CS(STAT)5525 : Data Analytics I Lecture #8

Collegiate Associate Professor rjafari@vt.edu

Generative v.s Discriminative Model

• Two type of probabilistic classification models:

Generative Model

- A Generative model can generate new data instances.
- A statistical model of joint probability distribution P(X,Y) on given observable X and target Y.
- Examples: GANs, Naïve Bayes and Bayesian Networks.
- A model of conditional probability of observable X, given a target Y, P(X|Y=y)

Discriminative Model

- Discriminative models the decision boundary between classes.
- A model of **conditional probability** P(Y|X=x) of the target Y, given an observation x.
- Example : Logistic Regression. Capture the process of generating Y given X

Generative versus Discriminative

- · Discriminative Model
- y = 0 y = 1
- Generative Model

Type of Regression

- Logistic regression is a classification model that is very easy to implement and performs very well on linearly separable classes.
- It is one of the most widely used algorithms for classification in industry.
- Logistic regression is a linear model for binary classification.
- To explain the idea behind logistic regression as a probabilistic model for binary classification, let define Odds in a favor or a particular event:

$$\frac{P(t=1|\mathbf{z})}{P(t=0|\mathbf{z})}$$

• For classifying a test record, it suffices to predict if the odds is > 1 or < 1.

Logistic function

• The goal is to predict the target class t from an input $z = w^T x + b$.

Logistic function

- The goal is to predict the target class t from an input $z = w^T x + b$.
- The probability P(t=1|z) that input z is classified as class t=1 is represented by the output y of the logistic function computed as

$$y = Pr(t = 1|z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

where z is the multiple linear regression.

Logistic Regression Model :

$$\frac{P(t=1|\mathbf{x})}{P(t=0|\mathbf{z})} = e^{\mathbf{z}} = e^{\mathbf{w}^{\mathsf{T}}\mathbf{x} + b}$$

where \mathbf{w}, b are parameters to be learned during training.

Logistic Regression Model :

$$\frac{P(t=1|\mathbf{x})}{P(t=0|\mathbf{z})} = e^{\mathbf{z}} = e^{\mathbf{w}^T \mathbf{x} + b}$$

where \mathbf{w} , b are parameters to be learned during training.

• It can be proved that :

$$P(t=1|\mathbf{z}) = \frac{1}{1+e^{-z}} = \sigma(z)$$

Logistic Regression Model :

$$\frac{P(t=1|\mathbf{x})}{P(t=0|\mathbf{z})} = e^{\mathbf{z}} = e^{\mathbf{w}^T \mathbf{x} + b}$$

where \mathbf{w} , b are parameters to be learned during training.

• It can be proved that :

$$P(t=1|\mathbf{z}) = \frac{1}{1+e^{-z}} = \sigma(z)$$

Sigmoid Function:

- The output of the sigmoid function is then interpreted as the probability of a particular example belonging to class 1, $\sigma(\mathbf{z}) = P(y = 1 | \mathbf{x}, \mathbf{w}, b)$
- If the output is 80% for Iris-versicolor flower, therefore, the probability that this flower is an Iris-setosa flower can be calculated as or 20% percent.

 There are many applications where we are not only interested in the predicted class labels, but where the estimation of the class-membership probability is particularly useful.

- There are many applications where we are not only interested in the predicted class labels, but where the estimation of the class-membership probability is particularly useful.
- Logistic regression is used in weather forecasting, for example, not only to predict whether it will rain on a particular day but also to report the chance of rain.

- There are many applications where we are not only interested in the predicted class labels, but where the estimation of the class-membership probability is particularly useful.
- Logistic regression is used in weather forecasting, for example, not only to predict whether it will rain on a particular day but also to report the chance of rain.
- Similarly, logistic regression can be used to predict the chance that a patient has a particular disease given certain symptoms, which is why logistic regression enjoys great popularity in the field of medicine.

Predicted probability

- Let us consider a predictor x and a binary (or Bernoulli) variable y.
- Assuming there exist some relationship between x and y, an ideal model would predict:

$$P(y|x) = \begin{cases} 1: & \text{if } y=1\\ 0: & \text{if } y=0 \end{cases}$$

 By using logistic regression, this unknown probability function is modeled as

$$\hat{P}(y=1|z) = \sigma(z) = \frac{1}{1 + e^{-w^T x}} = \begin{cases} 1: & \text{if } \sigma(z) \ge 0.5\\ 0: & \text{otherwise} \end{cases}$$

- The predicted probability can then simply be converted into a binary outcome via a threshold function:
- If we look at the preceding plot of the sigmoid function, this is equivalent to the following:

Predicted probability

• If we look at the preceding plot of the sigmoid function, this is equivalent to the following:

$$\hat{y} = \begin{cases} 1: & \text{if } z \ge 0 \\ 0: & \text{otherwise} \end{cases}$$

Learning the weights of the logistic cost function

• Maximize the likelihood of observing training record.

Learning the weights of the logistic cost function

- Maximize the likelihood of observing training record.
- Likelihood of a single record (\mathbf{x}_i, y_i) :

$$\ell(\mathbf{w}) = \hat{P}(y_i|\mathbf{x};\mathbf{w})$$

= $\hat{P}(1|\mathbf{x}_i,\mathbf{w})^y \times \hat{P}(0|\mathbf{x}_i,\mathbf{w})^{1-y}$

Learning the weights of the logistic cost function

- Maximize the likelihood of observing training record.
- Likelihood of a single record (\mathbf{x}_i, y_i) :

$$\ell(\mathbf{w}) = \hat{P}(y_i|\mathbf{x};\mathbf{w})$$

= $\hat{P}(1|\mathbf{x}_i,\mathbf{w})^y \times \hat{P}(0|\mathbf{x}_i,\mathbf{w})^{1-y}$

Likelihood of entire training data :

$$egin{aligned} \ell(\mathbf{w}) &= \prod_{i=1}^n \hat{P}(y_i|\mathbf{x}_i,\mathbf{w}) \ &= \prod_{i=1}^n \hat{P}(1|\mathbf{x}_i,\mathbf{w})^{y_i} imes \hat{P}(0|\mathbf{x}_i,\mathbf{w})^{1-y_i} \end{aligned}$$

• The goal is to find **w** that maximizes likelihood function. In practice, we minimizes negative of the (natural) log of likelihood function (**Cross-entropy Function**) (Let $t_i \rightarrow$ target and $y_i = \sigma(z_i)$

$$J(\mathbf{w}) = -\sum_{i=1}^{n} [y_i \log(y_i) + (1 - y_i) \log(1 - y_i)]$$

= $-\sum_{i=1}^{n} [y_i \log(\sigma(z_i)) + (1 - y_i) \log(1 - \sigma(z_i))]$

- Learn w* that minimize cross-entropy.
- For a single training example, we can see that the first term is zero if y=0 and the second term becomes zero if y=1

$$J(\mathbf{w}) = -\sum_{i=1}^{n} \left[y_i \log(\hat{P}(1|\mathbf{x}_i, \mathbf{w})) + (1 - y_i) \log(\hat{P}(0|\mathbf{x}_i, \mathbf{w})) \right]$$

$$J(\mathbf{w}) = \begin{cases} -\log(P(1|\mathbf{\hat{x}}_i, \mathbf{w}) & \text{if } y_i = 1\\ -\log(1 - P(1|\mathbf{\hat{x}}_i, \mathbf{w}) & \text{if } y_i = 0 \end{cases}$$

• It can be observed that the cost function \to 0 (continuous line) if we correctly predict that an example belongs to class 1.

- It can be observed that the cost function \rightarrow 0 (continuous line) if we correctly predict that an example belongs to class 1.
- Similarly, we can see on the y-axis that the cost also approaches 0 if we correctly predict y = 0 (dashed line).

- It can be observed that the cost function $\to 0$ (continuous line) if we correctly predict that an example belongs to class 1.
- Similarly, we can see on the y-axis that the cost also approaches 0 if we correctly predict y = 0 (dashed line).
- However, if the prediction is wrong, the cost goes toward infinity.

- It can be observed that the cost function \rightarrow 0 (continuous line) if we correctly predict that an example belongs to class 1.
- Similarly, we can see on the y-axis that the cost also approaches 0 if we correctly predict y = 0 (dashed line).
- However, if the prediction is wrong, the cost goes toward infinity.
- The main point is that we penalize wrong predictions with an increasingly larger cost.

Learning Logistic Model as Convex Optimization

- The minimization of the cross-entropy function is a Convex optimization problem.
- A convex optimization problem:
 - Every local minima is a global minima.
 - Can be solved using standard optimization techniques such as Gradient Descend or Newton's Method.
 - Start with initial solution of model parameters.
 - Update parameters in direction of steepest descend.
 - Converge when gradient is 0 (local minima)

Non-convex

Derivative of Logistic function

• For the gradient descent optimization technique to minimize the logistic function, the derivative with respect to input z can be calculated as:

$$\frac{\partial y}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

Gradient Descent Learning Algorithm for Logistic Regression

 Using calculus, optimum weights can be found by calculating the partial derivative of the log-likelihood function with respect to the jth weight:

$$\frac{\partial}{\partial_j}J(\mathbf{w}) = \left(y\frac{1}{\sigma(\mathbf{z})} - (1-y)\frac{1}{1-\sigma(\mathbf{z})}\right)\frac{\partial}{\partial w_j}\sigma(\mathbf{z})$$

 To update all weights simultaneously, we can write the general update rule as follows:

$$\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}$$

where $\Delta \mathbf{w} = \eta \nabla J(\mathbf{w})$

• Maximizing log-likelihood is equal to minimizing the cost function $J(\mathbf{w})$. Hence:

• Does not make any assumption about conditional probabilities and directly computes the posterior probability P(Y|X)

- Does not make any assumption about conditional probabilities and directly computes the posterior probability P(Y|X)
- Can handle interacting variables.

- Does not make any assumption about conditional probabilities and directly computes the posterior probability P(Y|X)
- Can handle interacting variables.
- Can handle irrelevant and redundant attributes, as long as we can avoid overfitting.

- Does not make any assumption about conditional probabilities and directly computes the posterior probability P(Y|X)
- Can handle interacting variables.
- Can handle irrelevant and redundant attributes, as long as we can avoid overfitting.
- Robust to high dimensional attributes as it does not involve computing density or distances of points.

- Does not make any assumption about conditional probabilities and directly computes the posterior probability P(Y|X)
- Can handle interacting variables.
- Can handle irrelevant and redundant attributes, as long as we can avoid overfitting.
- Robust to high dimensional attributes as it does not involve computing density or distances of points.
- Cannot handle missing values

- Does not make any assumption about conditional probabilities and directly computes the posterior probability P(Y|X)
- Can handle interacting variables.
- Can handle irrelevant and redundant attributes, as long as we can avoid overfitting.
- Robust to high dimensional attributes as it does not involve computing density or distances of points.
- Cannot handle missing values
- Can only learn linear decision boundaries.

ROC curve

- A receiver operating characteristic curve (ROC) curve is a graphical plot that illustrates the performance of a classification model at all classification thresholds.
- This curve plots two parameters: True Positive Rate and False Positive Rate
- True Positive Rate (TPR) is a synonym for recall:

$$TPR = \frac{TP}{TP + FN}$$

• False Positive Rate (FPR) is defined as:

$$FPR = \frac{FP}{FP + TN}$$

ROC curve

- An ROC curve plots TPR versus FPR at different classification thresholds.
- Lowering the classification threshold classifies more items as positive, thus increasing both False Positive and True Positive.

ROC curve example

- The result of model B is on the line. Random guess ACC = 50%.
- Model A performs better than B and C.
- Model C' performs the best.

	Α		В			С				C'				
TP=63	FN=37	100	TP=77	FN=23	100	Т	P=24	FN=76	100	1	P=76	FN=24	100	
FP=28	TN=72	100	FP=77	TN=23	100	F	P=88	TN=12	100	F	P=12	TN=88	100	
91	109	200	154	46	200		112	88	200		88	112	200	
TPR = 0.6	3		TPR = 0.	TPR = 0.24				TPR = 0.76						
FPR = 0.2	8		FPR = 0.77				FPR = 0.88				FPR = 0.12			
PPV = 0.6	9		PPV = 0.50				PPV = 0.21				PPV = 0.86			
F1 = 0.66			F1 = 0.61				F1 = 0.23				F1 = 0.81			
ACC = 0.6	8		ACC = 0.50				ACC = 0.18				ACC = 0.82			

AUC curve

- To compute the points in an ROC curve., we could evaluate a logistic regression model many times with different classification thresholds.
- But this would be inefficient. There is an efficient sorting-based algorithm than can provide this information, called Area Under the ROC Curve (AUC).
- **AUC**measures the entire two-dimensional area underneath the entire ROC curve (think integral calculus) from (0,0) to (1,1)

How to speculate about the performance of the model?

- An excellent model has AUC near to the 1 which means it has a good measure of separability.
- A poor model has an AUC near 0 which means it has the worst measure of separability. It is predicting 0s as 1s and 1s as 0s.
- And when AUC is 0.5, it means the model has no class separation capacity whatsoever.
- In an situation:

Understating of AUC

- When two distributions overlap, we introduce type 1 and type 2 errors.
- Depending upon the threshold, we can minimize or maximize them.
- When AUC is 0.7, it means there is a 70% chance that the model will be able to distinguish between positive class and negative class.

Understating of AUC

- This is the worst situation.
- When AUC is approximately 0.5, the model has no discrimination capacity to distinguish between positive class and negative class.

Understating of AUC

- When AUC is approximately 0, the model is actually reciprocating the classes.
- It means the model is predicting a negative class as a positive class and vice versa.

5 questions in data analytics

