Ames Housing Price Prediction

Agenda

Background Methodology **Problem Statement** Gather and Data Cleaning **Exploring Data Model Data** Second Iteration Third Iteration Conclusion

Problem Statement

- To create a Model based on the Ames Housing Dataset to predict the price of a house.
- To Identify what are the features that will influence price of a house in Ames.

Background

- 2 datasets of Aimes Iowa Housing Dataset was Provided
- Training Data
 - 2051 rows of observations with 81 columns
- Test Data
 - 879 rows of obseravtions with 80 columns
- Score is calculated based on the Root Mean Square Error after submission to Kaggle
- Aim to have a generalized model that has good predictive power AND is understandable

Methodology

Data Cleaning

Most of the null values are due to Python recognizing NA as null

(They are filled with 'None' or 0 dependent on the columns data type)

Columns that could not be imputed with 'None' or 0

- Lot Frontage- 490 null values
- Garage Yr Blt-117 null values
- Various methods were used

Ordinals and dummy columns

Referred to data dictionary and converted features to numeric

Others

3 Rows with Null Values Exclusive to Train dataset was dropped

Distribution of SalePrice in Training Data

Outliers in Training Data

Feature Engineering

Some features created:

- High Quality Finish Area
- Lot Size Overall Quality
- Garage Overall
- Fireplace Overall
- Sale Overall Condition
- Total Baths
- Total Basement SF
- Age When Sold

Correlation-Selection

Features higher than 0.5 in correlation with sale price is selected and heatmap plotted

If 2 features are correlated with each other the one with a higher correlation with sale price is selected

Select interaction predictors based on correlation with Saleprice

Lasso-down

Apply lasso and increase alpha until x variables are left

(Alpha = \sim 2000)

Apply Polynomials

Lasso was performed again to remove poor interaction predictors

Target Encoding

Further reduction of features is desired to simplify the model without losing information by dropping features

```
def ordinalize(name, listy, df1, df2):
 aggname=name+'ordinal'
df1[aggname]=np.zeros(shape=df1.iloc[:,0].shape)
df2[aggname]=np.zeros(shape=df2.iloc[:,0].shape)
 for item in listy:
     itemmean=dfl[dfl[item]>0]['SalePrice'].mean()
     print(itemmean)
     dfl[aggname]=dfl[aggname]+dfl[item]*itemmean
     df2[aggname]=df2[aggname]+df2[item]*itemmean
nnbavg=df1[df1[aggname]==0]['SalePrice'].mean()
df1[aggname]=df1[aggname].replace(0,nnbavg)
df2[aggname]=df2[aggname].replace(0,nnbavg)
df1=df1.drop(columns=listy,inplace=True)
df2=df2.drop(columns=listy,inplace=True)
 return
```

Results

Conclusions

Bias vs Variance

Low Public vs High Private Scores

Simple vs Complex Models

Tradeoff between comprehensibility vs. predictive power

Which model to choose? Depends on the application