

Excursion to dSPACE

- Excursion to dSPACE planned for June, 2nd
 - Further details to be announced

dSPACE GmbH

Rathenaustraße 26 33102 Paderborn

Autonomous Vehicles

Camera

TH W

Agenda

- 1. Motivation
- 2. Building Blocks
 - 1. Lens
 - 2. Sensor technologies
 - 1. CCD vs. CMOS
 - 2. Color
 - 3. KPIs: Resolution, Noise, Dynamic range
 - 3. Vision Processors
- 3. Applications

Motivation camera in vehicle

- Comfort systems
- Support systems
- Accident prevention
- Autonomous Driving

Visible Light

- Visible range of the electromagnetic spectrum of light :
- 380nm 780nm

- UV < 380nm
- IR > 780nnm

Building blocks

Image: Winner, et.al.: Handbook of Driver Assistance Systems

Lenses

- Lens materials:
 - Flint (SiO₂)
 - Crown lenses
 - Plastics

- Focal point:
 - The meeting point of the converging rays and the optical axis.
- Focal length:
 - The distance between the principal plane of a lens and the focal point.

Lenses

- Lens can only focus on objects of a certain distance
- Focusing by moving the lenses in the lens tube

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

Aperture and Exposure time

- Aperture and Exposure time influence the amount of light reaching the sensor
- Aperture Number : $K = \frac{F}{D}$
 - F: focal length
 - D : Aperture diameter

- Aperture also influences the depth of field of the image
 - - → small depth of field
 - → large amount of light onto the sensor
 - Small diameter

 large aperture number
 - → large depth of field
 - → small amount of light
 - Extremly small diameter
 - → Diffraction blur
- Caution: doubling the diameter quadrublicates the amount of light

Aberrations

- Spherical aberration
- Blur can be minimized by stopping down (using larger aperture numbers)

- Chromatic aberration due to varying refraction of light waves
- Lenses with different materials can minimize the error

Depth of field

The depth of field depends on

- Lens aperture
- Focal length of the lens
- Pixel size of the camera
- Distance to the test object

Depth of field: depending on the aperture

Image Sensors: Processing steps

CCD-Sensor I

- Matrix of photodiodes
- Based on the internal photoelectric effect

Image: https://kompendium.info-tip.de/bildsensoren.html (19.11.2017)

CCD-Sensor II

- Pixel not individually readable
- Charge transport via bucket brigade principle
- Fill factor of 100%
- Blooming

CCD-Sensor III

- Various CCD architectures
 - Frame transfer
 - Full-Frame
 - Interline transfer

http://www.spectra-magic.de/Vorlagen/Detektion/D-Version/94_CCD-Architektur_D_MR.jpg (Abrufdatum 28.12.2016)

CMOS-Sensor I

- Complementary Metal-Oxid Semiconductor (or APS Active Pixel Sensor)
- Active sensor
- Current technology

CMOS-Sensor II

Anatomy of the Active Pixel Sensor Photodiode

- Microlens
- Photodiode
- Readout electronics

https://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

Comparison

CCD

- + high light sensitivity (fill factor 100%)
- low dynamic range (60dB)

CMOS

- + high dynamic range (up to 120dB)
- Originally lower light sensitivity (fill factor up to 70%)
 In the last years solved by new technologies like backside illuminated sensors or stacked sensors

Colour sensors

- Image sensor are sensitive to photons reaching the pixels
- Measuring brightness (grey values)
- How do we get colour images?

Colour sensor

• Acquisition of colour information

 Most commonly used colour filter array: Bayer filter

https://en.ids-ima-ging.com/techtipps-detail/en_techtip-18mp-color-sensor-as-mono.html

Resolution

- Spatial resolution
- Temporal resolution
- Contrast resolution

Decreasing spatial resolution

Image: Winner, et.al.: Handbook of Driver Assistance Systems

Noise

- Dark current noise
- Photon noise
- Fixed Pattern Noise
- Quantization noise

Dark current noise

Dynamic range

- Tunnel exit or headlights switched on
- Guarantee of clear images in high contrasts scenarios
- Imaging of clear images in high dynamic range

- HDR Sensors Dynamic 120dB
- CCD sensors dynamic range 60dB

MobilEye

- Israel based company Mobileye
- Supplier of EyeQ computer vision chips with integrated SW for automotive front cameras
 - EyeQ chips used by most of the manufacturers of automotive front cameras

Scalable Architecture

Utilizing the right mixture of accelerators to match the different EyeQ models' needs.

Develop applications using industry-standard tools

- OpenCL runtime environment
- TensorFlow support
- Standard Linux, enabling 3rd-party middleware and libraries
- X86-based development platform
- Supports the full development cycle: from functional bring-up to deployment and performance tuning

MobilEye

MobilEye converting from vision chip supplier to an Autonomous Driving supplier

https://youtu.be/A1qNdHPyHu4 (56 min)

Automotive Cameras

Technical Specifications

• Dimensions: 88 x 70 x 38mm

• Mass: < 200g

• Field of View: hor. up to 125° (effective) / vert. up to 60° (effective)

• Temperature Range: -40° up to +95° (full operational)

Power Dissip.: <7 W

Supply Voltage: 12V

Image+Spec: Continental

Automotive Cameras

TECHNICAL CHARACTERISTICS

Optics	Horizontal field of view	± 50°
	Vertical field of view	27° up, 21° down
	Aperture	F1.8
Imager	Resolution	2.6 MP HDR (2,048 x 1,280 pixels)
	Color pattern	RCCG
	Frame rate	45 frames per second, with flicker mitigation
System on chip	Technology	16 nm FFC
	Processing system	4 x ARM quad core (~ 9000 DMIPS) + 1 x ARM dual lockstep
	Hardware accelerator	DNN, classifier, optical flow, flexible CV engines
Safety level		Up to ASIL-B
Mechanics	Box size	120 x 61 x 36 mm

Image+Spec: Bosch

Front Camera

Front camera with split view technology to support the driver

Stereo front camera for lane detection

Images: Ford, Mercedes

Mirror View Camera

Fuel saving, Noise reduction

Rear View Camera

Accidents avoidance when reversing

Surround View Camera

Recognition of objects in the vicinity of the vehicle (mainly for parking)

Interior Camera

- Driver identification
 - Car theft
- Driver attention
 - Warnings in case of inattention
- Driver fatigue
 - Warnings in case of sleepiness
- Driver Monitoring
 - Hand over requests for autonomous driving

