

Polinomios

1 Funciones polinomiales

DEFINICIÓN Una función polinomial de grado n es una función de la forma

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

donde n es un número entero no negativo y $a_n \neq 0$.

Los números a_0, a_1, \ldots, a_n se llaman coeficientes del polinomio.

El número a_0 es el coeficiente constante.

El número a_n , el coeficiente de mayor potencia, es el coeficiente principal.

Observación.

- Asumiremos que dos polinomios $P(x) = \sum_{k=0}^{n} a_k x^k$ y $Q(x) = \sum_{k=0}^{n} b_k x^k$ sobre \mathbb{R} son iguales si y solo si $a_k = b_k$ para todo $k = 0, 1, \dots, n$.
- La función constante P(x)=0 para todo $x\in\mathbb{R}$ también es un polinomio, pero no tiene grado asociado.
- \blacksquare Denotaremos por $\mathbb{K}[x]$ al conjunto de todos los polinomios con coeficiente en el cuerpo $\mathbb{K}.$

EJEMPLO 1 Determine el grado, coeficiente principal y el coeficiente constante del polinomio $P(x) = 7x^4 + x^3 - 3x^2 - 5$.

EJEMPLO 2 Si $P(x) = 1 + x - x^3 + \sqrt{2}x^7$, entonces $P \notin \mathbb{Q}[x]$ ya que $\sqrt{2} \notin \mathbb{Q}$, pero $P \in \mathbb{R}[x]$.

PROPOSICIÓN 1 Para $P,Q \in \mathbb{R}[x]$, se tiene que

- $\ \ \, \textbf{grad}(P+Q)\leqslant \max\{\operatorname{grad}(P),\operatorname{grad}(Q)\}.$

EJEMPLO 3 Si $P(x) = 3 + x - x^2$ y $Q(x) = 5 + x^2$, entonces P(x) + Q(x) = 8 + x y $P(x) \cdot Q(x) = 15 + 5x - 2x^2 + x^3 - x^4$.

EJEMPLO 4 Sean P,Q y D polinomios tales que

$$P(x) = D(x)Q(x).$$

Si $\operatorname{grad}(P) = 9$ y $\operatorname{grad}(D) = 3$, ¿cuál es el grado de Q?

SEMANA 5 Pág. 1 - 2

2 Algoritmo de Euclides para la división de polinomios

TEOREMA 1 (Algoritmo de la división)

Si $P, D \in \mathbb{R}[x]$ con $\deg(P) \geqslant \deg(D)$, entonces existen $Q, R \in \mathbb{R}[x]$ tales que

$$P(x) = D(x) \cdot Q(x) + R(x)$$

con $0 \leq \deg(R) < \deg(D)$ o $R \equiv 0$.

El polinomio Q(x) se llama **cociente** y el polinomio R(x) es llamado **resto**.

EJEMPLO 5 Divida $6x^2 - 26x + 12$ entre x - 4

EJEMPLO 6 Sean $P(x) = 8x^4 + 6x^2 - 3x + 1$ y $D(x) = 2x^2 - x + 2$. Encuentre polinomios Q(x) y R(x) tales que $P(x) = D(x) \cdot Q(x) + R(x)$.

EJEMPLO 7 Dados los polinomios $P(x) = 3x^4 - 6x^3 + 3x^2 - x + 2$ y $D(x) = x^2 - 2x + 3$.

- 1. Determine el grado del polinomio cociente que resulta al dividir P en D.
- 2. Determine los posibles grados del resto que resulta al dividir P en D.
- 3. Calcule el cociente y resto que resultan al dividir P en D.

TEOREMA 2 (Teorema del Resto)

El resto que resulta al dividir P(x) en x-c es constante e igual a P(c).

EJEMPLO 8 Dado el polinomio $P(x) = 5x^3 - 8x^2 - x + 7$,

- 1. Usando el método de división de polinomios, determine el resto que resulta al dividir P(x) en x-2.
- 2. Usando el método dado por el teorema del resto, determine el resto que resulta al dividir P(x) en x-2.

EJEMPLO 9 Dado el polinomio

$$P(x) = 2x^{2021} - 5x^{2020} + 3x + 2,$$

Calcular el resto que resulta al dividir P(x) en x + 1.

SEMANA 5 Pág. 2 - 2