

Minimum Spanning Tree

By Arun Cyril Jose

Undirected Graphs

• Undirected Graph is a **Tree** if there is exactly one simple path between any pair of vertices.

Trees

- |E| = |V| 1
- Connected
- No Cycles

 Any of these two properties imply the third property, and signifies the Graph is a Tree.

Graphs

• A path is simple if no vertices are repeated.

A path forms a cycle if last vertex = first vertex.

A cycle is simple if no vertices are repeated other than first and last.

- Two representations:
 - Adjacency list Best suited for Sparse Graphs (few edges).
 - Adjacency matrix Best suited for Dense graphs (lots of edges).

Graph Representations

Adjacency List

• Requires Θ (V + E) space.

• Requires Θ (degree(u)) time to check if edge (u,v) is in E.

Space efficient for Sparse Graphs.

Graph Representations

Adjacency Matrix

- Given a Graph G = (V, E)
- Number the vertices 1, 2,, |V|

- We use a |V| x |V| matrix for Adjacency Matrix representation.
- Requires Θ (V²) space.
- Requires Θ (1) time to check if (u,v) is in E.

Cable Laying Problem

Cable Laying Problem

Cable Laying Problem

Spanning Tree

• A **spanning tree** of a graph is a tree containing all vertices from the graph.

Spanning Tree

• A **spanning tree** of a graph is a tree containing all vertices from the graph.

Minimum Spanning Tree

• A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal.

Has 16 possible Spanning Trees, some of them are,

• Has two minimum cost spanning Tree, each with a cost of 6:

- Randomly pick a Vertex as the initial Tree T.
- Gradually expand into a Minimum Spanning Tree:
 - For each vertex that is not in T but directly connected to some node in T
 - Compute its minimum distance to any vertex in T.
 - Select the vertex that is closest to T
 - Add it to T.

K: whether in the tree

 d_v : distance to the tree

 p_v : closest node that is in the tree

	K	d_v	p_v
A	F	8	
В	F	8	_
C	F	8	_
D	F	8	_
E	F	8	
F	F	8	
G	F	8	_
Н	F	8	_

	K	d_v	p_v
A			
В			
C			
D	T	0	
E			
F			
G			
Н			

	K	d_v	p_v
A			
В			
C		3	D
D	T	0	
E		25	D
F		18	D
G		2	D
Н			

	K	d_v	p_v
A			
В			
C		3	D
D	T	0	
E		25	D
\mathbf{F}		18	D
G	T	2	D
Н			

	K	d_v	p_v
A			
В			
C		3	D
D	Т	0	_
E		7	G
F		18	D
G	Т	2	D
Н		3	G

	K	d_v	p_v
A			
В			
C	T	3	D
D	T	0	
E		7	G
F		18	D
G	Т	2	D
Н		3	G

	K	d_v	p_{v}
A			
В		4	C
C	Т	3	D
D	Т	0	-
E		7	G
F		3	C
G	Т	2	D
Н		3	G

	K	d_v	p_v
A			
В		4	C
C	Т	3	D
D	T	0	
E		7	G
F	T	3	C
G	Т	2	D
Н		3	G

	K	d_v	p_v
A		10	F
В		4	C
C	Т	3	D
D	T	0	_
E		2	F
F	T	3	C
G	T	2	D
Н		3	G

	K	d_v	p_v
A		10	F
В		4	С
C	Т	3	D
D	T	0	_
E	T	2	F
F	T	3	С
G	T	2	D
Н		3	G

	K	d_v	p_v
A		10	F
В		4	C
C	Т	3	D
D	T	0	_
E	T	2	F
\mathbf{F}	T	3	С
G	T	2	D
Н		3	G

	K	d_v	p_v
A		10	F
В		4	C
C	Т	3	D
D	T	0	_
E	T	2	F
F	T	3	C
G	T	2	D
Н	T	3	G

	K	d_v	p_v
A		4	Н
В		4	C
C	Т	3	D
D	T	0	
E	T	2	F
F	T	3	C
G	T	2	D
Н	T	3	G

	K	d_v	p_v
A	T	4	Н
В		4	C
C	Т	3	D
D	T	0	
E	T	2	F
F	T	3	C
G	T	2	D
Н	T	3	G

	K	d_v	p_v
A	T	4	Н
В		4	C
C	Т	3	D
D	T	0	_
E	T	2	F
F	T	3	C
G	T	2	D
Н	T	3	G

	K	d_v	p_v
A	T	4	Н
В	T	4	С
C	Т	3	D
D	T	0	-
E	T	2	F
F	T	3	С
G	T	2	D
Н	Т	3	G

	K	d_v	p_v
A	T	4	Н
В	T	4	C
C	Т	3	D
D	T	0	1
E	T	2	F
F	T	3	С
G	T	2	D
Н	Т	3	G

Cost of Minimum
Spanning Tree = 21

Applications of Minimum-Cost Spanning Tree

- Build a cable network which joins 'n' locations with minimum cost.
- Logistical problems.
- Obtain independent set of circuit equations for an electrical network.
- Pattern recognition, minimum spanning tree can be used to find noisy pixels.

Iterative method.

Divide & Conquer method.

Greedy method.

- Greedy method.
- {10, 5, 2, 1}

- May not always work.
- {18, 10, 1}

Greedy method.

May not always work.

83

Iterative method.

• Divide & Conquer method.

Greedy method.

Dynamic Programming.

Dynamic Programming

Dynamic Programming.

Hope you remember what recursion is?

- Reuse the solutions of the sub-problem
 - Memoization [Top-Down]
 - Tabulation [Bottom-up]

Dynamic Programming Applications

- Bellman Ford Algorithm
 - Single source shortest path algorithm
- Floyd Warshall Algorithm
 - All pair shortest path algorithm.
- Different utility:
 - Version control systems.
- Search close words.
 - Edit distance.

Dynamic Programming

• Fibonacci Series

Dynamic Programming: Fibonacci Series

Solution (Divide & Conquer)

```
int fib (int n)
{
    if (n == 0 || n == 1)
      return n;
    return (fib (n - 1) + fib (n - 2));
}
```

```
int memo [n] = { -1, -1, -1, ..... -1}
```

Solution (Dynamic Programming)

```
int fib (int n)
  if (memo[n] == -1)
     int res;
      if (n == 0 | | n == 1);
         res = n;
      else
         res = (fib (n - 1) + fib (n - 2));
         memo[n] = res;
    return memo [n];
```


Dynamic Programming: Fibonacci Series

