

EE 319K Introduction to Embedded Systems

Lecture 10: Digital-to-analog conversion (DAC), Sound on 9S12

Andreas Gerstlauer 10-1

Announcements

- ☐ Homework 8, next Monday
 - Metrowerks programming
 - o Lessons/Videos 1-5 from Jon's website
 - o Assembly/C interface, parameter passing, simulating
- □ Lab 7, next week
 - ❖Digital/analog (D/A) conversion
 - o Digital piano: sound & music
- □ Plagiarism checks are being performed!

Andreas Gerstlauer 10-2

Agenda

- □Recap
 - ❖Interrupts
 - ❖Output compare interrupts on the 9S12
 - ❖Metrowerks C programming
- **□**Outline
 - ❖Digital-to-analog conversion (DAC)
 - Analog signal generation o Sound and music

Andreas Gerstlauer 10-3

A/D and D/A Conversion Basics

Digitization: Amplitude and time quantizing

Digital to Analog Conversion

- Examples
 - ❖ Signal generation (sound, image, touch...)
 - ❖ Output to affect external devices (power, flow, heat...)
- ☐ The DAC *precision* is the number of distinguishable DAC outputs
 - ❖ (e.g., 16 alternatives, 4 bits).
- ☐ The DAC *range* is the maximum and minimum DAC output
 - ♦ (0 to 5V).
- ☐ The DAC *resolution* is the smallest distinguishable change in output.
 - **♦** (5V/16 =0.31V)
- ☐ Range(volts) = Precision(alternatives) * Resolution(volts)
- ☐ The DAC accuracy is (Actual Ideal) / Ideal

N	Q1	Q0	V1(V)	V2(V)
0	0	0	0.00	0.00
1	0	5	1.25	1.67
2	5	0	2.50	3.33
3	5	5	3.75	5.00

*Assume V_{OH} of the 9S12 is 5V and V_{OL} is 0V

4-bit DAC

N	Q3	Q2	2 Q	1 Q0	theory	V _{out} (V)
0	0	0	0	0	5*0/15	0.00
1	0	0	0	5	5*1/15	0.33
2	0	0	5	0	5*2/15	0.67
8	5	0	0	0	5*8/15	2.67
15	5	5	5	5	5*15/15	5.00

$$V_{out} = (8*Q_3 + 4*Q_2 + 2*Q_1 + Q_0)/15$$

where Q_n is 5V or 0V

Sound Basics

- ☐ Humans can hear from about 25 to 20,000 Hz.
- ☐ Middle A is 440 Hz
- □Other notes on a keyboard are determined
 - **❖**440 * 2^{N/12}
 - ❖"N" is number of notes up or down from middle A.
- ■Middle C is 261.6 Hz.
- ☐ Music contains multiple harmonics

The loudness and pitch are controller by the amplitude and frequency.

A 440Hz sine wave generated with a 4-bit DAC. The plot on the right is the Fourier Transform(frequency spectrum dB versus kHz) of the data plotted on the left.

Music

A waveform shape that generates a trumpet sound.

...Music

You can control the amplitude, frequency and duration of each note (not drawn to scale).

The amplitude of a plucked string drops exponentially in time

Song

How much memory does it take to store a song?

- ❖ 3 minutes
- Stereo Channels
- **❖** 44 kHz
- ❖ 12-bit per channel

How many bus cycles does it take to output one value?

- Fetch data from memory
- Decompress
- Filter/amplify/mix/envelope
- DAC speed

Lab 7: Sound

- □ Debugging: Use a DC motor to test the voltages being output to the analog out
 - Connect the PH3-0 lines to power a DC motor
 - Connect a scope to view this voltage as a function of time
- □Once you are sure your DAC_Out is doing what it is supposed to, then go ahead and implement the piano keys

Sine Wave with period T

- ☐ Periodic Interrupt every T/32
- $\hfill \Box$ Output next entry in below table on interrupt

SinTab fcb 8,9,11,12,13,14,14,15,15,15,14

fcb 14,13,12,11,9,8,7,5,4,3,2

fcb 2,1,1,1,2,2,3,4,5,7

Ramesh Yerraballi

10-15