# Statistical Models of Shape and Appearance for Face Matching

Laura Igual

BCN Perceptual Computing Lab







### Content

- Overview
- Statistical Shape Models
- Active Shape Models
- Statistical Appearance Models
- Active Appearance Models
- Comparison : ASM vs AAM
- Conclusion



#### **OVERVIEW**



### **Computer Vision**

- Goal
  - Image understanding
- Challenge
  - Deformability of objects
- Statistic model-based approach
  - Shape model
  - Appearance model
  - Model matching
    - Image interpretation



#### **Deformable Models**

- Capable of generating any plausible example of the class they represent
- Only capable of generating legal examples



#### STATISTICAL SHAPE MODELS



# Shapes

- The shape of an object is represented by a set of n points (landmark points) in any dimension.
- Invariance under some transformations
  - In 2-3 dimension translation, rotation, scaling
  - Called similarity transformation





### Hand-Annotated Training Set

 The training set typically comes from hand annotation of a set of training images





#### Suitable Landmarks





### Suitable Landmarks









#### Training Set of Shape Vectors

- A d-dim shape with n landmarks is represented by a vector with nd elements.
- In a 2D-image with n landmark points, a shape vector x is

$$\mathbf{x} = (x_1, y_1, ..., x_n, y_n)^T$$

- The shape vectors in the training set should be in the same coordinate frame
  - Alignment of the training set is required



### Aligning Shapes

#### **Procrustes Analysis**

- Aligning Two Shapes:
- Find transformation T which minimizes

$$D = \left| \mathbf{x}_1 - T(\mathbf{x}_2) \right|^2$$





### Aligning the Training Set



### Generalized Procrustes Analysis

- Aligning a set of shapes
- Find the transformations  $T_i$  which minimize:

$$D = \sum \left| \overline{\mathbf{x}} - T_i(\mathbf{x}_i) \right|^2$$



#### Alignment: Iterative Approach

- 1. Translate each example so that its centre of gravity is at the origin.
- **2.** Choose one example as an initial estimate of the mean shape and scale so that  $|\bar{\mathbf{x}}| = 1$ .
- 3. Record the first estimate as  $\bar{\mathbf{x}}_0$  to define the default reference frame.
- 4. Align all the shapes with the current estimate of the mean shape.
- Re-estimate mean from aligned shapes.
- **6.** Apply constraints on the current estimate of the mean by aligning it with  $\bar{\mathbf{x}}_0$  and scaling so that  $|\bar{\mathbf{x}}| = 1$ .
- 7. If not converged, return to 4.

(Convergence is declared if the estimate of the mean does not change significantly after an iteration)



#### Alignment: Iterative Approach

- 1. Translate each example so that its centre of gravity is at the origin.
- 2. Choose one example as an initial estimate of the mean shape and scale so that  $|\bar{\mathbf{x}}| = 1$
- 3. Record the first estimate as  $\bar{\mathbf{x}}_0$  to define the default reference frame.





## Alignment: Iterative App



- 1. Translate each example so that its centre of gravity is at the origin.
- **2.** Choose one example as an <u>initial estimate of the mean shape and scale so that  $|\bar{\mathbf{x}}| = 1$ .</u>
- 3. Record the first estimate as  $\bar{\mathbf{x}}_0$  to define the default reference frame.



### Alignment: Iterative Ap



- 1. Translate each example so that its centre of gravity is at the origin.
- 2. Choose one example as an initial estimate of the mean shape and scale so that  $|\bar{\mathbf{x}}| = 1$ .
- 3. Record the first estimate as  $\bar{\mathbf{x}}_0$  to define the default reference frame.
- 4. Align all the shapes with the current estimate of the mean shape.
- 5. Re-estimate mean from aligned shapes.
- **6.** Apply constraints on the current estimate of the mean by aligning it with  $\bar{\mathbf{x}}_0$  and scaling so that  $|\bar{\mathbf{x}}| = 1$ .
- (Convergence is declared if the estimate of the mean does not change significantly after an



### Alignment: Iterative A



- 1. Translate each example so that its centre of gravity is at the origin.
- 2. Choose one example as an initial estimate of the mean shape and scale so that  $|\bar{\mathbf{x}}| = 1$ .
- 3. Record the first estimate as  $\bar{\mathbf{x}}_0$  to define the default reference frame.
- 4. Align all the shapes with the current estimate of the mean shape.
- Re-estimate mean from aligned shapes.
- **6.** Apply constraints on the current estimate of the mean by aligning it with  $\bar{\mathbf{x}}_0$  and scaling so that  $|\bar{\mathbf{x}}| = 1$ .
- 7. If not converged, return to 4.

(Convergence is declared if the estimate of the mean does not change significantly after an iteration)



### Alignment: Iterative A



- 1. Translate each example so that its centre of gravity is at the origin.
- 2. Choose one example as an initial estimate of the mean shape and scale so that  $|\bar{\mathbf{x}}| = 1$ .
- 3. Record the first estimate as  $\bar{\mathbf{x}}_0$  to define the default reference frame.
- 4. Align all the shapes with the current estimate of the mean shape.
- Re-estimate mean from aligned shapes.
- **6.** Apply constraints on the current estimate of the mean by aligning it with  $\bar{\mathbf{x}}_0$  and scaling so that  $|\bar{\mathbf{x}}| = 1$ .
- 7. If <u>not</u> converged, return to <u>4</u>.
  (Convergence is declared if the estimate of the mean does not change significantly after an iteration)



### **Modeling Shape Variation**

Parametric Shape Model: Point Distribution
 Model

$$\mathbf{x} = M(\mathbf{b})$$
 **b**: prameter vector

- Estimate the distribution of b
  - Generating new shapes
  - Examining new shapes (plausibility)



# **PCA**

Estimate variations with respect to the mean



### **PCA**



Applying a PCA to a set of 2D vectors.
p is the principal axis.



Any point x can be approximated by the nearest point on the line, x'.



### **PCA**

1. Compute the mean

$$\overline{\mathbf{x}} = \frac{1}{S} \sum_{i=1}^{S} \mathbf{x}_{i}$$

2. Compute the covariance matrix

$$\mathbf{S} = \frac{1}{s-1} \sum_{i=1}^{s} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

3. Compute the eigenvectors,  $\phi_i$  and corresponding eigenvalues  $\lambda_i$  of **S** s.t.  $\lambda_1 \geq \lambda_2 \geq \cdots$ 

$$\mathbf{\Phi} = \left[ \boldsymbol{\phi}_1 \mid \boldsymbol{\phi}_2 \mid \cdots \mid \boldsymbol{\phi}_t \right]$$



### Choice of Number of Modes (t = ?)

$$\mathbf{\Phi} = \left[ \boldsymbol{\phi}_1 \mid \boldsymbol{\phi}_2 \mid \cdots \mid \boldsymbol{\phi}_t \right]$$

- Let  $f_v$  be the proportion of the total variation one wishes to explain (e.g., 98%)
- Total variance  $V_T = \Sigma \lambda_i$  is the sum of all eigenvalues, assuming  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_T$
- Then, we can chose the smallest t s.t.

$$\sum_{i=1}^{t} \lambda_i \ge f_v$$





### **Shape Approximation**

$$\mathbf{\Phi} = \left[ \boldsymbol{\phi}_1 \mid \boldsymbol{\phi}_2 \mid \cdots \mid \boldsymbol{\phi}_t \right]$$



$$\mathbf{b} = \mathbf{\Phi}^T (\mathbf{x} - \overline{\mathbf{x}})$$



### Shape Approximation

$$\mathbf{\Phi} = \left[ \boldsymbol{\phi}_1 \mid \boldsymbol{\phi}_2 \mid \cdots \mid \boldsymbol{\phi}_t \right]$$



parameter vector of deformable model

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_t \end{bmatrix} \text{ with } -3\sqrt{\lambda_i} \le b_i \le 3\sqrt{\lambda_i}$$



The generated shape is similar to those in training set (plausible).



#### Generating Plausible Shapes

$$\mathbf{\Phi} = \left[ \boldsymbol{\phi}_1 \mid \boldsymbol{\phi}_2 \mid \cdots \mid \boldsymbol{\phi}_t \right]$$

$$\mathbf{x} = \overline{\mathbf{x}} + \Phi \mathbf{b}$$

Variations are modeled as

linear combinations of eigenvectors





#### Generating Plausible Shapes

$$\mathbf{\Phi} = \left[ \boldsymbol{\phi}_1 \mid \boldsymbol{\phi}_2 \mid \cdots \mid \boldsymbol{\phi}_t \right]$$

$$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{\Phi}\mathbf{b}$$

\_\_\_\_\_ parameter vector of deformable model

$$\mathbf{b} = egin{bmatrix} b_1 \ b_2 \ dots \ b_t \end{bmatrix}$$

#### **Assumption:**

 $b_i$ 's are independent and Gaussian

#### Two options:

- Hard limits on independent  $b_i$ 's or
- Constrain b in a hyperellipsoid





- Some members in the training set (18 hands)
- Each is represented by 72 landmark points



and and









- Some members in the training set (300 faces)
- Each is represented by 133 landmark points







Mode 1



Mode 2



Mode 3





#### Similar Transformation

$$T_{X_{t},Y_{t},s,\theta} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} X_{t} \\ Y_{t} \end{pmatrix} + \begin{pmatrix} s\cos\theta & s\sin\theta \\ -s\sin\theta & s\cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$



#### Fitting a Model to New Points in a Image

$$T_{X_{t},Y_{t},s,\theta} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} X_{t} \\ Y_{t} \end{pmatrix} + \begin{pmatrix} s\cos\theta & s\sin\theta \\ -s\sin\theta & s\cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\mathbf{x} = T_{X_t, Y_t, s, \theta} (\overline{\mathbf{x}} + \mathbf{\Phi}\mathbf{b})$$

Given a set of new image points **Y**, find **b** and pose parameters so as to minimize:

$$|Y-T_{X_t,Y_t,s,\theta}(\overline{\mathbf{x}}+\Phi\mathbf{b})|^2$$



#### Fitting a Model to New Points in a Image

Minimize 
$$|Y - T_{X_t, Y_t, s, \theta}(\overline{\mathbf{x}} + \mathbf{\Phi}\mathbf{b})|^2$$

- 1. Initialise the shape parameters, b, to zero
- 2. Generate the model instance  $\mathbf{x} = \bar{\mathbf{x}} + \Phi \mathbf{b}$
- **3.** Find the pose parameters  $(X_t, Y_t, s, \theta)$  which best map xto Y
- **4.** Invert the pose parameters and use to project Y into the model co-ordinate frame:

$$\mathbf{y} = T_{X_t, Y_t, s, \theta}^{-1}(\mathbf{Y})$$

- **5.** Project y into the tangent plane to  $\bar{\mathbf{x}}$  by scaling by  $1/(\mathbf{y}.\bar{\mathbf{x}})$ .
- **6.** Update the model parameters to match to y

$$\mathbf{b} = \mathbf{\Phi}^T (\mathbf{y} - \bar{\mathbf{x}})$$

- 7. Apply constraints on b
- **8.** If not converged, return to step 2.



#### Fitting a Model to New Points in a Image

Minimize 
$$|Y - T_{X_t, Y_t, s, \theta}(\overline{\mathbf{x}} + \mathbf{\Phi}\mathbf{b})|^2$$

- 1. Initialize the shape parameters, b, to zero.
- 2. Generate the model instance  $\bar{x} = x + \Phi b$
- 3. Find the pose parameters  $(X_t, Y_t, s, \theta)$  which best map x to Y.
- 4. Invert the pose parameters and use to project Y into the model coordinate frame:

$$y = T_{X_t, Y_t, s, \theta}^{-1}(Y)$$

- 5. Scale y
- 6. Update the model parameters to match to y

$$b = \Phi^T (\mathbf{y} - \overline{\mathbf{x}})$$

- 7. Apply constraints on b
- 8. If not converged, return to step 2.



#### **ACTIVE SHAPE MODELS**



# Goal

- Given a rough starting approximation,
- Fit an instance of a model to the image





# Iterative Approach

- Iteratively improving the fit of the instance, X, to an image proceeds as follows:
  - 1. Examine a region of the image around each point  $\mathbf{X}_i$  to find the best nearby match for the point  $\mathbf{X}_i$





- 1. Examine a region of the image around each point  $\mathbf{X}_i$  to find the best nearby match for the point  $\mathbf{X}_i$
- The above method is applicable if model points are edges
- The best approach is to examine the local structures of model points (to be discussed)



# Iterative Approach

- Iteratively improving the fit of the instance, X, to an image proceeds as follows:
  - 1. Examine a region of the image around each point  $\mathbf{X}_i$  to find the best nearby match for the point  $\mathbf{X}_i'$
  - 2. Update the parameters  $(X_t, Y_t, s, \theta, \mathbf{b})$  to best fit the new found points **X**
  - 3. Repeat until convergence



## **Modeling Local Structure**

• Sample the derivative along a profile, k pixels on either side of a model point, to get a vector  $\mathbf{g}_i$  of the 2k+1 points





Using Local Structure Model

 Sample a profile m pixels either side of the current point (m>k)

Test quality of fit at 2(m-k)+1 positions

 Chose the one which gives the best match



k points

k points

#### Statistical Models of Grey-Level Profiles

Performance improvement: Multi-resolution implementation coarse-to-fine approach

- We start searching on a coarse level of a Gaussian image pyramid, and progressively refine.
- This leads to much faster, more accurate and more robust search.





# **Examples of Search**



Initial



After 2 iterations



After 6 iterations



After 18 iterations



# **Examples of Search**



Initial



After 2 iterations



After 20 Iterations

**Poor Starting Point** 



# **Examples of Search**



Search using ASM of cartilage on an MR image of the knee



After 6 iterations

After 14 iterations

# STATISTICAL MODELS OF APPEARANCE



# Appearance

- Statistical Shape Model models the shape change of an object
- Construct a similar statistical model to represented the intensity variation across a region
- Use:
  - Shape
  - Texture
    - 'Texture' means pattern of intensities across an image patch.



## **Appearance Model**





shape variance



Shape Free Patch

texture variance



# **Shape Normalization**

 Remove spurious texture variations due to shape differences

- Warp each image to match control points with the mean image
  - triangulation algorithm



# **PCA**

After shape and intensity normalization, and by applying PCA to the normalised data we obtain a linear model:



# Combined Appearance Model

$$\mathbf{b}_s = \mathbf{P}_s^T (\mathbf{x} - \overline{\mathbf{x}})$$
 — Shape parameters  $\mathbf{b}_g = \mathbf{P}_g^T (\mathbf{g} - \overline{\mathbf{g}})$  — Appearance parameters

Since there may be correlations between the shape and texture variations, we apply a further PCA to the data as follows. For each example we generate the concatenated vector:

$$\mathbf{b} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{b}_{s} \\ \mathbf{b}_{g} \end{pmatrix} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{P}_{s}^{T} (\mathbf{x} - \overline{\mathbf{x}}) \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{b}_{s} \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix}$$

# Combined Appearance Models



### **PCA for Combined Vectors**

$$\mathbf{b} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{b}_{s} \\ \mathbf{b}_{g} \end{pmatrix} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{P}_{s}^{T} (\mathbf{x} - \overline{\mathbf{x}}) \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix} \rightarrow \mathbf{b} = \mathbf{P}_{C} \mathbf{C}$$

eigenvectors from applying PCA on **b**'s

appearance parameters controlling both the **shape** and **grey-levels** of the model



## Shape & Grey-Level Reconstruction

$$\mathbf{b} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{b}_{s} \\ \mathbf{b}_{g} \end{pmatrix} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{P}_{s}^{T} (\mathbf{x} - \overline{\mathbf{x}}) \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{W}_{s} \mathbf{P}_{s}^{T} (\mathbf{x} - \overline{\mathbf{x}}) \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix} = \mathbf{b} = \mathbf{P}_{c} \mathbf{c} = \begin{pmatrix} \mathbf{P}_{cs} \\ \mathbf{P}_{cg} \end{pmatrix} \mathbf{c}$$

$$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{P}_{s} \mathbf{W}_{s}^{-1} \mathbf{P}_{cs} \mathbf{c} = \overline{\mathbf{x}} + \mathbf{Q}_{s} \mathbf{c}$$

$$\mathbf{g} = \overline{\mathbf{g}} + \mathbf{P}_{g} \mathbf{P}_{cg} \mathbf{c} = \overline{\mathbf{g}} + \mathbf{Q}_{g} \mathbf{c}$$



### Appearance Reconstruction

Given appearance parameter c

- Generate shape-free gray-level image g
- warp g to the shape described by x

$$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{P}_{s} \mathbf{W}_{s}^{-1} \mathbf{P}_{cs} \mathbf{c} = \overline{\mathbf{x}} + \mathbf{Q}_{s} \mathbf{c}$$
$$\mathbf{g} = \overline{\mathbf{g}} + \mathbf{P}_{g} \mathbf{P}_{cg} \mathbf{c} = \overline{\mathbf{g}} + \mathbf{Q}_{g} \mathbf{c}$$



# Review: Combined Appearance Models





# Choice of Shape Parameter Weights

- Method1 Displace each element of  ${\bf b}_s$  from its optimum value and observe change in  ${\bf g}$  for each training example
  - The RMS change gives elements in W

# The choice of $\mathbf{W}_s$ is relatively insensitive

intensity variation to the total shape variation

$$\mathbf{b} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{b}_{s} \\ \mathbf{b}_{g} \end{pmatrix} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{P}_{s}^{T} (\mathbf{x} - \overline{\mathbf{x}}) \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{b}_{s} \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix}$$
UNIVERSITATION BARCELON.

#### Choice of Shape Parameter Weights

- Method1 Displace each element of  $\mathbf{b}_s$  from its optimum value and observe change in  $\mathbf{g}$  for each training example
  - The RMS change gives elements in  $\mathbf{W}_s$
- Method2  $W_s = rI$  where  $r^2$  is the ratio of the total intensity variation to the total shape variation

$$\mathbf{b} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{b}_{s} \\ \mathbf{b}_{g} \end{pmatrix} = \begin{pmatrix} \mathbf{W}_{s} \mathbf{P}_{s}^{T} (\mathbf{x} - \overline{\mathbf{x}}) \\ \mathbf{P}_{g}^{T} (\mathbf{g} - \overline{\mathbf{g}}) \end{pmatrix}$$

#### Example: Facial Appearance Model



First two modes of shape variation (±3 sd)



First two modes of greylevel variation (±3 sd)



#### Example: Facial Appearance Model



First four modes of appearance variation ( $\pm 3$  sd)



## Approximating a New Example

Given a new image, labeled with a set of landmarks, to generate an approximation with the model.







## Approximating a New Example

Given a new image, labelled with a set of landmarks, to generate an approximation with the model.

- Obtain  $\mathbf{b}_{s}$  and  $\mathbf{b}_{g}$
- Obtain b
- Obtain c

• Apply 
$$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{P}_s \mathbf{W}_s^{-1} \mathbf{P}_{cs} \mathbf{c}$$
$$\mathbf{g} = \overline{\mathbf{g}} + \mathbf{P}_g \mathbf{P}_{cg} \mathbf{c}$$

Inverting gray level normalization by

$$\mathbf{g}_{im} = \alpha \mathbf{g} + \beta \mathbf{1}$$

- Applying pose to the points
- Projecting the gray level vector to the image





#### **ACTIVE APPEARANCE MODELS**



## Disadvantages of ASM

 Only uses shape constraints (together with some information about the image structure near the landmarks) for search.

Incapable of generating photo-realistic synthetic image



# Goal of AAM

Given a rough starting approximation of an appearance model, to fit it within an image









Using an Iterative Model Refinement.









Reconstruction (left) and original (right) given original landmark points





Multi-Resolution search from displaced position



First two modes of appearance variation of knee model



Best fit of knee model to new image given landmarks









Multi-Resolution search from displaced position



#### **COMPARISON: ASM VS AAM**



# **Key Differences**

- ASM only uses models of the image texture in the small regions around each landmark point
- AAM uses a model of appearance of the whole region

- ASM searches around current position, , typically along profiles normal to the boundary.
- AAM only samples the image under current position

- ASM seeks to minimize the distance between model points and corresponding image points
- AAM seeks to minimize the difference of the synthesized image and target image



# **Experiment Data**

- Two data sets:
  - 72 brain slices, 133 landmark points

- Training data set
  - Brain: 400, leave-one-brain-experiments



### Segmentation of Brain Structures in MRI





## Image Interpretation with AAM

 When a labeled model is fitted to an image to be interpreted, it automatically gets labeled just by transfer:











## Conclusion

- ASM searches around the current location, along profiles, so one would expect them to have larger capture range
- ASM takes only the shape into account
- AAM can work well with a much smaller number of landmarks as compared to ASM



#### References

- [1] Mikkel B. Stegmann and David Delgado Gomez. A Brief Introduction to Statistical Shape Analysis, Technical University of Denmark, Lyngby, 2002.
- [2] Matthew James Francis Cairns. An Investigation into the use of 3D Computer Graphics for Forensic Facial Reconstruction, Glasgow University, 2000.
- [3] T. F. Cootes and C. J. Taylor *Statistical Models of Appearance for Computer Vision. Report.*
- [4] Iain Matthews and Simon Baker, *Active Appearance Models Revisited*. IJCV 2004.
- http://aimm02.cse.ttu.edu.tw/class 2009 1/PR/Lecture%208/Statistical%20 Models%20of%20Appearance%20for%20Computer%20Vision.ppt.



#### Matlab Codes for ASM and AAM

- 1. <a href="http://www.mathworks.com/matlabcentral/fileexcha">http://www.mathworks.com/matlabcentral/fileexcha</a>
  <a href="mailto:nge/32704-icaam-inverse-compositional-active-appearance-models">nge/32704-icaam-inverse-compositional-active-appearance-models</a> (Used in the practicum)
- http://www.isbe.man.ac.uk/val/asmtk/ASMInfoSheet. html (p-files)
- 3. <a href="http://www.mathworks.com/matlabcentral/fileexcha">http://www.mathworks.com/matlabcentral/fileexcha</a>
  <a href="mailto:nge/26706-active-shape-model-asm-and-active-appearance-model-aam">nge/26706-active-shape-model-asm-and-active-appearance-model-aam</a> (No face training images included)
- 4. <a href="http://www.cs.sfu.ca/~hamarneh/software/asm/">http://www.cs.sfu.ca/~hamarneh/software/asm/</a> (No training images included)



#### C++ codes

- https://github.com/kylemcdonald/FaceTrack er (OpenCV library)
- http://www.milbo.users.sonic.net/stasm/
   (OpenCV library)
- 3. <a href="http://www.isbe.man.ac.uk/~bim/software/a">http://www.isbe.man.ac.uk/~bim/software/a</a>
  <a href="mailto:mtools-doc/index.html">m tools doc/index.html</a> (VXL library)
- http://humansensing.cs.cmu.edu/intraface/ (Matlab/C++)



# Statistical Models of Shape and Appearance for Face Matching

Laura Igual

BCN Perceptual Computing Lab





