Recall Cat = 2 category

Categories, functors, natural transformations

K - an ∞ -cosmos, h K=2 category ∞ -categories, ∞ -functors, ∞ -natural transformations

- In 2-eategories:

whiskering $X \xrightarrow{f} A \xrightarrow{f} C = X \xrightarrow{f} C = X \xrightarrow{f} C \xrightarrow{f} C$

Def : Adjunction:

adjunction between ∞ -category in a fixed ∞ -cosmos K: ∞ -categories A,B. ∞ -functors $A \xrightarrow{\cup} B$, $B \xrightarrow{f} A$

. ∞-funcion . ∞-nat har unit B = B

counit u JE f

triangle identity

B - B f f \ 7 / E A

t de de

 $\beta = \beta$

U Idu u

we say "f-14" - f is left-adjoint to U

Prop adjunctions compose.
$$f$$
 $A = A = C$
 $A = C$
 A

Prof Uniqueness of adjoints

i)
$$f \rightarrow u$$
, $f \rightarrow u \Rightarrow f \cong f'$

2) $f \cong f'$, $f \rightarrow u \Rightarrow f' \rightarrow u$

2)
$$f \cong f'$$
, $f \rightarrow u \Rightarrow f' \rightarrow u$

$$A \stackrel{f,f'}{\bigsqcup} B \qquad \text{units} : \qquad id_B \stackrel{\eta}{\Longrightarrow} uf, id_B \stackrel{\eta'}{\Longrightarrow} uf'$$

Construct was
$$B = B f f f f'$$
 $A f' f' f' \epsilon A f f' f'$

thop: An equir of ∞-categories:

$$A \xrightarrow{g} B + A$$

$$A \xrightarrow{g} B + A \xrightarrow{\Xi} A + B \xrightarrow{\Xi} B$$

can be promoted to an adjoint equivalence by modifying just one of the two wells.

A be an
$$\infty$$
-rategory $A^2 = \infty$ -rategory of arrows in A

Pullback = composable arrows