LECTURE 2 STATISTICAL NOTATIONS

PSY2002 Hye Won Suk

NOTATION FOR A VARIABLE

• In statistics, usually scores for a particular variable are represented by the letter *X*.

• *X* : midterm score (out of 100)

• A set of scores can be presented in a column that is headed by *X*.

X (midterm)
65
68
62
59
71

SUBSCRIPT NOTATION

- To denote a particular person's score on the variable, a subscript is often used.
 - X_i : the score on the variable X for the ith person

• <i>X</i> ₁	=	65
-------------------------	---	----

•
$$X_2 = 68$$

•
$$X_3 = 62$$

•
$$X_4 = 59$$

•
$$X_5 = 71$$

X (midterm)
65
68
62
59
71

SUMMATION NOTATION

- Σ (read "sigma"), the Greek upper case letter S, is used to stand for summation.
- Σ instructs us to sum the elements of a sequence of numbers. A typical element of the sequence which is being summed appears to the right of the summation sign.
- The variable of summation is represented by an index which is placed beneath the summation sign. The index is often represented by i.

SUMMATION NOTATION

summation
$$\sum_{i=1}^{n} X_i \qquad \text{typical element}$$
 index of summation lower limit of summation (starting point)

$$\sum_{i=1}^{n} X_i = X_1 + X_2 + \dots + X_n$$

SUMMATION NOTATION

Examples

X (midterm)		
65		
68		
62		
59		

71

$$\sum_{i=1}^{3} X_i = X_1 + X_2 + X_3 = 65 + 68 + 62 = 195$$

$$\sum_{i=2}^{5} X_i = X_2 + X_3 + X_4 + X_5 = 68 + 62 + 59 + 71$$
$$= 260$$

A COUPLE OF VARIABLES

- When a couple of variables are measured for each person, the observed scores (or data) can be presented as two lists labeled X and Y.
 - *X* : midterm (out of 100)
 - Y: assignment (out of 180)

X (midterm)	Y (assignment)
65	150
68	144
62	132
59	125
71	174

MULTIPLE VARIABLES

- When there are multiple variables, the following doublesubscript notation can be used.
 - X_1 : Variable I, X_{1i} : The score of person i on Variable I
 - X_2 : Variable 2, X_{2i} : The score of person i on Variable 2
 - X_3 : Variable 3, X_{3i} : The score of person i on Variable 3
 - X_4 : Variable 4, X_{4i} : The score of person i on Variable 4
 - And so on...
 - If there are more than 10 variables or 10 persons, a comma can be used to separate the two subscripts. E,g.,

$$X_{2,15}$$
 $X_{10,7}$

ARITHMETIC OPERATIONS WITH Σ

- Sometimes, the summation process is included with several other arithmetic operations.
 - Order of arithmetic operations
 - I. Any calculation contained within parentheses
 - 2. Squaring
 - 3. Multiplying and/or dividing
 - 4. Summation using the notation Σ
 - 5. Any other addition and/or subtraction

• Find the answer for each expression.

$$\sum_{i=1}^{5} 6 =$$

$$\sum_{i=1}^{10} 1 =$$

X	Y
5	1
8	4
6	2
6 3	5
7	3
<u> </u>	

$$\sum_{i=1}^{ZX_i}$$

$$2\sum_{i=1}^{5}X_{i}$$

$$\sum_{i=1}^{5} (X_i + 3)$$

$$\sum_{i=1}^{5} (2X_i + 3)$$

X	Y
5	1
8	4
6	2
3	5
7	3

$$\sum_{i=1}^{5} X_i + 3$$

\overline{X}	Y
5	1
8	4
6	2
3	5
7	3

$$\sum_{i=1}^{5} X_i^2$$

$$\left(\sum_{i=1}^{5} X_i\right)^2$$

$\sum_{i=1}^{5} (2X_i + 3Y_i)$	Y	X
$\sum_{i=1}^{2N_i+3I_i}$	1	5
	4	8
	2	6
5 5	5	3
$2\sum X_i + 3\sum Y_i$	3	7
i=1 $i=1$		

• For the following data, find the answer for each expression.

 $\sum_{i=1}^{5} X_i Y_i$

X	Y
5	1
8	4
6	2
3	5
7	3

$$\sum_{i=1}^{5} X_i \sum_{i=1}^{5} Y_i$$

Y
1
4
2
5
3

$$-\sum_{i=1}^{5} (X_i - 6)^2$$

SUMMARY

- Notation for variables
- Subscript notation
- Summation notation
- Arithmetic operations with summation notation

$$\sum_{i=1}^{n} a = na$$

$$\sum_{i=1}^{n} (aX_i + b) = a \sum_{i=1}^{n} X_i + nb$$

$$\sum_{i=1}^{n} (aX_i + bY_i) = a\sum_{i=1}^{n} X_i + b\sum_{i=1}^{n} Y_i$$

$$\sum_{i=1}^{n} X_i^2 \neq \left(\sum_{i=1}^{n} X_i\right)^2$$

$$\sum_{i=1}^{n} X_i Y_i \neq \left(\sum_{i=1}^{n} X_i\right) \left(\sum_{i=1}^{n} Y_i\right)$$