

UNIVERSIDAD DE CARABOBO FACULTAD EXPERIMENTAL DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE COMPUTACIÓN

SOFTWARE PARA EL ESPECTROFOTÓMETRO MINISCAN XE PLUS USADO EN EL DIAGNÓSTICO DE PATOLOGÍAS DERMATOLÓGICAS EN PACIENTES. CASO DE ESTUDIO: CIMBUC.

AUTOR:

Gabriel Núñez

TUTORES:

Prof. Patricia Guerrero

Prof. Harold Vasquez

Resumen

El espectrofotómetro de reflexión difusa, denominado MiniScan XE Plus, es un instrumento de medición utilizado por el Centro de Investigaciones Médicas y Biotecnológicas de la Universidad de Carabobo (CIMBUC), que ayuda a los dermatólogos a establecer diagnósticos sobre patologías en la piel de pacientes, de manera precisa y sin necesidad de realizar biopsias. No obstante, el software comercial disponible para la utilización de tal instrumento es poco amigable, difícil de utilizar e imposible de modificar y extender. La presente investigación tiene como objetivo desarrollar un software amigable, modificable y extensible, que se ajuste a las necesidades de los dermatólogos y que garantice un mejor aprovechamiento del instrumento en cuestión.

Palabras claves: espectrofotómetro, análisis bioquímico de la piel, biopsia, ingeniería biomédica, software privativo.

Abstract

The diffuse reflectance spectrophotometer, called MiniScan XE Plus, is a measurement instrument used by the Medical Research and Biotechnology Center at the University of Carabobo (CIMBUC), which helps dermatologists to establish pathologies diagnoses in the skin of patients precisely, without need for biopsy. However, the available commercial software for the use of such an instrument is unfriendly, difficult to use and impossible to modify and extend. This research aims to develop a friendly, modifiable and expandable software that meets the needs of dermatologists and ensures a better use of the instrument itself.

Keywords: spectrophotometer, biochemical analysis of the skin, biopsy, biomedical engineering, privative software.

Capítulo 1

El Problema

«Software privativo significa que priva a los usuarios de su libertad.»

- Richard Stallman

1.1 Planteamiento del Problema

Bersha (2010) indica que durante el diagnóstico de enfermedades de la piel, la observación cuidadosa y la evaluación visual del área sospechada es siempre el primer paso, y el más importante. Esto es seguido generalmente por una escisión o biopsia por punción, en la que se extrae una muestra de tejido de la piel para un análisis microscópico. La observación visual suele ser subjetiva, y los pacientes a menudo se someten a cicatrices y dolor durante la biopsia. Por otro lado, las técnicas ópticas son por lo general no invasivas, y sus resultados son a menudo objetivos. Durante el diagnóstico no invasivo, no se crea ninguna ruptura en la piel, y los pacientes no se someten al dolor ni a cicatrices durante el tratamiento.

Los avances tecnológicos de la actualidad permiten emplear técnicas de óptica,

que tienen la capacidad de estudiar las propiedades estructurales y bioquímicas del tejido biológico, de manera precisa y no invasiva. Los instrumentos que emplean tales técnicas son de gran ayuda para los médicos dermatólogos, razón por la cual dichos instrumentos han tomado suma importancia en el área médica dermatológica.

Hoy en día existen diferentes tipos de estudios ópticos in-situ, in-vivo e invitro del tejido biológico, como la Espectroscopía de Reflectancia Difusa (ERD). Pérez (2012) asegura que con esta técnica es posible estudiar las propiedades bioquímicas y las condiciones estructurales de un tejido biológico, analizando la interacción luz-tejido de una manera no invasiva.

En este sentido, el Centro de Investigaciones Médicas y Biotecnológicas de la Universidad de Carabobo (CIMBUC) dispone de un espectrofotómetro de reflexión difusa, denominado MiniScan XE Plus, creado por la empresa HunterLab. Esta empresa lo describe como un instrumento utilizado para medir la transmisión y/o reflectancia de especímenes, como una función de longitud de onda, que aplica la técnica de ERD.

Ahora bien, el CIMBUC hace uso de este instrumento a través del software disponible para su utilización, designado HunterLab Universal Software, que es un software comercial y privativo de 16 bits, diseñado para el sistema operativo Microsoft Windows versión 3.x, con la posibilidad de ejecutarse en Windows 95, Windows 2000 y Windows XP. Este software contiene funciones que abarcan la utilización del MiniScan XE Plus, y de otros instrumentos ofrecidos por HunterLab; además fue descontinuado en el año 2008. La interfaz gráfica de usuario de este software está en inglés. Por último, los resultados que genera este software no poseen el formato de gestión de información de pacientes con el que trabajan los dermatólogos del CIMBUC.

Tomando en cuenta lo mencionado anteriormente, se tiene que el HunterLab Universal Software es un software privativo y que está descontinuado, por lo tanto no existe la posibilidad de modificarlo ni extenderlo; ofrece funciones ajenas al uso exclusivo del MiniScan XE Plus, causando que la interfaz gráfica de usuario contenga más opciones de las necesarias para manejar tal instrumento. Asimismo, como consecuencia de que la interfaz gráfica de usuario esté en inglés, esta es difícil de entender por los dermatólogos. Sumado al hecho de que los resultados generados por este software no poseen el formato con el que trabajan los dermatólogos, haciendo necesario su traspaso manual, lo que produce una ralentización en las consultas con pacientes. Todo esto conlleva a que los dermatólogos requieran de asistencia técnica especializada para la debida utilización de dicho software.

De lo antedicho se desprende que, el HunterLab Universal Software posee una interfaz gráfica de usuario poco amigable, y el costo del tiempo de capacitación para su uso correcto podría ser alto. Este software no podrá modificarse ni extenderse, por lo tanto no se fomentará el uso del instrumento en cuestión, disminuyendo su potencial. Por último, tampoco se fomentará el desarrollo de nuevas aplicaciones que utilicen sus resultados como insumo, sosegando así la posibilidad de realizar análisis más complejos, y de proveer a los dermatólogos con resultados que les permitan establecer diagnósticos más completos.

Lo planteado anteriormente fundamenta la necesidad del desarrollo de un nuevo software para el uso del MiniScan XE Plus, con una interfaz gráfica de usuario amigable, modificable y extensible, utilizando los lineamientos de la ingeniería del software pertinentes.

Con esta investigación se espera fomentar la utilización del nuevo software, mejorar la capacitación del personal médico para su debido uso, y aportar una base sólida sobre la cual se podrán desarrollar nuevos proyectos.

1.2 Justificación

Empezando con la interfaz gráfica de usuario, Sommerville (2005) señala que el diseño cuidadoso de la misma es una parte fundamental del proceso de diseño general del software. Si un software debe alcanzar su potencial máximo, es fundamental que su interfaz gráfica de usuario sea diseñada para ajustarse a las habilidades, experiencia y expectativas de sus usuarios previstos. Un buen diseño de la interfaz gráfica de usuario es crítico para la confiabilidad del software. Muchos de los llamados errores de usuario son causados porque las interfaces gráficas de usuario no consideran las habilidades de los usuarios reales y su entorno de trabajo.

Dicho lo anterior, el diseño de la interfaz gráfica de usuario del HunterLab Universal Software es la principal razón por la cual los dermatólogos requieren de personal técnico especializado, que los asista al momento de utilizarlo. Esto porque dicha interfaz está en inglés, ofrece funciones que no son necesarias para la utilización del MiniScan XE Plus, y sus resultados no proporcionan el formato con el que trabajan los dermatólogos. Por estas razones los dermatólogos perciben este software comercial como no intuitivo, ni auto descriptivo ni amigable, temiendo cometer errores al utilizarlo por su propia cuenta y generar resultados erróneos, poniendo en riesgo el diagnóstico, y, en consecuencia, la salud de los pacientes en consulta.

Con respecto a software de calidad, Sommerville (2005) explica lo siguiente: así como los servicios que proveen, los productos de software tienen un cierto número de atributos asociados que reflejan su calidad. Estos atributos no están directamente relacionados con lo que hace el software; más bien, reflejan su comportamiento durante su ejecución, en la estructura y organización del programa fuente, y en la documentación asociada.

El conjunto específico de atributos que se espera de un software de calidad depende obviamente de su aplicación. Esto se generaliza en el conjunto de atributos que se muestran en la Tabla 1, en la cual se pueden apreciar las características

esenciales de un software de calidad.

Tabla 1. Atributos esenciales de un software de calidad (Fuente: Sommerville, 2005).

Característica	Descripción
Mantenibilidad	El software debe describirse de tal forma que pueda evolucionar para cumplir las necesidades de cambio de los clientes. Este es un atributo crítico, debido a que el cambio en el software es una consecuencia inevitable de un cambio en el entorno de negocios.
Confiabilidad	Este atributo tiene un gran número de características, incluyendo la fiabilidad, protección y seguridad. El software confiable no debe causar daños físicos o económicos en el caso de una falla del sistema.
Eficiencia	El software no debe hacer que se malgasten los recursos del sistema, como la memoria y los ciclos de procesamiento. Por lo tanto, la eficiencia incluye tiempos de respuesta y de procesamiento, utilización de la memoria, etcétera.
Usabilidad	El software debe ser fácil de utilizar, sin esfuerzo adicional por el usuario para quien está diseñado. Esto significa que debe tener una interfaz gráfica de usuario apropiada, y una documentación adecuada.

Debido a que el HunterLab Universal Software es privativo, el CIMBUC no dispone de su código fuente, de manera que este software no puede ser modificado ni adaptarse a necesidades específicas, y, por lo tanto, no posee el primer atributo esencial para un software de calidad: la mantenibilidad. Por la misma razón, no se puede determinar con certidumbre el segundo atributo: la confiabilidad (madurez del software y tolerancia a fallas); además de que no se puede evaluar completamente el nivel de protección y seguridad del mismo. Por último, la usabilidad de este software es baja, ya que la interfaz gráfica de usuario es poco amigable. Por estas razones, se desarrolló un software que cumpliese con los atributos esenciales que debe poseer un software de calidad.

Las razones descritas anteriormente justifican la necesidad del desarrollo de un nuevo software para el uso del MiniScan XE Plus, que sea amigable, modificable y extensible; que ofrezca las funciones que necesitan los dermatólogos para establecer diagnósticos, y que emplee el uso del formato de historia médica con el que trabajan. Por último, se ha tomado como caso de estudio el CIMBUC.

1.3 Objetivos de la Investigación

En la siguiente sección se especifican los objetivos del trabajo, distinguiendo entre el objetivo general y los objetivos específicos.

1.3.1 Objetivo General

Desarrollar un software para el espectrofotómetro MiniScan XE Plus, usado en el diagnóstico de patologías dermatológicas en pacientes, tomando como caso de estudio el CIMBUC.

1.3.2 Objetivos Específicos

- Investigar el estado del arte referente a las características de software para espectrofotómetros de reflexión difusa, el diseño y la calidad del software.
- Seleccionar una metodología de investigación y una metodología de desarrollo para el nuevo software.
- Diseñar y desarrollar el nuevo software, siguiendo las metodologías seleccionadas.
- Diseñar y realizar las pruebas para el nuevo software.
- Elaborar el manual de usuario para el uso del nuevo software.

Capítulo 2

Marco Teórico

2.1 Antecedentes

- La sensación de la luz es producida por radiación electromagnética visible, que está dentro de los límites de longitud de onda de 380 a 780 nanómetros. Dentro de este rango, la radiación electromagnética produce la sensación de luz azul, luz verde, y luz roja; estas sensaciones son denominadas valores triestímulo. Una de las maneras de producir un color de forma digital, es mezclando estos valores. La *Commission Internationale de l'Eclairage (CIE)*, definió en 1964 un estándar para calcular los valores triestímulo de un color, representandolos como coordenadas de cromaticidad *XYZ*, lo que es mejor conocido como el sistema tricromático *CIE 1964*. Ahora bien, el espacio *CIE L*a*b**, es un sistema definido por la misma comisión en 1976 para la transformación de las coordenadas de cromaticidad mencionadas. Schanda (2007) proporciona las fórmulas utilizadas para el cálculo de las coordenadas de cromaticidad y de las coordenadas resultantes de este espacio, las cuales fueron implementadas en el nuevo software como funciones para determinar ciertas propiedades ópticas, presentes en la piel de los pacientes.
- En el artículo titulado "Recuperación del Coeficiente de Absorción de la Epi-

dermis en la Piel Humana" de Narea y otros (2015), se obtiene el coeficiente de absorción de la epidermis en la piel humana a partir de datos espectrales. El procedimiento para obtener dicho coeficiente es implementado en el nuevo software para determinar el nivel de concentración de melanina en la epidermis de un paciente.

En la tesis de maestría de Bersha (2010) titulada "Spectral Imaging and Analysis
of Human Skin", se calcula el índice de eritema partiendo de la coordenada a*,
correspondiente al espacio de color CIELAB. El método para la obtención del
índice mencionado es implementado en el nuevo software, para determinar el
nivel inflamatorio de la epidermis de un paciente.

2.2 Observación Directa

- HunterLab Universal Software: Es un software propietario de 16-bit diseñado para el Sistema Operativo Microsoft Windows Version 3.x, con la posibilidad de ejecutarse en Windows 95, Windows 2000, Windows NT y Windows XP, descontinuado en el año 2008. Este software dispone de algunas de funcionalidades desarrolladas en el nuevo software, razón por la cual es una importante referencia.
- MiniScanXE Plus OCX Kit: Es un archivo de control ActiveX diseñado por HunterLab para controlar y/o realizar mediciones con el "MiniScan XE Plus", utilizando Visual Basic for Applications (VBA). Su principal objetivo es proveer a los desarrolladores con un componente reutilizable de software que da acceso a las caracteristicas más comunmente utilizadas por el instrumento. La interfaz pública que expone este archivo es utilizada para realizar la comunicación entre el "MiniScan XE Plus" y el nuevo software.

Bibliografía

«Qt, a Cross-Platform Framework for Application Development».

```
https://wiki.qt.io/About_Qt
```

«A Qt C++ widget for plotting and data visualization».

```
http://www.qcustomplot.com/index.php/introduction
```

«USB to Serial adapters Wiki».

```
http://www.usb-serial-adapter.org/
```

«Visual Studio Community, a fully-featured, extensible IDE».

```
https://www.visualstudio.com/products/visual-studio-community-vs
```

- BASKERVILLE, RICHARD L. (1999). «Investigating Information Systems with Action Research».
- BERSHA, K. S. (2010). *Spectral Imaging And Analysis Of Human Skin*. Tesina o Proyecto, University of Eastern England.
- CIE (2015). Commission Internationale de l'Eclairage, International Commission on Illumination. Vienna, Austria.

```
http://www.cie.co.at/index.php
```

- HUNTERLAB (2001). *Universal Software Versions 4.10 and Above User's Manual.*Reston, Virginia.
- —— (2006). MiniScan XE Plus User's Guide Version 2.4. Reston, Virginia.
- —— (2015). HunterLab, The World's true measure of color. Reston, Virginia.

```
http://www.hunterlab.com/about-us.html
```

- KROLL, P. y KRUCHTEN, P. (2003). *The Rational Unified Process Made Easy: A Practitioner's Guide to the RUP*. Addison-Wesley, Boston, MA.
- NAREA, F.; VIVAS, S. y MUÑOZ, A. (2015). «Recuperación del coeficiente de absorción de la epidermis en la piel humana».
- PÉREZ, A. D. (2012). Estudio de la Reflexión Óptica Difusa en Tejido Biológico. Tesina o Proyecto, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco.
- SCHANDA, J. (2007). *Colorimetry: understanding the CIE system.* John Wiley & Sons, Hoboken, New Jersey.
- SCHWABER, K. y SUTHERLAND, J. (2013). *The Definitive Guide to Scrum: The Rules of the Game*.
- SOMMERVILLE, I. (2005). *Ingeniería del Software*. Pearson Education, Madrid, España.