

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS

RELACIÓN Nº 3: DISPOSITIVOS ELECTRÓNICOS

Diodos

1.- Calcula la corriente que circula a través del diodo en los siguientes casos:

a) Datos: V1=12 V; R1=R3=400 Ω ; R2=R4=600 Ω ; $V_{\gamma} = 0.6 \text{ V}$

b) Datos: V1=12 V; R1=R4=400 Ω ; R2=R3=600 Ω ; $V_{\gamma} = 0.6 \text{ V}$

c) Datos: V1=12 V; R1=R4=600 Ω ; R2=R3=400 Ω ; $V_{\gamma} = 0.6 \text{ V}$

Circuito para los apartados a), b) y c)

2.- Calcula la corriente que circula por cada rama en el siguiente circuito: Datos: R=1 k Ω ; V1=6 V; V1=2 V; $V_{\gamma} = 0.6$ V; $V_{Z} = 4.1$ V

3. Calcula la característica de transferencia del circuito ($v_0 = V_A$.– V_B). (Examen de septiembre de 2007)

Datos: $V_{\gamma} = 0.6 V$

4. Calcula la característica de transferencia del siguiente circuito para tensiones de entrada positivas ($v_{\theta} = V_A$.– V_B) (*Examen de febrero de 2008*)

Datos: $V_{\gamma} = 0.6 V$ (Válido para los dos diodos)

- 5.- Respuesta del circuito ante una señal variable.
 - a) Calcula la característica de transferencia del circuito de la izquierda.
 - b) Si en el circuito de la derecha se pone una entrada $v_i(t) = 10\cos t$ V, ¿cuál será la señal de salida $v_o(t)$? Y si la señal de entrada es $v_i(t) = 0.5\cos t$ V, ¿cuánto vale la salida? Dibuja las señales de entrada y de salida en función del tiempo.

Datos: R=1 k Ω ; $V_{\gamma} = 0.6 \text{ V}$

6.- Respuesta del circuito ante una señal variable.

- a) Calcula la característica de transferencia del circuito de la izquierda.
- b) Supongamos que, para una señal variable cualquiera $v_i(t)$ se quiere limitar los valores de $v_o(t)$ entre \pm 5 V ¿cuál sería el valor de V de las fuentes de tensión del circuito?

Datos: R=5 k Ω ; $V_{\gamma} = 0.6 \text{ V}$

Más ejercicios de diodos:

- 1. En el circuito de la Figura 1, $V_i=15V,\,R=100\Omega$ y $I_s=100\cdot 10^{-6}A.$ Calcular:
 - a) la corriente que circula por diodo si la diferencia de potencial entre sus extremos es 0.1V. Usar la relación exponencial entre V_d y I_d .
 - b) la corriente que circula por diodo si la diferencia de potencial entre sus extremos es 0.5V. Usar la relación exponencial entre V_d y I_d .
 - c) la corriente que circula por el circuito así como la diferencia de potencial entre los extremos del diodo usando la relación exponencial entre V_d y I_d .
 - d) la corriente que circula por el circuito así como la diferencia de potencial entre los extremos del diodo usando el primer modelo de aproximación para el diodo.

Figura 1:

- 2. Para el circuito de la Figura 1, calcular la característica de transferencia si:
 - a) se toma la salida en la resistencia.
 - b) se toma la salida en el diodo.

Datos: $R = 1K\Omega$

_

Figura 2:

3. En el circuito de la Figura 2 hay dos diodos, D_1 es de Germanio con una tensión umbral $V_{T1}=0.2V$ y una resistencia directa $r_{d1}=20\Omega$ (segundo modelo visto en clase). D_2 es de Silicio con una $V_{T2}=0.6V$ y $r_{d2}=15\Omega$. Calcular las intensidades que circulan por cada uno de dichos diodos si:

a)
$$V_i = 100V \text{ y } R = 10k\Omega$$

b)
$$V_i = 100V \text{ y } R = 1k\Omega$$

4. Para el circuito de la Figura 3, calcular la característica de transferencia si se toma la salida en el diodo. Datos: $R=1K\Omega$

Figura 3:

5. Para el circuito de la Figura 4, calcular la característica de transferencia si se toma la salida en el punto indicado por V_0 . Datos: $R=1K\Omega$

Figura 4:

- 8. En el circuito de la figura 6 calcular el valor de la tensión de salida (V_o) , sabiendo que el didodo D1 cuando está en conducción se puede representar por:
 - a) Un cortocircuito (diodo ideal)
 - b) Una fuente de tensión de 0.7V.
 - c) Una fuente de tensión de 0.7 V y una resistencia de 20 Ω . Datos: $R_1=5k\Omega,\,R_2=5k\Omega$ y $R_3=5k\Omega.$

- 11. En el circuito de la Figura 8, los diodos se pueden representar, en conducción, como una fuente de tensión de 0.7V en serie con una resistencia de 20Ω . Determinar la tensión en el punto A si:
 - a) $V_{in} = 10V$
 - $b) V_{in} = -5V$

Datos: $R_1 = 5k\Omega$ y $R_2 = 2k\Omega$.

Figura 8:

Transistores MOSFET

- 7.- Calcula la corriente que circula por cada rama en el circuito siguiente.
- Calcula la potencia que consume el transistor, así como cada una de las resistencias.

Datos: $R_S = 10 \text{ k}\Omega$; $R_D = 2.2 \text{ k}\Omega$; $V_T = 2 \text{ V}$; $k=0.1 \text{ mA/V}^2$

8.- Calcula la corriente que circula por cada una de las tres ramas del

circuito. Datos:
$$R_D = 1 \text{ k}\Omega$$
; $k = 2 \text{ mA/V}^2$; $V_T = 1 \text{ V}$

(Examen de septiembre 2008)

Región lineal u óhmica:

$$I_{D} = \frac{k}{2} \Big[2(V_{GS} - V_{T})V_{DS} - V_{DS}^{2} \Big]$$

Región de saturación:

$$I_D = \frac{k}{2} (V_{GS} - V_T)^2$$

- **9.-** Calcula la tensión en los terminales de puerta, drenador y fuente del transistor T1 en los casos siguientes:
- a) $V_{DD}=5 \text{ V}$; $R_{G1}=9 \text{ k}\Omega$; $R_{G2}=1 \text{ k}\Omega$; $R_D=R_S=10 \text{ k}\Omega$;
- b) $V_{DD}=5 \text{ V}$; $R_{G1}=R_{G2}=10 \text{ k}\Omega$; $R_{D}=5 \text{ k}\Omega$; $R_{S}=0.25 \text{ k}\Omega$;
- Calcula en cada caso el consumo de potencia del transistor.

Datos: $V_T = 1 \text{ V}$; $k=1 \text{ mA/V}^2$

10.- Calcula el valor de $V_{\mbox{\tiny 0}}$ en el siguiente circuito cuando se aplican las siguientes tensiones en las puertas de los transistores:

- a) V_A=0 V; V_B=0 V; b) V_A=5 V; V_B=0 V; c) V_A=0 V; V_B=5 V; d) V_A=5 V; V_B=5 V;

Datos: $V_{DD}=5 \text{ V}$; $R=1 \text{ k}\Omega$; $V_T=1 \text{ V}$; $k=0.5 \text{ mA/V}^2$

Más ejercicios de MOSFETs:

- 18. Determinar el valor de I_D , V_{DS} y V_{GS} en el circuito de la Figura 16. Datos: $V_{DD}=12V$, $R_1=2k\Omega$, $R_2=1M\Omega$, $V_T=3V$, $k=0.48\cdot 10^{-3}\frac{A}{V^2}$.
- 19. En el circuito de la Figura 17:
 - a) Suponiendo $V_{GG} = 0V$, ¿cuál es el estado del transistor?
 - b) Suponiendo que ahora V_{GG} aumenta desde 0, ¿para qué tensión empieza a conducir el MOSFET?
 - c) En el momento en que entra en conducción, ¿en qué zona de trabajo (óhmica o saturación) se encuentra?

Datos: $V_{DD}=15V,\ V_{SS}=5V,\ R_{G1}=120\Omega,\ R_{G2}=220\Omega,\ R_{d}=4.7k\Omega,\ V_{T}=2V,\ k=2\cdot 10^{-3}\frac{A}{V^{2}}.$

- 20. En el circuito de la Figura 18:
 - a) Hallar el punto de trabajo y la potencia disipada en cada uno de los transistores del MOSFET de canal n de la figura, si $V_{GG}=3V$.
 - b) Calcular la tensión V_{GG} máxima para que M_1 se mantenga en la región lineal.

Datos: $V_{DD} = 9V$ Para M_1 : $V_{T1} = 1V$, $k_1 = 4 \cdot 10^{-3} \frac{A}{V^2}$. Para M_2 : $V_{T2} = 2V$, $k_2 = 2 \cdot 10^{-3} \frac{A}{V^2}$

- 21. Hallar el punto de trabajo y la potencia disipada en cada uno de los transistores del MOSFET de canal n de la Figura 18, si $V_{GG}=5V$. Datos: $V_{DD}=9V$ Para M_1 : $V_{T1}=1V$, $k_1=4\cdot 10^{-3}\frac{A}{V^2}$. Para M_2 : $V_{T2}=2V$, $k_2=2\cdot 10^{-3}\frac{A}{V^2}$
- 22. Los transistores NMOSFET de la Figura 19 son iguales. Se quiere que la corriente de drenador sea igual en ambos transistores. Calcular V_{GS} para M_1 y M_2 y el valor de R_1 . Justifique la zona de trabajo para ambos transistores. Datos: $V_{DD}=15V,\ V_T=0.6V,\ k=4\cdot 10^{-3}\frac{A}{V^2},\ R_2=1M\Omega,\ I_1=I_2=2mA,\ R_3=1.5k\Omega.$

Figura 16:

Figura 17:

Figura 18:

Figura 19:

Circuitos con varios tipos de dispositivos

11.- Calcula el valor de V_0 en el siguiente circuito cuando $R_D=100 \Omega$.

- ¿Cuál es el valor que tendría que tener la resistencia R_D para que el transistor estuviera en el límite de las regiones de saturación y lineal?

Datos: $V_{DD}=5 \text{ V}$; $R_D=100 \Omega$; $V_T=1 \text{ V}$; $k=1 \text{ mA/V}^2$; $V_G=4 \text{ V}$; $V_{\gamma}=0.6 \text{ V}$

Nota: Uno de los ejercicios del examen de febrero de 2007 era relativo al mismo circuito de la figura, pero con otros datos. A continuación se reproduce el enunciado del examen.

- Calcula:

a) El valor de Vo.

b) El valor de la potencia consumida por el MOSFET y por el diodo.

Datos: $V_{DD}=5 \text{ V}$; $R_D=1 \text{ k}\Omega$; $V_T=1 \text{ V}$; $k=2 \text{ mA/V}^2$; $V_G=2.5 \text{ V}$; $V_v=0.6 \text{ V}$

12.- Indica razonadamente la región de funcionamiento en la que operan cada uno de los dispositivos electrónicos siguientes: Examen de febrero de 2009, 1.5 puntos)

Datos para el diodo (D1): $V_{\gamma} = 0.6 \text{ V}$

Datos para el MOSFET (T1): $V_T = 1 \text{ V}$; $k = 2 \text{ mA/V}^2$