Homework 4

Adeline Shin 11/19/2020

Uploading the Data

```
# Upload the toenail df
toenail_df = read.delim("./toenail.txt", header = TRUE, sep = " ", col.names = c("Subject ID", "Respons
# Clean up toenail_df
toenail_df =
    toenail_df[, 1:5] %>%
    janitor::clean_names()

toenail_df = as.data.table(toenail_df)
toenail_df$treatment = as.factor(toenail_df$treatment)
```

Question 1

```
# Add response at lag 1
toenail_df[, response_1 := shift(response, n = 1, type = "lag", fill = NA), by = "subject_id"]
# Transition Probabilities
tab1 = table(toenail_df$response, toenail_df$response_1)
tab1
##
##
          0
               1
     0 1203 112
         28 271
round(prop.table(tab1, margin = 1), 2)
##
##
               1
##
     0 0.91 0.09
     1 0.09 0.91
# Association b/w treatment and response
tab2 <- table(toenail_df$response, toenail_df$treatment)</pre>
round(prop.table(tab2, margin = 1), 2)
##
##
          0
##
     0 0.48 0.52
     1 0.52 0.48
```

```
# Stratified by previous response
temp <- split(toenail_df, toenail_df$response_1)</pre>
tab3 <- lapply(temp, function(z){table(z$response, z$treatment)})</pre>
lapply(tab3, function(z){round(prop.table(z,margin = 1),2)})
## $ 0
##
##
          0
     0 0.48 0.52
##
     1 0.68 0.32
##
## $`1`
##
##
          0
               1
     0 0.50 0.50
##
     1 0.52 0.48
# Model
model_lag_1 <- gee(response ~ treatment * response_1, corstr = "independence", family = binomial("logit"</pre>
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
##
             (Intercept)
                                    treatment1
                                                          response_1
                                                            4.3333393
              -3.4099311
                                     -0.8353845
##
## treatment1:response_1
               0.7541591
round(summary(model lag 1)$coeff,2)
                         Estimate Naive S.E. Naive z Robust S.E. Robust z
## (Intercept)
                            -3.41
                                        0.23 -14.61
                                                             0.25 - 13.57
## treatment1
                            -0.84
                                         0.41
                                               -2.04
                                                             0.42
                                                                     -2.00
## response_1
                             4.33
                                         0.28
                                                15.37
                                                             0.33
                                                                      13.25
                             0.75
                                         0.47
                                                                       1.54
## treatment1:response_1
                                                 1.61
                                                             0.49
model_lag_1b <- gee(response ~ treatment + response_1, corstr = "independence", family = binomial("logit</pre>
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
## (Intercept) treatment1 response_1
## -3.6308207 -0.2667416
                             4.6476673
round(summary(model_lag_1b)$coeff,2)
               Estimate Naive S.E. Naive z Robust S.E. Robust z
                  -3.63
                              0.21 - 17.44
                                                  0.21 -17.02
## (Intercept)
## treatment1
                  -0.27
                               0.19
                                      -1.39
                                                   0.15
                                                           -1.76
                   4.65
                              0.22
                                     21.16
                                                   0.24
                                                           19.20
## response_1
```

```
toenail_df2 = toenail_df[, response_1 := shift(response, n = 2, type = "lag", fill = NA), by = "subject
# Transition Probabilities
```

```
tab1 = table(toenail_df$response, toenail_df$response_1)
##
##
         0
             1
##
     0 934 189
     1 33 169
##
round(prop.table(tab1, margin = 1), 2)
##
##
          0
               1
     0 0.83 0.17
##
     1 0.16 0.84
##
# Association b/w treatment and response
tab2 <- table(toenail_df$response, toenail_df$treatment)</pre>
round(prop.table(tab2, margin = 1), 2)
##
##
          0
               1
##
     0 0.48 0.52
     1 0.52 0.48
##
# Stratified by previous response
temp <- split(toenail_df, toenail_df$response_1)</pre>
tab3 <- lapply(temp, function(z){table(z$response, z$treatment)})
lapply(tab3, function(z){round(prop.table(z,margin = 1),2)})
## $`0`
##
##
          0
               1
     0 0.48 0.52
##
##
     1 0.61 0.39
##
## $`1`
##
##
          0
               1
     0 0.49 0.51
     1 0.54 0.46
##
# Model
model_lag_1 <- gee(response ~ treatment * response_1, corstr = "independence", family = binomial("logit"
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
\ensuremath{\mbox{\#\#}} running glm to get initial regression estimate
##
             (Intercept)
                                     treatment1
                                                             response_1
                                     -0.5250711
                                                              3.0806020
##
              -3.1023420
## treatment1:response 1
##
               0.3391717
round(summary(model_lag_1)$coeff,2)
##
                          Estimate Naive S.E. Naive z Robust S.E. Robust z
## (Intercept)
                             -3.10
                                          0.23 -13.55
                                                               0.27
                                                                      -11.60
                                                -1.45
## treatment1
                             -0.53
                                          0.36
                                                               0.44
                                                                       -1.18
## response_1
                              3.08
                                          0.27
                                                11.31
                                                             0.35
                                                                        8.90
```

```
## treatment1:response_1
                              0.34
                                         0.42
                                                 0.81
                                                              0.53
                                                                       0.65
model_lag_1b <- gee(response ~ treatment + response_1, corstr = "independence", family = binomial("logit</pre>
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
  (Intercept) treatment1 response 1
     -3.209514
##
                 -0.273886
                               3.230248
round(summary(model_lag_1b)$coeff,2)
##
               Estimate Naive S.E. Naive z Robust S.E. Robust z
## (Intercept)
                  -3.21
                               0.19 - 16.47
                                                    0.23
                                                           -14.24
                  -0.27
                                      -1.51
                                                    0.19
                                                            -1.43
## treatment1
                               0.18
                                                            12.52
## response_1
                   3.23
                               0.21
                                      15.70
                                                    0.26
```

The following interpretations can be made for the coefficients in the first-order transition model:

- Intercept: -3.41 is the log odds of having moderate or severe onycholysis for those who had no treatment and did not have moderate or severe onycholysis in the previous visit.
- treatment: -0.84 is the log odds ratio of respiratory infection comapring those with and without moderate or severe onycholysis who had an identical treatment status in the previous visit.
- response_1: 4.33 is the log odds ratio of moderate or severe onycholysis comparing those with and without treatment in their previous visit who currently have an identical status for moderate or severe onycholysis.

Part 4

The interpretations from the transition model differ from the ones in HW 2 and HW 3 because they compare the current status to the status at the previous visit, while the previous models (GEE and mixed effects) do not account for the direct previous visit.

Question 2

Setup

```
toenail <- fread("toenail.txt")
colnames(toenail) <- c("id","response","treatment","month","visit")
toenail2 <- tidyr::complete(toenail, id, visit) %>%
tidyr::fill(treatment)
toenail2 <- as.data.table(toenail2)</pre>
```

```
# Complete case analysis
count = toenail2[, j = list(n = sum(!is.na(response))), by = "id"]
table(count$n)
```

```
##
##
       2
            3
               4 5 6 7
    1
        3 7
                6 10 39 224
count = count[n==7]
toenail3 = toenail2[id %in% count$id]
table(toenail3$response, useNA = "always")
##
##
     0
          1 <NA>
## 1266 302
table(toenail3$visit, toenail3$response, useNA = "always")
##
##
           0
              1 <NA>
##
         144 80
    1
         152 72
##
    2
                    0
##
    3
         161 63
                    0
##
    4
         180 44
                    0
    5
         207 17
##
                    0
##
    6
         211 13
                    0
##
    7
         211 13
                    0
    <NA>
gee1 = geeglm(response ~ treatment + (visit + I(visit^2)), id = id, data = toenail3, family = binomial
summary(gee1)
##
## geeglm(formula = response ~ treatment + (visit + I(visit^2)),
      family = binomial(link = "logit"), data = toenail3, id = id,
##
##
      corstr = "unstructured")
##
## Coefficients:
##
              Estimate Std.err Wald Pr(>|W|)
## (Intercept) -0.55054 0.22593 5.938
## treatment
             -0.08481 0.25414 0.111
                                      0.7386
## visit
              -0.11827 0.11014 1.153
                                       0.2829
## I(visit^2) -0.03384 0.01808 3.506
                                      0.0612 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation structure = unstructured
## Estimated Scale Parameters:
##
              Estimate Std.err
##
## (Intercept)
                 1.041 0.3283
    Link = identity
##
## Estimated Correlation Parameters:
            Estimate Std.err
## alpha.1:2 0.8960 0.28370
## alpha.1:3
             0.7745 0.25781
## alpha.1:4
             0.5556 0.20552
## alpha.1:5
             0.2432 0.12187
```

```
## alpha.1:6
              0.1470 0.09672
## alpha.1:7 0.1529 0.10101
## alpha.2:3 0.8882 0.29160
## alpha.2:4 0.6492 0.23421
## alpha.2:5 0.2984 0.14228
## alpha.2:6 0.2046 0.11634
## alpha.2:7 0.1828 0.11207
## alpha.3:4 0.8334 0.28901
## alpha.3:5 0.3074 0.14938
## alpha.3:6 0.2004 0.12192
## alpha.3:7 0.2248 0.12759
## alpha.4:5 0.4036 0.17758
## alpha.4:6 0.2764 0.14615
## alpha.4:7
             0.3070 0.15330
## alpha.5:6
              0.5167 0.21708
## alpha.5:7
              0.5128 0.21372
## alpha.6:7
              0.7330 0.26623
## Number of clusters:
                       224 Maximum cluster size: 7
```

(Intercept) -0.3773 0.1862 4.11

-0.1495 0.2142 0.49

treatment

Part 2

```
# Available case analysis
table(toenail2$response,useNA = "always")
##
##
     0
           1 <NA>
## 1500 408 150
table(toenail2$visit, toenail2$response, useNA = "always")
##
##
           0
                1 <NA>
##
         185 109
     1
                     0
##
     2
         191
              97
##
    3
         199
               84
                    11
##
     4
         214
              58
                    22
##
    5
         241 22
                    31
                    50
##
         226 18
##
    7
          244 20
                    30
gee2 = geeglm(response ~ treatment + (visit + I(visit^2)), id = id, data = toenail2, family = binomial
summary(gee2)
##
## geeglm(formula = response ~ treatment + (visit + I(visit^2)),
       family = binomial(link = "logit"), data = toenail2, id = id,
##
       corstr = "unstructured")
##
## Coefficients:
               Estimate Std.err Wald Pr(>|W|)
```

0.043 *

0.485

```
## visit
               -0.1235 0.0913 1.83
                                       0.176
## I(visit^2)
              -0.0302 0.0149 4.10
                                       0.043 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation structure = unstructured
## Estimated Scale Parameters:
##
##
              Estimate Std.err
## (Intercept)
                  1.01
                         0.208
    Link = identity
##
## Estimated Correlation Parameters:
##
            Estimate Std.err
## alpha.1:2
               0.895 0.1880
## alpha.1:3
               0.716
                      0.1611
## alpha.1:4
               0.545 0.1405
## alpha.1:5
               0.263 0.0941
## alpha.1:6
               0.153 0.0789
## alpha.1:7
               0.131 0.0804
## alpha.2:3
               0.832 0.1848
## alpha.2:4
               0.648 0.1629
## alpha.2:5
               0.285 0.1016
## alpha.2:6
               0.240 0.0947
## alpha.2:7
               0.154 0.0870
## alpha.3:4
               0.850 0.2027
## alpha.3:5
               0.296 0.1073
## alpha.3:6
               0.213 0.0961
## alpha.3:7
               0.187 0.0968
## alpha.4:5
               0.397 0.1256
## alpha.4:6
               0.294 0.1120
## alpha.4:7
               0.258 0.1128
## alpha.5:6
               0.493 0.1502
## alpha.5:7
               0.438 0.1500
## alpha.6:7
               0.607 0.1842
## Number of clusters:
                        294 Maximum cluster size: 7
```

```
# LOCF
toenail4 = lapply(unique(toenail2$id), function(z){tidyr::fill(toenail2[id == z], treatment)})
toenail4 = rbindlist(toenail4)
table(toenail4$visit, toenail4$response, useNA = "always")
##
##
                1 <NA>
            0
##
     1
          185 109
##
               97
                     6
     2
          191
##
     3
          199
               84
                    11
     4
##
          214
               58
                    22
##
     5
          241
               22
                    31
          226
##
     6
               18
                    50
##
     7
          244
               20
                    30
```

```
##
    <NA> 0 0
gee3 = geeglm(response ~ treatment + (visit + I(visit^2)), id = id, data = toenail4, family = binomial(
summary(gee3)
##
## Call:
## geeglm(formula = response ~ treatment + (visit + I(visit^2)),
      family = binomial(link = "logit"), data = toenail4, id = id,
      corstr = "unstructured")
##
##
## Coefficients:
              Estimate Std.err Wald Pr(>|W|)
## (Intercept) -0.3773 0.1862 4.11
                                      0.043 *
               -0.1495 0.2142 0.49
## treatment
                                      0.485
## visit
               -0.1235 0.0913 1.83
                                      0.176
## I(visit^2) -0.0302 0.0149 4.10
                                      0.043 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation structure = unstructured
## Estimated Scale Parameters:
##
              Estimate Std.err
## (Intercept)
                  1.01
                         0.208
##
   Link = identity
## Estimated Correlation Parameters:
            Estimate Std.err
##
## alpha.1:2
              0.895 0.1880
## alpha.1:3
               0.716 0.1611
## alpha.1:4
               0.545 0.1405
## alpha.1:5
               0.263 0.0941
## alpha.1:6
               0.153 0.0789
## alpha.1:7
               0.131 0.0804
## alpha.2:3
               0.832 0.1848
## alpha.2:4
               0.648 0.1629
## alpha.2:5
               0.285 0.1016
## alpha.2:6
               0.240 0.0947
## alpha.2:7
               0.154 0.0870
## alpha.3:4
               0.850 0.2027
## alpha.3:5
               0.296 0.1073
## alpha.3:6
               0.213 0.0961
## alpha.3:7
               0.187 0.0968
## alpha.4:5
               0.397 0.1256
## alpha.4:6
               0.294 0.1120
## alpha.4:7
               0.258 0.1128
## alpha.5:6
               0.493 0.1502
## alpha.5:7
               0.438 0.1500
## alpha.6:7
               0.607 0.1842
## Number of clusters:
                       294 Maximum cluster size: 7
```

```
# MI
toenail5 = toenail2
pred = make.predictorMatrix(toenail5)
##
             id visit response treatment month
## id
                    1
                             1
                    0
                                        1
## visit
              1
                              1
                                              1
                    1
                                        1
                                              1
## response
              1
## treatment 1
                    1
                              1
                                        0
                                              1
## month
              1
                    1
                              1
pred["response", "id"] = -2
pred
             id visit response treatment month
##
## id
                    1
                              1
## visit
              1
                    0
                                        1
                                              1
                              1
## response -2
                    1
                              0
                                        1
## treatment 1
                              1
                                              1
                    1
## month
              1
                    1
                              1
                                              0
pred = pred["response",,drop = FALSE]
##
            id visit response treatment month
## response -2
toenail5$id <- as.integer(toenail5$id)</pre>
imp = mice(toenail5, method = "21.bin", pred = pred, seed = 1, maxit = 1, m = 5, print = FALSE, blocks
table(mice::complete(imp)$response, useNA = "always")
##
##
      0
           1 <NA>
## 1500 408 150
implist = mids2mitml.list(imp)
gee4 = with(implist, geeglm(response ~ treatment + (visit + I(visit^2)), id = id, family = binomial, co
testEstimates(gee4)
##
## Call:
## testEstimates(model = gee4)
## Final parameter estimates and inferences obtained from 5 imputed data sets.
##
                Estimate Std.Error
                                                           P(>|t|)
                                                                                    FMI
##
                                      t.value
                                                     df
                                                                         RIV
                  -0.377
                                       -2.026
                                                             0.043
                                                                       0.000
                                                                                  0.000
## (Intercept)
                              0.186
                                                     Inf
                  -0.150
                              0.214
                                       -0.698
                                                     Inf
                                                             0.485
                                                                       0.000
                                                                                  0.000
## treatment
## visit
                  -0.124
                              0.091
                                       -1.353
                                                     Inf
                                                             0.176
                                                                       0.000
                                                                                  0.000
## I(visit^2)
                  -0.030
                              0.015
                                       -2.025
                                                     Inf
                                                             0.043
                                                                       0.000
                                                                                  0.000
##
## Unadjusted hypothesis test as appropriate in larger samples.
```

```
## term estimate std.error statistic df p.value

## 1 (Intercept) -1.5468 0.8562 -1.81 1901 0.0710

## 2 treatment -0.7008 0.6830 -1.03 1901 0.3050

## 3 visit -0.5330 0.2282 -2.34 1901 0.0196

## 4 I(visit^2) -0.0521 0.0305 -1.71 1901 0.0875
```