

Did Early Functional Proteins Use Metal Ions to Bind ATP?

Alexander D. Soltau, Eli Blascyk, Peter J. Winslow, and Burckhard Seelig

Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, USA

Introduction

Origin of Life **Primordial** proteins

Proteins -> Chains of amino acids

- Proteins are building blocks of life
- 20 canonical amino acids
- Trifonov et al.¹ order of amino acids
- Four libraries of **random** proteins²
 - Only **5**, **9**, **16**, **or all 20** amino acids

Early

5 AA

9 AA

16 AA

20 AA

Modern

mRNA display selection:

Stick to ATP → ATP Binders

- How do they bind ATP?
- Effect of divalent metals?
- 5AA library lacks aromatic and (+) amino acids

We hypothesized that magnesium ions, commonly used in nature to coordinate the phosphate groups of ATP, may also be utilized by our primordial-like model proteins.

Methods

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-0ES)

- 8 divalent metal ions (Ni²⁺, Ca²⁺, Cu²⁺, Mn²⁺, Zn²⁺, Co²⁺, Mo⁶⁺, and Mg²⁺) tested
- Triplicate samples with +/- SEM
- Metals at 50 uM except Mg2+ at 400uM
- 7.5uM protein and 1 nM 32P-ATP

³²P ATP-Binding Assay · Metal ion MI tag ³²P Rad Centrifugation Spin Filter Metal ion ³²P Rad

Results

- 9C's ATP-binding was 27% higher with ~20% DnaK
- Pairwise student's t-tests:
- 9C [~20% DnaK] vs no protein: **p=0.007**
- 9C [~20% DnaK] vs 9C: p=0.002
- No protein vs. 9C: p=0.059

- Magnesium and manganese both recovered ATP-binding in 5A and 5D
- Minimal effect from other divalent metals
- Intermediate ATP-binding of no M²⁺ control

Conclusions

- Magnesium and manganese both recovered or improved ATP-binding in 5A and 5D
 - Also utilized by DnaK, could be the result of contamination
- ATP-binding of **no M²⁺** condition could be due to trace metals in sample
- Preliminary ICP-OES results were inconclusive
 - Dialysis was incomplete
- Strange proteins had strange behavior
 - Highly negatively charged peptides may have had an early evolutionary role in coacervates

Future Directions

- Validate metal dependent ³²P ATP-binding affinity with a **DnaK KO** strain (EN2)
- Measure ³²P ATP-binding affinity of dialyzed protein control
- Repeat ICP-OES trace metal testing with new metals stock solutions, multiple sample replicates, and multiple rounds of dialysis for more stringent removal of metal ions
- Measure ³²P ATP-binding affinity of protein fragments to determine minimal binding domains

Acknowledgements

This project was supported by the University of Minnesota's Office of Undergraduate Research and by NASA under award 80NSSC21K0595

University of Minnesota Driven to Discover®

References:

¹Trifonov, E. N. (2004). The Triplet Code From First Principles. Journal of Biomolecular Structure and Dynamics, 22(1), 1-11. https://doi.org/10.1080/07391102.2004.10506975 ²Newton, M. S., Morrone, D. J., Lee, K., & Seelig, B. (2019). Genetic Code Evolution Investigated through the Synthesis and Characterisation of Proteins from Reduced-Alphabet Libraries.

ChemBioChem, 20(6), 846–856. https://doi.org/10.1002/cbic.201800

³Emily ricq. (2014). Three representative conformations of the benzer dimer [Graphic]. https://en.wikipedia.org/wiki/Pi- stacking#/media/File:BenzeneDimerGeometries.png

⁴Mao, L., Wang, Y., Liu, Y., & Hu, X. (2004). Molecular Determinants fo ATP-binding in Proteins: A Data Mining and Quantum Chemical Analy Journal of Molecular Biology, 336(3), 787-807. https://doi.org/10.1016/j.jmb.2003.12.056

