Ecologie spatiale et régime alimentaire d'une espèce en danger critique d'extinction : apports pour la conservation du Vison d'Europe (*Mustela lutreola*).

Rémi Bodinier

2024-03-27

Table of contents

Preface

Ce projet de thèse est réalisé par Rémi Bodinier au sein du GREGE (Groupe de Recherche et d'Etude pour la Gestion de l'environnement) en codirection avec le LBBE (Laboratoir de Biométrie et Biologie Evolutive).

Le but de cette thèse est d'apporter des connaissances sur l'écologie du Vison d'Europe à travers l'occupation de l'espace, l'utisation de l'habitat, le régime alimentaire et les risques de collisions routières. Grâce à cet apport de connaissances, le but de cette thèse est d'améliorer les stratégies de conservation de l'espèce en milieu naturel et de donner des critères pour une futur translocations d'individus dans le milieu naturel.

1 Introduction

La récente et importante perte de biodiversité est un phénomène qui suscite des inquiétudes de plus en plus nombreuses. Aussi alarmant, de plus en plus d'espèces voient leur statut de conservation devenir chaque année plus préoccupant (Ceballos et al., 2010) et le Vison d'Europe fait partie de ces espèces dont le statut est particulièrement inquiétant. En effet, cette espèce, considérée comme le mammifère carnivore le plus menacé en Europe, est classée « en danger critique d'extinction » sur les listes rouges mondiale (2011), européenne (2011), française (2017) de l'UICN (MNHN, 2023). Les raisons de son déclin sont nombreuses mais nous pouvons noter en particulier la mortalité accidentelle par collisions routières qui joue aujourd'hui un rôle majeur en créant des puits de mortalité locaux sur les derniers noyaux de population présents (dans le cadre du premier PNA Vison, 69 spécimens découverts morts ont été collectés dont 62% (43) étaient victimes de collisions routières : Mission Vison d'Europe, 2003). Nous pouvons citer aussi la perte, dégradation et fragmentation de ses habitats (Maran et Henttonen, 1995; Lodé, 2001; DREAL et al., 2021), l'expansion d'une espèce exotique envahissante, le Vison d'Amérique (Maran et al., 1998; Sidorovich, 2001; DREAL et al., 2021), ainsi que l'action de certains agents pathogènes virulents (Fournier-Chambrillon et al., 2022). En 2007, on estimait que ces menaces ont conduit à la perte de 85% de l'aire de répartition d'origine de l'espèce et plus de 90% de ses effectifs d'origine. En France, l'aire de répartition de l'espèce est passée de 38 départements à la fin du XIXème siècle à seulement sept au début du XXIème (Figure 1) et le nombre d'individus encore en vie in natura est estimé à moins de 250, faisant du Vison d'Europe une espèce très rare. Afin de lutter contre la disparition de cette espèce, de nombreux programmes ont vu le jour en France. Ce sont trois Plans Nationaux d'Actions (PNA) sur les périodes 1999-2003 (DIREN et GREGE, 1999), 2007-2011 (DIREN et GEREA, 2007), et 2021-2031 (DREAL et al., 2021), un Plan National d'Actions dit « intermédiaire » (PNAi) de 2015 à 2021 (DREAL et ONCFS, 2015), et deux projets européens de conservation, LIFE VISON de 2017 à 2023 (LPO et al., 2017) et LIFE KANTAURIBAI de 2022 à 2027 (GAN-NIK et al., 2022) qui ont été mis en place et dont certains sont encore en cours. Ces projets ont des envergures géographiques qui peuvent différer, les PNA s'étendant sur 11 départements de trois régions françaises (Nouvelle-Aquitaine : Charente, Charente-Maritime, Dordogne, Gironde, Landes, Lot-et-Garonne, Pyrénées-Atlantiques, Deux-Sèvres; Occitanie: Gers, Hautes-Pyrénées; Pays de la Loire: Vendée), le LIFE VISON s'étendant sur huit sites Natura 2000 du bassin de la Charente (départements de Charente et Charente Maritime) et le LIFE KANTAURIBAI sur 3 sites Natura 2000 du réseau hydrographique du Golfe de Gascogne.

Malgré la caractère très rare et cryptique de l'espèce, les connaissances sur l'écologie spatiale

et le régime alimentaire du Vison d'Europe sont en partie documentées, mais certaines lacunes demeurent. Le Vison d'Europe est un mammifère semi-aquatique qui change de gîte quasi quotidiennement au sein de son grand domaine vital. En moyenne, les distances parcourues par le Vison d'Europe entre deux localisations journalières consécutives sont de l'ordre du kilomètre – 0,4 kilomètres pour les femelles et 1,8 kilomètres pour les mâles (Palazón et Ruiz-Olmo, 1998; Fournier et al., 2008; Cazaillon, 2021). Le sujet nécessite cependant d'être approfondi, notamment dans l'état actuel très dégradé des populations et avec des nouveaux outils d'analyses. En particulier, des périodes correspondant aux variations de déplacements n'ont pas été étudiées. Le domaine vital du Vison d'Europe s'étend sur environ une dizaine de kilomètres de cours d'eau chez les mâles et moins de la moitié pour les femelles (Garin et al., 2002 ; Ceña, 2003 ; Fournier et al., 2008 ; Palomares et al., 2017a). Aucune donnée n'a cependant été publiée sur des individus évoluant en marais littoraux comme ceux hébergeant les derniers novaux populationnels français. Les méthodes de modélisation surfacique du domaine vital les plus couramment utilisées par les auteurs (méthode des Polygones Convexes Minimums, MCP, ou méthode des Kernels) ne semblent pas adaptées aux configurations linéaires des rivières, car elles ne prennent pas en compte la sinuosité des cours d'eau. De plus, l'occupation fine de l'espace, en particulier la notion de « zone coeur », est peu renseignée pour cette espèce. La zone coeur correspondant à une zone fortement utilisée et statistiquement plus utilisée que les zones fortement utilisées dans l'hypothèse d'une occupation aléatoire de l'espace (Powell, 2000). En ce qui concerne son habitat, le Vison d'Europe est strictement inféodé aux zones humides, étant le plus souvent observé dans des zones proches de l'eau (Palazón, 1998; Fournier et al., 2007). L'espèce est connue pour gîter majoritairement dans la ripisylve lorsque celle-ci est présente, avec des gîtes soit souterrains, soit au sol dans la végétation dense comme les ronciers (Zabala et al., 2003; Fournier et al., 2007; Palomares et al., 2017b). Ces connaissances sur l'utilisation de l'habitat doivent cependant être approfondies. Enfin, son régime alimentaire est constitué de micromammifères, d'oiseaux, de poissons, d'amphibiens et d'invertébrés aquatiques dans des proportions qui peuvent changer entre différents pays (Sidorovich et al., 1998) ; Palazón et al., 2004 ; Palazón et al., 2008), voire au sein d'une zone définie (Palazón et al., 2004). Il n'existe cependant aucune étude publiée du régime alimentaire du Vison d'Europe en France et les études publiées dans d'autres pays ne prennent pas en compte l'écologie spatiale du Vison d'Europe pour expliquer les variations de régime alimentaire.

Dans ce contexte, le projet que nous souhaitons mener a pour objectif de mettre à jour les connaissances sur l'écologie du Vison d'Europe, grâce à de nouveaux protocoles et/ou de nouvelles méthodes d'analyses sur les données déjà existantes. L'amélioration des connaissances sur la mobilité de l'espèce permettra également d'estimer les facteurs écologiques influençant les risques de collisions routières, facteur majeur de surmortalité pour les derniers noyaux populationnels. Les informations apportées par les nouvelles analyses menées permettront d'orienter plus précisément les stratégies actuelles de conservation du Vison d'Europe en France, dans son milieu naturel. Les résultats de ce projet contribueront de surcroît à la définition des meilleures conditions possibles requises pour de futures translocations d'individus dans le milieu naturel.

2 Méthodologie

2.1 Occupation de l'espace

Les domaines vitaux de tous les individus seront modélisés grâce à des nouvelles méthodes qui n'ont pas été utilisées jusqu'à présent pour le Vison d'Europe (Local Convex Hull (LoCoH), ponts browniens...), à partir des localisations quotidiennes de chaque individu. Les surfaces occupées ainsi estimées par chacune des modélisations seront comparées avec celles des modélisations les plus communément utilisées par les auteurs ayant travaillé sur l'espèce (MCP, Kernels). L'analyse devrait permettre de proposer la meilleure méthode à retenir pour la modélisation des domaines vitaux du Vison d'Europe, tout en tenant compte de la configuration bien différente des zones de marais et des vallées alluviales sinueuses. Les domaines vitaux seront ensuite analysés en fonction des caractéristiques des individus (sexe, classe d'âge, statut reproducteur...) par modèles mixtes en première intention car en effet ces modèles devront prendre en compte comme variable aléatoire entre autres la différence de temporalité entre les deux projets mais aussi d'autres facteurs temporaires (saisons...). Des tests subsidiaires de choix de modèle (Critère d'Information d'Akaike...) viendront compléter les analyses. La modélisation des surfaces exploitées sera également étudiée en fonction de la dispersion spatiale des localisations, afin de définir des zones plus ou moins utilisées au sein du domaine vital. Ces approches devraient donc permettre de mettre en évidence des « zones coeurs », c'est-à-dire des surfaces statistiquement plus utilisées que les zones fortement utilisées dans l'hypothèse d'une utilisation aléatoire de l'espace (Powell, 2000).

2.2 Patrons de déplacements

Grâce aux suivis continus des individus dans les Landes de Gascogne, une étude de la trajectométrie pourra être faite afin de décrire des typologies de déplacements selon les différentes phases d'activité (chasse, déplacement entre gîte, ...). Les modèles utilisés pour décrire ces phases d'activité devront prendre en compte certaines caractéristiques des individus (âge, sexe, statut reproducteur, ...) et certaines caractéristiques spatiales relevées lors de la partie i. La mobilité individuelle sera également étudiée d'une autre manière à partir des données qui correspondent aux localisations quotidiennes. En effet, Laundré et al. (1987) ont montré qu'utiliser des distances entre localisations relevées à un jour d'intervalle présentaient certains problèmes en tant qu'indicateur du trajet et des mouvements totaux d'un individu. De la trajectométrie ne peut donc pas être fait avec ces données et l'étude de la mobilité individuelle à partir des

localisations quotidiennes sera donc menée en utilisant comme indicateur les distances entre deux localisations diurnes relevées à un jour d'intervalle. La modélisation de cet indicateur se fera en projetant chaque gîte sur l'axe médian du lit majeur du cours d'eau utilisé et en calculant la distance entre le gîte d'un jour et celui de la veille en suivant cet axe médian. Cette méthode est proposée pour venir se substituer aux distances euclidiennes, afin de mieux correspondre à la réalité du terrain et à la sinuosité des cours d'eau. Ensuite, les distances seront comparées sur des échelles temporelles différentes (jour, semaine, mois, saison...). Les distances seront aussi comparées en fonction du sexe, voire de l'âge et du statut reproducteur. De la même manière que pour l'étude de l'occupation de l'espace, les analyses seront des modèles prenant en compte les différentes variables d'influence, complétées par des analyses de choix de modèles. Ainsi, des périodes de plus ou moins forte mobilité seront définies et pourront être reliées à certains évènements (rut, reproduction, élevage des jeunes...). Afin de pouvoir relier les variations des distances parcourues et les évènements écologiques cités juste avant, il faudra prendre en compte les gîtes de reproduction dans cette étude. Ces périodes pourront être définies comme des périodes écologiques de l'espèce. En outre, la mobilité au sein des différentes parties des domaines vitaux sera également étudiée grâce aux résultats de la partie i.

2.3 Utilisation de l'habitat

Il s'agira d'identifier les habitats utilisés et ceux sélectionnés par l'espèce pour installer ses gîtes diurnes grâce à la cartographie de l'occupation du sol réalisée. Deux approches complémentaires seront menées: 1) analyser les modalités d'utilisation des habitats en comparant les distributions des gîtes par habitat grâce à une analyse multivariée en composantes, 2) définir les sélections d'habitats en comparant en première intention les habitats des localisations à la disponibilité présente dans le domaine vital, c'est-à-dire une sélection du 3ème ordre (sensu Johnson, 1980). Les analyses seront faites grâce à une approche de type k-select (Calenge et al., 2005). L'utilisation et la sélection des habitats seront également analysées en fonction des caractéristiques des individus (sexe, classe d'âge, statut reproducteur...). De plus, une analyse temporelle pourra être menée en utilisant entre autres les périodes définies lors de l'analyse de la mobilité (partie ii.). En outre, les compositions en habitats au sein des différentes surfaces décrites lors des analyses de l'occupation de l'espace (partie i.) mais aussi lors de la description des surfaces de chasse dans l'étude de la mobilité (partie ii.) seront également étudiées. Une analyse spatiale de l'utilisation et de la sélection des habitats sera ainsi menée. Dans cette partie, les gîtes de repos et les gîtes de mises bas et d'élevage des jeunes ne seront pas approchés de la même façon, le choix du gîte de reproduction impliquant des critères différents (sécurité des jeunes, ...). Une analyse descriptive de l'habitat utilisé pour installer le gîte de reproduction sera ainsi menée en parallèle, étant donné le faible nombre de gîtes de reproduction identifiés.

2.4 Caractéristiques des gîtes

Il s'agira d'identifier les caractéristiques préférées dans l'établissement du gîte diurne. A partir des paramètres environnementaux relevés à une échelle fine sur chacun des gîtes identifiés par approche pédestres et cités dans la méthodologie, la préférence de certains de ces paramètres sera analysée selon les caractéristiques des individus (sexe, classe d'âge, statut reproducteur...). L'analyse devra également prendre en compte l'habitat dans lequel se situe le gîte diurne afin de relever de potentiels correspondances entre les deux variables. Une analyse multivariée de type canonique est pensée comme première approche (analyse procustéenne ou analyse de coinertie). Enfin, des facteurs temporels (périodes définies lors de l'analyse de la mobilité partie ii.) et spatiaux (surfaces décrites dans l'étude de l'occupation de l'espace partie i.) devront être pris en compte pour expliquer les choix de certaines caractéristiques. De même que dans l'étude de l'habitat, les gîtes de repos et les gîtes de mises bas et d'élevage des jeunes ne seront pas approchés de la même façon. Une analyse descriptive des caractéristiques préférées pour installer le gîte de reproduction sera ainsi menée en parallèle, pour les mêmes raisons que pour l'étude de l'habitat.

2.5 Régime alimentaire

Pour finir, le régime alimentaire sera étudié grâce aux analyses de la composition de crottes récoltées sur les gîtes identifiés lors du radiopistage. Dans un premier temps, des indices de diversité ou de richesse (basé sur les indices de Shannon et de Simpson) seront calculés pour chacune des crottes et ces indices seront comparés au sein des habitats (partie iii.) et des surfaces (partie i.) dans lesquels les crottes sont trouvées. Le Vison d'Europe pouvant chasser entre deux gîtes diurnes, une attention particulière devra être porté à l'échelle à laquelle se feront les analyses. De plus, les études actuelles semblent montrer que cette espèce est généraliste, il faudra donc mettre en avant les habitats ou les surfaces dans lesquels les indices montrent une grande diversité d'espèces voire des taxons supérieurs. Ensuite, et sur le même principe que pour l'habitat, l'étude du régime alimentaire tentera de mettre en avant une sélection de certaines proies par les différents individus selon la ressource disponible dans le domaine vital. Il s'agira de comparer les disponibilités en proies relevées lors des inventaires aux proportions de proies retrouvées dans les fèces par une approche s'inspirant des méthodes analytiques de sélection des habitats (k-select, eigenanalysis, ...). L'individu, le sexe et l'âge seront des variables à prendre en compte pour expliquer une potentielle sélection. Cette comparaison devra également prendre en compte la période (résultats de la partie ii.) puisque les proies du Vison d'Europe n'ont pas toutes la même écologie. Enfin, les crottes ayant été localisées, il est possible d'observer des différences de proies sélectionnées en fonction de la localisation au sein du domaine vital (dans ou hors zone coeur définies en partie i.).

2.6 Risque de collisions routières

Pour cette analyse, des variables permettant d'estimer un risque de collision devront tout d'abord être identifiées. Ces variables prendront en compte les résultats des analyses précédentes mais pas seulement. En effet le premier type de variable se concentrera sur les composantes anthropiques (trafic routier sur le franchissement, distance au prochain franchissement le plus proche...). L'autre type de variables concernera des variables environnementales définies à partir des analyses précédentes, en particulier les résultats de l'analyse de l'utilisation de l'habitat partie iii (présence/absence d'habitats favorables dans un rayon défini par la mobilité journalière, présence/absence d'habitats favorables des deux côtés du franchissement et distance à ceux-ci...). Une analyse précise des collisions routières recensées lors des différents projets permettra d'associer à chacune des collisions des valeurs pour chacun des variables retenues. Une analyse multivariée en composante (analyse des correspondances multiples ou analyse mixte) permettra ensuite d'expliquer les facteurs principaux expliquant la mortalité par collision routière.

3 Résultats