Spis treści

1	$W_{ m Step}$	2
	.1 "Prawo" Kompresji bezstratnej	2
2	Геоria informacji	3
	2.1 Miara informacji	3
	2.2 Entropia	3
	2.2.1 Entropia źródła	3
	2.2.2 Entropia Pierwszego Rzędu	3
	2.3 Entropia warunkowa	3
	2.4 Wspólna informacja wzajemna	3
	2.5 Entropia różniczkowa	4
3	Kodowanie	4
	3.1 Modelowanie danych	4
	3.2 Średnia długość kodu	4
	3.3 Jednoznaczna dekodowalność	4
	3.3.1 Nierówność Krafta	4
	3.3.2 Kod prefiksowy	4
	3.4 Kod natychmiastowy	5
	.4 Rod natychinastowy	9
4	Kompresja bezstratna	5
•	1.1 Statyczny Kod Huffmana	5
	1.2 Kodowanie Shannon-Fano	5
	4.3 Kodowanie Tunstalla	5
	4.4 Kodowanie Golomba	5 c
	1.5 Dynamiczne kodowanie Huffmana	6
	1.6 Problem kodowania uniwersalnego	6
	4.6.1 Kodowanie Eliasa	6
	4.6.2 Kodowanie Fibonacciego	6
	R.7 Kodowanie arytmetyczne	7
	4.7.1 Kodowanie zmiennoprzecinkowe	7
	4.7.2 Kodowanie całkowitoliczbowe	7
	l.8 Kodowanie Słownikowe	8
	4.8.1 Statyczne kodowanie słownikowe	8
	4.8.2 LZ77	8
	4.8.3 LZ78	8
	4.8.4 LZW	8
	l.9 bzip2	8
	4.9.1 Kodowanie tabelą	8
	4.9.2 Kodowanie szybkie	8
	4.9.3 Dekodowanie	9
	4.9.4 Move to Front	9
	1.10 V.42bis	9
	l.11 Kodowanie predykcyjne	9
	4.11.1 PPM	10
	4.11.2 CALIC	10
	4.11.3 JPEG-LS	10
	4.11.4 Poziomy rozdzielczości	11
_		
5	Macierzowa notacja kodów	11

6	Korekcja błędów	11
	6.1 Kody parzystości	11
	6.2 Algorytm Luhna	11
	6.3 Kod powtórzeniowy	11
	6.4 Współczynnik informacji	12
	6.5 Odległość Hamminga	12
	6.6 Kody Hamminga	12
	6.7 Kody cykliczne	13
	V	13
	6.9 Burst Error	13
7	Kwantyzacja	13
•	7.1 Kwantyzatory skalarne	13
	7.2 Kwantyzatory adaptacyjne	14
	7.3 Kwatyzacja wektorowa	14
	7.4 Algorytm LBG	14
0	Kodowanie różnicowe	14
8	Rodowanie roznicowe	14
9	DPCM	14
	9.1 Modulacja delta	14
10	Kodowanie transformujące	15
		15
	10.2 Dyskretne przekształcenie kosinusowe	15
	· · · · · · · · · · · · · · · · · · ·	15
	10.4 Dyskretne przekształcenie Walsha-Hadamarda	15
11	Kompresja wideo	15
	<u> </u>	15
	· · · · · · · · · · · · · · · · · · ·	16
12	Kodowanie podpasmowe	16
	0 , 1	16
	12.2 Filtrowanie cyfrowe	16
13	Schematy synteza-analiza	16
		16
14	EZW	17

1 Wstęp

Wyróżniamy dwa rodzaje kompresji. W kompresji stratnej dopuszczalny jest pewien stopień straty informacji wejściowej. W kompresji bezstratnej nie jest to dopuszczalne.

1.1 "Prawo" Kompresji bezstratnej

Nie istnieje algorytm, który potrafi zmniejszyć rozmiar dowolnych danych

- Kompresja bezstratna musi być bijekcją
- \bullet Dowolne dane przyjmują postać ciągu bitów długości n. Jest 2^n takich ciągów.
- \bullet Danych krótszych niż n,np.: o jeden jest 2^{n-1}
- ullet Nie da się stworzyć bijekcji z zbioru o mocy 2^n do zbioru o mocy 2^{n-1}

Wniosek jest taki, że koniecznym jest konstruowanie kompresji bezstratnej na podzbiorach danych, takich jak np.: obrazów, dźwięków, tekstów.

2 Teoria informacji

Teoria informacji to dziedzina zajmująca się przetwarzaniem informacji. W teorii informacji mamy do czynienia z podstawowym założeniem, że zdarzenia niosą ze sobą pewną ilość informacji. Im rzadsze zdarzenie, tym bardziej informacyjne. Można to sobie wyobrazić jako zaskoczenie, jakie niesie ze sobą dane zdarzenie. Zaskoczenie wynikające, z tego że wstało słońce, jest mniejsze niż zaskoczenie wynikające z tego, że konkretny autobus się spóźnił.

2.1 Miara informacji

Miara informacji, która niesie ze sobą zdarzenie A jest:

$$I(A) = -\log_x P(A)$$

gdzie x to baza systemu liczbowego. Jeśli miarą informacji jest bit to x=2. Jeśli zdarzenia A i B są niezależne to:

$$I(AB) = I(A) + I(B)$$

2.2 Entropia

Entropia to miara średniej informacji przekazywanej przez źródło. Kody jednoznacznie dekodowalne w modelu z niezależnymi wystąpieniami symboli muszą mieć średnią długość co najmniej równą entropii.

2.2.1 Entropia źródła

Dla źródła danych Sgenerującego ciąg Xnad alfabetem $\mathcal{A} = \{1, 2, \dots m\}$

$$H(S) = \lim_{n \to \infty} \frac{G_n}{n}$$

$$G_n = -\sum_i \cdots \sum_j P(X_1 = i, \dots, X_n = j) \log P(X_1 = i, \dots, X_n = j)$$

2.2.2 Entropia Pierwszego Rzędu

Dla źródła informacji X, z zbiorem wiadomości (zdarzeń) A_1, \ldots, A_n , gdzie $P(A_i)$ to prawdopodobieństwo wystąpienia zdarzenia A_i i zdarzenia są niezależne to entropia źródła to:

$$H(X) = \sum_{i=1}^{n} P(A_i)I(A_i)$$

2.3 Entropia warunkowa

Dla alfabetu $\mathcal{A} = \{x_0, x_1, \dots x_n\}$ i $\mathcal{B} = \{y_0, y_1, \dots y_m\}$ rekonstrukcji, oraz zmiennych losowych $X \in \mathcal{A}$ i $Y \in \mathcal{B}$, entropia warunkowa to:

$$H(X|Y) = -\sum_{i=0}^{n} \sum_{j=0}^{m} P(x_i|y_j)P(y_j)\log P(y_j|x_i)$$
$$H(X|Y) \le H(X)$$

2.4 Wspólna informacja wzajemna

$$I(X;Y) = \sum_{i=0}^{n} \sum_{j=0}^{m} P(x_i|y_j)P(y_i)\log(\frac{P(x_i|y_j)}{P(x_i)})$$

$$I(X;Y) = H(X) - H(X|Y)$$

2.5 Entropia różniczkowa

Dla zmiennej losowej X z funkcją gęstości rozkładu $f_X(x)$ dzielimy zakres wartości X na podprzedziały o rozmiarze Δ . Dla każdego przedziału $[(i-1)\Delta, i\Delta)$ istnieje liczba x_i , taka, że

$$f_X(x_i)\Delta = \int_{(i-1)\Delta}^{i\Delta} f_X(x)dx$$

$$h(X) = -\int_{-\infty}^{\infty} f_X(x) \log f_X(x) dx$$

Jeśli $X \sim U(a,b)$, to $h(X) = \log(b-a)$

3 Kodowanie

Kodowanie to przyporządkowanie elementom jakiegoś alfabetu ciągu binarnych. Przykładami kodowania są: ASCII, UTF-8 oraz inne. Typowym jest konstruowanie kodowania pod konkretny zestaw danych, optymalizując je pod kątem częstości występowania poszczególnych elementów.

3.1 Modelowanie danych

Rozważmy ciąg: $a_n = 9, 11, 11, 11, 14, 13, 15, 17, 16, 17, 20, 21$. $\max(a_n) = 21$ stąd koniecznym jest 5 bitów na element. Ale jeśli wykorzystamy wzór $e_n = a_n - n + 8$ do stworzenia nowego ciągu, to ten ciąg przyjmuje postać: 0, 1, 0, -1, 1, -1, 0, 1, -1, -1, 1, 1. Teraz wystarczą tylko 2 bity na zakodowanie elementu.

3.2 Średnia długość kodu

$$I = \sum_{i=1}^{n} p_i \cdot l_i$$

gdzie p_i to prawdopodobieństwo wystąpienia elementu i, a l_i to długość kodu dla elementu i.

3.3 Jednoznaczna dekodowalność

Jeśli dla dowolnego ciągu znaków istnieje tylko jedno jego rozkodowanie to kod jest jednoznacznie dekodowalny. Aby sprawdzić czy kod jest jednoznacznie dekodowalny, należy zastosować następujący algorytm.

- 1. Stwórz listę słów kodowych.
- Dla każdego elementu z listy sprawdź czy jedno jest prefiksem drugiego. Jeśli tak, dodaj sufiks drugiego słowa
 do listy, jeśli już go tam nie ma.
- 3. Jeśli na liście jest słowo kodowe, to kod nie jest jednoznacznie dekodowalny.

3.3.1 Nierówność Krafta

Jeżeli \mathcal{C} jest kodem jednoznacznie dekodowalnym z n słowami to:

$$K(\mathcal{C}) = \sum_{i=1}^{n} 2^{-l_i} \le 1$$

Jest to warunek konieczny bycia kodem jednoznacznie dekodowalnym.

3.3.2 Kod prefiksowy

Kod w którym żadne słowo kodowe nie jest prefiksem innego słowa kodowego. Wszystkie kody prefiksowe są jednoznacznie dekodowalne.

3.4 Kod natychmiastowy

Jest kodem pozwalającym stwierdzić w którym miejscu zakończone jest słowo kodowe w momencie odczytania ostatniej litery.

4 Kompresja bezstratna

Z reguły kompresja bezstratna opiera się na stworzeniu kodu, który pozwala na zakodowanie będące krótsze niż oryginalne dane. W tym celu wykorzystuje się różne techniki kodowania.

4.1 Statyczny Kod Huffmana

Kod Huffmana to kod prefiksowy o minimalnej średniej długości kodu. Są one optymalne wśród kodów prefiksowych. Dla alfabetu \mathcal{A} o długości n i prawdopodobieństwach wystąpienia p_1, \ldots, p_n algorytm tworzenia kodu Huffmana wygląda następująco: Znajdź dwa najrzadziej występujące elementy i połącz je w jeden element o prawdopodobieństwie $p_1 + p_2$. Rozróżnij je 0 lub 1. Powtórz ten krok na liście n-1 długiej aż zostanie jeden element.

Diagram 1: Przykład kodu Huffmana dla P(a) = 0.5, P(b) = 0.25, P(c) = 0.15, P(d) = 0.1

4.2 Kodowanie Shannon-Fano

Dla symboli a_1, \ldots, a_n o prawdopodobieństwach p_1, \ldots, p_n , ustalmy kody długości $l_n = \lceil -\log p_i \rceil$. Następnie zdefiniujmy zmienne pomocnicze $w_1, \ldots w_n$ jako:

$$w_1 = 0, w_j = \sum_{i=1}^{j-1} 2^{l_j - l_i}$$

Jeżeli $\lceil \log w_j \rceil = l_j$ to j-te słowo kodowe jest binarną reprezentacją w_j . Jeżeli $\lceil \log w_j \rceil < l_j$ to reprezentację uzupełniamy zerami z lewej strony.

Dla
$$P(a) = \frac{1}{3}$$
, $P(b) = \frac{1}{4}$, $P(c) = \frac{1}{4}$, $P(d) = \frac{1}{6}$ mamy:

$$l_a=2, l_b=2, l_c=2, l_d=3$$

$$w_1=0, w_2=2, w_3=2, w_4=6$$

$$kod(a)=00, kod(b)=01, kod(c)=10, kod(d)=110$$

4.3 Kodowanie Tunstalla

Chcemy stworzyć kod na n bitach dla a_1, \ldots, a_m symboli o prawdopodobieństwach p_1, \ldots, p_m . Tworzenie kodu Tunstalla polega na iteracyjnym wyborze ze zbioru symbolu o największym prawdopodobieństwie S i łączenie go z wszystkimi innymi symbolami tworząc symbole Sa_m , nadając im prawdopodobieństwa $P \cdot p_m$. Proces ten powtarzamy aż do uzyskania kodu o długości n.

4.4 Kodowanie Golomba

Kody Golomba są parametryzowane liczbą m>0. Każda liczba n jest zapisywana za pomocą $q=\lfloor\frac{n}{m}\rfloor$ oraz $r=n-q\cdot m$ w postaci

$$(q)_1(r)_2$$

4.5 Dynamiczne kodowanie Huffmana

Głównym problemem kodowania Huffmana jest konieczność znania całego ciągu danych przed rozpoczęciem kodowania. Rozwiązaniem tego problemu jest dynamiczne kodowanie, gdzie stosujemy kodowanie Huffmana dla k+1 symbolu na podstawie kodowania dla k symboli. W tym celu tworzymy dynamicznie drzewo, gdzie każdy liść ma wagę równą ilości wystąpień danego symbolu. Drzewo zaczyna się od liścia z symbolem EOF o wadze 0.

Diagram 2: Przykład kodowania dynamicznego

4.6 Problem kodowania uniwersalnego

Szukamy sposobu na kodowanie dowolnej liczby $n \in \mathbb{N}$. Problem polega na skonstruowaniu kodu, który będzie jednoznacznie dekodowalny i uniwersalny. To oznacza, że ma się skalować w nieskończoność.

4.6.1 Kodowanie Eliasa

Kodowanie Eliasa to kodowanie uniwersalne, które wykorzystuje kodowanie unarne do zapisania długości kodu binarnego liczby n.

$$n = \lfloor \log_2(x) \rfloor + 1$$

 γ Jest to najprostsze z kodowań Eliasa. Polega na zakodowaniu liczby x w postaci binarnej, a następnie dodaniu przed nią liczby n-1 zer.

$$\gamma(x) = 0^{n-1}(x)_2$$

$$(13)_{10} = 1101_2 \Rightarrow \gamma(13) = 0001101$$

 δ Cały trik kodu δ polega na zakodowaniu długości kodu binarnego liczby x przy pomocy kodu γ . Istotnym trikiem jest usunięcie najstarszego bitu z zakodowanej liczby x.

$$\delta(x) = \gamma(n) + (x)_2$$
 (13)₁₀ = 1101₂ \Rightarrow δ (13) = 00100101

Jak widać, jest on bardziej efektywny dla większych liczb. Długość kodu δ to $2 \cdot \lceil \log_2(\lceil \log_2 x \rceil) \rceil - 1 + \lceil \log_2 x \rceil - 1$.

 ω Jest to kodowanie rekurencyjne, które działa jak kodowanie δ , ale w nieskończoność. Na koniec umieszczane jest 0, potem kodowana jest liczba k=x. Potem ten krok jest powtarzany dla k=n-1 gdzie n to liczba bitów z poprzedniego kroku.

$$(13)_{10} = 1101_2 \Rightarrow \omega(13) = 1111010$$

4.6.2 Kodowanie Fibonacciego

Liczba Fibonacciego ma postać:

$$f_0 = f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} : n \ge 2$$

Kodowanie fibonacciego polega na reprezentacji liczby x jako sumę liczb fibonacciego.

$$x = \sum_{i=0}^{n} a_i \cdot f_i, a_i \in \{0, 1\}$$

$$(13)_{10} = f_7 = 1101_2 \Rightarrow Fib(13) = 0000011$$

4.7 Kodowanie arytmetyczne

Kodowanie arytmetyczne to kodowanie, które odwzorowywuje dowolny ciąg wejściowy na liczbę z zakresu [0,1). Głównym pomysłem stojącym za algorytmem, jest iteracyjne przypisywanie coraz to mniejszych przedziałów do kolejnych symboli ciągu wejściowego.

4.7.1 Kodowanie zmiennoprzecinkowe

Dla zakresu początkowego [l, p) = [0, 1), ciągu symboli wejściowych a_j , dystrybuanty F(j) i prawdopodobieństw p_j algorytm wygląda następująco:

- d = p l
- $p = l + d \cdot F(j+1)$
- $l = l + d \cdot F(j)$

Powyższe kroki wykonujemy dla każdego symbolu ciągu wejściowego. Na koniec dostajemy zakres, z którego potem możemy wybrać dowolną liczbę jako wynik kodowania.

Diagram 3: Wizualizacja kodowania arytmetycznego

Takie kodowanie jest dekodowane, poprzez iteracyjne zmniejszanie zakresu. Podobnie jak z kodowaniem, zaczynamy od zakresu [0,1) i iteracyjnie zmniejszamy go.

- \bullet d=p-l
- Wybieramy takie j, że $F(j) \leq \frac{x-l}{d} < F(j+1)$
- $p = l + d \cdot F(j+1)$
- $l = l + d \cdot F(j)$

4.7.2 Kodowanie całkowitoliczbowe

Liczbę z kodowania zmiennoprzecinkowego, można zakodować jako zbiór 2^m wartości binarnych.

$$kod(0) = \overbrace{00...0}^{m}$$

$$kod(1) = \overbrace{11...1}^{m}$$

$$kod(0.5) = 1 \overbrace{00...0}^{m-1}$$

4.8 Kodowanie Słownikowe

4.8.1 Statyczne kodowanie słownikowe

Zawczasu określamy jakiś słownik słów. Następnie przypisujemy każdemu słowu kod binarny. W ten sposób kodujemy cały tekst. Takie kodowanie ma sporo wad, głównie związanych z koniecznością przesyłania słownika oraz z słabą odpornością na błędy i zmienność danych wejściowych.

4.8.2 LZ77

Słownikiem jest zakodowana/odkodowana część tekstu. W ten sposób jesteśmy bardzo elastyczni w zakresie zmiany danych wejściowych, oraz nie musimy przesyłać słownika. Kodem jest trójka (o,l,k) gdzie o to przesunięcie, l to długość, a k to kolejny znak. W ten sposób (0,0,n),(1,1,k) dekoduje się jako "nnk". Proces kodowania jest parametryzowany n i m, gdzie o < n i l < m. W oknie długości n szukamy najdłuższego prefiksu, który jest w części zakodowanej długości m.

Na przykład, w stanie w którym mamy zakodowane "abcdefgh", trójka (4,3,i) oznacza "efgi", ponieważ cofamy się o 4 litery do tyłu, bierzemy 3 kolejne litery i dodajemy na koniec kolejną literę i.

4.8.3 LZ78

Istnieje osobny słownik, do którego trafiają kolejne słowa. Podczas kodowania kolejno szukamy w słowniku najdłuższego słowa, które jest prefiksem ciągu wejściowego. Jeśli nic nie znajdziemy to dodajemy pierwszą literę do słownika, lecz jeśli znajdziemy taki prefiks, to kodujemy go jako indeks w słowniku, wraz z kodem następnej litery. Zatem kod (0,k), (1,a)(2,b) oznacza "kkakab", a słownik s zawiera s(1) = k, s(2) = ka, s(3) = kab.

Odkodowywanie wygląda podobnie jak kodowanie. Zaczynamy od pustego słownika, i wraz z kolejnymi krokami dodajemy nowe elementy do słownika. Zatem (0, k) oznacza dodanie k do słownika, (1, a) oznacza dodanie s(1)a, czyli ka, a (2, b) oznacza dodanie s(2)b, czyli kab.

4.8.4 LZW

Ta wersja algorytmu pozbywa się drugiego elementu pary z kodowania LZ78. Z kolei potrzebny jest słownik początkowy zawierający wszystkie możliwe symbole. Poza tą mała różnicą, algorytm jest identyczny z LZ78.

Odkodowywanie znacznie się różni od kodowania. Mając ciąg 3245 i słownik s(1) = a, s(2) = b, s(3) = c, zaczynamy od pierwszego znaku. Przy drugim znaku do słownika dodajemy s(4) = s(3)s(2). Ogólnie bierzemy poprzedni symbol bez pierwszego znaku i dodajemy do niego pierwszy znak z aktualnego symbolu.

Może wystąpić sytuacja, kiedy nie mamy w słowniku symbolu którego potrzebujemy. Np.: słowo to "abababa", s(1) = a, s(2) = b, a kod to: 1235. W takim przypadku, w momencie dekodowania 5 mamy w słowniku: s(3) = ab, s(4) = ba, s(5) = ab?. Nie mamy s(5), więc dodajemy ab i pierwszą literę z ab, czyli s(5) = aba.

4.9 bzip2

4.9.1 Kodowanie tabela

Mając blok danych o długości n, tworzymy wszystkie n rotacji tego bloku. Następnie sortujemy je leksykograficznie. W ten sposób otrzymujemy blok transformowany.

0	е	1	1	О	h
1	h	e	1	1	О
2	1	1	О	h	е
3	1	О	h	e	l
4	О	h	e	l	l

Tabela 1: Przykład bloku transformowanego dla słowa "hello"

4.9.2 Kodowanie szybkie

Alternatywnie zamiast tworzenia ogromnej tabeli, wystarczy stworzyć pierwszą i ostatnią kolumnę. Pierwszą kolumnę tworzy się przez posortowanie słowa leksykograficznie (w przypadku konfliktu patrzymy na kolejne litery).

e	h
h	О
ll	е
lo	1
О	1

Tabela 2: Wygenerowana pierwsza i ostatnia kolumna dla słowa "hello"

Ostatnią kolumnę tworzymy poprzez zapisanie litery poprzedzającej daną literę w oryginalnym słowie. Na podstawie tej tabeli zapisujemy numer wiersza, w którym znajduje się oryginalne słowo, oraz ostatnią kolumnę. W ten sposób uzyskujemy kod 1, "hoell".

4.9.3 Dekodowanie

Mając tylko te dane, jesteśmy bardzo łatwo w stanie odtworzyć oryginalne słowo. Najpierw sortujemy nasz kod leksykograficznie, zapamiętując indeksy. Mając taką tabelę, następnie konstruujemy ciąg, traktując tabelę jak

0	1	2	3	4
е	h	l	l	О
2	0	3	4	1

Tabela 3: Tabela dekodowania dla kodu 1, "hoell"

permutację, zaczynając od indeksu zawartego w kodzie. W naszym przypadku powstaje permutacja cykliczna (1,0,2,3,4). Wykorzystując tę permutację, odtwarzamy oryginalne słowo.

4.9.4 Move to Front

Zaczynamy od tabeli liter posortowanych z słowa wejściowego. Następnie dla każdej litery w słowie, kodujemy ją jako jej indeks w tabeli, a następnie literę w tabeli przesuwamy na początek. W ten sposób kodujemy słowo "hello" jako "11203". Taki kod ma mniejszą entropię i jest łatwiej kompresowalny.

4.10 V.42bis

To jest standard, głównie wykorzystywany w modemach, do kompresji i korekcji błędów w sieciach telefonicznych. Może działać w dwóch trybach: przezroczystym (bez kompresji) i z kompresją (LZW).

Zaczynamy z słownikiem, o wcześniej ustalonej, negocjowalnej, wielkości. Wyróżniamy w komunikacji trzy specjalne kody:

- 1. ETM przejście do trybu przezroczystego
- 2. FLUSH oczyszczenie danych
- 3. STEPUP zwiększenie rozmiaru słownika ×2

Gdy liczba elementów w słowniku przekroczy wartość dozwoloną, wysyłany jest kod STEPUP. Gdy słownik jest pełny, wysyłany jest kod FLUSH. W ten sposób, mamy zmienny, dynamiczny słownik, który dostosowuje się do danych wejściowych po stronie nadawcy i odbiorcy.

4.11 Kodowanie predykcyjne

W tekstach naturalnych symbole bardzo często zależą od siebie. Można wykorzystać informację o prawdopodobieństwach wystąpienia symboli, pod warunkiem wystąpienia poprzednich symboli. Dla dłuższego okna kontekstowego, kodowanie predykcyjne jest bardziej skuteczne, lecz wymaga większej ilości pamięci.

4.11.1 PPM

Dla każdej litery, określamy maksymalną długość kontekstu k i zapisujemy w tym kontekście daną literę. Kod jest parametryzowany przez maksymalną długość kontekstu. Jeśli symbol pojawia się po raz pierwszy, to zapisujemy w specjalnym kontekście o długości -1. Zatem dla przykładowego słowa dłuższego niż 3 i maksymalnej długości kontekstu 2, będziemy mieli konteksty długości: $\{-1,0,1,2\}$. Szczególnym symbolem w tym drzewie jest ESC, który oznacza brak wystąpienia symbolu w danym kontekście. W ten sposób możemy zbudować drzewo, które pozwala na przewidywanie kolejnych symboli, które potem można wykorzystać do zbudowania dynamicznego kodowania Huffmana.

			Kontekst	Symbol	Licznik	Kontekst	Symbol	Licznik
			t	ESC	1	th	ESC	1
Symbol	Symbol	Licznik		h	1		i	1
t Symbol	ESC	1	h	ESC	1	hi	ESC	1
b	t	1		i	1		s	1
h	h	1	i	ESC	1	is	ESC	1
1	i	1		\mathbf{s}	2		-	1
S	S	2	s	ESC	1	S-	ESC	1
_	-	1		-	1		i	1
		'	_	ESC	1	-i	ESC	1
				i	1		s	1

Tabela 4: Przykład drzew kontekstowych z maksymalną długością 2 dla słowa "this-is"

4.11.2 CALIC

Algorytm CALIC jest algorytmem kompresji obrazów, który wykorzystuje kodowanie predykcyjne. Dla każdego piksela obrazu, wykorzystuje się kontekst pikseli wokół niego, aby przewidzieć wartość piksela. Chcemy wiedzieć czy w sąsiedztwie piksela są krawędzie pionowe lub poziome.

		NN	NNE
	NW	N	NE
WW	W	X	E

Diagram 4: Kontekst dla algorytmu CALIC

$$d_h = |W - WW| + |N - NW| + |NE - N|$$

 $d_v = |W - NW| + |N - NN| + |NE - NNE|$

Nastepnie na podstawie tych dwóch wartości, tworzymy \hat{X} i kodujemy różnice miedzy X a \hat{X} .

4.11.3 **JPEG-LS**

JPEG-LS to standard kompresji obrazów, podobny do CALIC, który też wykorzystuje kodowanie predykcyjne.

NW	N
W	X

Diagram 5: Kontekst dla algorytmu JPEG-LS

1.
$$\widehat{X} = W$$

$$2. \ \widehat{X} = N$$

3.
$$\widehat{X} = NW$$

$$4. \ \widehat{X} = N + W - NW$$

5.
$$\hat{X} = N + \frac{W - NW}{2}$$

6.
$$\hat{X} = W + \frac{N - NW}{2}$$

7.
$$\hat{X} = \frac{N+W}{2}$$

Wśród tych siedmiu możliwości, wybieramy tę, która daje najmniejszą różnicę między X a \widehat{X} i podobnie jak dla CALIC kodujemy ciąg różnic.

4.11.4 Poziomy rozdzielczości

Kodujemy obraz wysyłając średni kolor kwadratów o rozmiarze $2^k \times 2^k$ a następnie różnice między tą średnią a średnią kwadratow $2^{k-1} \times 2^{k-1}$. Kończymy na pojedynczych pikselach. Różnice między tymi kwadratami łatwo się kompresuje bo są małe.

5 Macierzowa notacja kodów

Macierz generująca, to macierz przez którą mnożymy wektor danych, aby uzyskać kod. Macierz parzystości to macierz, przez którą mnożymy kod, aby uzyskać wektor zer. Macierz generująca i parzystości są ze sobą powiązane. Syndrom to niezerowy wynik mnożenia wektora kodu przez macierz parzystości.

6 Korekcja błędów

6.1 Kody parzystości

Do każdego bloku danych dodawany jest bit parzystości, który przyjmuje wartość 1, gdy liczba jedynek w bloku jest nieparzysta. W przeciwnym razie przyjmuje wartość 0. W ten sposób jesteśmy w stanie wykryć jeden błąd w bloku danych.

$$G(n) = \underbrace{\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}}_{\times n} \times n + 1$$

$$H(n) = \underbrace{\begin{bmatrix} 1 & \dots & 1 \end{bmatrix}}_{\times n+1}$$

6.2 Algorytm Luhna

Jest to algorytm wykorzystywany do weryfikacji poprawności numerów z cyfrą kontrolną. Polega on na pomnożeniu co drugiej cyfry przez 2, wyeliminowaniu wszystkich liczb dwucyfrowych przez dodanie ich cyfr, a następnie dodaniu wszystkich cyfr. Na koniec dobierana jest cyfra kontrolna, tak aby suma wszystkich cyfr była podzielna przez 10.

6.3 Kod powtórzeniowy

Kod powtórzeniowy polega na powtórzeniu bloku danych k razy. W ten sposób jesteśmy w stanie wykryć k-1 błędów. Kod powtórzeniowy jest bardzo nieskuteczny, ponieważ wymaga k razy więcej miejsca na przechowywanie danych.

$$G(n) = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right\} \times n$$

$$H(n) = \underbrace{\begin{bmatrix} 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 1 \end{bmatrix}}_{\times n} \right\} \times n - 1$$

6.4 Współczynnik informacji

Dla kodu \mathcal{C} długości n współczynnikiem informacji nazywamy:

$$\frac{1}{n}\log|\mathcal{C}|$$

Dla kodu powtórzeniowego k współczynnik informacji wynosi: $\frac{1}{n}$. Dla kodów parzystości współczynnik informacji wynosi $\frac{n}{n+1}$.

6.5 Odległość Hamminga

$$d(a,b) = \sum_{i=1}^{n} a_i \neq b_i$$

Dla kodu K minimalną odległością tego kodu nazywamy minimalną odległość Hamminga tego kodu. Kod K wykrywa t błędów jeśli jego minimalna odległość jest mniejsza niż t. Z kolei ten sam kod koryguje te błedy jeśli jego minimalna odległość jest większa niż 2t.

6.6 Kody Hamminga

Kody doskonałe dla korekcji jednego błędu. Dla długości kodu $n = 2^m - 1$, mają liczbę bitów informacji k = n - m. Najprostszą macierzą Hamminga dla n powyższego, jest taka kodująca kolejne liczby binarne od 1 do n. Dla m = 3:

$$H_H(3) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

To jest macierz parzystości dla kodu Hamminga dla m=3. Taką macierz można następnie zamienić na macierz generującą, poprzez potraktowanie jej jako macierzy z metody Gaussowskiej, w tym wypadku równoważnej z:

$$x_5 = x_2 + x_3 + x_4$$

$$x_6 = x_1 + x_3 + x_4$$

$$x_7 = x_1 + x_2 + x_4$$

Następnie wystarczy potraktować ten układ równań jako macierz, z 7 wierszami, z czego pierwsze 4 (ilość kolumn) są jednostkowe, a ostatnie 3 odpowiadają układowi równań.

$$G_H(3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Dla wektora informacji x, kod liczymy jako: k(x) = G(K)x

6.7 Kody cykliczne

Kod liniowy nazywamy cyklicznym wtedy i tylko wtedy, jeśli dla każdego słowa kodowego $v_0v_1...v_n$ cykliczne przesunięcie $v_nv_0v_1...v_{n+1}$. Kod parzystości i powtórzeniowy są kodami cyklicznymi.

Kody cykliczne można reprezentować przy pomocy wielomianów. W takiej reprezentacji, dodawanie słów kodowych jest równoważne dodawaniu reprezentujących wielomianów.

$$a_0 a_1 \dots a_n \Rightarrow a(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}_2$$

Każdy nietrywialny (n, k)-kod cykliczny (kod długości n z k bitami) zawiera słowo kodowe g(x) stopnia n - k. Dla takiego kodu:

$$G(k) = \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}$$

6.8 Kody doskonałe

Binarny (n,k)-kod jest doskonały dla t błędów, jeśli ma minimalną odległość równą 2t+1 oraz spełniona jest:

$$2^{n-k} = \sum_{i=0}^{t} \binom{n}{i}$$

Przykładem kodu doskonałego jest kod Golay. Jest to (23, 12)-kod.

$$q(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$$

Odległość minimalna tego kodu to 7 i koryguje 3 błędy.

6.9 Burst Error

Burst error to ciąg błędów, długości t. Kod dualny do kodu Hamminga z $g(x) = 1 + x^2 + x^3 + x^4$ jest (7,3)-kodem korygującym 2 burst errors.

7 Kwantyzacja

Kwantyzacja to proces przekształcenia danych wejściowych przez funkcję kwantyzującą, która oprócz dyskretyzowania wartości wejściowych, odwzorowywuje je na mniejszy zbiór. Dwa odwzorowania:

- kodujące: dzieli zbiór wartości na pewną liczbę podprzedziałów, przypisuje każdemu podprzedziałowi odpowiedni symbol
- dekodujące: przyjmuje symbol i zwraca odpowiedni podprzedział

Z reguły w kwantyzacji mierzymy błąd, jako różnicę między wartością wejściową i wartością rekonstruowaną. Tutaj zwykle stosuje się metryki podobne do tych w nauczaniu maszynowym, takich jak błąd średniokwadratowy (MSE). Inną metryką jest odległość Hamminga między dwoma słówami kodowymi.

7.1 Kwantyzatory skalarne

Kwantyzatory skalarne przekształcają skalary na przedziały pewnego zakresu. Na przykład, kwantyzator z zakresu [0,1] dzieli ten przedział na n równych podprzedziałów i przypisuje każdemu podprzedziałowi symbol i, gdzie i jest liczbą całkowitą od 0 do n-1.

Wyróżniamy dwa rodzaje kwantyzatorów skalarnych:

- równomierne
- nierównomierne

również kwantyzator może mieć krok w zerze lub nie, zależy od charakterystyki sygnału wejściowego.

7.2 Kwantyzatory adaptacyjne

Kwantyzatory adaptacyjne są takie, które zmieniają swoje parametry w czasie w zależności od sygnału wejściowego. Na przykład, kwantyzator adaptacyjny może zmieniać swoje granice podprzedziałów w zależności od histogramu sygnału wejściowego.

7.3 Kwatyzacja wektorowa

Idea jest taka, że zamiast kwanyzować pojedyncze skalary, można kwantyzować bloki skalarów (wektory). W zależności od rodzaju danych, może to przynosić lepsze wyniki niż kwantyzacja pojedynczych skalarów. Na przykład, w przypadku obrazów, kwantyzacja bloków może być bardziej efektywna niż kwantyzacja pojedynczych skalarów, ponieważ bloki są bardziej skorelowane.

7.4 Algorytm LBG

Algorytm LBG (Linde-Buzo-Gray) jest algorytmem adaptacyjnym, który wykorzystuje technikę grupowania (clustering) do znajdowania optymalnych granic podprzedziałów w kwantyzatorze wektorowym. Algorytm ten jest wykorzystywany w kompresji obrazów i audio.

- 1. Ustal dowolnie zbiór Y wartości rekonstruowanych
- 2. Znajdź zbiory V_i , takie, że każdy ich element jest najbliżej i-tej wartości rekonstruowanej
- 3. Jeśli zmiana zniekształcenia w porównaniu z poprzednią iteracją jest mniejsza niż ϵ , zakończ algorytm.
- 4. W przeciwnym razie, zaktualizuj granice podprzedziałów na podstawie średniej wartości elementów w każdym zbiorze V_i .

8 Kodowanie różnicowe

Dla ciągu skalarów, zamiast kodować wartości, można kodować różnicę między kolejnymi wartościami. To samo w sobie nie jest kompresją, lecz po kwantyzacji wartości wejściowych można uzyskać efektywną kompresję. Trzeba tylko uważać, aby najpierw kwantyzować potem odejmować, bo inaczej błąd bedzie rosnął liniowo.

9 DPCM

Metoda DPCM konceptowo jest bardzo podobna do kodowania różnicowego, ale zamiast kodować różnicę między kolejnymi wartościami, koduje różnicę między funkcją predykcyjną f a wartościawejsciową x_n .

$$k_n = x_n - f(x_{n-1}, x_{n-2}, \dots, x_0)$$

Wtedy trzeba jedynie sprytnie wybrać funkcję predykcyjną f, taką, aby błąd kwantyzacji był minimalny. Dla uproszczenia można założyć, że f to $p_n = \sum_{i=0}^N a_i x_{i-1}$ gdzie N określa rząd predyktora.

9.1 Modulacja delta

Jest to bardzo uproszczona wersja DPCM. W modulacji delta p_n jest to prosta predykcja poprzedniej wartości, gdzie $p_n = x_{n-1} + s_n$.

$$s_n = \begin{cases} 1 & \text{jeśli } x_n > x_{n-1} \\ -1 & \text{jeśli } x_n < x_{n-1} \\ 0 & \text{jeśli } x_n = x_{n-1} \end{cases}$$

10 Kodowanie transformujące

Z reguły kodowanie transformujące opiera się na następujacych czterech krokach:

- 1. Podziel sygnał wejściowy na bloki
- 2. oblicz przekształcenie każdego bloku
- 3. kwantyzuj przekształcenie
- 4. koduj kwantyzację

10.1 Przekształcenie Karhunena-Loevego

Przekształcenie KLT opiera sie na macierzy przekształcenia. Wiersze tej macierzy są wektorami własnymi macierzy kowariancji sygnału wejściowego. Macierz korelacji ma postać $[R]_{i,j} = E[X_n X_{n+|i-j|}]$.

10.2 Dyskretne przekształcenie kosinusowe

Przekształcenie DCT opiera się na macierzy przekształcenia $N \times N$.

$$[C]_{i,j} = \begin{cases} \sqrt{\frac{1}{N}} \cos \frac{(2j+1)i\pi}{2N} & \text{jeśli } i = 0\\ \sqrt{\frac{4}{N}} \cos \frac{(2j+1)i\pi}{2N} & \text{jeśli } i \neq 0 \end{cases}$$

Jest łatwiejsza do policzenia i lepiej się sprawdza niż dyskretna transformata Fouriera.

10.3 Dyskretne przekształcenie sinusowe

Przekształcenie DST opiera się na macierzy przekształcenia $N \times N$.

$$[S]_{i,j} = \sqrt{\frac{2}{N+1}} \sin \frac{\pi(i+1)(j+1)}{N+1}$$

Lepiej stosować niż kosinusowe gdy wspołczynnik korelacji jest niższy. Ogólnie jest to transformacja uzupełniająca do transformacji kosinusowej.

10.4 Dyskretne przekształcenie Walsha-Hadamarda

Macierz Hadamarda rzędu N jest zdefiniowana wzorem $HH^T=NI$. Macierz przekształcenia uzyskujemy przez normalizację i ustawienie kolumn w porządku ilości zmian znaków. Ta transformacja jest prosta do implementacji oraz minimalizuje ilość obliczeń.

11 Kompresja wideo

Cała kompresja wideo opiera się na prostej obserwacji, że wideo jest złożone z wielu klatek, które są bardzo podobne do siebie. W ten sposób można zredukować ilość danych, które musimy przechowywać i przesyłać.

11.1 Rodzaje ramek

Mimo to, aby zapobiec akumulacji błędu, nie możemy się opierać tylko na rekonstrukcji klatek. Co którąś klatkę musimy przesłać w całości, lub minimalnie skompresowaną. Z reguły rozróżniamy zatem trzy rodzaje ramek(klatek):

- Typ I: obraz zakodowany jak JPEG
- Typ P: obraz zakodowany jako różnica od ostaniej klatki P lub I
- Typ B: obraz zakodowany jako różnica od dwóch ostatnich klatek P lub I

Z reguły zatem różne formaty mają różne schematy i sekwencje typów klatek.

11.2 Kompensacja ruchu

Aby określić transformację, jaką należy zastosować do klatki aby uzyskać kolejną, należy podzielić klatkę na mniejsze bloki, znaleźć podobny blok w poprzedniej klatce i zakodować wektor przesunięcia oraz różnicę kolorów między blokami.

12 Kodowanie podpasmowe

Poprzez transformację jednego sygnału na różne podpasma, możemy osiagnąć wyższy stopień kompresji. Podstawowy schemat kodowania ma 4 kroki:

- 1. Wybierz zbiór filtrów do rozkładu źródła
- 2. Używając filtrów oblicz sygnały podpasm
- 3. Zdziesiątkuj wyjście filtra
- 4. Zakoduj zdziesiątkowane wyjście
- 5. Zakoduj zakodowane wyjście

Na przykład, na sygnale możemy zastosować filtr $y_n = \frac{x_n + x_{n-1}}{2}$, oraz $z_n = x_n - y_n$.

12.1 Regula Nyquista

Jeśli sygnały mają tylko składowe o częstotliwościach między f_1 a f_2 , to aby odtworzyć sygnał musimy próbkować z częstością co najmniej $2(f_2 - f_1)$.

12.2 Filtrowanie cyfrowe

Dla

$$y_n = \sum_{i=0}^{N} a_i x_{n-i} + \sum_{i=0}^{M} b_i y_{n-i}$$

 a_i i b_i są współczynnikami filtru.

13 Schematy synteza-analiza

Zamiast przesyłać sygnał, opracowywujemy model, będący w stanie sytezować go. Następnie przesyłamy tylko parametry modelu.

13.1 Wyznaczanie bezdzwięczności

Aby określić czy próbka dźwięku (z reguły krótka) jest bezdźwięczna, należy użyć funkcji autokorelacji lub AMDF. Funkcja autokorelacji wygląda następująco:

$$r(k) = \sum_{n=0}^{N-k} s(n)s(n+k) \quad s(n) = (\sum_{k=0}^{M-1} h(k)x(n-k)) \cdot (0.54 - 0.46\cos(\frac{2\pi n}{N-1}))$$

s(n) to sygnał mowy po nałożeniu dolnoprzepustowego filtru oraz okna Hamminga. Aby określić, czy fragment jest bezdzwięczny, wystarczy znaleźć globalne optimum r(k). Jeżeli to optimum jest większe od $0.3 \cdot r(0)$ to fragment jest dźwięczny. W przeciwnym razie jest bezdźwięczny.

14 EZW

Głównym założeniem za algorytmem jest to, że po podziale sygnału na podpasma, to współczynniki tych podpasm mogą być od siebie zależne, tworząc drzewo. W takim drzewie można wyróżnić cztery rodzaje współczynników:

- korzeń drzewa zerowego (ZR)
- izolowane zero (IZ)
- znacząco dodatni (SP)
- znacząco ujemny (SN)

EZW ma dwa kroki: dominujący i podrzędny. Na początku $C_{max} = \max_m |w(m)|, T_0 = 2^{\lfloor \log_2(C_{max}) \rfloor}$. Lista dominująca zawiera wszystkie wierzchołki, podrzędna jest pusta. Po każdym kroku $T_i = \frac{T_{i-1}}{2}$. Krok dominujący: Dla każdego wierzchołka w[m]:

- Jeśli $|w[m]| > T_k$: przenieś na listę podrzędną oraz
 - SP jeśli |w[m]| > 0
 - SN jeśli |w[m]| < 0
- W przeciwnym razie:
 - ZR jeśli dalej nie ma istotnych współczynników
 - $-\,$ IZ jeśli jest nie
istotny, ale ma istotne potomstwo
 - NIL w przeciwnym razie

Krok podrzędny: