

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • November 13, 2020

Lecture Agenda Summary

- 2. Lecture 08 Recap
- 3. Matrix Transpose
- 4. Symmetric Matrices
- 5. Skew Symmetric Matrices
- 6. Matrix Trace
- 7. Study Materials Comments
- 8. Double session poll

Foundation Module Review

Rings and Fields 101 #1

Matrix Algebra #2

Quantum Matrix Operators #2

Group Theory 101 #1

Linear Operators 101 #2

Complex Hilbert Spaces #2

Naive Set Theory Overview #1

Complex Vector spaces 101 #2

Mat. Groups: GL(2, C) & U(2) + SU(2)

Completed ____

Ongoing | #n is the number of live lectures

Lecture 08 Recap

Invertible Matrices

Definition (1.1)

A matrix $A \in M_n(\mathbb{C})$ is invertible if there exists $A^{-1} \in M_n(\mathbb{C})$ such that $AA^{-1} = A^{-1}A = \mathbb{I}$.

▶ In mathematics literature $A \in M_n(\mathbb{C})$ is called singular matrix if it's not invertible and non-singular matrix if it's invertible!

Proposition (1.0)

If $A, B \in M_n(\mathbb{C})$ are invertible, then the following statements are true:

- 1. AB is also invertible.
- 2. $(AB)^{-1} = B^{-1}A^{-1}$.

- ▶ Hence, the set of all invertible matrices in $M_n(\mathbb{C})$ denoted $GL(n,\mathbb{C})$ is a group!
- ▶ Please note that some authors use the notation $GL_n(\mathbb{C})$.

Diagonal Matrices

Definition (1.2)

 $A \in M_n(\mathbb{C})$ is called a diagonal matrix if it has the following form:

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \text{ such that } a_{ij} = 0 \text{ if } i \neq j.$$

▶ The following elements of $M_2(\mathbb{C})$ are examples of diagonal

matrices:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$.

Proposition (1.1)

If $A, B \in M_n(\mathbb{C})$ are diagonal, then AB is also diagonal and AB = BA.

Invertible Diagonal Matrices

Proposition (1.2)

Let
$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
. The following statements are true:

1. *D* is invertible iff $\lambda_i \neq 0$ for all $i \in \{1, 2, ..., n\}$ i.e if all the diagonal elements are nonzero.

2.
$$D^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_2} & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda_n} \end{pmatrix}.$$

Lecture 09

Matrix Transpose

Definition (1.0)

For
$$A = [a_{ij}] = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{C}), A^T \text{ is defined as:}$$

$$A^{T} = [a_{ji}] = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}.$$

 $ightharpoonup M_2(\mathbb{C})$ examples:

For
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

$$X^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y^T = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, Z^T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } H^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Transpose Properties

Proposition (1.0)

Let $A, B \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Then the following properties hold:

- 1. $(A^T)^T = A$.
- 2. $(A + B)^T = A^T + B^T$.
- 3. $(\lambda A)^T = \lambda A^T$.
- 4. $(AB)^{T} = B^{T}A^{T}$.

- Recall that the commutator of two matrices A and B is defined as [A, B] = AB BA or more algebraically correct [A, B] = AB + (-BA).
- As hands on home challenge, try play with following:
 - 1. Compute $([X, Y])^T$, $[X, Y^T]$, $[Y^T, X]$, $[H, Y^T]$ and other combinations of your choice.
 - 2. Apply the results of the above computation to $|0\rangle$ and $|1\rangle$.

Symmetric Matrices

Definition (1.1)

We say a matrix $A \in M_n(\mathbb{C})$ is symmetric if $A^T = A$.

► Hence, it's easy to see that every diagonal matrix is symmetric.

Theorem (1.0)

Let $A, B \in M_n(\mathbb{C})$ be symmetric and $\lambda \in \mathbb{C}$. Then the following is true:

- 1. If A is invertible then A^{-1} is symmetric.
- 2. A + B is symmetric.
- 3. λA is symmetric.
- 4. If AB is symmetric then [A, B] = 0 i.e. AB = BA.

Proof: Homework challenge?

▶ Which of the following $M_2(\mathbb{C})$ matrices are symmetric?

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Skew Symmetric Matrices

Definition (1.2)

 $A \in M_n(\mathbb{C})$ is skew symmetric (or antisymmetric) if $A^T = -A$.

Theorem (1.1)

Let $A, B \in M_n(\mathbb{C})$ be skew symmetric and $\lambda \in \mathbb{C}$. Then the following is true:

- 1. If A is invertible then A^{-1} is skew symmetric.
- 2. A + B and [A, B] are skew symmetric.
- 3. A^T and λA are skew symmetric.
- ▶ Is any of the famous $M_2(\mathbb{C})$ matrices below skew symmetric?

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

In the advanced module we'll see that skew symmetric matrices form a Lie Algebra!

Matrix Trace

Definition (1.3)

For
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{C})$$
, the trace of A is defined as:

$$Tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \ldots + a_{nn}.$$

Proposition (1.1)

Let $A, B \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Then the following properties hold:

- 1. $Tr(A^T) = Tr(A)$.
- 2. Tr(A + B) = Tr(A) + Tr(B).
- 3. $Tr(\lambda A) = \lambda Tr(A)$.
- 4. Tr(AB) = Tr(BA).
- In respect to the trace, can you notice anything interesting in common with the following matrices?

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
and $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Serge Lang
Introduction to
Linear Algebra
Second Edition

Serge Lang (RIP)

14

Where should you focus?

Chapter II Matrices and Linear Equations (*Pages 42 - 85*)

- GitHub (Curated study materials): github.com/quantumformalism
- YouTube: youtube.com/zaikugroup
- Twitter: @ZaikuGroup
- Gitter: gitter.im/quantumformalism/community