The oceanic (deep-water) environment

Terrigenous sediments – pelagic env.

Sediments along ocean margins

Total Sediment Thickness of the World's Oceans & Marginal Seas

A digital total sectiment functiones cataloase for the worlds occans and marginal seas is being compiled by the National Geophysical Data Center (NGDC) "Marine Geology & Geophysics Division. The data are gridded with a spacing of 5 are-minutes by 5 are-minutes. Sediment thickness data were compiled from three principle sources: previously published isopach maps; ocean drilling results, both ODP and DSDP; and seismic reflection profiles archived at NGDC as well as seismic data and isopach maps available as part of the IOC's Geological/Geophysical Atlas of the Pacific (GAPA) project.

The distribution of sediments in the oceans is controlled by five primary factors:

- 1) Age of the underlying crust
- 2) Tectonic history of the ocean crust
- Structural trends in basement
- 4) Nature and location of sediment sources, and
- 5) The nature of the sedimentary processes delivering sediments to depocenters

The data values are in meters and represent the depth to acoustic basement. It should be noted that acoustic basement may not actually represent the base of the sediments. These data are intended to provide a minimum value for the thickness of the sediment in a particular geographic region.

http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html

Features of passive margins

TASA Graphic Arts, 2002

SEDIMENT SUPPLY TO DEEP WATER

Sand-rich fan

Mixed sand/mud system

Mud-rich submarine fan

FS = frontal splay; LS = Lateral splay; CH = Channel; LV = Levee; MD = mound; HARP = High Amplitude Reflection Packets

Architectural elements of deepwater systems

The fine grained portions of sediment plumes storm winnowed shelf sediment glacially rafted material, pelagic fauna, and air born dust may dominate the depositional setting

DEEPWATER ALLOSTRATIGRAPHIC MARKERS

Synchronous widespread Lithostratigraphic layers & Biostratigraphic markers provide relative age & order

High resolution biostratigraphic markers and seismic enhance these tools

Biomarkers, volcanic ash & pelagic limestones form best stratigraphic markers of deepwater

Abyssal (red) clay

Distribution of red clays

Biogenous ooze

55% surface coverage (10% by volume)

Shells collect in layers of ocean floor sediments

BIOGENOUS OOZE = mud-sized shells

Calcareous and siliceous oozes

Carbonate Compensation Depth (CCD)

ocean floor sediments

Distribution of calcareous ooze

Distribution of siliceous ooze

Hydrogenous and diagenetic metal nodules (deep sea)

Source: Geology Today (with permission from Wiley-Blackwell), CLSA Asia-Pacific Markets

https://www.geolsoc.org.uk/Geoscientist/Archive/September-2015/Deep-sea-minerals

Meteorites and tektites

Deep seafloor bedforms...

Summary of basic factors

- Basic principles:
 - Source
 - Means of transport
 - Rate of supply
 - Potential for dissolution or change on the sea floor
- Main sediment sources:
 - Terrigenuous
 - Marine organisms (fallout)
 - Volcanoes
 - Cosmic fallout
- Transport mechanisms
 - Wind
 - Gravity flows
 - Ocean currents (sediment plumes)
 - Settling
 - Ice rafting