A library of antiassociative magmas of small order

0.3.0

4 January 2025

Kamil Zabielski

Kamil Zabielski

Address: Department of Theoretical Computer Science Białystok University of Technology Wiejska 45A 15-325 Białystok Poland

Copyright

© 2024 by Kamil Zabielski

smallantimagmas package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its documentation provided by GAP users and developers.

Contents

1	smallantimagmas automatic generated documentation		
	1.1	smallantimagmas automatic generated documentation of properties	4
	1.2	smallantimagmas automatic generated documentation of attributes	7
	1.3	smallantimagmas automatic generated documentation of global functions	9
	1.4	smallantimagmas automatic generated documentation of methods	12
Ind	dex		14

Chapter 1

smallantimagmas automatic generated documentation

1.1 smallantimagmas automatic generated documentation of properties

1.1.1 IsAntiassociative (for IsMagma)

```
gap> IsAntiassociative(OneSmallGroup(16));
false
gap> IsAntiassociative(OneSmallAntimagma(2));
true
gap> IsAntiassociative(OneSmallAntimagma(3));
true
```

1.1.2 IsLeftCyclic (for IsMagma)

1.1.3 IsRightCyclic (for IsMagma)

1.1.4 IsLeftCancellative (for IsMagma)

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> Display( MultiplicationTable(M) );
[ [ 2, 1 ],
       [ 2, 1 ] ]
gap> IsRightCancellative(M);
false
gap> IsLeftCancellative(M);
true
gap> List(AllSmallAntimagmas(2), M -> IsLeftCancellative(M));
[ true, false ]
```

1.1.5 IsRightCancellative (for IsMagma)

```
gap> List(AllSmallAntimagmas(2), M -> IsRightCancellative(M));
[ false, true ]
```

1.1.6 IsCancellative (for IsMagma)

```
gap> List(AllSmallAntimagmas(2), M -> IsCancellative(M));
[ false, false ]
```

1.1.7 IsLeftFPFInducted (for IsMagma)

```
gap> Display( MultiplicationTable( SmallAntimagma(2, 2) ) );
[ [ 2, 2 ],
      [ 1, 1 ] ]
gap> IsLeftFPFInducted( SmallAntimagma(2, 2) );
true
```

1.1.8 IsRightFPFInducted (for IsMagma)

```
gap> Display( MultiplicationTable( SmallAntimagma(2, 1) ) );
[ [ 2, 1 ],
      [ 2, 1 ] ]
gap> IsRightFPFInducted( SmallAntimagma(2, 1) );
true
```

1.1.9 IsLeftDerangementInducted (for IsMagma)

▷ IsLeftDerangementInducted(M)

(property)

Returns: true or false

is a left-hand sided derangment inducted m.

1.1.10 IsRightDerangementInducted (for IsMagma)

▷ IsRightDerangementInducted(M)

(property)

Returns: true or false

is a right-hand sided derangment inducted m.

```
gap> M := SmallAntimagma(2, 1);
  <magma with 2 generators>
  gap> IsLeftFPFInducted(M);
  false
  gap> IsRightFPFInducted(M);
  true
  gap> IsRightDerangementInducted(M);
  true
```

1.1.11 IsLeftAlternative (for IsMagma)

```
▷ IsLeftAlternative(M)
Returns: true or false
is a left-alternative magma M.
```

(property)

Example _____

1.1.12 IsRightAlternative (for IsMagma)

 \triangleright IsRightAlternative(M)

(property)

Returns: true or false

is a right-alternatve magma M.

Example -

1.2 smallantimagmas automatic generated documentation of attributes

1.2.1 AssociativityIndex (for IsMagma)

```
▷ AssociativityIndex(M)
```

(attribute)

identifies associativity index of M.

```
gap> OneSmallAntimagma(2);
<magma with 2 generators>
gap> AssociativityIndex(OneSmallAntimagma(2));
0
gap> OneSmallGroup(4);
<pc group of size 4 with 2 generators>
gap> AssociativityIndex(OneSmallGroup(4));
64
gap> AssociativityIndex(OneSmallGroup(4)) = 4 ^ 3;
true
```

1.2.2 DiagonalOfMultiplicationTable (for IsMagma)

▷ DiagonalOfMultiplicationTable(M)

(attribute)

computes diaognal of multiplication table of M.

```
Example

gap> List(AllSmallAntimagmas(3), M -> DiagonalOfMultiplicationTable((M)));

[[2, 1, 1], [2, 1, 1],
      [2, 3, 2], [2, 1, 1],
      [2, 1, 1], [2, 1, 2],
      [2, 3, 2], [2, 1, 2],
      [2, 3, 1], [2, 3, 1]
]
```

1.2.3 CommutativityIndex (for IsMagma)

▷ CommutativityIndex(M)

(attribute)

identifies commutativity index of M.

_____ Example _____

1.2.4 AnticommutativityIndex (for IsMagma)

▷ AnticommutativityIndex(M)

(attribute)

calculates anticommutativity index of M.

Example -

1.2.5 SquaresIndex (for IsMagma)

> SquaresIndex(M) (attribute)

computes squares index of M so the order of $\{m^2 | m \in M\}$.

```
gap> List(AllSmallAntimagmas(2), M -> List(M, m -> m * m) );
[ [ m2, m1 ], [ m2, m1 ] ]
gap> List(AllSmallAntimagmas(2), M -> SquaresIndex(M ));
[ 2, 2 ]
gap> List(AllSmallAntimagmas(3), M -> SquaresIndex(M ));
[ 2, 2, 2, 2, 2, 2, 2, 3, 3 ]
```

1.2.6 IdSmallAntimagma (for IsMagma)

▷ IdSmallAntimagma(M)

(attribute)

identifies class of antiassociative magma M.

```
gap> IsAntiassociative(OneSmallGroup(16));
false
gap> IsAntiassociative(OneSmallAntimagma(2));
true
gap> IsAntiassociative(OneSmallAntimagma(3));
true
```

1.2.7 LeftOrder (for IsExtLElement)

▷ LeftOrder([m])

(attribute)

returns a left order of element m.

1.2.8 RightOrder (for IsExtRElement)

RightOrder([m])
 (attribute)

returns a right order of element m.

1.2.9 LeftOrdersOfElements (for IsMagma)

▷ LeftOrdersOfElements([m])

(attribute)

returns a left order of element m.

1.2.10 RightOrdersOfElements (for IsMagma)

▷ RightOrdersOfElements([m])

(attribute)

returns a left order of element m.

(function)

1.3 smallantimagmas automatic generated documentation of global functions

1.3.1 AllSubmagmas

```
▷ AllSubmagmas(M) (function)
```

builds a collection of non-isomorphic submagmas of M.

```
gap> AllSmallAntimagmas(2);

[ <magma with 2 generators>, <magma with 2 generators> ]

gap> List(AllSmallAntimagmas(2), M -> AllSubmagmas(M));

[ [ <magma with 1 generator> ], [ <magma with 1 generator> ] ]
```

1.3.2 MagmaIsomorphismInvariantsMatch

→ MagmaIsomorphismInvariantsMatch(M) (function)

computes isomorphism invariants of M.

1.3.3 IsMagmaIsomorphic

▷ IsMagmaIsomorphic(M, N)

identifies whether magmas M, N are isomorphic.

```
gap> M := SmallAntimagma(2, 1);
  <magma with 2 generators>
  gap> N := SmallAntimagma(2, 2);
  <magma with 2 generators>
  gap> T := MagmaByMultiplicationTable([ [2, 1], [2, 1] ]);
  <magma with 2 generators>
  gap> IsMagmaIsomorphic(M, M);
  true
  gap> IsMagmaIsomorphic(M, T);
  true
  gap> IsMagmaIsomorphic(M, N);
  false
```

1.3.4 IsMagmaAntiisomorphic

```
▷ IsMagmaAntiisomorphic([M, N])

(function)
```

identifies whether magmas M, N are antiisomorphic.

```
gap> N := SmallAntimagma(2, 1);

<magma with 2 generators>
gap> M := SmallAntimagma(2, 1);

<magma with 2 generators>
```

```
gap> N := SmallAntimagma(2, 2);
    <magma with 2 generators>
    gap> IsMagmaAntiisomorphic(M, M);
    false
    gap> IsMagmaAntiisomorphic(M, N);
    true
    gap> IsMagmaAntiisomorphic(M, TransposedMagma(M));
    true
```

1.3.5 TransposedMagma

▷ TransposedMagma([M])

(function)

generates transposed magma M.

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> IsMagmaAntiisomorphic(M, TransposedMagma(M));
true
gap> IsMagmaIsomorphic(M, TransposedMagma(TransposedMagma(M)));
true
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> Display(MultiplicationTable(M));
[[ 2,  1 ],
  [ 2,  1 ]]
gap> Display(MultiplicationTable(TransposedMagma(M)));
[[ 2,  2 ],
  [ 1,  1 ]]
```

1.3.6 LeftPower

```
▷ LeftPower([m, k])

(function)
```

returns a left k-power of element m.

1.3.7 RightPower

```
▷ RightPower([m, k])

(function)
```

returns a right k-power of element m.

1.3.8 AllSmallAntimagmas

```
\triangleright AllSmallAntimagmas(n) (function)
```

returns all antiassociative magmas of specified size n (a number)

1.3.9 NrSmallAntimagmas

▷ NrSmallAntimagmas(n)

(function)

counts number of antiassociative magmas of specified size n (a number).

```
gap> NrSmallAntimagmas(2);
2
gap> NrSmallAntimagmas(3);
10
gap> NrSmallAntimagmas(4);
17780
```

1.3.10 SmallAntimagma

```
▷ SmallAntimagma(n, i)
```

(function)

returns antiassociative magma of id [n, i].

```
gap> SmallAntimagma(2, 1);

<magma with 2 generators>
gap> SmallAntimagma(4, 5);

<magma with 4 generators>
```

1.3.11 OneSmallAntimagma

```
▷ OneSmallAntimagma(n)
```

(function)

returns a random antiassociative magma of size n.

```
gap> OneSmallAntimagma(2);
<magma with 2 generators>

gap> OneSmallAntimagma(3);
<magma with 3 generators>
```

1.3.12 ReallyAllSmallAntimagmas

⊳ ReallyAllSmallAntimagmas(n)

(function)

returns really-all antiassociative magmas, isomorphic, of specified size n (a number)

```
gap> ReallyAllSmallAntimagmas(2);

[ <magma with 2 generators>, <magma with 2 generators> ]
```

1.3.13 ReallyNrSmallAntimagmas

(function)

counts number of antiassociative magmas of specified size n (a number)

```
gap> ReallyNrSmallAntimagmas(3);
52
```

1.3.14 AntimagmaGeneratorPossibleDiagonals

(function)

returns all possible diagonals of multiplication table for [n] -antimagma.

```
Example

gap> AntimagmaGeneratorPossibleDiagonals(2);
[[2, 1]]
gap> AntimagmaGeneratorPossibleDiagonals(3);
[
[2, 1, 1], [2, 1, 2], [2, 3, 1], [2, 3, 2],
[3, 1, 1], [3, 1, 2], [3, 3, 1], [3, 3, 2]
]
```

1.3.15 AntimagmaGeneratorFilterNonIsomorphicMagmas

▷ AntimagmaGeneratorFilterNonIsomorphicMagmas(Ms)

(function)

filters non-isomorphic magmas m.

1.4 smallantimagmas automatic generated documentation of methods

1.4.1 MagmaIsomorphism (for IsMagma, IsMagma)

```
▷ MagmaIsomorphism(M, N)
```

(operation)

computes an isomoprhism between magmas M, N.

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := MagmaByMultiplicationTable([ [2, 1], [2, 1] ]);
<magma with 2 generators>
gap> MagmaIsomorphism(M, N);
<mapping: Domain([ m1, m2 ]) -> Domain([ m1, m2 ]) >
```

1.4.2 MagmaAntiisomorphism (for IsMagma, IsMagma)

▷ MagmaAntiisomorphism(M, N)

(operation)

creates an antiisomoprhism between magmas M, N.

```
gap> M := SmallAntimagma(2, 1);
<magma with 2 generators>
gap> N := SmallAntimagma(2, 2);
<magma with 2 generators>
gap> MagmaAntiisomorphism(M, N);
<mapping: Domain([ m1, m2 ]) -> Domain([ m1, m2 ]) >
```

Index

AllSmallAntimagmas, 10	IsRightDerangementInducted
AllSubmagmas, 9	for IsMagma, 6
AnticommutativityIndex	IsRightFPFInducted
for IsMagma, 7	for IsMagma, 5
AntimagmaGeneratorFilterNonIsomorphic-	I - 6+ 01
Magmas, 12	LeftOrder
AntimagmaGeneratorPossibleDiagonals, 12	for IsExtLElement, 8
AssociativityIndex	LeftOrdersOfElements
for IsMagma, 7	for IsMagma, 8
	LeftPower, 10
CommutativityIndex	License, 2
for IsMagma, 7	Magma Antiigamannhigm
DiagonalOfMultiplicationTable	MagmaAntiisomorphism
for IsMagma, 7	for IsMagma, IsMagma, 13
Tor Islaughia, /	MagmaIsomorphism
IdSmallAntimagma	for IsMagma, IsMagma, 12
for IsMagma, 8	MagmaIsomorphismInvariantsMatch, 9
IsAntiassociative	NrSmallAntimagmas, 11
for IsMagma, 4	Wibhailantimaghab, 11
IsCancellative	OneSmallAntimagma, 11
for IsMagma, 5	G
IsLeftAlternative	ReallyAllSmallAntimagmas, 12
for IsMagma, 6	ReallyNrSmallAntimagmas, 12
IsLeftCancellative	RightOrder
for IsMagma, 4	for IsExtRElement, 8
IsLeftCyclic	RightOrdersOfElements
for IsMagma, 4	for IsMagma, 8
IsLeftDerangementInducted	RightPower, 10
for IsMagma, 6	
IsLeftFPFInducted	SmallAntimagma, 11
for IsMagma, 5	SquaresIndex
IsMagmaAntiisomorphic, 9	for IsMagma, 8
IsMagmaIsomorphic, 9	m 10
IsRightAlternative	TransposedMagma, 10
for IsMagma, 6	
IsRightCancellative	
for IsMagma, 5	
C ,	
IsRightCyclic	
for IsMagma, 4	