Trabajo Práctico Nº 1 Ejercicio 3

Tomás Vidal

Control de sistemas biológicos Facultad de Ingeniería, UNLP, La Plata, Argentina. 17 de Septiembre, 2024.

I. Introducción

A continuación se muestran los resultados de simular la **producción** de *polihidroxibutirato* (PHB)¹, y el **crecimiento** de la bacteria que lo produce para 3 casos diferentes alimentaciones de sustrato: **sin alimentación**, **alimentación constante** y **alimentación exponencial**.

Las etapas de producción y crecimiento difieren en que la última requiere de nitrógeno, en cambio la etapa de producción de plástico require ausencia del mismo.

II. Modelo

El modelo a simular es el siguiente:

$$\begin{cases} k_{S1}S + k_N N \xrightarrow{r_x} X + k_{P1}P \\ k_{S2}S \xrightarrow{r_p} P \end{cases}$$

Que se puede llevar al siguiente sistema de ecuaciones:

$$\begin{cases} \dot{x} = r_x \\ \dot{s} = -K_{s1}r_x + D_s(s_{in} - s) \\ \dot{s} = -K_{s2}r_p + D_s(s_{in} - s) \\ \dot{n} = -K_Nr_x + D_n(n_{in} - n) \\ \dot{p} = K_{p1}r_p \end{cases}$$

Y representándolo en su forma vectorial se tiene:

$$\begin{bmatrix} \dot{x} \\ \dot{s} \\ \dot{n} \\ \dot{p} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -K_{s1} & -K_{s2} \\ -K_{N} & 0 \\ K_{P1} & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{x} \\ r_{p} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & n_{in} \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} x \\ s \\ n \\ p \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -K_{s1} & -K_{s2} \\ K_{P1} & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{x} \\ r_{p} \end{bmatrix}$$

Los modelos cinéticos empleados son:

$$\mu(s,n) = \mu_{\max} \frac{s}{K_S + s + \frac{s^2}{K_{s,s}}} \cdot \frac{n}{K_n + n}$$

$$q_p(s,n) = q_{p\text{max}} \frac{s}{K_{ps} + s + \frac{s^2}{K_{-}}} \cdot \frac{K_{ipn}}{K_{ipn} + n}$$

Para realizar la simulación se hizo uso de simulink, a continuación se muestran los dos casos para cuando no se alimenta o se alimenta constantemente con sustrato, y el caso para cuando se alimenta exponencialmente con sustrato.

Fig. 1. Simulación para el caso de alimentación constante

Fig. 2. Simulación para el caso de alimentación exponencial

III. SIN ALIMENTACIÓN DE SUSTRATO

A continuación se muestran las simulaciones del caso donde no hay alimentación de sustrato, es decir $D_s = D_n = 0$, que es el caso donde se hace un **batch**, se comienzan las etapas con ciertos valores de sustrato y nitrógeno, y se deja que el sistema evolucione sin cambiar la masa neta.

¹El polihidroxibutirato (PHB) es un biopolímero perteneciente a la familia de los poliésteres, producido por diversas bacterias como reserva de carbono y energía. Es biodegradable y biocompatible, lo que lo hace una alternativa ecológica a los plásticos convencionales en aplicaciones médicas y envasado sostenible.

III-A. Etapa de crecimiento

Fig. 3. Etapa de crecimiento sin alimentación de sustrato

Fig. 4. Plano de fase Sustrato/Biomasa en la etapa de crecimiento

Fig. 5. Modelo cinético $\mu(s)$ en etapa de crecimiento

Como era de esperar se tiene un crecimiento exponencial de biomasa y, un decrecimiento exponencial de sustrato. Además se tiene que los modelos cinéticos son correctos durante la simulación, se llega al máximo en *aproximadamente* $\sqrt{K_sK_{is}}$. También se tiene la recta esperada en el plano de fase. Además se puede observar que para el caso cuando el nitrógeno inicial es 1g/g, no se tiene la producción de biomasa esperada, ya que no se cumplen las condiciones del modelo, que es que este estado se encuentre en abundancia.

III-B. Fase de producción de plástico

Fig. 6. Etapa de producción de plástico

En la figura ?? se puede observar que cuando hay suficiente biomasa, el sustrato se convierte en plástico.

IV. CON ALIMENTACIÓN DE SUSTRATO CONSTANTE

IV-A. Fase de crecimiento

En esta fase se simula cuando se alimenta constantemente para diferentes valores de dilución

Fig. 7. Fase de crecimiento (en concentración) con alimentación constante

Fig. 8. Fase de crecimiento (en masa) con alimentación constante

Como se puede observar en los gráficos, si se alimenta con poco no se llega a alimentar la biomasa, pero si se alimenta con demasiado sustrato entonces el mismo comienza a acumularse. Además se tienen los gráficos en masas y concentraciones, en el de concentraciones se puede ver que se llega a un estado estacionario, en cambio en el de las masas no, que es lo que se esperaba.

Fig. 9. Plano de fase en la fase de crecimiento de biomasa

IV-B. Fase de producción

Se hizo lo mismo que en la fase de crecimiento, pero para la de producción.

Fig. 10. Fase de producción con diferentes valores de dilución

Se puede observar que el crecimiento es constante como se esperaba.

V. CON ALIMENTACIÓN DE SUSTRATO EXPONENCIAL

Se emplea el siguiente modelo para la alimentación exponencial:

$$D = \frac{K_s \mu_r x_0 e^{t*\mu_r}}{S_{in} - S_r}$$

Donde μ_r y s_r son valores de referencia de un punto elegido. A partir de los modelos cinéticos se eligieron puntos de referencia alrededor del mayor crecimiento. A continuación se muestran los resultados:

Fig. 11. Etapa de crecimiento, alimentación exponencial

Fig. 12. Dilución exponencial

Fig. 13. Plano de fase sustrato/plástico alimentación exponencial