

NOVEL PROCOAGULANT PROTEINS

a>

*Great
AI SUP*
This invention relates to a novel series of proteins which exhibit procoagulant properties. These proteins have marked structural differences from human factor VIII:C, but have similar procoagulant activity.

Factor VIII:C is the blood plasma protein that is defective or absent in Hemophilia A disease. This disease is a hereditary bleeding disorder affecting approximately one in 20,000 males. 10 The structure of factor VIII:C is described in U.S. Patent Applications Serial No. 546,650 filed October 28, 1983 and No. 644,036 filed August 24, 1984, which are incorporated herein by reference and in Nature, 312:306, 307, 326 and 342.

15 One of the problems presently encountered with the use of human factor VIII:C for treatment of hemophilia arises from its antigenicity. A significant percentage of hemophiliacs have developed an immune reaction to the factor VIII:C used for their treatment. Non-hemophiliacs can also develop or acquire 20 hemophilia when their immune systems become sensitized to factor VIII:C and produce circulating antibodies or "inhibitors" to factor VIII:C. In either case, the effect is the neutralization of whatever factor VIII:C is present in the patient, making treatment very difficult. Until now, the method of 25 choice for treating hemophiliacs with this problem has been to administer, in cases of severe bleeding episodes, non-human factor VIII:C, such as treated porcine factor VIII:C. See Kernoff et al., Blood 63:31 (1984). However, the antibodies which neutralize the clotting ability of human factor VIII:C 30 will react to a varying extent with factor VIII:C of other species, and the porcine protein is itself antigenic, thus both the short-term and long-term effectiveness of such treatment will vary.

P Additionally, patients frequently display adverse reactions to infusion with the porcine factor VIII:C. The use of porcine factor VIII:C in spite of the risks has been justified because of the lack of reliably effective alternatives. Kernoff,
5 supra at 38. The present invention provides an alternative to the administration of porcine factor VIII:C.

This invention provides for proteins which have procoagulant activity similar to that of factor VIII:C and also have substantially lower molecular weight. These proteins are schematically depicted by formula (1) as follows: *PS*

PS wherein A represents a polypeptide sequence substantially duplicative of the sequence Ala-20 through Arg-759; B represents a polypeptide sequence substantially duplicative of the sequence Ser-1709 through the C-terminal Tyr-2351; and X represents a polypeptide sequence of up to 949 amino acids substantially 20 duplicative of sequences of amino acids within the sequence Ser-760 through Arg-1708. The amino terminus of region X is covalently bonded through a peptide bond (designated "-" in formula 1) to the carboxy terminus of A. The carboxy terminus of region X is likewise bonded to the amino terminus of B. Numbering of amino acids throughout this disclosure is with 25 reference to the numbering of amino acids in Table 1 in which the first amino acid, Met, of the leader sequence is assigned Number 1. Protein domain X may comprise a continuous but shorter sequence selected from the region Ser-760 through 30 Arg-1708. Alternatively X may comprise two or more amino acid sequences selected from that region which are covalently bonded by a peptide bond (maintaining an ascending numerical order of amino acids).

NP By way of example, one compound of this invention contains a
NK 35 region X comprising the amino acid sequence of Ser-760 to Pro-

TOO40X

3

TABLE 1

5' GAATTCCCCACTGGCTAACTTCCCTAAATGCTCTGAAACAAATTCCGACTTTCAAAATCAGAAATT																									
TTACTTTTCCCCTCCGCCACCTAACATATTTAGACAAGAATTAAACCTTTCCCTCTCCACTTCAACATTTCTAGGAATAACTC																									
HET	Cln	Ile	Glu	Leu	Ser	Thr	Cys	Phe	Phe	Leu	Cys	Leu	Leu	Arg	Phe	Cys	Phe							18	
ATG	CAA	ATA	CAG	CTC	TCC	ACC	TCC	TTC	TTT	CTG	TCC	CTT	TTG	CCA	TTC	TCC	TIT								
Ser	Ala	Thr	Arg	Arg	Tyr	Tyr	Leu	Gly	Ala	Val	Glu	Leu	Ser	Trp	Asp	Tyr	MET							36	
AGT	CCC		AGC	AGA	TAC	TAC	CTG	GGT	GCA	GTC	GAA	CTG	TCA	TGC	GAC	TAT	ATG								
Gln	Ser	Asp	Leu	Gly	Glu	Leu	Pro	Val	Asp	Ala	Arg	Phe	Pro	Pro	Arg	Val	Pro							54	
CAA	AGT	GAT	CTC	CGT	CAG	CTG	CCT	CTG	CAC	CCA	ACA	TTT	CCT	CCT	ACA	CTG	CTG								
Lys	Ser	Phe	Pro	Phe	Aen	Thr	Ser	Val	Val	Iyr	Lys	Thr	Leu	Phe	Val	Glu								72	
AAA	TCT	TTT	CCA	TTC	AAC	ACC	TCA	CTG	CTG	TAC	AAA	AAG	ACT	CTG	CTA	CAA									
Phe	Thr	Val	His	Leu	Phe	Asn	Ile	Ala	Lys	Pro	Arg	Pro	Pro	Trp	MEI	Gly								90	
TTC	ACG	CTT	CAC	CTT	ITC	AAC	ATC	CCT	AAC	CCA	ACC	CCC	CCC	TCC	ATC	GCT	CTC								
Leu	Cly	Pro	Thr	Ile	Cln	Ala	Glu	Val	Tyr	Asp	Thr	Val	Val	Ile	Thr	Leu								108	
CTA	GGT	CCT	ACC	ATC	CAG	CCT	GAG	CTT	TAT	CAT	ACA	GTC	GTC	ATT	ACA	CTT									
Asn	MET	Ala	Ser	His	Pro	Val	Ser	Leu	His	Ala	Val	Cly	Val	Ser	Tyr	Trp								126	
AAC	ATG	GCT	TCC	CAT	CCT	GTC	ACT	CTT	CAT	CCT	GTT	GTA	TCC	TAC	TGG	AAA									
Ala	Ser	Glu	Gly	Ala	Glu	Tyr	Asp	Asp	Gln	Thr	Ser	Cln	Arg	Glu	Lys	Glu	Asp							144	
GCT	TCT	GAG	CGA	GCT	GAA	TAT	GAT	GAT	CAG	ACC	ACT	CAA	ACC	GAG	AAA	CAA	CAT								
Asp	Lys	Val	Phe	Pro	Gly	Gly	Ser	His	Thr	Iyr	Val	Trp	Cln	Val	Leu	Lys	Glu							162	
GAT	AAA	GTC	TTC	CCT	CGT	CGA	ACC	CAT	ACA	TAT	CTC	TCC	CAG	CTC	CTG										
Asn	Cly	Pro	MET	Ala	Set	Asp	Pro	Leu	Cys	Leu	Thr	Tyr	Ser	Tyr	Leu									180	
AAT	GGT	CCA	ATC	CCC	TCT	GAC	CCA	CTG	TGC	CTT	ACC	TAC	TCA	TAT	TCT										
Val	Asp	Leu	Val	Lys	Asp	Leu	Asn	Ser	Gly	Leu	Ile	Gly	Ala	Leu	Leu	Val	Cys							198	
GTC	GAC	CTC	CTA	AAA	GAC	TTC	AAT	TCA	CGC	CTC	ATT	GGA	CCC	CTA	CTA										
Arg	Glu	Gly	Ser	Leu	Ala	Lys	Glu	Lys	Thr	Gln	Thr	Leu	His	Lys	Phe	Ile	Leu							216	
AGA	CAA	GGC	AGT	CTG	CCC	AAG	GAA	AAG	ACA	CAG	ACC	TTG	CAC	AAA	ATA	CTA									
Leu	Phe	Ala	Val	Phe	Asp	Glu	Gly	Lys	Ser	Trp	His	Ser	Glu	Thr	Lys	Asn	Ser							234	
CTT	TTT	GCT	GTA	TTT	GAT	GAA	GGG	AAA	ACT	TGG	CAC	TCA	GAA	ACA	AAC	TCC									
Leu	MET	Cln	Asp	Arg	Asp	Ala	Ala	Ser	CCT	Ala	Arg	Trp	Pro	Lys	MET	His	Thr							252	
TTG	ATG	CAG	CAT	AGC	AGG	GCT	CCA	TCT	CCT	CCC	UCC	TGG	AAA	ATC	CAC	ACA	ACA								
Val	Asn	Cly	Tyr	Val	Asn	Arg	Ser	Leu	Pro	Gly	Leu	Ile	Gly	Cys	His	Arg	Lys							270	
GTC	AAT	GGT	TAT	GTA	AAC	AGC	TCT	CTG	CCA	GCT	CTG	ATT	GGA	TCC	CAC	ACC	AAA								
Ser	Val	Tyr	Trp	His	Val	Gly	Ile	Gly	MET	Gly	Thr	Thr	Pro	Glu	Val	His	Ser							288	
TCA	CTC	TAT	TCG	CAT	GTC	ATT	GCA	ATG	GGC	ACC	ACT	CCT	GAA	GTC	CAC	TCA	ATA								
Phe	Lue	Glu	Gly	His	Thi	Phe	Leu	Val	Arg	Arg	Asn	His	Arg	Cln	Ala	Ser	Leu	Glu							306
XTC	CTC	CAA	GCT	CAC	ACA	TTT	CTT	CTG	CTG	CTG	ACC	NAC	CAC	CCC	CCC	TCC	TTG	CAA							

4

TABLE 1, continued

Ile	Ser	Pro	Ile	Thr	Phe	Leu	Thr	Ala	Gln	Thr	Leu	Leu	MET	Asp	Leu	Gly	Gln	324
ATC	TCG	CCA	ATA	ACT	TTC	CTT	ACT	CCT	CAA	ACA	GTC	TTC	ATC	CAC	CTT	GKA	CAU	
Phe	Leu	Leu	Phe	Cys	His	Ile	Ser	Ser	His	Gln	His	Asp	Gly	MET	Ceu	Ala	Tyr	342
TTT	CTA	CTG	TTT	TCT	CAT	ATC	TCT	TCC	CAC	CAA	CAT	GAT	CCC	ATC	GAA	GCT	TAT	
Val	Lys	Val	Asp	Ser	Cys	Pro	Glu	Glu	Pro	Gln	Ile	Arg	MET	Lys	Asn	Asn	360	
GTG	AAA	GTA	GAC	ACC	TGT	CCA	GAC	CAA	CCC	CAA	CTA	CGA	ATC	AAA	AAT	AAT	CAA	
Glu	Ala	Glu	Asp	Tyr	Asp	Asp	Asp	Leu	Thr	Asp	Ser	Glu	MET	Asp	Val	Val	Arg	378
CAA	CCC	GAA	GAC	TAT	GAT	CAT	GAT	CTT	ACT	GAT	TCT	CAA	ATG	GAT	GTC	GTC	AGG	
Phe	Asp	Asp	Asp	Asn	Ser	Pro	Ser	Phe	Ile	Cln	Ile	Arg	Ser	Val	Ala	Lys	396	
TTT	CAT	GAT	GAC	AAC	TCT	CCT	TCC	TTT	ATC	CAA	ATT	CCC	TCA	GTC	GCC	AAC	AAC	
His	Pro	Lys	Thr	Trp	Val	His	Tyr	Ile	Ala	Ala	Glu	Glu	Asp	Irp	Asp	Tyr	414	
CAT	CCT	AAA	ACT	TGG	GTA	CAT	TAC	ATT	GCT	GCT	CAA	GAC	GAC	TCC	GAC	TAT	TAT	
Ala	Pro	Leu	Val	Leu	Ala	Pro	Asp	Asp	Arg	Ser	Tyr	Lys	Ser	Gin	Tyr	Leu	Asn	432
GCT	CCC	TTA	GTC	CTC	GCC	CCC	GAT	GAT	AGA	ACT	TAT	AAA	ACT	CAA	TAT	TTC	AAC	
Asn	Gly	Pro	Gln	Arg	Ile	Gly	Arg	Lys	Tyr	Lys	Lys	Val	Phe	MET	Ala	Tyr	450	
AAT	GCC	CCT	CAG	CGG	ATT	GGT	AGG	AAU	TAC	AAA	CTC	CGA	TTT	ATC	CCA	TAC	TAC	
Thr	Asp	Glu	Thr	Phe	Lys	Thr	Arg	Glu	Ile	Ala	Gln	His	Glu	Ser	Gly	Ile	Leu	468
ACA	CAT	GAA	ACC	TTT	AAG	ACT	CGT	CAA	CCT	ATT	CAG	CAT	CAA	TCA	GCA	ATC	TTG	
Gly	Pro	Ile	Leu	Tyr	Gly	Glu	Val	Gly	Asp	Thr	Leu	Leu	Ile	Ile	Phe	Lys	Asn	486
CGA	CCT	TTA	CTT	TAT	GGG	GAA	CTT	CAA	GAC	ACA	CTG	TTC	ATT	ATA	TTT	AAU	AAT	
Gln	Ala	Ser	Arg	Pro	Tyr	Asn	Ile	Tyr	Pro	His	Gly	Ile	Thr	Asp	Val	Arg	Pro	504
CAA	CCA	AGC	ACA	CCA	TAT	AAC	ATC	TAC	CCT	CAC	ATC	ATC	ACT	CAT	GTC	CGT	CCT	
Leu	Tyr	Ser	Arg	Arg	Leu	Pro	Lys	Gly	Val	Lys	His	Leu	Lys	Asp	Phe	Pro	Ile	522
TTC	TAT	TCA	AGG	ACA	TTA	CCA	AAA	GCT	GTA	AAA	CAT	TTG	AAU	GAT	TTT	CCA	ATT	
Leu	Pro	Gly	Glu	Ile	Phe	Lys	Tyr	Lys	Trp	Thr	Val	Thr	Val	Glu	Asp	Gly	Pro	540
CTG	CCA	GGG	GAA	ATA	TTC	AAA	TAT	AAA	TGG	ACA	GTC	ACT	GTA	GAA	GAT	GGG	CCA	
Thr	Lys	Ser	Asp	Pro	Arg	Cys	Leu	Thr	Arg	Tyr	TAC	TCT	Ser	ACT	Phe	Val	Asn	558
ACT	AAA	TCA	GAT	CCT	CCG	TGC	CTC	ACC	CGC	TAT	TAC	TAC	TCT	TTC	GTT	AAT	MET	
Glu	Arg	Asp	Leu	Ala	Ser	Gly	Leu	Ile	Gly	Pro	Ile	CTC	Leu	Ile	Cys	Tyr	Lys	576
GAG	AGA	GAT	GCT	TCA	CGA	CAA	CTC	ATT	GCC	CCT	CTC	ATC	ATC	TCC	TAC	AAA	CAA	
Ser	Val	Asp	Gln	Arg	Gly	Asn	Gln	Ile	MLT	Ser	Asp	Lys	Arg	Asn	Val	Ile	Leu	594
TCT	CTA	GAT	CAA	ACA	CGA	AAC	AGC	ATA	ATC	TCA	GAC	AAU	AGC	ATA	GTC	ATC	CTG	
Phe	Ser	Val	Phe	Asp	Glu	Asn	Arg	Ser	Trp	Tyr	Leu	Thr	Ceu	Asn	Ile	Cln	Arg	612
TTT	TCT	GTA	TTT	CAT	CAC	AAC	CGA	AGC	TGG	TAC	CTC	ACA	GAG	AAT	ATA	CAA	CCC	
Phe	Leu	Pro	Asn	Pro	Ala	Gly	Val	Gln	CTT	Glu	Asp	CAT	CCA	GAG	TTC	GAA	Ser	630
TTT	CTC	CCC	AAT	CCA	CCT	CGA	GCA	GAC	GAT	GAT	GAT	CGA	TTT	GAA	CCC	TCC		
Asn	Ile	MET	His	Ser	Ile	Asn	Gly	Tyr	Val	Phe	Asp	Ser	ACT	Leu	Gln	Ser	Val	648
AAC	ATC	ATC	CAC	AGC	ATC	AAT	GCC	TAT	CTT	TTT	GAT	ACT	CTT	GAG	TTC	TCA	GTG	

S

TABLE 1, continued

Cys	Leu	His	Glu	Val	Ala	Tyr	Trp	Tyr	Ile	Leu	Ser	Ile	Gly	Ala	Gln	Thr	Asp	666
TGT	TTC	CAT	GAG	CTG	CCA	TAC	TGG	TAC	ATT	CTA	ACC	ATT	GGA	GCA	CAG	ACT	CAC	
Phe	Leu	Ser	Val	Phe	Phe	Ser	Gly	Tyr	Thr	Phe	Lys	His	Lys	MET	Val	Tyr	Glu	684
TTC	CTT	TCT	GTC	TTC	TTC	TCT	CGA	TAT	ACC	TTC	AAA	CAC	AAA	ATG	GTC	TAT	CAA	
Asp	Thr	Leu	Thr	Leu	Phe	Pro	Phe	Ser	Gly	Glu	Thr	Val	Phe	MET	Ser	MET	Clu	702
GAC	ACA	CTC	ACC	CTA	TTC	CCA	TTC	TCA	CGA	AAA	ACT	GTC	TTC	ATG	TCG	ATG	GAA	
Asn	Pro	Gly	Leu	Trp	Ile	Leu	Gly	Cys	His	Asn	Ser	Asp	Phe	Arg	Asn	Arg	Gly	720
AAC	CCA	GGT	CTA	TCG	ATT	CTG	GGG	TGC	CAC	AAC	TCA	GAC	TTT	CCG	AAC	AGA	CCC	
MET	Thr	Ala	Leu	Leu	Lys	Val	Ser	Ser	Cys	Asp	Lys	Asn	Thr	Gly	Asp	Tyr	Tyr	738
ATG	ACC	GCC	TTA	CTG	AAG	GTG	TCT	ACT	TGT	GAC	AAG	AAC	ACT	GGT	GAT	TAT	TAC	
Glu	Asp	Ser	Tyr	Glu	Asp	Ile	Ser	Ala	Tyr	Leu	Ile	Ser	Lys	Asn	Asn	Ala	Ile	756
GAG	GAC	AGT	TAT	CAA	CAT	ATT	ICA	CCA	TAC	TTC	CTG	AGT	AAA	AAC	ATT	GCC	ATT	
Glu	Pro	Arg	Ser	Phe	Ser	Gln	Asn	Ser	Arg	His	Pro	Ser	Thr	Arg	Gln	Lys	Gln	774
CAA	CCA	ACA	ACC	TTC	TCC	CAG	AAI	TCA	AGA	CAC	CCT	AGC	ACT	ACC	CAA	AAC	CAA	
Phe	Asn	Ala	Thr	Thr	Ile	Pro	Glu	Asn	Asp	Ile	Glu	Lys	Thr	Asp	Pro	Trp	Phe	792
TTT	AAT	GCC	ACC	ACA	ATT	CCA	CAA	AAT	GAC	ATA	GAG	AAG	ACT	GAC	CCT	TGG	TTT	
Ala	His	Arg	Thr	Pro	MET	Pro	Lys	Ile	Gln	Asn	Val	Ser	Ser	Ser	Asp	Leu	Leu	810
GCA	CAC	AGA	ACA	CCT	ATG	CCT	AAA	CAA	ATA	ATA	GTC	TCC	ICT	ACT	CAT	TTC	TTC	
MET	Leu	Leu	Arg	Gln	Ser	Pro	Thr	Pro	His	Gly	Leu	Ser	Leu	Ser	Asp	Leu	Cln	828
ATG	CTC	TTG	CGA	CAG	ACT	CCT	ACT	CCA	CAT	GGG	CTA	TCC	TIA	TCT	GAT	CTC	CAA	
Glu	Ala	Lys	Tyr	Glu	Thr	Phe	Ser	Asp	Asp	Pro	Ser	Pro	Gly	Ala	Ile	Asp	Ser	846
CAA	GCC	AAA	TAT	CAG	ACT	TTT	TCT	GAT	GAT	CCA	TCA	CCT	CCA	ATA	CAC	ACT	GGG	
Asn	Asn	Ser	Leu	Ser	Glu	MET	Thr	His	Phe	Arg	Pro	Cln	Leu	His	Ser	Gly		864
AAT	AAC	ACC	CTG	TCT	CAA	ATG	ACA	CAC	TTC	AGC	CCA	CAC	CTC	CAT	CAC	ACT	GGG	
Asp	MET	Val	Phe	Thr	Pro	Clu	Ser	Gly	Leu	Cln	Leu	Arg	Leu	Asn	Clu	Lys	Leu	882
CAC	ATG	CTA	TTT	ACC	CCT	GAG	TCA	GGC	CTC	CAA	TTA	ACA	ATA	AAU	CAG	AAA	CTG	
Gly	Thr	Thr	Ala	Ala	Thr	Glu	Leu	Lys	Leu	Asp	Phe	Lys	Leu	Val	Ser	Thr	ACA	900
GGC	ACA	ACT	GCA	GCA	ACA	GCA	GAG	TTC	AAA	GAT	TTC	AAA	CTT	TCT	ACT	ACA		
Ser	Asn	Asn	Leu	Ile	Ser	Thr	Ile	Pro	Ser	Asp	Asn	Ile	Leu	Ala	Gly	Thr	Asp	918
TCA	AAT	AAT	CTG	ATT	ICA	ACA	ATT	CCA	TCA	CAC	ATA	TTC	GCA	CCA	GCT	ACT	GAT	
Asn	Thr	Ser	Ser	Leu	Gly	Pro	Fro	Ser	MET	Pro	Val	His	Tyr	Asp	Cln	Leu	TTA	936
AAT	ACA	AGT	TCC	TTA	CGA	CCC	CCA	ACT	ATG	CCA	CTT	CAI	TAT	GAT	ACT	CAA	TTA	
Asp	Thr	Thr	Leu	Phe	Gly	Lys	Lys	Ser	Ser	Pro	Ile	Thr	Glu	Ser	Gly	Cly	CCT	954
CAT	TCC	ACT	CTA	TTT	GGC	AAA	AAG	TCA	TCT	CCC	CTT	ACT	GAC	TCT	GGT	CCA	Pro	
Leu	Ser	Leu	Ser	Glu	Clu	Clu	Asn	Asn	Asp	Ser	Lys	Leu	Clu	Ser	Gly	Leu	MET	972
CTG	ACC	TTG	AGT	CAA	CAA	ATT	ATT	GAT	TCA	AAA	AAU	TTA	AAA	TCA	CCT	TTA	ATC	
Asn	Ser	Gln	Glu	Ser	Ser	Ter	Trp	Gly	Lys	Asn	Val	Ser	Ser	Thr	Gly	Ser	Arg	990
AAT	ACC	CAA	ACT	TCA	TGG	CGA	AAA	AAA	AAT	CTA	AAA	ATA	CTA	ACA	GAG	CGT	ACC	

TABLE 1, continued

Leu	Phe	Lys	Gly	Lys	Arg	Ala	His	Gly	Pro	Ala	Leu	Leu	Thr	Lys	Asp	Asn	Ala	1,008
TTA	TTT	AAA	CGG	AAA	AGA	GCT	CAT	CCA	CCT	GCT	TTG	TTG	ACT	AAA	CAT	AAT	CCC	
Leu	Phe	Lys	Val	Ser	Ile	Ser	Leu	Leu	Lys	Thr	Ala	Lys	Thr	Ser	Asn	Asn	Ser	1,026
TTA	TTC	AAA	GTT	AGC	ATC	TCT	TTG	TTA	AAG	ACA	AAC	AAA	ACT	TCC	AAT	AAT	TCA	
Ala	Thr	Asn	Arg	Lys	Thr	His	Ile	Asp	Gly	Pro	Ser	Leu	Ile	Glu	Asn	Ser	1,044	
CCA	ACT	AAT	AGA	AAC	ACT	CAC	ATT	CAC	CCC	CCA	TCA	TTA	ATT	CAG	AAT	AGT		
Pro	Ser	Val	Trp	Gln	Asn	Ile	Leu	Glu	Ser	Asp	Thr	Glu	Phe	Lys	Lys	Val	Thr	1,062
CCA	TCA	GTC	TCG	CAA	AAT	ATA	TTA	CAA	AGT	GAC	ACT	CAG	TTT	AAA	AAA	GTG	ACA	
Pro	Leu	Ile	His	Asp	Arg	MET	Leu	MET	Asp	Lys	Asn	Ala	Thr	Ala	Leu	Arg	Leu	1,080
CCT	TTC	ATT	CAT	GAC	AGA	ATG	CTT	ATG	GAC	AAA	AAT	GCT	ACA	GCT	TTC	AGG	CTA	
Asn	His	MET	Ser	Asn	Lys	Thr	Thr	Ser	Ser	Lys	Asn	MET	Glu	MET	Val	Cln	Cln	1,098
AAT	CAT	ATG	TCA	AAT	AAA	ACT	ACT	TCA	TCA	AAA	ACC	ATG	CAA	ATG	CTC	CAA	CAG	
Lys	Lys	Glu	Gly	Pro	Ile	Pro	Pro	Asp	Ala	Cln	Asn	Pro	Asp	MET	Ser	Phe	Phe	1,116
AAA	AAA	GAG	GGC	CCC	ATT	CCA	CCA	CAT	CAA	CAA	AAT	CCA	GAT	ATG	ICG	TTC	TTT	
Lys	MET	Leu	Phe	Leu	Pro	Glu	Ser	Ala	Arg	Trp	Ile	Gln	Arg	Thr	His	Gly	Lys	1,134
AAG	ATG	CTA	TTC	TTG	CCA	CAA	TCA	CCA	AGC	TGG	ATA	CAA	AGG	ACT	CAT	GCA	AAG	
Asn	Ser	Leu	Asn	Ser	Gly	Cln	Gly	Pro	Ser	Pro	Lys	Cln	Leu	Val	Ser	Leu	Gly	1,152
AAC	TCT	CTC	AAC	TCT	CCC	CAA	GCC	CCC	AGT	CCA	AAC	CAA	TIA	GTA	TCC	TTA	GCA	
Pro	Glu	Lys	Ser	Val	Clu	Gly	Gln	Asn	Phe	Leu	Ser	Glu	AAA	Asn	Asn	Val	GTC	1,170
CCA	GAA	AAA	TCT	GTC	CAA	GGT	CAG	AAT	TTT	TTG	TCT	CAG	AAA	AVC	AAA	GTC	CTA	
Val	Gly	Lys	Gly	Glu	Phe	Thr	Lys	Asp	Val	Gly	Ile	Lys	Glu	MET	Val	Phe	CCA	1,188
GTA	CGA	AAG	GCT	GAA	TTT	ACA	AAG	CAC	GTA	CGA	CTC	AAA	GAG	ATG	CTT	TTT		
Ser	Ser	Arg	Asn	Leu	Phe	Leu	Thr	Asn	Leu	Asp	Asn	Leu	His	Glu	Asn	Asn	ACA	1,206
AGC	ACC	ACA	AAC	CTA	TTT	CTT	ACT	AAC	TTC	GAT	AAT	TTA	CAT	CAA	AAT	AAT	ACA	
His	Asn	Cln	Glu	Lys	Lys	Ile	Cln	Glu	Ile	Glu	Ile	Glu	Lys	Glu	Thr	Leu	Ile	1,224
CAC	AAT	CAA	CAA	AAA	AAA	ATT	CAG	CAA	ATA	CAA	ATA	CAA	AA	AA	ACA	TTA	ATC	
Cln	Glu	Asn	Val	Val	Leu	Pro	Cln	Ile	His	Val	Val	ACT	Gly	Thr	Lys	Asn	Phe	1,242
CAA	CAG	AAT	GTA	CTT	TTC	CCT	CAG	CAT	CAT	GTC	GTC	ACT	GGC	ACT	AAG	AAT	TTC	
MET	Lys	Asn	Asn	Leu	Phe	Leu	Ser	Thr	Arg	Gln	Asn	Val	Glu	Gly	Ser	Tyr	Glu	1,260
ATG	AAC	AAC	CTT	TTC	TAA	CTG	ACC	ACT	AGC	CAA	AAT	GTA	CAA	GGT	TCA	TAT	GAC	
Gly	Ala	Tyr	Ala	Pro	Val	Leu	Gln	Asp	Phe	Arg	Arg	TTA	Asn	Asp	Ser	Thr	Asn	1,278
GGG	GCA	TAT	GCT	CCA	CTA	CTT	CAA	CAT	TTT	AGC	TCA	TTA	CAT	GAT	TCA	ACA	AAT	
Arg	Thr	Lys	Lys	His	Thr	Ala	His	Phe	Ser	AAA	Lys	AAA	Gly	Glu	Glu	Asn	AAC	1,296
ACA	ACA	AAC	AAA	CAC	UCT	CAC	CAT	TCA	TCA	AAA	AAA	CCC	CGG	CAG	CAG	CAA	TTC	
Glu	Gly	Leu	Gly	Asn	Cln	Thr	Lys	Cln	Ile	Val	Glu	AAA	Tyr	Ala	Cys	Thr	ACA	1,314
CMA	CCC	TTC	CGA	AAT	CAA	ACC	AAC	CAA	ATT	CTA	GAC	AAA	TAT	GCA	TGC	ACC	ACA	
Arg	Ile	Ser	Pro	Asn	Thr	Ser	Cln	Cln	Asn	Phe	Val	CTC	Thr	Cln	Arg	Lys	Arg	1,332
ACC	ATA	TCT	CCT	AAT	ACA	ACC	CAG	CAG	AAT	TTT	CTC	ACC	CGT	ACT	AAC	AGA	ACA	

TABLE 1, continued

Ala	Leu	Lys	Gln	Phe	Arg	Leu	Pro	Leu	Glu	Clu	Thr	Cln	Leu	Glu	Lys	Arg	Ile	1,350
CCT	TTC	AAA	CAA	TTC	AGA	CTC	CCA	CTA	CAA	CIA	ACA	CAA	CTT	CAA	AAA	AGC	ATA	
Ile	Val	Asp	Asp	Thr	Ser	Thr	Gln	Trp	Ser	Lys	Asn	MET	Lys	His	Ile	Thr	1,368	
ATT	GTC	GAT	GAC	ACC	TCA	ACC	CAC	TGG	TCC	AAT	AAC	ATC	AAA	CAT	TTC	ACC	CCG	
Ser	Thr	Leu	Thr	Gln	Ile	Asp	Tyr	Asn	Glu	Lys	Glu	Lys	Gly	Ala	Ile	Thr	1,386	
ACC	ACC	CTC	ACA	CAC	ATA	GAC	TAC	AAT	CAC	AAG	CAC	AAA	CCC	CCC	ATT	ACT	CAC	
Ser	Pro	Leu	Ser	Asp	Cys	Leu	Thr	Arg	Ser	Ser	His	Ser	Ile	Pro	Gln	Ala	Asn	1,404
TCT	CCC	TTA	TCA	GAT	TGC	CTT	ACG	AGG	CAT	CAT	ATC	CCT	CAA	CCA	CCA	AAT	AGA	
Ser	Pro	Leu	Pro	Ile	Ala	Lys	Val	Ser	Ser	Pho	Pro	Ser	Ile	Arg	Pro	Ile	Tyr	1,422
TCT	CCA	TTA	CCC	ATT	GCA	AAG	GTA	TCA	TCA	TTT	CCA	TCT	ATT	AGA	CCT	ATA	TAT	
Leu	Thr	Arg	Val	Leu	Phe	Gln	Asp	Asn	Ser	Ser	Ser	His	Leu	Pro	Ala	Ala	Ser	1,440
CTG	ACC	AGG	GTC	CTA	TTC	CAA	GAC	AAC	TCT	TCT	CAT	CAT	CTT	CCA	CCA	TCT	TAT	
Arg	Lys	Lys	Asp	Ser	Gly	Val	Gln	Glu	Ser	Ser	His	Phe	Leu	Gln	Gly	Ala	Lys	1,458
ACA	AAC	AAA	GAT	TCT	CGG	GTC	CAA	GAA	ACC	ACT	CAT	TTC	TTA	CAA	CGA	GCC	AAA	
Lys	Asn	Asn	Leu	Ser	Leu	Ala	Ile	Leu	Thr	Leu	Glu	MET	Thr	Gly	Asp	Gln	Arg	1,476
AAA	AAT	AAC	CTT	TCT	TTA	GCC	ATT	CTA	ACC	TTC	CAC	ATC	ACT	GTC	GAT	CAA	AGA	
Glu	Val	Gly	Ser	Leu	Gly	Thr	Ser	Ala	Thr	Asn	Ser	Val	Thr	Tyr	Lys	Lys	Val	1,494
GAC	CTT	GGC	TCC	CTG	GGG	ACA	ACT	GCC	ACA	AAT	TCA	CTC	ACA	TAC	AAC	AAA	GTT	
Glu	Asn	Thr	Val	Leu	Pro	Lys	Pro	Asp	Leu	Pro	Lys	Thr	Ser	Gly	Lys	Val	Glu	1,512
CAG	AAC	ACT	CTT	CTC	CCC	AAA	CCA	GAC	TTC	CCC	AAA	ACA	TCT	CGC	VAA	GTT	CAA	
Leu	Leu	Pro	Lys	Val	His	Ile	Tyr	Gln	Lys	Asp	Leu	Pho	Pro	Thr	Glu	Thr	Ser	1,530
TTC	CTT	CCA	AAA	CTT	CAC	ATT	TAT	CAC	AAC	CAC	CTA	TTC	CCT	ACG	CAA	ACT	AGC	
Asn	Gly	Ser	Pro	Gly	His	Leu	Asp	Leu	Val	Glu	Gly	Ser	Leu	Leu	Gln	Gly	Thr	1,548
AAT	CCG	TCT	CCT	GGC	CAT	CTG	GAT	CTC	GTC	CAA	GCG	ACC	CTT	CTT	CAG	CCA	ACA	
Glu	Gly	Ala	Ile	Lys	Trp	Asn	Glu	Ala	Asn	Arg	Pro	Gly	Lys	Val	Pro	Phe	Leu	1,566
GAG	CCA	GGG	ATT	AAC	TGG	AAT	GAA	CCA	AAC	AGA	CCT	CGA	AAA	CTT	CCC	TTT	CTG	
Arg	Val	Ala	Thr	Glu	Ser	Ser	Ala	Lys	Thr	Pro	Ser	Lys	Leu	Leu	Asp	Pro	Leu	1,584
ACA	CTA	CCA	ACA	GAA	ACC	TCT	CCA	AAG	ACT	CCC	TCC	AAG	CTA	TTG	GAT	CCT	CTT	
Ala	Trp	Asp	Asn	His	Tyr	Gly	Thr	Gln	Ile	Pro	Lys	Glu	Clu	Trp	Lys	Ser	Gln	1,602
CCT	TCC	GAT	AAC	CAC	TAT	GCT	ACT	CAC	ATA	CCA	AAA	CAA	CGG	AAA	TCC	CAA	CAA	
Glu	Lys	Ser	Pro	Glu	Lys	Thr	Ala	Pho	Lys	Lys	Lys	Asp	Thr	Ile	Leu	Ser	Leu	1,520
CAA	AAG	TCA	CCA	CAA	AAA	ACA	GCT	TTT	AAG	AAA	AAG	GAT	ACC	ATT	TTC	TCC	TTC	
Asn	Ala	Cys	Glu	Ser	Asn	His	Ala	Ile	Ala	Ala	Ala	Ile	Asn	Glu	Gly	Cln	Asn	1,638
AAC	GCT	TGT	CAA	ACC	AAT	CAT	CCA	ATA	CCA	CCA	ATA	ATA	ATA	CAG	CAA	AAT	AGC	
Pro	Glu	Ile	Glu	Val	Thr	Trp	Ala	Lys	Gln	Gly	Arg	Thr	Glu	Arg	Leu	Cys	TCT	1,656
CCC	GAA	ATA	CAA	GTC	ACC	TGG	GCA	AAC	CAA	GCT	AUC	ACT	CAA	AGC	CTG	TCC	TCT	
Gln	Asn	Pro	Pro	Vnl	Ile	Lys	Arg	His	Gln	Arg	Glu	Ile	Thr	Arg	Thr	Ile	Leu	1,674
CAA	AAC	CCA	CCA	CTG	TTC	AAA	CCC	CAT	CAA	CCC	CAA	ATA	ACT	CCT	ACT	ACT	CTT	

TABLE 1, continued

Cln	Ser	Asp	Cln	Glu	Glu	Ile	Asp	Tyr	Asp	Asp	Asp	Thr	Ile	Ser	Val	Glu	MET	Lys	1,692
CAG	ICA	GAT	CAA	GAG	GAA	ATT	GAC	TAT	CAT	CAT	CAT	ACC	ATA	TCA	GTT	CAA	ATG	AAC	
Lys	Glu	Asp	Phe	Asp	Ile	Tyr	Asp	Glu	Asp	Glu	Asn	Cln	Ser	Pro	Arg	Ser	Phe	1,710	
AAC	CAA	GAT	TTT	GAC	ATT	TAT	CAT	GAG	CAT	CAA	ATC	CAC	ACC	CCC	CGC	ACC	TTT		
Cln	Lys	Lys	Thr	Arg	His	Tyr	Phe	Ile	Ala	Ala	Val	Clu	Arg	Leu	Trp	Asp	Tyr	1,728	
CAA	AAG	AAA	ACA	CCA	CAC	TAT	TTT	ATT	GCT	CCA	GTC	GAG	ACC	CTC	TGG	GAT	TAT		
Gly	MET	Ser	Ser	Pro	His	Val	Leu	Arg	Asn	Arg	Ala	Gln	Ser	Gly	Ser	Val	1,746		
GGG	ATG	AGT	AGC	TCC	CCA	CAT	GTT	CTA	ACA	AAC	AGG	GCT	CAG	AGT	GGC	ACT	GTC		
Pro	Cln	Phe	Lys	Lys	Val	Val	Phe	Gln	Glu	Phe	Thr	Asp	Gly	Ser	Phe	Thr	Cln	1,764	
CCT	CAG	TTC	AAG	AAA	GTT	GTT	TTC	CAG	CAA	ITT	ACT	GAT	GGC	TCC	TTT	ACT	CAG		
Pro	Leu	Tyr	Arg	Gly	Glu	Leu	Asn	Glu	His	Leu	Gly	Leu	Leu	Gly	Pro	Tyr	Ile	1,782	
CCC	TIA	IAC	CGT	GGA	GAA	CTA	AAT	GAA	CAT	ITC	GCA	CTC	CTG	GGG	CCA	TAT	ATA		
Arg	Ala	Glu	Val	Glu	Asp	Asn	Ile	MET	Val	Thr	Phe	Arg	Asn	Gln	Ala	Ser	Arg	1,800	
AGA	GCA	GAA	GTT	GAA	GAT	AAT	ATC	ATG	GTA	ACT	ITC	AGA	AAT	CAG	GCC	TCT	CGT		
Pro	Tyr	Ser	Phe	Tyr	Ser	Ser	Leu	Ile	Ser	Tyr	Glu	Glu	Asp	Gln	Arg	Cln	Gly	1,818	
CCC	TAT	TCC	TTC	TAT	ICT	ACC	CTT	ATT	TCT	TAT	GAG	GAA	GAT	CAG	AGG	CAA	GGG		
Ala	Glu	Pro	Arg	Lys	Asn	Phe	Val	Lys	Pro	Asn	Glu	Thr	Lys	Thr	Tyr	Phe	Trp	1,836	
CCA	CAA	CCT	AGA	AAA	AAC	TTT	GTC	AAG	CCT	AAT	CAA	ACC	AAA	TAC	TTT	TGG			
Lys	Val	Gln	His	His	MET	Ala	Pro	Thr	Lys	Asp	Glu	Phe	Asp	cys	Lys	Ala	Trp	1,854	
AAA	CTG	CAA	CAT	CAT	ATG	GCA	CCC	ACT	AAA	GAT	GAG	TTT	GAC	TGC	AAA	GCC	TCG		
Ala	Tyr	Phe	Ser	Asp	Val	Asp	Leu	Glu	Lys	Asp	Val	His	Ser	Gly	Ile	Gly	1,872		
GCT	TAT	TTC	TCT	GAT	GTT	GAC	CTG	GAA	AAA	CAT	GTC	CAC	TCA	CCC	CTG	ATT	CGA		
Pro	Leu	Leu	Val	Cys	His	Thr	Asn	Thr	Leu	Asn	Pro	Ala	His	Gly	Arg	Cln	Val	1,890	
CCC	CTT	CTG	CTC	TGC	CAC	ACT	AAC	ACA	CTG	AAC	CCT	CAT	GCT	GGG	AGA	CAA	CTG		
Thr	Val	Cln	Glu	Phe	Ala	Leu	Phe	Phe	Thr	Ile	Phe	Asp	Glu	Thr	Lys	Ser	Trp	1,908	
ACA	CTA	CAG	GAA	TTT	GCT	CTG	TTT	TTT	ACC	ATC	TTT	GAT	GAC	ACC	AAA	AGC	TCG		
Thy	Phe	Thr	Glu	Asn	MET	Glu	Arg	Asn	Cys	Arg	Ala	Pro	Cys	Asn	Ile	Cln	MET	1,926	
TAC	TTC	ACT	CAA	AAT	ATG	CAA	AGA	AGA	TGC	AGC	GCT	CCC	TCC	AAT	ATC	CAG	ATG		
Glu	Asp	Pro	Thr	Phe	Lys	Glu	Asn	Thr	Arg	Phe	His	Ala	Ile	Asn	Gly	Tyr	Ile	1,944	
CAA	GAT	CCC	ACT	TTT	AAA	GAG	AAT	TAT	CGC	TTC	CAT	ATC	AAT	GGC	TAC	ATA	ATA		
MET	Asp	Thr	Leu	Pro	Gly	Leu	Val	MET	Ala	Gln	Asp	Gln	Arg	Ile	Arg	Trp	Tyr	1,962	
ATG	CAT	ACA	CTA	CCT	GGC	TTA	GTA	ATG	GCT	CAC	CAT	CAA	AGC	ATT	CGA	TCG	TAT		
Leu	Leu	Ser	MET	Gly	Ser	Asn	Glu	Asn	Ile	His	Ser	Ile	His	Phe	Ser	Cly	His	1,980	
CTG	CTC	ACC	ATG	GGC	ACC	AAT	CAA	AAC	ATC	CAT	TCT	ATT	CAT	TTC	ACT	GA	CAT		
Val	Phe	Thr	Val	Arg	Lys	Lys	Glu	Glu	Tyr	Lys	MET	Ala	Ile	Tyr	Asn	Ile	Tyr	1,998	
GTC	TTC	ACT	CTA	CCA	AAA	AAA	CAG	GAC	ATC	AAA	ATC	GCA	CTG	TAC	AAT	CTC	TAT		
Pro	Gly	Val	Phe	Glu	Thr	Val	Glu	Glu	TAT	Lys	MET	Ala	Ile	Tyr	Asn	Ile	Tyr	2,016	
CCA	GGT	CTT	TTT	GAC	ACA	GTG	CAA	MET	ATG	TTA	Pro	Ser	CCC	Lys	Ala	Gly	ATT		

9

TABLE 1, continued

Val	Glu	Cys	Leu	Ile	Gly	Glu	His	Leu	His	Ala	Gly	MET	Ser	Thr	Leu	Phe	Leu	2,034
CTG	CAA	TCC	CTT	ATT	GGC	CAG	CAT	CTA	CAT	CCT	CGG	ATG	AGC	ACA	CTT	TTT	CTC	
Val	Tyr	Ser	Asn	Lys	Cys	Glu	Thr	Pro	Leu	Gly	MET	Ala	Ser	Gly	His	Ile	Arg	2,052
CTG	TAC	ACC	AAT	AAG	TGT	CAG	ACT	CCC	CTG	CGA	ATG	GCT	TCT	CGA	CAC	ATT	ACA	
Asp	Phe	Gln	Ile	Thr	Ala	Ser	Gly	Gln	Tyr	Gly	Gln	Trp	Ala	Pro	Lys	Leu	Ala	2,070
CAT	TTT	CAG	ATT	ACA	GCT	TCA	CGA	CAA	TAT	CCA	CAG	TGG	CCC	CCA	AAC	CTG	CCC	
Arg	Leu	His	Tyr	Ser	Gly	Ser	Ile	Asn	Ala	Trp	Ser	Thr	Lys	Glu	Pro	Phe	Ser	2,088
ACA	CTT	CAT	TAT	TCC	GGG	TCA	ATC	AAT	GCC	TCG	ACC	ACC	AAC	GAG	CCC	TTT	TCT	
Trp	Ile	Lys	Val	Asp	Leu	Leu	Ala	Pro	MET	Ile	Ile	His	Gly	Ile	Lys	Thr	Gln	2,106
TGG	ATC	AAG	CTG	GAT	CTG	TTC	GCA	CCA	ATG	ATT	ATT	CAC	GCC	ATC	AAG	ACC	CAC	
Gly	Ala	Arg	Gln	Lys	Phe	Ser	Ser	Leu	Tyr	Ile	Ser	Gln	Phe	Ile	Ile	MET	Tyr	2,124
CGT	GCC	CGT	CAG	AAG	TTC	TCC	AGC	CTC	TAC	ATC	TCT	CAG	TTT	ATC	ATC	ATG	TAT	
Ser	Leu	Asp	Gly	Lys	Lys	Trp	Gln	Thr	Tyr	Arg	Gly	Asn	Ser	Thr	Gly	Thr	Leu	2,142
ACT	CTT	GAT	GGG	AAC	AAG	TCG	CAG	ACT	TAT	CGA	CGA	AAT	TCC	ACT	CCA	ACC	TTA	
MET	Val	Phe	Phe	Gly	Asn	Val	Asp	Ser	Ser	Gly	Ile	Lys	His	Asn	Ile	Phe	Asn	2,160
ATG	CTC	TTC	TTT	CCC	AAT	CTC	TCG	CAT	TCA	TCT	CGG	ATA	AAA	CAC	AAT	TTT	AAC	
Pro	Pro	Ile	Ile	Ala	Arg	Tyr	Ile	Arg	Leu	His	Pro	Thr	His	Tyr	Ser	Ile	Arg	2,178
CCT	CCA	ATT	ATT	CCT	CGA	TAC	ATC	CGT	TTC	CAC	CCA	ACT	CAT	TAT	AGC	ATT	CCC	
Ser	Thr	Leu	Arg	MET	Glu	Leu	MET	Gly	Cys	Asp	Lys	Asn	Ser	Cys	Ser	MET	Pro	2,196
ACC	ACT	CTT	CCC	ATG	GAG	TTC	ATG	CCC	TGT	GAT	TAA	AAT	ACT	TCC	AGC	ATG	CCA	
Leu	Gly	MET	Glu	Ser	Lys	Ala	Ile	Ser	Asp	Ala	Cln	Ile	Thr	Ala	Ser	Ser	Tyr	2,214
TTC	CGA	ATG	GAG	AGT	AAA	CCA	ATA	TCA	GAT	CAG	CAG	ATT	ACT	GCT	TCA	TCC	TAC	
Phe	Thr	Asn	MET	Phe	Ala	Thr	Trp	Ser	Pro	Ser	Lys	Ala	Arg	Leu	His	Leu	Gln	2,232
ITT	ACC	AAT	ATG	TTT	GCC	ACC	TGG	TCC	CCT	TCA	AAA	GCT	CGA	CTT	CAC	CTC	CAA	
Gly	Arg	Ser	Asn	Ala	Trp	Arg	Pro	Gln	Val	Asn	Asn	Pro	Lys	Glu	Trp	Leu	Cln	2,250
CGG	AGG	ACT	AAT	CCC	TGG	AGA	CCT	CAG	GTC	AAAT	AAAT	CCA	AAA	CAG	TGG	CTC	CAA	
Val	Asp	Phe	Gln	Lys	Thr	MET	Lys	Val	Thr	Gly	Val	Thr	Thr	Cln	Gly	Val	Lys	2,268
CTG	GAC	TTC	CAC	AAG	ACA	ATG	AAA	GTC	ACA	CTA	CTA	ACT	ACT	CAG	CGA	CTA	AAA	
Ser	Leu	Leu	Thr	Ser	MET	Tyr	Val	Lys	Glu	TTC	CTC	Ile	Ser	Ser	Cln	Asp	CAT	2,286
TCT	CTG	CTT	ACC	ATC	TAT	GTC	AAG	GAG	GAG	CTC	ATC	ATC	TCC	ACT	CAA	CTG	CAT	
Gly	His	Gln	Trp	Thr	Leu	Phe	Cln	Asn	Cly	CCC	AAA	Lys	Val	Val	Phe	Cln	Gly	2,304
CCC	CAT	CAG	TGG	ACT	CTC	TTT	TTT	CAG	CGA	AAA	CTA	AAC	TTT	TTT	CAG	CGA	CGA	
Asn	Gln	Asp	Ser	Phe	His	Pro	Gln	Ser	Irf	Val	His	Gln	Ile	Ala	Leu	Leu	Thr	2,322
AAT	CAA	GAC	TCC	TTC	ACA	CCT	CGC	CTG	AGT	TGG	CAC	CAC	ACT	CCA	CCG	TTA	CTG	
Arg	Tyr	Leu	Arg	Ile	His	Pro	Gln	Ser	Irf	Val	His	Gln	Ile	Ala	Leu	Arg	MET	2,340
CCC	TAC	CTT	CGA	ATT	CAC	CCC	CAG	AGT	TGG	CAC	CAC	ATT	CCC	CTG	AGC	CTG	ATG	
Glu	Val	Leu	Gly	Cys	Glu	Ala	Gln	Asp	Leu	Tyr	End	TGA	GGGTCCCCACTCCATCCCCACCTTCTTCT				2,352	
GAG	CTT	CTG	GGC	TGC	GAC	CCA	CAG	GAC	CAC	TAC	TGA	GGGTCCCCACTCCATCCCCACCTTCTTCT						
CCGTCACCTCTCCCTCCTAGCTCCAGGGCATGTCCTCCCTGGCTTCTACCTTTGCTAAATCTTACCCAGCACACTCTTCT																		
AAGCCTCTGAATTAACATATCATCACTCCTCCATTCTTCTGGCTGGGGGGCTCCATCCATTAACTTAACTTACCTTACCTTATT																		
TTCTGCCACCTGCTCCCAGA																		

XI

10

1000 followed by the amino acid sequence of Asp-1582 to Arg--
1708. That compound thus comprises the polypeptide sequence
of Ala-20 to Pro-1000 covalently linked by a peptide bond to
amino acids Asp-1582 to Tyr-2351. Another exemplary compound
5 contains a region X comprising the amino acid sequence Ser-760
to Thr-778 followed by the sequence Pro-1659 to Arg-1708.
That compound thus comprises the polypeptide sequence Ala-20
to Thr-778 covalently linked by a peptide bond to the sequence
Pro-1659 through Tyr-2351. Still another exemplary compound
10 contains a region X comprising the amino acid sequence Ser-760
to Thr-778 followed by the sequence Glu-1694 to Arg-1708.
That compound thus comprises the polypeptide sequence Ala-20
to Thr-778 covalently linked by a peptide bond to amino acids
Glu-1694 through Tyr-2351.

P 15 These exemplary compounds are depicted schematically in
Table 2.

The amino acid sequence represented by X should be selected
so that it does not substantially reduce the procoagulant
20 activity of the molecule, which activity can be conveniently
assayed by conventional methods. Compound (2) of Table 2 is a
presently preferred embodiment.

The procoagulant protein may be produced by appropriate host
25 cells transformed by factor VIII:C DNA which has been specific-
ally altered by use of any of a variety of site-specific muta-
genesis techniques which will be familiar to those of ordinary
skill in the art of recombinant DNA.

30 The starting materials may be a DNA sequence which codes for
the complete factor VIII:C molecule, e.g., the complete human
factor VIII:C as shown in Table 1, a truncated version of that
sequence, or it may comprise segments of that DNA sequence, so
long as the starting materials contain at least sufficient DNA
35 to code for the amino acid sequences of the desired polypeptide.

TABLE 2: EXEMPLARY COMPOUNDS A-X-B

<u>Compound</u>	<u>Amino Acid Sequence</u>	<u>X</u>	<u>Deletion</u>
(human factor VIII:c)	(Ala ₂₀ → Tyr ₂₃₅₁)	(Ser ₇₆₀ → Arg ₁₇₀₈)	0
1	(Ala ₂₀ → Pro ₁₀₀₀) - (Asp ₁₅₈₂ → Tyr ₂₃₅₁)	(Ser ₇₆₀ → Pro ₁₀₀₀) - (Asp ₁₅₈₂ → Arg ₁₇₀₈)	581
2	(Ala ₂₀ → Thr ₇₇₈) - (Pro ₁₆₅₉ → Tyr ₂₃₅₁)	(Ser ₇₆₀ → Thr ₇₇₈) - (Pro ₁₆₅₉ → Arg ₁₇₀₈)	880
3	(Ala ₂₀ → Thr ₇₇₈) - (Glu ₁₆₉₄ → Tyr ₂₃₅₁)	(Ser ₇₆₀ → Thr ₇₇₈) - (Glu ₁₆₉₄ → Arg ₁₇₀₈)	915

A and B are as defined, supra; "-" represents a peptide bond; "→" indicates a polypeptide sequence inclusive of the specified amino acids; amino acid numbering corresponds to the numbering of the sequence depicted in Table 1; and "deletion" indicates the number of amino acids deleted relative to human factor VIII:c.

TO120X

12

12

p procoagulant

The procoagulant-proteins of the present invention, in addition to lacking a substantial amino acid segment of human factor VIII:C, also have fewer potential N-glycosylation sites than human factor VIII. Preferably, at least one N-glycosylation site 5 has been deleted. More preferably, 18 of the 25 potential N-glycosylation sites are not in the molecule. In still more preferred embodiments, up to 19 of the 25 potential N-glycosylation sites are removed. While not wishing to be bound by theory, it is presently believed that the antibodies to factor 10 VIII:C which are directed to antigenic determinants contained in the protein segment deleted in accordance with this invention, i.e., in the amino acid segment itself or in the carbohydrate portion of the glycosylated protein, will not neutralize the procoagulant proteins of the present invention. Moreover, 15 the fact that the procoagulants of the present invention lack many of the sites for non-human glycosylation by the non-human mammalian or other cells used to produce the proteins is also believed to reduce the antigenicity of that protein, and lessen the likelihood of developing antibodies to the procoagulants. 20 This may enable facilitating the treatment of patients in need of procoagulant therapy.

I contemplate that my compounds can be produced by recombinant DNA techniques at a much lower cost than is possible for production of human factor VIII. The host organisms should more 25 efficiently process and express the substantially simpler molecules of this invention.

The compounds of this invention can be formulated into pharmaceutically acceptable preparations with parenterally acceptable 30 vehicles and excipients in accordance with procedures known in the art.

The pharmaceutical preparations of this invention, suitable for 35 parenteral administration, may conveniently comprise a sterile lyophilized preparation of the protein which may be reconsti-

tuted by addition of sterile solution to produce solutions preferably isotonic with the blood of the recipient. The preparation may be presented in unit or multi-dose containers, e.g. in sealed ampoules or vials. Their use would be analogous
5 to that of human factor VIII, appropriately adjusted for potency.

One method by which these proteins can be expressed is by use of DNA which is prepared by cutting a full-length factor VIII:C DNA with the appropriate restriction enzymes to remove
10 a portion of the DNA sequence that codes for amino acids 760 to 1708 of human factor VIII:C. The cut DNA is then ligated with an oligonucleotide that resects the cut DNA and maintains the correct translational reading frame.

15 Preparation of the cDNA has been set forth in detail in U.S. Patent Applications Serial Nos. 546,650 and 644,086, supra. A pSP64 recombinant clone containing the nucleotide sequence depicted in Table 1, designated as pSP64-VIII, is on deposit at the American Type Culture Collection under Accession Number
20 ATCC 39812.

Restriction endonucleases are used to obtain cleavage of the human factor VIII:C cDNA, hereinafter the DNA source sequence, at appropriate sites in the nucleotide sequence. Unless
25 otherwise noted, restriction endonucleases are utilized under the conditions and in the manner recommended by their commercial suppliers. The restriction endonucleases selected herein are those which will enable one to excise with substantial specificity sequences that code for the portion of the factor
30 VIII:C molecule desired to be excised. BamHI and SacI are particularly useful endonucleases. However, the skilled artisan will be able to utilize other restriction endonucleases chosen by conventional selection methods. The number of nucleotides deleted may vary but care should be taken to
35 insure that the reading frame of the ultimate cDNA sequence will not be affected.

P The resulting DNA fragments are then purified using conventional techniques such as those set forth in Maniatis et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory 1982) the disclosure of which is incorporated herein by reference, and 5 Proc. Natl. Acad. Sci. 76:615-619 (1979). The purified DNA is then ligated to form the sequence encoding the polypeptide of the preferred invention. When necessary or desirable, the ligation may be within an oligonucleotide that resects the cut DNA and maintains the correct translational reading frame 10 using standard ligation conditions. Ligation reactions are carried on as described by Maniatis et al., supra at 2453-6 using the buffer described at page 246 thereof and using a DNA concentration of $\frac{1}{14}$ 100 ug/ml, at a temperature of 23°C for blunt ended DNA and 16°C for "sticky ended" DNA. The following 15 double-stranded oligonucleotide is useful when there is BamHI/- SacI deletion such as described infra, PS

TI 5' P-CATGGACCG-3' PS
TI 3'-TCGAGTACCTGGCCTAG 5'; PS

PS₂₀ but other oligonucleotides can be selected by the skilled artisan depending upon the deletions made and reaction conditions.

P The DNA sequences encoding the novel procoagulant polypeptides can, in addition to other methods, be derived from the sequence 25 of human factor VIII:C DNA by application of oligonucleotide-mediated deletion mutagenesis, often referred to as "loopout" mutagenesis, as described for example in Morinaga, Y. et al. Biotechnology, 2: 636-639 (1984). 14

30 The new DNA sequences containing the various deletions can then be introduced into appropriate vectors for expression in mammalian cells. The procoagulant activity produced by the transiently transfected or stably transformed host cells may 35 be measured by using standard assays for blood plasma samples.

P The eukaryotic cell expression vectors described herein may be synthesized by techniques well known to those skilled in this art. The components of the vectors such as the bacterial replicons, selection genes, enhancers, promoters, and the like 5 may be obtained from natural sources or synthesized by known procedures. See Kaufman et al., J. Mol. Biol., 159: 51-521 (1982); Kaufman, Proc. Natl. Acad. Sci. 82: 689-693 (1985).
/ _____ / 14

Established cell lines, including transformed cell lines, are 10 suitable as hosts. Normal diploid cells, cell strains derived from in vitro culture of primary tissue, as well as primary explants (including relatively undifferentiated cells such as haematopoietic stem cells) are also suitable. Candidate cells need not be genotypically deficient in the selection gene so 15 long as the selection gene is dominantly acting.

The host cells preferably will be established mammalian cell lines. For stable integration of the vector DNA into chromosomal DNA, and for subsequent amplification of the integrated vector 20 DNA, CHO (Chinese hamster ovary) cells are presently preferred. See U.S. Patent 4,399,216. Alternatively, the vector DNA could include all or parts of the bovine papilloma virus genome (Lusky et al., Cell, 36: 391-401 (1984) and be carried in cell lines such as C127 mouse cells as a stable episomal 25 element. Other usable mammalian cell lines include HeLa, COS-1 monkey cells, melanoma cell lines such as Bowes cells, mouse L-929 cells, 3T3 lines derived from Swiss, Balb-c or NIH mice, BHK or HaK hamster cells lines and the like.

30 Stable transformants then are screened for expression of the procoagulant product by standard immunological or enzymatic assays. The presence of the DNA encoding the procoagulant proteins may be detected by standard procedures such as Southern blotting. Transient expression of the procoagulant genes 35 during the several days after introduction of the expression

16

vector DNA into suitable host cells such as COS-1 monkey cells is measured without selection by enzymatic or immunologic assay of the proteins in the culture medium.

- 5 The invention will be further understood with reference to the following illustrative embodiments, which are purely exemplary, and should not be taken as limiting the true scope of the present invention, as described in the claims.

10

15

20

25

30

35

(7)

DE
CL

17

EXAMPLE 1

10 ug. of the plasmid pACE, a pSP64 (Promega Biotec, Madison, Wis.) derivative, containing nucleotides 562-7269 of human factor VIII:C cDNA (nucleotide 1 is the A of the ATG initiator methionine codon) was subjected to partial BamHI digestion in 100ul containing 50mM Tris.HCl ph 8.0, 50mM MgCl₂, and 2.4 units BamHI (New England Biolabs) for 30 minutes at 37°C. The reaction was terminated by the addition of EDTA to 20mM and then extracted once with phenol, once with chloroform , ethanol 10 precipitated and pelleted by centrifugation. DNA was redissolved, cleaved to completion in 50ul using 40 units SacI for 1.5 hours at 37°C. DNA was then electrophoresed through a buffered 0.6% agarose gel. An 8.1 kb fragment corresponding to the partial BamHI-SacI fragment of pACE lacking only the 15 sequence corresponding to nucleotides 2992-4774 of the factor VIII:C sequence was purified from the gel using the glass powder technique described in Proc. Nat. Acad. Sci. 76; 615-619 (1979). Purified DNA was ligated with 100 pmoles of the following double-stranded oligonucleotide PS.

20

PS

using standard ligation conditions. The DNA sequence removed represents the deletion of 584 amino acid sequence beginning 25 with amino acid 998 and continuing through 1581. The oligonucleotide inserted, however, encodes amino acids corresponding to 998-1000. Therefore, the polypeptide encoded contains ¹⁴ deletion of 581 amino acids.

P

30 DNA was then used to transform competent E. coli bacteria, and DNA from several ampicillin resistant transformants was analyzed by restriction mapping to identify a plasmid harboring the desired SacI-BamHI deletion mutant. DNA from this plasmid was digested to completion with KpnI, which cleaves the plasmid 35 uniquely at nucleotide 1816 of the factor VIII:C coding se-

18

quence. This DNA was ligated with a KpnI DNA fragment containing nucleotides 1-1815 of factor VIII:C DNA and a synthetic SalI site at nucleotides ³¹-11 to ³¹-5 and then used to transform competent E. coli bacteria.

5

Plasmid DNA was isolated and oriented by restriction mapping to identify a plasmid, pBSDK, containing the correct 5' to 3' orientation of the KpnI insert. SalI digestion, which excises the entire polypeptide coding region from the plasmid, was performed 10 and the DNA electrophoresed through a buffered 0.6% agarose gel. The 5.3Kb SalI fragment was purified from the gel as described above. This DNA fragment was ligated with XhoI cut pXMT2 DNA to give rise to plasmid pDGR-2. pXMT2 is a plasmid capable of expressing heterologous genes when introduced into mammalian 15 cells such as the COS-1 African Green Monkey kidney cell line, and is a derivative of the expression vectors described in Kaufman, supra at 689¹⁴-93. The expression elements are the same as described for plasmid pQ2 except that it contains a deletion of the adenovirus major late promoter extending from 20₃₁-45 to +156 with respect to the transcription start site of the adenovirus major late promoter. mRNA expression in pXMT is driven by the SV40 late promoter. The bacterial replicon, however, has been substituted to render bacteria containing the vector resistant to ampicillin rather than tetracycline. 25 pXMT2 contains a unique Xho I site at a position which allows for expression of inserted cDNA from the SV40 late promoter. This Xho I site is convenient for inserting factor VIII:C cDNA constructs since these are flanked by SalI sites.

30 Restriction mapping of transformants identified a plasmid, pDGR-2, containing the correct 5' to 3' orientation of the polypeptide coding sequence relative to the direction of transcription from the SV40 late promoter. pDGR-2 is on deposit at the American Type Culture Collection under Accession number 35 53100.

CL

EXAMPLE 2

P Other novel procoagulant proteins may be obtained from constructs produced by oligonucleotide mediated deletion mutagenesis, using 5 for example the "loopout" mutagenesis techniques as described in Morinaga et al., supra. The deletion mutagenesis is performed using expression plasmid pDGR-2 or any other appropriate plasmid or bacteriophage vector. Other methods for oligonucleotide mediated mutagenesis employing single stranded DNA produced with 10 M13 vectors and the like are also suitable. See Zoller et al., Nucl. Acids Res. 10: 6487-¹⁴6500 (1982). For example, these deletions can be produced using the oligonucleotides *PS*

TI

(A) 5' AAAAGCAATTAAATGCCACCCACCAGTCTGAAACGCCA

*PS*TI¹⁵

(B) 5' AAAAGCAATTAAATGCCACCGAAGATTGACATTTATGA

*PS**PS*

to cause deletions in factor VIII:C cDNA from nucleotides (A) 2334 to 4974 or (B) 2334 to 5079. The proteins encoded by these constructs contain deletions of (A) 880 and (B) 915 amino acids 20 relative to Factor VIII:C.

P

The deleted constructs are tested directly, or after subcloning into appropriate expression vectors, in order to determine if the novel proteins possess procoagulant activity. Procoagulant 25 activity was assayed as described in Examples 3 and 4.

CL

EXAMPLE 3

P Expression of Procoagulant Molecules in COS Monkey Cells

30 The expression plasmids containing the modified cDNA's prepared as in Examples 1 or 2 and the full-length cDNA, pXMT-VIII, were introduced into COS-1 cells via the DEAE-dextran transfection protocol. Sompayrac and Dana 1981, Proc. Natl. Acad. Sci. 78: 7575-¹⁴7578. Conditioned media was harvested 48 hours 35 post-transfection and assayed for factor VIII-type activity as described in Toole et. al., 1984, Nature 312:342-347. The *14*

20

results of the experiment are summarized in Table 3. Both plasmids containing the modified cDNAs yielded procoagulant activity and, moreover, the activity was greater than that obtained using wild type cDNA. From these data it was concluded
5 that removal of up to 880 amino acids (95,000 daltons) in a defined domain of human factor VIII does not destroy cofactor activity. Furthermore, these abridged procoagulant proteins retain their ability to be activated by thrombin.

10

15

20

25

30

35

21

T0220X

TABLE 3: EXPRESSION OF ABRIDGED FACTOR VIII MOLECULES

5

plasmid	# amino acids deleted	chromogenic activity (mUml ⁻¹)	Clotek activity -IIa	+IIa (fold)
No DNA	-	0		
pXMT-VIII	-	15:1	-	450
pDGR-2	581	114	250	5750 (23X)
pLA-2	880	162	330	9240 (28X)

PS

The plasmids indicated were transfected into COS cells and 48 hr. post-transfection the conditioned media taken for assay by the Kabi Coatest factor VIII:C method (chromogenic activity) and by the one-stage activated partial thromboplastin time (APTT) coagulation assay (Clotek activity) using factor VIII:C deficient plasma as described (Toole, *Nature* 1984). For thrombin (IIa) activation, samples were pretreated 1/4 min, with 0.2 units/ml thrombin (IIa) at room temperature. Activation coefficients are provided in parentheses. Activity from media from the wild-type (pXMT-VIII) transfection was too low to directly measure Clotek activity before thrombin activation. From other experiments where the wild type factor VIII activity was concentrated, it was demonstrated to be approximately 30-fold activatable.

CL

EXAMPLE 4

CL Expression of Procoagulant Molecules in CHO Cells

P (A) Expression of pDGR-2

⁵ P The procoagulant expression vector containing a deletion (relative to the Factor VIII:C cDNA) of 581 amino acids (pDGR-2) was transfected with plasmid pAdd26SV(A)⁹⁰#3 (10 ug pDGR-2:1 ug pAdd26SV(A)⁹⁰#3) by CaPO₄ coprecipitation into CHO DHFR deficient ¹⁰ cells (DUKX-B11) and transformants isolated and grown in increasing concentrations of MTX as described by Kaufman et. al., (1985). One transformant designated J1 exhibited the following activities as a function of resistance to increasing concentrations of MTX.

15

TC230X	<u>uM MTX</u>	<u>mUnits/ml/day/10⁶ cells*</u>
	0	1.46
	0.02	322
	0.1	499

20

P (B) Expression of pLA-2

¹⁰ P The procoagulant expression vector containing a deletion of 880 amino acids (pLA-2) was introduced into CHO DHFR deficient ²⁵ cells (DUKX-B11, Chasin and Urlaub, PNAS 77: 4216-4220, 1980 by protoplast fusion as described (Sandri-Goldin et. al., Mol. Cell. Biol. 1: 743-752). After fusion, fresh medium containing 100 ug/ml of kanamycin, and 10 ug/ml of each of thymidine, adenosine, deoxyadenosine, penicillin, and streptomycin and ³⁰ 10% dialyzed fetal calf serum was added to each plate. The kanamycin was included to prevent the growth of any bacteria which had escaped conversion to protoplasts. Four days later the cells were subcultured 1:15 into alpha-media with 10% dialyzed fetal calf serum, penicillin, and streptomycin, but ³⁵ lacking the nucleosides. Colonies appeared after 10-12 days after subculturing cells into selective media. A group of ¹⁴ B

23

23

B
transformants were pooled and grown in sequentially increasing concentrations of MTX starting at 0.02 uM with steps to 0.1, 0.2, and 1.0 uM MTX. Results of factor VIII-type activity in cells resistant to increasing concentrations of MTX is shown below.

	<u>uM MTX</u>	<u>mUnits/ml/day/10⁶ cells*</u>
	0	16
	0.02	530
10	0.2	1170
	1.0	1890

* Factor VIII activity was determined by the Kabi Coatest factor VIII:C method (chromogenic activity).

15

20

25

30

35

24