Planar Graphs and Partially Ordered Sets

William T. Trotter Georgia Institute of Technology

Inclusion Orders

Incidence Posets

Vertex-Edge Posets

Vertex-Edge-Face Posets

Vertex-Edge-Face Posets for Planar Graphs

Triangle Orders

Circle Orders

N-gon Orders

Dimension of Posets

- The dimension of a poset P is the least t so that P is the intersection of t linear orders.
- Alternately, dim(P) is the least t for which P is isomorphic to a subposet of R^t

A 2-dimensional poset

$$L_1 = a < y < x < c < d < b$$

$$L_2 = x < a < b < y < c < d$$

A 3-dimensional poset

A Family of 3-dimensional Posets

Standard Examples of n-dimensional posets

Fact: When $n \ge 2$, a poset on 2n+1 points has dimension at most n. The standard example is the only such poset when $n \ge 4$.

Another Example of an n-dimensional Poset

Complexity Issues

- ☐ It is easy to show that the question: $dim(P) \le 2$? is in P.
- □ Yannakakis showed in 1982 that the question: $dim(P) \le t$? is NP-complete for fixed $t \ge 3$.
- □ The question: dim(P) ≤ t? is NP-complete for height 2 posets for fixed t ≥ 4.
- □ Still not known whether: $dim(P) \le 3$? is NP-complete for height 2 posets.

Schnyder's Theorem (1989)

A graph is planar if and only if the dimension of its incidence poset is at most 3.

Proposition

A poset has dimension at most 3 if and only if it is a triangle order.

Schnyder's Theorem (restated)

A graph is planar if and only if its incidence poset is a triangle order.

3-Connected Planar Graphs

- □ Theorem (Brightwell and Trotter, 1993): If G is a planar 3-connected graph and P is the vertex-edge-face poset of G, then dim(P) = 4.
- ☐ The removal of any vertex or any face from P reduces the dimension to 3.

Convex Polytopes in R³

Convex Polytopes in R³

- □ Theorem (Brightwell and Trotter, 1993): If M is a convex polytope in R³ and P is its vertex-edge-face poset, then dim(P) = 4.
- □ The removal of any vertex or face from P reduces the dimension to 3.

Planar Multigraphs

Planar Multigraphs

- Theorem (Brightwell and Trotter, 1997): Let D be a non-crossing drawing of a planar multigraph G, and let P be the vertex-edge-face poset determined by D. Then dim(P) ≤ 4.
- Different drawings may determine posets with different dimensions.

The Kissing Coins Theorem

Theorem (Koebe, 1936; Andreev, 1970; Thurston, 1985) A graph G is planar if and only if it has a representation by "kissing coins."

Planar Graphs and Circle Orders

Theorem (Scheinerman, 1993) A graph is planar if and only if its incidence poset is a circle order.

Remarks on Circle Orders

- Every poset of dimension at most 2 is a circle order – in fact with circles having co-linear centers.
- □ Using Warren's theorem and the Alon/Scheinerman degrees of freedom technique, it follows that "almost all" 4-dimensional posets are not circle orders.

Standard Examples are Circle Orders

More Remarks on Circle Orders

- Every 2-dimensional poset is a circle order.
- \square For each $t \ge 3$, some t-dimensional posets are circle orders.
- □ But, for each fixed t ≥ 4, almost all t-dimensional posets are not circle orders.
- Every 3-dimensional poset is an ellipse order with parallel major axes.

Fundamental Question for Circle Orders (1984)

Is every finite 3dimensional poset a circle order?

Support for a Yes Answer

Fact: For every n > 2, if P is a 3-dimensional poset, then P is an n-gon order

Support for a No Answer

Theorem (Scheinerman and Wierman, 1988): The countably infinite poset **Z**³ is not a circle order.

More Troubling News

```
Theorem (Fon-Der-Flaass, 1993): The countably infinite poset N x 2 x 3 is not a sphere order.
```

A Triumph for Ramsey Theory

Theorem (Fishburn, Felsner, and Trotter, 1999) There exists a finite 3-dimensional poset which is not a sphere order.

Schnyder's Theorem

A graph is planar if and only if the dimension of its incidence poset is at most 3.

Easy Direction (Babai and Duffus, 1981)

Suppose the incidence poset has dimension at most 3.

Easy Direction

There are no non-trivial crossings. It follows that G is planar.

The Proof of Schnyder's Theorem

- Normal labelings of rooted planar triangulations.
- Uniform angle lemma.
- Explicit decomposition into 3 forests.
- □ Inclusion property
- Three auxiliary partial orders

A Normal Labeling

Normal Labeling - 1

1. Internal Faces

Normal Labeling - 2

2. External Vertices

Normal Labeling - 3

3. Internal Vertices

Lemma (Schnyder)

Every rooted planar triangulation admits a normal labeling.

Uniform Angles on a Cycle

Uniform Angle Lemma (Schnyder)

If T is a rooted planar triangulation, C is a cycle in T, and L is a normal labeling of T, then for each i = 1,2,3, there is a uniform i on C.

Suppose C has no Uniform 0

Case 1: C has a Chord

Uniform 0 on Top Part

Uniform 0 on Bottom Part

Faces Labeled Clockwise: Contradiction!!

Case 2: C has No Chords

Remove a Boundary Edge

Without Loss of Generality

Labeling Properties Imply:

Remove Next Edge

Continue Around Cycle

The Contradiction

Three Special Edges

Shared Edges

Local Definition of a Path

Red Cycle of Interior Vertices??

Red Path Ends at Exterior Vertex r₀

Red and Green Paths Intersect??

Three Vertex Disjoint Paths

Inclusion Property for Three Regions

Explicit Partition into 3 Forests

Final Steps

- The regions define three inclusion orders on the vertex set.
- □ Take three linear extensions.
- □ Insert the edges as low as possible.
- The resulting three linear extensions have the incidence poset as their intersection.
- \square Thus, dim(P) ≤ 3 .

Grid Layouts of Planar Graphs

Corollary (Schnyder, 1990)

For each interior vertex x and each i = 1,2,3, let x_i denote the number of vertices in region $S_i(x)$. Then place vertex x at the grid point (x_1, x_2) to obtain a grid embedding without edge crossings.

Algebraic Structure

Theorem (de Mendez, 2001) The family of all normal labelings of a rooted planar triangulation forms a distributive lattice.