This is still an ongoing project

Controller PCB

ATmega 168/328
DRV8313 for heating element
DRV8835 for motor driver
DC-DC buck-boost convertor

Moving block prototype

Wireless PCB

IR/Bluetooth

Combine with main controller PCB in next design

Battery 3.7V 300/700mah

Cube shell/ChassisConnection magnetics
Connection to soft part

Assembled block prototype

With 700mah battery

Wireless communication

Zigbee module cc2530
Transparent virtual serial, max distance 800m
16 channels
Point to point/broadcast

Computer node

Moving block

Command format

Start 's'

1byte 0-255 Speed_L 1byte Speed_R 1byte Channel_state 1byte 0000001

Reversed end 2byte 'e' 8 bytes

Wheel ik

Inverse differential kinematics

$$\begin{bmatrix} \dot{\varphi}_r \\ \dot{\varphi}_l \end{bmatrix} = \begin{bmatrix} 1/r & 0 & b/r \\ 1/r & 0 & -b/r \end{bmatrix} \begin{bmatrix} \dot{\chi}_l \\ \dot{\chi}_l \end{bmatrix}$$

Cube tracking

Using apriltag for pose tracking

Tracking camera

Tag on cube

Get pose emtimated xyz/rpy xy-yaw

~60ms for 20 tags

Lighting condition

Small tags -> unstable rotation matrix emtimated

Gen2 controller

Smaller heater controller in QFN package

DC-DC TPS63070->TPS61088

1 Features

- Input Voltage Range: 2.0 V to 16 V
- Output Voltage Range: 2.5 V to 9 V
- Up to 95% Efficiency
- +/- 1% dc accuracy in PWM mode
- +3% / -1% dc accuracy in PFM mode
- 2 A Output Current in Buck Mode
- 2 A Output Current in Boost Mode

Features

Input Voltage Range: 2.7 to 12 V

Output Voltage Range: 4.5 to 12.6 V

10-A Switch Current

Up to 91% Efficiency at $V_{IN} = 3.3 \text{ V}$, $V_{OUT} = 9 \text{ V}$,

and $I_{OUT} = 3 A$

Gen2 controller

Battery 18350 power battery Easyier charging process High power density 20c -

Docking magnet

Cylinder magnet on each side, passive docking

0622-0702

Soft part connector

IIC extendable AD MCP3424 4channel AD*2

Docking

For permanent magnet, once they've docked with each other, undocking becomes a tough task

controlled magnet for active docking space power consumption connection force

Plan A eletronic magnet

Plan B step motor controlled gripper

Fold Push

Moving block prototype

Controller PCB gen2

ATmega 168/328 DRV8313 for heating element DRV8833 for motor driver A4988 step motor driver

25x25mm

IIC

Heater-out

DC-IN

Step-out

Serial

AD *6

Motor connection pad

DC-DC TPS63070->TPS61088

Docking motor test

Docking interface

Silder mechanic

auto alignment no need for magnet reform into male/female type, no docking type limit

Type B

Docking interface

Current / temperature feedback pcb

Gen2 assemble cad

