Multivariate normal distribution

Danny Nygård Hansen

14th October 2021

DEFINITION 0.1: Multivariate normal distribution

An *n*-dimensional random vector X follows an *n*-variate normal distribution if its characteristic function is given by

$$\varphi_{\mathsf{X}}(t) = \exp\left(\mathrm{i}\langle t, \mu \rangle - \frac{1}{2}t^{\top}\Sigma t\right), \qquad t \in \mathbb{R}^{n},$$

for some $\mu \in \mathbb{R}^n$ and an $n \times n$ positive semidefinite matrix Σ . In this case we write $X \sim N_n(\mu, \Sigma)$.

Recall that a Σ is said to be positive semidefinite if $t^{\top}\Sigma t \geq 0$ for all $t \in \mathbb{R}^n$.

PROPOSITION 0.2

Let $X \sim N_n(\mu, \Sigma)$, $a \in \mathbb{R}^n$ and $B \in M_{p \times n}(\mathbb{R})$. Then $a + BX \sim N_n(a + B\mu, B\Sigma B^\top)$. In particular, $\langle t, X \rangle \sim N(\langle t, \mu \rangle, t^\top \Sigma t)$ for all $t \in \mathbb{R}^n$.

Conversely, if X is an n-dimensional random variable, and $\langle t, X \rangle$ is normally distributed for all $t \in \mathbb{R}^n$, then X is n-variate normally distributed. In fact, if there exist $\mu \in \mathbb{R}^n$ and $\Sigma \in M_n(\mathbb{R})$ such that $\langle t, X \rangle \sim N(\langle t, \mu \rangle, t^\top \Sigma t)$ for all $t \in \mathbb{R}^n$, then $X \sim N_n(\mu, \Sigma)$.

PROOF. First notice that $B\Sigma B^{\top}$ is clearly positive semidefinite since Σ is. Furthermore.

$$\begin{split} \varphi_{a+B\mathsf{X}}(s) &= \mathrm{e}^{\mathrm{i}\langle s,a\rangle} \exp \left(\mathrm{i}\langle B^\top s,\mu\rangle - \frac{1}{2} (B^\top s)^\top \Sigma (B^\top s) \right) \\ &= \exp \left(\mathrm{i}\langle s,a+B\mu\rangle - \frac{1}{2} s^\top (B\Sigma B^\top) s \right) \end{split}$$

for all $s \in \mathbb{R}^n$ as desired.

For the converse direction, first assume that $\langle t, X \rangle$ is normally distributed for all $t \in \mathbb{R}^n$. In particular, the coordinates X_1, \dots, X_n are normally distributed, and hence X has a well-defined mean vector μ and covariance matrix Σ .

Furthermore, we have $\mathbb{E}[\langle t, \mathsf{X} \rangle] = \langle t, \mu \rangle$ and $\operatorname{Var}[\langle t, \mathsf{X} \rangle] = t^{\top} \Sigma t$. (See Andersen.) It follows that

$$\varphi_{\mathsf{X}}(t) = \varphi_{\langle t, \mathsf{X} \rangle}(1) = \exp\left(\mathrm{i}\langle t, \mu \rangle - \frac{1}{2}t^{\top}\Sigma t\right)$$

for $t \in \mathbb{R}^n$. The final claim follows similarly.

COROLLARY 0.3

If $X \sim N_n(\mu, \Sigma)$, then μ is the mean vector and Σ the covariance matrix for X.

REMARK 0.4. Let $\mu \in \mathbb{R}^n$, and let $\Sigma \in M_n(\mathbb{R})$ be positive semidefinite. We show that there exists a random variable X with distribution $N_n(\mu, \Sigma)$.

First let $\Sigma^{1/2} \in M_n(\mathbb{R})$ be the (unique) positive semidefinite matrix such that $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$. We might construct $\Sigma^{1/2}$ as follows: Since Σ is symmetric there exists a diagonal matrix D and an orthogonal matrix Q such that $\Sigma = Q^TDQ$. Since Σ is positive semidefinite, the entries in D are non-negative. Call the diagonal entries $\lambda_1,\ldots,\lambda_n$. Let $D^{1/2}$ be the diagonal matrix whose entries along the diagonal are $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}$, and let $\Sigma^{1/2}=Q^TD^{1/2}Q$.

Now let $U_1, ..., U_n$ be i.i.d. N(0,1)-distributed variables, and let $U = (U_1, ..., U_n)$. For $t = (t_1, ..., t_n) \in \mathbb{R}^n$, the characteristic function of U is then

$$\varphi_{\mathsf{U}}(t) = \prod_{j=1}^{n} \varphi_{\mathsf{U}_{j}}(t_{j}) = \prod_{j=1}^{n} \exp\left(-\frac{1}{2}t_{j}^{2}\right) = \exp\left(-\frac{1}{2}t^{\mathsf{T}}It\right),$$

where I is the identity matrix. It follows that $U \sim N_n(0, I)$. Letting $X = \mu + \Sigma^{1/2} U$, we find that $X \sim N_n(\mu, \Sigma)$.