

EMC Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C RFID Tag System model GW3000 and MR3000

8398A-GW3000 UPN:

8398A-MR3000

XGR-GW3000 FCC ID:

XGR-MR3000

APPLICANT: Ambient Systems, B.V.

> Colosseum 15d 7521PV Enschede, The Netherlands

TEST SITE(S): Elliott Laboratories

> 684 W. Maude Avenue Sunnyvale, CA 94085

41039 Boyce Road.

Fremont, CA. 94538-2435

IC Site Registration #: IC 2845A-2 and IC 2845B-5

REPORT DATE: July 2, 2009

and

FINAL TEST DATES: June 23 and June 24, 2009

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Elliott Laboratories.

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R76014 Page 1 of 22

Test Report Report Date: July 2, 2009

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	July 30, 2009	First release	

File: R76014 Page 2 of 22

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDSMEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERALGENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	14
RADIATED EMISSIONS	15
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	18
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	18
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	21
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	22

TABLE OF CONTENTS (Continued)

APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	
APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS	
APPENDIX D PROPOSED FCC ID LABEL & LABEL LOCATION	
APPENDIX E DETAILED PHOTOGRAPHS	
APPENDIX F OPERATOR'S MANUAL	
APPENDIX G BLOCK DIAGRAM	
APPENDIX H SCHEMATIC DIAGRAMS	8
APPENDIX I THEORY OF OPERATION	9
APPENDIX J ADVERTISING LITERATURE	10
APPENDIX K RF EXPOSURE INFORMATION	1

SCOPE

An electromagnetic emissions test has been performed on the Ambient Systems, B.V. RFID Tag System model GW3000, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R76014 Page 5 of 22

Test Report Report Date: July 2, 2009

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

Testing was performed only on RFID Tag System model GW3000. This model was considered representative of the MR3000 router, FCC ID XGR-MR3000. The Gateway and Router circuitry are electrically and physically identical, sharing the exact same PC Board. However, the Gateway has an additional connector inserted in the PC Board that provides an RS-232 port for configuring and managing the system.

STATEMENT OF COMPLIANCE

The tested sample of Ambient Systems, B.V. RFID Tag System model GW3000 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Ambient Systems, B.V. RFID Tag System model GW3000 and therefore apply only to the tested sample. The sample was selected and prepared by Bob Ashlock of Ambient Systems, B.V..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R76014 Page 6 of 22

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	1.6 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	2.9 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	22.6 dBm (0.182 Watts) EIRP = 0.575 W Note	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	7.3 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions below -30dBc limit	< -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	52.7dBμV/m @ 2389.8MHz (-1.3dB)	15.207 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 5.0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

File: R76014 Page 7 of 22

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	1	RF Connector	Antenna is internal and integral to the device	-	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	37.7dBµV/m @ 32.009MHz (-2.3dB)	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	39.0dBμV @ 0.365MHz	Refer to standard	Complies (- 9.6 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement for products with detachable antenna	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0

File: R76014 Page 8 of 22

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Ambient Systems, B.V. RFID Tag System model GW3000 is a 2.4GHz ZigBee RFID gateway device. The Gateway is designed to communicate with RFID tags as well as other Routers which also communicate with each other and the RFID Tags to form a network. The EUT is generally wall or ceiling mounted, but since the EUT can be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 6 - 12.6 Volts, 0.5 Amps max.

The sample was received on June 22, 2009 and tested on June 23 and June 24, 2009. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Ambient Systems	GW3000	ZigBee RFID	190	XGR-GW3000
		gateway		

OTHER EUT DETAILS

Testing performed on the GW3000 Gateway was considered representative of the MR3000 router, FCC ID XGR-MR3000. The Gateway and Router circuitry are electrically and physically identical, sharing the exact same PC Board. However, the Gateway has an additional connector inserted in the PC Board that provides an RS-232 port for configuring and managing the system.

The Ambient GW3000 will also be marketed under the DeltaTrak brand, using model number 20170 for US and 20170C for Canada. The Ambient MR3000 will also be marketed under the DeltaTrak brand, using model number 20171 for US and 20171C for Canada.

ANTENNA SYSTEM

The antenna is an external 5.0 dBi monopole. The antenna connects to the EUT via a non-standard reverse SMA antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT enclosure is primarily constructed of Plastic. It measures approximately 13 cm wide by 7 cm deep by 5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No support equipment was used during testing.

File: R76014 Page 9 of 22

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

		Cable(s)		
Port	Connected To		Shielded or	
		Description	Unshielded	Length(m)
Antenna	Antenna	Direct connection	NA	NA
Serial (RJ-11)	Unterminated	4 wire phone cable	Unshielded	2.0
DC Power	External pwr supply	2 wire	Unshielded	2.0

EUT OPERATION

During emissions testing the EUT was configured to transmit continuously on the selected channel, unless otherwise noted.

File: R76014 Page 10 of 22

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 25, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	
			684 West Maude Ave,
SVOATS #2	90593	IC 2845A-2	Sunnyvale
			CA 94085-3518
			41039 Boyce Road
Chamber 5	211948	IC 2845B-5	Fremont,
			CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R76014 Page 11 of 22

Test Report Report Date: July 2, 2009

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R76014 Page 12 of 22

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R76014 Page 13 of 22

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R76014 Page 14 of 22

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

File: R76014 Page 15 of 22

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

File: R76014 Page 16 of 22

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R76014 Page 17 of 22

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz) Average Limit (dBuV)		Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R76014 Page 18 of 22

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R76014 Page 19 of 22

-

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R76014 Page 20 of 22

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R76014 Page 21 of 22

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R76014 Page 22 of 22

Appendix A Test Equipment Calibration Data

1 Page

File: R76014 Exhibit Page 1 of 11

Radiated Emissions, 30 - 10,000 MHz, 22-Jun-09

<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	23-Dec-09
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787	18-May-10
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	19-Sep-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	12-Mar-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	26-May-10

Conducted Emissions - AC Power Ports, 23-Jun-09

Engineer: John Caizzi

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 EMCO
 LISN, 10 kHz-100 MHz
 3825/2
 1292
 11-Mar-10

 Rohde & Schwarz
 EMI Test Receiver, 20 Hz-7 GHz
 ESIB7
 1538
 19-Sep-09

Radiated Emissions, 30 - 1,000 MHz, 23-Jun-09

Engineer: JOhn Caizzi

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538 19-Sep-09
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632 13-Apr-10
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657 23-May-10

Radio Spurious Emissions, 24-Jun-09

Engineer: Suhaila Khushzad

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	12-Mar-10
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	05-Aug-09

Radio Antenna Port (Power and Spurious Emissions), 26-Jun-09

Engineer: Rafael Varelas

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 SpecAn 30 Hz -40 GHz, SV (SA40) Red
 8564E (84125C)
 1148
 12-Mar-10

Appendix B Test Data

T75760 37 Pages

File: R76014 Exhibit Page 2 of 11

Ellio	tt Frompany	EMC Test Data	
Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
		Account Manager:	Christine Krebill
Contact:	Bob Ashlock		-
Emissions Standard(s):	FCC 15.247/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Ambient Systems

Model

Gateway (GW3000)

Date of Last Test: 6/25/2009

Elliott	EMC Test Data
Client: Ambient Systems	Job Number: J75672
Model: Gateway (GW3000)	T-Log Number: T75760
	Account Manger: Christine Krebill
Contact: Bob Ashlock	
Emissions Standard(s): FCC 15.247/RSS-210	Class: -
Immunity Standard(s): -	Environment: -

EUT INFORMATION

The following information was collected during the test session(s).

General Description

The EUT is a 2.4GHz ZigBee RFID gateway device. The Gateway is designed to communicate with RFID tags as well as other Routers which also communicate with each other and the RFID Tags to form a network. The EUT is generally wall or ceiling mounted, but since the EUT can be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the enduser environment. The electrical rating of the EUT is 6 - 12.6 Volts, 0.5 Amps max.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Ambient Systems	GW3000	ZigBee RFID gateway	190	XGR-GW3000

Other EUT Details

Testing performed on the GW3000 Gateway was considered representative of the MR3000 router, FCC ID XGR-MR3000. The Gateway and Router circuitry are electrically and physically identical, sharing the exact same PC Board. However, the Gateway has an additional connector inserted in the PC Board that provides an RS-232 port for configuring and managing the system.

The Ambient GW3000 will also be marketed under the DeltaTrak brand, using model number 20170. The Ambient MR3000 will also be marketed under the DeltaTrak brand, using model number 20171.

EUT Antenna (Intentional Radiators Only)

The antenna is an external 5dBi monoploe. The antenna connects to the EUT via a non-standard reverse SMA antenna connector, thereby meeting the requirements of FCC 15.203.

EUT Enclosure

The EUT enclosure is primarily constructed of Plastic. It measures approximately 13 cm wide by 7 cm deep by 5 cm high.

Modification History

Mod. #	Test	Date	Modification
1			No modifications were made to the EUT during testing.
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Pribate	5 company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
		Account Manger:	Christine Krebill
Contact:	Bob Ashlock		
Emissions Standard(s):	FCC 15.247/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

Test Configuration #1

The following information was collected during the test session(s).

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID	
None	-	-	-	-	

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Cabling and Ports

· · · · · · · · · · · · · · · · · · ·								
Port	Connected To	Cable(s)						
		Description	Description Shielded or Unshielded					
Antenna	Antenna	Direct connection	NA	NA				
Serial (RJ-11)	Unterminated	4 wire phone cable	Unshielded	2.0				
DC Power	External pwr supply	2 wire	Unshielded	2.0				

EUT Operation During Emissions Tests

During emissions testing the EUT was configured to transmit continuously on the selected channel, unless otherwise noted.

	An WZAS company	LIVI	J TEST Data
Client:	Ambient Systems	Job Number:	J75672
Model	Catoway (CW2000)	T-Log Number:	T75760
Model.	Gateway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	-

FMC Toct Data

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Flliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/23/2009 Config. Used: 1
Test Engineer: John Caizzi Config Change: none
Test Location: Fremont Chamber #5 EUT Voltage: 120V/60Hz

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN.

Ambient Conditions: Temperature: 24 °C

Rel. Humidity: 44 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 120V/60Hz	EN 55022 Class B	Pass	39.0dBµV @ 0.365MHz (-9.6dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All 2022 Company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Cataway (CM/2000)	T-Log Number:	T75760
	Gateway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	-

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

(FE)tt					EM	C Test Data
Client:	Ambient Sys	stems					Job Number:	: J75672
							T-Log Number:	: T75760
Model:	Gateway (G	W3000)					Account Manager:	
Contact:	Bob Ashlock	K						0
	FCC 15.247						Class	
Jianuara.	100 1012	1100 210						
Preliminary	neak readir	nas capturer	d durina pre	-scan (peak	readings v	s. average lim	it)	
Frequency	Level	AC AC		2 Class B	Detector	Comments	,	
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.363	50.3	Line	48.6	1.7	Peak	1		
0.303	46.4	Line	50.1	-3.7	Peak	1		
0.242	44.9	Line	52.0	-7.1	Peak			
0.605	37.9	Line	46.0	-8.1	Peak			
0.181	43.5	Line	54.3	-10.8	Peak			
1.450	34.9	Line	46.0	-11.1	Peak			
1.023	34.9	Line	46.0	-11.1	Peak			
0.365	50.1	Neutral	48.6	1.5	Peak			
0.303	46.5	Neutral	50.1	-3.6	Peak	T		
0.725	42.1	Neutral	46.0	-3.9	Peak			
0.604	42.0	Neutral	46.0	-4.0	Peak			
1.510	39.3	Neutral	46.0	-6.7	Peak			
1.029	38.7	Neutral	46.0	-7.3	Peak			
0.244	43.8	Neutral	52.0	-8.2	Peak			
2.358	37.4	Neutral	46.0	-8.6	Peak			
0.161	42.3	Neutral	55.4	-13.1	Peak			
0.184	40.8	Neutral	54.3	-13.5	Peak			

	Ellic	ott Ar*company					EMC Test Data
Client:	Ambient Sy	stems					Job Number: J75672
							T-Log Number: T75760
Model:	Gateway (G	W3000)					Account Manager: Christine Krebill
Contact:	Bob Ashloci	ζ					
Standard:	FCC 15.247	7/RSS-210					Class: -
						· · · · · · · · · · · · · · · · · · ·	
Final quasi	-peak and a	verage readi	ngs				
Frequency	Level	AC		2 Class B	Detector	Comments	
MHz	dΒμV	Line	Limit	Margin	QP/Ave		
0.363	48.4	Line	58.7	-10.3	QP		
0.303	43.6	Line	60.2	-16.6	QP		
0.363	30.7	Line	48.7	-18.0	AVG		
0.242	41.9	Line	62.0	-20.1	QP		
0.605	35.6	Line	56.0	-20.4	QP		
0.303	27.8	Line	50.2	-22.4	AVG		
0.605	23.4	Line	46.0	-22.6	AVG		
0.181	40.4	Line	64.4	-24.0	QP		
1.450	31.8	Line	56.0	-24.2	QP		
1.023	29.9	Line	56.0	-26.1	QP		
0.242	24.6	Line	52.0	-27.4	AVG		
1.450	18.0	Line	46.0	-28.0	AVG		
1.023	16.7	Line	46.0	-29.3	AVG		
0.181	23.1	Line	54.4	-31.3	AVG		
0.365	39.0	Neutral	48.6	-9.6	AVG		
0.604	34.7	Neutral	46.0	-11.3	AVG		
0.365	46.8	Neutral	58.6	-11.8	QP		
0.303	38.1	Neutral	50.2	-12.1	AVG		
0.725	31.3	Neutral	46.0	-14.7	AVG		
0.604	41.1	Neutral	56.0	-14.9	QP		
1.510	31.0	Neutral	46.0	-15.0	AVG	ĺ	
0.725	40.8	Neutral	56.0	-15.2	QP		
0.303	44.5	Neutral	60.2	-15.7	QP	ĺ	
1.029	29.1	Neutral	46.0	-16.9	AVG	ĺ	
1.510	37.5	Neutral	56.0	-18.5	QP	ĺ	
1.029	36.4	Neutral	56.0	-19.6	QP		
0.244	29.8	Neutral	52.0	-22.2	AVG		
0.244	39.6	Neutral	62.0	-22.4	QP		

	An Z/LZ=3 company		
Client:	Ambient Systems	Job Number:	J75672
Madal	Gateway (GW3000)	T-Log Number:	T75760
wouei.	Galeway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	-

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/23/2009 Config. Used: 1
Test Engineer: John Caizzi Config Change: none
Test Location: Fremont Chamber #5 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 24 °C

Rel. Humidity: 44 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 1000 MHz,	FCC Class B	Evol	33.9dBµV/m @
Į.	Preliminary Scan	FCC Class b	Eval	32.009MHz (-6.1dB)
າ	RE, 30 - 1000 MHz,	FCC Class B	Docc	37.7dBµV/m @
Z	Maximized Emissions	FCC Class D	Pass	32.009MHz (-2.3dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note - Preliminary testing showed no significant emissions above 1GHz.

All Date Company						
Client:	Ambient Systems	Job Number:	J75672			
Model:	Cataway (CM2000)	T-Log Number:	T75760			
	Gateway (GW3000)	Account Manager:	Christine Krebill			
Contact:	Bob Ashlock					
Standard:	FCC 15.247/RSS-210	Class:	-			

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz. Rx mode, 2440 MHz.

Frequency Range Test Distance		Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

	An Z/LZ=3 company		
Client:	Ambient Systems	Job Number:	J75672
Madal	Gateway (GW3000)	T-Log Number:	T75760
wouei.	Galeway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	-

Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
32.009	36.4	V	40.0	-3.6	Peak	315	1.0	
55.995	33.0	V	40.0	-7.0	Peak	356	1.0	
192.010	30.4	V	43.5	-13.1	Peak	53	1.0	
136.003	28.5	V	43.5	-15.0	Peak	206	1.0	
320.018	22.1	Н	46.0	-23.9	Peak	120	1.0	
954.580	22.1	V	46.0	-23.9	Peak	18	1.0	

Preliminary quasi-peak readings (no manipulation of EUT interface cables)

· · · · · · · · · · · · · · · · · · ·	i ominical j quaes pour routinge (no manipulation of 201 montage capito)							
Frequency	Level	Pol	FCC Class B		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
32.009	33.9	V	40.0	-6.1	QP	301	1.00	
55.995	32.4	V	40.0	-7.6	QP	348	1.00	
192.010	30.6	V	43.5	-12.9	QP	65	1.00	
136.003	28.7	V	43.5	-14.8	QP	213	1.00	
320.018	21.7	Н	46.0	-24.3	QP	116	1.00	
954.580	17.7	V	46.0	-28.3	QP	120	2.01	

Run #2: Maximized Readings From Run #1
Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	FCC Class B		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
32.009	37.7	V	40.0	-2.3	QP	290	1.0		
55.995	37.2	V	40.0	-2.8	QP	360	1.0		
192.010	30.6	V	43.5	-12.9	QP	65	1.00	Moving cables reduced reading.	
136.003	28.7	V	43.5	-14.8	QP	213	1.00	Moving cables reduced reading.	
320.018	21.7	Н	46.0	-24.3	QP	116	1.00	Moving cables reduced reading.	
954.580	17.7	V	46.0	-28.3	QP	120	2.01	Moving cables reduced reading.	

	An ATAS company	LIVI	o resi Dala
Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
	Galeway (Gw3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

FMC Tost Data

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Flliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/24/2009 Config. Used: 1 Config Change: None Test Engineer: Suhaila Khushzad Test Location: OATS #2 EUT Voltage: 12.V DC

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or rou

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 23.9 °C

Rel. Humidity: 53 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed Limit		Result / Margin
10	7:aDaa	Channel 14	-1.5	-	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	52.7dBµV/m @ 2389.8MHz (-1.3dB)
1a	ZigBee	(2420 MHz)	-1.5 -0.4	-	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	47.8dBµV/m @ 4841.0MHz (-6.2dB)
1b ZigBee	7igPoo	Channel 15	-0.4	-	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	51.4dBµV/m @ 2389.7MHz (-2.6dB)
	Zigbee	(2425 MHz)	-0.4	-	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	50.9dBµV/m @ 12122.7MHz (-3.1dB)
1c	ZigBee	Channel 18 (2440 MHz)	+0.7	-	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	52.7dBµV/m @ 4881.0MHz (-1.3dB)
1d 7	ZigBee	high (2450	-0.4	-	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	50.3dBµV/m @ 2483.5MHz (-3.7dB)
Tu	Zigbee	MHz)	-0.4	-	1 - 26 GHz 15.247(FCC Part 15.209 / 15.247(c)	72.6dBµV/m @ 9802.1MHz (-1.4dB)
1e	ZigBee	high (2455 MHz)	-1.5	-	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	51.1dBµV/m @ 2483.5MHz (-2.9dB)
ie			-1.5	-	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	52.3dBµV/m @ 4909.3MHz (-1.7dB)

Elliott An WIES company	EM0	C Test Da
Client: Ambient Systems	Job Number:	J75672
	T-Log Number:	
Model: Gateway (GW3000)	Account Manager:	Christine Krebill
Contact: Bob Ashlock	Class	NI/A
Standard: FCC 15.247/RSS-210	Class:	N/A
Modifications Made During Testing No modifications were made to the EUT during testing		
Deviations From The Standard No deviations were made from the requirements of the standard.		
Note - No radio related emissions below 1 GHz were fo	ound during preliminary testing.	

	All 2022 Company		
Client:	Ambient Systems	Job Number:	J75672
Model	Gateway (GW3000)	T-Log Number:	T75760
Model.	Galeway (Gw3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 25000 MHz,

Run #1a: Low Channel 14 @ 2420 MHz, Power -1.5

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2420.330	117.7	V	-	-	AVG	34	1.0	RB 1 MHz; VB: 10 Hz	pwr -1.5
2419.930	120.0	V	-	-	PK	34	1.0	RB 1 MHz; VB: 1 MHz	pwr -1.5
2420.400	109.1	Н	-	-	AVG	164	1.0	RB 1 MHz; VB: 10 Hz	pwr -1.5
2420.870	111.7	Н	-	-	PK	164	1.0	RB 1 MHz; VB: 1 MHz	pwr -1.5
2420.520	107.3	Н	-	-	PK	164	1.0	RB 100 kHz; VB: 100 kH	pwr -1.5
2419.760	116.5	V	-	-	PK	34	1.0	RB 100 kHz; VB: 100 kH	pwr -1.5

Fundamental emission level @ 3m in 100kHz RBW:	116.5	dBμV/m
Limit for emissions outside of restricted bands:	96.5	dBμV/m
Limit for emissions outside of restricted bands:	86.5	dBμV/m

Limit is -20dBc (Peak power measurement) Limit is -30dBc (UNII power measurement)

Band Edge Signal Field Strength - Direct measurement of field strength

	<u> </u>	- · · · · · · · · · · · · · · · · · · ·							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2389.800	52.7	V	54.0	-1.3	AVG	34	1.0	RB 1 MHz; VB: 10 Hz	pwr -1.5
2388.930	47.4	Н	54.0	-6.6	AVG	164	1.0	RB 1 MHz; VB: 10 Hz	pwr -1.5
2389.470	62.8	V	74.0	-11.2	PK	34	1.0	RB 1 MHz; VB: 1 MHz	pwr -1.5
2373.800	57.8	Н	74.0	-16.2	PK	164	1.0	RB 1 MHz; VB: 1 MHz	pwr -1.5

T75760_Gateway DTS RE Final Page 13 of 37

	An ZAZZES company		
Client:	Ambient Systems	Job Number:	J75672
Madalı	Catoway (CM2000)	T-Log Number:	T75760
Model:	Gateway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

	All 2022 Company		
Client:	Ambient Systems	Job Number:	J75672
Madalı	Catoway (CM/2000)	T-Log Number:	T75760
Model:	Gateway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Client:	Ambient Sys	tems						Job Number:	J75672	
								Log Number:	T75760	
Model: Gateway (GW3000)								unt Manager:		ehill
Contact:	Bob Ashlock						71000	unt managon	OTHISCHIO TO	
	FCC 15.247/							Class:	NI/A	
								Class.	IV/A	
	ious Emissio		45.000	/45.047				Ta .		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
4841.000	47.8	V	54.0	-6.2	AVG	274	1.1	RB 1 MHz;	VB: 10 Hz	pwr -1.5
7258.670	44.4	V	54.0	-9.6	AVG	168	1.4	RB 1 MHz;	VB: 10 Hz	pwr -1.5
7258.670	44.0	Н	54.0	-10.0	AVG	9	1.6	RB 1 MHz;	VB: 10 Hz	pwr -1.5
4838.670	41.8	Н	54.0	-12.2	AVG	265	1.0	RB 1 MHz;	VB: 10 Hz	pwr -1.5
9678.000	60.3	V	74.0	-13.7	PK	105	1.3	RB 1 MHz;	VB: 1 MHz	pwr -1.5
4836.670	58.2	Н	74.0	-15.8	PK	265	1.0	RB 1 MHz;	VB: 1 MHz	pwr -1.5
4840.930	54.3	V	74.0	-19.7	PK	274	1.1	RB 1 MHz;	VB: 1 MHz	pwr -1.5
7258.800	53.3	V	74.0	-20.7	PK	168	1.4	RB 1 MHz;	VB: 1 MHz	pwr -1.5
9678.200	52.7	V	74.0	-21.3	AVG	105	1.3	RB 1 MHz;	VB: 10 Hz	pwr -1.5
7258.600	52.4	Н	74.0	-21.6	PK	9	1.6	RB 1 MHz;	VB: 1 MHz	pwr -1.5
				•		•		•		
N 4	For emission	s in restricte	ed bands, the	limit of 15.2	209 was used.	For all othe	r emissions	, the limit was	set 20dB be	low the
Note 1:	level of the fu									

Band Edge Signal Field Strength - Direct measurement of field strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2389.730	51.4	V	54.0	-2.6	AVG	28	1.1	RB 1 MHz; VB: 10 Hz	pwr -0.4
2389.870	48.1	Н	54.0	-5.9	AVG	350	2.1	RB 1 MHz; VB: 10 Hz	pwr -0.4
2385.800	61.9	V	74.0	-12.1	PK	28	1.1	RB 1 MHz; VB: 1 MHz	pwr -0.4
2357.400	58.9	Н	74.0	-15.1	PK	350	2.1	RB 1 MHz; VB: 1 MHz	pwr -0.4

T75760_Gateway DTS RE Final Page 17 of 37

All Blazz Company		
Client: Ambient Systems	Job Number:	J75672
Model: Gateway (GW3000)	T-Log Number:	T75760
Model. Gateway (GW3000)	Account Manager:	Christine Krebill
Contact: Bob Ashlock		
Standard: FCC 15.247/RSS-210	Class:	N/A

	An ZAZZES company		
Client:	Ambient Systems	Job Number:	J75672
Madalı	Catoway (CM2000)	T-Log Number:	T75760
Model:	Gateway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

	Ellic	ott A company						EM	C Tesi	Data	
Client:	: Ambient Systems Job Number: J75672										
							T-	Log Number:	T75760		
Model:	Gateway (G	W3000)						unt Manager:		ehill	
Contact	Bob Ashlock	,					71000	unt managon	OTHIOTHIO TO		
	FCC 15.247							Class:	NI/A		
								Class:	IV/A		
•	ious Emission							1.			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
12122.670	50.9	Н	54.0	-3.1	AVG	173	1.4	RB 1 MHz;	VB: 10 Hz	pwr -0.4	
7273.670	49.8	V	54.0	-4.2	AVG	32	1.6	RB 1 MHz;	VB: 10 Hz	pwr -0.4	
4849.330	49.6	V	54.0	-4.4	AVG	57	2.1	RB 1 MHz;	VB: 10 Hz	pwr -0.4	
9702.270	69.0	Н	74.0	-5.0	PK	113	1.8	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
12122.800	48.9	V	54.0	-5.1	AVG	15	1.5	RB 1 MHz;	VB: 10 Hz	pwr -0.4	
4849.130	48.6	Н	54.0	-5.4	AVG	277	1.8	RB 1 MHz;	VB: 10 Hz	pwr -0.4	
7276.600	47.0	Н	54.0	-7.0	AVG	7	1.7	RB 1 MHz;	VB: 10 Hz	pwr -0.4	
4854.670	63.2	Н	74.0	-10.8	PK	277	1.8	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
9698.070	62.8	Н	74.0	-11.2	AVG	113	1.8	RB 1 MHz;	VB: 10 Hz	pwr -0.4	
9698.330	60.8	V	74.0	-13.2	PK	196	1.8	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
12127.600	59.7	Н	74.0	-14.3	PK	173	1.4	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
7276.530	57.7	V	74.0	-16.3	PK	32	1.6	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
12127.800	57.7	V	74.0	-16.3	PK	15	1.5	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
4849.200	57.4	V	74.0	-16.6	PK	57	2.1	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
7273.730	54.9	Н	74.0	-19.1	PK	7	1.7	RB 1 MHz;	VB: 1 MHz	pwr -0.4	
9702.270	53.5	V	74.0	-20.5	AVG	196	1.8	RB 1 MHz;	VB: 10 Hz	pwr -0.4	

E E	Elliç	ott						EMO	C Test	Data Data	
	Ambient Sys	∕≙5 company						Job Number:	J75672		
	3						T-	Log Number:	T75760		
Model:	Gateway (G	W3000)						unt Manager:		ebill	
Contact:	Bob Ashlock	(
	FCC 15.247							Class:	N/A		
Run #1c: C			/IHz Power	±0 2					•		
Ruii # 15.	Cittor Ci.a	101 - 11.0	/// 12 ₁ 1 01.0.	10.2							
Fı	undamental e	emission leve	el @ 3m in 10	00kHz <u>RB</u> W:		dBμV/m]				
		emissions ou			-20	dBμV/m	Limit is -20d	Bc (Peak power measurement)			
Limit for emissions outside of restricted bands:						dBμV/m		Bc (UNII pow			
		•						•			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
4881.000	52.7	V	54.0	-1.3	AVG	68	2.0	RB 1 MHz; \		pwr+0.6	
12202.730	52.6	V	54.0	-1.4	AVG	322	1.3	RB 1 MHz; \		pwr+0.6	
7321.530	52.5	V	54.0	-1.5	AVG	39	1.5	RB 1 MHz; \		pwr+0.6	
12197.730	52.3	Н	54.0	-1.7	AVG	178	1.4	RB 1 MHz; \	/B: 10 Hz	pwr+0.2	
7321.600	51.2	Н	54.0	-2.8	AVG	126	1.6	RB 1 MHz; \	/B: 10 Hz	pwr+0.6	
9758.270	70.6	Н	74.0	-3.4	PK	135	1.8	RB 1 MHz; \	/B: 1 MHz	pwr+0.2	
4881.070	48.0	Н	54.0	-6.0	AVG	37	1.3	RB 1 MHz; \	/B: 10 Hz	pwr+0.6	
9762.270	64.9	V	74.0	-9.1	PK	105	1.3	RB 1 MHz; \	/B: 1 MHz	pwr+0.6	
9762.200	64.4	Н	74.0	-9.6	AVG	135	1.8	RB 1 MHz; \	/B: 10 Hz	pwr+0.2	
12202.930	61.0	V	74.0	-13.0	PK	322	1.3	RB 1 MHz; \	/B: 1 MHz	pwr+0.6	
12202.800	60.9	Н	74.0	-13.1	PK	178	1.4	RB 1 MHz; \	/B: 1 MHz	pwr+0.2	
7321.670	59.8	V	74.0	-14.2	PK	39	1.5	RB 1 MHz; \	/B: 1 MHz	pwr+0.6	
4881.000	59.4	V	74.0	-14.6	PK	68	2.0	RB 1 MHz; \	/B: 1 MHz	pwr+0.6	
9758.130	58.8	V	74.0	-15.2	AVG	105	1.3	RB 1 MHz; \	/B: 10 Hz	pwr+0.6	
7318.670	58.6	Н	74.0	-15.4	PK	126	1.6	RB 1 MHz; \		pwr+0.6	
4881.070	55.1	Н	74.0	-18.9	PK	37	1.3	RB 1 MHz; \	/B: 1 MHz	pwr+0.6	

Band Edge Signal Field Strength - Direct measurement of field strength

	- <u>J</u>	<u></u>			<u> </u>				
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.500	50.3	V	54.0	-3.7	AVG	148	1.4	RB 1 MHz; VB: 10 Hz	pwr -0.4
2483.910	61.0	V	74.0	-13.0	PK	148	1.4	RB 1 MHz; VB: 1 MHz	pwr -0.4
2483.500	47.8	Н	54.0	-6.2	AVG	351	2.1	RB 1 MHz; VB: 10 Hz	pwr -0.4
2488.310	59.3	Н	74.0	-14.7	PK	351	2.1	RB 1 MHz; VB: 1 MHz	pwr -0.4

	An 2/22 company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
	Galeway (Gw3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

	An ZAZZES company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Catoway (CM2000)	T-Log Number:	T75760
	Gateway (GW3000)	Account Manager:	T75760 Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

	Ellic	ott Ar company						EM	C Test	' Data
Client:	Ambient Sys	stems						Job Number:	J75672	
Madal	0-1(0)	14(2000)					T-	Log Number: T75760		
iviodei:	Gateway (G	W3000)						unt Manager:		ebill
Contact:	Bob Ashlock	(
	FCC 15.247							Class:	N/A	
Other Spur	ious Emissio	ons								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
9802.070	72.6	Н	74.0	-1.4	PK	137	1.5	RB 1 MHz;	VB: 1 MHz	pwr -0.4
4899.200	52.3	V	54.0	-1.7	AVG	273	1.0	RB 1 MHz;	VB: 10 Hz	pwr -0.4
7351.530	51.9	V	54.0	-2.1	AVG	38	1.4	RB 1 MHz;	VB: 10 Hz	pwr -0.4
12252.870	50.9	V	54.0	-3.1	AVG	314	1.3	RB 1 MHz;	VB: 10 Hz	pwr -0.4
12247.930	50.7	Н	54.0	-3.3	AVG	177	1.3	RB 1 MHz;	VB: 10 Hz	pwr -0.4
7351.530	49.8	Н	54.0	-4.2	AVG	128	1.7	RB 1 MHz;		pwr -0.4
4899.200	46.1	Н	54.0	-7.9	AVG	53	2.0	RB 1 MHz;		pwr -0.4
9802.270	65.0	V	74.0	-9.0	PK	270	1.4	RB 1 MHz;		pwr -0.4
9798.070	63.1	Н	74.0	-10.9	AVG	137	1.5	RB 1 MHz;		pwr -0.4
7351.670	59.6	V	74.0	-14.4	PK	38	1.4	RB 1 MHz;		pwr -0.4
12247.670	59.3	V	74.0	-14.7	PK	314	1.3	RB 1 MHz;		pwr -0.4
12252.670	59.2	Н	74.0	-14.8	PK	177	1.3	RB 1 MHz;		pwr -0.4
4899.070	58.7	V	74.0	-15.3	PK	273	1.0	RB 1 MHz;		pwr -0.4
7348.670	57.7	Н	74.0	-16.3	PK	128	1.7	RB 1 MHz;		pwr -0.4
9798.200	57.4	V	74.0	-16.6	AVG	270	1.4	RB 1 MHz;		pwr -0.4
4899.130	52.2	Н	74.0	-21.8	PK	53	2.0	RB 1 MHz;	VB: 1 MHz	pwr -0.4

	741 Daris company		
Client:	Ambient Systems	Job Number:	J75672
Model: 0	Gateway (GW3000)	T-Log Number:	T75760
	Galeway (GW3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #1e: High Channel 21 @ 2455 MHz, Max Power -1.5,

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2455.270	115.7	V	-	1	AVG	122	1.3	RB 1 MHz; VB: 10 Hz pwr -1.5
2454.800	117.7	V	-	1	PK	122	1.3	RB 1 MHz; VB: 1 MHz pwr -1.5
2455.270	110.1	Н	-	1	AVG	355	2.0	RB 1 MHz; VB: 10 Hz pwr -1.5
2455.870	112.5	Н	-	1	PK	355	2.0	RB 1 MHz; VB: 1 MHz pwr -1.5
2455.670	107.1	Н	-	1	PK	355	2.0	RB 100 kHz; VB: 100 kH pwr -1.5
2455.200	111.5	V	-	-	PK	122	1.3	RB 100 kHz; VB: 100 kH pwr -1.5

Fundamental emission level @ 3m in 100kHz RBW:	111.5	dBμV/m
Limit for emissions outside of restricted bands:	91.5	dBμV/m
Limit for emissions outside of restricted bands:	81.5	dBμV/m

Limit is -20dBc (Peak power measurement)
Limit is -30dBc (UNII power measurement)

Band Edge Signal Field Strength - Direct measurement of field strength

	- 3	- · · · · · · · · · · · · · · · · · · ·							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.500	51.1	٧	54.0	-2.9	AVG	122	1.3	RB 1 MHz; VB: 10 Hz	pwr -1.5
2486.940	61.7	V	74.0	-12.3	PK	122	1.3	RB 1 MHz; VB: 1 MHz	pwr -1.5
2483.530	49.3	Н	54.0	-4.7	AVG	355	2.0	RB 1 MHz; VB: 10 Hz	pwr -1.5
2486.190	59.9	Н	74.0	-14.1	PK	355	2.0	RB 1 MHz; VB: 1 MHz	pwr -1.5

	An ZAZZES company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Catoway (CM2000)	T-Log Number:	T75760
	Gateway (GW3000)	Account Manager:	T75760 Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

	All 2022 Company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
	Galeway (Gw3000)	Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Client:	Ambient Sys	DT company ottems						Job Number: J75672			
Madal	Cataway (C)	M3000)					T-	T-Log Number: T75760			
wodei:	Gateway (G)	W3000)					Acco	unt Manager:	Christine Kr	ebill	
Contact:	Bob Ashlock										
Standard:	FCC 15.247	/RSS-210						Class: N/A			
Other Spuri	ious Emissio	ons									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
4909.330	52.3	V	54.0	-1.7	AVG	265	1.0	RB 1 MHz;	VB: 10 Hz	pwr -1.5	
4911.070	59.2	V	74.0	-14.8	PK	265	1.0	RB 1 MHz; \	VB: 1 MHz	pwr -1.5	
7363.670	49.5	V	54.0	-4.5	AVG	28	1.5	RB 1 MHz; \	VB: 10 Hz	pwr -1.5	
7366.730	57.5	V	74.0	-16.5	PK	28	1.5	RB 1 MHz; \	VB: 1 MHz	pwr -1.5	
4909.130	45.8	Н	54.0	-8.2	AVG	58	2.1	RB 1 MHz; \	VB: 10 Hz	pwr -1.5	
4911.070	53.1	Н	74.0	-20.9	PK	58	2.1	RB 1 MHz; \	VB: 1 MHz	pwr -1.5	
7366.600	43.9	Н	54.0	-10.1	AVG	227	2.1	RB 1 MHz; \	VB: 10 Hz	pwr -1.5	
7366.800	52.9	Н	74.0	-21.1	PK	227	2.1	RB 1 MHz; \	VB: 1 MHz	pwr -1.5	

Elliott An WIES' company		EMC Test Data	
Client:	Ambient Systems	Job Number:	J75672
Madali	Gateway (GW3000)	T-Log Number:	T75760
woder:		Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Flliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/25/2009 Config. Used: 1 Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 12 °C

Rel. Humidity: 81 %

Summary of Results

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-0.4	-	Output Power	15.247(b)	Pass	22.6 dBm
2	-1.5	-	Power spectral Density (PSD)	15.247(d)	Pass	7.3 dBm/3kHz
3	-1.5	-	Minimum 6dB Bandwidth	15.247(a)	Pass	1.6 MHz
3	-1.5	-	99% Bandwidth	RSS GEN	-	2.9 MHz
4	-0.4	-	Spurious emissions	15.247(b)	Pass	All emissions below -30dBc limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

An D(Z) company				
Client:	Ambient Systems	Job Number:	J75672	
Model:	Gateway (GW3000)	T-Log Number:	T75760	
		Account Manager:	Christine Krebill	
Contact:	Bob Ashlock			
Standard:	FCC 15.247/RSS-210	Class:	N/A	

Run #1: Output Power

Power	Fraguency (MIII)	Output	Power	Antenna	Dogult	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
-1.5	2420	21.9	154.9	5.0	Pass	26.9	0.490		
-0.4	2425	22.6	182.0	5.0	Pass	27.6	0.575		
-0.4	2440	22.2	166.0	5.0	Pass	27.2	0.525		
-0.4	2450	22.2	166.0	5.0	Pass	27.2	0.525		
-1.5	2455	21.2	131.8	5.0	Pass	26.2	0.417		

Output power measured using a spectrum analyzer (see plots below):

Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 25 MHz. Spurious limit is -30dBc because this method was used.

The output power limit is 30dBm

Note 2: Power setting - the software power setting used during testing, included for reference only

<u> </u>			
Client:	Ambient Systems	Job Number:	J75672
Madal	Gateway (GW3000)	T-Log Number:	T75760
woden.		Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	riequency (MHZ)	(dBm/3kHz) Note 1	dBm/3kHz	
-1.5	2420	7.3	8.0	Pass
-0.4	2425	7.2	8.0	Pass
-0.4	2440	7.1	8.0	Pass
-0.4	2450	6.8	8.0	Pass
-1.5	2455	6.2	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	All Bazz Company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
		Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
2420	-30dBc	Pass
2425	-30dBc	Pass
2440	-30dBc	Pass
2450	-30dBc	Pass
2455	-30dBc	Pass

Plots for low channel, power setting(s) = -1.5dBm @ 2420 MHz

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

EI!	liott
~	An A7A5° company

	An ZAZZES company		
Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
		Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Plots for low channel, power setting(s) = -0.4dBm @ 2425 MHz

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Client:	Ambient Systems	Job Number:	J75672
Model:	Gateway (GW3000)	T-Log Number:	T75760
		Account Manager:	Christine Krebill
Contact:	Bob Ashlock		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Plots for center channel, power setting(s) = -0.4dBm @ 2440 MHz

Plots for high channel, power setting(s) = -0.4dBm @ 2450 MHz

Plots for high channel, power setting(s) = -1.5dBm @ 2455 MHz

Appendix C Photographs of Test Configurations

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 3 of 11

Appendix D Proposed FCC ID Label & Label Location

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 4 of 11

Appendix E Detailed Photographs

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 5 of 11

Appendix F Operator's Manual

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 6 of 11

Appendix G Block Diagram

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 7 of 11

Appendix H Schematic Diagrams

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 8 of 11

Appendix I Theory of Operation

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 9 of 11

Appendix J Advertising Literature

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 10 of 11

Appendix K RF Exposure Information

Uploaded as a separate exhibit.

File: R76014 Exhibit Page 11 of 11