XÂY DỰNG MÔ HÌNH DỰ BÁO THỜI ĐIỂM BÙNG PHÁT BỆNH NHIỆT ĐỚI BỊ LÃNG QUÊN

Trịnh Thị Thanh Trúc - 19521059

Tóm tắt

Trịnh Thị Thanh Trúc

- Lớp: CS2205.CH1702 APR2023
- Link Github: https://github.com/Trinhtruc1831 /CS2205.CH170
- Link YouTube video: https://youtu.be/6A2D_7dynYs

- Việt Nam là một trong các quốc gia chịu ảnh hưởng nhiều nhất bởi biến đổi khí hậu:
 - Hiện tượng thời tiết cực đoan diễn ra ngày một trầm trọng
 - Kéo theo nguy cơ cao bùng phát hàng loạt các loại dịch bệnh nhiệt
 đới: Sốt xuất huyết, Tiêu chảy, Cảm cúm, Bệnh dại,..

- Những loại bệnh nêu trên được WHO chính thức đưa vào danh sách cảnh báo "Các loại bệnh nhiệt đới bị lãng quên" - NTDs (Neglected Tropical Diseases)[1]:
 - Bệnh thật ra rất dễ dàng điều trị trong điều kiện phát triển y học hiện tại
 - Tuy nhiên, rất dễ bùng nổ vượt ngoài tầm kiểm soát và gây tử vong trên diện rộng
 - Nguyên nhân chủ yếu là sự chủ quan và thiếu cơ sở để nhận biết sớm về nguy cơ bùng phát dịch

- Nhu cầu về phát triển một hệ thống dự báo bùng nổ dịch bệnh:
 - Sử dụng các đặc trưng khí hậu
 - Sử dụng sức mạnh của công nghệ thông tin, đặc biệt là các thuật toán máy học
- Cần:
 - Nghiên cứu cơ sở về mối liên hệ giữa thời tiết và dịch bệnh
 - Nghiên cứu hướng tiếp cận học máy cho dự báo dịch bệnh đến thời điểm hiện tại

- Đầu vào
 - Đặc trưng khí hậu Việt Nam
- Đầu ra:
 - Điểm bùng nổ dịch bệnh cho từng thời điểm trong từng tỉnh

Mục tiêu

- Nghiên cứu và khảo sát các công trình đã được công bố về mối liên hệ giữa đặc trưng khí hậu và dịch bệnh nhiệt đới
- Nghiên cứu và khảo sát các công trình đã được công bố về phương pháp tiếp cận
- Nghiên cứu phương pháp xác định bùng nổ
- Nghiên cứu về các phương pháp dự báo có thể tiếp cận
- Đề xuất phương pháp lọc khai thác tri thức từ các mô hình dự báo để có thể loại một cách an toàn các dự báo giả được đưa ra

Nội dung và Phương pháp

- Từ những nghiên cứu hiện có:
 - Xây dựng mô hình phát hiện bùng nổ dịch bệnh Tiêu chảy
 - Sử dụng dữ liệu chuỗi thời gian các đặc trưng khí hậu
 - Hướng tiếp cận hiện có bao gồm:
 - Sử dụng kết quả dự báo hồi quy ca nhiễm từ đó làm cơ sở để xác định bùng phát
 - Phân lớp điểm bùng nổ dịch bệnh ngay từ đầu
 - Các thuật toán sử dụng:
 - Máy học thống kê
 - Học sâu
 - Thuật toán khai thác tập luật phổ biến Apriori

Kết quả dự kiến

- Báo cáo và phân tích về hiệu quả của phương pháp máy học thống kê và phương pháp học sâu trong miền dữ liệu phân tích
- Báo cáo phân tích về hiệu quả của hai phương pháp dự báo bùng nổ từ hồi quy và phân lớp
- Báo cáo phân tích về tính hiệu quả của phương pháp lọc dự báo giả được đề xuất
- Dự kiến công bố 01 bài báo hội nghị quốc tế thuộc danh mục SCOPUS.

Tài liệu tham khảo

- [1] W. H. Organization, "Diarrhoeal disease," 2017, https://www.gso.gov. vn/en/population/ [Accessed: (July 10, 2023)].
- [2] D. Onozuka and M. Hashizume, "Weather variability and paediatric infectious gastroenteritis," Epidemiology & Infection, vol. 139, no. 9, pp. 1369–1378, 2011.
- [3] D. Phung et al., "Association between climate factors and diarrhoea in a mekong delta area," International journal of biometeorology, vol. 59, pp. 1321–1331, 2015.
- [4] D. PHUNG et al., "Temporal and spatial patterns of diarrhoea in the mekong delta area, vietnam," Epidemiology amp; Infection, vol. 143, no. 16, p. 3488–3497, 2015.
- [5] C. N. Thompson et al., "The impact of environmental and climatic variation on the spatiotemporal trends of hospitalized pediatric diarrhea in ho chi minh city, vietnam," Health & place, vol. 35, pp. 147–154, 2015.

UIT.CS2205.ResearchMethodology

Tài liệu tham khảo

- [6] D. Phung et al., "Heavy rainfall and risk of infectious intestinal diseases in the most populous city in vietnam," Science of The Total Environment, vol. 580, pp. 805–812, 2017.
- [7] K. Wangdi and A. C. Clements, "Spatial and temporal patterns of diarrhoea in bhutan 2003–2013," BMC infectious diseases, vol. 17, no. 1, pp. 1–9, 2017.
- [8] R. D'souza et al., "Climatic factors associated with hospitalizations for rotavirus diarrhoea in children under 5 years of age," Epidemiology & Infection, vol. 136, no. 1, pp. 56–64, 2008.
- [9] T. D. Do et al., "Diarrhoea incidence prediction using climate data: Machine learning approaches," in 2022 RIVF International Conference on Computing and Communication Technologies (RIVF). IEEE, 2022, pp. 1–6. [10] V.-H. Nguyen et al., "Deep learning models for forecasting dengue fever based on climate data in vietnam," PLoS Neglected Tropical Diseases, vol. 16, no. 6, p. e0010509, 2022.

UIT.CS2205.ResearchMethodology