МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №1 по курсу «Теория игр и исследование операций»

«Линейное программирование. Симплекс-метод»

Выполнил: студент ИУ9-111

Выборнов А.И.

Руководитель: Бассараб М.А.

1. Цель работы

Сформулировать задачу линейного программирования и решить её с помощью симплекс-метода.

2. Постановка задачи

Найти вектор $x = [x_1, x_2, x_3]^T$ как решение следующей задачи:

$$F = cx \to max,$$

$$Ax \le b,$$

$$x_1, x_2, x_3 \ge 0.$$

$$c = [2, 5, 3], A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \\ 0 & 0.5 & 1 \end{pmatrix}, b^T = [6, 6, 2]$$

3. Решение

Подставим числовые значения:

$$F = 2x_1 + 5x_2 + 3x_3 \to max,$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 \le 6, \\ x_1 + 2x_2 \le 6, \\ 0.5x_2 + x_3 \le 2. \end{cases}$$

$$x_1, x_2, x_3 > 0.$$

Избавимся от неравенства - получим задачу в канонической форме:

$$F = 2x_1 + 5x_2 + 3x_3 \to max,$$

$$\begin{cases} 2x_1 + x_2 + 3x_3 + x_4 = 6, \\ x_1 + 2x_2 + x_5 = 6, \\ 0.5x_2 + x_3 + x_6 = 2. \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0.$$
(1)

Пусть x_4, x_5, x_6 — базисные переменные, x_1, x_2, x_3 — свободные переменные. Тогда имеем:

$$F = 2x_1 + 5x_2 + 3x_3 \to max,$$

$$\begin{cases} x_4 = 6 - (2x_1 + x_2 + 3x_3), \\ x_5 = 6 - (x_1 + 2x_2), \\ x_6 = 2 - (0.5x_2 + x_3). \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0. \tag{2}$$

Исходная симплекс-таблица записывается в виде:

	s_{i0}	x_1	x_2	x_3
x_4	6	2	1	3
x_5	6	1	2	0
x_6	2	0	0.5	1
\overline{F}	0	-2	-5	-3

Так как в столбце свободных членов нет отрицательных элементов, то найдено опорное решение: x = [0,0,0,6,6,2], F(x) = 0. В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально.

 x_2 — разрешающий столбец, так как значение в строке таблицы, соответствующей целевой функции по модулю максимально.

Найдем минимальное положительное отношение элемента свободных членов s_{i0} к соответствующем элементу в разрешающем столбце. Минимальное положительное отношение в строке x_5 , выберем её в качестве разрешающей.

Пересчитываем симплекс таблицу:

	s_{i0}	x_1	x_5	x_3
x_4	3	1.5	-0.5	3
x_2	3	0.5	0.5	0
x_6	0.5	-0.25	-0.25	1
F	15	0.5	2.5	-3

В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. В качестве разрешающего столбца выбираем x_3 и в качестве разрешающей строки выбираем x_6 (причины выбора аналогичны описанным выше).

Пересчитываем симплекс таблицу:

	s_{i0}	x_1	x_5	x_6
x_4	1.5	2.25	0.25	-3
x_2	3	0.5	0.5	0
x_3	0.5	-0.25	-0.25	1
F	16.5	-0.25	1.75	3

В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. В качестве разрешающего столбца выбираем x_1 и в качестве разрешающей строки выбираем x_4 (причины выбора аналогичны описанным выше).

Пересчитываем симплекс таблицу:

	s_{i0}	x_4	x_5	x_6
x_1	0.6(6)	0.4(4)	0.1(1)	-1.3(3)
x_2	2.6(6)	-0.2(2)	0.4(4)	0.6(6)
x_3	0.6(6)	0.1(1)	-0.2(2)	0.6(6)
\overline{F}	16.6(6)	0.1(1)	1.7(7)	2.6(6)

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальное решение:

$$x = \left[\frac{2}{3}, 2\frac{2}{3}, \frac{2}{3}\right],$$

$$\max(F(x)) = 16\frac{2}{3}.$$

Проверим полученное решение на допустимость:

$$\begin{cases} x_1 = \frac{2}{3}, \\ x_2 = 2\frac{2}{3}, \\ x_3 = \frac{2}{3}, \\ x_4 = 6 - (2x_1 + x_2 + 3x_3) = 6 - (4+2) = 0, \\ x_5 = 6 - (x_1 + 2x_2) = 6 - 6 = 0, \\ x_6 = 2 - (0.5x_2 + x_3) = 2 - 2 = 0. \end{cases}$$
 (3)
имое, так как все переменные неотрицательны.

Решение допустимое, так как все переменные неотрицательны.