Whole Genome Assembly with iPlant

Michael Schatz & Shoshana Marcus

Dec 4, 2013
CSHL Plant Genomes and Biotechnology

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 2. Genome assemblers
 - I. Assemblathon
 - 2. ALLPATHS-LG
 - 3. Celera Assembler
- 3. Assembly Tutorial with iPlant

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
 - Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

It was the best of age of wisdom, it was best of times, it was it was the age of it was the age of it was the worst of of times, it was the of times, it was the of wisdom, it was the the age of wisdom, it the best of times, it the worst of times, it times, it was the age times, it was the worst was the age of wisdom, was the age of foolishness, was the best of times, was the worst of times, wisdom, it was the age worst of times, it was

Greedy Reconstruction

```
It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

times, it was the worst

times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_k = (V,E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

The full tale

- ... it was the best of times it was the worst of times ...
- ... it was the age of wisdom it was the age of foolishness ...
- ... it was the epoch of belief it was the epoch of incredulity ...
- ... it was the season of light it was the season of darkness ...
- ... it was the spring of hope it was the winder of despair ...

N50 size

Def: 50% of the genome is in contigs as large as the N50 value

N50 size = 30 kbp
$$(300k+100k+45k+45k+30k = 520k >= 500kbp)$$

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Applications

Novel genomes

Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

— ...

Assembling a Genome

I. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243

Coverage

Typical contig coverage

Imagine raindrops on a sidewalk

Balls in Bins Ix

Wintegram of balls in each bin Total bulls 2000 Empty bins: 142

Balls in Bins 2x

Mintegram of balls in each bin Total balls: 6000 Empty bins: 17

Balls in Bins 4x

Balls in Bins 8x

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
 - Recommend 100x coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"
 - Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

(Chaisson, 2009)

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $1 \le k \le 6$ CACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ty I-copia, Ty 3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
 - Large plant genomes tend to be even worse
 - Wheat: 16 Gbp; Pine: 24 Gbp

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC
 - Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
 - Place sequence to satisfy the mate constraints
 - Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called sequencing gaps
 - We know the order, orientation, and spacing,
 but just not the bases. Fill with Ns instead

Post-assembly Analysis

After assembly:

- Validation
- CEGMA
- BLAST
- Gene Finding
- Repeat mask
- RNA-seq
- *-seq
- •
- Publish! ©

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 2. Genome assemblers
 - I. Assemblathon
 - 2. ALLPATHS-LG
 - 3. Celera Assembler
- 3. Assembly Tutorial with iPlant

- Attempt to answer the question:
 "What makes a good assembly?"
- Organizers provided sequence data to assembly experts around the world
 - Assemblathon I:~100Mbp simulated genome
 - Assemblathon 2: 3 vertebrate genomes each ~IGB
- Results demonstrate trade-offs assemblers must make

Assemblathon I:A competitive assessment of de novo short read assembly methods. Earl, DA, et al. (2011) Genome Research. doi: 10.1101/gr.126599.111

Assemblathon 2: Evaluating de novo methods of genome assembly in three vertebrate species Bradnam, KR. et al (2013) GigaScience 2:10 doi:10.1186/2047-217X-2-10

Assembly Results

Scaffolds

Scaffold Paths

Contig Paths

Final Rankings

- ALLPATHS and SOAPdenovo came out neck-and-neck followed closely behind by Celera Assembler, SGA, and ABySS
- My recommendation for "typical" short read assembly is to use ALLPATHS
- Single molecule sequencing becoming extremely attractive if you have access

Genome assembly with ALLPATHS-LG lain MacCallum

How ALLPATHS-LG works

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180*	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no**
Fosmid jump	40,000	≥ 26	1	no**

**For best results. Normally not used for small genomes.

However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

^{*}See next slide.

Error correction

Given a crystal ball, we could stack reads on the chromosomes they came from (with homologous chromosomes separate), then let each column 'vote':

But we don't have a crystal ball....

Error correction

<u>ALLPATHS-LG.</u> For every K-mer, examine the stack of all reads containing the K-mer. Individual reads may be edited if they differ from the overwhelming consensus of the stack. If a given base on a read receives conflicting votes (arising from membership of the read in multiple stacks), it is not changed. (K=24)

Two calls at Q20 or better are enough to protect a base

Read doubling

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

Unipaths

Unipath: unbranched part of genome – squeeze together perfect repeats of size ≥ K

Adjacent unipaths overlap by K-1 bases

Localization

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number CN = 1)

II. Form neighborhood around each seed

read pairs reach into repeats

and are extended by other unipaths

Create assembly from global assembly graph

Genome assembly with the Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

Single Molecule Sequencing Technology

Hybrid Sequencing

IlluminaSequencing by Synthesis

High throughput (60Gbp/day)
High accuracy (~99%)
Short reads (~100bp)

Pacific BiosciencesSMRT Sequencing

Lower throughput (IGbp/day)
Lower accuracy (~85%)
Long reads (5kbp+)

Hybrid Error Correction: PacBioToCA

http://wgs-assembler.sf.net

I. Correction Pipeline

- I. Map short reads to long reads
- 2. Trim long reads at coverage gaps
- 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280

Preliminary Rice Assemblies

Assembly	Contig NG50
HiSeq Fragments 50x 2x100bp @ 180	3,925
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248

In collaboration with McCombie & Ware labs @ CSHL

Assembly Summary

Assembly quality depends on

- 1. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical
 - Reads -> unitigs -> mates -> scaffolds
 - -> optical / physical / genetic maps
 - -> chromosomes
- Recommendations:
 - ALLPATH-LG for Illumina-only
 - HGAP for PacBio-only, CA for Hybrid assembly
 - See Assemblathon papers for a more extensive analysis

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 2. Genome assemblers
 - I. Assemblathon
 - 2. ALLPATHS-LG
 - 3. Celera Assembler
- 3. Assembly Tutorial with iPlant

Assembly with ALLPATHS-LG

0. Download and install ALLPATHS-LG source code

- % wget ftp://ftp.br.pdinstitute.org/pub/crd// LPATHS/Release-LG/% configure && make install
- 1. Collect the BAN that you y Create a in_libs.c ribe y roups.csv metadata file to the bank that you y croups.csv

2. Prepare input files

- % cd /tmp/cshl/asm
 % PrepareAllPathsInpr
 DATA DIR=`pwd`
- 3. Assemble.
 - % RunAllPa
 PRE=/t. -csh.
 DATA_SUB efault >a

4. Get the results (four

- % cd /tmp/cshl/as/default/ASSEMBLIES/test/
- % less final. {assembly, contigs}. {fasta, efasta}

Assembly with iPlant

Assembly Workflow **Upload Reads** Minutes to Months **Quality Assessment** Minutes to Hours De novo Assembly Hours to Days Assembly Assessment Minutes to Hours iPlant Collaborative™ Empowering A New Plant Biology

Upload Reads

QC: FastQC

QC: Read Coverage

Estimating coverage with Kmers

Estimating coverage with Kmers

Wheat Genome

(A. tauschi / CSHL)

Heterozygous Genome

Contact: @mike_schatz

QC: Mer counts

A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes

Kurtz S. Narechania A, Stein JC, Ware D. (2008) BMC Genomics. 9:517

Running ALLPATHS-LG

Post-QC: CEGMA

CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes Parra G, Bradnam K, Korf I. (2007) Bioinformatics. 23 (9): 1061-1067.

Assembly Workflow **Upload Reads** Minutes to Months **Quality Assessment** Minutes to Hours De novo Assembly Hours to Days Assembly Assessment Minutes to Hours iPlant Collaborative™ Empowering A New Plant Biology

Resources

iPlant

http://www.iplantcollaborative.org/

Assembly Competitions

- Assemblathon: http://assemblathon.org/
- GAGE: http://gage.cbcb.umd.edu/

Assembler Websites:

- ALLPATHS-LG: http://www.broadinstitute.org/software/allpaths-lg/blog/
- SOAPdenovo: http://soap.genomics.org.cn/soapdenovo.html
- Celera Assembler: http://wgs-assembler.sf.net

Tools:

- FastQC: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Tallymer: http://www.zbh.uni-hamburg.de/?id=211
- CEGMA: http://korflab.ucdavis.edu/datasets/cegma/

Acknowledgements

Special Thanks
Shoshana Marcus
James Gurtowski

Roger Barthelson Stephen Goff Nicole Hopkins Dan Stanzione Joshua Stein Matthew Vaughn Doreen Ware Jason Williams

Questions?

http://schatzlab.cshl.edu/ @mike_schatz

