

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02215 - Estatística Geral 2 - 2020/1

Plano Aula 27 e 28

Markus Stein

Análise de Regressão

Agora, nosso interesse será em estimar uma relação linear entre duas variáveis numéricas de interesse.

Regressão Linear Simples (Bussab e Morettin - capítulo 16)

• Exemplo 1: O Índice de Desenvolvimento Humano (IDH) em países pode estar associado à carga tributária?

Artigo de 2012: https://carodinheiro.blogfolha.uol.com.br/2012/12/14/pagamento-de-impostos-no-brasil-e-um-investimento-sem-retorno/

• Exemplo 2: O valor do auxílio estudantil oferecido por uma universidade pode estar relacionado com a renda familiar dos estudantes?

Estimação dos parâmetros (Bussab e Morettin - seção 16.2)

 $Relembrando\ sobre\ esperança\ condicional\ em\ probabilidade.\dots$

Modelo populacional

sejam X e Y duas v.a. queremos estimar a esperança condicional de Y em função de (dado que) X = x,

$$E(Y|X=x) = \alpha + \beta \cdot x,$$

ou seja, os parâmetros α e β .

• Para uma amostra de tamanho n podemos escrever que cada observação (x_i, y_i) , para $i = 1, \ldots, n$, segue o modelo

$$y_i = \alpha + \beta \cdot x_i + e_i$$

- chamamos e_i de erro amostral e assumimos que

Método dos Mínimos Quadrados (Ordinários)

Para estimar α e β podemos pensar em minimizar os erros e_i , ou

$$SQ(\alpha, \beta) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i - (\alpha + \beta \cdot x_i)]^2$$

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02215$ - Estatística Geral 2 - 2020/1

- Derivando $SQ(\alpha, \beta)$ em relação a α e β , igualando a zero e resolvendo o sistema de equações temos $\begin{array}{ll}
 - \widehat{\alpha} = ??? \\
 - \widehat{\beta} = ???
 \end{array}$
- Reta estimada (modelo ajustado): $\hat{y}_i = \hat{\alpha} + \hat{\beta} \cdot x_i$
 - Interpretação de $\widehat{\alpha}$ e $\widehat{\beta}$;
 - **Predição**, para um dado valor X = x, quanto esperamos observar o valor de Y?

Coeficiente de determinação R^2

Intervalos de Confiança e Testes de hipóteses

Para α e β

Para E(Y|x), predição

• suposições???

Correlação espúria

Causalidade e correlação

REFERÊNCIA EXTRA

Página 'Probabilidade e Estatística (EaD)' da UFRGS

• Capítulo 7 - Introdução à Regressão Linear

Ler slides das aulas 27 e 28 Continuar exercícios da lista 3-3