# Электричество и магнетизм

Семестр 2

#### **ЛЕКЦИЯ № 13**

#### Электромагнитные волны

- 1. Дифференциальная форма уравнений Максвелла в вакууме. Волновое уравнение.
- 2. Плоская монохроматическая волна и её характеристики в вакууме.
- 3. Излучение электромагнитных волн электрическими зарядами.
- 4. Шкала длин волн электромагнитного излучения.

### Единая теория электрических и магнитных явлений.

- 1. Переменное магнитное поле вызывает появление вихревого электрического поля.
- 2. Переменное электрическое поле вызывает появление магнитного поля.
- 3. Взаимно порождаясь они могут существовать независимо от источников заряда или токов которые первоначально создали одно из них.

В сумме это есть электромагнитное поле (ЭМП)

Превращение одного поля в другое и распространение в пространстве — есть способ существования ЭМП.

В 1860г. знаменитый английский физик Джеймс Клерк Максвелл создал единую теорию электрических и магнитных явлений, в которой он:

- использовал понятие ток смещения,
- дал определение ЭМП и
- предсказал существование в свободном пространстве электромагнитного излучения, которое распространяется со скоростью света.

Конкретные проявления ЭМП – радиоволны, свет,  $\gamma$  – лучи и т.д.

#### Дифференциальная форма уравнений Максвелла в вакууме. Волновое уравнение.

Существование электромагнитного поля следует из уравнений Максвелла.

Рассмотрим однородную нейтральную ( $\rho = 0$ ) непроводящую (j = 0) среду, например, для простоты, вакуум. Для этой среды можно записать:

$$\vec{\boldsymbol{D}} = \varepsilon_0 \vec{\boldsymbol{E}}$$
,  $\vec{\boldsymbol{B}} = \mu_0 \vec{\boldsymbol{H}}$ 

В случае любой иной однородной нейтральной непроводящей среды, к записанным выше уравнения нужно добавить  $\boldsymbol{\mathcal{E}}$  и  $\boldsymbol{\mu}$  .

Запишем дифференциальные уравнения Максвелла в общем виде:

$$div \vec{D} = \rho$$
,  $rot \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ ,  $div \vec{B} = 0$ ,  $rot \vec{H} = \vec{j} + \frac{\partial D}{\partial t}$ .

Для рассматриваемых свойств среды эти уравнения еют вил:

имеют вид: 
$$div \vec{D} = 0$$
,  $rot \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ ,  $div \vec{B} = 0$ ,  $rot \vec{H} = \frac{\partial \vec{D}}{\partial t}$ ,

Будем рассматривать поля E и H, зависящие только от одной координаты x и времени t. Это одномерная задача. Для этого конкретного случая уравнения Максвелла 4 и 2 можно упростить и записать в таком

виде:

$$\frac{\partial D_{y}}{\partial t} = -\frac{\partial H_{z}}{\partial x}, \quad \frac{\partial D_{z}}{\partial t} = \frac{\partial H_{y}}{\partial x}, \\
-\frac{\partial B_{y}}{\partial t} = -\frac{\partial E_{z}}{\partial x}, \quad -\frac{\partial B_{z}}{\partial t} = \frac{\partial E_{y}}{\partial x}.$$

$$\operatorname{rot}\vec{\mathbf{E}} = \vec{\mathbf{i}} \left( \frac{\partial E_{z}}{\partial y} - \frac{\partial E_{y}}{\partial z} \right) + \vec{\mathbf{j}} \left( \frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} \right) + \vec{\mathbf{k}} \left( \frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} \right)$$

Эти уравнения означают, что изменяющееся во времени электрическое поле  $D_y$  порождает магнитное поле  $H_z$ , направленное вдоль оси z. Переменное магнитное поле  $B_y$  является источником электрического поля, меняющегося вдоль оси z. И так далее. В любом случае эти поля —  $\vec{E}$  и  $\vec{H}$  — перпендикулярны друг другу.

Примем, для определенности, что электрическое поле направлено вдоль оси y ( $E = E_y$ ,  $E_z = 0$ ), а магнитное — вдоль оси z ( $H = H_z$ ,  $H_y = 0$ ). Тогда последняя система четырех уравнений упростится до двух:

$$\frac{\partial D}{\partial t} = -\frac{\partial H}{\partial x}$$

$$\frac{\partial B}{\partial t} = -\frac{\partial E}{\partial x}$$



Первое из этих уравнений продифференцируем по времени t, а второе — по координате x:

$$\mathfrak{E}_{0} \frac{\partial^{2} E}{\partial t^{2}} = -\frac{\partial^{2} H}{\partial x \cdot \partial t},$$

$$\mathfrak{\mu} \mathfrak{\mu}_{0} \frac{\partial^{2} H}{\partial x \cdot \partial t} = -\frac{\partial^{2} E}{\partial x^{2}}.$$

где в случае среды:  $D = \varepsilon \varepsilon_0 E$ ,  $B = \mu \mu_0 H$ .

Сравнивая эти два уравнения, приходим к выводу:

$$\varepsilon \varepsilon_0 \frac{\partial^2 E}{\partial t^2} = \frac{1}{\mu \mu_0} \frac{\partial^2 E}{\partial x^2}.$$

Или еще понятнее:

$$\frac{\partial^2 E}{\partial t^2} = \frac{1}{\mu \mu_0 \varepsilon \varepsilon_0} \frac{\partial^2 E}{\partial x^2}$$

Это дифференциальное волновое уравнение.

Таким образом, решая совместно уравнения Максвелла, мы пришли к выводу, что в однородной изотропной среде электрические (и магнитные!) поля распространяются в виде электромагнитной волны.

Теперь известна и скорость этой волны:

$$\upsilon = \sqrt{rac{1}{arepsilon_0 \mu_0 arepsilon \mu}} = rac{c}{\sqrt{arepsilon \mu}}.$$

Здесь:

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = \sqrt{\frac{1}{8,85 \cdot 10^{-12} \cdot 4\pi \cdot 10^{-7}}} = 3 \cdot 10^8 \, \text{м/c}$$
 — скорость

электромагнитной волны в вакууме ( $\epsilon = 1$  и  $\mu = 1$ ).

$$\frac{\partial^2 E}{\partial t^2} = \upsilon^2 \frac{\partial^2 E}{\partial x^2} \quad \text{или} \quad \frac{\partial^2 E}{\partial x^2} - \frac{1}{\upsilon^2} \frac{\partial^2 E}{\partial t^2} = 0$$

Это скалярное волновое уравнение.

Подобное уравнение можно получить и для магнитной составляющей волны H:

$$\frac{\partial^2 H}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 H}{\partial t^2} = 0$$

Это одномерный случай, волна распространяется только вдоль оси x.

Поскольку напряженности электрического и магнитного полей являются векторами, то их вектора  $\vec{E}$  и  $\vec{H}$  образуют векторные волновые уравнения:

$$\nabla^2 \vec{\mathbf{E}} - \frac{1}{\upsilon^2} \frac{\mathrm{d}^2 \vec{\mathbf{E}}}{\mathrm{d}t^2} = 0$$

$$\nabla^2 \vec{\mathbf{H}} - \frac{1}{\upsilon^2} \frac{\mathrm{d}^2 \vec{\mathbf{H}}}{\mathrm{d}t^2} = 0$$

$$\nabla^2 = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \text{ оператор Лапласа}$$

Решение волнового уравнения для плоской волны, т.е. распространяющейся вдоль одного направления x:

$$\vec{E} = \vec{E}_0 \cos(\omega t - kx + \varphi_o)$$

$$\vec{\mathbf{H}} = \vec{\mathbf{H}}_0 \cos(\omega t - kx + \varphi_o)$$

где  $\vec{E}_0$  и  $\vec{H}_0$  - амплитуды напряженностей электрического и магнитных полей;  $\varphi_o$  — начальная фаза колебаний;  $k=\frac{\omega}{D}$  — волновое число.



Синусоидальная (гармоническая) электромагнитная волна. Векторы  $\vec{E}$  ,  $\vec{H}$  и  $\vec{\mathcal{U}}$  взаимно перпендикулярны.

Строго монохроматическая волна представляет собой бесконечную во времени и пространстве последовательность «горбов» и «впадин» с одной частотой  $\omega$ .

$$\vec{E} = \vec{E}_0 \cos(\omega t - kx + \varphi_0) \qquad \vec{H} = \vec{H}_0 \cos(\omega t - kx + \varphi_0)$$

$$\vec{\mathbf{H}} = \vec{\mathbf{H}}_0 \cos(\omega t - kx + \varphi_o)$$

Фазовая скорость этой волны  $\upsilon = \lambda \nu$  или  $\upsilon = \frac{\omega}{k}$ 



В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу:  $\omega_{\text{эл}} = \omega_{\text{маг}}$ .

$$\frac{\mathcal{E}_0 E^2}{2} = \frac{\mu \mu_0 H^2}{2}$$

Отсюда следует, что в электромагнитной волне модули напряженности магнитного поля H и напряженности электрического поля E в каждой точке пространства связаны соотношением :  $\sqrt{\varepsilon \varepsilon_0} E = \sqrt{\mu \mu_0} H$ 

Из теории Максвелла следовало, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены П. Н. Лебедевым (1900 г.). Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.

## Излучение электромагнитных волн электрическими зарядами

Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Г. Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света. Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроволочной связи (А. С. Попов, 1895 г.).

Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи. Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный **момент** p(t) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ



Элементарный диполь, совершающий гармонические колебания.

Рисунок дает представление о структуре электромагнитной волны, излучаемой таким диполем. Излучение элементарного диполя.

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Работы Герца в области электромагнитных волн имели основополагающее значение для дальнейшего развития в этой области физики. Его опыты были многократно повторены, усовершенствованы и в конечном итоге привели к изобретению радио и телевидения.

Изучение свойств электромагнитных волн, теоретически предсказанных М. Фарадеем и Д. Максвеллом и практически доказанных Г. Герцем, приводило к мысли о возможности их использования для организации беспроволочной связи. Несколько исследователей попытались решить эту задачу. Добились успеха наш соотечественник А.С. Попов итальянец Г. Маркони.



7 мая 1895г. **А. С. Попов** впервые продемонстрировал работу своего "прибора для обнаружения и регистрирования электрических колебаний" на заседании Русского физико-химического общества в ходе обстоятельного доклада. Прибор откликался на посылки волн от "герцевского вибратора", возбуждаемого катушкой Румкорфа, на расстоянии 25 метров. Это была демонстрация первого в мире радиоприёмника, открывшего эру радио.

А.С. Попов использовал удачный индикатор электромагнитных волн, основанный на использовании металлических опилок. Свойство металлических порошков менять свои электрические свойства под действием электромагнитных волн было использовано в приборе, который назывался когерер: в стеклянную трубочку насыпаны мелкие опилки и сделаны металлические выводы из нее. Приемник А.С. Попова выглядел так:



Внешний вид



Первая в мире смысловая радиограмма, осуществленная 7 марта 1895 года А.С. Поповым, содержала всего два слова: "Генрих Герц" как дань уважения памяти великого ученого, открывшего дверь в мир



Когерер, используемый Поповым А.С. в радиоприемнике.



#### Шкала длин волн электромагнитного излучения





Шкала электромагнитных волн. Границы между различными диапазонами условны.



Оптический диапазон длин волн  $\lambda$  ограничен с одной стороны рентгеновскими лучами, а с другой — микроволновым диапазоном радиоизлучения. Видимый свет (в вакууме):  $\lambda = [400 \text{ нм (фиолетовый)} - 760 \text{ нм (красный)}]$ 





