LABORATOR#6

EX#1 Scrieţi o funcție în Python care are ca date de intrare matricea $\mathbf{A} \in \mathscr{M}_n(\mathbb{R})$ şi vectorul $\mathbf{b} \in \mathbb{R}^n$ corespunzători sistemului de ecuații liniare

$$\mathbf{A} \mathbf{x} = \mathbf{b} \,, \tag{1}$$

iar ca date de ieşire matricea superior triunghulară $\mathbf{U} \in \mathcal{M}_n(\mathbb{R})$ şi vectorul $\widetilde{\mathbf{b}} \in \mathbb{R}^n$, obţinuţi prin metoda de eliminare Gauss cu pivotare totală (MEGPT) aplicată sistemului (1).

Aplicați MEGPT folosind funcția de mai sus, apoi rezolvați sistemul superior triunghiular echivalent rezultat, i.e.

$$\mathbf{U}\,\mathbf{x} = \widetilde{\mathbf{b}}\,,\tag{2}$$

folosind funcția de la EX#2, Laboratorul#4, pentru:

(a)
$$\mathbf{A} = \begin{bmatrix} 3 & 5 & 3 \\ 2 & 2 & 3 \\ -1 & -3 & 0 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$;

(b)
$$\mathbf{A} = \begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 1 + \epsilon \\ 2 \end{bmatrix}$, unde $\epsilon = 10^{-2k}$ cu $k \in \{1, 2, \dots, 10\}$;

(c)
$$\mathbf{A} = \begin{bmatrix} 10^{-12} & 1 & -1 \\ 40 & -60 & 0 \\ 3 & -4 & 5 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 17 + 10^{-12} \\ -1160 \\ -62 \end{bmatrix}$;

(d)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ -1 & -3 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$;

(e)
$$\mathbf{A} = \begin{bmatrix} 2 & 2C \\ 1 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 2C \\ 2 \end{bmatrix}$, unde $C = 10^{2k}$ cu $k \in \{1, 2, \dots, 10\}$.

Indicaţii: În prealabil, trebuie verificate următoarele condiţii:

- (i) A este o matrice pătratică;
- (ii) matricea \mathbf{A} și vectorul \mathbf{b} sunt compatibili;
- (iii) \mathbf{A} este o matrice inversabilă (folosiți funcția predefinită Python det pentru verificarea inversabilității matricei \mathbf{A}).
- **EX#2** Scrieţi o funcție în Python care are ca dată de intrare matricea $\mathbf{A} \in \mathscr{M}_n(\mathbb{R})$ şi ca dată de ieşire inversa matricei \mathbf{A} , obținută prin $metoda\ Gauss-Jordan$.

 $\underline{\mathit{Indicații:}}$ În prealabil, trebuie verificate următoarele condiții:

(i) A este o matrice pătratică;

- (ii) \mathbf{A} este o matrice inversabilă (folosiți funcția predefinită Python det pentru verificarea inversabilității matricei \mathbf{A}).
- **EX#3** Scrieți o funcție în Python care are ca dată de intrare matricea $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ și ca date de ieșire matricea inferior triunghulară $\mathbf{L} \in \mathcal{M}_n(\mathbb{R})$ și matricea superior triunghulară $\mathbf{U} \in \mathcal{M}_n(\mathbb{R})$ corespunzătoare factorizării LU fără pivotare a matricei \mathbf{A} .

Indicație: În prealabil, trebuie verificate condițiile necesare și suficiente pentru factorizarea LU fără pivotare a matricei A.