#### **International Olympiad in Informatics 2015**



26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

horses

Language: es-CU

# Horses

Mansur ama criar caballos, justamente a el le gusta lo que hicieron sus antepasados. El ahora tiene la mas grande manada en Kazakhstan. Pero este no fue siempre el caso. Hace N años Mansur era justamente un dzhigit (en Kazakh  $un\ hombre\ joven$ ) y solamente tenia un caballo simple. El soñaba hacer una gran cantidad de dinero y finalmente convertirse en un bai (en Kazakh  $una\ persona\ muy\ rica$ ).

Tenemos los años desde 0 a N-1 en orden cronologico (es decir, el año N-1 es el mas reciente). El tiempo de cada año influyó en el crecimiento de la manada. Para cada año i, Mansur recuerda un entero positivo, el coeficiente de crecimiento X[i]. Si tu comienzas el año i con i caballos, tu finalizas el año con i caballos en la manada.

Los caballos solamete pueden ser vendidos al final de un año. Para cada año i, Mansur recuerda un entero positivo Y[i]: el precio para el cual el puede vender un caballo al final de año i. Despues de cada año, fue posible vender arbitrariamente muchos caballos, cada uno en el mismo precio Y[i].

Mansur se pregunta cual es la mayor cantidad de dinero que el pudiera tener ahora si el hubiera elegido el mejor momento para vender sus caballos durante los N años. Usted tiene el honor de ser un invitado de las toi de Mansur (en Kazakh vacaciones), y el le pidio a usted responder su pregunta.

La memoria de Mansur mejora a traves de la noche, y asi el hace una secuencia de M actualizaciones. Cada actualizacion cambiará uno de los valores de X[i] o uno de los valores de Y[i]. Despues de cada actualizacion el le preguntará cual es la mayor cantidad de dinero que el pudiera haber ganado vendiendo sus caballos. Las actualizaciones de Mansur son acumulativas: cada una de sus respuestas debe tomar en cuenta todas las actualizaciones previas de Mansur. Note que un simple X[i] o Y[i] puede ser actualizado multiples veces.

La respuesta actual a las preguntas de Mansur puede ser muy grande. Para evitar trabajar con numeros grandes, usted solamente requiere reportar las respuestas modulo  $10^9 + 7$ .

## **Ejemplo**

Suponga que hay N=3 años, con la siguiente información:

|  |   | 0 | 1 | 2 |
|--|---|---|---|---|
|  | Χ | 2 | 1 | 3 |
|  | Y | 3 | 4 | 1 |

Para estos valores iniciales, lo que mas puede ganar Mansur es vendiendo sus caballos al final del año 1. El proceso entero será como sigue:

■ Inicialmente, Mansur tiene 1 caballo.

- Despues del año 0 el tendrá  $1 \cdot X[0] = 2$  caballos.
- Despues del año 1 el tendra  $2 \cdot X[1] = 2$  caballos.
- lacksquare El puede vender esos dos caballos. El provecho total será  $2 \cdot Y[1] = 8$ .

Entonces, suponga que hay M=1 actualizacion: cambiando Y[1] a 2.

Despues de la actualización tendremos:

|   | 0 | 1 | 2 |
|---|---|---|---|
| Х | 2 | 1 | 3 |
| Y | 3 | 2 | 1 |

En este caso tendremos, una de las soluciones optimas es vender un caballo despues del año 0 y entonces tres caballos despues del año 2.

El proceso entero será como sigue:

- Inicialmente, Mansur tiene 1 caballo.
- Despues del año 0 el tendrá  $1 \cdot X[0] = 2$  caballos.
- lacktriangledown El pude vender uno de esos caballos para Y[0]=3, y se quedaria con un caballoleft.
- Despues del año 1 el tendrá  $1 \cdot X[1] = 1$  caballos.
- Despues del año 2 el tendra  $1 \cdot X[2] = 3$  caballos.
- El puede ahora vender esos tres caballos para  $3 \cdot Y[2] = 3$ . La cantidad total de dinero es 3 + 3 = 6.

#### Tarea

A usted le son dados N, X, Y, y la lista de actualizaciones. Antes de la primera actualizacion, y despues de cada actualizacion, calcule la cantidad maxima de dinero que Mansur puede ganar por sus caballos, modulo  $10^9 + 7$ . Usted necesita implementar las funciones init, updateX y updateY.

- init (N, X, Y) El grader llamara a esta funcion al inicio y exactamente una vez.
  - N: el numero de años.
  - lacktriangle X: un arreglo de longitud N. Para  $0 \leq i \leq N-1, X[i]$  tiene el coeficiente de crecimiento para cada año.
  - lacktriangleq Y: un arreglo de longitud N. Para  $0 \leq i \leq N-1, Y[i]$  tiene el precio de un caballo despues de cada año.
  - Note que ambos X y Y especifican los valores iniciales dados por Mansur (antes de cualquier actualizacion).
  - La funcion debe retornar la cantidad maxima de dinero que Mansur puede ganar para estos valores iniciales de X y Y, módulo  $10^9 + 7$ .
- updateX(pos, val)

- pos: un entero en el rango de  $0, \dots, N-1$ .
- val: el nuevo valor para X[pos].
- Las funciones deben retornar la cantidad maxima de dinero que Mansur puede ganar despues de su actualización, módulo  $10^9 + 7$ .
- updateY(pos, val)
  - pos: un entero en el rango de  $0, \ldots, N-1$ .
  - val: el nuevo valor para Y[pos].
  - La funcion debe retornar la cantidad maxima de dinero que Mansur puede ganar despues de esta actualización, módulo  $10^9 + 7$ .

Usted puede asumir que todos los valores iniciales, así como los valores actualizados de X[i] y Y[i] estan entre 1 y  $10^9$  inclusive.

Despues de llamar init, el grader llamara updateX y updateY varias veces. El numero total de llamadas a updateX y updateY será M.

#### **Subtareas**

| subtarea | puntos | N                       | M                       | restricciones adicionales                                                  |
|----------|--------|-------------------------|-------------------------|----------------------------------------------------------------------------|
| 1        | 17     | $1 \le N \le 10$        | M=0                     | $X[i], Y[i] \le 10, \ X[0] \cdot X[1] \cdot \ldots \cdot X[N-1] \le 1,000$ |
| 2        | 17     | $1 \leq N \leq 1,000$   | $0 \le M \le 1,000$     | ninguno                                                                    |
| 3        | 20     | $1 \leq N \leq 500,000$ | $0 \leq M \leq 100,000$ | $X[i] \ge 2$ y $val \ge 2$ para init y updateX correspondientemente        |
| 4        | 23     | $1 \leq N \leq 500,000$ | $0 \leq M \leq 10,000$  | ninguno                                                                    |
| 5        | 23     | $1 \leq N \leq 500,000$ | $0 \le M \le 100,000$   | ninguno                                                                    |

### Ejemplo de grader

El ejemplo de grader lee la entrada del fichero horses.in en el siguiente formato:

- linea 1: N
- linea 2: X[0] ... X[N 1]
- linea 3: Y[0] ... Y[N 1]
- linea 4: M
- lineas 5, ..., M + 4: tres numeros type pos val (type=1 para updateX y type=2 para updateY).

El ejemplo de grader imprime el valor de retorno de init seguido por los valores de retorno de todas las llamadas a updateX y updateY.