Теоретическая часть

Постановка задачи

Есть множество объектов X (сообщений) и множество ответов Y (ответов). Будем считать, что декартово произведение $X \times Y$ (множество пар объект – ответ) образует вероятностное пространство. Пусть есть некая выборка: $X^l = (x_i, y_i)$. Требуется найти такой алгоритм $a: X \to Y$, который с минимальной ошибкой сопоставляет любому объекту $x \in X$ ответ $y \in Y$.

Для этого введем допущение: пусть известна плотность

$$p(x,y) = p(x)P(y|x) = P(y)p(x|y).$$

p(x,y) – плотность вероятности,

P(y) – априорная вероятность класса Y (без учета свойств объекта),

p(x|y) – функция правдоподобия класса Y,

P(y|x) – апостериорная вероятность класса Y (с учетом свойств объекта).

Принцип максимума апостериорной вероятности

$$a(x) = \arg\max_{y \in Y} P(y|x) = \arg\max_{y \in Y} P(y)p(x|y).$$

Данный классификатор называют оптимальным Байесовским классификатором.

Функционал среднего риска

Проведем анализ ошибок. Если объект был класса y, а классификатор отнес его к классу s.

Введем штрафы за классификацию (потери) λ_{ys} . Формализуем понятие мат. ожидания ошибки. Пусть $a: X \to Y$ разбивает X на непересекающиеся области:

$$A_y = \{x \in X | a(x) = y\}, y \in Y.$$

Вероятность ошибки $P(A_y, y) = \int_{A_s} p(x, y) dx$. Из определения мат. ожидания имеем функцию среднего риска:

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} P(A_s, y).$$

Теорема. Если известны P(y) и p(x|y), то минимальный средний риск R(a) имеет Байесовский классификатор:

$$a(x) = arg \min_{s \in Y} \sum_{y \in Y} \lambda_{ys} P(y) p(x|y).$$

<u>Теорема</u>. Если $\lambda_{yy}=0,\,\lambda_{ys}=\lambda_{y}.$ Для $\forall y,s\epsilon Y,$ то минимум среднего риска R(a) достигается при

$$a(x) = \arg\max_{s \in Y} \lambda_y P(y) p(x|y).$$

Наивный байесовский классификатор

Признаки объекта делаются независимыми случайными величинами.

Рассмотрим задачу классификации сообщений (выделения из них спама). На стадии обучения для каждого встреченного слова высчитывается его вес – оценка вероятности того, что письмо с этим слово является спамом. При классификации отнесение письма к спаму осуществляется путем сравнения общего веса письма с планкой, заданной пользователем. Обычно это 0.6-0.8.

Пусть есть обучающая выборка сообщений $M\colon W_i\in M$, где W_i – все слова из выборки. Тогда вероятность того, что случайное сообщение из N слов W_i , $i = \overline{1, N}$, является спамом (S), вычисляется по формуле:

$$P = \frac{\prod_{i=1}^{N} P_i}{\prod_{i=1}^{N} P_i + \prod_{i=1}^{N} (1 - P_i)}.$$

Здесь $P = P(S|W_1 ... W_N)$ – условная вероятность того, что сообщение, содержащее слова W_i , $i=\overline{1,N}$, является спамом. Вероятность $P_i=P(S|W_i)$ – вероятность того, что сообщение, содержащее слово W_i , — спам 1 . $P(S|W_i)=\frac{P(W_i|S)}{P(W_i|S)+P(W_i|H)}.$

$$P(S|W_i) = \frac{P(W_i|S)}{P(W_i|S) + P(W_i|H)}.$$

 $P(W_i|S)$ – это вероятность того, что сообщение, являющееся спамом (S), содержит слово W_i . Эта величина вычисляется по формуле:

$$P(W_i|S) = \frac{count(M: W_i \in M, M \in S)}{\sum_i count(M: W_j \in M, M \in S)}.$$

Т. е. величина $P(W_i|S)$ – это относительная частота сообщений, содержащих слово W_i , которые были отнесены к спаму во время фазы обучения.

 $P(W_i|H)$ – это вероятность того, что сообщение, не являющееся спамом (H), содержит слово W_i . Эта величина вычисляется по формуле:

$$P(W_i|H) = \frac{count(M: W_i \in M, M \in H)}{\sum_{j} count(M: W_j \in M, M \in H)}.$$

 $^{^{1}}$ В данной формуле опущены априорные вероятности P(S) и P(H), принадлежности и не принадлежности к спаму соответственно. Классификаторы, которые используют такую формулу, называются фильтрами «без предубеждений».

Т. е. величина $P(W_i|H)$ — это относительная частота сообщений, содержащих слово W_i , которые не были отнесены к спаму (H) во время фазы обучения.

Практическая реализация

Для удобства вычисления в работе предлагается использовать следующие изменения.

1. Изменим формулу вычисления вероятности $P(S|W_1 ... W_N)$:

$$P(S|W_1 ... W_N) = \frac{P(W_1 ... W_N | S) P(S)}{P(W_1 ... W_N)} = \frac{P(S) \prod_{i=1}^N P'(W_i | S)}{P(W_1 ... W_N)}.$$

- 2. Не требуется учитывать $P(W_1 ... W_N)$ при вычислении $P(S|W_1 ... W_N)$ так как это не влияет на выбор аргумента при использовании argmax.
- 3. При выборе категории будем находить argmax от логарифма $P(Cat|W_1...W_N)$ по Cat (категория).
- 4. Чтобы избежать проблемы редких слов, вероятность $P'(W_i|S)$ будем считать, как средневзвешенную вероятность:

$$P'(W_i|S) = \frac{weight \times P_a(W_i) + total \times P(W_i|S)}{weight + total}.$$

5. В практической реализации необходимо увеличить количество категорий и уметь работать с любым количеством категорий.

Практическая часть

Задание по практической реализации алгоритма находится в файле problems-1.ipynb