Álgebra Linear I – Prof. José Luiz Neto – Resumo_A10

Livro de preparação do resumo: Álgebra Linear → Boldrine/Costa e Figueiredo/Wetzler (BOLDRINI, J. L. et al. Álgebra Linear. 3 ed. São Paulo: Harbra, 1986) e https://www.ufjf.br/andre_hallack/files/2018/04/linear17.pdf, acessado no dia 17/08/2020.

Subespaços Vetoriais. Exemplos de Subespaços Vetoriais.

Nota: Os teoremas e corolários que constam neste assunto serão denominados (chamados) de **resultados importantes**, pois o principal objetivo é apresentar um resumo e não fazer demonstrações.

Definição de subespaço vetorial

Dado um espaço vetorial V, um subconjunto W, não va-

zio, será um subespaço vetorial de V se:

- i) Para quaisquer $u, v \in W$ tivermos $u + v \in W$.
- ii) Para quaisquer $a \in \mathbb{R}$, $u \in W$ tivermos $au \in W$.

Resultado importante!

Se o corpo K (no resultado a seguir) é o conjunto dos números reais, a definição acima pode ser vista da seguinte forma (Gosto mais desta maneira).

Sejam V um espaço vetorial sobre um corpo \mathbb{K} e $W \subset V$.

W é um subespaço vetorial de V se, e somente se:

- (i) O vetor nulo de V pertence a W $(0 \in W)$
- (ii) Dados $u, v \in W$, então $u + v \in W$
- (iii) Dados $u \in W$ e $a \in \mathbb{K}$, $ent\tilde{a}o$ $a.u \in W$.

Exemplos de subespaços vetoriais

A) Seja $W=\{(x,-2x):x\in {\rm I\!R}\}\subset {\rm I\!R}^2$ (operações usuais). W é um subespaço vetorial do ${\rm I\!R}^2$.

É claro que o vetor nulo do $\ \mathbb{R}^2$, (0,0) , pertence a W. (1)

Dados
$$u=(x,-2x)$$
 e $v=(y,-2y)$ em $W,$
temos $u+v=(x+y,-2x-2y)\in W$. (2)

Dados
$$u=(x,-2x)$$
 e $a\in \mathbb{R}$, temos $a.u=(ax,-2ax)\in W$. (3)

Por (1), (2) e (3) segue (do Teorema acima) que W é subespaço vetorial do \mathbb{R}^2 .

do Teorema acima→ do Resultado importante, acima.

B) Seja
$$S = \{(x, x^2) : x \in \mathbb{R}\} \subset \mathbb{R}^2$$
. S não é subespaço do \mathbb{R}^2 .

Se tomarmos
$$a=3\in {\rm I\!R} \ {\rm e} \ u=(-2,4)\in S$$
 , temos $a.u=(-6,12)\not\in S$.

Assim o subconjunto S não atende ao item (iii) do Teorema acima e portanto S não é subespaço vetorial do \mathbb{R}^2 .

do Teorema acima→ do Resultado importante, acima.

C) Seja
$$W = \{(x_1, 0, x_3, x_4) : x_1, x_3, x_4 \in \mathbb{R}\} \subset \mathbb{R}^4$$
. W é um subespaço do \mathbb{R}^4 .

Faça a verificação.

$$\mathbf{D}) \text{ Sejam } W = \left\{ X = \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right] \text{ tais que } AX = O \right\} \subset M_{n \times 1}(\mathbb{R}) \text{ , } A \in M_{m \times n}(\mathbb{R}) \text{ fixada.}$$

W é o conjunto solução do sistema linear homogêneo AX = O. W é subespaço de $M_{n\times 1}(\mathbb{R})$.

Faça a verificação.

Exercício:

Mostre que $W=\{(x,y,z)\in\mathbb{R}^3/x-y+2z=0\}$ é um subespaço vetorial do \mathbb{R}^3 .