

Diego Bertolini

diegobertolini@utfpr.edu.br
http://www.inf.ufpr.br/diegob/

Aula 006

- Aula Anterior:
 - Busca Local;
- Aula de Hoje:
 - Algoritmo Genético;

Objetivo

O que vocês devem saber ao final da aula:

Conceitos básicos de Algotimos Genéticos;

Algorithm 1 Algoritmo Genético Clássico

- 1: $t \leftarrow 0$
- 2: Inicializar População(t)
- 3: **while** condição de término não for satisfeita **do**
- 4: $t \leftarrow t + 1$
- 5: Seleciona População(t) da População(t-1)
- 6: Cruzamento População(t)
- 7: Mutação População(t)
- 8: Avaliação da População(t)
- 9: end while

Encontrar o valor de x que maximize a função:

$$f(x)$$
 sen $(\frac{\pi * x}{256})$

- Esse problema contem uma única variável (x), a qual pode assumir valores entre 0 e 255.
- Utilizando uma codificação binária, a variável x pode ser codificada em uma string de 8 bits:
- 0000000 -> 0
- 11111111 -> 255
- Nesse exemplo usaremos uma população de 8
- · indivíduos, inicializados aleatoriamente.

Nesse exemplo usaremos uma população de 8 indivíduos, inicializados aleatoriamente.

Indivíduos
10111101
11011000
01100011
11101100
10101110
01001010
00100011
00110101

Fitness da População Inicial

Indivíduos	x	f(x)	f_{norm}	f_{acm}
10111101	189	0.733	0.144	0.144
11011000	216	0.471	0.093	0.237
01100011	99	0.937	0.184	0.421
11101100	236	0.243	0.048	0.469
10101110	174	0.845	0.166	0.635
01001010	75	0.788	0.155	0.790
00100011	35	0.416	0.082	0.872
00110101	53	0.650	0.128	1.000

Reprodução

- Após o cálculo da fitness acontece a reprodução.
- Gerar uma nova população com o mesmo número de indivíduos.
- Processo estocástico que leva em consideração a fitness normalizada.
- Indivíduos ruins também tem chance de reproduzir (probabilidade baixa).

Roleta

 As porções maiores tem mais chances de serem selecionadas, porem as menores também tem chances (reduzidas, é claro).

0|1 0.872 0.144 0.790 0.237 0.635 0.421 0.469

Reprodução

- Rodamos a roleta oito vezes.
 - Se o número cair entre 0 e 0.144, o indivíduo selecionado é o 1, e assim por diante.
- Número gerados aleatoriamente:

0.293, 3, 0.971, 0.160, 0.169, 0.664, 0.568, 0.371, 0.109

Indivíduos selecionados:

3, 8, 2, 5, 6, 5, 3, 1

População Reproduzida

 Neste caso os piores individuos (4 e 7) não fazem parte da nova população;

Cruzamento

- Sendo assim, 3 pares de indivíduos serão selecionados aleatoriamente e o restante será simplesmente copiado para a nova população.
- Por uma questão de simplicidade, selecionamos os 6 primeiros indivíduos para o cruzamento.

Cruzamento

Mutação

- Evitar a convergência prematura do algoritmo.
- Taxas de mutação entre 0.1 e 1% são geralmente utilizadas.
- Altas taxas de mutação faz com que o AG explore diferentes áreas do espaço.
- Geralmente inicia-se com taxas de mutação mais elevadas e diminui-se conforme o algoritmo converge..

Mutação

Nova População

 A nova população (que dá início a segunda geração do algoritmo) deve ser do tamanho da população inicial, ou seja, 8 indivíduos.

População Inicial F	itness	População Intermediária	Fitness
01100011	189	01110111	119
00110111	216	00100011	33
11011000	99	10101000	168
10101110	236	11011110	222
01001010	174	01101110	138
10101110	75	10101010	110
01100011	35	11100011	227
10111101	53	10111101	189

Mutação

- Estratégias mais comuns para selecionar a nova população:
 - Roleta: Processo estocástico, onde o melhor indivíduo pode ser perdido
 - Ranking: Garante o melhor indivíduo na próxima população; Estratégia Elitista

Considerações

- Representação de Variáveis
- População: Tamanho e Inicialização
- Operador de Cruzamento
- Operador de Mutação
- Seleção