### A Problem with Distance Variables and Alternatives for their Use

Mid-Continent Regional Science Association 53rd Annual Conference
Thursday, June 8, 2023

#### Two uses of distance variables

- Close to store, school, park, work clearly affect home choice and price. Yet use of distance may be compromised in a fashion more serious than multicollinearity.
- Distances to, say, the Central Business District, is used to anchor a position in the study area.
  - The chief goal is to avoid omitted variable bias in parameter estimates of spatially distributed variables.
  - Estimate the direct influence of a landmark on an outcome of interest, such as a neighborhood park on home price
    - > Crime, school quality, tree cover, employment center
- Critically most policy variables in the regional sciences are spatially distributed

#### Distance variables are NOT IDENTIFIED

If a move to waste dump or to park, decreases of increases home value by \$500:

- **➤** How much is attributable to proximity to Park?
- > How much is attributable to movement away from Dump?



It cannot be ascertained

# Consider a multi-angled - an amenity examination



**NO INDEPENDENT VARIATION !!!** 

## No consistent way to measure effect using a distance variable

 Independent variables are only identified if there is true independent variation.

 Shifting distance to a site from observation to observation fully predetermines variation in all measured distance Measured distance is directionless: Euclid's intention

$$Distance_{a to b} = \begin{bmatrix} (long_a - long_b)^2 + (lat_a lat_b)^2 \end{bmatrix}^{1/2}$$

What about its use as a control?

#### Use nested variables which are directional

$$Distance_{a to b} = \left[ (long_a - long_b)^2 + (lat_a - lat_b)^2 \right]^{1/2}$$

$$long_a - long_b$$
 $lat_a - lat_b$ 
 $(long_a - long_b)^2$ 
 $(lat_a - lat_b)^2$ 

### What about to anchor position?

- The obvious response if that distance is a 'position free' measure by design: Euclid established a pure measure.
- The square root (needed to employ the Pythagorean Theorem makes distance position free. That is why is works.
- So in our park and dump example, distance away from the home does not control
  for position; but confuses it. It assumes the park and dump have equal effect by
  distance to the house.
- To use this as an anchor to capture all other partial effects by definition complicates the space – missing all estimates of all other spatially distributed variables

## A good anchor position must capture a varying change in value from position in every direction

- A position five miles to the northeast must be able to efficiently differ from a position five miles to the southwest.
  - ➤ It must capture all other relevant impacts on value change in dependent variable for each position as a varying longitudinal/latitudinal array.
  - ➤ Otherwise crime rates at a given position that affect home value would be entangled in other features at that position, which can be expected to differ at another position.

#### Empirical application: Lubbock, TX



The study space is also much smaller. Demographics across the study space are more uniform than those in Columbus.

### Empirical application: Lubbock, TX

Dictance (Mall)

Distance: Mall&Toch Fixed Daint 1 (Toch)

|                          | Baseline    | Distance (Tech) | Distance (Mall) | Distance: Mall&Tech |              | Fixed Point 2 (Mall) |
|--------------------------|-------------|-----------------|-----------------|---------------------|--------------|----------------------|
| Square Foot              | 86.95****   | 86.16****       | 87.11****       | 86.18****           | 83.23****    | 83.23****            |
|                          | (4.47)      | (4.33)          | (4.42)          | (4.34)              | (4.05)       | (4.05)               |
| Lot size                 | 1.97****    | 1.98****        | 1.97****        | 1.98****            | 2.05****     | 2.05****             |
| (Sq. yard)               | (0.38)      | (0.37)          | (0.38)          | (0.37)              | (0.34)       | (0.34)               |
| House Age                | -1837.61*** | -2444.6****     | -1625.00****    | -2336.77***         | -2221.41**** | -2220.80****         |
| (Years)                  | (249.83)    | (271.58)        | (257.00)        | (308.87)            | (250.30)     | (250.28)             |
| Garage                   | 21375.78*** | 24089.37****    | 23466.00****    | 24462.2****         | 26373.60**** | 26375.00****         |
| (0/1)                    | (7100.4)    | (6900.7)        | (7064.5)        | (6923.1)            | (6422.01)    | (6422.30)            |
| Env. Proxy               | 657.87****  | 308.89**        | 531.09****      | 300.88***           | 128.45       | 128.44               |
| birdsXspecies            | (128.57)    | (143.21)        | (134.53)        | (143.71)            | (135.50)     | (135.47)             |
| Income                   | 0.14*       | 0.16**          | 0.14*           | 0.15*               | 0.12         | 0.12                 |
| (\$1000)                 | (0.087)     | (0.084)         | (0.087)         | (0.085)             | (0.079)      | (0.079)              |
| Dist. (Tech)             |             | -10542.40***    |                 | -9707.07***         |              |                      |
| (decimal degree)         | -           | (2140.41)       | -               | (2425.05)           | -            | -                    |
| Dist. (Mall)             |             |                 | 10575.00***     | 2974.55             |              |                      |
| (decimal degree)         | -           | -               | (3651.5)        | (4049.1)            | -            | -                    |
| Long (Tech)              |             |                 |                 |                     | 57699.00**** |                      |
| (decimal degree)         | -           | -               | -               | -                   | (6511.8)     | -                    |
| Lat (Tech)               |             |                 |                 |                     | -4822.7**    |                      |
| (decimal degree)         | -           | -               | -               | -                   | (1793.5)     | -                    |
| Long <sup>2</sup> (Tech) |             |                 |                 |                     | 7345.86****  |                      |
| (decimal degree)         | -           | -               | -               | -                   | (797.17)     | -                    |
| Lat² (Tech)              |             |                 |                 |                     | -197.37****  |                      |
| (decimal degree)         | <u>-</u>    | -               | <u>-</u>        | -                   | (29.78)      | -                    |
| Long (Mall)              |             |                 |                 |                     |              | -13898.70****        |
| (decimal degree)         | -           | -               | -               |                     | •            | (2810.1)             |
| Lat (Mall)               |             |                 |                 |                     |              | -6050.13****         |
| (degree)                 | -           | -               | -               | -                   | -            | (1720.2)             |
| Long <sup>2</sup> (Mall) |             |                 |                 |                     |              | 7345.13****          |
| (decimal degree)         | _           | _               | _               | -                   | -            | (797.0)              |
| Lat² (Mall)              |             |                 |                 |                     |              | -195.90****          |
| (degree)                 | -           | -               | -               | -                   | -            | (29.65)              |
| LogLik                   | -4465.09    | -4452.35        | -4460.00        | -4452.70            | -4424.11     | -4424.11             |
| AIC <sub>c</sub>         | 8946        | 8922            | 8939            | 8925.5              | 8872         | 8872                 |
| Adj. R <sup>2</sup>      | 0.85        | 0.85            | 0.85            | 0.85                | 0.86         | 0.86                 |

Parameter estimates of non-spatially distributed variables such as square footage or presence of a second story relatively stable across comparison models.

Parameter estimates of spatially distributed variables fully stabilize only under models with fixed position controls (models 5 and 6), especially the policy variables.

Measures of efficiency (Adjusted R<sup>2</sup>, AIC, Log Likelihood) change very little across all six models

### Empirical application: Columbus, OH



Reflects a more common scale of regional science examination: much larger space, with far more observations and a more diverse population

### Empirical application: Columbus, OH

Distance: OSU&NWD

Fixed Point 1 (OSU)

Fixed Point 2 (NWD)

Distance (NWD)

Distance (OSU)

**Baseline** 

|                                 | baseime     | Distance (USU) | Distance (NWD) | Distance: USU&NWD | Fixed Point 1 (USU) | Fixed Point 2 (INWD) |
|---------------------------------|-------------|----------------|----------------|-------------------|---------------------|----------------------|
| Square Foot                     | 102.09****  | 102.09****     | 102.09****     | 102.08****        | 101.785****         | 101.785****          |
|                                 | (1.72)      | (1.72)         | (1.72)         | (1.73)            | (1.73)              | (1.73)               |
| Lot size                        | 0.17****    | 0.18****       | 0.18****       | 0.18****          | 0.1645****          | 0.1645****           |
| (Sq. yard)                      | (0.029)     | (0.031)        | (0.031)        | (0.031)           | (0.031)             | (0.031)              |
| House Age                       | 154.70****  | 132.903****    | 128.27****     | 137.58****        | 149.12****          | 149.12****           |
| (Years)                         | (28.67)     | (28.69)        | (28.75)        | (28.95)           | (28.91)             | (28.91)              |
| Second Story                    | 20861.52*** | 20638.08****   | 20550.28****   | 20719.1****       | 20264.29****        | 20264.29****         |
| (0/1)                           | (1844.05)   | (1838.62)      | (1839.20)      | (1839.83)         | (1855.14)           | (1855.14)            |
| Income                          | 1035.15**** | 923.23****     | 942.26****     | 912.199****       | 933.635****         | 933.635****          |
| (\$1,000)                       | (49.71)     | (51.08)        | (50.70)        | (51.90)           | (52.23)             | (52.23)              |
| Offenses per                    | 4.75        | -33.28**       | -29.91**       | -33.27**          | -26.54*             | -26.54*              |
| District                        | (13.75)     | (14.31)        | (14.27)        | (14.32)           | (14.27)             | (14.27)              |
| Pct White (%)                   | 205.20****  | 304.747****    | 284.28****     | 294.05****        | 325.63****          | 325.63****           |
|                                 | (39.78)     | (41.15)        | (37.69)        | (42.11)           | (42.81)             | (42.81)              |
| Dist. (OSU)                     |             | -59072.7****   |                | -105061***        |                     |                      |
| (decimal degree)                |             | (6515.273)     | <u>-</u>       | (38976)           |                     | <u>-</u>             |
| Dist. (NWD)                     | _           |                | -58928.72***   | 48275.56          |                     | _                    |
| (decimal degree)                |             |                | (6744.519)     | (40338.58)        |                     |                      |
| Long (OSU) (decimal             | _           | _              | _              | _                 | -20551.57***        | _                    |
| degree)                         |             |                |                |                   | (8444.746)          |                      |
| Lat (OSU)                       | _           | _              | _              | _                 | -2982.95 (8266.658) | _                    |
| (decimal degree)                |             |                |                |                   |                     |                      |
| Long <sup>2</sup> (OSU)         | _           | _              | _              | _                 | -94210.55***        | -                    |
| (decimal degree)                |             |                |                |                   | (18972.2)           |                      |
| Lat <sup>2</sup> (OSU)          | _           | _              | _              | _                 | -224564.1***        | _                    |
| (decimal degree)                |             |                |                |                   | (41848.9)           |                      |
| Long (NWD)                      | _           | -              | -              | -                 | _                   | -18453.85***         |
| (decimal degree)                |             |                |                |                   |                     | (8105.454)           |
| Lat (NWD)                       | -           | _              | _              | _                 | -                   | -17846.22**          |
| (decimal degree)                |             |                |                |                   |                     | (8725.727)           |
| Long <sup>2</sup> (NWD)         | -           | -              | -              | -                 | -                   | -94210.55***         |
| (degree)                        |             |                |                |                   |                     | (18972.2)            |
| Lat <sup>2</sup> (NWD) (degree) | -           | -              | -              | -                 | -                   | -224564.1***         |
|                                 | 4742C0 F    | 171210 5       | 474222.4       | 471210.7          | 474220.4            | (41848.9)            |
| LogLik                          | -171260.5   | - 171219.5     | - 171222.4     | - 171218.7        | - 171228.1          | - 171228.1           |
| AIC <sub>c</sub>                | 342537      | 342457         | 342463         | 342458            | 342480              | 342480               |
| Adj. R <sup>2</sup>             | 0.43        | 0.43           | 0.43           | 0.43              | 0.43                | 0.43                 |

Parameter estimates of non-spatially distributed variables such as square footage or presence of a second story relatively stable across comparison models.

Parameter estimates of spatially distributed variables fully stabilize only under models with fixed position controls (models 5 and 6), especially the policy variables.

Measures of efficiency ( $Adjusted R^2$ , AIC, Log Likelihood) change very little across all six models