```
import matplotlib
import matplotlib.pyplot as plt
matplotlib.style.use('ggplot')

from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))

import numpy as np
import pandas as pd
```

Regression

Thomas Schmelzer

Linear Regression

Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. Solve the unconstrained least squares problem:

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^m} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$$

The ith column of \mathbf{A} may represent the time series of returns for asset i.

Portfolio Optimisation is about all about clever (linear) combinations of assets.

Examples:

- Tracking an index (index in \mathbf{b} , assets in \mathbf{A})
- Constructing an indicator, factor analyis, ...
- Approximation...

• ...

Regression is the **Swiss army knife** of professional quant finance.

The normal equations

As we (probably) all know

$$\mathbf{x}^* = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{x}$$

solves

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^m} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$$

You may see here already

Constrained regression

Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. We solve the constrained least squares problem:

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^m} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$$

$$\text{s.t. } \Sigma x_i = 1$$

$$\mathbf{x} \ge 0$$

The Sculptor method

Thales of Miletus (c. 624 BC - c. 546 BC)

Shall we apply the sculptor method?

- We could delete the negative entries (really bad if they are all negative)
- We could scale the surviving entries to enforce the $\sum x_i = 1$.

Done?

Conic Programming

We introduce an auxiliary scalar *z*:

$$\min_{z \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^m} z$$

$$\text{s.t. } z \ge ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2$$

$$\sum x_i = 1$$

$$\mathbf{x} \ge 0$$

We introduce an auxiliary vector $\mathbf{y} \in \mathbb{R}^n$:

$$\min_{z \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n} z$$

$$\mathrm{s.t.} \ z \ge ||\mathbf{y}||_2$$

$$\mathbf{y} = \mathbf{A}\mathbf{x} - \mathbf{b}$$

$$\Sigma x_i = 1$$

$$\mathbf{x} \ge 0$$

We **lifted** the problem from a m dimensional space into a m+n+1 dimensional space.

Nerd alarm:

$$z \ge ||y||_2 \Leftrightarrow [z, y] \in Q_{n+1}$$

Application: Implementing a minimum variance portfolio

The ith column of \mathbf{A} is the time series of returns for the ith asset. Hence to minimize the variance of a portfolio (a linear combination of assets) we solve:

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^m} ||\mathbf{A}\mathbf{w} - \mathbf{0}||_2$$

$$\text{s.t. } \Sigma w_i = 1$$

$$\mathbf{w} \ge 0$$

```
In [3]: def plot(ax, data, width=0.35, title=""):
    ax.bar(np.arange(5)+1-width, data, 2*width)
    ax.set_ylabel("Weight"), ax.set_xlabel("index"), ax.set_title(title)
    ax.set_ylim([0,1])
    return ax

random_data = np.dot(np.random.randn(250,5), np.diag([1,2,3,4,5]))
data = min_var(random_data)

fig, ax = plt.subplots()
    plot(ax, data)
    plt.show()
```


Balance?

- Bounds
- Tikhonov regularization (penalty by the 2-norm of the weights in the objective), also known as Ridge Regression or Shrinkage to the mean

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^m} ||\mathbf{A}\mathbf{w}||_2 + \lambda ||\mathbf{w}||_2$$

$$\text{s.t. } \Sigma w_i = 1$$

$$\mathbf{w} \ge 0$$

```
In [4]:
    f, axs = plt.subplots(1,2,figsize=(25,10))
    plot(axs[0], data=min_var(random_data, lamb=0), title="0")
    plot(axs[1], data=min_var(random_data, lamb=10), title="10")
    plt.show()
```



```
In [5]:
    f, axs = plt.subplots(1,2,figsize=(25,10))
    plot(axs[0], data=min_var(random_data, lamb=20), title="20")
    plot(axs[1], data=min_var(random_data, lamb=50), title="50")
    plt.show()
```



```
In [6]: f, axs = plt.subplots(1,2,figsize=(25,10))
plot(axs[0], data=min_var(random_data, lamb=100), title="100")
plot(axs[1], data=min_var(random_data, lamb=200), title="200")
plt.show()
```


Summary