Theory of Computation

MIEIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

Outline

- ▶ Non-Deterministic Finite Automata with ε transitions (ε -NFAs)
- \triangleright Conversion of ϵ -NFAs into DFAs

Finite Automata with ε Transitions

- \blacktriangleright What is an ϵ transition?
- A spontaneous transition (empty-string transition) that can be followed without receiving/consuming/processing input symbols (i.e., for any input symbol)
- \triangleright An ϵ -NFA is an NFA with ϵ transitions

Finite Automata with ε Transitions (cont.)

- Example: ε-NFA that recognizes decimal numbers
 - ► Signal + or optional
 - ► Sequence of digits
 - ► A decimal point
 - ► Another sequence of digits (at least one of the sequences of digits is nonempty)

Exercise 1

- ► Modify the previous state diagram in order to not recognize inputs like: .5, +.1, and -.1
- ► More precise, this new definition of a decimal number is:
 - ► Signal + or optional
 - A sequence of digits with length greater or equal 1
 - A decimal part consisting of a "." followed by an optional sequence of digits x, such that $|x| \ge 0$.

Formal Notation ε -NFA

- Start \triangleright ε-NFA E = (Q, Σ , δ, q₀, F)
- - \triangleright The major difference is in the transition function δ to deal with ϵ
 - $\triangleright \delta(q, a)$: state $q \in Q$ and $a \in \Sigma \cup \{\epsilon\}$
- Example: $E = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{.,+,-,0,..,9\}, \delta, q_0,$ $\{q_5\}$
- \triangleright The symbol representing the empty-string, ε , is not visible in the sequence of digits
 - It represents spontaneous transitions
 - ▶ We deal with it in the same way as with the nondeterminism, i.e., considering that the automaton can be in all the states before and after the ε transition
- To know which are the states we can reach from a state g with ε , we calculate the ε -close(g)
 - \triangleright ε -close(q_0)= { q_0 , q_1 }; ε -close(q_3)= { q_3 , q_5 }

	δ	3	+,-	•	0,,9
	$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
	q_1	Ø	Ø	$\{q_2\}$	$\{q_1q_4\}$
	q_2	Ø	Ø	Ø	{q ₃ }
	q_3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
	q_4	Ø	Ø	$\{q_3\}$	Ø
•	*q ₅	Ø	Ø	Ø	Ø

0,...,9

Extended Transitions

- $\triangleright \varepsilon$ -close(q) or Eclose(q)
 - ► Basis: State q is in EClose(q)
 - ▶ Induction: if p is in EClose(q) and exists an ε -transition from p to r, then r is also in EClose(q)
- \triangleright Extended transition $\widehat{\delta}$
 - ▶ Basis: $\hat{\delta}$ (q, ε) =EClose(q)
 - ▶ Induction: w=xa, $a \in \Sigma$ (thus, $a \neq \varepsilon$)
 - ▶ 1. let's $\hat{\delta}(q,x)=\{p_1, p_2, ..., p_k\}$
 - **2**.

► 3.
$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, ..., r_m\}$$
$$\delta(q, w) = \bigcup_{j=1}^{m} Eclose(r_j)$$

▶ (1.) gives the states reached from q following a path representing x that can include (and/or terminate in) one or more ε

Eliminating ε Transitions

- ▶ Given an ε -NFA E there exists always an equivalent DFA D
 - ▶ E and D accept the same language
- ► Technique of subsets construction

►
$$\epsilon$$
-NFA E = (Q_E, Σ , δ _E, q_O, F_E) \rightarrow DFA D = (Q_D, Σ , δ _D, q_D, F_D)

- \triangleright Q_D is the set of subsets of Q_F closed in ϵ
 - \triangleright Q_D= EClose(Q_F)
- ► Start state: q_D = EClose(q_0)
- $ightharpoonup F_D = \{S \mid S \text{ is in } Q_D \text{ and } S \cap F_F \neq \emptyset \}$
- ► Transition δ_D (S,a), with a in Σ and S in Q_D
 - \triangleright S={ $p_1, p_2, ..., p_k$ }
 - Calculate

$$\bigcup_{i=1}^{k} \delta_{E}(p_{i}, a) = \{r_{1}, ..., r_{m}\}$$

► Terminate with

$$\delta_D(S, a) = \bigcup_{j=1}^m EClose(r_j)$$

Convert the ϵ -NFA to a DFA: 0,...,9 0,...,9 q_0 ϵ ,+,- q_1 q_2 0,...,9 q_3 ϵ q_5 0,...,9

 \triangleright Convert the ϵ -NFA to a DFA:

δ	3	+,-	•	0,,9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	{q ₂ }	$\{q_1q_4\}$
q_2	Ø	Ø	Ø	{q ₃ }
q_3	$\{q_5\}$	Ø	Ø	{q ₃ }
q_4	Ø	Ø	$\{q_3\}$	Ø
*q ₅	Ø	Ø	Ø	Ø

 ϵ -close(q0)={q0, q1} ϵ -close(q1)={q1} ϵ -close(q2)={q2} ϵ -close(q3)={q3, q5} ϵ -close(q4)={q4} ϵ -close(q5)={q5}

ε-close(q0)={q0, q1} ε-close(q1)={q1} ε-close(q2)={q2} ε-close(q3)={q3, q5} ε-close(q4)={q4} ε-close(q5)={q5}

► Convert the ε -NFA to a DFA: \rightarrow \bigcirc \bigcirc

δ	3	+,-	•	0,,9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1q_4\}$
q_2	Ø	Ø	Ø	{q ₃ }
q_3	$\{q_5\}$	Ø	Ø	{q ₃ }
q_4	Ø	Ø	{q ₃ }	Ø
*q ₅	Ø	Ø	Ø	Ø

	(\mathbf{q}_4)		
δ	+,-	•	0,,9
$\rightarrow \{q_{0}, q_{1}\}$	$\{q_1\}$	{q ₂ }	$\{q_{1,}q_{4}\}$
$\{q_1\}$	Ø	$\{q_2\}$	$\{q_{1,}q_{4}\}$
$\{q_2\}$	Ø	Ø	$\{q_3, q_5\}$
$\{q_{1,}q_{4}\}$	Ø	$\{q_{2}, q_{3}, q_{5}\}$	$\{q_{1,}q_{4}\}$
$*\{q_3, q_5\}$	Ø	Ø	$\{q_3, q_5\}$
$*\{q_{2}, q_{3}, q_{5}\}$	Ø	Ø	$\{q_3, q_5\}$
Ø	Ø	Ø	Ø

Exercise 2

 \triangleright Consider the following ϵ -NFA:

	3	a	b	c
→p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
*r	{q}	{r}	Ø	{p}

- ► Calculate the ε-close for each state
- ▶ Indicate all the strings with length \leq 3 accepted by the automaton
- \triangleright Convert the ϵ -NFA into a DFA