Algorithme exact de calcul du MDS

C'est quoi un MDS?

MDS = Minimum Dominating Set

<u>Définition</u>: Dans un graphe G, le MDS est le plus petit sous-ensemble D de sommet tel que tout les sommets de G soient dominés par D.

Notion de "dominé"

Un sommet v1 est dominé par un sommet v2 si :

- Soit v1=v2
- Soit v1 est voisin de v2 → L'arc u(v1, v2) existe.

L'algorithme de calcul du MDS

- Un algorithme branch & bound avec :
 - G', le graphe réduit de G
 - D_f, la solution finale partielle
 - U, l'ensemble des sommets de G' non dominé par
 D_f
 - D₀, la solution dite "imcumbent"

$D_0 = \emptyset$

$D_0 = \emptyset$

$D_0 = \{8\}$

$D_0 = \{8\}$

$D_0 = \{8\}$

$D_0 = \{8;5\}$

$D_0 = \{8;5\}$

$D_0 = \{8;5;4\}$

$D_0 = \{8;5;4;7\}$

$D_0 = \{8;5;4;7\}$

L'algorithme de calcul du MDS

- Un algorithme branch & bound avec :
 - G', le graphe réduit de G
 - D_f, la solution finale partielle
 - U, l'ensemble des sommets de G' non dominé par
 D_f
 - $-D_0 = \{8;5;4;7\}$

"Calcul" de Df & Création de G'

Le graphe réduit G' de G est le graphe dans lequel on identifie les sommets v_1 devant forcément appartenir au MDS (et qui appartiendront à D_1), et on supprime tout les sommets v_2 qui n'ont pas de voisin que v_1 n'a pas

Divisions des voisins

- $N_1(v)$: Ensemble des voisins qui ont un voisin n'appartenant pas à N(v)
- $N_2(v)$: Ensemble des voisins qui ont un voisin en commun avec $N_1(v)$
- $N_3(v)$: Ensemble des voisins qui ne sont pas dans $N_1(v)$ U $N_2(v)$

→ Autrement dit, on va mettre tout les sommets qui ont $N_3(v) \neq \emptyset$ dans D_f et transformer $N_3(v)$ et $N_2(v)$ quand $N_3(v) \neq \emptyset$ en v'

$D_f = {3;8}$

Graphe G' réduit de G

L'algorithme de calcul du MDS

- Un algorithme branch & bound avec :
 - G', le graphe réduit de G
 - $-D_f = {3;8}$
 - $U = \{1;5;6\}$
 - $-D_0 = \{8;5;4;7\}$

Problème?

Trop d'embranchements possibles!!

- -> N'importe quel sommet non présent dans D_f pourrait intégrer la solution finale
 - -> On veut réduire le nombre de branches

Fonction ReduceBranches

 Elle prend les mêmes paramètres que la fonction branch & bound : G', D_f, U, D₀

 L'idée c'est de réduire le nombre de sommet sur lesquels la suite de la solution D_f pourrait se baser → Réduire le nombre de branche à explorer.

Pour commencer...

 On va partitionner le sous-ensemble V \ D en 4 sous-ensembles.

	S1	S2	S3	S4
Dominé	NON	OUI	NON	OUI
"branched"	NON	NON	OUI	OUI

Tout les sommets de S1 U S2 sont candidats à intégrer Df et à faire parti du sous-ensemble de branches

Les données...

- Un ensemble P de sommets (initié à \emptyset), avec P \subseteq U
- Un ensemble C de sommets, avec C = S1 U S2
 - → Autrement dit, C est l'ensemble de sommets "unbranched"
- Π l'ensemble de k IS de G[P]²

NB: U = S1 U S3

G[P]² c'est quoi ?

C'est le hop-2 graph du sous-graphe G[P] de Ginduit par P

→ Un hop-2 graph de G, c'est un graphe dont les sommets qui ont une "distance" de 2 entre eux possèdent un arc.

Exemple de hop-2 graph

Graph G d'exemple 2-hop graph de G

 \mathbf{B}

D

G[P]² c'est quoi ?

Admettons $P = \{A;B;D;F\}$

Graph G

Graph G[P]

Graph G[P]²

G[P]² c'est quoi ?

Admettons $P = \{A;B;C;F\}$

Graph G

Graph G[P]

Graph G[P]²

 $G[P]^2 \neq G^2[P]$

Graph G²[P]

Identifier l'ensemble P

On note I_j un IS de $G[P]^2$.

→ On cherche à obtenir un $|I_j| \ge |D_0| - |D_f|$

Propriété:

Soit G = (V,E) un graphe Soit G^2 le 2-hop graphe correspondant Si I est IS ("Independent Set") de G^2 , alors $|I| \le |MDS(G)|$

Identifier l'ensemble P

On note I_j un IS de $G[P]^2$.

- → On cherche à obtenir un $|I_j| \ge |D_0| |D_f|$
- \rightarrow Si $|I_j| \ge |D_0| |D_f|$ alors $|MDS(G[P])| \ge |D_0| |D_f|$
 - $\rightarrow |\mathsf{MDS}(\mathsf{G}[\mathsf{P}])| + |\mathsf{D}_\mathsf{f}| \ge |\mathsf{D}_\mathsf{0}|$

Note : On peut supprimer toutes les branches qui incluent P pour compléter Df car ça ne sera pas mieux que D_0 .

Comment "remplir" P?

On va, à l'aide d'une heuristique, calculer la somme de l'impact de l'insertion d'un sommet u présent dans U sur la cardinalité de tout les IS non vide. Si elle est positive, alors on insère u dans P

$$\sum_{j=0}^{k} \delta(I_{j}; u) \text{ where } I_{k} \text{ first empty set}$$

$\delta(I_j; u)$ c'est quoi?

$$\bullet \quad \delta(|\mathbf{l}_{j}; \mathbf{u}|) = \begin{pmatrix} 1 & u \in S_{1} \wedge N_{1} = \emptyset \wedge N_{2} = \emptyset \\ 0 & u \in S_{1} \wedge N_{1} = \emptyset \wedge N_{2} \neq \emptyset \\ 1 - |N_{1}| & u \in S_{1} \cup S_{2} N_{1} \neq \emptyset \\ 0 & u \in S_{2} \wedge N_{1} = \emptyset \\ 0 & u \in S_{3} \wedge N_{2} \neq \emptyset \\ 1 & u \in S_{3} \wedge N_{2} = \emptyset \end{pmatrix}$$

$$N_1 = N_G(u) \wedge I_j$$

Voisins de u dans Ij

$$N_2 = N_G[u] \wedge N_G[I_i] \wedge P \wedge C$$

Voisins communs à u et I_j dans P (et non branché)

Conséquence du remplissage de P

Lorsque l'on ajoute un sommet u à P, ∀ Ij non vide

- $\delta(I_j; u) > 0 \rightarrow I_j \leftarrow I_j \cup \{u\}$
- δ (I_j; u) = 0 → On ne fait rien
- $\delta(I_j; u) < 0 \rightarrow I_j \leftarrow retire$ |Voisins de u dans I_j | 1 sommets conflictuels de I_i

Exemple avec notre graphe

Pour rappel:

- $-D_f = {3;8}$
- $U = \{1;5;6\}$
- $-D_0 = \{8;5;4;7\}$

Graphe G' réduit de G

$$P = \emptyset$$
; $\forall j, l_i = \emptyset$

Donc: $P \leftarrow P \cup \{6\}$; $I_0 \leftarrow I_0 \cup \{6\}$

u = 5

P = {6};
$$I_0$$
 = {6} \forall $j>0$, I_j = \emptyset

$$\sum_{i=0}^{k} \delta(I_j; u) \text{ where } I_k \text{ first empty set} : \delta(I_0; u)$$

$$N_1 = \{1 ; 7\} \cap \{6\} = \emptyset$$

$$N_2 = \{1;5;7\} \cap \{1;6;7\} \cap \{6\} = \emptyset$$

$$u \in S_1$$

$$N_1 = \emptyset$$
; $N_2 = \emptyset$; $u \in S_1$

$$\delta(\mathsf{I}_{\mathsf{j}}\;;\;\mathsf{u}\;) = \begin{pmatrix} 1 & u \in S_{1} \wedge N_{1} = \varnothing \wedge N_{2} = \varnothing \\ 0 & u \in S_{1} \wedge N_{1} = \varnothing \wedge N_{2} \neq \varnothing \\ 1 - |N_{1}| & u \in S_{1} \cup S_{2} N_{1} \neq \varnothing \\ 0 & u \in S_{2} \wedge N_{1} = \varnothing \\ 0 & u \in S_{3} \wedge N_{2} \neq \varnothing \\ 1 & u \in S_{3} \wedge N_{2} = \varnothing \end{pmatrix}$$

$$P \leftarrow P \cup \{u\}; P = \{6;5\}$$

Insère t-on u dans Io?

On a déjà calculé $\delta(I_0; u) = 1$ donc on insère $I_0 \leftarrow I_0 \cup \{u\}; I_0 = \{6;5\}$

u = 1

P = {6;5};
$$I_0$$
 = {6;5}; \forall j>0, I_j = Ø
$$\sum_{k=1}^{k} \delta(I_j; u) \text{ where } I_k \text{ first empty set } : \delta(I_0; u)$$

$$\begin{split} N_1 &= \{6 \; ; \; 5\} \; \cap \; \{6 \; ; \; 5\} = \{6 \; ; \; 5\} \\ N_2 &= \{1 \; ; \; 5 \; ; \; 6\} \; \cap \; \{1 \; ; \; 5 \; ; \; 6 \; ; \; 7\} \; \cap \; \{6 \; ; \; 5\} = \{6 \; ; \; 5\} \\ u \; \in S_1 \end{split}$$

• $N_1 = \{6; 5\}; N_2 = \{6; 5\}; u \in S_1$

$$\delta(\mathsf{I}_{\mathsf{j}}\,;\,\mathsf{u}\,) = \begin{bmatrix} 1 & u \in S_{1} \wedge N_{1} = \varnothing \wedge N_{2} = \varnothing \\ 0 & u \in S_{1} \wedge N_{1} = \varnothing \wedge N_{2} \neq \varnothing \\ 1 - |N_{1}| & u \in S_{1} \cup S_{2}N_{1} \neq \varnothing \\ 0 & u \in S_{2} \wedge N_{1} = \varnothing \\ 0 & u \in S_{3} \wedge N_{2} \neq \varnothing \\ 1 & u \in S_{3} \wedge N_{2} = \varnothing \end{bmatrix}$$

 $\delta(I_0; u) = 1 - |\{6; 5\}| = -1 : P \leftarrow P$

Insère t-on u dans un I_j?

Comme on a pas inséré u dans P, on ne l'insère dans aucun I_i.

On récupère le plus grand cardinal de tout les I_j, independent set de G[P]² qu'on note lb

Si Ib $< |D_0| - |D_f| \rightarrow On retourne C (S1 U S2)$

Si un tel set P a été identifié premièrement, il n'existera jamais de set P qui respectera cette condition, on ne peut donc pas réduire le nombre de branches (c'est pourquoi on return C)

Dans notre exemple : $\max\{|I_j| \mid I_j \in \Pi\}$ est 2, et $|D_0|$ et $|D_f|$ est 2, donc elle n'est pas inférieur. On doit donc continuer...

P encore plus grand?

On va chercher à élargir P

 \rightarrow On va insérer "virtuellement" dans P un à un les sommets de S2 et regarder l'effet que ça a sur le cardinal de chacun des I_i .

• Si max{|I_j| | I_j $\in \Pi$ } < |D_0| - |D_f| alors on annule le changement sur tout les I_i et sur P

On a bientôt finit...

Une fois que nous sommes passés sur tout les sommets de S2, on return C \ P qui constituera les branches sur lesquels on travaillera.

P =
$$\{6;5\}$$
; $I_0 = \{6;5\}$
S2= $\{2;7;9\}$
 $\delta(I_0;9) = 0 \text{ car } N_1 = \emptyset \text{ et } 9 \in S2$

La cardinalité de l₀ ne change pas donc P ← P U {9}

$$P = \{6; 5; 9\}; I_0 = \{6; 5\}$$

 $S2=\{2; 7; 9\}$

δ(I₀; 7) = 1-|I₀| = -1 car N₁ = {5;6} et 9 ∈ S1 U S2
 → On retire |N(7) ∩ I₀|-1=1 sommet « conflictuel » à I₀ (5 ou 6)

• La cardinalité de I_0 devient $1 < |D_0| - |D_f|$ donc on annule le changement sur I_0 et $P \leftarrow P$

$$P = \{6; 5; 9\}; I_0 = \{6; 5\}$$

 $S2=\{2; 7; 9\}$

δ(I₀; 2) = 1-|Iᵢ| = -1 car N₁ = {5} et 7 ∈ S1 U S2
 → On retire |N(2) ∩ I₀|-1=0 sommet « conflictuel » à I₀ (5 ou 6)

La cardinalité de l₀ est inchangé donc P ← P U {2}

On fait quoi avec nos branches?

• On ordonne B comme ci-contre |N(b₁) ∪ U| ≥ |N(b₂) ∪ U| ≥ ...

 \forall b_i \in B, on rappelle la fonction de branch & bound

 \rightarrow BnB(G'; D_f ∪ {b_i}; U ∪ {N[b_i]}; D₀) et on insèrera son résultat final dans un ensemble D'

précédent...

Si $|D'| < |D_0|$, alors $D_0 \leftarrow D'$ et on renvoie D_0 à l'appel récursif

Si c'était le dernier appel récursif alors Do est le MDS du graphe

Dans notre exemple...

 $B = C \setminus P = \{1;2;5;6;7;9\} \setminus \{2;5;6;9\} = \{1;7\}$ b₁ = 7 car 7 a 2 voisins non dominé et un indice plus élevé

 $b_2 = 1$ car 1 a 2 voisins non dominé mais un indice moins élevé

On relance BnB avec $D_f=\{3;8;7\}$

b_1

 $P=\{1\}$; $I_0=\{1\}$

Après élargissement de P : on retourne P = $\{1;5;6\}$

Puis on les ordonne comme ci contre : {6;5;1}

Puis on lance BnB avec $D_f = \{3;8;7;6\}$

 $U = \emptyset \rightarrow On$ retourne D_f qui est de même taille que D_0 donc on abandonne cette branche et on backtrack

b_2

BnB avec $D_f = \{3; 8; 1\}$

 $U = \emptyset$ \rightarrow On retourne D_f qui plus petit que D_0 donc $D_0 \leftarrow D_f$

Il n'y a plus de branche à explorer, on renvoie donc comme résultat D_0 qui est le MDS de G.