Sorbonne Université Cryptologie, cryptographie algébrique 4M035 - 2021/22 Travaux dirigés Alain Kraus

Exercices - Chapitre II

Tests et critères de primalité

Exercice 1

Soient p un nombre premier et a, r des entiers tels que $r \ge 2$ et $1 < a < p^r$. Montrer que l'on a l'équivalence

 p^r est pseudo-premier en base $a \iff a^{p-1} \equiv 1 \mod p^r$.

Exercice 2

- 1) L'entier 341 est-il pseudo-premier ? pseudo-premier d'Euler ? pseudo-premier fort ?
- 2) Montrer que 561 est pseudo-premier d'Euler.
- 3) Soit p un nombre premier. Montrer que 3p n'est pas pseudo-premier.

Exercice 3 (Puissances dans un groupe cyclique)

Soient G un groupe cyclique d'ordre n, d'élément neutre e, et a un élément de G.

1) Soit $k \ge 1$ un entier. Montrer que pour qu'il existe $x \in G$ tel que $x^k = a$ il faut et il suffit que l'on ait

(1)
$$a^{\frac{n}{d}} = e \quad \text{où} \quad d = \operatorname{pgcd}(k, n).$$

2) Soit $k \ge 1$ un entier tel que la condition (1) soit satisfaite. Soit x_0 un élément de G tel que $x_0^k = a$. Montrer que l'ensemble des éléments $x \in G$ tels que $x^k = a$ est

$$\Big\{x_0z\mid z\in G\text{ et }z^d=e\Big\},$$

et que son cardinal est d. En particulier, l'équation $x^k = e$ possède exactement d solutions dans G.

Exercice 4

Soit $n \ge 3$ un entier impair composé. Posons $n-1=2^s t$ où t est impair.

1) Supposons n divisible par un nombre premier congru à 3 modulo 4. Soit a un entier vérifiant les inégalités 1 < a < n. Montrer que n est pseudo-premier fort en base a si et seulement si on a $a^t \equiv \pm 1 \mod n$.

2) Pour tout $j \ge 1$, notons p_j le j-ième nombre premier impair : on a $p_1 = 3$, $p_2 = 5$, \cdots . Soit $k \ge 2$ un entier. Supposons que n soit le produit des p_j pour j compris entre 1 et k, autrement dit que l'on ait

$$n = p_1 p_2 \cdots p_k$$
.

- 2.1) Soit i un entier tel que $1 \le i \le k$. Quel est le nombre de solutions de l'équation $x^t = 1$ dans $(\mathbb{Z}/p_i\mathbb{Z})^*$?
- 2.2) En déduire l'ensemble des solutions de l'équation $x^t = 1$ dans $(\mathbb{Z}/n\mathbb{Z})^*$.
- 2.3) Quel est l'ensemble des entiers a tels que 1 < a < n et que n soit pseudo-premier fort en base a?

Exercice 5

- 1) Soit p un nombre premier. Posons n=2p+1. Montrer que n est premier si et seulement si on a $2^{n-1} \equiv 1 \mod n$.
- 2) Plus généralement, soient p un nombre premier et h < p un entier naturel non nul. Posons n = hp + 1 et supposons $2^h \not\equiv 1 \mod n$. Montrer n est premier si et seulement si on a $2^{n-1} \equiv 1 \mod n$.

Exercice 6

Pour tout $n \ge 1$ posons $M_n = 2^n - 1$.

- 1) Montrer que si n est pseudo-premier, il en est de même de M_n .
- 2) Soit p un nombre premier congru à 3 modulo 4. En utilisant l'exercice 5, montrer l'équivalence

$$2p+1$$
 divise $M_p \iff 2p+1$ est premier.

Exercice 7 (Nombres de Carmichael)

- 1) Soit $n \geq 2$ un entier. Montrer que les conditions suivantes sont équivalentes :
 - (i) Pour tout $a \in \mathbb{Z}$, on a $a^n \equiv a \mod n$.
 - (ii) Pour tout $a \in \mathbb{Z}$, premier avec n, on a $a^{n-1} \equiv 1 \mod n$.
 - (iii) L'entier n est sans facteurs carrés, i.e. n n'est pas divisible par le carré d'un nombre premier, et pour tout nombre premier p on a l'implication

$$p ext{ divise } n \implies p-1 ext{ divise } n-1.$$

(iv) L'entier $\lambda(n)$ divise n-1 où λ est la fonction de Carmichael.

Un entier n composé vérifiant l'une des conditions ci-dessus s'appelle un nombre de Carmichael.

- 2) Montrer que 561 et 1105 sont des nombres de Carmichael (ce sont les deux plus petits).
- 3) Soit n un nombre de Carmichael.
 - 3.1) Montrer que n est impair et possède au moins trois diviseurs premiers.
 - 3.2) Montrer que chaque diviseur premier de n est strictement inférieur à \sqrt{n} .
- 4) Soit $m \ge 1$ un entier. Supposons que 6m + 1, 12m + 1 et 18m + 1 soient des nombres premiers. Montrer que (6m + 1)(12m + 1)(18m + 1) est un nombre de Carmichael.

Exercice 8

Soit $n \geq 3$ un entier impair vérifiant les deux conditions suivantes :

- 1) Pour tout entier a premier avec n, on a $a^{\frac{n-1}{2}} \equiv \pm 1 \mod n$.
- 2) Il existe un entier b tel que l'on ait $b^{\frac{n-1}{2}} \equiv -1 \mod n$. Montrer que n est premier.

Exercice 9

Soit $n \geq 3$ un entier impair. Soit λ la fonction de Carmichael.

- 1) Rappeler pourquoi $\lambda(n)$ est pair.
- 2) Posons

$$S = \left\{ a \in (\mathbb{Z}/n\mathbb{Z})^* \mid a^{\frac{\lambda(n)}{2}} = \pm 1 \right\}.$$

Montrer que $S = (\mathbb{Z}/n\mathbb{Z})^*$ si et seulement si n est une puissance d'un nombre premier.

Exercice 10

Soient $h \geq 1$ et $N \geq 2$ des entiers naturels tels que l'on ait

$$h < 2^N$$
 et $h \not\equiv 0 \mod 3$.

Posons $n = h2^N + 1$.

- 1) En distinguant deux cas suivant la parité de N, calculer le symbole de Legendre $\left(\frac{n}{3}\right)$.
- 2) Que vaut le symbole de Jacobi $\left(\frac{3}{n}\right)$?
- 3) En utilisant le critère primalité de Proth, en déduire l'équivalence suivante :

$$n \text{ est premier } \iff 3^{\frac{n-1}{2}} \equiv -1 \text{ mod. } n.$$

4) Supposons n composé et $n \not\equiv 0$ mod. 3. Expliciter un témoin d'Euler pour n.

Exercice 11 (Critère de primalité de Proth généralisé)

Soient p un nombre premier et h, N des entiers naturels non nuls tels que $h < p^N$. Posons

$$n = hp^N + 1.$$

Soit a un entier tel que $1 \le a \le n-1$ et que

$$a^{\frac{n-1}{p}} \not\equiv 1 \mod n$$
.

Notons $\Phi_p \in \mathbb{Z}[X]$ le p-ième polynôme cyclotomique. Rappelons que l'on a

$$\Phi_p = \sum_{i=0}^{p-1} X^i.$$

L'objectif de cet exercice est d'établir l'équivalence suivante :

(1)
$$n \text{ est premier } \iff \Phi_p(a^{\frac{n-1}{p}}) \equiv 0 \text{ mod. } n.$$

C'est une généralisation du critère de primalité de Proth (corollaire 2.4 du cours).

- 1) Supposons n premier. Montrer que l'on a $\Phi_p\left(a^{\frac{n-1}{p}}\right) \equiv 0 \mod n$. Inversement, supposons $\Phi_p\left(a^{\frac{n-1}{p}}\right) \equiv 0 \mod n$. Posons $b=a^h$.
- 2) Montrer que l'on a $b^{p^N} \equiv 1 \mod n$. Supposons n non premier. Il existe un diviseur premier q de n plus petit que \sqrt{n} .
- 3) Montrer que p^N est l'ordre de b modulo q.
- 4) En déduire que l'on a $p^N < q$, puis une contradiction et l'équivalence (1).
- 5) Supposons n premier. Quelle est la probabilité pour qu'un entier a choisi au hasard entre 1 et n-1 vérifie la condition $a^{\frac{n-1}{p}} \not\equiv 1 \mod n$?
- 6) Si vous disposez d'un logiciel de calculs, vérifier que les entiers

$$2.3^{1454} + 1$$
 et $4.7^{894} + 1$,

sont des nombres premiers. Ils possèdent respectivement 695 et 757 chiffres décimaux.

Exercice 12 (Généralisation du petit théorème de Fermat)

Soient $A \in \mathbb{M}_n(\mathbb{Z})$ une matrice de taille (n,n) à coefficients dans \mathbb{Z} et p un nombre premier. Notons Tr(A) la trace de A. Montrer que l'on a

$$Tr(A^p) \equiv Tr(A) \text{ mod. } p.$$

Exercice 13

Soit k > 1 un entier. Montrer qu'il existe une infinité de nombres premiers p tels que $2^p - k$ soit composé.

Indication : Supposons k > 3 impair. Il existe un diviseur premier $q \ge 3$ de k - 2. Utiliser alors le fait qu'il existe une infinité de nombres premiers congrus à 1 modulo q-1. (C'est un cas particulier du théorème de la progression arithmétique de Dirichlet.)

Exercice 14

Soit k un entier relatif distinct de 1. On se propose d'établir qu'il existe une infinité d'entiers n tels que $2^{2^n} + k$ soit composé ; cet énoncé a été démontré par le mathématicien Polonais Schinzel il y a environ 60 ans.

Indication : On peut supposer k impair. Soit a un entier naturel. Il suffit de prouver l'existence d'un entier n tel que $2^{2^n} + k$ soit composé et que $2^{2^n} + k > a$. Puisque k est distinct de 1, il existe $s \in \mathbb{N}$ et un entier impair h tels que $k - 1 = 2^s h$. Soit t un entier naturel tel que l'on ait $p = 2^{2^t} + k > a$ et t > s. On peut supposer que p est un nombre premier. Il existe un entier impair h_1 tel que $p - 1 = 2^s h_1$.

Soit φ la fonction indicatrice d'Euler. Montrer que l'on a $2^{2^{t+\varphi(h_1)}}+k\equiv 0$ mod. p et en déduire le résultat.

Exercice 15

Soit p un nombre premier. Posons

$$\Phi_p = \sum_{i=0}^{p-1} X^i \in \mathbb{Z}[X],$$

- 1) Soit $m \ge 1$ un entier divisible par p. Soit q un diviseur premier de $\Phi_p(m)$.
 - 1.1) Montrer que q ne divise pas m-1.
 - 1.2) En déduire que l'on a $q \equiv 1 \mod p$.
- 2) En déduire qu'il existe une infinité de nombres premiers congrus à 1 modulo p.

Indication : Supposer qu'il n'existe qu'un nombre fini de nombres premiers p_1, \dots, p_r congrus à 1 modulo p, et considérer l'entier $\Phi_p(p_1 \dots p_r p)$ afin d'obtenir une contradiction.

Exercice 16

On se propose de démontrer que pour tout nombre premier $p \geq 5$, on a la congruence

(1)
$${2p-1 \choose p-1} \equiv 1 \mod p^3.$$

Ce résultat a été établi par le mathématicien anglais Wolstenholme en 1862.

Posons

$$F = \prod_{k=1}^{p-1} (X - k) \in \mathbb{Z}[X],$$

et pour tout i tel que $1 \leq i \leq p-1$, notons $A_i \in \mathbb{Z}$ la i-ème fonction symétrique élémentaire des racines de F.

1) Démontrer l'égalité

$$p^{p-2} - A_1 p^{p-3} + A_2 p^{p-4} + \dots - A_{p-2} = 0.$$

2) En déduire que l'on a

$$\prod_{k=1}^{p-1} (p+k) = 2(p^{p-1} + A_2 p^{p-3} + \dots + A_{p-3} p^2) + A_{p-1}.$$

3) En déduire la congruence (1).

On ne connaît pas d'entiers n composés tels que $\binom{2n-1}{n-1} \equiv 1 \mod n^3$, d'où la question suivante : pour tout $n \geq 5$, a-t-on l'équivalence

$$\binom{2n-1}{n-1} \equiv 1 \mod n^3 \iff n \text{ est premier } ?$$

Exercice 17 (Test de Lucas des nombres de Mersenne)

Pour tout nombre premier p, posons $M_p = 2^p - 1$.

On se propose dans cet exercice de démontrer le test de Lucas (voir la remarque 2.8 du cours) : soit $(u_n)_{n>1}$ la suite d'entiers définie par les conditions

$$u_1 = 4$$
 et $u_{n+1} = u_n^2 - 2$.

Soit $p \geq 3$ un nombre premier. On a l'équivalence

(1)
$$M_p \text{ est premier } \iff u_{p-1} \equiv 0 \text{ mod. } M_p.$$

1. Préliminaires

Soit $A = \mathbb{Z}[\sqrt{3}]$ le sous-anneau de \mathbb{C} engendré par 1 et $\sqrt{3}$ (une racine carrée de 3). C'est l'ensemble des éléments de la forme $a + b\sqrt{3}$ où a et b sont dans \mathbb{Z} . Posons

$$u = 2 + \sqrt{3}$$
, $u' = 2 - \sqrt{3}$, $z = 1 + \sqrt{3}$, $z' = 1 - \sqrt{3}$.

On a les égalités

$$u + u' = 4$$
, $uu' = 1$, $z + z' = 2$, $zz' = -2$, $z^2 = 2u$.

1) Vérifier que pour tout $n \geq 1$, on a

$$u_n = u^{2^{n-1}} + u'^{2^{n-1}}.$$

2) Soit q un nombre premier. Montrer que les anneaux A/qA et $\mathbb{F}_q[X]/(X^2-3)$ sont isomorphes.

2. Preuve de la nécessité

Supposons que M_p soit premier. Posons

$$q = M_p$$
 et $K = A/qA$.

Notons x, η, η', y, y' les classes modulo qA respectivement de $\sqrt{3}$, u, u', z et z'.

- 3) Montrer que 3 n'est pas un carré modulo q et que K est un corps à q^2 éléments. On identifie \mathbb{F}_q à un sous-corps de K.
- 4) Soit $f: K \to K$ l'automorphisme de Frobenius de K, défini pour tout $t \in K$ par l'égalité $f(t) = t^q$. Quels sont les points fixes de f? Vérifier que l'on a

$$f(x) = -x$$
, $f(\eta) = \eta'$ et $f(y) = y'$.

- 5) En déduire les égalités $\eta^{\frac{q+1}{2}} = \eta'^{\frac{q+1}{2}} = -1$.
- 6) En déduire que l'on a $\left(\eta^{\frac{q+1}{4}} + \eta'^{\frac{q+1}{4}}\right)^2 = 0$, puis que q divise u_{p-1} .

3. Preuve de l'implication réciproque

Supposons que M_p divise u_{p-1} . Procédons par l'absurde en supposant que M_p n'est pas premier. Il existe alors un diviseur premier q de M_p tel que $q^2 \leq M_p$. Posons de nouveau K = A/qA et notons η, η' les classes de u et u' modulo qA.

- 7) Montrer l'égalité $\eta^{2^{p-2}} + \eta'^{2^{p-2}} = 0$.
- 8) En déduire que η est d'ordre 2^p dans le groupe des éléments inversibles de K (dans cette question K n'est pas nécessairement un corps).
- 9) En déduire une contradiction, puis l'équivalence (1).

Exercice 18

Soit $(u_n)_{n\in\mathbb{N}}$ la suite d'entiers définie par les égalités

$$u_0 = 0$$
, $u_1 = 1$ et $u_n = u_{n-1} + u_{n-2}$ pour tout $n \ge 2$.

C'est la suite de Fibonacci. Soit p un nombre premier. L'objectif de cet exercice est de prouver que p divise u_{p-1} si $p \equiv \pm 1 \mod 5$ et que p divise u_{p+1} si $p \equiv \pm 2 \mod 5$.

Soit p un nombre premier distinct de 5. Considérons l'anneau quotient

$$A = \mathbb{F}_p[X]/(f)$$
 où $f = X^2 - X - 1 \in \mathbb{F}_p[X]$.

Identifions \mathbb{F}_p à un sous-anneau de A et notons α la classe de X modulo (f).

1. Questions préliminaires

- 1) Calculer le symbole de Legendre $\left(\frac{5}{p}\right)$.
- 2) Montrer que α et 1α sont inversibles dans A.
- 3) Montrer que $2\alpha 1$ est inversible dans A.
- 4) Montrer que pour tout $n \in \mathbb{N}$, on a

$$u_n + p\mathbb{Z} = \frac{\alpha^n - (1 - \alpha)^n}{2\alpha - 1}.$$

- **2.** Cas où $p \equiv \pm 1 \mod. 5$
- 5) Montrer que A est isomorphe à l'anneau produit $\mathbb{F}_p \times \mathbb{F}_p$.
- 6) Montrer que pour tout $x \in A$, on a $x^p = x$.
- 7) En déduire la congruence $u_{p-1} \equiv 0 \mod p$.
 - 3. Cas où $p \equiv \pm 2 \mod. 5$
- 8) Montrer que A est un corps.
- 9) Quelles sont les racines du polynôme F dans A?
- 10) Montrer que l'on a $\alpha^p = 1 \alpha$ et $(1 \alpha)^p = \alpha$.
- 11) En déduire la congruence $u_{p+1} \equiv 0 \mod p$.