

University Institute of Engineering AIT-CSE

Privacy and Security in IoT - CSD- 433

Topic – Security Architecture in the Internet of Things

Lecture – 1.5

Delivered by

Er. Gaurav Soni (E9610)

Assistant Professor, AIT-CSE

DISCOVER. LEARN. EMPOWER

Privacy and Security in IoT

Course Objectives

CO Number	Title
CO1	To identify various privacy and security requirements in Internet of Things
CO2	To learn cryptographic techniques for a secure IoT system
CO3	To understand various Trust Models used in IoT

Privacy and Security in IoT

Course Outcome

СО	Title	Level
Number		
CO1	After successful completion of this course students will	Understand
	be able to understand the security requirements in IoT.	
CO2	After successful completion of this course students will	Understand
	be able to understand the authentication credentials and	
	access control.	
CO3	After successful completion of this course students will	Implement
	be able to implement security algorithms to make a	
	secure IoT system.	

This will be covered in this lecture

SECURITY in IoT

Top 10 Vulnerabilities in IoT

Security Concerns	Interface Layer	Service Layer	Network Layer	Sensing Layer
Insecure web interface	V	V	√	
Insufficient authentication/authorization	\checkmark	\checkmark	√ ·	√ ·
Insecure network services		V	√	
Lack of transport encryption		V	√	
Privacy concerns		V	√	√
Insecure cloud interface	√			
Insecure mobile interface	V		√	√
Insecure security configuration	√	V	√	
Insecure software/firmware	V		√	
Poor physical security			√	√

IoT security Principles

Six principles of IoT Cyber Security across the stack

IoT Security architecture

ACCESS CONTROL LIST-BASED SYSTEMS

CAPABILITY-BASED ACCESS

Building Security for IoT

Security must be addressed throughout the device lifecycle, from initial design to the operational environment

- Secure booting
- Access control
- 3. Device authentication
- 4. Firewalling and IPS

Secure Booting

- •When power is first introduced to the device, the authenticity and integrity of the software on the device is verified using cryptographically generated digital signature.
- •A digital signature attached to the software image and verified by the device ensures that only the software that has been authorized to **run on that device**, and signed by the entity that authorized it, will be loaded

Device authentication

 When a device is plugged into network, it should authenticate itself prior receiving or transmitting data.

Firewalling and IPS

- The device needs a firewall or deep packet
- inspection capability to control traffic that

is destined to terminate at the devices.

Updates and patches

Once the device is in operation, it will start receiving hot patches and software **updates**. software updates security patches must be delivered in such a way that conserves the limited bandwidth and internet connectivity of an embedded device.

References

1. Li Da Xu, Securing Internet of Things, Algorithms, and Implementations, Elsevier

Home Assignment

1. Name some security threats held at network Layer.

For queries Email: gaurav.e9610@cumail.in