THE BEAUTIFUL GEOMETRY OF APERIODIC TESSELLATIONS

Jesse Bettencourt March 29, 2015

Supervised by Miroslav Lovric

A SIMPLE TESSELLATION

Figure 1: Checkerboard Tessellation

WHAT IS A TESSELLATION?

Definition:

A **tessellation** \mathcal{T} of the space \mathbb{E}^n is a countable family of closed sets, T, called tiles:

$$\mathcal{T} = \{T_1, T_2, \ldots\}$$

such that

- 1. \mathcal{T} has **no overlaps**: $\mathring{T}_i \cap \mathring{T}_j = \emptyset$ if $i \neq j$
- 2. \mathcal{T} has **no gaps**: $\bigcup_{i=1}^{\infty} T_i = \mathbb{E}^n$

COMPONENTS OF A TESSELLATION

Definition:

Let $\{T_1, T_2, \ldots\}$ be the set of tiles of tessellation \mathcal{T} , partitioned into a set of equivalence classes by **criterion** \mathcal{M} . The set, \mathcal{P} , of representatives of these equivalence classes is called the **protoset** for \mathcal{T} with respect to \mathcal{M} .

Example:

Criterion: $\mathcal{M} = \{\text{Colour of the tile. Only opposite colours may touch.}\}$

Protoset:
$$\mathcal{P} = \{$$
 , $\}$

PROTOSETS ADMIT TESSELLATIONS

Definition:

If $\mathcal T$ is a tessellation with protoset $\mathcal P$, then we say that $\mathcal P$ admits $\mathcal T$.

Example:

We say

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits

PROTOSETS CAN ADMIT MULTIPLE TESSELLATIONS

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both

and

MATCHING RULES CORRESPOND TO DEFORMED PROTOSETS

Edge deformations can force matching rules.

Matching Rules \implies Deformed Protoset

DESCRIBING TESSELLATIONS

SYMMETRIES

Definition:

A tessellation is said to be **symmetric** under a transformation if that transformation maps the tiling to itself identically.

Rotational Symmetry: \mathcal{T} can be rotated a non-trivial angle about a point and overlap itself identically

Translational Symmetry: \mathcal{T} can be shifted by some non-trivial distance in a direction and overlap itself identically.

CHECKERBOARD SYMMETRIES

Translation Symmetry: 2 Squares Rotational Symmetry: $\frac{\pi}{2}$

Translation Symmetry: 3 Squares Rotational Symmetry: π

PERIODICITY

Definition:

A tessellation is said to be **periodic** if it admits translational symmetry in two directions.

Definition:

A tessellation is said to be **non-periodic** if it admits no translational symmetries.

CHECKERBOARD PERIODICITY

Non-Periodic

THE APERIODIC QUESTION

Checkerboard protoset,

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both periodic and non-periodic tessellations.

Periodic

Non-Periodic

THE APERIODIC QUESTION

Checkerboard protoset,

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both periodic and non-periodic tessellations.

Some protosets,

$$\mathcal{P} = \{ \bigcirc \}$$

admits only periodic tessellations.

THE APERIODIC QUESTION

Checkerboard protoset,

$$\mathcal{P} = \{\,lacksquare$$
 , \Box $\}$

admits both periodic and non-periodic tessellations.

Some protosets,

$$\mathcal{P} = \{ \bigcirc \}$$

admits only periodic tessellations.

Are there any protosets,

$$\mathcal{P} = \{?\}$$

that admit only non-periodic tessellations?

THE PENROSE TESSELLATION

THE PENROSE RHOMBS PROTOSET

★ With complicated matching rules

CONSTRUCTING THE PENROSE TESSELLATION

The Penrose Tessellation cannot be constructed **locally**, instead we use **substitution rules**:

START WITH A SEED: FAT RHOMBUS

APPLY SUBSTITUTION RULES

APPLY SUBSTITUTION RULES AGAIN

APPLY SUBSTITUTION RULES AGAIN AND AGAIN

APPLY SUBSTITUTION RULES AGAIN AND AGAIN AND AGAIN

APPLY SUBSTITUTION RULES AGAIN AND AGAIN AND AGAIN AND AGAIN

APPLY SUBSTITUTION RULES 10 TIMES

APPLY SUBSTITUTION RULES 11 TIMES