Um Modelo Conceitual Compatível com a Plataforma EDUCOM/IMS para Comparação de Ambientes de Educação na

Sergio Crespo[†], Marcus Felipe M. C. da Fontoura e Carlos José P. de Lucena

WEB

Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, Brasil [crespo, mafe, lucena]@inf.puc-rio.br

ABSTRACT

This paper proposes a conceptual model for Web-based education environments (WBE), which is used as a basis for the comparison of various existent WBE environments. The proposed model is compatible with the EDUCOM/IMS platform, allowing content interoperability over the generated environments. The model implementation is made through an object-oriented framework and domain-specific languages.

RESUMO

Este artigo propõe um modelo conceitual para ambientes de educação baseados na Web (WBE), que é utilizado como base de uma comparação de conceitos e funcionalidade entre varios ambientes existentes. O modelo conceitual proposto é compatível com a plataforma EDUCOM/IMS permitindo assim que os ambientes gerados tenham interoperabilidade de conteúdo. A implementação do modelo é feita através de um framework orientado a objetos e linguagens de domínio.

1. INTRODUÇÃO

A educação/treinamento baseada na Web (WBE) usa a WWW como meio para a publicação do material didático, aplicação de tutoriais, aplicação de provas e testes e comunicação com estudantes. Também compreende o processo de uso da Web como veículo de comunicação para a apresentação de aulas à distância (conferência multimídia). Um processo de desenvolvimento da aprendizagem, em qualquer nível de instrução e treinamento, incorpora tipicamente as seguintes ações [7, 8]:

^{*} Professor do Departamento de Informática na Universidade do Vale do Rio dos Sinos - Unisinos-RS.

- Estabelecimento dos objetivos da aprendizagem;
- Localização e revisão (ou criação) de material instrucional (ex: instrumentos de diagnóstico, livros texto, software para aprendizagem (courseware), testes, etc.);
- Avaliação do nível de conhecimento dos alunos;
- Atribuição de material apropriado aos estudantes;
- Definição da forma de acesso dos estudantes a componentes/módulos;
- Revisão e acompanhamento do progresso dos estudantes e gerência das intervenções necessárias;
- Provisão e gestão da comunicação estudante-professor e estudante-estudante (tanto síncrona quanto assíncrona);
- Avaliação da aprendizagem;
- Relatório dos resultados da aprendizagem.

As tecnologias de educação/treinamento baseada na Web estão em pleno uso. Por exemplo, atualmente (maio de 1998) mais de 100 autores desenvolvem cursos usando o AulaNetTM (provenientes de 21 instituições) e 316 alunos estão matriculados nos 39 cursos oferecidos neste semestre; o Virtual-U e Web-CT também contam com uma grande comunidade de usuários e o mesmo vale para os demais ambientes estudados neste artigo.

No entanto, ainda existem problemas quanto a criação de conteúdo, sua disponibilização e forma de utilização. Este problema é gerado por ainda não existir uma plataforma comum para o aprendizado na Internet. Este tipo de estrutura é proposto pelo projeto EDUCOM/IMS [10], que é um investimento cooperativo de organizações acadêmicas, comerciais e governamentais dedicadas a facilitar o crescimento e viabilizar o aprendizado distribuído na Internet. O objetivo principal do EDUCOM/IMS é propor uma arquitetura aberta para o aprendizado na Web, especificando uma série de requisitos técnicos para a criação de material e ambientes de qualidade.

Um modelo conceitual foi elicitado a partir de vários ambientes estudados [2] e é utilizado neste artigo como base para uma comparação entre eles. Este modelo conceitual é implementado através de um framework orientado a objetos [11, 15] e linguagens de domínio [4] e possibilita o desenvolvimento de novos ambientes para WBE compatíveis com a plataforma EDUCOM/IMS.

2. UM MODELO CONCEITUAL PARA AMBIENTES DE EDUCAÇÃO NA WEB

Através de uma análise de domínio baseada em vários ambientes existentes definimos um modelo conceitual [2] baseado em componentes [11]. A Figura 1 ilustra esse modelo conceitual e cada um dos componentes é explicado em seguida. Os componentes funcionam como pontos de flexibilização [14, 16] do ambiente final. Desta forma a existência de cada um desses componentes em um ambiente significa que tal ambiente implementa a funcionalidade especificada pelo componente.

Figura 1. Modelo conceitual baseado em componentes

- Cursos: permite a criação e manutenção de cursos. O conteúdo de cada curso é controlado pelos componentes serviços e documentos;
- Atores: são as pessoas que interagem com o ambiente. Atores podem ter várias atribuições diferentes, como por exemplo alunos, professores e secretaria;
- Serviços: provêm a funcionalidade necessária para o curso. Serviços podem ser de vários tipos: serviços administrativos (agenda do curso, quadro de avisos, etc), serviços de comunicação (chat, e-mail, etc.), serviços didáticos (transparências, referências na Web, etc.) e serviços de avaliação (provas, auto-avaliação, etc.);
- Documentos: são os artefatos maipulados pelos serviços. Por exemplo, o serviço notícias do curso necessita de um documento que possua a informação de qual é a notícia a ser exibida;
- Grupos: possibilidade de se definir grupos, possibilitando trabalho cooperativo.

- Instituições e Departamentos: capacidade de definir e customizar o ambiente para diversas instituições e departamentos;
- Idiomas: suporte a autoria e consumo de cursos em vários idiomas;
- Interface: capacidade de customização da interface do ambiente;
- Estrutura Navegacional: capacidade de customização da estrutura navegacional do ambiente.

3. COMPARAÇÃO ENTRE ALGUNS AMBIENTES

Nesta seção iremos comparar seis ambientes para WBE com base no modelo conceitual apresentado. Uma lista dos serviços implementados por cada um desses ambientes também é apresentada.

3.1 WCB

Web Course in a Box (WCB) [21] é uma ferramenta desenvolvida pela Virginia Commonwealth University para criação e mautenção de cursos na Web. Este ambiente permite a criação de páginas WWW para vários serviços tais como ementa de curso, agenda e home-page pessoais, além de funções interativas como forums de discussão e exercícios auto-corrigíveis. A autoria e o consumo do curso são ambos feitos através de browsers Web e não requerem conhecimento técnicos aprofundados.

Figura 2. Modelo de componentes do WCB

O WCB não implementa o suporte a múltiplos idiomas, a capacidade de customização da estrutura navegacional, o suporte ao trabalho cooperativo, customização por instituição/departamento e a definição dos documentos. A lista de serviços implementados por esse ambiente é apresentada a seguir.

Tipos de Serviços	Serviço
Comunicação	Contato com professor
	Chat
Administrativos	Notícias do curso
	Agenda
Didáticos	Transparências
	Referências na Web
Gerais	Home-page de alunos
	Home-page de instrutores
	WCB Forum

Tabela 1. Serviços do WCB

3.2 Web-CT

WebCT [20] é uma ferramenta que permite a criação de ambientes de aprendizado na Web. Ela requer pouco conhecimento técnico, tanto por parte do desenvolvedor do material educacional quanto por parte do aluno.

O desenvolvedor do curso é o responsável por prover o seu conteúdo. A interatividade, estrutura navegacional e as ferramentas educacionais são fornecidas pelo ambiente, que também permite a incorporação de novas ferramentas e a alteração do layout do curso. WebCT foi desenvolvido pela University of British Columbia para facilitar a criação de diversos cursos internos [5].

Figura 3. Modelo de componentes do Web-CT

O Web-CT não implementa o suporte a múltiplos idiomas, a capacidade de customização da estrutura navegacional e a customização por instituição/departamento. A lista de serviços implementados por esse ambiente é apresentada a seguir.

Tipos de Serviços	Serviço
Comunicação	Correio eletrônico
	News
	Chat
Administrativos	Quadro de avisos
	Divulgação de notas
	Controle do progresso do aluno
	Acompanhamento do curso
Avaliação	Testes periódicos
Didáticos	Glossário indexado
	Facilidade para anotações de aluno
	Material de referência do curso
	Quadro branco compartilhado e interativo
Gerais	Área de apresentação de alunos
	Arquivos de imagem indexados
	Indexação e busca automática

Tabela 2. Serviços do WCB

3.3 LearningSpace

A Lotus Education e a IBM são responsáveis pela pesquisa e desenvolvimento do Lotus LearningSpace [12], um ambiente para desenvolvimento de serviços de apoio à educação a distância. O LearningSpace é desenvolvido sobre o ambiente de groupware Lotus Notes.

Figura 4. Modelo de componentes do LearningSpace

O LearningSpace não implementa o suporte a múltiplos idiomas, a capacidade de customização da estrutura navegacional e a customização por instituição/departamento. A lista de serviços implementados por esse ambiente é apresentada a seguir.

Tipos de Serviços	Serviço
Comunicação	Correio eletrônico
	News
Administrativos	Agenda

Avaliação	Exercícios
	Tarefas
Didáticos(Media Center)	Documentos multimídia
	Imagens, som e vídeo
General Services	Perfis de aluno e professor
	Gerente de avaliação

Tabela 3. Serviços do LearningSpace

3.4 Virtual-U

Virtual-U [17] é um ambiente baseado na Web, desenvolvido pela Simon Fraser University, que permite a integração de ferramentas e templates para a criação, manutenção e consumo de cursos on-line. O Virtual-U possui as seguintes funcionalidades:

- Criação de páginas Web de cursos;
- Estruturação de discussões interativas e atividades cooperativas entre alunos, professores e colaboradores externos;
- Criação de recursos compartilhados para disseminação do conhecimento;
- Manutenção e evolução de cursos.

Figura 5. Modelo de componentes do Virtual-U

O Virtual-U não implementa o suporte a múltiplos idiomas e a capacidade de customização da estrutura navegacional. A lista de serviços implementados por esse ambiente é apresentada a seguir.

Tipos de Serviços	Serviço
Comunicação	Correio eletrônico
	News
	Debates
Administrativos	Agenda

Avaliação	Exercícios
	Tarefas
Didáticos	Seminários moderados por alunos
	Times de projetos
	Estabelecimento de metas
	Conferência em tempo real
	Chats 3D com troca de mensagem em tempo real
Gerais	Estatísticas

Tabela 4. Serviços do Virtual-U

3.5 LiveBOOKS

O LiveBOOKs [3] é um ambiente distribuído para autoria e consumo de material educacional através da Web. O ambiente foi desenvolvido pelo Computer Systems Group, da University of Waterloo, com o intuito de facilitar a criação e manutenção de cursos.

Figura 6. Modelo de componentes do LiveBOOKs

O LiveBOOKs não implementa o suporte a múltiplos idiomas, a capacidade de customização da interface e da estrutura navegacional e a customização por instituição/departamento. A lista de serviços implementados por esse ambiente é apresentada na tabela 5.

Tipos de Serviços	Serviço
Comunicação	Contato com professor
-	Contato com tutor
	Contato com monitor
Avaliação	Auto-avaliação
Didáticos	LiveBOOK
	Notas de rodapé
	Biblioteca eletrônica

Tabela 5. Serviços do LiveBOOKs

3.6 AulaNetTM

AulaNetTM [13] (http://les.inf.puc-rio.br/aulanet) é um ambiente de software baseado na Web, desenvolvido no Laboratório de Engenharia de Software—LES—do Departamento de Informática da PUC-Rio, para criação e assistência de cursos à distância.

Concebido a partir da experiência vivenciada com a aplicação de três cursos durante o segundo semestre de 1997 [18, 9, 19], AulaNetTM se apoia nas seguintes premissas básicas:

- 1. Os cursos criados devem possuir grande capacidade de interatividade, de forma a atrair a participação intensa do aluno no processo de aprendizado ("learningware").
- 2. O autor do curso não precisa ser necessariamente um especialista em Internet.
- 3. Os recursos oferecidos para a criação de cursos devem corresponder aos de uma sala de aula convencional, acrescidos de outros normalmente disponíveis no ambiente Web.
- 4. Deve ser possível a reutilização de conteúdos já existentes em mídia digital, através, por exemplo, da importação de arquivos.

O atendimento das premissas acima levou à formulação do conceito *de Processo de Desenvolvimento do Aprendizado*—PDA, que exige a especificação prévia, por parte do Autor, dos recursos didáticos que ele usará durante o desenvolvimento do curso.

A utilização de AulaNetTM possibilita a criação de cursos a distância através da Internet com bastante facilidade. Os cursos são dotados de elevado grau de interatividade e possibilitam intensa participação do aluno, sem requerer do autor um conhecimento aprofundado do ambiente Web. E mais, que o curso criado pode utilizar conteúdos já existentes, gravados em mídia digital.

Atualmente existem mais de 100 cursos sendo desenvolvidos por professores de várias áreas diferentes na PUC-Rio e em outras universidades brasileiras.

Figura 2. Modelo de componentes do AulaNet

O AulaNetTM não implementa a capacidade de customização da interface e da estrutura navegacional. A lista de serviços implementados por esse ambiente é apresentada abaixo.

Tipos de Serviços	Serviço
Comunicação	Grupo de interesse
	Grupo de discussão
	Contato com professor
	Debate
Administrativos	Agenda
	Notícias do curso
	Cadastro de instrutores
Avaliação	Teste
	Resultado de teste
	Projeto
	Resultado de projeto
	Exercício
	Resultado de Exercício
Didáticos	Plano de aulas
	Transparências
	Apresentação gravada
	Texto de aula
	Livro texto
	Demonstrações
	Bibliografia
Gerais	Tutorial sobre Internet
	Home-page de alunos
	Busca

Tabela 6. Serviços do AulaNet

4. IMPLEMENTAÇÃO DO MODELO CONCEITUAL

Essa seção apresenta uma breve descrição da implementação do modelo conceitual apresentado. Uma descrição detalhada é apresentada em [4]. Essa implementação, feita em Java e CGI-Lua [6], se baseia em um framework orientado a objetos que implementa todos os componentes apresentados no modelo e em linguagens de domínio que são utilizadas para a instanciação do framework.

Todos os componentes utilizados pelo novo ambiente que se deseja gerar são descritos através de programas nestas linguagens. O trecho de programa a seguir é um exemplo.

```
Institution "PUC-RIO", "Pontificia Universidade Catolica - Rio de Janeiro", "PUC.gif";
Department "CETUC", "TELECOMUNICACOES", "CETUC.bmp";
```

```
Department "DI", "Informatica", "Inf.gif";
Actor Type Prof, "Professor"
     { nome String;
       descricao Memo;
       Foto String; };
Actor Type Aluno, "Aluno"
     { nome String;
       descricao Memo;
       periodo Integer;
       endereco String;
       CR Real; };
Course
     { nome String;
       codigo String;
       ementa Memo;
       descricao Memo;
       imagem String; };
Service "Noticias do Curso"
     { noticia Memo;
       inicio Date;
       fim Date; }
     read = [ Aluno ]
     write = [ Prof ];
```

Através da compilação do programa acima, por exemplo, o framework gera as classes necessárias para o armazenamento e acesso de cada um dos componentes definidos. Note que cada operador da linguagem possui não só informações sobre os dados utilizados pelo ambiente, mas também meta-informações sobre as estruturas desses dados (por exemplo, a definição dos atributos de um curso no operador Course). Essa meta-informação é então utilizada para geração das meta-tags no padrão XML [10], permitindo assim que os ambientes gerados sejam compatíves com a plataforma EDUCOM/IMS.

Os componentes de estrutura navegacional, interfaces e idiomas também são especificados através de linguagem de dominio, como pode ser visto pelo trecho de programa a seguir.

```
Idiom "Ingles"
Idiom "Portugues"
Text "title1", "Ingles", "Resources"
Text "title1", "Portugues", "Recursos"
Image "img1", "Ingles", "c:\ing\img.gif"
Image "img1", "Portugues", "c:\ing\img.gif"
b := template("c:\templates\temp1.html")
```

¹ O armazenamento é feito através de um gerenciador de base de dados relacional.

O componente de documentos não é definido por nenhum operador descrito na linguagem, sendo gerado automaticamente pela meta informação descrita no operador de serviços (Service). Note que a semântica formal de cada um dos componentes do modelo conceitual pode ser descrita através dos operadores da linguagem de domínio [4].

5. CONCLUSÕES E TRABALHOS FUTUROS

O modelo conceitual apresentado mostrou-se adequado para a comparação dos conceitos e funcionalidades de ambientes para WBE. Essa comparação é bastante útil para o desenvolvimento de novos ambientes mais abrangentes.

Como o domínio de aplicação de ambientes para WBE ainda não é completamente entendido a necessidade de um ambiente que permita o desenvolvimento rápido de novos ambientes para WBE é uma meta desejável. O modelo conceitual aqui descrito é implementado [4] através de um framework orientado a objetos e linguagens de domínio permitindo o desenvolvimento de novos ambientes de maneira rápida e a baixos custos por professores com a assistência de engenheiros de software. Os ambientes gerados por essa arquitetura são compatíveis com os novos padrões estabelecidos no projeto EDUCON/IMS [10] permitindo a integração com outros servidores IMS, através do uso de meta-dados para garantir a interoperabilidade dos conteúdos gerados.

O componente de estrutura navegacional existe apenas no modelo conceitual, não sendo presente em nenhum dos ambientes analisados. A razão para isso é o fato de que a nova versão do AulaNetTM será gerada pela implementação do modelo e atenderá aos requisitos impostos por este componente.

Em paralelo estamos realizando o desenvolvimento de um novo ambiente para WBE, integrando os ambientes AulaNetTM e LiveBOOKs [1].

6. REFERÊNCIAS

 P. Alencar, D. Cowan, S. Crespo, M. F. Fontoura, and C. J. Lucena, "OwlNet: An Object-Oriented Environment for WBE", Second Argentine Symposium on Object-Orientation, ASOO'98, Buenos Aires, Argentina, 1998.

- 2. P. Alencar, D. Cowan, S. Crespo, M. F. Fontoura, and C. J. Lucena, "Using Viewpoints to Derive a Conceptual Model for Web-based Education", MCC17/98, Monografias em Ciência da Computação, Departamento de Informática, PUC-Rio, 1998.
- 3. D. Cowan, "An Object-Oriented Framework for LiveBOOKs", Technical Report, CS-98, University of Waterloo, Ontario, Canada, 1998.
- D. Cowan, S. Crespo, M. F. Fontoura, C. J. Lucena, and L. M. Moura, "ALADIN: An Architecture for Learningware Applications Design and Instantiation", MCC34/98, Monografias em Ciência da Computação, Departamento de Informática, PUC-Rio, 1998.
- M. Goldeberg and S. Salari, "World Wide Web-Course Tool: An Environment for Building World Wide Web-based Courses", Computer Networks and ISDN Systems, 28, pages 1212-1231, 1996.
- R. Iersalimschy, R. Borges, and A. M. Hester, "CGILua A Multi-Paradigmatic Tool for Creating Dynamic WWW Pages", Simpósio Brasileiro de Engenharia de Software, SBES'97, Fortaleza, Brazil, 1997.
- 7. International Data Corporation, Special Report, "Web-based Education/Training", 1997.
- 8. Internet 2, < < http://www.internet2.edu >.
- 9. ICC, http://www.les.inf.puc-rio.br/icc.
- 10. IMS, http://www.imsproject.org/specs.html.
- 11. R. Johnson, "Frameworks = (Components + Patterns)", Communications of the ACM, Volume 40, Number 10, October 1997.
- 12. LearningSpace, http://www.lotus.com/home.nsf/welcome/learnspace.
- 13. C. Lucena, H. Fuks, R. Milidiu, L. Macedo, N. Santos, C. Laufer, M. Ribeiro, M. Fontoura, R. Noya, S. Crespo, V. Torres, L. Daflon, and L. Lukowiecki, "AulaNetTM An Environment for the Development and Maintenance of Courses on the Web", International Conference on Engineering Education, ICEE'98, Rio de Janeiro, Brazil, 1998.

- 14. W. Pree, "Design Patterns for Object-Oriented Software Development", Addison-Wesley, 1995.
- 15. D. Roberts and R. Johnson, "Evolving Frameworks: A Pattern Language for Developing Object-Oriented Frameworks" in "Pattern Languages of Program Design 3", Addison-Wesley, 1997.
- 16. H. A. Schmid, "Systematic Framework Design by Generalisation", Communications of the ACM, Volume 40, Number 10, October 1997.
- 17. Simon Fraser University, http://virtual-u.cs.sfu.ca/vuweb/>.
- 18. Sociedade da Informação, http://www.les.inf.puc-rio.br/socinfo>.
- 19. Transferência de Calor, http://www.les.inf.puc-rio.br/transcal.
- 20. University of British Columbia, http://homebrew.cs.ubc.ca/webct/>.
- 21. Virginia Commonwealth University, http://views.vcu.edu/wcb/intro/wcbintro.hml>.