AMENDMENTS TO THE CLAIMS

1-3. (Cancelled)

4. (Withdrawn) A 1 type collagen gene transcription suppressing composition, which comprises a 2H-pyran-2-one compound represented by the formula (IV):

$$(V_a)_{p} \stackrel{\text{O}}{\longleftarrow} K_a$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_a)_p$, X_a is a substituent on a carbon atom, and represents a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, a C1-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_a 's are the same or different;

III. In $(Y_a)_{i_0}$, Y_a is a substituent on a carbon atom, and represents a substituent of the following X_1 group or Y_1 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_a 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_a 's constitute a Z_1 group, and may be fused with an A ring;

(1) a X₁ group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR $_d$ -group (R_d is as defined above), a R_c -CO- R_d -group (R_c represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_c -CO-O- R_d -group (R_c and R_d are as defined above), a R_c -CO-CH=CH-

group, a $R_cR_c'N-R_{d'}$ group (R_c and R_c' are the same or different, R_c is as defined above, R_c' has the same meaning as that of R_c , and R_d is as defined above), a R_c -CO-N $R_c'-R_{d'}$ group (R_c , R_c' and R_d are as defined above), a R_bO -CO-N($R_c)$ -R $_{d'}$ group (R_b , R_c and R_d are as defined above), a $R_cR_c'N$ -CO-N R_c'' -R $_{d'}$ group (R_c , R_c'' and R_d'' are the same or different, R_c and R_c'' are as defined above, R_c'' has the same meaning as that of R_c , and R_d is as defined above), a $R_cR_c'N$ -C(=N R_c''' -N R_c'''' -R $_{d'}$ group (R_c , R_c'' , and R_c''' are the same or different, R_c , R_c'' and R_c''' are as defined above, R_c'''' has the same meaning as that of R_c , and R_d is as defined above), a $R_cR_c'N$ -C(=N R_c''' -N R_c'''' -R $_d$ -group (R_c , R_c' , R_c'' and R_c''' are as defined above), a $R_cR_c'N$ -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a $R_cR_c''N$ -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a $R_cR_c''N$ -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a $R_cR_c''N$ -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c , R_c'' and R_d are as defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c , R_c'' -SO₂-R $_d$ -group(R_c), and a defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c , R_c'' -SO₂-R $_d$ -group(R_c), and a defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c), and a defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c), and a defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c), and a defined above), a R_cR_c'' -SO₂-R $_d$ -group(R_c), and a defined abo

(2) a Y₁ group:

a M_b -R_d-group [M_b represents a M_a -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above) or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group $\{in\ (b), G_1, G_2, G_4 \ and G_5 \ represent a methylene group which is connected to an adjacent atom with a single bond and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond and may be substituted with a methyl group, and <math>G_3$ represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group $\{R_1$ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 -B₁-group $\{R_2$ represents a C1-C10 alkyl group, a C-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group, a c3-C10 alkynyl group, a sulfinyl group or a -NR₁-group $\{R_1\}$ is as defined above).

(c)
$$J_{3} > N -$$

a (c)-group (in (c), J₁, J₂ and J₃ are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group, or a thio group), or

(e)
$$B_b \longrightarrow (CH_2)_1$$

an (e)-group (I and B_b are as defined above), R_a ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c -Ba-group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-Group (M_c is as defined above), a M_c -CO-O-group (M_c is as defined above), a M_c -CO-NR_e-group (M_c and R_c are as defined above), a M_c -CO-NR_e-group (M_c and R_c are as defined above), a M_c -CO-NR_e-group (M_c and R_c are as defined above), a M_c -CO-NR_e-group (M_c and R_c are as defined above), a M_c -Re-N-CO-group (M_c and R_c are as defined above), a M_c -Re-N-CO-NR_e'-group (M_c and R_c ' are as defined above), a M_c -SO₂-NR_e-group (M_c and R_c are as defined above) or a M_c -Re-N-SO₂-group (M_c and R_c are as defined above);

(3) a Z₁ group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c$ -O- Y_c '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group);

IV. Q_A represents a hydroxyl group, a (b)-group ((b) is as defined above), an A_9 -B₆-B_c-group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, B_c represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, B_c is not a sulfonyl group], an A_7 "- SO_2 -B_c-group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 - SO_2 -B_c-group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a R_1R_1 'N- SO_2 -Bc-group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b)- SO_2 -B_c-group ((b) and B_c are as defined above), an A_9 '-B_c-group (A_9 ' represents a substituent of the following A_7 ' group, and A_8 ' gro

(1) an A₇ group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a $R_2.B_1-R_4$ -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_3-R_4 -group (D_5 represents a substituent of the following D_5 group, R_4 is as defined above), a D_1-R_4 -group { D_1 represents a substituent of the following D_1 group, and R_4 is as defined above}, a (b)- R_4 -group {(b) is as defined above, and R_4 is as defined above}, a (c)- R_4 -group ((c) is as defined above, and R_4 is as defined above}, a D_2 - R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3 - R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, a D_3 - R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, and A_4 -SO₂- R_4 -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R_1R_1 'N-group (R_1 and R_1 ' are as defined above), and R_4 is as defined above} or an A_2 -CO- R_4 -group (A_2 represents a substituent of the following A_2 group, and A_4 is as defined above}; and A_4 -group (2) an A_5 -group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom:

(3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as

defined above, and R_4 ' represents a C_2 -C10 alkylene group), a D_4 - R_4 '-group (D_4 and R_4 ' are as defined above), a D_1 - R_4 '-group (D_1 and R_4 ' are as defined above), a (b)- R_4 '-group ((b) and R_4 ' are as defined above), a D_2 - R_4 -group (D_2 and D_4 are as defined above), a D_2 - D_4 -group (D_3 and D_4 are as defined above) or an D_4 - D_4 -group (D_4 and D_4 are as defined above);

- (4) an A8' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D_4 group: a hydroxyl group or an A_1 -O-group $[A_1$ represents a R_3 - $(CHR_0)_m$ - $(B_2$ - $B_3)_m$ -group $\{R_3$ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 - B_1 -group $\{R_2$ and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, R_1 ' is as defined above, R_2 represents a single bond, an oxy group, a thio group or a R_1 - R_2 - R_3 -group R_1 is as defined above, R_2 represents 0 or 1, R_3 is as defined above, R_3 is a sulfonyl group, R_3 is not a hydrogen atom) R_3 : (ii) a R_3 -group: an R_3 -group R_3 is as defined above), an R_3 - R_3 -group R_3 -group R_3 - R_4 - R_3 -group R_3 - R_4 - R_4 - R_3 -group R_3 - R_4 - R_4 - R_4 - R_4 - R_4 - R_4 - R_5 - R_4 - R_4 - R_4 - R_4 - R_5 - R_4 - R_5 - R_4 - R_5 - R_5 - R_4 - R_5 - R_5 - R_6 -R
- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A)-group (R_1 , R_1 ', n and N_1 are as defined above), an A_1 N=C(-OR₂)-group (A_1 and B_2 are as defined above) or a NH₂-CS-group.
- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);

R₁A₁N-N=C(R₃)-group (R₁,A₁ and R₃ are as defined above);

(vi) an A2 group:

1) an A3-B4-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a R_a-(R₄)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above), a D₄-R₄-group (D₄ and R₄ are as defined above), a D₅-group (D₅ is as defined above), a D₁-R₄-group (D₁ and R₄ are as defined above), a D₂-group (D₂ is as defined above), a D₃-R₄-group (D₃ and R₄ are as defined above) or an A₄-SO₂-R₄-group {A₄ is as defined above, and R₄ is as defined above};

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined above, B₄' is the same as or different from B₄, and has the same meaning as that of B₄, provided that when B₄ is a thio group, R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group (D₂, R₄ and B₄ are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above),
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above); or
- 6) a $R_1A_1N\text{-}NR_1\text{'-group}$ ($R_1,\,R_1$ and $R_1\text{'}$ are as defined above);
- $V.~K_a$ represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when K_a is a hydrogen atom, L_a is a methyl group and an A ring is a benzene ring, p is 2, 3 or 4 in the case that q is 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in a range];

and an inert carrier;

5. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (V):

$$(X_b)_p \stackrel{Q_A}{\longrightarrow} X_a$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_b)_p$, X_b is a substituent on a carbon atom, and represents a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, or a C2-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_b 's are the same or different;

III. In $(Y_b)_{i_0}$, Y_b is a substituent on a carbon atom, and represents a substituent of the following X_2 group or Y_2 group, q represents 0,1, 2, 3, 4 or 5, when q is 2 or more, Y_b 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_b 's constitutes a group of a Z_2 group, and may be fused with an A ring;

(1) a X2 group:

CO-R_d-group (R_c , R_c ' and R_d are as defined above), a R_cR_c 'N-CO-NR_d''-R_d-group (R_c , R_c ' and R_c '' are the same or different, R_c has the same meaning as that of R_c ', R_c '' has the same meaning as that of R_c , and R_d is as defined above), a R_cR_c 'N-C(=NR_c'')-NR_c'''-R_d-group (R_c , R_c ', R_c '' and R_c ''' are the same or different, R_c , R_c ' and R_c '' are as defined above, R_c ''' has the same meaning as that of R_c , and R_d is as defined above), a R_b -SO₂-NR_c-R_d-group (R_b , R_c and R_d are as defined above), a R_c -N-SO₂-R_d-group (R_c , R_c ' and R_d are as defined above), a R_c -C-C10 alkenyl group or a C2-C10 alkynyl group], provided that, when A represents a benzene ring, then, a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, or a C1-C10 alkoxy group, or a RB-group (R_c and R_d are as described above) is excluded;

(2) a Y2 group:

a M_b -R_d-group [M_b represents a M_a -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above) or

a (b)-group {in (b), G₁, G₂, G₄ and G₅ represent a methylene group which is connected to an adjacent atom with a single bond and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond and may be substituted with a methyl group, and G₃ represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group, or a -NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenyl group, a sulfinyl group or a sulfonyl group or a NR₁- group (R₁ is as defined above)}, a sulfinyl group, a sulfinyl group, a sulfinyl group or a Salfonyl group or a NR₁- group (R₁ is as defined above)}.

(c)
$$J_{3} \sim N -$$

a (c)-group (in(c), J₁, J₂ and J₃ are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d) group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$
 (CH₂)_I

an (e)-group (I and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO- R_c -group (M_c is as defined above), a M_c - R_c -group (R_c is as defined above), a R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c)- R_c -group (R_c)-group ($R_$

(3) a Z2 group:

a $-N=C(Y_a)-Y_a$ ' group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c$ -O- Y_c '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group):

III. Q_A ' represents a (b)-group ((b) is as defined above), an A_9 -B₆-g-group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a -N((O)_mR₁-group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an A_7 "-SO₂-B_c-group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 -SO₂-B_c-group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a R_1R_1 'N-SO₂-B_c-group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 and R_2 is as defined above), a (b)-SO₂-B_c-group ((b) and R_2 are as defined above), an A_9 '-B_c-group (A_9 ' represents a substituent of the following A_7 ' group, and B_c is as defined above), a D_3 -R₄-R₂-group (D_3 represents a substituent of the following D_3 group, R_4 represents a C1-C10 alkylene group, and R_c is as defined above), a M_c -B₃-R_c-group (B₃ represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and R_c are as defined above) or a M_c -B_c-group (M_c and R_c are as defined above);

(1) an A₇ group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R2-B1-R4-group (R2 and B1 are as defined above, and R4 is as defined above), a D4-R4-group (D4 represents a substituent of the following D4 group, and R4 is as defined above), a D3-R4-group (D5 represents a substituent of the following D5 group, and R4 is as defined above), a D1-R4-group {D1 represents a substituent of the following D1 group, and R4 is as defined above), a (D1-R4-group {D1 represents a substituent of the following D1 group, and R4 is as defined above), a (D2-R4-group {(b) is as defined above, and R4 is as defined above), a (C2-R4-group {(c) is as defined above, and R4 is as defined above), a D3-R4-group {D2 represents a substituent of the following D2 group, and R4 is as defined above}, a D3-R4-group {D3 represents a substituent of the following D3 group, and R4 is as defined above}, an A4-SO2-R4-group {A4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R1R1'N-group {R1 and R1' are as defined above}, and R4 is as defined above} or an A2-CO-R4-group {A2 represents a substituent of the following A2 group, and R4 is as defined above}

(2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;

- (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a C₂-B₁-R₄'-group (C₂ and B₁ are as defined above, and R₄' represents a C2-C10 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (4) an A8-group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₂"-group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D₄ group: a hydroxyl group or an A₁-O-group [A₁ represents a R₃-(CHR₀)_m·(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or a C2-C1 alkynyl group, R₀ represents a hydrogen atom, C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N((O)_nR₁'-group (R₁' is as defined above, and n represents 0 or 1), B₃ is as defined above, and m' represents 0 or 1 and, when B₃ is a sulfonyl group, m is 0, and R₃ is not a hydrogen atom}]; (ii) a D₅ group: O=C(R₃) group (R₃ is as defined above), an A₁-(O)_n-N=C(R₃)-group (A₁, n and R₃ are as defined above), an R₁-B₀-CO-R₄-(O)_n-N=C(R₃)-group [R₁, R₄, n and R₃ are as defined above, and B₀ represents an oxy group, a thio group or a -N((O)_mR₁')-group (R₁' and m are as defined above), a D-R₄-(O)_n-N=C(R₃)-group (D₂, R₄, n and R₃ are as defined above) or a
- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);

 $R_1A_1N-N=C(R_3)$ group (R_1 , A_1 and R_3 are as defined above);

(iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁-group (R_1 , R_1 ', n and A_1 are as defined above), an A_1 N=C(-OR₂)-group (A_1 and R_2 are as defined above) or a NH₂-CS-group.

- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A2 group:
- 1) an A₃-B₄-group

[A3 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a Ra-(R4)_m-group (Ra represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R4-group ((b) and R4 are as defined above), a (c)-R4-group ((c) and R4 are as defined above), a R2-B1-R4-group (R2, B1 and R4 are as defined above), a D4-R4-group (D4 and R4 are as defined above), a D5-group (D5 is as defined above), a D1-R4-group (D1 and R4 are as defined above), a D2-group (D2 is as defined above), a D3-R4-group (D3 and R4 are as defined above) or an A4-SO2-R4-group {A4 is as defined above, and R4 is as defined above}.

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined above, B₄' is the same as or different from B₄, and has the same meaning as that of B₄ provided that when B₄ is a thio group, R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group (D₂, R₄ and B₄ are as defined above);
- a R₂-SO₂-NR₁-group (R₂ is as defined above provided that a hydrogen atom is excluded, and R₁ is as defined above),
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above); or
- 6) a R₁A₁N-NR₁'-group (R₁, A₁ and R₁' are as defined above);
- IV. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when an A ring is a benzene ring, p is 2, 3 or 4 in the case that q is 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the rangel;

6. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (VI):

$$(Y_c)_q \xrightarrow{A} O O H K_a$$

$$(VI)$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_c)_p$, X_c is a substituent on a carbon atom, and represents a hydroxyl group, or a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a C2-C10 alkenyl group, or a R'-S(O)₁-group (R' represents a C1-C10 alkyl group, and 1 represents 0, 1 or 2), or a cyano group, or a C1-C10 alkoxycarbonyl group, or an aminocarbonyl group, or a (R')₂N-group (R' is as defined above), or a R'CO-NH-group (R' is as defined above), or a nitro group, or a C1-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_c 's are the same or different;

III. In $(Y_c)_{i_1}$, Y_c is a substituent on a carbon atom, and represents a substituent of the following X_3 group or Y_3 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_c 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_c 's constitute a group of a Z_3 group, and may be fused with an A ring;

(1) a X₃ group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR $_d$ -group (R_d is as defined above), a R_c -CO- R_d -group (R_c represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_c -CO-O- R_d -group (R_c and R_d are as defined

above), a R_cO-CO-R_d-group (R_c and R_d are as defined above), a HO-CO-CH=CH-group, a R_cR_c'N-R_d-group (R_c and R_c' are the same or different, R_c is as defined above, R_c' has the same meaning as that of Re, and Rd is as defined above), a Re-CO-NRe'-Rd-group (Re, Re' and Rd are as defined above), a RbO-CO-N(Rc)-Rd-group (Rb, Rc and Rd are as defined above), a RcRc'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and Re" are the same or different, Re and Re' are as defined above, Re" has the same meaning as that of Re, and Rd is as defined above), a ReRe'N-C(=NRe")-NRe'"-Rd-group (Re, Re', Re" and Re" are the same or different, Re, Re' and Re" are as defined above, Re" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a ReRe'N-SO2-Rd-group (Re, Re' and Rd are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a hydroxy group, or a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a C2-C10 alkenyl group, or a R'-S(O)₁-group (R' represents a C1-C10 alkyl group, and I represents 0, 1 or 2), or a cyano group, or a C1-C10 alkoxycarbonyl group, or an aminocarbonyl group, or a (R')₂N-group (R' is as defined above), or a R'CO-NHgroup (R' is as defined above), or a nitro group or a C1-C10 alkoxy group is excluded: (2) a Y₃ group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N — G_4 - G_5

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a

C2-C10 alkyll group substituted with a halogen atom or a R_2 -B₁-group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group) or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$\int_{3.5.7}^{12} N -$$

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_{b} represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$
 (CH₂)_I

an (e)-group (I and B_b are as defined above), R_a ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_e - B_a -group (M_e and B_a are as defined above), a M_e -CO-group (M_e is as defined above), a M_e -CO-group (M_e is as defined above), a M_e -CO- R_e -group (M_e is as defined above), a M_e - R_e -group (R_e and R_e are as defined above), a R_e - R_e -group (R_e and R_e are as defined above), a R_e - R_e -

phenyl group, or a phenoxy group substituted with a trifluoromethyl group, or a phenoxy group substituted with single or plural halogen atoms is excluded;

(3) a Z₃ group:

a -N=C(Y_a)-Y_a'-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b$ -Y_b'-Y_b''-group (Y_b and Y_b'' are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c$ -O-Y_c'-O-group (Y_c and Y_c' are the same or different, and represent a C1-C10 alkylene group),

provided that when p is 0, then Y_c is not fused with an A ring to form a benzo[1,3]dioxol ring;

IV. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when an A ring is a benzene ring, then q is not 0 and, when an A ring is a benzene ring or a pyridine ring, then p and q are not 0 at the same time, in either case; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above, and between the plurality of substituents, a selection range of selected substituents is the same, while the selected range may be the same or different as far as they are selected in the range];

7. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2H-pyran-2-one compound represented by the formula (VII):

$$(X_i)_{k}$$
 $(X_i)_{k}$
 $(X_i$

[wherein X_i represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a R_i -S(O)_i-group (R_i represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), a cyano group, a carboxy group, a C1-C4 alkoxycarbonyl group, a (R_i)₂N-group (R_i is as defined above), a R_i -CO-NH-group (R_i is as defined above), a R_i -CO-NH-group (R_i is as defined above) or a (R_i)₂N-CO-group (R_i represents a hydrogen atom or a C1-C4 alkyl group), X_i represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkyl group optionally substituted with a halogen atom), k represents 0 or 1, k' represents an integer of 0 to 4, when k is 0, k' is an integer of 2 to 4 and, when k' is 2 to 4, X_i ''s may be different, and x_i is a C1-C4 alkyl group, and a inert carrier;

8. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (VIII):

$$(X_i)_k$$
 $(X_i)_k$ $(VIII)$

[wherein X_I represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a R_I -S(O)_I-group (R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), a cyano group, a carboxy group, a C1-C4 alkoxycarbonyl group, a (R_I)₂N-group (R_I is as defined above), a R_I -CO-NH-group (R_I is as defined above), a R_I -CO-NH-group (R_I is as defined above) or (R_I ')₂N-CO-group (R_I ' represents a hydrogen atom or a C1-C4 alkyl group), X_I " represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C2-C4 alkoxy group, or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents 0 or 1, k' represents an integer of 0 to 4, when k is 0, k' is an integer of 2 to 4 and, when k' is 2 to 4, X_I "s may be different, and r_I is a C1-C4 alkyl group, a C2-C4 alkenyl group or a C2-C4 alkynyl group);

9. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (IX):

$$(X_{1}^{n})_{k} \xrightarrow{0} OH OH$$

[wherein X_1 ''' represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a carboxy group, a C2-C4 alkoxycarbonyl group or a $(R_{11})_2N$ -group $(R_{11})_3$ represents a C2-C4 alkyl group), X_1 '' represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C2-C4 alkoxy group, or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents 0 or 1, k" represents an integer of 0 to 2, when k is 0, k" is 2 and, when k" is 2, X'''s are different];

10. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2H-1-benzopyran-2-one compound represented by the formula (X):

$$(Y_d)_q \xrightarrow{A} (M_a)_r$$

wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_d)_p$, X_d is a substituent on a carbon atom, and represents a methoxy group or an ethoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different; III. In $(Y_d)_{q_1}$, Y_d is a substituent on a carbon atom, and represents a substituent of the following X_d group or Y_d group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_d 's are the same or different and, q is 2 or more, the adjacent two same or different Y_d 's constitute a group of a Z_d group, and may be fused with an A ring;

(1) a X₄ group:

a Ma-group [Ma represents a Rb-group (Rb represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen, atom, a nitro group, a cyano group, a hydroxyl group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above). a Re-CO-Rd-group (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a R_eO-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CHgroup, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_c, and R_d is as defined above), a R_c-CO-NR_c'-R_d-group (R_c, R_c' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a ReRe'N-CO-Rd-group (Re, Re' and Rd are as defined above), a ReRe'N-CO-NRe''-Rd-group (Re, Re' and Re" are the same or different, Re and Re' are as defined above, Re" has the same meaning as that of Re, and Rd is as defined above), a ReRe'N-C(=NRe")-NRe"'-Rd-group (Re, Re', Re" and R_a" are the same or different, R_a, R_a and R_a" are as defined above, R_a" has the same meaning as that of Re, and Rd is as defined above), a Rb-SO2-NRe-Rd-group (Rb, Re and Rd are as defined above), a ReRe'N-SO2-Rd-group (Re, Re' and Rd are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a methoxy group and an ethoxy group are excluded:

(2) a Y₄ group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3^{G_2-G_1}N-G_4-G_5$$

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group

optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group optionally substituted with a halogen atom or a R_2 - B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group} or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$J_{3} > N -$$

a (c)-group (in (c), J₁, J₂ and J₃ are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom).

(d)
$$N \longrightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow (CH_2)$$

an (e)-group (I and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_e -Ba-group (M_e and B_a are as defined above), a M_e -CO-group (M_e is as defined above), a M_e -CO-group (M_e is as defined above), a M_e -CO-Group (M_e is as defined above), a M_e -CO- M_e -group (M_e and M_e are as defined above), a M_e -CO- M_e -group (M_e and M_e are as defined above), a M_e -CO- M_e -group (M_e and M_e are as defined above), a M_e -CO- M_e -group (M_e and M_e are as defined above), a M_e -CO- M_e -group (M_e and M_e are as defined above), a M_e -CO- M_e -group (M_e and M_e are as defined above), a M_e -CO- M_e -group (M_e and M_e) are as defined above), a M_e -SO₂- M_e -group (M_e and M_e are as defined above) and M_e -is as defined above).

(3) a Z₄ group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b '-group (Y_b and Y_b ' are the same or different, a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ -O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group);

IV. Q_A represents a hydroxyl group, a (b) group ((b) is as defined above), an A_9 - B_6 - B_c -group $[A_9$ represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an A_7 "- SO_2 - B_c -group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 - SO_2 - B_c -group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a R_1R_1 'N- SO_2 - B_c -group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b)- SO_2 - B_c -group ((b) and B_c are as defined above), an A_9 '- B_c -group (A_9 ' represents a substituent of the following A_7 ' group or A_8 ' group, and B_c is as defined above), a D_3 - R_4 - B_c -group (D_3 represents a substituent of the following D_3 group, R_4 represents a C1-C10 alkylene group, and B_c is as defined above), a M_c - B_3 - B_c -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c - B_c -group (M_c and B_c are as defined above);

(1) an A7 group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R_2 - B_1 - R_4 -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4 - R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_3 - R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1 - R_4 -group { D_1 represents a substituent of the following D_1 group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a (c)- R_4 -group ((c) is as defined above, and R_4 is as defined above), a D_2 - R_4 -group { D_2 represents

a substituent of the following D_2 group, and R_4 is as defined above}, a D_3 -R₄-group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, an A_4 -SO₂-R₄-group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R_1R_1 'N-group (R_1 and R_1 ' are as defined above), and R_4 is as defined above} or an A_2 -CO-R₄-group (A_2 represents a substituent of the following A_2 group, and R_4 is as defined above); (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen

- (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as define above, and R₄' represents a C2-C4 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (4) an A8' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;

atom:

- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and D₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D₄ group: a hydroxy group or an A₁-O-group [A₁ represents a R₃-(CHR₀)_m-(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or C2-C10 alkynyl group, R₀ represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N((O)_mR₁')-group (R₁' is as defined above, and n represents 0 or 1), B₃ is as defined above, m' represents 0 or 1 and, when B₃ is a sulfonyl group, then m is 0, and R₃ is not a hydrogen atom}; (ii) a D₃ group: an O=C(R₃)-group (R₃ is as defined above), an A₁-(O)_n-N=C(R₃)-group (R₁, n and R₃ are as defined above), a R₁-B₀-CO-R₄-(O)_n-N=C(R₃)-group [R₁, R₄, n and R₃ are as

defined above, and B_0 represents an oxy group, a thio group or a $-N((O_mR_1))$ -group (R_1) and R_1 are as defined above)], a D_2 - R_4 - $(O)_n$ -N- $C(R_3)$ -group (D_2, R_4, n) and R_3 are as defined above) or a R_1A_1N -N- $C(R_3)$ -group (R_1, A_1) and R_3 are as defined above);

- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1):
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁)-group (R_1 , R_1 ', n and A_1 are as defined above), an A_1 N=C(-OR₂)-group (A_1 and R_2 are as defined above) or a NH₂-CS-group;
- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A2 group:
- 1) an A₃-B₄-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a R₄-(R₄)_m-group (R₄ represents a phenyl group, a pyridinyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above), a D₄-R₄-group (D₁ and R₄ are as defined above), a D₅-group (D₅ is as defined above), a D₁-R₄-group (D₁ and R₄ are as defined above), a D₂-group (D₂ is as defined above), a D₃-R₄-group (D₃ and R₄ are as defined above), a S₂-R₄-group (D₃ and R₄ are as defined above), a D₃-R₄-group (D₃ and R₄ are as defined above), a D₄-R₄-group (D₅ and R₄ are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₆-R₄-group (D₇ and R₄ are as defined above), a D₇-R₄-group (D₇ and R₄ are as defined above), a D₈-R₄-group (D₇ and R₄ are as defined above), a D₈-R₄-group (D₇ and R₄ are as defined above), a D₈-R₄-group (D₇ and R₄ are as defined above), a D₈-R₄-group (D₇ and R₈ are as defined above).

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provided that when B_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined above, B₄' is the same as or different from B₄, and has the same meaning as that of B₄, provided that when B₄ is a thio group, then R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group (D₂, R₄ and B₄ are as defined above);
- 3) a R₂-SO₂-NR₁-group (R₂ is as defined above, provided that a hydrogen atom is excluded, and R₁ is as defined above),
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a R_1A_1N -N R_1 '-group (R_1 , A_1 and R_1 ' are as defined above);

 $V.\ M_a$ ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, in case that q and r are 0, then p is 2, 2, 3 or 4; and

the "as defined above" in the same symbol between a plurality of substituent indicates that the plurality of the substituents independently represent the same meaning as that of described above and, between the plurality of substituents, a selection range of the selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

and an inert carrier;

 (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XI):

$$(X_d)_p \stackrel{A}{\longleftarrow} A \qquad (XI)$$

[wherein

- A represents a benzene ring or a pyridine ring;
- II. In $(X_d)_p$, X_d is a substituent on a carbon atom, and represents a methoxy group or an ethoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different; III. In $(Y_d)_{q_0}$, Y_d is a substituent on a carbon atom, and represents a substituent of the following X_d group or Y_d group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_d 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_d 's constitute a group of a Z_d group, and may be fused with an A ring;
- (1) a X₄ group:
- a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d -

group (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a R_e O-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_e R_e'N-R_d-group (R_e and R_e ' are the same or different, R_e is as defined above, R_e ' has the same meaning as that of R_e , and R_d is as defined above), a R_e -CO-NR_e'-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e O-CO-N(R_e)-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-CO-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-CO-R_d-group (R_e , R_e ' and R_d are as defined above, as the same meaning as that of R_e , and R_d is as defined above), a R_e R_e'N-C(=NR_e")-NR_e'''-R_d-group (R_e , R_e ', R_e '' and R_e ''' are the same or different, R_e , R_e ' and R_e ''' are as defined above, R_e ''' has the same meaning as that of R_e , and R_d is as defined above), a R_e R_e'N-C(=NR_e")-NR_e-R_d-group (R_e , R_e ', R_e '' and R_e ''' are the same or different, R_e , R_e ' and R_e ''' are as defined above, R_e ''' has the same meaning as that of R_e , and R_d is as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e '' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e , R_e ' and R_d are as defined above), a R_e R_e'N-SO₂-R_d-group (R_e), and R_d are as defined above), a R_e R_e'N-SO₂-R_e

(2) Y₄ group:

a M_b - R_a -group [M_b represents a M_a -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 - B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10

alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$J_{3} > N -$$

a (c)-group (in (c), J₁, J₂, and J₃ are the same or different and, represent a methine group optionally substituted with a methyl group, or a nitrogen atom).

(d)
$$N = B_b$$

a (d)-group (1 is 2, 3 or 4, and Bb represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (I and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c -Ba-group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-Group (M_c is as defined above), a M_c -CO- M_c -group (M_c is as defined above), a M_c -CO- M_c -group (M_c and M_c -group (M_c and M_c -group (M_c -group (M

(3) a Z₄ group:

a -N=C(Y_a)-Y_a'-group (Y_a represents a hydrogen atom, or C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b$ -Y_b'-Y_b'-group (Y_b and Y_b'' are the same or different, and represent a methylene group, or an oxy

group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c$ -O- Y_c '-O-group (Y_c and Y_c ' are the same or different, and a C1-C10 alkylene group);

IV. Q_A ' represents a (b)-group ((b) is as defined above), an A_9 -B₆-BC-group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, B_6 represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_e is not a sulfonyl group], an A_7 "-SO₂-B_e-group (A_7 " represents a substituent of the following A_7 " group, and B_e is as defined above), an A_8 -SO₂-B_e-group (A_8 represents a substituent of the following A_8 group, and B_e is as defined above, provided that A_8 is not a hydrogen atom), a R_1R_1 'N-SO₂-B_e-group (R_1 is she defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 , and R_2 is as defined above), a (b)-SO₂-B_e-group ((b) and R_2 are as defined above), an A_9 '-B_e-group (A_9 ' represents a substituent of the following A_7 ' group or A_8 ' group, and R_2 is as defined above), a R_2 -B₂-group (R_3) represents a C1-C10 alkylene group, and R_2 is as defined above), and R_2 -B₂-group (R_3) represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and R_2 are as defined above) or a R_2 -B₂-group (R_3 are as defined above) or a R_2 -group (R_3 are as defined above) or a R_2 -group (R_3 are as defined above) or a R_2 -group (R_3 are as defined above).

(1) an A₇ group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R2-B1-R4-group (R2 and B1 are as defined above, and R4 is as defined above), a D4-R4-group (D4 represents a substituent of the following D4 group, and R4 is as defined above), a D3-R4-group (D5 represents a substituent of the following D5 group, and R4 is as defined above), a D1-R4-group {D1 represents a substituent of the following D1 group, and R4 is as defined above}, a (b)-R4-group ((b) is as defined above, and R4 is as defined above), a (c)-R4-group ((c) is as defined above), and R4 is as defined above}, a D3-R4-group {D2 represents a substituent of the following D2 group, and R4 is as defined above}, a D3-R4-group {D3 represents a substituent of the following D3 group, and R4 is as defined above}, an A3-S02-R4-group {A4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R1R1-Y1-group (R1 and R1 are as defined above), and R4 is as defined above} or an

A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above):

- (2) an A₈ group; a hydrogen atom, or C1-C10 alkyl group optionally substituted with a halogen atom:
- (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as defined above, and R₄' represents a C2-C10 alkylene group), a D₄-R₄' group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (4) an A9' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₃ are as defined above).
- (i) a D_4 group: a hydroxy group or an A_1 -O-group $[A_1$ represents a R_3 - $(CHR_0)_{mr}(B_2-B_3)_m$ -group $\{R_3$ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 - B_1 -group $\{R_2$ and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_mR_1^*)$ -group $\{R_1^*$ is as defined above, and n represents 0 or 1), B_3 is as defined above, m represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom $\}$; (ii) a D_5 group: an $O=C(R_3)$ -group $\{R_3$ is as defined above), an A_1 - $\{O\}_m$ - $N=C(R_3)$ -group $\{A_1, n\}_m$ and $\{A_3, a\}_m$ are as defined above), a $\{R_1$ - $\{B_2, A_3\}_m$ and $\{B_3, a\}_m$ are as defined above, and $\{B_3, a\}_m$ and $\{B_3, a\}_m$ and $\{B_3, a\}_m$ and $\{B_3, a\}_m$ are as defined above), a $\{B_1, B_2, A_3\}_m$ and $\{B_3, a\}_m$ are as defined above), and $\{B_3, a\}_m$ and $\{B_3, a\}_m$ are as defined above), and $\{B_3, a\}_m$ and $\{B_3, a\}_m$ are as defined above), and $\{B_3, a\}_m$ and $\{B_3, a\}_m$ are as defined above), and $\{B_3, a\}_m$ are as defined above), and $\{B_3, a\}_m$ and $\{B_3, a\}_m$ are as defined above).

- (iii) a D_1 group: a (R)- $(O)_k$) A_1N - $(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n- A_1)-group (R_1 , R_1 ', n and A_1 are as defined above), an A_1N =C-(OR_2)-group (A_1 and R_2 are as defined above) or a NH_2 -CS-group;
- (v) a D₃ group; a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A2 group:
- 1) an A₃-B₄-group

[A3 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a Ra-(R4)_m-group (Ra represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-Ra-group ((b) and R4 are as defined above), a (c)-R4-group ((c) and R4 are as defined above), a R2-B1-R4-group (R2, B1 and R4 are as defined above), a D4-R4-group (D4 and R4 are as defined above), a D5-group (D5 is as defined above), a D1-R4-group (D1 and R4 are as defined above), a D2-group (D2 is as defined above), a D3-R4-group (D3 and R4 are as defined above) or an A4-SO2-R4-group {A4 is as defined above, and R4 is as defined above},

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, R_2 is not a hydrogen atom), or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- a R₂-SO₂-NR₁-group (R₂ is as defined above, provided that a hydrogen atom is excluded, and R₁ is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a R₁A₁N-NR₁'-group (R₁, A₁ and R₁' are as defined above);
- $V.\ M_a$ ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0,1,2,3 or 4, provided that when an A ring is a benzene ring, in case that q is 0, then p is 2,3 or 4; and

the "as defined above" between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

12. (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XII):

$$(X_e)_p \overset{\text{O}}{\vdash} A \qquad \overset{\text{O}}{\longrightarrow} (M_a)_r$$

[wherein

A represents a benzene ring or a pyridine ring;

II. In $(X_c)_p$, X_c represents a hydroxy group, a halogen atom, a C1-C10 alkyl group, a R'-S(O)l-group (R' represents a C1-C10 alkyl group, and I represents 0, 1 or 2), a cyano group, a HOCO-CH=CH-group, a (R')₂N-group (R' is as defined above), a R' CO-NH-group (R' is as defined above), a nitro group or a C1-C10 alkoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_0 's are the same or different;

III. In $(Y_e)_q$, Y_e is a substituent on a carbon atom, and represents a substituent of the following X_5 group or Y_5 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_e 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_e 's constitute a group of a Z_5 group, and may be fused with an A ring;

(1) a X5 group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_c -CO- R_d -group (R_d represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_c -CO- R_d -group (R_c and R_d are as defined

above), a R_cO -CO- R_d -group (R_c and R_d are as defined above), a HO-CO-CH=CH-group, a R_cR_c 'N- R_d -group (R_c and R_d) are the same or different, R_c is as defined above, R_c . has the same meaning as that of R_c , and R_d is as defined above), a R_c -CO- NR_c '- R_d -group (R_c , R_c ' and R_d are as defined above), a R_c -CO- R_d -group (R_c , R_c ' and R_d are as defined above), a R_c -Ro-group (R_c , R_c ' and R_d are as defined above), a R_c -Ro-group (R_c , R_c ' and R_d are as defined above, a R_c -N-CO- R_c "- R_d -group (R_c , R_c ' and R_c " are the same or different, R_c and R_c " are as defined above, R_c " has the same meaning as that of R_c , and R_d is as defined above), a R_c -N-C(= NR_c ")- NR_c "'- R_d -group (R_c , R_c ', R_c " and R_c " are the same or different, R_c , R_c ' and R_c " are as defined above, R_c "' has the same meaning as that of R_c , and R_d is as defined above), a R_c -N-C(= NR_c "- R_d -group (R_c , R_c ', R_c " and R_d are as defined above), a R_c -C(= NR_c -Ro-group (R_c), R_c

(2) a Y₅ group:

a M_b - R_d -group [M_b represents a M_c -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3 N - G_4 - G_5$$

a (b)-group {in (b), G₁, G₂, G₄ and G₅ represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G₃ represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, a c3-C10 alkenyl group, or a C3-C10 alkynyl group, a sulfinyl group, or a C3-C10 alkynyl group, or a C3-C10 alkynyl group, or a C2-C10 alkenyl group, or a C2-C10 alkenyl group, or a C3-C10 alkenyl group, or a

an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$J_{3} > N -$$

a (c)-group (in (c), J₁, J₂ and J₃ are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N - N - R_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (I and B_b are as defined above), R_a ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO- R_c -group (M_c is as defined above), a M_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c -

(3) a Z₅ group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b '-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a

halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a -Y_c-O-Y_c'-Ogroup (Y_c and Y_c' are the same or different, and represent a C1-C10 alkylene group),

provided that when p is 0, then Y_{c} is not fused with an A ring to form a benzo[1,3]dioxol ring;

IV. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, then q is not 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

13. (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XIII):

$$(X_{II})_{k} = (X_{III})$$

[wherein X_{II} represents a hydrogen atom, or a hydroxyl group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C3-C4 alkoxy group, or a R_{I} -S(O)-group (R_{I} represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a $(R_{I})_{2}N$ -group (R_{I} is as defined above), or a $(R_{I})_{2}N$ -group (R_{I} is as defined above), or a $(R_{I})_{2}N$ -CO-NH-group (R_{I} is as defined above), or a $(R_{I})_{2}N$ -CO-group (R_{I} is

14. (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XIV):

15-16. (Cancelled)

17. (Currently amended) A composition comprising a 2(1H)-pyridinone compound represented by the formula (XVIII):

wherein X_{III}' represents a C2-C4 alkyl group, or a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkoxyl group, or a C2-C4 alkoxyl group, or a C2-C4 alkoxyl group, or a R_I-S(O)_I-group (wherein R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a cyano group, or a carboxyl group, or a C1-C4 alkoxycarbonyl group, a

 $(R_{I\!I})_2N$ -group (wherein $R_{I\!I}$ represents a C2-C4 alkyl group), or a R_1 -CO-NH-group (wherein R_1 is as defined above), or a R_1 O-CO-NH-group (wherein R_1 is as defined above), or a R_1 NH-CO-NH-group (wherein R_1 is as defined above), or a R_1 NH-CO-NH-group (wherein R_1 is as defined above), or a $(R_1^*)_2N$ -CO-group (wherein R_1^* represents a hydrogen atom or a C1-C4 alkyl group), or a R_1^* -group (wherein R_1^* represents a oxygen atom or a sulfur atom, and R_1^* -greents a C1-C4 alkyl group substituted with a halogen atom), X_{111}^{**} represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, or a C1-C4 alkoxy group, m represents 1 or 2, when m is 2, X_{111}^{**} 's may be different, and T_{111}^* and T_{112}^* are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group $(X_1^*)_1^*$

wherein XIII represents a hydrogen atom, or a hydroxy group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkenyl group, or a C2-C4 alkenyl group, or a C1-C4 alkoxy group, or a R4-S(O)_t group (wherein R4 represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a (R4)₂N-group (wherein R4 represents a C1-C4 alkyl group), or a R4-C0-NH-group (wherein R4 respectively), or a R4-C0-NH-group (wherein R4 represents a C1-C4 alkyl group) or a R4-C0-NH-group (wherein R4 represents a hydrogen atom or a C1-C4 alkyl group) or a R8-group (wherein R4 represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom). K represents an integer of 1 to 4, when k is an integer of 2 to 4, X_H/s may be different, r_H and r_H are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group; and an inert carrier.

18. (Previously Presented) A 2(1H)-pyridinone compound represented by the formula (XVIII):

$$\begin{array}{c|c} X_{|||} & O & O \\ \hline & X_{||} & O & O \\ \hline & X_{|||} & O &$$

wherein $X_{\rm III}$ ' represents a C2-C4 alkyl group, or a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C2-C4 alkoxy group, or a R_I-S(O)_I-group (wherein R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, a $(R_{\rm II})_2N$ -group (wherein $R_{\rm II}$ represents a C2-C4 alkyl group), or a R_I-CO-NH-group (wherein $R_{\rm I}$ is as defined above), or a R_IO-CO-NH-group (wherein R_I is as defined above), or a R_INH-CO-NH-group (wherein R_I is as defined above), or a R_INH-CO-NH-group (wherein R_I is as defined above), or a R_INH-CO-NH-group (wherein R_I is as defined above), or a R_INH-CO-NH-group (wherein R_I is as defined above), or a C1-C4 alkyl group (wherein B represents a noxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), $X_{\rm III}$ " represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, or a C1-C4 alkoxy group, m represents 1 or 2, when m is 2, $X_{\rm III}$ "s may be different, and $r_{\rm II}$ and $r_{\rm II}$ are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group.

19. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2(1H)-quinolinone compound represented by the formula (XIX):

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(Y_f)_q$, Y_f is a substituent on a carbon atom, and represents a group of the following X group or Y group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_f 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_f 's constitute a group of a Z group, and may be fused with an A ring;

(1) a X group:

a Ma-group [Ma represents a Rh-group (Rh represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a Re-Ba-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_o-CO-R_dgroup (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a R_eO-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_oR_o'N-R_d-group (R_o and R_o' are the same or different, R_o is as defined above, R_o' has the same meaning as that of R_o, and R_d is as defined above), a R_o-CO-NR_o'-R_d-group (R_o, R_o' and R_d are as defined above), a R_bO-CO-N(R_c)-R_d-group (R_b, R_c and R_d are as defined above), a R_cR_c'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and Re" are the same or different, Re and Re' are as defined above, Re" has the same meaning as that of R_a, and R_d is as defined above), a R_aR_a'N-C(=NR_a")-NR_a"'-R_d-group (R_a, R_a', R_a" and R_a" are the same or different, Ro, Ro' and Ro" are as defined above, Ro" has the same meaning as that of Re, and Rd is as defined above), a Rb-SO₂-NR_e-R_d-group (Rb, Re and Rd are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group];

(2) a Y group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G₁, G₂, G₄ and G₅ represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G₃ represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group, a sulfinyl group, a sulfinyl group or a sulfonyl group or a -NR₁-group (R₁ is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N -$$

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_{b} represents an oxy group or a thio group) or

(e)
$$B_b = (CH_2)_0$$

an (e)-group (I and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }}, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-D-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_eR_eN -group (M_e and R_e are as defined above), a M_e -CO-NR_e-group (M_e and R_e are as defined above), a M_eO -CO-NR_e-group (M_e and R_e are as defined above), a M_eR_eN -CO-group (M_e and R_e are as defined above), a M_eR_eN -CO-NR_e'-group (M_e , R_e and R_e ' are as defined above), a M_eR_eN -CO-NR_e'-group (M_e , R_e and R_e ' are as defined above), a M_eR_eN -C(=NR_e')-NR_e"-group (M_e , R_e , R_e ' and R_e " are as defined above), and R_e are as defined above) or a M_eR_eN -SO₂-group (M_e and R_e are as defined above), and R_e is as defined above);

(3) a Z group:

a -N=C(Y_a)-Y_a'-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Ya' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a -Y_b-Y_b'-Y_h"-group (Y_h and Y_h' are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Yb' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a -Yc-O-Yc'-Ogroup (Y_c and Y_c' are the same or different, and represent a C1-C10 alkylene group); III. O_A represents a hydroxy group, a (b)-group ((b) is as defined above), an A₀-B₆-B_c-group [A₀ represents a substituent of the following A₇ group or A₈ group, B₆ represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a -N((O)_mR₁)-group (m represents 0 or 1, and R₁ is as defined above), provided that when A₀ is a hydrogen atom, then B₀ is not a sulfonyl group], an A₇"-SO₂-B₆-group (A₇" represents a substituent of the following A₇" group. and B_c is as defined above), an A₈-SO₂-B_c-group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A₈ is not a hydrogen atom), a R₁R₁'N-SO₂-B_cgroup (R₁ is as defined above, R₁' is the same as or different from R₁, and has the same meaning as that of R₁, and B₂ is as defined above), a (b)-SO₂-B₂-group ((b) and B₂ are as defined above). an A₀'-B₀-group (A₀' represents a substituent of the following A₇' group or A₈' group, and B₀ is as defined above), a D₅-R₄-B_c-group (D₅ represents a substituent of the following D₅ group, R₄ represents a C1-C10 alkylene group, and B_e is as defined above), a M_e-B₃-B_e-group (B₃ represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a Mc-Bc-group (Mc and Bc are as defined above);

(1) an A₇ group:

- a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R_2 -B₁-R₄-group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4 -R₄-group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_5 -R₄-group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1 -R₄-group (D_5 represents a substituent of the following D_1 group, and R_4 is as defined above), a (D_5 -R₄-group ((D_5) is as defined above, and D_7 -group ((D_7) is as defined above), a D_7 -R₄-group (D_7) represents a substituent of the following D_7 -group, and D_7 -R₄-group (D_7 -group) ($D_$
- (2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A_7 ' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4 '-group (R_2 and B_1 are as defined above, and R_4 ' represents a C2-C10 alkylene group), a D_4 - R_4 '-group (D_4 and D_4 ' are as defined above), a D_1 - D_4 -group (D_1 and D_4 ' are as defined above), a (D_1 - D_4 -group (D_1 and D_4 ' are as defined above), a D_2 - D_4 -group (D_2 and D_4 are as defined above), a D_3 - D_4 -group (D_3 and D_4 are as defined above) or an D_4 - D_4 -group (D_4 and D_4 are as defined above);
- (4) an A8' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₂" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);

(i) a D_4 group: a hydroxy group or an A_1 -O-group $[A_1$ represents a R_3 -(CHR₀)_m-(B₂-B₃)_m'-group $\{R_3$ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 -B₁-group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}]; (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an A_1 -($O)_m$ -N=C(R_3)-group (A_1 , n and R_3 are as defined above), a R_1 -B₀-CO-R₄-($O)_m$ -N=C(R_3)-group [R_1 , R_4 , n and R_3 are as defined above), an D_2 -R₄-($O)_m$ -N=C(R_3)-group (D_2 , D_3 -R₄, n and D_3 -group (D_3 -R₄)-group (

- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁)-group (R_1 , R_1 ', n and A_1 are as defined above), an A_1 N=C(-OR₂)-group (A_1 and R_2 are as defined above) or a NH₂-CS-group;
- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A2 group:
- 1) an A₃-B₄-group

[A3 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a Ra-(R4)m-group (Ra represents a phenyl group optionally substituted with a halogen atom, or a Ra-(R4)m-group (Ra represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R4-group ((b) and R4 are as defined above), a (c)-R4-group ((c) and R4 are as defined above), a R2-B1-R4-group (R2, B1 and R4 are as defined above), a D4-R4-group (D4 and R4 are as defined above), a D5-group (D5 is as defined above), a D1-R4-group (D1 and R4 are as defined above), a D2-group (D2 is as defined above), a D3-R4-group (D3 and R4 are as defined above) or an A4-SO2-R4-group {A4 is as defined above, and R4 is as defined above},

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provided that when B_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined above, B₄' is the same as or different from B₄, and has the same meaning as that of B₄, provided that when B₄ is a thio group, then R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group (D₂, R₄ and B₄ are as defined above);
- a R₂-SO₂-NR₁-group (R₂ is as defined above, provided that a hydrogen atom is excluded, and R₁ is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a R₁A₁N-NR₁'-group (R₁, A₁ and R₁' are as defined above);
- IV. T_A represents a hydrogen atom, an Ao'-group (A₉' is as defined above), a D_5 - R_4 -group (D_5 and R_4 are as defined above) or a M_c -group (M_c is as defined above);

V. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

and an inert carrier:

20. (Withdrawn) A 2(1H)-pyridinone compound represented by the formula (XX):

$$(X_{h})_{p} = A \qquad O \qquad Q_{A} \qquad (XX)$$

[wherein

A represents a benzene ring or a pyridine ring;

II. In $(X_h)_p$, X_h represents a hydroxy group, a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxycarbonyl group, a $(R^*)_2N$ -group $(R^*)_2N$ -group in a C1-C10 alkyl group), a nitro group or a C1-C10 alkoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_h 's are the same or different, provided that when p is 2 or more, and in case that X_h is selected from a hydroxy group, a halogen atom, a C1-C10 alkyl group and a C1-C10 alkoxy group, then X_h 's do not represent the same group or atom at the same time;

III. In $(Y_h)_{Q_h}$ Y_h is a substituent on a carbon atom, and represents a substituent of the following X_7 group or Y_7 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_h 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_h 's constitute a group of a Z_7 group, and may be fused with an A ring:

(1) a X₇ group:

a Ma-group [Ma represents a Rh-group (Rh represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a Re-Ba-R₄-group (R₅ represents a C1-C10 alkyl group optionally substituted with a halogen atom, B₆ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and Rd represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_dgroup (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a R.O-CO-R. group (R. and R. are as defined above), a HO-CO-CH=CH-group, a ReRe'N-Regroup (Re and Re' are the same or different, Re is as defined above, Re' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_c)-R_d-group (R_b, R_c and R_d are as defined above), a R_cR_c'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R." are the same or different, R. and R.' are as defined above, R." has the same meaning as that of Re, and Rd is as defined above), a ReRe"N-C(=NRe")-NRe""-Rd-group (Re, Re', Re" and Re"" are the same or different, Re, Re' and Re" are as defined above, Re" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a ReRe'N-SO2-Rd-group (Re, Re' and Rd are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a Xh-group (Xh is as defined above) is excluded;

(2) a Y₇ group:

a M_b -R_d-group [M_b represents a M_c -group { M_e represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G₁, G₂, G₄ and G₅ represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G₃ represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkenyl group, a sulfinyl group, a sulfinyl group or a sulfonyl group or a -NR₁-group (R₁ is as defined above)}.

(c)
$$\int_{3.5}^{1} N - N$$

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N = B_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group)

or

(e)
$$B_b = (CH_2)$$

an (e)-group (I and B_b are as defined above), R_d * is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO- R_c -group (M_c is as defined above), a M_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c are as defined above), a R_c - R_c - R_c -group (R_c and R_c - R_c -group (R_c - R_c -

a –N=C(Y_a)-Y_a'-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an oxy group, or

(3) a Z₇ group:

a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b \cdot Y_b$ '- Y_b ''-group (Y_b and Y_b '' are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c \cdot O \cdot Y_c \cdot$

and B_c is as defined above, provided that A_8 is not a hydrogen atom), a R_1R_1 'N-SO₂-Bc-group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that

of R_1 , and B_c is as defined above), a (b)-SO₂-B_c-group ((b) and B_c are as defined above), an A_9 '-B_c-group (A_9 ' represents a substituent of the following A_7 ' group or A_8 ' group, and B_c is as defined above), a D_5 -R₄-B_c-group (D_5 represents a substituent of the following D_5 group, R_4 represents a C1-C10 alkylene group, and B_c is as defined above), a M_c -B₃-B_c-group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c -B_c-group (M_c and B_c are as defined above);

- (1) an A₇ group:
- a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R_2 - B_1 - R_4 -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4 - R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_3 - R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_5 - R_4 -group { D_1 represents a substituent of the following D_1 group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a D_2 - R_4 -group { D_2 represents a substituent of the following D_2 group, and D_3 represents a substituent of the following D_3 group, and D_3 as defined above}, a D_3 - D_4 -group { D_3 represents a substituent of the following D_3 group, and D_3 is as defined above}, and D_3 - D_4 -group { D_3 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a D_4 - D_4 -group { D_4
- (2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
 (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10
- (3) air A7 group, a C3-C10 aikenyr group optionary substituted with a halogen atom, a R2-B1-R4'-group (R2 and B1 are as defined above, and R4' represents a C2-C10 alkylene group), a D4-R4'-group (D4 and R4' are as defined above), a D1-R3'-group (D1 and R4' are as defined above), a (b)-R3'-group ((b) and R4' are as defined above), a (c)-R3'-group ((c) and R4' are as defined above), a D2-R3-group (D2 and R4 are as defined above), a D3-R4'-group (D3 and R4' are as defined above) or an A2-CO-R4-group (A2 and R4 are as defined above);
- (4) an A_8 ' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group

- $(R_2, B_1 \text{ and } R_4)$ are as defined above), a D_4 - R_4 -group (D_4 and $R_4)$ are as defined above), a D_5 - R_4 -group (D_5 and R_4 are as defined above), a D_1 - R_4 -group (D_1 and $R_4)$ are as defined above), a (b)- R_4 -group ((b) and R_4) are as defined above), a (c)- R_4 -group ((c) and R_4) are as defined above), a D_2 - R_4 -group (D_2 and D_4 are as defined above), a D_2 - D_4 -group (D_4 and D_4 are as defined above); a D_4 - D_4 -group (D_4 and D_4 are as defined above);
- (i) a D_4 group: a hydroxy group or an A_1 -O-group $[A_1$ represents a R_3 -(CHR₀)_m-(B₂-B₃)_m'-group $\{R_3$ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 -B₁-group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}]; (iii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an A_1 -($O)_m$ -N=C(R_3)-group (R_1 , N and R_3 are as defined above), a R_1 -B₀-CO-R₄-($O)_m$ -N=C(R_3)-group [R_1 , R_4 , n and R_3 are as defined above), a D_2 -R₄-($O)_n$ -N=C(R_3)-group (D_2 , R_4 , n and R_3 are as defined above) or a R_1A_1 N-N=C(R_3)-group (R_1 , A_1 and R_3 are as defined above).
- (iii) a D_1 group: a $(R_1-O)_k-J_1N-(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1):
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁-group (R_1 , R_1 ', N and A_1 are as defined above), an A_1N =C(-OR₂)-group (A_1 and R_2 are as defined above) or a NH_2 -CS-group;
- (v) a D3 group: a nitro group or a R1OSO2-group (R1 is as defined above);
- (vi) an A2 group:
- 1) an A₃-B₄-group
- [A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkynyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a R_a-(R₄)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above).

a D_4 -R₄-group (D_4 and R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1 -R₄-group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 -R₄-group (D_3 and R_4 are as defined above) or an A_4 -SO₂-R₄-group { A_4 is as defined above, and R_4 is as defined above},

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provide that when A_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined above, B₄' is the same as or different from B₄, and has the same meaning as B₄, provided that when B₄ is a thio group, then R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group (D₂, R₄ and B₄ are as defined above);
- 3) a R₂-SO₂-NR₁-group (R₂ is as defined above, provided that a hydrogen atom is excluded, and R₁ is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a R₁A₁N-NR₁'-group (R₁, A₁ and R₁' are as defined above);
- V. T_A represents a hydrogen atom, an A_9 '-group (A_9 ' is as defined above), a D_5 - R_4 -group (D_5 and R_4 are as defined above) or a M_c -group (M_c is as defined above);
- VI. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, then q is not 0 and, when an A ring is a benzene ring or a pyridine ring, then p and q are not 0 at the same time, in either case: and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

21. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2(1H)-quinolinone compound represented by the formula (XXI):

$$(X_{|V|})_{k} \xrightarrow{\bigcap_{i \in I} O_{i}} \bigcap_{i \in I_{i}} O_{i}$$

[wherein X_{IV} represents a hydrogen atom, or a hydroxy group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C1-C4 alkoxy group, or a $R_{I^-}S(O)$ -group (R_{I} represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a (R_{I})2N-group (R_{I} is as defined above), or a $R_{I^-}CO$ -NH-group (R_{I} is as defined above), or a $R_{I^-}CO$ -NH-group (R_{I} is as defined above), or a $R_{I^-}CO$ -NH-group (R_{I^-} is as defined above), or a $R_{I^-}CO$ -NH-group ($R_{I^-}CO$ -NH-group) ($R_{I^-}CO$ -NH-

22. (Withdrawn) A 2(1H)-quinolinone compound represented by the formula (XXII):

$$(XXII) = (XXII)$$

[wherein X_{IV} ' represents a C2-C4 alkyl group, or a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkoxy group, or a R_I-S(O)_T-group (R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a cyano group, or a carboxy group, or a C2-C4 alkoxycarbonyl group, or a (R_{II})₂N-group (R_{II} represents a C2-C4 alkyl group), or a R_I-CO-NH-group (R_I is as defined above), or a R_IO-CO-NH-group (R_I is as defined above), or a (R_I')₂N-CO-group (R_I' represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), X_{IV} " represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group or a C1-C4 alkoxy group, m represents I or 2 and, when m is 2, X_{IV} "s may be different, and r_{II} and r_{II}' are the same or different, and represent a hydrogen atom or a C1-C4alkyl group);

23-24. (Cancelled)

- 25. (Withdrawn) A composition for improving tissue fibrosis, which comprises a compound according to claim 5, and an inert carrier;
- 26. (Withdrawn) A method for improving tissue fibrosis, which comprises administering an effective amount of a compound according to claim 5 to a mammal in need thereof:

27. (Cancelled)

U.S. Serial No. 10/572,705 Attorney Docket No. 2006_0367A August 6, 2010

28. (Withdrawn) A composition for suppressing the activity of TGF-β, which comprises a compound according to claim 5, and an inert carrier;

29. (Cancelled)

- 30. (Withdrawn) A composition for hair growth which comprises a compound according to claim 5, and an inert carrier;
- 31. (Withdrawn) A method for growing hair, which comprises administering an effective amount of a compound according to claim 5 to a mammal in need thereof:

32-33. (Cancelled)

- 34. (Withdrawn) A method for improving tissue fibrosis, which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.
- 35. (Withdrawn) A method for improving tissue fibrosis, which comprises administering an effective amount of a compound according to claim 1 to a mammal in need thereof:

36. (Cancelled)

37. (Withdrawn) A method for suppressing the activity of TGF-β, which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.

38. (Cancelled)

39. (Withdrawn) A method for growing hair, which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.

- 40. (Withdrawn) A method for growing hair, which comprises administering an effective amount of a compound according to claim 1 to a mammal in need thereof;
- $\mbox{\bf 41. (Withdrawn)} \qquad \mbox{A 2(1H)-pyridinone compound represented by the formula} \label{eq:action} (XXIII):$

42. (Withdrawn) A 2(1H)-pyridinone compound represented by the formula (XXIV):

$$\bigcirc \bigvee_{O} \bigvee_{O} \bigvee_{O} \bigvee_{CH_3} \bigvee_{CH_3} (XIV)$$

- 43. (Withdrawn) A method for suppressing transcription of a type I collagen gene, which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.
 - 44. (New) A compound represented by the formula: