Proximity Operators and Nonsmooth Optimization

Zev Woodstock woodstock@zib.de

ZIB-AISST Tutorial Lecture Series March 16, 2022

Outline

- Motivation
- Oefine our setting
- Theory and tools
- 4 Algorithms

A common paradigm:

- Define an objective function
- Optimize with a first-order method (e.g., SGD with automatic gradients)

[Pontil et al, 2019] Sparse linear binary classifier

A common paradigm:

- Define an objective function
- Optimize with a first-order method (e.g., SGD with automatic gradients)

credit: adeveloperdiary.com

A common paradigm:

- Define an objective function
- Optimize with a first-order method (e.g., SGD with automatic gradients)

[Pontil et al, 2019] Sparse linear binary classifier

credit: adeveloperdiary.com

$$\underset{x \in \mathbb{R}^n}{\mathsf{minimize}} \ \sum_{i \in \mathit{I}_1} \max\{0, 1 - \langle x \mid \mathit{a}_i \rangle\} +$$

$$\sum_{i \in b} \max\{0, 1 + \langle x \mid a_i \rangle\} + \lambda ||x||_1$$

A common paradigm:

- Define an objective function
- Optimize with a first-order method (e.g., SGD with automatic gradients)

Issue: For many objective functions, a gradient does not exist.

[Pontil et al, 2019] Sparse linear binary classifier

credit: adeveloperdiary.com

$$\underset{x \in \mathbb{R}^n}{\mathsf{minimize}} \ \sum_{i \in I_1} \max\{0, 1 - \langle x \mid a_i \rangle\} +$$

$$\sum_{i \in b} \max\{0, 1 + \langle x \mid a_i \rangle\} + \lambda ||x||_1$$

A common paradigm:

- Define an objective function
- Optimize with a first-order method (e.g., SGD with automatic gradients)

Issue: For many objective functions, a gradient does not exist.

Engineers:

credit: riplevs.com

Let \mathcal{H} be a real Hilbert space with inner product $\langle \cdot | \cdot \rangle$ (e.g. \mathbb{R}^n with the dot product $\langle x | y \rangle = x^T y$).

```
Let \mathcal{H} be a real Hilbert space with inner product \langle \cdot \mid \cdot \rangle (e.g. \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y).

Let \Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} \mid f \text{ is convex, lower-semicontinuous, and proper }\}
```

```
Let \mathcal{H} be a real Hilbert space with inner product \langle \cdot \mid \cdot \rangle (e.g. \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y). Let \Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} | f \text{ is convex, lower-semicontinuous, and proper }\} e.g. e^x, -\ln(x), \|\cdot\|^2,
```

```
Let \mathcal{H} be a real Hilbert space with inner product \langle \cdot \mid \cdot \rangle (e.g. \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y). Let \Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} \mid f \text{ is convex, lower-semicontinuous, and proper }\} e.g. e^x, -\ln(x), \|\cdot\|^2, ReLU, Hinge loss, \|Ax + b\|, \|\cdot\|_1, \sup\{f_i \mid i \in I\},
```

```
Let \mathcal{H} be a real Hilbert space with inner product \langle \cdot \mid \cdot \rangle (e.g. \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y).

Let \Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} | f \text{ is convex,} lower-semicontinuous, and proper \} e.g. e^x, -\ln(x), \|\cdot\|^2, ReLU, Hinge loss, \|Ax + b\|, |\cdot|_1, sup\{f_i | i \in I\}, affine composition, positive linear combinations, ...
```

```
Let \mathcal{H} be a real Hilbert space with inner product \langle \cdot \mid \cdot \rangle (e.g. \mathbb{R}^n with the dot product \langle x \mid y \rangle = x^T y). Let \Gamma_0(\mathcal{H}) = \{f : \mathcal{H} \to \mathbb{R} \cup \{+\infty\} | f \text{ is convex,} \} lower-semicontinuous, and proper \{ e.g. e^x, -\ln(x), \|\cdot\|^2, \text{ ReLU, Hinge loss, } \|Ax + b\|, |\cdot|_1, \sup\{f_i \mid i \in I\}, \text{ affine composition, positive linear combinations, } ...
```

This does not always include compositions of nonlinear operators, e.g., $\|\mathcal{N}(x) - d\|$ where \mathcal{N} is a multilayer neural network.

For
$$f \in \Gamma_0(\mathcal{H})$$
, let's find a minimizer

$$\underset{x \in \mathcal{H}}{\mathsf{Argmin}} \ f(x) \tag{③}$$

For $f \in \Gamma_0(\mathcal{H})$, let's find a minimizer

$$\underset{x \in \mathcal{H}}{\mathsf{Argmin}} \ f(x) \tag{③}$$

This includes constrained optimization. For a closed convex set C, $\iota_C(x) = \begin{cases} +\infty & \text{if } x \notin C \\ 0 & \text{if } x \in C. \end{cases}$

For $f \in \Gamma_0(\mathcal{H})$, let's find a minimizer

$$\underset{x \in \mathcal{H}}{\mathsf{Argmin}} \ f(x) \tag{③}$$

This includes constrained optimization. For a closed convex set C,

$$\iota_C(x) = \begin{cases} +\infty & \text{if } x \notin C \\ 0 & \text{if } x \in C. \end{cases}$$
 Then $\inf_{\substack{x \in \mathcal{H} \\ x \in C}} f(x) = \inf_{x \in \mathcal{H}} f(x) + \iota_C(x).$

For $f \in \Gamma_0(\mathcal{H})$, let's find a minimizer

$$\underset{x \in \mathcal{H}}{\mathsf{Argmin}} \ f(x) \tag{③}$$

This includes constrained optimization. For a closed convex set C,

$$\iota_C(x) = \begin{cases} +\infty & \text{if } x \notin C \\ 0 & \text{if } x \in C. \end{cases}$$
 Then $\inf_{\substack{x \in \mathcal{H} \\ x \in C}} f(x) = \inf_{x \in \mathcal{H}} f(x) + \iota_C(x).$

Applications: signal processing, inverse problems, approximation theory, image processing, statistics, and machine learning.

Applications

- [Image processing: Stetzer et al. (2011)] Image recovery: Given a regularizing seminorm $|\cdot|_R$, solve an optimization problem involving $f(x) = \inf_{y \in L_2} \frac{1}{2} ||x-y||_{L_2}^2 + |y|_R$.
- [Statistics: Square root LASSO] For $A \in \mathbb{R}^{M \times N}$ and $x \in \mathbb{R}^M$: minimize_{$y \in \mathbb{R}^N$} $||Ay - x||_2 + ||y||_1$.
- [Machine Learning: Pontil et al., 2019] Sparse linear classifiers

A subgradient
$$g \in \mathcal{H}$$
 of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies $(\forall y \in \mathcal{H}) \qquad \langle y-x \mid g \rangle + f(x) \leq f(y),$

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \rightarrow]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H}) \qquad \langle y - x \mid g \rangle + f(x) \leq f(y),$$

and the **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x. This defines $\partial f : \mathcal{H} \to 2^{\mathcal{H}}$.

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H}) \qquad \langle y - x \mid g \rangle + f(x) \leq f(y),$$

and the **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x. This defines $\partial f : \mathcal{H} \to 2^{\mathcal{H}}$.

Example: $f = |\cdot|$: What do we do at zero?

A subgradient $g \in \mathcal{H}$ of $f \colon \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H}) \qquad \langle y - x \mid g \rangle + f(x) \leq f(y),$$

and the **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x. This defines $\partial f : \mathcal{H} \to 2^{\mathcal{H}}$.

Example: $f = |\cdot|$: What do we do at zero?

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \rightarrow]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H}) \qquad \langle y - x \mid g \rangle + f(x) \leq f(y),$$

and the **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x. This defines $\partial f : \mathcal{H} \to 2^{\mathcal{H}}$.

Fermat's Rule

For $f \in \Gamma_0(\mathcal{H})$, $x \in \operatorname{Argmin} f \Leftrightarrow 0 \in \partial f(x)$.

A subgradient $g \in \mathcal{H}$ of $f : \mathcal{H} \to]-\infty, +\infty]$ at $x \in \mathcal{H}$ satisfies

$$(\forall y \in \mathcal{H}) \qquad \langle y - x \mid g \rangle + f(x) \leq f(y),$$

and the **subdifferential** $\partial f(x) \subset \mathcal{H}$ is the set containing all subgradients of f at x. This defines $\partial f : \mathcal{H} \to 2^{\mathcal{H}}$.

Fermat's Rule

For $f \in \Gamma_0(\mathcal{H})$, $x \in \operatorname{Argmin} f \Leftrightarrow 0 \in \partial f(x)$.

Proof:

$$0 \in \partial f(x) \Leftrightarrow (\forall y \in \mathcal{H}) \quad \langle y - x | 0 \rangle + f(x) \leq f(y)$$
$$\Leftrightarrow (\forall y \in \mathcal{H}) \quad f(x) \leq f(y)$$
$$\Leftrightarrow x \in \text{Argmin } f$$

$$\operatorname{prox}_f(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} \|x - u\|^2$$

The **proximity operator of** f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_{f}(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} ||x - u||^{2}$$

• For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique.

The **proximity operator of** f at $x \in \mathcal{H}$ is

$$\operatorname{prox}_{f}(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} ||x - u||^{2}$$

• For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. This defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.

$$prox_f(x) = \underset{u \in \mathcal{H}}{\operatorname{Argmin}} f(u) + \frac{1}{2} ||x - u||^2$$

- For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. This defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.
- Projections: $\operatorname{prox}_{\iota_C}(x) = \operatorname{Argmin}_{u \in C} ||x u||^2 = \operatorname{proj}_C x$.

$$\operatorname{prox}_{f}(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} \|x - u\|^{2}$$

- For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. This defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.
- Projections: $\operatorname{prox}_{\iota_{\mathcal{C}}}(x) = \operatorname{Argmin}_{u \in \mathcal{C}} ||x u||^2 = \operatorname{proj}_{\mathcal{C}} x$.
- **Fixed points** of prox_f are minimizers:

$$x = \operatorname{prox}_f x \Leftrightarrow x \in \operatorname{Argmin} f$$

$$\operatorname{prox}_{f}(x) = \operatorname{Argmin}_{u \in \mathcal{H}} f(u) + \frac{1}{2} \|x - u\|^{2}$$

- For $f \in \Gamma_0(\mathcal{H})$ and $x \in \mathcal{H}$, $\operatorname{prox}_f(x)$ is unique. This defines an operator $\operatorname{prox}_f \colon \mathcal{H} \to \mathcal{H}$.
- Projections: $\operatorname{prox}_{\iota_{C}}(x) = \operatorname{Argmin}_{u \in C} ||x u||^{2} = \operatorname{proj}_{C} x$.
- **Fixed points** of prox_f are minimizers:

$$x = \operatorname{prox}_f x \Leftrightarrow x \in \operatorname{Argmin} f$$

spoiler alert:
$$x_{n+1} = \operatorname{prox}_f x_n \Rightarrow x_n \to x^* \in \operatorname{Argmin} f$$

Let $x \in \mathcal{H}$ and $\gamma > 0$.

$$x_+ = \operatorname{prox}_{\gamma f} x$$

$$x_{+} = \underset{u \in \mathcal{H}}{\operatorname{Argmin}} \gamma f(u) + \frac{1}{2} \|x - u\|^{2} \Leftrightarrow 0 \in \partial \left(\gamma f + \frac{1}{2} \|x - \cdot\|^{2} \right) (x_{+})$$
$$\Leftrightarrow 0 \in \gamma \partial f(x_{+}) + x_{+} - x$$
$$\Leftrightarrow x \in \gamma \partial f(x_{+}) + x_{+}$$

Let $x \in \mathcal{H}$ and $\gamma > 0$.

$$x_+ = \operatorname{prox}_{\gamma f} x$$

$$\Leftrightarrow x \in \gamma \partial f(x_+) + x_+$$

Differentiable setting: $\partial f(x_+) = {\nabla f(x_+)}$

Let $x \in \mathcal{H}$ and $\gamma > 0$.

$$x_+ = \operatorname{prox}_{\gamma f} x$$

$$\Leftrightarrow x \in \gamma \partial f(x_+) + x_+$$

Differentiable setting: $\partial f(x_+) = \{\nabla f(x_+)\}$

$$x_{+} \frac{\text{Prox step}}{= x - \gamma \nabla f(\mathbf{x}_{+})}$$

$$\gamma > 0$$

Let $x \in \mathcal{H}$ and $\gamma > 0$.

$$x_+ = \operatorname{prox}_{\gamma f} x$$

$$\Leftrightarrow x \in \gamma \partial f(x_+) + x_+$$

Differentiable setting: $\partial f(x_+) = \{\nabla f(x_+)\}$

$$x_{+} \frac{\text{Prox step}}{= x - \gamma \nabla} f(\mathbf{x}_{+})$$

$$\gamma > 0$$

$$\frac{\text{Gradient step}}{x_{+} = x - \lambda \nabla f(\mathbf{x})}$$

Let $x \in \mathcal{H}$ and $\gamma > 0$.

$$x_+ = \operatorname{prox}_{\gamma f} x$$

$$\Leftrightarrow x \in \gamma \partial f(x_+) + x_+$$

Differentiable setting: $\partial f(x_+) = \{\nabla f(x_+)\}$

$$x_{+} \frac{\text{Prox step}}{= x - \gamma \nabla f(\mathbf{x}_{+})}$$

$$\gamma > 0$$

Gradient step
$$x_{+} = x - \lambda \nabla f(x)$$
Extra restrictions on $\lambda > 0$

What does a proximal step do?

Let $x \in \mathcal{H}$ and $\gamma > 0$.

$$x_+ = \operatorname{prox}_{\gamma f} x$$

$$\Leftrightarrow x \in \gamma \partial f(x_+) + x_+$$

Differentiable setting: $\partial f(x_+) = {\nabla f(x_+)}$

$$x_{+} \frac{\text{Prox step}}{= x - \gamma \nabla f(\mathbf{x}_{+})}$$

$$\gamma > 0$$

$$\operatorname{prox}_{\gamma\|\cdot\|^2/2} x = x/(\gamma+1)$$

Gradient step
$$x_{+} = x - \lambda \nabla f(\mathbf{x})$$
Extra restrictions on $\lambda > 0$

$$x - \lambda \nabla (\|\cdot\|^2/2)x = (1 - \lambda)x$$

[Convex Analysis and Monotone Operator Theory, 2nd ed., Bauschke & Combettes]

• Let
$$F(x_1, x_2) = f_1(x_1) + f_2(x_2)$$
, then $\operatorname{prox}_F(x_1, x_2) = (\operatorname{prox}_{f_1}(x_1), \operatorname{prox}_{f_2}(x_2))$.

[Convex Analysis and Monotone Operator Theory, 2nd ed., Bauschke & Combettes]

- Let $F(x_1, x_2) = f_1(x_1) + f_2(x_2)$, then $\operatorname{prox}_F(x_1, x_2) = (\operatorname{prox}_{f_1}(x_1), \operatorname{prox}_{f_2}(x_2))$.
- Let $f \in \Gamma_0(\mathcal{H})$, $\alpha \geq 0$, $u \in \mathcal{H}$, $\beta \in \mathbb{R}$, and $\gamma > 0$ and set

$$h = f + (\alpha/2) \|\cdot -z\|^2 + \beta$$

Then, for every $x \in \mathcal{H}$,

$$\operatorname{prox}_{\gamma h} x = \operatorname{prox}_{\gamma(\gamma \alpha + 1)^{-1} f} \left((\gamma \alpha + 1)^{-1} (x + \gamma(\alpha z)) \right).$$

[Convex Analysis and Monotone Operator Theory, 2nd ed., Bauschke & Combettes]

- Let $F(x_1, x_2) = f_1(x_1) + f_2(x_2)$, then $\operatorname{prox}_F(x_1, x_2) = (\operatorname{prox}_{f_1}(x_1), \operatorname{prox}_{f_2}(x_2))$.
- Let $f \in \Gamma_0(\mathcal{H})$, $\alpha \geq 0$, $u \in \mathcal{H}$, $\beta \in \mathbb{R}$, and $\gamma > 0$ and set

$$h = f + (\alpha/2) \|\cdot -z\|^2 + \beta + \langle\cdot \mid u\rangle$$

Then, for every $x \in \mathcal{H}$,

$$\operatorname{prox}_{\gamma h} x = \operatorname{prox}_{\gamma(\gamma \alpha + 1)^{-1} f} \left((\gamma \alpha + 1)^{-1} (x + \gamma (\alpha z - u)) \right).$$

[Convex Analysis and Monotone Operator Theory, 2nd ed., Bauschke & Combettes]

- Let $F(x_1, x_2) = f_1(x_1) + f_2(x_2)$, then $\operatorname{prox}_F(x_1, x_2) = (\operatorname{prox}_{f_1}(x_1), \operatorname{prox}_{f_2}(x_2))$.
- Let $f \in \Gamma_0(\mathcal{H})$, $\alpha \geq 0$, $u \in \mathcal{H}$, $\beta \in \mathbb{R}$, and $\gamma > 0$ and set

$$h = f + (\alpha/2) \|\cdot -z\|^2 + \beta + \langle\cdot \mid u\rangle$$

Then, for every $x \in \mathcal{H}$,

$$\operatorname{prox}_{\gamma h} x = \operatorname{prox}_{\gamma(\gamma \alpha + 1)^{-1} f} \left((\gamma \alpha + 1)^{-1} (x + \gamma (\alpha z - u)) \right).$$

• If L is a bounded linear operator such that $LL^* = \mu \text{Id}$ for $\mu > 0$, then for every $x \in \mathcal{H}$, $\text{prox}_{fol} x = x + \mu^{-1} L^* \left(\text{prox}_{uf} (Lx) - Lx \right)$

[Convex Analysis and Monotone Operator Theory, 2nd ed., Bauschke & Combettes]

- Let $F(x_1, x_2) = f_1(x_1) + f_2(x_2)$, then $\operatorname{prox}_F(x_1, x_2) = (\operatorname{prox}_{f_1}(x_1), \operatorname{prox}_{f_2}(x_2))$.
- Let $f \in \Gamma_0(\mathcal{H})$, $\alpha \geq 0$, $u \in \mathcal{H}$, $\beta \in \mathbb{R}$, and $\gamma > 0$ and set

$$h = f + (\alpha/2) \|\cdot -z\|^2 + \beta + \langle\cdot \mid u\rangle$$

Then, for every $x \in \mathcal{H}$,

$$\operatorname{prox}_{\gamma h} x = \operatorname{prox}_{\gamma(\gamma \alpha + 1)^{-1} f} \left((\gamma \alpha + 1)^{-1} (x + \gamma (\alpha z - u)) \right).$$

- If L is a bounded linear operator such that $LL^* = \mu \text{Id}$ for $\mu > 0$, then for every $x \in \mathcal{H}$, $\text{prox}_{f \circ L} x = x + \mu^{-1} L^* \left(\text{prox}_{\mu f} (Lx) Lx \right)$
- Translation, Fenchel-Legendre conjugation, Moreau envelopes,

Example: Let $L \colon \mathbb{R}^n \to \mathbb{R}^n$ be a wavelet basis transform and let $b \in \mathbb{R}^n$.

$$f(x) = \|Lx - b\|_1$$

Do not solve the proximal subproblem directly!

Example: Let $L \colon \mathbb{R}^n \to \mathbb{R}^n$ be a wavelet basis transform and let $b \in \mathbb{R}^n$.

$$f(x) = \|Lx - b\|_1$$

$$\operatorname{prox}_{\|\cdot\|_1}(x) = \operatorname{soft}(x)$$

Do not solve the proximal subproblem directly!

ullet prox $_{\|\cdot\|_1}=$ soft is the soft thresholder. (known and easy to compute)

Example: Let $L \colon \mathbb{R}^n \to \mathbb{R}^n$ be a wavelet basis transform and let $b \in \mathbb{R}^n$.

$$f(x) = \|Lx - b\|_1$$

$$\operatorname{prox}_{\|\cdot - \boldsymbol{b}\|_1}(x) = \boldsymbol{b} + \operatorname{soft}(x - \boldsymbol{b})$$

Do not solve the proximal subproblem directly!

- ullet prox $_{\|\cdot\|_1}=$ soft is the soft thresholder. (known and easy to compute)
- Known results about translation.

Example: Let $L \colon \mathbb{R}^n \to \mathbb{R}^n$ be a wavelet basis transform and let $b \in \mathbb{R}^n$.

$$f(x) = \| \mathbf{L}x - b \|_1$$

$$\operatorname{prox}_{\|\underline{L} \cdot -b\|_1}(x) = \underline{L}^* \left(b + \operatorname{soft} \left(\underline{L} x - b \right) \right)$$

Do not solve the proximal subproblem directly!

- \bullet prox $_{\|.\|_1} = soft$ is the soft thresholder. (known and easy to compute)
- Known results about translation.
- Known results about linear operators (note $L^*L = Id$).

Example: Let $L \colon \mathbb{R}^n \to \mathbb{R}^n$ be a wavelet basis transform and let $b \in \mathbb{R}^n$.

$$f(x) = \|Lx - b\|_1$$

$$\operatorname{prox}_{\|L \cdot - b\|_1}(x) = L^* \left(b + \operatorname{soft} \left(Lx - b \right) \right)$$

Do not solve the proximal subproblem directly!

- ullet prox $_{\|\cdot\|_1}=$ soft is the soft thresholder. (known and easy to compute)
- Known results about translation.
- Known results about linear operators (note $L^*L = Id$).

If we can compute the prox of the central nonlinearity, we can often figure out the rest.

• Yields provenly-convergent algorithms on nonsmooth problems (both $f(x) \to \inf f(\mathcal{H})$ and $x_n \to x^* \in \operatorname{Argmin} f$)

- Yields provenly-convergent algorithms on nonsmooth problems (both $f(x) \to \inf f(\mathcal{H})$ and $x_n \to x^* \in \operatorname{Argmin} f$)
- [Combettes & Glaudin, 2019] Even if f is differentiable, gradient-based algorithms do not always win against proximal algorithms.

- Yields provenly-convergent algorithms on nonsmooth problems (both $f(x) \to \inf f(\mathcal{H})$ and $x_n \to x^* \in \operatorname{Argmin} f$)
- [Combettes & Glaudin, 2019] Even if f is differentiable, gradient-based algorithms do not always win against proximal algorithms.
- If the central nonlinearity is expensive, this can be taxing. E.g., $\text{prox}_{\|\cdot\|_{\text{nuc}}}$ requires SVD.

- Yields provenly-convergent algorithms on nonsmooth problems (both $f(x) \to \inf f(\mathcal{H})$ and $x_n \to x^* \in \operatorname{Argmin} f$)
- [Combettes & Glaudin, 2019] Even if f is differentiable, gradient-based algorithms do not always win against proximal algorithms.
- If the central nonlinearity is expensive, this can be taxing. E.g., $prox_{\|\cdot\|_{Duc}}$ requires SVD.
- Need a prox? Check out proximity-operator.net.

Proximal Point Algorithm

For every $f \in \Gamma_0(\mathcal{H})$,

$$(\forall x \in \mathcal{H}) \quad \operatorname{prox}_f x = x \quad \Leftrightarrow \quad x \in \operatorname{Argmin} f$$

Proximal Point Algorithm (Martinet, 1970)

Let $\gamma \in]0, +\infty[$ and $f \in \Gamma_0(\mathcal{H})$ such that Argmin $f \neq \emptyset$. For any initial point $x_0 \in \mathcal{H}$, the sequence

$$x_{n+1} = \mathsf{prox}_{\gamma f}(x_n)$$

converges weakly to a point in Argmin f.

minimize
$$f + g$$
 over \mathcal{H} (*)

minimize
$$f + g$$
 over \mathcal{H} (*)

Question: Given $prox_f$ and $prox_g$, can we compute $prox_{f+g}$ in closed form?

minimize
$$f + g$$
 over \mathcal{H} (*)

Question: Given prox_f and prox_g , can we compute $\operatorname{prox}_{f+g}$ in closed form? Some restrictive examples exist, but usually no.

minimize
$$f + g$$
 over \mathcal{H} (*)

Question: Given $prox_f$ and $prox_g$, can we compute $prox_{f+g}$ in closed form?

Some restrictive examples exist, but usually no.

Solution: Splitting algorithms: algorithms which only use $prox_f$ and $prox_g$ to solve (\star) .

- Forward-Backward algorithm
- Douglas-Rachford algorithm
- The method of parallel projections
- The method of alternating projections
- Extrapolated Method of Parallel Subgradient Projections (EMOPSP)
- Tseng's Algorithm

minimize
$$f + g$$
 over \mathcal{H} (*)

Forward-Backward Algorithm

Let $f \in \Gamma_0(\mathcal{H})$ and let $g : \mathcal{H} \to \mathbb{R}$ be convex and β -Lipschitz differentiable (for $\beta > 0$). Then if $\operatorname{Argmin}(f + g) \neq \emptyset$, the sequence

$$(\forall n \in \mathbb{N}) \left[\begin{array}{c} y_n = x_n - \gamma \nabla g(x_n) \\ x_{n+1} = \operatorname{prox}_{\gamma f} y_n \end{array} \right]$$

converges weakly to a point in Argmin(f + g), provided $\gamma \in]0, 2/\beta[$.

 $f \equiv 0 \Rightarrow \operatorname{prox}_{\gamma f} = \operatorname{Id}$, i.e., Gradient descent $f = \iota_C \Rightarrow \operatorname{prox}_{\gamma f} = \operatorname{proj}_C$, i.e., projected gradient descent

What if neither are differentiable?

Assume $\operatorname{Argmin}(f+g) \neq \emptyset$ and c.q. $0 \in \operatorname{int}(\operatorname{dom} f - \operatorname{dom} g)$.

Douglas-Rachford Splitting Algorithm

Let $y_0 \in \mathcal{H}$, $\gamma \in]0, +\infty[$, and $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in [0,2] such that $\sum_{n \in \mathbb{N}} \lambda_n(2 - \lambda_n) = +\infty$

$$(\forall n \in \mathbb{N}) \begin{bmatrix} x_n = \operatorname{prox}_{\gamma g} y_n \\ u_n = \gamma^{-1} (y_n - x_n) \\ z_n = \operatorname{prox}_{\gamma f} (2x_n - y_n) \\ y_{n+1} = y_n + \lambda_n (z_n - x_n) \end{bmatrix}$$

Then y_n converges weakly to $y \in \mathcal{H}$, and

- $x = \text{prox}_{\gamma g} y$ is an optimal primal solution
- \bullet $\gamma^{-1}(y-x)$ is an optimal (Fenchel-Rockafellar) dual solution

Commentary on algorithms in this class

There are many variants:

- > 2 functions
- Parallel
- Block-iterative

For special cases, linear convergence rates are possible (e.g., DR on closed subspaces in finite dimensions [Bauschke et al., 2014]).

- Accelerated
- Asynchronous

Commentary on algorithms in this class

There are many variants:

- > 2 functions
- Parallel
- Block-iterative

For special cases, linear convergence rates are possible (e.g., DR on closed subspaces in finite dimensions [Bauschke et al., 2014]).

Convergence can be slow for particular examples.

- Accelerated
- Asynchronous

Figure 2: Alternating projections in \mathbb{R}^2 for two lines M_1, M_2 .

credit: maths.ox.ac.uk

Commentary on algorithms in this class

There are many variants:

- > 2 functions
- Parallel
- Block-iterative

For special cases, linear convergence rates are possible (e.g., DR on closed subspaces in finite dimensions [Bauschke et al., 2014]).

Convergence can be slow for particular examples.

- Accelerated
- Asynchronous

Figure 2: Alternating projections in \mathbb{R}^2 for two lines M_1, M_2 .

Usually, storage requirements increase linearly with the number of functions.

Suppose you want to

$$\operatorname{minimize}_{x \in \mathcal{H}} \quad \sum_{i=1}^{m} f_i(x). \tag{1}$$

Suppose you want to

$$minimize_{x \in \mathcal{H}} \quad \sum_{i=1}^{m} f_i(x). \tag{1}$$

Rewrite in the Hilbert space
$$\mathcal{H}^m$$
:
$$\begin{cases} F(x_i)_{i \in [m]} = \sum_{i=1}^m f_i(x_i) \\ G(x_i)_{i \in [m]} = \iota_D(x_i)_{i \in [m]}, \end{cases}$$
 where $D = \{(x_i)_{i \in [m]} \in \mathcal{H}^m \mid x_1 = x_2 = \cdots = x_m\}.$

Suppose you want to

$$minimize_{x \in \mathcal{H}} \quad \sum_{i=1}^{m} f_i(x). \tag{1}$$

Rewrite in the Hilbert space
$$\mathcal{H}^m$$
:
$$\begin{cases} F(x_i)_{i \in [m]} = \sum_{i=1}^m f_i(x_i) \\ G(x_i)_{i \in [m]} = \iota_D(x_i)_{i \in [m]}, \end{cases}$$
 where $D = \{(x_i)_{i \in [m]} \in \mathcal{H}^m \mid x_1 = x_2 = \cdots = x_m\}$. Then (1) is equivalent to
$$\min_{x \in \mathcal{H}^m} F(x) + G(x).$$

Suppose you want to

$$minimize_{x \in \mathcal{H}} \quad \sum_{i=1}^{m} f_i(x). \tag{1}$$

Rewrite in the Hilbert space
$$\mathcal{H}^m$$
:
$$\begin{cases} F(x_i)_{i \in [m]} = \sum_{i=1}^m f_i(x_i) \\ G(x_i)_{i \in [m]} = \iota_D(x_i)_{i \in [m]}, \end{cases}$$
 where $D = \{(x_i)_{i \in [m]} \in \mathcal{H}^m \mid x_1 = x_2 = \cdots = x_m\}$. Then (1) is equivalent to
$$\min_{i \in \mathcal{H}^m} F(x_i) + G(x_i).$$

 $\begin{cases} \operatorname{prox}_{F}(x_{i})_{i \in [m]} = (\operatorname{prox}_{f_{1}} x_{1}, \operatorname{prox}_{f_{2}} x_{2}, \cdots, \operatorname{prox}_{f_{m}} x_{m}) \end{cases}$

(2)

Suppose you want to

$$minimize_{x \in \mathcal{H}} \quad \sum_{i=1}^{m} f_i(x). \tag{1}$$

Rewrite in the Hilbert space
$$\mathcal{H}^m$$
:
$$\begin{cases} F(x_i)_{i \in [m]} = \sum_{i=1}^m f_i(x_i) \\ G(x_i)_{i \in [m]} = \iota_D(x_i)_{i \in [m]}, \end{cases}$$
 where $D = \{(x_i)_{i \in [m]} \in \mathcal{H}^m \mid x_1 = x_2 = \dots = x_m\}$. Then (1) is equivalent to
$$\min_{m \in \mathcal{H}^m} F(x) + G(x). \tag{2}$$

Useful facts about the prox:

$$\begin{cases} \operatorname{prox}_{F}(x_{i})_{i \in [m]} = (\operatorname{prox}_{f_{1}} x_{1}, \operatorname{prox}_{f_{2}} x_{2}, \cdots, \operatorname{prox}_{f_{m}} x_{m}) \\ \operatorname{prox}_{G}(x_{i})_{i \in [m]} = \operatorname{proj}_{D}(x_{i})_{i \in [m]} = \frac{1}{m} \sum_{i=1}^{m} x_{i} \end{cases}$$

Suppose you want to

$$minimize_{x \in \mathcal{H}} \quad \sum_{i=1}^{m} f_i(x). \tag{1}$$

Rewrite in the Hilbert space
$$\mathcal{H}^m$$
:
$$\begin{cases} F(x_i)_{i \in [m]} = \sum_{i=1}^m f_i(x_i) \\ G(x_i)_{i \in [m]} = \iota_D(x_i)_{i \in [m]}, \end{cases}$$
 where $D = \{(x_i)_{i \in [m]} \in \mathcal{H}^m \mid x_1 = x_2 = \dots = x_m\}$. Then (1) is equivalent to
$$\min_{x \in \mathcal{H}^m} F(x) + G(x). \tag{2}$$

Useful facts about the prox:

$$\begin{cases} \operatorname{prox}_F(x_i)_{i \in [m]} = (\operatorname{prox}_{f_1} x_1, \operatorname{prox}_{f_2} x_2, \cdots, \operatorname{prox}_{f_m} x_m) \\ \operatorname{prox}_G(x_i)_{i \in [m]} = \operatorname{proj}_D(x_i)_{i \in [m]} = \frac{1}{m} \sum_{i=1}^m x_i \\ \text{Then use Douglas Rachford.} \end{cases}$$

Thank you for your time!