PSTAT131HW06

Yifei Zhang

2022-05-24

```
library(ggplot2)
library(tidyverse)
library(tidymodels)
library(corrplot)
library(klaR)
library(glmnet)
tidymodels_prefer()
Pokemon <- read_csv("Pokemon.csv")
library(janitor)
library(randomForest)
library(rypert.plot)
library(ranger)
library(vip)</pre>
```

Exercise 1

Read in the data and set things up as in Homework 5:

- Use clean names()
- Filter out the rarer Pokémon types
- Convert type_1 and legendary to factors

```
cleaned <- clean_names(Pokemon)
cleaned</pre>
```

```
## # A tibble: 800 x 13
##
      number name
                     type_1 type_2 total
                                                hp attack defense sp_atk sp_def speed
##
       <dbl> <chr>
                        <chr>
                               <chr> <dbl> <dbl>
                                                    <dbl>
                                                            <dbl>
                                                                    <dbl>
                                                                           <dbl> <dbl>
##
   1
           1 Bulbasaur Grass
                               Poison
                                        318
                                                45
                                                       49
                                                               49
                                                                       65
                                                                              65
                                                                                     45
##
   2
           2 Ivysaur
                        Grass
                               Poison
                                        405
                                                60
                                                       62
                                                               63
                                                                       80
                                                                              80
                                                                                     60
##
   3
           3 Venusaur Grass
                                        525
                                                80
                                                       82
                                                               83
                                                                      100
                                                                                     80
                               Poison
                                                                             100
##
   4
           3 Venusaur~ Grass
                               Poison
                                        625
                                                80
                                                      100
                                                              123
                                                                      122
                                                                             120
                                                                                     80
##
   5
           4 Charmand~ Fire
                               <NA>
                                        309
                                                39
                                                       52
                                                               43
                                                                       60
                                                                              50
                                                                                     65
##
   6
           5 Charmele~ Fire
                               <NA>
                                        405
                                                58
                                                       64
                                                               58
                                                                       80
                                                                              65
                                                                                     80
   7
           6 Charizard Fire
                               Flying
                                        534
                                                78
                                                       84
                                                               78
                                                                      109
                                                                              85
                                                                                    100
##
   8
           6 Charizar~ Fire
                               Dragon
                                        634
                                                78
                                                      130
                                                              111
                                                                      130
                                                                              85
                                                                                    100
## 9
           6 Charizar~ Fire
                               Flying
                                        634
                                                78
                                                      104
                                                               78
                                                                      159
                                                                             115
                                                                                    100
## 10
           7 Squirtle Water <NA>
                                        314
                                                44
                                                                              64
                                                                                    43
## # ... with 790 more rows, and 2 more variables: generation <dbl>,
       legendary <lgl>
## #
```

```
filtered <- cleaned %>% filter(
  type_1 == "Bug" | type_1 == "Fire" | type_1 == "Grass"
  | type_1 == "Normal" | type_1 == "Water" | type_1 == "Psychic"
  )
filtered
## # A tibble: 458 x 13
##
      number name
                        type_1 type_2 total
                                                 hp attack defense sp_atk sp_def speed
       <dbl> <chr>
                                                                     <dbl>
##
                        <chr>
                               <chr> <dbl> <dbl>
                                                     <dbl>
                                                             <dbl>
                                                                            <dbl> <dbl>
           1 Bulbasaur Grass
                               Poison
                                         318
                                                        49
                                                                 49
                                                                        65
                                                                               65
                                                                                      45
##
    1
                                                 45
##
    2
           2 Ivysaur
                        Grass
                               Poison
                                         405
                                                 60
                                                        62
                                                                 63
                                                                        80
                                                                               80
                                                                                      60
##
   3
           3 Venusaur
                        Grass
                               Poison
                                         525
                                                 80
                                                        82
                                                                83
                                                                       100
                                                                              100
                                                                                      80
##
   4
           3 Venusaur~ Grass
                                         625
                                                       100
                                                               123
                                                                       122
                                                                              120
                                                                                      80
                               Poison
                                                 80
##
   5
           4 Charmand~ Fire
                               <NA>
                                         309
                                                 39
                                                        52
                                                                 43
                                                                        60
                                                                               50
                                                                                      65
##
   6
           5 Charmele~ Fire
                               <NA>
                                         405
                                                 58
                                                        64
                                                                58
                                                                        80
                                                                               65
                                                                                      80
   7
##
           6 Charizard Fire
                               Flying
                                         534
                                                 78
                                                        84
                                                                78
                                                                       109
                                                                               85
                                                                                     100
                                                                               85
##
   8
           6 Charizar~ Fire
                                                 78
                                                       130
                                                               111
                                                                       130
                                                                                     100
                               Dragon
                                         634
## 9
           6 Charizar~ Fire
                               Flying
                                         634
                                                 78
                                                       104
                                                                78
                                                                       159
                                                                              115
                                                                                     100
                                                        48
                                                                 65
                                                                                      43
## 10
           7 Squirtle Water
                               <NA>
                                         314
                                                 44
                                                                        50
                                                                               64
## # ... with 448 more rows, and 2 more variables: generation <dbl>,
       legendary <lgl>
## #
data <- filtered %>%
  mutate(type_1 = factor(type_1),
         legendary = factor(legendary),
         generation = factor(generation)
data
## # A tibble: 458 x 13
##
      number name
                        type_1 type_2 total
                                                 hp attack defense sp_atk sp_def speed
##
       <dbl> <chr>
                        <fct>
                               <chr> <dbl> <dbl>
                                                     <dbl>
                                                             <dbl>
                                                                     <dbl>
                                                                            <dbl> <dbl>
##
           1 Bulbasaur Grass Poison
                                         318
                                                 45
                                                        49
                                                                 49
                                                                        65
                                                                               65
                                                                                      45
   1
                                                                               80
                                                        62
                                                                 63
                                                                        80
##
           2 Ivysaur
                        Grass
                               Poison
                                         405
                                                 60
                                                                                      60
           3 Venusaur Grass
##
   3
                               Poison
                                         525
                                                 80
                                                        82
                                                                83
                                                                       100
                                                                              100
                                                                                      80
##
   4
           3 Venusaur~ Grass
                               Poison
                                         625
                                                 80
                                                       100
                                                               123
                                                                       122
                                                                              120
                                                                                      80
##
   5
           4 Charmand~ Fire
                               <NA>
                                         309
                                                 39
                                                        52
                                                                 43
                                                                        60
                                                                               50
                                                                                      65
##
    6
           5 Charmele~ Fire
                                <NA>
                                         405
                                                 58
                                                        64
                                                                 58
                                                                        80
                                                                               65
                                                                                      80
                                                                78
##
   7
           6 Charizard Fire
                                         534
                                                 78
                                                        84
                                                                       109
                                                                               85
                                                                                     100
                               Flying
##
           6 Charizar~ Fire
                                                 78
                                                       130
                                                               111
                                                                       130
                                                                               85
                                                                                     100
                               Dragon
                                         634
##
   9
           6 Charizar~ Fire
                                         634
                                                 78
                                                       104
                                                                78
                                                                       159
                                                                              115
                                                                                     100
                               Flying
           7 Squirtle Water
                                         314
                                                        48
                                                                        50
                                                                                      43
                               <NA>
                                                 44
                                                                 65
## # ... with 448 more rows, and 2 more variables: generation <fct>,
       legendary <fct>
```

Do an initial split of the data; you can choose the percentage for splitting. Stratify on the outcome variable.

```
set.seed(2022)
pokemon_split <- data %>%
  initial_split(strata = type_1, prop = 0.75)
pokemon_train <- training(pokemon_split)
pokemon_test <- testing(pokemon_split)
dim(pokemon_train)</pre>
```

```
## [1] 341 13
```

Fold the training set using v-fold cross-validation, with v = 5. Stratify on the outcome variable.

```
pokemon_folds <- vfold_cv(pokemon_train, v = 5, strata = 'type_1')
pokemon_folds</pre>
```

```
## # 5-fold cross-validation using stratification
## # A tibble: 5 x 2
## splits id
## tist> <chr>
## 1 <split [270/71]> Fold1
## 2 <split [271/70]> Fold2
## 3 <split [273/68]> Fold3
## 4 <split [274/67]> Fold4
## 5 <split [276/65]> Fold5
```

Set up a recipe to predict type_1 with legendary, generation, sp_atk, attack, speed, defense, hp, and sp_def:

- Dummy-code legendary and generation;
- Center and scale all predictors.

Exercise 2

Create a correlation matrix of the training set, using the corrplot package. Note: You can choose how to handle the continuous variables for this plot; justify your decision(s).

I droped all non numeric variables, because they can not fit into the correlation function. I think the hw question is phrased wrong. We are eliminating the non continous variables.

```
res <- cor(cordata)
res</pre>
```

```
##
               total
                            hp
                                  attack
                                           defense
                                                       sp_atk
                                                                 sp_def
                                                                            speed
           1.0000000 0.5891580 0.7517256 0.6413857 0.7521862 0.7361142 0.5831479
## total
           0.5891580 1.0000000 0.3352739 0.2321308 0.3353892 0.4154919 0.1294510
## hp
## attack 0.7517256 0.3352739 1.0000000 0.4645177 0.4437926 0.3232667 0.4347855
## defense 0.6413857 0.2321308 0.4645177 1.0000000 0.3038973 0.5534584 0.1015110
## sp_atk 0.7521862 0.3353892 0.4437926 0.3038973 1.0000000 0.4992364 0.4077537
## sp def 0.7361142 0.4154919 0.3232667 0.5534584 0.4992364 1.0000000 0.2471261
           0.5831479\ 0.1294510\ 0.4347855\ 0.1015110\ 0.4077537\ 0.2471261\ 1.0000000
## speed
```


What relationships, if any, do you notice? Do these relationships make sense to you?

All the variables have positive correlation with each other to some degree. All the variables have a positive correlation with total which makes sense. Other than that, speed is pretty positively correlated with attack and defense which also makes sense. Attack is positively correlated with sp attack and defense. Defense is also positively correlated with sp defense. They all make sense.

Exercise 3

First, set up a decision tree model and workflow. Tune the cost_complexity hyperparameter. Use the same levels we used in Lab 7 - that is, range = c(-3, -1). Specify that the metric we want to optimize is roc_auc.

Print an autoplot() of the results. What do you observe? Does a single decision tree perform better with a smaller or larger complexity penalty?

```
tree_spec <- decision_tree() %>%
  set_engine("rpart")

class_tree_spec <- tree_spec %>%
  set_mode("classification")

class_tree_fit <- class_tree_spec %>%
  fit(type_1 ~ legendary + generation + sp_atk +
```

```
attack + speed + defense + hp + sp_def,
data = pokemon_train)

class_tree_fit %>%
  extract_fit_engine() %>%
  rpart.plot() # this graph is for fun
```

```
class_tree_wf <- workflow() %>%
   add_model(class_tree_spec %>% set_args(cost_complexity = tune())) %>%
   add_recipe(pokemon_recipe)

param_grid <- grid_regular(cost_complexity(range = c(-3, -1)), levels = 10)

tune_res <- tune_grid(
   class_tree_wf,
   resamples = pokemon_folds,
   grid = param_grid,
   metrics = metric_set(roc_auc)
)

autoplot(tune_res)</pre>
```


It is pretty steady at the beginning, and then it drastically dropped. It performs better with a lower complexity penalty, it will plumb if it is too large.

Exercise 4

What is the roc_auc of your best-performing pruned decision tree on the folds? *Hint: Use collect_metrics() and arrange()*.

The roc_auc of your best-performing pruned decision tree on the folds is 0.6759523

collect_metrics(tune_res) %>% arrange()

```
##
  # A tibble: 10 x 7
##
      cost_complexity .metric .estimator
                                                    n std_err .config
                                           mean
##
                                          <dbl> <int>
                                                         <dbl> <chr>
                <dbl> <chr>
                               <chr>>
##
              0.001
                      roc_auc hand_till
                                          0.676
                                                    5 0.0188
                                                               Preprocessor1_Model01
    1
##
    2
              0.00167 roc_auc hand_till
                                          0.676
                                                    5 0.0188
                                                               Preprocessor1_Model02
##
    3
              0.00278 roc_auc hand_till
                                          0.676
                                                    5 0.0188
                                                               Preprocessor1_Model03
                                          0.674
                                                               Preprocessor1_Model04
    4
              0.00464 roc_auc hand_till
                                                    5 0.0168
##
                                          0.673
    5
                                                               Preprocessor1_Model05
##
              0.00774 roc_auc hand_till
                                                    5 0.0189
    6
##
              0.0129 roc_auc hand_till
                                          0.660
                                                    5 0.0204
                                                               Preprocessor1_Model06
    7
##
              0.0215 roc_auc hand_till
                                          0.625
                                                    5 0.0122
                                                               Preprocessor1_Model07
##
    8
              0.0359 roc_auc hand_till
                                          0.587
                                                    5 0.00577 Preprocessor1_Model08
##
    9
              0.0599 roc_auc hand_till
                                         0.595
                                                    5 0.0140
                                                               Preprocessor1_Model09
              0.1
                                                    5 0.0218 Preprocessor1_Model10
## 10
                      roc_auc hand_till 0.535
```

Using rpart.plot, fit and visualize your best-performing pruned decision tree with the training set.

```
best_complexity <- select_best(tune_res)

class_tree_final <- finalize_workflow(class_tree_wf, best_complexity)

class_tree_final_fit <- fit(class_tree_final, data = pokemon_train)

class_tree_final_fit %>%
    extract_fit_engine() %>%
    rpart.plot()
```

Now set up a random forest model and workflow. Use the ranger engine and set importance = "impurity". Tune mtry, trees, and min_n. Using the documentation for rand_forest(), explain in your own words what each of these hyperparameters represent.

mode is how we want our outcome to be reached. engine is the computation engine. mtry is the number of predictors we will resample each split. trees is the number of trees. min_n is the minimum number of data in a node

Create a regular grid with 8 levels each. You can choose plausible ranges for each hyperparameter. Note that mtry should not be smaller than 1 or larger than 8. Explain why not. What type of model would mtry = 8 represent?

mtry represents the integer for the number of predictors that will be randomly sampled at each split when creating the tree models. We can not have less than 1 because then we are not sampling any predictors, more than 8 would be too many. So mtry = 8 means we are randomly sampling 8 predictors in each split when creating the tree models.

```
## # A tibble: 320 x 3
##
       mtry trees min_n
##
      <int> <int> <int>
##
           1
    1
                 1
                        1
##
   2
           2
                 1
                        1
##
   3
           3
                 1
                        1
##
    4
           4
                 1
                        1
   5
          5
##
                 1
                        1
##
    6
          6
                 1
                        1
   7
          7
##
                 1
                        1
##
    8
          8
                 1
   9
##
          1
                15
                        1
## 10
                15
## # ... with 310 more rows
```

Specify roc_auc as a metric. Tune the model and print an autoplot() of the results. What do you observe? What values of the hyperparameters seem to yield the best performance?

The general trend is that as the number of randomly selected predictors goes up, roc_auc goes up, the minimal node size does not matter much, and when tree is one, it performs the worst. When the hyperparameters has a high minimal node number, high tree number, and high randomly selected predictor, the model seems to yield the best performance.

```
forest_tune_res <- tune_grid(
  forest_wf,
  resamples = pokemon_folds,
  grid = forest_grid,
  metrics = metric_set(roc_auc)
)</pre>
```

autoplot(forest_tune_res)

Exercise 7

What is the roc_auc of your best-performing random forest model on the folds? *Hint: Use collect_metrics() and arrange()*.

The roc_auc of my best-performing random forest model on the folds is 0.7548953

```
collect_metrics(forest_tune_res) %>% arrange()
```

```
## # A tibble: 320 x 9
##
                                                    n std_err .config
      mtry trees min_n .metric .estimator mean
##
      <int> <int> <int> <chr>
                               <chr>
                                           <dbl> <int>
                                                         <dbl> <chr>
                                                    5 0.0188 Preprocessor1_Model~
##
   1
          1
               1
                     1 roc_auc hand_till 0.563
   2
          2
                     1 roc_auc hand_till 0.559
                                                    5 0.0143 Preprocessor1_Model~
##
               1
##
   3
          3
                     1 roc_auc hand_till 0.568
                                                    5 0.0127 Preprocessor1_Model~
               1
                                                    5 0.0167 Preprocessor1_Model~
##
   4
          4
               1
                     1 roc_auc hand_till 0.584
                                                    5 0.0176 Preprocessor1 Model~
##
   5
         5
                     1 roc auc hand till
                                          0.572
               1
         6
                                                    5 0.0136 Preprocessor1 Model~
##
   6
               1
                     1 roc auc hand till 0.592
  7
         7
##
               1
                     1 roc_auc hand_till 0.594
                                                    5 0.00865 Preprocessor1_Model~
##
   8
         8
               1
                     1 roc_auc hand_till 0.558
                                                    5 0.0134 Preprocessor1_Model~
## 9
                                                    5 0.00878 Preprocessor1_Model~
          1
               15
                     1 roc_auc hand_till
                                          0.669
## 10
          2
               15
                     1 roc_auc hand_till 0.694
                                                    5 0.0176 Preprocessor1_Model~
## # ... with 310 more rows
```

```
best_forest <- select_best(forest_tune_res, metric = "roc_auc")
best_forest</pre>
```

```
## # A tibble: 1 x 4
## mtry trees min_n .config
## <int> <int> <int> <chr>
## 1 5 100 5 Preprocessor1_Model317
```

Create a variable importance plot, using vip(), with your best-performing random forest model fit on the training set.

Which variables were most useful? Which were least useful? Are these results what you expected, or not?

The most useful variables are sp_attack, attack, speed, hp, sp_defense, and defense. Legendary or not is the least useful. They are about the same as I expected, since we have checked the correlations before.

```
rf_final <- finalize_workflow(forest_wf, best_forest)
rf_fit_final <- fit(rf_final, data = pokemon_train)
rf_fit_final %>%
  pull_workflow_fit()%>%
  vip()
```


Finally, set up a boosted tree model and workflow. Use the xgboost engine. Tune trees. Create a regular grid with 10 levels; let trees range from 10 to 2000. Specify roc_auc and again print an autoplot() of the results.

What do you observe?

What is the roc_auc of your best-performing boosted tree model on the folds? *Hint: Use collect_metrics()* and arrange().

 $boost_spec <- boost_tree(trees = 5000, tree_depth = 4) \%>\% set_engine("xgboost") \%>\% set_mode("regression")$

Exercise 10

Display a table of the three ROC AUC values for your best-performing pruned tree, random forest, and boosted tree models. Which performed best on the folds? Select the best of the three and use select_best(), finalize_workflow(), and fit() to fit it to the testing set.

Print the AUC value of your best-performing model on the testing set. Print the ROC curves. Finally, create and visualize a confusion matrix heat map.

Which classes was your model most accurate at predicting? Which was it worst at?