On Association between Surgical Hypothermia and Surgical Site Infections

Srimanta Ghosh

M.Sc. in Mathematics with Data Science Semester III

University Roll No.: E1773U232013

Institute of Mathematics and Applications, Bhubaneswar

(Project Guide)

Dr. Atanu Kumar Ghosh

Assistant Professor, Department of Statistics

Presidency University, Kolkata

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- 2 The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- 2 The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

The Problem

- When the body temperature drops below 36°C (96.8°F), we call it "Surgical hypothermia(IPH)".
- Some research suggested that IPH could reduce the effectiveness of drugs, increase surgical bleeding, delay recovery from surgery and increase the risk of surgical site infections(SSIs).
- Hence a new study was conducted to explore whether there is an association between IPH and SSIs in patients who had colorectal surgery.

The Problem

- When the body temperature drops below 36°C (96.8°F), we call it "Surgical hypothermia(IPH)".
- Some research suggested that IPH could reduce the effectiveness of drugs, increase surgical bleeding, delay recovery from surgery and increase the risk of surgical site infections(SSIs).
- Hence a new study was conducted to explore whether there is an association between IPH and SSIs in patients who had colorectal surgery.

The Problem

- When the body temperature drops below 36°C (96.8°F), we call it "Surgical hypothermia(IPH)".
- Some research suggested that IPH could reduce the effectiveness of drugs, increase surgical bleeding, delay recovery from surgery and increase the risk of surgical site infections(SSIs).
- Hence a new study was conducted to explore whether there is an association between IPH and SSIs in patients who had colorectal surgery.

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- 2 The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

Data Source

Walters, Michael J., Marianne Tanios, Onur Koyuncu, Guangmei Mao, Michael A. Valente, and Daniel I. Sessler. "Intraoperative core temperature and infectious complications after colorectal surgery: A registry analysis." Journal of clinical anesthesia 63 (2020): 109758.

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- 2 The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

- What is the effect of Average core temperature of a patient during surgery on Serious Infection the patient has developed with in 30 days of surgery?
 - To answer this we shall be using Effect Size Logistic Regression[2, 1] Models.
- What is the hazard of a patient discharge alive from hospital after surgery and how it is affected by Average core temperature of the patient during surgery?
 - To answer this we shall be using Survival Models[3, 4, 1]

- What is the effect of Average core temperature of a patient during surgery on Serious Infection the patient has developed with in 30 days of surgery?
 - To answer this we shall be using Effect Size Logistic Regression[2, 1] Models.
- What is the hazard of a patient discharge alive from hospital after surgery and how it is affected by Average core temperature of the patient during surgery?
 - To answer this we shall be using Survival Models[3, 4, 1].

- What is the effect of Average core temperature of a patient during surgery on Serious Infection the patient has developed with in 30 days of surgery?
 - To answer this we shall be using Effect Size Logistic Regression[2, 1] Models.
- What is the hazard of a patient discharge alive from hospital after surgery and how it is affected by Average core temperature of the patient during surgery?
 - To answer this we shall be using Survival Models[3, 4, 1].

- What is the effect of Average core temperature of a patient during surgery on Serious Infection the patient has developed with in 30 days of surgery?
 - To answer this we shall be using Effect Size Logistic Regression[2, 1] Models.
- What is the hazard of a patient discharge alive from hospital after surgery and how it is affected by Average core temperature of the patient during surgery?
 - To answer this we shall be using Survival Models[3, 4, 1].

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- 2 The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

The Model

$$\ln(rac{p}{1-p})=eta_0+eta_1*TWATemp+\sum_{j=2}^meta_j*Covariate_j$$
 $eta_1=log\ odds;\ e^{eta_1}=Odds\ Ratio$

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- 2 The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

Results

Coefficients:	Estimate	exp(eta)
(Intercept)	12.93385	414462.48
Age	-0.01098	0.99
CHF1	0.65959	1.93
RENFAIL1	0.64706	1.91
WGHTLOSS1	1.01999	2.77
LYTES1	0.43496	1.54
SurgDuration	0.00390	-0.46
TWATemp	-0.46225	0.63

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- 2 The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

The Model

Non-Parametric Model

$$\hat{S}(t_k) = \prod_{j=1}^K (1 - \frac{d_j}{r_j})$$

- $t_1 < t_2 < < t_K$ are K unique time the event occurred.
- d_k denote the number of event occured at time t_k, For k = 1, 2, ..., K
- r_k denote the number of patients are in hospital and in the study just before t_k; these are the at risk patients.

Semi Parametric Model

$$HAZ = h_0(t) * e^{\sum_{i=1}^{p} bjXj}$$

- $h_0(t) \ge 0$ is an unspecified function, known as the baseline hazard. It is the hazard function for an individual with features $X_1 = \cdots = X_p = 0$.
- e^{b_j} represents the hazard ratio.

- Introduction
 - The Problem
 - Data Source
 - Research Questions
- The First Problem
 - The Logistic Model
 - Results
- The Survival Analysis
 - The Survival Models
 - Results
- 4 References

Results

time	n.risk	n.event	survival
1	7908	23	0.997092
2	7885	117	0.982296
3	7762	459	0.924209
4	7302	1166	0.776629
:	:	:	:
:	:	•	:
85	5	1	0.000616
86	4	1	0.000462
104	3	1	0.000308
119	2	1	0.000154
144	1	1	0.000000

Results

Variable	exp(coef)	exp(-coef)
Age	0.9952	1.0048
FEMALE1	1.0606	0.9429
CharlsonScore	0.9596	1.0421
RENFAIL1	1.1351	0.8810
METS1	1.1782	0.8488
COAG1	0.8117	1.2320
WGHTLOSS1	0.4582	2.1827
LYTES1	0.7396	1.3520
DRUG1	0.8275	1.2085
SteroidHx1	1.0888	0.9185
ImmunosuppressantHx1	0.8738	1.1445
SurgDuration	0.9968	1.0032
Open1	0.8549	1.1698
TWATemp	0.9270	1.0788
SeriousInfection1	0.5235	1.9101
SuperficialInfection1	0.7143	1.3999

References

Generalized linear models. Routledge, 2019.

Frank E Harrell et al.

Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis, volume 608.

Springer, 2001.

David G Kleinbaum and Mitchel Klein. Survival analysis a self-learning text. Springer, 1996.

Michael H Kutner, Christopher J Nachtsheim, John Neter, and William Li.

Applied linear statistical models. McGraw-hill, 2005.