1 Chapter 1.1

1.1 1.2

Consider the following conditions on a ring R,

- (I) R satisfies the IBP (if $R^n \cong R^m$ then n = m).
- (II) For all m, n and P if $R^m \cong R^n \oplus P$ then $m \geq n$.
- (III) For all n and P if $R^n \cong R^n \oplus P$ then P = 0

We will show (III) \implies (II) \implies (I). First suppose R satisfies (III) and consider the situation that $R^m \cong R^n \oplus P$ and m < n. We can add R^{n-m} to each side to get,

$$R^n \cong R^n \oplus (P \oplus R^{n-m})$$

then applying (III) we find $P \oplus R^{n-m} = 0$ a contradiction proving (II).

Now assume property (II) and suppose that $R^m \cong R^n$. By applying (II) in the case P = 0 we find $m \ge n$ and $n \ge m$ and thus m = n proving the IBP i.e. property (I).

1.2 1.3

We need to show that the following conditions on a ring R are equivalent,

- (a). For all n, every surjection $\mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism.
- (b). For all n, and $f, g \in M_n(R)$ if fg = id then gf = id and $g \in GL_n(R)$.
- (c). For all n and P if $R^n \cong R^n \oplus P$ then P = 0.

First suppose property (a) and let $fg = \operatorname{id}$ for $f, g \in M_n(R) = \operatorname{End}(R^n)$. Since $fg = \operatorname{id}$ the map $g: R^n \to R^n$ is surjective and thus an isomorphism by property (a). so we find that $g \in \operatorname{GL}_n(R)$ and there is some $h \in \operatorname{GL}_n(R)$ such that $gh = hg = \operatorname{id}$. However,

$$fqh = (fq)h = h = f(qh) = f$$

so h = f and thus fg = gf = id proving (b).

Now suppose (b) holds and suppose we have the situation $R^n \cong R^n \oplus P$. Then consider the maps $\iota: R^n \to R^n \oplus P$ and $\pi: R^n \oplus P$ which satisfy $\pi \circ \iota = \text{id}$. Now let $f: R^n \to R^n \oplus P$ be the given isomorphism then define $\tilde{\iota} = f^{-1} \circ \iota: R^n \to R^n$ and $\tilde{\pi} = \pi \circ f: R^n \to R^n$ and thus $\tilde{\pi} \circ \tilde{\iota} = \text{id}$ and $\tilde{\pi}, \tilde{\iota} \in \text{End}(R^n) = M_n(R)$. Thus by (b), $\tilde{\iota} \circ \tilde{\pi} = \text{id}$ so $\tilde{\iota} = f^{-1} \circ \iota$ is an isomorphism which implies that $\iota: R^n \to R^n \oplus P$ is an isomorphism (since f^{-1} is) and thus P = 0 proving (c).

Finally, suppose (c) and suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is a surjection. Then consider the exact sequence,

$$0 \longrightarrow \ker f \longrightarrow R^n \longrightarrow R^n \longrightarrow 0$$

Then \mathbb{R}^n is free and thus projective so the sequence is split,

$$R^n \cong R^n \oplus \ker f$$

so by (c) we have $\ker f = 0$ and thus f is an isomorphism proving (a).

Finally suppose that R is commutative and $f, g \in M_n(R)$ with fg = id. Then $\det fg = \det f \det g = 1$ so $f, g \in GL_n(R)$ and thus there exists a matrix (coefactors) h such that gh = id then f = h by a previous argument. Therefore commutative rings satisfy all the above properties.

1.3 1.7

(NO IDEA)

1.4 1.8

(NO IDEA)

1.5 1.9

(NO IDEA)

2 Chapter 1.2

Remark. In this section R is a commutative (unital) ring.

$2.1 \quad 2.2$

$2.2 \quad 2.4$

Consider a continuous function $f : \operatorname{Spec}(R) \to \mathbb{Z}$. First, $\operatorname{Spec}(R)$ is quasi-compact. This is easily shown since every affine cover U_i can be refined to a cover by principal opens $D(f_i)$ then,

Spec
$$(R) = \bigcup_{i=1}^{\infty} D(f_i) = D(\langle f_i \rangle)$$

(since $f_i \notin \mathfrak{p}$ for some f_i iff $\langle f_i \rangle \not\supset \mathfrak{p}$) and thus $\langle f_i \rangle = R$ (otherwise it would be contained in a maximal ideal) but then $1 = r_1 f_1 + \cdots + r_n f_n$ for finitely many so,

Spec
$$(R) = D(\langle f_1, \dots, f_n \rangle) = \bigcup_{i=1}^n D(f_i)$$

so there is a finite subcover of U_i .

Therefore, $f(\operatorname{Spec}(R)) \subset \mathbb{Z}$ is compact and thus finite so it must take finitely many values n_1, \ldots, n_c . Then $V_i = f^{-1}(n_i)$ is a closed subset of $\operatorname{Spec}(R)$ since \mathbb{Z} is discrete.

If R is not reduced then consider $R_{\text{red}} = R/\text{nilrad}(R)$ and $\text{Spec}(R) \cong \text{Spec}(R_{\text{red}})$ naturally so we may assume that R is reduced and we may use idempotent lifting (2.2).

Since V_i is closed $V_i = V(I_i)$ for some ideal $I_i \subset R$. Furthermore,

Spec
$$(R) = \bigcup_{i=1}^{n} V_i = \bigcup_{i=1}^{n} V(I_i) = \bigcup_{i=1}^{n} V(I_n) = V(I_1 \cdots I_n)$$

Thus $\sqrt{I_1 \cdots I_n} = \operatorname{nilrad}(R) = (0)$ so $I_1 \cdots I_n = (0)$. Furthermore, the V_i are disjoint so.

$$\varnothing = V_i \cap V_j = V(I_i) \cap V(I_j) = V(I_i + I_j)$$

and thus $I_i + I_j = R$ so the ideals I_i and I_j are coprime. Therefore, by CRT,

$$R = R/(0) = R/(I_1 \cdots I_n) = (R/I_1) \times \cdots \times (R/I_n)$$

since these ideals are pairwise coprime. (Note, there is an error in the text, it has these two conditions backwards).

2.3 2.5

Conisder the following properties,

- (a). Spec (R) is connected.
- (b). Every finitely generated projective R-module has constant rank.
- (c). R has no idempotent elements except 0 and 1.

I claim that these are equivalent.

See the background material in Appendix A, but for any finitely-generated projective module If $\operatorname{Spec}(A)$ is connected then since $\operatorname{rank}(P)$ is continuous (see Appendix) then then its image must be connected in $\mathbb Z$ and thus constant.

Suppose $e \in R$ were a nontrivial idepotent. Then consider the module P = (e) which I claim is f.g. (obvious) and projective. It suffices to show that P is free on some open cover. On the open set D(e) we have $P_e \cong R_e$ so P is free on D(e) of rank 1. Furthermore, on the open set D(1-e) we have $P_{1-e} = (e)_{1-e} = (0)$ since $e^2 = e$ and thus P is free of rank 0. Since e + (1-e) = 1 these open sets cover Spec (R). Therefore P is f.g. projective but does not have finite rank. Thus $(b) \implies (c)$.

Finally, if Spec (R) is not connected then we can write Spec $(R) = V(I) \cup V(J)$ for two nontrivial disjoint closed sets in which case IJ = (0) and I + J = R. Thus by CRT, $R = (R/I) \times (R/J)$. However, the element (1,0) in this product is a nontrivial idempotent in the ring. Thus $(c) \implies (a)$.

2.4 2.8

$2.5 \quad 2.10$

Let P,Q be R-modules and $P \otimes_R Q \cong R^n$ for n > 0. Then P and Q are f.g. projective R-modules.

2.6 2.11

Let M be a finitely generated module over a commutative ring R. I claim that the following are equivalent for every n,

- (a). M is f.g. projective of constant rank n
- (b). $M_{\mathfrak{p}} \cong R_{\mathfrak{p}}^n$ for every prime ideal \mathfrak{p} of R.

Clearly (a) \Longrightarrow (b) so we assume that $M_{\mathfrak{p}} \cong R_{\mathfrak{p}}^n$ at each prime \mathfrak{p} . By Lemma 2.4 it suffices to show that M is finitely presented since then freeness of the stalks implies projectivity and M is automatically of constant rank n by definition.

Lift the basis map $R_{\mathfrak{p}}^n \to M_{\mathfrak{p}}^n$ to a map $f: R^n \to M$ by clearing denominators. Now consider the exact sequence,

$$0 \longrightarrow \ker f \longrightarrow R^n \longrightarrow M \longrightarrow \operatorname{coker} f \longrightarrow 0$$

Since M is finitely generated then so is coker f. Furthermore, when we localize at \mathfrak{p} we get,

$$0 \longrightarrow (\ker f)_{\mathfrak{p}} \longrightarrow R^{n}_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \longrightarrow (\operatorname{coker} f)_{\mathfrak{p}} \longrightarrow 0$$

but we know $R_{\mathfrak{p}}^n \to M_{\mathfrak{p}}$ is an isomorphism so $(\operatorname{coker} f)_{\mathfrak{p}} = (\ker f)_{\mathfrak{p}} = 0$. Since $\operatorname{coker} f$ is f.g. there exists $g \in R$ such that $(\operatorname{coker} f)_g = 0$. Then localizing at g instead we fine,

$$0 \longrightarrow (\ker f)_g \longrightarrow R_g^n \longrightarrow M_g \longrightarrow 0$$

Then for any prime $\mathfrak{q} \in D(g)$ we may localize again to find,

$$0 \longrightarrow (\ker f)_{\mathfrak{q}} \longrightarrow R_{\mathfrak{q}}^n \longrightarrow M_{\mathfrak{q}} \longrightarrow 0$$

so $R_{\mathfrak{q}}^n \to M_{\mathfrak{q}}$ is a surjection. However, my assumeption $M_{\mathfrak{q}}$ is free of rank n and R is commutative so by 1.3 property (a). we know $R_{\mathfrak{q}}^n \to M_{\mathfrak{q}}$ is an isomorphism and thus $\ker f_{\mathfrak{q}} = 0$. Therefore $(\ker f)_g$ is an A_g -module with empty support so $\ker f_g = 0$. Therefore, $M_g \cong R_g^n$ so M is locally free and thus projective.

Therefore, suppose that M is finitely generated free at each stalk with $\operatorname{rank}(M)$ continuous. Then $\operatorname{Spec}(R)$ has a finite open cover $U_i = (\operatorname{rank}(M))^{-1}(n_i)$ such that $M|_{U_i}$ is f.g. with $M_{\mathfrak{p}} = R_{\mathfrak{p}}^{n_i}$ for fixed n_i on each U_i . Thus we have shown that M is locally free on U_i and thus locally free on $\operatorname{Spec}(R)$ and thus projective. Conversely if M is f.g. projective then we know (by Lemma 2.4) that M is locally free and thus $M_{\mathfrak{p}} \cong R_{\mathfrak{p}}^{n_{\mathfrak{p}}}$ and has continuous rank function.

$2.7 \quad 2.12$

Let $\phi: R \to S$ be a morphism of rings then let $f = \phi^{-1}: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ be the associated morphism of affine schemes. Now there is a functor,

$$f^*: \mathfrak{QCoh} (\operatorname{Spec}(R)) \to \mathfrak{QCoh} (\operatorname{Spec}(S))$$

given explicitly by $M \mapsto M \otimes_R S$. I claim that if P is f.g. projective then f^*P is f.g. projective. This is clear using the following property and noting that $(-) \otimes_R S$ is left adjoint to restriction of an S module to an R module which is clearly exact.

Lemma 2.1. If a functor $F: \mathcal{C} \to \mathcal{D}$ is left adjoint to $G: \mathcal{D} \to \mathcal{C}$ between abelian categories and G is exact then F preserves projectives.

Proof. F(P) is projective iff $\operatorname{Hom}_{\mathcal{C}}(F(P), -)$ is exact but,

$$\operatorname{Hom}_{\mathcal{D}}(F(P), -) \cong \operatorname{Hom}_{\mathcal{C}}(P, G(-))$$

which is exact since G and $\operatorname{Hom}_{\mathcal{C}}(P,-)$ are for projective P.

Now I claim that $rank(f^*P) = rank(P) \circ f$. This is because,

$$(f^*P) \otimes_{S_{\mathfrak{p}}} \kappa(\mathfrak{p}) = P \otimes_R S \otimes_{S_{\mathfrak{p}}} \kappa(\mathfrak{p}) = P \otimes_R \kappa(\mathfrak{p})$$

Via the map $R \to S \to \kappa(\mathfrak{p})$. Now we get an inclusion of fields, $\kappa(f(\mathfrak{p})) \to \kappa(\mathfrak{p})$ which $R \to \kappa(\mathfrak{p})$ factors through. Thus,

$$P \otimes_R \kappa(\mathfrak{p}) = P \otimes_R \kappa(f(\mathfrak{p})) \otimes_{\kappa(f(\mathfrak{p}))} \kappa(\mathfrak{p})$$

In particular, these vectorspaces have equal rank i.e.

$$\operatorname{rank}_{\mathfrak{p}}(f^*P) = \dim_{\kappa(\mathfrak{p})}(P \otimes_R \kappa(\mathfrak{p})) = \dim_{\kappa(\mathfrak{p})}(P \otimes_R \kappa(f(\mathfrak{p})) \otimes_{\kappa(f(\mathfrak{p}))} \kappa(\mathfrak{p}))$$
$$= \dim_{\kappa(f(\mathfrak{p}))}(P \otimes_R \kappa(f(\mathfrak{p}))) = \operatorname{rank}_{f(\mathfrak{p})}(P)$$

2.8 2.16

Fix a small category of rings \mathcal{R} . A big projective R-module is a choice of a finitely generated projective S-module P_S for each S over R in \mathcal{R} equiped with an isomrophism $P_S \otimes_S T \to P_T$ for every $S \to Y$ over R which satisfies the following properties,

- (a). the identity id: $S \to S$ induces id: $P_S \to P_S$
- (b). to each commutative triangle of R-algebras we have a commutative triangle of modules.

Now let $\mathbb{P}'(R)$ denote the category of big R-modules and $\mathbb{P}'(R) \to \mathbb{P}(R)$ be the forgetful functor sending P to P_R . (FINISH THIS)

3 Chapter 1.3

Remark. Here R is a commutative (unital) ring.

3.1 3.1

We need to show that the following are equivalent properties of an R-module L,

- (a). there is an R-module M such that $L \otimes M \cong R$
- (b). L is an algebraic line bundle (a f.g. projective module of constant rank 1)
- (c). L is a finitely generated R-module and $L_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ for each prime \mathfrak{p} .

Proof. Assuming (a) then by 2.10 we have L and M are finitely generated projective. Thus $L_{\mathfrak{p}} \cong R_{\mathfrak{p}}^n$ and $M_{\mathfrak{p}} \cong R_{\mathfrak{p}}^m$ for some n, m but then $L_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \cong R_{\mathfrak{p}}^{mn}$ so m = n = 1 proving (b).

(b) \implies (c) is a trivial consequence of Lemma 2.4.

Finally assume (c) then I claim that $L \otimes_R L^{\vee} \cong R$ where $L^{\vee} = \operatorname{Hom}_R(L, R)$. First, not there is a natural map $L \otimes L^{\vee} \to R$ by evaluation. We may check this map is an isomorphism locally on stalks,

$$L_{\mathfrak{p}} \otimes \operatorname{Hom}_{R_{\mathfrak{p}}}(L_{\mathfrak{p}}, R_{\mathfrak{p}}) \to R_{\mathfrak{p}}$$

(note that $(\operatorname{Hom}_R(L,R))_{\mathfrak{p}} = \operatorname{Hom}_{R_{\mathfrak{p}}}(L_{\mathfrak{p}},R_{\mathfrak{p}})$ holds since L is finitely presented which holds because it is f.g. projective using criterion (4) proved in 2.11). However, $L_{\mathfrak{p}} \cong R_{\mathfrak{p}}$ so this above map is clearly an isomorphism with $1 \otimes \operatorname{id} \mapsto 1$.

- 3.2 3.4
- $3.3 \quad 3.15$

3.4 3.18

Consider the following sequence,

$$1 \longrightarrow \operatorname{Pic}(R) \longrightarrow \operatorname{Pic}(R[t]) \times \operatorname{Pic}(R[t^{-1}]) \longrightarrow \operatorname{Pic}(R[t, t^{-1}])$$

the first map is induced by the inclusions $R \to R[t]$ and $R[t^{-1}]$ and the second by the difference of the maps induced by the inclusion $R[t] \to R[t,t^{-1}]$ and $R[t^{-1}] \to R[t,t^{-1}]$. Since $\mathrm{Pic}(-)$ is a covariant functor on the category of commutative rings the above sequence is a complex since,

$$R \longrightarrow R[t] \times R[t^{-1}] \longrightarrow R[t,t^{-1}]$$

is exact (this is the computation showing that $\Gamma(\mathbb{P}^1_R, \mathcal{O}_{\mathbb{P}^1_R}) = R$).

Now, given $P \in \text{Pic}(R[t])$ and $Q \in \text{Pic}(R[t^{-1}])$ suppose that $P \otimes_{R[t]} R[t, t^{-1}]$ and $Q \otimes_{R[t^{-1}]} R[t, t^{-1}]$ are isomorphic as $R[t, t^{-1}]$ -modules.

(LOOK AT MILNOR SQUARES)

4 Chapter 2.1

- 4.1 2.1
- 4.2 2.2
- 4.3 2.3
- 5 Chapter 2.3
- 5.1 3.3
- 5.2 3.4
- 5.3 3.5
- 5.4 3.7
- 6 Chapter 2.4
- 6.1 4.2
- 7 Chapter 2.5
- 7.1 5.2
- 7.2 5.7
- 7.3 5.8
- 8 Chapter 2.6-8

9 Appendix A. Rank Functions

Remark. Here R is a commutative (unital) ring.

Definition Let M be an R-module. Then there is a function $\operatorname{rank}(M) : \operatorname{Spec}(R) \to \mathbb{Z}$ defined by $x \mapsto \operatorname{rank}_{\mathfrak{p}}(M) = \dim_{\kappa(\mathfrak{p})}(M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \kappa(\mathfrak{p})).$

Proposition 9.1. rank_p(M) is the minimal number of generators of M_p as an R_p -module.

Proof. If $M_{\mathfrak{p}}$ is generated by m_1, \ldots, m_n then $M_{\mathfrak{p}} \otimes_R \kappa(\mathfrak{p}) = M_{\mathfrak{p}}/\mathfrak{p}M_{\mathfrak{p}}$ is generated by $\bar{m}_1, \ldots, \bar{m}_n$ over $\kappa(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ since surjectivity of $R_{\mathfrak{p}}^n \to M_{\mathfrak{p}}$ is preserved after applying $(-) \otimes_R \kappa(\mathfrak{p})$. Thus, $\operatorname{rank}_{\mathfrak{p}}(M) = \dim_{\kappa(\mathfrak{p})} M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \kappa(\mathfrak{p}) \leq n$.

Now suppose that v_1, \ldots, v_n is a $\kappa(\mathfrak{p})$ -basis of $M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \kappa(\mathfrak{p}) = M_{\mathfrak{p}}/\mathfrak{p}M_{\mathfrak{p}}$ then choose

a lifts $m_1, \ldots, m_n \in M_{\mathfrak{p}}$. I claim that m_1, \ldots, m_n generated $M_{\mathfrak{p}}$ as an $R_{\mathfrak{p}}$ -module. Let $N \subset M_{\mathfrak{p}}$ be the $R_{\mathfrak{p}}$ -submodule generated by the m_1, \ldots, m_n and let $K = M_{\mathfrak{p}}/N$. Then I claim that $\mathfrak{p}K = K$. To see this it suffices to show that $K \subset \mathfrak{p}K$. For any $m \in M_{\mathfrak{p}}$ we know that its image $\bar{m} \in M_{\mathfrak{p}}/\mathfrak{m}M_{\mathfrak{p}}$ is in the span of the basis v_1, \ldots, v_n so,

$$\bar{m} = r_1 v_1 + \dots + r_n v_n$$

for $r_i \in R_{\mathfrak{p}}$. Thus,

$$m - (r_1 m_1 + \cdots r_n m_n) \in \mathfrak{p} M$$

This implies that in K we have $m \in \mathfrak{p}K$ so $K = \mathfrak{p}K$. Then since $\operatorname{Jac}(R_{\mathfrak{p}}) = \mathfrak{p}$ (because $R_{\mathfrak{p}}$ is local) by Nakayama K = 0 so $M_{\mathfrak{p}}$ is generated by m_1, \ldots, m_n .

Theorem 9.2. The following are equivalent:

- (a). M is a finitely-generated projective R-module
- (b). M is a locally-free R-module of finite rank rank_x(M) $< \infty$
- (c). M is a finitely-presented R-module and for each $\mathfrak{p} \in \operatorname{Spec}(R)$, $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module.

Proposition 9.3. If P is a finitely-generated projective module then rank(P): Spec $(R) \to \mathbb{Z}$ is continuous.

Proof. It suffices to prove for $f = \operatorname{rank}(P)$ that $f^{-1}(n) = V$ is open. For any $\mathfrak{p} \in V$ we know that $P_{\mathfrak{p}}$ is free of rank n. Lift a basis (by clearing demoninators) to a map $f: R^n \to P$ and consider the exact sequence,

$$0 \longrightarrow \ker f \longrightarrow R^n \stackrel{f}{\longrightarrow} P \longrightarrow \operatorname{coker} f \longrightarrow 0$$

Since P is fintely generated then coker P is also finitely generated. Localizing this exact sequence at \mathfrak{p} we get an exact sequence,

$$0 \longrightarrow (\ker f)_{\mathfrak{p}} \longrightarrow R_{\mathfrak{p}}^{n} \stackrel{f}{\longrightarrow} P_{\mathfrak{p}} \longrightarrow (\operatorname{coker} f)_{\mathfrak{p}} \longrightarrow 0$$

but $f: R_{\mathfrak{p}}^n \to P_{\mathfrak{p}}$ is an isomorphism so $(\operatorname{coker} f)_{\mathfrak{p}} = \ker f_{\mathfrak{p}} = 0$. Since $\operatorname{coker} f_{\mathfrak{p}}$ is finitely generated there is some $g \notin \mathfrak{p}$ such that $\operatorname{coker} f_{\mathfrak{p}} = 0$. Thus we have.

$$0 \longrightarrow (\ker f)_g \longrightarrow R_g^n \longrightarrow P_g \longrightarrow 0$$

We have yet to use projectivity of P so, in particular, we see that $\forall \mathfrak{q} \in D(g)$: $\operatorname{rank}_{\mathfrak{q}}(M) \leq n$ for any finitely-generated R-module M. We call this upper-semicontinuity of $\operatorname{rank}(M) : \operatorname{Spec}(R) \to \mathbb{Z}$.

Now applying projectivity of P (and thus P_g as a R_g -module) the above exact sequence splits to give,

$$R^n \cong P_g \oplus \ker f_g$$

so the projection $R^n \to \ker f_g$ shows that $\ker f_g$ is finitely generated and $(\ker f_g)_{\mathfrak{p}} = 0$ so there is some $h \notin \mathfrak{p}$ such that $\ker f_{gh} = 0$. Then, by exactness of localization we

get $R_{gh}^n \xrightarrow{\sim} P_{gh}$ so P is free of rank n on D(gh) and thus $\forall \mathfrak{q} \in D(gh) : \operatorname{rank}_{\mathfrak{q}}(P) = n$ so $\mathfrak{p} \in D(gh) \subset V$. Therefore, V is open so this function is continuous.

Definition Let X be a scheme and \mathscr{F} a coherent \mathcal{O}_X -module then there is a function $\operatorname{rank}(\mathscr{F}): X \to \mathbb{Z}$ defined by $x \mapsto \operatorname{rank}_x(\mathscr{F}) = \dim_{\kappa(x)}(\mathscr{F}_x \otimes_{\mathcal{O}_{X,x}} \kappa(x))$.

Remark. Since \mathscr{F} is coherent then locally $\mathscr{F}|_U = \widetilde{M}$ for some finitely generated A-module with $U = \operatorname{Spec}(A)$. (Note that this is necessary for coherence but only sufficient when X is locally noetherian). Thus, \mathscr{F}_x is a finitely-generated $\mathcal{O}_{X,x}$ -module and thus $\mathscr{F}_x \otimes_{\mathcal{O}_{X,x}} \kappa(x)$ is finite dimensional.

Theorem 9.4. If \mathscr{F} is a projective coherent \mathcal{O}_X -module then $\operatorname{rank}(\mathscr{F}): X \to \mathbb{Z}$ is continuous.

Proof.

Proposition 9.5. Projective coherent \mathcal{O}_X -modules on a scheme X are exactly locally-free \mathcal{O}_X -modules of finite type. (CHECK).