MATH 6310 (FALL 2025) HOMEWORK SOLUTIONS

VANDIT GOEL UTA ID:1002245699 UPDATED: WEDNESDAY 3 SEPTEMBER, 2025

1. LINEAR ALGEBRA PROBLEMS

Problem (1). If $A \in \mathbb{R}^{n \times n}$ is symmetric, invertible, and has spectral decomposition $A = V \Lambda V^{-1}$, give (with proof) a formula for A^{-1} ?

Solution. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and invertible, with spectral decomposition

$$A = V\Lambda V^{-1}$$
,

where *V* is an orthogonal matrix $(V^{-1} = V^{\top})$ and Λ is diagonal.

Note: Λ contains the eigenvalues of A, which are all non-zero since A is invertible.

Proof.

$$A\nu = \Lambda\nu$$

If some $\lambda_i = 0$, then $Av_i = 0$ for some vector $v_i \neq 0$. This makes the $\mathcal{N}(A)$ non-trivial, contradicting the assumption that A is invertible.

To find A^{-1} , we use the property that for invertible matrices:

$$(XYZ)^{-1} = Z^{-1}Y^{-1}X^{-1}$$

$$\Rightarrow (A)^{-1} = (V\Lambda V^{-1})^{-1}$$

$$= (V^{-1})^{-1}\Lambda^{-1}V^{-1}$$

$$= V\Lambda^{-1}V^{-1}$$

Thus, the inverse is given by

$$A^{-1} = V\Lambda^{-1}V^{-1}.$$

Problem (2). (a) Prove that $\mathcal{N}(A^{\top}A) = \mathcal{N}(A)$

- (b) Prove that $\mathcal{N}(A)$ is orthogonal to Row(A)
- (c) How does $\mathcal{N}(AB)$ relate to $\mathcal{N}(A)$ and $\mathcal{N}(B)$? Prove any statements you claim.
- (d) Use Sylvester's Inequality to prove that if $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$ have rank r, then $\operatorname{rank}(AB) = r$.

Solution. (a) *Proof.* Given $A \in \mathbb{R}^{m \times n}$, its **nullspace** is,

$$\mathcal{N}(A) := \{ x \in \mathbb{R}^n : Ax = 0 \}$$

If $x \in \mathcal{N}(A)$, then

$$A^{\top}(Ax) = A^{\top}0 = 0$$
$$A^{\top}(Ax) = 0 \Leftrightarrow (A^{\top}A)x = 0$$
$$\Rightarrow x \in \mathcal{N}(A^{\top}A)$$

This also shows that $\mathcal{N}(A) \subseteq \mathcal{N}(A^{\top}A)$

If $x \in \mathcal{N}(A^{\top}A)$, then

$$A^{\mathsf{T}}Ax = 0$$

Multiplying both sides by x^{\top}

$$x^{\top}A^{\top}Ax = 0$$

$$\Rightarrow (Ax)^{\top}Ax = 0$$

$$\Rightarrow ||Ax||_{2}^{2} = 0$$

$$\Rightarrow Ax = 0$$

$$\Rightarrow x \in \mathcal{N}(A)$$

This also shows that $\mathcal{N}(A^{\top}A) \subseteq \mathcal{N}(A)$

Since both inclusions hold, we can conclude $\mathcal{N}(\mathbf{A}^{\top}\mathbf{A}) = \mathcal{N}(\mathbf{A})$.

(b)

Claim. For any $x \in \mathcal{N}(A)$ and $y \in \text{Row}(A)$, $\mathcal{N}(A)$ is orthogonal to Row(A) if

$$\langle x, y \rangle = 0$$

Proof. We know $Row(A) = Col(A^{T})$. Also, *y* can be written as a linear combination of the rows of A,

$$y = A^{\top}z : z \in \mathbb{R}^n$$

Computing the dot product $\langle x, y \rangle = 0$,. Hence,

$$\langle x, y \rangle = y^{\top} x$$

= $(A^{\top} z)^{\top} x$
= $z^{\top} A x$

We know $\mathcal{N}(A) := \{x \in \mathbb{R}^n : Ax = 0\}$

$$= z^{\top} 0$$
$$= 0$$

Thus, we prove $\langle x, y \rangle = 0$.

 $\therefore \mathcal{N}(A)$ is orthogonal to Row(A)

(c)

Claim (1).

$$\mathcal{N}(B) \subseteq \mathcal{N}(AB)$$

Proof. We know $\mathcal{N}(B) := \{x \in \mathbb{R}^n : Bx = 0\}$. If Bx = 0, then

$$Bx = 0$$

$$\Rightarrow ABx = 0$$

$$\Rightarrow (AB)x = 0$$

$$\Rightarrow x \in \mathcal{N}(AB).$$

Thus, this proves the nullspace of *B* is a subspace of the nullspace of *AB*, i.e.

$$\mathcal{N}(B) \subseteq \mathcal{N}(AB)$$

Claim (2).
$$\mathcal{N}(AB) = \mathcal{N}(B) \leftrightarrow \operatorname{rank}(AB) = \operatorname{rank}(B)$$

Proof. By the Rank-nullity theorem, Let $Z \in \mathbb{R}^{m \times n}$. Then

$$\dim(\mathcal{N}(Z)) + \operatorname{rank}(Z) = n$$

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $AB \in \mathbb{R}^{m \times p}$ and rank(AB) = rank(B). Then

$$\dim(\mathcal{N}(AB)) + \operatorname{rank}(AB) = \dim(\mathcal{N}(B)) + \operatorname{rank}(B)$$

$$(2) \qquad \Rightarrow \dim(\mathcal{N}(AB)) = \dim(\mathcal{N}(B))$$

From (1) and (2) we can conclude,

$$\mathcal{N}(AB) = \mathcal{N}(B)$$

(d) *Proof.* Given $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{r \times n}$ and $\operatorname{rank}(A) = \operatorname{rank}(B) = r$ We know, $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}$. Then

$$rank(AB) \le min\{r, r\}$$

$$(1) \Rightarrow \operatorname{rank}(AB) \le r$$

By **Sylvester's Inequality:** If $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{r \times n}$, then

$$rank(A) + rank(B) \le rank(AB) + r$$

 $\Rightarrow r + r \le rank(AB) + r$

$$(2) \Rightarrow \operatorname{rank}(AB) \ge r$$

By (1) and (2) we prove,

$$rank(AB) = r$$

Problem (13). Let $A \in \mathbb{R}^{m \times n}$ have SVD $A = U\Sigma V^{\top}$.

- (a) If $A = U\Sigma V^{\top}$ is invertible, give a formula for A^{-1} in terms of U, Σ and V. Justify your answer.
- (b) If $A = U\Sigma V^{\top}$, give a formula for $A^{\top}A$ and AA^{\top} . in terms of U, Σ , V. Justify your answer.

Solution. (a) If $A = U\Sigma V^{\top}$ then

$$A^{-1} = (U\Sigma V^{\top})^{-1} = (V^{\top})^{-1}\Sigma^{-1}U^{-1}$$

For orthogoal matrices the inverse is the same as transpose. Because

$$QQ^{\top} = I$$

$$\Rightarrow A^{-1} = V\Sigma^{-1}II^{\top}$$

Proof. Given $A = U\Sigma V^{\top}$, multiplying both sides by A^{-1}

$$A^{-1}A = (V\Sigma^{-1}U^{\top})(U\Sigma V^{\top})$$

$$A^{-1}A = V\Sigma^{-1}\Sigma V^{\top} : UU^{\top} = I$$

$$A^{-1}A = VV^{\top} : \Sigma\Sigma^{-1} = I$$

$$A^{-1}A = I : VV^{\top} = I$$

(b) Given $A = U\Sigma V^{\top}$, multiplying by A^{\top} to the left

$$A^{\top} A = (U \Sigma V^{\top})^{\top} U \Sigma V^{\top}$$

$$A^{\top} A = (V^{\top})^{\top} \Sigma^{\top} U^{\top} U \Sigma V^{\top}$$

$$A^{\top} A = V \Sigma^{\top} \Sigma V^{\top}$$

$$A^{\top} A = V \Sigma^{2} V^{\top}$$

Similarly multiplying A^{\top} to the right

$$AA^{\top} = U\Sigma V^{\top} (U\Sigma V^{\top})^{\top}$$

$$A^{\top}A = U\Sigma V^{\top} (V^{\top})^{\top} \Sigma^{\top} U^{\top}$$

$$A^{\top}A = U\Sigma^{\top} \Sigma U^{\top}$$

$$A^{\top}A = U\Sigma^{2} U^{\top}$$

Problem (15). Recall that the definition of the Frobenius norm is

$$||A||_{\mathrm{F}} := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |A_{ij}|^2\right)^{\frac{1}{2}}.$$

- (a) Prove that the Frobenius norm is unitarily invariant (i.e., $||QA||_F = ||AW||_F = ||A||_F$ for any orthogonal matrices Q, W).
- (b) Prove that for any $A \in \mathbb{R}^{m \times n}$,

$$||A||_{F} = \left(\sum_{i=1}^{\text{rank}(A)} \sigma_{i}^{2}\right)^{\frac{1}{2}}.$$

Solution. (a)

Claim (1). $||QAW||_F = ||A||_F \forall orthogonal Q, W$

Proof. For the Frobenius norm, using $||A||_F^2 = \operatorname{trace}(A^T A)$,

$$||QAW||_F^2 = \operatorname{trace}(W^\top A^\top Q^\top . QAW)$$

For $Q \in \mathbb{R}^{m \times n}$ it is orthogonal $\leftrightarrow Q^{\top}Q = I$

$$\|QAW\|_F^2 = \operatorname{trace}(W^\top A^\top AW)$$

$$||QAW||_F^2 = \text{trace}(A^{\top}A) = ||A||_F^2$$

(b) *Proof.* Let SVD of A be $A = U\Sigma V^{\top}$, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ {diagonal}

$$\begin{aligned} \|A\|_F^2 &= \operatorname{trace}(A^\top A) \\ &= \operatorname{trace}((U\Sigma V^\top)^\top U\Sigma V^\top) \\ &= \operatorname{trace}(V\Sigma^\top U^\top U\Sigma V^\top) \\ &= \operatorname{trace}(\Sigma^\top \Sigma) \end{aligned}$$

Let $r = \operatorname{rank}(A)$: the diagonal entries of $\Sigma = {\sigma_1, ..., \sigma_r}$

$$\Rightarrow \|A\|_F^2 = \sum_{i=1}^r \sigma_i^2$$

$$\Rightarrow \|A\|_F = (\sum_{i=1}^{\operatorname{rank}(A)} \sigma_i^2)^{\frac{1}{2}}$$

Problem (18). [CUR Decomposition] Let $A \in \mathbb{R}^{m \times n}$, and $I \subset [m]$, $J \subset [n]$ with |I| = |J| = k = rank(A). If C = A(:,J), R = A(I,:) and U = A(I,J), prove that if rank(U) = k, then $A = CU^{-1}R$. (*Hint:* First justify that one can write A = CX for some unknown X. Next, write $R = P_I A$ where P_I is a row selection matrix, and consider what happens to A = CX upon multiplication by P_I .)

Note: If you google this, you will find my published proof of it. Please try to do this from scratch using the hint above...

Solution. *Proof.* Since matrix *C* is subset of column vectors of *A*. Therefore, the $Col(C) \subseteq Col(A)$. We also know that |I| = |J| = k = rank(A).

Assuming rank(U) = k, the column vectors of C become linearly independent i.e., rank(C) = $k \Rightarrow \operatorname{Col}(C)$ forms a basis for $\operatorname{Col}(A)$. Thus, we can write A = CX for some unknown X. Now, let P_I be a row selection matrix that selects the rows indexed by I. Then we have:

$$R = P_I A = P_I C X$$

Since P_IC selects the rows of C corresponding to I, we can write:

$$P_IC = U \Rightarrow R = UX$$

 $A = CX = CU^{-1}R$