

Combinatorial Generalization of The Borsuk-Ulam Theorem

Hossein Hajiabolhassan

Department of Mathematical Sciences Shahid Beheshti University, G.C. Tehran, Iran

Workshop On Topological Combinatorics Shahid Beheshti University, G.C. Tehran, Iran

Wednesday, October 21, 2009

TRIANGULATION

- Let X be a topological space. A simplicial complex Δ such that $X \cong \Delta$ (X is homeomorphic to Δ) is called a triangulation of X.
- ▶ The boundary of an n-simplex is homeomorphic to S^{n-1} , as can be seen using the central projection:

TRIANGULATION

- Let X be a topological space. A simplicial complex Δ such that $X \cong \Delta$ (X is homeomorphic to Δ) is called a triangulation of X.
- ▶ The boundary of an n-simplex is homeomorphic to S^{n-1} , as can be seen using the central projection:

TRIANGULATION

- ▶ Let X be a topological space. A simplicial complex Δ such that $X \cong \Delta$ (X is homeomorphic to Δ) is called a triangulation of X.
- ▶ The boundary of an n-simplex is homeomorphic to S^{n-1} , as can be seen using the central projection:

CROSS POLYTOPE

- ▶ Write e_1, e_2, \ldots, e_n for the vectors of the standard orthonormal basis of R^n (e_i has a 1 at position i and 0's elsewhere). Define a simplicial complex C_{n-1} (cross polytope) as follows:
- ▶ The vertex set of T is equal to $\{\pm e_1, \pm e_2, \dots, \pm e_n\}$.
- ▶ A subset $F \subseteq \{\pm e_1, \pm e_2, \dots, \pm e_n\}$ forms the vertex set of a proper face of the cross polytope if and only if there is no $i \in [n]$ with both $e_i \in F$ and $-e_i \in F$.

Cross Polytope

- ▶ Write e_1, e_2, \ldots, e_n for the vectors of the standard orthonormal basis of R^n (e_i has a 1 at position i and 0's elsewhere). Define a simplicial complex C_{n-1} (cross polytope) as follows:
- ▶ The vertex set of T is equal to $\{\pm e_1, \pm e_2, \dots, \pm e_n\}$.
- ▶ A subset $F \subseteq \{\pm e_1, \pm e_2, \dots, \pm e_n\}$ forms the vertex set of a proper face of the cross polytope if and only if there is no $i \in [n]$ with both $e_i \in F$ and $-e_i \in F$.

Cross Polytope

- ▶ Write e_1, e_2, \ldots, e_n for the vectors of the standard orthonormal basis of R^n (e_i has a 1 at position i and 0's elsewhere). Define a simplicial complex C_{n-1} (cross polytope) as follows:
- ▶ The vertex set of T is equal to $\{\pm e_1, \pm e_2, \dots, \pm e_n\}$.
- ▶ A subset $F \subseteq \{\pm e_1, \pm e_2, \dots, \pm e_n\}$ forms the vertex set of a proper face of the cross polytope if and only if there is no $i \in [n]$ with both $e_i \in F$ and $-e_i \in F$.

Cross Polytope

- ▶ Write e_1, e_2, \ldots, e_n for the vectors of the standard orthonormal basis of R^n . Define a simplicial complex C_{n-1} (cross polytope) as follows:
- ▶ The vertex set of T is equal to $\{\pm e_1, \pm e_2, \dots, \pm e_n\}$.
- ▶ A subset $F \subseteq \{\pm e_1, \pm e_2, \dots, \pm e_n\}$ forms the vertex set of a proper face of the cross polytope if and only if there is no $i \in [n]$ with both $e_i \in F$ and $-e_i \in F$.

CROSS POLYTOPES

Tucker's Lemma for S^{n}

▶ (Tucker's Lemma) Let T be a triangulation of S^n that is antipodally symmetric. Assume that $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$ be a labeling of the vertices of T that satisfies $\lambda(-v)=-\lambda(v)$ for every vertex v. Then there exists a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are labeled by opposite numbers.

Tucker's Lemma for S^{n}

▶ (Tucker's Lemma) Let T be a triangulation of S^n that is antipodally symmetric. Assume that $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$ be a labeling of the vertices of T that satisfies $\lambda(-v)=-\lambda(v)$ for every vertex v. Then there exists a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are labeled by opposite numbers.

- ▶ (Tucker's Lemma) Let T be a triangulation of S^n that is antipodally symmetric. Assume that $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$ be a labeling of the vertices of T that satisfies $\lambda(-v)=-\lambda(v)$ for every vertex v. Then there exists a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are labeled by opposite numbers.
- If there is no edge which is complementary, then one can check that λ deduce an antipodal map from S^n to S^{n-1} which is a contradiction.
- ► For any vertex $v \in T$, if $\lambda(v) = +i$ (resp. $\lambda(v) = -i$), then set $f(v) := e_i$ (resp. $f(v) := -e_i$).
- ▶ It is easy to check that f is a \mathbb{Z}_2 -map from \mathbb{Z}_2 to \mathbb{Z}_2 to \mathbb{Z}_2 to cross polytope of dimension n-1) which is a contradiction.

- ▶ (Tucker's Lemma) Let T be a triangulation of S^n that is antipodally symmetric. Assume that $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$ be a labeling of the vertices of T that satisfies $\lambda(-v)=-\lambda(v)$ for every vertex v. Then there exists a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are labeled by opposite numbers.
- If there is no edge which is complementary, then one can check that λ deduce an antipodal map from S^n to S^{n-1} which is a contradiction.
- ► For any vertex $v \in T$, if $\lambda(v) = +i$ (resp. $\lambda(v) = -i$), then set $f(v) := e_i$ (resp. $f(v) := -e_i$).
- ▶ It is easy to check that f is a Z_2 -map from T to C_{n-1} (cross polytope of dimension n-1) which is a contradiction

- ▶ (Tucker's Lemma) Let T be a triangulation of S^n that is antipodally symmetric. Assume that $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$ be a labeling of the vertices of T that satisfies $\lambda(-v)=-\lambda(v)$ for every vertex v. Then there exists a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are labeled by opposite numbers.
- If there is no edge which is complementary, then one can check that λ deduce an antipodal map from S^n to S^{n-1} which is a contradiction.
- ▶ For any vertex $v \in T$, if $\lambda(v) = +i$ (resp. $\lambda(v) = -i$), then set $f(v) := e_i$ (resp. $f(v) := -e_i$).
- ▶ It is easy to check that f is a \mathbb{Z}_2 -map from \mathbb{Z}_2 to \mathbb{Z}_2 to cross polytope of dimension n-1) which is a contradiction

- ▶ (Tucker's Lemma) Let T be a triangulation of S^n that is antipodally symmetric. Assume that $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$ be a labeling of the vertices of T that satisfies $\lambda(-v)=-\lambda(v)$ for every vertex v. Then there exists a 1-simplex (an edge) in T that is complementary; i.e., its two vertices are labeled by opposite numbers.
- If there is no edge which is complementary, then one can check that λ deduce an antipodal map from S^n to S^{n-1} which is a contradiction.
- ► For any vertex $v \in T$, if $\lambda(v) = +i$ (resp. $\lambda(v) = -i$), then set $f(v) := e_i$ (resp. $f(v) := -e_i$).
- ▶ It is easy to check that f is a \mathbb{Z}_2 -map from T to \mathbb{C}_{n-1} (cross polytope of dimension n-1) which is a contradiction.

Tucker's Lemma for B^n

► (Tucker's Lemma) Let T be a triangulation of B^n that is antipodally symmetric on the boundary. Let $\lambda: V(T) \longrightarrow \{-1, +1, -2, +2, \ldots, -n, +n\}$ be a labeling of the vertices of T that satisfies $\lambda(-v) = -\lambda(v)$ for every vertex v on the boundary. Then there exists a 1-simplex(an edge) in T that is complementary; i.e., its two vertices are labeled by opposite numbers.

CROSS POLYTOPES

CROSS POLYTOPES

Cross Polytopes

CROSS POLYTOPES

u and v belong to a simplex if $u \le v$ ($u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$)

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- ► (Combinatorial Tucker's Lemma) Let

$$\lambda: \{-1,0,+1\}^n \longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$$

be a labeling that satisfies $\ \lambda(-v)=-\lambda(v)$ for every $v\in V_n$ where $v\neq 0$. Then there exist $u,v\in V_n$ such that $u\leq v$ and $\lambda(u)=-\lambda(v)$.

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- ► (Combinatorial Tucker's Lemma) Let

$$\lambda: \{-1,0,+1\}^n \longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$$

be a labeling that satisfies $\ \lambda(-v)=-\lambda(v)$ for every $v\in V_n$ where $v\neq 0$. Then there exist $u,v\in V_n$ such that $u\leq v$ and $\lambda(u)=-\lambda(v)$.

- Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- (Combinatorial Tucker's Lemma) Let

$$\lambda: \{-1,0,+1\}^n \longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$$

be a labeling that satisfies $\ \lambda(-v)=-\lambda(v)$ for every $v\in V_n$ where $v\neq 0$. Then there exist $u,v\in V_n$ such that $u\leq v$ and $\lambda(u)=-\lambda(v)$.

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- ▶ (Combinatorial Tucker's Lemma) Let

$$\lambda: \{-1,0,+1\}^n \longrightarrow \{-1,+1,-2,+2,\ldots,-n,+n\}$$

be a labeling that satisfies $\lambda(-v)=-\lambda(v)$ for every $v\in V_n$ where $v\neq 0$. Then there exist $u,v\in V_n$ such that $u\leq v$ and $\lambda(u)=-\lambda(v)$.

- ▶ Set $[n] = \{1, 2, ..., n\}$.
- Let $w = (w_1, w_2, \dots, w_n) \in V_n$.
- ▶ Set $P(w) := \{i \in [n] : w_i = +1\}.$
- ▶ Set $N(w) := \{i \in [n] : w_i = -1\}.$
- ▶ Consider an arbitrary linear ordering on $2^{[n]}$ that refines the partial ordering according to size, i.e., if |A| < |B| then A < B.
- ▶ On the contrary, suppose that

$$c: V(\mathrm{KG}(n,k)) \to \{2k,\ldots,n\}$$

- ▶ Set $[n] = \{1, 2, ..., n\}$.
- ▶ Let $w = (w_1, w_2, \dots, w_n) \in V_n$.
- ▶ Set $P(w) := \{i \in [n] : w_i = +1\}.$
- ▶ Set $N(w) := \{i \in [n] : w_i = -1\}.$
- ▶ Consider an arbitrary linear ordering on $2^{[n]}$ that refines the partial ordering according to size, i.e., if |A| < |B| then A < B.
- ▶ On the contrary, suppose that

$$c: V(\mathrm{KG}(n,k)) \to \{2k,\ldots,n\}$$

- ▶ Set $[n] = \{1, 2, ..., n\}$.
- ▶ Let $w = (w_1, w_2, ..., w_n) \in V_n$.
- ▶ Set $P(w) := \{i \in [n] : w_i = +1\}.$
- ▶ Set $N(w) := \{i \in [n] : w_i = -1\}.$
- ▶ Consider an arbitrary linear ordering on $2^{[n]}$ that refines the partial ordering according to size, i.e., if |A| < |B| then A < B.
- ▶ On the contrary, suppose that

$$c: V(KG(n,k)) \to \{2k,\ldots,n\}$$

- ▶ Set $[n] = \{1, 2, ..., n\}$.
- ▶ Let $w = (w_1, w_2, ..., w_n) \in V_n$.
- ▶ Set $P(w) := \{i \in [n] : w_i = +1\}.$
- ▶ Set $N(w) := \{i \in [n] : w_i = -1\}.$
- ▶ Consider an arbitrary linear ordering on $2^{[n]}$ that refines the partial ordering according to size, i.e., if |A| < |B| then A < B.
- ▶ On the contrary, suppose that

$$c: V(\mathrm{KG}(n,k)) \to \{2k,\ldots,n\}$$

- ▶ Set $[n] = \{1, 2, ..., n\}$.
- ▶ Let $w = (w_1, w_2, \dots, w_n) \in V_n$.
- ▶ Set $P(w) := \{i \in [n] : w_i = +1\}.$
- ▶ Set $N(w) := \{i \in [n] : w_i = -1\}.$
- ▶ Consider an arbitrary linear ordering on $2^{[n]}$ that refines the partial ordering according to size, i.e., if |A| < |B| then A < B.
- On the contrary, suppose that

$$c: V(\mathrm{KG}(n,k)) \to \{2k,\ldots,n\}$$

- ▶ Set $[n] = \{1, 2, ..., n\}$.
- ▶ Let $w = (w_1, w_2, \dots, w_n) \in V_n$.
- ▶ Set $P(w) := \{i \in [n] : w_i = +1\}.$
- ▶ Set $N(w) := \{i \in [n] : w_i = -1\}.$
- ▶ Consider an arbitrary linear ordering on $2^{[n]}$ that refines the partial ordering according to size, i.e., if |A| < |B| then A < B.
- On the contrary, suppose that

$$c: V(KG(n,k)) \to \{2k,\ldots,n\}$$

► Case I: If $|P(w)| + |N(w)| \le 2k - 2$, then set

$$\lambda(w) := \begin{cases} |P(w)| + |N(w)| + 1 & \text{if } |P(w)| \ge |N(w)| \\ -(|P(w)| + |N(w)| + 1) & \text{if } |P(w)| < |N(w)|. \end{cases}$$

▶ Case II: If $|P(w)| + |N(w)| \ge 2k - 1$, then set

$$\lambda(w) := \begin{cases} t_P & \text{if } |P(w)| \ge |N(w)| \\ -t_N & \text{if } |P(w)| < |N(w)| \end{cases}$$

where t_P is the largest positive integer such that there exists a k-subset $A \subseteq P(w)$ where $c(A) = t_P$. Similarly, define t_N !

LOVÁSZ-KNESER THEOREM

▶ Case I: If $|P(w)| + |N(w)| \le 2k - 2$, then set

$$\lambda(w) := \begin{cases} |P(w)| + |N(w)| + 1 & \text{if } |P(w)| \ge |N(w)| \\ -(|P(w)| + |N(w)| + 1) & \text{if } |P(w)| < |N(w)|. \end{cases}$$

▶ Case II: If $|P(w)| + |N(w)| \ge 2k - 1$, then set

$$\lambda(w) := \left\{ \begin{array}{ll} t_P & if \ |P(w)| \ge |N(w)| \\ -t_N & if \ |P(w)| < |N(w)|. \end{array} \right.$$

where t_P is the largest positive integer such that there exists a k-subset $A \subseteq P(w)$ where $c(A) = t_P$. Similarly, define t_N !

Ky Fan's Theorem for S^n

- ▶ (Ky Fan's Theorem) Let T be a triangulation of S^n that is antipodally symmetric. Let $\lambda: V(T) \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling of the vertices of T in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every vertex $v \in T$.
- ▶ There is no antipodal edge, i.e., for any 1-simplex in T, the numbers assigned to its two vertices have sum distinct from zero.
- Then there exists an n-simplex in T whose vertices receive the numbers $-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.
- ▶ In particular, $m \ge n + 1$.

Ky Fan's Theorem for S^n

- ▶ (Ky Fan's Theorem) Let T be a triangulation of S^n that is antipodally symmetric. Let $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-m,+m\}$ be a labeling of the vertices of T in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every vertex $v \in T$.
- ▶ There is no antipodal edge, i.e., for any 1-simplex in T, the numbers assigned to its two vertices have sum distinct from zero.
- Then there exists an n-simplex in T whose vertices receive the numbers $-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.
- ▶ In particular, $m \ge n + 1$.

Ky Fan's Theorem for S^n

- ▶ (Ky Fan's Theorem) Let T be a triangulation of S^n that is antipodally symmetric. Let $\lambda: V(T) \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling of the vertices of T in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every vertex $v \in T$.
- ▶ There is no antipodal edge, i.e., for any 1-simplex in *T*, the numbers assigned to its two vertices have sum distinct from zero.
- Then there exists an n-simplex in T whose vertices receive the numbers $-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.
- ▶ In particular, $m \ge n + 1$.

Ky Fan's Theorem for S^{n}

- ▶ (Ky Fan's Theorem) Let T be a triangulation of S^n that is antipodally symmetric. Let $\lambda: V(T) \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling of the vertices of T in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every vertex $v \in T$.
- ▶ There is no antipodal edge, i.e., for any 1-simplex in *T*, the numbers assigned to its two vertices have sum distinct from zero.
- ► Then there exists an n-simplex in T whose vertices receive the numbers $-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.
- ▶ In particular, $m \ge n + 1$.

Ky Fan's Theorem for S^n

- ▶ (Ky Fan's Theorem) Let T be a triangulation of S^n that is antipodally symmetric. Let $\lambda: V(T) \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling of the vertices of T in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every vertex $v \in T$.
- ▶ There is no antipodal edge, i.e., for any 1-simplex in *T*, the numbers assigned to its two vertices have sum distinct from zero.
- ► Then there exists an n-simplex in T whose vertices receive the numbers $-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.
- ▶ In particular, $m \ge n + 1$.

Ky Fan's Theorem for B^n

- ▶ (Ky Fan's Theorem) Let T be a triangulation of B^n that is antipodally symmetric on the boundary. Let $\lambda:V(T)\longrightarrow \{-1,+1,-2,+2,\ldots,-m,+m\}$ be a labeling of the vertices of T in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every vertex $v \in T$ lying on the boundary.
- ▶ There is no antipodal edge, i.e., for any 1-simplex in *T*, the numbers assigned to its two vertices have sum distinct from zero.
- ► Then there exists an n-simplex in T whose vertices receive the numbers

$$-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$$
 or $a_1, -a_2, \ldots, (-1)^n a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.

▶ In particular, m > n + 1.

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
- $\blacktriangleright \text{ Set } \delta(j) := |\{v : v \in T \setminus \{P,Q\}, \lambda(v) = j\}|.$
- $\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{\alpha \in \mathcal{A}_{+}} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$
- $\gamma(a_1) + \gamma(-a_1) = \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)] \pmod{2}$
- $\sum_{i=1}^{n} [\gamma(a_1) + \gamma(-a_1)] = 1$

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
 - ▶ Set $\delta(j) := |\{v : v \in T \setminus \{P, Q\}, \lambda(v) = j\}|.$
 - $\alpha(a,b) :=$ the total number of those 1-simplices in T, whose 2 vertices receive the numbers a and b. By double counting:
 - $\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$
- $\gamma(a_1) + \gamma(-a_1) = \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)] \pmod{2}$
 - 2).
- $\sum_{a_1} [\gamma(a_1) + \gamma(-a_1)] = 1$

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
- $\blacktriangleright \ \mathsf{Set} \ \delta(j) := |\{v : v \in T \setminus \{P,Q\}, \lambda(v) = j\}|.$
- $\alpha(a,b) :=$ the total number of those 1-simplices in T, whose 2 vertices receive the numbers a and b. By double counting:
- $\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$
- $\gamma(a_1) + \gamma(-a_1) = \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)] \pmod{2}$
 - 2).
- $\sum_{a_1} [\gamma(a_1) + \gamma(-a_1)] = 1$

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
- $\blacktriangleright \text{ Set } \delta(j) := |\{v : v \in T \setminus \{P,Q\}, \lambda(v) = j\}|.$
- ho $\alpha(a,b):=$ the total number of those 1-simplices in T, whose 2 vertices receive the numbers a and b. By double counting:

$$\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$$

$$\gamma(a_1) + \gamma(-a_1) = \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)] \pmod{2}$$

$$\sum_{a_1} [\gamma(a_1) + \gamma(-a_1)] = 1$$

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
- $\blacktriangleright \mathsf{Set} \ \delta(j) := |\{v : v \in T \setminus \{P,Q\}, \lambda(v) = j\}|.$
- ho $\alpha(a,b):=$ the total number of those 1-simplices in T, whose 2 vertices receive the numbers a and b. By double counting:
- $\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$
- $\gamma(a_1) + \gamma(-a_1) = \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)] \pmod{2}$
 - 2).
- $\sum_{a_1} [\gamma(a_1) + \gamma(-a_1)] = 1$

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
- ▶ Set $\delta(j) := |\{v : v \in T \setminus \{P,Q\}, \lambda(v) = j\}|.$
- ▶ $\alpha(a,b) :=$ the total number of those 1-simplices in T, whose 2 vertices receive the numbers a and b. By double counting:
- $\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$
- $\sum_{a_1} [\gamma(a_1) + \gamma(-a_1)] = 1$

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
- ▶ Set $\delta(j) := |\{v : v \in T \setminus \{P,Q\}, \lambda(v) = j\}|$.
- ▶ $\alpha(a,b) :=$ the total number of those 1-simplices in T, whose 2 vertices receive the numbers a and b. By double counting:
- $\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$
- $\sum_{a_1} [\gamma(a_1) + \gamma(-a_1)] = 1$

- ▶ Define $\gamma(j) := 1$ whenever $\lambda(P) = j$; otherwise set $\gamma(j) := 0$.
- ▶ Set $\delta(j) := |\{v : v \in T \setminus \{P,Q\}, \lambda(v) = j\}|.$
- ▶ $\alpha(a,b) :=$ the total number of those 1-simplices in T, whose 2 vertices receive the numbers a and b. By double counting:
- $\gamma(a_1) + \gamma(-a_1) + 2\delta(a_1) = 2\alpha(a_1, a_1) + \sum_{0 < a_2 \neq a_1} [\alpha(a_1, a_2) + \alpha(a_1, -a_2)].$
- $\sum_{a_1} [\gamma(a_1) + \gamma(-a_1)] = 1$

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- (Combinatorial Ky Fan's Theorem) Let $\lambda: V_n \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every $v \in V_n$ where $v \neq 0$.
- ▶ For any $u, v \in V_n$ such that $u \leq v$, we have $\lambda(u) + \lambda(v) \neq 0$.
- Then there exists a n+1-chain in V_n whose memberes receive the numbers

$$-a_1, a_2, \dots, (-1)^{n+1}a_{n+1}$$
 or $a_1, -a_2, \dots, (-1)^n a_{n+1}$, where $1 \le a_1 \le a_2 \le \dots \le a_{n+1} \le m$.

▶ In particular, m > n + 1.

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- (Combinatorial Ky Fan's Theorem) Let $\lambda: V_n \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every $v \in V_n$ where $v \neq 0$.
- ▶ For any $u, v \in V_n$ such that $u \leq v$, we have $\lambda(u) + \lambda(v) \neq 0$.
- ▶ Then there exists a n+1-chain in V_n whose memberes receive the numbers

$$-a_1, a_2, \dots, (-1)^{n+1}a_{n+1}$$
 or $a_1, -a_2, \dots, (-1)^n a_{n+1}$, where $1 \le a_1 < a_2 < \dots < a_{n+1} \le m$.

ln particular, $m \ge n + 1$.

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- (Combinatorial Ky Fan's Theorem) Let $\lambda: V_n \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every $v \in V_n$ where $v \neq 0$.
- ▶ For any $u, v \in V_n$ such that $u \leq v$, we have $\lambda(u) + \lambda(v) \neq 0$.
- Then there exists a n+1-chain in V_n whose memberes receive the numbers

$$-a_1, a_2, \dots, (-1)^{n+1}a_{n+1}$$
 or $a_1, -a_2, \dots, (-1)^n a_{n+1}$, where $1 \le a_1 < a_2 < \dots < a_{n+1} \le m$.

ln particular, $m \ge n + 1$.

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- (Combinatorial Ky Fan's Theorem) Let $\lambda: V_n \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every $v \in V_n$ where $v \neq 0$.
- ▶ For any $u, v \in V_n$ such that $u \leq v$, we have $\lambda(u) + \lambda(v) \neq 0$.
- Then there exists a n+1-chain in V_n whose memberes receive the numbers $-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$ or $a_1, -a_2, \ldots, (-1)^na_{n+1}$, where $1 \le a_1 \le a_2 \le \cdots \le a_{n+1} \le m$
- ▶ In particular, m > n + 1.

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \le v$ if $u_i \le v_i$ for any $1 \le i \le n$ where $0 \le -1$ and $0 \le +1$.
- (Combinatorial Ky Fan's Theorem) Let $\lambda: V_n \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every $v \in V_n$ where $v \neq 0$.
- ▶ For any $u, v \in V_n$ such that $u \leq v$, we have $\lambda(u) + \lambda(v) \neq 0$.
- ▶ Then there exists a n+1-chain in V_n whose memberes receive the numbers

$$-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$$
 or $a_1, -a_2, \ldots, (-1)^n a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.

ln particular, $m \ge n + 1$.

- ▶ Set $V_n := \{-1, 0, +1\}^n$.
- ▶ Consider a partial ordering \leq on V_n as follows:
- ▶ For any $u, v \in V_n$ we have $u \leq v$ if $u_i \leq v_i$ for any $1 \leq i \leq n$ where $0 \leq -1$ and $0 \leq +1$.
- (Combinatorial Ky Fan's Theorem) Let $\lambda: V_n \longrightarrow \{-1, +1, -2, +2, \ldots, -m, +m\}$ be a labeling in such a way that the following conditions are satisfied:
- $\lambda(-v) = -\lambda(v)$ for every $v \in V_n$ where $v \neq 0$.
- ▶ For any $u, v \in V_n$ such that $u \leq v$, we have $\lambda(u) + \lambda(v) \neq 0$.
- ▶ Then there exists a n+1-chain in V_n whose memberes receive the numbers

$$-a_1, a_2, \ldots, (-1)^{n+1}a_{n+1}$$
 or $a_1, -a_2, \ldots, (-1)^n a_{n+1}$, where $1 \le a_1 < a_2 < \cdots < a_{n+1} \le m$.

▶ In particular, $m \ge n + 1$.

REFERENCES

Ky Fan, A generalization of Tucker's combinatorial lemma with topological applications.

Ann. of Math. (2), 56:431-437, 1952.

Jiří Matoušek, *Using the Borsuk-Ulam theorem*, Universitext. Springer-Verlag, Berlin, 2003.

Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler.

Jiří Matoušek, A combinatorial proof of Kneser's conjecture. *Combinatorica*, 24(1):163–170, 2004.

A. W. Tucker, Some topological properties of disk and sphere. In *Proc. First Canadian Math. Congress, Montreal, 1945*, pages 285–309. University of Toronto Press, Toronto, 1946.

Thank You!

