ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 10 settembre 2013

Esercizio A

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS} = k(V_{GS}-V_T)^2$ con k=0.5 mA/V 2 e $V_T=1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore delle resistenze R_1 e R_2 in modo che, in condizioni di riposo, la tensione sul collettore di Q_2 sia $V_C = 9$ V. Determinare, inoltre il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_1 = 43213 \ \Omega$; $R_2 = 56787 \ \Omega$)
- 2) Determinare il guadagno V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -7.69$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 9031.75$ Hz; $f_{z2} = 2.79$ Hz; $f_{p2} = 6.598$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 955.31$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = (\overline{A+D})(\overline{CD} + B + \overline{E}) + \overline{BC}(A + \overline{D}E) + \overline{D}E$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_6 = 10 \Omega$
$R_2 = 4 \text{ k}\Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 300 \Omega$	C = 680 nF
$R_4 = 1 \text{ k}\Omega$	$V_{CC} = 5 \text{ V}$
$R_5 = 100 \Omega$	

Il circuito IC_1 è un NE555 alimentato a V_{CC} = 5V, Q_1 e Q_2 hanno una R_{on} = 0 e V_T =1V, l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 2931.44 Hz)

10/09/2013

$$V_{CE} = 5V$$

$$\overline{I}_{C} = 2mA$$

$$\begin{cases} \Rightarrow \beta_{F} = 200 \\ \overline{I}_{B} = \overline{I}_{C} = 6.836 \mu A \end{cases}$$

$$T_{D} = T_{S} - T_{T} = 3.322 \text{ mA}$$

Vessa

Vcc=18V

Re+Re= 100K

R3 = 2K

R4 = 50 R

 $R_5 = 2K$

R6 = 380K

Rt= 100

R8 = 430K

Rg = 29K

R10 = 2K

 $R_{11} = 4.5 K$ $R_{12} = 20 K$

K(2 = 20 K

 $I_0 = K(V_{05} - V_{+})^2$ $K = 0.5 \times 10^{-3} A$

(1= 47nf

(2 = 150 n F

C3 = 6.8 nF

$$V_{05} = 4.678 \ V \ (> V_{05} - V_{7} = 2.5 + 16 \ V)$$

$$R_{1} = \frac{V_{0}}{(R_{1}, R_{2})} \cdot R_{2} = \frac{V_{0}(R_{1}, R_{2})}{V_{02}} = 56786.6 \ R$$

$$R_{1} = \frac{1}{43213.3}$$

$$V_{102} = 4.678 \ R_{2} = \frac{V_{0}(R_{1}, R_{2})}{V_{02}} \cdot \frac{1}{4.300} \cdot \frac{1}{4.3$$

1 Acoldo = 17. 71 dB

$$=\widehat{\mathbf{A}}\overline{\mathbf{D}}\left(\overline{\mathbf{C}}+\overline{\mathbf{D}}+\mathbf{B}+\overline{\mathbf{E}}\right)+\left(\overline{\mathbf{B}}+\overline{\mathbf{C}}\right)\left(\mathbf{A}+\overline{\mathbf{D}}\mathbf{E}\right)+\overline{\mathbf{D}}\mathbf{E}=$$

$$= \overline{A} \overline{C} \overline{D} + \overline{A} \overline{D} + \overline{A} \overline{B} \overline{D} + \overline{A} \overline{D} \overline{E} + A \overline{B} + \overline{B} \overline{D} \overline{E} + A \overline{C} + \overline{C} \overline{D} \overline{E} + \overline{D} \overline{E} =$$

$$= \overline{A}\overline{D} + A\overline{B} + \overline{D}E + A\overline{C} =$$

$$= A(\overline{B} + \overline{C}) + \overline{D}(\overline{A} + \overline{E})$$

SERRE U12, U15, U16!
$$\frac{1}{x_{16}} + \frac{2}{4n} = \frac{1}{m} =) = \frac{1}{x_{16}} = \frac{1}{2n} =) \times = 2n$$
 U_{16} : $2n$

SERIE USE, U16:
$$\frac{1}{x_{ii}}$$
 $\frac{1}{2n}$ $\frac{1}{n}$ $\frac{1}{x_{ii}}$ $\frac{1}{2n}$ $\frac{1}{x_{ii}}$ $\frac{1}{2n}$ $\frac{1}{x_{ii}}$ $\frac{1}{2n}$ $\frac{1}{x_{ii}}$ $\frac{1}{2n}$ $\frac{1}{x_{ii}}$ $\frac{1}{2n}$ $\frac{1}{x_{ii}}$ $\frac{1}{2n}$ $\frac{1}{x_{ii}}$ $\frac{1}{x$

R1=500/2

$$R_{1} = 500R$$

$$R_{2} = 4 KR$$

$$R_{3} = 300 R$$

$$R_{4} = 4 KR$$

$$R_{5} = 100R$$

$$R_{6} = 800R$$

$$R_{7} = 4 KR$$

$$C = 680 nF$$

1.6V < 2.1396V < 4.84 V

$$V_{1} = \frac{4}{3}V_{CC} = 1.6$$

$$V_{R} = \left(\frac{V_{CC}R_{4}}{R_{5}+R_{4}}\right) \frac{1}{R_{4}IR_{5}+R_{3}+R_{2}} \cdot R_{2} = 4.140786 \text{ V}$$

$$T_1 = C_1 \ln \frac{V_1 - V_{\ell}}{V_{con} - V_{\ell}} = 1.412218 \times 10^{-4}5 = 0.14122 \text{ ms}$$

$$V_i > V_{con} > V_{\ell}$$

2. $\ell 936V > 1.6V > 0.45V$

$$T_2 = T_2$$
 On $\frac{V_1 - V_1}{V_{con} - V_1} = 1.99987 \times 10^{-4}5 = 0.1999 \text{ ms}$

$$f = \frac{1}{T} = 2931.4385 H2$$