Osvetljenje u 3D grafici

- Igra bitnu ulogu u doprinosu realizma sceni
- Dualnost svetlosti: talas-čestica
- Sastoji se od ogromnog broja fotona
- Primenjuju se aproksimacije modela svetlosti i refleksije

Svetlosni model

- Izvor svetlosti se modeluje pomoću tri komponente: Ambijentalna
 - Difuzna
 - Spekularna
- Svaka komponenta svetlosnog izvora je u interakciji isključivo sa odgovarajućom komponentom materijala i na taj način se aproksimiraju refleksije svetlosti koje se dešavaju u realnom svetu (Phong illumination model)
- Svaka komponenta je određena bojom u RGB kolor sistemu

Ambijentalno osvetljenje

- Naziva se još i uniformno osvetljenje (kod klasičnog modela)
- Ne uzima se u obzir smer odakle dolazi svetlost prilikom računanja
- Modeluje uticaj svetlosnih zraka koji se reflektuju od drugih objetaka na ostatak scene (razlog što se vide objekti u hladu)
- glLightModel(GLenum pname, GLfloat* params) globalno ambijentalno osvetljenje se definiše sa parametrom GL_LIGHT_MODEL_AMBIENT

$$I_A = K_A L_A$$

Difuzna refleksija

- Svetlost se reflektuje od objekta podjednako u svim pravcima
- Kao rezultat se vidi efekat svetlosti koja se ne reflektuje direktno do tačke posmatranja
- Ne uzima se u obzir smer u kojem se nalazi tačka posmatranja, ali je bitno iz kog smera dolazi svetlost
- Uzima se u obzir slabljenje svetlosti sa povećanjem razdaljine koju svetlost prelazi

Difuzna refleksija

$$I_D = K_D (l * n) * L_D$$

[www.physicsclassroom.com]

Spekularno osvetljenje

- Modeluje svetlost koja se od objekata direktno reflektuje prema posmatraču
- Modeluje glatke objekte, često kao efekat se dobija isijavanje dela objekta
- Uzima se u obzir smer prema tački posmatranja prilikom računanja

Spekularno osvetljenje

$$I_s = K_s^* \cos^\beta \varphi * L_s$$

$$cos\phi = r^*n$$

 β - shinniness

Spekularno osvetljenje

Phong-Blinn varijacija

$$h = \frac{\ell + v}{|\ell + v|}$$

$$I_{s} = K_{s}^{*} (h^{*}n) * L_{s}$$

h - halfway vector

Svetlosni model

Definisanje normala

- Na nivou poligona
- Na nivou verteksa
- glNormal(float x, float, y, float z)

Definisanje normala

Na nivou poligona

$$normal = (A-B) \times (A-C)$$

Na nivou verteksa

Za svaki verteks pronađi sve poligone kojima taj verteks pripada i zatim usrednjavanjem normala tih poligona i normalizacijom rezultujućeg vektora odredi normalu verteksa.

normal =
$$\frac{1}{k} \frac{n_1 + n_2 + n_3 + ... + n_k}{\left| n_1 + n_2 + n_3 + ... + n_k \right|}$$

Definisanje normala za Quadric objekte

- gluQuadricNormals(GLUquadric* quad,GLenum normal)
- Parametri:
- quad referenca/pokazivač na objekat
- normal: GLU_NONE normale se ne generišu
 - GLU_FLAT generišu se na nivou poligona
 - GLU_SMOOTH na nivou verteksa

SharpGL:

```
Sphere sphere = new Sphere();
sphere.NormalGeneration = Normals.Smooth;
```

Definisanje normala

- Phong-ovo senčenje interpolacija normala po fragmentima poligona
- Guroovo senčenje interpolacija boja verteksa po fragmentima poligona

Gouaroud vs Phong

 Guroovo senčenje jeftinije, ali i daje nešto slabije rezultate od Phongovog senčenja

Slabljenje svetlosti

- U realnom svetu je slabljenje svetlosti obrnuto proporcionalno kvadratu razdaljine (inverse square law)
- U fiksnom pajplajnu OpenGL-a je definisano slabljenje svetlosti pomoću konstantnog, linearnog i kvadratnog parametra

$$\frac{1}{a + bd + cd^2}$$

a: constant - GL_CONSTANT_ATTENUATION b: linear - GL_LINEAR_ATTENUATION c: quadratic - GL_QUADRATIC_ATTENUATION

Definisanje svetlosnog izvora

- glLightfv(GLenum light, GLenum pname, GLfloat* params)
- Parametri:
 - light GL_LIGHTX, gde je 0<X< GL_MAX_LIGHTS
 - PName GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION, GL_SPOT_CUTOFF, GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION
 - params definiše vrednost zadatog parametra

Vrste osvetljenja

- Direkciono
- Tačkasto
- Reflektorsko
- Ambijentno (globalno)
- Tip izvora svetlosti određen sa w komponentom GL_POSITION parametra:

glLight(GL_LIGHT0, GL_POSITION, {x, y, z, w

- w = 1 tačkasto osvetljenje
- w = 0 direkciono osvetljenje

Globalno ambijentalno osvetljenje

- glLightModelfv(GLenum pname, GLfloat* params)
- Parametri: pname GL_LIGHT_MODEL_AMBIENT,
 - GL_LIGHT_MODEL_AMBIEN
 GL_LIGHT_MODEL_COLOR_CONTROL,
 GL_LIGHT_MODEL_LOCAL_VIEWER, and
 GL_LIGHT_MODEL_TWO_SIDE
 - params definiše vrednost parametra

Directional Lighting

- Jako udaljen izvor svetlosti od scene
- Sa ovim tipom osvetljenja često se modeluje sunceva svetlost (svetlost dana)
- Toliko udaljen da se može posmatrati kao su zraci paralelni i padaju na objekte/ravni scene pod istim uglom (ovakva pretpostavka uprošćuje matematički model)
- Smer svetlosti određen sa pozicijom izvora svetlosti ((1,0,0) znači da je svetlost usmerena u smeru negativne x ose)

Point Lighting/Tačkasto osvetljenje

- Sa ovim tipom osvetljenja modelujemo svetlost blizu scene ili unutar scene, kao što su npr svetlost koja dolazi od lampe, ulična rasveta i slično
- Za razliku od direkcionog osvetljenja, zraci svetlosti kod tačkastog osvetljenja padaju na svaku tačku površine pod različitim uglom i intenzitet svetlosti slabi sa udaljavanjem tačaka/površine od izvora svetlosti tačkastog osvetljenja

Reflektorsko osvetljenje

- Specijalan slučaj tačkastog osvetljenja
- Cutoff ugao između 0 i 90 stepeni (kod tačkastog osvetljenja je taj ugao 180) - GL_SPOT_CUTOFF
- Pored slabljenja intenziteta svetlosti po razdaljini može se definisati i slabljenje po obodima sa udaljavanjem od linije simetrije
 - GL_SPOT_EXPONENT
- Smer svetlosti definisan sa parametromGL_SPOT_DIRECTION

Reflektorsko osvetljenje

 Primer slabljenja intenziteta svetlosti po obodima

