信息论基础

李 莹 liying2009@ecust.edu.cn

第三章: 信源及信源熵

- 一、信源的分类及其数学模型
- 二、离散单符号信源
- 三、离散多符号信源

信源的分类及其数学模型

- 信源是产生消息(符号)、消息序列(符号序列)以及 时间连续的消息的来源。
- 信源的主要问题:
 - ▶如何描述信源的输出(信源的建模问题)√
 - ▶怎样确定信源产生的信息量、产生信息的速率 √
 - ▶信源编码 (第五、七章)

根据信源输出消息在时间和取值上是离散或连续分类:

时间 (空间)	取值	信源种类	举例	消息的数学描述
离散	离散	离散信源 (数字信源)	文字、数据 、 离散化图象	离散随机变量序列 $P(X) = P(X_1 X_2 \cdots X_N)$
离散	连续	连续信源		连续随机变量序列 $P(\mathbf{X}) = P(X_1 X_2 \cdots X_N)$
连续	连续	波形信源 (模拟信源)	语音、音乐 、热噪声、 图形、图象	随机过程 $\left\{X(e,t) ight\}$
连续	离散		不常见	

信源的分类

- 根据信源发出的消息序列中的消息,统计特性是否保持不变,信源可分为平稳信源/非平稳信源。
- 根据信源发出的单个消息取值是离散值还是连续值,信源可分为离散信源/连续信源。
- 根据信源发出的消息之间是否有统计依赖关系,信源可分为有记忆信源/无记忆信源。
- 本章重点研究离散平稳无记忆信源,以及较简单的有记忆信源-马尔可夫信源。

信源的分类

随机过程:波形信源

离散单符号信源

● 离散单符号信源:输出离散取值的单个符号的信源。

离散单符号信源是最简单、最基本的信源,是组成实际信源的基本单元,可以 用一个离散随机变量来表示。

● 离散单符号信源X的概率空间:

$$\begin{bmatrix} X \\ P(X) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_q \\ p(x_1) & p(x_2) & \dots & p(x_q) \end{bmatrix}$$

$$p(x_i) \ge 0 \qquad \sum_{i=1}^n p(x_i) = 1$$

离散单符号信源

例: 一个二元无记忆信源,符号集 $A = \{0,1\}$,p 为 X = 0的概率。 写出信源的模型。

解: 信源的模型:

$$\begin{bmatrix} X \\ P \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ p & q \end{bmatrix}$$

离散单符号信源

● 信源输出的所有消息的自信息的 统计平均值,定义为信源的平均自信息(信息熵):

$$H(X) = E[-\log p(x_i)] = -\sum_{i=1}^{q} p(x_i) \log p(x_i)$$

● 信息熵表示离散单符号信源的平均不确定性。

第三章: 信源及信源熵

一: 信源的分类及其数学模型

二: 离散单符号信源

三: 离散多符号信源

1. 预备知识

2. 离散平稳无记忆信源

3. 离散平稳有记忆信源

4. 马尔可夫信源

5. 信源的相关性和剩余度

预备知识

- 实际信源输出往往是符号序列, 称为离散多符号信源。
- 离散多符号信源可以用随机矢量/随机变量序列来描述, 即

$$\mathbf{X} = X_1 X_2 \cdots X_n \cdots$$

● 一般来说,信源的统计特性随着时间的推移而有所变化。 为了便于研究,我们常常假定在一个较短的时间段内, 信源是平稳信源。

定义1:对于离散随机变量序列 $X_1X_2\cdots X_n\cdots$,若任意两个不同 时刻i和j(大于1的任意整数)信源发出消息的概率分布完全相同 ,即对于任意的N=0, 1, 2, … , $X_iX_{i+1}\cdots X_{i+N}$ 和 $X_iX_{i+1}\cdots X_{i+N}$ 具 有相同的概率分布。也就是

信源分类

$$P(X_i) = P(X_j)$$

 $P(X_i X_{i+1}) = P(X_j X_{j+1})$
 \vdots
 $P(X_i X_{i+1} \cdots X_{i+N}) = P(X_j X_{j+1} \cdots X_{j+N})$

即各维联合概率分布均与时间起点无关的信源称为离散平稳信 源。

对离散平稳信源,由联合概率与条件概率的关系可以推出:

$$P(X_{i+1} | X_i) = P(X_{j+1} | X_j)$$

$$\vdots$$

$$P(X_{i+N} | X_i X_{i+1} \cdots X_{i+N-1}) = P(X_{j+N} | X_j X_{j+1} \cdots X_{j+N-1})$$

因此:

$$H(X_1) = H(X_2) = \cdots = H(X_N)$$
 $H(X_2 | X_1) = H(X_3 | X_2) = \cdots = H(X_N | X_{N-1})$
 $H(X_3 | X_1 X_2) = H(X_4 | X_2 X_3) = \ldots = H(X_N | X_{N-2} X_{N-1})$
 \vdots

例:一平稳信源X的符号集 $A=\{0,1\}$,产生随机序列 $\{x_n\}$,其中

$$P(x_1=0)=p,$$

$$P(x_1 = 0, x_2 = 1) = b.$$

求 (1)
$$P(x_n = 1), n > 1$$
 (2) $P(x_4 = 1 \mid x_3 = 0)$

- 解(1)由于平稳性 $P(x_n = 0) = P(x_1 = 0) = p$ $P(x_n = 1) = 1 - p$.
 - (2) 由于平稳性 $P(x_1 = 1, x_2 = 0) = P(x_2 = 1, x_1 = 0) = b$

$$P(x_4 = 1 | x_3 = 0) = P(x_4 = 1, x_3 = 0) / P(x_3 = 0) = b / p.$$

同时 $P(x_2 = 1 | x_1 = 0) = b / p$.

定义2: 随机变量序列中,对前N个随机变量的联合熵求平均称 为平均符号熵:

$$H_N(\mathbf{X}) = \frac{1}{N}H(X_1X_2\cdots X_N)$$

如果当 $N \to \infty$ 时上式极限存在,则 $\lim_{N \to \infty} H_N(X)$ 被称为熵率 ,或极限熵,记为

$$H_{\infty} = \lim_{N \to \infty} H_{N}(\mathbf{X})$$

2. 离散平稳无记忆信源

- 为了研究离散平稳无记忆信源的极限熵,把信源输出 的符号序列看成是一组一组发出的。
 - ▶ 例1: 电报系统中,可以认为每2个二进制数字组成一组。 这样信源输出的是由2个二进制数字组成的一组组符号。 这时可以将它们等效看成一个新的信源,它由四个符号 00,01,10,11组成,把该信源称为二进制无记忆信源 的二次扩展。
 - ▶ 例2: 如果把每三个二进制数字组成一组,这样长度为3 的二进制序列就有8种不同的符号,可等效成一个具有8 个符号的信源,把它称为二进制无记忆信源的三次扩展 信源。

● 假定信源输出的是N长符号序列,把它看成是一个新 信源,称为离散平稳无记忆信源的N次扩展信源,用N 维离散随机矢量来表示:

$$\mathbf{X} = X_1 X_2 \cdots X_N = X^N$$

● N次扩展信源的概率空间为:

$$\begin{bmatrix} X^{N} \\ P(\mathbf{X}) \end{bmatrix} = \begin{cases} \alpha_{1} & \alpha_{2} & \dots & \alpha_{i} & \dots & \alpha_{qN} \\ p(\alpha_{1}) & p(\alpha_{2}) & \dots & p(\alpha_{i}) & \dots & p(\alpha_{qN}) \end{cases}$$

 α_i 是一个长为N的序列,

$$\alpha_i = x_{i_1} x_{i_2} \cdots x_{i_N}$$

N次扩展信源的熵:

$$H(\boldsymbol{X}^{N}) = H(X^{N}) = -\sum_{i=1}^{q^{N}} p(\alpha_{i}) \log p(\alpha_{i})$$

● 离散平稳无记忆信源的N次扩展信源的熵等于离散单 符号信源熵的N倍:

$$H(\boldsymbol{X}) = H(X^N) = NH(X)$$

● 离散平稳无记忆信源的熵率:

$$H_{\infty} = \lim_{N \to \infty} H_N(\mathbf{X}) = \lim_{N \to \infty} \frac{1}{N} \cdot NH(X) = H(X)$$

例1: 设有一离散无记忆信源X, 其概率空间为

$$\begin{bmatrix} X \\ P(X) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

求该信源的熵率及二次扩展信源的熵。

解:

> 离散单符号信源熵

$$H(X) = -\sum_{i=1}^{3} p(x_i) \log_2 p(x_i) = 1.5$$
 比特/符号

▶熵率: $H_{\infty} = H(X) = 1.5$ 比特 / 符号

>二次扩展信源的概率空间:

$$\begin{bmatrix} X^2 \\ P(X^2) \end{bmatrix} = \begin{cases} \alpha_1(x_1x_1) & \alpha_2(x_1x_2) & \alpha_3(x_1x_3) & \alpha_4(x_2x_1) & \alpha_5(x_2x_2) & \alpha_6(x_2x_3) & \alpha_7(x_3x_1) & \alpha_8(x_3x_2) & \alpha_9(x_3x_3) \\ 1/4 & 1/8 & 1/8 & 1/8 & 1/16 & 1/16 & 1/18 & 1/16$$

>二次扩展信源的熵:

$$H(X) = H(X^2) = -\sum_{i=1}^{9} p(\alpha_i) \log p(\alpha_i) = 3$$
 比特/二个符号

3. 离散平稳有记忆信源

● 实际信源常常是有记忆信源。设信源输出N长的符号序列,则 可以用N维随机矢量 $X = X_1 X_2 \dots X_N$ 来表示信源,其中每个随机 变量之间存在统计依赖关系。

● N维随机矢量的联合熵为:

$$H(\mathbf{X}) = H(X_1 X_2 \cdots X_N)$$

$$= H(X_1) + H(X_2 | X_1) + H(X_3 | X_1 X_2) + \dots + H(X_N | X_1 X_2 \cdots X_{N-1})$$

定理:对于离散平稳信源,有以下几个结论:

- (1) 条件熵 $H(X_N|X_1X_2...X_{N-1})$ 随着N 的增加而递减:
- (2) 平均符号熵大于等于条件熵:

$$H_N(X) \ge H(X_N | X_1 X_2 ... X_{N-1})$$

- (3) 平均符号熵 $H_N(\mathbf{X})$ 随着N 的增加而递减;
- (4) 如果 $H_1(X) < \infty$,则

$$H_{\infty} = \lim_{N \to \infty} H_N(\boldsymbol{X}) = \lim_{N \to \infty} \frac{1}{N} H(X_1 X_2 \dots X_N)$$
$$= \lim_{N \to \infty} H(X_N \mid X_1 X_2 \dots X_{N-1})$$

定理说明:

- 随着序列长度的增加,也就是随着统计约束条件 不断增加,平均符号熵和条件熵均随之减少:
- 熵率表示信源输出的符号序列中平均每个符号所 携带的信息量。计算方式有两种:
 - ◆求极限平均符号熵
 - ◆求极限条件熵

$$H_{\infty} = \lim_{N \to \infty} H_N(\boldsymbol{X}) = \lim_{N \to \infty} \frac{1}{N} H(X_1 X_2 \dots X_N)$$
$$= \lim_{N \to \infty} H(X_N \mid X_1 X_2 \dots X_{N-1})$$

3. 离散平稳有记忆信源(续4)

例: 信源X的信源模型为

$$\begin{bmatrix} X \\ P(X) \end{bmatrix} = \begin{vmatrix} x_1 & x_2 & x_3 \\ \frac{1}{4} & \frac{4}{9} & \frac{11}{36} \end{vmatrix}$$

输出符号序列中,只有前后 两个符号之间有记忆,条件 概率空间见右边的表。求熵 率并比较 H(X) 、 $H(X_2|X_1)$ 、 $1/2H(X_1X_2)_{\circ}$

条件概率 $P(X_2 | X_1)$

X_1	x_1	X_2	x_3
x_1	$\frac{7}{9}$	$\frac{2}{9}$	0
x_2	$\frac{1}{8}$	$\frac{3}{4}$	$\frac{1}{8}$
x_3	0	2 11	9 11

解:

1)
$$H_{\infty} = \lim_{N \to \infty} H(X_N \mid X_1 X_2 ... X_{N-1}) = \lim_{N \to \infty} H(X_N \mid X_{N-1})$$

= $H(X_2 \mid X_1) = 0.870$ 比特/符号

2) 如果不考虑符号间的相关性,则信源熵为

$$H(X) = H(\frac{1}{4}, \frac{4}{9}, \frac{11}{36}) = 1.542$$
 比特/符号

3) 如果把信源发出的符号看成是分组发出的,每两个符号为一 组,这个新信源的熵为

$$H(X_1X_2) = H(X_1) + H(X_2 \mid X_1) = 2.412$$
 比特/两个符号

$$H(X_2 \mid X_1) = \frac{1}{4}H(\frac{2}{9}) + \frac{4}{9}H(\frac{1}{8}, \frac{3}{4}, \frac{1}{8}) + \frac{11}{36}H(\frac{2}{11}, \frac{9}{11})$$

$$H(X_2 \mid X_1) = -\frac{1}{4} \cdot \frac{7}{9} \log \frac{7}{9} - \frac{1}{4} \cdot \frac{2}{9} \log \frac{2}{9} - \frac{4}{9} \cdot \frac{1}{8} \log \frac{1}{8}$$
$$-\frac{4}{9} \cdot \frac{3}{4} \log \frac{3}{4} - \frac{4}{9} \cdot \frac{1}{8} \log \frac{1}{8} - \frac{11}{36} \cdot \frac{2}{11} \log \frac{2}{11} - \frac{11}{36} \cdot \frac{9}{11} \log \frac{9}{11}$$

结论:
$$H_{\infty} < \frac{1}{2}H(X_1X_2) < H(X)$$

如何从理论上解 释这个结果?