Applied Science (chemistry)

22211 /EE /AO

METALS, ALLOYS AND INSULATORS

Teaching Hours :08 Marks :09

SYLLABUS

- 6.1 Properties of Metals like Copper ,Aluminium,Tungsten,Platinum,Nickel
- 6.2 Thermocouple alloy: Composition and characteristics of nickel alloy, platinum/rhodium, tungsten rhenium, chromel-gold/iron
- 6.3Electrical insulators: Classification. Solic ceramics, mica, asbestos, urea formaldehyde resin and glass. Liquid-silicone fluid, Gaseous-inert gases, hydrogen and nitrogen gas
- 6.4 Types of rubber: Natural and synthetic, processing of natural rubber. Synthetic rubber: Properties and applications of Buna-N, Thiokol, Neoprene
- 6.5 Process industry unit operations: Evaporation, condensation, Distillation, Energy balance and mass balance for above processes.
- 6.6 Nanomaterials: Applications of Fullerene, Graphene

Mechanical Properties of Metal

Hardness: To resist abrasion or penetration. **Ductility**: Ability to be drawn into thin wires

Malleability: Ability to be beaten into thin sheets.

Tensile strength: Ability to carry load without breaking.

Metals have a high Melting point (M.P) & Boiling paint (B. P)

METAL	MELTING POINT	BOILING POINT	SPECIFIC GRAVITY
Copper [Cu]	1089	2350 °C	8.93
Aluminium [Al]	658 °C	2470 °C	2.7
Tungsten [W]	3370 °C	5700 °C	19.3
Nickel [Ni]	1453 °C	2730 °C	8.8

- ❖ Aluminum is used in power cables due to its lightWeight (sp. gravity 2.7) and good electrical conductance.
- Aluminium forms a thin protective film of Aluminium Oxide, thus is protected from corrosion.
- ❖ Copper is used for cable wire as it has high electrical conductivity.
- ❖ Tungsten is the most ductile metal.

THERMOCOUPLE ALLOYS

Thermocouple	Туре
Nickel-alloy thermocouple	T, J, M, K
Platinum -Rhodium alloy thermocouple (Pt/Rh)	B, R, S
Tungsten - Rhenium Alloy thermocouple (W/Re)	C , D, G
-	Chromel Alloys composition is Nickel (90 %) + Chromium (10%)

Properties of Thermocouple

Thermocouple Alloy	Temperature Range	Sensitivity	Remark
Ni- Alloy	-200 °C to 350°C	40 to 50 μV/°C	
Pt/Rh Alloy	Around 1600 °C	10µV/°C The lowest Sensitivity.	This alloy is used in Oxidising or Inert Atmosphere
W/Re Alloy	0°C to 2315°C The temp can also be extended upto 2760°C		This alloy is used in H_2 or Inert Atm. But Cannot be used in Oxidising or Inert Atmosphere
Chromel Gold -Iron	It is used for Cryogenic Uses below 0 °C	15μV/K	

Composition of Alloy

Nickel Alloy			
TYPE	COMPOSITION	POSITIVE WIRE	NEGATIVE WIRE
T	Copper Constantan	Copper -100%	Copper -55% +Nickel-45%
J	Iron Constantan	Iron - 100%	Copper -55% +Nickel-45%
M	Molybdenum Constantan	Ni -82% + Mo -18%	Ni - 99.2% + Cobalt - 0.8%
K	Chromel Alumel	Chromel -100%	Ni - 95% + Mn - 2% + Al -2%+Si - 1%

Platinum Rhodium Alloy		
TYPE POSITIVE WIRE NEGATIVE WIRE		NEGATIVE WIRE
В	Pt - 70% + Rh - 30 %	Pt - 94 % + Rh - 6 %
R	Pt - 87 % + Rh - 13 %	Pt - 100
S	Pt - 90% + Rh - 10 %	Pt -100%

Tungsten Rhenium Alloy			
TYPE POSITIVE WIRE NEGATIVE WIRE			
C	W - 95% + Re - 5%	W - 74% + Re - 26%	
D	W - 97% + Re - 3%	W - 75% + Re - 25%	
G	W - 100	W - 74 % + Re - 26 %	

Chromel Gold - Iron Alloy		
ТҮРЕ	POSITIVE WIRE	NEGATIVE WIRE
Chromel Gold - Iron	Chromel -100%	Gold-0.03-0.15 % in Iron

ELECTRICAL INSULATORS

Insulators are the substance which retards the flow of Heat [Thermal Insulators] or Electricity [Electrical Insulators].

When the main function of Insulating material is storage of charge, the material is called **Dielectric.**

Classification of Insulating materials

- 1. Solid Insulating materials: Ex Polymers, Glass, Mica, Ceramics etc.
- 2. Liquid Insulating materials: Ex Mineral oil, Silicone fluid
- 3. Gaseous Insulating materials: Ex-Hydrogen, Carbon dioxide, Inert gares

Inert gases (Gaseous Insulating materials) are also used as dielectrics due to its excellent dielectric properties.

Silicon fluid (Liquid Insulating materials)

- ❖ Working temperature range is -90°C to 200°C
- ❖ It is used as mechanical fluid, coolant & lubricants.
- Due to high gloss & water repellent property
- It is used in automobile paint .
- ❖ Due to dielectric property it is used as coolant. in radio pulse and air-craft transformers

Solid Insulating materials

Ceramics

- They are made of clay, sand and feldspar.
- Ceramics are used in chambar in high voltage Frequency applications.
- Ceramics are inert to chemicals
- Ceramics are processed and used at high temperatures.

Mica

- Mica is a mineral Silicate of potash and Alumina.
- Mica is directly used without any processing
- ❖ Mica is thermally stable, so is used in cloth Irons, heaters toasten etc.

Asbestos

- ❖ Asbestos is a mineral silicate with varying amounts of calcium and Iron.
- ❖ Asbestos has low thermal Conductivity, thus used in boilers.
- ❖ Asbestos sheets are light in weight, durable, fireproof, Weather proof, thus are used in roof-covering of houses

Urea formaldehyde

- ❖ It is rigid and transparent.
- It is used in plastics and also used as Adhesives,
- It is used in bonding wooden surfaces.

Glass

- Glass is a mixture of silicates or phosphates, Borates and other materials.
- Glass is amorphous, transparent, brittle, material.
- Glass is a super cooled liquid.
- ❖ Glass is used in fluorescent tubes, filament support, X-ray tube etc.

RUBBER

- * Rubber Rubber is an elastomer obtained Naturally from Rubber trees and also prepared Synthetically.
- * Rubber has the property of elasticity.

Natural Rubber

❖ Natural Rubber has Isoprene unit arranged in a spiral structure thus, providing elasticity.

$$CH_3$$
 $H_2C=C-C=CH_2$

- ❖ Isoprene unit:
- ❖ Natural Rubber is obtained from Latex obtained from Rubber trees.
- ❖ Latex contains 30.50% of Rubber
- latex is coagulated by formic and or Acetic acid.
- Drawbacks of Natural rubber: Natural Rubber is weak, it absorbs water, it easily deforms and gets oxidised in air.

Vulcanisation of Rubber.

- ❖ Natural Rubber / Crude rubber is vulcanised by heating it with sulphur at high temperature.
- ❖ Vulcanised rubber is also called "Ebonite Rubber ".
- ❖ Vulcanised rubber is mainly used for making tyres.

Synthetic Rubber

Rubber		Name	Raw Material
Buna - N	GR -A	Nitrile Rubber	1,3Butadiene + Acrylonitrile
Thiokol	GR-P	Polysulphide Rubber	1,2 Dichloroethane + Sodium Polysulphide
Neoprene	GR-M	Polychloroprene	Polymerisation of Chloroprene

Buna -N is less resistant to heat, light, Oil, acids, but resistant to alkalis due to its cyano group.

Thiokol is resistant to organic solvents, ozone

Neoprene properties are enhanced by ZnO or MgO and are used for making Gloves and coated fabrics.

UNIT OPERATION

Unit Operations are the process carried out at industrial level.

Evaporation - liquid changes into vapours. E.x.Drying of water, wet surface or wet cloths.

Evaporation is an operation carried in industry to concentrate weak (dilute) solutions by evaporating/ Vapourising the solvent.

Condensation - Vapours changes into liquid.Ex, dew drops on leaves in winter ,water droplets on the Outer wall of cold bottles etc.

Condensation occurs when the vapour is cooled to its saturation level.

Distillation process used to separate Constituents of a liquid mixture. Ex.. Separating a mixture of water and alcohol.

Fractional Distillation is used to separate constituents of petroleum.

Sublimation - Solid changes directly into vapour

Freezing - liquid changes into solid

Conservation of Mass & energy

Mass & Energy of the universe remains constant.

Types of Systems.

- 1. Open systems both mass & energy exchanges with the universe.
- 2. Closed systems måss does not change but energy is exchanged with the universe.
- 3. Isolated systems No change in mass or energy is exchanged with the universe.

Systems - The part under observation.

Universe - The part other than system

Boundary - The line that separates the system from the surrounding.

NANOMATERIALS

- 1 Nanometer = 1×10^{-9} meter
- Fullerene (C60) is an allotrope of carbon.
- Fullerene has Similar structure to graphite.
- C60 is also called bucky ball (football shape).
- Carbon nanotubes are material having high electrical Conductivity, strength and are

chemically inactive.

- Graphene is a crystalline, single layer, Hexagonal lattice of carbon atoms.
- Graphene is strongest material (stronger than diamond)
- Graphene is also a flexible, stable, good conductor.