1 Подсчёт структур с помощью экспоненциальных производящих функций

Будем рассматривать функции вида $f(t) = \sum_{n=0}^{\infty} \frac{1}{n!} x_n t^n$. С помощью них будем считать число каких-то интересных множеств с точностью до размера.

$1,1,1,\ldots$	$f(t) = e^t$	тривиальная, $P(A) = T$
$1, 0, 0, \dots$	f(t) = 1	$P(A) = (A = \emptyset)$
$0, 1, 0, \dots$	f(t) = x	P(A) = (A = 1)
$0,\ldots,0,1,0,\ldots$	$f(t) = \frac{x^k}{k!}$	P(A) = (A = k)

Можем складывать, если уверены в дизъюнктности.

Умножение соответствует разбиению на два множества, каждое со своей структурой.

К примеру две тривиальных функции: $e^t \cdot e^t = e^{2t} = \sum 2^n \frac{t^n}{n!}$, количество подмножеств, что и должно было получиться.

Числа Белла: $(e^t - 1)$ — непустота, значит разбиения это $e^{e^t - 1}$.

Число перестановок: выбираем первый элемент, остальное должно иметь упорядоченную структуру. То есть tf(t)=f(t)-1 (минус один важно не забыть, потому что нельзя выбрать один элемент из пустого множества). Итого получаем $f(t)=\frac{1}{1-t}$.

Беспорядки: все есть сумма $\frac{1}{1-t}=f_0+\ldots+f_n+\ldots$, где f_i — число перестановок с i неподвижными точками. $f_k=\frac{x^k}{k!}f_0$, так как перестановка с k неподвижными точками — это разбиение на k точек и беспорядок. Итого $f=\frac{e^{-t}}{1-t}$, вычет в 1 равен e^{-1} .

Логарифмирование. Рассмотрим $e^{L(t)}=\frac{1}{1-t}$. Перестановка разбивается на циклы, число таких циклических упорядочиваний получается $L(t)=-\ln(1-t)=-(-t-\frac{t^2}{2}-\frac{t^3}{3}+\ldots)=\sum \frac{t^n}{n!}(n-1)!$, как и должно было получиться.

Производная соответствует удалению одного элемента. Например, $f'(t) = f \cdot f = f^2$ — удаление одного элемента из перестановки это тоже самое, что разбиение на два множества — до и после этого элемента.