

DC GENERATOR

Part 3 - Note

Why Compound Generator

- In series wound generators, the output voltage is directly proportional with load current.
- In shunt wound generators, the output voltage is inversely proportional with load current.
- A combination of these two types of generators can overcome the disadvantages of both

Long shunt Compound wound generator

 Shunt field winding parallel with both armature and series field winding

$$E_g = V + I_a (R_a + R_{se}) + 2V_b$$

E_g = Generated voltage at armature

V = Terminal voltage

I_a = Armature current

I_{se} = Series field current

$$I_a = I_{se} = I_L + I_{sh}$$

 R_a = Armature resistance

 R_{se} = Series field resistance

 $V_b = brush drop$

$$P_{\text{generated}} = E_g I_a$$

 $P_{\text{output}} = V I_L$

Short shunt Compound wound generator

Shunt field winding parallel with armature only

$$E_g = V + I_a R_a + I_{se} R_{se} + 2V_b$$

 E_g = Generated voltage at armature V = Terminal voltage I_a = Armature current I_{se} = Series field current I_{a} = I_L + I_{sh} I_{se} = I_L

 R_a = Armature resistance

 R_{se} = Series field resistance

$$V_h = brush drop$$

$$P_{\text{generated}} = E_g I_a$$

 $P_{\text{output}} = V I_L$

Cumulative and Differential Compound Generator

Cumulative compound

- Magnetic flux produced by series winding assists the flux produced by shunt field winding
- Total flux = $\varphi_{sh} + \varphi_{se}$

Differential compound

- Series field flux opposes the shunt field flux
- Total flux = $\varphi_{sh} \varphi_{se}$