Readmissions: <30 Days

Prepared by: Michael Akinosho Prepared on: January 20th, 2022

Agenda

- Introduction
- Focus
- Findings
- Recommendations

Introduction

- Patients DO NOT appreciate being readmitted
 - High risk of nosocomial infections; diseases and infections that are more prevalent in healthcare settings
 - Nosocomial infections are usually highly drug resistant, requiring longer lengths of stay and more medications with potentially stronger adverse reactions
- Healthcare providers DO NOT like readmitting either
 - Typically, exacerbation (worsening) of the patient's condition when they present (readmitted)
 - Difficulty explaining the complexity of care to entities that have to pay for readmission or unable to receive reimbursement for readmission encounter
- Payers are denying claims or requiring a lot more burdensome documentation

Why Focus on Diabetes and Readmissions?

 All patient-encounters included in the model had a diagnosis of diabetes which is based on the clinical analysis of the patient's HbA1c or A1C test

- The American Diabetes Association (ADA) considers this relatively simple blood test a POWERHOUSE!!
 - The higher the levels, the greater a person's risk of developing diabetes complications
 - It is used to monitor how well the diabetes treatment is working over time

Contributing To The Treatment Plan

Build A Model To Help

- Predict which class a discharged patient belongs within:
 - <30 Days: Readmitted within 30 days of discharge (30th day inclusive)</p>
 - >30 Days
 - NO: Not readmitted

Dataset Model Built Upon

- Sourced from UCI Machine Learning Repository; over 100,000 patient-encounters but only developed model with 33,000 to ensure each had a representative close to 33%
- Any class with a lopsided count severely impacted the model's predictive ability
- Comprised of 50 columns (data points), identified 17 meaningful ones used by model
- Some key features included in model: A1C, blood glucose, on diabetic meds, on insulin, age bracket
- Patient-encounters with discharge description of deceased or discharge to hospice were excluded

Testing Patients' A1C and Blood Serum Glucose

Patients with A1C greater than 7 and serum glucose greater than 200 are showing higher hospital length of stay

Age Demographics and Medication Usage; What is the intersection readmits and med usage?

Over 50% of the sample are over the age of 59

About 20% are not taking any diabetes medications

An evaluation of eight models were reduced to the following four.

And the final recommended model was further evaluated in this order:

- 1) True Positives
- 2) False Negatives
- 3) False Positives

Distribution of Classes		
<30	>30	NO
0.384	0.338	0.278

Recommendation

- Based on the key objectives of predicting:
 - True positives within the three classes
 - Minimizing false negatives
 - Minimizing false positives
- I am recommending the use of the random forest classifier model based on its better performance and balanced metrics result over the other three models

References and Citations

- 1. Source of data is UCI Machine Learning Repository, URL is: https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
- 2. List of features and descriptions: https://www.hindawi.com/journals/bmri/2014/781670/tab1/
- 3. Open Access article: https://www.hindawi.com/journals/bmri/2014/781670/
- 4. Beata et al article: Beata Strack, Jonathan P. DeShazo, Chris Gennings, Juan L. Olmo, Sebastian Ventura, Krzysztof J. Cios, John N. Clore, "Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records", BioMed Research International, vol. 2014, Article ID 781670, 11 pages, 2014. https://doi.org/10.1155/2014/781670
- 5. American Diabetes Association: ADA/A1C

Thank You

Questions and Answers

