1. Дана квадратная матрица А порядка М. Начиная с первого элемента первой строки, вывести ее элементы следующим образом:

все элементы первого столбца; элементы последней строки, кроме первого (уже выведенного) элемента; оставшиеся элементы второго столбца; оставшиеся элементы предпоследней строки;

ит. д.;

последний элемент первой строки.

- 2. Дана целочисленная матрица размера $M \times N$. Найти номер последней из ее строк, содержащих только чётные числа. Если таких строк нет, то вывести 0.
- 3. Дана матрица размера М × N. Элемент матрицы называется её локальным максимумом, если он больше всех окружающих его элементов. Поменять знаки всех локальных максимумов матрицы на противоположные. При решении допускается использование вспомогательного массива.
- 4. Дана квадратная матрица A порядка M. Повернуть её на угол 180° (при этом элемент A_{11} поменяется местами с $A_{\rm MM}$, элемент A_{12} с $A_{\rm MM-1}$ и т. д.). Вспомогательные массивы не использовать.
- 5. Дана строка символов длины **n**. Заменить символом ',' все символы ':', встречающиеся в первой половине строки, и символом '.' все символы '!', встречающиеся во второй половине строки.
- 6. Дана строка-предложение на русском языке. Преобразовать строку так, чтобы каждое слово начиналось с заглавной буквы. Словом считать набор символов, не содержащий пробелов и ограниченный пробелами или началом/концом строки. Слова, не начинающиеся с буквы, не изменять.
- 7. Написать и протестировать функцию, проверяющую правильность даты (т.е. чтобы не было 31 июня и т.п.). Для описания даты использовать структуру.
- 8. Массив записей с именем STUDENT, содержит сведения о студентах {Фамилия и инициалы; Номер группы; Успеваемость[5] (массив из пяти элементов)}. Написать программу, обеспечивающую ввод с клавиатуры данных в массив STUDENT и вывод на экран информации о студентах, средние баллы которых больше 4,0. если таких студентов нет, вывести 1.
- 9. Дан файл F, все записи которого целые числа. Создать текстовый файл G, записи которого соответствуют числам из F, упорядоченным по убыванию.

10.Для хранения данных о ноутбуках описать структуру вида (при необходимости дополнив ее):

```
struct NOTEBOOK{
    char model[21]; // наименование
    struct size{ // габаритные размеры
        float x:
        float y;
        float z;
    };
    float w; // вес
    int price: // цена
};
```

Написать функцию, которая читает данные о ноутбуках из файла **note.txt** (см. ниже) в структуру приведённого вида. Написать функцию, которая записывает содержимое структуры в конец бинарного файла. Структура бинарного файла: первые два байта (целое) — число записей в файле; далее записи в формате структуры NOTEBOOK.

Написать программу, в которой на основе разработанных функций осуществляется чтение данных только для тех ноутбуков, частота процессора которых больше 120 МГц, и запись в бинарный файл по убыванию цены.

Все необходимые данные для функций должны передаваться им в качестве параметров. Использование глобальных переменных в функциях не допускается.

В файле note.txt находится текстовая информация о ноутбуках. Каждая строка содержит данные об одной модели. Данные в строке размещаются в следующих полях:

- 1:20 наименование модели;
- 21: 24 цена в долларах (целое число);
- 26: 28 масса ноутбука в кг (число с десятичной точкой из четырех символов);
- 30:43 габаритные размеры ноутбука в дюймах (ВЫСОТАхДЛИНАхШИРИНА три числа с десятичной точкой (4 символа, включая точку, разделенные 'x');
- 44: 47 частота процессора в МГц (целое число из трех символов);
- 49: 50 максимальный объем ОЗУ в мегабайтах (целое число из двух символов);
- 52:55 размер диагонали дисплея в дюймах (число с десятичной точкой из четырех символов, включая точку);
- 57 размер видеопамяти в мегабайтах целое число из одного символа;
- 59:67 разрешающая способность дисплея в пикселах (два целых числа, разделенные 'x');
- 69:70 частота регенерации дисплея в Гц (целое число из двух символов);
- 72:76 объем HDD в гигабайтах (число с десятичной точкой из пяти символов.

Пример файла note.txt: (См. сл. стр. Можно скопировать в Блокнот и сохранить как note.txt)

								_			
Acer Note Light	2699	5.6	02.0x11.	8x08.3	100	40	10.4	1	1024x0768	60	0.774
ASW ND5123T	3489	7.2	02.3x11.	8x10.1	133	32	12.1	2	1024x0768	70	1.300
ARMNote TS80CD	3699	7.2	02.0x11.	5x08.8	133	64	11.3	1	1024x0768	75	1.300
AST Ascentia P50	4499	7.5	02.3x11.	3x09.0	133	40	11.3	1	0800x0600	70	0.774
BSI NP8657D	2605	8.0	02.3x11.	8x09.3	133	40	11.3	1	1024x0768	60	0.810
BSI NP5265A	3765	8.2	02.5x12.	0x09.0	150	32	12.1	2	1024x0768	70	1.300
Dell Xpi PIOOSD	3459	6.0	02.3x11.	8.80x0	100	40	10.3	1	1024x0768	60	0.773
Digital HiNote	4799	4.0	01.3x11.	8.80x0	120	40	10.4	1	0800x0600	56	1.000
Gateway Solo S5	4499	5.6	02.0x11.	9x08.8	133	40	11.3	2	1024x0768	60	0.686
Hertz Z-Optima NB	3995	8.0	02.3x11.	9x09.0	150	40	11.2	2	1024x0768	75	1.000
HP Omni Book 5500	6120	7.1	02.0x11.	5x09.0	133	64	11.4	1	1024x0768	75	1.300
IBM ThinkPad 560	3749	4.1	01.3x11.	8.80x8	120	40	12.1	2	1024x0768	85	0.774
NEC Versa 4080H	4780	6.6	02.3x11.	8x09.5	120	48	10.4	1	0800x0600	70	0.776
Polywell Poly 500	3300	7.9	02.3x11.	9x09.0	120	40	10.4	1	1024x0768	72	1.000
Samsung SENS 810	3667	8.7	02.3x11.	5x09.5	100	32	11.4	2	1024x0768	75	0.773
Twinhead Slimnote	2965	7.4	02.0x11.	5x08.0	075	64	10.4	1	1024x0768	70	0.772