				ŀ	Cod ι	ıczni	а			
			-			-				
	Dz	ień		Mie	siąc			R	ok	
pieczątka WKK		DATA URODZENIA UCZNIA								

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM

ETAP Wojewódzki

Drogi Uczniu

Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

- Arkusz liczy 12 stron i zawiera 22 zadania oraz brudnopis.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny.
 Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania <u>czytaj uważnie</u> i ze zrozumieniem.
- Odpowiedzi wpisuj czarnym lub niebieskim długopisem bądź piórem.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- W zadaniach od 1 do 12 prawidłową odpowiedź zaznacz stawiając znak X na literze poprzedzającej treść wybranej odpowiedzi.
 Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.
- W zadaniach od 13 do 18 oceń każdą wypowiedź jako prawdziwą lub fałszywą stawiając znak X w odpowiedniej kolumnie w tabeli.
- W zadaniach otwartych (zadania od 19 do 22) <u>przedstaw kompletny</u> <u>tok rozumowania</u> prowadzący do rozwiązania.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Obok każdego numeru zadania podaną masz maksymalną liczbę punktów możliwą do uzyskania za jego rozwiązanie.
- Pracuj samodzielnie. Postaraj się prawidłowo odpowiedzieć na wszystkie pytania.
- Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną.
- Nie używaj kalkulatora.

Czas pracy:

90 minut

Liczba punktów możliwych do uzyskania:

50

Powodzenia!

Zadanie 1. (0-1 pkt)

W turnieju szachowym, rozgrywanym systemem każdy z każdym rozgrywa jeden mecz, bierze udział 50 zawodników. Jeśli liczba zawodników zwiększy się o 100%, to liczba meczy do rozegrania zwiększy się o:

A. dokładnie 100%

B. dokładnie 200%

C. dokładnie 300%

D. ponad 300%

Zadanie 2. (0-1 pkt)

Z okazji urodzin przypadających 1 marca, Kasia dostała pudełko cukierków i natychmiast zjadła połowę z nich. Następnego dnia zjadła połowę pozostałych cukierków i podobnie postępowała każdego kolejnego dnia. 4 marca wieczorem w pudełku były jeszcze 64 cukierki. Jeśli po 4 marca Kasia będzie zjadać cukierki jak do tej pory, to w pudełku zostanie tylko 1 cukierek:

A . wieczorem 12 marca

B. wieczorem 11 marca

C. wieczorem 10 marca

D. wieczorem 9 marca

Zadanie 3. (0-1 pkt)

Dany jest okrąg o średnicy AB i punkt C, leżący na okręgu w dowolnym miejscu i poruszający się po nim. Największa wartość wyrażenia: 2·|CA|·|CB| wynosi:

A. $|AB|^2$ B. $0.75 \cdot |AB|^2$

C. 0,5 · | AB|²

D. 1,5·|AB|

Zadanie 4. (0-1 pkt)

Pewna liczba rzeczywista a spełnia nierówność: $a^{100} > a^{101}$. Możemy zatem stwierdzić, że:

A. a ≤ 1

B. $a \ge 0$

C. a = 0

D. a < 1

Zadanie 5. (0-1 pkt)

Obwód trójkąta prostokątnego wynosi 12 cm a wysokość prostopadła do przeciwprostokątnej wynosi 2,4 cm Najdłuższy bok trójkąta ma długość:

A. 4

B. 5

C. 5,25

D. 5,5

Zadanie 6. (0-1 pkt)

Babcia Ania zrobiła 38 I soku z czarnej porzeczki. Ile butelek półlitrowych musi przygotować, jeśli ilość soku w butelce nie może przekraczać 0,9 jej objętości i liczba butelek jest najmniejsza z możliwych?

A. 76

B. 84

C. 85

D. 88

Zadanie 7. (0-1 pkt)

Ostatnią cyfrą liczby 1772 1109 jest:

A. 0

B. 2

C. 4

D. 8

Zadanie 8. (0-1 pkt)

Radek dostał od lekarza polecenie przyjęcia 10 tabletek po jednej co cztery i pół godziny. Ile godzin zajmie mu zjedzenie połowy tabletek od momentu zażycia pierwszej tabletki?

A. 18

B. 22,5

C. 40,5

D. 45

Zadanie 9. (0-1 pkt)

Wyjazd wyciągiem krzesełkowym na górę trwa 30 minut. Krzesełka startują co minutę. Ile krzesełek zjeżdżających z góry miniemy jadąc w górę, jeśli pierwsze krzesełko mijamy przy wsiadaniu, a ostatnie przy wysiadaniu?

A. 30

B. 31

C. 60

D. 61

Zadanie 10. (0-1 pkt)

Sześcian pomalowano niebieską farbą, a następnie rozcięto go na 27 jednakowych sześcianików. Wówczas możemy stwierdzić, że:

- A. liczba sześcianików z pomalowanymi trzema ścianami jest mniejsza od liczby sześcianików z pomalowaną jedną ścianą
- B. liczba sześcianików z pomalowanymi 2 ścianami jest podzielna przez 6
- C. wszystkie sześciany mają pomalowaną co najmniej jedną ścianę
- D. sześcianików z pomalowaną 1 ścianą jest najmniej

Zadanie 11. (0-1 pkt)

W pewnym mieście na uroczystości z okazji Złotych Godów spotkały się pary małżeńskie. W czasie wzajemnych powitań wymieniono 264 uściski dłoni. Małżonkowie nie witali się ze sobą. Ile par małżeńskich obchodziło jubileusz?

A. 12

B. 13

C. 15

D. 24

Zadanie 12. (0-1 pkt)

Firma produkująca słupki metalowe otrzymała zamówienie na wykonanie 180 słupków o długości 1,45m, 120 słupków długości 1,2m oraz na wykonanie 120 słupków długości 1,8m. Ile rur stalowych powinien zamówić zaopatrzeniowiec firmy na wykonanie tych zleceń jeżeli w hucie dostępne są tylko rury o długości 6 m?

Uwaga: produkcja polega na cięciu słupków z gotowych rur, bez straty materiału przy przecinaniu, zabezpieczeniu ich przed korozją i dwukrotnym naniesieniu warstwy lakierniczej.

A. 102

B. 103

C. 104

D. 105

W zadaniach od 13 do 18 oceń każdą wypowiedź jako prawdziwą lub fałszywą stawiając znak **X** w odpowiedniej kolumnie tabeli.

Zadanie 13. (0-3 pkt)

Nierówność $|x - \pi| \ge |\pi - x|$ jest spełniona przez:

		PRAWDA	FAŁSZ
A.	dokładnie jedną liczbę rzeczywistą x		
B.	nieskończenie wiele liczb rzeczywistych x		
C.	każdą liczbę rzeczywistą x		

Zadanie 14. (0-3 pkt)

Jeżeli dwa trójkąty mają kąty odpowiednio równe oraz jeden bok pierwszego trójkąta jest równy pewnemu bokowi drugiego trójkąta, to te trójkąty mogą być:

		PRAWDA	FAŁSZ
A.	przystające		
B.	podobne		
C.	równoboczne		

Zadanie 15. (0-3 pkt)

Jeżeli liczby nieujemne a, b, c spełniają warunek: abc=1, to:

		PRAWDA	FAŁSZ
A.	co najmniej jedna z tych liczb jest wymierna		
B.	a + b + c ≥ 3		
C.	$(ab)^{-1} + (ac)^{-1} + (bc)^{-1} \ge 3$		

Zadanie 16. (0-3 pkt)

Przekątna AC dzieli trapez ABCD na dwa trójkąty równoramienne. Wynika z tego, że:

		PRAWDA	FAŁSZ
A.	prosta AC jest dwusieczną jednego z kątów		
	tego trapezu		
В.	trapez może być równoramienny		
C.	trapez jest równoramienny		

Zadanie 17. (0-3 pkt)

Osiem kół o promieniu π cm każde, leży na płaszczyźnie tak, że dowolne dwa mają co najwyżej jeden punkt wspólny ze sobą. Wówczas wśród tych kół:

		PRAWDA	FAŁSZ
A.	istnieją dwa koła rozłączne		
В.	każde koło ma punkty wspólne z co najwyżej sześcioma innymi kołami		
C.	istnieje koło rozłączne z sześcioma innymi kołami		

Zadanie 18. (0-3 pkt)

Aby dwa prostopadłościany były przystające, wystarczy by:

		PRAWDA	FAŁSZ
A.	miały równe objętości		
B.	miały równe pola powierzchni całkowitej		
C.	miały równe sumy długości wszystkich krawędzi		

Zadanie 19 (0-4 pkt)

Wiesz, że liczba a^5 – a jest podzielna bez reszty przez 10. Wykaż, że liczba: $2a^5$ + 18a – 10 jest również podzielna bez reszty przez 10. *Uwaga: a – to dowolna liczba całkowita.*

Zadanie 20 (0-5 pkt)

Bartek, Maciek i Tomek złożyli się na kupno roweru, przy czym wkład każdego z nich nie przekraczał średniej arytmetycznej wkładów dwóch pozostałych. Ile pieniędzy dał Bartek, jeśli rower ten kosztował 330zł?

Zadanie 21(0-5 pkt)

Sprawdź, czy istnieją liczby całkowite różne od zera a, b, c, d takie, że: $24^a \cdot 25^b \cdot 27^c \cdot 30^d = 1$.

Zadanie 22 (0-6 pt.)

Przedstaw wyrażenie: $2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}$ w postaci sumy dwóch liczb niewymiernych.

