Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 10 Предмет: Проектирование реконфигурируемых гибридных вычислительных систем Тема: Упаковка данных Задание 1

Студент: Ерниязов Т.Е. Гр. № 3540901/81502

Преподаватель: Антонов А.П.

Оглавление

1.	Задание	4
2.	Моделирование	7
3.	Первое решение	7
3.1.	Синтез	7
3.2.	C/RTL моделирование	10
4.	Второе решение	11
4.1.	Синтез	11
4.2.	С\RTL моделирование	14
5.	Третье решение	15
5.1.	Синтез	16
5.2.	С\RTL моделирование	19
6.	Четвёртое решение	20
6.1.	Синтез	21
6.2.	C\RTL моделирование	24
7.	Выводы	25

1. Задание

- Создать проект lab10 z1
- Микросхема: xa7a12tcsg325-1q
- Познакомиться с исходным кодом struct port.c
- Познакомиться с исходным кодом struct_port_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- Исследование:
- Solution 1a
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ПО УМОЛЧАНИЮ
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - O Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- Solution 2a
 - о задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию DATA PACK
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- Сравнить два решения (solution_1a и solution_2a) и сделать выводы: зависимость от DATA_PACK; объяснить (посчитать) число циклов Latency, II...
- Solution 3a
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию DATA PACK with struct level

- о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- о Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- Сравнить два решения (solution_2a и solution_3a) и сделать выводы: зависимость от типа интерфейса; объяснить (посчитать) число циклов Latency, II...
- Solution 4a
 - задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию DATA PACK with field level
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму (интерес представляет количество и тип портов)
- Сравнить два решения (solution_3a и solution_4a) и сделать выводы: зависимость от типа интерфейса; объяснить (посчитать) число циклов Latency, II...

Исходный текст подготовленной для синтеза функции и теста приведён ниже:

```
92  #include "struct_port.h"
93
94  data_t struct_port(data_t i_val, data_t *i_pt, data_t *o_pt) {
95  data_t o_val;
96  int i;
97
98  // Transfer pass-by-value structs
99  o_val.A = i_val.A+2;
100  for (i=0;i<4;i++) {
101  | o_val.B[i] = i_val.B[i]+2;
102  |
103  |
104  // Transfer pointer structs
105  | o_pt->A = i_pt->A+3;
106  for (i=0;i<4;i++) {
107  | o_pt->B[i] = i_pt->B[i]+3;
108  |
109  |
110  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
111  |
```

Рис. 1.1. Исходный код синтезируемой функции

```
92 ##ifndef _STRUCT_PORT_H_
93 #define _STRUCT_PORT_H_
95 #include <stdio.h>
96
97 #= typedef struct {
98     unsigned short A;
99     unsigned char B[4];
100 - } data_t;
101
102     data_t struct_port(data_t i_val, data_t *i_pt, data_t *o_pt);
103
104 #endif
```

Рис. 1.2. Заголовочный файл

```
#include "struct_port.h"
94 ⊟int main () {
      data_t d_ival, d_ipt;
96
97
98
99
100
      data_t d_oval, d_opt;
     int i, retval=0;
      FILE
101
      // Create input data
      d_ival.A = 19;
103
      d_{ipt.A} = 29;
104 🖨
     for (i=0;i<4;i++) {
       d_{ival.B[i]} = i+10;
       d_{ipt.B[i]} = i+20;
107
108
109
110
111
112
113
     // Call the function to operate on the data
     d_oval = struct_port(d_ival, &d_ipt, &d_opt);
      // Save the results to a file
      fp=fopen("result.dat","w");
114
      fprintf(fp, "Din Dout\n");
115
     116
117
118
119
120
121
122
123
      fclose(fp);
      // Compare the results file with the golden results
      retval = system("diff --brief -w result.dat result.golden.dat");
124
     if (retval != 0) {
125
126
       printf("Test failed !!!\n");
        retval=1;
      } else
       printf("Test passed !\n");
129
130
131
      // Return 0 if the test passed
132
      return retval:
```

Рис. 1.3. Исходный код теста

2. Моделирование

При запуске моделирования можно увидеть, что тест успешно пройден:

Рис. 2.1. Результаты моделирования

3. Первое решение

3.1. Синтез

Приведем в отчете требуемые данные о проекте:

≡

Рис. 3.1. Производительность

Здесь можно увидеть, что достигнутая задержка равна 6.419 + 0.1, что укладывается в заданные нами требования к тактовой частоте.

Synthesis(solution_1a)(struct_port_csynth.rpt) 🛭										
U	Utilization Estimates									
[□ Summary									
	Name	BRAM_18K	DSP48E	FF	LUT	URAM				
	DSP	-	-	-	-	-				
	Expression	-	-	0	118	-				
	FIFO	-	-	-	-	-				
	Instance	-	-	-	-	-				
	Memory	-	-	-	-	-				
	Multiplexer	-	-	-	116	-				
	Register	-	-	71	-	-				
	Total	0	0	71	234	0				
	Available	40	40	16000	8000	0				
	Utilization (%)	0	0	~0	2	0				

Рис. 3.2. Занимаемые ресурсы

Рис. 3.3. Применяемые интерфейсы

Рис. 3.4. Профиль производительности

На этом рисунке видно, что задержка получения первого выходного значения составляет 8 тактов с момента старта (всех данных -19), а задержка после старта до готовности приема новых данных -20:

Рис. 3.5. Временная диаграмма

Рис. 3.6. Диаграмма использования ресурсов

Рис. 3.7. Профиль ресурсов

Здесь можно увидеть те же числа, что и в отчете синтезатора.

3.2. С/RTL моделирование

При совместном моделировании, программа отобразила те же самые, ожидаемые нами значения Latency и II:

Рис.3.8. Результаты С\RTL моделирования

Покажем временную диаграмму совместного моделирования с отмеченными на ней Latency и Initiation Interval:

Рис. 3.9. Временная диаграмма совместного моделирования

4. Второе решение

Добавим директиву, которая изменяет способ передачи данных.

Рис. 4.1. Добавление директивы

4.1. Синтез

Приведем в отчете требуемые данные о проекте:

Рис. 4.2. Производительность

Здесь можно увидеть, что достигнутая задержка равна 8.331 + 0.1, что укладывается в заданные нами требования к тактовой частоте.

Рис. 4.3. Затрачиваемые ресурсы

Рис. 4.4. Применяемые интерфейсы

Рис. 4.5. Профиль производительности

На этом рисунке видно, что задержка получения первого выходного значения составляет 4 такта с момента старта (6 для всех), а задержка после старта до готовности приема новых данных – 7:

Рис. 4.6. Временная диаграмма

Рис. 4.7. Диаграмма использования ресурсов

Наконец покажем профиль ресурсов:

Рис. 4.8. Профиль ресурсов

Здесь мы также видим отличия, согласно общему отчету о затраченных ресурсах.

4.2. С\RTL моделирование

При совместном моделировании, программа отобразила те же самые, ожидаемые нами значения Latency и II:

Рис. 4.9. С\RTL моделирование

Покажем временную диаграмму совместного моделирования с отмеченными на ней Latency и Initiation Interval:

Рис. 4.10. Временная диаграмма совместного моделирования

Здесь также видны отличия во времени выполнения итераций и протоколе работы. Видно, директива была успешно применена к аргументам функции сделав из них один порт шириной 48 бит, это позволило получить одновременный доступ ко всем элементам структуры. Однако, структуру o_val развернуть не удалось т.к. не удаётся применить директиву к «return», вследствие чего не удалось выполнить распараллеливание первый цикл.

5. Третье решение

Добавим директиву, которая изменяет способ передачи данных.

Рис. 5.1. Добавление директивы

5.1. Синтез

Приведем в отчете требуемые данные о проекте:

Рис. 5.2. Производительность

Здесь можно увидеть, что достигнутая задержка равна 8.331 + 0.1, что укладывается в заданные нами требования к тактовой частоте.

Рис. 5.3. Затрачиваемые ресурсы

Рис. 5.4. Применяемые интерфейсы

Рис. 5.5. Профиль производительности

На этом рисунке видно, что задержка получения первого выходного значения составляет 4 такта с момента старта (6 для всех), а задержка после старта до готовности приема новых данных -7:

Рис. 5.6. Временная диаграмма

Рис. 5.7. Диаграмма использования ресурсов

Наконец покажем профиль ресурсов:

Рис. 5.8. Профиль ресурсов

Здесь мы также видим отличия, согласно общему отчету о затраченных ресурсах.

5.2. C\RTL моделирование

При совместном моделировании, программа отобразила те же самые, ожидаемые нами значения Latency и II:

Рис. 5.9. С\RTL моделирование

Покажем временную диаграмму совместного моделирования с отмеченными на ней Latency и Initiation Interval:

Рис. 5.10. Временная диаграмма совместного моделирования

Результаты полученного решения совпадает с предыдущим.

6. Четвёртое решение

Добавим директиву, которая изменяет способ передачи данных.

Рис. 6.1. Добавление директивы

6.1. Синтез

Приведем в отчете требуемые данные о проекте:

Рис. 6.2. Производительность

Здесь можно увидеть, что достигнутая задержка равна 8.331 + 0.1, что укладывается в заданные нами требования к тактовой частоте.

Рис. 6.3. Затрачиваемые ресурсы

Рис. 6.4. Применяемые интерфейсы

Рис. 6.5. Профиль производительности

Заметно сходство с результатами предыдущего решения.

На этом рисунке видно, что задержка получения первого выходного значения составляет 4 такта с момента старта (6 для всех), а задержка после старта до готовности приема новых данных – 7:

Рис. 6.6. Временная диаграмма

Рис. 6.7. Диаграмма использования ресурсов

Наконец покажем профиль ресурсов:

Рис. 6.8. Профиль ресурсов

Здесь мы также видим отличия, согласно общему отчету о затраченных ресурсах.

6.2. C\RTL моделирование

При совместном моделировании, программа отобразила те же самые, ожидаемые нами значения Latency и II:

Рис. 6.9. С\RTL моделирование

Покажем временную диаграмму совместного моделирования с отмеченными на ней Latency и Initiation Interval:

Рис. 6.10. Временная диаграмма совместного моделирования

Результаты полученного решения совпадает с предыдущим.

7. Выводы

В данной работе было проведено исследование влияния директивы DATA_PACK на функции, оперирующие со структурами данных. Данная директива позволяет развернуть структуру в один порт соответствующей ширины, однако это требует большего количество ресурсов. Изменения параметра byte_pad в данной работе никак не сказалось на результате, вследствие, вероятно, простоты синтезируемой функции.