Relational Algebra In-class exercise (I)

R & G, Chapter 4

Summary of Relational Algebra Operations

Basic operations

- 1. <u>Selection</u> (σ)
- 2. Projection (π)
- 3. <u>Cross-product</u> (X)
- 4. <u>Set-difference</u> ()
- *5. <u>Union</u>* (U)

Compound operations

- 1. Intersection (\cap)
- 2. Join (⋈)
- 3. Division (/)

Selection and Projection

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Write the relational algebra expressions for the following queries:

Q1. Find the records in Reserves table for boat of ID 103 (assume bid is of integer data type);

Q2. Find the name of the boats that have red color;

Q3. Find the name of the boats that are either red or green.

Selection and Projection

- Schema
 - Boats (bid, bname, color)
 - Sailors(<u>sid</u>, sname, rating, age)
 - Reserves(<u>sid</u>, <u>bid</u>, day)
- Write the relational algebra expressions for the following queries:
 - 1. Find "reserve" record for boat of ID 103

$$\sigma_{bid=103}$$
(Reserves)

2. Find the name of the boat of red color

$$\pi_{bname}\sigma_{color='red'}(Boats)$$

3. Find the name of the boat that is either red or green

$$\pi_{bname}\sigma_{color=`red'\ \lor color=`green'}$$
 (Boats)

Join (I)

Schema

- Boats (<u>bid</u>, bname, color)
- Sailors(sid, sname, rating, age)
- Reserves(sid, bid, day)

Q4. Find names of sailors who've reserved boat 103

Join (I)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q4. Find names of sailors who've reserved boat #103

Solution 1 (selection-after-join):

$$\pi_{\text{sname}} \sigma_{\text{bid}=103} (\text{Reserves})$$

Solution 2 (selection-before-join):

$$\pi_{\text{sname}}(\sigma_{\text{bid}=103}(\text{Reserves})) > Sailors)$$

- Both are correct.
- Solution 2 is more efficient than Solution 1, since join tables after selection are smaller.

Join (II)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q5. Find names of sailors who've reserved a red boat

Join (II)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q5. Find names of sailors who've reserved a red boat

Information about boat color only available in Boats; so need an extra join:

$$\pi_{\text{sname}}\sigma_{\text{color}='\text{red}'}(\text{Boats})$$
 Reserves \bowtie Sailors)

A more efficient way:

$$\pi_{\text{sname}}(\sigma_{\text{color}='\text{red}'}(\text{Boats}))$$
 Reserves \bowtie Sailors)

– Question: is the following expression correct?

$$\pi_{\text{sname}}(\sigma_{\text{color}='\text{red'}}(\text{Boats})) \bowtie \text{Sailors} \bowtie \text{Reserves})_{8}$$

Join (III)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q6. Find the colors of boats reserved by the sailor named Lubber

Join (III)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q6. Find the colors of boats reserved by the sailor named Lubber

 Information about boat color and reservation only available in Boats and Reserves; so need two joins:

$$\pi_{color}$$
 ($\sigma_{sname='lubber'}$ (Sailors) \bowtie Reserves \bowtie Boats)

Join (IV)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q7. Find the name of sailors who have reserved at least one boat

Join (IV)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q7. Find the name of sailors who have reserved at least one boat

 $\pi_{\text{sname}}(\text{Reserves})$ Sailors)

Join + Set Operations (I)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q8. Find the name of sailors who've reserved a red or a green boat

Join + Set Operations (I)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q8. Find the name of sailors who've reserved a red or a green boat

 Way of thinking: identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho(RGboats, \sigma_{color='red' \lor color='green'}(Boats))$$

$$\pi_{\text{sname}}$$
 (RGboats \bowtie Reserves \bowtie Sailors)

Join + Set Operations (I)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q9. Find the name of sailors who've reserved a red and a green boat

Join + Set operations (II)

Schema

- Boats (bid, bname, color)
- Sailors(<u>sid</u>, sname, rating, age)
- Reserves(<u>sid</u>, <u>bid</u>, day)

Q9. Find the name of sailors who've reserved a red and a green boat

– Is the following solution correct?

$$\rho(RGboats, \sigma_{color='red' \land color='green'}(Boats))$$

$$\pi_{\text{sname}}$$
 (RGboats \bowtie Reserves \bowtie Sailors)

Wrong! There is no boat of both colors.

Join + Set operations (II Cont.)

- Find the name of sailors who've reserved a red and a green boat
 - Must use set operations
 - Way of thinking:
 - Identify the set ReserveRed: sid of sailors who've reserved red boats,
 - Identify the set ReserveGreeen: sid of sailors who've reserved green boats,
 - Find the intersection S of *ReserveRed* and *ReserveGreen* (note S only contains *sid*),
 - Join S with Sailors table to get name of sailors

```
\rho(\text{ReserveRed}, \pi_{\text{sid}} \sigma_{\text{color='red'}}(\text{Boats}) \bowtie \text{Reserves})
\rho(\text{ReserveGreen}, \pi_{\text{sid}} \sigma_{\text{color='green'}}(\text{Boats}) \bowtie \text{Reserves})
```

 π_{sname} ((ReserveRed \cap ReserveGreen) $\triangleright\!\!\!\triangleleft$ Sailors)

Join + Set Operations (III)

Q10: Find the name of sailors who are older than 20 and have not reserved a red boat

- Find sids of sailors with age over 20 as set S1
- Find sids of sailors who have reserved a red boat as set S2
- Take the set difference of S1 and S2
- Join with sailors, and return name of the sailors from join result

Join + Set Operations

Q10: Find the name of sailors who are older than 20 and have not reserved a red boat

- Find sids of sailors with age over 20 as set S1
- Find sids of sailors who have reserved a red boat as set S2
- Take the set difference of S1 and S2 as S3
- Join S3 with sailors, and return name of the sailors from join result

– Answer:

$$\rho(S1,\pi_{sid}(\sigma_{age}>20(Sailors)))$$

$$\rho(S2,\pi_{sid}((\sigma_{color}='red'(Boats))) \bowtie Reserves)$$

$$\pi_{sname}(Sailors \bowtie (S1-S2))$$

Find the name of sailors with age over 20 who have not reserved a red boat

Answer 1 (join before set difference)

$$\rho(T1,\pi_{sid}(\sigma_{age}>20(Sailors)))$$
Reserves Boats)
$$\rho(T2,\pi_{sid}(\sigma_{color}='red'(Boats)))$$
Reserves Sailors)
$$\pi_{sname}(Sailors) \longrightarrow (T1-T2))$$

- Is Answer 1 correct? What will it return on the instances below?
- Answer 1 is wrong because T1 does not include those sailors (e.g., Lubber) who have not reserved any boat

Sid	Bid	day
22	101	10/10/96
58	102	11/12/96
	_	

Reserves

Bid	Bname	Color
101	Interlake	Blue
102	Interlate	Red
103	Clipper	Green
104	Marine	red

Boats

Sname	Rating	Age
Dustin	7	45
Lubber	8	55
Rusty	10	35
	Dustin Lubber	Lubber 8

Sailors

22

Find the name of sailors with age over 20 who have not reserved a red boat

Answer 2 (without using set-difference)

$$\pi_{sname}(\sigma_{age>20}(Sailors)\bowtie Reserves \bowtie \sigma_{color \neq 'red'}(Boats))$$

- Is Answer 2 correct? What will it return on the instances below?
- Answer 2 is wrong because it may return the sailors (e.g., Dustin) who have reserved a red boat and a non-red boat.

			Bid	Bname	Color
Sid	Bid	day	101	Interlake	Blue
22	101	10/10/96	102	Interlate	Red
58	103	11/12/96	103	Clipper	Green
22	102	12/10/96	104	Marine	red

Sid	Sname	Rating	Age
22	Dustin	7	45
58	Rusty	10	35

Sailors

Reserves Boats

23