FREESCALE MOTOROLA

Motorola Semiconductor - производитель самой широкой в мире номенклатуры электронных компонентов, достигающей 50000 позиций и содержащей практически все виды полупроводни-

ковой продукции, от простейших дискретных компонентов - диодов всех видов, биполярных и полевых транзисторов, тиристоров, оптронов - до аналоговых ИС различного уровня сложности. Фирма **Motorola** - признанный лидер производства микроконтроллеров и микропроцессоров для встроенных применений (в том числе для устройств промышленной автоматики), много лет возглавляющий список производителей микро-

контроллеров. Motorola производит более 300 типов различных микроконтроллеров и интегрированных процессоров, от простейших 8-ми разрядных микро-ЭВМ семейства МС68НС05, до мощных интегрированных процессоров семейства MPC800 на базе ядра Power PC и цифровых процессоров сигналов.

ПРОДУКЦИЯ

HC L P 3 1 2 3 4

1. Урог МС ости изления:

изделие выпускается серийно и прошло все

тесты

«пилотное» производство PC выпуск образцов

2. Цифровое обозначение группы 3. Технология изготовления и напряжение питания:

HC HCMOS стандартное напряжение питания HCL версия с пониженным напряжением питания версия с пониженным напряжением питания HCS версия с повышенным быстродействием

4. Встроенное ПЗУ:

масочное ПЗУ или не ПЗУ

ПЗУ с УФ стиранием или однократно про-

граммируемое ПЗУ электрически стираемое ПЗУ (EEPROM)

HC05 HC08 11 HC11

рабочих температур: от 0°С до +70°С от -40°С до +85°С от -40°С до +105°С C V М от -45°C до +125°C 7. Тип корпуса:

пластиковый PLCC P PQ пластиковый PDIF пластиковый POFP SN, SO SP маленький пластиковый SOIC

пластиковый PDIP SL маленький пластиковый SOIC маленький пластиковый SSOP SS J. JW керамический CDIP

9. Максимальная внутренняя тактовая частота:

2,0 МГц 3,0 МГц 4.0 ΜΓμ

микроконтроллеры подсемейства НСS08, предназначенные для использования в малопотребляющей носимой аппаратуре, способны работать при напряжениях питания от 1.8В до 3,6В. За счет использования нового технологического процесса 0,25 мкм удалось повысить частоту внутренней шины до 20МГц.

			·p = -,	JAMES TO THE) - p			
Наименование	SRAM,	FLASH,6	Таймеры	АЦП,	Узлы посл.	Напряжение	Корпус	Температурный	Особенности
	байт	айт	-	кан./бит	передачи	питания, В		диапазон	
MC9S08GB32CFU	1K	32K	1 x 16	8/10	2SCI, SPI	1.8 - 3.6	LQFP64	-40°C +85°C	
MC9S08GB60CFU	4K	60K	1 x 16	8/10	2SCI, SPI	1.8 - 3.6	LQFP64	-40°C +85°C	
MC9S08GT32CFB	2K	32K	2 x 16	8/10	2SCI, SPI	1.8 - 3.6	QFP44	-40°C +85°C	IIC Dome a avviv vši mavenani vš
MC9S08GT32CFD	2K	32K	3 x 16	8/11	2SCI, SPI	1.8 - 3.7	QFN48	-40°C +85°C	 IIC, Встроенный тактовый RC-генератор
MC9S08GT32CB	2K	32K	2 x 16	8/10	2SCI, SPI	1.8 - 3.6	SDIP42	-40°C +85°C	кс-тенератор
MC9S08GT60CFB	4K	60K	2 x 16	8/10	2SCI, SPI	1.8 - 3.6	QFP44	-40°C +85°C	
MC9S08GT60CB	4K	60K	2 x 16	8/10	2SCI, SPI	1.8 - 3.6	SDIP42	-40°C +85°C	
MC9S08RC16FG	1K	16K	2 x 16, CMT	-	-	1.8 - 3.6	LQFP44	-40°C +70°C	
MC9S08RC16FJ	1K	16K	2 x 16, CMT	-	-	1.8 - 3.6	LQFP32	0°C +70°C	Аналоговый компаратор
MC9S08RC60FG	2K	60K	2 x 16, CMT		-	1.8 - 3.6	LQFP44	-40°C +70°C	Аналоговыи компаратор
MC9S08RC60FJ	2K	60K	2 x 16, CMT	,	-	1.8 - 3.6	LQFP32	-40°C +70°C	
MC9S08RD16DW	1K	16K	2 x 16, CMT	,	SCI	1.8 - 3.6	SOIC28	-40°C +70°C	
MC9S08RD16FG	1K	16K	2 x 16, CMT	,	SCI	1.8 - 3.6	LQFP44	-40°C +70°C	
MC9S08RD16FJ	1K	16K	2 x 16, CMT	-	SCI	1.8 - 3.6	LQFP32	-40°C +70°C	1
MC9S08RD16PB	1K	16K	2 x 16, CMT	-	SCI	1.8 - 3.6	DIP28	-40°C +70°C	-
MC9S08RD60DW	2K	60K	2 x 16, CMT	-	SCI	1.8 - 3.6	SOIC28	-40°C +70°C	
MC9S08RD60FG	2K	60K	2 x 16, CMT	-	SCI	1.8 - 3.6	LQFP44	-40°C +70°C	1
MC9S08RD60FJ	2K	60K	2 x 16, CMT	-	SCI	1.8 - 3.6	LQFP32	-40°C +70°C	
MC9S08RE16FG	1K	16K	2 x 16, CMT	-	SCI	1.8 - 3.6	LQFP44	-40°C +70°C	
MC9S08RE16FJ	1K	16K	2 x 16, CMT	-	SCI	1.8 - 3.6	LQFP32	-40°C +70°C	
MC9S08RE60FG	2K	60K	2 x 16, CMT		SCI	1.8 - 3.6	LQFP44	-40°C +70°C	
MC9S08RE60FJ	2K	60K	2 x 16, CMT		SCI	1.8 - 3.6	LQFP32	-40°C +70°C	Аналоговый компаратор
MC9S08RG60FG	2K	60K	2 x 16, CMT		SCI, SPI	1.8 - 3.6	LQFP44	-40°C +70°C	
MC9S08RG60FJ	2K	60K	2 x 16, CMT	-	SCI, SPI	1.8 - 3.6	LQFP32	-40°C +70°C]
MC9S08RG60CFJ	2K	60K	2 x 16, CMT	-	SCI, SPI	1.8 - 3.6	LQFP32	-40°C +85°C	1

Примечание: SCI - модуль асинхронного последовательного интерфейса (UART), CMT - передатчик для инфракрасного канала

МИКРОКОНТРОЛЛЕРЫ ДЛЯ УПРАВЛЕНИЯ ДВИГАТЕЛЯМИ

Простое решение для управления трехфазными двигателями переменного тока малой мощности - МСЗРНАС

- Низкая стоимость;
- Простота использования (не надо программировать);
- Возможна автономная работа (конфигурация задается при помощи внешних аналоговых и цифровых входов) или управление от внешнего мастера;
- Сигнал на внешнем входе защиты переводит управляющие выводы в третье состояние;
- Внутренние вычисления выполняются с точностью 32-
- Цифровая фильтрация внешнего сигнала, управляющего скоростью, повышает стабильность;
- Динамичесая компенсация пульсаций шины постоянного напряжения.

Наименование	Корпус	Температурный диапазон	SRAM, байт	FLASH, байт	Таймеры	АЦП, кан./бит	Узлы посл. передачи	Напряжение питания, В	Особенности
MC68HC908MR8CDW	SOIC16	-40°C +85°C	256	8K	2 x 16	4-7/10	SCI	5.0	
MC68HC908MR8CFA	QFP32	-40°C +85°C	256	8K	2 x 16	4-7/10	SCI	5.0	
MC68HC908MR8CP	PDIP28	-40°C +85°C	256	8K	2 x 16	4-7/10	SCI	5.0	
MC68HC908MR16CB	SDIP56	-40°C +85°C	768	16K	2 x 16	10/10	SCI, SPI	5.0	
MC68HC908MR16CFU	QFP64	-40°C +85°C	768	16K	2 x 16	10/10	SCI, SPI	5.0	
MC68HC908MR16VFU	QFP64	-40°C +105°C	768	16K	2 x 16	10/10	SCI, SPI	5.0	3-фазный
MC68HC908MR32CFU	QFP64	-40°C +85°C	768	32K	2 x 16	10/10	SCI, SPI	5.0	ШИМ
MC68HC908MR32CB	SDIP56	-40°C +85°C	768	32K	2 x 16	10/10	SCI, SPI	5.0	
MC68HC908MR32VFU	QFP64	-40°C +105°C	768	32K	2 x 16	10/10	SCI, SPI	5.0	
MC3PHACVDW	SOIC28	-40°C +105°C	Микрок	онтроллер М	R8 с масочной	5.0			
MC3PHACVP	PDIP28	-40°C +105°C	программа	а управления	для 3-х фазно	го двигателя	переменного тока	5.0	
MC3PHACVFA	LQFP32	-40°C +105°C			без обратной	5.0			

Примечание: SCI - модуль асинхронного последовательного интерфейса (UART), IrSCI - модуль инфракрасного последовательного интерфейса

CEMEЙCTRO	HC00 (VIIIIDE)	CARLINE MINE	СРОКОНТРОЛЛЕРЫ
CEMERICIBO	псоо (упивел	CAJIDHDIE WINE	APUKUHITUJIJIEFD

)									
Наименование	SRAM	FLASH,	Таймеры	АЦП,	Узлы посл.	Напряжение	Корпус	Температурный	Особенности
	байт	байт		кан./бит	передачи	питания, В		диапазон	
MC68HC908AB32CFU	1K	32K	2 x 16	8/8	SCI, SPI	5.0	QFP64	-40°C +85°C	512 EEPROM
MC68HC908AB32MFU	1K	32K	2 x 16	8/8	SCI, SPI	5.0	QFP64	-40°C +125°C	J12 EEI KOM
KMC908AS60ACFU	2K	60K	2 x 16	16/8	SCI, SPI	5.0	QFP64	-40°C +85°C	1K EEPROM
MC908AS60AMFU	2K	60K	2 x 16	16/8	SCI, SPI	5.0	QFP64	-40°C +125°C	IK EEFKOW
MC68HC908AP8CB	1K	8K	2 x 16	8/10	SCI, IrSCI, SPI	5.0	SDIP42	-40°C +85°C	-
MC68HC908AP8CFA	1K	8K	2 x 16	8/10	SCI, IrSCI, SPI	5.0	LQFP48	-40°C +85°C	
MC68HC908AP8CFB	1K	8K	2 x 16	8/10	SCI, IrSCI, SPI	5.0	QFP44	-40°C +85°C	
MC68HC908AP16CB	1K	16K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	SDIP42	-40°C +85°C	
MC68HC908AP16CFA	1K	16K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	QFP48	-40°C +85°C	
MC68HC908AP16CFB	1K	16K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	QFP44	-40°C +85°C	
MC68HC908AP32CB	2K	32K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	SDIP42	-40°C +85°C	
MC68HC908AP32CFA	2K	32K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	QFP48	-40°C +85°C	
MC68HC908AP32CFB	2K	32K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	QFP44	-40°C +85°C	
MC68HC908AP64CB	2K	62K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	SDIP42	-40°C +85°C	
MC68HC908AP64CFA	2K	62K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	QFP48	-40°C +85°C	

mail@ooofregat.ru moscow@ooofregat.ru www.ooofregat.ru

FREESCALE/MOTOROLA

FREESCALE/MOTOROLA											
Наименование	SRAM байт	FLASH, байт	Таймеры	АЦП, кан./бит	Узлы посл. передачи	Напряжение питания, В	Корпус	Температурный диапазон	Особенности		
MC68HC908AP64CFB	2K	62K	2 x 16	8/10	SCI, IrSCI, SPI	3.0 - 5.0	QFP44	-40°C +85°C			
MC68HC908EY16CFA	512	16K	2 x 16	8/10	ESCI, SPI	3.0 - 5.0	LQFP32	-40°C +85°C	D.C.		
MC68HC908EY16MFA	512	16K	2 x 16	8/10	ESCI, SPI	3.0 - 5.0	LQFP32	-40°C +125°C	RC-генератор		
MC68HC908GP32CB	512	32K	2 x 16	8/8	SCI, SPI	3.0 - 5.0	SDIP42	-40°C +85°C			
MC68HC908GP32CFB	512	32K	2 x 16	8/8	SCI, SPI	3.0 - 5.0	QFP44	-40°C +85°C	İ		
MC68HC908GP32CP	512	32K	2 x 16	8/8	SCI, SPI	3.0 - 5.0	PDIP40	-40°C +85°C	İ		
MC68HC908GR4CDW	384	4K	2 x 16	6/8	SCI, SPI	3.0 - 5.0	SOIC28	-40°C +85°C	İ		
MC68HC908GR4CFA	384	4K	2 x 16	6/8	SCI, SPI	3.0 - 5.0	OFP32	-40°C +85°C	†		
MC68HC908GR4CP	384	4K	2 x 16	6/8	SCI, SPI	3.0 - 5.0	PDIP28	-40°C +85°C	Ť		
MC68HC908GR8CDW	384	7.5K	2 x 16	4/8	SCI, SPI	3.0 - 5.0	SOIC28	-40°C +85°C	_		
MC68HC908GR8CP	384	7.5K	2 x 16	4/8	SCI, SPI	3.0 - 5.0	PDIP28	-40°C +85°C			
MC68HC908GR8CFA	384	7.5K	2 x 16	4/8	SCI, SPI	3.0 - 5.0	OFP32	-40°C +85°C	ł		
MC68HC908GR16CFA	1K	16K	2 x 16	6/10	ESCI, SPI	3.0 - 5.0	LQFP48	-40°C +85°C			
MC68HC908GR16CFJ	1K	16K	2 x 16	6/10	ESCI, SPI	3.0 - 5.0	LOFP32	-40°C +85°C	i i		
MC68HC908GR16MFA	1K	16K	2 x 16	6/10	ESCI, SPI	3.0 - 5.0	LQFP48	-40°C +125°C	i i		
MC68HC908GR16MFJ	1K	16K	2 x 16	6/10	ESCI, SPI	3.0 - 5.0	LOFP32	-40°C +125°C	ł		
MC68HC908GT8CB	512			8/8	,						
MC68HC908GT8CFB	512	8K 8K	2 x 16 2 x 16	8/8	ESCI, SPI ESCI. SPI	3.0 - 5.0 3.0 - 5.0	SDIP42 LOFP44	-40°C +85°C -40°C +85°C			
					,				RC-генератор		
MC68HC908GT16CB	512	16K	2 x 16	8/8	ESCI, SPI	3.0 - 5.0	SDIP42	-40°C +85°C			
MC68HC908GT16CFB	512	16K	2 x 16	8/8	ESCI, SPI	3.0 - 5.0	QFP44	-40°C +85°C			
MC68HC908JK1ECDW	128	1.5K	1 x 16	12/8	-	3.0 - 5.0	SOIC20	-40°C +85°C			
MC68HC908JK1EMDW	128	1.5K	1 x 16	12/8	-	3.0 - 5.0	SOIC20	-40°C +125°C			
MC68HC908JK1CP	128	1.5K	1 x 16	12/8	-	3.0 - 5.0	PDIP20	-40°C +85°C			
MC68HC908JK1ECP	128	1.5K	1 x 16	12/8	-	3.0 - 5.0	PDIP20	-40°C +85°C			
KMC908JK3CP	128	4K	2 x 16	12/8	-	3.0 - 5.0	PDIP20	-40°C +85°C			
MC68HC908JK3CDW	128	4K	1 x 16	12/8	-	3.0 - 5.0	SOIC20	-40°C +85°C			
MC68HC908JK3CP	128	4K	1 x 16	12/8	-	3.0 - 5.0	PDIP20	-40°C +85°C			
MC68HC908JK3ECDW	128	4K	1 x 16	12/8	-	3.0 - 5.0	SOIC20	-40°C +85°C			
MC68HC908JK3ECP	128	4K	1 x 16	12/8	-	3.0 - 5.0	PDIP20	-40°C +85°C			
MC68HC908JK3EMDW	128	4K	1 x 16	12/8	-	3.0 - 5.0	SOIC20	-40°C +125°C			
MC68HC908JK3MDW	128	4K	1 x 16	12/8	-	3.0 - 5.0	SOIC20	-40°C +125°C			
MC68HC908JK8CDW	256	8K	2 x 16	14/8	SCI	3.0 - 5.0	SOIC20	-40°C +85°C	-		
MC68HC908JK8MDW	256	8K	2 x 16	14/8	SCI	3.0 - 5.0	SOIC20	-40°C +125°C			
MC68HC908JL3CDW	128	4K	1 x 16	12/8	-	3.0 - 5.0	SOIC28	-40°C +85°C	Î		
MC68HC908JL3CFA	128	4K	1 x 16	12/8	-	3.0 - 5.0	LQFP48	-40°C +85°C	İ		
MC68HC908JL3CP	128	4K	1 x 16	12/8	-	3.0 - 5.0	PDIP28	-40°C +85°C	İ		
MC68HC908JL3ECDW	128	4K	1 x 16	12/8	-	3.0 - 5.0	SOIC28	-40°C +85°C	Ì		
MC68HC908JL3ECP	128	4K	1 x 16	12/8	-	3.0 - 5.0	DIP28	-40°C +85°C	İ		
MC68HC908JL3MDW	128	4K	1 x 16	12/8	-	3.0 - 5.0	SOIC28	-40°C +125°C	İ		
MC68HC908JL3MP	128	4K	1 x 16	12/8	-	3.0 - 5.0	DIP28	-40°C +125°C	İ		
MC68HC908JL8CDW	256	8K	2 x 16	14/8	SCI	3.0 - 5.0	SOIC28	-40°C +85°C	†		
MC68HC908JL8CFA	256	8K	2 x 16	14/8	SCI	3.0 - 5.0	LOFP48	-40°C +85°C	ł		
MC68HC908JL8CP	256	8K	2 x 16	14/8	SCI	3.0 - 5.0	DIP28	-40°C +85°C	ł		
MC68HC908KX2CDW	192	2K	1 x 16	4/8	SCI	3.0 - 5.0	SOIC16	-40°C +85°C			
MC68HC908KX2CP	192	2K	1 x 16	4/8	SCI	3.0 - 5.0	PDIP16	-40°C +85°C	t		
MC68HC908KX8CDW	192	2K 8K	1 x 16	4/8	SCI	3.0 - 5.0	SOIC16	-40°C +85°C	ł		
MC68HC908KX8CP	192	8K	1 x 16	4/8	SCI	3.0 - 5.0	PDIP16	-40°C +85°C	RC-генератор		
MC68HC908KX8MDW	192	8K	1 x 16	4/8	SCI	3.0 - 5.0	SOIC16	-40°C +125°C	кс-тенератор		
MC68HC908KX8MDW MC68HC908KX8VDW	192	8K	1 x 16	4/8	SCI	3.0 - 5.0	SOIC16	-40°C +125°C	ł		
	192	8K.		4/8	SCI	3.0 - 5.0	DIP16	-40°C +105°C	ł		
MC68HC908KX8VP Іримечание: SCI - модуль асин			1 x 16								

Примечание: SCI - модуль асинхронного последовательного интерфейса (UART), IrSCI - модуль инфракрасного последовательного интерфейса

ПОДСЕМЕЙСТВО NITRON (С МАЛЫМ КОЛИЧЕСТВОМ ВЫВОДОВ)

Наименование	Наименование SRAM байт		Таймеры	АЦП, кан./бит	Напряжение питания, В	Корпус	Исполнение	
MC68HC908QT1CFQ	128	1.5K	1 x 16	-	3.0 - 5.0	DFN8	-40°C +85°C	
MC68HC908QT1CP	128	1.5K	1 x 16	-	3.0 - 5.0	PDIP8	-40°C +85°C	
MC68HC908QT2CDW	128	1.5K	1 x 16	4/8	3.0 - 5.0	SOIC8	-40°C +85°C	
MC68HC908QT2CFQ	128	1.5K	1 x 16	4/8	3.0 - 5.0	DFN8	-40°C +85°C	
MC68HC908QT2CP	128	1.5K	1 x 16	4/8	3.0 - 5.0	PDIP8	-40°C +85°C	
MC68HC908QT2MP	128	1.5K	1 x 16	4/8	3.0 - 5.0	PDIP8	-40°C +125°C	
MC68HC908QT4CDW	128	4K	1 x 16	4/8	3.0 - 5.0	SOIC8	-40°C +85°C	
MC68HC908OT4CFO	128	4K	1 x 16	4/8	3.0 - 5.0	DFN8	-40°C +85°C	
MC68HC908QT4CP	128	4K	1 x 16	4/8	3.0 - 5.0	PDIP8	-40°C +85°C	
MC68HC908QT4MP	128	4K	1 x 16	4/8	3.0 - 5.0	PDIP8	-40°C +125°C	
MC68HC908QT4VDW	128	4K	1 x 16	4/8	3.0 - 5.0	SOIC8	-40°C +105°C	
MC68HC908QT4VP	128	4K	1 x 16	4/8	3.0 - 5.0	PDIP8	-40°C +105°C	
MC68HC908QY1CDW	128	1.5K	1 x 16	-	3.0 - 5.0	SOIC16	-40°C +85°C	
MC68HC908QY1CP	128	1.5K	1 x 16	-	3.0 - 5.0	PDIP16	-40°C +85°C	
MC68HC908QY1CDT	128	1.5K	1 x 16	-	3.0 - 5.0	TSSOP16	-40°C +85°C	
MC68HC908QY2CDT	128	1.5K	1 x 16	4/8	3.0 - 5.0	TSSOP16	-40°C +85°C	
MC68HC908QY2CDW	128	1.5K	1 x 16	4/8	3.0 - 5.0	SOIC16	-40°C +85°C	
MC68HC908QY2CP	128	1.5K	1 x 16	4/8	3.0 - 5.0	PDIP16	-40°C +85°C	
MC68HC908QY2MDT	128	1.5K	1 x 16	4/8	3.0 - 5.0	TSSOP16	-40°C +125°C	
MC68HC908QY4CDT	128	4K	1 x 16	4/8	3.0 - 5.0	TSSOP16	-40°C +85°C	
MC68HC908QY4CDW	128	4K	1 x 16	4/8	3.0 - 5.0	SOIC16	-40°C +85°C	
MC68HC908QY4CP	128	4K	1 x 16	4/8	3.0 - 5.0	PDIP16	-40°C +85°C	
MC68HC908QY4MDW	128	4K	1 x 16	4/8	3.0 - 5.0	SOIC16	-40°C +125°C	
MC68HC908QY4MDT	128	4K	1 x 16	4/8	3.0 - 5.0	TSSOP16	-40°C +125°C	
MC68HC908QY4MP	128	4K	1 x 16	4/8	3.0 - 5.0	PDIP16	-40°C +125°C	
MC68HC908QY4VDW	128	4K	1 x 16	4/8	3.0 - 5.0	SOIC16	-40°C +105°C	
MC68HC908QY4VP	128	4K	1 x 16	4/8	3.0 - 5.0	PDIP16	-40°C +105°C	
MC68HLC908QT1CDW	128	1.5K	1 x 16	-	2.2 - 3.6	SOIC8	-40°C +85°C	
MC68HLC908QT1CFQ	128	1.5K	1 x 16		2.2 - 3.6	DFN8	-40°C +85°C	
MC68HLC908QT1CP	128	1.5K	1 x 16		2.2 - 3.6	PDIP8	-40°C +85°C	
MC68HLC908QT1CF	128	1.5K	1 x 16	4/8	2.2 - 3.6	SOIC8	-40°C +85°C	
MC68HLC908QT2CFQ	128	1.5K	1 x 16	4/8	2.2 - 3.6	DFN8	-40°C +85°C	
MC68HLC908QT2CP	128	1.5K	1 x 16	4/8	2.2 - 3.6	PDIP8	-40°C +85°C	
MC68HLC908OT4CDW	128	4K	1 x 16	4/8	2.2 - 3.6	SOIC8	-40°C +85°C	
MC68HLC908QT4CFQ	128	4K	1 x 16	4/8	2.2 - 3.6	DFN8	-40°C +85°C	
MC68HLC908QT4CP	128	4K	1 x 16	4/8	2.2 - 3.6	PDIP8	-40°C +85°C	
MC68HLC908QY1CDT	128	1.5K	1 x 16	-	2.2 - 3.6	TSSOP16	-40°C +85°C	
MC68HLC908QY1CDW	128	1.5K	1 x 16		2.2 - 3.6	SOIC16	-40°C +85°C	
MC68HLC908QY1CDW MC68HLC908QY1CP	128	1.5K	1 x 16		2.2 - 3.6	PDIP16	-40°C +85°C	
MC68HLC908QY1CP	128	1.5K	1 x 16	4/8	2.2 - 3.6	TSSOP16	-40°C +85°C	
MC68HLC908QY2CDT MC68HLC908QY2CDW	128	1.5K	1 x 16 1 x 16	4/8	2.2 - 3.6	SOIC16	-40°C +85°C	
MC68HLC908QY2CP	128 128	1.5K	1 x 16	4/8	2.2 - 3.6	PDIP16	-40°C +85°C	
MC68HLC908QY4CDT		4K	1 x 16	4/8	2.2 - 3.6	PDIP16	-40°C +85°C	
MC68HLC908QY4CDW	128	4K	1 x 16	4/8	2.2 - 3.6	PDIP16	-40°C +85°C	
MC68HLC908QY4CP	128	4K	1 x 16	4/8	2.2 - 3.6	PDIP16	-40°C +85°C	

 Саранск
 (8342) 477312, 230585

 Москва
 (095) 9743690

	<u> </u>
Последовательный про-	В случае отсутствия фирменных программаторов, для практической организации процесса программирования FLASH-памяти микроконтроллера семейст-
грамматор для микрокон-	ва 68НС908 можно воспользоваться небольшим последовательным программатором, задачей которого является согласование сигналов, поступающих от
троллеров Motorola	компьютера по интерфейсу RS-232, и сигналов, которые необходимо непосредственно подавать на выводы микроконтроллера. Предлагаем Вашему
семейства НС908	вниманию пример практической реализации недорогого внутрисхемного программатора.
110D M. 12	USB HCS08/HCS12 MULTILINK предназначен для загрузки и отладки прикладного программного обеспечения с использованием режима BDM. Отличи-
USB-ML-12	тельной особенностью нового кабеля является связь с компьютером через порт USB
DDM MH TH DH	BDM_MULTILINK Предназначен для загрузки и отладки прикладного программного обеспечения для микроконтроллеров Моторола семейств HCS08 и
BDM_MULTILINK	HCS12. Поддерживается пакетом CodeWarrior от фирмы Metrowerks.
	Несомненная мечта каждого программиста, осваивающего новый микроконтроллер - распаковать отладочный комплект в пятницу вечером, повозиться с
HC08 Welcome Kit	ним в выходные и быть способным уже в понедельник писать свои собственные программы. Отладочная комплект "HC08 Welcome Kit" на базе микро-
	кнтроллера МС68НС908GP32 может сделать мечту реальностью.
	Комплект предназначен для быстрого освоения нового кристалла Motorola MC68HC908GZ16, ключевой особенностью которого является поддержка CAN
HC08GZ16-STK	и LIN интерфейсов. Полезной составляющей комплекта является программирующий адаптер MONIF08, поддерживающий загрузку и отладку программ-
	ного обеспечения для микроконтроллеров данного семейства.
	Если Вы ищите для своей системы дешевый (от \$0,7) и одновременно надежный и производительный микроконтроллер в маленьком корпусе (8/16 выво-
Nitron StarterKit	дов), то 8-разрядные процессоры NITRON от Motorola - это то, что Вам нужно! Отладочный комплект "Nitron Starter Kit" позволит познакомиться с
	возможностями низко-стоимостного семейства Motorola на примере микроконтроллера MC68HC908QT4
	Комплект НС908USB является не просто отладочной платой, построенной на базе микроконтроллера МС68НС908JB8 со встроенным периферийным
HC908USB	узлом USB, но представляет собой законченный пример реализации (Reference Design) микропроцессорного устройства, передающего по USB в компью-
	тер результаты измерения температуры, освещенности и напряжения.
	Микроконтроллеры нового семейства НСS08, предназначенные для использования в малопотребляющей носимой аппаратуре, способны работать при
M68DEMO908GB60	напряжениях питания от 1,8В до 3,6В. При этом за счет использования нового технологического процесса удалось одновременно повысить производи-
	тельность кристаллов. Для быстрого знакомства с новыми семейством Motorola предлагает недорогой отладочный комплект M68DEMOGB60.

ГИБРИДНЫЕ МИКРОКОНТРОЛЛЕРЫ (MCU+DSP)

	801FA60/FA80	802TA60/TA80	803BU80	805FV80	807PY80/VF80	826BU80	827FG80
Температурный диапазон				-40°C +85	°C		
Производительность, MMACS	30/40	30/40	40	40	40	40	40
Корпус	48LQFP	32LQFP	100LQFP	144LQFP	160LQFP/ 160MAPBGA	100LQFP	128LQFP
Flash-память программ, Кбайт	16	16	64	64	120	63	126
RAM-память программ, Кбайт	2	2	1	1	4	1	2
Flash Boot-блок F, Кбайт	4	4	4	4	4	4	-
RAM-память данных, Кбайт	2	2	4	4	8	8	8
Flash-память данных, Кбайт	4	4	8	8	16	4	8
Таймерный модуль (4×16 битных таймера)	1	1	2	4	4	1	1
АЦП, каналов/разрядов	2×4/12	3/12×2/12	2×4/12	2×4/12	2×(2×4/12)	-	10/12
3-х фазный модуль ШИМ (6 каналов)	PWM	PWM	PWM	2×PWM	2×PWM	-	-
Дешифратор квадратурной импульсной последовательности	-	ī	1	2	2	-	-
Последовательный асинхронный интерфейс	SCI	SCI	SCI	2×SCI	2×SCI	SCI	SCI
Последовательный переферийный интерфейс	SPI	-	SPI	SPI	SPI	SPI	SPI
Последовательный синхронный интерфейс	-	-	-	-	-	SSI	SSI
Контроллер CAN-шины	-	-		Spec	. 2 A/B	-	-
Календарь-часы	-	-	-	-	=	TOD	-

ПЕРИФЕРИЙНЫЕ УЗЛЫ

Счетверенный таймерный модуль (Quad Timer) представляет собой совокупность четырех идентичных 16-битных таймерных групп, которые могут работать согласованно, например, одновременно запускаться или считываться в один момент времени, или быть включенными каскадно. Каждая таймерная группа содержит предделитель, собственно счетчик/таймер, два компаратора и набор регистров, позволяющих использовать счетчик в режимах сравнения и захвата, задавать его коэффициент пересчета. Кроме внешнего счетного входа, счетчик может использовать дополнительный внешний сигнал для управления разрешением подсчета импульсов или для управления направлением счета.

Сдвоенный модуль АЦП (Dual ADC module) содержит два мультиплексора на 4 входа, два устройства выборки и хранения, два 12-разрядных АЦП с минимальным временем преобразования 1,2 мкс. Набор регистров позволяет одновременно хранить результаты преобразования восьми измерений. Имеется возможность задавать последовательный

Имеется возможность задавать последовательный или одновременный режимы работы двух АЦП. Независимо от этого схемотехника входных цепей позволяет каждую пару соседних аналоговых входов рассматривать или как два отдельных сигнала, или как один дифференциальный. Таким образом, возможно задавать различные режимы сканирования аналоговых входов, например, осуществлять последовательную выборку 8 аналоговых сигналов или иметь 4 дифференциальных сигнала и при помощи двух АЦП одновременно опрашивать сразу два из них. Возможно также иметь комбинации дифференциальных и одиночных сигналов.

Имеется возможность синхронизировать запуск АЦП с работой модуля генерации управляющих ШИМсигналов и между собой.

Для каждого аналогового канала отведено по три компаратора, которые позволяют аппаратно, без участия процессора, определять момент, когда сигнал меняет знак или выходит за границы заланного лиапазона.

Модуль ШИМ (PWM module) имеется в составе процессоров DSP56F801/803/805/807. Он предназначен для управления всеми типами двигателей постоянного и переменного тока и аналогичен модулю, встроенному на кристалле 8-разрядных микроконтроллеров Motorola. Этот узел позволяет формировать 6 независимых ШИМ-сигналов или 3 пары комплементарных ШИМ-синалов и обладает следующими особенностями:

- Возможна генерация как выровненного по фронту, так и центрированного ШИМ-сигнала.
- Регистры, в которые записываются параметры ШИМсигнала, имеют буферизацию, т.е. программному обеспечению доступен только набор буферных регистров, значения из которых в начале каждого периода несущей частоты переписываются в рабочие регистры, которые непосредственно управляют работой модуля.
- Имеется возможность устанавливать полярность управляющих сигналов независимо для верхнего и нижнего ключей
- Выводы, на которых формируется управляющий ШИМ-сигнал, способны обеспечивать вытекающий ток

- Генератор "мертвого" времени может принудительно переводить оба вывода комплементарной пары в третье состояние на заданное время после каждого перепада ПИМ-сигиала
- Имеется возможность корректировать искажения кривой тока нагрузки, вызванные введением интервалов "мертвого" времени. Для реализации этой функции узел имеет входы от датчиков направления тока на нагрузке и может автоматически, без участия процессора изменять режим вставки интервалов "мертвого" времени в зависимости от направления тока нагрузки.
- Имеется возможность запрещать управление выводами от генератора ШИМ и программно устанавливать выводы в требуемое состояние.
- Имеющиеся входы защиты позволяют контролировать состояние 4-х различных параметров электродвигателя Сигналы на этих цифровых входах аппаратным способом переводят управляющие выводы в третье состояние. Имеется возможность гибко назначать соответствие защитных входов и управляющих ШИМ-выводов.

Дешифратор квадратурной импульсной последовательности (Quadrature Decoder), предназначен для работы с датчиками положения электродвитателей (например, с датчиками Холла). Этот узел имеет в своем составе счетчик положения, счетчик числа оборотов и дифференциальный счетчик. Последний содержит код, пропорциональный скорости вращения двигателя. Дешифратор имеет в своем составе входной фильтр импульсных помех и специализированный сторожевой таймер, который позволяет устанавливать факт остановки двигателя.

Последовательный асинхронный интерфейс (Serial Communication Interface - SCI) позволяет выполнять обмен данными как в дуплексном, так и в полудуплексном режиме с использованием стандартного формата NRZ (старт-бит, 8 или 9 бит данных, бит паритета, стоп-бит(ы)). Возможно программирование логических уровней приемника и передатчика и очередности передаваемых бит. Предделитель тактовой частоты, имеющий 13 разрядов обеспечивает широкий диапазон скоростей обмена. Узел SCI может генерировать 8 различных прерываний и выводить процессор из режимов пониженного энергопотребле-

Последовательный периферийный интерфейс (Serial Peripheral Interface - SPI) позволяет осуществлять синхронный дуплексный последовательный обмен данными с использованием четырех стандартных SPI выводов. Узел SPI может работать в режимах Маster и Slave, имеет раздельные буферные регистры на прием и передачу. Количество разрядов в посылке программируется и может составлять от 2 до 16 бит. Максимальная частота обмена данными составляет 20 МГц и 40 МГц в режимах Мaster и Slave соответственно.

Последовательный синхронный интерфейс (Synchronous Serial Interface - SSI) является дуплексным синхронным портом, позволяющим DSP связываться с другими последовательными устройствами, включая стандартные промышленные кодеки и другие процессоры, оченищенные узлом SPI. SSI содержит независимые блоки передатчика и приемника, которые тактируются раздельно, имеют в своем составе аппаратные буферы FIFO (7х16

бит) на прием и передачу и могут программироваться на обмен словами различной длины (8, 10, 12, 16 бит). При работе в сетевом режиме через порт SSI к DSP может быть подключено до 32-х последовательных устройств. Программируемый предделитель позволяет обмениваться данными на стандартных для промышленных кодеков частотах

Контроллер САN-шины, который имеется у процессоров DSP56F803/805/807, поддерживает спецификацию 2.0 а/В фирмы Bosh, имеет встроенные буферы на передачу и прием данных. Календарь-часы (Time-of-Day - TOD) имеется

Календарь-часы (Time-of-Day - TOD) имеется только в составе DSP56F826. Этот модуль содержит отдельные счетчики и регистры предустановки для секунд, минут, часов и дней. Емкость календаря составляет 65535 дней или 179,5 лет. Возможно программирование в заданное время таких событий, как генерация сигнала тревоги или выход из режимов пониженного энергопотребления.

Порты ввода/вывода (General Purpose Input/Output) процессоров DSP56F800 отличаются своей полнофункциональностью. Для задания режима работы порта имеется 8 управляющих регистров. Если вывод не назначен на выполнение альтернативной функции, связанной с работой какого-либо периферийного узла, то он может использоваться как цифровой вывод общего назначения и может быть запрограммирован на работу как вход или как выход. В режиме входа к выводу может быть подключен внутренний резистор привязки к шине питания. При чтении состояния порта можно опрашивать как

При чтении состояния порта можно опрашивать как собственно состояние вывода, так и данные, записанные в регистре защелки порта. Каждая линия ввода/вывода может использоваться как источник внешнего прерывания. Ограничение состоит в том, что все прерывания, принадлежащие одному порту, имеют один и тот же вектор, так что на программу обработки прерывания ложится задача опроса специальных статусных регистров, в которых фиксируется конкретный источник прерывания.

Нагрузочная способность большинства линий ввода/вывода по вытекающему току составляет 10 мА. Шесть выводов, предназначенных для генерации управляющих ШИМ-синалов, могут обеспечивать вытекающий ток 20 мА

Контроллер прерываний (Interrupt controller) принимает запросы на прерывания от периферийных узлов. Система прерываний DSP56F800 обладает следующими возможностями:

- Количество источников прерываний 64.
- Количество приоритетных уровней прерывания 7.
- Каждому источнику прерывания может быть назначен любой из 7-ми уровней приоритета.
- За каждым источником прерывания жестко закреплен вектор прерывания, который определяет приоритет внутри уровня.
- Каждый периферийный узел сам отвечает за маскирование своих прерываний, и, кроме того, имеется один общий регистр, при помощи которого можно разрешать/запрещать прерывания группами, принадлежащими к определенному уровню.

