Consumption Upgrading and Wage Inequality

Jenny Siqin Ding

University of Maryland

August 28, 2025

A secular rise in wage inequality

- Large increase in wage inequality between high- and low-skill labor
 - Leading explanation: Skill-biased technical change(SBTC)
- Consumption upgrading: shifts towards skill-intensive goods and services as incomes increase ⇒ increase in relative wage of skilled workers
- How important is the consumption upgrading channel relative to SBTC?
 - Multi-industry GE model with capital-skill complementarity, industry-specific production technology and nonhomothetic preferences
 - SBTC: capital accumulation of equipments (ΔK_t) 81.8%
 - Consumption upgrading: skill-neutral technology growth (ΔA_t , ΔS_t , ΔA_{it}) 14.6% = 9.6% (ΔA_{it} : price effect) + 5.0% ($\Delta A_t + \Delta S_t$: income effect)

Literature review

- Skill-biased technical change. Katz and Murphy 1992, Berman, Bound, and Griliches 1994, Autor, Levy, and Murnane 2003 ...
- Sources of structural change. Acemoglu and Guerrieri 2008, Ngai and Pissarides 2007, Kongsamut, Rebelo, and Xie 2001, Boppart 2014...
- Structural change and wage inequality. Leonardi 2015, Buera et al. 2022, Comin, Danieli, and Mestieri 2022
- Quality upgrading within a good. Jaimovich, Rebelo, and Wong 2019
- Estimation of capital-skill complementarity. Raval 2019, Karabarbounis and Neiman 2014, Hubmer 2023

Data

- Classification of skill
 - O*NET Job Zones
 - Separate low-skill service following Acemoglu and Autor 2011
- Wage and employment data
 - OEWS (Occupational Employment and Wage Statistics)
- Construction of skill intensity:

$$\bar{\theta}_{j} = \frac{W_{2003}^{j} N_{2003}^{j}}{\sum\limits_{j \in \{H, M, L_{s}, L_{o}\}} W_{2003}^{j} N_{2003}^{j}}$$

	High-skill	Middle-skill	Low-skill Service	Low-skill others
Employment share	17.68%	33.26%	12.59%	36.47%
Wage bill share	32.32%	36.08%	6.26%	25.35%

Table: Skill intensity summary statistics

Data

- Adjust for intermediate inputs
 - BEA I-O table
- Match to final demand consumption
 - Consumption expenditure survey
- Final dataset
 - Household-good-year level expenditure and skill intensity

1. Richer households spend a higher share of their total expenditure on skill-intensive goods and services

Source: CEX, OEWS, O*NET, I-O table

2. Household consumption shifts towards skill-intensive goods and services over time

Source: CEX, OEWS, O*NET, I-O table

Model overview

- Multi-industry GE model with four inputs:
 - Capital equipment and capital structure
 - High and low-skill labor
- Capital-skill complementarity
 - Equipments substitute for low-skill and complements high-skill
- Industry-specific production technology
 - Industry-specific production functions and productivity processes
- Good-level expenditure elasticities
 - Generates shifts in consumption as income increases

GE Model of Structural Change

Nested CES Production Function

Nested CES production function for good i:

$$Y_{it} = A_{it} \left(S_{it} \right)^{\beta_i} X_{it}^{1-\beta_i} \tag{1}$$

$$X_{it} = \left[\alpha_{i}^{\frac{1}{\eta}} H_{it}^{\frac{\eta-1}{\eta}} + (1-\alpha_{i})^{\frac{1}{\eta}} \left(\delta_{i}^{\frac{1}{\rho}} L_{it}^{\frac{\rho-1}{\rho}} + (1-\delta_{i})^{\frac{1}{\rho}} (K_{it})^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}} \frac{\eta-1}{\eta}\right]^{\frac{\eta}{\eta-1}}$$
(2)

- S: capital structure K: capital equipment H: high-skill L: low-skill
- Firms optimize:

$$P_{it} = \frac{1}{A_{it}} \left(\frac{R_t^S}{\beta_i} \right)^{\beta_i} \left(\frac{P_{it}^X}{1 - \beta_i} \right)^{1 - \beta_i} \tag{3}$$

$$P_{it}^{X} = \left[\alpha_{i} \left(W_{t}^{H}\right)^{1-\eta} + (1-\alpha_{i}) \left[\delta_{i} \left(W_{t}^{L}\right)^{1-\rho} + (1-\delta_{i}) \left(R_{t}^{K}\right)^{1-\rho}\right]^{\frac{1-\eta}{1-\rho}}\right]^{\frac{1}{1-\eta}} \tag{4}$$

- Skill-neutral productivity A_{it}: aggregate + industry-specific component
- Industry-specific factor share: α_i, δ_i
- Capital-skill complementarity: $ho > \eta$

GE Model of Structural Change

Nonhomothetic demand

- Nonhomothetic log-demand system for good i (following Hubmer 2023)
- Consumption share for each good ω_{it} follows

$$d\ln\omega_{it}^{h} = (1 - \sigma)d\ln\frac{P_{it}}{P_{t}^{h}} + (\gamma_{it} - 1)d\ln\frac{E_{t}^{h}}{P_{t}^{h}}, \quad h \in \{H, L\}$$
 (5)

where

$$E_t^h = W_t^h + R_t^K \bar{K}_t + R_t^S \bar{S}_t \tag{6}$$

$$d\ln P_t^h = \sum_i \omega_{it}^h d\ln P_{it} \tag{7}$$

- Price substitution: $\sigma > 1$
- Nonohomothetic demand: industry-specific expenditure elasticity γ_{it}

GE Model of Structural Change

Equilibrium

The competitive equilibrium consist of factor prices $\{R_t^K, R_t^S, W_t^H\}$, intermediate good prices $\{P_{it}^X\}_{i\in I}$, final good prices $\{P_{it}^K\}_{i\in I}$, consumer demand $\{C_{it}^H, C_{it}^L\}_{i\in I}$ and expenditure $\{E_t^H, E_t^L\}$, final good output $\{Y_{it}\}_{i\in I}$ and factor input choices $\{H_{it}, L_{it}, K_{it}, S_{it}\}_{i\in I}$, such that given fixed labor supply:

- 1. consumer demand is given by $C_{it} = \frac{\omega_{it} E_t}{P_{it}}$, where ω_{it} is endogenously given at t = 0 and evolves according to equation 5;
- 2. final good output $\{Y_{it}\}_{i\in I}$ and factor inputs choices $\{H_{it}, L_{it}, X_{it}\}_{i\in I}$ are consistent with profit maximization subject to equation 1 to 4;
- 3. all final good markets clear
- 4. all factor markets clear

1. Income-Driven Shifts in Consumption: A_t , S_t

- If $Cov(\alpha_i, \gamma_i) > 0$, skill-intensive goods have higher expenditure elasticity
- $A_t \uparrow S_t \uparrow \Rightarrow$ Higher income \Rightarrow Higher demand for skill-intensive goods
 - ⇒ Higher demand for skilled workers

Skill intensity vs. Expenditure elasticity

2. Capital-Skill Complementarity: K_t

- If $\rho > 1 > \eta$, capital equipment substitutes for low-skill workers and complements for high-skill workers
- $K_t \uparrow \Rightarrow$ Cheaper capital equipment \Rightarrow Higher demand for skilled labor *within* each industry

3. Technology-Driven Shift in Consumption Ait

- If $Cov(A_{it}, \alpha_i) > 0$, industries with higher growth rely more heavily on skilled labor
- $A_{it} \uparrow \Rightarrow$ Cheaper prices P_{it}
- Substitution across goods (σ > 1) ⇒ Higher demand for skill-intensive industries
 ⇒ Higher demand for skilled workers

$$Corr(\Delta A_{it}, \theta_i^H) = 0.288$$

4: Ait Growth Amplifies Capital-Skill Complementarity

- If $Cov(A_{it}, \delta_i) < 0$, industries with higher growth rely more heavily on equipments
- Similarly, $A_{it} \uparrow \Rightarrow$ Higher demand for capital equipment
- Higher demand for skilled labor due to capital-skill complementarity

Calibration

Sample period: 1982-2019

Elasticity of substitution

Parameter	Moment/Description	Value ¹	Sources
ρ	Elasticity of substitution between K^E and L	1.26	My estimation
η	Elasticity of substitution between K^E and H	0.46	My estimation
$\gamma_{\it it}$	Expenditure elasticity for Y_i		Hubmer 2023
σ	Elasticity of substitution between goods	1.55	Hubmer 2023
$\omega_{i, 1982}^{H}^{2}$	Initial consumption share of Y_i for H workers		Data(CEX)
$\omega_{i,1982}^L$	Initial consumption share of Y_i for L workers		Data(CEX)
δ_i	Governs L share in production in 2003	0.71	Data(IO+OEWS+ONET)
α_i	Governs H share in production in 2003	0.20	Data(IO+OEWS+ONET)
β_i	Governs K^S share in production in 2003	0.19	Data(IO+OEWS+ONET)
f	Share of H workers in 2003	0.25	Data(OEWS+ONET)

Table: Calibration

 $^{^{1}\}text{I}$ report the time-average of consumption weighted mean for $\delta_{i},\,\alpha_{i}$ and β_{i}

²calculated using consumption of top 30% HHs

Remaining Model Parameters

- Sample period: 1982-2019
- Calibrate ΔA_t to match per capita GDP growth
- Calibrate ΔA_{it} to match the change in relative prices
- Increase in capital stock (S and K) from BEA data
- Exogenously feed in ΔA_t , ΔA_{it} , ΔK_t , ΔS_t to study each of their contribution to the skill premium

Quantitative Exercises: Model-based decomposition

- Sources of increase in skill premium:
 - Capital accumulation: ΔK_t
 - Aggregate productivity growth: $\Delta A_t + \Delta S_t$
 - Industry-specific productivity growth: ΔA_{it}

	Homothetic ($\gamma_{it} = 1, A_{it}^{GDP}$)		Nonhomothetic(A _{it} ^{GDP})	
	ΔW_t^H	Decomposition	ΔW_t^H	Decomposition
Total	40.2%	100%	43.5%	100%
$\Delta A_t + \Delta S_t$	-0.3%	-0.7%	2.2%	5.0%
ΔK_t	35.0%	87.0%	35.5%	81.8%
ΔA_{it}	3.9%	9.7%	4.2%	9.6%

Conclusion

- Using good-level data, I empirically document:
 - richer households spend a relatively higher share of their expenditure on skill-intensive goods and services
 - overtime, households are consuming more skill-intensive goods and services
- Multi-industry GE model with nonhomotheticity and capital-skill complementarity
 - SBTC driven by ΔK_t is the dominant source: 81.8%
 - Skill-neutral productivity growth: ΔA_{it} 9.6%, $\Delta A_t + \Delta S_t$ 5%
 - Nonhomothetic preference amplify all channels

Bibliography I

Estimation of Capital-Skill Complementarity

Factor Intensities

• Factors measured in efficiency units: $H_{it} = A_{it}^H h_{it}$, $L_{it} = A_{it}^L I_{it}$, $K_{it} = A_{it}^E K_{it}$ and $S_{it} = A_{it}^S S_{it}$

$$\theta_{it}^{\mathcal{S}} = \frac{R_t^{\mathcal{S}} S_{it}}{P_{tt} Y_{it}} = \beta_i \tag{8}$$

$$\theta_{it}^{H} = \frac{W_t^H h_{it}}{P_{it} Y_{it}} = \frac{\alpha_i}{1 - \alpha_i} \left(\frac{P_{it}^M}{W_t^H / A_{it}^H} \right)^{\eta - 1} \theta_{it}^M \tag{9}$$

$$\theta_{it}^{L} = \frac{W_t^L I_{it}}{P_{it} Y_{it}} = \delta_i \left(\frac{P_{it}^M}{W_t^L / A_{it}^L} \right)^{\rho - 1} \theta_{it}^M \tag{10}$$

$$\theta_{it}^{E} = \frac{R_t^E K_{it}}{P_{it} Y_{it}} = (1 - \delta_i) \left(\frac{P_{it}^M}{R_t^E / A_{it}^E} \right)^{\rho - 1} \theta_{it}^M \tag{11}$$

 $\bullet \ \theta^{\mathcal{S}}_{it} + \theta^{\mathcal{E}}_{it} + \theta^{\mathcal{H}}_{it} + \theta^{\mathcal{L}}_{it} = 1 \text{ and } \theta^{\mathcal{E}}_{it} + \theta^{\mathcal{L}}_{it} = \theta^{\mathcal{M}}_{it}.$

Estimation of Capital-Skill Complementarity

OLS equations

- Identification strategy: the variation of industry-level exposure to the secular change in capital equipment prices and wages. (Karabarbounis and Neiman 2014), (Raval 2019), (Hubmer 2023)
- Estimation of $\rho \eta$:

$$\ln \frac{\theta_{it}^{L}}{\theta_{it}^{H}} = \tilde{\alpha}_{i} + \lambda_{t} + (\rho - \eta) \left[\frac{\theta_{i}^{L}}{\theta_{i}^{M}} \hat{w}_{t}^{L} + \frac{\theta_{i}^{E}}{\theta_{i}^{M}} \hat{r}_{t}^{E} \right] + \underbrace{-(\rho - \eta) \left[\frac{\theta_{i}^{L}}{\theta_{i}^{M}} a_{it}^{L} + \frac{\theta_{i}^{E}}{\theta_{i}^{M}} a_{it}^{E} \right] - (\eta - 1) a_{it}^{H} - (1 - \rho) a_{it}^{L}}_{q_{it}^{H}}$$

$$(12)$$

• Estimation of η :

Calibration

$$ln(\theta_{it}^{H}) = \tilde{\alpha}_{i} + \lambda_{t} + (\eta - 1) \left[\frac{\theta_{i}^{H}}{1 - \beta_{i}} \hat{w}_{t}^{H} + \frac{\theta_{i}^{E}}{1 - \beta_{i}} \hat{r}_{t}^{E} + \frac{\theta_{i}^{L}}{1 - \beta_{i}} \hat{w}_{t}^{L} \right] + \underbrace{\xi_{it}}_{-(\eta - 1) \left[\frac{\theta_{i}^{H}}{1 - \beta_{i}} a_{it}^{H} + \frac{\theta_{i}^{E}}{\beta_{i} - 1} a_{it}^{E} + \frac{\theta^{L}}{1 - \beta_{i}} a_{it}^{L} \right] + (\eta - 1) a_{it}^{H}}$$

$$(13)$$

Estimation of Capital-Skill Complementarity

Data and results

- \hat{w}_t^H and \hat{w}_t^L : OEWS-O*NET
- \hat{r}_t^E : Relative price of equipments from Fred (PERIC)

Table: Estimates

	2002-2018 (1)		2002-2018 (2)
$\rho - \eta$	0.811*	η – 1	-0.544*
	(0.015)		(0.056)
N	2128		2128

Note: All columns weigh goods by final demand shares. Time and good fixed effects are used in all specifications.

Standard errors, in parentheses, are clustered at the good level.

•
$$\rho = 1.26 \ \eta = 0.46$$

