

FIT2100 - OPERATING SYSTEMS

WEEK 10 - WORKSHOP 08

A/Prof. Campbell Wilson Dr. Adamu Muhammad Buhari Dr. Charith Jayasekara

Faculty of Information Technology © 2024 Monash University

CONTENT

WORKSHOP TOPICS

- Memory Management
 - o Virtual Memory
 - o Paged Virtual Memory
 - o Segmented Virtual Memory

Week 10 Learning Objectives

Virtual Memory and Inter Process Communication (IPC)

- Analyse and evaluate various strategies used by an operating system in managing the system resources and running applications efficiently.
- Analyse and identify parameters that can improve the performance of multi-programming operating systems.
- Apply synchronisation techniques in the development of applications, using operating system services.

RECAP TIME - VIRTUAL MEMORY

MULTIPLE CHOICE / DISCUSSION QUESTIONS (10 mins)

PollEV Time - Engage and Interact

VIRTUAL MEMORY BASICS

VIRTUAL MEMORY TASK (10 MINS)

You are working with a computer system that has a main memory size of 512 MB and a page size of 2 MB. The total virtual memory size is 1 GB. If the Page Table shows that 40% of the pages are currently loaded in main memory, calculate:

- a) The total number of pages in the system.
- b) The number of pages currently loaded in memory.
- c) The number of pages on the disk (swap space).
- d) If an application tries to access 300 pages and causes a page fault rate of 10%, how many page faults will occur?

RECAP TIME - PAGED VIRTUAL MEMORY

MULTIPLE CHOICE / DISCUSSION QUESTIONS (10 mins)

PollEV Time - Engage and Interact

FIFO (5 MINS)

You are working on a computer system that has 4 page slots in its main memory. You need to determine the page faults using the FIFO algorithm based on the list of page requests.

List of Page Requests:

PAGE	1	2	3	4	5	6	7	8	9	10	11	12
0												
1												
2												
3												
Fault												

SECOND CHANCE (MODIFIED FIFO) (5 MINS)

You are working on a computer system that has 4 page slots in its main memory. You need to determine the page faults using the Modified FIFO algorithm based on the list of page requests.

List of Page Requests:

PAGE	1	2	3	4	5	6	7	8	9	10	11	12
0												
1												
2												
3												
Fault												

LRU (5 MINS)

You are working on a computer system that has 4 page slots in its main memory. You need to determine the page faults using the LRU algorithm based on the list of page requests.

List of Page Requests:

PAGE	1	2	3	4	5	6	7	8	9	10	11	12
0												
1												
2												
3												
Fault												

NFU (5 MINS)

You are working on a computer system that has 4 page slots in its main memory. You need to determine the page faults using the NFU algorithm based on the list of page requests.

List of Page Requests:

PAGE	1	2	3	4	5	6	7	8	9	10	11	12
0												
1												
2												
3												
Fault												

OPTIMAL (5 MINS)

You are working on a computer system that has 4 page slots in its main memory. You need to determine the page faults using the OPTIMAL algorithm based on the list of page requests.

List of Page Requests:

PAGE	1	2	3	4	5	6	7	8	9	10	11	12
0												
1												
2												
3												
Fault												

RECAP TIME - SEGMENTED VIRTUAL MEMORY

MULTIPLE CHOICE / DISCUSSION QUESTIONS (10 mins)

PollEV Time - Engage and Interact

SEGMENT PLACEMENT ALGORITHMS

FIRST FIT, NEXT FIT, BEST FIT (15 MINS)

Assume a system that utilizes segmented virtual memory. Given the following free partitions in memory:

400K, 150K, 200K, 700K, and 400K (in this specific order), determine how each of the algorithms listed below would place processes of 256K, 506K, 128K, and 456K (in this particular order):

- (a) First-fit
- (b) Next-fit
- (c) Best-fit

Which algorithm makes the most efficient use of the memory?

Summary

- Topics covered
 - Memory Management
 - Virtual Memory
 - Paged Virtual Memory
 - Segmented Virtual Memory
- Next week
 - More about IPC and OS security

