

AGENTES E INTELIGÊNCIA ARTIFICIAL DISTRIBUÍDA

 $4^{\rm o}$ ano do Mestrado Integrado em Engenharia Informática e Computação

$Simulação\ de\ Evacuação\ com\ Agentes$

Relatório de Implementação

Estudantes:

Gil Domingues
- up201304646@fe.up.pt
Pedro Pontes
- up201305367@fe.up.pt

11 de Dezembro de 2016

Conteúdo

1	Introdução	3
2	Contexto 2.1 Cenário 2.2 Objetivos	3 3
3	Especificação	4
	3.1 Agentes	4
	3.2 Interações	6
4	Desenvolvimento	9
	4.1 Faseamento	9
	4.2 Ambiente de Desenvolvimento e Ferramentas	9
	4.3 Estrutura	10
	1 3	13
	4.4.1 Agentes	13
	4.4.2 Ambiente	18
5	Experimentação	19
6	Conclusão	24
7	Melhorias	24
8	Recursos	24
	8.1 Bibliografia	24
	8.2 Software	24

1 Introdução

Uma evacuação implica mover pessoas de um dado local devido à ocorrência de uma situação de (potencial) catástrofe. Exemplos incluem a evacuação de um edifício em chamas ou de uma localidade, antes, durante ou após um desastre natural, como uma cheia ou terramoto.

Evacuar grandes multidões é um desafio, independentemente das circunstâncias. Tipicamente, de uma evacuação de emergência resultam feridos - ou mesmo mortes -, devido ao caos e pânico que se geram.

Com o aumento da frequência de situações que implicam a evacuação de um elevado número de pessoas num curto espaço de tempo, existe uma consciência acrescida da importância do planeamento dessas situações.

Com efeito, a gestão e organização de multidões em situações de emergência tornou-se uma importante área de estudo ao longo dos últimos anos e desempenha, hoje, um papel importante no planeamento de um edifício ou área.

Dados os desafios - quer de ordem prática, quer de ordem financeira - que a realização de simulacros coloca, é cada vez mais comum o uso de técnicas de simulação para estudar estas situações. De facto, existem já diversos tipos de sistemas, como as simulações baseadas na dinâmica de fluídos, as simulações baseadas em autómatos e as simulações baseadas em agentes.

2 Contexto

2.1 Cenário

Ocorreu um incêndio, uma inundação, a libertação de um gás nocivo, um qualquer acidente que obriga à evacuação daqueles presentes num dado local. O local possui múltiplas saídas de emergência e também obstáculos. Os indivíduos encontram-se distribuídos pelo local, ocupados nas suas tarefas usuais. Aquando da deteção do acidente, todos os indivíduos procuram atingir uma das saídas de emergência, o mais rapidamente possível.

Alguns agentes poderão ser altruístas, no sentido de ajudarem acidentados a deslocarem-se até à saída, outros poderão simplesmente querer «salvar a pele», exibindo um comportamento mais egoísta. Alguns poderão conhecer bem o local e, como tal, chegar rapidamente à saída, outros demorarão mais ou mesmo perder-se, tendo que pedir ajuda.

2.2 Objetivos

Realizado no âmbito da unidade curricular de Agentes e Inteligência Artificial Distribuída, com este projeto pretende desenvolver-se um programa que permita simular a interação de agentes confinados a um espaço concreto e limitado perante a necessidade de evacuar esse espaço, podendo o utilizador definir diferentes cenários, especificando, por um lado, o tipo, número e localização dos agentes a evacuar e, por outro, o número e localização de saídas de emergência e obstáculos.

3 Especificação

3.1 Agentes

Podem distinguir-se dimensões distintas no comportamento exibido durante uma evacuação: por um lado, o espaço a evacuar e a sua configuração, e, por outro lado, as características psicológicas e sociais que afetam a resposta dos que participam na evacuação.

Assume-se que, em situações de emergência, os indivíduos entram em pânico e ficam, por isso, propensos a tomar decisões irracionais. Mais ainda, as pessoas tentam mover-se tão depressa quanto possível, devendo evitar obstáculos.

Deste modo, tem-se que os agentes implementados são autónomos, proativos e reativos e são caracterizados por diversos atributos, conforme definido na Tabela 1.

Atributos	Tipo	Descrição	
idade	int	[5, 65]	
género	Enum	{Masculino, Feminino}	
conhecimento da área	int	[0, 100] probabilidade de seguir o melhor caminho até uma saída	
independência	int	[0, 100] probabilidade de seguir (ou não) outros	
altruísmo	int	[0, 100] probabilidade para ajudar outros	
mobilidade	int	[0, 100] condiciona a probabilidade de se mover num dado instante	
estado de pânico	int	[0,100] afeta o discernimento da pessoa	
paciência	int	[0,100] determina a probabilidade de reagir de intempestivamente	

Tabela 1: Atributos dos agentes implementados, que condicionam os seus comportamentos.

Em função dos atributos de independência e de conhecimento da área, considerouse a categorização dos agentes em quatro estereótipos, conforme descrito na Tabela 2.

Tipo	Atributos		
Tipo	independence	areaKnowledge	
▲ IndependentKnowledgeable	[50, 100]	[50, 100]	
▲ IndependentUnknowledgeable	[50, 100]	[0, 50]	
 DependentKnowledgeable 	[0, 50]	[50, 100]	
DependentUnknowledgeable	[0, 50]	[0, 50]	

Tabela 2: Diferentes tipos de agente, de acordo com os valore possíveis para os atributos considerados.

Esta classificação permitiu a definição, ao nível de interface, de diferentes representações para os vários tipos de agente, permitindo estabelecer visualmente a relação entre o tipo de agente e os seus comportamentos.

Comportamento	Descrição	
Processo de Evacuação	A cada momento um agente deve usar o seu conhecimento da área e mover-se em direção à saída.	
Mecanismo de Pânico	A cada momento um agente atualiza o seu estado de pânico de acordo com a sua condição e o ambiente envolvente.	
Sentido de Altruísmo	A cada momento um agente monitoriza o ambiente envolvente e decide responder ou ignorar pedidos de ajuda de outros agentes.	
Pedido de Direções	Um agente toma, por ser pouco independente ou ter pouco conhecimento da área, pede direções a agentes na sua proximidade.	
Pedido de Ajuda	Um agente incapaz de se mover de forma autónoma pede ajuda aos agentes na sua proximidade.	

Tabela 3: Comportamentos dos agentes.

3.2 Interações

A comunicação entre agentes foi implementada recorrendo a mensagens JADE, obedecendo aos protocolos FIPA.

Dado que todos os agentes se encontram, a cada momento, numa dada posição de um espaço, cada agente pode tomar conhecimento daqueles que o rodeiam, sendo possível obter os seus AID's usando a noção de proximidade.

Excerto 1: Código Java ilustrando a possibilidade de uma pessoa poder descobrir outras.

```
// find people in the surrounding area
ArrayList<AID> peopleNear = environment.findNear(myAgent);
if(peopleNear.isEmpty()) {
   return;
}
```

Os vários agentes assumem uma atitude mais ou menos cooperativa, em função dos atributos altruísmo e independência, e partilham um objetivo comum: chegar a uma saída.

Com vista a simular de forma algo fidedigna as condições de uma evacuação de emergência, foram implementadas as seguintes interações entre agentes:

• Terror:

Um agente cujo nível de pânico sobe acima de um certo nível envia uma mensagem PROPAGATE para agentes na proximidade.

Aqueles que recebem esta mensagem, podem, ou não, propagar a mensagem e aumentam o seu estado de pânico - variação que depende de diversos fatores: assumiu-se que as pessoas mais independentes são menos influenciáveis pelos gritos dos outros enquanto os mais jovens ou mais idosos são mais impressionáveis.

Figura 1: Diagrama de sequência exemplificando uma interação do tipo Terror.

• Orientação;

Duas pessoas podem partilhar conhecimento sobre a área, mediante um pedido nesse sentido. Um agente que tenha pouco conhecimento da área pode enviar a um agente ao seu redor uma mensagem *CFP*, a que esse agente responde com uma dada probabilidade - dependente do valor do atributo altruísmo. A resposta consiste numa mensagem *INFORM*, com o valor do seu conhecimento da área, *conhecimento1*. Por forma a simular a aquisição de informação, o agente que fez o pedido atualizará o seu nível de conhecimento da área, *conhecimento2*, de acordo com:

conhecimento2 = max(conhecimento2, conhecimento1 * FAC)

onde FAC representa um fator de aquisição de conhecimento, de valor configurável, que visa simular as perdas de informação típicas numa troca de informações.

Figura 2: Diagrama de sequência exemplificando uma interação do tipo Orientação.

• Ajuda.

Um agente pode pedir ajuda, enviando uma mensagem *CFP* para agentes ao seu redor. Os agentes na disposição de ajudar podem oferecer a sua ajuda, enviando uma mensagem *PROPOSAL*, com o valor da sua mobilidade, *mobilidade1*.

O autor do pedido de ajuda aceita a melhor oferta, respondendo com uma mensagem $ACCEPT_PROPOSAL$, com o valor da sua mobilidade, mobilidade2, rejeitando as demais ofertas com uma mensagem $REJECT_PROPOSAL$. O agente que ofereceu ajuda passa a guiar o outro até à saída, sendo a mobilidade de cada um dada por:

$$mobilidade1 = mobilidade2 = \frac{mobilidade1 + moblidade2}{2}$$

Figura 3: Diagrama de sequência exemplificando uma interação do tipo Ajuda.

Como pode constatar-se, estes protocolos são relativamente simples. De referir, ainda, que as interações Ajudar e Orientar são efetuadas de acordo com o modelo de Rede Contratual, sendo que, no caso, o papel de gestor cabe ao agente que faz o pedido inicial.

4 Desenvolvimento

4.1 Faseamento

A implementação do projeto executou-se em diferentes etapas:

- 1. Especificação e planeamento (23 de outubro a 1 de novembro);
- 2. Implementação de:
 - (a) Agente (25 de outubro a 5 de novembro);
 - (b) Espaço (5 de novembro a 25 de novembro);Teste e análise do comportamento de um agente num espaço.
 - (c) Interação entre agentes (5 de novembro a 5 de dezembro); Teste e análise do comportamento de vários agentes num espaço.
- 3. Exploração de diferentes cenários e recolha e avaliação de métricas (1 de dezembro a 10 de dezembro).

4.2 Ambiente de Desenvolvimento e Ferramentas

O desenvolvimento decorreu em ambiente Windows 10 e usando a versão Neon do IDE Eclipse, tendo-se feito uso das ferramentas JADE, Repast Simphony e SAJaS.

JADE: Definição de agentes.

Repast Simphony: Simulação multiagente.

SAJaS: Integração de agentes *JADE* com *Repast*.

O Repast é uma framework open-source que permite criar, analisar e experimentar com mundos artificiais populados por agentes que interagem de forma não trivial.

Concretamente, utilizou-se a sua mais recente versão - $Repast\ Simphony$, que permite programar em Java a estrutura espacial, a estrutura lógica e os comportamentos dos agentes.

Tem sido amplamente utilizado em aplicações de simulação, e, no caso, considerouse de particular utilidade, por um lado, a capacidade de definir e lidar com estruturas espaciais e, por outro, a recolha de métricas associadas às simulações realizadas. Por último, tem-se a vantagem de poder acompanhar, de forma visual, o decorrer da simulação.

Adicionalmente, utilizou-se a *API SAJaS*, que possibilitou a integração de agentes *JADE* com *Repast*, permitindo definir os comportamentos de agentes e fazer uso das capacidades de comunicação entre agentes, visando simular as interações expectáveis num cenário de evacuação.

4.3 Estrutura

A aplicação pode, a nível lógico, dividir-se em diferentes módulos, com responsabilidades distintas.

Figura 4: Diagrama ilustrativo da estrutura lógica do projeto.

O módulo Simulation é responsável, por um lado, pela configuração da simulação, no que diz respeito às ferramentas usadas - Repast, JADE e SAJaS -, e, por outro lado, pela definição do cenário da simulação - tanto o espaço como a população a evacuar.

Adicionalmente, inclui a componente de recolha de estatísticas da simulação - ResultsCollector -, implementado como um agente, cuja função é receber dados relativos à evacuação de cada uma das pessoas evacuadas.

Figura 5: Classes do módulo Simulation.

O módulo *Environment* contempla tudo o que se relaciona com a definição da estrutura espacial da simulação, bem como a sua configuração.

Figura 6: Classes do módulo *Environment*.

O módulo Person é formado pela classe Person - subclasse de Agent e onde são definidos os atributos e comportamentos de uma pessoa -, bem como as suas várias subclasses.

Figura 7: Classes do módulo Person.

O módulo *Communiation* é formado pelas classes usadas na implementação da comunicação entre agentes. Estas classes são tipos de mensagens trocadas em interações entre agentes, e caracterizam a *SimulationOntology*.

Figura 8: Classes do módulo Communication.

Figura 9: Diagrama de classes do projeto (simplificado).

4.4 Detalhes de Implementação

4.4.1 Agentes

• Atributos

Conforme descrito na especificação, os agentes encontram-se definidos por um conjunto de atributos. Na definição da variação de alguns dos atributos usados, partiu-se de alguns pressupostos:

- Pânico

Assumiu-se que o pânico de uma pessoa pode aumentar - por exemplo, como resultado de um empurrão - ou diminuir - por exemplo, quando recebe ajuda por parte de outra pessoa.

Mais ainda, tem-se que o pânico aumenta mais depressa do que diminui e, no cálculo dessa variação considerou-se que as pessoas mais independentes têm uma reação mais moderada, i.e., veem o seu nível de pânico variar de forma mais comedida. Pelo contrário, jovens e pessoas de idade mais avançada reagem de forma mais pronunciada, isto é, veem o seu nível de pânico variar de forma errática.

Numa tentativa de aproximar a simulação daquilo que seria observável numa situação real, considerou-se que o pânico condiciona a capacidade de uma pessoa usar o seu conhecimento da área e escolher um caminho até à saída. Por outro lado, fez-se igualmente depender do estado de pânico de uma pessoa a probabilidade de empurrar alguém que se encontre no caminho que pretende seguir.

- Mobilidade

No que diz respeito à mobilidade, consideram-se apenas variações negativas - por exemplo, provocadas por empurrões -, sendo que aquelas mais jovens ou de idade mais avançada verão a sua mobilidade diminuir de forma mais rapidamente.

Não obstante, a mobilidade de uma pessoa pode ser temporariamente aumentada, sempre que uma pessoa for ajudada por outra. Se, por motivo de empurrão ou morte, essa ajuda terminar, a mobilidade da pessoa é restaurada para o seu valor anterior.

Da mobilidade de uma pessoa depende a probabilidade de, a cada instante, uma pessoa se mover. A mobilidade constringe, ainda, o altruísmo de uma pessoa, limitando a resposta a pedidos de ajuda recebidos.

- Conhecimento da área

O conhecimento da área pode variar, aumentando apenas por meio da partilha de informação com outras pessoas.

O conhecimento da área condiciona a probabilidade de um agente de, a cada instante, selecionar o melhor caminho na direção da saída.

Paciência

Considerou-se que a paciência de uma pessoa oscila, aumentando ou diminuindo de acordo com um valor predefinido e configurável.

A paciência de uma pessoa influencia a forma como o caminho a seguir é selecionado: se o caminho selecionado estiver bloqueado por outra pessoa e não se quiser empurrá-la, pode esperar-se por um tempo razoável, até que essa pessoa desobstrua a passagem, ou, esgotada a paciência, ultrapassá-la.

Adicionalmente, definiram-se algumas funções, que traduzem a influência do pânico sobre outros atributos:

Excerto 2: Código Java de funções que traduzem a influência do pânico sobre o altruísmo e cohecimento de área.

```
public int getAltruisticFeeling() {
   return altruism - panic / 5;
}

public int getUsableKnowledge() {
   return areaKnowledge - panic / 5;
}
```

De referir que, para todos os atributos, sempre que é feita uma atribuição por meio do uso de um método setAtributo(novoValor), o valor desse atributo é atualizado para o novo valor apenas se respeitar os limites definidos.

Excerto 3: Código Java da função que assegura que os vários atributos respeitam os limites definidos.

```
int enforceBounds(int attribute) {
   if(attribute > MAX_SCALE){
      return MAX_SCALE;
   }else if(attribute < MIN_SCALE){
      return MIN_SCALE;
   }else{
      return attribute;
   }
}</pre>
```

• Mecanismo de Pânico

Pela especificação, um agente cujo nível de pânico sobe acima de um certo nível envia uma mensagem PROPAGATE para agentes na proximidade, sempre que atualiza o seu nível de pânico.

Excerto 4: Código Java responsável pelo envio de um grito.

```
ACLMessage msg = receive(template);
if(msg!= null) {
```

```
if(msg.getContent().equals(SCREAM_MESSAGE)){
   increasePanic();
}
```

Aqueles que recebem esta mensagem, podem, ou não, propagar a mensagem e aumentam o seu estado de pânico - variação que depende de diversos fatores: assumiu-se que as pessoas mais independentes são menos influenciáveis pelos gritos dos outros enquanto os mais jovens ou mais idosos são mais impressionáveis.

• Partilha de Direções

Conforme a especificação, duas pessoas podem partilhar conhecimento sobre a área, mediante um pedido nesse sentido.

A cada instante, um agente que tenha pouco conhecimento da área pode - com uma probabilidade inversamente proporcional a esse conhecimento - enviar a um agente ao seu redor uma mensagem CFP.

Excerto 5: Código Java responsável pelo envio de um pedido de direções.

```
boolean sendDirectionsRequest() {
  ArrayList<AID> peopleNear = environment.findNearAgents(myAgent,
      REQUEST_DISTANCE);
  peopleNear.removeAll(previousReplies);
  SimUtilities.shuffle(peopleNear, RandomHelper.getUniform());
  if(peopleNear.isEmpty()) {
     return false;
  }
  ACLMessage directionsRequest = new ACLMessage(ACLMessage.CFP);
  directionsRequest.addReceiver(peopleNear.get(0));
  DirectionsRequest requestMessage = new DirectionsRequest();
  getContentManager().fillContent(directionsRequest,
      requestMessage);
  send(directionsRequest);
  return true;
}
```

O agente a quem foram pedidas direções responde com uma mensagem IN-FORM ou REFUSE, com uma dada probabilidade.

Excerto 6: Código Java responsável pela receção de pedidos de direções.

```
void handleDirectionsRequest(ACLMessage request) {
   ACLMessage reply = request.createReply();
```

```
if(RandomHelper.nextIntFromTo(MIN_SCALE, MAX_SCALE) <
     getAltruisticFeeling()) {
    reply.setPerformative(ACLMessage.INFORM);
}else{
    reply.setPerformative(ACLMessage.REFUSE);
}

DirectionsReply replyMessage = new DirectionsReply(areaKnowledge);
getContentManager().fillContent(reply, replyMessage);
send(reply);
}</pre>
```

O agente que pediu direções atualiza o seu conhecimento da área.

Excerto 7: Código Java responsável pela receção de respostas a um pedido de direções.

```
void receiveReply() {
  ACLMessage msg = receive(template);
  if(msg == null) {
     return;
  }
  if(msg.getPerformative() == ACLMessage.INFORM) {
     int previousKnowledge = areaKnowledge;
     int knowledgeReceived = ((DirectionsReply)
         getContentManager().extractContent(msg)).getKnowkledge();
     setAreaKnowledge(Integer.max((int) (knowledgeReceived *
         KNOWLEDGE_ACQUISITION_FACTOR), areaKnowledge));
     if(previousKnowledge < areaKnowledge){</pre>
        newDirections = true;
     }else{
        previousReplies.add(msg.getSender());
     }
  }else if(msg.getPerformative() == ACLMessage.REFUSE){
     newDirectionsRequested = false;
  }
}
```

• Ajuda

• Empurrões

No contexto do problema, designou-se por «empurrão» a interação entre duas pessoas em que uma das pessoas, ao tentar mover-se, tem alguém à sua frente e decide removê-la do seu caminho à força, «empurrando-a».

Na circunstância de o caminho selecionado se encontrar obstruído, um agente

pode - conforme o seu estado de pânico ou impaciência - «empurrar» o agente que está a provocar esse bloqueio.

Efetivamente, o «empurrão» consiste na troca de posições entre dois agentes. O agente que é «empurrado» vê a sua mobilidade reduzida e o seu nível de pânico aumentar. Se o agente empurrado estiver a ajudar ou a ser ajudado por outro, essa relação de ajuda é terminada.

Excerto 8: Código Java da função que permite a uma pessoa «empurrar» outra.

```
void push(int selectedX, int selectedY) {
  Person person = environment.userInCell(selectedX, selectedY);
  if(person == null || (selectedX == x && selectedY == y)){
     return:
  }
  boolean isPush = helped!=null ?
      !person.getAID().equals(helped.getAID()) : true;
  if(isPush){
     if(person.getHelper() != null){
        person.getHelper().setHelpee(null);
        setHelper(null);
     }else{
        if(person.getHelpee() != null){
           person.getHelpee().setHelper(null);
           setHelpee(null);
        }
        person.increasePanic();
     }
     person.decreaseMobility();
  }
  if(RandomHelper.nextIntFromTo(MIN_SCALE, MAX_SCALE) > altruism) {
     person.decreasePatience();
  }
  person.moveTo(x, y);
  moveTo(selectedX, selectedY);
}
```

De notar que, para esta interação, não existe troca de mensagens entre os agentes, por se considerar esta aproximação mais próxima do que seria observável numa situação real.

• Movimento (TODO)

4.4.2 Ambiente

Detalhes de implementação sobre o ambiente/espaço.

5 Experimentação

Ao longo do processo de desenvolvimento foram levadas a cabo múltiplas experiências, com vista a testar a implementação dos agentes.

• Evacuação simples

Objetivo: Testar se um agente é capaz de atingir a saída.

Esta experiência consistiu na colocação, numa dada posição de um espaço pré-definido, de um agente de um certo tipo, tendo-se analisado o seu comportamento e medido o tempo que decorreu até que chegassem à saída.

Tabela 4: Tempos de evacuação em função do tipo de agente usado.

Tipo de agente	Tempo de evacuação
IndependentKnowledgeable	16.73s
Independent Unknowledgeable	34.79s
DependentKnowledgeable	17.71s
DependentUnknowledgeable	50.12s

Como esperado, observou-se que os agentes com maior conhecimento da área demoraram menos tempo a chega à saída.

Dado que, nesta fase, se utilizou apenas um agente de cada tipo em cada simulação, o atributo independência não se reflete no desempenho do agente, tendo-se observado tempos de evacuação semelhantes para os agentes dos tipos IndependentKnowledgeable e DependentKnowledgeable.

O mesmo não foi observado no caso dos agentes de tipos *DependentKnowled-geable* e *DependentUnknowledgeable*, devido ao caráter estocástico das simulações.

• Mecanismo de pânico

Objetivo: Testar o mecanismo de pânico.

Esta experiência consistiu na colocação, em posições adjacentes de um espaço pré-definido, de dois agentes, sendo que um deles caracterizado por um elevado nível de pânico. No caso, ambos os agentes são do tipo *IndependentKnowledge-able*, embora tal não seja relevante para o objetivo desta experiência, podendo, de facto, ter-se usado agentes de qualquer um dos tipos definidos.

Procedeu-se à análise dos seus comportamentos e, no final, verificaram-se os seus níveis de pânico. Como esperado, observou-se que um agente em pânico «emite um grito», conforme a especificação deste tipo de interação. O outro agente «ouve o grito» e aumenta o seu nível de pânico - como se pode observar na Figura 10.

```
New environment created.
 (d)
 (d)
      Population of 2 created.
       IndependentKnowledgeable_0 pushed IndependentKnowledgeable_1
Log:
 (d)
      Panic variation: 12.0
     Mobility variation: -12.0
 (d)
       IndependentKnowledgeable 1 pushed IndependentKnowledgeable 0
Log:
 (d)
      Panic variation: 12.0
 (d)
     Mobility variation: -12.0
 (d)
      IndependentKnowledgeable 0 screamed.
```

(d) IndependentKnowledgeable 1 heard a scream!

(d) Panic variation: 12.0

Figura 10: Excerto do registo de execução de uma simulação do cenário descrito.

Em algumas das execuções, como nesta, observaram-se «empurrões», devido ao facto de se encontrarem em posições adjacentes e ao facto de os agentes estarem num estado de pânico.

No caso, um dos agentes «empurrou» o outro, o que produziu o primeiro aumento do nível de pânico, visível no gráfico da Figura 11.

Seguiu-se um novo «empurrão», desta vez, por parte do agente que tinha sido «empurrado» antes, causando um novo aumento do nível de pânico.

O terceiro aumento do pânico observado fica a dever-se ao «grito» que o agente em pânico lançou ao ser empurrado, e reflete a reação do agente que o empurrou a esse mesmo «grito».

Figura 11: Variação dos atributos dos agentes do cenário.

Salienta-se, ainda, a diminuição da mobilidade verificada a cada «empurrão», observável na Figura 11.

• Pedido de direções

Objetivo: Testar a partilha de conhecimento entre dois agentes.

Esta experiência consistiu na colocação, em posições adjacentes de um espaço pré-definido, de um agente do tipo *IndependentKnowledgeable*, com um elevado nível de altruísmo, e de um agente do tipo *DependentUnknowledgeable*, com um conhecimento da área reduzido.

- (d) New environment created.
- (d) Population of 2 created.
- (d) IndependentUnknowledgeable_1 is requesting directions.
- (d) IndependentUnknowledgeable 1 requested directions (attempt 1) to IndependentKnowledgeable 0
- (d) IndependentKnowledgeable_0 heard DirectionsRequest from IndependentUnknowledgeable_1
- (d) IndependentKnowledgeable_0 sent directions to IndependentUnknowledgeable_1
- (d) IndependentUnknowledgeable_1 received directions from IndependentKnowledgeable_0
- (d) IndependentUnknowledgeable_1 received good directions from IndependentKnowledgeable_0

Figura 12: Excerto do registo de execução de uma simulação do cenário descrito.

Confirmou-se que o agente com menor conhecimento da área efetuou um pedido de direções, que despoleta uma resposta por parte do outro agente. Recebendo esta resposta, o agente que efetuou o pedido atualiza o seu conhecimento da área com base na informação que contém e num fator de aquisição de conhecimento, como detalhado. Na Figura 13 é possível verificar o aumento do conhecimento médio.

Figura 13: Variação dos atributos dos agentes do cenário.

• Pedido de Ajuda

Objetivo: Testar o comportamento de ajuda de um agente para com outro.

Esta experiência consistiu na colocação, em posições adjacentes de um espaço pré-definido, de um agente do tipo *IndependentKnowledgeable*, com um elevado

nível de altruísmo, e de um agente do tipo *IndependentUnknowledgeable*, com uma mobilidade reduzida.

- (d) New environment created.
- (d) Population of 2 created.
- (d) IndependentKnowledgeable_0 is requesting help.
- (d) IndependentKnowledgeable_0: help request sent
- (d) IndependentUnknowledgeable_1 heard HelpRequest from IndependentKnowledgeable_0
- (d) HelpReply sent byIndependentUnknowledgeable_1
- (d) Help proposal form IndependentUnknowledgeable 1 received.
- (d) IndependentKnowledgeable_0 being helped by IndependentUnknowledgeable_1
- (d) IndependentUnknowledgeable 1 heard HelpConfirmation from IndependentKnowledgeable 0
- (d) Helping agent IndependentKnowledgeable_0

Figura 14: Excerto do registo de execução de uma simulação do cenário descrito.

Como esperado, observou-se que o agente com mobilidade reduzida «pediu ajuda», que faz com que o outro lhe faça uma proposta. Recebendo esta proposta, o agente que efetuou o pedido envia uma confirmação, e atualiza o seu conhecimento da área com base na informação da proposta, bem como a sua mobilidade, conforme previsto para uma interação deste tipo. Na Figura 15 é possível verificar o aumento do conhecimento médio.

Figura 15: Variação dos atributos dos agentes do cenário.

De referir, ainda, que o pico na mobilidade média observado na Figura 15 é meramente resultado da implementação da interação, e deve-se à atualização assíncrona dos valores da mobilidade de ambos os agentes envolvidos.

Terminada a fase de desenvolvimento, foram avaliados diferentes cenários.

- diferentes configurações para o local do acidente, variando o número e localização de saídas de emergência e obstáculos;
- diferentes combinações de agentes a evacuar, variando o seu tipo, número e localização.

Deste modo, foi possível observar-se como estas variações se refletem em métricas como o tempo médio e máximo de evacuação ou o número de feridos.

6 Conclusão

Terminado o projeto, destaca-se a importância de ferramentas de simulação de evacuação - perante os desafios que a realização de simulacros coloca - e a aplicabilidade deste projeto a esse fim.

Consideram-se atingidos os objetivos definidos: desenvolver um programa que permita simular a interação de agentes confinados a um espaço concreto e limitado perante a necessidade de evacuar esse espaço.

Tem-se como particularmente útil a possibilidade de acompanhar a evacuação visualmente e a possibilidade de analisar os dados recolhidos, por um lado, através de gráficos e, por outro, através do registo de eventos.

Da análise dos resultados das experiências levadas a cabo

7 Melhorias

Considera-se que uma possível melhoria, seria a introdução de obstáculos dinâmicos no espaço, como os elementos fumo e fogo. Tal poderia ser implementado, por exemplo, usando um agente com a capacidade de se replicar ao longo do tempo para posições adjacentes, simulando a propagação de um incêndio. Agentes na proximidade poderiam sufocar ou queimar-se, vendo a sua mobilidade reduzida ou mesmo morrer.

Outra melhoria que poderia ser introduzida passaria pela criação de um novo tipo de agente, cuja única função seria coordenar a evacuação, ajudando aqueles que precisassem de ajuda a chegar à saída. Estes agentes de segurança poderiam existir em qualquer número e deveriam coordenar-se entre si, por modo a garantir que o espaço era evacuado, i.e., que todas as pessoas (vivas) chegavam à saída.

8 Recursos

8.1 Bibliografia

- [1] Almeida, João; Rosseti, Rosaldo; Coelho, António: Crowd Simulation Modeling Applied to Emergency and Evacuation Simulations using Multi-Agent Systems. 2011.
- [2] FIPA: FIPA Specification. Disponível online em http://www.fipa.org/specs/fipa00037/SC00037J.pdf. Consultado em novembro de 2016.
- [3] Respast: Repast Simphony Documentation. Disponível online em http://repast.sourceforge.net/docs/api/repast_simphony/index.html. Consultado em novembro de 2016.
- [4] SAJaS: SAJaS Documentation. Disponível online em https://web.fe.up.pt/~hlc/doku.php?id=sajas. Consultado em novembro de 2016.

8.2 Software

- [1] Repast Simphony;
- [2] JADE;

- [3] *SAJaS*. [4] *Eclipse*;