Lecture Review and Textbook References

- Section 2.5 Translating assembly language into machine language
 - Page 85, Figure 2.6 has excellent examples of translating assembly language instructions to machine language for both R and I format instructions
- What are MIPS fields? What do they contain?
- What is a pseudo-instruction? How can it be represented in machine language?
- How many bits are MIPS instructions?

R Format Instructions:

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

I Format Instructions:

ор	rs	rt	constant or address
6 bits	5 bits	5 bits	16 bits

op – operation code

rs/rt – first and second source registers

rd – destination register **shamt** – shift amoun

shamt – shift amount **funct** – function code

J Format Instructions:

ор	(pseudo) address
6 bits	26 bits

R Format Instruction Example: add \$s1, \$s2, \$s3

ор	rs	rt	rd	shamt	funct
0	18	19	17	0	32

I Format Instruction Example: addi \$s1, \$s2, 100

ор	rs	rt	constant or address
8	17	18	100

op – operation code **rd** – destination register

rs/rt – first and second source registers

shamt – shift amount **funct** – function code

J Format Instruction Example: j 10000

ор	(pseudo) address
2	10000

R Format Instruction Example: add \$s1, \$s2, \$s3

ор	rs	rt	rd	shamt	funct
000000	10010	10011	10001	00000	100000

I Format Instruction Example: addi \$s1, \$s2, 100

ор	rs	rt	constant or address
01000	10001	10010	000000001100100

rd – destination register

op – operation code **rs/rt** – first and second source registers

shamt – shift amount **funct** – function code

J Format Instruction Example: j 10000

ор	(pseudo) address
00010	000000000010011100010000

More about this next week...

Terminal and Non-Terminal Functions

- Wikipedia definition
 - a non-terminal function is a function (node) in a parse tree which is either a root or a branch in that tree whereas a terminal function is a function (node) in a parse tree which is a leaf
 - Source: https://en.wikipedia.org/wiki/Terminal and non-terminal functions Retrieved 21-Jan-2016
- Informal definition
 - a terminal function is a function which does not call another function, a non-terminal function is one that does

Lab Activity

Programming in MIPS

Download tutorial3starter.s from the course Moodle. We will add to the same file incrementally.

Write a terminal function to read and print a string using a statically allocated buffer.

Create a terminal function which returns the length of a string

Hint: This will involve loops and indexing into a character array (like C strings)

Create a terminal function to convert a string to uppercase

Hint: This will involve simple comparisons, ASCII character codes and the load/store byte instructions

Create a **non-terminal** function to dynamically allocate an array to store a histogram of character frequencies, then compute and print that histogram.

Hint: Your function is non-terminal because it will call 1 or more terminal (helper) function(s). What complication does this introduce?

Completed Program Sample Output

```
the count for L is 0.
Enter a string: CMPT 215 is awesome!
CMPT 215 is awesome!
                                                      the count for M is 2.
the string contains 21 characters
                                                       the count for N is 0.
                                                       the count for 0 is 1.
in upper case, the string is CMPT 215 IS AWESOME!
                                                       the count for P is 1.
the count for A is 1.
the count for B is 0.
                                                       the count for O is O.
                                                       the count for R is 0.
the count for C is 1.
the count for D is 0.
                                                       the count for S is 2.
                                                       the count for T is 1.
the count for E is 2.
the count for F is 0.
                                                       the count for U is 0.
                                                       the count for V is 0.
the count for G is 0.
the count for H is O.
                                                       the count for W is 1.
the count for I is 1.
                                                       the count for X is 0.
the count for J is 0.
                                                       the count for Y is 0.
                                                       the count for Z is 0.
the count for K is O.
```