Randon Waln

Let X, X2, X3, ... be an iid sequence of real RVs.

Let
$$S_0 = 0$$
, $S_1 = X_1$, $S_2 = X_1 + X_2$, ...

the sequence (Sn) is called a random walk in IR.

Eg Suppose
$$S_n = \sum_{k \in n} X_k$$
 where $X_1, X_2, ...$ are in dep. and $P(X_k = 1) = \frac{1}{2} = P(X_k = -1)$. Then (S_n) is called a Symmetric Simple RW on \mathbb{Z} .

In the previous example, if instead $P(X_k=1)=p$ and $P(X_k=1)=1-p$ where 0< p<1, $p\neq\frac{1}{2}$. then (S_n) is called an asymmetric simple RW on Z.

Defin a RW
$$(S_n)$$
 is called non-degenerate when $P(X_1 \neq 0) > 0$ $(X_n = S_n - S_{n-1})$

Theorem Let (Sn) be a non-degenerate RW on R.

Let
$$-\infty < \alpha < 0 < \delta < \infty$$
. Let $N = \inf \{ n : S_n \notin (\alpha, b) \}$
 $\left(N(\omega) = \inf \{ n : S_n(\omega) \notin (\alpha, b) \} \right)$.

Remember inf $\phi = \infty$.

Then N is mble and $E(N) < \infty$. in particular, $P(N < \infty) = 1$.

This holds for N=1,2,3,..., and $\{N>0\}=\Omega$ since $S_0\equiv 0$

 $N:\Omega \longrightarrow \{1,2,3,...,\infty\}$. Thus N is nable and in fact, $\{N>n\}$ depends only on $S_1,...,S_n$.

Now let's show E(N) < 00.

Either P(X, >0) >0 or P(X, <0) >0.

The two cases are similar, so let's just Consider the case where $P(X_1>0)>0$.

$$\left\{ \begin{array}{l} X_{1} \geqslant \frac{1}{\ell} \end{array} \right\} \quad \left\{ \begin{array}{l} X_{1} > 0 \end{array} \right\}, \quad \text{So} \quad P(X_{1} \geqslant \frac{1}{m}) \quad \uparrow \quad P(X_{1} > 0). \end{array}$$

Choose men such that me > b-a.

Then for each
$$\chi \in (a,b)$$
,
$$P(\chi + S_m \notin (a,b)) \ge P(S_m \ge b-a)$$

$$\ge P(\chi_1 \ge \xi, ..., \chi_m \ge \xi)$$

$$= P(\chi_1 \ge \xi) \cdot ... \cdot P(\chi_m \ge \xi)$$

$$= [P(\chi_1 \ge \xi)]^m$$

Hence
$$P(N>m) = P(S_k \in (a,b) \text{ for } k=1,...,m)$$

 $\leq P(S_m \in (a,b))$
 $= 1 - P(S_m \notin (a,b))$
 $\leq 1 - [P(X_i > \epsilon)]^m$

Now for n = 1,2,3,...

$$P(N > (n+1)m) = P(N > (n+1)m, N > nm)$$

$$\leq P(S_{n+1}m) \in (a_1b), N > nm)$$

$$= P(N > nm) - P(S_{n+1}m) \notin (a_1b), N > nm)$$

$$\downarrow_{l_{mm}} \in (a_1b)$$

$$\begin{array}{l}
\in P(N>nm) - P(X_{nm+1} \geqslant \varepsilon, ..., X_{nm+m} \geqslant \varepsilon, N>nm) \\
= P(N>nm) - P(X_{nm+1} \geqslant \varepsilon, ..., X_{(n+1)m} \geqslant \varepsilon) \cdot P(1>nm) \\
= P(N>nm) (1 - P(X_1 \geqslant \varepsilon)^m)
\end{array}$$

Hence by induction, $P(N > nm) \leq (1 - P(X_1 > \varepsilon)^m)^n$

Hence
$$\frac{1}{m} E(N) = E(\frac{N}{m}) \le \sum_{n=0}^{\infty} P(\frac{N}{m} > n) = \exp(i \frac{\pi}{s} e^{2} \delta)$$

$$= \sum_{n=0}^{\infty} P(N > n m)$$

$$\le \sum_{n=0}^{\infty} (1 - P(\chi > \epsilon)^m)^n \iff \text{geometric sum}$$

$$= \frac{1}{P(\chi > \epsilon)^m}$$

Filtrations

a filtration is an increasing sequence (Tin) of sub-o-fills of F.

Then (F) is a filtration

If each X_{ik} is Real-Valued and $S_n = \sum_{k \in n} X_{ik}$ for n = 0, 1, 2, ..., s,

Then J_n is also exact to $\sigma\left(S_0, S_1, ..., S_n\right)$.

(\mathcal{F}_n) is called the natural fittertian of $(X_n)_{n \geqslant 1}$ or of $(S_n)_{n \geqslant 0}$.

Random walks with respect to a filtration

Let $(\mathcal{F}_n)_{n\geq 0}$ be a fitzation. Let $\chi_n: \Omega \longrightarrow \mathbb{R}$ be \mathcal{F}_n -more for each $n\geq 1$.

Suppose also that for each nzo, Fi and or (Xnri, Xnz,...)

are independent.

Assume also that X_1 , X_2 , X_3 , ... are identically distributed and let $S_n = \sum_{\kappa \leq n} X_{\kappa}$ for n = 0, 1, 2, ... Then we say (S_n) is a RW wrt (T_n) .

Jet S_n be a RW in the previous sense. Jet (F_n) be its notural filtretion. Thun (S_n) is a RW wit (F_n) . g Let (S_n) be a RW in the previous source. Let Y be a RV in dependent of (S_n) . Let $\mathcal{F}_n = \sigma(X_1,...,X_n,Y)$ for each $n \ge 0$. Thum (S_n) is a RW wrt (\mathcal{F}_n) .

Stopping Times Let $(\mathcal{T}_n)_{n>0}$ be a filtration.

To say that N is a stopping time with (\mathcal{T}_n) means that $N:\Omega \to \{0,1,2,...,\infty\}$, and $\{N \le n\} \in \mathcal{H}_n$ for n = 0,1,2,....

(colldain) $\{N > n\}$ also $\{N > n\}$ where $\{N = n\} = \{N \le n\} \setminus \{N \le n-1\}$

{N < n } = \bigcup_{\kappa = \infty} \{ N = \kappa \}