Исследование одной робастной оценки

Филатова Арина Алексеевна, гр. 20.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н., профессор М.С. Ермаков Рецензент: к.ф.-м.н., с.н.с. В.Н. Солев

Санкт-Петербург, 2024

Введение

Проблема:

- Медленная скорость сходимости детерминированных алгоритмов робастного оценивания многомерного параметра положения.
- Необходимость повышения эффективности.

Актуальность:

 Отсутствие стохастических подходов робастного оценивания многомерного параметра положения.

Цель:

 Исследование нового робастного стохастического алгоритма для оценки многомерного параметра положения.

Постановка задачи

- Реализовать и исследовать новый робастный алгоритм для оценки одного из вариантов многомерного параметра положения.
- Получить некоторые начальные результаты относительно его сходимости, скорости сходимости и робастности.
- Сравнить результат работы предложенного алгоритма с наиболее распространенными алгоритмами для оценки многомерного параметра положения.

Предположения алгоритма

Алгоритм несмещенно оценивает параметр положения для распределений, поверхности уровня плотности f которых являются выпуклыми центрально-симметричными, то есть такими, что для любого $\mathbf{x} \in \mathbb{R}^d$:

- $f(\mathbf{x} + \mathbf{x}_0) = \text{const} \text{выпуклое множество};$

В этом случае параметр положения обычно определяется как значение, совпадающее с центром симметрии $\mathbf{x}_0 \in \mathbb{R}^d$. Поэтому предложенный алгоритм можно рассматривать как оценку некоторого многомерного обобщения медианы.

Алгоритм вычисления исследуемой оценки многомерной медианы [М. Ермаков, 2022]

- Рассматриваем выборку $\mathbf{x}_1, \dots, \mathbf{x}_n$ из распределения с функцией плотности f.
- ② Произвольным образом выбираем точку $\widehat{\mathbf{m}}_1$ начальное приближение. Задаем погрешность вычисления ε .
- Моделируем случайный вектор u_i , равномерно распределенный на единичной сфере. Проводим прямую

$$l_i = {\{\widehat{\mathbf{m}}_i + \lambda \mathbf{u}_i, \ \lambda \in \mathbb{R}\}.}$$

- ullet Проектируем наблюдения ${f x}_1, \dots, {f x}_n$ на прямую l_i , получаем точки-проекции y_{i1}, \dots, y_{in} .
- f o Находим медиану $\widehat{f m}_{i+1}$ точек $y_{i1},\ldots,y_{in}.$
- Алгоритм завершается, когда выполняется условие $\|\widehat{\mathbf{m}}_i \widehat{\mathbf{m}}_{i+1}\| < \varepsilon$. Иначе увеличиваем счётчик шагов i на 1 и возвращаемся к шагу 3.

Временная сложность и ее сравнение с некоторыми другими алгоритмами вычисления медианы

• Временная сложность для выборки объемом n в пространстве размерности d для одного шага алгоритма:

$$O(d) + O(nd) + O(n) + O(d) + O(d) = O(nd).$$

 В таблице представлена сравнительная информация о временной сложности методов вычисления двумерной медианы.

Медиана	Временная сложность	Источник
Тьюки	$O(n\log^3 n)$	[Langerman, 2003]
Геометрическая*	O(n)	[Cohen, 2016]
Оджа	$O(n\log^3 n)$	[Aloupis, 2003]
Стохастическая*	O(n)	_

Результат работы алгоритма

Мной была написана функция на языке программирования Python, которая реализует данный алгоритм.

В результате ее работы для точек, равномерно распределенных в единичном круге, получается следующий результат.

Результат работы алгоритма

При аналогичных условиях, если в выборке заменить 25% точек на точку-выброс $(3,\ 4)^{\mathbf T}$, результат следующий.

Исследование сходимости и скорости сходимости в случае равномерного распределения в шаре

Мной был получен следующий теоретический результат.

Предложение

Пусть $d \geqslant 2$ – размерность пространства, T_{ε} – количество шагов алгоритма до попадания в ε -окрестность, r_0 – расстояние между начальным приближением и нулем.

Алгоритм в случае равномерного распределения в шаре сходится, причем

$$\frac{T_{\varepsilon}}{\ln(r_0/\varepsilon)} \xrightarrow{\mathrm{P}} \frac{1}{-\mathrm{E}_d} \text{ при } \varepsilon \to 0,$$
 где $\mathrm{E}_d = \left\{ \begin{array}{l} -\sqrt{\pi} \cdot \left[\ln 2 - \sum_{i=1}^{d-2} \frac{(-1)^{i+1}}{i}\right], \ d-\text{четное}, \\ \\ \sqrt{2} \cdot \left[\ln 2 - \sum_{i=1}^{d-2} \frac{(-1)^{i+1}}{i}\right], \ d-\text{нечетноe}. \end{array} \right.$

Исследование скорости сходимости в зависимости от размерности

Рассмотрим график зависимости нормы ошибки от количества итераций.

Исследование робастности

Рассмотрим график зависимости нормы ошибки от веса выброса для различных расстояний от истинного значения в случае фиксированной точности для двумерного нормального распределения.

Исследование робастности

Теперь фиксируем количество итераций вместо точности и на тех же данных запустим алгоритм.

Сравнение результатов работы с другими алгоритмами для нормального распределения

Рассмотрим изменение ошибки для разных объемов выборки в случае нормального распределения с математическим ожиданием равным $(0, 0)^{\mathbf{T}}$ и ковариационной матрицей diag $\{1, 2\}$.

Сравнение результатов работы с другими алгоритмами для нормального распределения

В выборке заменим 25% наблюдений на точку-выброс $(9,\ 12)^{\bf T}$ и посмотрим, как в данном случае изменяется ошибка.

Сравнение результатов работы с другими алгоритмами для нормального распределения

Пусть теперь математическое ожидание равно $(0, 0, 0)^{\mathbf{T}}$ и ковариационная матрица $diag\{1, 2, 3\}$.

В выборке заменим 25% наблюдений на точку-выброс $(2, 5, 14)^{\mathbf{T}}$.

Другие результаты

Также мной были получены следующие результаты:

1. Зависимость нормы ошибки от объема выборки

• Ошибка уменьшается пропорционально $1/\sqrt{n}$ с ростом объема выборки n.

2. Зависимость количества итераций от точности

• Количество итераций k логарифмически растет с увеличением точности ε , что согласуется с полученным теоретическим результатом.

3. Разброс оценки

• С увеличением объема выборки n дисперсия оценки уменьшается.

Заключение

- Реализован новый алгоритм робастного оценивания параметра положения, исследована на модельном примере и строго доказана его скорость сходимости, а также временная сложность.
- Проведено сравнение с распространёнными алгоритмами, которое показало, что предложенный алгоритм дает сопоставимые результаты и не уступает по эффективности.
- Открытыми остались вопросы относительно проведения более глубокого исследования алгоритма:
 - распространении алгоритма для более сложных вероятностных распределений,
 - построении модификации алгоритма для работы с большими данными.