Assignment Test-3

Q.1 The plane x+2y-3z-t=0 in R^4 is the null space of the matrix _____.

A. [1 2 -3 -1] B. [-1 -2 3 1] C. [2 -3 -1] D. None of these

Q.2 The vectors $V_1=w_2-w_3$, $V_2=w_1-w_3$ and $V_3=w_1-w_2$ are LD as ______.

A. $2V_1-V_2-3V_3=0$ B. $V_1+V_2-3V_3=0$ C. $V_1-V_2+V_3=0$ D. None of these

Q.3 The set of n vectors in R^m must be LD if _____.

A. n < m B. $n \le m$ C. $n \ge m$ D. n > m

Q.4 A set of vectors are linearly independent if _____.

A. rank=number of vectors B. rank>number of vectors

C. rank<number of vectors D. None of these

Q.5 The left nullspace of a matrix A of order m×n contains all vector x such that -----.

A. $A^{T}x=0$ B. Ax=0 C. Both A and B D. None of these

Q.6 If A is a zero matrix of order n, then_____.

A. $C(A^T)$ = origin of R^n B. $C(A^T)$ = origin of R^m C. $C(A^T)$ = R^n D. None of these

Q.7 If A is an m×n matrix with rank r, then _____.

A. dimN(A)=n B. dimN(A)=r C. dimN(A)=n-r D. dimN(A)=m-r

Q.8 The right inverse of a matrix A exists if the matrix A is a _____.

A. full row rank matrix B. full column rank matrix

C. Both A and B D. None of these

Q.9 If
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
, then the basis of $C(A)$ is _____.

(A)
$$\{(1,1,1),(2,1,1)\}$$
 (B) $\{(2,1,1),(3,1,1)\}$ (C) $\{(2,1,1),(4,1,1)\}$ (D) $\{(3,1,1),(4,1,1)\}$

Q.10 If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$$
, then the basis of $C(A^T)$ contains _____ no. of elements.

* * * *