Data Management in the HPC

February 5, 2020 osf.io/ugrq6

Fernando Rios

Research Data Management Specialist, Library – frios@email.arizona.edu data.library.arizona.edu

Dima Shyshlov

Senior Research Computing Specialist, Research Computing – dshyshlov@email.arizona.edu

What you will learn

What: understand how to transfer, organize, and use data on the HPC.

Why: Nice data makes things easier: collaboration, reproducibility => better research

Assume

- Basic understanding of how to use the Unix shell
- Ability to log in to the HPC (optional but recommended)

How

- Overview of storage options on the HPC
- Methods of transferring data in and out
- Basic HPC data management /good enough practices
- Moving data around in jobs

Basic Pipeline

Data input, processing, collaboration, sharing

Fill in details of what, where, how

Logging in

The diagram of the UA HPC cluster

Login

- Open **ood.hpc.arizona.edu** in your web browser and login with your NetID and password.
- From the "Clusters" drop-down menu choose which HPC cluster you would like to access:

Warm-up exercise

- Log in to Ocelote
 - Ssh, PuTTY/KiTTY
 - ondemand.hpc.arizona.edu or ood.hpc.arizona.edu

Login node

[dshyshlov@login2 ~]\$

Login node is like an elevator

Login node is like an elevator

Data Storage Options

HPC Storage

- Every users gets two default storage locations:
 - /home
 - the default home directory
 - 15GB
 - the only backed up storage on UA HPC/extra
 - /extra
 - full path: /extra/NetID
 - 200GB
 - not backed up
 - has file count limit 600 files/GB

```
[dshyshlov@login2 ~]$ uquota
used soft limit hard limit files/limit
dshyshlov home & PBS 0G 14G 15G 0
/extra/dshyshlov 0G 200G 200G 0/120000
```

HPC Storage

- Other storage options:
 - /xdisk
 - temporary "scratch" storage
 - from 200GB to 1TB for up to 45 days
 - not backed up

HPC Storage

- Other storage options:
 - /rsgrps
 - rented storage for research groups
 - shared between all members of the group
 - current rate: \$39/TB/year
 - not backed up
 - file count limit 600 files/GB
 - /tmp
 - local disk on compute nodes
 - not connected to the main storage
 - the best performance for calculation
 - <1TB is available on each node</p>
 - data is removed once the job is finished, so need to script copying input/output data to the main storage

HPC Storage – Summary

	Storage	Back-up	File limits	Speed
/home	15 GB	Nightly	None	
/extra	200 GB	None	600 files / GB	
/xdisk	200 – 1000 GB (45 day limit)	None	None	
/rsgrps	Rented space	None	600 files / GB	
/tmp	Varies ~ 800 GB (Ocelote)	None	None	Fastest (on node)

COMING SOON for 2020

- Scheduler: PBS -> Slurm
 - Slurm can run PBS scripts
 - Some options in PBS scripts not supported
- New HPC System
 - 19200 AMD CPUs

New Storage!

	Old	New	
Storage	DDN 7200 RPM Spinning Disk	Qumulo Solid State Disk	
	1.5 PB + 20 TB (astronomy purchased)	2 PB	
Policy	Free Storage /home 15 GB	Merging together /home and /extra /home 50 GB (Less /wherearemyfiles/path confusion!)	
	/rsgrps rental space \$39 per (TB*year)	All PIs get a free 500 GB allocation in /rsgrps All members of PI group has access to space	
	/xdisk 1 TB for up to 90 days	/xdisk (free) 20 TB up to 150 days (requested at PI level, not per user) renewable for another 150 days	
Data Plan	Never intended or architected for long- term file storage Reality: Used for long-term file storage because it was cheap and there were not many other options	 Data will be maintained and managed on another platform (Google Drive, S3 bucket, Box, etc) Data that needs to be analyzed is pulled down to HPC storage for analysis The results are pushed back up to other platform Original data pulled down is deleted because it already exists elsewhere 	

File Management

Data Management Best Practice: Naming & Organization

"I don't follow a consistent approach for keeping my data organized, so it often takes time to find things."

- Use a schema to determine file names
- Avoid using confusing labels such as revision, final, final2, or definitive copy.
- Use only alphanumeric characters and . _ -
- Max name length on HPC= 255

"FINAL".doc

FINAL.doc!

FINAL rev. 2 do

FINAL_rev.6.COMMENTS.doc

FINAL_rév.8.comments5. CORRECTIONS.doc

FINAL_rev.18.comments7. corrections9.MORE.30.doc

FINAL_rev.22.comments49. corrections.10.#@\$%WHYDID ICOMETOGRADSCHOOL?????.doc

http://www.phdcomics.com/comics/archive.php?comicid=1531

Data Management Best Practice: Versioning

- Add dates and/or version numbers
- Convention is to use ordinal numbers such as 1, 2, and 3 for version changes
- Document changes to your data/code. Within the file or use separate log as needed

Add version and/or date (ISO 8601)

These are your friends: sprintf (C/C++) str.format (Python)

File	Date	Person	Changes
filename_v1.csv	3/5/2017	Arthur N.	Initial dataset
filename_v2_FR.csv	4/14/2017	Fernando R.	Cleaned up a few null values

Data Management Best Practice: Folders

- Folder names should be unique and descriptive
- Try not to nest more than 3 levels deep
- Use a consistent folder organization structure
 - Different data stages should have their own folders
 (i.e., raw data, processed data, analyzed data, figures and charts)

GW_model - elevation.mat - depth_wt.csv - well_loc.csv - flow_model.m - flow_model2.m - flow_model_final.m - flowlines1.png - flowlines2.png - contours.png

```
Better
GroundwaterModel
<sup>L</sup> Code
            -20170402 FlowModel v1.m
             20170410 FlowModel v2.m
            -20170511 FlowModel v3.m
L Inputs
             TerrainElevation.mat
             DepthToWaterTable.csv

    WellLocations.csv

<sup>L</sup> Outputs
            - 20170402 Flowlines FlowModelv1.png
             20170402 Contours FlowModelv1.png
            - 20170415 Flowlines FlowModelv2.png
```

Exercise 1: Project Setup

Applying good folder organization automatically

Getting Data

Getting External Data In

	Storage	Back-up	File limits
/home	15 GB	Nightly	None
/extra	200 GB	None	600 files / GB
IVALICE	200 – 1000 GB (45 day limit)	None	None
/rsgrps	Rented space	None	600 files / GB

2-factor authentication may get in the way...

Exercise 2: Get Data

\$ wget

 Download some ecology data from the Figshare data repository into the data/external folder

```
Ernest, Morgan; Brown, James; Valone, Thomas; White, Ethan P. (2018): Portal Project Teaching Database. figshare. Fileset.

https://doi.org/10.6084/m9.figshare.1314459.v9
```

```
    AUTHORS.md

LICENSE
 README.md
                     <- Your compiled model code can be stored here (not tracked by git)
                     <- Configuration files, e.g., for doxygen or for your model if needed
 config
                     <- Data from third party sources.
    – external
                     <- Intermediate data that has been transformed.
                     <- The final, canonical data sets for modeling.
     processed
                     <- The original, immutable data dump.
                     <- Documentation, e.g., doxygen or scientific papers (not tracked by git)
 notebooks
                     <- Ipython or R notebooks
                     <- For a manuscript source, e.g., LaTeX, Markdown, etc., or any project reports
 reports
  L-- figures
                     <- Figures for the manuscript or reports
                     <- Source code for this project
- src
                    <- scripts and programs to process data
   — external
                   <- Any external source code, e.g., pull other git projects, or external libraries
                    <- Source code for your own model
   - models
   - tools
                    <- Any helper scripts go here

    visualization <- Scripts for visualisation of your results, e.g., matplotlib, ggplot2 related.</li>
```

Data Mgmt Best Practice: Storage & Backup

"I decide what data is important while I am working on it and typically save it in a single location"

Do

- 3-2-1: If possible, 3 copies, 2 different storage types, 1 copy offsite
- Keep offline backups if possible. Sync clients could be propagate changes unintentionally

Avoid:

- Storing sensitive data on an unencrypted laptop or flash drive or insecure servers
- Relying on cloud storage for the only copy!
 http://www.cnet.com/news/dropbox-fixes-file-deletion-bug-offers-year-of-free-service/

For HIPAA compliance, use UA Box Health account.

Backup and Restore to Google Drive

- Rclone to transfer directly to/from Google Drive,
 Dropbox, S3, Box... many more
- Exercise 2a: set up Rclone Do up to step 5
 - rclone lsf <remote>:/
 rclone copy <remote>:/path/to/file <dest>/path/to/file

Managing Files

Sharing data between HPC users

You can share data with another HPC user without moving the data

Open file permissions

Create symbolic links

File permissions

Check file permissions – *ls -l*

-rw-r--r-- 1 dshyshlov rc 639 Oct 10 15:58 script.pbs

Owner Group

Change file permissions

- Command to change permissions chmod
 - chmod +x filename make file executable
 - chmod g+rwx filename open all permissions for you group
 - chmod 777 filename open all permissions for everyone
 - chmod –R 777 filename same as above but recursively

Symbolic links

- Create a soft link to a file or directory
 - In -s path/to/the/destination link_name
 - perfect for situations when you need to share read only data
 - requires permissions to link directory of another user
- Examples:
- Create a shortcut to your /extra in your /home
 - In –s /extra/NetID ~/my_extra
- link to a directory with shared data
 - In -s /rsgrps/NetID/project/data ~/collaboration_data

File & Space Management Tools

Checking your space & file limit: uquota

Checking folder usage and count: NCDU

```
ncdu 1.14 ~ Use the arrow keys to navigate, press ? for help
--- /home/u17/frios -
   20.8 MiB [##########]
  12.2 MiB [#####
                           619 /renameutils-0.12.0
   9.7 MiB [####
                            13 /tmsu-x86 64-0.7.4
   2.7 MiB [#
                           149 /.local
   2.0 MiB [
                            92 /ncdu-1.14
   1.0 MiB [
                            37 /hpc-test1
  392.0 KiB [
                                duc-1.4.3.zip
  256.0 KiB [
                                .duc.db
  200.0 KiB [
                            76 /.cache
 144.0 KiB [
                                ncdu-1.14.tar.gz
                             9 /ondemand
  16.0 KiB [
                                                    ПСНЦ
  16.0 KiB [
                                 .bash history
                           143 /.cookiecutters
   8.0 KiB [
```

File & Space Management Tools

Keeping file names tidy with renameutils

```
sk@ubuntuserver:~ + = - - ×
sk@ubuntuserver:~$
```

Credit: ostechnix.com

Operate on Data

- Things that can "break" the system:
 - heavy use of the login node
 - too many jobs
 - too many files
 - heavy I/O jobs
 - copying GB of data

Exercise 3 – Using /tmp

Finish Project and Export

Exercise 4 - Export to Google Drive

What do you notice about the transfer speed?

Sample Transparent and Reproducible Research Pipeline

Data input, processing, sharing/collaborating

Process &

Manage on

UA HPC

CLONE

data, figures Co-author files & literature

Connect to OSF

Share, collaborate, Publish (w/ DOI)

Get code

Connect to OSF

