4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 5

- 1. * a) Für welche Werte von $c \in \mathbb{R}$ berühren sich $f(x) = \frac{1}{3}x^3 + c$ und f'(x)?
 - b) Berechne die Fläche, die f(x) und f'(x) einschliessen (a) 4/3 b) 9/4))
- 2. * Sei $f(x) = \frac{x-1}{x^2}$
 - a) Für welche Werte von $(a,b) \in \mathbb{R}$ ist $g(x) = \frac{ax+b}{e^x}$ eine Stammfunktion von f(x)? (-1,0)
 - b) Zeige, dass die Fläche zwischen f(x) und der x-Achse im ersten Quadranten endlich ist. (1/e)
- 3. $f(x) = x \sin x$, $x \in [0, \pi]$ wird um die x-Achse gedreht. Bestimme das Volumen des Rotationskörpers. (Hinweis: $2 \sin x \cos x = \sin(2x)$)
- 4. $y = (1 \frac{x}{k})\sqrt{x}$ mit $x \in [0, k], k > 0$. Für welche k ist das Volumen des Rotationskörper $\frac{4}{3}\pi$?
- 5. Berechne $\int_0^3 \sqrt{x-1} \, \mathrm{d}x$.
- 6. * Für welchen Wert von a>1 begrenzt der Graph der Funktion $y=\ln a\cos(ax)$ mit der x-Achse Flächenstücke maximalen Inhalts? (e)
- 7. * Zwei verschiedene Funktionen $f_1(x)$ und $f_2(x)$ haben dieselbe zweite Ableitung

$$f_i''(x) = \frac{3}{16}x - 1.$$

Ihre Graphen gehen beide durch den Ursprung des Koordinatensystems und berühren die x-Achse.

- a) Wie lauten die Gleichungen der Funktionen f_1 und f_2 ?
- b) Welchen Inhalt hat das von den beiden Graphen und von der Geraden g:x=8 eingeschlossene Flächenstück? (64)
- 8. Berechne das Rotationsvolumen, das erzeugt wird, wenn man die von den Koordinatenachsen und dem Graphen der Funktion $\sqrt{x} + \sqrt{y} = \sqrt{a}$ mit a>0 eingeschlossene Fläche um die x-Achse rotiert? $(\frac{\pi}{15}a^3)$

4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 5

- 1. * a) Für welche Werte von $c \in \mathbb{R}$ berühren sich $f(x) = \frac{1}{3}x^3 + c$ und f'(x)?
 - b) Berechne die Fläche, die f(x) und f'(x) einschliessen (a) 4/3 b) 9/4))
- 2. * Sei $f(x) = \frac{x-1}{x^2}$
 - a) Für welche Werte von $(a,b) \in \mathbb{R}$ ist $g(x) = \frac{ax+b}{e^x}$ eine Stammfunktion von f(x)? (-1,0)
 - b) Zeige, dass die Fläche zwischen f(x) und der x-Achse im ersten Quadranten endlich ist. (1/e)
- 3. $f(x) = x \sin x$, $x \in [0, \pi]$ wird um die x-Achse gedreht. Bestimme das Volumen des Rotationskörpers. (Hinweis: $2 \sin x \cos x = \sin(2x)$)
- 4. $y = (1 \frac{x}{k}\sqrt{x} \text{ mit } x \in [0, k], k > 0$. Für welche k ist das Volumen des Rotationskörper $\frac{4}{3}\pi$? (4)
- 5. Berechne $\int_0^3 \sqrt{x-1} \, \mathrm{d}x$.
- 6. * Für welchen Wert von a>1 begrenzt der Graph der Funktion $y=\ln a\cos(ax)$ mit der x-Achse Flächenstücke maximalen Inhalts? (e)
- 7. * Zwei verschiedene Funktionen $f_1(x)$ und $f_2(x)$ haben dieselbe zweite Ableitung

$$f_i''(x) = \frac{3}{16}x - 1.$$

Ihre Graphen gehen beide durch den Ursprung des Koordinatensystems und berühren die x-Achse.

- a) Wie lauten die Gleichungen der Funktionen f_1 und f_2 ?
- b) Welchen Inhalt hat das von den beiden Graphen und von der Geraden g:x=8eingeschlossene Flächenstück? (64)
- 8. Berechne das Rotationsvolumen, das erzeugt wird, wenn man die von den Koordinatenachsen und dem Graphen der Funktion $\sqrt{x} + \sqrt{y} = \sqrt{a}$ mit a > 0 eingeschlossene Fläche um die x-Achse rotiert? $(\frac{\pi}{15}a^3)$