

# Integrálátalakító tételek, mérnöki példák

Matematika G3 – Vektoranalízis Utoljára frissítve: 2025. október 06.

## 5.1. Elméleti áttekintő

## Tétel 5.1 : Gradiens-tétel

Legyen  $\varphi: U \subseteq \mathbb{R}^3 \to \mathbb{R}$  differenciálható skalármező,  $\gamma: [a;b] \to \mathcal{C} \subseteq U, t \mapsto \gamma(t)$  folytonos görbe,  $\gamma(a) = p$ ,  $\gamma(b) = q$  pedig a görbe kezdő és végpontja. Ekkor:

$$\int_{\mathcal{C}} \langle \operatorname{grad} \varphi(\mathbf{r}); \operatorname{d} \mathbf{r} \rangle = \varphi(\mathbf{q}) - \varphi(\mathbf{p}).$$

Vagyis, ha egy vektormező valamely skalármező gradiense, akkor annak bármely folytonos görbe mentén vett integrálja csak a kezdő- és végpontoktól függ.

## Körintegrál jelölése:

Ha  $\gamma$  zárt görbe, akkor a  $\varphi(r)$  skalármező egy  $\gamma$  görbe mentén vett körintegrálja a következőképpen jelölhető:

 $\oint_{\mathcal{C}} \varphi(\mathbf{r}) \, \mathrm{d}s.$ 

A Gradiens-tételből következik, hogy skalárpotenciálos vektormező zárt görbe mentén vett körintegrálja zérus.

Integrálja a  $\mathbf{v}(\mathbf{r}) = (y+z)\,\hat{\mathbf{i}} + (x+z)\,\hat{\mathbf{j}} + (x+y)\,\hat{\mathbf{k}}$  vektormezőt a z=0 síkon lévő, origó középpontú, r=3 sugárú kör mentén!

Vizsgáljuk meg, hogy a vektormező skalárpotenciálos-e:

$$\operatorname{rot} \boldsymbol{v} = \begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix} \times \begin{bmatrix} y+z \\ x+z \\ x+y \end{bmatrix} = \begin{bmatrix} \partial_x (x+z) - \partial_y (y+z) \\ \partial_y (x+y) - \partial_z (x+z) \\ \partial_z (y+z) - \partial_y (x+y) \end{bmatrix} = \begin{bmatrix} 1-1 \\ 1-1 \\ 1-1 \end{bmatrix} = \boldsymbol{0}.$$

Mivel a vektormező skalárpotenciálos, ezért létezik olyan skalármező, melynek gradiense maga a  $\boldsymbol{v}$  vektormező. Az integrál értéke tehát csak a kezdő- és végpontoktól függ, melyek jelen esetben megegyeznek, vagyis az integrál értéke zérus:

$$\oint_{\mathcal{C}} \langle \boldsymbol{v}; \mathrm{d} \mathbf{r} \rangle = 0.$$

## Tétel 5.2 : Stokes-tétel

Legyen  $\boldsymbol{\varrho}: U \subset \mathbb{R}^2 \to \mathcal{S} \subset \mathbb{R}^3$  irányított, parametrizált, elemi felület. Legyen továbbá  $\boldsymbol{v}: \mathbb{R}^3 \to \mathbb{R}^3$  legalább egyszer folytonosan differenciálható vektormező. Jelölje az  $\boldsymbol{\gamma}: I \subset \mathbb{R} \to \partial \mathcal{S} = \mathcal{C}$  a  $\boldsymbol{\varrho}$  peremét indukált, jobbézszabály szerinti irányítással. Ekkor:

$$\iint_{\mathcal{S}} \langle \operatorname{rot} \boldsymbol{v}; d\mathbf{S} \rangle = \oint_{\partial \mathcal{S}} \langle \boldsymbol{v}; d\mathbf{r} \rangle.$$

Ha v skalárpotenciálos, akkor az integrál értéke zérus, hiszen rot v = rot grad  $\varphi$  = 0.

Integrálja a  $\mathbf{v}(\mathbf{r}) = (y)\,\hat{\mathbf{i}} + (x)\,\hat{\mathbf{j}} + (0)\,\hat{\mathbf{k}}$  vektormezőt a  $P_1(0;1;0), P_2(2;0;0)$  és  $P_3(0;0;0)$  által meghatározott háromszög mentén!

Határozzuk meg a v vektormező rotációját:

$$\operatorname{rot} \boldsymbol{v} = \begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix} \times \begin{bmatrix} y \\ x \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 - 1 \end{bmatrix} = \boldsymbol{0}.$$

A Stokes-tétel alapján:

$$\oint_{\partial S} \langle \boldsymbol{v}; d\mathbf{r} \rangle = \int_{S} \langle \operatorname{rot} \boldsymbol{v}; d\mathbf{S} \rangle = \int_{S} \langle \boldsymbol{0}; d\mathbf{S} \rangle = 0.$$

## Stokes-tétel Maxwell III. és IV. egyenletében

A Stokes-tétel a Maxwell-egyenletekben is fontos szerepet játszik. A harmadik és negyedik egyenlet a mágneses tér és az elektromos tér közötti kapcsolatot írja le:

$$(III)$$
  $\Rightarrow$  rot  $\mathbf{E} = -\dot{\mathbf{B}}$   $\Rightarrow$  elektromos tér – mágneses tér változása,

$$(IV)$$
  $\Rightarrow$  rot  $\mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \varepsilon_0 \dot{\mathbf{E}}$   $\Rightarrow$  mágneses tér – elektromos tér változása,

ahol  $\boldsymbol{E}$  az elektromos tér,  $\boldsymbol{B}$  a mágneses tér,  $\boldsymbol{j}$  az áram sűrűség,  $\mu_0$  a mágneses permeabilitás és  $\varepsilon_0$  az elektromos permittivitás.

Az egyenletek közötti kapcsolatot a Stokes-tétel segítségével:

$$(III) \quad \Rightarrow \quad \oint_{\partial \mathcal{S}} \langle \mathbf{E}; d\mathbf{r} \rangle = -\iint_{\mathcal{S}} \langle \dot{\mathbf{B}}; d\mathbf{S} \rangle,$$

$$(IV) \quad \Rightarrow \quad \oint_{\partial \mathcal{S}} \langle \mathbf{B}; d\mathbf{r} \rangle = \iint_{\mathcal{S}} \langle \mu_0 \mathbf{j} + \mu_0 \varepsilon_0 \dot{\mathbf{E}}; d\mathbf{S} \rangle.$$

A III. egyenlet azt mondja ki, hogy változó mágneses tér maga körül balkézszabály szerint elektormos teret indukál, míg a IV. egyenlet azt jelenti, hogy az elektromos tér változása jobbkézszabály szerint mágneses teret indukál.

## 5.2. Feladatok

- 1. Adott egy  $F(x;y) = (2xy)\hat{i} + (x^2 + 2y)\hat{j}$  erőtér. Vizsgálja meg, hogy az F erőtér konzervatív-e! Amennyiben igen, adja meg egy olyan potenciálfüggvényt, melyre  $\varphi(0;0) = 0$ . Számítsa ki a  $P_1(0;0)$  és  $P_2(1;1)$  pontok közötti egyenes szakaszon végzett munkát!
- 2. Egy  $Q = 8,85\pi$  mC nagyságú ponttöltés közelében az elektrosztatikus térerősséget az

$$E(r) = \frac{Q}{4\pi\varepsilon_0} \frac{r}{|r|^3}$$
  $r \neq 0$   $\varepsilon_0 = 8.85 \cdot 10^{-12} \,\mathrm{F/m}$ 

vektormező írja le. Mutassa meg, hogy az E vektormező konzervatív, és vezesse le a potenciálfüggvényt  $\varphi(\infty) = 0$  határfeltétel mellett! Számítsa ki a  $q = 1 \mu C$  próbatöltés által a  $P_1(1;0;0)$  és  $P_2(2;0;0)$  pontok között végzett munkát, ha F = qE.

3. Egy nagyon hosszú, áramjárta vezető belsejében a mágneses indukció jó közelítéssel lineárisan változik a keresztmetszetben:

$$\mathbf{B}(\mathbf{r}) = (ky)\,\hat{\mathbf{i}} + (-kx)\,\hat{\mathbf{j}} + (0)\,\hat{\mathbf{k}}$$

Igazolja, hogy a  $\boldsymbol{B}$  vektormező forrásmentes, majd adja meg a  $\boldsymbol{B}$  vektormező vektorpotenciálját  $\boldsymbol{A} = (A_x; A_y; 0)$  alakban, melyre  $\boldsymbol{A}(\boldsymbol{0}) = \boldsymbol{0}$  teljesül. Mi k mértékegysége?

- 4. Legyen  $\mathbf{v}(\mathbf{r}) = (y \sin x) \hat{\mathbf{i}} + (z^2 \cos y \cos x) \hat{\mathbf{j}} + (v_3) \hat{\mathbf{k}}$ . Határozza meg  $v_3$ -at, ha tudjuk, hogy  $\mathbf{v}$  tetszőleges zárt görbén vett vonalintegrálja zérus!
- 5. Egy R=1 sugarú, kör keresztmetszetű, z tengellyel egybeeső szimmetriavonalú hengerben áramló folyadék sebességét a

$$\mathbf{v}(\mathbf{r}) = (2xy + z)\,\hat{\mathbf{i}} + (x^2 + z)\,\hat{\mathbf{j}} + (y - x)\,\hat{\mathbf{k}}$$

vektormező írja le. Adja meg a z=1 síkban lévő keresztmetszet menti cirkulációt! (A cirkuláció a vektormező zárt görbe menti integrálja.)

- 6. Jelölje  $\mathcal{S}$  az  $x^2 + y^2 z^2 = 1$  egyenletű forgáshiperboloid z = -1 és z = 1 síkok közötti részét. Határozza meg a  $\mathbf{v}(\mathbf{r}) = (x^2)\hat{\mathbf{i}} + (y^3)\hat{\mathbf{j}} + (z^4)\hat{\mathbf{k}}$  vektormező  $\mathcal{S}$  peremén vett integrálját!
- 7. Integrálja a  $\mathbf{v}(\mathbf{r}) = (y^2)\hat{\mathbf{i}} + (z^2)\hat{\mathbf{j}} + (x^2)\hat{\mathbf{k}}$  vektormezőt az A(1;0;0), B(0;1;0) és C(0;0;1) csúcsokkal meghatározott háromszögvonal mentén!