A Brief Intro to Synthetic Spectra

合成的(?)

Summary

Goal Understand this diagram !

Reference Burklund, Subramanian, arXiv 2403.06724

Pstragowski arXiv 1803.01804.

1. Mortivations.

 \bigcirc \bigcirc When can: $X \longrightarrow X^{t^{C_p}}$ w.e.?

AL Sp.

A2 X bold below + p-complete + HxX is I-complete

=> √.

IDEA: "can" induces iso on Ez-pages of corres.

Adams SS.

RHS needs skeleta filtration + Adams SS

then take lim.

Very direct in Synthetic Spectra!

2 Motivic Cr - method Use to tackle the last Kenaire problem.

2. Synthetic Spectra.

Slogan --- = Sp + assoc. Adams SS

encode info Ti* + Adams SS.

Convention presentable stable sym. mon. 00-cat.

Def PESp is called finite E-projective if

1) PESpw

2) ExP proj as Ex-mod & fig.

 $S_{PE}^{+p} \subseteq S_{P}$: all such spectra.

Here E satisfies:

1) A_{∞} - ring / E_{i} - ring.

2) Adams type { E \sim colinn En

 $E_n \in Spe$. $E^*E_n \simeq Hom_{E_R} (E_RE_n . E_R).$

eg. HZ, HFp. Kcn).

Landueber exact functors (e.g. MU).

```
Def Product - preserving sheaf of spectra
                   X(сцс) ≃ X(с) ц X(с')
Def E - based synthetic spectra SynE = ShV_{\Sigma}^{SP}(SpE).
                                           product-pre, sheof of sp.
        It comes w/ a function (lax sym. mon.)
              v: Sp - SynE
        conflect "synthetic analogue".
Construction \nu: Sp \xrightarrow{\&} Shv_{\perp}(Sp_{E}^{fp}) \xrightarrow{\Sigma_{+}^{\infty}} Syn_{E}
    y Yoneda emb. X \mapsto Map_{Sp}(-,X).
    Properties 1) v preseves filtered colins.
                      fully faithful . additive.
               2) X \xrightarrow{f} Y \xrightarrow{g} Z cofib seq. then
                       UX VI VE VZ cofib seg
                       ExX # ExY # ExZ s.e.s.
\frac{\mathbb{Z}}{\mathbb{Z}}
\frac{\mathbb{Z}}{\mathbb{Z}}
\frac{\mathbb{Z}}{\mathbb{Z}}
= \mathbb{Z}^{t-w} \mathcal{S}^{w}.
          1-lare S^w = \Sigma^w S
```

Htpy of synthetic sp: $Tit.wX = [S^{t.w}.X]$

Lem P & SpE. X & SmE. Then 1) $Map(\nu P.X) \simeq \Omega^{\infty} X(P)$ 2) $\pi_{t, \omega} X \simeq \pi_{t-\omega} X(S^{\omega})$. pf. LHS \simeq Map (-,P). X) \simeq Map (Map (-, P). $\Omega^{\infty}X$) ~ RHS. Cor X & Sp. Tt., w UX = Tt.X when t-w > 0. $Pf. \qquad \pi_{t,w} \ \nu X = \pi_{t-w} \ \nu X(S^w)$ = π_{t-w} Map (S^w, X) = TteX. • "T" map. $\tau: \nu S^{-1} \longrightarrow \Omega(\nu S^{\circ})$ induced by $\Omega S^{\circ} \simeq S^{-1}$. 5-1-1 TE TI-1,-15-10 = TO.-150.0 [S^{o.-1}, S^{o.o}] = [ΣυS⁻¹, υS^o] Prop Y PE SpE. X & Syn E 1) $(\Sigma^{t,w}X)(P) = \Sigma^{t-w}X(\Sigma^{-w}P)$ X&Stin 2) Commutative diagram: $(\Sigma^{-1,-1}X)(P) \xrightarrow{\tau \otimes X} (\Sigma^{-1,\circ}X)(P)$

```
Χ(ΣΡ)
                $\psi is called colim - to - lim comparsion
                   \Rightarrow \quad \gamma \otimes X \simeq \phi.
     Pf. \quad D \quad LHS = S^{t,w} \otimes X = \sum^{t-w} v S^{w} \otimes X
                               = \sum^{\mathsf{t-w}} ( \nu S^{\mathsf{w}} \otimes \mathsf{X}) = \sum^{\mathsf{t-w}} ( \sum^{\mathsf{w} \cdot \mathsf{w}} \mathsf{X})
             FACT ( Piotr Lem 2.27)
                           *y(c) ⊗ - : PSh(e) -> PSh(e)
                                              excellent oo-site w/
                              - ⊗ c*: e → e. Sym. mon. str.
                  \Sigma^{\mathsf{w},\mathsf{w}}X = \nu S^{\mathsf{w}} \otimes X = \mathcal{A}(S^{\mathsf{w}}) \otimes X \simeq X \otimes S^{\mathsf{-w}}
                  Rest omitted.
       2) by (1).
• C\tau = cofib \tau \simeq \tau_{50} S^{0.0}. has an E_{00} -alg str S^{0.0}.
     Similarly I -1 VX TOUX VX -> CT & VX. (*)
                          \sim \sim C_{\tau} \otimes \nu X \simeq \tau_{\leq 0} (\nu X)
      ∀ X ∈ SquE, can find {Xn} ∈ SquE s.t.
                   \cdots \longrightarrow X_2 \xrightarrow{\tau \otimes X_1} X_1 \xrightarrow{\tau \otimes X} X_0 = X
                            Cr \otimes X_2 \qquad Cr \otimes X_1 \qquad Cr \otimes X_2
                induced by (*).
```

· T - invertible synthetic spectra.

Def
$$X \in Syn_{E}$$
 is τ -invertible if $\tau : L^{0.-1}X \xrightarrow{\simeq} X$
Write $Syn_{E}(\tau^{-1}) = all$ such things

Let
$$Y(X) := \text{presheof of spectra}$$

$$\forall P \in S_{PE}^{PP} . \quad Y(X)(P) = F(P,X)$$

Note $\nu X = F(P, X) \ge 0$.

$$Prop$$
 1) $\nu X \longrightarrow \Upsilon(X)$ τ -inversion. i.e. $\tau^{-1}\nu X \simeq \Upsilon(X)$

2)
$$Y(X)_{\geq 0} \simeq \nu X$$
.

For
$$(U)$$
 recall $(T \otimes X) \cong (X(\Sigma P) \longrightarrow \Omega X(P))^{(*)}$
 $Y(X)(\Sigma P) = F(\Sigma P, X)$

```
\Omega F(P,X) \simeq \Omega Y(X)(P)

\Sigma^{\circ,-} Y(X)(P) = \Sigma Y(X)(\Sigma P) \simeq Y(X)(P)

\Rightarrow Y \in S_{ME}(\tau^{-1}).
```

Taking 27 inco

Suffice to show 7-1 C = 0.

FACT $X \in Syn_E$. k-coconnective for some $k \in \mathbb{Z}$ (lem 4.35) then $7^{-1}X \cong 0$.

Then (4.37) Y fully faithful. lax sym mon.

modules in Sine / 2750.7

Cor v: Sp - SynE fully faithful emb

Def Underlying function

$$X \in Syn_{E}$$
. $z^{-1}X = colin_{m} \overline{\Sigma}^{-n}X(S^{-n})$

Properties 12 Syn_E $\frac{\tau^{-1}}{\downarrow}$ Sp

2)
$$Z \in S_p$$
. $\tau^{-1} \nu Z \simeq Z$

TIt.WX ~ TIT TX ~ cohing TIt.KX.

• More on Moder.	
Hovey's stable on-cat of com	odules Stable .
D(Comoolp) bood [
Instead he constructed	
Recall Ch(E)	(stable) iso) htpy cost
Mpy	D(··) =: Stables
K(e) Ch(e)/(acyclic?	
Veroliver quo httpy cort.	
FACI 1) Scabler has all	desired prop in D(Comody).
2) · will recover	
	$S^{\alpha}M)_{*} \cong E_{xt}^{*}(A.M)$
where (A. C) F	
	ial cpx concentrated at deg 0.
3) (Piotr Thm 3.7)	iai ga concentrated at act o.
Stabler = S	2 Sp (C)
Stable - S	her-pre. dualizable [-comod.
She	her-pre. dualizable [-comod.
Λ_{α} Γ Γ Λ	
Again. assume $E \ge E_1$. Adams	type. 1 = Ex E.
$E_*: Sp_E^{fp} \longrightarrow Comod_{\Gamma}^{fp}$	
Shy Spe (Spe)	Shuz (Comocl).

Lom (4.43) E*: SynE - Stoble -: Ex Here $\varepsilon^* : \nu X \longmapsto \nu (E_* X)$ or E* = sheafification o Lang. $(\mathcal{E}_*X)(P) \simeq X(\mathcal{E}_*P)$. or $\mathcal{E}_* = \text{precomposition}$. Induced by Ex. E* strict sym mon. E Eoo.
otherwise. dnop "sym" Ex lax Lom PESPE. CT & UP = E*(E*P). Thm (4.46) I adjoint pair 7+ : Stable T Moder (SynE): 7/* & 7. 7. (sym) mon. Note that 1 Soubler = Ex (P = Ex E). Stabler - Had CT (SynE) E* E* = G 1) $\mathcal{H}_*(E_*P) = C_{\mathcal{T}} \otimes \nu P$ $\mathcal{H}^*(C\tau \otimes \nu P) = \mathcal{E}^*(\nu P) = \mathcal{E}_* P.$

```
Prop X*. X* equiv. if TFAE:
       D E Landweber exact
       ② E has enough projectives . i.e.
           9 ExP: P∈ SpE3 gen. Scabler through colin & I.
3. Applications.
   X. Y & Sp. Thm + Prop tells us (as a corollary)
              [ vY. Gr & vX] t.w = Ext Ext (ExY. ExX)
   Notestion [X, Y]_{t,w} = [S^{t,w} \otimes X, Y] = Y^{-t,-w}(X)
   Replace Y by S. then
             [ vS° & St.w. Cr & vX]
           = [ St.w. Cr ⊗ vX]
           = π<sub>t, ω</sub> (Cτ ⊗ νX)
            \cong E_{xt} \stackrel{W-t\cdot W}{E_{*E}} (E_{*}, E_{*}X).
        TIt.W(Cr & vX) = Extert (Ex. ExX).
        E2 T-Bockstein SS E2 E-based Adams SS.
    Can compute Adams SS by T-inversion. killing T".
```

• Relation to Gr - method":
Then (Cheorghe - Mong - Xu)
Mod CT ≈ D(Comod BP*BP)
motivic ASS ~ algebraic ANSS.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Then (Piotr 7.34)
After p-completion.
Chow-Novikor Mod (Syn ev)
Chow-Novikor Mod (Syn mu) Stable num mu
motivic cellular spectra / Spec ().
Compagning a service CT - special service CT
Consequence: motivic $Ct = special case of sth. in Syn_E$
where E = MU.BP