

Overview of the Rate Pad Results at PSI

PSI Analysis Meeting

Michael Reichmann 28th February 2019

Table of Contents

- Introduction
- Website
- 3 Timeline
- Conclusion

Introduction

Introduction

- finished analysis of all the pad data taken at PSI starting from October 2015
- uploaded the most important results to the website (https://diamond.ethz.ch/psi)
- need to finish plot overview page for single runs and scans

M. Reichmann (31 zürich) 28th February 2019

Website

Year Overview

- Thickness
- Manufacturer
- Type of the detector
- Boardnumber: Amplifier Board the detector was mounted on
- Irradiation
- Data Set: "4f" front diamond of the fourth scan

Diamond Scans

• general overview of all scans taken at a single beam test

Home	Loca	ation	Years	Diamond	Scans	Si	ingl	e Run	s so	CVD	pCV	D S	ilicon	n Amp	olif	ier E	loards	
Run Plan Overview for the Test Campaign in August 2017-2																		
Dun Dlan	Digitiser	Amplifier	ier Sub Plan	Run Type	Runs	Events	Front		Middle		Back							
Kun Ftan	Digitiser	Ampterter	Sub Ptan	Kun Type	Ruis	Events	Info	Diamond	Detector	Bias [V]	Info	Diamond	Detector	Bias [V]	Info	Diamond	Detector	Bias [V]
01	ROC	ROC	1	angle scan	001 - 011	2.9M	Runs	<u>116-86</u>	3D-pixel	-50	Runs	116-A2	3D-pixel	-50	Runs	<u>51352</u>	pixel	-150
			2	rate scan	019 - 040	7.5M	Runs								Runs			
92	DRS4	0SU1	2.1	up scan	029 - 035	2.6M	Runs 116-B2	pad	-1000	-		Runs	116-97	5-97 pad	-1000			
			2.2	rate scan	024 - 040	5.5M	Runs						Runs					
		0SU1	3	rate scan	042 - 065	8.2M	Runs				+1000 -			Runs				
03	DRS4		3.1	up scan	053 - 059	2.4M	Runs	<u>116-82</u>	pad	+1000			-	Runs	116-97	pad	+1000	
			3.2	rate scan	042 - 053	4.18	Runs							Runs				
64	DRS4	05U1	4	rate scan	087 - 097	1.8M	Runs	SiD2	pad	d +150				Runs	S129	pad	-500	
•	bits 1		4.1	up scan	087 - 092	1.0M	Runs	2324	_ pou	1				Runs	ZALZ POU	-300		
05	CAEN	0SU1	5	rate scan	155 - 164	1.5M	Runs	<u>SiD2</u>	pad	+150			-		Runs	<u>5129</u>	pad	-500
86	OSCI	OSU1	6	rate scan	170 - 176	?	Runs	SiD2	pad	+150			-		Runs	<u>5129</u>	pad	-500
97	DRS4	C6_1, Cx_2	7	voltage scan	179 - 187	7.0M	Runs	<u>Si06</u>	pad	-500			-		Runs	116-A7	3D-multi	-30100
68	DRS4	Cx_2, C6_1	8	digitiser test	188 - 202	6.8M	Runs	<u>SiD6</u>	pad	-500					Runs	116-A7	3D-multi	+100100
69	DRS4	Cx_2, C6_2	9	rate scan	265 - 271	1.9M	Runs	<u>L188</u>	pad	+1000					Runs	<u>CMS04</u>	pad	+350
10	DRS4	C6_1, C6_2	10	rate scan	274 - 280	2.8M	Runs	<u>L188</u>	pad	-1000			-		Runs	<u>CMS04</u>	pad	-800
11	DRS4	Cx_2, C6_2	11	digitiser test	281 - 281	0.6M	Runs	<u>L188</u>	pad	-1000					Runs	<u>CMS04</u>	pad	-800
12	DRS4	C6_2, Cx_2	12	digitiser test	282 - 282	0.6M	Runs	<u>L188</u>	pad	-1000					Runs	<u>CMS04</u>	pad	-800

Diamond Overview

full overview of all scans for every scCVD, pCVD and silicon detector

Timeline

Final Setup

Figure: Modular Beam Telescope

- ullet 4 tracking planes o trigger (fast-OR) with adjustable effective area
- diamond pad detectors in between tracking planes
- fast scintillator

Setup Development

Figure: Setup May15

May15

Setup Development

Figure: Setup Aug15 - Oct15

- ullet May15 o adding scintillator o Aug15, Oct15
- ullet gaining precise trigger timing of $\mathcal{O}\left(1\,\mathrm{ns}\right)$

Setup Development

Figure: Setup Aug16 - Oct18

- $\bullet \ \mathsf{May15} \to \mathsf{adding} \ \mathsf{scintillator} \to \mathsf{Aug15}, \ \mathsf{Oct15} \to \mathsf{using} \ \mathsf{OSU\text{-}TU} \to \mathsf{May17} \ \dots$
- gaining precise trigger timing of $\mathcal{O}(1 \text{ ns})$
- strongly simplifying setup, slightly worsening trigger timing (400 MHz clock)

M. Reichmann (all zürich) 28th February 2019

7 / 13

Procedure Development

- until October 2015: closing beam shutter before every run
 - ▶ found out it makes no difference and always left it open afterwards

- until October 2016: pumping every diamond pad detector with a Sr-source
 - ▶ found out that pumping with the beam is much faster and reliable

Tested Detectors

Name	Nick	Producer	Туре	T [µm]	Irr _{max}	Comments
S129	S129	е6	scCVD	528	0	reference
IIa-3	IIa-3	lla	scCVD	?	$5 \cdot 10^{13}$	
SiD1	SiD1	PSI	Si-Diode	300	0	calibration
SiD2	SiD2	IJS	Si-Diode	100	0	calibration
2A87-e	2А87-е	II-VI	pCVD	?	$5 \cdot 10^{13}$	
116-78	poly-A	II-VI	pCVD	?	0	
116-79	poly-B	II-VI	pCVD	?	0	fixed surface
116-81	poly-D	II-VI	pCVD	?	$1\cdot 10^{14}$	
116-94	94	II-VI	pCVD	?	0	also as pixel
116-95	95	II-VI	pCVD	?	$5\cdot 10^{14}$	also as pixel
116-96	96	II-VI	pCVD	?	0	
116-97	97	II-VI	pCVD	?	$3.5\cdot10^{15}$	irradiation studies
II6-B2	B2	II-VI	pCVD	455	$8 \cdot 10^{15}$	irradiation studies
II6-E5	E5	II-VI	pCVD	?	0	bcm prime test
II6-H0	H0	II-VI	pCVD	?	0	bcm prime test
II6-H8	H8	II-VI	pCVD	?	0	bcm prime test

Table: Pad Detector Information.

Diamond	May15	Aug15	Oct15	Aug16	Oct16
S129	√ (0)	√ (0)	√ (0)	√ (0)	√ (0)
IIa-3	X	X	$\checkmark (5 \cdot 10^{13})$	X	X
SiD1	X	Х	Х	√ (0)	√ (0)
SiD2	X	X	X	X	√ (0)
2А87-е	Х	Х	$\checkmark (5 \cdot 10^{13})$	Х	Х
116-78	√ (0)	X	X	X	X
116-79	√ (0)	√ (0)	X	X	X
116-81	$\checkmark (1 \cdot 10^{14})$	X	$\checkmark (1 \cdot 10^{14})$	X	X
116-94	√ (0)	X	X	√ (0)	X
116-95	√ (0)	X	X	$\checkmark (5 \cdot 10^{14})$	X
116-96	√ (0)	X	X	X	X
116-97	X	√ (0)	√ (0)	$\checkmark (5 \cdot 10^{14})$	$\checkmark (1.5 \cdot 10^{15})$
II6-B2	X	√ (0)	$\checkmark (5 \cdot 10^{14})$	$\checkmark (1 \cdot 10^{15})$	$\checkmark (2 \cdot 10^{15})$
II6-E5	X	X	X	X	X
II6-H0	X	X	X	X	X
II6-H8	X	Х	X	X	X

Table: Pad Detector Timeline. Irradiation in n/cm^2 in parenthesis.

2017 - 2018

Diamond	May17	Jul17	Aug17	Aug18	Oct18
S129	√ (0)	√ (0)	√ (0)	√ (0)	X
IIa-3	X	X	X	X	X
SiD1	X	X	X	X	X
SiD2	√ (0)	√ (0)	√ (0)	√ (0)	X
2А87-е	X	Х	Х	Х	X
116-78	X	X	X	X	X
116-79	X	√ (0)	X	X	X
116-81	X	X	X	X	X
116-94	X	X	X	X	X
116-95	X	X	X	X	X
116-96	X	X	X	X	X
116-97	X	$\checkmark (1.5 \cdot 10^{15})$	\checkmark (3.5 · 10 ¹⁵)	X	X
II6-B2	X	$\checkmark (2 \cdot 10^{15})$	$\checkmark (4 \cdot 10^{15})$	$\checkmark (8 \cdot 10^{15})$	X
II6-E5	X	√ *(0)	X	X	X
II6-H0	√ *(0)	√ *(0)	X	X	X
II6-H8	Х	X	X	√ (0)	√ *(0)

Table: Pad Detector Timeline. Irradiation in n/cm^2 in parenthesis. * - BCMPrime devices.

Scan Types

Diamond	Rate Scan	Voltage Scan	Random Scan
S129	✓	✓	Х
IIa-3	✓	X	X
SiD1	✓	✓	X
SiD2	✓	✓	X
2A87-e	✓	X	X
116-78	✓	X	X
116-79	✓	X	X
116-81	✓	✓	X
116-94	✓	✓	✓
116-95	✓	✓	✓
116-96	✓	X	X
116-97	✓	X	✓
II6-B2	✓	✓	✓
II6-E5	✓	X	X
II6-H0	✓	X	X
II6-H8	✓	X	X

Table: Pad Detector Scan Types.

Conclusion

Conclusion

- improved setup
 - adding scintillator for precise timing
 - ▶ using OSU Trigger Unit
- simplified data-taking
 - ▶ leaving beam shutter open
 - pumping with the beam
- using scCVD and SiD1 as reference and calibration
- tested 12 pCVD diamond for rate dependence
- irradiation studies of two pCVD diamonds

M. Reichmann (FIHzürich) 28th February 2019

