

Data Structures and Algorithms

Finding Shortest Way

From Here to There, Part II

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Dr. Steven Halim for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

Recording of modifications

 Currently, there are no modification on these contents.

Outline

VisuAlgo: http://visualgo.net/sssp.html

Four special cases of the classical SSSP problem

- Special Case 1: The graph is a tree
- Special Case 2: The graph is unweighted
- Special Case 3: The graph is directed and acyclic (DAG)
- Special Case 4ab: The graph has no negative weight/cycle

Review of the SSSP problem, with VisuAlgo test mode

Basic Form and Variants of a Problem

In this lecture, we will *revisit* the same topic that we have seen in the previous lecture:

The Single-Source Shortest Paths (SSSP) problem

An idea from the previous lecture and this one (and also from our PSes so far) is that a certain problem can be made 'simpler' if some assumptions are made

- These variants (special cases) may have better algorithm
 - PS: It is true that some variants can be more complex than their basic form, but usually, we made some assumptions in order to simplify the problems ☺

Special Case 1:

The weighted graph is a **Tree**

When the weighted graph is a tree, solving the SSSP problem becomes much easier as every path in a tree is a shortest path. Q1: Why?

There won't be any negative weight cycle. Q2: Why?

Thus, any **O(V)** graph traversal, i.e. **either DFS or BFS** can be used to solve this SSSP problem.

Q3: Why O(V) and not the standard O(V+E)?

Important note: You can try this on PS5 Subtask A ©

Try in VisuAlgo!

(for now, use Bellman Ford's or Dijkstra's in VisuAlgo)

Try finding the shortest paths from source vertex 0 to other vertices in this weighted (undirected) tree

- Notice that you will always encounter unique (simple) path between those two vertices
- Try adding negative weight edges, it does not matter if the graph is a tree ©

Special Case 2:

The graph is unweighted

This has been discussed last week ©

Solution: O(V+E) BFS

Important note:

- For SSSP on unweighted graph, we can <u>only</u> use BFS
- For SSSP on tree, we can use <u>either</u> DFS/BFS
- You can try this on PS5 Subtask A+B

Try in VisuAlgo!

This graph is unweighted (i.e. all edge weight = 1)

Try finding the shortest paths from source vertex 0 to other vertices using **BFS**

Special Case 3:

The weighted graph is directed & acyclic (DAG)

Cycle is a major issue in SSSP

When the graph is **acyclic** (has no cycle), we can "modify" the Bellman Ford's algorithm by replacing the outermost **V**-1 loop to just **one pass**

- i.e. we only run the relaxation across all edges once
 - But in topological order, recall toposort in Lecture 06

Why it works?

 More details later in the introductory lecture on Dynamic Programming (Week 10)

Try in VisuAlgo!

Topological Sort of this DAG is {0, 2, 1, 3, 4, 5}

- Try relaxing the outgoing edges of vertices listed in the topological order above
 - With just one pass, all vertices will have the correct dist[v]
 - (This will be revisited in Lecture 10)

Special Case <u>4a</u>:

The graph has no negative weight

Bellman Ford's algorithm works fine for all cases of SSSP on weighted graphs, but it runs in **O(VE)**... \odot

For a "reasonably sized" weighted graphs with
 V ~ 1000 and E ~ 100000 (recall that E = O(V²) in a complete simple graph), Bellman Ford's is (really) "slow"...

For many practical cases, the SSSP problem is performed on a graph where all its edges have **non-negative weight**

Example: Traveling between two cities on a map (graph) usually takes positive amount of time units

Fortunately, there is a *faster* SSSP algorithm that exploits this property: The **Dijkstra's** algorithm

The 'original version'

DIJKSTRA'S ALGORITHM

Key Ideas of (the original) Dijkstra's Algorithm

Formal assumption:

For each edge(u, v) ∈ E, we assume w(u, v) ≥ 0 (non-neg ative)

Key ideas of (the original) Dijkstra's algorithm:

- Maintain a set S(olved) of vertices whose final shortest path weights have been determined, initially Solved = {s(ource)}, the source vertex s only
- Repeatedly select vertex u in {V-Solved} with the min shortest path estimate, add u to Solved, and relax all edges out of u
 - This entails the use of a kind of "Priority Queue", Q: Why?
 - This choice of relaxation order is "greedy": Select the "best so far"
 - But it eventually ends up with optimal result (see the proof later)

SSSP: Dijkstra's (Original)

Ask VisuAlgo to perform Dijkstra's (Original) algorithm *from various sources* on the sample Graph (CP3 4.17)

The screen shot below shows the *initial stage* of **Dijkstra(0)** (the original algorithm)

Why This Greedy Strategy Works? (1)

i.e. why is it sufficient to only process each vertex just once?

Loop invariant = Every vertices in set **Solved** have correct shortest path distance from source

- This is true initially, Solved = $\{s\}$ and dist $[s] = \delta(s, s) = 0$
 - FYI, to make it easier to vocalize the variable S, d, and δ , I purposely rename it to 'S(olved)', 'dist(ance)', and delta

Dijkstra's algorithm iteratively adds the next vertex **u** with the lowest **dist[u]** into set **Solved**

- Is the loop invariant always valid?
- Let's see the next short proof first

Theorem: Subpaths of a shortest path are shortest paths

Let **p** be the shortest path: $p = \langle v_0, v_1, v_2, \square, v_k \rangle$

Let $\mathbf{p_{ij}}$ be the subpath of \mathbf{p} : $p_{ij} = \langle v_i, v_{i+1}, \square, v_j \rangle, 0 \le i \le j \le k$

Then \mathbf{p}_{ii} is a shortest path (from \mathbf{i} to \mathbf{j})

Proof by contradiction:

- Let the shortest path $\mathbf{p} = \mathbf{v}_0$ $\mathbf{p}_{0i} \quad \mathbf{v}_i \quad \mathbf{p}_{ij} \quad \mathbf{v}_j \quad \mathbf{p}_{jk} \quad \mathbf{v}_k$
- If \mathbf{p}_{ij} is not the shortest path, the we have another \mathbf{p}_{ij} that is shorter than \mathbf{p}_{ij} . We can then cut out \mathbf{p}_{ij} and replace it with \mathbf{p}_{ii} , which result in a shorter path from \mathbf{v}_0 to \mathbf{v}_k
- But **p** is the shortest path from v_0 to $v_k \rightarrow$ contradiction!
- Thus p_{ij} must be a shortest path between i and j

Why This Greedy Strategy Works? (2)

i.e. why is it sufficient to only process each vertex just once?

Dijkstra's algorithm iteratively adds the next vertex **u** with the lowest **dist[u]** into set **Solved**

- What we know: Vertex u has the lowest dist[u]
- It means that there is a vertex x already in Solved (hence dist[x] = δ(s, x)) connected to vertex u via an edge(x, u) and weight(x, u) is the shortest way to reach vertex u from x
- Then dist[u] = dist[x]+weight(x, u) = δ (s, x)+ δ (x, u) = δ (s, u)
 - Recall: Subpaths of a shortest path are shortest paths too

Thus, when (the original) Dijkstra's algorithm terminates, we have $dist[v] = \delta(s, v)$ for all $v \in set V$

Original Dijkstra's – Analysis (1)

In the original Dijkstra's, each vertex will only be extracted from the priority queue <u>once</u>

- As there are V vertices, we will do this max O(V) times
- Each extract min runs in O(log V) if implemented using binary min heap, ExtractMin() as discussed in Lecture 02 or using balanced BST, findMin() as discussed in Lecture 03-04

Therefore this part is O(V log V)

Original Dijkstra's – Analysis (2)

Every time a vertex is processed, we relax its neighbors

- In total, all O(E) edges are processed
- If by relaxing edge(u, v), we have to decrease dist[v], we call the O(log V) DecreaseKey() in binary min heap (harder to implement) or simply delete old entry and then re-insert new entry in balanced BST (which also runs in O(log V), but this is much easier to implement)
 - PS: The easiest implementation is to use Java TreeSet as the PQ

This part is O(E log V)

Thus in overall, Dijkstra's runs in O(V log V + E log V), or more well known as an O((V+E) log V) algorithm

Wait... Let's try this!

Ask VisuAlgo to perform Dijkstra's (Original) algorithm from source = 0 on the sample Graph (CP3 4.18)

Do you get correct answer at vertex 4?

Why This Greedy Strategy Does Not Work This Time ©?

The presence of negative-weight edge can cause the vertices "greedily" chosen first eventually not the true "closest" vertex to the source!

It happens to vertex 3 in this example

The 'modified' implementation

DIJKSTRA'S ALGORITHM

Special Case 4b:

The graph has no negative weight cycle

For many practical cases, the SSSP problem is performed on a graph where its edges may have **negative weight but it has no negative cycle**

- Example: Traveling between two cities on a map (graph)
 using electric car with battery to minimize battery usage:
 - We take (+) energy from the battery if the road is flat or go uphill
 - We recharge the battery (i.e. take -energy) if the road goes downhill
 - But we cannot keep cycling around to recharge the battery forever due to kinetic energy loss, etc

We have another version of Dijkstra's algorithm that can handle this case: The **Modified Dijkstra's** algorithm

Modified Implementation (1) of Dijkstra's Algorithm (CP3, Section 4.4.3)

Formal assumption (different from the original one):

 The graph has no negative weight cycle (but can have negative weight edges :O)

Key ideas:

- We use a built-in priority queue in C++ STL/Java Collections to order the next vertex u to be processed based on its dist[u]
 - This vertex information is stored as IntegerPair (dist[u], u)
- But with modification: We use "Lazy Data Structure" strategy to avoid implementing "DecreaseKey()" in C++/Java PQ library

Modified Implementation (2) of Dijkstra's Algorithm (CP3, Section 4.4.3)

Lazy DS: Get pair (d, u) in front of the priority queue PQ with the minimum shortest path estimate so far

- if d = dist[u], we relax all edges out of u,
 else if d > dist[u], we have to delete this inferior (d, u) pair
 - See below to understand that we do not delete the wrong (d, u) pair immediately, but instead, we wait until the last possible moment (lazy)
- If dist[v] of a neighbor v of u decreases, enqueue (dist[v], v) to
 PQ again for future propagation of shortest path distance info
 - Here we adopt a lazy approach not to delete the "wrong (d, u) pair" at this point of time. Q: Why?
 - Because C++/Java PriorityQueue (Binary Heap) does not have feature to efficiently search for certain entries other than the minimum one!

Modified Dijkstra's Algorithm

```
initSSSP(s)
PQ.enqueue((0, s)) // store pair of (dist[u], u)
while PQ is not empty // order: increasing dist[u]
  (d, u) \leftarrow PQ.dequeue()
  if d == dist[u] // important check, lazy DS
    for each vertex v adjacent to u
      if dist[v] > dist[u] + weight(u, v) // can relax
        dist[v] = dist[u] + weight(u, v) // relax
        PQ.enqueue((dist[v], v)) // (re)enqueue this
```

SSSP: Dijkstra's (Modified)

Ask VisuAlgo to perform Dijkstra's (Modified) algorithm *from various sources* on the sample Graph (CP3 4.17)

The screen shot below shows the *initial stage* of **Dijkstra(0)** (the modified algorithm)

Modified Dijkstra's – Analysis (1)

We **prevent** processed vertex to be re-processed again if its **d > dist[u]**

If there is **no-negative weight edge**, there will never be another path that can decrease **dist[u]** once **u** is greedily processed. **Q: Why? (PS: we have just seen this case)**

- Each vertex will still be processed from the PriorityQueue once;
 or all vertices are still processed in O(V) times
- Each extract min still runs in O(log V) with Java PriorityQueue (essentially a binary heap)
 - PS: There can be more than one copies of u in the PriorityQueue, but this will not affect the O(log V) complexity, see the next slide

Modified Dijkstra's – Analysis (2)

Every time a vertex is processed, we try to relax all its neighbors, in total all $O(\mathbf{E})$ edges are processed

- If relaxing edge(u, v) decreases dist[v], we re-enqueue the same vertex (with better shortest path distance info), then duplicates may occur, but the previous check (see previous slide) prevents re-processing of this inferior (dist[v], v) pair
 - ∃ O(E) copies of inferior (dist[v], v) pair if each edge causes a relaxation
- Each insert still runs in O(log V) in PriorityQueue/Binary heap
 - This is because although there can be at most E copies of (dist[v], v) pairs, we know that $E = O(V^2)$ and thus $O(log E) = O(log V^2) = O(2 log V) = O(log V)$
- Thus in overall, modified Dijkstra's run in O((V+E) log V)
 if there is no-negative weight edge

Try!

Ask VisuAlgo to perform Dijkstra's (modified) algorithm from source = 0 on the sample Graph (CP3 4.18)

Do you get correct answer at vertex 4?

Not an all-conquering algorithm... Check this

If there are negative weight edges without negative cycle, then there exist some (extreme) cases where the modified Dijkstra's re-process the same vertices several/many/crazy amount of times...

Your Lab TA will discuss this case on Thursday of Week09

About that Extreme Test Case

Such extreme cases that causes *exponential time complexity* (discussed in Lab Demo) are *rare* and thus in practice, the modified Dijkstra's implementation runs <u>much faster</u> than the Bellman Ford's algorithm ©

- If you know if your graph has only a few (or no) negative weight edge, this version is probably one of the best current implementation of Dijkstra's algorithm
- But, if you know for sure that your graph has a high probability of having a negative weight cycle, use the tighter (and also simpler) O(VE) Bellman Ford's algorithm as this modified Dijkstra's implementation can be <u>trapped in an infinite loop</u>

Try Sample Graph, CP3 4.19!

Find the shortest paths from s = 0 to the rest

- Which one can terminate?
 The original or the modified Dijkstra's algorithm?
- Which one is correct when it terminates?
 The original or the modified Dijkstra's algorithm?

Java Implementation

There is <u>no DijkstraDemo.java</u> this time (you will implement the pseudo-code shown in this lecture **by yourself** when you do your PS5 Subtask B

But I will show the algorithm performance on:

- Small graph without negative weight cycle
 - OK
- Small graph with some negative edges; no negative cycle
 - Still OK ☺
- Small graph with negative weight cycle
 - SSSP problem is ill undefined for this case
 - The modified Dijkstra's can be trapped in infinite loop

Summary of Various SSSP Algorithms

- General case: weighted graph
 - Use O(VE) Bellman Ford's algorithm (the previous lecture)
- Special case 1: Tree
 - Use O(V) BFS or DFS ☺
- Special case 2: unweighted graph
 - Use O(V+E) BFS ☺
- Special case 3: DAG (precursor to DP, revisited next week)
 - Use O(V+E) DFS to get the topological sort,
 then relax the vertices using this topological order
- Special case 4ab: graph has no negative weight/negative cycle
 - Use O((V+E) log V) original/modified Dijkstra's, respectively

Online Quiz 2 (OQ2) Preparation ©

After Lecture 09, I will set a <u>random</u> test mode @ VisuAlgo to see if you are ready for OQ2

OQ2 material: A bit of OQ1 material, and mostly Graph DS, Graph Traversal (DFS/BFS), MST (Prim's/Kruskal's), SSSP (Bellman Ford's/Dijkstra's)

Meanwhile, train first:

http://visualgo.net/training.html?diff=Hard&n=20&tl=40&module=graphds,graphtraversal,mst,sssp