Greedy Algorithms

Greedy Technique

- What is it?
 - Quick and dirty approach to solving optimization problems
 - Not necessarily optimal
- Problems explored
 - Coin changing problem
 - Minimum spanning tree algorithms
 - Dijkstra's algorithm for single source shortest paths
 - Knapsack problem

Optimization problems

- An optimization problem:
 - For a problem to solve, there are an objective function and a set of constraints
 - Find a feasible solution for the given instance for which the objective function has an optimal value (either maximum or minimum depending on the problem being solved)
 - A feasible solution satisfies the problem's constraints
 - The constraints specify the limitations on the required solutions
- An example in the next slide

Coin changing problem

- Problem: Return correct change using a minimum number of US coins.
- Greedy choice: Pick the coin with the highest value
- A greedy solution: next slide
- The amount owed = 37 cents.
 - The change is: 1 quarter, 1 dime, 2 cents.
- Solution is optimal when US coins are used. Why is it optimal?

A greedy solution:

```
Input: Set of coins, amount-owed
change = \{\}
while (more coin-sizes && valueof(change) < amount-owed)
     // Selection
     Choose the largest remaining coin
     // feasibility check
      If (adding the coin makes the valueof(change) exceed the amount-owed )
          then reject the coin
      else add coin to change
     // check if solved
     if ( valueof(change) == amount-owed)
     then return change
```

return "failed to compute change"

Elements of the Greedy Strategy

 Cast problem as one in which you make a greedy choice and are left with one subproblem to solve.

 Cost-benefit analysis for a greedy choice, e.g., the number of the coins used vs. the remaining amount of the change you owe

A greedy solution is not always optimal!

- Reconsider the Coin Changing problem
 - Suppose you live in Alice's Wonderland where you have 12 cent coins in addition to US coins
 - Suppose you owe 16 cents
 - The greedy solution chooses a 12 cent coin and four 1 cent coins
 5 coins
 - An optimal solution is one dime, one nickel, and one cent

 3 coins

Some greedy algorithms provides optimal solutions

- A proof is needed
- A counter example shows that a greedy algorithm does not provide an optimal solution

Greedy vs. Dynamic Programming

- Greedy algorithms make good local choices in the hope that they result in an optimal solution
 - In each step, just make a choice that seems best at the moment
 - Solve the remaining sub-problem in the next step by making another greedy choice
 - → Produces a feasible solution but does not necessarily end up with an optimal solution

A greedy algorithm never reconsiders its choices

- Dynamic programming is exhaustive, and makes decisions based on all the previous decisions, potentially reconsidering previous choices (look up previous solutions)
- In an earlier lecture on dynamic programming, we saw both greedy and dynamic programming approaches for finding an Optimal BST (Binary Search Tree)
 - A greedy approach locating the highest probability node at the root or trying to minimize the tree depth does not necessarily gives you an optimal solution

Greedy Minimum Spanning Tree Algorithms

- Prim's Algorithm
- Kruskal's Algorithm

What is A Spanning Tree?

- A spanning tree for an undirected graph G=(V,E) is a subgraph of G that is a tree and contains all the vertices of G
- Can a graph have more than one spanning tree?
- Can a disconnected graph have a spanning tree?

Minimum Spanning Tree

- The weight of a subgraph is the sum of the weights of its edges.
- A minimum spanning tree for a weighted graph is a spanning tree with the minimum weight
- Can a graph have more than one minimum spanning tree?

MST T: $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized

Example of a Problem that translates into a MST

The Problem

 Several pins of an electronic circuit must be connected using the least amount of wire.

Modeling the Problem

- The graph is a complete, undirected graph
 G = (V, E, W), where V is the set of pins, E is the
 set of all possible interconnections between the
 pairs of pins and w(e) is the length of the wire
 needed to connect the pair of vertices.
- Find a minimum spanning tree.

Greedy Choice

We will show two ways to build a minimum spanning tree.

- Prim's algorithm
 - A MST can be grown from the current spanning tree by adding the nearest vertex and the edge connecting the nearest vertex to the MST
- Kruskal's algorithm
 - A MST can be grown from a forest of spanning trees by adding the smallest edge connecting two spanning trees

Notation

- Tree-vertices: in the tree constructed so far
- Non-tree vertices: rest of vertices

Prim's Selection rule

 Select the minimum weight edge between a tree-node and a non-tree node and add it to the tree

Key idea of Prim's algorithm

Select a vertex to be a tree-node

```
while (there are non-tree vertices)
{
```

if (there is no edge connecting a tree node with a non-tree node)return "no spanning tree"

select an edge of minimum weight between a tree node and a non-tree node

add the selected edge and its new vertex to the tree

Prim's algorithm

source: Algorithms by Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, McGraw Hill, 2006

```
procedure prim(G, w)
Input: A connected undirected graph G = (V, E) with edge weights w_e
Output: A minimum spanning tree defined by the array prev
for all u \in V:
                              w[i][j] = 0 \text{ if } i=j;
   cost(u) = \infty
                                       edge weight if there is an edge (i,j); or
   prev(u) = nil
                                       infinity if no edge (i, j) exists
Pick any initial node u_0
cost(u_0) = 0
H = makequeue(V) (priority queue, using cost-values as keys)
while H is not empty:
   v = deletemin(H)
   for each \{v,z\} \in E:
       if cost(z) > w(v, z):
          cost(z) = w(v, z)
          prev(z) = v
          decreasekey(H,z)
```

Example

S: set of tree vertices

$\operatorname{Set} S$	A	B	C	D	E	F
{}	0/nil	∞ /nil	∞ /nil	∞/nil	∞ /nil	∞ /nil
A		5/A	6/A	4/A	∞/nil	∞ /nil
A, D		2/D	2/D		∞/nil	4/D
A, D, B			1/B		∞/nil	4/D
A, D, B, C					5/C	3/C
A, D, B, C, F					4/F	

cost/prev

Implementation

- Queue can be implemented as an array or heap
- Time complexity changes based on the implementation of the queue
 - More details next

Prim's algorithm

Source: A free online algorithms book available at http://www.cs.berkeley.edu/~vazirani/algorithms.html

```
procedure prim(G, w)
Input: A connected undirected graph G = (V, E) with edge weights w_e
Output: A minimum spanning tree defined by the array prev
for all u \in V:
   cost(u) = \infty
   prev(u) = nil
Pick any initial node u_0
                               \Theta(1)
cost(u_0) = 0
H = makequeue(V) (priority queue, using cost-values as keys)
while H is not empty: \longleftarrow \Theta(V)
   v = \text{deletemin}(H)
                                    So, the total time complexity is
   for each \{v,z\} \in E:
                                    O(V*deletemin) + O(E * decreasekey)
      if cost(z) > w(v, z):
          cost(z) = w(v, z)
          prev(z) = v
                                    Note that decreasekey is executed
          decreasekey(H,z)
                                    maximum E times to find an MST
```

Prim's algorithm

- Time complexity
 - O(V*deletemin) + O(E * decreasekey)
 - Array: deletemin is O(V) and decreaskey is O(1) → O(V²)
 - Heap: deletemin is O(Ig V) and decrease key is O(Ig V) → O(E Ig V)
 - Which is better?

- Let G = (V, E) be a connected, weighted undirected graph.
 Let T be a promising subset of E. Let Y be the set of vertices connected by the edges in T.
- If e is a minimum weight edge that connects a vertex in Y to a vertex in V Y, then $T \cup \{e\}$ is promising.

Note: A feasible set is *promising* if it can be extended to produce not only a solution but an optimal solution.

In this algorithm, a feasible set of edges is *promising* if it is a subset of a MST for the connected graph G.

Outline of Proof of Correctness of Lemma 1

- T is the promising subset and e is the minimum cost edge of Lemma 1
- Let T' be the MST such that T ⊂ T'
- We will show that if $e \notin T'$ then there must be another MST T'' such that $T \cup \{e\} \subseteq T''$.

Proof has 4 stages (shown in the following slides):

- 1. Adding *e* to T', creates a cycle in $T' \cup \{e\}$.
- 2. Cycle contains another edge $e' \in T'$ but $e' \notin T$
- 3. $T''=T' \cup \{e\} \{e'\}$ is a spanning tree
- 4. *T*" is a MST

The Promising Set of Edges Selected by Prim

$$\bullet \in Y$$

$$\bigotimes \in V - Y$$

MST T but $e \notin$

Since T' is a spanning tree, adding e creates a cycle.

$$\bigotimes \in V - Y$$

Stage 1

In T'there is a path from $u \in Y$ to $v \in V - Y$. Therefore the path must include another edge e' with one vertex in Y and the other in V - Y.

Stage 2

 $\bigotimes \in V - Y$

- If we remove e' from $T' \cup \{e\}$ the cycle disappears.
- $T'' = T' \cup \{e\} \{e'\}$ is connected.

Stage 3

 $w(e) \le w(e')$ due to the way *Prim* picks the next edge

- w(e) ≤ w(e') because of the way Prim picks the next edge
- The weight of T'', $w(T'') = w(T') + w(e) w(e') \le w(T')$.
- But $w(T') \le w(T'')$ because T' is a MST.
- So w(T') = w(T'') and T'' is a MST

Stage 4

Conclusion $T \cup \{e\}$ is promising

Theorem: Prim's Algorithm always produces a minimum spanning tree.

Proof by induction on the set *T* of promising edges.

- 1. Base case: Initially, $T = \emptyset$ is promising.
- 2. Induction hypothesis: The current set of edges *T* selected by Prim is promising.
- 3. Induction step: After Prim adds the edge e, $T \cup \{e\}$ is promising.

Proof: $T \cup \{e\}$ is promising by Lemma 1.

Conclusion: When G is connected, *T* produced by Prim is a MST.