Elements of Mathematics

Exercise Sheet 6

Submission due date: 07.12.2021, 10:15h

THEORY

1 Thin and Fat Full Rank Matrices

Answer the following questions without using the SVD. Instead, exploit the orthogonality relation between the four fundamental subspaces and the dimension formula.

- 1. What is the orthogonal complement of $\{0\}$ and \mathbb{R}^n in \mathbb{R}^n , respectively?
- 2. Give an example for a matrix $C \in \mathbb{R}^{m \times n}$ with nullity(C) = 0 (injective).
 - (a) What do we know about the order relation between m and n? (which one is greater or equal than the other?)
 - (b) What do we know about the columns of C?
 - (c) Let $b \in \text{Im}(C)$. Can we find two distinct $x_1 \neq x_2 \in \mathbb{R}^n$ such that $Cx_1 = b = Cx_2$? Explain your answer
 - (d) What do we know about the matrix $C^{\top}C \in \mathbb{R}^{n \times n}$?
- 3. Give an example for a matrix $A \in \mathbb{R}^{m \times n}$ with n > m and $\operatorname{rank}(A) < m$.
- 4. Give an example for a matrix $R \in \mathbb{R}^{m \times n}$ with rank(R) = m (surjective).
 - (a) What do we know about the order relation between m and n?
 - (b) What do we know about the rows of R?
 - (c) What do we know about the matrix $RR^{\top} \in \mathbb{R}^{m \times m}$?
 - (d) Let $b \in \mathbb{R}^m$. Can we find an $x \in \mathbb{R}^n$ such that Rx = b? Explain your answer and give an example for your matrix.
- 5. Give an an example for a matrix $A \in \mathbb{R}^{n \times n}$ with rank(A) = n (invertible).
 - (a) What do we know about the dimensions of $\ker(A)$, $\ker(A^{\top})$ and $\operatorname{Im}(A^{\top})$?
 - (b) What do we know about the columns and rows of A?
 - (c) Let $b \in \mathbb{R}^n$. Can we find an *unique* $x \in \mathbb{R}^n$ such that Ax = b? Explain your answer and give an example for your matrix.
- 6. **Bonus*:** Give an an example for a matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$ and $\operatorname{nullity}(A) \neq \operatorname{nullity}(A^{\top})$.

(18 Points)

Solution:

Let us recall the dimension formula here

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A),$$

 $m = \operatorname{rank}(A^{\top}) + \operatorname{nullity}(A^{\top}).$

1. We have

$$\{0\}^{\perp} = \{x \in \mathbb{R}^n : x^{\top}v = 0 \ \forall v \in \{0\}\} = \{x \in \mathbb{R}^n : x^{\top}0 = 0\} = \mathbb{R}^n$$

and

$$(\mathbb{R}^n)^{\perp} = \{ x \in \mathbb{R}^n : x^{\top} y = 0 \ \forall y \in \mathbb{R}^n \} = \{ x \in \mathbb{R}^n : \ker(x^{\top}) = \{0\} \} = \{0\}.$$

[Not part of the exercise:]

Together with $(U^{\perp})^{\perp} = U$ this gives in general

$$\mathbb{R}^m = \operatorname{Im}(A) = \ker(A^\top)^\perp \iff \ker(A^\top) = \{0\}, \quad \text{or} \\ \operatorname{rank}(A) = m \iff \operatorname{nullity}(A^\top) = 0, \quad \text{or} \\ A \quad \operatorname{surjective} \iff A^\top \quad \operatorname{injective}.$$

Analogously for the transpose

$$\mathbb{R}^n = \operatorname{Im}(A^\top) = \ker(A)^\perp \iff \ker(A) = \{0\}, \quad \text{or} \\ \operatorname{rank}(A^\top) = n \iff \operatorname{nullity}(A) = 0, \quad \text{or} \\ A^\top \quad \operatorname{surjective} \iff A \quad \operatorname{injective}.$$

2. Example:

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

(a) By dimension formula we know

$$m \ge \dim(\operatorname{Im}(C)) = \operatorname{rank}(C) = n - \operatorname{nullity}(C) = n.$$

Only square or thin matrices can be injective!

- (b) Since $\operatorname{nullity}(C) = 0$ we know $\ker(C) = \{0\}$ and thus the n columns of C are independent (in fact, only the zero combination gives the zero vector).
- (c) No (because f_C injective). Recall the proof: Assume yes, then $Cx_1 = b = Cx_2 \iff C(x_1 x_2) = 0$, where $x_1 x_2 \neq 0$ due to $x_1 \neq x_2$. This contradicts the fact that $\ker(C) = \{0\}$.

Independent columns assure that a solution to Cx = b is unique (if it exists).

- (d) Since $\ker(C^{\top}C) = \ker(C) = \{0\}$, we have that the $(n \times n)$ -matrix $C^{\top}C$ is invertible.
- 3. Example: Take for two nonzero vectors $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ with n > m > 1 the outer product

$$A := uv^{\top}$$
,

so that each column is a scaling of u and thus rank(A) = 1 < m.

Simply many columns are not enough for surjectivity! We need independence to get a "larger" subspace.

4. Example: $R := C^{\top}$.

(a) From above recall: $rank(R) = m \iff nullity(R^{\top}) = 0$. Now by dimension formula we get

$$n > \dim(\operatorname{Im}(R^{\top})) = \operatorname{rank}(R^{\top}) = m - \operatorname{nullity}(R^{\top}) = m.$$

Only square or fat matrices can be surjective!

- (b) Again, by $\operatorname{nullity}(R^{\top}) = 0$, they are independent.
- (c) Since $\ker(RR^{\top}) = \ker(R^{\top}) = \{0\}$, it's invertible.
- (d) Yes, since $\operatorname{Im}(R) = \mathbb{R}^m$, any $b \in \mathbb{R}^m$ is of the form Rx = b for some $x \in \mathbb{R}^n$.

Independent rows assure that a solution to Rx = b exists.

5. (a) By dimension formula

$$\operatorname{nullity}(A) = n - \operatorname{rank}(A) = 0,$$

Then using from above $\operatorname{rank}(A^\top) = n \iff \operatorname{nullity}(A) = 0$, we find $\operatorname{rank}(A^\top) = n$, and therefore also

$$\operatorname{nullity}(A^{\top}) = n - \operatorname{rank}(A^{\top}) = 0.$$

- (b) Since $\ker(A) = \{0\} = \ker(A^{\top})$ the *n* rows and the *n* columns are independent.
- (c) Yes, because from above we know: Independent rows give existence and independent columns uniqueness.
- 6. Take A = C with C from above. Then

$$\mathsf{rank}(A) = 2 = \mathsf{rank}(A^\top).$$

However

$$\operatorname{nullity}(C) = 0 \neq 1 = \operatorname{nullity}(C^{\top}).$$

We will learn below:

Always $rank(A) = rank(A^{\top})$,

but a similar result is not true in general for nullity(A).

2 Equivalent Definitions of the Matrix Rank

Let $A \in \mathbb{R}^{m \times n}$, then show that the following statements are equivalent:

- i) The maximum number of linearly independent columns of A is r.
- ii) The dimension of the image of A is r, i.e., $\dim(\operatorname{Im}(A)) = r$.
- iii) The number of positive singular values of A is r.

Hint: You can use the SVD $A = U\Sigma V^{\top}$ and Lemma 2.29.

As a consequence (since $A^{\top} = V \Sigma^{\top} U^{\top}$), we find

$$\operatorname{rank}(A) = r = \operatorname{rank}(A^{\top}),$$

so that the dimension formulas for A and A^{\top} read as

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A) = \operatorname{rank}(A^{\top}) + \operatorname{nullity}(A),$$

$$m = \operatorname{rank}(A^{\top}) + \operatorname{nullity}(A^{\top}) = \operatorname{rank}(A) + \operatorname{nullity}(A^{\top}).$$

Solution:

i) \Rightarrow ii): Pick r independent columns of $A = [a_1, \ldots, a_n]$, say a_{i_1}, \ldots, a_{i_r} . Then by i) any other column of A can be written as linear combination of a_{i_1}, \ldots, a_{i_r} , so that

$$\operatorname{Im}(A) = \operatorname{span}(a_1, \ldots, a_n) = \operatorname{span}(a_{i_1}, \ldots, a_{i_r}).$$

Thus the a_{i_1}, \ldots, a_{i_r} are a basis of length r for Im(A), implying ii) by the definition of "dimension".

ii) \Rightarrow i): Let dim(Im(A)) = r. Since any basis of a subspace has the same length, any basis of Im(A) has length r.

Now assume A has more than r independent columns. Then by the reasoning from above, these columns would yield another basis of Im(A) but with length > r, which would contradict the fact that any basis has length r. Therefore implying i): the maximum number of independent columns in A is r.

ii) ⇔ iii) We show that

$$dim(Im(A)) = number of positive singular values of A.$$

Let us consider the reduced SVD $A = U_r \Sigma_r V_r^{\top}$ where r denotes the number of (positive) singular values, Σ_r is an invertible diagonal matrix and U_r and V_r^{\top} have independent (even orthonormal) columns and rows, respectively. Thus

$$\operatorname{Im}(A) = \operatorname{Im}(U_r \Sigma_r V_r^{\top}).$$

In order to put Lemma 2.29 into position we show that $\Sigma_r V_r^{\top}$ is surjective, i.e., $\mathrm{rank}(\Sigma_r V_r^{\top}) = r$. This easily follows from the fact that $(\Sigma_r V_r^{\top})^{\top} = V_r \Sigma_r$ has independent columns and thus

$$\operatorname{nullity}(V_r\Sigma_r) = 0 \Leftrightarrow \operatorname{rank}(\Sigma_rV_r^\top) = r.$$

Therefore by the mentioned Lemma we obtain

$$\operatorname{Im}(A) = \operatorname{Im}(U_r \Sigma_r V_r^{\top}) = \operatorname{Im}(U_r).$$

Since the columns of U_r are independent they are a basis of length r for Im(A), which implies dim(Im(A)) = r = number of (positive) singular values.

PROGRAMMING

3 The QR Algorithm

The QR-Algorithmn is an eigenvalue algorithm. Thus, it is used to compute eigenvalues and eigenvectors of a matrix $A \in \mathbb{R}^{n \times n}$. It produces a sequence of matrices $(A_k)_{k \in \mathbb{N}}$. All A_k are similar to A and thus have the same eigenvalues. The iteration is defined as follows:

$$\begin{aligned} A_0 &= A \in \mathbb{R}^{n \times n} \\ \text{for } k &= 0, \dots, \infty: \\ Q_{k+1} R_{k+1} &:= A_k \quad \text{(QR decomposition)} \\ A_{k+1} &:= R_{k+1} Q_{k+1} \end{aligned}$$

If the absolute values of the eigenvalues of A are distinct, one can show that $A_{\infty} := \lim_{k \to \infty} A_k$ is a diagonal matrix. In this case, the eigenvalues of A are the diagonal elements of A_{∞} .

Task:

1. Implement the QR eigenvalue algorithm as a function eig(A,m). The function shall take as input a matrix $A \in \mathbb{R}^{n \times n}$ and a maximum iteration number $m \in \mathbb{N}$. It shall return the diagonal of the last iterate A_m . For the QR decomposition you can use the Gram-Schmidt algorithm from previous sheets which we have implemented as a function QR(A) or an appropriate Python routine.

Hint: You can access the diagonal of a numpy.array by A.diagonal().

2. Test your algorithm on a random matrix $A \in \mathbb{R}^{n \times n}$. In order to generate such a random matrix use the following code snippet:

```
def A_gen(n):
    from numpy as np
    from scipy.linalg import qr
    A = np.random.rand(n,n)
    Q, R = qr(A)
    Lambda = np.diag(np.arange(1,n+1))
    A = Q @ (Lambda @ Q.T)
return A
```

3. Find a routine in Scipy to compute the eigenvalues and -vectors of a matrix. Test the routine on multiple examples, especially for higher dimensions. Compare to your algorithm.

(6 Points)

Solution:

```
import numpy as np
def qr_factor(A):
    Computes a QR-decomposition of a (mxn)-matrix with m>=n via Gram-Schmidt.
    Parameters
    A : (mxn) matrix with m \ge n
    Returns
    Q : (mxn) with orthonormal columns
   R : (nxn) upper triangular matrix
   m, n = A.shape
   R = np.zeros((n,n))
    Q = np.zeros((m,n))
   R[0,0] = np.linalg.norm(A[:,0])
   Q[:,0] = A[:,0]/R[0,0]
    for k in range(1,n):
        for 1 in range(0, k):
            R[1,k] = A[:,k] @ Q[:,1]
        q = A[:,k] - Q @ R[:,k]
        R[k,k] = np.linalg.norm(q)
        Q[:,k] = q/R[k,k]
    return Q, R
def eig(A, m = 50, qr="own"):
    Computes the eigenvalues of a square matrix via QR eigenvalue algorithm
    Parameters
   A : (nxn) matrix with *distinct* eigenvalues
   m : iteration number
    qr : optional parameter to switch between own qr and scipy qr
   Returns
```

```
d : diagonal of the last QR-iterate
   if qr == "own":
       qr = qr_factor
    else:
       from scipy.linalg import qr
    for k in range(m):
        Q, R = qr(A)
        A = R @ Q
    return A.diagonal()
def A_gen(n):
   import numpy as np
   from scipy.linalg import qr
   A = np.random.rand(n,n)
   Q, R = qr(A)
   Lambda = np.diag(np.arange(1,n+1))
   A = Q @ (Lambda @ Q.T)
    return A
if __name__ == "__main__":
 # 2 test
   n = 50
   A = A_gen(n)
   for m in [10, 50, 75, 150]:
        print("number of iterations:\n m =", m, "\napproximate eigenvalues:\n",
             np.sort(np.round(eig(A, m, qr=""), 6)), "\n")
 # 3 compare to numpy.linalg
  print("--> compare to numpy.linalg:\n",np.sort(np.linalg.eigvals(A)))
```

Total Number of Points = 30 (T:24, P:6)