14 egalitarian statistical solutions to population

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe 14 egalitarian statistical solutions to population.

The paper ends with "The End"

Introduction

An **egalitarian** statistical solution to population has **low** standard deviation.

In this paper, I describe 14 egalitarian statistical solutions to population.

Note that these 14 egalitarian statistical solutions are possible in any economy including the standard oliGARCHy.

1.

2.

3.

4.

5.

6.

7.

14 egalitarian solutions to population

$$p_1 = 247, p_2 = 263, p_3 = 234, p_4 = 229, p_5 = 251, p_6 = 261, p_7 = 240$$

$$p_8 = 246, p_9 = 240, p_{10} = 249, p_{11} = 239, p_{12} = 221, p_{13} = 256, p_{14} = 233$$

$$\mu = \frac{487}{2}, \sigma = \sqrt{\frac{3819}{26}}$$

$$p_1 = 246, p_2 = 245, p_3 = 251, p_4 = 244, p_5 = 262, p_6 = 278, p_7 = 238$$

$$p_8 = 219, p_9 = 247, p_{10} = 230, p_{11} = 247, p_{12} = 240, p_{13} = 250, p_{14} = 272$$

$$\mu = \frac{3469}{14}, \sigma = \sqrt{\frac{42621}{182}}$$

$$p_1 = 258, p_2 = 243, p_3 = 254, p_4 = 243, p_5 = 248, p_6 = 243, p_7 = 243, p_8 = 253$$

$$p_9 = 246, p_{10} = 226, p_{11} = 253, p_{12} = 264, p_{13} = 232, p_{14} = 264$$

$$\mu = \frac{1735}{7}, \sigma = 2\sqrt{\frac{2698}{91}}$$

$$p_1 = 269, p_2 = 236, p_3 = 237, p_4 = 239, p_5 = 256, p_6 = 252, p_7 = 252$$

$$p_8 = 222, p_9 = 248, p_{10} = 257, p_{11} = 252, p_{12} = 249, p_{13} = 233, p_{14} = 248$$

$$\mu = \frac{1725}{7}, \sigma = 2\sqrt{\frac{3233}{91}}$$

$$\begin{aligned} p_1 &= 253, p_2 = 261, p_3 = 250, p_4 = 227, p_5 = 235, p_6 = 263, p_7 = 263 \\ p_8 &= 242, p_9 = 235, p_{10} = 266, p_{11} = 251, p_{12} = 253, p_{13} = 250, p_{14} = 265 \\ \mu &= 251, \sigma = 2\sqrt{\frac{497}{13}} \end{aligned}$$

$$p_1 = 242, p_2 = 230, p_3 = 236, p_4 = 249, p_5 = 249, p_6 = 221, p_7 = 232$$

$$p_8 = 251, p_9 = 261, p_{10} = 231, p_{11} = 269, p_{12} = 225, p_{13} = 245, p_{14} = 214$$

$$\mu = \frac{3355}{14}, \sigma = \sqrt{\frac{43613}{182}}$$

$$p_1 = 253, p_2 = 263, p_3 = 235, p_4 = 272, p_5 = 260, p_6 = 237, p_7 = 236$$

$$p_8 = 258, p_9 = 249, p_{10} = 266, p_{11} = 227, p_{12} = 272, p_{13} = 260, p_{14} = 260$$

$$\mu = \frac{1774}{7}, \sigma = 5\sqrt{\frac{762}{91}}$$

$$p_1 = 243, p_2 = 242, p_3 = 256, p_4 = 233, p_5 = 239, p_6 = 231, p_7 = 219$$

$$p_8 = 234, p_9 = 244, p_{10} = 238, p_{11} = 225, p_{12} = 233, p_{13} = 225, p_{14} = 234$$

$$\mu = \frac{1648}{7}, \sigma = 2\sqrt{\frac{1994}{91}}$$

9.

$$p_{i}$$

10.

12.

14.

 $p_1 = 235, p_2 = 227, p_3 = 257, p_4 = 251, p_5 = 212, p_6 = 252, p_7 = 267$ $p_8 = 262, p_9 = 251, p_{10} = 241, p_{11} = 248, p_{12} = 257, p_{13} = 296, p_{14} = 292$ $\mu = \frac{1774}{7}, \sigma = 2\sqrt{\frac{11437}{91}}$

 $p_1 = 267, p_2 = 240, p_3 = 245, p_4 = 257, p_5 = 266, p_6 = 273, p_7 = 225$ $p_8 = 261, p_9 = 261, p_{10} = 232, p_{11} = 270, p_{12} = 253, p_{13} = 255, p_{14} = 237$ $\mu = 253, \sigma = \frac{54}{\sqrt{13}}$

 $\begin{aligned} p_1 &= 256, p_2 = 241, p_3 = 239, p_4 = 263, p_5 = 265, p_6 = 249, p_7 = 243 \\ p_8 &= 251, p_9 = 257, p_{10} = 247, p_{11} = 224, p_{12} = 269, p_{13} = 239, p_{14} = 270 \\ \mu &= \frac{3513}{14}, \sigma = \sqrt{\frac{32017}{182}} \end{aligned}$

 $\begin{aligned} p_1 &= 251, p_2 = 254, p_3 = 251, p_4 = 216, p_5 = 222, p_6 = 268, p_7 = 251 \\ p_8 &= 252, p_9 = 260, p_{10} = 249, p_{11} = 256, p_{12} = 251, p_{13} = 263, p_{14} = 258 \\ \mu &= \frac{1751}{7}, \sigma = 2\sqrt{\frac{4651}{91}} \end{aligned}$

 $p_1 = 214, p_2 = 243, p_3 = 225, p_4 = 247, p_5 = 265, p_6 = 253, p_7 = 242$ $p_8 = 275, p_9 = 246, p_{10} = 235, p_{11} = 241, p_{12} = 257, p_{13} = 266, p_{14} = 264$ $\mu = \frac{3473}{14}, \sigma = \sqrt{\frac{51421}{182}}$

 $p_1 = 262, p_2 = 239, p_3 = 265, p_4 = 280, p_5 = 229, p_6 = 247, p_7 = 227$ $p_8 = 222, p_9 = 236, p_{10} = 231, p_{11} = 249, p_{12} = 249, p_{13} = 255, p_{14} = 244$ $\mu = \frac{3435}{14}, \sigma = \sqrt{\frac{48597}{182}}$

The End