Mini Projeto - Data Science Academy

André Campos da Silva

18 de Novembro, 2020

Projeto - Detecção de Fraudes

Construir um modelo de analise de fraudes com os dados históricos,com a finalidade de determinar se um futuro clique pode ser fraudulento ou não. Usarei os dados disponibilizados no site do https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/data (https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/data)

Coletando os dados

library('ROSE')

```
# Carrego os pacotes necessários para o projeto
library('tidyverse')
                                   ----- tidyverse 1.3.0 --
## -- Attaching packages -----
## v ggplot2 3.3.2 v purrr
                            0.3.4
## v tibble 3.0.4 v dplyr 1.0.2
## v tidyr 1.1.2
                  v stringr 1.4.0
## v readr 1.4.0
                   v forcats 0.5.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library('caret')
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
      lift
```

```
## Loaded ROSE 0.0-3
library('data.table')
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
## The following object is masked from 'package:purrr':
##
##
       transpose
library('gridExtra')
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
library('randomForest')
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:dplyr':
##
##
       combine
```

```
## The following object is masked from 'package:ggplot2':
##
##
       margin
library('DMwR')
## Loading required package: grid
## Registered S3 method overwritten by 'quantmod':
##
     method
                        from
##
     as.zoo.data.frame zoo
library('e1071')
library('rpart')
library('C50')
library("ROCR")
# Carrego os dados de treino que será tratado e usado para a análise e treinamento.
train_default <- fread('Dados/train_sample.csv',data.table = FALSE, tz="UTC")</pre>
head(train_default)
##
         ip app device os channel
                                             click_time attributed_time
## 1 87540 12
                      1 13 497 2017-11-07 09:30:38
                                                                     <NA>
## 2 105560 25
                      1 17
                               259 2017-11-07 13:40:27
                                                                     <NA>
## 3 101424 12
## 4 94584 13
                     1 19 212 2017-11-07 18:05:24
1 13 477 2017-11-07 04:58:08
                                                                     <NA>
                                                                     <NA>
                      1 1 178 2017-11-09 09:00:09
1 17 115 2017-11-09 01:22:13
## 5 68413 12
                                                                     <NA>
## 6 93663 3
                                                                     <NA>
    is_attributed
##
## 1
## 2
                  0
## 3
                  0
## 4
                  0
```

```
# Faço uma verificação do formato dos dados.
glimpse(train_default)
```

0

0

5

6

```
## Rows: 100,000
## Columns: 8
## $ ip
                <int> 87540, 105560, 101424, 94584, 68413, 93663, 17059, ...
## $ app
                <int> 12, 25, 12, 13, 12, 3, 1, 9, 2, 3, 3, 3, 3, 6, 2, 2...
## $ device
                <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, ...
## $ os
                <int> 13, 17, 19, 13, 1, 17, 17, 25, 22, 19, 22, 13, 22, ...
## $ channel
                <int> 497, 259, 212, 477, 178, 115, 135, 442, 364, 135, 4...
## $ click time
                <dttm> 2017-11-07 09:30:38, 2017-11-07 13:40:27, 2017-11-...
## $ is_attributed
```

Tratamento dos dados

Como no dataset de teste não tem a coluna attributed_time, eu vou tira-la do dataset de treino # na minha análise ela não é relevante, afinal não teremos ela para os testes.
train_default\$attributed_time <- NULL
head(train_default)

```
##
         ip app device os channel
                                            click_time is_attributed
## 1 87540 12
                     1 13
                              497 2017-11-07 09:30:38
## 2 105560
            25
                     1 17
                                                                   0
                              259 2017-11-07 13:40:27
## 3 101424 12
                     1 19
                              212 2017-11-07 18:05:24
                                                                   0
                     1 13 477 2017-11-07 04:58:08
1 1 178 2017-11-09 09:00:09
## 4 94584 13
                                                                   0
## 5 68413 12
                                                                   0
            3
## 6 93663
                     1 17
                              115 2017-11-09 01:22:13
                                                                   0
```

Verifico que o dataset só tem um ano e um mês para análise.
table(year(train_default\$click_time))

```
## 2017
## 100000
```

table(month(train_default\$click_time))

```
##
## 11
## 100000
```

```
# Crio uma função que extrai o dia, hora e minuto da variavel click_time para outras variáveis,
# com seus respectivos nomes, e no final retiro a click_time, não peguei o ano e mês,
# pois ambos são apenas um, 11/2017 como verificado anteriormente.
create_date <- function(x, y ){
    for (i in y){
        x$click_Day <- weekdays(y)
        x$click_Hour <- hour(y)
        x$click_Minute <- minute(y)
        x$click_time <- NULL
    }
    return(x)
}</pre>
```

```
# Faço o teste antes para ve se vai rodar do jeito desejado.
testeF <- train_default[1:50,]
create_date(testeF, testeF$click_time)</pre>
```

##	1	-					is_attributed		_	-	
##		87540	12		13	497	0	Tuesday	9	30	
##		105560	25		17	259	0	Tuesday	13	40	
##		101424	12		19	212	0	Tuesday	18	5	
##		94584	13		13	477	0	Tuesday	4	58	
##		68413	12	1		178	0	Thursday	9	0	
##		93663	3	1		115	0	Thursday	1	22	
##		17059	1		17	135	0	Thursday	1	17	
##		121505	9		25	442	0	Tuesday	10	1	
##		192967	2		22	364		Wednesday	9	35	
		143636	3	1		135		Wednesday	12	35	
	11	73839	3		22	489		Wednesday	8	14	
	12	34812	3		13	489	0	Tuesday	5	3	
		114809	3		22	205	0	Thursday	10	24	
		114220	6	1			0	Wednesday	14	46	
	15	36150	2		13	205	0	Tuesday	0	54	
	16	72116	25		19	259	0	Wednesday	23	17	
	17	5314	2	1		477	0	Thursday	7	33	
	18		3	1		280	0	Thursday	3	44	
	19	72065	20		90	259	0	Monday	23	14	
##	20	37301	14	1	13	349	0	Monday	20	7	
##	21	28735	12	1	19	265	0	Thursday	9	55	
##	22	66918	64	1	25	459	0	Wednesday	17	1	
##	23	25761	9	1	10	215	0	Wednesday	2	5	
##	24	8362	7	1	19	101	0	Tuesday	10	30	
##	25	45257	3	1	18	280	0	Tuesday	1	35	
##	26	145896	64	1	13	459	0	Tuesday	3	58	
##	27	162976	3	1	13	115	0	Tuesday	16	19	
##	28	52432	1	1	13	115	0	Tuesday	17	22	
##	29	135690	12	1	40	122	0	Tuesday	6	39	
##	30	139137	12	1	13	497	0	Tuesday	10	11	
##	31	48846	3	1	19	379	0	Thursday	3	14	
##	32	70747	64	1	15	459	0	Tuesday	14	0	
##	33	10831	15	1	19	386	0	Thursday	12	39	
##	34	89242	1	1	27	124	0	Tuesday	9	37	
##	35	140138	12	1	13	265	0	Tuesday	7	1	
##	36	28411	14	1	13	442	0	Monday	23	45	
##	37	127888	13	1	23	477	0	Monday	16	24	
##	38	75943	2	1	53	477	0	Tuesday	13	28	
##	39	87879	3	1	13	115	0	Tuesday	3	20	
		250933	3		13	280	0	Wednesday	11	9	
		133933	12		13	140	0	Tuesday	11	11	
	42	35096	18	1		107	0	Thursday	15	26	
	43	49431	15		49	245	0	Tuesday	23	11	
	44	53365	15		19	111	0	Thursday	4	23	
##		92599	25		13	259	0	Thursday	10	4	
		107148	15		13	140	0	Tuesday	0	49	
		116677	9		13	134		Wednesday	0	56	
	48	11057	15		19	245		Wednesday	2	14	
	49	48240	2		19	122		Wednesday	14	40	
	50	92488	14		18	401		Wednesday	17	33	
π#	שכ	J2400	14		10	401	О	weunesuay	1/	33	

```
# Faço então a extração no dataset de treino.

# train <- create_date(train_default, train_default$click_time)

# tail(train)

# write_csv(train, 'train-tratado.csv')

train <- fread('Dados/train-tratado.csv',data.table = FALSE, tz="UTC")

# A extração acima, demorou algumas horas, então ao terminar eu salvei o dataset tratado

# e carreguei ele novavemente para quando precisar rodar o script novamente não precisar refazer

# esse tratamento.
```

```
head(train)
```

```
##
        ip app device os channel is_attributed click_Day click_Hour click_Minute
                           497
## 1 87540 12
                   1 13
                                            Tuesday
                                                                        30
## 2 105560 25
                   1 17
                           259
                                          0 Tuesday
                                                            13
                                                                        40
                   1 19
                                                                         5
## 3 101424 12
                           212
                                         0 Tuesday
                                                            18
## 4 94584 13
                   1 13
                           477
                                         0 Tuesday
                                                            4
                                                                        58
## 5 68413 12
                   1 1
                           178
                                         0 Thursday
                                                             9
                                                                         0
## 6 93663 3
                   1 17
                                                                        22
                           115
                                          0 Thursday
                                                             1
```

```
# Crio uma formula agora para converter as variáveis que estão numericas para factor.

var_convert <- names(train)

to_factor <- function(df, var){
   for (i in var){
      df[[i]] <- as.factor(df[[i]])
   }
   return(df)
}
train2 <- to_factor(train,var_convert)</pre>
```

Analise Exploratória

Acessos sem download quanto os com download ocorrem com mais frequência na quarta-feira

Acessos sem downloads quanto com downloads ocorrem com mais frequencia entre a madrugada ate o inicio

da tarde

```
# Acessos dia/hora vs Acessos/Download por dia/hora.
pl5 <- train2 %>%
   filter(is_attributed == 0) %>%
   group_by(click_Day,click_Hour)%>%
   ggplot(aes(x =click_Hour, y = is_attributed, fill =click_Day)) +
   geom_bar(stat = "identity")+
   labs(title = 'Acessos por dia/hora sem download', x = 'Hora',
        y = 'Acesso sem download', fill = 'Dia')
pl6 <- train2 %>%
   filter(is attributed == 1) %>%
   group_by(click_Day,click_Hour)%>%
   ggplot(aes(x =click_Hour, y = is_attributed, fill =click_Day)) +
   geom_bar(stat = "identity")+
   labs(title = 'Acessos por dia/hora com download', x = 'Hora',
        y = 'Acesso sem download', fill = 'Dia')
grid.arrange(pl5,pl6, nrow=1,ncol=2)
```

Acessos por dia/hora sem download

Acessos por dia/hora com download

Existe um padrão para os acessos por dia em relação as horas.

```
# Dispositivos mais usados / Dispositivos com mais Downloads.
pl7 <- train2 %>%
  select(is_attributed, device)%>%
  filter(is_attributed == 0) %>%
  group_by(device)%>%
  summarise(Quantidade = table(device))%>%
  filter(Quantidade > 30)%>%
  ggplot(aes(x = '', y = Quantidade, fill = device)) +
  geom_bar(width = 1, stat = "identity") +
  coord_polar("y", start = 0, direction = -1) +
   labs(title = 'Top 6 - Dispositivos mais usados',
        fill = 'Device')+
  theme(
      axis.title.x = element_blank(),
      axis.title.y = element_blank(),
      panel.border = element_blank(),
      panel.grid=element blank(),
      axis.ticks = element_blank(),
      panel.background = element blank(),
      axis.text.x=element_blank())
```

`summarise()` regrouping output by 'device' (override with `.groups` argument)

```
pl8 <- train2 %>%
  select(is attributed, device)%>%
  filter(is_attributed == 1) %>%
  group by(device)%>%
  summarise(Quantidade = table(device))%>%
  filter(Quantidade > 1)%>%
  ggplot(aes(x = '', y = Quantidade, fill = device)) +
  geom_bar(width = 1, stat = "identity") +
  coord_polar("y", start = 0, direction = -1) +
  labs(title = 'Top 6 - Dispositivos com mais downloads',
        fill = 'Device')+
  theme(
      axis.title.x = element_blank(),
      axis.title.y = element_blank(),
      panel.border = element_blank(),
      panel.grid=element_blank(),
      axis.ticks = element blank(),
      panel.background = element_blank(),
      axis.text.x=element blank())
```

```
## `summarise()` regrouping output by 'device' (override with `.groups` argument)
```

```
grid.arrange(p17,p18, nrow=1,ncol=2)
```

Don't know how to automatically pick scale for object of type table. Defaulting to continuous.

Top 6 - Dispositivos mais usados

Top 6 - Dispositivos com mais downloads

O dispositvo 1 por ter mais acessos consequentemente tem mais downloads, e o dispotivo 0 # apesar de ter menos acesso, tem uma quantidade de download interessante.

`summarise()` regrouping output by 'channel' (override with `.groups` argument)

```
## `summarise()` regrouping output by 'channel' (override with `.groups` argument)
```

```
grid.arrange(pl9,pl10, nrow=1,ncol=2)
```

Don't know how to automatically pick scale for object of type table. Defaulting to continuous.

Top 10 - Canais com mais acessos.

Top 10 - Canais com mais downloads.

Nenhum dos canais do top 10 mais usados estão no top 10 do canais com mais downloads. # destacando o canal 213 com mais downloads.

`summarise()` regrouping output by 'os' (override with `.groups` argument)

`summarise()` regrouping output by 'os' (override with `.groups` argument)

```
grid.arrange(pl11,pl12, nrow=1,ncol=2)
```

Don't know how to automatically pick scale for object of type table. Defaulting to continuous.

Top 10 - O.S com mais downloads.

Acessos mais frequentes pelo 0.5 : 13, 19 ambos estando entre os primeiros no que mais fazem # downloads, juntamente com o 0 e 24.

`summarise()` regrouping output by 'app' (override with `.groups` argument)

```
## `summarise()` regrouping output by 'app' (override with `.groups` argument)
```

```
grid.arrange(pl13,pl14, nrow=1,ncol=2)
```

Don't know how to automatically pick scale for object of type table. Defaulting to continuous.

Top 10 - App com mais acessos

Top 10 - App com mais downloads.

Os apps com maiores acessos não aparecem entre os com mais downloads, este tendo com # mais volume o app 19 com uma quantidade de download maior em relação aos outros.

Feature Selection (Seleção de Variáveis)

```
# Após a analise exploratória dos dados, uso o random forest e o glm para a seleção das variáve is
# para treinar os modelos.
train$is_attributed <- as.factor(train$is_attributed)
train$click_Day <-as.factor(train$click_Day)
```

feature selection


```
#GLM
control <- trainControl(method = "repeatedcv", number = 10, repeats = 2)
model <- train(is_attributed ~ . , data = train, method = "glm", trControl = control)
importance <- varImp(model, scale = FALSE)
plot(importance)</pre>
```


Ambos os modelos mostraram as variáveis (ip, app, channel, device, os), como as mais relevante s # usarei elas para os modelos preditivos.

Split dos dados

Faço a divisão do dados de treino e teste, usando o dataset train, e deixo o test que vou usar # no final com o modelo de melhor performance. intrain <- createDataPartition(train2\$os,p=0.7,list=FALSE)

```
## Warning in createDataPartition(train2$os, p = 0.7, list = FALSE): Some classes ## have a single record ( 84, 88, 99, 106, 113, 114, 116, 127, 129, 133, 135, 137, ## 142, 151, 153, 168, 172, 174, 185, 192, 193, 199, 207, 836 ) and these will be ## selected for the sample
```

```
trainModel <- train2[intrain,]</pre>
testModel <- train2[-intrain,]</pre>
nrow(trainModel)
## [1] 70063
nrow(testModel)
## [1] 29937
table(trainModel$is_attributed)
##
##
            1
## 69901
           162
str(trainModel)
## 'data.frame':
                   70063 obs. of 9 variables:
                  : Factor w/ 34857 levels "9","10","19",..: 18449 17664 11853 21304 12885 6028
## $ ip
20015 6263 12572 919 ...
                  : Factor w/ 161 levels "1","2","3","4",...: 25 12 12 9 3 3 6 2 25 2 ...
## $ app
## $ device
                 : Factor w/ 100 levels "0","1","2","4",..: 2 2 2 2 2 2 2 3 2 ...
                  : Factor w/ 130 levels "0","1","2","3",..: 18 20 2 26 23 14 21 14 20 3 ...
## $ os
## $ channel : Factor w/ 161 levels "3","4","5","13",...: 68 53 46 127 157 157 29 49 68 147
. . .
## $ is_attributed: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 1 ...
## $ click_Day : Factor w/ 4 levels "Monday", "Thursday",..: 3 3 2 3 4 3 4 3 4 2 ...
## $ click_Hour : Factor w/ 24 levels "0","1","2","3",..: 14 19 10 11 9 6 15 1 24 8 ...
## $ click_Minute : Factor w/ 60 levels "0","1","2","3",..: 41 6 1 2 15 4 47 55 18 34 ...
```

Balanceamento dos dados

```
# É necessário balancear a variável target, pois está muito desbalanceada e com isso pode
# fazer com que o algoritmo faça previsões equivocadas, então uso o pacote SMOTE
# para o balanceamento.
trainModel_balanced <- SMOTE(is_attributed ~ .,trainModel, perc.over =500, perc.under=130)
table(trainModel_balanced$is_attributed)
```

```
##
## 0 1
## 1053 972
```

```
ggplot(trainModel_balanced, aes(x = is_attributed)) + geom_bar()
```


nrow(trainModel_balanced)

[1] 2025

head(trainModel_balanced)

```
##
             ip app device os channel is_attributed click_Day click_Hour
## 70714 81211
                  3
                         1 15
                                                   0 Wednesday
                                   280
## 30777 112574
                         1 19
                                   278
                                                   0 Wednesday
                                                                         8
                                                   0 Thursday
                                                                         7
                         1 22
## 301
          68568
                                   107
## 67119 43871
                  2
                         1 19
                                   219
                                                   0 Wednesday
                                                                        15
## 71269 79271
                         1 17
                                   442
                                                   0 Wednesday
                                                                        10
## 93450 48062
                  3
                         1 10
                                   280
                                                   0 Wednesday
                                                                         2
##
         click_Minute
## 70714
                   45
## 30777
                   36
## 301
                   59
## 67119
                   31
                    2
## 71269
## 93450
                   34
```

```
## Rows: 2,025
## Columns: 9
               <chr> "81211", "112574", "68568", "43871", "79271", "48062"...
## $ ip
               <chr> "3", "15", "18", "2", "9", "3", "3", "15", "3", "2", ...
## $ app
               ## $ device
               <chr> "15", "19", "22", "19", "17", "10", "17", "19", "18",...
## $ os
               <chr> "280", "278", "107", "219", "442", "280", "135", "245...
## $ channel
<chr> "Wednesday", "Wednesday", "Thursday", "Wednesday", "W...
## $ click_Day
## $ click_Hour
               <chr> "0", "8", "7", "15", "10", "2", "4", "13", "14", "0",...
## $ click_Minute <chr> "45", "36", "59", "31", "2", "34", "45", "29", "37", ...
```

```
glimpse(testModel2)
```

```
## Rows: 29,937
## Columns: 9
               <chr> "87540", "94584", "93663", "17059", "192967", "143636...
## $ ip
               <chr> "12", "13", "3", "1", "2", "3", "3", "3", "64", "7", ...
## $ app
               ## $ device
               <chr> "13", "13", "17", "17", "22", "19", "22", "20", "25",...
## $ os
               <chr> "497", "477", "115", "135", "364", "135", "205", "280...
## $ channel
## $ click_Day
               <chr> "Tuesday", "Tuesday", "Thursday", "Thursday", "Wednes...
               <chr> "9", "4", "1", "1", "9", "12", "10", "3", "17",
## $ click_Hour
## $ click_Minute <chr> "30", "58", "22", "17", "35", "35", "24", "44", "1", ...
```

Algoritmos de aprendizagem

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
                        1
##
            0 29373
                        9
##
            1
                499
                       56
##
##
                  Accuracy: 0.983
##
                    95% CI: (0.9815, 0.9845)
##
       No Information Rate: 0.9978
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa : 0.1774
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.9833
##
               Specificity: 0.8615
##
##
            Pos Pred Value : 0.9997
##
            Neg Pred Value: 0.1009
##
                Prevalence: 0.9978
            Detection Rate : 0.9812
##
##
      Detection Prevalence: 0.9815
##
         Balanced Accuracy: 0.9224
##
          'Positive' Class : 0
##
##
```

```
# Criando curvas ROC para o modelo
previsao_v1_ROC <- predict(modelo_v1, newdata = testModel2, type = 'prob')
targetROC2 <- testModel2$is_attributed
pred1 <- prediction(previsao_v1_ROC[,2], targetROC2)
perf1 <- performance(pred1, "tpr","fpr")
plot(perf1, col = rainbow(10))</pre>
```



```
## Warning in data.matrix(newdata): NAs introduced by coercion
```

```
confusionMatrix(previsao_v2, testModel2$is_attributed)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
                  0
## Prediction
##
            0 29276
                       10
                596
                       55
##
##
##
                  Accuracy : 0.9798
                    95% CI: (0.9781, 0.9813)
##
       No Information Rate : 0.9978
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa : 0.1503
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.98005
##
##
               Specificity: 0.84615
            Pos Pred Value: 0.99966
##
            Neg Pred Value: 0.08449
##
                Prevalence: 0.99783
##
            Detection Rate: 0.97792
##
##
      Detection Prevalence : 0.97825
##
         Balanced Accuracy: 0.91310
##
##
          'Positive' Class : 0
##
```

```
# Criando curvas ROC para o modelo
previsao_v2_ROC <- predict(modelo_v2, newdata = testModel2, type = 'raw')</pre>
```

```
## Warning in data.matrix(newdata): NAs introduced by coercion
```

```
pred2 <- prediction(previsao_v2_ROC[,2], targetROC2)
perf2 <- performance(pred2, "tpr","fpr")
plot(perf2, col = rainbow(10))</pre>
```



```
## Confusion Matrix and Statistics
##
##
             Reference
                  0
## Prediction
##
            0 21686
                        4
##
            1 8186
                       61
##
##
                  Accuracy : 0.7264
                    95% CI: (0.7213, 0.7315)
##
       No Information Rate : 0.9978
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa : 0.0104
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.725964
##
               Specificity: 0.938462
            Pos Pred Value: 0.999816
##
            Neg Pred Value: 0.007397
##
                Prevalence: 0.997829
##
            Detection Rate: 0.724388
##
##
      Detection Prevalence : 0.724521
##
         Balanced Accuracy: 0.832213
##
##
          'Positive' Class : 0
##
```

```
# Criando curvas ROC para o modelo
targetROC <- testModel$is_attributed
previsao_v3_ROC <- predict(modelo_v3, newdata = testModel,type = 'class')
pred3 <- prediction(as.numeric(previsao_v3_ROC), as.numeric(targetROC))
perf3 <- performance(pred3, "tpr","fpr")
plot(perf3, col = rainbow(10))</pre>
```



```
## Confusion Matrix and Statistics
##
##
             Reference
                  0
                        1
## Prediction
##
            0 28981
                       10
##
                891
                       55
##
##
                  Accuracy : 0.9699
                    95% CI: (0.9679, 0.9718)
##
       No Information Rate : 0.9978
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa : 0.1052
##
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.97017
##
               Specificity: 0.84615
            Pos Pred Value: 0.99966
##
            Neg Pred Value: 0.05814
##
                Prevalence: 0.99783
##
            Detection Rate: 0.96807
##
##
      Detection Prevalence : 0.96840
##
         Balanced Accuracy: 0.90816
##
          'Positive' Class : 0
##
##
```

```
# Criando curvas ROC para o modelo
previsao_v4_ROC <- predict(modelo_v4, newdata = testModel,type = 'prob')
pred4 <- prediction(previsao_v4_ROC[,2], targetROC)
perf4 <- performance(pred4, "tpr","fpr")
plot(perf4, col = rainbow(10))</pre>
```


Rodando o algoritmo em produção

```
# Todos os 4 modelos tiveram resultados satisfatórios, eu decido por usar o randomForest em prod
ução.

# Carrego o data set de test simulando como se fossem dados novos e faço os tratamentos para rod
ar no algoritmo e adiciono
# o resultado previsto ao dataset e imprimo as primeiras e ultimas linhas.
test_default <- fread('Dados/test_default.csv', data.table = FALSE)
test_default$click_id <- NULL
test_default$click_time <- NULL
var_convert3 <- c ("ip","app","device","os","channel")
test<- to_character(test_default,var_convert3)

previsao_prod <- predict(modelo_v1, test)
table(previsao_prod)</pre>
```

```
## previsao_prod
## 0 1
## 18382442 408027
```

```
test$is_attributed <- previsao_prod
head(test)</pre>
```

```
##
        ip app device os channel is_attributed
     5744
                    1 3
                             107
## 1
                    1 3
## 2 119901
            9
                             466
                                            0
## 3 72287
                    1 19
            21
                             128
                                            0
## 4 78477
            15
                    1 13
                             111
                                            0
## 5 123080 12
                    1 13
                             328
                                            0
## 6 110769 18
                    1 13
                             107
                                            0
```

tail(test)

```
ip app device os channel is_attributed
##
## 18790464 69245 12
                           1 13
                                   135
## 18790465
            99442
                   9
                           1 13
                                   127
                                                   0
## 18790466 88046 23
                           1 37
                                   153
                                                   0
## 18790467 81398 18
                           1 17
                                   265
                                                   0
## 18790468 123236 27
                                   122
                                                   0
                           1 13
## 18790469 73516 12
                           2 27
                                   265
                                                   0
```