Concursul Fractal

A TREIA EDIȚIE, 19 IANUARIE 2025

Problema 1. Arătați că $1^{2025} + 2^{2025} + 3^{2025} + \cdots + 2024^{2025}$ e divizibil la 2025.

Soluție: Vom împerecheea numere opuse și vom arăta că suma lor e divizibilă la 2025. Adică $i^{2025} + (2025 - i)^{2025}$ se împarte fără rest la 2025. Dar acum observăm că pentru n impart $a^n + b^n$ se împarte fără rest la a + b. Aceasta poate fi arătat prin factorizări sau inducție și conclude problema.

Problema 2. Numerele reale pozitive a, b și c sunt astfel încât numerele $a+b+c, a^2+b^2+c^2$ și $a^3+b^3+c^3$ în această ordine formează o progresie geometrică. Arătați că a=b=c.

Soluție: E clar că dacă trei numere x, y și z se află în progresie geometrică $\frac{x}{y} = \frac{y}{z}$, deci $y^2 = zx$. Astfel $(a^3 + b^3 + c^3)(a + b + c) = (a^2 + b^2 + c^2)^2$. Cu toate acestea, conform inegalitîții lui Cauchy: $(a^3 + b^3 + c^3)(a + b + c) \ge (a^2 + b^2 + c^2)^2$, cu egalitate doar în cazul în care a = b = c.

Problema 3. Pe o tablă sunt scrise numerele 1 și 2. La orice operație, Viorel poate schimba numerele de pe tablă a și b în a-b și a+b. Poate oare Viorel ajunge la numerele $2024 \cdot 2^{2024}$ și $2025 \cdot 2^{2025}$?

Soluție: Observăm că $(a-b)^2 + (a+b)^2 = 2(a^2+b^2)$, astfel după fiecare operație suma pătratelor elementelor se dublează. Cu toate acestea, dacă am ajunge de la 1 și 2 la $2024 \cdot 2^{2024}$ și $2025 \cdot 2^{2025}$, suma pătratelor celor două numere ar fi egală cu suma pătratelor lui 1 și 2 înmulțită cu o putere de 2, ce nu e posibil căci $1^2 + 2^2 = 5$, dar suma celor două pătrate nu se împarte la 5.

Problema 4. Găsiți toate tripletele de numere reale nenule a,b,c care satisfac simultan următoarele condiții:

$$\begin{cases} \frac{a}{b} + \frac{b}{c} + \frac{c}{a} = \frac{23}{6} \\ \frac{a}{c} + \frac{c}{b} + \frac{b}{a} = \frac{25}{6} \\ a + b + c = 6 \end{cases}$$

Soluție: Notăm numerele $\frac{a}{b}$, $\frac{b}{c}$, și $\frac{c}{a}$ cu x, y și z respectiv. Prima condiție devine $x+y+z=\frac{23}{6}$, iar cum $\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}$ și analoagele, a doua condiție devine $xy+yz+zx=\frac{25}{6}$. Nu în ultimul rând, e clar că produsul celor trei numere este 1, deci conform relațiilor lui Viete, avem că x, y, și z sunt rădăcini ale ecuației cubice $t^3-\frac{23}{6}t^2+\frac{25}{6}t-1=0$, care ușor se rezolvă având rădăcinile 1/3, 3/2 și 2. Iar mai departe problema devine doar un sistem de ecuații liniare ce se rezolvă ușor.