8/6/24, 10:09 PM Online Degree

Х

About (/about) | Notifications \bigcirc (/mynotifications) | 23113110286@sastra.ac.in \checkmark (/profile)

SASTRA » Numerical & Statistical Analysis

≡

Unit 1 - UNIT - I: Transcendental Polynomial & Simultaneous equations and Interpolations

Course outline	Assessment 1	
UNIT - I : Transcendental	The due date for submitting this assignment has passed.	00-50 ICT
Polynomial &	Due on 2023-04-09, As per our records you have not submitted this assignment.	23:59 151.
Simultaneous	1) Which of the following method is used to find the complex roots of the given polynomial equation	1 point
equations and		i point
☐ Interpolations ()	Graeffe's method Muller method	
Lecture 1: Squaring	Gauss-Seidel method	
method for complex	O None of the above	
roots - Muller, Birge-	No, the answer is incorrect.	
Vieta method (week 1)	Score: 0	
(unit?unit=1&lesson=2)	Accepted Answers: Graeffe's method	
Lecture 2 Squaring		
method for complex	2) Using Graffe's method, we can find for a cubic algebraic equation	1 point
roots - Graeffe's Root	one root at a time	
squaring method (week 1) (unit?	two roots at a time	
unit=1&lesson=3)	all the roots at a time none of the above	
,	No. the answer is incorrect.	
Lecture 3 - Muller, Birge Vieta and Graeffe's root	No, the answer is incorrect. Score: 0	
squaring method (week	Accepted Answers:	
1) (unit?	all the roots at a time	
unit=1&lesson=4)	3) Find the root of the equation $x^3 + 2x^2 + 10x - 20 = 0$, using Birge – Vitta method correct to 3 decimal places.	1 point
Quiz: Assessment – 1	O 1.369	
(assessment?	O 1.3	
name=16)	O 1.36	
Lecture 4 : Solution of	○ 1.4	
simultaneous	No, the answer is incorrect. Score: 0	
equations - Gauss	Accepted Answers:	
Jacobi I method (week	1.369	
2) (unit?	4) Divides vite method is used to salve	4
unit=1&lesson=5)	4) Bridge-vita method is used to solve	1 point
Lecture 5 - Solution of	Algebraic equations	
simultaneous	System of Simultaneous equations Differential equations	
equations - Gauss	Differential equations None of the above.	
Seidel method (week 2) (unit?unit=1&lesson=6)	No, the answer is incorrect.	
	Score: 0	
Lecture 6 : Problems in	Accepted Answers:	
Gauss Jacobi and Gauss seidel methods	Algebraic equations	
(week 2) (unit?	5) Muller's method is used to solve	1 point
unit=1&lesson=7)	System of Simultaneous equations	
Lecture 7 : Finite	Algebraic equations	
difference operator –	O Differential equations	
Relation between	O None of the above.	
operators (week 2)	No, the answer is incorrect.	
(unit?unit=1&lesson=8)	Score: 0 Accepted Answers:	
Lecture 8 : Finite	Algebraic equations	
Difference operator -	6) Which method gives all the approximate roots of an equation at the end of all iterations	
		1 noint

	problems (week 2)	Newton Raphson method		
	(unit?unit=1&lesson=9)	○ Birge vieta method ○ Graeffe's method		
	Quiz: Assessment 2	onone of the above		
	(assessment? name=17)	No, the answer is incorrect.		
0	Lecture 9 : Interpolation	Score: 0 Accepted Answers:		
	- Introduction (week 3)	Graeffe's method		
	(unit?		1 point	
	unit=1&lesson=10)	Graeffe's method Muller's method		
	Lecture 10 :Newton's forward and backward	Gauss-Seidel method		
	Interpolation (week 3)	O None of the above.		
	(unit?	No, the answer is incorrect. Score: 0		
	unit=1&lesson=11)	Accepted Answers:		
	Lecture 11:	Muller's method		
	Interpolation - problems (week 3) (unit?	8) Find the root of the equation $x^3 - 2x - 5 = 0$ (root lies between 2 and 3) by muller's method.	1 point	
	unit=1&lesson=12)	2.0459		
0	Quiz: Assessment 3	2.0945 2.4059		
	(assessment?	○ 2.0954		
	name=18)	No, the answer is incorrect. Score: 0		
	UNIT - II:	Accepted Answers:		
	Numerical	2.0945		
\oplus	differentiation and Integration ()		1 point	
_		Using Brige – Vieta method find the root of the equation $x^4 + 2x^3 - 21x^2 - 22x + 40 = 0$. Consider initial value of the	root is 3).S
	UNIT - III :	○ 4.1 ○ 3.9		
	Numerical Solutions of ODE	0 4		
\oplus	0	© 4.01		
		No, the answer is incorrect. Score: 0		
	UNIT - IV : Statistical	Accepted Answers:		
	distributions and			
	Test of hypothesis	10) The formula used in Birge-Vieta method to find root of a polynomial equation with nth order is	1 point	
\oplus	0	$P_{k+1} = P_k - \frac{b_n}{c_{n-1}}$		
	Unit V : Non-			
	parametric	$P_{k+1} = P_k - \frac{b_{n-1}}{c_n}$		
	statistical	$P_{k+1} = P_k - \frac{b_k}{c_{n-1}}$		
\oplus	methods & Time series analysis ()			
_	, , , , , , , , , , , , , , , , , , ,	$P_{k+1} = P_k - \frac{b_{k-1}}{c_k}$		
		No, the answer is incorrect. Score: 0		
		Accepted Answers: $P_{k+1} = P_k - \frac{b_n}{c_{n-1}}$		
		$I_{k+1} - I_k - \frac{1}{c_{n-1}}$		
		11) Find the root of the equation $\cos x = xe^x$ that lies between 0 and 1 correct to four decimal places using muller method.	1 point	
		0.5178	•	
		0.5776		
		0.5198		
		0.517		
		No, the answer is incorrect. Score: 0		
		Accepted Answers: 0.5178		
		12) Find the negative root of the equation $x^3 - 4x + 1 = 0$, that lies between -3 and -2 correct to 4 decimals using muller	1 point r method	ł.
		• -2.11		
		O -2.12		
		O -2.1149		
		-2.1491		
		No, the answer is incorrect.		

8/6/24, 10:09 PM Online Degree

Score: 0 Accepted Answers: -2.1149	
13) Using Graeffe's root squaring method, find the real root of the equation $x^3 - 2x + 2 = 0$	1 point
-1.7692 -1.7962 -1.8 -2.0	
No, the answer is incorrect. Score: 0	
Accepted Answers: -1.7692	
14) Using Graeffe's root squaring method, find the roots of the equation $x^3 + 3x^2 - 4 = 0$	1 point
 1, -2, -2 1, 2, 2 2, -1, -2 -1, -2, -2 	
No, the answer is incorrect. Score: 0 Accepted Answers: 1, -2, -2	
15) Using Birge – vieta method, find a real root correct to three decimals $x^3 - 11x^2 + 32x - 22 = 0$. 1 -1 2 1.1	1 point
No, the answer is incorrect. Score: 0 Accepted Answers:	

FOLLOW US

(https://www.facebook.com/swayammoocs/)

(https://twitter.com/SWAYAMMHRD)

Privacy Policy (/privacy_policy) | Terms of Use (/terms_of_use) | Honor Code (/honor_code)

© 2024 SWAYAM. All rights reserved. Initiative by : MHRD (Govt of India)