台塑石化公司烯烴部

開發「輕油裂解爐操作優化模組」降低能耗與提升產值報告

報告人:郭柏興

2020年8月26日

執行摘要

- 1. 烯烴三廠(OL-3)乙烯單元共有18座裂解爐(2座氣體裂解爐及 16座液體裂解爐),為降低能耗及提升產值,結合SPYRO軟 體預測裂解爐出料成分(Technip產品),並導入DMC3動態矩 陣控制軟體計算優化目標(Dynamic Matrix Control; AspenTech產品),得到真正最佳的操作條件。
- 2.2018/7完成安裝軟、硬體,為使技術完全轉移,AspenTech示 範製作氣體及液體裂解爐各1座操作優化模組,廠方工程師全 程參與,並獨立完成16座裂解爐模組,2019/3上線自動調控, 年效益為155,624千元。
- 3. 以下針對<u>裂解爐導入操作優化模組過程</u>,分動機說明、執行 重點、建置流程、優化成果及後續作業詳細說明。

簡 報 內 容

- 一、製程簡介
- 二、動機說明
- 三、執行重點
- 四、優化成果
- 五、結論及未來努力方向

一、製程簡介(一)乙烯單元流程說明

- 1. 將輕油混合蒸汽送入裂解爐,以爐管出口溫度(COT; Coil Outlet Temperature)控制約800℃裂解,產生裂解氣,分離出乙烯及丙烯等產品
- 2. 裂解爐導入操作優化模組,可以降低過剩氧含量、降低能耗,穩定控制 產品分佈,達到提升乙烯單元產值的目標。

一、製程簡介(二)爐管出口溫度(COT)與產品分佈關係

- 1. 比較相同輕油進料, 裂解爐COT與產品分佈有關, 提高COT, 乙烯、燃料 氣、丁二烯及九碳物產率增加, 丙烯、粗裂解汽油及四碳物產率減少。
- 2. 丙烯產率和乙烯產率比值(P/E比),隨COT增加而降低,擷取COT與P/E呈 線性關係區段,評估裂解激烈度。

一、製程簡介(三)爐管出口溫度(COT)與裂解度(P/E)關係

(P/E) 1.00

0.75

0.50

0.25

0.00

31.5%

0.5

15.8%

820

	不同COT	「的裂解	氣成分	七較	(產率%	CO	T與P/E的關係
	$COT(^{\circ}C)$	<u>780</u>	800	<u>820</u>	() 医 平 10 35	,	24 - 104 104
	燃料氣	13. 3	14. 9	16.4			
	乙烯	<u>26. 9</u>	29. 3	<u>31. 5</u>			乙烯
	乙烷	3. 1	3. 2	3. 1	30	0.66	C Mp
4	丙烯	<u>17. 8</u>	17. 1	<u>15. 8</u>			P/E
產品	丙烷	0.4	0.4	0.4		26. 9%	
分	丁二烯	4.9	5. 2	5. 2	25	20.070	
分 (%)	四碳物	8.6	6.8	5. 1			
	五碳物	6.6	4.9	3.4	20		
	粗裂解汽油	14.8	13. 9	13.8	20	17.8%	丙烯
	九碳物	1.8	2.0	2. 2			
	裂解燃油	1.8	2. 3	3. 1	15		l
	•					780	800
						低裂解度	COT(℃) 度

- 1.提高COT,乙烯產率增加,丙烯產率減少,P/E數值小,裂解度高。
- 2. 依據不同輕油進料品質,裂解爐P/E設計操作範圍在0.46~0.62之間。

一、製程簡介(四)輕油品質與產品分佈關係

輕	油來源	Qatar-GTL	UAE-C5+	SK-Incheon	India-Sikka	Qatar-FRN
炒	之烴(%)	96.8	91.4	<u>86. 4</u>	<u>79. 3</u>	<u>70. 6</u>
	燃料氣	16. 3	18. 3	17. 8	16. 9	17. 0
	乙烯	<u>35. 4</u>	<u>32. 1</u>	<u>31. 3</u>	<u>29. 7</u>	<u>25. 3</u>
	乙烷	4.0	3. 5	3. 4	3. 1	2. 7
產品 分佈 (%)	<u>丙烯</u>	<u>17. 8</u>	<u>17. 7</u>	<u>17. 6</u>	<u>16. 5</u>	<u>15. 2</u>
(%)	丙烷	0.5	0.4	0.4	0.4	0.3
	丁二烯	5.8	5. 2	5. 4	5. 4	4.8
COT= 820°C	四碳物	4.8	6. 2	6. 3	5. 6	6.3
	五碳物	3.8	4. 6	4.4	4. 3	4.0
	粗裂解汽油	9. 6	9. 7	10. 9	14. 1	17. 4
	九碳物	1.3	1. 2	1.4	2. 0	2. 7
	裂解燃油	0.8	1.1	1.2	2. 1	4. 2
	+丙烯(%)	53.2	49.8	<u>48. 9</u>	<u>46. 2</u>	<u>40. 5</u>

備註:烷烴(%)是指輕油品質檢測中直鏈烷烴與支鏈烷烴的總和

- 1. 比較<u>裂解爐操作相同COT(820℃)</u>時,<u>輕油中烷烴比例高</u>,裂解氣中<u>乙烯</u>及丙烯產率增加。
- 2. 因為輕油品質變動大,以傳統COT控制,產品分佈變化大,導入操作優 化模組,可以穩定控制產品組成,達成產銷目標。

二、動機說明(一)提升產值

目標一:找到裂解爐最佳操作條件,提升產值

COT與裂解度的關係

裂解氣主成分	提高 COT	降低 COT
乙烯	增加	減少
丙烯	減少	增加
<u> 裂解度</u> (<u>丙烯/乙烯</u>)	<u>升高</u> 比值小	降低 比值大

- 1. 依據<u>產銷計畫</u>所需產品產量,<u>傳統控制裂解爐COT達到所需裂解度</u>,如 提高COT,裂解度升高,但因為輕油品質不同,導致產品分佈變動。
- 2. <u>COT僅為影響裂解度的因子之一</u>,須要<u>篩選關鍵因子</u>,找到<u>最佳的操作</u> <u>條件</u>,提升產品產值,獲取最大利益。

二、動機說明(二)降低能耗

目標二:減少燃料氣用量,降低能源耗用

爐膛壓力、過剩氧含量與燃料氣關係

爐膛 壓力	<u>過剩</u> 氧含量	爐膛 燃燒狀況	<u>燃料氣</u> 用量
降低	提高	燃燒完全	增加
提高	降低	燃燒可能 不完全	減少

- 1. <u>裂解爐抽空氣入爐膛輔助燃燒</u>,為確保<u>完全燃燒</u>,提高過剩氧含量,<u>常</u> 溫空氣量增加,進入高溫爐膛會降低爐膛溫度,增加燃料氣用量。
- 2. 先確保爐膛<u>過剩氧含量充足</u>,再<u>逐步調降爐膛過剩氧含量接近下限值</u> (2.0%),達到減少燃料氣用量的目標。

三、執行重點(調控策略比較)

	控制方法	傳統DCS控制	操作優化模組自動調控
	<u>裂解度</u>	1. 每座裂解爐設定相同COT,但裂解度受輕油品質、進料量及裂解壓力等因素影響,必須經常調整COT。	1. 以SPYRO製作「裂解 度軟儀錶」預測裂解 度;以操作優化模組 找到最佳操作目標。 2. 以實際裂解度修正操 作優化模組,使預測 裂解度與實際相符。
目	過剩氧含量	1. 以爐膛負壓控制過剩氧含量 ,避免爐內熱氣外溢危害, 因過剩氧含量受進料量、 COT等因素影響是動大 2. 為確保完全燃燒(下限2.0%) 保守控制過剩氧含量3.0%。	1. 以操作優化模組,依據負壓、進料量、 COT找到過剩氧含量 最佳操作條件。 2. 逐步調降過剩氧含量 至2.0%下限值操作。

三、執行重點(系統架構)

影響因子	可控範圍			
<i>№</i> 1 1	min	max		
進料量	28	36		
爐管出口溫度	790	810		
爐管入口溫度	610	630		
:	•	:		
15℃比重	0. 65	0. 73		

 燃料氣
 16.3
 17.0
 ...

 產品組成
 乙烷
 4.0
 2.7
 ...

 丙烯
 17.8
 15.2
 ...

 :
 :
 :
 :
 :

A

B

0.6

輕油來源

裂解度

- > 建置乙烯廠的裂解反應理論模型
- > 內含裂解反應式
- ▶ 模擬產出裂解氣128項組成(C₁-C₄₂)

歷史資料&可控範圍

Offline SPYRO模擬製程數據

產出15,625筆裂解度大數據

利用SPYRO軟體產出裂解度大數據,與即時運轉數據整合,製作裂解度軟 儀錶,利用階躍測試(Step Change)記錄製程變動直到穩態特徵曲線,製作 優化模組。

三、執行重點(一)裂解度軟儀錶(1)建置步驟

收集操作紀錄 與輕油品質, 選擇<u>適用資料</u>, 預測裂解度。 利用<u>權重分析</u> 手法,由所有 因子中,篩選 出關鍵因子。 分析潛在變數 關連性,利用 AI演算法評定 最準確模型。 與<u>分析儀數值</u> 比對校正模型, 維持裂解度預 測準確度

- 1. 分析操作紀錄與輕油品質,利用SPYRO預測裂解度,建立資料庫。
- 2. 由影響裂解度所有因子中, 篩選關鍵因子。
- 3. 利用AI演算法評定最準確的裂解度預測方程式(軟儀錶)。
- 4. 以分析儀數值比對校正裂解度預測模型,維持準確度。

三、執行重點(一)裂解度軟儀錶(2)資料分析

	1			
佰日	製鄉田子	可控範圍		
クロ ニー	炒蛋四7	Min 28 790 610 0.4 0.4 18) 33 18) 29	Max	
1	進料量 (FD)	28	36	
2	爐管出口溫度 (COT)	790	810	
3	爐管入口溫度 (CIT)	610	630	
4	稀釋蒸汽比 (DSR)	0.4	0.6	
5	爐管出口壓力 (COP)	0.4	0.8	
	支鏈烷烴 (i-Paraffins)	33	62	
	直鏈烷烴 (n-Paraffins)	29	56	
6	•	• •	•	
	•	•	•	
	15°C比重	0.65	0. 73	
	2 3 4 5	1 進料量 (FD) 2 爐管出口溫度 (COT) 3 爐管入口溫度 (CIT) 4 稀釋蒸汽比 (DSR) 5 爐管出口壓力 (COP)	項目 影響因子 1 進料量 (FD) 28 2 爐管出口温度 (COT) 790 3 爐管入口温度 (CIT) 610 4 稀釋蒸汽比 (DSR) 0.4 5 爐管出口壓力 (COP) 0.4 支鏈烷烴 (i-Paraffins) 33 直鏈烷烴 (n-Paraffins) 29 6 … … …	項目 影響因子 1 進料量 (FD) 28 36 2 爐管出口溫度 (COT) 790 810 3 爐管入口溫度 (CIT) 610 630 4 稀釋蒸汽比 (DSR) 0.4 0.6 5 爐管出口壓力 (COP) 0.4 0.8 支鏈烷烴 (i-Paraffins) 33 62 直鏈烷烴 (n-Paraffins) 29 56 <

輕高溫 油 裂解 歷史操作條件與輕油品質的排列組合

> 裂解爐產率模擬 SPYRO軟體

(56)=15,625種模擬條件

▶<u>15,625種</u> ▶裂解度(5⁶)

- 使用裂解爐模擬軟體,建置乙烯廠的裂解反應理論模型。
- ▶ 輸入15,625種操作範圍的模擬條件, 各產生128項出料成分,共200萬筆 裂解氣產品分佈的大數據資料庫。
- 1. 分析SPYRO模擬製程數據所需資料,列出影響裂解度所有因子。
- 2. SPYRO軟體內含裂解反應式,可以模擬裂解爐裂解狀況,預測裂解度。
- 3. 將操作條件及輕油品質,共<u>6個項目</u>,各設定<u>5種條件</u>,預測<u>15,625種裂</u> 解度,建立資料庫。

三、執行重點(一)裂解度軟儀錶(3)關鍵因子及AI評定

AI演算法評定結果

AI演算法	MAPE (%)	RMSE	R ²	綜合 判定
偏最小平方迴歸 (PLS)	<u>0.95</u> 最小	<u>0.7930</u> 最小	<u>0.9845</u> 最大	1
多項式迴歸 (Polynomial)	1. 23	0. 8812	0. 9813	2
支援向量機 (SVR)	1.12	0. 8893	0. 9810	3
梯度提昇決策樹 (XGBoost)	1. 38	1.1146	0. 9701	4

- 1. 利用權重手法分析裂解度資料庫,篩選出左上圖7個關鍵因子。
- 2. 關鍵因子爐管出口溫度對裂解度影響最大,與操作經驗相符。
- 3. 利用4種AI演算法,計算關鍵因子與裂解度的方程式,發現用偏最小平方 迴歸,綜合評定準確度最高,因此選為裂解度軟儀錶演算法。

三、執行重點(一)裂解度軟儀錶(4)最佳方程式

裂解度預測方程式(裂解度軟儀錶)

- 1. 爐管出口溫度(COT; Coil Outlet Temperature)
- 2. 支鏈烷烴(i-P;i-Paraffine)
- 3. 進料(FD;Feed)
- 4. 直鏈烷烴(n-P;n-Paraffine)
- 5. 爐管出口壓力(COP;Coil Outlet Pressure)
- 6. 稀釋蒸汽比(DSR; Dilution Steam Ratio)
- 7. 爐管入口溫度(CIT;Coil Inlet Temperature)

裂解度 =
$$-0.0043 * COT + 0.0042 * i-P + 0.0041 * FD - 0.0032 * n-P$$

-0.0422 * COP - 0.0346 * DSR - 0.0001 * CIT + 4.02

- 1. 裂解度軟儀錶為裂解度與關鍵因子的方程式。
- 2. 輸入目前的操作條件及輕油品質,就能即時預測裂解度。

三、執行重點(二)操作優化模組(1)優化階段比較

	1011 2 11 2 11 3 11 3		<u> </u>
項目	人工駕駛+地圖	人工駕駛+導航機	智能車自動駕駛
駕			
駛	車連速	車速	車速
汽	減速時間	時間	時間
車	只看得到前方, <u>發現彎</u> 道急煞減速,十分危險。	<u>預知路況</u> ,彎道前 <u>事先</u> <u>減速</u> ,過彎安全穩定。	AI決定最佳路線,提升 效率、安全操控、避免 怠速、節能減排。
裂	DCS+預估裂解度	DCS+即時預測裂解度	操作優化模組自動調控
解	SPYRO® R.+/W - CAP W -		操作優化模組
爐	Offline數據模擬	Note 1 N	AI持續學習
控	固定爐管出口溫度控制,	即時預測裂解度,但操	AI調控操作變數,找到
制	因 <u>輕油品質變化大</u> ,影響裂解度, <u>須經常調整</u> 。	作變數互有關聯性,個 別調整, <u>裂解度不穩定</u> 。	最佳條件, <u>裂解度穩定</u> , 降低能耗、提升產值。

三、執行重點(二)操作優化模組(2)建置步驟

建置操作優化模組共<u>4個步驟</u>,先<u>選定變數</u>,確保<u>製程穩定操作</u>,<u>調整操作</u> <u>變數設定值做階躍測試(Step Change)</u>,記錄<u>控制目標隨時間變化趨勢</u>,<u>直</u> <u>到穩定狀態</u>,製作<u>特徵曲線</u>,設定控制策略,<u>建立模組</u>,<u>持續調校</u>模組, <u>驗證後上線</u>自動調控。

三、執行重點(二)操作優化模組(3)找出變數

類別	類別		項目	單位	可控範圍	最大調整間距
操作變數		1	進料量	T/H	30 ~ 35	0.5
		2	爐管出口溫度	°C	790 ~ 810	0.5
		3	爐膛負壓	mmH ₂ O	-10 ~ -5	0.5
		4	蒸汽比(蒸汽/輕油)	1	0.4 ~ 0.5	0.01
	設備	1	抽氣擋板開度	%	25 ~ 95	
	安全	2	燃料氣閥開度	%	40 ~ 80	
控制目標	環保 要求	3	可燃性氣體濃度	ppm	0 ~ 200	_
	abs) a -	4	裂解度	-	$0.5 \sim 0.6$	
	製程	5	過剩氧含量	mol%	2.0 ~ 3.0	
	優化	6	煙道氣溫度	°C	120 ~ 170	

- 1. 依據<u>裂解爐的操作經驗</u>,選定<u>操作變數為進料量、爐管出口溫度、爐膛</u> 負壓,以及稀釋蒸汽比。
- 2. 選定控制目標,在確保設備安全、符合環保要求前提下,進行製程優化, 調整過剩氧含量,降低能耗,找到最佳裂解度,提升產值。

三、執行重點(二)操作優化模組(4)階躍測試

- 1. 針對每個操作變數,在可控範圍內, DMC3自動調整設定值,記錄控制 目標的變化趨勢直到穩定狀態的特徵曲線,做為操作優化模組資料庫。
- 2. 階躍測試過程包括<u>調整各種不同幅度的間距</u>,以涵蓋<u>製程可控範圍內</u>, 所有可能變化狀況,確保優化模組<u>資料庫完整</u>,上線後能<u>準確穩定控制</u>。

三、執行重點(二)操作優化模組(5)建立模組

- 1. 篩選出操作變數與控制目標間,有關聯性特徵曲線,建立操作優化模組。
- 2. 提高爐管出口溫度,可以預測過剩氧含量、裂解度的降低趨勢,可燃性 氣體濃度、抽氣擋板開度、燃料氣閥開度及煙道氣溫度升高變化。

三、執行重點(二)操作優化模組(6)設定控制策略

	類別	控制目標					
		設備	安全	環保要求	優化目標		
控制策略		抽氣擋板 開度	燃料氣 閥開度	可燃性 氣體濃度	過剩 氧含量	裂解度	煙道氣 溫度
		Lo / Hi	Lo / Hi	Lo / Hi	Lo / Hi	Lo / Hi	Lo / Hi
操	進料量				c		
作變	爐管出口 溫度(COT)		2\\[\frac{1}{2} \]	b 3	b c 6	\frac{7}{2}	b b 4
數	爐膛負壓	2/ <u>1</u>		a 3	a b 6		a a a 4

圖示說明:操作順序: $1 \rightarrow 2 \cdots \rightarrow 8$; $a \rightarrow b \rightarrow c$

操作優化模組要先確保設備安全,符合環保要求,再考慮操作優化。

三、執行重點(二)操作優化模組(7)驗證可行性

- 1. 操作優化模組上線前,將傳統COT控制,與<u>裂解度優化模組相互切換</u>, 測試驗證結果,裂解度預測值與實際值同步變化,確認<u>優</u>化控制可行。
- 2. 操作優化模組上線控制, 裂解度控制可以穩定達到優化目標。

三、執行重點(二)操作優化模組(8)上線自動調控

Independent		Filte Mono	V					可控範圍		
Name	操	作變數	Combined Status	Service Request	Measurement	Operator Low	Limit	Steady State Value O	perator High Limit	Target
FC10620SP	*	進料量	Normal	On	31.980	30	0.000	32.000	35.000	
TC10607SP	M	COT	Normal	On	808.670	790	0.000	808.670	810.000	809.000
PC10601SP	*	爐膛負壓	Normal	On	-6.350	-10	0.000	-6.200	-5.000	
FFC10607SF	o <u>₩</u>	稀釋蒸汽	Normal	On	0.450	下門	艮	0.450	上限	
						19 19	X		上队	
Indepe	2.5-	I	~			過剩	刺氧	色量優化	目標2.0%	
Name	控	制目標	Combined Status	Service Request	Measurement	Operator Low	Limit	Steady State ValueO	perator High Limit	Target
AI10601AC	*	過剰氧含量	Lo Limit	On	2.010	2	2.000	2.000	3.000	
AI10601BD	M	可燃性氣體	Normal	On	54.616	(0.000	54.614	200.000	
AY10601	M 3	裂解度(P/E)	Ext Targ	On	0.550	(0.500	0.550	0.600	0.550
PC10601OP	<u>K</u>	檔板開度	Normal	On	48.038	25	5.000	48.010	95.000	
PC10613OP	*	主燃氣開度	Normal	On	48.981	40	0.000	49.141	80.000	
TI10651	<u>K</u>	煙道氣溫度	Normal	On	150.399	120	0.000	150.345	170.000	
	裂解度優化目標0.55									

先設定操作變數與控制目標可控範圍,操作優化模組會依據<u>特徵曲線</u>資料庫及控制策略,穩定到達操作優化目標。

四、優化成果(一)裂解度控制(1)產品分佈穩定

- 1. 優化前裂解爐採用固定爐管出口溫度控制,裂解度隨輕油品質變化大。
- 2. 裂解爐操作優化模組上線後,依據輕油品質,即時調控爐管出口溫度, 使裂解度穩定維持在最佳的產銷目標。

四、優化成果(一)裂解度控制(2)產品產值提升

項次		<u>COT控制</u> <u>(</u> 傳統模式)		<u> 裂解度控制</u> <u>(優化模式)</u>		效益
進料量(噸/時)	34.00		34.00			
稀釋蒸汽比	0.45		0.45			
裂解爐出口溫度(℃)	800		790~810			
裂解度		0. 56~0. 61		0. 55		
產值計算(備註)	單價(USD/噸)	產率(%)	產值	產率(%)	產值	
氫氣	618	0.94	4, 767	1.08	5, 254	488
燃料氣	250	19. 11	38,969	20.02	40, 913	1944
乙烯	501	34. 23	139, 877	34. 73	142, 043	2166
丙烯	597	18. 92	92, 200	18. 52	90, 405	-1795
丁二烯	357	5.64	16, 437	5. 74	17, 002	565
四碳物	266	7. 73	16, 775	7.40	16, 118	-657
粗裂解汽油	221	13. 44	24, 224	12.50	22, 236	-1988
每日總產值	USD/爐	100	333, 248	100	333, 971	722
每年產值差異(14爐)	USD/年					3, 371, 472
	NTD千元/年					101, 144

比較<u>輕油裂解爐以裂解度優化控制</u>,與<u>傳統COT控制</u>,<u>裂解度控制年產值</u>增加101,144千元。

備註:產品單價為2020年5月份平均價格

四、優化成果(二)降低過剩氧含量,減少燃料氣用量

裂解爐調降過剩氧含量,優化前爐膛過剩氧含量數值變化大且偏高(2.59%),操作優化模組上線後,過剩氧含量數值穩定(2.14%)接近目標下限值(2.00%),減少0.45%,節省燃料氣0.12噸/時,裂解爐年效益合計54,480千元。

五、結論與未來努力方向

- 1. 烯烴三廠乙烯單元輕油裂解爐,傳統採用固定COT裂解,裂解 度隨輕油品質變化大,優化後依據輕油品質即時調控COT, 穩定維持在最佳的裂解度目標,年效益101,144千元。
- 2. 裂解爐導入操作優化模組,爐膛過剩氧含量由2.59%,穩定降至2.14%,減少0.45%,節省燃料氣0.12噸/時,年效益54,480千元。輕油裂解爐年效益合計155,624千元。
- 3. 乙烯製程除<u>裂解爐</u>外,將建置<u>塔槽及反應器設備操作優化模組</u>, 以增加乙烯、丙烯產量、降低能耗,提升乙烯單元產值。
- 4. 後續擬比照烯烴三廠導入新版操作優化軟體DMC3經驗,升級 烯烴一廠與烯烴二廠操作優化模組,使烯烴部獲取最大利益。

報告完準

附錄-專有名詞中英文對照表

英文縮寫	英文全名	中文名稱	說明
AspenTech	-	艾斯本技術公司(美)	為提供化工製程模擬的技術服務公司。
CIT	Coil Inlet Temperature	爐管入口溫度	_
COP	Coil Outlet Pressure	爐管出口壓力	_
COT	Coil Outlet Temperature	爐管出口溫度	_
CV	Controlled Variable	受控變數(調控目標)	為DMC模型受到控制的觀察目標。
DMC	Dynamic Matrix Control	動態矩陣控制	為機器學習中的多變數反饋控制模型,以矩陣運算達到 優化操作目標。
DSR	Dilution Steam Ratio	稀釋蒸汽比	稀釋蒸汽量/碳氫化合物,裂解爐以稀釋蒸汽稀釋碳氫化合,降低重成份反應、提高輕成份產率。
GC	Gas Chromatography	氣相層析儀	用以分析混合氣體中的特定組成含量(濃度)。
i-Paraffins	Iso-Paraffins	支鏈烷烴	具有支鏈構造的烷烴類。
MAPE	Mean Absolute Percentage Error	平均絕對百分比誤差	可視為誤差百分比的評估標準。
MV	Manipulated Variable	操作變數	為DMC模型操作調整的變數。
n-Paraffins	Iso-Paraffins	直鏈烷烴	為直鏈狀的烷烴類。
P/E	Propylene/Ethylene ratio	丙烯/乙烯比例	用以評估乙烯工廠裂解反應中的裂解反應激烈程度,以 出口丙烯產量/乙烯產量(數值0~1)。
PLS	Partial Least Squares Regression	偏最小平方迴歸	為機器學習中線性模型。
Polynomial	Polynomial Regression	多項式迴歸	為機器學習中非線性模型。
\mathbb{R}^2	R square, Coefficient of determination	判定係數	用以評估模型解釋性。
RMSE	Root Mean Square Error	均方根誤差	誤差值的評估標準。
SPYRO	-	斯白諾裂解模擬軟體	為Technip公司的裂解爐模擬軟體,以化學反應動力學, 模擬裂解爐熱裂解反應狀況。
SVR	Support Vector Regression	支持向量迴歸	為機器學習中非線性模型。
Technip	-	德希尼布公司(法)	一家為石化業提供管理與技術服務的法商公司
XGBoost	Extreme Gradient Boosting	極限梯度提升模型	為機器學習中決策樹模型。