Chapter 2: Sequence (Cont...)

Theorem 2.4 (Sandwich Theorem).

If
$$a_n \le b_n \le c_n$$
 and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ then $\lim_{n \to \infty} b_n = L$.

Proof.

Let $\epsilon > 0$ and choose k_1 and k_2 such that $|a_n - L| < \epsilon$ if $n \ge k_1$ and $|c_n - L| < \epsilon$ if $n \ge k_2$. In particular, for $n \ge K = \max\{k_1, k_2\}$, $L - \epsilon < a_n < L + \epsilon$ and $L - \epsilon < c_n < L + \epsilon$ gives $L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$. Thus, $L - \epsilon < b_n < L + \epsilon$. Hence, $|b_n - L| < \epsilon$ if $n \ge K$.

Theorem 2.5. Let $x \in \mathbb{R}$. Then x^n converges if and only if $-1 < x \le 1$.

Proof.

(1) For
$$x = 1$$
, $\lim_{n \to \infty} x^n = \lim_{n \to \infty} 1^n = 1$, by Theorem 2.3(a).

(2)Let
$$0 < x < 1$$
 and let $\epsilon > 0$. Then $0 < 1 < \frac{1}{x}$

and therefore $y := \frac{1}{x} - 1 > 0$.

Then
$$\frac{1}{x^n} = \left(\frac{1}{x}\right)^n = (1+y)^n \ge 1 + ny$$
, by Bernoulli's ineq.

Put
$$K = \frac{1 - \epsilon}{y\epsilon}$$
.

Then, for
$$n > K$$
, $0 < x^n \le \frac{1}{1 + ny} < \frac{1}{1 + \frac{1 - \epsilon}{\epsilon}} = \epsilon$.

That is, $0 < x^n < \epsilon$. Hence $x^n \to 0$ as $n \to \infty$.

(3) Now let x > 1.

Then
$$0 < \frac{1}{x} < 1$$
. Hence $\left(\frac{1}{x}\right)^n \to 0$ as $n \to \infty$.

Assume that x^n converges to some L.

Then
$$1 = \lim_{n \to \infty} 1^n = \lim_{n \to \infty} \left(\frac{1}{x}\right)^n \cdot \lim_{n \to \infty} x^n = 0 \cdot L = 0$$
.

That is, 1 = 0 which is impossible.

(4) The cases -1 < x < 0 are left as an exercise.

Theorem 2.6. If r > 0, then $\lim_{n \to \infty} \frac{1}{n^r} = 0$.

Proof. By induction on positive integer r.

(1) Let r=1 and choose $\epsilon>0$. Let $K=\frac{2}{\epsilon}$.

Then, for $n \ge K$, $0 < \frac{1}{n} \le \frac{1}{K} = \frac{\epsilon}{2} < \epsilon$,

Thus, $0 < \frac{1}{n} < \epsilon$. Hence, $\frac{1}{n} \to 0$ as $n \to \infty$.

(2) Now assume the statement holds for an integer r > 0.

That is, $\lim_{n\to\infty} \frac{1}{n^r} = 0$.

(3) Then $\lim_{n \to \infty} \frac{1}{n^{r+1}} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{1}{n^r} = 0 \cdot 0 = 0$.

So the result follows for all positive integers r by induction.

Tutorial 2.1.1. Cont ...

- 3. Contractive maps. Suppose that for some $c \in \mathbb{R}$ with
- 0 < c < 1, we have $|a_{n+1} L| \le c |a_n L|$ for all $n \in \mathbb{N}$.
- (a) Use induction on n to prove that $|a_n L| \le c^n |a_0 L|$.
- (b) Use the Sandwich Theorem and the fact that $\lim_{n\to\infty}c^n=0$ to prove that $\lim_{n\to\infty}a_n=L$.
- 4. Recursive algorithm for finding \sqrt{a} . Let a>1 and define

$$a_0 = a \text{ and } a_n = \frac{1}{2} \left(a_{n-1} + \frac{a}{a_{n-1}} \right) \text{ for } n \ge 1.$$

- (a) Prove that $0 < a_n \sqrt{a} = \frac{1}{2a_{n-1}} (a_{n-1} \sqrt{a})^2$ for $n \ge 1$.
- (b) Use (a) to prove that $0 \le a_n \sqrt{a} \le \frac{1}{2} \left(a_{n-1} \sqrt{a} \right)$ for $n \ge 1$.
- (c) Deduce that $\lim_{n\to\infty} a_n = \sqrt{a}$.
- (d) Apply four steps of the recursive algorithm with a = 3 to approximate $\sqrt{3}$.