Г-1. Маршруты, циклы, связность

13 ноября 2024 г. 13:37

Грасры. Основные понямия

Основные понятия

- Граф: пара G = (V, E)

 - V непустое множество (множество вершин) E бинарное мультиотношение на V (множество ребер)
- \star Рассматриваем только конечные графы (V и E конечны)
 - кратность ребра это его кратность как элемента Е
 если Е симметрично граф неориентированный

 - иначе ориентированный (орграф)
 - Матрица смежности это матрица мультиотношения Е
 - обозначается M_G
 - ребро упорядоченная пара
 - ullet ребро (u,v) (или u o v) исходит из u и входит в v
 - ребро (u,v) неориентированного графа это пара ребер $u \to v,\ v \to u$ это правило распространяется на петли ребра вида (u,u)

В а эки $M_G[u,u]=2$

- \star степень исхода вершины $\deg^-(u)=$ число ребер вида (u,v) с учетом кратности \star степень захода вершины $\deg^+(u)=$ число ребер вида (v,u) с учетом кратности
- - \star в неориентированном графе просто степень вершины $\deg(u) = \deg^-(u) = \deg^+(u)$
- * В ближайших лекциях граф = неориентированный граф
- ⋆ Обыкновенный граф неориентированный граф без петель и кратных ребер
- * Полный граф обыкновенный граф с условием $E = V^2 \setminus \Delta$ \rightarrow исобаз. Пара вершин свединена вершин свединена ullet обозначается K_n , где n=|V|
 - rucio bepaux

Маршруты и связность

- ullet Маршрут это последовательность $\{v_0,e_1,v_1,e_2,\ldots,e_n,v_n\}$, где $e_i=(v_{i-1},v_i)$ для всех і
 - * в графе без кратных ребер маршрут записывают как последовательность вершин
 - \star n- длина маршрута, тривиальный маршрут $\{v_0\}$ имеет длину 0
 - часто говорят «маршрут из v_0 в v_n » или (v_0, v_n) -маршрут
- * цепь: маршрут, в котором все ребра различны
- YCICMHUL * путь (простая цепь): цепь, в которой все вершины различны
- циклический маршрут: $v_n = v_0, n > 0$ cigyau * цикл: циклический маршрут, в котором все ребра различны
- \star простой цикл: цикл, в котором все вершины различны (кроме $v_0 = v_n$)
 - 🖈 На маршрут часто смотрят как на граф, состоящий из всех его вершин и ребер
 - \star стандартные обозначения: P_n / C_n путь / простой цикл на n вершинах
 - Вершины и и v связаны, если существует (и, v)-маршрут
 - * а значит и (v, u)-маршрут, поскольку граф неориентированный
 - * связанность отношение эквивалентности на V
 - \star его классы V_1,\ldots,V_k определяют графы $(V_1,E_1),\ldots,(V_k,E_k)$ такие, что $E_1 \cup \ldots \cup E_k = E$
 - эти графы называются компонентами связности G
 - * Граф связен, если у него одна компонента связности
 - * отношение связанности совпадает с V2

Подграфы

- ullet Граф G'=(V',E') подграф графа G=(V,E), если $V'\subseteq V$ и $E'\subseteq E$
 - \star G' суграф, если V' = V
 - \star G' порожденный подграф, если $E'=E_{|V'|}$

Для приведенного ниже графа G

- суграфами являются G₁, G₂
- порожденными подграфами являются G₃, G₄

! Выведите формулу для числа подграфов полного графа K_n

Для графа G = (V, E) определены операции

- удаление ребра $e\colon G-e=(V,E\setminus\{e\})$ удаление вершины $v\colon G-v=(V\setminus\{v\},E\setminus\{(v,u)\mid u\in V\})$
- \star Любой подграф графа G можно получить из G удалением вершин и ребер
 - только удаление ребер ⇔ результат суграф
 - только удаление вершин \Rightarrow результат порожденный подграф
- любой порожденный подграф можно получить удалением вершин \star Компонента связности графа G — связный подграф графа G

* Циклы — это не только маршруты, но и подграфы

• поэтому можно говорить «граф содержит цикл»

Лемма о разрыве цикла

Ребро e принадлежит некоторому циклу графа $G \Rightarrow$ число компонент связности графов G и G-e совпадает.

o. ecm yyanis uz poop yana peopo, no ocomental

Доказательство:

- ullet е входит в некоторый цикл \Rightarrow е входит в простой цикл e,e_1',\ldots,e_ℓ'
- ullet пусть вершины u и v связаны в G; докажем, то они связаны в G-

- в G найдется (u,v)-путь, скажем, e_1,e_2,\ldots,e_k если в этом пути нет ребра e, то u и v связаны в G-e этим же путем если $e=e_i$, где $i\in\{1,2,\ldots,k\}$, то в графе G-e есть (u,v)-маршрут $e_1,\ldots,e_{i-1},e_1',\ldots,e_\ell',e_{i+1},\ldots,e_k$, как на рисунке

⇒ и и v связаны в G – е

Равенство и изомороризм граоров

Равенство и изоморфизм графов

- ullet Графы $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$ равны, если $V_1=V_2,E_1=E_2$ * в упражнении из предыдущего фрагмента надо считать неравные подграфы
- * Иногда считают, что множество вершин это некое «стандартное» множество, например, $\{1, \ldots, n\}$
 - ullet тогда равенство графов G_1 и G_2 определяют равенством $M_{G_1}=M_{G_2}$
- ullet Изоморфизм графов G_1 и G_2 это биекция $\phi:V_1 o V_2$, сохраняющая ребра \bullet для любых $u,v\in V$ число ребер (u,v) в E_1 равно числу ребер $(\phi(u),\phi(v))$ в E_2
- G_1 и G_2 изоморфны ($G_1 \cong G_2$), если между ними существует изоморфизм
- Использование матрицы смежности подразумевает линейный порядок на множестве вершин
 - $V = \{v_1 < v_2 < \cdots < v_n\}$
- \star Изоморфизм указывает, как надо переупорядочить вершины G_2 , чтобы матрица смежности совпала с M_{G_1}
 - ullet а именно, $\phi(v_1) < \phi(v_2) < \dots < \phi(v_n)$

Пример: графы на рисунке изоморфны, $\phi(u_i) = v_i$ — изоморфизм

Изоморфизм графов (2)

Теорема

Графы G_1 и G_2 изоморфны $\iff M_{G_1} = \Pi M_{G_2} \Pi^{-1}$, где Π — матрица некоторой перестановки.

Доказательство: упражнение

- Доказательство изоморфизма графов довольно сложная задача
 - перебирать все n! биекций долго
- * Два заданных графа неизоморфны, если у них различаются такие элементы, которые у изоморфных графов должны совпасть
- * Изоморфизм сохраняет степени вершин

 - \Rightarrow G_1 и G_2 имеют одно и то же мультимножество степеней вершин \bigstar мультимножество степеней вершин это разбиение числа 2m, где m=|E|
 - сумма степеней вершин равна 2m
- Изоморфизм сохраняет подграфы
 - ullet Если $G_1\cong G_2$, G' подграф G_1 , то G_2 содержит подграф, изоморфный G'Пример: графы на рисунке неизоморфны
 - имеют одно и то же распределение степеней вершин (3,3,2,2,2), но первый граф содержит подграф K_3 (на вершинах u, v, w), а второй — нет

Двудольные грасры

Двудольные графы

- * В этом фрагменте графы содержат более одной вершины и не имеют петель
- ullet Граф G = (V, E) двудольный, если
 - ullet существует разбиение V на классы X и Y (доли) такое, что у всякого ребра графа G одна вершина принадлежит X, а другая
 - \star для двудольного графа часто пишут G=(X,Y,E)

- \star Граф G двудольный \Leftrightarrow каждая компонента связности G двудольный или одноэлементный граф
 - ullet если G не связен, то разбиение G на доли не единственно
- Частные случаи двудольных графов:
 - деревья и леса паросочетания
 - - паросочетанием называется граф, в котором все вершины имеют степень 1

Двудольные графы (2)

- 🖈 Обычно двудольные графы возникают, когда множества X и Y имеют различную природу и существует естественное бинарное отношение $E\subseteq X\times Y$
- Задача о назначениях: дан список из не более чем |X| подмножеств некоторого множества X, выбрать в каждом подмножестве элемент так, чтобы все выбранные элементы были различны
 - Построим двудольный граф (X,Y,\in) , где Y список подмножеств; нужно найти паросочетание, содержащее все вершины из Y
- Задача об узловых станциях: дан набор маршрутов в некотором графе, найти наименьшее множество вершин, пересекающееся с каждым из маршрутов
 - ! опишите двудольный граф для этой задачи самостоятельно

Критерий двудольности

Критерий двудольности

Теорема (критерий двудольности)

Граф G двудольный \Leftrightarrow любой цикл в G имеет четную длину.

- Доказательство (необходимость):

 - пусть $(v_0,e_1,v_1,e_2,\dots,e_k,v_k)$ цикл в $G,v_k=v_0$ \Rightarrow для любого i вершины v_i и v_{i+1} принадлежат разным долям
 - (определение двудольности) ⇒ k четно
- Доказательство (достаточность):
 - ullet пусть G- граф, в котором все циклы имеют четную длину
 - ullet если все компоненты связности G двудольны или одноэлементны, то G двудолен
 - \Rightarrow можно считать, что G связен
 - ullet d(u,v) (расстояние между u и v) наименьшая длина (u,v)-маршрута в G
 - ullet зафиксируем в G произвольные вершины u,v,w так, чтобы v и w были смежны
 - ullet докажем, что $\delta = |d(u,v) d(u,w)| = 1$
 - ullet к любому (u,v)-маршруту можно добавить ребро (v,w), получая (u,w)-маршрут на единицу большей длины $\Rightarrow d(u,w) \leqslant d(u,v) + 1$

 - \bullet аналогично, $d(u,v) \leqslant d(u,w)+1$
 - \Rightarrow $\delta \leqslant 1$; осталось показать, что $\delta
 eq 0 \Longrightarrow$

* Com Hem of glygamin

Критерий двудольности (окончание доказательства)

- Условие $\delta \neq 0$ докажем от противного:
 - пусть $\delta = 0$, d(u, v) = d(u, w) = k
 - рассмотрим кратчайший (u,v)-путь и кратчайший (u,w)-путь
 - первые вершины этих путей совпадают, а последние различаются
 - ⇒ в G имеется такой подграф:

- этот подграф содержит цикл
 - $v_i \rightarrow v_{i+1} \ldots \rightarrow v_k = v \rightarrow w = v_k' \rightarrow \ldots \rightarrow v_{i+1}' \rightarrow v_i$
 - нечетной длины $2(k-i)+1 \Rightarrow$ противоречие с условием теоремы
- ullet итак, $\delta=1$, т.е. среди чисел d(u,v), d(u,w) одно четное и одно нечетное
- Положим

 - расстояния от и до любых двух смежных вершин графа G имеют разную четность
 - \Rightarrow одна из этих вершин лежит в X, а другая в Y
 - ⇒ граф G по определению двудольный

Эйлеров цика и эйлеровы цепь

Эйлеров цикл

- ullet Цикл в графе G называется эйлеровым, если он содержит все ребра G
 - * как подграф, эйлеров цикл совпадает с G с точностью до вершин степени 0 (изолированных вершин)
- Эйлерова цепь это цепь, содержащая все ребра G
 - эйлеров цикл частный случай эйлеровой цепи
- Граф эйлеров (полуэйлеров), если в нем есть эйлеров цикл (цепь)
- Источник понятия старая головоломка о кенигсбергских мостах:
- Город Кенигсберг расположен на берегах реки Прегель и двух островах на этой реке; части города соединены мостами (см. рисунок)
- Можно ли обойти все мосты, пройдя по каждому из них ровно один раз?

В головоломке спрашивается о наличии эйлеровой цепи в графе с 4 вершинами (берега и острова реки) и 7 ребрами (мосты)

Теорена Эйлера О циглах

Теорема Эйлера о циклах

Теорема Эйлера о циклах

Граф без изолированных вершин является эйлеровым тогда и только тогда, когда он связен и степени всех его вершин четны.

Доказательство (необходимость):

- ullet Пусть G эйлеров граф без изолированных вершин
 - ⇒ Каждая вершина инцидентна хотя бы одному ребру
 - ⇒ Эйлеров цикл проходит по всем вершинам
 - \Rightarrow Любые две вершины в G соединены цепью (частью эйлерова цикла)
 - ⇒ G связен
- «Обойдем» G по эйлерову циклу
- Для произвольной вершины и
 - мы «зайдем» в вершину у столько же раз, сколько «выйдем» из нее
 - инцидентное v ребро используется либо только для захода в v, либо только для
 - * петля используются и для захода, и для выхода
 - при подсчете степени вершины каждая петля учитывается дважды
 - остальные ребра разбиваются на пары (входящее ребро, исходящее ребро)
 - ⇒ Степень v четна

- петля используются и для захода, и для выхода
- при подсчете степени вершины каждая петля учитывается дважды
- остальные ребра разбиваются на пары (входящее ребро, исходящее ребро)

Теорема Эйлера о циклах — достаточность

Доказательство (достаточность):

- ullet Пусть G связен, степени всех вершин в G четны; построим в G эйлеров цикл
- Если в G есть петли, то можно
 - удалить петли (связность графа и четность степеней вершин не нарушатся)
 - построить эйлеров цикл в получившемся графе
 - встроить петли в построенный цикл, получая эйлеров цикл в G
- ⇒ В дальнейшем считаем, что в G нет петель
- Пусть v₀ произвольная вершина графа G
 - $deg(v_0) > 0 \Rightarrow$ построим цепь с началом в v_0

 - ребра e_1,e_2,\dots выбираем произвольно останавливаемся, когда цепь нельзя продолжить
 - (все ребра, инцидентные текущей вершине v_k уже вошли в цепь) \Rightarrow остановимся через конечное число шагов
 - пусть построена цепь v₀, e₁, v₁, e₂, . . . , e_k, v_k
 - докажем, что $v_k = v_0$, т.е. мы построили цикл
 - от противного: пусть $v_k \neq v_0$
 - \Rightarrow проходя по цепи от v_0 к v_k , мы входили в v_k $\ell > 0$ раз, а выходили $\ell 1$ раз
 - все ребра, по которым мы входили и выходили, различны \Rightarrow в цепи $2\ell-1$ ребер, инцидентных v_k

 - ullet это не все ребра в G, инцидентные v_k , так как $\deg(v_k)$ четна
 - \Rightarrow противоречие с правилом построения цепи $\Rightarrow v_k = v_0$
- Окончание доказательства =>>

Теорема Эйлера о циклах — достаточность (2)

- Пусть С₁ построенный цикл:
 - Если C₁ эйлеров, построение закончено
- Пусть C_1 не эйлеров, т.е. в графе $G_1 = G \{e_1, \dots, e_k\}$ есть ребра Среди этих ребер есть ребро f_1 , инцидентное какой-то вершине v_i цикла C_1 иначе C_1 — компонента связности связного графа G, не совпадающая с G
- * В графе G1 степени всех вершин четны
 - при удалении ребер e_1,\dots,e_k степень каждой из вершин v_1,\dots,v_k уменьшилась на четное число, а степени остальных вершин не изменились
- Рассмотрим компоненту связности графа G_1 , содержащую ребро f_1
 - ullet в ней можно построить цикл $ar{C}_2$ из ребер f_1,\ldots,f_m тем же способом, которым был построен цикл C_1 :

- ullet последовательность ребер $e_1, \dots, e_i, f_1, f_2, \dots, f_m, e_{i+1}, \dots, e_k$ образует цикл C_2
- в C_2 больше ребер, чем в C_1
- если цикл C_2 эйлеров, построение закончено
- \star иначе повторим процедуру, расширив цикл C_2 до C_3 , и т.д.
- \star число ребер в G конечно \Rightarrow какой-то цикл C_j окажется эйлеровым

Комментарии и приложения

Комментарии к теореме Эйлера о циклах

- \star Если G эйлеров граф, e какое-то его ребро, то граф G e полуэйлеров • если в эйлеровом цикле удалить произвольное ребро, останется эйлерова цепь
- ⇒ Верна следующая версия теоремы Эйлера:
- 🖈 Граф без изолированных вершин является полуэйлеровым ⇔ он связен и в нем не более двух вершин нечетной степени
- Понятия эйлерова цикла/цепи переносятся без изменений на орграфы
- Анализ доказательства дает теорему Эйлера для орграфов:
- 🛊 Орграф без изолированных вершин является эйлеровым \leftrightarrow он сильно связен и для любой вершины степень исхода равна степени захода
- ! Сформулируйте ориентированную версию критерия для полуэйлеровых графов
 - будьте внимательны!
- Траф кенигсбергских мостов не является полуэйлеровым
 - все 4 вершины имеют нечетную степень (проверьте!)

Приложения эйлеровых графов

- * Задача китайского почтальона: дан граф с неотрицательными весами ребер, требуется найти циклический маршрут наименьшего веса, содержащий все ребра графа
 - практическая задача: составление маршрутов поливальных/посыпальных машин на улицах города

 - если граф эйлеров, то оптимальным маршрутом является эйлеров цикл неэйлеров граф превращают в эйлеров заменой некоторых ребер на кратные
 - соответствует дополнительному «холостому» проходу по ребру
- * Задача о разрезании лазером: в станок для лазерной резки подается лист металла, который нужно разрезать на детали в соответствии с чертежом
 - лазер не должен проходить один и тот же отрезок дважды (может оплавиться
 - лазер можно отключить и переустановить на другую точку листа, но это сложная процедура, и количество отключений надо минимизировать
- ! Опишите связь этой задачи с эйлеровыми графами
- ! Чем отличается работа с неэйлеровыми графами в задаче о разрезании лазером и задаче китайского почтальона?

Диаметр грасра и эйлеровость

Диаметр эйлеровых графов

- \bullet d(u,v) расстояние от u до v (наименьшая длина (u,v)-маршрута) в графе G
 - \star d(u,u)=0, $d(u,v)=\infty$ если (u,v)-маршрута не существует
 - * в неориентированном графе d(u,v)=d(v,u)
- \star Диаметр графа: $diam(G) = \max_{u,v \in V} d(u,v)$
 - * диаметр графа/орграфа, не являющегося связным/ сильно связным, бесконечен
 - реальный мир: огромные графы с маленьким диаметром (шесть рукопожатий)
- * Диаметр орграфа называют ориентированным диаметром
 - ullet неориентированный диаметр $\overline{diam}(G)$ орграфа G- это диаметр графа G', полученного симметризацией G (стиранием всех стрелок)
 - * это «диаметр для пешеходов»: по улицам с односторонним движением пешеход может двигаться в любую сторону
- $\star \overline{diam}(G) \leqslant diam(G)$, и разница может быть сколь угодно велика
 - например, $\overline{diam}(G) < \infty = diam(G)$
- ★ Теорема Бабаи (2006): если G эйлеров, то $diam(G) = O(\overline{diam}(G) \cdot \Delta \cdot \ln n)$, где Δ — максимальная степень вершины в G, n — число вершин
- Пусть T порождающее множество группы G; граф Кэли $\Gamma(G,T)$ имеет множество вершин G и множество ребер $\{(u,v)\mid \exists t\in T: v=ut\}$

 - \star граф Кэли эйлеров (объясните, почему) можно определить диаметр группы $G: diam(G) = \max_T diam(\Gamma(G, T))$
 - \star гипотеза Бабаи: диаметр симметрической группы S_n полиномиален от n

B) (5) (8) 2 090

Мосты и точки сочленения

Мосты и точки сочленения

Пусть G — произвольный неориентированный граф

- ullet Ребро e графа G называется мостом, если G-e имеет больше компонент связности, чем G
- ullet Вершина v графа G называется точкой сочленения, если G-v имеет больше компонент связности, чем G

Пример: граф на рисунке имеет четыре моста и две точки сочленения

ребра e₁, e₂, e₃ и e₄ и вершины u, v

- Мосты и точки сочленения обычно рассматривают для связных графов
- \star Единственный связный граф с мостом и без точек сочленения цепь длины 1 \nearrow
- во всех остальных случаях хотя бы одна из инцидентных мосту вершин является точкой сочленения
- Мосты и точки сочленения моделируют узкие места в сетях связи

Свойства мостов

Лемма о циклах

Для любого графа G, e — мост \Leftrightarrow e не содержится ни в одном цикле G.

Доказательство (необходимость):

- е содержится в некотором цикле
- \Rightarrow по лемме о разрыве цикла, G-e и G имеют одни и те же компоненты связности
- \Rightarrow e не мост \Rightarrow мост не содержится ни в одном цикле

Достаточность:

- e = (u, v) не содержится ни в одном цикле
- если в G-e есть (u,v)-цепь, эта цепь вместе с e образует цикл, что невозможно $\Rightarrow u$ и v лежат в разных компонентах связности G-e

- но в одной компоненте связности G, благодаря ребру е
- число компонент связности увеличилось
- $\Rightarrow e moct$

Свойства мостов (2)

Лемма об удалении моста

Удаление моста увеличивает число компонент связности графа G ровно на 1.

- пусть G_e компонента связности графа G, содержащая мост e = (u, v)
- ullet все компоненты G, кроме G_e , переходят в граф G-e без изменения
- \Rightarrow достаточно показать, что в графе $G_{
 m e}-e$ две компоненты связности
- ullet докажем, что любая вершина $w \in G_e$ связана в $G_e e$ либо с u, либо с v:
 - G_e связен ⇒ существует (w, u)-путь P
 - если е ∉ P, то w и и связаны в G_e−е
 - ullet если $e \in P$, то $P = (w, e_1, \ldots, v, e, u) \Rightarrow w$ и v связаны в $G_e e$

Свойства точек сочленения

Лемма о точке сочленения

Вершина v связного графа G является точкой сочленения \Leftrightarrow в G найдутся две отличные от v вершины u и w такие, что любой (u,w)-путь содержит v.

Доказательство (необходимость):

- v точка сочленения графа $G \Rightarrow G v$ не связный
- ullet пусть u и w любые вершины из разных компонент связности графа G-v
- ⇒ любой (u, w)-путь проходит через v

- ullet пусть вершины $u \neq v$ и $w \neq v$ таковы, что любой (u,w)-путь содержит v
- \Rightarrow в графе G-v вершины u и w не связаны
- \Rightarrow G-v не связный $\Rightarrow v-$ точка сочленения

★ В отличие от удаления моста, удаление точки сочленения может привести к сколь угодно большому росту числа компонент связности

Пример: в графе на рисунке при удалении v_0 число компонент увеличивается на n

Двусвязные графы. Блоки

Двусвязные графы. Блоки

- Связный граф без точек сочленения называется двусвязным
- ★ Если граф моделирует сеть связи, то двусвязность это отказоустойчивость:
 - выход из строя одного узла не нарушает функционирования остальной сети, независимо от того, какой узел вышел из строя
 - выход из строя одной линии не нарушает функционирования остальной сети, независимо от того, какая линия вышла из строя
 - ullet кроме случая, когда сеть связи цепь длины 1
- Рассматривают и более сильные требования отказоустойчивости:
 - ullet выход из строя любых k узлов не нарушает функционирования остальной сети ((k+1)-связные графы)
 - ullet выход из строя любых k линий не нарушает функционирования остальной сети (реберно (k+1)-связные графы)
- * Задача мониторинга связности локальной сети с глобальным интернетом
- ullet Компонента двусвязности (блок) графа G это любой максимальный по включению двусвязный подграф G

Пример: в графе на рисунке 5 блоков (обведены красным)

🛨 Блоки, в отличие от компонент связности, могут иметь общие вершины

Лемма о блоках

Лемма о блоках

Два различных блока графа G либо не имеют общих вершин, либо имеют единственную общую вершину, являющуюся точкой сочленения С

Доказательство:

- пусть компоненты двусвязности G' и G'' графа G имеют общую вершину v рассмотрим граф \bar{G} , состоящий из всех вершин и ребер графов G' и G'':

- ullet $ar{G}$ связен, но не двусвязен по определению блока
- \Rightarrow в $ar{G}$ есть точка сочленения, и ей может быть только вершина v
 - если удалить любую другую вершину из G', то G' останется связным \Rightarrow для любой оставшейся в G' вершины u найдется (u,v)-путь \Rightarrow для любой вершины $w \in G''$
 - найдется (u,w)-путь $\Rightarrow \bar{G}$ останется связным при удалении вершины из G'' рассуждаем аналогично
- поскольку v точка сочленения, подграфы G' и G'' не могут иметь других общих вершин: если такая вершина v' есть, то граф $\bar{G}-v$ связен, поскольку любая его вершина связана с v' в силу двусвязности графов G' и G''
- ! Докажите, что блок это порожденный подграф

Дерево блоков

- Граф блоков B(G) графа G определяется следующим образом:
 - вершинами являются блоки и точки сочленения G
 - каждая точка сочленения соединена неориентированным ребром со всеми блоками, в которые она входит

Теорема о графе блоков

Граф блоков связного графа G является деревом.

Доказательство:

- B(G) очевидно связен; докажем, что в B(G) нет циклов
- пусть имеется цикл $B_1, a_1, \ldots, B_k, a_k, B_1$ $(k \geqslant 2)$ \Rightarrow любые вершины из блоков, например, B_1 и B_k соединены двумя путями (один проходит через a_k , а другой нет)
- ⇒ а_k не точка сочленения по лемме о точке сочленения

TRANSMONDE KHEA

gby go whow noor

Гамильтонов цикл: определения и примеры

- ullet Цикл в графе G называется гамильтоновым, если он содержит все вершины Gпо одному разу
 - * гамильтонов цикл это простой цикл, содержащий все вершины графа
 - \star как подграф, гамильтонов цикл изоморфен C_n , где n- число вершин в G
- Гамильтонов путь это путь, содержащий все вершины G
 - гамильтонов цикл частный случай гамильтонова пути
- Граф гамильтонов если в нем есть гамильтонов цикл

Примеры:

- * Граф слева гамильтонов; например,
 - $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_8 \rightarrow v_4 \rightarrow v_9 \rightarrow v_{12} \rightarrow v_{11} \rightarrow v_7 \rightarrow v_6 \rightarrow v_{10} \rightarrow v_5 \rightarrow v_1$
- Граф справа негамильтонов
 - но гамильтонов путь в нем очевидно есть
- ★ Гамильтонов граф является связным (далее увидим, что двусвязным)
- * Считаем, что петель и кратных ребер нет (на гамильтоновость это не влияет)

Происхождение

- Задача об обходе конем: обойти доску $n \times n$ шахматным конем, посетив все поля по одному разу и вернувшись на исходное поле
 - впервые упоминается в индийском трактате IX века
 - занимались, в том числе. Муавр и Эйлер
 - справа приведено одно из решений для доски 8 × 8
 - для нечетных п у задачи нет решения (почему?), поэтому для нечетных п не требуют возвращения в tom ne boybo исходную точку

• Головоломка Гамильтона: обойти додекаэдр по ребрам, посетив все вершины по одному разу и вернувшись в исходную вершину

MO J

- середина XIX века
- справа приведено одно из решений
- трафы всех правильных многогранников гамильтоновы
- существуют выпуклые многогранники с негамильтоновыми графами

3 agara комми вояжера

Задача коммивояжера

- Задача коммивояжера (TSP): дан список городов, соединенных дорогами с известными длинами; коммивояжер должен посетить все города по одному разу и вернуться в свой город. Найти кратчайший маршрут коммивояжера
 - изучается математиками примерно с 1930-х
 - эвристика «идти в ближайший непосещенный город» может не найти ответ
 - термин: Джулия Робинсон (1949)
 - самая известная оптимизационная задача о графах
- Математическая формулировка: дан граф G = (V, E), в котором каждому ребру $e \in E$ приписан неотрицательный вес w(e); требуется найти в G гамильтонов цикл, сумма весов ребер в котором минимальна
 - * можно дополнить G до полного графа ребрами очень большого веса; если оптимальный маршрут в полном графе

 - содержит добавленное ребро, то в исходном графе решения нет
 не содержит добавленных ребер, то он оптимален в исходном графе
- Вариации:
 - евклидова TSP
 - вершины точки на плоскости, веса евклидовы расстояния
 - метрическая TSP
 - ullet веса удовлетворяют неравенству треугольника: $w(v_1,v_2)\leqslant w(v_1,v_3)+w(v_3,v_2)$
 - асимметричная TSP
 - граф ориентирован, w(u, v) может не совпадать с w(v, u)
 - TSP с предшествованием
 - на вершинах задан (частичный) порядок, маршрут должен быть с ним согласован

Приложения задачи коммивояжера

Приложения:

- реальные логистические задачи
 - развоз товаров по магазинам, курьеры, школьные автобусы, ...
- проектирование чипов
- сборка ДНК из фрагментов

Meopena Ope

Теорема Оре

- Если в графе очень много ребер, он должен быть гамильтоновым
- Наиболее известны три достаточных условия гамильтоновости: теорема Дирака (самое слабое), теорема Хватала (самое сильное) и

Теорема Оре

Пусть G — обыкновенный граф с n вершинами, n>2. Если $\deg(u)+\deg(v)\geqslant n$ для любых двух несмежных вершин u и v графа G, то граф G гамильтонов.

Доказательство: от противного

- пусть существует граф G, удовлетворяющий всем условиям теоремы и не являющийся гамильтоновым
- \star если возможно, добавим к G новое ребро так, чтобы граф остался негамильтоновым
- новый граф тоже удовлетворяет всем условиям теоремы
- будем повторять данную процедуру, пока это возможно в какой-то момент получим граф G', который удовлетворяет всем условиям
- теоремы и является максимальным негамильтоновым
 - превращается в гамильтонов при добавлении любого ребра
 - существование такого G' следует из того, что полный граф гамильтонов
- ullet получим противоречие, построив гамильтонов цикл в $G'\Longrightarrow$

Доказательство теоремы Оре (окончание)

- ullet Пусть u и v произвольные несмежные вершины графа G'
- \star В G' нет гамильтонова цикла, но при добавлении ребра (u,v) появится \Rightarrow в G' есть гамильтонов (u, v)-путь:

$$u=v_1 \bullet \overbrace{v_2} \bullet \cdots \bullet v_n=v$$

- ullet Пусть $S=\{i\mid u$ смежна с $v_{i+1}\}$ и $T=\{i\mid v$ смежна с $v_i\}$

 - * $|S| = \deg(u), |T| = \deg(v)$ $\Rightarrow |S| + |T| \ge n$ по условию теоремы
 элементы множеств S и T являются числами 1 до $n{-}1$ $\Rightarrow S \cap T \ne \emptyset$

 - пусть $i \in S \cap T \Rightarrow$ в G' есть ребра (u, v_{i+1}) и (v_i, v) :

- \Rightarrow В графе G' есть гамильтонов цикл
 - $u \rightarrow v_2 \rightarrow \cdots \rightarrow v_i \rightarrow v \rightarrow v_{n-1} \rightarrow \cdots \rightarrow v_{i+1} \rightarrow u$
- Требуемое противоречие получено

Необходимое условие гамильтоновости

100 100 100 100 100 100

Гамильтоновость и двусвязность

Лемма

Любой гамильтонов граф двусвязен.

Доказательство:

- ullet если граф G не двусвязен, то в нем есть точка сочленения v
- ullet по лемме о точке сочленения найдутся вершины u и w, отличные от v и такие, что любой (и, w)-путь содержит
- \Rightarrow любой цикл в G, содержащий u и w, содержит v как минимум дважды
- ⇒ в G нет цикла, содержащего все вершины по одному разу
- Не любой двусвязный граф гамильтонов

Mouke

nopropara > nogginario

- Минимальный пример:
- Есть ли более сильные необходимые условия гамильтоновости?
- Множество вершин $\{v_1, \dots, v_k\}$ связного графа G называется обобщенной точкой сочленения k-го порядка, если граф $G - \{v_1, \dots, v_k\}$ имеет более kкомпонент связности
 - в графе из примера есть обобщенная точка сочленения второго порядка
 - обобщенная точка сочленения первого порядка = точка сочленения

Необходимое условие гамильтоновости

Любой гамильтонов граф не имеет обобщенных точек сочленения

- Доказательство:
 - пусть граф G имеет обобщенную точку сочленения $\{v_1, \dots, v_k\}$, а граф $G - \{v_1, \dots, v_k\}$ — компоненты связности G_1, G_2, \dots, G_{k+1} :

- * компонент связности может быть и больше, но для рассуждения это неважно
- ullet рассмотрим какой-нибудь цикл C, содержащий все вершины графа G
- обходя C, мы должны хотя бы раз зайти в «лепесток» подграф G_i $(i=1,\ldots,k{+}1)$ и хотя бы раз из него выйти
- \Rightarrow C содержит хотя бы k+1 путь, соединяющий вершины из разных «лепестков»
- любой путь между вершинами из разных «лепестков» содержит какую-то из вершин v_1, \ldots, v_k
- по принципу Дирихле какая-то вершина у; встречается по крайней мере в двух из упомянутых путей, т.е. дважды встречается в цикле С
- ⇒ С не гамильтонов цикл

Пара слов о вычислительной сложености

Задачи поиска эйлерова и гамильтонова цикла: сравнение

- ★ Несмотря на внешнюю схожесть определений эйлерова и гамильтонова циклов, задачи поиска этих циклов в графе разительно отличаются по сложности
- Поиск эйлерова цикла это вычислительно простая (tractable) задача:
 - * теорема Эйлера критерий, позволяющий установить наличие или отсутствие эйлерова цикла в графе с n вершинами и m ребрами за время $O(n^2)$
 - \star если граф задан списками смежности, то и проверку связности, и вычисление степеней вершин можно реализовать за время O(m)
 - если эйлеров цикл есть, его легко найти (например, алгоритмом из доказательства теоремы Эйлера, хотя есть и другие)
 - * при подходящей организации данных можно тоже уложиться во время O(m)
 - ★ поиск эйлерова цикла характерный представитель класса Р задач, разрешимых за полиномиальное от размера входных данных время
 - вычислительно простые = полиномиальные
- ★ Ни критерия гамильтоновости графа, ни эффективного алгоритма нахождения гамильтонова цикла в произвольном гамильтоновом графе не известно
- ★ В современной математике есть консенсус, что таких алгоритмов не существует: задача поиска гамильтонова цикла — вычислительно трудная (intractable)
 - 🖈 задачи о гамильтоновом цикле (включая задачу коммивояжера) входят в класс NP, содержащий P, а точнее, в подкласс наиболее трудных задач из NP, называемых NP-полными
 - \star доказательство строгости включения $\mathbf{P} \subseteq \mathbf{NP}$ одна из сложнейших проблем современной математики, самая известная из семи проблем тысячелетия
- Подробности рассказываются в курсе теории алгоритмов

Простые и сложные задачи (окончание)

- Кроме задач об эйлеровом и гамильтоновом циклах нам встречалась еще одна интересная с точки зрения вычислительной сложности задача: проверка изоморфности двух графов
 - неизвестно, является ли эта задача трудной, простой или «промежуточной»
 - из NP-полноты проверки изоморфности следуют результаты теории сложности, которые выглядят нереалистично; поэтому есть консенсус, что она не NP-полна
 - если полиномиальный алгоритм существует, он вероятно очень сложен
 - \star с 1980-х годов известен алгоритм со сложностью $2^{O(\sqrt{n \log n})}$
 - \star в 2015 году Ласло Бабаи предъявил (а в 2017 исправил) алгоритм, проверяющий изоморфность за время $2^{O(\log^c n)}$, где c- константа
 - ★ изоморфизм это перестановка, и задача проверки изоморфности оказалась задачей из теории групп, где все как правило очень сложно
- Трудные задачи оптимизации имеют важный дополнительный аспект: приближенные решения
 - для метрической (в том числе евклидовой) TSP существует полиномиальный алгоритм, гарантирующий нахождение гамильтонова цикла, вес которого не более чем в 1.5 раза превосходит вес минимального гамильтонова цикла
 - такой алгоритм называют 1.5-приближенным
 - * в общем случае таких алгоритмов нет
 - ! пусть вам свыше дан полиномиальный C-приближенный алгоритм для общей задачи TSP, где C>1 некоторая константа; постройте полиномиальный алгоритм поиска гамильтонова цикла

101 101 121 121 2 040