Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aGB991 .S6U5

WATER RUNOFF STUDY FOR MAIN DRAINAGEWAYS AND OUTLETS

FLORENCE COUNTY, SOUTH CAROLINA

Prepared under sponsorship of FLORENCE COUNTY FLORENCE COUNTY COUNCIL

and
FLORENCE SOIL AND WATER CONSERVATION DISTRICT
in cooperation with the
U. S. Department of Agriculture
Soil Conservation Service

4-36631 6-78

April 1978

To find inf

in this Wat

1.

2.

The app

Refer t

3. This in

on this

drainag

NATIONAL

GRICULTURA GRANDER OF THE PARTMENT OF THE PART

LIBRARY

D DESIGN DATA" SHEETS

or Lateral Ditch contained eps should be taken:

olved should be known.

SHEETS" and locate the area

of the map sheet showing the

ocate the area desired on this ma map will show the "Planning Area Number and, also, the main or Lateral number such as M-1, L-1, L-2, etc.

5. Turn to this planning area number in the ENGINEERING AND DESIGN
DATA Sheets and locate the Main or Lateral desired on this sheet.

Each time a lateral enters the main canal, the Main is broken into a section at this point. Iaterals also are broken into sections at points where other laterals enter them. This was necessary to design each section to carry the flow increase. Also, it was necessary to break mains and laterals into sections at state and county road crossings in order to design the proper size culverts and bridges at these points.

It must be kept in mind that the information given in the "ENGINEERING AND DESIGN DATA" Sheets begins at the upper end of each watershed and proceeds, section by section, to the outlet.

EXAMPLE: To find information for the ditch crossing S. C. Highway 51 approximately 1 mile northwest of Hyman refer to figure 3.
"Index to Atlas Sheets" The index indicates that the point where this ditch crosses highway 51 can be found on Sheet 8 at the back of the report.

Sheet 8 designates this ditch as main number 3 (M3) in Planning Area 7 and shows it was designed in four Segments A, B, C, and D.

A general description of Planning Area 7 is found on page 15 of the report and the detailed Engineering and Design Data Table is on Page 91.

Beginning at the upstream end of the ditch, M3A, in the table for Area 7 on page 91 and proceeding downward toward its outlet end, it is found that it crosses highway 51 at the end of Segment M3B. Total length of the ditch is estimated to be 6900'. The various criteria for engineering and design estimates may be obtained from the table for each segment.

A Transmitted

0000

FOREWORD

About 1730 the interior of the South Carolina colony was divided into a number of townships. This was a plan designed by the colony's Governor Robert Johnson to attract Protestant settlers to this area, partly to serve as a buffer to Indian attacks. (The Pee Dee and Catawba Indian tribes inhabited the area and regions along the Pee Dee River.) Pioneers were offered free land and various other inducements to settle in these townships. The idea proved successful and brought the first permanent white settlements into what presently is the Florence Area.

Queensborough Township, including what is now the lower portion of Florence County was laid out in 1733. It initially was successful in attracting small farmers, as the land was suited to large plantations. Among these were a group of Pennsylvania Welsh farmers who asked for a land grant and in 1736 formed a community at Long Bluff (present day Society Hill). Their main crops were hemp and flax. These Welsh Baptists established churches around the area along with Methodists, Presbyterians, and Protestant Episcopalians.

The communities increased and after the Revolution, during which Francis Marion's raids were well known, the agricultural industry grew and cotton and corn remained the staple crops throughout much of the 19th century. The agricultural interior of South Carolina was linked with the seaport of Wilmington by the Wilmington-Manchester Railroad in 1849. The way station was named "Florence" in 1854 in honor of Florence Harllee, daughter of the president of the railroad. It was not until 1888 however that Florence County was established after agitation by citizens to form a new county. The new county was formed from portions of Clarendon, Darlington, Marion and Williamsburg counties with Florence becoming the county seat in 1889.

Since the first settlement was made near the Queensborough Township in 1736, the existing problem of imperfect internal and surface drainage has affected the growth and development of this area in South Carolina.

The higher areas of land were used by the first settlers for homesteads and for small fields to produce food crops. Low, wet lands were left in their natural state. As settlements grew and more land was needed for farming operations, it was necessary to install some type of drainage system on individual farms. These drainage systems were usually excavated by hand, many with slave labor. As a result, these small ditches were inadequate and only partially met the drainage needs. The lack of knowledge of drainage systems and the availability of only hand tools retarded the design and installation of complete systems.

With the increase in land use and particularly with the advent of modern construction machinery such as the bulldozer, dragline and backhoe, it became relatively easy to excavate larger canals and outlet ditches needed for adequate drainage. Even with the new machines, much of the drainage work installed has been the result of expediency incident to population growth and did not follow a well developed plan of action. Improving the quantity and quality of agricultural crops and providing well drained areas for home sites are essential to perpetuate economic growth of a community; providing additional drainage is necessary as a first step toward enhancing the environment and increasing income for its people.

The Water Runoff Study for Main Drainageways and Outlets in Florence County is the direct result of foresight and interest of the county authorities and the Florence Soil and Water Conservation District Commissioners who saw the need for a plan to enhance the potential development of the county. Agencies at all levels of government - city, county, state, and federal - as well as private enterprise and numerous individuals, cooperated in the development of the plan. The Florence County Council appropriated funds for the local share of the cost of the study including the publication of this report. Technical assistance was furnished by the Soil Conservation Service.

The plan and information contained in this report will be of interest to organizations concerned with land use in the county. The cooperation of other agencies, groups and individuals in the use of this report is encouraged.

CONTENTS

TEXT

	Page
INTRODUCTION AND SCOPE	1
FACTORS AFFECTING WATER DISPOSAL	2
Topography	2
Rivers and Streams	2
Rainfall	
Soils	
Land Use and Ownership	3
Wildlife	6
Existing Drainage System	7
Maintenance	7
EXCESS WATER DISPOSAL PRINCIPLES	7
Surface Drainage	
Subsurface Drainage	8
Water Runoff Systems	8
Excess Water Removal Requirements	9
DESIGN CRITERIA	
Drainage Curves	
Velocity	
Channel Cross Section	
Culverts and Bridges	- 12
Right-of-Way Requirement- Spoil Bank Management	- 12
DESCRIPTION OF AREAS	- 14
Area 1 - Florence-Mars Bluff-Quinby	- 14
Area 2 - Timmonsville-Cartersville-Sardis-Cusaac Crossroads	- 14
Area 3 - Savannah Grove-Peniel-Effingham	- 14
Area 4 - Claussen-Evergreen-Willow Creek	- 14
Area 5 - Olanta-Scranton-Lake City-Byrds Crossroads	- 15
Area 6 - Friendfield-Coward-Highhill-Camerontown	- 15
Area 7 - Hyman-Pamplico-Blossom-Salem	- 15
Area 8 - Poston-Salem-Vox-Johnsonville	- 16
FACTORS CONSIDERED IN PREPARATION OF PLAN	- 16
ENGINEERING CONSIDERATIONS	
Design	
Acquisition of Rights-of-Way	
Maintenance of Channels	
Obstructions	- 18
DEFINITION OF TERMS	
TECHNICAL REFERENCES	
AUTHORITY AND ACKNOWLEDGEMENT	
EXPLANATION OF ENGINEERING DATA TABLES	- 23

TEXT

	Page
ENGINEERING AND DESIGN DATA	_
Area 1 - Florence-Mars Bluff-Quinby	- 25
Area 2 - Timmonsville-Cartersville-Sardis-Cusaac Crossroads	
Area 3 - Savannah Grove-Peniel-Effingham	- 56
Area 4 - Claussen-Evergreen-Willow Creek	
Area 5 - Olanta-Scranton-Lake City-Byrds Crossroads	
Area 6 - Friendfield-Coward-Highhill-Camerontown	
Area 7 - Hyman-Pamplico-Blossom-Salem	- 91
Area 8 - Poston-Salem-Vox-Johnsonville	- 99
MAPS SHOWING THE DRAINAGE PLAN	
Follows Page	108
FIGURES	
Figure No. 1 - Drainage Coefficient	
Curves	11
Figure No. 2 - Typical Main Ditch	
Cross Section Showing Basis for	
Determining Right-of-Way Width	13
Figure No. 3 - Index to Map Sheets	109
TABLES	
TADELO	
Table No. 1 - Total Inches of	
Precipitation	4
Table No. 2 - Precipitation	_
Extremes Table No. 3 - Rainfall in Inches for	5
Selected Durations	5
peregred paracrous	2

WATER RUNOFF STUDY FOR MAIN DRAINAGEWAYS AND OUTLETS FLORENCE COUNTY, SOUTH CAROLINA

INTRODUCTION AND SCOPE

One of the most significant needs for efficient use and development of the land resources in Florence County is the provision for the management of excess rainfall runoff. The lack of adequate drainageways is extremely detrimental to existing and future land use management. Flooding results in frequent and costly damage to natural wildlife habitats, agricultural crops, and public and private property. Flooding also disrupts facilities in urban and industrial areas. In recent years the need for drainage has affected and virtually prevented housing development progress in many areas where septic tank drain fields were to be installed.

The need to reduce flooding through improvement of drainageways and outlets is a problem that demands priority attention.

The development of a water disposal plan for an entire county should logically begin with a study of the need for main drainageways and outlets to remove excess water.

The purpose of this study is to point out the extent and severity of the excess water problems and to estimate the sizes and quantities of water disposal systems to convey excess water properly to adequate outlets.

The engineering and design data in this report are based on reconnaissance surveys, information presently available, and knowledge gained by long experience in planning and establishing drainage facilities in the county. These data are adequate for the purpose of determining preliminary designs and preliminary cost estimates based on present land use, but are not adequate, however, for the preparation of final construction plans, designs and costs. The data in this report can be used by engineers as guides to determine types of additional surveys and investigations needed to secure detailed information for final design.

A discussion of some of the principal criteria used in sizing channels is included, as well as technical references which can supply information for final design.

Panoramic view of flooded farm land and paved road as a result of heavy rainfall and a need for additional excess water removal facilities.

FACTORS AFFECTING WATER DISPOSAL

The location of Florence County, in the Atlantic Coastal Plain, along with the county's physical features result in complex water runoff problems. Physical features that contribute to these problems are topography, rivers and streams, rainfall, soils, and land use and ownership, all of which are inter-related. A brief discussion of how these features affect the water disposal, and a description of the existing drainage system follows.

Topography

Topography is a severely limiting factor affecting excess water disposal. The land is generally level with slight undulations in some sections of the county, however, the removal of excess water is restricted in most sections due to inadequate drainageways. The natural drains, other than the rivers, are broad, have flat grades and are heavily vegetated. In their present state, little or no channel exists, causing extreme flooding in depressed areas although potential outlets are available.

"Flopped" tobacco - a high value crop loss caused by lack of proper drainage in an agricultural area.

Rivers and Streams

Florence County is covered with a network of rivers and streams and swamp runs that have a significant effect on the drainage pattern. Great Pee Dee River forms the entire eastern boundary of the county with a number of small tributaries flowing to it. Jefferies Creek, just south of the city of Florence, cuts through the county from West to East and empties into the Great Pee Dee River. Lynches River, forming a portion of the county's western boundary, curves up northeasterly into the center of the county and then southeasterly slicing the county in half. It joins the Great Pee Dee River in the extreme southeastern corner near Johnsonville.

In addition to these main rivers, several big swamps affect large areas of land. These include Black Creek, Middle Swamp, Lake Swamp, Sparrow Swamp, Lynches Lake, Camp Branch, Willow Creek, and Big Swamp.

All of these rivers and swamps affect the county's drainage. The main rivers are well defined; their water levels are generally at lower elevations and provide an outlet for higher ground drainage. However, these rivers and other large creeks are constantly a threat to adjacent low-lying areas. After heavy rainfall periods flood water overflow inundates these areas and blocks tributary outlets. A sizeable area of the county is affected in this manner.

This report does not include any study of the main streams. It does include a study of the tributaries to relieve adjacent lands of flooding as quickly as possible after heavy rains when river floods recede.

Flooded cropland caused by inadequate outlet for this field ditch.

Rainfall

U. S. Weather Bureau records, Table No. 1, show monthly and annual totals of rainfall for Florence and vicinity. The average annual rainfall of 45 inches would not cause a serious drainage problem if it were evenly distributed. The most serious drainage problems occur in low flat areas which are flooded by high intensity, short duration rain storms.

The design of water disposal systems and supporting structures are related to the amount of runoff that can be expected from storms of differing intensities and durations. (See Tables Nos. 2 & 3)

Soils

According to the Soil Survey for Florence County, more than 70 percent of the soils have excess water problems. This fact points out the need for management of excess water in the county. It would not be desirable or practical to provide drainage for all of the wet soils in the county; the degree of drainage needed is dependent on the type of soil and the land use.

Soils have characteristics which influence the need for and the degree of drainage. Some of the more important characteristics are slope, texture, infiltration, permeability, structure, depth, waterholding capacity and depth to water table. Fine (clavey) textured soils have slow internal water movement and will not readily respond to deep ditches. Shallow ditches to remove surface water provide the best practical means for improvement of these soils for most uses. Sandy soils, having high or fluctuating water tables, respond to subsurface drainage but present some problems in the design of stable open ditches.

A knowledge of the characteristics and the engineering properties of the soils is essential in planning, designing and constructing adequate runoff water management systems.

Land Use and Ownership

Changes in land use in recent years have had an adverse effect on water disposal in the county. One of the most significant of these is urbanization. Areas being developed for housing, shopping centers and industry in most instances have inadequate excess water disposal systems facilities. Most of the systems now in use were established to handle the agricultural needs of the areas. are not adequate to handle the increased runoff resulting from urbanization. Roof tops, paved roads, compaction, raised water tables resulting from septic tanks and drain field installations, and elimination of some ditches during development, have all caused an increase in the amount of excess water to be disposed of.

TABLE NO. 1 TOTAL INCHES OF PRECIPITATION FLORENCE, SOUTH CAROLINA

Voca	Tan	Ech	Man	722	Marr	Tito	T1-1	7	Cont	064	No	Doo	Annii
Year		Feb.		Apr.									Ann'l
1941		2.16		3.22				6.91		1.50			48.16
1942		2.55		2.57			9.25	5.57		.53			41.00
1943		1.21		2.29			5.43	1.12	1.90	T			32.56
1944		3.92					13.36		2.87				
1945	1.76	2.55	4.15	3.17	3.31	4.23	5.75	6.39	13.43	1.40	.98	7.86	54.98
												.	22 00
1946		2.43		3.88				4.80					33.98
1947	2.40						10.14						53.88
1948		5.09		2.86				4.08					55.61
1949		4.56		7.84				9.24					44.94
1950	2.48	.97	3.98	3.81	2.89	3.41	8.39	4.00	2.42	3.16	.89	3.79	40.19
												• ••	40.10
1951	.94						10.79						42.18
1952		4.30					1.21						45.33
1953		4.44		2.37				4.84					40.09
1954		1.31		1.75				1.25					27.50
1955	4.05	1.66	1.22	5.13	3.23	2.47	4.84	3.15	6.63	1.30	1.87	. 36	35.91
											1 40	0 50	0.5 50
1956		5.83					3.10						37.79
1957		2.26					2.55						43.76
1958		3.78					4.45						42.18
1959		5.36					13.68						64.71
1960	4.46	5.62	3.39	1.76	1.49	6.09	11.14	1.46	4.65	3.69	1.80	2.10	47.65
1961	1 24	3.55	1 23	5 50	5 25	0 20	4.86	4.75	2.13	2.4	1 57	1 42	44.33
1962		4.14		3.09									35.76
1963		2.27		2.20			3.83	1.52					33.42
1964		5.21					10.06	5.49					58.97
1965		5.69		2.79			6.21	8.53					48.63
1902	. 80	5.69	0.33	2.19	1.69	0.00	0.21	8.53	3.00	1.05	1.00	. 54	40.03
1966	6.99	3.49	2.72	3.03	8.18	3.70	6.26	4.99	2.50	.33	1.00	3.34	46.53
1967		2.40		1.25			4.40	6.72					36.16
1968	3.45	.84		3.02			9.94	1.97					42.96
1969		4.37		3.50			4.85	5.70					40.98
1970		2.96	6.83		1.71		3.25	4.55					36.22
13.0	- • - •	_,,,	0.00	•00		1.75	3.23	1.00	3,123	3.33	•••		
1971	4.35	2.88	10.96	3.28	3.12	4.20	7.65	5.85	1.07	7.98	1.49	1.42	54.25
1972		3.11			7.12		4.42	4.99					45.13
1973		4.91		3.41			8.35	8.73	2.76				53.38
1974		4.11		2.87				11.46	5.46				54.11
1975		5.17		4.62			7.59	3.77					51.39
1976		1.08	4.12		5.03		5.56	1.50					42.12
Aver-													
age	3.14	3.26	4.11	3.28	3.21	4.64	6.24	4.94	3.82	2.42	2.26	3.21	44.55
Rain-		•					- • - •						
fall													

From Rainfall Data, U.S. Weather Bureau - Florence, S.C. FAA Airport Station.

TABLE NO. 2
PRECIPITATION EXTREMES (1941-1976)

	Maximum		Minimum	
	Monthly	Year	Monthly	Year
January	6.99	1966	0.80	1965
February	5.83	1956	0.19	1947
March	10.96	1971	1.22	1955
April	7.84	1949	0.53	1957
May	8.18	1966	0.35	1941
June	9.29	1961	0.24	1954
July	13.68	1959	1.21	1952
August	11.46	1974	1.12	1943
September	13.43	1945	0.57	1968
October	8.16	1964	0.00	1953
November	8.16	1948	0.44	1958
December	7.86	1945	0.36	1955

Rainfall Data, U.S. Weather Bureau - Florence, S.C. FAA Airport Station

TABLE NO. 3

RAINFALL IN INCHES FOR SELECTED DURATIONS
FLORENCE COUNTY, SOUTH CAROLINA

	30 Min.	1 Hour	2 Hour	3 Hour	6 Hour	12 Hour	24 Hour
l Year	1.3	1.7	1.9	2.1	2.4	2.9	3.3
2 Years	1.5	1.9	2.3	2.5	2.9	3.4	4.0
5 Years	1.9	2.4	2.9	3.2	3.8	4.4	5.2
10 Years	2.2	2.8	3.4	3.7	4.4	5.2	6.0
25 Years	2.5	3.2	3.8	4.2	5.0	6.0	6.8
50 Years	2.8	3.5	4.3	4.7	5.6	6.7	7.8
100 Years	3.1	3.7	4.8	5.2	6.3	7.5	8.8

From U.S. Weather Bureau, Technical Paper No. 40, "Rainfall Frequency Atlas of the United States."

Damage to homes and septic tank field drains results from heavy rains and poor water disposal systems.

Drainage culverts under driveways and roads in new as well as established subdivisions, are critical factors contributing to poor local drainage. Head losses alone, resulting from widespread use of underdesigned culverts create local flooding conditions.

As urbanization continues, the present water disposal systems will become increasingly inadequate to handle the increased runoff, and additional flooding will occur. After urbanization has taken place, it is extremely expensive and sometimes impossible to provide adequate water disposal. Regulations may be needed to insure that adequate water disposal plans are included in these areas during development.

Land ownership often is a factor in the installation of drainage improvements. Frequently it is necessary for one owner to go on another's property, or go through it, to obtain an outlet. In larger group projects it is necessary to cross a number of land owners to reach adequate outlets. In either case, it is imperative that right-of-way easements be obtained before work can be begun.

Excessive rainfall runoff backed up in the drainageway outlet inundated and prevented use of an industrial parking lot near Coward, South Carolina.

Wildlife

Proper drainage also plays an important part in another land use upland wildlife management. Populations of game species such as deer, quail, turkey, and rabbits are enhanced in a safer and healthier wildlife environment provided in well drained areas. Unseasonably heavy rains can cause mass drowning of young animals and nestlings. Biting insect pests are reduced as a result of diminished breeding places in these areas where excess water is removed. Improvement of the habitat through proper water disposal allows greater natural food production. Seeded spoil banks not only control erosion but also provide food and cover, and travelways for wildlife.

Care should be taken, however, to protect certain wetland areas. Drainage of high value wetland sites is detrimental to wetland wildlife. Game species, such as wild ducks, geese, snipe, and some furbearers, depend heavily upon the water covered and water saturated areas for food and cover. Destruction of these areas through drainage could drastically reduce wetland wildlife species.

The discharge of dredged or fill material in inland waters and wetlands is regulated by the Federal

Water Pollution Control Act Amendments of 1972. Prior to placing fill material in wetlands, application for a Section 404 permit should be made to the nearest district office of the U. S. Army Corps of Engineers who are assigned the responsibility for carrying out Section 404 of the regulations.

The South Carolina Wildlife and Marine Resources Department can provide information, evaluation, and assistance in planning water management practices in wetland areas.

Existing Drainage System

Existing canals are usually located in natural water courses. However, in many instances, alignment is poor due to the fact that canals were located on existing property lines, cleared land borders, meandering branch runs or other physical features that were inconsistent with efficient channel flow conditions.

With the exception of some recently excavated canals, many drainage systems in rural and urban areas generally lack depth and capacity, have very flat grades and inadequate outlets. One exception to these conditions is the Lynches Lake -Camp Branch Watershed project located in the southwestern quadrant of the county between Olanta and Scranton. This project, completed in 1968, improved the natural waterway, and benefited hundreds of acres of land in this area. While the capacity of this improved waterway is still generally good, there is a need for some maintenance, especially vegetative removal, to restore full flow. A number of other smaller drainage projects completed in recent years, as well as numerous natural waterways, that serve as outlets also need the same type of maintenance to restore full flow.

Old ditches can be brought back to full capacity and service by simple maintenance or enlarging.

Maintenance

Lack of adequate maintenance is a factor affecting the capacity of drainage canals and ditches. Most of the existing drainage canals in the county were dug by hand many years ago; some were dug or enlarged by the Works Progress Administration (WPA) in the 1930's; clumsy floating dredges were used on some of the larger ones. These methods left nearly vertical side slopes with excavated material placed immediately next to the ditch. Access to practically all canals is restricted by high spoil banks which are covered by a heavy growth of trees and brush. Being continuous for long distances, these spoil banks prevent surface drainage resulting in ponding behind the banks. The extent of economic and practical maintenance by machine is limited largely due to these spoil placement practices.

EXCESS WATER DISPOSAL PRINCIPLES

This report presents a plan for the location and needed capacities of main drainageways based on present land use. This is, however, only a preliminary step in the establishment of a complete water disposal system. Further steps in designing the system will include the exact size, depth,

and grade of each drainageway determined only by a more detailed investigation and survey by qualified individuals. In some locations, detailed investigations might prove that existing drainageways are adequate.

Drainage systems are divided into two broad categories - surface drainage and subsurface drainage.

Surface Drainage

Surface drainage systems provide for removal of excess water from the land surface to an outlet. Surface water can best be moved by shallow graded channels or by forming the land surface to a uniform slope. Surface drainage facilities are particularly applicable to soils having slow permeability rates. Surface drainage on these soils is used to prevent ponding in shallow depression areas and also to divert water from protected areas to natural or excavated channels.

Subsurface Drainage

Subsurface drainage removes water from beneath the surface of the soil by facilities which create a difference in hydraulic head. The resulting hydraulic head causes water to move through the soil to an outlet at a lower elevation. may be accomplished by open ditch drains or by closed drains of tile or perforated tubing. Often a combination of open and closed drains is used for subsurface drainage. Open ditch drains sometimes have an added advantage in that they can remove both surface and subsurface water . Properly installed closed drains require very little maintenance. They can also be designed to remove surface water by providing protected drop inlets or catch basins that simulate small storm sewer systems.

A ditch with good design section and managed spoil can serve as Surface and Subsurface Water disposal outlet for several landowners.

The purpose of subsurface drainage is to lower the water table to a point where it will not interfere with plant growth or the use of the land for residential or other purposes. The minimum depth below the surface at which water tables should be maintained depends on the purpose for which the land is to be used. Water tables, fluctuating from a lower level upward to or near the surface, may not be as great a problem for some agricultural uses as they would be in populated areas where construction of buildings, septic tanks, lawns and gardens, or streets would be damaged.

Water Runoff Systems

The components of an excess water disposal system are as follows:

The Collection Segment is that part of the drainage system which first picks up water from the land. It may consist of shallow trapezoidal ditches having flat side slopes, V or W type ditches, bedded areas, or graded land surfaces.

The Disposal Segment receives water from the collection segment and conveys it, usually in an open channel or floodway to an outlet.

Generally this report concerns itself with the disposal segment of the drainage system.

The Outlet is the end point of any section of a drainage system beyond which the conveyance system no longer guides or controls the water it discharges.

Excess Water Removal Requirements

The water disposal system should be designed so that flooding will not occur in critical parts of the watershed for a period of time sufficient to cause damage or disrupt utilities and services. For urban areas, design should provide for the removal of runoff from the design storm with a minimum of flooding. In agricultural areas, the degree of protection required by crops varies considerably, depending on their tolerance to the amount and duration of excess water. Truck crops are the most susceptible to damage from excess surface water, with damage occuring to some when flooded for the relatively short period of 24 hours or less. General crops such as corn and grain are less susceptible, with pasture being the least subject to water damage. Woodland areas are the least subject to damage from flooding for prolonged periods.

Poorly drained soils adversely affect the use of the land for most purposes. On agricultural land, high water tables restrict root depth; the soil temperature is lowered and air circulation is severely limited depending on the degree of soil saturation. Wet spots in the field delay farm operations and shorten the growing season.

In residential areas, poorly drained soils adversely affect the construction, maintenance and use of roads and streets in addition to the harmful effects on ornamental plants,

flower gardens and lawns. These soils also limit or prohibit the development of some areas, preventing the proper functioning of septic tanks or tile field drains and thus contribute to health hazards.

Road culverts at lower elevation provide an outlet for low lying drainage areas and subsurface water -Soil cement bag-type headwall stabilized fill.

DESIGN CRITERIA

The design of excess water disposal systems and supporting structures is based largely on Hydrology and Hydraulics. This report is limited to the application of these sciences as they apply to water disposal systems. Data and detailed information on the design of the drainageways are tabulated on the pages following this narrative section.

Drainage Curves

To determine the required runoff and design capacity for the drainageways, the Cypress Creek formula was used:

$$0 = CM$$

Where: Q = Average rate of runoff in cubic feet per second for which the ditch is to be designed.

C = Appropriate drainage
coefficient for l square
mile of watershed.

M = Square miles of watershed.

This formula provides an economical and effective design for open ditches if C is selected properly.

The drainage coefficient is the rate of removal of runoff to provide a specific degree of drainage protection to an area. Land use, soils, topography and rainfall intensities and duration determine the selection of drainage coefficients.

Three runoff curves have been developed from which required drainage capacities of open ditches in this report were computed. Each curve is based on a particular land use. For purposes of this report, curves selected were for present land use. (See Figure No. 1)

The highest curve used is for general crops followed in descending order by the curve for pasture or grassland and the curve for forest or woodland.

These curves provide for the removal, in 24 hours, of the following estimated amounts of runoff for a one square mile area.

General crops curve - 1.67 inches
Pasture Curve - .93 inches
Woodland Curve - .37 inches

Velocity

The maximum safe velocity in an open channel is determined based on soil characteristics, the shape of the channel, and available means for the stabilization of the channel after construction. The optimum velocity for channels, based on soil conditions in Florence County, is approximately 2 feet per second. The soils are predominantly sandy loams with sandy clay subsoils. There are some areas where sands occur, therefore the design of

channels in these lighter soils must consider the need for checking erosion and bank sloughing that might occur, immediately following construction, when water tables are high.

Velocities were computed by use of Manning's formula:

$$V = \frac{1.486}{r} \times r \times \frac{2/3}{r} \times s$$

Where: n = roughness coefficient

r = hydraulic radius

s = slope in feet per foot
 along the ditch

The proper design of a ditch cross section requires the selection of the proper value of "n". The following tabulations were used for selection of these values in the design of main canals with good alignment:

Hydraulic Radius*	"n"
Less than 2.5	.045
2.5 to 4.0	.040
4.0 to 5.0	.035
Over 5.0	.030

*The hydraulic radius is obtained by dividing the proposed area of the channel cross section by its wetted perimeter.

Roughness coefficients were selected anticipating flow retardance features, vegetative growth and sedimentation, several years after construction. Newly dug channels with lower roughness coefficients will have higher velocities initially. These velocities will reduce as the vegetation and sedimentation occur, especially during the first few years.

Watershed Area In Square Miles

Figure No. 1 — Drainage Coefficient Curves

When larger ditches cross roads, a bridge provides unrestricted flow capacity for excess water runoff.

Channel Cross Section

Depth and width of the channel are both significant considerations in design. Channels designed for subsurface drainage must be deep enough to intercept at some depth below the surface and allow for safe disposal. The channel depth must be adequate for lateral ditches and tile drains. Other things considered to favor deeper channels with resulting narrower bottom widths are: less rightof-way is required, vegetative growth on the wetted perimeter is reduced, and conditions are less favorable for the formation of sandbars. A channel approximately as deep as its bottom width - within practical and economical limits will remain effective for a longer period because it has more favorable hydraulic characteristics.

A minimum bottom width of 3.0 feet was used in sizing main channels, for this report. This conforms to a bucket width of small dragline excavating equipment commonly available in the county. Bottom widths were selected as narrow as design and construction criteria would permit to maintain a favorable hydraulic section with higher velocity to help prevent siltation.

Side slopes of the ditch, as well as depth and allowable velocities, are determined primarily by topography, soil conditions, proposed maintenance methods, and a need for adequate rights-of-way. To satisfy these conditions, 1 to 1 side slopes were used for main channels in this report. Detailed soil surveys may indicate subsoils that would allow 1/2 to 1 side slopes in many areas. This side slope has been used satisfactorily in numerous cases in the county. In urban areas, flatter side slopes may be desirable for aesthetic and easier maintenance purposes.

In fine sands, or other unstable soils, having high water tables, sloughing of side slopes may be expected immediately after excavation. Sloughing will continue until the water table becomes established at the lower level. The problem can be controlled somewhat in wide channels by utilizing a pilot channel to lower the water table, followed by final construction when the slopes have become more stabilized. If a pilot channel is not used, a maintenance operation may be required soon after the water table has stabilized to restore the desired cross section.

Culverts and Bridges

Culverts generally restrict the flow of water in ditches by decreasing the flow area thereby causing a loss in hydraulic head. This was considered in sizing main channels. At culverts, during design flow, the hydraulic gradient was set low enough to keep the profile of the water surface well within the channel cross section in all critical areas.

Right-of-Way Requirement-Spoil Bank Management

Factors governing width of rights-ofway can best be understood by consulting Figure No. 2. The principal requirements for spoil bank management

TYPICAL CROSS SECTION - SPOIL SHAPED ONE SIDE

$$R.O.W. = 5 + T + 6 + S + 15$$

S = 1.3 A \div 3 (where A = Excavated Area)

Wooded Area - R.O.W. = T +
$$\frac{1.3 \text{ A}}{3}$$
 + 26

Open Area - R.O.W. = T +
$$\frac{1.3 \text{ A}}{3}$$
 + 11

Bottom Width Less than 20 ft.

Max. $d_s = 3'$

TYPICAL CROSS SECTION - SPOIL SHAPED BOTH SIDES

$$R.O.W. = 15 + S + 6 + T + 6 + S + 15$$

$$R.O.W. = 2S + T + 42$$

$$2S = 1.3 A \div 6$$
 (where $A = Excavated Area)$

Wooded Area - R.O.W. = T +
$$\frac{1.3 \text{ A}}{6}$$
 + 42

Open Area - R.O.W. =
$$T + \frac{1.3 \text{ A}}{6} + 22$$

Bottom Width More Than 20 ft.

FIGURE 2

includes a right-of-way wide enough for placement of spoil and debris and shaping of spoil into a travel-way for maintenance equipment. No berm widths are needed where the spoil is to be spread and shaped to establish a travelway on top of it. A berm width of 15 feet is recommended for access and to avoid slope failure where spoil is to be stacked and not shaped.

DESCRIPTION OF AREAS

To facilitate planning, the county was divided into 8 areas, generally along watershed divides or large drainageways. This delineation allowed the study to be made of the present drainage system and its needs peculiar to each area. A brief description of each area and the features having some influence on the study of its drainage problems follows:

Area 1 - Florence - Mars Bluff - Quinby

Area 1 joins Darlington County in the northernmost part of the county and is bordered on the South by Middle Swamp and Jefferies Creek and on the East by the Great Pee Dee It includes the metropolitan area of Florence, the county seat with its industrial and urban areas, as well as the small town of Quinby. Interstate Highways 95 and 20 cut through the area west of the city of Florence. Farming interests in the extreme Western part of the area and the Eastern section produce crops of tobacco, corn and soybeans. A sizable amount of this area is wet land or land subject to flooding along Black Creek, Middle Swamp, Jefferies Creek and the large Pee Dee River Swamp. Some of the agricultural soils include Wagram, Norfolk and Goldsboro. Wildlife along the larger swamps include waterfowl, deer, and raccoons.

Area 2 - Timmonsville - Cartersville Sardis - Cusaac Crossroads

This section of the county joins Darlington County and is bordered on the southwest by the Lynches River and extends eastward to Lake Swamp. Included in this area are the towns of Timmonsville and Cartersville, on U. S. Highway 76 that cuts across the upper portion. Interstate Highway 95 slices through the mid section and U. S. Highway 301 cuts across the lower portion. Sparrow Swamp runs through almost the entire length of Area 2 which along with the Lynches River Swamp and Lake Swamp involve large areas of wet natured or flooded soils. Farming in the better higher elevations produces good crops of tobacco, corn, and soybeans.

Area 3 - Savannah Grove - Peniel - Effingham

Area 3, immediately south of the city of Florence is bordered by Lake Swamp on the west and extends across U. S. Highway 52 to include a section along the Lynches River and a tributary, McCall Branch. The northern boundary is Middle Swamp and the southern boundary mainly the Lynches River.

U. S. Highways 301 and 52 cut through this area of rather flat land with several small branches that drain into the Lynches River. A number of soils with high water tables are present, however, fair crops of tobacco, corn and soybeans are produced on the higher better drained fields of Norfolk, Wagram, and Goldsboro. Some of the wet natured soils are Coxville, Lynchburg and Rains.

Area 4 - Claussen - Evergreen - Willow Creek

This area includes the entire drainage area of Willow Creek and its tributaries which runs through the center. It extends from the Seaboard Coast Line Railroad on its western border to the Great Pee Dee River on the eastern border and from Jefferies Creek on the north southward to include the drainage area of Cypress Creek. The area is rather flat and contains several wet natured soils such as Lynchburg, Coxville, and Rains. The better drained soils such as Norfolk and Wagram along with drained Goldsboro and the above mentioned soils produce crops as grown in the other areas - mainly tobacco, corn and soybeans.

Area 5 - Olanta - Scranton Lake City - Byrds Crossroads

In the southwestern corner of the county, this area joins Sumter, Clarendon and Williamsburg Counties on the west and south and extends over to U. S. Highway 52 on its eastern side and includes the town of Lake City and a small area east of Lake City. It extends up to the Lynches River on its northern border.

U. S. Highway 301 cuts across the western side of the area, U. S. Highway 52 across the Eastern side and U. S. Highway 378 runs along its southern edge while the rest of this area is covered with a network of state and county roads. The land is fairly level and includes a number of wet natured soils that need drainage improvements generally, such as Goldsboro, Lynchburg, Coxville, Rains, and Pantego. The Lynches Lake Swamp and Camp Branch section in the center of Area 5 was improved with a drainage channel, the Lynches Lake - Camp Branch Watershed project, completed in 1969. This project provided an outlet for drainage from dozens of farms in the area between Olanta and Scranton.

The farms in this area produce the same crops as the other areas - tobacco, corn, soybeans. In addition,

in the Lake City vicinity, several kinds of truck crops are produced such as beans, peas, tomatoes, squash, cucumbers and watermelons. This section of the county along with most of the others has wildlife that includes squirrels, deer, quail, and doves in large numbers.

Area 6 - Friendfield - Coward - Highhill - Camerontown

Area 6 includes the lands immediately east of Coward and Lake City on U. S. Highway 52, and eastward across the Lynches River to lands on the other side of the river drained by several small tributaries. The area extends southward to the Lynches Lake Swamp and northward to the New Hope community. With the Lynches River running north and south through the center of area 6, a large acreage is subject to flooding from it and its tributaries.

The soils are wet natured, in general, and poorly drained - they include Leaf, Coxville, Lynchburg, Rains and Cahaba.

The higher elevation field soils, in lesser acreages, include some Norfolk and Goldsboro. Crops grown in the area are somewhat limited to fair production of corn and soybeans with some tobacco and truck crops on higher field locations.

Area 7 - Hyman - Pamplico - Blossom - Salem

Area 7 joins area 6 on the east side and extends over to the Great Pee Dee River on the eastern side. It includes all the drainage area of Big Swamp and its small tributaries south to where it empties into the Lynches River. Big Swamp flows southward through the center of this area, influences the wetness of all low lying land adjacent to it.

The area is relatively flat with some

depression areas which need drainage improvements. The higher field areas contain soils like Wagram, Norfolk and Goldsboro while the major wooded areas have Duplin, Lynchburg and Rains soils.

This, as well as other areas of the county, is considered highly agricultural, producing good grops of tobacco, corn, soybeans and some truck.

Wildlife in this area abounds including deer, raccoon, squirrel, waterfowl in the Pee Dee Swamp, doves and quail.

Area 8 - Poston - Salem - Vox - Johnsonville

Area 8 is located in the extreme southeastern corner of the county and is bounded on the East by the Great Pee Dee River on the south by Muddy Creek and the Williamsburg County line and joins area 6 and area 7.

The Lynches River and Lynches Lake Swamp traverse the area from east to west and influence a major portion of the lands adjacent to them. A sand mining company has excavated sand on sizable acreages just north of the Lynches River near Johnsonville.

The soils in the area include
Norfolk, Wagram, Duplin and Varina
in the section north of the river
and Chipley, Olanta, and Lakeland
south of the river. Like the other
areas the main crops grown on the
better soil types are tobacco, corn
and soybeans. The area is generally
flat with low lying lands adjacent
to the streams and swamps. Wildlife
abounds in the swamps and includes
deer, raccoons, squirrels and waterfowl, while on the higher areas
there are also quail and doves in
good numbers.

FACTORS CONSIDERED IN PREPARATION OF PLAN

The Water Runoff Study was prepared by engineers of the Soil Conservation Service with the assistance of the Florence County Development Board. On-site investigations were made of the outlets for each main canal, and the factors affecting water disposal within the watershed, such as land use, river stages, flooding, and the time of year in which flooding occurs, were studied.

Present land use and anticipated future land use was considered in sizing the drainage ditches for this study. Engineering information available through the Florence Field Office of the Soil Conservation Service was also used, particularly that pertaining to drainage investigations.

U. S. Geological Survey Topographic Maps were used in many areas to determine the general topography within each watershed and to assist in delineation of watersheds. A limited amount of instrument surveying was done in some areas to determine direction of runoff and outlets.

Aerial photographs, scale 1" = 1320', flown in 1969, were used in recording field data and for the preparation of the drainage plan.

Agencies and commercial concerns, having knowledge of specific drainage problems, were consulted in making decisions in certain areas. Also, maps, surveys and plans available from these agencies were used.

In most instances, mains were located along natural drains with modifications in alignment to improve the flow and collection of water. All needed laterals within the watersheds were not located since the purpose

of the study is to locate and size only the main canals which will furnish a means of disposal of runoff from all parts of the watershed. All mains terminate in rivers, creeks or natural outlets at a point where they have adequate capacity and depth.

No attempt was made to locate underground utilities, such as telephone cables, gas pipelines, water mains, and conduits, as a part of this study. However, due consideration must be given to the location of these underground utilities during the preparation of the final plans.

No designs are included for the ditches receiving runoff at the edges of the city of Florence. A Storm Drainage Study was completed for the Greater Florence Planning Area by LBC & W - Harwood Beebe Company in 1974. Reference to this publication can be made for design of these outlets.

Watersheds draining into the county from adjoining counties were included in the design of main canals. The mains, however, are shown beginning at the county line. Attention was given to possible land use changes in adjacent counties that would affect runoff coming into these watersheds.

ENGINEERING CONSIDERATIONS

Engineering considerations for planning, design, construction, maintenance and other items pertinent to the main drainageways and outlets feasibility study are listed below:

Design

This Water Runoff Study was made to estimate the extent of needed main disposal outlets and the physical practicability of drainage in the county. Detailed engineering surveys and designs will be required before any part of the proposed plan can be constructed. All improvements should be made continuous. Layout and construction should begin at the outlet end and continue upstream.

Plans and designs contained in this report do not include a complete study of underground storm sewers near towns found in Areas 1, 2, 5, 6, 7, and 8. Sufficient engineering data was not available on the sewers in these areas to include in this report. Detailed studies will be needed to determine the adequacy of these storm sewers and any additional needs or modifications.

No attempt was made in this study to size culverts. Culverts at railroad and road crossings should be designed to satisfy the minimum requirements based on expected flow. Increases in size of these structures may be desirable to provide an added safety factor for passing runoff in excess of designed flow where future unforeseen improvements are to be made in the vicinity.

The South Carolina Wildlife and Marine Resources Department and other organizations or agencies concerned with environmental protection should be consulted when the ecology of an area may be affected by the construction of main drainage canals.

As previously mentioned under the topic of WILDLIFE, the Federal Water Pollution Control Act Amendment of 1972, Section 404, regulates the placing of fill material in coastal and inland waters and wetlands. Before undertaking any construction in water or wetland areas an application for a Section 404 permit should be made to the nearest district office of the U. S. Army Corps of Engineers.

Acquisition of Rights-of-Way

The means for, and the acquisition of, adequate rights-of-way for the installation of main canals is absolutely essential. The right-of-way must be adequate to meet the width requirements for the channel section, berm, spoil management, and to assure access.

Maintenance of Channels

A well-organized and adequately financed maintenance program is essential for proper maintenance of channels.

Provision for annual maintenance or periodic reconstruction to maintain the effectiveness of the channel must be considered prior to design. Many water disposal projects fail to function as designed and this can be directly attributed to an inadequate maintenance program. Maintenance of designed depth of channels is one of the most important items in a maintenance program. The cost of maintenance may be reduced considerably if provision is made in channel designs for easy access and stabilization of silt-contributing areas, such as ditch side slopes, new road fills and road ditch intersections, immediately following construction.

Obstructions

Construction of fences, walks and other structures that may retard channel flow should not be permitted. Other structures such as culverts, bridge piers, trestles, etc., should be designed to result in minimum interference with the channel flow. Dumping trash, garbage and other debris in channels should be prohibited.

DEFINITION OF TERMS

Brief descriptions of terms used in this report are listed below in

alphabetical order.

c.f.s. - Abbreviation for cubic feet
per secons; a unit of waterflow
sometimes called "second feet."

<u>Infiltration</u> - The entrance of water into surface horizons of soil.

Internal Drainage - The movement of water through the soil profile. The rate is affected by the texture of the surface soil and of the subsoil and by the height of the water table. A wet, deep sand may have slow internal drainage when the water table is high, and rapid internal drainage when the water table is low. A plastic, sandy clay soil may have slow internal drainage regardless of water table height.

Lateral Ditch - A major ditch in a drainage system which serves as a link between the main ditch and the collection system in a segment of the watershed.

Main Canal (Ditch or Channel) - The principal channel which conducts the drainage water from the watershed to the outlet.

<u>Permeability Rate</u> - The rate of movement of water through the soil.

<u>Profile</u>, <u>Soil</u> - A vertical section of the soil through all its horizons and extending into the parent material.

Reach - A length of channel selected
for use in hydraulic computations.

Relief - The elevations or inequalities of a land surface, considered collectively.

Runoff, Surface - The total rainfall minus losses from interception, infiltration, evapotranspiration, and surface storage; that which moves across the ground to a stream or depression.

Runoff, Subsurface - Water that infiltrates the soil and reappears as seepage or spring flow.

Soil Drainage - (1) The rapidity and extent of the removal of water from the soil by runoff and flow through the soil to underground spaces. (2) As a condition of the soil, the frequency and duration of periods when the soil is free of saturation. For example, in well-drained soils, the water is removed readily, but not rapidly; in poorly drained soils, the root zone is waterlogged for long periods and the roots of ordinary crop plants cannot get enough oxygen; and in excessively drained soils, the water is removed so completely that most crop plants are damaged by lack of water.

Soil Structure - The arrangement of the individual grains and aggregates that make up the soil mass; may refer to the natural arrangements of the soil when in place and undisturbed or to the soil at any degree of disturbance.

<u>Subsoil</u> - In soils with weak profile development, the subsoil can be defined as the soil below the plowed soil (or its equivalent of surface soil) in which roots normally grow.

Surface Soil - The soil ordinarily moved in tillage or the equivalent in uncultivated soil about six to ten inches in thickness.

Terrace (Geological) - An old alluvial plain, ordinarily flat or undulating, bordering a river, lake or the sea. Stream terraces are frequently called second bottoms, as contrasted to flood plains, and are seldom subject to overflow. Marine terraces were deposited by the sea and are generally wide.

Texture, Soil - The relative proportions of sand, silt and clay particles in a mass of soil. The

basic textural classes, in order of increasing proportions of fine particles are as follows: sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine." A coarsetextured soil is one high in sand content; a fine-textured soil is one high in clay content.

Water-holding Capacity - The ability of a soil to hold water. The capacity (or ability) of soil to hold water against gravity.

<u>Watershed</u> - An area of land from which all water that falls within the area converges toward and discharges past a designated point.

TECHNICAL REFERENCES

- C. E. Ramser FLOW OF WATER IN DRAINAGE CHANNELS U. S. Department of Agriculture Technical Bulletin No. 129 U. S. Government Printing Office Washington, D. C.
- H. W. King HANDBOOK OF HYDRAULICS McGraw-Hill Book Company, Inc., New York, N. Y.

War Department, Corps of Engineers - HYDRAULIC TABLES, U. S. Government Printing Office, Washington, D. C.

- U. S. Department of Agriculture, Soil Conservation Service NATIONAL ENGINEERING HANDBOOK DRAINAGE Section 16, Chapters 1,2,3,4,5, and 6.
- U. S. Department of Agriculture, Soil Conservation Service NATIONAL ENGINEERING HANDBOOK HYDRAULICS Section 5.
- U. S. Department of Agriculture, Soil Conservation Service FIELD DRAINAGE GUIDE FOR SOUTH CAROLINA.
- U. S. Department of Commerce, Weather Bureau TECHNICAL PAPER NO. 40 RAINFALL FREQUENCY ATLAS OF THE UNITED STATES U. S. Government Printing Office Washington, D. C.
- U. S. Department of Commerce, Bureau of Public Roads HYDRAULIC CHARTS FOR THE SELECTION OF HIGHWAY CULVERTS.
- U. S. Department of Agriculture, Soil Conservation Service NATIONAL ENGINEERING HANDBOOK HYDROLOGY Section 4.

FEASIBILITY STUDY FOR MAIN DRAINAGE CANALS in Horry County.

FEASIBILITY STUDY FOR MAIN DRAINAGE CANALS in Williamsburg County.

WATER MANAGEMENT STUDY FOR MAIN DRAINAGE CANALS in Dorchester County.

AUTHORITY AND ACKNOWLEDGEMENT

Authority for preparation of the Water Runoff Study for Main Drainageways and Outlets for Florence County is the result of a cooperative agreement entered into on June 7, 1973, by:

Florence County Council -

D. N. Bath, Chairman R. L. Poston
J. B. McCutcheon
Joe Griffin
G. B. Stokes, Jr.
Herbert T. Floyd
Jerry Keith
F. M. Lynch, Jr.

Cale Yarborough

Florence Soil and Water Conservation District Commissioners -

R. D. McLendon, Chairman W. D. Boling
John B. Daniels
L. D. Eagles
Jim R. Harwell

Soil Conservation Service - George E. Huey, State Conservationist

Administrative supervision for the Soil Conservation Service -

B. Clayton Graham - former Area Conservationist John S. Case - Area Conservationist

Direct responsibility for preparation of plans, designs and final report:

Calvin B. Derrick - Civil Engineer, Soil Conservation Service Thomas L. Hyman - Soil Conservation Technician, Soil Conservation Service Henry B. Watson - Soil Conservation Technician, Soil Conservation Service Special technical assistance during all phases of the preparation of the report was given by:

W. Burton Wells, State Conservation Engineer, Soil Conservation Service James J. Pitts, Soil Scientist, Soil Conservation Service Albert H. Cole, District Conservationist, Soil Conservation Service

Others who furnished data, information, or services used in the preparation of the report:

- U. S. Weather Bureau
- U. S. Department of the Interior South Carolina Highway Department

Assistance in typing tables, charts, and manuscript gratefully acknowledged:

Mrs. Sandra Warren, Clerk Typist, Soil Conservation Service, Florence, S. C. Mrs. Catherine Pate, Clerk Typist, Soil Conservation Service Area Office Florence, S. C.

Cartography and Printing:

Fort Worth Cartographic Unit, Soil Conservation Service, Fort Worth, Texas.

EXPLANATION OF ENGINEERING DATA TABLES

The following Engineering Data Tables contain information, listed by areas, for each main canal and lateral watershed.

An explanation of each column in the Engineering Data Sheets is as follows:

- Column 1 CANAL NUMBER

 Numbering of main canals begin with M-1 and laterals with L-1, in each area.
- Column 2 LENGTH IN FEET

 Stationing of all mains and laterals begins at the upper end (headwaters) and continues toward the outlet. Mains and laterals are shown in reaches or sections in the data tables for design purposes. Each reach or section reflects a change in water concentration resulting from entrance of lateral drainage.
- Column 3 WATERSHED IN ACRES
 See definition of terms.
- Column 4 DISCHARGE-CUBIC FEET PER SECOND

 From appropriate drainage coefficient curves dependent on land use. (See Fig. No. 1)
- Column 5a TOP WIDTH IN FEET

 All ditches estimated on average 5' depth.
- Column 5b BOTTOM WIDTH IN FEET Self-explanatory.
- Column 6 EXCAVATION IN CUBIC YARDS Self-explanatory.
- Column 7 RIGHT-OF-WAY CLEARING IN ACRES Self-explanatory.
- COLUMN 8 REQUIRED RIGHT-OF-WAY WIDTH IN FEET

 Minimum width requirements for channel cross section, spoil

 management, berm width and maintenance access road.

TABLE No. 2
SUMMARY OF ENGINEERING AND DESIGN DATA BY AREAS

Area Number	Length of Canals Feet	Excavation Cubic Yards	Right-of-way Clearing Acres
1	355,000	515,788	467.5
2	559,200	653,661	598.9
3	360,900	486,104	445.0
4	437,600	613,123	548.7
5	398,420	763,171	538.6
6	543,700	593,890	496.0
7	305,900	462,003	368.4
8	277,000	271,813	252.5
County Totals	3,237,720	4,359,553	3715.6

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

CANAL	LENGTH	WATERSHED	DISCHARGE	CHANNEL I TOP	DIMENSIONS BOTTOM	EXCAVATION	RT. OF WAY	REQUIRED RT. OF WAY
No. (1)	Ft. (2)	Ac. (3)	c.f.s. (4)	WIDTH Ft. (5a)	WIDTH Ft. (5b)	Cu. Yds. (6)	CLEARING Ac. (7)	WIDTH Ft. (8)
M-1A L-1A L-1B M-1B Total-1	1900 700 1400 1300 5300	80 20 40 148	8 3 13	13 13 13	നന്നന	2812 1036 2072 1924 7844	2.6 1.0 1.9 1.8	09
M-2A Total-2	1300	25	м	13	м	1924	1.8	09
M-3A M-3B L-1A M-3C M-3C M-3D Total-3	3300 2800 1500 1200 2600 11,400	47 119 25 172 199	5 12 3 15 17	13 13 13 13	м м м м м	4884 4144 1924 1776 3848 16,576	4.5 3.9 2.1 1.7 3.6 15.8	09
M-4A Total-4	2300	170	15	13	С	3404 3404	3.1	09
M-5A L-1A M-5B Total-5	700 2100 800 3600	60 30 160	7 7 13	13 13 13	ммм	1036 3106 1184 5326	1.0 2.9 1.1 5.0	09

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

REQUIRED RT. OF WAY WIDTH Ft. (8)	09	09	60 60 60 60 70 70	09
RT. OF WAY CLEARING Ac. (7)	3.0	7.3 1.9 10.2	7.7 7.0 1.0 1.0 1.0 1.5 1.5	2.3
EXCAVATION Cu. Yds. (6)	3256 3256	7844 2072 1036 10,952	8288 2812 1776 2960 1332 1036 3552 4884 2040	2516 3256 5772
DIMENSIONS BOTTOM WIDTH Ft. (5b)	ε	ოოო	п п п п п п п ю	m m
CHANNEL TOP WIDTH Ft. (5a)	13	13 13 13	133 133 133 14 16	13
DISCHARGE c.f.s. (4)	12	19 23 25	35 40 40 10 13 16 36 72	9
WATERSHED Ac. (3)	127	228 268 310	444 534 112 146 166 180 466	96 166
LENGTH Ft. (2)	2200 2200	5300 1400 700 7400	5600 1900 1200 2000 900 700 2400 3300 19,000	1700 2200 3900
CANAL No. (1)	M-6A Total-6	M-7A M-7B M-7C Total-7	M-8A M-8B L-1A L-1B L-1C L-2A L-1E M-8C Total-8	M-9A M-9B Total-9

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

REQUIRED WIDTH Ft. (8)	09	09	09	09	09	09
RT. OF WAY CLEARING Ac. (7)	2.2 1.8 4.0	4.4 be adequate	2.3	3.1	1.50	1.8 2.3 4.1
EXCAVATION Cu. Yds. (6)	2368 1924 4292	13 3 4736 Present canal with proper maintenance will be 4736	2516 1776 4292	3404 740 4144	5328 1924 7252	1924 2516 4440
CHANNEL DIMENSIONS TOP BOTTOM WIDTH WIDTH Ft. Ft. (5a) (5b)	е е	3 proper main	m m	m m	m m	m m
CHANNEL TOP WIDTH Ft. (5a)	13	13 anal with	13	13	13	13
DISCHARGE c.f.s. (4)	6 10	13 Present c	7	10	15	3
WATERSHED Ac. (3)	52 118	156 256	88 116	48 248	160 186	40
LENGTH Ft. (2)	1600 1300 2900	3200	1700 1200 2900	2300 500 2800	3600 1300 4900	1300 1700 3000
CANAL No. (1)	M-10A M-10B Total-10	M-11A M-11B Total-11	M-12A M-12B Total-12	M-13A M-13B Total-13	M-14A M-14B Total-14	M-15A M-15B Total-15

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

REQUIRED RT. OF WAY	WIDTH Ft. (8)	9	09	09	09	09 09 09 09
RT. OF WAY	CLEARING Ac. (7)	4.7	4.1 1.8 1.1 4.1 3.7 1.0 15.8	2.9	2.8 3.3 6.1	3.6 1.0 3.4 9.3
EXCAVATION	Cu. Yds. (6)	5032 5032	4440 1924 1184 4440 3996 1036 17,020	3108 2220 1776 2220 9324	2960 3552 6512	3848 444 1036 3700 888 9916
DIMENSIONS BOTTOM	WIDTH Ft. (5b)	ε	пппппп	т т т т	е е	м м м м м
	WIDTH Ft. (5a)	13	13 13 13 13 13	13 13 13	13	13 13 13 13
DISCHARGE	c.f.s. (4)	12	8 16 20 15 23 40	5 8 10	15 20	13 17 11 19
WATERSHED	Ac.	132	80 192 222 135 263 509	52 84 104 148	172 232	140 152 36 100 276
LENGTH	Ft. (2)	3400 3400	3000 1300 800 3000 2700 700 11,500	2100 1500 1200 1500 6300	2000 2400 4400	2600 300 700 2500 600
CANAL	No. (1)	M-16A Total-16	M-17A M-17B M-17C L-1A L-1B M-17D Total-17	M-18A M-18B M-18C M-18D Total-18	M-19A M-19B Total-19	M-20A M-20B L-1A L-1B M-20C Total-20

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

REQUIRED RT. OF WAY WIDTH Ft. (8)	60 60 60 60 60 60 60 1 be adequate	09 09 09	09
RT. OF WAY CLEARING Ac. (7)	2.8 1.4 1.8 1.8 1.2 8 2.2 maintenance will	1.1 .6 5.6 7.3 3.3 3.6 2.8 1.0	4.5 L be adequate 4.5
EXCAVATION Cu. Yds. (6)	2960 1480 1924 proper 1332 888 2368 proper 10,952	1184 592 6068 7844 3552 3848 2960 1036 11,396	4884 tenance will 4884
DIMENSIONS BOTTOM WIDTH Ft. (5b)	3 t canal with 3 3 t canal with	m m m m m m	3 4884 proper maintenance 4884
CHANNEL TOP WIDTH Ft.	13 13 13 Present 13 13 13 Present	13 13 13 13 13	13 canal with
DISCHARGE c.f.s. (4)	6 10 12 17 14 16 18	5 13 22 22 26 33 40 41	9 Present o
WATERSHED Ac. (3)	52 100 132 200 160 180 228 508	47 128 300 324 452 537 549	88
LENGTH Ft. (2)	2000 1000 1300 2000 900 600 11,400	800 400 4100 5300 2400 2600 2000 700	3300 1200 4500
CANAL No. (1)	M-21A M-21B M-21C M-21D L-1A L-1B L-1C M-21E	M-22A M-22B M-22C Total-22 M-23A M-23B M-23C M-23D Total-23	M-24A M-24B Total-24

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

		,					
REQUIRED RT. OF WAY WIDTH	Ft. (8)	09	09	09	09	09 09 09	09
RT. OF WAY	Ac. (7)	1.8 2.5 4.3	4.5	1.9	1.1 1.4 2.5	2.5 1.0 1.8 2.3 7.6	1.8 5.0 6.8
EXCAVATION	Cu. Yds. (6)	1924 2664 4588	4884	2072 2072	1184 3150 4334	2664 1036 1924 2516 8140	1924 5328 7252
CHANNEL DIMENSIONS TOP BOTTOM WIDTH WIDTH	Ft. (5b)	ес	к	ю	т т	м м м м	тт
CHANNEL I TOP WIDTH	Ft. (5a)	13	13	13	13	13 13 13	13
DISCHARGE	c.f.s. (4)	10	10	5	6 5	6 3 5 13	9 20
WATERSHED	Ac. (3)	60	96	44	32 56	60 28 52 140	92 252
LENGTH	Ft. (2)	1300 1800 3100	3300	1400 1400	800 1000 1800	1800 700 1300 1700 5500	1300 3600 4900
CANAL	No.	M-25A M-25B Total-25	M-26A Total-26	M-27A Total-27	M-28A M-28B Total-28	M-29A L-1A L-1B M-29B Total-29	M-30A M-30B Total-30

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

	1			
REQUIRED RT. OF WAY WIDTH Ft. (8)	000000000000000000000000000000000000000	09	60 60 60 65	09
RT. OF WAY CLEARING Ac. (7)	3.0 1.2 1.6 1.9 2.9 2.6	2.5 3.6 1.7 7.8	3.4 5.0 1.2 4.1 1.0	8.1
EXCAVATION Cu. Yds. (6)	3256 1332 592 444 1628 2072 2220 1924 3108 3848 2812 23,236	2664 3848 1776 8288	3700 5328 1332 4440 1169	8732 8732
DIMENSIONS BOTTOM WIDTH Ft. (5b)	м м м м м м м м м м м м м м м м м м м	теп	ო ო ო ო ∀ [†]	ю
TOP TOP WIDTH Ft. (5a)	13 13 13 13 13 13	13 13 13	13 13 13 13	13
DISCHARGE c.f.s.	8 113 20 28 30 34 43	10 20 22	24 40 8 13	18
WATERSHED Ac. (3)	80 148 172 200 244 332 404 76 52	116 248 268	288 548 76 164	216
LENGTH Ft. (2)	2200 900 400 300 1100 1400 1500 1300 2100 1400 1900	1800 2600 1200 5600	2500 3600 900 3000 700	5900
CANAL No. (1)	M-31A M-31B M-31C M-31C M-31E M-31E L-1A L-1A L-2A M-31H Total-31	M-32A M-32B M-32C Total-32	M-33A M-33B L-1A L-1B M-33C Total-33	M-34A Total-34

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

No. Ft. (1) (2) (2) M-35A 400 M-35B 1200 M-35B 2700 M-35C 2000 M-35C 2700 Total-35 11,300 M-36A 1400 L-1A L-1B L-1C	18	DISCHARGE	TOP	BOTTOM	EXCAVATION	RT. OF WAY	RT. OF WAY
			MIDIT	WIDTH		CLEARING	WIDTH
11		c.f.s.	ъt.	Ft.	Cu. Yds.	Ac.	Ft.
		(4)	(5a)	(5b)	(9)	(7)	(8)
=		11	13	ю	592	9.	09
11		28	13	ю	1776	1.7	09
11		40	13	ю	2960	2.8	09
	1562	06	18	ω	12,050	8.8	77
=		Present	canal with	proper	maintenance will	þe	9
					17,378	13.9	
	398	30	ent	with	 proper maintenance will		be adequate
L-1A L-1B L-1C	498	32	13	е	2072	1.9	09
L-1B L-1C	100	თ	Present c	canal with	proper maintenance	will	be adequate
I-1C	188	17	Present c	with	proper mainte		be adequate
_	260	22	Present c	with	proper mainte		be adequate
L-1D	276	23	ent	canal with	proper maintenance	will	be adequate
M-36C 2600		99	16	9	5304	4.1	70
L-2A 2300	144	10	13	ю	3404	3.1	09
М-36D 600		80	17	7	1332	1.0	74
M-36E 800		81	17	7	1776	1.3	74
Total-36 7700					13,888	11.4	
M-37A 2800	176	11	13	3	4144	3.9	09
M-37B 2500		17	13	3	3700	3.4	09
		22	13	С	1924	1.8	09
L-1A 1500		10	13	3	2220	2.1	09
L-1B 3300	220	18	13	٣	4884	4.5	09
-~		42	13	ĸ	2516	2.3	09
Total-37 13,100	4-0-0				19,388	18.0	

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

REQUIRED	KT. OF WAY WIDTH	Ft. (8)	09	09	09	09	e.		99	- 09	09	89		09	09	09	
WART CO.	KT. OF WAY	Ac. (7)	5.2.5	3.7	3.6	2.3	l be adequate	рe	3.7	1.0	3.7	1.6	15.9	1.0	3.6	5.2	8.6
THE STATE OF THE S	EXCAVATION	Cu. Yds. (6)	2664 2960 5624	3996 3996	3848	2516	maintenance will	maintenance will	4175	1036	3996	1850	17,421	1036.	3848	5624	10,508
DIMENSIONS	BOTTOM WIDTH	Ft. (5b)	. E. E.	e	3	3			4	Ж	Э	2		3	Ж	8	
닖	TOP	Ft. (5a)	13	13	13	13	canal with proper	canal with proper	14	13	13	15		13	13	13	
	DISCHARGE	c.f.s. (4)	11	12	18	22	Present o	Present (4	12	59		14	23	35	
	WATERSHED	Ac. (3)	108	148	248	292	292	372	700	28	132	842		164	330	490	
	LENGTH	Ft. (2)	1800 2000 3800	2700	2600	1700			2500	700	2700	1000	11,200	700	2600	3800	7100
	CANAL	No.	M-38A M-38B Total-38	M-39A Total-39	M-40A	M-40B	L-1A	L-1B	M-40C	L-2A	L-2B	M-40D	Total-40	M-41A	M-41B	M-41C	Total-41

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

	RT. OF WAY RT. OF WAY CLEARING WIDTH	Ac. Ft. (8)		6.3	2.8 10.1		3.7 60	1.4 60			2.1 60	00 9.9	8.7	5.2 60) • ? .	3.6 60			2.9	٠ ١ ١
	EXCAVATION	Cu. Yds. (6)	1036	6808	2960 10,804	2072	3996	1480 7548		9028	2220	1924 13,172	9324	5624	056151	3848	1036	2960	3108	10 952
DIMENSIONS	BOTTOM	Ft. (5b)	е	m (m	m	м	m	-	m	m (ຠ	m	ĸ		3	m	М	m	
띩	TOP	Ft. (5a)	13	13	T	13	13	13		13	13	T 3	13	13	-	13	13	13	13	
	DISCHARGE	c.f.s. (4)	10	23	333	8	23	27		28	29	c C	23	32		18	23	25	28	
	WATERSHED	Ac.	101	321	413	84	280	329		294	370	7 4 4 7	305	425		216	242	296	332	
	LENGTH	Ft. (2)	700	4600	7300	1400	2700	1000		6100	1500	1300 8900	6300	3800	001.01	2600	700	2000	2100	7400
	CANAL	No.	M-42A	M-42B	M-42C Total-42	M-43A	M-43B	M-43C Total-43		M-44A	M-44B	M-44C Total-44	M-45A	M-45B	10ca1-40	M-46A	M-46B	M-46C	M-46D	TC+2]-46

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

REQUIRED RT. OF WAY	WIDIH Ft. (8)	09	09	09	e adequate 60	60 65 65
RT. OF WAY	Ac. (7)	1.7	6.3	1.0 1.7 3.1 1 be adequate 5.8	canal with proper maintenance will be proper maintenance will be adequate proper maintenance will be adequate proper maintenance will be adequate 3 1924 1.8	2.5 3.9 6.0 1 be adequate 12.4
EXCAVATION	Cu. Yds. (6)	1776 2664 4440	8089	1036 1776 3404 maintenance will 6216	Present canal with proper mainter canal with proper maintenance will canal with proper maintenance will canal with proper maintenance will 13 3 1924	2664 4144 6680 maintenance will 13,488
DIMENSIONS BOTTOM	wiDin Ft. (5b)	m m	en en	3 3 3 proper mail	anal with proper main proper main proper main	3 4 proper mail
TOP TATE	wibin Ft. (5a)	13	13	13 13 13 canal with	Present c canal with canal with canal with 13	13 13 14 canal with
DISCHARGE	c.f.s. (4)	14	18	4 8 18 Present c	12 Present o Present o 12	17 15 50 Present c
WATERSHED	Ac. (3)	160 248	208	36 76 212 264	28 40 28 43 131	200 176 708 796
LENGTH	Ft. (2)	1200 1800 3000	4600	700 1200 2300 1400 5600	1300 500 1200 900 1300 5200	1800 2800 4000 8600
CANAL	No.	M-47A M-47B Total-47	M-48A Total-48	M-49A M-49B M-49C M-49D Total-49	M-50A M-50B L-1A L-1B M-50C Total-50	M-51A L-1A M-51B M-51C Total-51

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

CANAL	LENGTH	WATERSHED	DISCHARGE	CHANNEL D TOP	DIMENSIONS BOTTOM	EXCAVATION	RT. OF WAY	REQUIRED RT. OF WAY
No. (1)	Ft. (2)	Ac. (3)	c.f.s. (4)	Ft. (5a)	Ft. (5b)	Cu. Yds. (6)	Ac. (7)	willin Ft. (8)
M-52A L-1A L-1B M-52B Total-52	700 2600 1800 1000 6100	20 106 134 198	2 10 Present c 13	13 13 canal with 13	3 proper mai 3	1036 3848 maintenance will 1480 6364	1.0 3.6 1 be adequate 1.4 6.0	09 09 09
M-53A M-53B Total-53	1600 1800 3400	100	10 16	13	м м	2368 2664 5032	2.2 2.5 4.7	09
M-54A M-54B Total-54	2000 1900 3900	248 448	20 35	13	ო ო	2960 2812 5772	2.8 2.6 5.4	09
M-55A Total-55	2300	09	Q	13	m	3404	3.1	09
M-56A M-56B M-56C M-56D Total-56	500 1700 1400 1100 4700	156 252 304 328	13 20 23 25	133	m m m m	740 2516 2072 1628 6956	2.3 1.9 1.6 5.5	09

ENGINEERING AND DESIGN DATA Area 1 - Florence - Mars Bluff - Quinby

CHANNEL DIMENSIONS REQUIRED	TOP BOTTOM EXCAVATION RT. OF WAY RT. OF WAY WIDTH WIDTH WIDTH	Ft. Cu. Yds. Ac.	(7)	13 3 3700 3.4 60	3 4144		3 2368 2.2	13,024 12.1	13 3 2960 2.8 60	3 2.5	canal with proper maintenance will be adequate	5624 5.3	a 2000 V 1000	3 2960 2.8			
	DISCHARGE	c.f.s.	(4)	10	16	22	25		13	17	Present ca		16	7.7			
	WATERSHED	Ac.	(3)	116	123	269	31.7		140	200	248		180	248			
	LENGTH	ы t	(2)	2500	2800	1900	1600	8800	2000	1800		3800	3300	2000			
	CANAL	No.	(1)	M-57A	M-57B	M-57C	M-57D	Total-57	M-58A	M-58B	M-58C	Total-58	M-59A	M-59B	10001	Area-1	

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

				CHANNEL	DIMENSIONS			REOUIRED
CANAL	LENGTH	WATERSHED	DISCHARGE	TOP WIDTH	BOTTOM	EXCAVATION	RT. OF WAY CLEARING	RT. OF WAY WIDTH
No.	ъ Т	Ac.	c.f.s.	ы т	вt.	Cu. Yds.	Ac.	ъt.
(1)	(2)	(3)	(4)	(5a)	(2p)	(9)	(7)	(8)
M-1A	2600	110	10	13	د ا	3848	3.6	09
M-IB	1800 1400	T85	T?	Т3	m	2664	2.5	09
Total-1	4400					2159	0°T	
6	(((ŗ		,		(
M-74	0087	717	OT :	L 3	ν) (7007	C - 7	00
M-2B	800	128	13	T3	m.	1184	1.1	09
L-1A	1600	148	14	13	8	2368	2.2	09
L-1B	1100	180	16	13	٣	1628	1.6	09
M-2C	3000	404	30	13	3	4440	4.1	09
Total-2	8300					12,284	11.5	
M-3A	2100	176	15	13	ю	3108	2.9	09
M-3B	1300	208	18	13	ĸ	1924	1.8	09
M-3C	1500	220	19	13	٣	2220	2.1	09
L-1A	1800	64	7	13	Э	2664	2.5	09
L-1B	800	112	14	13	8	1184	1.1	09
L-1C	800	140	14	13	3	1184	1.1	09
M-3D	2500	418	33	13	3	3700	•	09
Total-3	10,800					15,984	14.9	-
M-4A	3300	176	15	13	m	4884	4.5	09
M-4B	1200	192	18	13	က	1776	1.7	09
Total-4	4500					0999	6.2	

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT OF WAY	WIDTH	ыt.	(8)	09		09	09	09	09	09	09	09				41		09	4)		
RT OF WAY	CLEARING	Ac.	(7)		l be adequate 3.6	3.6	5.6	1.2	9.0	1.0	0.8	0.4	13.2	l be adequate	pe	pe		3,3	l be adequate	þe	3.3
EXCAVATION	NOT TUNE TON	Cu. Yds.	(9)	3848	ntenance will 3848	3848	8909	1332	592	1036	888	296	14,060	maintenance will	maintenance will	maintenance will		3552	maintenance will	maintenance will	3552
DIMENSIONS	WIDTH	ъt.	(2p)		proper maintenance	ю	М	т	т	т	т	Э		proper	proper	proper		c	proper	proper	
CHANNEL	WIDTH	Ft.	(5a)	13	canal with	13	13	13	13	13	13	13		canal with		canal with		13	canal with	canal with	
DISCHARGE		c.f.s.	(4)		Present	7	12	17	17	4	2	22		Present		Present		7	Present	Present	
WATERSHED		Ac.	(3)	176	364	69	124	213	217	28	38	259		36	160	210		70	102	160	
HT-CNE,I		ri t	(2)	2600	4000	2600	4100	006	400	700	009	200	9500	300	4200	2000	6500	2400	800	1600	4800
CANAL		No.	(1)	M-5A	M-5B Total-5	M-6A	L-1A	M-6B	M-6C	L-2A	L-2B	М-6D	Total-6	M-7A	M-7B	M-7C	Total-7	M-8A	M-8B	M-8C	Total-8

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT. OF WAY WIDTH Ft.	09	0 0	09	09	09	09
RT. OF WAY CLEARING Ac.	5.5 1.0 0.5	l be adequate 1 be adequate	0.4 1 be adequate 0.4	3.6	7.9	4.7 2.8 7.5
EXCAVATION Cu. Yds.	5920 1036 444 7400	maintenance will	444 Intenance will 444	3848 1184 5032	8436 296 8732	5032 2960 7992
DIMENSIONS BOTTOM WIDTH Ft.	m m m	proper	3 444 proper maintenance 444	m m	тм	м м
CHANNEL TOP WIDTH Ft.	133	canal with	13 canal with	13	13	13
DISCHARGE c.f.s.	(4) 15 17 22	Present c Present c	25 Present o	. 9	11	23
WATERSHED Ac.	172 182 252	100	292 532	90	117 125	280
LENGTH Ft.	4000 700 300 5000	2800 800 3600	2000 4400 6400	2600 800 3400	5700 200 5900	3400 2000 5400
CANAL No.	M-9A M-9B M-9C Total-9	M-10A M-10B Total-10	M-11A M-11B Total-11	M-12A M-12B Total-12	M-13A M-13B Total-13	M-14A M-14B Total-14

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT. OF WAY WIDTH	Ft. (8)		09	09	09 09 09	09
RT. OF WAY	Ac. (7)	l be adequate	5.1 7.7 2.8 15.6	4.3 1.9 6.2	7.7 5.5 1.1 2.6 16.9	0.6
EXCAVATION	Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will maintenance will	5476 8288 2960 16,724	4588 2072 6660	8288 5920 1184 2812 18,204	3106 1776
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	proper proper proper proper	ммм	тм	м т т т	ო ო
CHANNEL TOP WIDTH	Ft. (5a)	canal with	1333	13	13 13 13	13
DISCHARGE	c.f.s. (4)	Present Present Present Present Present	12 30 34	13	22 10 33 40	ഹ ര
WATERSHED	Ac. (3)	12 12 58 118 140	128 382 432	140	264 104 420 534	44 90
LENGTH	Ft. (2)	800 700 1700 2400 500 300 6400	3700 5600 2000 11,300	3100 1400 4500	5600 4000 800 1900 12,300	2100
CANAL	No.	M-15A L-1A L-2A L-1B M-15B M-15C Total-15	M-16A M-16B M-16C Total-16	M-17A M-17B Total-17	M-18A L-1A M-18B M-18C Total-18	M-19A L-1A

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

CANAL	LENGTH	WATERSHED	DISCHARGE	CHANNEL D TOP	DIMENSIONS BOTTOM	EXCAVATION	RT. OF WAY	REQUIRED RT. OF WAY
No.	ъt.	Ac.	c.f.s.	WIUIH Ft.	WIUIN Ft.	Cu. Yds.	CLEAKING AC.	Willin Ft.
(1)	(2)	(3)	(4)	(5a)	(2g)	(9)	(7)	(8)
L-1B	3700	150	14	13	ю	5476	5.1	09
M-19B	1700	214	18	13	ю	2516	2.3	09
M-19C	1200	250	20	13	m	1776	1.7	09
M-19D	400	258	21	13	m	592	9.0	09
10ca1-13	200					ן ר	0.21	
L-1A	2900	124	Present ca	 canal with	 proper mai	 maintenance will	.1 be adequate	Φ
L-2A	3400	92	Present d		proper		pe	a
L-1B	400	222			proper		pe	Ф
M-20A	3700	170			proper		pe,	ø
M-20B	2000	442	Present ca	canal with	proper mai	maintenance will	.1 be adequate	a)
Total-20	12,400						Access Table 19 Table	
M-21A	1300	88	ത	13	m	1924	1.8	09
M-21B	3300	252	21	13	m	4884	4.5	09
M-21C	200	262	22	13	ĸ	296	4.0	09
Total-21	4800					7104	. 9	
M-22A	006	102	Present c	canal with	proper mai	maintenance will	1 be adequate	a a
M-22B	1300	155		canal with		maintenance will	pe	ø
Tota1-22	2200							
			1					
M-23A Total-23	1200	16	Present c	canal with	proper mal	proper maintenance will	.I be adequate	ن
			1486 Ju					

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT. OF WAY WIDTH Ft. (8)	09	09	0, 0	09	09
RT. OF WAY CLEARING Ac. (7)	4.7 1.4 6.1	2.5 1.7 1.1 1.8	l be adequate 1 be adequate	1.0	6.7
EXCAVATION Cu. Yds. (6)	5032 1924 6956	2664 1776 1184 1924 7548	maintenance will	2072 1036 444 3552	4884 740 5624
DIMENSIONS BOTTOM WIDTH Ft. (5b)	m m	мммм	proper	m m m	m m
CHANNEL I TOP WIDTH Ft.	13	13 13 13	canal with	13 13 13	13
DISCHARGE c.f.s. (4)	13	9 11 2 15	Present c Present c	7 9 10	18 20
WATERSHED Ac. (3)	140	96 116 12 156	80	70 92 102	212
LENGTH Ft. (2)	3400 1300 4700	1800 1200 800 1300 5100	1800 1600 3400	1400 700 300 2400	3300 500 3800
CANAL No. (1)	M-24A M-24B Total-24	M-25A M-25B L-1A M-25C Total-25	M-26A M-26B Total-26	M-27A M-27B M-27C Total-27	M-28A M-28B Total-28

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT. OF WAY WIDTH Ft. (8)		09	09 09	09	09
RT. OF WAY CLEARING AC. (7)	. be adequate . be adequate	2.5 4.5 7.0	3.6 1.7 0.5 9.9	6.7 1.0 7.7	5.8
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will	2664 4884 7548	3848 3404 1776 444 9472	7252 1036 8288	6216 1924 8140
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper	ო ო	ттт т	m m	m m
CHANNEL I TOP WIDTH Ft. (5a)	canal with	13	13 13 13	13 13	13
DISCHARGE c.f.s. (4)	Present ca Present ca	7.22	7 6 15 15	20	14
WATERSHED Ac. (3)	216 370	74 238	92 52 184 166	242 256	180
LENGTH Ft. (2)	2000 2000 4000	1800 3300 5100	2600 2300 1200 300 6400	4900 700 5600	4200 1300 5500
CANAL No	M-29A M-29B Total-29	M-30A M-30B Total-30	M-31A L-1A M-31B M-31C Total-31	M-32A M-32B Total-32	M-33A M-33B Total-33

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

No.	LEING LE	WATERSHED	DISCHARGE	TOP	TOP BOTTOM	EXCAVATION	RT. OF WAY	RT. OF WAY
(1)	ъt.	Ac.	c.f.s.	Ft.	Ft.	Cu. Yds.	AC.	Ft.
	(2)	(3)	(4)	(5a)	(2p)	(9)	(7)	(8)
M-34A M-34B	2100	164	Present c	canal with	proper	maintenance will	be adequate be adequate	a, a,
Total-34	3700				4		1	,
M-35A	3500	158	14	13	Ж	5180	4.8	09
M-35B Total-35	1300	180	16	13	ю	1924 7104	1.8 6.6	09
M-36A	1200	58	Present c	canal with	proper	maintenance will	l be adequate	
M-36B	4400	260	Present o	canal with	proper	maintenance will	l be adequate	a a
M-36C Total-36	0069	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Pi Oper		, ק	Ų
C	0 2 5 0 0	031	7 -	13	7	3700	3 4	09
M-37B	1000	185	17	13	n m	1480	1.4	09
Total-37	3500		** • • • • • • • • • • • • • • • • • •	annous services		5180	4.8	
M-38A	2000	100	10	13	m	2960	2.8	09
L-1A	700	184	17	13	Ж	1036	1.0	09
L-1B	1600	207	18	13	٣	3552	3.3	09
M-38B	700	323	26	13	m	1036	1.0	09
M-38C	3000	363	29	13	ĸ	4440	4.1	09
Total-38	8000					13,024	12.2	

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

1 2					
REQUIRED RT. OF WAY	willin Ft. (8)	09 09	09	09 09 09 09	09
RT. OF WAY	CLEARLING AC. (7)	2.5 2.8 1.1 1.8 2.2	l be adequate 2.9 l be adequate l be adequate 2.9	2.8 2.3 2.8 1.8 1.9	1.7
EXCAVATION	Cu. Yds. (6)	2664 2960 1184 1924 2368 11,100	maintenance will 3108 maintenance will maintenance will 3108	2960 2516 2960 1924 2072 1184 13,616	1776 4292 6068
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	т т т т	proper 3 proper proper	мммммм	m m
CHANNEL I TOP	Ft. (5a)	13 13 13 13	canal with 13 canal with canal with	13 13 13 13	13
DISCHARGE	c.f.s. (4)	7 4 12 15 18	Present c 7 Present c Present c	17 8 28 4 7 34	. 6
WATERSHED	Ac. (3)	40 36 96 146 176	120 70 215 279	180 88 353 34 66	59
LENGTH	Ft. (2)	1800 2000 800 1300 1600 7500	2400 2100 1200 2800 8500	2000 1700 2000 1300 1400 800 9200	1200 2900 4100
CANAL	No.	M-39A L-1A M-39B M-39C M-39D Total-39	M-40A L-1A M-40B M-40C Total-40	M-41A L-1A M-41B L-2A L-2B M-41C Total-41	M-42A M-42B Total-42

Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads ENGINEERING AND DESIGN DATA

		ļ	1	1		-
REQUIRED RT. OF WAY WIDTH Ft. (8)	09	09	09	9	09	09
RT. OF WAY CLEARING AC. (7)	5.4	4.8	3.4	1.9 1 be adequate 1.9	5.1	5.5 1.8 0.8 0.8 1.2 0.7
EXCAVATION Cu. Yds. (6)	5772 1776 7548	5180	3700 3700	2072 ntenance will 2072	5476 5476	5920 1924 888 888 1332 740 1036
DIMENSIONS BOTTOM WIDTH Ft. (5b)	к к	ю	m	canal with proper maintenance	к	т т т т т т
CHANNEL TOP TOP WIDTH Ft. (5a)	13	13	13	13 anal with	13	13 13 13 13 13
DISCHARGE c.f.s. (4)	8	12	6	5 Present c	æ	11 6 16 4 6 24 25
WATERSHED Ac. (3)	78 135	132	92	44	82	140 60 206 28 288 298
LENGTH Ft. (2)	3900 1200 5100	3500	2500	1400 4500 5900	3700	4000 1300 400 600 900 500 700
CANAL No. (1)	M-43A M-43B Total-43	M-44A Total-44	M-45A Total-45	M-46A M-46B Total-46	M-47A Total-47	M-48A L-1A M-48B L-2A L-2B M-48C M-48C Total-48

ENGINEERING AND DESIGN DATA
Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT. OF WAY	WLD'rH Ft. (8)	09	60 60 60 60 60 65 60 65 60 60 60	09
RT. OF WAY	CLEAKING Ac. (7)	3.9 0.8 4.7	4.4 3.4 0.7 1.8 1.2 2.2 1.0 0.7 2.0 3.3 6.7 0.5 27.9	5.1 2.2 1.2
EXCAVATION	Cu. Yds. (6)	4144 888 5032	4736 3700 740 1924 1332 2368 1036 835 2338 3552 7252 668 30,481 maintenance will	5476 6364 1332
DIMENSIONS BOTTOM	wirin Ft. (5b)	мм	3 3 3 3 4 4 4 4 proper mai	m m m
니	willin Ft. (5a)	13	13 13 13 13 13 13 14 14 13 13 13 14 canal with	13
DISCHARGE	c.f.s. (4)	111	13 23 25 34 37 8 9 44 46 8 18 64 64 Present c	22 34 40
WATERSHED	Ac. (3)	112	138 190 1374 450 476 86 641 308 959 404	260 480 525
LENGTH	Ft. (2)	2800 600 3400	3200 2500 500 1600 900 1600 700 500 4900 4900 4900 2400 2400 2400 2400 2500 6600	4100 4300 900
CANAL	No. (1)	M-49A M-49B Total-49	M-50A L-1A M-50B M-50B M-50D L-2A L-2B M-50E M-50E M-50E M-50B Total-50	M-52A M-52B M-52C

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

				EL	DIMENSIONS			REQUIRED
	LENGTH	WATERSHED	DISCHARGE	TOP	ВОТТОМ WIDTH	EXCAVATION	RT. OF WAY CLEARING	RT. OF WAY WIDTH
	FT.	Ac.	c.f.s.	मि	Ft.	Cu. Yds.	Ac.	Ft.
	(2)	(3)	(4)	(5a)	(qc)	(9)	(5)	(8)
	4000	116	11	13	т	5920	5.5	09
	2200	755	52	14	4	3674	3.0	65
	1000	14	2	13	Ж	1480	1.4	09
	3000	172	Present	canal with	proper mai	maintenance will	1 be adequate	0)
	400	177	Present (canal with	proper mai	maintenance will	pe	
	1600	239	20	13	Э	2368	2.2	09
	1300	277	Present	canal with	proper mai	maintenance will	l be adequate	0)
	2100	407	Present	canal with	proper mai	maintenance will	l be adequate	a)
	1700	461	Present	canal with	proper mai	maintenance will	l be adequate	a
	006	483	Present	canal with	proper mai	maintenance will	pe	a
M-52E	4200	1438	06	18	80	10,122	7.4	77
	5300	214	18	13	М	7844	7.3	09
	1600	1728	100	19	6	4144	2.9	80
52	38,600					48,724	41.9	
	2400	140	13	13	3	3552	3.3	09
M-53B	1700	202	17	13	٣	2516	2.3	09
53	4100					8909	5.6	
M-54A	1300	380	Present	canal with	proper mai	maintenance will	1 be adequate	U
M-54B	4000	772	Present		proper		pe	٥
M-54C	2000	1484	Present		proper		рe	Φ
M-54D	1100	1516	Present	canal with	proper	maintenance will	1 be adequate	D
Total-54	11,400							

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RI. OF WAY WIDTH Ft. (8)		09	09	10.00
RT. OF WAY CLEARING Ac. (7)	l be adequate 1 be adequate 1 be adequate 1 be adequate	0.8 1.0 3.3 6.2	8.0 9.2	7.6 5.6 7.3 1 be adequate 1 be adequate 20.5
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will	888 1036 1184 3552 6660	8584 1332 9916	8140 6346 9384 maintenance will maintenance will 23,870
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper proper proper	мппп	ო ო	3 4 6 proper proper proper
CHANNEL TOP WIDTH Ft. (5a)	canal with canal with canal with canal with	13 13 13	13	13 14 16 canal with canal with
DISCHARGE c.f.s. (4)	Present o Present o Present o	2 4 6 13	34	34 48 75 Present o Present o
WATERSHED AC. (3)	268 466 608 676	14 39 53 139	420	412 674 1112 1353 1493 1511
LENGTH Ft. (2)	300 2000 3400 1300 7000	600 700 800 2400 4500	5800 900 6700	5500 3800 4600 3200 2800 500 20,400
CANAL No. (1)	M-55A M-55B M-55C M-55D Total-55	M-56A M-56B M-56C M-56D Total-56	M-57A M-57B Total-57	M-58A M-58B M-58C M-58D M-58E M-58E Total-58

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT. OF WAY WIDTH Ft. (8)	09		09	09	09	09
RT. OF WAY CLEARING AC. (7)	0.7 1.7 3.3 5.7	1 be adequate 1 be adequate	2.8 1 be adequate 2.8	1.9 2.3 4.2	2.2 2.23	8.7 8.8 4.
EXCAVATION Cu. Yds. (6)	740 1776 3552 6068	maintenance will	2960 ntenance will 2960	2072 2516 4588	7844 2368 10,212	3448 2960 6808
DIMENSIONS BOTTOM WIDTH Ft. (5b)	ммм	proper	3 proper mai	кк	т т	мм
CHANNEL I TOP WIDTH Ft.	13 13 13	canal with canal with	13 3 2960 canal with proper maintenance 2960	13 13	13	13
DISCHARGE c.f.s.	2 5 10	Present o	12 Present	V 80	20	14
WATERSHED Ac. (3)	17 49 104	34 82	130	54	246 278	150
LENGTH Ft.	500 1000 2400 3900	500 1800 2300	2200 2000 2200	1400 1700 3100	5600 2000 7600	2600 2000 4600
CANAL No. (1)	M-59A M-59B M-59C Total-59	M-60A M-60B Total-60	M-61A M-61B Total-61	M-62A M-62B Total-62	M-63A M-63B Total-63	M-64A M-64B Total-64

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

																				-			-		
REQUIRED	MIDTH	ъt.	(8)	09	0 0	09	09	65	70		09	09	09	09	09	09		09	09	09	09	09	65	65	
A KIM CHO	CLEARING	Ac.	(7)	7 2	7.0	3.6	1.8	4.3	8.0	20.2	1.6	7.3	1.4	0.3	4.1	1.4	16.1	2.2	5.1	2.9	4.7	4.1	1.7	0.4	21.1
NOTERATIVOSA	EACAVALLON	Cu. Yds.	(9)	7990	2004	3848	1924	4843	10,200	23,479	1628	7844	1480	148	4440	1480	17,020	2368	5476	3108	5032	4440	2004	899	23,096
DIMENSIONS	WIDTH	Ft.	(5b)	C	າ (m	ю	4	9		е	m	m	m	m	m		m	т	٣	m	m	4	4	
딞	WIDTH	Ft.	(5a)		T -	13	13	14	16		13	13	13	13	13	13	and the second s	13	13	13	13	13	14	14	
מל מיל אוויי	DISCHARGE	c.f.s.	(4)	30	67	9	6	52	70		8	23	25	28	36	38		4	20	29	14	22	51	52	
dam en	WAIEKSHEU	Ac.	(3)	C	308	62	92	712	1044		36	302	318	360	470	491		38	280	348	152	256	734	742	
t III	HI SNETH	ъt.	(2)	000	TROO	2600	1300	2900	2000	13,600	1100	5300	1000	100	3000	800	11,300	1600	3700	2100	3400	3000	1200	300	15,300
4	CANAL	No.	(1)	# E	M-65A	L-1A	L-1B	M-65B	M-65C	Total-65	M-66A	L-1A	L-1B	M-66B	M-66C	M-66D	Total-66	M-67A	L-1A	M-67B	L-2A	L-2B	- M-67C	M-67D	Total-67

Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

KEQUIKED	RI. OF WAY	Ft.	(8)	09	09		09	09		09		Assessment or		-	09	09	09	09	09		0		09	09	09	65		
	KI. OF WAY KI. CLEARING	Ac.	(7)	6.3	0.5	8.9	0.7	3.0	be adequate	1.1	be adequate	be adequate	be adequate	þe	1.2	4.5	0.7	2.2	2.2	15.6		1	4.7	2.2	5.8	6.8	23.9	
	EXCAVATION	Cu. Yds.	(9)	8089	444	7252	740	3256	maintenance will	1184	maintenance will	maintenance will	maintenance will	maintenance will	1332	4884	740	2368	2368	16,872	2516	0107	5032	2368	6216	10,020	26,152	
DIMENSIONS	BOTTOM WIDTH	Ft.	(2S)	٣	Ж		m	٣	proper mai	Э	proper mai	proper mai	proper mai	proper mai	ю	т	Э	Э	Ж			7	m	м	Ж	4		
닒	TOP	Ft.	(5a)	13	13		13	13	canal with	13	canal with	canal with	canal with	canal with,	13	13	13	13	13		c [7	13	13	13	14	- 4	
	DISCHARGE	c.f.s.	(4)	31	32		9	11	Present c	20	Present o	Present o	Present c	Present o	2	13	14	40	42		-	•	21	26	41	52		
	WATERSHED	Ac.	(3)	424	433		62	119	88	241	273	302	36	44	20	146	154	550	592		7.0	7 /	256	322	554	790		
	H.I.SNG.T.H	ъt.	(2)	4600	300	4900	200	2200	2600	800	200	800	1300	400	006	3300	200	1600	1600	17,000	0021	7.00	3400	2200	4500	6300	18,100	
1	CANAL	No.	(1)	M-68A	M-68B	Total-68	M-69A	M-69B	L-1A	M-69C	M-69D	M-69E	L-2A	L-2B	L-3A	L-3B	L-3C	M-69F	M-69G	Total-69	KOL W	M-/ M	M-70B	M-70C	M-70D	M-70E	Total-70	

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

		T			and the second s
REQUIRED RT. OF WAY	width Ft. (8)	09	09	09	60 60 60 60 60 60 60 60
RT. OF WAY	Ac. (7)	7.6	5.6	8.3 5.1 13.4	4 8 6 6 1 8 2 8 2 8 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9
EXCAVATION	Cu. Yds. (6)	8140	6068	8880 5476 14,356	1480 1924 3848 1628 2220 1924 2664 1924 2004 4292 3145
DIMENSIONS BOTTOM	wibin Ft. (5b)	m	m	m m	и и и и и и и и и и и и и и и и и и и
TOP	Ft. (5a)	13	13	13	13 13 13 13 15
DISCHARGE	c.f.s. (4)	20	20	18 20	2 0 0 3 3 3 3 6 9 6 3 5 9 6 3 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
WATERSHED	Ac. (3)	250	254	210 252	26 60 312 472 472 664 664 60 856
LENGTH	Ft. (2)	0009	4500	6000 3700 9700	1000 1300 2600 1100 1500 1300 1300 1200 2900 17,700
CANAL	No. (1)	M-71A Total-71	M-72A Total-72	M-73A M-73B Total-73	M-74A M-74B L-1A L-1B L-1C L-1D L-1E M-74C M-74D I-2A Total-74

ENGINEERING AND DESIGN DATA Area 2 - Timmonsville - Cartersville - Sardis - Cusaac Crossroads

REQUIRED RT. OF WAY WIDTH	Ft. (8)	09 09	09	09	
RT. OF WAY	Ac. (7)	1 be adequate 1.1 1.1 1.1 1 be adequate 2.2	0.7 3.9 4.6	3.9 1.8 5.7	598.9
EXCAVATION	Cu. Yds. (6)	Present canal with proper maintenance will 2	740 4144 4884	4144 1924 6068	653,661
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	proper mai 3 3 proper mai	m m	e e	
CHANNEL I TOP WIDTH	Ft. (5a)	anal with 13 13 anal with	13	13 13	
DISCHARGE	c.f.s. (4)	Present c 2 4 Present c	6	9	
WATERSHED	Ac. (3)	12 18 30 59	72	90	
LENGTH	Ft.	900 800 800 2400 4900	500 2800 3300	2800 1300 4100	559,200
CANAL	No.	M-75A L-1A L-1B M-75B Total-75	M-76A M-76B Total-76	M-77A M-77B Total-77	Area-2 Grand Total

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

				ı										l .									
REQUIRED RT. OF WAY WIDTH	Ft.	09	09	υ		09	09	89	89		09	09		09	09	09	70	77	09	09	09	09	09
RT. OF WAY CLEARING	AC. (7)	6.3	0°0°	be	4.5	3.1	1.2	3.6	2.1	14.5	5.6	1.0	9.9	1.7	2.6	2.9	5.9	0.9	1.4	2.6	5.4	2.1	0.
EXCAVATION	(6)	8089	2812 9620	ntenance will	4884	3404	1332	4255		16,465	8909	1036	7104	2072	2812	3108	5548	8194	1480	2812	5772	2220	5328
DIMENSIONS BOTTOM WIDTH	FT. (5b)	8	m :	canal with proper maintenance	8	ا ش	Ж	Ŋ	S.		m	8		Э.	Ж	m	9	œ	Э	m	m	m	m
H H	ft. (5a)	13	13	canal with	13	13	13	13	13	-		13										13	
DISCHARGE	(4)	31	37	Present	43	14	15	59	59		19	21		œ	25	27	75	06	2	22	23	43	53
WATERSHED	AC. (3)	592	656	400	620	150	160	006	930		226	246		152	308	376	1188	1408	48	276	288	644	824
LENGTH	(2)	4600	1900 6500		3300	2300	006	2300	1400	10,200	4100	700	4800	1400	1900	2100	3700	3400	1000	1900	3900	1500	3600
CANAL	(1)	M-1A	M-1B Total-1	M-2A	M-2B	L-1A	L-1B	M-2C	M-2D	Total-2	M-3A	M-3B	Total-3	M-4A	L-1A	L-1B	M-4B	M-4C	L-2A	L-2B	L-3A	L-2C	L-2D

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

REQUIRED RT. OF WAY	Ft. (8)	w w	09	09	89	09	09		70		0.9	0 0	20	74	89	88	09	09	102	
RT. OF WAY	Ac. (7)	1 be adequate 1 be adequate 35,6	10.0	6.3	3.9	5.2	2.6	pe	1.8	37.5	o u) u	n a	1.3	9.1	2.4	5.5	1.8	8.4	48.6
EXCAVATION	Cu. Yds. (6)	proper maintenance will proper maintenance will 39,346	10,804	6808	4625	5624	2812	maintenance will	2244	41,205	6264	4000	10 608	1776	14,175	3780	2960	1924	14,004	61,955
DIMENSIONS BOTTOM WIDTH	Ft. (5b)		ъ	т r	n 10	т	ĸ	proper	9			n (n () /	12	12	n	3	16	
TOP	Ft. (5a)	canal with	13	13	15	13	13	canal with	16			LO	T 9 L	17	22	22	13	13	26	
DISCHARGE	c.f.s. (4)	Present (35	50	75	18	20	esent	92		C	ى ئ	06	105	150	169	22	25	195	
WATERSHED	Ac. (3)	1080 1150	460	969	288 1144	180	248	290	1514		C		1539	1579	2398	2462	272	298	3080	
LENGTH	Ft. (2)	24,400	7300	4600	2500	3800	1900	2000	1100	28,800		4300	4300	0020	4500	1200	2000	1300	3600	27,200
CANAL	No. (1)	M-4D M-4E Total-4	M-5A	M-5B	L-IA M-5C	L-2A	L-2B	L-2C	M-5D	Total-5		M-0A	MIOB	M=67	M-6E	M-6F	L-1A	L-1B	M-6G	Total-6

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

REQUIRED	WIDTH F+	(8)	09	09	09	89						95			09		09	65		09	09	
RT. OF WAY	CLEARING	AC:	3.4	4.4	1.8	5.1	l be adequate	l be adequate	l be adequate	þe	5.1	6.1	25.9	L	4.5	4.5	7 9	6.1	12.8	1.7	3.6	ب ش م
EXCAVATION	, , , , ,	(6)	3700	4736	1924	6105	maintenance will	maintenance will	maintenance will	maintenance will	8190	9826	15,700		4884	4884	7252	6847	13,320	1776	3848	5624
CHANNEL DIMENSIONS TOP BOTTOM	WIDTH	(5b)	m	т	т	Ŋ	proper	proper	proper	proper	12	14		,	n		۲) 4		ю	m	
CHANNEL	WIDTH F+	(5a)	13	13	13	15	canal with	canal with	canal with	canal with	22	24			T 3		٤١	14		13	13	
DISCHARGE	(((4)	25	38	43		Present	Present	Present	Present	130	140			۲3		30	47		7	15	
WATERSHED	(A	(3)	320	516	592	780	56	440	296	1088	2232	2412		L	7¢T		428	676		84	212	
LENGTH	ţ.	(2)	2500	3200	1300	3300	1300	5200	4200	0089	2600	2800	33,200		3300	3300	4900	4100	0006	1200	2600	3800
CANAL	Q	(1)	M-7A	M-7B	M-7C	M-7D	L-1A	L-2A	L-1B	L-1C	M-7E	M-7F	Total-7		M-8A	Total-8	4 6 I	M-9B	Total-9	M-10A	M-10B	Total-10

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

REQUIRED RT. OF WAY WIDTH	Ft. (8)	09	09	60 60 60 70 74 74 74 60 60
RT. OF WAY	Ac. (7)	3.7	4.1 1 be adequate 4.1	4.5 6.6 4.4 2.6 2.9 5.4 1.1 27.5 6.7 6.7 6.7 1.5
EXCAVATION	Cu. Yds. (6)	7548 2812 10,360	4440 ntenance will 4440	4884 6364 4736 3552 3672 7104 1554 31,866 11,544 7252 1670 maintenance will 20,466
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	m m	canal with proper maintenance	33 3 6 7 7 7 9 9 proper mai
CHANNEL I TOP WIDTH	Ft. (5a)	13	13 anal with	13 13 13 16 17 17 13 13 14
DISCHARGE	c.f.s. (4)	22 23	13 Present o	25 43 23 38 70 99 100 26 24 50 Present c
WATERSHED	Ac. (3)	242 298	160 340	312 620 264 434 1139 1559 1587 1587 336 308 713
LENGTH	Ft. (2)	5100 1900 7000	3000 2600 5600	3300 4300 3200 2400 1800 3200 700 18,900 1000 2100 15,800
CANAL	No. (1)	M-11A M-11B Total-11	M-12A M-12B Total-12	M-13A M-13B L-1A L-1B M-13C M-13C M-13E Total-13 L-1A L-1A M-14B M-14B M-14B Total-14

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

DAY						
REQUIRED RT. OF WAY	Ft.	09999	09 09 09	09	09	09
RT. OF WAY	Ac. (7)	2.8 2.2 2.8 6.3 4.4 1 be adequate 18.5	3.6 8.6 2.8 9.0 3.7	7.4 7.4	10.0	9.3
EXCAVATION	Cu. Yds. (6)	2960 2368 2960 6808 4736 maintenance will 19,832	3848 9176 2960 10,855 4440 31,279	7992 7992	10,804	9916 9916
DIMENSIONS BOTTOM WIDER	Ft. (5b)	3 3 3 3 proper mai	ю с с с д го	ю	3	8
TOP WITHHE	Ft. (5a)	13 13 13 13 13 13 canal with	13 13 14 15	13	13	13
DISCHARGE	c.f.s. (4)	22 25 40 55 10 Present o	12 38 43 65 75	35	32	39
WATERSHED	Ac. (3)	260 320 528 812 928 1088	148 340 620 1020 1108	360	432	512
LENGTH	Ft. (2)	2000 1600 2000 4600 3200 13,400	2600 6200 2000 6500 2400 19,700	5400	7300	6700
CANAL	No.	M-15A M-15B M-15C M-15D L-1A M-15E Total-15	M-16A L-1A M-16B M-16C M-16D Total-16	M-17A Total-17	M-18A Total-18	M-19A Total-19

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

	1		1		
REQUIRED RT. OF WAY WIDTH Ft. (8)	09	09	09	u u	09
RT. OF WAY CLEARING AC. (7)	2.8 5.2 8.0	3.6 1.9 2.8 1.4	1.4 3.1 5.6 10.1	l be adequate l be adequate	3.1 3.6 3.6 4.1
EXCAVATION Cu. Yds. (6)	2960 5624 8584	3848 2072 2960 1480 10,360	1480 3404 6068 10,952	maintenance will	3404 3848 3848 4440
DIMENSIONS BOTTOM WIDTH Ft. (5b)	m m	мммм	m m m	proper	тттт
CHANNEL I TOP WIDTH Ft. (5a)	13	13 13 13	13	canal with	13 13 13
DISCHARGE c.f.s.	22 33	12 25 10 35	18 25 38	Present	9 16 35 41
WATERSHED Ac. (3)	136	136 196 90 316	252 364 516	126	88 172 444 588
LENGTH Ft.	2000 3800 5800	2600 1400 2000 1000 7000	1000 2300 4100 7400	2000 1500 3500	2300 2600 2600 3000
CANAL No. (1)	M-20A M-20B Total-20	M-21A M-21B L-1A M-21C Total-21	M-22A M-22B M-22C Total-22	M-23A M-23B Total-23	M-24A L-1A M-24B M-24C

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

		I			11
REQUIRED RT. OF WAY WIDTH Ft. (8)	65	09	09	65	Ф
RT. OF WAY CLEARING AC. (7)	3.0 4.9 22.3	2.8 1.8 9.8	3.4	3.9 3.1 7.0	l be adequate
EXCAVATION Cu. Yds. (6)	2960 4588 23,088	2960 5624 1924 10,508	3700 2664 6364	4342 3700 8042	Present canal with proper maintenance will
DIMENSIONS BOTTOM WIDTH Ft. (5b)	4 · C	ттт	тт	4. r.	proper main
CHANNEL I TOP WIDTH Ft.	14	13 13 13	13	14 15	anal with
DISCHARGE c.f.s.	48	21 35 41	14	49 54	Present c
WATERSHED AC. (3)	680	260 462 507	160 200	685 765	572
LENGTH Ft. (2)	2000 3100 15,600	2000 3800 1300 7100	2500 1800 4300	2600 2000 4600	9300
CANAL No. (1)	M-24D M-24E Total-24	M-25A M-25B M-25C Total-25	M-26A M-26B Total-26	M-27A M-27B Total-27	M-28A Total-28

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

				닖	DIMENSIONS			REQUIRED
LENGTH WATERSHED	WATERSHED		DISCHARGE	TOP	BOTTOM WIDTH	EXCAVATION	RT. OF WAY CLEARING	RT. OF WAY WIDTH
Ft. Ac.	Ac.		c.f.s.	Ft.	Ft.	Cu. Yds.	Ac.	Ft.
	(3)		(4)	(5a)	(5b)	(9)	(7)	(8)
1200 40	40		12	13	3	1776	1.7	09
	200		23	13	ю	3404	3.1	09
2600 361 6100	361		26	13	m	38 4 8 9028	3.6	09
7300 472	472	1	40	13	<u>ب</u>	10,804	10.0	09
2600 600	009		43	13	е	3848 14,652	3.6	09
2600 200	200		18	13	ю	3848	4.0	09
2600						3848	4.0	
	89		7	13	3	4144	3.9	09
800 138 3600	138		11	13	ю	1184 5328	1.1	09
							1	
1300 30 2000 60	30		m 0	13	m m	1924	1.8 2.8	09
3300						4884	4.6	
90000	o o		c			0200	c	60
2000	n o		n	n -1	า	2960	2 %	
		1				7	•	

ENGINEERING AND DESIGN DATA Area 3 - Savannah Grove - Peniel - Effingham

REQUIRED RT. OF WAY WIDTH	Ft. (8)	υ.	U	09 e	
RT. OF WAY	Ac. (7)	Present canal with proper maintenance will be adequate	Present canal with proper maintenance will be adequate	3.9 1 be adequate 1 be adequate 1.1 5.0	445.0
EXCAVATION	Cu. Yds. (6)	ntenance wil	ntenance wil	canal with proper maintenance will be canal with proper maintenance will be 13 3 5328	486,104
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	proper mai	proper mai	3 proper mai proper mai	
CHANNEL TOP WIDTH	Ft. (5a)	canal with	canal with	13 canal with	
DISCHARGE	c.f.s. (4)	Present	Present	23 Present Present 37	
WATERSHED	Ac. (3)	420	360	224 70 102 358	
LENGTH	Ft. (2)	5300	5300	2800 2600 1000 800 7200	360,900
CANAL	No.	M-35A Total-35	M-36A Total-36	M-37A L-1A L-1B M-37B Total-37	Area-3 Grand Total

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

					DIMENSIONS			REQUIRED
<u> </u>	LENGTH	WATERSHED	DISCHARGE	TOP	BOTTOM	EXCAVATION	RT. OF WAY	RT. OF WAY WIDTH
F	Ft.	Ac.	c.f.s.	ыt.	Ft.	Cu. Yds.	Ac.	Ft.
<u></u>	(2)	(3)	(4)	(5a)	(2p)	(9)	(7)	(8)
46	4800	388	30	13	e.	7104	9.9	09
45	4900	332	28	13	Ж	7252	6.7	09
449	4900	1240	Present	canal with		maintenance will	l be adequate	a)
, 1,	1700	1264	Present	canal with proper		maintenance will	pe	4)
16,300	300					14,356	13.3	
4	4900	280	24	13	3	7252	6.7	09
2(2000	322	27	13	8	2960	2.8	09
59	0069					10,212	5.6	
13	1200	56	7	13	т	1776	1.7	09
3(3000	144	14	13	т	4440	4.1	09
4	4200					6216	5.8	
5.5	5300	436	35	13	٣	8732	7.3	09
. 10	1000	446	35	13	3	1480	1.4	09
35	3900	380			proper		pe	4)
77	700	456	Present	canal with	proper	maintenance will	l be adequate he adequate	a) a
12	1200	930	59				3	,
2]	2100	1118	Present	canal with	proper	maintenance will	pe	
<u></u>	500	1142	Present	canal with	proper	maintenance will	pe	
17,100	100					12,432	10.6	

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

REQUIRED RI. OF WAY WIDTH Ft. (8)			09	09
RT. OF WAY CLEARING Ac. (7)	be adequate be adequate be adequate be adequate be adequate	be adequate be adequate be adequate be adequate be adequate be adequate	4.1 6.7 1.9 12.7	3.4 5.5
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will maintenance will	maintenance will maintenance will maintenance will maintenance will maintenance will maintenance will	4440 7252 2072 13,764	3700 2220 5920
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper proper proper proper	proper proper proper proper	ммм	мм
CHANNEL I TOP WIDTH Ft. (5a)	canal with canal with canal with canal with canal with	canal with	13 13 13	13
DISCHARGE c.f.s. (4)	Present Present Present Present	Present Present Present Present Present	14 27 30	15
WATERSHED Ac. (3)	204 244 128 584 612	76 36 128 84 328 344	140 352 400	160
LENGTH Ft. (2)	1600 600 3300 4000 1300 10,800	2400 1400 1000 1000 700 600 7100	3000 4900 1400 9300	2500 1500 4000
CANAL No. (1)	M-5A M-5B L-1A M-5C M-5D Total-5	M-6A L-1A M-6B L-2A M-6C M-6D Total-6	M-7A M-7B M-7C Total-7	M-8A M-8B Total-8

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

CANAL	LENGTH	WATERSHED	DISCHARGE	CHANNEL I TOP	DIMENSIONS BOTTOM WINTH	EXCAVATION	RT. OF WAY	REQUIRED RT. OF WAY
No.	Ft. (2)	Ac. (3)	c.f.s. (4)	Ft. (5a)	Ft. (5b)	Cu. Yds. (6)	Ac. (7)	Ft. (8)
M-9A	4200	311	23	13	٣	6216	5.8	09
M-9B	2200	447	35	13	ю	3256	3.0	09
L-1A	009	80	ω	13	٣	888	0.8	09
L-1B	1300	108	10	13	ю	1924	1.8	09
M-9C	800	623	48	14	4	1336	1.2	65
M-9D	1900	811	59	15	2	3515	3.0	68
M-9E	3300	947	62	16	9	6732	5,3	70
L-2A	3200	300	25	13	m	4736	4.4	09
M-9F	2200	1463	06	18	80	5302	3,9	77
Total-9	19,700					33,905	29.2	
M-10A	1700	640	43	13	ю	2516	2.3	09
M-10B	4000	980	61	16	9	8160	6.4	70
Total-10	5700					10,676	8.7	
							. (
M-LIA	7100	TOD	PΤ	ΤЗ	ν)	3108	6.3	00
M-11B	3000	345	30	13	m	4440	4.1	09
L-1A	1300	56	27	13	ĸ	1924	1.8	09
L-1B	2500	112	11	13	Ж	3700	3.4	09
M-11C	2200	645	59	15	2	4070	3.4	89
Total-11	11,100					17,242	15.6	
M-12A	2600	176	17	13	е	3848	3.6	09
M-12B	1700	336	27	13	3	2516	2.3	09
Total-12	4300					6364	5.9	

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

1					1		
REQUIRED	RT. OF WAY WIDTH	Ft. (8)	09	09	09 09 09	09	09
	RT. OF WAY	Ac. (7)	3.7 0.8 1.0 5.5	4.1 1.1 5.2	3.6 1.7 4.1 1.9 12.7	1.8 3.2	1.8 1.0 2.8
	EXCAVATION	Cu. Yds. (6)	3996 888 1036 5920	4440 1184 5624	3848 1776 4440 2072 1480 13,616	1924 1480 3404	1924 1036 2960
DIMENSIONS	BOTTOM WIDTH	Ft. (5b)	ттт	m m	мммм	т т	ოო
CHANNEL	1	Ft. (5a)	13 13 13	13	13 13 13 13	13	13 13
	DISCHARGE	c.f.s. (4)	12 14 15	10	10 8 15 24 27	ю o	10
	WATERSHED	Ac. (3)	120 140 158	108 124	100 80 170 298 338	39 59	86 86
	LENGTH	Ft. (2)	2700 600 700 4000	3000 800 3800	2600 1200 3000 1400 1000 9200	1300 1000 2300	1300 700 2000
	CANAL	No. (1)	M-13A M-13B M-13C Total-13	M-14A M-14B Total-14	M-15A L-1A L-1B M-15B M-15C Total-15	M-16A M-16B Total-16	M-17A M-17B Total-17

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

REQUIRED RI. OF WAY WIDTH Ft. (8)	09	09	09	60 65 65	09
RT. OF WAY CLEARING AC. (7)	5.9 2.8 1.4 10.1	3.6 1.6 5.2	0.5 5.9 3.4	5.5 3.6 3.4 4.0 16.5	1.0
EXCAVATION Cu. Yds. (6)	6364 2960 1480 10,804	3848 1628 5476	444 6364 3700 10,508	5920 3848 3700 4509 17,977	1036 1480 5624 1924 10,064
DIMENSIONS BOTTOM WIDTH Ft. (5b)	е е е	n n	т т т	w w w 4	m m m m
CHANNEL TOP WIDTH Ft. (5a)	13 13 13	13 13	13 13 13	13 13 14	13 13 13
DISCHARGE c.f.s. (4)	23 33 34	13	6 31 41	14 27 35 52	18 21 41 42
WATERSHED Ac. (3)	280 416 456	132 156	52 412 532	148 324 458 778	208 252 524 556
LENGTH Ft. (2)	4300 2000 1000 7300	2600 1100 3700	300 4300 2500 7100	4000 2600 2500 2700 11,800	700 1000 3800 1300 6800
CANAL No. (1)	M-18A M-18B M-18C Total-18	M-19A M-19B Total-19	M-20A M-20B M-20C Total-20	M-21A L-1A L-1B M-21B Total-21	M-22A M-22B M-22C M-22D Total-22

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

REQUIRED	RT. OF WAY WIDTH	н. , ,	(8)	09	09	65	89	09	09	74	80	80	09	89			09	09	09	09	20	70			00	09	09		
	RT. OF WAY	Ac.	(7)	2.9	2.9	3.1	3.1	2.1	5.8	1.3	7.5	1.8	7.7	2.6	40.8	1	•		•	•	•	3.9	•	ı	•	•	1.7	•	
	EXCAVATION	Cu. Yds.	(6)	3106	3106	3340	3700	2220	6216	1776	10,619	2590	8288	4095	49,056		2812	5476	1776	4440	5712	4896	25,112	C C C	9756	1628	1776	8732	
DIMENSIONS	BOTTOM WIDTH	ъţ.	(qç)	٤	٣	4	2	т	т	7	6	თ	m	12			m	m	т	т	9	9			Υ	ю	т		
CHANNET	н	ъ Т	(5a)	13	13	14	15	13	13	17	19	19	13	22			13	13	13	13	16	16			L3	13	13		
	DISCHARGE	c.f.s.	(4)	35	42	50	59	8	25	85	100	100	31	125			18	15	30	12	61	62			87	34	38		
	WATERSHED	Ac.	(3)	430	630	750	890	80	320	1398	1746	1764	416	2220			200	152	400	124	864	936		L	356	436	496		
	LENGTH	Ft.	(2)	2100	2100	2000	2000	1500	4200	800	4100	1000	2600	1300	26,700		1900	3700	1200	3000	2800	2400	15,000		3600	1100	1200	2900	
	CANAL	No.	(1)	M-23A	M-23B	M-23C	M-23D	L-1A	L-1B	M-23E	M-23F	M-23G	L-2A	M-23H	Total-23		M-24A	L-1A	M-24B	L-2A	M-24C	M-24D	Total-24		M-25A	M-25B	M-25C	Total-25	

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

																								_				
REQUIRED	WIDTH F	(8)	Q	00 (09	09	09	89	65	65	09	09	70	Ф	ø		09	09		09	09	9	9	65		09	09	09
RT. OF WAY	CLEARING	(7)		7 ·	•	•	3.5	•	5.0	•	5.6	1.4	1.6	1 be adequate	pe	35.0	2.6	0.8	3.4	5.9	1.4	1.0	5.2	1.8	l be	5.0	2.6	0.7
EXCAVATION	די	(9)	7740	0 1 1	1332	2072	3700	10,545	5678	2004	8909	1480	2040	maintenance will	maintenance will	39,359	2812	888	3700	6364	1480	1036	5624	2004	maintenance wil	5328	2812	740
DIMENSIONS	WIDTH	(5b)		n (m	m	ю	2	4	4	٣	Ж	9	proper	proper		т	m		m	т	ю	ю	4	proper	٣	е	В
긔	WIDTH	(5a)		CT.	13	13	13	15	14	14	13	13	16	canal with	canal with		13	13		13	13	13	13	14	canal with	13	13	13
DISCHARGE	t t	(4)	0	0 (22	7	12	59	69	70	18	22	06	Present	Present		10	11		24	9	0	26	50	Present	10	7	14
WATERSHED	((3)	COC	200	272	89	128	898	1028	1076	184	200	1304	2018	2707		108	122		304	64	92	324	848	1212	100	72	208
LENGTH	ļ	(2)	0000	0000	006	1400	2500	5700	3400	1200	4100	1000	1000	2800	3800	30,800	1900	009	2500	4300	1000	700	3800	1200	4000	3600	1900	200
CANAL	2	(1)	M_ 26.	H07-H	M-26B	L-1A	L-1B	M-26C	M-26D	M-26E	L-2A	L-2B	M-26F	M-26G	M-26H	Total-26	M-27A	M-27B	Total-27	M-28A	L-1A	L-1B	L-1C	M-28B	M-28C	L-2A	L-3A	L-2B

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

					
REQUIRED RT. OF WAY	Ft. (8)	09	9	09	60 60 60 60 70 70
RT. OF WAY	Ac. (7)	1.9 L be adequate L be adequate 25.5	2.3	6.9	5.5 2.8 4.5 1.3 1.7 42.0 7.8
EXCAVATION	Cu. Yds. (6)	2072 maintenance will maintenance will 27,460	2516 2516	7400 7400	5920 2960 4884 4884 4440 1924 14,892 7344 2664
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	3 proper proper	e e	e .	- N N N N N N N N
CHANNEL I TOP WIDTH	Ft. (5a)	13 canal with	13	13	13 13 13 13 16 16
DISCHARGE	c.f.s. (4)	18 Present o	6	16	22 30 28 42 28 29 100 120
WATERSHED	Ac. (3)	256 1558 1646	84	196	368 504 324 464 340 390 1434 1614
LENGIH	Ft. (2)	1400 1700 1300 25,400	1700	5000	4000 2000 3300 3300 3000 1300 7300 3600 29,000
CANAL	No.	L-2C M-28D M-28E Total-28	M-29A Total-29	M-30A Total-30	M-31A M-31B L-1A L-1B L-2B L-1C L-1D M-31C Total-31

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

REQUIRED	RT. OF WAY WIDTH	Ft. (8)	09	60 60 60 60 60 60 60	09
REO	RT.	<u>н</u> С			
	RT. OF WAY	Ac. (7)	2.1 1.8 3.9	4.3 4.5 0.7 1.7 2.5 2.5 1.8 18.0 3.0 3.0 6.3	1.1 6.2 7.3
	EXCAVATION	Cu. Yds. (6)	2220 1924 4144	4588 4884 740 1776 2664 2664 2004 19,320 3256 3256 3256	1184 6660 7844
DIMENSIONS	BOTTOM	Ft. (5b)	n n	ოოოოო ∀ ო ო	тт
CHANNEL	TOP	Ft. (5a)	13	13 13 13 13 13 13 13	13
	DISCHARGE	c.f.s. (4)	10	23 10 10 13 39 46 46 10	12 31
	WATERSHED	Ac. (3)	68	280 104 116 146 520 596 656 656	136
	LENGTH	Ft. (2)	1500 1300 2800	3100 3300 500 1200 1800 1200 12,900 2200 2200 4600	800 4500 5300
	CANAL	No.	M-32A M-32B Total-32	M-33A L-1A L-1B L-1C M-33B M-33C M-33D Total-33 Total-34 Total-35	M-36A M-36B Total-36

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

REQUIRED RI. OF WAY WIDTH Ft. (8)	60 65 65	60 60 68 70 70	09	09	09 9
RT. OF WAY CLEARING AC. (7)	12.7 8.1 1.2 22.0	2.2.2.2.2.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3	1.8 2.6 4.4	2.8 1.0 1.8 9.6	3.0 5.5 1 be adequate 8.5
EXCAVATION Cu. Yds. (6)	13,616 8732 1336 23,684	5624 6680 5920 7956 3060 29,240	1924 2812 4736	2960 1036 4292 1924 10,212	3256 5920 ntenance will 9176
TOP BOTTOM WIDTH Ft. (5a) (5b)	w w 4₁	w 4 rv 0 0	мм	ттт	3 3 proper mai
CHANNEL D TOP WIDTH Ft. (5a)	13 13 14	13 14 15 16	13	13 13 13 13	13 3 3256 13 3 5920 canal with proper maintenance 9176
DISCHARGE c.f.s.	40 23 64	28 46 59 72 74	7	26 28 10 38	12 31 Present
WATERSHED Ac. (3)	588 280 888	380 650 862 1132 1168	64	328 348 114 514	144 400 544
LENGTH Ft. (2)	9200 5900 800 15,900	3800 4000 3200 3900 1500 16,400	1300 1900 3200	2000 700 2900 1300 6900	2200 4000 2900 9100
CANAL No. (1)	M-37A L-1A M-37B Total-37	M-38A M-38B M-38C M-38D M-38E Total-38	M-39A M-39B Total-39	M-40A M-49B L-1A M-40C Total-40	M-41A M-41B M-41C Total-41

ENGINEERING AND DESIGN DATA Area 4 - Claussen - Evergreen - Willow Creek

REQUIRED	RT. OF WAY WIDTH	Ft. (8)	68	09 09	60 70	09	9	
	RT. OF WAY	Ac. (7)	4.5 7.9 12.4	12.0 4.7 4.0	4.8 3.6 5.5 6	2.2 6.2 1 be adequate 8.4	4.1	548.7
	EXCAVATION	Cu. Yds. (6)	4884 9435 14,319	12,876 5550 4292	5180 3848 4488 36,234	2368 6660 intenance will 9028	4440	613,123
DIMENSIONS	BOTTOM WIDTH	Ft. (5b)	e G	നവന	тть	3 2368 3 6660 proper maintenance 9028	m	
CHANNEL	TOP WIDTH	Ft. (5a)	13	13 15 13	13 16	13 13 canal with	13	
	DISCHARGE	c.f.s. (4)	31 54	42 55 23	31 38 88	18 42 Present	7	
	WATERSHED	Ac. (3)	410	594 794 278	408 480 1378	220 540 608	75	
	LENGTH	Ft. (2)	3300 5100 8400	8700 3000 2900	3500 2600 22,900	1600 4500 1400 7500	3000	437,600
	CANAL	No.	M-42A M-42B Total-42	M-43A M-43B L-1A	L-1B L-1C M-43C Total-43	M-44A M-44B M-44C Total-44	M-45A Total-45	Area-4 Grand Total

ENGINEERING AND DESIGN DATA Area 5 - Olanta - Lake City - Scranton - Byrds Crossroads

.1				
REQUIRED RT. OF WAY WIDTH Ft. (8)	09	70 89 95 115 132 138	68 70 70 70	60 60 60 89 89
RT. OF WAY CLEARING Ac. (7)	0.1 0.3 0.3	12.0 6.7 3.0 20.8 16.0 15.8	1.8 5.4 2.7 1.3 6.1	4.3 8.3 10.2 7.2 1.7
EXCAVATION Cu. Yds. (6)	1036 8880 9916	15,300 10,395 4928 36,577 26,500 26,850	2220 6936 3468 1632 7992 22,248	4588 5180 10,608 14,504 7696 1776 2835
DIMENSIONS BOTTOM WIDTH Ft. (5b)	ო ო	6 12 14 20 22 24	2997	33 33 12 12
CHANNEL I TOP WIDTH Ft. (5a)	13	16 22 24 30 32 34	15 16 16 16 17	13 13 16 19 13 22
DISCHARGE c.f.s. (4)	29	64 121 148 197 224 244	55 64 67 71	24 41 70 101 31 38 126
WATERSHED Ac. (3)	30	976 1230 1342 2274 2866 3286	800 972 1014 1070 1226	250 574 1092 1672 392 412 2180
LENGTH Ft. (2)	700 6000 6700	7500 3300 1400 7900 5300 5000	1200 3400 1700 800 3600 10,700	3100 3500 5200 5600 5200 1200
CANAL No. (1)	M-1A M-1B Total-1	M-2A M-2B M-2C M-2D M-2E M-2F Total-2	M-3A M-3B M-3C M-3D M-3E Total-3	M-4A M-4B M-4C M-4D L-1A M-4E

ENGINEERING AND DESIGN DATA Area 5 - Olanta - Lake City - Scranton - Byrds Crossroads

REQUIRED RT. OF WAY WIDTH Ft. (8)	89 60 60 65 108	60 68 74 74	60 65 70 70 80 80 60
RT. OF WAY CLEARING Ac. (7)	3.8 10.6 4.7 8.0 4.4 0.2 t needed into	5.5 10.9 7.8 24.2 9.1	8.7.0 11.0.0 1.0.0 1.0.0
EXCAVATION Cu. Yds. (6)	5985 17,248 5032 8584 5010 426 extent of outlet	5920 12,950 10,212 29,082 9768	3404 3404 7181 9996 8568 15,799 2331 1480 3108
DIMENSIONS BOTTOM WIDTH Ft. (5b)	12 14 3 3 4 18 determine ext	w 7 - 5 w	m m 4 0 0 0 0 m m m
CHANNEL I TOP WIDTH Ft.	22 24 13 13 13 14 14 to	13 17 13	13 14 16 19 13 13
DISCHARGE c.f.s.	130 150 15 43 46 178 survey required	29 53 77 32	26 36 46 64 76 102 103 12
WATERSHED Ac. (3)	2288 2660 172 608 668 3328 Detailed adjacent	372 772 1232 424	264 476 656 976 1196 1728 129 331
LENGTH Ft.	1900 4900 3400 5800 3000 100	4000 7000 4600 15,600 6600	2300 2300 4300 4200 6100 900 1000 2100 6900
CANAL No. (1)	M-4F M-4G L-2A L-2B L-2C M-4H M-4I	M-5A M-5B M-5C Total-5 M-6A Total-6	M-7A M-7B M-7D M-7D M-7F M-7F L-1A L-1C

ENGINEERING AND DESIGN DATA Area 5 - Olanta - Lake City - Scranton - Byrds Crossroads

			i	
REQUIRED RT. OF WAY WIDTH	Ft. (8)	89 95 95 60 60 60 102 108	60 65 65 70 74	60 65 70 77 89
RT. OF WAY	AG. (7)	0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	5.8 3.1 3.1 9.0 1.5	2.55 4.4 4.5 8.1 26.2
EXCAVATION	Cu. Yds. (6)	2520 10,208 4224 2368 6660 4884 1332 3890 14,058	6216 4008 3507 4080 11,766 1998 31,575	2664 7515 5712 6266 12,600 34,757
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	12 14 14 3 3 3 16 16	E 4 4 9 7 7	4 4 12 12
CHANNEL D TOP WIDTH	Ft. (5a)	22 24 24 13 13 13 26 26	13 14 14 16 17	13 14 16 18 22
DISCHARGE	c.f.s. (4)	124 139 143 10 21 31 34 167	36 45 51 60 82 84	16 45 68 89 122
WATERSHED	Ac. (3)	2149 2485 2557 100 252 404 448 3057 3373	472 636 732 904 1296 1320	164 640 1030 1420 2072
LENGTH	Ft. (2)	800 2900 1200 1600 4500 3300 900 1000 3300	4200 2400 2100 2000 5300 900 16,900	1800 4500 2800 2600 4000 15,700
CANAL	No.	M-7H M-71 M-71 L-2A L-2C L-2C M-7K M-7L	M-8A M-8B M-8C M-8D M-8E M-8F	M-9A M-9B M-9C M-9D M-9E Total-9

ENGINEERING AND DESIGN DATA Area 5 - Olanta - Lake City - Scranton - Byrds Crossroads

REQUIRED	RT. OF WAY WIDTH	Ft.	(8)	, c	0 (0/	70	70	74	83	68	95		09	70	74	80	95	09	95	09	09	102	102	09	65	89	102	108	
i c	RT. OF WAY CLEARING	Ac.	(7)	0 7	•	•		•			2.5	4.	43.5	1.4	•	5.1					•			•		6.5		1.6	14.9	89.4
	EXCAVATION	Cu. Yds.	(9)	75.18	0 1 1	8160	4080	3876	3552	13,622	5670	22,880	69,388	1480	16,728	8214	8029	17,600	9692	9826	5920	2368	13,226	10,503	5624	7181	4995	4279	25,560	149,259
DIMENSIONS	BOTTOM WIDTH	Ft.	(2p)) (٥	9	9	7	10	12	14		æ	9	7	6	14	Ж	14	8	е	16	16	Э	4	2	16	18	
BL	TOP	rt.	(5a)) ·	9T	16	16	17	20	22	24		13	16	17	19	24	13	24	13	13	26	26	13	14	15	26	28	
	DISCHARGE	c.f.s.	(4)) () (09	99	74	83	110	125	151		17	62	79	103	135	36	149	32	35	162	169	26	47	54	173	189	
de est	WATERSHED	Ac.	(3)	756) (i	988	1004	1124	1316	1836	2152	2672		196	944	1236	1688	2400	488	2648	420	460	2968	3088	320	672	788	3248	3560	
THOUSE	LENGTH	Ft.	(2)	5100	0000	4000	2000	1900	1600	4900	1800	6500	27,800	1000	8200	3700	3100	2000	5200	2800	4000	1600	3400	2700	3800	4300	2700	1100	0009	28,600
, F.	CANAL	No.	(1)	&⊖ [- M	COT_LI	M-IOB	M-10C	M-10D	M-10E	M-10F	M-10G	M-10H	Total-10	M-11A	M-11B	M-11C	M-11D	M-11E	L-1A	M-11F	L-2A	L-2B	M-11G	M-11H	L-3A	L-3B	L-3C	M-11I	M-11J	Total-11

ENGINEERING AND DESIGN DATA Area 5 - Olanta - Lake City - Scranton - Byrds Crossroads

REQUIRED RT. OF WAY WIDTH	Ft. (8)	60 68 77	60 68 70 70	68 70 70	.
RT. OF WAY	Ac. (7)	5.2 7.3 6.2 18.7	6.6 6.1 4.4 4.8 21.9	5.5 4.3 6.9 3.0	l be adequate 1 be adequate 1 be adequate 1 be adequate
EXCAVATION	Cu. Yds. (6)	5624 9805 10,845 26,274	7104 8140 6528 7140 28,912	5920 5735 10,200 4488 26,343	maintenance will maintenance will maintenance will maintenance will maintenance will
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	миæ	мифф	миф	proper proper proper proper
CHANNEL I TOP WIDTH	Ft. (5a)	13 15 18	13 15 16 16	13 16 16	canal with canal with canal with canal with
DISCHARGE	c.f.s. (4)	26 53 87	26 53 67 73	36 55 66 73	Present Present Present Present
WATERSHED	Ac. (3)	316 764 1384	312 764 1008 1132	476 788 1004 1132	780 896 1216 1420
LENGTH	Ft. (2)	3800 5300 4500 13,600	4800 4400 3200 3500 15,900	4000 3100 5000 2200 14,300	
CANAL	No. (1)	M-12A M-12B M-12C Total-12	M-13A M-13B M-13C M-13D Total-13	M-14A M-14B M-14C M-14D Total-14	M-15A M-15B M-15C M-15D Total-15

ENGINEERING AND DESIGN DATA Area 5 - Olanta - Lake City - Scranton - Byrds Crossroads

REQUIRED T. OF WAY WIDTH						
RT. OF WIDTH	Ft. (8)		- + + + + + + + + + + + + + + + + + + +	4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
RT. OF WAY	Ac. (7)	L be adequate	l be adequate l be adequate l be adequate l be adequate	l be adequate 1 be adequate 1 be adequate 1 be adequate		538.6
EXCAVATION	Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will maintenance will	maintenance will maintenance will maintenance will maintenance will	maintenance will maintenance will maintenance will maintenance will	Camp Branch Watershed Canal 1g Area 5 text)	763,171
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	proper proper proper proper proper	proper proper proper	proper proper proper	p Branch We rea 5 text)	
CHANNEL TOP WIDTH	Ft. (5a)	canal with	canal with canal with canal with canal with	canal with canal with canal with canal with	Lake - Camp Br Planning Area	
DISCHARGE	c.f.s. (4)	Present or	Present or	Present (Present (Present (Lynches (See	
WATERSHED	Ac. (3)	120 396 424 1112 1164 1400	492 996 1456 1832	372 708 1004 1494	8888	
LENGTH	Ft. (2)				67,320	398,420
CANAL	No. (1)	M-16A M-16B M-16C L-1A L-1B M-16D Total-16	M-17A M-17B M-17C M-17D Total-17	M-18A M-18B M-18C M-18D Total-18	M-19 Total-19	Area 5 Grand Total

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

REQUIRED RT. OF WAY WIDTH Ft. (8)			09 09	60 65 102 60 60 60 65
RT. OF WAY CLEARING AC. (7)	l be adequate	l be adequate 1 be adequate 1 be adequate	4.5 1.8 2.9 2.3 11.5	1.0 12.8 9.1 6.7 4.8
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will maintenance will	maintenance will maintenance will maintenance will	4884 1924 3108 2510 12,426	1036 6680 20,768 15,171 7252 5964 3108 5180 6680
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper mai proper mai proper mai proper mai	proper mai proper mai proper mai	е е е е	144 16 18 18 18
CHANNEL I TOP WIDTH Ft.	canal with canal with canal with canal with canal with canal with	canal with canal with canal with	13 13 13	13 24 24 26 13 13 14
DISCHARGE c.f.s.	Present Present Present Present Present	Present Present Present	20 25 36 38	35 45 145 170 18 190 31
WATERSHED Ac. (3)	96 136 360 536 708	314 360 560	236 356 436 492	260 501 1381 1493 373 1918 453 673
LENGTH Ft. (2)	2000 2100 5900 1500 1300 12,800	4100 1500 2600 8200	3300 1300 2100 1700 8400	700 4000 5900 3900 4900 1400 2100 3300
CANAL No. (1)	M-1A M-1B L-1A L-2A M-1C Total-1	M-2A M-2B M-2C Total-2	M-3A M-3B M-3C M-3D Total-3	M-4A M-4B M-4C M-4D L-3A L-2A L-2B

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

REQUIRED RI. OF WAY WIDTH Ft. (8)	70 115 115 60 60 60 138 146	09	09 09 09
RT. OF WAY CLEARING AC. (7)	5.3 10.5 5.3 3.1 1.4 4.1 92.6	1.0 5.2 2.5 8.7	0.5 6.3 1 be adequate 1 be adequate 3.9 0.7 0.7 1 be adequate 1.8 1.8 1.8
EXCAVATION Cu. Yds. (6)	6732 18,983 10,649 3404 3848 1480 6981 8036	1036 5624 2664 9324	444 6808 maintenance will 1924 4144 740 maintenance will 1924 maintenance will 1924 maintenance will maintenance will
DIMENSIONS BOTTOM WIDTH Ft. (5b)	6 20 20 3 3 24.		
CHANNEL I TOP WIDTH Ft.	16 30 32 13 13 13 34	13 13 13	canal with proper canal with proper 13 3 3 2 anal with proper 13 3 3 canal with proper 13 3 canal with proper canal with proper canal with proper canal with proper
DISCHARGE c.f.s. (4)	68 210 218 15 22 28 255 255	26 42 43	3 28 Present o Present o 13 29 30 Present o 28 39 41 Present o
WATERSHED Ac. (3)	833 2968 3448 220 340 370 3866 3898	274 514 574	24 360 524 772 148 364 372 360 524 572 636
LENGTH Ft. (2)	3300 4000 2000 2300 2600 1000 1300 1400	700 3800 1800 6300	300 1000 1000 1600 1300 500 600 1300 1300 1300
CANAL No. (1)	L-2D M-4F M-4G L-1A L-1B L-1C M-4H Total-4	M~5A M-5B M-5C Total-5	M - 6A M - 6A M - 6B M - 6C M - 6C M - 6C M - 6E L - 3A M - 6E M - 6E M - 6E

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

-		
REQUIRED RT. OF WAY WIDTH Ft. (8)	77	_ a a a a a a a a a a a a a a a a a a a
RT. OF WAY CLEARING AC. (7)	13.6 1 be adequate 2 be adequate 34.5	be adequate
EXCAVATION Cu. Yds. (6)	maintenance will 40,905	maintenance will
DIMENSIONS BOTTOM WIDTH Ft. (5b)	8 proper proper proper proper proper	proper proper proper proper proper proper proper proper proper proper proper proper proper proper proper
CHANNEL TOP WIDTH Ft. (5a)	18 canal with canal with canal with canal with canal with canal with	canal with
DISCHARGE c.f.s. (4)	95 Present Present Present Present Present	Present
WATERSHED Ac. (3)	1500 1812 2070 2168 2220 4156 4276	296 624 932 1008 1008 1388 1412 1874 1268 1268 1268 1268 1268
LENGTH Ft. (2)	7700 5000 1600 1400 1500 700 1500	3600 4600 1000 1000 700 1000 5900 1500 3300 8600 2500 3800 4000 3200 1300 9900
CANAL No. (1)	L-1A L-1B L-1C L-1D L-1E M-6G Total-6	M-7A M-7B M-7B M-7D M-7D L-2B L-2B M-7G M-7G M-7G M-7G M-7G

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

REQUIRED RT. OF WAY WIDTH Ft. (8)	w w w w	60 70 70 60 60 83 89	0 0 0 0 0 0 0 0 0
RT. OF WAY CLEARING Ac. (7)	l be adequate l be adequate l be adequate l be adequate	4 4 7 11 7.4 8 2 2 2 1 1 4 4 8 8 6 7 7 4 1 4 9 6 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.0.7.7.8.8.9.1.8.8.9.1.9.9.9.9.9.9.9.9.9.9.9.9
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will	5032 4884 8684 14,484 5304 3700 3108 2664 1924 1946 4884 6300 5040	888 6068 8510 5304 2960 3848
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper mai proper mai proper mai proper mai	10 12 12 13	тти ф тт
CHANNEL L TOP WIDTH Ft. (5a)	canal with canal with canal with canal with	13 14 16 13 13 13 22 22 22	13 13 16 13
DISCHARGE c.f.s.	Present o Present o Present o	16 27 52 70 72 28 40 43 110 125 127	12 39 55 65 13
WATERSHED Ac. (3)	868 932 964 3476	184 324 748 1116 1184 595 592 644 1884 2258	140 528 868 988 136
LENGTH Ft. (2)	2800 1800 1300 3300 76,200	3400 3300 5200 7100 2600 2500 1800 1300 1300 36,900	600 4100 4600 2600 2000 2600
CANAL No. (1)	L-3B L-3C L-3D M-7K Total-7	M-8A M-8B M-8B M-8C M-8B L-1A L-1B L-1C M-8F M-8F Total-8	M-9A M-9B M-9C M-9D L-1A

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

	<u> </u>	<u> </u>	L
REQUIRED RT. OF WAY WIDTH Ft. (8)	74		60 60 60 60 60 65 65 65
RT. OF WAY CLEARING Ac. (7)	1.7 10.8 36.6	be adequate be adequate	5.6 4.1 3.6 2.3 3.8 4.5 3.4 1.5 1 be adequate 1 be adequate 1 be adequate
EXCAVATION Cu. Yds. (6)	2220 15,281 45,079	maintenance will	6068 4440 3848 2516 4144 4884 3841 1670 maintenance will maintenance will
DIMENSIONS BOTTOM WIDTH Ft. (5b)	7 6	proper mai proper mai proper mai proper mai proper mai proper mai proper mai proper mai proper mai proper mai	3 3 3 3 4 4 proper mai
CHANNEL D TOP WIDTH Ft. (5a)	17	canal with	13 13 13 13 13 13 14 canal with canal with
DISCHARGE c.f.s. (4)	80 100	Present	20 26 33 23 28 22 46 46 Present Present
WATERSHED Ac. (3)	1336	64 130 154 490 850 998 1934 2970 170 3972 4092	240 328 420 272 348 272 676 696 1344 1432
LENGTH Ft. (2)	1000 5900 23,400	2200 1300 600 4400 3900 2000 2700 4900 2000 1300 30,900	4100 3000 2600 1700 2800 3300 2300 1000 2600 3000
CANAL NO. (1)	M-9E M-9F Total-9	M-10A L-2A L-2B L-2C L-2C L-2E M-10B M-10B M-10C M-10C	M-11A M-11B M-11C L-1A L-1B L-2A L-1C L-1D M-11D M-11E

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

REQUIRED	RT. OF WAY	ъ.	(8)	09			68	89	70	e.	09	09	09	09	09	09	80	80		09	09	09	09	09	09	70	70	74		Ψ	Φ	Ψ
	RT. OF WAY	Ac.	(7)	2.9	l be	8.8	4.7		7.4	l be adequate	2.5	•	1.8	6.7	1.4	3.2	10.8	5.1	l be adequate	1.8	2.5	8.4	7.3	2.1	5.2	11.7	6.9		ן L be adequate	pe	þe	pe
	EXCAVATION	Cu. Yds.	(9)	3108	maintenance wil	9853	5550	1850	9384	ntenance wil	2664	1036	1924	7252	1036	3404	15,281	7252	maintenance wil	1924	2664	9028	7844	2220	5624	4692	8772	1554	maintenance will	maintenance will		maintenance will
DIMENSIONS	BOTTOM	Ft.	(2p)	т	proper mai	4	2	2	9	proper mail	8	m	т	8	т	е	6	6		e	ĸ	т	e	е	ĸ	9	9	7	proper mair			
CHANNEL	TOP	Ft.	(5a)	13	canal with	14	15	15	16	canal with	13	13	13	13	13	13	19	19	canal with	13	13	13	13	13	13	16	16	17	canal with	canal with	canal with	canal with
	DISCHARGE	c.f.s.	(4)	24	esent	52	58	59		esent	11	14	15	39	40	43	105	105	esent	11	33	35	15	26	35	65	70	80	Present (Present (Present	Present o
	WATERSHED	Ac.	(3)	284	112	864	964	1012	1156	2844	128	140	164	524	268	809	1900	1964	5008	89	128	424	276	320	480	926	1272	1332	1436	6844	6936	320
	LENGTH	Ft.	(2)	2100	2800	2900	3000	1000	4600	3600	1800	200	1300	4900	1000	2300	2900	2800	2700	1300	1800	0019	5300	1500	3800	2300	4300	700	3300	4600	3000	7900
	CANAL	No.	(1)	L-3B	L-9A	L-3C	L-3D	L-3E	L-3F	M-11F	L-4A	L-4B	L-5A	L-5B	L-5C	L-5D	L-4C	L-4D	M-11G	L-6A	L-6B	I-6C	L-7A	L-7B	L-7C	Г-6D	L-6E	L-6F	L-6G	M-11H	M-11I	L-8A

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

t	 			
REQUIRED RT. OF WAY WIDTH Ft. (8)	v v v	09	09	60 60 70 70 60 60 80
RT. OF WAY CLEARING Ac. (7)	l be adequate 1 be adequate 1 be adequate 137.0	1.8 3.1 4.9	2.6 2.6 9.9	26.1 1.6 1.6 1.8 26.1 26.1 26.1
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will maintenance will 148,731	1924 3408 5332	2516 2812 5328	2960 5328 3848 2040 3264 1036 6808 2590 2590 30,464
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper mai proper mai proper mai	с с	m m	ოოო დ დ ო ო თ თ
CHANNEL D TOP WIDTH Ft. (5a)	canal with canal with canal with	13	13 13	13 16 16 13 19
DISCHARGE c.f.s. (4)	Present c Present c Present c	15	10 15	13 24 40 65 70 7 35 103 105
WATERSHED Ac. (3)	7416 7484 7540	160 230	104	288 552 488 1096 1192 72 488 1760 1804
LENGTH Ft. (2)	2800 1500 2500 129,900	1300 2300 3600	1700 1900 3600	2000 3600 2600 1000 1600 700 4600 1000 18,100
CANAL No. (1)	M-11J M-11K M-11L Total-11	M-12A M-12B Total-12	M-13A M-13B Total-13	M-14A M-14B L-2A M-14C M-14D L-1A L-1B M-14E M-14F Total-14

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

																		•								
REQUIRED	RT. OF WAY WIDTH	Ft. (8)	a	ψ.	ø	Φ.	(P	Φ	Φ	Φ	ψ	Φ		09	09	09	Ψ	09	09	- ()	09	09	Φ	Ð		
	RT. OF WAY CLEARING	Ac. (7)	T be adequate	þe	þe	þe	pe	pe	þe	þe	pe	pe		5.5	3.1	3.6	l be adequate	2.8	1.1	l be adequatė	3.0	5.2	l be adequate	l be adequate	24.3	
	EXCAVATION	Cu. Yds. (6)	maintenance will		maintenance will		5920	3404	3848	maintenance will	2960	1184	maintenance will	1184	5624	maintenance will	maintenance will	24,124								
CHANNEL DIMENSIONS	BOTTOM	Ft. (5b)	 proper main			proper	proper mair	proper mair	proper mair	proper	proper mair	proper mair		Ж	ю	_ °	proper mair	3	٣	proper mair	3	8	proper	proper	· —	
CHANNEL I	TOP	Ft. (5a)	canal with		canal with		13	13	13	canal with	13	13	canal with	13	13	canal with	canal with		-							
	DISCHARGE	c.f.s. (4)	Present c			Present c		18	18	30	Present c	13	14	Present c	7	14	Present c	Present c								
	WATERSHED	Ac. (3)	244	636	808	336	476	512	1388	176	272	2080		208	212	372	636	132	148	936	72	174	1164	1220		
	LENGTH	Ft. (2)	2300	4300	3700	3600	2800	1000	2000	2600	2100	6300	30,700	4000	2300	2600	1300	2000	800	3000	800	3800	1300	2300	24,200	
	CANAL	No. (1)	M-15A	M-15B	M-15C	L-2A	L-2B	L-2C	M-15D	L-1A	L-1B	M-15E	Total-15	M-16A	L-3A	L-3B	M-16B	L-2A	L-2B	M-16C	L-1A	L-1B	M-16D	M-16E	Total-16	

ENGINEERING AND DESIGN DATA Area 6 - Friendfield - Coward - Highhill - Camerontown

REQUIRED RT. OF WAY WIDTH Ft. (8)	60 60 60 68 74	60 60 60 77 77	09	
RT. OF WAY CLEARING AC. (7)	5.0 1.0 3.9 3.1 11.7 29.2	1.0 7.3 7.3 3.2 5.3 1.2	2.9	496.0
EXCAVATION Cu. Yds. (6)	5328 4884 1036 4144 3700 15,318 34,410	1036 7844 7844 4080 7230 1687 29,721	5920 2220 8140	593,890
DIMENSIONS BOTTOM WIDTH Ft. (5b)		т т т യ യ യ	тм	
CHANNEL TOP WIDTH Ft. (5a)	13 13 13 13 15	13 13 16 18 18	13	
DISCHARGE c.f.s. (4)	25 40 6 15 59 85	10 36 35 70 89 90	23	
WATERSHED Ac. (3)	320 528 56 156 892 1272	64 440 368 1048 1358	296 338	
LENGTH Ft. (2)	3600 3300 700 2800 2000 6900 19,300	700 5300 5300 2000 3000 700 17,000	4000 1500 5500	543,700
CANAL No. (1)	M-17A M-17B L-1A L-1B M-17C M-17D Total-17	M-18A M-18B L-1A M-18C M-18D M-18E Total-18	M-19A M-19B Total-19	Area 6 Grand Total

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

REQUIRED	WIDTH Ft. (8)	60 60 68 68 83 95	89		09
RT. OF WAY	CLEARING Ac. (7)	4.1 3.1 8.1 8.1 9.4	7.8 1 be adequate 7.8	1 be adequate 1 be adequate 1 be adequate 1 be adequate	3.6 5.5 1.0 3.3 4.1 17.5
EXCAVATION	Cu. Yds. (6)	4440 2960 3700 9620 11,954 15,136 47,810	9250 maintenance will 9250	maintenance will maintenance will maintenance will maintenance will	3848 5920 1036 3700 4440 18,944
DIMENSIONS BOTTOM	WIDTH Ft. (5b)	3 3 5 10 14		proper proper proper proper	е е е е е е
CHANNEL	WIDTH Ft. (5a)	13 13 15 20 24	canal with proper	canal with canal with canal with canal with	13 13 13 13
DISCHARGE	c.f.s. (4)	40 10 55 57 70 150	56 Present c	Present o Present o Present o	15 16 30 4 40
WATERSHED	Ac. (3)	536 636 836 868 1084 2608	888 1100	456 545 753 861	162 184 410 44 558
LENGTH	Ft. (2)	3000 2000 2000 5200 4300 4300 20,800	5000 4100 9100	2000 600 2000 2300 6900	2600 4000 700 2500 3000 12,800
CANAL	No. (1)	M-1A L-2A M-1B L-1A L-1B M-1C Total-1	M-2A M-2B Total-2	M-3A M-3B M-3C M-3D Total-3	M-4A L-1A M-4B L-2A M-4C Total-4

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

REQUIRED RI. OF WAY WIDTH Ft. (8)	09	09	65 70 74 77 89 89 95	60 60 77 83 89
RT. OF WAY CLEARING AC. (7)	2.2 4.8	1.8 2.9	7.1 9.0 2.9 4.6 7.1 7.0 1.8	4.5 3.6 1.8 12.3 6.8
EXCAVATION Cu. Yds. (6)	2812 2368 5180	1924 1184 3108	8016 11,424 3774 6266 4725 5985 5280 10,912 2464 58,846	4884 3848 1184 16,870 10,008 3465
DIMENSIONS BOTTOM WIDTH Ft. (5b)	ес	೯೯	4 6 7 12 12 14 14	3 3 8 10 12
CHANNEL I TOP WIDTH Ft.	13	13	14 11 12 13 14 14 14 14	13 13 18 20 22
DISCHARGE c.f.s.	14	7	49 71 80 100 130 140 145	15 12 30 90 110
WATERSHED Ac. (3)	152 236	62 88	692 1064 1240 1556 1660 2052 2292 2316	168 120 392 1512 1840 1880
LENGTH Ft.	1900 1600 3500	1300 800 2100	4800 5600 1700 2600 1500 1900 1600 3100 700	3300 2600 800 7000 3600 1100
CANAL No. (1)	M-5A M-5B Total-5	M-6A M-6B Total-6	M-7A M-7B M-7C M-7D M-7E M-7F M-7T Total-7	M-8A L-1A M-8B M-8C M-8D M-8E

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

1					·
REQUIRED RT. OF WAY WIDTH Ft. (8)		09	09	09	09
RT. OF WAY CLEARING AC. (7)	be adequate be adequate be adequate be adequate be adequate 31.2	5.5	3.9 0.7	6.9 1 be adequate 1 be adequate 1 be adequate 6.9	5.0 2.1 7.1
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will	5920 5920	4144 740 4884	maintenance will maintenance will maintenance will 7400	5328 2220 7548
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper proper proper	e e	е е	3 proper proper	К. С.
CHANNEL I TOP WIDTH Ft. (5a)	canal with canal with canal with canal with	13	13	13 canal with canal with canal with	13
DISCHARGE c.f.s.	Present or	22	20	43 Present o Present o	25
WATERSHED AC. (3)	468 2820 3104 3180	260	248 260	580 756 1308 2008	325
LENGTH Ft. (2)	5300 3300 4000 1900 32,900	4000	2800 500 3300	5000	3600 1500 5100
CANAL No. (1)	L-2A M-8F M-8G M-8H Total-8	M-9A Total-9	M-10A M-10B Total-10	M-11A M-11B M-11C M-11D Total-11	M-12A M-12B Total-12

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

REQUIRED RT. OF WAY WIDTH	Ft. (8)	09	09	65 70 74 77 89 89 95 95	60 60 77 83 89
RT. OF WAY	Ac. (7)	6.5 4. 6.5 4.	1.8 1.1 2.9	7.1 2.9 2.9 4.0 7.0 7.0 4.9	3.6 12.3 6.8 2.2
EXCAVATION	Cu. Yds. (6)	2812 2368 5180	1924 1184 3108	8016 11,424 3774 6266 4725 5985 5280 10,912 2464 58,846	3848 1184 16,870 10,008 3465
DIMENSIONS BOTTOM WIDTH	Ft. (5b)	m m	, m m	4 4 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	3 8 10 12
CHANNEL I TOP WIDTH	Ft. (5a)	13	13	14 16 17 18 22 22 24 24 24	13 18 20 22
DISCHARGE	c.f.s. (4)	14	7 0	49 71 80 95 100 140 143 145	12 30 90 110
WATERSHED	Ac. (3)	152 236	88 88	692 1064 1240 1556 1660 1900 2052 2316 168	120 392 1512 1840 1880
LENGTH	Ft. (2)	1900 1600 3500	1300 800 2100	4800 5600 1700 2600 1500 1900 1600 3100 23,500	2600 800 7000 3600 1100
CANAL	No. (1)	M-5A M-5B Total-5	M-6A M-6B Total-6	M-7A M-7B M-7C M-7D M-7F M-7T Total-7 M-8A	L-1A M-8B M-8C M-8D M-8E

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

REQUIRED RT. OF WAY WIDTH Ft. (8)	_ v v v v	09	09	09 .	09
RT. OF WAY CLEARING Ac. (7)	be adequate be adequate be adequate be adequate l be adequate 31.2	5.5	3.9 0.7 4.6	6.9 1 be adequate 1 be adequate 1 be adequate 6.9	5.0 2.1 7.1
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will maintenance will maintenance will 40,259	5920 5920	4144 740 4884	maintenance will maintenance will maintenance will 7400	5328 2220 7548
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper proper proper	ю	e e		е е
CHANNEL I TOP WIDTH Ft. (5a)	canal with canal with canal with canal with	13	13	canal with proper canal with proper canal with proper	13
DISCHARGE c.f.s.	Present o Present o Present o	22	20	43 Present o Present o	25
WATERSHED AC.	468 2820 3104 3180	260	248 260	580 756 1308 2008	325 353
LENGTH Ft. (2)	5300 3300 4000 1900 32,900	4000	2800 500 3300	5000	3600 1500 5100
CANAL No. (1)	L-2A M-8F M-8G M-8H Total-8	M-9A Total-9	M-10A M-10B Total-10	M-11A M-11B M-11C M-11D Total-11	M-12A M-12B Total-12

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

REQUIRED RT. OF WAY WIDTH Ft. (8)	09	60 60 60 60 70 74	— e	e -	09
RT. OF WAY CLEARING Ac. (7)	2.2	4.1 0.8 4.3 5.4 3.2 3.2	15.4 6.2 1.1 1 be adequate 22.7	4.4 1 be adequate 4.4	7.3 0.8 8.1
EXCAVATION Cu. Yds. (6)	2368 2516 4884	4440 888 4588 5772 4080 4218 23,986	19,246 6660 1428 maintenance will 27,334	2960 ntenance will 2960	7844 888 8732
DIMENSIONS BOTTOM WIDTH Ft. (5b)	е е		5 3 6 proper mai	canal with proper maintenance	с г се
CHANNEL I TOP WIDTH Ft. (5a)	13	13 13 13 16 16	15 13 16 canal with	13 sanal with	13 13
DISCHARGE c.f.s. (4)	12	20 25 40 24 70 83	59 30 76 Present	17 Present o	40
WATERSHED Ac. (3)	124	244 314 550 296 1114 1354	848 380 1274 1370	208 256	572 596
LENGTH Ft. (2)	1600 1700 3300	3000 600 3100 3900 2000 1900 14,500	9900 4500 700 15,100	3200 1300 4500	5300 600 5900
CANAL No. (1)	M-13A M-13B Total-13	M-14A M-14B M-14C L-1A M-14D M-14E Total-14	M-15A L-1A M-15B M-15C Total-15	M-16A M-16B Total-16	M-17A M-17B Total-17

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

RED	WAY H							
REQUIRED	RT. OF WAY WIDTH	Ft. (8)	09	09		υ	09	09
	RT. OF WAY	Ac. (7)	2 4 1 8 2 7 8 8	1.2 3.6 0.5	l be adequate 1 be adequate	l be adequate	2.1 3.7 5.5 11.3	2.2 1.8 4.0
	EXCAVATION	Cu. Yds. (6)	2664 4884 1924 9472	1332 3848 1184 6364	maintenance will	Present canal with proper maintenance will be	2220 3996 5920 12,136	2960 1924 4884
CHANNEL DIMENSIONS	BOTTOM	Ft. (5b)	ммм	m m m	proper	proper mai	т т т	тт
CHANNEL	TOP WIDTH	Ft. (5a)	13 13 13	13 13	canal with	anal with	13 13 13	13
	DISCHARGE	c.f.s. (4)	9 18 20	7 15 17	Present c Present c	Present c	24 7 42	15
	WATERSHED	Ac. (3)	96 204 244	64 164 172	168 364	172	316 76 584	150
	LENGTH	Ft. (2)	1800 3300 1300 6400	900 2600 800 4300	2600 3000 5600	2500	1500 2700 4000 8200	1600 1300 2900
	CANAL	No.	M-18A M-18B M-18C Total-18	M-19A M-19B M-19C Total-19	M-20A M-20B Total-20	M-21A Total-21	M-22A L-1A M-22B Total-22	M-23A M-23B Total-23

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

+						
REQUIRED RT. OF WAY WIDTH Ft. (8)	09	09	09	09	09	09
RT. OF WAY CLEARING Ac. (7)	2.2 0.8 3.0	1.2 0.8 2.0	2.1 1.1 3.2	2.2.6 8.6.4	1.2 3.5	0.4.7. 8.5.
EXCAVATION Cu. Yds. (6)	3108 880 3988	1332 888 2220	2220 1184 3404	2960 2812 5772	1480 2220 3700	888 4884 5772
CHANNEL DIMENSIONS TOP BOTTOM WIDTH WIDTH Ft. (5a) (5b)	r r	ενεν	<i>т</i> м	т т	т п	мм
CHANNEL TOP WIDTH Ft. (5a)	13	13 13	13	13	13	13
DISCHARGE c.f.s.	9	6	. r. o	14	10	6
WATERSHED AG. (3)	92 104	88	40 56	156 204	106 152	48
LENGTH Ft. (2)	1600 600 2200	900 600 1500	1500 800 2300	2000 1900 3900	1000 1500 2500	600 3300 3900
CANAL No. (1)	M-24A M-24B Total-24	M-25A M-25B Total-25	M-26A M-26B Total-26	M-27A M-27B Total-27	M-28A M-28B Total-28	M-29A M-29B Total-29

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

				-																			
REQUIRED	RT. OF WAY WIDTH	Ft.	(8)	09	0 0	00		09	ю	·	09	09	65	89	70		09	09	89	Ф	е	O	
	RT. OF WAY	Ac.	(7)		0.0	ρ.Τ.	8.1	3.3	l be adequate	1	2.2	5.5	2.4	5.0	1.1	16.2	2.8	6.3	4.0	l be adequate	1 be adequate	l be adequate	13.1
	EXCAVATION	Cu. Yds.	(9)	0000	0000	1924	8732	3552	intenance will		2368	5920	2672	5920	1554	18,434	2960	8089	4810	maintenance will	maintenance will	maintenance will	14,578
DIMENSIONS	BOTTOM WIDTH	Ft.	(2p)	C) (n		e	canal with proper maintenance	1	r	ю	4	2	9		8	ю	Ŋ	proper	proper	proper	
CHANNEL	TOP	ъt.	(5a)		. T	T3		13	canal with		13	13	14	15	16		13	13	15	canal with	canal with	canal with	
	DISCHARGE	c.f.s.	(4)	ر 7 د	0 0	87		20	Present		10	36	52	10	62		18	43	59	Present	Present	Present	
	WATERSHED	Ac.	(3)	000	0 10	320		236	310	, - 	108	513	829	106	096		152	524	904	1138	1242	1279	
	LENGTH	Ft.	(2)	7600	000	T300	5900	2400	1600	4000	1600	4000	1600	3200	200	11,100	2000	4600	2600	2600	700	006	13,400
	CANAL	No.	(1)	K OC - W	AUC .:	M-30B	Total-30	M-31A	M-31B	Total-31	M-32A	M-32B	M-32C	L-1A	M-32D	Total-32	M-33A	M-33B	M-33C	M-33D	M-33E	M-33F	Total-33

ENGINEERING AND DESIGN DATA Area 7 - Hyman - Pamplico - Blossom - Salem

		1		
REQUIRED RT. OF WAY WIDTH Ft. (8)	0 0 0	60 60 60 60 60 74 89	60 68 70	
RT. OF WAY CLEARING AC. (7)	2.9 3.4 1 be adequate 1 be adequate 6.3	2.4 2.2 2.2 2.6 1.9 5.9 6.5 1.6 1.0 19.9	7.4 3.6 5.5	368,4
- EXCAVATION Cu. Yds. (6)	3108 3700 maintenance will maintenance will 6808	4736 4440 4440 5328 3674 8772 7770 10,080 2723 maintenance will 51,963	7992 3996 4255 6936 23,179	462,003
DIMENSIONS BOTTOM WIDTH Ft. (5b)	3 3 proper proper	3 3 4 4 12 16 proper	ммию	
CHANNEL TOP WIDTH Ft. (5a)	13 13 canal with canal with	13 13 13 14 16 17 22 26 canal with	13 13 16	
DISCHARGE c.f.s. (4)	12 18 Present o	14 16 50 38 45 74 80 120 174 Present o	25 40 52 66	-
WATERSHED Ac. (3)	144 232 649 679	140 172 712 252 908 1420 1632 1840 2596 2856	290 554 724 940	
LENGTH Ft. (2)	2100 2500 3000 800	3200 3000 3000 3000 2200 4300 3500 3200 700 4100	5400 2700 2300 3400 13,800	305,900
CANAL No. (1)	M-34A L-1A M-34B M-34C Total-34	M-35A L-3A M-35B L-1A L-2A L-2B L-2C L-1B M-35C Total-35	M-36A M-36B M-36C M-37D Total-37	Area-7 Grand Total

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

REQUIRED RT. OF WAY WIDTH Ft. (8)	09	0	w w	09 e	w w
RT. OF WAY CLEARING AC. (7)	0.7 1 be adequate 1 be adequate 0.7	l be adequate 1 be adequate	1 be adequate 1 be adequate	3.6 1 be adequate 3.6	l be adequate 1 be adequate
EXCAVATION Cu. Yds. (6)	740 maintenance will maintenance will 740	with proper maintenance will with proper maintenance will	canal with proper maintenance will	13 3 3848 canal with proper maintenance will 3848	canal with proper maintenance will
DIMENSIONS BOTTOM WIDTH Ft. (5b)	3 proper	proper mai proper mai	proper mai proper mai	3 proper mai	proper mai proper mai
CHANNEL TOP WIDTH Ft. (5a)	13 canal with	canal with	canal with	13 canal with	canal with
DISCHARGE c.f.s.	5 Present o	Present (Present Present	9 Present	Present Present
WATERSHED Ac. (3)	56 153 238	280	284	88 180	221 255
LENGTH Ft. (2)	500 2200 1400 4100	2600 3200 5800	4100 3800 7900	2600 2300 4900	3300 1000 4300
CANAL No. (1)	M-1A M-1B M-1C Total-1	M-2A M-2B Total-2	M-3A M-3B Total-3	M-4A M-4B Total-4	M-5A M-5B Total-5

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

REQUIRED RT. OF WAY WIDTH Ft. (8)	a) d)	09	09 9 9	(), (l)	(l) (l)
RT. OF WAY CLEARING Ac. (7)	1 be adequate 1 be adequate	1.4 2.8 0.7 4.5	1.1 1.0 3.4 0.6 1 be adequate 6.1	1 be adequate	1 be adequate 1 be adequate
EXCAVATION Cu. Yds. (6)	maintenance will	1480 2960 4884 740 10,064	1184 1036 3700 592 ntenance will 6512	canal with proper maintenance will	canal with proper maintenance will
DIMENSIONS BOTTOM WIDTH Ft. (5b)	proper		3 1036 3 3700 3 592 proper maintenance 6512	proper mail	proper mail
CHANNEL TOP WIDTH Ft.	canal with	13 13 13	13 13 13 13 canal with	canal with	canal with
DISCHARGE c.f.s.	Present o	4 17 40 41	13 15 10 10 Present o	Present o	Present o
WATERSHED Ac. (3)	372 382	38 180 533 549	136 152 96 102 398	291 507	273
LENGTH Ft. (2)	4000 700 4700	1000 2000 3300 500 6800	800 700 2500 400 4000 8400	3100 2800 5900	4000 1600 5600
CANAL No. (1)	M-6A M-6B Total-6	M-7A M-7B M-7C M-7D Total-7	M-8A M-8B L-1A L-1B M-8C Total-8	M-9A M-9B Total-9	M-10A M-10B Total-10

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

ļ							
REQUIRED RT. OF WAY	wilth Ft. (8)	09	09	09	09	09	09
RT. OF WAY	CLEAKING AC. (7)	0.84	1.4 1 be adequate 1.4	4.7	2.0	4. E. B. C. L.	1.2 1.be adequate 1.2
EXCAVATION	Cu. Yds. (6)	888 3404 4292	canal with proper maintenance will 1480	5032 5032	3108 3108	4884 3848 8732	1332 ntenance will 1332
CHANNEL DIMENSIONS TOP BOTTOM	wibin Ft. (5b)	мм	3 proper mai	ю	ю	к к	canal with proper maintenance 1332
CHANNEL TOP WIDTH	Ft. (5a)	13	13 anal with	13	13	13	13 anal with
DISCHARGE	c.f.s. (4)	7	14 Present c	12	13	34	4 Present c
WATERSHED	Ac. (3)	68 154	156 288	126	130	460 520	33
LENGTH	Ft. (2)	600 2300 2900	1000 2600 3600	3400 3400	2100	3300 2600 5900	900 3900 4800
CANAL	No. (1)	M-11A M-11B Total-11	M-12A M-12B Total-12	M-13A Total-13	M-14A Total-14	M-15A M-15B Total-15	M-16A M-16B Total-16

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

Д	AY																														
REQUIRED	RT. OF WAY	Ēτ.	(8)		09	09	(1)	09	9	9	09	(I)	(I)		09	a	a)	(I)	(I)	09	09	09	09	(1)	09	09	(1)	09	89	89	89
	RT. OF WAY	Ac.	(7)		0.7	3.2	1 be adequate	2.1	5.5	1.2	4.5	l be adequate	1 be adequate	2.2	4.4	l be adequate	1 be adequate	þe	1 be adequate	5.0	1.1	1.1	1.7	1 be adequate	1.2	4.1	1 be adequate	4.5	6.4	1.6	2.2
	EXCAVATION	Cu. Yds.	10		740	3404	maintenance wil	2220	5920	1332	4884	maintenance wil	maintenance wil	2368	4736	maintenance wil	maintenance will	maintenance will	maintenance wil	5328	1184	1184	1776	maintenance wil	1332	4440	maintenance wil	4884	7585	1850	2590
DIMENSIONS	BOTTOM	Ft.	(5b)		m	Э	proper mai	m	ĸ	m	က	proper mai	proper mai	, K	е	proper mai	proper mai	proper mai	proper mai	m	m	m	3	proper mai	m	ю	proper mai	m	2	2	2
님	TOP	ы т	(5a)		T3	13	canal with	13	13	13	13	canal with	canal with	13	13	canal with	canal with	canal with	canal with	13	13	13	13	canal with	13	13	canal with	13	15	15	15
	DISCHARGE	c.f.s.	(4)		ა	14	Present o	13	25	2	13	Present o	Present o	9	13	Present c	Present c	Present o	Present c	18	20	21	28	Present c	80	17	esent	25	58	58	59
	WATERSHED	Ac.	(3)		41	158	330	132	330	49	134	533	718	09	136	982	1520	1556	1608	222	242	264	344	2008	78	198	2206	284	796	832	998
	LENGTH	Ft.	(2)	L	200	2300	3300	1500	4000	006	3300	1900	2600	1600	3200	2500	2600	700	1600	3600	800	800	1200	1100	006	3000	3200	3300	4100	1000	1400
	CANAL	No.	(1)		M-L/A	M-17B	M-17C	L-4A	L-4B	L-5A	L-5B	L-4C	L-4D	L-6A	L-6B	L-4E	M-17D	M-17E	M-17F	L-3A	L-3B	L-3C	L-3D	M-17G	L-2A	L-2B	M-17H	L-1A	L-1B	L-1C	L-1D

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

t				1	
REQUIRED RT. OF WAY WIDTH Ft. (8)	w w	60	09	65 65 68	09
RT. OF WAY CLEARING AC. (7)	l l be adequate l be adequate 52.7	7.3 0.6 7.9	3.7 2.8 6.5	2.4 1.9 3.9 8.2	5.2
EXCAVATION Cu. Yds. (6)	maintenance will maintenance will	7844 592 8436	3996 2960 6956	2368 1924 3700 7992	2812 3404 6216
DIMENSIONS BOTTOM WIDTH Ft. (5b)	with proper maintenance with proper maintenance 57,757	e e	೯೯	4 4 C	rr rr
CHANNEL I TOP WIDTH Ft.	canal with	13	13	14 14 15	13
DISCHARGE c.f.s. (4)	Present con Presen	35	14	44 48 55	18 28
WATERSHED Ac. (3)	3175 3219	442	148 201	637 675 792	216 356
LENGTH Ft. (2)	1400 1500 60,500	5300 400 5700	2700 2000 4700	1600 1300 2500 5400	1900 2300 4200
CANAL No. (1)	M-17J M-17K Total-17	M-18A M-18B Total-18	M-19A M-19B Total-19	M-20A M-20B M-20C Total-20	M-21A M-21B Total-21

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

	-								
REQUIRED RT. OF WAY	WIDTH	ri t	(8)	09	09	09	09	09	09
RT. OF WAY	CLEARING	Ac.	(2)	5.0	4.3	3.2 1.2 4.4	2.8 2.9 5.7	4.3 2.1 6.4	9.2 1.8 11.0
EXCAVATION	Province of the property of the province of th	Cu. Yds.	(9)	5328 5328	4588 4588	3404 1332 4736	2960 1480 4440	4588 2220 6808	9916 1924 11,840
DIMENSIONS BOTTOM	WIDTH	म	(2p)	ĸ	ю	ന ന	m m	п п	m m
CHANNEL	WIDTH	ъt.	(5a)	13	13	13 13	13	13	13
DISCHARGE		C.f.s.	(4)	24	24	12	9	18 23	28 30
WATERSHED	!	Ac.	(3)	302	296	112	89	228 288	336
LENGTH		ъ. , t	(2)	3600	3100	2300 900 3200	2000 2100 4100	3100 1500 4600	6700 1300 8000
CANAL		No.	(1)	M-22A Total-22	M-23A Total-23	M-24A M-24B Total-24	M-25A M-25B Total-25	M-26A M-26B Total-26	M-27A M-27B Total-27

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

REQUIRED RT. OF WAY WIDTH Ft.	(8)	09	09	09	a)	09	09	09	09	09	2
RT. OF WAY CLEARING AC.	(7)	6.7 5.0 1.4	6.4	,	l be adequate 16.2	1.0	7.7 2.6	3.9	9.0	0.0	23.9
EXCAVATION Cu. Yds.	(6)	7252 5328 1332	6660		maintenance will 18,056	1036	2812	1332	592	3256	27,428
DIMENSIONS BOTTOM WIDTH Ft.	(5b) 3	πи			proper mai	mm	n m	m m	m.	ო დ	o
CHANNEL TOP WIDTH Ft.	(5a)	13	13		canal With	13	13	13	13	13) 1
DISCHARGE	(4)	17	20		resent o	8	10	11	19	φ 0 α	
WATERSHED	(3)	176	256	628 837 881	1000	82	96	114 225	235	0 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
LENGTH Ft.	4900	3600	4500	4600 3600 1700	13,000	700	1900	2800	400	5900	16,300
CANAL NO.	M-28A	M-29A M-29B	Total-29 M-30A	M-30C M-30C M-30D	Total-30	M-31A M-31B	L-1A	L-2A	L-2B	M-31C	Total-31

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

1					
REQUIRED RT. OF WAY	Ft. (8)	09	09 	09	
RT. OF WAY	Ac. (7)	2.3	2.5 1 be adequate 2.5	1.8 1.9 9.3	1.1 1.4 3.6 1.7 1.8 1.4 1.2 1 be adequate 1 be adequate 1 be adequate 1 be adequate 1 be adequate 1 be adequate
EXCAVATION	Cu. Yds. (6)	2516 2516	13 3 2664 canal with proper maintenance will	6068 1924 2072 10,064	1184 1480 3848 1776 1924 1480 1332 maintenance will maintenance will maintenance will maintenance will maintenance will
DIMENSIONS BOTTOM	Ft. (5b)	ю	3 proper mai	ო ო ო	3 3 3 3 broper proper proper proper
CHANNEL TOP	Ft. (5a)	13	13 canal with	13 13 13	13 13 13 13 13 canal with
DISCHARGE	c.f.s. (4)	16	7 Present 0	24 34 40	9 18 30 5 6 10 10 Present of Pres
WATERSHED	Ac. (3)	182	70	305 441 517	94 387 60 78 103 252 268 402
LENGTH	Ft. (2)	1700	1800 3600 5400	4100 1300 1400 6800	800 1000 2600 1200 1300 1000 900 2200 2200 3500
CANAL	No.	M-32A Total-32	M-33A M-33B Total-33	M-34A M-34B M-34C Total-34	M-35A M-35B M-35B L-3A L-4B L-4B M-35D L-5A L-5B L-2A L-1A

ENGINEERING AND DESIGN DATA Area 8 - Poston - Salem - Vox - Johnsonville

CANAT	TENCHH	WATFRCHED	DISCHARGE	CHANNEL	CHANNEL DIMENSIONS	EXCAVATION	RT. OF WAY	REQUIRED
CANAL				WIDTH	WIDTH		CLEARING	WIDTH
No.	ъ,	Ac.	c.f.s.	Ft.	Ft.	Cu. Yds.	Ac.	Ft.
(1)	(2)	(3)	(4)	(5a)	(qc)	(9)	()	(8)
M-35F	006	1422	Present c	anal with	proper ma:	Present canal with proper maintenance will be adequate	 1 be adequat	(I)
M-35G Total-35	2300	1588	Present c	anal with	proper ma	Present canal with proper maintenance will 13,024	l be adequate 12.2	a)
M-36A	1500	180	17	13	ю	2220	2.1	09
M-36B Total-36	2700	288	23	13	m	3996 6216	5.8	09
M-37A	2300	184	17	13	~	3404	3.2	09
M-37B M-37B Total-37	2900	2 F C C C C C C C C C C C C C C C C C C	22	n e	n m	4292 7696	7.2	09
Area-8								
Grand Total	277,000					271,813	252.5	

Inset, sheet 1

VICINITY MAP

JULY 1978 4-36631

WATER RUNOFF STUDY FOR MAIN DRAINAGEWAYS AND OUTLETS IN FLORENCE COUNTY, SOUTH CAROLINA AREA 1

(Joins sheet 8)
APPROXIMATE SCALE: 1:50,000

JULY 1978 4-36631

APPROXIMATE SCALE: 1:50,000

1 MILE

5000 FEET

WATER RUNOFF STUDY FOR MAIN DRAINAGEWAYS AND OUTLETS IN FLORENCE COUNTY, SOUTH CAROLINA

