第一章 线性规划及单纯形法

1.5 单纯形法的进一步讨论

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■ 人工变量法

□ 考虑求解线性规划问题

■ 人工变量法

□ 考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ x_1 + x_2 + x_3 - x_5 = 1 \\ -2x_1 + x_2 - x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 > 0 \end{cases}$$

没有可作为初始基的单位矩阵,则分别给每一个约束添加人工变量。

■ 大 *M* 法

□ 添加人工变量 x₆, x₇

■ 大 *M* 法

□ 用单纯形法求解

C	$c_j o$		-3	0	1	0	0	-M	-M
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	$ x_2 $	x_3	$ x_4 $	x_5	x_6	$ x_7$
0	x_4	4	1	1 [1] 3	1	1	0	0	0
-M	x_6	1	-2	[1]	-1	0	-1	1	0
-M	x_7	9	0	3	1	0	0	0	1
c_j	$-z_j$		-3-2M	$\mid 4M \mid$	1	0	-M	0	0

■ 大 *M* 法

□ 用单纯形法求解

$c_j o$		-3	0	1	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B$	b	x_1	$ x_2 $	x_3	$ x_4 $	$ x_5 $	$ x_6 $	$ x_7$
$ \begin{array}{c cc} 0 & x_4 \\ -M & x_6 \\ -M & x_7 \end{array} $	$\begin{array}{ c c } 4 \\ 1 \\ 9 \end{array}$	1 -2 0	1 [1] 3	1 -1 1	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	$egin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$	$\begin{array}{ c c } & 0 \\ & 1 \\ & 0 \end{array}$	$\left \begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right $
$c_j - z_j$		-3-2M	4M	1	0	-M	0	0
$ \begin{array}{c cc} 0 & x_4 \\ 0 & x_2 \\ -M & x_7 \end{array} $	3 1 6	3 -2 [6]	0 1 0	2 -1 4	$\begin{array}{ c c } 1 \\ 0 \\ 0 \end{array}$	$\begin{vmatrix} 1 \\ -1 \\ 3 \end{vmatrix}$	$ \begin{vmatrix} -1 \\ 1 \\ -3 \end{vmatrix} $	0 0 1
$c_j - z_j$		-3+6M	0	1+4M	0	3M	-4M	0

■ 大 *M* 法

□ 用单纯形法求解 (续)

	$c_j \rightarrow$		-3	0	1	0	0	-M	- <i>M</i>
\mathbf{C}_{B}	$\mid \mathbf{X}_B \mid$	b	$ x_1$	$ x_2 $	x_3	$ x_4 $	x_5	x_6	x_7
0	$ x_4 $	0	0	0	0	1	-1/2	-1/2	1/2
0	x_2	3	0	1	1/3	0	0	0	1/3
-3	x_1	1	1	0	[2/3]	0	1/2	$ \begin{array}{c c} -1/2 \\ 0 \\ -1/2 \end{array} $	1/6
	$c_j - z_j$		0	0	3	0	3/2	-3/2 - M	1/2-M

■ 大 *M* 法

□ 用单纯形法求解 (续)

$c_j \rightarrow$	-3 0	1 0	0	-M	-M
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}}$	$ x_1 x_2$	$ x_3 x_4$	x ₅	x_6	x_7
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ -3 & x_1 & 1 \end{array} $	$ \begin{array}{c cccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $	$ \begin{array}{c c c} 0 & 1 \\ 1/3 & 0 \\ [2/3] & 0 \end{array} $	0	$ \begin{array}{c c} -1/2 & \\ 0 & \\ -1/2 & \\ \end{array} $	1/2 1/3 1/6
$c_j - z_j$	0 0	3 0	3/2 -3	$/2 - M \mid 1/2$	2-M
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 5/2 \\ 1 & x_3 & 3/2 \end{array} $	$ \begin{array}{c c c} 0 & 0 \\ -1/2 & 1 \\ 3/2 & 0 \end{array} $	$ \begin{array}{c cccc} & 0 & 1 \\ & 0 & 0 \\ & 1 & 0 \end{array} $	1 /	' . ·	-1/2 1/4 1/4
$c_j - z_j$	-9/2 0	0 0	-3/4 3/	$4 - M \mid -1$	/4-M

- 例 1
 - □ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_1 = 14 \\ x_2 \ge 22 \\ x_1, x_2 \ge 0 \end{cases}$$

- 例 1
 - □ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_1 = 14 \\ x_2 \ge 22 \\ x_1, x_2 \ge 0 \end{cases}$$

🛮 标准化,增加人工变量

$$\max z = 6x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 100 \\ 4x_1 + 2x_2 + x_4 = 120 \\ x_1 + x_6 = 14 \\ x_2 - x_5 + x_7 = 22 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■ 例 1

□ 用单纯形法求解

	$c_j \rightarrow$		6	4	0	0	0	-M	-M
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	x_1	x_2	$ x_3 $	$ x_4 $	x_5	x_6	$ x_7 $
0	$ x_3 $	100	2	3	1	0	0	0	0
0	x_4	120	4	2 0	0	1	$0 \\ 0$	0	0
-M	x_6	14	[1]	0	0	0	0	1	0
-M	x_7	22	0	1	0	0	-1	0	1
- 0	$z_j - z_j$		M+6	M+4	0	0	-M	0	0

■ 例 1

□ 用单纯形法求解

$c_j \rightarrow$	6	4	0	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b} \mid$	x_1	x_2	$ x_3 $	x_4	x_5	x_6	$ x_7 $
$0 x_3 100 $	2	3	1	0	0	0	0
0 x_4 120	4	2	0	1	0	0	0
$-M \mid x_6 \mid 14 \mid$	[1]	0	0	0	0	1	0
$-M \mid x_7 \mid 22 \mid$	0	1	0	0	-1	0	1
$c_j - z_j$	M+6	M+4	0	0	-M	0	0
$0 x_3 72 $	0	3	1	0	0	-2	0
0 x_4 64	0	2	0	1	0	-4	0
6 x_1 14	1	0	0	0	0	1	0
$-M \mid x_7 \mid 22 \mid$	0	[1]	0	0	-1	0	1
$c_j - z_j$	0	M+4	0	0	M	-6 - M	0

■ 例 1

□ 用单纯形法求解 (续)

	$c_j \rightarrow$		6	4	0	0	0	-M	- <i>M</i>
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$ x_2 $	x_3	$ x_4 $	x_5	x_6	$ x_7$
0	$ x_3 $	6	0	0	1	0	[3]	-2	-3
0	x_4	20	0	0	0	1	2	-4	-2
6	x_1	14	1	0	0	0	0	1	0
4	x_2	22	0	1	0	$\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$	-1	0	1
($z_j - z_j$		0	0	0	0	4	-6 - M	-4-M

■ 例 1

□ 用单纯形法求解 (续)

	$c_j \rightarrow$		6	4	0	0	0	-M	- <i>M</i>
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	$ x_2 $	x_3	x_4	x_5	x_6	$ x_7$
0	x_3	6	0	0	1	0	[3]	-2	-3
0	x_4	20	0	0	0	1	2	-4	-2
6	x_1	14	1	0	0	0	0	1	0
4	x_2	22	0	1	0	0	-1	0	1
($c_j - z_j$		0	0	0	0	4	-6-M	-4-M
0	x_5	2	0	0	1/3	0	1	-2/3	-1
0	x_4	16	0	0	-2/3	1	0	-8/3	0
6	x_1	14	1	0	Ó	0	0	1	0
4	x_2	24	0	1	1/3	0	0	-2/3	0
-	$c_j - z_j$		0	0	-4/3	0	0	-10/3 - M	-M

■两阶段法

② 为了克服大 M 法采用计算机处理 M 的困难(精度——误差),将添加人工变量后的线性规划问题分两个阶段来计算。

■ 两阶段法

- \square 为了克服大 M 法采用计算机处理 M 的困难(精度——误差),将添加人工变量后的线性规划问题分两个阶段来计算。
- □ 对于标准形式线性规划问题

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

引入辅助问题

min
$$w = \sum_{i=1}^{m} y_i$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + y_i = b_i \ (i = 1, \dots, m) \\ x_j, y_i \ge 0 \ (i = 1, \dots, m, j = 1, \dots, n) \end{cases}$$

■ 两阶段法

② 第一阶段: 采用单纯形法求解,求解辅助问题。 若 w=0,则得到原问题的一个基本可行解,转入第二阶段。否则,则判定原问题无可行解。

■ 两阶段法

- **⑤** 第一阶段: 采用单纯形法求解,求解辅助问题。 若 w=0, 则得到原问题的一个基本可行解,转入第二阶段。否则,则判定原问题无可行解。
- ② 第二阶段:在第一阶段已求得原问题的一个初始基可行解的基础上, 再求原问题的最优解。 对第一阶段的最优单纯形表稍加改动,首先把第一行的价值向量替 换成原问题的价值向量,人工变量全部从表中去掉,然后继续用单 纯形法计算。

■ 两阶段法

- \square 第一阶段: 采用单纯形法求解,求解辅助问题。 若 w = 0,则得到原问题的一个基本可行解,转入第二阶段。否则,则判定原问题无可行解。
- 第二阶段:在第一阶段已求得原问题的一个初始基可行解的基础上,再求原问题的最优解。 对第一阶段的最优单纯形表稍加改动,首先把第一行的价值向量替换成原问题的价值向量,人工变量全部从表中去掉,然后继续用单纯形法计算。

□ 两阶段法原理:

- 辅助问题的基本可行解 X 为最优解,对应最小值 w=0,则 X 的前 n 个分量是原问题的基本可行解。
- 原问题有可行解时,辅助问题最优值 w=0。

- 例 2
 - □ 求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 例 2
 - □ 求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

□ 大 M 法

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

- 例 2
 - □ 第一阶段

$$\min \ w = x_6 + x_7 \ (\max \ w' = -x_6 - x_7)$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

- 例 2
 - □ 第一阶段

min
$$w = x_6 + x_7 \text{ (max } w' = -x_6 - x_7)$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

□ 第二阶段

$$\max z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 2

□ 第一阶段

	$c_j \to$		0	0	0	0	0	-1	-1
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5	x_6	x_7
0	x_4	4	1	1	1	1	0	0	0
-1	x_6	1	-2	[1]	-1	0	-1	1	0
-1	x_7	9	0	3	1	0	0	0 1 0	1
c_{\cdot}	$j-z_j$		-2	4	0	0	-1	0	0

■ 例 2

□ 第一阶段

$c_j \rightarrow$	0	0	0	0	0	-1	-1
$\mathbf{C}_B \mid \mathbf{X}_B \mid$	$\mathbf{b} \mid x_1 \mid$	x_2	x_3	$ x_4 $	x_5	x_6	x_7
$ \begin{array}{c cccc} 0 & x_4 \\ -1 & x_6 \\ -1 & x_7 \end{array} $	4 1 1 -2 9 0	1 [1] 3	1 -1 1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ -1 \\ 0 \end{array}$	0 1 0	0 0 1
$c_j - z_j$	-2	4	0	0	-1	0	0
$ \begin{array}{c c c} 0 & x_4 \\ 0 & x_2 \\ -1 & x_7 \end{array} $	3 3 1 -2 6 [6]	0 1 0	2 -1 4	$\left \begin{array}{cc} 1 \\ 0 \\ 0 \end{array}\right $	$ \begin{array}{c} 1 \\ -1 \\ 3 \end{array} $	$ \begin{array}{c c} -1 \\ 1 \\ -3 \end{array} $	0 0 1
$c_j - z_j$	6	0	4	0	3	-4	0

■ 例 2

□ 第一阶段

$c_j \rightarrow$		0	0	0	0	0	-1	-1
$\mathbf{C}_B \mid \mathbf{X}_B \mid$	b	$ x_1 $	x_2	x_3	$ x_4 $	x_5	x_6	x_7
$ \begin{array}{c c c} 0 & x_4 \\ -1 & x_6 \\ -1 & x_7 \end{array} $	4 1 9	1 -2 0	1 [1] 3	1 -1 1	1 0 0	$\begin{vmatrix} 0 \\ -1 \\ 0 \end{vmatrix}$	0 1 0	0 0 1
$c_j - z_j$		-2	4	0	0	-1	0	0
$ \begin{array}{c cc} 0 & x_4 \\ 0 & x_2 \\ -1 & x_7 \end{array} $	3 1 6	3 -2 [6]	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	2 -1 4	$\begin{array}{ c c }\hline 1\\0\\0\\\end{array}$	$\begin{array}{c c} 1 \\ -1 \\ 3 \end{array}$	$ \begin{array}{c c} -1 \\ 1 \\ -3 \end{array} $	0 0 1
$c_j - z_j$		6	0	4	0	3	-4	0
$ \begin{array}{c cccc} 0 & x_4 \\ 0 & x_2 \\ 0 & x_1 \end{array} $	0 3 1	0 0 1	0 1 0	0 1/3 2/3	1 0 0	$\begin{array}{c c} -1/2 \\ 0 \\ 1/2 \end{array}$	$\begin{array}{ c c } 1/2 \\ 0 \\ -1/2 \end{array}$	$ \begin{array}{ c c c } \hline -1/2 \\ 1/3 \\ 1/6 \end{array} $
$c_j - z_j$		0	0	0	0	0	-1	-1

- 例 2
 - □ 第二阶段

	$c_j \rightarrow$		-3	0	1	0	0
\mathbf{C}_{B}	$\mid \mathbf{X}_B \mid$	b	x_1	$ x_2 $	x_3	$ x_4 $	$ x_5 $
0	x_4	0	0	0	0	1	-1/2
0	x_2	3	0	1	1/3	0	0
-3	x_1	1	0 0 1	0	[2/3]	0	1/2
	$c_j - z_j$		0	0	3	0	3/2

■ 例 2

□ 第二阶段

$c_j \rightarrow$	-3	0	1	0	0
$oldsymbol{\mathbf{C}}_B \mid \mathbf{X}_B \mid \mathbf{b}$	x_1	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $
$ \begin{array}{c ccccc} 0 & x_4 & 0 \\ 0 & x_2 & 3 \\ -3 & x_1 & 1 \end{array} $	0 0 1	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 1/3 [2/3]	$\left \begin{array}{c}1\\0\\0\end{array}\right $	$ \begin{array}{ c c } -1/2 \\ 0 \\ 1/2 \end{array} $
$c_j - z_j$	0	0	3	0	3/2
$ \begin{array}{c cccc} 0 & x_4 & 0 \\ 0 & x_2 & 5/2 \\ 1 & x_3 & 3/2 \end{array} $	0 -1/2 3/2	$\left \begin{array}{c} 0\\1\\0\end{array}\right $	0 0 1	$\left \begin{array}{c}1\\0\\0\end{array}\right $	$\begin{vmatrix} -1/2 \\ -1/4 \\ 3/4 \end{vmatrix}$
$c_j - z_j$	-9/2	0	0	0	-3/4

- 单纯形法计算中的几个问题——无穷多最优解
 - \Box 所有 $\sigma_j \leq 0$,且某个非基变量的检验数为 0,那么线性规划问题有无穷多最优解。

- 单纯形法计算中的几个问题——无穷多最优解
 - flue 所有 $\sigma_j \leq 0$,且某个非基变量的检验数为 0,那么线性规划问题有无穷多最优解。
 - □ 例 3: 考虑求解线性规划问题

$$\max z = x_1 + 2x_2$$
s.t.
$$\begin{cases} x_1 \le 4 \\ x_2 \ge 3 \\ x_1 + 2x_2 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\lim z = x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_3 = 4 \\ x_2 + x_4 = 3 \\ x_1 + 2x_2 + x_5 = 8 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

- 例 3
 - □ 用单纯形法求解

($c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	$ x_2 $	x_3	x_4	$ x_5 $
0	x_3 x_4 x_5	4	1	0	1	0	0
0	x_4	3	0	[1]	0	1	0
0	x_5	8	1	2	0	0	1
c_{\cdot}	$j-z_j$		1	2	0	0	0

■ 例 3

□ 用单纯形法求解

	$c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	x_2	x_3	x_4	x_5
0	x_3	4	1	0	1	0	0
0	x_4	3	0	[1]	0	1	0
0	x_5	8	1	2	0	0	1
c	$j-z_j$		1	2	0	0	0
0	x_3	4	1	0	1	0	0
0	x_2	3	0	1	0	1	0
0	x_5	2	[1]	0	0	-2	1
c	$j-z_j$		1	0	0	-2	0

- 例 3
 - □ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	$\mid \mathbf{X}_B$	b	$ x_1 $	x_2	x_3	$ x_4 $	x_5
0	$\begin{array}{c c} x_3 \\ x_2 \\ x_1 \end{array}$	2	0	0	1	[2]	-1
2	x_2	3	0	1	0	1	0
1	x_1	2	1	0	0	-2	1
c	$z_j - z_j$		0	0	0	0	-1

■ 例 3

□ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	x_1	x_2	x_3	x_4	x_5
0 2 1	$\begin{array}{c c} x_3 \\ x_2 \\ x_1 \end{array}$	2 3 2	0 0 1	0 1 0	1 0 0	[2] 1 -2	$\begin{array}{c} -1 \\ 0 \\ 1 \end{array}$
	$\frac{1}{j-z_j}$	<u>'</u>	0	0	0	0	-1
0 2 1	$\begin{array}{c c} x_4 \\ x_2 \\ x_1 \end{array}$	$\begin{array}{ c c } 1 \\ 2 \\ 4 \end{array}$	0 0 1	$\begin{array}{ c c }\hline 0\\1\\0\\\end{array}$	[1/2] -1/2 1	1 0 0	$\begin{array}{c c} -1/2 \\ 1/2 \\ 0 \end{array}$
c	$j-z_j$		0	0	0	0	-1

- 例 3
 - □ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	x_1	x_2	x_3	x_4	x_5
0	x_3	2	0	0	1	[2]	-1
2	x_2	3	0	1	0	1	0
1	x_1	2	1	0	0	-2	1
c	$j-z_j$		0	0	0	0	-1
0	x_4	1	0	0	[1/2]	1	-1/2
2	x_2	2	0	1	-1/2	0	1/2
1	x_1	4	1	0	1	0	0
c	$j-z_j$		0	0	0	0	-1

 \square 无穷多解, $\mathbf{X}_1 = (2,3), \mathbf{X}_2 = (4,2)$

- 单纯形法计算中的几个问题——无可行解
 - \Box 当结果出现所有 $\sigma_j \leq 0$ 时, 如基变量中仍含有非零的人工变量 (两阶段法求解时第一阶段目标函数值不等于零), 表明问题无可行解。

- 单纯形法计算中的几个问题——无可行解
 - \square 当结果出现所有 $\sigma_j \leq 0$ 时, 如基变量中仍含有非零的人工变量 (两阶段法求解时第一阶段目标函数值不等于零), 表明问题无可行解。
 - 例 4: 考虑求解线性规划问题

■ 例 4

□ 用单纯形法求解

c_j	\rightarrow	2	1	0	0	-M
\mathbf{C}_{B}	$\mathbf{X}_{B} \mid \mathbf{b}$	x_1	$ x_2 $	x_3	$ x_4 $	x_5
0	$x_3 \mid 2$	[1]	1	1	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	0
-M	$x_5 \mid 6$	2	2	0	-1	1
c_j	$-z_j$	2 + 2M	1+2M	0	$\mid -M \mid$	0

■ 例 4

□ 用单纯形法求解

$c_j \rightarrow$	2	1	0	0 -M
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}}$	x_1	$ x_2 $	$ x_3 $	$ x_4 x_5$
$ \begin{array}{c cccc} 0 & x_3 & 2 \\ -M & x_5 & 6 \end{array} $	[1]	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	1 0	$\left \begin{array}{c c}0&0\\-1&1\end{array}\right $
$c_j - z_j$	2+2M	1+2M	0	$\mid -M \mid 0$
$ \begin{array}{c cccc} 2 & x_1 & 2 \\ -M & x_5 & 2 \end{array} $	1 0	$\begin{vmatrix} 1 & 0 \end{vmatrix}$	1 -2	$\left \begin{array}{c c}0&0\\-1&1\end{array}\right $
$c_j - z_j$	0	-1	-2-2M	$\mid -M \mid 0$

■ 例 4

□ 用单纯形法求解

$c_j \rightarrow$	2	1	0	0	$\mid -M$
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	x_1	$ x_2 $	$ x_3 $	$ x_4$	x_5
$\begin{array}{c cccc} 0 & x_3 & 2 \\ -M & x_5 & 6 \end{array}$	[1]	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	1 0	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	0 1
$c_j - z_j$	2+2M	1+2M	0	-M	0
$\begin{array}{c cccc} 2 & x_1 & 2 \\ -M & x_5 & 2 \end{array}$	1 0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1 -2	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	0 1
$c_j - z_j$	0	-1	-2-2M	-M	0

 \square 当所有 $\sigma_j \leq 0$ 时,基变量中仍含有非零的人工变量 $x_5 = 2$,故线性规划问题无可行解。

- 单纯形法计算中的几个问题——极小化
 - \square 目标函数极小化时解的判别,以 $\sigma_i \geq 0$ 作为判别最优解的标准。

- 单纯形法计算中的几个问题——极小化
 - \Box 目标函数极小化时解的判别,以 $\sigma_i \geq 0$ 作为判别最优解的标准。
 - □ 例 5: 考虑求解线性规划问题

$$\min \ z = x_1 - x_2 + x_3 - 3x_5$$
 s.t.
$$\begin{cases} x_2 + x_3 - x_4 + 2x_5 = 6 \\ x_1 + 2x_2 - 2x_4 = 5 \\ 2x_2 + x_4 + 3x_5 + x_6 = 8 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

- 例 5
 - □ 用单纯形法求解

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	x_2	$ x_3 $	x_4	$\mid x_5 \mid$	x_6
1	x_3	6	0	1	1	-1	2	0
1	x_1	5	1	2	0	-2	0	0
0	x_6	8	0	2	1 0 0	1	[3]	1

■ 例 5

□ 用单纯形法求解

$c_j \rightarrow$		1	-1	1	0	-3	0
$\mathbf{C}_B \mid \mathbf{X}_B$	b	x_1	x_2	$ x_3 $	$ x_4 $	$ x_5 $	x_6
$ \begin{array}{c cccc} 1 & x_3 \\ 1 & x_1 \\ 0 & x_6 \end{array} $	6 5 8	0 1 0	1 2 2	1 0 0	$\begin{vmatrix} -1\\ -2\\ 1 \end{vmatrix}$	2 0 [3]	$\begin{array}{ c c }\hline 0\\0\\1\\\end{array}$
$c_j - z_j$	0	-4	0	3	-5	0	
$\begin{array}{c cc} 1 & x_3 \\ 1 & x_1 \\ -3 & x_5 \end{array}$	$ \begin{array}{c} 2/3 \\ 5 \\ 8/3 \end{array} $	0 1 0	$ \begin{vmatrix} -1/3 \\ [2] \\ 2/3 \end{vmatrix} $	1 0 0	$ \begin{vmatrix} -5/3 \\ -2 \\ 1/3 \end{vmatrix} $	$\left \begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right $	$ \begin{vmatrix} -2/3 \\ 0 \\ 1/3 \end{vmatrix} $
$c_j - z_j$		0	-2/3	0	14/3	0	5/3

- 例 5
 - □ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $	$ x_6 $
1	x_3	3/2	1/6	0	1	-2	0	$ \begin{vmatrix} -2/3 \\ 0 \\ 1/3 \end{vmatrix} $
-1	x_2	5/2	1/2	1	0	-1	0	0
-3	x_5	1	-2/3	0	0	1	1	1/3
	$c_j - z_j$	i	1/3	0	0	4	0	5/3

- 例 5
 - □ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ x_5 $	$ x_6 $
1	x_3	3/2	1/6	0	1	-2	0	-2/3
-1	x_2	5/2	1/2	1	0	-1	0	0
-3	x_5	1	1/6 1/2 -2/3	0	0	1	1	1/3
	$c_j - z_j$		1/3	0	0	4	0	5/3

 \Box 最优解 $\mathbf{X} = (0, 5/2, 3/2, 0, 1)$, 最优值 z = -4

■ 单纯形法计算中的几个问题——退化

- ② 按最小比值 θ 来确定换出基的变量时,有时出现存在两个以上相同的最小比值,从而使下一个表的基可行解中出现一个或多个基变量等于零的退化解。
- 退化解的出现原因是模型中存在多余的约束,使多个基可行解对应 同一顶点。
- □ 当存在退化解时,就有可能出现迭代计算的循环。

■ 单纯形法计算中的几个问题——退化

- ② 按最小比值 θ 来确定换出基的变量时,有时出现存在两个以上相同的最小比值,从而使下一个表的基可行解中出现一个或多个基变量等于零的退化解。
- □ 退化解的出现原因是模型中存在多余的约束,使多个基可行解对应 同一顶点。
- □ 当存在退化解时,就有可能出现迭代计算的循环。
- □ 解决办法
 - 当存在多个 $\sigma_i > 0$ 时,始终选取中下标值为最小的变量作为换入变量。
 - 当计算 θ 值出现两个以上相同的最小比值时,始终选取下标值为最小的变量作为换出变量。

■ 小结

- □ LP 数学模型及标准型
- □ 图解法
- □ 单纯形法
 - 标准型中有单位基
 - 标准型中没有单位基,用大 M 法加人工变量,使之构成单位基
 - 判定最优解定理
- □ 解的几种情况
 - 最优解
 - 无穷多解: 最优表中非基变量检验数有 0
 - 无界解: $\sigma_j > 0$ 但 $\mathbf{P}_j \leq 0$
 - 无可行解: 最优表中人工变量在基变量中,且人工变量不为 0
- 课后作业: P44, 习题 1.6-1.7

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈