

P.T the Set $G_1 = \{1, 2, 3, 4, 5, 6\}$ is abelian group order 6 w. x. to multiplication modulo 7 \emptyset_7 0_7 0

From the table, $a \otimes_7 b \in G$, $\forall a, b \in G$

111 ansowative holds. i.e., $(a\otimes_{7}b)\otimes_{7}c = a\otimes_{7}(b\otimes_{7}c)$ $A\otimes_{7}b = A\otimes_{7}b$

J dentity element is 1.

Inverse: $\vec{1} = 1$, $\vec{2} = 4$, $\vec{3}' = 5$ $\vec{4}' = 2$ $\vec{5}' = 3$

Here $a \otimes_{\gamma} b = b \otimes_{\gamma} a$ $\forall a, b \in G$ i.e., $a \otimes_{\gamma} 5 = 3$

Q'. A non-empty subset H of a group (G,*) is a subgroup of G iff the following are satisfied: , ¥ a, b ∈ H √(i) a×b∈H (ii) $\tilde{a}' \in H$, $\varphi \in H$ non-empty subset of G. Ans: Let H be a (=>) Suppose It is a subgroup of G., then (i) and (ii) follows by definition Suppose (i) and (ii) holds in H (() must prove that Hisa subgroup of G. - closure property follows from (i) Inverse property follows from (ii) - Elements of H one also elements of G (H < G) -: associative follows from G. Since H # \$\phi\$, there is an element a E H By hypothesis ā EH (by (ii)) By (i), a * ā ' E H axbelt e e H, identity ansom Satisfied.

=> H is a subgroup of G.

Q: A nonempty subset H of a group (G,*) is a subgroup of G iff a*b' EH, ta, b EH. Let H be a non-empty Subset of G. (=>) Let H be a subgroup of G + a, b ∈ H, axb ∈ H (closme) Also, aeh, 5eH ... a × b e H (closure) Let axb'eH, + a, beH — To prove that It is a subgroup of G. $H \neq \phi$, there is an element a $\in H$ af H, a e H => a x ā' e H (byo) i dentity axiom holds FaeH, We know that eeH e x a e H by (1) ā E H inverse arrion holds.

Let $a, b \in H$, $as b \in H$, $b' \in H$ we have, $a * (b')' \in H$ by (1) $a * b \in H$ (closure law holds) (H, *) forms a group $a \in H$ (G, *).

Since It is a subset of G, associative follows.