Lecture 16: Advanced Concepts from Linear Algebra and LTI **Systems**

Textbook Sections A.2 & 3.1

Dr. Jordan D. Larson

- Modern Linear, Time-Invariant (LTI) Feedback Control Theory
 - Theory applies concepts from linear algebra

- Modern Linear, Time-Invariant (LTI) Feedback Control Theory
 - Theory applies concepts from linear algebra
- Linear algebra: branch of mathematics concerning linear equations and linear mappings and representations in vector spaces and through matrices

- Modern Linear, Time-Invariant (LTI) Feedback Control Theory
 - Theory applies concepts from linear algebra
- Linear algebra: branch of mathematics concerning linear equations and linear mappings and representations in vector spaces and through matrices
- Introductory concepts:
 - Vector differential equations
 - Matrix eigenvalue decomposition

Introduction

- Modern Linear, Time-Invariant (LTI) Feedback Control Theory
 - Theory applies concepts from linear algebra
- Linear algebra: branch of mathematics concerning linear equations and linear mappings and representations in vector spaces and through matrices
- Introductory concepts:
 - Vector differential equations
 - Matrix eigenvalue decomposition
- Advanced concepts:
 - Norms: vectors, signals, systems, matrices
 - Other matrix decompositions
 - Matrix inequalities

Important Matrix Definitions

- Define $A_{i,j}$ as element of A in i^{th} row and j^{th} column, then
 - Matrix transpose of A: $A^T = B$ which assigns $B_{i,j} = A_{i,j}$.
 - Conjugate matrix transpose or Hermitian transpose of A: $A^H = A^* = B$ which assigns $B_{i,i} = A_{i,i}^*$
 - matrix inverse of A: solution to $A^{-1}A = I$.
 - A: orthogonal matrix if $A^{-1} = A^{T}$.
 - A: unitary matrix if $A^{-1} = A^*$.
 - A: symmetric matrix if $A = A^T$.
 - A: Hermitian matrix if $A = A^*$.
 - A: diagonal matrix if for $i \neq j$, $A_{i,i} = 0$.
 - A: upper triangular matrix if for $\tilde{i} < j$, $A_{i,j} = 0$.
 - A: lower triangular matrix if for i > j, $A_{i,j} = 0$.
 - A: square matrix if equal number of rows and columns.

- Rank of matrix M, denoted by rank(M): measure of "non-degenerateness" of system
 of linear equations encoded by M
 - More formally, expressed mathematically as maximal number of linearly independent rows/columns of M or as dimension of vector space spanned by rows/columns of M

- Rank of matrix M, denoted by rank(M): measure of "non-degenerateness" of system
 of linear equations encoded by M
 - More formally, expressed mathematically as maximal number of linearly independent rows/columns of M or as dimension of vector space spanned by rows/columns of M
- Vector space: collection of vectors which added together and multiplied by scalars, i.e., linear operations, yet remain in collection
 - Vector spaces: formal subject of linear algebra and well characterized by its dimension, or number of linearly independent "directions" in space

- Rank of matrix M, denoted by rank(M): measure of "non-degenerateness" of system
 of linear equations encoded by M
 - More formally, expressed mathematically as maximal number of linearly independent rows/columns of M or as dimension of vector space spanned by rows/columns of M
- Vector space: collection of vectors which added together and multiplied by scalars, i.e., linear operations, yet remain in collection
 - Vector spaces: formal subject of linear algebra and well characterized by its dimension, or number of linearly independent "directions" in space
- Rank of matrix can describe
 - Column rank: dimension of column space, i.e., linearly independent columns, of *M*:
 - Row rank: dimension of row space, i.e. linearly independent rows, of M
 - Fundamental theorem of linear algebra: column rank equal to row rank

- Rank of matrix M, denoted by rank(M): measure of "non-degenerateness" of system
 of linear equations encoded by M
 - More formally, expressed mathematically as maximal number of linearly independent rows/columns of M or as dimension of vector space spanned by rows/columns of M
- Vector space: collection of vectors which added together and multiplied by scalars, i.e., linear operations, yet remain in collection
 - Vector spaces: formal subject of linear algebra and well characterized by its dimension, or number of linearly independent "directions" in space
- Rank of matrix can describe
 - **Column rank**: dimension of column space, i.e., linearly independent columns, of *M*:
 - Row rank: dimension of row space, i.e. linearly independent rows, of M
 - Fundamental theorem of linear algebra: column rank equal to row rank
- M has **full rank** if rank equals lesser of number of rows and columns, i.e., rank(M) = min(m, n))
 - M rank deficient if not have full rank

Vector Norm

- **Vector norm**, $\|\vec{x}\|$, of any vector $\vec{x} \in \mathbb{R}^{n_x}$: real valued function from $\mathbb{R}^{n_x} \to \mathbb{R}$ with following properties
 - $||\vec{x}|| \ge 0;$
 - 2 $\|\vec{x}\| = 0$ if and only if \vec{x} is zero vector in \mathbb{R}^{n_x} ;
 - 3 for any $\lambda \in \mathbb{R}$, $\|\lambda \overrightarrow{x}\| = |\lambda| \|\overrightarrow{x}\|$; and
 - **4** for any $\vec{y} \in \mathbb{R}^{n_x}$, triangle inequality holds

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$
 (1)

Vector Norm

- **Vector norm**, $\|\vec{x}\|$, of any vector $\vec{x} \in \mathbb{R}^{n_x}$: real valued function from $\mathbb{R}^{n_x} \to \mathbb{R}$ with following properties
 - $||\vec{x}|| \ge 0;$
 - 2 $\|\vec{x}\| = 0$ if and only if \vec{x} is zero vector in \mathbb{R}^{n_x} ;
 - \bullet for any $\lambda \in \mathbb{R}$, $\|\lambda \vec{x}\| = |\lambda| \|\vec{x}\|$; and
 - **4** for any $\vec{y} \in \mathbb{R}^{n_x}$, triangle inequality holds

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$
 (1)

• Important class of vector norms: L_p -norms, a.k.a. p-norms, defined as

$$\|\vec{x}\|_{p} = \left(\sum_{i=1}^{n_{x}} |x_{i}|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p \leq \infty$$

$$(2)$$

Subscript p dropped and any norm operation implicitly L^p-norm

Particular p-norms

• *L*₁-norm, a.k.a. taxicab norm:

$$\|\vec{x}\|_1 = \sum_{i=1}^{n_x} |x_i| \tag{3}$$

Particular p-norms

• L₁-norm, a.k.a. taxicab norm:

$$\|\vec{x}\|_1 = \sum_{i=1}^{n_x} |x_i| \tag{3}$$

• L₂-norm, a.k.a. Euclidean norm:

$$\|\vec{x}\|_2 = \left(\sum_{i=1}^{n_x} x_i^2\right)^{\frac{1}{2}} \tag{4}$$

Particular p-norms

• *L*₁-norm, a.k.a. taxicab norm:

$$\|\vec{x}\|_1 = \sum_{i=1}^{n_x} |x_i| \tag{3}$$

• L₂-norm, a.k.a. Euclidean norm:

$$\|\vec{x}\|_2 = \left(\sum_{i=1}^{n_x} x_i^2\right)^{\frac{1}{2}} \tag{4}$$

• L_{\infty}-norm, a.k.a. vector maximum norm:

$$\|\vec{x}\|_{\infty} = \max |x_i| \tag{5}$$

Matrix Norm

- Matrix norm, ||A||, of matrix $A \in \mathbb{R}^{m \times n}$: real valued function from $\mathbb{R}^{m \times n} \to \mathbb{R}$ with following properties
 - $||A|| \geq 0;$
 - **2** ||A|| = 0 if and only if A zero matrix in $\mathbb{R}^{m \times n}$;
 - 3 for any $\lambda \in \mathbb{R}$, $||\lambda A|| = |\lambda| ||A||$; and
 - **4** for any $B \in \mathbb{R}^{m \times n}$, triangle inequality holds

$$||A + B|| \le ||A|| + ||B|| \tag{6}$$

First Important Class of Matrix Norms

• Important class of matrix norms: **induced matrix norms**, defined for matrix A and some specified norm $\|\vec{x}\|$ as

$$||A|| = \sup_{\vec{x} \neq 0} \frac{||A\vec{x}||}{||\vec{x}||}$$
 (7)

• sup stands for **supremum** a.k.a. **least upper bound** of specified set

First Important Class of Matrix Norms

• Important class of matrix norms: **induced matrix norms**, defined for matrix A and some specified norm $\|\vec{x}\|$ as

$$||A|| = \sup_{\vec{x} \neq 0} \frac{||A\vec{x}||}{||\vec{x}||} \tag{7}$$

- sup stands for supremum a.k.a. least upper bound of specified set
- Typically one uses L_p -norms for induced matrix norms:

$$||A||_{\rho} = \sup_{\vec{x} \neq 0} \frac{||A\vec{x}||_{\rho}}{||\vec{x}||_{\rho}}$$
 (8)

 Entry-wise matrix norms treats matrix A as vector of size m × n and uses vector norm

- Entry-wise matrix norms treats matrix A as vector of size m × n and uses vector norm
- L_{p,q}-norms defined as

$$||A||_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |A_{i,j}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}$$
(9)

• $A_{i,j}$ denotes element of A in i^{th} row and j^{th} column

- Entry-wise matrix norms treats matrix A as vector of size m × n and uses vector norm
- $L_{p,q}$ -norms defined as

$$||A||_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |A_{i,j}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{q}{q}}$$
(9)

- $A_{i,j}$ denotes element of A in i^{th} row and j^{th} column
- L_{2 2}-norm a.k.a. Frobenius norm:

$$||A||_{2,2} = ||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |A_{i,j}|^2\right)^{\frac{1}{2}}$$
 (10)

- Entry-wise matrix norms treats matrix A as vector of size m × n and uses vector norm
- L_{p,q}-norms defined as

$$||A||_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |A_{i,j}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}$$
(9)

- A_{i,j} denotes element of A in ith row and jth column
- L_{2.2}-norm a.k.a. Frobenius norm:

$$||A||_{2,2} = ||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |A_{i,j}|^2\right)^{\frac{1}{2}}$$
 (10)

• $L_{\infty,\infty}$ -norm a.k.a. matrix maximum norm:

$$||A||_{\max} = \max_{i,j} |a_{i,j}| \tag{11}$$

 Recall: fundamental analysis of linear state-space system solutions performed through eigenvalue decomposition of state matrix

- Recall: fundamental analysis of linear state-space system solutions performed through eigenvalue decomposition of state matrix
- Eigenvalue, λ , & (left) eigenvector \overrightarrow{v} , of square matrix A: solution to eigenvalue problem:

$$A\vec{v} = \lambda \vec{v} \tag{12}$$

- Recall: fundamental analysis of linear state-space system solutions performed through eigenvalue decomposition of state matrix
- Eigenvalue, λ , & (left) eigenvector \vec{v} , of square matrix A: solution to eigenvalue problem:

$$A\vec{v} = \lambda \vec{v} \tag{12}$$

To solve, rewrite equation:

$$\lambda \vec{v} - A\vec{v} = 0 \tag{13}$$

$$[\lambda I - A] \vec{v} = 0 \tag{14}$$

- Recall: fundamental analysis of linear state-space system solutions performed through eigenvalue decomposition of state matrix
- Eigenvalue, λ , & (left) eigenvector \vec{v} , of square matrix A: solution to eigenvalue problem:

$$A\vec{v} = \lambda \vec{v} \tag{12}$$

To solve, rewrite equation:

$$\lambda \vec{v} - A \vec{v} = 0 \tag{13}$$

$$[\lambda I - A] \ \vec{V} = 0$$
• For nontrivial solutions, i.e., $\vec{V} \neq 0$, solve for

$$\det\left(\lambda I - A\right) = 0$$

(14)

Matrix Definiteness

• In general, λ and \overrightarrow{v} can be complex-valued even if A real-valued

Matrix Definiteness

- In general, λ and \vec{v} can be complex-valued even if A real-valued
- Based on values of λ, define following:
 - A: **positive definite**, denoted by A > 0, if real parts of all $\lambda(A)$ are > 0
 - A: positive semi-definite, denoted by $A \ge 0$, if real parts of all $\lambda(A) \ge 0$
 - A: negative definite, denoted by A < 0, if real parts of all $\lambda(A) < 0$
 - A: negative semi-definite, denoted by $A \le 0$, if real parts of all $\lambda(A) \le 0$
 - A: indefinite otherwise

Matrix Definiteness

- In general, λ and \vec{v} can be complex-valued even if A real-valued
- Based on values of λ , define following:
 - A: **positive definite**, denoted by A > 0, if real parts of all $\lambda(A)$ are > 0
 - A: positive semi-definite, denoted by $A \ge 0$, if real parts of all $\lambda(A) \ge 0$
 - A: negative definite, denoted by A < 0, if real parts of all $\lambda(A) < 0$
 - A: negative semi-definite, denoted by $A \le 0$, if real parts of all $\lambda(A) \le 0$
 - A: indefinite otherwise
- Negative definite A matrix a.k.a. stable matrix or Hurwitz matrix

Diagonalizable Matrices

• Square matrix A diagonalizable: if eigenvalue decomposition performed as

$$A = V \Lambda V^{-1} \tag{16}$$

• n (left) eigenvectors of A makeup V as

$$V = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n] \tag{17}$$

• *n* corresponding *non-repeated* eigenvalues of *A* makeup diagonal Λ:

$$\Lambda = \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}$$
(18)

Jordan Matrix

• If repeated eigenvalues of A, then A may not be diagonalizable

Jordan Matrix

- If repeated eigenvalues of A, then A may not be diagonalizable
- Jordan matrix used to form Λ in similar fashion to eigenvalue decomposition where Jordan matrix, J, defined as

$$J = \begin{bmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_k \end{bmatrix}$$
 (19)

• 0's: zero-valued matrices

Jordan Matrix

- If *repeated* eigenvalues of *A*, then *A* may not be diagonalizable
- **Jordan matrix** used to form Λ in similar fashion to eigenvalue decomposition where Jordan matrix, J, defined as

$$J = \begin{bmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_k \end{bmatrix}$$
 (19)

- 0's: zero-valued matrices
- k **Jordan blocks**, J_k : specified by dimension r and eigenvalue λ_r , i.e.,

$$J_{k}(r,\lambda_{r}) = \begin{bmatrix} \lambda_{r} & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_{r} & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda_{r} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{r} & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda_{r} \end{bmatrix}$$

$$(20)$$

Jordan Canonical Form

ullet For diagonalizable matrices, Jordan matrix purely diagonal since each constituent Jordan block 1 imes 1

Jordan Canonical Form

- ullet For diagonalizable matrices, Jordan matrix purely diagonal since each constituent Jordan block 1 imes 1
- Jordan matrix useful in forming Jordan Canonical Form (JCF) of LTI state-space systems through substitution

$$\vec{x} = V\vec{z} \tag{21}$$

Jordan Canonical Form

- \bullet For diagonalizable matrices, Jordan matrix purely diagonal since each constituent Jordan block 1 \times 1
- Jordan matrix useful in forming Jordan Canonical Form (JCF) of LTI state-space systems through substitution

$$\vec{x} = V\vec{z} \tag{21}$$

Continuous-time LTI state-space system rewritten as

$$V\vec{z}(t) = AV\vec{z}(t) + B\vec{u}(t)$$

$$\vec{y}(t) = CV\vec{z}(t) + D\vec{u}(t)$$
(22)

Jordan Canonical Form (continued)

$$\dot{\vec{z}}(t) = V^{-1}AV\vec{z}(t) + V^{-1}B\vec{u}(t)
\vec{V}(t) = CV\vec{z}(t) + D\vec{u}(t)$$
(23)

$$\dot{\vec{z}}(t) = \Lambda \vec{z}(t) + \bar{B}\vec{u}(t)
\vec{y}(t) = \bar{C}\vec{z}(t) + D\vec{u}(t)$$
(24)

- A: Jordan matrix, i.e., diagonal or nearly diagonal
- \bar{B} new input matrix
- \bar{C} new output matrix

Generalized Eigenvectors

• To obtain V, solve for **generalized eigenvectors** for each Jordan block, $J_k(r, \lambda_r)$, which solve

Matrix Decompositions 00000000000000

$$(A - \lambda_r I) \vec{V}_1 = 0$$

$$(A - \lambda_r I) \vec{V}_2 = \vec{V}_1$$

$$\vdots$$

$$(A - \lambda_r I) \vec{V}_r = \vec{V}_{r-1}$$
(25)

Singular Value Decomposition

 When considering LTI system behavior from input to output: singular value decomposition (SVD) defined for any m × n real-valued matrix M:

$$M = U\Sigma V^{-1} \tag{26}$$

- $U: m \times m$ orthogonal matrix
- $V: n \times n$ orthogonal matrix

 When considering LTI system behavior from input to output: singular value decomposition (SVD) defined for any m × n real-valued matrix M:

$$M = U\Sigma V^{-1} \tag{26}$$

- $U: m \times m$ orthogonal matrix
- $V: n \times n$ orthogonal matrix
- Σ diagonal $m \times n$ matrix with *non-negative* real numbers on diagonal:

$$\Sigma = \begin{bmatrix} \Sigma_1 & \tilde{0} \\ \tilde{0} & \tilde{0} \end{bmatrix}, \quad \Sigma_1 = \text{diag}(\sigma_1, \cdots, \sigma_k)$$
 (27)

Matrix Decompositions

Diagonal entries of Σ: singular values of M and ordered in size with
 σ
 = σ₁ ≥ · · · ≥ σ_k = σ with k = min(m, n) singular values because of non-square nature

Singular Value Decomposition (continued)

- Diagonal entries of Σ : **singular values** of M and ordered in size with $\bar{\sigma} = \sigma_1 \ge \cdots \ge \sigma_k = \underline{\sigma}$ with $k = \min(m, n)$ singular values because of non-square nature
- U & V orthogonal, i.e., $U^{-1} = U^T \& V^{-1} = V^T$, thus SVD:

$$M = U\Sigma V^T \tag{28}$$

Much simpler to compute

Singular Values

• Singular values, σ_i , for M: non-negative real numbers for which exists unit-length real-valued vectors \vec{u} and \vec{v} :

$$M\vec{v}_i = \sigma_i \vec{u}$$
 (29)

$$\vec{u}_i^T M = \sigma_i \vec{v}^T \quad \text{or} \quad M^T \vec{u}_i = \sigma_i \vec{v}$$
 (30)

Singular Values

• Singular values, σ_i , for M: non-negative real numbers for which exists unit-length real-valued vectors \vec{u} and \vec{v} :

$$M\vec{\mathbf{v}}_i = \sigma_i \vec{\mathbf{u}} \tag{29}$$

$$\vec{\boldsymbol{u}}_{i}^{T}\boldsymbol{M} = \sigma_{i}\vec{\boldsymbol{v}}^{T} \quad \text{or} \quad \boldsymbol{M}^{T}\vec{\boldsymbol{u}}_{i} = \sigma_{i}\vec{\boldsymbol{v}}$$
 (30)

 v

 i: right-singular vector for σ

 i

 All make up columns of V:

$$V = \begin{bmatrix} \vec{\mathbf{v}}_1 & \cdots & \vec{\mathbf{v}}_n \end{bmatrix} \tag{31}$$

Singular Values

• Singular values, σ_i , for M: non-negative real numbers for which exists unit-length real-valued vectors \vec{u} and \vec{v} .

$$M\overrightarrow{v}_i = \sigma_i \overrightarrow{u}$$

$$\vec{u}_i^T M = \sigma_i \vec{v}^T$$
 or $M^T \vec{u}_i = \sigma_i \vec{v}$

$$V = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix}$$

• \vec{u}_i : left-singular vector for σ_i All make up columns of *U*:

All make up columns of V:

$$U = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_m \end{bmatrix}$$

(29)

(30)

(31)

Singular Value and Eigenvalue Problems

 Singular value problem similar to eigenvalue problem except one has two related problems due to non-square nature of M

Singular Value and Eigenvalue Problems

- Singular value problem similar to eigenvalue problem except one has two related problems due to non-square nature of M
- k nonzero singular values of M, $\sigma_i(M)$: related to eigenvalue decomposition by

$$\sigma_i(M) = \sqrt{\lambda_i(M^*M)} = \sqrt{\lambda_i(MM^*)} > 0$$
 (33)

$$M^*M\vec{v}_i = \sigma_i^2\vec{v}_i$$

$$MM^*\vec{u}_i = \sigma_i^2\vec{u}_i$$
(34)

Singular Value and Eigenvalue Problems

- Singular value problem similar to eigenvalue problem except one has two related problems due to non-square nature of M
- k nonzero singular values of M, $\sigma_i(M)$: related to eigenvalue decomposition by

$$\sigma_i(M) = \sqrt{\lambda_i(M^*M)} = \sqrt{\lambda_i(MM^*)} > 0$$
 (33)

$$M^*M\vec{v}_i = \sigma_i^2 \vec{v}_i$$

$$MM^*\vec{u}_i = \sigma_i^2 \vec{u}_i$$
(34)

- All σ_i^2 : eigenvalues of MM* and M*M
- All \vec{v}_i : eigenvectors of M^*M
- All \vec{u}_i : eigenvectors of MM*

Maximum and Minimum Singular Values

• Maximum singular value of A:

$$\bar{\sigma}(A) = \max_{\vec{x} \neq 0} \frac{\|A\vec{x}\|_2}{\|\vec{x}\|_2} = \|A\|_2$$
 (35)

• $\bar{\sigma}(A)$, i.e. $||A||_2$, represents "size" of A or "gain" of A

Maximum and Minimum Singular Values

• Maximum singular value of A:

$$\bar{\sigma}(A) = \max_{\vec{X} \neq 0} \frac{\|A\vec{X}\|_2}{\|\vec{X}\|_2} = \|A\|_2$$
 (35)

- $\bar{\sigma}(A)$, i.e. $||A||_2$, represents "size" of A or "gain" of A
- Minimum singular value of A:

$$\underline{\sigma}(A) = \min_{\vec{x} \neq 0} \frac{\|A\vec{x}\|_2}{\|\vec{x}\|_2} \tag{36}$$

<u>σ</u>(A) represents how nearly singular A

Maximum and Minimum Singular Values

• Maximum singular value of A:

$$\bar{\sigma}(A) = \max_{\vec{X} \neq 0} \frac{\|A\vec{X}\|_2}{\|\vec{X}\|_2} = \|A\|_2$$
 (35)

- $\bar{\sigma}(A)$, i.e. $||A||_2$, represents "size" of A or "gain" of A
- Minimum singular value of A:

$$\underline{\sigma}(A) = \min_{\vec{x} \neq 0} \frac{\|A\vec{x}\|_2}{\|\vec{x}\|_2} \tag{36}$$

- $\sigma(A)$ represents how nearly singular A
- Condition number for A:

$$\kappa(A) = \frac{\bar{\sigma}(A)}{\sigma(A)} \tag{37}$$

Determines how "well" A can be inverted

Other Matrix Decompositions

Others used in computational algorithms for linear state-space systems

Other Matrix Decompositions

- Others used in computational algorithms for linear state-space systems
- **1 QR decomposition** for any square matrix *A*:

$$A = QR \tag{38}$$

- Q: orthogonal
- R: upper triangular

Other Matrix Decompositions

- Others used in computational algorithms for linear state-space systems
- **1 QR decomposition** for any square matrix *A*:

$$A = QR \tag{38}$$

- Q: orthogonal
- R: upper triangular
- **2 Cholesky decomposition** for Hermitian positive definite matrices:

$$A = LL^* \tag{39}$$

- L: upper triangular matrix with real and positive entries along its main diagonal
- If A real-valued, then reduces to $A = LL^T$
- Hermitian defined next

Nyquist/Bode Plots

- Frequency response of SISO LTI system: Fourier transform of system, i.e. $G(j\omega)$
 - Fourier inversion theorem: $G(j\omega)$ provides system response to *all* harmonic sinusoids within any "well-behaved" input signal
 - From which one can exactly replicate output signal

Nyquist/Bode Plots

- Frequency response of SISO LTI system: Fourier transform of system, i.e. $G(j\omega)$
 - Fourier inversion theorem: $G(j\omega)$ provides system response to *all* harmonic sinusoids within any "well-behaved" input signal
 - From which one can exactly replicate output signal
- Frequency response provides magnitude and phase values for all steady-state step and sinusoidal responses

Nyquist/Bode Plots

- Frequency response of SISO LTI system: Fourier transform of system, i.e. $G(j\omega)$
 - Fourier inversion theorem: $G(j\omega)$ provides system response to *all* harmonic sinusoids within any "well-behaved" input signal
 - From which one can exactly replicate output signal
- Frequency response provides magnitude and phase values for all *steady-state* step and sinusoidal responses
- Nyquist and Bode plots used to analyze frequency response of SISO LTI systems

Singular Value/Sigma Plot

- Frequency response of MIMO LTI systems: Fourier transform of the system, i.e. $[G(j\omega)]$
 - Provides same information
 - Albeit potential coupling between all inputs and outputs via transfer function matrix

Singular Value/Sigma Plot

- Frequency response of MIMO LTI systems: Fourier transform of the system, i.e. $[G(j\omega)]$
 - Provides same information
 - Albeit potential coupling between all inputs and outputs via transfer function matrix
- \bullet Recall definition of singular value decomposition (SVD) \to model transfer function matrix at particular frequency as

$$[G(j\omega)] = U(j\omega)\Sigma(j\omega)V^{-1}(j\omega)$$
(40)

- Each matrix depends on frequency
- Values of unitary matrices, U and V, may change
- Gain of "directions" from input to output captured by singular values within Σ

Singular Value/Sigma Plot

- Frequency response of MIMO LTI systems: Fourier transform of the system, i.e. $[G(j\omega)]$
 - Provides same information
- Albeit potential coupling between all inputs and outputs via transfer function matrix
- \bullet Recall definition of singular value decomposition (SVD) \to model transfer function matrix at particular frequency as

$$[G(j\omega)] = U(j\omega)\Sigma(j\omega)V^{-1}(j\omega)$$
(40)

- Each matrix depends on frequency
- Values of unitary matrices, U and V, may change
- Gain of "directions" from input to output captured by singular values within Σ
- Frequency response of MIMO LTI systems analyzed by plotting singular values as function of ω : singular value plot
 - A.k.a. Sigma plot or σ-plot

Sigma Plot Example

Consider

$$[G(s)] = \begin{bmatrix} \frac{s}{s+3} & \frac{-6s}{s^2+6s+9} \\ 0 & \frac{s}{s+3} \end{bmatrix}$$
(41)

Signal *p*-norm

• Consider piecewise continuous signal vector, $\vec{u}(t) \in \mathbb{R}^{n_u}$

Signal and System Norms

Signal *p*-norm

- Consider piecewise continuous signal vector, $\vec{u}(t) \in \mathbb{R}^{n_u}$
- Signal p-norm, a.k.a. signal \mathcal{L}_p -norm:

$$\|\vec{u}(t)\|_{\rho} = \left(\int_{0}^{\infty} \sum_{i=1}^{n_{u}} |u_{i}(t)|^{p} dt\right)^{\frac{1}{\rho}}$$
(42)

• $u_i(t)$: i^{th} element of $\vec{u}(t)$, may or may not be finite

Signal p-norm

- Consider piecewise continuous signal vector, $\vec{u}(t) \in \mathbb{R}^{n_u}$
- Signal p-norm, a.k.a. signal \mathcal{L}_p -norm:

$$\|\vec{u}(t)\|_{p} = \left(\int_{0}^{\infty} \sum_{i=1}^{n_{u}} |u_{i}(t)|^{p} dt\right)^{\frac{1}{p}}$$
(42)

- $u_i(t)$: i^{th} element of $\vec{u}(t)$, may or may not be finite
- Particular interest: signal 2-norm, i.e.

$$\|\vec{u}(t)\|_{2} = \left(\int_{0}^{\infty} \sum_{i=1}^{n_{u}} u_{i}(t)^{2} dt\right)^{\frac{1}{2}}$$
(43)

Signal *p*-norm (continued)

Redefined as

$$\|\vec{u}(t)\|_2 = \left(\int_0^\infty \operatorname{Tr}\left[\vec{u}(t)^T \vec{u}(t)\right] dt\right)^{\frac{1}{2}} \tag{44}$$

Signal p-norm (continued)

Redefined as

$$\|\vec{u}(t)\|_2 = \left(\int_0^\infty \operatorname{Tr}\left[\vec{u}(t)^T \vec{u}(t)\right] dt\right)^{\frac{1}{2}} \tag{44}$$

By Parseval's theorem:

$$\|\vec{u}(t)\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[\vec{u}(j\omega)^{*}\vec{u}(j\omega)\right] d\omega\right)^{\frac{1}{2}}$$
(45)

System Induced Norms

• Consider LTI system $\vec{y}(s) = G(s)\vec{u}(s)$

System Induced Norms

- Consider LTI system $\vec{y}(s) = G(s)\vec{u}(s)$
- $p \leftarrow q$ -induced system norms, a.k.a. $\mathcal{L}_{p \leftarrow q}$ induced system norms defined as

$$\|G\|_{p \leftarrow q} = \max_{0 \neq \|\vec{u}\|_{q} \leq \infty, \vec{x}(0) = 0} \frac{\|\vec{y}\|_{p}}{\|\vec{u}\|_{q}}$$
(46)

- Also stated: smallest constant, c, such that $\|\vec{y}\|_p \le c \|\vec{u}\|_q$
- If G unstable, then $\|\vec{y}\|_p \to \infty$ and $\|G\|_{p \leftarrow q} = \infty$

System Induced Norms

- Consider LTI system $\vec{v}(s) = G(s)\vec{u}(s)$
- $p \leftarrow q$ -induced system norms, a.k.a. $\mathcal{L}_{p \leftarrow q}$ induced system norms defined as

$$\|G\|_{p \leftarrow q} = \max_{0 \neq \|\vec{u}\|_{q} \leq \infty, \vec{x}(0) = 0} \frac{\|\vec{y}\|_{p}}{\|\vec{u}\|_{q}}$$
(46)

- Also stated: smallest constant, c, such that $\|\vec{y}\|_p \le c \|\vec{u}\|_q$
- If G unstable, then $\|\vec{y}\|_p \to \infty$ and $\|G\|_{p \leftarrow q} = \infty$
- Particular interest: $||G||_{2\leftarrow 2}$ norms, a.k.a. \mathcal{H}_{∞} -norm of G for stable G:

$$\|G\|_{\infty} = \|G\|_{2 \leftarrow 2} \tag{47}$$

• Finite if and only if G strictly proper: D=0 in LTI state-space, with no poles on $j\omega$ axis

$ar{\sigma}$ and \mathcal{H}_{∞} -Norm

• By definition of LTI system as $\vec{y}(j\omega) = G(j\omega)\vec{u}(j\omega)$, and definition of singular values of transfer function matrix, $G(j\omega)$:

$$\bar{\sigma}(G(j\omega)) = \max_{0 \neq \|\vec{u}(j\omega)\|_2} \frac{\|G(j\omega)\vec{u}(j\omega)\|_2}{\|\vec{u}(j\omega)\|_2}$$
(48)

• $\bar{\sigma}(G(j\omega))$: maximum singular value of transfer function matrix $G(j\omega)$ evaluated at ω

$\bar{\sigma}$ and \mathcal{H}_{∞} -Norm

By definition of LTI system as $\vec{y}(j\omega) = G(j\omega)\vec{u}(j\omega)$, and definition of singular values of transfer function matrix, $G(i\omega)$:

$$\bar{\sigma}(G(j\omega)) = \max_{0 \neq \|\vec{u}(j\omega)\|_2} \frac{\|G(j\omega)\vec{u}(j\omega)\|_2}{\|\vec{u}(j\omega)\|_2}$$
(48)

- $\bar{\sigma}(G(j\omega))$: maximum singular value of transfer function matrix $G(j\omega)$ evaluated at ω
- Over entire frequency spectrum:

$$\|G\|_{\infty} = \max_{\omega} \bar{\sigma}(G(j\omega)) \tag{49}$$

- SISO systems: maximum magnitude of Bode plot
- MIMO systems, \mathcal{H}_{∞} -norm: maximum singular value across all frequencies, i.e. peak on σ -plot

\mathcal{H}_2 -Norm

• \mathcal{H}_2 -norm for stable LTI system, G:

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \|G(j\omega)\|_{F}^{2} d\omega\right)^{\frac{1}{2}}$$
 (50)

• $\|G(j\omega)\|_F$: Frobenius or entry-wise $L_{2,2}$ -norm of transfer function matrix evaluated at $j\omega$

\mathcal{H}_2 -Norm

• \mathcal{H}_2 -norm for stable LTI system, G:

$$\|G\|_2 = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \|G(j\omega)\|_F^2 d\omega\right)^{\frac{1}{2}} \tag{50}$$

• $\|G(j\omega)\|_F$: Frobenius or entry-wise $L_{2,2}$ -norm of transfer function matrix evaluated at $j\omega$

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[G(j\omega)G(j\omega)^{*}\right] d\omega\right)^{\frac{1}{2}}$$
(51)

• Finite if and only if G strictly proper: D = 0 in LTI state-space, with no poles on $j\omega$ axis

\mathcal{H}_2 -Norm

• \mathcal{H}_2 -norm for stable LTI system, G:

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \|G(j\omega)\|_{F}^{2} d\omega\right)^{\frac{1}{2}}$$
 (50)

• $\|G(j\omega)\|_F$: Frobenius or entry-wise $L_{2,2}$ -norm of transfer function matrix evaluated at $j\omega$

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[G(j\omega)G(j\omega)^{*}\right] d\omega\right)^{\frac{1}{2}}$$
(51)

- Finite if and only if G strictly proper: D = 0 in LTI state-space, with no poles on $j\omega$ axis
- For SISO systems:

$$||G||_2 = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} |G(j\omega)|^2 d\omega\right)^{\frac{1}{2}} \tag{52}$$

Measure of area under Bode plot of system

• Using SVD of $G(j\omega) = U(j\omega)\Sigma(j\omega)V(j\omega)^*$:

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[V(j\omega)\Sigma(j\omega)^{*}U(j\omega)^{*}U(j\omega)\Sigma(j\omega)V(j\omega)^{*}\right] d\omega\right)^{\frac{1}{2}}$$
(53)

• Using SVD of $G(j\omega) = U(j\omega)\Sigma(j\omega)V(j\omega)^*$:

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[V(j\omega)\Sigma(j\omega)^{*}U(j\omega)^{*}U(j\omega)\Sigma(j\omega)V(j\omega)^{*}\right] d\omega\right)^{\frac{1}{2}}$$
(53)

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[\Sigma(j\omega)^{*}\Sigma(j\omega)\right] d\omega\right)^{\frac{1}{2}}$$
(54)

• Using SVD of $G(j\omega) = U(j\omega)\Sigma(j\omega)V(j\omega)^*$:

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[V(j\omega)\Sigma(j\omega)^{*}U(j\omega)^{*}U(j\omega)\Sigma(j\omega)V(j\omega)^{*}\right] d\omega\right)^{\frac{1}{2}}$$
(53)

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[\Sigma(j\omega)^{*}\Sigma(j\omega)\right] d\omega\right)^{\frac{1}{2}}$$
(54)

$$\|G\|_2 = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{i=1} \sigma_i (j\omega)^2 d\omega\right)^{\frac{1}{2}}$$
 (55)

• Using SVD of $G(j\omega) = U(j\omega)\Sigma(j\omega)V(j\omega)^*$:

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[V(j\omega)\Sigma(j\omega)^{*}U(j\omega)^{*}U(j\omega)\Sigma(j\omega)V(j\omega)^{*}\right] d\omega\right)^{\frac{1}{2}}$$
(53)

$$\|G\|_{2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \text{Tr}\left[\Sigma(j\omega)^{*}\Sigma(j\omega)\right] d\omega\right)^{\frac{1}{2}}$$
(54)

$$\|G\|_2 = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{j=1} \sigma_j(j\omega)^2 d\omega\right)^{\frac{1}{2}}$$
 (55)

H₂-norm: average of singular values also averaged across all frequencies

• Important interpretation of \mathcal{H}_2 -norm occurs by considering $\overrightarrow{u}(t)$ as white noise random process with unit variance, i.e.

$$\mathbb{E}\left[\vec{u}(t_1)\vec{u}(t_2)^T\right] = I_{n_u}\delta(t_1 - t_2)$$
(56)

• Important interpretation of \mathcal{H}_2 -norm occurs by considering $\vec{u}(t)$ as white noise random process with unit variance, i.e.

$$\mathbb{E}\left[\vec{u}(t_1)\vec{u}(t_2)^T\right] = I_{n_u}\delta(t_1 - t_2)$$
(56)

• \mathcal{H}_2 -norm squared: expected power in output signal, i.e.

$$\|G\|_{2}^{2} = \mathbb{E}\left[\lim_{t_{f} \to \infty} \frac{1}{t_{f}} \int_{0}^{t_{f}} \operatorname{Tr}\left[\vec{y}(t)\vec{y}(t)^{T}\right] dt\right]$$
(57)

• Important interpretation of \mathcal{H}_2 -norm occurs by considering $\vec{u}(t)$ as white noise random process with unit variance, i.e.

$$\mathbb{E}\left[\vec{u}(t_1)\vec{u}(t_2)^T\right] = I_{n_u}\delta(t_1 - t_2)$$
(56)

• \mathcal{H}_2 -norm squared: expected power in output signal, i.e.

$$\|G\|_{2}^{2} = \mathbb{E}\left[\lim_{t_{f} \to \infty} \frac{1}{t_{f}} \int_{0}^{t_{f}} \operatorname{Tr}\left[\vec{y}(t)\vec{y}(t)^{T}\right] dt\right]$$
(57)

• Provides useful motivation for using \mathcal{H}_2 OCPs when *unobservable* random processes significant inputs to plant

• By Parseval's theorem: transfer function matrix as solution to impulse response of MIMO system with D=0, i.e.

$$||G||_2 = \left(\int_0^\infty \operatorname{Tr}\left[Ce^{At}BB^Te^{A^Tt}C^T\right]dt\right)^{\frac{1}{2}}$$
(58)

• By Parseval's theorem: transfer function matrix as solution to impulse response of MIMO system with D=0, i.e.

$$||G||_2 = \left(\int_0^\infty \text{Tr}\left[Ce^{At}BB^Te^{A^Tt}C^T\right]dt\right)^{\frac{1}{2}}$$
(58)

$$||G||_2^2 = \operatorname{Tr}\left[C\int_0^\infty e^{At}BB^T e^{A^T t}dtC^T\right]$$
(59)

• By Parseval's theorem: transfer function matrix as solution to impulse response of MIMO system with D=0, i.e.

$$||G||_2 = \left(\int_0^\infty \operatorname{Tr}\left[Ce^{At}BB^Te^{A^Tt}C^T\right]dt\right)^{\frac{1}{2}}$$
(58)

$$||G||_2^2 = \operatorname{Tr}\left[C\int_0^\infty e^{At}BB^T e^{A^T t}dtC^T\right]$$
(59)

• Controllability grammian, $W_C = W_C^T$:

$$W_C = \int_0^\infty e^{At} B B^T e^{A^T t} dt \tag{60}$$

• By Parseval's theorem: transfer function matrix as solution to impulse response of MIMO system with D=0, i.e.

$$||G||_2 = \left(\int_0^\infty \operatorname{Tr}\left[Ce^{At}BB^Te^{A^Tt}C^T\right]dt\right)^{\frac{1}{2}}$$
(58)

$$||G||_2^2 = \operatorname{Tr}\left[C\int_0^\infty e^{At}BB^T e^{A^Tt}dtC^T\right]$$
(59)

• Controllability grammian, $W_C = W_C^T$:

$$W_C = \int_0^\infty e^{At} B B^T e^{A^T t} dt \tag{60}$$

$$\|G\|_2^2 = \operatorname{Tr}\left[CW_CC^T\right] \tag{61}$$

• W_C found by noting

$$\frac{d}{dt}e^{At}BB^{T}e^{A^{T}t} = Ae^{At}BB^{T}e^{A^{T}t} + e^{At}BB^{T}e^{A^{T}t}A^{T}$$
(62)

W_C found by noting

$$\frac{d}{dt}e^{At}BB^{T}e^{A^{T}t} = Ae^{At}BB^{T}e^{A^{T}t} + e^{At}BB^{T}e^{A^{T}t}A^{T}$$
(62)

Integrating from 0 to ∞:

$$e^{At}BB^{T}e^{A^{T}t}\Big|_{0}^{\infty} = \int_{0}^{\infty}Ae^{At}BB^{T}e^{A^{T}t}dt + \int_{0}^{\infty}e^{At}BB^{T}e^{A^{T}t}A^{T}dt$$
 (63)

• W_C found by noting

$$\frac{d}{dt}e^{At}BB^{T}e^{A^{T}t} = Ae^{At}BB^{T}e^{A^{T}t} + e^{At}BB^{T}e^{A^{T}t}A^{T}$$
(62)

• Integrating from 0 to ∞ :

$$e^{At}BB^{T}e^{A^{T}t}\Big|_{0}^{\infty} = \int_{0}^{\infty}Ae^{At}BB^{T}e^{A^{T}t}dt + \int_{0}^{\infty}e^{At}BB^{T}e^{A^{T}t}A^{T}dt$$
 (63)

$$-BB^{T} = AW_{C} + W_{C}A^{t}$$
 (64)

• W_C found by noting

$$\frac{d}{dt}e^{At}BB^{T}e^{A^{T}t} = Ae^{At}BB^{T}e^{A^{T}t} + e^{At}BB^{T}e^{A^{T}t}A^{T}$$
(62)

• Integrating from 0 to ∞ :

$$e^{At}BB^{T}e^{A^{T}t}\Big|_{0}^{\infty} = \int_{0}^{\infty}Ae^{At}BB^{T}e^{A^{T}t}dt + \int_{0}^{\infty}e^{At}BB^{T}e^{A^{T}t}A^{T}dt$$
 (63)

$$-BB^{T} = AW_{C} + W_{C}A^{t}$$
 (64)

W_C unique solution to

$$AW_C + W_CA^T + BB^T = 0 (65)$$

• Exists if and only if A stable

Alternatively:

$$||G||_2 = \left(\int_0^\infty \operatorname{Tr}\left[B^T e^{A^T t} C^T C e^{At} B\right] dt\right)^{\frac{1}{2}}$$
(66)

Alternatively:

$$\|G\|_2 = \left(\int_0^\infty \operatorname{Tr}\left[B^T e^{A^T t} C^T C e^{A t} B\right] dt\right)^{\frac{1}{2}}$$
(66)

• $W_O = W_O^T$: observability grammian

$$W_O = \int_0^\infty e^{A^T t} C^T C e^{At} dt \tag{67}$$

Alternatively:

$$||G||_2 = \left(\int_0^\infty \text{Tr}\left[B^T e^{A^T t} C^T C e^{A t} B\right] dt\right)^{\frac{1}{2}}$$
(66)

• $W_O = W_O^T$: observability grammian

$$W_O = \int_0^\infty e^{A^T t} C^T C e^{At} dt \tag{67}$$

• Form \mathcal{H}_2 -norm:

$$||G||_2^2 = \operatorname{Tr}\left[B^T W_O B\right] \tag{68}$$

Alternatively:

$$\|G\|_2 = \left(\int_0^\infty \operatorname{Tr}\left[B^T e^{A^T t} C^T C e^{A t} B
ight] dt
ight)^{rac{1}{2}}$$

• $W_O = W_O^T$: observability grammian

$$W_O = \int_0^\infty e^{A^T t} C^T C e^{At} dt$$

Form \mathcal{H}_2 -norm:

Unique solution to

$$J_0$$

$$\|G\|_2^2 = \operatorname{Tr}\left[B^T W_O B\right]$$

$$A^T W_O + W_O A + C^T C = 0$$

$$C^TC=0$$

(66)

(67)

Matrix Lyapunov Equations

- Both Equations 65 and 69: types of matrix Lyapunov equations
 - Solved using numerical algorithms

Matrix Lyapunov Equations

- Both Equations 65 and 69: types of matrix Lyapunov equations
 - Solved using numerical algorithms
- Matrix Lyapunov equation: type of LME of form

$$A^TX + XA + Q = 0 (70)$$

Matrix Lyapunov Equations

- Both Equations 65 and 69: types of matrix Lyapunov equations
 - Solved using numerical algorithms
- Matrix Lyapunov equation: type of LME of form

$$A^TX + XA + Q = 0 (70)$$

Unique solution

$$X = \int_0^\infty e^{A^T t} Q e^{At} dt \tag{71}$$

- Well-defined as A assumed stable
- X typically obtained numerically using certain eigenvalue decompositions

- Linear algebra: key to linear systems theory
 - Certain results crucial to control theory and design
 - · Theorems stated with definitions

- Linear algebra: key to linear systems theory
 - Certain results crucial to control theory and design
 - Theorems stated with definitions
- Norms for performance analysis of MIMO LTI systems

- Linear algebra: key to linear systems theory
 - Certain results crucial to control theory and design
 - Theorems stated with definitions
- Norms for performance analysis of MIMO LTI systems
- Singular value decomposition for frequency response and robustness analysis of MIMO LTI systems
 - Similar to eigenvalue decomposition for stability of LTI systems

- Linear algebra: key to linear systems theory
 - Certain results crucial to control theory and design
 - Theorems stated with definitions
- Norms for performance analysis of MIMO LTI systems
- Singular value decomposition for frequency response and robustness analysis of MIMO LTI systems
 - Similar to eigenvalue decomposition for stability of LTI systems
- LMIs useful for optimal control problems

- Linear algebra: key to linear systems theory
 - Certain results crucial to control theory and design
 - Theorems stated with definitions
- Norms for performance analysis of MIMO LTI systems
- Singular value decomposition for frequency response and robustness analysis of MIMO LTI systems
 - Similar to eigenvalue decomposition for stability of LTI systems
- LMIs useful for optimal control problems
- Sigma-plot: analyze MIMO frequency response gain

- Linear algebra: key to linear systems theory
 - Certain results crucial to control theory and design
 - Theorems stated with definitions
- Norms for performance analysis of MIMO LTI systems
- Singular value decomposition for frequency response and robustness analysis of MIMO LTI systems
 - Similar to eigenvalue decomposition for stability of LTI systems
- LMIs useful for optimal control problems
- Sigma-plot: analyze MIMO frequency response gain
- \mathcal{H}_{∞} -norm: induced 2 \leftarrow 2-norm for stable $[G(i\omega)]$
 - Maximum singular value across all frequencies

- Linear algebra: key to linear systems theory
 - Certain results crucial to control theory and design
 - Theorems stated with definitions
- Norms for performance analysis of MIMO LTI systems
- Singular value decomposition for frequency response and robustness analysis of MIMO LTI systems
 - Similar to eigenvalue decomposition for stability of LTI systems
- LMIs useful for optimal control problems
- Sigma-plot: analyze MIMO frequency response gain
- \mathcal{H}_{∞} -norm: induced 2 \leftarrow 2-norm for stable $[G(i\omega)]$
 - Maximum singular value across all frequencies
- \mathcal{H}_2 -norm: Frobenius norm for stable $[G(i\omega)]$
 - Average of singular values also averaged across all frequencies