

OPERATING SYSTEMS & PARALLEL COMPUTING

DATA & BUSINESS ANALYTICS

Professor: Olivier Perard

Email: operard@faculty.ie.edu

Operating Systems book

- A free online version of "Modern Operating Systems" can be downloaded from:
- https://github.com/gramasaurous/opsys/blo b/master/Modern.Operating.Systems.3rd.Ed ition.pdf

 https://github.com/gramasaurous/opsys/blo b/master/MOS 3e SM.pdf

Other links (1)

- A. Silberschatz, P. B. Galvin, and G. Gagne, "Operating Systems Concepts (Essentials)", 9th Edition, John Wiley & Sons, 2012.
- http://codex.cs.yale.edu/avi/os-book/

- https://www.os-book.com/OSE2/index.html
- https://www.os-book.com/OS9/index.html
- https://www.os-book.com/OS10/index.html

Other links (2)

- W. Stallings, "Operating Systems: Internals and Design Principles", 8th ed, Pearson, 2015.
- http://williamstallings.com/OperatingSystems/

UNIT 1: INTRODUCTION

- Sessions 1-3
- Topics:
 - Operating system principles and computer architecture.
 - Operating system kernels.
 - Processes and threads.
- Required Reading
 - Textbook: Modern Operating Systems (3rd Edition): Chapter 1-2. page 1-174

UNIT 2: OPERATING SYSTEMS DETAILS

Sessions 4-10

- Topics:
 - Memory Management.
 - File Systems.
 - Input/Output.
 - Deadlocks.
 - Multimedia Operating Systems.
 - Multiple Processor Systems.
 - Security

Required Reading

• Textbook: Modern Operating Systems (3rd Edition): Chapter 3-9.

UNIT 3: OPERATING SYSTEMS EXAMPLES

- Sessions 11-13
- Topics:
 - Linux.
 - Windows.
 - MacOS.
 - Android.
 - iOS.
- Required Reading
 - Textbook: Modern Operating Systems (3rd Edition): Chapter 10-12.

- Session 14
 - **REVIEW UNITS 1, 2 & 3**
- Session 15
 - PARTIAL EXAM 1

<u>UNIT 4: Parallel Computer Architecture</u>

- Sessions 16-18
- Topics:
 - shared memory systems and cache coherence
 - distributed-memory systems
 - Interconnection networks and routing
- Required Reading
 - Textbook: Parallel Programming for Multicore and Cluster Systems: Chapter 2

<u>UNIT 5: Programming shared-address space</u> <u>systems</u>

- Sessions 19-21
- Topics:
 - Cilk Plus
 - OpenMP
 - Pthreads
- Required Reading
 - Textbook: Parallel Programming for Multicore and Cluster Systems: Chapter 6

<u>UNIT 6: Programming scalable systems</u>

- Sessions 22-23
- Topics:
 - Message passing: MPI
 - Global address space languages.
- Required Reading
 - Textbook: Parallel Programming for Multicore and Cluster Systems: Chapter 5

UNIT 7: Features

Sessions 24-27

- Topics:
 - GPU Programming
 - NVDIA: Pascal, Volta.
 - High-performance computing (HPC)
 - Cloud Solution: AWS, Azure, Google Cloud, Oracle
 - Problem solving on clusters using MapReduce (Big Data)
 - Quantum Computing.

Required Reading

• Textbook: CUDA Examples and Programming

- Session 28
 - Students Presentations

- Session 29
 - REVIEW UNITS 4, 5, 6 & 7
- Session 30
 - FINAL EXAM

