Linearly Independent Sets and Bases

Recall that an indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in V$ is linearly independent if the vector equation $c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$ has only the trivial solution $c_1 = 0, \dots, c_p = 0$. Also recall that the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in V$ is linearly dependent if there exists weights c_1, \dots, c_p , not all zero, that satisfy $c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$ and, in such a case, $c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p = \mathbf{0}$ is called the linear dependence relation among $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Theorem (Linearly Dependent Set of ≥ 2 Vectors).

An indexed set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ of two or more vectors, where $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j , where j > 1, is a linear combination of the preceding vectors $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$. That is, the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$, where $p \geq 2$ and $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if $\mathbf{v}_j = c\mathbf{v}_1 + \cdots + c\mathbf{v}_{j-1}$, where j > 1.

The general vector space V may contain vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ that are not n-tuples (an ordered list on n numbers v_1, \ldots, v_n in a column) and, in such a case, the homogeneous vector equation $c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p = \mathbf{0}$ cannot be expressed by the matrix equation $A\mathbf{x} = \mathbf{0}$, because the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ cannot be expressed as the columns of a matrix A. Therefore, the definition of linear dependence and the preceding theorem must be used to study a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\} \in V$, since the matrix equation $A\mathbf{x} = \mathbf{0}$ cannot always be studied.

Example. Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, and $\mathbf{p}_3(t) = 4 - t$. Then the set $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is linearly dependent in \mathbb{P} because $\mathbf{p}_3 = 4\mathbf{p}_1 - \mathbf{p}_2$.

Definition (Basis).

Let U be a subspace of the vector space V. The set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\} \in V$ is a **basis** of U if \mathcal{B} is linearly independent and $U = \text{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$.

Every vector space V is a subspace of itself, so if U = V, then the basis of V is the linearly independent set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\} \in V$, where $V = \text{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}$. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the columns of the $n \times n$ identity matrix I_n . Then the set $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is called the **standard basis** of \mathbb{R}^n .

Example. Consider \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of \mathbb{R}^3 .

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ -6 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$$

There are three vectors in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ which, themselves, are in \mathbb{R}^3 , so the matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$ is 3×3 . Performing two row replacement operations on A shows that A has three pivot positions, and hence is invertible. Thus, the columns of A form a basis of \mathbb{R}^3 because by the Invertible Matrix Theorem, the columns of A are linearly independent and span \mathbb{R}^3 , since A is invertible.

The Spanning Set Theorem

Consider the sets $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\} \in V$ and $U = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$. Suppose that S is linearly dependent. Then by rearranging the vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in S$, the vector \mathbf{v}_p can be expressed by $\mathbf{v}_p = a_1\mathbf{v}_1 + \dots + a_{p-1}\mathbf{v}_{p-1}$. Also consider the arbitrary vector $\mathbf{x} \in U$, which can be expressed by $\mathbf{x} = c_1\mathbf{v}_1 + \dots + c_{p-1}\mathbf{v}_{p-1} + c_p\mathbf{v}_p$ for suitable scalars c_1, \dots, c_p . Observe below that by substituting the expression for \mathbf{v}_p into the expression for \mathbf{x} , the arbitrary vector $\mathbf{x} \in U$ can be expressed as a linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_{p-1}$, and hence $\{\mathbf{v}_1, \dots, \mathbf{v}_{p-1}\}$ spans U, because \mathbf{x} is an arbitrary element of U.

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_{p-1} \mathbf{v}_{p-1} + c_p \mathbf{v}_p$$

= $(c_1 + \dots + c_p a_1) \mathbf{v}_1 + \dots + (c_{p-1} + \dots + c_p a_{p-1}) \mathbf{v}_{p-1}$

If S is linearly dependent and $U = \text{Span}\{S\} \neq \{0\}$, then S contains two or more vectors and, therefore, vectors in S can repeatedly be removed until S is linearly independent and hence a basis for U.

Theorem (The Spanning Set Theorem).

Let
$$S = {\mathbf{v}_1, \dots, \mathbf{v}_n} \in V$$
 and let $U = \operatorname{Span} {\mathbf{v}_1, \dots, \mathbf{v}_n}$.

- a. If some vector $\mathbf{v}_j \in S$ is a linear combination of the remaining vectors in S, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_{p-1}\}$ that is formed by removing \mathbf{v}_j from S still spans U. That is, $U = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_p\} = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_{p-1}\}$.
- b. If $U \neq \{0\}$, then some subset of S is a basis for $U = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

Example. Consider the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , where $U = \operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$. Show that $\operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2\}$, and then find a basis for the subspace U.

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 6 \\ 16 \\ -5 \end{bmatrix}$$

First notice that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + 0\mathbf{v}_3$ for all scalars $c_1, c_2 \in \mathbb{R}$ and, therefore, every vector in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is also an element of Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Let \mathbf{x} be an arbitrary vector in U, then $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$. Observe that since $\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$, the vector \mathbf{v}_3 can be substituted into $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$ to express \mathbf{x} as a linear combination of the vectors \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (5\mathbf{v}_1 + 3\mathbf{v}_2)$$

= $(c_1 + 5c_3) \mathbf{v}_1 + (c_2 + 3c_3) \mathbf{v}_2$

Thus, $\mathbf{x} \in \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and hence every vector in U is also an element of $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, indicating that $U = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Therefore, since the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent, it follows that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of U.

Bases for Nul(A) and Col(A)

Recall that for a given $m \times n$ matrix A, solving the matrix equation $A\mathbf{x} = \mathbf{0}$ amounts the explicitly defining $\operatorname{Nul}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}$ in terms of it's spanning set (the parametric vector equation, or linear combination, that describes the general solution to $A\mathbf{x} = \mathbf{0}$), which is always linearly independent when it contains nonzero vectors. In such a case, it follows that the linearly independent spanning set of $\operatorname{Nul}(A)$ produces a basis for $\operatorname{Nul}(A)$.

Example. Find a basis for Col(B), where B is defined as follows.

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_5 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

First recall that $Col(B) = Span \{b_1, b_2, b_3, b_4, b_5\}$. Observe that in the given matrix B, each non-pivot column is a linear combination of one or more pivot columns, where $\mathbf{b}_2 = 4\mathbf{b}_1$ and $\mathbf{b}_4 = 2\mathbf{b}_1 - \mathbf{b}_3$. By the Spanning Set Theorem, the vectors \mathbf{b}_2 and \mathbf{b}_4 can be removed from $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4, \mathbf{b}_5\}$ to produce the set $\{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\}$, which still spans Col(B). Let S be defined as follows.

$$S = \{\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5\} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$$

Since $\mathbf{b}_1 \neq \mathbf{0}$ and no vector $\mathbf{b}_j \in S$ is a linear combination of the preceding vectors $\mathbf{b}_1, \dots, \mathbf{b}_{j-1}$, the set S is linearly independence and is hence a basis for $\operatorname{Col}(B)$.

Theorem (The Basis of Column Space).

The pivot columns of a matrix A form a basis for Col(A).

Proof. TO BE WRITTEN