МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Фихтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.1.3

Определение C_p/C_v по скорости звука в газе

Автор: Черниенко Владислав Антонович Группа Б01-110 **Цель работы:** 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R — газовая постоянная, T — температура газа, а μ — его молярная масса. Преобразуя эту формулу, найдём

$$\gamma = \frac{\mu}{RT}c^2. \tag{1}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отражённых волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2},\tag{2}$$

где λ — длина волны звука в трубе, а n — любое целое число. Если условие (2) выполнено, то волна, отражённая от торца трубы, вернувшаяся к её началу и вновь отражённая, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

Скорость звука связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. \tag{3}$$

При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (4)

Из (3) и (4) имеем

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n, \quad f_2 = \frac{c}{\lambda_2} = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}, \dots, \quad f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

Экспериментальная установка

В установке (рис. 1) звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчётах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Установка содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре воды, омывающей трубу. На этой установке измеряется зависимость скорости звука от температуры.

Рис. 1: Установка для изучения зависимости скорости звука от температуры

Ход работы

1. Запишем значения комнатной температуры и длины используемой трубы:

$$T_{\rm k}=21,9^{\circ}C,\ L=(800\pm1)$$
 mm.

- 2. Включим электронный осцилограф ЭО и звуковой генератор ГЗ и дадим им прогреться 5-7 минут. Включим на осцилографе тумблер «луч» и ручками управления добьёмся прямой линии на экране. Установим нуль на звуковом генераторе.
- 3. Подберём напряжение на выходе генератора так, чтобы при резонансе на осциллографе наблюдались колебания достаточной амплитуды.
- 4. Посчитаем погрешность измерений частот: $\sigma_f = 6 \, \Gamma$ ц.
- 5. Примем скорость звука в воздухе при комнатной температуре равной табличному значению $c_{\text{табл}} = 343 \, \frac{\text{м}}{c}$ и оценим значение частоты для первого резонанса по формуле (3):

$$f_{\text{оц}} = \frac{c_{\text{табл}}}{2L} = \frac{343}{1.6} = 214, 3 \; \Gamma$$
ц.

- 6. Плавно увеличивая частоту генератора, получим ряд последовательных резонансых значений частоты. Результаты будем заносить в табл. 1.
- 7. Включим термостат и настроим его на температуру $25^{\circ}C$. повторим измерения п. 5 при данном значении температуры. Результаты занесём в табл. 1.
- 8. Будем повышать температуру на $\Delta T = 2^{\circ}C$ до $48^{\circ}C$. Для каждого значения температуры повторим измерения п. 5. Результаты будем вносить в табл. 1.
- 9. При последнем измерении резонансных частот измерим действительное значение температуры трубы и сравним его со значением на термостате:

$$\sigma_T = T_{\text{посл}} - T_{\text{трубы}} = 4,7^{\circ}C.$$

T, K	k	f_{k+1} , Гц	<i>T</i> , K	k	f_{k+1} , Гц	<i>T</i> , K	k	f_{k+1} , Гц	T, K	k	f_{k+1} , Гц
294,9	0	206	298	0	206,5	300,1	0	203,4	302,1	0	204,7
	2	659		2	660,7		2	662,3		2	664,4
	4	1086		4	1089,4		4	1091,7		4	1095,3
	6	1518		6	1522,9		6	1526,2		6	1531,8
	8	1949		8	1956,8		8	1961,2		8	1967,1
	0	204,3	306,9	0	204,6	308,9	0	204,6	311	0	204,9
	2	665,9		2	669,4		2	669,8		2	671,6
305,2	4	1098,9		4	1103,6		4	1105,1		4	1107,2
	6	1536,7		6	1543,1		6	1545		6	1548,6
	8	1973		8	1981,6		8	1984,2		8	1988,9
	0	205,8	315,1	0	207,1	317	0	206,8	319,1	0	205,5
	2	672,4		2	674,8		2	676,3		2	677,3
313,1	4	1109,1		4	1112,9		4	1115		4	1117,2
	6	1551,2		6	1556,3		6	1559,8		6	1562,3
	8	1992,6		8	1998,3		8	2002,8		8	2006,7
	0	207,2									
	2	679,4									
321	4	1120,1									
	6	1566,8									
	8	2012,1									

Таблица 1: Резонансые значения частоты звуковой волны для различных температур

Обработка результатов измерений

1. Проведём наилучшие прямые через точки зависимости номера резонанса k и разницы частоты при данном резонансе f_{k+1} и частоты при k=0, т.е. f_1 при данных температурах. Результаты приведены на рис. 2.

Рис. 2: Графики зависимостей $f_{k+1}-f_1$ от k при данных температурах T

2. Зная значения угловых коэффициентов α графиков, представленных на рис. 2, найдём значения скоростей звука: $c=\alpha\cdot 2L$, при данных температурах T. Рассчитаем также погрешности каждой величины. Результаты занесём в табл. 2.

При подсчёте погрешностей будем пользоваться следующими формулами:

$$\begin{split} \varepsilon_{\alpha}^{\text{приб}} &= \varepsilon_f, \\ \varepsilon_c^{\text{случ}} &= \varepsilon_c^{\text{случ}}, \\ \varepsilon_{\alpha} &= \sqrt{(\varepsilon_{\alpha}^{\text{приб}})^2 + (\varepsilon_{\alpha}^{\text{случ}})^2}, \\ \varepsilon_{\alpha} &= \sqrt{(\varepsilon_{\alpha}^{\text{приб}})^2 + (\varepsilon_{\alpha}^{\text{случ}})^2}, \\ \varepsilon_c^{\text{приб}} &= \sqrt{(\varepsilon_c^{\text{приб}})^2 + (\varepsilon_c^{\text{случ}})^2}. \end{split}$$

T, K	α , c ⁻¹	σ_{α}, c^{-1}	ε_{α} , %	с, м/с	σ_c , M/C	ε_c , %
294,9	217,3	6,1	2,8	348	10	2,8
298	218,1	6,1	2,8	349	10	2,8
300,1	219,0	6,1	2,8	350	10	2,8
302,1	219,6	6,1	2,8	351	10	2,8
305,2	220,4	6,1	2,8	353	10	2,8
306,9	221,4	6,1	2,8	354	10	2,8
308,9	221,7	6,1	2,8	355	10	2,8
311	222,3	6,1	2,8	356	10	2,8
313,1	222,6	6,1	2,7	356	10	2,7
315,1	223,2	6,1	2,7	357	10	2,7
317	223,8	6,1	2,7	358	10	2,7
319,1	224,4	6,1	2,7	359	10	2,7
321	224,9	6,1	2,7	360	10	2,7

Таблица 2: Угловые коэффициенты, скорости звука и их погрешности при данных температурах

T, K		294,9		298		300,1		302,1		305,2		306,9		308,9	
c^2 , $(M/c)^2$		121	104	121	801	122500		123201		124609		125316		126025	
	T, K		31	11	313,1		31.	315,1		317		319,1		321	
	c^2 , $(M/c)^2$		126	736	126	736	127	449	128	164	128	881	129	600	

Таблица 3: Квадраты скоростей c^2 при данных температурах T

3. Пользуясь табл. 2, запишем квадраты скоростей c^2 при данных температурах T в табл. 3. Проведём наилучшую прямую с помощью МНК через точки зависимости квадратов скоростей звука c^2 и температуры T, приведённых в табл. 3. Результат приведён на рис. 3.

Рис. 3: График зависимости c^2 от T

По формуле (1) видно, что коэффициент наклона этого графика равен: $\beta=\frac{\gamma R}{\mu}$. Тогда: $\gamma=\frac{\beta\mu}{R}$. Зная значения универсальной газовой постоянной: $R=8,31\,\frac{{\rm M}^2\cdot{\rm K}\Gamma}{{\rm c}^2\cdot{\rm K}\cdot{\rm MOJB}}$, молярной массы воздуха: $\mu_{\rm возд}=29\cdot10^{-3}\,\frac{{\rm K}\Gamma}{{\rm MOJB}}$, и коэффициента наклона графика: $\beta=328,5\,\frac{({\rm M/c})^2}{{\rm K}}$, рассчитаем значение показателя адиабаты γ :

$$\gamma = \frac{\beta\mu}{R} = \frac{328, 5 \cdot 29 \cdot 10^{-3}}{8,31} = 1,15.$$

Найдём погрешность данной величины по следующим формулам:

$$\begin{split} \varepsilon_{\beta}^{\text{случ}} &= 2,6\%, \\ \varepsilon_{\beta}^{\text{сист}} &= \sqrt{4 \cdot \varepsilon_c^2 + \varepsilon_f^2 + \varepsilon_T^2} = 6,4\%, \\ \varepsilon_{\beta} &= \sqrt{(\varepsilon_{\beta}^{\text{случ}})^2 + (\varepsilon_{\beta}^{\text{сист}})^2} = 6,9\%, \ \varepsilon_{\beta} = \varepsilon_{\gamma}, \end{split}$$

Откуда:

$$\gamma = (1, 15 \pm 0, 08)$$

Вывод

В ходе данной работы мы сумели определить показатель адиабаты γ для воздуха при температурах близких к комнатной $(20^{\circ}C-50^{\circ}C)$. Сравнивая полученный результат с табличным $(\gamma_{\text{табл}}\approx 1,3)$, можем сказать, что наш результат близок к табличному.