1 Números enteros

INTRODUCCIÓN

La representación numérica en la recta de los números enteros nos introduce en el estudio de su ordenación y comparación, el concepto de valor absoluto y la existencia de los signos + o - que les preceden.

Utilizando conceptos ya adquiridos como: añadir, tener, sobre, más que; reducir, menos que, deber, bajo, junto con las reglas de los signos y el uso de los paréntesis, realizaremos operaciones básicas con los números enteros.

El concepto de múltiplo y divisor común de dos números, ligado a su relación de divisibilidad, requiere el dominio de las operaciones básicas de multiplicación y división de números naturales.

RESUMEN DE LA UNIDAD

- Los números enteros son los números naturales precedidos de los signos + y -, y el número 0.
 El mayor de dos números naturales se sitúa siempre más a la derecha en la recta numérica.
- Los *múltiplos de un número* contienen al número una cantidad exacta de veces. Los divisores de un número son aquellos que caben exactamente en él una serie de veces.
- Descomponer un número en factores primos permite expresar dicho número como producto de distintos números primos elevados a exponentes.
- El *máximo común divisor* m.c.d. de dos números es el mayor de los divisores comunes de ambos.
- El *mínimo común múltiplo* m.c.m. de dos números es el menor de los múltiplos comunes de ambos.

OBJETIVOS	CONTENIDOS	PROCEDIMIENTOS
Comprender el significado de los números positivos y negativos.	 Números enteros negativos y positivos. Recta numérica: representación, orden y comparación de números enteros. Valor absoluto. Opuesto de un número. 	 Reconocimiento de números enteros. Ordenación y comparación de los números enteros. Cálculo del valor absoluto.
2. Realizar operaciones aritméticas con números enteros.	 Suma y resta de números enteros. Operaciones combinadas. Multiplicación y división de números enteros. Regla de los signos. 	 Realización de operaciones de suma, resta, multiplicación y división de números enteros. Uso correcto de paréntesis y signos.
3. Realizar operaciones con potencias.	 Producto y cociente de potencias con la misma base. Potencias de exponentes cero y uno. Potencia de una potencia. 	 Desarrollo inicial de operaciones con potencias. Aplicación de las técnicas de cálculo para hallar potencias.
4. Identificar los múltiplos y los divisores de un número.	Múltiplos y divisores de un número.Relación de divisibilidad.	 Obtención de los múltiplos y divisores de un número. Relación entre múltiplo y divisor.
5. Descomponer en factores primos. El m.c.d. y el m.c.m.	 Números primos y compuestos. Descomposición en factores primos. Múltiplos y divisores comunes: el m.c.d y el m.c.m. 	 Identificación de números primos y compuestos. Producto de factores primos. Cálculo del m.c.d. y el m.c.m. Resolución de problemas.

COMPRENDER EL SIGNIFICADO DE LOS NÚMEROS POSITIVOS Y NEGATIVOS

NOMBRE:	CURSO:	FECHA:	

NÚMEROS NEGATIVOS

• En nuestra vida diaria observamos, leemos y decimos expresiones del siguiente tipo.

EXPRESIONES COMUNES	SE ESCRIBE MATEMÁTICAMENTE	SE LEE
Hemos dejado el coche en el segundo sótano	-2	Menos dos
El submarino está a cien metros bajo la superficie del mar	-100	Menos cien
Hace una temperatura de cuatro grados bajo cero	-4	Menos cuatro
Tu cuenta está en números rojos: debes 120 €	-120	Menos ciento veinte

-2, -100, -4, -120 son números negativos.

- Expresan cantidades, situaciones o medidas cuyo valor es menor que cero.
- Les precede el signo menos (–).
- Se asocian a expresiones del tipo: menos que, deber, bajo, disminuir, restar, me he gastado...

1 Completa la siguiente tabla.

EXPRESIONES COMUNES	SE ESCRIBE MATEMÁTICAMENTE	SE LEE
La cueva está a cincuenta y cinco metros de profundidad		
La sección de juguetes está en el tercer sótano		
La temperatura fue de un grado bajo cero		
La estación de metro se encuentra a cuarenta y cinco metros por debajo del suelo		
He perdido 2 €		

•	Escribe situaciones que representen los siguientes números negativos.
	a) -2
	b) -5
	c) -10
	d) -150

NÚMEROS POSITIVOS

• Por otro lado, también observamos, leemos y decimos expresiones como:

EXPRESIONES COMUNES	SE ESCRIBE MATEMÁTICAMENTE	SE LEE
La ropa vaquera está en la tercera planta	+3	Más tres
La gaviota está volando a cincuenta metros sobre el nivel del mar	+50	Más cincuenta
¡Qué calor! Estamos a treinta grados sobre cero	+30	Más treinta
Tengo en el banco 195 €	+195	Más ciento noventa y cinco

+3, +50, +30, +195 son números positivos.

- Expresan cantidades, situaciones o medidas cuyo valor es mayor que cero.
- Les precede el signo más (+).
- Se asocian a expresiones del tipo: más que, tengo, sobre, aumentar, añadir, sumar...

3 Completa la siguiente tabla.

EXPRESIONES COMUNES	SE ESCRIBE MATEMÁTICAMENTE	SE LEE
Estamos a treinta y dos grados sobre cero		
El avión vuela a mil quinientos metros sobre el nivel del mar		
El monte tiene una altura de ochocientos metros		
La cometa es capaz de volar a ochenta metros		
Me encontré en el suelo un billete de 5 €		
Te espero en la planta baja		

Los números positivos, negativos y el cero forman el conjunto de los **números enteros**, conjunto representado por la letra \mathbb{Z} .

- **Positivos:** +1, +2, +3, +4, +5, +6... (naturales con signo +).
- **Negativos:** -1, -2, -3, -4, -5, -6... (naturales con signo -).
- Cero: 0.

1

4 Un termómetro ha marcado las siguientes temperaturas en grados centígrados durante siete días. Exprésalas con números enteros.

LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO
Dos sobre cero	Cinco sobre cero	Cero grados	Tres bajo cero	Dos sobre cero	Uno bajo cero	Cinco bajo cero

REPRESENTACIÓN DE NÚMEROS ENTEROS. ORDEN EN LA RECTA NUMÉRICA

Los números enteros se representan en una recta de esta manera.

- 1.º Dibujamos una recta y señalamos el cero, 0.
- 2.º Dividimos la recta en segmentos iguales (unidades), a la derecha y la izquierda del cero.
- 3.º A la **derecha** colocamos los números enteros **positivos**, y a la **izquierda** colocamos los números enteros **negativos**.

Observa que están ordenados:

- **5** Representa en una recta los siguientes números enteros: +8, -9, +5, 0, -1, +6, -7, +11, -6.
- 6 Dados los números enteros: -7, +8, +3, -10, +6, +4, -2:
 - a) Represéntalos en la recta numérica.
 - b) ¿Cuál está más alejado del cero?
 - c) ¿Cuál está más cerca del cero?
 - d) Escribe, para cada uno de ellos, otro número situado a igual distancia del cero que él.

COMPARACIÓN DE NÚMEROS ENTEROS

Ya sabemos que en la recta se representan los números enteros ordenados. Hay que tener en cuenta:

- 1.º Un número entero positivo es mayor que cualquier número entero negativo.
- 2.º Entre varios números enteros, siempre es mayor el que está situado más a la derecha sobre la recta.
- 3.º Para comparar utilizamos los símbolos **mayor que** (>) y **menor que** (<).

$$...$$
 $-7 < -6 < -5 < -4 < -3 < -2 < -1 < 0 < +1 < +2 < +3 < +4 < +5 < +6 < +7...$ $...$ $+7 > +6 > +5 > +4 > +3 > +2 > +1 > 0 > -1 > -2 > -3 > -4 > -5 > -6 > -7...$

Ordena.

DE MENOR A MAYOR (<)	DE MAYOR A MENOR (>)
-8, -16, +5, -2, +13, +3, -4, -9, +9, 0, +18, -10	+11, -2, +8, 0, -1, +5, -6, +3, -3, +7, -4, -9, +17

- 8 Escribe el signo que corresponda entre cada par de números enteros: < o >.

VALOR ABSOLUTO DE UN NÚMERO ENTERO

- El valor absoluto de un número entero es la distancia (en unidades) que le separa del cero en la recta numérica.
- En la práctica se escribe entre dos barras | | y resulta el mismo número sin su signo: Valor absoluto de -3 se escribe |-3| y es 3. Valor absoluto de +5 se escribe |+5| y es 5.
- Se observa que: |+5| = 5 y |-5| = 5.

- Los números enteros +5 y -5 están a la misma distancia del cero: 5 unidades.
- Se dice que +5 y -5 son números opuestos y se escribe así:

op
$$(+5) = -5$$
 op $(-5) = +5$

op
$$(-5) = +5$$

- Dos números opuestos tienen el mismo valor absoluto.
- Completa la siguiente tabla.

VALOR ABSOLUTO	RESULTADO	SE LEE
+10	10	El valor absoluto de $+10$ es 10
-8		
	7	
-9		
		El valor absoluto de -15 es 15

- 10 Para cada número entero, halla su número opuesto y represéntalos en una recta numérica.
 - a) -3
- b) +9
- c) -12
- d) +8

REALIZAR OPERACIONES ARITMÉTICAS CON NÚMEROS ENTEROS

_____ CURSO: _____ FECHA: _____ NOMBRE: _____

Para sumar dos números enteros del mismo signo, se suman sus valores absolutos y al resultado se le pone el signo de los sumandos.

EJEMPLO

(-4) + (-1)
$$\begin{vmatrix} |-4| = 4 & |-1| = 1 \\ 4+1=5 \end{vmatrix}$$
 (-4) + (-1) = -5

$$(+3) + (+2) = +5$$
 $\dots -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 \dots$

Para sumar dos números enteros de distinto signo, se restan sus valores absolutos y al resultado se le pone el signo del sumando con mayor valor absoluto.

EJEMPLO

(-6) + (+5)
$$\begin{vmatrix} |-6| = 6 & |+5| = 5 \\ 6 - 5 = 1 \end{vmatrix}$$
 (-6) + (+5) = -1

Realiza y representa en la recta numérica las siguientes sumas.

a)
$$(-3) + (-1)$$

b)
$$(+4) + (+4)$$

b)
$$(+4) + (+4)$$
 c) $(+5) + (-2)$ d) $(-2) + (-5)$ e) $(+4) + (-4)$

Para **restar** dos números enteros se suma al primero el opuesto del segundo. Se aplica a continuación la regla de la suma de números enteros.

EJEMPLO

$$(+5) - (+2) = (+5) + (-2) = +3$$

op $(+2) = -2$ $\begin{vmatrix} +5 & | & = 5 \\ |-2 & | & = 2 \end{vmatrix}$ $5 - 2 = 3$

EJEMPLO

(-6) - (-1) = (-6) + (+1) = -5
op (-1) = +1
$$\begin{vmatrix} -6 \\ +1 \end{vmatrix} = 6$$
 6 - 1 = 5

ADAPTACIÓN CURRICULAR

OPERACIONES COMBINADAS DE SUMAS Y RESTAS DE NÚMEROS ENTEROS

Los números enteros pueden combinarse mediante sumas y restas. Hay que tener en cuenta una serie de reglas:

- Cuando el primer sumando es positivo se escribe sin signo.
- Al eliminar los paréntesis, el signo que le precede afecta a todos los números:
 - El signo + mantiene los signos de todos los números: +(-7+2-1+8)=-7+2-1+8.
 - El signo **cambia** los signos de todos los números: -(-7 + 2 1 + 8) = +7 2 + 1 8.

Podemos operar de dos formas:

- Sumar por separado los enteros positivos, los enteros negativos y hallar la resta entre ambos.
- Realizar las operaciones en el orden en que aparecen.

EJEMPLO

Haz estas operaciones combinadas.

a)
$$(+7) + (+2) = 7 + 2 = 9$$

b)
$$(-4) + (-1) = -4 - 1 = -5$$

c) Primera forma:
$$+(-5 + 3 - 2 + 7) = -5 + 3 - 2 + 7 = -7 + 10 = +3$$

Segunda forma: $+(-5 + 3 - 2 + 7) = -5 + 3 - 2 + 7 = -2 - 2 + 7 = -4 + 7 = +3$

d) Primera forma:
$$-(-5 + 3 - 2 + 7) = +5 - 3 + 2 - 7 = 7 - 10 = -3$$

Segunda forma: $-(-5 + 3 - 2 + 7) = +5 - 3 + 2 - 7 = +2 + 2 - 7 = +4 - 7 = -3$

2 Realiza las siguientes operaciones, utilizando las reglas anteriores.

Ejemplo: (+11) + (-2) = 11 - 2 = 9.

a)
$$(+7) + (+1) =$$

d)
$$(+10) - (+2) =$$

b)
$$(-15) + (-4) =$$

e)
$$(-11) - (-10) =$$

c)
$$(+9) - (-5) =$$

f)
$$(-7) + (+1) =$$

a)
$$7 - 5 =$$

d)
$$-3 + 8 =$$

b)
$$11 - 4 + 5 =$$

e)
$$-1 + 8 + 9 =$$

c)
$$-9 - 7 =$$

f)
$$-10 + 3 + 7 =$$

4 Calcula.

a)
$$5 - 7 + 19 - 20 + 4 - 3 + 10 =$$

b)
$$-(8+9-11) =$$

c)
$$9 - 11 + 13 + 2 - 4 - 5 + 9 =$$

d)
$$-(20+17)-16+7-15+3=$$

5 Calcula el resultado de las siguientes operaciones combinadas.

a)
$$8 - (4 - 7) =$$

b)
$$-4 - (5 - 7) - (4 + 5) =$$

c)
$$-(-1-2-3)-(5-5+4+6+8)=$$

d)
$$(-1+2-9)-(5-5)-4+5=$$

e)
$$(-1-9)-(5-4+6+8)-(8-7)=$$

f)
$$-4 - (4 + 5) - (8 - 9) + 1 + 6 =$$

MULTIPLICACIÓN DE NÚMEROS ENTEROS

Para multiplicar dos números enteros se siguen estos pasos.

- 1.º Se multiplican sus valores absolutos (en la práctica, los números entre sí).
- 2.º Al resultado le colocamos el signo + si ambos números son de **igual signo**, y el signo si son de signos diferentes.

EJEMPLO

$$(+5) \cdot (-3) = -15$$
 1.° 5 · 3 = 15

$$+3$$
, $(-3) = -13$ $\int 2.^{\circ} -15$, ya que son de distinto signo (positivo y negativo).

$$(-5) \cdot (+3) = -15$$
 $\begin{cases} 1.^{\circ} 5 \cdot 3 = 15 \\ 2.^{\circ} & 15 \text{ years} \end{cases}$

$$(-5) \cdot (-3) = +15$$
 $\begin{cases} 1.^{\circ} 5 \cdot 3 = 15 \\ 2.2 \cdot 15 \end{cases}$

$$2.^{\circ} +15$$
, ya que son de igual signo (negativos).

$$(+5) \cdot (+3) = +15$$
 1.° $5 \cdot 3 = 15$ 2.° $+15$, ya que son de igual signo (positivos)

$$2.^{\circ} +15$$
, ya que son de igual signo (positivos).

DIVISIÓN DE NÚMEROS ENTEROS

Para dividir dos números enteros se siguen estos pasos.

- 1.º Se dividen sus valores absolutos (en la práctica, los números entre sí y siempre que la división sea exacta).
- 2.º Al resultado le colocamos el signo + si ambos números son de **igual signo**, y el signo si son de signos diferentes.

EJEMPLO

$$(+20) \cdot (-4) = -5$$
 1.° 20 : 4 = 5

(+20): **(-4)** = **-5** $\begin{cases} 1.^{\circ} & 20: 4 = 5 \\ 2.^{\circ} & -5, \text{ ya que son de distinto signo (positivo y negativo).} \end{cases}$

$$(-20): (+4) = -5$$
 $\begin{cases} 1.^{\circ} 20: 4 = 5 \\ 2.0 \end{cases}$

(-20): (+4) = -5 $\begin{cases} 1.^{\circ} 20: 4 = 5 \\ 2.^{\circ} -5, \text{ ya que son de distinto signo (negativo y positivo).} \end{cases}$

$$(-20) \cdot (-4) = +5$$
 1.° 20:4 = 5

(-20): **(-4)** = +5 $\begin{cases} 1.^{\circ} 20: 4 = 5 \\ 2.^{\circ} +5, \text{ ya que son de igual signo (negativos)}. \end{cases}$

(+20): (+4) = +5
$$\begin{cases} 1.^{\circ} 20: 4 = 5 \\ 2.^{\circ} +5, \text{ ya que son de igual signo (positivos)}. \end{cases}$$

En las operaciones de multiplicación y división de números enteros, se utiliza la regla de los signos.

MULTIPLICACIÓN	DIVISIÓN
$(+) \cdot (+) = +$ $(-) \cdot (-) = +$ $(+) \cdot (-) = (-) \cdot (+) = -$	(+): (+) = + (-): (-) = + (+): (-) = - (-): (+) = -

6 Realiza las siguientes operaciones.

a)
$$(+7) \cdot (+2) =$$

d)
$$(-5) \cdot (+8) =$$

b)
$$(+12) \cdot (-3) =$$

e)
$$(-1) \cdot (-1) =$$

c)
$$(-10) \cdot (+10) =$$

f)
$$(+5) \cdot (+20) =$$

7 Efectúa las divisiones.

a)
$$(+16): (+2) =$$

c)
$$(-25): (+5) =$$

e)
$$(+12): (-3) =$$

b)
$$(-8):(-1)=$$

d)
$$(-100): (+10) =$$

8 Calcula las siguientes operaciones, aplicando la regla de los signos.

a)
$$(+12) \cdot (-3) =$$

e)
$$(-9):(-3)=$$

i)
$$(+10) \cdot (+4) =$$

b)
$$(-20): (-10) =$$

f)
$$(-100): (+25) =$$

j)
$$(-9) \cdot (+8) =$$

c)
$$(+6) \cdot (-6) =$$

g)
$$(-1) \cdot (-18) =$$

k)
$$(+35): (+5) =$$

d)
$$(+80): (-8) =$$

h)
$$(-77): (-11) =$$

$$(-12) \cdot (+5) =$$

9 Completa los huecos con los números enteros correspondientes.

a)
$$(+9) \cdot \dots = -36$$

d)
$$(-7) \cdot \dots = +21$$

g)
$$\cdot$$
 (-8) = -40

b)
$$\cdot$$
 (+10) = -100

e)
$$(-30) \cdot \dots = +30$$

h)
$$(+6) \cdot \dots = 0$$

c)
$$(+3) \cdot \dots = -15$$

f)
$$(-8) \cdot \dots = +16$$

i)
$$\cdot (-5) = +25$$

Ocompleta los huecos con los números enteros correspondientes.

a)
$$(+42): \dots = -7$$

d)
$$(-8): \dots = +1$$

g):
$$(-9) = +6$$

b)
$$(-20)$$
: = -20

e):
$$(-6) = +5$$

h)
$$(+9): \dots = -9$$

c)
$$(+12): \dots = -4$$

i)
$$(-8): \dots = -2$$

REALIZAR OPERACIONES CON POTENCIAS

_____ CURSO: _____ FECHA: _____ NOMBRE: _____

PRODUCTO DE POTENCIAS DE LA MISMA BASE

Para multiplicar potencias de la misma base se deja la misma base y se suman los exponentes.

EJEMPLO

$$2^2 \cdot 2^3 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5$$

$$2^2 \cdot 2^3 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^5$$
 En la práctica: $2^2 \cdot 2^3 = 2^{2+3} = 2^5$.

1 Expresa con una sola potencia.

a)
$$2^2 \cdot 2^4 \cdot 2^3 = 2^{2+4+3} =$$
 c) $5^2 \cdot 5^3 =$ e) $6^4 \cdot 6 \cdot 6^3 \cdot 6^2 =$

c)
$$5^2 \cdot 5^3 =$$

e)
$$6^4 \cdot 6 \cdot 6^3 \cdot 6^2 =$$

b)
$$(-4)^4 \cdot (-4)^4 =$$

d)
$$(-5)^5 \cdot (-5)^2 =$$

f)
$$(-10)^3 \cdot (-10)^3 \cdot (-10)^4 =$$

2 Expresa como producto de factores las siguientes potencias.

POTENCIA	N.º DE FACTORES	PRODUCTO DE POTENCIAS DE LA MISMA BASE
5 ⁵	2	$5^2 \cdot 5^3$
(-6) ⁶	4	
2 ⁹	5	
(-10) ⁶	3	
4 ⁹	4	

Todo número se puede expresar como potencia de exponente 1.

EJEMPLO

$$2 = 2^1$$

$$(-3) = (-3)$$

$$10 = 10^{-1}$$

$$16 = 16^{1}$$

$$(-3) = (-3)^1$$
 $10 = 10^1$ $16 = 16^1$ $(-20) = (-20)^1$

3 Coloca los exponentes que faltan de modo que se cumpla la igualdad. (Puede haber varias soluciones en cada caso.)

a)
$$2^2 \cdot 2^{--} \cdot 2^{--} = 2^6$$

d)
$$5^{...} \cdot 5^{...} = 5^5$$

d)
$$5^{--} \cdot 5^{--} = 5^5$$
 g) $(-2)^4 \cdot (-2)^{--} \cdot (-2)^{--} = (-2)^8$

b)
$$4^2 \cdot 4^{-1} \cdot 4^{-1} \cdot 4^{-1} = 4$$

b)
$$4^2 \cdot 4^{--} \cdot 4^{--} \cdot 4^{--} = 4^7$$
 e) $(-7)^{--} \cdot (-7)^{--} = (-7)^5$ h) $10^6 \cdot 10^{--} \cdot 10^{--} = 10^9$

h)
$$10^6 \cdot 10^{10} \cdot 10^{10} = 10^9$$

c)
$$3^{11} \cdot 3^{11} \cdot 3^{11} = 3^5$$

f)
$$10^{10} \cdot 10^{10} = 10^{5}$$

i)
$$6^{...} \cdot 6^{...} \cdot 6^{...} = 6^6$$

COCIENTE DE POTENCIAS DE LA MISMA BASE

Para dividir potencias de la misma base se deja la misma base y se restan los exponentes.

EJEMPLO

$$\frac{\mathbf{2^5}}{\mathbf{2^3}} = \frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2} = \frac{2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2} \cdot \frac{2 \cdot 2}{1} = \frac{2^3}{2^3} \cdot 2 \cdot 2 = 1 \cdot 2^2 = 2^2 \qquad \text{En la práctica: } \frac{2^5}{2^3} = 2^{5-3} = 2^2.$$

En la práctica:
$$\frac{2^5}{2^3} = 2^{5-3} = 2^2$$
.

4 Expresa con una sola potencia.

a)
$$\frac{3^6}{3^2} = 3^{6-2} = 3^4$$

c)
$$\frac{4^4}{4^3}$$
 =

e)
$$\frac{5^5}{5^3}$$
 =

b)
$$\frac{(-4)^6}{(-4)^2} =$$

d)
$$\frac{(-7)^3}{(-7)} =$$

f)
$$\frac{(-6)^8}{(-6)^6} =$$

POTENCIA DE EXPONENTE CERO

Una potencia de exponente cero vale siempre uno.

$$\frac{2^{3}}{2^{3}} = \frac{2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2} = \frac{8}{8} = 1$$

$$\frac{2^{3}}{2^{3}} = 2^{3-3} = 2^{0}$$

$$2^{0} = 1$$

5 Coloca los exponentes que faltan, de modo que se cumpla la igualdad. (Puede haber varias soluciones en cada caso.)

a)
$$\frac{2^{--}}{2^{--}} = 2^{--} = 2^5$$

c)
$$\frac{3}{3}$$
 = 3 = 3

c)
$$\frac{3^{--}}{3^{--}} = 3^{--} = 3^3$$
 e) $\frac{4^{--}}{4^{--}} = \dots = 4^2$

b)
$$\frac{10^{--}}{10^{--}} = \dots = 10^4$$

b)
$$\frac{10^{--}}{10^{--}} = \dots = 10^4$$
 d) $\frac{(-5)^{--}}{(-5)^{--}} = \dots = 5^2$ f) $\frac{6^{--}}{6^{--}} = \dots = 1$

f)
$$\frac{6^{--}}{6^{--}} = \dots = 1$$

POTENCIA DE UNA POTENCIA

Para elevar una potencia a otra se mantiene la misma base y se multiplican los exponentes.

EJEMPLO

$$[\textbf{(2)^3}]^2 = 2^3 \cdot 2^3 = 2^{3+3} = 2^6 \qquad \text{En la práctica: } [(2)^3]^2 = (2)^{3\cdot 2} = 2^6.$$

$$[(-3)^4]^3 = (-3)^4 \cdot (-3)^4 \cdot (-3)^4 = (-3)^{4+4+4} = (-3)^{12}$$
 En la práctica: $[(-3)^4]^3 = (-3)^{4\cdot3} = (-3)^{12}$

6 Expresa con una sola potencia.

a)
$$[(4)^5]^2 = (4)^{5 \cdot 2} = 4$$
····

d)
$$[(5)^2]^4 =$$

b)
$$[(-3)^3]^3 =$$

e)
$$[(6)^0]^2 =$$

c)
$$[(-8)^2]^3 =$$

f)
$$[(10)^3]^4 =$$

Coloca los exponentes que faltan, de modo que se cumpla la igualdad. (Puede haber varias soluciones en cada caso.)

a)
$$[2^{...}]^{...} = 2^8$$

c)
$$[3^{...}]^{...} = 3^{10}$$

e)
$$[(-5)^{...}]^{...} = (-5)^6$$

b)
$$[6^{\text{m}}]^{\text{m}} = 6^{12}$$

d)
$$[4 \cdot \cdot \cdot] \cdot \cdot \cdot = 1$$

f)
$$[10^{...}]^{...} = 10^2$$

IDENTIFICAR LOS MÚLTIPLOS Y LOS DIVISORES DE UN NÚMERO

_____ CURSO: _____ FECHA: _____ NOMBRE: _____

Los múltiplos de un número son aquellos números que se obtienen multiplicando dicho número por 1, 2, 3, 4, 5, ..., es decir, por los números naturales.

×	1	2	3	4	5	6	7	8	9	
5	5	10	15	20	25	30	35	40	45	

Múltiplos de 5 — 5, 10, 15, 20, 25, 30, 35, 40, 45, ...

EJEMPLO

En una tienda las rosquillas se venden en paquetes de 3 unidades. ¿Cuántas puedo comprar si me llevo varios paquetes?

- $3 \cdot 1 = 3$ rosquillas $3 \cdot 2 = 6$ rosquillas $3 \cdot 4 = 12$ rosquillas $3 \cdot 5 = 15$ rosquillas
- $3 \cdot 3 = 9$ rosquillas

- $3 \cdot 6 = 18$ rosquillas

- Podemos comprar 3, 6, 9, 12, 15, 18... rosquillas.
- 3, 6, 9, 12, 15, 18... son múltiplos de 3.
- Los múltiplos de un número contienen a este una cantidad exacta de veces:
 - 1, 2, 3, 4, 5, 6... paquetes de 3 unidades.
- Lucas va al supermercado y observa que los pañuelos se venden en paquetes de 3 unidades, los yogures en grupos de 4 unidades y las pelotas de tenis en botes de 5 unidades. ¿Cuántas unidades de cada artículo podríamos comprar?
- Escribe los números que sean:
 - a) Múltiplos de 5 y menores que 51.
 - b) Múltiplos de 25 y menores que 105.
 - c) Múltiplos de 30 y que estén comprendidos entre 50 y 280.
 - d) Múltiplos de 1.000 y que estén comprendidos entre 990 y 10.100.

Los divisores de un número son aquellos números enteros que caben en él una cantidad exacta de veces.

Para hallarlos: 1.º Realizamos todas las divisiones posibles (entre números menores e igual que él) tomando el número como dividendo.

2.° Buscamos las divisiones que sean exactas (resto = 0).

Calculamos los divisores de 8.

- 2 2

- 1, 2, 4 y 8 ... son divisores de 8. Dividen exactamente a 8.
- 3, 5, 6 y 7 no son divisores de 8. No lo dividen exactamente (resto \neq 0).

ADAPTACIÓN CURRICULAR

- Realiza todas las divisiones posibles del número 12 entre números menores e igual que él.
- Completa la tabla con los datos del ejercicio anterior.

DIVISORES DE 12	
NO DIVISORES DE 12	

Cualquier número tiene al menos dos divisores: él mismo y la unidad.

- 5 Tacha aquellos números que no sean:
 - a) Divisores de $2 = \{1, 2, 3\}$
 - b) Divisores de $9 = \{1, 2, 3, 4, 6, 9\}$
 - c) Divisores de $11 = \{1, 3, 7, 9, 11\}$
 - d) Divisores de $25 = \{1, 3, 5, 10, 15, 20, 25, 30\}$
 - e) Divisores de $48 = \{1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 30, 45, 48\}$
 - f) Divisores de $100 = \{1, 2, 4, 5, 10, 20, 25, 40, 50, 60, 75, 90, 100\}$
- 6 Rellena los huecos con los divisores correspondientes.

36 1	36	36	36	36	36	36	36	36
					0 4			
0	0	0						

Los divisores de 36 son:

Múltiplo y divisor son dos conceptos estrechamente ligados. En una división exacta entre dos números existe una relación especial llamada divisibilidad.

- 49 es múltiplo de 7. El número mayor es múltiplo del menor.
- 7 es divisor de 49.
- El número menor es divisor del mayor.

De igual forma:

- 64 4 24 16 0
- 64 es múltiplo de 4.
- 4 es divisor de 64.
- 35 | 5 0 7
- 35 es múltiplo de 5.
- 5 es divisor de 35.
- 8 Completa los huecos con la palabra adecuada: múltiplo o divisor.
 - a) 25 es de 5 c) 16 es de 8 b) 60 es de 120 d) 11 es de 33

DESCOMPONER EN FACTORES PRIMOS. EL m.c.d. Y EL m.c.m.

- Número primo: es aquel número que solo tiene dos divisores, él mismo y la unidad.
- Número compuesto: es aquel número que tiene más de dos divisores.

Divisores de 5 = 1 y 5 Divisores de 8 = 1, 2, 4 y 8 5 es un número primo.

8 es un número compuesto.

1 En la siguiente serie de números, tacha los que son compuestos (los que tienen más de dos divisores).

1 2 3 # 5 Ø 7 Ø 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

- Los que quedan sin tachar son números
- 2 En la siguiente serie de números, tacha los que son compuestos (los que tienen más de dos divisores).

- Los que quedan tachados son números
- Tienen más de divisores.

DESCOMPONER UN NÚMERO EN FACTORES PRIMOS

- Ya sabemos que los primeros números primos son: 2, 3, 5, 7, 11, 13, ...
- Todo número compuesto se puede expresar como producto de otros que sean primos, y expresar sus divisores mediante la combinación de esos números, que llamamos **factores primos**.
- Para realizar la descomposición seguimos estos pasos.
 - 1.º Intentar dividir el número entre 2, tantas veces como se pueda.
 - 2.º Luego intentar también dividir el número restante entre 3, tantas veces como se pueda.
 - 3.º Seguir probando a dividir el número restante entre 5, 7, 11... tantas veces como se pueda, hasta obtener como cociente 1.
 - 4.º Expresar el número como producto de potencias de factores primos.

EJEMPLO

Realiza la descomposición en producto de factores primos del número 60.

1

y se expresa: $60 = 2 \cdot 2 \cdot 3 \cdot 5$

Recordando las potencias quedaría:

 $60=2^2\cdot 3\cdot 5$

60 queda así expresado como producto de factores primos.

3 Descompón los siguientes números en factores primos y exprésalos como producto de ellos: 24, 30, 45 y 60.

 $24 = 2 \cdot 2 \cdot 2 \cdot 3$ $24 = 2^3 \cdot 3$

Descompón los siguientes números en factores primos y exprésalos como producto de ellos: 25, 33, 75 y 100.

DIVISORES COMUNES A VARIOS NÚMEROS. MÁXIMO COMÚN DIVISOR (m.c.d.)

Luis tiene 12 trenes de plástico y Pedro 18 aviones. Quieren hacer grupos con el mismo número de vehículos en cada uno de ellos. ¿Cuál será el grupo más grande y que tenga igual número de ambos juguetes?

- Calculamos los divisores de ambos números:
 - Divisores de $12 = \{1, 2, 3, 4, 6, 12\}$

Juan puede hacer grupos iguales de 1, 2, 3, 4, 6

y 12 trenes.

- Divisores de $18 = \{1, 2, 3, 6, 9, 18\}$

Pedro puede hacer grupos iguales de 1, 2, 3, 6, 9 y 18 aviones.

- 1, 2, 3 y 6 son divisores comunes de 12 y 18.
- 6 es el divisor mayor (máximo) de 12 y 18 y es común a ambos números.
- 6 es el máximo común divisor de 12 y 18 y se expresa así: m.c.d. (12 y 18) = 6.

El grupo más grande y con el mismo número de juguetes de los dos tipos estará formado por 6 trenes y 6 aviones.

- 5 Halla los divisores comunes de:
 - a) 20 y 25
- b) 16 y 24
- c) 8 y 12
- d) 8, 10 y 12

6 Calcula el m.c.d. de los números de cada apartado del ejercicio anterior.

MÉTODO PARA EL CÁLCULO DEL MÁXIMO COMÚN DIVISOR

Hasta ahora el proceso empleado para calcular el m.c.d. es adecuado para números sencillos. Vamos a estudiar un método más directo y para números de cualquier tamaño. Seguiremos estos pasos.

- 1.º Descomponer los números en factores primos.
- 2.º Expresar los números como producto de factores primos.
- 3.º Escoger en ambos números los factores que sean comunes y que tengan el menor exponente.
- 4.° El producto de esos factores es el m.c.d.

EJEMPLO

Calcula el m.c.d. de 24 y 36.

2.°
$$24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^3 \cdot 3$$
 3.° Factores comunes: 2 y 3
 $36 = 2 \cdot 2 \cdot 3 \cdot 3 = 2^2 \cdot 3^2$ Con menor exponente: 2^2 y 3^1

4.° m.c.d.
$$(24 \text{ y } 36) = 2^2 \cdot 3 = 4 \cdot 3 = 12$$

7 Calcula el m.c.d. de los números.

- a) 6 y 15
- b) 15 y 20 c) 10 y 35 d) 25 y 50

8 Completa la siguiente tabla.

NÚMEROS	DESCOMPOSICIÓN EN FACTORES PRIMOS	PRODUCTO DE FACTORES COMUNES CON MENOR EXPONENTE	m.c.d.
60 y 40	$2^2 \cdot 3 \cdot 5$ $2^3 \cdot 5$	$2^2 \cdot 5$	20
18 y 30			
	5^2 $2^2 \cdot 5^2$		

Queremos embalar 40 latas de refresco de cola y 100 latas de referesco de limón en cajas de igual tamaño, lo más grandes posible y sin mezclarlas. ¿Cuántas latas pondremos en cada caja?

MÚLTIPLOS COMUNES A VARIOS NÚMEROS. MÍNIMO COMÚN MÚLTIPLO (m.c.m.)

Ana va a nadar al polideportivo cada 3 días y Eva cada 4. ¿Cada cuánto tiempo coincidirán en el polideportivo?

- Ana va los días 3, 6, 9, 12, 15, 18, 21, 24, 27... Son los múltiplos de 3.
- Eva va los días 4, 8, 12, 16, 20, 24, 28, 32... Son los múltiplos de 4.
- 12, 24 ... son los múltiplos comunes de 3 y 4.
- 12 es el múltiplo menor (mínimo) de 3 y 4 y es común a ambos números.
- 12 es el mínimo común múltiplo de 3 y 4 y se expresa así: m.c.m. (3 y 4) = 12.

Ana y Eva coincidirán en el polideportivo cada 12 días.

10 Halla los 3 primeros múltiplos comunes de:

a) 5 y 10

c) 4 y 6

b) 9 y 12

d) 8 y 20

11 Calcula el m.c.m. de los números de cada apartado del ejercicio anterior.

MÉTODO PARA EL CÁLCULO DEL MÍNIMO COMÚN MÚLTIPLO

Hasta ahora el proceso empleado para calcular el m.c.m. es adecuado para números sencillos. Vamos a estudiar un método más directo y para números de cualquier tamaño.

- 1.º Descomponer los números en factores primos.
- 2.º Expresar los números como producto de factores primos.
- 3.º Escoger en ambos números los factores que sean comunes y no comunes y que tengan el mayor exponente.
- 4.º El producto de esos factores es el m.c.m.

EJEMPLO

Calcula el m.c.m. de 12 y 60.

1.° 12 | 2 | 60 | 2 | 2.°
$$12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3$$
 | 3.° Factores comunes: 2 y 3 | 60 = $2 \cdot 2 \cdot 3 \cdot 5 =$ | Factores no comunes: 5 | 2 | 3 | 3 | 15 | 3 | = $2^2 \cdot 3 \cdot 5$ | Con mayor exponente: $2^2 \cdot 3 \cdot 5$ | 4.° m.c.m. $(12 \text{ y } 60) = 2^2 \cdot 3 \cdot 5 = 4 \cdot 3 \cdot 5 = 60$

- 12 Calcula el m.c.m. de los números.
 - a) 15 y 20
- b) 8 y 12 c) 10 y 30 d) 9 y 15

13 Completa la siguiente tabla.

NÚMEROS	DESCOMPOSICIÓN EN FACTORES PRIMOS	PRODUCTO DE FACTORES PRIMOS COMUNES Y NO COMUNES CON MAYOR EXPONENTE	m.c.m.
60 y 40	$2^2 \cdot 3 \cdot 5$ $2^3 \cdot 5$	$2^3 \cdot 3 \cdot 5$	120
18 y 30			
	$2^2 \cdot 3 \cdot 5$ $2^3 \cdot 5^2$		

Dos aviones de una línea aérea salen siempre del mismo aeropuerto. Uno lo hace cada 10 días y el otro cada 12. Si han salido hoy, ¿cuándo volverán a coincidir en el aeropuerto?