Lab Report 2: Investigating the relationship between horizontal displacement and falling distance in projectile motion.

Eric Zhou

September 17, 2024

1 Raw data

Diameter of the ball $d' = 1.580 \pm 0.005cm$

Trial	Photogate passing time $t(ms)$	Height $h(cm)$	Horizontal displacement $d(cm)$
1	17.13 ± 0.01	77.7 ± 0.5	33.7 ± 0.5 33.4 ± 0.5
2	17.80 ± 0.01	40.2 ± 0.5	23.2 ± 0.5 23.3 ± 0.5
3	17.17 ± 0.01	31.8 ± 0.5	20.2 ± 0.5 20.6 ± 0.5
4		28.6 ± 0.5	19.6 ± 0.5 19.1 ± 0.5
5		26.3 ± 0.5	19.3 ± 0.5 19.6 ± 0.5

Table 1: Raw data

2 Processed data

Average photogate passing time $\bar{t}=17.37(\pm 1.93\%)ms$. Initial velocity $v=\frac{1.580}{17.37}=0.091cm/ms=0.91m/s$. Velocity error $\Delta v=\pm (1.93\%+0.32\%)v=\pm 0.02m/s$.

Trial	Avg. horizontal disp. $d(cm)$	Error $\Delta d(\%)$	Height squared $d^2(cm^2)$	Error $\Delta d^2(cm^2)$
1	33.55	0.44	1125.6025	10.065
2	23.25	0.21	540.5625	2.325
3	20.5	0.48	420.25	4.1
4	19.35	1.29	374.4225	9.675
5	19.45	0.77	378.3025	5.835

Table 2: Processed data

3 Sample working

Take the wroking process of trial 1 data as an example. We can find

$$\begin{split} \bar{d} &= \frac{d_1 + d_2}{2} = \frac{33.7cm + 33.4cm}{2} = 33.55cm \\ \Delta \bar{d} &= \pm \frac{|d_1 - d_2|}{2} = \pm \frac{33.7cm - 33.4cm}{2} = \pm 0.15cm \\ \% \Delta \bar{d} &= \frac{\Delta \bar{d}}{\bar{d}} = \pm 0.44\% \\ \bar{d}^2 &= 1125.6025cm \\ \% \Delta (\bar{d}^2) &= 2\% \Delta \bar{d} = \pm 0.88\% \\ \Delta (\bar{d}^2) &= 0.88\% \times \bar{d}^2 = \pm 10.065cm \end{split} \tag{1}$$

Where \bar{d} is the average value of d, $\%\Delta$ refers to the percentage uncertainty of the following variable and Δ refers to the absolute uncertainty of the following value.

4 Diagram

 \bar{d}^2 alongside with its error is plotted against h, the graph plotted is shown in Figure 1. Linear fit is used to find the relationship between d^2 and h. A linear fit of $15.00h - 46.06 = d^2$ is found.

5 Analysis and conclusion

We can find in our previous hypothesis that

Figure 1: $d^2 - h$ graph

$$d^2 = \frac{2v_0^2}{g}h\tag{2}$$

as d and h are in centimeter, $\frac{2v_0^2}{g}$ should be 0.1500m. According to our measurement of d', the measured $\frac{2v_0^2}{g}$ is $0.169 \pm 0.008m$. The calculated value shows a percentage error of $\frac{|0.15-0.161|}{0.161} = 6.83\%$. This is an error within a reasonable range.