实验3-4

尾区段寄生之扩展区段大小

实验:寄生代码在最后节 文件长度变大

- 实验目的:该实验尝试,如果寄生代码大于末节对齐后的剩余空洞,如何增加节长。
- 如何模拟这一过程?不需要真正写一个大于空洞的寄生代码,只需要修改前面的JMP指令,让其跳到节的后面(SizeOfRawData),而在节后加入若干条NOP指令,作为跳转的目的地

实验的步骤

- 1) 在reloc节原VirutalSize后添加JMP xx xx xx xx, 跳到reloc节后面
- 2) 在reloc节后添加学号最后一位个数n的NOP指令(这里假设n=2)
- 3) 修改reloc节头的SizeOfRawData,加一个FileAlignment
- 4) 修改reloc节头的VirtualSize为原SizeOfRawData+n(n个nop) , 现在NOP才是实际结尾
- 5) 修改可选映像头的SizeOflmage = (relocRVA+新VirutalSize)除以SectionAlign取上整
- 6) 在NOP后手动增加FileAlignment-n个字节,内容不论,为对齐后填充内容
- 7) 修改入口点RVA (AddressOfEntryPoint) 为寄生代码开始处

实验步骤1:计算JMP指令的位移量

JMP指令的跳转位移量

= 原SizeOfRawData - (原Virutalsize + JMP指令长(5字节))

Reloc节VirutalSize部分

·Jmp (5个字节)

Reloc节原对齐部分

Nop nop

原VirutalSize

3800 - 36A0 - 5= 15B

原SizeOfRowData

000002D0	000036A0	Virtual Size
000002D4	00081000	RVA
000002D8	00003800	Size of Raw Data
000002DC	00079000	Pointer to Raw Data

实验步骤1:在文件中写入JMP指令

reloc节写入JMP跳到节后

写入JMP E9 00 00 01 5B

```
0007c690h: 20 3B 44 3B 48 3B 4C 3B 0007c6a0h: e9 5B 01 00 00 00 00 00
```

实验步骤2: reloc节后添加2个NOP

000002D0	000036A0	Virtual Size
000002D4	00081000	RVA
000002D8	00003800	Size of Raw Data
000002DC	00079000	Pointer to Raw Data

文件对齐后的大小为3800,文件起始位置79000,2个NOP的写入位置为:79000 + 3800 = 7C800

实验步骤3:修改节的SizeOfRawData

0000013C	00400000	Image Base		
00000140	00001000	Section Alignment		
00000144	00000200	File Alignment		- 查看文件对齐粒度为200

查看文件对齐粒度为200,因此

新SizeOfRawData = 原SizeOfRawData + 200 = 3800 + 200 = 3A00

文件偏移2D8处写入00 3A 00 00

实验步骤4:修改节的VirtualSize

新的VirualSize:

原SizeOfRawData + 2个NOP指令

= 3800 + 2 = 3802

	pFile	Data	Description
	000002C8	2E 72 65 6C	Name
	000002CC	6F 63 00 00	
	000002D0	000036A0	Virtual Size
•	000002D4	00081000	RVA
	000002D8	00003800	Size of Raw Data
	000002DC	00079000	Pointer to Raw Data

cloudmusic.exe*					
000002d0h:	02	38	00	00	00
000002e0h:	00	00	00	00	00
000002f0h:	00	00	00	00	00
00000300h:	00	00	00	00	00

文件偏移2D0处写入02 38 00 00

实验步骤5:修改文件的SizeOfImage

00000140	00001000	Section Alignment	←	节对齐粒度 1000
00000144	00000200	File Alignment		(-)/3/1422
00000148	0005	Major O/S Version		
0000014A	0001	Minor O/S Version		
0000014C	0000	Major Image Version		
0000014E	0000	Minor Image Version		
00000150	0005	Major Subsystem Version		
00000152	0001	Minor Subsystem Version		
00000154	00000000	Win32 Version Value		匠CizoOflmaga 95000
00000158	00085000	Size of Image		原SizeOfImage 85000

在本例中,SizeOflmage没有发生改变,于是不修改

实验步骤6: 补上文件对齐部分

因为在reloc节后增加了1个文件对齐粒度,因此,这部分需要在文件中进行填充,内容不限

pFile	Data	Description
000002C8	2E 72 65 6C	Name
000002CC	6F 63 00 00	
000002D0	000036A0	Virtual Size
000002D4	00081000	RVA
000002D8	00003800	Size of Raw Data
000002DC	00079000	Pointer to Raw Data

插入的位置为2个nop指令后, 79000 + 3800 + 2

需要填充到79000 + 3A00 = 7CA00

剪切(T) 复制(C) 粘贴(P) 剪切追加(U) 复制追加(Y) 复制之件路径/名称(F) 剪贴板(I)

实验步骤7:修改程序入口RVA

最后修改 AddressOfEntryPoint

pFile	Data	Description
00000120	010B	Magic
00000122	OC.	Major Linker Version
00000123	00	Minor Linker Version
00000124	00047400	Size of Code
00000128	00038600	Size of Initialized Data
0000012C	00000000	Size of Uninitialized Data
00000130	0002D9EE	Address of Entry Point

节起始RVA=81000 修改为JMP指令RVA Reloc节 36A0-000002D0 000036A0 Virtual Size 原VirtualSize 000002D4 00081000 RVA 000002D8 00003800 Size of Raw Data 81000+36A0 寄生代码 000002DC 00079000 Pointer to Raw Data

00000130h: A0 46 08 00 00 00000140h: 00 10 00 00 00000150h: 05 00 01 00 00

── 文件偏移130处写入 A0 46 08 00

=846A0

在x64dbg中加载看结果

C CPU -	CPU - 主线程, 模块 - cloudmus			
地址	HEX 数据	反汇编		
008C46A0	√E9 5B010000	JMP cloudmus. 008C4800		
008C46A5	0000	ADD BYTE PTR DS: [EAX], AL		
008C46A7	0000	ADD BYTE PTR DS: [EAX], AL		
008C46A9	0000	ADD BYTE PTR DS: [EAX], AL		
008C46AB	0000	ADD BYTE PTR DS: [EAX], AL		
008C46AD	0000	ADD BYTE PTR DS: [EAX], AL		
008C46AF	0000	ADD BYTE PTR DS: [EAX], AL		
008C46B1	0000	ADD BYTE PTR DS: [EAX], AL		
008C46B3	0000	ADD BYTE PTR DS: [EAX], AL		
00004005	0000	inn numm non no. [mix] ir		

地址	Ł h	EX 数据	反汇编
0080	C47F4	0000	ADD BYTE PTR DS: [EAX], AL
0080	C47F6	0000	ADD BYTE PTR DS: [EAX], AL
0080	C47F8	0000	ADD BYTE PTR DS: [EAX], AL
0080	C47FA	0000	ADD BYTE PTR DS: [EAX], AL
0080	C47FC	0000	ADD BYTE PTR DS: [EAX], AL
0080	C47FE	0000	ADD BYTE PTR DS: [EAX], AL
0080	C4800	, 90	NOP
0080	C4801	90	NOP

看见模拟的超过空 洞长度的病毒体(从JMP到n个NOP)都已经成功地加 载到内存中! 重复以上实验,并自行完成以下内容: 在n个NOP后再添加一条JMP指令跳回原入口点