Course outline

- Fundamentals
 - Notation
 - Functions
 - Approximation
- Series
 - Summation
 - Taylor series
- Linear algebra
 - Representing big, complex, data
 - Systems of equations
 - Dimension reduction
- Probability
 - Discrete random variables
 - ► Continuous random variables & integration
- Optimisation

How does a computer represent a logistic (or any non-trivial) function?

$$y = f(x) = \frac{1}{1 + e^{-(ax+b)}} = \frac{e^{ax+b}}{1 + e^{ax+b}}.$$

Linear approximation

Linear approximation

Orange line is the tangent line at $x_0 = 0.5$:

$$P_1(x) = f(x_0) + f'(x_0)(x - x_0)$$

Quadratic approximation

Green line is a quadratic function:

$$P_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$$

Taylor polynomials

It turns out we can keep going!

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

And these sums can be made exact if we add an *infinite* number of terms.

Summation notation

If a_1, a_2, \ldots, a_n are real numbers, the sum of a_1, \ldots, a_n is written

$$a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i$$

$$= \sum_{k=1}^n a_k$$

$$= \sum_{q=1}^n a_q$$

$$= \sum_{x=7}^{n+1} a_{x-1}$$

$$= \sum_{1 \le k \le n} a_k.$$

Summation notation

Example

$$\sum_{i=3}^{3} i = 5 + 4 + 3 + 6$$

$$\sum_{j=0}^{3} 2^{j} = 2^{\circ} + 2^{1} + 2^{2} + 2^{3} = 1 + 2 + 4 + 8 = 15.$$

$$\bullet$$
 $\sum_{i=1}^{4} 2 - 2 + 2 + 2 + 2 = 8 = 4 \times 2$

Summation notation

Example

What is $2^3 + 3^3 + \cdots + n^3$ in sigma notation?

$$\sum_{k=3}^{(k-1)^3} (k-1)^3 = \sum_{j=1}^{(k-1)^3} (j+1)^3$$

Properties of \sum

$$\sum^n ca_i = c \sum^n a_i \quad \text{for } c \text{ a constant}$$

3

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$$

$$\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i$$

① But!
$$\sum_{i=m}^{n} (a_i \times b_i) \quad \neq \quad \left(\sum_{i=m}^{n} a_i\right) \times \left(\sum_{i=m}^{n} b_i\right)$$

$$\sum_{i=m}^{n} \frac{a_i}{b_i} \neq \frac{\sum_{i=m}^{n} a_i}{\sum_{i=m}^{n} b_i} \Rightarrow \frac{a_1}{b_1} + \frac{a_2}{b_2} \neq \frac{a_1 + a_2}{b_1 + b_2}$$

An important concept!

$$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i \quad \text{for } c \text{ a constant}$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$$

mean that summation is a linear operator.

An important concept!

$$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i \quad \text{for } c \text{ a constant}$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$$

mean that summation is a linear operator.

Definition (Linear operator)

An operator L is linear if for all functions f and g, and every scalar $c \in \mathbb{R}$,

$$L(cf) = cL(f)$$

$$L(f+g) = L(f) + L(g)$$

We will encounter many linear operators in this course!

Some important sums

$$\sum_{i=1}^{n} 1 = \underbrace{1 + \dots + 1}_{n} = n$$

@ Geometric sum:

$$\sum_{i=0}^{n} ar^{i} = a + ar + ar^{2} + \dots + ar^{n} = a \frac{1 - r^{n+1}}{1 - r}$$

Some important sums

@ Geometric sum:

1

$$\sum_{i=0}^{n} ar^{i} = a + ar + ar^{2} + \dots + ar^{n} = a \frac{1 - r^{n+1}}{1 - r}$$

$$\left(\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n \right) \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i = n + (n-1) + (n-2) + \dots + n = 2$$

$$\left(\sum_{i=1}^{n} i = (n+1) + (n+1) + (n+1) + \dots + (n+1) = n + (n+1)$$

Some important sums

$$\sum_{i=1}^{n} 1 = \underbrace{1 + \dots + 1}_{n} = n$$

@ Geometric sum:

1

3

4

$$\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots + ar^{n} = a \frac{1 - r^{n+1}}{1 - r}$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} = \frac{n}{6}(2n^2 + 3n + 1) = \frac{n}{6}(2n + 1)(n + 1)$$

Example

$$\sum_{i=3}^{10} (i+2)^2$$

Multiple sums

We might see something like

$$\sum_{1 \le (j,k) \le 3} a_j b_k = \sum_{j=1}^3 \left(\sum_{k=1}^3 a_j b_k \right)$$

Multiple sums

Definition (Generalised associativity & distributivity)

$$\sum_{j \in J} \sum_{k \in K} a_{j,k} = \sum_{k \in K} \sum_{j \in J} a_{j,k}$$

$$\sum_{j \in J, k \in K} a_j b_k = \left(\sum_{j \in J} a_k\right) \left(\sum_{k \in K} b_k\right)$$

Note: these are specific to *finite* sums!

Example

Compute

$$\sum_{i=1}^{3} \sum_{j=1}^{2} (i-j)$$

Example

On which line(s) does the following derivation go wrong?

 $=\sum_{k=1}^{n}\sum_{k=1}^{n}\frac{a_k}{a_k}$

 $= n^2$

(1)

(2)

(3)

 $\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{k=1}^{n} a_k\right) = \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{a_j}{a_k}$

Infinite series

An infinite series is an expression of the form

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_i + \dots$$

where the a_i are real numbers.

Infinite series

The Nth partial sum S_N is the sum of the first N terms

$$S_N = a_1 + a_2 + \dots + a_N$$

We say the infinite series $\sum_{n=1}^{\infty} a_n$ is *convergent* with *sum* S provided

$$S = \lim_{N \to \infty} S_N.$$

If $\lim_{N\to\infty} S_N$ does not exist we say that the series *diverges*.

Definition (Infinite series)

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$$

(provided the limit exists.)

Side note: some infinite limits to know

$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$\lim_{x \to \infty} e^{-x} = 0$$

Example

The p-series $\sum\limits_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p>1 and divergent if $p\leq 1$.

Example

The series $\sum_{n=0}^{\infty} (-1)^n$ diverges.

The geometric series

Definition (Geometric series)

The series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$$

diverges if |x| > 1 and converges to 1/(1-x) if |x| < 1.

How to tell if an infinite series converges or not?

The ratio test

Consider a series $\sum_{n=0}^{\infty} a_n$, with each $a_n \neq 0$, such that

$$r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

either exists or is infinite.

Then

 $\begin{array}{ll} \mbox{if} & r<1 & \mbox{the series converges}, \\ \mbox{if} & r>1 & \mbox{the series diverges}, \\ \mbox{if} & r=1 & \mbox{the ratio test is inconclusive}. \end{array}$

The ratio test

Example

Prove that $\sum\limits_{n=0}^{\infty}\frac{(-1)^nn}{2^n}$ converges.

The ratio test

Example

Find if $\sum\limits_{n=1}^{\infty}\frac{2^n}{n^2}$ converges or diverges.