MBA em Ciências de Dados

"Agrupamento de municípios por densidade territorial urbana"

Autora: Isabel Cristina Nunes de Sousa Orientador: Prof. Dr. Wallace Correa de Oliveira Casaca

2024

Introdução

Crescimento urbano como <u>expansão física</u> das áreas urbanizadas.

Processos de <u>expansão urbana</u> e transformações na <u>forma das cidades</u>.

<u>Dinâmica do crescimento urbano</u> em municípios paulistas de porte médio.

Objetivo Geral

Averiguar se existem padrões discerníveis de crescimento urbano que possibilitariam <u>categorizar</u> esses municípios.

Objetivos Específicos

• Implementar o <u>método quantitativo de</u> <u>caracterização não linear da variação da</u> densidade territorial urbana via função sigmoide.

• Analisar as <u>variações de densidade territorial</u> <u>urbana</u> em municípios paulistas de porte médio por meio do <u>ajuste da função sigmoide</u>.

 Realizar <u>análises de agrupamento</u> para identificação de padrões de crescimento urbano nos municípios paulistas analisados.

Referencial Teórico

Função de densidade territorial urbana

Técnicas de agrupamento

- K-Means
- K-Medoids
- Mean Shift
- Affinity Propagation

Validação e interpretação dos clusters

- Silhueta (silhouette)
- Calinski-Harabasz
- Davies-Bouldin

Métodos

Etapa 1: Coleta e tratamento dos dados.

Etapa 2: Implementação da função sigmoide:

$$f(r) = \frac{1 - c}{1 + e^{\alpha((2r/D) - 1)}} + c$$

Etapa 3: Análises de agrupamento.

Resultados

Caracterização da amostra

15 municípios paulistas com população entre 100 e 500 mil habitantes, exceto litorâneos e integrantes de regiões metropolitanas.

Resultados

Ajuste da função sigmoide:

Quanto mais próxima de um formato S invertido for a curva, mais compacta é a forma urbana no município.

Botucatu

Resultados

Agrupamento dos municípios:

Apenas no intervalo de 1990-1995 houve maior "concordância" entre os métodos:

- K-Means
- Mean Shift
- Affinity Propagation

Com partições idênticas e uma separação bem delimitada entre os *clusters* formados.

Tabela 18 – Valores das métricas para cada algoritmo, por intervalos.

Métrica Algoritmo		1985-	1990-	1995-	2000-	2005-	2010-	2015-
		1990	1995	2000	2005	2010	2015	2020
S^1	K-Means	0.753	0.650	0.787	0.617	0.677	0.693	0.629
	$K ext{-}Medoids$	0.753	0.571	0.787	0.498	0.677	0.693	0.508
	Mean Shift	0.522	0.650	0.578	0.426	0.628	0.669	0.550
	Affinity Propagation	0.535	0.650	0.464	0.450	0.593	0.538	0.550
$ m CH^2$	$K ext{-}Means$	38.143	71.143	59.252	22.217	30.389	38.188	62.240
	$K ext{-}Medoids$	38.143	94.224	59.252	19.043	30.389	38.188	17.953
	Mean Shift	46.271	71.143	143.433	42.192	67.569	53.261	59.205
	Affinity Propagation	74.337	71.143	160.802	45.523	105.169	79.543	59.205
DB^2	$K ext{-}Means$	0.255	0.384	0.109	0.520	0.579	0.461	0.414
	$K ext{-}Medoids$	0.255	0.311	0.109	0.692	0.579	0.461	0.573
	Mean Shift	0.491	0.384	0.304	0.462	0.338	0.274	0.289
	Affinity Propagation	0.472	0.384	0.417	0.433	0.327	0.344	0.289

¹ Silhueta.

 $^{^2}$ Calinski–Harabasz.

 $^{^3}$ Davies–Bouldin.

Conclusão

- Padrões distintos de crescimento urbano nos municípios da amostra;
- Adequação dos algoritmos variou em cada intervalo temporal;

Trabalhos futuros:

- definição de anéis concêntricos com raios menores, cerca de 250 a 500 metros;
- uso de imagens de melhor resolução;
- inclusão de <u>municípios de outros Estados</u> brasileiros;
- aplicação de abordagens estatísticas tradicionais para avaliar a presença de autocorrelações espaciais.

Obrigada!

Isabel Cristina Nunes de Sousa

sousa.isabelnunes@gmail.com