Ejercicios

Módulo 2

En los ejercicios 1 a 12 se dan un espacio V y un subconjunto W. Determine si W es un subespacio.

1.
$$V = \mathbb{R}^2, W = \{(x, y) : x = y\}.$$

2.
$$V = M_{nn}$$
, $W = \{A \in M_{nn} : A \text{ es simétrica}\}$.

3.
$$V = \mathbb{R}^3$$
, $W = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \text{ es perpendicular a } (a, b, c)\}$.

4.
$$V = \mathbb{P}_4, W = \{ p \in \mathbb{P}_4 : p(0) = 0 \}.$$

5.
$$V = \mathbb{P}_4, W = \{ p \in \mathbb{P}_4 : p(0) = 1 \}.$$

6.
$$V = \mathbb{P}_4$$
, $W = \{ p \in \mathbb{P}_4 : \text{ grado de } p = 4 \}$.

7. La traza de una matriz $A_{n \times n}$ se define como:

$$\operatorname{tr} A = a_{11} + a_{22} + \dots + a_{nn}$$

Sean
$$V = M_{nn}$$
 y $W = \{ A \in M_{nn} : \text{tr } A = 0 \}.$

8.
$$V = M_{22}, W = \begin{cases} A \in M_{22} : A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \end{cases}$$

9.
$$V = M_{23}, W = \left\{ A \in M_{23} : A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \text{ donde } a = 2c + 1 \right\}.$$

10.
$$V = M_{23}$$
, $W = \left\{ A \in M_{23} : A = \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix}$, donde $b = a + c \right\}$.

11.
$$V = C[0, 1], W = \{ f \in C[0, 1] : f(0) = f(1) = 0 \}.$$

12.
$$V = C[0, 1], W = \{ f \in C[0, 1] : f(0) = 1 \}.$$

13. Sean
$$V = M_{23}$$
, $W_1 = \left\{ A \in M_{23} : A = \begin{bmatrix} 0 & b & c \\ d & e & f \end{bmatrix} \right\}$ $Y = \left\{ A \in M_{23} : A = \begin{bmatrix} a & b & c \\ d & e & 0 \end{bmatrix} \cos b = a + c \right\}$.

- a. Demuestre que W_1 y W_2 son subespacios.
- b. Describa el subconjunto $W = W_1 \cap W_2$ y demuestre que es un subespacio.

Capítulo 1: Espacios vectoriales

14. Sea $W = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{X} = \mathbf{0}, \text{ con } A \in M_{m \times n} \}.$

Demuestre que W es un subespacio de \mathbb{R}^n . W se llama *espacio nulo* de la matriz A.

15. Sean $\mathbf{x} = (1, 2, 4)$ e $\mathbf{y} = (-3, 2, 0)$ dos vectores en \mathbb{R}^3 y sea

$$W = \left\{ \mathbf{u} \in \mathbb{R}^3 : \mathbf{u} = \alpha \mathbf{x} + \beta \mathbf{y}, \text{ con } \alpha, \beta \in \mathbb{R} \right\}.$$

Demuestre que W es un subespacio de \mathbb{R}^3 .

16. Sean W_1 y W_2 subespacios de un espacio vectorial V.

Sea
$$W_1 + W_2 = \{ \mathbf{v} : \mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 \text{ con } \mathbf{v}_1 \in W_1 \text{ y } \mathbf{v}_2 \in W_2 \}.$$

Demuestre que $W_1 + W_2$ es un subespacio de V.