CMD 정기세션

x86, AMD, 그간의 발전에 대하여

목차

01

CPU에 대하여

01. Intel vs AMD

고성능게임용인텔,가성비좋은AMD

01. **CPU**

CPU, 정확히 무엇인가?

CPU

Central Process Unit, 중앙 처리 장치

CPU의 성능 결정 요소

코어 수, 클럭 속도, IPC

- 코어: CPU에 내장된 처리 회로의 핵심
- 클럭속도:한번의정보처리량
- IPC: 1사이클당 명령어 처리 횟수

인텔사의 최초 듀얼코어 CPU

코어,스레드

3GHz속도부터 개발비용 대비 성능 향상 ⊗

하나의 CPU에 다량의 계산기를 넣어 성능 향상

인텔 쿼드코어

01. **CPU**

코어,스레드

하이퍼스레딩도입

하나의 코어를 두개로 분할하여 성능 향상

4코어 8쓰레드

01. Intel vs AMD

Intel CPU

01. Intel vs AMD

AMD CPU

01. 잠깐, ARM?

인텔, AMD는 들어봤는데 ARM?

ARM 아키텍처를 사용한 삼성전자 갤럭시북 S 노트북 (퀄컴 스냅드래곤 8Cx)

과거와 비교해 x86 아닌 CPU가 PC시장에 다수 등장!

x86 아키텍처 : 기업 시장의 강자

성능☺ BUT.배터리사용시간늘리기☺

ARM 아키텍처 : 저전력, 고효율에 초점 -> 모바일 기기에 적합!

02

x86, ARM

02. 애플의 선택 : ARM

기존x86에서 ARM으로전환?

CPU

인텔 -> 자체개발 ARM

ARM : 다른 기업이 반도체를 디자인할 수 있도록 기본 설계도를 제공

초기: MOS테크놀로지, 시너텍

1984: 모토로라 68000

1994: IBM 파워PC 프로세서

2006: 인텔의 x86 계열 반도체 선택

% x86:32bit, x64:64bit

02. 애플의 선택 : ARM

x86, ARM에 대해 더 자세히 알아보자

x86의 역사

1978.인텔 8086

1982. 인텔 80286

• • •

1989. 인텔 80486 & 1999. x86의 64비트 확장인 AMD64 발표

 \odot

레지스터 수가 부족(4개)하여, 속도가 비교적 느림

ARM

1980. 첫출시 (x86 완승)

~ 2010. 안드로이드의 성장과 함께 성장

. . .

2017.애플의 A11 성능 상승, AMD64 기반 성능을 보임

 \odot

저전력 고효율 CPU (고성능X)

->x86과 비교하기에는 그 쓰임이 다름

그렇다면 애플은 앞으로 어떤 행보를 보이게 될까?