ESAME DI LABORATORIO DI CALCOLO

10 MARZO 2004

Quando una particella attraversa un mezzo omogeneo ed isotropo subisce una deviazione dalla sua traiettoria. Un modo per simulare questo comportamento è il seguente:

se la particella ha inizialmente una velocità diretta orizzontalmente lungo l'asse x, e si trova alle coordinate (0, 0), ogni volta che percorre un tratto dx viene deviata verso l'alto o verso il basso di dh con la stessa probabilità. Dopo aver percorso N tratti dx la particella emerge dal mezzo, profondo L, alle coordinate (L, y).

Scrivere un programma che:

- 1.chieda all'utente di inserire il passo dx, la profondità del mezzo L e il modulo della deviazione dh subita dalla particella nell'interazione con il mezzo; si assuma la posizione iniziale (0,0).
- 2. attraverso una funzione determini la nuova posizione y della particella dopo che questa abbia attraversato una porzione dx del mezzo, partendo dalla posizione precedente y0;
- 3. simuli l'attraversamento del mezzo da parte di una particella valutando la coordinata y finale quando essa sia giunta alla posizione x=L;
- 4.ripeta il punto 3 per un numero \mathbf{Np} di particelle (con \mathbf{Np} scelto dall'utente) e, per ogni particella, memorizzi la coordinata \mathbf{y} raggiunta per $\mathbf{x} = \mathbf{L}$;
- 5. calcoli il valor medio \mathbf{m} e la deviazione standard \mathbf{s} della distribuzione delle y, usando due funzioni;
- 6. calcoli lo scarto tra il numero di particelle che cadono nell'intervallo [-s,s] e il corrispondente numero atteso se la distribuzione fosse gaussiana.

NOTA: si ricorda che l'istruzione $\mathbf{z} = \mathbf{random}()/(\mathbf{double})$ RAND_MAX; genera nella variabile z di tipo double un numero casuale tra 0 e 1.