表現論ゼミ 第2回

前田 陵汰

2023年10月30日

半単純 Lie 代数

以下、体 \mathbb{F} は代数閉体とし、標数は 0 とする (char $\mathbb{F}=0$). また、ベクトル空間は有限 次元とする.

4 Lie の定理と Cartan の判定条件

4.1 Lie の定理

定理 4.1

L を $\mathfrak{gl}(V)$ の可解な部分代数とする. $V \neq 0$ ならば, ある $v \in V$ があって, 任意の L の元に対して v は固有ベクトルとなる.

この定理から、以下の系が従う.

系 4.1A (Lie's Theorem)

L を $\mathfrak{gl}(V)$ の可解な部分代数とする. このとき, L は適当な V の基底に対して上三角行列となる a .

 $[^]a$ 本には "L stabilizes some flag in V." とありました. flag が分からん...

系 4.1B

L が可解であるとき, 以下を満たすイデアルの列が存在する.

$$0 = L_0 \subset L_1 \subset \dots \subset L_n = L, \quad \dim L_i = i \tag{1}$$

系 4.1.C

L が可解であるとき, $x \in [L,L] \Rightarrow \mathrm{ad}_{\mathbf{L}} x$ は冪零. 特に, [L,L] は冪零 Lie 代数となる.

4.2 Jordan-Chevalley 分解

一般に行列は Jordan 標準形で表すことができる. これは対角成分と, その上に 1 または 0 が並んだ行列 (これは冪零) への分解と見ることができる. これを一般化しよう.

定義 4.2

 $x \in \text{End } V$ が半単純であるとは, x の最小多項式 (minimal polynomial) が重解を持たないことをいう.

上の定義はわかりにくいが、実は

 $x \in \text{End } V$ が半単純 $\Leftrightarrow x$ は対角化可能

である.

また, x の固有ベクトルが V の基底をなすことを半単純の定義とする場合もあり [2], これも対角化可能であることと同値である.

命題 4.2

 $x \in \text{End } V$ とする.

(a) 以下を満たす x_s, x_n がただ一つ存在する.

$$x=x_s+x_n$$
, x_s は半単純, x_n は冪零. (2)

- (b) 定数項をもたない一変数多項式 p(T),q(T) があって, $x_s=p(x),\ x_n=q(x)$. 特に, x と交換する End Vの元は x_s,x_n とも交換する.
- (c) $A \subset B \subset V$ が部分空間であって, x が B を A に写すならば, x_s, x_n もまた, B を A に写す.

この分解を Jordan-Chevalley 分解と呼ぶ. 有用性を見るために随伴表現を考える.

補題 4.2

x が半単純 \Rightarrow ad x も半単純

補題 3.2 では, x が冪零 \Rightarrow ad x も冪零となることを示した.

補題 4.2A

 $x \in \text{End } V$ が $x = x_s + x_n$ のように Jordan-Chevalley 分解されているとき, ad $x \in \text{End}(\text{End } V)$ の分解は以下で与えられる.

$$ad x = ad x_s + ad x_n (3)$$

補題 4.2B

 $\mathfrak U$ を $\mathbb F$ -代数とする. このとき, Der $\mathfrak U$ の任意の元は, Der $\mathfrak U$ 内に半単純成分と冪零成分を持つ.

証明. $\delta \in \text{Der } \mathfrak U$ とし, $\delta = \sigma($ 半単純 $) + \nu($ 冪零) と分解できたとする. $\sigma \in \text{Der } \mathfrak U$ を示す.

 $\forall a \in \mathbb{F} \ \mathrm{に対} \ \mathrm{L}, \ \mathfrak{U}_a = \left\{ x \in \mathfrak{U} | \ (\delta - a \mathbb{1})^k x = 0 \ \mathrm{for} \ \exists k \right\} \ \mathrm{を定義}. \ \mathrm{このとき以下が成立}.$

$$\mathfrak{U} = \bigoplus_{a} \mathfrak{U}_{a}$$
 (a は δ (または σ) の固有値) (4)

つまり、適当な U_a の元を集めて基底とできる.

ここで次の恒等式を用いる.

$$(\delta - (a+b)\mathbb{1})^n [x,y] = \sum_{i=0}^n {}_n C_i \left[(\delta - a)^{n-i} x, (\delta - b)^i y \right] \tag{5}$$

十分大きな n を持ってくれば右辺は 0 とできるので, $x\in\mathfrak{U}_a,\ y\in\mathfrak{U}_b\ \Rightarrow\ [x,y]\in\mathfrak{U}_{a+b}$ が得られる.

 $x \in \mathfrak{U}_a, \ y \in \mathfrak{U}_b$ に対し、

$$\sigma([x, y]) = (a + b)[x, y]$$

$$= [ax, y] + [x, by]$$

$$= [\sigma x, y] + [x, \sigma y]$$

$$(6)$$

したがって σ はライプニッツ則を満たすので, $\sigma \in \text{Der } \mathfrak{U}$.

恒等式 (5) の証明は n に関する帰納法による. n=0 では明らかに成立. n>0 とする.

(左辺) =
$$(\delta - (a+b)) (\delta - (a+b))^{n-1} [x, y]$$

= $(\delta - (a+b)) \sum_{i=0}^{n-1} {}_{n-1}C_i [(\delta - a)^{n-1-i}x, (\delta - b)^i y]$
= $\sum_{i=0}^{n-1} {}_{n-1}C_i \{ [(\delta - a)^{n-i}x, (\delta - b)^i y] + [(\delta - a)^{n-1-i}x, (\delta - b)^{i+1}y] \}$
= $\sum_{i=0}^{n-1} {}_{n-1}C_i [(\delta - a)^{n-i}x, (\delta - b)^i y] + \sum_{i=0}^{n-1} {}_{n-1}C_{i-1} [(\delta - a)^{n-i}x, (\delta - b)^i y]$
= $\sum_{i=0}^{n} {}_{n}C_i [(\delta - a)^{n-i}x, (\delta - b)^i y] = (\Box \Box)$ (7)

4.3 Cartan の判定条件

補題 4.3

 $A \subset B$ を $\mathfrak{gl}(V)$ の部分空間とし、集合 M を $M = \{x \in \mathfrak{gl}(V) | [x,B] \subset A\}$ と する. このとき, $x \in M$ が $\forall y \in M$ に対して $\mathrm{Tr}(xy) = 0$ を満たすならば, x は 冪零である.

証明. x=s+n と分解し、Vの基底を s が対角行列となるようにとる. $s={
m diag}\ (a_1,\dots,a_m)=0$ を示す.

E を (a_1,\dots,a_m) で張られる $\mathbb F$ の部分空間とする. なお係数体は有理数体 $\mathbb Q$ とする. E=0 を示せばよく,有限次元なので, $E^*=0$ (双対空間) を示せば良い.

 $orall f \in E^* \ (f:E o \mathbb{Q},$ 線型写像) をとる.また $,y \in \mathfrak{gl} \ (V)$ を $,y = \mathrm{diag}(f(a_1),\dots,f(a_m))$

とする. $e_{ij} \in \mathfrak{gl}(V)$ に対し,

ad
$$s(e_{ij}) = (a_i - a_j)e_{ij}$$
 (8)

ad
$$y(e_{ij}) = (f(a_i) - f(a_j))e_{ij}$$
 (9)

であった $(4.2 \, \mathbbm{m})$. ここで, 定数項を持たない $\mathbb F$ 係数多項式 r(t) を

$$r(a_i - a_j) = f(a_i) - f(a_j) \tag{10} \label{eq:10}$$

を満たすようにとる *1 . 式 (8), (9) より,

$$ad y = r(ad s) (11)$$

である. 命題 4.2, 補題 4.2A より, ad s は ad x の定数項を持たない多項式で書けるので, ad = y も同様である. $x \in M$ より, ad x は B を A に写すから, ad y もまた B を A に写し、よって $y \in M$.

仮定より、 $\mathrm{Tr}(\mathrm{xy})=0\Rightarrow\sum a_i\ f(a_i)=0.$ f を作用させて、 $\sum f(a_i)^2=0.$ $f(a_i)$ は有理数なので、 $f(a_i)=0$ for $\forall a_i.$ したがって、f=0 となり、題意は示された.

ここで有用な恒等式を述べておく.

 $x, y, z \in \text{End}(V)$ に対し,

$$Tr([x, y] z) = Tr(x [y, z])$$
(12)

定理 4.3 (Cartan's Criterion)

L を $\mathfrak{gl}(V)$ の部分代数とする. 任意の $x\in [L,L],\,y\in L$ に対して $\mathrm{Tr}(xy)=0$ であるならば, L は可解 Lie 代数である.

証明. L が可解であることを示すためには, [L,L] が冪零 Lie 代数であることを示せば良い (命題 4.2C の逆) *2 . 上の補題を, A=[L,L], B=L として適用したいので,

 $M = \{x \in \mathfrak{gl}(L) | [x,L] \subset [L,L] \}$ とする. 明らかに, $L \subset M$ である *3 .

 $\forall z \in M, \ p,q \in L \ ($ よって $[p,q] \in [L,L])$ をとる. 恒等式 (12) より,

$$\operatorname{Tr}\left([p,q]z\right) = \operatorname{Tr}\left(p[q,z]\right) = \operatorname{Tr}\left([q,z]p\right) \tag{13}$$

 $^{^{*1}}$ このような多項式の存在はラグランジュ補間 (Lagrange interpolation) によって保証される.

^{*2} 教科書は "it is obvious" と言ってますが、全然分かりません.

^{*3} この定理の仮定は, $\forall x \in [L,L], \ \forall y \in L \text{ s.t. } \mathrm{Tr}(xy) = 0$ であり, $y \in M$ ではないので, このままでは 補題を適用できない.

 $z \in M$ より, $[q,z] \in [L,L]$ なので、定理の仮定から、 ${\rm Tr}\;([p,q]z)=0$. 任意の [L,L] の元は [p,q] の和の形で書けるから、

$$\forall x \in [L, L], \ \forall z \in M \text{ s.t. Tr } (xz) = 0 \tag{14}$$

よって補題より x は冪零であり, ad x も冪零. Engel の定理から, [L,L] は冪零 Lie 代数となる.

系 4.3

L を Lie 代数とする. 任意の $x \in [L,L], y \in L$ に対して $\mathrm{Tr}(\mathrm{ad}x\ \mathrm{ad}y) = 0$ であるならば, L は可解 Lie 代数である.

証明. 定理 4.3 を $V \to L$, $\mathfrak{gl}(V)$ の部分代数 $L \to \mathfrak{gl}(L)$ の部分代数 $\mathrm{ad}(L)$ として適用 する. 定理の仮定を満たすことを確認する. $x \in [L, L]$ より $\mathrm{ad} x \in [\mathrm{ad} L, \mathrm{ad} L], y \in L$ より $\mathrm{ad} y \in \mathrm{ad} L$. また系の仮定から $\mathrm{Tr}(\mathrm{ad} x \mathrm{ad} y) = 0$. ゆえに定理を適用できて, $\mathrm{ad} L$ は可解である.

 $ad: L \to \mathfrak{gl}(L)$ に対して Ker ad = Z(L), Im ad = ad L なので, 準同型定理より,

$$L/Z(L) \simeq \text{ad } L$$
 (15)

中心化代数 Z(L) は定義から可解であるので、 命題 3.1(b) * 4 により、 L は可解である. \Box

5 Killing 形式

5.1 半単純性の判定条件

定義 5.1A: Killing 形式

L を任意の Lie 代数とする. $x,y\in L$ に対し, Killing 形式 $\kappa(x,y)$ を次式で定義する.

$$\kappa(x,y) = \text{Tr}(\text{ad}x \text{ ad}y)$$
(16)

κ は対称な双線型写像であり、次式の意味で結合則を満たす.

$$\kappa([x,y], z) = \kappa(x, [y,z]) \tag{17}$$

 $^{*^4}$ \mathfrak{g} のイデアル \mathfrak{i} と商代数 $\mathfrak{g}/\mathfrak{i}$ がどちらも可解ならば, g 自身も可解である.

補題 5.1

I は L のイデアルとする. κ が L 上の Killing 形式, κ_I が I 上の Killing 形式とすると, $\kappa_I = \kappa|_{I \times I}$

記号の意味がややこしいので補足.

 κ_I : I 上の Killing 形式. 引数の x,y は初めから I の元のみ. ad x は大

きさ $\dim I \times \dim I$ の行列.

 $\kappa|_{I imes I} \ : \ L \ oldsymbol{oldsymbol{\perp}}$ Killing 形式で,定義域を I imes I に制限したもの.引数の x,y

は制限によって I の元のみになる. ad x は大きさ $\dim L \times \dim L$ の

行列.

証明. まず、線形代数における事実を確認しよう.

Vをベクトル空間, W をその部分空間とする. 写像 $\phi:V\to V$ の像が ${\rm Im}\ \phi\subset W$ を満たす時,

$$Tr\phi = Tr(\phi|_{W}) \tag{18}$$

ここで, $\phi|_W$ は定義域を W に制限した, $\dim W \times \dim W$ の行列である.

補題に戻る. $x, y \in I$ なので, Im $(ad x)(ad y) \subset I$. よって,

$$\begin{split} \kappa|_{I\times I} &= \operatorname{Tr}((\operatorname{ad}\,x)(\operatorname{ad}\,y)) \\ &= \operatorname{Tr}((\operatorname{ad}\,x)(\operatorname{ad}\,y)|_I) \\ &= \operatorname{Tr}((\operatorname{ad}_I\,x)(\operatorname{ad}_I\,y)) = \kappa_I \end{split} \tag{19}$$

定義 5.1B: 非退化

L 上の対称な双線型写像 $\beta(x,y)$ の radical S が 0 (零集合) のとき, β は非退化であるという. ここで, $S=\{x\in L|\beta(x,y)=0 \text{ for } \forall y\in L\}^a$.

 a この S は双線型写像に対する根基 (radical). 前回出てきたのは Lie 代数 $\mathfrak g$ に対する根基 (radical). 名前は同じだが別のもの.

Killing 形式に対する S は, L のイデアルとなる (:: 結合則).

 κ が非退化であるかは次のようにして判定できる *5 .

L の基底 $\{x_1,\ldots,x_n\}$ をとり、行列 $K_{ij}=\kappa(x_i,x_j)$ を定義する. このとき、

$$\kappa$$
が非退化 $\Leftrightarrow \det K \neq 0$ (20)

^{*5} 教科書に判定法として載っていましたが、なぜこれで判定できるのかが不明です. わかる人助けて.

定理 5.1

Lを Lie 代数とする. このとき

$$L$$
が半単純 \Leftrightarrow κ が非退化 (21)

証明. (⇒)

仮定より、Rad L=0 である. S を κ の radical とする. S の定義より、

Tr (ad
$$x$$
 ad y) = 0 for $\forall x \in S, \forall y \in L$ (特に, $y \in [S, S]$)

よって補題 4.3 により, S は可解イデアルとなり, $S \subset \mathrm{Rad}\ L = 0$. したがって κ は非退化である.

 (\Leftarrow)

仮定より, S=0.

Rad
$$L = 0 \Leftrightarrow 0$$
でない可換イデアルは存在しない*6 (22)

なので、右側の命題を示す.

Iを L の可換イデアルとする. $\forall x \in I, y \in L$ に対し,

ad
$$x$$
 ad $y: L \to L \to I$
(ad x ad $y)^2: L \to [I, I] = 0$ (23)

よって, ad x ad y は冪零であり, Tr (ad x ad y) = $\kappa(x,y)=0$. ゆえに, $x\in S\Rightarrow I\subset S$ となるが, S=0 なので I=0 であり, 題意は示された.

5.2 単純イデアル

定理 5.2

L を半単純 Lie 代数とする. このとき, L の単純なイデアル L_1,\dots,L_t が存在して, L は L_i の直和で書ける. すなわち,

$$L = L_1 \oplus \dots \oplus L_t \tag{24}$$

また, L 上の単純なイデアルは L_i 以外に存在しない. さらに, L_i 上の Killing 形式は, L 上の Killing 形式で定義域を $L_i \times L_i$ 上に制限したものと一致する.

^{*6} 対偶で考えると分かりやすい. 可換イデアルとは, イデアル内の元同士がすべて可換であることを指す.

証明. (1) まず、半単純な Lie 代数がイデアルの直和で書けることを示す.

L を半単純 Lie 代数とし, I を任意のイデアルとし,

 $I^{\perp}=\{x\in L|\ \kappa(x,y)=0\ {
m for}\ \forall y\in I\}$ とおく. κ が結合則 (式 (17)) を満たすので, I^{\perp} はイデアルである*7.

 $\forall x \in [I \cap I^{\perp}, I \cap I^{\perp}] \subset I^{\perp}, \forall y \in I \cap I^{\perp} \subset I$ は対し、

$$Tr (ad xad y) = \kappa(x, y) = 0$$
 (26)

よって、Cartan の判定条件 (系 4.3) より、 $I\cap I^\perp$ は可解となるが、L が半単純であることから、 $I\cap I^\perp=0$. これと $\dim I+\dim I^\perp=\dim L^{*8}$ により、 $L=I\oplus I^\perp$ と書ける.

(2) 次に, L が単純なイデアルの直和で書けることを示す.

L が非自明なイデアルを持たない場合, すでに L は単純である.

L が非自明なイデアルを持つ場合,極小イデアルの一つを L_1 として, $L=L_1\oplus L_1^\perp$ と 分解できる.L が 0 でない可解イデアルを持たないので, L_1 もまた 0 でない可解イデアルを持たず半単純である.これと極小であることから, L_1 は単純イデアルとなる.同様の理由で L_1^\perp も半単純なので,この操作を繰り返し行うことで,L を単純なイデアルの直和で表せる.

(3) 最後に L_i 以外の単純イデアルが存在しないことを示し、 直和の分解が一意的であることを示す.

I を L の単純イデアルとする. Z(L)=0 なので, [I,L] は 0 でない I のイデアルとなる $(\because [I,L]=0 \Rightarrow I\subset Z(L))$. さらに I が単純であることから, [I,L]=I. 一方で, L の直和分解より,

$$[I,L] = [I,L_1] \oplus \ldots \oplus [I,L_t] \tag{27}$$

各 $[I,L_i]$ は I のイデアルとなるから、0 または I. よって左辺と比較して、ただ一つの k に対して $I=[I,L_k]$ で、それ以外の L_i に対して $[I,L_i]=0$. ゆえに $I\subset L_k$ となるが、 L_k が単純なので $I=L_k$.

以上より、 L_i 以外の単純イデアルは存在せず、直和分解は一意的である.

$$\kappa([x,z]|y) = \kappa(x|[y,z]) = 0 \quad (:[y,z] \in I)$$
(25)

 $^{^{*7}}$ $x \in I^{\perp}, z \in L \Rightarrow [x,z] \in I^{\perp}$ を示す. $y \in I$ として,

よって, $[x,z] \in I^{\perp}$.

^{*8} 文献 [3] の 27 ページに証明が載っていましたが, イマイチ不完全な感じがします (行列 \mathbb{B}' がフルランクな理由がわからない).

(4) 補題 5.1 により, L_i 上の Killing 形式は, L上の Killing 形式で定義域を $L_i \times L_i$ に 制限したものと一致する.

系 5.2

L を半単純 Lie 代数とする.

- (a) L = [L, L].
- (b) L の任意のイデアル、および L を定義域とする任意の準同型写像の像も半単 純 Lie 代数となる.
- (c) L の任意のイデアルは、適当な L の単純イデアルの直和で書ける.

証明. (a)

$$\begin{split} [L,L] &= \bigoplus_i [L,L_i] \\ &= \bigoplus_i L_i \quad (\because [L,L_i] \neq \{0\}) \\ &= L \end{split} \tag{28}$$

(b)

L のイデアル \tilde{L} が半単純でないと仮定して矛盾を導く. \tilde{L} が半単純でないので, 定理 5.1 より, \tilde{L} の Killing 形式 $\tilde{\kappa}$ は退化である. すなわち,

$$\exists a \in \tilde{L} \setminus \{0\} \text{ s.t.} \tilde{\kappa}(a, x) = 0 \text{ for } \forall x \in \tilde{L}$$
 (29)

補題 5.1 より, a は $\kappa(a,x)=0$ for $\forall x\in \tilde{L}$ を満たすので, $a\in \tilde{L}^{\perp*9}$ となるが, $\tilde{L} \cap \tilde{L}^{\perp} = \{0\}$ なのでこれは矛盾. よって \tilde{L} は半単純である.

次に、準同型像も半単純であることを示す *10 . $f:L \to \operatorname{Im} f$ (準同型) に対し、準同型 定理より,

$$\operatorname{Im} \, f \simeq L/\operatorname{Ker} \, f \simeq (\operatorname{Ker} \, f)^{\perp} \tag{30}$$

定理 5.2 の証明 (1) より、 $(\text{Ker }f)^{\perp}$ も L のイデアルなので、半単純. よって Im f も半単 純である.

(c)

上記 (b) の主張、および直和分解の一意性から従う.

 $^{^{*9}}$ $ilde{L}^{\perp}=\left\{x\in L|\ \kappa(x,y)=0\ ext{for}\ orall y\in ilde{L}
ight\}$ *10 調べても出てこなくて,合ってるか微妙です.

5.3 内部微分

定理 5.3

L が半単純 Lie 代数ならば, ad L = Der L. すなわち, 任意の微分は内部微分.

一般の Lie 代数 L に対して, ad L は Der L のイデアルであることを確認しておこう. $\delta \in$ Der L, ad $x \in$ ad $L, v \in L$ に対し,

$$[\delta, \operatorname{ad} x](v) = \delta[x, v] - \operatorname{ad} x(\delta v)$$

$$= [\delta x, v] + [x, \delta v] - [x, \delta v]$$

$$= \operatorname{ad} \delta x(v)$$
(31)

よって, $[\delta, ad x] \in ad L$.

証明. L が半単純なので, $Z(L) = \{0\}$. つまり, Ker ad = $\{0\}$ なので, L と ad L は同型であり, 特に ad L は半単純.

 $M={
m ad}\ L$ とおく. $M^\perp=\{x\in D|\ \kappa(x,y)=0\ {
m for}\ \forall y\in M\}$ とすれば、定理 $5.2\ \mathcal{O}$ 証明(1)より、 $M\cap M^\perp$. よって、 $[M,M^{per}]\subset M$ かつ $[M,M^{per}]\subset M^\perp$ より、 $[M,M^{per}]=\{0\}$.

したがって、 $\forall \delta \in I$ に対して、

ad
$$\delta x = [\delta, \text{ad } x] = 0 \implies \delta x = 0 \text{ for } \forall x \in L$$
 (32)

つまり,
$$\delta = 0$$
 であり, $I = \{0\}$. したがって, $Der L = M = ad L$.

5.4 抽象 Jordan 分解

L を半単純 Lie 代数とする. 補題 4.2B より, Der L は Der L 内に半単純成分と冪零成分を持つ*¹¹. いま, Der L = ad L であり, L と ad L は一対一対応である. よって, $\forall x \in L$ に対して $\exists s, n \in L$ s.t.

$$ad x = ad s + ad n$$
 (sは半単純, nは冪零) (33)

よって, x=s+n と分解することができ, これを抽象 Jordan 分解と呼ぶ. s,n はそれぞれ半単純成分, 冪零成分と呼ばれる*12.

 $^{^{*11}}$ この補題は L が半単純でなくても成り立つ

 $^{^{*12}}$ 線型写像でない Lie 代数に対して"半単純成分", "冪零成分"を定義できる.

特に L が線形 Lie 代数である場合, $\forall x \in L$ は $x=x_s+s_n$ と Jordan-Chevalley 分解できる.これが抽象 Jordan 分解によって得られた s,n と一致することは 6.4 節で確認する.

参考文献

- [1] 田川 裕之, Lie 環論入門, https://web.wakayama-u.ac.jp/~tagawa/lecture/liealgh.pdf
- [2] 対角化と固有値問題, https://w.atwiki.jp/nopu/pages/138.html
- [3] 渡邉 究, 数学特別講義 X, 代数学特論 V (リー代数入門) http://www.rimath. saitama-u.ac.jp/lab.jp/kwatanab/lie-algebra2015.pdf