

Pertemuan ke-7: DERET TAYLOR DAN MACLAURIN, DERET BINOMIAL

Departemen Matematika FMIPA IPB

Bogor, 2017

Deret Taylor dan Maclaurin

- Pada bagian sebelumnya kita telah membahas penyajian deret pangkat untuk suatu kelas terbatas fungsi.
- Pada bagian ini kita menyelidiki masalah yang lebih umum: fungsi manakah yang mempunyai penyajian deret pangkat dan bagaimana menentukannya?

lacktriangle Kita mulai dengan memisalkan f sebagai sembarang fungsi yang dapat dinyatakan sebagai deret pangkat

$$f(x) = c_0 + c_1 (x - a) + c_2 (x - a)^2 + c_3 (x - a)^3 + c_4 (x - a)^4 + \cdots$$

$$(1)$$
untuk $|x - a| < R$.

- Substitusi x = a pada persamaan (1) menghasilkan $f(a) = c_0$.
- Jika kedua ruas persamaan (1) diturunkan, kita peroleh

$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots$$
 (2)

untuk |x - a| < R.

- Substitusi x = a pada persamaan (2) menghasilkan $f'(a) = c_1$.
- Jika kedua ruas persamaan (2) diturunkan, kita peroleh

$$f''(x) = 2c_2 + 2 \cdot 3c_3(x - a) + 3 \cdot 4c_4(x - a)^2 + \cdots$$
 (3)

untuk |x - a| < R.

■ Substitusi x = a pada persamaan (3) menghasilkan $f''(a) = 2c_2$.

Jika kedua ruas persamaan (3) diturunkan, kita peroleh

$$f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x - a) + 3 \cdot 4 \cdot 5c_5(x - a)^2 + \cdots$$
 (4)

untuk |x - a| < R.

- Substitusi x = a pada persamaan (4) menghasilkan $f'''(a) = 2 \cdot 3c_3 = 3!c_3$.
- Jika proses tersebut dilanjutkan, maka secara umum kita peroleh

$$f^{(n)}(a) = 2 \cdot 3 \cdot 4 \cdot 5 \cdot \cdots \cdot nc_n = n!c_n,$$

atau

$$c_n = \frac{f^{(n)}(a)}{n!}.$$

Teorema

Jika f mempunyai penyajian deret pangkat di a, yaitu jika

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
, $|x-a| < R$,

maka koefisiennya diberikan oleh

$$c_n = \frac{f^{(n)}(a)}{n!}.$$

• Koefisien c_n di atas adalah tunggal (unique).

 Jadi, jika f memiliki penyajian deret pangkat di a, maka deretnya pasti berbentuk

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$
 (5)

- Suatu fungsi tidak dapat digambarkan oleh lebih dari satu deret pangkat dari (x a).
- Deret pada persamaan (5) disebut *deret Taylor dari fungsi f di a* (atau *di sekitar a* atau *yang berpusat di a*).

■ Untuk kasus khusus a = 0, deret Taylor menjadi

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

= $f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots$

 Deret ini muncul cukup sering, sehingga diberi nama khusus sebagai deret Maclaurin.

Contoh

Tentukan deret Maclaurin untuk fungsi $f(x) = e^x$, serta tentukan jari-jari kekonvergenannya.

- Pertanyaan berikutnya adalah: bagaimana kita dapat menentukan apakah suatu fungsi adalah sama dengan deret Taylor-nya?.
- lacktriangle Dengan kata lain, jika f memiliki turunan pada semua orde, kapankah akan benar bahwa

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n?$$

■ Untuk menjawab pertanyaan tersebut kita gunakan teorema berikut.

Teorema (Teorema Taylor)

Misalkan f adalah sebuah fungsi yang memiliki turunan pada semua tingkatan untuk $x \in (a-R,a+R)$. Syarat perlu dan cukup agar fungsi tersebut sama dengan deret Taylor-nya adalah

$$\lim_{n\to\infty}R_n\left(x\right)=0,$$

dengan $R_n(x)$ adalah suku sisa dalam rumus Taylor, yaitu

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

untuk sembarang $c \in (a - R, a + R)$.

■ Untuk menerapkan Teorema Taylor, fakta berikut sering berguna.

Lema

Untuk setiap bilangan real x berlaku

$$\lim_{n\to\infty}\frac{x^n}{n!}=0.$$

Catatan:

- I Jika $\lim_{n\to\infty} R_n(x) = 0$, maka deret Taylor untuk fungsi f(x) mungkin saja konvergen pada suatu selang, tetapi tidak menggambarkan fungsi f(x) pada selang tersebut.
- 2 Jika kita ingin mengetahui nilai fungsi f(x) untuk x di sekitar a, maka lebih baik menggunakan deret Taylor untuk fungsi tersebut di a.

Contoh

Tentukan deret Taylor untuk $f(x) = e^x$ di a = 2 dan buktikan bahwa fungsi tersebut adalah sama dengan deret Taylor-nya.

Contoh

Tentukan deret Maclaurin untuk $f(x) = \sin x$, dan buktikan bahwa deret tersebut adalah sama dengan $\sin x$, untuk semua x.

■ Pada dua deret pangkat (deret Taylor atau Maclaurin) yang menggambarkan dua fungsi, dapat dilakukan operasi penjumlahan, pengurangan, perkalian dan pembagian, dan hasilnya akan menggambarkan berturut-turut hasil penjumlahan, pengurangan, perkalian dan pembagian dari dua fungsi yang berpadanan.

Teorema

Misalkan $f(x) = \sum\limits_{n=0}^{\infty} a_n x^n \; dan \; g(x) = \sum\limits_{n=0}^{\infty} b_n x^n \; adalah \; dua \; deret \; pangkat \; yang \; masing-masing \; konvergen \; untuk \; paling \; tidak \; |x| < R, \; dengan \; R \; suatu \; bilangan \; nyata. \; Jika penjumlahan, pengurangan, perkalian dan pembagian dilakukan terhadap deret-deret tersebut dengan memperlakukannya sebagai suku banyak, maka deret-deret yang diperoleh akan konvergen untuk <math>|x| < R$, dan masing-masing menyatakan fungsi $f(x) + g(x), f(x) - g(x), f(x)g(x) \; dan \; f(x) / g(x) \; jika \; g(x) \neq 0.$

Contoh

Tentukan deret pangkat yang menggambarkan

- 1 $\ln |1 + x| + e^x$.
- $\ln |1+x| e^x$.
- 3 $\ln |1 + x| e^x$.
- $\frac{\ln|1+x|}{e^x}.$

Deret Binomial

Salah satu bentuk khusus dari deret Maclaurin adalah deret Binomial, yang disajikan pada teorema berikut.

Teorema (Deret Binomial)

Untuk setiap bilangan nyata p dan x dengan |x| < 1 berlaku

$$(1+x)^p = 1 + \binom{p}{1}x + \binom{p}{2}x^2 + \binom{p}{3}x^3 + \cdots$$

dengan

$$\binom{p}{k} = \frac{p(p-1)(p-2)\cdots(p-k+1)}{k!}.$$

Bukti:

Misalkan $f(x) = (1+x)^p$, maka kita peroleh f(0) = 1, f'(0) = p, f''(0) = p(p-1), f'''(0) = p(p-1)(p-2), dan seterusnya, sehingga kita peroleh deret Maclaurin dari fungsi f sebagai berikut

$$(1+x)^{p} = 1 + px + \frac{p(p-1)}{2!}x^{2} + \frac{p(p-1)(p-2)}{3!}x^{3} + \cdots$$
$$= 1 + {p \choose 1}x + {p \choose 2}x^{2} + {p \choose 3}x^{3} + \cdots$$

untuk |x| < 1.

■ Bukti bahwa $\lim_{n\to\infty} R_n\left(x\right)=0$ bisa dilihat pada buku-buku Kalkulus lanjut.

- Jika p adalah bilangan bulat positif, maka $\binom{p}{k} = 0$ untuk semua k > p, sehingga deret binomial takhingga sebelumnya menjadi deret dengan suku-suku terhingga.
- Dalam hal ini deret menjadi suku banyak seperti pada formula Binomial berikut.
- Untuk setiap bilangan real a dan b dengan |a| < 1 dan |b| < 1, serta untuk setiap bilangan bulat positif n, berlaku

$$(a+b)^n = \sum_{x=0}^n \binom{n}{x} a^x b^{n-x}.$$

Contoh

Tentukan deret Maclaurin untuk fungsi

$$f\left(x\right) = \frac{1}{\left(1 + x^2\right)^2}$$

pada selang -1 < x < 1.

Jawab: Mula-mula tentukan deret Binomial untuk $\frac{1}{(1+x)^2}$ yang

merupakan bentuk $(1+x)^p$ untuk p=-2. Kemudian gantilah x dengan χ^2

Contoh

Tentukan deret pangkat yang menyatakan

$$\int \sqrt{1+x^4} dx.$$

Kemudian hampiri

$$\int_0^1 \sqrt{1+x^4} dx$$

dengan lima suku pertama deret di atas.

Jawab: Mula-mula tentukan deret Binomial untuk $(1+x)^{1/2}$ yang merupakan bentuk khusus dari $(1+x)^p$ untuk p=1/2. Kemudian gantilah x dengan x^4 , lalu integralkan.

Ringkasan:

Beberapa deret Maclaurin yang penting adalah:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots, x \in (-1,1).$$

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots,$$

$$x \in (-1,1).$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots, x \in (-\infty, \infty).$$

4
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,$$

 $x \in (-\infty, \infty).$

Bahan Responsi

Soal

Tentukan deret Maclaurin untuk fungsi f(x) berikut hingga suku dengan x^5 .

- $f(x) = \cos x \ln (1+x)$.
- $f(x) = e^x + x^3 + \sin x.$
- $f(x) = (1+x)^{3/2}.$
- $f(x) = \frac{1}{1 + x + x^2}.$

Soal

Tentukan deret Taylor dalam (x - a) hingga suku dengan $(x - a)^3$ untuk fungsi berikut.

- **1** $f(x) = e^x$, a = 1.
- **2** $f(x) = \cos x$, $a = \frac{\pi}{3}$.

Soal

Jika $f(x) = \sum a_n x^n$ adalah suatu fungsi genap untuk $x \in (-R, R)$, maka buktikan bahwa $a_n = 0$ apabila n ganjil.

Soal

Dengan menulis $\frac{1}{x}=\frac{1}{1-(1-x)}$ dan dengan menggunakan deret pangkat bagi $\frac{1}{1-x}$ yang sudah dikenal, tentukan deret Taylor untuk $\frac{1}{x}$ dalam (x-1).

Tentang Slide

■ Penyusun: Dosen Departemen Matematika FMIPA IPB

■ Versi: 2017

■ Media Presentasi: LATEX - BEAMER (PDFLATEX)