Computational Mathematics

Ikhan Choi

September 3, 2023

Contents

I	Numerical analysis	3
1	Ordinary differential equations 1.1 Polynomial interpolations	4 4 4 4
2	Numerical linear algebra	5
3	Finite difference methods 3.1 Elliptic equations	6 6 6
4	Finite element methods 4.0.1 Approximation of Banach spaces	7 7 8 8 9
5	Optimization5.1 Convex optimization5.2 Optimal control5.3 Operations research5.4 Mathematical programming	10 10 10 10 10
6	Monte Carlo method	11
II	Information theory	12
7	Communication theory	13
8	Coding theory	14
9	Cryptography	15
III	I Mathematical statistics	16
10) Statistical models	17

11 Statistical inference	18
11.1 Parametric inference	. 18
11.2 Non-parametric inference	. 18
12	19

Part I Numerical analysis

Ordinary differential equations

- 1.1 Polynomial interpolations
- 1.2 Differentiation and integration
- 1.3 Runge-Kutta methods
- 1.4 Multi-step methods

Numerical linear algebra

Finite difference methods

3.1 Elliptic equations

3.1 (1D Poisson equation). Consider the following boundary value problem:

$$\begin{cases}
-u''(x) = f(x), & \text{in } (0,1), \\
u(0) = u(1) = 0.
\end{cases}$$

We discretize it by $(u_j)_{j=0}^N$ such that hN=1 and

$$\begin{cases} -\frac{u_{j+1} - 2u_j + u_{j-1}}{h^2} = f_j, & \text{for } j = 1, \dots, N-1, \\ u_0 = u_N = 0. \end{cases}$$

$$\frac{1}{h^2} \begin{pmatrix} 2 & -1 & & 0 \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ 0 & & -1 & 2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{N-1} \end{pmatrix}$$

eigenvalue problems

3.2 Parabolic equations

3.3 Hyperbolic equations

CFD

Finite element methods

4.0.1 Approximation of Banach spaces

We follow closely Temam for the abstract error analysis. The word "approximation" in here can be replaced into "discretization".

Definition 4.0.1 (Approximation). Let X be a Banach space. An approximation of X is an indexed family X_h of finite-dimensional normed spaces, with a prolongation operator $p_h \in B(X_h, X)$ and a restriction operator $r_h: X \to X_h$). The operator $p_h r_h: X \to X$ is called the *truncation operator*.

$$X \\ r_h \downarrow p_h \\ X_h$$

Definition 4.0.2 (Errors). Let X_h be an approximation of a Banach space X. For $x \in X$ and $x_h \in X_h$, the quantities $E(x_h, x) := \|p_h x_h - x\|$ and $DE(x_h, x) := \|x_h - r_h x\|$ are called the *error* and the *discrete error* between x and x_h . The quantity $TE(x) := \|x - p_h r_h x\|$ is called the *truncation error*.

Definition 4.0.3 (Stable and convergent approximations). We say an approximation X_h is

- (a) *stable* if $||p_h|| + ||r_h|| \lesssim 1$,
- (b) convergent if $||p_h r_h x x|| \to 0$ for each $x \in X$.

Lemma 4.0.4. Let X_h be an approximation of a Banach space X. If X_h is stable and convergent, then for each net $x_h \in X_h$ the discrete convergence implies the strong convergence.

Proof. We have for each $x \in X$ that

$$DE = ||r_h|| \cdot E$$
 and $E = ||p_h|| \cdot DE + TE$.

Lemma 4.0.5. Let X_h be an approximation of a Banach space X. If $||p_h x|| \sim ||x||$, then the stability of X_h follows from the convergence of X_h .

Proof. It is by the uniform boundedness principle:

$$||r_h x|| \lesssim ||p_h r_h x - x|| + ||x||.$$

In most cases we have $||p_h x|| = ||x||$, so for an approximation it is enough to verify the truncation error converges to zero.

4.0.2 Approxiamation of problems

A *well-posed problem* is an operator $L: \mathcal{X} \to \mathcal{Y}$ such that there is a continuous operator $L^{-1}: Y \to X$ satisfying $LL^{-1} = \mathrm{id}_Y$, where $X \subset \mathcal{X}$ and $Y \subset \mathcal{Y}$ are embeddings. Say, consider the spaces \mathcal{X} and \mathcal{Y} as space of distributions. We will always assume $L: X \to Y$ is a right invertible(i.e. well-posed) linear operator between Banach spaces.

Definition 4.0.6 (Approximation). Let L be a well-posed linear problem. An *approximation* of L is an indexed family $L_h \in L(X_h, Y_h)$ of invertible linear operators, where X_h and Y_h are stable and convergent approximations of X and Y.

We also do not need to assume in fact the stability of r_h . The approximation X_h of X is where we should take subtly, and the art of numerical analysis begins with the choice of X_h . The following diagram does not commute, but *approximately* commute.

$$X \xrightarrow{L} Y$$

$$r_h \left(\begin{array}{c} \\ \\ \end{array} \right) p_h \qquad \downarrow r_h$$

$$X_h \xrightarrow{L_h} Y_h$$

Definition 4.0.7. Let L_h be an approximation of a well-posed linear problem L. We say L_h is

- (a) consistent if $CE = ||r_h Lx L_h r_h x|| \to 0$ for each x,
- (b) stable if $||L_h^{-1}|| \lesssim 1$,
- (c) convergent if $DE = ||L_h^{-1}r_hLx r_hx|| \to 0$ for each x.

Theorem 4.0.8 (Lax equivalence). Let L_h be an approximation of a well-posed linear problem L. If L_h is consistent, then it is stable if and only if it is convergent.

Proof. (\Rightarrow) It is clear from

$$DE = ||x_h - r_h x|| \le ||L_h^{-1}|| ||r_h L x - L_h r_h x|| = ||L_h^{-1}|| \cdot CE.$$

(⇐) If we show for the net of operators $p_h L_h^{-1} r_h : Y \to X$ that $p_h L_h^{-1} r_h y$ is bounded in X for each $y \in Y$, then by the uniform boundedness principle the operators $p_h L_h^{-1} r_h$ is uniformly bounded, and we obtain the stability from

$$||L_h^{-1}|| = ||r_h p_h L_h^{-1} r_h p_h|| \le ||r_h|| ||p_h L_h^{-1} r_h|| ||p_h||.$$

Since L is surjective by the well-posedness, there is $x \in X$ such that Lx = y. With this x we have

$$||p_h L_h^{-1} r_h y - x|| \le ||p_h|| \cdot DE + TE \to 0,$$

so we are done.

4.0.3 Numerical analyses

For a numerical approximation, we can consider three analyses:

- 1. Consistency analysis,
- 2. Statbility analysis,
- 3. Error analysis.

Note that we have $DE \le ||L_h^{-1}|| \cdot CE$. If we have the estimate for the rate of the consistency error from the consistency analysis, and also if we have the bound of $||L_h^{-1}||$ in the stability analysis, we can easily obtian an *error estimate*. In this regard, the main difficulty is the former two.

Consistency analysis

Usually the Taylor's theorem is used in finite difference schemes.

Stability analysis

For the bound of $||L_h^{-1}||$, we have to make a *stability estimate*

$$||x_h|| \lesssim ||L_h x_h||.$$

We have some notes about uniqueness and existence: the injectivity of L_h^{-1} clearly follows from the above estimate, and the surjectivity is deduced thanks to the finite-dimensional nature of X_h and Y_h when their dimensions coincide.

Error analysis

In the Ritz-Galerkin approximation the discrete solution operator $p_h L_h^{-1} r_h L$ can be directly shown to be an orthogonal projection called the *Ritz projection*, which deduces an *a priori* convergence result before justifying proving consistency and stability.

4.0.4 Applications

Example 4.0.9. Consider

$$\begin{cases} u'(x) - u(x) = f(x) & \text{in } x \in (0, 1), \\ u(0) = c. \end{cases}$$

Let $X := C^1([0,1])$, $Y := C([0,1]) \times \mathbb{R}$, and Au(x) := (u'(x) - u(x), u(0)). Then it is well-posed since there is $E : Y \to X$ defined by

$$E(f,c)(x) := c + \int_0^x e^{-y} f(y) dy$$

satisfies

Example 4.0.10. Consider

$$\begin{cases} -\Delta u(x) = f(x) & \text{in } x \in (0,1)^2, \\ u(x) = 0 & \text{on } x \in \partial(0,1)^2. \end{cases}$$

Let X = Y = Au

Example 4.0.11. Consider

$$\begin{cases} \partial u(t,x) = \Delta u(t,x) & \text{in } (t,x) \in (0,\infty) \times (0,1), \\ u(0,x) = f(x) & \text{on } x \in [0,1], \\ u(t,0) = 0 & \text{on } t \in [0,\infty), \\ u(t,1) = 0 & \text{on } t \in [0,\infty), \end{cases}$$

Let X = Y = Au

$$u_i^n$$
, $t = t_0 + nk$, $x = x_0 + jh$

Optimization

- 5.1 Convex optimization
- 5.2 Optimal control
- 5.3 Operations research

theory of decision making

5.4 Mathematical programming

Monte Carlo method

stochastic

Part II Information theory

Communication theory

shannon's theory

Coding theory

Cryptography

Part III Mathematical statistics

Statistical models

Statistical inference

estimation, testing hypothesis, ranking, selection

- 11.1 Parametric inference
- 11.2 Non-parametric inference