■ 일원 배치법(single factorial design, one-way layout)

○ 용어정리

- 요인(factor) : 실험에 고려된 설명변수 (회귀분석: predictor)
 - experimental factor vs observational factor
- 수준(level) : 요인의 값
- 처리(treatment) : 요인과 수준의 조합
- 4 종류의 사료에 의한 병아리 무게증가 실험
 - 요인: 사료
 - 수준(처리)의 수: 4
- 하나의 요인의 여러 수준에 대한 특성치의 비교를 위한 계획법
- 실험 단위의 배치 또는 실험순서에 있어 확률화의 원리에 충실해야 한다고 해서 **완전 확률화 계획법(completely randomized design)**이라고도 불림

□ 통계적 모형

○ 자료 형태

		요인의 수준(처리)			
		1	2	•••	p
111	1	Y_{11}	Y_{21}	•••	Y_{p1}
반 보	2	Y_{12}	Y_{22}	•••	Y_{p2}
복 수	•	•	•	• •	•
	n	Y_{1n}	Y_{2n}	• • •	Y_{pn}

○ 구조식

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, ..., p, \quad j = 1, ..., n$$
$$= \mu + \tau_i + \varepsilon_{ij}$$

- *µ* : 전체 모평균
- \circ $\tau_i = \mu_i \mu : i$ 번째 처리 효과
- \circ $\varepsilon_{ij} \sim \text{iid } N(0, \sigma^2)$

○ 통계적 추론

① 처리효과에 대한 적절한 가설 검정

(예)
$$H_0: \tau_1 = \cdots = \tau_p = 0$$
 \Rightarrow 평균이 같은지?

(예)
$$H_0: \mu_1 = \cdots = \mu_p = 0 \Rightarrow 평균이 0 인지?$$

② 처리효과의 추정 (단, 처리효과의 동일성 가설 기각시)

□ 모형의 분류

- 고정효과 모형(fixed effect model)
 - 요인의 수준이 실험자의 의도에 의해 조정 또는 결정되는 경우
 - \circ τ_i 에 대한 가설검정의 결과는 분석에서 **고려된 요인의 수준에 대해서만 절용**할 수 있음
- 변량효과 모형(random effect model)
 - 고려할 수 있는 요인의 수준에서 random하게 선택된 경우
 - \circ τ_i 는 모수가 아니고 **확률변수로 취급**
 - σ_i 의 분산에 대해 $\sigma_{\tau}^2 = 0$ 인지를 검정함
 - 선택된 수준뿐만 아니라 **고려했던 모든 요인의 수준에 대해서도 결과를 확장**시킬 수 있음

□ 고정효과모형

• Notations :

$$N = \sum_{i=1}^{p} n_{i} \text{,} \quad Y_{i.} = \sum_{j=1}^{n_{i}} Y_{ij} \text{,} \quad \overline{Y}_{i.} = Y_{i.}/n_{i} \text{,} \quad Y_{..} = \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} Y_{ij} \text{,} \quad \overline{Y}_{..} = Y_{..}/N$$

- 고정효과 모수모형에서는 $\sum_{i=1}^{p} \tau_i = 0$
- 모수추정

$$\circ$$
 $\mu \Leftrightarrow \overline{Y}_{..}$

$$\circ$$
 $\mu_i \ \ \overline{Y}_i$.

$$\circ \quad \tau_i = \mu_i - \mu \iff \overline{Y}_{i.} - \overline{Y}_{..}$$

$$\circ \quad \varepsilon_{ij} = Y_{ij} - \mu_i \ \, \hookleftarrow \ \, e_{ij} = Y_{ij} - \overline{Y}_{i.} \, , \quad \sum_{i} e_{ij} = 0, \quad \forall \, \, i$$

○ 가설검정

- \circ H_0 : $au_1=\dots= au_p=0$ vs H_1 : 최소한 하나의 i에 대해 $au_i
 eq 0$
- 귀무가설 하에서

$$Y_{ij} = \mu + \varepsilon_{ij} \implies Y_{ij} - \mu = \varepsilon_{ij} \iff \hat{\varepsilon}_{ij} = Y_{ij} - \overline{Y}_{..}$$

○ 변동분해

$$\begin{split} SSTO &= \sum_{i} \sum_{j} \left(Y_{ij} - \overline{Y}_{..} \right)^{2} = \sum_{i} \sum_{j} \left(Y_{ij} - \overline{Y}_{i.} + \overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} \\ &= \sum_{i} \sum_{j} \left(Y_{ij} - \overline{Y}_{i.} \right)^{2} + \sum_{i} \sum_{j} \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^{2} + 2 \sum_{i} \sum_{j} \left(Y_{ij} - \overline{Y}_{i.} \right) (\overline{Y}_{i.} - \overline{Y}_{..}) \\ &= \sum_{i} \sum_{j1} \left(Y_{ij} - \overline{Y}_{i.} \right)^{2} + \sum_{i} n_{i} (\overline{Y}_{i.} - \overline{Y}_{..})^{2} \\ &SSE \ (N-p) \qquad SSTR \ (p-1) \end{split}$$

○ SSTO: 총제곱합, SSE: 오차제곱합, SSTR: 처리제곱합

● 평균제곱

$$\circ$$
 MSE = SSE/(N-p)

-
$$E(MSE) = \sigma^2$$

 \circ MSTR = SSTR/(p-1)

-
$$E(MSTR) = \sigma^2 + \sum_{i=1}^{p} n_i \tau_i^2 / (p-1)$$

○ 검정통계량

$$F_0 = \frac{SSTR/(p-1)}{SSE/(N-p)} = \frac{MSTR}{MSE} \sim F_{p-1,N-p}$$

 \circ 대립가설 하에서는 E(MSTR) > E(MSE) \Rightarrow 기각역 : $F_0 > F_{\alpha,p-1,N-p}$

○ 분산분석표(ANOVA table)

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	p-1	SSTR	MSTR	MSTR/MSE
오차	N-p	SSE	MSE	
전체	N-1	SSTO		

• 간이식

$$\circ$$
 보정항 $CT = Y_{..}^2/N$

$$\circ \quad SSTO = \sum_{i} \sum_{j} Y_{ij}^{2} - CT$$

$$\circ \quad SSTR = \sum_{i} Y_{i.}^{2} / n_{i} - CT$$

□ 처리 평균치간의 비교

- 어떻게 가설을 설정할 것인가?
 - 적절한 형태의 선형식을 유도하여 가설을 설정

 - ※ 각 선형식 계수의 합은 0

○ 대비

• p개의 평균값에 대한 임의의 선형 결합식을

$$L = c_1 \overline{Y}_{1.} + \cdots + c_p \overline{Y}_{p.}$$
 (단, $\sum_i c_i = 0$)

처리 평균값의 비교 또는 대비(contrast)

•
$$L \sim N(\mu_L, \sigma_L^2)$$

$$\circ \quad \mu_L = c_1 \mu_1 + \cdots + c_p \mu_p$$

$$\circ \quad \sigma_L^2 = Var(c_1\overline{Y}_{1.} + \cdots + c_p\overline{Y}_{p.}) = c_1^2 \frac{\sigma^2}{n_1} + \cdots + c_p^2 \frac{\sigma^2}{n_p} = \sigma^2 \sum_i \frac{c_i^2}{n_i}$$

$$\circ$$
 σ_L^2 의 추정량: $S_L^2 = MSE \sum_i \frac{c_i^2}{n_i}$

$$\bullet \quad T = \frac{L - \mu_L}{S_L} = \frac{L - \mu_L}{\sqrt{MSE} \sqrt{\sum_i c_i^2/n_i}} \sim t_{N-p}$$

$$\circ$$
 귀무가설: $T_0 = rac{L}{\sqrt{MSE} \sqrt{\sum_i c_i^2/n_i}} \sim t_{N-p}$ \Rightarrow $T^2 = rac{L^2}{MSE \sum_i c_i^2/n_i} \sim F_{1,N-p}$

□ 모든 평균치간의 다중비교

○ F-검정을 기초로 한 다중비교

$$H_0: \mu_i = \mu_j \quad \text{vs} \quad H_1: \mu_i \neq \mu_j$$

- ① Fisher's least significant difference(최소유의차 방법)
 - \circ 모든 $i \neq j$ 인 모든 쌍에 대해 t-검정을 실시

$$\circ$$
 귀무가설 하에서 $T_0 = rac{\overline{Y}_{i.} - \overline{Y}_{j.}}{\hat{\sigma} \sqrt{rac{1}{n_i} + rac{1}{n_j}}} \sim t_{N-p}$

-
$$\hat{\sigma} = \sqrt{MSE}$$

$$\circ \quad \left| \overline{y}_{i.} - \overline{y}_{j.} \right| > t_{lpha/2,N-p} \sqrt{MSE} \, \sqrt{rac{1}{n_i} + rac{1}{n_j}} \,$$
이면 이 쌍의 차이는 유의함

② Bonferroni 방법

 \circ $t_{lpha/2,N-p}$ 을 $t_{lpha/2c,N-p}$ 로 대신

$$\circ \quad \left| \overline{y}_{i.} - \overline{y}_{j.} \right| > t_{lpha/2c,N-p} \sqrt{MSE} \, \sqrt{\frac{1}{n_i}} + \frac{1}{n_j} \,$$
이면 이 쌍의 차이는 유의함

③ Scheffe 방법

- \circ F-검정에서 H_0 을 기각시키지 못하면 Scheffe 방법에 의한 비교에서 유의한 차이가 있는 경우가 없음
- \circ F-검정에서 H_0 을 기각시킨 경우에는 최소한 하나의 비교에서 차이가 있는 것으로 나옴

$$\circ \quad \left| \bar{y}_{i.} - \bar{y}_{j.} \right| > \sqrt{(p-1)F_{\alpha,p-1,N-p}} \, \sqrt{MSE} \, \sqrt{\frac{1}{n_i} + \frac{1}{n_j}} \, \text{이면 이 쌍의 차이는}$$
 유의함

○ 평균의 범위를 기초로 한 다중비교

$$Q = \sqrt{n} \left[\max(\overline{Y}_{1.}, \ ..., \overline{Y}_{p.}) - \min(\overline{Y}_{1.}, \ ..., \overline{Y}_{p.}) \right] / \mathit{MSE} \sim q(p, N-p)$$

- \circ q(p,N-p)는 표준화 범위분포로써 표로 주어짐
- \circ $Q > q(\alpha, p, N-p)$ 이면, H_0 을 기각시킬 수 있음

① Tukey's honest significant difference(HSD)

$$\circ \quad \mathit{HSD}_{ij} = \left[q(\alpha, p, N\!-p) / \sqrt{2} \, \right] \sqrt{\mathit{MSE}} \, \sqrt{1/n_i + 1/n_j}$$

$$\circ |\overline{y}_{i.} - \overline{y}_{j.}| > HSD_{ij}$$
이면, 두 평균의 차이는 유의적임

■ 분산분석 검진(ANOVA Diagnostics)

- 기본가정: $\varepsilon_{ij} \sim \text{iid } N(0, \sigma^2) \hookrightarrow \text{ 잔차분석(residual analysis)}$
 - 등분산성
 - 독립성 ⇨ 잔차들 간에는 항상 상관관계가 존재
 - 정규성
 - 이상치 유무
- 잔차

$$\circ \ e_{ij} = Y_{ij} - \hat{Y}_{ij} = Y_{ij} - \overline{Y}_{i.}$$

$$\circ$$
 studentized 잔차 : $r_{ij}=rac{e_{ij}}{se(e_{ij})}$, $se(e_{ij})=\sqrt{rac{(n_i-1)MSE}{n_i}}$

$$\circ$$
 studentized deleted 잔차 : $t_{ij} = e_{ij} \left[\frac{N-p-1}{SSE(1-1/n_i)-e_{ij}^2} \right]^{1/2}$

□ 등분산 검정

- 반복수가 같은 경우 동일한 분산을 가진다는 가정을 약간 어기는 경우 분산분석 방법은 robust함
- 반복수가 다르거나 어떤 한 분산이 다른 분산들보다 상당히 큰 경우 분산분석 방법은 robust하지 않음 ⇨ 분산들이 같은지 다른지를 검정필요
- ullet 가설: H_0 : $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_p^2$ VS H_1 : 최소한 하나 이상의 분산은 다름

○ Hartley 검정

- 동일 반복수 *n*
- 검정통계량 : $H^* = \frac{\max(S_i^2)}{\min(S_i^2)} \sim H(p, n-1)$ $\circ S_i^2 = \sum (Y_{ij} - \overline{Y}_{i.})^2/(n_i - 1)$
- 기각역 : $H^* > H(\alpha, p, n-1)$

- Brown-Forsythe 검정
- 절대편차를 먼저 계산

$$D_{ij} = \left| \ Y_{ij} - \widetilde{Y}_i \right|$$

- \circ \widetilde{Y}_i : i 번째 그룹의 중앙값
- 검정통계량 : $F_{BF}^* = \frac{MSTR}{MSE}^* \simeq F_{p-1,N-p}$

$$\circ \ \ MSTR^* = \sum n_i (\overline{D}_{i.} - \overline{D}_{..})^2 / (p-1) \, , \ \ MSE^* = \sum \sum (D_{ij} - \overline{D}_{i.})^2 / (N-p)$$

□ 정규성 검정

- Shapiro-Wilk test, Kolmogorov-Smirnov test, Cramer-von Mises test,
 Anderson-Darling test
- Jarque-Bera test

$$JB = \frac{n}{6} \left(b_1 + \frac{1}{4} (b_2 - 3)^2 \right)$$

- \circ $\sqrt{b_1}$: 왜도(skewness)
- b₂: 첨도(kurtosis)

□ 문제 발생 시 해결방안

- 분산상수화변환(variance stablizing transformation, 분산안정화 변화)
 - \circ 잔차그림에서 잔차의 표준편차(분산)이 \hat{Y} 의 값과 연관성을 보이는 경우
 - 분산을 상수화시키기 위한 변환을 찾는 방법

-
$$\sigma_i^2 = Var(Y_{ij})$$
와 $\mu_i = E(Y_{ij})$ 사이에 함수관계가 존재하는 경우:

$$\sigma_i^2 = f(\mu_i)$$

- \circ $\sigma_i^2 = c \mu_i^2$ $(\sigma_i = c \mu_i)$ \Rightarrow 자연로그변환인 $\log(Y_{ij})$ 를 이용
- \circ $\sigma_i^2 = c\mu_i$ $(\sigma_i = \sqrt{\mu_i})$ \Rightarrow 제곱근변환인 $\sqrt{Y_{ij}}$ 를 이용

- 비모수적 방법: 자료의 값 대신 순위(rank)를 사용
 - 자료를 정렬한 후 해당 자료의 순위를 구함
 - tie가 있는 경우 순위의 중간값 사용

$$\circ \quad SSTO = \sum_{i} \sum_{j} \left(R_{ij} - \overline{R}_{..} \right)^{2}$$

$$\circ \quad SSE = \sum_{i} \sum_{j1} \left(R_{ij} - \overline{R}_{i.} \right)^{2}$$

$$\circ \quad SSTR = \sum_{i} n_{i} \left(\overline{R}_{i.} - \overline{R}_{..} \right)^{2}$$

○ 검정통계량

$$F_0 = \frac{SSTR/(p-1)}{SSE/(N-p)} = \frac{MSTR}{MSE} \sim F_{p-1,N-p}$$

■ 반복이 없는 이원배치법

- 실험 설계
 - \circ 수준 수가 p인 요인 A, 수준 수가 q인 요인 B
 - \circ $p \times q$ 실험 전체를 완전 확률화

○ 자료구조

요인 A 요인 B	A_1	A_2	•••	A_p
B_1	Y_{11}	Y_{21}	• • •	Y_{p1}
$B_{\!2}$	Y_{12}	Y_{22}	• • •	Y_{p2}
:	•	:	٠.	•
B_q	Y_{1q}	Y_{2q}	•••	Y_{pq}

○ 구조식

○ 1-요인설계의 구조식

$$Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + (\mu_i - \mu) + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

- τ_i : 요인의 처리효과
- 2-요인설계의 구조식

$$\Rightarrow Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \quad i = 1, ..., p, j = 1, ..., q$$

- \circ μ : 전체 평균, α_i : 요인 A의 처리효과, β_j : 요인 B의 처리효과
- \circ $\varepsilon_{ij} \sim \mathsf{iid}\ N(0,\sigma^2)$: 오차항
- \circ 제약조건: $\sum_{i=1}^{p} \alpha_i = 0$, $\sum_{j=1}^{q} \beta_j = 0$

○ 변동의 분해

$$\begin{split} Y_{ij} - \overline{Y}_{..} &= (\overline{Y}_{i.} - \overline{Y}_{..}) + (\overline{Y}_{.j} - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ SSTO &= SSA + SSB + SSE \end{split}$$

$$\circ$$
 $SSTO = \sum_{i=1}^{p} \sum_{j=1}^{q} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i=1}^{p} \sum_{j=1}^{q} Y_{ij}^2 - \frac{Y_{..}^2}{N}$: 자유도 $N-1$

$$\circ$$
 $SSA = q\sum_{i=1}^{p}(\overline{Y}_{i.} - \overline{Y}_{..})^2 = \sum_{i=1}^{p} \frac{Y_{i.}^2}{q} - \frac{Y_{..}^2}{N}$: 자유도 $p-1$

$$\circ$$
 $SSB = p \sum_{j=1}^{q} (\overline{Y}_{.j} - \overline{Y}_{..})^2 = \sum_{j=1}^{q} \frac{Y_{.j}^2}{p} - \frac{Y_{..}^2}{N}$: 자유도 $q-1$

$$\circ$$
 $SSE = \sum_{i=1}^{p} \sum_{j=1}^{q} (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2$: 자유도 $(p-1)(q-1)$

- SSE 자유도:
$$N-(p-1)-(q-1)-1=(p-1)(q-1)$$

○ 가설 검정

○ 요인 A의 처리 효과의 동일성 검정

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_p = 0$$

○ 요인 B의 처리 효과의 동일성 검정

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_q = 0$$

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
모형(처리A)	p-1	SSA	MSA	MSA/MSE
모형(처리B)	q-1	SSB	MSB	MSB/MSE
오차	(p-1)(q-1)	SSE	MSE	
전체	N-1	SSTO		

※ 분산분석에서 요인 처리에 대해 유의한 차이가 없는 것으로 나오면 일원배 치법으로 재분석

\bigcirc $\mu(A_i)$ 와 $\mu(B_i)$ 의 구간추정

$$\circ \quad \overline{Y}_{i.} \pm t_{\alpha/2,(p-1)(q-1)} \sqrt{\textit{MSE}/q}$$

$$\circ \quad \overline{Y}_{.j} \pm t_{\alpha/2,(p-1)(q-1)} \sqrt{\textit{MSE/p}}$$

■ 반복이 있는 이원배치법

○ 실험 설계

- \circ 수준 수가 p인 요인 A, 수준 수가 q인 요인 B, 반복 수가 r
- \circ p imes q imes r 실험 전체를 완전 확률화

○ 자료구조

요인 A 요인 B	A_1	A_2	• • •	A_p
B_1	$Y_{111},, Y_{11r}$	$Y_{211},, Y_{21r}$	• • •	$Y_{p11},, Y_{p1r}$
$B_{\!2}$	$Y_{121},, Y_{12r}$	$Y_{221},, Y_{22r}$	• • •	$Y_{p21},\;,Y_{p2r}$
:	:	:	٠.	:
$B_{\!q}$	$ig \ Y_{1q1}, Y_{1qr}$	$Y_{2q1},\;,Y_{2qr}$	• • •	$Y_{pq1},\;,Y_{pqr}$

○ 구조식

$$\begin{split} Y_{ijk} &= \mu_{ij} + \varepsilon_{ijk} \\ &= \mu + (\mu_{i.} - \mu) + (\mu_{.j} - \mu) + (\mu_{ij} - \mu_{i.} - \mu_{.j} + \mu) + \varepsilon_{ijk} \\ & \Rightarrow Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, \quad i = 1, \dots, p, \quad j = 1, \dots, q, \quad k = 1, \dots, r, \end{split}$$

- \circ μ : 전체 평균, α_i : 요인 A의 처리효과, β_i : 요인 B의 처리효과
 - A와 B를 주효과(main effect)라고 함
- \circ $(\alpha\beta)_{ii}$: 요인 A와 B의 교호작용 효과 (interaction effect)
- \circ $arepsilon_{ij}\sim \mathsf{iid}\ N(0,\sigma^2)$: 오차항

$$\circ$$
 제약조건: $\sum_{i=1}^{p} \alpha_i = 0$, $\sum_{j=1}^{q} \beta_j = 0$

$$-\sum_{i=1}^{p} (\alpha \beta)_{ij} = 0, \quad j = 1, ..., q, \quad \sum_{j=1}^{q} (\alpha \beta)_{ij} = 0, \quad i = 1, ..., p$$

○ 교호작용

- 요인 B의 수준의 변화에 따라 요인 A의 효과가 변하는 경우 교호 작용이 존재한다고 함
- 교호작용이 존재하지 않을 경우, AB의 최적조건은 A 요인의 최적조건을 구하고 B의 최적조건을 구하여 합함
- \circ 교호작용이 존재하는 경우, 모든 수준의 조합 $A_i B_j$ 에서 모평균을 추정함

○ 변동의 분해

$$\begin{split} Y_{ijk} - \overline{Y}_{...} &= (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{.j.} - \overline{Y}_{...}) \\ &+ (\overline{Y}_{ij.} - \overline{Y}_{i...} - \overline{Y}_{.j.} + \overline{Y}_{...}) + (Y_{ijk} - \overline{Y}_{ij.}) \\ SSTO &= SSA + SSB + SS(AB) + SSE \end{split}$$

$$\circ SSTO = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (Y_{ijk} - \overline{Y}_{...})^2 = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} Y_{ijk}^2 - \frac{Y_{...}^2}{N}$$

$$: \text{ Therefore} = N - 1$$

$$\circ$$
 $SSA = qr \sum_{i=1}^{p} (\overline{Y}_{i..} - \overline{Y}_{...})^2 = \sum_{i=1}^{p} \frac{Y_{i..}^2}{qr} - \frac{Y_{...}^2}{N}$: 자유도= $p-1$

$$\circ$$
 $SSB = pr \sum_{j=1}^{q} (\overline{Y}_{.j.} - \overline{Y}_{...})^2 = \sum_{j=1}^{q} \frac{Y_{.j.}^2}{pr} - \frac{Y_{...}^2}{N}$: 자유도= $q-1$

$$\circ$$
 $SSTR = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{Y_{ij}^{2}}{r} - \frac{Y_{...}^{2}}{N}$: 자유도= $pq-1$

$$\circ SS(AB) = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...})^{2} = SSTR - SSA - SSB$$

- 자유도:
$$pq-1-(p-1)-(q-1)=(p-1)(q-1)$$

$$\circ$$
 $SSE = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (Y_{ijk} - \overline{Y}_{ij.})^2$: 자유도 $pq(r-1)$

- 자유도:
$$N-1-(pq-1)=pq(r-1)$$

○ 가설 검정

○ 요인 A의 처리 효과의 동일성 검정

$$H_0 \ : \ \alpha_1 = \alpha_2 = \ \cdots \ = \alpha_p = 0$$

○ 요인 B의 처리 효과의 동일성 검정

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_q = 0$$

○ 교호작용의 효과

$$H_0: (\alpha\beta)_{11} = (\alpha\beta)_{12} = \cdots = (\alpha\beta)_{pq} = 0$$

 \circ 모든 처리의 동일성 검정 H_0 : 모든 μ_{ij} 들이 같다.

○ 분산분석표

	변인	자유도	제곱합	평균제곱	F
	처리	pq-1	SSTR	MSTR	MSTR/MSE
	처리 A	p-1	SSA	MSA	MSA/MSE
	처리 B	q-1	SSB	MSB	MSB/MSE
	교호작용	(p-1)(q-1)	SS(AB)	MS(AB)	MS(AB)/MSE
5	2차	pq(r-1)	SSE	MSE	
전	I 체	N-1	SSTO		

● 교호작용효과가 유의하면 주효과가 유의하지 않더라도 주효과를 모형에서 생략하지 않음

A요인 주효과	B요인과의 교호작용효과	A요인의 효과
있음	있음	있음
있음	없음	있음
없음	있음	있음
없음	없음	없음

- B요인의 적어도 한 수준에서 A요인의 효과가 있으면 A요인은 효과 있음
- B요인의 모든 수준에서 A요인의 효과가 없으면 A요인은 효과 없음

○ 분산분석후의 추정 (모수 모형)

- \circ $\mu(A_i)$ 와 $\mu(B_i)$ 의 구간추정
 - $\overline{Y}_{i..} \pm t_{\alpha/2,pq(r-1)} \sqrt{MSE/qr}$
 - $\overline{Y}_{.j.} \pm t_{\alpha/2,pq(r-1)} \sqrt{MSE/pr}$
- \circ $\mu(A_iB_i)$ 의 구간추정
 - $\overline{Y}_{ij.} \pm t_{\alpha/2,pq(r-1)} \sqrt{MSE/r}$
- ※ 교호작용이 유의한 경우, 일반적으로 요인 A, B의 각 수준의 모평균을 추정하는 것은 의미가 없으며 수준의 조합 A_iB_j 에서 모평균을 추정하는 것이 의미가 있음

○ 교호작용이 있는 경우 다중비교

- $H_0: \mu_{ij} = \mu_{kl}$ vs $H_1: \mu_{ij} \neq \mu_{kl}$ 또는 $\mu_{ij} \mu_{kl}$ 의 신뢰구간
- \bullet $\overline{Y}_{ij.}$ $-\overline{Y}_{kl.} \pm c\sqrt{MSE}\sqrt{1/r+1/r}$
 - \circ 최소유의차: $c = t_{\alpha/2,pq(r-1)}$
 - \circ Bonferroni: $c=t_{lpha/(2a),pq(r-1)}$, a= 비교검정의 경우의 수
 - \circ Scheffe: $c = \sqrt{(pq-1)F_{\alpha,pq-1,pq(r-1)}}$
 - \circ Tukey: $\frac{1}{\sqrt{2}}q_{\alpha,pq,pq(r-1)}$