Федеральное агентство связи Федеральное государственное бюджетное образовательное учреждение высшего образования «Поволжский государственный университет телекоммуникаций и информатики»

Факультет информационных систем и технологий

Лабораторная работа № 2

Дисциплина: Физика

«Определение сопротивления резисторов с помощью моста Уитстона»

Выполнил студент ИВТ-91:

Мочинов А.А.

Проверил:

Матвеев И. В.

		R ₁ , Ом	R ₂ , Ом	R _{пост} , Ом	R _{пар} , Ом	
No	L,	13,	13,	13,	13,	
	дел	дел	дел	дел	дел	
1		180	211	250	137	
2		181	211	254	135	
3	350	180	208	251	137	
4		178	209	252	133	
5		179	208	250	132	
Среднее	1	179,6	209,4	251,4	134,8	
Значение						
Абсолютная	1	1,84	1,80	1,89	2,42	
погрешность	1	1,01	1,00	1,00	2, .2	
Относительная	0,4	0,87	0.86	0.75	1.8	
погрешность,%	0,1	0,07	0.00	0.75	1.0	

Таблица 2

	R_0	R_1	R_2	R _{посл}	R_{nap}	R'посл	R'nap
Значение	200	211	298	510	125	509	123
сопростивления (Ом)	200	211		310	120		120
Абсолютная	4,4	12	17	30	8	20	5
погрешность (Ом)	1,1	12	17	30	O	20	3
Относительная	5	5,5	5,6	5,9	5,9	4	4
погрешность (%)	3	5,5	5,0	5,7	5,7	_ T	7

$$L{=}l_{3}{+}l_{4}{=}350~\text{mm}$$

$$_{\Lambda}L=_{\Lambda}l_{3,\pi p}=1$$
 мм

$$R_0 = 200 \text{ Om}$$

Нахождение среднего значения l_3 при R_1 :

$$l_3 = \frac{L1 + L2 + L3 + L4 + L5}{5} \Rightarrow \frac{180 + 181 + 180 + 178 + 179}{5} = 179.6$$

Нахождение среднего значения l_3 при R_2 :

$$l_3 = \frac{L_1 + L_2 + L_3 + L_4 + L_5}{5} \Rightarrow \frac{211 + 211 + 208 + 209 + 208}{5} = 209.4$$

Нахождение среднего значения l_3 при $R_{\text{пост}}$:

$$l_3 = \frac{L1 + L2 + L3 + L4 + L5}{5} = > \frac{250 + 254 + 251 + 252 + 250}{5} = 251.4$$

Нахождение среднего значения l_3 при $R_{\text{пар}}$:

$$l_3 = \frac{L1 + L2 + L3 + L4 + L5}{5} \Rightarrow \frac{137 + 135 + 137 + 133 + 132}{5} = 134.8$$

Абсолютная погрешность каждого измерения 1_3 при R_1 :

$$\Lambda l_1 = l_3 - < > = 180 - 179,6 = 0,4$$

$$\Lambda l_2 = l_3 - <> = 181 - 179,6 = 1,4$$

$$\Lambda l_3 = l_3 - < > = 180 - 179,6 = 0,4$$

$$\Delta l_4 = l_3 - <> = 178 - 179,6 = -1,6$$

$$\Lambda l_5 = l_3 - <> = 179 - 179,6 = -0.6$$

$$(1_1)^2 = (0.4)^2 = 0.16$$

$$(1_2)^2 = (1,4)^2 = 1,96$$

$$(1_3)^2 = (0,4)^2 = 0,16$$

$$(1_4)^2 = (-1,6)^2 = 2,56$$

$$(1_5)^2 = (-0.6)^2 = 0.36$$

Абсолютная погрешность каждого измерения 13 при R2:

$$\Lambda l_1 = l_3 - <> = 211 - 209, 4 = 1,6$$

$$\Lambda l_2 = l_3 - < > = 211 - 209, 4 = 1,6$$

$$\Lambda l_3 = l_3 - < > = 208 - 209,4 = -1,4$$

$$\Lambda l_4 = l_3 - <> = 209 - 209, 4 = -0, 4$$

$$\Lambda l_5 = l_3 - <> = 208 - 209,4 = -1,4$$

$$(1_1)^2 = (1,6)^2 = 2,56$$

$$(1_2)^2 = (1,6)^2 = 2,56$$

$$(1_3)^2 = (-1,4)^2 = 1,96$$

$$(1_4)^2 = (-0,4)^2 = 0,16$$

$$(1_5)^2 = (-1,4)^2 = 1,96$$

Абсолютная погрешность каждого измерения 1_3 при $R_{\text{пост}}$:

$$\Lambda l_1 = l_3 - < > = 250 - 251,4 = -1,4$$

$$\Lambda l_2 = l_3 - <> = 254 - 251,4 = 2,6$$

$$\Lambda l_3 = l_3 - < > = 251 - 251,4 = -0,4$$

$$\Lambda l_4 = l_3 - <> = 252 - 251, 4 = 0,6$$

$$\Lambda l_5 = l_3 - <> = 250 - 251,4 = -1,4$$

$$(1_1)^2 = (-1,4)^2 = 1,96$$

$$(1_2)^2 = (2,6)^2 = 6,76$$

$$(1_3)^2 = (-0,4)^2 = 0,16$$

$$(1_4)^2 = (0,6)^2 = 0,36$$

$$(1_5)^2 = (-1,4)^2 = 1,96$$

Абсолютная погрешность каждого измерения 1₃ при R_{пар}:

$$\Lambda l_1 = l_3 - < > = 137 - 134,8 = 2,2$$

$$\Lambda l_2 = l_3 - < > = 135 - 134,8 = 0,2$$

$$\Delta l_3 = l_3 - <> = 137 - 134,8 = 2,2$$

$$\Lambda l_4 = l_3 - <> = 133 - 134.8 = -1.8$$

$$\Lambda l_5 = l_3 - <> = 132 - 134,8 = -2,8$$

$$(1_1)^2 = (2,2)^2 = 4.84$$

$$(1_2)^2 = (0,2)^2 = 0.04$$

$$(1_3)^2 = (2,2)^2 = 4,84$$

$$(1_4)^2 = (-1,8)^2 = 3,24$$

$$(1_5)^2 = (-2,8)^2 = 7,84$$

Нахождение стандартная погрешность среднего значения при R1:

$$S = \sqrt{\frac{(L1)^2 + (L2)^2 + (L3)^2 + (L4)^2 + (L5)^2}{5(5-1)}} = \sqrt{\frac{0.16 + 1.96 + 0.16 + 2.56 + 0.36}{5(5-1)}} = \sqrt{\frac{5.2}{20}} = \sqrt{0.26} = 0.51$$

Нахождение стандартная погрешность среднего значения при R2:

$$S = \sqrt{\frac{(L1)^2 + (L2)^2 + (L3)^2 + (L4)^2 + (L5)^2}{5(5-1)}} = \sqrt{\frac{2.56 + 2.56 + 1.96 + 0.16 + 1.96}{5(5-1)}} = \sqrt{\frac{9.2}{20}} = \sqrt{0.46} = 0.68$$

Нахождение стандартная погрешность среднего значения при Rпост:

$$S = \sqrt{\frac{(L1)^2 + (L2)^2 + (L3)^2 + (L4)^2 + (L5)^2}{5(5-1)}} = \sqrt{\frac{1.96 + 6.76 + 0.16 + 0.36 + 1.96}{5(5-1)}} = \sqrt{\frac{11.2}{20}} = \sqrt{0.56} = 0.75$$

Нахождение стандартная погрешность среднего значения при Rпар:

$$S = \sqrt{\frac{(L1)^2 + (L2)^2 + (L3)^2 + (L4)^2 + (L5)^2}{5(5-1)}} = \sqrt{\frac{4.84 + 0.04 + 4.84 + 3.24 + 7.84}{5(5-1)}} = \sqrt{\frac{20.8}{20}} = \sqrt{1.04} = 1.02$$

Нахождение абсолютно случайная погрешность l_3 при R1:

$$\Delta l_{c\pi} = t * S = 2.13 * 0.51 = 1.1928 = 1.2$$

Нахождение абсолютно случайная погрешность l_3 при R2:

$$\Delta l_{\text{CM}} = \text{t} * \text{S} = 2.13 * 0.68 = 14484 = 1,5$$

Нахождение абсолютно случайная погрешность l_3 при Rпост:

$$\Delta l_{\text{сл}} = \text{t} * \text{S} = 2.13 * 0.75 = 1.5975 = 1,6$$

Нахождение абсолютно случайная погрешность l_3 при Rпар:

$$\Delta l_{c\pi} = t * S = 2.13 * 1.02 = 2.1726 = 2.2$$

Нахождение абсолютной погрешности для величины l_3 при R1:

$$\Delta l_3 = \sqrt{(l_{\rm cn})^2 + (l_{\rm np})^2} = \sqrt{(1.2)^2 + (1)^2} = \sqrt{2.44} = 1,5620 = 1,5620$$

Нахождение абсолютной погрешности для величины $\,l_3\,$ при R2:

$$\Delta l_3 = \sqrt{(l_{\rm CR})^2 + (l_{\rm IIp})^2} = \sqrt{(1.5)^2 + (1)^2} = \sqrt{3.25} = 1,8027 = 1,80$$

Нахождение абсолютной погрешности для величины $\,l_3\,$ при Rnoct:

$$\Delta l_3 = \sqrt{(l_{\rm cn})^2 + (l_{\rm np})^2} = \sqrt{(1.6)^2 + (1)^2} = \sqrt{3.56} = 1.8867 = 1.89$$

Нахождение абсолютной погрешности для величины $\,l_3\,$ при Rпар:

$$\Delta l_3 = \sqrt{(l_{\text{CJ}})^2 + (l_{\text{IIP}})^2} = \sqrt{(2,2)^2 + (1)^2} = \sqrt{5,84} = 2,4166 = 2,42$$

Нахождение относительной погрешности для величины l_3 при R1:

$$\varepsilon_l = \frac{\Delta l_3}{\langle l_2 \rangle} * 100 = \frac{1.56}{179.6} * 100 = 0.87$$

Нахождение относительной погрешности для величины l_3 при R2:

$$\varepsilon_l = \frac{\Delta l_3}{\langle l_3 \rangle} * 100 = \frac{1.80}{209.4} * 100 = 0.86$$

Нахождение относительной погрешности для величины l_3 при Rnoct:

$$\varepsilon_l = \frac{\Delta l_3}{\langle l_3 \rangle} * 100 = \frac{1.89}{251.4} * 100 = 0.75$$

Нахождение относительной погрешности для величины $\,l_3\,\,$ при Rпар:

$$\varepsilon_l = \frac{\Delta l_3}{\langle l_3 \rangle} * 100 = \frac{2.42}{134.8} * 100 = 1.8$$

Вычисляем неизвестное сопротивление R1:

$$R_1 = \text{Ro} \frac{\langle l_3 \rangle}{L - \langle l_3 \rangle} = 200 * \frac{179.6}{350 - 179.6} = 200 * \frac{179.6}{170.4} = 210.80$$

Вычисляем неизвестное сопротивление R2:

$$R_2 = \text{Ro} \frac{\langle l_3 \rangle}{L - \langle l_3 \rangle} = 200 * \frac{209.4}{350 - 209.4} = 200 * \frac{209.4}{140.6} = 297.87$$

Вычисляем неизвестное сопротивление Rпост:

$$R_{\text{посл}} = \text{Ro} \frac{\langle l_3 \rangle}{l - \langle l_3 \rangle} = 200 * \frac{251.4}{350 - 251.4} = 200 * \frac{251.4}{98.6} = 509.93$$

Вычисляем неизвестное сопротивление Rпар:

$$R_{\text{nap}} = \text{Ro} \frac{\langle l_3 \rangle}{l_- \langle l_2 \rangle} = 200 * \frac{134.8}{350 - 134.8} = 200 * \frac{134.8}{215.2} = 125.28$$

Остановился здесь

Рассчитываем погрешность сопротивления R1:

$$\varepsilon_{R_1} = \sqrt{(\varepsilon_{R_0})^2 + (\frac{L}{L - \langle l_3 \rangle})^2 [(\varepsilon_{l_3})^2 + (\varepsilon_L)^2]} = \sqrt{(5)^2 + (\frac{350}{350 - 179.6})^2 [(1,02)^2 + (0.4)^2]} =$$

$$= \sqrt{25 + 4.2[1,0404 + 0.16]} = \sqrt{25 + 5,04168} = \sqrt{30,04168} = 5,48$$

$$\Delta R_1 = \frac{R_1 * \varepsilon_{R_1}}{100} = \frac{210.80 * 5,48}{100} = 11,55$$

Рассчитываем погрешность сопротивления R2:

$$\varepsilon_{R_2} = \sqrt{(\varepsilon_{R_0})^2 + (\frac{L}{L - \langle l_3 \rangle})^2 [(\varepsilon_{l_3})^2 + (\varepsilon_L)^2]} = \sqrt{(5)^2 + (\frac{350}{350 - 209.4})^2 [(0.86)^2 + (0.4)^2]} =$$

$$= \sqrt{25 + 6.2[0,7396 + 0.16]} = \sqrt{25 + 5,57752} = \sqrt{30,57752} = 5,53$$

$$\Delta R_2 = \frac{R_{2 * \varepsilon_{R_2}}}{100} = \frac{297.87 * 5,53}{100} = 16,47$$

Рассчитываем погрешность сопротивления Rпост:

$$\begin{split} \varepsilon_{R_{\text{посл}}} &= \sqrt{(\varepsilon_{R_0})^2 + (\frac{L}{L - < l_3 >})^2 [(\varepsilon_{l_3})^2 + (\varepsilon_L)^2]} = \sqrt{(5)^2 + (\frac{350}{350 - 251,4})^2 [(0.75)^2 + (0.4)^2]} = \\ &= \sqrt{25 + 12,6[0,5625 + 0.16]} = \sqrt{25 + 9,1035} = \sqrt{34,1035} = 5,84 \\ \Delta R_{\text{посл}} &= \frac{R_{\text{посл}} * \varepsilon_{R_{\text{посл}}}}{100} = \frac{509,93 * 5,84}{100} = 29,78 \end{split}$$

Рассчитываем погрешность сопротивления Rпар:

$$\begin{split} \varepsilon_{R_{\text{nap}}} &= \sqrt{(\varepsilon_{R_0})^2 + (\frac{L}{L - < l_3 >})^2 [(\varepsilon_{l_3})^2 + (\varepsilon_L)^2]} = \sqrt{(5)^2 + (\frac{350}{350 - 134.8})^2 [(1.8)^2 + (0.4)^2]} = \\ &= \sqrt{25 + 2.66[3.24 + 0.16]} = \sqrt{25 + 9.044} = \sqrt{34.044} = 5.84 \\ \Delta R_{\text{nap}} &= \frac{R_{\text{nap}} * \varepsilon_{R_{\text{nap}}}}{100} = \frac{125.28 * 5.84}{100} = 7.49 \end{split}$$

Рассчитываем сопротивление R'посл:

$$\Delta R'_{\text{посл}} = R_1 + R_2 = 210.80 + 297.87 = 508.67$$

$$\Delta R'_{\text{посл}} = \sqrt{(\Delta R_1)^2 + (\Delta R_2)^2} = \sqrt{(11,55)^2 + (16,47)^2} = \sqrt{133,4025 + 271,2609} = \sqrt{404,6634} = 20,12$$

$$\varepsilon_{R'_{\text{посл}}} = \frac{\Delta R'_{\text{посл}}}{R'_{\text{посл}}} * 100\% = \frac{20,12}{508.67} * 100\% = 3,96$$

Рассчитываем сопротивление R'пар:

$$R'_{\text{пар}} = \frac{R_1 * R_2}{R_1 + R_2} = \frac{210.80 *297.87}{210.80 + 297.87} = \frac{62 \, 790.996}{508.67} = 123.44$$

$$\varepsilon_{R'_{\text{пар}}} = R'_{\text{пар}} * \sqrt{\left(\frac{\varepsilon_{R_1}}{R_1}\right)^2 + \left(\frac{\varepsilon_{R_2}}{R_2}\right)^2} = 123.44 * \sqrt{\left(\frac{5.48}{210.80}\right)^2 + \left(\frac{5.53}{297.87}\right)^2} =$$

$$= 123.44 * \sqrt{(0,0260)^2 + (00,0186)^2} = 123.44 * \sqrt{0,000676 + 0,00034596} =$$

$$= 123.44 * \sqrt{0,00102196} = 123.44 * 0,032 = 3,95$$

$$\Delta R'_{\text{пар}} = \frac{R'_{\text{пар}} * \varepsilon_{R'_{\text{пар}}}}{100\%} = \frac{123.44 * 3,95}{100\%} = 4,88$$

Вывод:

Цель нашей работы заключалось в нахождении и определении сопротивления резисторов при их последовательном и параллельном соединении. Закончив эту лабораторную работу, мы подведём итоги и сравним наши результаты.

$$R_{\text{посл}} = 510 \pm 30 \text{ Om}; \ \varepsilon_{R_{\text{посл}}} = 5.9\%$$

$$R_{\text{nap}} = 125 \pm 8 \text{ Om}; \quad \varepsilon_{R_{\text{nap}}} = 5.9\%$$

$$R'_{\text{посл}} = 509 \pm 20 \text{ Om}; \ \varepsilon_{R'_{\text{посл}}} = 4.0\%$$

$$R'_{\text{nap}} = 123 \pm 5 \text{ Om}; \ \varepsilon_{R'_{\text{nap}}} = 4.0\%$$