T0-Modell: Detaillierte Berechnungen für Elektron und Myon

Grundlagen

Fundamentale Konstanten

- $\xi = 4/3 \times 10^{-4} = 0.0001333333333...$ (geometrische Konstante)
- **v** = 246 GeV (Higgs-Vakuumerwartungswert)

Yukawa-Methode Formel

 $m = r \times \xi^p \times v$

Wobei:

- m = Teilchenmasse in GeV
- **r** = geometrischer Faktor (rational)
- ξ = universelle geometrische Konstante
- **p** = Generationsexponent
- **v** = Higgs-VEV

ELEKTRON-BERECHNUNG

Parameter für Elektron

- **r e** = 4/3 = 1.333333333...
- p e = 3/2 = 1.5
- Experimentelle Masse: 0.511 MeV

Schritt-für-Schritt Berechnung

Schritt 1: ξ-Konstante berechnen

 $\xi = 4/3 \times 10^{-4}$ $\xi = 1.3333333333... \times 0.0001$ $\xi = 0.00013333333333...$

Schritt 2: Exponent p_e anwenden

```
\xi^{\text{pe}} = \xi^3/^2
\xi^{\text{pe}} = (0.0001333333333...)^{1.5}
\xi^{\text{pe}} = 1.539600946 \times 10^{-6}
```

Detaillierte Potenzberechnung:

```
(1.333333 \times 10^{-4})^{1.5} = (1.333333)^{1.5} \times (10^{-4})^{1.5}
= 1.539600946 × 10<sup>-6</sup>
```

Schritt 3: Mit r_e multiplizieren

```
y_e = r_e \times \xi^{pe}

y_e = (4/3) \times 1.539600946 \times 10^{-6}

y_e = 1.333333333 \times 1.539600946 \times 10^{-6}

y_e = 2.052801262 \times 10^{-6}
```

Schritt 4: Yukawa-Kopplung in Masse umwandeln

```
m_e = y_e \times v
m_e = 2.052801262 \times 10^{-6} \times 246 \text{ GeV}
m_e = 5.049890 \times 10^{-4} \text{ GeV}
```

Schritt 5: Einheitenumwandlung

```
m_e = 5.049890 \times 10^{-4} \text{ GeV}
m_e = 0.5049890 \text{ MeV}
```

Ergebnis Elektron

• **T0-Vorhersage**: 0.505 MeV

• Experiment: 0.511 MeV

• Abweichung: -1.18%

Verifikation

```
Abweichung = (0.505 - 0.511) / 0.511 \times 100\% = -1.18\%
```

MYON-BERECHNUNG

Parameter für Myon

```
• \mathbf{r}_{\mu} = 16/5 = 3.2
```

•
$$p_{\mu} = 1$$

• Experimentelle Masse: 105.66 MeV

Schritt-für-Schritt Berechnung

Schritt 1: ξ-Konstante (bereits bekannt)

```
\xi = 0.0001333333333...
```

Schritt 2: Exponent p_μ anwenden

```
\xi^{pu} = \xi^{1}
\xi^{pu} = 0.0001333333333... \times 1
\xi^{pu} = 0.00013333333333...
```

Vereinfachung: Da $p_{\mu} = 1$, bleibt ξ unverändert.

Schritt 3: Mit r_\mu multiplizieren

```
y_{\mu} = r_{\mu} \times \xi^{pu}

y_{\mu} = (16/5) \times 0.00013333333333...

y_{\mu} = 3.2 \times 0.00013333333333...

y_{\mu} = 0.00042666666667
```

Detaillierte Berechnung:

```
16/5 = 3.2
3.2 \times 1.333333 \times 10^{-4} = 4.266667 \times 10^{-4}
```

Schritt 4: Yukawa-Kopplung in Masse umwandeln

```
m_{\mu} = y_{\mu} \times v
m_{\mu} = 0.00042666666667 \times 246 \text{ GeV}
m_{\mu} = 0.1049600 \text{ GeV}
```

Schritt 5: Einheitenumwandlung

 $m_{\mu} = 0.1049600 \text{ GeV}$ $m_{\mu} = 104.96 \text{ MeV}$

Ergebnis Myon

• **T0-Vorhersage**: 104.96 MeV

• **Experiment**: 105.66 MeV

• Abweichung: -0.66%

Verifikation

Abweichung = $(104.96 - 105.66) / 105.66 \times 100\% = -0.66\%$

MATHEMATISCHE VERIFIKATION

Vollständige Formeln in einer Zeile

Elektron:

 $m_e = (4/3) \times (4/3 \times 10^{-4})^{(3/2)} \times 246$ $m_e = 1.333... \times 1.539... \times 10^{-6} \times 246$ $m_e = 0.505 \text{ MeV}$

Myon:

 $m_{\mu} = (16/5) \times (4/3 \times 10^{-4})^{1} \times 246$ $m_{\mu} = 3.2 \times 1.333... \times 10^{-4} \times 246$ $m_{\mu} = 104.96 \text{ MeV}$

Präzisions-Check

Teilchen	Formel	T0-Vorhersage	Experiment	Genauigkeit
Elektron	$(4/3) \times \xi^{(3/2)} \times v$	0.505 MeV	0.511 MeV	98.82%
Myon	$(16/5) \times \xi^1 \times v$	104.96 MeV	105.66 MeV	99.34%

HÄUFIGE RECHENFEHLER UND LÖSUNGEN

FALSCH: $\xi = 4/(3 \times 10^{-4}) = 4/0.0003 = 13333.33$

RICHTIG: $\xi = (4/3) \times 10^{-4} = 0.0001333...$

X Fehler 2: Verwechslung der Exponenten

FALSCH: $\xi^{(3/2)} = \xi^{3/2} = (\xi^{3})/2$ RICHTIG: $\xi^{(3/2)} = \xi^{1.5} = (\xi^{1.5})$

X Fehler 3: Parameter-Verwechslung

FALSCH: Myon mit r_e = 4/3RICHTIG: Myon mit r_ μ = 16/5

X Fehler 4: Einheiten-Verwirrung

FALSCH: Ergebnis direkt als MeV interpretieren RICHTIG: Ergebnis ist in GeV, dann × 1000 für MeV

VALIDIERUNG GEGEN STANDARDMODELL

Das T0-Modell erreicht mit null freien Parametern eine Genauigkeit von:

• Elektron: 98.82%

• Myon: 99.34%

Im Vergleich zum Standardmodell mit über 20 freien Parametern ist dies ein bemerkenswerter Erfolg der geometrischen Teilchenphysik.

ZUSAMMENFASSUNG

Die T0-Berechnungen folgen einem strikt deterministischen Schema:

- 1. **Konstante** $\xi = 4/3 \times 10^{-4}$ (universell für alle Teilchen)
- 2. Parameter (r,p) aus geometrischer Quantenzahl-Tabelle
- 3. Formel $\mathbf{m} = \mathbf{r} \times \boldsymbol{\xi}^{\mathbf{p}} \times \mathbf{v}$ exakt befolgen
- 4. Ergebnis in korrekten Einheiten interpretieren

Die mathematische Konsistenz und experimentelle Genauigkeit machen das T0-Modell zu einer validen Alternative zum Standardmodell-Ansatz für Teilchenmassen.