

Supervised Learning:
Decision Tree
Models

## Roadmap

- Classification vs Prediction
  - Classification Process
- Decision Tree Model
  - Model
  - ID3 Algorithm
- More Thoughts
- Deeper Perspectives
  - Decision boundary
  - Algorithmic implementation
  - More complicated decision boundary
  - Extensions of DT
- Take-home Messages!

### Classification vs. Prediction

#### • Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

#### • Prediction:

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical Applications
  - credit approval
  - target marketing
  - medical diagnosis

## Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
  - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
  - The set of tuples used for model construction: training set
  - The model is represented as classification rules, decision trees, layered neural networks or mathematical formulae
- Model usage: for classifying future or unknown objects
  - The known label of test sample is compared with the classified result from the model
  - Accuracy is the percentage of test set samples that are correctly classified by the model
    - Need to estimate the accuracy of model
  - Test set is independent of training set, otherwise over-fitting will occur

### Classification Process: Model Construction



| NAME | RANK           | YEARS | TENURED |
|------|----------------|-------|---------|
| Mike | Assistant Prof | 3     | no      |
| Mary | Assistant Prof | 7     | yes     |
| Bill | Professor      | 2     | yes     |
| Jim  | Associate Prof | 7     | yes     |
| Dave | Assistant Prof | 6     | no      |
| Anne | Associate Prof | 3     | no      |



### Classification Process: Model Usage



### Different Types of Data in Classification

- Seen Data = Historical Data
- Unseen Data = Current and Future Data
- Seen Data:
  - Training Data for constructing the model
  - Testing Data for validating the model (It is unseen during the model construction process)
- Unseen Data:
  - Application (actual usage) of the constructed model

\*\*\* We will later come back to data for validation \*\*\*

### Supervised vs. Unsupervised Learning

#### Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set

### Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

# Issues regarding classification and prediction: Data preparation

- Data cleaning
  - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
  - Remove the irrelevant or redundant attributes
- Data transformation
  - Generalize and/or normalize data

# Issues regarding classification and prediction: Evaluating classification methods

- Predictive accuracy
- Speed and scalability
  - · time to construct the model
  - time to use the model
- Robustness
  - handling noise and missing values
- Scalability
  - efficiency in disk-resident databases
- Interpretability:
  - understanding and insight provided by the model
- Goodness of rules
  - decision tree size
  - compactness of classification rules

10

### **Decision Tree**

**A Data Analytics Perspective + Feature Engineering** 

### Classification by Decision Tree Induction

- Decision tree Structure
  - A flow-chart-like tree structure
  - Internal node denotes a test on an attribute
  - Branch represents an outcome of the test
  - Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
  - Tree construction
    - At start, all the training examples are at the root
    - Partition examples recursively based on selected attributes
  - Tree pruning
    - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
  - Test the attribute values of the sample against the decision tree

# Training Dataset: Following an example from Quinlan's ID3

| age  | income | student | credit_rating | buys_computer |
|------|--------|---------|---------------|---------------|
| ≤30  | high   | no      | fair          | no            |
| ≤30  | high   | no      | excellent     | no            |
| 3140 | high   | no      | fair          | yes           |
| >40  | medium | no      | fair          | yes           |
| >40  | low    | yes     | fair          | yes           |
| >40  | low    | yes     | excellent     | no            |
| 3140 | low    | yes     | excellent     | yes           |
| ≤30  | medium | no      | fair          | no            |
| ≤30  | low    | yes     | fair          | yes           |
| >40  | medium | yes     | fair          | yes           |
| ≤30  | medium | yes     | excellent     | yes           |
| 3140 | medium | no      | excellent     | yes           |
| 3140 | high   | yes     | fair          | yes           |
| >40  | medium | no      | excellent     | no            |

### Output: A Decision Tree for "buys\_computer"



# Extracting Classification Rules (Knowledge) from Decision Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

```
IF age = "≤30" AND student = "no" THEN buys_computer = "no"

IF age = "≤ 30" AND student = "yes" THEN buys_computer = "yes"

IF age = "31...40" THEN buys_computer = "yes"

IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "no"

IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "yes"
```

### Algorithm for Decision Tree Construction

#### Basic algorithm (a greedy algorithm)

- Tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root
- Attributes are categorical (if continuous-valued, they are discretized in advance)
- Examples are partitioned recursively based on selected attributes
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

#### Conditions for stopping partitioning

- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
- There are no samples left

# Which attribute to choose? Attribute Selection Measure

- Information gain (ID3/C4.5)
  - All attributes are assumed to be categorical
  - Can be modified for continuous-valued attributes
- Gini index (IBM IntelligentMiner)
  - All attributes are assumed continuous-valued
  - Assume there exist several possible split values for each attribute
  - May need other tools, such as clustering, to get the possible split values
  - Can be modified for categorical attributes

### Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Assume there are two classes, P and N
  - Let the set of examples S contain p elements of class P and n elements of class N
  - The amount of information, needed to decide if an arbitrary example in S belongs to P or N is defined as I(p,n)

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$



#### Information Gain in Decision Tree Construction

- Assume that using attribute A a set S will be partitioned into sets  $\{S_1, S_2, ..., S_v\}$ 
  - If  $S_i$  contains  $p_i$  examples of P and  $n_i$  examples of N, the entropy, or the expected information needed to classify objects in all subtrees  $S_i$  is

 $E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$ 

 The encoding information that would be gained by branching on A

$$Gain(A) = I(p,n) - E(A)$$

# Attribute Selection by Information Gain Computation

Class P: buys\_computer = "yes"

Class N: buys\_computer ="no"

• 
$$I(p, n) = I(9, 5) = 0.940$$

• Compute the entropy for age:

| age  | p <sub>i</sub> | n <sub>i</sub> | I(p <sub>i</sub> , n <sub>i</sub> ) |
|------|----------------|----------------|-------------------------------------|
| <=30 | 2              | 3              | 0.971                               |
| 3040 | 4              | 0              | 0                                   |
| >40  | 3              | 2              | 0.971                               |

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

Hence,

$$Gain(age) = I(p,n) - E(age) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit\_rating) = 0.048$$

Thus, we should select "age" as the root node of the decision tree.

### Avoid Overfitting in Classification

- The generated tree may overfit the training data
  - Too many branches, some may reflect anomalies due to noise or outliers
  - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
  - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
    - Difficult to choose an appropriate threshold
  - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
    - Use a set of data different from the training data to decide which is the "best pruned tree"

# Thinking time ...

The model is simple enough to understand many machine learning and data analytics concepts.

Q1. Can you add one more record to the buys\_computer dataset so that the classification accuracy on the training set must be <100%?

# Thinking time ...

Q2. Following Q.1, what can you do to potentially improve the training accuracy from <100% to 100%?

Fake Tips: Use a better supervised model!

What's the implication?

### With many rounds of thinking (research), we see Enhancements to basic decision tree induction

- Allow for continuous-valued attributes
  - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
  - Assign the most common value of the attribute
  - Assign probability to each of the possible values
- Attribute construction
  - Create new attributes based on existing ones that are sparsely represented
  - This reduces fragmentation, repetition, and replication

### Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
  - relatively faster learning speed (than other classification methods)
  - convertible to simple and easy to understand classification rules
  - can use SQL queries for accessing databases
  - comparable classification accuracy with other methods

Let's take a
deeper look
at
Decision Trees

### Nodes and Leaves of DT



## Divide and Conquer Concept

- Internal decision nodes
  - Univariate: Uses a single attribute,  $x_i$ 
    - Numeric  $x_i$ : Binary split:  $x_i > w_m$
    - Discrete  $x_i$ : n-way split for n possible values (e.g. High, Low, Medium)
  - Multivariate (Not so common!): Uses all attributes, x
- Leaves
  - Classification: Class labels, or proportions
  - Regression: Numeric; r average, or local fit
- Learning is greedy; find the best split recursively (Breiman et al, 1984; Quinlan, 1986, 1993)

# How to divide? - Classification Trees (ID3, CART, C4.5)

• For node m,  $N_m$  instances reach m,  $N_m^i$  belong to  $C_i$ 

$$\hat{P}(C_i \mid \mathbf{x}, m) \equiv p_m^i = \frac{N_m^i}{N_m}$$

- Node m is pure if  $p_m^i$  is 0 or 1
- Measure of impurity is entropy

$$I_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$



**Figure 9.2** Entropy function for a two-class problem.

# Best Split (Divide)

- If node *m* is pure, generate a leaf and stop, otherwise split and continue recursively
- Impurity after split:  $N_{mj}$  of  $N_m$  take branch j.  $N^i_{mj}$  belong to  $C_i$

$$\hat{P}(C_i \mid \mathbf{x}, m, j) \equiv p_{mj}^i = \frac{N_{mj}^i}{N_{mj}}$$

$$I'_{m} = -\sum_{j=1}^{n} \frac{N_{mj}}{N_{m}} \sum_{i=1}^{K} p_{mj}^{i} \log_{2} p_{mj}^{i}$$

• Find the variable and split that minimize impurity (among all variables -- and split positions for numeric variables) → many possible methods!

```
GenerateTree(\mathcal{X})
      If NodeEntropy(\mathcal{X})< \theta_I /* (See I_m on slide 29)
         Create leaf labelled by majority class in {\mathcal X}
         Return
      i \leftarrow \mathsf{SplitAttribute}(\mathcal{X})
      For each branch of x_i
         Find \mathcal{X}_i falling in branch
         GenerateTree(\mathcal{X}_i)
                                                                  Recursive implementation!
SplitAttribute(X)
      MinEnt← MAX
      For all attributes i = 1, \ldots, d
            If x_i is discrete with n values
               Split \mathcal{X} into \mathcal{X}_1, \ldots, \mathcal{X}_n by \boldsymbol{x}_i
               e \leftarrow SplitEntropy(\mathcal{X}_1, \dots, \mathcal{X}_n) / (See I'_m on slide 30)
               If e < MinEnt MinEnt \leftarrow e; bestf \leftarrow i
            Else /* x_i is numeric */
                For all possible splits
                      Split \mathcal{X} into \mathcal{X}_1, \mathcal{X}_2 on \boldsymbol{x}_i
                      e \leftarrow SplitEntropy(\mathcal{X}_1, \mathcal{X}_2)
                      If e < MinEnt MinEnt \leftarrow e; bestf \leftarrow i
      Return bestf
```

# Model Selection in Univariate Trees: f(x)





### Rule Extraction from Trees



- R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8
- R2: IF (age>38.5) AND (years-in-job  $\leq$  2.5) THEN y = 0.6
- R3: IF (age  $\leq$  38.5) AND (job-type='A') THEN y = 0.4
- R4: IF (age  $\leq$  38.5) AND (job-type='B') THEN y = 0.3
- R5: IF (age  $\leq$  38.5) AND (job-type='C') THEN y = 0.2

### Decision Surface of Decision Tree

 Decision Trees divide the input space into axis-parallel rectangles and label each rectangle with one of the K classes



## More examples





### Extending Decision Tree with multiple splits



## Another extension

 Decision Forest (boosting technique to be introduced later)



# How about such spiral data?



#### Check out this link:

http://arogozhnikov.github.io/2016/07/05/gradient boosting playground.html





# Could it be non-axis parallel split?



## Take-home messages

- Decision tree is a highly popular model in both data science and machine learning.
- The idea is very simple with tons of extensions (which involves many PhDs' hard works).
- If the feature engineering work is not good, the most sophisticated DT models like Decision Forest can only attain sub-optimal performance. As a data scientist/analyst, one may need to do a better feature engineering work. As a machine learning scientist/engineer, you may want to develop a more powerful supervised learning model.

## Acknowledgement

- Slides/Materials of
  - [1] Jiawel Han and Micheline Kamber, Data Mining: Concepts and Techniques. 2<sup>nd</sup> Ed. Morgan Kaufmann, 2006.
  - [2] E. Alpaydin, Introduction to Machine Learning. 2<sup>nd</sup> Ed. MIT Press, 2010.
- Photos from Internet