Math Methods Assignment #4

Johannes Byle

September 27, 2021

- 1. It would depend on whether the rocket rotated. Assuming that it's acceleration was constant in both the horizontal and vertical directions it would move in a parabola, unless v_0 is 0 in which case it would move in a straight line. If the rocket were allowed to rotate it would move in a parabolic path, as it would start asymptotically in horizontal direction, and then as it tilted down it would move asymptotically close to the vertical axis.
- 2. If we take a rhombus with corners A, B, C, D we can represent the sides as \vec{AB} , \vec{BC} , \vec{CD} , \vec{DA} . We know that $|\vec{AB}| = |\vec{BC}| = |\vec{CD}| = |\vec{DA}|$, and that $\vec{AC} = \vec{AB} + \vec{BC}$ and $\vec{BD} = \vec{BC} + \vec{CD}$. Since the sides of a rhombus are parallel we can for the sake of this problem consider $\vec{AC} = \vec{AB} + \vec{AD}$ and $\vec{BD} = \vec{AD} \vec{AB}$. To show that the diagonals are orthogonal we need to show that the dot products are equal to zero: $\vec{AC} \cdot \vec{BD} = (\vec{AB} + \vec{AD}) \cdot (\vec{AD} \vec{AB}) = \vec{AD}^2 \vec{AB}^2 = 0$ since the sides all have equal length.
- 3. This is equivalent to $\sum_{i} \sum_{j} \sum_{k} \epsilon_{ijk} \epsilon_{ijk}$. The number of permutations of n numbers is n!, which means there are 3! = 6 permutations in our case. Since whether the permutation is even or odd the term $\epsilon_{ijk} \epsilon_{ijk} = 1$ and otherwise 0 the sum is equal to 6.
- 4. Using the definition of the cross product $\boldsymbol{a} \times \boldsymbol{b} = \epsilon_{ijk} \hat{\boldsymbol{e}}_i a_j b_k$:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \times (\epsilon_{ijk} \hat{\mathbf{e}}_i b_j c_k) = \epsilon_{ijk} \hat{\mathbf{e}}_i a_j b_j c_k$$

 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\epsilon_{ijk} \hat{\mathbf{e}}_i a_j b_k) \times \mathbf{c} = \epsilon_{ijk} \hat{\mathbf{e}}_i a_j b_j c_k$