POLARIZATION MEASUREMENT AND MODELING OF VISIBLE SYNCHROTRON RADIATION AT SPEAR3

Chunlei Li¹, Jeff Corbett², Yahong Xu³, Chris Zhang^{1,4} ¹East China University of Science and Technology, Shanghai, China ²SLAC National Accelerator Laboratory, Menlo Park, USA ³Donghua University, Shanghai, China ⁴University of Saskatchewan, Saskatoon, Canada

Abstract

- Model the SR beam polarization using Schwinger's equations for the angular spectral power density.
- Fresnel's reflection extraction mirror to model visible light at the optical bench.
- Measure polarization with a polarizer and quarter wave plate to yield Stokes' parameters S₀-S₃
- Plot the beam polarization state on the Poincaré sphere and compare with theory.

The SPEAR3 Diagnostic beamline

Schematic for SR beam extraction mirror

Properties of the Rh-coated extraction mirror

Wavelength (nm)	532
Refractive index (n _r)	2.633
Extinction index (k _i)	3.306
Reflection coefficient $r_s(\pi \text{ mode})$	0.957
Reflection coefficient r_p (σ mode)	0.508
Intensity ratio $I_p/I_s = (r_p/r_s)^2$	0.2818
$π$ mode phase shift $ΔØ_S$	-176.726°
$σ$ mode phase shift $ΔØ_P$	119.555°
Phase difference $\Delta \emptyset_{S-P}$	Above=153°
	Below=333°

Continuous –Scan Measurement system.

1:iris, 2:BP filter, 3:quarter wave plate, 4: beam polarizer, 5: DC power meter.

Polarization Ellipse Elliptical Polarization

Schwinger's Equations

Horizontal Polarization Vertical Polarization

Stokes' Equations

$$S_0 = E_{x0}^2 + E_{y0}^2 = I_{00} + I_{900}$$

$$S_1 = E_{x0}^2 - E_{y0}^2 = I_{00} - I_{900}$$

$$S_2 = 2E_{x0}E_{y0}\cos(\delta) = I_{450} - I_{1350}$$

$$S_3 = 2E_{x0}E_{y0}\sin(\delta) = I_{450}^{QWP} - I_{1350}^{QWP}$$

Julian Schwinger

G.G. Stokes

The Poincaré Sphere

Stokes Parameters:

Measurement and Model

Vertical angle [mrad]

-0.6

-0.8^L

Poincaré Sphere: **Measurement and Model**

Polarization ellipse rotation and ellipticity as a function of vertical scan profile

SR beam polarization ellipse evaluated at different vertical elevation angles

Summary

- Polarization measurements for the unfocused visible SR beam in SPEAR3
- Vertical profile modeled with Schwinger's equations
- Stokes' parameters represent the beam polarization state.
- Thin-film Rh-coated extraction mirror has a significant influence on field polarization
- Poincaré sphere representation of the variation in beam polarization with vertical observation angle

We thank the China Scholarship Council and members of the SPEAR3 operations team for support of this work.