UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE INGENIERÍA, CIENCIAS FÍSICAS Y MATEMÁTICAS

TALLER DE MATLAB

TRABAJO FINAL

Santiago Jaramillo

Contenido

DBJETIVO	2
PROBLEMA	
ORMULACIÓN DÉBIL DEL PROBLEMA	2
XISTENCIA Y UNICIDAD DE LA SOLUCIÓN	3
CONDICIONES SOBRE LAS FUNCIONES PARA LA UNICIDAD DE LA SOLUCIÓN	4
CÁLCULO DE LOS ELEMENTOS FINITOS	4
ALGORIMTO EN MATLAB	7
CORRIDA DEL PROGRAMA	8

OBJETIVO

El presente trabajo pretende tiene como objetivo estudiar la solución de ecuaciones en derivadas parciales usando el método de elementos finitos, y para ello primero debemos platear la solución débil del problema justificando la existencia y unicidad de dicha solución, para entonces poder aplicar el método antes nombrado.

Adicionalmente se desea programar la solución de dicho problema generalizando el algoritmo en la medida de lo posible.

PROBLEMA

Sea la ecuación:

$$p'(x)u'(x) + p(x)u''(x) + q(x)u(x) = f(x)$$

Definida sobre el intervalo abierto (a,b) y que satisface las condiciones iniciales:

$$u(a) = 0$$
 $v u'(b) = 3$

Donde p,q y f son funciones dadas y $a,b\in\mathbb{R}$

FORMULACIÓN DÉBIL DEL PROBLEMA

Es importante definir un espacio adecuado para buscar la posible solución al problema planteado. Para ello definimos:

$$A_n = \left\{ f \in C^{\infty}[a, b] : \exists \epsilon > 0, \forall x \in [a, a + \epsilon) \text{ tal que } f(x) = 0 \right\}$$

La clausura de dicho espacio en H^1 se lo llamará S (El espacio de soluciones).

Entonces, sea $v \in S = S$ al multiplicar v por el problema original tenemos

$$\frac{d}{dx}(p(x)u'(x)) + q(x)u(x)v(x) = f(x)v(x) \tag{1}$$

Asumamos que $f \in L^2$ por lo tanto

$$\int_a^b \frac{d}{dx} (p(x)u'(x))v(x)dx + \int_a^b q(x)u(x)v(x)dx = \int_a^b f(x)v(x)dx$$

Ahora integrando por partes tenemos el primer miembro de la ecuación:

$$v(x)p(x)u'(x)|_a^b - \int_a^b p(x)u'(x)v'(x)dx + \int_a^b q(x)u(x)v(x)dx = \int_a^b f(x)v(x)dx$$
 (2)

$$v(b)p(b)u'(b) - v(a)p(a)u'(a)$$

Como
$$v(a) = 0$$
 y $u'(b) = 3$ tenemos:

$$v(b)p(b) * 3 - 0 = 3v(b)p(b)$$

Reordenando nuestra ecuación anterior (2) tenemos:

$$-\int_{a}^{b} p(x)u'(x)v'(x)dx + \int_{a}^{b} q(x)u(x)v(x)dx = \int_{a}^{b} f(x)v(x)dx - 3v(b)p(b)$$
 (3)

Por lo tanto:

Sea $u \in S$ tal que u cumple con la ecuación (3), para todo $v \in S$, entonces u es una solución débil del problema (1)

EXISTENCIA Y UNICIDAD DE LA SOLUCIÓN

Sea:

 $B: SxS \to \mathbb{R}$

$$(u,v) \to B(u,v) = \int_a^b p(x)u'(x)v'(x)dx + \int_a^b q(x)u(x)v(x)dx$$

Sea:

 $L: S \to \mathbb{R}$

$$v \rightarrow L(v) = \int_a^b f(x)v(x)dx - 3v(b)p(b)$$

Se esta manera el problema (3) se puede expresar como:

$$B(u,v) = L(v)$$
 Para todo $v \in S$

Como las aplicaciones B,L son bilineal y lineal respectivamente es necesario que estas cumplan con las condiciones del Teorema de Lax-Milgram para que (3) tenga una solución.

Dichas condiciones son:

L Debe ser acotada

$$\forall v \in S, |L(v)| = \left| \int_a^b f(x)v(x)dx - 3v(b)p(b) \right|$$

$$\leq \int_{a}^{b} |f(x)v(x)dx| - |3v(b)p(b)|$$

$$\leq ||f||_{L^{2}} ||v||_{L^{2}} + |3p(b)|||v||_{\infty}$$

$$\leq ||f||_{L^{2}} ||v||_{H^{1}} + C|p(b)|||v||_{H^{1}}$$

 $\leq K \|v\|_{H^1}$

Entonces tenemos que L es acotada

B Debe ser acotada

$$\forall u, v \in S, \qquad B(u, v) = -\int_{a}^{b} p(x)u'(x)v'(x)dx + \int_{a}^{b} q(x)u(x)v(x)dx \ge \phi(\int_{a}^{b} |v'(x)|^{2} dx + \int_{a}^{b} |v(x)|^{2} dx)$$

$$= \phi \|v\|_{H^1}^2$$

Entonces como la aplicación B es coerciva y S es completo, el Teorema de Lax-Milgram nos dice que existe un único $u \in S$ tal que B(u,v) = L(v) para todo $v \in S$. Por lo tanto existe una única solución para la ecuación (3)

CONDICIONES SOBRE LAS FUNCIONES PARA LA UNICIDAD DE LA SOLUCIÓN

Para que nuestra solución u(x) sea única las funciones f,p,q deben cumplir:

- 1) $p,q \in L^{\infty}$
- 2) $f \in L^2$
- 3) $\exists \phi > 0$ con $x \in (a,b)$ tal que: $-p(x) > \phi$ $q(x) > \phi$

CÁLCULO DE LOS ELEMENTOS FINITOS

Primero consideremos una partición P sobre el intervalo [a,b] definida por:

$$P = \{X_0, X_1, X_2, \dots, X_n\}$$

Donde existen n partes iguales de longitud $h = \frac{(b-a)}{n}$

Ahora consideremos el siguiente conjunto de funciones definidas sobre dicha partición:

Por consiguiente para el problema (3)

$$-\int_{a}^{b} p(x)u'(x)v'(x)dx + \int_{a}^{b} q(x)u(x)v(x)dx = \int_{a}^{b} f(x)v(x)dx - 3v(b)p(b)$$

Debemos encontrar $u \in S_n$ para todo $v \in S_n$ es decir debe cumplir únicamente para todos los elementos de la base. De esta manera tomaremos u como:

$$u = \alpha_1 \rho_1 + \alpha_2 \rho_2 + \ldots + \alpha_n \rho_n$$

$$u = \sum_{i=1}^n \alpha_i \rho_i$$

Entonces nuestro problema se reduce en encontrar $\alpha_1, \alpha_2, \dots, \alpha_n$ tal que

$$-\sum_{i=1}^{n} \int_{a}^{b} p(x) \rho_{i}' \rho_{j}' - q(x) \rho_{i} \rho_{j} dx = \int_{a}^{b} f(x) \rho_{j} dx - 3 \rho_{j}(b) p(b)$$

Sea

$$\rho_{k+1} = \frac{1}{h}X - \frac{1}{h}X_k \quad \rho_{k+1} = \frac{1}{h}$$

$$\rho_k = -\frac{1}{h}X + \frac{1}{h}X_{k+1} \quad \rho_k = -\frac{1}{h}$$

Entonces, para i=j=k

$$-\int_{x_k}^{x_{k+1}} p(x) \rho_k' \rho_k' - q(x) \rho_k \rho_k dx = -\int_{x_k}^{x_{k+1}} \frac{p(x)}{h^2} - q(x) \left(\frac{X_{k+1} - X}{h}\right)^2 dx$$

Aplicando de fórmula del trapecio, $\int_{x_0}^{x_1} g(x) dx \approx \frac{(x_1 - x_0)(g(x_0) + g(x_1))}{2}$

Tenemos
$$-\int_{x_k}^{x_{k+1}} p(x) \rho_k' \rho_k' - q(x) \rho_k \rho_k dx = -\left(\frac{h}{2} \left(\frac{p(X_k)}{h^2} - q(X_k) + \frac{p(X_{k+1})}{h^2}\right)\right)$$

$$= -\frac{p(X_{k+1}) + p(X_k)}{2h} + \frac{q(X_k)}{2}h$$

Se puede comprobar que

$$-\int_{x_k}^{x_{k+1}} p(x) \rho'_{k+1} \rho'_{k+1} - q(x) \rho_{k+1} \rho_{k+1} dx = -\frac{p(X_{k+1}) + p(X_k)}{2h} + \frac{q(X_k)}{2} h$$

De manera similar tenemos que para i = k, j = k + 1 se tiene que

$$-\int_{x_k}^{x_{k+1}} p(x) \rho_k' \rho_{k+1}' - q(x) \rho_k \rho_{k+1} dx = -\int_{x_k}^{x_{k+1}} -\frac{p(x)}{h^2} - q(x) \left(\frac{X_{k+1} - X}{h}\right) \left(\frac{X - X_k}{h}\right) dx$$

Utilizando la fórmula del trapecio tenemos

$$-\int_{x_k}^{x_{k+1}} p(x) \rho_k' \rho_{k+1}' - q(x) \rho_k \rho_{k+1} dx = -\left(\frac{h}{2} \left(-\frac{p(X_k)}{h^2} - \frac{p(X_{k+1})}{h^2}\right) \right) \quad \text{Es decir}$$

$$= \frac{p(X_k) + p(X_{k+1})}{2h}$$

Por otra parte

$$\int_{x_{k}}^{x_{k+1}} f(x) \rho_{k+1} dx = \int_{x_{k}}^{x_{k+1}} f(x) \left(\frac{x - X_{k}}{h} \right) dx$$

Utilizando la fórmula del trapecio tenemos

$$\int_{x_k}^{x_{k+1}} f(x) \rho_{k+1} dx = \frac{(x_{k+1} - x_k) f(x_{k+1})}{2} = \frac{h f(x_{k+1})}{2}$$

De la misma manera

$$\int_{x_k}^{x_{k+1}} f(x) \rho_k dx = \int_{x_k}^{x_{k+1}} f(x) \left(\frac{x_{k+1} - X}{h}\right) dx$$

$$=\frac{hf(x_k)}{2}$$

Para la función ρ_n hay que restarle $3\rho_n(b) \cdot p(b)$ es decir

$$\int_{x_{n-1}}^{x_n} f(x) \rho_n dx - 3\rho_n(b) \cdot p(b) dx = \frac{hf(x_n)}{2} - 3 * p(b)$$

ALGORIMTO EN MATLAB

```
function alfas=Algoritmo(a,b,n)
    %Vamos a parametrizar las funciones p,q y f
    syms x
    r = 3
    f = x^4+9*x^2
    p = x
    q = x
    % calculamos la porción del intervalo
    h=(b-a)/n
    %definimos nuetros Xk, Xk+1
    Xk=a
    Xk1=a+h
    % definimos la matriz y el vector
    A=zeros(n)
    B=zeros(n,1)
    % insertamos los valores iniciales en la matriz A y en el vector B
    A(1,1) = (-1*(subs(p,Xk)+subs(p,Xk1))/(2*h)) + (subs(q,Xk1)*h/2)
    B(1,1) = subs(f,Xk1)*h/2
    for k = 2:n
        %actualizamos el valor de xk
        Xk=Xk+h
        Xk1=Xk1+h
        %hallamos la integral para los elementos de la diagonal principal
        intA1 = (-1*(subs(p, Xk) + subs(p, Xk1)) / (2*h)) + (subs(q, Xk1) *h/2)
        %hallamos la integral para los elementos restantes
        intA2 = (subs(p, Xk) + subs(p, Xk1)) / (2*h)
        %llenamos la matriz de 2 x 2
        A(k-1, k-1) = A(k-1, k-1) + intA1
        A(k-1,k) = intA2
        A(k, k-1) = intA2
        A(k,k) = intA1
        %llenamos el vector
        %en la primera posición colocamos
        B(k-1,1)=B(k-1,1)+subs(f,Xk)*h/2
        %en la segunda posición colocamos
        B(k,1) = subs(f,Xk1)*h/2
    end
    %calculamos el ultimo elemento del vector
    B(n,1) = B(n,1) - (r*subs(p,b))
    %obtenemos los alfas de la combinacion lineal
    % alfa = A^{-1} * B
    alfas=inv(A) *B
    %añadimos un cero a la izquierda del vector por la condición inicial
    %del problema u(a) = 0
    alfas=[0;alfas]
end
```

CORRIDA DEL PROGRAMA

Sea

$$r = 3$$

$$f(x) = x^4 + 9x^2$$

$$p(x) = x$$

$$q(x) = x$$

Entonces nuestra ecuación se escribe de la siguiente manera:

$$-\int_{a}^{b} p(x)u'(x)v'(x)dx + \int_{a}^{b} q(x)u(x)v(x)dx = \int_{a}^{b} f(x)v(x)dx - 3v(b)p(b)$$
$$-\int_{0}^{1} xu'(x)v'(x)dx + \int_{0}^{1} xu(x)v(x)dx = \int_{0}^{1} (x^{4} + 9x^{2})v(x)dx - 3$$

Donde la solución exacta es:

$$u(x) = x^3$$

Después de ejecutar el problema con un n = 6 tenemos:

$$A = \begin{bmatrix} -1.9583 & 1.5 & 0 & 0 & 0 & 0 \\ 1.5 & -3.9306 & 2.5 & 0 & 0 & 0 \\ 0 & 2.5 & -5.9028 & 3.5 & 0 & 0 \\ 0 & 0 & 3.5 & -7.8750 & 4.5 & 0 \\ 0 & 0 & 0 & 4.5 & -9.8472 & 5.5 \\ 0 & 0 & 0 & 0 & 5.5 & -5.4167 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.0418 & 0.1687 & 0.3854 & 0.6996 & 1.1220 & -2.1667 \end{bmatrix}$$

De donde:

$$A\alpha = B$$

Entonces

$$\alpha = A^{-1}B$$

$$\alpha = \begin{bmatrix} 0.1176 & 0.1814 & 0.2821 & 0.4563 & 0.7346 & 1.1459 \end{bmatrix}$$

Luego aumentamos la condición de borde u(a) = 0 y tenemos

$$\alpha = \begin{bmatrix} 0 & 0.1176 & 0.1814 & 0.2821 & 0.4563 & 0.7346 & 1.1459 \end{bmatrix}$$

Entonces nuestros puntos a graficar son:

$$X$$
 α

$$0.3333 \ 0.1814$$

$$0.6667 \quad 0.4563$$

$$0.8333 \ 0.7346$$

La solución teórica $u(x) = x^3$ gráficamente se ve como:

Finalmente podemos comparar nuestras dos soluciones

Ahora si aumentamos el número de elementos finitos $\ n=20$ nuestra solución mejora notablemente

