Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)"

циональный исследовательский университет)^{*} (МГТУ им. Н.Э. Баумана)

Факультет "Фундаментальные науки" Кафедра "Высшая математика"

ОТЧЁТ по учебной практике за 3 семестр 2020—2021 гг.

Руководитель практики,		Кравченко О.В
ст. преп. кафедры ФН1	$\frac{-}{(no\partial nucb)}$	правченко О.Б
студент группы ФН1–31		Волков Н.С.
	(nodnucb)	

Москва, 2021 г.

Содержание

1	Цели и задачи практики	9		
	1.1 Цели	9		
	1.2 Задачи			
	1.3 Индивидуальное задание	•		
2	2 Отчёт			
3	Индивидуальное задание	ŀ		
	3.1 Ряды Фурье и интегральное уравнение Вольтерры			
\mathbf{C}	писок литературы	Ć		

1 Цели и задачи практики

1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

1.2 Задачи

- 1. Знакомство с теорией рядов Фурье, и теорией интегральный уравнений.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски LATEX.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе I^AТЕХтиповые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.
- 6. Решить индивидуальное домашнее задание согласно своему варианту, и оформить решение с учётов пп. 1—4.

2 Отчёт

Интегральные уравнения имеют большое прикладное значение, являясь мощным орудием исследования многих задач естествознания и техники: они широко используются в механике, астрономии, физике, во многих задачах химии и биологии. Теория линейных интегральных уравнений представляет собой важный раздел современной математики, имеющий широкие приложения в теории дифференциальных уравнений, математической физике, в задачах естествознания и техники. Отсюда владение методами теории дифференциальных и интегральных уравнений необходимо приклажному математику, при решении задач механики и физики.

3 Индивидуальное задание

3.1 Ряды Фурье и интегральное уравнение Вольтерры.

Задача № 1.

Условие. Разложить в ряд Фурье заданную функцию f(x), построить графики f(x) и суммы ее ряда Фурье. Если не указывается, какой вид разложения в ряд необходимо представить, то требуетчя разложить функцию либо в общий тригонометрический ряд Фурье, либо следует выбрать оптимальный вид разложения в зависимости от данной функции.

$$f(x) = \begin{cases} 0, & -2 \leqslant x < -1, \\ 1, & -1 \leqslant x < 1, \\ x^2, & 1 \leqslant x \leqslant 2. \end{cases}$$

Решение.

Построим общий тригонометрический ряд Фурье вида

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(n\omega x\right) + b_n \sin\left(n\omega x\right) \right), \quad$$
где $\omega = \frac{2\pi}{T}, T = 4.$

Вычислим коэффициенты

$$a_{0} = \frac{1}{2} \left(\int_{-1}^{1} dx + \int_{1}^{2} x^{2} dx \right) = \frac{1}{2} \left(2 + \frac{x^{3}}{3} \Big|_{1}^{2} \right) = \frac{13}{6},$$

$$a_{n} = \frac{1}{2} \left(\int_{-1}^{1} \cos \frac{\pi nx}{2} dx + \int_{1}^{2} x^{2} \cos \frac{\pi nx}{2} dx \right) =$$

$$= \frac{1}{2} \left(\frac{2}{\pi n} \sin \frac{\pi nx}{2} \Big|_{-1}^{1} + \frac{2}{\pi n} x^{2} \sin \frac{\pi nx}{2} \Big|_{1}^{2} + \frac{8}{\pi^{2} n^{2}} x \cos \frac{\pi nx}{2} \Big|_{1}^{2} - \frac{16}{\pi^{3} n^{3}} \sin \frac{\pi nx}{2} \Big|_{1}^{2} \right) =$$

$$= \left(\frac{1}{\pi n} + \frac{8}{\pi^{3} n^{3}} \right) \sin \frac{\pi n}{2} + \frac{8}{\pi^{2} n^{2}} \cos \pi n - \frac{4}{\pi^{2} n^{2}} \cos \frac{\pi n}{2},$$

$$b_{n} = \frac{1}{2} \left(\int_{-1}^{1} \sin \frac{\pi nx}{2} dx + \int_{1}^{2} x^{2} \sin \frac{\pi nx}{2} dx \right) =$$

$$= \frac{1}{2} \left(-\frac{2}{\pi n} \cos \frac{\pi nx}{2} \Big|_{-1}^{1} - \frac{2}{\pi n} x^{2} \cos \frac{\pi nx}{2} \Big|_{1}^{2} + \frac{8}{\pi^{2} n^{2}} x \sin \frac{\pi nx}{2} \Big|_{1}^{2} + \frac{16}{\pi^{3} n^{3}} \cos \frac{\pi nx}{2} \Big|_{1}^{2} \right) =$$

$$= \left(\frac{8}{\pi^{3} n^{3}} - \frac{4}{\pi n} \right) \cos \pi n + \left(\frac{1}{\pi n} - \frac{8}{\pi^{3} n^{3}} \right) \cos \frac{\pi n}{2} - \frac{4}{\pi^{2} n^{2}} \sin \frac{\pi n}{2}.$$

Применив теорему Дирихле о поточечной сходимости ряда Фурье, видим, что построенный ряд Фурье сходится к периодическому (с периодом T=4) продолжению исходной функции при всех $x\neq 2+4n, x\neq -1+4n,$ и S(2+4n)=2, $S(-1+4n)=\frac{1}{2}$ при $n=0,\pm 1,\pm 2,\ldots$, где S(x) — сумма ряда Ферье. График функции S(x) имеет следующий вид

Ответ:

$$\begin{split} f(x) &= \frac{13}{12} + \sum_{n=1}^{\infty} [\left(\left(\frac{1}{\pi n} + \frac{8}{\pi^3 n^3}\right) \sin\frac{\pi n}{2} + \frac{8}{\pi^2 n^2} \cos\pi n - \frac{4}{\pi^2 n^2} \cos\frac{\pi n}{2}\right) \cos\frac{\pi n x}{2} + \\ &+ \left(\left(\frac{8}{\pi^3 n^3} - \frac{4}{\pi n}\right) \cos\pi n + \left(\frac{1}{\pi n} - \frac{8}{\pi^3 n^3}\right) \cos\frac{\pi n}{2} - \frac{4}{\pi^2 n^2} \sin\frac{\pi n}{2}\right) \sin\frac{\pi n x}{2}], x \neq 2 + 4n, x \neq -1 + 4n; \\ S(2 + 4n) &= 2, \ \text{при } n \in \mathbb{Z}, \\ S(-1 + 4n) &= \frac{1}{2}, \ \text{при } n \in \mathbb{Z}. \end{split}$$

Задача № 2.

Условие. Для заданной графически функции y(x) построить ряд Фурье в комплексной форме, изобразить график суммы построенного ряда

Решение.

Ряд Фурье в комплексной форме имеет следующий вид

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\omega nx}, \quad c_n = \frac{1}{T} \int_a^b f(x) e^{-i\omega nx} dx, \ \omega = \frac{2\pi}{T}.$$

В нашем примере $a=0,b=3,T=3,\omega=2\pi/3,$ найдем коэффицинеты $c_n,\ n=0,\pm 1,\pm 2,\dots$ где $\omega=2\pi/T,\ T=3.$

$$c_{0} = \frac{1}{3} \int_{0}^{3} f(x)dx = \frac{a_{0}}{2} = \frac{1}{3} \int_{0}^{2} \frac{x}{2}dx = \frac{1}{3},$$

$$c_{n} = \frac{1}{3} \int_{0}^{2} \frac{x}{2}e^{-i\frac{2}{3}\pi nx}dx =$$

$$= \frac{1}{6} \left(\frac{3xi}{2\pi n}e^{-i\frac{2}{3}\pi nx} + \frac{9}{4\pi^{2}n^{2}}e^{-i\frac{2}{3}\pi nx} \right) \Big|_{0}^{2} =$$

$$= \frac{i}{2\pi n}e^{-i\frac{4}{3}\pi n} + \frac{3}{8\pi^{2}n^{2}}e^{-i\frac{4}{3}\pi n} - \frac{3}{8\pi^{2}n^{2}} = \frac{1}{2\pi n} \left(\sin \frac{4\pi n}{3} + \frac{3(\cos \frac{4\pi n}{3} - 1)}{4\pi n} \right) +$$

$$+ \frac{i}{2\pi n} \left(\cos \frac{4\pi n}{3} - \frac{3\sin \frac{4\pi n}{3}}{4\pi n} \right).$$

Применив теорему Дирихле о поточечной сходимости ряда Фурье, видим, что построенный ряд Фурье сходится к периодическому (с периодом T=3) продолжению исходной функции при всех $x\neq 2+3n$, и S(2+3n)=1/2 при $n=0,\pm 1,\pm 2,\ldots$, где S(x) — сумма ряда Фурье. График функции S(x) имеет вид

Ответ:

$$f(x) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2\pi n} \left(\sin \frac{4\pi n}{3} + \frac{3(\cos \frac{4\pi n}{3} - 1)}{4\pi n} \right) + \frac{i}{2\pi n} \left(\cos \frac{4\pi n}{3} - \frac{3\sin \frac{4\pi n}{3}}{4\pi n} \right) \right] e^{\frac{i2\pi nx}{3}}, \ x \neq 2 + 3n;$$

$$S(2+3n) = \frac{1}{2}, \quad \text{при } n \in \mathbb{Z}.$$

Задача № 3.

Условие.

Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром

$$K(x,t) = (x-t)2^{(\sin x - \sin t)}, \ \lambda = 4$$

Решение.

Из рекурентных соотношений получаем

$$K_{1}(x,t) = (x-t)2^{(\sin x - \sin t)},$$

$$K_{2}(x,t) = \int_{t}^{x} K(x,s)K_{1}(s,t)ds = \int_{t}^{x} (x-s)2^{(\sin x - \sin s)}(s-t)2^{(\sin s - \sin t)}ds =$$

$$= 2^{(\sin x - \sin t)} \int_{t}^{x} (xs - xt - s^{2} + st)ds = 2^{(\sin x - \sin t)} \frac{(x-t)^{3}}{3!},$$

$$K_{3}(x,t) = \int_{t}^{x} K(x,s)K_{2}(s,t)ds = \int_{t}^{x} (x-s)2^{(\sin x - \sin s)}2^{(\sin s - \sin t)} \frac{(s-t)^{3}}{6}ds =$$

$$= 2^{(\sin x - \sin t)} \frac{1}{6} \int_{t}^{x} (xs^{3} - 3s^{2}tx + 3sxt^{2} - xt^{3} - s^{4} + 3ts^{3} - 3s^{2}t^{2} + st^{3})ds =$$

$$= 2^{(\sin x - \sin t)} \frac{(x-t)^{5}}{5!},$$

$$K_{j}(x,t) = 2^{(\sin x - \sin t)} \frac{(x-t)^{2j-1}}{(2j-1)!}, \quad j = \mathbb{N}.$$

Подставляя это выражение для итерированных ядер, найдем резольвенту

$$R(x,t,\lambda) = 2^{(\sin x - \sin t)} \sum_{j=1}^{\infty} \frac{4^{j-1}}{(2j-1)!} (x-t)^{2j-1}, j = 1, 2, \dots$$

Список литературы

- [1] Львовский С.М. Набор и вёрстка в системе LATEX, 2003.
- [2] Краснов М.Л., Киселев А.И., Макаренко Г.И. Интегральные уравнения. М.: Наука, 1976.
- [3] Васильева А. Б., Тихонов Н. А. Интегральные уравнения. 2-е изд., стереотип. М: ФИЗМАТЛИТ, 2002.
- [4] Кудрявцев Л. Д., Курс математического анализа: Учеб. для студентов физикоматематических и инженерно-физических специальностей вузов. В 3 т. Т. 2. 2-е изд., перераб. и доп. М.: Высш. шк., 1988.-576 с.: ил.