	Teste de Matemática A
	2020 / 2021
Teste N.º 2	
Matemática A	
12.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma
Utilize apenas caneta ou esferográfica de	·
	e aquilo que pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cac	da item.
As cotações dos itens encontram-se no fin	nal do enunciado.
Na resposta aos itens de escolha múltipla	a, selecione a opção correta. Escreva na folha d
respostas o número do item e a letra que	identifica a opção escolhida.
Na resposta aos restantes itens, apreser	nte todos os cálculos que tiver de efetuar e toda

as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\ \text{do ângulo ao centro};r-\text{raio})$$

Área lateral de um cone: $\pi r g$ (r – raio da base;

$$g$$
 – geratriz)

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a + b) = sen a cos b + sen b cos a

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n\theta)$$
 ou $(re^{i\theta})^n = r^n e^{in\theta}$

$$\sqrt[n]{\rho \ cis \ \theta} = \sqrt[n]{\rho} \ cis \left(\frac{\theta + 2k\pi}{n}\right)$$
 ou $\sqrt[n]{r \ e^{i\theta}} = \sqrt[n]{r} \ e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)}$

 $(k \in \{0, \dots, n-1\} \in n \in \mathbb{N})$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u'. \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'.e^u$$

$$(a^{u})' = u' \cdot a^{u} \cdot \ln a \ (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_{\mathbf{a}} u)' = \frac{u'}{u \ln a} (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

- 1. O departamento de Matemática de uma determinada escola tem professores de vários pontos do país.
 - **1.1.** Sabe-se que m professores são da zona norte, n professores são da zona centro e oito professores são da zona sul do país.

Considerando que se pretende colocar lado a lado todos os professores deste departamento, de modo que todos professores da zona norte figuem juntos, bem como todos professores da zona centro, quantas formas existem de o fazer?

- (A) $m! \times n! \times 8!$
- **(B)** $m! \times n! \times 10!$
- **(C)** $m! \times n! \times 8! \times 3!$
- **(D)** $m! \times n! \times 9!$
- 1.2. Considere agora que o departamento de Matemática tem, no total, 19 professores, dos quais dois são irmãos, a Maria e o João. Pretende-se formar uma comissão de quatro professores para organizar as Olimpíadas de Matemática na escola. Escolhendo aleatoriamente quatro professores do departamento, qual é a probabilidade de a Maria e o João não fazerem parte da comissão juntos?

Apresente o resultado na forma de fração irredutível.

1.3. Dos 19 professores do departamento, sabe-se ainda que cinco são da zona norte do país, seis são da zona centro e os restantes são da zona sul. É necessário escolher aleatoriamente dois professores para acompanhar alguns dos alunos a uma cerimónia de entrega de prémios na capital do país.

Sejam A e B os acontecimentos:

- A: "Os dois professores são da zona norte."
- B: "Os dois professores não são da mesma zona do país."

Elabore uma composição, na qual indique o valor de $P(A|\overline{B})$, sem aplicar a fórmula da probabilidade condicionada.

Na sua resposta deve:

- explicar o significado de $P(A|\overline{B})$, no contexto da situação descrita;
- fazer referência à regra de Laplace;
- explicar o número de casos possíveis;
- explicar o número de casos favoráveis:
- apresentar o valor de $P(A|\overline{B})$ na forma de fração irredutível.
- **2.** Considere o desenvolvimento de $\left(\sqrt{x} \frac{2}{x}\right)^n$, com x > 0 e n um número natural.

Sabe-se que a soma dos coeficientes binomiais deste desenvolvimento é 1024.

Escolhendo ao acaso dois termos deste desenvolvimento, qual é a probabilidade de o produto dos seus coeficientes ser um número positivo?

Apresente o resultado em percentagem, com aproximação às unidades.

3. Sejam E um conjunto finito, não vazio, e P uma probabilidade no conjunto $\mathcal{P}(E)$. Sejam A e B dois acontecimentos em E.

Sabe-se que:

- $P(A|B) = \frac{1}{6}$
- $P(B \setminus A) = \frac{1}{4}$

Qual é o valor de $P(\bar{A} \cup \bar{B})$?

- **(A)** 0,8
- **(B)** 0,85
- **(C)** 0,9
- **(D)** 0,95
- 4. De uma turma de 12.º ano, sabe-se que:
 - $\frac{7}{10}$ dos alunos vêm a série *Peaky Blinders*;
 - metade dos alunos vêm a série How I met your mother,
 - um em cada cinco alunos que vê a série *How I met your mother* não vê a série *Peaky Blinders*.

Escolheu-se, ao acaso, um aluno dessa turma.

Determine a probabilidade de o aluno escolhido ver a série *Peaky Blinders* e não ver a série *How I met your mother*. Apresente o resultado na forma de dízima.

5. Sabe-se que $^{n-1}C_{p-1}=8008$,que $^{n-1}C_{p+1}=12\,870$ e que $^{n}C_{p}=19\,448$.

O valor de $^{n+1}C_{n-p}$ é:

- (A) 11 440
- **(B)** 19 448
- **(C)** 31 824
- **(D)** 43 758
- **6.** Sejam E um conjunto finito, não vazio, e P uma probabilidade no conjunto $\mathcal{P}(E)$.

Sejam $A, B \in \mathcal{P}(E)$, com P(B) > 0. Prove que:

$$P(\bar{A}) + P(A \backslash B) = P(B) \times P(\bar{A}|B) + P(\bar{B})$$

7. Na figura seguinte está representado o prisma regular [ABCDEFGHI]KLMN], com uma das faces laterais numerada com o número 1.

7.1. Escolhem-se, ao acaso, dois vértices distintos do prisma.

Qual é a probabilidade de esses vértices formarem uma diagonal facial do prisma?

- (A) $\frac{1}{12}$
- (B) $\frac{4}{12}$
- (C) $\frac{6}{12}$
- **(D)** $\frac{8}{13}$
- 7.2. Considere agora que se pretende numerar as oito faces do prisma não numeradas, utilizando os algarismos de 2 a 9 e colocando um algarismo diferente em cada face.

De quantas maneiras o poderemos fazer, de forma que:

- 7.2.1.a soma dos algarismos colocados nas bases seja igual a 11?
- 7.2.2. a soma dos algarismos colocados nas faces laterais seja par?
- **7.3.** Dispõe-se de n cores diferentes $(n \ge 7)$ para colorir todas as faces do prisma.

Qual é a probabilidade de, ao colorir cada face do prisma com uma única cor, exatamente três faces sejam pintadas da mesma cor e as restantes faces sejam pintadas com cores diferentes entre si?

(A)
$$\frac{{}^{9}C_{3} \times 3! \times {}^{n-1}A_{6}}{n^{9}}$$

(B)
$$\frac{{}^{9}C_{3} \times n \times^{n-1}A_{6}}{{}^{n}A_{9}}$$

(C)
$$\frac{{}^{9}C_{3} \times n \times {}^{n-1}A_{6}}{{}^{n}A'_{9}}$$

(A)
$$\frac{{}^{9}C_{3} \times 3! \times^{n-1}A_{6}}{n^{9}}$$
 (B) $\frac{{}^{9}C_{3} \times n \times^{n-1}A_{6}}{{}^{n}A_{9}}$ (C) $\frac{{}^{9}C_{3} \times n \times^{n-1}A_{6}}{{}^{n}A'_{9}}$ (D) $\frac{{}^{9}C_{3} \times n \times^{n-1}A_{6} \times 9!}{n^{9}}$

FIM

COTAÇÕES

Item												
Cotação (em pontos)												
1.1.	1.2.	1.3.	2.	3.	4.	5.	6.	7.1.	7.2.1.	7.2.2.	7.3.	Total
10	20	25	20	10	25	10	25	10	17	18	10	200