Package 'PopComm'

April 25, 2025

Title Population-Level Cell-Cell Communication Analysis Tools

Version 0.1.0.1

Description Facilitates population-level analysis of ligand-receptor (LR) interactions using large-scale single-cell transcriptomic data. Identifies significant LR pairs and quantifies their interactions through correlation-based filtering and projection score computations. Designed for large-sample single-cell studies, the package employs statistical modeling, including linear regression, to investigate LR relationships between cell types. It provides a systematic framework for understanding cell-cell communication, uncovering regulatory interactions and signaling mechanisms. Offers tools for LR pair-level, sample-level, and differential interaction analyses, with comprehensive visualization support to aid biological interpretation. The methodology is described in a manuscript currently under review and will be referenced here once published or publicly available.

```
Depends R (>= 4.1.0)
```

```
Imports Seurat (>= 4.1.0), broom (>= 1.0.0), dplyr (>= 1.0.0), purrr (>= 0.3.0), rlang, stringr (>= 1.4.0), tibble (>= 3.0.0), tidyr (>= 1.0.0), tidyselect (>= 1.1.0), Matrix (>= 1.2-0), ggplot2 (>= 3.3.0), ggpubr (>= 0.6.0), pheatmap (>= 1.0.12), RColorBrewer, reshape2 (>= 1.4.1), scales (>= 1.1.1), igraph (>= 2.0.0), parallel, pbmcapply (>= 1.5.0), grDevices
```

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

LazyData true

NeedsCompilation no

Author Zheng Gong [aut, cre] (https://orcid.org/0000-0001-7285-2630),
Mengwei Li [aut, ctb] (https://orcid.org/0000-0001-6163-2827)

Maintainer Zheng Gong <gongzheng131@hotmail.com>

Repository CRAN

Date/Publication 2025-04-25 15:20:09 UTC

Contents

	boxplot_lr_group_comparison	2
	circle_plot	4
	dotplot_lr_continuous_group	5
	dot_plot	6
	filtered_lr_eg	7
	filter_lr_all	7
	filter_lr_single	10
	heatmap_sample	12
	$lr_db \ldots \ldots \ldots \ldots \ldots \ldots$	13
	lr_linear_model_discrete	14
	lr_scores_eg	15
	metadata_eg	15
	one_step_all	16
	one_step_single	18
	pca_sample	20
	score_lr_all	21
	score_lr_single	23
Index		26

boxplot_lr_group_comparison

Boxplot Comparison of Ligand-Receptor Interaction Scores Across Groups

Description

Generates a boxplot comparing LR (ligand-receptor) interaction scores across sample groups. with optional significance testing (t-test or Wilcoxon).

Usage

```
boxplot_lr_group_comparison(
    lr_scores,
    metadata,
    ligand,
    receptor,
    sender,
    receiver,
    group_by,
    score = c("normalized", "raw"),
    test = TRUE,
    paired = FALSE,
    test_method = c("wilcox.test", "t.test"),
    colors = c("#5fa9d1", "#154778"),
    title = NULL
)
```

Arguments

lr_scores	Data frame containing LR interaction scores per sample (data frame).
metadata	Data frame containing sample metadata (data frame).
ligand	Ligand gene name to filter (character).
receptor	Receptor gene name to filter (character).
sender	Sender cell type to filter (character).
receiver	Receiver cell type to filter (character).
group_by	Column name in metadata to group samples (character).
score	Use 'normalized' or 'raw' score (default: "normalized") (character).
test	Whether to add a statistical test annotation (logical, default: TRUE).
paired	Whether to treat the comparison as paired (logical, default: FALSE).
test_method	Statistical test to use: "t.test" or "wilcox.test" (default = "wilcox.test") (character).
colors	Vector of colors for groups (default: c("#5fa9d1", "#154778")).
title	Custom plot title (optional).

Value

A list containing:

- plot ggplot object of the boxplot
- df data frame used for plotting

```
# Boxplot of LR Score by group
data(lr_scores_eg)
data(metadata_eg)
res <- boxplot_lr_group_comparison(
    lr_scores_eg, metadata_eg,
    ligand = "TAC4", receptor = "TACR1",
    sender = "Perivascular", receiver = "Cardiac",
    group_by = "IFN_type", score = "normalized"
)
print(res$plot)
head(res$df)</pre>
```

4 circle_plot

circle_plot

Plot Circular Ligand-Receptor Interaction Network

Description

Plots a circular ligand-receptor (LR) interaction network with curved directed edges. Nodes are arranged in a circle, and edge widths and colors represent interaction strengths.

Usage

```
circle_plot(
  filtered_lr,
  edge_width = c("count", "cor"),
  node_colors = NULL,
  show_self_interactions = TRUE,
  cutoff = 0
)
```

Arguments

Value

A recordedplot object representing the network plot.

```
# Plot Circular Cell-Cell Interaction Network
data(filtered_lr_eg)
p <- circle_plot(filtered_lr_eg, edge_width = "count", show_self_interactions = TRUE)
print(p)</pre>
```

```
dotplot_lr_continuous_group
```

Dotplot of Ligand-Receptor Interaction Scores Against Continuous Group Variable

Description

Creates a dotplot (scatter plot) of LR interaction scores against a continuous variable with optional regression line.

Usage

```
dotplot_lr_continuous_group(
    lr_scores,
    metadata,
    ligand,
    receptor,
    sender,
    receiver,
    group_by,
    score = c("normalized", "raw"),
    point_size = 3,
    point_color = "dodgerblue4",
    add_regression = TRUE,
    title = NULL
)
```

Arguments

lr_scores	Data frame containing LR interaction scores per sample (data frame).
metadata	Data frame containing sample metadata (data frame).
ligand	Ligand gene name to filter (character).
receptor	Receptor gene name to filter (character).
sender	Sender cell type to filter (character).
receiver	Receiver cell type to filter (character).
group_by	Continuous variable column in metadata (e.g., age, severity score) (character).
score	Use 'normalized' or 'raw' score (default: "normalized") (character).
point_size	Size of the points in the plot (numeric, default: 3).
point_color	Color of the points in the plot (default: "dodgerblue4").
add_regression	Whether to add regression line (logical, default: TRUE).
title	Custom plot title (optional).

6 dot_plot

Value

A list containing:

- plot ggplot object of the dotplot
- df data frame used for plotting

Examples

```
# Dotplot of LR Score Against Continuous Group Variable
data(lr_scores_eg)
data(metadata_eg)
res <- dotplot_lr_continuous_group(
    lr_scores_eg, metadata_eg,
    ligand = "TAC4", receptor = "TACR1",
    sender = "Perivascular", receiver = "Cardiac",
    group_by = "IFNscore"
)
print(res$plot)
head(res$df)</pre>
```

dot_plot

Create Ligand-Receptor Interaction Dot Plot

Description

Generates a dot plot to visualize ligand-receptor (LR) interaction. Dot sizes are scaled by the correlation coefficient and dot colors represent -log10(adjust.p). The function supports plotting the top interactions per sender-receiver pair or user-specified ligand-receptor pairs.

Usage

```
dot_plot(
  filtered_lr,
  top_n = 5,
  axis = c("LR-SR", "SR-LR"),
  type_scale = c("size", "radius"),
  selected_LR = NULL
)
```

Arguments

filtered_lr A data frame containing ligand-receptor interaction data.

top_n Integer specifying the number of top interactions to select per sender-receiver pair (numeric, default: 5).

axis Character indicating the configuration of rows and columns in the plot. Options:

"LR-SR" (default, rows = ligand-receptor pairs, columns = sender-receiver pairs)
or "SR-LR".

filtered_lr_eg 7

type_scale Character indicating the scaling method for the plot. Options: "size" (default,

uses $scale_size()$ for point scaling) or "radius" (uses $scale_radius()$ for

point scaling).

selected_LR Optional character vector of ligand-receptor pair identifiers (e.g., c("TIMP1_CD63",

"DSCAM_DCC")). If NULL, the top_n interactions per sender-receiver pair are

used.

Value

A ggplot object representing the dot plot.

Examples

```
# Plot LR Interaction Dot Plot
data(filtered_lr_eg)
p <- dot_plot(filtered_lr_eg, axis = "LR-SR", type_scale = "size")
print(p)</pre>
```

filtered_lr_eg

Example for filtered_lr

Description

Example for filtered_lr

Usage

```
filtered_lr_eg
```

Format

An object of class data. frame with 5904 rows and 12 columns.

filter_lr_all

Filter and Analyze Ligand-Receptor Pair Correlations (All Cell Types)

Description

Filters ligand-receptor (LR) pairs and analyzes their correlations for all possible cell type pairs, and returns significant LR pairs based on user-defined thresholds.

filter_lr_all

Usage

```
filter_lr_all(
  rna,
  lr_database = PopComm::lr_db,
  sample_col,
  cell_type_col,
 min_cells = 50,
 min_samples = 10,
 min_cell_ratio = 0.1,
 min_sample_ratio = 0.1,
  cor_method = "spearman",
  adjust_method = "BH",
 min_adjust_p = 0.05,
 min_cor = 0,
 num\_cores = 10,
  verbose = TRUE
)
```

Arguments

rna	A Seurat object containing single-cell RNA expression data.	
lr_database	A data frame of ligand-receptor pairs with columns "ligand_gene_symbol" and "receptor_gene_symbol".	
sample_col	Column name in Seurat metadata indicating sample identifiers (character).	
cell_type_col	Column name in Seurat metadata indicating cell type classifications (character).	
min_cells	Minimum cells required per sample for both sender and receiver (numeric, default 50).	
min_samples	Minimum valid samples required to proceed (numeric, default 10).	
min_cell_ratio	Minimum ratio of cells expressing ligand and receptor genes in sender or receiver cells (numeric, default 0.1).	
min_sample_ratio		
	Minimum ratio of samples in which both the ligand and receptor genes must be expressed (numeric, default 0.1).	
cor_method	Correlation method: "spearman" (default), "pearson", or "kendall".	
adjust_method	P-value adjustment method (default "BH" for Benjamini-Hochberg). Options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".	
min_adjust_p	Adjusted p-value threshold for significance (numeric, default 0.05).	
min_cor	Minimum correlation coefficient threshold (numeric, default 0). Must be ≥ 0 .	
num_cores	Number of CPU cores for parallel processing (numeric, default 10). Automatically capped at (system cores - 1).	
verbose	Logical indicating whether to print progress messages (logical, default: TRUE).	

filter_lr_all

Value

A data frame includes LR pairs with sufficient correlation and expression support across samples.

ligand, receptor

Ligand and receptor gene symbols.

cor Correlation coefficient.

p_val Raw p-value.

adjust.p Adjusted p-value.

sender, receiver

Sender and receiver cell types.

slope Slope of the linear regression model.

intercept Intercept of the linear regression model.

Rows are ordered by ascending adjust.p and descending cor.

Returns NULL if:

- No cell types are found in the metadata.
- Insufficient samples or cells remain after filtering.
- No ligand-receptor pairs pass the filtering thresholds.

```
# Long-running example (may take >10s)
seurat_object <- load_example_seurat()</pre>
data(lr_db)
# Analyzing ligand-receptor interactions between all cell types
result01a <- filter_lr_all(</pre>
  rna = seurat_object,
 lr_database = lr_db,
 sample_col = "sample",
 cell_type_col = "cell.type",
 min_cells = 20,
 min_samples = 10,
 min_adjust_p = 0.5,
 num\_cores = 1,
  verbose = TRUE
if (!is.null(result01a)) {
print(head(result01a))
}
```

filter_lr_single

filter_lr_single	Filter and Analyze Ligand-Receptor Pair Correlations (Specified
	Sender and Receiver)

Description

Filters ligand-receptor (LR) pairs and analyzes their correlations for specified sender and receiver cell types, and returns significant LR pairs based on user-defined thresholds.

Usage

```
filter_lr_single(
  rna,
  sender,
  receiver,
  lr_database = PopComm::lr_db,
  sample_col,
  cell_type_col,
 min_cells = 50,
 min_samples = 10,
 min_cell_ratio = 0.1,
 min_sample_ratio = 0.1,
 cor_method = "spearman",
  adjust_method = "BH",
 min_adjust_p = 0.05,
 min_cor = 0,
 num\_cores = 10,
  verbose = TRUE
)
```

Arguments

rna	A Seurat object containing single-cell RNA expression data.
sender	Cell type designated as the ligand sender (character).
receiver	Cell type designated as the receptor receiver (character).
lr_database	A data frame of ligand-receptor pairs with columns "ligand_gene_symbol" and "receptor_gene_symbol".
sample_col	Column name in Seurat metadata indicating sample identifiers (character).
cell_type_col	Column name in Seurat metadata indicating cell type classifications (character).
min_cells	Minimum cells required per sample for both sender and receiver (numeric, default 50).
min_samples	Minimum valid samples required to proceed (numeric, default 10).
min_cell_ratio	Minimum ratio of cells expressing ligand and receptor genes in sender or receiver cells (numeric, default 0.1).

filter_lr_single 11

min_sample_ratio

Minimum ratio of samples in which both the ligand and receptor genes must be

expressed (numeric, default 0.1).

cor_method Correlation method: "spearman" (default), "pearson", or "kendall".

adjust_method P-value adjustment method (default "BH" for Benjamini-Hochberg). Options:

"holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

min_adjust_p Adjusted p-value threshold for significance (numeric, default 0.05).

min_cor Minimum correlation coefficient threshold (numeric, default 0). Must be ≥ 0 .

num_cores Number of CPU cores for parallel processing (numeric, default 10). Automati-

cally capped at (system cores - 1).

verbose Logical indicating whether to print progress messages (logical, default: TRUE).

Value

A data frame includes LR pairs with sufficient correlation and expression support across samples.

ligand, receptor

Ligand and receptor gene symbols.

cor Correlation coefficient.

p_val Raw p-value.
adjust.p Adjusted p-value.

sender, receiver

Sender and receiver cell types.

slope Slope of the linear regression model.
intercept Intercept of the linear regression model.

Rows are ordered by ascending adjust.p and descending cor.

Returns NULL if:

- No cell types are found in the metadata.
- · Insufficient samples or cells remain after filtering.
- No ligand-receptor pairs pass the filtering thresholds.

```
# Long-running example (may take >10s)
seurat_object <- load_example_seurat()
data(lr_db)

# Analyzing ligand-receptor interactions: Cardiac -> Perivascular
result01s <- filter_lr_single(
    rna = seurat_object,
    sender = "Cardiac",
    receiver = "Perivascular",
    lr_database = lr_db,
    sample_col = "sample",
    cell_type_col = "cell.type",</pre>
```

12 heatmap_sample

```
min_cells = 20,
min_samples = 10,
min_adjust_p = 0.5,
num_cores = 1,
verbose = TRUE
)

if (!is.null(result01s)) {
  print(head(result01s)) }
```

heatmap_sample

Generate Heatmap of Ligand-Receptor Interaction Scores

Description

This function generates a heatmap to visualize the ligand-receptor (LR) interaction scores across samples. Rows represent LR pairs and columns represent samples. Optionally, sample metadata can be used to annotate the columns.

Usage

```
heatmap_sample(
    lr_scores,
    metadata,
    score = c("normalized", "raw"),
    selected_sender = NULL,
    selected_receiver = NULL,
    selected_metadata = NULL
)
```

Arguments

lr_scores Data frame containing LR interaction scores per sample (data frame).

metadata Data frame containing sample metadata (data frame).

score Character string indicating which score to use: "normalized" (default) or "raw"

selected_sender

Specific sender cell type to filter, default is None (use all) (character).

selected_receiver

Specific receiver cell type to filter, default is None (use all) (character).

selected_metadata

List of column names in metadata to annotate samples (default: None, use all)(character vector).

 $lr_{-}db$

Value

Heatmap of average LR interaction scores per sample.

Examples

```
# Heatmap of LR Interaction Scores
data(lr_scores_eg)
data(metadata_eg)
p <- heatmap_sample(lr_scores_eg, metadata_eg, score = "normalized", selected_sender = "Cardiac",
    selected_receiver = "Perivascular", selected_metadata = c("Sex", "Age_group", "IFN_type"))
print(p)</pre>
```

1r_db

Ligand-Receptor Pair Database

Description

A comprehensive database of human ligand-receptor pairs with gene/protein identifiers and supporting evidence from literature. Data imported from human_lr_pair.txt.

Usage

1r_db

Format

A data frame with 3,398 rows (pairs) and 10 columns:

```
lr_pair Character. Unique identifier for ligand-receptor pair, formatted as "LIGAND_RECEPTOR" (e.g., "SEMA3F_PLXNA3")
```

ligand_gene_symbol Character. Official HGNC symbol of the ligand gene (e.g., "SEMA3F")

receptor_gene_symbol Character. Official HGNC symbol of the receptor gene (e.g., "PLXNA3")

ligand_gene_id Integer. Entrez Gene ID of the ligand gene (NCBI identifier)

receptor_gene_id Integer. Entrez Gene ID of the receptor gene (NCBI identifier)

ligand_ensembl_protein_id Character. Ensembl protein ID of the ligand (e.g., "ENSP0000002829")

receptor_ensembl_protein_id Character. Ensembl protein ID of the receptor (e.g., "ENSP00000358696")

ligand_ensembl_gene_id Character. Ensembl gene ID of the ligand (e.g., "ENSG00000001617")

receptor_ensembl_gene_id Character. Ensembl gene ID of the receptor (e.g., "ENSG00000130827")

evidence Character. PubMed IDs (PMIDs) supporting the interaction, comma-separated (e.g., "15721238")

Source

Source from CellTalkDB (PMID: 33147626).

```
lr_linear_model_discrete
```

Compare Ligand-Receptor Interaction Scores with Group Variable using Linear Regression

Description

Perform linear regression analysis to compare ligand-receptor (LR) interaction scores across groups, handling both continuous and binary group variables (ident1 vs ident2 or all others).

Usage

```
lr_linear_model_discrete(
    lr_scores,
    metadata,
    group_variable,
    ident1,
    ident2 = NULL,
    covariates = NULL,
    fdr_threshold = 0.05
)
```

Arguments

lr_scoresData frame containing LR interaction scores per sample (data frame).metadataData frame containing sample metadata (data frame).group_variableColumn name in metadata to compare groups (categorical or continuous) (character).ident1If categorical, group to compare (coded as 1) (character).ident2Reference group or list of groups (coded as 0). If None, uses all others (character).covariatesOptional list of covariate column names (character vector).fdr_thresholdSignificance cutoff for adjusted p-values (numeric, default: 0.05).

Value

Data frame with ligand, receptor, sender, receiver, coef (coefficient, logFC), p-values, and adjusted p-values.

```
# Long-running example (may take >10s)
data(lr_scores_eg)
data(metadata_eg)
res <- lr_linear_model_discrete(</pre>
```

lr_scores_eg

```
lr_scores_eg, metadata_eg,
  group_variable = "IFN_type",
  ident1 = "high",
  covariates = c("Age_group", "Sex")
)
head(res)
```

lr_scores_eg

Example for lr_scores

Description

Example for lr_scores

Usage

```
lr_scores_eg
```

Format

An object of class data. frame with 377006 rows and 15 columns.

metadata_eg

Example for metadata

Description

Example for metadata

Usage

```
metadata_eg
```

Format

An object of class data. frame with 163 rows and 9 columns.

one_step_all

(Across All Cell Types)	one_step_all	Analyze Ligand-Receptor Pair Correlations and Projection Scores (Across All Cell Types)
-------------------------	--------------	---

Description

Performs integrated analysis of ligand-receptor (LR) pairs through two consecutive phases:

- 1. Filters LR pairs and analyzes correlations across all cell types.
- 2. Calculates projection scores based on regression models for valid pairs. Returns comprehensive results combining statistical metrics.

Usage

```
one_step_all(
  rna,
  lr_database,
  sample_col,
  cell_type_col,
 min_cells = 50,
 min\_samples = 10,
 min_cell_ratio = 0.1,
 min_sample_ratio = 0.1,
  cor_method = "spearman",
  adjust_method = "BH",
 min_adjust_p = 0.05,
 min\_cor = 0,
 num_cores = 10,
  verbose = TRUE
)
```

Arguments

rna	A Seurat object containing single-cell RNA expression data.	
lr_database	A data frame of ligand-receptor pairs with columns "ligand_gene_symbol" and "receptor_gene_symbol".	
sample_col	Column name in Seurat metadata indicating sample identifiers (character).	
cell_type_col	Column name in Seurat metadata indicating cell type classifications (character).	
min_cells	Minimum cells required per sample for both sender and receiver (numeric, default 50).	
min_samples	Minimum valid samples required to proceed (numeric, default 10).	
min_cell_ratio	Minimum ratio of cells expressing ligand and receptor genes in sender or receiver cells (numeric, default 0.1).	
min_sample_ratio		
	Minimum ratio of samples in which both the ligand and receptor genes must be expressed (numeric, default 0.1).	

one_step_all 17

 $\begin{tabular}{ll} $\operatorname{correlation method: "spearman" (default), "pearson", or "kendall".} \\ &\operatorname{adjust_method} &\operatorname{P-value adjustment method (default "BH" for Benjamini-Hochberg). Options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".} \\ &\operatorname{min_adjust_p} &\operatorname{Adjusted p-value threshold for significance (numeric, default 0.05).} \\ &\operatorname{min_cor} &\operatorname{Minimum correlation coefficient threshold (numeric, default 0). Must be ≥ 0.} \\ &\operatorname{num_cores} &\operatorname{Number of CPU cores for parallel processing (numeric, default 10). Automatically capped at (system cores - 1).} \\ \end{tabular}$

verbose Logical indicating whether to print progress messages (logical, default: TRUE).

Value

Two data frames with columns:

ligand, receptor

Ligand and receptor gene symbols (res1/res2).

cor Correlation coefficient (res1/res2).

p_val Raw p-value (res1/res2).

adjust.p Adjusted p-value (res1/res2).

sender, receiver

Sender and receiver cell types (res1/res2).

slope Slope of the linear regression model (res1/res2).
intercept Intercept of the linear regression model (res1/res2).

sample Sample identifier (res2).

score Projection score (raw co-expression intensity) (res2).

normalized_score

Normalized score scaled between 0-1 (res2).

Returns NULL if:

- No cell types are found in the metadata.
- · Insufficient samples or cells remain after filtering.
- No ligand-receptor pairs pass the filtering thresholds.
- One or both of the specified sender and receiver cell types are missing in the data.
- Fewer than two valid samples remain after filtering based on minimum cell number per sample.

```
# Long-running example (may take >10s)
seurat_object <- load_example_seurat()
data(lr_db)

# Integrated analysis across all cell types
res_all <- one_step_all(
   rna = seurat_object,
   lr_database = lr_db,</pre>
```

one_step_single

```
sample_col = "sample",
cell_type_col = "cell.type",
min_cells = 20,
min_samples = 10,
min_adjust_p = 0.5,
num_cores = 1,
verbose = TRUE
)

if (!is.null(res_all)) {
  print(head(res_all$res1))
  print(head(res_all$res2))
}
```

one_step_single

Analyze Ligand-Receptor Pair Correlations and Projection Scores (Specified Sender and Receiver)

Description

Performs integrated analysis of ligand-receptor (LR) pairs through two consecutive phases:

- 1. Filters LR pairs and analyzes correlations between specified cell types.
- 2. Calculates projection scores based on regression models for valid pairs. Returns comprehensive results combining statistical metrics.

Usage

```
one_step_single(
  rna,
  sender,
  receiver,
 lr_database = PopComm::lr_db,
  sample_col,
  cell_type_col,
 min_cells = 50,
 min_samples = 10,
 min_cell_ratio = 0.1,
 min_sample_ratio = 0.1,
 cor_method = "spearman",
  adjust_method = "BH",
 min_adjust_p = 0.05,
 min_cor = 0,
 num\_cores = 10,
  verbose = TRUE
)
```

one_step_single 19

Arguments

rna A Seurat object containing single-cell RNA expression data.

sender Cell type designated as the ligand sender (character).

receiver Cell type designated as the receptor receiver (character).

1r_database A data frame of ligand-receptor pairs with columns "ligand_gene_symbol" and

"receptor_gene_symbol".

sample_col Column name in Seurat metadata indicating sample identifiers (character).

min_cells Minimum cells required per sample for both sender and receiver (numeric, de-

fault 50).

min_samples Minimum valid samples required to proceed (numeric, default 10).

min_cell_ratio Minimum ratio of cells expressing ligand and receptor genes in sender or re-

ceiver cells (numeric, default 0.1).

min_sample_ratio

Minimum ratio of samples in which both the ligand and receptor genes must be

expressed (numeric, default 0.1).

cor_method Correlation method: "spearman" (default), "pearson", or "kendall".

adjust_method P-value adjustment method (default "BH" for Benjamini-Hochberg). Options:

"holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

min_adjust_p Adjusted p-value threshold for significance (numeric, default 0.05).

 $\mbox{min_cor} \qquad \qquad \mbox{Minimum correlation coefficient threshold (numeric, default 0). Must be} \geq 0.$

num_cores Number of CPU cores for parallel processing (numeric, default 10). Automati-

cally capped at (system cores - 1).

verbose Logical indicating whether to print progress messages (logical, default: TRUE).

Value

Two data frames with columns:

ligand, receptor

Ligand and receptor gene symbols (res1/res2).

cor Correlation coefficient (res1/res2).

p_val Raw p-value (res1/res2).

adjust.p Adjusted p-value (res1/res2).

sender, receiver

Sender and receiver cell types (res1/res2).

slope Slope of the linear regression model (res1/res2).
intercept Intercept of the linear regression model (res1/res2).

sample Sample identifier (res2).

score Projection score (raw co-expression intensity) (res2).

normalized_score

Normalized score scaled between 0-1 (res2).

20 pca_sample

Returns NULL if:

- No cell types are found in the metadata.
- Insufficient samples or cells remain after filtering.
- No ligand-receptor pairs pass the filtering thresholds.
- One or both of the specified sender and receiver cell types are missing in the data.
- Fewer than two valid samples remain after filtering based on minimum cell number per sample.

Examples

```
# Long-running example (may take >10s)
seurat_object <- load_example_seurat()</pre>
data(lr_db)
# Integrated analysis with Cardiac -> Perivascular
res_single <- one_step_single(</pre>
  rna = seurat_object,
  sender = "Cardiac",
  receiver = "Perivascular",
  lr_database = lr_db,
  sample_col = "sample";
  cell_type_col = "cell.type",
 min_cells = 20,
 min\_samples = 10,
 min_adjust_p = 0.5,
 num\_cores = 1,
  verbose = TRUE
)
if (!is.null(res_single)) {
  print(head(res_single$res1))
  print(head(res_single$res2))
```

pca_sample

Generate PCA of Ligand-Receptor Interaction Scores

Description

This function performs principal component analysis (PCA) on ligand-receptor (LR) interaction scores across samples, and generates a scatter plot of the first two principal components. Optionally, sample metadata can be used to color the points.

score_lr_all 21

Usage

```
pca_sample(
    lr_scores,
    metadata,
    selected_sender = NULL,
    selected_receiver = NULL,
    color_by = NULL,
    n_components = 2
)
```

Arguments

1r_scores Data frame containing LR interaction scores per sample (data frame).

metadata Data frame containing sample metadata (data frame).

selected_sender

Specific sender cell type to filter, default is None (use all) (character).

selected_receiver

Specific receiver cell type to filter, default is None (use all) (character).

color_by metadata column name to color points in PCA plot (character).

n_components Number of principal components to extract (numeric, default: 2).

Value

A list with two elements: the first is a ggplot2 PCA scatter plot and the second is the PCA results data frame.

Examples

```
# PCA of LR Interaction Scores
data(lr_scores_eg)
data(metadata_eg)
res <- pca_sample(lr_scores_eg, metadata_eg, selected_sender = "Cardiac",
    selected_receiver = "Perivascular", color_by = "IFN_type")
print(res$plot)
head(res$df)</pre>
```

score_lr_all

Analyze Ligand-Receptor Projection Scores (Across All Cell Types)

Description

This function calculates the ligand-receptor (LR) projection scores between all combinations of sender and receiver cell types. The projection score is computed based on linear regression models, measuring the normalized distance of each sample's LR expression from the origin of the regression line.

score_lr_all

Usage

```
score_lr_all(
    rna,
    filtered_lr,
    sample_col,
    cell_type_col,
    min_cells = 50,
    num_cores = 10,
    verbose = TRUE
)
```

Arguments

rna	A Seurat object containing single-cell RNA expression data.
filtered_lr	A data frame of ligand-receptor pairs from prior analysis (e.g., output of filter_lr_single). Must contain an "lr" column with pair identifiers in "Ligand_Receptor" format.
sample_col	Column name in Seurat metadata indicating sample identifiers (character).
cell_type_col	Column name in Seurat metadata indicating cell type classifications (character).
min_cells	Minimum cells required per sample for both sender and receiver (numeric, default 50).
num_cores	Number of CPU cores for parallel processing (numeric, default 10). Automatically capped at (system cores - 1).
verbose	Logical indicating whether to print progress messages (logical, default: TRUE).

Value

A data frame with projection scores per sample and LR pair. Columns:

```
All input from filtered_lr
```

Original columns provided by the user in filtered_lr.

sample Sample identifier.

score Projection score (raw co-expression intensity).

normalized_score

Normalized score scaled between 0-1.

Rows are ordered by filtered_lr columns and descending score.

Returns NULL if:

- No cell types are found in the metadata.
- One or both of the specified sender and receiver cell types are missing in the data.
- Fewer than two valid samples remain after filtering based on minimum cell number per sample.

score_lr_single 23

Examples

```
# Long-running example (may take >10s)
seurat_object <- load_example_seurat()</pre>
data(lr_db)
# Analyzing ligand-receptor interactions between all cell types
result01a <- filter_lr_all(
  rna = seurat_object,
  lr_database = lr_db,
  sample_col = "sample"
  cell_type_col = "cell.type",
 min_cells = 20,
 min_samples = 10,
 min_adjust_p = 0.5,
 num\_cores = 1,
  verbose = TRUE
)
# Analyzing ligand-receptor projection scores between all cell types
result02a <- score_lr_all(</pre>
  rna = seurat_object,
  filtered_lr = result01a,
  sample_col = "sample",
  cell_type_col = "cell.type",
 min_cells = 20,
 num\_cores = 1,
  verbose = TRUE
)
if (!is.null(result02a)) {
print(head(result02a))
}
```

score_lr_single

Analyze Ligand-Receptor Projection Scores (Specified Sender and Receiver)

Description

This function calculates the projection scores for ligand-receptor (LR) pairs between specified sender and receiver cell types. The projection score is computed based on linear regression models, measuring the normalized distance of each sample's LR expression from the origin of the regression line.

Usage

```
score_lr_single(
    rna,
```

24 score_lr_single

```
sender,
receiver,
filtered_lr,
sample_col,
cell_type_col,
min_cells = 50,
num_cores = 10,
verbose = TRUE
)
```

Arguments

rna A Seurat object containing single-cell RNA expression data.

sender Cell type designated as the ligand sender (character).

receiver Cell type designated as the receptor receiver (character).

filtered_lr A data frame of filtered ligand-receptor pairs from prior analysis (e.g., output

of filter_lr_single). Must contain an "lr" column with pair identifiers in

"Ligand_Receptor" format.

sample_col Column name in Seurat metadata indicating sample identifiers (character).

cell_type_col Column name in Seurat metadata indicating cell type classifications (character).

min_cells Minimum cells required per sample for both sender and receiver (numeric, de-

fault 50).

num_cores Number of CPU cores for parallel processing (numeric, default 10). Automati-

cally capped at (system cores - 1).

verbose Logical indicating whether to print progress messages (logical, default: TRUE).

Value

A data frame with projection scores per sample and LR pair. Columns:

All input from filtered_lr

Original columns provided by the user in filtered_lr.

sample Sample identifier.

score Projection score (raw co-expression intensity).

normalized_score

Normalized score scaled between 0-1.

Rows are ordered by filtered_lr columns and descending score.

Returns NULL if:

- No cell types are found in the metadata.
- One or both of the specified sender and receiver cell types are missing in the data.
- Fewer than two valid samples remain after filtering based on minimum cell number per sample.

score_lr_single 25

```
# Long-running example (may take >10s)
seurat_object <- load_example_seurat()</pre>
data(lr_db)
# Analyzing ligand-receptor interactions: Cardiac -> Perivascular
result01s <- filter_lr_single(</pre>
 rna = seurat_object,
 sender = "Cardiac",
  receiver = "Perivascular",
 lr_database = lr_db,
  sample_col = "sample",
 cell_type_col = "cell.type",
 min_cells = 20,
 min_samples = 10,
 min_adjust_p = 0.5,
 num\_cores = 1,
 verbose = TRUE
# Analyzing ligand-receptor projection scores: Cardiac -> Perivascular
result02s <- score_lr_single(</pre>
  rna = seurat_object,
  sender = "Cardiac",
  receiver = "Perivascular",
  filtered_lr = result01s,
  sample_col = "sample",
 cell_type_col = "cell.type",
 min_cells = 20,
 num\_cores = 1,
 verbose = TRUE
)
if (!is.null(result02s)) {
print(head(result02s))
```

Index

```
* datasets
    filtered_lr_eg, 7
    1r_db, 13
    lr_scores_eg, 15
    metadata_eg, 15
\verb|boxplot_lr_group_comparison|, 2
\verb|circle_plot|, 4
dot_plot, 6
dotplot_lr_continuous_group, 5
filter_lr_all, 7
filter_lr_single, 10
filtered_lr_eg, 7
heatmap_sample, 12
1r_db, 13
lr_linear_model_discrete, 14
lr_scores_eg, 15
metadata_{eg}, 15
one_step_all, 16
\verb"one_step_single", 18
pca_sample, 20
score_lr_all, 21
score_lr_single, 23
```