TP2 MRR

Noah KWA MOUTOME - Victor TAN

2023-10-31

IV. Cookies Study

```
cookies_data <- read.csv("cookies.csv")
dim(cookies_data)
## [1] 32 701</pre>
```

We see that there are 700 co-variables. We can assume that some of them are less important than the others. To see this, let's do a Ridge regression and look at the coefficient of each co-variables.

```
library(glmnet)

## Le chargement a nécessité le package : Matrix

## Loaded glmnet 4.1-8

y <- cookies_data[, 1]

X <- cookies_data[, -1]

cv_ridge_model <- cv.glmnet(as.matrix(X), y, alpha=0, standardize = TRUE)

plot(cv_ridge_model, main="Ridge_Regression")</pre>
```



```
print(cv_ridge_model)
```

```
##
## Call: cv.glmnet(x = as.matrix(X), y = y, alpha = 0, standardize = TRUE)
##
## Measure: Mean-Squared Error
##
##
       Lambda Index Measure
## min 11.42
                100 0.5277 0.1171
                                         700
                                         700
## 1se
        22.95
                 85
                     0.6431 0.1351
best_lambda <- cv_ridge_model$lambda.min</pre>
best_lambda_ridge_model <- best_lambda</pre>
print(paste("Best lambda :", best_lambda))
```

[1] "Best lambda : 11.4243191334971"

We can also plot the Regularization Path.

Now let's take a look at the coefficients of the best model we've managed to get.

```
final_ridge_model <- glmnet(as.matrix(X), y, alpha=0, lambda=best_lambda)
abs_coef <- abs(coef(final_ridge_model)[-1])</pre>
```

[1] 2.232542e-05

[1] "Number of value higher than 10^-1: 178"

[1] "Number of value higher than 10^-2: 629"

[1] "Number of value higher than 10^-3 : 693"

[1] "Number of value higher than 10^-4 : 699"

We can see that the majority of the coefficients are lower than 10^{-1} . Then, we could think that a lot of our co-variables are useless to predict the target variable. (We scaled the data when doing the Ridge regression)

Let's do a Lasso regression to see if there are less co-variables that are actually useful to predict the fat :

27 23 12 13 11 Lasso Regression 1 1 1 1 1 1


```
##
## Call: cv.glmnet(x = as.matrix(X), y = y, alpha = 1)
##
## Measure: Mean-Squared Error
##
## Lambda Index Measure SE Nonzero
## min 0.01142 100 0.07074 0.01746 27
## 1se 0.01442 95 0.08692 0.02130 23
```

Again, here's the regularization path:

```
plot(cv_lasso_model$glmnet.fit, xvar = "lambda", main="Lasso Regression", xlim=c(-5.5, 0))
abline(h = 0, col = 6, lty = 3)
abline(v = log(best_lambda_lasso), col = 7, lty = 3)
legend("bottomleft", legend = c(colnames(X), "Zero", "Best Lambda"), col = 1:7, lty = 1)
```


print(log(best_lambda_lasso))

[1] -4.472011

Now, let's see how many co-variables we have left :

##		${\tt non_zero_spectra}$	non_zero_coefficients
##	1	X1406	7.037482e-01
##	2	X1408	2.940229e-01
##	3	X1410	1.336872e+00
##	4	X1720	-9.926792e+00
##	5	X1722	-1.355581e+01
##	6	X1882	1.061205e+01
##	7	X1884	7.755343e+00
##	8	X1886	3.492588e+00
##	9	X1888	5.762739e+00
##	10	X1890	5.224832e+00
##	11	X1892	5.554246e-01
##	12	X1894	4.179640e-01
##	13	X1966	7.299027e+00
##	14	X1968	6.783323e-04
##	15	X1970	1.990190e-03
##	16	X1972	6.091168e-04
##	17	X1974	1.477502e-03
##	18	X1976	2.118964e-03

```
## 19
                 X1978
                                 1.855211e-03
## 20
                 X1980
                                 2.782265e-03
## 21
                 X1982
                                 2.921429e-04
## 22
                                 1.729233e-04
                 X1984
## 23
                 X1986
                                 2.473668e-04
## 24
                 X1988
                                 8.019437e-04
                                 4.819718e-05
## 25
                 X1990
## 26
                 X2068
                                -2.840478e-03
## 27
                 X2070
                                -5.620257e-03
## 28
                 X2072
                                -5.550826e+00
## 29
                 X2074
                                -9.807742e+00
                                -9.603172e-04
## 30
                 X2076
## 31
                 X2302
                                -2.810737e+00
##
## Call: glmnet(x = as.matrix(X), y = y, alpha = 1, lambda = best_lambda_lasso)
##
##
    Df %Dev Lambda
## 1 31 98.09 0.01142
```

We can see that our model is pretty accurate (deviance of 98.09%) with only 31 co-variables used among the 700 existant.

Actually, we've shown that even less co-variables are useless than what we thought.

Let's compare the RMSE of the Ridge regression and the Lasso regression :

Ridge:

```
error_ridge <- sqrt(min(cv_ridge_model$cvm))
print(paste("RMSE Ridge :", round(error_ridge, 2)))

## [1] "RMSE Ridge : 0.73"

Lasso :
error_lasso <- sqrt(min(cv_lasso_model$cvm))
print(paste("RMSE Lasso :", round(error_lasso, 2)))

## [1] "RMSE Lasso : 0.27"</pre>
```

Finally, let's verify if only 31 co-variables are useful for our prediction by using a Step forward selection:

```
##
## Call: glm(formula = fat ~ X1980 + X2128 + X1416 + X1716 + X2200 + X1428 +
## X1976 + X2224 + X1978 + X2202 + X1468 + X2252 + X2018 + X2242 +
## X2192 + X1564 + X2164 + X1718 + X2176 + X2216 + X1878 + X1144 +
## X1566 + X2186 + X2244 + X2196 + X2346 + X1502 + X2246 + X1346 +
## X2398, family = gaussian, data = cookies_data)
##
## Coefficients:
```

We see that the RMSE for the Lasso regression is way better than for the Ridge one.

```
(Intercept)
                       X1980
                                     X2128
                                                   X1416
                                                                 X1716
                                                                               X2200
##
##
     1.554e+01
                  -1.658e+02
                                 2.891e+01
                                               8.449e+01
                                                            -4.707e+02
                                                                           5.583e+02
         X1428
                       X1976
                                                   X1978
                                                                 X2202
##
                                     X2224
                                                                               X1468
                  -3.285e+02
##
    -8.572e+01
                                -9.854e+01
                                               4.724e+02
                                                            -3.391e+02
                                                                           3.288e+00
##
         X2252
                       X2018
                                     X2242
                                                   X2192
                                                                 X1564
                                                                               X2164
     1.213e+02
                   4.101e+01
                                               4.322e+01
                                                             1.270e+02
                                                                          -1.991e+02
##
                                -1.714e+02
##
         X1718
                       X2176
                                     X2216
                                                   X1878
                                                                 X1144
                                                                               X1566
##
     4.175e+02
                   1.244e+02
                                -6.102e+01
                                               4.573e+01
                                                            -5.264e+00
                                                                          -9.188e+01
##
         X2186
                       X2244
                                     X2196
                                                   X2346
                                                                  X1502
                                                                               X2246
##
    -2.245e+01
                   1.672e+01
                                -4.137e+01
                                               4.972e-01
                                                             2.369e-01
                                                                           2.554e-01
##
         X1346
                       X2398
    -5.883e-03
                   3.412e-06
##
##
## Degrees of Freedom: 31 Total (i.e. Null); O Residual
## Null Deviance:
                          56.37
## Residual Deviance: 1.382e-23
```

AIC: -1638

We see that we also get only 31 degrees of freedom, the same as the lasso regression.

Conclusion

Because we had 700 covariables, which is way greater than the number of observation (32), the matrix X^TX is not invertible and the covariables might be correlated. Therefore, we can't use the OLS method to find the best coefficients. We had to use a Ridge regression or a Lasso regression to find the best coefficients and a correct number of covariables. We've seen that the Lasso regression was way better than the Ridge one. This is because the Lasso regression is a method that is used to get a sparse solution, which is what we wanted. We've also seen that only 31 co-variables were useful to predict the fat. We've also seen that the RMSE of the Lasso regression was very low comapred to the ridge one, which is really good: the model is really accurate and predictive.