

INSPIRATION

Anthropology of food

A sub-discipline of anthropology that connects an ethnographic and historical perspective with contemporary social issues in food production and consumption systems.

Bulimia

Pica

STUDY & REVIEW

Pica is generally regarded in numerous studies as an external manifestation of a psychological disorder, whereas some anthropologists consider "pica" to be a culturally bonding behavior, one that more vividly reflects local beliefs, social structures, cognitive levels, and more.

Here are some examples of why people in different regions incorporate so-called "non-conventional foods" into their daily menus.

So... what exactly do people gain from the act of eating? Hunger Reward-driven eating Salience Salience **Executive Function** Wanting Liking

PROTOTYPE

I expanded the narrow definition of food to encompass a broader concept of everything—since unconventional foods are labeled as "pica," why should we restrict ourselves to a narrow definition of food?

Subsequently, I designed a multi-classification system constructed from eight parameters to generate everything, both food and beyond.

References

Sacrifice

Building

Fake Kabbalah

Inspired by the ten sefirot in the Tree of Life from Kabbalah, I created a similar diagram to represent the process of creation and the interrelation between elements in all things.

Shaarei Ora, Gikatilla

Tree Simulating

The eight parameters (in the diagram below) are not chosen randomly but often possess opposing attributes, such as being complementary or acting as each other's inverse processes.

DESIGN ROUTE

Solution & Technical Stack

Experience Flow

VISUAL ROUTE

Mood Board

Symbol Design

SLATE PROTOTYPE DESIGN

In addition to the symbols representing the aspect, the design of the slate considered three main components: the primary graphic, color, and background dynamics. They share common characteristics: a primary graphic conveying the same content as the symbol, rough-edged outlines and shadows, and added brushstrokes with a hue jitter effect.

FLAME

Key Graphics: bonfire

Key Color:

BG Dynamics: tear

TREE
Key Graphics: tree
Key Color:
BG Dynamics: up

WINTER

Key Graphics: ice torch

Key Color:

BG Dynamics: moon

FORGE
Key Graphics: hammer
Key Color: BG Dynamics: smash

EARTH

Key Graphics: Ouroboros

Key Color: BG Dynamics: flow

STUMP

Key Graphics: tree stump

Key Color: ■

BG Dynamics: explode

EDGE

Key Graphics: sword

Key Color: BG Dynamics: down

APPLE

Key Graphics: branch and apple

Key Color:
BG Dynamics: drunk

GENERATIVE DESIGN

Generative Route

The default sphere in Unity serves as the starting point for my generative design.

Based on different aspect values, I use scripts to modify its appearance across three aspects: mesh, material, and post-processing. The basic modification characteristics are shown in the diagram below.

Main Modification of Different Aspects Tree Forge Apple Stump

Hardware

Arduino IDE Coding

```
#include <HX711.h>
#define NUM_SENSORS 8
const int DOUT_PINS[] = {2, 3, 4, 5, 6, 7, 8, 9}, CLK_PINS[] = {10, 11, 12, 13, A0, A1, A2, A3};
HX711 scales[NUM_SENSORS];
float calibration_factors[] = {385, 385, 385, 385, 385, 385, 385, 385};
void setup()
{
    Serial.begin(9600);
    for (int i = 0; i < NUM_SENSORS; i++)
    {
        scales[i].begin(DOUT_PINS[i], CLK_PINS[i]);
        scales[i].set_scale(calibration_factors[i]);
        scales[i].tare();
    }
}
void loop()
{
    delay(2000);
    for (int i = 0; i < NUM_SENSORS; i++)
    {
        Serial.print(scales[i].get_units(1), 2);
        Serial.print(i < NUM_SENSORS - 1 ? "," : "\n");
    }
}</pre>
```

Unity Project

Souce code on GitHub

Project Tree

— Editor

Assets

```
— Migration
   └─ Vuforia
 - Fullscreen
   L— Editor
 - Materials
   L— Textures
 - Renderer
    — Glitch
    — OilPainting
    — Pixelation
   L— Toon
  Resources
 Scenes
 - Scripts
   L— Aspects
— Settings
— StreamingAssets
   └─ Vuforia
— TextMesh Pro
   Documentation
   Fonts
   — Resources
    — Shaders
   └── Sprites
```

Script Snippet

```
System.Collections.Generic;
  System.Ling;
g UnityEngine;
g UnityEngine.Rendering;
 UnityEngine.Rendering.Universal
ic class AspectManager
private List<IAspect> aspects = new List<IAspect>()
 public void AddAspect(IAspect aspect)
   aspects.Add(aspect)
 public void ClearAspects()
   aspects.Clear();
public void ApplyMeshEffects(ref Vector3[] vertices,
   var activeAspects = aspects.Where(a => a.Priority
    foreach (var aspect in activeAspects)
       aspect.ApplyMeshEffect(ref vertices, radius)
 public Material GetHighestPriorityMaterial()
   var activeAspect = aspects.Where(a => a.Priority :
   derByDescending(a => a.Priority).FirstOrDefault()
   return activeAspect?.GetMaterial()
   foreach (var aspect in aspects.OrderByDescend
 ublic void InstantiateEffects(Transform parent)
    foreach (var aspect in aspects)
public void ClearEffects()
   foreach (var aspect in aspects)
       if (aspect is FlameAspect flameAspect)
           flameAspect.ClearEffects();
```

Test Scene

Hierachy

SampleScene* ARCamera ARCamera Directional Light Global Volume Canvas EventSystem Sphere

Shader Graph

ASSEMBLE & TEST

Painting on slates

I used paint and brushes to color the slate by hand to replicate the design drafts, as technical limitations prevented the realization of UV printing.

Tablecloth Customization

The tablecloth design also follows a consistent design language, with a visual center created to focus attention on the procedurally generated sphere.

Usability Test

Exhibition View

