

AD-A099 486

EIC LABS INC NEWTON MA

PHOTOELECTROCHEMICAL DEPOSITIONS OF MICROSCOPIC METAL FILM PATT--ETC

N00014-79-C-0700

NL

UNCLASSIFIED

TR-2

F/6 20/12

END

DATE

1980

6 81

DTIC

MICROCOPY RESOLUTION TEST CHART

DTIC FILE COPY

AD A099456

LEVEL II

(12)
BS

OFFICE OF NAVAL RESEARCH
Contract No. N00014-79-C-0700
Task No. NR 359-723

TECHNICAL REPORT NO. 2

PHOTOELECTROCHEMICAL DEPOSITIONS OF MICROSCOPIC
METAL FILM PATTERNS ON Si AND GaAs

by

R. H. Micheels, A. D. Darrow II and R. David Rauh

Prepared for Publication
in
Applied Physics Letters

DTIC
SELECTED
MAY 29 1981

EIC Laboratories, Inc.
55 Chapel Street
Newton, Massachusetts 02158

May 1981

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unlimited

815 29048

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 2	2. GOVT ACCESSION NO. AD-A099 452	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) PHOTOELECTROCHEMICAL DEPOSITIONS OF MICROSCOPIC METAL FILM PATTERNS ON Si AND GaAs	5. TYPE OF REPORT & PERIOD COVERED ① Technical Report	
7. AUTHOR(s) Ronald H. Micheels, Allan D. Darrow, II and R. David Rauh	6. PERFORMING ORG. REPORT NUMBER ② N00014-79-C-0700	
9. PERFORMING ORGANIZATION NAME AND ADDRESS EIC Laboratories, Inc. 55 Chapel Street, Newton, MA 02158	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 359-723 ③ 18	
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research/Chemistry Program Arlington, VA 22217	12. REPORT DATE May 1981	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 12	
16. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES Submitted for Publication in Applied Physics Letters		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Photoelectrochemistry, Electroplating, Imaging, Si, GaAs		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Microscopic metal film patterns have been imaged on p-Si and n- and p-GaAs by photoelectrochemical deposition from standard aqueous plating solutions. The photodeposition of Cu, Ni, Pd and Au films was investigated. Resolution exceeding 10μ has been achieved for deposits on Au on p-GaAs and Cu on p-Si.		

4112102

J.C

The fabrication of semiconductor microelectronics has become increasingly dependent on high resolution photolithographic techniques. These methods tend to be complex and time consuming, and often require high vacuum conditions. We describe here a study of the selective photoelectrochemical deposition of microscopic metal film patterns on single crystal p-Si and n and p-GaAs substrates. The photodeposition of films of Cu, Ni, Pd and Au on these semiconductors was investigated.

The deposition of metal and metal oxide images on semiconductor electrodes in a photoelectrochemical cell has been reported for TiO_2 , ZnO , $SrTiO_3$ and GaP substrates (1,2). There has been one report of light assisted electrochemical deposition of metal contacts on Si solar cell substrates (3), but the contact patterns were produced by masking and not by selective photodeposition.

The basic mechanism responsible for the photoelectrochemical deposition process is the chemical reduction of metal ions from solution by photogenerated electrons in the conduction band produced at illuminated areas of the semiconductor surface. The reduction process can be written as:

where M^{n+} are metal ions of charge n in the electrolyte and e^{-}_{surf} and M_{surf} are electrons and metal atoms on the surface. The rectifying nature of the semiconductor-electrolyte junctions acts to separate the photo-generated electron-hole pairs at the surface (4). In the case of a p-type semiconductor, an external reverse (cathodic) bias voltage is applied with

Distribution/	
Availability Codes	
Dist	Avail and/or Special
A	

respect to a counter electrode while for an n-type semiconductor a forward (anodic) bias is required to achieve the optimum band bending in the rectifying junction. When a thin initial film of metal is deposited, it is expected that a Schottky metal-semiconductor junction is formed which itself produces a rectifying barrier at the surface and isolates the semiconductor from the effects of the electrolyte redox potential (5,6). The redox electrolyte will then form an ohmic contact with the metal coated surface.

The properties of the substrates studied were as follows: p-Si, phosphorous doped, (100) face, 0.1-1 Ω -cm resistivity (Semiconductor Processing Corp.); p-GaAs, zinc doped, (100) face, 0.48 Ω -cm (Laser Diode Labs); n-GaAs, silicon doped, (100) face, 0.0008-0.0007 Ω -cm (Laser Diode Labs). The following standard plating solutions were used: 1:4 diluted copper/pyrophosphate (7), nickel sulfamate (Technic nickel S), gold/cyanide (Technic Orotemp 24) and palladium/cyanide (Technic palladium RT). A solution of CuClO_4 in acetonitrile prepared by electrolytic reduction of $\text{Cu}(\text{ClO}_4)_2$ was also used for Cu deposition. Just before use, the substrates were etched for 30 seconds in concentrated HF for Si and in 4% Br_2 in methanol for GaAs.

The metal film patterns were generated by projecting a reduced image of a USAF-1951 resolution target on the semiconductor wafer mounted in a Teflon flow cell with a quartz window. Contact was made to the back side of the semiconductor wafer with a layer of indium foil backed against a brass disc. In the case of p-GaAs, contact was made directly to the

brass disc. A Canon f1. 8 55 mm camera lens was used for imaging. A 100W tungsten-halogen lamp, filtered with a Schott KG-2 IR cutoff filter, was used for illumination, providing intensities at the semiconductor surface in the range of 80 to 20 mW/cm², depending on the absorption by the plating solution. A constant current source was used in the pattern deposition experiments to maintain a constant plating current and to supply a bias voltage with respect to a platinum counter electrode. The photo-plating currents were used in the range of 25-200 μ A with voltages ranging from -1 to -2V. An Amel 551 potentiostat was used for measurements of the current-voltage curves which were made with a saturated calomel (SCE) reference electrode and a platinum counter electrode.

The cyclic current-voltage curve for the photoelectrochemical deposition of Au on p-Si is given in Figure 1. This curve is similar to those obtained for the other metals on p-Si, which also display photocurrent to dark current ratios in excess of 4:1 for voltages more negative than -0.8V (SCE). The current-voltage curve for the photodeposition of Au and Cu on p-GaAs, displayed significantly lower photocurrent/dark current ratios than obtained with the deposition on p-Si. We were unable to photodeposit Pd or Ni on p-GaAs.

The redox potentials of the plating solutions used, in volts vs. SCE, are as follows: Ni (-0.42), Cu (-0.27), Pd (-0.43) and Au (-0.18). The band gap for p-Si in an aqueous electrolyte is in the range of 0.6 to +0.5 \pm 0.4V (SCE) depending on the pH (8) and a band gap of -1.3 to +0.2V (SCE) was reported by Bindra et al. (9) for n-GaAs. The metal redox potentials are therefore within the band gaps of both semiconductors.

The photodeposition process on both p-Si and p-GaAs was found to be sensitive to temperature and the best results were obtained when the plating solutions were heated to the temperatures recommended for plating on metal surfaces (7). This was particularly true for the deposition of Ni on p-Si and Au on p-GaAs where large improvements in resolution and the photocurrent/dark current ratio were obtained on heating.

Photographs of a photodeposited pattern of Au on p-GaAs are given in Figure 2 at two different magnifications. The best resolution obtained was about 10μ for both Au on p-GaAs and Cu on p-Si. The resolution appears to be limited by the nucleation phenomenon involved in the deposition process. Under the higher magnification (Fig. 2b), thin deposits appear as a conglomerate of small dots which grow in size as the deposition process continues. The overpotential for plating on these microscopic metal clusters is apparently low enough to permit them to grow outside the illuminated regions thus causing a loss in resolution. A similar phenomenon was observed by Bindra et al. (9) in a study of the dark electrodeposition of metals on n-type semiconductors. In this latter study a "spotty" growth behavior was found to occur when the metals had work functions close to or lower than those of the semiconductor substrates and uniform deposits were obtained with metals having higher work functions. This phenomenon was explained by the effects of the Schottky barriers formed by the metal deposits (9). Using the same reasoning, the deposition of metals with sufficiently low work functions, such as Zn, Cd and Sn, on p-Si and p-GaAs should produce Schottky barriers less favorable

to further plating and thus yield more uniform and better resolved deposits. The resolution is also eventually limited by the attenuation of the light by the metal films when they become sufficiently thick, and further plating proceeds as a result of the dark current. Also, slight improvements in resolution could be obtained by employing a higher quality imaging lens designed for high resolution printing.

The photocurrent efficiency for Cu deposition on p-Si was determined by comparing the integrated plating current with the amount of Cu actually deposited as measured by dissolving the deposit in nitric acid and analyzing the resulting solution with atomic absorption spectroscopy. The yield was found to be within experimental error ($\pm 8\%$) of 100%. The thickness of simple rectangular deposits were estimated from their mass and area assuming the normal density of 8.96 g/cc for Cu. Reasonably good resolution was obtained for deposits as thick as 0.4μ . The deposition rate was estimated to be about $450 \text{ } \overset{\circ}{\text{A}}/\text{min}$ with a deposition current of $75 \mu\text{A}/\text{cm}^2$.

The photodeposition of Ni, Cu and Au films on n-GaAs was also achieved. Only negative images, where the metal film deposits everywhere except at illuminated areas, were produced for Cu and Au. In the case of Ni deposition on n-GaAs, both positive and negative images were obtained depending on the bias voltage applied. The voltage limits differentiating positive and negative imaging were found to be difficult to reproduce. The phenomenon of negative imaging can be explained by the positive photovoltage produced at an n-type semiconductor-electrolyte junction when the applied bias voltage is sufficient to induce metal plating in the dark but too small to

reverse the band bending. Positive metal film images can be produced on an n-type semiconductor when the applied bias voltage is negative enough to reverse the direction of the band bending but not negative enough to produce significant dark plating. When the bias voltage was zero or positive, the illumination produced selective photoetching of the surface and the resolution of the resulting etched images were better than 2μ . Photoelectrochemical etching of diffraction gratings on n-GaAs has been reported by Belyakov et al. (10). We were unable to obtain any negative or positive photodeposition on n-Si. This is probably due to passivation on the n-Si surface by silicon oxides formed from the anodic oxidation of the surface by water and dissolved O_2 .

In some photodeposition systems such as Au on p-GaAs using the Technic Orotemp 24 solution, and Cu on p-Si using a solution of $CuClO_4$ in acetonitrile, well resolved photodeposition was observed in the absence of any external electrical contacts or voltages. This "electroless" photodeposition, however, occurred at substantially slower rates than obtainable when an external current path and bias voltage were employed. This phenomenon can be explained by the presence of localized current paths through the electrolyte set up between adjacent light and dark areas of the semiconductor surface. This type of photodeposition is not to be confused with the thermally driven "laser enhanced photoplating" developed at IBM (11) which employs light intensities over four orders of magnitude higher than those used here. This "electroless" photodeposition process will be discussed in more detail in a later publication.

One potential problem encountered in this study was the generally low adhesion and/or softness of the metal deposits. Annealing Cu deposits on p-Si at 900°C for 20 min under a 95% Ar, 5% H₂ atmosphere eliminated this problem; however, such high temperatures are not always feasible. It should also be possible to obtain film adhesion by using a more thorough etching procedure on the semiconductor surface before deposition. Film hardness can be improved by employing hardening additives which are commonly used for electroplating on metal surfaces (7).

There are many potential applications for high resolution photo-electrochemical metal film deposition. These would include formation of microscopic Schottky barriers, p-n junctions, ohmic contacts, and high density erasable archival data storage.

Acknowledgement: This work was supported by the Office of Naval Research.

REFERENCES

1. T. Inoue, A. Fujishima and K. Honda, Chem. Lett. (Chem. Soc. Japan), 1197 (1978); J. Electrochem. Soc., 127, 1582 (1980).
2. F. Mollers, J. J. Tolle and R. Meming, J. Electrochem. Soc., 121, 1160 (1974).
3. L. A. Grenon, Fall Meeting of the Electrochem. Soc., Hollywood, FL, October 1980, Recent News, Paper No. 713 RNP.
4. S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press (1980).
5. S. Menezes, A. Heller and B. Miller, J. Electrochem. Soc., 127, 1268 (1980).
6. Y. Nakoto, T. Ohnishi, and H. Tsubomurs, Chem. Lett. 883 (1975).
7. F. A. Lowenheim edit., Modern Electroplating, John Wiley and Sons, Third Edition (1974).
8. S. R. Morrison, B. H. Loo, M. S. Madon and K. W. Frese, Jr., Final Report, DOE Contract AC-01-79ET-23109, July 8 (1980).
9. P. Bindra, H. Gerisher and D. M. Kolb, J. Electrochem. Soc., 124, 1012 (1977).
10. L. V. Belyakov, D. N. Goryachev and M. N. Mizerov and E. L. Portnoi, Sov. Phys. Tech. Phys., 19, 837 (1974).
11. Optical Spectra, December 31, 1979.

FIGURE CAPTIONS

Fig. 1. Cyclic current-voltage curves for the photoelectrochemical deposition of Au on p-Si with illumination (—), dark current spotted (....).

Fig. 2. Photomicrographs of a photodeposited Au film pattern on p-GaAs.
a) low magnification, b) high magnification showing spotted nature of deposit.

Figure 1

(a)

200 μ

(b)

50 μ

Figure 2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>No.</u> <u>Copies</u>		<u>No.</u> <u>Copies</u>	
	Office of Naval Research Attn: Code 472 800 North Quincy Street Arlington, Virginia 22217	2	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 1211 Research Triangle Park, N.C. 27709 1
	ONR Branch Office Attn: Dr. George Sandoz 536 S. Clark Street Chicago, Illinois 60605	1	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152 1
	ONR Area Office Attn: Scientific Dept. 715 Broadway New York, New York 10003	1	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555 1
	ONR Western Regional Office 1030 East Green Street Pasadena, California 91106	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401 1
	ONR Eastern/Central Regional Office Attn: Dr. L. H. Peebles Building 114, Section D 666 Summer Street Boston, Massachusetts 02210	1	Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940 1
	Director, Naval Research Laboratory Attn: Code 6100 Washington, D.C. 20390	1	Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380 1
	The Assistant Secretary of the Navy (RE&S) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350	1	Office of Naval Research Attn: Dr. Richard S. Miller 800 N. Quincy Street Arlington, Virginia 22217 1
	Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401 1
12	Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314		Naval Ocean Systems Center Attn: Dr. S. Yamamoto, Marine Sciences Division San Diego, California 91232 1
1	Dr. Fred Saalfeld Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375		Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112 1

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. Paul Delahay Department of Chemistry New York University New York, New York 10003	1	Dr. P. J. Hendra Department of Chemistry University of Southampton Southampton SO9 5NH United Kingdom	1
Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106	1	Dr. Sam Perone Department of Chemistry Purdue University West Lafayette, Indiana 47907	1
Dr. D. N. Bennion Department of Chemical Engineering Brigham Young University Provo, Utah 84602	1	Dr. Royce W. Murray Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514	1
Dr. R. A. Marcus Department of Chemistry California Institute of Technology Pasadena, California 91125	1	Naval Ocean Systems Center Attn: Technical Library San Diego, California 92152	1
Dr. J. J. Auborn Bell Laboratories Murray Hill, New Jersey 07974	1	Dr. C. E. Mueller The Electrochemistry Branch Materials Division, Research & Technology Department Naval Surface Weapons Center White Oak Laboratory Silver Spring, Maryland 20910	1
Dr. Adam Heller Bell Laboratories Murray Hill, New Jersey 07974	1	Dr. G. Goodman Globe-Union Incorporated 5757 North Green Bay Avenue Milwaukee, Wisconsin 53201	1
Dr. T. Katan Lockheed Missiles & Space Co., Inc. P.O. Box 504 Sunnyvale, California 94088	1	Dr. J. Boechler Electrochimica Corporation Attention: Technical Library 2485 Charleston Road Mountain View, California 94040	1
Dr. Joseph Singer, Code 302-1 NASA-Lewis 21000 Brookpark Road Cleveland, Ohio 44135	1	Dr. P. P. Schmidt Department of Chemistry Oakland University Rochester, Michigan 48063	1
Dr. B. Brummer EIC Laboratories, Inc. 55 Chapel Street Newton, Massachusetts 02158	1	Dr. H. Richtol Chemistry Department Rensselaer Polytechnic Institute Troy, New York 12181	1
Library P. R. Mallory and Company, Inc. Northwest Industrial Park Burlington, Massachusetts 01803	1		

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. A. B. Ellis Chemistry Department University of Wisconsin Madison, Wisconsin 53706	1	Dr. R. P. Van Duyne Department of Chemistry Northwestern University Evanston, Illinois 60201	1
Dr. M. Wrighton Chemistry Department Massachusetts Institute of Technology Cambridge, Massachusetts 02139	1	Dr. B. Stanley Pons Department of Chemistry University of Alberta Edmonton, Alberta CANADA T6G 2G2	1
Larry E. Plew Naval Weapons Support Center Code 30736, Building 2906 Crane, Indiana 47522	1	Dr. Michael J. Weaver Department of Chemistry Michigan State University East Lansing, Michigan 48824	1
S. Ruby DOE (STOR) 600 E Street Washington, D.C. 20545	1	Dr. R. David Rauh EIC Laboratories, Inc. 55 Chapel Street Newton, Massachusetts 02158	1
Dr. Aaron Wold Brown University Department of Chemistry Providence, Rhode Island 02192	1	Dr. J. David Margerum Research Laboratories Division Hughes Aircraft Company 3011 Malibu Canyon Road Malibu, California 90265	1
Dr. R. C. Chudacek McGraw-Edison Company Edison Battery Division Post Office Box 28 Bloomfield, New Jersey 07003	1	Dr. Martin Fleischmann Department of Chemistry University of Southampton Southampton SO9 5NH England	1
Dr. A. J. Bard University of Texas Department of Chemistry Austin, Texas 78712	1	Dr. Janet Osteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. M. M. Nicholson Electronics Research Center Rockwell International 3370 Miraloma Avenue Anaheim, California 92800	1	Dr. R. A. Osteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. Donald W. Ernst Naval Surface Weapons Center Code R-33 White Oak Laboratory Silver Spring, Maryland 20910	1	Mr. James R. Moden Naval Underwater Systems Center Code 3632 Newport, Rhode Island 02840	1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No.
Copies

Dr. Rudolph J. Marcus
Office of Naval Research
Scientific Liaison Group
American Embassy
APO San Francisco 96503

1

Mr. James Kelley
DTNSRDC Code 2803
Annapolis, Maryland 21402

1

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. R. Nowak Naval Research Laboratory Code 6130 Washington, D.C. 20375	1	Dr. John Kincaid Department of the Navy Strategic Systems Project Office Room 901 Washington, DC 20376	1
Dr. John F. Houlihan Shenango Valley Campus Pennsylvania State University Sharon, Pennsylvania 16146	1	M. L. Robertson Manager, Electrochemical Power Sonices Division Naval Weapons Support Center Crane, Indiana 47522	1
Dr. M. G. Sceats Department of Chemistry University of Rochester Rochester, New York 14627	1	Dr. Elton Cairns Energy & Environment Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720	1
Dr. D. F. Shriver Department of Chemistry Northwestern University Evanston, Illinois 60201	1	Dr. Bernard Spielvogel U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709	1
Dr. D. H. Whitmore Department of Materials Science Northwestern University Evanston, Illinois 60201	1	Dr. Denton Elliott Air Force Office of Scientific Research Bldg. 104 Bolling AFB Washington, DC 20332	1
Dr. Alan Bewick Department of Chemistry The University Southampton, SO9 5NH England	1		
Dr. A. Himy NAVSEA-5433 NC #4 2541 Jefferson Davis Highway Arlington, Virginia 20362	1		

DATE
ILMED
5 - 8