Introduction to

Building the IoT with P2P &

Niels Olof Bouvin

Overview

- Introduction to the course
- Introduction to Peer-to-Peer networking
- Client/server compared to Peer-to-Peer
- P2P characteristics
- Typical P2P applications
- Gnutella
- Summary

Course Overview

- Blackboard (⁻_(ツ)_/⁻)
 - (send me an email < bouvin@cs.au.dk >, if you are not on the list)

Course material

- papers & technical reports found in the BB system
- Building the Web of Things by Dominique D. Guinard & Vlad M. Trifa

Group work (2-3 persons)

- First four weeks of the course: Mandatory assignment (first milestone next week)
- Rest of the course: Self-determined IoT/P2P project (more about this on later)

Exam: Oral, 30 minutes, known questions & project

based on written report documenting and reflecting upon project work

Course Homepage

Peers in the Cloud with Things				
		Link to slides	Link to papers	
Plan				
Week	Lecture a	Lecture b	Material	Milestone Due
35	Introduction to Peer-to-Peer Networking	Introduction to the Internet/Web of Things	<u>Papers</u> , Chap. 1-2, (3)	
36	Unstructured P2P Networks	WSN and Networking for IoT	Papers, Chap. 4-5	Milestone 1
37	Mobile Ad hoc Networks	Implementing Web APIs for Things	Papers, Chap. 6-7	Milestone 2
38	Structured P2P Networks	Discovery & Security for the Web of Things	Papers, Chap. 8-9	Milestone 3
39	Security and Privacy in P2P	The Cloud and the Internet of Things // Introduction to the project	Papers, Chap. 10	

Purpose of Course

- To familiarise you with decentralised sensing systems
- To introduce a number of design criteria for P2P as well as Web-based Internet of Things networks
- To teach you to assess the strengths and weaknesses of a given system, based on these criteria
- To establish practical knowledge of IoT/P2P networking by constructing a Web based sensing system with a resilient cloud based delivery & storage mechanism from scratch, and, based on these gained skills, create your own project system

Topics

- Introduction to P2P
- Unstructured P2P systems
- MANET
- Structured P2P systems
- Security & Privacy
- P2P Applications
- BitTorrent

- Introduction to IoT & WoT
- Embedded systems
- Networks for IoT
- Discovery & Security
- Cloud, IoT, and P2P
- IoT Applications
- P2P Streaming
- The Blockchain
- Distributed Web Platforms

Time Overview

First half of course

Two lectures every week to give you a crash course on P2P/IoT

Second half of course (after autumn break)

One lecture every week to give you more time to focus on project work

• First four weeks:

a mandatory assignment of three milestones

Remainder of course

a self-determined project with a written report and weekly milestone meetings

Mandatory Assignment

- Follows the WoT book, so more about it on Friday
- Will require you have a Raspberry Pi + sensors
- This will, hopefully, be made available for sale Friday
 - announcement will follow
- Three milestones, using the RPi as well as the cloud
- Sadly, no P2P component this year
 - on the bright side, this leaves you with more time for the project
 - and I do have some suggestions about adding a P2P component as a project...

Project Work

- Starts as soon as you finish the mandatory assignment
 - but ideally well before the autumn break (week 42)
- You are free to choose any topic, provided that
 - there must be a strong element of IoT or P2P in your proposal (and that I approve it)
 - you should incorporate both your Raspberry Pi and the Cloud in your system
 - no restrictions on technology or choice of frameworks (as long as you make a Δ)
- You will be expected to build a system, posit hypotheses, perform experiments, and reflect and conclude upon them
 - in the form of a written report and an oral defence
- Show'n'tell: Demonstration of your system before all

People

- Niels Olof Bouvin
 - lectures (Tuesday & Friday)
 - and the occasional milestone meeting
- Michal Ratajský
 - TA
 - milestone meetings

- TA: Thursday, 15-18
- Milestone meetings: Thursday, 11-17
 - during the project part of the course

Administratrivia the creation of groups

- Divide yourself into groups (2-3 persons)
 - create a matching group using the magic of Blackboard
- The mandatory assignment consists of three milestones (and starts next week)
- The project work occupies the remainder
- Progress on project work to be presented to Michal
 - Thursday 11-17
 - I'll create a Doodle for scheduling

On the Nature of Groups

- Finding a group: there is a subreddit for the course
- Finding the right members
 - your project work is a significant part of your final, individual grade, so it is important that a group agrees on a plan and the level of ambition from the start
- All group members are expected to contribute equally

Overview

- Introduction to the course
- Introduction to Peer-to-Peer networking
- Client/server compared to Peer-to-Peer
- P2P characteristics
- Typical P2P applications
- Gnutella
- Summary

What are P2P Networking Systems?

There are a fair number of different opinions:

- "A server-less networking technology that allows several network devices to share resources and communicate directly with each another"
- "Deployable in an ad-hoc fashion, without requiring centralised management or control"
- "Peer-to-peer is a class of applications that take advantage of resources—storage, cycles, content, human presence—available at the edges of the Internet"

Defining Characteristics for P2P

- Resources are shared directly between peers
- Activities are (largely) coordinated between peers
- The peers are capable of handling contingencies

A Brief History of P2P Computing

1969-1995: The original Peer-to-Peer Internet

- No firewalls, most services widely available
- Usenet: based on Unix-to-Unix-CoPy. DNS: hosts are clients and servers, cache replies

1995-2001: The Internet explosion (and implosion)

- Movement away from P2P to client/server models
- Web, firewalls, ADSL, asymmetric connections, NAT, ...

2001-...: New wave of peer-to-peer

• separating authoring from publishing; (Web) service oriented Internet; distributed media publishing; BitTorrent; P2P streaming; tor; federation of social networks

Now and onwards:

• The rise of the internet connected device/sensor: Will the edge overwhelm the center?

Overview

- Introduction to the course
- Introduction to Peer-to-Peer networking
- Client/server compared to Peer-to-Peer
- P2P characteristics
- Typical P2P applications
- Gnutella
- Summary

Client/Server vs. P2P

Cilent/Server

Advantages

- Centralised
- Increased security
- Control
- Easy to maintain
- Static topology
- State kept in one place

- Simple architecture
- Scalable (only few resources on client)
- Well known and well supported
- Loose coupling between client/client

Client/Server Disadvantages

- Single point of failure
 - much less of an issue with a well designed cloud service
- Scalability is costly
- Large bandwidth requirements at server
- State kept in one place
- Central control (and sometimes, central lack of control)
- Does not take advantage of the resources of the clients
- Collaboration between clients involves the server

Peer-to-PeerAdvantages

- Robust
- Scalability
- More clients = more available resources
- Dynamic (self configuring)
- Replication
- Decentralised (autonomy)
- Peers can collaborate directly
 - if designed well with low latency due to closeness

Peer-to-Peer Disadvantages

- Architectural complexity
- Churn: Peers joining and leaving
- Resources are distributed and not always available
- Harmful content/systems can be hard to eradicate
- More demanding of peers
- New technology: abstractions, techniques, etc., are not as mature

Client/Server vs P2P vs Cloud In Practice

- No need to pick only one, when you can use all
- Most successful P2P incorporate client/server elements, often with a server hosted in the Cloud
 - often for bootstrapping purposes
- Cloud computing permits high scalability
 - at a cost depending on your requirements
 - but it is much simpler to achieve scalability here than with P2P systems
 - Cloud solutions often involve P2P computing at the hosting center level

Overview

- Introduction to the course
- Introduction to Peer-to-Peer networking
- Client/server compared to Peer-to-Peer
- P2P characteristics
- Typical P2P applications
- Gnutella
- Summary

Classes of P2P Architectures

Purely decentralised architectures

All peers have the same basic capabilities and offer similar services

Partially centralised architectures

 Some, usually more powerful, peers will accept more demanding roles on an ad hoc basis

Hybrid decentralised architectures

Some central servers facilitate coordination

Degrees of P2P Structure

Unstructured networks

 Peers connect in a more or less haphazardly way — resulting in a network graph either power-law or random. Routing/searching is ad-hoc or based on heuristic

Semi-structured networks

 While the network is still relatively random, resources are placed so that efficient routing works

Structured networks

 Peers and resources are placed according to a rigidly defined schema, which is maintained over the lifetime of the network

P2P Characteristics Scalability

- The ability of a system to support an increasing use
- Pro: Network, storage, computational power of peers may be leveraged
- Con: Routing, location, synchronising may not scale;
 "fat" clients needed; peers must contribute

P2P Characteristics Performance

- The time it takes for a system to react to a stimulus
- Pro: Data and computation may be close to peers, high degree of distribution
- Con: Replicated, distributed state and computation; complex architectures

P2P Characteristics Availability

- The part of the deployment period during which a system can deliver the services it implements
- Pro: No single point of failure/robustness; system may be self-configuring, replicated, autonomous
- Con: Ensuring consistent availability; having knowledge of network state

P2P CharacteristicsFairness

- Distributing work equally across the peers according to their needs and abilities
- Pro: Necessary in order to maintain the good performance of P2P
- Con: Difficult to ensure

PZP Cnaracteristics Integrity and authenticity

- The ability of a system to maintain correct state
- Pro: State is distributed, so it can not all be corrupted
- Con: Cryptographically authenticated security difficult to establish without central authority

P2P Characteristics Security

- The degree to which a system can withstand attacks
- Pro: Robustness against Denial of Service attacks; anonymity
- Con: Complex, decentralised security architecture

P2P Characteristics

Anonymity, deniability, censorship resistance

- Being able to retrieve or publish information without risk of discovery
- Pro: Adds security, difficult to suppress information
- Con: Not easy to ensure, what if running the system becomes a crime? Should all information be freely and anonymously available?

Overview

- Introduction to the course
- Introduction to Peer-to-Peer networking
- Client/server compared to Peer-to-Peer
- P2P characteristics
- Typical P2P applications
- Gnutella
- Summary

Typical P2P Applications

- Content sharing and distribution
- Communication
- Collaboration
- Distributed computation

P2P Content Sharing

 Users want to share information. The bandwidth/ storage of users' computers are often partly unused

Napster

- MP3 file sharing and searching service
- Hybrid P2P solution: Files on peers, metadata on server

Gnutella

The original "proper" P2P application for file sharing

P2P Content Distribution

 A secure way of distributing content – focus on creating a "fabric" for distribution

Freenet

- Anonymous censor resistant information distribution,
- Completely decentralised P2P solution
- Routing based on key "closeness" to target; routing replicates data

BitTorrent

- Popular system for legal (and illegal) content sharing
- Designed to encourage fairness

IPFS

combines Kademlia (a structured P2P network), BitTorrent with Merkle tree IDs

P2P Communication

- Communication is essential in collaboration and communication need only be between peers
- ICQ (and many others)
 - Pioneered instant messages in 1996
 - ICQ server maps from ICQ-specific addresses to IP addresses; communication is P2P
- Skype (original version)
 - Voice over IP & instant messagingbased on P2P routing
 - Supported API for third-party development

Mastodon

Federated social networking ("decentralised Twitter")

P2P Collaboration

 Human collaboration is intrinsically peer-to-peer, this can be reflected in software architectures

Groove

- Commercial peer platform for hosting peer-to-peer applications and business solutions
- Very elaborate security model
- Now owned by Microsoft

Distributed Knight (local PhD project)

- P2P collaboration on (UML) diagrams
- Tight integration with context-aware instant messaging system

P2P for Distributed Computation

Powerful desktop machines most often under-utilised

Typical model:

- Central server divides "embarrassingly parallelisable" problem into manageable chunks and distributes these to clients which perform computations and return results
- In principle similar to clusters

• True P2P?

Sort of... most projects are strictly hierarchical in architecture

Cyber foraging

letting (mobile) devices use locally available computing resources on the fly

Overview

- Introduction to the course
- Introduction to Peer-to-Peer networking
- Client/server compared to Peer-to-Peer
- P2P characteristics
- Typical P2P applications
- Gnutella
- Summary

Gnutella

- The first major truly distributed P2P file sharing system – a counterpoint to the SPoF of Napster
 - Gnutella is fully distributed and cannot be easily be taken out by an attack (legal or otherwise)
- Invented by Justin Frankel & Tom Pepper of Nullsoft
 - most famous for creating WinAmp
- Very quickly pulled by AOL/Time Warner
 - at that point the source was "in the wild", and a number of Gnutella variants have since developed
- Quite primitive system, yet hugely successful

Gnutella protocol:

5 commands are all you need

- Ping
 - used for discovery
- Pong
 - the response to a Ping

- Query
 - used for searching
- QueryHit
 - the response to a successful query
- Push
 - used to get fire-walled servents to reach outside the firewall

How does it work?

- A Gnutella peer starts out with a number of peers from "somewhere" (perhaps found on a Web page)
- It can ping these peers to receive information about them, and thus build a list of potential peers to contact in the future
- Pings and queries are sent to all known peers who in turn call all their peers and so on (flooding)
- Queries has a unique ID (128 bit) and a TTL (Time To Live). This ensures that peers do not retransmit the same query twice and that queries eventually die out

How does it work?

- Peers remember (for a limited time) received and transmitted queries and whence they came
- If a query match is found, the response (containing the query and the host address) is returned following the query route back to the originator
- The originator receives (presumably) a number of hits and can then contact a host directly for downloading (usually through HTTP)

A Gnutella Example

Ranking of Gnutella peers

Peers report

- amount of shared data
- available bandwidth

Self-reporting is problematic

claim your bandwidth is low, and you will be left alone

Gnutella is inefficient

- Flooding ensures that all peers within TTL horizon are contacted
- However, flooding generates a tremendous amount of (duplicate) network traffic
- Gnutella is so inefficient, that swamping the network becomes quite likely, even without any data traffic

Gnutella Calculations

	TTL=1	TTL=2	TTL=3	TTL=4	TTL=5	TTL=6	TTL=7	TTL=8
N=2	332	664	996	1328	1660	1992	2324	2656
N=3	498	1494	3486	7470	15438	31374	63246	126990
N=4	664	2656	8632	26560	80344	241696	725752	2177920
N=5	830	4150	17430	70550	283030	1132950	4532630	18131350
N=6	996	5976	30876	155376	777876	3890376	19452876	97265376
N=7	1162	8134	49966	300958	1806910	10842622	65056894	390342526
N=8	1328	10624	75696	531200	3719728	26039424	182277296	1275942400

Traffic (in bytes) generated by search for the string 'Grateful Dead Live' in a perfectly balanced Gnutella graph with variable TTL and #Neighbours per peer

Gnutella Experiences

- Flooding hardly the most efficient use of network resources
- Downloads the whole file from a single peer
 - So if that peer goes missing in the middle of your download... so does your data
- Advantage of Gnutella: So abysmal performance, it spurred the development of a lot of improvements – more about this next time!

Overview

- Introduction to the course
- Introduction to Peer-to-Peer networking
- Client/server compared to Peer-to-Peer
- P2P characteristics
- Typical P2P applications
- Gnutella
- Summary

Summary

- The strength of P2P is in numbers
 - Great number of unused processors
 - Large amount of unused bandwidth
 - Whole lot of storage

- P2P systems can be built to increase
 - Computing power
 - Data availability
 - Free speech

- This involves significant challenges
 - Routing
 - Searching
 - Churn
 - Security