

V&V

- □ Validação: Assegurar que o produto final corresponda aos requisitos do software. "Estamos construindo o produto certo?"
- □ Verificação: Assegurar consistência, completitude e corretitude do produto em cada fase e entre fases consecutivas do ciclo de vida do software. "Estamos construindo corretamente o produto?"
- □ Inspeção X Teste

Profa. Sandra Fabbri

Inspeção de Software

- □ Definição
 - é um método de análise estática para verificar propriedades de qualidade de produtos de software.
- □ Características:
 - processo estruturado e bem definido.
 - a equipe de inspeção consiste, normalmente, de pessoal técnico.
 - os participantes possuem papéis bem definidos.
 - os resultados da inspeção são registrados.

Inspeção de Software

□ Como conduzir uma inspeção? Ad-hoc Técnicas de Leitura Leitura Baseada em Perspectiva

Profa. Sandra Fabbri

Benefícios da Inspeção: detecção de defeitos antecipada

 As inspeções melhoram a qualidade desde o início do projeto detectando mais defeitos desde a fase de requisitos.

Benefícios da Inspeção: produtividade e custo

 As inspeções melhoram a produtividade uma vez que os defeitos são encontrados quando são mais fáceis e mais baratos para corrigir.

Benefícios Qualitativos da Inspeção

- □ Aprende-se pela experiência
 - participantes aprendem os padrões e o raciocínio utilizado na detecção de defeitos.
 - participantes aprendem bons padrões de desenvolvimento.
- □ A longo prazo
 - a inspeção convence os participantes a desenvolver produtos mais compreensíveis e mais fáceis de manter.

As inspeções ajudam integrar o processo de prevenção de defeitos com o processo de detecção de defeitos.

Defeitos do Software

 Os defeitos surgem quando o desenvolvimento não está de acordo com a especificação já desenvolvida ou quando podem causar problemas daquele ponto em diante.

Situação ideal:

1. A informação é transformada corretamente.

Tipos de Erros:

- 2. A informação é perdida durante a transformação.
- 3. A informação é transformada incorretamente.
- 4. Informação estranha é introduzida.
- 5. A mesma informação é transformada em diversas ocorrências inconsistentes.
- 6. A mesma informação possibilita diversas transformações inconsistentes.

Profa. Sandra Fabbri Profa. Sandra Fabbri

Defeito

9

- □ Interpretação de "defeito"
 - "defeito": qualquer propriedade de qualidade que não seja satisfeita.
 - deve-se evitar focar apenas na corretitude, como se fosse a única propriedade de qualidade.

Profa Sandra Fahhri

Exemplo: Omissão

11

- □ Omissão de Funcionalidade:
 - Informação que descreva algum comportamento desejado do sistema foi omitida do Documento de Requisitos (DR).

Ex: considere um sistema de biblioteca e os seguintes requisitos funcionais (RF):

RF2: o sistema deve solicitar a informação necessária para inserir um item bibliográfico: título, autor, data, lugar, assunto, resumo, número, editor, periódico, congresso.

RF3: o sistema deve dar uma mensagem de alerta quando o usuário tentar inserir um item incompleto. Essa mensagem deve questionar o usuário se ele deseja cancelar a operação, completar a informação ou concluir a inserção como está.

Qual informação é necessária para possibilitar uma inserção incompleta?

Taxonomia de Defeitos

10

- Definição: são as classes de defeitos que serão usadas para classificar os defeitos encontrados.
- Classes:
 - Omissão (O): qualquer informação necessária que tenha sido omitida.
 - Fato Incorreto (FI): informação que consta do artefato mas que seja contraditória com o conhecimento que se tem do domínio de aplicação.
 - Inconsistência (I): informação que consta do artefato mais de uma vez e em cada ocorrência ela é descrita de forma diferente.
 - Ambiguidade (A): quando a informação pode levar a múltiplas interpretações.
 - Informação Estranha (IE): qualquer informação que, embora relacionada ao domínio, não é necessária para o sistema em questão.
 - Diversos (D): qualquer outro tipo de defeito que não se encaixe nas outras categorias. Ex: declarações em seções erradas.

Profa. Sandra Fabbri

Exemplo: Omissão

12

- □ Omissão de Desempenho:
 - Informação que descreva um desempenho desejado para o sistema foi omitida ou descrita de uma forma não apropriada para que possa ser verificada posteriormente no teste de aceitação.
- Ex: considere o seguinte Requisito Não Funcional (RNF):
 - RNF1: o sistema deve fornecer os resultados tão rápido quanto possíve.

?

Exemplo: Omissão

13

- □ Outros tipos de omissão:
- □ Omissão de Interface:
 - Quando informação que descreva como sistema proposto vai fazer interface e se comunicar com outros objetos fora de seu escopo for omitida do DR.
- □ Omissão de Recursos do Ambiente:
 - Quando informação que descreva o hardware, software, base de dados ou detalhes do ambiente operacional no qual o sistema vai rodar for omitida do DR.

Profa Sandra Fahhri

Exemplo: Inconsistência

15

□ Informação que consta do artefato mais de uma vez e, em cada ocorrência, ela é descrita de forma diferente.

Ex: considere um Sistema de Empréstimo numa Biblioteca e o seguinte RF:

....

FR5: o sistema <u>não deve permitir</u> períodos de empréstimo <u>maiores</u> que 15 dias.

....

FR9: professores podem emprestar livros por um período de 3 semanas.

....

Exemplo: Fato Incorreto

14

 Informação que consta do artefato mas que seja contraditória com o conhecimento que se tem do domínio da aplicação.

Ex: considere um Sistema de Empréstimo numa Biblioteca e o seguinte RF:

RF30: o sistema não deve aceitar devolução de livros se o usuário não tiver a carteirinha da biblioteca no momento.

_

para devolução de livros não é necessário apresentar a carteirinha pois todas as informações estão registradas no sistema

Profa. Sandra Fabbri

Exemplo: Ambiguidade

16

 quando a informação pode levar a múltiplas interpretações.

Ex: considere um Sistema de Empréstimo numa Biblioteca e o seguinte RF:

FR20: se o número de dias que o usuário está em atraso é menor que uma semana, ele deve pagar uma taxa de R\$1,00; se o número é maior que uma semana, a taxa é de R\$0,50 por dia.

qual a taxa a ser paga se o período for de uma semana?

no primeiro caso, a taxa deve ser calculada por dia?

Exemplo: Informação Estranha

17

 qualquer informação que, embora relacionada ao domínio, não é necessária para o sistema em questão.

Ex: considere um Sistema de Empréstimo numa Biblioteca e o seguinte RF:

RF15: quando um novo livro é adicionado ao acervo, ele permanece em uma prateleira especial por um período de um mês.

. . . .

essa informação não é necessária para o sistema

Profa. Sandra Fabbri

Técnicas de Leitura para Inspeção

18

- □ Questão: Como detectar defeitos?
- □ Resposta:
 - □ lendo o documento
 - entendendo o que o documento descreve
 - verificando as propriedades de qualidade requeridas

Profa. Sandra Fabbri

Técnicas de Leitura para Inspeção

19

□ Problema:

- em geral não se sabe como fazer a leitura de um documento!
- 🗖 Razão:
 - em geral, os desenvolvedores aprender a escrever documento de requisitos, código, projeto, mas não aprendem fazer uma leitura adequada dos mesmos.
- Solução:
 - □ fornecer técnicas de leitura bem definidas.
- Benefícios:
 - aumenta a relação custo/benefício das inspeções.
 - fornece modelos para escrever documentos com maior qualidade.
 - reduz a influência humana nos resultados da inspeção.

Técnicas de Leitura para Inspeção

20

- □ O que é uma técnica de leitura?
 - é um conjunto de instruções fornecido ao revisor dizendo como ler e o que procurar no produto de software.
- □ Técnicas de leitura para detecção de defeitos em Documentos de Requisitos:
 - Ad-hoc
 - Checklist
 - Leitura Baseada em Perspectiva

Ad-hoc

Profa. Sandra Fabbri

Checklist

Ad-hoc

22

- Os revisores não utilizam nenhuma técnica sistemática de leitura.
- □ Cada revisor adota sua maneira de "ler" o Documento de Requisitos
- □ Desvantagens:
 - depende da experiência do revisor
 - □ não é repetível
 - não é passível de melhoria pois não existe um procedimento a ser seguido.

Profa. Sandra Fabbri

21

Checklist

24

- □ Definição: é uma técnica que fornece diretrizes para ajudar o revisor alcançar os objetivos de uma atividade de revisão formal que são:
 - verificar se o software está de acordo com os seus requisitos.
 - assegurar que o software está representado de acordo com padrões pré definidos.
 - cobrir erros de função, de lógica, de implementação em qualquer representação (artefato) de software.

Profa. Sandra Fabbri 23 Profa. Sandra Fabbri

Checklist

25

- □ É similar ao ad-hoc, mas cada revisor recebe um checklist.
- Os itens do checklist capturam lições importantes que foram aprendidas em inspeções anteriores no ambiente de desenvolvimento.
- Itens do checklist podem explorar defeitos característicos, priorizar defeitos diferentes e estabelecer questões que ajudam o revisor a encontrar defeitos.

Profa Sandra Fahhri

Checklist

27

Questões Gerais:

- Os objetivos do sistema foram definidos?
- Os requisitos estão claros e não ambíguos?
- Foi fornecida uma visão geral da funcionalidade do sistema?
- Foi fornecida uma visão geral das formas de operação do sistema?
- O software e o hardware necessários foram especificados?
- Se existe alguma suposição que afete a implementação ela foi declarada?
- Para cada função, os requisitos foram especificados em termos de entrada, processamento e saída?
- □ Todas as funções, dispositivos e restrições estão relacionadas aos objetivos do sistema e vice-versa?

Checklist

26

 pode ser desenvolvido para documentos de requisitos, análise, projeto, código e mesmo documentos de teste.

Profa Sandra Fahhr

Checklist

28

Omissão

de Funcionalidade

- As funções descritas são suficientes para alcançar os objetivos do sistema?
- As entradas declaradas para as funções são suficientes para que elas sejam executadas?
- Foram considerados os eventos indesejáveis e as respostas a eles foram especificadas?
- □ Foram considerados o estado inicial e os estados especiais (por ex. inicialização do sistema, término anormal)?

de Desempenho

- O sistema pode ser testado, analisado ou inspecionado para mostrar que ele satisfaz seus requisitos?
- Os tipos de dados, unidades, limites e resolução foram especificados?
- A freqüência e volume de entrada e saída foram especificados para cada função?

Profa. Sandra Fabbri

Checklist

29

Omissão

de Interface

- As entradas e saídas para todas as interfaces são suficientes?
- Foram especificados os requisitos de interface entre hardware, software, pessoas e procedimentos?

de Recursos do Ambiente

Foram especificadas de forma apropriada as funcionalidades de interação entre hardware, software com o sistema?

Informação Estranha

- Todas as funções especificadas são necessárias para alcançar os objetivos do sistema?
- As entradas das funções são necessárias para executá-las?
- As entradas e saídas das interfaces são necessárias?
- As saídas produzidas por uma função são usadas por outra função ou transferidas para a interface externa?

Profa. Sandra Fabbri

Leitura Baseada em Perspectiva

Checklist

30

Ambigüidade

- □ Cada requisito foi especificado de forma discreta, não ambígua e testável?
- Todas as transições do sistema foram especificadas de forma determinística?

□ Inconsistência

Os requisitos estão consistentes entre si?

□ Fato Incorreto

■ As funções especificadas são coerentes com o sistema e com os objetivos a serem alcançados?

Profa. Sandra Fabbri

Leitura Baseada em Perspectiva

32

- □ Definição: é um conjunto de técnicas de leitura que focam em determinados pontos de vista.
- □ Fazem com que cada revisor se torne responsável por uma perspectiva em particular.
- □ Possibilita que o revisor melhore sua experiência em diferentes aspectos do documento de requisitos.
- Assegura que perspectivas importantes sejam contempladas.

Leitura Baseada em Perspectiva

33

- □ Cada revisor possui um "cenário" para guiar seu trabalho de revisão.
- □ Todo "cenário" consiste de duas partes:
 - Construir um modelo do documento que está sob revisão a fim de aumentar o entendimento sobre o mesmo.
 - Responder questões sobre o modelo, tendo como foco itens e problemas de interesse da organização.

Profa. Sandra Fabbri

Leitura Baseada em Perspectiva

35

- □ Cada revisor vai ler o Documento de Requisitos com olhos diferentes
- □ Benefícios:
 - determina uma responsabilidade específica para cada revisor.
 - melhora a cobertura de defeitos.

cobertura baseada em perspectiva

Leitura Baseada em Perspectiva

34

□ Como é composto o "cenário"

Profa. Sandra Fabbri

Leitura Baseada em Perspectiva

36

□ Considerando o Documento de Requisitos (DR), quais as leituras interessantes?

- o projetista que usa o DR para gerar o projeto do sistema.
- o testador que, com base no DR deve gerar casos de teste para testar o sistema quando este estiver implementado.
- o usuário para verificar se o DR está capturando toda funcionalidade que ele deseja para o sistema.

Leitura Baseada em Perspectiva -Visão do Usuário

37

- definir um conjunto de funções que o usuário esteja apto a executar.
- definir o conjunto de entradas necessárias para executar cada função e o conjunto de saídas que são geradas por cada função.
- isso pode ser feito escrevendo todos os cenários operacionais que o sistema deve executar.
- iniciar com os cenários mais óbvios até chegar nos menos comuns ou condições especiais.
- □ ao fazer isso, faça a você mesmo as seguintes perguntas:
- sugestão: usar como modelo Caso de Uso

Profa Sandra Fahhri

Leitura Baseada em Perspectiva -Visão do Testador

39

- para cada especificação funcional ou requisito gere um ou um conjunto de casos de teste que faça com que você se assegure de que a implementação do sistema satisfaz a especificação funcional ou o requisito.
- use a sua abordagem de teste normal e adicione critérios de teste.
- ao fazer isso, faça a você mesmo as seguintes perguntas para cada teste:
- sugestão: usar como critérios de teste Particionamento de Equivalência, Análise do Valor Limite

Leitura Baseada em Perspectiva -Visão do Usuário

38

Questões:

- todas as funções necessárias para escrever os cenários estão especificadas no documento de requisitos ou na especificação funcional?
- as condições iniciais para inicializar os cenários estão claras e corretas?
- as interfaces entre as funções estão bem definidas e compatíveis (por ex., as entradas de uma função têm ligação com as saídas da função anterior?)
- você consegue chegar num estado do sistema que deve ser evitado (por ex., por razões de segurança)?
- os cenários podem fornecer diferentes respostas dependendo de como a especificação é interpretada?
- a especificação funcional faz sentido de acordo com o que você conhece sobre essa aplicação ou sobre o que foi especificado em uma descrição geral?

Profa. Sandra Fabbri

Leitura Baseada em Perspectiva -Visão do Testador

40

□ Questões:

- você tem toda informação necessária para identificar o item a ser testado e o critério de teste? Você pode gerar um bom caso de teste para cada item, baseando-se no critério?
- você tem certeza de que os teste gerados fornecerão os valores corretos nas unidades corretas?
- existe uma outra interpretação dos requisitos de forma que o implementador possa estar se baseando nela?
- existe um outro requisito para o qual você poderia gerar um caso de teste similar, mas que poderia levar a um resultado contraditório?
- a especificação funcional ou de requisitos faz sentido de acordo com aquilo que você conhece sobre a aplicação ou a partir daquilo que está descrito na especificação geral?

Lista de Defeitos

11

Nro Sequencial	Local no Doc. Requisitos	Tipo do Defeito	Descrição
1	RF5	0	Não discriminadas as informações necessárias para que seja feito o cadastro da pessoa.
2	RF12	А	Não fica claro qual a taxa que deve ser paga, no caso de atraso de livro
nro da seção ou do requisito no doc. de			taxonomia de erros ma explicação que dê para entender porque inspetor considera que aquilo seja um defeito

Profa. Sandra Fabbri

Bibliografia

42

- Gasili et. al., 86) Basili, V.; Selby, Richard W.; Hutchens, David H. Experimentation in Software Engineering. IEEE Transactions on Software Engineering. n. 7, vol. SE-12 (1986), 733-743.
- (Basili & Selby, 87) Basili, V.; Selby, Richard W. Comparing the Effectiveness of Software Testing
 Strategies. IEEE Transactions on Software Engineering. n. 12, vol. SE-13 (1987), 1278-1296.
- (Basili et. al., 96) Basili, V.; Green, S.; Laitenberger, O.; Lanubile, F.; Shull, F.; Sorumgard, S.;
 Zelkowitz, M. The Empirical Investigation of Perspective-Based Reading. Empirical Software
 Engineering: An International Journal. n. 2, vol. 1 (1996), 133-164.
- (Kamsties & Lott, 95) Kamsties, E.; Lott, C. M. An empirical evaluation of three defect-detection techniques. Technical Report ISERN-95-02, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, 1995.
- www.cs.umd.edu/~mvz/mswe609/shull.pdf

Profa. Sandra Fabbri