Chapter 3

Regular Expressions, Regular Languages and

Regular Grammars

Regular Expression

- We have known that a regular language can be described by some dfa.
- Now we look at other ways of representing regular languages.

Definition

Let Σ be a given alphabet. Then

- $1.\phi, \lambda$ and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressons.
- 2. If r_1 and r_2 are regular expressions, so are $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* and (r_1) .
- 3. A string is a regular expression if and only if it can derived from the primitive regular expressions by a finite number of applications of the rules in (2).

2

Regular Expression (RE):

- E is a regular expression over Σ if E is one of:
 - 3 •
 - a, where $a \in \Sigma$
 - If *r* and *s* are regular expressions (REs), then the following expressions also regular:
 - $r \mid s \rightarrow (r \text{ or } s)$
 - $rs \rightarrow (r \text{ followed by } s)$
 - $r^* \rightarrow (r \text{ repeated zero or more times})$
- Each RE has an equivalent regular language (RL).

Language Associated with Regular Expressions

Definition

The language L(r) denoted by any regular expression r is defined by the following rules.

- $1. \phi$ is a reguar expression denoting the empty set,
- 2. λ is a regular expression denoting $\{\lambda\}$,

Termination a_{condition}

3. for every $a \in \Sigma$, a is a regular expression denoting $\{a\}$ condition

If r_1 and r_2 are regular expressions, then

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$
,

5.
$$L(r_1 \cdot r_2) = L(r_1)L(r_2)$$
,

6.
$$L((r_1)) = L(r_1)$$
,

7.
$$L(r_1^*) = (L(r_1))^*$$
.

Reduce L(r) to simpler components.

Regular Language (RL):

• L is a regular language over Σ if L is one of:

• Ø empty set

• $\{\epsilon\}$ a set that contains empty string

• $\{a\}$ where $a \in \Sigma$

• If **R** and **S** are regular languages (RL), then the following languages also regular:

- $R \cup S = \{w \mid w \in R \text{ or } w \in S\}$
- $RS = \{ rs \mid r \in R \text{ and } s \in S \}$
- $R^* = R^0 \cup R^1 \cup R^2 \cup R^3 \cup ...$

Rules for Specifying Regular Expressions:

- 1. ε is a regular expression \rightarrow L = $\{\varepsilon\}$
- 2. If a is in Σ , a is a regular expression \rightarrow L = {a}, the set containing the string a.
- 3. Let r and s be regular expressions with languages L(r) and L(s). Then

$$\begin{array}{c|cccc} \mathbf{p} & \uparrow & \text{a.} & r \mid s \text{ is a RE} & \Rightarrow L(r) \cup L(s) \\ \mathbf{e} & \mathbf{c} & \mathbf{b.} & rs \text{ is a RE} & \Rightarrow L(r) L(s) \\ \mathbf{d} & \mathbf{e} & \mathbf{c.} & r^* \text{ is a RE} & \Rightarrow (L(r))^* \\ \mathbf{d} & \mathbf{c.} & r^* \text{ is a RE} \Rightarrow L(r), \text{ extra parenthesis} \\ \end{array}$$

abc

concatenation ("followed by")

a | b | c

alternation ("or")

*

zero or more occurrences

+

one or more occurrences

• Examples:

- $\{0, 1\}\{00, 11\} = \{000, 011, 100, 111\}$
- $\{0\}^* = \{\epsilon, 0, 00, 000, 0000, ...\}$
- $\{\epsilon\}^* = \{\epsilon\}$
- $\{10, 01\}^* = \{\epsilon, 10, 1010, 101010, ..., 01, 0101, 010101, ..., 1001, 100101, 10010101, ..., 0110, 011010, 01101010, ...\}$

Notational shorthand:

- $L^0 = \{\epsilon\}$
- $L^i = LL^{i-1}$
- L+ = LL*

- Let L be a language over {a, b}, each string in L contains the substring bb
 - L = {a, b}*{bb}{a, b}*

- L is regular language (RL). Why?
 - {a} and {b} are RLs
 - {a, b} is RL
 - {a, b}* is RL
 - {b}{b} = {bb} is also RL
 - Then $L = \{a, b\}^* \{bb\} \{a, b\}^* \text{ is } RL$

- Let L be a language over {a, b}, each string in L
 - begins and ends with an a
 - contains at least one b
 - L = $\{a\}\{a,b\}^*\{b\}\{a,b\}^*\{a\}$

- L is regular language (RL). Why?
 - {a} and {b} are RLs
 - {a, b} is RL
 - {a, b}* is RL
 - Then L = $\{a\}\{a,b\}^*\{b\}\{a,b\}^*\{a\}$ is RL

- L = {a, b}*{bb}{a, b}*
 RE = (a|b)*bb(a|b)*
- L = $\{a\}\{a,b\}^*\{b\}\{a,b\}^*\{a\}$
 - RE = $a(a|b)^*b(a|b)^*a$
- This RE = (a) | ((b)*(c)) is equivalent to a|b*c
- We say REs r and s are equivalent (r=s), iff r and s represent the same language.
 - Example: r = a | b, $s = b | a \rightarrow r = s$ Why?
 - Since L(r) = L(s) = {a, b}

- Let $\Sigma = \{a, b\}$
 - RE *a* | *b*
 - RE (a|b)(a|b)
 - RE aa ab ba bb
 - RE **a***
 - RE (a|b)*
 - RE (a*b*)*
 - RE *a* | *a***b*

$$\rightarrow$$
 L = {a, b}

same as above

$$\rightarrow$$
 L = { ε , a , aa, aaa, ...}

→ L = set of all strings of a's and b's including ε

same as above

Algebraic Properties of regular Expressions
Algebraic Hoperties of regular Expressions
$\mathbf{r} \mid \mathbf{s} = \mathbf{s} \mid \mathbf{r}$
$\mathbf{r} \mid (\mathbf{s} \mid \mathbf{t}) = (\mathbf{r} \mid \mathbf{s}) \mid \mathbf{t}$
$(\mathbf{r} \ \mathbf{s}) \ \mathbf{t} = \ \mathbf{r} \ (\mathbf{s} \ \mathbf{t})$
$\mathbf{r} (\mathbf{s} \mathbf{t}) = \mathbf{r} \mathbf{s} \mathbf{r} \mathbf{t}$
$\varepsilon r = r \varepsilon = r$
$\mathbf{r}^* = (\mathbf{r}^*)^* = (\mathbf{r} \mid \mathbf{\epsilon})^+ = \mathbf{r}^+ \mid \mathbf{\epsilon}$
$\mathbf{r^{**}} = \mathbf{r^{*}}$
$\mathbf{r}^+ = \mathbf{r} \ \mathbf{r}^*$

All strings of 1s and 0s.
 (0 | 1)*

All strings of 1s and 0s beginning with a 1.
 1 (0 | 1)*

• All strings containing **two** or more **0**s. $(1|0)^*\mathbf{0}(1|0)^*\mathbf{0}(1|0)^*$

All strings containing an even number of 0s.
 (1*01*01*)* | 1*

All strings of alternating 0s and 1s.

```
(E | 1)(01)^*(E | 0)
```

- Strings over the alphabet {0, 1} with no consecutive 0's
 - (1 | 01)* (0 | E)
 - 1*(01⁺)* (0 | E)
 - 1*(011*)* (0 | E)

- Describe the following in English:
 - (0|1)*
 - all strings over {0, 1}
 - b*ab*ab*ab* describe the language?

More Examples of RE:

- 01*
 {0, 01, 011, 0111,}
- (01*)(01)
 - {001, 0101, 01101, 011101,}
- $(0 \mid 1)^* = \{0, 1, 00, 01, 10, 11, \dots\}$
 - i.e., all strings of 0 and 1
- $(0 \mid 1)^* 00 (0 \mid 1)^* = \{00, 1001, \dots\}$
 - i.e., all 0 and 1 strings containing a "00"

More Examples of RE:

- (1 | 10)*
 - all strings starting with "1" and containing no "00"
- (0 | 1)*011
 - all strings ending with "011"
- 0*1*
 - all strings with no "0" after "1"
- 00*11*
 - all strings with at least one "0" and one "1", and no "0" after "1"

Exercise

- What languages do the following RE represent?
 - $((0 | 1)(0 | 1))^* | ((0 | 1)(0 | 1)(0 | 1))^*$

• A language L is called **regular** if and only if there exists some **DFA** M such that L = L(M).

- Since a DFA has an equivalent NFA, then
 - A language L is called **regular** if and only if there exists some NFA N such that L = L(N).

• If we have a RE r, we can construct an NFA that accept L(r).

For ∅ in the regular expression, construct NFA

• For ε in the regular expression, construct NFA

(2) $\text{nfa accepts}\{\lambda\}.$

• For $a \in \Sigma$ in the regular expression, construct NFA

21

• If r1 and r2 are regular expressions, M_{r1} and M_{r2} are their NFAs. r1 | r2 has NFA:

 $L = \{L(M_{r1}) \cup L(M_{r2})\}$

(4) nfa accepts $L(r_1 + r_2)$.

where i and f are new start / final states, and ϵ -moves are introduced from i to the old start states of M_{r1} and M_{r2} as well as from all of their final states to f.

- If r1 and r2 are regular expressions, M_{r1} , M_{r2} their NFAs.
- r1r2 (concatenation) has NFA:

$$L = \{L(M_{r1})L(M_{r2})\}$$

(5) nfa accepts $L(r_1r_2)$.

where i is the start state of M_{r1} (or new under the alternative) and f is the final state of M_{r2} (or new). Overlap maps final states of M_{r1} to start state of M_{r2}

- If r is a regular expressions and M_r its NFA,
- r* (Kleene star) has NFA:

where: *i* is new start state and *f* is new final state ε-move *i* to *f* (to accept null string)
ε-moves *i* to old start, old final(s) to *f*ε-move *f* to *i* (WHY?)

 $L = \{L(M_r)^*\}$

Connection Between RE & RL: Example

• Build an NFA-ε that accepts (a|b)*ba

• Build an NFA-ε that accepts (a|b)*ba

• Build an NFA-ε that accepts (a|b)*ba

• Let's try $\underline{a} (\underline{b} | \underline{c})^*$

1. <u>a</u>, <u>b</u>, & <u>c</u>

2. <u>b</u> | <u>c</u>

3. (<u>b</u> | <u>c</u>)*

NFA's:

NFA for: a | abb | a*b+

NFA to RE

- If **L** is accepted by some **NFA-ε**, then **L** is represented by some *regular expression*.
- An *expression graph* is like a state diagram but it can have *regular expressions* as labels on arcs.
- An NFA-ε is an *expression graph*.
- An expression graph can be reduced to one with just two states.
- If we reduce an NFA- ϵ in this way, the arc label then corresponds to the regular expression representing it.

• Merge Edges :

Replace state by Edges

- Let G be the state diagram of a finite automata.
- Let *m* be the *number of final states* of **G**.
- Make m copies of G, each of which has one final state.
- Call these graphs G₁, G₂, ..., G_m
- For each G₊
 - Repeat
 - Do the steps in the previous slide
 - Until the only states in $\mathbf{G}_{\mathbf{t}}$ are the start state and the single final state.
 - Determine the RE of G_t
- The RE of G is obtained by joining RE's of each G_t by ∪ or |.

RE for G
$$\rightarrow$$
 $b^* \mid b^*ccb^*$

NFA to RE: Exercise

• Given the following NFA, find the regular expression it accepts.

Applications of Regular Expressions

- In many programming languages the set of integer constants is defined by the regular expression sdd^* , where s stands for the sign, with possible values from $\{+, -, \lambda\}$, and d stands for the digits 0 to 9.
- An application of pattern matching occurs in text editing.
- All text editors allow files to be scanned for the occurrence of a given string; most editors extend this to permit searching for patterns.
 - For example, the *vi* editor in the *UNIX operating system* recognizes the command /aba*c/ as an instruction to search the file for the first occurrence of the string **ab**, followed by an arbitrary number of **a's**, followed by **ac**.

Regular Grammars

 The third way of describing regular languages is by means of certain simple grammars. (what are the other two ways?)

Right- and Left-Linear Grammars

A grammar G = (V, T, S, P) is said to be right - linear if all productions are of the form

$$A \rightarrow xB$$

$$A \rightarrow x$$

where $A, B \in V$, and $x \in T^*$. A grammar is said to be left - linear if all productions are of the form

$$A \rightarrow Bx$$

$$A \rightarrow x$$
.

A regular grammar is one that is either right - linear or left - linear.

Regular Grammars...

Example

The grammar $G_1 = (\{S\}, \{a,b\}, S, P_1)$, with P_1 given as $S \to abS/a$ is right linear.

The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with P_2 given as $S \to S_1 ab$, $S_1 \to S_1 ab/S_2$, $S_2 \to a$ is left linear.

Both G_1 and G_2 are regular grammars.

$$L(G_1) = L((ab)^*a)$$

$$L(G_2) = L(aab(ab)^*)$$

Example

The grammar $G_1 = (\{S, A, B\}, \{a, b\}, S, P)$, with P given as $S \to A$, $A \to aB/\lambda$, $B \to Ab$ is not regular.

Right-linear Grammars Generate Regular Languages

- Right-linear grammar Regular language

Theorem 3.3 Let G=(V,T,S,P) be a right-linear grammar. Then L(G) is a regular language.

Policy of Proof: Construct an *nfa* which accepts *L(G)*.

Example: Construct a finite automaton that accepts the language generated by the grammar $a \rightarrow b \rightarrow b$

$$V_0 \rightarrow aV_1$$
, $V_1 \rightarrow abV_0/b$.

Theorem 3.4 If L is a regular language on an alphabet Σ then there exists a right-linear grammar $G=(V, \Sigma S, P)$ such that L=L(G).

<u>Policy of Proof:</u> Let M be the dfa that accepts L. Construct the right-linear grammar G from M such that G generates L.

Example: Construct a right - linear grammar for $L(aab^*a)$.

Solution

A dfa which accepts $L(aab^*a)$.

A grammar which generates $L(aab^*a)$:

$$G = (V, \Sigma, S, P)$$

where $V = \{q_0, q_1, q_2, q_f\}$, $\Sigma = \{a, b\}$, $S = q_0$ and P is as follows:

$$q_0 \rightarrow aq_1, q_1 \rightarrow aq_2, q_2 \rightarrow bq_2, q_2 \rightarrow aq_f, q_f \rightarrow \lambda$$
.

Regular Grammars...

Reading (Self Study)

 Conversion of Right Linear Grammars into Left Linear Grammars and vice versa.