- Key Steps for Perceptron Learning
 - How to detect misclassified points
 - How to update a plane
- Perceptron Learning Rule
 - Graphical Explanation
 - Unified Learning Rule
 - Learning Rate

Recap: Perceptron vs MP Neuron

		Perceptron	MP Neuron
	Inputs	Real numbers	Binary (0 or 1)
	Weights	Each input carries a weight (which can be learned)	All inputs are equally important.
I	Threshold	Can be learned automatically	Manually set by users

Initially, choose (w, b) at random to create a plane $w \cdot x + b = 0$

Detect if there exists any misclassified node

Normal Vector

W. TXBNO W

Example in 3D

For the plane equation

$$\mathbf{w}\cdot\mathbf{x}+b=0,$$

w is a normal vector, which is perpendicular to the plane.

$$2x + 3y + 4z - 1 = 0$$

$$\mathbf{w} = (2, 3, 4) \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad b = -1$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

Dot Product & Angle btw Vectors

$$a \cdot b = |a| \cdot |b| \cdot \cos \theta$$

$$> 0$$
 $(0 < \theta < 90^{\circ})$
 $\cos \theta = 0$ $(\theta = 90^{\circ})$
 < 0 $(90^{\circ} < \theta < 180^{\circ})$

Determine if a point is inside a region

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$
 where $\mathbf{w} = [w_1, w_2]$ $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

If \mathbf{v} is inside the region, $\mathbf{w} \cdot \mathbf{v} \ge 0$ If \mathbf{v} is outside the region, $\mathbf{w} \cdot \mathbf{v} < 0$

Example

If \mathbf{v} is inside the region, $\mathbf{w} \cdot \mathbf{v} + b \ge 0$ If \mathbf{v} is outside the region, $\mathbf{w} \cdot \mathbf{v} + b < 0$

Affine vs. Linear Transformation

$$x \in \mathbb{R}^n$$

Affine Transformation in \mathbb{R}^n

Let
$$\mathbf{w} = [w_1, \dots, w_n]$$
 $\mathbf{x} = [x_1, \dots, x_n]^T$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

Linear Transformation in \mathbb{R}^{n+1}

Let
$$w = [w_1, \dots, w_n]$$
 $x = [x_1, \dots, x_n]^T$ Let $w = [w_1, \dots, w_n, b]$ $x = [x_1, \dots, x_n, x_{n+1}]^T$
$$\begin{cases} w \cdot x = 0 \\ x_{n+1} = 1 \end{cases}$$

From Affine to Linear

Affine Transformation in R²

Let
$$w = [w_1, w_2]$$
 $x = [x_1, x_2]^T$ $w \cdot x + b = 0$

Linear Transformation in R³

Let
$$\mathbf{w} = [w_1, w_2, \mathbf{b}]$$
 $\mathbf{x} = [x_1, x_2, \mathbf{x_3}]^T$
$$\begin{cases} \mathbf{w} \cdot \mathbf{x} = 0 \\ x_3 = \mathbf{1} \end{cases}$$

From Affine to Linear

- v is above the red line in 2D
 - ⇔ v is below the red plane in 3D
- v is below the red line in 2D
 ⇔ v is above the red plane in 3D

Affine Transformation in R²

Let
$$w = [w_1, w_2]$$
 $x = [x_1, x_2]^T$ $w \cdot x + b = 0$

Linear Transformation in R³

Let
$$\mathbf{w} = [w_1, w_2, \mathbf{b}]$$
 $\mathbf{x} = [x_1, x_2, \mathbf{x_3}]^T$
$$\begin{cases} \mathbf{w} \cdot \mathbf{x} = 0 \\ x_3 = \mathbf{1} \end{cases}$$

Graphical Interpretation

Ideally, green point v should be inside the blue region, satisfying angle $(w, v) \leq 90^{\circ}$

 Ideally, red point v should be outside the blue region, satisfying angle $(w, v) > 90^{\circ}$

 $\mathbf{w} \cdot \mathbf{v} < 0$

Vector Addition and Subtraction

Update w to Learn $w \cdot x = 0$

Learn w for the plane:

$$\mathbf{w} \cdot \mathbf{x} = 0$$

For any misclassified v,

• If angle $(w, v) > 90^{\circ}$ (i.e., v is 1 but misclassified as 0),

$$w_{\text{new}} = w_{\text{old}} + v$$

Update w to Learn $w \cdot x = 0$

Learn w for the plane:

$$\mathbf{w} \cdot \mathbf{x} = 0$$

For any misclassified v,

If angle (w, v) > 90°
 (i.e., v is 1 but misclassified as 0),

$$w_{\text{new}} = w_{\text{old}} + v$$

• If angle $(w, v) \le 90^{\circ}$ (i.e., v is 0 but misclassified as 1),

$$w_{\text{new}} = w_{\text{old}} - v$$

Update w to Learn $w \cdot x = 0$

Learn w for the plane:

$$\mathbf{w} \cdot \mathbf{x} = 0$$

For any misclassified v,

If angle (w, v) > 90°
 (i.e., v is 1 but misclassified as 0),

$$w_{\text{new}} = w_{\text{old}} + v$$

• If angle $(w, v) \le 90^{\circ}$ (i.e., v is 0 but misclassified as 1),

$$w_{\text{new}} = w_{\text{old}} - v$$

Learning Rule for Perceptron

- Initialise w randomly;
- while (there exists a misclassified input v)
- if (v is 1) and misclassified as 0) // angle(w, v) > 90°
- $w_{\text{new}} = w_{\text{old}} + v$
- if (v is 0) and misclassified as (v) // angle $(w, v) \le 90^\circ$
- $w_{\text{new}} = w_{\text{old}} v$
- end

Unified Learning Rule

- Initialise w randomly;
- while (there exists a misclassified input v)

$$w_{\text{new}} = w_{\text{old}} + (y(v) - \hat{y}(v)) \times v$$

end

$$w_{\text{new}} = w_{\text{old}} + (\text{actual - predicted}) \times v$$

$$y(v) \quad \hat{y}(v)$$

Learning Rate

- Initialise w randomly;
- while (there exists a misclassified input v)

$$w \leftarrow w + \alpha \times (y(v) - \widehat{y}(v)) \times v$$
• end learning rate $(0 < \alpha < 1)$

- Learning rate α is a configurable hyperparameter, which determines the step size at each iteration in the training.
- α is a speed-accuracy trade-off:
 - Smaller α requires more training iterations (epochs), leading to slow rate of convergence.
 - Larger α results in rapid changes that may make the learning jump over (overshoot) the optima.

Effects of Learning Rate

$$w_{\text{new}} = w_{\text{old}} + \alpha \times v$$

$$\alpha = 1$$

$$\alpha = 0.1$$

- Why XOR is linear inseparable?
- Remedies for XOR Problem
 - Replace Threshold Function
 - Use Multi-Layer Perceptron (MLP)
- Complex Decision Boundaries through MLP Composition

Logic Gates as Venn Diagrams

 x_1 NAND x_2

 x_1 XOR x_2 x_1 IMPLY x_2

Logic Gates as Venn Diagrams

 x_1 NAND x_2 = NOT (x_1 AND x_2)

 $x_1 \text{ XOR } x_2 = (x_1 \text{ OR } x_2) \text{ AND } (x_1 \text{ NAND } x_2)$

Linear Separability

X ₁	X ₂	У
1	1	1
0	1	0
1	0	0
0	0	0

x_1 OF	$\langle x_2 \rangle$
----------	-----------------------

X ₁	X ₂	y
1	1	1
0	1	1
1	0	1
0	0	0

 x_1 XOR x_2

X ₁	X ₂	y
1	1	0
0	1	1
1	0	1
0	0	0

Perceptron for AND Gate

$$1 \cdot x_1 + 1 \cdot x_2 - 1.5 \ge 0$$

$$w_1x_1 + w_2x_2 + b \ge 0 \implies (w_1, w_2, b) = (1, 1, -1.5)$$

$$y = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_2 + b \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Perceptron for AND/OR Gate

XOR is Not Linear Separable

$$w_1 \cdot 0 + w_2 \cdot 1 + b \ge 0$$

$$w_1 \cdot 1 + w_2 \cdot 1 + b < 0$$

$$w_1 \cdot 1 + w_2 \cdot 0 + b \ge 0$$

$$y = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_2 + b \ge 0 \\ 0 & \text{if } w_1 x_1 + w_2 x_2 + b < 0 \end{cases}$$

No Solution for **such** (w_1, w_2, b) !

$$\begin{cases} b < 0 \\ w_2 + b \ge 0 \\ w_1 + w_2 + b < 0 \end{cases}$$

$$w_1 + b \ge 0$$
 Contradiction!

Remedies for XOR Problem

Treatment Method 1

Replace the existing threshold function with a more powerful function.

Treatment Method 2

Increase the number of layers while keeping each unit using a threshold function.

Recap: Threshold Function for OR Gate

Method 1 - Replace Threshold Function

Method 2 – Increase Layers of Perceptron

Method 2 – Increase Layers of Perceptron

Method 2 – Increase Layers of Perceptron

Multi-Layer Perceptron (MLP)

Minsky and Papert
 (1969) provided a
 solution to the XOR
 problem by combining
 three perceptron units
 using a hidden layer.

The solution to XOR gate is not unique.

MLP for Emulating XOR is NOT Unique

Decision Boundary of MLP

Complex Decision Boundaries

Complex Decision Boundaries

MLP can compose complex decision boundaries, which lays the foundations for image recognition.