

Molecular Assays

Edit Detection

Gene Editing Detection and Analysis

Starting Materials:

- 1. Sequencing Data
- 2. Target sequences
- 3. Query sequences
- 4. Metadata

Desired Output:

- 1. A report of editing events
- 2. A report on quality of input data
- 3. Provenance

Corn Zm 7.1 target information

gRNA target highlighted
Gene-specific primer underlined

>Zm7.1_amplicon

Soy Fad2-1A target information

gRNA target highlighted
Gene-specific primer underlined

>Expected Chromosome 10 Fad2-1A_amplicon sequence from gene-specific primers

CCATGCCTTCAGCAAGTACCAATGGGTTGATGATGTTTGTGGGTTTGACCCTTCACTCAACACTTTTAGTCCCTTATTTCTCATGGAAA

ATAAGCCATCGCCGCCATCACCTCCAACACACAGGTTCCCTTGACCGTGATGAAGTGTTTGTCCCAAAAACCAAAATCCAAAGTTGCATG

GTTTTCCAAGTACTTAAAACAACCCTCTAGGAAGGGCTGTTTCTCTTCTCCGTCACACTCACAATAGGGTGGCCTATGTATTTAGCCTT

CAATGTCT

- There are 14 SNPs that can be used to differentiate edits between Chr10 and Chr20 (SNPs bold and italicized)

used

1. Perform quality control on sequencing data

F = forwardR = reverse

2. Align sequencing data to target

F = forward

R = reverse

3. Find and count edits

4. Report results

Sample	Target	Query	Туре	Edit	%	Sequence
Sample001	Zeamays_chr3	Target1	Wt	-	99%	ACGTACGTA ACGTACGTA
Sample001	Zeamays_chr3	Target1	Edit	3M5D1M	15%	ACGTACGTA ACGA
Sample002	Zeamays_chr4	Target2	Edit	4M1D4M	40%	GTAGTCTTT GTAG-CTTT

A string annotation for the edit where M is "match" and D is "deletion"

Alignment to reference

5. Continue with promising edits

- At this point you can decide which edits are promising and move them forward in the pipeline
- Determine which editing technology is working well or not for specific targets
- Add this data to previous experiments for continued provenance tracking of an edit through generations

Available Applications

http://crispresso2.pinellolab.org/submission

Cas-Analyzer

http://www.rgenome.net/cas-analyzer

CRISPRmatch

https://github.com/zhangtaolab/CRISPRMatch

Hi-TOM 2.0

http://hi-tom.net/#/mutation/mutation_detection

DISCLAIMER

THE INFORMATION CONTAINED HEREIN IS EXPERIMENTAL IN NATURE AND IS PROVIDED "AS IS". BAYER MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO THE MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE INFORMATION WILL NOT INFRINGE ANY THIRD-PARTY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS.

Thank you!

_

Any questions?

