

ทรานซิสเตอร์ปรากฏการณ์สนาม (Field-Effect Transistors)

วิชา 303242 อิเล็กทรอนิกส์สำหรับวิศวกรรมคอมพิวเตอร์ (Electronics for Computer Engineering) สุวิทย์ กิระวิทยา

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ มหาวิทยาลัยนเรศวร

วัตถุประสงค์การเรียนรู้

- สามารถบรรยายเกี่ยวกับโครงสร้างทั่วไปของเฟตต่าง ๆ ได้แก่ เจเฟต มอสเฟต และเมสเฟต ได้
- สามารถเขียนแสดงลักษณะสมบัติการส่งผ่านของเฟตต่าง ๆ ได้
- สามารถเข้าใจข้อมูลส่วนใหญ่ที่นำเสนอในแผ่นข้อมูลของเฟตได้
- สามารถวิเคราะห์ไฟตรงและทราบความแตกต่างในการวิเคราะห์ไฟตรงของวงจร เฟตต่าง ๆ ได้

6.1 บทน้ำ

ทรานซิสเตอร์ปรากฏการณ์สนาม (Field-Effect Transistors) หรือเฟต (FET) เป็นอุปกรณ์สามขั้ว ที่ทำงานได้คล้ายบีเจที โดยอุปกรณ์ทั้งสองชนิดนี้มีความเหมือน และความต่างอยู่ในหลาย ๆ แง่มุมซึ่งจะบรรยายให้ทราบในบทนี้

ความแตกต่างหลัก ๆ คือ บีเจทีเป็นอุปกรณ์
ที่ควบคุมด้วยกระแสในขณะที่เฟตเป็น
อุปกรณ์ที่ควบคุมด้วยแรงดัน
เฟตมีความต้านทานขาเข้าสูงมาก (> MΩ)
เฟตมีอัตราขยายต่ำกว่าบีเจที

เฟตมีความไวต่ออุณหภูมิต่ำกว่าบีเจที และมีขนาดเล็กกว่า → เหมาะกับวงจรรวม

(a) Current-controlled and (b) voltage-controlled amplifiers.

เฟตมีหลายชนิด ซึ่งเฟตชนิดหลัก ๆ ได้แก่ เจเฟต มอสเฟต และ เมสเฟต แต่ละชนิด มีสามขา คือ เกต (<u>G</u>ate) เดรน (<u>D</u>rain) และ ซอส (<u>S</u>ource)

6.2 การสร้างและลักษณะสมบัติของเจเฟต (JFET)

เจเฟต มาจากคำว่า Junction FET
เกิดจากรอยต่อพีเอ็น มีสองชนิดคือ
พีแชนแนล (p-channel)
และ เอ็นแชนแนล (n-channel)
โดยแชนแนลคือช่องทางที่ให้กระแส
จากพาหะส่วนใหญ่ไหล

FIG. 6.4
Water analogy for the JFET control mechanism.

Junction field-effect transistor (JFET).

$V_{GS} = 0, V_{DS} > 0$

รอยต่อพีเอ็น เมื่อไบแอสย้อนกลับ ย่านปลอดพาหะจะใหญ่ขึ้น (แชนแนลจะเล็กลง)

JFET at $V_{GS} = 0$ V and $V_{DS} > 0$ V.

Varying reverse-bias potentials across the p-n junction of an n-channel JFET.

$V_{GS} = 0, V_{DS} \geq V_{P}$

เมื่อแรงดัน $V_{DS} = |V_P|$ คือ แรงดันหนีบปิด (pinch-off voltage) ระดับกระแสที่ไหลได้ จะอิ่มตัว ที่ระดับ $I_D = I_{DSS}$ และเจเฟตเข้าสู่ย่านอิ่มตัว แทนเจเฟตนี้ด้วยแหล่งจ่ายกระแส

FIG. 6.9 Current source equivalent for $V_{GS} = 0 V$, $V_{DS} > V_P$.

Increasing resistance due

to narrowing channel

$V_{GS} < 0, V_{DS} > 0$

หาก $V_{GS} < 0$ ย่านปลอดพาหะจะใหญ่ขึ้น (ตั้งแต่ที่เริ่มเพิ่ม V_{DS}) ทำให้แรงดันที่ทำให้เกิด การบีบปิดลดต่ำลง

Application of a negative voltage to the gate of a JFET.

n-Channel JFET characteristics with $I_{DSS}=8$ mA and $V_P=-4$ V. 3 ย่าน ได้แก่ ย่านโอห์มมิก ย่านอิ่มตัว และ ย่านคัตออฟ ($|V_{GS}|>V_P$) โดยต่อไปจะให้ V_P ติดลบสำหรับเอ็นแชนแนล

FIG. 6.11

ความต้านทานที่ควบคุมโดยแรงดัน

สำหรับ เจเฟต ที่อยู่ในย่านโอห์มมิก ค่าความต้านทาน (ส่วนกลับของความชั้น) สามารถคำนวณได้จากสูตร

$$r_d = \frac{r_0}{(1 - V_{GS} / V_P)^2}$$

โดย r_0 คือค่าความต้านทานในขณะที่ $V_{GS} = 0$

สำหรับย่านโอห์มมิกนี้ มีอีกชื่อหนึ่งว่า ย่านความต้านทานที่ควบคุมโดยแรงดัน (voltage-controlled resistance region)

8

พี่แชนแนลเจเฟต และการพังทลาย (breakdown)

จากรูป พี่แชนแนลมีลักษณะต่างจากเอ็นแชนแนลอย่างไรบ้าง? **ตอบ** กลับทิศกระแส และ กลับขั้วแรงดัน

สัญลักษณ์ทางวงจร

FIG. 6.14

JFET symbols: (a) n-channel; (b) p-channel.

ลองสืบค้นในอินเทอร์เน็ต (or Wikipedia)

6.3 ลักษณะสมบัติการส่งผ่าน (Transfer Characteristics)

กรณี บีเจที เรามีความสัมพันธ์เชิงเส้น

กรณี เจเฟต เรามีความสัมพันธ์ในลักษณะไม่เชิงเส้น คือสมการกำลังสอง (quadratic equation) และมีชื่อเรียกว่า สมการชอคต์เลย์ (Shockley's equation)

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}^{\vee}}{V_P}\right)^2$$
constants

สมการนี้ใช้ได้ในย่านอิ่มตัว (ค่ากระแสเดรนไม่ขึ้นกับค่าแรงดัน V_{DS})

ลักษณะสมบัติการส่งผ่าน

ลักษณะสมบัติการส่งผ่านนี้ไม่ขึ้นกับวงจรด้านขาออก (ตราบที่เจเฟตยังอยู่ในย่านอิ่มตัว)

FIG. 6.17

Obtaining the transfer curve from the drain characteristics.

When
$$V_{GS} = 0 \text{ V}$$
, $I_D = I_{DSS}$ When $V_{GS} = V_P$, $I_D = 0 \text{ mA}$

หากออกแบบวงจร โดยกำหนดค่ากระแสเดรน I_D ก่อน ก็สามารถหาแรงดัน V_{GS} ที่เหมาะสมได้ ... อย่างไร

11

วิธีคิดอย่างย่อ (Shorthand Method)

บ่อยครั้งที่เราต้องคำนวณไปกลับระหว่างกระแสเดรนและแรงดันเกต ดังนั้นการ คำนวณโดยประมาณจะทำให้ทราบค่าคร่าว ๆ ได้โดยไม่ต้องใช้กระดาษ/เครื่องคำนวณ

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$= I_{DSS} \left(\frac{1 - V_P/2}{V_P} \right)^2 = I_{DSS} \left(1 - \frac{1}{2} \right)^2 = I_{DSS}(0.5)^2$$

$$= I_{DSS}(0.25)$$

$$I_D = \frac{I_{DSS}}{4} |_{V_{GS} = V_P/2}$$

If we choose $I_D = I_{DSS}/2$ and substitute into Eq. (6.8), we find that

$$V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$$

$$= V_P \left(1 - \sqrt{\frac{I_{DSS}/2}{I_{DSS}}} \right) = V_P (1 - \sqrt{0.5}) = V_P (0.293)$$

and

$$V_{GS} \cong 0.3V_P|_{I_D = I_{DSS}/2}$$

TABLE 6.1 V_{GS} versus I_D Using Shockley's Equation

\mathbf{V}_{GS}	\mathbf{I}_D
0	I_{DSS}
$0.3V_P$	$I_{DSS}/2$
$0.5V_P$	$I_{DSS}/4$
V_P	0 mA

EXAMPLE 6.1 Sketch the transfer curve defined by $I_{DSS} = 12 \text{ mA}$ and $V_P = -6 \text{ V}$.

Solution: Two plot points are defined by

 $I_{DSS} = 12 \text{ mA}$ and $V_{GS} = 0 \text{ V}$ $I_D = 0 \text{ mA}$ and $V_{GS} = V_P$

and

At $V_{GS} = V_P/2 = -6 \text{ V}/2 = -3 \text{ V}$ the drain current is determined by $I_D = I_{DSS}/4 = 12 \text{ mA}/4 = 3 \text{ mA}$. At $I_D = I_{DSS}/2 = 12 \text{ mA}/2 = 6 \text{ mA}$ the gate-to-source voltage is determined by $V_{GS} \cong 0.3V_P = 0.3(-6 \text{ V}) = -1.8 \text{ V}$. All four plot points are well defined on Fig. 6.18 with the complete transfer curve.

FIG. 6.18
Transfer curve for Example 6.1.

6.4 แผ่นข้อมูลจำเพาะเจาะจงของเจเฟต (JFETs)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Units
V _{DS}	Drain-Source Voltage	25	V
V _{DG}	Drain-Gate Voltage	25	V
V _{GS}	Gate-Source Voltage	-25	V
I_{GF}	Forward Gate Current	10	mA
T_j, T_{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

THERMAL CHARACTERISTICS

c 1 1		1	Max	TT 24	
Symbol	Characteristic	2N5457	*MMBF5457	Units	
P_{D}	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W	

ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CH	ARACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = 10 \mu A, V_{DS} = 0$	-25			V
I_{GSS}	Gate Reverse Current	$V_{GS} = -15 \text{ V}, V_{DS} = 0$ $V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$			-1.0 -200	nA nA
$V_{GS(off)}$	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_{D} = 10 \text{ nA}$ 5457	-0.5		-6.0	V
V _{GS}	Gate-Source Voltage	$V_{DS} = 15 \text{ V}, I_D = 100 \mu\text{A}$ 5457		-2.5		V

SMALL SIGNAL CHARACTERISTICS

 I_{DSS}

Zero-Gate Voltage Drain Current

g_{fs}	Forward Transfer Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}$ 5457	1000		5000	μmhos
g _{os}	Output Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		10	50	μmhos
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		4.5	7.0	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		1.5	3.0	pF
NF	Noise Figure	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz},$ $R_G = 1.0 \text{ megohm}, BW = 1.0 \text{ Hz}$			3.0	dB

 $V_{DS} = 15 \text{ V}, V_{GS} = 0$

5457

mA

ข้อมูลที่สำคัญ

- กำลังพิกัดสูงสุด (Maximum Rating)
- ลักษณะสมบัติทางความร้อน

(Thermal Characteristics)

- ลักษณะสมบัติทางไฟฟ้า (Electrical
- Characteristics)
- ลักษณะทั่วไป (Typical

Characteristics)

- ย่านการทำงาน (Operating Region)

17

6.5 เครื่องมือวัด (Instrumentation)

การวัดเจเฟตยุ่งยากกว่าบีเจที โดยทั่วไปจะใช้ curve tracer วัดได้

FIG. 6.22

Drain characteristics for a 2N4416 JFET transistor as displayed on a curve tracer.

6.6 ความสัมพันธ์ที่สำคัญ (Important Relationships)

เปรียบเทียบ ระหว่าง เจเฟตและบีเจที

TABLE 6.2 JFET $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \iff I_C = \beta I_B$ $I_D = I_S \iff I_C \cong I_E$ $I_G \cong 0 \text{ A} \iff V_{BE} \cong 0.7 \text{ V}$

FIG. 6.23 (a) JFET versus (b) BJT.

6.7 มอสเฟตชนิดดีพลีชัน (Depletion-Type MOSFET)

มอสเฟต (MOSFET) ย่อมาจาก ทรานซิสเตอร์ปรากฏการณ์สนามโครงสร้างโลหะ-ออกไซด์-สารกึ่งตัวนำ (<u>M</u>etal-<u>O</u>xide-<u>S</u>emiconductor <u>F</u>ield-<u>E</u>ffect <u>T</u>ransistor) แบ่งย่อยเป็น ชนิดดีพลีชัน (depletion) และชนิดเอ็นฮานซ์เมนต์ (enhancement)

- > สำหรับมอสเฟตบางตัวอาจมีขา *SS* (ต่อ จากแฟ่นฐาน (substrate))
- > ไม่มีการเชื่อมต่อโดยตรงกับแชนแนล
- > ชั้นออกไซด์ถูกสร้างเพื่อใหมีอิมพีแดนซ์ สูงมากที่ขั้วเกต

n-Channel depletion-type MOSFET.

11

หลักการทำงานของมอสเฟต

 $V_{GS} = 0$ กระแส I_D ไหลได้ เรียกกระแสนี้ว่า I_{DSS}

เมื่อลดแรงดัน V_{GS} (V_{GS} ติดลบ) กระแส I_D จะไหลได้น้อยลง เพราะแชนแนลจะแคบลง จากการ เหนี่ยวนำประจุบวกเข้ามาใน แชนแนล (ปรากฏการณ์สนาม)

FIG. 6.25 n-Channel depletion-type MOSFET with $V_{GS} = 0$ V and applied voltage V_{DD} .

21

หลักการทำงานของมอสเฟต

 $V_{\it GS} = 0$ กระแส $I_{\it D}$ ไหลได้ เรียกกระแสนี้ว่า $I_{\it DSS}$

เมื่อลดแรงดัน V_{GS} (V_{GS} ติดลบ) กระแส I_D จะไหลได้น้อยลง เพราะแชนแนลจะแคบลง จากการ เหนี่ยวนำประจุบวกเข้ามาใน แชนแนล (ปรากฏการณ์สนาม)

Reduction in free carriers in a channel due to a negative potential at the gate terminal.

ลักษณะสมบัติของมอสเฟต (เอ็นแชนแนล)

FIG. 6.26

Drain and transfer characteristics for an n-channel depletion-type MOSFET.

23

ลักษณะสมบัติของมอสเฟต (พีแชนแนล)

p-Channel depletion-type MOSFET with $I_{DSS}=6~\mathrm{mA}$ and $V_P=+6~\mathrm{V}$.

ต่างกับมอสเฟต เอ็นแชนแนล อย่างไร?

สัญลักษณ์ทางวงจร

Graphic symbols for: (a) n-channel depletion-type MOSFETs and (b) p-channel depletion-type MOSFETs.

แผ่นข้อมูล

MAXIMUM RATINGS

On-State Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = +3.5 \text{ V})$

Rating	Symbol	Value	Unit
Drain-Source Voltage 2N3797	V _{DS}	20	Vdc
Gate-Source Voltage	V _{GS}	±10	Vdc
Drain Current	I _D	20	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	200 1.14	mW mW/°C
Junction Temperature Range	Tj	+175	°C
Storage Channel Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		2			191 111 1222	
Drain Source Breakdown Voltage $(V_{GS} = -7.0 \text{ V}, I_D = 5.0 \mu\text{A})$ 2N:	3797	V _{(BR)DSX}	20	25	=	Vdc
Gate Reverse Current (1) (V _{GS} = -10 V, V _{DS} = 0) (V _{GS} = -10 V, V _{DS} = 0, T _A = 150°C)		l _{GSS}	2	-	1.0 200	pAdc
Gate Source Cutoff Voltage $(I_D = 2.0 \ \mu A, \ V_{DS} = 10 \ V)$ 2N:	3797	V _{GS(off)}	-	-5.0	-7.0	Vdc
Drain-Gate Reverse Current (1) $(V_{DG} = 10 \text{ V}, I_S = 0)$		I _{DGO}		-	1.0	pAde
ON CHARACTERISTICS			7,000			
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0)$	2707	I _{DSS}	20	20	6.0	mAdc

2N3797

2N3797

2.0

14

18

 $I_{D(on)}$

26

mAdc

25

6.8 มอสเฟตชนิดเอ็นฮานซ์เมนต์ (Enhancement-Type MOSFET)

โครงสร้างไม่มีแชนแนลหลังสร้างเสร็จ แต่มีแชนแนลเมื่อไบแอส (ป้อนแรงดันบวกที่ขั้วเกต)

ในรูปคือ เอ็นแชนแนล n-doped region no-channel Metallic contacts Substrate p-type oss substrate n-doped region

FIG. 6.32 n-Channel enhancement-type MOSFET.

FIG. 6.33 Channel formation in the n-channel enhancement-type MOSFET.

 $V_{DG} = V_{DS} - V_{GS}$

 $V_T = 2 V \text{ and } k = 0.278 \times 10^{-3} \text{ A/V}^2$

หลักการทำงาน

การบีบปิด (pinch-off) เกิดขึ้นที่แรงดัน V_{DS} ค่าหนึ่ง

level of V_{DS} for a fixed value of V_{GS}.

3 ย่านการทำงาน =

ลักษณะสมบัติกระแส-แรงดัน

ค่าคงที่ k อาจหาจาก $k=I_{D(on)}/(V_{GS(on)}-V_{T})^{2}$

Sketching the transfer characteristics for an n-channel enhancement-type MOSFET from the drain characteristics.

29

มอสเฟตชนิดเอ็นฮานซ์เมนต์ ชนิดพีแชนแนล

p-Channel enhancement-type MOSFET with $V_T = 2 V$ and $k = 0.5 \times 10^{-3} A/V^2$.

แตกต่างกับเอ็นแชนแนลอย่างไร?

สัญลักษณ์ทางวงจร

Symbols for: (a) n-channel enhancement-type MOSFETs and (b) p-channel enhancement-type MOSFETs.

31

6.9 การหยิบจับมอสเฟต (MOSFET Handling)

มอสเฟตเป็นอุปกรณ์ที่ไวต่อไฟฟ้าสถิต คือ ชั้นออกไซด์อาจเสียหายได้จากการจับต้อง ด้วยมือเปล่า ดังนั้นต้องระวังมิให้เกิดไฟฟ้าสถิตระดับสูงในโครงสร้าง

6.10 มอสเฟตกำลังชนิดวีมอสและยูมอส

FIG. 6.43
(a) VMOS MOSFET; (b) UMOS MOSFET.

6.11 ซีมอส (CMOS)

ซึมอสย่อจาก Complementary MOSFET เป็นการนำมอสเฟตทั้งพีแชนแนลและ เอ็นแชนแนลมาสร้างวงจรรวมบนแผ่นฐานเดียวกัน ซึ่งทำให้สามารถสร้างโลจิกเกต ดิจิทัลได้ ตัวอย่างเช่น วงจรอินเวอร์เตอร์ดังรูป

FIG. 6.44

CMOS with the connections indicated in Fig. 6.45.

ซีมอสอินเวอร์เตอร์

34

33

6.12 เมสเฟต (MESFET)

เมสเฟต ย่อจาก <u>ME</u>tal-<u>S</u>emiconductor FET มีลักษณะคล้ายมอสเฟตแต่ไม่มีชั้น ออกไซด์ เป็นโครงสร้างที่มักใช้กับสารกึ่งตัวนำชนิดสารประกอบเช่น GaAs

6.13 ตารางสรุป

TABLE 6.3
Field Effect Transistors

	T ieiū	Effect Transistors	
Туре	Symbol and Basic Relationships	Transfer Curve	Input Resistance and Capacitance
JFET (<i>n</i> -channel)	$I_G = 0 \text{ A}, I_D = I_S$ $G \longrightarrow I_{DSS}$ V_P $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_i > 100 \mathrm{M}\Omega$ C_i : $(1-10) \mathrm{pF}$
MOSFET depletion type (n-channel)	$I_G = 0 \text{ A}, I_D = I_S$ $G \qquad \qquad$	I_D	$R_i > 10^{10} \Omega$ C_i : (1 – 10) pF
MOSFET enhancement type (n-channel)	$I_G = 0 \text{ A}, I_D = I_S$ O $I_D = k (V_{GS} - V_{GS \text{ (Th)}})^2$ $k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS \text{ (Th)}})^2}$	$I_{D(\text{on})}$ $I_{D(\text{on})}$ $V_{GS(\text{Th})}$ $V_{GS(\text{on})}$ V_{GS}	$R_i > 10^{10} \Omega$ C_i : (1 – 10) pF

เอกสารอ้างอิง

เนื้อหาหลักนำมาจากเอกสารอ้างอิง

หัวข้อ

- 6. Field-Effect Transistors
- 6.1 Introduction
- 6.2 Construction and Characteristics of JFETs
- 6.3 Transfer Characteristics
- 6.4 Specification Sheets (JFETs)
- 6.5 Instrumentation
- 6.6 Important Relationships
- 6.7 Depletion-Type MOSFET
- 6.8 Enhancement-Type MOSFET
- 6.9 MOSFET Handling
- 6.10 VMOS and UMOS Power MOSFETs
- 6.11 CMOS
- 6.12 MESFETs
- 6.13 Summary Table

วิชา 303242 อิเล็กทรอนิกส์สำหรับวิศวกรรมคอมพิวเตอร์ (Electronics for Computer Engineering) สุวิทย์ กิระวิทยา

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ มหาวิทยาลัยนเรศวร

วัตถุประสงค์การเรียนรู้

- สามารถวิเคราะห์ไฟตรงวงจรเฟตที่ต่อในรูปแบบต่าง ๆ ได้
- สามารถใช้การวิเคราะห์เส้นโหลดในการพิจารณาวงจรเฟตได้

7.1 บทน้ำ

ในบทที่ 4 เราได้ศึกษาเกี่ยวกับการไบแอสบีเจทีมาแล้ว โดยเรากำหนดให้

$$V_{BE}$$
 $= 0.7$ V, I_C $= \beta I_B$, และ $I_C pprox I_E$

โดยมี β เป็นค่าคงที่

สำหรับเฟต เราทราบว่าความสัมพันธ์ระหว่างปริมาณขาเข้าและขาออกเป็นแบบไม่เชิง เส้น (nonlinear) ทำให้การวิเคราะห์นั้นยุ่งยากกว่า ดังนั้นเราจึงนิยมใช้วิธีกราฟฟิกใน การบ่งบอกจุดทำงานของเฟต

ตัวแปรควบคุมในบีเจทีคือกระแสเบส ในขณะที่ ตัวแปรควบคุมในเฟตคือแรงดันเกต

$$I_G pprox 0$$
 และ $I_D = I_S$

สำหรับเจเฟต, ดีมอสเฟตและเมสเฟต

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

สำหรับอื่มอสเฟตและเมสเฟต

$$I_D = k(V_{GS} - V_T)^2$$

7.2 รูปแบบการไบแอสแบบคงที่ (Fixed-Bias Configuration)

FIG. 7.1 Fixed-bias configuration.

$$V_{GS} = -V_{GG}$$
 $V_{DS} = V_{DD} - I_D R_D$ $V_S = 0 \text{ V}$ $V_D = V_{DS}$

$$V_S = 0 \text{ V}$$

$$V_D = V_{DS}$$

$$V_G = V_{GS}$$

FIG. 7.2

Network for dc analysis.

$$I_D = ?$$

รูปแบบการไบแอสแบบคงที่

การพล็อตจุดทำงาน

FIG. 7.3
Plotting Shockley's equation.

FIG. 7.4

Finding the solution for the fixed-bias configuration.

EXAMPLE 7.1 Determine the following for the network of Fig. 7.6:

- a. V_{GS_Q} .
- b. I_{D_Q} .
- c. V_{DS} .
- d. V_D .
- e. V_G .
- f. V_S .

FIG. 7.7

-

7.3 รูปแบบการไบแอสด้วยตัวเอง (Self-Bias Configuration)

เราสามารถทำให้เฟตไบแอสตัวเองได้โดยการใส่ตัวต้านทานที่ซอส

JFET self-bias configuration.

FIG. 7.9

DC analysis of the self-bias configuration.

 $V_{GS} = -I_D R_S$

หากวิเคราะห์สมการ เราจะต้องแก้สมการกำลังสอง

รูปแบบการไบแอสด้วยตัวเอง

เราสามารถใช้วิธีกราฟฟิกได้ ดังรูป

$$V_{DS} = V_{DD} - I_D (R_S + R_D)$$

$$V_S = I_D R_S$$

$$V_G = 0 \text{ V}$$

$$V_D = V_{DS} + V_S = V_{DD} - V_{R_D}$$

FIG. 7.11 Sketching the self-bias line.

EXAMPLE 7.2 Determine the following for the network of Fig. 7.12:

FIG. 7.12 Example 7.2.

7.4 การใบแอสโดยแบ่งแรงดัน (Voltage Divider Biasing)

ลักษณะเหมือนบีเจที่ และ สามารถใช้กฎการแบ่งแรงดันได้

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$$

Voltage-divider bias arrangement.

Redrawn network of Fig. 7.17 for dc analysis.

การไบแอสโดยแบ่งแรงดัน

การหาคำตอบจะต้องแก้สมการกำลังสอง โดยหากเราใช้วิธีกราฟฟิก จะได้ว่า

Sketching the network equation for the voltage-divider configuration.

EXAMPLE 7.4 Determine the following for the network of Fig. 7.21:

Example 7.4.

11

7.5 รูปแบบเกตร่วม (Common-Gate Configuration)

FIG. 7.23

Two versions of the common-gate configuration.

13

7.6 กรณีพิเศษ V_{GSQ} = 0 V

เป็นการต่อเฟตตัวเดียวให้เป็นแหล่งจ่ายกระแสคงที่ (I_{DSS})

14

7.9 ตารางสรุป

TABLE 7.1FET Bias Configurations

Туре	Configuration	Pertinent Equations	Graphical Solution
JFET Fixed-bias	V_{GG}	$V_{GS_Q} = -V_{GG}$ $V_{DS} = V_{DD} - I_D R_S$	$\frac{Q\text{-point}}{V_P \ V_{GG} \mid 0} = V_{GS}$
JFET Self-bias	$\begin{cases} V_{DD} \\ R_D \end{cases}$	$V_{GS} = -I_D R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	$Q\text{-point} = \begin{bmatrix} I_D \\ I_{DSS} \\I'_D \\ V_{P_1V'_{GS}} \end{bmatrix} 0 \qquad V_{GS}$
JFET Voltage-divider bias	R_1 R_2 R_S	$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$ $V_{GS} = V_{G} - I_{D}R_{S}$ $V_{DS} = V_{DD} - I_{D}(R_{D} + R_{S})$	$\begin{array}{c c} I_D & I_{DSS} \\ \hline V_G & \hline V_G & \hline V_G & V_{GS} \\ \hline \end{array}$

15

เอกสารอ้างอิง

เนื้อหาหลักนำมาจากเอกสารอ้างอิง

หัวข้อ

- 7. FET Biasing
- 7.1 Introduction
- 7.2 Fixed-Bias Configuration
- 7.3 Self-Bias Configuration
- 7.4 Voltage-Divider Biasing
- 7.5 Common-Gate Configuration
- 7.6 Special Case $V_{GSQ} = 0 \text{ V}$
- 7.9 Summary Table

วิชา 303242 อิเล็กทรอนิกส์สำหรับวิศวกรรมคอมพิวเตอร์ (Electronics for Computer Engineering) สุวิทย์ กิระวิทยา

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ มหาวิทยาลัยนเรศวร

วัตถุประสงค์การเรียนรู้

- สามารถบรรยายเกี่ยวกับวงจรสมมูลของเฟตสำหรับสัญญาณไฟสลับขนาดเล็กได้
- สามารถวิเคราะห์สัญญาณไฟสลับขนาดเล็กของวงจรขยายด้วยเฟตใน รูปแบบต่าง ๆ ได้
- สามารถอธิบายผลของตัวต้านทานที่ซอสและที่โหลด ต่อความต้านทานขาเข้า ความต้านทานขาออกและอัตราขยายได้
- สามารถวิเคราะห์วงจรที่ต่อในรูปแบบแคสเคดของเฟตและบีเจทีได้

8.2 แบบจำลองของเจเฟตสำหรับสัญญาณขนาดเล็ก

สำหรับเจเฟต: ความต่างศักย์ระหว่างขั้วเกต-ซอสเป็นตัวกำหนดกระแสที่ไหล ผ่านขั้วเดรน-ซอส

จากสมการสมการชอคต์เลย์ (บทที่ 6)

เรามี

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

นิยามทรานคอนดักแตนซ์ (transconductance) ได้คือ

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

Definition of g_m using transfer characteristic.

ค่า g_m นี้อาจหาได้จากกราฟ ด้วยวิธีกราฟฟิก

EXAMPLE 8.1 Determine the magnitude of g_m for a JFET with $I_{DSS} = 8$ mA and $V_P = -4$ Vat the following dc bias points:

- a. $V_{GS} = -0.5 \text{ V}.$
- b. $V_{GS} = -1.5 \text{ V}.$
- c. $V_{GS} = -2.5 \text{ V}.$

a.
$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} \cong \frac{2.1 \text{ mA}}{0.6 \text{ V}} = 3.5 \text{ mS}$$

b.
$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} \cong \frac{1.8 \text{ mA}}{0.7 \text{ V}} \cong 2.57 \text{ mS}$$

c.
$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} = \frac{1.5 \text{ mA}}{1.0 \text{ V}} = 1.5 \text{ mS}$$

การหา g_m ด้วยวิธีวิเคราะห์สมการ

$$\begin{split} g_{m} &= \frac{dI_{D}}{dV_{GS}} \bigg|_{Q\text{-pt.}} = \frac{d}{dV_{GS}} \bigg[I_{DSS} \bigg(1 - \frac{V_{GS}}{V_{P}} \bigg)^{2} \bigg] \\ &= I_{DSS} \frac{d}{dV_{GS}} \bigg(1 - \frac{V_{GS}}{V_{P}} \bigg)^{2} = 2I_{DSS} \bigg[1 - \frac{V_{GS}}{V_{P}} \bigg] \frac{d}{dV_{GS}} \bigg(1 - \frac{V_{GS}}{V_{P}} \bigg) \\ &= 2I_{DSS} \bigg[1 - \frac{V_{GS}}{V_{P}} \bigg] \bigg[\frac{d}{dV_{GS}} (1) - \frac{1}{V_{P}} \frac{dV_{GS}}{dV_{GS}} \bigg] = 2I_{DSS} \bigg[1 - \frac{V_{GS}}{V_{P}} \bigg] \bigg[0 - \frac{1}{V_{P}} \bigg] \end{split}$$

$$g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{V_{GS}}{V_P} \right]$$

หากนิยาม g_{m0} คือ ที่ V_{GS} = 0 V

$$g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{0}{V_P} \right]$$

ได้

$$g_{m0} = \frac{2I_{DSS}}{|V_P|}$$

$$g_{m0}=rac{2I_{DSS}}{|V_P|}$$
 และ $g_m=g_{m0}\Big[1-rac{V_{GS}}{V_P}\Big]$

กราฟความสัมพันธ์ระหว่าง g_m และ V_{GS} คือกราฟเส้นตรง

อิมพีแดนซ์ของเจเฟต

อิมพีแดนซ์ขาเข้าของเจเฟต Z_i มีค่าสูงมาก

$$Z_i(\text{JFET}) = \infty \Omega$$

อิมพีแดนซ์ขาออกของเจเฟต Z_o มีค่าสูง คือ

$$Z_o(\text{JFET}) = r_d = \frac{\Delta V_{DS}}{\Delta I_D}\Big|_{V_{GS} = \text{constant}}$$

Definition of r_d using JFET drain characteristics.

วงจรสมมูลไฟสลับของเจเฟต

เขียนได้เป็น

JFET ac equivalent circuit.

วงจรนี้มีพารามิเตอร์อยู่สองตัว ซึ่งสามารถคำนวณได้nสังจากที่วิเคราะห์ไฟตรงของ วงจร เพื่อหาค่าของ V_{GS} , V_{DS} และ I_D เสียก่อน

8.3 รูปแบบการใบแอสคงที่ (Fixed-Bias Configuration)

นิสิตควรลองวาดรูปขวามือด้วยตนเอง

Q

รูปแบบการไบแอสคงที่

อิมพีแดนซ์ขาเข้า

$$Z_i = R_G$$

อิมพีแดนซ์ขาออก หาได้โดยกำหนดให้แรงดันขาเข้า V_i เป็นศูนย์

ได้

$$Z_o = R_D \| r_d$$

หรือ

$$Z_o \cong R_D$$

$$r_d \ge 10R_D$$

อัตราขยายแรงดัน A_{ν}

$$A_v = \frac{V_o}{V_i} = -g_m(r_d || R_D)$$

A, ติดลบหมายความว่า? 9

EXAMPLE 8.7 The fixed-bias configuration of Example 7.1 had an operating point defined by $V_{GS_Q} = -2$ V and $I_{D_Q} = 5.625$ mA, with $I_{DSS} = 10$ mA and $V_P = -8$ V. The network is redrawn as Fig. 8.14 with an applied signal V_i . The value of y_{os} is provided as 40 μ S.

- a. Determine g_m .
- b. Find r_d .
- c. Determine Z_i .
- d. Calculate Z_o .
- e. Determine the voltage gain A_v .
- f. Determine A_v ignoring the effects of r_d .

FIG. 8.14

JFET configuration for Example 8.7.

$y_{os} = 1/r_d$

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(10 \text{ mA})}{8 \text{ V}} = 2.5 \text{ mS}$$

$$g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 2.5 \text{ mS} \left(1 - \frac{(-2 \text{ V})}{(-8 \text{ V})} \right) = 1.88 \text{ mS}$$
b. $r_d = \frac{1}{v_c} = \frac{1}{40 \text{ vS}} = 25 \text{ k}\Omega$

c.
$$Z_i = R_G = 1 \,\mathrm{M}\Omega$$

d.
$$Z_o = R_D || r_d = 2 k\Omega || 25 k\Omega = 1.85 k\Omega$$

e.
$$A_v = -g_m(R_D || r_d) = -(1.88 \text{ mS})(1.85 \text{ k}\Omega)$$

f.
$$A_v = -g_m R_D = -(1.88 \text{ mS})(2 \text{ k}\Omega) = -3.76$$

As demonstrated in part (f), a ratio of 25 k Ω : 2 k Ω = 12.5:1 between r_d and R_D results in a difference of 8% in the solution.

8.4 รูปแบบการไบแอสตัวเอง (Self-Bias Configuration)

- แบบมีการลัด $extbf{\emph{R}}_{S}$

ผล = ได้ลักษณะวงจรเหมือนกับรูปแบบการไบแอสคงที่

11

8.4 รูปแบบการไบแอสตัวเอง (Self-Bias Configuration)

- แบบไม่มีการลัด $extbf{\emph{R}}_S$

เพื่อความสะดวกในการวิเคราะห์ จะสมมติให้ $r_d=\infty$

$$\mathbb{I}_{\widehat{\mathbb{N}}} = R_G$$

$$Z_o = \frac{V_o}{I_o} = R_D$$

และ

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}}$$

กรณีมีค่า r_d

Self-bias JFET configuration including the effects of R_S with $r_d = \infty \Omega$.

$$Z_i = R_G$$

$$Z_{o} = \frac{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}}\right]}{\left[1 + g_{m}R_{S} + \frac{R_{S}}{r_{d}} + \frac{R_{D}}{r_{d}}\right]}R_{D}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$

EXAMPLE 8.8 The self-bias configuration of Example 7.2 has an operating point defined by $V_{GS_Q} = -2.6 \text{ V}$ and $I_{D_Q} = 2.6 \text{ mA}$, with $I_{DSS} = 8 \text{ mA}$ and $V_P = -6 \text{ V}$. The network is redrawn as Fig. 8.20 with an applied signal V_i . The value of g_{os} is given as $20 \mu \text{S}$.

- a. Determine g_m .
- b. Find r_d .
- c. Find Z_i .
- d. Calculate Z_o with and without the effects of r_d . Compare the results.
- e. Calculate A_v with and without the effects of r_d . Compare the results.

FIG. 8.20

Network for Example 8.8.

13

 $g_{os} = 1/r_d$

Solution:

a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(8 \text{ mA})}{6 \text{ V}} = 2.67 \text{ mS}$$

 $g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 2.67 \text{ mS} \left(1 - \frac{(-2.6 \text{ V})}{(-6 \text{ V})} \right) = 1.51 \text{ mS}$

b.
$$r_d = \frac{1}{y_{os}} = \frac{1}{20 \,\mu\text{S}} = 50 \,\text{k}\Omega$$

c.
$$Z_i = R_G = 1 \,\mathrm{M}\Omega$$

d. With r_d ,

$$r_d = 50 \,\mathrm{k}\Omega > 10 R_D = 33 \,\mathrm{k}\Omega$$

Therefore,

$$Z_o = R_D = 3.3 \,\mathrm{k}\Omega$$

If
$$r_d = \infty \Omega$$
,

$$Z_o = R_D = 3.3 \,\mathrm{k}\Omega$$

e. With r_d ,

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}} = \frac{-(1.51 \text{ mS})(3.3 \text{ k}\Omega)}{1 + (1.51 \text{ mS})(1 \text{ k}\Omega) + \frac{3.3 \text{ k}\Omega + 1 \text{ k}\Omega}{50 \text{ k}\Omega}}$$

With $r_d = \infty \Omega$ (open-circuit equivalence),

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}} = \frac{-(1.51 \text{ mS})(3.3 \text{ k}\Omega)}{1 + (1.51 \text{ mS})(1 \text{ k}\Omega)} = -1.98$$

8.5 รูปแบบการแบ่งแรงดัน (Voltage-Divider Configuration)

JFET voltage-divider configuration.

Redrawn network of Fig. 8.22.

8.6 รูปแบบเกตร่วม (Common-Gate Configuration)

8.7 รูปแบบตามซอส (เดรนร่วม) (Source-Follower (Common-Drain) Configuration)

8.8 มอสเฟตชนิดดีพลีชัน (Depletion-Type MOSFETs)

วงจรสมมูลและการวิเคราะห์ เหมือนเจเฟตทุกประการ

D-MOSFET ac equivalent model.

ข้อแตกต่างมีเพียง สำหรับดีมอสเฟต ค่า V_{GS} สามารถเป็นค่าลบได้ สำหรับกรณีพี แชนแนล ดังนั้น g_m อาจจะมีค่ามากกว่า g_{m0} ได้

8.13 ตารางสรุป

19

เอกสารอ้างอิง

เนื้อหาหลักนำมาจากเอกสารอ้างอิง

หัวข้อ

- 8. FET Amplifiers
- 8.1 Introduction
- 8.2 JFET Small-Signal Model
- 8.3 Fixed-Bias Configuration
- 8.4 Self-Bias Configuration
- 8.5 Voltage-Divider Configuration
- 8.6 Common-Gate Configuration
- 8.7 Source-Follow (Common-Drain) Configuration
- 8.8 Depletion-Type MOSFETs
- 8.13 Summary Table

วงจรขยายเชิงดำเนินการและการประยุกต์ใช้ (Operational Amplifiers and Applications)

วิชา 303242 อิเล็กทรอนิกส์สำหรับวิศวกรรมคอมพิวเตอร์ (Electronics for Computer Engineering) สุวิทย์ กิระวิทยา

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ มหาวิทยาลัยนเรศวร

วัตถุประสงค์การเรียนรู้

- สามารถบรรยายวงจรขยายความต่างได้
- สามารถอธิบายพื้นฐานของวงจรขยายเชิงดำเนินการได้
- สามารถวิเคราะห์ วงจรที่ใช้ออปแอมป์ โดยใช้แบบจำลองออปแอมป์ในอุดมคติ
- สามารถวิเคราะห์และออกแบบวงจรขยายทั้งแบบกลับเฟสและไม่กลับเฟสได้
- สามารถอธิบายคุณประโยชน์ของวงจรออปแอมป์ต่าง ๆ ได้แก่ วงจรบัฟเฟอร์ วงจรขยายแบบรวม วงจรขยายความต่าง วงจรขยายการวัด

วงจรขยายในอุดมคติ (Ideal Amplifier)

$$v_L(t) = A \cdot v_S(t)$$

แบบจำลองทางวงจรของ ระบบที่มีการขยายสัญญาณ วงจรสมมูลของวงจรขยายสัญญาณแรงดัน

วงจรขยายในอุดมคติ (Ideal Amplifier)

$$A_{v} = \frac{v_L}{v_S} = \frac{R_{in}}{R_S + R_{in}} \frac{R_L}{R_{out} + R_L} A$$

 R_{in} มีค่ามาก ๆ และ R_{out} มีค่าน้อยมาก จะได้ว่า

$$v_L(t) = A \cdot v_S(t)$$

ดังนั้น เรากล่าวได้ว่า วงจรขยายแรงดันในอุดมคติ ควรมี ค่าความต้านทานขาเข้าสูง และ ค่าความต้านทานขาออกต่ำ ซึ่ง<u>ออปแอมป์เป็นวงจรที่ถูกออกแบบมาให้มีลักษณะสมบัตินี้</u>

ออปแอมป์

คำว่าออปแอมป์ มาจากภาษาอังกฤษ คือ Op-Amp ซึ่งเป็นตัวย่อของคำว่า Operational Amplifier ที่มีการแปลเป็นภาษาไทยว่า คือ "วงจรขยายเชิง ดำเนินการ" ดังนั้นหน้าที่หลักของออปแอมป์ คือ การขยายโดยเราอาจกล่าวว่า ออป แอมป์ คือ วงจรรวม (Integrated Circuit: IC) ชนิดหนึ่ง ที่ประกอบด้วยอุปกรณ์ทาง ไฟฟ้าและอิเล็กทรอนิกส์จำนวนมาก

สัญลักษณ์ทางวงจรของออปแอมป์และชื่อเรียกขาต่าง ๆ

การวิเคราะห์วงจรออปแอมป์

แบบจำลองของออปแอมป์

- ให้ $v^+ = v^-$ แต่ไม่มีกระแสไหลผ่าน กัน ซึ่งโดยมากขาใดขาหนึ่งของออป แอมป์จะต่ออยู่กับกราวนด์และจะทำ ให้อีกขาหนึ่งเป็นกราวน์เสมือน (virtual ground) คือ มีศักย์ไฟฟ้า (แรงดัน) เป็นศูนย์แต่กระแสไหลผ่าน ไม่ได้

- ให้ใช้ KCL ที่ขั้วขาเข้าของออป แอมป์

 $A_{\nu({
m OL})}$ คืออัตราขยายวงรอบเปิดของออปแอมป์ ปกติมีค่าสูงมาก (1000-100000)

ลักษณะความสัมพันธ์ของแรงดันขาเข้า-แรงดันขาออกของออปแอมป์

ตัวอย่างที่ 1 ขนาดสัญญาณขาเข้าที่ทำให้สัญญาณขาออกอิ่มตัว

ในการใช้งานออปแอมป์ แบบวงรอบเปิด จงประมาณค่าขนาดสัญญาณขาเข้าที่ ทำให้สัญญาณขาออกอิ่มตัว โดยที่ อัตราขยายแรงดันวงรอบเปิดของออปแอมป์ มีค่าเท่ากับ 10⁵ และ แรงดันไฟเลี้ยงที่จ่ายให้กับออปแอมป์ คือ ±15 V

วิธีทำ จากรูปในหน้าที่แล้วจะเห็นได้ว่า เมื่อจ่ายแรงดันขาเข้า (v^+ - v^-) เท่ากับ $V_S^+/A_{v({
m OL})}$ แล้วจะทำให้สัญญาณขาออกอิ่มตัว ดังนั้นจากโจทย์ จะได้ว่า สัญญาณขาออกอิ่มตัว เมื่อสัญญาณขาเข้า มีค่าเท่ากับ

$$v^+ - v^- = \frac{V_S^+}{A_{v(OL)}} = \frac{15}{10^5} = 150 \quad \mu V$$

วงจรภายใน และ ลักษณะตัวถังของออปแอมป์

วงจรภายในของออปแอมป์เบอร์ LM741

ลักษณะตัวไอซี และ และ การวางขั้วต่อ

9

วงจรเปรียบเทียบแรงดัน (Voltage Comparator)

วงจรบัฟเฟอร์ หรือ วงจรตามแรงดัน

วงจรบัฟเฟอร์ หรือ วงจรตามแรงดัน โดยการเชื่อมต่อขั้วขาเข้าแบบกลับเฟส กับ ขั้วขาออกของออปแอมป์ จะทำให้แรงดันที่ขั้วขาออกเท่ากับแรงดันของ แหล่งกำเนิดสัญญาณ $v_{out} = v_{in}$ เสมอ

วงจรบัฟเฟอร์ หรือ วงจรตามแรงดัน

วงจรที่ไม่มีบัฟเฟอร์ โหลดจะได้รับสัญญาณ แรงดันลดลงตามสัดส่วนของความต้านทาน

12

วงจรขยายแบบกลับเฟส (Inverting Amplifier)

วงจรขยายแบบกลับเฟส (Inverting Amplifier)

ตัวอย่างที่ 2 ลักษณะสัญญาณที่กลับเฟส

จงหาอัตราขยายแรงดัน และ สัญญาณแรงดันขาออก จากวงจรขยายแบบกลับ เฟส ที่แสดงในรูป โดยสัญญาณขาเข้า คือ $v_S(t)=0.1~\cos~100\pi t~{
m V}$

วิธีทำ จากสูตร จะได้ว่า อัตราขยายแรงดัน คือ
$$A = \frac{v_{out}}{v_S} = -\frac{R_F}{R_S} = -\frac{10}{1} = -10$$

15

ตัวอย่างที่ 2

โดย สัญญาณขาเข้าคือ $v_S(t)=0.1\cos\,100\pi t\,\mathrm{V}\,$ ดังนั้น จะได้ว่า สัญญาณขาออก คือ

$$v_{out}(t) = -10 \times v_S(t) = -10 \times 0.1\cos 100\pi t = -\cos 100\pi t$$
 V

การถูกขลิบของสัญญาณ

ตัวอย่างวงจรขยายแบบกลับเฟส ที่มีค่าอัตราขยายแรงดันเท่ากับ 100 และ มีสัญญาณขาเข้ามีขนาดสูงสุด 0.1 โวลต์ (ข) ลักษณะสัญญาณขาเข้า v_{in} และ สัญญาณขาออก v_{out} ที่ต้องการและที่ถูกขลิบ

วงจรขยายแบบไม่กลับเฟส (Non-Inverting Amplifier)

$$A = \frac{v_{out}}{v_S} = 1 + \frac{R_F}{R_S}$$

ตัวอย่างที่ 3 วงจรขยายแบบไม่กลับเฟส

วงจรขยายแบบไม่กลับเฟสในรูป ใช้ตัวต้านทาน $R_S=1~{
m k}\Omega$ และ $R_F=10~{
m k}\Omega$ และ จ่ายไฟ $\pm 9~{
m V}$ เลี้ยงออปแอมป์ จงหาขนาดต่ำที่สุดของสัญญาณขาเข้า ที่ทำ ให้สัญญาณขาออกอิ่มตัว

19

ตัวอย่างที่ 3 วงจรขยายแบบไม่กลับเฟส

วิธีทำ จาดโจทย์จะได้ว่า อัตราขยายสัญญาณ คือ

$$A = \frac{v_{out}}{v_S} = 1 + \frac{R_F}{R_S} = 1 + \frac{10}{1} = 11$$

ดังนั้น

$$v_{out}(t) = A \cdot v_S(t) = 11 \cdot V_P \cos \omega t$$

สัญญาณเริ่มอิ่มตัวเมื่อ $v_{out,max}=11V_P=V_S^{\ +}=9\ {
m V}$ ดังนั้นขนาดต่ำที่สุดของ สัญญาณขาเข้า ที่ทำให้สัญญาณขาออกอิ่มตัวคือ

$$V_P = 9/11 = 0.818 \text{ V}$$

วงจรขยายแบบรวม (Summing Amplifier)

วงจรขยายความต่าง (Differential Amplifier)

$$v_{out} = \frac{R_2}{R_1} (v_2 - v_1)$$

ตัวอย่างการใช้งานวงจรขยายความต่าง

ใช้กำจัดสัญญาณรบกวน (noise) ที่ถูกเหนี่ยวนำให้เกิดขึ้นในสายสัญญาณ

23

วงจรออปแอมป์ที่ใช้ในทางปฏิบัติ

เซนเซอร์ต่าง ๆ

วงจรขยายการวัด (Instrumentation Amplifier)

ประกอบด้วย บัฟเฟอร์ และ วงจรขยายความต่าง

$$v_{out} = \frac{R_3}{R_2} \left(1 + \frac{2R_1}{R} \right) (v_2 - v_1)$$

25

เอกสารอ้างอิง

เนื้อหาหลักนำมาจากเอกสารอ้างอิง

หัวข้อ

4.4 วงจรออปแอมป์

