Lecture Summary: Conditional Densities

Source: Lecture 5.6.docx

Key Points

- Definition of Conditional Density:
 - The conditional density of Y given X = a is defined as:

$$f_{Y|X}(y|a) = \frac{f_{X,Y}(a,y)}{f_X(a)}, \text{ for } f_X(a) > 0.$$

- This density describes the distribution of Y for a fixed value of X = a.
- Even though P(X = a) = 0 for continuous variables, the density is valid and derived as a limiting concept.
- Properties of Conditional Density:
 - $-f_{Y|X}(y|a) \ge 0$ for all y.
 - The total integral over y equals 1:

$$\int_{-\infty}^{\infty} f_{Y|X}(y|a) \, dy = 1.$$

- The joint density can be expressed in terms of the conditional density:

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x).$$

- Examples:
 - Uniform Distribution on $[0,1] \times [0,1]$:
 - * Joint density: $f_{X,Y}(x,y) = 1$ for $0 \le x, y \le 1$.
 - * Marginals: $f_X(x) = 1$ and $f_Y(y) = 1$.
 - * Conditional densities:

$$f_{Y|X}(y|x) = 1$$
, $f_{X|Y}(x|y) = 1$, for $0 \le x, y \le 1$.

- Non-Uniform Example:
 - * Joint density: $f_{X,Y}(x,y) = x + y$ for $0 \le x, y \le 1$.
 - * Marginals:

$$f_X(x) = \int_0^1 (x+y) \, dy = x + \frac{1}{2}, \quad f_Y(y) = \int_0^1 (x+y) \, dx = y + \frac{1}{2}.$$

* Conditional density of Y|X = a:

$$f_{Y|X}(y|a) = \frac{a+y}{a+\frac{1}{2}}, \quad 0 \le y \le 1.$$

• Visualizing Conditional Densities:

- Conditional densities can be viewed as slices of the joint density at specific values of X or Y.
- For example, fixing X = a gives the distribution of Y conditional on X = a.

• Applications:

- Conditional densities are essential for understanding relationships between variables.
- Useful in regression, where Y is modeled given X.
- Enables computation of probabilities in constrained scenarios.

Simplified Explanation

What is a Conditional Density? - Describes how one variable (e.g., Y) behaves given a specific value of another variable (e.g., X = a). - Formula:

$$f_{Y|X}(y|a) = \frac{f_{X,Y}(a,y)}{f_X(a)}.$$

Example: For a non-uniform joint density $f_{X,Y}(x,y) = x + y$:

$$f_{Y|X}(y|a) = \frac{a+y}{a+\frac{1}{2}}, \quad 0 \le y \le 1.$$

Key Idea: Conditional densities are derived by normalizing slices of the joint density.

Conclusion

In this lecture, we:

- Defined conditional densities for continuous random variables.
- Explored examples and derived properties.
- Highlighted practical applications in probability and statistics.

Understanding conditional densities is crucial for analyzing relationships and dependencies in continuous random variables.