

GrassCaré

Visualizing Grassmannians via Poincaré Embeddings

- Huanran Li, Daniel Pimentel-Alarcón

What is a Grassmannian?

Grassmannian

文A 12 languages Y

Article Talk Read Edit View history

From Wikipedia, the free encyclopedia

In mathematics, the **Grassmannian** $\mathbf{Gr}(k, V)$ is a space that parameterizes all k-dimensional linear subspaces of the n-dimensional vector space V. For example, the Grassmannian $\mathbf{Gr}(1, V)$ is the space of lines through the origin in V, so it is the same as the projective space of one dimension lower than V [1][2]

Grassmannian: A space of linear subspaces.

NETFLIX

Recommender System

Type of Users => Subspace

		Items					
		2	W	8		1	1
Users -	*	10	-1	8	10	9	4
		8	9	10	-1	-1	8
	-	10	5	4	9	-1	-1
	₫	9	10	-1	-1	-1	3
	蒼	6	-1	-1	-1	8	10

Featured categories Digital Cameras Lamas Accessories Tripada & Habitography Printer & Scanes Undercater Photography Film Photography Printer & Scanes Undercater Photography Simulated Cameras

MNIST

IIST

Object Classification

Class of Image => Subspace

Image reconstruction

Color Scheme => Subspace

Object Trajectory

Subspace 1

Subspace 2

Subspace 3

How many subspaces?

How **similar** they are?

How many samples they have?

Motivation: Visualize Similarity between Subspace

How can we visualize High-dimensional subspaces?

MATRIX

I SEE A PATTERN, BUT MY IMAGINATION CANNOT PICTURE THE MAKER OF THAT PATTERN.

1 SEE A PATTERN, BUT MY IMAGINATION CANNOT PICTURE THE MAKER OF THAT PATTERN. -- ALBERT EINSTEIN IN 1915

2023

Existing options: Hemisphere Embedding

• **Given**: 1-d subspaces in 3-d space.

Output: Point embedding on 3-d hemisphere.

Drawback #1: limited to 1-d subspaces (aka lines). Very restrictive!

Existing options: Hemisphere Embedding

Drawback #2: Distance can be misleading!

Subspaces Input

Distance between Subspaces:

Visual Intuition

True distance

$$d_{\mathbb{G}}(\mathbb{U}_{\mathrm{i}},\mathbb{U}_{\mathrm{j}}) := \sqrt{\sum_{\ell=1}^{r} \mathrm{arccos}^2 \sigma_{\ell}} (\mathbf{U}_{\mathrm{i}}^T \overline{\mathbf{U}_{\mathrm{j}}})$$

Basis of the subspaces I'th largest singular value 2-Norm of the principle angle

Goal

Background Sedan Van Frame 1 Frame 2

1)Find the right angle

2) high-dimensional subspaces

How do we find such embedding?

Distance between points in Poincaré Disk:

$$d_{\mathbb{D}}(\mathbf{p}_{i}, \mathbf{p}_{j}) := \operatorname{arcosh}\left(1 + 2 \frac{\|\mathbf{p}_{i} - \mathbf{p}_{j}\|^{2}}{(1 - \|\mathbf{p}_{i}\|^{2})(1 - \|\mathbf{p}_{j}\|^{2})}\right)$$

Euclidean Distance
Scaled by how far from origin

Distances near the edge are larger than they appear.

Problem Formulation

• Given: A set of subspace $\{\mathbb{U}_1, \mathbb{U}_2, ..., \mathbb{U}_N\}$

$$d_{\mathbb{G}}(\mathbb{U}_{\mathrm{i}},\mathbb{U}_{\mathrm{j}}) := \sqrt{\sum_{\ell=1}^{r} \arccos^{2} \sigma_{\ell}(\mathbf{U}_{\mathrm{i}}^{T}\mathbf{U}_{\mathrm{j}})}$$

• Output: A 2-d embeddings $\{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_N\}$ on the Poincare Disk.

$$d_{\mathbb{D}}(\mathbf{p}_{i}, \mathbf{p}_{j}) := \operatorname{arcosh}\left(1 + 2 \frac{\|\mathbf{p}_{i} - \mathbf{p}_{j}\|^{2}}{(1 - \|\mathbf{p}_{i}\|^{2})(1 - \|\mathbf{p}_{j}\|^{2})}\right)$$

Objective: The embedding preserves the most information.

$$\min_{\mathbf{P}_1, \dots, \mathbf{P}_N} \mathrm{KL}(\mathbf{P}_{\mathbb{G}} | \mathbf{P}_{\mathbb{D}})$$

Probability that U_i choose U_i as the closest neighbor.

$$[\mathbf{P}_{\mathbb{G}}]_{ij} := \frac{1}{2N} \underbrace{\frac{\exp(-d_{\mathbb{G}}(\mathbb{U}_{i}, \mathbb{U}_{j})^{2}/2\gamma_{i}^{2})}{\sum_{k \neq i} \exp(-d_{\mathbb{G}}(\mathbb{U}_{i}, \mathbb{U}_{k})^{2}/2\gamma_{i}^{2})}}_{\left. \sum_{k \neq j} \exp(-d_{\mathbb{G}}(\mathbb{U}_{i}, \mathbb{U}_{k})^{2}/2\gamma_{i}^{2})} + \underbrace{\frac{1}{2N} \frac{\exp(-d_{\mathbb{G}}(\mathbb{U}_{j}, \mathbb{U}_{i})^{2}/2\gamma_{j}^{2})}{\sum_{k \neq j} \exp(-d_{\mathbb{G}}(\mathbb{U}_{j}, \mathbb{U}_{k})^{2}/2\gamma_{j}^{2})}}_{\left. \in \mathbb{R}^{N \times N} \right.}$$

Softmin function Subspace distance

For symmetric purpose

$$\min_{\mathbf{p}_1, \dots, \mathbf{p}_N} \mathrm{KL}(\mathbf{P}_{\mathbb{G}} || \mathbf{P}_{\mathbb{D}}) = \sum_{i, j \in [1, N]} [\mathbf{P}_{\mathbb{G}}]_{ij} \log \left(\frac{[\mathbf{P}_{\mathbb{G}}]_{ij}}{[\mathbf{P}_{\mathbb{D}}]_{ij}} \right)$$

Softmin function Poincaré Disk distance

$$\left[[\mathbf{P}_{\mathbb{D}}]_{ij} := \frac{\exp(-d_{\mathbb{D}}(\mathbf{p}_{i}, \mathbf{p}_{j})^{2}/\beta)}{\sum_{k \neq l} \exp(-d_{\mathbb{D}}(\mathbf{p}_{k}, \mathbf{p}_{l})^{2}/\beta)} \right] \in \mathbb{R}^{N \times N}$$

Probability that p_i choose p_j as the closest neighbor.

Riemannian Gradient Descent

Gradient Descent Step:
$$\mathbf{p}_{i}^{t+1} \leftarrow R(\mathbf{p}_{i}^{t} - \eta \nabla_{i} \mathcal{L}),$$

Gradient respect to Loss:
$$\nabla_{\mathbf{i}}\mathcal{L} = \frac{4}{\beta} \sum_{\mathbf{i}} ([\mathbf{P}_{\mathbb{G}}]_{\mathbf{i}\mathbf{j}} - [\mathbf{P}_{\mathbb{D}}]_{\mathbf{i}\mathbf{j}})(1 + d_{\mathbb{D}}(\mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}})^2)^{-1} \cdot d_{\mathbb{D}}(\mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}) \nabla_{\mathbf{i}} d_{\mathbb{D}}(\mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}),$$

Descent Step:
$$R(\mathbf{p_i} - \eta \nabla_i \mathcal{L}) = \operatorname{proj}\left(\mathbf{p_i} - \eta \frac{(1 - ||\mathbf{p_i}||^2)^2}{4} \nabla_i \mathcal{L}\right),$$

Retraction Step:
$$\operatorname{proj}(\mathbf{p_i}) = \begin{cases} \mathbf{p_i}/(||\mathbf{p_i}|| + \varepsilon) & if \ ||\mathbf{p_i}|| \ge 1 \\ \mathbf{p_i} & \text{otherwise}, \end{cases}$$

GrassCaré

Question: Is GrassCaré any good?

Distance between clusters

Theoretical Results: GrassCaré is accurate for clusters!

Theorem 1. Suppose N>3. Define $\gamma:=\min_i \gamma_i$ and $\Gamma:=\max_i \gamma_i$. Let $\{\mathcal{U}_1,\ldots,\mathcal{U}_K\}$ be a partition of $\{\mathbb{U}_1,\ldots,\mathbb{U}_N\}$ such that $|\mathcal{U}_k|\geq n_K>1\ \forall\ k$. Let

(Reverse) cluster density

$$\delta \ := \ \frac{1}{\sqrt{2}\gamma} \ \max_{\mathbf{k}} \max_{\mathbb{U}_{\mathbf{i}}, \mathbb{U}_{\mathbf{j}} \in \mathcal{U}_{\mathbf{k}}} d_{\mathbb{G}}(\mathbb{U}_{\mathbf{i}}, \mathbb{U}_{\mathbf{j}}), \boxed{\Delta \ := \ \frac{1}{\sqrt{2}\Gamma} \ \min_{\substack{\mathbb{U}_{\mathbf{i}} \in \mathcal{U}_{\mathbf{k}}, \mathbb{U}_{\mathbf{j}} \in \mathcal{U}_{\ell}: \\ \mathbf{k} \neq \ell}} d_{\mathbb{G}}(\mathbb{U}_{\mathbf{i}}, \mathbb{U}_{\mathbf{j}}).}$$

Then the optimal loss of GrassCaré is bounded by:

$$\mathcal{L}^{\star} < \log D + rac{5e^{\delta^2 - \Delta^2}}{(\mathrm{n_K} - 1)},$$
 Low for clusters

where

$$D := N(n_{K} - 1) + N(N - n_{K}) \cdot \exp\left(-\operatorname{arcosh}^{2}\left(1 + \frac{2\sin(\pi/K)}{0.75^{2}}\right)\right). \tag{7}$$
Number of subspaces Size of the smallest cluster Number of clusters

Experimental Results

Experiment (3D)

Figure 4: Visualizations of clusters in $\mathbb{G}(3,1)$ with 4 clusters. GrassCaré produces a more accurate representation of the Grassmannian. nPCA and even the 3D representation display Clusters 1 and 2 (cyan and yellow) nearly diametrically apart. In reality they are quite close, as depicted by GrassCaré.

Experiment (Representation Error)

Figure 5: Representation error of GrassCaré (this paper) and other methods for high-dimensional Grassmannians.

Error on Poincaré Disk:
$$\epsilon^2(\mathbb{D}) = \sum_{i,j} \left(\frac{d_{\mathbb{G}}(\mathbb{U}_i,\mathbb{U}_j)^2}{\sum d_{\mathbb{G}}(\mathbb{U}_i,\mathbb{U}_j)^2} - \frac{d_{\mathbb{D}}(\mathbf{p}_i,\mathbf{p}_j)^2}{\sum d_{\mathbb{D}}(\mathbf{p}_i,\mathbf{p}_j)^2} \right)$$

$$\textbf{Error on Euclidean:} \qquad \qquad \epsilon^2(\mathbb{V}) = \sum_{i,j} \left(\frac{d_{\mathbb{G}}(\mathbb{U}_i,\mathbb{U}_j)^2}{\sum d_{\mathbb{G}}(\mathbb{U}_i,\mathbb{U}_j)^2} - \frac{||\mathbf{v}_i - \mathbf{v}_j||^2}{\sum ||\mathbf{v}_i - \mathbf{v}_j||^2} \right)$$

Next question: What else can this be used for?

Experiment (Subspace Estimation from Incomplete data)

Balzano, L., Nowak, R., and Recht, B. Online identification and tracking of subspaces from highly incomplete information. In 2010 48th Annual allerton conference on communication, control, and computing (Allerton), pp. 704–711. IEEE, 2010

Conclusion

Current Limitations / Future Steps

- Speed up the computation for larger dataset (>1k subspaces).
- Derive better theoretical bounds for non-cluster structures.

Thanks!