## **Data International Co., Ltd.**



## APPROVAL SHEET

| Customer    | : |         |             |             |
|-------------|---|---------|-------------|-------------|
| Part Name   | : | L       | CD MODUL    | Æ           |
| Model No.   | : | DVI     | F-16236-S2F | BLY         |
| Drawing No. | : |         |             |             |
| Approved by | : |         |             |             |
| Date        | : |         |             |             |
|             | • |         |             |             |
| Approved    |   | Checked | Prepared    | Sheet Code: |

Will-Chiu

Preliminary

## **CONTENTS**

| 1. | SCOPE 3 |                                                     |   |    |  |  |
|----|---------|-----------------------------------------------------|---|----|--|--|
| 2. | PRC     | DUCT SPECIFICATIONS                                 |   | 3  |  |  |
|    | 2.1     | General                                             |   | 3  |  |  |
|    | 2.2     | Mechanical Characteristics                          |   | 4  |  |  |
|    | 2.3     | Absolute Maximum Ratings                            |   | 5  |  |  |
|    | 2.4     | Electrical Characteristics & Timing Characteristics |   | 5  |  |  |
|    | 2.5     | Absolute maximum ratings                            |   | 7  |  |  |
|    | 2.6     | Optical Characteristics                             |   | 7  |  |  |
|    | 2.7     | LED Back-light Characteristics                      |   | 10 |  |  |
| 3. | REL     | JABILITY                                            |   | 11 |  |  |
| 4. | OPE     | RATING INSTRUCTIONS                                 |   | 12 |  |  |
|    | 4.1     | Input signal Function                               |   | 12 |  |  |
|    | 4.1.1   | Voltage Generator Circuit                           |   | 12 |  |  |
|    | 4.1.2   | 2 Circuit Block Diagram                             |   | 13 |  |  |
|    | 4.2     | Instruction table                                   |   | 14 |  |  |
|    | 4.3     | Font table                                          |   | 15 |  |  |
| 5. | NOT     | TES                                                 |   | 16 |  |  |
| 6. | OPE     | RATION PRECAUTIONS                                  |   | 16 |  |  |
| 7. | LCM     | 1 DIMENSIONS                                        |   | 17 |  |  |
|    |         |                                                     |   |    |  |  |
|    |         | RECORDS OF REVISION                                 | N |    |  |  |

|           |                | RE           | CORDS       | OF     | REVISION |  |
|-----------|----------------|--------------|-------------|--------|----------|--|
| DATE      | REVISED<br>NO. | REF.<br>PAGE |             |        | SUMMARY  |  |
| 2005/8/11 |                |              | 222-2005070 | 4056-3 |          |  |
|           |                |              |             |        |          |  |

DATA VISION 05/08/11 2 / 17

#### 1. SCOPE

The DVF-16236-S2FBLY, dot-matrix LCD unit of a 5 x 7- dot 16-character 2-line dot-matrix LCD panel, LCD driver, controller LSI and yellow green back-light LED fabricated on a single PCB. Incorporating mask ROM-based character generator and display data RAM in the controller LSI, the unit can efficiently display the desired characters under microprocessor control.

#### 2. PRODUCT SPECIFICATIONS

#### 2.1 General

- The LCD of the unit is STN (Super Twisted Nematic) Gray Transflective, Normal temperature type.
- Low power consumption with the dot-matrix LCD panel and CMOS LSI. Built-in back-light LED with high luminance and stable radiation.
- Thin, lightweight design permits easy installation in a variety of equipment.
- Allowing for being connected at general-purpose CMOS signal level, the unit can be easily interfaced to a microprocessor with common 4-bit and 8-bit parallel inputs and outputs.
- Multiplexing driving: 1/16duty, 1/4bias, 6 o'clock
- Built-in character generator ROM and RAM, and display data RAM:

Character generator ROM

225 different 5 x 7 dot-matrix character patterns (Alphanumeric and symbols)

Character generator RAM

8 different user programmed 5 x 7 dot-matrix patterns

Display data RAM

80 x 8 bits

Numerous instructions

Display clear, Cursor home, Display ON/OFF, Cursor ON/OFF, Blink character, Cursor shift, Display shift

• The unit operates from a single 5V power supply.

DATA VISION 05/08/11 3 / 17

### 2.2 Mechanical Characteristics

| Item                                                      | Characteristic                      |
|-----------------------------------------------------------|-------------------------------------|
| Number of Characters                                      | 16 × 2                              |
| Dot dimensions(mm)                                        | $0.55 \times 0.65$                  |
| Dot spacing (mm)                                          | 0.05                                |
| Character Size (mm)                                       | $2.95 \times 5.55$                  |
| Module dimensions (Horizontal × Vertical × Thickness, mm) | $85.0 \times 36.0 \times 14.2$ max. |
| Viewing area (Horizontal × Vertical, mm)                  | 62.2 × 17.9                         |
| Active area (Horizontal × Vertical, mm)                   | 56.2 × 11.49                        |

DATA VISION 05/08/11 4 / 17

## 2.3 Absolute Maximum Ratings (Without LED back-light)

Maximum Absolute Power Ratings

| Item                    | Symbol           | Unit | Value                              |
|-------------------------|------------------|------|------------------------------------|
| Power supply voltage(1) | V <sub>DO</sub>  | V    | -0.3 to + 7.0                      |
| Power supply voltage(2) | V <sub>LCD</sub> | V    | VDD -15.0 to V <sub>DD</sub> + 0.3 |
| Input voltage           | V <sub>IN</sub>  | V    | -0.3 to V <sub>DD</sub> + 0.3      |

<sup>\*</sup> NOTE: Voltage greater than above may damage the circuit (VDD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ V5)

### 2.4 Electrical Characteristics (Without LED back-light)

DC Characteristics

(V<sub>DD</sub> = 4.5V to 5.5V, Ta = -30 to +85 °C)

| Item                            | Symbol            | Condition                                                          | Min                  | Тур  | Max                | Unit |  |
|---------------------------------|-------------------|--------------------------------------------------------------------|----------------------|------|--------------------|------|--|
| Operating Voltage               | V <sub>DD</sub>   | -                                                                  | 4.5                  | -    | 5.5                | V    |  |
|                                 | I <sub>DD1</sub>  | ceramic resonator<br>fosc = 250 kHz                                |                      | 0.7  | 1.0                |      |  |
| Supply Current                  | I <sub>DD2</sub>  | Resistor oscillation<br>external clock operation<br>fosc = 270 kHz |                      | 0.4  | 0.6                | mA   |  |
| Input Voltage (1)               | V <sub>IH1</sub>  | -                                                                  | 2.2                  | -    | V <sub>DD</sub>    | v    |  |
| (except OSC1)                   | V <sub>IL1</sub>  |                                                                    | -0.3                 |      | 0.6                | ı v  |  |
| Input Voltage (2)               | V <sub>IH2</sub>  | -                                                                  | V <sub>DD</sub> -1.0 | -    | V <sub>DD</sub>    | v    |  |
| (OSC1)                          | V <sub>IL2</sub>  |                                                                    | -0.2                 |      | 1.0                | 7 V  |  |
| Output Voltage (1)              | V <sub>OH1</sub>  | I <sub>OH</sub> = -0.205 mA                                        | 2.4                  | -    | -                  | v    |  |
| (DB0 to DB7)                    | V <sub>OL1</sub>  | I <sub>OL</sub> = 1.2 μA                                           | -                    | -    | 0.4                |      |  |
| Output Voltage (2)              | V <sub>OH2</sub>  | I <sub>O</sub> = -40 μA                                            | 0.9V <sub>DD</sub>   |      | -                  | v    |  |
| (except DB0 to DB7)             | V <sub>OL2</sub>  | I <sub>O</sub> = 40 μA                                             | -                    | -    | 0.1V <sub>DD</sub> | ٧    |  |
| Voltage Drop                    | Vd <sub>COM</sub> | I <sub>O</sub> = ± 0.1 mA                                          | -                    |      | 1                  | v    |  |
| voltage Drop                    | Vd <sub>SEG</sub> | 10-±0.1111A                                                        | -                    | -    | 1                  | ٧    |  |
| Input Leakage Current           | Ι <sub>Ι</sub> L  | V <sub>IN</sub> = 0 V to V <sub>DD</sub>                           | -1                   | -    | 1                  |      |  |
| Low Input Current               | I <sub>IN</sub>   | V <sub>IN</sub> = 0 V, V <sub>DD</sub> = 5 V<br>(PULL UP)          | -50                  | -125 | -250               | μA   |  |
| Internal Clock<br>(external Rf) | fic               | Rf = 91 kΩ ± 2%<br>(V <sub>DD</sub> = 5 V)                         | 190                  | 270  | 350                | kHz  |  |
|                                 | f <sub>EC</sub>   |                                                                    | 150                  | 250  | 350                | kHz  |  |
| External Clock                  | duty              | -                                                                  | 45                   | 50   | 55                 | %    |  |
|                                 | tr, tf            |                                                                    | -                    | -    | 0.2                | με   |  |
| LCD Driving Voltage             | V <sub>LCD</sub>  | V <sub>DD</sub> -V <sub>5</sub> (1/5, 1/4 Bias)                    | 4.6                  | -    | 10.0               | ٧    |  |

DATA VISION 05/08/11 5 / 17

#### **AC Characteristics**

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Ta} = -30 \text{ to } +85^{\circ}\text{C})$ 

| Mode                           | Item                      | Symbol          | Min | Тур | Max | Unit |  |
|--------------------------------|---------------------------|-----------------|-----|-----|-----|------|--|
|                                | E Cycle Time              | tc              | 500 | -   | -   |      |  |
|                                | E Rise / Fall Time        | tr,tf           | -   | -   | 25  |      |  |
|                                | E Pulse Width (High, Low) | tw              | 220 | -   | -   |      |  |
| Write Mode<br>(Refer to Fig-6) | R/W and RS Setup Time     | tsu1            | 40  | -   | -   | ns   |  |
| (100010000)                    | R/W and RS Hold Time      | th1             | 10  | -   | -   |      |  |
|                                | Data Setup Time           | tsu2            | 60  | -   | -   |      |  |
|                                | Data Hold Time            | th2             | 10  | -   | -   |      |  |
|                                | E Cycle Time              | tc              | 500 | -   | -   |      |  |
|                                | E Rise / Fall Time        | tr,tf           | -   | -   | 25  |      |  |
|                                | E Pulse Width (High, Low) | tw              | 220 | -   | -   |      |  |
| Read Mode<br>(Refer to Fig-7)  | R/W and RS Setup Time     | tsu             | 40  | -   | -   | ns   |  |
| (Refer to Fig-7)               | R/W and RS Hold Time      | th              | 10  | -   | -   |      |  |
|                                | Data Output Delay Time    | t <sub>D</sub>  | -   | -   | 120 |      |  |
|                                | Data Hold Time            | t <sub>DH</sub> | 20  | -   | -   |      |  |



Fig-6. Write Mode Timing Diagram



Fig-7. Read Mode Timing Diagram

DATA VISION 05/08/11 6 / 17

### 2.5 Optical Characteristics

### Absolute maximum ratings

| Item                        | Symbol | Rating | Unit | Remarks         |
|-----------------------------|--------|--------|------|-----------------|
| Storage temperature range   | Tst    | -20~70 | °C   | No condensation |
| Operating temperature range | Тор    | 0~50   | °C   | No condensation |

## 2.6 Optical Characteristics

1/16 duty, 1/4 bias, Vopr=4.6V

| Item            | Symbol                      | Temp. | Min. | Тур. | Max. | Unit |
|-----------------|-----------------------------|-------|------|------|------|------|
|                 |                             | 0 °C  | 4.45 | 4.75 | 5.05 |      |
| Driving voltage | Vop                         | 20 °C | 4.30 | 4.60 | 4.90 | V    |
|                 |                             | 50 °C | 4.15 | 4.45 | 4.75 |      |
| Contrast        | Cr                          | 20 °C | 1.07 | 4.96 | 4.99 |      |
| Frame freq.     | f                           |       | 32   | 64   | 128  | Hz   |
| Viewing         | $\theta_{2}$ - $\theta_{1}$ | 20 °C | 30   | 86   |      | 1    |
| angle*          | ф                           | 20 C  | 60   | 75   |      | deg. |
| Response        | t <sub>on</sub>             | 20.90 |      | 48   | 250  |      |
| time            | $t_{\rm off}$               | 20 °C |      | 89   | 250  | ms   |

DATA VISION 05/08/11 7 / 17

#### 2.6.1 Definition of optical characteristics

\* Definition of angles  $\phi$  and  $\theta$ 



### \*Definition of contrast C

Positive type  $Cr = \frac{\text{Brightness of unselected portion(Bus)}}{\text{Brightness of selected portion(Bs)}}$ 



DATA VISION 05/08/11 8 / 17

#### 2.6.2 Definition of viewing angles $\theta 1$ and $\theta 2$



Note : Optimum vision with the naked eye and viewing angle  $\theta$  at Cmax above are not always the same.

#### \* Definition of response time



Vopr : Operating voltage (V) ton : Response time (rise) (ms) fFRM : Frame frequency (Hz) toff : Response time (fall) (ms)

DATA VISION 05/08/11 9 / 17

### 2.7 LED Back-light Characteristics

### 2.7.1 Absolute maximum ratings

 $Ta = 25^{\circ}C$ 

| Item                | Symbol        | Condition    | Min. | Тур. | Max. | Unit  |
|---------------------|---------------|--------------|------|------|------|-------|
| Forward voltage     | $ m V_{ m f}$ | If=120mA,    | 3.8  | 4.2  | 4.5  | V     |
| 1 of ward voltage   | <b>v</b> 1    | Yellow Green | 3.0  | 7.2  | 7.3  | •     |
| *Luminous Intensity | $ m I_{ m V}$ | If=120mA,    | 250  | 390  | 530  | LUX   |
| Lummous intensity   | ΙV            | Yellow Green | 250  | 370  | 330  | LOX   |
| Peak Emission       | λΡ            | If=20mA,     |      | 573  |      | nm    |
| Wavelength          | ΛΓ            | Yellow Green |      | 313  |      | 11111 |
| Spectrum Radiation  | <b>A</b> 3    | If=20mA,     |      | 30   |      | nm    |
| Bandwidth           | Δλ            | Yellow Green |      | 30   |      | 11111 |
| Reverse Current     | $I_R$         | VR=8V,       |      |      | 1.2  | mA    |
| Reverse Current     | 1R            | Yellow Green |      |      | 1.2  | IIIA  |

Note: \* Measured at the bare LED back-light unit.

### 2.7.2 LED Maximum Operating Range

| Item              | Symbol           | Yellow Green | Unit |
|-------------------|------------------|--------------|------|
| Power Dissipation | $P_{AD}$         | 1.08         | W    |
| Forward Current   | $I_{\mathrm{F}}$ | 240          | mA   |
| Reverse Voltage   | $V_R$            | 8            | V    |

DATA VISION 05/08/11 10 / 17

#### 3. RELIABILITY

#### 3.1 Reliability

| Test item                                  | Test condition                                                                                        | Evaluation and assessment                       |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Operation at high temperature and humidity | 40 °C±2 °C<br>90% RH for 240hours                                                                     | No abnormalities in functions* and appearance** |
| Operation at high temperature              | 50 °C±2 °C for 240 hours                                                                              | No abnormalities in functions* and appearance** |
| Heat shock                                 | 0± ~ +50 °C Left for 1<br>hour at each temperature,<br>transition time 5 min,<br>repeated 10times     | No abnormalities in functions* and appearance** |
| Low temperature                            | 0 ±2 °C for 240 hours                                                                                 | No abnormalities in functions* and appearance** |
| Vibration                                  | Sweep for 1 min at 10 Hz,<br>55Hz, 10Hz, amplitude<br>1.5mm 2 hrs each in the<br>X,Y and Z directions | No abnormalities in functions* and appearance** |
| Drop shock                                 | Dropped onto a board from a height of 10cm                                                            | No abnormalities in functions* and appearance** |

## 3.2 Liquid crystal panel service life 100,000 hours minimum at 25 °C±10 °C

#### 3.3 definition of panel service life

- Contrast becomes 30% of initial value
- Current consumption becomes three times higher than initial value
- Remarkable alignment deterioration occurs in LCK cell layer
- Unusual operation occurs in display functions

DATA VISION 05/08/11 11 / 17

#### 4. OPERATING INSTRUCTIONS

#### 4.1 Input signal Function

| NO.  | Symbol  | Function                                  |
|------|---------|-------------------------------------------|
| 1    | VSS     | 0V Power Supply (GND Level)               |
| 2    | VDD     | Power supply for Logic circuit            |
| 3    | V0      | Power Supply for Driving the LCD Contrast |
| 4    | RS      | Data / Instruction select                 |
| 5    | R/W     | Read / Write select                       |
| 6    | Е       | Enable signal                             |
| 7~14 | DB0~DB7 | Data Bus line                             |
| 15   | LED A   | Power supply for LED +                    |
| 16   | LED K   | Power supply for LED -                    |

#### Voltage Generator Circuit 4.1.1





V<sub>DD</sub>-V<sub>0</sub> : LCD Driving Voltage V<sub>R</sub> : 10K~20K



**DATA VISION** 05/08/11 12 / 17

## 4.1.2 Circuit Block Diagram



DATA VISION 05/08/11 13 / 17

#### 4.2 Instruction Table

|                                  |    |     |     | Inst | ructi | on C | ode |     |     |     |                                                                                                                                 | Execution                   |  |
|----------------------------------|----|-----|-----|------|-------|------|-----|-----|-----|-----|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Instruction                      | RS | R/W | DB7 | DB6  | DB5   | DB4  | DB3 | DB2 | DB1 | DB0 | Description                                                                                                                     | Time<br>(fosc =<br>270 kHz) |  |
| Clear<br>Display                 | 0  | 0   | 0   | 0    | 0     | 0    | 0   | 0   | 0   | 1   | Write "20H" to DDRAM and set<br>DDRAM address to "00H" from AC.                                                                 | 1.53 ms                     |  |
| Return<br>Home                   | 0  | 0   | 0   | 0    | 0     | 0    | 0   | 0   | 1   | ×   | Set DDRAM address to "00H" from AC<br>and return cursor to its original position<br>if shifted.                                 | 1.53 ms                     |  |
| Entry Mode<br>Set                | 0  | 0   | 0   | 0    | 0     | 0    | 0   | 1   | Ι/D | SH  | Assign cursor moving direction and<br>enable the shift of entire display .                                                      | 39 µs                       |  |
| Display ON/<br>OFF Control       | 0  | 0   | 0   | 0    | 0     | 0    | 1   | D   | С   | В   | Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.                                                     | 39 µs                       |  |
| Cursor or<br>Display Shift       | 0  | 0   | 0   | 0    | 0     | 1    | s/c | R/L | ×   | ×   | Set cursor moving and display shift<br>control bit, and the direction, without<br>changing of DDRAM data.                       | 39 µs                       |  |
| Function<br>Set                  | 0  | 0   | 0   | 0    | 1     | DL   | N   | F   | ×   | ×   | Set interface data length (DL: 4-bit/8-<br>bit), numbers of display line (N: 1-line/<br>2-line, Display font type (F:0)         | 39 µs                       |  |
| Set CGRAM<br>Address             | 0  | 0   | 0   | 1    | AC5   | AC4  | АСЗ | AC2 | AC1 | AC0 | Set CGRAM address in address counter.                                                                                           | 39 µs                       |  |
| Set DDRAM<br>Address             | 0  | 0   | 1   | AC6  | AC5   | AC4  | АСЗ | AC2 | AC1 | AC0 | Set DDRAM address in address counter.                                                                                           | 39 µs                       |  |
| Read Busy<br>flag and<br>Address | 0  | 1   | BF  | AC6  | AC5   | AC4  | AC3 | AC2 | AC1 | AC0 | Whether during internal operation or<br>not can be known by reading BF.<br>The contents of address counter can<br>also be read. | 0 μ <b>s</b>                |  |
| Write Data<br>to RAM             | 1  | 0   | D7  | D6   | D5    | D4   | D3  | D2  | D1  | D0  | Write data into internal RAM (DDRAM/CGRAM).                                                                                     | 43 μs                       |  |
| Read Data<br>from RAM            | 1  | 1   | D7  | D6   | D5    | D4   | D3  | D2  | D1  | DO  | Read data from internal RAM (DDRAM/CGRAM).                                                                                      | 43 µs                       |  |

<sup>\*</sup> NOTE : When you make an MPU program with checking the Busy Flag (DB7), it must be necessary 1/2Fosc for executing the next instruction by falling E signal after the Busy Flag (DB7) goes to "0".

DATA VISION 05/08/11 14 / 17

### 4.3 Font table

| Upper<br>dist<br>Lower<br>dist | ш                | LLJIL | шин | LHLL | гити | CHRIC | LHHH | HILL | нттн | ныц | нгин | HHLL | HHLR | нинг | нин |
|--------------------------------|------------------|-------|-----|------|------|-------|------|------|------|-----|------|------|------|------|-----|
| ш                              | CG<br>RAM<br>(1) |       | 8   | 8    | P    |       | P    |      |      |     |      | 9    |      | œ    | p   |
| LLLH                           | (2)              |       |     |      |      |       |      |      |      | -   | P    | Ŧ    | 4    | #    | q   |
| LLHL                           | (3)              |       |     |      | Н    | Ь     | m    |      |      |     | ď    | IJ,  |      | F    | 0   |
| LLHH                           | (4)              | #     |     |      | 8    | ₫.    | \$   |      |      |     | ŋ    | Ŧ    | Ħ    | 8.   | 200 |
| LHLL                           | (5)              | \$    | 4   | D    |      |       | t.   |      |      |     | I    | k    | þ    | H    | 92  |
| шш                             | (6)              | X     |     |      |      | e     | u    |      |      |     | Ħ    | Ħ    | 1    | Œ    | ü   |
| ілні.                          | m                | &     | 6   |      | IJ   |       | W    |      |      | 7   | Ħ    |      |      | P    | Ø   |
| LEOUR                          | (9)              |       | ď   | ٥    | W    | 9     | W    |      |      |     | Ŧ    | ×    |      | 8    | П   |
| IILLL                          | (II)             | K     | 8   |      | ×    | h     | ×    |      |      | ď   | 9    | 7    | U    | .,   | ×   |
| нілн                           | (2)              |       | 9   | I    | ¥    | 1     |      |      |      | •   | Ţ    | J    | Ш    | -1   | у   |
| ны.                            | (3)              | *     |     |      | ×    | j     | ×    |      |      | I   |      | ň    | Ŀ    | j    | Ŧ   |
| ніян                           | (4)              |       | •   | ĸ    |      | k     | £    |      |      |     | ij   |      |      | *    | 7   |
| HHLL                           |                  |       |     |      | ¥    |       |      |      |      | t   |      |      | ŋ    | 4    | m   |
| нили                           | (6)              |       |     | M    |      | M     |      |      |      | 1   | X    |      |      | Ł    | H   |
| нинг                           | n                |       |     | H    |      | m     |      |      |      |     | t    | ħ    |      | m    |     |
| нини                           | (10)             | ×     | 7   |      |      | m     |      |      |      | i i | 9    | D    | 0    | Ö    |     |

DATA VISION 05/08/11 15 / 17

#### 5. NOTES

#### <u>Safety</u>

• If the LCD panel breaks, be careful not to get the liquid crystal in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and plenty of water.

#### Handling

- Avoid static electricity as this can damage the CMOS LSI.
- The LCD panel is plate glass; do not hit or crush it.
- Do not remove the panel or frame from the module.
- The polarizing plate of the display is very fragile; handle it very carefully

#### Mounting and Design

- Mount the module by using the specified mounting part and holes.
- To protect the module from external pressure, leave a small gap by placing transparent plates (e.g. acrylic or glass) on the display surface, frame, and polarizing plate
- Design the system so that no input signal is given unless the power-supply voltage is applied.
- Keep the module dry. Avoid condensation, otherwise the transparent electrodes may break.

#### Storage

- Store the module in a dark place where the temperature is 25 °C±10 °C and the humidity below 65% RH.
- Do not store the module near organic solvents or corrosive gases.
- Do not crush, shake, or jolt the module (including accessories).

#### Cleaning

- Do not wipe the polarizing plate with a dry cloth, as it may scratch the surface.
- Wipe the module gently with soft cloth soaked with a petroleum benzine.
- Do not use ketonic solvents (ketone and acetoe) or aromatic solvents (toluene and xylene), as they may damage the polarizing plate.

#### 6. OPERATION PRECAUTIONS

Any changes that need to be made in this specification or any problems arising from it will be dealt with quickly by discussion between both companies.

DATA VISION 05/08/11 16 / 17

