Geometry of Surfaces - Exercises

Exercises marked with * are to be answered (partially) in the online quiz for this week on the Keats page for this module.

- **64.** Explain why the plane, the sphere and the hyperbolic paraboloid cannot be isometric to each other.
- **65.*** Let S_1 and S_2 be two surfaces with surface patches $\sigma_i: (-1,1) \times (-1,1) \to \mathbb{R}^3$. Assume that the first fundamental forms with respect to these surface patches are identical. Suppose that the second fundamental form of S_1 at $\sigma_1(0,0)$ is $L_1 = 1$, $M_1 = 0$ and $N_1 = 0$. Can the second fundamental form of S_2 at $\sigma_2(0,0)$ be $L_2 = 2$, $M_2 = 1$ and $N_2 = 2$? Justify your answer!
- **66.*** Consider the cone with surface patch $\sigma: U \to \mathbb{R}^3$, $(u,v) \mapsto v(\cos(u),\sin(u),1)$, $U = (0,2\pi) \times (0,\infty)$. Let γ be the positively oriented unit speed curve parametrizing the image under σ of the circle $\{(u,v) \in U: (u-\pi)^2 + (v-2)^2 = 1\}$. Compute $\int_{\gamma} \kappa_g ds$.
- **67.*** Consider the cylinder with surface patch $\sigma: U \to \mathbb{R}^3$, $(u,v) \mapsto (\cos(u),\sin(u),v)$, $U = (0,2\pi) \times \mathbb{R}$. Let γ be the positively oriented unit speed curve parametrizing the image under σ of the circle $\{(u,v) \in U: (u-\pi)^2 + (v-2)^2 = 1\}$. Compute $\int_{\gamma} \kappa_g ds$.
- **68.** Show that a simple closed curve γ on the unit sphere S^2 with $\int_{\gamma} \kappa_g ds = 0$ bounds two regions of equal area.
- **69.*** Consider the paraboloid with surface patch $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $(u,v) \mapsto (u,v,u^2+v^2)$ and the curve $\gamma: [0,2\pi] \to \mathbb{R}^3$, $t \mapsto (\cos(t),\sin(t),1)$ in the paraboloid. Compute the geodesic curvature of γ and use the local version of the Gauss-Bonnet Theorem to compute the value of

$$\iint_{\mathrm{int}(\gamma)} K d\mathcal{A}_{\sigma}$$

- **70.*** Let $\gamma(s)$ be a unit speed simple closed curve on a surface σ with Gaussian curvature $K \leq 0$ and assume that γ is positively oriented. Can γ be a geodesic?
- 71.* Consider the curvilinear polygon

$$\Gamma: \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right] \to S^2, \ t \mapsto \begin{cases} \gamma_1(t) & \text{if } t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \\ \gamma_2(t) & \text{if } t \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right] \end{cases}$$

on the unit sphere S^2 , where

$$\gamma_1(t) = (\cos(t), 0, -\sin(t)),$$

$$\gamma_2(t) = (\cos(t - \pi)\cos(\phi), \cos(t - \pi)\sin(\phi), \sin(t - \pi)),$$

and $\phi \in (0, 2\pi)$ is a constant. Suppose Γ with the orientation given is positively oriented. Calculate the area of $\operatorname{int}(\Gamma)$.

72. Let γ_1 and γ_2 be two geodesics on a surface σ with negative Gaussian curvature emanating from the same point. Show that γ_1 and γ_2 cannot meet again on σ .