

Family Name
Given Name
Student No.
Signature

THE UNIVERSITY OF NEW SOUTH WALES

School of Electrical Engineering & Telecommunications

MID-SEMESTER EXAMINATION

Summer Semester 2017-2018

ELEC1111 Electrical and Telecommunications Engineering

TIME ALLOWED: 1.5 hours (90 minutes)

TOTAL MARKS: 100 TOTAL NUMBER OF QUESTIONS: 4

THIS EXAM CONTRIBUTES 25% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 10 minutes.

This paper contains 6 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a separate answer booklet.

Marks for each question are indicated beside the question.

This paper **MAY NOT** be retained by the candidate.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

For the **numerical solutions**, you can use either **fraction** form or floating-point form (maximum **2 digits** after decimal point is enough)

QUESTION 1 [25 marks]

- (i) [12 marks] For the circuit shown in Figure 1,
 - a. (10 marks) Calculate the equivalent resistance $R_{\rm eq}$ as seen from terminals a-b.
 - b. (2 marks) Find the current *i* through the network using the result of part (a).

Figure 1

- (ii) [13 marks] For the circuit shown in Figure 2,
 - a. (10 marks) Calculate all the powers absorbed and/or supplied by the elements.
 - b. (3 marks), Verify the law of conservation of energy.

Figure 2

QUESTION 2 [30 marks]

- (i) [14 marks] For the circuit shown in Figure 3,
 - a. **(10 marks)** Apply nodal analysis and show that the nodal equations are given as below,

$$\begin{cases} 9v_1 - 5v_2 = 120 \\ v_1 - 5v_2 = -40 \end{cases}$$

b. **(4 marks)** Given the values of node voltages as $v_1 = 20 \text{ V}$ and $v_2 = 12 \text{ V}$, calculate the total power supplied by the sources.

Figure 3

- (ii) [16 marks] For the circuit shown in Figure 4,
 - a. **(12 marks)** Apply mesh analysis and show that the mesh equation are given as below,

$$\begin{cases} i_1 + 3i_2 - 2i_3 = 8 \\ i_1 + i_2 - 4i_3 = -1 \\ i_1 - i_2 = -4 \end{cases}$$

b. **(4 marks)** Given the values of mesh currents as $i_1 = -0.5$ A, $i_2 = 3.5$ A, and $i_3 = 1$ A, find the voltage v across 4-A current source.

Figure 4

QUESTION 3 [25 marks]

- (i) [15 marks] In the circuit of Figure 5,
 - a. **(12 marks)** Use only **source transformation** to reduce the circuit into a single resistor in series with a single voltage source as seen from terminals a-b, and then determine Thevenin voltage $V_{\rm Th}$ and Thevenin resistance $R_{\rm Th}$ at the terminals a-b.
 - b. (3 marks) Find the value of load resistance R_L for maximum power transfer, and then calculate the maximum power that can be delivered to R_L .

(ii) [10 marks] For the circuit shown in Figure 6, obtain the Norton equivalent circuit as seen from terminal *a-b* and draw the Norton equivalent circuit.

Figure 6

QUESTION 4 [20 marks]

- (i) [8 marks] In circuit shown in Figure 7, the switch has been in position A for a long time. At t = 0, the switch moves to position B.
 - a. **(4 marks)** Find the voltage $v_{\mathcal{C}}(t)$ across the capacitor immediately after the switch changes to position B, $v_{\mathcal{C}}(0^+)$, and its final voltage when $t \to \infty$, $v_{\mathcal{C}}(\infty)$.
 - b. (3 marks) Derive an expression for the capacitor voltage $v_c(t)$ for t > 0.
 - c. (1 marks) Find the current i(t) through 3-k Ω resistor for t > 0.

Figure 7

- (ii) [12 marks] In the circuit of Figure 8, the switch has been closed for a long time before being opened at t=0.
 - a. **(10 marks)** Derive an expression for the inductor current $i_L(t)$ for all time (i.e., for both t < 0 and t > 0) and sketch $i_L(t)$ as a function of time showing all critical points in the sketch.
 - b. (2 marks) Find the total energy stored or released by the inductor for $t \ge 0$, i.e., from t = 0 to $t \to \infty$.

Figure 8

END OF PAPER

This page is intentionally left blank