

Cairo University

Faculty of Computers and Artificial Intelligence Department: Operations Research and Decision Support

Course Name: Systems Modeling and Simulation

2022 Course Code: DS331/DS241

Instructor: Assoc. Prof. Ayman Ghoneim

Table of content				
1	forming cumulative table			
2	forming calendar			
3	calculating the required data			
4	compare the calculated data with the output of the code			
5	Problem formulation & objectives			
6	System Components			

Name: mohamed ismael _ hussien

mohamed_youssef wael

IDs:20190420_20190182_20190649

Bank Multi-Channel Queue

Summary:

Steps for solving this problem

1-forming cumulative table

2-forming calendar

3-calculating the required data

4-compare the calculated data with the output of the code

Cumulative tables

Table 1					
Time between Arrivals (Minutes)	Probabilities				
0	0.09				
1	0.19				
2	0.30				
3	0.21				
4	0.12				
5	0.09				

1 4510 2				
Service	Probabilities			
Time				
(Minutes)				
1	0.20			
1	0.20			
1 2	0.20 0.40			
1 2 3				
_	0.40			

Table 2

Table 1 cumulative

Time between Arrivals (Minutes)	Probabilities
0	0.09
1	0.28
2	0.58
3	0.79
4	0.91
5	1

Table 2 cumulative

Service Time (Minutes)	Probabilities
1	0.2
2	0.6
3	0.88
4	1

Calendar:

ATime	STime	SSTime	Wait1	Wait2	F.Time1	F.Time
0	2	0	0	0	2	-
2	3	2	0	0	5	-
5	4	5	0	0	9	-
8	2	9	1	0	11	-
11	3	11	0	0	14	-
16	1	16	0	0	17	-
20	1	20	0	0	21	-
21	1	21	0	0	22	-
23	2	23	0	0	25	-
24	4	25	1	0	29	-

Calculations:

The average service time of driver-in teller =23/10=2.3

The average service time of inside-bank teller =0/10=0.0

The average waiting time in the drive-in teller =(1+1)/10=0.2

The average waiting time inside-bank teller= 0.0

The maximum inside-bank teller queue length=0

The probability that a customer waits in the inside-bank teller queue 0.0

The portion of idle time of the inside-bank teller 29.0

By comparing this calculation by the output of the code in the below photo we get the same output

```
enter number of runs :1
serv 2
3 serv 2 arriv
4 serv 5 arriv
2 serv 8 arriv
3 serv 11 arriv
1 serv 16 arriv
1 serv 20 arriv
1 serv 21 arriv
2 serv 23 arriv
4 serv 24 arriv
The avareg service time of driver-in teller 2.3
The avareg service time of inside-bank teller 0.0
The average waiting time in the drive-in teller 0.2
The average waiting time inside-bank teller 0.0
The maximum inside-bank teller queue length 0
The probability that a customer wait in the inside-bank teller queue 0.0
The portion of idle time of the inside-bank teller 29.0
```

According to the last slide The solution of question 6- Does the theoretical average service time of the service time distribution match with the experimental one 7- Does the theoretical average inter-arrival time of the interarrival time distribution match with the experimental one? Is yes

Problem formulation & Objectives:

In this problem we are going to simulate the in-driver teller and bank teller behavior neglecting the parking area of the bank and the hall size of the bank and how many customers it rooms for

System Components:

- The que size of the in-driver teller
- The time between arrivals of customers
- Service time