PROBLEMS

1.Design a Gray-to Excess-3 Code converter using NAND gates

Ans. Gray to Excess3 code converter:

Decimal	Binary Equivalent	Gray Code	Excess-3 Code			
		G ₂ G ₁ G ₀	E ₃ E ₂ E ₁ E ₀			
0	0 0 0	0 0 0	0 0 1 1			
1	0 0 1	0 0 1	0 1 0 0			
2	0 1 0	0 -1 1	0 1 0 1			
3	0 1 1	0 1 0	0, 1 1 0			
4	1 0 0	1 1 0	0 1 1 1			
5	1 0 1	1 1 1	1 0 0 0			
. 6	1 1 0	1 0 1	1 0 0 1			
7	1 1 1 1	1 0 0	1 0 1 0			

K-maps for Excess 3-codes are

For
$$E_3 \rightarrow$$

$$G_2 \qquad \overline{G}_1 \overline{G}_0 \qquad \overline{G}_1 G_0 \qquad G_1 \overline{G}_0 \qquad G_1 \overline{G}_0 \qquad G_2 \qquad 0 \qquad 0 \qquad 0$$

$$G_2 \qquad \boxed{1 \qquad \boxed{1} \qquad \boxed{0} \qquad 0}$$

$$E_3 = G_2 \overline{G}_1 + G_2 G_0$$

For
$$E_2 \rightarrow$$

$$G_2 \qquad \overline{G_1}\overline{G_0} \qquad \overline{G_1}\overline{G_0} \qquad \overline{G_1}G_0 \qquad G_1G_0 \qquad G_1\overline{G_0}$$

$$\overline{G_2} \qquad 0 \qquad \boxed{1} \qquad \boxed{1} \qquad \boxed{1}$$

$$G_2 \qquad 0 \qquad 0 \qquad 0 \qquad \boxed{1}$$

$$\mathsf{E}_2 = \overline{\mathsf{G}}_2 \mathsf{G}_0 + \mathsf{G}_1 \overline{\mathsf{G}}_0$$

PROBLEMS UNIT-5

$$\therefore \quad \mathsf{E_1} = \overline{\mathsf{G}}_0$$

For $E_0 \rightarrow$

$$\therefore \quad \mathsf{E}_0 = \overline{\mathsf{G}}_2 \overline{\mathsf{G}}_1 \overline{\mathsf{G}}_0 + \overline{\mathsf{G}}_2 \mathsf{G}_1 \mathsf{G}_0 + \\ \mathsf{G}_2 \overline{\mathsf{G}}_1 \mathsf{G}_0 + \mathsf{G}_2 \mathsf{G}_1 \overline{\mathsf{G}}_0$$

Circuit Diagram:

3. Design 3 bit Gray Code to binary converters

Ans. The truth table for 3 bit Gray Code to binary conversion is as shown:

Decimal	Gray Code			Binary Code			
Equipment	G ₂	G ₁	G ₀		B ₂	B ₁	B ₀
0 3	Ó	0	0		0	0	0
1	0	0	1		0	0	1
3	0	1	1		0	1	0
2	0	1	0		0	~ 1	1
6	1 1	1	0		-1	0 -	0
7	1	1	1		1	0	1
5	1	0	1		1	1	0
4	1	0	0		1	1.	1

K-Maps:

For 82:

$$\cdot B_2 = G_2$$

For B1:

PROBLEMS UNIT-5

For Bo:

Circuit Implementation is as shown:

