Introduction to DSP: Geometric Signal Theory & Sampling Theorem - Tutorial

1. Which of the following signal pairs are orthogonal? We assume that all signals here are of finite length N, i.e. $0 \le n < N$.

(a)
$$x[n] = 1$$
 and $y[n] = (-1)^n$.

(b)
$$x[n] = 1$$
 and $y[n] = \cos\left(\frac{2\pi n}{N}\right)$.

(c)
$$x[n] = \cos(\Omega_1 n)$$
 and $y[n] = \cos(\Omega_2 n)$.

(d)
$$x[n] = \cos\left(\frac{2\pi k_1 n}{N}\right)$$
 and $y[n] = \cos\left(\frac{2\pi k_2 n}{N}\right)$.

2. Consider the signals $x_1[n] = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^\top$, $x_2[n] = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^\top$, and $x_3[n] = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^\top$. Find the representation of the signal $w[n] = \begin{bmatrix} 2 & 3 & -4 \end{bmatrix}^\top$ in terms of $x_1[n]$, $x_2[n]$, and $x_3[n]$.

- 3. Consider a signal $x(t) = \sin(12\pi t + 0.25\pi)$. Find the digital frequency of the signal when x(t) rp is sampled at the following sampling frequencies.
 - (a) $F_s = 50Hz$
 - (b) $F_s = 18Hz$
 - (c) $F_s = 1Hz$
 - (d) $F_s = \sqrt{2}Hz$