Assessing the effect of date and sequence data in phylodynamics

Leo A. Featherstone

2022-06-21

About me

▶ PhD candidate (2021-2024) @ University of Melbourne Peter Doherty Institute

- Working with Dr. Sebastian Duchene, Dr. Timothy Vaughan, and Prof. Ben Phillips
- ► Twitter: @LeoPhylostone

Core content

- Preprint: Assessing the effects of date and sequence data in phylodynamics
- ▶ Under birth-death with serial sampling (λ, δ, p)

Talk breakdown

- 1. Origins of project
- 2. Quantify data and sequence effects under birth-death model
- 3. Validation
- 4. Context

Project origins (SARS-CoV-2 in Australia)

Cumulative Cases

Cumulative Sequences

Project origins: literature

- lackbox Volz et al. 2014 ightarrow sampling times heavily influential under BD
- ightharpoonup Featherstone et al. 2021 ightharpoonup sampling times help prevent bias

Sapareting sequence and dates

	Dates Included	Dates Excluded
Sequence Included Sequence Excluded		Sequence Effects Marginal Prior

Separating sequence and dates: an example

Output

Comparing possterior signal cont.

Wasserstein Intuition (in 1D)

How much work to push one distribution into another?

Some examples

Classification

Visualing Wasserstein Data

Visualing Wasserstein Data

Visualing Wasserstein Data

Validation: Simulation study

On the plane

Effects of Sequence Patterns

Effects of Date Span

1. Separate date an sequence data

- 1. Separate date an sequence data
- 2. Analyse both under a birth-death

- 1. Separate date an sequence data
- 2. Analyse both under a birth-death
- 3. Compare posteriors with Wasserstein metric to find drivers

- 1. Separate date an sequence data
- 2. Analyse both under a birth-death
- 3. Compare posteriors with Wasserstein metric to find drivers
- 4. Driver-classification agrees with prior literature on BD

Results in context

Cumulative Sequences

Cumulative Cases

Results in context

Acknowledgements

► cEvo lab & Swissnex

Acknowledgements

- cEvo lab & Swissnex
- ► Lionell Gell Foundation

Acknowledgements

- cEvo lab & Swissnex
- Lionell Gell Foundation
- ▶ Wonderful supervisors!

All questions welcome

References

- Volz Erik M. and Frost Simon D. W. 2014Sampling through time and phylodynamic inference with coalescent and birth-death models J. R. Soc. Interface.112014094520140945 http://doi.org/10.1098/rsif.2014.0945 Section A
- Featherstone, LA, Di Giallonardo, F, Holmes, EC, Vaughan, TG, Duchêne, S. Infectious disease phylodynamics with occurrence data. Methods Ecol Evol. 2021; 12: 1498–1507. https://doi.org/10.1111/2041-210X.13620

Sampling effects

Empirical Data

▶ Two SARS-CoV-2 clusters from 2020 in Victoria, Australia

Empirical Data

- ▶ Two SARS-CoV-2 clusters from 2020 in Victoria, Australia
- ightharpoonup Fixed parameters except origin and R_0

Empirical Data: Posteriors

Empirical Data: Values

	Cluster 1	Cluster 2
n	112	188
Classification	Seq-Driven	Date-Driven
Site Patterns	183	126
r_{SD}	0.223	0.009
d_{SD}	0.078	0.008
W_D	0.192	0.001
W_S	0.114	0.009
W_N	0.325	0.481

Strength of Classification

Error

• No Mismatch • Some Mismatch