Customer Churn

Mentor: Sharath Srivatsa

Agenda **Business Problem** 01 Problem Understanding Objective Brief overview of Data **Modelling Approach** 02 Modeling Process Flow · Comparison Table Best Model **Insights** 03 · Insights from Analysis Recommendations 04 · Recommendations for Business

Business Problem Understanding

Objective

- → Form a machine learning model with the smallest false negative (Recall).
- Predict customers who have the potential to churn with the best prediction model.
- → Providing insights & recommendations to identify factors that influence the churn rate

Problem Statement

- DTH provider facing retention challenges amidst market competition
- → Need of segmented marketing strategies

Goal

- → Enhance customer retention
- → Improve market competitiveness
- → Explore revenue growth opportunities

Overview of Data

Modeling Approach

Fixed Data Feature Data Cleaning Transforming Encoding Issues · Treated Missing values* · Corrected data types · One Hot Encoder for · 80: 20 split on · No Duplicates · Fixed Irrelevant Data categorical Train: Test · Treated Outlier* · Standard Scaler for Numerical data Regularize & **Evaluate & Build Different Ensemble Best Model** Compare **Models** (Hypertune) Models · Decision Tree · Decision Tree · Recall as Evaluation metric · SVM was found to be best · LDA · Random Forest · Other metrics precision, Fl model with Recall 95.20% · Random Forest · Linear Discriminant Analysis score, and AUC-ROC in · CatBoost as Balanced · Bagging (LDA) combination with recall Model with f1-score 95.87% · Boosting: Adaboost, XGB, · k-Nearest Neighbours(KNN) CatBoost · Naive Bayes · Neural Network (ANN) · Neural Network (ANN) ·SVM ·SVM

^{*} Missing Data: Categorical treated using Mode and Numerical using KNN imputer

^{*} Outliers: Lower limit capped at 1st and upper limit at 99th quartile

^{*} Refer Appendix for more details

Modeling Approach: Model Comparison Table (Test)

Model	Majority Class(Not Churn)		Minority Class(Churn)				Overfit	
Model	Precision	Recall	f1-score	Precision	Recall	f1-score	accuracy	Overfit
SVM with Tuning	98.97%	97.90%	98.43%	90.63%	95.20%	92.86%	97.42%	No
CatBoost with Tuning	98.67%	99.62%	99.14%	98.15%	93.69%	95.87%	98.58%	No
Random Forest	97.61%	99.14%	98.37%	95.64%	88.64%	92.01%	97.29%	Slightly Overfit
KNN	97.62%	99.25%	98.42%	96.16%	88.64%	92.25%	97.38%	Slightly Overfit
XGBoost with Tuning	97.36%	99.19%	98.27%	95.84%	87.37%	91.41%	97.11%	Slightly Overfit
Adaboost	97.21%	99.62%	98.40%	98.00%	86.62%	91.96%	97.34%	Slightly Overfit
Tuned Random Forest	96.41%	89.60%	92.88%	63.38%	84.34%	72.37%	88.68%	Slightly Overfit
Decision Tree	96.50%	96.55%	96.53%	83.80%	83.59%	83.69%	94.27%	Yes
Bagging Classifier	96.47%	98.71%	97.58%	93.20%	83.08%	87.85%	95.96%	Yes
Regularized Decision Tree	95.44%	96.93%	96.18%	84.47%	78.28%	81.26%	93.65%	Yes
Neural Network	94.63%	98.76%	96.65%	92.70%	73.74%	82.14%	94.36%	Yes
LDA	87.22%	97.84%	92.23%	76.47%	32.83%	45.94%	86.41%	Yes
Tuned LDA	87.22%	97.84%	92.23%	76.47%	32.83%	45.94%	86.41%	Yes
Naive bayes	85.26%	97.84%	91.12%	67.21%	20.71%	31.66%	84.28%	Yes

Best Models

Improved recall but not able to generalize well on new data as compared to train

Poor Recal

^{*} Train results in Appendix

Modeling Approach: Best Model

Features

- Tenure in months
- If no Complaint last year- 15% Churn rate | Median Days since last connect for churn: 4, Non Churn- 2
- Churn rate 23% for ewallet, 25% for COD, UPI, 17% . DC/CC $^{\sim}$ 15%

- City Tier 1 & 2 has Churn rate as 15% and 20%, however, city 2 has very low subs count.
- Other Account segments has less Churn rate
- Mobile login churn 16%, Computer 20%

Recommendations

In order to Increase Customers Loyalty and Tenure

Create Customer Experience

- → Deep dive in customer complaints to identify gaps.
- promptly address customer complaints
- → Ask for customer feedback at regular intervals

Strategic Retention Approach

- → Offering exclusive upgrades to higher account segment
- → Increases loyalty and reduces reliance on cashbacks
- → Premium services to Higher Account Segments. Pay attention to regular plus customers

Introduce Referral Drive

- → Helps acquire **new customers**
- → Against that offer Existing users exclusive benefits of cashback or upgrade to next tier

Other Key points

- Encourage customers to set up payments either through debit card or credit card
- → Introduce curated contents for Tier 2
 & 3 cities to increase visibility.
- → Promote app/mobile based logins
- → Competitive benchmarking

Appendix

Appendix | Business Problem (Detailed)

PROBLEM STATEMENT:

The problem at hand is developing a churn prediction model for a DTH service provider. The primary challenge faced by the company is retaining existing customers in a highly competitive market. Account churn, where one account can encompass multiple customers, poses a significant threat, as the loss of a single account can result in the attrition of several customers. The problem is to create a predictive model to identify potential churners and design segmented offers to retain them.

WHY IS IT NEEDED?

The need for this study or project arises from the company's requirement to address the critical issue of customer churn. Retaining customers is pivotal, and the company aims to achieve this by creating a model that can predict churn and provide tailored offers to potential churners. In this context, the project is essential for enhancing customer retention, staying competitive in the market, exploring revenue growth opportunities, and elevating the overall customer experience.

UNDERSTANDING BUSINESS OPPORTUNITY

The business opportunity lies in devising a sophisticated churn prediction model and formulating distinct campaign recommendations to combat churn effectively. The potential benefits include strengthening customer loyalty, improving market competitiveness, unlocking revenue growth, and delivering an exceptional customer experience. The project represents a unique business opportunity to align recommendations with strategic objectives, ensuring they don't inadvertently lead to losses for the company. It underscores the importance of creating offers that are both enticing to customers and financially viable for the business, presenting a balance between customer satisfaction and revenue assurance.

Appendix | Data Description

Variable	Description
AccountID	Account unique identifier
Churn	Account churn flag (Target)
Tenure	Tenure of account
City_Tier	Tier of the primary customer's city
CC_Contacted_L1	How many times all the customers of the account have contacted customer care in the last 12 months
Payment	Preferred payment mode of the customers in the account
Gender	Gender of the primary customer of the account
Service_Score	Satisfaction score given by customers of the account on the service provided by the company
Account_user_count	Number of customers tagged with this account
account_segment	Account segmentation based on spending
CC_Agent_Score	Satisfaction score given by customers of the account on customer care service provided by the company
Marital_Status	Marital status of the primary customer of the account
rev_per_month	Monthly average revenue generated by the account in the last 12 months
Complain_I12m	Any complaints raised by the account in the last 12 months
rev_growth_yoy	Revenue growth percentage of the account (last 12 months vs. last 24 to 13 months)
coupon_used_l12m	How many times customers have used coupons to make payments in the last 12 months
Day_Since_CC_connect	Number of days since no customers in the account have contacted customer care
cashback_l12m	Monthly average cashback generated by the account in the last 12 months
Login_device	Preferred login device

Appendix | Data Types

Original

Data	columns (total 19 columns	s):	
#	Column	Non-Null Count	Dtype
0	AccountID	11260 non-null	int64
1	Churn	11260 non-null	int64
2	Tenure	11158 non-null	object
3	City_Tier	11148 non-null	float64
4	CC_Contacted_LY	11158 non-null	float64
5	Payment	11151 non-null	object
6	Gender	11152 non-null	object
7	Service_Score	11162 non-null	float64
8	Account_user_count	11148 non-null	object
9	account_segment	11163 non-null	object
10	CC_Agent_Score	11144 non-null	float64
11	Marital_Status	11048 non-null	object
12	rev_per_month	11158 non-null	object
13	Complain_ly	10903 non-null	float64
14	rev_growth_yoy	11260 non-null	object
15	coupon_used_for_payment	11260 non-null	object
16	Day_Since_CC_connect	10903 non-null	object
17	cashback	10789 non-null	object
18	Login_device	11039 non-null	object
dtype	es: float64(5), int64(2),	object(12)	April 2

Corrected

#	Column	Non-Null Count	Dtype
0	Tenure	11260 non-null	float64
1	CC_Contacted_LY	11260 non-null	float64
2	rev_per_month	11260 non-null	float64
3	rev_growth_yoy	11260 non-null	float64
4	coupon_used_for_payment	11260 non-null	float64
5	Day_Since_CC_connect	11260 non-null	float64
6	cashback	11260 non-null	float64
7	City_Tier	11260 non-null	object
8	Payment	11260 non-null	object
9	Gender	11260 non-null	object
10	Service_Score	11260 non-null	object
11	Account_user_count	11260 non-null	object
12	account_segment	11260 non-null	object
13	CC_Agent_Score	11260 non-null	object
14	Marital_Status	11260 non-null	object
15	Complain_ly	11260 non-null	object
16	Login_device	11260 non-null	object
17	Churn	11260 non-null	int64
dtyp	es: float64(7), int64(1),	object(10)	

Appendix: Data Cleaning

```
- Tenure (Unexpected values like '#', high numerical values)
- Account_user_count (Unexpected value '@' alongside numerical counts)
- Gender (Inconsistent formatting with 'F' and 'M' alongside 'Female' and 'Male')
- rev_per_month (Unexpected values like ' + ', high numerical values)
- rev_growth_yoy (Unexpected values like ' $ ' mixed with numerical values)
- coupon_used_for_payment (Unexpected values like '#', '$', and '*' mixed with numerical values)
- Day_Since_CC_connect (Unexpected values like '$' mixed with numerical values)
- Login_device (Unexpected value '&&&&' alongside 'Mobile' and 'Computer')
```


All unexpected values were **replaced by "NAN"** (missing values) & later treated using missing value Treatment technique.

Appendix | Missing Values & Outliers

Column	Missing Count	Missing %
Rev_per_month	791	7.02%
Login_device	760	6.75%
Cashback	473	4.20%
Account_user_count	444	3.94%
Day_Since_CC_connect	358	3.18%
Complain_ly	357	3.17%
Tenure	218	1.94%
Marital_Status	212	1.88%
CC_Agent_Score	116	1.03%
City_Tier	112	0.99%
Payment	109	0.97%
Gender	108	0.96%
CC_Contacted_LY	102	0.91%
Service_Score	98	0.87%
Account_segment	97	0.86%
Rev_growth_yoy	3	0.03%
Coupon_used_for_payment	3	0.03%

Column	Outliers
CC_Contacted_LY	80
rev_per_month	113
rev_growth_yoy	52
coupon_used_for_payment	98
Day_Since_CC_connect	94
cashback	226

^{*} Missing Data : Categorical treated using Mode and Numerical using KNN imputer * Outliers : Lower limit capped at 1st and upper limit at 99th quartile

Appendix | EDA Insights

City_Tier 3 have a higher churn rate

Churn

11%

Computer login has higher churn rate

1.0

28%

Not Churn

Churn

32%

Appendix | EDA Insights

1. Churn Analysis:

→ The class imbalance, with only 16.8% churned customers, indicates the need to focus on retaining existing customers to maintain business stability.

2. Demographics and Churn:

- → Customers from City_Tier 3 have a higher churn rate, suggesting that tailored offerings or incentives may be needed to retain these customers.
- → Churn rates differ based on payment methods and gender. Efforts should be made to engage male customers more effectively.

3. Service and Customer Care:

- → The "Service_Score" analysis shows that higher scores don't necessarily lead to lower churn. Service quality may need improvement.
- → Customers who complained in the last year had a significantly higher churn rate, indicating a need to address their issues promptly.

4. Engagement and Loyalty:

- → Increasing the number of account users leads to a higher churn rate. Strategies for retaining multi-user accounts should be explored.
- → Encouraging customers to use mobile devices for logins may reduce churn, as mobile users exhibit a lower attrition rate

Appendix | Modeling Approach(Detailed)

Step 1: Segregate dependent variable "Churn" from the independent variables.

We assigned all predictors to X & response on y variable before split.

Step 2: Split the data into train & Test set

We split the data with 20% of the records going to the test set & 80% to train, random state of 42 was selected.

Shape of Train dataset: (9008, 17) Shape of Train dataset: (2252, 17)

Step 3: Model(s) Building

Model Selection : In total 14 models were built and their performance was evaluated to find the best fitting model. We built the following models on the dataset & evaluate the performance:

- 1. Decision Tree
- 2. Random Forest
- 3. Linear Discriminant Analysis (LDA)
- 4. k-Nearest Neighbours(KNN)
- 5. Naive Bayes

Of these models, the models listed below were ensembled and hyperparameter tuned as well to obtain the optimum model.

- 1. Decision Tree
- 2. Linear Discriminant Analysis (LDA)
- 3. Random Forest
- 4. Bagging (base- Decision Tree)
- 5. Adaboost (base- Decision Tree)
- 6. Extreme Gradient Boost (XGB)
- 7. Categorical Boost(CatBoost)
- 8. Neural Network (ANN)
- 9. SVM

Appendix | Modeling Approach(Detailed)

Step 4: Selection of appropriate Evaluation Matrix

In a churn prediction scenarios wherein the dataset is also imbalanced with 17% Churn cases, the primary goal is to identify potential churners (Churn cases).

Refer to Evaluation Matrix in slide 21

Step 4: Model Tuning

A combination of ensemble methods and hyperparameter tuning can lead to highly accurate and robust machine learning models.

Ensemble Methods:

Ensemble methods involve combining multiple machine learning models to improve overall predictive performance. The key idea is to leverage the strengths of different models and overcome their individual weaknesses

Hyperparameter Tuning:

Grid Search, also known as parameter sweeping, is one of the most basic and traditional methods of hyperparametric optimization. Hyperparameters are parameters that are not learned from the data but need to be set before training a machine learning model. Hyperparameter tuning is the process of finding the best combination of hyperparameters to optimize a model's performance.

Data Imbalance

While the dataset is imbalanced we have not oversampled the minority class to avoid synthetic data, since the models were able to perform fairly good without need to introducing oversampled data. However, this is also one way to tune the model for better results when data is imbalanced.

Step 5: Model(s) Comparison & Optimum Model.

Appendix | Model Comparison (Train)

Madal	Majority Class(Not Churn)			Minority Class(Churn)			
Model	Precision	Recall	f1-score	Precision	Recall	f1-score	accuracy
Decision Tree	100%	100%	100%	100%	100%	100%	100%
Random Forest	100%	100%	100%	100%	100%	100%	100%
Adaboost	100%	100%	100%	100%	100%	100%	100%
XGBoost with Tuning	100%	100%	100%	100%	100%	100%	100%
Catboost	100%	100%	100%	100%	100%	100%	100%
Support Vector	99.96%	98.92%	99.44%	94.87%	99.80%	97.27%	99.07%
KNN	99.50%	99.73%	99.61%	98.65%	97.47%	98.05%	99.36%
Bagging Classifier	99.26%	99.92%	99.59%	99.59%	96.27%	97.90%	99.31%
Regularized Decision Tree	98.85%	99.52%	99.18%	97.52%	94.20%	95.83%	98.63%
Random Forest with Tuning	97.45%	90.21%	93.69%	64.29%	88.20%	74.37%	89.88%
Neural Network	96.73%	99.80%	98.24%	98.81%	83.13%	90.30%	97.02%
Linear Discriminant Analysis	87.56%	97.82%	92.41%	73.59%	30.47%	43.09%	86.60%
Tuned LDA	87.56%	97.82%	92.41%	73.59%	30.47%	43.09%	86.60%
Naive Bayes	85.80%	97.54%	91.29%	60.89%	19.20%	29.19%	84.49%

Appendix | Model Comparison ROC - AUC Curve

Appendix | Performance Evaluation Metrics

Key

- → Accuracy: This term tells us how many right classifications were made out of all the classifications.
- → **Precision**: Out of all that were marked as positive, how many are actually truly positive.
- → Recall or Sensitivity: Out of all the actual real positive cases, how many were identified as positive.
- → F1-Score: F1 score is a weighted average of Precision and Recall, which means there is equal importance given to FP and FN

→ Area Under Curve (AUC) and ROC Curve: A ROC Curve is drawn by plotting TPR or True Positive Rate or Recall or Sensitivity (which we saw above) in the y-axis against FPR or False Positive Rate in the x-axis. FPR = 1- Specificity
TPR = TP/(TP + FN)
FPR = 1 - TN/(TN+FP) = FP/(TN + FP)

	Predicted Positive	Predicted Negative	
Actual Positive	TP True Positive	FN False Negative	Sensitivity $\frac{TP}{(TP+FN)}$
Actual Negative	FP False Positive	TN True Negative	Specificity $\frac{TN}{(TN+FP)}$
metric for ur model	$\frac{TP}{(TP + FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

