Physically-based Modelling

Forces

Young-Min Kang Tongmyong University

Force

- Limitation of kinematics
 - difficult to handle "various changing forces"
- * Dynamics
 - * force-based understanding of motions
- * What is force?
 - * something that causes motion

Concepts

- * Force field: example gravitational force
- Friction: a contact force that resists motion
- * Fluid dynamic drag: resistance to objects moving in fluid
- * Pressure: force per area
- Buoyancy: force pushing objects "upwards" when immersed in a fluid
- * Springs and dampers: elastically ties objects
- * Force applies torque to an object, and make it "rotate."

Force field

- * Force field
 - * a vector field indicating the force exerted by on object

on another

- Very good example
 - gravitational force field
 - electromagnetic force field

Gravitational force field

- * universal gravitational force $|\mathbf{f}_u| = Gm_1m_2/r^2$
 - * G: gravitation constance $6.673 \times 10^{-11} (N \cdot m^2)/kg^2$
 - * r: distance between masses
 - * m_{1,2}: mass of each objects
- * gravity on Earth
 - * mass of Earth: $5.98 \times 10^{24} kg$
 - * radius of Earth: $6.38 \times 10^6 m$
 - * gravitational acceleration

$$\frac{Gm_{earth}}{r^2} \simeq (\frac{6.673 \times 5.98}{6.38^2}) \times 10m/s^2 \simeq 9.8034m/s^2$$

friction

- * resistance force due to the contacting surfaces
 - * contact force
 - * normal force: N is important

- * two friction
 - * static friction: maximum friction

$$|\mathbf{f}_{max}| = \mu_s \mathbf{N}$$

* kinetic friction

$$|\mathbf{f}_k| = \mu_k \mathbf{N}$$

Coefficients of friction

* Well known surfaces

Surface condition	M _s	M _u	% difference
Dry glass on glass	0.94	0.4	54%
Dry iron on iron	1.1	0.15	86%
Dry rubber on pavement	0.55	0.4	27%
Dry steel on steel	0.78	0.42	46%
Dry Teflon on Teflon	0.04	0.04	_
Dry wood on wood	0.38	0.2	47%
Ice on ice	0.1	0.03	70%
Oiled steel on steel	0.10	0.08	20%

Fluid dynamic drag

- * similar to friction
 - friction is also important component of drag
 - but, it's not the only one
- viscous drag for "slow-moving" objects (laminar)
 - * f = -C v
- for "fast-moving" objects (turbulence)
 - * $f = -C v^2$

Pressure

- * Pressure is not force
 - * pressure = force per unit area
 - * F = PA (force = pressure x area)
 - P = F/A
- Pressure is important in simulating
 - * boats, hovercrafts,...

Buoyancy

- Different pressure in fluid
- * Horizontal net force = 0
- * Vertical net force = bottom force top force
- * F = PA
- Pressures: function(density, gravity)
 - * on top surface

$$\mathbf{P}_t = \rho \mathbf{g} h_t$$

* on bottom surface

$$\mathbf{P}_b = \rho \mathbf{g} h_b$$

Buoyancy

* forces
$$\mathbf{f}_t = \mathbf{P}_t A_t = \rho \mathbf{g} h_t s^2$$

 $\mathbf{f}_b = \mathbf{P}_b A_b = \rho \mathbf{g} h_b s^2$

* difference

$$\mathbf{f}_b - \mathbf{f}_t = \rho \mathbf{g} h_b s^2 - \rho \mathbf{g} h_t s^2$$

$$= \rho \mathbf{g} (h_b - h_t) s^2$$

$$= -\rho \mathbf{g} s^3$$

$$= -\rho \mathbf{g} V \quad (V : volume)$$

Spring force

- * Hooke's law
 - force needed to extend or compress a spring by a distance x is proportional to that distance
 - * f = -k x
 - * k: spring constant
- rest length of spring:
- * current length of spring:
 - * force magnitude: $|\mathbf{f}| = k_s(L-r)$
 - * force direction: obj1 and obj2 are linked and located at x1 and x2.

Damper

- * Springs do not oscillate forever
 - energy dissipation
 - * simple model
 - * damping force

$$\mathbf{f}_d = k_d(\mathbf{v}_1 - \mathbf{v}_2)$$

Spring and Damper

$$\mathbf{f}_1 = -(k_s(L - r) + k_d(\mathbf{v}_1 - \mathbf{v}_2) \cdot \frac{\mathbf{L}}{L}) \frac{\mathbf{L}}{L}$$

$$\mathbf{f}_2 = -\mathbf{f}_1$$

Force and Torque

Force and Torque

- * Force
 - * causes linear acceleration
- * Torque
 - * causes angular acceleration
- * Torque: au
 - * a vector
 - magnitude
 - how quickly the angular velocity is changed
 - * |rxf|
 - * direction
 - * rotational axis = (rxf)/|rxf|

$$\tau = \mathbf{r} \times \mathbf{f}$$

