General Parameters

A _{ol}	1e4 = 80 dB
UGF	10 MHz
R_{FB}	9 KΩ (4K, 9K for parametric sweep)
R	1 ΚΩ
DC input	1 V
ac input	sine wave: 1 V amplitude and 1 KHz frequency
time step	period/50

Deliver 1: Op-Amp Subcircuit

Op-Amp model has three basic stages

- 1. diff amplifier with high voltage gain R_{IN} , EGAIN
- 2. A single pole low pass filter $R_{\text{P1}},\,C_{\text{P1}}$
- 3. An output buffer EBUF, R_{OUT}

Hand Analysis:

As A_{Ol} is provided by $EGAIN = A_{ol} = 10^4 = 80 \ dB$ and the first pole

Fig.1. Op-Amp Sub-Circuit

frequency f_{p1} is given by the relation [1]

$$f_{p1} = \frac{1}{2\pi R_{p1}C_{p1}} = \frac{UGF}{A_{ol}}$$
 [1]

and with $A_{ol}=10^4$ and UGF=10~MHz the cut off frequency $f_{p1}=1~KHz$ choose $R_{p1}=1~K\Omega$

$$\therefore C_{p1} = \frac{10^4}{10 * 10^6} * \frac{1}{2\pi * 1K} = 0.15915 \, uF$$

Assume $R_{IN}=100~M\Omega$ and $R_{OUT}=10~\Omega$ and $R_L=1~K\Omega$

Fig.2. Op-Amp Model AC analysis

Sub-Circuit Netlist

```
SpiceOPAMP.CIR
* use ac input sine wave with 1V peak value and f = 1 KHz
VS 1 0 AC 1 SIN(OVOFF 1VPEAK 1KHZ)
* Define the model terminals
XOP 1 0 3
          OPAMP
* use 1 Kohm as load resistance
RL 3
      0
          1k
* OPAMP MACRO MODEL, SINGLE-POLE
* connections:
                 non-inverting input
                     inverting input
                          output
.SUBCKT OPAMP
                          6
* INPUT IMPEDANCE
      2 100MEG
* DC GAIN=10K AND UMITY GAIN=10MHZ
* UNITY GAIN = DCGAIN X POLE1
EGAIN
      3 0 1 2 10K
* assume Rp1 = 1K
      4 1K
RP1 3
* POLE1 = 1/(2*pi*RP1*CP1)
CP1 4 0 0.15915UF
* OUTPUT BUFFER AND RESISTANCE
EBUFFER 5 0 4 0 1
ROUT
       5 6
.ENDS
* ANALYSIS
.AC DEC
             5 1 100MEG
.END
```