Metod varijacije konstanti

Primer

Naći opšte rešenje jednačine $y''' - y'' = e^{x}$. e^{x} , e^{x} , e^{x} , e^{x} , e^{x}

1)
$$y''' - y'' = 0 \Rightarrow k^3 - k^2 = 0 \Rightarrow k_1 = k_2 = 0, k_3 = 1$$

(y=e^{k*}) $\Rightarrow y_h(x) = c_1 + c_2 x + c_3 e^x$

Metodom varijacije konstanti dobijamo sistem $y = c_1(x) + c_2(x)x + c_3(x)e^x = 0$ $c_1'(x) + c_2'(x)x + c_3'(x)e^x = 0$ $c_1'(x) + c_2'(x) + c_3'(x)e^x = 0$ $c_1'(x) + c_2'(x) + c_3'(x)e^x = 0$

$$c'_1(x) + c'_2(x)x + c'_3(x)e^x = 0$$

$$c'_1(x) + c'_2(x) + c'_3(x)e^x = 0$$

$$c'_1(x) + c'_2(x) + c'_3(x)e^x = 0$$

čijim rešavanjem i integracijom rešenja dobijamo

$$\begin{array}{lll} c_3'(x)=1 & \text{ folds} & \Rightarrow & c_3(x)=\underline{x}+C_3\checkmark\\ c_2'(x)=-c_3'(x)e^x=-e^x & \text{ folds} & \Rightarrow & c_2(x)=\underline{-e^x}+C_2\checkmark \end{array}$$

$$c_1'(x) = -c_2'(x)x - c_3'(x)e^x = (x-1)e^x \Rightarrow c_1(x) = (x-2)e^x + C_1$$

$$y_p(x) = (x-2)e^x$$

$$y_p(x) = (x-2)e^x$$

$$\int_{-\infty}^{\infty} |x-1|e^x dx = \begin{cases} x-1-e^x & \text{for } x = (x-1)e^x \\ & \text{for } x = (x-1)e^x \end{cases}$$

$$= (x-2)e^{x} + C_{1} \checkmark$$

$$= (x-2)e^{x} + C_{1} \checkmark$$

$$y(x) = y_h(x) + y_p(x) = c_1 + c_2x + c_3e^x + (x-2)e^x$$
.

Metod jednakih koeficijenata

Ako je jednačina linearna sa konstantnim koeficijentima oblika

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = f(x)$$

gde je funkcija $f(x)_{ij}$ specijalnog oblika

$$f(x) = e^{\alpha x} (\underline{P(x)} \cos \beta x + \underline{Q(x)} \sin \beta x), \quad \chi_{+\beta} \in \text{kkj}.$$
Senie tražimo u obliku

partikularno rešenje tražimo u obliku

$$y_p(x) = x^p e^{\alpha x} (\underbrace{T_k(x)}_{cos} \cos \beta x + \underbrace{R_k(x)}_{cos} \sin \beta x)$$

pri čemu je

- $k = \max\{n, m\}$ $n = \deg P(x)$, $m = \deg Q(x)$, ako su oba polinoma različita od nula polinoma (ako je P(x) nula polinom onda je k = m, a ako je Q(x) nula polinom onda je k = n)
- r je višestrukost $\alpha + i\beta$ kao korena karakteristične jednačine odgovarajuće homogene jednačine

Metod jednakih koeficijenata

Korisna je činjenica: ako je

ako je
$$L_n[y] = \underbrace{f_1(x) + f_2(x)}_{N \cdot P.o.}$$

i ako je

 $y_1(x)$ partikularno rešenje jednačine $L_n[y] = f_1(x)$ nad I,

 $y_2(x)$ partikularno rešenje jednačine $L_n[y] = f_2(x)$ nad I,

tada je

$$y(x) = y_1(x) + y_2(x) \checkmark$$

nad intervalom / partikularno rešenje jednačine

$$L_n[y] = f_1(x) + f_2(x) \checkmark \checkmark$$

Metod jednakih koeficijenata

Primer

Odrediti opšte rešenja jednačine $y''' - y'' = e^x + \sin x + x$

Rešenje. Opšte rešenje homogenog dela jednačine je

$$y_h(x) = c_1 + c_2 x + c_3 e^x \times \sqrt{}$$

Jedno partikularno rešenje jednačine $y'''-y''=e^x$ je $y_{p_1}(x) = xe^x$.

Jedno partikularno rešenje jednačine
$$y''' - y'' = \sin x$$
 je $y_{p_2}(x) = \frac{1}{2}(\cos x + \sin x)$. Jedno partikularno rešenje jednačine $y''' - y'' = x$ je

$$y_{p_3}(x) = -\frac{1}{6}x^2(x+3).$$
 Opšte rešenje je

 $y(x) = c_1 + c_2 x + c_3 e^x + x e^x + \frac{1}{2} (\cos x + \sin x) - \frac{1}{6} x^2 (x+3).$

1) y"-y"=0
6,2-k2=0

$$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} + \frac{1}{2}y^{1} - y = e^{2x}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} = 0$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{0} = 0$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{0} = -\frac{4}{1}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{0} = -\frac{4}{1}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{0} = -\frac{4}{1}$$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

Ojlerova jednačina

Ojlerova jednačina je oblika

$$\Rightarrow (ax+b)^n y^{(n)} + a_1(ax+b)^{n-1} y^{(n-1)} + \dots + a_{n-1}(ax+b) y' + a_n y = f(x)$$

gde su a_i , i = 1, 2, ..., n konstante i smenom

$$\Rightarrow (ax + b = e^t, ax + b > 0 \quad (ax + b = -e^t, ax + b < 0)$$

svodi se na jednačinu sa konstantnim koeficijentima.

Ojlerova jednačina

Primer

Naći opšte rešenje diferencijalne jednačine

$$x^3y''' + x^2y'' + 3xy - 8y = 0.$$

Za x > 0 smenom

$$x = e^{t} \Rightarrow y'_{x} = y'_{t}t'_{x} = \frac{1}{x}y'_{t},$$

$$y''_{x} = -\frac{1}{x^{2}}y'_{t} + \frac{1}{x^{2}}y''_{t} = \frac{1}{x^{2}}(y''_{t} - y'_{t})$$

$$y'''_{x} = -\frac{2}{x^{3}}(y''_{t} - y'_{t}) + \frac{1}{x^{3}}(y'''_{t} - y''_{t}) = \frac{1}{x^{3}}(y'''_{t} - 3y''_{t} + 2y'_{t})$$

dobija se linearna diferencijalna jednačina y'''-2y''+4y'-8y=0. čija karakteristična jednačina r^3-2r^2+4r-8 ima korene $r_1=2$, $r_2=2i$, $r_3=-2i$ pa je njen fundamentalni skup rešenja $\{e^{2t},\sin 2t,\cos 2t\}$ tako da je fundamentalni skup rešenja Ojlerove jednačine $\{x^2,\sin(2\ln|x|),\cos(2\ln|x|)\}, x\neq 0$ pa je opšte rešenje $y=c_1x^2+c_2\sin(2\ln|x|)+c_3\cos(2\ln|x|)$.