Labs **Machine Learning Course**Fall 2019

Problem Set 2 Sept 26 2010

EPFL

School of Computer and Communication Sciences Martin Jaggi & Rüdiger Urbanke www.epfl.ch/labs/mlo/machine-learning-cs-433

Problem Set 2, Sept 26, 2019 (Solutions to Theory Questions)

1 MAE Subgradient (Exercise 6)

3h =

The subgradient for the function $h:\mathbb{R}\to\mathbb{R}, h(e):=|e|$ is given as

$$g: \mathbb{R} \to \{-1, 0, 1\} \ , g(e) := sign(e).$$

The MAE cost function is defined as $\mathcal{L}(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} |y_n - \boldsymbol{x}_n^{\top} \boldsymbol{w}|$.

As given in the annotated lecture notes 2, we can use the **chain-rule for subgradients**, for $\mathcal{L}(\boldsymbol{w}) := h(q(\boldsymbol{w}))$, when the outer function h is not differentiable, but q is differentiable. We write $\partial h(\boldsymbol{y})$ for the set of all subgradients of h at \boldsymbol{y} . Then any vector \boldsymbol{g} of the following form is a subgradient of \mathcal{L} at \boldsymbol{w} :

$$g \in \partial h(q(w)) \cdot \nabla q(w)$$

where we can pick any element of the left, and multiply with the vector on the right (the gradient).

We now find the (sub)gradient update for a single component w_i and conclude by generalizing to the whole vector \boldsymbol{w} . In our case here, ∂h is the sign function. Then for $\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial w_i} = \frac{1}{N} \sum_{n=1}^N \frac{\partial |y_n - \boldsymbol{x}_n^\top \boldsymbol{w}|}{\partial w_i}$ we have that:

$$\frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial w_i} = \frac{1}{N} \sum_{n=1}^{N} -(x_n)_i \operatorname{sign}(y_n - \boldsymbol{x}_n^{\top} \boldsymbol{w}).$$

Finally we can conclude that $\frac{-1}{N} \boldsymbol{X}^{\top} \cdot sign(\boldsymbol{e})$ is a subgradient to \mathcal{L} at \boldsymbol{w} , where $\boldsymbol{e} := \boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{w}$ and sign applied element-wise to \boldsymbol{e} , and \boldsymbol{X} is the matrix collecting all datapoints as its rows.