The Tortoise and the Hare, Restart GMRES

Moritz Wolter

moritzalexander.wolter @ student.kuleuven.de

December 8, 2015

- Recap GMRES
- 2 The Problem
- The problem in 2d
- More on the noise
- Stagnation condition

- Recap GMRES
- 2 The Problem
- 3 The problem in 20
- More on the noise
- 5 Stagnation condition

Recap GMRES (m)

- Start: Choose x_0 and compute $r_0 = f Ax_0$ and $v_1 = r_0/\|r_0\|$
- ② Iterate: For $j = 1,2,\ldots,m$ do $h_{i,j} = (Av_j,v_i), i = 1,\ldots,j$ $\hat{v}_{j+1} = Av_j \sum_{i=1}^j h_{i,j}v_i$ $h_{j+1,j} = \|\hat{v}_{j+1}\|$, and $v_{j+1} = \hat{v}_{j+1}/h_{j+1,j}$
- § Form the approximate solution: $x_m = x_0 + V_m y_m$ where y_m minimizes $\|\beta e_1 H_m y\|, y \in \mathbb{R}^m$
- Restart: Compute $r_m = f - Ax_m$; if satisfied stop, else $x_0 = x_m, v_1 = r_m/\|r_m\|$

- Recap GMRES
- 2 The Problem
- 3 The problem in 20
- More on the noise
- 5 Stagnation condition

GMRES(m) convergence

Figure : GMRES(m) convergence on large random matrix $\mathbf A$ of dimension 60 with $\mathbf b = [0\dots 1\dots 0]^T$ in blocks of 20 each.

$$\mathbf{A}_{1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{b}_{1} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} \tag{1}$$

$$\mathbf{A}_2 = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{b}_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
 (2)

Gmres convergence

Figure : GMRES convergence on matrix A_1 .

Figure : GMRES convergence on matrix \mathbf{A}_2 .

- Recap GMRES
- 2 The Problem
- 3 The problem in 2d
- More on the noise
- 5 Stagnation condition

Convergence in a two dimesional plane

Figure : Residual magnitude Plot for matrix A_2, b_2 , as seen in the Embree paper for GMRES(1)(left) and GMRES(2)(right) in figure 4.

Convergence in a two dimesional plane

Figure : Residual magnitude Plot for the A_1 , b_1 pair, as seen in the Embree paper GMRES(1)(left) and GMRES(2)(right) in figure two.

Conditioning makes a difference.

Figure : GMRES (1) and GMRES (2) convergence on $\mathbf{A}-0.35\cdot\mathbf{I}$. $\kappa(\mathbf{A})=14.2950$ changes to $\kappa(\mathbf{A}-0.35\cdot\mathbf{I})=39.1873$.

A random matrix.

$$\mathbf{R} = \begin{pmatrix} -0.3034 & 0.8884 & -0.8095\\ 0.2939 & -1.1471 & -2.9443\\ -0.7873 & -1.0689 & 1.4384 \end{pmatrix}$$
 (3)

Figure : Convergence of <code>GMRES(1)</code> (left) and <code>GMRES(2)</code> (right) for the random matrix ${\bf R.}~\kappa({\bf R})=5.1025$

Figure : Convergence results for $\mathbf{R} + 2\mathbf{I}$. $\kappa(\mathbf{R} + 2\mathbf{I}) = 77.5446$.

Figure : Convergence results for ${\bf R}+3{\bf I}.~{\bf R}+3{\bf I}=6.4262.$

$$\mathbf{C} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \quad \mathbf{r_0} = \begin{pmatrix} \xi \\ \eta \end{pmatrix} \tag{4}$$

Figure : A plot of the convergence plain for the matrix ${\bf C}$ proposed at the end of Embree's paper. With zoom on an interesting region.

- Recap GMRES
- 2 The Problem
- 3 The problem in 20
- More on the noise
- 5 Stagnation condition

Figure : Convergence Plain and error histogram for matrix ${f C}.$

- $\mathcal{D}_1 = 10^{-1} + \|\mathcal{N}(0, 2.5 \cdot 10^{-3})\|$
- $D_2 = 10^{-5} + ||\mathcal{N}(0, 2.5 \cdot 10^{-3})||$

Figure: Plots of the distributions generated by d1 = 0.00001 + 0.05*abs(randn(10000,1)); d2 = 0.1 + 0.05*abs(randn(10000,1)); . The last plot is on a semilogarithmic scale.

Figure : Convergence Plain and error histogram for matrix ${\bf B}. \\$

- Recap GMRES
- 2 The Problem
- 3 The problem in 20
- More on the noise
- Stagnation condition

Recurrence for gmres (1).

$$\mathbf{r}_{k+1}^{(1)} = \mathbf{r}_k^{(1)} - \frac{\mathbf{r}_k^{(1)T} \mathbf{A} \mathbf{r}_k^{(1)}}{\mathbf{r}_k^{(1)T} \mathbf{A}^T \mathbf{A} \mathbf{r}_k^{(1)}} \mathbf{A} \mathbf{r}_k^{(1)}$$
(5)

 \Rightarrow gmres (1) must stagnate if $\mathbf{r}_k^{(1)T} \mathbf{A} \mathbf{r}_k^{(1)} = 0$.

Matrix A

Figure : Region of guaranteed convergence with ${\tt gmres}\,(1)$ on matrix ${\bf A}.$

Matrix B

Figure : Region of guaranteed convergence with ${\tt gmres}\,(1)\,$ on matrix B.