Distributed Systems

https://dse.in.tum.de/

Chair of Decentralized Systems Engineering (DSE)

Department of Computer Science

Tis Navid's Postman

Course staff members

Chair of Decentralized Systems Engineering (DSE)

- Established in **September 2020 @ TUM**
- Chair website: https://dse.in.tum.de/
- Research areas:
 - Distributed systems
 - Operating systems and virtualization
 - Cloud computing and scalable data analytics
 - Storage and networked systems
 - Reliability and security

Lecturers

ПΠ

OSIMAL

Prof. Pramod Bhatotia

Dr. Martin Kleppmann

Prof. Pramod Bhatotia

- Professor at TU Munich[®]
 - Chair of Decentralized Systems Engineering (DSE)
- Research interests
 - Distributed systems and operating systems

Dr. Martin Kleppmann

- Research fellow at TU Munich
 - Previously: University of Cambridge
 - Previous life: Silicon Valley Internet startups
- Book: Designing Data-Intensive Applications (2017)
- Current research: Decentralised collaboration software
 - More on this in week 7 lecture on eventual consistency

Teaching assistants (TAs)

Emmanouil (Manos) Giortamis

Pezhman Nasirifard

Harshavardhan Unnibhavi

Julian Pritzl

Nathaniel Tornow

S Naviors Postmar

Format

Format

- Lectures
 - **Time:** Wednesday, 10:30 13:00 hrs
 - Frequency: 12 in-person lectures
 - **Venue:** Hörsaal 1 "Interims II" (5416.01.004)
 - **Dates:** See TUM Online

Office hours

- **Time:** Friday, 15:00-17:00 hrs
- Frequency: Same as lectures
- **Venue:** Online on Zoom (see TUM Online)
- **Dates:** See TUM Online

Exam

- Single exam
 - No repeat exam
- Expected exam date: Feb 2023
 - Exact date and time will be finalized by the central administration
- Exam format
 - More details in the last lecture (25.01.2023)

Cloud systems engineering ("Cloud lab")

- A complimentary practical lab
 - Learn by building distributed systems
 - https://github.com/TUM-DSE/cloud-lab
- Runs in parallel with DS lectures
 - Limited to 60 students
 - Either take it in parallel or next WS 23/24

_

- An end-to-end system architecture:
 - KV-store, containers, kubernetes
 - Scaling distributed systems
 - Fault-tolerance with replication
 - Distributed transactions/algorithms (2PC)

Course material

- Lecture slides and online notes
 - Available on Moodle
 - Lecture video recording (not guaranteed)

- Research papers and open-source projects
 - Provided as references
- Q&A/Discussion on slack (optional)
 - Workspace URL: https://ls1-courses-tum.slack.com
 - Course channel: #ws-22-ds
 - Feel free to join with @tum.de email address

Recommended

"Distributed Systems"

— Maarten van Steen and Andrew s. Tanenbaum

"Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems"

— Martin Kleppmann

"Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services"

— Brendan Burns

Code of conducto,

University plagiarism policy

https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-conduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

IS Navid'S POSIMAL

Course overview

A Distributed system

"... a system in which the failure of a computer you didn't even know existed can render your own computer unusable."

-Lamport

"OR" a distributed system is an application that executes a collection of protocols over

- .. multiple computers communicating via a network.
- ... trying to achieve some task together
- Consists of "nodes" (computer, phone, car, robot, . . .)

Leslie Lamport Turing Award Winner, 2014

Why make a system distributed?

- It's inherently distributed:
 - e.g. sending a message from your mobile phone to your friend's phone
- For better reliability:
 - even if one node fails, the system as a whole keeps functioning
- For better performance:
 - get data from a nearby node rather than one halfway round the world
- To solve bigger problems:
 - e.g. huge amounts of data, can't fit on one machine

Powerful and ubiquitous "distributed" systems

- A distributed system can be much larger and more powerful given that the combined capabilities of distributed components
- Even a stand-alone application (e.g., your phone app) is most likely using a distributed system component (e.g., client-server)
- However, great capabilities come with great challenges!
 - This course will prepare you to solve these challenges!

Challenges of a distributed system

- Fault tolerance
 - How to recover from failures without performing incorrect actions
- Availability
 - 24x7 operations, even in the presence of failures!
- Recovery
 - Failed system component can restart and rejoin the system in a correct state
- Consistency or correctness
 - System invariants are preserved in presence of concurrency, asynchrony, and failures!
- Scalability
 - If you can't scale, you not gonna survive in the market!
- Performance
 - Achieve predictable performance, response in timely manner
- Security
 - System is secure/authenticated: data and code!

Learning goals key

- Understand **architectures of distributed systems**, their building blocks and applications
- Apply foundational principles in the development of distributed systems
- Understand properties of **common building blocks** applicable for systems design
- Understand the **complexities involved in developing a distributed system** (e.g., machine and network failures, concurrency, etc.)
- Study **advanced distributed systems** topics

Week	Topics
1	Overview + Distributed data analytics (MapReduce/Spark)
2	Distributed filesystem (HDFS)
3	Modelling distributed systems
4	Logical and physical time, broadcast protocols
5	Replication, 2PC, consistency models
6	Consensus and the Raft algorithm
7	Eventual consistency and CRDTs
8	Scalable systems: KV storage systems + sharding
9	Distributed synchronization: Apache Zookeeper
10	Distributed database (BigTable)
11	Distributed TXs (Spanner)
12	Exam prep.

References

- ferences

 Introduction to Distributed System Design
 - https://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html