Machine Learning Handbook

Xinhe Liu

2018-2-28

Contents

I	Hig	gh-level Views	1				
1	Mat	Math Review					
	1.1	Linear Algebra	2				
	1.2	Probability	3				
		1.2.1 Important Distributions, Moment Generating Functions	4				
	1.3	Statistics	4				
		1.3.1 Concepts	4				
		1.3.2 Important Distributions	6				
		1.3.3 Theorems	8				
		1.3.4 Practice/Examples	8				
	1.4	Optimization Theory	9				
	1.5	Information Theory	10				
	1.6	Formal Logic	11				
2	Cor	nputational Learning Theory	12				

3

Π	Su	pervis	ed Learning Models	13
3	\mathbf{Reg}	ression	ı	14
	3.1	Linear	Regressions	14
		3.1.1	Assumptions	14
		3.1.2	Interrataion	14
		3.1.3	Lasso-Least Absolute Shrinkage and Selection Operator	15
4	Log	istic R	egression and General Linear Model	16
5	Nai	ve Bay	esian	17
6	Tree	e Mode	els and Ensemble Learning	18
II	I U	nsupe	rvised Learning Models	19
7	Clus	stering		20
8	Din	iension	Reduction	21
ΙV	D	eep L	earning and Enhanced Learning Theory	22
9	Mul	ti-laye	r Perceptron	23
10	Mul	lti-laye	r Perceptron	24
11	Mul	ti-laye	r Perceptron	25

4	CONTENTS
12 Multi-layer Perceptron	26
13 Multi-layer Perceptron	27
14 Multi-layer Perceptron	28

Part I High-level Views

Math Review

1.1 Linear Algebra

Concepts:

- \bullet scalar, vector, matrix, tensor (n-rank tensor, matrix is a rank 2 tensor)
- Gaussian Elimination, rank
- p-norm

$$|X|_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$$

- inner product $\langle x_i, y_i \rangle$, outer product
- orthogonal dimension, basis, orthogonal basis
- linear transformation Ax = y
- eigenvalue, eigenvector $Ax = \lambda x$ (transformation and speed)
- vector space, linear space(with summation, scalar production), inner product space(inner product space)

3

1.2 Probability

Concepts:

- Classic Probability Model: Frequentist
- Bayesian Probability Theory
- Random variable, continuous RV, discrete RV, probability mass function, probability density function, cumulative density function
- Bernoulli distribution, Binomial distribution(n,p)

$$P(X = k) = \binom{N}{k} p^k (1 - p)^{(n-k)}$$

, Poisson distribution

$$P(X = k) = \lambda^k \frac{e^{-\lambda}}{k!}$$

• uniform distribution, exponential distribution

$$e^{-\frac{x}{\theta}}\theta$$
, $P(x>s+t|X>s)=P(x>t)$

- , normal distribution, t-distribution
- expectation, moments, variance, covariance, correlation coefficient

Theorems:

- Law of Total Probability
- Bayesian Theorem

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

P(H)-prior probability, P(D-H)-likelihood, P(H-D)-posterior probability,

1.2.1 Important Distributions, Moment Generating Functions

- 1. Normal Distribution, See next chapter
- 2. Bernoulli Distribution
- 3. Exponential Distribution $f_x(x,\theta) = \theta e^{-\theta x}$
- 4. Poisson Distribution

1.3 Statistics

1.3.1 Concepts

- parameter(constant for probability model), statistic (model of sample data), data, sample, population
- point estimation, interval estimation, Confidence Interval ($P(L \le \theta \le U)$, notice: θ is not random, L, U is random! (We repeat constructing confidence interval a n times, α percent of the times, it will contain theta.
- Estimator and Estimation
 - Method of Moments: $E(X^k)$ based on LOLN. If We have p parameters, we can use p moments to form a system of equations to solve $\theta_1, ... \theta_p$

$$\sum_{i=1}^{n} X_i^j = E(X^j)$$

, for
$$j = 1,...,p$$

 Maximum Likelihood Estimation. Multiply p.m.f/p.d.f since every sample is independent. Maximize the likelihood of finding samples.

If
$$X_1, ... X_n \stackrel{i.i.d}{\sim} f_x(x, \theta)$$
,

$$l(\theta) = \prod_{i=1}^{n} f_{X_i} f_{x_i}(x_i; \theta), L(\theta) = logl(\theta)$$

1.3. STATISTICS

$$\hat{\theta}_{MLE} = argmax_{\theta} f_x(x; \theta) = argmax_{\theta} L(\theta)$$

5

Analytical or Numerically solved.

$$\frac{\partial}{\partial \theta}[logL(\theta)] = 0, \frac{\partial^2}{\partial \theta^2}[logL(\theta)] < 0$$

, for multiple parameters, we need the Hessian matrix to be negative definite $x^t H x < 0, \forall x$

- Properties of MLE
 - 1. Invariance $\hat{\theta}$ is MLE of θ , then $g(\hat{\theta})$ is MLE of $g(\theta)$
 - 2. Consistency

$$P(\hat{\theta} - \theta) \to 0$$

as $n \to 0, \forall \epsilon > 0$ Under the conditions

- (a) $X_1, ... X_n \stackrel{i.i.d}{\sim} f_x(x|\theta)$
- (b) parameters are identifiable, $\theta \neq \theta'$, $f_x(x|\theta) \neq f_x(x|\theta')$
- (c) densities $f_x(x|\theta)$ has common support(set of x with positive density/probability), $f_x(x|\theta)$ is differentiable at θ
- (d) parameter space Ω contains open set ω where true θ_0 is an interior point
- 3. Asymptotic Normality

$$\sqrt{n}(\hat{\theta}_{MLE} - \theta_0) \to N(0, I^{-1}(\theta_0))$$

$$I(\theta_0) = E(-(\frac{\partial}{\partial \theta}[log f(x, \theta)])^2) = E(-\frac{\partial^2}{\partial \theta^2}[log f(x, \theta)])$$

called the Fisher Information

$$\hat{\theta}_{MLE} \approx N(\theta_0, \frac{1}{nI(\theta_0)})$$

$$nI(\theta_0) = E(-\frac{\partial^2}{\partial \theta^2} log L(\theta))$$

So the Variance of MLE($1/E(-\frac{\partial^2}{\partial \theta^2}logL(\theta)))$ is the reciprocal of amount of curvature at MLE.

Usually, We can just use the observed Fisher Information (curvature near θ_{MLE}) instead. $(I(\theta_{MLE}))$

 $\frac{1}{nI(\theta_0)}$ is called Cramer-Rao Lower Bound.

Under Multi-dimensional Case,

$$I(\theta_0)_{ij} == E(-\frac{\partial^2}{\partial \theta_i \partial \theta_i} [log f(x, \theta)])$$

 $Hessian \approx nI(\theta_0) \ Hessian^{-1} \approx nI(\theta_0)$ when we use numerical approach.

Under the above four conditions plus

- (a) $\forall x \in \chi$, $f_x(x|\theta)$ is three times differentiable with respect to θ , and third derivative is continuous at θ , and $\int f_x(x|\theta)dx$ can be differentiated three times under integral sign
- (b) $\forall \theta \in \Omega, \exists c, M(x)$ (both depends on θ_0) such that

$$\frac{\partial^3}{\partial \theta^3}[log f(x,\theta)] \le M(x), \forall x \in \chi, \theta_0 - c < \theta < \theta_0 + c, E_{\theta_0}[M(x)] < \infty$$

– Δ -Method: $g(\hat{theta}_{MLE})$ is approximately

$$N(g(\theta), (g'(\theta))^2 \frac{1}{nI(\theta)})$$

if asymptotic normality is satisfied.

- Estimation criteria
 - Unbiased $E(\hat{\theta}) = \theta$
 - Minimum Variance (MVUE, minimum variance unbiased estimator) $Var(\hat{\theta}) < Var(\theta')$
 - Efficient
 - Coherent
- Hypothesis test, type-I error(wrongly reject), type-II error(wrongly accept)

1.3.2 Important Distributions

- 1. Normal Distribution, $X_1, ... X_n \sim N(\mu, \sigma^2)$ then
 - (a) \bar{X} and s^2 are independent
 - (b) $\frac{\bar{X} \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$
 - (c) $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$

1.3. STATISTICS

(d)
$$\frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{\frac{(n-1)s^2}{\sigma^2} \frac{1}{\sqrt{n-1}}} \sim t_{n-1}$$

2. Multi-variate normal distribution

$$f_x(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$$

- (a) $X_1,...X_n$ normal $\Leftarrow (X_1,...X_n)$ is multivariate normal. (Not equivalent)
- (b) $E(X) = \mu, Var(X) = \Sigma$
- (c) Linear transformations $AX + b \sim N(A\mu + b, A\Sigma A^T)$ remain multivariate normal
- (d) Marginals are multivariate normal, each sub-vector is multivariate normal, the parameters are just sub-matrices.
- (e) All conditionals are multivariate normal
- 3. t-distribution: like normal distribution, but heavier tails
 - (a) $Z \sim N(0,1), Y \sim \chi^2_{\nu}$, Z, Y independent,

$$X = Z/\sqrt{Y/\nu} \sim t_{\nu}$$

- (b) pdf has polynomial tails (decays much slower than exponential ones)
- (c) $\nu = 1$, it is the **Cauchy Distribution**, with very heavy tails (no expectation)
- (d) The MCF not exist. $E(|X|^k) < \infty$ for $k < \nu$, $E(|X|^k) = \infty$ for $k > \nu$
- (e) $X \sim t_{\nu}, E(X) = 0, Var(X) = \frac{\nu}{\nu-2}$

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$

4. χ^2 distribution

$$f_x(x) = \frac{1}{(2^{k/2}\Gamma(k/2)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, x \in [0, \infty) \sim Gamma(\frac{k}{2}, \frac{1}{2})$$

(a)
$$E(X) = k, Var(X) = 2k, M_X(t) = (\frac{1}{1-2^t})^{k/2}$$

(b)
$$X \sim N(0,1) \Rightarrow X^2 \sim \chi^2, X_1, ... X_n \sim N(0,1) i.i.d \Rightarrow \sum X_i^2 \sim \chi^2,$$

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$

1.3.3 Theorems

- Law of Large Number
- Central Limit Theorem
- Bias/Variance decomposition (error = bias + variance + noise)

$$MSE(\mu(X)) = E[(Y - \hat{\mu}(X))^{2}] = E[(Y - f(x) + f(x) - \hat{\mu}(X))^{2}]$$

$$= E[(Y - f(x))^{2} + 2E[(Y - f(x))(f(x) - \hat{\mu}(X))] + E[(f(x) - \hat{\mu}(X))^{2}]$$

$$= E[(Y - f(x))^{2} + 2E[(Y - f(x))(f(x) - \hat{\mu}(X))] + (f(x) - \hat{\mu}(X))^{2}$$

$$= \sigma_{x}^{2} + Bias(\hat{\mu}(X))^{2} + Var(\hat{\mu}(X))$$

1.3.4 Practice/Examples

- 1. sample mean (\bar{X}) is unbiased. Sample variance $(\frac{1}{n-1}\sum_{i=1}^n x_i^n)$ is unbiased. But sample std is not unbiased. $SE(\bar{X}) = \frac{\sigma^2}{n}$
- 2. $\hat{Cov}(X.Y) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})(X_i \bar{Y})$ is unbiased
- 3. Distributions with Expectation not exist? (Cauchy)
- 4. Common Confidence Intervals:

confidence intervals.

$$\mu$$
: $P(-t_{\alpha/2,n-1} \leq \frac{\bar{X} - \mu}{s/\sqrt{n}} \leq t_{\alpha/2,n-1}) = 1 - \alpha$,
 σ : $P(a \leq \frac{(n-1)s^2}{\sigma^2} \leq b) = 1 - \alpha$

- 5. Solve MLE/MOM for beta, exponential $(n/\sum X_i)$, normal
- 6. * prove Asymptotic Normality of MLE(hint: using Taylor Expansion for θ, θ)
- 7. * Use t^{th} quantile to approximate c.d.f, what's the distribution? $(Y_n = \frac{1}{n} \sum I(X_i < x), \text{ a Bernoulli distribution with } p = F_x(x), \sqrt{n}[Y_n(x) F_x(x)] \sim N(0, F(x)(1 F(x)).$

1.4 Optimization Theory

- Objective function/Evaluation function, constrained/unconstrained optimizationFeasible Set, Optimal Solution, Optimal Value, Binding Constraints, Shadow Price, Infeasible Price, Infeasibility, Unboundedness
- Linear Programming
- Lagrange Multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$$

• Convex Set, Convex Function $f: S \to R$ is convex if and only if $\nabla^2 f(\mathbf{x})$ is positive semidefinite

Optimization Methods:

- Linear Search Method: Direction First, Step Size second
 - Gradient Descent: Batch Processing(Use all samples) vs
 Stochastic Gradient Descent(Use one sample)
 - Newton's Method: Use Curvature Information
- Trust Region: Step first, direction second. Find optimal direction of second-order approximation. If the descent size is too small, make step size smaller.
- Heuristics Method
 - Genetic Algorithm
 - Simulated Annealing
 - Partical Swarming/Ant Colony Algorithm

Theorems:

•

1.5 Information Theory

Concepts:

• Information

$$h(A) = -log_2 p(A)$$

(bit)

• (Information Source) Entropy

$$H(X) = -\sum_{i=1}^{n} p(a_i)log_2p(a_i) \le log_2n$$

Maximize under equal probability

• Conditional Entropy

$$H(Y|X) = -\sum_{i=1}^{n} p(x_i)H(Y|X = x_i) = -\sum_{i=1}^{n} p(x_i)\sum_{j=1}^{n} p(y_j|x_i)log_2p(y_j|x_i)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} p(x_i, y_j)log_2p(y_j|x_i)$$

• Mutual Information/Information Gain

$$I(X;Y) = H(Y) - H(Y|X)$$

• Kullback-Leibler Divergence (K-L) Divergence

$$D_{KL}(P||Q) = \sum_{i=1}^{n} p(x_i) log_2 \frac{p(x_i)}{q(x_i)} \neq D_{KL}(Q||P)$$

Measures the Distance of two distributions. The optimal encoding of information has the same bits as the entropy. Measures the extra bits if the real distribution is q rather than p. (Using P to approximate Q)

Theorems:

• The Maximum Entropy Principle. Without extra assumption, max entropy/equal probability has the minimum prediction risk.

11

1.6 Formal Logic

Concepts

- Generative Expert System: Rule+Facts+Deduction Engine
- \bullet Godel's incompleteness theorems

Computational Learning Theory

Part II Supervised Learning Models

Regression

3.1 Linear Regressions

3.1.1 Assumptions

Classic Assumptions for Statistics:

•

3.1.2 Interrataion

$$f(x) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^n w_i x_i$$

$$\mathbf{w}* = (\mathbf{X^TX})^{-1}\mathbf{X^Ty}$$

RSS Approach:

MLE Approach

Assuming noise is normal, maximize

$$p(\mathbf{x_1}, \mathbf{x_2}...\mathbf{x_n}|\mathbf{w}) = \prod_k \frac{1}{\sqrt{2\pi}\sigma} exp[-\frac{1}{2\sigma^2} (y_k - \mathbf{w_t} \mathbf{x_k})^2]$$

3.1.3 Lasso-Least Absolute Shrinkage and Selection Operator

$$min||y_k - \mathbf{w^T} \mathbf{x}_k||^2 + \lambda ||\mathbf{w}||_1$$

Logistic Regression and General Linear Model

Naive Bayesian

Tree Models and Ensemble Learning

Part III

Unsupervised Learning Models

Clustering

Dimension Reduction

Part IV

Deep Learning and Enhanced Learning Theory