FMI, Info, 2018/2019, Anul I Logică matematică și computațională

Examen

Nume:					25.01.20	019				
Prenui	me:									
Grupa	•									
P1	P2	P3	P4	P5	P6	P7	P8	Pg	Of	ТОТАТ

/15

Partea I. Logică propozițională

- (P1) [1 punct] Reamintim că $V = \{v_n \mid n \in \mathbb{N}\}$ este mulțimea variabilelor din logica propozițională. Fie $W:=\{v_{2n}\mid n\in\mathbb{N}\}$. Să se demonstreze că W este numărabilă.
- (P2) [1 punct] Folosind metoda tabelului de adevăr, arătați că pentru orice formule φ și ψ , avem

$$\neg(\neg\varphi\wedge\neg\psi)\to\varphi\vee\psi\quad \sim\quad \neg\neg\varphi\to\varphi.$$

(P3) [1 punct] Să se arate sintactic că pentru orice formule φ și ψ , avem

$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi)).$$

- (P4) [1 punct] Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule. Demonstrați următoarele:
 - (i) Pentru orice formulă ψ , $\Gamma \vdash \psi$ dacă și numai dacă $\vdash \varphi_1 \land \ldots \land \varphi_n \to \psi$ dacă și numai dacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\} \vdash \psi$.
 - (ii) Γ este consistentă dacă și numai dacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.
- **(P5)** [2 puncte]
 - (i) Să se aducă formula $\varphi:=(v_1\to\neg(v_2\to v_1))\to(\neg v_2\wedge v_1)$ la FND și FNC folosind transformări sintactice.
 - (ii) Să se aducă formula $\psi:=v_3\to (\neg v_1\leftrightarrow v_2)$ la FND și FNC folosind funcția booleană asociată.
- **(P6)** [2 puncte]
 - (i) Să se aplice algoritmul Davis-Putnam mulțimii de clauze:

$$\mathcal{S} = \{ \{\neg v_2, v_3\}, \{v_1, v_2, \neg v_4\}, \{v_1, \neg v_2, \neg v_3, \neg v_4\}, \{v_1, v_4\}, \{\neg v_1\} \}$$

(ii) Folosind primul subpunct și eventual alte proprietăți, să se arate că:

$$\{v_4 \to (v_1 \lor v_2), (v_2 \land v_3 \land v_4) \to v_1, v_1 \lor v_4\} \vDash (v_2 \to v_3) \to v_1$$

Partea II. Logică de ordinul I

(P7) [1 punct] Fie \mathcal{L}_1 şi \mathcal{L}_2 două limbaje de ordinul I cu signaturile $\tau_1 = (\mathcal{R}_1, \mathcal{F}_1, \mathcal{C}_1, ari_1)$ şi, respectiv, $\tau_2 = (\mathcal{R}_2, \mathcal{F}_2, \mathcal{C}_2, ari_2)$. Spunem că \mathcal{L}_2 este o **expansiune** a lui \mathcal{L}_1 dacă $\mathcal{R}_1 \subseteq \mathcal{R}_2$, $\mathcal{F}_1 \subseteq \mathcal{F}_2$, $\mathcal{C}_1 \subseteq \mathcal{C}_2$ şi ari_1 este ari_2 restricționată la $\mathcal{F}_1 \cup \mathcal{R}_1$.

Fie \mathcal{L}_2 o expansiune a lui \mathcal{L}_1 . Demonstrați prin inducție după termenii și formulele lui \mathcal{L}_1 că $Term_{\mathcal{L}_1} \subseteq Term_{\mathcal{L}_2}$ și $Form_{\mathcal{L}_1} \subseteq Form_{\mathcal{L}_2}$.

(P8) [3 puncte]

- (i) Să se arate că pentru orice limbaj \mathcal{L} de ordinul I și orice formule φ , ψ ale lui \mathcal{L} , avem:
 - (a) $\exists x(\varphi \land \psi) \vDash \exists x\varphi \lor \exists x\psi$, pentru orice variabilă x.
 - (b) $\exists x(\varphi \land \psi) \vDash \varphi \land \exists x\psi$, pentru orice variabilă $x \notin FV(\varphi)$.
- (ii) Să se dea exemplu de limbaj \mathcal{L} de ordinul I şi de formule φ, ψ ale lui \mathcal{L} astfel încât:

$$\exists x \varphi \lor \exists x \psi \not\vDash \exists x (\varphi \land \psi)$$

- (P9) [2 puncte] Fie \mathcal{L} un limbaj de ordinul întâi care conține
 - două simboluri de relații unare S, T și un simbol de relație binară R;
 - un simbol de operație unară f și un simbol de operație binară g;
 - trei simboluri de constante a, b, c.

Să se găsească forme normale prenex pentru următoarele formule ale lui \mathcal{L} :

$$\varphi_1 = \neg \forall y (g(y,t) = b) \land \neg \exists x (f(x) = a)$$

$$\varphi_2 = (\exists u S(u) \to \neg \exists z \neg T(z)) \to \exists v (R(c,v) \to R(z,v))$$