Aug 30, 2016
Cardinality of Infinite Sets
a measure of how may demonts in a nitofaire set
Let A, B be two infenire rets
If there is a one-to-one correspondence
from A to B, then A = 115
If there is an a one-to-one function for A to B, then $ A \leq B $
If there is an enter function from A & B
than (A) 2/0
Recall R S AxB
Functions
one-te-one functions f. A > B
For a, +a, fa, 1 + fa)

onto:

Let N=1,2,3,...) he choset of natural numbers. The cardinality of N is derived by Yo Any sof whose cardinality is = to is said to be countable Zg. S= 1,2,3, -- ,100} f:5->1N f(s) = S -J: 5->W |S| \| |W| S={1,3,5,7,2-

X >0 X X 20

$$-far n \in M$$
. $f(2n-1) = \frac{(2n-1)+1}{2} = n$

Let A be a countably infinite set and IAI- Yo Thon there is a one-to-one correspondence of. from the elements of A to the natural numbers a, az az ap ar ao, ! 2,3,4,5,6,-Consider the fellowing prof 12 = N Keall 0 +1 -1 +2 -2 +5 --123456-Z>0 × Z>0

On the odorr hand NEQT, home Thus $|\mathcal{A}| \leq |\mathcal{Q}^{\dagger}|$

Thus Rational Numbers are contable

R	Gre	not	countable

(0,1) are not countable.

Pruf by Centradiction

We need to show $|(0,1)| \neq |N|$ There is (no) one-to-one cornespondence hotween $|(0,1)| \neq |N|$

Assume the claim is revort.

and show that the presumption will lead to
a centre dirtion.

Using proof by contradiction	
Assume there is a one-to-one corre	espenelence
from (0,1) to 1N.	•
0. du diz dis di4. di+ -	1
0. d2/d22 des d24 d25.	2
0, d, d, 2 d, 3 d, 4 d, 5	3
O. das du des du des	Ž+
O. d. drds dp do -	
\mathcal{L}	=1,2,
Obsome that the number Od, d.d un the line a Contradirein!	is not

(9)

Thus we know that $|R| \neq |A|$ $|A| \leq |R|$ IN/ < |R = X Theorem, For any set S, |S| < |25| $|R| = |2^{m}|$ 21% 2 2 R Assume the claim is word., |5/2/25 then there is an ortho fundion f:5-725 for $s \in S$, $f(s) \subseteq S$

Consider X= {x xeS,xef(x)} Since $X \subseteq S$, f is an one function there exists $x \in S'$, such $f(x^0) - X$ There two possiblilities if & EX, so x is mapped to ast X that contains &, & EX (xo \$\pmax \), xo is mapped to aset X that

doesn't contain x , so \(\frac{x}{E}\)