Computer Graphics (COMP0027) 2022/23

Texturing

Tobias Ritschel

Texture Mapping

- Have seen: colour can be assigned to vertices
- But: don't want to represent all this detail with geometry

Texture Mapping

- Considering small details
 - We may not want to add polygons to represent every detail
 - Instead, prefer to keep a large polygon and use an *image* to represent the details

The Quest for Visual Realism

Texture Mapping

- Increase the apparent complexity of simple geometry
- Efficient packing of flat detail
- Like wallpapering or gift-wrapping with stretchy paper

Texture Mapping

- Standard texture mapping modifies diffuse component k_d
 - Pasting a picture onto the polygon
- A texture is a 2D array of texels storing RGB (or RGBA) components

Difference between pixels and texels

There can be a different match between the pixels of the framebuffer and the texels of the texture

Magnification

Minification

Overview

- Texture mapping
 - Inverse and Forward Mapping
 - Bilinear interpolation
 - Perspective correction
- Mipmapping
- Other forms of mapping
 - Environment
 - Bump mapping

Texture coordinates

Each vertex is associated with a point on an image (s, t)

Forward Mapping

- For points in the texture, map onto the polygon
 - much harder to implement correctly, and harder to model
- Inverse mapping is much more commonly used
 - Most 3D modelers output u, v co-ordinates for texture application

Pixels and texels

Texture

3D view

Sampling

- A pixel maps to a non-rectangular region
- Usually only perform map on centre of pixel
- Problem: Under and over-sampling

Undersampling

Undersampling solution: Filtering

Nearest neighbour

Pick texel with closest centre

Bilinear

Weighted average based on distance to texel centre

Filtering examples

Bilinear Filtering

Filtering

 Bilinear filtering (partially) solves the undersampling problem since it provides smooth shading between texels

MIP-Mapping

- When oversampling we use MIP-mapping
- Resample image at lower resolution
- Create a "pyramid" of textures.
- Interpolate texture between two adjacent layers

Texture Pyramid

Efficient spatial layout

Efficient RGB channel layout

Linear MIP Sampling

 Choose the level of the MIP-map based on the du and dv for dx and dy are closest to 1 pixel

Tri-linear MIP Sampling

 Choose two level and after interpolating within the levels, interpolate between the outcome

MIP Mapping Examples

Bilinear Filtering (distinct MIP map levels)

Trilinear Filtering (MIP mapping)

More Examples

Nearest Neighbor

MIP Mapping

Parametrization

Planar projection

Spherical projection

Charts, done manually

Charts, done automatically

Other Forms of Texture Mapping

- 1. Bump Mapping
- Displacement Mapping
- 3. Environment Mapping

Bump Mapping

- Use textures to alter the surface normal
 - Does not change the actual shape of the surface
 - Just shaded as if it were a different shape

Bump Mapping

- Treat the texture as a single-valued height function
- Compute the normal from the partial derivatives in the texture

Another Bump Map Example

Cylinder w/Texture Map & Bump Map

What's Missing?

- There are no bumps on the silhouette of a bump-mapped object
- Bump maps don't allow self-occlusion or self-shadowing

Displacement Mapping

- Use the texture map to actually move the surface point
- The geometry must be displaced before visibility is determined

Displacement Mapping

Image from:

Geometry Caching for Ray-Tracing Displacement Maps

by Matt Pharr and Pat Hanrahan.

Note the detailed shadows cast by the stones

Environment Maps

- We can simulate reflections by using the direction of the reflected ray to index a spherical texture map at "infinity".
- Assumes that all reflected rays begin from the same point.

What's the Best Layout?

Environment Mapping Example

Terminator II

Recap

- Texture Mapping adds detail to otherwise simple geometry
- "Texture" can mean different modifications to the calculation of lighting, or can even displace geometry locally
- Sampling issues are very important
- To some extent current graphics cards are built around attempting to do texturing efficiently.