BROJ e I PRIMENA U FINANSIJAMA

Seminarski rad u okviru kursa Tehničko i naučno pisanje Matematički fakultet

17. decembar 2022.

ANASTASIJA DIVJAK

mi22206@alas.matf.bg.ac.rs

NIKOLINA MILENKOVIĆ

mi22142@alas.matf.bg.ac.rs

KRISTINA MILENKOVIĆ

mi22117@alas.matf.bg.ac.rs

NIKOLA JOVANOVIĆ

mi22122@alas.matf.bg.ac.rs

REZIME: Kada je otkriven 1618. godine, broju e nije pridavan veliki značaj. Njegovu pravu ulogu otkriva znatno kasnije švajcarski matematičar Leonard Ojler. Ova konstanta iznosi e 2,71828... i predstavlja osnovu prirodnog logaritma. Veliku primenu ima i van matematike, a jedna od njegovih najbitnijih primena je u finansijama. Smatra se da je kao prvobitni problem broja e upravo bio problem vezan za finansije.

KLJUČNE REČI: broj e, prirodan logaritam, finansije, Leonard Ojler

SADRŽAJ

1 Rezultati istraživanja i diskusija

1.1	Istorija broja e	9
1.2	O Leonardu Ojleru	3
1.3	Osobina broja e	4
1.4	Ojlerov identitet	6
1.5	Ojlerova kružnica	7
1.6	Primena broja e u finansijama	8
1.7	O Bernuliju	8
1.8	Značaj u finansijama	8
1.9	Reference	9

REZULTAT ISTRAŽIVANJA I DISKUSIJA

Istorija broja e

Broj e se prvi put pojavljuje 1618.godine u logaritamskim tablicama tj. nakon Neperovog otkrića integrala. Tada mu nije pridavan veliki znacaj i njegovu ulogu u matematici i drugim oblastima otkriva znatno kasnije švajcarski matematičar i fizičar Leonard Ojler.[3]

Naime, u 17.veku švajcarski matematičar Danijel Bernuli ispitivao je kamatnu stopu i različite dohotke na osnovu učestalosti ulaganja. Ono što je zaključio, a što se sad smatra originalnim problemom broja e, jeste da se dobija bolji rezultat ako se češće ulaže novac i uzima kamata.

Pedesetak godina nakon ovoga, Ojler je napokon izračunao vrednost broja e s obzirom da je Bernuli znao samo da se taj broj nalazi izmedju 2 i 3. Osim što ga je izračunao on je pronašao i formulu kojom je dokazao da je ovaj broj iracionalan.[5]

O Leonardu Ojleru

Leonard Ojler rođen je u Bazelu 15. aprila 1707. godine. Bio je jedan od najznačajnijih matematičara 18. veka. Najviše je doprineo u matematičkoj notaciji jer je prvi počeo da koristi f(x) za zapis funkcije, moderan zapis trigonometrijskih funkcija, e, Σ za sumu, i kao imaginarnu jedinicu. Pokazao je da se najkraće rastojanje izmedju dve tačke na zakrivljenoj površi pretvara u duž ukoliko se ta površ projektuje na ravan. Među manje poznatim Ojlerovim doprinosima nalazi se pokušaj formulisanja teorije

Slika 1: Leonardo Ojler

muzike u potpunosti zasnovan na matematičkim idejama, koji je napravio napisavši 1739. godine "Tentamen novae theoriae musicae",a zatim i brojna druga dela.

Osobine broja e

Broj e, koji još nazivamo i Ojlerov broj ili Neperova konstanta, je konstanta koja predstavlja osnovu prirodnog logaritma. Ovaj broj osim što je iracionalan i realan takodje je i transcedentan i njegova približna vrednost iznosi

$$e\approx 2,71828...$$

Slika 2: Broj e

n		0	1	2	3	4	5	6	100	1000
$(1+\frac{1}{n})$	$(a^{-1})^n$									

n	0	1	2	3	4	5	6	100	1000
$\left(1+\frac{1}{n}\right)^n$	-	2	2,25	2,3704	2,4414	2,4883	2,5216	2,7048	2,7169

Što je veći broj n to smo bliži broju e (3a). Pošto je ovo beskonačan niz, broj e se može predstaviti kao granična vrednost (3b) tog niza

$$\lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^n$$

[2] Uradićemo primer $\lim_{n\to\infty} (1+\frac{1}{3n})^n$

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^{\frac{3n}{3}} = \left(\lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^3 n\right)^{\frac{1}{3}} = e^{\frac{1}{3}}$$

1	2,00000
2	2,25000
5	2,48832
10	2,59374
100	2,70481
1.000	2,71692
10.000	2,71815
100.000	2,71827

n $(1+1/n)^n$

- (a) Granična vrendost datog niza
- (b) Vrednosti datog niza

Takodje, ovaj broj je moguće predstaviti i kao sumu beskonačnog niza

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Zbir prvih šest članova ovog niza iznosiće

$$1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} = 2{,}718055556$$

[1]

U nastavku biće predstavljen jedan zanimljiv primer vezan za broj e. Uzećemo broj 10 za početak. Podelićemo ga na dva jednaka dela tj.

$$10:2=5$$

Nakon ovoga, ta dva dela ćemo pomnožiti

$$5*5 = 25$$

Sad ćemo ponoviti postupak s tim što ćemo broj 10, umesto na dva, podeliti na 3 dela

$$10: 3 = 3\frac{1}{3}$$

Množimo delove koje smo dobili

$$3\frac{1}{3} * 3\frac{1}{3} * 3\frac{1}{3} = 37,03...$$

Isto radimo za četiri dela

$$10:4=2,5$$

$$2,5^4 = 39,0625$$

[4]

Šta je poenta ovog računanja? Da bi proizvod jednakih delova nekog broja bio maksimalan, ti delovi moraju biti što bliži broju e.

Ojlerov indetitet

Osim što se može prestaviti gore navedenim izrazima, broj e srećemo i u Ojlerovom indetitetu. To je ustvari naziv za formulu:

$$e^{i\phi} = \cos\phi + \sin\phi$$

koja predstavlja vezu između trigonometrijskih funkcija i kompleksnih brojeva. Iako je prvobitna pretpostavka bila $\in \mathbb{R}$, jednačina važi i za $\phi \in \mathbb{C}$.

Za uga
o $\phi=\pi$ dobija se indetitet $e^{i\pi}=-1$ (slika
4) ili malo drugačiji oblik $e^{i\pi}+1=0$ [7]

Ovo se često naziva najdivnijom formulom matematike jer povezuje fundamentalne brojeve $i, \pi, e, 1$, i 0, osnovne matematičke radnje, sabiranje, množenje i stepenovanje, i najvažniju relaciju = i ništa više.

Slika 4: Vrednosti broja e na trigonometrijskoj kržnici

Ojlerova kružnica

Ojlerova kružnica, još nazivana kružnica devet tačaka, zanimljiva je u geometriji, a predstavlja kružnicu koja se može konstruisati za svaki trougao. Ime je dobila po tačkama koje sadrži:

- Podnožja visina trougla, iliti tri tačke u kojima se normale iz temena trougla seku sa stranicama na koje su normalne.
- Podnožja težišnih duži trougla. Težišna duž je duž koja spaja teme trougla i središte nasprame strane. Ovih tačaka ima takođe tri.
- Sredine rastojanja ortocentra trougla od svakog temena.

Primer na kome se vidi svih devet tačaka je slika
5. Gde su tačke D, E i F sredine stranica trougla. Tačke G, H i I su podnož
ja visina. Tačke J, K i L su sredine duži koje spajaju ortocentar S (presek visina) sa svakim temenom.

Primena broja e u finansijama

Vrednost broja e u početku je računata u bankarske svrhe. Kao što je rečeno, smatra se da je problem broja e bio vezan za finansije. Danijel Bernuli ispitivao je kamatnu stopu i različite dohotke na osnovu učestalosti ulaganja.

O Bernuliju

Sticao je znanja iz matematike i prirodnih nauka, predavao je matematiku, anatomiju, botaniku i fiziku.

7

Slika 6: Danijel Bernuli

Slika 5: Ojlerova kružnica konstruisana nad trouglom

Bio je prijatelj Leonarda Ojlera, zajedno su sarađivali na više polja matematike i fizike. Različiti problemi koje je pokušavao da razreši (teorija elastičnosti, mehanika talasa) nagnali su ga da razvije takav matematički aparat kao što su diferencijlne jednačine i redovi.

Značaj u finansijama

Pretpostavimo da u banku ulažemo sumu novca h. Ako bi banka davala 100%-tnu kamatu, za godinu dana mogli bismo da podignemo sumu novca 2h. Ukoliko bismo posle pola godine podigli novac i opet ga uložili nakon godinu dana suma novca iznosila bi

$$(1+\frac{1}{2})^2 * x. (1)$$

Ako bismo ovaj postupak primenjivali svaki dan, nakon godinu dana suma novca iznosila bi $((1+\frac{1}{365})^{365}*x)$. Sad, postavlja se pitanje koliko novca bi mogli da zaradimo kada bi banka računala složen interes n beskrajno malim vremenskim intervalima tzv. "neprekidno kapitalisanje"? Odgovor je:

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \tag{2}$$

Dakle, značaj se ogleda u tome što smo na osnovu poznavanja broja e zaključili da zarada ne zavisi samo od količine novca koji ulažemo, već i od učestalosti ulaganja (odnosno sa češćim ulaganjem veća je i zarada).[7]

Zaključak

U cilju približavanja teme čitaocu i lakšeg razumevanja, ovaj rad izrađen je kroz teorijska objašnjenja i praktične primere. Fokus ovog rada bio je na jednoj konstanti čija se važnost i primena ne ogledaju samo na polju matematike već i u svakodnevnom životu. Iako mi toga možda nismo svesni, ovo otkriće u matematici doprinelo je razvoju mnogih drugih sfera kao što su biologija, fizika, hemija, bankarstvo, računovodstvo...Broj e u ekonomiji zapravo predstavlja prvu oblast obračuna složenih kamata, dok u statistici igra bitnu ulogu u teoriji verovatnoće i eksponencijalne funkcije. Pošto se broj e kao zasebna tema ne izučava toliko u školi već se spominje kroz druge pojave, autori se nadaju da su kroz ovaj kroz rad uspeli da objasne značaj i istorijski razvitak ovog broja.

Literatura

- [1] Vene T. Bogosavov, Zbirka rešenih zadataka iz matematike 3, za 3. razred srednje škole, Zavod za udzbenike i nastavna sredstva, Beograd, 2013.
- [2] S. Ognjanović, Ž. Ivanović, Krugova zbirka zadataka i testova iz matematike za 3. razred gimnazija i tehničkih škola, Krug, Beograd, 2010.
- [3] http://elementarium.cpn.rs/teme/sedam-najlepsih-brojeva/
- [4] https://www.matematika.edu.rs/saznajte-zanimljivosti-o-broju-e/
- [5] https://www.iserbia.rs/da-li-ste-znali/dan-broja-pi-broj-e-314-271/
- [6] http://poincare.matf.bg.ac.rs/
- [7] http://alas.matf.bg.ac.rs/~mn06070/Broj_e.pdf/

.