Section 2

- 1. Consider two vectors $\mathbf{a} = [1, 2]$ and $\mathbf{b} = [2, p]$ where p is an unknown variable.
- i) What value of p makes the vector **a** + **b** perpendicular to the vector **c** = [-1, 1]?
- a) 0
- b) 1
- c) 2
- d) 3
- e) None of the above.
- ii) If **a** and **b** represent the position vectors of points A and B respectively, what is the distance between A and B in terms of p?
- a) $\overline{5+p^2-5p}$
- b) $4 + p^2 5p$
- c) $\overline{5+p^2-4p}$
- d) $4 + 2p^2 4p$
- e) $3 + 2p^2 2p$
- iii) What is the value of p that minimizes this distance?
- a) 0
- b) 1
- c) 2
- d) 3
- e) None of the above

- 2. A ball of mass M [kg] is launched from a flat ground at speed V_0 [m/s] at an angle θ from the horizontal ground. Air resistance is negligible.
- i) What is the total momentum of the ball (in Ns)?
- a) MV₀
- b) MV_0^2
- c) $\frac{1}{2}$ MV₀²
- d) $\frac{1}{2}$ MV₀
- e) None of the above
- ii) How long does the ball stay in the air for before first hitting the ground (in seconds)?
- a) $\frac{v_0}{a} \sin \pi$
- b) $\frac{2V_0}{g}\cos \pi$
- c) $\frac{2V_0}{Mg}$ sin "
- d) $\frac{V_0}{2g}$
- e) $\frac{2V_0}{g} \sin \pi$
- iii) How far does the ball travel along the horizontal ground before first hitting the ground (in meters)?
- a) $\frac{{V_0}^2}{g}$ cos 2,
- b) $\frac{V_0}{g} \sin \pi$
- c) $\frac{v_0}{g} \sin 2\theta$
- d) $\frac{{v_0}^2}{g} \sin 2$
- e) $\frac{{v_0}^2}{g}$

3. The circle in the diagram below has radius 1m, AE is a diameter, OC is a radius, and the line BD is a tangent to the circle which intersects point A.

- i) If \angle CAD is 35°, what is \angle COA?
- a) 60°
- b) 70°
- c) 35°
- d) 45°
- e) 55°
- ii) What is ∠OCE?
- a) 30°
- b) 40°
- c) 35°
- d) 55°
- e) 45°
- iii) What is the area of the triangle OAC?
- a) 0.470
- b) 0.420
- c) 0.500
- d) 0.520
- e) 0.570

4. The diagram below shows forces a block of mass m [kg] on a rough surface being pulled along at constant speed by a rope attached to the centre of mass which makes an angle θ with the ground. The coefficient of friction is μ .

- i) What is the value of the normal reaction force N (in Newtons)?
- a) mg + T sin "
- b) mg T sin "
- c) g + T sin β
- d) mg + T cos
- e) g T cos "
- ii) What is the value of the tension in the rope T (in Newtons)?
- a) $\frac{\mu mg}{\cos \theta + \sin \theta}$
- d) $\frac{\mu mg}{\cos\theta \mu \sin\pi}$
- c) $\frac{mg}{\cos g \sin \theta}$
- d) $\frac{\mu mg}{\cos x^2 + \mu \sin x}$
- e) None of the above
- iii) What angle θ minimizes the tension required in the rope to pull the block along the floor?
- a) tan μ
- b) arctan μ
- c) sin μ
- d) $arcsin \mu$
- e) None of the above

- 5. Consider the equations $y = x^2 + 1$ and y = cx + d, where c and d are unknown constants.
- i) If c = 1, and d = 3, which of the following pairs of x and y is a solution to both equations simultaneously?
- a) x = 2, y = 1
- b) x = -1, y = 0
- c) x = 2, y = 5
- d) x = 1, y = 4
- e) x = -1, y = -2
- ii) Which of the following values of c and d will give no real solution to the two equations?
- a) $c = \frac{3}{2}$, d = 2
- b) $c = \frac{1}{2}$, d = 1
- c) c = 3, d = -1
- d) c = 4, d = -2
- e) $c = \frac{3}{2}$, d = 0
- iii) Which of the following values of c and d will give exactly 1 real solution to the two equations?
- (HINT: Consider the graphs of the two equations).
- a) c = 0, d = 1
- b) c = 1, d = 2
- c) c = 0, d = 2
- d) c = 2, d = 0
- e) None of the above

6. Consider the two D.C. circuits (A and B) in the diagram below. Each consists of a voltage source (which provides a fixed potential difference, V_0 , regardless of the load) and some resistors.

i) On circuit A, a probe measures the potential difference, V_2 , across the resistor labelled R_2 . What is the value of this potential difference?

a)
$$V_0 \frac{R_2}{R_1 + R_2}$$

b)
$$V_0 \frac{R_1 + R_2 + R_3}{R_1}$$

c)
$$V_0 \frac{R_1}{R_1 + R_2 + R_3}$$

d)
$$V_0 \frac{R_1}{R_2}$$

e) None of the above

ii) On circuit B, a probe measures the current, I_2 , through the resistor labelled R_2 . What is the value of this current in terms of the total current flowing through both resistors, I?

a)
$$I \frac{R_2}{R_1 + R_2}$$

b)
$$I \frac{R_1}{R_1 + R_2}$$

c)
$$I \frac{R_2}{R_1 R_2}$$

d)
$$I \frac{R_2}{R_1}$$

e) None of the above

7. A mass M [kg] is attached via a light, inelastic rod of length L [m] to a frictionless hinge. It is initially held at rest by a moment at the hinge and then this is released so the mass swings down making an angle θ with the horizontal at a given time (as shown in the diagram).

- i) What moment applied at the hinge is required to hold the mass at rest? (in Nm)
- a) Mg
- b) M
- c) MgL
- d) ML
- e) gL
- ii) What speed is the mass travelling at when the rod makes an angle θ with the horizontal? (in m/s)
- a) $2gL\sin_{\pi}$
- b) $\sqrt{gL}\cos \pi$
- c) $2gL \sin \pi$
- d) $gL(1 + \sin_{\pi})$
- e) $\overline{2gL}\cos\theta$