ROB311 - TP2

Benjamin Collery and Clément Fauchereau September 2019

1 Question 1

The possible policies are:

	_									
State	S0	S1	S2		l and		l	l		l
Action	a1	a0	a0	a0	and	Action	a2	a0	a0	a0

2 Question 2

$$V^*(S0) = max(\gamma V^*(S1), \gamma V^*(S2))$$

$$(1 + \gamma x - \gamma)V^*(S1) = x\gamma V^*(S3)$$

$$V^*(S2) = 1 + \gamma(1 - y)V^*(S0) + \gamma yV^*(S3)$$

$$V^*(S3) = 10 + \gamma V^*(S0)$$

3 Question 3

$$\pi^*(S0) = argmax(\gamma V^*(S1), \gamma V^*(S2))$$

With x = 0:

$$V^*(S1) = \gamma V^*(S1)$$
 and $\gamma \neq 1$ therefore $V^*(S1) = 0$
 $V^*(S2) >= 1$ therefore $V^*(S2) > V^*(S1)$ and $\pi^*(S0) = a2$

4 Question 5

Using x = y = 0.25 and $\gamma = 0.9$, the optimal policy is:

State	S0	S1	S2	S3
Action	a1	a0	a0	a0

and utilities are:

State	S0	S1	S2	S3
V^*	14.176	15.752	15.688	22.758