APPENDIX B

TABLE OF SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs)

The DF is given by (cf. Sec. 2.2)

$$N(A,\omega) = n_{p}(A,\omega) + jn_{q}(A,\omega) = \frac{j}{\pi A} \int_{0}^{2\pi} y(A\sin\psi, A\omega\cos\psi)e^{-i\psi} d\psi$$

In this table we employ the "saturation function" (cf. Sec. 2.3) denoted by

$$f(\gamma) = -1 \qquad \gamma < -1$$

$$= \frac{2}{\pi} (\sin^{-1} \gamma + \gamma \sqrt{1 - \gamma^2}) \qquad |\gamma| \le 1$$

$$= 1 \qquad \gamma > 1$$

This function is plotted in Fig. C.1.

TABLE OF SIN USOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) (Continued)

$n_p(A,\omega)$ and $n_q(A,\omega)$	$n_{p} = 0$ $n_{q} = 0$ $n_{p} = \frac{4}{\pi A} \sum_{i=1}^{n} (D_{i} - D_{i-1}) \sqrt{1 - \left(\frac{\delta_{i}}{A}\right)^{4}}$ $n_{q} = 0$	$n_{q} = 0$ $n_{q} = 0$ $n_{p} = \frac{4D}{\pi^{A}} \sum_{i=1}^{n} \sqrt{1 - \left(\frac{2i-1}{2} \frac{h}{A}\right)^{2}}$ $n_{q} = 0$	$n_{q} = 0$ $n_{q} = 0$ $n_{p} = \frac{4D}{\pi A} \sqrt{1 - \left(\frac{\delta}{A}\right)^{3}}$ $n_{q} = 0$
Comments	$A<\delta_1$ $\delta_{n+1}>A>\delta_n$	$A < \frac{h}{2}$ $\frac{2n+1}{2}h > A > \frac{2n-1}{2}h$ See Fig. B.1 and Sec. 2.3	$A<\delta$ $A>\delta$ See Fig. B.1
Nonlinearity	$\sum_{b_1, b_2, b_3, b_4, b_5, b_4, b_5, b_6, b_7, b_7, b_7, b_7, b_7, b_7, b_7, b_7$	$\frac{4b}{3b} = \frac{4b}{2b} = \frac{4b}{2b} = \frac{4b}{2b}$ 2. Uniform quantizer or granularity	b b x x 3. Relay with dead zone

, a		$n_p = \frac{4D}{\pi A}$ $n_q = 0$
×		
4. Ideal relay	See Sec. 2.3	
<i>m q</i>		$n_p = \frac{4D}{\pi A} + m$ $n_q = 0$
×		
5. Preload	See Sec. 2.3	
W W W	$\delta_1 > A > 0$	$n_p = \frac{4D}{\pi A} + m_1$ $n_q = 0$
8, 6, 8, x	$\delta_2 > A > \delta_1$	$n_p = \frac{4D}{\pi A} + (m_1 - m_2) f\left(\frac{\delta_1}{A}\right) + m_2$ $n_q = 0$
6. General piecewise-linear odd memoryless nonlinearity	or, in a form valid for all A , $(\delta_{n+1} > A > \delta_n)$	$n_p = \frac{4D}{\pi A} + \sum_{i=1}^{n} (m_i - m_{i+1}) f\left(\frac{\delta_i}{A}\right) + m_{n+1}$ $n_q = 0$
	See Sec. 2.3	

TABLE OF SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) (Continued)

Nonlinearity	Comments	$n_{p}(A,\omega)$ and $n_{q}(A,\omega)$
800		$n_p = m_l \left(\frac{A}{A}\right)$ $n_q = 0$
7. Saturation or limiter	See Fig. B.2 and Sec. 2.3	
× × × × × × × × × × × × × × × × × × ×		$n_p = m \left[1 - f \left(\frac{\delta}{A} \right) \right]$ $n_q = 0$
8. Dead zone or threshold	See Fig. B.2 and Sec. 2.3	
m 18		$n_p = (m_1 - m_2) f\left(\frac{\delta}{A}\right) + m_2$ $n_q = 0$
9. Gain-changing nonlinearity	See Sec. 2.3	

$n_p = m \left[f \left(\frac{\delta_2}{A} \right) - f \left(\frac{\delta_1}{A} \right) \right]$ $n_q = 0$	$n_p = -m_1 f\left(\frac{\delta_1}{A}\right) + (m_1 - m_2) f\left(\frac{\delta_2}{A}\right) + m_2$ $n_q = 0$	$n_q = 0$ $n_q = 0$ $n_p = \frac{4D}{\pi A} \sqrt{1 - \left(\frac{\delta}{A}\right)^8} + m \left[1 - f\left(\frac{\delta}{A}\right)\right]$ $n_q = 0$
See Sec. 2.3		Λ
$m(\delta_1 - \delta_1) - \cdots - \frac{x}{\delta_1 - \delta_2}$ 10. Limiter with dead zone	m,(8, -8,) 8, 8, x 11. Gain-changing nonlinearity with dead zone	12.

TABLE OF SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) (Continued)

$n_p(\mathcal{A},\omega)$ and $n_q(\mathcal{A},\omega)$	$n_p = m_1$ $n_q = 0$	$n_p = (m_1 - m_2)f\left(\frac{\delta}{A}\right) + m_2 + \frac{4D}{\pi A}\sqrt{1 - \left(\frac{\delta}{A}\right)^2}$		$n_p = \frac{4D}{\pi A}$ $n_q = 0$	$n_p = rac{4D}{\pi A} \left[1 - \sqrt{1 - \left(rac{\delta}{A} ight)^2} ight]$ $n_q = 0$	$n_p = 0$ $n_q = 0$	$n_q = 1$ $n_q = 0$
Comments	$A<\delta$	$A > \delta$		$A<\delta$	$A>\delta$		
Nonlinearity	$D+m_1\delta \xrightarrow{\qquad \qquad }$	× vo	13.	, a	14.	y = c	y = x 16. Linear gain

y = x x		$n_p = \frac{8}{3\pi} A$
17. Odd square law	See Fig. B.3	
$y = x^3$		$n_p = \frac{3}{4}A^2$
18. Cubic characteristic	See Fig. B.3	$n_q = 0$
$y = x^3 x $		$n_p = \frac{32}{15\pi} A^3$
19. Odd quartic characteristic		$n_q = 0$
$y = x^5$		$n_p = \frac{5}{8} A^4$ $n_c = 0$
20. Quintic characteristic		
$y = x^6 x $		$n_p = \frac{64}{35\pi} A^5$ $n_q = 0$
21.		
$y = x^7$		$n_p = \frac{35}{64} A^6$ $n_a = 0$
22.		

TABLE OF SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) (Continued)

Nonlinearity	Comments	$n_p(A,\omega)$ and $n_q(A,\omega)$
$y=x^7 x $		$n_p = \frac{512}{315\pi} A^7$ $n_n = 0$
23.		$n_q = 0$
$y = x^n$	$n=3,5,7,\ldots$	$n_p = \frac{n(n-2)(n-4)\cdots(3)}{(n+1)(n-1)(n-3)\cdots(4)}A^{n-1}$
24.	See Fig. B.3 and Sec. 2.3	$n_q = 0$
$y = x^{n-1} x $	$n=2,4,6,\ldots$	$n_p = \frac{4}{\pi} \frac{n(n-2)(n-4)\cdots(2)}{(n+1)(n-1)(n-3)\cdots(3)} A^{n-1}$ $n_n = 0$
25.	See Fig. B.3 and Sec. 2.3	$n_q = 0$
$y = \sqrt{x} \qquad (x \ge 0)$ $= -\sqrt{-x} \qquad (x < 0)$		$n_p = 1.11 \ A^{-1/2} $ $n_q = 0$
26. Odd square root	See Fig. B.3	
$y=x^{1/3}$		$n_p = 1.16 A^{-2/3} n_q = 0$
27. Cube root characteristic		
$y = x^{b}$ $(x \ge 0)$ = $-(-x)^{b}$ $(x < 0)$	$b>-2$ $\Gamma(\text{arg.})$ is the gamma function.	$n_p = \frac{2}{\sqrt{\pi}} \frac{\Gamma\left(\frac{b+2}{2}\right)}{\Gamma\left(\frac{b+3}{2}\right)} A^{b-1}$ $n_q = 0$

TABLE OF SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) (Continued)

$n_p(A,\omega)$ and $n_q(A,\omega)$	$n_{p} = m_{2} - \frac{m_{1}}{2} \left[f\left(\frac{h+\delta}{A}\right) + f\left(\frac{h-\delta}{A}\right) \right] + \left(\frac{m_{1}-m_{2}}{2}\right) \left[f\left(\frac{h+D/m_{1}+\delta m_{1}/(m_{1}-m_{2})}{A}\right) + f\left(\frac{h+D/m_{1}-\delta m_{1}/(m_{1}-m_{2})}{A}\right) \right] + f\left(\frac{h+D/m_{1}-\delta m_{1}/(m_{1}-m_{2})}{A}\right) \right]$	$n_p = \frac{m}{2} \left[-f\left(\frac{h+\delta}{A}\right) + f\left(\frac{h+\delta+D/m}{A}\right) + f\left(\frac{h-\delta+D/m}{A}\right) - f\left(\frac{h-\delta}{A}\right) \right]$ $n_q = -\frac{4D\delta}{\pi A^3}$	$n_p = \frac{m}{2} \left[1 + f \left(1 - \frac{2\delta}{A} \right) - f \left(\frac{h + \delta}{A} \right) - f \left(\frac{h - \delta}{A} \right) \right]$ $n_q = -\frac{4\delta m}{\pi A^3} (A - h - \delta)$
Comments	$m_1>m_2 \ A\geq h+rac{\partial m_1}{m_1} +rac{\delta m_1}{m_1-m_2}$	$A > h + \frac{D}{m} + \delta$	$A > h + \delta$
Nonlinearity	34.	35.	$m(A-h-b) m$ $\frac{y}{1-y}$ $\frac{y}{1-y}$ $\frac{y}{1-y}$ $\frac{y}{y}$ $\frac{y}{1-y}$

$n_{q} = 0$ $n_{q} = 0$ $n_{p} = \frac{2D}{\pi A} \left[\sqrt{1 - \left(\frac{\delta}{A}\right)^{2} (1 - \epsilon)^{2}} + \sqrt{1 - \left(\frac{\delta}{A}\right)^{2} (1 + \epsilon)^{2}} \right]$ $n_{q} = -\frac{4D\delta}{\pi A^{2}}$	$n_{p} = 0$ $n_{p} = 0$ $n_{p} = \frac{4D}{\pi A} \sqrt{1 - \left(\frac{\delta}{A}\right)^{2} (1 - \epsilon)^{2}}$ $n_{q} = 0$ $n_{p} = \frac{2D}{\pi A} \left[\sqrt{1 - \left(\frac{\delta}{A}\right)^{2} (1 - \epsilon)^{2}} + \sqrt{1 - \left(\frac{\delta}{A}\right)^{2} (1 + \epsilon)^{2}}\right]$ $n_{q} = \frac{4D\delta}{\pi A^{2}}$	$n_p = \frac{2D}{\pi A} \sqrt{1 - \left(1 - \frac{2\delta}{A}\right)^2}$ $n_q = -\frac{4D\delta}{\pi A^3}$
$A < \delta(1+\epsilon)$ $A > \delta(1+\epsilon)$ $A > \delta(1+\epsilon)$ See Fig. B.5 and Sec. 2.3	$A < \delta(\epsilon - 1)$ $\delta(\epsilon - 1) < A < \delta(\epsilon + 1)$ $A > \delta(\epsilon + 1)$	Λ ∀ &
2) P P P P P P P P P P P P P P P P P P P	38. (negative) Hysteresis	39.

TABLE OF SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) (Continued)

$n_p(A,\omega)$ and $n_q(A,\omega)$	$n_p = \frac{m}{2} \left[2 - f \left(\frac{D}{A} + \delta \right) + f \left(\frac{D}{A} - \delta \right) \right]$ $n_q = -\frac{4D\delta}{\pi A^2}$	$n_{p} = \frac{m_{1} - m_{2}}{2} \left[f\left(\frac{D}{m_{1}} + \frac{m_{1}\delta}{A}\right) + f\left(\frac{D}{m_{1}} - \frac{m_{1}\delta}{A}\right) \right] + m_{3}$ $n_{q} = -\frac{4D\delta}{\pi A^{3}}$	$n_p = \frac{m}{2} \left[f\left(\frac{D}{A} + \delta\right) + f\left(\frac{D}{A} - \delta\right) \right]$ $n_q = -\frac{4D\delta}{\pi A^4}$
Comments	$A > \delta + \frac{D}{m}$	$m_1 > m_3$ $A > \frac{D}{m_1} + \frac{\delta m_1}{m_1 - m_2}$	$A > \frac{D}{m} + \delta$
Nonlinearity	y 0 × × × × × × × × × × × × × × × × × ×	b b c x x x x x x x x x x x x x x x x x	b b x x 42.

$n_p = \frac{4D}{\pi A} \sqrt{1 - \left(\frac{\delta}{A}\right)^2} + m$ $n_q = -\frac{4D\delta}{\pi A^2}$		$n_p = rac{4D}{\pi A} \sqrt{1 - \left(rac{\delta}{A} ight)^2} + rac{D}{\delta}$ $n_q = -rac{4D\delta}{\pi A^2}$		$n_p = rac{4D}{\pi A} \sqrt{1 - \left(rac{\delta}{A} ight)^2}$ $n_q = -rac{4D\delta}{\pi A^2}$	
A > &	See Sec. 2.5	V	See Fig. B.6	$A>\delta$	See Fig. B.6 and Sec. 2.3
x 0	43.	2 0 1	44. Negative deficiency	***	45. Rectangular hysteresis or toggle

TABLE OF SINUSOIDAL-INPUT DESCRIBING FUNCTIONS (DFs) (Continued)

$n_p(A,\omega)$ and $n_q(A,\omega)$	$n_{q} = m$ $n_{q} = -\frac{4D}{\pi A}$	$n_p = 0$ $n_q = -\frac{4D}{\pi A}$	$n_p = \frac{1}{2} \left[1 + f \left(1 - \frac{b}{A} \right) \right]$ $n_q = -\frac{1}{\pi} \left[2 \frac{b}{A} - \left(\frac{b}{A} \right)^2 \right]$
Comments			$A > \frac{b}{2}$ See Fig.B.7 and Sec. 2.3
Nonlinearity	y 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y b + x x + 47.	48. Friction-controlled backlash

$n_p = rac{D}{2\delta} f\left(rac{\delta}{A} ight) + rac{2D}{\pi A}$ $n_q = 0$	$n_p = \frac{m_1 + m_2}{2}$ $n_q = \frac{m_1 - m_2}{\pi}$	$n_p = \frac{m_1 + m_2}{2}$ $n_q = 0$
$A>\delta$ Multivalued nonlinearity for which $n_{\delta}(A,\omega)=0$.	Multivalued nonlinearity for $n_p = \frac{1}{4}$ which the DF is independent of A. $n_q = \frac{1}{4}$	Asymmetric characteristic $m_p = \frac{m}{q}$ equivalent to the parallel combination of a linear gain $(m_1 + m_2)/2$ and an absolute value characteristic $(m_1 - m_2)/2$. The even part does not contribute to the DF.
49.	y y y y y y y y y y y y y y y y y y y	× × × × × × × × × × × × × × × × × × ×

Figure B.1 Quantizer DF.

Figure B.2 DFs for limiter and threshold characteristics.

Figure B.3 DF for the simple polynomial nonlinearity $y = c_n x^n$ (n odd) or $y = c_n x^{n-1} |x|$ (n even).

Figure B.5 DF magnitude vs. phase for hysteresis characteristics.

deficiency characteristics.

Figure B.7 DF for backlash with inertia and viscous-friction loading.

DF phase θ_N , degrees -40 -30

- 20

~ 50

9

- 70

- 80

0