Ejercicios Teóricos FP-JS y Cálculo Lambda

Preguntas: en donde corresponda conteste en JS-ES6 y en estilo FP

- Sea a un array cualquiera en JS y f y g predicados cualesquiera bien definidos en los objetos de a. Encuentre una función h talque se cumpla la siguiente igualdad;
 - a. filter(f). filter(g) = a. filter(h)
- 2) Considere la expresión λx . λy . $((\lambda x. yxa)(\lambda z. zx))$
 - a. Dibuje su AST
 - b. Clasifique las variables como libres o atadas en cada sub-árbol
 - c. Reescriba en JS
 - d. ¿Cuál es la forma normal β ?
- 3) Para cada caso encuentre la forma normal β (si existe) usando ambas: evaluación "aplicativa" y "orden normal". Haga α —conversiones para evitar potenciales confusiones de alcance
 - a. $(\lambda z. z)(\lambda a. aa)(\lambda y. yz)$
 - b. $((\lambda x. xx)(\lambda x. x))(\lambda x. x)$
- 4) Considere el combinador Y con $Y = \lambda x$. UU con $U = \lambda y$. x(yy). Verifique que Y calcula puntos fijos: YE = EYE para cualquier expresión Y.
- 5) Considere $\hat{n} = \lambda sz. s^n(z)$, $SUCC = \lambda nsz. s(nsz)$ el numeral de Church y la función sucesor.
 - a. Pruebe $\hat{n}yx = y^nx$
 - b. Deduzca $SUCC(\hat{n}) = \hat{n+1}$
- 6) Considere $FALSE = \lambda xy. y$, $TRUE = \lambda xy. x$, $NOT = \lambda pxy. pyx$ y $ITE = \lambda pxy. pxy$. Pruebe
 - a. NOT TRUE = FALSE
 - b. NOT(NOTX) = X
 - c. ITE(NOTX)YZ = ITEXZY
 - d. Implemente AND.
- 7) Sean K, S y B definidos así
 - a. KXY = X
 - b. SXYZ = XY(YZ)
 - c. B = S(KS)K
 - d. I = SKK
 - i. Escriba S y K en JS.
 - ii. Pruebe que S(KS)KX = S(KX)
 - iii. Pruebe que BXYZ = X(YZ) **Hint**: Use el paso anterior)
 - iv. Implemente *B* en JS.
 - v. Pruebe que IX = X

Indicaciones

Use FP NocionesCalculoLambda.rar como referencia.