Advanced Cryptography

November 24, 2021

- 1. ADDITIVE Elgamal modulo n = 64 with generator q = 61.
 - (a) Alice chooses the secret key x=10 while Bob chooses the temporary key y=11. Compute the public key of Alice. Show how Bob encrypts the message m=12 and how Alice decrypts the encrypted message.
 - (b) Agent Eva computes $g^{-1} \mod n$ and finds out the secret key of Alice using the public key of Alice. Make the computations.
- 2. MULTIPLICATIVE Elgamal modulo p = 23 in the group generated by g = 2. Alice has the public key h = 18. Bob sends the encrypted message $(c_1, c_2) = (9, 10)$. Decrypt the message.
- 3. RSA. Someone encrypted a message m modulo 85 using the public key e=11 and got c=12. Decrypt the message using the function $\lambda(N)$.
- 4. *Goldwasser-Micali*. Someone receives a message modulo 3521 consisting of the numbers 2899, 622, 1971, 1550. Decrypt the message.
- 5. Shamir's No Key Protocol. Alice sends to Bob the message m=10 using p=17. Alice's secret key is a=7 and Bob's secret key is b=9. Compute the protocol.
- 6. Shamir's Secret Sharing. Let $P \in \mathbb{Z}_{23}[X]$ be a polynomial of degree 2. Consider pairs $(\alpha, P(\alpha))$ where $\alpha \in \mathbb{Z}_{23} \setminus \{0\}$ and $P(\alpha) \in \mathbb{Z}_{23}$. If three such pairs are (1, 20), (2, 16) and (3, 10), deduce the shared secret $s = P(0) \in \mathbb{Z}_{23}$.
- 7. Cipolla.
 - (a) Show that 2 is a quadratic residue modulo 23.
 - (b) Find the square roots of 2 modulo 23. Show first that a = 0 is a good choice such that $a^2 2$ is not a square modulo 23 and then compute in the field $\mathbb{F}_{23}[\sqrt{21}]$.
- 8. RSA. Let $p \neq q$ be two primes, N = pq, $\varphi = (p-1)(q-1)$ and $\lambda = \text{lcm}(p-1,q-1)$. A RSA key is called a dead key if for all $m \in \mathbb{Z}_N$, $m^e = m \mod N$. Let Δ be the set of dead keys in the interval $[1, \varphi]$.
 - (a) Let \cdot be the multiplication modulo φ . Show that (Δ, \cdot) is a group.
 - (b) Show that $(a\lambda + 1)(b\lambda + 1) = ((a+b)\lambda + 1) \mod \varphi$ for all $a, b \in \mathbb{Z}$. Conclude that (Δ, \cdot) is a cyclic group.
 - (c) For N = 85, write down the group (Δ, \cdot) and verify that it is cyclic.

Every exercise gets 4 points.

For every modular inverse without computation, 1 point penalty.

For every exponentiation without computation, 1 point penalty.