03 Crystal Structures

- Do this over ~ 3 weeks (and three sets of notes)
- Week One
 - Introduction
 - Unit cells
 - Directions/planes/packing/density
- Week Two
 - Symmetries
- Week Three
 - X-ray diffraction and crystal structure determination

Crystal Structure - I

- Introduction
 - What are crystals?
 - Why are we interested?
 - Where do we get information?
- Layers & Stacking
- Unit Cells
 - Allowed shapes
 - Unit cell types
 - Bravais Lattices
- BCC / FCC / HCP Crystals
- Positions, Directions, and Planes in Crystals
- Examples of Different Crystal Types

What is a Crystal?

- Arrangement of atoms with repeated pattern in three dimensions.
- Array of points in the crystal look identical (same surrounding atoms, same orientation)
- Examples:
 - gems (diamond, ruby)
 - ceramics (silicates, alumina)
 - metals (iron, copper)
 - even polymers.
- The opposite of a crystal is an amorphous or glassy solid. On an atomic scale these looks like frozen liquids.
- Can be tough to spot from external appearance
 - e.g. a smooth shaped piece of glass is NOT a crystal;
 - e.g. A rough irregularly shaped particle may consist of crystalline material.

Metals have Crystals

- Image below shows crystal grains in copper
- Polish and etch to reveal grain boundaries

Why do we care

- The anisotropy of crystals has many important applications in Pharma industry:
 - The actual crystal
 structure of an API is
 critical (a particular
 polymorph only can be
 patented)
 - The appearance of an unknown crystal form may make the drug unmarketable

Information on Crystals

- Cambridge Structural Database (CSD):
 - Information on >1 million crystals (1046700, March 2020)
 - Nomenclature (how to name them)
 - Freely available
 - http://www.ccdc.cam.ac.uk/

Layers and Stacking

- We'll talk about metals here
 - Not so fussy about direction of bonds
 - Behave like hard spheres
- Lay spheres out on a table so they are packed as close as possible in one layer
 - Two possibilities for next layer

Layers and Stacking

- There are two ways to stack layers
 - ABABABABA
 - Creates form called Hexagonal Close Packed (HCP)
 - ABCABCABC
 - Creates form called Face Centred Cubic(FCC)

□ Any other stacking is less compact

Unit Cells

- Fundamental building blocks of crystals
- Arrangement of blocks must fill all space
- Seven different shapes of unit cell allowed namely; cubic, tetragonal, rhombohedral, hexagonal, orthorhombic, monoclinic, triclinic.

Parameters for Unit Cells

- cubic; a=b=c, $\alpha=\beta=\gamma=90^{\circ}$
- tetragonal; $a=b\neq c$, $\alpha=\beta=\gamma=90^{\circ}$
- orthorhombic; $a\neq b\neq c$, $\alpha=\beta=\gamma=90^{\circ}$
- rhombohedral; a=b=c, α = β = γ \neq 90°
- hexagonal; $a=b\neq c$, $\alpha=\beta=90^{\circ}\gamma=120^{\circ}$
- monoclinic; $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \neq \beta$
- triclinic; $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Symmetries within Unit Cells

- As well as the symetries of their shapes, unit cells can have symmetries due to their internal structures
- Gives four types of unit cell: simple (P), face centered (F), body centered (I), and base centered (C)

Bravais Lattices

- Not all of the seven cell shapes can have all four types of internal symmetry
- For instance, the face centered tetragonal structure can be reduced to the body centered tetragonal structure
- There are fourteen distinct possibilities called the Fourteen Bravais lattices
- The fourteen lattices contain all the necessary translational symmetries to describe every possible crystal structure in nature

CUBIC

$$a = b = c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

TETRAGONAL

$$a = b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

F

ORTHORHOMBIC

$$a \neq b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

HEXAGONAL

$$a = b = c$$

 $\alpha = \beta = \gamma \neq 90^{\circ}$

4 Types of Unit Cell

 $\mathbf{\dot{P}} = Primitive$

I = Body-Centred

MONOCLINIC

$$a \neq b \neq c$$

 $\alpha = \gamma = 90^{\circ}$
 $\beta \neq 120^{\circ}$

 $a = b \neq c$

 $\gamma = 120^{\circ}$

 $\alpha = \beta = 90^{\circ}$

Р

F = Face-CentredC = Side-Centred7 Crystal Classes → 14 Bravais Lattices

TRICLINIC

Principle Metallic Crystal Structures

- Because of the nature of the metallic bond the principle requirement is for a high density
- Three arrangements satisfy this criterion: body centered cubic (BCC), face centered cubic (FCC), and hexagonal close packed (HCP).

Be Mg Na Mn Fe Co Ni Cu Ca Sc Ti Zn V Cr Ga Ru Rh Pd Ag Nb Mo Tc Zr Cd Rb Sr Hg ₩ Ta Re Au Cs Ba Hf Os Ir Pt TI

- Hexagonal Close Packed
- Body Centered Cubic
- Face Centered Cubic

FCC Structure & Layer Stacking

1443	APF	CN	atoms/cell
BCC	0.68	8	2
FCC	0.74	12	4
НСР	0.74*	12	6

$$\mathbf{APF} = \mathbf{atomic\ packing\ fraction} = \frac{\text{volume\ of\ atoms\ in\ unit\ cell}}{\text{volume\ of\ unit\ cell}}$$

CN = coordination number

* *ideal*, *when* c/a = 1.633

Lattice Constants of Some BCC Metals

D. S. All	La	ttice Constant	Density
Metal	atomic mass	a (nm)	(g cm ⁻³)
Chromium	52.00 amu	0.289	7.19
Iron	55.85 amu	0.287	7.86
Molybdenum	95.94 amu	0.315	10.2
Potassium	39.10 amu	0.533	0.86
Sodium	22.99 amu	0.429	0.97
Tantalum	180.95amu	0.330	16.6
Tungsten	183.85amu	0.316	19.3
Vanadium	50.94 amu	0.304	6.1

Lattice Constants of Some FCC Metals

200	La	Lattice Constant Density		
Metal	atomic mass	a (nm)	(g cm ⁻³)	
Aluminium	26.98amu	0.405	2.70	
Copper	63.55 amu	0.3615	8.96	
Gold	196.97amu	0.408	19.3	
Lead	207.18amu	0.495	11.4	
Nickel	58.71 amu	0.352	8.9	
Platinium	195.09amu	0.393	21.4	
Silver	107.87amu	0.409	10.5	

Positions, Directions, and Planes within Crystals

- Position: specifies a point within a unit cell. Expressed as fractions of lattice vectors. Notation is (1/4, 0, -2¹/₂)
- Direction: specifies the direction of a line. Expressed as a set of integers.
 Notation is [210] where 1 means -1.
- Planes: specifies surfaces within the crystal. Expressed as a set of integers known as the Miller indices. Notation is (210).

Hints for Positions

- by convention, take the position (0,0,0) to be in the bottom left hand corner at the back
- remember which axes point in which directions.

- positions can be fractions; $2^{1}/_{2}$, $-^{3}/_{4}$, $^{8}/_{3}$, etc
- remember the notation; (x,y,z)
- positions with negative indices or indices >1 will be outside the unit cell

Hints for Directions

- If a direction vector [xyz] begins at position (0,0,0) then it will end at (x,y,z).
- Remember that [210] = [420] = [840]. The length of the direction vector isn't important, just where it's pointed.
- Directions are never expressed using fractions. They can always be multiplied by a common denominator to clear all fractions; $\binom{1}{2} \binom{1}{3} \binom{1}{4}$ = [643] (multiplying by 12)

Hints for Planes

- sets of parallel planes all have the same Miller indices
- choose one of the planes that does not pass through the point (0,0,0)
- see where the plane cuts the x, y, and z axes (
 the intercepts, could be infinity)
- get the reciprocals of these intercepts
- clear fractions

