4.41 Theorem. (Wilson's Theorem) If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. Let a prime p be given. Letting p = 2,

$$(2-1)! \equiv -1 \pmod{2},$$

$$1 \equiv -1 \pmod{2}.$$

We find $(p-1)! \equiv -1 \pmod{p}$ to be true when p=2. Note p=3 is also trivial. Suppose p>3. By Theorem 4.40, $(p-2)! \equiv 1 \pmod{p}$. By definition,

$$pk = (p-2)! - 1$$
 for some $k \in \mathbb{Z}$.

Multiplying both sides by p-1,

$$pk(p-1) = (p-1)(p-2)! - (p-1)$$
$$= (p-1)! - p + 1.$$

Rearranging,

$$(p-1)! + 1 = pk(p-1) + p$$

= $ppk - pk + p$
= $p(pk - k + 1)$.

By CPI, let $pk - k + 1 = k' \in \mathbb{Z}$ such that (p-1)! + 1 = pk'. Thus, by definition, $(p-1)! \equiv -1 \pmod{p}$.