ORBIFOLDS AS STACKS

 $\frac{\mathsf{Ex}}{\mathsf{Ex}}$ (Functor of points) let C be a category of geom. $\mathsf{obj's}$. By the Yoneda kemma, Fa fully faithful embedding

- $\underbrace{\mathsf{EX}}$ ① Mfld \to Set, $\mathcal{U} \mapsto \{\text{families of pseudo-hol curves in }(X, J) \text{ over } \mathcal{U}\}$ should be repr. by $\mathcal{M}(X, J)$
 - ② Mfld → Set, $U \mapsto \{families of lines thru origin in R^n over U\}$ is represented by IRP.ⁿ⁻¹
 - \bigcirc Top \longrightarrow Set, $\cup \longmapsto Vect_{k}(\cup)$.

Prob | som. classes of vector bundles don't glue: "Vect_k(-) is not a sheaf" $E_{\alpha} \in Vect_{k}(U_{\alpha}) + E_{\alpha\beta} \in Vect_{k}(U_{\alpha\beta}) \xrightarrow{} E \in Vect_{k}(X)$

ldea Consider functors Cop Grpd. Now vector bundles glue:

Formally, $F: \mathcal{C}^{p} \longrightarrow Grpd$ should satisfy descent: $F(X) \xrightarrow{\sim} \lim \left(\prod_{a} F(U_{a}) \rightrightarrows \prod_{a,p} F(U_{a} \cap U_{p}) \right)$ $\longrightarrow \liminf_{a} \lim_{a \to \infty} 2\operatorname{-cort} \text{ sense}$

<u>Descent</u> Let $F: Top^{op} \rightarrow Grpd$ be a functor. Then a descent double consists of:

1
$$P_{\alpha} \in F(U_{\alpha}) \ \forall \alpha$$
 2 $P_{\alpha}|_{U_{\alpha\beta}} \xrightarrow{\phi_{\alpha\beta}} P_{\beta}|_{U_{\alpha\beta}}$ S.t. $\phi_{\alpha\gamma} = \phi_{\beta\gamma} \cdot \phi_{\alpha\beta}$
 $P_{\alpha}|_{U_{\alpha\beta}} \in F(U_{\alpha\beta})$

"cocycle condition"

Let $D(\{U_a\})$ be the category of descent data. Then F satisfies descent if $F(X) \xrightarrow{\sim} D(\{U_a\})$

In other words,

- 1 Ess. swj. → any descent datum glues,
- @ Faithful => morphisms are uniquely determined by a cover,
- 3 Full => morphisms glue

Def F is a stack if it satisfies descent.

A more convenient language for stacks:

Def $D \rightarrow C$ is a category fibered in groupoids if

 $\frac{R_{mk}}{R_{mk}}$ Given a CFG D \rightarrow C, we get a functor $e \rightarrow Grpd$.

Def Descent data is defined similarly: (when C=Tap)

 $\mathcal{D} \xrightarrow{\pi} \mathsf{Top}$ is a stack if

$$\pi^{-1}(X) \cong \text{descent cat for } \{U_{n}\}$$

for any X and EU~?.

 $\underline{\mathsf{Ex}}$ Any $X \in \mathsf{Top}$ determines a stack \underline{X} given by $Z \mapsto \mathsf{Top}(Z,X) \in \mathsf{Set} \subseteq \mathsf{Grpd}$.

Ex Given a Lie grand G, the category of principal G-bundles is a stack/Mfld. This stack is called BG.

Ex For $G = \{\Gamma \times M \Rightarrow M\}$, this is the category where the objects are maps $N \longrightarrow M/\Gamma$ given by gluing maps $U_w \longrightarrow M \longrightarrow M/\Gamma$

Ex By the Yoneda lemma, a map $X \to X$ is an obj. of X lying over X. This map sends a map $Z \to X$ to the pullback of the fixed object.

Ex Given a bibundle $P:G \rightarrow H$, define $BP:BG \rightarrow BH$ by composition of bibundles. If $F:BG \rightarrow BH$ is a morphism of stacks, take $P=F(G \rightarrow G_0)$.

Def (Fiber products) Given $X, Y, Z \Rightarrow C$ CFG's, and maps $X, Y \Rightarrow Z$, let $X \times Y$ be the CFG

$$0b = \left\{ \begin{array}{c} x \\ \downarrow \\ \downarrow \\ \downarrow \end{array} \right\}, \quad Mor = \left\{ \begin{array}{c} x \\ \downarrow \\ \downarrow \\ \end{matrix} \right\}$$

Def (Representable maps) A morphism $X \xrightarrow{f} Y$ of stacks is representable if $\forall Z \in \mathsf{Top}$, $X \times_{Y} Z \in \mathsf{Top}$.

For a property P satisfied by top'l spaces, I satisfies P it its pullback by every ZETop satisfies P.

Ex U > It is an open embedding if \forall Z, Z xx U -> Z is an open embedding.

Ex (Surprising fact) The map $G_o \to BG$ is a surjective submersion. In fact, if $M \to BG$ is given by the principal G-bundle P,

$$P \longrightarrow \underline{G}.$$

$$\underline{M} \longrightarrow BG$$

Def An atlas for a stack $\mathcal X$ over Mfld is a surjective submersion $\underline{M} \longrightarrow \mathcal X$.

A stack admitting an atlas is called a geometric/differentiable stack. Topological stacks are defined similarly.

The If $M \to X$ is an atlas, then $X \cong BG$ for some $G = \{M \times_{\mathcal{X}} M \Longrightarrow M\}$.