Упражнение «Задача LCA – метод sqrt-декомпозиции»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дано корневое дерево и множество пар его вершин. Для каждой пары из множества найти ближайшего общего предка. Использовать метод sqrt-декомпозиции.

Вход

В первой строке входного файла записано целое число \mathbf{n} — размер дерева ($2 \le \mathbf{n} \le 100000$). Затем в файле записано \mathbf{n} -1 пар целых чисел числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$), задающих рёбра дерева. Вершины нумеруются от 1 до \mathbf{n} . Корень дерева имеет номер 1. В следующей строке записано целое число \mathbf{Q} — количество запросов ($1 \le \mathbf{Q} \le 100000$). И остаток файла содержит запросы - \mathbf{Q} пар целых числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$).

Выход

Для каждого запроса из входного файла запишите в выходной файл номер вершины, являющейся ближайшим общим предком вершин **u** и **v**.

input.txt	output.txt
6	3 1
4 5 4 1 3 1 3 6 2 4	
10	
3 6 3 1	

Упражнение «Задача LCA – решение деревом отрезков»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дано корневое дерево и множество пар его вершин. Для каждой пары из множества найти ближайшего общего предка. Использовать дерево отрезков.

Вход

В первой строке входного файла записано целое число \mathbf{n} — размер дерева ($2 \le \mathbf{n} \le 100000$). Затем в файле записано \mathbf{n} -1 пар целых чисел числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$), задающих рёбра дерева. Вершины нумеруются от 1 до \mathbf{n} . Корень дерева имеет номер 1. В следующей строке записано целое число \mathbf{Q} — количество запросов ($1 \le \mathbf{Q} \le 100000$). И остаток файла содержит запросы - \mathbf{Q} пар целых числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$).

Выход

Для каждого запроса из входного файла запишите в выходной файл номер вершины, являющейся ближайшим общим предком вершин **u** и **v**.

input.txt	output.txt
6	3 1
4 5 4 1 3 1 3 6 2 4	
3 6 3 1	

Упражнение «Задача LCA – метод двоичного подъёма»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дано корневое дерево и множество пар его вершин. Для каждой пары из множества найти ближайшего общего предка. Использовать метод двоичного подъёма.

Вход

В первой строке входного файла записано целое число \mathbf{n} — размер дерева ($2 \le \mathbf{n} \le 100000$). Затем в файле записано \mathbf{n} -1 пар целых чисел числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$), задающих рёбра дерева. Вершины нумеруются от 1 до \mathbf{n} . Корень дерева имеет номер 1. В следующей строке записано целое число \mathbf{Q} — количество запросов ($1 \le \mathbf{Q} \le 100000$). И остаток файла содержит запросы - \mathbf{Q} пар целых числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$).

Выход

Для каждого запроса из входного файла запишите в выходной файл номер вершины, являющейся ближайшим общим предком вершин **u** и **v**.

input.txt	output.txt
6	3 1
4 5 4 1 3 1 3 6 2 4	
10	
3 6 3 1	

Упражнение «Задача LCA – метод Фарах-Колтона и Бендера»

Входной файл: input.txt Выходной файл: output.txt

Ограничение времени: 1 секунда на тест

Дано корневое дерево и множество пар его вершин. Для каждой пары из множества найти ближайшего общего предка. Использовать метод Фарах-Колтона и Бендера.

Вход

В первой строке входного файла записано целое число \mathbf{n} — размер дерева ($2 \le \mathbf{n} \le 100000$). Затем в файле записано \mathbf{n} -1 пар целых чисел числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$), задающих рёбра дерева. Вершины нумеруются от 1 до \mathbf{n} . Корень дерева имеет номер 1. В следующей строке записано целое число \mathbf{Q} — количество запросов ($1 \le \mathbf{Q} \le 100000$). И остаток файла содержит запросы - \mathbf{Q} пар целых числа \mathbf{u} , \mathbf{v} ($1 \le \mathbf{u}$, $\mathbf{v} \le \mathbf{n}$).

Выход

Для каждого запроса из входного файла запишите в выходной файл номер вершины, являющейся ближайшим общим предком вершин **u** и **v**.

input.txt	output.txt
6	3 1
4 5 4 1 3 1 3 6 2 4	
3 6 3 1	