Labs

Optimization for Machine Learning Spring 2018

EPFL

School of Computer and Communication Sciences

Martin Jaggi
github.com/epfml/OptML_course

Problem Set 8, due May 4, 2018 (Frank-Wolfe)

Convergence of Frank-Wolfe

Exercise 1:

Assuming $h_0 \leq 2C$, and the sequence h_0, h_1, \ldots satisfies

$$h_{t+1} \le (1 - \gamma)h_t + \gamma^2 C$$
 $t = 0, 1, \dots$

for $\gamma = \frac{2}{t+2}$, prove that

$$h_t \le \frac{4C}{t+2} \qquad t = 0, 1, \dots$$

Applications of Frank-Wolfe

Exercise 2:

Derive the LMO formulation for matrix completion, that is

$$\min_{Y \in X \subseteq \mathbb{R}^{n \times m}} \sum_{(i,j) \in \Omega} (Z_{ij} - Y_{ij})^2$$

when $\Omega \subseteq [n] \times [m]$ is the set of observed entries from a given matrix Z.

In this case, our optimization domain is the unit ball of the trace norm (or nuclear norm), which is known to be the convex hull of the rank-1 matrices

$$X := conv(\mathcal{A}) \quad \text{with} \quad \mathcal{A} := \left\{ \mathbf{u}\mathbf{v}^\top \ \middle| \ \substack{\mathbf{u} \in \mathbb{R}^n, \ \|\mathbf{u}\|_2 = 1 \\ \mathbf{v} \in \mathbb{R}^m, \ \|\mathbf{v}\|_2 = 1} \right\} \ .$$

Derive the LMO for this set X for a gradient at iterate $Y \in \mathbb{R}^{n \times m}$. What is the computational operation (or cost) needed to compute the LMO?

In comparison, what is the operation and cost to obtain the *projection* onto X?

Practical Implementation

Follow the Python notebook provided here:

 $github.com/epfml/OptML_course/tree/master/labs/ex08/$