Определение 1. Пусть (x_n) и (y_n) — две последовательности. Говорят, что $x_n = O(y_n)$ (читается как «икс-эн есть о большое от игрек-эн»), если существуют константа C и число N такие, что $|x_n| \leq C \cdot |y_n|$ при n > N. Говорят, что $x_n = o(y_n)$ (читается как «икс-эн есть о малое от игрек-эн»), если для любого числа $\varepsilon > 0$ найдётся такое число N, что $|x_n| \leq \varepsilon \cdot |y_n|$ при n > N.

Задача 1. Докажите, что

- а) $x_n = O(1)$ тогда и только тогда, когда последовательность (x_n) ограничена;
- **б)** $x_n = o(1)$ тогда и только тогда, когда последовательность (x_n) бесконечно малая.

Задача 2. Какие из следующих утверждений верны: **a)** $\sin n = O(1)$; **б)** $\sin n = o(1)$;

в)
$$n^2 = O(n^3);$$
 г) $n^2 = o(n^3);$ д) $n^2 = O(n);$ е) $n^2 = o(n);$ ж) $\frac{1}{n^2} = O\left(\frac{1}{n^3}\right);$ з) $\frac{1}{n^2} = o\left(\frac{1}{n}\right).$

Задача 3°. (*основные асимптотические* равенства: а) $n^k = o(n^l)$ при k < l; б) $n^k = o(a^n)$ при a > 1; в) $a^n = o(n^l)$; г) $n! = o(n^n)$;

Задача 4. Можно ли утверждать, что $x_n = o(z_n)$, если

- a) $x_n = o(y_n)$ if $y_n = o(z_n)$; 6) $x_n = O(y_n)$ if $y_n = O(z_n)$;
- **B)** $x_n = o(y_n)$ и $y_n = O(z_n)$; **r)** $x_n = O(y_n)$ и $y_n = o(z_n)$.

Задача 5. Известно, что $x_n = O(n^4)$ и $y_n = o(n^3)$. Что можно сказать про $x_n + y_n$ и $x_n \cdot y_n$?

Задача 6. Что можно сказать про последовательность $(a_n \cdot b_n)$, если известно, что

- a) $a_n = o(x_n)$ и $b_n = o(y_n)$; 6) $a_n = O(x_n)$ и $b_n = O(y_n)$;
- **B)** $a_n = o(x_n)$ и $b_n = O(y_n)$; **r)** $a_n = O(x_n)$ и $b_n = o(y_n)$.

Определение 2. Используя асимптотические обозначения очень удобно выделять самую «весомую» часть последовательности. Например, пишут $(n+1)^2 = n^2 + o(n^2)$ или $(n+1)^2 = n^2 + O(n)$, имея в виду, что заменив каждое асимптотическое выражение на подходящую последовательность, удовлетворяющую этой асимптотике, можно получить тождество. В нашем примере в качестве такой последовательности выступает (2n+1), ведь $2n+1=o(n^2)$ и 2n+1=O(n).

Задача 7. Докажите, что а) $(n+1)^3=n^3+o(n^3);$ б) $(n+1)^4=n^4+4n^3+O(n^2);$ в) o(1)+o(1)=o(1); г) $1+2+\ldots+n=n^2/2+O(n);$ д) $1^2+2^2+\ldots+n^2=n^3/6+O(n^2);$

Задача 8. а) Предполагая, что формула $\sqrt{1+\frac{1}{n}}=1+\frac{1}{2n}+\frac{a}{n^2}+O\left(\frac{1}{n^3}\right)$ верна для некоторой константы a, найдите значение a. **б)*** Доказать, что при этом a формула действительно верна.

Задача 9*. Укажите такое число a, что $\sqrt[3]{1+\frac{1}{n}}=1+\frac{a}{n}+O\left(\frac{1}{n^2}\right)$.

Задача 10. а) При анализе алгоритма выяснилось, что время его работы T(n) на входе длины n удовлетворяет соотношению T(n) = T([n/2]) + T([n/3]) + O(n). Докажите, что T(n) = O(n). 6)* Что можно сказать о T(n), если T(n) = 2T([n/2]) + O(n)?

Задача 11*. Докажите, что при неких a и b верна формула $1+1/2^2+1/3^2+\ldots+1/n^2=a+b/n+O(1/n^2)$ и найдите b. (Найти a гораздо сложнее, $a=\pi^2/6$.)

Задача 12. (асимптотика факториала)

- а) Докажите, что для любого натурального числа n выполнены неравенства $\left(\frac{n}{4}\right)^n \leqslant n! \leqslant \left(\frac{n+1}{2}\right)^n;$
- **б)**** (формула Стирлинга) Докажите, что $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot \left(1 + O\left(\frac{1}{n}\right)\right)$.

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	16	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	2 Г	2 д	2 e	2 ж	2 3	3 a	3	3 B	3 Г	4 a	4 6	D	1 1	6 a	6	6 B	6 Г	7 a	7 б	7 B	7 Г	7 д	8 a	8	9	10 a	10 6	11	12 1 a 6	$\frac{2}{5}$