Graphics Generation

Sri Nimmagadda 3/25/2018

```
# library
library(stargazer)
##
## Please cite as:
  Hlavac, Marek (2015). stargazer: Well-Formatted Regression and Summary Statistics Tables.
   R package version 5.2. http://CRAN.R-project.org/package=stargazer
library(survival)
## Warning: package 'survival' was built under R version 3.2.5
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.2.5
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
##
library(xtable)
# set working directory
setwd("/Users/SriduttN/Desktop/JP Spring Semester")
# reading in the data set
timeVaried.sections <- read.csv("Finalized Compilation_SURV.csv", header = TRUE)
wars.withCovariates <- read.csv("Finalized Compilation.csv", header = TRUE)
finalCOW_intrastateData <- read.csv("Intrastate COW Data Compilation, 1995 to 2007.csv", header = TRUE)
atrocityWars <- finalCOW_intrastateData</pre>
atrocityWars <- atrocityWars[-31,]</pre>
```

```
atrocityWars <- atrocityWars[-27,]
atrocityWars <- atrocityWars[-7,]
atrocityWars <- atrocityWars[-20,]
atrocityWars <- atrocityWars[-17,]
atrocityWars <- atrocityWars[-2,]
atrocityWars <- atrocityWars[-2,]
atrocityWars <- atrocityWars[-18,]
atrocityWars <- atrocityWars[-6,]
atrocityWars <- atrocityWars[-9,]
atrocityWars <- atrocityWars[-9,]
atrocityWars <- atrocityWars[-4,]
atrocityWars <- atrocityWars[-5,]
# checking length of atrocity wars to corroborate accuracy of dataset
nrow(atrocityWars)</pre>
```

[1] 18

```
# reading in the nimmagadda.replication set
nimmagadda.replication <- read.csv("Political Atrocities Replication File_Final.csv", header = TRUE)
nimmagadda.replication$X <- 1:nrow(nimmagadda.replication)
ggplot(data = nimmagadda.replication, aes(x = X, y = Deaths.Number)) + geom_point() +
    ggtitle("Distribution of Death Count by Date") + xlab("Index of Political Atrocity Observation") + yl</pre>
```

Distribution of Death Count by Date


```
ggplot(data = timeVaried.sections[14:189, ], aes(x = X, y = LogDeaths)) + geom_point() +
    ggtitle("Distribution of Log-Death Count by Date") + xlab("Index of Political Atrocity Observation") +
```

Distribution of Log-Death Count by Date


```
# intervention organization
intervention <- subset(wars.withCovariates, InternationalOppo == 1)
intervention.atrocities <- subset(timeVaried.sections, DidAtrocityHappen == 1)
cor(wars.withCovariates$DidAtrocityHappen, wars.withCovariates$WarLength)</pre>
```

[1] 0.451746

```
# time of first intervention
firstIntervention <- rep(NA, nrow(intervention.atrocities))
intervention.atrocities <- cbind(intervention.atrocities, firstIntervention)
Violation.Dates <- nimmagadda.replication$dated_violations
intervention.atrocities <- cbind(intervention.atrocities, Violation.Dates, nimmagadda.replication$x)
startDates <- c("10/10/1997", "2/6/1998", "1/1/1997", "10/19/2006")

# dpylr
nimmagadda.replication.violations <- nimmagadda.replication %>%
    group_by(x) %>%
    summarise(sum(Deaths.Number))

totalDeaths <- rep(NA, 31)</pre>
```

```
for (i in 1:13) {
  totalDeaths[i] <- 0
for (i in 14:31) {
  totalDeaths[i] <- nimmagadda.replication.violations$'sum(Deaths.Number)'[i-13]
# wars with covariates
wars.withCovariates <- cbind(wars.withCovariates, totalDeaths)</pre>
wars.withCovariates$LogDeaths <- log(wars.withCovariates$totalDeaths)</pre>
wars.withCovariates$LogDeaths[1:13] <- 0</pre>
combinedSurvival <- coxph(data = timeVaried.sections, formula = Surv(WarLength, WarEndStatus) ~
                            DidAtrocityHappen + EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
combinedSurvival.Deaths <- coxph(data = timeVaried.sections[14:189,], formula = Surv(WarLength, WarEndS
                            LogDeaths + EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
combinedSurvival.woAtrocities <- coxph(data = timeVaried.sections[1:13,], formula = Surv(WarLength, War
                            EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
combinedSurvival.full <- coxph(data = wars.withCovariates, formula = Surv(WarLength, WarEndStatus) ~</pre>
                            DidAtrocityHappen + EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
combinedSurvival.full.missAngola <- coxph(data = wars.withCovariates[2:31,], formula = Surv(WarLength, '
                            DidAtrocityHappen + EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
combinedSurvival.full.missAngola.death <- coxph(data = wars.withCovariates[2:31,], formula = Surv(WarLe.
                            LogDeaths + EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
combinedSurvival.full.death <- coxph(data = wars.withCovariates, formula = Surv(WarLength, WarEndStatus
                             LogDeaths + EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
# removing angola
combinedSurvival.woAtrocities.ang <- comph(data = timeVaried.sections[2:13,], formula = Surv(WarLength,
                            EthnFrac + RelFrac + InternationalAlly +
                            InternationalOppo + African + Polity + Log.Mountainous + Log.Population +
                            LogGDP.perCap)
```

```
## Loglik converged before variable 1,2,3,4,5,6,7,8,9; beta may be infinite.

combinedSurvival.wAtrocities <- coxph(data = timeVaried.sections[14:189,], formula = Surv(WarLength, Warlength, LogGDP.perCap + LogDeaths)

combinedSurvival.wAtrocities.war <- coxph(data = wars.withCovariates[14:31,], formula = Surv(Warlength, EthnFrac + RelFrac + InternationalAlly + InternationalOppo + African + Polity + Log.Mountainous + Log.Population + LogGDP.perCap + LogDeaths)

plot(survfit(combinedSurvival.woAtrocities), xlab = "Days Until Conflict End", ylab = "Probability of Conflict Ending", main = "Survival Curve - Conflicts without Atrocities", xaxt = "n")

axis(side = 1, at = seq(0,2000,200))</pre>
```

Warning in fitter(X, Y, strats, offset, init, control, weights = weights, :

Survival Curve - Conflicts without Atrocities


```
# removing angola
plot(survfit(combinedSurvival.woAtrocities.ang), xlab = "Days Until Conflict End",
    ylab = "Probability of Conflict Ending", main = "Survival Curve - Conflicts without Atrocities")
```

Survival Curve - Conflicts without Atrocities

plot(survfit(combinedSurvival.wAtrocities), xlab = "Days Until Conflict End",
 ylab = "Probability of Conflict Ending", main = "Survival Curve - War Periods with Atrocities")

Survival Curve - War Periods with Atrocities


```
plot(survfit(combinedSurvival), xlab = "Days Until Conflict End",
    ylab = "Probability of Conflict Ending", main = "Survival Curve - Pooled Conflicts")
```

Survival Curve - Pooled Conflicts

Survival Curve - ConflictsIn With Atrocities

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Mon, Apr 02, 2018 06:10:52

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Mon, Apr 02, 2018 06:10:53

Table 1:

Table		
	Depende	ent variable:
	War	Length
	(1)	(2)
Oid an Atrocity Happen?	-1.763***	
	(0.662)	
log-Death Count		-0.137
		(0.087)
thnic Fractionalization	1.481	1.199
	(1.271)	(1.342)
eligious Fractionalization	0.323	0.999
	(1.931)	(1.914)
nternational Ally	-0.165	-0.149
v	(0.848)	(0.837)
nternational Opponent	0.535	0.723
11	(0.805)	(0.791)
frican Country	0.332	-0.139
v	(0.890)	(0.817)
olity	0.081	0.098
·	(0.065)	(0.061)
og Mountainous	0.415	0.329
	(0.373)	(0.352)
og Population	-0.763**	-0.741*
-	(0.337)	(0.327)
og-GDP Per Capita	1.153**	0.609
	(0.527)	(0.436)
bservations	29	29
2	0.484	0.390
ax. Possible R ²	0.993	0.993
g Likelihood	-61.658	-64.088
ald Test $(df = 10)$	16.070*	12.360
R Test (df = 10)	19.199**	14.339
core (Logrank) Test ($df = 10$)	20.180**	14.695
ote:	*p<0.1; **p<	<0.05; ***p<

Table 2: Test

Table	e 2: 1est			
	Dep	pendent var	iable:	
	WarLength			
	(1)	(2)	(3)	
Did an Atrocity Happen?	-0.789 (0.539)			
Log-Death Count		-0.074 (0.084)	-0.102 (0.065)	
Ethnic Fractionalization	0.588 (1.239)	0.706 (1.344)	7.201*** (0.740)	
Religious Fractionalization	0.066 (1.935)	0.523 (1.918)	1.628** (0.793)	
International Ally	-0.303 (0.851)	-0.223 (0.850)	0.939*** (0.278)	
International Opponent	0.619 (0.797)	0.754 (0.805)	4.020*** (0.560)	
African Country	-0.960 (0.749)	-0.911 (0.749)	0.023 (0.485)	
Polity	$0.067 \\ (0.067)$	0.080 (0.063)	0.200*** (0.031)	
Log Mountainous	0.070 (0.346)	0.127 (0.339)	1.833*** (0.236)	
Log Population	-0.738^{**} (0.333)	-0.747^{**} (0.330)	-2.094^{***} (0.191)	
Log-GDP Per Capita	0.379 (0.392)	0.281 (0.396)	1.413*** (0.263)	
Observations \mathbb{R}^2	30 0.365	30 0.335	176 0.694	
Max. Possible R ² Log Likelihood	$0.993 \\ -67.852$	$0.993 \\ -68.529$	$1.000 \\ -633.289$	
Wald Test $(df = 10)$ LR Test $(df = 10)$ Score (Logrank) Test $(df = 10)$	12.680 13.612 14.402	11.510 12.259 13.068	166.230*** 208.442*** 222.767***	
Note:	*p<0	.1; **p<0.0	5; ***p<0.01	

10

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Mon, Apr 02, 2018 - 06:10:53

```
vector1 <- data.frame(combinedSurvival.full[1])
vector1$HR <- exp(vector1)

# distribution of conflict lengths
ggplot(data = finalCOW_intrastateData, aes(x = warTime)) + geom_histogram(binwidth = 200) + xlab("War L</pre>
```

Distribution of Intrastate Conflict Lengths, 1995 to 2007

ggplot(data = timeVaried.sections[1:13,], aes(x = WarLength)) + geom_histogram(binwidth = 200) + xlab(

Table 3: Test

		$D\epsilon$	ependent vario	able:		
			WarLength			
	(1)	(2)	(3)	(4)	(5)	
Did an Atrocity Happen?	-0.789 (0.539)		-1.763^{***} (0.662)			
Log-Death Count		-0.074 (0.084)	-0.102 (0.065)		-0.137 (0.087)	
Ethnic Fractionalization	0.588 (1.239)	0.706 (1.344)	7.201*** (0.740)	1.481 (1.271)	1.199 (1.342)	
Religious Fractionalization	$0.066 \\ (1.935)$	0.523 (1.918)	1.628** (0.793)	0.323 (1.931)	0.999 (1.914)	
International Ally	-0.303 (0.851)	-0.223 (0.850)	0.939*** (0.278)	-0.165 (0.848)	-0.149 (0.837)	
International Opponent	0.619 (0.797)	0.754 (0.805)	4.020*** (0.560)	$0.535 \\ (0.805)$	0.723 (0.791)	
African Country	-0.960 (0.749)	-0.911 (0.749)	0.023 (0.485)	0.332 (0.890)	-0.139 (0.817)	
Polity	$0.067 \\ (0.067)$	0.080 (0.063)	0.200*** (0.031)	0.081 (0.065)	0.098 (0.061)	
Log Mountainous	$0.070 \\ (0.346)$	0.127 (0.339)	1.833*** (0.236)	0.415 (0.373)	0.329 (0.352)	
Log Population	-0.738** (0.333)	-0.747^{**} (0.330)	-2.094^{***} (0.191)	-0.763^{**} (0.337)	-0.741^{**} (0.327)	
Log-GDP Per Capita	0.379 (0.392)	0.281 (0.396)	1.413*** (0.263)	1.153** (0.527)	0.609 (0.436)	
Observations R^2	30 0.365	30 0.335	176 0.694	29 0.484	29 0.390	
Max. Possible R ² Log Likelihood	$0.993 \\ -67.852$	$0.993 \\ -68.529$	$1.000 \\ -633.289$	$0.993 \\ -61.658$	$0.993 \\ -64.088$	
Wald Test $(df = 10)$ LR Test $(df = 10)$ Score (Logrank) Test $(df = 10)$	$12.680 \\ 13.612 \\ 14.402$	$ \begin{array}{c} 11.510 \\ 12.259 \\ 13.068 \end{array} $	166.230*** 208.442*** 222.767***	16.070* 19.199** 20.180**	12.360 14.339 14.695	

Note: *p<0.1; **p<0.05; ***p<0.01

Distribution of Intrastate Conflict Lengths, without Atrocities

ggplot(data = atrocityWars, aes(x = warTime)) + geom_histogram(binwidth = 200) + xlab("War Length, in D

Distribution of Intrastate Conflict Lengths, with Atrocities

ggplot(data = timeVaried.sections[14:189,], aes(x = WarLength)) + geom_histogram(binwidth = 200) + xla

Distribution of Intrastate Conflict Periods, with Atrocities


```
# hypothesis test for difference in mean war length, confidence intervals
se.noAtrocity.Length <- sqrt(var(timeVaried.sections$WarLength[1:13])/13)
mean.noAtrocity.Length <- mean(timeVaried.sections$WarLength[1:13])</pre>
# confidence interval for war periods of atrocities
se.AtrocityPeriod.Length <- sqrt(var(timeVaried.sections$WarLength[14:189])/176)
mean.AtrocityPeriod.Length <- mean(timeVaried.sections$WarLength[14:189])</pre>
# confidence interval for conflict duration of wars without atrocities
se.Atrocity.Length <- sqrt(var(atrocityWars$warTime)/18)</pre>
mean.Atrocity.Length <- mean(atrocityWars$warTime)</pre>
# creating a table of the results
X1 <- rbind(se.noAtrocity.Length, se.Atrocity.Length, se.AtrocityPeriod.Length)
X2 <- rbind(mean.noAtrocity.Length, mean.Atrocity.Length, mean.AtrocityPeriod.Length)
C1_table <- cbind(X1, X2)
row.names(C1_table) <- c("Length of Wars with No Atrocities",</pre>
                          "Length of Wars with Atrocities", "Length of War Periods (with Atrocities)")
C1_table <- data.frame(C1_table)</pre>
SE <- C1_table$X1
Mean <- C1_table$X2
UpperBound <- 1.96*SE+Mean
LowerBound <- Mean-1.96*SE
```

```
C1_table <- cbind(SE, Mean, UpperBound, LowerBound)</pre>
row.names(C1_table) <- c("Length of Wars with No Atrocities",</pre>
                           "Length of Wars with Atrocities", "Length of War Periods (with Atrocities)")
stargazer(C1_table, title = "Intrastate Conflict Length and Confidence Intervals, 1995 to 2007")
% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
```

			·	
	SE	Mean	UpperBound	LowerBound
Length of Wars with No Atrocities	84.700	322	488.012	155.988
Ecilgui of Walls with No Horocities	01.100	022	100.012	100.000

Table 4: Intrastate Conflict Length and Confidence Intervals, 1995 to 2007

```
Length of Wars with Atrocities
                                           97.781
                                                     692.667
                                                                   884.318
                                                                                   501.015
Length of War Periods (with Atrocities)
                                           31.610
                                                     574.335
                                                                   636.291
                                                                                   512.379
```

```
# correlation tests, for wars with atrocities
cor(atrocityWars$internationalizedAlly, atrocityWars$warTime)
```

[1] 0.1689778

% Date and time: Mon, Apr 02, 2018 - 06:10:54

```
cor(atrocityWars$internationalizedOpponent, atrocityWars$warTime)
```

[1] -0.1518585

```
# for wars without atrocities
cor(timeVaried.sections$InternationalAlly[1:13], timeVaried.sections$WarLength[1:13])
```

[1] 0.01082254

```
cor(timeVaried.sections$InternationalOppo[1:13], timeVaried.sections$WarLength[1:13])
```

[1] 0.002906537

```
# hypothesis test for difference in means between war periods
hypothesisTestSE <- sqrt((var(atrocityWars$warTime)/18) + var(timeVaried.sections$WarLength[1:13])/13)
meanDiff <- mean.Atrocity.Length - mean.noAtrocity.Length
# number of standard errors, significant at alpha levels of both .05 and .01
test1 <- meanDiff/hypothesisTestSE</pre>
# hypothesis test for difference between periods
hypothesisTestSE.2 <- sqrt(se.noAtrocity.Length^2+se.AtrocityPeriod.Length^2)
meanDiff.2 <- mean.AtrocityPeriod.Length - mean.noAtrocity.Length
test2 <- meanDiff.2/hypothesisTestSE.2</pre>
cor(timeVaried.sections$WarLength[14:189], timeVaried.sections$Log.Mountainous[14:189])
```

checking proportional hazards plot(cox.zph(combinedSurvival.full))

plot(cox.zph(combinedSurvival.full.death))

plot(cox.zph(combinedSurvival.Deaths))

plot(cox.zph(combinedSurvival.full.missAngola))


```
# dfbeta, influential observations test
dfbeta <- residuals(combinedSurvival.full, type="dfbeta")
par(mfrow=c(1, 1))
for (j in 1:10) {
   plot(dfbeta[, j], ylab=names(coef(combinedSurvival))[j])
   abline(h = 0)
}</pre>
```



```
dfbeta3 <- residuals(combinedSurvival.Deaths, type="dfbeta")
par(mfrow=c(1, 1))
for (j in 1:10) {
    plot(dfbeta3[, j], ylab=names(coef(combinedSurvival.wAtrocities))[j])
    abline(h = 0)
}</pre>
```



```
dfbeta4 <- residuals(combinedSurvival.full.missAngola, type="dfbeta")
par(mfrow=c(1, 1))
for (j in 1:9) {
    plot(dfbeta4[, j], ylab=names(coef(combinedSurvival))[j])
    abline(h = 0)
}</pre>
```


cor(atrocityWars\$internationalizedOpponent, atrocityWars\$warTime)

[1] -0.1518585

```
desStat1 <-
  rbind(mean(wars.withCovariates$EthnFrac), var(wars.withCovariates$EthnFrac), min(wars.withCovariates$
desStat2 <-
  rbind(mean(wars.withCovariates$RelFrac), var(wars.withCovariates$RelFrac), min(wars.withCovariates$Re
desStat3 <- rbind(mean(wars.withCovariates$Log.Mountainous), var(wars.withCovariates$Log.Mountainous),
           min(wars.withCovariates$Log.Mountainous), max(wars.withCovariates$Log.Mountainous))
gpa <- wars.withCovariates$LogGDP.perCap[-6]</pre>
desStat4 <- rbind(mean(gpa), var(gpa),</pre>
           min(gpa), max(gpa))
desStat5 <- rbind(mean(wars.withCovariates$Log.Population), var(wars.withCovariates$Log.Population), mi
desStat6 <- rbind(mean(wars.withCovariates$InternationalAlly), var(wars.withCovariates$InternationalAll
desStat7 <- rbind(mean(wars.withCovariates$InternationalOppo), var(wars.withCovariates$InternationalOpp
desStat8 <- rbind(mean(wars.withCovariates$Polity), var(wars.withCovariates$Polity), min(wars.withCovar
descriptiveFull <- as.matrix(cbind(desStat1,</pre>
                                     desStat2,
                                     desStat3,
                                     desStat4,
```

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Mon, Apr 02, 2018 06:10:54

Table 5:

	Mean	Variance	Minimum	Maximum
Ethnic Fractionalization	0.598	0.076	0.036	0.902
Religious Fractionalization	0.457	0.031	0	0.680
Log-Mountainous %	2.319	1.899	0	4.324
Log GDP per Capita	6.161	0.944	4.287	8.475
Log Population	9.775	2.005	7.099	12.304
International Ally Involvement	0.097	0.090	0	1
International Opponent Involvement	0.129	0.116	0	1
Polity Score	-0.831	21.239	-9	8

```
writeLines(capture.output(stargazer(descriptiveFull)), )
```

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Mon, Apr 02, 2018 06:10:54

Table 6:

	Ethnic Fractionalization	Religious Fractionalization	${\bf Log\text{-}Mountainous}~\%$	Log GDP per Capita	I
Mean	0.598	0.457	2.319	6.161	
Variance	0.076	0.031	1.899	0.944	
Minimum	0.036	0	0	4.287	
Maximum	0.902	0.680	4.324	8.475	

 ${\it \# confidence intervals for proportions of wars that are internationalized based on having atrocities} \\ {\it cor(wars.withCovariates\$DidAtrocityHappen, wars.withCovariates\$InternationalOppo)} \\$

[1] -0.06290428

```
mean(wars.withCovariates$InternationalOppo)
```

[1] 0.1290323

```
# confidence intervals
international.oppo.peaceMean <- mean(wars.withCovariates$InternationalOppo[1:13])
international.oppo.peaceSE <- sqrt(mean(wars.withCovariates$InternationalOppo[1:13])*(1-mean(wars.withCovariates$InternationalOppo[1:13])*(1-mean(wars.withCovariates$InternationalOppo[14:31])
international.oppo.atroSE <- sqrt(mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$InternationalOppo[14:31])*(1-mean(wars.withCovariates$Internation
```

% latex table generated in R 3.2.3 by xtable 1.8-2 package % Mon Apr 2 06:11:21 2018

	Internationalization Rate for 'Clean' Wars	Internationalization Rate for 'Dirty' Wars
Mean	0.154	0.111
Median	0.028	0.111
95% CI Max	0.208	0.145
95% CI Min	0.099	0.077

```
# for wars that do feature atrocities, does the magnitude of atrocities influence time before intervent

# hypothesis test for differences

(international.oppo.atroMean - international.oppo.peaceMean)/sqrt(international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.atroSE^2+international.oppo.a
```

[1] -1.303338

```
# plotting log total deaths as a result of time
ggplot(data = wars.withCovariates, aes(x = LogDeaths, y = WarLength)) + geom_point() +
    ggtitle("(1) Civil War Duration on Political Atrocity Magnitude, 1995 to 2007") + xlab("Log of Total I
    ylab("Civil War Length, in Days") + geom_smooth(method = "lm")
```

(1) Civil War Duration on Political Atrocity Magnitude, 1995 to 2007


```
ggplot(data = wars.withCovariates[12:31,], aes(x = LogDeaths, y = WarLength)) + geom_point() +
ggtitle("(2) Civil War Duration on Political Atrocity Magnitude, 1995 to 2007") + xlab("Log of Total :
ylab("Civil War Length, in Days") + geom_smooth(method = "lm")
```

(2) Civil War Duration on Political Atrocity Magnitude, 1995 to 2007


```
ggplot(data = wars.withCovariates[14:31,], aes(x = LogDeaths, y = WarLength)) + geom_point() +
ggtitle("(3) Civil War Duration on Political Atrocity Magnitude, 1995 to 2007") + xlab("Log of Total :
ylab("Civil War Length, in Days") + geom_smooth(method = "lm")
```

(3) Civil War Duration on Political Atrocity Magnitude, 1995 to 2007


```
COWinternationalized <- read.csv("Intra-StateWarData_v4.1 (All International).csv", header = TRUE)
mean(atrocityWars$warTime)-mean(wars.withCovariates$WarLength[2:13])
```

[1] 441.8333

```
sqrt((var(wars.withCovariates$WarLength[2:13])/12)+(var(atrocityWars$warTime)/18))
```

[1] 109.791

```
mean(atrocityWars$warTime)
```

[1] 692.6667

% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

% Date and time: Mon, Apr 02, 2018 - 06:11:21

Table 7:

	Angola Covariate Measurements	Mean of 'Clean' Civil Wars		
Ethnic Fractionalization	0.783	0.620		
Religious Fractionalization	0.612	0.501		
Log Mountainous %	2.370	2.218		
Log Population	9.711	9.580		
African Status	1	0.538		

% latex table generated in R 3.2.3 by xtable 1.8-2 package % Mon Apr 2 06:11:31 2018

	Angola Covariate Measurements
Ethnic Fractionalization	0.78
Religious Fractionalization	0.61
Log Mountainous %	2.37
Log Population	9.71
African Status	1.00

```
# dplyr
lankaOrganized <- lankaGov %>%
group_by(Start.Year) %>%
```

```
summarise(sumDeaths = sum(Deaths.Number))
ggplot(data = lankaOrganized, aes(x = Start.Year, y = sumDeaths))+geom_histogram(stat='identity') +
    ggtitle("Sri Lanka - State-Sponsored Civilian Deaths By Year") + xlab("Year") + ylab("Total Deaths")
```

Warning: Ignoring unknown parameters: binwidth, bins, pad

Sri Lanka – State–Sponsored Civilian Deaths By Year


```
covarNames <- c("Did Atrocity Happen?", "Ethnic Fractionalization", "Religious Fractionalization", "Int
d <- data.frame(timeVaried.sections[14:189,])
d <- d[,-1:-4]
dcor1 <- cor(d)

d2 <- data.frame(wars.withCovariates)
d2 <- d2[,-1:-4]
dcor2 <- cor(d2)

library(rms)</pre>
```

```
## Warning: package 'rms' was built under R version 3.2.5
## Loading required package: Hmisc
## Warning: package 'Hmisc' was built under R version 3.2.5
```

```
## Loading required package: lattice
## Loading required package: Formula
## Warning: package 'Formula' was built under R version 3.2.5
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:xtable':
##
       label, label<-
##
## The following objects are masked from 'package:dplyr':
##
##
       src, summarize
## The following objects are masked from 'package:base':
##
##
       format.pval, units
## Loading required package: SparseM
## Warning: package 'SparseM' was built under R version 3.2.5
##
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
##
##
       backsolve
cvif1 <- vif(combinedSurvival.full)</pre>
cvif2 <- vif(combinedSurvival.full.death)</pre>
vifTests <- cbind(cvif1, cvif2)</pre>
stargazer(title = "Correlation Matrix For Covariates in Civil War Level Data", dcor2)
% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
\% Date and time: Mon, Apr 02, 2018 - 06:11:32
stargazer(title = "Correlation Matrix For Covariates in Atrocity Observation Level Data", dcor1)
% Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Mon, Apr 02, 2018 - 06:11:32
```

Table 8: Correlation Matrix For Covariates in Civil War Level Data

	EthnFrac	RelFrac	InternationalAlly	InternationalOppo	Polity	African	Log.Mounta
EthnFrac	1	0.054	-0.108	0.004	0.281	0.237	-0.428
RelFrac	0.054	1	-0.287	-0.048	-0.293	0.418	-0.306
InternationalAlly	-0.108	-0.287	1	0.199	0.012	0.078	-0.045
InternationalOppo	0.004	-0.048	0.199	1	-0.057	0.349	-0.286
Polity	0.281	-0.293	0.012	-0.057	1	-0.195	0.069
African	0.237	0.418	0.078	0.349	-0.195	1	-0.463
Log.Mountainous	-0.428	-0.306	-0.045	-0.286	0.069	-0.463	1
Log.Population	0.064	-0.424	-0.076	-0.188	0.452	-0.614	0.554
LogGDP.perCap							
WarLength	-0.035	-0.223	0.126	-0.110	0.027	-0.0005	0.209
totalDeaths	-0.329	0.099	-0.066	-0.072	0.046	0.209	0.201
LogDeaths	-0.125	-0.187	0.083	0.021	-0.013	0.202	0.049

Table 9: Correlation Matrix For Covariates in Atrocity Observation Level Data

	EthnFrac	RelFrac	InternationalAlly	InternationalOppo	Polity	African	Log.Mounta
EthnFrac	1	0.297	-0.140	-0.399	-0.183	-0.124	-0.662
RelFrac	0.297	1	-0.526	-0.675	-0.181	0.077	-0.109
InternationalAlly	-0.140	-0.526	1	0.580	-0.088	0.143	-0.130
InternationalOppo	-0.399	-0.675	0.580	1	0.054	0.317	-0.031
Polity	-0.183	-0.181	-0.088	0.054	1	-0.378	0.072
African	-0.124	0.077	0.143	0.317	-0.378	1	-0.206
Log.Mountainous	-0.662	-0.109	-0.130	-0.031	0.072	-0.206	1
Log.Population	0.411	-0.135	-0.083	-0.246	0.368	-0.742	-0.015
LogGDP.perCap	0.355	0.003	-0.020	-0.279	0.037	-0.635	-0.386
WarLength	0.225	0.120	-0.324	-0.410	0.173	-0.345	-0.053
Deaths	-0.052	0.036	-0.059	-0.044	0.038	-0.089	0.029
LogDeaths	0.020	0.334	-0.222	-0.240	-0.199	0.105	-0.061

```
polity <- read.csv("polityRawData.csv", header = TRUE)

polityRanks <- c(5,6,6,5,5,5,6,6,6,5)
polityYeas <- c(2000,2001,2002,2003,2004,2005,2006,2007,2008,2009)

tablePolity <- data.frame(cbind(polityYeas, polityRanks))
colnames(tablePolity) <- c("Year", "Polity Score")

xtable(tablePolity)</pre>
```

% latex table generated in R 3.2.3 by x table 1.8-2 package % Mon Apr 2 06:11:32 2018

	Year	Polity Score
1	2000.00	5.00
2	2001.00	6.00
3	2002.00	6.00
4	2003.00	5.00
5	2004.00	5.00
6	2005.00	5.00
7	2006.00	6.00
8	2007.00	6.00
9	2008.00	6.00
10	2009.00	5.00

stargazer(vifTests)

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Mon, Apr 02, 2018 06:11:32

Table 10:

	cvif1	cvif2
DidAtrocityHappen	1.833	1.797
EthnFrac	2.875	3.330
RelFrac	3.206	3.103
InternationalAlly	1.840	1.840
InternationalOppo	2.028	2.083
African	3.728	3.770
Polity	2.046	1.930
Log.Mountainous	5.163	4.872
Log.Population	4.681	4.698
LogGDP.perCap	3.243	3.425

stargazer(cvif2)

- % Table created by stargazer v.5.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Mon, Apr 02, 2018 06:11:33

Table 11:

LogDeaths	EthnFrac	RelFrac	InternationalAlly	InternationalOppo	African	Polity	Log.Mountainous
1.797	3.330	3.103	1.840	2.083	3.770	1.930	4.872

```
# creating tables for hazard ratios
# model 1
atom1 <- coef(summary(combinedSurvival.full))</pre>
atom2 <- coef(summary(combinedSurvival.full.death))</pre>
atom3 <- coef(summary(combinedSurvival.Deaths))</pre>
atom4 <- coef(summary(combinedSurvival.full.missAngola))</pre>
atom5 <- coef(summary(combinedSurvival.full.missAngola.death))</pre>
m1_intl <- mean(wars.withCovariates$InternationalOppo[1:13])</pre>
SE1_intl <- sqrt(m1_intl*(1-m1_intl)/13)</pre>
m1_upB <- m1_intl + 1.96*SE1_intl</pre>
m1_dB <- m1_intl - 1.96*SE1_intl
m2_intl <- mean(wars.withCovariates$InternationalOppo[14:31])</pre>
SE2_intl <- sqrt(m2_intl*(1-m2_intl)/18)
m2_upB <- m2_intl + 1.96*SE2_intl</pre>
m2_dB <- m2_intl - 1.96*SE2_intl</pre>
SE_intl <- rbind(SE1_intl, SE2_intl)</pre>
M_intl <- rbind(m1_intl, m2_intl)</pre>
upB_intl <- rbind(m1_upB, m2_upB)</pre>
dB_intl <- rbind(m1_dB, m2_dB)</pre>
prop_intl <- as.matrix(cbind(SE_intl, M_intl, upB_intl, dB_intl))</pre>
colnames(prop_intl) <- c("SE", "Mean", "UpperBound", "LowerBound")</pre>
row.names(prop_intl) <- c("Proportion Internationalization - Clean Wars", "Proportion Internationalizat
xtable(prop_intl, digits = 3)
## \% latex table generated in R 3.2.3 by xtable 1.8-2 package
## % Mon Apr 2 06:11:33 2018
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrr}
## & SE & Mean & UpperBound & LowerBound \\
##
## Proportion Internationalization - Clean Wars & 0.100 & 0.154 & 0.350 & -0.042 \\
     Proportion Internationalization - Dirty Wars & 0.074 & 0.111 & 0.256 & -0.034 \\
      \hline
##
## \end{tabular}
## \end{table}
```

(m1_intl - m2_intl)/sqrt(SE1_intl^2+SE2_intl^2)

[1] 0.3432492