Computational Principles for High-dim Data Analysis

(Lecture Ten)

Yi Ma and Jiantao Jiao

EECS Department, UC Berkeley

September 30, 2021

Convex Methods for Low-Rank Matrix Recovery (Matrix Completion)

- Motivating Example
- 2 Nuclear Norm Minimization
- 3 Algorithm: Augmented Lagrange Multiplier
- 4 Conditions for Success
- 5 Stable Matrix Completion

"Mathematics is the art of giving the same name to different things."

— Henri Poincaré

Example of Low-rank Matrix Completion

Recommendation Systems (how internet companies make money):

 $\begin{array}{c} {\rm Items} \\ {\rm Observed~(Incomplete)~Ratings~\textbf{\textit{Y}}} \end{array}$

We observe:

$$oldsymbol{Y}_{ ext{Observed ratings}} = \mathcal{P}_{\Omega} \left[oldsymbol{X}_{ ext{Complete ratings}}
ight],$$

where $\Omega \doteq \{(i,j) \mid \text{user } i \text{ has rated product } j\}$.

Nuclear Norm Minimization

Problem (Matrix Completion)

Let $X_o \in \mathbb{R}^{n \times n}$ be a low-rank matrix. Suppose we are given $Y = \mathcal{P}_{\Omega}[X_o]$, where $\Omega \subseteq [n] \times [n]$. Fill in the missing entries of X_o .

Notice: If $(i,j) \notin \Omega$, $\mathcal{P}_{\Omega}[\boldsymbol{E}_{ij}] = \mathbf{0}$. So \mathcal{P}_{Ω} has matrices of rank one in its null space! So, \mathcal{P}_{Ω} cannot be rank-RIP for any rank r > 0 with $\delta < 1$.

Question: can we still find X_o by solving the nuclear norm minimization:

$$\min \|\boldsymbol{X}\|_*$$
 subject to $\mathcal{P}_{\Omega}[\boldsymbol{X}] = \boldsymbol{Y}$? (1)

Simulations lead the way of investigation - need an algorithm...

Algorithm via Augmented Lagrange Multiplier

Nuclear norm minimization for matrix completion:

$$\min \underbrace{\|X\|_*}_{f(x)}$$
 subject to $\underbrace{\mathcal{P}_{\Omega}[X] = Y}_{g(x)=0}$. (2)

The Lagrangian method:

$$\mathcal{L}(\boldsymbol{X}, \boldsymbol{\Lambda}) = \|\boldsymbol{X}\|_* + \langle \boldsymbol{\Lambda}, \boldsymbol{Y} - \mathcal{P}_{\Omega}[\boldsymbol{X}] \rangle. \tag{3}$$

Optimality conditions:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{\Lambda}} = 0.$$
 (4)

However, it only holds at the point of the optimal solution $x^\star.$

Algorithm via Augmented Lagrange Multiplier

The augmented Lagrangian is to regularize the landscape around the optimal solution x^* :

$$\mathcal{L}_{\mu}(X, \Lambda) = \|X\|_* + \langle \Lambda, Y - \mathcal{P}_{\Omega}[X] \rangle + \frac{\mu}{2} \|Y - \mathcal{P}_{\Omega}[X]\|_F^2.$$
 (5)

Amenable for alternating optimization to converge to the optimal solution x^\star more easily and efficiently:

Primal:
$$X_{k+1} \in \arg\min_{X} \mathcal{L}_{\mu}(X, \Lambda_{k}),$$
 (6)

Dual:
$$\Lambda_{k+1} = \Lambda_k + \mu \mathcal{P}_{\Omega}[Y - X_{k+1}].$$
 (7)

Algorithm: Proximal Gradient Descent

How to minimize the augmented Lagrangian \mathcal{L}_{μ} :

$$\min_{\boldsymbol{X}} F(\boldsymbol{X}) \doteq \underbrace{\|\boldsymbol{X}\|_*}_{g(\boldsymbol{X}) \text{ convex}} + \underbrace{\langle \boldsymbol{\Lambda}, \boldsymbol{Y} - \mathcal{P}_{\Omega}[\boldsymbol{X}] \rangle + \frac{\mu}{2} \|\boldsymbol{Y} - \mathcal{P}_{\Omega}[\boldsymbol{X}]\|_F^2}_{f(\boldsymbol{X}) \text{ smooth, convex, } \mu\text{-Lipschitz}}.$$
 (8)

At each iterate X_k , construct a local (quadratic) upper bound for F:

$$\hat{F}(X, X_k) = g(X) + f(X_k) + \langle \nabla f(X_k), X - X_k \rangle + \frac{\mu}{2} ||X - X_k||_2^2.$$
 (9)

Proximal gradient descent: the next iterate X_{k+1} is computed as

$$X_{k+1} = \arg\min_{\mathbf{X}} \left\{ g(\mathbf{X}) + \frac{\mu}{2} \left\| \mathbf{X} - \underbrace{\left(\mathbf{X}_k - \frac{1}{\mu} \nabla f(\mathbf{X}_k) \right)}_{\mathbf{M}} \right\|_F^2 \right\}$$
(10)
= $\operatorname{prox}_{g/\mu}(\mathbf{M})$ (see details in Chapter 8).

Algorithm: Proximal Operator for Nuclear Norm

For a matrix M with SVD $M=U\Sigma V^*$, its singular value thresholding operator is:

$$\mathcal{D}_{ au}[M] = U \mathcal{S}_{ au}[\Sigma] V^*,$$

where $S_{\tau}[X] = \operatorname{sign}(X) \circ (|X| - \tau)_{+}$ is the entry-wise soft thresholding operator.

Theorem

The unique solution X_{\star} to the program:

$$\min_{\mathbf{X}} \{ \|\mathbf{X}\|_* + \frac{\mu}{2} \|\mathbf{X} - \mathbf{M}\|_F^2 \}, \tag{12}$$

is given by

$$X_{\star} = \mathcal{D}_{\mu^{-1}}[M]. \tag{13}$$

Algorithm via Augmented Lagrange Multiplier

Outer Loop: Matrix Completion by ALM

- 1: **initialize:** $X_0 = \Lambda_0 = 0, \mu > 0.$
- 2: while not converged do
- 3: compute $X_{k+1} \in \operatorname{arg\,min}_{\boldsymbol{X}} \mathcal{L}_{\mu}(\boldsymbol{X}, \boldsymbol{\Lambda}_k)$ (say by PG);
- 4: compute $\mathbf{\Lambda}_{k+1} = \mathbf{\Lambda}_k + \mu (\mathbf{Y} \mathcal{P}_{\Omega}[\mathbf{X}_{k+1}])$.
- 5: end while

Inner Loop: Proximal Gradient

- 1: **initialize:** X_0 starts with the X_k from the outer loop.
- 2: while not converged do
- 3: compute

$$\begin{split} \boldsymbol{X}_{\ell+1} &= \operatorname{prox}_{g/\mu} \big(\boldsymbol{X}_{\ell} - \mu^{-1} \nabla f(\boldsymbol{X}_{\ell}) \big) \\ &= \mathcal{D}_{\mu^{-1}} \Big[\underbrace{\mathcal{P}_{\Omega^c}[\boldsymbol{X}_{\ell}] + \boldsymbol{Y} + \mu^{-1} \mathcal{P}_{\Omega}[\boldsymbol{\Lambda}_k]}_{\text{exercise}} \Big]. \end{aligned}$$

4: end while

Similar Phenomena of Success

Comparison: low-rank matrix recovery from random linear measurements versus matrix completion from random sampled entries.

Figure: Left: phase transition for matrix recovery; Right: phase transition for matrix completion.

When it fails?

- $oldsymbol{0}$ if X_o is itself sparse (as in the example of E_{ij})
- 2 if Ω is chosen adversarially (e.g., an entire row or column of X_o).

Notice for any rank-r orthogonal matrix U:

$$\sum_{i} \|e_{i}^{*} U\|_{2}^{2} = \|U\|_{F}^{2} = r \implies \max_{i} \|e_{i}^{*} U\|_{2}^{2} \ge r/n.$$

Definition

We say that $X_o = U\Sigma V^*$ is ν -incoherent if the following hold:

$$\forall i \in [n], \quad \|e_i^* U\|_2^2 \le \nu r/n,$$
 (14)
 $\forall j \in [n], \quad \|e_i^* V\|_2^2 \le \nu r/n.$ (15)

$$\forall j \in [n], \quad \|\boldsymbol{e}_{j}^{*}\boldsymbol{V}\|_{2}^{2} \leq \nu r/n. \tag{15}$$

Bernoulli $\mathrm{Ber}(p)$ sampling model: each entry (i,j) belongs to the observed set Ω independently with probability $p \in [0,1]$. Hence, the expected number of observed entries is:

$$m = \mathbb{E}[|\Omega|] = pn^2. \tag{16}$$

Theorem (Matrix Completion via Nuclear Norm Minimization)

Let $X_o \in \mathbb{R}^{n \times n}$ be a rank-r matrix with incoherence parameter ν . Suppose that we observe $Y = \mathcal{P}_{\Omega}[X_o]$, with Ω sampled according to the Bernoulli model with probability

$$p \ge C_1 \frac{\nu r \log^2(n)}{n}.\tag{17}$$

Then with probability at least $1 - C_2 n^{-c_3}$, \boldsymbol{X}_o is the unique optimal solution to

minimize
$$\|X\|_*$$
 subject to $\mathcal{P}_{\Omega}[X] = Y$. (18)

Lemma (Subdifferential of nuclear norm)

Let $X \in \mathbb{R}^{n \times n}$ have compact singular value decomposition $X = U\Sigma V^*$. The subdifferential of the nuclear norm at X is given by

$$\partial \left\| \cdot \right\|_* (\boldsymbol{X}) = \left\{ \boldsymbol{Z} \mid \mathcal{P}_{\mathsf{T}}[\boldsymbol{Z}] = \boldsymbol{U} \boldsymbol{V}^*, \ \| \mathcal{P}_{\mathsf{T}^{\perp}}[\boldsymbol{Z}] \| \le 1 \right\}. \tag{19}$$

Key ideas for the Theorem:

For the program:

$$\min \|X\|_*$$
 subject to $\mathcal{P}_{\Omega}[X] = \mathcal{P}_{\Omega}[X_o].$ (20)

Similar to the ℓ^1 case, find a dual certificate Λ that satisfies (the KKT condition):

- (i) Λ is supported on Ω : $\mathcal{P}_{\Omega}[\Lambda] = \Lambda$ and
- (ii) $\Lambda \in \partial \left\| \cdot \right\|_* (X_o)$ i.e., $\mathcal{P}_\mathsf{T}[\Lambda] = UV^*$ and $\|\mathcal{P}_{\mathsf{T}^\perp}[\Lambda]\| \leq 1$,

Strategy: look for a matrix Λ of smallest 2-norm that satisfies the equality constraints

$$\mathcal{P}_{\Omega^c}[\mathbf{\Lambda}] = \mathbf{0}, \quad \mathcal{P}_{\mathsf{T}}[\mathbf{\Lambda}] = UV^*,$$
 (21)

and then hope to check that it satisfies the inequality constraints

$$\|\mathcal{P}_{\mathsf{T}^{\perp}}[\boldsymbol{\Lambda}]\| \leq 1.$$

Unfortunately, this straightforward strategy does not work out directly as solution to the equalities is not so easy to analyze...

An alternative strategy: an set of (relaxed) conditions for optimality:

Proposition (KKT Conditions - Approximate Version)

The matrix X_o is the unique optimal solution to the nuclear minimization problem (18) if the following set of conditions hold

1 The operator norm of the operator $p^{-1}\mathcal{P}_{\mathsf{T}}\mathcal{P}_{\Omega}\mathcal{P}_{\mathsf{T}} - \mathcal{P}_{\mathsf{T}}$ is small:

$$||p^{-1}\mathcal{P}_{\mathsf{T}}\mathcal{P}_{\Omega}\mathcal{P}_{\mathsf{T}} - \mathcal{P}_{\mathsf{T}}|| \leq \frac{1}{2}.$$

- **2** There exists a dual certificate Λ that satisfies $\mathcal{P}_{\Omega}[\Lambda] = \Lambda$ and
 - (a) $\|\mathcal{P}_{\mathsf{T}^{\perp}}[\mathbf{\Lambda}]\| \leq \frac{1}{2}$;
 - (b) $\|\mathcal{P}_{\mathsf{T}}[\boldsymbol{\Lambda}] \boldsymbol{U}\tilde{\boldsymbol{V}}^*\|_F \leq \frac{1}{4n}$.

Matrix Completion with Noise

Problem: the observed entries are often corrupted with some noise:

$$Y_{ij} = [\boldsymbol{X}_o]_{ij} + Z_{ij}, \ (i,j) \in \Omega; \quad \text{or} \quad \mathcal{P}_{\Omega}[\boldsymbol{Y}] = \mathcal{P}_{\Omega}[\boldsymbol{X}_o] + \mathcal{P}_{\Omega}[\boldsymbol{Z}], \quad (22)$$

where Z_{ij} can be some small noise, say $\|\mathcal{P}_{\Omega}[\mathbf{Z}]\|_F < \epsilon$.

$$\min \|X\|_*$$
 subject to $\|\mathcal{P}_{\Omega}[X] - \mathcal{P}_{\Omega}[Y]\|_F < \epsilon$. (23)

Theorem (Stable Matrix Completion)

Let $X_o \in \mathbb{R}^{n \times n}$ be a rank-r, ν -incoherent matrix. Suppose that we observe $\mathcal{P}_{\Omega}[Y] = \mathcal{P}_{\Omega}[X_o] + \mathcal{P}_{\Omega}[Z]$, where Ω is uniformly sampled from subsets of size $m > C_1 \nu n r \log^2(n),$

$$m \ge C_1 \nu n r \log^2(n), \tag{24}$$

then with high probability, the optimal solution \hat{X} to the convex program (23) satisfies

$$\|\hat{\boldsymbol{X}} - \boldsymbol{X}_o\|_F \le c \frac{n\sqrt{n\log(n)}}{\sqrt{m}} \epsilon \le c' \frac{n}{\sqrt{r}} \epsilon, \quad \text{for some } c > 0.$$
 (25)

Summary

Nuclear norm minimization can recover w.h.p. a low-rank matrix $oldsymbol{X}_o$ from

- $oldsymbol{1} m = O(nr)$ random linear measurements: $oldsymbol{y} = \mathcal{A}[oldsymbol{X}];$
- 2 $m = O(nr \log^2 n)$ randomly sampled entries: $\mathbf{Y} = \mathcal{P}_{\Omega}[\mathbf{X}]$;
- 3 the estimate \hat{X} is stable to small noise.

Assignments

- Reading: Section 4.4-4.6 of Chapter 4.
- Programming Homework # 2.