Supplementary Material: TotalSelfScan: Learning Full-body Avatars from Self-Portrait Videos of Faces, Hands, and Bodies

Anonymous Author(s)

Affiliation Address email

- In this supplementary material, we describe the implementation details and provide the detailed
- quantitative results of each person. Moreover, we provide a video to show the qualitative results of
- our method. The code and dataset will be released upon the publication of the paper.

Implementation details

- **Network architecture and hyper-parameters.** For each part p, the signed distance field F_s^p ,
- color field F_c^p , and non-rigid displacement field T_{nr}^p are all represented as MLP networks whose
- dimension of hidden layers is 256. The signed distance field F_s^p has eight layers with the softplus
- activation and has a skip connection to the middle layer. The input of F_s^p is the positional encoding
- of point position $\gamma_{\mathbf{x}}(\mathbf{x}) \in \mathbb{R}^{39}$ and the outputs are signed distance $s(\mathbf{x}) \in \mathbb{R}$ and geometry feature
- The color field F_c^p has four layers with the ReLU activation and has a skip connection to the middle 11
- layer. The inputs of F_c^p are the positional encoding of point position $\gamma_{\mathbf{x}}(\mathbf{x}) \in \mathbb{R}^{39}$, the positional
- encoding of view direction $\gamma_{\mathbf{d}}(\mathbf{d}) \in R^{27}$, normal of point position $\mathbf{n}(\mathbf{x}) \in R^3$, and latent code $\ell^p \in R^{128}$. The output of F_c^p is the color $\mathbf{c}(\mathbf{x}) \in R^3$.
- 15
- The non-rigid displacement field T^p_{nr} has eight layers with the ReLU activation and has a skip connection to the middle layer. The inputs of T^p_{nr} are the positional encoding of point position $\gamma_{\mathbf{x}}(\mathbf{x}) \in R^{39}$ and latent code $\phi^p \in R^{128}$ and the output is the displacement $\Delta \mathbf{x} \in R^3$. 16
- 17
- The λ_1 in Equation (10) is set to 0.1. The λ_2^p s in Equation (10) are set to 0.01 for the body and face 18
- and 0.001 for the hands. 19
- **Training details.** The Adam optimizer [1] is adopted for training and the learning rate is set as 20
- $5e^{-4}$ which decays exponentially to $5e^{-5}$ during the learning procedure. The training is done on
- a single Nvidia 2080-Ti GPU. Each part model is trained for 100k iterations, which takes approx-
- imately 6 hours. In addition, the appearance latent code optimization adopts the same optimizer
- and the learning rate as the training but conducts approximately 15k iterations for each part model
- except the body.
- **Inverse LBS.** Given a sample point x in the observation space and the human pose p, the inverse
- linear blend skinning [2, 7, 6] can be written as follows:

$$T_{ilbs}(\mathbf{x}, \mathbf{p}) = \left(\sum_{k=1}^{K} w^k(\bar{\mathbf{x}}) \mathbf{B}(\mathbf{p})^k\right)^{-1} \bar{\mathbf{x}},\tag{1}$$

Table 1: Quantitative results of 3D reconstruction of each part for each subject on *SynTotalHuman* dataset.

	m1		m2		f1		f.	2
Head	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	$\mathrm{CD}\!\!\downarrow$
NeuralBody [5]	1.64	1.38	1.64	1.41	1.68	1.81	1.23	1.26
AniNeRF [3]	1.55	1.34	1.73	1.54	2.24	2.08	1.68	1.82
AniSDF [4]	0.45	0.59	1.05	0.99	0.90	1.11	0.64	0.95
Ours	0.40	0.53	0.67	0.74	0.69	1.04	0.61	0.95
Left hand	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	$\mathrm{CD}\!\!\downarrow$
NeuralBody [5]	1.54	1.37	1.00	0.93	1.97	1.80	1.38	1.27
AniNeRF [3]	1.03	0.89	1.06	0.96	1.37	1.17	1.00	0.93
AniSDF [4]	0.52	0.52	0.71	0.74	1.11	1.03	0.90	0.90
Ours	0.44	0.49	0.37	0.37	0.58	0.52	0.87	0.88
Right hand	P2S↓	CD↓	P2S↓	CD↓	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	CD↓
NeuralBody [5]	1.25	1.10	1.02	1.02	1.26	1.14	0.92	0.88
AniNeRF [3]	1.16	1.01	1.17	1.06	1.19	1.05	0.98	0.92
AniSDF [4]	0.47	0.48	0.66	0.64	1.05	0.90	0.88	0.77
Ours	0.33	0.34	0.33	0.35	0.79	0.67	0.67	0.56
Total	P2S↓	CD↓	P2S↓	CD↓	P2S↓	$\mathrm{CD}\!\!\downarrow$	P2S↓	CD↓
NeuralBody [5]	2.13	1.86	2.29	2.15	2.12	1.97	2.10	1.93
AniNeRF [3]	2.49	2.15	2.28	2.07	2.72	2.29	2.72	2.35
AniSDF [4]	2.04	2.14	2.12	2.18	1.74	1.81	1.69	1.75
Ours	1.98	2.07	1.97	2.03	1.73	1.76	1.68	1.71

Table 2: Quantitative results of image synthesis under novel human pose of each part for each subject on *SynTotalHuman* dataset.

		m1			m2			f1			f2	
Head	PSNR↑	SSIM↑	LPIPS↓									
NeuralBody[5]	19.20	0.918	0.174	20.44	0.915	0.188	19.19	0.922	0.175	16.92	0.901	0.198
AniNeRF[3]	19.74	0.926	0.167	21.07	0.930	0.173	21.53	0.932	0.130	21.33	0.925	0.141
AniSDF[4]	22.50	0.939	0.093	20.98	0.925	0.113	22.52	0.940	0.103	21.62	0.933	0.106
Ours	22.64	0.944	0.071	21.32	0.926	0.088	21.32	0.930	0.102	23.66	0.939	0.076
Left hand	PSNR↑	SSIM↑	LPIPS↓									
NeuralBody[5]	18.75	0.889	0.245	18.92	0.885	0.235	17.71	0.895	0.243	18.26	0.890	0.228
AniNeRF[3]	19.23	0.902	0.177	21.27	0.904	0.193	22.16	0.923	0.148	20.39	0.911	0.144
AniSDF[4]	22.05	0.935	0.105	21.99	0.934	0.107	19.93	0.922	0.122	21.64	0.934	0.080
Ours	21.78	0.933	0.096	23.11	0.942	0.065	21.25	0.938	0.083	22.45	0.945	0.062
Right hand	PSNR↑	SSIM↑	LPIPS↓									
NeuralBody[5]	19.23	0.894	0.243	19.08	0.894	0.243	18.01	0.901	0.252	18.12	0.893	0.233
AniNeRF[3]	19.48	0.905	0.200	20.58	0.902	0.220	21.69	0.910	0.178	19.99	0.897	0.172
AniSDF[4]	21.86	0.930	0.117	21.52	0.927	0.121	19.62	0.920	0.154	21.86	0.938	0.084
Ours	22.80	0.936	0.090	23.38	0.941	0.073	22.61	0.949	0.070	22.56	0.945	0.066
Total	PSNR↑	SSIM↑	LPIPS↓									
NeuralBody[5]	19.19	0.831	0.231	20.27	0.854	0.248	20.22	0.869	0.241	20.22	0.866	0.237
AniNeRF [3]	21.46	0.881	0.199	24.31	0.894	0.197	24.91	0.884	0.173	24.14	0.896	0.171
AniSDF[4]	25.54	0.907	0.144	26.51	0.916	0.136	23.34	0.914	0.129	26.87	0.928	0.107
Ours	26.78	0.919	0.127	26.94	0.919	0.123	23.36	0.915	0.112	27.52	0.932	0.095

where $\bar{\mathbf{x}}$ denotes the homogeneous coordinate of \mathbf{x} and $\mathbf{B}(\mathbf{p})^k \in SE(3)$ denotes the transformation matrix of bone k. $w^k(\bar{\mathbf{x}})$ is the blend weight of bone k, which is acquired by retrieving the blend weight of the closest vertex on the template mesh. K is the number of bones.

2 Detailed quantitative results

In this section, we present the detailed quantitative results of 3D reconstruction and image synthesis on *SynTotalHuman* dataset in Table 1 and 2.

34 References

- 35 [1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.
- 36 [2] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl: A skinned multi-person linear model. *ACM transactions on graphics (TOG)*, 34(6):1–16, 2015.
- [3] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao.
 Animatable neural radiance fields for modeling dynamic human bodies. In *ICCV*, pages 14314–14323,
 2021.
- 41 [4] Sida Peng, Shangzhan Zhang, Zhen Xu, Chen Geng, Boyi Jiang, Hujun Bao, and Xiaowei Zhou. Animatable neural implicit surfaces for creating avatars from videos. *arXiv preprint arXiv:2203.08133*, 2022.
- [5] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei Zhou.
 Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In CVPR, pages 9054–9063, 2021.
- 46 [6] Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas Geiger, and Siyu Tang. Metaavatar: Learning
 47 animatable clothed human models from few depth images. Advances in Neural Information Processing
 48 Systems, 34, 2021.
- [7] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir, William T Freeman, Rahul Sukthankar, and Cristian
 Sminchisescu. Ghum & ghuml: Generative 3d human shape and articulated pose models. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6184–6193, 2020.