Abschlussprüfung 2016 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Name:			_ Vorname:			
Klasse			_ Platzziffer:		Punkte:	
	Aufgabe A 1				Nachtermin	
A 1.0	Gegeben sind der	Punkt $O(0 0)$	und die Pfeil	$\overrightarrow{OP_n}(\varphi) = \begin{pmatrix} 4 \cdot \overrightarrow{si} \\ 5 \cdot \overrightarrow{co} \end{pmatrix}$	(0.05) mit $\varphi \in [0^\circ; 90^\circ]$	[.
A 1.1	Zeichnen Sie den	Pfeil $\overrightarrow{OP_1}$ für	φ=60° in das	Koordinatensyste	em ein.	1 P
A 1.2	Der Pfeil \overrightarrow{OP}_2 so $\alpha = 20^{\circ}$ ein. Berechnen Sie Ko	ordinaten des l	Pfeils \overrightarrow{OP}_2 .	Achse einen Win		2 P
A 1.3	Der Pfeil $\overrightarrow{OP_3}$ lieg Berechnen Sie der Pfeils $\overrightarrow{OP_3}$ auf zw	zugehörigen	Wert für φ un	d geben Sie die K		

A 2.0 Gegeben sind die Funktionen f_1 mit der Gleichung $y = 2 \cdot (x + 2,5)^{\frac{1}{2}} - 4$ und f_2 mit der Gleichung $y = -1, 5 \cdot (x + 2,5)^{\frac{1}{2}} + 3$ ($\mathbb{G} = \mathbb{R} \times \mathbb{R}$).

A 2.1 Der Graph zu f_1 kann durch orthogonale Affinität mit der x-Achse als Affinitätsachse und k als Affinitätsmaßstab ($k \in IR \setminus \{0\}$) auf den Graphen zu f_2 abgebildet werden.

Bestimmen Sie den Affinitätsmaßstab k und geben Sie die Definitions- und Wertemenge der Funktion \mathbf{f}_2 an.

Zeichnen Sie sodann den Graphen zu f₂ in das Koordinatensystem zu A 2.0 ein.

- 3 P
- A 2.2 Punkte $A_n \left(x \mid -1, 5 \cdot \left(x+2, 5\right)^{\frac{1}{2}} + 3\right)$ auf dem Graphen zu f_2 und Punkte $C_n \left(x \mid 2 \cdot \left(x+2, 5\right)^{\frac{1}{2}} 4\right)$ auf dem Graphen zu f_1 haben dieselbe Abszisse x und sind für x < 1, 5 zusammen mit Punkten B_n die Eckpunkte von rechtwinkligen Dreiecken $A_n B_n C_n$ mit den Hypotenusen $\left[B_n C_n\right]$. Es gilt: $\overline{A_n B_n} = 2$ LE .

Zeichnen Sie das Dreieck $A_1B_1C_1$ für x = -1 in das Koordinatensystem zu A 2.0 ein.

1 P

A 2.3 Zeigen Sie durch Rechnung, dass für die Länge der Strecken $\left[A_nC_n\right]$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt:

 $\overline{A_n C_n}(x) = \left[-3.5 \cdot (x+2.5)^{\frac{1}{2}} + 7 \right] LE.$

1 P

A 2.4 Im Dreieck $A_2B_2C_2$ gilt: $\langle A_2C_2B_2 = 40^\circ$.

Berechnen Sie den zugehörigen Wert für x auf zwei Stellen nach dem Komma gerundet.

2 P

A 2.5 Begründen Sie, dass für den Flächeninhalt A der Dreiecke $A_nB_nC_n$ gilt: $A \le 7 \; \text{FE} \; .$

2 P

A 3.0 Die Axialschnitte von Rotationskörpern sind symmetrische Neunecke ABCDE_nFGHI mit der Symmetrieachse MP.

Punkte E_n auf der Symmetrieachse MP legen zusammen mit den Punkten D und F Winkel DE_nF fest. Die Winkel DE_nF haben das Maß $\phi \in]55,02^\circ;180^\circ[$.

Es gilt:

$$\overline{AB} = 6 \text{ cm}$$
; $\overline{BC} = 2.5 \text{ cm}$; $\overline{CD} = 4.8 \text{ cm}$;

$$AI = 4 \text{ cm}$$
;

$$\angle DCB = 90^{\circ}; \angle ABC = 90^{\circ}; \angle BAI = 90^{\circ}.$$

Die Skizze zeigt das maßstabsgetreue Neuneck $ABCDE_1FGHI$ für $\phi = 75^{\circ}$.

A 3.1 Begründen Sie durch Rechnung das Maß der unteren Intervallgrenze für φ.

1 P

A 3.2 Zeigen Sie durch Rechnung, dass für das Volumen V der Rotationskörper in Abhängigkeit von φ gilt: $V(\varphi) = \pi \cdot \left(121, 2 - \frac{30,375}{\tan \frac{\varphi}{\pi}}\right) \text{cm}^3$.

3 P

1 P

A 3.3 Berechnen Sie das Volumen des Rotationskörpers für ϕ = 70° auf zwei Stellen nach dem Komma gerundet.

Abschlussprüfung 2016

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 1 **Nachtermin** B 1.0 Der Punkt A(-2|0,5) ist gemeinsamer Eckpunkt von Rauten $AB_nC_nD_n$. Die Eckpunkte $B_n(x|-1,5x+1,5)$ der Rauten $AB_nC_nD_n$ liegen auf der Geraden g mit der Gleichung y = -1.5x + 1.5 mit $G = IR \times IR$. Es gilt: $\angle B_n AD_n = 60^\circ$. Runden Sie im Folgenden auf zwei Stellen nach dem Komma. B 1.1 Zeichnen Sie die Gerade g sowie die Rauten $AB_1C_1D_1$ für x = -0.5 und $AB_2C_2D_2$ für x = 2 in ein Koordinatensystem. Für die Zeichnung: Längeneinheit 1 cm; $-4 \le x \le 7$; $-2 \le y \le 5$ 3 P B 1.2 Ermitteln Sie rechnerisch die Koordinaten der Punkte D_n in Abhängigkeit von der Abszisse x der Punkte B_n . Ergebnis: $D_n (1,80x-1,87 \mid 0,12x+2,73)$ 3 P B 1.3 Bestimmen Sie die Gleichung des Trägergraphen h der Punkte D_n und zeichnen Sie sodann den Trägergraphen h in das Koordinatensystem zu B 1.1 ein. [Ergebnis: h: y = 0.07x + 2.85] 3 P B 1.4 Zeigen Sie, dass für den Umfang u der Rauten AB_nC_nD_n in Abhängigkeit von der Abszisse x der Punkte B_n gilt: $u(x) = \sqrt{52x^2 + 16x + 80}$ LE. 2 P B 1.5 Der Punkt B₃ der Raute AB₃C₃D₃ liegt auf dem Trägergraphen h der Punkte D_n. Berechnen Sie den Umfang der Raute AB₃C₃D₃. 2 P B 1.6 Die Diagonale $[B_4D_4]$ der Raute $AB_4C_4D_4$ ist parallel zur y-Achse. Bestimmen Sie den zugehörigen Wert für x und geben Sie den Flächeninhalt der Raute $AB_4C_4D_4$ an. 4 P

Abschlussprüfung 2016

an den Realschulen in Bayern

2 P

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 2 **Nachtermin** B 2.0 Das Rechteck ABCD ist die Grundfläche des Quaders ABCDEFGH. Der Punkt E liegt senkrecht über dem Punkt A. Es gilt: AB = 7.5 cm; BC = 10 cm; AE = 13 cm. Runden Sie im Folgenden auf zwei Stellen nach dem Komma. B 2.1 Zeichnen Sie das Schrägbild des Quaders ABCDEFGH, wobei die Strecke [AB] auf der Schrägbildachse und A links von B liegen soll. Für die Zeichnung gilt: q = 0.5; $\omega = 45^{\circ}$. Berechnen Sie sodann das Maß des Winkels EBA. [Ergebnis: \angle EBA = 60,02°] 3 P B 2.2 Punkte P_n liegen auf der Strecke [BE]. Die Winkel BAP_n haben das Maß φ mit $\varphi \in [0^\circ; 90^\circ]$. Die Punkte P_n sind die Spitzen von Pyramiden ABCDP_n mit der Grundfläche ABCD und den Höhen $[P_n T_n]$. Zeichnen Sie die Strecke [BE] sowie die Pyramide $ABCDP_1$ für $\phi = 55^{\circ}$ und ihre Höhe $[P_1T_1]$ in die Zeichnung zu B 2.1 ein. 2 P B 2.3 Zeigen Sie durch Rechnung, dass für das Volumen V der Pyramiden ABCDP_n in Abhängigkeit von φ gilt: $V(\varphi) = \frac{162,50 \cdot \sin \varphi}{\sin(\varphi + 60,02^{\circ})} \text{ cm}^3$. Teilergebnis: $\overline{AP_n}(\varphi) = \frac{6,50}{\sin(\varphi + 60,02^\circ)} \text{ cm}$ 4 P B 2.4 Das gleichschenklige Dreieck ADP₂ hat die Basis [DP₂]. Berechnen Sie den prozentualen Anteil des Volumens der Pyramide ABCDP₂ am Volumen des Quaders ABCDEFGH. 4 P B 2.5 Unter den Strecken [AP_n] hat die Strecke [AP₃] die minimale Länge. Bestimmen Sie das zugehörige Winkelmaß φ sowie die Länge der Strecke [AP₃]. Zeichnen Sie sodann die Strecke [AP₃] in das Schrägbild zu B 2.1 ein. 2 P B 2.6 Begründen Sie, dass für das Volumen der Pyramiden ABCDP,

Bitte wenden!

 $V_{ABCDP_n} \leq \frac{1}{2} \cdot V_{ABCDEFGH}$.