

REC'D .1 9 AUG 2004

W. -- 3

PCT

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月25日

出 願 番 号 Application Number:

特願2003-180712

[ST. 10/C]:

[JP2003-180712]

出 願 人 Applicant(s):

サンアプロ株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 8月 5日

特許庁長官 Commissioner, Japan Patent Office)· [1]

【書類名】 特許願

【整理番号】 SA102

【提出日】 平成15年 6月25日

【あて先】 特許庁長官殿

【国際特許分類】 C07C381/12

【発明者】

【住所又は居所】 京都府京都市東山区一橋野本町11番地 サンアプロ株

式会社内

【氏名】 伊達 雅志

【発明者】

【住所又は居所】 京都府京都市東山区一橋野本町11番地 サンアプロ株

式会社内

【氏名】 木村 秀基

【発明者】

【住所又は居所】 京都府京都市東山区一橋野本町11番地 サンアプロ株

式会社内

【氏名】 山下 進二

【発明者】

【住所又は居所】 京都府京都市東山区一橋野本町11番地 サンアプロ株

式会社内

【氏名】 山元 二郎

【特許出願人】

【識別番号】 000106139

【氏名又は名称】 サンアプロ株式会社

【代理人】

【識別番号】 100093735

【弁理士】

【氏名又は名称】 荒井 鐘司

【電話番号】 03-3270-0858

【選任した代理人】

【識別番号】 100105429

【弁理士】

【氏名又は名称】 河野 尚孝

【電話番号】 03-3270-0858

【選任した代理人】

【識別番号】 100108143

【弁理士】

【氏名又は名称】 嶋崎 英一郎

【電話番号】 03-3270-0858

【手数料の表示】

【予納台帳番号】 172293

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 モノスルホニウム塩の製造方法、カチオン重合開始剤、硬化性 組成物および硬化物

【特許請求の範囲】

【請求項1】 アリール化合物(a)、スルホキシド化合物(b)、脱水剤(c)、およびアルカリ金属またはアルカリ土類金属のBF $_4$ 、PF $_6$ 、AsF $_6$ またはSbF $_6$ 塩(d)を反応系内に仕込んだ後に、無機酸(e)を仕込んで、アリール化合物(a)とスルホキシド化合物(b)を脱水縮合させることを特徴とする、一般式(1)で示されるモノスルホニウム塩の製造方法。

【化1】

$$A r - S^{+} - R^{+} X^{-}$$
 (1)

(式中、Arは置換されていてもよいアリール基を表す。 R^1 、 R^2 は置換されていてもよい炭化水素基または複素環基を表し、互いに同一であっても異なっていてもよい。X-は BF_4 -、 PF_6 -、 AsF_6 -または SbF_6 -を表す。)

【請求項2】 無機酸(e)が硫酸である請求項1記載の製造方法。

【請求項3】 アリール化合物 (a) とスルホキシド化合物 (b) の脱水縮合によって得られた反応液に、沸点100℃以下の有機溶剤 (f) および沸点150 ℃以上の有機溶剤 (g) を添加し、該反応液に添加した有機溶剤 (f) を留去する請求項1または2記載の製造方法。

【請求項4】 請求項1~3の何れか記載の製造方法で得られるモノスルホニウム塩からなることを特徴とするカチオン重合開始剤。

【請求項5】 請求項4記載のカチオン重合開始剤とカチオン重合性化合物とからなることを特徴とする硬化性組成物。

【請求項6】 請求項5記載の硬化性組成物を硬化してなる硬化物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

[0002]

【従来の技術】

従来、光カチオン重合開始能が高い重合開始剤として、トリアリールスルホニウムのBF4、PF6、AsF6およびSbF6塩が知られ、賞用されている。

しかし、従来提案されているスルホニウム塩の製造方法、例えば、硫酸などの無機酸やメタンスルホン酸などの強有機酸の存在下、スルフィドとスルホキシドとを縮合させた後、アルカリ金属のBF $_4$ 、PF $_6$ 、AsF $_6$ あるいはSbF $_6$ 塩などの水溶液中で複分解させる方法(例えば、特許文献 $_1$ 、2参照)では、 $_1$ 分子中に $_1$ 個のスルホニオ基を有するモノスルホニウム塩以外に、 $_1$ 分子中に $_2$ 個のスルホニオ基を有するビススルホニウム塩が生成する。

一般に、モノスルホニウム塩に比べてビススルホニウム塩は、光重合開始能は 高いものの、カチオン重合性モノマーや必要に応じて使用される希釈溶剤に対す る溶解度が低いため、これらに必要濃度のスルホニウム塩を添加し溶解した後、 そのスルホニウム塩溶液からビススルホニウム塩が、経日的に析出、沈降すると いう問題が発生することがある。

また、ビススルホニウム塩を含むカチオン重合性組成物は、経日的に増粘し易く、長期間保存できないという問題もある。

かかる問題点は、有機溶剤からの再結晶等の手段により、モノスルホニウム塩 とビススルホニウム塩の混在するスルホニウム塩から、ビススルホニウム塩を除 去して精製することで解決できるが、かかる精製を行うと、所望のモノスルホニ ウム塩の収率が大きく低下するという問題がある。

[0003]

そこで、従来のスルホニウム塩の製造方法に伴うビススルホニウム塩の生成の 問題を解決するため、本発明者らは、先に、モノスルホニウム塩が主成分として 得られる製造方法、すなわち、スルフィドとスルホキシドを、HBF₄、HPF₄

[0004]

この出願の発明に関連する先行技術文献情報としては、次のものがある。

【特許文献1】

特開昭61-100557号公報

【特許文献2】

特開昭61-212554号公報

【特許文献3】

特開2002-241363号公報

[0005]

【発明が解決しようとする課題】

しかしながら、本発明者らが提案した上記方法では、反応液を処理して得られる固状または油状の生成物(以下、生成物と記す)は、ほとんどがモノスルホニウム塩であり、ビススルホニウム塩は、あっても極少量であるが、モノスルホニウム塩の純度は96%以下で、未反応原料が不純物として4%程度以上残存する。

この方法によって得られる生成物は、そのままでも光カチオン重合塗料の重合開始剤などとして十分使用できるものであるが、意外にも、該生成物を含む光重合組成物を紫外線等で硬化するとき、該生成物中の未反応原料によって硬化速度が阻害され、その結果、該光重合組成物の硬化物の硬度が不十分になるという問題が発生すること、さらに、この問題は、未反応原料の残存量が4%以下であれば起こらないことがわかった。

一方、未反応原料を含む生成物は、エタノール等の溶剤を用いた洗浄、再結晶により精製することができるが、このような精製を行うことにより、スルホニウム塩の収率が数%から10%程度低下するという問題がある。

[0006]

本発明は、洗浄、再結晶による精製を行うことなく、高純度のモノスルホニウ

ム塩、すなわち、未反応原料の残存量が4%以下の生成物を高収率で得ることができ、さらに、高沸点溶剤のモノスルホニウム塩溶液として得ることもできる、効率的なモノスルホニウム塩の製造方法、カチオン重合開始剤、硬化性組成物および硬化物の提供を目的とする。

[0007]

【課題を解決するための手段】

本発明のモノスルホニウム塩の製造方法は、アリール化合物(a)、スルホキシド化合物(b)、脱水剤(c)、およびアルカリ金属またはアルカリ土類金属の BF_4 、 PF_6 、 AsF_6 または SbF_6 塩(d)を反応系内に仕込んだ後に、無機酸(e)を仕込んで、アリール化合物(a)とスルホキシド化合物(b)を脱水縮合させることを特徴とする、一般式(1)で示されるモノスルホニウム塩の製造方法である。

【化2】

$$A r - S^{+} - R^{+} X^{-}$$
 (1)

(式中、Ar は置換されていてもよいアリール基を表す。 R^1 、 R^2 は置換されていてもよい炭化水素基または複素環基を表し、互いに同一であっても異なっていてもよい。X-はBF $_4$ -、PF $_6$ -、As F_6 -またはSb F_6 -を表す。)

[0008]

より具体的には、本発明のモノスルホニウム塩の製造方法は、必要により溶媒中で、アリール化合物(a)、スルホキシド化合物(b)、脱水剤(c)、アルカリ金属またはアルカリ土類金属のBF4、PF6、AsF6またはSbF6塩(d)を反応系内に仕込んだ後に、無機酸(e)を仕込んで、アルカリ金属またはアルカリ土類金属のBF4、PF6、AsF6またはSbF6塩(d)と、硫酸のような無機酸(e)との反応により、強酸(h)、すなわち、HBF4、HPF6、HAsF6またはHSbF6を発生させ、この強酸(h)および脱水剤(c)の存在下、アリール化合物(a)とスルホキシド化合物(b)を高反応率で脱水縮合させて、所望のモノスルホニウム塩を高純度、高収率で得る製造方法である。

[00.09]

【発明の実施の形態】

本発明の製造方法において、反応系内に仕込むアリール化合物 (a) は、一般式(1)で表されるスルホニウム塩中の、置換されていてもよいアリール基 (Ar)を導入する作用を果たす。

このアリール化合物(a)としては、単環式または縮合多環式の無置換のアリ ール化合物、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、 ナフタセン、ピレン; アルキル基で置換されたアリール化合物、例えば、トルエ ン、クメン、tertーブチルベンゼン、キシレン、エチルベンゼン、ドデシルベン ゼン、1-メチルナフタレン、1H-インデン;アリール基で置換されたアリー ル化合物、例えば、ビフェニル、ビフェニレン、1.2'ービナフチル、2-フ エニルナフタレン;ニトロ基、ニトリル基、ヒドロキシ基、ハロゲン等で置換さ れたアリール化合物、例えば、ニトロベンゼン、ベンゾニトリル、フェノール、 クロロベンゼン、フルオロベンゼン;置換されていてもよいアルコキシ基で置換 されたアリール化合物、例えば、アニソール、エトキシベンゼン、1-メトキシ ナフタレン、ベンジルフェニルエーテル、ベンゾフラン;置換されていてもよい アリールオキシ基で置換されたアリール化合物、例えば、ジフェニルエーテル、 2-エトキシナフタレン、4-フェノキシフェノール、キサンテン;アルキルス ルホニル基で置換されたアリール化合物、例えば、メチルフェニルスルホン;ア リールスルホニル基で置換されたアリール化合物、例えば、ジフェニルスルホン ;置換されていてもよいアシル基で置換されたアリール化合物、例えば、アセト フェノン、アセチルアセトフェノン、2-フェニルアセトフェノン;置換されて いてもよいアロイル基で置換されたアリール化合物、例えば、ベンゾフェノン、 4ーメチルベンゾフェノン、キサントン;置換されていてもよいアルキルチオ基 で置換されたアリール化合物、例えば、チオアニソール、エチルチオベンゼン、 ベンゾチオフェン、ベンジルフェニルスルフィド、フェナシルフェニルスルフィ ド;置換されていてもよいアリールチオ基で置換されたアリール化合物、例えば 、ジフェニルスルフィド、ジベンゾチオフェン、(2-メチルフェニル)フェニ ルスルフィド、(4-メチルフェニル)フェニルスルフィド、2,2'ージトリ

[0010]

これらのアリール化合物(a)のうち好ましいものは、単環式または縮合多環式の無置換のアリール化合物、ヒドロキシ基、ハロゲン原子で置換されたアリール化合物、いずれも置換されていてもよいアルキル基、アリール基、アルキルオキシ基、アリールオキシ基、アウル基、アロイル基、アルキルチオ基、アリールチオ基で置換されたアリール化合物、より好ましくは、無置換のアリール化合物、ヒドロキシル基、ハロゲン原子で置換されたアリール化合物、置換されていてもよいアルキル基、アルキルオキシ基、アロイル基、アリールチオ基により置換されたアリール化合物である。

特に、ベンゼン、フェノール、クロロベンゼン、フルオロベンゼン、トルエン、tertープチルベンゼン、アニソール、ベンプフェノン、4ーメチルベンプフェノン、ジフェニルスルフィド、(4ークロロフェニル)フェニルスルフィド、2ーフェニルチオナフタレン、9ーフェニルチオアントラセン、(4ーフェニルチオフェニル)フェニルスルフィド、4,4'ージフェニルチオビフェニル、(4ーベンブイルフェニル)フェニルスルフィド、(2ークロロー4ーベンブイルフェニル)フェニルスルフィド、4,4'ージフェニルチオベンブフェノン、チオキサントン、2ーイソプロピルチオキサントンが好ましい。これらのアリール化

合物 (a) は、単独で使用してもよく、また2種以上を併用してもよい。

[0011]

本発明の製造方法において、反応系内に仕込むスルホキシド化合物(b)は、一般式(2)で示され、前述のアリール化合物(a)と脱水縮合して、一般式(1)中のスルホニオ基を形成する。

【化3】

$$R' - S = O \tag{2}$$

 R^1 、 R^2 は置換されていてもよい炭化水素基または複素環基を表し、互いに同一であっても異なっていてもよい。 R^1 、 R^2 としては、例えば、メチル基、エチル基、ブチル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基、アントリル基等のアリール基;ピリジル基、フルフリル基等の芳香族複素環基等が挙げられる。さらに、 R^1 、 R^2 は互いに結合して、テトラメチレン基のような環を形成していてもよい

[0012]

R¹、R²は置換基で置換されていてもよく、該置換基の例としては、メチル基、エチル基等のアルキル基;フェニル基、ナフチル基、アントリル基等のアリール基;メトキシ基等のアルキルオキシ基;フェノキシ基等のアリールオキシ基;メチルチオ基等のアルキルチオ基;フェニルチオ基等のアリールチオ基;アセチル基等のアシル基;ベンゾイル基等のアロイル基;アセトキシ基等のアシロキシ基;ベンゾイロキシ基等のアロイロキシ基;さらには、ニトリル基、ニトロ基、ヒドロキシ基、およびハロゲン原子等が挙げられる。

[0013]

スルホキシド化合物(b)の具体例としては、ジメチルスルホキシド、メチルエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルホキシド、ジベンゾチオフェンーSーオキシド、(4ーメチルフェニル)フェニルスルホキシド、4.4'ージメトキシジフシド、4.4'ージメチルジフェニルスルホキシド、4.4'ージメトキシジフ

エニルスルホキシド、4ーメチルチオジフェニルスルホキシド、(4ーフェニル チオフェニル)フェニルスルホキシド、4,4'ージヒドロキシジフェニルスル ホキシド、4,4'ージフルオロジフェニルスルホキシド、4,4'ージクロロ ジフェニルスルホキシド等が挙げられる。これらのスルホキシド化合物(b)は 、単独で使用してもよく、また2種以上を併用してもよい。

前記スルホキシド化合物(b)のうち好ましいものは、置換されていてもよいジアリールスルホキシド化合物、特に、ジフェニルスルホキシド、4,4'ージメチルジフェニルスルホキシド、4,4'ージメトキシジフェニルスルホキシド、4,4'ージフルオロジフェニルスルホキシド、4,4'ージフロロジフェニルスルホキシドである。

スルホキシド化合物(b)は、市販のものや別途合成したものを使用してもよく、また、必要により、反応系内で該当するスルフィド化合物と過酸化水素等の過酸化物との反応により発生させることもできる。

[0014]

本発明の製造方法において、反応系内に仕込むアリール化合物 (a) とスルホキシド化合物 (b) のモル比は、通常、1: (0.8~1.2)、好ましくは、1: (0.9~1.1)である。1モルのアリール化合物 (a) に対して、スルホキシド化合物 (b) が0.8モル未満では、生成物中に未反応のアリール化合物 (a) が4%以上残存し、また、1.2モルを超えると、未反応のスルホキシド化合物 (b) が4%以上残存することになり、いずれも硬化性不良の原因となる。

[0015]

本発明の製造方法は、アリール化合物 (a) とスルホキシド化合物 (b) とを脱水縮合させるものであるため、反応系内に過剰の水分があると反応が遅くなり、モノスルホニウム塩の収率が低下する。このため、反応系内から水分を除去する目的で、脱水剤 (c) を使用する。

脱水剤(c)としては、五酸化リン等の無機酸化物、ポリリン酸等の無機酸、 無水酢酸、無水プロピオン酸、無水フタル酸等の有機酸無水物などが挙げられる 。これらの脱水剤(c)は、単独で使用してもよく、また2種以上を併用しても

よい。これらのうち好ましいものは、無水酢酸等の有機酸無水物、特に、無水酢酸である。

脱水剤(c)は、スルホニウム塩を高収率で得るために重要であり、その使用量は、(a)と(b)の反応時における反応系内の水分が、反応系全体の重量に対して3%以下、好ましくは1%以下になるように、理論量もしくは、それよりも少し過剰に使用する。例えば、無水酢酸を脱水剤として使用する場合、その使用量は、反応系内の水分1モルに対し、通常、1.0~3.0モル、好ましくは1.0~1.5モルの範囲である。ここで反応系内の水分とは、使用する無機酸(e)および溶媒中の水のほか、アリール化合物(a)とスルホキシド化合物(b)の脱水縮合により生成する水の合計量をいう。

[0016]

本発明の製造方法において、アルカリ金属またはアルカリ土類金属のBF $_4$ 、PF $_6$ 、AsF $_6$ またはSbF $_6$ 塩(d)は、無機酸(e)と反応して、強酸(h)を発生する。アルカリ金属またはアルカリ土類金属のBF $_4$ 、PF $_6$ 、AsF $_6$ またはSbF $_6$ 塩(d)としては、容易に入手できる市販品を使用するのが好ましい。具体的には、Na、KまたはBaのBF $_4$ 、PF $_6$ 、AsF $_6$ またはSbF $_6$ 塩である。

無機酸(e)としては、硫酸、リン酸、塩酸等が挙げられる。なお、無機酸(e)の替わりに、メタンスルホン酸のような強有機酸を使ってもよいが、コストが高くなるため好ましくない。

無機酸(e)の濃度は、高濃度であることが好ましく、通常、50%以上、好ましくは80%以上、特に好ましくは95%以上である。具体的には、濃度98%以上の濃硫酸、リン酸、塩化水素ガスが好ましい。これらのうち、濃硫酸が取り扱い易く、特に好ましい。

本発明の製造方法において、反応系内に仕込むスルホキシド化合物(b)とアルカリ金属またはアルカリ土類金属のBF4、PF6、AsF6またはSbF6塩(d)のモル比は、通常、 $1:(0.9\sim2.0)$ 、好ましくは、 $1:(1.0\sim1.5)$ である。1モルのスルホキシド化合物(b)に対してアルカリ金属またはアルカリ土類金属の塩(d)が0.9モル未満では、目的のモノスルホニウム

[0017]

アルカリ金属またはアルカリ土類金属のBF4、PF6、AsF6またはSbF6塩(d)と無機酸(e)の使用量は、通常、理論量でよいが、無機酸(e)の量を理論量の $0.5\sim4$ 倍の範囲で変化させても良好な結果が得られる。例えば、NaPF6と硫酸との反応の場合の理論量は、1 モルのNaPF6に対して、硫酸1 モルであるが、硫酸量を $0.5\sim4.0$ モルの範囲で変化させてもよい。硫酸量が0.5 モル未満の場合、必要量のHPF6が発生しない場合があり、硫酸量が4.0 モルを超える場合は、アリール化合物(a)あるいはスルホキシド化合物(b)のスルホン化が起こり、また廃酸量が増えるため好ましくない。

[0018]

本発明の製造方法は、必要により、溶媒の存在下で行ってもよい。その場合に 用いる溶媒としては、例えば、ジエチルエーテル等のエーテル類、ジクロロメタン等の塩素系有機溶剤、メタノール、エタノール等のアルコール類、アセトン等のケトン類、酢酸等の有機酸、無水酢酸、無水プロピオン酸等の有機酸無水物、アセトニトリル等の極性有機溶剤などが挙げられる。これらの溶媒は、単独で使用してもよく、また2種以上を併用してもよい。

上記溶媒のうち好ましいものは、ジエチルエーテル等のエーテル類、ジクロロメタン等の塩素系有機溶剤、酢酸等の有機酸、および無水酢酸、無水プロピオン酸等の有機酸無水物、アセトニトリル等の極性有機溶剤、特に、ジエチルエーテル、ジクロロメタン、酢酸、無水酢酸、アセトニトリルである。

上記溶媒は、無機酸(e)の投入前に他の原料と一緒に仕込んでよく、また、無機酸(e)の投入と同時に、あるいは無機酸(e)の投入後に仕込んでもよい。

上記溶媒の使用量は、アリール化合物(a)、スルホキシド化合物(b)、脱水剤(c)、アルカリ金属またはアルカリ土類金属のBF $_4$ 、PF $_6$ 、AsF $_6$ またはSbF $_6$ 塩(d)、無機酸(e)、および該溶媒の合計質量に対して、通常、 $_0$ ~80%、好ましくは $_2$ 0~60%である。

[0019]

本発明の製造方法では、モノスルホニウム塩を高純度で得るために、各原料の 仕込み順序が重要である。従来の技術で述べたように、モノスルホニウム塩を比 較的多く製造できる従来の方法(特許文献3参照)、すなわち、例えば、脱水剤 、溶媒を仕込み、スルホキシド化合物、アルカリ金属またはアルカリ土類金属の BF4、PF6、AsF6またはSbF6塩を均一混合した後、無機酸を投入して強 酸を発生させ、次いでアリール化合物を滴下して反応させる方法では、得られる 生成物中のモノスルホニウム塩の含有量は96%以下で、光カチオン重合を阻害 し得る量の未反応原料が残る。

これに対して、本発明の製造方法では、アリール化合物(a)、スルホキシド化合物(b)、脱水剤(c)とアルカリ金属またはアルカリ土類金属のBF $_4$ 、PF $_6$ 、AsF $_6$ またはSbF $_6$ 塩(d)を反応系内に仕込んだ後に、無機酸(e)、好ましくは濃硫酸を滴下して、アリール化合物(a)とスルホキシド化合物(b)を脱水縮合させる。

この製造方法では、当初の反応系内にアリール化合物 (a) やスルホキシド化合物 (b) の副反応、例えば、スルホン化を誘発し得る無機酸 (e)、例えば、硫酸が存在せず、また、滴下された無機酸 (e) は直ちに強酸 (h) 発生に消費され、さらに、この強酸 (h) が、直ちにアリール化合物 (a) とスルホキシド化合物 (b) との脱水縮合に供せられる。これらの結果、アリール化合物 (a) とスルホキシド化合物 (b) の副反応が抑制され、モノスルホニウム塩を高純度、高収率で得ることができる。

本発明の製造方法によれば、得られる生成物中のモノスルホニウム塩の含有量は、通常、96%以上、多くの場合97%以上であり、未反応原料、すなわち、アリール化合物(a)および/またはスルホキシド化合物(b)の残存量は、通常、4.0%以下、多くの場合3.0%以下である。この未反応のアリール化合物(a)および/またはスルホキシド化合物(b)の残存量が4.0%より多くなると、前記したように、得られた最終物をカチオン重合性モノマーに配合して硬化性組成物として使用する場合に光硬化性が低下し、また、十分な硬さをもった硬化物が得られないという問題が発生する。

なお、子細に見ると、本発明の製造方法において、極少量のビススルホニウム

塩が生成することがあるが、その量は1%を超えることはない。

[0020]

本発明の製造方法において、アリール化合物 (a) とスルホキシド化合物 (b) を脱水縮合させる際の反応温度は、通常、-30~120℃、好ましくは0~100℃、特に20~80℃である。

また、その反応時間は、反応温度、反応濃度、攪拌の程度によるが、通常、無機酸(e)の投入後、0.5~24時間、好ましくは、1~10時間である。

[0021]

本発明の製造方法では、脱水剤(c)や溶媒として使用した有機酸無水物、酢酸、ジエチルエーテル等の溶媒は、必要により、アリール化合物(a)とスルホキシド化合物(b)の脱水縮合後、常圧または減圧下で留去することにより容易に回収することができる。

脱水剤(c)および溶媒を回収する際の温度は、通常、 $40\sim120$ ℃、好ましくは $50\sim80$ ℃である。温度が120℃を超えると、目的のスルホニウム塩が分解する恐れがあり、40℃より低いと、脱水剤(c)や溶媒の回収率が低下する恐れがある。回収した脱水剤や溶媒は再使用することができる。

(0022)

本発明の製造方法において、アリール化合物(a)とスルホキシド化合物(b)を脱水縮合させた反応液から、目的のスルホニウム塩を回収する方法は、得られたスルホニウム塩の性質により異なるが、例えば、まず反応液に水を投入するか、あるいは反応液を水に投入して、モノスルホニウム塩を固状または油状物として分離させ、次いでジクロロメタン、メチルエチルケトン、酢酸エチル等の沸点100℃以下の有機溶剤(f)を用いて、モノスルホニウム塩を溶解させる。この場合、水と沸点100℃以下の有機溶剤(f)を同時に反応液に投入してもよい。その後、モノスルホニウム塩を溶解させた有機層を水洗、および必要により苛性ソーダ水溶液等で中和した後、沸点100℃以下の有機溶剤(f)を留去すること等により、モノスルホニウム塩の含有量が96%以上、未反応のアリール化合物(a)および/またはスルホキシド化合物(b)が4.0%以下の生成物を得ることができる。

[0023]

また、目的のモノスルホニウム塩を溶液として得たい場合は、上記のように、 反応液に水を投入するか、あるいは反応液を水に投入することにより分離する固 状または油状の生成物に、沸点100℃以下の有機溶剤(f)を加えて溶解させ 、得られた有機層を必要により苛性ソーダ水溶液で中和し、水洗を行った後、無 水ぼう硝または塩化カルシウムなどで乾燥してもよい。しかし、かかる低沸点溶 剤の溶液は、例えば、これを使用したカチオン重合性硬化組成物としたものを金 属板等にコーティングして光硬化させた時、硬化塗膜から溶剤臭気が発生すると いう問題を引き起こす。

このため、モノスルホニウム塩を溶液として得るための溶剤としては、通常、 沸点150 \mathbb{C} 以上の有機溶剤(g)、例えば、プロピレンカーボネート、カルビ トール、カルビトールアセテート、 γ - ブチロラクトンなどが好ましい。これら のうち、プロピレンカーボネートおよび γ - ブチロラクトンが、カチオン重合性 を有するため、特に好ましい。

目的のモノスルホニウム塩を沸点150℃以上の有機溶剤(g)の溶液として得る方法としては、例えば、アリール化合物(a)とスルホキシド化合物(b)を脱水縮合させた反応液に、水と、次いであるいは同時に、沸点100℃以下の有機溶剤(f)を仕込み、得られた有機層を中和、洗浄した後、沸点150℃以上の有機溶剤(g)を加え、前者の有機溶剤(f)を常圧または減圧下、通常、120℃以下の温度で留去することにより得られる。沸点150℃以上の有機溶剤(g)は、また、沸点100℃以下の有機溶剤(f)を留去しながら、徐々に加えてよく、また、反応液に沸点100℃以下の有機溶剤(f)を加えると同時に加えてもよい。この方法により、従来行っていたような、一度、目的物を固状または油状物として分離し、これを高沸点溶剤に再溶解するような工程が省略できる。

本発明で得られるモノスルホニウム塩を、沸点150 C以上の有機溶剤(g)の溶液として得るときのモノスルホニウム塩濃度は、通常、 $35\sim75\%$ 、好ましくは $40\sim70\%$ である。

[0024]

本発明の製造方法により得られるモノスルホニウム塩は、カチオン重合開始剤として使用される。この場合、本発明のモノスルホニウム塩は単独で、または2種以上を組み合わせて使用してもよく、また、他のカチオン重合開始剤と併用することもできる。

他のカチオン重合開始剤としては、加熱または活性エネルギー線の作用によって強酸を発生する化合物であれば、特に限定なく使用することができ、例えば、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、ピリジニウム塩あるいは鉄ーアレーン錯体などの従来公知なものを挙げることができる。他のカチオン重合開始剤を併用する場合の割合は、本発明で得られるモノスルホニウム塩100質量部(以後、質量部を部と記す)に対して、他のカチオン重合開始剤1~200部、好ましくは5~100部である。

[0025]

他のカチオン重合開始剤である前記スルホニウム塩としては、例えば、トリフェニルスルホニウムへキサフルオロホスフェート、4ージ(pートルイル)スルホニオー4'ーtertーブチルフェニルカルボニルージフェニルスルフィドへキサフルオロホスフェート、4ージ(pートルイル)スルホニオー4'ーtertーブチルフェニルカルボニルージフェニルスルフィドへキサフルオロアンチモネート、7ージ(pートルイル)スルホニオー2ーイソプロピルーチオキサントンへキサフルオロホスフェート、7ージ(pートルイル)スルホニオー2ーイソプロピルーチオキサントンへキサフルホロアンチモネート等や特開平7ー61964号、特開平8ー165290号、米国特許第4231951号、米国特許第4256828号に記載の芳香族スルホニウム塩等を挙げることができる。

また、スルホニウム塩としてビス(4 ー(ジフェニルスルホニオ) - フェニル)スルフィドビスへキサフルオロホスフェート、ビス(4 ー(ジフェニルスルホニオ) - フェニル)スルフィドビスへキサフルオロアンチモネートなどのビススルホニウム塩を併用することもできる。但し、これらを大量に併用すると、カチオン重合性モノマーや溶剤への溶解度が低下したり、またカチオン重合性モノマーへの配合物の経時的な増粘が起きたりする。これらのビススルホニウム塩を併用する場合の使用割合は、モノスルホニウム塩100部に対して、通常100部

以下、好ましくは20部以下である。

[0026]

他のカチオン重合開始剤である前記ヨードニウム塩としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ビス (ドデシルフェニル) ヨードニウムテトラキス (ペンタフルオロフェニル) ボレート等や特開平6-184170号、米国特許第4256828号に記載の芳香族ヨードニウム塩等を挙げることができる。

[0027]

他のカチオン重合開始剤である前記ホスホニウム塩としては、例えば、テトラフェニルホスホニウムヘキサフルオロホスフェート、テトラフェニルホスホニウムヘキサフルオロアンチモネート等や特開平6-157624号に記載の芳香族ホスホニウム塩等を挙げることができる。

他のカチオン重合開始剤である前記ピリジニウム塩としては、例えば、特許公報第2519480号、特開平5-222112号に記載のピリジニウム塩等を挙げることができる。

[0028]

本発明の製造方法で得られるモノスルホニウム塩からなる本発明のカチオン重合開始剤を、カチオン重合性化合物に配合することにより、光、電子線、X線などの活性エネルギー線で硬化する本発明の硬化性組成物を得ることができる。

[0029]

本発明のカチオン重合開始剤を配合することができるカチオン重合性化合物としては、例えば、エポキシ化合物、ビニルエーテル化合物、オキセタン化合物、スチレンなどのエチレン性不飽和化合物あるいはスピロオルソエステル、ビシクロオルソエステルのような環状エーテルが挙げられる。

上記エポキシ化合物としては、フェニルグリシジルエーテル、p-tert-ブチルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、アリールグリシジルエーテル、1,2-ブチレンオキシド、1,3-ブタジエンモノオキサイド、1,2-ドデシレンオキサイド、エピクロロヒドリン、1,2-エポキシデカン、エチレンオキサイド、プロピレンオキサイド

、スチレンオキサイド、シクロヘキセンオキサイド、3ーメタクリロイルオキシメチルシクロヘキセンオキサイド、3ービニルシクロヘキセンオキサイド、4ービニルシクロヘキセンオキサイドなどの単官能エポキシ化合物、1, 1, 3ーテトラデカジエンジオキサイド、リモネンジオキサイド、3, 4ーエポキシシクロヘキシルンチルー(3, 4ーエポキシシクロヘキシル)カルボキシレート、ジ(3, 4ーエポキシシクロヘキシル)アジペート、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、0ー, mー, pークレゾールノボラック型エポキシ樹脂、多価アルコールのポリグリシジルエーテル、ポリブタジエングリコールジグリシジルエーテル、メチルメタクリレートや2ーエチルヘキシルメタクリレート等の(メタ)アクリレートとグリシジルメタアクリレートとの共重合物などの多官能エポキシ化合物が挙げられる。

[0030]

上記ビニルエーテル化合物としては、メチルビニルエーテル、エチルビニルエ ーテル、ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビ ニルエーテル、2-クロロエチルビニルエーテル、2-フェノキシエチルビニル エーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニル エーテル、ステアリルビニルエーテル、2-アセトキシエチルビニルエーテル、 ジエチレングリコールモノビニルエーテル、2-エチルヘキシルビニルエーテル 、ドデシルビニルエーテル、オクタデシルビニルエーテルなどのアルキルビニル エーテル化合物、アリールビニルエーテル、2-メタクリロイルオキシエチルビ ニルエーテル、2-アクリロイルオキシエチルビニルエーテルなどのアルケニル ビニルエーテル化合物、フェニルビニルエーテル、pーメトキシフェニルビニル エーテルなどのアリールビニルエーテル化合物、Nービニルカルバゾール、Nービ ニルピロリドンなどのカチオン重合性窒素含有化合物、ブタンジオールー1,4 ージビニルエーテル、トリエチレングリコールジビニルエーテル、1,4ーベン ゼンジビニルエーテル、ハイドロキノンジビニルエーテル、シクロヘキサンジメ タノールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピ レンジビニルエーテル、ヘキサンジオールジビニルエーテルなどの多官能ビニル

エーテル化合物が挙げられる。

[0031]

上記オキセタン化合物としては、3-x+n-3-eドロキシメチルオキセタン、1, 4-[(3-x+n-3-x+e)+e)+e)メチル]ベンゼン、3-x+e0、1, 4-[(3-x+n-3-x+e)+e)+e0、10、11、12、13 (フェノキシメチル)オキセタン、ジ[1-x+e0、13 (フェノキシメチル)オキセタン、ジ[1-x+e0、14 (14 (15 (

[0032]

上記ビシクロオキソエステル化合物としては、1-7ェニルー4-エチルー2, 6, 7-トリオキサビシクロ[2. 2. 2]オクタン、1-エチルー4-ヒドロキシメチルー2, 6, 7-トリオキサビシクロー[2. 2. 2]オクタンなどが挙げられる。

[0033]

上記スピロオルソカーボネート化合物としては、1, 5, 7, 11ーテトラオキサスピロ[5. 5]ウンデカン、3, 9ージベンジルー1, 5, 7, 11ーテトラオキサスピロ[5. 5]ウンデカン、1, 4, 6ートリオキサスピロ[4. 4]ノナン、1, 4, 6ートリオキサスピロ[4. 4]ノナン、1, 4, 6ートリオキサスピロ[4. 5]デカンなどが挙げられる。

[0034]

これらのカチオン重合性化合物は、単独で使用してもよく、また2種以上を併用してもよい。本発明のカチオン重合開始剤は、特にエポキシ化合物、オキセタン化合物、ビニルエーテル化合物を硬化させるのに好適である。

[0035]

本発明のカチオン重合開始剤とカチオン重合性化合物との配合割合は、カチオン重合性化合物100部に対して、カチオン重合開始剤0.01~20部、好ましくは0.1~10部であるが、適当な配合割合は、カチオン重合性化合物の性質、エネルギー線の種類、照射量、所望の硬化時間、さらには、硬化時の温度、

湿度、塗膜厚などの要因を考慮することにより決定される。

[0036]

本発明のカチオン重合開始剤は、カチオン重合性化合物への溶解を容易にするため、予め、溶剤類、例えば、沸点150℃以上の有機溶剤(g)として例示した溶剤の溶液にして使用することができる。

[0037]

本発明のカチオン重合開始剤には、必要により従来公知の増感剤を併用することができる。このような増感剤としては、アントラセン、9,10ージブトキシアントラセン、フェニルシクロヘキシルケトン、チオキサントン、フェノチアジン、クロロチオキサントン、キサントン、ジフェニルアントラセン、ルブレン、カルバゾール、ナフトール、ペリレンおよびこれらの誘導体など、従来公知のものが挙げられる。

これらの増感剤を併用する場合の配合量は、本発明のカチオン重合開始剤10 0部に対して、増感剤5~100部、好ましくは10~50部である。

[0038]

本発明の硬化性組成物は、カチオン重合性化合物に、本発明のカチオン重合開始剤を、必要な時は加熱下、溶解することによって得られる。本発明の硬化性組成物は、通常、透明な液状物として使用されるが、用途により顔料、染料、充填剤、静電防止剤、難燃剤、消泡剤、流動調整剤、酸化防止剤などを、溶解またはサンドミルや3本ロールによる混練などの方法で混合して用いられる。

[0039]

本発明の硬化性組成物は、紫外線や可視光などの光、電子線あるいはX線さらにはγ線などの活性エネルギー線を照射することにより、0.1秒~数分後に指触乾燥状態あるいは溶媒不溶の状態に硬化することができる。硬化するための光源としては、カチオン重合開始剤の分解を誘発するエネルギーを有するものであれば、いかなるものでもよいが、好ましくは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、キセノンランプ、カーボンアークランプによる紫外線や可視光、さらには太陽光線などが用いられる。また、半導体レーザー、アルゴンレーザー、He-Cdレーザーなどのレーザー光源を用い

てもよい。エネルギー線の暴露は、エネルギー線の強度にもよるが、通常は 0. 1秒~10秒程度で十分である。しかし、比較的厚い塗装物については、それ以上の時間をかけるのが好ましい。また、必要により、カチオン重合反応を促進するために加熱してもよい。

[0040]

本発明の硬化性組成物は、金属、木材、ゴム、プラスチック、ガラス、セラミック製品などにロールコーター、スピンコーター、スプレー、刷毛、印刷機などの方法により塗工され、活性エネルギー線を照射することで、本発明の硬化物が得られる。

本発明の硬化性組成物の具体的な用途としては、塗料、コーティング剤、インキ、レジストフィルム、液状レジスト、接着剤、成型材、注型材料、パテ、ガラス繊維含浸剤、目止め剤、および光造形などが挙げられる。

[0041]

【実施例】

以下、実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。

(実施例1)

100mlの反応容器に、ヘキサフルオロリン酸カリウム(KPF6)4.28g(23.3mmol)、アセトニトリル10ml、ジフェニルスルフィド3.61g(19.4mmol)、ジフェニルスルホキシド4.05g(20.0mmol)、および無水酢酸5.94g(58.2mmol)を仕込み、均一に混合した後、濃硫酸2.28g(23.3mmol)を室温で60分間かけて滴下した。途中発熱により温度が上昇したが、40℃を超えないように冷却した。40℃で1時間攪拌後、室温まで冷却し、水20mlを加えて10分間攪拌したところ、油状物が分離した。これに酢酸エチル20mlを加えて油状物を溶解させ、有機層を分液した。この有機層を20%苛性ソーダ10mlと、さらに水10mlで3回洗浄した後、アセトニトリルと酢酸エチルを減圧下で留去して、やや黄みをおびた固形物9.72g(収率:97%)を得た。

13C-NMR、IRおよびHPLC(高速液体クロマトグラフ装置 L-70

00使用、日立製作所製、商品名、以下、同様)による分析の結果、得られた生成物は、ヘキサフルオロリン酸(4ーフェニルチオフェニル)ジフェニルスルホニウムを98.0%、ビスヘキサフルオロリン酸チオジーpーフェニレンビス(ジフェニルスルホニウム)を0.8%、および未反応原料であるジフェニルスルフィド0.5%とジフェニルスルホキシド0.7%を含んでいた。

[0042]

(実施例2)

100mlの反応容器に、ヘキサフルオロリン酸ナトリウム(NaPF6)3. 91g(23.3mmol)、アセトニトリル8ml、ジフェニルスルフィド3.61 g(19.4mmol)、ジフェニルスルホキシド4.05g(20.0mmol)、お よび無水酢酸5.94g(58.1mmol)を仕込み、均一混合した後、濃硫酸2 .28g(23.3mmol)を40℃以下の温度で40分間かけて滴下した。40 ℃で2時間攪拌後、室温まで冷却し、水20mlと酢酸エチル20mlを加えて10 分間攪拌し、有機層を分液した。この有機層を水10mlで洗浄しながら、40% 苛性ソーダで水層のpHを7~8に調整した後、さらに水10mlで2回洗浄した 。この有機層にプロピレンカーボネート10gを加えた後、減圧下100℃以下 でアセトニトリルと酢酸エチルを留去して、固形分濃度50%の淡黄色の溶液1 9.4g(収率:97%)を得た。

13C-NMR、 IRおよびHPLCによる分析の結果、この溶液は、プロピレンカーボネートを50.1%含み、固形分はヘキサフルオロリン酸(<math>4-フェニルチオフェニル)ジフェニルスルホニウムを97.7%、ビスヘキサフルオロリン酸チオジー<math>p-フェニレンビス(ジフェニルスルホニウム)を0.8%、および未反応原料のジフェニルスルフィド0.8%とジフェニルスルホキシド0.7%を含んでいた。

[0043]

(実施例3)

ジフェニルスルホキシドを 4 , 4 , -ジメチルジフェニルスルホキシド 4 . 6 1 g (2 0 . 0 mmol) とした以外は、実施例 1 と同様にして、やや黄みをおびた 固形物 1 0 . 1 2 g (\mathbf{V} $\mathbf{$

生成物は、¹³C-NMR、IRおよびHPLCによる分析の結果、ヘキサフルオロリン酸(4-フェニルチオフェニル)-4,4'-ジメチルジフェニルスルホニウムを99.1%、ビスヘキサフルオロリン酸チオジーp-フェニレンビス(4,4'-ジメチルジフェニルスルホニウム)を0.4%、および未反応原料のジフェニルスルフィド0.2%、4,4'-ジメチルジフェニルスルホキシド0.3%を含んでいた。

[0044]

(実施例4)

ジフェニルスルフィドを4ーベンゾイルジフェニルスルフィド5.63g(19.4mmol)とした以外は、実施例1と同様にして、やや黄みをおびた固形物11.37g(収率:96%)を得た。

生成物は、¹³C-NMR、IRおよびHPLCによる分析の結果、ヘキサフルオロリン酸[4-(4-ベンゾイルフェニル)チオフェニル]-ジフェニルスルホニウムを98.6%、未反応原料の4-ベンゾイルジフェニルスルフィド0.8%、ジフェニルスルホキシド0.6%を含んでいた。

[0045]

(実施例5)

ヘキサフルオロリン酸カリウムをヘキサフルオロアンチモン酸カリウム(KSbF6)5.86g(21.3 mmol)、濃硫酸の量を2.08g(21.3 mmol)とした以外は、実施例1と同様にして、やや黄みをおびた固形物11.31g(収率:96%)を得た。

生成物は、 13 C-NMR、 I RおよびHPLCによる分析の結果、ヘキサフルオロアンチモン酸(4 -フェニルチオフェニル)ジフェニルスルホニウムを 9 8 . 5%、ビスヘキサフルオロアンチモン酸チオジー 1 -フェニレンビス(ジフェニルスルホニウム)を 0 . 8%、および未反応原料のジフェニルスルフィド 0 . 4%、ジフェニルスルホキシド 0 . 3%を含んでいた。

[0046]

(実施例6)

ヘキサフルオロリン酸ナトリウム (NaPF6) をヘキサフルオロアンチモン

酸ナトリウム(NaSbF₆)5.52g(21.3 mmol)、濃硫酸の量を2.08g(21.3 mmol)とした以外は、実施例2と同様にして、固形分濃度50%の淡黄色の溶液22.6g(収率:96%)を得た。

この溶液は、 13 C-NMR、IRおよびHPLCによる分析の結果、プロピレンカーボネートを49.8%含み、該溶液中の固形分は、ヘキサフルオロアンチモン酸(4-フェニルチオフェニル)ジフェニルスルホニウムを98.2%、ビスヘキサフルオロアンチモン酸チオジーp-フェニレンビス(ジフェニルスルホニウム)を1.0%、および未反応原料のジフェニルスルフィド0.2%、ジフェニルスルホキシド0.6%を含んでいた。

[0047]

(比較例1)

100mlの反応容器に、ヘキサフルオロリン酸カリウム (KPF₆) 5.36 g (29.1mmol) と酢酸 5.36 g を仕込み、攪拌、混合した後、濃硫酸 2.9 l g (29.1mmol) を仕込み、30分間攪拌した。

この溶液に、ジフェニルスルホキシド4.05g(20.0mmol)、ジフェニルスルフィド3.61g(19.4mmol)、および無水酢酸5.94g(58.1mmol)を予め均一に溶解しておいた溶液を室温で滴下し、30分間攪拌した。さらに、75℃で1時間熟成した後、同温度で減圧下、酢酸を主成分とする溶媒を留去した。

この反応液を室温まで冷却した後、20mlのジクロロメタンと20mlの水を加えて攪拌し、分液した。得られた有機層をさらに水10mlで3回洗浄した後、ジクロロメタンを留去して、やや黄みをおびた固形物9.62g(収率:96%)を得た。

生成物は、 13 C-NMR、IRおよびHPLCによる分析の結果、ヘキサフルオロリン酸(4 -フェニルチオフェニル)ジフェニルスルホニウムを 9 4.0%、ビスヘキサフルオロリン酸チオジー 9 -フェニレンビス(ジフェニルスルホニウム)を 10 0.8%、および未反応原料のジフェニルスルフィド 10 2.2%、ジフェニルスルホキシド 10 3.0%を含んでいた。

[0048]

(比較例2)

比較例1で得られた固形物3.0gに、10mlのエタノールを加えて加熱攪拌した後、室温まで冷却すると結晶が析出した。この結晶をろ過で分離し、乾燥して2.2g(収率70%)の白色粉末を得た。

この白色粉末は、 13 C -NMR、IRおよびHPLCによる分析の結果、ヘキサフルオロリン酸(4 - フェニルチオフェニル)ジフェニルスルホニウムを 9 9 . 4 %、ビスヘキサフルオロリン酸チオジ- p- フェニレンビス(ジフェニルスルホニウム)を 0 0 . 4 %、および未反応原料のジフェニルスルフィド 0 0 . 1 %を含んでいた。

[0049]

(比較例3)

ヘキサフルオロリン酸カリウム(KPF₆) 2.8 6 g(17.0 mmol)、濃硫酸 1.70 g(17.0 mmol)とした以外は、比較例 1 と同様にして、やや黄みをおびた固形物 8.1 2 g(収率:93%)を得た。

この固形物は、¹³C-NMR、IRおよびHPLCによる分析の結果、ヘキサフルオロリン酸(4-フェニルチオフェニル)ジフェニルスルホニウムを83.3%、ビスヘキサフルオロリン酸チオジーp-フェニレンビス(ジフェニルスルホニウム)を1.0%、および未反応原料のジフェニルスルフィド6.7%、ジフェニルスルホキシド9.0%を含んでいた。

[0050]

(比較例4)

ヘキサフルオロリン酸カリウム(KPF6)をヘキサフルオロアンチモン酸ナトリウム(NaSbF6)5.86g(21.3 mmol)とした以外は、比較例1と同様にして、やや黄みをおびた固形物10.72g(収率:92%)を得た。この固形物は、 13 C-NMR、IRおよびHPLCによる分析の結果、ヘキサフルオロアンチモン酸(4 -フェニルチオフェニル)ジフェニルスルホニウムを93.0%、ビスヘキサフルオロアンチモン酸チオジー 2 -フェニルスルホニウム)を1.0%、および未反応原料のジフェニルスルフィド3.0%、ジフェニルスルホキシド3.0%を含んでいた。

[0051]

(比較例5)

比較例3で得られた固形物3.0gを、10mlのエタノールに加熱溶解した後、室温まで冷却すると結晶が析出した。この結晶をろ過で分離し、乾燥して2.0g(収率64%)の白色粉末を得た。

得られた白色粉末は、 13 C-NMR、IRおよびHPLC分析の結果によると、ヘキサフルオロアンチモン酸(4 -フェニルチオフェニル)ジフェニルスルホニウムを 9 9 . 4 %、ビスヘキサフルオロアンチモン酸チオジー 9 -フェニレンビス(ジフェニルスルホニウム)を 0 . 4 %、および未反応原料のジフェニルスルフィド 0 . 2 %を含み、ジフェニルスルホキシドは検出されなかった。

[0052]

実施例1~6および比較例1~5で得られた生成物を、カチオン重合性化合物である脂環式エポキシ樹脂に配合して、下記に示した硬化性試験を行った結果を表1に示す。これから、本発明によって得られるモノスルホニウム塩は、エポキシ樹脂の硬化性が良好で、その硬化塗膜の鉛筆硬度が高いことがわかる。

[0053]

【表1】

試験例	生成物	アニオンの 種類	モノスルホ ニウム塩含 有量 (%)	未反応原料 の含有量 (%)	硬化性試験	
					硬化速度	塗膜硬度
1	実施例1	PF ₆	98.0	1.2	0	2H
2	実施例2	PF ₆	97.7	1.5	Ο.	2H
3	実施例3	PF ₆	99.1	0.5	0	2H
4	実施例4	PF ₆	98.6	1.4	0	2H
5	比較例1	PF ₆	94.0	5.2	Δ	В
6	比較例2	PF ₆	99.4	0.2	0	2H
7	比較例3	PF ₆	83.3	15.7	×	4B
8	実施例5	SbF ₆	98.5	0.7	0	2H
9	実施例6	SbF ₆	98.2	0.8	0	2H
10	比較例4	SbF ₆	93.0	6.0	Δ	2B
11	比較例5	SbF ₆	99.4	0.2	0	2H

[0054]

<硬化性試験方法>

実施例1、3~5および比較例1~5については、各例で得た生成物10部を、プロピレンカーボネート10部に加えて加温し、50%プロピレンカーボネート溶液を調製した。実施例2、6については、得られた50%プロピレンカーボネート溶液をそのまま用いた。

①試験例1~7

実施例 $1\sim4$ および比較例 $1\sim3$ で得た生成物(主成分:モノスルホニウム P F 6塩)の50%プロピレンカーボネート溶液5 部を、カチオン重合性化合物であるUVR-6110 [UCC社製、商品名、3, 4-xポキシシクロヘキシルメチル-3, 4-xポキシシクロヘキサンカルボキシレート(脂環式エポキシ樹脂)] 100 部に配合して、配合液を調製した。

②試験例8~11

アプリケータを用いて、上記の配合液を膜厚 40μ mでポリエステルフィルム に塗布した。これを下記条件で光硬化させ、塗膜の硬化速度と鉛筆硬度を試験した。

<条件>

- ・紫外線照射装置:ベルトコンベア式UV照射装置(フュージョンUVシステムズ社製)
 - ・ランプ:2kW平行型メタルハライドランプ、照射距離18cm
 - ・紫外線の照射条件:コンベアスピード1~4m/分、照射回数1回

(1)硬化速度試験

4 m/分、2 m/分、1 m/分、0.5 m/分の4段階の速度で移動するコンベアに、前記配合液を塗布したポリエステルフィルムを載せて、紫外線照射を1回行い、塗膜の鉛筆硬度が一定となる最大の速度(最小の紫外線照射量に相当)が、上記4段階の速度のうち、いずれであるかを測定し、以下の基準により評価

した。この速度が大きい程、少ない紫外線照射量で硬化すること、すなわち、使 用したスルホニウム塩の光重合開始剤としての能力が優れていることを示す。

評価基準 ○:4 m/分、△:2 m/分、×:1 m/分以下

(2) 塗膜硬度試験

上記の硬化速度試験で塗膜硬度が一定になったときの鉛筆硬度を測定した。鉛 筆硬度が高い程、光カチオン重合性モノマーの重合率が良好であること、あるい は不純物による塗膜硬度の低下が少ないことを示す。

[0055]

<参考例>

上記試験例において、モノスルホニウム塩を主体とする生成物中に未反応原料が多い程、本生成物とカチオン重合性化合物の配合物において、紫外線による硬化速度、および塗膜の鉛筆硬度のいずれも低下する傾向がある。

そこで、未反応原料の影響を系統的に把握するため、試験例1の生成物のプロピレンカーボネート溶液とUVR-6110(前出)の配合物に、少量のジフェニルスルフィドとジフェニルスルホキシドを、いずれか単独または両方同時に加え、未反応原料(ジフェニルスルフィドとジフェニルスルホキシド)による上記配合物の硬化速度と塗膜硬度に対する影響を調べた。その結果を表2に示す。

なお、ジフェニルスルフィドとジフェニルスルホキシドの添加量(w)は、この添加量(w)と、元々、生成物中に存在する未反応の原料の量(x)との合計(y)が、当初、UVR-6110に配合した生成物の量(z)と、ジフェニルスルフィドとジフェニルスルホキシドの添加量(w)との合計に対し、3%、6%になるようにした。

[0056]

【表2】

参考例	追加音	y×100	硬化性試験		
2504	ジフェニルスルフィド	ジフェニルスルホキシド	w+z (%)	硬化速度	塗膜硬度
(試験例1)	0	0	1.2	0	2H
1	0.047	0	3.0	0	2H
2	0	0.050	3.1	0	2H
3	0.075	0	4.1	Δ~0	Н
4	0	0.073	4.0	Δ~0	H~2H
5	0.030	0.047	4.1	Δ~0	Н
6	0.129	0	6.0	Δ	В
7	0	0.128	6.0	Δ	НВ
8	0.064	0.071	6.2	Δ	В

[0057]

表2の結果から、未反応原料のスルフィドとスルホキシドの残存量が、これらとスルホニウム塩の合計の4.0%以上になると、カチオン重合速度が阻害されるとともに、塗膜の硬度が低下することがわかる。

[0058]

【発明の効果】

本発明の製造方法によれば、未反応原料が少なく、高純度のモノスルホニウム 塩を高収率で得ることができる。また、得られたモノスルホニウム塩を、カチオ ン重合開始剤として、カチオン重合性モノマーに配合した硬化性組成物は、硬化 性に優れ、これを硬化させることによって、良好な硬度を有する硬化物が得られ る。

したがって、本発明の製造方法で得られるスルホニウム塩は、カチオン重合性の塗料、コーテング剤、インキ、レジストフィルム、液状レジスト、接着剤、成型材、注型材料、パテ、ガラス繊維含浸剤、目止め剤、および光造形用の樹脂などを、光、電子線、X線などの活性エネルギー線で硬化させるためのカチオン重合開始剤として好適である。

【書類名】要約書

【要約】

【課題】 未反応原料の残存量が少なく、純度が96%以上である分子中にスルホニオ基を1個有するモノスルホニウム塩を精製工程なしに製造する。

【解決手段】 アリール化合物 (a)、スルホキシド化合物 (b)、脱水剤 (c)、およびアルカリ金属またはアルカリ土類金属の BF_4 、 PF_6 、 AsF_6 または SbF_6 塩 (d)を反応系内に仕込んだ後に、無機酸 (e) を仕込んで、アリール化合物 (a) とスルホキシド化合物 (b) を脱水縮合させる。

【選択図】 なし

特願2003-180712

出願人履歴情報

識別番号

[000106139]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

京都府京都市東山区一橋野本町11番地

氏 名 サンアプロ株式会社