单元自测练习题(8)

第八章 向量代数与空间解析几何

一、选择题(每题3分,共15	分)
----------------	----

1、	向量 $\vec{a} = (6, -1,$	2)在向量 $\vec{b}=(7,-7)$	-4,4)上的投	影为()	
	(A) 3;	(B) 6;	(C) -2;	(D) -	4.	
2、	原点关于平面x	-2y + 3z + 21 =	= 0的对称点:	是()		
	(A) (-3,6,-9)	; (B) (-4)	,7, –8)	(C) (-3,12,	-9)	(D) (1,-2,3)
3、	已知 L_1 : $\begin{cases} y = 1 - 1 \\ z = 2 \end{cases}$	$-x + x, L_2: \begin{cases} x = 1 + \\ 2y + z = \end{cases}$	y 3,则 <i>L</i> ₁ 与 <i>L</i>	2的位置关系为	P ()
	(A) 垂直;	(B) 平行;	(C)	相交;	(D) 异	面.
4、	设空间直线 $\frac{x}{0}$ =	$\frac{y}{1} = \frac{z}{2}$, 则该直线)	过原点且()		
	(A)垂直于ox转	曲;	(B)	垂直于oy轴,	但不平行	于ox轴;
	(C)垂直于oz轴	曲,但不平行于ox	轴; (D)	平行于ox轴.		
5、母线平行于 x 轴,且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 - y^2 + z^2 = 0 \end{cases}$ 的柱面方程是()
	(A) 椭圆柱面3	$x^2 + 2z^2 = 16;$	(B)椭圆柱面x	$x^2 + 2y^2 =$	= 16;

二、基本解答题(每题6分,共48分)

- 6、设 $\overline{c_1}=2\vec{a}+\vec{b},\; \overline{c_2}=k\vec{a}+\vec{b},\;$ 其中 $|\vec{a}|=1, \left|\vec{b}\right|=2,\;$ 且 $\vec{a}\perp\vec{b},\;$ 求
 - (1) k为何值时, $\overline{c_1} \perp \overline{c_2}$? (2) k为何值时,以 $\overline{c_1}$ 与 $\overline{c_2}$ 为邻边的三角形面积为3.

(C) 双曲柱面 $3y^2 - z^2 = 16$; (D) 抛物柱面 $3y^2 - z = 16$.

- 7、已知 $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 1$, $(\hat{\vec{a}}, \hat{\vec{b}}) = \frac{\pi}{6}$, 求向量 $\vec{a} + \vec{b}$ 和 $\vec{a} \vec{b}$ 的夹角.
- 8、设点A(1,0,-1),向量 \overrightarrow{AB} 的方向角 $\alpha=60^\circ,\beta=45^\circ$,且 $\left|\overrightarrow{AB}\right|=10$,求
 - (1) 方向角 γ ; (2) 点B的坐标.

- 9、求点A(4,1,-2)到直线 $\begin{cases} x-y+z+5=0 \\ 2x+z-4=0 \end{cases}$ 的距离.
- 10、求过点(-1,-2,-5)且和三个坐标平面都相切的球面方程.
- 11、求曲线 $\begin{cases} x^2 + 4y^2 z^2 = 16 \\ 4x^2 + y^2 + z^2 = 14 \end{cases}$ 在xOy坐标面上的投影方程.
- 12、求点A(4,-3,1)在平面x + 2y z 3 = 0的投影点的坐标.
- 13、设一个平面经过原点及A(6,-3,2),且与平面4x y + 2z = 8垂直,求此平面方程.

三、综合解答题(14-16 每题7分,17-18 每题8分,共37分)

- 14、已知动点M(x,y,z)到xOy平面的距离与M到点(1,-1,2)的距离相等,求点M的轨迹方程.
- 15、求过原点且含直线 $\begin{cases} x = 3 t \\ y = 1 + 2t$ 的平面方程. z = t
- 16、求过点A(2,3,1)且与两直线 L_1 : $\begin{cases} x+y=0 \\ x-y+z+4=0 \end{cases}$ 和 L_2 : $\begin{cases} x+3y-1=0 \\ y+z-2=0 \end{cases}$ 相交的直线方程.
- 17、在一切过直线L: $\begin{cases} x+y+z+1=0\\ 2x+y+z=0 \end{cases}$ 的平面中找出一个平面,使得它与原点的距离最长.
- 18、求球面 $x^2 + y^2 + z^2 = 4z$ 和圆锥面 $3z^2 = x^2 + y^2$ 上侧(即锥面上的法向量朝上的那一侧,法向量与 z 轴正方向夹角小于 $\pi/2$) 所围成的立体在xOy面内的投影区域.