Nombre:	Jialong	1.	Grupo: <u>23</u>
---------	---------	----	------------------

Nombre: dich Wave

Hoja de respuesta al Estudio Previo

1. Fallos del acceso a v[i]:

Código	Memoria Cache	stepA	stepB	stepC	stepD
<pre>for (j=0, i=0; j<10000; j++) { sum = sum + v[i]; i = i + step; }</pre>	Cache Directa Tamaño: 4KB Tamaño línea: 8B	1250	5000	10000	10000
<pre>for (j=0, i=0; j<10000; j++) { sum = sum + v[i]; i = i + step; }</pre>	Cache 2-asociativa Tamaño: 4KB Tamaño línea: 16B	625	2500	5000	10000

2. Dibujad una gráfica donde se represente el número de fallos que se producen (eje y) variando la variable step de 1 a 16 (eje x):

3. Fallos de cache que provoca el acceso v[i] en los siguientes casos:

Código	Memoria Cache	16B	32B	Valores 40B	de lim 48B		128B
<pre>for (i=0, j=0; j<32; j++) { sum = sum + v[i]; i = i + 8; if (i >= limite) i = 0; }</pre>	Cache Directa Tamaño: 4 líneas Tamaño línea: 8B	2	idairs H	16	24	32	32
<pre>for (i=0, j=0; j<32; j++) { sum = sum + v[i]; i = i + 8; if (i >= limite) i = 0; }</pre>	Cache 2-asociativa Tamaño: 4 líneas Tamaño línea: 8B	2	4	21	25 g	32	M. Jolen
<pre>for (i=0, j=0; j<32; j++) { sum = sum + v[i]; i = i + 8; if (i >= limite) i = 0; }</pre>	Cache 4-asociativa Tamaño: 4 líneas Tamaño línea: 8B	2	4	32	31	32	32

4. Dibujad una gráfica con los fallos que se producen (eje y) repecto a la variable limite fallos (eje x) suponiendo que la cache es directa. limite

5. Dibujad una gráfica con los fallos que se producen (eje y) repecto a la variable limite (eje x) suponiendo que el grado de asociatividad de la cache es:

512 1024 1536 2040 2560 3072 3984 4096 4608 5120 5032 6144 6656 7168 7680 BIQZ

¿Cuál es la relación entre el número de fallos, la variable límite y la asociatividad de la cache?

Cuando límite = grado de asociatividad, fallos = limite

Cuando límite > grado de asociatividad, fallos = 256000

Es decir, cuando el límite es menor o igual que el grado de

asociatividad, los fallos se produciran en la la rez que se trae el

bloque. Cuando el límite es mayor, la cache fallará siempre y por

lo tanto, el número de fallos será igual al número de iteraciones.