1 Derivações de L

1.1 Notação

Der(L) a álgebra das derivações de L $U \oplus V$ Soma direta de espaços vetoriais ou de álgebras de Lie

1.2 Pares compatíveis

Sejam K e I álgebras de Lie. Diremos que K age sobre I se existe um homomorfismo de álgebras de Lie $\psi: K \to Der(I)$. Neste caso, denotaremos a ação de K sobre I por

$$[a,k] := \psi(k)(a), k \in K, a \in I.$$

Definição 1. Sejam K e I álgebras de Lie tal que K age sobre I. Um elemento $d_K + d_I \in Der(K)$ é dito par compatível se $d_I([a,k]) = [d_I(a),k] + [a,d_K(k)]$ para todo $a \in I$ e $k \in K$.

Proposição 1. Sejam K e I álgebras de Lie tais que K age sobre I. O conjunto

$$Comp(K, I) = \{d_K + d_I \in Der(K) \oplus Der(I) \mid d_I([a, k]) = [d_I(a), k] + [a, d_K(k)], para \ todo \ a \in I, k \in K\}.$$

dos pares compatíveis é uma subálgebra de $Der(K) \oplus Der(I)$

Prova: Sejam $d_K + d_I$, $e_K + e_I \in Comp(K, I)$, $a \in I$ e $k \in K$. Como o produto em L é linear é imediato verificar que Comp(K, I) é um subespaço de $Der(K) \oplus Der(I)$. Além disso,

$$[d_I, e_I][a, k] = (d_I e_I - e_I d_I)[a, k]$$

$$= d_I([e_I(a), k] + [a, e_K(k)]) - e_I([d_I(a), k] + [a, d_K(k)])$$

$$= [d_I e_I(a), k] + [e_I(a), d_K(a)] + [d_I(a), e_K(k)] + [a, d_K.e_K(k)]$$

$$- [e_I d_I(a), k] - [d_I(a), e_K(k)] - [e_I(a), d_K(k)] - [a, e_K.d_K(k)]$$

$$= [[d_I, e_I](a), k] - [a, [d_K, e_K](k)].$$

Segue que $[d_K + d)i, e_K + e_I] \in Comp(K, I)$ e, portanto, Comp(K, I) é uma subálgebra de $Der(K) \oplus Der(I)$.

Se I é abeliana podemos calcular os pares compatíveis como um anulador de uma ação de $Der(K) \oplus Der(I)$ sobre Hom(K, Der(I)). Para isso, sejam $d_K + d_I \in Der(K) \oplus Der(I)$, $T \in Hom(K, Der(I))$, $k \in K$ e defina a aplicação $\psi_I : \mathfrak{gl}(K) \oplus \mathfrak{gl}(I) \to \mathfrak{gl}(Hom(K, Der(I)))$ por

$$\psi_I(d_K + d_I)T(k) = d_I(T(k)) - T(d_K(k)) - T(k)(d_I). \tag{1}$$

A aplicação $\Psi_I(d_K+d_I)$ é linear pois é uma combinação linear de composições de aplicações lineares. Isso também é suficiente para garantir que ela pertence a Hom(K, Der(I)) pois I é abeliana.

Para verificar que ψ_I é homomorfismo de álgebras de Lie considere $e_K + e_I \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$, então

```
 [\psi_{I}(d_{K}+d_{I}),\psi_{I}(e_{K}+e_{I})]T(k) = (\psi_{I}(d_{K}+d_{I})\psi_{I}(e_{K}+e_{I}) \\ - \psi_{I}(e_{K}+e_{I})\psi_{I}(d_{K}+d_{I}))T(k) \\ = \psi_{I}(d_{K}+d_{I})(e_{I}(T(k)) - T(e_{K}(k)) - T(k)(e_{I}) \\ - \psi_{I}(e_{K}+e_{I})(d_{I}(T(k)) - T(d_{K}(k)) - T(k)(d_{I}) \\ = d_{I}.e_{I}(T(k)) - d_{I}(T(e_{K}(k))) - d_{I}(T(k)(e_{I})) \\ - e_{I}.d_{I}(T(k)) + e_{I}(T(d_{K}(k))) + e_{I}(T(k)(d_{I})) \\ - e_{I}(T(d_{K}(k))) + T(e_{K}d_{K}(k)) + T(d_{K}(k))(e_{I}) \\ + d_{I}(T(e_{K}(k))) - T(d_{K}e_{K}(k)) - T(e_{K}(k))(d_{I}) \\ - e_{I}(T(k)(d_{I})) + T(e_{K}(k))(d_{I}) + T(k)(e_{I}d_{I}) \\ + d_{I}(T(k)(e_{I})) - T(d_{K}(k))(e_{I}) - T(k)(d_{I}e_{I}) \\ = [d_{I}, e_{I}](T(k)) - T([d_{K}, e_{K}])(k) - T(k)([d_{I}, e_{I}]) \\ = \psi_{I}([d_{K}, e_{K}] + [d_{I}, e_{I}])T(k) \\ = \psi_{I}([d_{K}, e_{K}] + e_{I}])T(k).
```

Teorema 1. Sejam K e I álgebras de Lie tais que K age sobre I e I é abeliana. Considere a restrição de ψ_I definida em (1) para $Der(K) \oplus Der(I)$. Se $T \in Hom(K, Der(I))$ é dada por T(k)(a) = [a,k] então $Comp(K,I) = Ann_{Der(K) \oplus Der(I)}(T)$.

Prova: Sejam $a \in I$ e $k \in K$ quaisquer. Se $d_K + d_I \in Comp(K, I) \subset Der(K) \oplus Der(I)$ então $d_I[a, k] = [d_I(a), k] + [a, d_K(k)]$. Essa igualdade é equivalente à $\psi_I|_{Der(K) \oplus Der(I)} (d_K + d_I)(T) = 0$, que é a definição de $Ann_{Der(K) \oplus Der(I)}(T)$.

1.3 Definição de ϕ

Sejam L uma álgebra de Lie e I um ideal de L. Defina por $A = \{f \in \mathfrak{gl}(L) \mid f(I) \subset I\}$ a subálgebra de $\mathfrak{gl}(L)$ das aplicações que mantém I invariante. Seja K = L/I e denote por $\bar{k} = k + I$, $k \in L$. Se $f \in A$ então:

- a aplicação $f_K: K \to K$ dada por $f_K(\bar{k}) = f(k) + I, k \in L$, é um elemento bem definido de $\mathfrak{gl}(K)$;
- a restrição de $f_I: I \to I$ de f ao ideal I é um elemento de $\mathfrak{gl}(I)$.

Logo, podemos a aplicação $\Phi: A \to \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ por

$$\Phi(f) = f_K + f_I. \tag{2}$$

Proposição 2. Sejam K uma álgebra de Lie e I um ideal de L. Suponha que K = L/I e $A = \{f \in \mathfrak{gl}(L) \mid f(I) \subset I\}$. Então a aplicação de Φ definida em (2) é um homomorfismo de álgebras de Lie.

Prova: Seja $f, g \in A$. Então

$$\begin{split} [\Phi([f,g]) &= \Phi(fg - gf) \\ &= (fg)_K + (fg)_I - (gf)_K - (gf)_I \\ &= f_K g_K + f_I g_I - g_K f_K - g_I f_I \\ &= [f_K, g_K] + [f_I, g_I] \\ &= [f_K + f_I, g_K + g_I] \\ &= [\Phi(f), \Phi(g)]. \end{split}$$

Proposição 3. Sejam K uma álgebra de Lie e I um ideal de L invarinate por Der(L). Suponha que K = L/I e Φ é a aplicação definida (2). Defina $\phi = \Phi|_{Der(L)}$ a restrição de Φ a Der(L). Então $\phi : Der(L) \to Der(K) \oplus Der(I)$ é um homomorfismo de álgebras de Lie.

Prova: Devido ao resultado obtido na proposição 2, basta provarmos que se $d \in Der(L)$ então $d_K + d_I \in Der(K) \oplus Der(I)$. Sejam $k, h \in L$ então $d_K([\bar{k}, \bar{h}]) = d([k, h]) + I = [d(k), h] + [k, d(h)] + I = [d_K(\bar{k}), \bar{h}] + [\bar{k}, d_K(\bar{h})]$. Se $a, b \in I$ então $d_I([a, b]) = d([a, b]) = [d(a), b] + [a, d(b)] = [d_I(a), b] + [a, d_I(b)]$.

Seja L uma álgebra de Lie e I ideal de L. A representação adjunta de L é definida por $ad_L: L \to Der(L)$ tal que $ad_L(x)(y) = [y, x]$. Suponha I é um ideal abeliano e defina K = L/I. Então podemos induzir uma representação $ad_K: K \to Der(I)$ por $ad_K(\bar{k})(a) = [a, k]$, para todo $k \in L$ e $a \in I$. Assim, se I é abeliano então K age sobre I.

Teorema 2. Sejam L uma álgebra de Lie e I um ideal abeliano de L. Suponha que K age sobre I pela representação $ad_K : K \to Der(I)$. Seja $\phi : Der(L) \to Der(K) \oplus Der(I)$ dada por $\phi(d) = d_K + d_I$, conforme definida na proposição 3. Então $Im(\phi) \leq Comp(K, I)$.

Prova: Se $d_K + d_I \in Im(\phi)$ então existe $d \in D$ tal que $\phi(d) = d_K + d_I$. Seja $k \in L$ tal que $k + I = \bar{k}$ e $a \in I$, $d_I[a, \bar{k}] = d_I[a, k] = d[a, k] = [d(a), k] + [a, d(k)] = [d_I(a), \bar{k}] + [a, d_K(\bar{k})]$.

1.4 Extensões usando cohomologia

Definição 2. Sejam K e I álgebras de Lie tais que K age sobre I e I é abeliana.

- Denote por $C^2(K, I)$ o espaço das aplicações bilineares e antisimétricas de K em I.
- Se $\theta \in C^2(K, I)$ é tal que $\theta(k, [h, l]) + \theta(h, [l, k]) + \theta(l, [k, h]) = [\theta(h, l), k] + [\theta(l, k), h] + [\theta(k, h), l], h, k, l \in K$, então θ será chamado de cociclo e o espaço dos cocilos será denotado por $Z^2(K, I)$.
- Suponha que θ é um cociclo. Se para todo $k, h \in K$ podemos escrever $\theta(k, h) = \nu([h, k]) + [\nu(h), k] [\nu(k), h]$, para alguma aplicação linear $\nu : K \to I$ então θ será chamado de cofronteira. O espaço das cofronteiras será denotado por $B^2(K, I)$.
- Denote $H^2(K,I) = Z^2(K,I)/B^2(K,I)$ o espaço quociente dos cociclos pelas cofronteiras.
- O primeiro grupo de cohomologia de K e I é definido por $Z^1(K,I) = \{ \nu \in Hom(K,I) \mid \nu([k,h]_K) = [\nu(k),h] [\nu(h),k], \text{ para todo } k,h \in K \}.$

Proposição 4. Sejam K e I álgebras de Lie tais que K age sobre I e I é abeliana. Seja $\theta \in Z^2(K,I)$ e no espaço $L_{\theta} = K \oplus I$ e defina o produto

$$[k+a, h+b] = [k, h]_K + \theta(k, h) + [a, h] - [b, k], para k, h \in K \ e \ a, b \in I.$$
 (3)

Então,

- 1. L_{θ} é uma álgebra de Lie;
- 2. Sejam L uma álgebra de Lie e I um ideal de L com I abeliano. Suponha que K = L/I age sobre I. Então existe $\theta \in Z^2(K, I)$ tal que $L \cong L_{\theta}$.

Prova: 1) Se $\theta \in Z^2(K, I)$, $h \in K$ e $a \in I$ então $[k+a, k+a] = [k, k]_K + \theta(k, k) + [a, k] - [a, k] = 0$. Sejam $h, l \in K$ e $b, c \in I$. Usando a definição do produto obtemos:

$$\begin{array}{lll} [k+a,[h+b,l+c]] & = & [k+a,[h,l]_K+\theta(h,l)+[b,l]-[c,h]] \\ & = & [k,[h,l]_K]_K+\theta(k,[h,l])+[a,[h,l]_K]-[\theta(h,l)+[b,l]-[c,h],k]. \end{array}$$

Portanto, a igualdade [k+a,[h+b,l+c]]+[h+b,[l+c,k+a]]+[l+c,[k+a,h+b]]=0 segue da definição de cociclo, identidade de Jacobi em K e do fato que ação de K em I é definida por uma representação.

2) Considere a seguinte sequência exata $0 \to I \xrightarrow{i} L \xrightarrow{\pi} K \to 0$. Chamamos de transversal de K em L a aplicação linear injetora $\epsilon: K \to L$ que satisfaz $\pi(\epsilon(k)) = k, k \in K$.

Defina a aplicação $\theta: K \to I$ por $\theta(k,h) = [\epsilon(k), \epsilon(h)]_L - \epsilon([k,h]_K)$. Então,

- $\theta \in Z^2(K, I)$. Por definição temos $\pi(\theta(k, h)) = \pi([\epsilon(k), \epsilon(h)]_L \epsilon([k, h]_K)) = 0$, ou seja, $\theta(k, h) \in I$. Além disso, $\theta(k, k) = 0$ e pela identidade de Jacobi em K e L temos $\theta(k, [h, l]) + \theta(h, [l, k]) + \theta(l, [k, h]) = 0$;
- Seja $\epsilon: K \to I$ uma transversal. Todo elemento de $x \in L$ pode ser escrito de forma única como $x = \epsilon(\bar{x}) + a$, pois $\epsilon: K \to L$ é injetora. Vamos mostrar que a aplicação $\zeta: L \to L_{\theta}$ por $\zeta(x) = \bar{x} + a$ é um isomorfismo.

É imediato que se $\zeta(x) = \zeta(y)$ então x = y. E se $y \in L_{\theta}$ então escreva y = (x + I) + a, com $x \in L/I$ e $a \in I$. Segue que $\zeta(x + a) = y$.

Sejam $x,y\in L$ tais que $x=\epsilon(\bar{x})+a$ e $y=\epsilon(\bar{y})+b$, com $b\in I$. Por um lado, $[x,y]=\epsilon([\bar{x},\bar{y}])+c$, para algum $c\in I$. Por outro lado, $[x,y]=[\epsilon(\bar{x})+a,\epsilon(\bar{y})+b]=[\epsilon(\bar{x}),\epsilon(\bar{y})]+[a,\epsilon(\bar{y})]-[b,\epsilon(\bar{x})]=[\epsilon(\bar{x}),\epsilon(\bar{y})]+[a,\bar{y}]-[b,\bar{x}]$. Então $c=[\epsilon(\bar{x}),\epsilon(\bar{y})]-\epsilon([\bar{x},\bar{y}])+[a,\bar{y}]-[b,\bar{x}]$. Portanto, $\zeta([x,y])=[\bar{x},\bar{y}]_K+[\epsilon(\bar{x}),\epsilon(\bar{y})]-\epsilon([\bar{x},\bar{y}])+[a,\bar{y}]-[b,\bar{x}]=[\bar{x}+a,\bar{y}+b]=[\zeta(x),\zeta(y)]$.

Portanto $L \cong L_{\theta}$.

Nas condições da proposição anterior. Suponha que ϵ_1, ϵ_2 sejam duas escolhas de transversais de K em I e θ_1, θ_2 os cociclos definidos por $\theta_i(k,h) = [\epsilon_i(k),\epsilon_i(h)]_L - \epsilon_i([k,h]_K)$ para $1 \leq i \leq 2$ e $k,h \in K$. Então $\theta_1 - \theta_2 \in B^2(K,I)$. De fato, podemos escrever $\epsilon_1(k) = \epsilon_2(k) + \lambda(k), k \in K$ com $\lambda \in Hom(K,I)$. Da igualdade $\epsilon_1([k,h]_K) = \epsilon_2([k,h]_K) + \lambda([k,h]_K)$ obtemos: $(\theta_1 - \theta_2)(k,h) = [\epsilon_1(k),\epsilon_1(h)]_L - \epsilon_1([k,h]_K) - ([\epsilon_2(k),\epsilon_2(h)]_L = \lambda([k,h]_K) - [\lambda(k),h] + [\lambda(h),k]$. Logo, $\theta_1 - \theta_1 \in B^2(K,I)$.

1.5 Ação de $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ em $C^2(K,I)$

Sejam K e I álgebras de Lie tais que K age sobre I. Vamos definir uma ação de $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ em $C^2(K,I)$. Dados $d_K + d_I \in \mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$, $\theta \in Z^2(K,I)$ e $h,k \in K$, defina a aplicação $\psi_K : \mathfrak{gl}(K) \oplus \mathfrak{gl}(I) \to \mathfrak{gl}(C^2(K,I))$ por

$$\psi_K(d_K + d_I)\theta(h, k) = d_I(\theta(h, k)) - \theta(d_K(k), h) - \theta(k, d_K(h)). \tag{4}$$

A prova que ψ_K define uma representação de $\mathfrak{gl}(K) \oplus \mathfrak{gl}(I)$ é semelhante prova de que ψ_I definida em (1) é uma representação.

Proposição 5. Sejam K e I álgebras de Lie tais que K age sobre I e I é abeliana. Seja ψ_K a representação definida em (5). Então os espaços $Z^2(K,I)$ e $B^2(K,I)$ são invariantes por ψ_K restrita à Comp(K,I).

```
Prova: Sejam k, h, l \in K e \theta \in Z^2(K, I). Então,
     \psi_K(d_K + d_I)(\theta)(k, [h, l]) + \psi_K(d_K + d_I)(\theta)(h, [l, k]) + \psi_K(d_K + d_I)(\theta)(l, [k, h])
     = d_I(\theta(k, [h, l])) - \theta(d_K(k), [h, l]) - \theta(k, d_K([h, l]))
     +d_I(\theta(h,[l,k])) - \theta(d_K(h),[l,k]) - \theta(h,d_K([l,k]))
     +d_I(\theta(l,[k,h])) - \theta(d_K(l),[k,h]) - \theta(l,d_K([k,h]))
     = d_I(\theta(k, [h, l]) + \theta(h, [l, k]) + \theta(l, [k, h]))
     -(\theta(d_K(k),[h,l]) + \theta(d_K(h),[l,k]) + \theta(d_K(l),[k,h]))
     -(\theta(k, d_K([h, l]) + \theta(h, d_K([l, k]) + \theta(l, d_K([k, h])))
    = d_{I}([\theta(h, l), k] + [\theta(l, k), h] + [\theta(k, h), l])
     -\theta(d_K(k), [h, l]) - \theta(d_K(h), [l, k]) - \theta(d_K(l), [k, h])
     -\theta(k, [d_K(h), l]) - \theta(k, [h, d_K(l)]) - \theta(h, [d_K(l), k])
     -\theta(h, [l, d_K(k)]) - \theta(l, [d_K(k), h]) - \theta(l, [k, d_K(h)])
     = [d_I(\theta(h, l)), k] + [\theta(h, l), d_K(k)] + [d_I(\theta(l, k)), h]
     +[\theta(l,k),d_K(h)]+[d_I(\theta(k,h)),l]+[\theta(k,h),d_K(l)]
     -\theta(d_K(k), [h, l]) - \theta(h, [l, d_K(k)]) - \theta(l, [d_K(k), h])
     -\theta(d_K(h), [l, k]) - \theta(k, [d_K(h), l]) - \theta(l, [k, d_K(h)])
     -\theta(d_K(l), [k, h]) - \theta(k, [h, d_K(l)]) - \theta(h, [d_K(l), k])
     = [d_I(\theta(h,l)), k] + [\theta(h,l), d_K(k)] + [d_I(\theta(l,k)), h]
     +[\theta(l,k),d_K(h)]+[d_I(\theta(k,h)),l]+[\theta(k,h),d_K(l)]
     -[\theta(h,l),d_K(k)] - [\theta(l,d_K(k)),h] - [\theta(d_K(k),h),l]
     -[\theta(d_K(h), l), k] - [\theta(l, k), d_K(h)] - [\theta(k, d_K(h)), l]
     -[\theta(h, d_K(l)), k] - [\theta(d_K(l), k), h] - [\theta(k, h), d_K(l)]
     = [d_I(\theta(h, l)) - \theta(d_K(h), l) - \theta(h, d_K(l)), k] + [d_I(\theta(l, k)) - \theta(l, d_K(k)) - \theta(d_K(l), k), h]
     +[d_I(\theta(k,h)) - \theta(d_K(k),h) - \theta(k,d_K(h)),l]
     = [\psi_K(d_K + d_I)\theta(h, l), k] + [\psi_K(d_K + d_I)\theta(l, k), h] + [\psi_K(d_K + d_I)\theta(k, h), l].
     Então \psi_K(d_K + d_I)\theta \in Z^2(K, I).
     Seja \theta \in B^2(K, I) tal que \theta(k, h) = \nu([k, h] - [\nu(k), h] - [k, \nu(h)], \nu : K \to I linear. Então,
     \psi_K(d_K + d_I)\theta(k, h) = d_I(\nu([k, h] - [\nu(k), h] - [k, \nu(h)])
     -\nu([d_K(k),h]) + [\nu(d_K(k)),h] + [d_K(k),\nu(h)] - \nu([k,d_K(h)] + [\nu(k),d_K(h)] + [k,\nu(d_K(h))]
     = d_I(\nu[k,h]) - [d_I(\nu(k)),h] - [\nu(k),d_K(h)] - [d_K(k),\nu(h)] - [k,d_I(\nu(h))]
     -\nu([d_K(k),h]) + [\nu(d_K(k)),h] + [d_K(k),\nu(h)] - \nu([k,d_K(h)] + [\nu(k),d_K(h)] + [k,\nu(d_K(h))]
     = d_I(\nu[k,h]) - \nu([d_K(k),h]) - \nu([k,d_K(h)])
     -[d_I(\nu(k)), h] + [\nu(d_K(k)), h] - [k, d_I(\nu(h))] + [k, \nu(d_K(h))]
     = (d_I \cdot \nu - \nu \cdot d_K)([k, h] - [(d_I \cdot \nu - \nu \cdot d_K)(k), h] - [k, (d_I \cdot \nu - \nu \cdot d_K)(h)].
     Como (d_I.\nu - \nu.d_K): K \to I é linear então \psi_K(d_K + d_I)\theta \in B^2(K, I).
```

Definição 3. Sejam K e I álgebras de Lie tais que K age sobre I e I é abeliana. Seja $\theta \in Z^2(K,I)$ tal que $L = L_{\theta}$ e considere a ação de Comp(K,I) sobre $Z^2(K,I)$ segundo a representação ψ_K definida em (5). Defina os pares induzidos de $Der(K) \oplus Der(I)$ por:

$$Indu(K, I, \theta) = Ann_{Comp(K, I)}(\theta + B^{2}(K, I)).$$

1.6 Derivações de L_{θ}

Sejam L uma álgebra de Lie e I um ideal abeliano de L invariante por derivações. Defina K = L/I e escreva $L = K \oplus I$. Se $\bar{x} \in K$ então $d_K(\bar{x}) = d(x) + I$. Logo, podemos escrever $d(x) = d_K(\bar{x}) + \varphi_d(x)$, com $d_K(\bar{x}) \in K$ e $\varphi_d(x) \in I$. Se $d \in Der(L)$ e os elementos de L estão na forma x + a com $x \in K$ e $a \in L$ então

$$d(x+a) = d_K(x) + \varphi_d(x) + d_I(a). \tag{5}$$

Podemos verificar que φ_d é uma aplicação linear: como d é linear temos $d(k) + d(h) = d_K(k) + d_K(h) + \varphi_d(k) + \varphi_d(h)$. Por outro lado, $d(k+h) = d_K(k+h) + \varphi_d(k+h)$, então $\varphi_d(k+h) = \varphi_d(k) + \varphi_d(h)$.

Teorema 3. Seja K uma álgebra de Lie, I um K-módulo e $\theta \in Z^2(K,I)$. Seja $L_{\theta} = K \oplus I$ e considere I como ideal de L_{θ} . Assuma que I é invariante por $Der(L_{\theta})$. Seja $\phi : Der(L_{\theta}) \to Der(K) \oplus Der(I)$ dada por $\phi(d) = d_K + d_I$. Então:

- 1. $Im(\phi) = Indu(K, I, \theta)$
- 2. $ker(\phi) \cong Z^1(K, I)$

Prova: 1) Seja $d_K + d_I \in Indu(K, I, \theta)$ então $(d_K + d_I) \cdot \theta = 0 \mod B^2(K, I)$. Logo, existe uma aplicação linear $\nu : K \to I$ tal que para todo $k, h \in K$ temos

$$\theta(d_K(k), h) + \theta(k, d_K(h)) + [\nu(k), h] - [\nu(h), k] = d_I(\theta(k, h)) + \nu([k, h]). \tag{6}$$

Suponha que $x \in K$ e $a \in I$ e defina a aplicação linear $(d_K + d_I)^* : L_\theta \to L_\theta$ por

$$(d_K + d_I)^*(k+a) = d_K(k) + d_I(a) + \nu(k).$$

Vamos verificar que $(d_K + d_I)^*$ é uma derivação de L_θ . Sejam $k + a, h + b \in L_\theta$.

$$(d_K + d_I)^*([k + a, h + b]) = (d_K + d_I)^*([k, h]_K + \theta(k, h) + [a, h] - [b, k])$$

$$= d_K([k, h]_K) + d_I(\theta(k, h)) + d_I([a, h]) - d_I([b, k]) + \nu([k, h])$$

$$= d_K([k, h]_K) + d_I(\theta(k, h)) + \nu([k, h])$$

$$+ [d_I(a), h]) + [a, d_K(h)] - [d_I(b), k] - [b, d_K(k)]$$

$$\begin{split} [(d_K + d_I)^*(k + a), h + b] + [k + a, (d_K + d_I)^*(h + b)]) \\ &= (d_K + d_I)^*([k, h]_K + \theta(k, h) + [a, h] - [b, k]) \\ &= [d_K(k) + d_I(a) + \nu(k), h + b] + [k + a, d_K(h) + d_I(b) + \nu(h)] \\ &= [d_k(k), h]_K + \theta(d_K(k), h) + [d_I(a) + \nu(k), h] - [b, d_K(k)] \\ &+ [k, d_K(h)]_K + \theta(k, d_K(h)) + [a, d_K(h)] - [d_I(b) + \nu(h), k] \\ &= d_K([k, h]_K) + \theta(d_K(k), h) + \theta(k, d_K(h)) + [\nu(k), h] + [k, \nu(h)] \\ &+ [d_I(a), h]) + [a, d_K(h)] - [d_I(b), k] - [b, d_K(k)] \end{split}$$

Pela equação (??) obtemos a igualdade. Logo $(d_K + d_I)^*$ é uma derivação. Além disso, $(d_K + d_I)_K^*(x + a) = d_K(x) + d_I(a) + \nu(x) + I = d_K(x) + I$. E $(d_K + d_I)_I^*(a) = d_I(a)$. Segue que $\phi((d_K + d_I)^*) = d_K + d_I$.

Agora, suponha que $(d_K+d_I) \in Im(\phi)$. Então existe $d \in Der(L_\theta)$ tal que $\phi(d) = (d_K+d_I)$. Para cada $k+a \in L_\theta$ escreva $d(k+a) = d_K(k) + \varphi_d(k) + d_I(a)$, conforme a equação (??). Como d é uma derivação, temos d[k+a,h+b] = [d(k)+a,h+b] = [k+a,d(h)+b]. Expandindo os dois da igualdade:

```
 \begin{aligned} [d(k+a),h+b] + [k+a,d(h+b)] &= [d_K(k) + \varphi_d(k) + d_I(a),h+b] \\ &+ [k+a,d_K(h) + \varphi_d(h) + d_I(b)] \\ &= [d_K(k),h]_K + \theta(d_K(k),h) + [\varphi_d(k) + d_I(a),h] - [b,d_K(k)] \\ &+ [k,d_K(h)]_K + \theta(k,d_K(h)) + [a,d_K(h)] - [\varphi_d(h) + d_I(h),k] \\ &= d_K([k,h]_K) + \theta(d_K(k),h) + \theta(k,d_k(h)) \\ &+ [d_I(a),h] - [b,d_k(k)] + [a,d_K(h)] \\ &- [d_I(b),k] + [\varphi_d(k),b] - [\varphi_d(h),k] \end{aligned}
```

$$\begin{array}{lll} d([k+a,h+b]) & = & d([k,h]_K + \theta(k,h) + [a,h] - [b,k]) \\ & = & d_K([k,h]_K) + d_I(\theta(k,h)) + d_I([a,h]) - d_I([b,k]) + \varphi_d([k,h]) \end{array}$$

Como $Im(\phi) \subseteq Comp(K,I)$ então $\phi(d) = (d_K + d_I) \in Indu(K,I,\theta)$.

2) Se $d \in ker(\phi)$ então $d(k+a) = \varphi_d(k)$. Assim, a igualdade d[k+a,h+b] = [d(k)+a,h+b] = [k+a,d(h)+b] nos fornece $\varphi_d([k,h]_K) = [\varphi_d(k),h] - [\varphi_d(h),k]$ ou seja, $\varphi_d \in Z^2(K,I)$. Defina $\sigma: ker(\phi) \to (Z^1(K,I),+)$ por $\sigma(d) = \varphi_d$. Sejam $d,e \in ker(\phi)$ e $k \in K$ então $\sigma(d+e)(k) = \varphi_{(d+e)}(k) = (d+e)(k) = (d)(k) + (d)(k) = \varphi_d(k) + \varphi_e(k) = (\sigma(d) + \sigma(e))(k)$. Agora defina $\delta: (Z^1(K,I),+) \to ker(\phi)$ por $\delta(\varphi) = d_{\varphi}$ tal que $d_{\varphi}(k+a) = \varphi(k)$. Temos, $d_{\varphi}([k+a,h+k]) = \varphi([k,h]) = [\varphi(k),h] + [k,\varphi(h)] = [d_{\varphi}(k+a),h+b] + [k+a,d_{\varphi}(h+b)]$. Logo, d_{φ} é uma derivação de L_{θ} e $d_{\varphi} \in ker(\phi)$. Sejam $\varphi,\beta \in (Z^1(K,I),+)$ e $k \in K$ então

 $\delta(\varphi + \beta)(k) = d_{\varphi + \beta}(k) = \varphi(k) + \beta(k) = (\delta(\varphi) + \delta(\beta))(k).$ É imediato que $\sigma = \delta^{-1}$.