(k+1)$$
 is true. #

2. Assume
$$\{a_n\}_{n=0}^{\infty}$$
 is a sequence defined as: $a_0=9$, $a_1=15$, $a_n=\frac{a_{n-1}\,a_{n-2}}{3}+6$: $\forall n\geq 2$ (*)

Prove that $3|a_n|$ for all nonnegative integers n, $\forall n \geq 0$

Solution: S(1). Let P(n) be the proposition, P(n): $3|a_n \rightarrow a_n = 3c : c \in \mathbb{N}$

S(2). BASIS STEP: When
$$= 0 \Rightarrow 3 \mid a_0 : a_0 = 9 = 3(3) \Rightarrow \therefore P(0)$$
 is true. When $n = (1) \Rightarrow 3 \mid a_1 : a_1 = 15 = 3(5) \Rightarrow \therefore P(1)$ is true.

S(3). *INDUCTIVE STEP:* Let $k \ge 1$ and assume that

$$P(0), P(1), ..., P(k-2), P(k-1), P(k)$$
 All are true . (**)

Our goal is to show that P(k + 1) is also true.

$$3 \mid a_{k+1} \Rightarrow a_{k+1} = 3c$$
 (our goal)??

from (*)
$$\Rightarrow$$
 $a_{k+1} = \frac{a_k a_{k-1}}{3} + 6$ (***)

P(k) & P(k-1) both are true, (from inductive hypothesis **) \Rightarrow

from
$$P(k) \Rightarrow 3 \mid a_k \Rightarrow a_k = 3c_1 : c_1 \in \mathbb{N}$$

from
$$P(k-1) \Rightarrow 3 \mid a_{k-1} \Rightarrow a_{k-1} = 3c_2 : c_2 \in \mathbb{N}$$

by subist.into(***)

$$a_{k+1} = \frac{a_k a_{k-1}}{3} + 6 = \frac{3c_1 \cdot 3c_2}{3} + 6 = 3(c_1 \cdot c_2) + 6$$
$$= 3(c_1 \cdot c_2 + 2) = 3M$$
$$: c_1 \cdot c_2 + 2 = M \in \mathbb{N}$$

$$a_{k+1} = 3M \implies 3 \mid a_{k+1} \implies P(k+1)$$
 is true.

3. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1=1$$
 , $u_2=2$, $u_n=2u_{n-1}-u_{n-2}$: $\forall n\geq 3$ (*)
 Prove that $u_n=n$ for all positive integers n , $\forall n\geq 1$

Solution: Let P(n) be the proposition, P(n): $u_n = n$

BASIS STEP: When
$$n=1 \Rightarrow u_1=1 \Rightarrow \therefore P(1)$$
 is true . When $n=(2) \Rightarrow u_2=2 \Rightarrow \therefore P(2)$ is true .

INDUCTIVE STEP: Let $k \ge 2$ and assume that

$$P(1), P(2), ..., P(k-2), P(k-1), P(k)$$
 All are true (**)

Our goal is to show that P(k + 1) is also true.

$$u_{k+1} = k+1$$
 (our goal)??

from (*) \Rightarrow $u_{k+1} = 2u_k - u_{k-1}$ (***)

 $P(k) \otimes P(k-1)$ both are true, (from inductive hypothesis **) \Rightarrow from $P(k) \Rightarrow u_k = k$

from $P(k-1) \Rightarrow u_{k-1} = k-1$

by subist.into(***)

$$u_{k+1} = 2u_k - u_{k-1} = 2k - (k-1) = 2k - k + 1 = k + 1$$

$$u_{k+1} = k+1 \implies P(k+1)$$
 is true.

Exercises

4. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=3$$
 , $a_2=6$, $a_n=a_{n-1}+a_{n-2}: \forall n\geq 3$
Prove that $3\mid a_n$ for all integers $n\geq 1$.

5. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=8$$
, $a_2=4$, $a_n=a_{n-1}+a_{n-2}$: $\forall n\geq 3$
Prove that a_n is even for all integers $n\geq 1$.

6. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0=9$$
 , $a_1=15$, $a_n=\frac{a_{n-1}\,a_{n-2}}{3}+6$: $\forall n\geq 2$
 Prove that $3|a_n$ for all integers $n\geq 0$

7. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1=1$$
 , $u_2=2$, $u_n=2u_{n-1}-u_{n-2}$: $\forall n\geq 3$
 Prove that $u_n=n$ for all positive integers n .

8. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=-1 \ , \ a_2=-\frac{1}{2} \ , \ a_3=-\sqrt{10} \ , \ a_{n+1}=a_n.a_{n-1}.a_{n-2} \ : \forall n\geq 3$$
 Prove that $a_n\leq 0$ for all positive integers $n.$

9. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1 = 1$$
, $a_2 = 5$, $a_{n+1} = 2a_n + 3 a_{n-1} : \forall n \ge 2$

Prove that $3^n \le a_{n+1} \le 2 \cdot 3^n$ for all positive integers n.

10. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0=1$$
 , $a_n=2a_{n-1}+1$: $\forall n\geq 1$
Prove that $a_n=2^{n+1}-1$ for all integers $n\geq 0$

11. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1 = 3$$
 , $a_2 = 9$, $a_3 = 15$, $a_{n+1} = a_n + a_{n-1} + a_{n-2} : \forall n \ge 3$

Show that a_n is an integer divisible by 3, for all integers $n \ge 1$

12. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
 , $a_1 = 1$, $a_{n+1} = 2a_n + a_{n-1}$: $\forall n \ge 1$

Show that a_n is odd for all integers $n \ge 0$

13. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 0$$
 , $a_1 = 4$, $a_{n+1} = -2a_n + 3 a_{n-1} : \forall n \ge 1$

Show that $a_n = 1 - (-3)^n$ for all integers $n \ge 0$

14. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 0$$
 , $a_1 = 2$, $a_{n+1} = 4a_n - 3a_{n-1} : \forall n \ge 1$

Show that $a_n = 3^n - 1$ for all integers $n \ge 0$

15.Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 9$$
, $a_1 = 15$, $a_2 = 3$ $a_n = \frac{a_{n-1} a_{n-2} a_{n-3}}{9} + 6$: $\forall n \ge 3$

Show that $3|a_n$ for all integers $n \ge 0$

16. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = 1 \text{ , } u_2 = 2 \text{ , } u_3 = 3 \text{ , } \ u_n = 3u_{n-1} - \ u_{n-2} - \ u_{n-3} - 2 : \forall n \geq 4$$

Show that $u_n = n$ for all integers $n \ge 1$.

17. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1=1$$
 , $a_2=2$, $a_3=3$, $a_n=\frac{a_{n-1}+a_{n-2}+a_{n-3}}{3}$ $: \forall n\geq 4$

Show that $1 \le a_n \le 3$ for all integers $n \ge 1$

18. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = \frac{3}{4}$$
 , $u_2 = \frac{8}{13}$, $u_n = \frac{3 u_{n-1} + 2 u_{n-2} - 3}{3}$: $\forall n \ge 3$

Show that $u_n < 1$ for all integers $n \ge 1$

19. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = 2$$
 , $u_2 = 4$, $u_n = \frac{2u_{n-1} + u_{n-2} + 8}{3}$: $\forall n \ge 3$

Show that $u_n = 2n$ for all positive integers n.

20. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
 , $a_1 = 2$, $a_2 = 3$, $a_n = a_{n-1} + a_{n-2} + 2a_{n-3} : \forall n \ge 3$

Show that $a_n \leq 3^n$ for all integers $n \geq 0$

21. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
, $a_1 = 2$, $a_n = 4a_{n-1} - 4a_{n-2}$: $\forall n \ge 2$

Prove that $a_n = 2^n$ for all nonnegative integers n.

22. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 1$$
, $a_1 = 1$, $a_n = 4a_{n-1} - 4a_{n-2}$: $\forall n \ge 2$

Show that $a_n = 2^n - n2^{n-1}$ for all integers $n \ge 0$

23. Assume $\{a_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$a_1 = 1$$
, $a_2 = 3$, $a_n = a_{n-1} + a_{n-2}$: $\forall n \ge 3$

Prove that $a_n = (\frac{1+\sqrt{5}}{2})^n + (\frac{1-\sqrt{5}}{2})^n$ for all positive integers n.

24. Assume $\{a_n\}_{n=1}^{\infty}$ is a "Fibonacci" sequence defined as:

$$a_1 = 1$$
 , $a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$: $\forall n \ge 3$

Prove that $a_n \le (\frac{1+\sqrt{5}}{2})^n$ for all positive integers n.

25. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0=1$$
 , $a_1=1$, $a_2=3$, $a_n=a_{n-1}+a_{n-2}+a_{n-3}$: $\forall n\geq 3$

Show that $a_n < 3^n$ for all integers $n \ge 0$

26. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$, $a_n = 5a_{n-3}$: $n = 3,4,5,...$

Show that $2|a_n|$ for all integers $n \ge 0$

27. Assume $\{a_n\}_{n=1}^{\infty}$ is a "Fibonacci" sequence defined as:

$$a_1 = 1$$
, $a_2 = 2$, $a_n = 2a_{n-1} + a_{n-2}$: $\forall n \ge 2$

Prove that $a_n \le (\frac{5}{2})^n$ for all positive integers n.

28. Assume $\{u_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$u_0 = 2$$
, $u_1 = 3$, $u_{n+1} = 3u_n - 2u_{n-1} - 1 : \forall n \ge 1$

Show that $u_n = n + 2$ for all integers $n \ge 0$

29. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = 0$$
 , $u_2 = 1$, $u_{n+1} = 3u_n - 2u_{n-1} - 1$ for $n = 2,3,4,...$

Show that $u_n = n - 1$ for all integers $n \ge 1$

30. Assume $\{u_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$u_0 = 12$$
, $u_1 = 21$, $u_{n+1} = \frac{(u_n)^2 u_{n-1}}{9}$ for $n = 1,2,3,...$

Show that u_n is an integer divisible by 3, for all integers $n \ge 0$

31. Assume $\{u_n\}_{n=1}^{\infty}$ is a sequence defined as:

$$u_1 = 2$$
, $u_2 = 5$, $u_{n+1} = 2u_n - u_{n-1} + 2$ for $n = 2,3,4,...$

Show that $u_n = n^2 + 1$ for all integers $n \ge 1$

32. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 2$$
, $a_1 = 4$, $a_{n+1} = 4a_n - 3a_{n-1} : \forall n \ge 1$

Show that $a_n = 1 + 3^n$ for all integers $n \ge 0$

33. Assume $\{a_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$a_0 = 2$$
, $a_1 = 5$, $a_{n+1} = 5a_n - 6a_{n-1}$: $\forall n \ge 1$

Show that $a_n = 2^n + 3^n$ for all integers $n \ge 0$

34. Assume $\{u_n\}_{n=0}^{\infty}$ is a sequence defined as:

$$u_0 = 2$$
 , $u_1 = 6$, $u_{n+1} = 3u_n + 10u_{n-1} - 12$: $\forall n \ge 1$

Show that $u_n = 5^n + 1$ for all integers $n \ge 0$