More Software Testing Fun & Security Eng.

Jamal Madni

CECS 445

Lecture 13: March 23rd, 2021


```
0 items_list = [] # list of dictionary for item types
1 data = request.POST.dict() # Get request.POST as a regular dictionary
\(\bar{\text}\) next key = 'id form-' + str(i) + '-type' \(\pi\) a.k.a.: 'id form-' + str(i) + '-type'
3 while next_key in data:
       This loop condition should work for all items in the donation since all
       items will have the key 'id form-' + str(i) + '-type'.
      _item dict = {}
       item_dict['quantity'] = data['id_form-' + str(i) + '-quantity']
       # Get the Item subclass
       item_dict["subclass"] = data['id_form-' + str(i) + '-type']
     if item_dict['subclass'] == 'giftcard':
          citem dict['subclass'] = GiftCard
      5 | item_dict['amount'] = data['id_form-' + str(i) + '-amount'] # TODO: fix once the form
           # get the Giftcard enumerated value
          if 'id_form-' + str(i) + '-sub_type_business' in data:
             6 item dict['businessName'] = data['id form-' + str(i) + '-sub type business']
      7 {else:
             item_dict['businessName'] = ""
     8 elif item dict['subclass'] == 'clothing':
          citem_dict["subclass"] = Clothing
       9 # get the Clothing enumerated value
          Lif 'id_form-' + str(i-1) + '-sub_type_clothing' in data:
             10 item dict['clothingTypeName'] = data['id_form-' + str(i-1) + '-sub_type_clothing']
           # else:
           # item_dict['clothingTypeName'] = "men"
     11 elif item dict['subclass'] == 'food':
         12 item_dict["subclass"] = Food
     13 elif item dict['subclass'] == 'misc':
         14item dict["subclass"] = Miscellaneous
     15if item dict['subclass'] == Food or item dict['subclass'] == Miscellaneous:
           # get the name of the Food/Misc
         cif 'id_form-' + str(i) + '-sub_type_name' in data:
      item_dict['name'] = data['id_form-' + str(i) + '-sub_type_name']
      17-{ else: item_dict['name'] = ""
       # Add the item to the list
     18 items list.append(item dict)
       # Set up the next iteration
      lnext key = 'id form-' + str(i) + '-type'
```


- V(G) = E N + 2 = 28 19 + 2 = 11
- Linearly Independent Paths = {F} + {M} + {E}
- Test-Cases = Each of 11 LI Paths tested with any other piece
- Front Paths (F):
 - 0-1-2-3-20
 - 0-1-2-3-4
- Middle Paths (M):
 - 4-5-6-15
 - 4-5-7-15
 - 4-8-9-10-15
 - 4-8-9-15
 - 4-11-12-15
 - 4-13-14-15
- End Paths (E):
 - 15-16-17-18-19-3
 - 15-16-18-19-3
 - 15-18-19-3

Test Case	Parameter Values
F1	next_key = X
	X not in data
F2	
M1	
M2	
M3	
M4	
M5	
M6	
E1	
E2	
E3	

Black Box vs. State Box vs. Clear Box

Black Box vs. State Box vs. Clear Box Example

Security Engineering

• Dependability (operates under hostile conditions)

Security Engineering

• Trustworthiness (system will not behave in malicious manner)

Security Engineering

• Survivability (continues to operate when compromised)

