

Public Key Encryption from trapdoor permutations

Constructions

Goal: construct chosen-ciphertext secure public-key encryption

Trapdoor functions (TDF)

<u>**Def**</u>: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F⁻¹)

- G(): randomized alg. outputs a key pair (pk, sk)
- $F(pk, \cdot)$: det. alg. that defines a function $X \longrightarrow Y$
- $F^{-1}(sk, \cdot)$: defines a function $Y \to X$ that inverts $F(pk, \cdot)$

More precisely: \forall (pk, sk) output by G

$$\forall x \in X$$
: $F^{-1}(sk, F(pk, x)) = x$

Secure Trapdoor Functions (TDFs)

(G, F, F⁻¹) is secure if F(pk, ·) is a "one-way" function:

can be evaluated, but cannot be inverted without sk

<u>Def</u>: (G, F, F^{-1}) is a secure TDF if for all efficient A:

$$Adv_{OW}[A,F] = Pr[x = x'] < negligible$$

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

E(pk, m): $x \stackrel{R}{\leftarrow} X$, $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$, $c \leftarrow E_s(k, m)$ output (y, c)

$$\frac{D(sk, (y,c))}{x \leftarrow F^{-1}(sk, y),}$$

$$k \leftarrow m \leftarrow D_s(k, c)$$
output m

In pictures:
$$E_s(H(x), m)$$
 header body

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc. and $H: X \longrightarrow K$ is a "random oracle" then (G,E,D) is CCA^{ro} secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

```
E(pk, m):

output c \leftarrow F(pk, m)
```

```
\frac{D(sk, c)}{\text{output } F^{-1}(sk, c)}
```

Problems:

- Deterministic: cannot be semantically secure!!
- Many attacks exist (next segment)

Next step: construct a TDF

End of Segment