Schema Design - 1

TABLE OF CONTENTS

- 1. What is Schema Design?
- 2. How to approach Schema Design?
- 3. Cardinality
- 4. Sparse Relations
- 5. Numbers when representing relations Nuances

33°d Hard day challenge:

- 1. Assignments + Revision (mca)

 2. Backlop (Assignments of prev. session)

 3. Additional Questions

Schema: Structure of Database

Schema gives information about:

- 1. Structure of Database
- 2. Tables in Database
- 3. Columns in a Table
- 4. Primary Key
- 5. Foreign Key
- 6. Index
- 7. Pictorial Representation

How to approach a schema design?

- 1. Scaler will have multiple batches.
- 2. For each batch, we need to store the name, start month and current instructor.
- 3. Each batch of Scaler will have multiple students.
- 4. Each batch has multiple classes.
- 5. For each class, store the name, date and time, instructor of the class.
- 6. For every student, we store their name, graduation year, university name, email, phone no.
- 7. Every student has a buddy, who is also a student.
- 8. A student may move from one batch to another.
- 9. For each batch a student moves to, the date of starting is stored.
- 10. Every student has a mentor.
- 11. For every mentor, we store their name and current company name.
- 12. Store information about all mentor sessions (time, duration, student, mentor,
- . student rating, mentor rating).
- 13. For every batch, store if it is an Academy-batch or a DSML-batch.

Steps to follow:

1. Create the tables

i) Find nouns in your requirements.

ii) We need to decide whether we should create a table for that noun or not.

Naming convention

- · Plural names -> plural names
- · Snake case: → mentor_sessions
- Attribute names in singular forms → (id , name)

2. Add primary keys and all other attributes

H should be unique & not null.

H should not get changed.

Prefer number over strings

Batches	Students	Classes
name Start_month	name grad year	name dute
botch_instructor	univ_name email	time class_instructor
DOTCH-ICL (PN)	phone_number student_id (PK)	class-id (PK)
	Siddler(Lac (114)	

	Mentors	Mentor_Sessions		
	name company_name menfor_id (PK)	time duration		
		student-id mentor-id		
		student_sating mentor_rating session_id (PK)		
		session_id (PK)		

Cardinality

- → It falls about how many entities of one side is related/
 connected to how many of other side.

 → It talks about relationship strength of Two Tables.
- - i) 1:1 ii) 1: M
 - m; M (iii

iv) M:1

1)1:1

Two step process:

2) M:M

3) M:1 or 1: M

ficket_booking: Seat

Seat: Ficket booking
(M: 1)

4) Find cardinality between Batches and Instructors

5) Find cardinality between Batches and topic

(M:M)

6) Users to Users

(M:M)

* Gluizzes °

亨,

Mrs: (M:M)

(1 : M)

How to represent cardinalities in tables?

1) 1:1 Add column on either of the side.

Men	Women

id	name	Spouse-id	id	name
1	А	3	1	D
2	В	1	2	E
3	С	2	3	F

2) 1: M or M:1

Batches (M)

Instructors (1)

id	name	Inst_id	id	name
1	Apr_23	1	1	Rahul
2	Mar_23	2	2_	Monit
3	May_23	1	ع	Bateck

In case of 1:M or M:1 cardinality, we will always add a colm on M's side.

3) M:M

Sessions (M)			Batche	s (M)
id	name		id	name
1	CRUD 1		1	Mor-23 Mor-23
2	CRUD 2		2	Apr-23
3	Joins 1		3	May_23

In case M:M coordinality we will add/create
mapping/lookup Table to store data about The
relationship of These Tables.

> Sessions_botches (lookup fable)

Session_id	Batchid
1	1
2	1
1	2

Men

Sparse Relations

1 million -> 1000 got married

Women

Men			Wollien		
id	name	Spouse_id	id	name	
1	A	3 :	<u>1</u>	D	
2	B	Nill	2	E	
3	C	Null	3	F	

-> In case of spane relationship, it is recommended to create a lookup/mapping table.

Men_Women

Men-id	Womenid
5050	5055
5051	2808

This above Fable stores only related data, data of those people who got married.

	Chan	allia: L				
	Space	efficient to perform data.				
\rightarrow	Need	to perform	an extra	1 join to	retieve	
	the	data.				