Spatial analyses on a round(ish) planet

No projection is really good

https://youtu.be/wkK_HsY7S_4

Tissot's indicatrix

Cylindrical projections

• Conformal: Shape

• Equidistant: (Some) distances

• Equal area: Area

Mercator projection (lat long) (Conformal)

Grossly misassigned sizes

https://geopuzzle.org/puzzle/easy/

Cylindrial equal area (Area)

Lambert projection (0 degrees)

Behrman (30 degrees)

Gall–Peters projection (45 degrees)

Azimuthal equidistant projection (distance)

Pseudo-cylindrical projections

Tobler hyperelliptical projection

Mollweide projection

Goode homolosine projection

Dymaxion map

Raster projections: There is no one to one match

Behrman

Latitude	Cell height
0	0.7
30	1
90	~10

Distances can rarely be measured

Great circle distance

Spatial analyses: The biology

Global biodiversity

What scale makes sense?

Larger areas have more species

Do <u>not</u> analyze lat long diveristy

Cells should be quadratic (if possible)

Cylindrial equal area projections are problematic

Lambert projection (0 degrees)

Behrman (30 degrees)

Gall–Peters projection (45 degrees)

Think about the biology

- BIO1 = Annual Mean Temperature
- BIO2 = Mean Diurnal Range (Mean of monthly (max temp min temp))
- BIO3 = Isothermality (BIO2/BIO7) (×100)
- $BIO4 = Temperature Seasonality (standard deviation <math>\times 100$)
- BIO5 = Max Temperature of Warmest Month
- BIO6 = Min Temperature of Coldest Month
- BIO7 = Temperature Annual Range (BIO5-BIO6)
- BIO8 = Mean Temperature of Wettest Quarter
- BIO9 = Mean Temperature of Driest Quarter
- BIO10 = Mean Temperature of Warmest Quarter
- BIO11 = Mean Temperature of Coldest Quarter
- BIO12 = Annual Precipitation
- BIO13 = Precipitation of Wettest Month
- BIO14 = Precipitation of Driest Month
- BIO15 = Precipitation Seasonality (Coefficient of Variation)
- BIO16 = Precipitation of Wettest Quarter
- BIO17 = Precipitation of Driest Quarter
- BIO18 = Precipitation of Warmest Quarter
- BIO19 = Precipitation of Coldest Quarter

Data transformation

Interannual climatic variation

What does predictors mean?

SRTM 90m Digital Elevation Data

Spatial analyses: The analyses

Linear regression

Figure 1 Normal distribution curve.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} \dots + \epsilon_i$$

Temporal autocorrelation

Phylogenetic autocorrelation (e.g brownian motion)

Spatial autocorrelation

Formula for Moran's I

$$I = \frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{w}_{ij} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{x}_{j} - \overline{\mathbf{x}})}{(\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{w}_{ij}) \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}}$$

Where:

is the number of observations (points or polygons)

is the mean of the variable

is the variable value at a particular location

is the variable value at another location

 $rac{N}{\mathbf{X}} \\ \mathbf{X}_{\mathrm{i}} \\ \mathbf{X}_{\mathrm{j}} \\ \mathbf{W}_{\mathrm{ij}}$ is a weight indexing location of i relative to j

(or dumbed down)

Morans I varies between -1 and 1. 1 is perfect positive correlation

Correlogram

Spatial Simultaneous Autoregressive Error Model

$$SAR_{err} Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \lambda Wu + \epsilon_i$$

LM
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} \dots + \epsilon_i$$

$$\begin{aligned} & \text{SAR}_{\text{lag}} \ \ Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} \ \ + \rho W Y_{i} + \epsilon_{i} \\ & \text{SAR}_{\text{mix}} \ \ Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} \ \ + \rho W Y_{i} + \lambda W u + \epsilon_{i} \end{aligned}$$

Wu: u: Neighborhood: Number

Wu: u: Neighborhood: Distance

Even Distance 3000-3100 km

Wu: W: Neighborhood: Weight

SAR_{err}
$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} \dots \lambda Wu + \epsilon_i$$

- W
 - [[1]] : 0.33 0.33 0.33
 - [[2]] : 0.20 0.20 0.20 0.20 0.20
- B
 - [[1]]:111
 - [[2]]:11111

- C
 - [[1]] : 0.06 0.06 0.06
 - [[2]] : 0.06 0.06 0.06 0.06 0.06 B
- U
 - [[1]] : 0.0002 0.0002 0.0002
 - [[2]] : 0.0002 0.0002 0.0002 0.0002 0.0002
- S
 - [[1]] : 0.151 0.151 0.151
 - [[2]]: 0.117 0.117 0.117 0.117 0.117

f 🄰 🗿 /techindustan

Reading other people's code be like...