# **Human Activity Recognition**

This project is to build a model that predicts the human activities such as Walking, Walking\_Upstairs, Walking\_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

## How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(tAcc-XYZ) from accelerometer and '3-axial angular velocity' (tGyro-XYZ) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X, Y, and Z directions.

#### **Feature names**

- 1. These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.

In our dataset, each datapoint represents a window with different readings

- The acceleration signal was saperated into Body and Gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk signals* (*tBodyAccJerk-XYZ* and *tBodyGyroJerk-XYZ*).
- 5. The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This magnitudes are represented as features with names like tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag and tBodyGyroJerkMag.
- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with prefix 't' just like original signals with prefix 't'. These signals are labeled as fBodyAcc-XYZ, fBodyGyroMag etc.,.
- 7. These are the signals that we got so far.
  - tBodyAcc-XYZ
  - tGravityAcc-XYZ
  - tBodyAccJerk-XYZ
  - tBodyGyro-XYZ
  - tBodyGyroJerk-XYZ
  - tBodyAccMag
  - tGravityAccMag
  - tBodyAccJerkMag
  - tBodyGyroMag
  - tBodyGyroJerkMag
  - fBodyAcc-XYZ
  - fBodyAccJerk-XYZ
  - fBodyGyro-XYZ
  - fBodyAccMag
  - fBodyAccJerkMag
  - fBodyGyroMag
  - fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
  - mean(): Mean value
  - std(): Standard deviation
  - mad(): Median absolute deviation
  - max(): Largest value in array
  - min(): Smallest value in array
  - sma(): Signal magnitude area
  - energy(): Energy measure. Sum of the squares divided by the number of values.
  - iar(): Interquartile range

- entropy(): Signal entropy
- arCoeff(): Autorregresion coefficients with Burg order equal to 4
- correlation(): correlation coefficient between two signals
- maxinds(): index of the frequency component with largest magnitude
- meanFreq(): Weighted average of the frequency components to obtain a mean frequency
- skewness(): skewness of the frequency domain signal
- kurtosis(): kurtosis of the frequency domain signal
- bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
- angle(): Angle between to vectors.
- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable
  - gravityMean
  - tBodyAccMean
  - tBodyAccJerkMean
  - tBodyGyroMean
  - tBodyGyroJerkMean

## Y\_Labels(Encoded)

- In the dataset, Y\_labels are represented as numbers from 1 to 6 as their identifiers.
  - WALKING as 1
  - WALKING\_UPSTAIRS as 2
  - WALKING\_DOWNSTAIRS as 3
  - SITTING as 4
  - STANDING as 5
  - LAYING as 6

# Train and test data were saperated

• The readings from 70% of the volunteers were taken as trianing data and remaining 30% subjects recordings were taken for test data

# **Data**

- All the data is present in 'UCI\_HAR\_dataset/' folder in present working directory.
  - Feature names are present in 'UCI\_HAR\_dataset/features.txt'
  - Train Data
    - 'UCI\_HAR\_dataset/train/X\_train.txt'
    - 'UCI\_HAR\_dataset/train/subject\_train.txt'
    - 'UCI\_HAR\_dataset/train/y\_train.txt'
  - Test Data
    - 'UCI HAR dataset/test/X test.txt'
    - 'UCI\_HAR\_dataset/test/subject\_test.txt'
    - 'UCI\_HAR\_dataset/test/y\_test.txt'

#### Data Size:

27 MB

# Quick overview of the dataset:

- · Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.
  - 1. Walking
  - 2. WalkingUpstairs
  - WalkingDownstairs
  - 4. Standing
  - 5. Sitting
  - 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engerybands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

#### Problem Framework

i i obioiii i i aiiioii oik

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- Each datapoint corresponds one of the 6 Activities.

## **Problem Statement**

· Given a new datapoint we have to predict the Activity

#### In [1]:

```
# Importing necessary libraries
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
import datetime as dt
# Machine Learning
from sklearn.manifold import TSNE
from sklearn.metrics import confusion_matrix
from sklearn import linear_model, metrics
from sklearn.model selection import GridSearchCV
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
# Deep Learning
import tensorflow as tf
import keras
from keras import backend as K
from keras import regularizers, optimizers
from keras.layers import LSTM
from keras.layers.core import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv1D, MaxPooling1D
from keras.layers.normalization import BatchNormalization
from keras.models import Sequential
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import to categorical
Using TensorFlow backend.
In [2]:
# get the features from the file features.txt
with open('features.txt') as f:
  # dividing "i" into two parts and considering 2nd part. ['1 tBodyAcc-mean()-X'], here 1 is 1st part and rest is 2nd part.
```

```
# get the features from the file features.txt

with open('features.txt') as f:

# dividing "i" into two parts and considering 2nd part. ['1 tBodyAcc-mean()-X'], here 1 is 1st part and rest is 2nd part.

features= [i.split()[1] for i in f.readlines()]

print('Sample features:\n',features[:5])

print('\nTotal no of features: ', len(features))
```

#### Sample features:

['tBodyAcc-mean()-X', 'tBodyAcc-mean()-Y', 'tBodyAcc-mean()-Y', 'tBodyAcc-std()-X']

Total no of features: 561

### Obtain the train data

#### In [3]:

```
# get the data from .txt files to pandas dataframe

# delim_whitespace : bool, default False => Specifies whether or not whitespace (e.g. " or ' ') will be used as the sep.

# Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.

X_train= pd.read_csv('X_train.txt', delim_whitespace= True, header= None)

X_train.head()
```

## Out[3]:

|     | 0                          | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        |       | 551      | 552      | 553      | 554      |     |
|-----|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|----------|----------|----------|----------|-----|
| 0   | 0.288585                   | 0.020294 | 0.132905 | 0.995279 | 0.983111 | 0.913526 | 0.995112 | 0.983185 | 0.923527 | 0.934724 |       | 0.074323 | 0.298676 | 0.710304 | 0.112754 | 0.0 |
| 1   | 0.278419                   | 0.016411 | 0.123520 | 0.998245 | 0.975300 | 0.960322 | 0.998807 | 0.974914 | 0.957686 | 0.943068 |       | 0.158075 | 0.595051 | 0.861499 | 0.053477 | 0.0 |
| 2   | 0.279653                   | 0.019467 | 0.113462 | 0.995380 | 0.967187 | 0.978944 | 0.996520 | 0.963668 | 0.977469 | 0.938692 |       | 0.414503 | 0.390748 | 0.760104 | 0.118559 | 0.1 |
| 3   | 0.279174                   | 0.026201 | 0.123283 | 0.996091 | 0.983403 | 0.990675 | 0.997099 | 0.982750 | 0.989302 | 0.938692 |       | 0.404573 | 0.117290 | 0.482845 | 0.036788 | 0.0 |
| 4   | 0.276629                   | 0.016570 | 0.115362 | 0.998139 | 0.980817 | 0.990482 | 0.998321 | 0.979672 | 0.990441 | 0.942469 |       | 0.087753 | 0.351471 | 0.699205 | 0.123320 | 0.1 |
| 5 r | ows × 561                  | columns  |          |          |          |          |          |          |          |          |       |          |          |          |          |     |
| 4   |                            |          |          |          |          |          |          |          |          |          | l:::: |          |          |          |          | Þ   |
| ln  | [4]:                       |          |          |          |          |          |          |          |          |          |       |          |          |          |          |     |
| X_  | X_train.columns = features |          |          |          |          |          |          |          |          |          |       |          |          |          |          |     |
| In  | In [5]:                    |          |          |          |          |          |          |          |          |          |       |          |          |          |          |     |
| X_  | X_train.head()             |          |          |          |          |          |          |          |          |          |       |          |          |          |          |     |

#### Out[5]:

|   | tBodyAcc-<br>mean()-X | tBodyAcc-<br>mean()-Y | tBodyAcc-<br>mean()-Z | tBodyAcc-<br>std()-X | tBodyAcc-<br>std()-Y | tBodyAcc-<br>std()-Z | tBodyAcc-<br>mad()-X | tBodyAcc-<br>mad()-Y | tBodyAcc-<br>mad()-Z | tBodyAcc-<br>max()-X | <br>fBodyBodyGyroJerkMag-<br>meanFreq() | f |
|---|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------------------|---|
| 0 | 0.288585              | -0.020294             | -0.132905             | -0.995279            | -0.983111            | -0.913526            | -0.995112            | -0.983185            | -0.923527            | -0.934724            | <br>-0.074323                           |   |
| 1 | 0.278419              | -0.016411             | -0.123520             | -0.998245            | -0.975300            | -0.960322            | -0.998807            | -0.974914            | -0.957686            | -0.943068            | <br>0.158075                            |   |
| 2 | 0.279653              | -0.019467             | -0.113462             | -0.995380            | -0.967187            | -0.978944            | -0.996520            | -0.963668            | -0.977469            | -0.938692            | <br>0.414503                            |   |
| 3 | 0.279174              | -0.026201             | -0.123283             | -0.996091            | -0.983403            | -0.990675            | -0.997099            | -0.982750            | -0.989302            | -0.938692            | <br>0.404573                            |   |
| 4 | 0.276629              | -0.016570             | -0.115362             | -0.998139            | -0.980817            | -0.990482            | -0.998321            | -0.979672            | -0.990441            | -0.942469            | <br>0.087753                            |   |

#### 5 rows × 561 columns

4

# In [6]:

# add subject column to the dataframe

X\_train['subject'] = pd.read\_csv('subject\_train.txt')

## In [7]:

# squeeze : If the parsed data only contains one column then return a Series. (or else we cannot 'map' the below dict)

 $\label{eq:y_train} $$y_train = pd.read_csv('y\_train.txt', names=['Activity'], squeeze= True)$$ $y_train.head() $$$ 

# Out[7]:

0 5

1 5

2 5

3 5

Name: Activity, dtype: int64

# In [8]:

y\_train.value\_counts()

# Out[8]:

6 1407

5 1374

4 1286

1 1226 2 1073

3 986

Name: Activity, dtype: int64

```
In [9]:
# Labelling the classes in y.
label = {1: WALKING', 2: WALKING_UPSTAIRS', 3: WALKING_DOWNSTAIRS', 4: 'SITTING', 5: 'STANDING', 6: 'LAYING'}
In [10]:
y_train_labels = y_train.map(label)
y_train_labels.head()
Out[10]:
   STANDING
   STANDING
   STANDING
3
   STANDING
   STANDING
Name: Activity, dtype: object
In [11]:
y_train_labels.value_counts()
Out[11]:
                 1407
LAYING
STANDING
                  1374
SITTING
                 1286
WALKING
                  1226
WALKING_UPSTAIRS
                        1073
WALKING_DOWNSTAIRS
Name: Activity, dtype: int64
In [12]:
# put all columns in a single dataframe
train = X_train
train['Activity'] = y_train
train['ActivityName'] = y_train_labels
```

```
# A sample row to check
train.sample()
```

#### Out[12]:

|       | tBodyAcc-<br>mean()-X | tBodyAcc-<br>mean()-Y | tBodyAcc-<br>mean()-Z | tBodyAcc-<br>std()-X | tBodyAcc-<br>std()-Y | tBodyAcc-<br>std()-Z | tBodyAcc-<br>mad()-X | tBodyAcc-<br>mad()-Y | tBodyAcc-<br>mad()-Z | tBodyAcc-<br>max()-X | <br>angle(tBodyAccMean,grav |
|-------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------|
| 205   | 0.278667              | -0.017999             | -0.110063             | -0.997637            | -0.990508            | -0.989375            | -0.998024            | -0.989577            | -0.991111            | -0.940484            | <br>0.125                   |
| 1 row | vs × 564 colu         | umns                  |                       |                      |                      |                      |                      |                      |                      |                      | y                           |

## In [13]:

train.shape

#### Out[13]:

(7352, 564)

## Obtain the test data

### In [31]:

Out[31]:

```
# get the data from .txt files to pandas dataframe
# delim_whitespace : bool, default False => Specifies whether or not whitespace (e.g. " or ' ') will be used as the sep.
# Equivalent to setting sep=\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.
X_test= pd.read_csv('X_test.txt', delim_whitespace= True, header= None)
X_test.head()
```

|     | 0         | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | ••• | 551      | 552      | 553      | 554      |     |
|-----|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|----------|----------|----------|----------|-----|
| 0   | 0.257178  | 0.023285 | 0.014654 | 0.938404 | 0.920091 | 0.667683 | 0.952501 | 0.925249 | 0.674302 | 0.894088 |     | 0.071645 | 0.330370 | 0.705974 | 0.006462 | 0.1 |
| 1   | 0.286027  | 0.013163 | 0.119083 | 0.975415 | 0.967458 | 0.944958 | 0.986799 | 0.968401 | 0.945823 | 0.894088 |     | 0.401189 | 0.121845 | 0.594944 | 0.083495 | 0.0 |
| 2   | 0.275485  | 0.026050 | 0.118152 | 0.993819 | 0.969926 | 0.962748 | 0.994403 | 0.970735 | 0.963483 | 0.939260 |     | 0.062891 | 0.190422 | 0.640736 | 0.034956 | 0.2 |
| 3   | 0.270298  | 0.032614 | 0.117520 | 0.994743 | 0.973268 | 0.967091 | 0.995274 | 0.974471 | 0.968897 | 0.938610 |     | 0.116695 | 0.344418 | 0.736124 | 0.017067 | 0.1 |
| 4   | 0.274833  | 0.027848 | 0.129527 | 0.993852 | 0.967445 | 0.978295 | 0.994111 | 0.965953 | 0.977346 | 0.938610 |     | 0.121711 | 0.534685 | 0.846595 | 0.002223 | 0.0 |
| 5 r | ows x 561 | columns  |          |          |          |          |          |          |          |          |     |          |          |          |          |     |

#### 5 rows × 561 columns

### In [32]:

 $X_{test.columns} = features$ 

## In [33]:

X\_test.head()

## Out[33]:

|   | tBodyAcc-<br>mean()-X | tBodyAcc-<br>mean()-Y | tBodyAcc-<br>mean()-Z | tBodyAcc-<br>std()-X | tBodyAcc-<br>std()-Y | tBodyAcc-<br>std()-Z | tBodyAcc-<br>mad()-X | tBodyAcc-<br>mad()-Y | tBodyAcc-<br>mad()-Z | tBodyAcc-<br>max()-X | <br>fBodyBodyGyroJerkMag- f<br>meanFreq() |
|---|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------------|
| 0 | 0.257178              | -0.023285             | -0.014654             | -0.938404            | -0.920091            | -0.667683            | -0.952501            | -0.925249            | -0.674302            | -0.894088            | <br>0.071645                              |
| 1 | 0.286027              | -0.013163             | -0.119083             | -0.975415            | -0.967458            | -0.944958            | -0.986799            | -0.968401            | -0.945823            | -0.894088            | <br>-0.401189                             |
| 2 | 0.275485              | -0.026050             | -0.118152             | -0.993819            | -0.969926            | -0.962748            | -0.994403            | -0.970735            | -0.963483            | -0.939260            | <br>0.062891                              |
| 3 | 0.270298              | -0.032614             | -0.117520             | -0.994743            | -0.973268            | -0.967091            | -0.995274            | -0.974471            | -0.968897            | -0.938610            | <br>0.116695                              |
| 4 | 0.274833              | -0.027848             | -0.129527             | -0.993852            | -0.967445            | -0.978295            | -0.994111            | -0.965953            | -0.977346            | -0.938610            | <br>-0.121711                             |

#### 5 rows × 561 columns

# In [34]:

# add subject column to the dataframe

X\_test['subject'] = pd.read\_csv('subject\_test.txt')

#### In [35]:

# squeeze : If the parsed data only contains one column then return a Series. (or else we cannot 'map' the below dict)

y\_test = pd.read\_csv('y\_test.txt', names=['Activity'], squeeze= True)

y\_test.head()

## Out[35]:

0 5

5

2 5

3 5

4 5

Name: Activity, dtype: int64

## In [36]:

y\_test\_labels = y\_test.map(label) y\_test\_labels.head()

# Out[36]:

- 0 STANDING
- **STANDING**
- STANDING
- 3 STANDING
- 4 STANDING

Name: Activity, dtype: object

#### In [37]:

```
# put all columns in a single dataframe

test = X_test
test['Activity'] = y_test
test['ActivityName'] = y_test_labels

# A sample row to check
test.sample()
```

#### Out[37]:

|     | tBodyAcc-<br>mean()-X | •        | tBodyAcc-<br>mean()-Z | tBodyAcc-<br>std()-X | tBodyAcc-<br>std()-Y | tBodyAcc-<br>std()-Z | tBodyAcc-<br>mad()-X | tBodyAcc-<br>mad()-Y | tBodyAcc-<br>mad()-Z | tBodyAcc-<br>max()-X | <br>angle(tBodyAccMean,gra |
|-----|-----------------------|----------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|
| 189 | 0.276843              | -0.01662 | -0.109958             | -0.996723            | -0.992401            | -0.993               | -0.996914            | -0.991882            | -0.991154            | -0.940405            | <br>0.17                   |

1 rows × 564 columns

• Parameter and the second sec

### In [38]:

test.shape

# Out[38]:

(2947, 564)

# **Data Cleaning**

# 1. Check for Duplicates

#### In [48]:

print("There are {} of duplicates in train".format(len(train[train.duplicated()])))
print("There are {} of duplicates in test".format(len(test[test.duplicated()])))

There are 0 of duplicates in train There are 0 of duplicates in test

# 2. Checking for NaN/null values

# In [68]:

# Found one NaN row in train dataframe train.isnull().values.sum()

#### Out[68]:

1

## In [65]:

# Found one NaN row in test dataframe test.isnull().values.sum()

## Out[65]:

1

#### In [73]:

```
# https://stackoverflow.com/a/14247708/10219869
# The column is Subject and 7351 row in train dataset
```

train[train.isnull().any(axis=1)]

#### Out[73]:



## In [82]:

# The column is Subject and 2946 row in test dataset

test[test.isnull().any(axis=1)]

## Out[82]:

|        | tBodyAcc-<br>mean()-X | tBodyAcc-<br>mean()-Y | tBodyAcc-<br>mean()-Z | tBodyAcc-<br>std()-X | tBodyAcc-<br>std()-Y | tBodyAcc-<br>std()-Z | tBodyAcc-<br>mad()-X | tBodyAcc-<br>mad()-Y | tBodyAcc-<br>mad()-Z | tBodyAcc-<br>max()-X | <br>angle(tBodyAccMean,gra |
|--------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|
| 2946   | 0.153627              | -0.018437             | -0.137018             | -0.330046            | -0.195253            | -0.164339            | -0.430974            | -0.218295            | -0.229933            | -0.111527            | <br>0.59                   |
| 1 rows | s × 564 colu          | mns                   |                       |                      |                      |                      |                      |                      |                      |                      | Þ                          |

#### In [86]:

# deleting the particular rows

 $\begin{array}{l} train.drop([7351],\ inplace=\mbox{\bf True})\\ test.drop([2946],\ inplace=\mbox{\bf True}) \end{array}$ 

#### In [89]:

 $print("There \ are \ \{\} \ of \ NaN \ values \ in \ train".format(train.isnull().sum().sum())))$   $print("There \ are \ \{\} \ of \ NaN \ values \ in \ test".format(test.isnull().sum().sum()))$ 

There are 0 of NaN values in train There are 0 of NaN values in test

# 3. Check for data imbalance

#### In [90]:

plt.figure(figsize=(16,8))
plt.title('Data provided by each user', fontsize=20)
sns.countplot(x='subject',hue='ActivityName', data = train)
plt.show()



#### In [91]:

```
plt.title('No of Datapoints per Activity', fontsize=15)
sns.countplot(train['ActivityName'])
plt.xticks(rotation=90)
plt.show()
```



#### Observation

Our data is well balanced (almost)

# 4. Changing feature names

### In [95]:

train.columns

#### Out[95]:

```
Index(['tBodyAcc-mean()-X', 'tBodyAcc-mean()-Y', 'tBodyAcc-mean()-Z', 'tBodyAcc-std()-X', 'tBodyAcc-std()-Y', 'tBodyAcc-std()-Z', 'tBodyAcc-mad()-X', 'tBodyAcc-mad()-Y', 'tBodyAcc-mad()-Z', 'tBodyAcc-max()-X', ....

'angle(tBodyAccMean,gravity)', 'angle(tBodyAccJerkMean),gravityMean)', 'angle(tBodyGyroMean,gravityMean)', 'angle(X,gravityMean)', 'angle(X,gravityMean)', 'angle(Y,gravityMean)', 'angle(Y,gravityMea
```

## In [105]:

```
# Removing '()','-','' from column names
# https://stackoverflow.com/a/39741442/10219869
# why we use this "[]"? by Bowen Liu. Because it means regex for matching only '()' or '-' or ','. By jezrael

train.columns = train.columns.str.replace(r'[,]',")
train.columns = train.columns.str.replace(r'[,]',")
train.columns
```

## Out[105]:

```
'tBodyAccstdY', 'tBodyAccstdZ', 'tBodyAccmadX', 'tBodyAccmadY', 'tBodyAccmadZ', 'tBodyAccmadZ', 'tBodyAccmadZ', 'tBodyAccmadZ', 'tBodyAccmadZ', 'angletBodyAccJerkMeangravityMean', 'angletBodyAccJerkMeangravityMean', 'angletBodyGyroJerkMeangravityMean', 'angletBodyGyroJerkMeangravityMean', 'angleXgravityMean', 'angleXgravityMean', 'angleZgravityMean', 'subject', 'Activity', 'ActivityName'], 'dtype='object', length=564)
```

## 5. Save this dataframe in a csv files

#### In [106]:

```
train.to_csv('train_new.csv', index=False)
test.to_csv('test_new.csv', index=False)
```

# **Exploratory Data Analysis**

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

### 1. Featuring Engineering from Domain Knowledge

- . Static and Dynamic Activities
  - In static activities (sit, stand, lie down) motion information will not be very useful.
  - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

## 2. Stationary and Moving activities are completely different

#### In [111]:

```
sns.set_style('whitegrid')
sns.set_palette("Set1", desat=0.80)

facetgrid = sns.FacetGrid(train, hue='ActivityName', size=6,aspect=2)

facetgrid.map(sns.distplot,'tBodyAccMagmean', hist=False).add_legend()

plt.annotate("Stationary Activities", xy= (-0.956,12), xytext= (-0.9, 14), size= 20,va= 'center', ha= 'left', arrowprops= dict(arrowstyle= "simple", connectionstyle= "arc3, rad= 0.1"))

plt.annotate("Moving Activities", xy= (0.3), xytext= (0.2, 9), size= 20, va= 'center', ha= 'left', arrowprops= dict(arrowstyle= "simple", connectionstyle= "arc3, rad= 0.1"))

plt.show()
```



## In [113]:

```
plt.title('Moving Activities')
sns.distplot(train[train['Activity']==1]['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking')
sns.distplot(train[train['Activity']==2]['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking Up')
sns.distplot(train[train['Activity']==3]['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walking down')
plt.legend(loc='center right')

plt.subplot(2,2,2)
plt.title('Stationary Activities(Zoomed in)')
sns.distplot(train[train['Activity']==4]['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
sns.distplot(train[train['Activity']==5]['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
sns.distplot(train[train['Activity']==6]['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
plt.axis([-1.01, -0.5, 0, 35])
plt.legend(loc='center')

plt.tight_layout()
plt.show()
```



# 3. Magnitude of an acceleration can separate it well

#### In [114]:

```
plt.figure(figsize=(7,7))
sns.boxplot(x='ActivityName', y='tBodyAccMagmean',data=train, showfliers=False, saturation=1)
plt.ylabel('Acceleration Magnitude mean')
plt.axhline(y=-0.7, xmin=0.1, xmax=0.9,dashes=(5,5), c='g')
plt.axhline(y=-0.05, xmin=0.4, dashes=(5,5), c='m')
plt.xticks(rotation=90)
plt.show()
```



#### Observations:

- If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying.
- If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs.
- If tAccMean > 0.1 then the Activity is WalkingDownstairs.
- We can classify almost 75% the Acitivity labels with some errors.

## 4. Position of Gravity Acceleration Components also matters

#### In [115]:

```
sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train) \\ plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3)) \\ plt.title('Angle between X-axis and Gravity\_mean', fontsize=15) \\ plt.xticks(rotation = 40) \\ plt.show()
```



## Observations:

- If angleX, gravityMean > 0 then Activity is Laying.
- We can classify all datapoints belonging to Laying activity with just a single if else statement.

# In [116]:

```
sns.boxplot(x='ActivityName', y='angleYgravityMean', data = train, showfliers=False)
plt.title('Angle between Y-axis and Gravity_mean', fontsize=15)
plt.xticks(rotation = 40)
plt.axhline(y=-0.22, xmin=0.1, xmax=0.8, dashes=(5,3), c='m')
plt.show()
```



# **Apply T-SNE on the data**

```
In [128]:
```

```
# performs t-sne with different perplexity values and their repective plots..
def perform_tsne(X, y, perplexities, n_iter=1000, img_name_prefix='T-SNE'):
  for index, perplexity in enumerate(perplexities):
     # perform t-sne
     print('\nPerforming tsne with perplexity {} and with {} iterations at max\n'.format(perplexity, n_iter))
     X_reduced = TSNE(verbose= 2, perplexity= perplexity).fit_transform(X)
     print('Done..')
     # prepare the data for seaborn
     print('\nCreating plot for this T-SNE visualization..\n')
     df = pd.DataFrame({'x': X_reduced[:,0], 'y': X_reduced[:,1], 'label': y})
     # draw the plot in appropriate place in the grid
     # fit_reg : If 'True', estimate and plot a regression model relating the x and y variables.
     sns.Implot(data= df, x= 'x', y= 'y', hue= 'label', fit_reg= False, size= 8, palette="Set1",
            markers=['^', 'v', 's', 'o', '1', '2'])
     plt.title("Perplexity: {} and max_iter: {}".format(perplexity, n_iter))
     img_name = img_name_prefix + 'New_perp_{}_iter_{}.png'.format(perplexity, n_iter)
     print('\nSaving this plot as image in present working directory...')
     plt.savefig(img_name)
     plt.show()
     print('Done')
```

### In [129]:

Performing tsne with perplexity 2 and with 1000 iterations at max

```
[t-SNE] Computing 7 nearest neighbors...
[t-SNE] Indexed 7351 samples in 0.135s...
[t-SNE] Computed neighbors for 7351 samples in 30.775s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7351
[t-SNE] Computed conditional probabilities for sample 2000 / 7351
[t-SNE] Computed conditional probabilities for sample 3000 / 7351
[t-SNE] Computed conditional probabilities for sample 4000 / 7351
[t-SNE] Computed conditional probabilities for sample 5000 / 7351
[t-SNE] Computed conditional probabilities for sample 6000 / 7351
[t-SNE] Computed conditional probabilities for sample 7000 / 7351
[t-SNE] Computed conditional probabilities for sample 7351 / 7351
[t-SNE] Mean sigma: 0.635915
[t-SNE] Computed conditional probabilities in 0.063s
[t-SNE] Iteration 50: error = 124.6781464, gradient norm = 0.0262113 (50 iterations in 4.723s)
[t-SNE] Iteration 100: error = 107.3815079, gradient norm = 0.0308419 (50 iterations in 3.293s)
[t-SNE] Iteration 150: error = 101.1956329, gradient norm = 0.0186720 (50 iterations in 2.541s)
[t-SNE] Iteration 200: error = 97.8194199, gradient norm = 0.0183977 (50 iterations in 2.469s)
[t-SNE] Iteration 250: error = 95.4880829, gradient norm = 0.0138392 (50 iterations in 2.453s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 95.488083
[t-SNE] Iteration 300: error = 4.1237102, gradient norm = 0.0015637 (50 iterations in 2.158s)
[t-SNE] Iteration 350: error = 3.2142746, gradient norm = 0.0009976 (50 iterations in 2.027s)
[t-SNE] Iteration 400: error = 2.7847106, gradient norm = 0.0007132 (50 iterations in 2.036s)
[t-SNE] Iteration 450: error = 2.5202210, gradient norm = 0.0005710 (50 iterations in 2.061s)
[t-SNE] Iteration 500: error = 2.3367610, gradient norm = 0.0004885 (50 iterations in 2.055s)
[t-SNE] Iteration 550: error = 2.1992407, gradient norm = 0.0004189 (50 iterations in 2.066s)
[t-SNE] Iteration 600: error = 2.0901325, gradient norm = 0.0003677 (50 iterations in 2.072s)
[t-SNE] Iteration 650: error = 2.0004115, gradient norm = 0.0003331 (50 iterations in 2.090s)
[t-SNE] Iteration 700: error = 1.9249381, gradient norm = 0.0002990 (50 iterations in 2.088s)
[t-SNE] Iteration 750: error = 1.8601872, gradient norm = 0.0002726 (50 iterations in 2.116s)
[t-SNE] Iteration 800: error = 1.8036064, gradient norm = 0.0002561 (50 iterations in 2.122s)
[t-SNE] Iteration 850: error = 1.7536288, gradient norm = 0.0002380 (50 iterations in 2.126s)
[t-SNE] Iteration 900: error = 1.7090988, gradient norm = 0.0002241 (50 iterations in 2.140s)
[t-SNE] Iteration 950: error = 1.6690996, gradient norm = 0.0002148 (50 iterations in 2.143s)
[t-SNE] Iteration 1000: error = 1.6328787, gradient norm = 0.0001981 (50 iterations in 2.141s)
[t-SNE] KL divergence after 1000 iterations: 1.632879
Done..
```

Creating plot for this T-SNE visualization..



Performing tsne with perplexity 5 and with 1000 iterations at max

[t-SNE] Computing 16 nearest neighbors...

```
[t-SNE] Indexed 7351 samples in 0.127s...
[t-SNE] Computed neighbors for 7351 samples in 30.790s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7351
[t-SNE] Computed conditional probabilities for sample 2000 / 7351
[t-SNE] Computed conditional probabilities for sample 3000 / 7351
[t-SNE] Computed conditional probabilities for sample 4000 / 7351
[t-SNE] Computed conditional probabilities for sample 5000 / 7351
[t-SNE] Computed conditional probabilities for sample 6000 / 7351
[t-SNE] Computed conditional probabilities for sample 7000 / 7351
[t-SNE] Computed conditional probabilities for sample 7351 / 7351
[t-SNE] Mean sigma: 0.961278
[t-SNE] Computed conditional probabilities in 0.077s
[t-SNE] Iteration 50: error = 114.0015182, gradient norm = 0.0204809 (50 iterations in 8.726s)
[t-SNE] Iteration 100: error = 97.6693344, gradient norm = 0.0169447 (50 iterations in 2.548s)
[t-SNE] Iteration 150: error = 93.2642059, gradient norm = 0.0089610 (50 iterations in 2.071s)
[t-SNE] Iteration 200: error = 91.2998428, gradient norm = 0.0072925 (50 iterations in 2.006s)
[t-SNE] Iteration 250: error = 90.1137543, gradient norm = 0.0046948 (50 iterations in 1.976s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 90.113754
[t-SNE] Iteration 300: error = 3.5745916, gradient norm = 0.0014597 (50 iterations in 1.956s)
[t-SNE] Iteration 350: error = 2.8179624, gradient norm = 0.0007535 (50 iterations in 1.959s)
[t-SNE] Iteration 400: error = 2.4369547, gradient norm = 0.0005287 (50 iterations in 1.973s)
[t-SNE] Iteration 450: error = 2.2189448, gradient norm = 0.0004023 (50 iterations in 2.007s)
[t-SNE] Iteration 500: error = 2.0741067, gradient norm = 0.0003303 (50 iterations in 2.012s)
[t-SNE] Iteration 550: error = 1.9687753, gradient norm = 0.0002813 (50 iterations in 2.040s)
[t-SNE] Iteration 600: error = 1.8874637, gradient norm = 0.0002458 (50 iterations in 2.050s)
[t-SNE] Iteration 650: error = 1.8225235, gradient norm = 0.0002170 (50 iterations in 2.050s)
[t-SNE] Iteration 700: error = 1.7688591, gradient norm = 0.0001972 (50 iterations in 2.062s)
[t-SNE] Iteration 750: error = 1.7235245, gradient norm = 0.0001807 (50 iterations in 2.068s)
[t-SNE] Iteration 800: error = 1.6846262, gradient norm = 0.0001649 (50 iterations in 2.064s)
[t-SNE] Iteration 850: error = 1.6506555, gradient norm = 0.0001541 (50 iterations in 2.057s)
[t-SNE] Iteration 900: error = 1.6211171, gradient norm = 0.0001427 (50 iterations in 2.055s)
[t-SNE] Iteration 950: error = 1.5946183, gradient norm = 0.0001323 (50 iterations in 2.055s)
[t-SNE] Iteration 1000: error = 1.5709391, gradient norm = 0.0001268 (50 iterations in 2.052s)
[t-SNE] KL divergence after 1000 iterations: 1.570939
Done..
```

Creating plot for this T-SNE visualization..



Performing tsne with perplexity 10 and with 1000 iterations at max

[t-SNE] Computing 31 nearest neighbors...

```
[t-SNE] Indexed 7351 samples in 0.129s...
[t-SNE] Computed neighbors for 7351 samples in 31.246s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7351
[t-SNE] Computed conditional probabilities for sample 2000 / 7351
[t-SNE] Computed conditional probabilities for sample 3000 / 7351
[t-SNE] Computed conditional probabilities for sample 4000 / 7351
[t-SNE] Computed conditional probabilities for sample 5000 / 7351
[t-SNE] Computed conditional probabilities for sample 6000 / 7351
[t-SNE] Computed conditional probabilities for sample 7000 / 7351
[t-SNE] Computed conditional probabilities for sample 7351 / 7351
[t-SNE] Mean sigma: 1.133834
[t-SNE] Computed conditional probabilities in 0.138s
[t-SNE] Iteration 50: error = 105.7958527, gradient norm = 0.0176003 (50 iterations in 3.840s)
[t-SNE] Iteration 100: error = 90.1865311, gradient norm = 0.0132296 (50 iterations in 2.602s)
[t-SNE] Iteration 150: error = 87.2278900, gradient norm = 0.0053869 (50 iterations in 2.371s)
[t-SNE] Iteration 200: error = 86.0240326, gradient norm = 0.0060858 (50 iterations in 2.321s)
[t-SNE] Iteration 250: error = 85.3396454, gradient norm = 0.0045784 (50 iterations in 2.310s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.339645
[t-SNE] Iteration 300: error = 3.1301837, gradient norm = 0.0013851 (50 iterations in 2.166s)
[t-SNE] Iteration 350: error = 2.4884892, gradient norm = 0.0006497 (50 iterations in 2.035s)
[t-SNE] Iteration 400: error = 2.1681504, gradient norm = 0.0004282 (50 iterations in 2.061s)
[t-SNE] Iteration 450: error = 1.9845430, gradient norm = 0.0003161 (50 iterations in 2.065s)
[t-SNE] Iteration 500: error = 1.8663766, gradient norm = 0.0002508 (50 iterations in 2.102s)
[t-SNE] Iteration 550: error = 1.7828290, gradient norm = 0.0002096 (50 iterations in 2.088s)
[t-SNE] Iteration 600: error = 1.7198648, gradient norm = 0.0001806 (50 iterations in 2.104s)
[t-SNE] Iteration 650: error = 1.6710820, gradient norm = 0.0001585 (50 iterations in 2.085s)
[t-SNE] Iteration 700: error = 1.6317736, gradient norm = 0.0001428 (50 iterations in 2.092s)
[t-SNE] Iteration 750: error = 1.5992377, gradient norm = 0.0001300 (50 iterations in 2.092s)
[t-SNE] Iteration 800: error = 1.5719700, gradient norm = 0.0001185 (50 iterations in 2.090s)
[t-SNE] Iteration 850: error = 1.5487494, gradient norm = 0.0001125 (50 iterations in 2.096s)
[t-SNE] Iteration 900: error = 1.5292450, gradient norm = 0.0001048 (50 iterations in 2.116s)
[t-SNE] Iteration 950: error = 1.5126431, gradient norm = 0.0000998 (50 iterations in 2.118s)
[t-SNE] Iteration 1000: error = 1.4984311, gradient norm = 0.0000934 (50 iterations in 2.126s)
[t-SNE] KL divergence after 1000 iterations: 1.498431
Done..
```

Creating plot for this T-SNE visualization..



Performing tsne with perplexity 30 and with 1000 iterations at max

It-SNEI Computing 91 nearest neighbors...

```
[t-SNE] Indexed 7351 samples in 0.138s...
[t-SNE] Computed neighbors for 7351 samples in 33.190s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7351
[t-SNE] Computed conditional probabilities for sample 2000 / 7351
[t-SNE] Computed conditional probabilities for sample 3000 / 7351
[t-SNE] Computed conditional probabilities for sample 4000 / 7351
[t-SNE] Computed conditional probabilities for sample 5000 / 7351
[t-SNE] Computed conditional probabilities for sample 6000 / 7351
[t-SNE] Computed conditional probabilities for sample 7000 / 7351
[t-SNE] Computed conditional probabilities for sample 7351 / 7351
[t-SNE] Mean sigma: 1.348514
[t-SNE] Computed conditional probabilities in 0.389s
[t-SNE] Iteration 50: error = 91.7951050, gradient norm = 0.0282668 (50 iterations in 4.036s)
[t-SNE] Iteration 100: error = 80.4392471, gradient norm = 0.0043850 (50 iterations in 3.046s)
[t-SNE] Iteration 150: error = 78.8470230, gradient norm = 0.0029605 (50 iterations in 2.704s)
[t-SNE] Iteration 200: error = 78.3061218, gradient norm = 0.0023445 (50 iterations in 2.727s)
[t-SNE] Iteration 250: error = 78.0242996, gradient norm = 0.0017019 (50 iterations in 2.729s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 78.024300
[t-SNE] Iteration 300: error = 2.4515841, gradient norm = 0.0012605 (50 iterations in 2.532s)
[t-SNE] Iteration 350: error = 1.9794496, gradient norm = 0.0005343 (50 iterations in 2.428s)
[t-SNE] Iteration 400: error = 1.7674819, gradient norm = 0.0003214 (50 iterations in 2.449s)
[t-SNE] Iteration 450: error = 1.6460981, gradient norm = 0.0002195 (50 iterations in 2.499s)
[t-SNE] Iteration 500: error = 1.5669320, gradient norm = 0.0001676 (50 iterations in 2.478s)
[t-SNE] Iteration 550: error = 1.5127892, gradient norm = 0.0001359 (50 iterations in 2.481s)
[t-SNE] Iteration 600: error = 1.4738222, gradient norm = 0.0001171 (50 iterations in 2.500s)
[t-SNE] Iteration 650: error = 1.4452159, gradient norm = 0.0001085 (50 iterations in 2.500s)
[t-SNE] Iteration 700: error = 1.4241163, gradient norm = 0.0000926 (50 iterations in 2.494s)
[t-SNE] Iteration 750: error = 1.4076157, gradient norm = 0.0000858 (50 iterations in 2.481s)
[t-SNE] Iteration 800: error = 1.3945322, gradient norm = 0.0000798 (50 iterations in 2.497s)
[t-SNE] Iteration 850: error = 1.3838215, gradient norm = 0.0000744 (50 iterations in 2.497s)
[t-SNE] Iteration 900: error = 1.3747298, gradient norm = 0.0000760 (50 iterations in 2.502s)
[t-SNE] Iteration 950: error = 1.3668323, gradient norm = 0.0000719 (50 iterations in 2.536s)
[t-SNE] Iteration 1000: error = 1.3600103, gradient norm = 0.0000712 (50 iterations in 2.520s)
[t-SNE] KL divergence after 1000 iterations: 1.360010
Done..
```

Creating plot for this T-SNE visualization..



Performing tsne with perplexity 50 and with 1000 iterations at max

[t-SNE] Computing 151 nearest neighbors...

```
[t-SNE] Indexed 7351 samples in 0.162s...
[t-SNE] Computed neighbors for 7351 samples in 35.874s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7351
[t-SNE] Computed conditional probabilities for sample 2000 / 7351
[t-SNE] Computed conditional probabilities for sample 3000 / 7351
[t-SNE] Computed conditional probabilities for sample 4000 / 7351
[t-SNE] Computed conditional probabilities for sample 5000 / 7351
[t-SNE] Computed conditional probabilities for sample 6000 / 7351
[t-SNE] Computed conditional probabilities for sample 7000 / 7351
[t-SNE] Computed conditional probabilities for sample 7351 / 7351
[t-SNE] Mean sigma: 1.437667
[t-SNE] Computed conditional probabilities in 0.645s
[t-SNE] Iteration 50: error = 85.8026886, gradient norm = 0.0274312 (50 iterations in 4.849s)
[t-SNE] Iteration 100: error = 75.5111008, gradient norm = 0.0039719 (50 iterations in 4.618s)
[t-SNE] Iteration 150: error = 74.5812683, gradient norm = 0.0020083 (50 iterations in 3.521s)
[t-SNE] Iteration 200: error = 74.2340546, gradient norm = 0.0018849 (50 iterations in 3.597s)
[t-SNE] Iteration 250: error = 74.0605164, gradient norm = 0.0012819 (50 iterations in 3.708s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.060516
[t-SNE] Iteration 300: error = 2.1528261, gradient norm = 0.0011935 (50 iterations in 3.272s)
[t-SNE] Iteration 350: error = 1.7556928, gradient norm = 0.0004826 (50 iterations in 2.869s)
[t-SNE] Iteration 400: error = 1.5864977, gradient norm = 0.0002839 (50 iterations in 2.830s)
[t-SNE] Iteration 450: error = 1.4932637, gradient norm = 0.0001896 (50 iterations in 2.832s)
[t-SNE] Iteration 500: error = 1.4335964, gradient norm = 0.0001399 (50 iterations in 2.848s)
[t-SNE] Iteration 550: error = 1.3925201, gradient norm = 0.0001118 (50 iterations in 2.851s)
[t-SNE] Iteration 600: error = 1.3632234, gradient norm = 0.0000974 (50 iterations in 2.845s)
[t-SNE] Iteration 650: error = 1.3423645, gradient norm = 0.0000826 (50 iterations in 2.835s)
[t-SNE] Iteration 700: error = 1.3267196, gradient norm = 0.0000743 (50 iterations in 2.829s)
[t-SNE] Iteration 750: error = 1.3152233, gradient norm = 0.0000672 (50 iterations in 2.831s)
[t-SNE] Iteration 800: error = 1.3060203, gradient norm = 0.0000633 (50 iterations in 2.850s)
[t-SNE] Iteration 850: error = 1.2988074, gradient norm = 0.0000600 (50 iterations in 2.864s)
[t-SNE] Iteration 900: error = 1.2930111, gradient norm = 0.0000568 (50 iterations in 2.863s)
[t-SNE] Iteration 950: error = 1.2882552, gradient norm = 0.0000555 (50 iterations in 2.855s)
[t-SNE] Iteration 1000: error = 1.2842467, gradient norm = 0.0000519 (50 iterations in 2.834s)
[t-SNE] KL divergence after 1000 iterations: 1.284247
Done.
```

Creating plot for this T-SNE visualization..



Time to run the program: 0:07:04.016172

# Function to plot the confusion matrix

#### In [131]:

```
def plot_confusion_matrix(cm, classes,normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()

tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
    plt.tylabel('True label')
    plt.xlabel('Predicted label')
```

# Generic function to run any model specified

## In [157]:

```
train_start = at.datctime.now()
print('Training the model..')
model.fit(X_train, y_train)
print('Done \n \n')
results['training_time'] = dt.datetime.now() - train_start
print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time']))
# predict test data
print('Predicting test data')
test_start = dt.datetime.now()
y_pred = model.predict(X_test)
print('Done \n \n')
results['testing_time'] = dt.datetime.now() - test_start
print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing_time']))
results['predicted'] = y_pred
# calculate overall accuracty of the model
accuracy = metrics.accuracy_score(y_true= y_test, y_pred= y_pred)
# store accuracy in results
results['accuracy'] = accuracy
print('----')
print('| Accuracy
print('\n {}\n\n'.format(accuracy))
# confusion matrix
cm = metrics.confusion_matrix(y_test, y_pred)
results['confusion_matrix'] = cm
if print_cm:
  print('----')
  print('| Confusion Matrix |')
  print('----')
  print('\n {}'.format(cm))
# plot confusin matrix
plt.figure(figsize=(8,8))
plt.grid(b=False)
plot_confusion_matrix(cm, classes=class_labels, normalize=True, title='Normalized confusion matrix', cmap = cm_cmap)
# get classification report
print('----')
print('| Classification Report |')
classification_report = metrics.classification_report(y_test, y_pred)
# store report in results
results['classification_report'] = classification_report
print(classification_report)
# add the trained model to the results
results \hbox{[$'$model'$]} = model
return results
```

# Method to print the gridsearch Attributes

```
In [134]:
```

```
print('\n\tTotal numbre of cross validation sets: {}\n'.format(model.n_splits_))

# Average cross validated score of the best estimator, from the Grid Search
print('------')
print('| Best Score |')
print('-----')
print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.format(model.best_score_))
```

# 1. Logistic Regression with Grid Search

```
In [142]:
```

```
# deleting the particular rows in y

y_train.drop([7351], inplace= True)

y_test.drop([2946], inplace= True)
```

#### In [155]:

```
# get X_train and y_train from csv files
X_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_train = train['ActivityName']

X_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
y_test = test['ActivityName']

print('X_train and y_train : ({},{})'.format(X_train.shape, y_train.shape))
print('X_test and y_test : ({},{})'.format(X_test.shape, y_test.shape))
```

X\_train and y\_train : ((7351, 561),(7351,)) X\_test and y\_test : ((2946, 561),(2946,))

#### In [170]:

y\_test.value\_counts()

## Out[170]:

LAYING 537
STANDING 532
WALKING 496
SITTING 491
WALKING\_UPSTAIRS 470
WALKING\_DOWNSTAIRS 420
Name: ActivityName, dtype: int64

### In [171]:

```
# start Grid search
parameters = {'C':[0.0001, 0.001, 0.01, 0.1, 1, 10, 20, 30], 'penalty':['l2','l1']}

labels= ['LAYING', 'SITTING','STANDING','WALKING_DOWNSTAIRS','WALKING_UPSTAIRS']
log_reg_grid = GridSearchCV(linear_model.LogisticRegression(), param_grid= parameters, verbose=1, n_jobs=-1)
log_reg_grid_results = perform_model(log_reg_grid, X_train, y_train, X_test, y_test, class_labels= labels)
```

Training the model..

Fitting 3 folds for each of 16 candidates, totalling 48 fits

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. 
[Parallel(n_jobs=-1)]: Done 48 out of 48 | elapsed: 53.1s finished
```

Done

training time(HH:MM:SS.ms) - 0:01:02.688927

Predicting test data Done

testing time(HH:MM:SS:ms) - 0:00:00.029037

```
Accuracy |
```

#### 0.9626612355736592

# | Confusion Matrix |

-----

[[537 0 0 0 0 0 0] [ 2 428 57 0 0 4] [ 0 12 519 1 0 0] [ 0 0 0 495 1 0] [ 0 0 0 3 409 8] [ 0 0 0 22 0 448]]



## | Classification Report |

precision recall f1-score support

**LAYING** 1.00 1.00 1.00 537 SITTING 0.97 0.87 0.92 491 **STANDING** 0.90 0.98 0.94 532 WALKING 0.95 1.00 0.97 496 WALKING\_DOWNSTAIRS 1.00 0.97 0.99 420 WALKING\_UPSTAIRS 0.97 0.95 0.96

accuracy 0.96 2946 macro avg 0.97 0.96 0.96 2946 weighted avg 0.96 0.96 0.96 2946

#### In [172]:

 $\label{linear_policy} $$ plt.figure(figsize=(8,8)) $$ plt.grid(b=\textbf{False}) $$ plot\_confusion\_matrix(log\_reg\_grid\_results['confusion\_matrix'], classes=labels, cmap=plt.cm.Greens, ) $$ plt.show() $$$ 



#### In [175]:

```
# observe the attributes of the model
print_grid_search_attributes(log_reg_grid_results['model'])
   Best Estimator |
LogisticRegression(C=30, class_weight=None, dual=False, fit_intercept=True,
           intercept_scaling=1, I1_ratio=None, max_iter=100,
           multi_class='warn', n_jobs=None, penalty='l2',
           random_state=None, solver='warn', tol=0.0001, verbose=0,
           warm_start=False)
  Best parameters
Parameters of best estimator:
{'C': 30, 'penalty': 'l2'}
 No of CrossValidation sets |
Total numbre of cross validation sets: 3
     Best Score |
Average Cross Validate scores of best estimator :
0.946129778261461
```

# 2. Linear SVC with GridSearch

#### In [177]:

```
parameters = {'C':[0.125, 0.5, 1, 2, 8, 16]}

lr_svc = LinearSVC(tol=0.00005)

lr_svc_grid = GridSearchCV(lr_svc, param_grid=parameters, n_jobs=-1, verbose=1)
```

lr\_svc\_grid\_results = perform\_model(lr\_svc\_grid, X\_train, y\_train, X\_test, y\_test, class\_labels=labels)

Training the model..

Fitting 3 folds for each of 6 candidates, totalling 18 fits

[Parallel(n\_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n\_jobs=-1)]: Done 18 out of 18 | elapsed: 15.6s finished

Done

training\_time(HH:MM:SS.ms) - 0:00:19.859823

Predicting test data

Done

testing time(HH:MM:SS:ms) - 0:00:00.028057

| Accuracy

0.9677528852681602

| Confusion Matrix |

[[537 0 0 0 0 0 0] [ 2 432 53 0 0 4] [ 0 12 519 1 0 0] [ 0 0 0 496 0 0] [ 0 0 0 2 413 5] [ 0 0 0 15 1 454]]



| Classification Report |

precision recall f1-score support

LAYING 1.00 1.00 1.00 537

```
STANDING 0.91 0.98 0.94 532
WALKING 0.96 1.00 0.98 496
WALKING_DOWNSTAIRS 1.00 0.98 0.99
                                                      420
 WALKING_UPSTAIRS 0.98 0.97 0.97
      accuracy
                             0.97 2946
   macro avg 0.97 0.97 0.97 2946
weighted avg 0.97 0.97 0.97 2946
In [178]:
print_grid_search_attributes(Ir_svc_grid_results['model'])
   Best Estimator
LinearSVC(C=2, class_weight=None, dual=True, fit_intercept=True,
      intercept_scaling=1, loss='squared_hinge', max_iter=1000,
      multi_class='ovr', penalty='l2', random_state=None, tol=5e-05,
      verbose=0)
| Best parameters
Parameters of best estimator:
{'C': 2}
| No of CrossValidation sets |
Total numbre of cross validation sets: 3
     Best Score
Average Cross Validate scores of best estimator :
0.946129778261461
3. Kernel SVM with GridSearch
In [180]:
parameters = {'C':[2,8,16], 'gamma': [0.0078125, 0.125, 2]}
rbf_svm = SVC(kernel='rbf')
rbf_svm_grid = GridSearchCV(rbf_svm,param_grid=parameters, n_jobs=-1)
rbf_svm_grid_results = perform_model(rbf_svm_grid, X_train, y_train, X_test, y_test, class_labels=labels)
Training the model..
Done
training_time(HH:MM:SS.ms) - 0:02:07.059750
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:02.218311
  Accuracy |
```

SITTING 0.97 0.88 0.92

0.9626612355736592

```
| Confusion Matrix |
```

[[537 0 0 0 0 0 0] [ 0 441 48 0 0 2] [ 0 12 520 0 0 0] [ 0 0 0 489 2 5] [ 0 0 0 4397 19] [ 0 0 0 17 1 452]]



#### | Classification Report |

precision recall f1-score support

**LAYING** 1.00 1.00 1.00 537 SITTING 0.97 0.90 0.93 491 **STANDING** 0.98 532 0.92 0.95 WALKING 0.96 0.99 0.97 496 WALKING\_DOWNSTAIRS 0.99 0.95 0.97 420 WALKING\_UPSTAIRS 0.96 0.95 0.95 470

accuracy 0.96 2946 macro avg 0.96 0.96 0.96 2946 weighted avg 0.96 0.96 0.96 2946

# In [181]:

print\_grid\_search\_attributes(rbf\_svm\_grid\_results['model'])

#### Best Estimator

SVC(C=16, cache\_size=200, class\_weight=None, coef0=0.0, decision\_function\_shape='ovr', degree=3, gamma=0.0078125, kernel='rbf', max\_iter=-1, probability=False, random\_state=None, shrinking=True, tol=0.001, verbose=False)

#### | Best parameters

Parameters of best estimator :

 $training\_time(HH:MM:SS.ms) - 0:00:09.106136$ 

Predicting test data Done

Done

testing time(HH:MM:SS:ms) - 0:00:00.004960

| Accuracy |

0.8652410047522063

| Confusion Matrix |

[[537 0 0 0 0 0 0] [ 0 386 105 0 0 0] [ 0 93 439 0 0 0] [ 0 0 0 471 17 8] [ 0 0 0 15 343 62] [ 0 0 0 68 29 373]]



```
0.00
                                0.00
                                        0.00
                                                0.14
                                                        0.06
                                                                              - 0.2
     WALKING_UPSTAIRS
                                                                  WALKING UPSTAIRS
                                                         WALKING DOWNSTAIRS
                                                                              - 0.0
                                        Predicted label
| Classification Report |
-----
           precision recall f1-score support
      LAYING
                 1.00
                        1.00 1.00
      SITTING
               0.81 0.79 0.80
                                        491
     STANDING 0.81 0.83 0.82
                  0.85 0.95 0.90
      WALKING
                                         496
WALKING_DOWNSTAIRS 0.88 0.82 0.85
                                                  420
 WALKING_UPSTAIRS 0.84 0.79 0.82
                            0.87
                                   2946
     accuracy
     macro avg 0.86 0.86 0.86
                                        2946
   weighted avg 0.87 0.87 0.86
                                       2946
In [186]:
print_grid_search_attributes(dt_grid_results['model'])
   Best Estimator
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=7,
             max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
             min_weight_fraction_leaf=0.0, presort=False,
            random_state=None, splitter='best')
   Best parameters
Parameters of best estimator:
{'max_depth': 7}
 No of CrossValidation sets |
Total numbre of cross validation sets: 3
    Best Score |
Average Cross Validate scores of best estimator :
0.8401578016596382
```

# 5. Random Forest Classifier with GridSearch

# In [188]:

WALKING\_DOWNSTAIRS

```
params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}

rfc_grid = GridSearchCV(RandomForestClassifier(), param_grid=params, n_jobs=-1)
rfc_grid_results = perform_model(rfc_grid, X_train, y_train, X_test, y_test, class_labels=labels)
```

Training the model.. Done

training\_time(HH:MM:SS.ms) - 0:03:08.064735

Predicting test data Done

testing time(HH:MM:SS:ms) - 0:00:00.074593

| Accuracy |

0.923285811269518

| Confusion Matrix |

[[537 0 0 0 0 0] [ 0 434 57 0 0 0]

[ 0 37 495 0 0 0] [ 0 0 0 484 9 3] [ 0 0 0 29 344 47] [ 0 0 0 38 6 426]]

-1.0 Normalized confusion matrix 0.00 0.00 0.00 0.00 0.00 LAYING - 0.8 0.12 0.00 0.00 0.00 0.00 SITTING - 0.6 0.00 0.07 0.00 0.00 0.00 STANDING True label 0.00 0.00 0.02 0.01 WALKING 0.4 0.00 0.00 0.07 0.11 0.00 WALKING\_DOWNSTAIRS 0.00 0.00 0.08 0.01 - 0.2 0.00 WALKING\_UPSTAIRS WALKING WALKING DOWNSTAIRS WALKING UPSTAIRS 0.0 Predicted label

#### | Classification Report |

precision recall f1-score support

**LAYING** 1.00 1.00 1.00 537 **SITTING** 0.92 0.88 0.90 0.90 0.93 0.91 STANDING 532 0.98 0.92 496 0.96 0.82 0.88 WALKING 0.88 WALKING\_DOWNSTAIRS 420 WALKING\_UPSTAIRS 0.89 0.91 0.90 470

accuracy 0.92 2946 macro avg 0.92 0.92 0.92 2946

```
In [189]:
print_grid_search_attributes(rfc_grid_results['model'])
   Best Estimator
RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
            max_depth=9, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min samples leaf=1, min samples split=2,
            min_weight_fraction_leaf=0.0, n_estimators=150,
            n_jobs=None, oob_score=False, random_state=None,
             verbose=0, warm_start=False)
 Best parameters
Parameters of best estimator:
{'max_depth': 9, 'n_estimators': 150}
 | No of CrossValidation sets |
Total numbre of cross validation sets: 3
    Best Score |
Average Cross Validate scores of best estimator:
0.9133451231125017
6. Gradient Boosted Decision Trees With GridSearch
In [191]:
param_grid = {'max_depth': np.arange(5,8,1), 'n_estimators':np.arange(130,170,10)}
gbdt_grid = GridSearchCV(GradientBoostingClassifier(), param_grid=param_grid, n_jobs=-1)
gbdt_grid_results = perform_model(gbdt_grid, X_train, y_train, X_test, y_test, class_labels=labels)
Training the model..
Done
training_time(HH:MM:SS.ms) - 0:29:52.221729
Predicting test data
Done
testing time(HH:MM:SS:ms) - 0:00:00.057789
  Accuracy |
  0.9202308214528174
| Confusion Matrix |
[[537 0 0 0 0 0]
[ 0 396 94 0 0 1]
```

0 39 493 0 0 01





# | Classification Report |

precision recall f1-score support

**LAYING** 1.00 1.00 1.00 537 **SITTING** 0.91 0.81 0.85 491 **STANDING** 0.84 0.93 0.88 532 WALKING 0.92 0.97 0.95 496 WALKING\_DOWNSTAIRS 0.89 0.97 420 0.93 WALKING\_UPSTAIRS 0.90 0.92 0.91 470

accuracy 0.92 2946 macro avg 0.92 0.92 0.92 2946 weighted avg 0.92 0.92 0.92 2946

# In [192]:

print\_grid\_search\_attributes(gbdt\_grid\_results['model'])

# Best Estimator

GradientBoostingClassifier(criterion='friedman\_mse', init=None, learning\_rate=0.1, loss='deviance', max\_depth=5, max\_features=None, max\_leaf\_nodes=None, min\_impurity\_decrease=0.0, min\_impurity\_split=None, min\_samples\_leaf=1, min\_samples\_split=2, min\_weight\_fraction\_leaf=0.0, n\_estimators=140, n\_iter\_no\_change=None, presort='auto', random\_state=None, subsample=1.0, tol=0.0001, validation\_fraction=0.1, verbose=0, warm\_start=False)

#### Best parameters

Parameters of best estimator :

J'may denth': 5 'n estimators': 1401

iliax\_deptil. 5, il\_estillators . 1+0

# 7. Comparing all models

#### In [194]:

```
print('\n
                   Accuracy Error')
print('
                 -----')
print('Logistic Regression : {:.04}% {:.04}%'.format(log_reg_grid_results['accuracy'] * 100,\
                              100-(log reg grid results['accuracy'] * 100)))
print('Linear SVC
                    : {:.04}%
                                 {:.04}% '.format(lr_svc_grid_results['accuracy'] * 100,\
                                  100-(lr_svc_grid_results['accuracy'] * 100)))
print('rbf SVM classifier : {:.04}%
                                   {:.04}% '.format(rbf_svm_grid_results['accuracy'] * 100,\
                                   100-(rbf_svm_grid_results['accuracy'] * 100)))
print('DecisionTree
                    : {:.04}% {:.04}% '.format(dt_grid_results['accuracy'] * 100,\
                                  100-(dt_grid_results['accuracy'] * 100)))
print('Random Forest : {:.04}% '.format(rfc_grid_results['accuracy'] * 100,\
                                   100-(rfc_grid_results['accuracy'] * 100)))
print('GradientBoosting DT: {:.04}% '.format(rfc_grid_results['accuracy'] * 100,\
                                 100-(rfc_grid_results['accuracy'] * 100)))
```

```
Logistic Regression : 96.27% 3.734%
Linear SVC : 96.78% 3.225%
rbf SVM classifier : 96.27% 3.734%
DecisionTree : 86.52% 13.48%
Random Forest : 92.33% 7.671%
GradientBoosting DT : 92.33% 7.671%
```

Accuracy Error

We can choose Logistic regression or Linear SVC or rbf SVM.

In the real world, domain-knowledge, EDA and feature-engineering matter most.

# **LSTM**

#### In [2]:

```
# Labelling the classes in y.
label = {0:'WALKING', 1:'WALKING_UPSTAIRS', 2:'WALKING_DOWNSTAIRS', 3:'SITTING', 4:'STANDING', 5:'LAYING'}
In [5]:
def confusion_matrix(Y_true, Y_pred):
  Y_true = pd.Series([label[y] for y in np.argmax(Y_true, axis=1)])
  Y pred = pd.Series([label[y] for y in np.argmax(Y pred, axis=1)])
  return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
# Utility function to read the data from csv file
def read csv(filename):
  return pd.read_csv(filename, delim_whitespace=True, header=None)
# Utility function to load the load
def load_signals(subset):
  signals_data = []
  filename = 'body_acc_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_z_{}.txt'.format(subset)
  signals data.append( read csv(filename).as matrix())
  filename = 'body_gyro_x_{}.txt'.format(subset)
  signals\_data.append(\_read\_csv(filename).as\_matrix())
  filename = 'body_gyro_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = \verb"body_gyro_z_{\{\}}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total acc z {}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
   # Transpose is used to change the dimensionality of the output,
   # aggregating the signals by combination of sample/timestep.
   # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
  return np.transpose(signals_data, (1, 2, 0))
def load_y(subset):
   The objective that we are trying to predict is a integer, from 1 to 6,
  that represents a human activity. We return a binary representation of
  every sample objective as a 6 bits vector using One Hot Encoding
  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
  filename = 'y {}.txt'.format(subset)
  y = read_csv(filename)[0]
  return pd.get_dummies(y).as_matrix()
def load_data():
  Obtain the dataset from multiple files.
  Returns: X_train, X_test, y_train, y_test
  X_train, X_test = load_signals('train'), load_signals('test')
  y_train, y_test = load_y('train'), load_y('test')
  return X_train, X_test, y_train, y_test
In [6]:
# Loading the train and test data
X_train, X_test, Y_train, Y_test = load_data()
print('X_train shape is: ',X_train.shape)
print('Y_train shape is: ',Y_train.shape)
print('X_test shape is: ',X_test.shape)
print('Y_test shape is: ',Y_test.shape)
```

X\_train shape is: (7352, 128, 9) Y\_train shape is: (7352, 6) X\_test shape is: (2947, 128, 9) Y\_test shape is: (2947, 6)

```
In [5]:
```

```
# Importing tensorflow
np.random.seed(42)
import tensorflow as tf
tf.set_random_seed(42)
```

#### In [6]:

#### In [7]:

```
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
```

#### In [8]:

```
# Utility function to count the number of classes

def _count_classes(y):
    return len(set([tuple(category) for category in y]))
```

#### In [9]:

```
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = _count_classes(Y_train)

print(timesteps)
print(input_dim)
print(len(X_train))
```

128 9 7352

• Defining the Architecture of LSTM and HyperParam Tuning

#### In [12]:

```
.....
# Initiliazing the sequential model
def best_model(units, activation, dropout_rate, optimizer):
  model = Sequential()
  # Configuring the parameters
  model.add(LSTM(units= units, activation= activation, recurrent_activation='sigmoid', use_bias=True,
            kernel_initializer= 'he_normal', recurrent_initializer='orthogonal', bias_initializer='zeros',
            unit_forget_bias= True, kernel_regularizer= regularizers.l2(0.001), recurrent_regularizer=None,
            bias_regularizer= None, activity_regularizer= None, kernel_constraint=None, recurrent_constraint=None,
            bias_constraint=None, dropout= dropout_rate, recurrent_dropout=0.0, implementation=2,
            return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False,
            input_shape=(timesteps, input_dim)))
  model.add(Dropout(dropout_rate))
  # Adding a dense output layer with sigmoid activation
  model.add(Dense(n_classes, activation='sigmoid'))
  model.compile(loss='categorical_crossentropy', optimizer= optimizer, metrics=['accuracy'])
  return model
```

## In []:

```
'activation': ['relu', 'sigmoid'],
         'optimizer': ['rmsprop', 'adam']
model = KerasClassifier(build_fn= best_model, epochs= 30)
gscv = GridSearchCV(estimator = model, param_grid= parameters, n_jobs= -1, )
gscv_result = gscv.fit(X_train, Y_train)
```

## In [ ]:

```
,,,,,,
print(gscv_result.best_estimator_)
print(gscv_result.best_score_)
```

# TRYING VARIOUS ARCHITECTURES

#### ONE

## In [11]:

```
# Initializing parameters
epochs = 100
batch size = 70
n hidden = 32
```

#### In [12]:

```
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden, kernel_initializer= 'he_normal', kernel_regularizer= regularizers.l2(0.001),
         input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.5))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow core/python/ops/resource variable\_ops.py:1630: calling BaseResource Variable.\_\_init\_\_ (from tensorflow.python.ops.resource\_variable\_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating:

If using Keras pass \*\_constraint arguments to layers.

Model: "sequential\_1"

| Layer (type)        | Output Shape | Param # | _           |
|---------------------|--------------|---------|-------------|
| lstm_1 (LSTM)       | (None, 32)   | 5376    |             |
| dropout_1 (Dropout) | (None, 32)   | 0       |             |
| dense_1 (Dense)     | (None, 6)    | 198     | <del></del> |
|                     |              |         |             |

Total params: 5,574 Trainable params: 5,574 Non-trainable params: 0

### In [13]:

```
# Compiling the model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

# In [14]:

```
# Training the model
model.fit(X train, Y train, batch size=batch size, validation data=(X test, Y test), epochs=epochs)
```

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow\_core/python/ops/math\_grad.py:1424: where (from tensorflow.python.op s.array\_ops) is deprecated and will be removed in a future version.

monucions for updating Use tf.where in 2.0, which has the same broadcast rule as np.where

Epoch 3/100 7352/7352 [====

Epoch 4/100 7352/7352 [====

Epoch 5/100

Epoch 6/100

Epoch 7/100

Epoch 8/100

Epoch 9/100

Epoch 10/100

Epoch 11/100

Epoch 12/100

Epoch 14/100

Epoch 15/100

Epoch 16/100

Epoch 17/100

Epoch 18/100

Epoch 19/100

Epoch 20/100

Epoch 21/100

Epoch 22/100

Epoch 23/100

Epoch 24/100

Epoch 25/100

Epoch 26/100

Epoch 27/100

Epoch 28/100

Epoch 29/100

Epoch 30/100

Epoch 31/100

Epoch 32/100

Epoch 33/100

Epoch 34/100

Epoch 35/100 7352/7352 [===

Epoch 36/100

Epoch 37/100

Epoch 38/100

Epoch 39/100

7352/7352 [===== Epoch 13/100

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow\_backend.py:422: The name tf.global\_variables is deprec

ated. Please use tf.compat.v1.global variables instead. Train on 7352 samples, validate on 2947 samples Epoch 1/100 7352/7352 [============] - 26s 3ms/step - loss: 1.8124 - accuracy: 0.3704 - val\_loss: 1.5818 - val\_accuracy: 0.5616 Epoch 2/100

7352/7352 [==========] - 22s 3ms/step - loss: 1.4089 - accuracy: 0.5627 - val\_loss: 1.2032 - val\_accuracy: 0.6223

7352/7352 [===========] - 22s 3ms/step - loss: 1.0489 - accuracy: 0.6428 - val\_loss: 1.0075 - val\_accuracy: 0.6515

7352/7352 [============] - 22s 3ms/step - loss: 0.9469 - accuracy: 0.6534 - val\_loss: 0.9429 - val\_accuracy: 0.6804

7352/7352 [===========] - 22s 3ms/step - loss: 0.8686 - accuracy: 0.6733 - val loss: 0.8967 - val accuracy: 0.6485

7352/7352 [===========] - 23s 3ms/step - loss: 0.8962 - accuracy: 0.6600 - val\_loss: 0.8877 - val\_accuracy: 0.6440

7352/7352 [===============] - 22s 3ms/step - loss: 0.8285 - accuracy: 0.6774 - val\_loss: 0.8673 - val\_accuracy: 0.6505

7352/7352 [============] - 22s 3ms/step - loss: 0.9901 - accuracy: 0.6196 - val\_loss: 0.9305 - val\_accuracy: 0.6342

7352/7352 [============] - 22s 3ms/step - loss: 0.8408 - accuracy: 0.6635 - val\_loss: 0.8692 - val\_accuracy: 0.6386

7352/7352 [============] - 22s 3ms/step - loss: 0.7951 - accuracy: 0.6766 - val\_loss: 0.8400 - val\_accuracy: 0.6468

7352/7352 [=============] - 22s 3ms/step - loss: 0.7838 - accuracy: 0.6802 - val\_loss: 0.8432 - val\_accuracy: 0.6539

7352/7352 [===============] - 22s 3ms/step - loss: 0.8038 - accuracy: 0.6772 - val\_loss: 1.1282 - val\_accuracy: 0.5684

7352/7352 [============] - 22s 3ms/step - loss: 0.7984 - accuracy: 0.6817 - val\_loss: 0.8324 - val\_accuracy: 0.6607

7352/7352 [============] - 22s 3ms/step - loss: 0.7603 - accuracy: 0.6892 - val\_loss: 0.8187 - val\_accuracy: 0.6780

7352/7352 [==============] - 22s 3ms/step - loss: 0.7450 - accuracy: 0.6989 - val loss: 0.8106 - val accuracy: 0.6824

7352/7352 [================] - 22s 3ms/step - loss: 0.7337 - accuracy: 0.7050 - val loss: 0.8018 - val accuracy: 0.6797

7352/7352 [===========] - 22s 3ms/step - loss: 0.7849 - accuracy: 0.6980 - val\_loss: 0.8009 - val\_accuracy: 0.6983

7352/7352 [===========] - 22s 3ms/step - loss: 0.7308 - accuracy: 0.7110 - val\_loss: 0.7807 - val\_accuracy: 0.7160

7352/7352 [=============] - 22s 3ms/step - loss: 0.6914 - accuracy: 0.7417 - val loss: 0.7541 - val accuracy: 0.7228

7352/7352 [============] - 22s 3ms/step - loss: 0.6575 - accuracy: 0.7606 - val\_loss: 0.7307 - val\_accuracy: 0.7458

7352/7352 [============] - 22s 3ms/step - loss: 0.6313 - accuracy: 0.7675 - val\_loss: 0.7103 - val\_accuracy: 0.7509

7352/7352 [===========] - 22s 3ms/step - loss: 0.5943 - accuracy: 0.7907 - val\_loss: 0.6915 - val\_accuracy: 0.7570

7352/7352 [============] - 22s 3ms/step - loss: 0.5540 - accuracy: 0.8175 - val\_loss: 0.6481 - val\_accuracy: 0.7798

7352/7352 [=============] - 22s 3ms/step - loss: 0.5382 - accuracy: 0.8234 - val\_loss: 0.6060 - val\_accuracy: 0.7872

7352/7352 [============] - 22s 3ms/step - loss: 0.5053 - accuracy: 0.8421 - val\_loss: 0.6240 - val\_accuracy: 0.7872

7352/7352 [============] - 22s 3ms/step - loss: 0.4695 - accuracy: 0.8554 - val\_loss: 0.5625 - val\_accuracy: 0.8096

7352/7352 [===========] - 22s 3ms/step - loss: 0.3764 - accuracy: 0.8996 - val\_loss: 0.5481 - val\_accuracy: 0.8409

.======] - 22s 3ms/step - loss: 1.1868 - accuracy: 0.5842 - val loss: 1.1455 - val accuracy: 0.5762

```
Epoch 40/100
7352/7352 [=============] - 22s 3ms/step - loss: 0.4180 - accuracy: 0.8911 - val_loss: 0.5625 - val_accuracy: 0.8303
Epoch 41/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.3616 - accuracy: 0.9112 - val loss: 0.5497 - val accuracy: 0.8554
Epoch 42/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.3804 - accuracy: 0.9053 - val loss: 0.4738 - val accuracy: 0.8575
Epoch 43/100
7352/7352 [============] - 22s 3ms/step - loss: 0.4428 - accuracy: 0.8840 - val_loss: 0.5099 - val_accuracy: 0.8649
Epoch 44/100
7352/7352 [============] - 22s 3ms/step - loss: 0.4078 - accuracy: 0.8954 - val_loss: 0.5439 - val_accuracy: 0.8429
Epoch 45/100
7352/7352 [============] - 22s 3ms/step - loss: 0.3850 - accuracy: 0.9015 - val_loss: 0.4243 - val_accuracy: 0.8833
Epoch 46/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.3182 - accuracy: 0.9257 - val_loss: 0.4284 - val_accuracy: 0.8819
Epoch 47/100
7352/7352 [==========] - 23s 3ms/step - loss: 0.3299 - accuracy: 0.9223 - val_loss: 0.5850 - val_accuracy: 0.8202
Epoch 48/100
7352/7352 [============] - 22s 3ms/step - loss: 0.3575 - accuracy: 0.9102 - val_loss: 0.4485 - val_accuracy: 0.8778
Epoch 49/100
7352/7352 [============] - 22s 3ms/step - loss: 0.3074 - accuracy: 0.9244 - val_loss: 0.4829 - val_accuracy: 0.8697
Epoch 50/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2886 - accuracy: 0.9291 - val_loss: 0.4674 - val_accuracy: 0.8775
Epoch 51/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2719 - accuracy: 0.9363 - val_loss: 0.5100 - val_accuracy: 0.8633
Epoch 52/100
Epoch 53/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2621 - accuracy: 0.9329 - val_loss: 0.4193 - val_accuracy: 0.8911
Epoch 54/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2464 - accuracy: 0.9393 - val_loss: 0.4586 - val_accuracy: 0.8873
Epoch 55/100
7352/7352 [=============] - 22s 3ms/step - loss: 0.2435 - accuracy: 0.9395 - val_loss: 0.5382 - val_accuracy: 0.8748
Epoch 56/100
7352/7352 [============] - 22s 3ms/step - loss: 0.2423 - accuracy: 0.9399 - val_loss: 0.4598 - val_accuracy: 0.8877
Epoch 57/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2388 - accuracy: 0.9389 - val loss: 0.5739 - val accuracy: 0.8415
Epoch 58/100
7352/7352 [============] - 22s 3ms/step - loss: 0.3130 - accuracy: 0.9165 - val_loss: 0.5043 - val_accuracy: 0.8612
Epoch 59/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2363 - accuracy: 0.9406 - val loss: 0.4687 - val accuracy: 0.8873
Epoch 60/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2654 - accuracy: 0.9266 - val_loss: 0.4306 - val_accuracy: 0.8935
Epoch 61/100
7352/7352 [============] - 22s 3ms/step - loss: 0.2333 - accuracy: 0.9393 - val_loss: 0.4461 - val_accuracy: 0.8860
Epoch 62/100
7352/7352 [==============] - 22s 3ms/step - loss: 0.2222 - accuracy: 0.9427 - val_loss: 0.4169 - val_accuracy: 0.8863
Epoch 63/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2127 - accuracy: 0.9457 - val loss: 0.4784 - val accuracy: 0.8911
Epoch 64/100
7352/7352 [============] - 22s 3ms/step - loss: 0.2813 - accuracy: 0.9255 - val_loss: 0.5611 - val_accuracy: 0.8537
Epoch 65/100
7352/7352 [============] - 23s 3ms/step - loss: 0.2370 - accuracy: 0.9391 - val_loss: 0.5156 - val_accuracy: 0.8653
Epoch 66/100
7352/7352 [============] - 22s 3ms/step - loss: 0.2869 - accuracy: 0.9245 - val_loss: 0.4903 - val_accuracy: 0.8833
Epoch 67/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2524 - accuracy: 0.9338 - val loss: 0.4734 - val accuracy: 0.8755
Epoch 68/100
7352/7352 [============] - 22s 3ms/step - loss: 0.2434 - accuracy: 0.9365 - val_loss: 0.3621 - val_accuracy: 0.9077
Epoch 69/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2098 - accuracy: 0.9446 - val_loss: 0.4156 - val_accuracy: 0.8999
Epoch 70/100
7352/7352 [============] - 23s 3ms/step - loss: 0.2059 - accuracy: 0.9480 - val_loss: 0.4653 - val_accuracy: 0.9070
Epoch 71/100
7352/7352 [============] - 22s 3ms/step - loss: 0.4911 - accuracy: 0.8558 - val_loss: 0.5397 - val_accuracy: 0.8521
Epoch 72/100
7352/7352 [============] - 22s 3ms/step - loss: 0.3542 - accuracy: 0.9007 - val_loss: 0.4428 - val_accuracy: 0.8873
Epoch 73/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.3139 - accuracy: 0.9180 - val_loss: 0.4176 - val_accuracy: 0.8873
Epoch 74/100
Epoch 75/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2262 - accuracy: 0.9465 - val loss: 0.4739 - val accuracy: 0.8823
Epoch 76/100
7352/7352 [==========] - 22s 3ms/step - loss: 0.2228 - accuracy: 0.9425 - val_loss: 0.4083 - val_accuracy: 0.8924
Epoch 77/100
7352/7352 [============] - 22s 3ms/step - loss: 0.2161 - accuracy: 0.9463 - val_loss: 0.4039 - val_accuracy: 0.8945
Epoch 78/100
7352/7352 [============] - 22s 3ms/step - loss: 0.2036 - accuracy: 0.9480 - val_loss: 0.4591 - val_accuracy: 0.8935
Epoch 79/100
7352/7352 [===========] - 22s 3ms/step - loss: 0.2017 - accuracy: 0.9482 - val loss: 0.5514 - val accuracy: 0.8853
Epoch 80/100
```

252/7252 [\_

22c 3ms/cton | loss: 0.2030 | accuracy: 0.0468 | val. loss: 0.5245 | val. accuracy: 0.8846

| Epoch 81/100                                    | LL3 Omaratop i     | 033. U.Z003     | accuracy. 0.0+00  | ναι_1055. 0.02 <del>1</del> 0        | vai_accuracy. 0.00+0    |
|-------------------------------------------------|--------------------|-----------------|-------------------|--------------------------------------|-------------------------|
| 7352/7352 [==================================== | 22c 3mc/cton - I   | oss: 0 2001 - a | accuracy: 0 9/97  | - val loss: 0.4733 .                 | val accuracy: 0.8072    |
| Epoch 82/100                                    | 223 Jills/3(ep = 1 | 033. 0.2001 - 8 | accuracy. 0.5457  | - vai_i055. 0.4755                   | vai_accuracy. 0.0372    |
| 7352/7352 [==================================== | 22s 3ms/sten - I   | oss: 0 2080 - a | accuracy: 0 9460  | - val loss: 0 4145 -                 | - val. accuracy: 0.8958 |
| Epoch 83/100                                    | 220 01110/0top 1   | 000. 0.2000     | 2000140y. 0.0 100 | vai_1000. 0.1110                     | vai_aooaiaoy. 0.0000    |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.2697 - a | accuracy: 0.9233  | - val loss: 0.4511 -                 | val accuracy: 0.8843    |
| Epoch 84/100                                    | •                  |                 | ,                 | _                                    | _ ,                     |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.2117 - a | accuracy: 0.9455  | - val_loss: 0.4487 -                 | · val_accuracy: 0.8867  |
| Epoch 85/100                                    |                    |                 |                   |                                      |                         |
| 7352/7352 [==========] -                        | 22s 3ms/step - I   | oss: 0.1915 - a | accuracy: 0.9464  | <ul> <li>val_loss: 0.5055</li> </ul> | val_accuracy: 0.8965    |
| Epoch 86/100                                    |                    |                 |                   |                                      |                         |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1888 - a | accuracy: 0.9493  | <ul> <li>val_loss: 0.4714</li> </ul> | · val_accuracy: 0.8945  |
| Epoch 87/100                                    |                    | –               |                   |                                      |                         |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1917 - a | accuracy: 0.9442  | - val_loss: 0.4936                   | val_accuracy: 0.8979    |
| Epoch 88/100                                    | 00a 0ma/atan       | 0 1000          |                   | val lass 0 4004                      | val assuranu 0 000F     |
| 7352/7352 [======] -<br>Epoch 89/100            | 22s 3ms/step - i   | 0SS: 0.1882 - 8 | accuracy: 0.9474  | - vai_ioss: 0.4921 -                 | vai_accuracy: 0.8985    |
| 7352/7352 [==================================== | 22c 3mc/cton I     | occ: 0 2427     | 20011207. U 0363  | val loss: 0.4782                     | val accuracy: 0.8870    |
| Fpoch 90/100                                    | 228 31118/Step - 1 | 055. 0.2437 - 6 | accuracy. 0.9303  | - vai_1088. 0.4762                   | vai_accuracy. 0.0070    |
| 7352/7352 [==================================== | 22s 3ms/sten - I   | ივვ: በ 1972 - ജ | accuracy: 0 9472  | - val loss: 0 4727 -                 | - val. accuracy: 0.8985 |
| Epoch 91/100                                    | 220 01110/0top 1   | 000.0.1072      | 2000100y. 0.0172  | vai_1000. 0.4727                     | vai_aooaiaoy. 0.0000    |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1878 - a | accuracy: 0.9504  | - val loss: 0.4704                   | val accuracy: 0.8962    |
| Epoch 92/100                                    |                    |                 | ,                 |                                      | ,,                      |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.2061 - a | accuracy: 0.9464  | - val_loss: 0.4528 -                 | · val_accuracy: 0.9033  |
| Epoch 93/100                                    | •                  |                 | -                 |                                      |                         |
| 7352/7352 [==========] -                        | 22s 3ms/step - I   | oss: 0.1814 - a | accuracy: 0.9520  | - val_loss: 0.4850 -                 | · val_accuracy: 0.9013  |
| Epoch 94/100                                    |                    |                 |                   |                                      |                         |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1813 - a | accuracy: 0.9502  | <ul> <li>val_loss: 0.4627</li> </ul> | val_accuracy: 0.8921    |
| Epoch 95/100                                    |                    |                 |                   |                                      |                         |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1837 - a | accuracy: 0.9502  | - val_loss: 0.4821 -                 | val_accuracy: 0.8985    |
| Epoch 96/100                                    | 00.0/              | 0.4700          | 0.0505            |                                      | 0.0000                  |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1730 - a | accuracy: 0.9535  | - vai_loss: 0.4960                   | · vai_accuracy: 0.9006  |
| Epoch 97/100<br>7352/7352 [========] -          | 22a 2ma/atan I     | ooo: 0 1702     | 2001120V: 0 0460  | val loss: 0 5009                     | val 2001/2007 0 9075    |
| Fpoch 98/100                                    | 228 31118/Step - 1 | 055. 0.1762 - 6 | accuracy. 0.9460  | - vai_1088. 0.3096 ·                 | val_accuracy. 0.0975    |
| 7352/7352 [==================================== | 22s 3ms/sten - I   | oss: 0 1733 - s | accuracy: 0 9544  | - val loss: 0 5510 .                 | - val accuracy: 0.8962  |
| Epoch 99/100                                    | 225 01115/3(GP = 1 | 000. 0.1700 - 8 | 20001 acy. 0.0044 | vai_1000. 0.0010                     | vai_accuracy. 0.0302    |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1955 - a | accuracy: 0.9471  | - val loss: 0.5430 -                 | val accuracy: 0.8951    |
| Epoch 100/100                                   |                    |                 |                   |                                      |                         |
| 7352/7352 [==================================== | 22s 3ms/step - I   | oss: 0.1948 - a | accuracy: 0.9508  | - val_loss: 0.5094                   | · val_accuracy: 0.9026  |
| ,                                               |                    |                 | •                 |                                      | _ ,                     |

## Out[14]:

<keras.callbacks.callbacks.History at 0x7f1de87e4ba8>

## In [15]:

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
```

LAYING SITTING STANDING WALKING WALKING\_DOWNSTAIRS \ Pred True **LAYING** 537 SITTING 0 408 57 0 STANDING 0 101 429 0 WALKING 0 1 0 452 41 WALKING\_DOWNSTAIRS 0 0 0 411 WALKING\_UPSTAIRS 0 2 15 30

Pred WALKING\_UPSTAIRS

True

LAYING 0
SITTING 26
STANDING 0
WALKING 2

WALKING\_DOWNSTAIRS 8 WALKING\_UPSTAIRS 423

## In [16]:

score = model.evaluate(X\_test, Y\_test)

2947/2947 [========] - 2s 699us/step

## In [17]:

score

## Out[17]:

 $[0.5093596800744614,\, 0.9026128053665161]$ 

#### **TWO**

#### In [11]:

```
# Initializing parameters
epochs = 100
batch_size = 70
n_hidden = 64
```

#### In [12]:

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow\_core/python/ops/resource\_variable\_ops.py:1630: calling BaseResource Variable.\_\_init\_\_ (from tensorflow.python.ops.resource\_variable\_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating:

If using Keras pass \*\_constraint arguments to layers.

Model: "sequential 1"

| Layer (type)        | Output Shape | Param # |  |
|---------------------|--------------|---------|--|
| lstm_1 (LSTM)       | (None, 64)   | 18944   |  |
| dropout_1 (Dropout) | (None, 64)   | 0       |  |
| dense_1 (Dense)     | (None, 6)    | 390     |  |

Total params: 19,334 Trainable params: 19,334 Non-trainable params: 0

## In [13]:

## # Compiling the model

model.compile(loss='categorical\_crossentropy', optimizer='adam', metrics=['accuracy'])

## In [14]:

#### # Training the model

model.fit(X\_train, Y\_train, batch\_size=batch\_size, validation\_data=(X\_test, Y\_test), epochs=epochs)

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow\_core/python/ops/math\_grad.py:1424: where (from tensorflow.python.op s.array\_ops) is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow\_backend.py:422: The name tf.global\_variables is deprec ated. Please use tf.compat.v1.global\_variables instead.

```
Train on 7352 samples, validate on 2947 samples Epoch 1/100
```

```
Epoch 7/100
7352/7352 [=
                                     ==] - 27s 4ms/step - loss: 0.6447 - accuracy: 0.7992 - val_loss: 0.6993 - val_accuracy: 0.7699
Epoch 8/100
==] - 28s 4ms/step - loss: 0.5607 - accuracy: 0.8345 - val loss: 0.7088 - val accuracy: 0.8035
Epoch 9/100
7352/7352 [==
                            .======] - 27s 4ms/step - loss: 0.4728 - accuracy: 0.8772 - val loss: 0.6277 - val accuracy: 0.8327
Epoch 10/100
7352/7352 [============] - 27s 4ms/step - loss: 0.5599 - accuracy: 0.8555 - val_loss: 0.6565 - val_accuracy: 0.8174
Epoch 11/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.4231 - accuracy: 0.9055 - val_loss: 0.5969 - val_accuracy: 0.8473
Epoch 12/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.5032 - accuracy: 0.8474 - val_loss: 0.6048 - val_accuracy: 0.8090
Epoch 13/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.4823 - accuracy: 0.8708 - val loss: 0.6599 - val accuracy: 0.8371
Epoch 14/100
7352/7352 [============] - 28s 4ms/step - loss: 0.4543 - accuracy: 0.8946 - val_loss: 0.5582 - val_accuracy: 0.8412
Epoch 15/100
7352/7352 [============] - 28s 4ms/step - loss: 0.3791 - accuracy: 0.9121 - val_loss: 0.5060 - val_accuracy: 0.8575
Epoch 16/100
Epoch 17/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.3631 - accuracy: 0.9211 - val loss: 0.4467 - val accuracy: 0.8721
Epoch 18/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.3020 - accuracy: 0.9319 - val loss: 0.5258 - val accuracy: 0.8670
Epoch 19/100
7352/7352 [============] - 27s 4ms/step - loss: 0.3067 - accuracy: 0.9287 - val_loss: 0.3790 - val_accuracy: 0.8999
Epoch 20/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.2761 - accuracy: 0.9361 - val loss: 0.4268 - val accuracy: 0.8823
Epoch 21/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.2751 - accuracy: 0.9339 - val_loss: 0.4695 - val_accuracy: 0.8887
Epoch 22/100
7352/7352 [============] - 27s 4ms/step - loss: 0.3347 - accuracy: 0.9083 - val_loss: 0.5531 - val_accuracy: 0.8738
Epoch 23/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.2896 - accuracy: 0.9289 - val_loss: 0.4332 - val_accuracy: 0.8955
Epoch 24/100
Epoch 25/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2594 - accuracy: 0.9319 - val_loss: 0.4884 - val_accuracy: 0.8962
Epoch 26/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.2626 - accuracy: 0.9378 - val loss: 0.4177 - val accuracy: 0.8795
Epoch 27/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2492 - accuracy: 0.9415 - val_loss: 0.3737 - val_accuracy: 0.9036
Epoch 28/100
7352/7352 [==========] - 28s 4ms/step - loss: 0.2819 - accuracy: 0.9270 - val_loss: 0.4013 - val_accuracy: 0.8761
Epoch 29/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2453 - accuracy: 0.9422 - val_loss: 0.3830 - val_accuracy: 0.9074
Epoch 30/100
7352/7352 [=============] - 28s 4ms/step - loss: 0.2260 - accuracy: 0.9478 - val_loss: 0.4021 - val_accuracy: 0.8975
Epoch 31/100
7352/7352 [========
                          ========] - 28s 4ms/step - loss: 0.2207 - accuracy: 0.9480 - val loss: 0.4470 - val accuracy: 0.8928
Epoch 32/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.2357 - accuracy: 0.9471 - val loss: 0.3625 - val accuracy: 0.9013
Epoch 33/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.2149 - accuracy: 0.9471 - val loss: 0.3322 - val accuracy: 0.9070
Epoch 34/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2320 - accuracy: 0.9425 - val_loss: 0.3524 - val_accuracy: 0.9016
Epoch 35/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.2738 - accuracy: 0.9327 - val_loss: 0.4189 - val_accuracy: 0.8965
Epoch 36/100
7352/7352 [============] - 27s 4ms/step - loss: 0.2203 - accuracy: 0.9453 - val_loss: 0.4372 - val_accuracy: 0.8945
Epoch 37/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2225 - accuracy: 0.9448 - val_loss: 0.3704 - val_accuracy: 0.8826
Epoch 38/100
Epoch 39/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.3395 - accuracy: 0.8998 - val_loss: 0.4365 - val_accuracy: 0.8880
Epoch 40/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.2663 - accuracy: 0.9327 - val loss: 0.3837 - val accuracy: 0.8850
Epoch 41/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.2307 - accuracy: 0.9410 - val loss: 0.4023 - val accuracy: 0.8958
Epoch 42/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.2113 - accuracy: 0.9453 - val_loss: 0.3575 - val_accuracy: 0.8979
Epoch 43/100
7352/7352 [===========] - 27s 4ms/step - loss: 0.1968 - accuracy: 0.9480 - val_loss: 0.3731 - val_accuracy: 0.9118
Epoch 44/100
7352/7352 [============] - 27s 4ms/step - loss: 0.2017 - accuracy: 0.9491 - val_loss: 0.3737 - val_accuracy: 0.9121
Epoch 45/100
7352/7352 [=============] - 28s 4ms/step - loss: 0.1896 - accuracy: 0.9501 - val_loss: 0.4282 - val_accuracy: 0.9084
Epoch 46/100
7352/7352 [==
              :============================== ] - 28s 4ms/step - loss: 0.1843 - accuracy: 0.9474 - val loss: 0.3933 - val accuracy: 0.9111
Epoch 47/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1827 - accuracy: 0.9480 - val_loss: 0.4023 - val_accuracy: 0.9155
```

Fnoch 48/100

```
Epoch 49/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.2376 - accuracy: 0.9359 - val_loss: 0.3254 - val_accuracy: 0.9070
Epoch 50/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1866 - accuracy: 0.9514 - val_loss: 0.3984 - val_accuracy: 0.9155
Epoch 51/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1888 - accuracy: 0.9487 - val_loss: 0.3609 - val_accuracy: 0.8958
Epoch 52/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1887 - accuracy: 0.9463 - val_loss: 0.4337 - val_accuracy: 0.8931
Epoch 53/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2065 - accuracy: 0.9472 - val_loss: 0.3522 - val_accuracy: 0.9192
Epoch 54/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1846 - accuracy: 0.9517 - val loss: 0.3786 - val accuracy: 0.9141
Epoch 55/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1853 - accuracy: 0.9517 - val_loss: 0.3644 - val_accuracy: 0.9182
Epoch 56/100
7352/7352 [============] - 29s 4ms/step - loss: 0.1691 - accuracy: 0.9542 - val_loss: 0.3233 - val_accuracy: 0.9189
Epoch 57/100
Epoch 58/100
7352/7352 [============] - 29s 4ms/step - loss: 0.1671 - accuracy: 0.9523 - val_loss: 0.3567 - val_accuracy: 0.9158
Epoch 59/100
7352/7352 [=============] - 28s 4ms/step - loss: 0.1598 - accuracy: 0.9531 - val_loss: 0.3690 - val_accuracy: 0.9206
Epoch 60/100
Epoch 61/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1784 - accuracy: 0.9489 - val_loss: 0.2798 - val_accuracy: 0.9125
Epoch 62/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1967 - accuracy: 0.9502 - val loss: 0.3477 - val accuracy: 0.9036
Epoch 63/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1700 - accuracy: 0.9521 - val loss: 0.4239 - val accuracy: 0.9070
Epoch 64/100
7352/7352 [============] - 29s 4ms/step - loss: 0.5792 - accuracy: 0.8432 - val_loss: 0.5253 - val_accuracy: 0.8578
Epoch 65/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.4797 - accuracy: 0.8685 - val_loss: 0.3511 - val_accuracy: 0.8894
Epoch 66/100
Epoch 67/100
Epoch 68/100
7352/7352 [====
                              ====] - 28s 4ms/step - loss: 0.1889 - accuracy: 0.9502 - val loss: 0.3947 - val accuracy: 0.8975
Epoch 69/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.3049 - accuracy: 0.9072 - val loss: 0.3735 - val accuracy: 0.8982
Epoch 70/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2186 - accuracy: 0.9422 - val_loss: 0.3352 - val_accuracy: 0.9036
Epoch 71/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1913 - accuracy: 0.9491 - val_loss: 0.3193 - val_accuracy: 0.9186
Epoch 72/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1766 - accuracy: 0.9536 - val_loss: 0.3318 - val_accuracy: 0.9172
Epoch 73/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1758 - accuracy: 0.9520 - val_loss: 0.3162 - val_accuracy: 0.9226
Epoch 74/100
7352/7352 [=============] - 28s 4ms/step - loss: 0.1724 - accuracy: 0.9533 - val_loss: 0.3199 - val_accuracy: 0.9158
Epoch 75/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1992 - accuracy: 0.9431 - val_loss: 0.4346 - val_accuracy: 0.8924
Epoch 76/100
Epoch 77/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1640 - accuracy: 0.9550 - val_loss: 0.3360 - val_accuracy: 0.9070
Epoch 78/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.7287 - accuracy: 0.8625 - val loss: 1.1845 - val accuracy: 0.6902
Epoch 79/100
7352/7352 [================] - 28s 4ms/step - loss: 0.5488 - accuracy: 0.8415 - val loss: 0.5476 - val accuracy: 0.8500
Epoch 80/100
7352/7352 [============] - 28s 4ms/step - loss: 0.2766 - accuracy: 0.9279 - val_loss: 0.3959 - val_accuracy: 0.8880
Epoch 81/100
Epoch 82/100
7352/7352 [=============] - 28s 4ms/step - loss: 0.1994 - accuracy: 0.9455 - val_loss: 0.3329 - val_accuracy: 0.9057
Epoch 83/100
            ============================== ] - 28s 4ms/step - loss: 0.1904 - accuracy: 0.9456 - val loss: 0.3423 - val accuracy: 0.8992
7352/7352 [===
Epoch 84/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1902 - accuracy: 0.9438 - val_loss: 0.3404 - val_accuracy: 0.9040
Epoch 85/100
Epoch 86/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1829 - accuracy: 0.9465 - val_loss: 0.3360 - val_accuracy: 0.9057
Epoch 87/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.2856 - accuracy: 0.9109 - val_loss: 0.6701 - val_accuracy: 0.7224
Epoch 88/100
7352/7352 [=============] - 28s 4ms/step - loss: 0.2913 - accuracy: 0.9059 - val_loss: 0.4094 - val_accuracy: 0.9002
Epoch 89/100
```

```
/352//352 |=
                        :========= j - 28s 4ms/step - loss: 0.2203 - accuracy: 0.9410 - val_loss: 0.3877 - val_accuracy: 0.8958
Epoch 90/100
Epoch 91/100
7352/7352 [===
             Epoch 92/100
7352/7352 [===
                   ========] - 28s 4ms/step - loss: 0.1935 - accuracy: 0.9468 - val_loss: 0.3602 - val_accuracy: 0.9009
Epoch 93/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.2019 - accuracy: 0.9437 - val_loss: 0.7694 - val_accuracy: 0.7981
Epoch 94/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.3109 - accuracy: 0.9089 - val_loss: 0.3008 - val_accuracy: 0.9216
Epoch 95/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1851 - accuracy: 0.9494 - val loss: 0.3294 - val accuracy: 0.9158
Epoch 96/100
7352/7352 [=============] - 28s 4ms/step - loss: 0.1682 - accuracy: 0.9505 - val_loss: 0.3314 - val_accuracy: 0.9135
Epoch 97/100
7352/7352 [====
                 Epoch 98/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1708 - accuracy: 0.9504 - val_loss: 0.3345 - val_accuracy: 0.9070
Epoch 99/100
7352/7352 [===========] - 28s 4ms/step - loss: 0.1706 - accuracy: 0.9531 - val loss: 0.4320 - val accuracy: 0.9138
Epoch 100/100
7352/7352 [============] - 28s 4ms/step - loss: 0.1702 - accuracy: 0.9514 - val loss: 0.3749 - val accuracy: 0.8965
```

## Out[14]:

<keras.callbacks.callbacks.History at 0x7f5fba1cfc18>

## In [15]:

```
# Confusion Matrix print(confusion_matrix(Y_test, model.predict(X_test)))
```

LAYING SITTING STANDING WALKING WALKING DOWNSTAIRS \ Pred True **LAYING** 510 0 0 SITTING 0 414 60 0 0 0 **STANDING** 0 125 402 WALKING 0 0 0 465 30 WALKING\_DOWNSTAIRS 0 0 414 WALKING\_UPSTAIRS 13 21

Pred WALKING\_UPSTAIRS

True
LAYING 27
SITTING 17
STANDING 4
WALKING 1

WALKING\_DOWNSTAIRS 5
WALKING UPSTAIRS 437

## In [16]:

 $score = model.evaluate(X\_test,\ Y\_test)$ 

2947/2947 [=========] - 3s 880us/step

## In [17]:

score

## Out[17]:

 $[0.3748672223941609,\, 0.8965049386024475]$ 

## **THREE**

## In [11]:

```
# Initializing parameters
epochs = 50
batch_size = 70
n_hidden1 = 32
n_hidden2 = 64
```

```
# https://machinelearningmastery.com/stacked-long-short-term-memory-networks/
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden1, kernel_initializer= 'he_normal', kernel_regularizer= regularizers.l2(0.001),
         return_sequences=True, input_shape=(timesteps, input_dim)))
model.add(LSTM(n_hidden2, kernel_initializer= 'he_normal', kernel_regularizer= regularizers.l2(0.001),
         input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.5))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n classes, activation='sigmoid'))
model.summary()
```

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow core/python/ops/resource variable ops.py:1630: calling BaseResource Variable. init (from tensorflow.python.ops.resource variable ops) with constraint is deprecated and will be removed in a future version. Instructions for updating:

If using Keras pass \*\_constraint arguments to layers.

Model: "sequential\_1"

Layer (type) **Output Shape** Param # lstm\_1 (LSTM) (None, 128, 32) 5376 lstm\_2 (LSTM) (None, 64) 24832 dropout\_1 (Dropout) (None, 64) 0 dense\_1 (Dense) (None, 6) 390

Total params: 30,598 Trainable params: 30,598 Non-trainable params: 0

In [13]:

## # Compiling the model

model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])

## In [14]:

#### # Training the model

model.fit(X train, Y train, batch size=batch size, validation data=(X test, Y test), epochs=epochs)

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow\_core/python/ops/math\_grad.py:1424: where (from tensorflow.python.op s.array ops) is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

Train on 7352 samples, validate on 2947 samples

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow backend.py:422: The name tf.global variables is deprec ated. Please use tf.compat.v1.global\_variables instead.

```
Epoch 1/50
7352/7352 [=
         :============================== ] - 59s 8ms/step - loss: 1.7838 - accuracy: 0.5563 - val loss: 1.3617 - val accuracy: 0.6169
Epoch 2/50
Epoch 3/50
Epoch 4/50
7352/7352 [============] - 55s 7ms/step - loss: 0.6931 - accuracy: 0.8781 - val loss: 0.7331 - val accuracy: 0.8656
Epoch 5/50
7352/7352 [=
         :============================== ] - 55s 8ms/step - loss: 0.5502 - accuracy: 0.9166 - val_loss: 0.7542 - val_accuracy: 0.8507
Epoch 6/50
               ========] - 56s 8ms/step - loss: 0.4851 - accuracy: 0.9215 - val_loss: 0.7129 - val_accuracy: 0.8568
7352/7352 [
Epoch 7/50
Epoch 8/50
Epoch 9/50
7352/7352 [=
        Epoch 10/50
7352/7352 [=
       Epoch 11/50
```

| 7352/7352 [====================================                | ] - 56s 8ms/step - loss: 0.3861 - accuracy: 0.9350 - val_loss: 0.5878 - val_accuracy: 0.8846 |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Epoch 12/50                                                    | · · · · · · · · · · · · · · · · · · ·                                                        |
| /352//352 [====================================                | ] - 54s 7ms/step - loss: 0.3509 - accuracy: 0.9382 - val_loss: 0.6650 - val_accuracy: 0.8588 |
| •                                                              | ] - 54s 7ms/step - loss: 0.3528 - accuracy: 0.9369 - val_loss: 0.5794 - val_accuracy: 0.8792 |
| Epoch 14/50<br>7352/7352 [==================================== | ] - 55s 7ms/step - loss: 0.3304 - accuracy: 0.9410 - val_loss: 0.6931 - val_accuracy: 0.8663 |
| Epoch 15/50                                                    | ] - 55s 7ms/step - loss: 0.3231 - accuracy: 0.9411 - val_loss: 0.5938 - val_accuracy: 0.8819 |
| Epoch 16/50                                                    | · · · · · · · · · · · · · · · · · · ·                                                        |
| 7352/7352 [====================================                | ] - 55s 7ms/step - loss: 0.2935 - accuracy: 0.9463 - val_loss: 0.7189 - val_accuracy: 0.8398 |
| 7352/7352 [====================================                | ] - 55s 8ms/step - loss: 0.3111 - accuracy: 0.9421 - val_loss: 0.5724 - val_accuracy: 0.8833 |
| Epoch 18/50<br>7352/7352 [==================================== | ] - 56s 8ms/step - loss: 0.2794 - accuracy: 0.9493 - val_loss: 0.5634 - val_accuracy: 0.8758 |
| Epoch 19/50<br>7352/7352 [==================================== | ] - 56s 8ms/step - loss: 0.2794 - accuracy: 0.9408 - val_loss: 0.5989 - val_accuracy: 0.8789 |
| Epoch 20/50                                                    | · · · · · · · · · · · · · · · · · · ·                                                        |
| 7352/7352 [====================================                | ] - 56s 8ms/step - loss: 0.2545 - accuracy: 0.9525 - val_loss: 0.5806 - val_accuracy: 0.8853 |
| 7352/7352 [====================================                | ] - 58s 8ms/step - loss: 0.2646 - accuracy: 0.9374 - val_loss: 0.4922 - val_accuracy: 0.8982 |
| 7352/7352 [====================================                | ] - 57s 8ms/step - loss: 0.2489 - accuracy: 0.9504 - val_loss: 0.5275 - val_accuracy: 0.8935 |
| Epoch 23/50<br>7352/7352 [==================================== | ] - 57s 8ms/step - loss: 0.2489 - accuracy: 0.9498 - val loss: 0.4629 - val accuracy: 0.8979 |
| Epoch 24/50                                                    | , , , – , ,                                                                                  |
| Fpoch 25/50                                                    | ] - 56s 8ms/step - loss: 0.2352 - accuracy: 0.9539 - val_loss: 0.4702 - val_accuracy: 0.8948 |
| 7352/7352 [====================================                | ] - 57s 8ms/step - loss: 0.2627 - accuracy: 0.9510 - val_loss: 0.4822 - val_accuracy: 0.9060 |
| 7352/7352 [====================================                | ] - 56s 8ms/step - loss: 0.2685 - accuracy: 0.9321 - val_loss: 0.5105 - val_accuracy: 0.8877 |
| Epoch 27/50<br>7352/7352 [==================================== | ] - 55s 8ms/step - loss: 0.2975 - accuracy: 0.9334 - val_loss: 0.5275 - val_accuracy: 0.8914 |
| Epoch 28/50                                                    | ] - 56s 8ms/step - loss: 0.2584 - accuracy: 0.9446 - val_loss: 0.6764 - val_accuracy: 0.8534 |
| Epoch 29/50                                                    | · · · · · · · · · · · · · · · · · · ·                                                        |
| 7352/7352 [====================================                | ] - 55s 7ms/step - loss: 0.2348 - accuracy: 0.9504 - val_loss: 0.4996 - val_accuracy: 0.8989 |
| 7352/7352 [====================================                | ] - 55s 8ms/step - loss: 0.2196 - accuracy: 0.9516 - val_loss: 0.5189 - val_accuracy: 0.8962 |
| 7352/7352 [====================================                | ] - 55s 8ms/step - loss: 0.2180 - accuracy: 0.9476 - val_loss: 0.5321 - val_accuracy: 0.8979 |
| Epoch 32/50<br>7352/7352 [==================================== | ] - 55s 8ms/step - loss: 0.2076 - accuracy: 0.9565 - val_loss: 0.5686 - val_accuracy: 0.8958 |
| Epoch 33/50                                                    | ] - 55s 7ms/step - loss: 0.2066 - accuracy: 0.9553 - val_loss: 0.5395 - val_accuracy: 0.8931 |
| Epoch 34/50                                                    | · · · · · · · · · · · · · · · · · · ·                                                        |
| 7352/7352 [====================================                | ] - 55s 7ms/step - loss: 0.1986 - accuracy: 0.9584 - val_loss: 0.5370 - val_accuracy: 0.8941 |
| •                                                              | ] - 54s 7ms/step - loss: 0.2041 - accuracy: 0.9517 - val_loss: 0.5081 - val_accuracy: 0.8972 |
| •                                                              | ] - 55s 7ms/step - loss: 0.2072 - accuracy: 0.9512 - val_loss: 0.5495 - val_accuracy: 0.8870 |
| Epoch 37/50<br>7352/7352 [==================================== | ] - 55s 7ms/step - loss: 0.3030 - accuracy: 0.9248 - val loss: 0.7116 - val accuracy: 0.8755 |
| Epoch 38/50                                                    | , , , – , ,                                                                                  |
| Fpoch 39/50                                                    | ] - 55s 7ms/step - loss: 0.2253 - accuracy: 0.9514 - val_loss: 0.6346 - val_accuracy: 0.8853 |
| 7352/7352 [====================================                | ] - 55s 8ms/step - loss: 0.2072 - accuracy: 0.9528 - val_loss: 0.6635 - val_accuracy: 0.8863 |
| 7352/7352 [==============                                      | ] - 55s 7ms/step - loss: 0.2014 - accuracy: 0.9536 - val_loss: 0.5990 - val_accuracy: 0.8962 |
| Epoch 41/50<br>7352/7352 [==================================== | ] - 55s 7ms/step - loss: 0.1889 - accuracy: 0.9563 - val_loss: 0.5606 - val_accuracy: 0.9080 |
| Epoch 42/50<br>7352/7352 [==================================== | ] - 55s 7ms/step - loss: 0.1948 - accuracy: 0.9557 - val loss: 0.7855 - val accuracy: 0.8653 |
| Epoch 43/50                                                    | , , , – , ,                                                                                  |
| /352//352 [====================================                | ] - 55s 7ms/step - loss: 0.2077 - accuracy: 0.9509 - val_loss: 0.6252 - val_accuracy: 0.8918 |
|                                                                | ] - 55s 7ms/step - loss: 0.2072 - accuracy: 0.9510 - val_loss: 0.5330 - val_accuracy: 0.8962 |
| •                                                              | ] - 56s 8ms/step - loss: 0.1860 - accuracy: 0.9573 - val_loss: 0.5225 - val_accuracy: 0.9016 |
| Epoch 46/50<br>7352/7352 [==================================== | ] - 55s 8ms/step - loss: 0.1825 - accuracy: 0.9525 - val_loss: 0.5684 - val_accuracy: 0.8989 |
| Epoch 47/50                                                    | ] - 55s 8ms/step - loss: 0.1745 - accuracy: 0.9580 - val_loss: 0.5409 - val_accuracy: 0.9046 |
| Epoch 48/50                                                    | · · · · · · · · · · · · · · · · · · ·                                                        |
| 7352/7352 [====================================                | ] - 55s 8ms/step - loss: 0.2347 - accuracy: 0.9453 - val_loss: 1.7685 - val_accuracy: 0.6352 |
| 7352/7352 [====================================                | ] - 55s 7ms/step - loss: 0.3437 - accuracy: 0.9136 - val_loss: 0.4971 - val_accuracy: 0.8965 |
| Epoch 50/50<br>7352/7352 [==================================== | ] - 55s 7ms/step - loss: 0.2704 - accuracy: 0.9316 - val_loss: 0.5486 - val_accuracy: 0.8938 |
|                                                                |                                                                                              |

<keras.callbacks.callbacks.History at 0x/f12ea9e84/0>

```
In [15]:
```

Pred

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
```

True **LAYING** 510 0 0 0 349 SITTING 0 119 0 0 **STANDING** 0 46 480 0 WALKING n 0 0 460 20 WALKING DOWNSTAIRS 0 0 0 404 WALKING\_UPSTAIRS 0 0 33

LAYING SITTING STANDING WALKING WALKING\_DOWNSTAIRS \

Pred WALKING\_UPSTAIRS

True **LAYING** 27 SITTING 23 2 **STANDING WALKING** 16

WALKING\_DOWNSTAIRS 12 WALKING\_UPSTAIRS 431

#### In [16]:

```
score = model.evaluate(X_test, Y_test)
```

2947/2947 [=========] - 5s 2ms/step

#### In [17]:

score

## Out[17]:

[0.5485815121676908, 0.8937903046607971]

## **FOUR**

## In [11]:

```
# Initializing parameters
epochs = 50
batch_size = 70
n hidden1 = 32
```

 $n_hidden2 = 64$ 

## In [12]:

```
# https://machinelearningmastery.com/stacked-long-short-term-memory-networks/
# Initiliazing the sequential model
model = Sequential()
# Configuring the parameters
model.add(LSTM(n_hidden1, kernel_regularizer= regularizers.l2(0.01), return_sequences=True,
         input_shape=(timesteps, input_dim)))
model.add(LSTM(n_hidden2, kernel_regularizer= regularizers.l2(0.01), input_shape=(timesteps, input_dim)))
# Adding a dropout layer
model.add(Dropout(0.5))
# Adding a dense output layer with sigmoid activation
model.add(Dense(n_classes, activation='sigmoid'))
model.summary()
```

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow core/python/ops/resource variable\_ops.py:1630: calling BaseResource Variable.\_\_init\_\_ (from tensorflow.python.ops.resource\_variable\_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating:

If using Keras pass \*\_constraint arguments to layers. Model: "sequential\_1"

| Layer (type)         | Output Shape    | Param # |                                         |
|----------------------|-----------------|---------|-----------------------------------------|
| lstm_1 (LSTM)        | (None, 128, 32) | 5376    | ======================================= |
| lstm_2 (LSTM)        | (None, 64)      | 24832   |                                         |
| dropout_1 (Dropout)  | (None, 64)      | 0       |                                         |
| dense_1 (Dense)      | (None, 6)       | 390     |                                         |
| Total params: 30,598 |                 |         |                                         |

Total params: 30,598 Trainable params: 30,598 Non-trainable params: 0

## In [13]:

# Compiling the model

model.compile(loss='categorical\_crossentropy', optimizer='adam', metrics=['accuracy'])

#### In [14]:

Epoch 24/50

```
# Training the model
```

model.fit(X\_train, Y\_train, batch\_size=batch\_size, validation\_data=(X\_test, Y\_test), epochs=epochs)

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow\_core/python/ops/math\_grad.py:1424: where (from tensorflow.python.op s.array\_ops) is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow\_backend.py:422: The name tf.global\_variables is deprec ated. Please use tf.compat.v1.global\_variables instead.

```
Train on 7352 samples, validate on 2947 samples
Epoch 1/50
7352/7352 [============] - 54s 7ms/step - loss: 1.8588 - accuracy: 0.3343 - val loss: 1.5992 - val accuracy: 0.3271
Epoch 2/50
                         :=======] - 50s 7ms/step - loss: 1.4525 - accuracy: 0.3625 - val_loss: 1.4467 - val_accuracy: 0.4075
7352/7352 [=
Epoch 3/50
7352/7352 [========
                      =========] - 50s 7ms/step - loss: 1.2425 - accuracy: 0.4854 - val_loss: 1.2867 - val_accuracy: 0.4388
Epoch 4/50
7352/7352 [====
                       =========] - 51s 7ms/step - loss: 1.2264 - accuracy: 0.4887 - val_loss: 1.3395 - val_accuracy: 0.5215
Epoch 5/50
Epoch 6/50
7352/7352 [=
                       =========] - 51s 7ms/step - loss: 1.2475 - accuracy: 0.4803 - val loss: 1.2367 - val accuracy: 0.5066
Epoch 7/50
7352/7352 [==
               Epoch 8/50
7352/7352 [===============] - 51s 7ms/step - loss: 1.2888 - accuracy: 0.4340 - val_loss: 1.2542 - val_accuracy: 0.3811
Epoch 9/50
Epoch 10/50
                          ========] - 51s 7ms/step - loss: 1.4575 - accuracy: 0.4638 - val_loss: 1.7101 - val_accuracy: 0.3268
7352/7352 [==
Epoch 11/50
7352/7352 [==
                           ======] - 51s 7ms/step - loss: 1.4903 - accuracy: 0.3388 - val_loss: 1.4940 - val_accuracy: 0.3241
Epoch 12/50
7352/7352 [=:
                              :====] - 52s 7ms/step - loss: 1.4166 - accuracy: 0.3566 - val loss: 1.4560 - val accuracy: 0.3213
Epoch 13/50
Epoch 14/50
                       ========] - 52s 7ms/step - loss: 1.4227 - accuracy: 0.3698 - val_loss: 1.4850 - val_accuracy: 0.3397
7352/7352 [========
Epoch 15/50
7352/7352 [==:
                          =======] - 52s 7ms/step - loss: 1.4087 - accuracy: 0.3603 - val_loss: 1.4672 - val_accuracy: 0.3393
Epoch 16/50
7352/7352 [=============] - 51s 7ms/step - loss: 1.3886 - accuracy: 0.3674 - val_loss: 1.4361 - val_accuracy: 0.3434
Epoch 17/50
Epoch 18/50
7352/7352 [=====
                       =========] - 52s 7ms/step - loss: 1.3872 - accuracy: 0.3617 - val_loss: 1.4407 - val_accuracy: 0.3397
Epoch 19/50
Epoch 20/50
7352/7352 [==
                         :======] - 53s 7ms/step - loss: 1.3112 - accuracy: 0.4374 - val loss: 1.2918 - val accuracy: 0.4795
Epoch 21/50
                           ======] - 54s 7ms/step - loss: 1.2098 - accuracy: 0.4850 - val_loss: 1.5007 - val_accuracy: 0.3828
7352/7352 [==
Epoch 22/50
7352/7352 [====
           =============================== ] - 53s 7ms/step - loss: 1.2107 - accuracy: 0.4893 - val_loss: 1.1678 - val_accuracy: 0.5103
Epoch 23/50
```

```
Epoch 25/50
Epoch 26/50
7352/7352 [===
         :=============================== ] - 55s 7ms/step - loss: 0.9180 - accuracy: 0.6054 - val_loss: 1.0236 - val_accuracy: 0.5843
Epoch 27/50
7352/7352 [============] - 53s 7ms/step - loss: 1.1483 - accuracy: 0.5166 - val_loss: 1.2465 - val_accuracy: 0.4520
Epoch 28/50
Epoch 29/50
Epoch 30/50
7352/7352 [============] - 52s 7ms/step - loss: 0.7927 - accuracy: 0.6400 - val_loss: 0.9363 - val_accuracy: 0.5948
Epoch 31/50
7352/7352 [===========] - 53s 7ms/step - loss: 0.7813 - accuracy: 0.6483 - val loss: 0.9761 - val accuracy: 0.5887
Epoch 32/50
7352/7352 [============] - 53s 7ms/step - loss: 0.7843 - accuracy: 0.6424 - val_loss: 0.9392 - val_accuracy: 0.5748
Epoch 33/50
Epoch 34/50
               :=======] - 52s 7ms/step - loss: 0.7673 - accuracy: 0.6477 - val loss: 2.2394 - val accuracy: 0.3750
7352/7352 [==:
Epoch 35/50
7352/7352 [============] - 53s 7ms/step - loss: 1.3035 - accuracy: 0.4856 - val_loss: 1.2020 - val_accuracy: 0.5175
Epoch 36/50
7352/7352 [============] - 53s 7ms/step - loss: 0.8683 - accuracy: 0.6294 - val_loss: 0.8537 - val_accuracy: 0.5965
Epoch 37/50
Epoch 38/50
7352/7352 [==============] - 54s 7ms/step - loss: 1.0554 - accuracy: 0.5290 - val_loss: 1.0148 - val_accuracy: 0.5266
Epoch 39/50
7352/7352 [==============] - 55s 7ms/step - loss: 1.1817 - accuracy: 0.5322 - val_loss: 1.3822 - val_accuracy: 0.4486
Epoch 40/50
Epoch 41/50
Epoch 42/50
7352/7352 [============] - 55s 8ms/step - loss: 0.9318 - accuracy: 0.6028 - val_loss: 1.2614 - val_accuracy: 0.4469
Epoch 43/50
Epoch 44/50
7352/7352 [===============] - 53s 7ms/step - loss: 0.8884 - accuracy: 0.5850 - val loss: 0.8912 - val accuracy: 0.5952
Epoch 45/50
Epoch 46/50
7352/7352 [============] - 55s 7ms/step - loss: 0.8026 - accuracy: 0.6287 - val_loss: 0.8434 - val_accuracy: 0.6071
Epoch 47/50
Epoch 48/50
7352/7352 [====
        Epoch 49/50
7352/7352 [==
        Epoch 50/50
```

## Out[14]:

<keras.callbacks.callbacks.History at 0x7f49d61ea7f0>

#### In [15]:

```
\label{eq:confusion_Matrix} \textit{yrint}(confusion\_matrix(Y\_test, model.predict(X\_test)))
```

```
LAYING SITTING STANDING WALKING
Pred
True
LAYING
              534
                     2
                          0
                               27
SITTING
               0
                   209
                         255
STANDING
                0
                     17
                          488
                                27
                0
                          4 492
WALKING
                     0
WALKING_DOWNSTAIRS
                       0
                            0
                                      420
                                2
WALKING_UPSTAIRS
                     0
                          0
                                    469
```

## In [16]:

```
score = model.evaluate(X_test, Y_test)
```

2947/2947 [===========] - 5s 2ms/step

#### In [17]:

score

#### Out[17]:

[0.8606069580271642, 0.5846623778343201]

#### **Five**

## In [11]:

## # Initializing parameters

epochs = 50batch\_size = 70 n hidden1 = 32

 $n_hidden2 = 64$ 

#### In [12]:

```
# https://machinelearningmastery.com/stacked-long-short-term-memory-networks/
```

# Initiliazing the sequential model

model = Sequential()

#### # Configuring the parameters

model.add(LSTM(n\_hidden1, kernel\_initializer='glorot\_normal', kernel\_regularizer= regularizers.l2(0.001), return\_sequences=True, input\_shape=(timesteps, input\_dim)))

model.add(LSTM(n\_hidden2, kernel\_initializer= 'glorot\_normal', kernel\_regularizer= regularizers.l2(0.001), input\_shape=(timesteps, input\_dim)))

#### # Adding a dropout layer

model.add(Dropout(0.5))

#### # Adding a dense output layer with sigmoid activation

model.add(Dense(n\_classes, activation='sigmoid'))

model.summary()

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow core/python/ops/resource variable ops.py:1630: calling BaseResource Variable. init (from tensorflow.python.ops.resource variable ops) with constraint is deprecated and will be removed in a future version. Instructions for updating:

If using Keras pass \*\_constraint arguments to layers. Model: "sequential\_1"

| Layer (type)        | Output Shape    | Param # |  |
|---------------------|-----------------|---------|--|
| lstm_1 (LSTM)       | (None, 128, 32) | 5376    |  |
| Istm_2 (LSTM)       | (None, 64)      | 24832   |  |
| dropout_1 (Dropout) | (None, 64)      | 0       |  |
| dense_1 (Dense)     | (None, 6)       | 390     |  |

Total params: 30,598 Trainable params: 30,598 Non-trainable params: 0

## In [13]:

## # Compiling the model

model.compile(loss='categorical\_crossentropy', optimizer='adam', metrics=['accuracy'])

#### In [14]:

#### # Training the model

model.fit(X train, Y train, batch size=batch size, validation data=(X test, Y test), epochs=epochs)

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow\_core/python/ops/math\_grad.py:1424: where (from tensorflow.python.op s.array\_ops) is deprecated and will be removed in a future version. Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow\_backend.py:422: The name tf.global\_variables is deprec ated. Please use tf.compat.v1.global\_variables instead.

Train on 7352 samples, validate on 2947 samples

| Epoch 1/50                                                     | -] - 52s 7ms/step - loss: 1.3953 - accuracy: 0.4257 - val_loss: 1.1349 - val_accuracy: 0.5497     |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Epoch 2/50                                                     |                                                                                                   |
|                                                                | -] - 48s 7ms/step - loss: 0.9486 - accuracy: 0.5951 - val_loss: 0.9072 - val_accuracy: 0.5952     |
| Epoch 3/50                                                     | -] - 48s 7ms/step - loss: 0.8026 - accuracy: 0.6359 - val loss: 0.8386 - val accuracy: 0.6359     |
| Epoch 4/50                                                     | -j - 403 / 1113/31ep - 1033. 0.0020 - accuracy. 0.0000 - vai_lo33. 0.0000 - vai_accuracy. 0.0000  |
| •                                                              | e] - 48s 7ms/step - loss: 0.7337 - accuracy: 0.6488 - val_loss: 0.7468 - val_accuracy: 0.5908     |
| Epoch 5/50                                                     | 1 49a 7ma/stan Jaco 0 7945 agguragy 0 6909 yal Jaco 0 7971 yal agguragy 0 6999                    |
| Fpoch 6/50                                                     | -] - 48s 7ms/step - loss: 0.7845 - accuracy: 0.6292 - val_loss: 0.7871 - val_accuracy: 0.6383     |
| 7352/7352 [====================================                | e] - 48s 7ms/step - loss: 0.7039 - accuracy: 0.6635 - val_loss: 0.8010 - val_accuracy: 0.6189     |
| Epoch 7/50                                                     | -] - 49s 7ms/step - loss: 0.7142 - accuracy: 0.6581 - val_loss: 0.7637 - val_accuracy: 0.6257     |
| Epoch 8/50                                                     | -j - 495 / 1115/Step - 1055. 0.7 142 - accuracy. 0.0001 - vai_1055. 0.7007 - vai_accuracy. 0.0207 |
|                                                                | -] - 49s 7ms/step - loss: 0.6716 - accuracy: 0.6778 - val_loss: 0.7288 - val_accuracy: 0.6502     |
| Epoch 9/50                                                     | -] - 48s 7ms/step - loss: 0.7734 - accuracy: 0.6649 - val_loss: 1.0778 - val_accuracy: 0.5599     |
| Epoch 10/50                                                    | -1 100 / 110/01.0p 1000.0/01 about aby. 0.0010 va_000.110//0 va_about aby. 0.0000                 |
|                                                                | e] - 48s 7ms/step - loss: 0.7873 - accuracy: 0.6439 - val_loss: 0.7871 - val_accuracy: 0.6637     |
| Epoch 11/50<br>7352/7352 [==================================== | -] - 48s 7ms/step - loss: 0.6874 - accuracy: 0.6851 - val loss: 0.7605 - val accuracy: 0.7106     |
| Epoch 12/50                                                    | , – ,                                                                                             |
| 7352/7352 [====================================                | e] - 48s 7ms/step - loss: 0.7393 - accuracy: 0.6800 - val_loss: 0.7302 - val_accuracy: 0.7194     |
| ·                                                              | -] - 49s 7ms/step - loss: 0.6638 - accuracy: 0.7297 - val loss: 1.1069 - val accuracy: 0.5674     |
| Epoch 14/50                                                    | ·                                                                                                 |
| /352//352 [====================================                | -] - 49s 7ms/step - loss: 0.6627 - accuracy: 0.7142 - val_loss: 0.6769 - val_accuracy: 0.7241     |
| ·                                                              | e] - 48s 7ms/step - loss: 0.6563 - accuracy: 0.7443 - val_loss: 0.6882 - val_accuracy: 0.7231     |
| Epoch 16/50                                                    | 2 40 7 - / 1 - 0 5404 - 0 7744 - 1 1 - 0 0450 - 1 - 0 7400                                        |
| 7352/7352 [====================================                | -] - 49s 7ms/step - loss: 0.5484 - accuracy: 0.7714 - val_loss: 0.6459 - val_accuracy: 0.7469     |
| ·                                                              | e] - 49s 7ms/step - loss: 0.5123 - accuracy: 0.7839 - val_loss: 0.6197 - val_accuracy: 0.7340     |
| Epoch 18/50                                                    | 1 400 7mg/ston loop 0.5474 engurany 0.7400 yel loop 0.5600 yel engurany 0.7460                    |
| Fpoch 19/50                                                    | -] - 49s 7ms/step - loss: 0.5474 - accuracy: 0.7499 - val_loss: 0.5692 - val_accuracy: 0.7462     |
|                                                                | -] - 48s 7ms/step - loss: 0.4462 - accuracy: 0.7965 - val_loss: 0.5722 - val_accuracy: 0.7540     |
| Epoch 20/50                                                    | -] - 49s 7ms/step - loss: 0.4076 - accuracy: 0.8075 - val_loss: 0.5824 - val_accuracy: 0.7608     |
| Epoch 21/50                                                    | - 100 / 110/510P 1000. 0.10/0                                                                     |
| <u> </u>                                                       | e] - 49s 7ms/step - loss: 0.4161 - accuracy: 0.8021 - val_loss: 0.5877 - val_accuracy: 0.7662     |
| Epoch 22/50 7352/7352 [====================================    | -] - 49s 7ms/step - loss: 0.3862 - accuracy: 0.8278 - val loss: 0.5155 - val accuracy: 0.8252     |
| Epoch 23/50                                                    |                                                                                                   |
| 7352/7352 [====================================                | -] - 49s 7ms/step - loss: 0.3609 - accuracy: 0.8700 - val_loss: 0.5932 - val_accuracy: 0.7896     |
| •                                                              | e] - 49s 7ms/step - loss: 0.3025 - accuracy: 0.9110 - val_loss: 0.5983 - val_accuracy: 0.8161     |
| Epoch 25/50                                                    | 1. 40- 7/                                                                                         |
| 7352/7352 [====================================                | -] - 49s 7ms/step - loss: 0.2850 - accuracy: 0.9159 - val_loss: 0.5426 - val_accuracy: 0.8751     |
| 7352/7352 [====================================                | e] - 48s 7ms/step - loss: 0.3649 - accuracy: 0.8788 - val_loss: 0.5147 - val_accuracy: 0.8588     |
| Epoch 27/50                                                    | -] - 49s 7ms/step - loss: 0.2225 - accuracy: 0.9399 - val loss: 0.4701 - val accuracy: 0.8887     |
| Epoch 28/50                                                    | - 100 / 110/510P 1000. 0.2220                                                                     |
| •                                                              | e] - 49s 7ms/step - loss: 0.2010 - accuracy: 0.9427 - val_loss: 0.5142 - val_accuracy: 0.8690     |
| Epoch 29/50<br>7352/7352 [==================================== | -] - 49s 7ms/step - loss: 0.1920 - accuracy: 0.9429 - val loss: 0.5133 - val accuracy: 0.8707     |
| Epoch 30/50                                                    | , – ,                                                                                             |
| 7352/7352 [====================================                | -] - 49s 7ms/step - loss: 0.2169 - accuracy: 0.9377 - val_loss: 0.6523 - val_accuracy: 0.8470     |
|                                                                | -] - 49s 7ms/step - loss: 0.2435 - accuracy: 0.9324 - val_loss: 0.4705 - val_accuracy: 0.8792     |
| Epoch 32/50                                                    | 1 50 7 - / 1 - 0 0000 - 0 0000 - 1 - 0 5000 - 1 - 0 0707                                          |
| 7352/7352 [====================================                | -] - 50s 7ms/step - loss: 0.2236 - accuracy: 0.9369 - val_loss: 0.5066 - val_accuracy: 0.8707     |
| 7352/7352 [====================================                | e] - 50s 7ms/step - loss: 0.2049 - accuracy: 0.9381 - val_loss: 0.5001 - val_accuracy: 0.8856     |
| Epoch 34/50                                                    | -] - 49s 7ms/step - loss: 0.1861 - accuracy: 0.9471 - val_loss: 0.4935 - val_accuracy: 0.8894     |
| Epoch 35/50                                                    | -j - 495 / 1115/Step - 1055. 0.1001 - accuracy. 0.9471 - vai_1055. 0.4333 - vai_accuracy. 0.0094  |
| •                                                              | =] - 49s 7ms/step - loss: 0.1848 - accuracy: 0.9441 - val_loss: 0.4807 - val_accuracy: 0.8938     |
| Epoch 36/50 7352/7352 [====================================    | -] - 49s 7ms/step - loss: 0.1653 - accuracy: 0.9513 - val loss: 0.5227 - val accuracy: 0.8911     |
| Epoch 37/50                                                    | , – ,                                                                                             |
| 7352/7352 [====================================                | e] - 49s 7ms/step - loss: 0.1736 - accuracy: 0.9491 - val_loss: 0.4926 - val_accuracy: 0.8938     |
|                                                                | -] - 49s 7ms/step - loss: 0.1664 - accuracy: 0.9510 - val_loss: 0.5152 - val_accuracy: 0.8945     |
| Epoch 39/50                                                    | , – ,                                                                                             |
| 7352/7352 [====================================                | -] - 49s 7ms/step - loss: 0.1796 - accuracy: 0.9429 - val_loss: 0.4962 - val_accuracy: 0.9009     |
| 7352/7352 [====================================                | e] - 50s 7ms/step - loss: 0.1963 - accuracy: 0.9441 - val_loss: 0.4551 - val_accuracy: 0.9019     |
| Epoch 41/50                                                    | .1 50c 7mc/cton loca: 0.1610 acquiracy: 0.0522 yell-loca: 0.5559 yell-acquiracy: 0.0000           |
| 1 302/1302 [====================================               | -] - 50s 7ms/step - loss: 0.1619 - accuracy: 0.9533 - val_loss: 0.5558 - val_accuracy: 0.8809     |

```
Epoch 42/50
7352/7352 [=
                 :======] - 50s 7ms/step - loss: 0.1655 - accuracy: 0.9482 - val_loss: 0.4693 - val_accuracy: 0.8992
Epoch 43/50
                     ==] - 49s 7ms/step - loss: 0.1849 - accuracy: 0.9406 - val_loss: 0.4572 - val_accuracy: 0.8924
7352/7352 [=
Fnoch 44/50
7352/7352 [==
         Epoch 45/50
Epoch 46/50
Epoch 47/50
Epoch 48/50
Epoch 49/50
7352/7352 [=============] - 49s 7ms/step - loss: 0.1978 - accuracy: 0.9441 - val_loss: 0.4056 - val_accuracy: 0.8958
Epoch 50/50
7352/7352 [============] - 49s 7ms/step - loss: 0.1755 - accuracy: 0.9489 - val_loss: 0.4329 - val_accuracy: 0.8860
```

#### Out[14]:

<keras.callbacks.callbacks.History at 0x7fd85b15c8d0>

## In [15]:

```
# Confusion Matrix
print(confusion_matrix(Y_test, model.predict(X_test)))
```

Pred LAYING SITTING STANDING WALKING WALKING DOWNSTAIRS \ True **LAYING** 510 0 0 0 n SITTING 383 97 0 5 6 **STANDING** 0 101 430 0 470 2 WALKING 0 0 0 WALKING DOWNSTAIRS 0 407 0 WALKING\_UPSTAIRS 0 0 49 11

13

=======] - 4s 1ms/step

Pred WALKING\_UPSTAIRS

True
LAYING 27
SITTING 0
STANDING 0
WALKING 24
WALKING\_DOWNSTAIRS
WALKING\_UPSTAIRS 411

## In [16]:

```
score = model.evaluate(X_test, Y_test)
```

#### In [17]:

2947/2947 [=====

score

## Out[17]:

[0.4328820135433026, 0.8859857320785522]

## **CNN**

## **Divide and Conquer-Based 1D CNN**

## In [5]:

from keras import regularizers

#### In [23]:

- # Raw data signals
- # Signals are from Accelerometer and Gyroscope
- # The signals are in x,y,z directions
- # The Signals are in x,y,z directions

```
def confusion_matrix(Y_true, Y_pred):
    Y_true = pd.Series([label[y] for y in np.argmax(Y_true, axis=1)])
    Y_pred = pd.Series([label[y] for y in np.argmax(Y_pred, axis=1)])
    return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
```

## In [6]:

```
# Utility function to read the data from csv file
def _read_csv(filename):
  return pd.read_csv(filename, delim_whitespace=True, header=None)
# Utility function to load the load
def load_signals(subset):
  signals_data = []
  filename = 'body_acc_x_{}.txt'.format(subset)
  signals\_data.append(\_read\_csv(filename).as\_matrix())
  filename = 'body_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  # Transpose is used to change the dimensionality of the output,
  # aggregating the signals by combination of sample/timestep.
   # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
  return np.transpose(signals_data, (1, 2, 0))
def load_y(subset):
   The objective that we are trying to predict is a integer, from 1 to 6,
  that represents a human activity. We return a binary representation of
  every sample objective as a 6 bits vector using One Hot Encoding
  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
  filename = 'y_{}.txt'.format(subset)
  y = _read_csv(filename)[0]
  # Dynamic activities
  y[y <= 3] = 0
  # Static activities
  y[y>3] = 1
  return pd.get_dummies(y).as_matrix()
def load_data():
  Obtain the dataset from multiple files.
```

```
Returns: X_train, X_test, y_train, y_test
   X_train, X_test = load_signals('train'), load_signals('test')
   y_train, y_test = load_y('train'), load_y('test')
   return X_train, X_test, y_train, y_test
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error
def plt_dynamic(x, vy, ty, ax, color = 'b'):
   ax.plot(x, vy, 'b', label = 'Validation Loss')
   ax.plot(x, vy, 'b', label = 'Validation Loss')
   ax.plot(x, ty, 'r', label = 'Train Loss')
   plt.grid()
   plt.legend()
   fig.canvas.draw()
In [7]:
# Loading the train and test data
X_train, X_test, Y_train, Y_test = load_data()
print('X_train shape is: ',X_train.shape)
print('Y_train shape is: ',Y_train.shape)
print('X_test shape is: ',X_test.shape)
print('Y_test shape is: ',Y_test.shape)
```

#### Y\_train shape is: (7352, 2) X test shape is: (2947, 128, 9)

In [8]:

# Importing tensorflow np.random.seed(42) import tensorflow as tf

X\_train shape is: (7352, 128, 9)

Y\_test shape is: (2947, 2)

tf.set\_random\_seed(42)

## In [9]:

```
# Configuring a session
session_conf = tf.ConfigProto(intra_op_parallelism_threads= 1,
inter_op_parallelism_threads= 1)
```

## In [10]:

```
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
```

## In [11]:

```
# Utility function to count the number of classes

def _count_classes(y):
    return len(set([tuple(category) for category in y]))
```

## In [12]:

```
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = _count_classes(Y_train)

print(timesteps)
print(input_dim)
print(len(X_train))
```

9 7352

128

#### In [13]:

-----

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow\_core/python/ops/resource\_variable\_ops.py:1630: calling BaseResource Variable.\_\_init\_\_ (from tensorflow.python.ops.resource\_variable\_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating:

If using Keras pass \*\_constraint arguments to layers.

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow\_backend.py:4070: The name tf.nn.max\_pool is deprecat ed. Please use tf.nn.max\_pool2d instead.

Model: "sequential\_1"

| Layer (type)        | Output Shape          | Param # |              |
|---------------------|-----------------------|---------|--------------|
| conv1d_1 (Conv1D)   | (None, 126, 32)       | 896     | ==========   |
| dropout_1 (Dropout) | (None, 126, 32)       | 0       |              |
| max_pooling1d_1 (M  | axPooling1 (None, 63, | 32)     | 0            |
| flatten_1 (Flatten) | (None, 2016)          | 0       |              |
| dense_1 (Dense)     | (None, 2)             | 4034    |              |
| Total params: 4,930 |                       | ======  | ============ |

Total params: 4,930 Trainable params: 4,930 Non-trainable params: 0

#### In [14]:

```
# Compiling the model
```

 $model 1. compile (loss = \colored large or categorical\_crossentropy', optimizer = \colored large or catego$ 

#### In [15]:

```
# Initializing parameters
epochs = 10
```

batch size = 70

Epoch 1/10

#### # Training the model

history1= model1.fit(X\_train, Y\_train, batch\_size=batch\_size, validation\_data=(X\_test, Y\_test), epochs=epochs)

WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow\_backend.py:422: The name tf.global\_variables is deprec ated. Please use tf.compat.v1.global\_variables instead.

```
Train on 7352 samples, validate on 2947 samples
```

```
7352/7352 [=============] - 5s 647us/step - loss: 4.8197 - accuracy: 0.9234 - val_loss: 3.3904 - val_accuracy: 0.9817
Epoch 2/10
7352/7352 [==============] - 2s 251us/step - loss: 2.4643 - accuracy: 0.9959 - val_loss: 1.7946 - val_accuracy: 0.9915
Epoch 3/10
7352/7352 [============] - 2s 250us/step - loss: 1.2884 - accuracy: 0.9978 - val_loss: 0.9574 - val_accuracy: 0.9939
Epoch 4/10
7352/7352 [=
               :=============================== ] - 2s 257us/step - loss: 0.6708 - accuracy: 0.9984 - val_loss: 0.5187 - val_accuracy: 0.9966
Epoch 5/10
7352/7352 [=
                              ------] - 2s 258us/step - loss: 0.3508 - accuracy: 0.9986 - val_loss: 0.2916 - val_accuracy: 0.9949
Epoch 6/10
7352/7352 [============] - 2s 255us/step - loss: 0.1885 - accuracy: 0.9990 - val_loss: 0.1809 - val_accuracy: 0.9929
Epoch 7/10
7352/7352 [=============] - 2s 250us/step - loss: 0.1093 - accuracy: 0.9980 - val loss: 0.1173 - val accuracy: 0.9976
Epoch 8/10
7352/7352 [============] - 2s 245us/step - loss: 0.0687 - accuracy: 0.9988 - val_loss: 0.0886 - val_accuracy: 0.9963
Epoch 9/10
7352/7352 [=============] - 2s 252us/step - loss: 0.0511 - accuracy: 0.9981 - val_loss: 0.0737 - val_accuracy: 0.9966
Epoch 10/10
7352/7352 [============] - 2s 257us/step - loss: 0.0399 - accuracy: 0.9988 - val_loss: 0.0673 - val_accuracy: 0.9983
```

## In [17]:

2947/2947 [=========] - 0s 112us/step

#### In [18]:

```
score1
```

## Out[18]:

 $[0.06726545751762261,\, 0.9983033537864685]$ 

#### In [19]:

```
fig, ax = plt.subplots(1,1, figsize = (12, 8))
ax.set_xlabel('epoch')
ax.set_ylabel('Categorical Crossentropy Loss')
plt.title('Relu + Dropout')

# list of epoch numbers: epoch = 10
x = list(range(1,10+1))
vy = history1.history['val_loss']
ty = history1.history['loss']
plt_dynamic(x, vy, ty, ax)
```



## In [20]:

```
import pickle
model1.save('model1')
```

## **Classification of Static Activities**

## In [62]:

```
# Utility function to read the data from csv file
def _read_csv(filename):
  return pd.read_csv(filename, delim_whitespace=True, header=None)
# Utility function to load the load
def load_signals(subset):
  signals_data = []
  filename = 'body_acc_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_y_{}.txt'.format(subset)
  signals data.append( read csv(filename).as matrix())
  filename = 'body_gyro_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
   # Transpose is used to change the dimensionality of the output,
   # aggregating the signals by combination of sample/timestep.
   # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
  return np.transpose(signals_data, (1, 2, 0))
def confusion_matrix(Y_true, Y_pred):
   Y_true = pd.Series([label[y] for y in np.argmax(Y_true, axis=1)])
  Y_pred = pd.Series([label[y] for y in np.argmax(Y_pred, axis=1)])
  c_m = pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
  plt.figure(figsize= (8, 6))
  c_m = sns.heatmap(c_m, annot=True, cmap= sns.light_palette("blue"), fmt=".3f", xticklabels=label.values(),
             yticklabels= label.values())
  plt.xlabel('Predicted Class')
  plt.ylabel('Original Class')
  plt.title("Confusion matrix")
  return c_m
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error
def plt_dynamic(x, vy, ty, ax, color = 'b'):
  ax.plot(x, vy, 'b', label = 'Validation Loss')
  ax.plot(x, vy, 'b', label = 'Validation Loss')
  ax.plot(x, ty, 'r', label = 'Train Loss')
  plt.grid()
  plt.legend()
  fig.canvas.draw()
In [15]:
def load_y(subset):
   The objective that we are trying to predict is a integer, from 1 to 6,
```

```
that represents a human activity. We return a binary representation of
  every sample objective as a 6 bits vector using One Hot Encoding
  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
  filename = 'y_{}.txt'.format(subset)
  y = _read_csv(filename)[0]
  # Static activities
  y_subset = y>3
  y = y[y\_subset]
  return pd.get_dummies(y).as_matrix(), y_subset
def load_data():
  Obtain the dataset from multiple files.
```

```
Heturns: X_train, X_test, y_train, y_test
"""

X_train, X_test = load_signals('train'), load_signals('test')
y_train, y_train1 = load_y('train')
y_test, y_test1 = load_y('test')
# collecting those datapoints where y > 3

X_train = X_train[y_train1]
X_test = X_test[y_test1]

return X_train, X_test, y_train, y_test

In [16]:

# Loading the train and test data
```

```
X_train, X_test, Y_train, Y_test = load_data()

print('X_train shape is: ',X_train.shape)
print('Y_train shape is: ',Y_train.shape)
print('X_test shape is: ',X_test.shape)
print('Y_test shape is: ',Y_test.shape)

X_train shape is: (4067, 128, 9)
```

X\_train shape is: (4067, 128, 9)
Y\_train shape is: (4067, 3)
X\_test shape is: (1560, 128, 9)
Y\_test shape is: (1560, 3)

#### In [24]:

```
# checking the y label and middle 1 is 'standing'
Y_train[:5]
```

#### Out[24]:

```
array([[0, 1, 0],

[0, 1, 0],

[0, 1, 0],

[0, 1, 0],

[0, 1, 0]], dtype=uint8)
```

## In [25]:

```
# Importing tensorflow
np.random.seed(42)
import tensorflow as tf
tf.set_random_seed(42)
```

## In [26]:

## In [27]:

```
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
```

#### In [28]:

```
# Utility function to count the number of classes

def _count_classes(y):
    return len(set([tuple(category) for category in y]))
```

## In [29]:

```
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = _count_classes(Y_train)

print('Timesteps:', timesteps)
print('Input Dim:', input_dim)
print('No. of Train datapoints:', len(X_train))
print('No of classes:',n_classes)
```

Timesteps: 128 Input Dim: 9

No. of Train datapoints: 4067

No of classes: 3

## Arrived at this architecture after 50+ trails of architectures.

#### In [71]:

```
m= Sequential()
m.add(Conv1D(filters= 64, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform',
           input_shape=(timesteps, input_dim)))
m.add(Conv1D(filters= 64, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform'))
m.add(MaxPooling1D(pool_size= 2, padding= 'same'))
m.add(Dropout(0.40))
m.add(Conv1D(filters= 32, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform'))
m.add(Conv1D(filters= 32, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform',))
# https://stackoverflow.com/a/49089027/10219869
# https://stackoverflow.com/a/58498450/10219869
m.add(MaxPooling1D(pool_size= 2, padding= 'same'))
m.add(BatchNormalization())
m.add(Dropout(0.40))
m.add(Flatten())
m.add(Dense(units= 100, activation= 'relu'))
m.add(BatchNormalization())
m.add(Dropout(0.40))
m.add(Dense(units= 3, activation= 'softmax'))
m.summary()
```

## Model: "sequential\_7"

| Layer (type)         | Output Shape            | Param # |                                       |
|----------------------|-------------------------|---------|---------------------------------------|
| conv1d_25 (Conv1D)   | (None, 124, 64)         | 2944    | ===========                           |
| conv1d_26 (Conv1D)   | (None, 120, 64)         | 20544   |                                       |
| max_pooling1d_13 (N  | MaxPooling (None, 60, 6 | 64) 0   |                                       |
| dropout_19 (Dropout) | (None, 60, 64)          | 0       |                                       |
| conv1d_27 (Conv1D)   | (None, 56, 32)          | 10272   |                                       |
| conv1d_28 (Conv1D)   | (None, 52, 32)          | 5152    |                                       |
| max_pooling1d_14 (N  | MaxPooling (None, 26, 3 | 32) 0   |                                       |
| batch_normalization_ | 14 (Batc (None, 26, 32) | 128     |                                       |
| dropout_20 (Dropout) | (None, 26, 32)          | 0       |                                       |
| flatten_7 (Flatten)  | (None, 832)             | 0       | · · · · · · · · · · · · · · · · · · · |
| dense_13 (Dense)     | (None, 100)             | 83300   |                                       |
| batch_normalization_ | 15 (Batc (None, 100)    | 400     |                                       |
| dropout_21 (Dropout) | (None, 100)             | 0       |                                       |
| dense_14 (Dense)     | (None, 3)               | 303     |                                       |
| Total params: 123,04 | <del></del>             |         |                                       |

Total params: 123,043 Trainable params: 122,779 Non-trainable params: 264

## In [82]:

```
# https://keras.io/optimizers/
# Compiling the model
adam= keras.optimizers.Adam(learning_rate= 0.001)
rmsprop = optimizers.RMSprop(learning_rate= 0.001)
m.compile(loss='categorical_crossentropy', optimizer= 'adam', metrics=['accuracy'])
```

```
# Initializing parameters epochs = 100
```

#### # Training the model

batch\_size = 20

h= m.fit(X train, Y train, batch\_size=batch\_size, validation\_data=(X test, Y test), epochs=epochs)

```
Train on 4067 samples, validate on 1560 samples
Epoch 1/100
Epoch 2/100
4067/4067 [====
   Epoch 3/100
Epoch 4/100
Epoch 5/100
Epoch 6/100
4067/4067 [====
   ==============================] - 6s 1ms/step - loss: 0.0186 - accuracy: 0.9948 - val loss: 0.3938 - val accuracy: 0.9205
Epoch 7/100
Epoch 8/100
Epoch 9/100
Epoch 10/100
Epoch 11/100
Epoch 12/100
Epoch 13/100
Epoch 14/100
Epoch 15/100
Epoch 16/100
Epoch 17/100
Epoch 18/100
Epoch 19/100
Epoch 20/100
Epoch 21/100
Epoch 22/100
Epoch 23/100
4067/4067 [============] - 6s 1ms/step - loss: 0.0444 - accuracy: 0.9845 - val_loss: 0.3280 - val_accuracy: 0.9199
Epoch 24/100
Epoch 25/100
Epoch 26/100
Epoch 27/100
Epoch 28/100
Epoch 29/100
Epoch 30/100
Epoch 31/100
4067/4067 [============] - 6s 1ms/step - loss: 0.0283 - accuracy: 0.9914 - val_loss: 0.3912 - val_accuracy: 0.9051
Epoch 32/100
Epoch 33/100
Epoch 34/100
4067/4067 [===
  Epoch 35/100
Epoch 36/100
4067/4067 [============] - 6s 1ms/step - loss: 0.0211 - accuracy: 0.9941 - val_loss: 0.3806 - val_accuracy: 0.9173
Epoch 37/100
```

```
Epoch 38/100
Epoch 39/100
Epoch 40/100
Epoch 41/100
Epoch 42/100
Epoch 43/100
Epoch 44/100
Epoch 45/100
Epoch 46/100
4067/4067 [===========] - 6s 1ms/step - loss: 0.0267 - accuracy: 0.9931 - val_loss: 0.4436 - val_accuracy: 0.9212
Epoch 47/100
Epoch 48/100
Epoch 49/100
Epoch 50/100
Epoch 51/100
Epoch 52/100
Epoch 53/100
Epoch 54/100
Epoch 55/100
Epoch 56/100
Epoch 57/100
Epoch 58/100
Epoch 59/100
Epoch 60/100
4067/4067 [============] - 6s 1ms/step - loss: 0.0142 - accuracy: 0.9948 - val_loss: 0.4454 - val_accuracy: 0.9135
Epoch 61/100
Epoch 62/100
Epoch 63/100
Epoch 64/100
Epoch 65/100
Epoch 66/100
Epoch 67/100
Epoch 68/100
Epoch 69/100
Epoch 70/100
Epoch 71/100
Epoch 72/100
Epoch 73/100
Epoch 74/100
Epoch 75/100
Epoch 76/100
Epoch 77/100
Epoch 78/100
```

```
Fnoch 80/100
4067/4067 [===
   Epoch 81/100
Epoch 82/100
Epoch 83/100
4067/4067 [============] - 6s 1ms/step - loss: 0.0107 - accuracy: 0.9966 - val_loss: 0.4586 - val_accuracy: 0.9192
Epoch 84/100
Epoch 85/100
Epoch 86/100
4067/4067 [===
   Epoch 87/100
Epoch 88/100
Epoch 89/100
Epoch 90/100
Epoch 91/100
Epoch 92/100
Epoch 93/100
Epoch 94/100
Epoch 95/100
Epoch 96/100
Epoch 97/100
Epoch 98/100
4067/4067 [============] - 6s 1ms/step - loss: 0.0128 - accuracy: 0.9958 - val_loss: 0.4526 - val_accuracy: 0.9141
Epoch 99/100
Epoch 100/100
```

## In [84]:

```
s= m.evaluate(X_test, Y_test)

1560/1560 [==========] - 0s 267us/step
```

## In [85]:

S

## Out[85]:

[0.471027467745917, 0.9217948913574219]

## In [86]:

```
fig, ax = plt.subplots(1,1, figsize = (12, 8))
ax.set_xlabel('epoch')
ax.set_ylabel('Categorical Crossentropy Loss')
plt.title('Relu + Dropout')

# list of epoch numbers: epoch = 100
x = list(range(1,100+1))
vy = h.history['val_loss']
ty = h.history['loss']
plt_dynamic(x, vy, ty, ax)
```





## In [111]:

confusion\_matrix(Y\_test, m.predict(X\_test))

## Out[111]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f8df1b0c3c8>



## In [79]:

model2.save('model2')

# **Classification of Dynamic Activities**

## In [112]:

```
# Utility function to read the data from csv file
def _read _csv(filename):
  return pd.read_csv(filename, delim_whitespace=True, header=None)
# Utility function to load the load
def load_signals(subset):
  signals_data = []
  filename = 'body_acc_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body gyro z {}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
   # Transpose is used to change the dimensionality of the output,
  # aggregating the signals by combination of sample/timestep.
   # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
  return np.transpose(signals_data, (1, 2, 0))
def confusion_matrix(Y_true, Y_pred):
   Y_true = pd.Series([label[y] for y in np.argmax(Y_true, axis=1)])
  Y_pred = pd.Series([label[y] for y in np.argmax(Y_pred, axis=1)])
  c_m = pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])
  plt.figure(figsize= (8, 6))
  c_m = sns.heatmap(c_m, annot=True, cmap= sns.light_palette("blue"), fmt=".3f", xticklabels=label.values(),
             yticklabels= label.values())
  plt.xlabel('Predicted Class')
  plt.ylabel('Original Class')
  plt.title("Confusion matrix")
  return c_m
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error
def plt_dynamic(x, vy, ty, ax, color = 'b'):
  ax.plot(x, vy, 'b', label = 'Validation Loss')
  ax.plot(x, vy, 'b', label = 'Validation Loss')
  ax.plot(x, ty, 'r', label = 'Train Loss')
  plt.grid()
  plt.legend()
  fig.canvas.draw()
In [113]:
def load_y(subset):
   The objective that we are trying to predict is a integer, from 1 to 6,
```

```
def load_y(subset):

"""

The objective that we are trying to predict is a integer, from 1 to 6, that represents a human activity. We return a binary representation of every sample objective as a 6 bits vector using One Hot Encoding (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)

"""

filename = 'y_{}.txt'.format(subset)
    y = _read_csv(filename)[0]

# Static activities
    y_subset = y<=3
    y = y[y_subset]

return pd.get_dummies(y).as_matrix(), y_subset

def load_data():

"""

Obtain the dataset from multiple files.
```

```
Returns: X_train, X_test, y_train, y_test
   X_train, X_test = load_signals('train'), load_signals('test')
   y_train, y_train1 = load_y('train')
   y_test, y_test1 = load_y('test')
   # collecting those datapoints where y > 3
   X_train = X_train[y_train1]
   X_{test} = X_{test}[y_{test}]
   return X_train, X_test, y_train, y_test
In [114]:
# Loading the train and test data
X_train, X_test, Y_train, Y_test = load_data()
print('X_train shape is: ',X_train.shape)
print('Y_train shape is: ',Y_train.shape)
print('X_test shape is: ',X_test.shape)
print('Y_test shape is: ',Y_test.shape)
X_train shape is: (3285, 128, 9)
Y_train shape is: (3285, 3)
X_test shape is: (1387, 128, 9)
```

# Y\_test shape is: (1387, 3)

In [115]:

```
# checking the y label and middle 1 is 'standing'
Y_train[:5]
```

## Out[115]:

```
array([[1, 0, 0],

[1, 0, 0],

[1, 0, 0],

[1, 0, 0],

[1, 0, 0]], dtype=uint8)
```

## In [116]:

```
# Importing tensorflow
np.random.seed(42)
import tensorflow as tf
tf.set_random_seed(42)
```

## In [117]:

## In [118]:

```
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
```

## In [119]:

```
# Utility function to count the number of classes

def _count_classes(y):
    return len(set([tuple(category) for category in y]))
```

#### In [120]:

```
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = _count_classes(Y_train)

print('Timesteps:', timesteps)
print('Input Dim:', input_dim)
print('No. of Train datapoints:', len(X_train))
print('No of classes:',n_classes)
```

Timesteps: 128 Input Dim: 9

No. of Train datapoints: 3285

No of classes: 3

## In [121]:

```
m= Sequential()
m.add(Conv1D(filters= 64, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform',
           input_shape=(timesteps, input_dim)))
m.add(Conv1D(filters= 64, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform'))
m.add(MaxPooling1D(pool_size= 2, padding= 'same'))
m.add(Dropout(0.40))
m.add(Conv1D(filters= 32, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform'))
m.add(Conv1D(filters= 32, kernel_size= 5, activation= 'relu', kernel_initializer= 'he_uniform',))
# https://stackoverflow.com/a/49089027/10219869
# https://stackoverflow.com/a/58498450/10219869
m.add(MaxPooling1D(pool_size= 2, padding= 'same'))
m.add(BatchNormalization())
m.add(Dropout(0.40))
m.add(Flatten())
m.add(Dense(units= 100, activation= 'relu'))
m.add(BatchNormalization())
m.add(Dropout(0.40))
m.add(Dense(units= 3, activation= 'softmax'))
m.summary()
```

Model: "sequential\_11"

| Layer (type)          | Output Shape            | Param # |  |
|-----------------------|-------------------------|---------|--|
| conv1d_41 (Conv1D)    | (None, 124, 64)         | 2944    |  |
| conv1d_42 (Conv1D)    | (None, 120, 64)         | 20544   |  |
| max_pooling1d_21 (M   | laxPooling (None, 60, 6 | 64) 0   |  |
| dropout_31 (Dropout)  | (None, 60, 64)          | 0       |  |
| conv1d_43 (Conv1D)    | (None, 56, 32)          | 10272   |  |
| conv1d_44 (Conv1D)    | (None, 52, 32)          | 5152    |  |
| max_pooling1d_22 (M   | 1axPooling (None, 26, 3 | 32) 0   |  |
| batch_normalization_2 | 22 (Batc (None, 26, 32) | 128     |  |
| dropout_32 (Dropout)  | (None, 26, 32)          | 0       |  |
| flatten_11 (Flatten)  | (None, 832)             | 0       |  |
| dense_21 (Dense)      | (None, 100)             | 83300   |  |
| batch_normalization_  | 23 (Batc (None, 100)    | 400     |  |
| dropout_33 (Dropout)  | (None, 100)             | 0       |  |
| dense_22 (Dense)      | (None, 3)               | 303     |  |
| Total params: 123,043 | 3                       |         |  |

Total params: 123,043 Trainable params: 122,779 Non-trainable params: 264

## In [122]:

```
# https://keras.io/optimizers/
# Compiling the model
adam= keras.optimizers.Adam(learning_rate= 0.001)
rmsprop = optimizers.RMSprop(learning_rate= 0.001)
m.compile(loss='categorical_crossentropy', optimizer= 'adam', metrics=['accuracy'])
```

#### In [123]:

```
# Initializing parameters
epochs = 100
batch size = 20
```

Epoch 39/100

```
Train on 3285 samples, validate on 1387 samples
Epoch 1/100
3285/3285 [==
        :========] - 8s 3ms/step - loss: 1.0449 - accuracy: 0.5945 - val loss: 0.7546 - val accuracy: 0.7195
Epoch 2/100
Epoch 3/100
Epoch 4/100
Epoch 5/100
Epoch 6/100
3285/3285 [====
    Epoch 7/100
3285/3285 [===
        ========] - 5s 1ms/step - loss: 0.0278 - accuracy: 0.9912 - val_loss: 0.1713 - val_accuracy: 0.9229
Epoch 8/100
Epoch 9/100
Epoch 10/100
Epoch 11/100
Epoch 12/100
3285/3285 [=====
     :============================= ] - 5s 2ms/step - loss: 0.0192 - accuracy: 0.9927 - val_loss: 0.0582 - val_accuracy: 0.9755
Epoch 13/100
Epoch 14/100
Epoch 15/100
Epoch 16/100
3285/3285 [=====
    Epoch 17/100
3285/3285 [============] - 5s 2ms/step - loss: 0.0088 - accuracy: 0.9979 - val_loss: 0.1105 - val_accuracy: 0.9820
Epoch 18/100
Epoch 19/100
Epoch 20/100
3285/3285 [========
         =======] - 5s 1ms/step - loss: 0.0131 - accuracy: 0.9960 - val loss: 0.0897 - val accuracy: 0.9704
Epoch 21/100
3285/3285 [=======
         =======] - 5s 2ms/step - loss: 0.0348 - accuracy: 0.9900 - val_loss: 0.1953 - val_accuracy: 0.9603
Epoch 22/100
Epoch 23/100
Epoch 24/100
Epoch 25/100
Epoch 26/100
Epoch 27/100
Epoch 28/100
Epoch 29/100
3285/3285 [=====
     :============================== ] - 5s 2ms/step - loss: 0.0054 - accuracy: 0.9982 - val_loss: 0.0901 - val_accuracy: 0.9683
Epoch 30/100
Epoch 31/100
Epoch 32/100
Epoch 33/100
Epoch 34/100
Epoch 35/100
3285/3285 [===
    Epoch 36/100
Epoch 37/100
Epoch 38/100
3285/3285 [==
```

```
Epoch 40/100
Epoch 41/100
Epoch 42/100
Epoch 43/100
Epoch 44/100
Epoch 45/100
Epoch 46/100
Epoch 47/100
Epoch 48/100
Epoch 49/100
Epoch 50/100
Epoch 51/100
Epoch 52/100
Epoch 53/100
Epoch 54/100
Epoch 55/100
Epoch 56/100
Epoch 57/100
Epoch 58/100
Epoch 59/100
Epoch 60/100
Epoch 61/100
Epoch 62/100
Epoch 63/100
Epoch 64/100
Epoch 65/100
Epoch 66/100
Epoch 67/100
Epoch 68/100
Epoch 69/100
Epoch 70/100
Epoch 71/100
Epoch 72/100
Epoch 73/100
Epoch 74/100
Epoch 75/100
Epoch 76/100
Epoch 77/100
Epoch 78/100
Epoch 79/100
Epoch 80/100
```

```
3283/3283 I==
     =======| - 5$ 2M$/$lep - 10$$. 0.0017 - accuracy. 0.9997 - vai 10$$. 0.0397 - vai accuracy. 0.9870
Epoch 81/100
3285/3285 [==
    Epoch 82/100
3285/3285 [===
  Fnoch 83/100
Epoch 84/100
Epoch 85/100
Epoch 86/100
3285/3285 [=====
  Epoch 87/100
Epoch 88/100
Epoch 89/100
Epoch 90/100
3285/3285 [===
   Epoch 91/100
Epoch 92/100
Epoch 93/100
Epoch 94/100
Epoch 95/100
3285/3285 [====
   Epoch 96/100
3285/3285 [===
   Epoch 97/100
Epoch 98/100
Epoch 99/100
Epoch 100/100
```

## In [124]:

```
s= m.evaluate(X_test, Y_test)

1387/1387 [===========] - 0s 307us/step
```

## In [125]:

S

## Out[125]:

[0.04413533313056151, 0.9855803847312927]

## In [126]:

```
fig, ax = plt.subplots(1,1, figsize = (12, 8))
ax.set_xlabel('epoch')
ax.set_ylabel('Categorical Crossentropy Loss')
plt.title('Relu + Dropout')

# list of epoch numbers: epoch = 100
x = list(range(1,100+1))
vy = h.history['val_loss']
ty = h.history['loss']
plt_dynamic(x, vy, ty, ax)
```





## In [127]:

confusion\_matrix(Y\_test, m.predict(X\_test))

## Out[127]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f8e45026c50>



## In [128]:

m.save('model3')

# **Divide + Conquer Prediction**

## In [129]:

```
"total_acc_z"]

# Labelling the classes in y.

label = {0:'WALKING', 1:'WALKING_UPSTAIRS', 2:'WALKING_DOWNSTAIRS', 3:'SITTING', 4:'STANDING', 5:'LAYING'}
```

#### In [146]:

```
# Utility function to read the data from csv file
def _read_csv(filename):
  return pd.read_csv(filename, delim_whitespace=True, header=None)
# Utility function to load the load
def load_signals(subset):
  signals data = []
  filename = 'body_acc_x_{}.txt'.format(subset)
  signals data.append( read csv(filename).as matrix())
  filename = 'body_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_x_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'body_gyro_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total acc x {}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_y_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  filename = 'total_acc_z_{}.txt'.format(subset)
  signals_data.append(_read_csv(filename).as_matrix())
  # Transpose is used to change the dimensionality of the output,
   # aggregating the signals by combination of sample/timestep.
  # Resultant shape is (7352 train/2947 test samples, 128 timesteps, 9 signals)
  return np.transpose(signals_data, (1, 2, 0))
def load_y(subset):
   The objective that we are trying to predict is a integer, from 1 to 6,
  that represents a human activity. We return a binary representation of
  every sample objective as a 6 bits vector using One Hot Encoding
  (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)
  filename = 'y_{}.txt'.format(subset)
  y = _read_csv(filename)[0]
  return pd.get_dummies(y).as_matrix()
def load_data():
  Obtain the dataset from multiple files.
  Returns: X_train, X_test, y_train, y_test
  X_train, X_test = load_signals('train'), load_signals('test')
  y_train, y_test = load_y('train'), load_y('test')
  return X_train, X_test, y_train, y_test
# https://gist.github.com/greydanus/f6eee59eaf1d90fcb3b534a25362cea4
# https://stackoverflow.com/a/14434334
# this function is used to update the plots for each epoch and error
def plt_dynamic(x, vy, ty, ax, color = 'b'):
  ax.plot(x, vy, 'b', label = 'Validation Loss')
  ax.plot(x, vy, 'b', label = 'Validation Loss')
  ax.plot(x, ty, 'r', label = 'Train Loss')
  plt.grid()
  plt.legend()
  fig.canvas.draw()
```

## In [135]:

```
# Loading the train and test data

X_train, X_test, Y_train, Y_test = load_data()

print('X_train shape is: ',X_train.shape)
```

```
print('Y_train shape is: ',Y_train.shape)
print('X_test shape is: ',X_test.shape)
print('Y_test shape is: ',Y_test.shape)
X_train shape is: (7352, 128, 9)
Y_train shape is: (7352, 6)
X_test shape is: (2947, 128, 9)
Y_test shape is: (2947, 6)
In [136]:
# Importing tensorflow
np.random.seed(42)
import tensorflow as tf
tf.set_random_seed(42)
In [137]:
# Configuring a session
session_conf = tf.ConfigProto(intra_op_parallelism_threads= 1,
                  inter_op_parallelism_threads= 1)
In [138]:
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set session(sess)
In [139]:
# Utility function to count the number of classes
def _count_classes(y):
  return len(set([tuple(category) for category in y]))
In [140]:
timesteps = len(X_train[0])
input\_dim = len(X\_train[0][0])
n_classes = _count_classes(Y_train)
print(timesteps)
print(input_dim)
print(len(X_train))
128
7352
In [143]:
from keras.models import load_model
model1 = load_model('model1')
model2 = load_model('model2')
model3 = load_model('model3')
In [147]:
# https://github.com/UdiBhaskar/Human-Activity-Recognition--Using-Deep-NN
#predicting output activity
def predict(X):
  ##predicting whether dynamic or static
  predict_binary = model1.predict(X)
  f_predict_binary = np.argmax(predict_binary, axis=1)
  #static data filter
  X_static = X[f_predict_binary==1]
  #dynamic data filter
  X_dynamic = X[f_predict_binary==0]
  #predicting static activities
  predict_static = model2.predict(X_static)
  f_predict_static = np.argmax(predict_static,axis=1)
```

```
#adding 3 because need to get inital prediction lable as output
f_predict_static = f_predict_static + 3
#predicting dynamic activites
predict_dynamic = model3.predict(X_dynamic)
f_predict_dynamic = np.argmax(predict_dynamic,axis=1)
#adding 1 because need to get inal prediction lable as output
f_predict_dynamic = f_predict_dynamic
##appending final output to one list in the same sequence of input data
i,j = 0,0
final_predict = []
for q_p in f_predict_binary:
  if q_p == 1:
     final_predict.append(f_predict_static[i])
    i = i + 1
  else:
    final_predict.append(f_predict_dynamic[j])
    j = j + 1
return final_predict
```

#### In [149]:

```
train_pred = predict(X_train)
test_pred = predict(X_test)

print('Accuracy of train data',accuracy_score(np.argmax(Y_train,axis=1),train_pred))
print('Accuracy of validation data',accuracy_score(np.argmax(Y_test,axis=1),test_pred))
```

Accuracy of train data 0.9895266594124048 Accuracy of validation data 0.9528333898880217

## In [183]:

#### Out[183]:

Text(0.5, 1.0, 'Confusion matrix')



Y Predicted Class

## **Conclusions**

Due to low computation power (Colab not supported on windows vista), hyperparameter tuning via GridSearchCV was not possible, hence tried different architectures.

## In [186]:

In []: