

# **CSE3506 Essentials of Data Analytics**

Name : Sparsh Raj Reg. No. : 19BPS1028 Lab Exercise: 8: K-medoids

**Objective:** To perform K medoid clustering on the given data.

## Question:

| Observations | Co-ordinates |
|--------------|--------------|
| 1            | (2, 10)      |
| 2            | (2, 5)       |
| 3            | (8, 4)       |
| 4            | (5, 8)       |
| 5            | (7, 5)       |
| 6            | (6, 4)       |
| 7            | (1, 2)       |
| 8            | (4, 9)       |

Consider the given dataset,

- Compute the Euclidean distance and Manhattan distance for all data points
- 2. Perform K medoids clustering using Euclidean distance and manhattan distance
  - a) Assume K=3, and for first iteration medoids of the clusters are (8, 4), (2, 5), (1, 2).
  - b) Perform five iterations, calculate the following in every iteration
  - List the data points corresponding to every cluster
  - Total cost
  - Calculate the average dis-similarity for the clusters



## Methods:

- 1. Divide x and the y values into two separate columns.
- 2. Use the given centers to calculate the distance of all the points from all the three centers.
- 3. Using the values of the distance calculated, categories the given points into different groups.
- 4. In each separate group, calculate the value of median for both x and y coordinate
- 5. Use these medians to calculate the distances and repeat all the steps once again for the next iteration.
- 6. Stop after 3 iterations.

### Iteration 1:

| A  | Α           | В  | С           | D               | E           | F              | G        | H        | 1       |  |
|----|-------------|----|-------------|-----------------|-------------|----------------|----------|----------|---------|--|
| 1  | ITERATION 1 |    |             |                 |             |                |          |          |         |  |
| 2  |             |    | E           | UCLIDEAN DISTAN | CE          | MANHATTAN DIST |          |          |         |  |
| 3  | X           | Y  | C1 (8,4)    | C2 (2,5)        | C3 (1,2)    | C1 (8,4)       | C2 (2,5) | C3 (1,2) | CLUSTER |  |
| 4  | 2           | 10 | 8.485281374 | 5               | 8.062257748 | 12             | 5        | 9        | C2      |  |
| 5  | 2           | 5  | 6.08276253  | 0               | 3.16227766  | 7              | 0        | 4        | C2      |  |
| 6  | 8           | 4  | 0           | 6.08276253      | 7.280109889 | 0              | 7        | 9        | C1      |  |
| 7  | 5           | 8  | 5           | 4.242640687     | 7.211102551 | 7              | 6        | 10       | C2      |  |
| 8  | 7           | 5  | 1.414213562 | 5               | 6.708203932 | 2              | 5        | 9        | C1      |  |
| 9  | 6           | 4  | 2           | 4.123105626     | 5.385164807 | 2              | 5        | 7        | C1      |  |
| 10 | 1           | 2  | 7.280109889 | 3.16227766      | 0           | 9              | 4        | 0        | C3      |  |
| 11 | 4           | 9  | 6.403124237 | 4.472135955     | 7.615773106 | 9              | 6        | 10       | C2      |  |
| 10 |             |    |             |                 |             |                |          |          |         |  |

#### Iteration2:

|    | ciationz. |             |             |                  |             |                |                    |          |         |
|----|-----------|-------------|-------------|------------------|-------------|----------------|--------------------|----------|---------|
| 12 |           |             |             |                  |             |                |                    |          |         |
| 13 |           |             |             |                  | ITERATION 2 |                |                    |          |         |
| 14 | FOR C1    |             | FOR C2      |                  | FOR C3      |                |                    |          |         |
| 15 | 7         | 4.333333333 | 3.25        | 8                | 1           | 2              |                    |          |         |
| 16 |           |             | E           | UCLIDEAN DISTANG | Œ           | MANHATTAN DIST | MANHATTAN DISTANCE |          |         |
| 17 | x         | Y           | C1 (7,4.33) | C2 (3.25,8)      | C3 (1,2)    | C1 (7,4.33)    | C2 (3.25,8)        | C3 (1,2) | CLUSTER |
| 18 | 2         | 10          | 7.557439315 | 2.358495283      | 8.062257748 | 10.667         | 3.25               | 9        | C2      |
| 19 | 2         | 5           | 5.044292716 | 3.25             | 3.16227766  | 5.667          | 4.25               | 4        | C3      |
| 20 | 8         | 4           | 1.053987192 | 6.209871174      | 7.280109889 | 1.333          | 8.75               | 9        | C1      |
| 21 | 5         | 8           | 4.17694733  | 1.75             | 7.211102551 | 5.667          | 1.75               | 10       | C2      |
| 22 | 7         | 5           | 0.667       | 4.802343178      | 6.708203932 | 0.667          | 6.75               | 9        | C1      |
| 23 | 6         | 4           | 1.053987192 | 4.85412196       | 5.385164807 | 1.333          | 6.75               | 7        | C1      |
| 24 | 1         | 2           | 6.437615164 | 6.408002809      | 0           | 8.333          | 8.25               | 0        | C3      |
| 25 | 4         | 9           | 5.548052721 | 1.25             | 7.615773106 | 7.667          | 1.75               | 10       | C2      |
| 26 |           |             |             |                  |             |                |                    |          |         |



## Iteration 3:

| 28 | 8 ITERATION 3 |             |             |                  |              |                |             |              |         |
|----|---------------|-------------|-------------|------------------|--------------|----------------|-------------|--------------|---------|
| 29 | C1 IS SAME    | FOF         | R C2        | FOF              | R C3         |                |             |              |         |
| 30 |               | 3.666666667 | 9           | 1.5              | 3.5          |                |             |              |         |
| 31 |               |             | E           | UCLIDEAN DISTANG | Œ            | MANHATTAN DIST |             |              |         |
| 32 | x             | Y           | C1 (7,4.33) | C2 (3.66,9)      | C3 (1.5,3.5) | C1 (7,4.33)    | C2 (3.66,9) | C3 (1.5,3.5) | CLUSTER |
| 33 | 2             | 10          | 7.557439315 | 1.94393647       | 6.519202405  | 10.667         | 2.667       | 5.5          | C2      |
| 34 | 2             | 5           | 5.044292716 | 4.333461549      | 1.58113883   | 5.667          | 5.667       | 0.5          | C3      |
| 35 | 8             | 4           | 1.053987192 | 6.616259442      | 6.519202405  | 1.333          | 9.333       | 7.5          | C1      |
| 36 | 5             | 8           | 4.17694733  | 1.666400012      | 5.700877125  | 5.667          | 2.333       | 6.5          | C2      |
| 37 | 7             | 5           | 0.667       | 5.206619729      | 5.700877125  | 0.667          | 7.333       | 5.5          | C1      |
| 38 | 6             | 4           | 1.053987192 | 5.517507499      | 4.527692569  | 1.333          | 7.333       | 5.5          | C1      |
| 39 | 1             | 2           | 6.437615164 | 7.49085369       | 1.58113883   | 8.333          | 9.667       | 3.5          | C3      |
| 40 | 4             | 9           | 5.548052721 | 0.333            | 6.041522987  | 7.667          | 0.333       | 6.5          | C2      |
| 41 |               |             |             |                  |              |                |             |              |         |

The ML model matured after the second iteration and gave similar results in 3<sup>rd</sup> iteration. There was only one point in the third cluster while the other clusters were perfectly classified.

## Conclusion

In this experiment we were successfully able to perform K-Medoid clustering using spreadsheets. The results produced were very accurate and reliable. In addition we were able to gather key insights of the given data.