EXAMPLE TEXT

STUDENT No: 10618407

 $Monday\ 22^{\text{ND}}\ May,\ 2023$

Contents

1	Ack	nowled	Igements	iv	
2	Intro	oductio	on	1	
3	Lite	rature	Review and Prior Art	2	
4	Business Justifications				
	4.1	1 Research Techniques and MECE Analysis			
	4.2	Addre	ssing the Key Challenges of Electric Vehicle Adoption	3	
		4.2.1	Charging Infrastructure and Trends in Usage	4	
		4.2.2	National Grid Demands	4	
		4.2.3	Battery Range and Efficiency	5	
		4.2.4	The Cost of Charging an Electric Vehicle	5	
		4.2.5	Environmental Benefits	6	
5	Req	uireme	ents	7	
	5.1	Dimer	nsions	7	
	5.2	2 Structural Integrity			
	5.3	Kerb (Climbing	10	
	5.4	Safety	Features	11	
6	Opti	ioneeri	ng	13	
	6.1	Hardw	vare Justifications	13	
		6.1.1	Microcontroller Selection and IDE	13	
		6.1.2	F429ZI	14	
		6.1.3	L432KC	15	
		6.1.4	ESP-8266	16	
		6.1.5	Super500 Servos	17	

		6.1.6 6384 Motors	 17
	6.2	2 Software Justifications	 18
		6.2.1 MicroPython	 18
		6.2.2 C++ and Object Orientated Programming	 18
		6.2.3 VESC Software	 19
	6.3	3 Manufacturing Justifications	 20
7	Harc	ardware Design	21
	7.1	PCB and Circuit Development	 21
	7.2	2 Platform Circuit	 21
	7.3	B LEDs	 22
	7.4	4 VESCs and Servos	 22
	7.5	5 Relays	 22
	7.6	Solenoids	 23
8	Soft	oftware Design	24
8		oftware Design	24 25
9	Test		
9	Test Eval	sting	 25
9	Test Eval	sting	25 26
9	Test Eval 10.1 10.2	sting valuation .1 Leadership Methodology	 25 26 26
9	Test Eval 10.1 10.2	sting valuation .1 Leadership Methodology	 25262626
9	Test Eval 10.1 10.2	sting valuation 1 Leadership Methodology	 2526262627
9	Test Eval 10.1 10.2 10.3	sting valuation 1 Leadership Methodology	 25 26 26 26 27 27
9	Test Eval 10.1 10.2 10.3	sting valuation 1 Leadership Methodology	25 26 26 26 27 27 27
9	Test Eval 10.1 10.2 10.3	sting valuation 1 Leadership Methodology	25 26 26 26 27 27 27 28

	10	0.8 Design	31			
11	Fι	urther Developments	32			
12	C	onclusions	33			
Α	ΑĮ	ppendix A: Project Documentation	36			
List of Figures						
	1	LED Circuit from the Art of Electronics	22			
	2	Darlington Pair Circuit from the Art of Electronics	23			
List of Tables						

Abstract

1 Acknowledgements

2 Introduction

3 Literature Review and Prior Art

4 Business Justifications

4.1 Research Techniques and MECE Analysis

The team engaged in innovation talks throughout the project, particularly with 42Technology [1], to understand the framework commonly used to solve complicated problems within industry. A particular method used involved the definition of the problem broken down into mutually exclusive sub-problems that are collectively exhaustive. This method is referred to as Mutually Exclusive Collectively Exhaustive (MECE) Analysis and enabled the team to focus on various elements of the project to achieve one shared goal, without overlapping or reproducing any work.

This method aided the understanding project criteria from the sponsor's perspective regarding patenting, and from the university's perspective of academic evaluation. The PEP defined the market gap, drawing from research gathered that detailed the lack of EV charging infrastructure within the UK, and how realistically, the public cannot rely on shared charging points. However, MECE analysis has uncovered the Home Electric Vehicle Charging System (HEVCS) as a feasible solution to such a challenge, and that the situation would benefit from having a mobile, versatile approach to suit the varied requirements of Electric Vehicle (EV) users in different locations around the UK.

4.2 Addressing the Key Challenges of Electric Vehicle Adoption

The common barriers preventing the public from purchasing EVs being price, range and charging infrastructure. The HEVCS tackles all three of these problems, and the team have designed the platform and its use specifically for its application within the real-world.

4.2.1 Charging Infrastructure and Trends in Usage

Currently, the UK Government's National Traffic Survey stated that 938,182 electric cars were registered to be on the roads as of Q3, 2022 [2]. Comparatively, a survey published in October 2022 stated that 34,637 public charging points were currently installed [3]. These figures indicate that the charging infrastructure available cannot keep up with the current number of EVs on the road and raises concerns as this number is set to rise with the 2030 ban on selling new petrol and diesel vehicles. Furthermore, it is predicated that 99% of miles will come from EVs by 2050, a figure that has been adjusted after an underestimation of their adoption rate [4].

Approximately 50% of UK charging points are placed at end of journey destinations, typically within car parks the public frequent for shopping, leisure, and down-time activities [3]. A Government survey revealed a majority's preference to charge EVs at home, with 66% and of Battery Electric Vehicle (BEV) and 41% of Plug-in Hybrid Electric Vehicle (PHEV) users had their own dedicated charging point within a private driveway or garage [5]. The survey highlights that users felt dedicated charging points were either too expensive or complex to install.

Conversely, 53% of the UK do not have a driveway or garage that would allow for the possibility of installing a domestic charging point. This has proven to be a deciding factor in the public adoption of EVs. The portion of the market purchasing BEVs PHEVs using public dedicated charging points within the vicinity of their residence is 4% and 1% respectively [3]. Thusly, a market gap to provide a product that can charge EVs within the immediate surroundings of the home has been identified. Moreover, the HEVCS does not require a dedicated parking space, and can be used at the individual's discretion.

4.2.2 National Grid Demands

When considering the typical commuting patterns, full-time workers with typical 9-5 jobs are amongst those susceptible to aligning their arrival to domesticated regions. 60%

of EV users prefer to charge between 5-8pm, meaning the national grid struggles with the demand of those coming home, with up to 20% of the UK's EV fleet charging between those hours [3]. The HEVCS could charge during the off-peak times, lessening the load on the grid.

4.2.3 Battery Range and Efficiency

The National Travel Survey presented statistics in 2021 stating that 98.5% of journeys taken in the UK were less than 50 miles [6]. The capacity of the payload compartment was calculated through an analysis of both power consumption and efficiency, conducted using data from the UK public's current EV usage trends. The average efficiency determines that 1 kWh equates to approximately 3.5 miles, and second-hand EV batteries typically have a capacity of 80-90% of the original value [7]. The HEVCS's configurable payload compartment can supply the user with 10 to 50 miles of range, depending on the EV batteries used, as shown in the research and calculations section.

4.2.4 The Cost of Charging an Electric Vehicle

The HEVCS presents itself as a cost-effective product that reduces the price of charging an EV. Within the UK, domestic electricity prices have been on the rise, and the cost of charging at public points has increased. Furthermore, the spaces in which to charge are not guaranteed, a free to park still must be paid. A cost analysis presents the additional benefits of an individual having their own EV charging device, such as the HEVCS, that remains domestically powered.

Providers, such as EDF Energy [8], offer EV charging tariff that allow the user to charge their vehicle for 9p per kWh during off-peak times, oppose to 46p per kWh at public charging points within Plymouth. The typical UK driver makes 14 trips a week, each with an average distance of 8.4 miles, equating to an annual mileage of $\approx 6,000$ miles. This results in a running cost of £788 for vehicles with an efficiency of ≈ 3.5 charging on public

tariffs. By using the reduced domestic tariff, the user would spend £154 a year, the savings of which would accumulate to cover the price of the HEVCS platform over a span of several years.

4.2.5 Environmental Benefits

The HEVCS can give a second life to EV batteries, while educating users on the importance of understanding their daily commute, and what it demands in terms of power. In addition, it is understood that frequently charging EV batteries to their maximum capacity, and letting them discharge fully, reduces their lifespan [9]. This device can bridge the learning gap, educating users on what it means to operate a battery within its ideal state of charge range to improve longevity. It is common knowledge that EV batteries are designed to possess an ability to retain their original battery capacity over many years, but its ability to do so depends on a variety of factors. Charging schedules that keep the state of charge between 20-80% would provide an adequate amount of power to fulfil the average daily commute. Moreover, the HEVCS would allow the user to take advantage of off-peak electricity rates, smart charging features, and monitoring energy consumption. Through adopting a maintenance charge approach, following the natural patterns to meet the user's everyday needs, the user can identify how to adjust their habits to positively impact batter health and costs.

5 Requirements

5.1 Dimensions

To determine the compatibility of the HEVCS with existing EV, a comprehensive survey was conducted on a sample of 40 recently released EV models. The survey aimed to evaluate two critical dimensions: ground clearance and distance between tyres. These dimensions play a crucial role in determining whether the HEVCSplatform can be driven underneath the EVs and accommodate their specific characteristics.

Based on the survey results, the average ground clearance of the sampled EVs was determined. By considering the range of ground clearances across the surveyed models, an average value of ground clearance was calculated. This average ground clearance serves as a benchmark for the maximum height of the HEVCS platform, ensuring that it can safely fit underneath the majority of new EVs entering the market. Notably, the survey findings revealed that the HEVCS platform, with a maximum height of 155mm, would be compatible with approximately 53% of the surveyed EVs, enabling seamless integration and operation.

In addition to ground clearance, the distance between tires, or the wheelbase, is a crucial factor to consider when assessing compatibility. Through the survey, the average wheelbase of the sampled EVs was determined to be 2584.87mm. This measurement represents the average distance between the front and rear wheels of the surveyed EVs. By accounting for the typical tire diameter of 457.2mm, it is possible to estimate the average distance between the tires, which was found to be approximately 2127.67mm. This information is valuable for designing the HEVCS platform, as it ensures that the platform can accommodate the average wheelbase of EVs and align its components accordingly.

Considering door clearances is another important aspect when assessing compatibility between the HEVCS platform and EVs. In the context of the UK, door clearances typically range between 762mm and 838mm. By incorporating these door clearance values into the

design considerations, the HEVCS platform is designed to pass through doorways without any issues, allowing for smooth integration with existing infrastructure and ensuring seamless access to buildings or designated areas.

By conducting a meticulous survey of 40 new EV models and analysing key dimensions such as ground clearance, distance between tires, and door clearances, the compatibility of the HEVCS platform with existing EVs can be assessed in detail. This comprehensive evaluation enables the design team to make informed decisions, ensuring that the HEVCS platform aligns with the specifications of the majority of EVs in the market, facilitating integration, compatibility, and efficient operation.

5.2 Structural Integrity

In light of the platform's maximum height constraint, which should not exceed 155mm, it is imperative to determine the maximum allowable wheel diameter. Based on this constraint, the wheel diameter is established as 150mm. Moreover, in compliance with class 2 mobility legislation, the platform is subject to a speed limitation of 4mph (equivalent to 1.79m/s) and a maximum weight capacity of 113.4kg.

With these parameters at hand, the team calculated the platform's maximum power and torque requirements. Considering the maximum weight condition, where the craft is carrying its full capacity of 113.4kg, each motor must exert a force of 278.11N to counteract gravity. This force is essential for maintaining stability and facilitating the robot's locomotion.

Given the fixed wheel diameter of 150mm and a linear speed of 4mph (1.79m/s), the angular velocity of the wheel was deduced. By employing the formula v = w * r, where v represents linear velocity, ω denotes angular velocity, and r signifies the wheel radius, the equation was rearranged to solve the angular velocity. In this case, the angular velocity was calculated to be approximately 23.87 rad/s.

Subsequently, the team determined the torque required to achieve this angular ve-

locity. The equation T=Fr, where T represents torque, F denotes the force on each wheel, and r signifies radius of the wheel, was used Assuming constant angular velocity ω and negligible frictional losses, the torque required was computed to be approximately 20.86Nm.

Furthermore, we can derive the maximum power output required by the platform. Employing the equation P = T * w, where P represents power, we multiply the torque (T) by the angular velocity ω to obtain the maximum power output, which was found to be approximately 497.93W.

In addition to the previously mentioned requirements, the outdoor utilization of the platform necessitates its ability to navigate various challenging situations. These include driving on uneven terrain, overcoming obstacles, adapting to environmental conditions, maintaining stability on slippery surfaces, and traversing inclines.

The terrain outside differs significantly from controlled indoor environments. It can feature irregular surfaces with variations in elevation, such as gravel paths, grassy fields, or rough terrain. Failure to consider these factors in the design can lead to complications for the platform's operation. Therefore, robust design considerations should be made to ensure effective performance on uneven terrain while maintaining stability and preventing damage to the craft.

Moreover, the platform's operation will be subjected to changing environmental conditions throughout the year. It should be capable of withstanding various weather conditions, including rain, snow, high humidity, or extreme temperatures. To address these requirements, the platform should possess a minimum Ingress Protection (IP) rating of IP55, providing adequate protection against water and dust ingress.

In colder climates, surfaces can become icy, posing a significant challenge for the platform's traction and control. To ensure smooth and safe operation, the platform should be equipped with suitable mechanisms or materials that provide optimal grip and prevent slipping on icy surfaces.

Furthermore, outdoor paths may not always be flat, necessitating the platform's capability to traverse inclines. As per the class 2 mobility scooter legislation, the platform should be capable of coming to a stop on a slope of 1 in 5, which requires appropriate power, control, and braking mechanisms to ensure safe operation and prevent unintended rollbacks.

5.3 Kerb Climbing

A prominent capability of the platform is its ability to negotiate kerbs, providing users with the convenience of effortless transportation to their vehicles without requiring physical exertion. Considering the platform's maximum weight capacity of 113kg, it is crucial to ensure that it can smoothly ascend and descend kerbs without causing instability or damage. To establish a target for the kerb height that the platform should be able to traverse, a comprehensive survey of kerb heights in the local area was conducted.

During the survey, a representative sample of kerbs was assessed to determine the average height encountered. By considering various locations and situations, such as residential areas, commercial districts, and public spaces, the survey aimed to capture the diverse range of kerb heights that the platform is likely to encounter in real-world scenarios. Upon careful analysis, the average kerb height was found to be approximately 150mm.

Setting the target kerb height at 150mm provided a benchmark for the platform's design and performance. It ensured that the platform could accommodate the typical kerb heights encountered during everyday use, allowing users to seamlessly navigate kerbs without requiring additional effort or assistance. Incorporating appropriate mechanisms, such as robust suspension systems, efficient power delivery, and suitable wheel designs, will facilitate the smooth traversal of kerbs and enhance the platform's overall usability.

5.4 Safety Features

To ensure the safe and effective use of the HEVCS, several critical safety considerations must be taken into account. Given that the platform is intended for use by any member of the public, incorporating collision avoidance features becomes paramount to enhance ease of use and prevent potential accidents.

In addition to collision avoidance, it is essential to provide users with assistance regarding the capabilities and limitations of the platform. This information empowers users to make informed decisions and operate the platform safely. For instance, the system can provide feedback to the user regarding the platform's ability to navigate specific obstacles or terrains. This includes informing the user whether the platform can safely climb a given kerb height or assessing the steepness of a slope to determine if it exceeds the platform's capabilities. By offering this assistance, users can avoid situations that may pose a risk to their safety or the proper functioning of the platform.

According to Class 2 mobility scooter legislation, it is specified that the craft cannot be controlled remotely. Consequently, the controller for the platform will need to be tethered, ensuring that the operator maintains physical contact and direct control over the vehicle. This requirement ensures a higher level of safety and control, as it eliminates the potential risks associated with remote control operation. Furthermore, to address potential situations where the connection between the controller and the platform is lost, a fail-safe mechanism must be implemented. In such cases, the platform should be designed to immediately stop its movement to prevent unintended and uncontrolled motion, thereby prioritizing user safety and preventing the craft from rolling freely, potentially causing accidents or damage.

Implementing these safety features requires a comprehensive integration of sensor systems, advanced algorithms, and user interfaces. It is crucial to employ reliable and accurate sensors to ensure precise detection and assessment of the environment. Furthermore, developing robust algorithms capable of real-time analysis and decision-making

is essential for timely collision avoidance and accurate user assistance.

6 Optioneering

6.1 Hardware Justifications

6.1.1 Microcontroller Selection and IDE

STM32 boards were chosen as they provide scalability in terms of hardware resources and software development tools through the use of mbed. With a wide range of microcontroller options available, the team were able to choose the STM32 board that best suits the project requirements, such as processing power, memory capacity, and peripheral integration. This scalability enables the testing of software on different STM32 platforms, ensuring compatibility and performance across all three platforms.

STM32 boards are known for their robustness and reliability. The microcontrollers are designed with built-in features that enhance the reliability of software, such as memory protection units, error correction codes, and fault detection mechanisms. These features contributed to the stable and dependable operation of the platform, reducing the likelihood of software failures and improving overall system reliability. Furthermore, the STM32 boards used are compatible with various Real Time Operating System (RTOS), providing scheduling and multitasking capabilities. This allowed the team to test and evaluate the software's behaviour under real-time constraints. This enables the validation of time-critical functionalities, responsiveness, and task management, ensuring reliable and deterministic system operation. Finally, the boards offer excellent integration capabilities with external testing equipment and tools, such as debuggers and pico-scopes. This integration enables comprehensive hardware and software debugging, performance monitoring, and analysis, facilitating in-depth testing and troubleshooting.

6.1.2 F429ZI

This section provides an analytical comparison of the STM32F429ZI microcontroller against alternative options for embedded systems requiring reliability, multithreading capabilities, and diverse communication interfaces. It investigates the suitability of the STM32F429ZI microcontroller for interfacing with switches, joysticks, Vedder Electronic Speed Controller (VESCs)s, and servos. By considering its technical specifications, architectural features, and development ecosystem, the decision to use this board was backed up by its various abilities.

Embedded systems play a crucial role in modern technological applications, encompassing a wide range of industries such as robotics, automotive, and industrial automation. The selection of an appropriate microcontroller for a given application is paramount to ensure reliability, efficient multitasking, and seamless communication with external devices. In this regard, the STM32F429ZI microcontroller presents a compelling option due to its exceptional features and capabilities. It is built upon the high-performance ARM Cortex-M4 core. Its rich set of peripherals and advanced architecture make it a prime choice for complex embedded systems. Noteworthy specifications include a clock speed of up to 180 MHz, ample flash memory and Random Access Memory (RAM), and a versatile set of communication interfaces, such as Universal Asynchronous Receiver Transmitter (UART), Serial Parallel Interface (SPI), I2C, and USB.

Multithreading is a critical aspect of this project as it requires efficient execution of concurrent tasks. The STM32F429ZI microcontroller supports multithreading through its advanced interrupt handling mechanism and hardware-based multithreading support. This feature allows for the seamless execution of multiple tasks simultaneously, enhancing overall system performance and responsiveness. Furthermore, reliability is a key requirement in mission-critical applications. The STM32F429ZI microcontroller excels in this aspect by incorporating error correction codes (ECC) in its memory system, ensuring data integrity and fault tolerance. Additionally, its robust power management features,

low-power modes, and built-in watchdog timers contribute to the overall system's reliability and fault resilience.

The ability to communicate with various external devices is an essential requirement of this project. The STM32F429ZI board offers a multitude of communication interfaces, allowing seamless integration with controller peripherals, as well as the VESCss and servos. The flexibility regarding General Purpose Input Output (GPIO) pins, Pulse Width Modulation (PWM) outputs, and dedicated hardware interfaces provide the necessary capabilities to interface with these devices efficiently. The use of Application Programming Interface (API)s for which are detailed in the official STM32 documentation. These include reference manuals, datasheets, and application notes, providing valuable information on hardware features, software development guidelines, and testing methodologies. The platform offers an extensive collection of pre-built libraries, encompassing diverse functionalities such as communication protocols, sensor interfaces, motor control, and more. Leveraging these libraries not only saves significant development time but also facilitates the rapid prototyping of complex projects, such as the HEVCS. Consequently, pairing these factors with the team's familiarity with ARM Cortex-M based microcontrollers, development with the STM32F429ZI was intuitive in nature and accelerated the embedded system's functionality.

6.1.3 L432KC

The HEVCS controller required a compact microcontroller to integrate an Liquid Crystal Display (LCD) display, D-pad buttons, and SPI communication. The STM32L432KC controller's technical specifications, architectural attributes, and performance advantages met the requirements of the targeted features. Furthermore, the board is recognised for its low power consumption, operation efficiency, and its use within portable applications. The LCD operates using hardware accelerated graphical features, such as DMA-driven memory transfers. The GPIO pins have multiple configurations and include external interrupt

controllers facilitate the D-pad input processing. The STM32L432KC includes multiple SPI peripherals that enable high-speed data transfers over the SPI bus, minimising CPU overhead.

The STM32L432KC microcontroller outperforms most Arduino boards in terms of processing power, thanks to its advanced ARM Cortex-M4 core. The STM32L432KC's high clock speed enable efficient execution of complex algorithms, making it suitable for applications that demand real-time processing, data manipulation, and signal analysis. Unlike Arduino, the STM32 family allows developers to delve into low-level programming, giving them greater control over hardware resources. The microcontroller supports the C/C++ programming language, and developers can directly access registers and peripherals, optimizing performance and resource utilization. The team believe this level of customizability is particularly beneficial for this project, following from research into applications that require fine-grained control over system behaviour.

6.1.4 ESP-8266

Within this project, the ESP-8266 presents itself as a low-budget option capable of reliable data saving capabilities using Wi-Fi. It has a compact design with a vast range of peripherals available. Its highly integrated System-on-a-Chip (SoC) architecture reduces requirements for additional components. Its enhanced power management features enable the ESP to be used during periods of long-term operation on a limited power source. Through examination of the features, its network connectivity was enhanced within the project. The ESP-8266's ability to connect to the internet using Wi-Fi opens a plethora of opportunities for Internet of Things (IoT) applications. The support provided includes various options regarding networking protocols, with detailed guides on how to implement each.

6.1.5 Super500 Servos

e Super500 applications suit that of the project, with a high level of accuracy and sufficient holding force. The servos are used to adjust the angle of the motor mounts to orientate and lift a platform weighing a maximum of 113.4kg up and down kerbs 150mm in height, providing the force defined in the requirements. As solenoids were used to hold the arms in a rigid, flat position, the servos only consumed power when articulating the arms, making the robot much more efficient when carrying the payload.

A single servo was used in each arm to lift the robot by 30 degrees. The servos used 0.4A each, meaning that lifting the whole platform with additional weight equating to roughly 40kg consumed 1.6A. However, the final design used two motors on each side of the robot, ensuring that a full weight of 113.4kg could be lifted. Rounding up the supply current to 2A per hour, with a battery voltage of 24V, with 90% efficiency, the robot can rotate between articulating its arms and holding the position for 90 minutes using 3000mAh li-po batteries. The configuration of the robot currently uses one battery per servo, however, considering the run-time of the articulation methods, and the lower supply current, these servos could use power from the same source. Altogether, the four servos would require 19.2wh from the main battery, a result the team believes to be efficiently optimised.

6.1.6 6384 Motors

The team established that the 6384 motor was used in a lot of hobbyist projects that had similar applications as the HEVCS. These motors have a high-power output, making them suitable for applications that need a lot of torque. Similar projects include electric skateboards, bikes, and drones. Brushless motors have a longer lifespan and require less maintenance. Furthermore, less noise and vibration allows for smoother operation of the platform.

The motors are highly efficient compared to brushed motors due to having fewer parts

and less friction. This results in more energy being converted into mechanical energy, and less energy lost in the form of heat. Brushless DC motors are capable of handling more precise speed control, an essential aspect of this product as it will operate around people.

Upon reflection, the team feel that the 6384 motors and Super500 servos were appropriate choice for the project due to their 'plug-and-play' usability. Furthermore, the Brushless DC Motor (BLDC)s were easy to configure when paired with the speed controller. Their size meant that they aligned well with the extrusion, incorporated into a compact motor drive compartment. Additionally, later improvements to the HEVCS's design meant that the motors and necessary driver equipment were contained in modular units. This means that they were all identical, easy to install, and maintain. Furthermore, if the HEVCS were to break when in use by a customer, new units could be installed with ease.

6.2 Software Justifications

6.2.1 MicroPython

6.2.2 C++ and Object Orientated Programming

As C++ is a widely supported language, it's application and portability amongst various platforms and controllers is greatly enhanced. The team were able to migrate their applications between platforms with ease, saving time and increasing efficiency. A range of libraries were used on both the F429ZI and L432KC, along with mbed APIs that did not require significant modification between platforms. The team recognised the decision to use C++ as an essential requirement due to the importance of optimisation and reliable communication protocols.

Using this language allowed the team to control various signals directly, without abstraction, making the system easy to debug and implementation of driving signals easier to deploy. The team felt that this was an important aspect of creating a prototype in a

fast-paced environment, where multiple stages of embedded system development were required. Furthermore, the team had experience with Object Orientated Programming (OOP), and appreciate the structure that classes provide as building blocks of an embedded system. Data validation and constraints were tested to determine that only valid data and correct values were accepted by the system, maintain integrity and reliability of the data stored. This was particularly useful as the team could deploy classes modified through inheritance that had already been fully tested, reducing the likelihood of errors. In terms of quality assurance, OOP ensured modularity and organisation of the system and its interactions with both isolated classes and those conducting shared data-related operations.

Upon reflection, the team felt that their approach reduced complexity within the system, and enabled others to continue work due to the organised structure. Particularly when passing signals through various communication methods and channels, where the correctness of the data was vital. The team were able to establish the correct behaviour of each class and efficiently isolate problems throughout the development of the project.

6.2.3 VESC Software

The VESC Tool, a highly versatile and widely used application, was used to configure, and program the VESCss. Similarly, this tool is used to configure electric skateboards, bikes, robots, and electric vehicle applications. The user-friendly, intuitive interface guides the user through adjusting various parameters. These include customised motor control parameters such as acceleration, braking profiles, maximum motor current, battery voltage limits, throttle curves and so forth. The VESCs Tool also provides real-time monitoring information, while logging such data to create a performance record, to display visualizations of relevant parameters. Furthermore, the advanced features include regenerative braking and Field Orientated Control (FOC). Also known as Vector or Direct Torque Control, FOC allows for precise control of both speed and torque of the motors.

6.3 Manufacturing Justifications

The first prototype was built from extrusion and 3D printed PLA. The PLA was great for testing an unloaded chassis, but it could not bear additional weight. The team explored various designs to share the load and increase the structural integrity of the wheel mount, but they were unsuccessful. A group decision was made to design a simple motor drive system that could be contained within a small space and manufactured quickly and efficiently.

The aluminium extrusion was cut by hand using a hacksaw, then filed. This was deemed as an accurate method to use for making straight cuts and provided the degree of accuracy needed. Both the extrusion and aluminium sheets were recycled from the remains of other projects. The motor drive assembly plates were created from laser cut 4mm thick aluminium sheets. A laser cutter was used because multiple detailed cuts were required to assemble four separate motor drivers. This method was time efficient, resulted in precise cuts, and did not compromise the structural integrity of the sheets themselves.

Grub screw holes were added to the pulleys with a pillar drill due to its stability and control related accuracy. A convenient option as the equipment was readily available in the university's workshop, and it enabled the team to purchase cheaper components that required small alterations. The pillar drill produced consistent results through the action of repetitive alterations.

Both hand saws and bench top saws were used for creating motor driver supports and servo harnesses from scrap wood. They were used to attach the supports directly to extrusion and to replace stand-offs by spreading the force over a larger area. The use of recycled wood was appropriate for the application, meaning the team was happy with its performance.

7 Hardware Design

7.1 PCB and Circuit Development

The purpose of this project was to design and build a craft that could perform complex manoeuvrers and respond to various input signals. To achieve this, the craft required sophisticated electronic control systems that could manage its propulsion, movement, and orientation. All the components chosen were inexpensive and easy to procure to allow a fast turnaround on the circuits as to not slow down development of the project.

The development of these circuits required an advanced level of technical expertise and a deep understanding of electronic principles. The modularity of the circuits allowed for customization and expansion, providing flexibility and adaptability to the craft's design. The circuits and PCBs were developed using KiCAD. KiCAD was used because it has a user-friendly interface, robust capabilities for both schematic capture and layout design, and it is open-source and free-to-use for both commercial and non-commercial applications.

7.2 Platform Circuit

The first circuit, the platform circuit, was designed to take inputs from the controller and control various components of the craft, such as the VESCss, relays, solenoids, and servos. These components were responsible for controlling the wheels; powering down the craft; locking the frame in a horizontal position to save the servos; and articulating the frame, respectively. Additionally, this circuit contained battery voltage monitoring circuitry and several buttons and switches for various inputs. There were several onboard debugging LEDs that could visually relay information. Additionally, there was an LED collision sensor output array. Further detail for the subcircuits for the components listed can be seen below.

7.3 LEDs

Powering one LED using a microcontroller is possible as the microcontrollers used throughout this project can source up to 500mA when using external power [10]. If more than a couple of LEDs were to be turned on at once, it is considered best practise to use a NPN transistor as a switch as not to sink too much current from the device [11]. Given the application for this circuit, we considered it to be the best solution for LEDs. An example circuit can be seen below.

Figure 1: LED Circuit from the Art of Electronics

7.4 VESCs and Servos

The VESCs and servos required a similar output signal from the microcontroller, they both require a signal with a frequency of 50hz and a duty cycle between $1000\mu s$ and $2000\mu s$ [?]. Using a PWM signal from the mbed board with a variable frequency controller, the Servo/ESC libraries written by the team worked effectively. This was deemed as the best solution for controlling the servos and ESCs for this project.

7.5 Relays

Since the relays already contained all the necessary circuitry, they only required a pin to be connected. The relays worked as expected for turning on and off the power to the main craft and thusly, the team agreed these were the best solution.

7.6 Solenoids

Given the high-power drawing nature of solenoids, a specialist circuit was required for operation. It was decided that a Darlington pair was the most appropriate because they provide high current gain and can handle high currents and voltages with low power dissipation Additionally, Darlington pairs provide a high degree of isolation between the input and output circuits, which is important for protecting the control circuitry from voltage spikes and other transients that can be generated when switching inductive loads like solenoids.

$$B$$
 Q_1
 Q_2
 $\beta = \beta_1 \beta_2$

Figure 2: Darlington Pair Circuit from the Art of Electronics

For the circuit a TIP120 (a Darlington pair in a single TO-220 package) was used, along with a flyback diode to protect against current spikes from the discharging inductive load of the solenoid [horowitz and hill, P75, P38]. A 47K resistor was used to act as a pulldown resistor and a 2K2 resistor to limit current draw by the transistor.

8 Software Design

9 Testing

10 Evaluation

10.1 Leadership Methodology

The team adopted a democratic approach, and although various ideas to solve problems were explored, there were no disagreements during development. Individual team members worked on tasks they had relevant experience in, enabling the sharing of knowledge while facilitating fast development. However, to honour the NDA, the team had to work in a separate room to the rest of the cohort. This was beneficial at times but resulted in less outside perspectives from university colleagues. This was recognised by the team as they chose to remain objectively critical and seek feedback from those deemed appropriate. The team acknowledge that the way in which they operated as a team was effective, but upon reflection wish that more academic feedback was sought throughout.

10.2 Project Progression

The project's development reflected the GANTT chart up until the middle of March. At this point, the team changed the design to make it more modular, requiring further testing and a redesign of the chassis, motor, and servo mounts. The team do not regret this change to the design as it greatly increased the platform's performance and functionality. This did, however, have an impact on the aesthetics of the platform as the outer casing manufacturing was delayed. The team discussed this and determined that functionality was more important, and that the overall structural integrity did not rely on the casing. Furthermore, the way in which the project progressed through the defined stages of development was assessed through Key Performance Indicators (KPI)s and tests indicative of successful completion of a milestone. The team felt that combining this with the agile methodology meant that no developmental steps were missed, as everything was regularly reviewed directly from the critical development pathway.

10.3 Corporate Sponsorships

10.3.1 Sirmon Industries

James and Heather Sirmon attended on-site meetings every week. Heather was critical of the project, pushing the team to consider the wider application of the HEVCS as a real-world product. She questioned our decisions, while James queried our justifications as he completed the patent application. Additionally, their regular reviews enabled the team to discuss the progress and decisions in detail, meaning that Sirmon Industries Limited were satisfied as a customer. The team feel that they completed the project in a professional manner and are glad to continue work with both Sirmon and the company that further develop the HEVCS.

10.3.2 European Social Fund

Jo Byrne was available to discuss the commercial viability of the HEVCS during its development. The team often reflected on the capabilities of the project in relation to legislation, as well as defining the novel aspects that Sirmon required for the patent application. The insight provided by the European Social Fund (ESF) was vital for understanding the customer usability of such a device, and how the outside opinion of those who do not have the technological understanding can provide interesting perspectives from a customer's point of view.

Two reports were produced for the ESF, each covering various aspects of the project requirements and the methodology. This meant that at the start of the project each team member did a skill set review that was then used to determine who would develop what specific elements of the HEVCS. Halfway through the project, the final ESF report was due. It detailed the roles that the members of the team grew into, the milestones that had been completed, test methods used, and the business recommendations for Sirmon Industries. This helped the team to gain an insight into how the project could be developed

further, while defining the scope for the HEVCS's development as a university project.

10.4 Budget Management

The university provided £1,200 in budget, and Sirmon Industries allotted £2,000. The team decided to create a bill of materials for the entire project to coordinate arrival times, costs, and availability. As the university had an approved list of suppliers, the products that were not on this list were automatically sifted to the Bill of Materials (BOM) to be discussed with Sirmon Industries. It is worth noting that the components purchased were still deemed appropriate for the project, and therefore approved by the university academics. The external supplier BOM also included products with a long lead time, that James Sirmon was able to source from his industry partners instead. These decisions were beneficial to the project's initial development, and the team believe they made the correct choice by asking Sirmon to obtain such components during the Christmas break, a period in which the university could not place or receive orders.

Portions of the university budget were allocated for electronic components, manufacturing costs, and materials. This included the PCB component orders from approved suppliers that the university had existing free, fast shipping subscriptions with. The team felt that this decision was correct, enabling fast acquisition of vital components for chassis, motor, and hardware assembly too.

A complete breakdown of the costings can be found in the appendix. This includes a breakdown of how £1,163 of the university budget was spent, and how Sirmon spent £1,862.76. The remaining balance was £174.25. The team acknowledge that a large proportion of the costs, equating to 500 came from purchasing VESCss. Designing a speed controller for this project would have been time-consuming, whereas a fast, reliable, and sufficiently documented solution was required. Thusly, the project benefited from using the VESCss, their convenience and their positive impact on the initial platform control testing.

the university, and so the team would like to acknowledge the contributions from Sirmon Industries and extend their gratitude. It is through their generosity that the project was able to progress, possess high quality products, and operate effectively.

10.5 Customer Usability

The HEVCS is reliably controlled by the user, using methods that enhance its dependability. The purpose behind the prototype is to prove its potential as an alternative method to EV charging, using methods and approaches that the user can rely on and independently control. Using the results of the MECE analysis that define EV owner's needs to a dependable solution to charging at the convenience, the HEVCS has proven itself as a viable alternative. Moreover, its creation presents a viable alternative to getting power to the vehicles, provided they are within a certain proximity of the home, that is not limited by obstacles such as kerbs.

This paper has detailed how the cost of charging is decreased using off-peak domestic tariffs, enabling the user to effectively control the price they pay to charge their EV using electricity schemes. Giving the user authority over when, how, and how much they charge their vehicle increased the accessibility of owning an EV.

10.6 Ethics

The ethical conduct principles defined in the PEP have been applied throughout the development of the HEVCS. A deeper understanding of the operational safety of the platform has been acquired through testing, and several efforts have been made to limit the risk of injury to both users and the public through the deployment of several safety features discussed in the design section. Namely, the magnetic breakaway cable and the object avoidance system. The team have made an effort to create safety systems that enhance human capabilities without revoking their control. For example, users can drive

the platform towards a wall, and the object avoidance system will prevent them from making contact with said wall, but it does not take away their ability to continue to operate the platform in another direction that does not cause harm. Furthermore, the platform is not autonomous, as to abide by the relevant legislation, and so the public are ensured that humans retain all control of such a device.

The research conducted throughout this project has included the use of and reference to data from national surveys, from which the participants have agreed to the distribution of their information. The team have not gathered or collected information themselves nor obtained any data through the university.

10.7 Environmental Impact

The environmental impact of the components and products used to build the HEVCS have been discussed in their relevant sections. Furthermore, the future improvements include discussion of alternative methods of acquiring power through sustainable, green energy sources. The team would like to reiterate the importance of recycling EV batteries, building on the explanation on the impact on the environment discussed in the Project Execution Plan (PEP).

Multiple characteristics of BLDCs result in a reduced negative impact on the environment. They require less energy to operate than DC or AC induction motors. They are more efficient in terms of energy loss and durability, meaning they need replacing less often and therefore produce less waste. As they do not have brushes, there is no carbon dust or other emissions produced during operation, including noise emission. However, the team acknowledge that the environmental impact is dependent on the motor's application. This means that power consumption was limited through decisions within the software and the platform's operation. This includes features such as regenerative breaking and speed limitations.

10.8 Design

The team is pleased with the overall design of the HEVCS prototype platform and its capabilities, as the maximum height of the platform exceeded the target of 150mm. With a final height of 110mm, the HEVCS is able to fit under all bar one of the types of registered electric vehicles in UK [12]. Due to the confidential requirements in place for the project, the design was not able to be tested outdoors. However, the team is confident that with suitable levels of testing and a small amount of modification the HEVCS would be fully operational outdoors, on both pavement and road surfaces.

During testing, the craft demonstrated stability and the ability to support a payload of up to 80kg before collapsing, aligning with the requirements of the project. As well as this, the craft fully abides by all relevant class 2 mobility scooter legislation, allowing it to be used on pavements. Furthermore, preliminary testing strongly suggests that the platform has the potential to navigate and manoeuvre over kerbs, of up to 150mm, with further developments and refinements. This promising outcome bodes well for the future optimisation and further developments of the platforms design capabilities.

Overall, the team is satisfied with the design prototype. This stems from its successful and complete adherence to the requirements of stability, weight capacity, and also for its potential developments in kerb climbing ability.

11 Further Developments

12 Conclusions

References

- [1] 42Technology Limited. 42technology limited. [Online]. Available: https://42t.com/
- [2] UK Government. Vehicle licensing statistics. [Online]. Available: https://www.gov.uk/government/statistical-data-sets/vehicle-licensing-statistics-data-tables#plug-in-vehicles
- [3] —. Electric vehicle charging device statistics. [Online]. Available: https://www.gov.uk/government/statistics/electric-vehicle-charging-device-statistics-october-2022/electric-vehicle-charging-device-statistics-october-2022
- [4] Department for Transport. National road traffic projections 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1123542/national-road-traffic-projections-2022.pdf
- [5] Department for Business, Energy and Industrial Strategy. Electric vehicle smart charge point survey 2022. [Online]. Available: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/ attachment_data/file/1129104/electric-vehicle-smart-charging-survey-2022.pdf
- [6] Department for Transport. National travel survey. [Online]. Available: https://www.gov.uk/government/collections/national-travel-survey-statistics
- [7] D. Strickland, L. Chittock, D. A. Stone, M. P. Foster, and B. Price, "Estimation of transportation battery second life for use in electricity grid systems," *IEEE Transactions on Sustainable Energy*, vol. 5, no. 3, pp. 795–803, 2014.
- [8] EDF Energy. Fixed tariff re-pricing guide. [Online]. Available: https://www.edfenergy.com/sites/default/files/goelectric_new_epg_prices.pdf
- [9] M. H. S. M. Haram, J. W. Lee, G. Ramasamy, E. E. Ngu, S. P. Thiagarajah, and Y. H. Lee, "Feasibility of utilising second life ev batteries: Applications, lifespan, eco-

- nomics, environmental impact, assessment, and challenges," *Alexandria Engineering Journal*, vol. 60, no. 5, pp. 4517–4536, 2021.
- [10] Arm. Nucleo144 datasheet. [Online]. Available: um1974-stm32-nucleo144-boards-mb1137-stmicroelectronics.pdf
- [11] Horowits, P and Hill, W, *The Art of Electronics*, 3rd ed. Cambridge University Press, 2015, section 2.2.2A.
- [12] N. Pinckney, "Pulse-width modulation for microcontroller servo control," *IEEE potentials*, vol. 25, no. 1, pp. 27–29, 2006.
- [13] MyEVReview. Electric car database. [Online]. Available: https://www.myevreview.com/electric-cars-ground-clearance-comparison-chart
- [14] Group C. Hevcs project onenote. [Online]. Available: https://liveplymouthac.sharepoint.com/sites/DUMB247/_layouts/OneNote.aspx?id=%2Fsites%
 2FDUMB247%2FShared%20Documents%2FPROJ515%2FPROJ515onenote:
 https://liveplymouthac.sharepoint.com/sites/DUMB247/Shared%20Documents/
 PROJ515/PROJ515/
- [15] —. Hevcs module onedrive. [Online]. Available: https://liveplymouthac.sharepoint.com/:f:/s/MEngProjectsProj515-22/Ekeb_4IBI8xAtPDgXITyq1IBWLR7j9cRz44rRBIyS5WOpQ?e=RL0BR8
- [16] —. Hevcs private onedrive. [Online]. Available: https://liveplymouthac.sharepoint.com/:f:/s/PROJ515634/EsNX8X3B_nFAIAZBh0x72LQBBypj9fsUIDZDtQWU2CNxjg?e=koan6O
- [17] —. Hevcs bom. [Online]. Available: https://liveplymouthac.sharepoint.com/: x:/s/PROJ515634/EY-rC7rfAb5GuSc6iDS7bCgBacYkLovs_1qGDFzZ0tMUvA?e= 9aDd6l

[18] —. Hevcs ra and coshh. [Online]. Available: https://liveplymouthac.sharepoint.com/:f:/s/PROJ515634/EpWqMWShtE9Jp_o-IV5tTGgBfWbpEjVMeHPaL4wjEcix1A?e=6l3m3S

A Appendix A: Project Documentation

Project OneNote [13] Module OneDrive [14] Private OneDrive [15] Finalised BoM [16] Risk Assessment and COSHH Forms [17] GitHub Repository []