EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a

Anul școlar 2022 - 2023

Matematică

Varianta 5

BAREM DE EVALUARE ŞI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	(c)	5p
2.	c)	5 p
3.	(a)	5 p
4.	b)	5 p
5.	c)	5 p
6.	a)	5 p

SUBIECTUL al II-lea (30 de puncte)

1.	d)	5p
2.	(c)	5 p
3.	d)	5 p
4.	b)	5p
5.	c)	5p
6.	d)	5p

SUBIECTUL al III-lea (30 de puncte)

1.	a) Triunghiurile desenate de cei 7 elevi ar avea $7 \cdot 3 = 21$ de laturi	1p
	Patrulaterele desenate ar avea $(25-7) \cdot 4 = 72$ de laturi, $72+21=93$ şi, cum $93 \neq 90$, obținem că	1 n
	nu este posibil ca 7 elevi să deseneze câte un triunghi	1p
	b) $a+b=25$, unde a reprezintă numărul de elevi care au desenat câte un triunghi și b reprezintă numărul de elevi care au desenat câte un patrulater	1p
	3a + 4b = 91	1p
	b=16	1p
2.	a) $(x+1)(x+2) = x^2 + 2x + x + 2 =$	1p
	$=x^2+3x+2$, pentru orice număr real x	1p
	b) $E(x) = \frac{x^2 + 3x + 2 + 2x^2 + 4x - 3x^2 - 3x}{x(x+1)(x+2)} : \frac{2x+1}{(x+1)(x+2)} =$	1p
	$= \frac{2(2x+1)}{x(x+1)(x+2)} \cdot \frac{(x+1)(x+2)}{2x+1} = \frac{2}{x}, \text{ unde } x \text{ este număr real, } x \neq 0, x \neq -1, x \neq -2 \text{ și } x \neq -\frac{1}{2}$	1p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

	Centrui Național de Fondei și Evaluare în Educație	
	Dacă <i>n</i> este număr natural par, nenul, atunci numărul $N = \frac{1}{E(n)} = \frac{n}{2}$ este natural	1p
3.	a) $f(3) = 0$	1p
	$f(9) = 2 \Rightarrow f(3) + f(9) = 2$	1p
	b) $M(3,0)$ și $N(0,-1)$	1p
	Triunghiul MON este dreptunghic în O , deci $MN = \sqrt{10}$	1p
	$OP \perp MN$, unde $P \in MN$, $OP = \frac{OM \cdot ON}{MN} = \frac{3\sqrt{10}}{10}$	1p
4.	a) CM este înălțime în triunghiul echilateral $ABC \Rightarrow CM = 4\sqrt{3}$ cm	1p
	CN este înălțime în triunghiul echilateral $CDE \Rightarrow CN = 2\sqrt{3} \text{cm}$, deci $CM = 2 \cdot CN$	1p
	b) CM și CN sunt bisectoare în triunghiurile echilaterale ABC , respectiv CDE , deci $\angle BCM = \angle DCN = 30^{\circ}$, de unde obținem $\angle MCN = 120^{\circ}$	1p
	$\angle ACD = 120^{\circ}$, deci $\angle MCN = \angle ACD$ și, cum $\frac{CM}{AC} = \frac{CN}{CD} = \frac{\sqrt{3}}{2} \Rightarrow \Delta MCN \sim \Delta ACD$	1p
	$\frac{\mathcal{A}_{MCN}}{\mathcal{A}_{ACD}} = \frac{3}{4} = \frac{75}{100} = 75\% \Rightarrow p = 75$	1p
5.	a) Triunghiul ABC este isoscel, AM mediană, deci AM este înălțime și bisectoare	1p
	Triunghiul AMC este dreptunghic în M , $\sin(\ll CAM) = \frac{CM}{AC}$, de unde obținem $CM = 5\sqrt{3}$ cm, deci $BC = 10\sqrt{3}$ cm	1p
	b) Triunghiul <i>SMC</i> este dreptunghic în M , $SC^2 = MC^2 + MS^2$, deci $SC = 5\sqrt{7}$ cm	1p
	$MT \perp CS$, unde $T \in SC$, deci $d(M,SC) = MT = \frac{SM \cdot MC}{SC} = \frac{10\sqrt{21}}{7}$ cm	1p
	Cum $\frac{10\sqrt{21}}{7}$ < 7 \Leftrightarrow 10 $\sqrt{21}$ < 49 \Leftrightarrow 2100 < 2401, obţinem MT < 7 cm	1p
6.	$\mathbf{a)} \ \mathcal{V} = AB \cdot BC \cdot AA' =$	1p
	$=2\sqrt{3}\cdot 2\cdot 4=16\sqrt{3}\mathrm{cm}^3$	1p
	b) $ABB'A'$ este dreptunghi, $A'B \cap AB' = \{O\}$, deci O este mijlocul segmentului $A'B$	1p
	În triunghiul $A'BC$, OM este linie mijlocie, de unde $OM \parallel A'C$	1p
	$OM \subset (AMB')$, deci $A'C \parallel (AMB')$	1p