Matroids 13

The Greedy Algorithm 13.4

最大化問題:

インスタンス: 独立性システム (E,\mathcal{F}) , $c:E o\mathbb{R}$. タスク: $c(X)=\sum_{e\in X}c(e)$ を最大化する $X\in\mathcal{F}$ の発見.

 (E, \mathcal{F}) が何らかのオラクルで与えられる状況を考える.

独立性オラクル: $F \subset E$ について, $F \in \mathcal{F}$ か否かを返す.

basis-superset **オラクル**: $F \subset E$ について, F が基を含むか否かを 返す.

例. TSP. **完全**グラフ *G* について

E = V(G), $\mathcal{F} = \{ F \subset E : F \ \mathsf{tt} \ G \ \mathsf{on} \ \mathsf{n} \in \mathbb{F} \}$.

- (E, F) の独立性オラクル:簡単
- (E, \mathcal{F}) の basis-superset オラクル:NP-完全
- **例**. 最短経路問題. グラフGについて

$$E = V(G)$$
, $\mathcal{F} = \{F \subseteq E : F \textit{ は s-t-パスの一部}\}.$

- (*E*, *F*) の独立性オラクル:NP-完全
- (E, \mathcal{F}) の basis-superset オラクル:簡単

Best-In-Greedy アルゴリズム -

入力: 独立性オラクルで与えられる独立性システム (E, \mathcal{F}) ,

重み $c:E o \mathbb{R}_+$.

出力: $F \in \mathcal{F}$.

- 1. $E=\{e_1,\ldots,e_n\}$ を $c(e_1)\geq \cdots \geq c(e_n)$ となるようソート.
- 2. $F \leftarrow \emptyset$.
- 3. for $i \leftarrow 0$ to n do: if $F \cup \{e_i\} \in \mathcal{F}$ then $F \leftarrow F \cup \{e_i\}$.

例. Kruskal 法.

Worst-Out-Greedy アルゴリズム —

入力: basis-superset オラクルで与えられる独立性システム (E, \mathcal{F}) ,

重み $c:E o \mathbb{R}_+$.

出力: (E, \mathcal{F}) の基 F.

- 1. $E = \{e_1, \ldots, e_n\}$ を $c(e_1) \leq \cdots \leq c(e_n)$ となるようソート.
- 2. $F \leftarrow E$.
- 3. for $i \leftarrow 0$ to n do: if $F \setminus \{e_i\}$ が基を含む then $F \leftarrow F \setminus \{e_i\}$.

主張. (E, \mathcal{F}, c) に対する Best-In-Greedy アルゴリズムは, $(E, \mathcal{F}^*, -c)$ に対する Worst-Out-Greedy アルゴリズムと対応する.

証明.

$$F\in \mathcal{F}$$

 $\iff \exists B: (E, \mathcal{F})$ の基 s.t. $F \subset B$

 $\iff \exists B: (E,\mathcal{F})$ の基 s.t. $F^c\supseteq B^c$ $(B^c\ \mathrm{td}\ (E,\mathcal{F}^*)$ の基)

定理 13.19. $c: E \to \mathbb{R}_+$ に対する最大化問題について,

$$G(E,\mathcal{F},c)= ext{(Best-In-Greedy が発見した解のコスト)},$$
 OPT $(E,\mathcal{F},c)= ext{(最適解のコスト)},$

とすると

$$q(E, \mathcal{F}) \le \frac{G(E, \mathcal{F}, c)}{\text{OPT}(E, \mathcal{F}, c)} \le 1.$$

あるcは下界を達成する.

復習. Rank quotient:

$$q(E,\mathcal{F}) = \min_{F\subseteq E} rac{
ho(F)}{r(F)}$$

Lower rank:

$$\rho(F) = \min\{|B| : B$$
は F の基}

証明. $E=\{e_1,\ldots,e_n\}$, $c(e_1)\geq \cdots \geq c(e_n)$ とする.これに対する Best-In-Greedy の解を G_n とし,最適解を O_n とする.

$$E_j = \{e_1, \ldots, e_j\},$$

 $G_j = G_n \cap E_j,$
 $O_j = O_n \cap E_j,$

とする. また,

$$d_n = c(e_n),$$

 $d_i = c(e_i) - c(e_{i+1}),$

とする. このとき

$$|O_j| \le r(E_j)$$
 (∵ $O_j \in \mathcal{F}$) $|G_j| \ge \rho(E_j)$ (∵ G_j は E_j の基).

したがって,

$$egin{aligned} rac{c(G_n)}{c(O_n)} &= rac{\sum_{j=1}^n (|G_j| - |G_{j-1}|) c(e_j)}{\sum_{j=1}^n (|O_j| - |O_{j-1}|) c(e_j)} \ &= rac{\sum_{j=1}^n |G_j| d_j}{\sum_{j=1}^n |O_j| d_j} \ &\geq rac{\sum_{j=1}^n
ho(E_j) d_j}{\sum_{j=1}^n r(E_j) d_j} \ &\geq q(E, \mathcal{F}). \end{aligned}$$

ここで,

$$q(E,\mathcal{F}) = rac{
ho(F)}{r(F)} = rac{|B_1|}{|B_2|}$$

となるように $F \subseteq E$ と F の基 B_1 , B_2 をとる.

$$c(e) = egin{cases} 1 & (e \in F) \\ 0 & (e \notin F) \end{cases}$$

とし,

$$c(e_1) \ge \cdots \ge c(e_n),$$

 $B_1 = \{e_1, \ldots, e_{|B_1|}\},$

となるように E の元を並べると,

$$G(E,\mathcal{F},c)=|B_1|,$$
 $ext{OPT}(E,\mathcal{F},c)\geq |B_2|.$

定理 13.20 (Edmonds-Rado の定理). 次は同値.

- (a) (E, \mathcal{F}) はマトロイド.
- (b) 任意の $c: E \to \mathbb{R}_+$ について,Best-In-Greedy は (E, \mathcal{F}, c) に関する最大化問題の最適解を与える.

証明.

$$(E,\mathcal{F})$$
 はマトロイド $\iff q(E,\mathcal{F})=1$ $\iff \mathrm{Best\text{-}In\text{-}Greedy}$ は常に最適解を与える.

定理 13.21. マトロイド (E,\mathcal{F}) ,ランク関数 $r:2^E o \mathbb{Z}_+$ をとる.

 (E,\mathcal{F}) の**マトロイド超多面体** (matroid polytope) (\mathcal{F} の元の接続ベクトルの凸包) は

$$\left\{x\in\mathbb{R}^E:x\geq0,\,\sum_{e\in A}x_e\leq r(A) ext{ for all } A\subseteq E
ight\}$$

証明. (⊆) は明らか.

 (\supseteq) $e\in E$ について $r(\{e\})\leq 1$ より,超多面体の各頂点 x について $0\leq x\leq 1$.これに $x\in \mathbb{Z}^E$ という条件が加われば,x はある $F\subseteq E$ の接続 ベクトルとなり,

$$\sum_{e \in F} x_e = |F| \le r(F)$$

より $F \in \mathcal{F}$,したがって $x \in (\text{matroid polytope})$.したがって,超多面体の頂点がすべて整数ベクトルであればよい.そこで,

$$\max \left\{ cx : x \geq 0, \, \sum_{e \in A} x_e \leq r(A) ext{ for all } A \subseteq E
ight\}$$

が任意の $c \in \mathbb{R}^E$ について整数解を持つことを示す.

 $c:E o\mathbb{R}$ をとる.ある $e\in E$ について c(e)<0 ならば最適解 x は $x_e=0$ を満たすので,そのような e は考慮から外してよい.そこで $c\geq 0$ を仮定し, (E,\mathcal{F},c) に対する最大化問題を考える.

LP の最適解 x について,

$$s_j = x_{e_1} + \cdots + x_{e_j} \ (\leq r(\{e_1, \ldots, e_j\}) = r(E_j)),$$

とすると、

$$egin{aligned} rac{c(G_n)}{\sum_{e \in E} c(e) x_e} &= rac{\sum_{j=1}^n (|G_j| - |G_{j-1}|) c(e_j)}{\sum_{j=1}^n (s_j - s_{j-1}) c(e_j)} \ &= rac{\sum_{j=1}^n |G_j| d_j}{\sum_{j=1}^n s_j d_j} \ &\geq rac{\sum_{j=1}^n
ho(E_j) d_j}{\sum_{j=1}^n r(E_j) d_j} \ &\geq q(E, \mathcal{F}) = 1. \end{aligned}$$

したがって $c(G_n) \ge cx$ なので, G_n も LP の最適解.

定理 13.22. 独立性システム (E,\mathcal{F}) , $c:E \to \mathbb{R}_+$ に関する**最小**化問題について,

$$G(E,\mathcal{F},c)= ext{(Worst-Out-Greedy が発見した解のコスト)},$$
 $ho^*=((E,\mathcal{F}^*)\ ext{の lower rank 関数)},$ $r^*=((E,\mathcal{F}^*)\ ext{のランク関数})$

とすると、

$$1 \leq rac{G(E, \mathcal{F}, c)}{\mathsf{OPT}(E, \mathcal{F}, c)} \leq \max_{F \subset E} rac{|F| -
ho^*(F)}{|F| - r^*(F)}.$$

ある *c* は上界を達成する.

証明. 分子側 $(|G_j| \leq |E_j| - \rho^*(E_j))$ を示す. $E_j \setminus G_j$ が (E, \mathcal{F}^*) における E_j の基であると言えれば,

$$|E_j|-|G_j|=|E_j\setminus G_j|=r^*(E_j)\geq
ho^*(E_j).$$

- (a) $E_i \setminus G_i \in \mathcal{F}^*$: G_n は (E,\mathcal{F}) の基であり, $(E_i \setminus G_i) \cap G_n = \emptyset$.
- (b) $(E_j \setminus G_j) \cup \{e\} \notin \mathcal{F}^*$ for all $e \in G_j : \forall B(基) \ G_j \setminus \{e\} \not\supseteq B$ より、 $\forall B(基) \ ((E_j \setminus G_j) \cup \{e\}) \cap B \neq \emptyset$.

分母側 $(|O_j|\geq |E_j|-r^*(E_j))$ を示す. O_n は (E,\mathcal{F}) の基であり, $(E_j\setminus O_j)\cap O_n=\emptyset$ なので, $E_j\setminus O_j\in \mathcal{F}^*$,よって

$$|E_j|-|O_j|=|E_j\setminus O_j|\leq r^*(E_j\setminus O_j)\leq r^*(E_j).$$

よって同様の計算により不等式が示される.

上界を達成する c を構成する.

$$\max_{F \subseteq E} rac{|F| -
ho^*(F)}{|F| - r^*(F)} = rac{|F| -
ho^*(F)}{|F| - r^*(F)} = rac{|F| - |B_1|}{|F| - |B_2|}$$

となるように $F \subseteq E$ と F の $((E, \mathcal{F}^*)$ での) 基 B_1 , B_2 をとり,

$$c(e) = \begin{cases} 1 & (e \in F) \\ 0 & (e \notin F) \end{cases}$$

とする.E の元を $c(e_1) \geq \cdots c(e_n)$, $B_1 = \{e_1, \ldots, e_{|B_1|}\}$ となるように並べると,

$$G(E,\mathcal{F},c)=|F|-|B_1|,$$
 $ext{OPT}(E,\mathcal{F},c)=|F|-|B_2|.$

定理 13.23. マトロイド (E,\mathcal{F}) , $C:E\to\mathbb{R}$, $X\in\mathcal{F}$,k=|X| について, $c(X)=\max\{c(Y):Y\in\mathcal{F},\;|Y|=k\}$ であることは,以下が同時に成り立つことと同値.

- (a) $y \in E \setminus X$, $X \cup \{y\} \notin \mathcal{F}$, $x \in C(X,y) \Longrightarrow c(x) \geq c(y)$. *1
- (b) $y \in E \setminus X$, $X \cup \{y\} \in \mathcal{F}$, $x \in X \Longrightarrow c(x) > c(y)$.

例. 連結グラフ G のグラフィックマトロイド $(E, \mathcal{F}), k = r(E) = |V| - 1$.

証明. (\Longrightarrow) いずれかが成立しない場合, $(X \cup \{y\}) \setminus \{x\}$ がより大きな重みを持つ.

 (\longleftarrow) WLOG $c \geq 0$ と仮定する. $\mathcal{F}' \coloneqq \{F \in \mathcal{F} : |F| \leq k\}$.

 $E = \{e_1, \ldots, e_n\}$ の元を重みの降順で並べ,同じ重みのもの同士では Xの元が先に来るようにする.

 (E, \mathcal{F}') はマトロイドなので,最大化問題に対する Best-In-Greedy の貪欲解 X' をとると $c(X) = \max\{c(Y): Y \in \mathcal{F}\}$.

X = X'を示す. $X \neq X'$ を仮定する.

X' は基なので |X|=k=|X'|. $e_i\in X'\setminus X$ なる最小の i をとる.このとき j< i について $e_j\in X\iff e_j\in X'$.

 $X \cup \{e_i\} \notin \mathcal{F}$ ならば,(a) より各 $e_j \in C(X,e_i)$ は $j \leq i$ を満たす. $e_j \in X$ または $e_j = e_i$ より $e_j \in X'$. したがって $C(X,e_i) \subseteq X'$ となり, $X' \in \mathcal{F}'$ に矛盾.

 $X \cup \{e_i\} \in \mathcal{F}$ ならば,(b) より各 $e_j \in X$ は j < i を満たす.したがって $e_i \in X'$ より, $X \subset X'$.|X| = |X'| に矛盾.

 $^{^{*1}}$ C(X,y) は $X\cup\{y\}$ が含むただ一つの閉路のこと.