Succession: di womer: reali

Una successione in IR e' una funtione f:N+IR, dove si definisce la matazione an:=f(m). Si puo' pensare ad una successione come una sequenta ordinata di mumer: reali man necessariamente distinti.

Si definisce sottosuccessione di S una successione T che riprende parzialmente elementi di S, preservandone l'ordine, ossia $f_T = f_S \circ g$, dove g e' strettamente crescente. $N \to R$ $N \to R$ $N \to N$

Def. (limite di una successione) Dato LER, si dice lima am = L se Y EER, E>O = MOEN/ | am - L/ < E Y m > mo. S; scrive lima an = +00 se Y MER = mo EN | am > M Y m > mo.

- Def. Dato $x \in R$, un interval di $x \in L$ un intervallo della forma $I = [x-r, x+r] \quad \text{con } r>0.$
- Def. Un intorno di $+\infty$ e' un intervallo della forma $I = [H, +\infty] \subset \mathbb{R}.$ Uno di $-\infty$ e' della forma $I = [-\infty, M].$
- OSS. lim an = LER (=> Y intorno I di L] moEN|
 Y m≥no, an EI.
- oss. una successione potrebbe han ammettere limite.
- OSS. data $f: X \to \mathbb{R}$ con $\mathbb{N} \subset X \subset \mathbb{R}$, $f(X) \to L \Rightarrow f(M) \to L$.
- es. Lon vak: 1 viceversa: lim sin(mm) =0, ma] lim sin(mx).
- es. $(-1)^m$ non ammette limite per $n \to +\infty$.

<u>Prop.</u> Il limite di una successione, se esiste, e' unico.

Siano $L_1, L_2 \in \mathbb{R}$ divers: limiti della stessa successione. Siano I_1, I_2 due interni disgiunti di L_1 e L_2 . Allora siano $m_1, m_2 \in \mathbb{R} \mid \forall m \geqslant m_2, a_m \in I_1$ $\land \forall m \geqslant m_2, a_m \in I_2$. Per $m \geqslant \max \{m_1, m_2\}$, $a_m \in I_1 \land a_m \in I_2 \Rightarrow$ $\Rightarrow a_m \in I_1 \land I_2 = \emptyset$, \oint . Pertanto L_1 e L_2 devono essere uquali.

Prop. Se una successione tende a LEIR, anche ogni sua sotto successione tende a L.

Sia am una successione e him am = LER. Sia I un intormo di L. Per definizione di L, I mo EN | am E I V m > mo.

Im particolare esisterà un Ko EN | bx E I V K> Ko, dove bm e' una sollosuccessione di am: infatti bm e' astruità riprendendo parzialmente infiniti termini di am preservandone l'ordine, e se tale Ko man esistesse, bm sarebbe composta o di un numero finito di termini o ripeterebbe infinite volte alcuni termini di am. in ogni caso formendo un assurdo.

OSS. E' utile struttare la contronominale dell'ultima proposizione: Sia $\alpha_m := (-1)^m$ $\lim_{m \to +\infty} \alpha_{2m} = 1, \lim_{n \to +\infty} \alpha_{2m+1} = -1 \implies \text{im} \quad \alpha_m \text{ (altrimenti : due limiti dourebbero essere uguali).}$

Def. una successione (Xn)_{men} si dice <u>Monotona</u> se e' crescente o decrescente, non per forza strettamente.

Teorenna se una succ. el monotona, essa ammete limite.

Sia (Xn) men una successione crescente. Sia E= {Xm:men}, ossia gli elementi di (Xm)men. Sia L= sup E - esiste dacché E C IR ed IR è completo. Sia I un intorno di L, con forma [a,b], dove vale a L. Poiché a L = sup E, a non è un maggiorante di E, quindi ∃ MEN | Xm > a. Poiché allora (Xm)men è crescente, Y m>m, Xm > a. Inottre Xm L, dacché è estremo superiore. Quindi Y m>m, Xm E I, da cui la tesi. Analogamente se (Xm)men è decrescente.

SUP E

χο ^{κ1}

Def. (x_m) si dice successione di Cauchy se $\forall \epsilon > 0 \exists m_{\epsilon} \mid m_{\epsilon} = 0$ $m_{\epsilon} = 0$

Prop. Se an ammette limite finito, an e' una successione di Cauchy.

Sia I un interno di L della forma [L-8, L+8]. Allora, per definizione di limite, $\exists m_0 \in \mathbb{N} \mid \alpha_m \in \mathbb{I} \ \forall \ m \geqslant m_0$. Pertanto $\forall m,n \geqslant m_0$, $|\alpha_m - \alpha_m| \leq |I| = 28$. Si consideri dunque $\forall \epsilon \geqslant 0$, $\delta = \frac{\epsilon}{2}$ e $m_{\epsilon} = m_0$, da cui la tesi.

Lemma 1 (teorema del confronto) Se $xn \to L$ e $zn \to L$ e $\chi_n \leq y_n \leq z_m + \chi_n \in \mathbb{N}$, allora $y_n \to L$.

Sia I un intorno di L e siamo Ma, Ma EN | XMEI Y Mana A A ZMEI Y Mana. Sia K=max (Ma, ma), allora XM, ZMEI Y Mak, e poiché XM = ym = Zm Y MEN, ym EI Y Mak. II

(*) e' sufficiente, in realta', che sia vero in un intorno di too.

Lemma 2 Sia II > II > ... una successione decrescente di intervalli chiusi. Sia Im della forma [an, bm]. Allora valgono i seguenti risuttati.

(i)
$$\bigcap_{m=\pm}^{\infty} I_m = [a,b] \iff a = \sup_{m \to \infty} a_m = \lim_{m \to \infty}$$

Si consider: In = [am, bm]. $a \ge am$, dacché ne e' l'estremo superiore; analogamente $b \le bm$. Quiudi [a,b] $CIm \ \forall \ m \ge 1$, da cui [a,b] $C \bigcap_{n=1}^{\infty} Im$. Sia ora $x \not\in [a,b]$. Se $x \not\in Im \ \forall \ m \ge 1$, sicuramente uon appartiene all'intersezione studiata. Altriment: sia Im l'intervallo a cui x appartiene: poiché $x \not\in [a,b]$, vale $am \le x < a$ o $b < x \le bm$. Si consider: il primo caso: poiché x < a, $x \not\in Hag \ am$, quiud: $\exists t \in \mathbb{N} \mid x < at$, e duuque $x \in It \Rightarrow x \not\in \bigcap_{n=1}^{\infty} Im$. Analogamente se $b < x \le bm$. Pertanto vale (i).

The office using the office of the option o

(chiaramente, infatti, $0 \rightarrow 0$). Tuttavia b-a e' costante, da wi si deduce che b-a=0 \Rightarrow a=b. Pertanto [a,b] = {a}. Allora, da (i), si ricava che $\bigcap_{n=1}^{\infty} I_n = [a,b] = \{a\}$. Se dunque $X_n \in I_n \ \forall \ n \ge 1$, uale che an $\subseteq X_n \subseteq b_n \ \forall \ n \ge 1$. Allora, poiché a= sup am = $\lim_{n\to\infty} a_n$ e a=b= inf $b_n = \lim_{n\to\infty} b_n$, per il teorema del confronto $X_n \rightarrow a$ per $n \rightarrow \infty$, per $a_n \rightarrow \infty$, per $a_n \rightarrow \infty$.

Teorema Sia (x_m) una successione di Cauchy. Allora (x_m) ammette limite finito in R.

Data (x_m) , definise $y_n := \inf\{x_m, m \ge n\} \in \mathbb{Z}_n := \sup\{x_m, m \ge n\}$. Vale siconamente che $y_n \le x_n \le \mathbb{Z}_n \ \forall n \in \mathbb{N}$. Inoltre y_n cresce $(\inf \mathbb{Z}_n)$ come \mathbb{Z}_n decresce $(\inf \mathbb{Z}_n)$ \mathbb{Z}_n of \mathbb{Z}_n un minorante di \mathbb{Z}_n e quindi $\mathbb{Z}_n \ge \mathbb{Z}_n$. Delti $\mathbb{Z}_n = \sup \mathbb{Z}_n \in \mathbb{Z}_n + 2$. Delti $\mathbb{Z}_n = \sup \mathbb{Z}_n \in \mathbb{Z}_n + 2$.

Poiché (x_n) è d: Cauchy, vale che $|x_m - x_{n_E}| \le E \ \forall m \ge m_E \Rightarrow$ $\Rightarrow x_{m_E - E} \le x_m \le x_{m_E} + E \Rightarrow x_{m_E - E} \le \inf\{x_m : m \ge m_E\} \le \sup\{x_m : m \ge m_E\} \le x_{m_E} + E . Allora vale che <math display="block">\lim_{Z \to \infty} x_m \le x_m \le x_m \le L \le L' \le x_m \le L' \le x_m \le L' \le x_m \le x_m$

Quindi per E>0, L'=L. Allors per il lemma precedente, con In=

- [y_m, z_m], per $m \to \infty$, $x_m \to L \in \mathbb{R}$, e quind: x_m ammette limite finite.
- oss. E stato sufficiente usare solo una proprieta particolare delle succession: di Cauchy.
- <u>Corollario</u> (xn) ammette limite finito se e solo se e' una successione di Cauchy.
- Def. S: definisce $\limsup_{m\to\infty} x_m := \inf \{ \sup \{x_m | m \ge n \} \}$ e $\limsup_{m\to\infty} x_m := \sup \{\inf \{x_m | m \ge n \} \}$.
- OSS. lim inf e lim sup esistomo sempre.
- 055. lim inf xm ≤ lim sup xm.
- OSS. (xm) ammette limite se e solo se liminf xm = lim sup xm.
- OSS. Y E>O ∃ ME t.c. M>ME ⇒ L-E ≤ XM ≤ L' + E dove

 L = lim inf Xm e L' = lim Sup Xm.

 M→ 100

- OSS.] Xmk d: Xm | lim xmk = lim sup xm.
- OSS. 3 xmk d: xm/ lim xmk = lim inf xm.
- 055.] lim xnk=L ⇒ liminf xm ≤ L ≤ lim sup xn.
- Teorema (di Bolzano-Weierstrass) Data (xm) successione in IR limitata esiste (xmx) sullo successione t.c. $x_{mx} \rightarrow L \in \mathbb{R}$.

 Data (xm) successione in IR esiste (xmx) sullo successione t.c. $x_{mx} \rightarrow L \in \mathbb{R}$.
 - (i) Sia Io = [a,b] dove a, b some t.c. a≤xn≤b∀m∈ ∈ IN. Sia II una delle die metà dove xm ha infiniti infiniti e così ∀m∈N.

Definis ω $m_0 = 0$. Prendo $m_1 > m_0$ t.c. $\chi_{m_1} \in I_1$, $m_2 > m_1$ t.c. $\chi_{m_2} \in I_2$, Gli I_k some t.c. $I_0 \supset I_1 \supset \cdots$. Poiché $\lim_{n \to \infty} |I_n| = \lim_{n \to \infty} \frac{b - a}{2^n} = 0$, per il lemma sulla successione degli intervalli, (χ_{m_k}) ammette limiti in sup $a_k = \inf b_k$.

Prop. Dato E ≠ Ø, E < R, allora ∃ (xm) in E | lim xm = sup E.

Se sup $E \in E$, e' sufficiente considerare $\chi_M := \frac{supE}{max E} \forall M \in M$. Se sup $E := L \in IR$ e' finito, $\forall M \in IM$, $L - \frac{1}{m} \lor L \rightarrow L - \frac{1}{m}$ mon e' un magajorante. Allora $\exists y_M \in E \mid y_M \lor L - \frac{1}{m}$. Sia allora (χ_M) definita con tali $y_M \forall M \in IM$. Poiché $L - \frac{1}{m} \lor \chi_M \lor L$ e $\lim_{M \to \infty} L - \frac{1}{m} = \lim_{M \to \infty} L = L$, $\chi_M \to L$ per $M \to L$, per il teorema del confronto.

Se $\sup E = +\infty$, $\forall m \in \mathbb{N}$ $\exists ym \in E \mid ym > m$. Si considera allora (xm) definita con tali $ym \forall m \in \mathbb{N}$. Analogamente a prima, $xm \to \infty$ per $m \to \infty$, da ω i la tesi. \square

Prop. Dato $E \neq \emptyset$, $E \subset \mathbb{R}$, allora $\exists (x_m)$ in $E \mid \lim_{n \to \infty} x_m = \sup E \in \mathbb{R}$ che (x_m) sia crescente.

Sia (y_m) la successione costruità nella precedente proposizione. Si costruisce allora la sottosuccessione $x_m := max\{y_1, ..., y_m\}$. Vale sicuramente che (x_m) è crescente, e quindi $x_m \to sup$ E per $m \to \infty$.

- OSS. Analogamente si possono dedurre risultati di questo tipo per infE osseruando che inf $E = \sup(-E)$.
- Prop. Sia (Xm) una successione e sia $\Psi: [0, +\infty) \rightarrow [0, +\infty) \rightarrow [0, +\infty) \rightarrow 0$ $\rightarrow 0$ per $t \rightarrow 0^+$ tale the $\forall \epsilon > 0 \exists m_{\epsilon} \in \mathbb{N} \mid m > m_{\epsilon} \Rightarrow 0$ $\Rightarrow |Xm - L| \leq \Psi(\epsilon)$. Allora $Xm \rightarrow L$ per $m \rightarrow +\infty$.
 - Poiché $\varphi(t) \to 0$ per $t \to 0$, preso $\varepsilon > 0$ $\exists \ \delta \varepsilon \in \mathbb{R} \mid \ t \le \delta_{\varepsilon} \Rightarrow 0$ $\Rightarrow \ \varphi(t) \le \varepsilon$. In particulare $\varphi(\delta_{\varepsilon}) \le \varepsilon$. Pertanto $\forall \varepsilon > 0$ $\exists \ m_{\delta_{\varepsilon}} \in \mathbb{N} \mid m \geqslant m_{\delta_{\varepsilon}} \Rightarrow |x_m L| \le \varphi(\delta_{\varepsilon}) \le \varepsilon$. \square
- OSS. Dato A C B C IR, inf B = inf A \(\) Sup A \(\) Sup B.
- Prop. 5:2 I = (a,b) CR. Allora inf I = a, sup I = b.
 - Poiché $\forall x \in I$, $x \in I$, $b \in Mag I$. Sia $c \in b \mid c \in Mag I$, allora sicuramente $a \in c$ (altriment: $c \notin Mag I$). Si consider: $d = \frac{c+b}{2}$: $a \in c \in d \in b$: quind: $d \in I$ e $c \in c \in d$, assurdo dacché $c \in Mag I$, $g \in c$. Quindi b = m: $m \in c \in d$. Analogamente per a, $g \in c$: $g \in c$