Examen de Alxebra (11-02-2008)

- 1. Se considera la matriz $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 4 & 4 \\ 0 & 0 & 1 \end{pmatrix}$
 - a) Calcular matrices elementales E_1 , E_2 y E_3 , tales que $E_3E_2E_1A = I_3$.
 - b) Expresar la matriz A como un producto de matrices elementales.
- 2. Calcular, según los valores de a, el rango de la matriz $\begin{pmatrix} 1 & a & 1 \\ 2 & 1 & a \\ 1 & a+1 & a-1 \end{pmatrix}$
- Se consideran los subespacios de R³:

$$U = \langle (1, 1, 1), (-1, 1, -1) \rangle$$
 y $W = \{(x, y, z) \in \mathbb{R}^3 / x + y = 0\}$

- a) Probar que el vector (-1, 5, -1) pertenece a U y calcular sus coordenadas respecto de la base $\{(1, 1, 1), (-1, 1, -1)\}$.
 - b) Calcular las ecuaciones y una base de $U \cap W$.
- Sea f: R³ → R³ la aplicación lineal dada por:

$$f(x,y,z)=(x+y,y+z,x-z)$$

- a) Probar que f no tiene inversa.
- b) Sea $U=\{(x,y,z)\in\mathbb{R}^3/x-y+z=0\}$, calcular una base del subespacio $f^{-1}(U).$
- c) Si $W=\langle (0,1,1), (1,1,a) \rangle$ determinar para que valores de a la dimensión de f(W)=1.
- d) Sea $\mathcal{B}=\{(0,1,1),(1,1,1),(0,0,1)\}$ una base de \mathbb{R}^3 , calcular la matriz asociada a f respecto de la base canónica en el dominio y la base \mathcal{B} en el rango, es decir $(f)_{\mathcal{C},\mathcal{B}}$.
- 5. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la aplicación lineal dada por:

$$f(x, y, z) = (-2z, x + 2y + z, x + 3z)$$

- a) Justificar que f es diagonalizable.
- b) Encontrar una base \mathcal{B} de \mathbb{R}^3 respecto de la cual $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ es la

matriz asociada a f.

- 6. Estudiar si las siguientes afirmaciones son verdaderas o falsas, razonando las respuestas:
- a) Si $f: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ y $g: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ son las aplicaciones definidas por f(x) = (x+1,x-4) y g(x,y) = (x+2y,x+1), entonces $g \circ f$ es inyectiva.
 - b) Si $A \in \mathcal{M}_{4\times 4}(\mathbb{R})$ entonces, |2A| = 2|A|.
- c) Si U y W son subespacio vectoriales de \mathbb{R}^4 y $\dim(U)=\dim(W)=3,$ entonces $\dim(U\cap W)\geq 1.$