Exercise 1: Schema Fragmentation (3 Questions)

Question 1

Given the following database table at a TV channel, the list of queries issued by two applications on this table, and their frequencies, answer the given questions.

PK	player	goals	fouls	viewer satisfaction
1	Beckham	1	10	80
2	Beckham	2	15	95
3	Zidane	1	8	70
4	Zidane	2	12	65
5	Zidane	8	20	75
6	Rooney	1	8	60
7	Klose	1	6	70
8	Klose	4	18	75

Application 1	Application 2
Q1 : 70 times monthly fouls <= 10 AND goals >=1	Q1: 100 times monthly goals >=4
Q2 : 100 times monthly player = Beckham	Q2 : 100 times monthly player = Beckham
Q3: 60 times monthly fouls <= 8	Q3: 100 times monthly NOT player=Beckham AND fouls >=8 AND fouls<=12
Q4: 30 times monthly goals >=2	Q4 : 100 times monthly player = Klose AND fouls <=10
Q5 : 30 times monthly player = Zidane AND fouls > 20	Q5 : 20 times monthly goals <= 1

The following table presents the primary key (PK) of the accessed rows with their monthly access frequencies per query, per application:

	Application 1	Application 2
	Row_PK[,Row_PK] (Monthly Access)	Row_PK[,Row_PK] (Monthly Access)
Q1	1,3,6,7 (70)	5,8 (100)
Q2	1,2(100)	1,2 (100)
Q3	3,6,7(60)	3,4,6 (100)
Q4 Q5	(empty)	(empty)
Q5	(empty)	(empty)

Answer the following questions:

- a) Fill the empty cells in the above table.
- b) Create a table of the tuple access frequencies per application.
- c) Determine the horizontal fragmentation using the Minfrag algorithm and using the tuple access frequency table.

Question 2

Three police stations (*P1*, *P2*, and *P3*) access the following *Police* database where *Number* is the primary key:

Number	Car_type	Owner_name	Year	City
VD111222	Trabant	John Smith	1976	Ecublens
ZH222111	Isuzu	Smit Johnson	1993	Zurich
GE333111	Smart	Peter Smithson	2001	Geneva

P1, P2, and P3 issue the following queries:

Q1: SELECT COUNT(year) FROM Police WHERE year < 1976

Q2: SELECT Car_type FROM Police WHERE year > 2000

Q3: SELECT COUNT(city) FROM Police WHERE city LIKE "Zurich"

Q4: SELECT Owner_name FROM Police WHERE city LIKE "Ecublens"

P1 issues Q1 once per day and Q2 15 times per day.

P2 issues Q2 5 times, Q3 once, and Q4 10 times per day.

P3 issues Q2 and Q4 10 times per day each.

We would like to vertically fragment the *Police* database to improve the guery performance.

- a) Determine the attribute affinity matrix for Q1 to Q4 with the given access patterns.
- b) Use the BEA algorithm to determine the best split of the database into two fragments.

Question 3 (** difficult **)

Given the following relational table *Person* with two sites (*Site1* and *Site2*) and the following queries on the table:

Person table:

ID	Name	Age	Country	Sport
1	Ken	23	СН	Golf
2	Alice	36	US	Tennis
3	Peter	31	Α	Tennis
4	Dan	27	D	Tennis
5	Kerry	51	СН	Bike
6	Julia	42	СН	Golf

Queries from Site 1:

Q1: SELECT * FROM Person WHERE Age <=40 AND NOT Country=D

Q2: SELECT * FROM Person WHERE NOT Sport=Tennis

Q3: SELECT * FROM Person WHERE Country=D

Queries from Site 2:

Q4: SELECT * FROM Person WHERE Sport=Tennis

Q5: SELECT * FROM Person WHERE Age>40 OR Country=D

Q6: SELECT * FROM Person WHERE Age<=40 AND NOT Sport=Tennis

Given that queries Q3 and Q4 are issued **10** times a week and the horizontal fragmentation algorithm resulted in the following two fragments (F1 and F2, represented with IDs of the member tuples):

Determine the number of times the other queries are issued per week?