Feuille d'exercices n°5 Algèbre linéaire V et VI

(du lundi 30 novembre 2009 au vendredi 11 décembre 2009)

Exercice 1

Soit
$$A = \begin{pmatrix} 8 & -1 & -5 \\ -2 & 3 & 1 \\ 4 & -1 & -1 \end{pmatrix}$$

A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?

Si oui donner une base de vecteurs propres.

Mêmes questions avec
$$B = \begin{pmatrix} 3 & 4 & -1 \\ -1 & 1 & 1 \\ 0 & 3 & 2 \end{pmatrix}$$
, $C = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix}$.

Exercice 2

Soient
$$a \in \mathbb{R}$$
 et $A = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 3 & 0 \\ a(a-7) & a-7 & a \end{pmatrix}$.

A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?

Si oui donner une base de vecteurs propres.

Mêmes questions avec
$$B = \begin{pmatrix} a & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & a \end{pmatrix}$$
.

Exercice 3

Soient
$$A = \begin{pmatrix} 1 & \alpha & \alpha \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & \beta & \beta \\ -1 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$ où $(\alpha, \beta) \in \mathbb{R}^2$.

Etudier la diagonalisabilité de A et B dans $\mathcal{M}_3(\mathbb{R})$.

Il n'est pas demandé d'exhiber une base de vecteurs propres dans les cas favorables.

ЕРІТА

Exercice 4

Dans cet exercice, diagonalisable signifie diagonalisable dans $\mathcal{M}_4(\mathbb{R})$.

Soient
$$a,b,c,d$$
 des nombres réels et $A_{(a,b,c,d)} = \begin{pmatrix} 0 & 0 & 0 & -d \\ 1 & 0 & 0 & -c \\ 0 & 1 & 0 & -b \\ 0 & 0 & 1 & -a \end{pmatrix}$.

1. Montrer que le polynôme caractéristique de $A_{(a,b,c,d)}$ est

$$P_{A_{(a,b,c,d)}}(x) = \det(A_{(a,b,c,d)} - xI) = x^4 + ax^3 + bx^2 + cx + d$$

- 2. Donner une matrice $M \in \mathcal{M}_4(\mathbb{R})$ qui n'est pas diagonalisable.
- 3. Soit $C = A_{(0,-13,0,36)}$. Montrer que C est diagonalisable et la diagonaliser. On explicitera une base de vecteurs propres.
- 4. Etudier la diagonalisabilité de $A_{(0,0,0,d)}$ selon les valeurs de d.
- 5. On suppose $a \neq 0$. Etudier la diagonalisabilité de $A_{(a,0,0,0)}$ selon les valeurs de a.
- 6. on suppose que a = c = 0, $b \neq 0$ et $d \neq 0$.
 - a. Montrer que si $b^2 4d < 0$ alors $A_{(0,b,0,d)}$ n'est pas diagonalisable.
 - b. On suppose $b^2 4d > 0$.
 - i. Montrer que si d < 0 alors $A_{(0,b,0,d)}$ n'est pas diagonalisable.
 - ii. Donner une condition sur b et d pour que $A_{(0,b,0,d)}$ soit diagonalisable.

Exercice 5

Soient
$$(x_n)_{n\in\mathbb{N}}$$
, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ trois suites réelles telles que
$$\begin{cases} x_n = x_{n-1} + z_{n-1} \\ y_n = y_{n-1} + z_{n-1} \\ z_n = 2z_{n-1} \end{cases}$$
 avec x_0, y_0 et z_0 fixés dans \mathbb{R}

Déterminer x_n , y_n et z_n en fonction de n.

Exercice 6

Résoudre le système d'équations différentielles suivants :

$$\begin{cases} x'(t) = 3x(t) - 2y(t) - 4z(t) \\ y'(t) = -2x(t) + 3y(t) + 2z(t) \\ z'(t) = 3x(t) - 3y(t) - 4z(t) \end{cases}$$

Info-Spé 09/10

Еріта

Exercice 7

- 1. Montrer que tout polynôme de degré impair à coefficients réels admet au moins une racine réelle.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 + A + I = 0$ (*)
 - a. Soit $\lambda \in Sp_{\mathbb{R}}(A)$. Montrer que $\lambda^2 + \lambda + 1 = 0$.
 - b. Montrer qu'une matrice $A \in \mathcal{M}_3(\mathbb{R})$ ne peut pas vérifier l'équation (*).

Exercice 8

Soient E un \mathbb{K} -ev, $f \in \mathcal{L}(E)$ et $P(X) = a_n X^n + ... + a_1 X + a_0$ où $a_i \in \mathbb{K}$ pour tout $i \in \{0, ..., n\}$. On note P(f) l'endomorphisme de E défini par $P(f) = a_n f^n + ... + a_1 f + a_0 id$ où $f^i = \underbrace{f \circ f \circ ... \circ f}_{i \text{ fois}}$ et id est l'application identique de E. On dira que P est un polynôme annulateur de f si P(f) = 0.

- 1. Montrer que $\forall \lambda \in Sp_{\mathbb{K}}(f) \ P(\lambda) \in Sp_{\mathbb{K}}(P(f))$.
- 2. En déduire que si P est un polynôme annulateur de f alors $Sp_{\mathbb{K}}(f) \subset \{\lambda \in \mathbb{K}, \ P(\lambda) = 0\}$.
- 3. Soit p un projecteur i.e. $p \in \mathcal{L}(E)$ et $p^2 = p$. Montrer que $Sp_{\mathbb{K}}(p) \subset \{0,1\}$.