6.7. El proceso de Yourdon

- 6.1. Introducción Visión panorámica del AE
- 6.2. Diagramas de flujo de datos
- 6.3. Diccionario de datos
- 6.4. Modelado de la lógica de los procesos
- 6.5. Modelado de datos
- 6.6. Historia de vida de las entidades
- 6.7. El proceso de Yourdon

Bibliografía

- (Yourdon 89) o (Yourdon 93)
 - Capítulos 17, 18, 19 y 20.

Introducción

En teoría, hemos visto unas TÉCNICAS (DFDs, DED, HVE, etc.)

En prácticas, hemos visto una HERRAMIENTA (System Architect)

Ahora necesitamos un MODELO DE PROCESO

un esquema de cómo se deben aplicar las técnicas y las herramientas para producir software:

- Actividades que se deben realizar
- En qué orden
- Cuáles son los productos que dichas actividades deben generar
- Etc.
- En 6.1. Introducción Visión panorámica del AE, vimos un modelo de proceso "clásico":
 - Análisis de requisitos (realizando un análisis del sistema actual, si procede)
 - Diseño de soluciones alternativas
 - Selección de una solución
 - Especificación en detalle de la solución escogida
 - Diseño estructurado: diagrama de estructuras
 - Refinamiento del diseño
 - Implementación
 - Mantenimiento

Aproximación "clásica"

⇒ demasiado t. modelando el sist. actual

Aproximación de Yourdon -Modelo esencial

- Construir un MODELO ESENCIAL:
 - Modelo lógico del nuevo sistema
 - "Un modelo de lo QUE el sist. debe hacer para satisfacer los requisitos del usuario, diciendo tan poco como sea posible (idealmente nada) sobre CÓMO se debe implementar."
 - 1. Modelo ambiental (o del entorno).
 - 2. Modelo del comportamiento.

Aproximación de Yourdon - Modelo de implementación

- No obstante, a veces conviene construir tb. un MODELO DE IMPLEMENTACIÓN
 - centrado en el CÓMO
- Debido típicamente a que:
 - el usuario no está convencido de que los analistas entienden el sistema
 - el analista decide que es preciso construir un modelo del sistema actual para entenderlo bien

Modelo ambiental

- Define el límite entre el sistema y el mundo exterior
 - Declaración de ámbito
 - descripción breve del propósito del sistema
 - Diagrama de contexto
 - ⇒ Evitar especificar el "protocolo de comunicación"
 - Lista de eventos

Ej. de eventos:

Cliente envía pedido (F)

Cliente cancela pedido (F)

Mensualmente la dirección precisa informe de ventas (T)

Una orden de reimpresión llega al almacén (C)

F, evento orientado a flujo

T, evento temporal

C, evento de control

Lista de eventos

No cada FD es un evento

Modelo del comportamiento

- Define el comportamiento requerido del "interior" del sistema para interactuar con el exterior.
 - DFDs
 - ER
 - DD
 - Miniespecificaciones
 - HVE

Modelo del comportamiento. Construcción.

- Aprox. TOP-DOWN
 - ⇒ difícil en probs. reales.

CAUSAS:

- "Parálisis del análisis"
- "El fenómeno de los 6 analistas"
- A veces, se hace una partición física arbitraria
- SOLUCIÓN: PARTICIÓN DE EVENTOS
 - Ni top-down, ni bottom-up

Partición de eventos. Modelo de comportamiento inicial

- 1. Se dibuja un proceso para cada evento de la lista de eventos.
- 2. El proceso se nombra describiendo la respuesta que el sistema debe producir en respuesta al evento asociado.
- 3. Se dibujan los FD de entrada y salida, almacenes auxiliares y almacenes para comunicación entre procesos.
- Se verifica el balanceo con el DFD de contexto.
 (El diagrama E-R se dibuja en paralelo.)

¿Sería válido este DFD?

(que forma parte del modelo de comportamiento inicial)

No, ya que los eventos ocurren de forma asíncrona, y se procesan de forma asíncrona: en el modelo de comportamiento inicial, todos los procesos deben estar desacoplados usando almacenes de datos.

Partición de eventos. Refinamientos.

El modelo inicial es muy complejo: se refina hacia arriba y abajo (7±2 proc.)

