CENTRAL WASHINGTON UNIVERSITY

ADVANCE ALGORITHM

WINTER 2020

Project 1: k-Nearest Neighbor Search

Student: TIN TAN NGUYEN Email: ntin@cwu.edu

January 30, 2020

1 Time Complexity Analysis - Increasing N

This section will discuss run time of k-nearest neighbor search using Python - scipy.spatial.kdtree package when increasing numbers of nearest neighbor.

• Increasing N number of nearest neighbors:

Table of Kd-Tree Time Complexity - Increasing N												
Ш	Sample Points		Numbers of Dir	mension	Target Poir	nts	Queries '	Time				
Ш	100000	П	2	- 11	40	- 11	0.00295	- 11				
Ш	100000	Ш	2	- 11	80	- 11	0.00508	- 11				
- 11	100000	Ш	2	- 11	200	- 11	0.01580	- 11				
Ш	100000	Ш	2	- 11	640	- 11	0.04925	- 11				
Ш	100000	Ш	2	- 11	2600	- 11	0.20174	- 11				
- 11	100000	Ш	2	- 11	13040	- 11	0.99538	- 11				

Figure 1: Time complexity when increasing N

• Time vs N-increasing Plot:

Figure 2: Time complexity as N increasing

The relationship between run-time and N is almost linear by looking at the chart above (Time-complexity <= TotalPoints)

2 Time Complexity Analysis - Increasing D

This section will discuss run time of k-nearest neighbor search using Python - scipy.spatial.kdtree package when increasing dimension of nearest neighbor.

• Increasing number of dimensions (N = 5):

Table of Kd-Tree Time Complexity - Increasing D													
- 11	Sample Points	Number	rs of Dimensi	on Tar	get Points	Queries Tim	e						
- 11	50000	П	7	H	5	0.00937	Π						
Ш	50000	П	19	Ш	5	1.13405	Π						
- 11	50000	П	62	H	5	1.44419	$-\Pi$						
- 11	50000	П	253	Ш	5	1.60007	Π						
- 11	50000	П	1270	- 11	5	3.28463	Π						
- 11	50000	П	7625	- 11	5	14.74254	Ш						

Figure 3: Time complexity when increasing D

• Time vs D-increasing Plot (NN = 5, Total Points = 50000):

Figure 4: Time complexity as D increasing

The relationship between run-time and D is not a linear relationship by looking at the chart above (Time-complexity >= TotalPoints and similar to log(TotalPoints)* TotalPoints.

3 Conclusion

Time complexity of k-nearest neighbor algorithm is n times based on this project when increasing the NN numbers and about $\lg(n)n$ when increasing the dimension of NN.

4 Python Code

```
number_of_point = []
number_of_dimension = []
time_complexity = []
target_point = []
for i in range (loop):
   dimension = 2
   dimension = dimension * i + dimension + 5
   points = (np.random.random(((50000, dimension))) * 100)
   tree = spatial.KDTree(points)
   test_point = np.random.random((n, dimension)) * 100
   start = timeit.default_timer()
   distance, index = tree.query(test_point)
   stop = timeit.default_timer()
   elapsed_time = stop - start
   number_of_point.append(points.size/dimension)
   number_of_dimension.append(dimension)
   time_complexity.append(elapsed_time)
   target_point.append(test_point.size/dimension)
print("\n")
print (" Table of Kd-Tree Time Complexity - Increasing N & D")
print("\t-----")
print("\t|| Sample Points || Numbers of Dimension || Target Points || Queries Time || ")
for i in range (loop):
   print("\t| \t %8d\t || \t %8d \t\t || \t %5d \t || %8.5f\t || %(number_of_point[i],
                     number_of_dimension[i],target_point[i],time_complexity[i]))
print("\t-----")
```

Figure 5: Python Source Code