Oppgave 1

Innledning

- a) Skissér et typisk mønstergjenkjenningssystem, og forklar hva de ulike delene i systemet gjør.
- b) Forklar hva som menes med et *treningssett*, og gi eksempler på hvordan et slikt datasett kan brukes til å trene opp en klassifikator.
- c) Forklar hva som menes med *diskriminantfunksjoner* og hvordan slike funksjoner brukes til å klassifisere objekter.
- d) Forklar hva som menes med et *testsett*, og redegjør for hvordan og hvorfor man bør bruke et slikt datasett.

Oppgave 2

Beslutningsteori

- a) Gjør rede for begrepene *klassebetinget sannsynlighetstetthet*, a priori sannsynlighet og a posteriori sannsynlighet og sett opp Bayes regel (Bayes formel) som knytter disse størrelsene sammen.
- b) Forklar kort hva som menes med *handlinger* (actions) og *kostnader* (tap) knyttet til ulike handlinger. Redegjør for hvordan kostnader kan inngå i løsningen av et klassifiseringsproblem.
- c) La $R(\alpha_i|\mathbf{x})$ være *betinget risk* for en gitt handling α_i og en gitt egenskapsvektor \mathbf{x} . Sett opp et uttrykk for denne størrelsen ved hjelp av kostnader og a posteriori sannsynligheter for klassene i problemet. La a være antall mulige handlinger og $\lambda(\alpha_i|\omega_j) = \lambda_{ij}$ være kostnaden (tapet) forbundet med handling α_i for $i = 1, \ldots, a$, når sann klasse for objektet representert ved \mathbf{x} er ω_j . Forklar hvilket valg av handling som leder til minimum *total risk* (minimum forventet tap) og formulér den tilhørende beslutningsregelen.
- d) I et éndimensjonalt (univariat) toklasseproblem med a=c=2 (antall handlinger lik antall klasser) er fordelingsfunksjonene for egenskapen x gitt ved de univariate normalfordelingene $N(\mu_1, \sigma^2)$ for klasse ω_1 og $N(\mu_2, \sigma^2)$ for klasse ω_2 . Vis at desisjonsgrensen (terskelen) x_0 som minimaliserer den totale risken er gitt ved

$$x_0 = \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2}{\mu_1 - \mu_2} \ln \left[\frac{(\lambda_{12} - \lambda_{22}) P(\omega_2)}{(\lambda_{21} - \lambda_{11}) P(\omega_1)} \right].$$

- e) Vis hvordan et spesielt valg av kostnader leder til *minimum-feilrate* klassifisering og formulér beslutningsregelen i dette tilfellet.
- f) Hva blir desisjonsgrensen x_0 med dette spesielle valget av kostnader? Lag en skisse som illustrerer feilraten og viser plasseringen av desisjonsgrensen for et tilfelle med like a priori sannsynligheter.

Oppgave 3

Parametriske metoder

- a) Beskriv *maksimum-likelihood* metoden for estimering av parametervektoren $\boldsymbol{\theta}$ i en antatt fordelingsfunksjon $p(\boldsymbol{x}|\boldsymbol{\theta})$ ved ledet læring, og utled et likningssystem for estimatet av $\boldsymbol{\theta}$ basert på et sett av treningssampler (egenskapsvektorer) $\boldsymbol{x}_k, k = 1, \dots, n$ trukket fra den aktuelle fordelingsfunksjonen. Hvilken forutsetning må man gjøre om disse samplene?
- b) Finn maksimum-likelihood estimatet av parameteren θ i den univariate fordelingen gitt ved

$$p(x|\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x},$$

der $x \ge 0$ og $\theta > 0$. La treningssettet være gitt ved $\mathcal{X} = \{x_1, ..., x_n\}$.

Oppgave 4

Lineære diskriminantfunksjoner

- a) Sett opp en lineær diskriminantfunksjon $g(\mathbf{x})$ for et toklasseproblem, forklar størrelsene som inngår og gjør rede for hvordan diskriminantfunksjonen brukes til klassifisering av objekter. Anta at egenskapsrommet har dimensjon d.
- b) Omskriv diskriminantfunksjonen til utvidet form, som produktet av en utvidet vektvektor a med en utvidet egenskapsvektor y, og forklar hva som inngår i a og y. Hvilken dimensjon har det utvidede egenskapsrommet?
- c) Gjør rede for minste kvadraters metode til trening av den utvidede vektvektoren, og vis hvordan man kan komme frem til en minste kvadraters løsning ved hjelp av *Pseudoinvers*-metoden.
- d) Anta et treningssett som består av de univariate samplene $\mathcal{X}_1 = \{1,2,3\}$ fra ω_1 og $\mathcal{X}_2 = \{5,6,7\}$ fra ω_2 . Bruk pseudoinvers-metoden til å finne den utvidede vektvektoren for dette toklasseproblemet. La marginvektoren \boldsymbol{b} ha kun enere som komponenter. Hva blir desisjonsgrensen (terskelen mellom klassene) i dette tilfellet?
- e) Lag en skisse som viser treningssettet, desisjonsgrensen og vektvektoren i det utvidede egenskapsrommet.

Oppgave 5

Ikke-ledet læring

- a) Hva er det som kjennetegner ikke-ledet læring (i motsetning til ledet læring), og hva menes med en blandingstetthet?
- b) Sett opp blandingstettheten for et toklasseproblem uttrykt ved tetthetsfunksjonene og klassenes a priori sannsynligheter.
- c) Her skal vi se på et *univariat* toklasseproblem. Bruk maksimum-likelihood metoden til å vise at likningssystemet for parametervektorene til de to klassene kan skrives som

$$\sum_{k=1}^{n} P(\boldsymbol{\omega}_{i}|x_{k},\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}_{i}} \ln p(x_{k}|\boldsymbol{\omega}_{i},\boldsymbol{\theta}_{i}) = 0, \quad i = 1, 2,$$

når klassenes a priori sannsynligheter forutsettes kjent. Her er $P(\omega_i|x_k, \boldsymbol{\theta})$ a posteriori sannsynlighet for klasse ω_i i punktet x_k . Treningsettet er gitt ved $\mathscr{X} = \{x_1, ..., x_n\}$.

d) Anta videre at klassene er normalfordelte med like a priori sannsynligheter og standardavvik lik én for begge klasser, men med ukjente forventningsverdier μ_1 og μ_2 . Utled et likningssystem for disse forventningsverdiene og foreslå en løsningsmetode.

Oppgave 6

Klyngeanalyse

- a) Gjør rede for hva som menes med klyngeanalyse, og nevn to hovedtyper av metoder.
- b) Skissér den *agglomerative*, hierarkiske metoden, og forklar hva som menes med et *dendrogram*.
- c) La datasettet i et klyngeanalyseproblem være mengden av éndimensjonale sampler gitt ved

$$\mathscr{C} = \{1.50, 1.70, 2.00, 2.10, 2.85, 3.20, 3.85, 4.00\}.$$

Bruk den agglomerative metoden til å dele $\mathscr C$ i *tre* klynger. Bruk avstandsmålet $d_{min}(\mathscr C_1,\mathscr C_2)$, dvs. minste Euclidske avstand mellom to sampler fra hver sin klynge $\mathscr C_1$ og $\mathscr C_2$. Illustrér løsningen ved hjelp av et dendrogram.