Lecture 7 | Machine Learning (Stanford)

- Assume the problem is linearly separable.
- Optimal margin classifier: maximizing geometric margin
 - final form: #3 $\min_{\gamma,w,b} \frac{1}{2}||w||^2$ s.t. $y^{(i)}(w^Tx^{(i)}+b) \ge 1, \ i=1,\ldots,m$
 - convex quadratic programming problem, could be solved inefficiently.
- Lagrange Duality
 - $d^* = p^*$ when satisfying KKT conditions
- #3 -> Lagrangian (8) -> dual form of the problem -> solve alpha -> get
 w -> get b

$$d^* = \max_{\alpha,\beta: \alpha_i \ge 0} \min_{w} \mathcal{L}(w,\alpha,\beta) \le \min_{w} \max_{\alpha,\beta: \alpha_i \ge 0} \mathcal{L}(w,\alpha,\beta) = p^*$$

Lecture 8 | Machine Learning (Stanford)

- For linearly non-separable problem: mapping into higher dimensions
- Kernels: help to compute $\langle x(i), x(j) \rangle$ efficiently, even if x is very high dimensional, $O(n^2)$ --> O(n)
 - Kernels can be applied to any machine learning algorithms, as long as there's
 <x(i), x(j)> in expressions.
- Mercer Theorem: a kernel function is valid iff kernel matrix is symmetric positive semi-definite.
- Soft margin: make the classifier less sensitive to outliers
- SMO: to solve the dual problem (take use of coordinate ascent)