BST02: Using R for Statistics in Medical Research

Part D: Statistics with R

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

✓ n.erler@erasmusmc.nl

24 - 28 February 2020

t-test: t.test()

One-sample t-test

ightharpoonup compares the mean of a sample with a fixed value μ

Two sample / independent samples t-test

 \blacktriangleright compares the difference between the means of two samples with a fixed value μ

Related samples t-test

ightharpoonup compares the mean of the difference between related observations with a fixed value μ (same as one-sample t-test)

Wilcoxon Test: wilcox.test()

Wilcoxon Signed Rank Test

lacktriangle tests if one sample (or the differences between two paired samples) is/are symmetric about μ

Wilcoxon Rank Sum Test / Mann-Whitney test

► test for a location shift between the distributions of two independent samples

See also BBR Sections 7.2 & 7.3 (http://hbiostat.org/doc/bbr.pdf)

Kruskal-Wallis Rank Sum Test: kruskal.test()

- ► This is an extension of the Wilcoxon rank sum test for more than two groups
- Test for a difference in location of a continuous variable between multiple groups
- ► The Wilcoxon rank sum test is a special case of the Kruskal-Wallis rank sum test

Other tests for continuous data

- ► Kolmogoriv-Smirnov Test: ks.test() tests if two samples are drawn from the same continuous distribution
- ► Shapiro-Wilk Normality Test: shapiro.test()
- ► Friedman Rank Sum Test: friedman.test() non-parametric test for 2 or more related samples
- **.**..

Tests for Categorical Data / Proportions

One-sample Proportion Test

- tests if the proportion in one sample is equal to a fixed value p
- prop.test() and binom.test()

Tests for Proportions in Multiple (independent) Groups

- tests if the proportion in several samples are equal
- chisq.test() and fisher.test() (when there are cells with 0)

See also BBR Sections 5.7 & 6 (http://hbiostat.org/doc/bbr.pdf)

Tests for Categorical Data / Proportions

Related Samples: McNemar Test

- ▶ Tests for symmetry in a 2×2 table
- mcnemar.test()

3-Dimensional Contingency Table

- Cochrane-Mantel-Haenszel Test
- \triangleright χ^2 test for independence of two nominal variables in each stratum
- ▶ mantelhaen.test()

Statistical Tests

Continuous Outcomes

- ▶ t.test()
- ▶ wilcox.test()
- kruskal.test()
- ks.test()
- ► friedman.test()
- shapiro.test()

Categorical Outcomes

- prop.test()
- ▶ binom.test()
- chisq.test()
- ▶ fisher.test()
- mcnemar.test()
- ▶ mantelhaen.test()

Pairwise tests

- pairwise.prop.test()
- pairwise.t.test()
- pairwise.wilcox.test()

Variance and Correlation

- cor.test()
- bartlett.test()
- var.test()

Linear Regression

A standard linear regression model has the form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$
 with $\varepsilon \sim N(0, \sigma^2)$

where

- ▶ *y* is the **outcome** variable ("dependent variable")
- \triangleright x_1, \dots, x_p are the **covariates** ("independent variables")
- $ightharpoonup \beta_0, \dots, \beta_p$ are the **regression coefficients**
 - \triangleright β_0 is the intercept
 - β_1, \ldots, β_p estimate the effects of the covariates
- ightharpoonup arepsilon is a vector of **residuals**, which we assume to be (approximately) normally distributed.

Linear Regression

To fit a **linear regression** in R we use the function lm().

The most important arguments are

- formula: a formula object
- data: a data.frame (optional, but usually needed)
- subset: a vector specifying which observations should be used (optional)

Model Formula

A formula object has the form

outcome ~ linear predictor

for example

$$y \sim x1 + x2 + x3$$

- ► Variables are separated by "+" signs.
- ► An intercept is automatically included.
- one-sided formulas (omitting the outcome) are possible (used for random effects specification)

Model Formula: Interactions

Interaction terms are written using ":" or "*".

"*" includes the main effects and interaction terms, i.e.,

$$y \sim x1 * x2$$

is equivalent to

$$y \sim x1 + x2 + x1:x2$$

Interactions between multiple variables can be written using "()", i.e.,

$$y \sim x1 * (x2 + x3)$$

is equivalent to

$$y \sim x1 * x2 + x1 * x3$$

Model Formula: Interactions

To specify a **higher level interaction** (for example a three-way interaction) "^" is used, i.e.,

$$y \sim (x1 + x2 + x3)^3$$

will create all interactions up to 3-way and is equivalent to

$$y \sim x1 * x2 * x3$$

and equivalent to

$$y \sim x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3$$

and

$$y \sim (x1 + x2 + x3)^2$$

will create all two-way interactions and is equivalent to

$$y \sim x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3$$

Model Formula: Removing terms

The "-" sign can be used to remove terms from a model formula, for example

is equivalent to

$$y \sim x1 + x3 + x1:x2 + x2:x3 + x1:x2:x3$$

The **intercept** can be removed from a formula by using "-1" or "+0", i.e.

$$y \sim x1 + x2 - 1$$

 $y \sim x1 + x2 + 0$

Generalized Linear Regression (GLM)

A generalized linear regression model has the form

$$g(\mathbb{E}(y)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

where g() is a link function and y is from the exponential family.

For example **logistic regression** for binary *y*:

$$log\left(\frac{P(y=1)}{1-P(y=1)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

 $log\left(\frac{p}{1-p}\right)$ is the **logit** link.

Generalized Linear Regression (GLM)

To fit a **GLM** in R we use the function glm().

The most important arguments are

- formula: a formula object
- family: a family object or name of the family function, describing the error distribution and link function
- data: a data.frame (optional, but usually needed)
- subset: a vector specifying which observations should be used (optional)

Families and Link Functions

Common families & available links in R:

(see also ?family)

family	link
binomial	logit, probit, cauchit, log, cloglog
gaussian	identity, log, inverse
Gamma	inverse, identity, log
poisson	log, identity, sqrt

The family argument in glm() can be specified in the following ways:

- binomial(link = "logit")
- binomial()
- binomial
- ▶ "binomial"

Note:

When the link is not explicitely specified (i.e. option 1), the default link is used.

Regression

Regression Models

- ► lm()
- **▶** glm()

Regression Results

- summary()
- coef(), confint()
- fitted(), residuals()
- ► AIC(), BIC()
- anova()

Plots

- ▶ plot()
- qqnorm(), qqline(), qqplot()

Topic

- ▶ ns(), bs(), I()
- p.adjust()
- ▶ all.vars()
- ▶ update()
- ▶ as.formula()