(Piecewise linear & birational) involutions on Dyck paths Howard Mathematics Colloquium

Sam Hopkins

based on joint work with Michael Joseph (Dalton State College)

Howard University

September 24, 2021

Section 1

Catalan numbers, Dyck paths, Naryana numbers, and the Lalanne–Kreweras involution

Catalan numbers

The **Catalan numbers** C_n are a famous sequence of numbers

which count numerous combinatorial collections including:

triangulations of an n + 2-gon

with *n* nodes

binary trees plane trees with n+1 nodes

bracketings of n+1 terms

There is a well-known product formula for the Catalan numbers:

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

History of Catalan numbers

The Catalan numbers are named after Belgian mathematician *Eugène Catalan* (1814 – 1894), who studied them in conjunction with bracketings. But they were studied combinatorially much earlier by *Leonhard Euler* (1707 – 1783), who showed they count triangulations of convex polygons. In fact, even earlier, Mongolian mathematician/scientist *Minggatu* (c.1692 – c.1763) used Catalan numbers in certain trigonometric identities.

E. Catalan L. Euler Minggatu

It's a good thing the C_n are not named after Euler, since there are already

- Euler numbers & Eulerian numbers, counting certain permutations;
- ullet Euler's number e pprox 2.71 & the Euler–Mascheroni constant $\gamma pprox$ 0.57.

Catalan numbers: the book

Richard Stanley has a whole book devoted to the Catalan numbers.

In it, he gives an astounding 214 different interpretations of C_n .

Dyck paths

The interpretation of C_n I want to focus on is in terms of Dyck paths.

A **Dyck path** of length 2n is a lattice path in \mathbb{Z}^2 from (0,0) to (2n,0) consisting of n up steps U=(1,1) and n down steps D=(1,-1) that never goes below the x-axis:

The number of Dyck paths of length 2n is C_n :

They are named after German algebraist Walther von Dyck (1856 – 1934).

Peaks and valleys in Dyck paths

Dyck paths look like mountain ranges. So we use some topographic terminology when working with Dyck paths.

A **peak** in a Dyck path is an up step that is immediately followed by a down step; a **valley** is a down step immediately followed by an up step.

Here the peaks are marked by red circles and the valleys by green circles.

It's easy to see that a Dyck path which has k valleys has k + 1 peaks.

Narayana numbers

The **Narayana number** N(n, k) is the number of Dyck paths of length 2n with exactly k valleys.

	$n \setminus k$	0	1	2	3	
-	1	1				\leftarrow array of $N(n, k)$
	2	1	1			
	3	1	3	1		
٠	4	1	6	6	1	

Evidently, the Narayana numbers N(n, k) refine the Catalan number C_n :

$$C_n = \sum_{k=0}^{n-1} N(n, k).$$

They are named after Canadian matthematician/statistician *Tadepalli* Venkata Narayana (1930 – 1987), who in 1959 showed that

$$N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k+1}.$$

Symmetry of Narayana numbers

From Narayana's formula, it follows immediately that

$$N(n,k) = N(n,n-1-k)$$

for all k. That is, the sequence of Narayana numbers is symmetric.

However, it is not combinatorially obvious why the number of Dyck paths with k valleys should be the same as the number with n-1-k valleys.

The Lalanne–Kreweras involution

The Lalanne–Kreweras involution (after *G. Kreweras* and *J.-C. Lalanne*) is an involution on Dyck paths that combinatorially demonstrates the symmetry of the Narayana numbers:

$$\#\text{valleys}(\Gamma) + \#\text{valleys}(\text{LK}(\Gamma)) = n - 1$$

$$4 \text{ valleys}$$

$$5 \text{ valleys}$$

As depicted above, to compute the LK involution of a Dyck path Γ , we draw dashed lines emanating from the middle of every double up step and every double down step of Γ , at -45° and 45° respectively; these dashed lines intersect at the valleys of (an upside copy of) the Dyck path $LK(\Gamma)$.

Section 2

Posets

Posets

We will now reinterpret the LK involution using the theory of finite posets.

A (finite) **poset**, or *partially ordered set*, is a (finite) set P together with a relation \leq satisfying the usual axioms of a partial order:

- transitivity $(x \le y, y \le z \Rightarrow x \le z)$;
- anti-symmetry $(x \le y, y \le x \Rightarrow x = y)$;
- reflexivity $(x \le x)$.

We represent posets via their Hasse diagrams:

Here an edge from x (below) to y (above) represents the **cover relation** $x \le y$ in P, which means $x \le y$ and there is no $p \in P$ with $x \le p \le y$.

Chains and antichains

Two elements x, y in a poset P are **comparable** if either $x \le y$ or $y \le x$. A **chain** $C \subseteq P$ of P is a subset of pairwise comparable elements (i.e., a chain is a *totally ordered* subset $C = \{x_1 < x_2 < \cdots < x_k\}$). A chain C is **maximal** if it is not strictly contained in another chain.

Two elements $x, y \in P$ are **incomparable** if they are not comparable. An **antichain** $A \subseteq P$ of P is a subset of pairwise incomparable elements. We use A(P) to denote the set of antichains of P.

Here the red elements form a maximal chain C, and the blue elements form an antichain $A \in \mathcal{A}(P)$.

The poset Δ^{n-1}

One particular family of posets Δ^{n-1} is relevant to the LK involution.

 Δ^{n-1} is the poset whose elements are **intervals** $[i,j] := \{i, i+1, \ldots, j\}$ with $1 \le i \le j \le n-1$, and with the partial order given by **inclusion**:

$$[i,j] \leq [i',j'] \Longleftrightarrow [i,j] \subseteq [i',j'] \Longleftrightarrow i \leq i' \leq j' \leq j$$

 Δ^{n-1} has a "triangular" Hasse diagram:

Dyck paths are antichains in Δ^{n-1}

There is a natural, pictoral bijection between the Dyck paths of length 2n and the antichains of Δ^{n-1} :

Observe how, under this bijection, the number of valleys of a Dyck path Γ becomes the number of elements of an antichain A.

Via this bijection, we can view the LK involution as an involution on antichains $LK: \mathcal{A}(\Delta^{n-1}) \to \mathcal{A}(\Delta^{n-1})$ which satisfies

$$\#A + \#LK(A) = n - 1.$$

The LK involution on antichains

D. Panyushev gave a simple description of the LK involution on $\mathcal{A}(\Delta^{n-1})$:

Theorem (Panyushev, 2004)

Let $A = \{[i_1, j_1], [i_2, j_2], \dots, [i_k, j_k]\} \in \mathcal{A}(\Delta^{n-1})$ with $i_1 < i_2 < \dots < i_k$. Then $\mathrm{LK}(A) = \{[i'_1, j'_1], [i'_2, j'_2], \dots, [i'_{n-1-k}, j'_{n-1-k}]\} \in \mathcal{A}(\Delta^{n-1})$, where

- $\{i'_1 < i'_2 < \cdots < i'_{n-1-k}\} = \{1, 2, \dots, n-1\} \setminus \{j_1, j_2, \dots, j_k\};$
- $\{j'_1 < j'_2 < \cdots < j'_{n-1-k}\} = \{1, 2, \dots, n-1\} \setminus \{i_1, i_2, \dots, i_k\}.$

From Panyushev's description, it is immediate that this operation is an involution (i.e., $LK^2(A) = A$), and that #A + #LK(A) = n - 1.

The LK involution on antichains: example

Section 3

Toggling

Toggling for antichains

Our first new result gives another expression for the LK involution in terms of certain "local" involutions called **toggles**.

Let P be a poset and $A \in \mathcal{A}(P)$ an antichain. Let $p \in P$ be any element. The **toggle of** p **in** A is the antichain $\tau_p(A) \in \mathcal{A}(P)$, where

$$\tau_{p}(A) := \begin{cases} A \setminus \{p\} & \text{if } p \in A; \\ A \cup \{p\} & \text{if } p \notin A \text{ and } A \cup \{p\} \text{ remains an antichain;} \\ A & \text{otherwise.} \end{cases}$$

In other words, we "toggle" the status of p in A, if possible:

$$P = \bigvee_{X}^{Z} \bigvee_{Y} \qquad \qquad \tau_{X}(\bigwedge_{\bullet}) = \bigwedge_{\bullet}$$

$$\tau_{X}(\bigwedge_{\bullet}) = \bigwedge_{\bullet}$$

$$\tau_{X}(\bigwedge_{\bullet}) = \bigwedge_{\bullet}$$

Toggling in ranked posets

A poset P is **ranked** if we can write $P = P_1 \sqcup P_2 \sqcup \cdots \sqcup P_r$ so that all the edges of the Hasse diagram of P are from P_i (below) to P_{i+1} (above):

Since τ_p and τ_q commute if p and q are incomparable, and all the elements within a rank are incomparable, we can define

$$oldsymbol{ au}_i := \prod_{p \in P_i} au_p$$

to be the composition of all toggles at rank i, for i = 1, ..., r:

The LK involution as a composition of toggles

Theorem (H.-Joseph, 2021)

The LK involution LK: $\mathcal{A}(\Delta^{n-1}) \to \mathcal{A}(\Delta^{n-1})$ can be written as the following composition of toggles:

$$LK = (\boldsymbol{\tau}_{n-1})(\boldsymbol{\tau}_{n-1}\boldsymbol{\tau}_{n-2})\cdots(\boldsymbol{\tau}_{n-1}\cdots\boldsymbol{\tau}_3\boldsymbol{\tau}_2)(\boldsymbol{\tau}_{n-1}\cdots\boldsymbol{\tau}_2\boldsymbol{\tau}_1)$$

Remark: for a ranked poset P, the composition of toggles $\tau_r \cdots \tau_2 \tau_1$ "from bottom to top" is called **rowmotion** and has been studied by many authors (Cameron–Fon-Der-Flaass, Striker–Williams, Propp–Roby, Joseph, etc...) in the emerging subfield of **dynamical algebraic combinatorics**.

The LK involution as a composition of toggles: example

Section 4

Piecewise linear and birational lifts

Convex polytopes

Why did we want to write the LK involution as a composition of toggles? In order to **extend** it to the **piecewise linear** realm...

A **convex polytope** in \mathbb{R}^n can be defined either as

- a convex hull of finitely many points (vertices);
- a bounded intersection of finitely many linear inequalities (facets).

In dimensions 2 and 3, these are familiar shapes:

There is a rich interplay between combinatorics and convex geometry, because combinatorial objects can often be "realized" polytopally: e.g., the subsets of $\{1, 2, \ldots, n\}$ correspond to the vertices of the n-hypercube.

The chain polytope of a poset

In 1986, Richard Stanley associated to any poset P two polytopes in \mathbb{R}^P , the **order polytope** $\mathcal{O}(P)$ and the **chain polytope** $\mathcal{C}(P)$.

The **chain polytope** C(P) has facets

$$0 \le x_p, \quad \forall p \in P$$

$$\sum_{p \in C} x_p \le 1, \quad \forall C \subseteq P \text{ a maximal chain.}$$

Stanley proved that the **vertices** of C(P) are precisely the **indicator functions of antichains** $A \in A(P)$:

Piecewise linear toggling

In 2013, D. Einstein and J. Propp (c.f. Joseph) introduced a (continuous) **piecewise linear extension** of the toggles τ_p .

For $p \in P$, the PL toggle $au_p^{\operatorname{PL}} \colon \mathcal{C}(P) o \mathcal{C}(P)$ is defined by

$$au_p^{ ext{PL}}(\pi)(q) := egin{cases} \pi(q) & ext{if } q
eq p; \ 1 - ext{max} \left\{ \sum_{r \in C} \pi(r) \colon egin{cases} C \subseteq P & ext{a maximal } \\ ext{chain with } p \in C \end{cases}
ight\} & ext{if } p = q. \end{cases}$$

Restricted to the vertices of the chain polytope C(P), it is the same as τ_P . Geometrically, we **reflect** π within the line segment in C(P) in direction x_P :

The PL LK involution

As before, for a ranked poset P we use $\boldsymbol{\tau}_i^{\mathrm{PL}} := \prod_{p \in P_i} \tau_p^{\mathrm{PL}}$ to denote the composition of all toggles at rank i.

We define the **PL LK involution** $\mathrm{LK}^{\mathrm{PL}} \colon \mathcal{C}(\Delta^{n-1}) \to \mathcal{C}(\Delta^{n-1})$ to be

$$\mathrm{LK}^{\mathrm{PL}} := (\boldsymbol{\tau}_{n-1}^{\mathrm{PL}})(\boldsymbol{\tau}_{n-1}^{\mathrm{PL}}\boldsymbol{\tau}_{n-2}^{\mathrm{PL}}) \cdots (\boldsymbol{\tau}_{n-1}^{\mathrm{PL}} \cdots \boldsymbol{\tau}_{3}^{\mathrm{PL}}\boldsymbol{\tau}_{2}^{\mathrm{PL}})(\boldsymbol{\tau}_{n-1}^{\mathrm{PL}} \cdots \boldsymbol{\tau}_{2}^{\mathrm{PL}}\boldsymbol{\tau}_{1}^{\mathrm{PL}})$$

By prior theorem, it's same as LK when restricted to the vertices of C(P).

Theorem (H.-Joseph, 2021)

- (1) LK^{PL} is an involution.
- (2) For any $\pi \in \mathcal{C}(\Delta^{n-1})$, $\sum_{p \in P} \pi(p) + \sum_{p \in P} \mathrm{LK}^{\mathrm{PL}}(\pi)(p) = n 1$.

Observe that (2) is an extension of the fact that LK combinatorially exhibits the symmetry of the Narayana numbers.

The PL LK involution: example

We can check that

$$(.5+0+0+.1+0+.3+.1+.1+.2+.4)+(0+.1+.1+.2+.4+.7+.5+.1+.2+0) =$$

$$1.7+2.3=4$$

Tropical geometry

Algebraic geometry studies polynomial expressions like

$$x^3y + y^3z + z^3x$$

which lead to "curvy" hypersurfaces like

Tropical geometry studies piecewise linear expressions like

$$\max(3x + y, 3y + z, 3z + x)$$

which lead to "flat" polytopal complexes like

"De-tropicalization"

The process of replacing $(\times, +)$ with (+, max) in a polynomial expression is called **tropicalization**:

$$x^{3}y + y^{3}z + z^{3}x \rightarrow \max(3x + y, 3y + z, 3z + x)$$

It lead to important interactions between algebraic & convex geometry.

(Adjective "tropical" comes from fact that computer scientist & pioneer of tropical geometry Imre Simon worked at University of São Paulo,

7.)

The process of replacing (+, max) with (x, +) in a piecewise linear expression is called **de-tropicalization***:

$$\max(3x + y, 3y + z, 3z + x) \rightarrow x^3y + y^3z + z^3x$$

It is often interesting to try to de-tropicalize PL maps, like those coming from classical combinatorial constructions.

Birational toggling

Einstein–Propp (c.f. Joseph–Roby) also introduced a **birational extension** of the toggles τ_p , via de-tropicalization.

For $p \in P$, the birational toggle $\tau_p^{\mathrm{B}} \colon \mathbb{C}^P \dashrightarrow \mathbb{C}^P$ is

$$au_p^{\mathrm{B}}(\pi)(q) := egin{cases} \pi(q) & ext{if } q
eq p; \ \kappa \cdot ig(\prod_{\substack{C \subseteq P \ ext{max. chain,} \ p \in C}} \sum_{r \in C} \pi(r) ig)^{-1} & ext{if } p = q. \end{cases}$$

where $\kappa \in \mathbb{C}$ is some fixed constant. It tropicalizes to τ_p^{PL} .

The birational LK involution

As before, if P is ranked we set $m{ au}_i^{\mathrm{B}} := \prod_{m{p} \in P_i} au_{m{p}}^{\mathrm{B}}$.

We define the birational LK involution $LK^B\colon \mathbb{C}^{\Delta^{n-1}} \dashrightarrow \mathbb{C}^{\Delta^{n-1}}$ by

$$\mathrm{LK}^{\mathrm{PL}} := (\boldsymbol{\tau}_{n-1}^{\mathrm{PL}})(\boldsymbol{\tau}_{n-1}^{\mathrm{PL}}\boldsymbol{\tau}_{n-2}^{\mathrm{PL}}) \cdots (\boldsymbol{\tau}_{n-1}^{\mathrm{PL}} \cdots \boldsymbol{\tau}_{3}^{\mathrm{PL}}\boldsymbol{\tau}_{2}^{\mathrm{PL}})(\boldsymbol{\tau}_{n-1}^{\mathrm{PL}} \cdots \boldsymbol{\tau}_{2}^{\mathrm{PL}}\boldsymbol{\tau}_{1}^{\mathrm{PL}})$$

It tropicalizes to $LK^{\rm PL}$.

Theorem (H.–Joseph, 2021)

- (1) LK^B is an involution.
- (2) For any $\pi \in \mathbb{C}^{\Delta^{n-1}}$, $\prod_{p \in P} \pi(p) \cdot \prod_{p \in P} \mathrm{LK}^{\mathrm{B}}(\pi)(p) = \kappa^{n-1}$.

The birational LK involution: example

We can check that this operation really is an involution, and that if we multiply together all the values, we get κ^3 .

Thank you!

these slides are available on my website and the paper on the arXiv: arXiv:2012.15795

Exercises

231

6.24. [?] Explain the significance of the following sequence:

un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu, ...

R. Stanley, Enumerative Combinatorics, Vol. 2