Эллиптические кривые

Лекция 6. Алгоритмы подсчета $\mathbb{F}_{\mathfrak{q}}$ -рациональных точек кривой. Часть II

Семён Новосёлов

БФУ им. И. Канта

2023

ρ-метод Полларда

$$E/\mathbb{F}_{q}: y^{2} = x^{3} + ax + b$$

$$P \in E(\mathbb{F}_q), \text{ ord } P = ?$$

Идея: задать псевдослучайную последовательность точек $P_0 = P, P_{i+1} = f(P_i)$ и экспонент e_0, e_1, \ldots , т. ч. $P_i = [e_i]P$. $E(\mathbb{F}_q)$ — конечная группа $\implies \exists i,j: P_i = P_j \implies \operatorname{ord}(P)$ делит $|e_i - e_j|$.

Для нахождения i, j т.ч. $P_i = P_j$ используются различные алгоритмы нахождения циклов.

ρ-метод Полларда

На основе алг. поиска циклов Флойда

8 $(P_2, e_2) = f(f(P_2, e_2));$ 9 return $M = |e_1 - e_2|.$

```
Вход: P \in E(\mathbb{F}_q), r \in \mathbb{N}, h : E(\mathbb{F}_q) \to \{1, \dots, r\}.
Выход: М т.ч.. ord(Р) | М
 1 Сгенерировать r случайных чисел \alpha_i;
 2 Вычислить O_i = [\alpha_i]P;
 3 Задать f: (P, e) \mapsto (P + Q_{h(P)}, e + \alpha_{h(P)});
 (P_1, e_1) = (P, 1);
 (5) (P_2, e_2) = f(P_1, e_1);
 6 while P_1 \neq P_2 do:
 (P_1, e_1) = f(P_1, e_1);
```

Сложность: $O(q^{1/4})$ по времени и O(1) по памяти.

Алгоритм Схоофа¹

$$E/\mathbb{F}_{q}: y^{2} = x^{3} + ax + b$$

Имеем:

• $|\mathsf{E}(\mathbb{F}_q)| = q+1-\mathsf{t}$, где t – след эндоморфизма Фробениуса, $|\mathsf{t}| \leq 2\sqrt{q}$.

Идея: найти $t \pmod{\ell_i}$ для малых простых чисел ℓ_1, \dots, ℓ_n и восстановить t по KTO и неравенству для следа t.

• $|t| \le 2\sqrt{q} \implies \prod_{i=1}^n \ell_i > 4\sqrt{q} \implies \ell_n = O(\log q)$

 $^{^{1}}$ (гол.) Schoof = Схооф, в рус. лит. больше известен как Шуф.

Число точек по модулю $\ell=2$

- # $E(\mathbb{F}_q)$ чётно \iff $E(\mathbb{F}_q)$ содержит точку ($\neq \mathcal{O}$) порядка 2
- точка Р порядка 2 имеет $y_P=0 \iff x_P^3+\alpha x_P+b=0$ в \mathbb{F}_q
- проверка наличия точек порядка 2: $\gcd(x^q x, x^3 + ax + b) \neq 1$ в $\mathbb{F}_q[x]$
 - \longrightarrow $O(\log^3 q)$, быстрое возведение в степень в $\mathbb{F}_q[x]/(x^3+ax+b)$

Число точек по модулю $\ell > 2$

$$E[\ell] = \{P \in E(\overline{\mathbb{F}}_q) \mid [\ell]P = \mathcal{O}\} \simeq \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$$

• $\phi_q:(x,y)\mapsto (x^q,y^q)$ – эндоморфизм Фробениуса,

$$\varphi_{\mathfrak{q}}^2 - [\mathfrak{t}]\varphi_{\mathfrak{q}} + [\mathfrak{q}] = 0$$

или

$$(x^{q^2}, y^{q^2}) - [t](x^q, y^q) + [q](x, y) = P_{\infty}.$$

• для ограничения ϕ_q на $E[\ell]$ имеем:

$$(x^{q^2},y^{q^2})-[t'](x^q,y^q)+[q'](x,y)=P_\infty,$$
 где $t',q'\in\{0,...,\ell-1\}$ и $t=t'\pmod{\ell}$, $q=q'\pmod{\ell}$.

$$(x^{q^2}, y^{q^2}) - [t'](x^q, y^q) + [q'](x, y) = P_{\infty}$$
 (1)

- $\psi_{\ell}(x) \in \mathbb{F}_q[x]$, ℓ -многочлен деления (может быть эффективно вычислен по рек. формуле)
- $P = (x_P, y_P) \in E[\ell] \iff \psi_\ell(x_P) = 0$
- из (1) получаем

$$(x^{q^2}, y^{q^2}) + [q'](x, y) = [t'](x^q, y^q)$$

по модулю $\psi_\ell(x)$ и $\mathsf{E}(x,y) = y^2 - x^3 - ax - b$

$$(x^{q^2}, y^{q^2}) + [q'](x, y) = [t'](x^q, y^q) \mod (\psi_{\ell}(x), E(x, y))$$
 (2)

- $x^q, y^q, x^{q^2}, y^{q^2} \pmod{\psi_\ell} \Longrightarrow$ быстрое возведение в степень
- [q'](x,y) и $[t'](x^q,y^q)\pmod{\psi_\ell(x)} \Longrightarrow$ многочлены q' и t'-деления

Значения ${\bf t}'={\bf t} \bmod \ell$ (соотв. $\#{\sf E}(\mathbb{F}_q)\bmod \ell$) находим перебором возможных вариантов для ${\bf t}'$ пока не выполнится (2).

Алгоритм Схоофа

```
Вход: E/\mathbb{F}_{\mathfrak{a}}
Выход: \#E(\mathbb{F}_a)
  M = 2, \ell = 3, S = \{(t \mod 2, 2)\}\
  2 while M < 4\sqrt{q} do:
  6 for t' = 0, ..., \ell - 1 do:
             if \varphi_{\mathfrak{q}}^{2}(P) + [\mathfrak{q}']P = [\mathfrak{t}']\varphi_{\mathfrak{q}}(P) \pmod{(\psi_{\ell}, E)} do:
                break
  6 S = S \cup \{(t', \ell)\}
  M = M \cdot \ell
  \ell = \text{next\_prime}(\ell)
  пайти t по КТО, используя S
  9 return q + 1 - t
```

Анализ сложности

Оценка размера ℓ .

$$\ell = O(\log \mathfrak{q})$$

<

- **1.** для однозначного восстановления t по $M=\prod_{i=1}^n \ell_i$, необх. $M>4\sqrt{q}$.
- **2.** $M = p_n \#$ праймориал $\implies M = n^{(1+o(1))n}$.

Объединяя пункты 1 и 2 (и взяв логарифм) получаем:

$$O(n\log n) = O(\log q) \implies n = O\left(\frac{\log q}{\log\log q}\right).$$

При этом $\ell=\ell_n=O(n\log n)$ (теорема о распределении простых чисел) $\implies \ell=O(\log q).$

Оценка сложности операций.

Базовые операции: 2

• Редукция многочлена степени d по модулю ψ_ℓ и E:

$$\widetilde{O}(d^2 + \deg \psi_\ell^2)$$
 операций в \mathbb{F}_q . $\deg \psi = \frac{\ell^2 - 1}{2} \implies \widetilde{O}(d^2 + \ell^4)$.

• Умножение в кольце $\mathbb{F}_q[x,y]/(\psi_\ell,E)$: $\widetilde{O}(\ell^4)$ операций в \mathbb{F}_q .

²Hoeven J.v.d., Larrieu R. - Fast reduction of bivariate polynomials with respect to sufficiently regular Gröbner bases. 2018.

Проверка условия $\varphi_{\mathfrak{q}}^2(\mathsf{P}) + [\mathfrak{q}']\mathsf{P} = [\mathfrak{t}']\varphi_{\mathfrak{q}}(\mathsf{P}) \pmod{(\psi_{\ell},\mathsf{E})}$:

- $(x^q, y^q), (x^{q^2}, y^{q^2}) \pmod{\psi_\ell, E} \implies$ быстрое возведение в степени q и $q^2 \implies O(\log q)$ умножений $\mathbb{F}_{\mathfrak{q}}[\mathfrak{x},\mathfrak{y}]/(\psi_{\ell},\mathsf{E}) \implies \widetilde{\mathrm{O}}(\ell^4\log\mathfrak{q})$ операций в $\mathbb{F}_{\mathfrak{q}}$.
- $[q']P \implies$ рекур. формулы для многочленов деления
- $[t'](x^q, y^q) \pmod{\psi_\ell, E}$: χ^q и $\chi^q \pmod{\psi_\ell, E}$ – многочлены степени $< \ell^2$, уже известны, $t' < \ell \implies$ используя рек. формулы для мн. деления имеем макс. ℓ операций умножения +

деления имеем макс.
$$\ell$$
 операций умножения + редукции многочленов степени $<2\ell^2$ в $\mathbb{F}_q[x,y]/(\psi_\ell,\mathsf{E})$ $\Longrightarrow \widetilde{O}(\ell^5)$ операций в \mathbb{F}_q .

Перебирая t' нужно проверять условие макс. ℓ раз $\widetilde{O}(\ell^5 \log q + \ell^6) = \widetilde{O}(\ell^5 \log q)$ операций в \mathbb{F}_q .

Всего в алгоритме делается $n = O(\frac{\log q}{\log \log q})$ итераций.

Итого: $O(\frac{\log q}{\log\log q})\cdot \widetilde{O}(\ell^5\log q)=\widetilde{O}(\log^7 q)$ операций в \mathbb{F}_q или $\widetilde{O}(\log^8 q)$ битовых операций.

Алгоритм Схоофа: дальнейшие улучшения

Schoof-Elkies-Atkin (SEA):

- замена многочленов деления на многочлены g_{ℓ} , задающие изогении (степени: $O(\ell^2) \implies O(\ell)$)
- факторизация модулярных многочленов для нахождения ядер изогений (нулей g_ℓ)
- эвристическая сложность: $O(\log^4 q)$

Литература

- I. Blake и др. Elliptic curves in cryptography. 1999.
- H. Cohen и др.
 Handbook of elliptic and hyperelliptic curve cryptography.
 2005.
- R. Schoof.
 Elliptic curves over finite fields and the computation of square 1985.
- L. C. Washington.Elliptic curves: number theory and cryptography. 2008.

