M2 Chapter 7: Application of Forces

Static Particles

Overview

There is nothing new in this chapter – it just brings together all the individual components we have learnt so far regarding forces: friction, components of forces, F = ma, inclined planes and connected particles, for different common types of problems.

1:: Unknown forces for bodies in equilibrium.

"If the particle is in equilibrium, determine the magnitude of the force X."

3:: Objects in motion on inclined planes

A particle P of mass 0.6 kg slides with constant acceleration down a line of greatest slope of a rough plane, which is inclined at 25° to the horizontal. The particle passes through two points A and B, where AB = 10 m, as shown in Figure 3. The speed of P at A is 2 m s⁻¹. The particle P takes 3.5 s to move from A to B. Find

(a) the speed of P at B, (b) the acceleration of P, (3) (2) (5)

(c) the coefficient of friction between P and the plane.

2:: Static problem involving weight, tension and pulleys

A particle P of mass 2 kg is attached to one end of a light string, the other end of which is attached to a fixed point O. The particle is held in equilibrium, with OP at 30° to the downward vertical, by a force of magnitude F newtons. The force acts in the same vertical plane as the string and acts at an angle of 30° to the horizontal, as shown in Figure 3.

4:: Connected particles requiring resolution of forces.

A fixed rough plane is inclined at 30° to the horizontal. A small smooth pulley P is fixed at the top of the plane. Two particles A and B, of mass 2 kg and 4 kg respectively, are attached to the ends of a light inextensible string which passes over the pulley P. The part of the string from A to P is parallel to a line of greatest slope of the plane and B hangs freely below P, as shown in Figure 2. The coefficient of friction between A and the plane Initially A is held at rest on the plane. The particles are released from rest with

the string taut and A moves up the plane.

Find the tension in the string immediately after the particles are released

Finding unknown forces by resolving forces

[Textbook] The diagram shows a particle in equilibrium under the forces shown. By resolving horizontally and vertically find the magnitudes of the forces P and Q.

Just resolve separately in the horizontal and vertical directions, as before.

Note: There are two ways of thinking about this. Either "overall force in horizontal direction is 0", thus $P\cos 30^\circ - 4\cos 45^\circ = 0$, or "forces right = force left", as used here

$$R(\rightarrow)$$
: $P \cos 30^\circ = 4 \cos 45^\circ$
 $R(\uparrow)$: $P \sin 30^\circ + 4 \sin 45^\circ = Q$

$$P = \frac{4\cos 45}{\cos 30} = 3.27 \text{ (3sf)}$$

$$Q = \left(\frac{4\cos 45}{\cos 30}\right)\sin 30 + 4\sin 45 = 4.46 \text{ (3sf)}$$

Unknown forces on inclined planes

[Textbook] The diagram shows a particle in equilibrium on an inclined plane under the forces shown. Find the magnitude of the force P and the size of the angle α .

Recall the recommendation to use dotted labelled arrow for the components of forces in diagrams.

Unknown forces on inclined planes

[Textbook] The diagram shows a particle in equilibrium on an inclined plane under the forces shown. Find the magnitude of the force P and the size of the angle α .

Recall the recommendation to use dotted labelled arrow for the components of forces in diagrams.

$$R(\nearrow)$$
: $P \cos \alpha = 8 + 5 \sin 30^{\circ}$
 $R(\nwarrow)$: $P \sin \alpha + 2 = 5 \cos 30^{\circ}$

When we have $P \sin \alpha$ and $P \cos \alpha$, a good strategy is to divide them so we get just $\tan \alpha$. You may have seen this in Year 2 trigonometry when expressing trig sums in the form $R \sin(x + \alpha)$.

$$P \sin \alpha = 5 \cos 30^{\circ} - 2$$

$$P \cos \alpha = 8 + 5 \sin 30^{\circ}$$
∴ tan α = $\frac{5 \cos 30^{\circ} - 2}{8 + 5 \sin 30^{\circ}} = 0.222$...
α = 12.5° (3sf)

$$P \sin 12.5 \dots = 5 \cos 30^{\circ} - 2$$

 $P = 10.8 \text{ (3sf)}$

Test Your Understanding

The diagram shows a particle in equilibrium on an inclined plane under the forces shown. Find the magnitude of the force Q and the size of the angle β .

Test Your Understanding

The diagram shows a particle in equilibrium on an inclined plane under the forces shown. Find the magnitude of the force Q and the size of the angle β .

$$R(\nearrow)$$
: $Q \cos \beta = 5 + 6 \sin 30^\circ$
 $R(\nwarrow)$: $Q \sin \beta + 6 \cos 30^\circ = 14$

$$Q \sin \beta = 14 - 6 \cos 30^{\circ}$$

$$Q \cos \beta = 5 + 6 \sin 30^{\circ}$$
∴ tan β = $\frac{14 - 6 \cos 30^{\circ}}{5 + 6 \sin 30^{\circ}}$

$$\beta = 47.7^{\circ} (3sf)$$

$$Q \cos 47.7 \dots = 5 + 6 \sin 30^{\circ}$$

 $Q = 11.9 N (3sf)$

Exercise 7.1

Pearson Stats/Mechanics Year 2 Pages 56-57

- 1 Each of the following diagrams shows a particle in static equilibrium. For each particle:
 - i resolve the components in the x-direction
 - ii resolve the components in the y-direction
 - iii find the magnitude of any unknown forces (marked P and Q) and the size of any unknown angles (marked θ).

- 2 For each of the following particles in static equilibrium:
 - i draw a triangle of forces diagram.
 - ii Use trigonometry to find the magnitude of any unknown forces (marked P and Q) and the size of any unknown angles (marked θ).

3 Each of these particles rests in equilibrium on a sloping plane under the forces shown. In each case, find the magnitude of forces P and Q.

The diagram shows three coplanar forces of A, B and C acting on a particle in equilibrium.

Show that
$$\frac{A}{\sin \alpha} = \frac{B}{\sin \beta} = \frac{C}{\sin \gamma}$$

Notation This result is known as Lami's Theorem.

Homework Answers

1 a i
$$Q - 5\cos 30^{\circ} = 0$$
 ii $P - 5\sin 30^{\circ} = 0$ iii $Q = 4.33$ N $P = 2.5$ N
b i $P\cos\theta + 8\sin 40^{\circ} - 7\cos 35^{\circ} = 0$ ii $P\sin\theta + 7\sin 35^{\circ} - 8\cos 40^{\circ} = 0$ iii $\theta = 74.4^{\circ}$ (allow 74.3°) $P = 2.20$ N (allow 2.19)
c i $9 - P\cos 30^{\circ} = 0$ iii $Q = 2.80$ N $P = 10.4$ N
d i $Q\cos 60^{\circ} + 6\cos 45^{\circ} - P = 0$ ii $Q\sin 60^{\circ} - 6\sin 45^{\circ} = 0$ iii $Q = 4.90$ N $P = 6.69$ N
e i $6\cos 45^{\circ} - 2\cos 60^{\circ} - P\sin \theta = 0$ ii $6\sin 45^{\circ} + 2\sin 60^{\circ} - P\cos \theta - 4 = 0$ iii $\theta = 58.7^{\circ}$ $P = 3.80$ N
f i $9\cos 40^{\circ} + 3 - P\cos \theta - 8\sin 20^{\circ} = 0$ ii $P\sin\theta + 9\sin 40^{\circ} - 8\cos 20^{\circ} = 0$ iii $\theta = 13.6^{\circ}$ $P = 7.36$ N
2 a i $Q = 4$ N, $P = 8$ N

ii
$$\theta = 34.1^{\circ}, P = 5.04 \,\mathrm{N}$$

3 **a**
$$P = 4.33 \,\text{N}, Q = 2.5 \,\text{N}$$
 b $P = 7.07 \,\text{N}, Q = 7.07 \,\text{N}$

c
$$P = 4.73 \text{ N}, Q = 4.20 \text{ N}$$

e $P = 9.24 \text{ N}, Q = 4.62 \text{ N}$

d
$$P = 3.00 \,\text{N}, Q = 0.657 \,\text{N}$$

Challenge

