# **Parallel or Synchronous Counter**

| Q3 | Q2 | Q1 |
|----|----|----|
| 0  | 0  | 0  |
| 0  | 0  | 1  |
| 0  | 1  | 0  |
| 0  | 1  | 1  |
| 1  | 0  | 0  |
| 1  | 0  | 1  |
| 1  | 1  | 0  |
| 1  | 1  | 1  |



# Register

### **4-bit Register**



- Parallel or Synchronous load
- Asynchronous load

## **Shift Register**

- In digital system, sometimes data may be required to store temporarily or may be required to move left or right one or more bit positions.
- Shift register is used to store or move data.
- Data can be entered in sequential for i.e. serial form or in parallel form.
- Shift registers can be converted into special counters called as Ring Counters.



- Serial in Serial out
- Serial in parallel out
- Parallel in Serial out
- Parallel in Parallel out
- Data can be shifted to right or to the left.
- Register which can perform all the above functions called as Universal Shift Register.

# Serial in serial out shift register



## Serial in serial out shift register

Ex. Store data word 11011 and draw time diagram.



| No. of Clock pulses | Q1 | Q2 | Q3 | Q4 | Q5 |
|---------------------|----|----|----|----|----|
| 0                   | 0  | 0  | 0  | 0  | 0  |
| 1                   | 1  | 0  | 0  | 0  | 0  |
| 2                   | 1  | 1  | 0  | 0  | 0  |
| 3                   | 0  | 1  | 1  | 0  | 0  |
| 4                   | 1  | 0  | 1  | 1  | 0  |
| 5                   | 1  | 1  | 0  | 1  | 1  |

- First FF at left has bit 1 as LSB with positional value 2<sup>0</sup> while last FF has a 1 as MSB with positional value 2<sup>4</sup>.
- Application of clock pulse beyond five loaded binary number will come out of register starting with binary number at extreme right (MSB) of FF.

# Serial in parallel out shift register



## **Circulating shift register – Ring Counter**



| No. of<br>CIK<br>pulses | Q1 | Q2 | Q3 |
|-------------------------|----|----|----|
| 0                       | 1  | 0  | 0  |
| 1                       | 0  | 1  | 0  |
| 2                       | 0  | 0  | 1  |
| 3                       | 1  | 0  | 0  |

Circuit divides clock frequency by 3 (time diagram) therefore works as MOD-3 counter.

#### **Memory**

- Memory unit A device in which binary information can be stored and retrieved when needed for processing.
- It is a collection of cells capable of storing a large quantity of binary information.
- Two types of memories used in digital systems: Random-Access Memory (RAM) and Read-Only Memory (ROM).
- RAM stores new information for later use.
- Process of storing new information into memory is referred to as a memory write operation.
- Process of transferring stored information out of memory is referred to as a memory read operation.
- RAM can perform both write and read operations.
- ROM can perform only *read* operation. i.e. suitable binary information is already stored inside memory and can be retrieved or read at any time. However, information cannot be altered by writing.

### **Random-Access Memory**

- A memory unit is a collection of storage cells, along with circuits needed to transfer information into and out of a device.
- Architecture of memory is such that information can be selectively retrieved from any of its internal locations.
- Time taken by memory to transfer information to or from any desired random location is always the same—hence called random-access memory, abbreviated RAM.
- A memory unit stores binary information in groups of bits called words.
- A memory word is a group of 1's and 0's and may represent a number, an instruction, one or more alphanumeric characters, or any other binary-coded information.
- A group of 8 bits is called a byte. Most computer memories use words that are multiples of 8 bits in length. A 16-bit word contains two bytes, and a 32-bit word is made up of four bytes.
- Capacity of memory unit is the total number of bytes that unit can store.

#### **Random-Access Memory**



- n data input lines provide information to be stored in memory, and n data output lines supply information coming out of memory.
- k address lines specify particular word chosen among many available.
- Two control inputs specify direction of transfer
- desired: Write input causes binary data to be transferred into the memory, and Read input causes binary data to be transferred out of memory.

#### **Random-Access Memory**

- Memory unit is specified by number of words it contains and number of bits in each word.
- The address lines select one particular word.
- Each word in memory is assigned an identification number, called an *address*, starting from 0 up to  $2^k$  1, where k is the number of address lines.
- Selection of a specific word inside memory is done by applying k -bit address to address lines.
- An internal decoder accepts this address and opens the paths needed to select word specified.
- Memories vary greatly in size and may range from 1,024 words, requiring an address of 10 bits, to 2<sup>32</sup> words, requiring 32 address bits.
- number of words (or bytes) in memory is referred by letters K (kilo), M (mega), and G (giga).
- K is equal to  $2^{10}$ , M is equal to  $2^{20}$ , and G is equal to  $2^{30}$ . Thus,  $64K = 2^{16}$ ,  $2M = 2^{21}$ , and  $4G = 2^{32}$ .

#### **Write and Read Operations**

- RAM can perform write and read operations.
- On accepting control signals, internal circuits inside memory provide desired operation.
- For transferring a new word to be stored into memory:
  - 1. Apply binary address of desired word to the address lines.
  - 2. Apply the data bits that must be stored in memory to the data input lines.
  - **3.** Activate the *write* input.
- Memory unit will take bits from input data lines and store them in word specified by address lines.
- Steps for transferring a stored word out of memory are as follows:
  - 1. Apply binary address of desired word to address lines.
  - 2. Activate the *read* input.
- Memory unit will take bits from word that has been selected by address and apply them to output data lines.