CSC373 Worksheet 3 Solution

July 28, 2020

1. Notes:

- Dynamic Programming
 - Is applied to optimization problems
 - Applies when the subproblems overlap
 - Uses the following sequence of steps
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Construct an optimal solution from computed information
- Matrix-chain Multiplication
 - Is an optimization problem solved using dynamic programming
 - Goal is to find matrix parenthesis with fewest number of operations

Example:

Given chain of matrices $\langle A, B, C \rangle$, it's fully parenthesized product is:

- * (AB)C needs $(10 \times 30 \times 5) + (10 \times 5 \times 60) = 1500 + 3000 = 4500$ operations
- * A(BC) needs $(30 \times 5 \times 60) + (10 \times 30 \times 60) = 27000$ operations

Thus, (AB)C performs more efficiently than A(BC).

- Is stated as: given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i = 1, 2, ..., n matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of scalar multiplications.
- Steps

1. Check is the problem has Optimal Substructure

Let us adopt the notation $A_{i...j}$ where $i \leq j$, for the matrix that results from evaluating the product $A_i A_{i+1} ... A_j$.

Assume the solution has the following parentheses:

$$(A_{i...k})(A_{k+1...j})$$

If there is a better way to multiply $(A_{i...k})$, then we would have a more optimal solution.

This would be a contradiction, as we already stated that we have the optimal solution for $A_{i...j}$.

Therefore, this problem has optimal substructure.

2. Find the Recursive Solution

Let M[i,j] be the cost of multiplying matrices from A_i to A_j

We want to find out at which k' returns the fewest number of multiplications, or the minimum number of M.

The recursive formula for the cost of multiplying from A_i to A_j is

$$M[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k \le j} M[i,k] + M[k+1,j] + p_{i-1}p_k p_j & \text{if } i < j \end{cases}$$
 (1)

3. Computing the Estimated Cost

- * Steps
 - 1) Fill the table for i = j
 - 2) Fill the table for i < j with a spread of 1
 - 3) Repeat 2 with the increased value of spread

Example:

Given

$$< A_1, A_2, A_3, A_4, A_5 >$$

where

- * $A_1 \rightarrow 4 \times 10$
- * $A_2 \rightarrow 10 \times 3$
- $* A_3 \rightarrow 3 \times 12$

*
$$A_4 \rightarrow 12 \times 20$$

*
$$A_5 \rightarrow 20 \times 7$$

we have:

1) Fill the table for i = j

i\j	1	2	3	4	5
1	0				
2	x	0			
3	x	x	0		
4	x	×	x	0	
5	х	x	х	х	0

$$M[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k \le j} M[i, k] + M[k+1, j] + p_{i-1}p_kp_j & \text{if } i < j \end{cases}$$

2) Fill the table for i < j with a spread of 1

2)
$$(i = 1, j = 2)$$
, $(i = 2, j = 3)$, $(i = 3, j = 4)$, $(i = 4, j = 5)$

i\j	1	2	3	4	5
1	0	120			
2	x	0			
3	x	х	0		
4	x	x	x	0	
5	x	x	x	x	0

since

$$* i = 1, j = 2$$

$$M[1,2] = \min_{1 \le k \le 2} (M[1,1] + M[1,2] + p_{i-1}p_k p_j)$$
 (2)

$$= \min_{1 \le k \le 2} (0 + p_0 p_1 p_2) \tag{3}$$

$$= \min_{1 \le k \le 2} (0 + 4 \cdot 10 \cdot 3) \tag{4}$$

$$= 120 \tag{5}$$

where $p_0=3$ is from the dimension 3×10 of $A_1,\,p_k=10$ is from the dimension of 3×10 of $A_1.$

- 3) Repeat 2 with the increased value of spread
- 4. Constructing the Optimal Solution

References:

1)