

Statistics for Linguistics

Session 5
Multiple Linear Regression

Example Data

For the following illustrations we will use data collected in a study on

Compensatory Vowel Shortening in German¹

- Stressed vowels are shortened depending on how many segments follow within the same word
- e.g. /a:/ in /ma:/ is longer than in /ma:m/
 /a:/ in /ma:m/ is longer than in /ma:ms/
 /a:/ in /ma:ms/ is longer than in /ma:ms.la/

¹Schmitz et al. (2018)

Example Data

For the following illustrations we will use data collected in a study on

Compensatory Vowel Shortening in German¹

Independent of shortening, open vowels should be shorter than mid vowels, which in turn should be shorter than closed vowels

▶ i.e. /i:, u:/ < /e:, o:/ < /a:/</p>

Simple Linear Regression Formula

Simple Linear Regression Formula

Multiple Linear Regression Formula

Multiple Linear Regression in R

- More variables make the modelling procedure a little more time consuming
- Typical steps are
 - Check dependent variable distribution
 - Create a 'full' model
 - Find the 'best' model
 - 4. Check assumptions
 - Interpret the model

Step 1: Dependent Variable Distribution

- As seen earlier, we can check the distribution of a variable with a Shapiro-Wilk Test
- Our dependent variable, duration, is not normally distributed
- We therefore, again, use a log-transformed version of the duration variable, i.e. durationLog

Step 2: Full Model Creation

- Our dependent variable is durationLog
- Now, we need to consider the independent variables we wish to use in our model
- We wish to include the following independent variables:

structure i.e. coda structure

vowel i.e. vowel quality

rate i.e. speech rate

number i.e. slide number during experiment

Step 2: Full Model Creation

Let's create the full model:

- In theory, we now should create models with all possible combinations of variables
- ▶ However, this is time consuming and error prone
- Luckily, R provides a function for this step

step(model)

> step(model)

> step(model)

Akaike Information Criterion

The lower, the better the model fit

Start: AIC=-1167.31

durationLog ~ structure + vowel + rate + number

> step(model)

Akaike Information Criterion

The lower, the better the model fit

Start: AIC=-1167.31

durationLog ~ structure + vowel + rate + number

	Df	Sum of Sq	RSS	AIC	
- number	1	0.0536	31.839	-1168.55	a model without number
<none></none>			31.786	-1167.31	
- rate	1	0.8500	32.636	-1157.48	
- vowel	4	3.4109	35.197	-1129.64	a model without vowe1
- structure	2	14.9708	46.756	-998.41	

Step:

AIC=-1168.55

durationLog ~ structure + vowel + rate

best model found by the step() function and its AIC

additional proof that further reduction is not improving model fit

best model found by the step() function and its call

call:

lm(formula = durationLog ~ structure + vowel + rate, data = data)

Coefficients:

 (Intercept)
 structureopen
 structuresingle
 vowele

 -1.5062
 0.4340
 0.1219
 -0.1441

 voweli
 vowelo
 vowelu
 rate

 -0.2374
 -0.1229
 -0.2365
 -0.2532

model coefficients – we will take a closer look in step 5

- Multiple Linear Regression Models follow the same assumptions as Simple Linear Regression Models
 - Linearity
 - Homoscedasticity
 - Normality
 - Independence

Linearity Assumption:

The relationship between X and the mean of Y is linear.

▶ The line should be horizontal and flat.

▶ Homoscedasticity Assumption:

The variance of residuals is the same for any value of X.

Data should be spread equally around the line, with no obvious patterns visible.

▶ Normality Assumption:

For any fixed value of X, Y is normally distributed.

The distribution of a linear model's residuals should follow a normal distribution.

Step 5: Interpretation

- ▶ In general, we are interested in two things
 - the p-values of individual predictors
 - 2. the **effects** of the individual predictors

Step 5: Interpretation – *p*-Values

1. Using the anova() function, we can obtain *p*-values

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
structure	2	15.131	7.5654	104.4874	< 2.2e-16	***
vowel	4	3.507	0.8767	12.1079	2.41e-09	***
rate	1	0.842	0.8416	11.6241	0.0007112	***
Residuals	439	31.786	0.0724			

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16	***
structureopen	0.43395	0.03112	13.947	< 2e-16	***
structuresingle	0.12186	0.03117	3.910	0.000107	***
vowele	-0.14406	0.04033	-3.572	0.000393	***
voweli	-0.23739	0.04035	-5.883	7.97e-09	***
vowelo	-0.12292	0.04034	-3.048	0.002446	**
vowelu	-0.23653	0.04033	-5.864	8.87e-09	***
rate	-0.25324	0.07425	-3.410	0.000708	***

	Estimat	e Std. Error	t value	Pr(> t)	
(Intercept)	-1.5062	0.10486	-14.364	< 2e-16	***
structureopen	0.4339	0.05112	13.947	< 2e-16	
structuresingl	e O. con	tains the 'baseline'	levels of all	factors, i.e.	k
vowele	-().	atura da ubla			le de de
voweli	-0. Stru	cture:double rel:a			
vowelo	-0.				k sk
vowelu		the 'starting point	t' of the num	erical	12 212 212
rate	$_{-0}$ pre	dictor(s)			k % %

2. Using the summary() function, we can take a closer look at the **effects** of the individual predictors

structure:double + vowel:a + rate:start

2. Using the summary() function, we can take a closer look at the **effects** of the individual predictors

structure:single + vowel:a + rate:start

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16	***
structureopen	0.43395	0.03112	13.947	< 2e-16	
structuresingle	0.12186	0.03117	3.910	0.000107	***
vowele	-0.14406	0.04033	-3.572	0.000393	
voweli	-0.23739	0.04035	-5.883	7.97e-09	***

vowelo vowelu rate

to obtain the estimated mean value of durationLog in structure:single & vowel:i words, we have to add both estimates to the intercept, i.e.

$$-1.50620 + 0.12186 - 0.23739 = -1.62173$$

2. Using the summary() function, we can take a closer look at the **effects** of the individual predictors

structure:double + vowel:a + rate:start

			A
	Estimate	durationLog is	
(Intercept)	-1.50620		***
structureopen	0.43395	- significantly longer in open coda	***
structuresingle	e 0.12186	words - significantly longer in simple	***
vowele	-0.14406	coda words	***
voweli	-0.23739		***
vowelo	-0.12292	than in complex coda words	* *
vowelu	-0.23653	0.04033 -5.864 8.87e-09	
rate	-0.25324	0.07425 -3.410 0.000708	

2. Using the summary() function, we can take a closer look at the **effects** of the individual predictors

structure:double + vowel:a + rate:start

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16	***	
structureopen	0.43395	0.03112	13.947	< 2e-16		
structuresingle	e 0.12186	0.03117	3 910	0.000107		
vowele	-0.14406	durationLog is				
voweli	-0.23739	- significantly shorter in words				
vowelo	-0.12292	_	ner vowels, i		**	
vowelu	-0.23653	u/	,	, . , . , . ,	***	
rate	-0.25324	'				
		than in words	with /a/			

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept	-1.50620	0.10486	-14.364	< 2e-16	
structureo	pen 0.43395	0.03112	13.947	< 2e-16	
structures	ingle 0.12186	0.03117	3.910	0.000107	
vowele	0 14406	0 04022	572	0.000393	
voweli	the higher the spe the value of dura		ower 883	7.97e-09	
vowelo	0.1223	0.01031	5.048	0.002446	
vowelu	0.23653	0.04033	-5.864	8.87e-09	
rate	-0.25324	0.07425	-3.410	0.000708	***

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16	***
structureopen	0.43395	0.03112	13.947	< 2e-16	***
structuresingle	0.12186	0.03117	3.910	0.000107	***
vowele	-0.14406	0.04033	-3.572	0.000393	***
voweli	-0.23739	0.04035	-5.883	7.97e-09	***
vowelo	-0.12292	0.04034	-3.048	0.002446	**
vowelu	-0.23653	0.04033	-5.864	8.87e-09	***
rate	-0.25324	0.07425	-3.410	0.000708	***

2. Using another function, we can check the differences within one predictor

```
> tukey(model = mdl_fin, predictor = structure)
```

```
Estimate Std. Error t value Pr(>|t|) open - double == 0 0.43395 0.03112 13.95 < 1e-04 *** single - double == 0 0.12186 0.03117 3.91 0.00031 *** single - open == 0 -0.31209 0.03111 -10.03 < 1e-04 ***
```