HW1

Shreya Kolte

GETTING TO KNOW R:

Installing required packages:

```
# First run this
install.packages("pacman")
```

Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
(as 'lib' is unspecified)

Loading Data:

```
data(algae, package = "DMwR2")
algae |> glimpse()
```

```
Rows: 200
Columns: 18
$ season <fct> winter, spring, autumn, spring, autumn, winter, summer, autumn,~
         <fct> small, small, small, small, small, small, small, small, small, ~
$ size
$ speed
         <fct> medium, medium, medium, medium, medium, high, high, high, mediu~
         <dbl> 8.00, 8.35, 8.10, 8.07, 8.06, 8.25, 8.15, 8.05, 8.70, 7.93, 7.7~
$ mxPH
$ mn02
         <dbl> 9.8, 8.0, 11.4, 4.8, 9.0, 13.1, 10.3, 10.6, 3.4, 9.9, 10.2, 11.~
$ Cl
         <dbl> 60.800, 57.750, 40.020, 77.364, 55.350, 65.750, 73.250, 59.067,~
$ NO3
         <dbl> 6.238, 1.288, 5.330, 2.302, 10.416, 9.248, 1.535, 4.990, 0.886,~
$ NH4
         <dbl> 578.000, 370.000, 346.667, 98.182, 233.700, 430.000, 110.000, 2~
         <dbl> 105.000, 428.750, 125.667, 61.182, 58.222, 18.250, 61.250, 44.6~
$ oP04
$ P04
         <dbl> 170.000, 558.750, 187.057, 138.700, 97.580, 56.667, 111.750, 77~
         <dbl> 50.000, 1.300, 15.600, 1.400, 10.500, 28.400, 3.200, 6.900, 5.5~
$ Chla
$ a1
         <dbl> 0.0, 1.4, 3.3, 3.1, 9.2, 15.1, 2.4, 18.2, 25.4, 17.0, 16.6, 32.~
$ a2
         <dbl> 0.0, 7.6, 53.6, 41.0, 2.9, 14.6, 1.2, 1.6, 5.4, 0.0, 0.0, 0.0, ~
         <dbl> 0.0, 4.8, 1.9, 18.9, 7.5, 1.4, 3.2, 0.0, 2.5, 0.0, 0.0, 0.0, 2.~
$ a3
$ a4
         <dbl> 0.0, 1.9, 0.0, 0.0, 0.0, 0.0, 3.9, 0.0, 0.0, 2.9, 0.0, 0.0, 0.0~
         <dbl> 34.2, 6.7, 0.0, 1.4, 7.5, 22.5, 5.8, 5.5, 0.0, 0.0, 1.2, 0.0, 1~
$ a5
         <dbl> 8.3, 0.0, 0.0, 0.0, 4.1, 12.6, 6.8, 8.7, 0.0, 0.0, 0.0, 0.0, 0.~
$ a6
         <dbl> 0.0, 2.1, 9.7, 1.4, 1.0, 2.9, 0.0, 0.0, 0.0, 1.7, 6.0, 1.5, 2.1~
$ a7
```

To compute the central tendency: Mean, Median, Mode

Mean:

```
algae$a1 |>
mean()
```

[1] 16.9235

Median:

```
algae$a1 |>
  median()
```

[1] 6.95

Mode: There is no specific function for mode in R, so we will create a user defined function. But this method would only work for unimodal data.

```
Mode <- function(x, na.rm=FALSE){
  if(na.rm) x<-x[!is.na(x)]
  ux <- unique (x)
  return (ux[which.max(tabulate(match(x, ux)))])
}
algae$a2 |> Mode()
```

[1] 0

Using the DMwR centralValue() function:

It will return the median for a numerical variable or the mode for nominal variables

```
# Numerical variable
algae$a1 |> centralValue()

[1] 6.95

# Nominal variable
algae$speed |> centralValue()
```

Statistics of Spread (Variance):

Variance:

[1] "high"

```
algae$a1 |> var()
```

[1] 455.7532

Standard Deviation:

```
algae$a1 |> sd()
```

```
[1] 21.34838
```

Range: It gives us both maximum and minimum values

```
algae$a1 |> range()
```

[1] 0.0 89.8

Maximum value:

```
algae$a1 |> max()
```

[1] 89.8

Minimum value:

```
algae$a1 |> min()
```

[1] 0

Interquartile Range:

3rd quartile (75%) - 1st quartile (25%)

```
algae$a1 |> IQR()
```

[1] 23.3

Quantiles:

```
algae$a1 |> quantile()
```

```
0% 25% 50% 75% 100% 0.00 1.50 6.95 24.80 89.80
```

We can also specify specific quantiles:

```
algae$a1 |> quantile(probs = c(0.2, 0.8))

20% 80%
1.20 32.18
```

Missing Values:

```
library(purrr)
# Compute the total number of NA values in the dataset
nas <- algae %>%
   purrr::map_dbl(~sum(is.na(.))) %>%
   sum()

cat("The dataset contains ", nas, "NA values. \n")
```

The dataset contains 33 NA values.

```
# Compute the number of incomplete rows in the dataset
incomplete_rows <- algae %>%
   summarise_all(~!complete.cases(.)) %>%
   nrow()
```

Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in dplyr 1.1.0.

- i Please use `reframe()` instead.
- i When switching from `summarise()` to `reframe()`, remember that `reframe()` always returns an ungrouped data frame and adjust accordingly.
- i The deprecated feature was likely used in the dplyr package. Please report the issue at https://github.com/tidyverse/dplyr/issues.

```
cat("The dataset contains ", incomplete_rows, "(out of ", nrow(algae),") incomplete rows.
```

The dataset contains 200 (out of 200) incomplete rows.

Summaries of a dataset:

Base R's Summary:

algae |> summary()

```
speed
                                          \mathtt{mxPH}
                size
                                                           mn02
   season
autumn:40
            large:45
                         high:84
                                     Min.
                                             :5.600
                                                      Min. : 1.500
spring:53
            medium:84
                               :33
                                      1st Qu.:7.700
                                                      1st Qu.: 7.725
                         low
summer:45
            small:71
                         medium:83
                                      Median :8.060
                                                      Median: 9.800
winter:62
                                      Mean
                                             :8.012
                                                      Mean
                                                              : 9.118
                                      3rd Qu.:8.400
                                                      3rd Qu.:10.800
                                     Max.
                                             :9.700
                                                      Max.
                                                              :13.400
                                     NA's
                                                      NA's
                                                              :2
                                             :1
      Cl
                        NO3
                                          NH4
                                                              oP04
     : 0.222
                   Min. : 0.050
                                                               : 1.00
Min.
                                     Min.
                                          :
                                                 5.00
                                                        Min.
1st Qu.: 10.981
                   1st Qu.: 1.296
                                     1st Qu.:
                                                38.33
                                                         1st Qu.: 15.70
Median: 32.730
                   Median : 2.675
                                    Median:
                                               103.17
                                                        Median: 40.15
Mean
       : 43.636
                   Mean
                          : 3.282
                                    Mean
                                               501.30
                                                        Mean
                                                                : 73.59
3rd Qu.: 57.824
                                               226.95
                   3rd Qu.: 4.446
                                     3rd Qu.:
                                                        3rd Qu.: 99.33
Max.
       :391.500
                   Max.
                          :45.650
                                    Max.
                                            :24064.00
                                                        Max.
                                                                :564.60
NA's
     :10
                   NA's
                          :2
                                    NA's
                                                        NA's
                                                                :2
                                          :2
     P04
                       Chla
                                           a1
                                                            a2
                         : 0.200
Min.
       : 1.00
                  Min.
                                           : 0.00
                                                             : 0.000
                                     Min.
                                                     Min.
                  1st Qu.:
1st Qu.: 41.38
                                     1st Qu.: 1.50
                                                     1st Qu.: 0.000
                            2.000
Median :103.29
                 Median : 5.475
                                     Median: 6.95
                                                     Median : 3.000
                                           :16.92
       :137.88
Mean
                 Mean
                         : 13.971
                                    Mean
                                                     Mean
                                                            : 7.458
                                                     3rd Qu.:11.375
3rd Qu.:213.75
                  3rd Qu.: 18.308
                                     3rd Qu.:24.80
                                    Max.
Max.
       :771.60
                 Max.
                         :110.456
                                            :89.80
                                                     Max.
                                                             :72.600
NA's
       :2
                 NA's
                         :12
      a3
                        a4
                                          a5
                                                            a6
       : 0.000
                         : 0.000
                                           : 0.000
                                                             : 0.000
Min.
                 Min.
                                   Min.
                                                     Min.
                 1st Qu.: 0.000
1st Qu.: 0.000
                                   1st Qu.: 0.000
                                                     1st Qu.: 0.000
Median : 1.550
                 Median : 0.000
                                   Median : 1.900
                                                     Median : 0.000
       : 4.309
Mean
                 Mean
                         : 1.992
                                   Mean
                                           : 5.064
                                                     Mean
                                                             : 5.964
3rd Qu.: 4.925
                  3rd Qu.: 2.400
                                   3rd Qu.: 7.500
                                                     3rd Qu.: 6.925
                                                             :77.600
Max.
       :42.800
                         :44.600
                                           :44.400
                 Max.
                                   Max.
                                                     Max.
      a7
       : 0.000
Min.
1st Qu.: 0.000
Median : 1.000
Mean
       : 2.495
3rd Qu.: 2.400
Max.
       :31.600
```

```
Hmisc's describe():
```

```
data("penguins")
penguins |> Hmisc::describe()
```

penguins

8 Varia	ables	344 Ob	servation	ıs				
species								
n missing distinct								
344	0	3						
Value	Adel	ie Chins	trap G	entoo				
Frequency	<i>r</i> 1	.52	68	124				
Proportio	on 0.4	142 0	.198	0.360				
island								
n	missing	distinct						
344	0	3						
	Bisc							
Frequency	7 1	.68	124	52				
Proportio	on 0.4	188 0	.360	0.151				
bill_length_mm								
					n Gmd			
342	2	164	1	43.9	2 6.274	35.70	36.60	
. 25	.50	.75	.90	.9	5			
39.23	44.45	48.50	50.80	51.9	9			
lowest :	32.1 33.1	33.5 34	34.1,	highest:	55.1 55.8	55.9 58	59.6	
bill_depth_mm								
n	missing	distinct	Info	Mean	n Gmd	.05	.10	
342	2	80	1	17.1	5 2.267	13.9	14.3	
.25	.50	.75	.90	.9	5			
15.6	17.3	18.7	19.5	20.)			

lowest :	13.1 13.2	2 13.3 13.4	13.5, hig	hest: 20	.7 20.8 2	1.1 21.2	21.5
flipper_length_mm							
n	missing	distinct	Info	Mean	${\tt Gmd}$.05	.10
342	2	distinct 55	0.999	200.9	16.03	181.0	185.0
.25	.50	.75	.90	.95			
190.0	197.0	213.0	220.9	225.0			
		176 178 179,	•			231	
body_mass							
n	missing	distinct	Info	Mean	Gmd	.05	.10
		94			911.8	3150	3300
		.75					
3550	4050	4750	5400	5650			
lowest: 2700 2850 2900 2925 2975, highest: 5850 5950 6000 6050 6300							
sex	missing	distinct					
	11						
Value	female	male					
Frequency	y 165	168					
Proportio	on 0.495	0.505					
year							
n	missing	distinct	Info	Mean	Gmd		
344	0	3	0.888	2008	0.8919		
		2008 2009					
	y 110						
Proportion	on 0.320 (0.331 0.349					
For the frequency table, variable is rounded to the nearest 0							

GMD is the mean absolute difference between any pairs of observations. A robust dispersion measure, especially for non-normally distributed data.

dlookr's describe():

```
penguins |> dlookr::describe()
```

```
# A tibble: 5 x 26
 described_variables
                          n
                                na
                                     mean
                                               sd se_mean
                                                               IQR skewness
  <chr>
                                                             <dbl>
                                                                      <dbl>
                      <int> <int>
                                    <dbl>
                                            <dbl>
                                                     <dbl>
1 bill_length_mm
                        342
                                 2
                                     43.9
                                            5.46
                                                   0.295
                                                              9.27
                                                                     0.0531
2 bill_depth_mm
                        342
                                 2
                                     17.2
                                            1.97
                                                   0.107
                                                              3.1
                                                                    -0.143
                                                             23
3 flipper_length_mm
                        342
                                 2 201.
                                           14.1
                                                   0.760
                                                                     0.346
                                 2 4202.
4 body_mass_g
                        342
                                          802.
                                                  43.4
                                                           1200
                                                                     0.470
                        344
                                 0 2008.
                                            0.818 0.0441
                                                                    -0.0537
5 year
                                                              2
# i 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
    p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
   p99 <dbl>, p100 <dbl>
```

Summaries on a subset of data:

dplyr's summarise() and summaries_all(), or use them with select() and group_by() to create summaries on subset of data.

Note: summarise() = semmarize()

summarise_all() can be used to apply any function that produces a scalar value to any column of a data frame table.

```
algae |>
  select(mxPH:Cl) |>
  summarise_all(list(mean, median), na.rm = TRUE)
```

```
# A tibble: 1 x 6
  mxPH_fn1 mn02_fn1 Cl_fn1 mxPH_fn2 mn02_fn2 Cl_fn2
     <dbl>
              <dbl> <dbl>
                              <dbl>
                                       <dbl> <dbl>
      8.01
               9.12
                      43.6
                               8.06
                                         9.8
                                                32.7
1
  algae |>
    select(a1:a7) |>
    summarise_all(funs(var))
Warning: `funs()` was deprecated in dplyr 0.8.0.
i Please use a list of either functions or lambdas:
# Simple named list: list(mean = mean, median = median)
# Auto named with `tibble::lst()`: tibble::lst(mean, median)
# Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
# A tibble: 1 x 7
     a1
           a2
                 a3
                       a4
                             a5
                                   a6
                                         a7
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 456. 122. 48.3 19.5 56.1 136.
  algae |>
    select(a1:a7) |>
    summarise_all(c("min", "max"))
# A tibble: 1 x 14
  a1_min a2_min a3_min a4_min a5_min a6_min a7_min a1_max a2_max a3_max a4_max
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                           <dbl> <dbl>
                                                                          <dbl>
                                                 0
                                                      89.8
                                                             72.6
                                                                    42.8
                            0
                                   0
                                                                           44.6
# i 3 more variables: a5_max <dbl>, a6_max <dbl>, a7_max <dbl>
Using summarise() with group_by():
  algae |>
    group_by(season, size) |>
    summarise(nObs = n(), mA7 = median(a7))
```

```
`summarise()` has grouped output by 'season'. You can override using the
`.groups` argument.
# A tibble: 12 x 4
# Groups: season [4]
  season size
               n0bs
                       mA7
  <fct> <fct> <int> <dbl>
1 autumn large 11 0
2 autumn medium 16 1.05
3 autumn small 13 0
                 12 1.95
4 spring large
5 spring medium
                  21 1
6 spring small
                  20 0
7 summer large
                 10 0
8 summer medium
                  21 1
9 summer small
                 14 1.45
10 winter large
                 12 0
11 winter medium
                  26 1.4
12 winter small
                  24 0
  penguins |>
   group_by(species) |>
    summarise(var = var(bill_length_mm, na.rm = TRUE))
# A tibble: 3 x 2
 species var
 <fct>
          <dbl>
1 Adelie
          7.09
2 Chinstrap 11.2
3 Gentoo
         9.50
```

Aggregating data:

This can be helpful for summary functions that don't return a scalar:

```
penguins |>
  group_by(species) |>
  reframe(var = quantile(bill_length_mm, na.rm = TRUE))
```

```
# A tibble: 15 x 2
   species
               var
   <fct>
             <dbl>
 1 Adelie
              32.1
2 Adelie
              36.8
3 Adelie
              38.8
4 Adelie
              40.8
5 Adelie
              46
6 Chinstrap
              40.9
7 Chinstrap
              46.3
8 Chinstrap
              49.6
9 Chinstrap
              51.1
10 Chinstrap
              58
11 Gentoo
              40.9
              45.3
12 Gentoo
13 Gentoo
              47.3
14 Gentoo
              49.6
15 Gentoo
              59.6
```

reframe() expects a scalar result by the function, but quantile returns a vector.

Using dlookr:

penguins |>

```
group_by(species) |>
    dlookr::describe(bill_length_mm)
# A tibble: 3 x 27
  described_variables species
                                                      sd se_mean
                                                                   IQR skewness
                                    n
                                          na
                                             mean
  <chr>
                      <fct>
                                <int> <int> <dbl> <dbl>
                                                           <dbl> <dbl>
                                                                           <dbl>
1 bill_length_mm
                      Adelie
                                  151
                                           1
                                              38.8
                                                    2.66
                                                           0.217
                                                                  4
                                                                          0.162
2 bill_length_mm
                      Chinstrap
                                   68
                                           0
                                              48.8 3.34
                                                           0.405
                                                                  4.73
                                                                        -0.0906
3 bill_length_mm
                      Gentoo
                                  123
                                           1
                                             47.5 3.08
                                                           0.278 4.25
                                                                         0.651
# i 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
```

EXERCISE:

Getting to know your dataset:

p99 <dbl>, p100 <dbl>

1. List datatypes of the attributes in your dataset: we use the str() function

```
```{r}
data("iris")
str(iris)
```
```

2. Check for skewness in data distribution in the attributes: we use the skewness() function

```
```{r}
skewness(iris$Sepal.Length)
...
```

3. Check for correlation among attributes: we use the cor() function

```
cor(iris[1:4], method="kendall")
```

```
Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSepal.Length1.00000000-0.076996790.71851590.6553086Sepal.Width-0.076996791.00000000-0.1859944-0.1571257Petal.Length0.71851593-0.185994421.00000000.8068907Petal.Width0.65530856-0.157125660.80689071.0000000
```

4. Examine the extent of missing data. What would be the best way to deal with the missing data in this case?

```
data("airquality")
missing_val <- any(is.na(airquality)) #check missing values in complete dataset
missing_data <- sum(is.na(airquality$0zone)) #check missing data in specific attribut
print(paste("Missing values in the data set:",missing_val), quote=FALSE)</pre>
```

[1] Missing values in the data set: TRUE

```
print(paste("Total number of missing values in the attribute of our dataset are:", mis
```

[1] Total number of missing values in the attribute of our dataset are: 37

```
print(paste("positions of our missing values are:"), quote=FALSE)
 [1] positions of our missing values are:
 name=names(which(colSums(is.na(airquality))>0))
 print(name)
 [1] "Ozone"
 "Solar.R"
 airquality[,c(name)]
 Ozone Solar.R
1
 41
 190
2
 36
 118
3
 12
 149
4
 313
 18
5
 NA
 NA
6
 28
 NA
7
 23
 299
8
 19
 99
9
 8
 19
10
 NA
 194
11
 7
 NA
 256
12
 16
13
 290
 11
14
 14
 274
15
 18
 65
16
 14
 334
17
 307
 34
18
 6
 78
19
 322
 30
20
 11
 44
21
 1
 8
22
 320
 11
 25
23
 4
24
 32
 92
25
 NA
 66
26
 266
 NA
27
 NA
 NA
 23
 13
28
```

29	45	252
30	115	223
31	37	279
32	NA	286
33	NA	287
34	NA	242
35	NA	186
36	NA	220
37	NA	264
38	29	127
39	NA	273
40	71	291
41	39	323
42	NA	259
43	NA	250
44	23	148
45	NA	332
46	NA	322
47	21	191
48	37	284
49	20	37
50	12	120
51	13	137
52	NA	150
53	NA	59
54	NA	91
55	NA	250
56	NA	135
57	NA	127
58	NA	47
59	NA	98
60	NA	31
61	NA	138
62	135	269
63	49	248
64	32	236
65	NA	101
66	64	175
67	40	314
68	77	276
69	97	267
70	97	272
71	85	175

72	NA	139
73	10	264
74	27	175
75	NA	291
76	7	48
77	48	260
78	35	274
79	61	285
80	79	187
81	63	220
82	16	7
83	NA	258
84	NA	295
85	80	294
86	108	223
87	20	81
88	52	82
89	82	213
90	50	275
91		253
	64 50	
92	59	254
93	39	83
94	9	24
95	16	77
96	78	NA
97	35	NA
98	66	NA
99	122	255
100	89	229
101	110	207
102	NA	222
103	NA	137
104	44	192
105	28	273
106	65	157
107	NA	64
108	22	71
109	59	51
110	23	115
111	31	244
112	44	190
113	21	259
114	9	36

115	NA	255
116	45	212
117	168	238
118	73	215
119	NA	153
120	76	203
121	118	225
122	84	237
123	85	188
124	96	167
125	78	197
126	73	183
127	91	189
128	47	95
129	32	92
130	20	252
131	23	220
132	21	230
133	24	259
134	44	236
135	21	259
136	28	238
137	9	24
138	13	112
139	46	237
140	18	224
141	13	27
142	24	238
143	16	201
144	13	238
145	23	14
146	36	139
147	7	49
148	14	20
149	30	193
150	NA	145
151	14	191
152	18	131
153	20	223

The above values are numeric and we can replace them with mean, median or mode of the columns or we can also omit the rows.