Tree-based Models for Regression

- Regression trees
- Regression forests
 - randomForest based on bagging
 - gbm based on boosting

Tree-based Models for Regression

- Input vector $X = (X_1, X_2, \dots, X_p) \in \mathcal{X}$
- Response variable $Y \in \mathbb{R}$
- ullet Trees are constructed by recursively splitting regions of ${\mathcal X}$ into two sub-regions, beginning with the whole space ${\mathcal X}$.
 - For simplicity, focus on recursive binary partitions.
- R page: check the fitted regression tree on BostonHousingData based on two features <u>lon</u> and <u>lat</u>.

- Notation: node (t), child node (t_L, t_R) , split (var j, value s), leaf/terminal node.
- Every leaf node (i.e. a rectangle region R_m in \mathcal{X}) is assigned with a constant for regression tree

$$\hat{f}(X) = \sum_{m} c_m I\{X \in R_m\}.$$

Advantages of Trees

- Easy to interpret
- Variable selection and interactions between variables are handled automatically
- Invariant under any monotone transformation of predictors