27/09

Одномерные краевые задачи

$$-(ku')' + cu' + bu = f, x \in (0, l), (1)$$

где u(x) - неизвестная функция; $k(x),\ c(x),\ b(x),\ f(x)$ - известные функции.

Таблица 1 – Граничные условия

No	x = 0	x = 1
1	$u(0) = U_0$	$u(l) = U_l$
2	$k(0)u'(0) = -\sigma_0$	$k(l)u'(l) = \sigma_l$
3	$k(0)u'(0) = -a_0(U_0 - u(0))$	$k(l)u'(l) = a_l(U_l - u(l))$

Интегральная формулировка

Состасим невязку:

$$r = -(ku')' + cu' + bu - f = 0 (2)$$

 $(1) \Leftrightarrow (2)$

Составим следующий интеграл:

$$\int_{0}^{l} r \cdot v dx = 0, \tag{3}$$

где v – некоторая пробная функция ($v = \delta u$ – возможные изменения u) Докажем, что (3) \Leftrightarrow (2):

Предположим, что (3) выполняется, а (2) – нет, то есть $r \neq 0$. Тогда: v – любая пробная функция:

Графики r(x) и v(x)

График $r(x) \cdot v(x)$

Из последнего графика видно, что

$$\int_{0}^{l} r \cdot v dx \neq 0,$$

что противоречит нашему предположению о том, что (3) выполняется, ч.т.д.

Итак,

$$\int_{0}^{l} r \cdot v dx = \int_{0}^{l} (-(ku')'v + cu'v + buv - fv) dx = 0$$
 (4)

Интегрируем по частям первый интеграл:

$$\int_{0}^{l} -(ku')'v dx = \begin{vmatrix} \int_{0}^{l} f dg = fg \Big|_{0}^{l} - \int_{0}^{l} g df \\ dg = -(ku')' dx & g = -ku' \\ f = v & df = v' dx \end{vmatrix} =$$
 (5)

$$=-ku'v\bigg|_0^l+\int\limits_0^l(ku')v'dx=\int\limits_0^l(ku')v'dx-\underbrace{(\underbrace{k(l)u'(l)v(l)}_{F_l}\underbrace{-k(0)u'(0)v(0)}_{F_0})}_{F(v)}$$

Подставим (5) в (4):

$$\int_{0}^{l} ((ku')'v' + cu'v + buv - fv)dx - F(v) = 0$$

Рассмотрим граничные условия:

$N_{\overline{0}}$	x = 0	x = 1
1	$u(0) = U_0 \Rightarrow v(0) = 0, F_0 = 0$	$u(l) = U_l \Rightarrow v(l) = 0, \ F_l = 0$
2	$k(0)u'(0) = -\sigma_0 \Rightarrow F_0 = \sigma_0 v(0)$	$k(l)u'(l) = \sigma_l \Rightarrow F_l = \sigma_l v(l)$
3	$k(0)u'(0) = -a_0(U_0 - u(0)) \Rightarrow$	$k(l)u'(l) = a_l(U_l - u(l)) \Rightarrow$
	$\Rightarrow F_0 = a_0(U_0 - u(0))v(0)$	$\Rightarrow F_l = a_l(U_l - u(l))v(l)$

Разобьем отрезок [0,l] на части $[x_i,x_{i+1}]$: