ASTRAGALI RADIX SAPONIN, ISOLATION AND USE THEREOF

Publication number: JP62012791

Publication date:

1987-01-21

Inventor:

KADOTA AKIMI; UCHIDA YOSHIHIRO

Applicant:

OSAKA CHEM LAB

Classification:
- international:

C07H15/256; A61K31/7028; A61K31/7034;

A61K31/704; A61P3/08; A61P9/10; C07H1/08; C07H15/00; A61K31/7028; A61P3/00; A61P9/00; C07H1/00; (IPC1-7): A61K31/705; C07H1/08;

C07H15/256

- European:

Application number: JP19860169996 19860718
Priority number(s): JP19860169996 19860718

Report a data error here

Abstract of JP62012791

NEW MATERIAL:An astragaloside expressed by the formula. USE:An inhibitor for peroxylipid formation effective for preventing and treating arteriosclerosis. PREPARATION:Astraglic Radix is extracted with a lower alcohol, e.g. methanol, preferably while warming or heating, and the resultant extract is concentrated. The concentrate is then treated with an adsorbent, e.g. silica gel, and eluted to give a fraction, which is preferably subjected to reversed phase silica gel column chromatography [elution solvent is preferably methanol:water (5:4 5:1)]. The resultant saponin mixture is preferably dissolved in methanol, and diazomethane-ether solution is added thereto to convert the saponin into methyl ester. The resultant methyl ester is then separated by silica gel column chromatography [elution solvent is, e.g. n-butanol:ethyl acetate:water (4:1:5, upper layer)] and then treated with an alkali, e.g. 10% potassium hydroxide.

Data supplied from the esp@cenet database - Worldwide

⑫ 公 開 特 許 公 報 (A) 昭62 - 12791

@Int_Cl.4

識別記号

庁内整理番号

❸公開 昭和62年(1987)1月21日

C 07 H 15/256 A 61 K 31/705

ABX ADP 7330-4C

C 07 H 1/08

審査請求 未請求 発明の数 3 (全11頁)

②発明の名称 オウギサポニン、その単離法およびその用途

②特 願 昭61-169996

②出 願 昭56(1981)4月1日

@特 願 昭56-50190の分割

仰発 明 者 門 田

暁 美 福山市鞆町804

切発 明 者 内 田

義 弘 大阪市大正区泉尾 1 - 22-23

①出 顋 人 株式会社 大阪薬品研

大阪市東区北浜1丁目27

究所

砂代 理 人 弁理士 野河 信太郎

明細型

11. 発明の名称

オウギサポニン、その単層法およびその用途

2. 特許請求の範囲

1. 式(I):

で表されるサポニン化合物又はその医薬的に受容な塩。

2. オウギ (A stragali Radix) を低級アルコールで抽出し、その抽出液を濃縮し、この濃縮液の低級アルコール溶液を吸着剤で処理し、次いで溶腫して得た面分を少なくとも1回のクロマト

グラフィに付して精製分離し、

式(I):

で 要されるサポニン化合物を得ることを特徴とするサポニン化合物の単雌法。

 クロマトグラフィが逆相シリカゲルカラム クロマトグラフィ又はシリカゲルカラムクロマト グラフィである特許請求の範囲第2項記載の方法。

4. 低級アルコールがメタノール又はエタノールである特許請求の範囲第2項記載の方法。

5. 吸着剤がシリカゲルである特許請求の範囲 第2項記載の方法。

6. 式(I):

で表されるサポニン化合物又はその医薬的に受容な塩と医薬的に受容な賦形剤とからなる過酸化酯質生成抑制剤。

(以下余白、次頁に続く。)

なサポニンを単離し、さらにこの中に少なくとも 10種の文献未知のサポニンが含まれていること を見出した。

かくして、この発明によれば実質的に純粋なサポニン混合物並びにその成分である下記の式(I) 及び式(I)で表される化合物およびその塩類が提供される。

(式中 R^1 が水素原子であるときは、 R^2 が $\beta-D$ グルコピラノシル基で R^8 が2、3、4 ートリー O ーアセチルー $\beta-D$ ーギシロピラノシル基; R^2 が $\beta-D$ ーグルコピラノシル基で R^8 が 2、3 ージー O ーアセチルー $\beta-D$ ーキシロピラノシル基; R^2 が $\beta-D$ ーグルコピラノシル基で R^8 が 2、4 ージ

3. 発明の詳細な説明

この発明はオウギ(黄耆)より単離されたサポニン類及びその単離法に関する。

ての発明にいうオウギ(黄耆)はマメ科
Leguminosae のオウギAstragalus
membranaceus Bunge 又はその他の同属植物
の根を意味する。オウギは古来より生薬として強
壮・強心・利尿・止汗・血圧降下剤などに用いら
れる。オウギの成分としては、従来ィソフラボン
酸類・イソフラバノン酸類・ベタイン・ピペリジン酸・庶糖などが含まれていることが知られている。しかしサポニン配糖体類が含まれているとい
うことは全く知られていない。

この発明の発明者らはオウギから実質的に純粋 (以下余白、次頁に続く。)

-0-rセチルー $\beta-D-+$ シロピラノシル基; R^2 が $\beta-D-$ グルコピラノシル基で R^3 が 2-0-アセチルー $\beta-D-$ キシロピラノシル基; R^2 が $\beta-D-$ キシロピラノシル基; R^2 が $\beta-D-$ キシロピラノシル基で R^3 が $\beta-D-$ クルコピラノシル(1-2) $\beta-$ D-キシロピラノシル 英又は R^2 が 水素原子で R^3 が $\beta-D-$ グルコピラノシル(1-2) $\beta-$ D-キシロピラノシル(1-2) $\beta-$ D-キシロピラノシル(1-2) $\beta-$ D-キシロピラノシル

 R^{1} が $\beta-D-\ell$ ルコピラノシル基であるときは、 R^{2} が水素原子で R^{8} が $\beta-D-\ell$ ルコピラノシル (1-2) $\beta-D-4$ シロピラノシル基又は R^{2} が $\beta-D-\ell$ ルコピラノシル基で R^{8} が $\beta-D-4$ シロピラノシル基で R^{9} の Ω

これらサポニンの具体名を列挙すると次のとお りである。

3-0-(2.3.4-トリーローアセチルー β - D - \Rightarrow \triangleright υ ν υ ν υ υ υ υ υ υ υ - υ - グルコピラノシルーサイクロアストラゲノール (アセチルアストラガロサイド]と呼称)、

 $3-0-(2.3-9-0-r+f-n-\beta-p)$ $- + \circ - U \circ / \circ / \circ / \circ) - 6 - 0 - \beta - D - 0 / \circ / \circ$ ピラノシルーサイクロアストラゲノール 〔アス トラガロサイド」と呼称し、

 $3 - 0 - (2 \cdot 4 - 9 - 0 - 7 + 9 \cdot n - \beta - D)$ ーキシロピラノシル) - 6 - O - β - D - グルコ ピラノシルーサイクロアストラゲノール 〔イソ アストラガロサイド!と呼称〕、

 $3-0-(2-0-rセチル-\beta-D-キシロ$ ピラノシル)ー6 -0 -β -D -グルコピラノシ ルーサイクロアストラゲノール 【アストラガウ サイド』と呼称)、

 $3 - 0 - (\beta - D - 0) + (1 - 2)$

との発明のサポニンは実質的に純粋であり、と の* 実質的に純粋 "とは、サポニンのみを少なく とも90%以上好ましくは98%以上含むことを 意味する。

を低級アルコールで抽出し、その抽出液を濃縮し、 この濃縮液の低級アルコール溶液を吸着剤で処理 し、次いで溶離して得た画分をエステル化せずに 又はエステル化して少なくとも1回のクロマトグ ラフィに付して精製分離し、前記の新規サポニン を単離する方法が提供される。以下具体的に説明 する。

最初に、オウギを低級アルコールで抽出する。 低級アルコールとしては99%以上のメタノール 又はエタノール等が挙げられる。この抽出は加温 又は加熱下に行うのが好ましい。なお原料のオウ ギは抽出に先立つて予め細切し、あるいは常法に より脱脂したものを用いてもよい。得られた抽出 液を濃縮して抽出エキスとする。この抽出エキス を低級アルコールに溶解し、その溶液をシリカゲ

ゲノール 〔アストラガロサイド罰と呼称〕、 $3 - 0 - \beta - D - + > D - \beta - 0 - 0$ ノール 〔アストラガロサイドⅣと呼称〕、

 $8 - 0 - (\beta - D - f n - 2 - 2)$ $\beta - D - 4 \rightarrow D + 2 \rightarrow D + 2 \rightarrow D$ ーグルコピラノシルーサイクロアストラゲノール 〔アストラガロサイド∜と呼称〕、

 $8 - 0 - (\beta - D - f n - 2 - 2)$ β - D - β - D - β - D - β - D -グルコピラノシルーサイクロアストラゲノール 〔アストラガロサイド¶と呼称〕、

 $3 - O - \beta - D - + > D$ グルコピラノシルーサイクロアストラゲノール 〔アストラガロサイド¶と呼称〕、及び $3 - 0 - (\alpha - L - \beta \wedge)$ (1 - 2) $\beta - D - + \upsilon D C = J \upsilon \nu (1 - 2) \beta - D - J$ ルクロノピラノシル) ーソーヤサポゲノール B 〔アストラガロサイド個と呼称〕である。

ル例えばメルク社製60~230メツシュシリカ ゲルにまぶす。なお抽出エキスの低級アルコール 溶液の濃度はシリカゲルにまぶしやすいよう適宜 選択される。この抽出物付着シリカゲルを予めシ また、この発明は、オウギ(Astragali Radix) リカゲルを充填したカラムの上に積層する。この 予め充填したシリカゲルは抽出物付着シリカゲル の5~20倍重量が用いられる。このシリカゲル カラムを、例えばクロロホルム:低級アルコール: 水で好ましくはクロロホルム:メタノール:水 〔10:8:1(下履)→6:4:1)で傾斜溶 離し、薄層クロマトグラフィ(TLC)を指標と して溶出液を6分画し、各分画液を濃縮乾燥して 分面1~6を得る。

> これらの分画の中、分画1及び5は逆相ショカ ゲルカラムクロマトグラフィじ例えば担体として はポンダパツクC18,ウオーターズ社製が挙げ られ、溶出溶媒としては低級アルコール:水好ま しくはメタノール:水(5:4→5:1)で溶出〕 に付して分離精製後、さらにシリカゲルカラムク ロマトグラフィ〔例えば、担体としてメルク社製

60~230メッシュシリカゲルが挙げられ、容 出容媒としてはクロロホルム:低級アルコール: 水好ましくはクロロホルム:メタノール:水(10 :3:1,下層))に付して精製分離し、

分画 2 , 3 及び 4 は上記分画 1 及び 5 に用いたのと同様の逆相シリカゲルクロマトグラフィに付して精製分離される。

さらに分面6は上記したのと同様の逆相シリカゲルクロマトグラフィに付して得たサポニン混解し、はメタノールに溶解し、ジアゾメタンーエーテル溶液を加えてメチルエステル化する。さらに、シリカゲルカラムクロマトグラフィ〔例えば担体としては60~230メソール:酢酸エチル:水(4:1:5、上層)で分離し、次いでアルカリ処理(例えば10%水酸化カリウム水溶液)〕に付して精製分離される。

上記のように分面 1 ~ 6 を精製分離すると、分面 1 からアセチルアストラガロサイド | . アストラガロサイド | が、

オウギ(韓国産オウギ、8㎏)を細切し、メタノール(18ℓ、99%メタノール、以下同じ)で5時間加熱遠流する。沪過してメタノール抽出液を得、残濫に新たにメタノール(18ℓ)を加え加熱抽出する。同様の操作を計5回行い、得られるメタノール抽出液を合し、減圧にて溶媒留去してメタノール抽出エキス(1.9㎏)を得る。

メタノール抽出エキス(200g)をメタノールに答解し、シリカゲル(60~280メツシュ、メルク社製、400g;この実施例で用いるシリカゲルは特別の説明がない場合このシリカゲルを意味する)にまぶす。減圧乾燥した後、シリカゲル(4㎏)を充壊したカラムに層積し、クロロホルム:メタノール:水(10:3:1(下層)(10ℓ)、6:3:1(10ℓ)、7:3:1(10ℓ)、6 に 個)(10ℓ)、6 に 4 に 1(10ℓ))を用い、シリカゲル海路のロマトグラフィを指標として順次の出し、溶出し、溶出し、分面2(75g)、分面8(10g)、分面3(7.5g)、分面3(10g)、分面3(7.5g)、分面3(10g)、分面3(7.5g)、分面3(10g)、分面3(7.5g)、分面3

分画 2 からアストラガロサイド I が、分画 3 からはアストラガロサイド II が、分画 4 からアストラガロサイド IV が、分画 5 からアストラガロサイド IV 及びアストラガロサイド II 及びアストラガロサイド II 及びソーヤサポニン I がそれぞれ得られる。

てれらサポニンは所望により塩に変換することができる。塩としては、アルカリ金属塩又はアルカリ土類金属塩、具体的にはナトリウム塩、カリウム塩、カル シウ ム塩、マグネシニウ ム塩などが挙げられる。また、これらの塩は常法によつて作製される。

このようにして得られた新規のサポニンは過酸 化脂質の生成を抑制する作用を有し、動脈硬化の 予防,治療に利用可能で老化防止に有効である。

次に実施例によつてこの発明のサポニンの単離 法を説明する。

夷施例

オウギ (Astragali Radix)からのサポニンの抽出単離

(6.8 g) および分画 6 (9.2 g) を得る。

分面1(22g)を逆相シリカゲルカラムクロマトグラフィ〔担体:ボンダパックC18.ウオーターズ社製、100g; 溶出溶媒はメタノール:水(5:4-5:1)〕で分離精製後、さらに、シリカゲルカラムクロマトグラフィ〔シリカゲル14g,クロロホルム:メタノール:水(10:8:1,下層)〕で分離し、アセチルアストラガロサイド』(200吋)、アストラガロサイド』(300吋)を得た。

分画 2 (7.5 g)を分画 1 の処理に用いたのと 同様の逆相シリカゲルカラムクロマトグラフィで 分離精製し、アストラガロサイド I (2.3 g)を 得た。

分画 3 (1 0 g) からは分画 1 の処理に用いたのと同様の逆相シリカゲルカラムクロマトグラフィによつて、アストラガロサイド II (1.0 g) が得られ、分画 4 (7.5 g) からは分画 3 の処理と同様な操作によつて、アストラガロサイド IV (0.8

9)が得られた。

分画 5 (6.8 g) を分画 1 の処理に用いたのと 同様の逆相シリカゲルカラムクロマトグラフィで 分離精製後、シリカゲルカラムクロマトグラフィ (シリカゲル・7 0 0 g ; クロロホルム:メタノール:水(7 : 8 : 1 ・下層)) で分離して、アストラガロサイド Y (1 0 0 g)、アストラガロサイド Y (1 0 0 g)、アストラガロサイド Y (1 0 0 g) 、アストラガロサイド Y (1 0 0 g) を得た。

分面 6 (9.2 g) を分面 1 の処理に用いたのと同様の逆相シリカゲルカラムクロマトグラフィで分離精製し、サポニン混合物 (2.5 g) を得る。サポニン混合物 (2.5 g) を将解し、サポニン混合物 (2.5 g) を必 タノールに溶解し、ジアゾメタンーエーテル溶液を加えメチルエステル化する。シリカゲルカラムクロマトグラフィにシリカゲル 5 0 0 g , n ー ブタノール:酢酸エチル:水(4 : 1 : 5 , 上層) 〕で分離し、つ液でアルカリ処理 (1 0 %水酸化カリウム水溶液) して、アストラガロサイド個 (6 0 0 m) およびソーヤサポニン [(6 0 0 m) を得た。

から結晶化)である。

- 8) メタノール、エタノール、nーブタノール、 ピリジン、ジメチルスルホキサイドに易溶、 クロロホルム、酢酸エチル、アセトンに可 溶、エーテル、ベンゼン、ヘキサンに不溶 である。
- 9) 斑層クロマトグラフィ(TLC、担体:プレコートシリカゲル 6 0 P 264 プレート。
 0.2 5 m , メルク社製; 展開溶媒:クロロホルム:メタソール:水(7:3:1,下層))において Rf = 0.6 を示す。
 TLC上1 %硫酸セリウムー1 0 %硫酸水溶液を噴霧し、加熱すると濃茶かつ色を呈する。

上記実施例で得られた各サポニンの物性は次の とおりである。

アセチルアストラガロサイド【

- 1) mp 280~281°Cである。
- (a) ¹⁸_p + 1.8°(C = 1.0 ,メタノール)の 旋光性を有する。
- 8) C47日74017 の分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr, cm⁻¹)は3400(ブロード),1750,1225.1080に特有の吸収拡大を示す。
- 5) 2 1 0 nu より長波長には紫外線吸収を示さない。
- 6) ¹⁸C 核磁気共鳴スペクトル(d₅-ピリシン, 8 C)は 17 0.1, 17 0.0, 16 9.5 (ア セチルカルボニルC)、10 5.0, 10 8.4 (アノメリツクC)、8 9.5 (8 - C)、 8 7.3 (20-C)、8 2.1 (24-C)、 7 9.8 (6-C)等のシグナルを示す。
- 7) 臭いはなく、無色の針状結晶(メタノール

アストラガロサイドー

- 1) mp 184~186℃である。
- (α) 18 + 1 2.7° (C = 0.6, メタノール)
 の旋光性を有する。
- 8) C45H72O16・H2Oの分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr,cm⁻¹)は 8400(ブロード),1784,1258, 1086,1045に特有の吸収極大を示す。
- 5) 2 1 0 加より長波長には紫外線吸収を示さない。
- 6) ¹⁸C核磁気共鳴スペクトル (d₆ーピリジン、 &C) は 1 7 0.6 、1 6 9.8 (アセチルカ ルポニルC)、1 0 5.0 、1 0 4.1 (アノ メリツクC)、8 9.4 (3 - C)、8 7.4 (20-C)、8 2.2 (24-C)、7 9.4 (6-C)等のシグナルを示す。
- 7) 臭いはなく、無色の微細結晶(アセトンから結晶化)である。
- 8) メタノール、エタノール、nーブタノール. ピリジン、ジメチルスルホキサイドに易答、

クロロホルム,酢酸エチル,アセトンに可容、エーテル,ペンゼン,ヘキサンに不容である。

9) 商層クロマトグラフィ(TLC,担体:プレコートシリカゲル60F254プレート、
 0.25 mm,メルク社製;展開溶媒:クロロホルム:メタノール:水(7:3:1,下層))において Rf=0.5を示す。

TLC上1%硫酸セリウムー10%硫酸水 溶液を噴霧し、加熱すると濃茶褐色を呈する。

クロロホルム . 酢酸エチル . アセトンに可溶、エーテル . ペンゼン , ヘキサンに不溶である。

9) 跨層クロマトグラフィ(TLC、プレコートシリカゲル 6 0 F254、0.2 5 mm・メルク社製、クロロホルム:メタノール:水(7:8:1、下層)〕で R f = 0.4 8 を示す。
TLC上 1 %硫酸セリウムー 1 0 %硫酸水溶液を噴霧し、加熱すると濃茶褐色を呈する。
10) 標準式

イソアストラガロサイドー

- 1) mp 2 1 8 ~ 2 2 0 °C で ある。
- (a) ¹⁹_D + 1 7.9° (C = 1.0 .メタノール)
 の旋光性を有する。
- 8) C45H12O16・H2Oの分子組成を有す。
- 4) 赤外線吸収スペクトル(KBr, cm⁻¹)は3400(ブロード),1740,1230,1050に特有の吸収極大を示す。
- 5) 2 1 0 m よ b 長波長には紫外線吸収を示さない。
- 6) ¹⁸C 核磁気共鳴スペクトル(d₅-ピリジン、 &C) は170.5、170.2 (アセチルカ ルポニルC)、105.0、104.4 (アノ メリツクC)、89.3 (3-C)、87.2 (20-C)、82.2 (24-C)、79.5 (6-C)等のングナルを示す。
- 7) 臭いはなく、無色の微細結晶(クロロホルムーメタノールから結晶化)である。
- 8) メタノール、エタノール、nープタノール、 ピリジン、ジメチルスルホキサイドに易容、

<u>アストラガロサイド【</u>

- 1) mp 251~258°C である。
- 2) (a) ¹⁸ + 8 1.2°(C=1.4 .メタノール) の旋光性を有する。
- 8) C48日70015・日20の分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr, cm⁻¹)は8400(プロード)、1739、1236、1070、1039に特有の吸収極大を示す。
- 5) 2 1 0 7加より長波長には紫外線吸収を示さない。
- 6) ¹⁸C 核磁気共鳴スペクトル(dsーピリジン、
 ⁸C)は 170.1 (アセチルカルボニルC)、
 105.0、104.8 (アノメリックC)、
 89.2 (8-C)、87.4 (20-C)、
 82.2 (24-C)、79.4 (6-C)等のシグナルを示す。
- 臭いはなく無色の微細結晶(クロロホルムーメタノールから結晶化)である。
- 8) メタノール、エタノール、nープタノール、 ピリジン、ジメチルスルホキサイドに易容、

クロロホルム、酢酸エチル、アセトンに難 溶、エーテル、ペンゼン、ヘキサンに不容 である。

9) 薄層クロマトグラフィ〔TLC,プレコートシリカゲル60F284,0.25 mm,メルク社製、クロロホルム:メタノール:水(7:3:1,下層)〕で Rf=0.45を示す。TLC上1%硫酸セリウム-10%硫酸水溶液を噴霧し、加熱すると濃茶褐色を呈する。

ン,ヘキサンに不溶である。

9) 薄層クロマトグラフィ〔TLC、プレコートシリカゲル60F264 . 0.25 糖、メルク社製、クロロホルム:メタノール:水(7:3:1.下層)〕で Rf=0.4を示す。

TIC上1%硫酸セリウムー10%硫酸水 溶液を噴霧し、加熱すると濃茶褐色を呈する。

10) 構造式

アストラガロサイド重

- 1) mp 245~247℃である。
- (a) ¹⁸_D + 2 1.4° (C = 0.8 . メタノール)
 の旋光性を有する。
- 3) C41H68O14·H2Oの分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr, cm⁻¹) は 3370(ブロード),1070,1030 に特有の吸収極大を示す。
- 5) 2 1 0 加より長波長には紫外線吸収を示さない。
- 6) ¹⁸C 核磁気共鳴スペクトル (d₅ーピリジン, ⁸C)は 105.8,105.4 (アノメリツ クC)、88.8 (8-C)、87.4 (20 -C)、83.1 (キシロース部分の 2-C)、 82.2 (24-C)等のシグナルを示す。
- 7) 臭いはなく、無色の針状結晶(メタノールから結晶化)である。
- 8) メタノール、エタノール、nーブタノール、 ピリジン、ジメチルスルホキサイドに可容、 酢酸エチル、アセトン、エーテル、ベンゼ

アストラガロサイドN

- 1) mp 299~301°Cである。
- (a) 18 + 24.4° (C=0.2、メタノール)
 の旋光性を有する。
- 3) C41H 88 O14・2 H2 Oの分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr, cm⁻¹)は 8880(プロード),1065,1040 に特有の吸収極大を示す。
- 5) 2 1 0 加より長波長には紫外線吸収を示さない。
- 6) ¹⁸C 核磁気共鳴スペクトル(d₅-ピリジン、 ⁶C)は1071,105.0(アノメリックC)、88.7(3-C)、87.3(20 -C)、82.0(24-C)、79.2(6 -C)等のシグナルを示す。
- 7)臭いはなく、無色の針状結晶(メタノール から結晶化)である。
- 8) メタノール、エタノール、nーブタノール、 ピリジン、ジメチルスルホキサイドに可容、 酢酸エチル、アセトン、エーテル、ペンゼ

ン,ヘキサンに不熔である。

9) 簡層クロマトグラフィ〔TLC、プレコートンリカゲル60 F254、0.25 mm、メルク社製、クロロホルム:メタノール:水(7:8:1、下層)〕で Rf=0.36を示す。

TLC 上1 %硫酸セリウム-1 0 %硫酸水 溶液を噴霧し、加熱すると濃茶褐色を呈する。

10) 横选式

酢酸エチル,アセトン,クロロホルム,エーテル,ペンゼン,ヘキサンに不溶である。

9) 薄層クロマトグラフィ(TLC・ブレコートシリカゲル 6 0 F254 · 0.25 mm,メルク社製、クロロホルム:メタノール:水(7:8:1、下層))においてRf=0.2を示す。

TLC 上1 %硫酸セリウムー 1 0 %硫酸水 溶液を噴霧し、加熱すると濃茶褐色を呈する。 10) 標治式

アストラガロサイドV

- 1) mp 202~204°Cである。
- (a) 14 + 7.2° (C = 1.0 , メタノール)の 旋光性を有する。
- 3) C47H78O19・3H2Oの分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr.cm⁻¹)は 3400(ブロード),1075,1035 に特有の吸収極大を示す。
- 5) 2 1 0 mmより長波長には紫外線吸収を示さない。
- 6) ¹⁸C 核磁気共鳴スペクトル(d₅-ピリジン、 ⁸C)は 1 0 5.7、1 0 5.8、9 8.7 (ア ノメリツクC)、8 8.6 (3-C)、8 7.2 (20-C)、8 8.0 (キシロース部分の 2[']-C)、8 2.2 (24-C)、7 8.6 (25-C)等のシグナルを示す。
- 7) 臭いはなく、無色の微細結晶(メタノールから結晶化)である。
- 8) メタノール、エタノール、nーブタノール. ピリジン・ジメチルスルホキサイドに可答、

<u>アストラガロサイド VI</u>

- 1) mp 290~291°C c 33.
- (a) 14 + 1 7.8°(C = 1.0 , メタノール)
 の旋光性を有する。
 - 3) C47H78O19·H2Oの分子組成を有する。
 - 4) 赤外線吸収スペクトル(KBr.cm⁻¹)は 8400(ブロード),1075,1088 に特有の吸収極大を示す。
- 5) 2 1 0 加より長波長には紫外線吸収を示さない。
- 6) ¹⁸C 核磁気共鳴スペクトル (d₅-ピリジン, & C) は 1 0 5.9 , 1 0 5.2 , 1 0 4.9 (アノメリツクC)、8 8.5 (8-C)、8 7.2 (20-C)、8 8.5 (キシロース部分の 2-C)、8 1.8 (24-C)、7 9.1 (6-C)等のシグナルを示す。
- 7) 臭いはなく、無色の微細結晶(メタノール から結晶化)である。
- 8) メタノール,エタノール,nーブタノール, ピリジン,ジメチルスルホキサイドに可答、

酢酸エチル、アセトン、クロロホルム、ベ ンゼン、エーテル、ヘキサンに不溶である。

9) 薄層クロマトグラフィ〔TLC,プレコートシリカゲル60F₂₆₄、 0.25 mm、メルク社製、クロロホルム:メタノール:水(7:3:1.下層)〕において、Rf=0.19を示す。

TLC 上1 %硫酸セリウム-1 0 %硫酸水 溶液を噴霧し、加熱すると濃茶褐色を呈する。 10) 構造式

酢酸エチル,クロロホルム,アセトン,エ ーテル,ペンゼン,ヘキサンに不溶である。

9) 両層クロマトグラフィ(TLC , ブレコートンリカゲル 6 0 F 284 , 0.2 5 mm , メルク社製、クロロホルム:メタノール:水(7:3:1.下層))においてRf=0.18を示す。

TLC 上1 %硫酸セリウム-1 0 %硫酸水 溶液を噴霧し、加熱すると濃茶褐色を呈する。 10) 構造式

アストラガロサイド恆

- 1) mp 292~293°Cである。
- (a) 18 + 1 0.3°(C=0.6 .メタノール)
 の旋光性を有する。
- 3) C47H78O19・2H2Oの分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr, cm⁻¹)は3400(プロード).1070.1040に特有の吸収極大を示す。
- 5) 2 1 0 xm より長波長には紫外線吸収を示さない。
- 6) ¹⁸ C 核磁気共鳴スペクトル(ds-ピリジン、δ C)は 1 0 7.3、1 0 4.8、9 8.8 (アノメリツクC)、8 8.6 (3-C)、8 7.2 (20-C)、8 2.2 (24-C)、7 9.1 (6-C)、7 8.7 (25-C)等のシグナルを示す。
- 7) 臭いはなく、無色の針状結晶(メタノール から結晶化)である。
- メタノール、エタノール、nープタノール、 ピリジン、ジメチルスルホキサイドに可容、

アストラガロサイド畑

- 1) mp 223~224°C である。
- (a) ¹⁸_D 1 2.1°(C=1.0,メタノール)
 の旋光性を有する。
- 3) C.47H76O17·H2Oの分子組成を有する。
- 4) 赤外線吸収スペクトル(KBr. cm⁻¹)は3400(プロード)、1725、1040に特有の吸収極大を示す。
- 5) 2 1 0 72 より長波長には紫外線吸収を示さない。
- 6) 臭いはなく、無色の微細結晶(メタノールから結晶化)である。
- メタノール、ピリジン、ジメチルスルホキ サイドに易格、エタノール、nーブタノー ル・水に可溶、クロロホルム、酢酸エチル。 アセトン、ペンゼン、ヘキサンに不溶である。
- 8) 跨層クロマトグラフィ(TLC,プレコートシリカゲル60F₂₅₄、0.25mm,メルク社製、クロロホルム:メタノール:水(7:3:1,下層))において

Rf=0.1を示す。

TLC 上1%硫酸セリウムー10%硫酸水 溶液を噴霧し、加熱すると赤紫色を呈する。

9) 横造式

配) した。

下記第1袋には被検サポニンとして実施例で得 たアセチルアストラガロサイドー、アストラガロ サイド【、】、┃、Ⅳ、Ⅴ、Ⅵ、恆、個及びインアス トロガロサイド!を用いた場合の結果を示した。 各被検薬は、アドリアマイシン投与1日前より体 重109当り 0.10 ≈ℓ 割合で腹腔内投与を開始し 5日間連続投与を行なつた。なお、被検薬はいず れも使用直前に、 0.9%生理食塩水もしくは1% ツイーン80 (Tween 80) 含有 0.9 % 生理食塩 旅に懸備させて用いた。また各被検薬は毎日正午 **に投与し、アドリアマイシンのみは被検薬投与 8** 時間後に投与した。各被検薬投与量は、各アスト ラガロサイドについて200吨/44であり、また 対照群のマウスには 0.9 %生理食塩水を投与した。 2) 過酸化脂質の測定は、各動物を6日目に類椎 脱臼にて屠殺し、速やかに心臓及び肝臓を摘出し 促重量を測定した後、氷冷下ポツター型テフロン ホモジナイザーで 0.9%生理食塩水を用いて 2% ホモジネート液を調製した。これを検液として次

次に本願発明のサポニンの過酸化脂質生成抑制 作用の薬理試験結果を示す。

過酸化脂質生成抑制薬理試験

抗魔傷薬、アドリアマイシンはDNAと結合して核酸合成を抑制すると共に心臓での脂質代謝を阻害して過酸化脂質を蓄積させ心筋障害を副作用として引起す事が広く知られている。

〔実験方法〕

1) COF 系雄性マウス (5 週齢 2 0 ~ 2 5 g) 5 匹ずつで構成された群を用い、各マウスにアドリアマイシン (協和醱勢工業製) を 1 5 号/ kgの用量で腹陸内投与 (薬液量: 体重 1 0 g 当 b 0.15

の八木改良法を用いて過酸化脂質量を測定し、心臓、肝臓中の過酸化脂質を定量し対照群と比較した。

上記2%ホモジネート液 0.2 Wに3%ラウリル 硫酸ナトリウム水溶液 0.5 mlを加え、30 秒振盪 混和せしめ、これに酢酸緩衝液 (PH 3.6) 1.5 ml 及び 0.8 %チオパルピックル酸溶液 1.5 毗を加え、 蒸留水をもつて全容 4.0 配とした後、30秒間よ く振盪し、油浴中で60分間95℃で加熱後、5 分間流水にて冷却する。次に 0.2 規定塩酸 1.0 転 nープタノール/ピリジン(15:1) 熔液 5.0 ■を加え、敵しくふりまぜた後、15分間遠心分 離 (3000 rpm) に付し、上層の n - プタノー ル磨を分取し、盤光分光光度計 (Ex 5 1 5 nm、 Em 5 5 3 nm)で螢光度を測定する。別にマロン アルデヒド標準液を用いて本操作と同一の試験を 行つた螢光度と過酸化脂質量との関係を示す検量 線を作成しておき、測定値をとれてあてはめ含有 量を求めた。

(実験結果)

各被検薬、各投与量の作用を比較するため次式 によつて過酸化脂質生成抑制率を求め、その結果 を第1数に示す。

A:アドリアマイシンを投与しない群の過酸化 脂質消除

C:アドリアマイシンを投与した対照群の過酸 化脂質濃度

D: アドリアマイシン及び被検薬を投与した群 の過酸化脂質濃度

記号	投 与 薬 剤	過酸化脂質 (n mol/g)	抑制率(%)
A	投与薬剤なしの群 (正常群)	2 7 5.9 5 ±1 9.2 4	
С	アトリフマイシン十0.9% 生理食塩水投与群(対照)	5 4 0.6 2 ±2 8.3 5	0
מ	アトリアマイシン ナオウギサポニン(アストラ カロサイト類) 投与群		
	プ レチ ルアストラカロサイト I	4 7 2.3 4 ±2 7.5 0	2 5.8
	アストラガロサイドI	483.45 ±21.76	2 1.6
	イソアストラガロサイド [478.69 ±25.58	2 3.4
	アストラガロサイド []	4 9 1.3 9 ±1 9.6 8	1 8.6
	アストラガロサイドⅢ	497.21 ±20.21	1 6.4
	アストラガロサイド Ⅳ	485.03 ±18.45	2 1.0
	アストラガロサイドヤ	481.07 ±23.75	2 2.5
	アストラガロサイド VI	4 8 6.6 3 ±1 8.0 4	2 0.4
	アストラガロ サイト VI	488.74 ±23.25	1 9.6
	プストラガロサイド阪	38526 ±26.62	5 8.7

代理人 弁理士 野河信太