## NATIONAL UNIVERSITY OF SINGAPORE

## CS1231 DISCRETE STRUCTURES

(Semester 1: 2022/2023) [In the notation and the terminology for 2022/23 Semester 2]

Time Allowed: 2 Hours

## INSTRUCTIONS TO STUDENTS

- 1. Write your Student Number only. Do not write your name.
- 2. This assessment paper contains FOUR questions and comprises NINE printed pages.
- 3. Answer ALL questions. The marks for each question are indicated in brackets.
- 4. Write your solutions in the spaces provided.
- 5. This is an **OPEN** book examination.

| STUDENT | NUMBER:     |  |
|---------|-------------|--|
|         | INCIVIDEIX. |  |

| EXAMINER'S USE ONLY |       |       |  |
|---------------------|-------|-------|--|
| Question            | Marks | Score |  |
| Q1                  | 20    |       |  |
| Q2                  | 5     |       |  |
| Q3                  | 19    |       |  |
| Q4                  | 6     |       |  |
| Total               | 50    |       |  |

PAGE 2 CS1231

1. Consider the relation f from  $\mathbb{Z}$  to  $\mathbb{Z}$  defined by

$$f = \{ (m+12, 31m) : m \in \mathbb{Z} \}.$$

(i) Prove that f is a function  $\mathbb{Z} \to \mathbb{Z}$ .

[4 marks]

**Solution:** (F1) Let  $r \in \mathbb{Z}$ . Define m = r - 12. Then  $m \in \mathbb{Z}$  and m + 12 = (r - 12) + 12 = r. Thus  $(r, 31m) \in f$ .

(F2) Let  $r, s_1, s_2 \in \mathbb{Z}$  such that  $(r, s_1), (r, s_2) \in f$ . Use the definition of f to find  $m_1, m_2 \in \mathbb{Z}$  such that  $(r, s_1) = (m_1 + 12, 31m_1)$  and  $(r, s_2) = (m_2 + 12, 31m_2)$ . Then  $m_1 + 12 = r = m_2 + 12$ . This implies  $m_1 = m_2$ . So  $s_1 = 31m_1 = 31m_2 = s_2$ .

(ii) What is the codomain of f?

[1 mark]

**Solution:** The codomain of f is  $\mathbb{Z}$ .

(iii) What is the range of f?

[1 mark]

**Solution:** The range of f is  $\{31m : m \in \mathbb{Z}\}$ .

(iv) Is f surjective? Justify your answer.

[3 marks]

**Solution:** No, because the range of f is not equal to the codomain of f. As  $1 \in \mathbb{Z}$ , it suffices to argue that  $f(r) \neq 1$  for any  $r \in \mathbb{Z}$ .

Suppose we have  $r \in \mathbb{Z}$  such that f(r) = 1. Use the definition of f to find  $m \in \mathbb{Z}$  such that (r,1) = (m+12,31m). Then 1 = 31m and thus  $m = 1/31 \notin \mathbb{Z}$ . This contradicts the fact that  $m \in \mathbb{Z}$ . So no  $r \in \mathbb{Z}$  can make f(r) = 1.

PAGE 3 CS1231

- 1. (continued from the previous page)
  - (v) Is f injective? Justify your answer.

[3 marks]

**Solution:** Yes, as shown below.

Let  $r_1, r_2 \in \mathbb{Z}$  such that  $f(r_1) = f(r_2)$ . Say  $f(r_1) = s = f(r_2)$ . Use the definition of f to find  $m_1, m_2 \in \mathbb{Z}$  such that  $(r_1, s) = (m_1 + 12, 31m_1)$  and  $(r_2, s) = (m_2 + 12, 31m_2)$ . Then  $31m_1 = s = 31m_2$ . This implies  $m_1 = m_2$ . So  $r_1 = m_1 + 12 = m_2 + 12 = r_2$ .

(vi) Define  $f^1 = f$  and  $f^{n+1} = f^n \circ f$  for each  $n \in \mathbb{Z}^+$ . Prove that  $f^n$  is injective for any  $n \in \mathbb{Z}^+$ . [3 marks]

**Solution:** We proceed by induction on n.

(Base step) Note that  $f^1 = f$  by definition. So  $f^1$  is injective because we know from  $(\mathbf{v})$  that f is injective.

(Induction step) Let  $k \in \mathbb{Z}^+$  such that  $f^k$  is injective. By the Induction Hypothesis and the assumption, we know  $f^k$  and f are both injective. So Tutorial Exercise 8.1(b) tells us  $f^k \circ f$  is injective. As  $f^{k+1} = f^k \circ f$  by definition, we conclude that  $f^{k+1}$  is injective.

This completes the induction.

PAGE 4 CS1231

- 1. (continued from the previous page)
  - (vii) Does the relation f, considered as a set, have the same cardinality as  $\mathbb{Z} \times \mathbb{Z}$ ? Justify your answer. [5 marks]

**Solution:** Yes, as shown below.

Define  $g: \mathbb{Z} \to f$  by setting g(m) = (m+12, 31m) for all  $m \in \mathbb{Z}$ . It is surjective because, given any  $(m+12, 31m) \in f$ , we have  $m \in \mathbb{Z}$  and g(m) = (m+12, 31m). It is injective because, if  $m_1, m_2 \in \mathbb{Z}$  such that  $f(m_1) = f(m_2)$ , then  $(m_1 + 12, 31m_1) = (m_2 + 12, 31m_2)$ , and thus  $m_1 + 12 = m_2 + 12$  and  $31m_1 = 31m_2$ , implying  $m_1 = m_2$ . Thus g is a bijection  $\mathbb{Z} \to f$ .

The previous paragraph shows f has the same cardinality as  $\mathbb{Z}$ . Note that  $\mathbb{Z}$  is countable by Proposition 9.1.4. As  $\mathbb{N} \subseteq \mathbb{Z}$ , we also know that  $\mathbb{Z}$  is infinite by Exercise 8.2.7 and Proposition 9.2.6(1). So f is countable and infinite by Lemma 8.2.8 and Lemma 9.2.1. This means f has the same cardinality as  $\mathbb{N}$ .

Now  $\mathbb{Z} \times \mathbb{Z}$  is countable by Proposition 9.1.4 and Extra Exercise 9.9, as  $\mathbb{Z}$  is infinite. As f is infinite and  $f \subseteq \mathbb{Z} \times \mathbb{Z}$ , Proposition 9.2.6(1) tells us  $\mathbb{Z} \times \mathbb{Z}$  is infinite. Thus  $\mathbb{Z} \times \mathbb{Z}$  has the same cardinality as  $\mathbb{N}$ .

Now both f and  $\mathbb{Z} \times \mathbb{Z}$  have the same cardinality as  $\mathbb{N}$ . So they must have the same cardinality by Proposition 8.2.4.

PAGE 5 CS1231

- 2. Let A be an uncountable subset of  $\mathbb{R}$ .
  - (i) Define  $A^- = A \cap \mathbb{R}^-$  and  $A_{\geqslant 0} = A \cap \mathbb{R}_{\geqslant 0}$ . Explain why  $A^-$  and  $A_{\geqslant 0}$  cannot both be countable. [1 mark]

**Solution:** Note that  $A = A^- \cup A_{\geq 0}$ . So if  $A^-$  and  $A_{\geq 0}$  are both countable. then  $A^- \cup A_{\geq 0}$  is also countable by Tutorial Exercise 9.2, contradicting the hypothesis that A is uncountable.

(ii) Define  $B = \{x^2 : x \in A\}$ . Using (i), or otherwise, prove that B is uncountable. [4 marks]

**Solution:** From (i), we know that either  $A^-$  or  $A_{\geq 0}$  is uncountable.

Case 1: suppose  $A^-$  is uncountable. Define  $f: A^- \to B$  by setting  $f(x) = x^2$  for each  $x \in A^-$ . Then f is injective because, if  $x_1, x_2 \in A^-$  such that  $f(x_1) = f(x_2)$ , then

$$x_1^2 = x_2^2$$
 by the definition of  $f$ ;  

$$x_1 = x_2$$
 as  $x_1 < 0$  and  $x_2 < 0$ .

Since  $A^-$  is uncountable, we deduce from Corollary 9.2.7(2) that B is uncountable.

Case 2: suppose  $A_{\geqslant 0}$  is uncountable. Define  $g: A_{\geqslant 0} \to B$  by setting  $f(x) = x^2$  for each  $x \in A_{\geqslant 0}$ . Then g is injective because, if  $x_1, x_2 \in A^-$  such that  $g(x_1) = g(x_2)$ , then

$$x_1^2 = x_2^2$$
 by the definition of  $g$ ;  

$$x_1 = x_2$$
 as  $x_1 \geqslant 0$  and  $x_2 \geqslant 0$ .

Since  $A_{\geq 0}$  is uncountable, we deduce from Corollary 9.2.7(2) that B is uncountable.

- 3. Consider an undirected graph G = (V, E) where  $V = \{1, 2, 3, 4, 5\}$  and  $E = \{12, 13, 14, 23, 34, 45\}$ .
  - (i) Draw G. [1 mark]

Solution: - 5

(ii) How many connected components are there in G?

[1 mark]

**Solution:** 

(iii) How many cycles are there in G?

[1 mark]

3 **Solution:** 

(iv) How many paths are there between the vertices 1 and 5 in G?

[1 mark]

Solution: 3

(v) Draw a subgraph (V', E') of G that is not a tree but satisfies |E'| = |V'| - 1.

[1 mark]

Solution:

2 3 or

4 other possibilities. or

(vi) Identify an edge xy such that  $(V, E \setminus \{xy\})$  is not connected.

[1 mark]

Solution:

45

- 3. (continued from the previous page)
  - (vii) Draw all spanning trees of G.

[3 marks]



(viii) Which of the spanning trees from (vii) are isomorphic to each other? [3 marks]

**Solution:**  $T_1, T_2, T_3, T_8$  are isomorphic.  $T_3, T_4, T_6, T_7$  are isomorphic.

(ix) Pick two non-isomorphic trees T and T' from (viii). Explain why T and T' are not isomorphic. [2 marks]

**Solution:** Consider  $T = T_1$  and  $T' = T_3$ . These are not isomorphic because

- ullet T has a vertex, namely 4, that is in 3 edges, but
- T' does not have any vertex that is in 3 edges.

PAGE 8 CS1231

## 3. (continued from the previous page)

(x) Determine the number of graphs with vertex set  $\{1, 2, 3, 4, 5\}$  that are isomorphic to G. Briefly explain your answer. [2 marks]

**Solution:** We count the number of ways to assign vertices from  $\{1, 2, 3, 4, 5\}$  to a, b, c, d, e in the following graph without repetition:

$$\stackrel{|}{a} \stackrel{|}{-} \stackrel{|}{d} \stackrel{|}{-} \epsilon$$

There are 5! ways to do so by Corollary 10.3.7. Each such assignment gives rise to a graph with vertex set  $\{1, 2, 3, 4, 5\}$  that is isomorphic to G. However, each such graph comes from exactly two assignments:

$$\begin{array}{cccc}
b & a \\
 & | & | \\
 & | & | \\
 & a - d - e
\end{array}$$
 and  $\begin{array}{cccc}
c & d - a \\
 & | & | \\
 & c - d - e
\end{array}$ 

give rise to the same graph. Thus the total number of such graphs is 5!/2 = 60.

**Alternative solution:** First, we assign vertices from  $\{1, 2, 3, 4, 5\}$  to a, b, c in the following graph without repetition:

$$\begin{bmatrix} c \\ b \end{bmatrix}$$

There are  $5 \times 4 \times 3 = 60$  ways to do this by the Multiplication Rule. All ways to assign vertices in  $\{1, 2, 3, 4, 5\} \setminus \{a, b, c\}$  to the two •'s result in the same graph, whose vertex set is  $\{1, 2, 3, 4, 5\}$  and which is isomorphic to G. Since different assignments give rise to different graphs, there are exactly 60 such graphs.

(xi) Suppose we add a vertex 6 to V and an edge 26 to E. Determine the number of graphs with vertex set  $\{1, 2, 3, 4, 5, 6\}$  that are isomorphic to  $(V \cup \{6\}, E \cup \{26\})$ . Briefly explain your answer.

[3 marks]

**Solution:** Here is a drawing of the new graph:

Call this  $G_6$ . We count the number of ways to assign vertices from  $\{1, 2, 3, 4, 5, 6\}$  to a, b, c, d, e, f in the following graph without repetition:

$$f - b - c$$
 $| \nearrow |$ 
 $a - d - e$ 

There are 6! ways to do so by Corollary 10.3.7. Each such assignment gives rise to a graph with vertex set  $\{1, 2, 3, 4, 5, 6\}$  that is isomorphic to  $G_6$ . However, each such graph comes from exactly four assignments:

give rise to the same graph. Thus the total number of such graphs is 6!/4 = 180.

**Alternative solution:** The number of ways to choose a subset  $\{a,b\} \subseteq \{1,2,3,4,5,6\}$ , then a subset  $\{c,d\} \subseteq \{1,2,3,4,5,6\} \setminus \{a,b\}$ , then two different vertices e,f from  $\{1,2,3,4,5,6\} \setminus \{a,b,c,d\}$  is  $\binom{6}{2} \times \binom{4}{2} \times 2 = 180$  by Theorem 10.3.15 and the Multiplication Rule. Each such sequence of choices gives rise to a unique graph

$$\begin{array}{c|c} b - e - c \\ \hline \downarrow & \\ d - f - a \end{array}$$

with vertex set  $\{1, 2, 3, 4, 5, 6\}$  that is isomorphic to  $G_6$ , and each such graph can be obtained in this way. So the number of such graphs is also 180.

PAGE 9 CS1231

4. Let H be a subgraph of a finite connected undirected graph G. Prove that H is a subgraph of a spanning tree of G if and only if H is acyclic. [6 marks]

**Solution:** ( $\Rightarrow$ ) Suppose H is a subgraph of a spanning tree T of G. As T is a tree, we know it is acyclic, i.e., it has no loop and no cycle. This implies all subgraphs of T have no loop and no cycle. In particular, this is true for the subgraph H of T. Thus H is acyclic.

- ( $\Leftarrow$ ) Suppose *H* is acyclic. Run the following procedure.
  - 1. Set  $H_0 = H$  and initialize m = 0.
  - 2. While  $H_m$  is unconnected do:
    - // Being unconnected, the graph  $H_m$  must have at least two connected components. As G // is connected, any two of these connected components can be connected by a path in G.
    - 2.1. Use the Well-Ordering Principle to find a path  $P_m$  in G of smallest length which connects two different connected components  $A_m$ ,  $B_m$  of  $H_m$ , i.e., the path  $P_m$  is between a vertex  $a_m$  in  $A_m$  and a vertex  $b_m$  in  $B_m$ .
    - 2.2. Set  $H_{m+1} = (V(H_m) \cup V(P), E(H_m) \cup E(P))$ .

      // The graph  $H_{m+1}$  has at least one fewer connected components than  $H_m$  because  $a_i$ // and  $b_2$  are not in the same connected component in  $H_m$ , but they are in  $H_{m+1}$  by

      // Theorem 11.3.7.
    - // This while-loop must stop because H is finite, and thus have only finitely many connected // components to connect.
  - 3. Set  $L_0 = H_m$  and initialize n = 0.
  - 4. While  $V(G) \setminus V(L_n) \neq \emptyset$  do:
    - 4.1. Use the connectedness of G to find an edge  $x_n y_n \in E(G)$  where  $x_n \notin V(L_n)$  and  $y_n \in V(L_n)$ .
    - 4.2. Set  $L_{n+1} = (V(L_n) \cup \{x_n\}, E(L_n) \cup \{x_n y_n\}).$
    - 4.3. Increment n to n+1.
    - // This while-loop must stop because G is finite.

We verify that each  $H_i$  is acyclic. The graph  $H_0$  is acyclic because H is acyclic. Consider some  $i \in \{0, 1, \ldots, m-1\}$  such that  $H_i$  is acyclic. Say  $P_i = u_0 u_1 \ldots u_k$ , where  $u_0 = a_i$  and  $u_k = b_i$ . Since neither  $H_i$  nor P has any loop, the union  $H_{i+1}$  also has no loop. Suppose, towards a contradiction, that  $H_{i+1}$  has a cycle, say C. As  $H_i$  is acyclic, this cycle C must involve some edge in P. However, by the smallestness of the length of P, we know  $u_1, u_2, \ldots, u_{k-1} \notin V(H_i)$ . Thus one by one we see that C must have in it all the edges in P. If  $C = u_0 u_1 \ldots u_k v_1 v_2 \ldots v_\ell u_0$ , then  $u_k v_1 v_2 \ldots v_\ell u_0$  is a path between  $a_i$  and  $b_i$  in  $H_i$ , contradicting the fact that  $a_i$  and  $b_i$  are in different connected components of  $H_i$  via Theorem 11.3.7.

We verify that each  $L_j$  is a tree. Recall  $L_0 = H_m$ . We know  $H_m$  is acyclic from the previous paragraph. We know  $H_m$  is connected because the stopping condition is reached in block 2. So  $L_0$  is a tree. Consider some  $j \in \{0, 1, \ldots, n-1\}$  such that  $L_j$  is a tree. The graph  $L_{j+1}$  cannot have any loop because  $L_j$  has no loop and  $x_j \neq y_j$ . Recall  $x_j \notin V(K_j)$ . So the new edge  $x_j y_j$  is the only edge in  $L_{j+1}$  that contains  $x_j$ . Since every vertex is in two edges in a cycle, no cycle in  $L_{j+1}$  can contain  $x_j$ . However, no cycle in  $L_{j+1}$  can omit  $x_j$  because  $L_j$  has no cycle, and  $x_j$  is the only difference between  $L_j$  and  $L_{j+1}$ . Hence  $L_{j+1}$  can have no cycle.

Since the stopping condition is reached in block 4, we know  $V(L_n) = V(G)$ . So  $L_n$  is a spanning tree of G. Here H is a subgraph of  $L_n$  because  $L_n$  is obtained from H by successively adding vertices and edges.