用 MATLAB 生成*.mif、*.hex (QUARTUS II) 文件简介(v1.1)

macro_qian@yahoo.com.cn

以前写过一个"用 MATLAB 生成*.mif、*.hex (QUARTUS II) 文件简介",由于时间和水平原因很粗糙,并且有一些错误。现在修改一下,升级到 v1.1。以前的称为 v1.0 吧。

做 FPGA 设计时经常要调用芯片内存。特别对于 ROM, 内存的初始化就显得比较重要。当然你完全可以手工在 QUARTUS II 打开 mif 文件的表格里逐个输入,几十项或许你还可以接受,但上千项估计能累的人吐血!

一般内存的初始化数据都是有规律的,符合一定的函数,我们完全可以用 MATLAB 来 完成(如果没规律只能逐项手工输入了)。

1. 使用 MATLAB 直接生成*.mif 文件

首先,我们应该知道*.mif 文件的格式。它是文本格式。随便打开一个 mif 文件,你会发现它具有如下的格式:

- -- Copyright (C) 1991-2008 Altera Corporation
- -- Your use of Altera Corporation's design tools, logic functions
- -- and other software and tools, and its AMPP partner logic
- -- functions, and any output files from any of the foregoing
- -- (including device programming or simulation files), and any
- -- associated documentation or information are expressly subject
- -- to the terms and conditions of the Altera Program License
- -- Subscription Agreement, Altera MegaCore Function License
- -- Agreement, or other applicable license agreement, including,
- -- without limitation, that your use is for the sole purpose of
- -- programming logic devices manufactured by Altera and sold by
- -- Altera or its authorized distributors. Please refer to the
- -- applicable agreement for further details.
- -- Quartus II generated Memory Initialization File (.mif)

WIDTH=8;

DEPTH=256;

ADDRESS_RADIX=UNS;

DATA_RADIX=DEC;

CONTENT BEGIN

[0..3]: 127;

[4..6] : 126;

[7...8] : 125;

9 : 124:

```
10 : 123;
   .....
   [253..255] : 127;
END;
下边笔者来说明用 MATLAB 产生所需*.mif 文件方法。
由于笔者的语文水平仅脱盲,如果空洞讲解很表述清楚并且会很枯燥。所以笔者仍使用一个
例子来说明。对[0,2*pi)(包括 0,不包括 2*pi)256点采样,每点用 8位有符号数表示。
生成*.mif 文件的 MATLAB 代码如下:
clear all;
close all;
clc;
index=linspace(0,2*pi,2^8+1); %由于linspace函数包括前后两个边界点,所以多加一点除去
                      %cos(2*pi)的值
cos_val=fix((2^7-1)*cos(index)+0.5); %求COS值、倍扩成8位有符号数、fix是去尾求整数,
                           %加0.5变成四舍五入求整数
fid=fopen('E:\···\cosine.mif','w'); %将cosine.mif文件创建到您老的QUARTUS工程目录里。当
                 %然你也可创建到指定的目录,然后拷贝到QUARTUS工程目录。
fprintf(fid,'WIDTH=8;\n');
                    %指定每个数值的字宽(本工程用8位)
fprintf(fid,'DEPTH=256;\n'); %指定数值的个数,即ROM的深度(本工程用256个)
fprintf(fid,'ADDRESS_RADIX=UNS;\n'); %指定地址的数制(UNS: 无符号数。推荐UNS)
fprintf(fid, DATA RADIX=DEC;\n'); %指定数据基数(DEC: 十进制(有符号数),推荐DEC)
fprintf(fid,'CONTENT BEGIN\n');
                        %固定格式
for j=1:256
                         %数据段数据
   i=j-1;
   fprintf(fid,'%3d',i);
   fprintf(fid,':');
   fprintf(fid,'%3d',cos_val(j));
   fprintf(fid,';\n');
end
```

运行此 MATLAB 程序,得到 cosine.mif 即可使用。

%固定格式

2. MATLAB 变量空间拷贝法

此方法更简单。

fprintf(fid,'END;\n');

fclose(fid);

QUARTUS II 下菜单 File\New\选择 Memory Initialization File, Number of words=256, Word size=8,保存为 cosine.mif。按照图 1、图 2提示在画红圈的地方右击分别修改修改地址数基为十进制、修改内存数基为有符号十进制。

图 1 修改地址数基为十进制

图 2 修改内存数基为有符号十进制

MATLAB 下 Command Window 中执行: index=linspace(0,2*pi,2^8+1); cos_val=fix((2^7-1)*cos(index)+0.5);

在工作空间中双击 cos_val, 在 Array Editor 的表格中打开 cos_val 的变量值, 复制前 256 个(图 1), 然后粘贴到 QUARTUS II 中打开的 cosine.mif 文件的表格中(图 4)。得到如图 5 的结果。保存 cosine.mif 文件, OK! 搞定!

图 4

) X		K) (≃ cos	sine			•
cosine.mif								
Addr	+0	+1	+2	+3	+4	+5	+6	+7
0	127	127	127	127	126	126	126	125
8	125	124	123	122	122	121	120	118
16	117	116	115	113	112	111	109	107
24	106	104	102	100	98	96	94	92
32	90	88	85	83	81	78	76	73
40	71	68	65	63	60	57	54	51
48	49	46	43	40	37	34	31	28
56	25	22	19	16	12	9	6	3
64	o	-2	-5	-8	-11	-15	-18	-21
72	-24	-27	-30	-33	-36	-39	-42	-45
80	-48	-50	-53	-56	-59	-62	-64	-67
88	-70	-72	-75	-77	-80	-82	-84	-87
96	-89	-91	-93	-95	-97	-99	-101	-103
104	-105	-106	-108	-110	-111	-112	-114	-115
112	-116	-117	-119	-120	-121	-121	-122	-123
120	-124	-124	-125	-125	-125	-126	-126	-126
128	-126	-126	-126	-126	-125	-125	-125	-124
136	-124	-123	-122	-121	-121	-120	-119	-117
144	-116	-115	-114	-112	-111	-110	-108	-106
152	-105	-103	-101	-99	-97	-95	-93	-91
160	-89	-87	-84	-82	-80	-77	-75	-72
168	-70	-67	-64	-62	-59	-56	-53	-50
176	-48	-45	-42	-39	-36	-33	-30	-27
184	-24	-21	-18	-15	-11	-8	-5	-2
192	lo	3	6	9	12	16	19	22

图 5

3. 对于*.hex 文件,更简单。大家生成 mif 文件后,用 QUARTUS II 打开,然后另存为 hex 文件就可以了。

笔者:希望这个教程对大家有帮忙。有什么问题可发邮件到 macro_qian@yahoo.com.cn 与笔者讨论。本文中用到的 MATLAB 程序将一同打包奉上。所有代码均为本人编写,由于水平有限,有什么不合适的地方请大家指正,欢迎大家 SHARE。如果对你有帮助,可发邮件感谢我一下,让我也虚荣一下,以后更有心情写些其它的教程。哈哈,取笑了。

思想有多远,人就能走多远!

昨日惊悉饭岛爱君辞世,心中悲痛不已,在此悼念。

老钱 写于 2008 年圣诞 Powered by macro_qian Digifee CO., LTD.

PS:Digifee CO., LTD.是本人虚拟公司,等我有条件时会让她成为现实,希望大家别和我抢注, Digifee 中包含了我心爱女子的名字,是我美好的理想。