Chapter 7 Calculs algébriques

7.1 Le symbole somme \sum

Exercice 7.1

Comparer les cinq sommes suivantes

$$S_{1} = \sum_{k=1}^{4} k^{3}$$

$$S_{2} = \sum_{n=1}^{4} n^{3}$$

$$S_{3} = \sum_{k=0}^{4} k^{3}$$

$$S_{4} = \sum_{k=2}^{5} (k-1)^{3}$$

$$S_{5} = \sum_{k=1}^{4} (5-k)^{3}$$

Exercice 7.2 (**)

Démontrer par récurrence l'assertion suivante:

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \sum_{k=1}^{n-1} k^3 < \frac{n^4}{4} < \sum_{k=1}^{n} k^3.$$

Exercice 7.3 (***)

1. Soit $x \in \mathbb{R}_+^*$. Montrer que $x + \frac{1}{x} \ge 2$.

2. Soit $(a_i)_{i=1..n}$ une famille de *n* réels strictement positifs $(n \in \mathbb{N}^*)$, montrer

$$\left(\sum_{i=1}^n a_i\right) \left(\sum_{i=1}^n \frac{1}{a_i}\right) \ge n^2.$$

Exercice 7.4

Compléter les égalités suivantes.

1.
$$\sum_{k=1}^{10} k^2 = \sum_{k=1}^{9} k^2 + \cdots$$
2.
$$\sum_{k=0}^{10} 2^k = \sum_{k=1}^{10} 2^k + \cdots$$
3.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{l=3}^{3} \frac{1}{l-2}$$
4.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{l=3}^{7} \frac{1}{l}$$
5.
$$\sum_{k=1}^{7} \frac{k+1}{2^k} = \sum_{k=0}^{10} \frac{k+3}{2^{k+2}}$$
6.
$$\sum_{k=1}^{5} (-1)^k \frac{k}{(k-1)!} = \sum_{k=0}^{10} (-1)^{k+1} \frac{k+1}{k!}$$
7.
$$\sum_{k=1}^{3} (-1)^{k-1} \frac{k^2}{(2k)!} = \sum_{k=0}^{2} \cdots$$
8.
$$\sum_{k=1}^{10} (-1)^k \frac{2k}{k+1} = \sum_{k=0}^{5} (-1)^k \frac{2k}{k+1} = \sum_{k=0}^{5} (-1)^k \frac{2k}{k+1}$$

Exercice 7.5 Écriture en base b

Soit $b \ge 2$ un entier. On souhaite démontrer que tout entier $n \ge 1$ s'écrit de manière unique

$$n = \sum_{k=0}^{p} a_k b^k$$

avec $p \ge 0$, $a_k \in [[0, b-1]]$ et $a_p \ge 1$.

- **1.** Existence: démontrer l'existence en procédant par récurrence forte. Pour l'hérédité, on pourra utiliser la division euclidienne de *n* par *b*.
- 2. Unicité: on suppose que n admet deux décompositions distinctes

$$n = \sum_{k=0}^{p} a_k b^k = \sum_{k=0}^{p'} a'_k b^k.$$

On peut supposer $p \ge p'$. Quitte à compléter la suite a'_k par $a'_{p+1} = \cdots = a'_p = 0$, on peut supposer que p = p'.

Soit $\ell \in [0, p]$ le plus grand possible tel que $a_{\ell} \neq a'_{\ell}$.

- (a) Vérifier que $\left(a_{\ell}-a_{\ell}'\right)b^{\ell}=\sum_{k=0}^{\ell-1}\left(a_{k}'-a_{k}\right)b^{k}.$
- (b) Démontrer que, pour toute suite finie $c_0,\dots,c_{\ell-1}$ avec $0\leq c_k\leq b-1,$ on a

$$\sum_{k=0}^{\ell-1} c_k b^k < b^{\ell}.$$

- (c) Conclure.
- 3. Donner l'écriture de 37 écrit en base 10) en base 2, puis en base 3.

Exercice 7.6 (**)

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_1=3$ et pour tout $n\geq 1$,

$$u_{n+1} = \frac{2}{n} \sum_{k=1}^{n} u_k.$$

Démontrer que, pour tout $n \in \mathbb{N}^*$, on a $u_n = 3n$.

Exercice 7.7

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$u_0 = 1$$
 et $u_{n+1} = \sum_{k=0}^{n} u_k$.

Montrer par récurrence (avec prédécesseurs) que pour tout $n \ge 1$, on a $u_n = 2^{n-1}$.

Exercice 7.8

En remarquant que l'on peut écrire

$$\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1},$$

où a, b sont des constantes à déterminer, simplifier la somme

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Exercice 7.9

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre complexes et $4 \le p \le q$ deux entiers naturels. Simplifier la somme

$$\sum_{k=p-3}^{q-1} (u_{k+1} - u_{k-1})$$

Exercice 7.10

Calculer

$$\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right).$$

Exercice 7.11

1. Montrer

$$\forall n \in \mathbb{N}^{\star}, \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}.$$

2. En déduire la partie entière de

$$\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{10000}}\right).$$

Exercice 7.12

1. Établir que pour tout $k \in \mathbb{N}^*$,

$$\arctan\left(\frac{1}{k^2+k+1}\right) = \arctan\frac{1}{k} - \arctan\frac{1}{k+1}.$$

2. Soit $n \in \mathbb{N}$. Calculer la valeur de la somme

$$S_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right).$$

3. En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

7.2 Sommes usuelles

Exercice 7.13

Calculer

$$1. \sum_{k=1}^{n} k.$$

2.
$$\sum_{i=1}^{n} k$$
.

3.
$$\sum_{k=1}^{n} i$$
.
4. $\sum_{k=1}^{n} n$.

4.
$$\sum_{k=1}^{n} n$$
.

Exercice 7.14

Simplifier, pour $n \in \mathbb{N}^*$, les sommes suivantes.

1.
$$\sum_{k=1}^{n+1} k - \sum_{l=0}^{n} l;$$

2.
$$\sum_{k=0}^{n} (2k+1);$$

3.
$$\sum_{k=1}^{n} k(k-1)$$
;

3.
$$\sum_{k=1}^{n} k(k-1);$$

4. $\sum_{k=1}^{n} k(k+1)(k+2).$

Exercice 7.15

1. Montrer par récurrence

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

2. Calculer le nombre de carrés que l'on peut dessiner sur un échiquier 8 x 8 (les côtés sont parallèles aux bords de l'échiquier et les sommets sont des sommets des cases de l'échiquier). Généraliser avec un échiquier $n \times n$.

Exercice 7.16

Pour $p \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$, on pose

$$S_p(n) = 1^p + 2^p + \dots + n^p.$$

- 1. Rappeler sans démonstration les expressions de $S_1(n)$, $S_2(n)$ et $S_3(n)$.
- 2. Soit $(p,n) \in \mathbb{N}^2$. En calculant de deux manières la somme télescopique $\sum_{k=0}^{n} ((k+1)^{p+1} k^{p+1})$, montrer

$$\sum_{i=1}^{p} \binom{p+1}{i} S_i(n) = (n+1)^{p+1} - (n+1). \tag{1}$$

3. En déduire que, pour tout $n \in \mathbb{N}^*$,

$$1^4 + 2^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}.$$
 (2)

Exercice 7.17 (*)

Simplifier les sommes suivantes.

1.
$$\sum_{i=0}^{n} i(i-1)$$
.

$$2. \sum_{j=1}^{n} (2j-1).$$

Soit une suite arithmétique (u_n) , on note $s_n = u_0 + u_1 + ... + u_n$. Déterminer les éléments caractéristiques (premier terme u_0 et raison r) de la suite (u_n) à partir des données suivantes.

1.
$$u_0 = 6$$
 et $u_5 = 0$;

4.
$$u_0 = 96$$
 et $s_0 = 780$

2.
$$u_0 = 3$$
 et $s_3 = 36$;

5.
$$u_5 = 90$$
 et $u_8 = 80$;
6. $s_3 = 40$ et $s_5 = 72$.

3.
$$r = 6$$
 et $s_5 = 36$;

6.
$$s_3 = 40$$
 et $s_5 = 72$

Exercice 7.19

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

- **1.** Montrer que $1 e^x = -2e^{x/2} \sinh \frac{x}{2}$.
- 2. Simplifier

$$\sum_{k=0}^{n} \operatorname{ch}(kx).$$

108

On exprimera le résultat avec les fonctions ch et sh.

Exercice 7.20

Définissons une suite par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + n - 1$.

- 1. Démontrer que pour tout $n \ge 3$, u_n est positif. En déduire que pour tout $n \ge 4$, on a $u_n \ge n 2$. En déduire la limite de la suite.
- 2. Définissons maintenant la suite $v_n = 4u_n 8n + 24$. Montrer que la suite (v_n) est une suite géométrique, donner son premier terme et sa raison. Montrer que pour tout $n \in \mathbb{N}$, $u_n = 7\left(\frac{1}{2}\right)^n + 2n 6$. Remarquer que u_n est la somme d'une suite géométrique et d'une suite arithmétique dont on précisera les raisons et les premiers termes. En déduire une formule pour la quantité $u_0 + u_1 + ... + u_n$ en fonction de l'entier n.

Exercice 7.21 (*)

Simplifier les sommes suivantes.

1.
$$\sum_{k=1}^{n} (-1)^k$$
. 2. $\sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}$.

Exercice 7.22

Développer.

1.
$$(a+b)^7$$
. **2.** $(1-3x)^5$.

Exercice 7.23

Calculer le coefficient de x^3 dans le développement de

$$\left(2x-\frac{1}{4x^2}\right)^{12}.$$

Exercice 7.24

Calculer.

- 1. Le terme en x^5 du développement de $(x-2)^8$.
- **2.** Le terme en x^{20} du développement de $(x^2 y^2)^{14}$.
- 3. Le terme en x^6 du développement de $(3-4x^2)^5$.
- **4.** Le terme en x^4 et le terme en x^6 du développement de $\left(x^2 + \frac{1}{x}\right)^{14}$.

Exercice 7.25

Déterminer a afin que le coefficient du terme en x^4 , dans le développement de

$$\left(x + \frac{a}{x^2}\right)^7$$

soit égal à 14.

Exercice 7.26

En utilisant la formule du binôme de Newton, calculer 1 000 003⁵.

Exercice 7.27

Soit $n \in \mathbb{N}$. Simplifier les sommes suivantes.

1.
$$\sum_{k=0}^{n} \frac{1}{3^k} \binom{n}{k}$$
. 2. $\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{2^k}$. 3. $\sum_{k=0}^{n} \binom{n}{k} 3^{2k+1}$.

Exercice 7.28

Soit $n \in \mathbb{N}^*$. Calculer $A_n = \sum_{k=0}^n k \binom{n}{k}$ de deux manières différentes.

1. En dérivant de deux façons la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto (1+x)^n$.

2. En utilisant la relation $k \binom{n}{k} = n \binom{n-1}{k-1}$ valable pour $n, k \in \mathbb{N}^*$.

Exercice 7.29

Soit
$$f: \mathbb{R} \to \mathbb{R}$$
. Déterminer les dérivées successives de f . $x \mapsto xe^{-x}$

Exercice 7.30

Soit
$$n \in \mathbb{N}^*$$
. Calculer la dérivée n -ième de la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$. $x \mapsto x^{n-1} \ln(x)$

Exercice 7.31 Banque CCINP 2023 Exercice 3 analyse

1. On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$. Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définitions respectifs.

2. On pose $f(x) = \frac{e^{2x}}{1+x}$. En utilisant la formule de Leibniz concernant la dérivée $n^{\text{ième}}$ d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

7.3 Généralisation de la notation \sum

Exercice 7.32

Simplifier les sommes suivantes.

Exercice 7.33

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, calculer

$$V_n = \sum_{i=1}^n \sum_{j=1}^n x^{i+j}.$$

Exercice 7.34 (***)

On se donne a_1, a_2, \ldots, a_n dans \mathbb{R} . Montrer que

$$\sum_{j=1}^{n} \left(\sum_{k=1}^{n} \frac{a_j a_k}{j+k} \right) \ge 0.$$

Préciser le cas d'égalité.

Exercice 7.35

Calculer, pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{1 \le i \le j \le n} ij.$$

Exercice 7.36

Simplifier les sommes suivantes.

$$1. \sum_{1 \le i < j \le n} (i+j).$$

3. $\sum_{1 \le i \le j \le n} (j - i).$ 4. $\sum_{1 \le i \le j \le n} \frac{i^2}{j}.$

$$2. \sum_{1 \le i \le j \le n} \frac{i}{j+1}.$$

Exercice 7.37

Soit $n \in \mathbb{N}^*$.

- 1. Calculer la somme $S_1 = \sum_{1 \le i, j \le n} i + j$.
- 2. Calculer la somme

$$S_2 = \sum_{1 \le i, j \le n} \min(i, j).$$

On pourra scinder cette somme en deux.

3. En déduire l'expression de la somme $S_3 = \sum_{1 \le i,j \le n} \max(i,j)$.

Pour $i, j \in \mathbb{N}$, on note

ıe

$$\min(i, j) = \begin{cases} i & \text{si } i \le j \\ j & \text{si } i > j \end{cases}$$

$$\max(i,j) = \begin{cases} j & \text{si } i \le j \\ i & \text{si } i > j \end{cases}.$$

Le symbole produit \prod **7.4**

Exercice 7.38

Calculer

$$1. \prod_{k=1}^{n} k.$$

$$2. \prod_{i=1}^{n} k$$

3. $\prod_{k=1}^{n} i$.
4. $\prod_{k=1}^{n} n$.

Exercice 7.39

Soit $n \in \mathbb{N}^{*}$. Exprimer à l'aide de factorielles

1.
$$2 \times 4 \times \cdots \times (2n)$$
;

2.
$$1 \times 3 \times \cdots \times (2n-1)$$
;

3. le terme général de la suite (u_n) donnée par la relation de récurrence

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2n+1}{n+1}u_n$.