ВАРИАНТ 1

1.	1	1.2	1.3	1.4	1.5	1.6	2	3	4.1	4.2	5.1	5.2	5.3	6.1	6.2	6.3	\sum

Фамилия, имя студента	Группа
Фамилия преподавателя, ведущего семинары	

- 1. Решение каждой задачи должно быть обосновано, ответы без обоснования не принимаются и не оцениваются.
- 2. В некоторых задачах помимо решения требуется дать краткий ответ "да" или "нет" это указано в условии после числа баллов за задачу.
- **3.** Можно без доказательства использовать факт \mathbf{NP} -полноты задач, разобранных на лекциях, на семинарах и описанных в каноническом задании по курсу.

Задача 1. $(6 \times 1 \text{ баллов})$

Задача 1. 1. (1 балл) Да Нет

Верно ли, что язык VERTEX — COVER (k_0) , состоящий из описаний графов G, в которых есть вершинное покрытие фиксированного размера k_0 , является **NP**-полным? Положительное целое число k_0 задано и не зависит от входа.

Задача 1. 2. (1 балл) Да Нет

Рассмотрим дополнение класса **NP** до множества всех языков над алфавитом Σ , т. е. $2^{\Sigma^*} \setminus \mathbf{NP}$. Верно ли, что полученное таким образом множество образует класс **co**–**NP**?

Задача 1. 3. (1 балл) Да Нет

Рассмотрим класс языков $\widetilde{\mathbf{NP}}$, который состоит из всех таких языков L, что существует вычислимая полиномиально по длине первого аргумента функция R(x,y), такая что

$$x \in L \Longleftrightarrow \exists y: \ |y| \leq 2^{|x|^2}$$
 и $R(x,y) = 1$

Верно ли, что $\widetilde{\mathbf{NP}} = \mathbf{NP}$?

Задача 1. 4. (1 балл) Да Нет

Для языка $L \subset \Sigma^*$ определим язык $\mathsf{AND}(L) = (L\#)^* = \{w\# \mid w \in L\}^* \subset (\Sigma \cup \{\#\})^*$, где символ $\# \notin \Sigma$ — разделитель.

Верно ли, что если языки $L_1 \subset \Sigma_1^*$ и $L_2 \subset \Sigma_2^*$ таковы, что $L_1 \leq_P L_2$, то $\mathsf{AND}(L_1) \leq_P \mathsf{AND}(L_2)$? Здесь \leq_p обозначает полиномиальную сводимость по Карпу.

Задача 1. 5. (1 балл) Да Нет

Корректна ли следующая сводимость языка графов, раскрашиваемых в три цвета, 3 — COLOR к языку графов, раскрашиваемых в два цвета, 2 — COLOR: добавим новую вершину и соединим её со всеми вершинами исходного графа. Тогда новый граф можно окрасить в 3 цвета тогда и только тогда, когда исходный можно было окрасить в 2 цвета.

При положительном ответе приведите обоснование записанной сводимости. В противном случае — укажите **явное место ошибки**.

Задача 1. 6. (1 балл) Да Нет

Пусть для положительных, всюду определённых и имеющих обратные, функций f(x) и g(x) выполнено $f \sim g$, т. е. $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$. Верно ли, что $f^{-1} \sim g^{-1}$?

Задача 2. (3 балла) Оцените (в терминах Θ -обозначений) глубину дерева рекурсивных вызовов для рекуррентного соотношения

$$T(n) = T\left(\left\lfloor \frac{n}{3} - \log_3 n \right\rfloor\right) + 1, \qquad T(n) = 1, \ n \le 5$$

Рассуждение без учёта округления и сдвига аргумента оцениваются из 2 баллов. При использовании свойства монотонности необходимо привести обоснование.

Ответ должен быть приведён в замкнутой форме u не содержать, например, знака \sum .

Задача 3. (4 балла) Да Нет Является ли **NP** полным язык HC(4) описаний графов на $n \ge 4$ вершинах, в которых есть по крайней мере 4 гамильтоновых цикла?

Два гамильтоновых цикла, отличающиеся направлением обхода или циклическим сдвигом вершин в записи этих циклов, считаются одинаковыми.

Задача 4. (2+2 балла) Рассмотрим последовательности натуральных чисел a_n и b_n , определённые из равенства:

 $\left(1+\sqrt{3}\right)^n = a_n + \sqrt{3} \ b_n$

Задача 4. 1. (2 балла) Получите по одному линейному рекуррентному уравнению с постоянными коэффициентами для каждой из последовательностей a_n и b_n .

Задача 4. 2. (2 балла) Найдите явные аналитические формулы для a_n и b_n как функций от n. Сравните (в терминах $O, o, \Omega, \omega, \Theta$) асимптотики a_n и b_n .

Задача 5. (2+2+3 баллов) Пусть имеется бесконечная вправо лента S, ячейки которой пронумерованы числами $0,1,2,\ldots$ и т. д. Каждая ячейка может принимать два значения — либо 0, либо 1; изначально во всех ячейках записан 0.

Пусть дан набор из m двоичных строк a_1, \ldots, a_m — шаблонов. С помощью шаблонов можно определить следующие операции над лентой: можно приложить шаблон a_i к произвольной позиции j на ленте и инвертировать все значения ленты, которые были покрыты символом 1, т. е., ячейка j+k инвертируется если $a_i[k]=1$. Назовём такую операцию uнверсией c позиции j по шаблону a_i или просто uнверсией.

Мы хотим решить следующую задачу: можно ли, используя инверсии по заданным шаблонам a_1, \ldots, a_m , преобразовать (нулевую) ленту S к ленте S_b , на которой в начале записана заданная двоичная строка b, а остальные позиции — нули. Формально нужно найти такой набор пар $(i_1, j_1), \ldots, (i_n, j_n)$, что если последовательно применить к нулевой ленте S инверсии с позиции j_k по шаблону $a_{i_k}, k = 1, \ldots, n$, то в итоге получим ленту S_b (т. е., в j-й ячейке ленты после всех инверсий будет стоять символ b[j] при j < |b| и нуль в противном случае).

Если такого набора не существует, то алгоритм должен сообщить об этом.

Задача 5. 1. (2 балла) Постройте линейный алгоритм решения указанной задачи для конкретного случая, когда шаблонов m=10 и они имеют вид $a_{i+1}=1$ 0^i 1 0^i 1 0^i 1 0^i 1, т. е. можно изменить значения в любых пяти ячейках, чьи индексы образуют арифметическую прогрессию с разностью d: $1 \le d \le 10$.

Задача 5. 2. (2 балла) Сопоставим двоичной строке $s = s_0 s_1 \dots s_k$ многочлен S(x) над полем \mathbb{Z}_2 :

$$S(x) = s_0 + s_1 x + \dots + s_k x^k$$

Тогда каждому шаблону a_i будет соответствовать многочлен $A_i(x)$, а строке b будет отвечать многочлен B(x). Покажите, что если рассмотреть последовательность инверсий $(i_1, j_1), \ldots, (i_n, j_n)$, то результирующему преобразованию можно однозначно сопоставить одну инверсию с некоторым шаблоном a, которому соответствует многочлен A(x). Выразите A(x) через $A_{i_1}(x), \ldots, A_{i_n}(x)$.

Задача 5. 3. (3 балла) Постройте полиномиальный алгоритм решения задачи в общем случае. Строка b и шаблоны подаются на вход.

Задача 6. (1+2+4 баллов) Рассмотрим следующую вероятностную процедуру, на вход которой поступает массив из n различных чисел A[1..n]. Внутри процедуры используется генератор случайных чисел A[1..n], который возвращает случайно и равновероятно число j из множества $\{1,2,\ldots,n\}$.

```
1: procedure RANDPROCEDURE(A[1..n], n)
       Задать массив C[1..n] := A[1..n]
       Задать массив B[1..n] := \{\text{FALSE}, \text{FALSE}, \dots, \text{FALSE}\}
3:
       3адать i := 1
4:
       while i < n + 1 do
5:
           j := \text{RAND}(1, 2, \dots, n)
6:
           if B[j] = \text{False then}
7:
               Задать C[i] := A[j]
8:
               Задать i := i + 1
9:
              Задать B[j] := TRUE
10:
           end if
11:
       end while
12:
       return C[1..n]
13:
14: end procedure
```

Задача 6. 1. (1 балл) Чему равен супремум чисел k, для которых вероятность события, что алгоритм сделает хотя бы k итераций цикла **while** положительна?

Задача 6. 2. (2 балла) Да Нет Верно ли, что представленный алгоритм выдаёт некоторую перестановку массива A?

Если ответ положительный, то вычислите вероятность получения каждой конкретной перестановки массива A в результате работы алгоритма.

Если ответ отрицательный, то предъявите вход-контрпример и опишите работу алгоритма на этом входе (при котором на выходе не получается перестановка массива A).

Задача 6. 3. (4 балла) Сколько в среднем раз будет выполнена строчка 6 в описанной выше процедуре?

ВАРИАНТ 2

1.1	1.2	1.3	1.4	1.5	1.6	2	3	4.1	4.2	5.1	5.2	5.3	6.1	6.2	6.3	\sum

Фамилия, имя студента	Группа
Фамилия преподавателя, ведущего семинары	

- 1. Решение каждой задачи должно быть обосновано, ответы без обоснования не принимаются и не оцениваются.
- 2. В некоторых задачах помимо решения требуется дать краткий ответ "да" или "нет" это указано в условии после числа баллов за задачу.
- **3.** Можно без доказательства использовать факт \mathbf{NP} -полноты задач, разобранных на лекциях, на семинарах и описанных в каноническом задании по курсу.

Задача 1. $(6 \times 1 \text{ баллов})$

Задача 1. 1. (1 балл) Да Нет

Верно ли, что язык INDEPENDENT — $SET(k_0)$, состоящий из описаний графов G, в которых есть независимое множество фиксированного размера k_0 , является NP-полным? Положительное целое число k_0 задано и не зависит от входа.

Задача 1. 2. (1 балл) Да Нет

Рассмотрим дополнение класса **co–NP** до множества всех языков, т. е. $2^{\Sigma^*} \setminus \mathbf{co}$ –NP. Верно ли, что так получен класс **NP**?

Задача 1. 3. (1 балл) Да Нет

Рассмотрим класс языков $\widetilde{\mathbf{NP}}$, который состоит из всех таких языков L, что существует вычислимая полиномиально по длине первого аргумента функция R(x,y), такая что

$$x\in L\Longleftrightarrow\exists y:\;|y|\leq inom{|x|^2}{|x|}=C^{|x|}_{|x|^2}$$
 и $R(x,y)=1$

Верно ли, что $\widetilde{\mathbf{NP}} = \mathbf{NP}$?

Задача 1. 4. (1 балл) Да Нет Верно ли, что если $L \subset \Sigma^*$ является **NP**-полным, а символ $\# \notin \Sigma$, то язык $(L\#)^*$ является **NP**-полным? Запись L# означает язык $\{w\# \mid w \in L\}$, а * — операция замыкания Клини.

Задача 1. 5. (1 балл) Да Нет

Корректна ли следующая сводимость языка $2-\mathsf{CNF}$ выполнимых конъюнктивных нормальных форм, в каждом дизъюнкте которых не более двух литералов, к языку $3-\mathsf{CNF}$: добавим во все дизъюнкты исходной $2-\mathsf{CNF}$ новую переменную y. И добавим также дизъюнкт \overline{y} .

При положительном ответе приведите обоснование записанной сводимости. В противном случае — укажите **явное место ошибки**.

Задача 1. 6. (1 балл) Да Нет

Пусть для положительных, всюду определённых и имеющих обратные, функций f(x) и g(x) выполнено $f^{-1} \sim g^{-1}$, т. е. $\lim_{x \to \infty} \frac{f^{-1}(x)}{g^{-1}(x)} = 1$. Верно ли, что $f \sim g$?

Задача 2. (3 балла) Оцените (в терминах Θ -обозначений) глубину дерева рекурсивных вызовов для рекуррентного соотношения

$$T(n) = T\left(\left\lfloor \frac{n}{4} - \log_5^2 n \right\rfloor\right) + 1, \qquad T(n) = 1, \ n \le 5$$

Рассуждение без учёта округления и сдвига аргумента оцениваются из 2 баллов. При использовании свойства монотонности необходимо привести обоснование.

Ответ должен быть приведён в замкнутой форме u не содержать, например, знака \sum .

Задача 3. (4 балла) Да Нет Является ли **NP** полным язык HC(8) описаний графов на $n \ge 8$ вершинах, в которых есть по крайней мере 8 гамильтоновых цикла?

Два гамильтоновых цикла, отличающиеся направлением обхода или циклическим сдвигом вершин в записи этих циклов, считаются одинаковыми.

Задача 4. (2+2 балла) Рассмотрим последовательности натуральных чисел a_n и b_n , определённые из равенства:

 $\left(1+\sqrt{5}\right)^n = a_n + \sqrt{5}b_n$

Задача 4. 1. (2 балла) Получите по одному линейному рекуррентному уравнению с постоянными коэффициентами для каждой из последовательностей a_n и b_n .

Задача 4. 2. (2 балла) Найдите явные аналитические формулы для a_n и b_n как функций от n. Сравните (в терминах $O, o, \Omega, \omega, \Theta$) асимптотики a_n и b_n .

Задача 5. (2+2+3 баллов) Пусть имеется бесконечная вправо лента S, ячейки которой пронумерованы числами $0,1,2,\ldots$ и т. д. Каждая ячейка может принимать два значения — либо 0, либо 1; изначально во всех ячейках записан 0.

Пусть дан набор из m двоичных строк a_1,\ldots,a_m — шаблонов. С помощью шаблонов можно определить следующие операции над лентой: можно приложить шаблон a_i к произвольной позиции j на ленте и инвертировать все значения ленты, которые были покрыты символом 1, т. е., ячейка j+k инвертируется если $a_i[k]=1$. Назовём такую операцию uнверсией c позиции j по шаблону a_i или просто uнверсией.

Мы хотим решить следующую задачу: можно ли, используя инверсии по заданным шаблонам a_1, \ldots, a_m , преобразовать (нулевую) ленту S к ленте S_b , на которой в начале записана заданная двоичная строка b, а остальные позиции — нули. Формально нужно найти такой набор пар $(i_1, j_1), \ldots, (i_n, j_n)$, что если последовательно применить к нулевой ленте S инверсии с позиции j_k по шаблону $a_{i_k}, k = 1, \ldots, n$, то в итоге получим ленту S_b (т. е., в j-й ячейке ленты после всех инверсий будет стоять символ b[j] при j < |b| и нуль в противном случае).

Если такого набора не существует, то алгоритм должен сообщить об этом.

Задача 5. 1. (2 балла) Постройте линейный алгоритм решения указанной задачи для конкретного случая, когда шаблонов m=10 и они имеют вид $a_{i+1}=1$ 0^i 1 0^i 1 0^i 1 0^i 1, т. е. можно изменить значения в любых пяти ячейках, чьи индексы образуют арифметическую прогрессию с разностью d: $1 \le d \le 10$.

Задача 5. 2. (2 балла) Сопоставим двоичной строке $s = s_0 s_1 \dots s_k$ многочлен S(x) над полем \mathbb{Z}_2 :

$$S(x) = s_0 + s_1 x + \dots + s_k x^k$$

Тогда каждому шаблону a_i будет соответствовать многочлен $A_i(x)$, а строке b будет отвечать многочлен B(x). Покажите, что если рассмотреть последовательность инверсий $(i_1, j_1), \ldots, (i_n, j_n)$, то результирующему преобразованию можно однозначно сопоставить одну инверсию с некоторым шаблоном a, которому соответствует многочлен A(x). Выразите A(x) через $A_{i_1}(x), \ldots, A_{i_n}(x)$.

Задача 5. 3. (3 балла) Постройте полиномиальный алгоритм решения задачи в общем случае. Строка b и шаблоны подаются на вход.

Задача 6. (1+2+4 баллов) Рассмотрим следующую вероятностную процедуру, на вход которой поступает массив из n различных чисел A[1..n]. Внутри процедуры используется генератор случайных чисел A[1..n], который возвращает случайно и равновероятно число j из множества $\{1,2,\ldots,n\}$.

```
1: procedure RANDPROCEDURE(A[1..n], n)
       Задать массив C[1..n] := A[1..n]
       Задать массив B[1..n] := \{\text{FALSE}, \text{FALSE}, \dots, \text{FALSE}\}
3:
       3адать i := 1
4:
       while i < n + 1 do
5:
           j := \text{RAND}(1, 2, \dots, n)
6:
           if B[j] = \text{False then}
7:
               Задать C[i] := A[j]
8:
               Задать i := i + 1
9:
              Задать B[j] := TRUE
10:
           end if
11:
       end while
12:
       return C[1..n]
13:
14: end procedure
```

Задача 6. 1. (1 балл) Чему равен супремум чисел k, для которых вероятность события, что алгоритм сделает хотя бы k итераций цикла **while** положительна?

Задача 6. 2. (2 балла) Да Нет Верно ли, что представленный алгоритм выдаёт некоторую перестановку массива A?

Если ответ положительный, то вычислите вероятность получения каждой конкретной перестановки массива A в результате работы алгоритма.

Если ответ отрицательный, то предъявите вход- контрпример и опишите работу алгоритма на этом входе (при котором на выходе не получается перестановка массива A).

Задача 6. 3. (4 балла) Сколько в среднем раз будет выполнена строчка 6 в описанной выше процедуре?

ВАРИАНТ 3

1	.1	1.2	1.3	1.4	1.5	1.6	2	3	4.1	4.2	5.1	5.2	5.3	6.1	6.2	6.3	\sum

Фамилия, имя студента	Группа
Фамилия преподавателя, ведущего семинары	

- 1. Решение каждой задачи должно быть обосновано, ответы без обоснования не принимаются и не оцениваются.
- 2. В некоторых задачах помимо решения требуется дать краткий ответ "да" или "нет" это указано в условии после числа баллов за задачу.
- ${f 3.}$ Можно без доказательства использовать факт ${f NP}$ -полноты задач, разобранных на лекциях, на семинарах и описанных в каноническом задании по курсу.

Задача 1. $(6 \times 1 \text{ баллов})$

Задача 1. 1. (1 балл) Да Нет

Верно ли, что язык SIMPLE — РАТН (k_0) , состоящий из описаний графов, что в них между какими-то двумя вершинами есть простой путь фиксированной длины k_0 , является **NP**-полным? Число $k_0 \in \mathbb{N}$ не является частью входа.

Задача 1. 2. (1 балл) Да Нет

Рассмотрим дополнение класса \mathbf{NP} до множества всех языков над алфавитом Σ , т. е. $2^{\Sigma^*} \backslash \mathbf{NP}$. Верно ли, что полученное таким образом множество образует класс $\mathbf{co} - \mathbf{NP}$?

Задача 1. 3. (1 балл) Да Нет

Рассмотрим класс языков $\widetilde{\mathbf{NP}}$, который состоит из всех таких языков L, что существует вычислимая полиномиально по длине первого аргумента функция R(x,y), такая что

$$x \in L \Longleftrightarrow \exists y: \ |y| \leq 2^{|x|^3}$$
 и $R(x,y) = 1$

Верно ли, что $\widetilde{\mathbf{NP}} = \mathbf{NP}$?

Задача 1. 4. (1 балл) Да Нет Верно ли, что если $L_1 \subset \Sigma_1^*$ и $L_2 \subset \Sigma_2^*$ таковы, что $L_1 \leq_P L_2$, а символ $\# \notin \Sigma_1$ и $\# \notin \Sigma_2$, то $(\#L_1)^* \leq_P (\#L_2)^*$? Запись #L означает язык $\{\#w \mid w \in L\}$, а * — операция замыкания Клини.

Задача 1. 5. (1 балл) Да Нет

Корректна ли следующая сводимость языка графов, раскрашиваемых в два цвета, $2-\mathsf{COLOR}$ к языку графов, раскрашиваемых в три цвета, $3-\mathsf{COLOR}$: добавим новую вершину и соединим её со всеми вершинами исходного графа.

При положительном ответе приведите обоснование записанной сводимости. В противном случае—укажите **явное место ошибки**.

Задача 1. 6. (1 балл) Да Нет

Пусть для положительных, всюду определённых и имеющих обратные, функций f(x) и g(x) выполнено $f\sim g$, т. е. $\lim_{x\to\infty}\frac{f(x)}{g(x)}=1$. Верно ли, что $f^{-1}\sim g^{-1}$?

Задача 2. (3 балла) Оцените (в терминах Θ -обозначений) глубину дерева рекурсивных вызовов для рекуррентного соотношения

$$T(n) = T\left(\left[\frac{n}{5} - \frac{1}{2}\log_7 n\right]\right) + 1, \qquad T(n) = 1, \ n \le 5$$

Рассуждение без учёта округления и сдвига аргумента оцениваются из 2 баллов. При использовании свойства монотонности необходимо привести обоснование.

Ответ должен быть приведён в замкнутой форме u не содержать, например, знака \sum .

Задача 3. (4 балла) Да Нет Является ли **NP** полным язык HC(4) описаний графов на $n \ge 4$ вершинах, в которых есть по крайней мере 4 гамильтоновых цикла?

Два гамильтоновых цикла, отличающиеся направлением обхода или циклическим сдвигом вершин в записи этих циклов, считаются одинаковыми.

Задача 4. (2+2 балла) Рассмотрим последовательности натуральных чисел a_n и b_n , определённые из равенства:

 $\left(1+\sqrt{3}\right)^n = a_n + \sqrt{3} \ b_n$

Задача 4. 1. (2 балла) Получите по одному линейному рекуррентному уравнению с постоянными коэффициентами для каждой из последовательностей a_n и b_n .

Задача 4. 2. (2 балла) Найдите явные аналитические формулы для a_n и b_n как функций от n. Сравните (в терминах $O, o, \Omega, \omega, \Theta$) асимптотики a_n и b_n .

Задача 5. (2+2+3 баллов)

Задача 6. (2+2+3 баллов) Пусть имеется бесконечная вправо лента S, ячейки которой пронумерованы числами $0,1,2,\ldots$ и т. д. Каждая ячейка может принимать два значения — либо 0, либо 1; изначально во всех ячейках записан 0.

Пусть дан набор из m двоичных строк a_1, \ldots, a_m — шаблонов. С помощью шаблонов можно определить следующие операции над лентой: можно приложить шаблон a_i к произвольной позиции j на ленте и инвертировать все значения ленты, которые были покрыты символом 1, т. е., ячейка j+k инвертируется если $a_i[k]=1$. Назовём такую операцию uнверсией c позиции j по шаблону a_i или просто uнверсией.

Мы хотим решить следующую задачу: можно ли, используя инверсии по заданным шаблонам a_1, \ldots, a_m , преобразовать (нулевую) ленту S к ленте S_b , на которой в начале записана заданная двоичная строка b, а остальные позиции — нули. Формально нужно найти такой набор пар $(i_1, j_1), \ldots, (i_n, j_n)$, что если последовательно применить к нулевой ленте S инверсии с позиции j_k по шаблону $a_{i_k}, k = 1, \ldots, n$, то в итоге получим ленту S_b (т. е., в j-й ячейке ленты после всех инверсий будет стоять символ b[j] при j < |b| и нуль в противном случае).

Если такого набора не существует, то алгоритм должен сообщить об этом.

Задача 6. 1. (2 балла) Постройте линейный алгоритм решения указанной задачи для конкретного случая, когда шаблонов m=10 и они имеют вид $a_{i+1}=1$ 0^i 1 0^i 1 0^i 1 0^i 1, т. е. можно изменить значения в любых пяти ячейках, чьи индексы образуют арифметическую прогрессию с разностью d: $1 \le d \le 10$.

Задача 6. 2. (2 балла) Сопоставим двоичной строке $s = s_0 s_1 \dots s_k$ многочлен S(x) над полем \mathbb{Z}_2 :

$$S(x) = s_0 + s_1 x + \dots + s_k x^k$$

Тогда каждому шаблону a_i будет соответствовать многочлен $A_i(x)$, а строке b будет отвечать многочлен B(x). Покажите, что если рассмотреть последовательность инверсий $(i_1, j_1), \ldots, (i_n, j_n)$, то результирующему преобразованию можно однозначно сопоставить одну инверсию с некоторым шаблоном a, которому соответствует многочлен A(x). Выразите A(x) через $A_{i_1}(x), \ldots, A_{i_n}(x)$.

Задача 6. 3. (3 балла) Постройте полиномиальный алгоритм решения задачи в общем случае. Строка b и шаблоны подаются на вход.

Задача 7. (1+2+4 баллов) Рассмотрим следующую вероятностную процедуру, на вход которой поступает массив из n различных чисел A[1..n]. Внутри процедуры используется генератор случайных чисел A[1..n], который возвращает случайно и равновероятно число j из множества $\{1,2,\ldots,n\}$.

```
1: procedure RANDPROCEDURE(A[1..n], n)
       Задать массив C[1..n] := A[1..n]
       Задать массив B[1..n] := \{\text{FALSE}, \text{FALSE}, \dots, \text{FALSE}\}
3:
       3адать i := 1
4:
       while i < n + 1 do
5:
           j := \text{RAND}(1, 2, \dots, n)
6:
           if B[j] = \text{False then}
7:
               Задать C[i] := A[j]
8:
               Задать i := i + 1
9:
              Задать B[j] := TRUE
10:
           end if
11:
       end while
12:
       return C[1..n]
13:
14: end procedure
```

Задача 7. 1. (1 балл) Чему равен супремум чисел k, для которых вероятность события, что алгоритм сделает хотя бы k итераций цикла **while** положительна?

Задача 7. 2. (2 балла) Да Нет Верно ли, что представленный алгоритм выдаёт некоторую перестановку массива A?

Если ответ положительный, то вычислите вероятность получения каждой конкретной перестановки массива A в результате работы алгоритма.

Если ответ отрицательный, то предъявите вход- контрпример и опишите работу алгоритма на этом входе (при котором на выходе не получается перестановка массива A).

Задача 7. 3. (4 балла) Сколько в среднем раз будет выполнена строчка 6 в описанной выше процедуре?

ВАРИАНТ 4

1.1	1.2	1.3	1.4	1.5	1.6	2	3	4.1	4.2	5.1	5.2	5.3	6.1	6.2	6.3	\sum

Фамилия, имя студента	Группа
Фамилия преподавателя, ведущего семинары	

- 1. Решение каждой задачи должно быть обосновано, ответы без обоснования не принимаются и не оцениваются.
- 2. В некоторых задачах помимо решения требуется дать краткий ответ "да" или "нет" это указано в условии после числа баллов за задачу.
- **3.** Можно без доказательства использовать факт \mathbf{NP} -полноты задач, разобранных на лекциях, на семинарах и описанных в каноническом задании по курсу.

Задача 1. $(6 \times 1 \text{ баллов})$

Задача 1. 1. (1 балл) Да Нет

Верно ли, что язык INDEPENDENT — $SET(k_0)$, состоящий из описаний графов G, в которых есть независимое множество фиксированного размера k_0 , является NP-полным? Положительное целое число k_0 задано и не зависит от входа.

Задача 1. 2. (1 балл) Да Нет

Рассмотрим дополнение класса **co–NP** до множества всех языков, т. е. $2^{\Sigma^*} \setminus$ **co–NP**. Верно ли, что так получен класс **NP**?

Задача 1. 3. (1 балл) Да Нет

Рассмотрим класс языков $\widetilde{\mathbf{NP}}$, который состоит из всех таких языков L, что существует вычислимая полиномиально по длине первого аргумента функция R(x,y), такая что

$$x\in L\Longleftrightarrow\exists y:\;|y|\leq inom{|x|^3}{|x|}=C^{|x|}_{|x|^3}$$
 и $R(x,y)=1$

Верно ли, что $\widetilde{\mathbf{NP}} = \mathbf{NP}$?

Задача 1. 4. (1 балл) Да Нет Верно ли, что если $L \subset \Sigma^*$ является **NP**-полным, а символ $\# \notin \Sigma$, то язык $(\# L)^*$ является NP-полным? Запись # L означает язык $\{\# w \mid w \in L\}$, а * — операция замыкания Клини.

Задача 1. 5. (1 балл) Да Нет

Корректна ли следующая сводимость языка 3-CNF выполнимых конъюнктивных нормальных форм, в каждом дизъюнкте которых не более трех литералов, к языку 2-CNF: во все дизъюнкты исходной CNF добавим новую переменную y, и добавим также дизъюнкт \overline{y} . Тогда новая CNF выполнима тогда и только тогда, когда выполнима исходная.

При положительном ответе приведите обоснование записанной сводимости. В противном случае—укажите **явное место ошибки**.

Задача 1. 6. (1 балл) Да Нет

Пусть для положительных, всюду определённых и имеющих обратные, функций f(x) и g(x) выполнено $f^{-1} \sim g^{-1}$, т. е. $\lim_{x \to \infty} \frac{f^{-1}(x)}{g^{-1}(x)} = 1$. Верно ли, что $f \sim g$?

Задача 2. (3 балла) Оцените (в терминах Θ -обозначений) глубину дерева рекурсивных вызовов для рекуррентного соотношения

$$T(n) = T\left(\left\lfloor \frac{n}{6} - \log_2 \log_2 n \right\rfloor\right) + 1, \ n \le 5$$

Рассуждение без учёта округления и сдвига аргумента оцениваются из 2 баллов. При использовании свойства монотонности необходимо привести обоснование.

Ответ должен быть приведён в замкнутой форме u не содержать, например, знака \sum .

Задача 3. (4 балла) Да Нет Является ли **NP** полным язык HC(8) описаний графов на $n \ge 8$ вершинах, в которых есть по крайней мере 8 гамильтоновых цикла?

Два гамильтоновых цикла, отличающиеся направлением обхода или циклическим сдвигом вершин в записи этих циклов, считаются одинаковыми.

Задача 4. (2+2 балла) Рассмотрим последовательности натуральных чисел a_n и b_n , определённые из равенства:

 $\left(1+\sqrt{5}\right)^n = a_n + \sqrt{5}b_n$

Задача 4. 1. (2 балла) Получите по одному линейному рекуррентному уравнению с постоянными коэффициентами для каждой из последовательностей a_n и b_n .

Задача 4. 2. (2 балла) Найдите явные аналитические формулы для a_n и b_n как функций от n. Сравните (в терминах $O, o, \Omega, \omega, \Theta$) асимптотики a_n и b_n .

Задача 5. (2+2+3 баллов) Пусть имеется бесконечная вправо лента S, ячейки которой пронумерованы числами $0,1,2,\ldots$ и т. д. Каждая ячейка может принимать два значения — либо 0, либо 1; изначально во всех ячейках записан 0.

Пусть дан набор из m двоичных строк a_1,\ldots,a_m — шаблонов. С помощью шаблонов можно определить следующие операции над лентой: можно приложить шаблон a_i к произвольной позиции j на ленте и инвертировать все значения ленты, которые были покрыты символом 1, т. е., ячейка j+k инвертируется если $a_i[k]=1$. Назовём такую операцию uнверсией c nозиции j nо uаблону a_i или просто uнверсией.

Мы хотим решить следующую задачу: можно ли, используя инверсии по заданным шаблонам a_1, \ldots, a_m , преобразовать (нулевую) ленту S к ленте S_b , на которой в начале записана заданная двоичная строка b, а остальные позиции — нули. Формально нужно найти такой набор пар $(i_1, j_1), \ldots, (i_n, j_n)$, что если последовательно применить к нулевой ленте S инверсии с позиции j_k по шаблону $a_{i_k}, k = 1, \ldots, n$, то в итоге получим ленту S_b (т. е., в j-й ячейке ленты после всех инверсий будет стоять символ b[j] при j < |b| и нуль в противном случае).

Если такого набора не существует, то алгоритм должен сообщить об этом.

Задача 5. 1. (2 балла) Постройте линейный алгоритм решения указанной задачи для конкретного случая, когда шаблонов m=10 и они имеют вид $a_{i+1}=1$ 0^i 1 0^i 1 0^i 1 0^i 1, т. е. можно изменить значения в любых пяти ячейках, чьи индексы образуют арифметическую прогрессию с разностью d: $1 \le d \le 10$.

Задача 5. 2. (2 балла) Сопоставим двоичной строке $s = s_0 s_1 \dots s_k$ многочлен S(x) над полем \mathbb{Z}_2 :

$$S(x) = s_0 + s_1 x + \dots + s_k x^k$$

Тогда каждому шаблону a_i будет соответствовать многочлен $A_i(x)$, а строке b будет отвечать многочлен B(x). Покажите, что если рассмотреть последовательность инверсий $(i_1, j_1), \ldots, (i_n, j_n)$, то результирующему преобразованию можно однозначно сопоставить одну инверсию с некоторым шаблоном a, которому соответствует многочлен A(x). Выразите A(x) через $A_{i_1}(x), \ldots, A_{i_n}(x)$.

Задача 5. 3. (3 балла) Постройте полиномиальный алгоритм решения задачи в общем случае. Строка b и шаблоны подаются на вход.

Задача 6. (1+2+4 баллов) Рассмотрим следующую вероятностную процедуру, на вход которой поступает массив из n различных чисел A[1..n]. Внутри процедуры используется генератор случайных чисел A[1..n], который возвращает случайно и равновероятно число j из множества $\{1,2,\ldots,n\}$.

```
1: procedure RANDPROCEDURE(A[1..n], n)
       Задать массив C[1..n] := A[1..n]
       Задать массив B[1..n] := \{\text{FALSE}, \text{FALSE}, \dots, \text{FALSE}\}
3:
       Задать i := 1
4:
       while i < n + 1 do
5:
           j := \text{RAND}(1, 2, \dots, n)
6:
           if B[j] = \text{False then}
7:
               Задать C[i] := A[j]
8:
               Задать i := i + 1
9:
              Задать B[j] := TRUE
10:
           end if
11:
       end while
12:
       return C[1..n]
13:
14: end procedure
```

Задача 6. 1. (1 балл) Чему равен супремум чисел k, для которых вероятность события, что алгоритм сделает хотя бы k итераций цикла **while** положительна?

Задача 6. 2. (2 балла) Да Нет Верно ли, что представленный алгоритм выдаёт некоторую перестановку массива A?

Если ответ положительный, то вычислите вероятность получения каждой конкретной перестановки массива A в результате работы алгоритма.

Если ответ отрицательный, то предъявите вход- контрпример и опишите работу алгоритма на этом входе (при котором на выходе не получается перестановка массива A).

Задача 6. 3. (4 балла) Сколько в среднем раз будет выполнена строчка 6 в описанной выше процедуре?