

Computer Graphics and Image Processing

Part 3: Image Processing

4 – Image Filtering

Martin Urschler, PhD

- Up to now: Focus on greyvalue transformations
 - Modify contrast and brightness through linear transformation
 - Nonlinear transformation for histogram equalization
 - □ Input and output is a single pixel

- Spatial image filtering operates on a neighborhood (moving window)
 - \Box Intensity transformations can be seen as operating on a 1 x 1 neighborhood
 - \square Image filtering: $n \times n$ neighborhood (n > 1, often n is odd!)
 - □ Again, linear or nonlinear transformations possible

the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering.

Example: Mean filter 5 x 5

Input: 235 x 235 px

Smoothing = noise filtering

Images from: Gonzalez & Woods, Digital Image Processing, 3rd ed.

Basic principles of filtering

- Output filtered image g(x, y) is obtained from input image f(x, y) by applying moving window transform in (2k + 1) x (2l + 1) neighborhood (window): g = MWT(f)
 - □ Value g(x, y) at each pixel location (x, y) is a certain linear or non-linear function of values of the original image f(x, y)
 - □ The values of f are taken in a (2k + 1) x (2l + 1) rectangle being centered on pixel location (x, y)
 - E.g. (k = 1, l = 1) for a 3 x 3 window and (k = 1, l = 3) for a 3 x 7 window
 - \square A general linear MWT multiplies each filter coefficient $w(\xi, \eta)$ with the image value that lies directly beneath it, and sums up these terms.
 - □ Example: Mean filter is just a sum with fixed weight!

$$\mu(x,y) = \frac{1}{(2k+1)(2l+1)} \sum_{\xi=-k}^{k} \sum_{\eta=-l}^{l} f(x+\xi,y+\eta)$$

Basic principles of filtering

- Windows are centered at each location (x, y)
- Popular windows rectangles with odd sizes, e.g. 3 x 3, 5 x 5, 3 x 1, etc.
- The 3 x 3 square window gives a set of offsets representing the neighborhood:

$$\{(\xi,\eta): \xi = -1,0,1; \eta = -1,0,1\}$$

■ The (2k + 1) x (2l + 1) rectangular window gives a set of offsets:

$$\{(\xi,\eta): \xi = -k, \dots, -1,0,1,\dots,k; \eta = -l,\dots,-1,0,1,\dots,l\}$$

- Example: Mean filter 5 x 5 applied to f
- Rectangular window (k = 2, l = 2):

$$\{(\xi,\eta): \xi=-2,-1,0,1,2; \eta=-2,-1,0,1,2\}$$

$$g(x,y) = \mu(x,y) = \frac{1}{25} \sum_{\xi=-2}^{2} \sum_{\eta=-2}^{2} f(x+\xi,y+\eta)$$

$$w(\xi,\eta) = 1$$

- Example: Mean filter 5 x 5 applied to f
- Rectangular window (k = 2, l = 2):

$$\{(\xi,\eta): \xi=-2,-1,0,1,2; \eta=-2,-1,0,1,2\}$$

$$g(x,y) = \mu(x,y) = \frac{1}{25} \sum_{\xi=-2}^{2} \sum_{\eta=-2}^{2} f(x+\xi,y+\eta)$$

$$w(\xi,\eta) = 1$$

- Example: Mean filter 5 x 5 applied to f
- Rectangular window (k = 2, l = 2):

$$\{(\xi,\eta): \xi = -2, -1,0,1,2; \eta = -2, -1,0,1,2\}$$

$$g(x,y) = \mu(x,y) = \frac{1}{25} \sum_{\xi=-2}^{2} \sum_{\eta=-2}^{2} f(x+\xi,y+\eta)$$

$$w(\xi,\eta) = 1$$

Generic linear MWT:

$$g(x,y) = \frac{1}{(2k+1)(2l+1)} \sum_{\xi=-k}^{k} \sum_{\eta=-l}^{l} w(\xi,\eta) f(x+\xi,y+\eta)$$

Mean filter 3 x 3:

$$w(\xi, \eta) = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Vertical edge filter 3 x 3:

$$w(\xi, \eta) = \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

M

Smoothing: Mean filter

- Mean, box or average filtering:
 - □ "Smoothing" images by reducing the variation of intensities between neighboring pixels -> reduce white (Gaussian) noise
 - Each value is replaced with the average value of the neighboring pixels, including itself, normalized by window size to stay inside original greyvalue range!
- Potential problems:
 - □ A single "outlier" can significantly affect the average of all the pixels in a neighborhood
 - □ Edge blurring: when the moving window crosses an edge, the filter will interpolate new pixel values on the edge
 - This may be a problem if sharp output edges are required!

Smoothing: Mean filter

One dimensional (1D) example

				_				_					
Movi	ng window			Comput	ing the n	nean		Ro	unding th	ie mean a	and assignin	g to $g($	(x)
W_0 :	(3, 3, 9)	\Rightarrow	(3 +	3 + 9	()/3 =	: 5	\Rightarrow	g((0) = r	$\operatorname{round}\{$	$\{5\}$	=	5
$W_1:$	(3, 9, 4)	\Rightarrow	(3 +	9 + 4	(a)/3 =	5.33	\Rightarrow	g((1) = r	$\operatorname{round}\{$	5.33 }	=	5
W_2 :	(9, 4, 52)	\Rightarrow	(9 +	4 + 5	(52)/3 =	= 21.6	$57 \Rightarrow$	g((2) = r	$\operatorname{round}\{$	21.67	=	22
W_3 :	(4, 52, 3)	\Rightarrow	(4 +	52 +	3)/3 =	= 19.6	$57 \Rightarrow$	g((3) = r	$\operatorname{round}\{$	19.67	=	20
W_4 :	(52, 3, 8)	\Rightarrow	(52 -	+3+	8)/3 =	= 21	\Rightarrow	g((4) = r	$\operatorname{round}\{$	21}	=	21
W_5 :	(3, 8, 6)	\Rightarrow	(3 +	8 + 6	(5)/3 =	5.67	\Rightarrow	g((5) = r	$\operatorname{round}\{$	5.67 }	=	6
W_6 :	(8, 6, 2)	\Rightarrow	(8 +	6 + 2	(2)/3 =	5.33	\Rightarrow	g(6) = r	$\operatorname{round}\{$	5.33 }	=	5
$W_7:$	(6, 2, 2)	\Rightarrow	(6 +	2 + 2	(2)/3 =	3.33	\Rightarrow	g((7) = r	$\operatorname{round}\{$	$\{3.33\}$	=	3
W_8 :	(2, 2, 9)	\Rightarrow	(2 +	2 + 9	(-1)/3 =	4.33	\Rightarrow	g((8) = r	$\operatorname{round}\{$	4.33 }	=	4
W_9 :	(2, 9, 9)	\Rightarrow	(2 +	9 + 9	(-1)/3 = (-1)/3	6.67	\Rightarrow	g(9) = r	$\operatorname{round}\{$	6.67	=	7
${f g}$	5	5	22	20	21	6	5	3	4	7			
											ı		

For g(0) and g(9), f(0) and f(9), respectively, are extended outside the boundaries.

2D Mean filter: 3 x 3 window

1: Keeping border values unchanged.

Averaging: round $\{(1+4+0+2+2+4+1+0+1)/9\}=2$

1	4	0	1	3	1
2	2	4	2	2	3
1	0	1	0	1	0
1	2	1	0	2	2
2	5	3	1	2	5
1	1	4	2	3	0

1	4	0	1	3	1
2	2	2	2	1	3
1	2	1	1	1	0
1	2	1	1	1	2
2	2	2	2	2	5
1	1	4	2	3	0

Input f

Output g

2D Mean filter: 3 x 3 window

2: Extending border values outside with the boundary values.

Averaging: round $\{(1+1+4+2+2+2+1+1+0)/9\} = 2$

1	1	4	0	1	3	1	<u>,1</u>						
1	1	4	0	1	3	1	1	2	2	2	2	2	2
2	2	2	4	2	2	3	3	2	2	2	2	1	2
1	1	0	1	0	1	0	0	1	2	1	1	1	2
1	1	2	1	0	2	2	2	2	2	1	1	1	2
2	2	5	3	1	2	5	5	2	2	2	2	2	2
1	_ 1	1	4	2	3	0 \	0	2	2	3	3	2	2
1	1	1	4 Inpi	2 ut ${f f}$	0			Outp	out g				

2D Mean filter: 3 x 3 window

3: Extending border values outside with zeros (zero padding).

Averaging: round $\{(0+1+4+0+2+2+0+1+0)/9=1$ (2)Input f Output g

2D Mean filter: more examples

FIGURE 3.33 (a) Original image, of size 500×500 pixels (b)–(f) Results of smoothing with square averaging filter masks of sizes m=3,5,9,15, and 35, respectively. The black squares at the top are of sizes 3,5,9,15,25,35,45, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size 50×120 pixels.

Images from: Gonzalez & Woods, Digital Image Processing, 3rd ed.

Noisy X-ray image of circuit board

Noise reduction with 3x3 averaging filter

2D Mean filter: Separability

- For larger filter windows (think e.g. 15 x 15), two nested for loops are increasingly inefficient.
- Separable filter windows can be implemented more efficiently by composition of two operations with 1D

filters!

$$w(\xi, \eta) = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

O(k²) operations per pixel

$$w_{row}(\xi, \eta) = \frac{1}{3} [1 \ 1 \ 1]$$

$$w_{col}(\xi, \eta) = \frac{1}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Gaussian linear filter

- To blur images and remove noise and fine detail
- One-dimensional Gaussian function (zero mean)
- The pixels further away contribute less weight...

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

 σ – standard deviation

$\kappa = \frac{x}{\sigma}$	0	1	2
$G(\kappa)$	0.399	0.242	0.054
$\frac{G(\kappa)}{G(0)}$	1.000	0.607	0.135

Gaussian linear filter

- Standard deviation σ of Gaussian probability density function guides its behaviour:
 - \square 68% of the x-values are in the range $[mean \sigma, mean + \sigma]$
 - \square 95% of the x-values are in the range $[mean 2\sigma, mean + 2\sigma]$
 - \square 99.7% of the x-values are between $[mean 3\sigma, mean + 3\sigma]$

1D Gaussian linear filter

- Built using normalized 1D Gaussian $G(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$
- Filter kernel s(x): a discrete approximation of the normalized Gaussian; e.g. for the 1 x 5 filter with $\sigma = 1$:

x	-2	-1	0	1	2
s(x)	0.054	0.242	0.399	0.242	0.054
Old: $[10s(x)]$	1	2	4	2	1
Old: kernel	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{4}{10}$	$\frac{2}{10}$	$\frac{1}{10}$

- Rule of thumb: set filter half-width to about $2-3\sigma$
- Still often used filter kernel for $1 \, x \, 3$ filter with $\sigma = 1$ is $\frac{1}{4} \, [1 \, 2 \, 1]$

Gaussian linear filter

 2D Gaussian filter is built using the (isotropic) 2D Gaussian function

G(x,y) =
$$\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$$

2D Gaussian is separable!

$$G(x, y) = G(x)G(y)$$

2D Gaussian linear filter

■ Filter kernel s(x): a discrete approximation of the normalized continuous 2D Gaussian; e.g. for the 3×3 and 5×5 filters with $\sigma = 1$:

$$s_{3x3}(x) = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \qquad s_{5x5}(x) = \frac{1}{100} \begin{bmatrix} 1 & 2 & 4 & 2 & 1 \\ 2 & 4 & 8 & 4 & 2 \\ 4 & 8 & 16 & 8 & 4 \\ 2 & 4 & 8 & 4 & 2 \\ 1 & 2 & 4 & 2 & 1 \end{bmatrix}$$

- The larger the value of σ , the wider the peak of the Gaussian and the larger the blurring
- Non-uniform averaging: low pass filtering
- Rotational symmetry with no directional bias
- Fast computations due to separability
- Might not preserve image brightness

 $\sigma = 2$; 30 x 30 kernel

 $\sigma = 5$; 30 x 30 kernel

Gaussian vs. mean (box) filter

Gaussian filter for scale space

Orig

3*x*3

5*x*5

11x11

Gaussian filter with Salt-and-pepper noise

Noisy input image

Gaussian filter: blurred edges, residual noise

Noisy input image

Median filter output (5x5)

10

Median filter

- Effective nonlinear filter, being used frequently to remove "salt-and-pepper" noise while preserving edges
- Replace each pixel with the median of the neighborhood of K pixels:

$$g(x, y) = median\{f(x + \xi_i, y + \eta_i) : i = 1, ..., K\}$$

- Computation for each pixel (x, y):
 - 1. Sort all K values from the neighboring window of f(x,y) into ascending numerical order: $v_{[0]} \le v_{[1]} \le \cdots \le v_{[K-1]}$
 - 2. Select the middle value, $g(x,y) = v_{[K/2]}$, if K is odd or the average, $g(x,y) = 0.5(v_{[(K-1)/2]} + v_{[(K+1)/2]})$, of the two middle values if K is even

Median filter: 1D example

Median filtering of a simple 1D signal $\mathbf{f} = (f(x) : x = 0, 1, \dots, 9)$ with a moving window $W_x = [x - 1, x, x + 1]$ of size 3.

Median filter: 1D example

Moving window	Sorting		Selecting the median and assigning to $g(\boldsymbol{x})$	
$W_0: (3,3,9)$	$\Rightarrow (3, 3, 9)$	\Rightarrow	$g(0) = \text{median}\{3, 3, 9\} = 3$	_
$W_1: (3,9,4)$	$\Rightarrow (3, 4, 9)$	\Rightarrow	$g(1) = \text{median}\{3, 9, 4\} = 4$	
$W_2: (9,4,52)$	$\Rightarrow (4, 9, 52)$	\Rightarrow	$g(2) = \text{median}\{9, 4, 52\} = 9$	
$W_3: (4,52,3)$	\Rightarrow $(3, 4, 52)$	\Rightarrow	$g(3) = \text{median}\{4, 52, 3\} = 4$	
$W_4: (52,3,8)$	\Rightarrow $(3, 8, 52)$	\Rightarrow	$g(4) = \text{median}\{52, 3, 8\} = 8$	
$W_5: (3,8,6)$	\Rightarrow $(3, 6, 8)$	\Rightarrow	$g(5) = \text{median}\{3, 8, 6\} = 6$	
$W_6: (8,6,2)$	\Rightarrow $(2, 6, 8)$	\Rightarrow	$g(6) = \text{median}\{8, 6, 2\} = 6$	
$W_7: (6,2,2)$	\Rightarrow $(2, 2, 6)$	\Rightarrow	$g(7) = \text{median}\{6, 2, 2\} = 2$	
$W_8: (2,2,9)$	\Rightarrow $(2, 2, 9)$	\Rightarrow	$g(8) = \text{median}\{2, 2, 9\} = 2$	
$W_9: (2,9,9)$	$\Rightarrow (2, 9, 9)$	\Rightarrow	$g(9) = \text{median}\{2, 9, 9\} = 9$	
3 4	9 4 8	6	6 2 2 9	

For g(0) and g(9), f(0) and f(9), respectively, are extended outside the boundaries.

 \mathbf{g}

Keeping border values unchanged (processing no border pixels).

Sorted: (0, 0, 1, 1, 1, 2, 2, 4, 4)

1	4	0	1	3	1
2	2	4	2	2	3
1	0	1	0	1	0
1	2	1	0	2	2
2	5	3	1	2	5
1	1	4	2	3	0

1	4	0	1	3	1
2	1	1	1	1	3
1	1	1	1	2	0
1	1	1	1	1	2
2	2	2	2	2	5
1	1	4	2	3	0

Input f

Output g

1: Extending border values outside with the boundary values.

	Sorted: $(0, 0, 1, 1, 1, 2, 2, 4, 4)$													
1	1 1 4 0 1 3 1 1													
1	1	4	0	1	3	1	1	2	2	2	2	2	2	
2	2	2	4	2	2	3	3	1	1	1	1	1	1	
1	1	0	1	0	1	0	0	1	1	1	1	2	2	
1	1	2	1	0	2	2	2	1	1	1	1	1	2	
2	2	5	3	1	2	5	5	1	2	2	2	2	2	
1	1	1	4	2	3	0 \	0	1	2	2	3	2	2	
1	1 1 1 4 2 3 0 0 Output g													

2: Extending border values outside with zeros.

	Sorted: $(0, 0, 1, 1, 1, 2, 2, 4, 4)$													
0	0	0	0	0	0	0	0							
0	1	4	0	1	3	1	0	0	2	1	1	1	0	
0	2	2	4	2	2	3	0	0	1	1	1	1	1	
0	1	0	1	0	1	0	0	0	1	1	1	2	1	
0	1	2	1	0	2	2	0	0	1	1	1	1	1	
0	2	5	3	1	2	5	0	1	2	2	2	2	2	
0	1	1	4	2	3	0	0	0	1	1	1	1	0	
0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													

Gauss vs. median filter

Gauss vs. median filter

Gauss vs. median filter

- Use depends on noise assumption
 - □ White noise: mean or Gaussian filter
 - □ Salt-and-pepper noise: median filter (robust to outliers!)
- Local intensity transitions
 - □ Remain unchanged with mean or Gaussian filter
 - □ Can get destroyed by median filter
 - □ Gauss filter: Important for Gaussian scale space (multi-scale representation to inspect image at different complexity levels)