CLAIMS

What is claimed is.

A process of forming a memory device, comprising: 1. forming a first topology over a substrate; forming a subsequent topology over the first topology; 3 forming a first memory structure at the first topology; and 4 forming at least one subsequent memory structure at a corresponding at least one 5 subsequent topology. The process according to claim 1, wherein the memory device includes a 2. 1 2 ferroelectric memory device. 3. The process according to claim 2, wherein forming at least one subsequent 1 memory structure further includes: 2 3 forming a second topology; forming a second memory structure at the second topology; 4 forming an interlayer dielectric (ILD) layer over the second memory structure; 5 forming a third topology above the ILD layer; and 6 7 forming a third memory structure at the third topology. 1 4. The process according to claim 2, wherein forming at least one subsequent 2 memory structure further includes: 3 forming a second topology;

	4		forming a second memory structure at the second topology, wherein the second
	5	memo	ory structure is formed comprising:
	6		forming a ferroelectric layer over the first memory structure;
	7		forming a conductive layer over the layer;
	8		planarizing the conductive layer; and
	9		patterning the conductive layer to form a third electrode; and
	10		forming an interlayer dielectric (ILD) layer over the second memory structure;
	11		forming a third topology above the ILD layer; and
75	12		forming a third memory structure at the third topology.
-			
13.	1, ,	5.	The process according to claim 2, wherein forming a first memory structure
Ľ.	2	further include	des:
	3		forming a first electrode over the substrate;
24 144 1 44	4		forming a first memory layer over the first electrode; and
	5		forming a second electrode over the first memory layer.
	1	6.	The process according to claim 2, wherein forming a first memory structure and
	2	forming a sub	osequent memory structure further includes:
	3		forming a first electrode over the substrate;
	4		forming a first memory layer over the first electrode;
	5		forming a second electrode over the first memory layer;
	6		forming a second memory layer over the second electrode; and
	7		forming a third electrode over the second memory layer.

1	7.	A process of forming a ferroelectric polymer memory device, comprising:
2		forming a first topology above a substrate;
3		forming a subsequent topology over the first topology;
4		forming a first ferroelectric polymer memory structure at the first topology; and
5		forming at least one subsequent ferroelectric polymer memory structure at a
6	corres	ponding at least one subsequent topology.
1	8.	The process according to claim 7, wherein forming a subsequent ferroelectric
2	polymer mem	nory structure further comprises:
3		forming a second topology;
4		forming a second ferroelectric polymer memory structure at the second topology;
5		forming an interlayer dielectric (ILD) layer over the second ferroelectric polymer
6	memo	ory structure;
7		forming a third topology above the ILD layer; and
8		forming a third ferroelectric polymer memory structure at the third topology.
1	9.	The process according to claim 7, wherein forming a subsequent ferroelectric
2	polymer mem	nory structure further comprises:
3		forming a second topology;
4		forming a second ferroelectric polymer memory structure at the second topology,
5	where	in the second ferroelectric polymer memory structure is formed comprising:

6		forming a ferroelectric polymer layer over the tirst ferroelectric polymer
7		memory structure;
8		forming a conductive layer over the ferroelectric polymer layer;
9		planarizing the conductive layer; and
10		patterning the conductive layer to form a third electrode; and
11		forming an interlayer dielectric (ILD) layer over the second ferroelectric polymer
12	memo	ory structure;
13		forming a third topology above the ILD layer; and
14		forming a third ferroelectric polymer memory structure at the third topology.
1	10.	The process according to claim 7, wherein forming a first ferroelectric memory
2	structure furtl	her comprises:
3		forming a first electrode over the substrate;
4		forming a first ferroelectric memory layer over the first electrode; and
5		forming a second electrode over the first ferroelectric memory layer.
1	11.	The process of forming a memory device according to claim 7, wherein forming a
2	first ferroelec	tric polymer memory structure and forming a subsequent ferroelectric polymer
3	memory struc	eture further comprises:
4		forming a first electrode over the substrate;
5		forming a first ferroelectric polymer memory layer over the first electrode;
6		forming a second electrode over the first ferroelectric polymer memory layer;

7		forming a second ferroelectric polymer memory layer over the second electrode;
8	and	
9		forming a third electrode over the second ferroelectric polymer memory layer.
1	12.	The process of forming a polymer memory device according to claim 7, wherein
2	forming a ferr	coelectric polymer memory structure comprises forming a layer selected from spir
3	on depositing.	, chemical vapor depositing, substrate dip depositing, Langmuir-Blodgett
4	depositing, an	d spray-on depositing.
1	13.	A process of forming a ferroelectric oxide memory device, comprising:
2		forming a first topology above a substrate;
3		forming a subsequent topology over the first topology;
4		forming a first ferroelectric oxide memory structure at the first topology; and
5		forming at least one subsequent ferroelectric oxide memory structure at a
6	corres	ponding at least one subsequent topology.
1	14.	The process according to claim 13, wherein forming a subsequent ferroelectric
2	oxide memor	y structure further comprises:
3		forming a second topology;
4		forming a second ferroelectric oxide memory structure at the second topology;
5		forming an interlayer dielectric (ILD) layer over the second ferroelectric oxide
6	memo	ory structure;
7		forming a third topology above the ILD layer; and

1	15.	The process according to claim 13, wherein forming a subsequent ferroelectric
2	oxide memor	y structure further comprises:
3		forming a second topology;
4		forming a second ferroelectric oxide memory structure at the second topology,
5	where	in the second ferroelectric oxide memory structure is formed comprising:
6		forming a ferroelectric oxide layer over the first ferroelectric oxide
7		memory structure;
8		forming a conductive layer over the ferroelectric oxide layer;
9		planarizing the conductive layer; and
10		patterning the conductive layer to form a third electrode; and
11		forming an interlayer dielectric (ILD) layer over the second ferroelectric oxide
12	memo	ory structure;
13		forming a third topology above the ILD layer; and
14		forming a third ferroelectric oxide memory structure at the third topology.
1	16.	The process according to claim 13, wherein forming a first ferroelectric oxide
2	memory struc	cture further comprises:
3		forming a first electrode over the substrate;
4		forming a first ferroelectric oxide memory layer over the first electrode; and
5		forming a second electrode over the first ferroelectric oxide memory layer.

forming a third ferroelectric oxide memory structure at the third topology.

28

8

1	17.	The process of forming a memory device according to claim 13, wherein forming
2	a first ferroel	ectric oxide memory structure and forming a subsequent ferroelectric oxide memory
3	structure furt	her comprises:
4		forming a first electrode over the substrate;
5		forming a first ferroelectric oxide memory layer over the first electrode;
6		forming a second electrode over the first ferroelectric oxide memory layer;
7		forming a second ferroelectric oxide memory layer over the second electrode; and
8		forming a third electrode over the second ferroelectric oxide memory layer.
1	18.	The process according to claim 13, wherein forming a ferroelectric oxide memory
2	structure con	nprises forming a layer selected from chemical vapor deposition, spin-on deposition,
3	and physical	vapor deposition.
	,	
1	19.	A ferroelectric memory device comprising:
2		a first topology disposed over a substrate;
3		a first ferroelectric structure disposed in the first topology; and
4		a subsequent topology disposed over the first topology, and a subsequent
5	ferroe	electric structure disposed in the subsequent topology.
1	20.	The ferroelectric memory device according to claim 19, wherein the first
2	ferroelectric	structure and a subsequent ferroelectric structure further comprise:
3		a first electrode disposed over the substrate;
4		a first ferroelectric polymer layer disposed over the first electrode;

	a second ferroelectric polymer layer disposed over the second electrode; and
a thire	d electrode disposed over the second ferroelectric polymer layer.
21.	The ferroelectric memory device according to claim 20, wherein the electrodes
have a width	that is a minimum feature of a photolithography technology, selected from 0.25
micron, 0.18	micron, 0.13 micron, and 0.11 micron.
22.	The ferroelectric memory device according to claim 20, wherein the first
ferroelectric s	structure and a subsequent ferroelectric structure further comprise:
	a first electrode disposed over the substrate;
	a first ferroelectric oxide layer disposed over the first electrode;
	a second electrode disposed over the first ferroelectric oxide layer;
	a second ferroelectric oxide layer disposed over the second electrode; and
	a third electrode disposed over the second ferroelectric oxide layer.
23.	The ferroelectric memory device according to claim 21, wherein the electrodes
have a width	that is a minimum feature of a photolithography technology, selected from 0.25
micron, 0.18	micron, 0.13 micron, and 0.11 micron.
24.	A system, comprising:
	21. have a width micron, 0.18 22. ferroelectric s 23. have a width micron, 0.18

a second electrode disposed over the first ferroelectric polymer layer;

, a processor;

2

3

5

a ferroelectric memory system coupled to the processor;

4	an input/output (I/O) circuit coupled to the processor and the ferroelectric	
5	memory system; and	
6	the ferroelectric memory system including:	
7	a substrate;	
8	a first topology disposed over the substrate;	
9	a first ferroelectric structure disposed in the first topology; and	
10	a subsequent topology disposed over the first topology, and a subsequent	
11	ferroelectric structure disposed in the subsequent topology.	
1	25. The system according to claim 24, wherein the processor is disposed in a host	
2	selected from a clock, a television, a cell phone, a personal computer, an automobile, an	
3	industrial control system, and an aircraft.	
1	26. The system according to claim 24, wherein the ferroelectric memory structure is	
2	selected from a ferroelectric polymer memory structure and a ferroelectric oxide memory	
3	structure.	
1	27. The system according to claim 24, wherein the processor comprises a CMOS	
2	logic region disposed in the substrate, and wherein the ferroelectric memory system comprises	
3	die in a memory module.	

- 1 28. The system according to claim 24, wherein the processor comprises logic in a
- 2 memory controller, and wherein the ferroelectric memory system comprises a die in a memory
- 3 module.
- 1 29. The system according to claim 24, wherein the ferroelectric memory system
- 2 comprises a chip in a chipset.

* *

1.