Python 3.6.5 | Anaconda, Inc. | (default, Mar 29 2018, 13:32:41) [MSC v.1900 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information.

IPython 6.4.0 -- An enhanced Interactive Python.

In [1]: runfile('C:/Users/hoops/OneDrive/Documents/School/ME EN 2450 Numerical Methods/
HW7/HW7.py', wdir='C:/Users/hoops/OneDrive/Documents/School/ME EN 2450 Numerical Methods/
HW7')

# Exercise 1:

Using Richardson Extrapolation with step sizes of pi/3 and pi/6 for the derivative of cos(x) at x = pi/4 the estimate is -0.70539 with a true relative error of 0.24249%

### Exercise 2:

|   | х     | у       | theta approx | M estimate 1 | M estimate 2 |
|---|-------|---------|--------------|--------------|--------------|
| 0 | 0.000 | 0.0000  | -0.685600    | -0.092629    | -0.185259    |
| 1 | 0.375 | -0.2571 | -1.264533    | -0.127744    | -0.185259    |
| 2 | 0.750 | -0.9484 | -2.282400    | -0.141803    | -0.140459    |
| 3 | 1.125 | -1.9689 | -3.037067    | -0.102475    | -0.101035    |
| 4 | 1.500 | -3.2262 | -3.563333    | -0.068939    | -0.067371    |
| 5 | 1.875 | -4.6414 | -3.898800    | -0.041728    | -0.039979    |
| 6 | 2.250 | -6.1503 | -4.084933    | -0.021397    | -0.019584    |
| 7 | 2.625 | -7.7051 | -4.166267    | -0.008117    | -0.006443    |
| 8 | 3.000 | -9.2750 | -4.186400    | -0.003221    | -0.006443    |



It appears that the second estimate using the finite difference approximation is more accurate since it seems more reasonable that the bending moment is 0 at x=0 it is also likely more accurate because the first estimate accrues 2 \*  $O(h^2)$  error while the second only accrues  $O(h^2)$  error

### Exercise 3:

Checking ex22.3. Two point gauss quadrature:1.82257777777777 Actual: 1.640533 Checking ex22.4. Three point gauss quadrature:1.6405333333333394 Actual: 1.640533

## Exercise 4:

#### 13.11

- a) Using Newton's method the estimated minimum is 1.0689693688871522 at x =
- -0.5866826961920031
- b) Using Newton's method with finite differences the estimated minimum is
- 1.0689693703449121 at x = -0.5866688904649386

In [2]: