Extraction du produit et purification

Mettre en oeuvre un protocol de synthèse conduisant à la modification d'un groupe caractéristique ou d'une chaîne carbonée

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

2 avril 2023

Extraction du produit et purification

- Introduction
- Synthèse de l'aspirine
 - Milieu réactionnel
 - Equation bilan et mécanisme
 - Synthèse, dispositif expérimental
- Extraction du produit et purification
 - Extraction par un solvant
 - Filtration
 - Recristalisation
- Identification de la nature des espèces
 - Rendement

Objectifs

- réinvestir les notions vu depuis la seconde sur la constitution d'un système chimique
- propriétés des transformations chimiques
- modèles micro et macros permettent de développer des stratégies écoresponsables

Pré-requis

- Formules brutes/développées
- étapes d'un protocol (transformation/séparation/purification/identification)
- rendement d'une synthèse

Après avoir abordé le regard multi échelle porté par le chimiste pour modéliser une transformation et l'évolution d'un système siège d'une transformation, le programme de Terminale propose l'utilisation d'une banque de réactions chimique en chimie organique.

L'idée est d'initier chez les étudiants une réflexion sur les stratégies mises en oeuvres par des chimistes pour synthétiser des espèces organiques à partir de réactifs disponibles comercialement en prenant en compte les contraintes économiques et écologiques. Je vous proposer de réaliser la synthèse de l'aspirine.

Milieu réactionnel

Produit désiré:

Molécule de l'aspirine (acide

acétylsalicylique)

solvant

Réactif de départ :

Extraction du produit et purification

Catalyseur:

Milieu réactionnel

Produit désiré:

Molécule de l'aspirine (acide acétylsalicylique)

Réactif de départ : Acide

Extraction du produit et purification

salicylique

Catalyseur:

Milieu réactionnel

Produit désiré:

Molécule de l'aspirine (acide acétylsalicylique)

solvant

Anhydrid éthanoïque

Réactif de départ : Acide

salicylique

Catalyseur:

Milieu réactionnel

Produit désiré :

Molécule de l'aspirine (acide acétylsalicylique)

Anhydride éthanoïque

Réactif de départ : Acide

Extraction du produit et purification

salicylique

Catalyseur:

Acide sulfurique

H2SO4

Équation bilan de la réaction

Figure - Réaction d'estérification

Mécanisme de la réaction

Étape 1 : protonation de l'anhydride éthanoïque

$$\begin{array}{c|c} O \\ O \\ O \\ O \\ \end{array} \\ \begin{array}{c} O \\ \\ \end{array} \\ \\ \begin{array}{c} O \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\$$

Étape 2 : addition nucléophile

$$\begin{array}{c} H \\ COOH \\ COOH$$

Étape 3 : déplacement de l'hydrogène de -OH à C=O

Étape 4 : élimination du composé qui va devenir l'acide éthanoïque par déplacement des électrons

Rendement

Calcul du rendement sur excel