Day one lecture

Jonas Wechsler

January 5, 2015

1 Proofs!

Definition: $\mathbb{N}: 1,2,3...$

 $\mathbb{Z}: \dots \text{--}3,\text{-}2,\text{-}1,0,1,2,3...}$

Definition: If $a, d \in \mathbb{Z}$, then

d|a ("d divides a") if $\exists k \in \mathbb{Z} \ni a = kd$

Definition: If $a, b, n \in \mathbb{Z}$ and n > 0, then

 $a \equiv b \mod n \text{ if } n | (a - b)$

"a is congruent to b modulo n"

Theorem: $n \in \mathbb{Z} \atop 6|n$ $\geqslant 3|n$

 $a \equiv bmod(n) \iff \exists m|mn + b = a$

Well ordering axiom In any subset of N there exists a smallest element. : $\forall n \in \mathbb{N} \exists k \in \mathbb{N} \ni |7k-n| < 7$ Define $s = 7i | i \in \mathbb{N} \\ 7i > n$

By Well Ordering Axiom S contains a smallest element, call it 7k (for some $k \in \mathbb{N}$).