(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 March 2002 (07.03.2002)

PCT

(10) International Publication Number WO 02/018424 A3

- (51) International Patent Classification⁷: C12N 15/12, C07K 14/47, 16/18, G01N 33/53, 33/50, C12N 5/10, C12Q 1/68
- (21) International Application Number: .. PCT/US01/27093
- (22) International Filing Date: 31 August 2001 (31.08.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/654,935

1 September 2000 (01.09.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on 09/654,935 (CIP)

Filed on

1 September 2000 (01.09.2000)

- (71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvale, CA 94086 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). ASUNDI, Vinod [US/US]; 709 Foster City Boulevard, Foster City, CA 94404 (US). ZHOU, Ping [US/US]; 7595 Newcastle Drive, Cupertino, CA 95014 (US). XUE, Aidong, J. [CN/US]; 1621 S. Mary Avenue, Sunnyvale, CA 94087 (US). REN, Feiyan [US/US]; 7703 Oak Meadow Court, Cupertino, CA 95014 (US). ZHANG, Jie [CN/US]; 4930 Poplar Terrace, Campbell, CA 95008 (US). WANG, Jian-Rui [CN/US]; 744 Stendahl Lane, Cupertino, CA 95014 (US). ZHAO, Qing, A. [CN/US]; 1556 Kooser Road, San Jose, CA 95118 (US). WANG, Dunrui [CN/US]; 12252 Pepper Tree Lane, Poway, CA 92064

(US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). DRMANAC, Radoje, T. [US/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US). WEHRMAN, Tom [US/US]; CCSR Mol Pharm 3210, 269 W. Campus Drive, Stanford, CA 94305 (US).

- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P., C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau
- (88) Date of publication of the international search report: 15 May 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

Internation al Application No PCT7US 01/27093 A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C07K14/47 C07K16/18 G01N33/53 G01N33/50 C12N5/10 C1201/68 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, EMBL, BIOSIS, MEDLINE, PAJ, WPI Data, SEQUENCE SEARCH C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P.X WO 01 53312 A (CHEN RUI HONG ; GOODRICH 1-28 RYLE (US); HYSEQ INC (US); WANG DUNRUI (US) 26 July 2001 (2001-07-26) SEQ ID NO:4445, 6231 DATABASE EMBL [Online] 19 January 1998 (1998-01-19) Х 1-28 PHILIPPS, S:: "Human DNA sequence from clone 366N23 on chromosome 6q27. Contains two genes similar to consecutive parts of

the C. elegans UNC-93 (protein 1, C46F11.1) gene, a KIAA0173 and Tubulin-Tyrosine Ligase LIKE gene, a Mitotic Feedback... retrieved from EBI Database accession no. AL021331 XP002214453 abstract -/--

$\overline{\chi}$ Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.			
Special categories of cited documents:				
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family			
 "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 				
Date of the actual completion of the international search	Date of mailing of the international search report			
24 September 2002	1 4. 01. 2003			
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer			
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schmitz, T			
VP DCT/ISA/210 (pages) - 1 - 1 - 1 - 1				

Form PCT/ISA/210 (second sheet) (July 1992)

海 货 等 翻放 数原数 一张

page 1 of 2

INTERNATIONAL SEARCH REPORT

International Application No
PCTy US 01/27093

C.(Continu Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category	Citation of document, with indication, where appropriate, or the relocative passages	
х	DATABASE SWALL [Online] 1 November 1998 (1998-11-01) PHILLIPS, S.: "DJ366N23.1 (Putative C. elegans UNC-93 (Protein 1, C46F11.1) like protein)." retrieved from EBI Database accession no. 075651 XP002214454 abstract	1-28
X	DATABASE EMBL [Online] 18 July 1996 (1996-07-18) HILLIER L. ET AL.: "zh48g06.r1 Soares_fetal_liver_spleen 1NFLS_S1 Homo sapiens cDNA clone IMAGE:415354-5' similar to PIR:S23352 S23352 gene unc-93 protein 1 - Caenorhabditis elegans [1];, mRNA sequence." retrieved from EBI Database accession no. W92071 XP002214455 abstract	10-12, 16-20, 27,28

Form PCT/ISA/210 (continuation of second sheel) (July 1992)

INTERNATIONAL SEARCH REPORT

Box	Observations where certain elei						
	Observations where certain claims were found unsearchable (Continuation	of item 1 of first sheet)					
This Inte	ternational Search Report has not been established in respect of certain claims under Article t	7(2)(a) for the following reasons:					
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:							
	Although claims 27, 28 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.						
2. X Claims Nos.: 13, 16 (partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210							
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).							
Box ii	Observations where unity of invention is lacking (Continuation of item 2 of fir	rst sheet)					
This Interi	rnational Searching Authority found multiple inventions in this international application, as follo	ows:					
	see additional sheet						
1. A	As all required additional search fees were timely paid by the applicant, this international Sear searchable claims.	ch Report covers all					
2. A	As all searchable claims could be searched without effort justifying an additional fee, this Autho of any additional fee.	ority did not invite payment					
3. A	As only some of the required additional search fees were timely paid by the applicant, this Inter covers only those claims for which fees were paid, specifically claims Nos.:	mational Search Report					
	to required additional search fees were timely paid by the applicant. Consequently, this Internal estricted to the invention first mentioned in the claims; it is covered by claims Nos.: $1-28$ all partially	ational Search Report is					
Remark on	The additional search fees were accompanion. No protest accompanied the payment of additional search.						
Form DCT/IS							

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 13, 16 (partially)

Present claims 13, 16 relate to a compound defined by reference to a desirable characteristic or property, namely the binding to the claimed polypeptides.

The claims cover all compounds having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to the antibody binding to the claimed polypeptide.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: 1-28 (all partially)

SEQ ID NO:1, 246. Furthermore vectors, host cells, methods, collections, antibodies, all referring to said nucleotide or amino acid sequence.

Invention 2: 1-28 (all partially)

As invention 1, but referring to SEQ ID NO:2, 247.

Invention 3: 1-28 (all partially)

As invention 1, but referring to SEQ ID NO:3, 248.

Invention 245: 1-28 (all partially)

As invention 1, but referring to SEQ ID NO:245, 490.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal nal Application No PCT/US 01/27093

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0153312 A	26-07-2001	AU	2292401 A	31-07-2001
-		ΑU	2591801 A	31-07-2001
}		AU	2593601 A	31-07-2001
		AU	2595501 A	31-07-2001
		AU	2596501 A	31-07-2001
		AU	2598301 A	31-07-2001
		ΑÜ	2728401 A	31-07-2001
		ΑU	2734401 A	31-07-2001
		ΑU	2734801 A	31-07-2001
ĺ		ΑU	2738501 A	31-07-2001
		ΑU	3265701 A	31-07-2001
		EP	1242596 A1	25-09-2002
		EP	1240178 A2	18-09-2002
		EP	1242580 A1	25-09-2002
		EP	1242443 A1	25-09-2002
		EΡ	1250346 A2	23-10-2002
		EP	1254256 A2	06-11-2002
		EP	1248848 A1	16-10-2002
		WO	0153312 A1	26-07-2001
		WO	0153453 A2	26-07-2001
		WO	0153326 A1	26-07-2001
		MO	0153454 A2	26-07-2001
		WO	0153455 A2	26-07-2001
		WO	0153456 A2	26-07-2001
		WO	0153466 A1	26-07-2001
		WO	0152616 A2	26-07-2001
		MO	0153500 A1	26-07-2001
		WO WO	0153515 A1 0153485 A1	26-07-2001
		US	6465620 B1	26-07-2001
·			2002146692 A1	15-10-2002 10-10-2002
		AU	5362001 A	30-10-2001
		WO	0179446 A2	25-10-2001
			2002142953 A1	03-10-2002

THIS PAGE BLANK (USPTO)

CORRECTED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 7 March 2002 (07.03.2002)

PCT

(10) International Publication Number WO 2002/018424 A3

C12N 15/12, (51) International Patent Classification7: C07K 14/47, 16/18, G01N 33/53, 33/50, C12N 5/10, C12O 1/68

(21) International Application Number:

PCT/US2001/027093

(22) International Filing Date: 31 August 2001 (31.08.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/654,935

1 September 2000 (01.09.2000)

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on

09/654,935 (CIP) 1 September 2000 (01.09.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvale, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). ASUNDI, Vinod [US/US]; 709 Foster City Boulevard, Foster City, CA 94404 (US). ZHOU, Ping [US/US]; 7595 Newcastle Drive, Cupertino, CA 95014 (US). XUE, Aidong, J. [CN/US]; 1621 S. Mary Avenue, Sunnyvale, CA 94087 (US). REN, Feivan [US/US]: 7703 Oak Meadow Court, Cupertino, CA 95014 (US). ZHANG, Jie [CN/US]; 4930 Poplar Terrace, Campbell, CA 95008 (US). WANG, Jian-Rui [CN/US]; 744 Stendahl Lane, Cupertino, CA 95014 (US). ZHAO, Qing, A. [CN/US]; 1556 Kooser Road, San Jose, CA 95118 (US). WANG, Dunrui [CN/US]; 12252 Pepper Tree Lane, Poway, CA 92064 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). DRMANAC, Radoje, T. [US/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US). WEHRMAN, Tom [US/US]; CCSR Mol Pharm 3210, 269 W. Campus Drive, Stanford, CA 94305 (US).

(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P., C., One Financial Center, Boston, MA 02111 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau
- (88) Date of publication of the international search report: 15 May 2003
- (48) Date of publication of this corrected version:

15 April 2004

(15) Information about Correction:

see PCT Gazette No. 16/2004 of 15 April 2004, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

5

10

15

20

25

30

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, circulating soluble factors, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

5

10

15

20

25

30

35

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-245. The polypeptides sequences are designated SEQ ID NO: 246-490. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is unknown or any of the four bases.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO: 1-245 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-245. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-245 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-245. The sequence information can be a segment of any one of SEQ ID NO: 1-245 that uniquely identifies or represents the sequence information of SEQ ID NO: 1-245.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization

5

10

15

20

25

30

probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-245 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-245 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1-245; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1-245; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-245. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1-245; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in SEQ ID NO: 246-490; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO: 1-245; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention.

Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

5

10

15

20

25

30

35

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provide methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can

effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

10

15

20

25

30

35

5

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady

and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

5

10

15

20

25

30

35

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30

nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NO: 1-245.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-245. The sequence information can be a segment of any one of SEQ ID NO: 1-245 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO: 1-245. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

5

10

15

20

25

30

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 500 amino acids, more preferably less than 200 amino acids more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include an initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

5

10

15

20

25

30

35

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations

can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

35

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, *e.g.*, polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use

in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

5

10

15

20

25

30

35

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

5

10

15

20

25

30

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least about 98% sequence identity, and most preferably at least about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J.

(1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

20

25

30

35

15

5

10

4.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO: 1-245; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO: 246-490; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO: 246-490. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1-245; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing as SEQ ID NO: 246-490; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 246-490. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding,

extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

5

10

- 15

20

25

30

35

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO: 1-245 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO: 1-245 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO: 1-245 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO: 1-245, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that

are selective for (i.e. specifically hybridize to) any one of the polynucleotides of the invention are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

5

10

15

20

25

30

35

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1-245, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 1-245 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO: 1-245, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic

acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression

of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

5

10

15

20

25

30

35

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO: 1-245, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-245 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-245 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are

known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL

5

10

15

20

25

30

35

(Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or

more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

25 4.3 ANTISENSE NUCLEIC ACIDS

5

10

15

20

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1-245, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID

NO: 246-490 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO: 1-245 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

5

10 Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO: 1-245), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of an mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. 15 For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can 20 be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid
include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine,
4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine,
inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine,
2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine,
7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil,
beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil,
2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil,
queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil,
uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil,
35 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the

antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

25

30

35

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res* 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue *et al.* (1987) *FEBS Lett* 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be

designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO: 1-245). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an mRNA of SEQ ID NO: 1-245 (see, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Alternatively, polynucleotides of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

5

10

15

20

25

30

35

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, *e.g.*, inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, *e.g.*, in the analysis of single base pair mutations in a gene by, *e.g.*, PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, *e.g.*, S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup *et al.* (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

25

30

35

5

10

15

20

4.5 HOSTS

Lett 5: 1119-11124.

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous

recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in coamplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3

cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice

sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

5

10

15

20

25

30

35

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No.

PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 246-490 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO: 1-245 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO: 1-245 or (b)

polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 246-490 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO: 246-490 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 246-490.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

15

20

25

30

35

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

28

PCT/US2001/027093 WO 2002/018424

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

5

10

- 15

20

25

30

35

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory

Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that

retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

5

10

15

20

25

30

35

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 246-490.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological

methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

5

10

15

20

25

30

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

15

35

10

5

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer 20 programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. 25 Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available 30 from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to

another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

10

15

20

25

30

35

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for

example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

5

25

30

Mutations in the polynucleotides of the invention may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. 10 Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy 15 technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present 20 invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered in vivo to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in

the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

5

10

15

20

25

30

35

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are

35

added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

5

10

15

20

25

30

35

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous

promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

5

10

15

20

25

30

35

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the

polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

5

10

15

20

25

30

35

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

38

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

5

10

15

20

25

30

35

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient

confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

10

35

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation,
Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells 20 include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 25 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. 30 J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober,

Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

5

10

15

20

25

30

35

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells *in vivo* or *ex vivo* is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder

41

layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

5

10

15

20

25

30

35

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds.* Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell

sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

10

15

20

25

30

35

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

15

10

5

4.10.6 TISSUE GROWTH ACTIVITY

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

20

25

30

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5

10

15

30

35

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular

endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

5

10

15

20

25

30

35

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus,

rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

5

10

15

20

25

30

35

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic

composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

10 A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an 15 MHC class I alpha chain protein and β2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding 20 an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human

The activity of a protein of the invention may, among other means, be measured by the following methods:

subject may be sufficient to overcome tumor-specific tolerance in the subject.

25

30

35

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

5

10

15

20

25

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

10

15

20

25

30

35

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population.

Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

15

10

5

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostasis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

25

20

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

30

35

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention

may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

35

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide,

53

Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cisDDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin,
Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213),
Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide,
Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog),
Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna,
Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl,
Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate,
Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin,
Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These *in vitro* models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

15

20

25

30

35

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen

recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1- 7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

4.10.13 DRUG SCREENING

5

10

15

20

25

30

35

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such

transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

5

10

15

20

25

30

35

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282:63-68* (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding

molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

5

10

15

20

25

30

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

30

35

25

5

10

15

20

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or

disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system
 results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;

5

15

20

25

35

- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
- (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
- (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or

differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

(i) increased survival time of neurons in culture;

5

10

15

20

25

30

35

- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, *e.g.*, choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or

elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified

nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

25

30

35

20

5

10

15

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of

administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about $0.01\mu g/kg$ to 100 mg/kg of body weight, with the preferred dose being about $0.1\mu g/kg$ to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

15 4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

10

20

25

30

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents. fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic

factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

5

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

15

20

10

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

25

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

30

35

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be

65

5

10

15

20

25

30

35

manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers

5

10

15

20

25

30

35

enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, tale, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with

an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a co-solvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well

known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.

Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

5

10

- 15

20

25

30

15

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable

lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporate'd herein by reference.

5

10

15

20

25

30

35

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions

70

may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

5

10

15

20

25

30

35

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications.

Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which

modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

5

10

15

20

25

30

35

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the

population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about $0.01~\mu g/kg$ to 100~mg/kg of body weight daily, with the preferred dose being about $0.1~\mu g/kg$ to 25~mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

5

10

15

20

25

30

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the

invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

5

10

15

20

25

30

35

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} and $F_{(ab)2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as the amino acid sequences shown in SEQ ID NO: 246-490, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte

Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

15 4.13.1 POLYCLONAL ANTIBODIES

5

10

20

25

30

35

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the

target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

5

10

15

20

25

30

35

4.13.2 MONOCLONAL ANTIBODIES

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro. The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego,

California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, <u>J. Immunol.</u>, <u>133</u>:3001 (1984); Brodeur et al., <u>Monoclonal Antibody Production Techniques and Applications</u>, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal. The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin

polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

5 4.13.3 HUMANIZED ANTIBODIES

10

15

20

25

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigenbinding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

4.13.4 HUMAN ANTIBODIES

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL

35 ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal

antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

5

10

15

20

25

30

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al., (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

20 4.13.5 F_{ab} FRAGMENTS AND SINGLE CHAIN ANTIBODIES

10

15

25

30

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab')2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab')2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_v fragments.

4.13.6 BISPECIFIC ANTIBODIES

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the

binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

5

10

15

20

25

30

35

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., <u>Science</u> 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to

stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

5

10

15

20

25

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., <u>J. Exp. Med.</u> 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific

antibodies can be prepared. Tutt et al., <u>J. Immunol.</u> 147:60 (1991).

Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular

defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

4.13.7 HETEROCONJUGATE ANTIBODIES

5

20

25

30

35

Heteroconjugate antibodies are also within the scope of the present invention.

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond.

Examples of suitable reagents for this purpose include importibilete and method.

Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

4.13.8 EFFECTOR FUNCTION ENGINEERING

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced antitumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

4.13.9 IMMUNOCONJUGATES

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

10

15

20

25

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon

84

a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO: 1-245 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO: 1-245 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage

means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

30 4.15 TRIPLE HELIX FORMATION

10

15

20

25

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA.

Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see

Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

10 4.16 DIAGNOSTIC ASSAYS AND KITS

5

15

20

25

30

35

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard,

T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology,
Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane
extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

15

20

25

30

35

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the

invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

5

10

15

20

25

30

35

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO: 1-245, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
 - (b) determining whether the agent binds to said protein or said nucleic acid.

In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the

invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

5

10

15

20

25

30

35

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems.

Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

5

10

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO: 1-245. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from any of the nucleotide sequences SEQ ID NO: 1-245 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

5

10

15

20

25

30

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed

(Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

5

10

15

20

25

30

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ μ l) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. The single-stranded DNA solution is then dispensed into CovaLink NH strips (75 μ l/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 µl added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *CviJI*, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease *CviJI* normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of

this enzyme (CviJI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald et al. (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a CviJI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that CviJI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 μ g instead of 2-5 μ g); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic

strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5. EXAMPLES

5

10

20

25

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences.

5.2 EXAMPLE 2

30 <u>Assemblage of Novel Nucleic Acids</u>

The nucleic acids of the present invention, were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST

sequences, dbEST, gb pri, UniGene, and exons from public domain genomic sequences predicated by GenScan) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Further, inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), full-length gene sequences and their corresponding protein sequences were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using FASTXY algorithm against Genbank (i.e., dbEST, gb pri, UniGene, and Genpept). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, ed-ext and gc-zip-2 (Hyseq, Inc.). In some cases RACE (Rapid Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction. The full-length nucleotide sequences are shown in the Sequence Listing as SEQ ID NO: 1-245. The corresponding polypeptide sequences are SEQ ID NO: 246-490.

Table 1 shows the various tissue sources of SEQ ID NO: 1-245.

5

10

15

20

25

30

35

The nearest neighbor results for polypeptides encoded by SEQ ID NO: 1-245 (i.e. SEQ ID NO: 246-490) were obtained by a BLASTP (version 2.0al 19MP-WashU) search against Genpept release 124 using BLAST algorithm. The nearest neighbor result showed the closest homologue with functional annotation for SEQ ID NO: 1-245 from Genpept. The translated amino acid sequences for which the nucleic acid sequence encodes are shown in the Sequence Listing. The homologs with identifiable functions for SEQ ID NO: 1-245 are shown in Table 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), polypeptides encoded by SEQ ID NO: 1-245 (i.e. SEQ ID NO: 246-490) were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the pFam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) polypeptides encoded by SEQ ID NO: 1-245 (i.e. SEQ ID NO: 246-490) were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The GeneAtlas™ software package (Molecular Simulations Inc. (MSI), San Diego, CA) was used to predict the three-dimensional structure models for the polypeptides encoded by SEQ

ID NO 1-216 (i.e. SEQ ID NO: 246-490). Models were generated by (1) PSI-BLAST which is a multiple alignment sequence profile-based searching developed by Altschul et al, (Nucl. Acids. Res. 25, 3389-3408 (1997)), (2) High Throughput Modeling (HTM) (Molecular Simulations Inc. (MSI) San Diego, CA,) which is an automated sequence and structure searching procedure (http://www.msi.com/), and (3) SeqFold™ which is a fold recognition method described by 5 Fischer and Eisenberg (J. Mol. Biol. 209, 779-791 (1998)). This analysis was carried out, in part, by comparing the polypeptides of the invention with the known NMR (nuclear magnetic resonance) and x-ray crystal three-dimensional structures as templates. Table 5 shows, "PDB ID", the Protein DataBase (PDB) identifier given to template structure; "Chain ID", identifier of the subcomponent of the PDB template structure; "Compound Information", information of the 10 PDB template structure and/or its subcomponents; "PDB Function Annotation" gives function of the PDB template as annotated by the PDB files (http://www.rcsb.org/PDB/); start and end amino acid position of the protein sequence aligned; PSI-BLAST score, the verify score, the SeqFold score, and the Potential(s) of Mean Force (PMF). The verify score is produced by GeneAtlas™ software (MSI), is based on Dr. Eisenberg's Profile-3D threading program developed in Dr. 15 David Eisenberg's laboratory (US patent no. 5,436,850 and Luthy, Bowie, and Eisenberg, Nature, 356:83-85 (1992)) and a publication by R. Sanchez and A. Sali, Proc. Natl. Acad. Sci. USA, 95:13597-12502. The verify score produced by GeneAtlas normalizes the verify score for proteins with different lengths so that a unified cutoff can be used to select good models as 20 follows:

Verify score (normalized) = (raw score - 1/2 high score)/(1/2 high score)

The PFM score, produced by GeneAtlas[™] software (MSI), is a composite scoring

function that depends in part on the compactness of the model, sequence identity in the
alignment used to build the model, pairwise and surface mean force potentials (MFP). As given
in Table 5, a verify score between 0 to 1.0, with 1 being the best, represents a good model.

Similarly, a PMF score between 0 to 1.0, with 1 being the best, represents a good model. A
SeqFold[™] score of more than 50 is considered significant. A good model may also be

determined by one of skill in the art based all the information in Table 5 taken in totality.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determined from using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication "

35

Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et al, as reference, were obtained for the polypeptide sequences. Table 6 shows the position of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

Table 7 correlates each of SEQ ID NO: 1-245 to a specific chromosomal location.

Table 8 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-245,

and their corresponding priority full length nucleotide sequences in the priority application

USSN 09/654,935, the contents of which is incorporated herein by reference in its entirety.

10

5

TABLE 1

Tissue Origin	Tissue/RNA Source	Library Name	SEQ ID NO:
adult brain	GIBCO	AB3001	8 24 38 42 56 63-64 93-94 113 130 183 195-196 206 210 227 233 236 240
adult brain	GIBCO	ABD003	2-4 15 19-21 29 31-32 34-39 41-43 45 54 56 67 80 82 84 88 94 103-104 107 113 117 130-131 154 159 178 195 199 206 210 220-221 223
adult brain	Clontech	ABR001	2-3 17 33 35 43 56 62 67 84 113 191 220
adult brain	Clontech	ABR006	2-4 34 82 89 101-102 113 127 146 152 158 162 181 191 197-198 200-201 214 221-223 234 241
adult brain	Clontech	ABR008	2-4 9-12 15 17 19 21 24 29 36-41 54 64 70 74-75 77 79-80 82 84 93-94 97-98 101-102 104 107 109 117 121-124 127 131 140 143-144 146 148-149 151-152 155 158 162 164 167 169 178 193 196 200-202 204 206 221 223-225 227 229 233
adult brain	BioChain	ABR012	2-3 54
adult brain	BioChain	ABR013	17 43 209 240
adult brain	Invitrogen	ABR014	23 43 227 232
adult brain	Invitrogen	ABR015	43 54 65 67 89 142 159 232
adult brain	Invitrogen	ABR016	2-3 28 54 56 64 104 159 229
adult brain	Invitrogen	ABT004	2-3 23 30 33 36-38 40 100 145 152 154 177 191 206 220 242
cultured preadipocytes	Stratagene	ADP001	2-3 15 29 36 38 40 43 56 100 104-105 130 142-144 158- 159 177 182 206 236 240
adrenal gland	Clontech	ADR002	11-12 19-20 28 37-38 42 50 56 70 76 82 84 102 104-105 127 130 145 148-150 181 183 189 191 209-210 224-225
adult heart	GIBCO	AHR001	2-5 8-9 11-12 19-22 24 29 36 38 40 43 45 47 54 56 62-63 70 72 74 76 79 82 84 86 92 94 101-104 107 113 127 130-131 137-138 140 143-144 148-149 159 166 169 177-178 183 196 206-207 210 214 229-233 236-237
adult kidney	GIBCO	AKD001	2-3 7-9 11-12 15 18 20-21 24 26-27 29 31-33 36-43 52 54 56 61-62 64 80 82 91 95 98 101-104 107 113 117 130-131 143-144 146 154 159 169 178 181 183 191 195-199 204 206 210 214 220 223-225 227 229 233 240 244
adult kidney	Invitrogen	AKT002	6 8-9 11-12 18 33 36-37 40 43 46 56 64 82 84 86-87 91 107 113 130 142 144 148-149 152 159 167 169 183 191 193 206 223 226 228 232 240-241 244
adult lung	GIBCO	ALG001	5 15 20 29 43 47 54 56 88 103 130 173 177 183 191 214 232 240 244
lymph node	Clontech	ALN001	8 29 36 46 104 130 159 183 206 214 240
young liver	GIBCO	ALV001	2-3 11-12 15 19 37-38 40 43 47 56 62 70 94 103 107 112 143-144 162 181 183 191 195 206 214 220 224-225 236-237 243
adult liver	Invitrogen	ALV002	2-3 10-12 15 20 22 26-27 37 50 89 143 148-149 173 181 183 191 193 206 217 220 240 244
adult liver	Clontech	ALV003	21 181 232
adult ovary	Invitrogen	AOV001	2-3 8 10-12 14-15 19-23 26-29 31-32 34 36-43 47 50 56 62-64 67 70 75 78 82 84 86 89 94 101-102 104 107 109 113 118 125 130-131 140 142 144 146 148-150 152 155 158-159 162 166-167 169 173 177-178 182-183 189 193 195 204 206 210 214 223-225 227 232 240-244
adult placenta	Clontech	APL001	43 159 169 206 240
placenta	Invitrogen	APL002	20 26-27 36 38 64 71 100 178 196 220 228 233
adult spleen	GIBCO	ASP001	2-3 8 26-27 29 35 37 42-43 46-47 54 56 62 64 87 94 104 130 143-144 152 159 183 199 206 214 220 227 232 236 244
adult testis	GIBCO	ATS001	5 8 11-12 20 23-24 29 31-32 37-38 41 43 54 56 62 64 86 89 104 107 130-131 137-138 159 178 183 195 210 229 232 236-237
adult bladder	Invitrogen	BLD001	8 54 159 195 206

Tissue Origin	Tissue/RNA Source	Library Name	SEQ ID NO:
bone marrow	Clontech	BMD001	2-5 8-12 19 22 26-27 29 31-32 34 36-38 42-43 46-47 56 63-64 70 80 86-87 89 91 93-94 98 103-104 107 109 113 118 130-131 144 146 152 159 162 167 178 182 193 199 206-207 210 214 220 223 228 232 240 244
bone marrow	Clontech	BMD002	2-3 5 8 11-12 15 21 26-27 29 36 40 42 45-46 50 54 56 91 94 97-98 104-105 107 109 120 124 137-138 140 142 144 159 165 167 169 173 183 189 191 193 196 204-206 226 232-234 236-237 244
bone marrow	Clontech	BMD004	232
bone marrow	Clonetech	BMD007	43 232
adult colon	Invitrogen	CLN001	38 43 45-46 50 84 87 143 193 195 222 244
mixture of 16 tissues- mRNAs*	various vendors	CTL016	20
mixture of 16 tissues- mRNAs*	various vendors	CTL021	46 54 159 232
mixture of 16 tissues- mRNAs*	various vendors	CTL028	159 237
adult cervix	BioChain	CVX001	2-3 8 11-12 15 21 24 31-32 35-36 39-43 46 56 62-65 70 82 87 89 93-94 98 105 107 120 125-126 131 144 148-150 152 159 165 178 182-183 189 191 193 195 223 236 240
endothelial cells	Strategene	EDT001	2-4 8 10-12 15 21-24 28-30 33-34 36-37 40 42-43 45 47 50 56 62 64 67 70 72 80 82 86 94 103-104 107 109 126 130-131 142-144 146 148-149 152 154 158-159 162 169 177-178 182-183 191 193 195-199 206 210 214 223-226 229 233 236 240-242
fetal brain	Clontech	FBR001	43 130 199
fetal brain	Clontech	FBR004	31-32
fetal brain	Clontech	FBR006	2-4 8 10 29 39 41 43 49 70 77 80 82 84 89 94 104-105 118 121-123 142 150-152 154-155 165 178 186 200-201 204 206-207 210
fetal brain	Invitrogen	FBT002	2-3 8 11-12 29 37 43 67 82 89 134 142-143 152 159 177 189 191 193 199 206 210 220 227
fetal heart	Invitrogen	FHR001	41
fetal kidney	Clontech	FKD001	2-3 10-12 17 29 38 40 43 54 69 75 80 127 159 229 231 236 240
fetal kidney	Clontech	FKD002	56
fetal kidney	Invitrogen	FKD007	19 36 43 56 159
fetal lung	Clontech	FLG001	2-3 54 69 109 113 10 21 35 43 50 54 69 80 92 125-126 143 148-149 158-159
fetal lung	Invitrogen	FLG003	199 221 231-232
fetal liver- spleen	Columbia University	FLS001	1-5 7-12 14-15 18-24 26-28 30 36-38 40-43 50 54 56 62 64 70 72 75 82 84 86 89 91 94-95 98 100 102-105 107 109 112-113 121 130-131 137-138 140 142-144 146 151-152 158-159 162 165-166 169 177-178 181 183 189 191 193 195-198 204-206 210 214 216 220 223-228 230-233 236-237 240-241 244
fetal liver- spleen	Columbia University	FLS002	1-4 6 10-12 14-15 17-18 20-22 29-30 33 36 38-40 42 45 56 62-64 70 75 80 82 91-92 94-95 98 103-105 109 112-113 121 126 131 142 144 146 148-149 152 162 165-167 169 181 183 186 189 191 193 195-199 205-207 214 223 227-228 233
fetal liver- spleen	Columbia University	FLS003	94 112 167 181 183 185 223 232
fetal liver	Invitrogen	FLV001	1-3 6-8 15 18 23 36-39 43 62 80 82 143 145 152 177 181 191 195 206 232

Tissue Origin	Tissue/RNA Source	Library Name	SEQ ID NO:
fetal liver	Clontech	FLV004	2-3 22 24 36 82 109 122-123 152 162 181 232
fetal muscle	Invitrogen	FMS001	5 28 43 47 56 72 78-79 100 137-138 144 152 154 159 169 193 207 210 237 241
fetal muscle	Invitrogen	FMS002	5 137-138 241
fetal skin	Invitrogen	FSK001	2-3 8 10 21 35-36 40 43 54 56 62-63 65 69 71 80 84 91 104-105 124 130 132 137-138 142-143 148-151 158-159 166 177-178 182 185 197-198 200-201 206 210 217 230 232 241
fetal skin	Invitrogen	FSK002	2-3 8 11-12 21 24 26-27 29 40 43 50 62 82 88 94 98 104 107 142 148-149 169 185 193 195 216 237
fetal spleen	BioChain	FSP001	183
umbilical cord	BioChain	FUC001	2-3 5 7-8 15 20 26-27 31-32 34 36 38-40 43 45 50 54 56 62 76 82 84 94 103-105 107 121-123 130 143-144 146 148-149 152 154 158-159 178 193 197-198 210 227 232 237 240
fetal brain	GIBCO	HFB001	2-3 8 10-12 15 20-22 24 28-29 31-33 36-38 41 43 54 62 64 67 70 82 88-89 93 98 101-104 107 109 113 117 130-131 140 142 144-145 162 167 178 182-183 189 193 195 197-199 207 210 223 227 229 232
macrophage	Invitrogen	HMP001	8 169
infant brain	Columbia University	IB2002	2-3 9-12 15 20-21 23-24 33-34 38 41-43 49 56 63-64 84 89 100 104-105 107 113 118 146 148-150 152 154-155 158 162 165-166 173 177-178 182 191 193 195 197-201 206 223 227 230-231 237 241
infant brain	Columbia University	IB2003	2-3 11-12 17 100 113 150 158 166 178 191 220-221 223 227
infant brain	Columbia University	IBM002	43 117 173
infant brain	Columbia University	IBS001	23 29 54 94 109 166 220
fibroblast	Strategene	LFB001	2-3 8 11-12 19 29 36-37 43 45 54 56 104-105 113 130 148- 149 154 159 169 178 182-183 214 236 240
lung tumor	Invitrogen	LGT002	2-3 5-6 8 11-12 20-22 24 38 40-41 43 46 52 54 56 62 64-65 70 72 80 82 87 89 93 100 104 107 130-131 140 142-145 152 154 159 162 167 177 182-183 195 197-199 206 210 214 223 236 244
lymphocytes	ATCC	LPC001	2-3 11-12 20 22 38 42 50 54 73 80 86 89 94 97 105 127 145 159 162 177 206 213-214 232 234
leukocyte	GIBCO	LUC001	2-4 8 10-12 15 17 19-22 24 26-27 29 35-38 40-43 47 54 56 62 64 70 72 80 82 84 86 89 91 93-94 101-102 104-105 107 109 130-131 143-144 146 154 158-159 162 165 167 169 177-178 182-183 189 191 193 195 200-202 204 206 210 214 217 223 228-229 231-232 236 240-242
leukocyte	Clontech	LUC003	20 42 80 94 105 140 165 191 205 207 214 231
melanoma from cell line ATCC #CRL 1424	Clontech	MEL004	42-43 56 64 82 103 107 130 202 206 214 224-225 229 240
mammary gland	Invitrogen	MMG001	2-4 8-9 11-12 15 17 21 26-27 35-36 38-40 43 46 56 61 64- 65 71 80 84 87 89 92 94-95 100-102 107 125 131-132 137- 138 140 143 145 150 152 154 159 162 166 169 173 177 182-183 191 193 195 197-199 206 210 224-225 227 237 243-244
induced neuron cells	Strategene	NTD001	2-3 29 34 43 45 54 70 89 159 224-225
retinoic acid- induced neuronal cells	Strategene	NTR001	20 124 130 150 152 178 202 217
neuronal cells	Strategene	NTU001	40 43 47 72 131 217 237
pituitary gland	Clontech	PIT004	15 37-38 43 56 130-131 240

Tissue Origin	Tissue/RNA	Library	SEQ ID NO:
Tissue Origin	Source	Name	
placenta	Clontech	PLA003	2-3
prostate	Clontech	PRT001	5 11-12 43 62 65 83 103 134 152 232 237
rectum	Invitrogen	REC001	2-3 15 18 26-27 43 54 56 73 80 130 145 152 183 199 244
salivary gland	Clontech	SAL001	14 17 29 43 47 70 98 104 132 159 178 196 204 232-233
Salival y glaild	0101112011		236-237
salivary gland	Clontech	SALs03	37 137-138 244
skin fibroblast	ATCC	SFB001	43 47
skin fibroblast	ATCC	SFB002	54
skin fibroblast	ATCC	SFB003	100
small intestine	Clontech	SIN001	21 34 46 73-74 86 103 107 130 137-138 144 169 183 193
small intestine	Clonteen) bir too :	227-228 237 242-244
skeletal	Clontech	SKM001	5 20 45 79 86 137-138 152 206
011011111	Ciomech	DIE.	
muscle	Clontech	SKM002	137-138
skeletal	Clontech	DIEM 1002	
muscle	Clonetech	SKMS03	137-138
skeletal	Cionetecii	SICINDOS	
muscle	NULL	SKMS04	137-138
skeletal	NOLL	SKINDO	
muscle	Clontech	SPC001	29 40 43 54 69 75 88-89 91 152 159 162 178 191 195 206
spinal cord	Ciontech	31 0001	210 223 229 232
	Clontech	SPLc01	6 46 50 70 130 140 152 216 240
adult spleen		STO001	18 21 63 67 71 107 159 210 220 229 241 244
stomach	Clontech	THA002	0 21 42 45 89 100 117 162 183 220 226-227 242
thalamus	Clontech	THM001	2-3 8 11-12 15 21 23-24 29 38-40 43 46 67 80 82 105 131
thymus	Clonetech	I FIMIOUI	151 150 162 101 214 244
	 	THMc02	2-4 10-12 22 26-27 31-32 38 43 47 50 54 80 92 94 101-102
thymus	Clontech	1 HIVICUZ	127 134 144 146 152 154-155 158-159 162 167 178 182-
			183 191 193 195-196 200-201 205 210 214 216 218 233
			227.240
		THR001	2 2 5 8 10-12 17-18 20-21 23-24 29 38 42-43 45 49 54 56
thyroid gland	Clontech	IHKUUI	61-62 64 67 70 75-76 78 84 91-92 94 103-105 107 109 122
		- 1	123 130 134 143 148-149 155 162 167 169 178 182-183
		1	186 191 193 195-198 200-201 214 229 232-233 237 240
		1	244
	- - - - - - - - - -	TRC001	2-3 15 19 36-37 40 47 54 65 72 89 95 107 204-205 210 23:
trachea	Clontech	IRCOOL	237 244
ļ		UTR001	8 31-32 54 56 178 183 206 232 236 243
uterus	Clontech	TOTKOOL	100100010011

*The 16 tissue-mRNAs and their vendor source, are as follows: 1) Normal adult brain mRNA (Invitrogen), 2) normal adult kidney mRNA (Invitrogen), 3) normal adult liver mRNA (Invitrogen), 4) normal fetal brain mRNA (Invitrogen), 5) normal fetal kidney mRNA (Invitrogen), 6) normal fetal liver mRNA (Invitrogen), 7) normal fetal skin mRNA (Invitrogen), 8) human adrenal gland mRNA (Clontech), 9) human bone marrow mRNA (Clontech), 10) human leukemia lymphablastic mRNA (Clontech), 11) human thymus mRNA (Clontech), 12) human lymph node mRNA (Clontech), 13) human spinal cord mRNA (Clontech), 14) human thyroid mRNA (Clontech), 15) human esophagus mRNA (BioChain), 16) human conceptional umbilical cord mRNA (BioChain).

5

10

TABLE 2

SEQ ID NO:	Accession Number	Species	Description	Score	% Identity
246	AF145657	Drosophila melanogaster	BcDNA.GH10120	728	38
247	X58141	Homo sapiens	mRNA for erythrocyte adducin alpha subunit.	3826	99
248	L29296	Homo sapiens	(clone: SS20B/E6.0) alpha-adducin gene, exons 14, 15, 16.	3387	99
249	AAB6396 3	Homo sapiens	26-MAR-2001 26-MAY-2000 Human prostate cancer associated antigen protein sequence SEQ ID NO:1325.	1095	97
250	M29458	Homo sapiens	carbonic anhydrase III gene, exon 7.	1441	100
251	AJ006529	Gallus gallus	putative phosphatase	867	60
252	Y08302	Homo sapiens	mRNA for MAP kinase phosphatase 4.	1996	100
253	X53280	Homo sapiens	BTF3a mRNA.	1048	100
254	AB013790	Ateles belzebuth	immunoglobulin alpha heavy chain	74	43
255	AK027387	Homo sapiens	FLJ14481 fis, clone MAMMA1002351, highly similar to Mus musculus dynactin subunit p25 (p25) mRNA.	964	100
256	AK001686	Homo sapiens	FLJ10824 fis, clone NT2RP4001086.	3013	93
257	AK001686	Homo sapiens	FLJ10824 fis, clone NT2RP4001086.	4089	98
258	AK026076	Homo sapiens	FLJ22423 fis, clone HRC08678.	689	100
259	AY037207	Arabidopsis thaliana	AT3g22240/MMP21_1	66	31
260	AAW5839 4	Homo sapiens	14-SEP-1998 09-OCT-1997 Human spermidine/spermine N1-acetyltransferase.	797	92
261	AF220051	Homo sapiens	hematopoietic stem/progenitor cells protein MDS031 mRNA, complete cds.	844	98
262	AB017563	Homo sapiens	gene, exon 10 and complete cds.	2283	100
263	J03910	Homo sapiens	(clone 14VS) metallothionein-IG (MT1G) gene, complete cds.	367	98
264	X56351	Homo sapiens	ALASI (ALASH) mRNA for delta- aminolevulinate synthase (housekeeping) (EC 2.3.1.37).	3333	100
266	U79241	Homo sapiens	clone 23759 mRNA, partial cds.	2304	100
267	AF068291	Homo sapiens	mRNA, partial cds.	699	99
268	BC007235	Homo sapiens	clone MGC:15430, mRNA, complete cds.	398	100
269	X69151	Homo sapiens	mRNA for subunit C of vacuolar proton- ATPase V1 domain.	1958	100
270	AF271784	Homo sapiens	mRNA, complete cds.	1017	92
271	AB025220	Homo sapiens	mRNA for p40phox, complete cds.	1737	100
272	AB025220	Homo sapiens	mRNA for p40phox, complete cds.	1644	96
273	BC001426	Homo sapiens	Similar to ubiquinol-cytochrome c reductase hinge protein, clone MGC:1361, mRNA, complete cds.	346	100

SEQ ID	Accession Number	Species	Description	Score	% Identity
NO: 274	AL050051	Homo sapiens	cDNA DKFZp566D193 (from clone DKFZp566D193); partial cds.	481	98
275	BC002517	Homo sapiens	Pirin, clone MGC:2083, mRNA, complete cds.	1543	100
276	X69962	Homo sapiens	FMR-1 mRNA.	2384	100
277	L29074	Homo sapiens	X mental retardation syndrome protein (FMR1) gene, alternative splice products, complete cds; and pseudogene, complete sequence.	2144	92
278	AK001711	Homo sapiens	FLJ10849 fis, clone NT2RP4001414, highly similar to SEPTIN 2 HOMOLOG.	2179	99
279	AK027641	Homo sapiens	FLJ14735 fis, clone NT2RP3002054.	651	99
280	BC009256	Homo sapiens	clone MGC:14860, mRNA, complete cds.	1065	94
281	AL110239	Homo sapiens	cDNA DKFZp566E144 (from clone DKFZp566E144); complete cds.	1234	99
282	BC008714	Homo sapiens	prostatic binding protein, clone MGC:8531, mRNA, complete cds.	1017	100
283	BC004374	Homo sapiens	ARP1 (actin-related protein 1, yeast) homolog B (centractin beta), clone MGC:10568, mRNA, complete cds.	1949	100 .
284	AF201334	Homo sapiens	mRNA, complete cds.	2395	100
285	BC008743	Homo sapiens	zyxin, clone MGC:3071, mRNA, complete cds.	3145	100
286	BC005957	Homo sapiens	solute carrier family 25 (mitochondrial carrier; peroxisomal membrane protein, 34kD), member 17, clone MGC:14604, mRNA, complete cds.	1557	100
287	AF273053	Homo sapiens	tumor antigen se89-1 mRNA, complete cds.	3570	82
288	AB028893	Homo sapiens	U32, U33, U34, U35, RPS11, U35 genes for ribosomal protein L13a and S11, U32, U33, U34, U35, and U35 snoRNA, complete cds and sequence.	595	100
289	AC003973	Homo sapiens	from chromosome 19, BAC 33152, complete sequence.	5273	81
290	AF253978	Homo sapiens	mRNA, partial cds.	487	85
291	AF018265	synthetic construct	immunoglobulin lambda light chain	278	79
292	BC005134	Homo sapiens	Similar to ribosomal protein L14, clone MGC:11208, mRNA, complete cds.	1102	99
293	AK000869	Homo sapiens	FLJ10007 fis, clone HEMBA1000193.	2635	100
294	AAB7322	Homo sapiens	11-MAY-2001 11-AUG-2000 Human phosphatase MTMR7 h.	2127	98
295	BC003618	Homo sapiens	Similar to putative nuclear protein, clone MGC:1819, mRNA, complete cds.	3042	100
296	AAB5434 6	Homo sapiens	09-MAR-2001 08-MAR-2000 Human pancreatic cancer antigen protein sequence SEQ ID NO:798.	4092	99
297	AK000330	Homo sapiens	FLJ20323 fis, clone HEP09648.	2229	100
298	AF176701	Homo sapiens	protein FBL9 mRNA, partial cds.	1072	100
299	X54977	Bos taurus	17,000 dalton myosin light chain	789	100
300	AL096746	Homo sapiens	cDNA DKFZp586E1322 (from clone DKFZp586E1322); partial cds.	1186	100

SEQ	Accession	Species	Description	Score	% Tal4:4-
ID NO:	Number				Identity
301	BC000502	Homo	ribosomal protein L17, clone MGC:8457,	970	100
		sapiens	mRNA, complete cds.	10.55	100
302	AC004079	Homo sapiens	clone RP1-167F23 from 7p15, complete sequence.	1965	100
303	X92485	Plasmodium	pval	149	55
		vivax		100	96
304	AK006347	Mus musculus	putative	429	86
305	AL137544	Homo	cDNA DKFZp434A1520 (from clone	974	98
306	AC006276	sapiens Homo	DKFZp434A1520); partial cds. 19, cosmid R28379, complete sequence.	900	99
300	AC000270	sapiens			
307	AK024297	Homo sapiens	FLJ14235 fis, clone NT2RP4000167.	2325	100
308	AK005941	Mus	putative	460	88
309	AF265440	musculus Homo	mRNA, complete cds.	1413	100
		sapiens		12.50	1.00
311	AB027251	Homo sapiens	for zinc finger protein (ZFD25), complete cds.	4369	100
312	AK008240	Mus musculus	putative	455	100
313	AAB7533	Homo	03-APR-2001 01-JUN-2000 Human secreted	138	60
	7	sapiens	protein sequence encoded by gene 47 SEQ ID NO:156.		İ
314	AF321191	Homo sapiens	(PRX) mRNA, complete cds, alternatively spliced.	7312	99
315	AF225417	Homo	kDa protein mRNA, complete cds.	3701	99
216	AV00006	sapiens	FLJ20258 fis, clone COLF7250.	2797	97
316	AK000265	Homo sapiens	FLJ20238 IIS, CIONE COLF7230.	2171) /
317	D90070	Homo	ATL-derived PMA-responsive (APR) peptide	278	100
318	U79725	sapiens Homo	mRNA. A33 antigen precursor mRNA, complete cds.	1678	100
		sapiens			
319	M83679	Rattus	RAB15	1077	97
320	AK024715	norvegicus Homo	FLJ21062 fis, clone CAS01044.	927	98
		sapiens	·	1500	-
321	AK000075	Homo sapiens	FLJ20068 fis, clone COL01755.	1729	99
322	AC007954	Homo	14 clone RP11-493G17 and CTD-2516D11 map	4243	100
222	722025	sapiens	14q24.3, complete sequence.	2160	99
323	Z33905	Homo	gene for 43kD acetylcholine receptor-associated	2150	99
324	AF030027	sapiens Equine	protein (Rapsyn).	118	22
		herpesvirus 4			
325	AJ291606	Xenopus laevis	gamma tubulin ring protein	2024	55
326	AAB6461	Homo	22-MAR-2001 01-JUN-2000 Human secreted	197	72
	0	sapiens	protein BLAST search protein SEQ ID NO: 120.		
327	AAB5367	Homo	09-MAR-2001 08-MAR-2000 Human colon	694	99
	7	sapiens	cancer antigen protein sequence SEQ ID NO:1217.		
328	AF159055	Homo	zipper-like protein (LZLP) mRNA, complete	116	79
220	A1160111	sapiens	cds.	2126	100
329	AL160111	Homo sapiens	I of a novel human mRNA from chromosome 22.	2126	100

SEQ ID NO:	Accession Number	Species	Description	Score	% Identity
330	AF159055	Homo sapiens	zipper-like protein (LZLP) mRNA, complete cds.	130	80
331	AK026264	Homo sapiens	FLJ22611 fis, clone HSI04961.	685	96
332	X57809	Homo sapiens	rearranged immunoglobulin lambda light chain mRNA.	1223	100
333	AAB8744 0	Homo sapiens	22-MAY-2001 31-AUG-2000 Human gene 32 encoded secreted protein fragment, SEQ ID NO:181.	513	75
334	AK012475	Mus musculus	putative	2259	84
335	AF090930	Homo sapiens	HQ0478 PRO0478 mRNA, complete cds.	146	72
336	AL080196	Homo sapiens	cDNA DKFZp434C212 (from clone DKFZp434C212).	2292	94
337	AK019766	Mus musculus	putative	1288	71
338	X69398	Homo sapiens	mRNA for OA3 antigenic surface determinant.	1632	100
339	AK019305	Mus musculus	putative	506	96
340	AL078630	Mus . musculus	573K1.15 (mm17M1-6 (novel 7 transmembrane receptor (rhodopsin family) (olfactory receptor LIKE) protein))	1023	81
341	AF118078	Homo sapiens	PRO1848	574	100
342	AK005566	Mus musculus	putative	1218	94
343	U71363	Homo sapiens	zinc finger protein zfp6 (ZF6) mRNA, partial cds.	1367	70
344	AK015315	Mus musculus	putative	556	76
345	AF218451	Homo sapiens	substrate p130Cas mRNA, complete cds.	4579	99
346	AF151046	Homo sapiens	HSPC212	1345	87
347	AF151046	Homo sapiens	HSPC212	817	74
348	Z14244	Homo sapiens	coxVIIb mRNA for cytochrome c oxidase subunit VIIb.	426	100
349	BC001037	Homo sapiens	ribosomal protein L35a, clone MGC:1639, mRNA, complete cds.	581	100
351	AAB4501 8	Homo sapiens	12-FEB-2001 09-MAR-2000 Human secreted protein encoded by gene 41 homologue.	142	57
352	AAY9488 5	Homo sapiens	12-JUN-2000 22-JUL-1999 Human protein clone HP10550.	540	99
353	AF161557	Homo sapiens	HSPC072	472	100
354	AAG0143 8	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEQ ID NO: 5519.	353	92
355	AF161507	Homo sapiens	HSPC158	1197	99
356	AL122111	Homo sapiens	cDNA DKFZp434A1721 (from clone DKFZp434A1721).	2868	99
357	AF349540	Homo sapiens	XIII secreted phospholipase A2 mRNA, complete cds.	1073	100
358	AF274714	Homo sapiens	protein-related protein (ORP1) mRNA, complete cds.	2363	100
359	AAG0379	Homo	06-OCT-2000 21-FEB-2000 Human secreted	222	67

SEQ ID	Accession Number	Species	Description	Score	% Identity
NO:	3	sapiens	protein, SEQ ID NO: 7874.		
360	BC000705	Homo	clone MGC:861, mRNA, complete cds.	908	100
100	BC000703	sapiens	olollo Moo.oo1, Maari i, comprosi		}
361	AAG0378	Homo	06-OCT-2000 21-FEB-2000 Human secreted	188	60
,01	9	sapiens	protein, SEQ ID NO: 7870.		i
362	AAB6281	Homo	02-MAY-2001 06-JUL-2000 Human nervous	501	96
)UZ	0	sapiens	system associated protein NSPRT3 amino acid		}
	"	- Companie	sequence.		
363	AF161370	Homo	mRNA, partial cds.	654	91
, , ,	111 1015/6	sapiens			L
364	AK011592	Mus	putative	1245	66
	1	musculus			L
365	AK002154	Homo	FLJ11292 fis, clone PLACE1009665.	230	64
		sapiens			
366	AF159297	Zea mays	extensin-like protein	349	28
367	AF125096	Homo	HSPC042 protein	137	96
	1	sapiens			J
368	AF125096	Homo	HSPC042 protein	243	98
		sapiens			
369	AK001745	Homo	FLJ10883 fis, clone NT2RP4001946, weakly	1880	99
		sapiens	similar to PROTEIN-L-ISOASPARTATE O-	\	1
			METHYLTRANSFERASE (EC 2.1.1.77).		
370	AF151783	Homo	(MEG3) mRNA, complete cds.	3651	99
	1	sapiens			
371	X16707	Homo	fra-1 mRNA.	1443	100
	1	sapiens			
372	AF176555	Homo	anchoring protein 220 mRNA, complete cds.	9783	99
- · -	1	sapiens			<u> </u>
373	X78121	Homo	mRNA.	3404	100
•	1	sapiens			<u> </u>
374	U82670	Homo	Xq28 psHMG17 pseudogene, complete	2513	99
		sapiens	sequence; and melanoma antigen family A1		1
			(MAGEA1) and zinc finger protein 275		į
			(ZNF275) genes, complete cds.		
375	AK018726	Mus	putative	670	100
	ļ	musculus			
376	BC000187	Homo	cytochrome c oxidase subunit VIc, clone	379	100
	1	sapiens	MGC:1520, mRNA, complete cds.	<u> </u>	
377	AAY8754	Homo	18-JUL-2000 03-NOV-1997 Human disease-	729	100
	8	sapiens	associated calmodulin protein (DACP-1).		
378	AK003198	Mus	putative	562	100
	1	musculus			
379	AK000496	Homo	FLJ20489 fis, clone KAT08285.	333	69
		sapiens			
380	AF130079	Homo	PRO2852	308	74
		sapiens		<u> </u>	
381	AAY9196	Homo	19-JUL-2000 17-SEP-1999 Human	1293	96
	ı	sapiens	cytoskeleton associated protein 16 (CYSKP-16).	<u> </u>	
382	M15202	Rattus	troponin T class IIIa beta	1155	94
		norvegicus	·		
383	AF026276	Homo	skeletal troponin T (TNNT3) gene, complete	1205	94
	1	sapiens	cds.	ļ	
384	AF090694	Homo	RNA binding protein (NAPOR-2) mRNA,	2519	98
		sapiens	complete cds.	<u> </u>	
385	BC007655	Homo	protein phosphatase 1, regulatory (inhibitor)	1051	100
		sapiens	subunit 2, clone MGC:1327, mRNA, complete		1
	i	1	cds.	L	
386	AF161533	Homo	HSPC048	573	100
	1	sapiens	1	1	1

Accession	Species	Description	Score	%
Number				Identity
BC002801	Homo sapiens	p47, clone MGC:3347, mRNA, complete cds.	1812	96
AK027878	Homo sapiens	FLJ14972 fis, clone THYRO1000715.	2669	98
AF161418	Homo sapiens	HSPC300	378	100
AK010720	Mus musculus	putative	105	28
X66358	Homo sapiens	mRNA KKIALRE for serine/threonine protein kinase.	1929	99
AF290612	Homo sapiens	Q0310 liver nuclear protein mRNA, complete cds.	2246	98
U69263	Homo sapiens	precursor, mRNA, complete cds.	4516	99
U69263	Homo sapiens	precursor, mRNA, complete cds.	4021	99
AK000838	Homo	FLJ20831 fis, clone ADKA03080.	761	100
AK006393	Mus	putative	819	90
AF312033	Mus musculus	ASR2A	4584	97
BC001904	Homo	Similar to phosphoglycerate mutase 2 (muscle), clone MGC:2269, mRNA, complete cds.	270	100
Y14391	Homo	for putative GTP-binding protein.	2042	99
AF242528	Homo	finger protein 291 (ZNF291) mRNA, complete cds.	294	100
AF116695	Homo	PRO2221	173	46
AAR3202 0	Homo	11-JUL-1993 14-AUG-1992 Sequence of a eukaryotic transcription factor (TF).	734	66
AB049127	Homo	mRNA for MAP/microtubule affinity-regulating	2227	73
K03250	Rattus	ribosomal protein S11	824	100
AF144233	Homo	binding peptide mRNA, partial cds.	328	96
AC007055	Homo	14 clone BAC 201F1 map 14q24.3, complete	519	100
AK001752	Homo	FLJ10890 fis, clone NT2RP4002071.	5019	99
AF090931	Homo	HQ0483\$ PRO0483 mRNA, complete cds.	133	58
A28080	Mycobacteri um avium subsp. paratubercul osis	34 kDa protein	75	36
AL136704	Homo sapiens	cDNA DKFZp566A1524 (from clone DKFZp566A1524); complete cds.	1662	99
AL137347	Homo sapiens	cDNA DKFZp761M1511 (from clone	473	100
AK027527	Homo sapiens	FLJ14621 fis, clone NT2RP2000079.	1012	100
AAG0108 3	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEO ID NO: 5164.	274	96
BC009405	Homo sapiens	adenylate kinase 2, clone MGC:15301, mRNA, complete cds.	1094	100
	AK027878 AF161418 AK010720 X66358 AF290612 U69263 U69263 AK000838 AK006393 AF312033 BC001904 Y14391 AF242528 AF116695 AAR3202 0 AB049127 K03250 AF144233 AC007055 AK001752 AF090931 A28080 AL136704 AL137347 AK027527 AAG0108 3	BC002801	BC002801	BC002801 Homo sapiens

SEQ ID	Accession Number	Species	Description	Score	% Identity
NO:				1	lucinity
415	U34994	Homo	dependent protein kinase catalytic subunit	21178	100
		sapiens	(PRKDC) mRNA, complete cds; alternatively spliced.		
416	U47077	Homo sapiens	protein kinase catalytic subunit (DNA-PKcs) mRNA, complete cds.	21319	99
417	U22229	Felis catus	ribosomal protein L41	128	100
418	AF361481	Homo	GTP-binding protein 1 (GTPBP3) gene,	1402	94
		sapiens	complete cds; nuclear gene for mitochondrial product.	1,02	
419	BC000606	Homo sapiens	Similar to ribosomal protein L14, clone MGC: 1644, mRNA, complete cds.	1094	100
421	AAY7334	Homo	24-FEB-2000 04-MAY-1999 HTRM clone	2171	73
	5	sapiens	438283 protein sequence.		1
422	AK000632	Homo sapiens	FLJ20625 fis, clone KAT04008.	816	100
423	AC004668	Homo sapiens	clone CTA-276O3 from 7q22-q31.1, complete sequence.	1976	99
424	AK000496	Homo sapiens	FLJ20489 fis, clone KAT08285.	238	73
425	AAY0278	Homo	11-JUN-1999 07-JUL-1998 Human secreted	82	43
	5	sapiens	protein encoded by gene 51 clone HUKEX85.		1
426	AF118092	Homo sapiens	PRO2061	1440	96
427	AK000382	Homo sapiens	FLJ20375 fis, clone HUV00942.	1330	99
428	Y15286	Homo sapiens	for vacuolar proton-ATPase subunit M9.2.	459	100
429	AK014098	Mus	putative	524	68
		musculus			
430	AF286095	Homo sapiens	receptor (IL22R) mRNA, complete cds.	629	86
431	AK023266	Homo sapiens	FLJ13204 fis, clone NT2RP3004507, weakly similar to MOB1 PROTEIN.	758	90
432	AF047354	Homo sapiens	and spleen DNase precursor (LSD) mRNA, complete cds.	1046	99
433	X53682	Homo	LAG-1 gene.	484	100
	ļ	sapiens			
434	AC000064	Homo sapiens	BAC clone RG083M05 from 7q21-7q22,	298	100
435	AL390921	Arabidopsis	complete sequence. putative protein	72	44
436	AAB8744	thaliana	22 MAY 2001 21 AUG 2000 W	\	
450	0	Homo sapiens	22-MAY-2001 31-AUG-2000 Human gene 32 encoded secreted protein fragment, SEQ ID NO:181.	1572	100
437	AP003001	Mesorhizobi um loti	O-linked GlcNAc transferase	153	30
438	AK000642	Homo sapiens	FLJ20635 fis, clone KAT03466.	1854	99
439	Z48810	Homo	mRNA for TX protease precursor.	306	92
44:	1.000000	sapiens			
441	AC003002	Homo sapiens	DNA from overlapping chromosome 19- specific cosmids R29515 and R28253, genomic	436	98
442	AF109377	Mus musculus	sequence, complete sequence. IdlBp	3979	82
143	AF109377	Mus	ldlBp	2711	81
144	AAG0204	musculus Homo	06-OCT-2000 21-FEB-2000 Human secreted	707	100
	2	sapiens	protein, SEQ ID NO: 6123.	797	100

SEQ	Accession	Species	Description	Score	%
ID	Number		•		Identity
NO:				201	27
445	M17877	Plasmodium falciparum	interspersed repeat antigen	291	27
446	M17877	Plasmodium falciparum	interspersed repeat antigen	291	27
447	AB025784	Rattus norvegicus	PPAR gamma coactivator	331.	46
448	AK000755	Homo sapiens	FLJ20748 fis, clone HEP05772.	831	96
449	AK001714	Homo sapiens	FLJ10852 fis, clone NT2RP4001498, weakly similar to ANKYRIN REPEAT-CONTAINING PROTEIN AKR1.	2586	100
450	AB042646	Homo sapiens	mRNA, complete cds.	1224	100
451	AF125533	Homo sapiens	b5 reductase isoform mRNA, complete cds.	1606	100
452	AAY0259	Homo sapiens	19-JUL-1999 09-OCT-1998 A human progesterone receptor complex p23-like protein.	849	100
453	BC000600	Homo sapiens	Similar to from HeLa cyclin-dependent kinase 2 interacting protein, clone MGC:849, mRNA, complete cds.	1106	100
454	Z46937	Caenorhabdit is elegans	similarity with ribosomal protein L21	140	38
455	AF161556	Homo sapiens	HSPC071	941	100
456	AF225971	Homo sapiens	(TUBG2) mRNA, complete cds.	2346	99
458	AF343664	Homo sapiens	receptor translocation associated protein 2c (IRTA2) mRNA, complete cds, alternatively spliced.	736	55
459	AF191545	Homo sapiens	mRNA, complete cds.	4141	99
460	AF118082	Homo sapiens	PRO1902	202	58
461	D00531	Oncorhynchu s masou	apopolysialoglycoprotein	512	30
462	Z11898	Homo sapiens	OTF3 mRNA encoding octamer binding protein 3A.	1948	100
464	AL162044	Homo	cDNA DKFZp761L0812 (from clone DKFZp761L0812); partial cds.	220	41
465	AL137301	Homo	cDNA DKFZp434N1429 (from clone DKFZp434N1429); partial cds.	543	100
466	AB032593	sapiens Homo	for PXR2b, complete cds.	3201	100
467	AL050075	sapiens Homo	cDNA DKFZp566F0546 (from clone	407	100
468	AK000732	sapiens Homo	DKFZp566F0546); partial cds. FLJ20725 fis, clone HEP13903.	1653	99
469	AB049638	sapiens Homo	mRNA for mitochondrial ribosomal protein L11	941	100
470	AB049638	Homo	(L11mt), complete cds. mRNA for mitochondrial ribosomal protein L11 (L11mt), complete cds	737	99
471	AB014772	Homo	(L11mt), complete cds. for MOP-3, complete cds.	1722	99
472	AAY5980	Sapiens Homo	18-JAN-2000 03-APR-1998 Human normal	778	100
473	AF331500	sapiens multiple sclerosis associated retrovirus	ovarian tissue derived protein 85. recombinant envelope protein	1177	92

SEQ ID NO:	Accession Number	Species	Description	Score	% Identity
		element			
474	AF257330	Homo sapiens	protein mRNA, complete cds.	962	96
475	AK000632	Homo sapiens	FLJ20625 fis, clone KAT04008.	809	99
476	M58511	Homo sapiens	iron-responsive element-binding protein/iron regulatory protein 2 (IRE-BP2/IRP2) mRNA, partial cds.	4968	99
477	AF181989	Homo sapiens	beta subunit variant (HBB) mRNA, complete cds.	588	90
478	AC003002	Homo sapiens	DNA from overlapping chromosome 19- specific cosmids R29515 and R28253, genomic sequence, complete sequence.	752	100
479	BC002924	Homo sapiens	clone IMAGE:3956179, mRNA, partial cds.	1221	99
480	AF109146	Homo sapiens	lectin superfamily 6 (CLECSF6) mRNA, complete cds.	958	99
481	BC005374	Homo sapiens	Similar to RIKEN cDNA 1110001E24 gene, clone MGC:12490, mRNA, complete cds.	995	100
482	X75285	Mus musculus	fibulin-2	5621	81
483	AC007954	Homo sapiens	14 clone RP11-493G17 and CTD-2516D11 map 14q24.3, complete sequence.	1342	100
484	AK016295	Mus musculus	putative	116	27
485	AB028893	Homo sapiens	U32, U33, U34, U35, RPS11, U35 genes for ribosomal protein L13a and S11, U32, U33, U34, U35, and U35 snoRNA, complete cds and sequence.	434	100
486	BC003681	Homo sapiens	clone IMAGE:3453235, mRNA, partial cds.	2829	96
487	AK009235	Mus musculus	putative	1648	92
488	AF294900	Homo sapiens	beta-carotene 15,15'- dioxygenase (BCDO) mRNA, complete cds.	2912	100
489	AAB4397	Homo sapiens	08-FEB-2001 08-MAR-2000 Human cancer associated protein sequence SEQ ID NO:1424.	1051	86
490	AF220025	Homo sapiens	motif protein TRIM5 isoform alpha (TRIM5) mRNA, complete cds; alternatively spliced.	1299	95

TABLE 3

SEQ ID NO:	Accession Number	Description	Results*
247	PF00596	Class II Aldolases and Adducin N- terminal domain proteins.	PF00596C 17.24 9.710e-20 217- 243 PF00596B 15.07 4.938e-14 180-202 PF00596D 13.89 4.079e-12 297-315
248	PF00596	Class II Aldolases and Adducin N- terminal domain proteins.	PF00596C 17.24 9.710e-20 217- 243 PF00596B 15.07 4.938e-14 180-202 PF00596D 13.89 4.079e-12 297-315
250	BL00162	Eukaryotic-type carbonic anhydrases proteins.	BL00162C 17.78 1.000e-40 88- 125 BL00162E 14.93 6.478e-34 189-222 BL00162F 22.68 6.727e-30 226-260 BL00162A 22.92 5.179e-26 16-47 BL00162D 15.06 4.960e-22 126- 151 BL00162B 21.43 5.345e-17 51-74
252	BL00383	Tyrosine specific protein phosphatases proteins.	BL00383E 10.35 1.196e-11 288- 299
253	PD02749	TRANSCRIPTION PROTEIN FACTOR BTF3 REGULATION NUCL.	PD02749B 12.75 1.000e-40 84- 120 PD02749C 13.96 3.739e-34 136-170 PD02749A 9.56 6.000e- 15 51-64
256	BL00824	Elongation factor 1 beta/beta/delta chain proteins.	BL00824B 9.21 8.419e-09 281- 301
257	BL00824	Elongation factor 1 beta/beta/delta chain proteins.	BL00824B 9.21 8.419e-09 281- 301
260	PF00583	Acetyltransferase (GNAT) family.	PF00583A 12.53 3.571e-12 175- 186
262	PD01364	MUCIN GLYCOPROTEIN PRECURSOR MEM.	PD01364B 13.94 1.000e-10 336- 352
263	PR00860	VERTEBRATE METALLOTHIONEIN SIGNATURE	PR00860B 7.04 2.929e-20 28-42 PR00860C 9.61 1.474e-14 42-52 PR00860A 5.46 9.229e-12 6-19
264	BL00599	Aminotransferases class-II pyridoxal- phosphate attachment sit.	BL00599B 18.93 8.800e-27 278- 307 BL00599D 13.25 8.773e-13 411-424 BL00599C 9.13 5.235e- 11 334-344
266	PD01769	REDUCTASE PAPS BIOSYNTHESIS PHOSPHOADENO.	PD01769C 21.60 8.393e-18 416- 452
271	PR00497	NEUTROPHIL CYTOSOL FACTOR P40 SIGNATURE	PR00497D 11.91 1.176e-28 192- 214 PR00497E 10.43 1.123e-26 241-261 PR00497A 6.92 1.136e- 24 56-74 PR00497B 4.99 1.125e- 23 74-93 PR00497C 8.89 1.100e- 21 131-147 PR00497F 8.66 1.138e-15 297-309
272	BL50002	Src homology 3 (SH3) domain proteins profile.	BL50002A 14.19 6.538e-11 177- 196
276	PF00013	KH domain proteins family of RNA binding proteins.	PF00013 5.78 2.059e-10 268-280
277	PF00013	KH domain proteins family of RNA binding proteins.	PF00013 5.78 2.059e-10 268-280
280	PF00930	Dipeptidyl peptidase IV (DPP IV) N-terminal region.	PF00930J 8.78 4.231e-09 394-415
282	BL01220	Phosphatidylethanolamine-binding protein family proteins.	BL01220B 16.65 1.000e-40 105- 146 BL01220C 14.75 5.846e-34 146-174 BL01220A 22.62 3.400e-31 67-98 BL01220D

SEQ ID	Accession	Description	Results*
NO:	Number		18.75 5.364e-31 189-221
		A	BL00406B 5.47 1.000e-40 88-143
83	BL00406	Actins proteins.	BL00406C 6.75 1.000e-40 147-
	1		202 BL00406D 12.58 7.000e-40
			270-325 BL00406E 8.44 6.087e-
			2/0-323 DE00400E 6.44 0.0070
			39 327-377 BL00406A 9.95
			6.087e-29 11-46
	BL00227	Tubulin subunits alpha, beta, and	BL00227C 25.48 7.792e-26 119-
284	BLUUZZI	gamma proteins.	171 BL00227D 18.46 2.286e-20
	1	gainna proteuts.	253-307 BL00227B 19.29
		1	4.720e-13 58-113 BL00227A
			24.55 4.649e-12 1-35
			BL00478B 14.79 3.739e-14 463-
285	BL00478	LIM domain proteins.	BL004/8B 14./9 3./396-14 403-
.03			478 BL00478B 14.79 3.500e-12
			405-420 BL00478B 14.79
			6.000e-12 530-545
		LECTION ENTINE	PR00927B 14.66 6.236e-14 146-
286	PR00927	ADENINE NUCLEOTIDE	168
		TRANSLOCATOR 1 SIGNATURE	BL00783C 22.43 8.071e-20 87-
288	BL00783	Ribosomal protein L13 proteins.	BLUU/83C 22.43 0.0/16-20 0/-
200			117 BL00783A 14.55 1.600e-19
			8-33 BL00783B 12.76.3.500e-12
		į	74-86
		PROTEIN ZINC FINGER ZINC-	PD01066 19.43 2.500e-38 422-
289	PD01066	PROTEIN ZINC FINGER ZINC	461
		FINGER METAL-BINDING NU.	DM00031A 16.80 8.364e-11 20-
291	DM00031	IMMUNOGLOBULIN V REGION.	1
			68
292	PD02808	PROTEIN RIBOSOMAL L14	PD02808A 12.03 3.739e-38 5-42
292	FD02806	PROBABLE 60.	PD02808B 19.19 8.500e-36 85-
		PROBABLE OV.	120
		if	BL00383E 10.35 2.756e-12 263-
294	BL00383	Tyrosine specific protein phosphatases	274
		proteins.	BL01160B 19.54 8.093e-09 510-
295	BL01160	Kinesin light chain repeat proteins.	1 .
			564
297	PR00706	PYROGLUTAMYL PEPTIDASE I	PR00706B 10.56 6.870e-09 74-87
291	FROOTOO	(C15) FAMILY SIGNATURE	
		VON WILLEBRAND FACTOR	PR00453A 12.79 4.750e-15 40-58
300	PR00453	VOIN WILLEBRAND FACTOR	
		TYPE A DOMAIN SIGNATURE	BL00464B 28.48 4.960e-35 106-
301	BL00464	Ribosomal protein L22 proteins.	151 BL00464A 29.41 9.700e-23
	1		1
			17-54
200	BL00027	'Homeobox' domain proteins.	BL00027 26.43 6.727e-36 158-
302	BLUUU2/	Homeopox domain processes.	201
			BL01113A 17.99 2.558e-09 712-
307	BL01113	C1q domain proteins.	739
			BL00226D 19.10 9.571e-40 371-
310	BL00226	Intermediate filaments proteins.	BL00750D 13:10 3:3/16-40 3/15
5.5			418 BL00226B 23.86 4.600e-38
	1	1	205-253 BL00226C 13.23
ĺ			9.500e-26 270-301 BL00226A
			12.77 4.000e-16 104-119
L		PROTEIN ZINC FINGER ZINC-	PD01066 19.43 5.135e-34 6-45
311	PD01066	PROTEIN ZING FINGER ZING	1 201000 17110
1		FINGER METAL-BINDING NU.	PD01861A 14.06 4.393e-11 26-5
312	PD01861	PROTEIN NUCLEAR	PD01801A 14.00 4.3936-11 20-3
l		RIBONUCLEOPROTEIN SMALL	
]		MRNA RNA.	
1-015	DI 00100	Cytochrome b/b6 heme-ligand	BL00192A 11.90 3.700e-09 96-
315	BL00192		136
		proteins.	PR00049D 0.00 6.445e-11 661-
316	PR00049	WILM'S TUMOUR PROTEIN	
	1	SIGNATURE	676
318	DM00031	IMMUNOGLOBULIN V REGION.	DM00031B 15.41 4.423e-11 103
مبرا	51,100031	1	137

SEQ ID	Accession Number	Description	Results*
NO:	BL01115	GTP-binding nuclear protein ran	BL01115A 10.22 7.455e-13 9-53
319	BLOTTIS	proteins.	
321	BL00378	Hexokinases proteins.	BL00378A 19.01 8.375e-09 279- 307
323	BL00405	43 Kd postsynaptic protein.	BL00405C 10.15 1.000e-40 65-
	,		115 BL00405D 6.60 1.000e-40
			123-166 BL00405G 7.78 1.000e-
			40 226-263 BL00405H 16.83 1,000e-40 263-302 BL00405I
			13.75 1.000e-40 302-339
			BL00405J 13.28 1.000e-40 339-
			373 BL00405K 7.57 1.000e-40
			373-413 BL00405B 15.33
			6.538e-39 26-58 BL00405F 8.07
			1.900e-38 195-226 BL00405E 8.84 1.529e-34 166-192
			BL00405A 9.73 1.643e-31 2-26
327	BL00048	Protamine P1 proteins.	BL00048 6.39 8.475e-15 24-51
327	BE000.0	, round in proteins	BL00048 6.39 2.918e-14 26-53
			BL00048 6.39 5.279e-14 34-61
			BL00048 6.39 5.721e-14 32-59
			BL00048 6.39 7.197e-14 11-38 BL00048 6.39 8.082e-14 22-49
İ		•	BL00048 6.39 2.246e-13 10-37
İ			BL00048 6.39 6.677e-13 33-60
			BL00048 6.39 7.092e-13 7-34
			BL00048 6.39 7.785e-13 8-35
			BL00048 6.39 7.923e-13 23-50
			BL00048 6.39 1.926e-12 9-36
			BL00048 6.39 1.926e-12 31-58 BL00048 6.39 2.456e-12 20-47
			BL00048 6.39 6.294e-12 14-41
			BL00048 6.39 7.221e-12 25-52
			BL00048 6.39 7.750e-12 12-39
			BL00048 6.39 9.868e-12 21-48
ļ	1		BL00048 6.39 1.125e-11 19-46 BL00048 6.39 2.375e-11 13-40
			BL00048 6.39 6.875e-11 6-33
	İ		BL00048 6.39 8.125e-11 36-63
			BL00048 6.39 8.250e-11 18-45
			BL00048 6.39 8.250e-11 30-57
			BL00048 6.39 1.947e-10 5-32 BL00048 6.39 3.605e-10 4-31
	1		BL00048 6.39 4.908e-10 27-54
			BL00048 6.39 5.974e-10 42-69
			BL00048 6.39 7.039e-10 15-42
			BL00048 6.39 7.750e-10 17-44
1			BL00048 6.39 7.987e-10 39-66 BL00048 6.39 9.526e-10 1-28
			BL00048 6.39 9.326e-10 1-28 BL00048 6.39 1.225e-09 38-65
	1		BL00048 6.39 3.363e-09 16-43
	-		BL00048 6.39 4.038e-09 3-30
			BL00048 6.39 5.950e-09 28-55
	1		BL00048 6.39 6.288e-09 29-56
			BL00048 6.39 6.400e-09 40-67 BL00048 6.39 6.738e-09 2-29
			BL00048 6.39 6.738e-09 2-29 BL00048 6.39 7.863e-09 35-62
331	PR00221	CAULIMOVIRUS COAT PROTEIN SIGNATURE	PR00221H 12.82 1.217e-09 27-41
332	BL00290	Immunoglobulins and major	BL00290A 20.89 1.529e-14 187-
		histocompatibility complex proteins.	210 BL00290B 13.17 9.000e-12

SEQ ID	Accession	Description	Results*
NO:	Number		247-265
334	BL00415	Synapsins proteins.	BL00415N 4.29 8.420e-10 334- 378
336	PR00779	INOSITOL 1,4,5-TRISPHOSPHATE- BINDING PROTEIN RECEPTOR SIGNATURE	PR00779F 14.51 5.147e-09 512- 535
338	DM00179	w KINASE ALPHA ADHESION T- CELL.	DM00179 13.97 7.158e-10 107-
339	BL00224	Clathrin light chain proteins.	BL00224B 16.94 8.200e-09 167- 220
340	PR00237	RHODOPSIN-LIKE GPCR SUPERFAMILY SIGNATURE	PR00237B 13.50 1.000e-11 1-23
343	PD00066	PROTEIN ZINC-FINGER METAL- BINDI.	PD00066 13.92 5.154e-15 321- 334 PD00066 13.92 2.800e-14 237-250 PD00066 13.92 8.800e- 14 265-278 PD00066 13.92 3.000e-13 293-306 PD00066 13.92 9.217e-11 209-222
345	PR00452	SH3 DOMAIN SIGNATURE	PR00452B 11.65 4.600e-15 20-36
347	BL00563	Stathmin family proteins.	BL00563D 11.38 4.835e-09 279- 315
349	BL01105	Ribosomal protein L35Ae proteins.	BL01105A 17.37 1.000e-40 16-61 BL01105B 12.95 1.000e-40 80- 120
350	PD02411	PROTEIN TRANSCRIPTION REGULATION NUCLEAR.	PD02411 21.89 2.929e-15 2227- 2261
355	BL00464	Ribosomal protein L22 proteins.	BL00464B 28.48 4.908e-10 128- 173 BL00464A 29.41 7.045e-09 69-106
358	BL01013	Oxysterol-binding protein family proteins.	BL01013D 26.81 8.000e-26 358- 402 BL01013A 25.14 7.231e-21 45-81 BL01013C 9.97 1.000e-13 132-142 BL01013B 11.33 1.000e-11 110-121
366	PD02557	UREASE ACCESSORY PROTEIN UREF NICKEL.	PD02557C 10.85 6.262e-09 29-44
369	BL01279	Protein-L-isoaspartate(D-aspartate) O-methyltransferase signa.	BL01279A 24.27 7.614e-12 67- 115
371	PR00042	FOS TRANSFORMING PROTEIN SIGNATURE	PR00042E 9.69 8.200e-25 154- 178 PR00042D 8.97 9.735e-24 133-155 PR00042C 8.29 4.549e- 21 115-132 PR00042B 10.70 2.983e-20 98-115 PR00042A 10.04 6.400e-20 39-57
373	PR00893	RAB ESCORT (CHOROIDERAEMIA) PROTEIN SIGNATURE	PR00893H 7.37 2.588e-34 411-439 PR00893J 1.42 1.500e-28 565-586 PR00893D 13.14 1.563e-28 114-138 PR00893C 15.10 2.500e-27 94-115 PR00893K 7.01 1.000e-26 600-620 PR00893I 14.97 2.667e-26 543-563 PR00893A 10.55 1.134e-25 45-64 PR00893F 10.78 3.314e-25 294-313 PR00893E 13.94 1.231e-22 213-230 PR00893G 12.88 5.500e-22 351-368 PR00893B 8.07 6.192e-22 75-93
374	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 9.471e-14 508- 525 BL00028 16.07 9.100e-13

SEQ ID NO:	Accession Number	Description	Results*
NO:	Number		424-441 BL00028 16.07 2.957e-
			12 536-553 BL00028 16.07
			4.115e-11 340-357 BL00028
			16.07 8.269e-11 452-469
	-		BL00028 16.07 4.300e-10 312-
	1	1	329 BL00028 16.07 7.600e-10
			480-497
375	PF01020	Ribosomal L40e family.	PF01020 15.00 1.000e-40 80-129
377	PR00450	RECOVERIN FAMILY SIGNATURE	PR00450C 12.22 7.840e-10 86-
511	1100450	1,000	108 PR00450C 12.22 7.380e-09
			52-74 PR00450C 12.22 7.835e-
	ļ		09 16-38
381	PF00992	Troponin.	PF00992B 26.31 4.000e-30 178-
301	1100992	Tropomi.	213 PF00992A 16.67 2.636e-29
			100-135 PF00992C 16.35
	}		2.800e-15 244-262
7.00	PF00992	Troponin.	PF00992B 26.31 4.000e-30 157-
382	PF00992	Topomi.	192 PF00992A 16.67 2.636e-29
			79-114 PF00992C 16.35 2.800e-
	1		15 223-241
202	PF00992	Troponin.	PF00992B 26.31 4.000e-30 162-
383	PF00992	Troponin.	197 PF00992A 16.67 2.636e-29
			84-119 PF00992C 16.35 2.800e-
		1	15 228-246
	2202384	PROTEIN NUCLEAR	PD02784B 26.46 8.307e-10 455-
384	PD02784		498
000	DE01140	RIBONUCLEOPROTEIN.	PF01140D 15.54 9.686e-09 112-
385	PF01140	Matrix protein (MA), p15.	147
388	DM00892	3 RETROVIRAL PROTEINASE.	DM00892C 23.55 3.323e-14 340-
388	DM00892	3 KETROVIKALTROTERINGE.	374
201	PR00109	TYROSINE KINASE CATALYTIC	PR00109B 12.27 6.553e-13 117-
391	PROUTUS	DOMAIN SIGNATURE	136
202	PR00453	VON WILLEBRAND FACTOR	PR00453A 12.79 9.571e-16 528-
393	PK00455	TYPE A DOMAIN SIGNATURE	546 PR00453B 14.65 5.000e-13
		THE A DOMAIN SIGNATURE	567-582
394	PR00453	VON WILLEBRAND FACTOR	PR00453A 12.79 9.571e-16 528-
394	PR00433	TYPE A DOMAIN SIGNATURE	546 PR00453B 14.65 5.000e-13
		TIPE A DOMAIN SIGNATURE	567-582
700	12200000	CTDUODE CTD BRIDDIC	PR00326A 8.75 1.514e-09 184-
399	PR00326	GTP1/OBG GTP-BINDING PROTEIN FAMILY SIGNATURE	205
	BB20066	PROTEIN FAMILY SIGNATURE PROTEIN ZINC-FINGER METAL-	PD00066 13.92 1.692e-10 235-
402	PD00066	. 1	248
		BINDI.	BL00239B 25.15 1.529e-16 106-
403	BL00239	Receptor tyrosine kinase class Il	154
ļ		proteins.	BL00056A 28.90 3.769e-32 75-
404	BL00056	Ribosomal protein S17 proteins.	115 BL00056B 20.86 6.727e-23
ì			123-147
<u> </u>			BL00150 25.33 1.000e-40 9-56
406	BL00150	Acylphosphatase proteins.	PR00245D 10.47 5.224e-09 186-
410	PR00245	OLFACTORY RECEPTOR	
		SIGNATURE	198 BL00019A 12.56 1.000e-13 38-49
413	BL00019	Actinin-type actin-binding domain	BL00019A 12.36 1.0006-13 38-49
		proteins.	DI 00112D 20 40 5 (CG- 22 364
414	BL00113	Adenylate kinase proteins.	BL00113B 20.49 5.667e-32 784-
Į.	1	}	828 BL00113D 24.41 2.565e-27
l		1	889-920 BL00113C 12.82
L			2.286e-16 832-847
415	BL00915	Phosphatidylinositol 3- and 4-kinases	BL00915B 22.78 9.022e-19 3750-
1	1	proteins.	3788 BL00915C 22.43 6.250e-18
			3873-3912
416	BL00915	Phosphatidylinositol 3- and 4-kinases	BL00915B 22.78 9.022e-19 3750-

SEQ ID NO:	Accession Number	Description	Results*
		proteins.	3788 BL00915C 22.43 6.250e-18 3904-3943
418	PR00326	GTP1/OBG GTP-BINDING PROTEIN FAMILY SIGNATURE	PR00326A 8.75 2.364e-10 186- 207
419	PD02808	PROTEIN RIBOSOMAL L14 PROBABLE 60.	PD02808A 12.03 3.739e-38 5-42 PD02808B 19.19 8.500e-36 85- 120
421	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 4.767e-31 26-65
423	BL00143	Insulinase family, zinc-binding region proteins.	BL00143B 14.41 4.115e-13 102- 117
426	BL00514	Fibrinogen beta and gamma chains C-terminal domain proteins.	BL00514C 17.41 1.000e-40 206- 243 BL00514D 15.35 7.000e-16 251-264 BL00514B 16.42 4.000e-15 150-166 BL00514A 11.68 6.885e-12 40-50
427	PR00536	MELANOCYTE STIMULATING HORMONE RECEPTOR SIGNATURE	PR00536G 6.26 2.688e-09 333- 342
432	PR00130	DNASE I SIGNATURE	PR00130E 14.66 5.871e-16 146- 176 PR00130D 8.65 2.862e-15 116-146 PR00130H 14.38 1.106e-11 229-250 PR00130F 11.23 1.086e-10 176-206 PR00130G 7.22 2.340e-10 206- 229 PR00130A 11.39 7.000e-10 31-61
433	PR00437	SMALL CXC CYTOKINE FAMILY SIGNATURE	PR00437C 14.85 4.696e-09 68-87
445	PF00624	Flocculin repeat proteins.	PF00624J 6.21 9.782e-10 429-484
446	PF00624	Flocculin repeat proteins.	PF00624J 6.21 9.782e-10 429-484
447	PF01140	Matrix protein (MA), p15.	PF01140D 15.54 2.256e-09 222- 257
449	PF00791	Domain present in ZO-1 and Unc5-like netrin receptors.	PF00791B 28.49 8.515e-10 120- 175
450	BL00027	'Homeobox' domain proteins.	BL00027 26.43 1.818e-21 36-79
451	BL00191	Cytochrome b5 family, heme-binding domain proteins.	BL00191K 17.38 4.951e-27 184- 228 BL00191J 11.37 6.447e-17 128-150
454	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 8.457e-09 22-39
456	BL00227	Tubulin subunits alpha, beta, and gamma proteins.	BL00227B 19.29 1.000e-40 51- 106 BL00227C 25.48 1.000e-40 113-165 BL00227D 18.46 1.000e-40 223-277 BL00227A 24.55 2.607e-31 2-36 BL00227F 21.16 4.316e-30 382-436 BL00227E 24.15 2.667e-23 331- 366
457	PR00301	70 KD HEAT SHOCK PROTEIN SIGNATURE	PR00301C 8.62 8.875e-11 235- 244
458	DM00179	w KINASE ALPHA ADHESION T- CELL.	DM00179 13.97 6.870e-09 47-57 DM00179 13.97 8.435e-09 238- 248
459	PR00756	MEMBRANE ALANYL DIPEPTIDASE (M1) FAMILY SIGNATURE	PR00756D 10.58 1.529e-21 367- 383 PR00756B 14.06 5.737e-16 253-269 PR00756A 12.90 1.237e-13 205-221 PR00756E 11.91 4.094e-13 386-399 PR00756C 11.60 6.108e-11 331-

SEQ ID NO:	Accession Number	Description	Results*
			342
461	PR00648	GPR3 ORPHAN RECEPTOR SIGNATURE	PR00648B 7.41 8.340e-09 1029- 1048
462	BL00027	'Homeobox' domain proteins.	BL00027 26.43 5.500e-27 245- 288
466	PD00126	PROTEIN REPEAT DOMAIN TPR NUCLEA.	PD00126A 22.53 2.862e-09 515- 536
469	BL00359	Ribosomal protein L11 proteins.	BL00359A 20.66 5.395e-23 20-56 BL00359B 23.07 4.176e-19 66- 107 BL00359C 22.18 2.000e-12 123-157
470	BL00359	Ribosomal protein L11 proteins.	BL00359B 23.07 4.176e-19 40-81 BL00359C 22.18 2.000e-12 97- 131
473	PF00429	ENV polyprotein (coat polyprotein).	PF00429 31.08 3.195e-12 299- 349
476	BL00450	Aconitase family proteins.	BL00450B 42.34 8.393e-30 281- 336 BL00450D 21.14 2.800e-18 560-584 BL00450B 42.34 6.400e-12 341-396 BL00450A 13.76 2.406e-11 246-260 BL00450C 11.95 6.657e-10 507- 517
477	BL01033	Globins profile.	BL01033A 16.94 7.923e-18 25-47 BL01033B 13.81 1.000e-15 93-
480	BL00615	C-type lectin domain proteins.	BL00615A 16.68 5.500e-10 78-96 BL00615B 12.25 7.577e-09 178- 192
482	BL01177	Anaphylatoxin domain proteins.	BL01177E 20.64 5.800e-24 1043- 1070 BL01177C 17.39 5.333e-19 997-1016 BL01177B 13.61 7.840e-16 703-719 BL01177D 17.50 1.900e-15 1022-1040
487	BL01032	Protein phosphatase 2C proteins.	BL01032H 11.25 8.200e-09 253- 266
489	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 1.563e-15 154- 177 BL00290B 13.17 9.000e-12 214-232
490	PR00245	OLFACTORY RECEPTOR SIGNATURE	PR00245A 18.03 5.886e-10 461- 483

^{*}Results include in order: accession number subtype; raw score; p-value; position of signature in amino acid sequence

TABLE 4

SEQ ID NO:	Pfam Model	Description	E-value	Pfam Score
247	Aldolase II	Class II Aldolase and Adducin N-terminal	7.3e-105	361.8
248	Aldolase II	Class II Aldolase and Adducin N-terminal	7.3e-105	361.8
249	rrm	RNA recognition motif.	8.8e-06	32.6
250	carb anhydrase	Eukaryotic-type carbonic anhydrase	7.8e-178	604.2
252	DSPc	Dual specificity phosphatase, catalytic doma	3.6e-69	243.2
253	NAC	NAC domain	4.7e-30	113.3
255	hexapep	Bacterial transferase hexapeptide	6.2e-06	33.1
260	Acetyltransf	Acetyltransferase (GNAT) family	2.8e-19	77.5
262	ig	Immunoglobulin domain	5.2e-20	69.5
263	metalthio	Metallothionein	1.3e-22	88.6
264	aminotran_2	Aminotransferases class-II	2.4e-109	376.7
265	IPP_isomerase	Isopentenyl-diphosphate delta-isomerase	1.6e-128	440.4
266	PAPS_reduct	Phosphoadenosine phosphosulfate reductase	6.2e-14	59.7
271	PX	PX domain	7.4e-31	115.9
272	PX	PX domain	7.4e-31	115.9
276	KH-domain	KH domain	7.2e-13	56.2
277	KH-domain	KH domain	7.2e-13	56.2
278	GTP_CDC	Cell division protein	7.6e-119	408.2
280	abhydrolase_2	Phospholipase/Carboxylesterase	0.013	-41.9
282	PBP	Phosphatidylethanolamine-binding protein	7.8e-88	305.2
283	actin	Actin	le-174	574.6
284	tubulin	Tubulin/FtsZ family	5e-99	342.4
285	LIM	LIM domain containing proteins	4.6e-36	132.3
286	mito_carr	Mitochondrial carrier proteins	1.4e-41	145.5
288	Ribosomal_L1	Ribosomal protein L13	4.1e-56	199.8
289	zf-C2H2	Zinc finger, C2H2 type	5.4e-268	903.7
291	ig	Immunoglobulin domain	0.053	11.5
292	Ribosomal_L1 4e	Ribosomal protein L14	3.4e-34	127.0
295	PH	PH domain	3.1e-20	77.3
296	Lysyl hydro	Lysyl hydrolase	0	2058.2
299	efhand	EF hand	0.075	19.5
300	vwa	von Willebrand factor type A domain	2.8e-35	130.6
301	Ribosomal_L2 2	Ribosomal protein L22p/L17e	4e-67	236.4
302	homeobox	Homeobox domain	4e-34	126.8
309	IF3	Translation initiation factor IF-3	0.00048	15.1
310	filament	Intermediate filament proteins	9.2e-178	604.0
311	zf-C2H2	Zinc finger, C2H2 type	5.6e-143	488.4
312	Sm	Sm protein	5.6e-26	99.7
314	PDZ	PDZ domain (Also known as DHR or GLGF)	0.037	15.2
316	SH3	SH3 domain	3.6e-12	53.9
318	ig	Immunoglobulin domain	1.5e-12	45.5
319	ras	Ras family	5.1e-94	325.8
321	SAM	SAM domain (Sterile alpha motif)	9.9e-10	45.8
323	TPR	TPR Domain	1.1e-12	55.5
329	rrm	RNA recognition motif.	4.7e-09	43.5
332	ig	Immunoglobulin domain	1e-20	71.8
336	VPS9	Vacuolar sorting protein 9 (VPS9) domain	1.1e-30	115.4
338	ig	Immunoglobulin domain	0.0079	14.2
340	7tm_1	7 transmembrane receptor (rhodopsin family)	2.7e-20	66.6
342	Hydrolase	haloacid dehalogenase-like hydrolase	7.9e-28	105.9
343	zf-C2H2	Zinc finger, C2H2 type	5.1e-35	129.8
345	SH3	SH3 domain	2.2e-14	61.2
349	Ribosomal_L3	Ribosomal protein L35Ae	6e-77	269.0
	5Ae ~		<u> </u>	

SEQ ID NO:	Pfam Model	Description	E-value	Pfam Score
350	SET	SET domain	1.1e-56	201.7
358	Oxysterol BP	Oxysterol-binding protein	3.4e-95	329.7
369	PCMT	Protein-L-isoaspartate(D-aspartate) O-methyl	5e-10	1.8
370	PH	PH domain	9.6e-05	22.0
371	bZIP	bZIP transcription factor	3.2e-07	30.8
373	GDI	GDP dissociation inhibitor	7.4e-25	64.8
374	zf-C2H2	Zinc finger, C2H2 type	7.4e-23 7.1e-78	272.1
375	ubiquitin	Ubiquitin family		
377	efhand	EF hand	3.7e-61	193.6
381	Troponin		1.5e-37	138.2
382	Troponin	Troponin Troponin	4.7e-42	153.1
383	Troponin	Troponin	4.7e-42	153.1
384		RNA recognition motif.	4.7e-42	153.1
387	rrm UBX		7.5e-51	182.4
388		UBX domain	1.5e-25	98.3
	G-patch	G-patch domain	4.4e-10	46.9
391	pkinase	Eukaryotic protein kinase domain	1.2e-110	381.1
393	EGF	EGF-like domain	3.6e-82	286.4
394	EGF	EGF-like domain	3.6e-82	286.4
398	PGAM	Phosphoglycerate mutase family	6.1e-07	29.2
402	zf-C2H2	Zinc finger, C2H2 type	4e-24	93.6
403	pkinase	Eukaryotic protein kinase domain	1.1e-101	351.3
404	Ribosomal_S17	Ribosomal protein S17	6e-43	148.6
406	Acylphosphatas e	Acylphosphatase	8.5e-64	225.4
407	TPR	TPR Domain	1.2e-14	62.1
414	adenylatekinase	Adenylate kinase	1.9e-119	410.3
415	FAT	FAT domain	9.3e-192	650.4
416	FAT	FAT domain	9.3e-192	650.4
418	MMR HSR1	GTPase of unknown function	0.00015	-32.8
419	Ribosomal_L1 4e	Ribosomal protein L14	3.4e-34	127.0
421	zf-C2H2	Zinc finger, C2H2 type	5.2e-99	342.3
423	Peptidase M16	Insulinase (Peptidase family M16)	4.3e-42	153.3
426	fibrinogen C	Fibrinogen beta and gamma chains, C-term	2.4e-68	238.3
432	DNase I	Deoxyribonuclease I (DNase I)	1.2e-171	583.6
433	IL8	Small cytokines (intecrine/chemokine), inter	2.3e-33	115.6
437	TPR	TPR Domain	4.4e-08	40.3
440	PDZ	PDZ domain (Also known as DHR or GLGF)	0.038	15.1
445	zf-C2H2	Zinc finger, C2H2 type	2.7e-22	87.5
446	zf-C2H2	Zinc finger, C2H2 type	4.1e-23	90.2
447	rrm	RNA recognition motif.	0.0029	24.3
449	ank	Ank repeat	4.1e-31	116.8
451	Cyt_reductase	FAD/NAD-binding Cytochrome reductase	7.7e-61	215.5
455	Ribosomal_L1 8p	Ribosomal L18p/L5e family	0.084	-34.1
456	tubulin	Tubulin/FtsZ family	3.4e-283	954.2
457	laminin G	Laminin G domain	1.1e-51	185.1
458	ig	Immunoglobulin domain	2.7e-23	
459	Peptidase M1	Peptidase family M1		80.1
462	pou pou	Pou domain - N-terminal to homeobox domain	6.4e-184 1.3e-48	533.4 175.0
466	TPR	TPR Domain	24: 22	1145
469	Ribosomal L1	Ribosomal protein L11	2.4e-30	114.2
	1	•	7.3e-53	189.0
470	Ribosomal_L1 1	Ribosomal protein L11	7e-40	145.9
473	ENV_polyprote in	ENV polyprotein (coat polyprotein)	1.5e-37	129.4
476	aconitase	Aconitase family (aconitate hydratase)	2e-189	621.7

SEQ ID NO:	Pfam Model	Description	E-value	Pfam Score
477	globin	Globin	5.5e-44	157.8
480	lectin_c	Lectin C-type domain	1.5e-21	85.0
482	EGF	EGF-like domain	1e-22	88.9
487	PP2C	Protein phosphatase 2C	1.1e-13	51.7
489	ig	Immunoglobulin domain	1.8e-20	71.0
490	7tm_1	7 transmembrane receptor (rhodopsin family)	3.1e-13	44.2

BLE
$\mathbf{B}\Gamma$
ρ
⋖
[

Chain Start ID AA 201 3 L 43 2 A 43 A A 43 A		č		DATE	Controld	Compound	PDB Annotation
	AA E	BLAST	Score	Score	Score		VITE MINISTER TO VALUE AND
	344 3	3e-40			205.21	PYSTI; CHAIN: NULL;	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE
	241	8.5e-66			67.25	ANTIBODY (LIGHT CHAIN); CHAIN; L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSICNAL STRYCTURE, GAMMA- 3 INTERFERON, IMMUNE SYSTEM
	238	3.4e-65			68.72	IMMUNOGLOBULIN; CHAIN: A, B;	IMMUNOGLOBULIN IMMUNOGLOBULIN, KAPPA LIGHT: CHAIN DIMER HEADER
	240	6.8e-67			71.40	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;	COMPLEX (ANTIBODY/ANTIGEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR
	241	6.8e-61			67.70	ANTIBODY (CB 4-1); CHAIN: A, B; PEPTIDE: CHAIN: C;	COMPLEX (ANTIBODY/PEPTIDE) POLYSPECIFICITY, CROSS REACTIVITY, FAB-FRAGMENT, PEPTIDE, 2 HIV-1, COMPLEX (ANTIBODY/PEPTIDE)
	232	8.5e-60			69.74	ANTIBODY R24 (LIGHT CHAIN); CHAIN: A; ANTIBODY R24 (HEAVY CHAIN); CHAIN: B;	IMMUNE SYSTEM ANTIBODY (FAB FRAGMENT), IMMUNE SYSTEM
43	238	5.1e-65			68.83	CAMPATH-1H:LIGHT CHAIN; CHAIN: L; CAMPATH-1H:HEAVY CHAIN; CHAIN: H; PEPTIDE ANTIGEN; CHAIN: P;	ANTIBODY, CD52 ANTIBODY, CD52
43	241	8.5e-66			69.59	IMMUNOGLOBULIN 3D6 FAB	
43	241	99-98-9			72.66	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	
43	238	1.2e-62			71.86	ENVELOPE PROTEIN GP 120; CHAIN: G; CD4; CHAIN: C; ANTIBODY 17B; CHAIN: L, H;	COMPLEX (HIV ENVELOPE PROTEIN/CD4/FAB) COMPLEX (HIV ENVELOPE PROTEIN/CD4/FAB), HIV-1

PDB Annotation	EXTERIOR 2 ENVELOPE GP120, T-CELL SURFACE GLYCOPROTEIN CD4, 3 ANTIGEN-BINDING FRAGMENT OF HUMAN IMMUNOGLOBULIN 17B, 4 GLYCOSYLATED PROTEIN			COMPLEX (IMMUNOGLOBULIN/LIPOPROTEIN)	USFA; COMPLEX (IMMUNOGLOBULN/LIPOPROTEIN), OUTER SUFFACE 2 PROTEIN A COMPLEXED WITH FAB184.1, BORRELIA BURGDORFERI 3 STRAIN B31	GLYCOPROTEIN CD4; IMMUNOGLOBULIN FOLD, TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 2 MHC LIPOPROTEIN, POLYMORPHISM				
Compound		INTERLEUKIN-1 BETA; CHAIN: A; TYPE I INTERLEUKIN-1 RECEPTOR; CHAIN: B;	IMMUNOGLOBULIN IMMUNOGLOBULIN GI (IGG1) (MCG) WITH A HINGE DELETION IMCO 3	FAB 184.1; CHAIN: L, H; OUTER SURFACE PROTEIN A; CHAIN: O;	·	T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN: A, B;	IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'H52' (HUH52- OZ FAB) 2FGW 4	IMMUNOGLOBULIN ANTIGEN- BINDING FRAGMENT OF THE MURINE ANTI- PHENYLARSONATE 6FAB 3 ANTIBODY 36-71, FAB 36-71 6FAB	METALLOTHIONEIN CD-7	METALLOTHIONEIN-2 (ALPHA
SeqFold Score		67.34	93.46	69.80		75.16	67.57	68.83	67.02	
PMF Score										
Verify Score										
PSI BLAST		1.26-22	3.4e-68	1.7e-59		9e-17	1.2e-67	5.1e-63	1.4e-17	
End		429	427	241		408	241	241	62	
Start AA		149	29	43)	49	43	43	32	
Chain ID		В	I	ı		∢	1	7		
PDB ID		9	1тсо '	losp		l wio	2fgw	6fab	Imhu	
SEQ NO:		262	262	262		262	262	262	263	

PDB Annotation			TRYPTOPHAN BIOSYNTHESIS TRYPTOPHAN INDOLE-LYASE; TRYPTOPHAN BIOSYNTHESIS, TRYPTOPHAN INDOLE-LYASE, PYRIDOXAL 2 5-PHOSPHATE, MONOVALENT CATION BINDING SITE	AMINOTRANSFERASE AMINOTRANSFERASE, PYRIDOXAL ENZYME	TRANSFERASE AONS 8-AMINO-7-	KETOPELARGONATE SYNTHASE;	SYNTHASE, BIOTIN BIOSYNTHESIS	8-2 AMINO-7-0XONANOATE	SYNTHASE, 8-AMINO-7-	RELOFELARGONALE 3 STALHASE, TRANSFERASE	LYASE CGS; LYASE, LLP. DEPENDENT ENZYMES, METHIONINE BIOSYNTHESIS	LYASE DGD: ENZYME COMPLEXES	CATALYTIC MECHANISM,	DECARBOX Y LATION 2 INFIBITOR, LYASE	LYASE METHIONINE BIOSYNTHESIS,	PYRIDOXAL 5'-PHOSPHATE, GAMMA-2 FAMILY LYASE			CHLOROPHYLL BIOSYNTHESIS	GLUTAMATE SEMIALDEHYDE	AMINOMOTASE; CHLOROFHYLL RIOSVNTHESIS PVRIDOX 41 -5'-	PHOSPHATE, 2 PYRIDOXAMINE-5'- PHOSPHATE, ASYMMETRIC DIMER
Compound	DOMAIN) (/NMR\$) IMHUA 2	METALLOTHIONEIN METALLOTHIONEIN ISOFORM II 4MT2 3	TRYPTOPHANASE: CHAIN: A. B, C. D;	ASPARTATE AMINOTRANSFERASE; CHAIN: A, B:	8-AMINO-7-OXONANOATE	SYNTHASE; CHAIN: A;					CYSTATHIONINE GAMMA- SYNTHASE; CHAIN: A, B, C, D;	2.2-DIALKYLGLYCINE	DECARBOXYLASE (PYRUVATE);	CHAIN: A;	CYSTATHIONINE GAMMA-	SYNTHASE; CHAIN: A, B, C, D, E, F, G. H.	LYASE(CARBON-CARBON)	11 KOSINE PRENOL-LT ASE (E.C.4.1.99.2) 1TPL 3	GLUTAMATE SEMIALDEHYDE	AMINOTRANSFERASE; CHAIN: A, B.	ú	
SeqFold Score		126.36	76.11	85.17	224 70						79.69	78.45			88.98		86.06		95.88			
PMF Score																		,				
Verify Score																•						
PSI BLAST		1.7e-08	5.1e-10	5.le-58	3.46-72	!					3.4e-45	1.7e-46			29-99		5.1e-06		1.4e-72			,
End AA		79	919	290	593						640	597			635		612		593			
Start AA		-	190	212	203	}					242	213			215		209		170			
Chain ID			≺	A	A				•		∢	A			∢		¥	·	٧			
PDB ID		4mt2	lax4	1bjw	1bs0				•		lcs1	1d7u			lqgn		1tpl		2gsa		•	
SEQ ID NO:		263	264	264	264						264	264			264		264		264			

SEQ NO:	PDB ID	Chain ID	Start AA	End AA	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Сотроипа	PDB Annotation
	lsur		226	454	3e-31			66.05	PAPS REDUCTASE; CHAIN: NULL;	OXIDOREDUCTASE PHOSPHOADENOSINE PHOSPHOSULFATE REDUCTASE; ASSIMILATORY SULFATE REDUCTION, 3-PHOSPHO- ADENYLYL-SULFATE 2 REDUCTASE, OXIDOREDUCTASE
T	lgri	×.	7	231	5.1e-22			57.45	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
1	1gri	4	7	231	5.16-22			57.45	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14
	1be3	н	22	85	7.5e-26			95.55	CYTOCHROME BC1 COMPLEX; CHAIN: A, B, C, D, E, F, G, H, I, I, K;	ELECTRON TRANSPORT UBIQUINOL CYTOCHROME C OXIDOREDUCTASE, COMPLEX ELECTRON TRANSPORT, CYTOCHROME, MEMBRANE PROTEIN
	1dt4	A	258	304	1.5e-09	-0.52	0.07		NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING MOTIF
	1dtj	U	258	298	3e-06	-0.27	0.75		RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF
	1dtj	Ω	258	298	3e-06	-0.30	0.93		RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2: CHAIN: A. B. C. D.	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF
	lvig		258	296	1.3e-06	-0.20	0.82		VIGILIN; IVIG 5 CHAIN: NULL;	RIBONUCLEOPROTEIN RNA- BINDING PROTEIN 1VIG 19
	2fmr		88	252	3,4e-31	0.53	1.00		FMR I PROTEIN; CHAIN: NULL;	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, PNA-BINDING DECTERN SINGE
	2fmr		188	252	6e-32	0.53	00.1		FMR I PROTEIN; CHAIN: NULL;	RNA-BINDING PROTEIN, THAIL RNA-BINDING PROTEIN KHI; FMRI, FNA GILE X, MODULAR PROTEINS,
+	2fmr		188	252	6e-32			96.30	FMRI PROTEIN; CHAIN: NULL;	RNA-BINDING PROTEIN, NMR RNA-BINDING PROTEIN KH1; FMR1,

PDB Annotation	FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING MOTIF			RIBONUCLEOPROTEIN RNA- BINDING PROTEIN IVIG 19	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR		IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING MOTIF			RIBONUCLEOPROTEIN RNA- BINDING PROTEIN IVIG 19	RNA-BINDING PROTEIN KHI; FWRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	RNA-BINDING PROTEIN KHI; FWRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS,
Compound	-	NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	VIGILIN; IVIG 5 CHAIN: NULL; IVIG 6	FMR1 PROTEIN; CHAIN: NULL;	FMR I PROTEIN; CHAIN: NULL;	FMRI PROTEIN; CHAIN: NULL;		NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	VIGILIN; IVIG 5 CHAIN: NULL; IVIG 6	FMR1 PROTEIN; CHAIN: NULL;	FMR I PROTEIN; CHAIN: NULL;	FMRI PROTEIN; CHAIN: NULL;
SeqFold Score							66.96			-						96.30
PMF Score		0.07	0.75	0.93	0.82	1.00		1.00		0.07	52.0	0.93	0.82	1.00	1.00	
Verify Score		-0.52	-0.27	-0.30	-0.20	0.53		0.53		-0.52	-0.27	-0.30	-0.20	0.53	0.53	
PSI BLAST		1.5e-09	3e-06	3e-06	1.3e-06	6e-32	6e-32	8.5e-32		1.5e-09	3e-06	3e-06	1.3 c -06	3.4e-31	6e-32	6e-32
End		304	298	298	296	252	252	252		304	298	298	296	252	252	252
Start AA		258	258	258	258	188	88	188		258	258	258	258	188	188	188
Chain D		Ą	O	Ω						∢	၁	Q				
PDB ID		1dt4	Idtj	ldtj	1vig	2fmr	2fmr	2fmr	,	144	Idtj	ldtj	1vig	2fmr	2fmr	2fmr
SEQ D NO:		276	276	276	276	276	276	276		277	277	277	277	277	277	277

PDB Annotation	RNA-BINDING PROTEIN, NMR	ALPHA-BETA FOLD, RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	RIBONUCLEOPROTEIN RNA- BINDING PROTEIN IVIG 19	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	RNA-BINDING PROTEIN KH1; FMR1, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB34; COMPLEX (GTP- BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE	20, 27,00000,111	HALOFEKOXIDASE BROMOPEROXIDASE L, HALOPEROXIDASE, HALOPEROXIDASE, OXIDOREDUCTASE	AMINOPEPTIDASE AMINOPEPTIDASE, PROLINE
Compound	VICTOR CONTOUR	NEURO-UNCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	VIGILIN; IVIG 5 CHAIN: NULL; IVIG 6	FMR I PROTEIN; CHAIN: NULL;	FMR1 PROTEIN; CHAIN: NULL;	FMR I PROTEIN; CHAIN: NULL;	RAB-3A; CHAIN: A; RABPHILIN- 3A; CHAIN: B;	RAB3A; CHAIN: A;		CHLOROPEROXIDASE L; CHAIN: A. B, C;	PROLINE IMINOPEPTIDASE; CHAIN: A, B;
SeqFold Score							66'96						
PMF Score	100	0.07	0.75	0.93	0.82	1.00		1.00	0.01	-0.07	,	0.03	-0.13
Verify Score	9	-0.52	-0.27	-0.30	-0.20	0.53		0.53	-0.01	0.14		-0.03	0.15
PSI BLAST		1.5e-09	3e-06	3e-06	1.3e-06	6e-32	6e-32	8.5e-32	6.8e-56	3.4e-56		5.1e-20	le-21
End		304	298	298	296	252	252	252	239	236		450	449
Start AA		258	258	258	258	188	881	188	35	37		225	225
Chain ID		∢	U	Ω					∢	⋖		<	A
PDB ID		1dt4	1 dtj	1 dtj	lvig	2fmr	2fmr	2fmr	lzbd	3rab		1888	1azw
SEQ D NO:		277	277	277	277	277	277	277	278	278		280	280

PDB Annotation	IMINOPEPTIDASE, SERINE PROTEASE, 2 XANTHOMONAS CAMPESTRIS	HALOPEROXIDASE HALOPEROXIDASE A2, CHLOROPEROXIDASE A2; HALOPEROXIDASE, OXIDOREDUCTASE, PEROXIDASE, ALPHA/BETA 2 HYDROLASE FOLD, MUTANT M99T	HYDROLASE A/B HYDROLASE FOLD, DEHALOGENASE 1-S BOND	HYDROLASE HYDROLASE, ALPHA/BETA HYDROLASE FOLD, EPOXIDE DEGRADATION, 2 EPICHLOROHYDRIN	HYDROLASE HOMODIMER, ALPHA/BETA HYDROLASE FOLD, DISUBSTITUTED UREA 2 INHIBITOR	HYDROLASE ALPHA/BETA HYDROLASE FOLD	HYDROLASE PROLYL ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER	HYDROLASE EXODEOXYRIBONUCLEASE I; ALPHA-BETA DOMAIN, SH3-LIKE DOMAIN, DNAQ SUPERFAMILY	LIPID-BINDING PROTEIN PEBP, PBP LIPID-BINDING	LIPID-BINDING PROTEIN PEBP, PBP LIPID-BINDING	LIPID-BINDING PROTEIN PEBP, PBP LIPID-BINDING
Compound		BROMOPEROXIDASE A2; CHAIN: NULL;	HALOALKANE DEHALOGENASE: 1-CHLOROHEXANE CHAIN: A;	SOLUBLE EPOXIDE HYDROLASE; CHAIN: A, B, C, D;	EPOXIDE HYDROLASE; CHAIN: A, B;	SERINE HYDROLASE; CHAIN: A;	PROLYL OLIGOPEPTIDASE; CHAIN: A;	EXONUCLEASE I; CHAIN: A;	PHOSPHATIDYLETHANOLAMINE -BINDING PROTEIN; CHAIN: NULL:	PHOSPHATIDYLETHANOLAMINE -BINDING PROTEIN; CHAIN: NULL:	PHOSPHATIDYLETHANOLAMINE -BINDING PROTEIN; CHAIN: NULL;
SeqFold Score										317.69	
PMF Score		0.22	-0.18	-0.17	-0.08	0.24	0.01	0.23	1.00		1.00
Verify Score		0.07	0.22	0.07	0.07	0.34	-0.05	-0.08	1.02		1.02
PSI BLAST		1.7e-20	5.1e-21	1.7e-21	1.7e-22	1.7e-20	8.5e-33	6.8e-27	3e-83	3e-83	6.8e-80
End		451	378	447	394	438	453	302	232	232	232
Start AA		239	233	235	220	232	157	134	48	48	48
Chain ID			A	4	æ	A	¥	A			
PDB ID		1brt	lcqw	lehy	1ek1	levq	Iqfm	1fxx	la44	1a44	1a44
SEQ ID NO:		280	280	280	280	280	280	281	282	282	282

PDB Annotation	LIPID-BINDING LIPID-BINDING, SIGNALLING	LIPID-BINDING LIPID-BINDING, SIGNALLING	LIPID-BINDING LIPID-BINDING, SIGNALLING	CONTRACTILE PROTEIN ACTIN, GELSOLIN, CYTOSKELETON ORGANIZATION, ACTIN- 2	CONTRACTILE PROTEIN LATRUNCULIN A, GELSOLIN, ACTIN, DEPOLYMERISATION, 2	CONTRACTILE PROTEIN ACTIN- CONFLEX, ACTIN, GELSOLIN, COMPLEX, ACTIN, GELSOLIN,	CONTRACTILE PROTEIN ACTIN- DEPOLYMERIZING FACTOR (ADF); COMPLEX, ACTIN, GELSOLIN,			MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASF HEITY	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HEI IX	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX
Compound	PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN; CHAIN; A. B.	PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN; CHAIN; A. B.	PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN; CHAIN: A, B;	ACTIN; CHAIN: A; GELSOLIN; CHAIN: G;	GELSOLIN; CHAIN: S; ALPHA ACTIN; CHAIN: A	ACTIN: CHAIN: A; GELSOLIN; CHAIN: G:	ACTIN; CHAIN: A; GELSOLIN; CHAIN: G;	ACETYLATION AND ACTIN- BINDING BETA-ACTIN-PROFILIN COMPLEX 28TF 3	ACETYLATION AND ACTIN- BINDING BETA-ACTIN-PROFILIN COMPLEX 2BTF 3	TUBULIN; CHAIN: A, B;	TUBULIN; CHAIN: A. B;	TUBULIN; CHAIN: A, B;	TUBULIN; CHAIN: A, B;
SeqFold Score		324.00					413.68		414.62	285.64			307.13
PMF Score	1.00		1.00	1.00	1.00	1.00		1.00			1.00	1.00	
Verify Score	1.05		1.05	0.95	0.87	0.99		0.91			60.0	0.11	
PSI BLAST	6e-82	6e-82	8.5e-80	0	0	0	0	0	0	0	0	0	0
End AA	232	232	232	376	376	376	376	376	376	461	462	459	459
Start	49	49	49	∞		∞	∞	7	6			-	
Chain ID	∢	∢	V	¥	¥.	4	-A	А	A	А	¥	В	B
PDB ID	Ibch	1beh	1beh	ldga	lesv	lyag		2btf	2btf	Itub	Itub	Itub	Itub
SEQ NO:	282	282	282	283	283	283	283	283	283	284	284		284

PDB Annotation	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN, ZINC 2 FINGER	CONTRACTILE LIM DOMAIN, CRP, NMR, MUSCLE DIFFERENTIATION, CONTRACTILE	CONTRACTILE LIM DOMAIN, CRP, NMR, MUSCLE DIFFERENTIATION, CONTRACTILE	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS ICTL 15	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL-
Compound	QCRP2 (LIMI); CHAIN: NULL;	QCRP2 (LIMI); CHAIN: NULL;	QCRP2 (LIM1); CHAIN: NULL;	QCRP2 (LIMI); CHAIN: NULL;	QCRP2 (LIM1); CHAIN: NULL;	QCRP2 (LIMI); CHAIN: NULL;	CRP1; CHAIN: A;	CRP1; CHAIN: A;	AVIAN CYSTEINE RICH PROTEIN; 1CTL 3	AVIAN CÝSTEINE RICH PROTEIN; ICTL 3	AVIAN CYSTEINE RICH PROTEIN; ICTL 3	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2; CHAIN: A;
SeqFold Score							71.26					
PMF Score	0.58	0.80	0.58	0.82	0.24	0.76		-0.17	0.10	0.05	0.22	0.41
Verify Score	0.43	0.31	0.08	-0.13	-0.40	0.38		0.01	-0.22	-0.26	0.03	-0.17
PSI BLAST	3e-14	6.8e-10	1.5e-16	1.4e-12	4.5e-11	1.2e-09	1.4e-23	1.4e-23	1.7e-12	3.4e-15	5.1e-13	1.7e-11
End AA	437	441	200	501	999	571	572	510	437	510	571	437
Start AA	384	384	443	443	504	504	375	379	376	444	504	381
Chain ID							4	4				A
PDB ID	1a7i	1a7i	la7i	la7i	la7i	1a7i	168t	158t	lctl	lctl	lctl	lcxx
SEQ NO:	285	285	285	285	285	285	285	285	285	285	285	285

PDB Annotation			METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM DOMAIN PROTEIN	METAL-BINDING PROTEIN LIM DOMAIN, ZINC-FINGER, METAL- BINDING PROTEIN	METAL-BINDING PROTEIN LIM DOMAIN, ZINC-FINGER, METAL- BINDING PROTEIN	RIBOSOME 50S RIBOSOMAL PROTEIN L.2P, HMAL2, HL4; 50S RIBOSOMAL PROTEIN L.3P, HMAL3, HL1; 50S RIBOSOMAL PROTEIN L4E, HMAL4, HL6; 50S RIBOSOMAL PROTEIN L5P, HMAL5, HL13; 30S RIBOSOMAL PROTEIN HS6; 50S RIBOSOMAL PROTEIN L13P, HMAL13; 50S RIBOSOMAL PROTEIN L14P, HMAL14, HL27; 50S RIBOSOMAL			
Сотроипа	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2: CHAIN: A;	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2: CHAIN: A;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	LASP-I; CHAIN: NULL;	LASP-1; CHAIN: NULL;	23S RRNA; CHAIN: 0; 5S RRNA; CHAIN: 9; RIBOSOMAL PROTEIN L2; CHAIN: A; RIBOSOMAL PROTEIN L3; CHAIN: B; RIBOSOMAL PROTEIN L4; CHAIN: C; RIBOSOMAL PROTEIN L5; CHAIN: D; RIBOSOMAL PROTEIN L7AE; CHAIN: E; RIBOSOMAL PROTEIN L7AE; CHAIN: E; RIBOSOMAL PROTEIN L10E; CHAIN: F; RIBOSOMAL PROTEIN L10E; CHAIN: F; RIBOSOMAL PROTEIN L10; CHAIN: F;
SeqFold Score											
PMF Score	0.53	0.87	0.41	0.22	60:0	0.12	0.93	0.99	0.29	0.15	1.00
Verify Score	0.38	0.41	-0.25	0.21	-0.13	0.13	0.32	0.28	-0.13	-0.34	-0.14
PSI BLAST	5.1e-13	3.4e-12	1.4e-10	4.5e-17	1.46-15	3e-20	1.5e-12	3.4e-11	1.4e-06	0.0012	96-49
End	496	568	440	451	510	513	569	571	410	535	411
Start AA	443	501	382	384	443	443	502	502	381	502	'n
Chain ID	4	∢									O
PDB ID	lcxx	lcxx	liml	lim!	liml	liml	liml	Imil	1zfo	1zfo	Ifk
SEQ NO:	285	285	285	285	285	285	285	285	285	285	288

PDB Annotation	PROTEIN L15P, HMAL15, FL9; 50S RIBOSOMAL PROTEIN L18P, HMAL18, HL12; 50S RIBOSOMAL PROTEIN L18E, HL29, L19; 50S RIBOSOMAL PROTEIN L19E, HMAL19, HL24; 50S RIBOSOMAL PROTEIN L21E, HL31; 50S RIBOSOMAL PROTEIN L22P, HMAL22, HL23; 50S RIBOSOMAL PROTEIN L23P, HMAL23, HL25, L21; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L24P, HMAL27; 50S RIBOSOMAL PROTEIN L29P, HMAL29, HL33; 50S RIBOSOMAL PROTEIN L30P, HMAL30, HL20, HL16; 50S RIBOSOMAL PROTEIN L39F, HMAL29, HL3; 50S RIBOSOMAL PROTEIN L37E, HL5; 50S RIBOSOMAL PROTEIN L37E, HL5; 50S RIBOSOMAL PROTEIN L37E, HL5; 50S RIBOSOMAL PROTEIN L37E, HL5; 50S RIBOSOMAL PROTEIN L37E, HL5; 50S RIBOSOMAL PROTEIN L37E, HL5; 50S RIBOSOMAL PROTEIN L37E, HMAL6, HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E; 50S RIBOSOMAL PROTEIN L44E; 50S RIBOSOMAL PROTEIN L6F; HMAL6, HL10 RIBOSOME ASSEMBLY, RNA- RNA, PROTEIN-RNA, PROTEIN-	RIBOSOME 50S RIBOSOMAL PROTEIN L2P, HMAL2, HL4; 50S RIBOSOMAL PROTEIN L3F, HMAL3, HL1; 50S RIBOSOMAL PROTEIN L4E, HMAL4, HL6; 50S RIBOSOMAL PROTEIN L5P, HMAL5, HL13; 30S RIBOSOMAL PROTEIN L19P, HMAL13; 50S RIBOSOMAL PROTEIN L14P, HMAL14, HL27; 50S RIBOSOMAL PROTEIN L15P, HMAL18, HMAL18, HL12; 50S RIBOSOMAL PROTEIN L18P, HMAL18, HL12; 50S RIBOSOMAL PROTEIN L18E, HL29, L19; 50S RIBOSOMAL PROTEIN L19P, HMAL19, HL24; 50S RIBOSOMAL PROTEIN L18E, HMAL18, HL12; 50S RIBOSOMAL PROTEIN L18E, HL29, L19; 50S RIBOSOMAL PROTEIN L19E, HMAL19, HL24; 50S RIBOSOMAL PROTEIN L21E, HL31;
Compound	CHAIN: G; RIBOSOMAL PROTEIN L14; CHAIN: H; RIBOSOMAL PROTEIN L15E; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L18; CHAIN: L2; CHAIN: L; RIBOSOMAL PROTEIN L19; CHAIN: M; RIBOSOMAL PROTEIN L22; CHAIN: O; RIBOSOMAL PROTEIN L23; CHAIN: P; RIBOSOMAL PROTEIN L224; CHAIN: O; RIBOSOMAL PROTEIN L29; CHAIN: P; RIBOSOMAL PROTEIN L24; CHAIN: R; RIBOSOMAL PROTEIN L29; CHAIN: S; RIBOSOMAL PROTEIN L30; CHAIN: T; RIBOSOMAL PROTEIN L31E; CHAIN: U; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL PROTEIN Y; RIBOSOMAL	233 RRNA; CHAIN: 0; 55 RRNA; CHAIN: 9; RIBOSOMAL PROTEIN L2; CHAIN: A; RIBOSOMAL PROTEIN L3; CHAIN: B; RIBOSOMAL PROTEIN L4; CHAIN: C; RIBOSOMAL PROTEIN L5; CHAIN: E: RIBOSOMAL PROTEIN L10E; CHAIN: F: RIBOSOMAL PROTEIN L13; CHAIN: G; RIBOSOMAL PROTEIN L14; CHAIN: H; RIBOSOMAL PROTEIN L14; CHAIN: H; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L18; CHAIN: I; RIBOSOMAL PROTEIN L18; CHAIN: K; RIBOSOMAL PROTEIN L18; CHAIN: K; RIBOSOMAL
SeqFold Score		
PMF Score		1.00
Verify Score		0.18
PSI BLAST		5.10-32
End		135
Start AA	,	7
Chain ID		b
PDB ID		I III
SEQ NO:		288

		-						~
PDB Annotation	50S RIBOSOMAL PROTEIN L22P, HMAL22, HL23; 50S RIBOSOMAL PROTEIN L23P, HMAL23, HL25, L21; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L24E, HL21/HL22; 50S RIBOSOMAL PROTEIN L29P, HMAL29, HL33; 50S RIBOSOMAL PROTEIN L30P, HMAL30, HL20, HL16; 50S RIBOSOMAL PROTEIN L31E, L34, HL30; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L35E, 50S RIBOSOMAL PROTEIN L39E, HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E, L4, HLA; 50S RIBOSOMAL PROTEIN L30P, HL10 RIBOSOME ASSEMBLY, RNA- RNA, PROTEIN-RNA, PROTEIN-		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)
Compound	PROTEIN L18E; CHAIN: L; RIBOSOMAL PROTEIN L19; CHAIN: M; RIBOSOMAL PROTEIN L21E; CHAIN: N; RIBOSOMAL PROTEIN L22; CHAIN: O; RIBOSOMAL PROTEIN L23; CHAIN: P; RIBOSOMAL PROTEIN L24; CHAIN: Q; RIBOSOMAL PROTEIN L24; CHAIN: Q; RIBOSOMAL PROTEIN L30; CHAIN: R; RIBOSOMAL PROTEIN L30; CHAIN: J; RIBOSOMAL PROTEIN RIBOSOMAL PROTEIN L32E; CHAIN: V; RIBOSOMAL PROTEIN L37AE; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L37AE; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L44E; CHAIN: Z; RIBOSOMAL PROTEIN L5; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSK ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE;
SeqFold Score								
PMF Score			0.98	0.84	0.46	0.45	0.05	0.17
Verify Score			0.06	0.09	0.04	-0.47	-0.10	0.05
PSI BLAST			1.4e-40	9e-44	1.2e-39	1.7e-30	6.8e-31	5.1e-27
End AA			1104	1132	1715	1906	1934	639
Start			1023	1051		1826	1854	559
Chain ID			٧	Y	V	Y	¥	Ą
PDB UD			laih	laih	laih	laih	laih	lalh
SEQ ID NO:			289	289	289	289	289	289

PDB Annotation	COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZNC FINGER/DNA) ZNC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
Compound	CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	OGSK ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B, C;	QGSK ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B, C;	DNA: CHAIN: A. B. D. E. CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC PINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAM: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold Score										
PMF Score		0.11	0.93	0.72	0.78	1.00	1.00	1.00	1.00	1.00
Verify Score		0.15	0.22	0.04	-0.00	0.21	0.28	0.34	0.35	0.16
PSI BLAST		1.5e-29	6e-45	3e-42	4.5e-42	9e-42	1.4e-39	1.7e-41	1.7e-43	3.4e-45
End		899	992	1020	1047	1075	1103	1131	1159	1187
Start AA		592	116	939	296	995	1022	1050	1078	1106
Chain ID		∢	Y	V	Ą	∢	υ <u> </u>	U	U	U
PDB ID		lalh	lalh	Ialh	lalh	lalh	Imey	Imey	Imey	Imey
SEQ ID NO:		289	289	289	289	289	289	289	289	289

PDB Annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER DINA)	Collection (Anicolation anicolation anicol	COMPLEX (ZINC FINGERIDNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	ייייי לייויטיוטטיוו הייויטן יישם ווייסט
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C. F. G.		DNA; CHAIN; A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSOS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A. B, D. E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAIN: A B D E:	Dist, Chimit, 13, 13, 13, 13,
SeqFold Score																																					
PMF Score		00'1		3			1.00					1.00					1.00					8.					0.1					66.0				90	22.7
Verify Score		-0.08	,	0.45			0.44					0.22					0.05					0.29					0.04					0.24				0.50	>>>>
PSI BLAST		6.8e-47	9	5.1e-48			1.7e-48					1.4e-49					1.4e-49					3.4e-50					3.4e-49					le-47				8 Se-47	2000
End		1215	9	1243			1271					1299					1327					1355					1383					1411	-			1439	,,,,
Start AA		1134		7911			1190					1218					1246					1274					1302					1330				1358	,
Chain ID		U	,	ی			O					ပ					၁					ပ					ပ					ပ				C	,
PDB ID		Imey		- -			lmey					1mey					lmey					Imey					Imey	•				Imey				1mev	
SEQ ID NO:		289	000	697			289					586					289					586	-				289					289				289	

PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C. F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold Score				103.44					
PMF Score		1.00	1.00		1.00	1.00	1.00	1.00	1.00
Verify Score		0.31	0.50		0.38	0.31	0.13	0.34	0.26
PSI BLAST		1.7e-47	1.2e-48	1.4e-49	1.4e-49	1e-49	1.7e-49	3.4e-49	1.7e-49
End		1467	1495	1496	1523	1551	1579	1607	1635
Start		1386	1414	1414	1442	1470	1498	1526	1554
Chain		O	ပ	U	U	ပ	U	o ·	O
PDB ID		Imey	Imey	Ітеу	Imey	Imey	Imey	1теу	lmey
SEQ ID NO:		289	289	289	289	289	289	289	289

PDB Annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTERLINA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (7INC FINGER/DNA) 7INC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (2010 PRIORE)	COMPLEX (ZINC FINGERONA) ZINC	INTERACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		DNA: CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAIN: A D D E.	CONSENSIS ZINC ENCED	PROTEIN; CHAIN: C. F. G.			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAIN: A, B, D. E;
SeqFold Score																														
PMF Score		1.00	0.99			1.00			00.1				80 0	0.70				0.12				0.48				0.78				0.58
Verify Score		0.09	0.28			0.52			0.41				0 03	3				-0.22				-0.28				-0.20				0.35
PSI BLAST		1.7e-48	1.7e-44			8.5e-44			5.1e-49				1 40-40	St St St				3.4e-45				le-49				le-49				1.7e-33
End		1663	1686			1742			1770		_		1708			-	-+	1822				1906				1934		_		1938
Start AA		1582	1610			9991			1689		_		1717	:				1745				1825			_	1853				1881
Chain 10		U	ပ			υ -			S				ر)		-	,	ပ				-				၁				S
PDB ID		Imey	Imey			Imey			lmey	-			Imev					Imey				lmey				lmey				Imey
SEQ ID NO:		289	289			687			586				289				000	687				289				289				289

PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C. F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold Score									
PMF Score		0.55	0.82	1.00	1.00	86.0	1.00	1.00	1.00
Verify Score		-0.04	-0.05	0.23	0.03	0.11	0.19	0.05	0.34
PSI BLAST		3.4e-44	3.4e-46	1.4e-47	8.5e-49	le-49	6.8e-50	6.8e-50	le-49
End		639	199	695	723	779	807	835	863
Start AA		558	586	614	642	869	726	754	782
Chain 1D		U	U	O.	U	U	ပ	U	ပ
PDB ID		Imey	1mey	lmey	1mey	lmey	lmey	Imey	lmey
SEQ ID		289	289	289	289	289	289	289	289

PDB Annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INTITATION ZINC PINGPR PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN
Compound		DNA, CHAIN: A, B, D. E, CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;	DNA; CHAM: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E, CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;
SeqFold Score									113.59
PMF Score		1.00	00.1	0.98	1.00	1.00	0.94	0.86	
Verify Score		0.32	0.04	0.03	0.16	0.59	0.46	0.18	·
PSI BLAST		3.4e-49	3.4e-44	8.5e-41	3.4e-42	1.4e-39	1.5e-10	1.2e-33	1.7e-36
End		891	935	963	991	1075	935	1196	1272
Start AA		810	838	998	910	994	806	1051	1106
Chain ID		U	U	S	၁	S	ڻ ن	∢	∢
PDB ID		1mey	Ітеу	lmey	lmey	Imey	1mey	1116	1116
SEQ ID NO:		289	289	289	289	289	289	289	289

		,						
PDB Annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZING FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZNG FNGFEN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZING FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIFTION INTIATION ZNG PINGER PROTERN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION ZIMC FINICED DEOCTED.	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION) (TRANSCRIPTION RNA REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NUTLATION FINGERINGED PROCTEIN	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION (TRANSCRIPTION POLYMERASE III, 2 TRANSCRIPTION COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION COMPLEX COMP	COMPLEX (TRANSCRIPTION
Compound	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B. C. E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S
SeqFold Score								
PMF Score	0.86	0.99	06.0	0.76	0.64	0.25	0.17	0.95
Verify Score	-0.10	0.07	0.39	0.20	-0.13	-0.29	0.04	90.0
PSI BLAST	1.7e-36	6.8e-37	1.4e-36	3.4e-37	1.2e-33	le-33	1.7e-30	3.4e-36
End	1308	1420	1532	1588	1695	1808	929	788
Start AA	1163	1275	1387	1443	1555	1667	532	643
Chain ID	¥	∢	∢	V	4	∢	∢	A
PDB ID	1476	1116	11f6	1166	11f6	146	11.66	1tf6
SEQ ID NO:	289	289	289	289	289	289	289	289

PDB Annotation	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2
Сотроипа	RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAÎN: A, D; 5S RIBOSOMAL RNA GENE; CHAÎN: B, C, E, F;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score							
PMF Score		0.94	0.87	0.42	0.94	0.94	0.93
Verify Score		-0.10	0.05	-0.12	0.04	0.05	-0.46
PSI BLAST		6.8e-38	3.46-30	6.8e-31	1.5e-54	1e-55	3e-53
End		849	951	1033	1131	1187	1244
Start AA		669	811	867	1020	1077	1104
Chain 1D		∢	<	∢	ပ	υ	U
PDB ID		1tf6	146	11.76	lubd	lubd	lubd
SEQ ID NO:		289	289	289	289	289	289

						
PDB Annotation	FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION
Сотроипа		YY I: CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.72	0.58	0.89	0.98	66.0
Verify Score		0.00	0.18	0.06	0.30	0.33
PSI BLAST		1.56-52	3.46-34	66-52	1.46-34	1.26-52
End		1271	1299	1327	1327	1356
Start AA		0911	8611	1216	1226	1245
Chain ID		U	U	U	U	U
PDB ID		pqnI	lubd	pqnl	Iubd	lubd
SEQ NO.		289	289	289	289	289

	_			_				-												_	_									_											
PDB Annotation	REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;	INTIATOR ELEMENT VVI 2NC.	FINGER PROTEIN DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATION ELEMENT, YY1, ZINC 2	FINGER FROIEIN, DNA-PROTEIN	TECOGNITION, 3 COMPLEX	(TKANSCKIPTION	KEGULATION/DNA)	COMPLEX (TRANSCRIPTION	TECULATION/DNA) YING-YANG 1;	NITTATOR ELEMENT SASSETTO	ENICED PROTEIN SAL RECEIPE	FINGER FROIEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION BEGILL ATTOMORY STREET	KEGULATION/DINA) TING-YANG I;
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR EI EMENT DNA:	CHAIN: A. B.					YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	Citalin: A, B;				VVI. CHAIN: C. ADENO	ASSOCIATED VIDIO DE	NITIATOR EI EMENT DNA:	CHAIN: A B.	· · · · · · · · · · · · · · · · · · ·				Contract of the Contract of th	YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;					YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;					YYI; CHAIN: C; ADENO- ASSOCIATED VIRIIS P5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
SeqFold Score						•																						_													
PMF Score		0.78					,	98.0							0.93	}		_					00-	<u> </u>							5	 8:-							- 6	66.0	
Verify Score		0.01					76.0	0.26							11.0								20.0	3					-		9	 60:03	-	-			_		\dagger	-0.29	
PSI BLAST		7. s e-50					20.50	36-30							4.5e-52								4 50.55	-							2 40 24	+0-04							1 50 40	.JG-49	
End	5	1383				·	1/120	453							1496								1579							_	1607								1635		
Start	27,0	7/71					1328	1320							1384								1469	3							1506	3							1524		
Chain ID	Ĺ	رر					C)				-			C								U					_			C								C		
PDB	1,1hd	3					lubd	3							1 ubd					_			lubd								1 ubd								lubd	\dashv	
SEQ ID NO:	280	3					289	}							289								289	-							289	_							289	\dashv	

	1				T	
PDB Annotation	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATIONDNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILIATIONAL)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX PROTEIN PROTEIN PECH AT STANSON AND A PECH IN A PROMERY.	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN (TRANSCRIPTION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX CHANSCRIPTION RECOGNITION, 3 COMPLEX CHANSCRIPTION	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION TREGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN. DNA-PROTEIN
Compound	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A. B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INTIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A. B;
SeqFold Score						
PMF Score		0.94	0.31	0.49	0.83	0.90
Verify Score		0.04	0.12	-0.01	-0.22	-0.19
PSI BLAST		le-32	66-52	3.4e-30	7.5e-51	6.8e-32
End		1663	1714	1714	1742	1770
Start AA		1562	1608	1618	1636	1674
Chain ID		U	U	O	U	O
PDB CO		lubd	lubd	lubd	lubd	lubd
SEQ ID NO:		289	289	289	289	289

PDB Annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION) REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
Compound		YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAM: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		. 0.12	90.0	0.41	0.86	0.86
Verify Score		-0.13	-0.21	0.20	-0.19	-0.17
PSI BLAST		1.7e-30	6.8e-29	1.5e-31	3e-42	3.4e-32
End		1822	639	299		695
Start AA		1725	540		584	589
Chain ID		O	O	O	၁	υ
PDB ID		Iubd	lubd	lubd	lubd	Iubd
SEQ ID NO:		289	289	289	289	289

		.,				
PDB Annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIL ATION/DNA)	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIL ATION/DNA)	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	CONTRACTOR OF THE ACCOUNT OF THE ACCOUNT OF THE ACCOUNT OF THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT ON THE ACCOUNT OF THE ACC	REGULATION/DNA) REGULATION/DNA) YING-YANG I; TRANSCRIPTION INTIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION.
Compound	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO. ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;
SeqFold Score						
PMF Score	0.51	0.77	0.92	0.57	0.93	0.93
Verify Score	0.04	-0.15	-0.06	0.01	-0.06	0.22
PSI BLAST	1.5e-47	1.2e-52	1.2e-33	7.5e-51	7.5e-53	1e-33
End AA	724	752	751	779	835	835
Start AA	619	640		899	725	734
Chain ID	O	U	O	v	U	O
PDB ID	Iubd	lubd	1ubd	1464	lubd	lubd
SEQ ID NO:	289	289	289	289	289	289

	T			т		
PDB Annotation	INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGIT ATTOMANA)	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX REANSCRIPTION	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 RECOGNITION 3 COMPLEX
Compound	CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INTIIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.87	0.95	0.92	0.83	0.66
Verify Score		0.26	0.00	-0.14	0.04	-0.28
PSI BLAST		8.5e-33	9e-53	1.2e-31	9e-53	1.5e-27
End AA		891	935	935	166	166
Start AA		790	808	8 1 8 1	864	874
Chain ID		O	Ú	ပ	O	υ
PDB ID),	lubd	Iubd	lubd	1ubd
SEQ NO:		289	289	289		289

		т																													
PDB Annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(IRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI; GLI ZINC FINGER COMPI EX (FINA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTFINIONA)	COMPLEX ONA BINDING	PROTEIN/DNA) FIVE-FINGER GLI:	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEY (DAY PRIDAIC	PROTEIN/DNA) FIVE FINGER GIT:	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DIVA- BINDING PROTEIN/DIVA)
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;	CHAIN: A, B;	-		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLIII	CHAIN: A: DNA; CHAIN: C, D;			ZINC FINGER PROTEIN GLII;	CHAIN: A; DINA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GITT	CHAIN: A; DNA; CHAIN: C. D;			ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;	
SeqFold Score																			····										-		
PMF Score		66.0				96.0			68.0			1.00			86.0				0.86			1.00			0.92	 !			0.16		
Verify Score		0.10				-0.09			0.05			0.30			0.12				0.0 40.			0.19			-0.20			\dagger	-0.17		
PSI BLAST		3e-53				3e-72			7.5e-71			1.3e-67			5.1e-34			.,	4.5e-67			4.5e-67		-	6e-71			,	6 66		
End AA		1076				1188			1273			1329			1382			337	469			1525			1580	-		-+	91/1		
Start AA		964				1022		;	9011			1190			1254			2005	7061			1386			1414			\dagger	824	•	
Chain ID		υ ———				∢			⋖			∢			∢				<			<			4				₹		
PDB ID		Inbd				7 gii		:1-6	7 8 11		:	Zgli			2gli			100	, E	-		2gli			2gli			321:			
SEQ NO:	6	687			000	607		000	697		000	687			586			280	607			587			289			280	201		

	T	<u>, </u>			· · · · · · · · · · · · · · · · · · ·		· · · · ·				
PDB Annotation	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; BLI ZINC FINGER, COMPLEX (DNA-BINDING)	COMPLEX (DNA-BNDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BNDING DEOTFEN/DNA-	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTFIN/DNA).	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; BLI) ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING) PROTEIN/DNA	CONTROLL OF THE PROPERTY OF TH	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; BLI, ZINC FINGER, COMPLEX (DNA- BINDING BROTTEN, COMPLEX (DNA-	COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING) PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI:
Compound	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C. D:	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;
SeqFold Score											
PMF Score	0.63	0.59	0.78	0.86	0.62	0.62	0.19	0.49	0.46	96:0	0.84
Verify Score	0.03	-0.17	-0.13	0.18	0.00	-0.28	-0.31	-0.20	0.11	0.01	-0.19
PSI BLAST	1.7e-32	4.5e-67	1.7e-30	4.5e-65	8.5e-33	3.4e-33	1.5e-53	1.5e-63	1e-33	1.5e-68	3e-66
End	1662	1744	1713	1768	1797	694	725	181	753	809	837
Start AA	1534	1554	1590	1638	1646	558	587	614	622	642	0.09
Chain ID	A	4	¥	∢	4	Ą	Ą	∢	4	4	٧
PDB ID	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli
SEQ ID NO:	289	289	289	289	289	289	289	289	289	289	289

										
PDB Annotation	GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (I)NA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLJ; GLI, ZINC FINGER, COMPLEX (DNA-	EINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GIJ; GILJ ZINC FINGER, COMPLEX (DNA-BINDING)	COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB COMPLEX, IDIOTOPE, ANTI-IDIOTOPE	IMMUNE SYSTEM BET V I.A, BETVI ALLERGEN; BV16 FAB-FRAGMENT, KAPPA MOPC21 CODING SEQUENCE; HEAVY CHAIN OF THE MONOCLONAL ANTRODY MST
Compound		ZINC FINGER PROTEIN GLJI; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	IG HEAVY CHAIN V REGIONS; CHAIN: A; IG HEAVY CHAIN V REGIONS; CHAIN: B; IG HEAVY CHAIN V REGIONS; CHAIN: C; IG HEAVY CHAIN V REGIONS;	MAJOR POLLEN ALLERGEN BET V 1-4; CHAIN: A, D, G, J; IMMUNOGLOBULIN KAPPA LIGHT CHAIN; CHAIN: B, E, H, K; ANTIBODY HEAVY CHAIN FAB;
SeqFold Score										
PMF Score		0.98	0.82	0.40	0.69	0.81	96:0	0.87	90.00	0.00
Verify Score		0.00	90.0	-0.04	-0.00	-0.10	-0.01	0.03	-0.58	0.56
PSI BLAST		89-99	1.5e-33	1.7e-30	1.5e-69	1.7e-26	4.5e-70	1.5e-69	1.5e-23	8.5e-22
End AA	ço	893	862	934	992	993	1077	1105	99	8 99
Start AA	707	07/	734	790	838	874	016	938	20	20
Chain ID	4	ć	∢	¥	∀	∢	V	4	В	U
PDB ID	2oli		2gli	2gli	2gli	2gli	2gli	2gli	loic	lfsk
SEQ ID NO:	289		289	289				289		291 1

PDB Annotation	BET V 1, BV16 FAB FRAGMENT, ANTIBODY ALLERGEN COMPLEX	·		TRANSFERASE BRUTON'S AGAMMAGLOBULNEMIA TYROSINE KINASE, BTK; TRANSFERASE, PH DOMAIN, BTK MOTIF, ZINC BINDING, X-LINKED 2 AGAMMAGLOBULNEMIA, TYROSINE-PROTEIN KINASE	SIGNAL TRANSDUCTION PROTEIN	SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3-PHOSPHOINOSTIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TEANSDUCTION PROTEIN, ADAPTOR PROTEIN,	SIGNALING PROTEIN ARF! GUANINE NUCLEOTIDE EXCHANGE FACTOR AND PH DOMA IN	
Compound	CHAIN: C, F, I, L;	COMPLEX(ANTIBODY-ANTIGEN) FV FRAGMENT (IGG1, KAPPA) (LIGHT AND HEAVY VARIABLE DOMAINS 1JHL 3 NON- COVALENTLY ASSOCIATED) OF MONOCLONAL ANTI-HEN EGG 1JHL 4 LYSOZYME ANTIBODY D11.15 COMPLEX WITH PHEASANT EGG 1JHL 5 LYSOZYME 1JHL 5	GLYCOPROTEIN VARIANT SURFACE GLYCOPROTEIN (N. TERMINAL DOMAIN) 1VSG 3	BRUTON'S TYROSINE KINASE; CHAIN: A, B;	BETA-SPECTRIN; 1BTN 4 CHAIN: NULL; 1BTN 5	DUAL, ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	GRPI; CHAIN: A;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMAIN) MUTANT IPLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS IPLS 4 (INS(G105- LEHHHHHH)) (NMR, 25
SeqFold Score								
PMF Score		0.09	60.0	0.07	0.25	0.92	0.77	0.95
Verify Score		-0.72	0.36	0.21	0.20	0.62	0.48	0.69
PSI BLAST		6.8e-22	0.00075	60-09	1.3e-08	1.5e-18	1.5e-14	1.5e-14
End		99	181	118	110	114	115	115
Start AA		20	123	30	30	22	6	_
Chain ID		ш	4	∢		A	Y	
PDB ID		H.	lvsg	l btk	1btn	1 1 58	l fgy	slq!
SEQ ID NO:		291	292	295	295	295	295	295

PDB Annotation			SEVENI ESS: PI FOR STRING SON OF	SEVENLESS, SIGNAL	TRANSDUCTION	SIGNAL TRANSDUCTION IRS-1; BETA-SANDWHICH, SIGNAL	TRANSDUCTION		TRANSFERASE GLYCOSYLTRANSFERASE	TRANSCRIPTION INHIBITOR BETA-	PROPELLER	I KANSCKIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA- PROPELLER	TRANSCRIPTION INHIBITOR BETA-	rnorghick	COMPLEX (G1P. BINDING/TRANSDUCER) BETA1,	TRANSDUCIN BETA SUBUNIT;	GAMMAI, TRANSDUCIN GAMMA	SUBUNIT; COMPLEX (GTP.	BINDING/TRANSDUCER), G PROTEIN,	TRANSDUCTION	COMPLEX (GTP-	BINDING/TRANSDUCER) BETA1.	TRANSDUCIN BETA SUBUNIT;	GAMMAI, TRANSDUCIN GAMMA	SUBUNIT; COMPLEX (GTP.	BINDING/TRANSDUCER), G PROTEIN,	HEIEKUIKIMER 2 SIGNAL	I KANSDUCTION	COMPLEX (GIF: BINDING/TRANSDITCER) RETAI	TRANSDUCIN BETA SUBUNIT:	GAMMAI, TRANSDUCIN GAMMA	SUBUNIT; COMPLEX (GTP-
Compound	STDIOTH IDEN IN C. F.	SOCIONES) IPLS 3	SOS I; CHAIN: NOLL;		-	INSULIN RECEPTOR SUBSTRATE 1; CHAIN: A, B;		The state of the state of the order	SPORE COAT POLYSACCHARIDE BIOSYNTHESIS PROTEIN CHAIN:	TRANSCRIPTIONAL REPRESSOR	TO ANSCRIPTIONAL BEPRESSON	TUP1; CHAIN: A, B, C;	TRANSCRIPTIONAL REPRESSOR TUP1: CHAIN: A. B. C:	TRANSCRIPTIONAL REPRESSOR	GT AT BUA (CT AT PITA CHILL CENT	CHAIN: A; GT-BETA; CHAIN: B;	GT-GAMMA; CHAIN: G;					GT-ALPHA/GI-ALPHA CHIMERA;	CHAIN: A; GT-BETA; CHAIN: B;	GT-GAMMA; CHAIN: G;					GT-AI PHA/GI-AI PHA CUINGED A	CHAIN: A; GT-BETA; CHAIN: B:	GT-GAMMA; CHAIN: G;		
SeqFold Score																				-													
PMF Score		100	0.0		;	 4.		0 13	 	0.34	000	8	0.34	0.95	-0 14	-						0.16							86.0				-
Verify Score		0 13	3.		000	0.40		100-	7.0	0.03	0.24		-0.04	0.21	0.24							-0.24	•					-	0.33				1
PSI BLAST		1.5e-11	:		30.10	01-20		4 50-05	20.	1.7e-59	5.1e-58		1.7c-47	6.8e-50	3.4e-56							3.4e-39							3.4e-44			-	
End		114			207	1		467	· · · · ·	437	481		152	352	479						7	252							297 3				
Start AA		33	 		33	3		296)	901	183		0	54	170							7.							31			•	-
Chain			-		A			A		∢	¥		<	∢	В					-		<u>π</u>	-						В :				
PDB ID		1 pms			lage	9		lqgq		lerj	lerj	101		erj	l got				·			1081							l got				
SEQ D		295			295			296		7.67	297	707	+		297		-				202								297				

	ŀ								· ₁		
PDB Annotation	BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDICTION	COMPLEX (GTP-BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT;	GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, THETENOTRIMER 2 SIGNAL	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SIIINIT	GAMMAI, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAI.	TRANSDUCTION	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL	TRANSDUCTION	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3	REPEATS COMPLEX (INHIBITORNUCLEASE) COMPLEX (INHIBITORNUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3	REPEATS COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA
Compound		GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;		GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;		CT AI PYLA (CT AT PAYS)	O I-ALFHAGI-ALFHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;		RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	RIBONUCLEASE INHIBITOR; CHAIN: A, D: ANGIOGENIN; CHAIN: B, E;	U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D; .
SeqFold Score		59.96									
PMF Score				96.0		0.77			0.58	86.0	0.40
Verify Score				0.12		0.28			0.44	0.05	0.18
PSI BLAST		3.4e-66		8.5e-51		3.4e-66			7.5e-12	1.46-10	0.00051
End	,	369		349		389			708	223	218
Start AA	,	Ç		22		86			32	49	112
Chain D	a	a		m,		В			<	4	V
PDB ID	T _{ao} t	1081 		1081		lgot		104:	1949	la4y	la9n
SEQ ID NO:	797	<u> </u>	100	167		297		300	067	298	298

SNRNP, RIBONUCLEOPROTEIN CELL ADHESION LEUCINE RICH REPEAT, CALCIUM BINDING. CELL	ADHESION TRANSFERASE CRYSTAL STRUCTURE, RAB GERANYLGERANYLTRANSFERASE, 2.0 A 2 RESOLUTION, N- FORMYL METHIONINE AT DIA	SUBUNIT, BETA SUBUNIT CONTRACTILE PROTEIN LEUCINE- RICH REPEAT, BETA-BETA-ALPHA CYLINDER, DYNEIN, 2	CHLAMYDOMONAS, FLAGELLA RNA BINDING PROTEIN TAP (NFX1); RIBONUCLEOPROTEIN (RNP,R3D OR RKM) AND LEUCINE-RICH-REPEAT 2	RNA BINDING PROTEIN TAP (NFX1); RIBONUCLEOPROTEIN (RNP,RBD OR	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3,	UBIQUITIN PROTEIN LIGASE LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIOUITIN, 2 E3.	UBIQUITIN PROTEIN LIGASE LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIOUITIN, 2 E3.	UBIQUITIN PROTEIN LIGASE LIGASE CYCLIN A/CDK2. ASSOCIATED PROTEIN P45; CYCLIN
INTERNALIN B; CHAIN: A;	RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA	SE BETA SUBUNIT; CHAIN: B, D; OUTER ARM DYNEIN; CHAIN: A;	NUCLEAR RNA EXPORT FACTOR I; CHAIN: A, B:	NUCLEAR RNA EXPORT FACTOR 1; CHAIN: A. B;	SKP2; CHAIN: A, C, E, G, I, K, M, O; SKPI; CHAIN: B, D, F, H, J, L, N, P;	+	-	SKP2; CHAIN: A, C, E, G, I, K, M, O; I SKP1; CHAIN: B, D, F, H, I, L, N, P;
							o o	S
0.64	0.05	0.04	0.37	0.13	0.46	-0.02	00:	96.0
0.22	0.02	-0.06	0.13	0.06				0.54 0
5.1e-13	1.7e-07	1.2e-09	1.7e-09	1.7e-09	5. le-11	1.5e-08		6.8e-19 0
219	174	216	210	210	214	140	<u> </u>	207 6
49	53	113	124	124	129	m	6	
4	A						A A	A 49
1d0b	Idce	14s9	[60]	101	IIqv	Iqv		lfqv ,
298	298	298	298					298
	1d0b A 49 219 5.1e-13 0.22 0.64 INTERNALIN B; CHAIN: A;	1d0b A 49 219 5.1e-13 0.22 0.64 INTERNALIN B; CHAIN: A; 1dce A 53 174 1.7e-07 0.02 0.05 RAB GERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLTRANSFERA	3 1d0b A 49 219 5.1e-13 0.22 0.64 INTERNALIN B; CHAIN: A; 3 1dce A 53 174 1.7e-07 0.02 0.05 GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D; 1ds9 A 113 216 1.2e-09 -0.06 0.04 OUTER ARM DYNEIN; CHAIN: A;	8 1d0b A 49 219 5.1e-13 0.22 0.64 INTERNALIN B; CHAIN: A; 8 1dce A 53 174 1.7e-07 0.02 0.05 RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: B, D; CHAIN: A; CHAIN: B, D; CHAIN: A; CHAIN	8 1d0b A 49 219 5.1e-13 0.22 0.64 INTERNALIN B; CHAIN: A; 8 1dce A 53 174 1.7e-07 0.02 0.05 RAB GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT; CHAIN: A, C; RAB GERANYLGERANYLTRANSFERA SE BETA SUBUNIT; CHAIN: A, C; 1 ds9 A 113 216 1.2e-09 -0.06 0.04 OUTER ARM DYNEIN; CHAIN: B, D; 1 fo1 A 124 210 1.7e-09 0.13 0.37 I; CHAIN: A, B; 1 fo1 B 124 210 1.7e-09 0.06 0.13 NUCLEAR RNA EXPORT FACTOR 1 i CHAIN: A, B; 1: CHAIN: A, B; 1: CHAIN: A, B; 1: CHAIN: A, B;	1d0b A 49 219 5.1e-13 0.22 0.64 INTERNALIN B; CHAIN: A; 1 1 1.7e-07 0.05 0.05 RAB GERANYLGERANYLTRANSFERA S 1ds9 A 113 216 1.2e-09 -0.06 0.04 OUTER ARM DYNEIN; CHAIN: B, D; OUTER ARM DYNEIN; CHAIN: B, D; OUTER ARM DYNEIN; CHAIN: A; 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1

						$\overline{}$				-		_		-	-										_				_		_
PDB Annotation	A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-	ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19;	SKP1, SKP2, F-BOX, LRR, LEUCINE-	RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIOUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2-	ASSOCIATED P45: CYCLIN A/CDK2-	LRRS. LEUCINE-RICH REPEATS, SCF.	2 UBIQUITIN, E3, UBIQUITIN	TICASE CVOLDE A CORES	LIGASE CYCLIN A/CDK2- ASSOCIATED P45: CYCLIN A/CDK2-	ASSOCIATED P19; SKP1, SKP2, F-BOX,	LRRS, LEUCINE-RICH REPEATS, SCF,	2 UBIQUITIN, E3, UBIQUITIN	The Asserting Control of the Control	GTPASE-ACTIVATING PROTEIN FOR	SPII, GTPASE-ACTIVATING PROTEIN,	GAP, RNAIP, RANGAP, LRR,	LEUCINE- 2 RICH REPEAT PROTEIN,	TWENDING, HEMIHEDRAL	TWINNING, MEROHEDRY	ACETYLATION RNASE INHIBITOR,	RIBONUCLEASE/ANGIOGENIN	INHIBITOR ACETYLATION,	ACETYL ATION BY SET MITTIETON	RIBONICI.FASE/ANGIOGENIN	INHIBITOR ACETYLATION	LEUCINE-RICH REPEATS		MUSCLE PROTEIN MDE; MUSCLE PROTEIN	MUSCLE PROTEIN MDE; MUSCLE
Compound		SKP2; CHAIN: A, C, E, G, I, K, M, O;	SINT I, CAMIN: B, D, F, A, J, E, N, F;			SKP2; CHAIN: A, C; SKP1; CHAIN:	B. D;			SKB2: CHANI: A C: SKB1: CHANI:	B. D.				GTBASE ACTINATING BBOTTER!	RNAI_SCHPO; CHAIN: A, B;						RIBONUCLEASE INHIBITOR;	CHAIN: NOLL;		RIBONIICI FASE INHIBITOR:	CHAIN: NULL:				MYOSIN; CHAIN: A, B, C, D, E, F, G, H;	MYOSIN; CHAIN: A, B, C, D, E, F,
SeqFold Score																															219.13
PMF Score		0.92				0.27				0.77	3				0.23	7:0						0.76			60	2				00.1	
Verify Score		0.85				-0.35				0 64	5				20 38	2						0.31		•	0.32	}				0.91	
PSI BLAST		4.5e-19				5.le-11				6 8e-19	200				1e-08	3						1.4e-08			le-10				,,,,,	3.46-44	3.4e-44
End AA		661				214				207	3				220	ì						223			217				131	<u> </u>	151
Start AA		2				129				49	:				Ξ			•				113			53				,	+	4
Chain		⋖				∢				 			_	_	A	_													٥	a	æ
PDB ID		1fqv				1fs2				1fs2					lyrg)						Zbuh			2bnh				124	5	lbrl
SEQ ID NO:		7				298				298					298						000	867			298				290		299

	1	1											
PDB Annotation	PROTEIN							METAL TRANSPORT CALMODULIN, HIGH DESOLITION PISCEDIES	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F HAND, 2 OPEN CONFORMATION REGULATED 3 MURCH E CONTRACTION-REGULATED 3	CALCIUM-REGULATED MUSCLE CONTRACTION MUSCLE CONTRACTION, CALCIUM-BINDING, TROPONIN, E-F HAND, 2 OPEN CONFORMATION REGULATORY DOMAIN, CALCIUM-REGULATED 3	MUSCLE CONTRACTION		CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEXICALCIUM-BINDING
Сотроипа	G, H;	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3	CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT	PROTEIN KINASE II 1CDM 4	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICT 1 3	CALMODULN; CHAIN: A;	TROPONIN C; CHAIN: NULL;	TROPONIN C; CHAIN: NULL;	CONTRACTILE SYSTEM PROTEIN	CONTRACTILE SYSTEM PROTEIN TROPONIN C 110P 3	CALMODULIN; CHAIN: A; RS20; CHAIN: B;
SeqFold Score				103.28			113.59		89.97			83.80	
PMF Score		1.00				1.00		1.00		1.00	1.00	∞ 	00.1
Verify Score		0.60				0.49		0.40		0.38	0.57		0.72
PSI BLAST		1.7e-56		1.7e-56	,	6.8e-62	6.8e-62	1.4e-59	1.7e-48	I.7e-48	5.1e-49	5.1e-49	1.2e-60 (
End AA		149		149	十		150	150 1	151	148	148 5.	151 5.	149 1.
Start AA		4		4		4	4	4	3				
Chain ID	-	∢		∢			-	A 4		4	4	4	7
PDB ID		ED31		lcdm		<u> </u>	Icil		1tcf	ltcf	Itop	ltop	lvrk
SEQ NO:	十	667	\dashv	299	200					11			299 1v

											_													
PDB Annotation	PROTEIN/PEPTIDE) CALMODULIN, CALCIUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2	COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	INTEGRIN INTEGRIN, CELL	COLLAGEN-BINDING COLLAGEN-	DINUCLEOTIDE BINDING FOLD	COLLAGEN-BINDING COLLAGEN- BINDING, HEMOSTASIS,	WILLEBRAND WILLEBRAND, BLOOD COAGULATION, PLATELET,	GLYCOPROTEIN	WILLEBRAND WILLEBRAND, BLOOD COAGULATION, PLATELET, GLYCOPROTEIN	STRUCTURAL PROTEIN I-DOMAIN, METAUL BINDING, COLLAGEN,	AURESION ATON	WILLEBRAND FACTOR,	GLYCOPROTEIN IBA (A:ALPHA) BINDING, 2 COMPLEX	(WILLEBRAND/IMMUNOGLOBULIN),	BLOOD COAGULATION TYPE 3 2B VON WILLEBRAND DISEASE	CELL ADHESION PROTEIN A-	DOMAIN INTEGRIN, CELL ADHESION	EXCIEIN, GLYCOPROLEIN, EXTRACELLIII AB 2 MATERIX	CYTOSKELETON	CELL ADHESION PROTEIN A-	DOMAIN INTEGRIN, CELL ADHESION	PROTEIN, GLYCOPROTEIN,	CYTOSKELETON	CELL ADHESION LFA-1, ALPHA- L'BETA-2 INTEGRIN, A-DOMAIN;
Compound	CALMODULN; CHAIN: A; RS20; CHAIN: B;		INTEGRIN ALPHA 2 BETA;	VON WILLEBRAND FACTOR; CHAIN: A. B.	.	VON WILLEBRAND FACTOR; CHAIN: A, B;	AI DOMAIN OF VON WILLEBRAND FACTOR; CHAIN:	NULL;	AI DOMAIN OF VON. WILLEBRAND FACTOR; CHAIN: NULL;	INTEGRIN ALPHA-1; CHAIN: A, B;	MANUNCET OBT IT NING 4 1001.	CHAIN: L; IMMUNOGLOBULIN	WILLEBRAND FACTOR; CHAIN:	A;		INTEGRIN; CHAIN: NULL;				INTEGRIN; CHAIN: NULL;				CDI1A; ILFA 5 CHAIN: A, B; ILFA 6
SeqFold Score	115.21			72.47			62.36									59.31								
PMF Score			0.83			0.1			00.1	1.00	% U									 0 0				0.99
Verify Score			0.37			0.88		23 0	0.57	0.58	0.70									0.61				0.53
PSI BLAST	1.2e-60		1.7e-28	1.5e-23		1.5e-23	1.4e-35	1 40 35	1.46-33	5.1e-29	5.1e-34					5.1e-31	-			5.le-31				8.5e-23
End AA	151		215	226		218	227	227	/27	217	227			-		224				/17				977
Start AA	7		36	38	0.5	ج ج	23	30	67	39	36					39				-		_	١	82
Chain TD	Ą		V	∢		∢				Ą	Ą													<
PDB	lvrk		laox	latz	4-	1 arz	lauq	Tano	han.	lck4	1 fns					opi i			3	9		-	211	1114
SEQ NO:	299		300	300	300	9	300	300	3	300	300				00,	200			300	3			200	200

	Γ		T	Τ	J. A	 ;				_			-		3;				∞ `												 o			S		
PDB Annotation	ILFA 8	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; II EA 8	CELL ADHESION INTEGRIN, CELL ADHESION		RNA BINDING PROTEIN RIBOSOMAL PROTEIN SYNTHESIS RNA	BINDING, 2 ANTIBIOTICS	RESISTANCE, RNA BINDING	RIBOSOME 50S RIBOSOMAI.	PROTEIN L2P, HMAL2, HL4: 50S	RIBOSOMAL PROTEIN L3P, HMAL3,	HL1; 50S RIBOSOMAL PROTEIN L4E.	HMAL4, HL6; 50S RIBOSOMAL	PROTEIN LSP, HMALS, HL13; 30S	RIBOSOMAL PROTEIN HS6; 50S	RIBOSOMAL PROTEIN L13P, HMAL13;	50S RIBOSOMAL PROTEIN L14P,	HMAL14, HL27; 50S RIBOSOMAL	PROTEIN LISP, HMALIS, HL9; 50S	RIBOSOMAL PROTEIN L18P, HMAL18,	HL12; 50S RIBOSOMAL PROTEIN	L18E, HL29, L19; 50S RIBOSOMAL	PROTEIN LI9E, HMAL 19, HL24, 50S	KIBOSOMAL PROTEIN L21E, HL31;	JUNA 1 22 HI 22: 505 PIROSONALI	DROTEIN 1 220 HAAL 22 HI 25 1 21.	50S RIBOSOMAL PROTEIN 1249	HMAL24 HILL HILLS 508	RIBOSOMAL PROTEIN 1.24F	HL21/HL22: 50S RIBOSOMAL	PROTEIN L29P, HMAL29, HL33: 50S	RIBOSOMAL PROTEIN L30P, HMAL30.	HL20, HL16; 50S RIBOSOMAL	PROTEIN L31E, L34, HL30; 50S	RIBOSOMAL PROTEIN L32E, HL5; 50S	RIBOSOMAL PROTEIN L37E, L35E;	50S RIBOSOMAL PROTEINS L39E,
Compound		CDIIA; ILFA 5 CHAIN: A, B; ILFA 6	ALPHA! BETA! INTEGRIN; CHAIN: A; ALPHA! BETA! INTEGRIN; CHAIN: B;		RIBOSOMAL PROTEIN L22; CHAIN: A;			23S RRNA; CHAIN: 0; 5S RRNA;	CHAIN: 9; RIBOSOMAL PROTEIN	L2; CHAIN: A; RIBOSOMAL	PROTEIN L3; CHAIN: B;	RIBOSOMAL PROTEIN L4; CHAIN:	C; RIBOSOMAL PROTEIN L5;	CHAIN: D; RIBOSOMAL PROTEIN	L7AE; CHAIN: E; RIBOSOMAL	PROTEIN L10E; CHAIN: F;	RIBOSOMAL PROTEIN L13;	CHAIN: G; RIBOSOMAL PROTEIN	LI4; CHAIN: H; RIBOSOMAL	PROTEIN LISE; CHAIN: 1;	KIBOSOMAL PROTEIN L15;	CHAIN: J: KIBOSOMAL PROTEIN	DEOTERN 1 185 CHARL	RIBOSOMAI PROTEIN I 19:	CHAIN: M. RIBOSOMAI PROTEIN	L21E: CHAIN: N; RIBOSOMAL	PROTEIN L22; CHAIN: O:	RIBOSOMAL PROTEIN L23;	CHAIN: P; RIBOSOMAL PROTEIN	L24; CHAIN: Q; RIBOSOMAL	PROTEIN L24E; CHAIN: R;	RIBOSOMAL PROTEIN L29;	CHAIN: S; RIBOSOMAL PROTEIN	L30; CHAIN: T; RIBOSOMAL	PROTEIN LAIE; CHAIN: U;	KIBUSUMAL PROTEIN L32E;
SeqFold Score		53.04																																		
PMF Score			0.94		0.71			1.00	-					•																						-
Verify Score			0.41		-0.14			0.02																			-									1
PSI BLAST		8.5e-23	1.4e-28		1.7e-33			1.7e-44																-									-			
End AA		722	217		153			152											-																	1
Start AA		38	37		<u></u>			2																						-				-		-
Chain ID		4	4		⋖			0																					<u> </u>							
PDB ID	4	B 1112	19c5		Ibxe			1#K											-			-														-
SEQ NO:	200	2005	300	, ,	301			301																												

					,		1	T	
PDB Annotation	HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E, LA, HLA; 50S RIBOSOMAL PROTEIN L6P, HMAL6, HL10 RIBOSOME ASSEMBLY, RNA- RNA, PROTEIN-RNA, PROTEIN- PROTEIN			PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	PROTEIN/DNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	TRANSCRIPTION/DNA ULTRABITHORAX; PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVELOPMENT, 2 SPECIFICITY	TRANSCRIPTION, DNA ULTRABITHORAX; PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVEL OPMENT 3 SPECIFICITY	יייייייייייייייייייייייייייייייייייייי
Сотроила	CHAIN: V, RIBOSOMAL PROTEIN L37AE; CHAIN: W, RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y, RIBOSOMAL PROTEIN L44E; CHAIN: Z, RIBOSOMAL PROTEIN L6; CHAIN: 1;	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 I AHD 3 REPLACED BY SER (C39S) COMPLEX WITH DNA (NMR, IAHD 4 16 STRUCTURES) IAHD 5	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 I AHD 3 REPLACED BY SER (C39S) COMPLEX WITH DNA (NMR, 1AHD 4 16 STRUCTURES) 1AHD 5	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	ULTRABITHORAX HOMEOTIC PROTEIN IV; CHAIN: A; HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (5- CHAIN: C: DNA (5- CHAIN: D)	ULTRABITHORAX HOMEOTIC PROTEIN IV, CHAIN: A; HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (3, CHAIN: C. DNA (4, CHAIN: D)	DNA-BINDING FUSHI TARAZU
SeqFold Score			72.79	69.28			61.07		71.20
PMF Score		0.98			66.0	1.00		0.83	
Verify Score		-0.16			-0.07	-0.29		60'0	
PSI BLAST		1e-33	le-33	1.5e-30	1.5e-30	1.7e-27	4.5e-30	4.5e-30	1.2e-28
End AA		208	509	203	203	204	202	201	210
Start AA		143	143	137	143	147	143	144	142
Chain D		c.	a.	А	¥	¥	4	⋖	
PDB ID		lahd	lahd	1672	1672	1572	158i	1b8i	Ifiz
SEQ ID NO:		302	302	302	302	302	302	302	302

PDB Annotation					COMPLEX (DNA-BINDING PROTEIN/DNA) HD; HOMEODCMAIN, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) HD; HOMEODCMAIN, COMPLEX (DNA-BINDING PROTEIN/DNA)	SIGNALING PROTEIN PROTEIN- LIGAND COMPLEX, POLYPROLINE RECOGNITION, BETA TURN	SIGNALING PROTEIN PLECKSTRIN HOMOLOGY DOMAIN FOLD	COMPLEX (SMALL GTPASE/NUCLEAR PROTEIN) COMPLEX (SMALL GTPASE/NUCLEAR PROTEIN), SMALL GTPASE, 2 NUCLEAR TRANSPORT	GENE REGULATION INITIATION FACTOR
Compound	PROTEIN (HOMEODOMAIN) (NMR, 20 STRUCTURES) 1FTZ 3	DNA-BINDING FUSHI TARAZU PROTEIN (HOMEODOMAIN) (NMR, 20 STRUCTURES) 1FTZ 3	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 ISAN 3 REPLACED BY SER AND RESIDUES 1-6 DELETED (C39S,DEL 1-6) ISAN 4 (NMR, 20 STRUCTURES) ISAN 5	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 ISAN 3 REPLACED BY SER AND RESIDUES 1-6 DELETED (C39S,DEL 1-6) ISAN 4 (NMR, 20 STRUCTURES) ISAN 5	ANTENNAPEDIA PROTEIN; CHAIN: A, B; DNA; CHAIN: C, D, E, F;	ANTENNAPEDIA PROTEIN; CHAIN: A, B; DNA; CHAIN: C, D, E, F:	GLGF-DOMAIN PROTEIN HOMER; CHAIN: A; METABOTROPIC GLUTAMATE RECEPTOR MGLURS; CHAIN: B;	GLGF-DOMAIN PROTEIN HOMER; CHAIN: A;	RAN; CHAIN: A, C; NUCLEAR PORE COMPLEX PROTEIN NUP358; CHAIN: B, D;	TRANSLATION INITIATION FACTOR IF3; CHAIN: A;
SeqFold Score			69.53			68.47				
PMF Score		0.59		00.1	00.1		0.46	69.0	0.96	68.0
Verify Score		-0.30		0:00	0.38		0.48	0.62	0.57	0.62
PSI BLAST		1.2e-28	3.4e-31	3.4e-31	5.1e-31	5.1e-31	0.0003	0.00015	1.5e-25	1.2e-16
End AA		208	209	208	202	202	96	96	101	237
Start AA		144	148	149	147	147	4	4	7	159
Chain ID					Y	< −	4	٧	В	4
PDB ID	_	Ifiz	Isan	lsan	9ant	9ant	1ddv	MppI	lrrp	2ife
SEQ ID NO:		302	302	302	302	302	307	307	307	309

PDB Annotation	SIGNALING PROTEIN GBP, GTP HYDROL YSIS, GDP, GMP, INTERFERON INDUCED, DYNAMIN 2 RELATED, LARGE GTPASE FAMILY. GMPPNP, GPPNHP.	OUTER MEMBRANE PROTEIN OSMOPORIN; OUTER MEMBRANE PROTEIN, NON-SPECIFIC PORIN, OSMOPORIN, 2 BETA-BARREL, TRANSMEMBANE	HYDROLASE DOUBLE BETA BARREL, BACTERIAL SERINE PROTEASE	HYDROLASE DOUBLE BETA BARREL, BACTERIAL SERINE PROTEASE	SERINE PROTEASE SERINE PROTEASE, LOW TEMPERATURE, HYDROLASE, 2 SERINE PROTEINASE	SERINE PROTEASE SERINE PROTEASE, LOW TEMPERATURE, HYDROLASE, 2 SERINE PROTEINASE	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC
Compound	INTERFERON-INDUCED GUANYLATE-BINDING PROTEIN I; CHAIN: A;	OMPK36; CHAIN: A, B, C;	ALPHA-LYTIC PROTEASE; CHAIN: A;	ALPHA-LYTIC PROTEASE; CHAIN: A;	ALPHA-LYTIC PROTEASE; CHAIN: NULL;	ALPHA-LYTIC PROTEASE; CHAIN: NULL;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B. C;	QGSK ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	DNA; CHAIN: A, B, D, B; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;
SeqFold Score											
PMF Score	0.03	-0.20	0.04	-0.08	-0.06	-0.20	0.27	0.11	0.12	0.22	0.95
Verify Score	-0.27	1.73	1.84	1.29	1.63	1.03	-0.02	-0.24	-0.46	-0.06	-0.08
PSI BLAST	0.0049	1.5e-15	1.2e-11	3e-09	le-11	1.2e-10	8.5e-18	1.2e-39	6e-37	3.4e-32	1.7e-39
End AA	167	66	119	96	119	66	195	448	728	561	223
Start AA	107	δ.	14	∞	14	∞	116	339	619	105	142
Chain ID	4	∢	V V	∢			∢	V	4	ပ	S
PDB ID	115n	losm	1994	1qq4	Ital	Ital	lalh	taih	lalh	1теу	lmey
SEQ ID NO:	310	310	310	310	310	310	311	311	311	311	311

PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAÎN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAÎN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E. CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold Score									
PMF Score		1.00	0.99	1.00	0.99	1.00	0.99	86.0	1.00
Verify Score		0.19	0.17	0.27	-0.02	-0.26	-0.08	0.07	0.08
PSI BLAST		1.7e-42	1.2e-44	3.4e-46	1.7e-46	8.5e-47	1.5e-46	1.7e-46	3.4e-47
End		251	279	307	335	363	391	419	447
Start		170	198	226	254	282	310	338	366
Chain ID		O	O	၁	ပ	U	U	U	ပ
PDB ID		Imey	Imey	Imey	Imey	1mey	Imey	Imey	lmey
SEQ ID NO:		311	311	311	311	311	311	311	311

PDB Annotation	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	CLINC FINGERDNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (77NC FINGER DAYA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	CAINCE TINGENOVA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZING) ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC) ENGEN DESIGN, 2	COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC
Compound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;
SeqFold Score					108.14				
PMF Score	00.1	1.00	1.00	1.00		1.00	0.99	1.00	0.82
Verify Score	0.32	0.06	0.18	0.37		0.14	0.14	-0.00	0.04
PSI BLAST	6.8e-49	16-49	3.4e-49	1.2e-48	3.4e-49	8.5e-49	1.5e-48	6.8e-49	6.8e-49
End	475	503	531	559	260	587	615	643	671
Start AA	394	422	450	478	478	506	534	562	290
Chain ID	U	ပ	၁	ပ	O O	O	U	၁	C
PDB ID	lmey	Imey	1mey	lmey	Imey	Іпеу	Imey	1mey	1mey
SEQ ID NO:	311	311	311	311	311		311	311	311

PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX CENC FINGER/DNA) ZINC COMPLEX, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC PINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC PINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZNC FINGER PROTEIN: CHAIN: C, F. G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA: CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;
SeqFold Score									
PMF Score		0.94	0.98	1.00	1.00	1.00	1.00	1.00	0.98
Verify Score		-0.22	-0.03	0.23	0.31	0.08	-0.03	-0.09	0.00
PSI BLAST		1.7e-49	1.2e-50	1.2e-50	6.8e-51	3.4e-50	1.7e-50	1.5e-40	1.7e-34
End AA		669	727	755	783	811	839	852	345
Start AA		618	646	674	702	730	758	786	661
Chain ID		၁	ပ	U	ပ	ن ت	ပ	၁	4
PDB ID		Imey	Ітеу	Imey	1mey	Imey	Imey	lmey	1tf6
SEQ ID NO:		311	311	311	311	311	311	311	311

PDB Annotation	POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA). RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III. 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN
Compound		TFIIIA: CHAIN: A. D; 5S RIBOSOMAL RNA GENE: CHAIN: B, C. E, F:	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE: CHAIN: B, C, E, F;	TFIIIA; CHAIN: A. D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C. E, F:	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score		116.05						
PMF Score			88.0	0.48	0.45	0.46	96.0	0.86
Verify Score			0.21	-0.03	-0.36	-0.22	61.0	-0.02
PSI BLAST		1.7e-37	1.7e-37	3.4e-36	1.4e-36	1.46-36	6.8e-38	5.1e-25
End		260	540	652	208	764	852	223
Start		394	395	507	563	619	703	911
Chain ID		∢	∢	¥ .	¥	∢	∢	U
PDB 1D		1176	1.16	1116	1116	ltf6	116	lubd
SEQ ID NO:		311	311	311	311	311	311	311

1				1	T	
PDB Annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
Compound		YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI: CHAIN: C. ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.94	0.66	00:	0.93	0.72
Verify Score		-0.11	-0.09	90.0	-0.15	-0.10
PSI BLAST		1.5e-41	66-51	8.5e-32	6e-53	36-52
End AA		251	279	307	307	336
Start		147	168	201	203	224
Chain ID		U	U	U	U	U
PDB ID		pqnI	lubd	lubd	lubd	pqn1
SEQ ID NO:		<u> </u>	311	31-	31	311

	· · · · · · · · · · · · · · · · · · ·					$\overline{}$
PDB Annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN. DNA-PROTEIN RECOGNITION. 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION,
Compound	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A. B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;
SeqFold Score						
PMF Score	0.54	98.0	08.0	69.0	0.46	86.0
Verify Score	-0.40	-0.17	-0.10	-0.13	-0.17	0.22
PSI BLAST	1.5e-48	36-50	1e-34	l.5e-54	7.5e-57	1.7e-34
End	447	476	475	503	559	531
Start	308	371	374	394	420	430
Chain ID	ပ	ပ	C	ပ .	ပ	၁
PDB ID	lubd	lubd	lubd	lubd	lubd	l ubd
SEQ ID NO:	311	311	311	311	311	311

	T		T			
PDB Annotation	INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION SCOMPLEX REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I: TRANSCRIPTION INITIATION. INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN. DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION. INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX
Compound	CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P3 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI: CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA: CHAIN: A. B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.93	0.80	0.21	0.21	0.45
Verify Score		-0.07	0.16	-0.42	-0.41	-0.33
PSI BLAST		1.7e-33	1.3e-51	1.7e-34	3e-49	1.7e-34
End AA		559	615	669	755	727
Start AA		458	504	298	919	626
Chain ID		O	O	C	၁	O O
PDB 1D		pqn	lubd	pqnI	lubd	lubd
SEQ ID NO:		<u>.</u>	31.1	311	311	3.1

							\Box
PDB Annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I: TRANSCRIPTION INITIATION, INITIATOR ELEMENT. YYI. ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I: TRANSCRIPTION INITIATION. INITIATOR ELEMENT. YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	COMPLEX (TRANSCRIPTION
Compound		YYI; CHAIN: C: ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A. B;	YYI: CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B:	YY I; CHAIN: C: ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO-
SeqFold Score		93.95					
PMF Score			68.0	06.0	66:0	86.0	0.51
Verify Score			-0.02	-0.12	00.0	80.0-	-0.20
PSI BLAST		36-57	1.7e-34	3e-57	1.5e-54	I.4e-34	1.2e-44
End		784	783	- I	839	839	852
Start		672	682	700	728	738	756
Chain ID		U	U	U	ပ	ပ .	2
PDB 10		Jubd	lubd du!	lubd	lubd	lubd	lubd
SEQ ID NO:		311	311	311	31	311	.311

	Т	1		T	T	,				
PDB Annotation	REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA).	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINÇ FINGER, COMPLEX (DNA-
Сотроипа	ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLIT; CHAIN: A: DNA; CHAIN: C, D:	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLI!; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLIT: CHAIN: A: DNA: CHAIN: C. D:
SeqFold Score										102.20
PMF Score		0.98	0.53	0.98	0.86	0.95	0.60	0.84	00'1	
Verify Score		-0.17	0.02	-0.17	0.34	90.0	0.04	80:0	90.0	
PSI BLAST	9	1.4e-28	6e-55	8.5e-32	1.5e-65	4.5e-66	4.5e-64	5.1e-32	7.5e-72	7.5e-72
End AA		250	281	334	337	365	477	474		561
Start AA		611	143	198	201	226	310	346	394	422
Chain ID		V V	¥	٧	4	∢	4	V	∢	∢
PDB ID		2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli
SEQ ID NO:		311	311	311	311	311	311	311	311	311

PDB Annotation	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI:	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GEI, ZINC FINGER, COMPLEA (DNA: BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI:	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROJEIN/DNA) FIVE-FINGER OLI;	GEI, ZINC FINGER, COMPLEX (DINA-	COMPLEX (DNA-BINDING	DOOTEIN(DAIA) EIVE EINGED CI I:	CIT ZINC FINGER COMPLEY (DNA-	BINDING PROTEIN/DNA)	RNA BINDING PROTEIN SNRNP,	SPLICING, SPLICEOSOME, SM, CORE	SNRNP DOMAIN, 2 SYSTEMIC LUPUS	ERYTHEMATOSUS, SLE
Compound		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;			ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII:	CHAIN: A: DNA: CHAIN: C. D.			ZINC FINGER PROTEIN GLI1;	CHAIN: A; DNA; CHAIN: C, D;			ZINC FINGER PROTEIN GLII:	CHAIN: A; DNA; CHAIN: C. D;		ZINC FINGER PROTEIN GLIII	CHAIN: A: DNA: CHAIN: C. D.			ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII	CHAIN: A: DNA: CHAIN: C	ליט כיואווי. ל, סואלי, כיואווי. כ, ס,		SMALL NUCLEAR	RIBONUCLEOPROTEIN SM D1;	CHAIN: A: SMALL NUCLEAR	RIBONUCLEOPROTEIN SM D2:
SeqFold Score																																			
PMF Score		0.78	0.65				0.07			0.55				0.63				0.62			0.84	5.5			0.80			0.80	20.5			0.30			
Verify Score		0.32	-0.09				-0.19			0.17				-0.08				0.03			-0 14	<u>.</u>			0.12			0 17	<u>.</u>			0.29			
PSI BLAST		3.4e-33	1.2e-68			:	1.2e-33			1.2e-33				4.5e-70				5.1e-33			6 80-34	0.00.0			09-99			3 46.79	1			4.5e-23			
End AA		558	617				869			782	1			841				810			841	5			852			851	; 			-8			
Start AA		430	478				570			654	:			674				789			210	>			730			738	2			7			
Chain ID		¥	A				<			¥				A				٧			⋖	ζ			∢			A	:			¥			
PDB ID		2gli	2gli)			2gli			2gli	ò			2gli	ı			2gli			Joli	197			2gli			2pli	;			1634			
SEQ ID NO:		31.1	311				3=			311				311				311			=======================================	;			311			111	,			312			

									
PDB Annotation		RNA BINDING PROTEIN SNRNP, SPLICING, SPLICEOSOME, SM, CORE SNRNP DOMAIN, 2 SYSTEMIC LUPUS ERYTHEMATOSUS, SLE	RNA BINDING PROTEIN SNRNP, SPLICING, SPLICEOSOME, SM, CORE SNRNP DOMAIN, 2 SYSTEMIC LUPUS ERYTHEMATOSUS, SLE	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SLE, RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN. SYSTEMIC LUPUS 2 ERYTHEMATOSUS. SLE. RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CCRE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SLE, RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SLE, RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CCRE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM. CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SLE, RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP
Compound	CHAIN: B;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM DI; CHAIN: A; SMALL NUCLEAR RIBONUCLEOPROTEIN SM D2; CHAIN: B;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D1; CHAIN: A; SMALL NUCLEAR RIBONUCLEOPROTEIN SM D2; CHAIN: B;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C, E, G, I, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J, L;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C, E, G, I, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F. H. J, L;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C. E, G, I, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J, L;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C, E, G, I, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J, L;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C, E, G, 1, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J, L;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3;
SeqFold Score									
PMF Score		0.04	0.18	0.07	0.03	-0.06	0.04	-0.05	-0.01
Verify Score		0.08	0.46	0.28	0.63	0.34	10:0-	0.76	0.11
PSI BLAST		3.4e-17	1.2e-12	1.7e-14	1.1e-20	7.5e-18	1.7e-15	6.8e-16	1.5e-17
End AA		71	72	72	76	78	0/	70	78
Start AA		6	٢	\$	7	01	6	4	6
Chain ID		¥	В	∢	<	В	æ	۵	D
PDB ID		1634	1534	1436	1436	1436	1436	1436	1436
SEQ ID NO:		312	312	312	312	312	312	312	312

		 			2 <u>a</u>	7		~ ~ ~ ~ ~	88,	z
PDB Annotation	PROTEIN SNRNP, SPLICING, SM. CORE SNRNP DOMAIN. SYSTEMIC LUPUS 2 ERYTHEMATOSUS. SLE, RNA BINDING PROTEIN	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	PEPTIDE RECOGNITION PSD-95; PDZ DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTPIE, PTP-BAS, SPECIFICITY 2 OF BINDING	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	SIGNAL TRANSDUCTION SRC HOMOLOGY DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, EPS8, PROLINE RICH PEPTIDE	CYTOSKELETON CAPPING PROTEIN, CALCIUM-BINDING, DUPLICATION, REPEAT, 2 SH3 DOMAIN,
Compound	CHAIN: A. C, E. G, I. K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D. F. H, J. L:	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE; CHAIN: B;	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;	POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	TYROSINE PHOSPHATASE (PTP- BAS, TYPE I): CHAIN: A;	RIBONUCLEASE INHIBITOR; CHAIN: A. D: ANGIOGENIN; CHAIN: B. E;	RIBONUCLEASE INHIBITOR: CHAIN: A. D; ANGIOGENIN; CHAIN: B, E:	EPS8; CHAIN: A, B;	ALPHA-SPECTRIN; CHAIN: NULL;
SeqFold Score										
PMF Score		0.15	0.99	0.90	66.0	0.76	09:0	1.00	0.30	0.64
Verify Score		80.0	0.19	0.13	0.27	0.73	0.52	0.54	-0.80	-0.30
PSI BLAST		1.3e-06	8.5e-05	0.0012	0.00034	3e-09	4.5e-05	7.5e-08	6e-16	1.1e-07
End		173	175	175	172	061	893	877	647	. 429
Start		101	113	13	611	601	805	815	290	577
Chain 1D		<	V		∢	4	<	∢	∢	
PDB 1D		1589	lbe9	1 pdr	1qlc	3pdz	lady	la4y	laoj	ltud
SEQ ID NO:		314	314	314	314	314	316	316	316	316

	_	·							~										_					_		
PDB Annotation	CYTOSKELETON	CELL CYCLE/GENE REGULATION COMPLEX, SIGNAL TRANSDUCTION, PHOSPHOTYROSINE BINDING 2 DOMAIN (PTB), ASYMETR IC CELL DIVISION, CELL CYCLE/GENE 3 REGULATION		IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB, ANTIBODY, ANTI-E-SELECTIN	COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN) COMPLEX	(IMMUNOGLOBULIN/AUTOANTIGEN), RHEUMATOID FACTOR 2 AUTO-	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB FRAGMENT HIMANISATION	COMPLEX (VIRAL	CAPSID/IMMUNOGLOBULIN) HIV-I	CA. FILV CA. HIV F24, F24; FAB, FAB LIGHT CHAIN, FAB HEAVY CHAIN	COMPLEX (VIRAL	CAPSID/IMMUNOGLOBULIN), HIV, CAPSID PROTEIN, 2 P24	IMMUNOGLOBULIN HUMAN FAB,	ANTI-TETANUS TOXOID, HIGH	AFFINITY, CRYSTAL 2 PACKING	BDOBENSTY TO CRYSTALLIZE 3	IMMUNOGLOBULIN	IMMUNOGLOBULIN HUMAN FAB,	ANTI-TETANUS TOXOID, HIGH	AFFINITY, CRYSTAL 2 PACKING	MOTIF, PROGRAMMING	PROPENSITY TO CRYSTALLIZE, 3	IMMUNOGLOBULIN HUMAN FAB.	ANTI-TETANUS TOXOID, HIGH	AFFINITY, CRYSTAL 2 PACKING
Compound		NUMB PROTEIN; CHAIN: A; GPPY PEPTIDE; CHAIN: B;		MONOCLONAL ANTI-E-SELECTIN 7A9 ANTIBODY; CHAIN: L, H;	IGG4 REA; CHAIN: A; RF-AN IGM/LAMBDA; CHAIN: H, L;			ANTIBODY CTM01; CHAIN: L, H;	HIMAN IMMINODEFICIENCY	VIRUS TYPE I CAPSID CHAIN: A,	B: AINTHOUT FAB25.3 FRAGMENT: CHAIN: H. K. L. M:			FAB B7-15A2; CHAIN: L, H;					FAB B7-15A2; CHAIN: L, H;					FAB B7-15A2; CHAIN: L, H;	•	
SeqFold Score				91.69				64.20						65.54					64.54							
PMF Score		0.10			0.35				00	3					•									0.74		
Verify Score		-0.13			0.18				0.11	;														0.21		
PSI BLAST		9e-14		1.4e-20	6.8e-29			1.7e-22	1.7e-23					3.4e-20					1.7e-26					1.7e-26		
End		263		246	241			255	236					247					260					241		
Start AA		155		38	41			38	38	}				39					40					41		
Chain 1D		∢		H.	٦			I	Ξ					I					دا				_			
PDB ID		2nmb	ļ	laSf	ladq			lae6	lafv					laqk					1 agk					laqk		
SEQ ID NO:		316]	318	318			318	318					318					318			_		318		

PDB Annotation		MOTIF, PROGRAMMING PROPENSITY TO CRYSTALLIZE, 3 IMMUNOGLOBULIN	IMMUNOGLOBULIN IMMUNOGLOBULIN, ANTIBODY, FAB, ENZYME INHIBITOR, PCR, 2 HOT START	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY. FAB. 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRUCTURE, GAMMA-3	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRUCTURE, GAMMA- 3	IMMUNE SYSTEM IMMUNE SYSTEM IMMUNOGLOBULIN IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSIONAL SYSTEM OF THE SYSTEM STRUCTURE, THREE-DIMENSIONAL SYSTEM OF THE SYSTEM STRUCTURE, THREE-DIMENSIONAL	ANTIBODY ENGINEERING ANTIBODY ENGINEERING ANTIBODY ENGINEERING HUMANIZED AND CHIMERIC STRICTIPES CAMMA INTEREEDON	
Compound			TP7 FAB; CHAIN: L, H;	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN): CHAIN: H;	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	ANTIBODY; CHAIN: L, H;	IMMUNOGLOBULIN FAB FRAGMENT OF MURINE MONOCLONAL ANTIBODY AN02 COMPLEX IBAF 3 WITH ITS HAPTEN (2.2,6,6-TETRAMETHYL- I-PIPERIDINYLOXY- IBAF 4 DINITROPHENYL) IBAF 5
SeqFold	Score			63.67	64.13		67.97	65.16
PMF	Score		0.28			0.07		
Verify	Score		-0.10			0.00		
PSI	BLASI		8.5e-23	1.2e-19	1.56-23	1.5e-23	1.2e-19	8.5e-21
End	¥ ¥		236	247	259	232	247	259
Start	AA		§0	. 36	38	39	39	37
Chain	≘	:	E	Ι	٦	٦	I	I
BOA	9	-	Iayı	162w	162w	162w	164j	- baf
SEQ	Ö	916	810	318	318	318	318	

PDB Annotation	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	COMPLEX (ANTIBODY/ANTIGEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGICGENIC FACTOR	IMMUNOGLOBULIN BENCE-JONES PROTEIN, IBJM 8 BENCE JONES, ANTIBODY, MULTIPLE OLIATERNARY STRIICTHES IRIM 13	IMMUNE SYSTEM IMMUNOGLOBULIN	CATALYTIC ANTIBODY CATALYTIC ANTIBODY. TERPENOID SYNTHASE, CARBOCATION, 2 CYCLIZATION CASCADE	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB COMPLEX, IDIOTOPE, ANTI-IDIOTOPE	CELL ADHESION NEURAL CELL ADHESION	IMMUNE SYSTEM ABZYME TRANSITION STATE ANALOG, IMMUNE SYSTEM	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR
Compound	HEMOLIN; CHAIN: A, B;	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;	LOC - LAMBDA I TYPE LIGHT- CHAIN DIMER; IBJM 6 CHAIN: A, B; IBJM 7	IMMUNOGLOBULIN OPG2 FAB, CONSTANT DOMAIN; CHAIN: L: IMMUNOGLOBULIN OPG2 FAB. VARIABLE DOMAIN: CHAIN: H:	CATALYTIC ANTIBODY 1944 (LIGHT CHAIN); CHAIN: L: CATALYTIC ANTIBODY 1944 (HEAVY CHAIN); CHAIN: H:	IG HEAVY CHAIN V REGIONS; CHAIN: A; IG HEAVY CHAIN V REGIONS; CHAIN: B; IG HEAVY CHAIN V REGIONS; CHAIN: C; IG HEAVY CHAIN V REGIONS; CHAIN: D;	AXONIN-1; CHAIN: A;	7C8 FAB FRAGMENT; SHORT CHAIN; CHAIN: A, C; 7C8 FAB FRAGMENT; LONG CHAIN; CHAIN: B, D	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C. D;
SeqFold Score				68.28	64.09	67.07		64.34		
PMF Score	0.41	0.11	0.11				0.77		0.34	0.34
Verify Score	0.30	0.22	0.07				0.03		0.27	0.22
PSI BLAST	8.5e-20	le-22	1.7e-26	6.8e-21	5.1e-22	5.1e-22	1.7e-32	3.4e-22	1.7e-12	1.7e-12
End AA	246	232	241	259	254	257	247	259	249	249
Start AA	06	39	40	37	37	38	45	38	174	174
Chain ID	Y	⊐	Y	н	д	8	Ą	æ	ပ	Q
PDB ID	1bih	15j.1	15jm	1bm3	lcß	lcic	9501	lct8	lcvs	Icvs
SEQ ID NO:	318	318	318	318	318	318	318	318	318	318

PDB Annotation	RECEPTOR	IMMUNE SYSTEM FAB-IBP COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF2; FGFR2; IMMUNOGLOBULIN (IG)LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD	GROWTH FACTOR/GROWTH FACTOR RECEPTOR FGF1; FGFR1: IMMUNOGLOBULIN (IG) LIKE DOMAINS BELONGING TO THE I-SET 2 SUBGROUP WITHIN IG-LIKE DOMAINS, B-TREFOIL FOLD		CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD, BETA BARREL			COMPLEX (IMMUNOGLOBULIN IGG1/IGG2A)	IMMUNOGLOBULIN IMMUNOGLOBULIN, BENCE JONES PROTEIN
Compound		IGM RF 242; CHAIN: A, C, E; IGM RF 242; CHAIN: B, D, F; IMMUNOGLOBULIN G BINDING PROTEIN A; CHAIN: G, H;	FIBROBLAST GROWTH FACTOR 2: CHAIN: A. B. C. D; FIBROBLAST GROWTH FACTOR RECEPTOR 2: CHAIN: E. F, G, H;	FIBROBLAST GROWTH FACTOR 1: CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	IMMUNOGLOBULIN FAB FRAGMENT FROM A MONOCLONAL ANTI-ARSONATE ANTIBODY, R19.9 IFA1 3 (IGG2B,KAPPA) IFA1 4	TELOKIN; CHAIN: A	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	T LYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (HUMAN) IHNF 3	IDIOTYPIC FAB 730.1.4 (IGG1) OF VIRUS 11A1 5 CHAIN: L, H: 11A1 7 ANTI-IDIOTYPIC FAB 409.5.3 (IGG2A): 11A1 9 CHAIN: M, 1 11A1	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B
SeqFold Score					63.84		66.24		65.01	
PMF Score		0.06	0.25	0.13		0.16		0.10		0.13
Verify Score		0.15	0.13	0.37		0.27		0.02		0.18
PSI BLAST		3.4e-23	1.7e-13	1.7e-12	3.4e-19	1.5e-08	5.1e-21	1.3e-23	5.1e-20	1.7e-25
End AA		232	249	249	254	247	247	232	254	241
Start AA		39	173	174	38	154	37	43	38	40
Chain ID		₹	យ	U	ı	4	В		I	4
PDB 1D		ldee	lev2	leví	Ifai	l fhg) fvd	lhnf	liai	Wil
SEQ ID NO:		318	318	318	318	318	318	318	318	318

PDB Annotation		COMPLEX (IMMUNOGLOBULIN/HYDROLASE) NIO FAB IMMUNOGLOBULIN; INSN 7 STAPHYLOCOCCAL NUCLEASE RIBONUCLEATE, INSN 11 IMMUNOGLOBULIN. STAPHYLOCOCCAL NUCLEASE INSN 25	GLYCOPROTEIN CD4; IMMUNOGLOBULIN FOLD. TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 2 MHC LIPOPROTEIN, POLYMORPHISM	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION					IMMUNOGLOBULIN
Сотроила	HYDROLASE(O-GLYCOSYL) N9 NEURAMINIDASE-NC41 (E.C.3.2.1.18) COMPLEX WITH FAB INCA 3	IGG FAB (IGGI, KAPPA); INSN 4 CHAIN: L, H; INSN 5 STAPHYLOCOCCAL NUCLEASE; INSN 9 CHAIN: S: INSN 10	T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN: A, B;	IGG 5C8; CHAIN: L, H;	IGG 5C8; CHAIN: L, H;	IMMUNOGLOBULIN IGG2B (KAPPA) FAB FRAGMENT COMPLEXED WITH ANTIGEN 2CGR 3 N-(P-CYANOPHENYL)-N (DIPHENYLEMETHYL) GUANIDINEACETIC ACID 2CGR 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB 2FB4 4	IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'H52' (HUH52- OZ FAB) 2FGW 4	IMMUNOGLOBULIN IMMUNOGLOBULIN LAMBDA LIGHT CHAIN DIMER (/MCG\$) 2MCG 3 (TRIGONAL FORM) 2MCG	IMMUNOGLOBULIN; CHAIN: A, B,
SeqFold Score	67.34	65.27		64.25		65.11				68.25
PMF Score			0.29		0.19		0.37	0.01	0.30	
Verify Score			0.19		0.12		0.29	0.27	0.14	
PSI BLAST	1.5e-21	1.46-22	7.5e-28	5.1e-23	5.1e-23	1.2e-17	1.5e-25	1.2e-23	1.2e-27	3.4e-21
End	254	254	262	255	236	254	241	232	241	255
Start AA	38	37	47	38	20	37	40	39	40	38
Chain ID	н	工	∢	H	H	н	ı		_	В
PDB ID	Inca	Insn	lwio	25c8	25c8	2cgr	2fb4	2fgw	2Incg	2pcp
SEQ ID	318	318	318	318	318	318	318	318	318	318

							_						
PDB Annotation	IMMUNOGLOBULIN	IMMUNE SYSTEM FAB, ANTIBODY. AROMATASE, P450	IMMUNE SYSTEM METAL CHELATASE, CATALYTIC ANTIBODY, FAB FRAGMENT, IMMUNE 2 SYSTEM	CELL ADHESION PROTEIN NCAM MODULE 2; CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING, GPI-ANCHOR, 2 NEURAL ADHESION MOLECULE. IMMUNOGLOBULIN FOLD, HOMOPHILIC 3 BINDING. CELL ADHESION PROTEIN				SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC CRYSTALLOGRAPHY, 2 SIGNALING PROTEIN	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC CRYSTALLOGRAPHY, 2 SIGNALING PROTEIN	SIGNALING PROTEIN PROTEIN- PROTEIN COMPLEX, ANTIPARALLEL COILED-COIL	ENDOCYTOSIS/EXOCYTOSIS G-
Сотроила	C, D;	IGGI ANTIBODY 32C2; CHAIN: A; IGGI ANTIBODY 32C2; CHAIN: B;	METAL CHELATASE CATALYTIC ANTIBODY; CHAIN: A, C: METAL CHELATASE CATALYTIC ANTIBODY; CHAIN: B, D;	NEURAL CELL ADHESION MOLECULE, LARGE ISOFORM: CHAIN: A:	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB' NEW (LAMBDA LIGHT CHAIN) 7FAB 3	IMMUNOGLOBULIN FAB FRAGMENT FROM HUMAN IMMUNOGLOBULIN IGGI	(LAMBDA, FILL) SEAB 3	RAS-RELATED PROTEIN RAP-1A; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN KINASE CHAIN: B;	RAS-RELATED PROTEIN RAP-1A; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN KINASE CHAIN: B;	TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A:	TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A:	HIS-TAGGED TRANSFORMING PROTEIN RHOA(0-181); CHAIN: A; PKN; CHAIN: B;	RAB6 GTPASE; CHAIN: A;
SeqFold Score			66.99					109.08	_	108.57	_	108.33	
PMF Score		0.13		-0.14	0.17	0.18			1.00		00.1		1:00
Verify Score		0.21		0.09	0.00	0.39			0.82		0.88		0.83
PSI BLAST		3.4e-23	8.5e-19	4.5e-09	1.7e-26	1.4e-26		1.4e-63	1.4e-63	6.8e-65	6.8c-65	3.46-55	6e-67
End AA		236	247	245	241	241		171	171	172	171	27.1	165
Start AA		20	37	891	40	43		∞	6	∞	6	۳	6
Chain ID		83	æ	∢	د	٧		∢	4	4	∢	∢	4
PDB ID		32c2	3fci	Зпсш	7fab	8fab		lcly	lcly	lctq	letq	lcxz	145c
SEQ NO.		318	318 ·	318	318	318		319	319	319	319	319	319

PDB Annotation	PROTEIN, GTPASE, RAB6, VESICULAR TRAFFICKING	ENDOCYTOSIS/EXOCYTOSIS G- PROTEIN, GTPASE, RAB6, VESICULAR TRAFFICKING	SIGNALING PROTEIN P21-RAC2; RHO GDI 2, RHO-GDI BETA, LY-GDI; BETA SANDWHICH, PROTEIN-PROTEIN	COMPLEX, G-DOMAIN, 2 IMMUNOGLOBULIN FOLD, WALKER FOLD, GTP-BINDING PROTEIN	ENDOCYTOSIS/EXOCYTOSIS G PROTEIN, VESICULAR TRAFFIC, GTP	HYDROLYSIS, YPT/RAB 2 PROTEIN, ENDOCYTOSIS, HYDROLASE	GTP-BINDING PROTEIN GTP- BINDING PROTEIN, SMALL G	FROIEIIN, INT. 2, UDI, INT.	GIP-BINDING PROTEIN, SMALL G	PROTEIN, KAP2, GDP, KAS	COMPLEX(GTPASE ACTIVATN/PROTO-ONCOGENE)	RHOGAP: COMPLEX (GTPASE	ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP	COMPLEX(GTPASE ACTIVATA/PROTO-ONCOGENE)	GTPASE-ACTIVATING PROTEIN	KHOGAP; COMPLEX (UTPASE ACTIVATION/PROTO-ONCOGENE),	GTPASE, 2 TRANSITION STATE, GAP	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A;	COMPLEX (GIP: BINDING/FEFFCTOR) G PROTEIN	EFFECTOR, RABCDR, 2 SYNAPTIC	EXOCYTOSIS, RAB PROTEIN, RAB3A,	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A;
Compound		RAB6 GTPASE; CHAIN: A;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 2; CHAIN: A; RHO GDP-DISSOCIATION	INHIBITOR 2; CHAIN: B;	GTP-BINDING PROTEIN YPT51; CHAIN: A:		RAP2A; CHAIN: NULL;		RAP2A; CHAIN: NULL;		P50-RHOGAP: CHAIN: A: TRANSFORMING PROTEIN RHOA:	CHAIN: B:		P50-RHOGAP; CHAIN: A; TRANSFORMING PROTEIN RHOA:	CHAIN: B;			RAB-3A; CHAIN: A; RABPHILIN- 3A; CHAIN: B;				RAB-3A; CHAIN: A; RABPHILIN- 3A; CHAIN: B;
SeqFold Score							109.78				79.79							154.65				
PMF Score		1.00	00:1		1.00				00.1				-	1.00								1.00
Verify Score		0.87	0.73		0.93	_			96.0					0.65								0.92
PSI BLAST		5.1e-63	1.5e-55		5.le-61		1.2e-59		1.2e-59		1.1c-56			1.1e-56				5.1e-70				5.1e-70
End		691	170		169		172		169		170			170				178				175
Start AA		6	6		6		∞		6		9			7				8				<u>~</u>
Chain ID		Y	V		4						ഇ			В				4				V V
PD8 10		145c	1ds6	•	1ek0		lkao		lkao		11x4			1tx4				1zbd				1zbd
SEQ D		319	319		319		319		319		319			319				319				319

PDB Annotation	COMPLEX (GTP-BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE	TRANSFERASE RECEPTOR TYROSINĘ KINASE, PROTEIN INTERACTION MODULE. 2 DIMERIZATION DOMAIN, TRANSFERASE		TYROSINE-PROTEIN KINASE NMR, RECEPTOR OLIGOMERIZATION, EPH RECEPTORS, TYROSINE 2 PHOSPHORYLATION, SIGNAL TRANSDUCTION, TYROSINE- PROTEIN 3 KINASE	HYDROLASE TETRATRICOPEPTIDE, TRP, HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE.
Compound		RAB3A; CHAIN: A;	RAB3A; CHAIN: A;	EPHA4 RECEPTOR TYROSINE KINASE: CHAIN: A:	EPHB2; CHAIN: A, B, C, D, E, F, G, H;	EPHRIN TYPE-B RECEPTOR 2; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5, CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5: CHAIN: NULL;	SERINE/THREONINE PROTEIN
SeqFold Score			170.48						
PMF Score		1.00		0.99	0.74	0.92	0.43	-0.01	-0.02
Verify Score		0.71		1.26	0.85	0.84	0.15	0.30	0.17
PSI BLAST		1.5e-70	1.5e-70	1.5e-05	1.2e-13	3c-06	3.4e-12	4.5e-14	ee-08
End		172	172	287	297	287	266	279	318
Start AA		4	4	227	226	226	114	130	157
Chain ID		٧	<	V	V				
PDB ID		3rab	3rab	160x	154f	15gg	lal7	la17	la17
SEQ ID NO:		319	319	321	321	321	323	323	323

PDB Annotation	TRP, HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEFTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	CLATHRIN CLATHRIN. TRISKELION, COATED VESICLES, ENDOCYTOSIS, SELF- 2 ASSEMBLY, ALPHA-ALPHA SUPERHELIX	SIGNALLING COMPLEX RACI: P67PHOX: SIGNALLING COMPLEX, GTPASE. NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX, TPR MOTIF	SIGNALLING COMPLEX RACI; P67PHOX; SIGNALLING COMPLEX, GTPASE, NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX, TPR MOTIF	SIGNALLING COMPLEX RAC1; P67PHOX; SIGNALLING COMPLEX, GTPASE, NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX, TPR MOTIF	SIGNALLING COMPLEX RAC1; P67PHOX; SIGNALLING COMPLEX, GTPASE, NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX, TPR MOTIF	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING
Compound	PHOSPHATASE 5; CHAIN: NULL;	SERINETHREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5, CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	CLATHRIN HEAVY CHAIN: CHAIN: A;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE I: CHAIN: A: NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1; CHAIN: A; NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE I; CHAIN: A; NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1; CHAIN: A; NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	TPR2A-DOMAIN OF HOP, CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;
SeqFold Score										
PMF Score		0.22	-0.12	0.07	0.04	0.11	-0.06	-0.14	-0.02	0.90
Verify Score		0.22	0.34	0.43	0.05	0.31	0.31	0.16	0.27	0.50
PSI BLAST		6.8e-13	1.7e-13	5.1e-16	0.00017	6.8e-11	6.8e-10	1.2e-08	1.2e-10	1.7e-15
End		380	400	143	275	318	601	392	232	114
Start AA		246	293	4	=	162	7	245	82	=
Chain ID					<	æ	æ	8	മ	∢
PDB ID		1a17	la17	1a17	1689	1e96	1e96	9691	1e96	lelr
SEQ ID		323	323	323	323	323	323	323	323	323

							_,						
PDB Annotation	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL	REFEAT, HSP90, 2 PROTEIN BINDING CHAPERONE HOP, TPR-DOMAIN. PEPTIDE-COMPLEX, HELICAL	REPEAT, HSP90, 2 PROTEIN BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL	REPEAT, HSP90, 2 PROTEIN BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL	REPEAL, HSP90, 2 PROTEIN BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL	REFEAT, HSP90, 2 PROTEIN BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL FORTY HERON	REFEAT, HSP90, 2 PROTEIN BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL PEPTIAL HERRORY	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN	BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN	BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN	BINDING CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL
Compound	TPR2A-DOMAIN OF HOP; CHAIN: A: HSP90-PEPTIDE MEEVD; CHAIN: R.	TPR2A-DOMAIN OF HOP, CHAIN: A; HSP90-PEPTIDE MEEVD:	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD;	CHAIN: B; TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B.	TPR2A-DOMAIN OF HOP; CHAIN:	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B:	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B:	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: R.	TPRI-DOMAIN OF HOP, CHAIN: A, B; HSC70-PEPTIDE; CHAIN: C, D;	TPR I-DOMAIN OF HOP; CHAIN: A, B: HSC70-PEPTIDE; CHAIN: C, D:	TPR1-DOMAIN OF HOP: CHAIN: A, B; HSC70-PEPTIDE; CHAIN: C, D;	TPR1-DOMAIN OF HOP; CHAIN: A, B; HSC70-PEPTIDE; CHAIN: C, D;	TPRI-DOMAIN OF HOP; CHAIN: A, B; HSC70-PEPTIDE; CHAIN: C, D;
SeqFold Score													
PMF Score	0.22	90.0	-0.01	-0.05	0.05	-0.18	0.21	0.28	0.81	0.19	-0.08	0.62	-0.1.
Verify Score	0.42	0.04	0.40	0.58	0.05	0.04	-0.03	0.19	0.18	0.20	0.29	0.56	0.18
PSI BLAST	1.2e-12	3.4e-13	1e-09	1.2e-15	1.2e-13	16-11	1.5e-07	1.7e-13	3.4e-11	16-11	3.4e-11	3.4e-14	1.2e-08
End	233	274	74	313	356	411	157	194	244	366	393	121	208
Start AA	121	691	_	212	252	332	56	88	126	249	293	4	18
Chain ID	∢ .	∢	4	Y	∢	4	V	¥	∢	<	₹	∢	<
PDB ID	lelr	Iclr	letr	lelr	Jelr	lelr	lelr	leir	lelw	lelw	lelw	lclw	lelw
SEQ ID NO:	323	323	323	323	323	323	323	323	323	323	323	323	323

PDB Annotation	REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	SIGNALING PROTEIN PEROXISMORE RECEPTOR I, PTSI-BP, PEROXIN-5, PTSI PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2 HEI ICAI REPEAT	SIGNATURE OF STATE OF SIGNATURE RECEPTOR I, PTSI-BP, PEROXIN-5, PTSI PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 1 DELICAL BEDEAT	SIGNALING PROTEIN PEROXISMORE SIGNALING PROTEIN PEROXIN-5. PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT. TPR, 2 LIEL LOAD PEROXI	PROTEIN TRANSPORT HELIX-TURN-HELIX TRALIKE REPEAT, PROTEIN TRANSPORT	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT. PROTEIN TRANSPORT	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	SIGNAL TRANSDUCTION SAM DOMAIN, EPH RECEPTOR, SIGNAL TRANSDUCTION, OLIGOMER	RNA-BINDING PROTEIN/RNA TRA PRE-MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA
Compound		PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTIDE; CHAIN: C, D;	PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTIDE; CHAIN: C, D;	PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTIDE; CHAIN: C, D;	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	VESICULAR TRANSPORT PROTEIN SEC17: CHAIN: A:	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A:	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	ЕРНВ2; СНАІN: А, В, С, D, E, F, G, H;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'-R) R(P*GP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G. H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*
SeqFold Score								54.55			
PMF Score		-0.02	0.87	66:0	0.58	-0.09	0.19		0.90	0.98	0.52
Verify Score		0.02	0.37	0.36	0.14	0.01	0.48		0.19	-0.15	0.00
PSI BLAST		le-31	1.2e-29	3.4e-23	3.4e-10	3.4e-10	le-11	3.4e-10	0.00045	5.1e-20	1.7e-21
End		410	317	263	375	388	188	359	74	559	547
Start		104	=	2	120	221	3	89	28	421	423
Chain 10		∢	4	¥	⋖	¥.	∢	<	A	<	<
PDB ID		l fch	Ifch	l fch	Idde	lqqe	lqqe	Igqe	lb4f	167f	Icvj
SEQ ID NO:		323	323	323	323	323	323	323	324	329	329

1		1	1				_													
PDB Annotation		GENE REGULATION/RNA POLY(A) BNDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA		GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN RNA-	BINDING DOMAIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR PIPONILICI FORDOTTING	PROTEIN, HNRNP, RBD, RRM, RNP,	KNA BINDING, 2 RIBONUCLEOPROTEIN	RNA-BINDING DOMAIN RNA- BINDING DOMAIN, ALTERNATIVE	COMPLEX	(RIBONUCLEOPROTEIN/DNA) HNRNP	(RIBONUCLEOPROTEIN/DNA)	HETEROGENEOUS NUCLEAR 2	RNA BINDING DOMAIN RNA	BINDING DOMAIN, RBD, RNA	RECOGNITION MOTTE, RRM, 2 SPLICING INHIBITOR	TRANSLATIONAL INHIBITOR, SEX 3	DETERMINATION, X CHROMOSOME
Compound	AP*AP*A)-3'); CHAIN: M, N, O, P,	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP* AP*AP*A)-3'); CHAIN: M, N, O, P	Q, R, S, T; POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B, C, D, E, F, G, H; RNA (5:- R(*AP*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M, N, O. P. Q, R. S. T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C. D, E. F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP* AP*AP*A); CHAIN: M, N, O, P.	O. R, S, T; HU ANTIGEN C; CHAIN: A;	HNBNB A1: CHAIN, NILL 1	THANK AT, CHAIN: NOLL;	-		SEX-LETHAL PROTEIN; CHAIN: NULL;	2	RIBONUCLEOPROTEIN A1; CHAIN: A: 12-NUCLEOTIDE	ETRIC		SEX-LETHAL; CHAIN: A, B. C;				
SeqFold Score								*****							<u> </u>					
PMF Score		0.63	0.87	-	0.49	0.82	0.03	}		200	96.5	0.05				68.0				
Verify Score		0.09	0.54		-0.03	0.12	-0.01			22	· · · ·	-0.04	•		_	0.05				
PSI BLAST		3.4e-20	3.4e-17	-	1.4e-17	6.8e-19	1.7e-17			1 20-16	01.53	le-17				1.7e-19				
End		535	502	363	C C C C C C C C C C C C C C C C C C C	496	544			496	3	550		-		529			_	-
Start AA		423	423	433	4 C	418	416			421	•	415				421				
Chain ID		α	(L.	ı		4						<					,-			
PDB ID		<u>[cvj</u>	lcvj	ivol		Z8p1	lhal			2sxl		2up1) sxi				
SEQ NO:		329	329	329)	329	329			329		329			926					

PDB Annotation	DOSAGE COMPENSATION	COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN) COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN), RHEUMATOID FACTOR 2 AUTO-	COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN) COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN), RHEUMATOID FACTOR 2 AUTO- ANTIBODY COMPLEX	IMMUNOGLOBULIN HUMAN FAB. ANTI: TETANUS TOXOID, HIGH AFFINITY, CRYSTAL 2 PACKING MOTIF, PROGRAMMING PROPENSITY TO CRYSTALLIZE, 3	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRYCTURE, GAMMA- 3 INTERFERON, IMMUNE SYSTEM	IMMUNOGLOBULIN BENCE-JONES PROTEIN; 1BJM 8 BENCE JONES, ANTIBODY, MULTIPLE QUATERNARY STRUCTURES 1BJM 13	IMMUNE SYSTEM IMMUNOGLOBULIN, IMMUNORECEPTOR. IMMUNE SYSTEM	IMMUNE SYSTEM FAB-IBP COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY
Compound		IGG4 REA; CHAIN: A; RF-AN IGM/LAMBDA; CHAIN: H, L;	IGG4 REA; CHAIN: A; RF-AN IGM/LAMBDA; CHAIN: H, L;	FAB B7-15A2; CHAIN: L, H;	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	LOC - LAMBDA I TYPE LIGHT. CHAIN DIMER; IBJM 6 CHAIN: A, B; IBJM 7	ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A;	IGM RF 2A2; CHAIN: A, C. E; IGM RF 2A2; CHAIN: B. D, F; IMMUNOGLOBULIN G BINDING PROTEIN A; CHAIN: G, H:
SeqFold Score			301.73	318.27		322.11		
PMF Score		00:1			1.00		0.33	1.00
Verify Score		0.86			0.76		-0.07	0.84
PSI BLAST		86-99	66-98	6.8e-88	5. 16-90	3.4e-85	3.4e-21	1c-90
End		268	268	268	267	268	191	267
Start AA		57	57	36	55	55	7	55
Chain ID		د	٦	٦	<u>.</u>	4	⋖	∢
PD8 ID		ladq	ladq	laqk	lb2w	1bjm	lbwm	ldee
SEQ ID		332	332	332	332	332	332	332

PDB Annotation	COMPLEX (ANTIBODY ANTIGEN) 1,4-BETA-N-ACETYLMURAMIDASE C; SINGLE-DOMAIN ANTIBODY, TURKEY EGG-WHITE LYSOZYME, 2 ANTIBODY-PROTEIN COMPLEX, SINGL E-CHAIN EV ED ACMENT	IMMUNE SYSTEM IG-FOLD, IMMUNO BOTH AT HER. ANTIBODY-ANTIGEN.	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN SEGION C FEGION MAMINOCIODIUM	IMMUNOGLOBULIN, BENCE JONES PROTEIN	IMMUNOGLOBULIN IMMUNOGLOBULIN, BENCE JONES PROTEIN					
Compound	SCFV FRAGMENT IF9, CHAIN: A, B; TURKEY EGG-WHITE LYSOZYME C; CHAIN: X, Y;	ACETYLCHOLINE RECEPTOR ALPHA: CHAIN: A; FV ANTIBODY FRAGMENT: CHAIN: B.	IGG2A INTACT ANTIBODY - MAB231; CHAIN: A. B, C, D	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	IMMUNOGLOBULIN ANTI- PHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASE C DIABODY ILMK 3 SYNONYMS: L3MK16 DIABODY, SINGLE- CHAIN FV DIMK8 11 MK 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MC/PC\$603) IMCP 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MC/PC\$603) IMCP 4	IMMUNOGLOBULIN IMMUNOGLOBULIN HETEROLOGOUS LIGHT CHAIN DIMER IMCW 3 (/MCG\$-/WEIR\$ HYBRID) IMCW 4	IMMUNOGLOBULIN FV FRAGMENT (MURINE SE155-4) COMPLEX WITH THE TRISACCHARIDE: IMFA 3 ALPHA-D-GALACTOSE(1- 2)[ALPHA-D-ABEQUOSE(1- 3)]ALPHA- IMFA 4 D-MANNOSE
SeqFold Score					299.68			202.00	294.22	
PMF Score	0.46	86.0	00.1	00.1		0.92	8:			0.01
Verify Score	0.09	0.14	89.0	0.86		0.12	0.79			-0.34
PSI BLAST	5.1c-60	1.4e-61	1.2e-89	4.5e-99	4.5e-99	3.4e-59	3.4e-91	3.4e-91	le-82	3.4e-21
End	162	164	267	268	268	162	267	267	268	161
Start	-	_	55	57	58	_	55	55	55	
Chain ID	¥	В	∢	Y	∢	∢		ب.	≽	
PDB ID	ldzb	1ßr	ligt		ii.	l'ak	1 тср	Imcp	Imcw	l m fa
SEQ NO:	332	332	332	332	332	332	332	332	332	332

PDB Annotation		AB	IMMUNOGLOBULIN VARIABLE HEAVY (VH) DOMAIN, VARIABLE LIGHT (VL) ANTIBODY FRAGMENT, MULTIVALENT ANTIBODY, DIABODY, DOMAIN 2 SWAPFING,	 	I I I I I I I I I I I I I I I I I I I		rkAUMENI, KEPKODUCTION	ç.			
Compound	(PI-OME) (PART OF THE CELL-SURFACE CARBOHYDRATE IMFA 5 OF PATHOGENIC SALMONELLA 1 MFA 6	HYDROLASE(O-GLYCOSYL) N9 HYDROLASE(O-GLYCOSYL) N9 NEURAMINIDASE-NC41 (E.C.3.2.1.18) COMPLEX WITH FAB	INCA 3 SINGLE-CHAIN ANTIBODY FRAGMENT; CHAIN: A, C;	IGM KAPPA CHAIN V-III (KAU COLD AGGLUTININ); CHAIN: A, C; IGM FAB REGION IV-J(H4)-C. (KAU COLD AGGLUTININ);	MFE-23 RECOMBINANT ANTIBODY FRAGMENT; CHAIN: A;	MONOCLONAL ANTIBODY 3A2; CHAIN: H. L;	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB 25B4 4	IMMUNOGLOBULIN IMMUNOGLOBULIN LIGHT CHAIN DIMER (/MCG\$) ZMCG 3 (TRIGONAL FORM) 2MCG	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB' NEW	(CAMBLA LIGHT CHAIN) 7FAB 3 IMMUNOGLOBULIN IMMONOGLOBULIN FAB' NEW	IMMUNOCLOBULIN FAB FRAGMENT FROM HIMAN
SeqFold Score							326.11	304.84	290.47		291.96
PMF Score		00.1	0.53	1.00	0.42	00:1				00:1	
Verify Score		0.78	0.17	0.65	0.45	0.89				0.85	
PSI BLAST		5. le-91	5.1e-61	1.5e-89	1.7e-61	3.4e-92	6.8c-87	l.7e-86	3e-95	3e-95	5.1e-87
End AA		267	163	267	162	267	268	268	264	264	564
Start		55	_	55	_	55	55	55	55	56	58
Chain ID		۵	∢	¥	¥.	-1	٦		٦		∢
PDB ID		Inca	Inqb	lqlr	Iqok	lsbs	2fb4	2mcg	7fab	7fab	8fab
SEQ NO:		332	332	332	332	332	332	332	332	332	332

	$\overline{}$	T-,												
PDB Annotation		IMMUNE SYSTEM IMMUNOGLOBULIN FOLD	HYDROLASE HOMODIMER, AI PHA/RETA HYDROI ASE ECI D	DISUBSTITUTED UREA 2 INHIBITOR HYDROLASE HOMODIMER, ALPHA/BETA HYDROLASE FOLD,	DISUBSTITUTED UREA 2 INHIBITOR HYDROLASE HAD-FAMILY ALPHA/BETA CORE DOMAIN. MG(II)	BINDING SITE, 5- 2 HELIX BUNDLE HYDROLASE HAD-FAMILY ALPHA/BETA CORE DOMAIN, MG(II)	HYDROLASE L-2-HALOACID DELIA OCENASE LIXEROL SE	HYDROLASE L-2-HALOACID DEHAI OGENASE UVDROLASE	DEHALOGENASE DEHALOGENASE, HYDROLASE	DEHALOGENASE DEHALOGENASE, HYDROLASE		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CX STAL STRUCTURE, COMPLEX CXINC FINGER/DNA)
Compound	(LAMBDA, HIL) 8FAB 3	BLUE FLUORESCENT ANTIBODY (19G2)-HEAVY CHAIN; CHAIN: H, A; BLUE FLUORESCENT ANTIBODY (19G2)-LIGHT CHAIN; CHAIN: 1. B.	EPOXIDE HYDROLASE; CHAIN: A. B:	EPOXIDE HYDROLASE; CHAIN: A. B;	PHOSPHONOACETALDEHYDE HYDROLASE; CHAIN: A, B. C. D;	PHOSPHONOACETALDEHYDE HYDROLASE; CHAIN: A. B, C. D:	L-2-HALOACID DEHALOGENASE: CHAIN: A B:	L-2-HALOACID DEHALOGENASE; CHAIN: A. B:	L-2-HALOACID DEHALOGENASE; CHAIN: NULL:	L-2-HALOACID DEHALOGENASE; CHAIN: NULL;		QUSK ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B.C.	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLLIGONUCLEOTIDE BINDING	JULE, CHAIN: B, C; DNA: CHAIN: A, B. D. E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;
SeqFold Score							51.58		57.26					
PMF Score		0.22	0.19	0.54	0.82	1.00		0.65		0.76	,	60.0-	0.12	0.10
Verify Score		-0.04	-0.04	0.25	0.37	0.56		0.32		0.29	300	6.0	0.13	-0.21
PSI BLAST		0.00034	3.4e-14	1.5e-17	4.5e-29	1.5e-23	3.4e-26	3.4e-26	1.7e-28	1.7e-28	6 Co 24	57.5 C.0	3.4e-30	3.4e-38
End		117	349	349	330	366	386	362	362	361	213		241	213
Start AA		39	225	132	130	130	130	131	130	131	130		191	145
Chain ID		د	∢	В	₹	4	4	∢			▼		∢	U
PDB ID		103	lek l	lek l	lfez	lfez	lqq5	1995	lzn	mz.	lalh		Jalh	Imey
SEQ ID NO:		338	342	342	342	342	342	342	342	342	343		343	343

PDB Annotation	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC.FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN. 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2
Compound	DNA: CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A. B. D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F. G;	DNA: CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold Score					-	103.55			
PMF Score	0.54	0.89	00.1	00:1	1.00		00'1	0.00	0.71
Verify Score	0.09	-0.08	0.20	0.22	0.47		0.42	-0.12	0.50
PSI BLAST	6.8e-50	5.1e-50	5.1e-50	3.4e-50	1.4e-49	3.4e-50	3.4e-33	5.1e-43	1.26-12
End	241	269	297	325	353	354	357	142	185
Start	091	888	216	244	272	272	300	39	158
Chain ID	U	o .	ပ	ပ	၁	ပ	ပ	O	ŋ
PDB ID	Imey	lmey	Imey .	Imey	lmey	lmey	Imey	Imey	l mey
SEQ NO:	343	343	343	343	343	343	343	343	343

PDB Annotation	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; SS RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D: 5S RIBOSOMAL RNA GENE: CHAIN: B, C, E. F;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B:	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5
SeqFold Score				89.34				
PMF Score		0.13	99.0		1.00	69:0	0.93	0.99
Verify Score		-0.39	-0.20		0.13	-0.19	60:00	0.03
PSI BLAST		1.76-11	8.5e-38	8.5e-38	3.46-35	5.1e-35	1.2e-52	6e-53
End		22	313	353	355	269	325	353
Start AA		37	191	187	217	168	214	242
Chain ID		U	<	V	V	ن ا	ပ	U
PDB ID		Imey	11f6	1116	1tf6	lubd	lubd	lubd
SEQ ID NO:		343	343	343	343	343	343	343

			,		·				
PDB Annotation	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT. YY1, ZINC 2 FINGER PROTEIN. DNA-PROTEIN RECOGNITION. 3 COMPLEX (TRANSCRIPTION RECULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER. COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTFIN/DNA)	COMPLEX (DNA-BINDING
Compound	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B:	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P\$ INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A: DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLIT; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D:	ZINC FINGER PROTEIN GLII;
SeqFold Score		86.36					95.61		
PMF Score			00.1	0.27	1.00	66:0		86:0	0.00
Verify Score			60.00	0.00	0.41	0.42		0.43	-0.10
PSI BLAST		6e-53	6.8e-34	1.2e-31	1.2e-61	1.5e-67	1.5e-67	3.4e-33	3e-23
End		354	353	268	327	353	355	352	243
Start AA		244	252	157	188	216	216	224	40
Chain 1D		U	၁	٧	٧	∢	⋖	V	A
PDB ID		lubd	Inbd	2gli	2gJi	2gli	2gli	2gli	2gli
SEQ ID NO:		343	343	343	343	343	343	343	343

SEQ ID NO:	PDB 1D	Chain 1D	Start AA	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
									CHAIN: A: DNA; CHAIN: C. D:	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
345	2991	<	7	63	4.5e-15	-0.10	0.72		ABL TYROSINE KINASE; CHAIN:	COMPLEX (TRANSFERASE/PEPTIDE)
									A, C, E, G; PEPTIDE P41; CHAIN: B, D, F, H;	COMPLEX (TRANSFERASE/PEPTIDE), SIGNAL TRANSDUCTION, 2 SH3
345	1gbq	<	∞	63	3e-16	-0.22	0.88		GRB2; CHAIN: A; SOS-1; CHAIN: B;	DOMAIN COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE) COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE),
345	1gbr	V	∞	59	3e-16	-0.04	86.0		SIGNAL TRANSPICATION	SH3 DOMAIN
							?		PROTEIN GROWTH FACTOR	
									RECEPTOR-BOUND PROTEIN 2	
									DOMAIN) COMPLEXED WITH	
									SOS-A PEPTIDE IGBR 4 (NMR, 29	
345	196		٥	,					STRUCTURES) 1GBR 5	
}	ر م		0	3	3e-15	0.27	68.0		ADAPTOR PROTEIN CONTAINING SH2 AND SH3 CBOWTH EACTOR	
									RECEPTOR-BOUND PROTEIN 2	
		,							(GRB2) 1GFC 3 (C-TERMINAL SH3	
346	-								DOMAIN) (NMK. MINIMIZED MEAN STRUCTURE) IGFC 4	
C+C	jud.		·	71	1.2e-15	-0.32	0.33		PHOSPHATIDYLINOSITOL 3-	PHOSPHOTRANSFERASE PI3K SH3:
				_		-			KINASE P85-ALPHA SUBUNIT; IPHT 6 CHAIN; NULL; IPHT 7	IPHT 9 PHOSPHATIDY LINOSITOL 3. KINASE, P85-ALPHA SUBUNIT. SH3
345	Ipks			63	1 \$6.14	24	0.30			DOMAIN IPHT 21
	•		•	3	5	\$ 7.0-	00		PHOSPHOTRANSFERASE PHOSPHATIDY INDOMEO	
									KINASE (E.C.2.7.1.137) (PI3K) 1PKS	
						-			3 (SH3 DOMAIN) (NMR,	
									MINIMIZED AVERAGE STRUCTURE) IPKS 4	
343	bwt-			63	7.5e-16	-0.09	0.99		ALPHA SPECTRIN; CHAIN: NULL;	CIRCULAR PERMUTANT PWT:
										CIRCULAR PERMUTANT, SH3
243	Iqkw	≪	•••	63	7.5e-16	0.13	86.0		ALPHA II SPECTRIN; CHAIN: A;	CYTOSKELETON CYTOSKELETON
345	Isem	V		58	86.15	0.30	600			MEMBRANE, SH3 DOMAIN
						0.50	76.0		SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH	SIGNAL TRANSDUCTION PROTEIN
										SINCELLOWING TO LOUIS DOING IN.

		Τ.				T -				-	γ-												-										
PDB Annotation	PEPTIDE-BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19		OXIDOREDUCTASE FERROCYTOCHROME C.: OX YGEN OXIDOREDUCTASE:	OXIDOREDUCTASE,	CYTOCHROME(C)-OXYGEN, CYTOCHROME C 2 OXIDASE	OXIDOREDUCTASE	FERROCYTOCHROME CLOXYGEN OXIDOREDUCTASE:	OXIDOREDUCTASE,	CYTOCHROME(C)-OXYGEN,	CTIOCHROME C 2 UXIDASE	RNA BINDING PROTEIN RIBOSOMAL	PROTEIN, PROTEIN SYNTHESIS, RNA	BINDING, 2 ANTIBIOTICS	RESISTANCE, RNA BINDING	PROTEIN	RIBOSOME 50S RIBOSOMAL	PINOTESIN EZF, FIMALZ, FILA; 303	HILL SOS RIBOSOMA! PROTEIN LAF	HMAL4. HL6: 50S RIBOSOMAL	PROTEIN LSP, HMALS, HL13; 30S	RIBOSOMAL PROTEIN HS6, 50S	RIBOSOMAL PROTEIN LI3P, HMALI3,	SUS KIBOSOMAL PROTEIN L14P,	HMALI4, HLZ/; SUS RIBOSOMAL	RIBOSOMAL PROTEIN 1 18P HMAT 19	HE12: SOS RIBOSOMAL PROTEIN	L18E, HL29, L19: 50S RIBOSOMAL	PROTEIN LI9E, HMAL19, HL24: 50S	RIBOSOMAL PROTEIN L21E, HL31;	50S RIBOSOMAL PROTEIN L22P,	HMAL22, HL23; 50S RIBOSOMAL	PROTEIN L23P, HMAL23, HL25, L21;	HMAL24, HL16, HL15; 50S
Сотроинд	PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10		CYTOCHROME C OXIDASE; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, O,			CYTOCHROME COXIDASE;	CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,				RIBOSOMAL PROTEIN L22:	CHAIN: A;				CHAIN: 9: PIBOSOMAL PROTEIN	L.2. CHAIN: A: RIBOSOMAI	PROTEIN L3: CHAIN: B:	RIBOSOMAL PROTEIN L4; CHAIN:	C; RIBOSOMAL PROTEIN LS;	CHAIN: D; RIBOSOMAL PROTEIN	L7AE; CHAIN: E; RIBOSOMAL	PROTEIN LINE; CHAIN: F;	CHAIN G. RIBOSOMAL PROTEIN	LI4; CHAIN: H: RIBOSOMAL	PROTEIN LISE; CHAIN: 1;	RIBOSOMAL PROTEIN LIS;	CHAIN: J; RIBOSOMAL PROTEIN	L18; CHAIN: K; RIBOSOMAL	PROTEIN LISE; CHAIN: L;	RIBOSOMAL PROTEIN L19;	CHAIN: M; KIBOSOMAL PROTEIN	PROTEIN L22; CHAIN: O;
SeqFold Score						69.07																											
PMF Score			09:0								00.1				0,00	00.0							· · ·										
Verify Score			-0.76								06.0					17:0																	
PSI BLAST			8.5e-27			8.5e-27			•		5.1e-43				3 40 22	0.45-2															 ,		
End			8			82					175				177	:																	
Start AA			30			30					99			_	5.4												_	-					
Chain ID		;	×];	£					∢				c	·													_				
PDB 10			2007		6	2207					lbxe			_	I B																		
SEQ ID NO:		370	040		240	040					355				355													-					1

PDB Annotation	RIBOSOMAL PROTEIN L24E, HL21/HL22; 50S RIBOSOMAL PROTEIN L29P, HMAL29, HL33; 50S RIBOSOMAL PROTEIN L30P, HMAL30, HL20, HL16; 50S RIBOSOMAL PROTEIN L31E, L34, HL30; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L39E, HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E, L4, HLA; 50S RIBOSOMAL PROTEIN L69, HMAL6, HL10 RIBOSOMAL PROTEIN L69, HMAL6, HL10 RIBOSOME ASSEMBLY, RNA- RNA, PROTEIN-RNA, PROTEIN-	TRANSFERASE METHYLTRANSFERASE	METHYLTRANSFERASE TRANSFERASE, METHYLTRANSFERASE, RESTRICTION SYSTEM	COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR) NF-AT; TRANSCRIPTION FACTOR, PROTEIN-DNA COMPLEX, NFAT, NF-AT, 2 AP-1, FOS-JUN, QUATERNARY PROTEIN-DNA COMPLEX, CRYSTAL 3 STRUCTURE, TRANSCRIPTION SYNERGY, COMBINATORIAL GENE 4 REGULATION, COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AP)	COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR) NF-AT; TRANSCRIPTION FACTOR, PROTEIN-DNA COMPLEX, NFAT, NF-AT, 2 AP-1, FOS-JUN, QUATERNARY PROTEIN-DNA
Сотроила	RIBOSOMAL PROTEIN L23; CHAIN: P; RIBOSOMAL PROTEIN L24; CHAIN: Q; RIBOSOMAL PROTEIN L24E: CHAIN: R; RIBOSOMAL PROTEIN L29; CHAIN: S; RIBOSOMAL PROTEIN L30; CHAIN: T; RIBOSOMAL PROTEIN L31E; CHAIN: U; RIBOSOMAL PROTEIN L37E; CHAIN: W; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L37AE; CHAIN: X; RIBOSOMAL PROTEIN L37AE; CHAIN: X; RIBOSOMAL PROTEIN L44E; CHAIN: Z; RIBOSOMAL L44E; CHAIN: Z; RIBOSOMAL PROTEIN L59E;	GLYCINE N. METHYLTRANSFERASE; CHAIN: A. B. C. D:	ADENÍNE-N6-DNA- METHYLTRANSFERASE TAQI; CHAIN: A. B;	NFAT: CHAIN: N. C-FOS. CHAIN: F; C-JUN: CHAIN: J: DNA; CHAIN: A; B;	NFAT; CHAIN: N; C-FOS; CHAIN: F; C-JUN; CHAIN: J; DNA; CHAIN: A, B;
SeqFold Score					62.39
PMF		0.17	-0.11	0.17	
Verify Score		0.20	0.14	-0.36	
PSI BLAST		1.2e-14	6.8e-13	4.5e-13	4.5e-13
End		190	209	091	160
Start AA		02	99	 80 -	108
Chain 1D		∢	∢	(L	ĹĹ
PDB ID		ld2h	2adm	l a 0.2	1a02
SEQ ID NO:		369	369	37	371

				·			, .
PDB Annotation	COMPLEX, CRYSTAL 3 STRUCTURE, TRANSCRIPTION SYNERGY, COMBINATORIAL GENE 4 REGULATION, COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR)	COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR) NF-AT; TRANSCRIPTION FACTOR, PROTEIN-DNA COMPLEX, NF-AT, 2 AP-I. FOS-JUN. QUATERNARY PROTEIN-DNA COMPLEX, CRYSTAL 3 STRUCTURE, TRANSCRIPTION SYNERGY. COMBINATORIAL GENE 4 REGULATION, COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR)			HYDROLASE INHIBITOR ULTRA- HIGH RESOLUTION	OXIDOREDUCTASE OXIDOREDUCTASE	
Сотроилд		NFAT; CHAIN: N; C-FOS; CHAIN: F; C-JUN; CHAIN: J; DNA; CHAIN: A, B;	COMPLEX (GENE-REGULATORY PROTEIN/DNA) C-JUN PROTO-ONCOGENE (TRANSCRIPTION FACTOR AP-1) DIMERIZED IFOS 4 WITH C-FOS AND COMPLEXED WITH DNA IFOS 5 COILED-COIL, DNA-BINDING PROTEIN, HETERODIMER IFOS 19	COMPLEX (GENE-REGULATORY PROTEIN/DNA) C-JUN PROTO-ONCOGENE (TRANSCRIPTION FACTOR AP-I) DIMERIZED IFOS 4 WITH C-FOS AND COMPLEXED WITH DNA IFOS 5 COLLED-COIL, DNA-BINDING PROTEIN, HETERODIMER IFOS 19	GUANINE NUCLEOTIDE DISSOCIATION INHIBITOR; CHAIN: A;	FLAVOCYTOCHROME C3 FUMARA'TE REDUCTASE; CHAIN: A, D:	OXIDOREDUCTASE DIHYDROLIPOAMIDE
SeqFold Score			70.24				
PMF Score		0.69		0.76	1.00	0.17	0.36
Verify Score		-0.05		-0.39	0.32	0.01	-0.12
PSI BLAST		3.46-10	3.46-10	3.46-10	0	0.0045	900.0
End AA		146	991	146	598	46	48
Start AA		115	107	113	166	∞	∞
Chain ID		<u>u</u> _	ы	ப	4	∢	¥
PDB ID		1a02	Ifos	lfos	1921	8061	31ad
SEQ ID NO:		371	371	371	373	373	373

	PDB ID	Chain ID	Start AA	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
 									DEHYDROGENASE (E.C.1.8.1.4) 3LAD 3	
 	laih	<	891	252	5.le-15	0.00	0.05		QGSR ZINC FINGER PEPTIDE; CHAIN: A: DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
	lath	<	881	280	6.8e-22	-0.03	0.30		QGSR ZINC FINGER PEPTIDE; CHAIN: 4; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
 	lalh	∢	228	304	3.4e-23	09.0	0.12		OGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
	lalh	∢	308	388	1.2e-29	-0.01	00.1		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
	lath	«	308	389	1.2e-32	-0.32	1.00		OGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
	lath	4	336	416	1e-30	0.03	0.92		OGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
	laih	K	393	472	1.2e-37	0.64	1.00		OGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
	laih	∢	420	502	1.2e-37			86.81	QGSR ZINC FINGER PEPTIDE; CHAIN: A: DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B. C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER. DNA-BINDING PROTEIN
	lalh	∢	476	556	1.2e-34	0.57	1.00		QGSR ZINC FINGER PEPTIDE: CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
	lalh	∢	476	556	1.7e-31	0.43	1.00		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN

SEQ ID NO:	PDB ID	Chain ID	Start AA	End AA	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
									SITE; CHAIN: B, C;	
374	Imey	O	981	280	3.4e-38	0.45	0.75		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
										CRISIAL SIROCIORE, COMPLEA (ZINC FINGER/DNA)
374	Imey	ပ	227	304	8.5e-41	0.40	0.84		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
					_				PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
										CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
374	Imey	၁	255	360	le-43	-0.15	0.35		DNA: CHAIN: A. B. D. E.	COMPLEX (ZINC FINGER/DNA) ZINC
									CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F. G;	INTERACTION, PROTEIN DESIGN, 2
										CRYSTAL STRUCTURE, COMPLEX
12.5		Ţ	100	3						(ZINC FINGER/DNA)
4/5	теу	ر	307	388	le-48	90.0	0: 0:		DNA; CHAIN: A. B, D, E:	COMPLEX (ZINC FINGER/DNA) ZINC
	_								CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
									PROTEIN: CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN. 2
										CRYSTAL STRUCTURE, COMPLEX
12.		,	١				1			(ZINC FINGER/DNA)
٠ ۲/ ٢	ımey	ر	355	416	5.1e-50	-0.05	 8:		DNA; CHAIN: A, B, D, E,	COMPLEX (ZINC FINGER/DNA) ZINC
									CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
									PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
										CRYSTAL STRUCTURE, COMPLEX
374	Imey	၁	363	444	1e-50	0.39	8		DNA: CHAIN: A B D E:	COMBLEY (ZINIC CINICED/DNA) ZINIC
					3	}	3		CONSENSUS ZING FINGER	FINGER PROTFIN-DNA
							-		PROTEIN: CHAIN: C. F. G.	INTERACTION PROTEIN DEGICES 2
										CRYSTAL STRUCTURE COMPLEX:
										(ZINC FINGER/DNA)
374	lmey	ပ	391	472	1.7e-51	0.48	1.00		DNA; CHAIN: A, B, D, E;	COMPLEX (ZINC FINGER/DNA) ZINC
									CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
			-						PROTEIN; CHAIN: C, F, G;	INTERACTION, PROTEIN DESIGN, 2
									•	CRYSTAL STRUCTURE, COMPLEX
374	lmey	ပ	419	200	6.8e-51	0.55	8		DNA: CHAIN: A B D E.	COMPLEX (ZINC FINCEP (DNA) ZINC
						}	}		CONSENSUS ZINC FINGER	FINGER, PROTEIN-DNA
				-					PROTEIN: CHAIN: C, F. G;	INTERACTION, PROTEIN DESIGN, 2
										CRYSTAL STRUCTURE. COMPLEX
374	lmey	C	447	528	1.2e-50	0.51	90.		DNA: CHAIN: A. B. D. E.	COMPLEX (ZINC FINGER/DNA) ZINC
							1	+		בייים לנייוס בייים לחווס ווייסיים בייים לנייוס

 _			•								_					, .						_													
PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRISTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER. PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) TFIIIA; 5S GENE;	TRANSCRIPTION FACTOR SCRNA 2	GENE, DNA BINDING PROTEIN, ZINC	FINGER, COMPLEX 3	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	KECOLA HON/DNA) COMPLEX	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	(TRANSCRIPTION	REGULATION/DNA). RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	TEGOLA I COMPLEX (TRANSCRIPTION	REGULATION/DNA) BNA
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER PROTFIN: CHAIN: O F. O.	NOTEIN, CHAIN: C, F, G;		DNA: CHAIN: A, B, D. E;	CONSENSUS ZINC FINGER	TROTEIN; CHAIN: C. F. G.		DNA: CHAIN: A, B, D, E,	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C. F. G;		TB ANSCRIPTION 5. CTO.	CHAIN: 4: 50 RNA GENE: CHAIN:	E. F;					TEILIA: CHAIN: A P. 65	RIBOSOMAL RNA GENE: CHAIN.	B, C, E, F;			TELLIA: CHAINEA B. 45	SIBOSOMAL RNA GENE: CHAIN:	B, C, E, F;			Ella Citabi	FILIA; CHAIN: A. D. 55 RIBOSOMAL RNA GENE: CHAIN:	B, C, E, F;	
SeqFold Score			106.37								-	-				•											117.85			***					
PMF Score							— 0. -				0.69				900	3						-0.07					+	•				80 0			
Verify Score						į	0.37				 				900							0.05										0.01			1
PSI BLAST		K 80-51	0.05-01				1.76-50	-		01.73	1.36-10				6.8e-14							5.1e-29					8.5e-39					6.8c-38			1
End		\$79	(3)			7.5	920			15.5	767				276	_						341					470					453		_	
Start AA		447	:			175	?			225	777				187							187					307					308			
Chain 1D		U	1			ر)		_	0					A			_				≺					4		-	•		A 3			
708 G		Imey				lmev	`			Imev	`				<u>.</u>				 -) 1tle		_			1166			
NO SEC		374				374				374				7	374						7	3/4				7	374 11				7	374 11	<u></u>		

PDB Annotation	POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III. 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION
Compound		TFIIIA; CHAIN: A, D, 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A. D. 5S RIBOSOMAL RNA GENE: CHAIN: B. C. E, F;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI, CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A. B;
SeqFold Score							
PMF Score		00.1	96.0	0.46	0.03	09.0	0.19
Verify Score		0.12	0.13	0.18	0.10	0.28	-0.15
PSI BLAST		1.7e-38	8.5c-39	3.4e-30	8.5e-25	3.4e-27	8.5e-29
End		481	538	556	280	304	360
Start		336	392	448	991	061	263
Chain ID		<	∢	∢	U	U	U
PDB ID		1tf6	11.16	9111	lubd	lubd	lubd
SEQ OS		374	374	374	374	374	374

PDB Annotation	REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2 EINGER PROTEIN DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	COMPLEY (TO ANCOUNTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	PECOCNITION 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1:	TRANSCRIPTION INITIATION.	FINDER PROTFIN DNA-PROTFIN	RECOGNITION 3 COMPLEX	TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATION ELEMENT, YY1, ZINC 2	PECOCNITION 2 COAD EV	CECOGNICION, 3 COMPLEA	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	KECOGNITION, 3 COMPLEX	(IKANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION DECLI A THOMBNA YING YANG I	NEGOLATION CONTRACTOR 1,
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;	CHAIN: A, B;			VVI. OHAIN, C. ADENO	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA:	CHAIN: A. B.				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA,	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	מונסטווא משורוטסנט
SeqFold Score																																			
PMF Score		0.94				90	99.						66.0							00.1							1.00							00.1	
Verify Score		0.12				;	2.13						0.01		_					0.30							0.23							0.18	
PSI BLAST		5.1e-34					ye-41						1.5e-34							1.5e-34							5.1e-36							1.5e-51	
End		388				1	444						416							444							200							529	
Start AA		287				_	312						315							343							399							418	
Chain 1D		O.				Ç	ပ						Ç							ပ							၁							ပ	
PD8 1D		lubd					pgn		-				lubd							lubd							lubd							lubd	
SEQ NO:		374				į	5/4						374							374							374							374	

					,			
PDB Annotation	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	ZINC FINGER DNA BINDING DOMAIN DNA BINDING MOTTF, ZINC FINGER DNA BINDING DOMAIN	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION ADRI, ZINC FINGER, NMR	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI: GLI, ZINC FINGER, COMPLEX (DNA-
Compound	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN; C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A. B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	SWIS; CHAIN: NULL;	ADRI; CHAIN: NULL;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A: DNA; CHAIN: C. D:
SeqFold Score		98.87						
PMF Score			86.0	00:	0.30	90:0	. 11.0-	0.87
Verify Score			0.20	0.21	90:0	-0.04	0.07	0.18
PSI BLAST		1.5e-51	1.5e-46	1.5e-34	6.8e-05	3.4e-11	8.5e-24	1.2e-34
End		529	556	556	558	254	303	415
Start AA		421	445	455	532	189	191	287
Chain ID		U	O	၁			∢	∢
PDB ID		lubd	Pq'n I	Inbd	l zfd	2adr	2gli	2gli
SEQ ID NO:		374	374	374	374	374	374	374

				- V Z			¥					T		-								T	T			T	_	0				
PDB Annotation	THE PROPERTY OF THE PROPERTY O	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI:	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	OLI. ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)		DE NOVO PROTEIN PROTEIN	DESIGN, HYDROPHOBIC CORE,	PACKING, ROTAMERS, ROC, 2	IN, DE NOVO FROI EIN, IN	DE NOVO PROTEIN PROTEIN	DESIGN, HYDROPHOBIC CORE,	DESCRING, ROLAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN,	Z								UBIQUITIN UBIQUITIN, DESIGNED	UBIOUITIN UBIOUITIN, DESIGNED	ITANT		
) in diag	COMPLE	PROTEIN	BINDING	COMPLE	PROTEIN	GLI, ZIN	BINDING	COMPLE	PROTEIN	BINDING		DE NOV	DESIGN,	PACKING	VILLOOIBU	DE NOV(DESIGN,	UBIQUIT	UBIQUITIN								UBIQUITIN UB	UBIOUITI	CORE MUTANT		
Compound		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;			ZINC FINGER PROTEIN GLIT:	CHAIN: A; DNA; CHAIN: C; D;			ID8 UBIQUITIN; CHAIN: A;				ID8 UBIQUITIN; CHAIN: A;				UBIQUITIN TETRAUBIQUITIN ITBE 3	UBIQUITIN TETRAUBIQUITIN	CHROMOSOMAL PROTEIN	UBIQUITIN IUBI 3	CHROMOSOMAL PROTEIN	CHROMOSOMAL PROTEIN	UBIQUITIN 1UBI 3	UBIQUITIN CORE MUTANT 1D7: CHAIN: A:	UBIQUITIN CORE MUTANT 1D7:	CHAIN: A;		
SeqFold Score		106.08												_			102.61					97.63			105.89				102.60			
PMF Score					00.1		•	18	99:				00.							6	33.		00:1			1.00		 8: -		+	18	
Verify Score					0.49			200	0.30				9.0							200	0.97		1.07	1		1.07		96.0			000	
PSI BLAST		1.2e-61			1.2e-61			1 50 50	4.56-58				16-31				le-31			1 20 33	1.25-32	1.2e-32	le-33	,	/.se-36	7.5e-36		1.2e-32	1.2e-32		1 20.63	
End		474			230			553) (C			ì	ę			1	• •			5	,	22	76	1	ę	76		9/	9/		144	
Start		335			393			420	074				_									_	-	-	- [1	-	-	_		~	•
Chain ID		∢			<			A					ξ				<			CE CE	,	18						₹	∢		4	
PDB ID		2gli			187			2pli	9			103	<u> </u>			153	<u> </u>			ige egi		Itbe	1ubi	4.	Op.	ig ig	1.6.1) pn -	l nd7		lcdm	
SEQ 1D		374		1,1	* ``			374		-		175	2			275	3			375		Sis	375	375	3	375	375	3	375		377	

PDB Annotation									CALCIUM-BINDING PROTEIN	CALMODULIN APO TR2C-DOMAIN; ICMF 9	CALCIUM-BINDING PROTEIN	CALMODULIN APO TR2C-DOMAIN; ICMF 9	METAL TRANSPORT CALMODULÍN, HIGH RESOI ITTION DISORDER	TE ANSPORT PROTEIN CALCILINA	BINDING, EF HAND, FOUR-HELIX BUNDLE	CALCIUM-BINDING PROTEIN EF- HAND 1TNX 14	CALCIUM-BINDING PROTEIN EF. HAND ITNX 14	CALMODULIN, CALCIUM BINDING,	HELIX-LOOP-HELIX, SIGNALLING, 2	PROTEIN/PEPTIDE)	CALMODULIN, CALCIUM BINDING,	HELIX-LOOP-HELIX, SIGNALLING, 2	COMPLEX (CALCIOM-BINDING PROTEIN/PEPTIDE)		RNA-BINDING PROTEIN/RNA TRA	RNP DOMAIN, RNA COMPLEX
Compound	DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODILIN BINDING	WILL CALMODOLIN-BINDING DOMAIN OF ICDM 3	CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN	CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN	CALMODULIN (VERTEBRATE) ICLL 3	CALMODULIN (VERTEBRATE);	ICMF 6 CHAIN: NULL; ICMF 7	CALMODULIN (VERTEBRATE);	ICMF 6 CHAIN: NULL; ICMF 7	CALMODULIN; CHAIN: A;	CALMODIE IN CHAIN: A	CALMODOLIN; CHAIN: A;	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	CALMODULIN; CHAIN: A; RS20;	CHAIN: B;		CALMODULIN: CHAIN: A; RS20;	CHAIN: B;			SXL-LETHAL PROTEIN: CHAIN: A.	B. NIVA U - R(P*GP*UP*UP*GP*UP*UP*UP*UP
SeqFold Score		149.72					156.05		79.20							127.27					156.22					
PMF Score					1.00						1.00		00:1	8	3		00.1	00.1						-	66.0	
Verify Score					1.07						06.0		96.0	2	<u>+</u>		0.85	1.08					·		0.43	
PSI BLAST		1.2e-62			3.4e-66		3.4e-66		1.5e-23		1.5c-23	•	5.1e-64	1 50.73	57-25-1	3.4e-50	3.4e-50	1.5e-66			1.5e-66	•			1.7e-21	
End AA		144		,	144	-	145		146		143		143	143	<u> </u>	143	143	146			146				113	
Start AA		\$			5		\$		74		81		3	18		1	5	2			2				2	
Chain ID		4											٧	 	ς			٧			٧				¥	
PDB 1D		Icdm			Icl		Icli		lcmf		lcmf		lexr	1771		ltnx	ltnx	l vrk			- xr				1676	
SEQ ID NO:		377	_		377		377		377		377		377	122		377	377	377		_	377				384	

	_		_				1					_	_					_	_						Γ-			_		_							_			_
PDB Annotation		RNA-BINDING PROTEIN/RNA TRA PRE-MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	PNA-BINDING PROTEIN/PNA TPA	ANIAN TANDING TAND BOX 1000	PRE-MANA; SPEICHNO RECOLATION,	RINT DOMAIN, RINA COMPLEX	GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1. PABP 1: RRM.	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN I, PABP I; RRM,	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM.	PROTEIN-RNA COMPLEX. GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM,	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM,	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM,	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA
Compound	*UP*UP*UP*U)- CHAIN: P, Q;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5'- R(P*GP*UP*UP*GP*UP*UP*UP*UP	CVI -I ETHAI PROTEIN: CHAIN: A	D. DNA /st	B/D*(D*(D*(D*(D*(ID*(ID*(ID*	*UP*UP*UP*U)- CHAIN: P. O.	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C, D. E.	F, G, H; RNA (5'-	R(*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M, N, O, P,	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C, D, E,	F, G, H; RNA (5'-	R(*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'): CHAIN: M, N, O, P,	۷, k, s, ۱;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A. B, C, D, E.	F. G, H; RNA (5'-	R(*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M, N, O, P.	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN 1; CHAIN: A, B, C, D, E.	F, G, H; RNA (5'-	R(*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M, N, O, P,	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C, D, E,	F, G, H; RNA (5'-	R(*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M, N, O, P,	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C, D, E,	F, G, H; RNA (5'.	R(*AP*AP*AP*AP*AP*AP*
SeqFold Score			84.87	04.0																																				
PMF Score		00:1					1.00						9. 9.			•			8.						8.						8						8:			
Verify Score		1.07					0.42						0.72						0.16						0.31						0.57						0.33			
PSI BLAST		3.4e-43	3 46-43	2			1.5e-31						1.4e-43						3.4e-23						6.8e-26						1.7e-37						8.5e-28			
End AA		205	205	}			611						211					١	00 00 00 00						8					99,							178			
Start AA		33	33	}			2	_				,	37						378						7					ļ	75						37			1
Chain ID		∢	<	:			٧						<						∢					1	20					-	<u>n</u>						ı.			
PDB ID		lb7f	1b7f				lcvj						<u>5</u>						اري ا						رد <u>ر</u> ادر						<u></u>		-				[so]			
SEQ ID NO:		384	384				384					7,000	384					, 0,	384]	384					20,4	284		_	_			384			

PDB Annotation		GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDÍNG, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR
Сотроинд	AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP* AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C, CHAIN: A;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C; CHAIN: A:	HNRNP AI; CHAIN; NULL;	HNRNP AI; CHAIN: NULL;	HNRNP A1; CHAIN: NULL;	HNRNP AI; CHAIN: NULL;	HNRNP A1; CHAIN: NULL:
SeqFold Score								74.92			
PMF Score		000	1.00	1.00	00.1	00.1	00:1		-0.05	0.63	1.00
Verify Score		0.46	0.61	0.83	0.77	0.72	0.70		0.63	0.33	0.70
PSI BLAST		1.4e-28	5.1e-22	4.Se-24	1.5e-17	4.5e-23	1.7e-51	1.7e-51	le-23	6.8e-22	3.4c-28
End AA		181	117	105	120	201	205	204	494	=13	498
Start AA		37	32	419	36	418	30	31	376	4	413
Chain ID		Ι	∢	K	<	4					
PDB ID		Icvj	1d8z	1d8z	1d9a	149a	lha!	lha1	lhaí	lhal	l ha l
SEQ ID NO:		384	384	384	384	384	384	384	384	384	384

SEQ ID NO:	PDB 10	Chain 1D	Start	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
										RIBONUCLEOPROTEIN AI, NUCLEAR PROTEIN, HNRNP, RBD, RRM. RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN
384	1hd1	٧	36	113	le-22	16.0	1.00		HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN DO: CHAIN: A;	RNA BINDING PROTEIN RNA- BINDING DOMAIN
384	lhd1	А	419	494	8.5e-24	1.02	66.0		HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN DO; CHAIN: A:	RNA BINDING PROTEIN RNA- BINDING DOMAIN
384	Isnl		406	501	6c-25	0.48	66:0		RNA-BINDING PROTEIN SEX- LETHAL PROTEIN (C-TERMINUS, OR SECOND RNA-BINDING DOMAIN 1SXL 3 (RBD-2), RESIDUES 199 - 294 PLUS N- TERMINAL MET) 1SXL 4 (NMR, 17 STRUCTURES) 1SXL 5	
384	2mss	∢	36	113	6.8e-18	0.50	0.58		MUSASHII; CHAIN: A;	RNA BINDING PROTEIN RNA- BINDING DOMAIN
384	2sxl		33	811	3.4e-20	0.63	1.00		SEX-LETHAL PROTEIN; CHAIN: NULL;	RNA-BINDING DOMAIN RNA- BINDING DOMAIN, ALTERNATIVE SPLICING
384	2up l	∢	29	210	1.4e-53	69:0	1.00		HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1
384	2up1	∢	30	213	1.4e-53			77.86	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A I; CHAIN: A: 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA: CHAIN: B;	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1. UP1: COMPLEX (RIBONUCLEOPROTEIN/DNA). HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1
384	Zup I	∢	376	499	Ic-24	-0.07	0.06		HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A: 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B:	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1: COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCL EOPROTEIN A1
384	2up1	4	4	611	5.1e-23	0.44	0.63		HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1;	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP

PDB Annotation					KINASE KINASE, SIGNAL ASE; TRANSDUCTION, CALCIUM/CALMODULIN	HA- TRANSFERASE TRANSFERASE, SERINE/THREONING-PROTEIN KINASE. CASEIN KINASE, 2 SER/THR KINASE	HA- TRANSFERASE TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, CASEIN KINASE, 2 SER/THR KINASE	
Compound	CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1: CHAIN: A: 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA: CHAIN: B;	SEX-LETHAL; CHAIN: A, B, C;	SEX-LETHAL; CHAIN: A, B, C;	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE; CHAIN: NULL;	PROTEIN KINASE CK2/ALPHA- SUBUNIT: CHAIN: NULL;	PROTEIN KINASE CK2/ALPHA- SUBUNIT; CHAIN: NULL;	TRANSFERASE(PHOSPHOTRANSF ERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4
SeqFold Score					98.83	153.21		116.50
PMF Score		1.00	66'0	1.00			00.1	
Verify Score		0.87	0.47	0.72			0.30	
PSI BLAST		1.5e-29	1.26-20	3.46-41	1.7e-63	1.2e-81	1.2e-81	6e-55
End		501	901	189	327	296	295	324
Start		412	7	35		-	• m	
Chain ID		∢	∢	∢ .				π
PDB ID		2up1	3sxl	3sxl	1a06	1a60	1a60	lapın
SEQ ID NO:		384	384	384	391	391	391	391

PDB Annotation				PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION	PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION	COMPLEX (KINASE/INHIBITOR) CDK6; PI9INK4D; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE INHIBITORY 2 PROTEIN, CDK, INK4, CELL CYCLE, COMPLEX (KINASE/INHIBITOR) HEADER HELIX	COMPLEX (KINASE/INHIBITOR) CDK6: P191NK4D; CYCLIN DEPENDENT KINASE, CYCLIN
Compound	COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	TRANSFERASE(PHOSPHOTRANSF ERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) \$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA 1SOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA ('S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	TRANSFERASE(PHOSPHOTRANSF ERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA ('S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN- DEPENDENT KINASE INHIBITOR; CHAIN: B, D;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A. C. CYCLIN- DEPENDENT KINASE INHIBITOR;
SeqFold Score					212.68	182.71	
PMF Score		1.00	1.00	00'1			1.00
Verify Score		0.45	0.31	0.37			0.04
PSI BLAST		Ie-53	66-55	0	0	3.46-91	3.4e-91
End		288	304	294	298	289	289
Start		2		2	2	m	4
Chain ID		ш	ຜ			<	4
PDB ID		l apm	lapm	laq l	laq!	1 bi 8	1bi8
SEQ ID		391	391	391	391	391	391

PDB Annotation	DEPENDENT KINASE INHIBITORY 2 PROTEIN, CDK. INK4. CELL CYCLE. COMPLEX (KINASE/INHIBITOR) HEADER HELIX	COMPLEX (INHIBI OK PROTEINKINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROOTEINKINASE)	COMPLEX (INTIBILION PROTEINKINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	IKANSFEKASE CSK, FRO ENK KINASE, C-TERMINAL SRC KINASE, PHOSPHORYLATION, 2 STAUROSPORINE, TRANSFERASE	KINASE ICKI 18	KINASE ICKI 18	TRANSFERASE STRESS-ACTIVATED PROTEIN KINASE-3. ERK6. ERK5; P38-GAMMA. GAMMA, MAP KINASE			PHOSPHOTRANSFERASE	
Compound	CHAIN: B. D;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	C-TERMINAL SRC KINASE; CHAIN: A;	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	PHOSPHORYLATED MAP KINASE P38-GAMMA: CHAIN: A, B:	PHOSPHOTRANSFERASE CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	PHOSPHOTRANSFERASE CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	CASEIN KINASE-1; ICSN 4	TRANSFERASE(PHOSPHOTRANSF ERASE) CAMP-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (CAPK) ICTP 3 (CATALYTIC SUBUNIT) ICTP 4
SeqFold Score		202.88		74.19	19.89			111.92		77.16	109.28
PMF Score			1.00			68.0	1.00		1.00		
Verify Score			0.27			0.17	0.42		0.46		
PSI BLAST		1.7e-99	1.7e-99	3e-34	3e-55	3e-55	0	6.8e-56	6.8e-56	5.1e-18	1.5e-56
End		296	291	303	281	288	326	324	288	284	311
Start		_	4	_	2	4	_	-	2	_	_
Chain 1D		∢	4	<	A	₹	<	ш	ω		ш
PDB 10		lblx	1blx	lbyg	Icki	lcki	1cm8	lcmk	1cmk	Icsn	lctp
SEQ	.OV.	391	391	391	391	391	391	391	391	391	391

PDB Annotation	TRANSFERASE KINASE DOMAIN, AUTOINHIBITORY FRAGMENT. HOMODIMER	PHOSPHOTRANSFERASE FGFRIK. FIBROBLAST GROWTH FACTOR RECEPTOR I; TRANSFERASE, TYROSINE-PROTEIN KINASE, ATP- BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE FGFRIK, FIBROBLAST GROWTH FACTOR RECEPTOR 1; TRANSFERASE, TYROSINE-PROTEIN KINASE, ATP- BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	SERINE/THREONINE-PROTEIN KINASE CSBP, RK, P38: PROTEIN SER/THR-KINASE, SERINE/THREONINE-PROTEIN KINASE	SERINE/THREONINE-PROTEIN KINASE CSBP, RK, P38; PROTEIN SER/THR-KINASE, SERINE/THREONINE-PROTEIN KINASE	COMPLEX (TRANSFERASE/SUBSTRATE) TYROSINE KINASE, SIGNAL TRANSDUCTION, PHOSPHOTRANSFERASE, 2 COMPLEX (KINASE/PEPTIDE
Compound	SERINETTHREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN; A, B; SERINETHREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN; C, D;	FGF RECEPTOR 1; CHAIN: A, B:	FGF RECEPTOR 1; CHAIN: A, B;	HUMAN CYCLIN-DEPENDENT KINASE 2; CHAIN: NULL;	HUMAN CYCLIN-DEPENDENT KINASE 2: CHAIN: NULL;	P38 MAP KINASE: CHAIN: NULL:	P38 MAP KINASE; CHAIN: NULL;	INSULIN RECEPTOR; CHAIN: A; PEPTIDE SUBSTRATE; CHAIN: B;
SeqFold Score		95.41	101.29		239.66		163.36	79.01
PMF Score	00.1			1.00		1.00		-
Verify Score	0.41			0.67		0.12		
PSI BLAST	7.5e-67	1.5e-38	7.56-37	0	0	0	0	4.5e-37
End	297	299	298	294	298	328	328	275
Start	m	_	_	2	2		_	
Chain ID	U	∢	æ					∢
PDB ID	1ßm	lfgk	lfgk	Ihci	lhcl	lian	lian	Tir3
SEQ ID NO:	391	391	391	391	391	391	391	391

Compound PDB Annotation	SUBSTRATE/ATP ANALOG), ENZYME, 3 COMPLEX (TRANSFERASE/SUBSTRATE)	CJUN N-TERMINAL KINASE; TRANSFERASE JNK3; TRANSFERASE, JNK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE	IINAL KINASE;	TWITCHIN; CHAIN: NULL; KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	TWITCHIN; CHAIN: NULL; KINASE KINASE. TWITCHIN, INTRASTERIC REGULATION	TWITCHIN, CHAIN: A, B: KINASE KINASE, TWITCHIN. INTRASTERIC REGULATION	TWITCHIN; CHAIN: A. B; KINASE KINASE, TWITCHIN. INTRASTERIC REGULATION	MAP KINASE P38; CHAIN: NULL: TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE; TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN	KINASE, 2 P38	MAP KINASE P38; CHAIN: NULL; TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE: TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P38	ASE KINASE;	TRANSFERASE, SERINETHREONINE- PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	ASE KINASE;	
3		C-JUN N-TERM CHAIN: NULL;	C-JUN N-TERM CHAIN: NULL;	TWITCHIN; C	TWITCHIN; C	TWITCHIN; C	TWITCHIN; C	MAP KINASE		MAP KINASE	PHOSPHORYL CHAIN: NULL;		PHOSPHORYL CHAIN: NULL;	PHOSPHORY CHAIN: NULL
SeqFold Score			161.78		08.98		124.22			191.19	123.81			
PMF Score		00.1		1.00		1.00		1.00					1.00	1.00
Verify Score		0.46		0.26		0.26		0.47					0.37	0.37
PSI BLAST		0	0	1e-57	1e-57	1.7e-57	1.7e-57	0		0	1.7e-66		1.7e-66	1.7e-66
End		323	331	302	358	292	357	328		332	291		291	291
Start		_	_		_	_	_	_		_	_		m	m.
Chain ID						¥	V							
PD8 ID		ljnk	ljnk	Ikoa	1 koa	Ikob	lkob	1 p38		1p38	1phk		Iphk	Iphk
SEQ D		391	391	391	391	391	391	391		391	391		391	391

PDB Annotation	SERINE/THREONINE PROTEIN KINASE, TRANSFERASE	TRANSFERASE MAP KINASE, SERINE/THREONINE PROTEIN KINASE, TRANSFERASE	SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP	2, ERK2; TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE MAPKINASE 2 FRK2	TRANSFERASE MITOGEN	ACTIVATED PROTEIN KINASE, MAP	2, ERK2; TRANSFERASE,	KINASE, MAP KINASE, 2 ERK2	COMPLEMENT COMPLEMENT: EGF,	CALCIUM BINDING, SERINE PROTEASE	STRUCTURAL PROTEIN I-DOMAIN,	METAL BINDING. COLLAGEN, ADHESION	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN,	ADHESION CERTIFICATION OF THE PROPERTY OF THE	BLOOD COAGULATION, SERINE	PROTEASE, COMPLEA, CO-FACTOR,	2 RECEPTOR ENGINE, INFIBITOR,	DECTE A SECTOR A LICAND		BLOOD COAGULATION, SERINE	PROTEASE, COMPLEX, CO-FACTOR,	2 RECEPTOR ENZYME, INHIBITOR,	GLA, EGF, 3 COMPLEX (SERINE	PROTEASE/COFACTOR/LIGAND)		BLOOD COAGULATION, SERINE	2 RECEPTOR ENZYME, INHIBITOR,
Compound		ERK2; CHAIN: NULL;	TITIN; CHAIN: A, B;	EXTRACELLULAR REGULATED KINASE 2; CHAIN: NULL;		EXTRACELLULAR REGULATED	KINASE 2; CHAIN: NULL;			COMPLEMENT PROTEASE CIR:	CHAIN: NULL:	INTEGRIN ALPHA-1; CHAIN: A, B;		INTEGRIN ALPHA-1; CHAIN: A, B;		BLOOD COAGULATION FACTOR	VIIA; CHAIN: L, H; SOLUBLE	LISSUE FACTOR; CHAIN: 1, U; D-	PHE-PHE-AKU-	(DEFROME) WITH CHAIN: C:	BLOOD COAGULATION FACTOR	VIIA; CHAIN: L, H; SOLUBLE	TISSUE FACTOR; CHAIN: T, U; D-	PHE-PHE-ARG-	CHLOROMETHYLKETONE	(DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR	VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-
SeqFold Score		183.19	114.84	187.32																								
PMF Score						00.1				1.00		00 -		00:1		0.65					0.10						0.55	
Verify Score						0.54				-0.02		0.51		1.12		-0.44				_	-0.30						-0.15	
PSI BLAST		0	1.7e-45	0		0				1.5e-11		6e-25		le-46		4.5c-20					3e-32						4.5e-31	
End		331	358	325		326				154		Ξ		709		205					246						287	
Start AA		-	_	_		_				120		5		527		911					124						891	
Chain ID			∢									V		4		_					د						r	
PDB ID		Ірте	Itki	3erk		3erk				lapq	· ·	lck4		1ck4		Idan					Idan						Idan	
SEQ ID NO:		391	391	391		391		_		393		393		393		393					393						393	

PDB Annotation	GLA. EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA. EGF. 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION. SERINE PROTEASE, COMPLEX, CO-FACTOR. 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE
Сотроила	PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L. H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG-
SeqFold Score								
PMF Score		0.57	0.11	0.84	0.47	0.17	0.00	0.05
Verify Score		-0.25	-0.40	-0.17	-0.32	-0.23	-0.42	-0.12
PSI BLAST		6e-31	3e-25	6.8e-16	3.4c-16	9c-25	1.7e-18	9e-26
End		328	369	358	397	451	447	492
Start AA		207	248	276	317	332	336	372
Chain ID		٦	٦	٦	د	۔	٦	٦
PDB ID		ldan	ldan	ldan	ldan	Idan	ldan	ldan
SEQ ID	S S	393	393	393	393	393	393	393

SEQ ID NO:	PDB 10	Chain ID	Start AA	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
									CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	PROTEASE/COFACTOR/LIGAND)
393	ldan	J	412	535	1.2e-30	0.20	0.22		BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR: CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C:	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)
393	ldan		439	528	1.7e-17	60.0-	0.94		BLOOD COAGULATION FACTOR VIIA; CHAIN: L. H; SOLUBLE TISSUE FACTOR; CHAIN: T. U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C:	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA. EGF. 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)
393	ldqb	∢	438	525	7.5e-17	0.40	86.0		THROMBOMODULIN; CHAIN: A:	MEMBRANE PROTEIN NMR, THROMBIN, EGF MODULE, ANTICOAGULANT, GLYCOSYLATION
393	ldva	_1	317	397	3.4e-16	-0.62	0.58		DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX
393	Idva	ם	439	528	1.7e-17	0.21	0.84		DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX
393	1dx5		121	233	1e-23	0.04	00.1		THROMBIN LIGHT CHAIN; CHAIN: A. B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O. P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-t-GLY-L-ARM; CHAIN: E. F. O. H:	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN, EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIGIBANOL YTIC COMPLEX, 2
393	ldx5	~	153	274	3e-25	0.09	0.55		THROMBIN LIGHT CHAIN: CHAIN: A. B. C. D: THROMBIN HEAVY CHAIN; CHAIN: M. N. O. P; THROMBOMODULIN: CHAIN: I. J. K. L; THROMBIN INHIBITOR L GLU-L-GLY-L-ARM; CHAIN: E, F,	SETTING TO THE CONTINUE SECTION SECTION II. COAGULATION FACTOR II. COAGULATION FACTOR II. FETOMODULIN, TM, CDI41 ANTIGEN: EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS. ANTICOAGULANT COMPLEX, 2

PDB Annotation	ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR	ANTIGEN; EGR-CMK SERINE	PROTEINASE, EGF-LIKE DOMAINS,	ANTICOAGULANT COMPLEX, 2	ANTIFIBRINOLY IIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II: COAGULATION FACTOR	II; FETOMODULIN, TM, CD141	ANTIGEN; EGR-CMK SERINE	PROTEINASE, EGF-LIKE DOMAINS,	ANTICOAGULANT COMPLEX. 2	ANTIFIBRINOLY IIC COMPLEX	SERINE PROTEINASE COAGULATION	FACTOR II: COAGOLATION FACTOR	ANTIGEN: EGR-CMK SERINE	PROTEINASE EGE-LIKE DOMAINS.	ANTICOAGII ANT COMPLEX. 2	ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION	FACTOR II; COAGULATION FACTOR	II; FETOMODULIN, TM, CD141	ANTIGEN; EGR-CMK SERINE	PROTEINASE, EGF-LIKE DOMAINS,	ANTICOAGULANT COMPLEX, 2 ANTIFIREINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION	FACTOR II; COAGULATION FACTOR	II; FETOMODULIN, TM, CD141	ANTIGEN, ECR-CMK SERINE	PROTEINASE, EGF-LIKE DOMAINS,	ANTICOAGULANT COMPLEX, 2	ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION	FACTOR II; COAGULATION FACTOR	II; FELOMODOLIN, IM, CD141	DECTRIBITION: ECK-CMN SERINE	ANTICOAGII. ANT COMPLEX. 2	ANTIFIBRINOLYTIC COMPLEX
Compound	G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN	THROMBOMODULIN; CHAIN: 1, 1,	K, L; THROMBIN INHIBITOR L-	GLU-L-GLY-L-ARM; CHAIN: E, F,	G, H;	THROMBIN LIGHT CHAIN;	HEAVY CHAIN: CHAIN: M. N. O. P.	THROMBOMODULIN; CHAIN: 1, J,	K, L, THROMBIN INHIBITOR L-	GLU-L-GLY-L-ARM; CHAIN: E, F.	G, H;	THROMBIN LIGHT CHAIN:	CHAIN: A. B. C. D. THROMBIN	HEAVY CHAIN; CHAIN; M. N. O, F.	LIKOMBOMODOLIN, CHAIN. 1, J.	CITE OF VERNOR OF THE PROPERTY OF F	GLO-t-GLI-t-ARM; CHAIN: E. I.	THROMBIN LIGHT CHAIN:	CHAIN: A, B, C, D; THROMBIN	HEAVY CHAIN, CHAIN: M, N, O, P;	THROMBOMODULIN; CHAIN: 1, J,	K, L; THROMBIN INHIBITOR L-	GLU-L-GLY-L-ARM; CHAIN: E, F,	THROMBIN LIGHT CHAIN	CHAIN: A. B. C. D. THROMBIN	HEAVY CHAIN; CHAIN: M, N, O, P;	THROMBOMODULIN; CHAIN: I, J,	K, L; THROMBIN INHIBITOR L-	GLU-L-GLY-L-ARM; CHAIN: E, F,	G, H;	THROMBIN LIGHT CHAIN;	CHAIN: A. B. C. D. THROMBIN	HEAVY CHAIN; CHAIN: M, N, O, P.	THROMBOMODULIN; CHAIN: I, J,	C. L. LHKOMBIN INHIBITOR C.	G, H,
SeqFold Score																																					
PMF Score		00'1					66'0						1.00						100	?					9	?						00.1					
Verify Score		0:30					0.02						-0.04						010	<u>;</u>					170	;						19.0					
PSI BLAST		4.5e-27					1.2e-17						1.5e-26						1 50.33	77.50					30.24	*7-00 -						3e-24					,
End		315					346						356						438	2					710	h						520					
Start		195					235						236						210	2					03.0	600						401					
Chain ID							_						_						-	-					-	_						<u> </u> _					
PDB 1D		1dx5					1dx5		_				1dx5						1446	CYD.					3.7.	CXD						1dx5					
SEQ ID	2	393					393						393						303	2,5					50,5	245						393					

PDB Annotation	SERINE PROTEINASE COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT.	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY. DISEASE MUTATION. 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT. MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT, MATRIX PROTEIN	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE. COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR,
Compound	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	FIBRILLIN; CHAIN: NULL;	FIBRILLIN; CHAIN: NULL:	FIBRILLIN; CHAIN: NULL;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SL1S; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR: CHAIN: T; 5L15; CHAIN:
SeqFold Score						
PMF Score	0.03	0.78	0.99	1.00	0.10	0.24
Verify Score	-0.40	0.06	-0.20	0.32	-0.23	-0.05
PSI BLAST	6.8c-15	5.16-19	3.4c-18	5. le-18	7.5e-22	1.5e-21
End	88	347	388	311	246	287
Start	79	273	317	440	150	192
Chain ID					٦	ب
PDB ID	1dx5	lemn	lemn	lemn	l fak	lfak
SEQ ID NO:	393	393	393	393	393	393

PDB Annotation	GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR. RECEPTOR ENZYME, 3 INHIBITOR. GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA. EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE(COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE
Compound		BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: 1;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SL I5; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L: BLOOD COAGULATION FACTOR VIIA: CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SL15; CHAIN: I:	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SL15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA, CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE
SeqFold Score		-				
PMF Score		0.80	0.15	0.90	0.35	0.23
Verify Score		80.0	-0.27	0.01	0.41	0.35
PSI BLAST		3e-23	3e-18	6.8e-16	3.4e-16	6e-19
End		328	369	358	397	451
Start AA		232	273	276	317	355
Chain ID		ے	٦	٦	<u>ـ</u> ـ	1
PDB ID		lfak	l fak	1fak	l fak	l fak
SEQ TD	2	393	393	393	393	393

					r		\neg
PDB Annotation	PROTEASE, COMPLEX. CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF. COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD/CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME. 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA. EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	CELL ADHESION PROTEIN A-
Compound	FACTOR; CHAIN: T; SLIS; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SL15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L: BLOOD COAGULATION FACTOR VIIA; CHAIN: H: SOLUBLE TISSUE FACTOR; CHAIN: T; 3L15; CHAIN: I:	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;
SeqFold Score						98.35	
PMF Score		0.10	0.76	0.98	0.84		1.00
Verify Score		60.0	0.44	0.22	0.33		1.04
PSI BLAST		4.5e-19	36-21	1.76-17	4.5e-24	4.5e-46	4.5e-46
End		492	527	528	601	707	706
Start		396	437	439		527	529
Chain 10		٦	٦	د			
PDB 10		Ifak	l fak	l fak	lido	lido	lido
SEQ 10		393	393	393	393	393	393

PDB Annotation	DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	PHOSPHOLIPASE PHOSPHOLIPASE A2, AGKISTRODON HALYS PALLAS CRYSTAL 2 STRUCTURE	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; ILFA 8	CELL ADHESION LFA-1, ALPHA- LyBETA-2 INTEGRIN, A-DOMAIN; LEA 8	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMA#N: 1LFA 8	COMPLEX (BLOOD COAGULATION/INHIBITOR)	CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF.	BLOOD COAGULATION, 2 PLASMA.	SERINE PROTEASE. CALCIUM-	BINDING, HTDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD	COAGULATION/INHIBITOR)	CHRISTMAS FACTOR; COMPLEX,	INHIBITOR, HEMOPHILIA/EGF,	SERINE PROTEASE, CALCIUM-	BINDING, HYDROLASE, 3	COMPLEX (BLOOD	COAGULATION/INHIBITOR)	CHRISTMAS FACTOR; COMPLEX,	INHIBITOR, HEMOPHILIA/EGF,	BLOOD COAGULATION, 2 PLASMA,	SEKINE PROTEASE, CALCIUM-	BINDING, HTDROLASE, 3	COMPLEX (BLOOD	COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX,
Compound		PHOSPHOLIPASE A2; CHAIN: A, B;	CDIIA; ILFA 5 CHAIN: A, B; ILFA 6	CDIIA; ILFA 5 CHAIN: A, B; ILFA 6	CDIIA; ILFA 5 CHAIN: A, B; ILFA 6	FACTOR IXA; CHAIN: C, L.; D- PHE-PRO-ARG; CHAIN: I;					FACTOR IXA; CHAIN: C. L.; D-	PHE-PRO-ARG; CHAIN: 1;					FACTOR IXA: CHAIN: C. L.: D-	PHE-PRO-ARG; CHAIN: I;						FACTOR IXA; CHAIN: C, L,; D.	PHE-PRO-ARG: CHAIN: 1;
SeqFold Score				93.64					•																
PMF Score		-0.02	0.89		0.0	0.07					0.81						90.0							0.41	
Verify Score		0.01	0.01		1.12	-0.01					-0.15						-0.10							90.0	
PSI BLAST		1.5e-19	1.5e-24	1.5e-53	1.5e-53	4.5e-30					3e-29						3e-23							6e-25	
End		321	112	711	713	301					341						423						-	527	
Start AA		205	_	526	526	157					197						286							403	
Chain ID		٧	٧	Y	A	ר				1-	l.													7	
PDB ID		l jia	11fa	llfa	11fa	1 pfx	-				lpfx						1pfx							lpfx	
SEQ ID NO:		393	393	393	393	393					393						393							393	

PDB Annotation	INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	SERINE PROTEASE FVIIA; BLOOD COAGULATION. SERINE PROTEASE	BLOOD COAGULATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR LIKE DOMAIN	COMPLEMENT COMPLEMENT, EGF, CALCIUM BINDING, SERINE PROTEASE	COMPLEX (BLOOD COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA; HYDROLASE, SERINE PROTEINASE), PLASMA CALCIUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR,
Compound		FACTOR IXA; CHAIN: C, L.; D- PHE-PRO-ARG; CHAIN: 1;	COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN: L: COAGULATION FACTOR VIIA (HEAVY CHAIN); CHAIN: H; TRIPEPTIDYL INHIBITOR; CHAIN: C;	BLOOD COAGULATION FACTOR XA; CHAIN: L, C;	COMPLEMENT PROTEASE CIR; CHAIN: NULL;	ACTIVATED PROTEIN C; CHAIN: C, L; D-PHE-PRO-MAI; CHAIN: P;	INTEGRIN ALPHA-1; CHAIN: A, B;	INTEGRIN ALPHA-I; CHAIN: A, B;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L. H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-
SeqFold Score		·							
PMF Score		0.11	0.86	0.64	1.00	0.05	- 80.	00. <u>1</u>	0.65
Verify Score		-0.13	0.30	0.33	-0.02	-0.62	0.51	1.12	-0.44
PSI BLAST		1.2e-15	1.7e-16	1.7e-14	1.5e-11	1.2e-10	6e-25	le-46	4.5e-20
End		538	528	528	154	151	=	709	205
Start		440	444	444	120	08	S	527	116
Chain ID		<u></u>	. دـ	ے		٦	∢	∢	د
PDB ID		l pfx	lqfk	1xka	lapq	laut	1ck4	1ck4	ldan
SEQ ID NO:		393	393	393	393	393	393	393	393

PDB Annotation	GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR. GIA EGF 3 COMPLEX (SERINE
Compound	PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L. H; SOLUBLE TISSUE FACTOR; CHAIN: T. U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFRCMK) WITH CHAIN: C:	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR: CHAIN: T, U; D- PHE-PHE-ARG-
SeqFold Score								
PMF Score		0.10	0.55	0.57	11.0	0.23	0.17	0.05
Verify Score		-0.30	-0.15	-0.25	-0.40	0.02	-0.23	-0.12
PSI BLAST		3e-32	4.5e-31	6e-31	3e-25	1.2e-16	9e-25	9e-26
End AA		246	287	328	369	365	451	492
Start		124	891	207	248	273	332	372
Chain ID		1	-1	1		۳.	٦	ר
PDB ID		Idan	ldan	ldan	ldan	Idan	ldan	ldan
SEQ ID NO:		393	393	393	393	393	. 393	393

	Г				T			Z ~	Z ~
PDB Annotation	PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE. COMPLEX, CO-FACTOR. 2 RECEPTOR ENZYME, INHIBITOR. GLA, EGF. 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	MEMBRANE PROTEIN NMR, THROMBIN, EGF MODULE, ANTICOAGULANT, GLYCOSYLATION	MEMBRANE PROTEIN NMR, THROMBIN, EGF MODULE, ANTICOAGULANT, GLYCOSYLATION	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR III; FETOMODULIN, TM, CD141 ANTIGEN: EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX. 2	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR
Compound	CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L, H: SOLUBLE TISSUE FACTOR; CHAIN: T, U; D. PHE-PHE-ARG-CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	THROMBOMODULIN; CHAIN: A;	THROMBOMODULIN; CHAIN: A;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I: DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L. M; (DPN)-PHE-ARG; CHAIN: C. D; PEPTIDE E-76; CHAIN: X, Y;	THROMBIN LIGHT CHAIN: CHAIN: A. B, C, D; THROMBIN HEAVY CHAIN: CHAIN: M, N, O, P; THROMBOMODULIN: CHAIN: I. J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN
SeqFold Score									
PMF Score		0.22	0.89	0.69	0.98	0.63	0.92	00.1	0.55
Verify Score		0.20	81.0	0.05	0.40	-0.09	0.32	0.04	0.09
PSI BLAST		1.2e-30	1.76-18	1.1e-15	7.5e-17	1.2e-16	1.7c-18	le-23	3e-25
End		535	528	401	525	365	528	233	274
Start AA		412	439	315	438	273	439	12	153
Chain [D		٦	٦	4	∢	١	۔	-	_
PDB ID		ldan	Idan	qbpı	ldqb	ldva	Idva	ldx5	ldx5
SEQ D		393	393	393	393	393	393	393	393

PDB Annotation	II; FETOMODULIN, TM, CD14I ANTIGEN, EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR II: FETOMODULIN. TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2	SERINE PROTEINASE COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX. 2	SERINE PROTEINASE COAGULATION FACTOR II, COAGULATION FACTOR II, EDOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS. ANTIFIBRINOLYTIC COMPLEX, 2	SERINE PROTEINASE COAGULATION FACTOR II: COAGULATION FACTOR II: FETOMODULIN, TM, CD141
Сотроила	HEAVY CHAIN; CHAIN: M, N, O, P, THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G. H;	THROMBIN LIGHT CHAIN; CHAIN: A. B. C. D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM: CHAIN: E. F, G, H;	THROMBIN LIGHT CHAIN: CHAIN: A, B, C, D: THROMBIN HEAVY CHAIN: CHAIN: M, N, O, P: THROMBOMODULIN: CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G. H;	THROMBIN LIGHT CHAIN: CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN: CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM: CHAIN: E, F, G, H;	THRÓMBIN LIGHT CHAIN; CHAIN: A, B. C. D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P.
SeqFold Score							
PMF Score		1.00	1.00	66:0	0.93	1.00	1.00
Verify Score		0.30	-0.04	-0.08	0.19	0.41	0.61
PSI BLAST		4.5e-27	1.5e-26	3.46-17	1.56-22	3e-24	3e-24
End		315	356	438	438	479	520
Start		561	236	316	318	359	401
Chain ID			_	·	_	_	_
PDB 1D		1dx5	ldx5	ldx5	1dx5	ldx5	ldx5
SEQ ID NO:		393	393	393	393	393	393

PDB Annotation		0, P; I. J. -	0, P; 1, J,	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-I FRAGMENT, MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT. MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING. GLYCOPROTEIN, 2 REPEAT, SIGNAL. MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT; MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL,
Compound	THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A. B. C. D: THROMBIN HEAVY CHAIN; CHAIN: M. N. O. P. THROMBOMODULIN: CHAIN: L. J. K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: 1, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	FIBRILLIN; CHAIN: NULL;	FIBRILLIN; CHAIN: NULL;	FIBRILLIN: CHAIN: NULL:	FIBRILLIN; CHAIN: NULL;
SeqFold Score			,	·			
PMF		0.78	0.18	0.96 ·	0.81	0.88	0.80
Verify Score		0.45	-0.52	0.12	0.27	01.10	-0.34
PSI BLAST		1.5e-13	3.4e-15	3.4e-16	1.7e-18	1.7e-17	ie-17
End		525	88	187	306	347	392
Start AA		442	7.7	112	235	273	317
Chain 1D		-					
PDB ID		ldx5	ldx5	lemn	lemn	lenn	lemn
SEQ ID NO:		393	393	393	393	393	393

PDB Annotation	MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-I FRAGMENT, MATRIX PROTEIN	MATRIX PROTEIN EXTRACEL LULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-I FRAGMENT, MATRIX PROTEIN	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASECOFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASECOFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASECOFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION. 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR,
Compound		FIBRILLIN; CHAIN: NULL;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L. BLOOD COAGULATION FACTOR VIIA: CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; \$L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; \$L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L I5; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L: BLOOD COAGULATION FACTOR VIIA; CHAIN: H: SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;
SeqFold Score						
PMF Score		-0.19	0.31	0.10	0.24	0.80
Verify Score		0.06	-0.12	-0.23	-0.05	0.08
PSI BLAST		6.8e-15	66-11	7.5e-22	1.5e-21	3e-23
End		977	164	246	287	328
Start AA		710	107	150	192	232
Chain ID			J.		_1	٦
PDB ID		lemn	lfak	l fak	l fak	Ifak
SEQ ID NO:		393	393	393	393	393

PDB Annotation	GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND). BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION. 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND). BLOOD COAGULATION, 2 SERINE
Compound		BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR: CHAIN: T; \$L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLÖOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L. BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE
SeqFold Score						
PMF Score		0.21	0.15	0.23	0.10	0.76
Verify Score		-0.05	-0.27	0.35	0.09	0.44
PSI BLAST		1.2e-16	3e-18	66-19	4.5e-19	36-21
End		365	369	451	492	527
Start AA		273	273	355	396	437
Chain ID		_1	- 1	د	د	٦
PDB JD		lfak	lfak	l fak	1fak	l fak
SEQ 1D NO:		393	393	393	393	393

	<u>-</u>			7	7	1		-		\neg
PDB Annotation	PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4, PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	CELL ADHESION PROTEIN A- DOMAIN INTEGRIN. CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	PHOSPHOLIPASE PHOSPHOLIPASE A2, AGKISTRODON HALYS PALLAS CRYSTAL 2 STRUCTURE	CELL ADHESION LFA-1, ALPHA- L'SBETA-2 INTEGRIN, A-DOMAIN; ILFA 8	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; ILFA 8	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; ILFA 8	COMPLEX (BLOOD
Compound	FACTOR; CHAIN: T. 5L15: CHAIN: I:	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	PHOSPHOLIPASE A2; CHAIN: A, I3;	CD11A; II.FA 5 CHAIN: A. B; ILFA 6	CD11A; ILFA 5 CHAIN: A, B; ILFA 6 6 6 6 6 6 6 6 6	CDIIA; ILFA 5 CHAIN: A, B; ILFA 6	FACTOR IXA; CHAIN: C, L,; D-
SeqFold Score				98.35				93.74		
PMF Score		0.94	0.84		00:1	-0.02	68.0		1:00	0.07
Verify Score		0.13	0.33		1.04	10:01	0.01		1.12	-0.01
PSI BLAST		1.76-18	4.5e-24	4.5e-46	4.5e-46	1.5e-19	1.5c-24	1.5e-53	1.5e-53	4.5e-30
End		528	601	707	706	321	112	117	713	301
Start		439	_	527	529	205		526	526	157
Chain ID		٦				∢	∢	<	4	٦
PDB ID		Ifak	lido	lido	lido	ljia	IIfa	IIfa	II fa	1pfx
SEQ ID	į.	393	393	393	393	393	393	393	393	393

PDB Annotation	COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3	SERINE PROTEASE FVIIA; FVIIA; BLOOD COAGULATION, SERINE PROTEASE
Compound	PHE-PRO-ARG; CHAIN: 1:	FACTOR IXA; CHAIN: C, L.; D- PHE-PRO-ARG; CHAIN: 1;	FACTOR IXA; CHAIN: C, L.; D. PHE-PRO-ARG; CHAIN: I;	FACTOR IXA: CHAIN: C. L.; D. PHE-PRO-ARG; CHAIN: I;	FACTOR IXA; CHAIN: C, L.; D. PHE-PRO-ARG; CHAIN: I;	COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN: L; COAGULATION FACTOR VIIA (HEAVY CHAIN); CHAIN: H;
SeqFold Score						
PMF Score		0.81	0.06	0.41	0.94	0.92
Verify Score		-0.15	-0.10	0.06	0.30	0.06
PSI BLAST		3e-29	3e-23	6e-25	8.5e-15	3.4e-17
End		341	423	527	536	528
Start		197	286	403	440	444
Chain ID		د	_		٦	٦
PDB ID		1pfx	Уydı	l pfx	l pfx	Iqfk
SEQ ID NO:		393	393	393	393	393

		Т						r			\Box
PDB Annotation		BLOOD COAGULATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR LIKE DOMAIN	COMPLEMENT COMPLEMENT, EGF, CALCIUM BINDING, SERINE PROTEASE	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTE ASE/COCTOR ILLAND)	rkolease Coracionalidado)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR. GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR. 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE
Compound	TRIPEPTIDYL INHIBITOR; CHAIN: C;	BLOOD COAGULATION FACTOR XA; CHAIN: L, C;	COMPLEMENT PROTEASE CIR; CHAIN: NULL;	INTEGRIN ALPHA-1; CHAIN: A, B;	INTEGRIN ALPHA-1; CHAIN: A, B;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG	(DFFROME) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L, H; SOLUBLE TISSUE FACTOR: CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE OPFREMM: WITH CHAIN: C.	BLOOD COAGULATION FACTOR
SeqFold Score											
PMF Score		0.64	1.00	1.00	1.00	0.65		0.10	0.55	0.57	0.11
Verify Score		0.33	-0.02	0.51	1.12	-0.44		-0.30	-0.15	-0.25	-0.40
PSI BLAST		1.5e-14	1.5e-11	6e-25	1e-46	4.5e-20		3e-32	4.5e-31	6e-31	3e-25
End AA		528	154	Ξ	709	205		246	287	328	369
Start AA		444	120	8	527	116		124	891	207	248
Chain ID		٦		4	٧	٦		٦	٦	٦	L
PDB ID		lxka	lapq	1ck4	lck4	Idan		ldan	Idan	Idan	Idan
SEQ ID NO:		393	394	394	394	394		394	394	394	394

PDB Annotation					BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE 'PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION. SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR. 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	RECODD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR,
Compound	VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR: CHAIN: T, U; D- PHE-PHE-ARG- CHI.OROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-PHE-PHE-ARG-CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-PHE-PHE-ARG-CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H: SOLUBLE TISSUE FACTOR; CHAIN: T, U; D-PHE-PHE-ARG-CHLOROMETIHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L, H: SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COÁGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE
SeqFold Score								
PMF Score		0.84	0.47	0.17	0.00	0.05	0.22	0.94
Verify Score		-0.17	-0.32	-0.23	-0.42	-0.12	0.20	-0.09
PSI BLAST		6.8e-16	3.4e-16	96-25	1.7e-18	9e-26	1.2e-30	1.7c-17
End		358	397	451	447	492	535	528
Start		276	317	332	336	372	412	439
Chain ID		٦	1	٦	٦			٦
PDB ID		I dan	ldan	ldan	Idan	Idan	ldan	ldan
SEQ 10 NO:		394	394	394	394	394	394	394

PDB Annotation	2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	MEMBRANE PROTEIN NMR, THROMBIN, EGF MODULE, ANTICOAGULANT, GLYCOSYLATION	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR III; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN, EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II, COAGULATION FACTOR
Compound	TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	THROMBOMODULIN; CHAIN: A;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	DES-GLA FACTOR VIIA (HEAVY CHAIN): CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L. M; (DPN)-PHE-ARG; CHAIN: C, D: PEPTIDE E-76; CHAIN: X, Y;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN: CHAIN: A, B, C, D: THROMBIN
SeqFold Score								
PMF Score		0.98	0.58	0.84	00.1	0.55	1.00	0.99
Verify Score		0.40	-0.62	0.21	0.04	0.09	0.30	0.02
PSI BLAST		7.5e-17	3.4e-16	1.76-17	le-23	3e-25	4.5e-27	1.2e-17
End		525	397	528	233	274	315	346
Start AA		438	317	439	121	153	195	235
Chain ID		∢	- 1	<u>.</u>	_	here.	_	_
PDB ID		1dpp	ldva	ldva	1dx5	ldx5	ldx5	ldx5
SEQ D D		394	394	394	394	394	394	394

PDB Annotation						<u> </u>	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL,
Compound	HEAVY CHAIN: CHAIN: M, N. O, P. THROMBOMODULIN: CHAIN: 1, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN; A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN; M, N, O, P; THROMBOMODULIN; CHAIN; I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN: CHAIN: M, N, O, P; THROMBOMODULIN: CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F. G, H;	THROMBIN LIGHT CHAIN; CHAIN: A. B. C. D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	FIBRILLIN; CHAIN: NULL;
SeqFold Score							
PMF Score		1.00	0.93	1.00	1.00	0.05	0.78
Verify Score		-0.04	0.19	0.41	19:0	-0.40	0.06
PSI BLAST		1.5e-26	1.5e-22	3e-24	3e-24	6.8e-15	5.1e-19
End		356	438	479	520	88	347
Start AA		236	318	359	401	79	273
Chain ID		-	-	_	_	-	
PD8 1D		IdxS	ldx5	1dx5	1dx5	ldx5	lemn
SEQ ID NO:		394	394	394	394	394	394

PDB Annotation	MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-1 FRAGMENT, MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN. HUMAN FIBRILLIN-1 FRAGMENT, MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR MATRIX, CALCIUM-BINDING, GLYCOPROTEIN, 2 REPEAT, SIGNAL, MULTIGENE FAMILY, DISEASE MUTATION, 3 EGF-LIKE DOMAIN, HUMAN FIBRILLIN-I FRAGMENT, MATRIX PROTEIN	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION. 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4
Compound		FIBRILLIN; CHAIN: NULL:	FIBRILLIN; CHAIN: NULL;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SL15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L: BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR: CHAIN: T; 5L15; CHAIN: I:	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: 1;
SeqFold Score						
PMF Score		66:0	00:1	0.10	0.24	0.80
Verify Score		-0.20	0.32	-0.23	-0.05	0.08
PSI BLAST		3.46-18	5.16-18	7.5e-22	1.5e-21	3e-23
End		388	115	246	287	328
Start		317	440	150	192	232
Chain ID				_	د	٦
PDB ID		lemn	lemn	lfak	1ak	lfak
SEQ TO	2	394	394	394	394	394

		α,	, œ, ,	"	S. R.	S. OR,
_	GAND),	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND). BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR,
PDB Annotation	TOR/LI	STORVLI STORVLI LEX, CC ME, 3 IN ME, 3 IN STORVLI	S CTOR/LI NTION, 2 NEX, CC ME, 3 IN EX (SEI CTOR/LI	G E CTOR/L ATION, 2 PLEX, C ME, 3 IN ME, 3 IN CTOR/L	G E CTOR/L ATION, PLEX, C ME, 3 IN ME, 3 IN CTOR/LE	G E CTOR/L ATION, PLEX, C
PDB Ar	COFAC OTTINC	OTTING (SERINE S/COFAC S/COFAC S, COMP COMPL COMPL	COTTING (SERINI S/COFAC S, COMF COMPL COMPL	COTTING (SERIN E/COFA DAGUL, E, COMI COMPI E/COFA	LOTTIN ((SERIN E/COFA DAGUL, E, COMI COMPI LOTTIN	LOTTIN ((SERIN E/COFA OAGUL E, COM
	PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND) BLOOD COAGULATION, 2 SERIN PROTEASE, COMPLEX, CO-FACT RECEPTOR ENZYME, 3 INHIBITO GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND) BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND) BLOOD COAGULATION, 2 SERIN PROTEASE, COMPLEX, CO-FACT RECEPTOR ENZYME, 3 INHIBITO GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND) BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND BLOOD COAGULATION, 2 SERIN PROTEASE, COMPLEX, CO-FACT RECEPTOR ENZYME, 3 INHIBITY GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND BLOOD COAGULATION, 2 SERI) PROTEASE, COMPLEX, CO-FAC RECEPTOR ENZYME, 3 INHIBIT GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFAC BLOOD COAGULA'
	PR BL					
		BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; \$L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; \$LI 5; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L. BLOOD COAGULATION FACTOR VIIA: CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN:
pun		TION F. JOOD ACTOR LE TISS F; 5L15;	VTION F COOD ACTOR LE TISS F; 5L15;	VTION F LOOD ACTOR LE TISS T; \$L15;	ATION F LOOD ACTOR LE TISS T; 5L15	ATION I LOOD ACTOR ILE TISS T; SL15
Compound		AGULA N: L; BI TION F, SOLUBI HAIN: '	AGULA IN: L; BI TION E SOLUB CHAIN:	AGULA IN: L; B TION F SOLUB CHAIN:	DAGUL, IN: L; B TION F SOLUB CHAIN:	DAGUL, IN: L: B TION F SOLUB CHAIN:
		BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTC VIIA; CHAIN: L: BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAI;	BLOOD COAGULATION FACTC VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAI I;	BLOOD COAGULATION FACTC VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAI I;	BLOOD COAGULATION FACTC VIIA; CHAIN: L: BLOOD COAGULATION FACTOR VIIA: CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SLI5: CHA
	-	P F AC CH	S S S S S S S S S S S S S S S S S S S	8	<u> </u>	<u>₹</u> ≥ Ω Ω ₹
SeqFold Score						
PMF Score		0.15	0.90	0.35	0.23	0.10
Verify Score		-0.27	10:01	-0.41	0.35	60.0
PSI BLAST		36-18	6.8e-16	3.4e-16	61-99	4.5e-19
End AA B		369	358	397 3	451 6	492 4
Start AA					335	396
		273	276	317	lei	Ř
Chain		7	ـــ			<u> </u>
PDB ID		Lfak	Ifak	Lak	Lak	l (ak
SEQ ID		394	394	394	394	394

PDB Annotation	RECEPTOR ENZYME, 3 INHIBITOR. GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION. 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF. COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BI OOD CLOTTING	CELL ADHESION PROTEIN A- DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	CELL ADHESION PROTEIN A- DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTOSKELETON	PHOSPHOLIPASE PHOSPHOLIPASE A2, AGKISTRODON HALYS PALLAS CRYSTAL 2 STRUCTURE	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; ILFA 8
Compound	<u>.</u> -	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15: CHAIN: I;	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	INTEGRIN; CHAIN: NULL;	PHOSPHOLIPASE A2; CHAIN: A, B;	CDIIA; ILFA 5 CHAIN: A, B; ILFA 6
SeqFold Score					98.35			
PMF Score		0.76	0.98	0.84		1.00	-0.02	0.89
Verify Score		0.44	0.22	0.33		1.04	0.01	0.01
PSI BLAST		3e-21	1.7e-17	4.5e-24	4.5e-46	4.5e-46	1.5e-19	1.5e-24
End		527	528	601	707	902	321	112
Start AA		437	439		527	529	205	_
Chain		·	ب				<	4
PDB ID		Ifak	Ifak	opil .	lido	lido	ljia	11fa
SEQ	Ö	394	394	394	394	394	394	394

							
PDB Annotation	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; 1LFA 8	CELL ADHESION LFA-1, ALPHA- L'BETA-2 INTEGRIN, A-DOMAIN; ILFA 8	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF. BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA,
Compound	CD11A: 1LFA 5 CHAIN: A. B: 1LFA 6	CDITA; ILFA 5 CHAIN: A, B: ILFA 6	FACTOR IXA; CHAIN: C, L.; D- PHE-PRO-ARG; CHAIN: I;	FACTOR IXA; CHAIN: C, L.; D- PHE-PRO-ARG; CHAIN: 1;	FACTOR IXA; CHAIN: C, L,; D- PHE-PRO-ARG; CHAIN: 1,	FACTOR IXA; CHAIN: C, L.; D. PHE-PRO-ARG; CHAIN: I;	FACTOR IXA; CHAIN: C, L.; D- PHE-PRO-ARG; CHAIN: 1;
SeqFold Score	93.64						
PMF Score		00.1	0.07	18.0	90.0	0.41	0.11
Verify Score		1.12	-0.01	-0.15	-0.10	90.0	-0.13
PSI BLAST	1.5e-53	1.5e-53	4.5e-30	3e-29	3e-23	6e-25	1.2e-15
End	117	713	301	341	423	527	538
Start AA	526	526	157	197	286	403	440
Chain ID	¥	∢	٦	د	٦	_ـ_	ר
PDB ID	11fa	l fa	l pfx	Σ L D L V	ΙρΓΆ	ا p fx	1pfx
SEQ ID	394	394	394	394	394	394	394

PDB Annotation	SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	SERINE PROTEASE FVIIA; FVIIA; BLOOD COAGULATION, SERINE PROTEASE	BLOOD COAGULATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR LIKE DOMAIN	COMPLEMENT COMPLEMENT, EGF, CALCIUM BINDING, SERINE PROTEASE	COMPLEX (BLOOD COAGULATION/INHIBITOR) AUTOPROTHROMBIN IIA: HYDROLASE, SERINE PROTEINASE), PLASMA CALCIUM BINDING, 2 GLYCOPROTEIN, COMPLEX (BLOOD COAGULATION/INHIBITOR)	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)
Compound		COAGULATION FACTOR VIIA (LIGHT CHAIN), CHAIN: L; COAGULATION FACTOR VIIA (HEAVY CHAIN); CHAIN: H; TRIPEPTIDYL INHIBITOR; CHAIN: C;	BLOOD COAGULATION FACTOR XA; CHAIN: L, C;	COMPLEMENT PROTEASE CIR; CHAIN: NULL;	ACTIVATED PROTEIN C. CHAIN: C. L; D-PHE-PRO-MAI: CHAIN: P;	INTEGRIN ALPHA-I; CHAIN: A, B;	INTEGRIN ALPHA·I; CHAIN: A, B;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U: D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;
SeqFold Score									
PMF Score		0.86	0.64	0.0	0.05	0.0	1.00	0.65	0.10
Verify Score		0.30	0.33	-0.02	-0.62	0.51	1.12	-0.44	-0.30
PSI BLAST		1.7e-16	1.7e-14	1.5e-11	1.26-10	6e-25	1e-46	4.5e-20	3e-32
End AA		528	528	154	151	=	709	205	246
Start		444	444	120	80	5	527	911	124
Chain ID		_	<u>.</u>		٦	∢	¥	٦	1
PDB 1D		1 qfk	Ixka	lapq	laut	1ck4	1ck4	Idan	Idan
SEQ ID NO:		394	394	394	394	394	394	394	394

PDB Annotation	BLOOD COAGULATION. SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR. 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	RI OOD COACIII ATIONI CEDINIE
Compound	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR: CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L, H: SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C:	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE OPFRCMK) WITH CHAIN: C.	BLOOD COAGULATION FACTOR
SeqFold Score								
PMF Score	0.55	0.57	0.11	0.23	0.17	0.05	0.22	68.0
Verify Score	-0.15	-0.25	-0.40	0.02	-0.23	-0.12	0.20	0.18
PSI BLAST	4.5e-31	6e-31	3e-25	1.2e-16	9e-25	9e-26	1.2e-30	1.7e-18
End	287	328	369	365	451	492	535	528
Start AA	891	207	248	273	332	372	412	439
Chain ID	7	ı	L	L	-i	7	J	
PDB ID	ldan	ldan	l dan	Idan	ldan	Idan	ldan	ldan
SEQ ID NO:	394	394	394	394	394	394	394	394

PDB Annotation	PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	MEMBRANE PROTEIN NMR, THROMBIN, EGF MODULE, ANTICOAGULANT, GLYCOSYLATION	MEMBRANE PROTEIN NMR. THROMBIN. EGF MODULE, ANTICOAGULANT, GLYCOSYLATION	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	HYDROLASE/HYDROLASE INHIBITOR PROTEIN-PEPTIDE COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II: COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE PROTEINASE, EGF-LIKE DOMAINS, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II: COAGULATION FACTOR II; FETOMODULIN, TM, CD141 ANTIGEN; EGR-CMK SERINE
Compound	VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	THROMBOMODULIN, CHAIN: A;	THROMBOMODULIN; CHAIN: A:	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	DES-GLA FACTOR VIIA (HEAVY CHAIN); CHAIN: H, I; DES-GLA FACTOR VIIA (LIGHT CHAIN); CHAIN: L, M; (DPN)-PHE-ARG; CHAIN: C, D; PEPTIDE E-76; CHAIN: X, Y;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O. P; THROMBOMODULIN; CHAIN: I, J, K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A. B, C. D: THROMBIN HEAVY CHAIN: CHAIN: M. N, O, P; THROMBOMODULIN: CHAIN: I. J. K. L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P; THROMBOMODULIN; CHAIN: 1, J,
SeqFold Score								
PMF Score		0.69	0.98	0.63	0.92	00.1	0.55	1.00
Verify Score		0.05	0.40	60:0-	0.32	0.04	0.09	0.30
PSI BLAST		1.1e-15	7.5e-17	1.2e-16	1.7e-18	1e-23	3e-25	4.5e-27
End		401	525	365	528	233	274	315
Start		315	438	273	439	121	153	195
Chain ID		∢	∢	٦	٦	_		_
PDB ID		qbp1	1 dqb	ldva	ldva	ldx5	ldx5	1dx5
SEQ ID	2	394	394	394	394	394	394	394

PDB Annotation		SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR O, P; II; FETOMODULIN, TM, CDI41		SERINE PROTEINASE COAGULATION FACTOR	. P.	I. J. ANTIGEN; ECK-CMK SEKINE PROTEINASE, EGF-LIKE DOMAINS,			O. P. II. FETOMODULIN. TM. CD141			, F, ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION				FROIEINASE, EGF-LINE DOMAINS,				_		FROIEINASE, EGF-CINE DOMAINS,		SERINE PROTEINASE COAGULATION			1. J. ANTIGEN; EGR-CMK SERINE L- PROTEINASE, EGF-LIKE DOMAINS,
Compound	K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN HEAVY CHAIN; CHAIN: M, N, O, P;	I HKOMBOMODOLIN; CHAIN: 1,7 K, L; THROMBIN INHIBITOR L- GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN;	HEAVY CHAIN: CHAIN: M. N. O. P.	THROMBOMODULIN; CHAIN: 1. J, K. L: THROMBIN INHIBITOR L-	GLU-L-GLY-L-ARM; CHAIN: E. F,	THROMBIN LIGHT CHAIN:	CHAIN: A, B, C. D; THROMBIN HEAVY CHAIN: CHAIN: M. N. O. P.	THROMBOMODULIN; CHAIN: 1, 1,	K, L; THROMBIN INHIBITOR L-	GLU-L-GLY-L-ARM; CHAIN: E, F,	THROMBIN LIGHT CHAIN;	CHAIN: A, B, C, D; THROMBIN	HEAVY CHAIN; CHAIN: M, N, O, P;	THROMBOMODULIN; CHAIN: 1, 1,	K, L; IHKOMBIN INHIBITOR L-	G. H.	THROMBIN LIGHT CHAIN;	CHAIN: A, B, C, D; THROMBIN	HEAVY CHAIN, CHAIN: M, N, O, P,	THROMBOMODULIN; CHAIN: 1, J,	K, L; LHKOMBIN INHIBITOR C-	0 E0-E-021 - E-0334; C10314;	THROMBIN LIGHT CHAIN:	CHAIN: A, B. C. D. THROMBIN	HEAVY CHAIN: CHAIN: M. N, O, P.	THROMBOMODULIN; CHAIN: I. J. K, L; THROMBIN INHIBITOR L-
SeqFold Score																												
PMF Score		00.1		0.99				0.93					1.00						1.00						0.78	-		
Verify Score		-0.04		-0.08				61.0					0.41	:					19.0						0.45			
PSI BLAST		1.5e-26		3.4e-17				1.5e-22					3e-24						3e-24			_			1.5e-13			
End		356		438				438					479	<u>:</u>					520						525			
Start		236		316				318					359	}					401						442			
Chain ID		_		_				_											_						_			
PDB 1D		ldx5		ldx5				1dx5					1dx5	<u>:</u>					1dx5						1dx5			
SEQ ID NO:		394		394				394					394						394						394			

																				٠,							_											
PDB Annotation	ANTICOAGULANT COMPLEX, 2 ANTIFIBRINOLYTIC COMPLEX	SERINE PROTEINASE COAGULATION FACTOR II; COAGULATION FACTOR	II; FETOMODULIN, TM, CD141	ANTIGEN; EGR-CMK SERINE	PROTEINASE, EGF-LIKE DOMAINS,	ANTICOAGULANT COMPLEX, 2	ANTIFIBRINOLY IIC COMPLEX	MATRIX PROTEIN EXTRACELLULAR	GI VOODBOTEIN 7 DEBEAT SIGNAL	MILLIGENE FAMILY DISEASE	MUTATION, 3 EGF-LIKE DOMAIN.	HUMAN FIBRILLIN-1 FRAGMENT.	MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR	MATRIX, CALCIUM-BINDING.	GLYCOPROTEIN, 2 REPEAT, SIGNAL,	MULTIGENE FAMILY, DISEASE	MUTATION, 3 EGF-LIKE DOMAIN,	HUMAN FIBRILLIN-I FRAGMENT,	MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR	MATRIX, CALCIUM-BINDING,	GLYCOPROTEIN, 2 REPEAT, SIGNAL,	MULTIGENE FAMILY, DISEASE	MUTATION, 3 EGF-LIKE DOMAIN,	HUMAN FIBRICLIN-1 FRAGMENT,	MATRIX PROTEIN EXTRACE LILLAR	MATRIX, CALCIUM-BINDING.	GLYCOPROTEIN, 2 REPEAT, SIGNAL,	MULTIGENE FAMILY, DISEASE	MUTATION, 3 EGF-LIKE DOMAIN,	HUMAN FIBRILLIN-1 FRAGMENT,	MATRIX PROTEIN	MATRIX PROTEIN EXTRACELLULAR	CI VOODDOTEIN 3 DEBEAT SIGNAL	MINITIONE FAMILY DISEASE	MUTATION, 3 EGF-LIKE DOMAIN.	HUMAN FIBRILLIN-I FRACMENT
Compound	GLU-L-GLY-L-ARM; CHAIN: E, F, G, H;	THROMBIN LIGHT CHAIN; CHAIN: A, B, C, D; THROMBIN	HEAVY CHAIN; CHAIN: M, N, O, P,	THROMBOMODULIN; CHAIN: 1, J,	K, L; THROMBIN INHIBITOR L-	GLU-L-GLY-L-ARM; CHAIN: E, F,	C, H;	FIBRILLIN; CHAIN: NOLL;						FIBRILLIN; CHAIN: NULL;							FIBRILLIN, CHAIN: NULL;					-	EIBBILLIN: CHAIN: NIILL							FIBRILLIN; CHAIN: NULL;		-		
SeqFold Score																																						
PMF Score		0.18					,00	0.96						0.81							0.88						08.0	3						61.0-	-			
Verify Score		-0.52						0.12						0.27							0.10						PE 0-	;						90.0				
PSI BLAST		3.4e-15					,	3.46-16						1.7e-18							1.7e-17						16-17	:						6.8e-15				
End		881					10.	\ <u>\{\}</u>						306							347						302	3						6//				
Start AA		77					=	711						235							273			_			317							01/				
Chain ID		-																												-								
PDB ID		1dx5					-							lemn							lemn			-	_		lemn			,		-	1					
SEQ ID NO:		394					707	524						394						13,	ξς -						394						20,	- 344				

PDB Annotation	MATRIX PROTEIN	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE	PROTEASE, COMPLEX, CO-FACTOR,	GLAE GF, COMPLEX (SRINE)	PROTEASE/CUFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING	COMPLEX(SEKINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, 2 SERINE	PROTEASE. COMPLEX, CO-FACTOR.	CIA FOR COMPLY SINHIBITOR.	BOTE ASE/COEACTOR/ ICANIES	BI OOD CLOTTING	BLOOD CLOTTING	COMPLEX(SERINE	PROTEASE/COFACTOR/LIGAND),	BLOOD COAGULATION, 2 SERINE	PROTEASE, COMPLEX, CO-FACTOR,	RECEPTOR ENZYME, 3 INHIBITOR,	GLA, EGF, COMPLEX (SERINE 4	PROTEASE/COFACTOR/LIGAND),	BLOOD CLOTHING	COMPLEXISERINE	PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, 2 SERINE	PROTEASE, COMPLEX, CO-FACTOR.	RECEPTOR ENZYME, 3 INHIBITOR,	GLA, EGF, COMPLEX (SERINE 4	PROTEASE/COFACTOR/LIGAND),	BLOOD CLOTTING	BLOOD CLOTTING COMPLEX/SERINE	PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, 2 SERINE	PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR FINAL 3 INHIBITION
Compound		BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE	FACTOR; CHAIN: T; 5L15; CHAIN:	÷		BLOOD COAGULATION FACTOR	VIIA, CHAIN L; BLOOD COAGULATION FACTOR VIIA;	CHAIN: H; SOLUBLE TISSUE	FACTOR; CHAIN: T; SL15; CHAIN:	<u>.</u>			BLOOD COAGULATION FACTOR	VIIA: CHAIN: L: BLOOD	COAGULATION FACTOR VIIA;	CHAIN: H; SOLUBLE TISSUE	FACTOR; CHAIN: T; 5L15; CHAIN:	<u></u>			BLOOD COAGIII ATION FACTOR	VIIA; CHAIN: L; BLOOD	COAGULATION FACTOR VIIA,	CHAIN: H; SOLUBLE TISSUE	FACTOR; CHAIN: T; SL15; CHAIN:	÷			BLOOD COACH ATION FACTOR	VIIA; CHAIN: L; BLOOD	COAGULATION FACTOR VIIA;	CHAIN: H: SOLUBLE TISSUE	FACTOR: CHAIN: T: 5L15: CHAIN: I:
SeqFold Score																						-											
PMF Score		0.31				0.10							0.24					_			0.80								120	;			
Verify Score		-0.12				-0.23							-0.05								0.08								\$0.0-	3		•	
PSI BLAST		- -99				7.5e-22							1.5e-21								3e-23								126-16	2			
End		164				246							287								328								365				
Start AA		103	_			06							192								232				_		_		273				
Chain ID	\prod					د.							J								د]				
PD8 1D		 Tak			15	I ak							l fak						_		l fak								1fak				
SEQ ID NO:		445			304	274							394								394								394				

WO 2002/018424

PDB Annotation	GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING	BLOOD CLOTTING COMPLEX(SERINE PROTEASE/COFACTOR/LIGAND), BLOOD COAGULATION, 2 SERINE
Compound		BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; 5L15; CHAIN: I:	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SLIS; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE FACTOR; CHAIN: T; SL15; CHAIN: I;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L; BLOOD COAGULATION FACTOR VIIA; CHAIN: H; SOLUBLE TISSUE
SeqFold Score						
PMF Score		0.15	0.23	0.10	0.76	0.94
Verify Score		-0.27	0.35	0.09	0.44	0.13
PSI BLAST		3e-18	66-19	4.56-19	3e-21	1.7e-18
End AA		369	451	492	527	528
Start AA		273	355	396	437	439
Chain 1D		٦	٦		٦	_
PDB ID		l fak	Ifak	l fak	l fak	l fak
SEQ ID NO:		394	394	394	394	394

SEQ ID NO:	PDB ID	Chain ID	Start AA	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
									FACTOR; CHAIN: T; 5L15; CHAIN: I;	PROTEASE, COMPLEX, CO-FACTOR, RECEPTOR ENZYME, 3 INHIBITOR, GLA, EGF, COMPLEX (SERINE 4 PROTEASE/COFACTOR/LIGAND), BLOOD CLOTTING
394	lido	•	-	601	4.5e-24	0.33	0.84		INTEGRIN; CHAIN: NULL;	CELL ADHESION PROTEIN A. DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GLYCOPROTEIN, EXTRACELLULAR 2 MATRIX, CYTONKEI FTON
394	lido		527	707	4.5c-46			98.35	INTEGRIN; CHAIN: NULL;	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, CET ADHESION EXTRACELLULAR 2 MATRIX, CYTOSKEI FTON
394	lido		529	902	4.5e-46	1.04	00.1		INTEGRIN; CHAIN: NULL;	CELL ADHESION PROTEIN A-DOMAIN INTEGRIN, CELL ADHESION PROTEIN, GL YCOPROTEIN, EXTRACELLULAR 2 MATRIX.
394	Ljia	٧	205	321	1.5e-19	0.01	-0.02		PHOSPHOLIPASE A2; CHAIN: A, B;	PHOSPHOLIPASE PHOSPHOLIPASE A2, AGKISTRODON HALYS PALLAS CRYSTAL 2 STRUCTURE
394	llfa	<	_	112	1.5e-24	0.01	0.89		CDI1A; ILFA 5 CHAIN: A, B; ILFA 6	CELL ADHESION LFA-I, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; ILFA 8
394	II fa	۷.	526	711	1.5e-53			93.74	CD11A; ILFA 5 CHAIN: A, B; ILFA 6	CELL ADHESION LFA-1, ALPHA- L\BETA-2 INTEGRIN, A-DOMAIN; LFA 8
394	l lfa	∢	526	713	1.5e-53	1.12	0.0		CDI 14; 1LFA 5 CHAIN: A, B; 1LFA 6	CELL ADHESION LFA-1, ALPHA- L',BETA-2 INTEGRIN, A-DOMAIN; 11 FA 8
394	l pfx	٦	157	301	4.56-30	10.0-	0.07		FACTOR IXA; CHAIN: C, L,; D. PHE-PRO-ARG: CHAIN: I;	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA. SERINE PROTEASE. CALCIUM- GINDING. HYDROLASE. 3
394	lpfx	٦	197	341	3e-29	-0.15	0.81		FACTOR IXA: CHAIN: C. L.; D. PHE-PRO-ARG; CHAIN: 1;	COMPLEX (BLOOD COAGULATION/INHIBITOR)

PDB Annotation	CHRISTMAS FACTOR; COMPLEX. INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR; COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	COMPLEX (BLOOD COAGULATION/INHIBITOR) CHRISTMAS FACTOR, COMPLEX, INHIBITOR, HEMOPHILIA/EGF, BLOOD COAGULATION, 2 PLASMA, SERINE PROTEASE, CALCIUM- BINDING, HYDROLASE, 3 GLYCOPROTEIN	SERINE PROTEASE FVIIA; FVIIA; BLOOD COAGULATION, SERINE PROTEASE	BLOOD COAGULATION FACTOR STUART FACTOR; BLOOD COAGULATION FACTOR, SERINE PROTEINASE, EPIDERMAL 2 GROWTH FACTOR LIKE DOMAIN	COMPLEX OF TWO ELONGATION
Compound		FACTOR IXA, CHAIN: C, L., D. PHE-PRO-ARG, CHAIN: I;	FACTOR IXA; CHAIN: C, L,; D. PHE-PRO-ARG; CHAIN: 1;	FACTOR IXA; CHAIN: C, L.: D. PHE-PRO-ARG: CHAIN: 1;	COAGULATION FACTOR VIIA (LIGHT CHAIN); CHAIN: L; COAGULATION FACTOR VIIA (HEAVY CHAIN); CHAIN: H; TRIPEPTIDYL INHIBITOR; CHAIN: C;	BLOOD COAGULATION FACTOR XA, CHAIN: L, C,	ELONGATION FACTOR TU;
SeqFold Score							
PMF		0.06	0.41	0.94	0.92	0.64	0.17
Verify Score		-0.10	0.06	0.30	0.06	0.33	-0.15
PSI BLAST		3e-23	6e-25	8.5e-15	3.4e-17	1.5e-14	3.4e-67
End		423	527	536	528	528	403
Start AA		286	403	440	444	444	183
Chain ID		ب	٦	_1	•	1	4
PDB ID		1pfx	- pfx	l pfx	1qfk	lxka	laip
SEQ ID		394	394	394	394	394	399

									ပ	ပ္
PDB Annotation	FACTORS EF-TU; EF-TS; ELONGATION FACTOR. NUCLEOTIDE EXCHANGE, GTP- BINDING, 2 COMPLEX OF TWO ELONGATION FACTORS	RNA BINDING PROTEIN EFTU; TRANSPORT AND PROTECTION PROTEIN, RNA BINDING PROTEIN	COMPLEX (TWO ELONGATION FACTORS) ELONGATION FACTOR FOR TRANSFER, HEAT UNSTABLE, ELONGATION FACTOR FOR TRANSFER, HEAT STABLE, ELONGATION FACTOR, COMPLEX (TWO ELONGATION FACTORS)	HYDROLASE ERA, GTPASE, RNA- BINDING, RAS-LIKE, HYDROLASE		TRANSLATION EF-TU: GTPASE, MOLECULAR SWITCH, TRNA, RIBOSOME, Q-BETA REPLICASE, 2 CHAPERONE, DISULFIDE ISOMERASE	TRANSLATION PROTEIN-PROTEIN COMPLEX	GTP-BINDING PROTEIN GTP- BINDING PROTEIN, SMALL G PROTEIN, RAP2, GDP, RAS	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN
Compound	CHAIN: A, B. E, F: ELONGATION FACTOR TS; CHAIN: C, D, G, H;	ELONGATION FACTOR; CHAIN: A. B;	ELONGATION FACTOR TU; CHAIN: A, C; ELONGATION FACTOR TS; CHAIN: B, D;	GTP-BINDING PROTEIN ERA; CHAIN: A, B;	TRANSPORT AND PROTECTION PROTEIN ELONGATION FACTOR TU (DOMAIN I) - *GUANOSINE DIPHOSPHATE IETU 4 COMPLEX IETU 5	ELONGATION FACTOR TU (EF- TU); CHAIN: A;	ELONGATION FACTOR EEF1A; CHAIN: A: ELONGATION FACTOR EEF1BA; CHAIN: B;	RAP2A: CHAIN: NULL:	QGSR ZINC FINGER PEPTIDE: CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;
SeqFold Score		;								58.92
PMF Score		0.01	0.09	0.13	0.41	0.10	0.07	0.13	0.27	
Verify Score		-0.23	-0.21	-0.11	0.07	-0.28	-0.34	-0.06	60:0-	
PSI BLAST		3.46-71	5. le-65	6.8e-38	5.1e-47	1.7e-73	le-73	1.7c-05	1.5e-20	1.5e-20
End		403	403	388	343	403	400	342	239	271
Start AA		183	183	184	183	183	183	184	167	186
Chain ID		A	∢	∢		∢	∢		<	<
PDB ID		Jelc	lefu	lega	letu	lexm	160	lkao	lalh	lalh
SEQ NO:		399	399	399	399	399	399	399	402	402

PDB Annotation	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA). ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	ZINC FINGER TRANSCRIPTION FACTOR SP1; ZINC FINGER, TRANSCRIPTION ACTIVATION, SP1	COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE: NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION RECULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION RECULATION/DNA)
Compound	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE; CHAIN: B, C;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D. E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G:	SP1F3: CHAIN: NULL:	TRANSCRIPTION FACTOR IIIA; CHAIN: A: 5S RNA GENE; CHAIN: E, F;	TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;
SeqFold Score				67.85			67.04	
PMF Score	1.00	0.30	00.1		00.1	66.0		0.48
Verify Score	0.08	-0.10	-0.23		-0.09	-0.17		0.06
PSI BLAST	3.4e-24	5.1e-37	1.4e-44	1.4e-44	le-37	0.00015	3.46-20	3.46-20
End	310	239	269	300	310	301	303	307
Start	243	991	185	214	242	273	214	243
Chain ID	Y	၁	U	U	၁		∢	∢
PDB ID	lalh	Imey	lmey	liney	Imey	lspi	8 11	5
SEQ NO:	402	402	402	402	402	402	402	402

						
PDB Annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POL YMERASE III, 2 TRANSCRIPTION	INITIATION. ZINC FINGER PROTEIN COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	RECULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	RECULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION
Сотроила	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D: 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO. ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A. B;	YYI: CHAIN: C: ADENO. ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score	78.75			165.14		
PMF Score		0.39	0.31		00.1	86.0
Verify Score		-0.11	-0.23		0.13	-0.28
PSI BLAST	5.1e-39	5.1e-39	1.7e-33	5.1c-49	5. le-49	1.76-30
End	295	306	269	300	299	310
Start AA	801	167	167	187	061	222
Chain ID	4	K	O	υ	၁	O
PDB 1D	11(8	1118	Pqn I	lubd	Pdul	pqn
SEQ NO:	402	402	402	402	402	402

PDB Annotation	REGULATION/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GII ZINC FINGER COMPLEX (DNA-	BINDING PROTEIN/DM BINDING PROTEIN/DM COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	KIBOSOME, ANTIBIOTIC, STREPTOMYCIN, 2 SPECTINOMYCIN, PAROMOMYCIN	RIBOSOME 30S RIBOSOMAL SUBUNIT, LOW RESOLUTION MODEL
Compound	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	16S RIBOSOMAL KNA; CHAIN: A; FRAGMENT OF MESSENGER RNA; CHAIN: X; 30S RIBOSOMAL PROTEIN S2; CHAIN: B; 30S RIBOSOMAL PROTEIN S3; CHAIN: C; 30S RIBOSOMAL PROTEIN S4; CHAIN: D; 30S RIBOSOMAL PROTEIN S5; CHAIN: E; 30S RIBOSOMAL PROTEIN S6; CHAIN: F: 30S RIBOSOMAL PROTEIN S7; CHAIN: G; 30S RIBOSOMAL PROTEIN S8; CHAIN: H; 30S RIBOSOMAL PROTEIN S10; CHAIN: J; 30S RIBOSOMAL PROTEIN S11; CHAIN: K; 30S RIBOSOMAL PROTEIN S12; CHAIN: L; 30S RIBOSOMAL PROTEIN S13; CHAIN: M; 30S RIBOSOMAL PROTEIN S14; CHAIN: N; 30S RIBOSOMAL PROTEIN S15; CHAIN: O; 30S RIBOSOMAL PROTEIN S16; CHAIN: P; 30S RIBOSOMAL PROTEIN S15; CHAIN: O; 30S RIBOSOMAL PROTEIN S16; CHAIN: P; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S18; CHAIN: R; 30S RIBOSOMAL PROTEIN S19; CHAIN: S; 30S RIBOSOMAL PROTEIN S20; CHAIN: T; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL PROTEIN: R; 30S RIBOSOMAL	CENTRAL FRAGMENT OF 16 S RNA; CHAIN: A; END FRAGMENT
SeqFold Score	82.64			
PMF Score		0.94	66. 67.	0.00
Verify Score		-0.15	0.12	-0.76
PSI BLAST	8.5c-38	8.5e-38	3.56-28	3.4e-32
End	301	298	741	151
Start	149	167	<u>r</u>	69
Chain 1D	¥.	₹.	0	_
PDB ID	2gli	2gli	35 3	1qd7
SEQ ID	402	402	404	404

PDB Annotation				ACYLPHOSPHATASE ACP; ACYLPHOSPHATASE, PHOSPHORIC MONOESTER HYDROLASE	ACYLPHOSPHATASE ACP; ACYLPHOSPHATASE, PHOSPHORIC MONOESTER HYDROLASE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS. TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE. TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS. TPR. 2 SUPER-HELIX. X-RAY STRUCTURE	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL
Compound	OF 16 S RNA; CHAIN: B; S4 RIBOSOMAL PROTEIN; CHAIN: C; SS RIBOSOMAL PROTEIN; CHAIN: C; S6 RIBOSOMAL PROTEIN; CHAIN: E; S7 RIBOSOMAL PROTEIN; CHAIN: F; S8 RIBOSOMAL PROTEIN; CHAIN: H; S17 RIBOSOMAL PROTEIN; CHAIN: I: S20 RIBOSOMAL PROTEIN; CHAIN: H; S17 RIBOSOMAL PROTEIN; CHAIN: I: S20	HYDROLASE(ACTING ON ACID ANHYDRIDES) ACYLPHOSPHATASE (E.C.3.6.1.7) (NMR, 5 STRUCTURES) 1APS 3	HYDROLASE(ACTING ON ACID ANHYDRIDES) ACYLPHOSPHATASE (E.C.3.6.1.7) (NMR. 5 STRUCTURES) IAPS 3	ACYLPHOSPHATASE; CHAIN: NULL;	ACYLPHOSPHATASE; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	SERINETHREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD;
SeqFold Score			102.47		139.55				
PMF Score		1.00		1.00		0.77	86.0	0.12	0.00
Verify Score		96'0		0.79		0.15	60.0	-0.04	-0.47
PSI BLAST		1.4e-33	1.4e-33	3.4e-33	3.4e-33	1.5e-11	5.1e-06	1.2e-07	96-10
End		86	66	66	66	730	728	376	727
Start		2	2	7	2	622	199	263	620
Chain ID								<	∢
PDB ID		laps	laps	2acy	2acy	lal7	la17	lelr	1elr
SEQ ID NO:		406	406	406	406	407	407	407	407

PDB Annotation	REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN,	PEPTIDE-COMPLEX, HELICAL	REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	SIGNALING PROTEIN PEROXISMORE	RECEPTOR 1. PTS1-BP, PEROXIN-5,	PTS1 PROTEIN-PEPTIDE COMPLEX,	TETRATRICOPEPTIDE REPEAT. TPR,	SIGNAL ING PROTEIN PEROXISMORE	RECEPTOR 1. PTS1-BP. PEROXIN-5.	PTSI PROTEIN-PEPTIDE COMPLEX,	TETRATRICOPEPTIDE REPEAT, TPR,	2 HELICAL REPEAT	SIGNALING PROTEIN PEROXISMORE	KECEPIOK I, PISI-BP, PEKOXIN-S,	PIST PROTEIN-PEPTIDE COMPLEX,	2 HELICAL REPEAT	DESIGNED HELICAL BUNDLE	DESIGNED HELICAL BUNDLE	DNA-BINDING PROTEIN DNA-	BINDING PROTEIN, PROTOONCOGENE PRODUCT	PHOSPHOTRANSFERASE ATP: AMP	PHOSPHOTRANSFERASE,	MYOKINASE; NUCLEOSIDE	MONOPHOSPHATE KINASE,	PHOSPHOLIKANSFERASE	PHOSPHOTRANSFERASE ATPUAMP PHOSPHOTRANSFERASE	MYOKINASE: NICLEOSIDE	MONOPHOSPHATE KINASE.	PHOSPHOTRANSFERASE	TRANSFERASE	(PHOSPHOTRANSFERASE) ATPUAMP PHOSPHOTRANSFERASE,
Compound	CHAIN: B;	TPR2A-DOMAIN OF HOP, CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPRI-DOMAIN OF HOP, CHAIN: A,	B; HSC70-PEPTIDE; CHAIN: C, D;	-	PEROXISOMAL TARGETING	SIGNAL I RECEPTOR; CHAIN: A,	B; PTS1-CONTAINING PEPTIDE;	CHAIN: C. D:	PEROXISOMAL TARGETING	SIGNAL I RECEPTOR: CHAIN: A	B, PTS1-CONTAINING PEPTIDE:	CHAIN: C. D.		PEROXISOMAL TARGETING	SIGNAL I RECEPTOR; CHAIN: A,	B; PTSI-CONTAINING PEPTIDE;	Chain: C, D;	DHPI CHAIN: NULL:		B-MYB; CHAIN: NULL;		ADENYLATE KINASE	ISOENZYME-2; CHAIN: NULL;				ADENYLATE KINASE ISOENZYME-2: CHAIN: NIII 1:	_			ADENYLATE KINASE, 1AKY 4	CHAIN: NULL, IAKY 5
SeqFold Score													-	_									304.37									212.52	
PMF Score		0.40	0.21			0.24				0.00	<u> </u>				0.07			_	0.10	?	0.62							0 					
Verify Score		-0.38	-0.23			-0.22				15 0-	:				-0.44			·	10.0-		-0.08							0.84					
PSI BLAST		6.8e-05	1.2e-07			6e-12				\$ 10-12	i i				5.1e-15				0.0036	00000	0.00075		1.7e-52					1.7e-52				4.5e-78	·
End		733	758			386				740	` 				840				744		146		973					972				126	
Start		099	859			192				\$10	?				550				703		711	_	749					756				751	_]
Chain 1D		¥	∢			<				4					ď																		
PDB ID		lelr	lclw			1fch		•		1 fch					l ſch				4hbi		laSj		lak2	-		_		lak2				laky	
SEQ ID NO:		407	407			407				407					407				407		414		414					4				414	

SEO	PDB	Chain	Start	End	PSI	Verify	PMF	SeqFold	Compound	PDB Annotation
ğΫ	<u>a</u>	≘	f	ΨV	BLAST	Score	Score	Score		
										MYOKINASE; 1AKY 6 ATP:AMP PHOSPHOTRANSFERASE, MYOKINASE 1AKY 15
41.4	laky		767	970	4.5e-78	99.0	00:1		ADENYLATE KINASE: 1AKY 4 CHAIN: NULL; 1AKY 5	TRANSFERASE (PHOSPHOTRANSFERASE) ATPV:AMP PHOSPHOTRANSFERASE, MYOKINASE; 1AKY 6 ATP:AMP PHOSPHOTRANSFERASE,
4 4	le4v	∢	767	196	1.5e-74	0.13	00.1		ADENYLATE KINASE; CHAIN: A;	M TOKINASE LAKY 13 TRANSFERASE(PHOSPHOTRANSFER ASE) TRANSFERASE(PHOSPHOTRANSFER
414	1mbj		113	146	7.5e-05	-0.18	0.51		MYB PROTO-ONCOGENE PROTEIN; IMBJ 4	ASE) DNÁ BINDING PROTEIN PROTOONCOGENE PRODUCT IMBJ
4 4	l mse	O	113	146	0.0015	-0.06	0.55		COMPLEX (BINDING PROTEIN/DNA) C-MYB DNA- BINDING DOMAIN COMPLEXED WITH DNA IMSE 3 (NMR, MINIMIZED AVERAGE STRUCTURE) IMSE 4 IMSE 84	
514	le7u	<	3501	3986	le-68	0.10	98.0		PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SÜBUNIT; CHAIN: A;	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE P110, P13K, P1 3K; PHOSPHOINOSITIDE 3. KINASE GAMMA, SECONDARY MESSENGER 2 GENERATION, P13K, P1
415	1e8y	∢	3501	3986	3.4e-68	0.02	1.00		PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT; CHAIN: A:	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE PI 10, PISK: PHOSPHOINOSITIDE 3-KINASE GAMMA. SECONDARY MESSENGER 2 GENERALIZAN PILK PILK PILK PILK PILK PILK PILK PILK
415	Зfар	8	3581	3674	1.4e-24	0.05	-0.18		FK506-BINDING PROTEIN; CHAIN: A: FKBP12-RAPAMYCIN ASSOCIATED PROTEIN; CHAIN:	CELL CYCLE FKBP12, FRAP, RAPAMYCIN, COMPLEX, GENE THERAPY
415	le7u	<	3480	4043	8.5e-83	-0.12	0.37		PHOSPHATIDYLINOSITOL 3. KINASE CATALYTIC SUBUNIT; CHAIN: A;	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE P110, P13K, P1 3K; PHOSPHOINOSITIDE 3- KINASE GAMMA. SECONDARY

PDB Annotation	MESSENGER 2 GENERATION, PI3K, PI 3K, WORTMANNIN	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE P110, P13K; PHOSPHOINOSITIDE 3-KINASE GAMMA, SECONDARY MESSENGER 2 GENERATION, P13K, P13K	CELL CYCLE FKBP12; FRAP FKBP12, FRAP, RAPAMYCIN, COMPLEX, GENE THERAPY	PHOSPHOINOSITIDE 3-KINASE	GAMMA PTDINS-3-KINASE P110. P13K, P1 3K; PHOSPHOINOSITIDE 3- KINASE GAMMA, SECONDARY MESSENGER 2 GENERATION. P13K, P1 3K, WORTMANNIN	PHOSPHOINOSITINE 3-KINASE	GAMMA PTDINS-3-KINASE PLIO, PIJK; PHOSPHOINOSITIDE 3-KINASE GAMMA, SECONDARY MESSENGER 2 GENERATION, PIJK, PI 3K	CELL CYCLE FKBP12; FRAP FKBP12, -FRAP, RAPAMYCIN, COMPLEX, GENE THERAPY	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE P110, P13K, P1 3K; PHOSPHOINOSITIDE 3- KINASE GAMMA, SECONDARY MESSENGER 2 GENERATION, P13K, P1 3K, WORTMANNIN	PHOSPHOINOSITIDE 3-KINASE GAMMA PTDINS-3-KINASE P110, P13K; PHOSPHOINOSITIDE 3-KINASE GAMMA, SECONDARY MESSENGER 2 GENERATION P13K P13K	CELL CYCLE FKBP12; FRAP FKBP12, FRAP, RAPAMYCIN, COMPLEX, GENE THERAPY
Compound		PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT; CHAIN: A;	FKS06-BINDING PROTEIN; CHAIN: A; FKBPI2-RAPAMYCIN ASSOCIATED PROTEIN; CHAIN: B;	DELOCATION INCITOR 1.	KINASE CATALYTIC SUBUNIT; CHAIN: A;	PHOCEPHATETON 1	FHOSPHATIOT LINOSTICE STRINGSE CATALYTIC SUBUNIT: CHAIN: A;	FKS06-BINDING PROTEIN, CHAIN: A; FKBP12-RAPAMYCIN ASSOCIATED PROTEIN; CHAIN: B;	PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT; CHAIN: A;	PHOSPHATIDYLINOSITOL 3- KINASE CATALYTIC SUBUNIT; CHAIN: A;	FK506-BINDING PROTEIN; CHAIN: A; FKBP12-RAPAMYCIN ASSOCIATED PROTEIN; CHAIN: B;
SeqFold Score										-	
PMF Score		0.94	-0.18	70 0			8	-0.18	0.37	0.94	-0.18
Verify Score		0.13	0.07	9	<u>2</u>	000	0.02	0.05	-0.12	0.13	0.07
PSI BLAST		16-77	1.5e-21	12.60	00.51	7.4.70	3.4e-68	1.4e-24	8.5e-83	le-77	1.5e-21
End		4043	3673	2005	0066	,000	3986	3674	4043	4043	3673
Start		3480	3581	2601	000	1036	3501	3581	3480	3480	3581
Chain 1D		₹	æ	\ \	۲		<	8	<	<	В
PDB ID		le8y	Зfар	15.2	n/8	6	1e8y	3fap	le7u	le8y	Зѓар
SEQ TD NO:		415	415	7117	<u>•</u>		914	416	416	416	416

Compound PDB Annotation		ELONGATION FACTOR TU; COMPLEX OF TWO ELONGATION CHAIN: A, B, E, F; ELONGATION FACTOR TS: CHAIN: C, D, G, U; E1 ONGATION FACTOR	<u> </u>	BINDING, 2 COMPLEX OF TWO	TU (EF.	A, B, C, D BETA-BARKEL	ADI-KIBOSYLATION FACTOR 8; OF PROTEIN OF PROTEIN, RAS, ARF, CHAIN: A;	ELONGATION FACTOR, CHAIN: RANSPORT AND PROTECTION A. B.	PROTEIN, RNA BINDING PROTEIN				ELONGATION FACTOR FOR	ELONGATION FACTOR COMPLEX	(TWO ELONGATION FACTORS)	GTP-BINDING PROTEIN ERA; HYDROLASE ERA, GTPASE, RNA-		PROTEIN ERA;	7	FACTOR TU (EF-		KIBOSOME, Q-BETA KEPLICASE, 2 CHAPFRONE DISTITEDE	ISOMERASE	ELONGATION FACTOR EEFIA; TRANSLATION PROTEIN-PROTEIN CHAIN: A; ELONGATION FACTOR COMPLEX			SYLATION CHAIN: A. B:	iii	ii	iii iii
Score Co		CHAIN: A, B, E, F; ELONGA' CHAIN: A, B, E, F; ELONGA'	2000		ELONGATION	10); CHAIN: A, B, C, D	CHAIN: A:	ELONGATION A. B:	; :	ELONGATION	CHAIN: A, C; ELONGATION	FACTOR 18; C			·	GTP-BINDING	CHAIN: A, B;	GTP-BINDING	CHAIN: A, B;	ELONGATION	TU); CHAIN: A;			ELONGATION FACT CHAIN: A; ELONGA EFFIRA: CHAIN: B:	HIMAN ADP-		FACTOR 1: 1H	FACTOR 1: 1H 1HUR 7	FACTOR I: IH IHUR 7 QGSR ZINC FII	FACTOR 1: 1HUR 5 1HUR 7 QGSR ZINC FINGER CHAIN: A; DUPLEX OLIGONUCLEOTID
PMF Score		-0.13			-0.17	20.0	70.0	-0.17		-0.17	-					0.01		-0.19		-0.17				-0.12	0.12	_			66.0	66.0
Verify Score	H	0.07			0.32	200	6.60	0.20		0.15						01.0		0.23		0.23				0.23	90.0	_			-0.10	
PSI BLAST		1.7e-46			1.7e-44	30.05		3.4e-50		5.1e-46						3.4e-36		8.5e-13		5.1e-52				3.4e-31	9e-05				1.2e-26	1.2e-26
End		384			386	313	715	386		386						381		185		384				386	312				281	281
Start AA		-			- - - -	195	<u> </u>	181		181						981		34		179				621	185				201	201
Chain ID		∢			A	4	<	٧		٧						٧		۷_		∢				A	4				4	- A
PDB ID		laıp			1d2e	John	S	Jofc 1		lefu						lega		lega		lexm				1660	Ihur		_		lalh	lalh
SEQ ID NO:		8	-		418	418	0	418		418						418		418		818				418	418	_	_		421	421

		· I		7					
PDB Annotation	STRUCTURE, HYDROLASE INHIBITOR	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN. 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGERDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGERDNA)
Compound	INHIBITOR; CHAIN: A	DNA; CHAIN: A, B, D. E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F. G;	DNA: CHAIN: A. B, D, E: CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F. G;	DNA; CHAIN: A. B, D. E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold Score									
PMF Score		0.58	1.00	00.1	1.00	00.1	00.1	00.1	1.00
Verify Score		-0.21	60.0	0.64	09:0	0.55	0.50	19:0	0.34
PSI BLAST		6.8c-41	6.8e-44	3.4e-46	1.4e-47	1.7e-48	3.4e-49	6.8e-49	5.1e-50
End		253	281	309	337	365	393	421	449
Start		172	200	228	256	284	312	340	368
Chain ID		U	ပ	ပ	U	U	U	U	၁
PDB ID		Ітеу	Ітеу	1теу	lmey	Imey	Ітеу	Imey	Ітеу
SEQ ID NO:		421	421	421	421	421	421	421	421

PDB Annotation	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTÉRACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE. COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN. 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION
Сотроипа	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F. G.	DNA: CHAIN: A, B, D. E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G:	DNA; CHAIN: A, B, D, E: CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 3S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;
SeqFold Score				108.34					
PMF Score	1.00	00:1	1.00		1.00	1.00	00.1	00.1	96.0
Verify Score	0.56	0.53	0.42		0.40	0.63	0.31	0.13	0.01
PSI BLAST	3.4e-51	5.1e-51	6.8e-51	5.1e-51	1.7e-50	8.5c-51	1.5e-50	5.1e-46	5.1e-35
End	477	505	533	534	561	589	617	641	346
Start	396	424	452	452	480	508	536	564	201
Chain 1D	U	U	U	ပ	ပ	U	ပ	U	<
PDB ID	Imey	liney	Imey	Imey	Imey	Imey	Imey	Imey	1176
SEQ NO.	421	421	421	421	421	421	421	421	421

PDB Annotation	REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
Compound		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE: CHAIN: B, C, E. F;	TFIIIA, CHAIN: A. D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C. E, F:	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A. B;
SeqFold Score				118.07			
PMF Score		1.00	1.00		1.00	0.18	1.00
Verify Score		0.24	0.25		0.04	-0.20	0.06
PSI BLAST		1.4c-36	1.7e-38	1.7e-38	5.1e-38	3e-26	3.4e-31
End		402	514	559	627	309	309
Start		257	369	396	48]		203
Chain ID		e	₹	⋖	V	ပ	ပ
PDB ID		146	91116	11f6	116	lubd	lubd
SEQ FD		421	421	421	421	421	421

PDB Annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION. INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;
Compound	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMEN'I DNA; CHAIN: A, B:	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P3 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;
SeqFold Score			92.65			
PMF Score	00.1	00.1		00.1	00.1	00.1
Verify Score	0.33	0.48		0.29	0.15	0.23
PSI BLAST	3e-51	4.5e-53	4.5e-53	1.26-33	1.7e-34	3e-53
End AA	337	393	394	421	449	477
Start	228	282	284	320	348	366
Chain ID	O	ပ	၁	S	၁	U
PDB 1D	pqnI	pqn	lubd	lubd	lubd	lubd
SEQ ID NO:	421	421	42 !	421	421	421

PDB Annotation	INITIATOR ELEMENT, YY I. ZINC 2 FINGER PROTEIN. DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1: TRANSCRIPTION INITIATION. INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX
Compound	CHAIN: A, B;	YYI; CHAIN: C; ADENO-C ASSOCIATED VIRUS PS R INITIATOR ELEMENT DNA; T CHAIN: A, B; FF F F F F F F F F F F F F F F F F F	YYI; CHAIN: C; ADENO-C ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; TCHAIN: A, B; FF FF FF FF FF FF FF FF FF FF FF FF FF	YYI; CHAIN: C; ADENO-ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; TICHAIN: A, B; F; F; F; F; F; F; F; F; F; F; F; F; F;	YYI: CHAIN: C: ADENO- C ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; TC CHAIN: A, B; FF	YYI, CHAIN: C; ADENO- C ASSOCIATED VIRUS PS R INITIATOR ELEMENT DNA; TI CHAIN: A, B; IN
Seq Fold Score						
PMF Score		00'1	00.1	00.1	0.96	0.98
Verify Score		0.36	0.16	0.28	0.16	0.13
PSI BLAST		3.4e-36	8.5e-36	6e-56	3c-55	1.7e-35
End		477	505	533	562	195
Start AA		376	401	422	450	460
Chain ID		U	ပ	ပ	U	U
PDB ID		lubd	lubd	lubd	lubd	lubd
SEQ ID NO:		421	421	421	421	421

PDB Annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION. INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P3 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C. D;	ZINC FINGER PROTEIN GLII;
SeqFold Score								
PMF Score		1.00	1.90	96.0	86.0	0.78	. 86.0	1.00
Verify Score		0.04	0.20	0.34	0.17	-0.27	0.06	0.72
PSI BLAST		3e-53	3e-53	5.1e-34	1.1e-39	1.5e-31	36-41	1.4e-63
End		589	617	617	641	308	311	367
Start		878	506	516	534	172	192	228
Chain ID		U	ပ	ပ	U	∢	<	4
PDB ID		1ubd	lubd	lubd .	Jubd	2gli	2gli	2gli
SEQ ID		421	421.	421	421	421	421	421

PDB Annotation	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI: GLI, ZINC FINGER. COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI: GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLJ; GLJ. ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	OXIDOREDUCTASE CYTOCHROME BCI COMPLEX, COMPLEX III; UBIQUINONE, OXIDOREDUCTASE, REDOX ENZYME, MEMBRANE PROTEIN, 2 RESPIRATORY CHAIN, ELECTRON TRANSPORT	OXIDOREDUCTASE CYTOCHROME BCI COMPLEX, COMPLEX III; UBIQUINONE, OXIDOREDUCTASE, REDOX ENZYME, MEMBRANE
Compound	CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLI1: CHAIN: A; DNA: CHAIN: C. D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA: CHAIN: C. D:	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A: DNA: CHAIN: C, D;	UBIQUINOL CYTOCHROME C OXIDOREDUCTASE; CHAIN: A. B. C, D, E. F, G, H, I, J;	UBIQUINOL CYTOCHROME C OXIDOREDUCTASE; CHAIN: A, B, C, D, E, F, G, H, I, J;
SeqFold Score			110.65							457.94
PMF		1.00		0.75	66:0	00'1	1.00	0.94	1.00	
Verify Score		0.54		-0.12	0.31	0.47	0.39	0.24	06.0	
PSI BLAST		1.7e-33	1.4e-63	1.5e-67	3.4e-34	3,4e-34	1.5e-70	7.5e-55	0	0
End		392	423	535	448	532	165	626	459	459
Start		264	284	312	320	404	452	508	24	49
Chain ID		∢	∢	∢	∢	∢	∢	< −	4	Y
PD8 ID		2gli	l bcc	l bcc						
SEQ ID NO:		421	421	421	421	421	421	421	423	423

			 	,	, 	,			
PDB Annotation	PROTEIN, 2 RESPIRATORY CHAIN, ELECTRON TRANSPORT	OXIDOREDUCTASE CYTOCHROME BCI, QCR; BCI, QCR, MEMBRANE PROTEIN, PROTON TRANSLOCATION, ELECTRON 2 TRANSFER, PROTEASE, MPP, MITOCHONDRIAL PROCESSING 3 PEPTIDASE, STRUCTURE, CYTOCHROME CI, CYTOCHROME B, RIESKE, 4 IRON SULFER PROTEIN, OXIDOREDUCTASE	BLOOD CLOTTING COILED-COIL	BLOOD CLOTTING COILED-COIL	BLOOD CLOTTING COILED-COIL	BLOOD CLOTTING COILED COILS, DISULFIDE RINGS, FIBRIN FORMING ENTITIES	BLOOD COAGULATION BLOOD COAGULATION, PLASMA PROTEIN, CROSSLINKING	BLOOD COAGULATION BLOOD COAGULATION, PLASMA PROTEIN, CROSSLINKING	BLOOD COAGULATION BLOOD COAGULATION, PLASMA,
Сотроила		UBIQUINOL CYTOCHROME C OXIDOREDUCTASE; CHAIN: A, B, C, D, E, F, G, H, I, J, K;	FIBRINOGEN (ALPHA CHAIN); CHAIN: A, D, N, Q; FIBRINOGEN (BETA CHAIN); CHAIN: B, E, O, R; FIBRINOGEN (GAMMA CHAIN); CHAIN: C, F, P, S; FIBRINOGEN; CHAIN: M, Z;	FIBRINOGEN (ALPHA CHAIN); CHAIN: A, D, N, Q: FIBRINOGEN (BETA CHAIN); CHAIN: B, E, O, R; FIBRINOGEN (GAMMA CHAIN); CHAIN: C, F, P, S: FIBRINOGEN; CHAIN: M, Z;	FIBRINOGEN (ALPHA CHAIN); CHAIN: A, D, N, Q; FIBRINOGEN (BETA CHAIN); CHAIN: B, E, Q, R; FIBRINOGEN (GAMMA CHAIN); CHAIN: C, F, P, S; FIBRINOGEN; CHAIN: M, Z;	FIBRINOGEN; CHAIN: A, D; FIBRINOGEN; CHAIN: B, E; FIBRINOGEN: CHAIN: C, F:	FIBRIN; CHAIN: A, B, C, D, E, F, G, H, I, J;	FIBRIN; CHAIN: A, B, C, D, E, F, G, H, I, J;	FIBRINOGEN; CHAIN: A, B, C, D, E, F, S, T, M, N;
SeqFold Score								175.96	174.90
PMF Score		1.00	0.62	00:1	00'-	00.1	00.1		
Verify Score		0.41	-0.25	-0.52	-0.58	-0.58	0.19		
PSI BLAST		0	1.4e-52	4.26-89	8.5e-45	3.4e-52	3.4e-39	3.4c-39	le-38
End AA		459	282	276	286	286	286	288	288
Start AA		24	122	53	53	56	123	123	128
Chain ID		4	മ	O.	ပ	ပ	ပ	U	ပ
PDB 1D		lqcr	ldeq	ldeq	Ideq	lei3	lfzc	1fzc	Ifzg
SEQ ID NO:		423	426	426	426	426	426	426	426

PDB Annotation	PLATELET, FIBRINOGEN, FIBIRIN	BLOOD COAGULATION BLOOD COAGULATION, PLASMA, PLATELET, FIBRINOGEN, FIBRIN		·	CHEMOKINE CHEMOKINE, CYTOKINE, CHEMOTAXIS	CHEMOKINE CHEMOKINE, CYTOKINE, CHEMOTAXIS	CHEMOKINE CHEMOKINE, CYTOKINE, CHEMOTAXIS			CYTOKINE NMR, STRUCTURE. MCP-3, BETA-CHEMOKINE, CYTOKINE, CHEMOTAXIS, 2 HEPARIN-BINDING, GLYCOPROTEIN	CYTOKINE NMR, STRUCTURE, MCP-3, BETA-CHEMOKINE, CYTOKINE,
Compound		FIBRINOGEN; CHAIN: A, B, C, D, E, F, S, T, M, N;	ENDONUCLEASE DEOXYRIBONUCLEASE I (DNASE I) (E.C.3.1.21.1) COMPLEXED WITH 2DNJ 3 DNA (5'- D(*GP*CP*GP*AP*TP*CP*GP*CP)- 3') 2DNJ 4	ENDONUCLEASE DEOXYRIBONUCLEASE I (DNASE I) (E.C.3.1.21.1) COMPLEXED WITH 2DNJ 3 DNA (5'- D(*GP*CP*GP*AP*TP*CP*GP*CP)- 3) 2DNJ 4	MIP-1A; CHAIN: A, B;	MIP-1A; CHAIN: A, B;	MIP-1A; CHAIN: A, B;	CYTOKINE(CHEMOTACTIC) HUMAN MACROPHAGE INFLAMMATORY PROTEIN I BETA (HMIP-1B) IHUM 3 (NMR, MINIMIZED AVERAGE STRUCTURE) IHUM 4	CYTOKINE(CHEMOTACTIC) HUMAN MACROPHAGE INFLAMMATORY PROTEIN I BETA (HMIP-1B) IHUM 3 (NMR. MINIMIZED AVERAGE STRUCTURE) IHUM 4	MONOCYTE CHEMOATTRACTANT PROTEIN 3: CHAIN: A. B;	MONOCYTE CHEMOATTRACTANT PROTEIN 3;
SeqFold Score				202.60	96.06			114.82		61.57	
PMF Score		00.1	1.00			1.00	1.00		00.1		86.0
Verify Score		0.22	0.93			10.0	0.29		0.28		-0.04
PSI BLAST		le-38	3.4e-100	3.4e-100	1.1e-28	1.1e-28	5.1e-25	6.8e-25	6.8e-25	1.7e-25	1.7e-25
End		286	251	252	92	92	26	92	92	92	16
Start AA		129	21	21	25	56	27	24	25	24	25
Chain ID		၁	∢	∢	V	₹	Ą	⋖	V	∢	۷.
PDB ID		lfzg	2dnj	2dnj	1650	1650	1650	Thum	lhum	Incv	Incv
SEQ 15	2	426	432	432	433	433	433	433	433	433	433

PDB Annotation	CHEMOTAXIS, 2 HEPARIN-BINDING, GLYCOPROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) GABPALPHA; N: GABPBETA!; COMPLEX (TRANSCRIPTION REGULATION/DNA), DNA-BINDING, 2 NUCLEAR PROTEIN, ETS DOMAIN, ANK YRIN REPEATS, TRANSCRIPTION	TUMOR SUPPRESSOR TUMOR SUPPRESSOR, CDK4/6 INHIBITOR, ANKYRIN MOTIF				TRANSCRIPTION FACTOR P65; P50D; TRANSCRIPTION FACTOR, IKB/NFKB COMPLEX	ANK-REPEAT MYOTROPHIN, ACETYLATION NMR ANK-REPEAT	·	\vdash
Compound	CHAIN: A, B;	GA BINDING PROTEIN ALPHA; CHAIN: A; GA BINDING PROTEIN BETA 1; CHAIN: B; DNA; CHAIN: D, E;	P19INK4D CDK4/6 INHIBITOR; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE 6: CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A:	CYCLIN-DEPENDENT KINASE 6 INHIBITOR; CHAIN: A, B;	NF-KAPPA-B P65 SUBUNIT; CHAIN: A; NF-KAPPA-B P50D SUBUNIT; CHAIN: C; I-KAPPA-B- ALPHA: CHAIN: D:	MYOTROPHIN; CHAIN: NULL	NF-KAPPA-B P65; CHAIN: A, C; NF-KAPPA-B P50; CHAIN: B, D; I- KAPPA-B-ALPHA; CHAIN: E, F;	Oler 19, manager at 100 atou 11
SeqFold Score		61.04	57.66	53.46	51.20	53.58	62.44	54.85	63.92	90000
PMF Score										
Verify Score										
PSI BLAST		1.7e-39	8.4e-33	1.46-32	3.4e-33	1.5e-32	2.8e-44	9.8e-27	2.8e-44	0F of \$
End		270	273	276	280	273	293	991	282	305
Start AA		114	911	115	113	122	18	48	78	35
Chain ID		æ		В	<	V	Q		ъ	
PDB ID		lawc	8pq1	l blx	l bu9	lihb	likn	lmyo	Infi	ladb
SEQ ID NO:		449	449	449	449	449	449	449	449	451

SEQ ID NO:	PDB ID	Chain 10	Start AA	End AA	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Сотроила	PDB Annotation
									PROTEIN) CYTOCHROME B=5= REDUCTASE (E.C.1.6.2.2) INDH 3	
456	Itub	4	2	440	0			308.77	TUBULIN; CHAIN; A. B.	MICROTUBULES MICROTUBULES,
										ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX
426	ltub	8	2	440	0			353.89	TUBULIN; CHAIN: A. B:	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX
157			į							
107	1810		82	239	2.8e-34		1	138.52	LAMININ; CHAIN: NULL;	GLYCOPROTEIN GLYCOPROTEIN
458	16ih	¥		327	6.8e-47			77.74	HEMOLIN; CHAIN: A, B;	INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHERICAL
458	1fig	I	54	276	0.00034			61.84	IMMUNOGLOBULIN IMMUNOGLOBULIN GI (KAPPA LIGHT CHAIN) FAB' FRAGMENT IFIG 3	
458	lfor	I	64	278	0.0019			10.09	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (FAB17-1A) (ORTHORHOMBIC CRYSTAL FORM) FOR 3	
458	ligc	Ξ	28	279	0.00017			61.96	COMPLEX (ANTIBODY/BINDING PROTEIN) IGGI FAB FRAGMENT COMPLEXED WITH PROTEIN G (DOMAIN III) IIGC 5 PROTEIN G, STREPTOCOCCIS ING 15	
458	lit b	8		279	4.2e-25			62.51	INTERLEUKIN-1 BETA; CHAIN: A: TYPE 1 INTERLEUKIN-1 RECEPTOR: CHAIN: B:	COMPLEX (IMMUNOGLOBULIN/RECEPTOR) IMMUNOGLOBULIN FOLD, TRANSMEMBRANE, GLYCOPROTEIN, RECEPTOR, 2 SIGNAL, COMPLEX
458	Ikbs	エ	54	278	0.0024			63.34	KBS-C20 T-CELL ANTIGEN RECEPTOR; CHAIN: A, B; ANTIBODY DESIRE-1; CHAIN: L, H;	COMPLEX COMPLEX COMPLEX COMPLEX CIMMUNOGLOBULIN/RECEPTOR) TCR VAPLHA VBETA DOMAIN; T- CELL RECEPTOR, STRAND SWITCH, FAB, ANTICLONOTYPIC, 2
458	2gfb	В	58	279	0.00034			62.09	IMMUNOGLOBULIN IGG2A FAB FRAGMENT (CN1206) 2GFB 3	(IMIMONOGEOBOLIN/RECEPTOR)

PDB Annotation		COMPLEX (DNA-BINDING PROTEIN/DNA) GHF-1; COMPLEX (DNA-BINDING PROTEIN/DNA), PITUITARY, CPHD, 2 POU DOMAIN, TRANSCRIPTION FACTOR	DNA-BINDING PROTEIN				RIBONUCLEOPROTEIN UIAI17; RIBONUCLEOPROTEIN, RNP DOMAIN, SPLICEOSOME		LYASE CITRATE HYDRO-LYASE; LYASE, TRICARBOXYLIC ACID CYCLE, IRON-SULFUR, MITOCHONDRION, 2 TRANSIT PEPTIDE, 4FE-4S, 3D-STRUCTURE			OXYGEN TRANSPORT OXYGEN TRANSPORT, CHIMERA PROTEIN, RESPIRATORY PROTEIN HEME		
Compound	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB' NEW (LAMBDA LIGHT CHAIN) 7FAB 3	PIT-1; CHAIN: A, B; DNA; CHAIN: C, D:	OCT-3; 1OCP 5 CHAIN: NULL; 10CP 6	DNA-BINDING PROTEIN OCT-1 (POU DOMAIN) IOCT 3	DNA-BINDING PROTEIN OCT-1 (POU-SPECIFIC DOMAIN) (NMR, 20 STRUCTURES) 1POU 3		UI SMALL NUCLEAR RIBONUCLEOPROTEIN A; CHAIN: NULL;	,	MITOCHONDRIAL ACONITASE; CHAIN: A;		OXYGEN TRANSPORT HEMOGLOBIN THIONVILLE ALPHA CHAIN MUTANT WITH VAL 1 IBAB 3 REPLACED BY GLU AND AN ACETYLATED MET BOUND TO THE IBAB 4 AMINO TERMINIS IRAB 5	MODULE-SUBSTITUTED CHIMERA HEMOGLOBIN BETA- ALPHA: CHAIN: A. B. C. D.	OXYGEN TRANSPORT HEMOGLOBIN (DEOXY, HUMAN FETAL F=/(15=) FDHG 1 IFDHH 2	OXYGEN TRANSPORT HEMOGLOBIN (DEOXY) IHDA 3
SeqFold Score	58.17	105.92	84.91	120.80	79.90		53.05		253.82		179.81	168.27	150.09	154.60
PMF Score						!							-	
Verify Score	·													
PSI BLAST	1.5e-11	3.4e-33	2.8e-22	1.3e-40	5.6e-32		2.8e-16		0		6.8e-55	1.7e-55	le-55	8.5e-51
End	260	289	289	290	212		143		963		140	140	140	140
Start AA	65	143	223	143	143		30		82	i	2	2	۳	2
Chain 1D	r	- V		၁					∢		В	A	O	В
PDB 10	7fab	Jau7	locp	loct	lpou		I fht		9631		l bab	1ch4	l fdh	l hda
SEQ ID NO:	458	462	462	462	462		473		476		477	477	477	477

SEQ	PDB	Chain	Start	End	PSI	Verify	PMF	SeqFold	Compound	PDB Annotation
اۋ د	2 │	e	AA A	AA	BLAST	Score	Score	Score		
14	libe	89	2	140	16-52			154.97	HEMOGLOBIN (DEOXY); CHAIN: A, B;	OXYGEN TRANSPORT HEME; OXYGEN TRANSPORT, RESPIRATORY PROTEIN, ERYTHROCYTE
477	Iqpw	В	2	140	le-52			163.36	PORICINE HEMOGLOBIN (ALPHA SUBUNIT); CHAIN: A, C; PORICINE HEMOGLOBIN (BETA SUBUNIT); CHAIN: B, D	OXYGEN TRANSPORT X-RAY STUDY, PORCINE HEMOGLOBIN, ARTHFICIAL HUMAN BLOOD, 2 OXYGEN TRANSPORT
480	1b6e		99	961	4.2e-29			81.88	CD94; CHAIN: NULL;	NK CELL NK CELL, RECEPTOR, C. TYPE LECTIN, C.TYPE LECTIN-LIKE,
480	1bj3	∢	67	193	3.4e-32			63.00	COAGULATION FACTOR IX- BINDING PROTEIN A; CHAIN: A; COAGULATION FACTOR IX- BINDING PROTEIN B; CHAIN: B;	COLLAGEN BINDING PROTEIN IX-BP; IX-BP; COAGULATION FACTOR IX- IX-BD; COAGULATION FACTOR IX- IX-BD; COAGULATION FACTOR IX- HABU 2 SNAKE, C-TYPE LECTIN SUPERFAMILY, COLLAGEN BINDING PROTEIN
480	lbyf	<	7.	194	5.1e-16			54.78	POLYANDROCARPA LECTIN; CHAIN: A, B;	SUGAR BINDING PROTEIN TC14; C. TYPE LECTIN, GALACTOSE.
480	lesi		78	197	8.5e-31			53.21	CELL ADHESION PROTEIN E. SELECTIN (LECTIN AND EGF DOMAINS, RESIDUES 1 - 157) IESL 3 (FORMERLY KNOWN AS ELAM-1) IESL 4	
084	lhtn		46	961	le-26			58.22	TETRANECTIN; CHAIN: NULL;	LECTIN TETRANECTIN, PLASMINOGEN BINDING, KRINGLE 4, ALPHA-HELICAL 2 COILED COIL, C-TYPE LECTIN, CARBOHYDRATE PECCENTION DAYAN
480	lhup		46	194	1.7e-23			53.60	MANNOSE-BINDING PROTEIN;	C-TYPE LECTIN ALPHA-HELICAL
480	lixx	∢	67	193	5.1e-30			60.13	COAGULATION FACTORS IX/X- BINDING PROTEIN; CHAIN: A, B, C, D, E, F;	COGLED-COLL HOP 12 COAGULATION FACTOR BINDING IX/X-BP COAGULATION FACTOR BINDING, C-TYPE LECTIN, GLA- DOMAIN 2 BINDING, C-TYPE CRD
480	Lixx	æ	67	195	8.5e-32			10.69	COAGULATION FACTORS IX/X-BINDING PROTEIN: CHAIN: A, B, C, D. E. F:	MOTIF, LOOP EXCHANGED DIMER COAGULATION FACTOR BINDING IXXX-BP COAGULATION FACTOR BINDING, C-TYPE LECTIN, GLA-
										DOMAIN 2 BINDING, C-TYPE CRD

PDB Annotation	MOTIF, LOOP EXCHANGED DIMER PANCREATIC STONE INHIBITOR, PANCREATIC STONE INHIBITOR, LECTIN	METAL BINDING PROTEIN PANCREATIC STONE PROTEIN. PSP; PANCREATIC STONE INHIBITOR. LITHOSTATHINE		LECTIN TETRANECTIN. PLASMINOGEN BINDING, KRINGLE 4, C-TYPE LECTIN, 2 CARBOHYDRATE RECOGNITION DOMAIN		COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN) COMPLEX	(IMMUNOGLOBULIN/AUTOANTIGEN), RHEUMATOID FACTOR 2 AUTO- ANTIBODY COMPLEX	IMMUNOGLOBULIN HUMAN FAB, ANTI-TETANUS TOXOID, HIGH AFFINITY, CRYSTAL 2 PACKING MOTIF, PROGRAMMING PROPENSITY TO CRYSTALLIZE, 3 IMMUNOGLOBULIN	IMMUNOGLOBULIN BENCE-JONES PROTEIN: 18JM 8 BENCE JONES, ANTIBODY. MULTIPLE OUATERNARY STRUCTURES 1BJM 13	IMMUNOGLOBULIN IMMUNOGLOBULIN, BENCE JONES PROTEIN
Compound	LITHOSTATHINE; CHAIN: NULL	LITHOSTATHINE; CHAIN: A;	LECTIN MANNOSE-BINDING PROTEIN A (CLOSTRIPAIN FRAGMENT) (CL-MBP-A) 1RTM 3 1RTM 96	TETRANECTIN: CHAIN: NULL;	LECTIN MANNOSE-BINDING PROTEIN A (LECTIN DOMAIN) COMPLEX WITH 2MSB 3 CALCIUM AND GLYCOPEPTIDE 2MSB 4	IGG4 REA; CHAIN: A; RF-AN IGM/LAMBDA; CHAIN: H, L;		FAB B7-15A2; CHAIN: L, H;	LOC - LAMBDA I TYPE LIGHT- CHAIN DIMER: 18IM 6 CHAIN: A, B; 1BJM 7	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A. B
SeqFold Score	77.94	84.76	50.50	59.09	53.42	313.02		285.37	287.81	311.90
PMF Score										
Verify Score										
PSI BLAST	1.7e-33	6.8e-35	le-22	5.1e-25	I.2e-21	3.4e-84		5.16-83	6.8e-79	1.2e-80
End	195	561	195	961	193	235		235	235	235
Start AA	19	15	36		77	21		22	20	21
Chain ID		A	_		٧			<u>ـ</u>	ď	4
PDB ID	III	lqdd	lrtm	lın3	2msb	ladq		laqk	1bjm	131
SEQ ID NO:	480	480	480	480	480	489		489	489	489

_			T	т			,	_
PDB Annotation								And the second s
Compound		IMMUNOGLOBULIN IMMUNOGLOBULIN HETEROLOGOUS LIGHT CHAIN DIMER IMCW 3 (MCG\$-/WEIR\$ HYBRID) IMCW 4	IMMUNOGLOBULIN FAB FRAGMENT (MURINE SE155-4) COMPLEX WITH HEPTASACCHARIDE IMFB 3 B: GAL(1-2)MAN(1-4)RAM(1- 3)GAL(1-2)[ABE(1-3)]MAN(1- 4)RAM IMFB 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB 2FB4 4	IMMUNOGLOBULIN IMMUNOGLOBULIN LAMBDA LIGHT CHAIN DIMER (/MCG\$) 2MCG 3 (TRIGONAL FORM) 2MCG	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB' NEW (LAMBDA LIGHT CHAIN) 7FAB 3	IMMUNOGLOBULIN FAB FRAGMENT FROM HUMAN IMMUNOGLOBULIN IGGI (LAMBDA, HIL) 8FAB 3	
SeqFold	Score	277.24	225.27	298.26	292.66	252.72	313.64	
PMF	Score							
Verify	Score							
PSI	BLAST	8.5e-76	1.46-96	8.5e-83	8.5e-81	1.4e-89	1.7e-81	
End		235	232	235	235	231	231	
Start		20	22	22	20	20	22	
Chain	<u>e</u>	*	_	L			۲	
PDB	QI	Imcw	Imfb	2fb4	2mcg	7fab	8fab	
SEQ	0 NO:	489	489	489	489	489	489	

WO 2002/018424

TABLE 6

SEQ ID NO:	Position Of the Last Amino Acid Of Signal Peptide	Maximum Score	Mean Score
246	23	0.948	0.886
247	20	0.954	0.900
249	19	0.992	0.946
252	35	0.906	0.594
255	20	0.943	0.601
256	18	0.895	0.587
257	26	0.966	0.902
258	20	0.974	0.942
262	44	0.967	0.702
273	20	0.954	0.900
291	19	0.992	0.946
296	26	0.965	0.852
309	16	0.885	0.571
328	18	0.939	0.693
338	18	0.988	0.897
340	13	0.887	0.839
355	21	0.895	0.558
356	18	0.906	0.614
357	19	0.966	0.927
362	26	0.994	0.899
376	35	0.906	0.594
379	23	0.989	0.919
405	20	0.943	0.601
418	18	0.895	0.587
426	26	0.966	0.902
428	22	0.970	0.910
430	14	0.941	0.861
432	20	0.974	0.942
433	23	0.994	0.967
451	26	0.978	0.885
457	27	0.980	0.853
482	27	0.989	0.918
484	18	0.996	0.953
489	19	0.981	0.914

WO 2002/018424

TABLE 7

SEQ ID NO:	Chromosomal location
1	6q27
2	4p16.3
3	4p16.3
4	Ip21
5	8q13-q22
6	17
7	X
8	5
10	16
11	10
12	10
13	8pter-p23.3
15	17
16	X
17	11q23.2
19	19p13.3-p13.2
20	3p21.1
21	10
22	1
23	8
23	16
25	8
26	22-12-1
27	22q13.1 22q13.1
28	22(15.1
29	3
30	X
31	Xq27.3
32	Xq27.3
33	4
34	7q35-q36
35	11q12-1q22.2
36	11q23.1-q23.2
37 `	12
38 .	2q11.1-q11.2
39	17
40	7q32
41	22q13.2
42	1q42.13-q42.2
43	19q13.3
44	19p12
45	1q23.1-24.3 22q11.1-q11.2
46	22q11.1-q11.2
48 49	17
50	8p22 22
51	22
57	3q23-q24
52 53	7p22-p21
54	16
55	12 21q22.3
56	21922.3
57	18q
60	6
61	1 19
62	19
- V2	14

63	
1 24	6q15-q16.1
	13q12.3-q13.1
65	17q21-q22
66	7q11.2
67	12
68	12p13
69	19q13.13-q13.2
70	12
71	19
72	18
73	1p36.13-q31.3
74	14
75	7q21 .
76	7q21-q22
78	11p11.2-p11.1
80	22q13.31-q13.33
	22(15.51-(15.55
81	3p26-p25
82	2
84	22q13,2-q13.31
86	19
87	22q11.1-q11.2
88	17
89	7q11.21-q11.23
91	9
92	lp35.1-36.12
93	
	3q13.1-q13.2
94	15
95	19q13.2
96	
97	20p11.1-11.22
98	19
100	6p12
101	3
102	3
103	X
104	3q29-qter
	(
105	1<
105	15
107	12
107	12 20p11.21-12.3
107 108 110	12
107	12 20p11.21-12.3
107 108 110	12 20p11.21-12.3 5 10
107 108 110 111 112	12 20p11.21-12.3 5 10
107 108 110 111 112	12 20p11.21-12.3 5 10 10 6p21.2-p21.3
107 108 110 111 112 113	12 20p11.21-12.3 5 10 10 6p21.2-p21.3 12q15
107 108 110 111 112 113 114	12 20p11.21-12.3 5 10 10 6p21.2-p21.3 12q15 22
107 108 110 111 112 113 114 115	12 20p11.21-12.3 5 10 10 6p21.2-p21.3 12q15 22 19
107 108 110 111 112 113 114 115	12 20p11.21-12.3 5 10 10 6p21.2-p21.3 12q15 22 19
107 108 110 111 112 113 114 115	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2
107 108 110 111 112 113 114 115 118 119	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2
107 108 110 111 112 113 114 115 118 119 121	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2
107 108 110 111 112 113 114 115 118 119 121 122	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3
107 108 110 111 112 113 114 115 118 119 121 122	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3
107 108 110 111 112 113 114 115 118 119 121 122	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3
107 108 110 111 112 113 114 115 118 119 121 122 123 124	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 20 9 11q13
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125 126	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9 11q13
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125 126 127	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9 11q13 13 Xq21.1-Xq21.3
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125 126 127 128	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9 11q13 13 Xq21.1-Xq21.3 Xq28
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125 126 127 128	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9 11q13 13 Xq21.1-Xq21.3 Xq28
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125 126 127 128 129 130	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9 11q13 13 Xq21.1-Xq21.3 Xq28 19p13.1-p12
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125 126 127 128 129 130 131	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9 11q13 13 Xq21.1-Xq21.3 Xq28 19p13.1-p12 8q22-q23
107 108 110 111 112 113 114 115 118 119 121 122 123 124 125 126 127 128 129 130	12 20p11.21-12.3 5 10 10 10 6p21.2-p21.3 12q15 22 19 Xp11.2 15 3 3 3 20 9 11q13 13 Xq21.1-Xq21.3 Xq28 19p13.1-p12

136	11p15.5
137	11p15.5
138	11p15.5
	11015.5
139	10p15-p13
140	3q29
141	11
142	20p12.2-13
143	20q13.3
144	19q13.3-q13.4
146	17
147	
	12p13.3
148	8q22
149	8q22
150	5
151	9q34
152	7q21
153	7p13-p12
154	7 22 22 V 22 22
	Xp22.33
155	15
156	14
158	19q13.3
159	19q13.3
160	6
161	14q24.3
162	11
164	16
165	22q13.2-q13.31
166	19
167	11
168	5
169	1p34
170	
	8q11
171	8q11
172	17
173	19
176	
	19
177	11
178	7q22-q32
179	16-22
	16q22.1
181	4q28
182	16p13.3
183	5
184	
	1
187	3p21.1-p14.3
188	17q21
189	7q21-q22
	7421-422
190	3p13-q26.1
191	17q21.2
192	3q27
193	22-12-2-12-2
	22q13.2-13.3
194	11q22.2-q22.3
195	12q24.31-q24.32
196	19q13.4
197	17
198	17
199	16
200	20
201	20
	5
202	5
	5 17

204	11
205	20q11.2-q12
206	1924-941
207	17
208	14
209	11q13
210	6
211	17q21
212	6q21
214	16
216	17
217	6p21.31
219	Xp22
220	20
221	3
222	22q13.31-13.32
223	11q12
224	11q13.3
225	11q13.3
226	12
227	17q24-q25
228	20
229	9
230	1
231	15q24-q25
233	19q13.4
234	22q11.2
235	12p13
236	9
237	3p25-p24
238	14q24.3
240	19q13.3
241	20
242	6
243	16q21-q23
244	22q11.1-q11.2

TABLE 8

SEQ ID NO: of nucleotide sequence	SEQ ID NO: of polypeptide sequence	SEQ ID NO: in USSN 09/654,935 (Numbers to the right of the underscore correlate to sequence identifiers in USSN 09/654,935)
	246	793_3
2	247	793 4
3	248	793 5
4	249	793 6
5	250	793 7
6	251	793 9
7	252	793 15
8	253	793 16
9	254	793 17
10	255	793 18
11	256	793_19
12	257	793_20
13	258	793_21
14	259	793_22
15	260	793_25
16	261	793_28
17	262	793_29
18	263	793_30
20	264	793_31
21	265 266	793_32
22	267	793_33 793_34
23	268	793_34
24	269	793 36
25	270	793 37
26	271	793 38
27	272	793 39
28	273	793 40
29	274	793_41
30	275	793_42
31	276	793_43
32	277	793_44
33	278	793_47
34	279	793_48
35 36	280	793_49
37	281	793 50
38	282 283	793_51
39	284	793_52 793_55
40	285	793 56
41	286	793 57
42	287	793 58
43	288	793 60
44	289	793 61
45	290	793 62
46	291	793 63
47	292	793_64
48	293	793_65
49	294	793_66
50	295	793 67
51	296	793_68
52	297	793_69

53		
54	298	793_70
55	299 300	793_71
56	301	793 72
57	302	793_74
58	303	793 75 793 76
59	304	793 77
60	305	793 78
61	306	793 79
62	307	793 80
63	308	793 81
64	309	793 82
65	310	793 83
66	311	793 85
67	312	793 86
68	313	793 87
69	314	793 88
70	315	793 89
71	316	793 90
72	317	793 91
73	318	793 92
74	319	793 93
75	320	793 94
76	321	793_95
77	322	793 96
78	323	793 97
79	324	793 98
80	325	793_99
81	326	793 101
82	327	793 102
83	328	793 103
84	329	793_104
85	330	793 106
86	331	793_107
87	332	793 108
88	333	793 109
89	334	793 110
90	335	793 111
91	336	793 112
92	337	793 113
93	338	793 114
94	339	793_115
95	340	793 116
96	341	793_117
97	342	793_118
98	343	793_119
99	344	793_120
100	345	793 121
101	346	793 122
102	347	793_123
103	348	793 124
104	349	793_125
105	350	793_126
106	351	793_127
107	352	793_128
108	353	793 129
109	354	793_130
110	355	793_131
111	356	793_132
117	357	793 133

W O 2002/010424		FC1/05200
113	358	793 134
114	. 359	793 135
115	360	793 136
116	361	793 137
117	362	793 138
118	363	793 139
119	364	793_140
120	365	793_141
121	366	793_142
122	367	793_143
123	368	793_144
124	369	793_145
125	370	793_146
126	371	793_147
127	372	793_148
128	373	793_149
129	374	793_150
130	375	793_151
131	376	793_152
132	377	793_153
133	378	793_154
134	379	793_155
135	380	793_156
136	381	793_157
137	382	793_158
138	383	793 159
140	384	793_160
141	385 386	793_161
142	387	793_162
142	388	793_163.
144	389	793 164 793 165
145	390	793 166
146	391	793_100
147	392	793 168
148	393	793 169
149	394	793 170
150	395	793 171
151	396	793 172
152	397	793 173
153	398	793_174
154	399	793 175
155	400	793 176
156	401	793 177
157	402	793 178
158	403	793 179
159	404	793 180
160	405	793 181
161	406	793_182
162	407	793_183
163	408	793_184
164	409	793_185
165	410	793_186
166	411	793_187
167	412	793_188
168	413	793_189
169	414	793_190
170	415	793_191
171	416	793 192
172	417	793_193

173	418	793_194
174	419	793_195
175	420	793_196
176	421	793 197
177	422	793 198
	423	793 200
178		793 200
179	424	
180	425	793 202
181	426	793_203
182	427	793_204
183	428	793_205
184	429	793_206
185	430	793_207
186	431	793 209
187	432	793_210
188	433	793 211
189	434	793_212
	435	793 213
190		793_213
191	436	793 214
192	437	793_215
193	438	793_216
194	439	793_217
195	440	793_218
196	441	793_219
197	442	793_220
198	443	793 221
199	444	793_222
200	445	793_223
	446	793 224
201	447	793 225
202		
203	448	793_226
204	449	793_227
205	450	793_229
206	451	793_230
207	452	793_231
208	453	793 232
209	454	793 233
210	455	793 234
211	456	793 235
212	457	793 236
212	458	793 237
h		793_237
214	459	
215	460	793_239
216	461	793_240
217	462	793_241
218	463	793_242
219	464	793_244
. 220	465	793_245
221	466	793 247
222	467	793 248
223	468	793 249
224	469	793 250
225	470	793 251
	471	793 252
226		
227	472	793_253
228	473	793_254
229	474	793_255
230	475	793_256
231	476	793_257
232	477	793 258

233	478	793 259
234	479	793 260
235	480	793 261
236	481	793 262
237	482	793 263
238	483	793 264
239	484	793 265
240	485	793 266
241	486 .	793 267
242	487	793 268
243	488	793 269
244	489	793 270
245	490	793 271

WHAT IS CLAIMED IS:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-245, a mature protein coding portion of SEQ ID NO: 1-245, an active domain coding portion of SEQ ID NO: 1-245, and complementary sequences thereof.

5

- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 10 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
 - 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 15 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
 - 6. A vector comprising the polynucleotide of claim 1.
- 20 7. An expression vector comprising the polynucleotide of claim 1.
 - 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively
 associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
 - 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:
 - (a) a polypeptide encoded by any one of the polynucleotides of claim 1; and
 - (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO: 1-245.
 - 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 35 12. An antibody directed against the polypeptide of claim 10.

13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:

5

- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
 - 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
 - b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
 - c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
 - 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
 - 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
 - b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 25 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
 - a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
 - 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:

a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and

- b) detecting the complex by detecting reporter gene sequence expression, so
 that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
 - 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from SEQ ID NO: 1-245, a mature protein coding portion of SEQ ID NO: 1-245, an active domain coding portion of SEQ ID NO: 1-245, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-245, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).

15

- 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides SEQ ID NO: 2146-490, the mature protein portion thereof, or the active domain thereof.
- 20 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
 - 22. A collection of polynucleotides, wherein the collection comprising the sequence information of at least one of SEQ ID NO: 1-245.
- 25 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
 - 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 30 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
 - 26. The collection of claim 22, wherein the collection is provided in a computer-readable format.

27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

5 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

PC 17 3 01/27093

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C07K14/47 G01N33/50 G01N33/53 C07K16/18 C12Q1/68 C12N5/10 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C07K C12N IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, EMBL, BIOSIS, MEDLINE, PAJ, WPI Data, SEQUENCE SEARCH C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-28 WO 01 53312 A (CHEN RUI HONG ; GOODRICH P,X RYLE (US); HYSEQ INC (US); WANG DUNRUI (US) 26 July 2001 (2001-07-26) SEQ ID NO:4445, 6231 1-28 DATABASE EMBL [Online] Χ 19 January 1998 (1998-01-19) PHILIPPS, S:: "Human DNA sequence from clone 366N23 on chromosome 6q27. Contains two genes similar to consecutive parts of the C. elegans UNC-93 (protein 1, C46F11.1) gene, a KIAA0173 and Tubulin-Tyrosine Ligase LIKE gene, a Mitotic Feedback... retrieved from EBI Database accession no. AL021331 XP002214453 abstract -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means in the art. document published prior to the International filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the International search report Date of the actual completion of the international search 14, 01, 2003 24 September 2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Schmitz, T

Fax: (+31-70) 340-3016

Inter al Application No
PU 170\$ 01/27093

C /Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PUTTUS 01/27093	
Category °		Relevant to claim No.	
х	DATABASE SWALL [Online] 1 November 1998 (1998-11-01) PHILLIPS, S.: "DJ366N23.1 (Putative C. elegans UNC-93 (Protein 1, C46F11.1) like protein)." retrieved from EBI Database accession no. 075651 XP002214454 abstract	1-28	
X	DATABASE EMBL [Online] 18 July 1996 (1996-07-18) HILLIER L. ET AL.: "zh48g06.r1 Soares_fetal_liver_spleen_1NFLS_S1 Homo sapiens_cDNA_clone_IMAGE:415354_5' similar to PIR:S23352 S23352 gene unc-93 protein 1 - Caenorhabditis elegans [1] ;, mRNA sequence." retrieved from EBI Database accession no. W92071 XP002214455 abstract	10-12, 16-20, 27, 28	

tional application No. PCT/US 01/27093

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:						
Although claims 27, 28 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.						
2. X Claims Nos.: 13, 16 (partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:						
see FURTHER INFORMATION sheet PCT/ISA/210						
3. Claims Nos.: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)						
This International Searching Authority found multiple Inventions in this international application, as follows:						
see additional sheet						
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.						
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:						
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-28 all partially						
Remark on Protest The additional search fees were accompanied by the applicant's protest.						
No protest accompanied the payment of additional search fees.						

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 13, 16 (partially)

Present claims 13, 16 relate to a compound defined by reference to a desirable characteristic or property, namely the binding to the claimed polypeptides.

The claims cover all compounds having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to the antibody binding to the claimed polypeptide.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: 1-28 (all partially)

SEQ ID NO:1, 246. Furthermore vectors, host cells, methods, collections, antibodies, all referring to said nucleotide or amino acid sequence.

Invention 2: 1-28 (all partially)

As invention 1, but referring to SEQ ID NO:2, 247.

Invention 3: 1-28 (all partially)

As invention 1, but referring to SEQ ID NO:3, 248.

Invention 245: 1-28 (all partially)

As invention 1, but referring to SEQ ID NO:245, 490.

mation on patent family members

Intel I Application No
PCT7US 01/27093

		PC170S 01/2/093		
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0153312 A	26-07-2001	AU	2292401 A	31-07-2001
		ΑU	2591801 A	31-07-2001
		ΑU	2593601 A	31-07-2001
		ΑU	2595501 A	31-07-2001
		ΑÜ	2596501 A	31-07-2001
		ΑU	2598301 A	31-07-2001
		ΑU	2728401 A	31-07-2001
		ΑU	2734401 A	31-07-2001
		ΑU	2734801 A	31-07-2001
		AU	2738501 A	31-07-2001
		AU	3265701 A	31-07-2001
		EP	1242596 A1	25-09-2002
		EP	1240178 A2	18-09-2002
		EP	1242580 A1	25-09-2002
		EP	1242443 A1	25-09-2002
·		EP	1250346 A2	23-10-2002
		EP	1254256 A2	06-11-2002
		EP	1248848 A1	16-10-2002
		WO WO	0153312 A1	26-07-2001
		WO	0153453 A2	26-07-2001
		WO	0153326 A1 0153454 A2	26-07-2001
		MO	0153454 A2 0153455 A2	26-07-2001
		WO	0153456 A2	26-07-2001
		WO	0153466 A1	26-07-2001 26-07-2001
		WO	0152616 A2	26-07-2001
		WO	0153500 A1	26-07-2001
		WO	0153515 A1	26-07-2001
		WO	0153485 A1	26-07-2001
		US	6465620 B1	15-10-2002
		US	2002146692 A1	10-10-2002
		ΑU	5362001 A	30-10-2001
		MO	0179446 A2	25-10-2001
		US	2002142953 A1	03-10-2002
			A	
l				1

CORRECTED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 7 March 2002 (07.03.2002)

PCT

(10) International Publication Number WO 2002/018424 A3

- (51) International Patent Classification7: C12N 15/12, C07K 14/47, 16/18, G01N 33/53, 33/50, C12N 5/10, C12Q 1/68
- (21) International Application Number:

PCT/US2001/027093

- (22) International Filing Date: 31 August 2001 (31.08.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/654,935

1 September 2000 (01.09.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on 09/654,935 (CIP) 1 September 2000 (01.09.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvale, CA 94086 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). ASUNDI, Vinod [US/US]; 709 Foster City Boulevard, Foster City, CA 94404 (US). ZHOU, Ping [US/US]; 7595 Newcastle Drive, Cupertino, CA 95014 (US). XUE, Aidong, J. [CN/US]; 1621 S. Mary Avenue, Sunnyvale, CA 94087 (US). REN, Feiyan [US/US]; 7703 Oak Meadow Court, Cupertino, CA 95014 (US). ZHANG, Jie [CN/US]; 4930 Poplar Terrace, Campbell, CA 95008 (US). WANG, Jian-Rui [CN/US]; 744 Stendahl Lane, Cupertino, CA 95014 (US). ZHAO, Qing, A. [CN/US]; 1556 Kooser Road, San Jose, CA 95118 (US). WANG, Dunrui [CN/US]; 12252 Pepper Tree Lane, Poway, CA 92064 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). DRMANAC, Radoje, T. [US/US]; 850 East Greenwich Place, Palo Alto, CA 94303

(US). WEHRMAN, Tom [US/US]; CCSR Mol Pharm 3210, 269 W. Campus Drive, Stanford, CA 94305 (US).

- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P., C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau
- (88) Date of publication of the international search report: 15 May 2003
- (48) Date of publication of this corrected version:

15 April 2004

(15) Information about Correction:

see PCT Gazette No. 16/2004 of 15 April 2004, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

5

10

15

20

25

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, circulating soluble factors, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel
isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules,
cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic
variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more
epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-245. The polypeptides sequences are designated SEQ ID NO: 246-490. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is unknown or any of the four bases.

5

10

15

20

25

30

35

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO: 1-245 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-245. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-245 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-245. The sequence information can be a segment of any one of SEQ ID NO: 1-245 that uniquely identifies or represents the sequence information of SEQ ID NO: 1-245.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information are provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization

probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-245 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-245 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

5

10

15

20

25

30

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1-245; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1-245; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-245. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1-245; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in SEQ ID NO: 246-490; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO: 1-245; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention.

Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

5

10

15

20

25

30

35

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provide methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can

effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

10

20

25

30

35

5

4. DETAILED DESCRIPTION OF THE INVENTION

appropriate animals or cells and to bind with specific antibodies.

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady

and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

5

10

15

20

25

30

35

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30

nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NO: 1-245.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-245. The sequence information can be a segment of any one of SEQ ID NO: 1-245 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO: 1-245. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

5

10

15

20

25

30

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 500 amino acids, more preferably less than 200 amino acids more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include an initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

5

10

15

20

25

30

35

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations

can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

35

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use

in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

5

10

15

20

25

30

35

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2): 134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

5

10

15

20

25

30

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least about 98% sequence identity, and most preferably at least about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J.

(1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

5

10

15

20

25

30

35

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO: 1-245; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO: 246-490; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO: 246-490. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1-245; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing as SEQ ID NO: 246-490; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 246-490. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding,

extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

5

10

15

20

25

30

35

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO: 1-245 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO: 1-245 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO: 1-245 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO: 1-245, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that

are selective for (i.e. specifically hybridize to) any one of the polynucleotides of the invention are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

5

10

15

20

25

30

35

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1-245, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO: 1-245 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO: 1-245, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic

acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

5

10

25

30

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a 15 polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a 20 polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., Gene 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and Current Protocols in Molecular Biology, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression

of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

5

10

15

20

25

30

35

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO: 1-245, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-245 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO: 1-245 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are

known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

5

10

15

20

25

30

35

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., *Nucleic Acids Res.* 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, *Methods in Enzymology* 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or

more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

25 4.3 ANTISENSE NUCLEIC ACIDS

5

10

15

20

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1-245, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEO ID

NO: 246-490 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO: 1-245 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

5

10 Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO: 1-245), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of an mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the 15 translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified 20 nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid
include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine,
4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine,
inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine,
2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine,
7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil,
beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil,
2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil,
queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil,
uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil,
35 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the

antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

25

30

35

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res* 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue *et al.* (1987) *FEBS Lett* 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be

designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO: 1-245). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an mRNA of SEQ ID NO: 1-245 (see, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Alternatively, polynucleotides of the invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

5

10

15

20

25

30

35

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

25

30

35

5

10

15

20

4.5 HOSTS

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous

recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in coamplification of the desired protein coding sequences in the cells.

10

15

20

25

30

35

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3

cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice

sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

5

10

15

20

25

30

35

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 246-490 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO: 1-245 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO: 1-245 or (b)

polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 246-490 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO: 246-490 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 246-490.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

15

20

25

30

35

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that

retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

5

10

15

20

25

30

35

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 246-490.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological

methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

5

10

15

20

25

30

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

15

20

25

30

35

5

10

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al., ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to

another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprise one or more domains fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.

Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for

example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

5

10

15

20

25

30

Mutations in the polynucleotides of the invention may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in

the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

5

10

15

20

25

30

35

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are

added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

10

15

20

25

30

35

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous

36

promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

5

10

15

20

25

30

35

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the

polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

10

15

20

25

30

35

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

5

10

15

20

25

30

35

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient

confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

10

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation,
Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells 20 include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology, J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse 25 and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology, J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 30 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in

35 Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober,

Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

5

10

15

20

25

30

35

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells in vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder

41

layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

5

10

15

20

25

30

35

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds.* Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell

sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

5

30

35

A polypeptide of the present invention may be involved in regulation of hematopoiesis 10 and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the 15 growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of 20 various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and 25 paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

15

20

25

30

10

5

4.10.6 TISSUE GROWTH ACTIVITY

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5

10

15

20

25

30

35

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular

endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

5

10

15

20

25

30

35

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus,

46

rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic 5 reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma 10 (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

15

20

25

30

35

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic

composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β_2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

5

10

25

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

5

10

15

20

25

30

35

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population.

Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

15

10

5

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostasis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

25

20

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

30

35

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention

52

may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

35

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide,

Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cisDDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin,
Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213),
Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide,
Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog),
Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna,
Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl,
Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate,
Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin,
Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These *in vitro* models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

15

20

25

30

35

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen

recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

4.10.13 DRUG SCREENING

5

10

15

20

25

30

35

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such

transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

5

10

15

20

25

30

35

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282*:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding

molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

5

10

15

20

25

30

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

30

35

5

10

15

20

25

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or

disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system
 results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;

5

15

25

35

- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
- (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
 - (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
 - (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or

differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

(i) increased survival time of neurons in culture;

5

10

15

20

25

30

35

- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or in vivo, e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or

elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

10

15

20

25

30

35

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified

nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

25

30

35

20

5

10

15

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of

administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about $0.01\mu g/kg$ to 100 mg/kg of body weight, with the preferred dose being about $0.1\mu g/kg$ to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

15 4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

10

20

25

30

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic

factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

5

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

15

20

10

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

25

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

30

35

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be

65

manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

10

15

20

25

30

35

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions. preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers

enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

5

10

15

20

25

30

35

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with

an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a co-solvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well

known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.

5

10

15

20

25

30

15

Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable

lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

5

10

15

20

25

30

35

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions

may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

10

15

20

25

30

35

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which

modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

5

10

15

20

25

30

35

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the

population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about $0.01 \mu g/kg$ to 100 mg/kg of body weight daily, with the preferred dose being about $0.1 \mu g/kg$ to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

5

10

15

20

25

30

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the

invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

5

10

15

20

25

30

35

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} and $F_{(ab)2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG_1 , IgG_2 , and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as the amino acid sequences shown in SEQ ID NO: 246-490, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino.

Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte

74

Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

4.13.1 POLYCLONAL ANTIBODIES

5

10

15

20

25

30

35

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the

target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

5

10

15

20

25

30

35

4.13.2 MONOCLONAL ANTIBODIES

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro. The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego,

California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, <u>J. Immunol.</u>, <u>133</u>:3001 (1984); Brodeur et al., <u>Monoclonal Antibody Production Techniques and Applications</u>, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal. The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin

polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

5 4.13.3 HUMANIZED ANTIBODIES

10

15

20

25

30

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigenbinding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

4.13.4 HUMAN ANTIBODIES

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL

35 ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal

antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

5

10

15

20

25

30

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al., (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

4.13.5 Fab FRAGMENTS AND SINGLE CHAIN ANTIBODIES

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab)2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab)2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_v fragments.

4.13.6 BISPECIFIC ANTIBODIES

10

15

20

25

30

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the

binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

5

10

15

20

25

30

35

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to

stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular

defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

4.13.7 HETEROCONJUGATE ANTIBODIES

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

4.13.8 EFFECTOR FUNCTION ENGINEERING

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced antitumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

4 4 9 9 7 7 7 7

5

10

15

20

25

30

35

4.13.9 IMMUNOCONJUGATES

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

83

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

5

10

15

20

25

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon

a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO: 1-245 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO: 1-245 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage

means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4.15 TRIPLE HELIX FORMATION

5

10

15

20

25

30

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA.

Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see

Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

10 4.16 DIAGNOSTIC ASSAYS AND KITS

15

20

25

30

35

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard,

T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

5

10

15

20

25

30

35

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the

invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

(b)

5

10

15

20

30

35

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO: 1-245, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
- In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting

determining whether the agent binds to said protein or said nucleic acid.

the complex, so that if a polynucleotide/compound complex is detected, a compound that binds

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a

25 polynucleotide of the invention is identified.

to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the

invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

5

10

15

20

25

30

35

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems.

Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

5

10

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO: 1-245. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from any of the nucleotide sequences SEQ ID NO: 1-245 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

5

10

15

20

25

30

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen et al., (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed

(Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

5

10

15

20

25

30

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/μl) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. The single-stranded DNA solution is then dispensed into CovaLink NH strips (75 μl/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 µl added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *CviJI*, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease CviJI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of

this enzyme (CviJI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald et al. (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a CviJI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that CviJI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 μ g instead of 2-5 μ g); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic

strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5. EXAMPLES

5

10

20

25

30

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences.

5.2 EXAMPLE 2

Assemblage of Novel Nucleic Acids

The nucleic acids of the present invention, were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST

sequences, dbEST, gb pri, UniGene, and exons from public domain genomic sequences predicated by GenScan) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Further, inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), full-length gene sequences and their corresponding protein sequences were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using FASTXY algorithm against Genbank (i.e., dbEST, gb pri, UniGene, and Genpept). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, ed-ext and gc-zip-2 (Hyseq, Inc.). In some cases RACE (Rapid Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction. The full-length nucleotide sequences are shown in the Sequence Listing as SEQ ID NO: 1-245. The corresponding polypeptide sequences are SEQ ID NO: 246-490.

Table 1 shows the various tissue sources of SEQ ID NO: 1-245.

5

10

15

20

25

30

35

The nearest neighbor results for polypeptides encoded by SEQ ID NO: 1-245 (i.e. SEQ ID NO: 246-490) were obtained by a BLASTP (version 2.0al 19MP-WashU) search against Genpept release 124 using BLAST algorithm. The nearest neighbor result showed the closest homologue with functional annotation for SEQ ID NO: 1-245 from Genpept. The translated amino acid sequences for which the nucleic acid sequence encodes are shown in the Sequence Listing. The homologs with identifiable functions for SEQ ID NO: 1-245 are shown in Table 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), polypeptides encoded by SEQ ID NO: 1-245 (i.e. SEQ ID NO: 246-490) were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the pFam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) polypeptides encoded by SEQ ID NO: 1-245 (i.e. SEQ ID NO: 246-490) were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The GeneAtlas™ software package (Molecular Simulations Inc. (MSI), San Diego, CA) was used to predict the three-dimensional structure models for the polypeptides encoded by SEQ

ID NO 1-216 (i.e. SEQ ID NO: 246-490). Models were generated by (1) PSI-BLAST which is a multiple alignment sequence profile-based searching developed by Altschul et al, (Nucl. Acids. Res. 25, 3389-3408 (1997)), (2) High Throughput Modeling (HTM) (Molecular Simulations Inc. (MSI) San Diego, CA,) which is an automated sequence and structure searching procedure (http://www.msi.com/), and (3) SeqFold™ which is a fold recognition method described by 5 Fischer and Eisenberg (J. Mol. Biol. 209, 779-791 (1998)). This analysis was carried out, in part, by comparing the polypeptides of the invention with the known NMR (nuclear magnetic resonance) and x-ray crystal three-dimensional structures as templates. Table 5 shows, "PDB ID", the Protein DataBase (PDB) identifier given to template structure; "Chain ID", identifier of the subcomponent of the PDB template structure; "Compound Information", information of the 10 PDB template structure and/or its subcomponents; "PDB Function Annotation" gives function of the PDB template as annotated by the PDB files (http://www.rcsb.org/PDB/); start and end amino acid position of the protein sequence aligned; PSI-BLAST score, the verify score, the SeqFold score, and the Potential(s) of Mean Force (PMF). The verify score is produced by GeneAtlas™ software (MSI), is based on Dr. Eisenberg's Profile-3D threading program developed in Dr. 15 David Eisenberg's laboratory (US patent no. 5,436,850 and Luthy, Bowie, and Eisenberg, Nature, 356:83-85 (1992)) and a publication by R. Sanchez and A. Sali, Proc. Natl. Acad. Sci. USA, 95:13597-12502. The verify score produced by GeneAtlas normalizes the verify score for proteins with different lengths so that a unified cutoff can be used to select good models as 20 follows:

Verify score (normalized) = (raw score - 1/2 high score)/(1/2 high score)

The PFM score, produced by GeneAtlas™ software (MSI), is a composite scoring function that depends in part on the compactness of the model, sequence identity in the 25 alignment used to build the model, pairwise and surface mean force potentials (MFP). As given in Table 5, a verify score between 0 to 1.0, with 1 being the best, represents a good model. Similarly, a PMF score between 0 to 1.0, with 1 being the best, represents a good model. A SeqFold™ score of more than 50 is considered significant. A good model may also be 30 determined by one of skill in the art based all the information in Table 5 taken in totality.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determined from using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by

Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication " 35

Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et al, as reference, were obtained for the polypeptide sequences. Table 6 shows the position of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

Table 7 correlates each of SEQ ID NO: 1-245 to a specific chromosomal location.

Table 8 is a correlation table of the novel polynucleotide sequences SEQ ID NO: 1-245, and their corresponding priority full length nucleotide sequences in the priority application USSN 09/654,935, the contents of which is incorporated herein by reference in its entirety.

10

5

TABLE 1

	DD 1			
Tissue Origin	Tissue/RNA Source	Library Name	SEQ ID NO:	
adult brain	GIBCO	AB3001	8 24 38 42 56 63-64 93-94 113 130 183 195-196 206 210 227 233 236 240	
adult brain	GIBCO	ABD003	2-4 15 19-21 29 31-32 34-39 41-43 45 54 56 67 80 82 84 88 94 103-104 107 113 117 130-131 154 159 178 195 199 206 210 220-221 223	
adult brain	Clontech	ABR001	2-3 17 33 35 43 56 62 67 84 113 191 220	
adult brain	Clontech	ABR006	197-198 200-201 214 221-223 234 241	
adult brain	Clontech	ABR008		
adult brain	BioChain	ABR012	2-3 54	
adult brain	BioChain	ABR013	17 43 209 240	
adult brain	Invitrogen	ABR014	23 43 227 232	
adult brain	Invitrogen	ABR015	43 54 65 67 89 142 159 232	
adult brain	Invitrogen	ABR016	2-3 28 54 56 64 104 159 229	
adult brain	Invitrogen	ABT004	2-3 23 30 33 36-38 40 100 145 152 154 177 191 206 220 242	
cultured	Stratagene	ADP001	2-3 15 29 36 38 40 43 56 100 104-105 130 142-144 158-	
preadipocytes			159 177 182 206 236 240	
adrenal gland	Clontech	ADR002	11-12 19-20 28 37-38 42 50 56 70 76 82 84 102 104-105	
adult heart	CIDGO	4 *** ***	127 130 145 148-150 181 183 189 191 209-210 224-225	
aduit neart	GIBCO	AHR001	2-5 8-9 11-12 19-22 24 29 36 38 40 43 45 47 54 56 62-63 70 72 74 76 79 82 84 86 92 94 101-104 107 113 127 130- 131 137-138 140 143-144 148-149 159 166 169 177-178 183 196 206-207 210 214 229-233 236-237	
adult kidney	GIBCO	AKD001	2-3 7-9 11-12 15 18 20-21 24 26-27 29 31-33 36-43 52 54 56 61-62 64 80 82 91 95 98 101-104 107 113 117 130-131 143-144 146 154 159 169 178 181 183 191 195-199 204 206 210 214 220 223-225 227 229 233 240 244	
adult kidney	Invitrogen	AKT002	6 8-9 11-12 18 33 36-37 40 43 46 56 64 82 84 86-87 91 107 113 130 142 144 148-149 152 159 167 169 183 191 193 206 223 226 228 232 240-241 244	
adult lung	GIBCO	ALG001	5 15 20 29 43 47 54 56 88 103 130 173 177 183 191 214 232 240 244	
lymph node	Clontech	ALN001	8 29 36 46 104 130 159 183 206 214 240	
young liver	GIBCO	ALV001	2-3 11-12 15 19 37-38 40 43 47 56 62 70 94 103 107 112 143-144 162 181 183 191 195 206 214 220 224-225 236-237 243	
adult liver	Invitrogen	ALV002	2-3 10-12 15 20 22 26-27 37 50 89 143 148-149 173 181 183 191 193 206 217 220 240 244	
adult liver	Clontech	ALV003	21 181 232	
adult ovary	Invitrogen	AOV001	2-3 8 10-12 14-15 19-23 26-29 31-32 34 36-43 47 50 56 62-64 67 70 75 78 82 84 86 89 94 101-102 104 107 109 113 118 125 130-131 140 142 144 146 148-150 152 155 158-159 162 166-167 169 173 177-178 182-183 189 193 195 204 206 210 214 223-225 227 232 240-244	
adult placenta	Clontech	APL001	43 159 169 206 240	
placenta	Invitrogen	APL002	20 26-27 36 38 64 71 100 178 196 220 228 233	
adult spleen	GIBCO	ASP001	2-3 8 26-27 29 35 37 42-43 46-47 54 56 62 64 87 94 104 130 143-144 152 159 183 199 206 214 220 227 232 236 244	
adult testis	GIBCO	ATS001	5 8 11-12 20 23-24 29 31-32 37-38 41 43 54 56 62 64 86 89 104 107 130-131 137-138 159 178 183 195 210 229 232 236-237	
adult bladder	Invitrogen	BLD001	8 54 159 195 206	

Tissue Origin	Tissue/RNA Source	Library Name	SEQ ID NO:		
bone marrow	Clontech	BMD001	2-5 8-12 19 22 26-27 29 31-32 34 36-38 42-43 46-47 56 63-		
Sono Mariow	Cionicon	BWD001	64 70 80 86-87 89 91 93-94 98 103-104 107 109 113 118 130-131 144 146 152 159 162 167 178 182 193 199 206-		
bone marrow	Clontech	BMD002	207 210 214 220 223 228 232 240 244 2-3 5 8 11-12 15 21 26-27 29 36 40 42 45-46 50 54 56 91		
			94 97-98 104-105 107 109 120 124 137-138 140 142 144 159 165 167 169 173 183 189 191 193 196 204-206 226 232-234 236-237 244		
bone marrow	Clontech	BMD004			
bone marrow	Clonetech	BMD007	43 232		
adult colon	Invitrogen	CLN001	38 43 45-46 50 84 87 143 193 195 222 244		
mixture of	various	CTL016	20		
16 tissues-	vendors				
mRNAs*					
mixture of	various	CTL021	46 54 159 232		
16 tissues-	vendors				
mRNAs*					
mixture of	various	CTL028	159 237		
16 tissues- mRNAs*	vendors				
adult cervix	BioChain	CVX001	2-3 8 11-12 15 21 24 31-32 35-36 39-43 46 56 62-65 70 82		
		<u> </u>	87 89 93-94 98 105 107 120 125-126 131 144 148-150 152		
			159 165 178 182-183 189 191 193 195 223 236 240		
endothelial	Strategene	EDT001	2-4 8 10-12 15 21-24 28-30 33-34 36-37 40 42-43 45 47 50		
cells			56 62 64 67 70 72 80 82 86 94 103-104 107 109 126 130-		
			131 142-144 146 148-149 152 154 158-159 162 169 177-		
			178 182-183 191 193 195-199 206 210 214 223-226 229		
fetal brain	Clontech	FBR001	233 236 240-242 43 130 199		
fetal brain	Clontech	FBR004	31-32		
fetal brain	Clontech	FBR006	2-4 8 10 29 39 41 43 49 70 77 80 82 84 89 94 104-105 118		
		121000	121-123 142 150-152 154-155 165 178 186 200-201 204 206-207 210		
fetal brain	Invitrogen	FBT002	2-3 8 11-12 29 37 43 67 82 89 134 142-143 152 159 177 189 191 193 199 206 210 220 227		
fetal heart	Invitrogen	FHR001	41		
fetal kidney	Clontech	FKD001	2-3 10-12 17 29 38 40 43 54 69 75 80 127 159 229 231 236 240		
fetal kidney	Clontech	FKD002	56		
fetal kidney	Invitrogen	FKD007	19 36 43 56 159		
fetal lung fetal lung	Clontech	FLG001	2-3 54 69 109 113		
	Invitrogen	FLG003	10 21 35 43 50 54 69 80 92 125-126 143 148-149 158-159 199 221 231-232		
fetal liver-	Columbia	FLS001	1-5 7-12 14-15 18-24 26-28 30 36-38 40-43 50 54 56 62 64		
spleen	University		70 72 75 82 84 86 89 91 94-95 98 100 102-105 107 109		
			112-113 121 130-131 137-138 140 142-144 146 151-152		
			158-159 162 165-166 169 177-178 181 183 189 191 193		
	ļ		195-198 204-206 210 214 216 220 223-228 230-233 236- 237 240-241 244		
fetal liver-	Columbia	FLS002	1-4 6 10-12 14-15 17-18 20-22 29-30 33 36 38-40 42 45 56		
spleen	University		62-64 70 75 80 82 91-92 94-95 98 103-105 109 112-113		
	-		121 126 131 142 144 146 148-149 152 162 165-167 169		
			181 183 186 189 191 193 195-199 205-207 214 223 227- 228 233		
fetal liver-	Columbia	FLS003	94 112 167 181 183 185 223 232		
spleen	University				
fetal liver	Invitrogen	FLV001	1-3 6-8 15 18 23 36-39 43 62 80 82 143 145 152 177 181		
			191 195 206 232		

Tissue Origin	Tissue/RNA	Library	SEQ ID NO:
113340 0.1611	Source	Name	obe in ite.
fetal liver	Clontech	FLV004	2-3 22 24 36 82 109 122-123 152 162 181 232
fetal muscle	Invitrogen	FMS001	5 28 43 47 56 72 78-79 100 137-138 144 152 154 159 169 193 207 210 237 241
fetal muscle	Invitrogen	FMS002	5 137-138 241
fetal skin	Invitrogen	FSK001	2-3 8 10 21 35-36 40 43 54 56 62-63 65 69 71 80 84 91 104-105 124 130 132 137-138 142-143 148-151 158-159 166 177-178 182 185 197-198 200-201 206 210 217 230 232 241
fetal skin	Invitrogen	FSK002	2-3 8 11-12 21 24 26-27 29 40 43 50 62 82 88 94 98 104 107 142 148-149 169 185 193 195 216 237
fetal spleen	BioChain	FSP001	183
umbilical cord	BioChain	FUC001	2-3 5 7-8 15 20 26-27 31-32 34 36 38-40 43 45 50 54 56 62 76 82 84 94 103-105 107 121-123 130 143-144 146 148-149 152 154 158-159 178 193 197-198 210 227 232 237 240
fetal brain	GIBCO	HFB001	2-3 8 10-12 15 20-22 24 28-29 31-33 36-38 41 43 54 62 64 67 70 82 88-89 93 98 101-104 107 109 113 117 130-131 140 142 144-145 162 167 178 182-183 189 193 195 197-199 207 210 223 227 229 232
macrophage	Invitrogen	HMP001	8 169
infant brain	Columbia University	IB2002	2-3 9-12 15 20-21 23-24 33-34 38 41-43 49 56 63-64 84 89 100 104-105 107 113 118 146 148-150 152 154-155 158 162 165-166 173 177-178 182 191 193 195 197-201 206 223 227 230-231 237 241
infant brain	Columbia University	IB2003	2-3 11-12 17 100 113 150 158 166 178 191 220-221 223 227
infant brain	Columbia University	ГВМ002	43 117 173
infant brain	Columbia University	IBS001	23 29 54 94 109 166 220
fibroblast	Strategene	LFB001	2-3 8 11-12 19 29 36-37 43 45 54 56 104-105 113 130 148- 149 154 159 169 178 182-183 214 236 240
lung tumor	Invitrogen	LGT002	2-3 5-6 8 11-12 20-22 24 38 40-41 43 46 52 54 56 62 64-65 70 72 80 82 87 89 93 100 104 107 130-131 140 142-145 152 154 159 162 167 177 182-183 195 197-199 206 210 214 223 236 244
lymphocytes	ATCC	LPC001	2-3 11-12 20 22 38 42 50 54 73 80 86 89 94 97 105 127 145 159 162 177 206 213-214 232 234
leukocyte	GIBCO	LUC001	2-4 8 10-12 15 17 19-22 24 26-27 29 35-38 40-43 47 54 56 62 64 70 72 80 82 84 86 89 91 93-94 101-102 104-105 107 109 130-131 143-144 146 154 158-159 162 165 167 169 177-178 182-183 189 191 193 195 200-202 204 206 210 214 217 223 228-229 231-232 236 240-242
leukocyte	Clontech	LUC003	20 42 80 94 105 140 165 191 205 207 214 231
melanoma from cell line ATCC #CRL 1424	Clontech	MEL004	42-43 56 64 82 103 107 130 202 206 214 224-225 229 240
mammary gland	Invitrogen	MMG001	2-4 8-9 11-12 15 17 21 26-27 35-36 38-40 43 46 56 61 64-65 71 80 84 87 89 92 94-95 100-102 107 125 131-132 137-138 140 143 145 150 152 154 159 162 166 169 173 177 182-183 191 193 195 197-199 206 210 224-225 227 237 243-244
induced neuron cells	Strategene	NTD001	2-3 29 34 43 45 54 70 89 159 224-225
retinoic acid- induced neuronal cells	Strategene	NTR001	20 124 130 150 152 178 202 217
neuronal cells	Strategene	NTU001	40 43 47 72 131 217 237
pituitary gland	Clontech	PIT004	15 37-38 43 56 130-131 240

Tissue Origin	Tissue/RNA Source	Library Name	SEQ ID NO:		
placenta	Clontech	PLA003	2-3		
prostate	Clontech	PRT001	5 11-12 43 62 65 83 103 134 152 232 237		
rectum	Invitrogen	REC001	2-3 15 18 26-27 43 54 56 73 80 130 145 152 183 199 244		
salivary gland	Clontech	SAL001	236-237 37 137-138 244		
salivary gland	Clontech	SALs03	37 137-138 244		
skin fibroblast	ATCC	SFB001	43 47		
skin fibroblast	ATCC	SFB002	54		
skin fibroblast	ATCC	SFB003	100		
small intestine	Clontech	SIN001	21 34 46 73-74 86 103 107 130 137-138 144 169 183 193 227-228 237 242-244		
skeletal muscle	Clontech	SKM001	5 20 45 79 86 137-138 152 206		
skeletal muscle	Clontech	SKM002	137-138		
skeletal muscle	Clonetech	SKMS03	137-138		
skeletal muscle	NULL	SKMS04	137-138		
spinal cord	Clontech	SPC001	29 40 43 54 69 75 88-89 91 152 159 162 178 191 195 206 210 223 229 232		
adult spleen	Clontech	SPLc01	6 46 50 70 130 140 152 216 240		
stomach	Clontech	STO001	18 21 63 67 71 107 159 210 220 229 241 244		
thalamus	Clontech	THA002	9 21 42 45 89 100 117 162 183 220 226-227 242		
thymus	Clonetech	THM001	2-3 8 11-12 15 21 23-24 29 38-40 43 46 67 80 82 105 131 151 159 162 191 214 244		
thymus	Clontech	THMc02	2-4 10-12 22 26-27 31-32 38 43 47 50 54 80 92 94 101-102 127 134 144 146 152 154-155 158-159 162 167 178 182-183 191 193 195-196 200-201 205 210 214 216 218 233 237 240		
thyroid gland	Clontech	THR001	2-3 5 8 10-12 17-18 20-21 23-24 29 38 42-43 45 49 54 56 61-62 64 67 70 75-76 78 84 91-92 94 103-105 107 109 122-123 130 134 143 148-149 155 162 167 169 178 182-183 186 191 193 195-198 200-201 214 229 232-233 237 240 244		
trachea	Clontech	TRC001	2-3 15 19 36-37 40 47 54 65 72 89 95 107 204-205 210 232 237 244		
uterus	Clontech	UTR001	8 31-32 54 56 178 183 206 232 236 243		

*The 16 tissue-mRNAs and their vendor source, are as follows: 1) Normal adult brain mRNA (Invitrogen), 2) normal adult kidney mRNA (Invitrogen), 3) normal adult liver mRNA (Invitrogen), 4) normal fetal brain mRNA (Invitrogen), 5) normal fetal kidney mRNA (Invitrogen), 6) normal fetal liver mRNA (Invitrogen), 7) normal fetal skin mRNA (Invitrogen), 8) human adrenal gland mRNA (Clontech), 9) human bone marrow mRNA (Clontech), 10) human leukemia lymphablastic mRNA (Clontech), 11) human thymus mRNA (Clontech), 12) human lymph node mRNA (Clontech), 13) human spinal cord mRNA (Clontech), 14) human thyroid mRNA (Clontech), 15) human esophagus mRNA (BioChain), 16) human conceptional umbilical cord mRNA (BioChain).

5

10

TABLE 2

SEQ ID NO:	Accession Number	Species	Description	Score	% Identity
246	AF145657	Drosophila melanogaster	BcDNA.GH10120	728	38
247	X58141	Homo sapiens	mRNA for erythrocyte adducin alpha subunit.	3826	99
248	L29296	Homo sapiens	(clone: SS20B/E6.0) alpha-adducin gene, exons 14, 15, 16.	3387	99
249	AAB6396 3	Homo sapiens	26-MAR-2001 26-MAY-2000 Human prostate cancer associated antigen protein sequence SEQ ID NO:1325.	1095	97
250	M29458	Homo sapiens	carbonic anhydrase III gene, exon 7.	1441	100
251	AJ006529	Gallus gallus	putative phosphatase	867	60
252	Y08302	Homo sapiens	mRNA for MAP kinase phosphatase 4.	1996	100
253	X53280	Homo sapiens	BTF3a mRNA.	1048	100
254	AB013790	Ateles belzebuth	immunoglobulin alpha heavy chain	74	43
255	AK027387	Homo sapiens	FLJ14481 fis, clone MAMMA1002351, highly similar to Mus musculus dynactin subunit p25 (p25) mRNA.	964	100
256	AK001686	Homo sapiens	FLJ10824 fis, clone NT2RP4001086.	3013	93
257	AK001686	Homo sapiens	FLJ10824 fis, clone NT2RP4001086.	4089	98
258	AK026076	Homo sapiens	FLJ22423 fis, clone HRC08678.	689	100
259	AY037207	Arabidopsis thaliana	AT3g22240/MMP21_1	66	31
260	AAW5839 4	Homo sapiens	14-SEP-1998 09-OCT-1997 Human spermidine/spermine N1-acetyltransferase.	797	92
261	AF220051	Homo sapiens	hematopoietic stem/progenitor cells protein MDS031 mRNA, complete cds.	844	98
262	AB017563	Homo sapiens	gene, exon 10 and complete cds.	2283	100
263	J03910	Homo sapiens	(clone 14VS) metallothionein-IG (MT1G) gene, complete cds.	367	98
264	X56351	Homo sapiens	ALASI (ALASH) mRNA for delta- aminolevulinate synthase (housekeeping) (EC 2.3.1.37).	3333	100
266	U79241	Homo sapiens	clone 23759 mRNA, partial cds.	2304	100
267	AF068291	Homo sapiens	mRNA, partial cds.	699	99
268	BC007235	Homo sapiens	clone MGC:15430, mRNA, complete cds.	398	100
269	X69151	Homo sapiens	mRNA for subunit C of vacuolar proton- ATPase V1 domain.	1958	100
270	AF271784	Homo sapiens	mRNA, complete cds.	1017	92
271	AB025220	Homo sapiens	mRNA for p40phox, complete cds.	1737	100
272	AB025220		mRNA for p40phox, complete cds.	1644	96
273	BC001426	Homo sapiens	Similar to ubiquinol-cytochrome c reductase hinge protein, clone MGC:1361, mRNA, complete cds.	346	100

SEQ ID NO:	Number	Species	Description	Score	% Identity
274	AL050051	Homo sapiens	cDNA DKFZp566D193 (from clone DKFZp566D193); partial cds.	481	98
275	BC002517		Pirin, clone MGC:2083, mRNA, complete cds.	1543	100
276	X69962	Homo sapiens	FMR-1 mRNA.	2384	100
277	L29074	Homo sapiens	X mental retardation syndrome protein (FMR1) gene, alternative splice products, complete cds; and pseudogene, complete sequence.	2144	92
278	AK001711	Homo sapiens	FLJ10849 fis, clone NT2RP4001414, highly similar to SEPTIN 2 HOMOLOG.	2179	99
279	AK027641	Homo sapiens	FLJ14735 fis, clone NT2RP3002054.	651	99
280	BC009256	Homo sapiens	clone MGC:14860, mRNA, complete cds.	1065	94
281	AL110239	Homo sapiens	cDNA DKFZp566E144 (from clone DKFZp566E144); complete cds.	1234	99
282	BC008714	Homo sapiens	prostatic binding protein, clone MGC:8531, mRNA, complete cds.	1017	100
283	BC004374	Homo sapiens	ARP1 (actin-related protein 1, yeast) homolog B (centractin beta), clone MGC:10568, mRNA, complete cds.	1949	100
284	AF201334	Homo sapiens	mRNA, complete cds.	2395	100
285	BC008743	Homo sapiens	zyxin, clone MGC:3071, mRNA, complete cds.	3145	100
286	BC005957	Homo sapiens	solute carrier family 25 (mitochondrial carrier; peroxisomal membrane protein, 34kD), member 17, clone MGC:14604, mRNA, complete cds.	1557	100
287	AF273053	Homo sapiens	tumor antigen se89-1 mRNA, complete cds.	3570	82
288	AB028893	Homo sapiens	U32, U33, U34, U35, RPS11, U35 genes for ribosomal protein L13a and S11, U32, U33, U34, U35, and U35 snoRNA, complete cds and sequence.	595	100
289	AC003973	Homo sapiens	from chromosome 19, BAC 33152, complete sequence.	5273	81
290	AF253978	Homo sapiens	mRNA, partial cds.	487	85
291	AF018265	synthetic construct	immunoglobulin lambda light chain	278	79
292	BC005134	Homo sapiens	Similar to ribosomal protein L14, clone MGC:11208, mRNA, complete cds.	1102	99
293	AK000869	Homo sapiens	FLJ10007 fis, clone HEMBA1000193.	2635	100
294	AAB7322 9	Homo sapiens	11-MAY-2001 11-AUG-2000 Human phosphatase MTMR7 h.	2127	98
295	BC003618	Homo sapiens	Similar to putative nuclear protein, clone MGC:1819, mRNA, complete cds.	3042	100
296	AAB5434 6	Homo sapiens	09-MAR-2001 08-MAR-2000 Human pancreatic cancer antigen protein sequence SEQ ID NO:798.	4092	99
297	AK000330	Homo sapiens	FLJ20323 fis, clone HEP09648.	2229	100
298	AF176701	Homo sapiens	protein FBL9 mRNA, partial cds.	1072	100
299 300	X54977 AL096746	Bos taurus Homo	17,000 dalton myosin light chain	789	100
		sapiens	cDNA DKFZp586E1322 (from clone DKFZp586E1322); partial cds.	1186	100

SEQ ID NO:	Accession Number	Species	Description	Score	% Identity
301	BC000502	Homo sapiens	ribosomal protein L17, clone MGC:8457, mRNA, complete cds.	970	100
302	AC004079	Homo sapiens	clone RP1-167F23 from 7p15, complete sequence.	1965	100
303	X92485	Plasmodium vivax	pval	149	55
304	AK006347	Mus musculus	putative	429	86
305	AL137544	Homo sapiens	cDNA DKFZp434A1520 (from clone DKFZp434A1520); partial cds.	974	98
306	AC006276	Homo sapiens	19, cosmid R28379, complete sequence.	900	99
307	AK024297	Homo sapiens	FLJ14235 fis, clone NT2RP4000167.	2325	100
308	AK005941	Mus musculus	putative	460	88
309	AF265440	Homo sapiens	mRNA, complete cds.	1413	100
311	AB027251	Homo sapiens	for zinc finger protein (ZFD25), complete cds.	4369	100
312	AK008240	Mus musculus	putative	455	100
313	AAB7533 7	Homo sapiens	03-APR-2001 01-JUN-2000 Human secreted protein sequence encoded by gene 47 SEQ ID NO:156.	138	60
314	AF321191	Homo sapiens	(PRX) mRNA, complete cds, alternatively spliced.	7312	99
315	AF225417	Homo sapiens	kDa protein mRNA, complete cds.	3701	99
316	AK000265	Homo sapiens	FLJ20258 fis, clone COLF7250.	2797	97
317	D90070	Homo sapiens	ATL-derived PMA-responsive (APR) peptide mRNA.	278	100
318	U79725	Homo sapiens	A33 antigen precursor mRNA, complete cds.	1678	100
319	M83679	Rattus norvegicus	RAB15	1077	97
320	AK024715	Homo sapiens	FLJ21062 fis, clone CAS01044.	927	98
321	AK000075	Homo sapiens	FLJ20068 fis, clone COL01755.	1729	99
322	AC007954	Homo sapiens	14 clone RP11-493G17 and CTD-2516D11 map 14q24.3, complete sequence.	4243	100
323	Z33905	Homo sapiens	gene for 43kD acetylcholine receptor-associated protein (Rapsyn).	2150	99
324	AF030027	Equine herpesvirus 4	71	118	22
325	AJ291606	Xenopus laevis	gamma tubulin ring protein	2024	55
326	AAB6461 0	Homo sapiens	22-MAR-2001 01-JUN-2000 Human secreted protein BLAST search protein SEQ ID NO: 120.	197	72
327	AAB5367 7	Homo sapiens	09-MAR-2001 08-MAR-2000 Human colon cancer antigen protein sequence SEQ ID NO:1217.	694	99
328	AF159055	Homo sapiens	zipper-like protein (LZLP) mRNA, complete cds.	116	79
329	AL160111	Homo sapiens	I of a novel human mRNA from chromosome 22.	2126	100

SEC ID NO:	Number		Description	Score	% Identit
330	AF159055	sapiens	zipper-like protein (LZLP) mRNA, complete cds.	130	80
331	AK026264	Homo sapiens	FLJ22611 fis, clone HSI04961.	685	96
332	X57809	Homo sapiens	rearranged immunoglobulin lambda light chain mRNA.	1223	100
333	AAB8744 0	Homo sapiens	22-MAY-2001 31-AUG-2000 Human gene 32 encoded secreted protein fragment, SEQ ID NO:181.	513	75
334	AK012475	Mus musculus	putative	2259	84
335	AF090930	Homo sapiens	HQ0478 PRO0478 mRNA, complete cds.	146	72
336	AL080196	Homo sapiens	cDNA DKFZp434C212 (from clone DKFZp434C212).	2292	94
337	AK019766	Mus musculus	putative	1288	71
338	X69398	Homo sapiens	mRNA for OA3 antigenic surface determinant.	1632	100
339	AK019305	Mus musculus	putative	506	96
340	AL078630	Mus musculus	573K1.15 (mm17M1-6 (novel 7 transmembrane receptor (rhodopsin family) (olfactory receptor LIKE) protein))	1023	81
341	AF118078	Homo sapiens	PRO1848	574	100
342	AK005566	Mus musculus	putative	1218	94
343	U71363	Homo sapiens	zinc finger protein zfp6 (ZF6) mRNA, partial cds.	1367	70
344	AK015315	Mus musculus	putative	556	76
345	AF218451	Homo sapiens	substrate p130Cas mRNA, complete cds.	4579	99
346	AF151046	Homo sapiens	HSPC212	1345	87
47	AF151046	Homo sapiens	HSPC212	817	74
48	Z14244	Homo sapiens	coxVIIb mRNA for cytochrome c oxidase subunit VIIb.	426	100
49	BC001037	Homo sapiens	ribosomal protein L35a, clone MGC:1639, mRNA, complete cds.	581	100
51	AAB4501 8	Homo sapiens	12-FEB-2001 09-MAR-2000 Human secreted	142	57
52	AAY9488 5	Homo sapiens	protein encoded by gene 41 homologue. 12-JUN-2000 22-JUL-1999 Human protein clone HP10550.	540	99
53	AF161557	Homo sapiens	HSPC072	472	100
54	AAG0143 8	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted	353	92
55	AF161507	Homo sapiens	protein, SEQ ID NO: 5519. HSPC158	1197	99
6	AL122111	Homo	cDNA DKFZp434A1721 (from clone	2868	99
7	AF349540	sapiens Homo	DKFZp434A1721). XIII secreted phospholipase A2 mRNA,	1073	100
8	AF274714	sapiens Homo	protein-related protein (ORP1) mRNA.	2363	100
9		sapiens Homo	complete cds.		67

SEQ ID NO:	Accession Number	Species	Description	Score	% Identity
NU:	3	sapiens	protein, SEQ ID NO: 7874.		
360	BC000705	Homo sapiens	clone MGC:861, mRNA, complete cds.	908	100
361	AAG0378	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEQ ID NO: 7870.	188	60
362	AAB6281 0	Homo sapiens	02-MAY-2001 06-JUL-2000 Human nervous system associated protein NSPRT3 amino acid sequence.	501	96
363	AF161370	Homo sapiens	mRNA, partial cds.	654	91
364	AK011592	Mus musculus	putative	1245	66
365	AK002154	Homo sapiens	FLJ11292 fis, clone PLACE1009665.	230	64
366	AF159297	Zea mays	extensin-like protein	349	28
367	AF125096	Homo sapiens	HSPC042 protein	137	96
368	AF125096	Homo sapiens	HSPC042 protein	243	98
369	AK001745	Homo sapiens	FLJ10883 fis, clone NT2RP4001946, weakly similar to PROTEIN-L-ISOASPARTATE O-METHYLTRANSFERASE (EC 2.1.1.77).	1880	99
370	AF151783	Homo sapiens	(MEG3) mRNA, complete cds.	3651	99
371	X16707	Homo sapiens	fra-1 mRNA.	1443	100
372	AF176555	Homo sapiens	anchoring protein 220 mRNA, complete cds.	9783	99
373	X78121	Homo sapiens	mRNA.	3404	100
374	U82670	Homo sapiens	Xq28 psHMG17 pseudogene, complete sequence; and melanoma antigen family A1 (MAGEA1) and zinc finger protein 275 (ZNF275) genes, complete cds.	2513	99
375	AK018726	Mus musculus	putative	670	100
376	BC000187	Homo sapiens	cytochrome c oxidase subunit VIc, clone MGC:1520, mRNA, complete cds.	379	100
377	AAY8754 8	Homo sapiens	18-JUL-2000 03-NOV-1997 Human disease- associated calmodulin protein (DACP-1).	729	100
378	AK003198	Mus musculus	putative	562	100
379	AK000496	Homo sapiens	FLJ20489 fis, clone KAT08285.	333	69
380	AF130079	Homo sapiens	PRO2852	308	74
381	AAY9196	Homo sapiens	19-JUL-2000 17-SEP-1999 Human cytoskeleton associated protein 16 (CYSKP-16).	1293	96
382	M15202	Rattus norvegicus	troponin T class IIIa beta	1155	94
383	AF026276	Homo sapiens	skeletal troponin T (TNNT3) gene, complete cds.	1205	94
384	AF090694	Homo	RNA binding protein (NAPOR-2) mRNA, complete cds.	2519	98
385	BC007655	sapiens Homo sapiens	protein phosphatase 1, regulatory (inhibitor) subunit 2, clone MGC:1327, mRNA, complete cds.	1051	100
386	AF161533	Homo sapiens	HSPC048	573	100

SEC ID NO:	Number		Description	Score	% Identit
387	BC002801	sapiens	p47, clone MGC:3347, mRNA, complete cds.	1812	96
388	AK027878	sapiens	FLJ14972 fis, clone THYRO1000715.	2669	98
389	AF161418	sapiens	HSPC300	378	100
390	AK010720	Mus musculus	putative	105	28
391	X66358	Homo sapiens	mRNA KKIALRE for serine/threonine protein kinase.	1929	99
392	AF290612	Homo sapiens	Q0310 liver nuclear protein mRNA, complete cds.	2246	98
393	U69263	Homo sapiens	precursor, mRNA, complete cds.	4516	99
394	U69263	Homo sapiens	precursor, mRNA, complete cds.	4021	99
395	AK000838	sapiens	FLJ20831 fis, clone ADKA03080.	761	100
396	AK006393	Mus musculus	putative	819	90
397	AF312033	Mus musculus	ASR2A	4584	97
398	BC001904	Homo sapiens	Similar to phosphoglycerate mutase 2 (muscle), clone MGC:2269, mRNA, complete cds.	270	100
399	Y14391	Homo sapiens	for putative GTP-binding protein.	2042	99
400	AF242528	Homo sapiens	finger protein 291 (ZNF291) mRNA, complete cds.	294	100
401	AF116695	Homo sapiens	PRO2221	173	46
402 403	AAR3202 0	Homo sapiens	11-JUL-1993 14-AUG-1992 Sequence of a eukaryotic transcription factor (TF).	734	66
403	AB049127	Homo sapiens	mRNA for MAP/microtubule affinity-regulating kinase like 1, complete cds.	2227	73
404 405	K03250	Rattus norvegicus	ribosomal protein S11	824	100
	AF144233	Homo sapiens	binding peptide mRNA, partial cds.	328	96
106 107	AC007055	Homo sapiens	14 clone BAC 201F1 map 14q24.3, complete sequence.	519	100
107	AK001752	Homo sapiens	FLJ10890 fis, clone NT2RP4002071.	5019	99
09	AF090931	Homo sapiens	HQ0483\$ PRO0483 mRNA, complete cds.	133	58
	A28080	Mycobacteri um avium subsp. paratubercul osis	34 kDa protein	75	36
10	AL136704	Homo sapiens	cDNA DKFZp566A1524 (from clone DKFZp566A1524); complete cds.	1662	99
11		Homo sapiens	cDNA DKFZp761M1511 (from clone DKFZp761M1511); partial cds	473	100
12		Homo sapiens	FLJ14621 fis, clone NT2RP2000079.	1012	100
	3	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEQ ID NO: 5164.	274	96
14		Homo sapiens	adenylate kinase 2, clone MGC:15301, mRNA, complete cds.	1094	100

SEQ ID NO:	Number	Species	Description	Score	% Identity
415	Ū34994	Homo sapiens	dependent protein kinase catalytic subunit (PRKDC) mRNA, complete cds; alternatively spliced.	21178	100
416	U47077	Homo sapiens	protein kinase catalytic subunit (DNA-PKcs) mRNA, complete cds.	21319	99
417	U22229	Felis catus	ribosomal protein L41	128	100
418	AF361481	Homo sapiens	GTP-binding protein 1 (GTPBP3) gene, complete cds; nuclear gene for mitochondrial product.	1402	94
419	BC000606	Homo sapiens	Similar to ribosomal protein L14, clone MGC:1644, mRNA, complete cds.	1094	100
421	AAY7334 5	Homo sapiens	24-FEB-2000 04-MAY-1999 HTRM clone 438283 protein sequence.	2171	73
422	AK000632	Homo sapiens	FLJ20625 fis, clone KAT04008.	816	100
423	AC004668	Homo sapiens	clone CTA-276O3 from 7q22-q31.1, complete sequence.	1976	99
424	AK000496	Homo sapiens	FLJ20489 fis, clone KAT08285.	238	73
425	AAY0278 5	Homo sapiens	11-JUN-1999 07-JUL-1998 Human secreted protein encoded by gene 51 clone HUKEX85.	82	43
426	AF118092	Homo sapiens	PRO2061	1440	96
427	AK000382	Homo sapiens	FLJ20375 fis, clone HUV00942.	1330	99
428	Y15286	Homo sapiens	for vacuolar proton-ATPase subunit M9.2.	459	100
429	AK014098	Mus musculus	putative .	524	68
430	AF286095	Homo sapiens	receptor (IL22R) mRNA, complete cds.	629	86
431	AK023266	Homo sapiens	FLJ13204 fis, clone NT2RP3004507, weakly similar to MOB1 PROTEIN.	758	90
432	AF047354	Homo sapiens	and spleen DNase precursor (LSD) mRNA, complete cds.	1046	99
433	X53682	Homo	LAG-1 gene.	484	100
434	AC000064	Homo	BAC clone RG083M05 from 7q21-7q22,	298	100
435	AL390921	Sapiens Arabidopsis	complete sequence. putative protein	72	44
436	AAB8744 0	thaliana Homo sapiens	22-MAY-2001 31-AUG-2000 Human gene 32 encoded secreted protein fragment, SEQ ID NO:181.	1572	100
437	AP003001	Mesorhizobi um loti	O-linked GlcNAc transferase	153	30
438	AK000642	Homo	FLJ20635 fis, clone KAT03466.	1854	99
439	Z48810	sapiens Homo sapiens	mRNA for TX protease precursor.	306	92
441	AC003002	Homo sapiens	DNA from overlapping chromosome 19- specific cosmids R29515 and R28253, genomic sequence, complete sequence.	436	98
442	AF109377	Mus musculus	ldiBp	3979	82
443	AF109377	Mus musculus	ldlBp	2711	81
444	AAG0204 2	Homo sapiens	06-OCT-2000 21-FEB-2000 Human secreted protein, SEQ ID NO: 6123.	797	100

SEC ID NO	Number		Description	Score	% Identity
445	M17877	Plasmodium falciparum	interspersed repeat antigen	291	27
446	M17877	Plasmodium falciparum	interspersed repeat antigen	291	27
447	AB025784	norvegicus	PPAR gamma coactivator	331.	46
448	AK000755	sapiens	FLJ20748 fis, clone HEP05772.	831	96
449	AK001714	sapiens	FLJ10852 fis, clone NT2RP4001498, weakly similar to ANKYRIN REPEAT-CONTAINING PROTEIN AKR1.	2586	100
450	AB042646	sapiens	mRNA, complete cds.	1224	100
451	AF125533	Homo sapiens	b5 reductase isoform mRNA, complete cds.	1606	100
452	AAY0259 1	Homo sapiens	19-JUL-1999 09-OCT-1998 A human progesterone receptor complex p23-like protein.	849	100
453	BC000600	Homo sapiens	Similar to from HeLa cyclin-dependent kinase 2 interacting protein, clone MGC:849, mRNA, complete cds.	1106	100
454	Z46937	Caenorhabdit is elegans	similarity with ribosomal protein L21	140	38
455	AF161556	Homo sapiens	HSPC071	941	100
456	AF225971	Homo sapiens	(TUBG2) mRNA, complete cds.	2346	99
458	AF343664	Homo sapiens	receptor translocation associated protein 2c (IRTA2) mRNA, complete cds, alternatively spliced.	736	55
459	AF191545	Homo sapiens	mRNA, complete cds.	4141	99
460	AF118082	Homo sapiens	PRO1902	202	58
461	D00531	Oncorhynchu s masou	apopolysialoglycoprotein	512	30
462	Z11898	Homo sapiens	OTF3 mRNA encoding octamer binding protein 3A.	1948	100
464	AL162044	Homo sapiens	cDNA DKFZp761L0812 (from clone DKFZp761L0812); partial cds.	220	41
465	AL137301	Homo sapiens	cDNA DKFZp434N1429 (from clone DKFZp434N1429); partial cds.	543	100
466	AB032593	Homo sapiens	for PXR2b, complete cds.	3201	100
467	AL050075	Homo sapiens	cDNA DKFZp566F0546 (from clone DKFZp566F0546); partial cds.	407	100
468	AK000732	Homo sapiens	FLJ20725 fis, clone HEP13903.	1653	99
469	AB049638	Homo sapiens	mRNA for mitochondrial ribosomal protein L11 (L11mt), complete cds.	941	100
470	AB049638	Homo sapiens	mRNA for mitochondrial ribosomal protein L11 (L11mt), complete cds.	737	99
471	AB014772	Homo sapiens	for MOP-3, complete cds.	1722	99
472	AAY5980 8	Homo sapiens	18-JAN-2000 03-APR-1998 Human normal ovarian tissue derived protein 85.	778	100
173	AF331500	multiple sclerosis associated retrovirus	recombinant envelope protein	1177	92

WO 2002/018424

SEQ ID	Accession Number	Species	Description	Score	% Identity
NO:	<u> </u>	element			
474	AF257330	Homo	protein mRNA, complete cds.	962	96
474	AF25/330	sapiens	protein inkiva, complete cus.	702	1 1 1
475	AK000632	Homo	FLJ20625 fis, clone KAT04008.	809	99
4/3	AK000032	sapiens	11320025 113, 010110 12110 1000.		1
476	M58511	Homo	iron-responsive element-binding protein/iron	4968	99
470	MISOSTI	sapiens	regulatory protein 2 (IRE-BP2/IRP2) mRNA, partial cds.		
477	AF181989	Homo	beta subunit variant (HBB) mRNA, complete	588	90
.,,		sapiens	cds.		
478	AC003002	Homo	DNA from overlapping chromosome 19-	752	100
		sapiens	specific cosmids R29515 and R28253, genomic	Ì	
	1		sequence, complete sequence.		
479	BC002924	Homo	clone IMAGE:3956179, mRNA, partial cds.	1221	99
		sapiens			
480	AF109146	Homo	lectin superfamily 6 (CLECSF6) mRNA,	958	99
		sapiens	complete cds.		ļ
481	BC005374	Homo	Similar to RIKEN cDNA 1110001E24 gene,	995	100
	<u> </u>	sapiens	clone MGC:12490, mRNA, complete cds.		<u> </u>
482	X75285	Mus	fibulin-2	5621	81
	<u></u>	musculus			
483	AC007954	Homo	14 clone RP11-493G17 and CTD-2516D11 map	1342	100
		sapiens	14q24.3, complete sequence.	11.5	
484	AK016295	Mus	putative	116	27
	<u> </u>	musculus		<u> </u>	1.00
485	AB028893	Homo	U32, U33, U34, U35, RPS11, U35 genes for	434	100
		sapiens	ribosomal protein L13a and S11, U32, U33,		İ
	ł	1	U34, U35, and U35 snoRNA, complete cds and		1
100	DC007601	Homo	sequence. clone IMAGE:3453235, mRNA, partial cds.	2829	96
486	BC003681	1	cione intage:5455255, iliciva, partial cus.	2027	170
487	AK009235	sapiens Mus	putative	1648	92
48/	AK009235	1	pulative	1070	1 "
488	AF294900	musculus Homo	beta-carotene 15,15'- dioxygenase (BCDO)	2912	100
488	AF294900	sapiens	mRNA, complete cds.	2712	100
489	AAB4397	Homo	08-FEB-2001 08-MAR-2000 Human cancer	1051	86
407	MAD439/	sapiens	associated protein sequence SEQ ID NO:1424.	.03.	"
490	AF220025	Homo	motif protein TRIM5 isoform alpha (TRIM5)	1299	95
470	AF220023	sapiens	mRNA, complete cds; alternatively spliced.	12//	1

TABLE 3

SEQ ID NO:	Accession Number	Description	Results*
247	PF00596	Class II Aldolases and Adducin N- terminal domain proteins.	PF00596C 17.24 9.710e-20 217- 243 PF00596B 15.07 4.938e-14 180-202 PF00596D 13.89 4.079e-12 297-315
248	PF00596	Class II Aldolases and Adducin N- terminal domain proteins.	PF00596C 17.24 9.710e-20 217- 243 PF00596B 15.07 4.938e-14 180-202 PF00596D 13.89 4.079e-12 297-315
250	BL00162	Eukaryotic-type carbonic anhydrases proteins.	BL00162C 17.78 1.000e-40 88- 125 BL00162E 14.93 6.478e-34 189-222 BL00162F 22.68 6.727e-30 226-260 BL00162A 22.92 5.179e-26 16-47 BL00162D 15.06 4.960e-22 126- 151 BL00162B 21.43 5.345e-17 51-74
252	BL00383	Tyrosine specific protein phosphatases proteins.	BL00383E 10.35 1.196e-11 288- 299
253	PD02749	TRANSCRIPTION PROTEIN FACTOR BTF3 REGULATION NUCL.	PD02749B 12.75 1.000e-40 84- 120 PD02749C 13.96 3.739e-34 136-170 PD02749A 9.56 6.000e- 15 51-64
256	BL00824	Elongation factor 1 beta/beta/delta chain proteins.	BL00824B 9.21 8.419e-09 281- 301
257	BL00824	Elongation factor 1 beta/beta/delta chain proteins.	BL00824B 9.21 8.419e-09 281- 301
260	PF00583	Acetyltransferase (GNAT) family.	PF00583A 12.53 3.571e-12 175-
262	PD01364	MUCIN GLYCOPROTEIN PRECURSOR MEM.	PD01364B 13.94 1.000e-10 336- 352
263	PR00860	VERTEBRATE METALLOTHIONEIN SIGNATURE	PR00860B 7.04 2.929e-20 28-42 PR00860C 9.61 1.474e-14 42-52 PR00860A 5.46 9.229e-12 6-19
264	BL00599	Aminotransferases class-II pyridoxal- phosphate attachment sit.	BL00599B 18.93 8.800e-27 278- 307 BL00599D 13.25 8.773e-13 411-424 BL00599C 9.13 5.235e- 11 334-344
266	PD01769	REDUCTASE PAPS BIOSYNTHESIS PHOSPHOADENO.	PD01769C 21.60 8.393e-18 416- 452
271	PR00497	NEUTROPHIL CYTOSOL FACTOR P40 SIGNATURE	PR00497D 11.91 1.176e-28 192- 214 PR00497E 10.43 1.123e-26 241-261 PR00497A 6.92 1.136e- 24 56-74 PR00497B 4.99 1.125e- 23 74-93 PR00497C 8.89 1.100e- 21 131-147 PR00497F 8.66 1.138e-15 297-309
272	BL50002	Src homology 3 (SH3) domain proteins profile.	BL50002A 14.19 6.538e-11 177- 196
276	PF00013	KH domain proteins family of RNA binding proteins.	PF00013 5.78 2.059e-10 268-280
277	PF00013	KH domain proteins family of RNA binding proteins.	PF00013 5.78 2.059e-10 268-280
280	PF00930	Dipeptidyl peptidase IV (DPP IV) N-terminal region.	PF00930J 8.78 4.231e-09 394-415
282	BL01220	Phosphatidylethanolamine-binding protein family proteins.	BL01220B 16.65 1.000e-40 105- 146 BL01220C 14.75 5.846e-34 146-174 BL01220A 22.62 3.400e-31 67-98 BL01220D

SEQ ID NO:	Accession Number	Description	Results*
	1		18.75 5.364e-31 189-221
283	BL00406	Actins proteins.	BL00406B 5.47 1.000e-40 88-143 BL00406C 6.75 1.000e-40 147- 202 BL00406D 12.58 7.000e-40 270-325 BL00406E 8.44 6.087e-
284	BL00227	Tubulin subunits alpha, beta, and	39 327-377 BL00406A 9.95 6.087e-29 11-46 BL00227C 25.48 7.792e-26 119- 171 BL00227D 18.46 2.286e-20
		gamma proteins.	253-307 BL00227B 19.29 4.720e-13 58-113 BL00227A 24.55 4.649e-12 1-35
285	BL00478	LIM domain proteins.	BL00478B 14.79 3.739e-14 463- 478 BL00478B 14.79 3.500e-12 405-420 BL00478B 14.79 6.000e-12 530-545
286	PR00927	ADENINE NUCLEOTIDE TRANSLOCATOR 1 SIGNATURE	PR00927B 14.66 6.236e-14 146- 168
288	BL00783	Ribosomal protein L13 proteins.	BL00783C 22.43 8.071e-20 87- 117 BL00783A 14.55 1.600e-19 8-33 BL00783B 12.76 3.500e-12 74-86
289	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 2.500e-38 422- 461
291	DM00031	IMMUNOGLOBULIN V REGION.	DM00031A 16.80 8.364e-11 20-68
292	PD02808	PROTEIN RIBOSOMAL L14 PROBABLE 60.	PD02808A 12.03 3.739e-38 5-42 PD02808B 19.19 8.500e-36 85- 120
294	BL00383	Tyrosine specific protein phosphatases proteins.	BL00383E 10.35 2.756e-12 263- 274
295	BL01160	Kinesin light chain repeat proteins.	BL01160B 19.54 8.093e-09 510- 564 PR00706B 10.56 6.870e-09 74-87
297	PR00706	PYROGLUTAMYL PEPTIDASE I (C15) FAMILY SIGNATURE	PR00706B 10.56 6.870e-09 74-87
300	PR00453	VON WILLEBRAND FACTOR TYPE A DOMAIN SIGNATURE	BL00464B 28.48 4.960e-35 106-
301	BL00464	Ribosomal protein L22 proteins.	151 BL00464A 29.41 9.700e-23 17-54
302	BL00027	'Homeobox' domain proteins.	BL00027 26.43 6.727e-36 158- 201
307	BL01113	C1q domain proteins.	BL01113A 17.99 2.558e-09 712-
310	BL00226	Intermediate filaments proteins.	BL00226D 19.10 9.571e-40 371- 418 BL00226B 23.86 4.600e-38 205-253 BL00226C 13.23 9.500e-26 270-301 BL00226A 12.77 4.000e-16 104-119
311	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 5.135e-34 6-45
312	PD01861	PROTEIN NUCLEAR RIBONUCLEOPROTEIN SMALL MRNA RNA.	PD01861A 14.06 4.393e-11 26-50
315	BL00192	Cytochrome b/b6 heme-ligand proteins.	BL00192A 11.90 3.700e-09 96-
316	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 6.445e-11 661- 676
318	DM00031	IMMUNOGLOBULIN V REGION.	DM00031B 15.41 4.423e-11 103- 137

SEQ ID NO:	Accession Number	Description	Results*
319	BL01115	GTP-binding nuclear protein ran proteins.	BL01115A 10.22 7.455e-13 9-53
321	BL00378	Hexokinases proteins.	BL00378A 19.01 8.375e-09 279- 307
323	BL00405	43 Kd postsynaptic protein.	BL00405C 10.15 1.000e-40 65- 115 BL00405D 6.60 1.000e-40 123-166 BL00405G 7.78 1.000e- 40 226-263 BL00405H 16.83 1.000e-40 263-302 BL00405I 13.75 1.000e-40 302-339 BL00405J 13.28 1.000e-40 339- 373 BL00405K 7.57 1.000e-40 373-413 BL00405B 15.33 6.538e-39 26-58 BL00405F 8.07 1.900e-38 195-226 BL00405E 8.84 1.529e-34 166-192 BL00405A 9.73 1.643e-31 2-26
327	BL00048	Protamine P1 proteins.	BL00048 6.39 8.475e-15 24-51 BL00048 6.39 2.918e-14 26-53 BL00048 6.39 5.279e-14 34-61 BL00048 6.39 5.721e-14 32-59 BL00048 6.39 7.197e-14 11-38 BL00048 6.39 8.082e-14 22-49 BL00048 6.39 2.246e-13 10-37 BL00048 6.39 7.092e-13 7-34 BL00048 6.39 7.785e-13 8-35 BL00048 6.39 7.785e-13 8-35 BL00048 6.39 7.923e-13 23-50 BL00048 6.39 1.926e-12 9-36 BL00048 6.39 1.926e-12 9-36 BL00048 6.39 2.456e-12 20-47 BL00048 6.39 2.456e-12 20-47 BL00048 6.39 7.750e-12 12-39 BL00048 6.39 7.750e-12 12-39 BL00048 6.39 9.868e-12 21-48 BL00048 6.39 9.868e-12 21-48 BL00048 6.39 8.250e-11 13-40 BL00048 6.39 8.250e-11 13-40 BL00048 6.39 8.250e-11 13-40 BL00048 6.39 8.250e-11 13-45 BL00048 6.39 8.250e-11 18-45 BL00048 6.39 8.250e-11 18-45 BL00048 6.39 8.250e-10 15-32 BL00048 6.39 3.605e-10 4-31 BL00048 6.39 7.939e-10 15-42 BL00048 6.39 7.939e-10 15-42 BL00048 6.39 7.939e-10 15-42 BL00048 6.39 7.939e-10 15-42 BL00048 6.39 7.950e-10 17-44 BL00048 6.39 7.950e-10 17-44 BL00048 6.39 7.950e-10 17-44 BL00048 6.39 7.950e-10 16-43 BL00048 6.39 7.950e-10 16-43 BL00048 6.39 3.363e-09 16-43 BL00048 6.39 5.950e-09 28-55 BL00048 6.39 5.950e-09 28-55 BL00048 6.39 6.288e-09 29-56 BL00048 6.39 6.400e-09 40-67
331	PR00221	CAULIMOVIRUS COAT PROTEIN	BL00048 6.39 6.738e-09 2-29 BL00048 6.39 7.863e-09 35-62 PR00221H 12.82 1.217e-09 27-41
332	BL00290	SIGNATURE Immunoglobulins and major	BL00290A 20.89 1.529e-14 187-
		histocompatibility complex proteins.	210 BL00290B 13.17 9.000e-12

SEQ ID NO:	Accession Number	Description	Results*
	1,1,1,1,1,1		247-265
334	BL00415	Synapsins proteins.	BL00415N 4.29 8.420e-10 334- 378
336	PR00779	INOSITOL 1,4,5-TRISPHOSPHATE- BINDING PROTEIN RECEPTOR SIGNATURE	PR00779F 14.51 5.147e-09 512- 535
338	DM00179	w KINASE ALPHA ADHESION T- CELL.	DM00179 13.97 7.158e-10 107- 117
339	BL00224	Clathrin light chain proteins.	BL00224B 16.94 8.200e-09 167- 220
340	PR00237	RHODOPSIN-LIKE GPCR SUPERFAMILY SIGNATURE	PR00237B 13.50 1.000e-11 1-23
343	PD00066	PROTEIN ZINC-FINGER METAL- BINDI.	PD00066 13.92 5.154e-15 321- 334 PD00066 13.92 2.800e-14 237-250 PD00066 13.92 8.800e- 14 265-278 PD00066 13.92 3.000e-13 293-306 PD00066 13.92 9.217e-11 209-222
345	PR00452	SH3 DOMAIN SIGNATURE	PR00452B 11.65 4.600e-15 20-36
347	BL00563	Stathmin family proteins.	BL00563D 11.38 4.835e-09 279- 315
349	BL01105	Ribosomal protein L35Ae proteins.	BL01105A 17.37 1.000e-40 16-61 BL01105B 12.95 1.000e-40 80- 120
350	PD02411	PROTEIN TRANSCRIPTION REGULATION NUCLEAR.	PD02411 21.89 2.929e-15 2227- 2261
355	BL00464	Ribosomal protein L22 proteins.	BL00464B 28.48 4.908e-10 128- 173 BL00464A 29.41 7.045e-09 69-106
358	BL01013	Oxysterol-binding protein family proteins.	BL01013D 26.81 8.000e-26 358- 402 BL01013A 25.14 7.231e-21 45-81 BL01013C 9.97 1.000e-13 132-142 BL01013B 11.33 1.000e-11 110-121
366	PD02557	UREASE ACCESSORY PROTEIN UREF NICKEL.	PD02557C 10.85 6.262e-09 29-44
369	BL01279	Protein-L-isoaspartate(D-aspartate) O-methyltransferase signa.	BL01279A 24.27 7.614e-12 67- 115
371	PR00042	FOS TRANSFORMING PROTEIN SIGNATURE	PR00042E 9.69 8.200e-25 154- 178 PR00042D 8.97 9.735e-24 133-155 PR00042C 8.29 4.549e- 21 115-132 PR00042B 10.70 2.983e-20 98-115 PR00042A 10.04 6.400e-20 39-57
373	PR00893	RAB ESCORT (CHOROIDERAEMIA) PROTEIN SIGNATURE	PR00893H 7.37 2.588e-34 411- 439 PR00893J 1.42 1.500e-28 565-586 PR00893D 13.14 1.563e-28 114-138 PR00893C 15.10 2.500e-27 94-115 PR00893K 7.01 1.000e-26 600- 620 PR00893I 14.97 2.667e-26 543-563 PR00893A 10.55 1.134e-25 45-64 PR00893F 10.78 3.314e-25 294-313 PR00893E 13.94 1.231e-22 213- 230 PR00893G 12.88 5.500e-22 351-368 PR00893B 8.07 6.192e- 22 75-93
374	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 9.471e-14 508- 525 BL00028 16.07 9.100e-13

SEQ ID NO:	Accession Number	Description	Results*
			424-441 BL00028 16.07 2.957e- 12 536-553 BL00028 16.07 4.115e-11 340-357 BL00028 16.07 8.269e-11 452-469 BL00028 16.07 4.300e-10 312- 329 BL00028 16.07 7.600e-10
375	PF01020	Ribosomal L40e family.	480-497
377	PR00450	RECOVERIN FAMILY SIGNATURE	PR01020 15.00 1.000e-40 80-129 PR00450C 12.22 7.840e-10 86- 108 PR00450C 12.22 7.380e-09 52-74 PR00450C 12.22 7.835e- 09 16-38
381	PF00992	Troponin.	PF00992B 26.31 4.000e-30 178- 213 PF00992A 16.67 2.636e-29 100-135 PF00992C 16.35 2.800e-15 244-262
382	PF00992	Troponin.	PF00992B 26.31 4.000e-30 157- 192 PF00992A 16.67 2.636e-29 79-114 PF00992C 16.35 2.800e- 15 223-241
383	PF00992	Troponin.	PF00992B 26.31 4.000e-30 162- 197 PF00992A 16.67 2.636e-29 84-119 PF00992C 16.35 2.800e- 15 228-246
384	PD02784	PROTEIN NUCLEAR RIBONUCLEOPROTEIN.	PD02784B 26.46 8.307e-10 455- 498
385	PF01140	Matrix protein (MA), p15.	PF01140D 15.54 9.686e-09 112-
388	DM00892	3 RETROVIRAL PROTEINASE.	DM00892C 23.55 3.323e-14 340- 374
391	PR00109	TYROSINE KINASE CATALYTIC DOMAIN SIGNATURE	PR00109B 12.27 6.553e-13 117- 136
393	PR00453	VON WILLEBRAND FACTOR TYPE A DOMAIN SIGNATURE	PR00453A 12.79 9.571e-16 528- 546 PR00453B 14.65 5.000e-13 567-582
394	PR00453	VON WILLEBRAND FACTOR TYPE A DOMAIN SIGNATURE	PR00453A 12.79 9.571e-16 528- 546 PR00453B 14.65 5.000e-13 567-582
399	PR00326	GTP1/OBG GTP-BINDING PROTEIN FAMILY SIGNATURE	PR00326A 8.75 1.514e-09 184- 205
402	PD00066	PROTEIN ZINC-FINGER METAL- BINDI.	PD00066 13.92 1.692e-10 235- 248
403	BL00239	Receptor tyrosine kinase class II proteins.	BL00239B 25.15 1.529e-16 106- 154
404	BL00056	Ribosomal protein S17 proteins.	BL00056A 28.90 3.769e-32 75- 115 BL00056B 20.86 6.727e-23 123-147
406	BL00150	Acylphosphatase proteins.	BL00150 25.33 1.000e-40 9-56
410	PR00245	OLFACTORY RECEPTOR SIGNATURE	PR00245D 10.47 5.224e-09 186- 198
413	BL00019	Actinin-type actin-binding domain proteins.	BL00019A 12.56 1.000e-13 38-49
414	BL00113	Adenylate kinase proteins.	BL00113B 20.49 5.667e-32 784- 828 BL00113D 24.41 2.565e-27 889-920 BL00113C 12.82 2.286e-16 832-847
415	BL00915	Phosphatidylinositol 3- and 4-kinases proteins.	BL00915B 22.78 9.022e-19 3750- 3788 BL00915C 22.43 6.250e-18 3873-3912
416	BL00915	Phosphatidylinositol 3- and 4-kinases	BL00915B 22.78 9.022e-19 3750-

SEQ ID NO:	Accession Number	Description	Results*
		proteins.	3788 BL00915C 22.43 6.250e-18 3904-3943
418	PR00326	GTP1/OBG GTP-BINDING PROTEIN FAMILY SIGNATURE	PR00326A 8.75 2.364e-10 186- 207
419	PD02808	PROTEIN RIBOSOMAL L14 PROBABLE 60.	PD02808A 12.03 3.739e-38 5-42 PD02808B 19.19 8.500e-36 85- 120
421	PD01066	PROTEIN ZINC FINGER ZINC- FINGER METAL-BINDING NU.	PD01066 19.43 4.767e-31 26-65
423	BL00143	Insulinase family, zinc-binding region proteins.	BL00143B 14.41 4.115e-13 102- 117
426	BL00514	Fibrinogen beta and gamma chains C-terminal domain proteins.	BL00514C 17.41 1.000e-40 206- 243 BL00514D 15.35 7.000e-16 251-264 BL00514B 16.42 4.000e-15 150-166 BL00514A 11.68 6.885e-12 40-50
427	PR00536	MELANOCYTE STIMULATING HORMONE RECEPTOR SIGNATURE	PR00536G 6.26 2.688e-09 333- 342
432	PR00130	DNASE I SIGNATURE	PR00130E 14.66 5.871e-16 146- 176 PR00130D 8.65 2.862e-15 116-146 PR00130H 14.38 1.106e-11 229-250 PR00130F 11.23 1.086e-10 176-206 PR00130G 7.22 2.340e-10 206- 229 PR00130A 11.39 7.000e-10 31-61
433	PR00437	SMALL CXC CYTOKINE FAMILY SIGNATURE	PR00437C 14.85 4.696e-09 68-87
445	PF00624	Flocculin repeat proteins.	PF00624J 6.21 9.782e-10 429-484
446	PF00624	Flocculin repeat proteins.	PF00624J 6.21 9.782e-10 429-484
447	PF01140	Matrix protein (MA), p15.	PF01140D 15.54 2.256e-09 222- 257
449	PF00791	Domain present in ZO-1 and Unc5-like netrin receptors.	PF00791B 28.49 8.515e-10 120- 175
450	BL00027	'Homeobox' domain proteins.	BL00027 26.43 1.818e-21 36-79
451	BL00191	Cytochrome b5 family, heme-binding domain proteins.	BL00191K 17.38 4.951e-27 184- 228 BL00191J 11.37 6.447e-17 128-150
454	BL00028	Zinc finger, C2H2 type, domain proteins.	BL00028 16.07 8.457e-09 22-39
456	BL00227	Tubulin subunits alpha, beta, and gamma proteins.	BL00227B 19.29 1.000e-40 51- 106 BL00227C 25.48 1.000e-40 113-165 BL00227D 18.46 1.000e-40 223-277 BL00227A 24.55 2.607e-31 2-36 BL00227F 21.16 4.316e-30 382-436 BL00227E 24.15 2.667e-23 331- 366
457	PR00301	70 KD HEAT SHOCK PROTEIN SIGNATURE	PR00301C 8.62 8.875e-11 235- 244
458	DM00179	w KINASE ALPHA ADHESION T- CELL.	DM00179 13.97 6.870e-09 47-57 DM00179 13.97 8.435e-09 238- 248
459	PR00756	MEMBRANE ALANYL DIPEPTIDASE (MI) FAMILY SIGNATURE	PR00756D 10.58 1.529e-21 367- 383 PR00756B 14.06 5.737e-16 253-269 PR00756A 12.90 1.237e-13 205-221 PR00756E 11.91 4.094e-13 386-399 PR00756C 11.60 6.108e-11 331-

SEQ ID NO:	Accession Number	Description	Results*
,			342
461	PR00648	GPR3 ORPHAN RECEPTOR SIGNATURE	PR00648B 7.41 8.340e-09 1029- 1048
462	BL00027	'Homeobox' domain proteins.	BL00027 26.43 5.500e-27 245- 288
466	PD00126	PROTEIN REPEAT DOMAIN TPR NUCLEA.	PD00126A 22.53 2.862e-09 515- 536
469	BL00359	Ribosomal protein L11 proteins.	BL00359A 20.66 5.395e-23 20-56 BL00359B 23.07 4.176e-19 66- 107 BL00359C 22.18 2.000e-12 123-157
470	BL00359	Ribosomal protein L11 proteins.	BL00359B 23.07 4.176e-19 40-81 BL00359C 22.18 2.000e-12 97-
473	PF00429	ENV polyprotein (coat polyprotein).	PF00429 31.08 3.195e-12 299- 349
476	BL00450	Aconitase family proteins.	BL00450B 42.34 8.393e-30 281- 336 BL00450D 21.14 2.800e-18 560-584 BL00450B 42.34 6.400e-12 341-396 BL00450A 13.76 2.406e-11 246-260 BL00450C 11.95 6.657e-10 507- 517
477	BL01033	Globins profile.	BL01033A 16.94 7.923e-18 25-47 BL01033B 13.81 1.000e-15 93-
480	BL00615	C-type lectin domain proteins.	BL00615A 16.68 5.500e-10 78-96 BL00615B 12.25 7.577e-09 178- 192
482	BL01177	Anaphylatoxin domain proteins.	BL01177E 20.64 5.800e-24 1043- 1070 BL01177C 17.39 5.333e-19 997-1016 BL01177B 13.61 7.840e-16 703-719 BL01177D 17.50 1.900e-15 1022-1040
487	BL01032	Protein phosphatase 2C proteins.	BL01032H 11.25 8.200e-09 253- 266
489	BL00290	Immunoglobulins and major histocompatibility complex proteins.	BL00290A 20.89 1.563e-15 154- 177 BL00290B 13.17 9.000e-12 214-232
490	PR00245	OLFACTORY RECEPTOR SIGNATURE	PR00245A 18.03 5.886e-10 461- 483

^{*}Results include in order: accession number subtype; raw score; p-value; position of signature in amino acid sequence

TABLE 4

SEQ ID	Pfam Model	Description	E-value	Pfam
NO:				Score
247	Aldolase II	Class II Aldolase and Adducin N-terminal	7.3e-105	361.8
248	Aldolase_II	Class II Aldolase and Adducin N-terminal	7.3e-105	361.8
249	rm	RNA recognition motif.	8.8e-06	32.6
250	carb_anhydrase	Eukaryotic-type carbonic anhydrase	7.8e-178	604.2
252	DSPc	Dual specificity phosphatase, catalytic doma	3.6e-69	243.2
253	NAC	NAC domain	4.7e-30	113.3
255	hexapep	Bacterial transferase hexapeptide	6.2e-06	33.1
260	Acetyltransf	Acetyltransferase (GNAT) family	2.8e-19	77.5
262	ig	Immunoglobulin domain	5.2e-20	69.5
263	metalthio	Metallothionein	1.3e-22	88.6
264	aminotran 2	Aminotransferases class-II	2.4e-109	376.7
265	IPP isomerase	Isopentenyl-diphosphate delta-isomerase	1.6e-128	440.4
266	PAPS reduct	Phosphoadenosine phosphosulfate reductase	6.2e-14	59.7
271	PX	PX domain	7.4e-31	115.9
272	PX	PX domain	7.4e-31	115.9
276	KH-domain	KH domain	7.2e-13	56.2
277	KH-domain	KH domain	7.2e-13	56.2
278	GTP_CDC	Cell division protein	7.6e-119	408.2
280	abhydrolase 2	Phospholipase/Carboxylesterase	0.013	-41.9
282	PBP	Phosphatidylethanolamine-binding protein	7.8e-88	305.2
283	actin	Actin	le-174	574.6
284	tubulin	Tubulin/FtsZ family	5e-99	342.4
285	LIM	LIM domain containing proteins	4.6e-36	132.3
286	mito_carr	Mitochondrial carrier proteins	1.4e-41	145.5
288	Ribosomal_L1 3	Ribosomal protein L13	4.1e-56	199.8
289	zf-C2H2	Zinc finger, C2H2 type	5.4e-268	903.7
291	ig	Immunoglobulin domain	0.053	11.5
292	Ribosomal_L1 4e	Ribosomal protein L14	3.4e-34	127.0
295	PH	PH domain	3.1e-20	77.3
296	Lysyl_hydro	Lysyl hydrolase	0	2058.2
299	efhand	EF hand	0.075	19.5
300	vwa	von Willebrand factor type A domain	2.8e-35	130.6
301	Ribosomal_L2 2	Ribosomal protein L22p/L17e	4e-67	236.4
302	homeobox	Homeobox domain	4e-34	126.8
309	IF3	Translation initiation factor IF-3	0.00048	15.1
310	filament	Intermediate filament proteins	9.2e-178	604.0
311	zf-C2H2	Zinc finger, C2H2 type	5.6e-143	488.4
312	Sm	Sm protein	5.6e-26	99.7
314	PDZ	PDZ domain (Also known as DHR or GLGF)	0.037	15.2
316	SH3	SH3 domain	3.6e-12	53.9
318	ig	Immunoglobulin domain	1.5e-12	45.5
319	ras	Ras family	5.1e-94	325.8
32 I	SAM	SAM domain (Sterile alpha motif)	9.9e-10	45.8
323	TPR	TPR Domain	1.1e-12	55.5
329	rrm	RNA recognition motif.	4.7e-09	43.5
332	ig	Immunoglobulin domain	1e-20	71.8
336	VPS9	Vacuolar sorting protein 9 (VPS9) domain	1.1e-30	115.4
338	ig	Immunoglobulin domain	0.0079	14.2
340	7tm_1	7 transmembrane receptor (rhodopsin family)	2.7e-20	66.6
342	Hydrolase	haloacid dehalogenase-like hydrolase	7.9e-28	105.9
343	zf-C2H2	Zinc finger, C2H2 type	5.1e-35	129.8
345	SH3	SH3 domain	2.2e-14	61.2
349	Ribosomal L3	Ribosomal protein L35Ae	6e-77	269.0
	5Ae		00-77	207.0

SEQ ID NO:	Pfam Model	Description	E-value	Pfam Score
350	SET	SET domain	1.1e-56	201.7
358	Oxysterol BP	Oxysterol-binding protein	3.4e-95	329.7
369	PCMT	Protein-L-isoaspartate(D-aspartate) O-methyl	5e-10	1.8
370	PH	PH domain	9.6e-05	22.0
371	bZIP	bZIP transcription factor	3.2e-07	30.8
373	GDI	GDP dissociation inhibitor	7.4e-25	64.8
374	zf-C2H2	Zinc finger, C2H2 type	7.1e-78	272.1
375	ubiquitin	Ubiquitin family	3.7e-61	193.6
377	ethand	EF hand	1.5e-37	138.2
381	Troponin	Troponin	4.7e-42	153.1
382	Troponin	Troponin	4.7e-42	153.1
383	Troponin	Troponin	4.7e-42	153.1
384	rrm	RNA recognition motif.	7.5e-51	182.4
387	UBX	UBX domain	1.5e-25	98.3
388	G-patch	G-patch domain	4.4e-10	46.9
391	pkinase	Eukaryotic protein kinase domain	1.2e-110	381.1
393	EGF	EGF-like domain	3.6e-82	286.4
394 398	EGF	EGF-like domain	3.6e-82	286.4
	PGAM	Phosphoglycerate mutase family	6.1e-07	29.2
402 403	zf-C2H2	Zinc finger, C2H2 type	4e-24	93.6
403	pkinase	Eukaryotic protein kinase domain	1.1e-101	351.3
406	Ribosomal S17	Ribosomal protein S17	6e-43	148.6
	Acylphosphatas e	Acylphosphatase	8.5e-64	225.4
407	TPR	TPR Domain	1.2e-14	62.1
414	adenylatekinase	Adenylate kinase	1.9e-119	410.3
415	FAT	FAT domain	9.3e-192	650.4
416	FAT	FAT domain	9.3e-192	650.4
418	MMR HSRI	GTPase of unknown function	0.00015	-32.8
419	Ribosomal_L1 4e	Ribosomal protein L14	3.4e-34	127.0
421	zf-C2H2	Zinc finger, C2H2 type	5.2e-99	342.3
423	Peptidase M16	Insulinase (Peptidase family M16)	4.3e-42	153.3
426	fibrinogen_C	Fibrinogen beta and gamma chains, C-term	2.4e-68	238.3
432	DNase I	Deoxyribonuclease I (DNase I)	1.2e-171	583.6
433 437	IL8	Small cytokines (intecrine/chemokine), inter	2.3e-33	115.6
440	TPR	TPR Domain	4.4e-08	40.3
445	PDZ	PDZ domain (Also known as DHR or GLGF)	0.038	15.1
446	zf-C2H2	Zinc finger, C2H2 type	2.7e-22	87.5
447	zf-C2H2	Zinc finger, C2H2 type	4.1e-23	90.2
449	rrm ank	RNA recognition motif.	0.0029	24.3
451	Cyt reductase	Ank repeat	4.1e-31	116.8
455	Ribosomal L1	FAD/NAD-binding Cytochrome reductase	7.7e-61	215.5
	8p	Ribosomal L18p/L5e family	0.084	-34.1
456	tubulin	Tubulin/FtsZ family	3.4e-283	954.2
457	laminin_G	Laminin G domain	1.1e-51	185.1
458	ig	Immunoglobulin domain	2.7e-23	80.1
459	Peptidase_M1	Peptidase family M1	6.4e-184	533.4
462	pou	Pou domain - N-terminal to homeobox domain	1.3e-48	175.0
466	TPR	TPR Domain	2.4e-30	114.2
	Ribosomal_L1	Ribosomal protein L11	7.3e-53	189.0
	Ribosomal_L1	Ribosomal protein L11	7e-40	145.9
	ENV_polyprote in	ENV polyprotein (coat polyprotein)	1.5e-37	129.4
76	aconitase		1	1

SEQ ID NO:	Pfam Model	Description	E-value	Pfam
477	globin	Globin	5.5.44	Score
480	lectin c	Lectin C-type domain	5.5e-44	157.8
482	EGF	EGF-like domain	1.5e-21	85.0
487	PP2C	Protein phosphatase 2C	1e-22	88.9
489	ig	Immunoglobulin domain	1.1e-13	51.7
490	7tm 1	7 transmembrane receptor (rhodopsin family)	1.8e-20	71.0
	<u> </u>	1 - Hambinotane receptor (Hodopsin family)	3.1e-13	44.2

TABLE 5

	PDB ID	Chain IĐ	Start AA	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
ı —	1mkp		201	344	3e-40			205.21	PYSTI; CHAIN: NULL;	HYDROLASE DUAL SPECIFICITY PHOSPHATASE, MAP KINASE HYDROLASE
1⊷	1b2w	7	43	241	8.5e-66			67.25	ANTIBODY (LIGHT CHAIN); CHAIN; L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	IMMUNE SYSTEM IMMUNOGLOBULIN, IMMUNOGLOBULIN, ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRYCTURE, GAMMA-3 INTERFERON, IMMUNE SYSTEM
=	1 b 6 d	∢	43	238	3.4e-65			68.72	IMMUNOGLOBULIN; CHAIN: A, B;	IMMUNOGLOBULIN IMMUNOGLOBULIN, KAPPA LIGHT- CHAIN DIMER HEADER
= 1	16/1	1	43	240	6.8e-67			71.40	FAB FRAGMENT; CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;	COMPLEX (ANTIBODY/ANTIGEN) FAB-12; VEGF; COMPLEX (ANTIBODY/ANTIGEN), ANGIOGENIC FACTOR
≍	lbog.	¥	43	241	6.8e-61			67.70	ANTIBODY (CB 4-1); CHAIN: A, B; PEPTIDE: CHAIN: C;	COMPLEX (ANTIBODY/PEPTIDE) POLYSPECIFICITY, CROSS REACTIVITY, FAB-FRAGMENT, PEPTIDE, 2 HIV-1, COMPLEX (ANTIBODY/PEPTIDE)
그 1	1627	∢	43	232	8.5e-60			69.74	ANTIBODY R24 (LIGHT CHAIN); CHAIN: A; ANTIBODY R24 (HEAVY CHAIN); CHAIN: B;	IMMUNE SYSTEM ANTIBODY (FAB FRAGMENT), IMMUNE SYSTEM
ا ([ce.]	ı	43	238	5.1e-65			68.83	CAMPATH-IH:LİGHT CHAİN; CHAIN: L; CAMPATH-IH:HEAVY CHAIN; CHAIN: H; PEPTIDE ANTIGEN: CHAIN: P:	ANTIBODY THERAPEUTIC, ANTIBODY, CD52
· O	1dfb	J.	43	241	8.5e-66			69.59	IMMUNOGLOBULIN 3D6 FAB 1DFB 3	
4	1fvd	¥	43	241	6.8e-66			72.66	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	
00	lgc1	r	43	238	1.2e-62			71.86	ENVELOPE PROTEIN GP120; CHAIN: G; CD4; CHAIN: C; ANTIBODY 17B; CHAIN: L, H;	COMPLEX (HIV ENVELOPE PROTEIN/CD4/FAB) COMPLEX (HIV ENVELOPE PROTEIN/CD4/FAB), HIV-1

		7														
PDB Annotation	EXTERIOR 2 ENVELOPE GP120, T-CELL SURFACE GLYCOPROTEIN CD4, 3 ANTIGEN-BINDING FRAGMENT OF HUMAN IMMUNOGLOBULIN 17B, 4 GI VCOSVI ATEN BOTTEN	COMPLEX (IMMUNOGLÒBULINIRECEPTOR) IMMUNOGLÒBULINI FOLD, TRANSMEMBRANE, GLYCOPROTEIN, RECEPTOR, 2 SIGNAL, COMPLEX (IMMUNOGLÒBILI INIBECEPTOR)	(intraction of the property of	COMPLEX (IMMUNOGLOBULIN/LIPOPROTEIN)	OSPA; COMPLEX (IMMUNOGLOBULIN/LIPOPROTEIN), OUTER SURFACE 2 PROTEIN A	COMPLEXED WITH FABI84.1, BORRELIA BURGDORFERI 3 STRAIN B31	GLYCOPROTEIN CD4; IMMUNOGLOBULIN FOLD, TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 2 MHC LIPOPROTEIN.	POLYMORPHISM								
Compound		INTERLEUKIN-I BETA; CHAIN: A; TYPE I INTERLEUKIN-I RECEPTOR; CHAIN: B;	IMMUNOGLOBULIN IMMUNOGLOBULIN GI (IGG1) (MCG) WITH A HINGE DELETION IMCO 3	FAB 184.1; CHAIN: L, H; OUTER SURFACE PROTEIN A; CHAIN: 0;			T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN: A, B;	IMMUNOGLOBULIN FAB	FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18	2FGW 3 ANTIBODY 'H52' (HUH52- OZ FAB) 2FGW 4	IMMUNOGLOBULIN ANTIGEN. BINDING FRAGMENT OF THE	MURINE ANTI-	PHENYLARSONATE 6FAB 3	4		METALLOTHIONEIN CD-7 METALLOTHIONEIN-2 (ALPHA
SeqFold Score		67.34	93.46	69.80			75.16	67.57		_	68.83					67.02
PMF Score											_					
Verify Score				-												
PSI BLAST		1.2e-22	3.4e-68	1.7e-59			9e-17	1.2e-67			5.1e-63					1.4e-17
End		429	427	241			804	241			241					70
Start AA		149	29	43	1	\$	5	43			43			1	33	7
Chain ID		m ;	III.	-			€	7							1	
PDB ID		£ .	оэш	losp			28.	2fgw			ofab				1mhii	
SEQ NO:	50	797	797	797		263		262		7	797		-		263	\dashv

			_														
PDB Annotation				TRYPTOPHAN BIOSYNTHESIS TRYPTOPHAN INDOLE-LYASE, TRYPTOPHAN BIOSYNTHESIS, TRYPTOPHAN INDOLE-LYASE, PYRIDOXAL 2 5'-PHOSPHATE, MONOVALENT CATION BINDING	SILE AMINOTRANSFERASE AMINOTRANSFERASE, PYRIDOXAL	ENZYME	TRANSFERASE AONS, 8-AMINO-7- KETOPELARGONATE SYNTHASE; PLP-DEPENDENT ACYL-COA SYNTHASE, BIOTIN BIOSYNTHESIS, 8-2 AMINO-7-OXONANOATE SYNTHASE, 8-AMINO-7- KETOPELARGONATE 3 SYNTHASE,	TRANSFERASE	LYASE CGS, LYASE, LLP. DEPENDENT ENZYMES, METHIONINE BIOSYNTHESIS	LYASE DGD; ENZYME COMPLEXES, CATALYTIC MECHANISM, DECARBOXYLATION 2 INHIBITOR,	LYASE	PYRIDOXAL 5'-PHOSPHATE,	GAMMA- 2 FAMILY, LYASE	-	CHLOROPHYLL BIOSYNTHESIS GLUTAMATE SEMIALDEHYDE	AMINOMO I ASE; CHLOROFHYLL BIOSYNTHESIS, PYRIDOXAL-5:- PHOSPHATE 3 PYRIDOXAL S.	PHOSPHATE, A SYMMETRIC DIMER
Compound	DOMAIN) (/NMR\$) 1MHUA 2	METALLOTHIONÉIN METALLOTHIONEIN ISOFORM II 4MT2 3		TRYPTOPHANASE; CHAIN: A, B, C, D;	ASPARTATE AMINOTRANSFERASE; CHAIN: A,	В;	8-AMINO-7-OXONANOATE SYNTHASE; CHAIN: A;		CYSTATHIONINE GAMMA- SYNTHASE, CHAIN: A, B, C, D;	2,2-DIALKYLGLYCINE DECARBOXYLASE (PYRUVATE); CHAIN: A;	CVSTATHIONINE CANALA	SYNTHASE; CHAIN: A, B, C, D, E,	LYASE(CARBON-CARBON)	TYROSINE PHENOL-LYASE (E.C.4.1.99.2) 1TPL 3	GLUTAMATE SEMIALDEHYDE AMINOTRANSFERASE; CHAIN: A,		
SeqFold Score		126.36		76.11	85.17	00,00	224.70	9, 9	69.69	78.45	88 98	2	90.98		95.88		
PMF Score											Ť	<u></u>	100	,	6		
Verify Score						1					-				· <u>·····</u> ····		1
PSI BLAST		1.7e-08		5.16-10	5.1e-58	3 10 77	7/-94-0	3 40 45	Cf 3t.	I.7e-46	6e-67		5.1e-06		1.4e-72		
End AA		62	,	919	590	503	c c c c c c c c c c c c c c c c c c c	640	}	597	635	1 m.	612				
Start AA	,	_	,	061	212	203		242		213	215		209		0.70		
Chain ID				∢	4	4	•	A	: .	∢	A		4		∢		
PDB D	5	7		18X4	1bjw	1bs0		lcs1	1	n/n	1qgn]# [#		rgsa		
SEQ NO: D	263	607	176	*	264	264		264			264		564	,			

PDB Annotation	OXIDOREDUCTASE PHOSPHOADENOSINE PHOSPHOSULFATE REBUCTASE; ASSIMILATORY SULFATE REDUCTION, 3-PHOSPHO- ADENYLYL-SULFATE 2 REDUCTASE, OXIDOREDUCTASE	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	SIGNAL TRANSDUCTION ADAPTOR SH2, SH3 IGRI 14	ELECTRON TRANSPORT UBIQUINOL CYTOCHROME C OXIDOREDUCTASE, COMPLEX ELECTRON TRANSPORT, CYTOCHROME, MEMBRANE PROTEIN	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING MOTIF	RIBONUCLEOPROTEIN RNA- BINDING PROTEIN 1915 19	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, BNA BINDING BOCKER, 13, 51	RNA-BINDING PROTEIN, INMR RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS,	KNA-BINDING PROTEIN, NMR RNA-BINDING PROTEIN KH1; FMR1,
Compound	PAPS REDUCTASE; CHAIN: NULL;	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	GROWTH FACTOR BOUND PROTEIN 2; IGRI 5 CHAIN: A, B; IGRI 6	CYTOCHROME BCI COMPLEX; CHAIN: A, B, C, D, E, F, G, H, I, J, K;	NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2; CHAIN: A, B, C, D;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2: CHAIN: A. B. C. D:	VIGILIN; IVIG 5 CHAIN; NULL; IVIG 6	FMR I PROTEIN; CHAIN: NULL;	FMR I PROTEIN; CHAIN: NULL;	FMRI PROTEIN; CHAIN: NULL;
SeqFold Score	66.05	57.45	57.45	95.55							96.30
PMF Score					0.07	0.75	0.93	0.82	1.00	1.00	
Verify Score					-0.52	-0.27	-0.30	-0.20	0.53	0.53	
PSI BLAST	3e-31	5.1e-22	5.1e-22	7.5e-26	1.5e-09	3e-06	3e-06	1.3e-06	3.4e-31	6e-32	6e-32
End	454	231	231	85	304	298	298	296	252	252	252
Start AA	226	7	7	22	258	258	258	258	88	188	188
Chain ID		4	4	н	A	ပ ြ	Q				
PDB ID	lsur	lgri	Igri	lbe3	1 dt4			lvig	2tmr	2fmr	2fmr
SEQ NO:	266	271	272	273							276

		-,					_																			
PDB Annotation	FRAGILE X, MODULAR PROTEINS,	ANA-BINDING FKOLEIN, NMK IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING	MOTIF IMMUNE SYSTEM KH DOMAIN,	ALPHA-BETA FOLD RNA-BINDING MOTIF	IMMUNE SYSTEM KH DOMAIN,	MOTIF	RIBONUCLEOPROTEIN R.NA.	RINDING PROTEIN 1916 19 RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR FROTEINS,	RNA-BINDING PROTEIN, NMR	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS,	RNA-BINDING PROTEIN, NMR RNA-BINDING PROTEIN KHI: FMR I	FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR		IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING	MOTIF	IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING	MAINE SYSTEM CITE SOLVE	ALPHA-BETA FOLD RNA-BINDING	MOTIF	RIBONUCLEOPROTEIN RNA-	RNA-RINDING PROTEIN IVIG 19	FRAGILE X, MODULAR PROTEINS	RNA-BINDING PROTEIN, NIMR	RNA-BINDING PROTEIN KHI; FMRI,	FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN NMR	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS.
Сотроинд		NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	RNA-BINDING	ANTIGEN 2; CHAIN: A, B, C, D;	RNA-BINDING NEUROONCOLOGICAL VENTRAL	ANTIGEN 2; CHAIN: A, B, C, D;	VIGILIN; IVIG 5 CHAIN: NULL;	FMRI PROTEIN; CHAIN: NULL;	GMD1 pp.Carry Civis	FIMILI FROIEIN; CHAIN: NULL;	FMRI PROTEIN; CHAIN: NULL;			NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;		NEUROONCOLOGICAL VENTRAL ANTIGEN 2: CHAIN: A B C D:	Ť	AL	1	VIGILIN; IVIG S CHAIN: NULL;	ROTEIN: CHAIN: NULL:		_	FMKI PROTEIN; CHAIN: NULL;		FMR1 PROTEIN; CHAIN: NULL; R
SeqFold Score									06 90	66:06														1.		96.30 F
PMF Score		0.07	0.75		0.93	6	0.82	1.00			1.00			0.07	0.75		0.93		000	70.	1.00		20	 3		6
Verify Score		-0.52	-0.27		-0.30	90.0	02.0-	0.53			0.53		1	-0.52	-0.27		-0.30		02.0-		0.53		0 53			
PSI BLAST		1.5e-09	3e-06	20	36-06	1 30.06	1.36-00	6e-32	6e-32		8.5e-32			1.5e-09	3e-06		3e-06		1 30-06	\exists	3.4e-31		66-37			76-90
End		304	298	900	220	20%	067	252	252		252		\dagger		298		298		296	\neg	252 3		252 6		130	
Start AA		258	258	250	007	258		88	188		188		0,00	807	258		258		258		88		881		881	
Chain D		⋖	U		.								•	€	ပ										1	
PDB TD	,	1014	1dtj	1dti		lvig	0	2tmr	2fmr		2fmr		1 4:4		1dtj		ioi		lvig	9,	7tmr		2fmr		2fmr	
SEQ NO:)iic	9/7	276	276		276		9/7	276		276		777		277	777			277	. 220			277		277	\dashv

PDB Annotation	RNA-BINDING PROTEIN, NMR IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD, RNA-BINDING	MOTIF IMMUNE SYSTEM KH DOMAIN, ALPHA-BETA FOLD RNA-BINDING	IMMUNE SYSTEM KH DOMAIN, MAHA-BETA FOLD RNA-BINDING MATTE	RIBONUCLEOPROTEIN RNA- BINDING PROTEIN 1VIG 19	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, FNA-BINDING PROTEIN NAR	RNA-BINDING PROTEIN KHI; FMR1, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN NAR	RNA-BINDING PROTEIN KHI; FMRI, FRAGILE X, MODULAR PROTEINS, RNA-BINDING PROTEIN, NMR	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A; COMPLEX (GTP- BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE	HALOPEROXIDASE BROMOPEROXIDASE L, HALOPEROXIDASE L; HALOPEROXIDASE	OXIDOREDUCTASE AMINOPEPTIDASE AMINOPEPTIDASE
Compound	NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1; CHAIN: A;	RNA-BINDING NEUROONCOLOGICAL VENTRAL ANTIGEN 2: CHAM: A B C D:	¥		FMR1 PROTEIN; CHAIN: NULL;	FMRI PROTEIN; CHAIN: NULL;	FMR I PROTEIN; CHAIN: NULL;	RAB-34; CHAIN: A; RABPHILIN- 3A; CHAIN: B;	RAB3A; CHAIN: A;	CHLOROPEROXIDASE L; CHAIN: HA. B, C;	PROLINE IMINOPEPTIDASE;
SeqFold Score						66.96					
PMF Score	0.07	0.75	0.93	0.82	00.1		1.00	0.01	-0.07	0.03	-0.13
Verify Score	-0.52	-0.27	-0.30	-0.20	0.53		0.53	-0.01	0.14	-0.05	0.15
PSI BLAST	1.5e-09	3e-06	3e-06	1,3e-06	6e-32	6e-32	8.5e-32	6.8e-56	3.4e-56	5.1e-20	1e-21
End	304	298	298	296	252	252	252	239	236	450	449
Start AA	258	258	258	258	188	188	188	35	37	225	225
Chain ID	V V	U	Ω					4	V V	∢	4
PDB ID	1 dt4	1dtj	1dtj	lvig	2fmr	2fmr	2fmr	1zbd	3rab	1a88	lazw
SEQ ID NO:	277	277	277	277	277	277	277	278	278	280	280

	1	T										T			_,	
PDB Annotation	IMINOPEPTIDASE, SERINE PROTEASE, 2 XANTHOMONAS CAMPEGEDIO	HALOPEROXIDASE HALOPEROXIDASE A2, CHLOROPEROXIDASE A2;	HALOFEKOXIDASE, OXIDOREDUCTASE, PEROXIDASE, ALPHA/BETA 2 HYDROLASE FOLD,	HYDROLASE A/B HYDROLASE FOLD,	HYDROLASE HYDROLASE, ALPHA/BETA HYDROLASE FOLD, EPOXIDE DEGRADATION, 2	EPICHLOROHYDRIN HYDROLASE HOMODIMER, ALPHA/BETA HYDROLASE FOLD,	DISUBSTITUTED UREA 2 INHIBITOR HYDROLASE ALPHA/BETA	HYDROLASE PROLYL	ENDOPEPTIDASE, POST-PROLINE CLEAVING PROLYL	OLIGOPEPTIDASE, AMNESIA, ALPHA/BETA-HYDROLASE, BETA-2 PROPELLER		HYDROLASE EXODEOXYRIBONUCLEASE 1; ALPHA-BETA DOMAIN, SH3-LIKE	DOMENIA, DINAC SOFERFAMILY	LIPID-BINDING PROTEIN PEBP, PBP LIPID-BINDING	LIPID-BINDING PROTEIN PEBP, PBP LIPID-BINDING	LIPID-BINDING PROTEIN PEBP, PBP LIPID-BINDING
Compound		BROMOPEROXIDASE A2; CHAIN: NULL;		HALOALKANE DEHALOGENASE;	SOLUBLE EPOXIDE HYDROLASE; CHAIN: A, B, C, D;	EPOXIDE HYDROLASE; CHAIN: A, B;	SERINE HYDROLASE; CHAIN: A;	PROLYL OLIGOPEPTIDASE;	Chally: A;			EXONUCLEASE I; CHAIN: A;		PHOSPHATIDYLETHANOLAMINE -BINDING PROTEIN; CHAIN:	PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN; CHAIN:	POLL; PHOSPHATIDY LETHANOLAMINE -BINDING PROTEIN; CHAIN: NULL;
SeqFold Score															317.69	
PMF Score		0.22		-0.18	-0.17	-0.08	0.24	0.01				0.23		00.1	(4)	1.00
Verify Score		0.07		0.22	0.07	0.07	0.34	-0.05			\dagger	-0.08		1.02		1.02
PSI BLAST		1.7e-20		5.1e-21	1.7e-21	1.7c-22	1.7e-20	8.5e-33			20.00	/7-90.0		3e-83	3e-83	6.8e-80
End		451		378	447	394	438	453			303	302	1	232	232	232
Start AA		239		233	235	220	232	157			137	£ C ;		8	48	48
Chain ID				A	∢	В	Ą	4			4					
PDB ID	;	lbrt		lcqw	lehy	1ek1	levq	Iqfin			16xx			1 a 4 4	1a44	1844
SEQ NO:		780		280	780	280	280	280			281		\dagger		282	282

PDB Annotation	LIPID-BINDING LIPID-BINDING, SIGNALLING	LIPID-BINDING LIPID-BINDING, SIGNALLING	LIPID-BINDING LIPID-BINDING, SIGNALLING	CONTRACTILE PROTEIN ACTIN, GELSOLIN, CYTOSKELETON ORGANIZATION, ACTIN- 2 ASSOCIATED PROTEIN	CONTRACTILE PROTEIN LATRUNCULIN A, GELSOLIN, ACTIN, DEPOLYMERISATION, 2 SEQUESTRATION	CONTRACTILE PROTEIN ACTIN- DEPOLYMERIZING FACTOR (ADF); COMPLEX, ACTIN, GELSOLIN, CONTRACTILE PROTEIN	CONTRACTILE PROTEIN ACTIN- DEPOLYMERIZING FACTOR (ADF); COMPLEX, ACTIN, GELSOLIN, CONTRACTILE PROTEIN			MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX	MICROTUBULES MICROTUBULES, ALPHA-TUBULIN, BETA-TUBULIN, GTPASE HELIX
Compound	PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN; CHAIN: A, B;	PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN; CHAIN: A, B;	PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN; CHAIN: A, B;	ACTIN; CHAIN: A; GELSOLIN; CHAIN: G;	GELSOLIN: CHAIN: S; ALPHA ACTIN: CHAIN: A	ACTIN: CHAIN: A; GELSOLIN; CHAIN: G:	ACTIN; CHAIN: A; GELSOLIN; CHAIN: G;	ACETYLATION AND ACTIN- BINDING BETA-ACTIN-PROFILIN COMPLEX 28TF 3	ACETYLATION AND ACTIN- BINDING BETA-ACTIN-PROFILIN COMPLEX 2BTF 3	TUBULIN; CHAIN: A, B;	TUBULIN; CHAIN: A. B;	TUBULIN; CHAIN: A, B;	TUBULIN; CHAIN: A, B;
SeqFold Score		324.00					413.68		414.62	285.64			307.13
PMF Score	1.00		1.00	1.00	1.00	1.00		1.00			1.00	1.00	
Verify Score	1.05		1.05	0.95	0.87	0.99		16'0			60.0	0.11	
PSI BLAST	6e-82	6e-82	8.5e-80	0	0	0	0	0	0	0	0	0	0
End	232	232	232	376	376	376	376	376	376	461	462	459	459
Start AA	49	49	49	∞	. 01	œ	8	7	6	-		-	-
Chain ID	Ą	٧	Ą	∢	¥.	∢	٠.	Ą	A	V	∢	В	В
PDB ID	Ibeh	1beh	1beh	ldga	lesv	lyag		2btf	2btf	Itub	ltub	Itub	Itub
SEQ ID NO:	282	282	282	283	283	283	283	283	283	284	284	284	284

	τ-			_					Τ-						_													
PDB Annotation		LIM DOMAIN CONTAINING PROTEINS LIM DOMAIN	CONTAINING PROTEINS, METAL- BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING PROTEINS I IN DOMAIN	CONTAINING PROTEINS, METAL-	BINDING PROTEIN, ZINC 2 FINGER LIM DOMAIN CONTAINING	PROTEINS LIM DOMAIN	CONTAINING PROTEINS, METAL- BINDING PROTEIN ZING 2 FINGER	LIM DOMAIN CONTAINING	PROTEINS LIM DOMAIN CONTAINING PROTEINS, METAL-	BINDING PROTEIN, ZINC 2 FINGER	LIM DOMAIN CONTAINING	PROTEINS LIM DOMAIN	BINDING PROTEINS, METAL- BINDING PROTEIN, ZING 2 FINGER	LIM DOMAIN CONTAINING	PROTEINS LIM DOMAIN	CONTAINING PROTEINS, METAL. RINDING PROTEIN 21NC 2 ENGED	CONTRO ACTUTE I MA PONATARI COR	CONTRACTILE LIM DOMAIN, CRF, NMR, MUSCLE DIFFERENTIATION, CONTRACTILE	CONTRACTILE LIM DOMAIN CRP	NMR, MUSCLE DIFFERENTIATION,	METAL-BINDING PROTEIN LIM	DOMAIN CONTAINING PROTEINS	METAL BRIDGING BROTTER IT IN	DOMAIN CONTAINING PROTEINS	1CTL 15	METAL-BINDING PROTEIN LIM DOMAIN CONTAINING PROTEINS	SIGNALING PROTEIN LIM DOMAIN
Compound		QCRP2 (LIMI); CHAIN: NULL;		QCRP2 (LIM1); CHAIN: NULL;		QCRP2 (LIMI); CHAIN: NULL;			QCRP2 (LIMI); CHAIN: NULL;			QCRP2 (LIM1); CHAIN: NULL;			QCRP2 (LIMI); CHAIN: NULL;			CRP1-CHAIN: A-	'S (1107)	CRP1; CHAIN: A;		AVIAN CYSTEINE RICH PROTEIN:	1CTL 3	AVIAN CYSTEINE RICH PROTEIN:	1CTL 3		AVIAN CYSTEINE RICH PROTEIN; ICTL 3	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2: CHAIN: A:
SeqFold Score												_						71.26										
PMF Score		0.58		0.80		0.58			0.82			0.24			0.76					-0.17		0.10		0.05		- 1	77.0	0.41
Verify Score		0.43		0.31		80.0			-0.13			-0.40			0.38					0.01		-0.22		-0.26				-0.17
PSI BLAST		3e-14		6.8e-10		1.5e-16			1.4e-12			4.5e-11			1.2e-09			1.4e-23		1.4e-23		1.7e-12		3.4e-15		61212	21615	1.7e-11
End AA		437		441		200			201			996			571			572		210		437		510		571		437
Start AA	, 60	384		384		443			443		707	504			504			375		379	_	376		444		507	5	381
Chain ID																		Ą		Α.			-					¥
PDB ID	10.1	14/1		1a/1		la7i			1871		127			i	la/I			1b8t		158t		Ictl		191		t		lcxx
SEQ NO:	200	67	200	67		285		300	C87		286	67		\top	C07			285	_	782		285		285		285		285

												
PDB Annotation	BINDING PROTEIN	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL- BINDING PROTEIN	SIGNALING PROTEIN LIM DOMAIN CONTAINING PROTEINS, METAL.	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM MOTAL-BINDING PROTEIN, LIM	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM METAL-BINDING PROTEIN, LIM	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM METAL-BINDING PROTEIN, LIM MOMARN PROTEIN	METAL-BINDING PROTEIN CRIP, METAL-BINDING PROTEIN, LIM MOMANN BROTEIN, LIM	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM METAL-BINDING PROTEIN, LIM PROTEIN	METAL-BINDING PROTEIN CRIP; METAL-BINDING PROTEIN, LIM MOMAIN PROTEIN	METAL-BINDING PROTEIN LIM DOMAN, ZINC-FINGER, METAL- BINDING PROTEIN	METAL-BINDING PROTEIN LIM DOMAIN, ZINC-FINGER, METAL- BINDING PROTEIN	RIBOSOME 50S RIBOSOMAL PROTEIN L2P, HMAL2, HL4; 50S RIBOSOMAL PROTEIN L3P, HMAL3, HL1; 50S RIBOSOMAL PROTEIN L4E, HMAL4, HL6; 50S RIBOSOMAL RROTEIN L5P, HMAL5, HL13; 30S RIBOSOMAL PROTEIN HS6; 50S RIBOSOMAL PROTEIN L13P, HMAL13; 50S RIBOSOMAL PROTEIN L14P, HMAL14, HL27; 50S RIBOSOMAL
Сотроипа		CYSTEINE AND GLYCINE-RICH PROTEIN CRP2; CHAIN: A;	CYSTEINE AND GLYCINE-RICH PROTEIN CRP2: CHAIN: A;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN, CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	CYSTEINE RICH INTESTINAL PROTEIN; CHAIN: NULL;	LASP-I; CHAIN: NULL;	LASP-I; CHAIN: NULL;	233 RRNA; CHAIN: 0; 55 RRNA; CHAIN: 9; RIBOSOMAL PROTEIN L2; CHAIN: B; RIBOSOMAL PROTEIN L3; CHAIN: B; RIBOSOMAL PROTEIN L3; CHAIN: B; RIBOSOMAL PROTEIN L5; CHAIN: D; RIBOSOMAL PROTEIN L5; CHAIN: D; RIBOSOMAL PROTEIN L7AE; CHAIN: E; RIBOSOMAL PROTEIN L10E; CHAIN: F; RIBOSOMAL PROTEIN L13;
SeqFold Score												
PMF Score		0.53	0.87	0.41	0.22	60.0	0.12	0.93	0.99	0.29	0.15	1.00
Verify Score		0.38	0.41	-0.25	0.21	-0.13	0.13	0.32	0.28	-0.13	-0.34	-0.14
PSI BLAST		5.1e-13	3.4e-12	1.4e-10	4.5e-17	1.4e-15	3e-20	1.5e-12	3.4e-11	1.4c-06	0.0012	96.49
End		496	568	440	451	510	513	695	57.1	410	535	411
Start AA		443	201	382	384	443	443	502	502	381	502	
Chain		∢	∢									O
PDB ID		ıcxx	lcxx	liml	lim!	liml	limi	liml	limi	Izfo	Izfo	1fk
SEQ D NO:	200	783	285	285	285	285	285	285	285	285	285	288

PDB Annotation	PROTEIN L15P, HMAL15, HL9; 50S RIBOSOMAL PROTEIN L18P, HMAL18, HL12; 50S RIBOSOMAL PROTEIN L18E, HL29, L19; 50S RIBOSOMAL RIBOSOMAL PROTEIN L21E, HL31; 50S RIBOSOMAL PROTEIN L22P, HMAL24, HL23; 50S RIBOSOMAL PROTEIN L23P, HMAL23, HL25, L21; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L24E, HL21/HL22; 50S RIBOSOMAL PROTEIN L29P, HMAL29, HL33; 50S RIBOSOMAL PROTEIN L30P, HMAL30, HL20, HL16; 50S RIBOSOMAL PROTEIN L31E, L34, HL30; 50S RIBOSOMAL PROTEIN L37E, L35E; 50S RIBOSOMAL PROTEIN L37E, L35E; 50S RIBOSOMAL PROTEIN L37E, L35E; 50S RIBOSOMAL PROTEIN L37E, L35E; 50S RIBOSOMAL PROTEIN L37E, L35E; 50S RIBOSOMAL PROTEIN L37E, R13E, HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E, LA, HLA; 50S RIBOSOMAL PROTEIN L6P; HMAL6, HL10 RIBOSOMAL PROTEIN L6P; HMAL6, HL10 RIBOSOMAL PROTEIN L6P; NNA- RNA, PROTEIN-RNA, PROTEIN-	RIBOSOME 50S RIBOSOMAL PROTEIN L2P, HMAL2, HL4; 50S RIBOSOMAL PROTEIN L3P, HMAL3, HL1; 50S RIBOSOMAL PROTEIN L4E, HMAL4, HL6; 50S RIBOSOMAL PROTEIN L3P, HMAL5, HL13; 30S RIBOSOMAL PROTEIN H3C; 50S RIBOSOMAL PROTEIN L13P, HMAL13; 50S RIBOSOMAL PROTEIN L14P, HMAL14, HL27; 50S RIBOSOMAL RIBOSOMAL PROTEIN L18P, HMAL18, HL12; 50S RIBOSOMAL PROTEIN L18E, HL29, L19; 50S RIBOSOMAL PROTEIN L19E, HMAL19, HL24; 50S RIBOSOMAL PROTEIN L21E, HL31;
Compound	CHAIN: G; RIBOSOMAL PROTEIN L14; CHAIN: H; RIBOSOMAL PROTEIN L15; RIBOSOMAL PROTEIN L15; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L19; CHAIN: I; RIBOSOMAL PROTEIN L19; CHAIN: K; RIBOSOMAL PROTEIN L19; CHAIN: M; RIBOSOMAL PROTEIN L21E; CHAIN: N; RIBOSOMAL PROTEIN L24; CHAIN: N; RIBOSOMAL PROTEIN L24; CHAIN: Q; RIBOSOMAL PROTEIN L29; CHAIN: S; RIBOSOMAL PROTEIN L39; CHAIN: S; RIBOSOMAL PROTEIN L30; CHAIN: S; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL PROTEIN L35E; CHAIN: X; RIBOSOMAL PROTEIN L34E; CHAIN: X; RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSOMAL RIBOSO	233 RRNA; CHAIN: 0; 55 RRNA; CHAIN: 9; RIBOSOMAL PROTEIN L2; CHAIN: A; RIBOSOMAL PROTEIN L3; CHAIN: B; RIBOSOMAL PROTEIN L4; CHAIN: C; RIBOSOMAL PROTEIN L4; CHAIN: D; RIBOSOMAL PROTEIN L15; CHAIN: D; RIBOSOMAL PROTEIN L13; CHAIN: G; RIBOSOMAL PROTEIN L13; CHAIN: G; RIBOSOMAL PROTEIN L13; RIBOSOMAL PROTEIN L15; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: I; RIBOSOMAL PROTEIN L15; CHAIN: J; RIBOSOMAL PROTEIN L15; CHAIN: J; RIBOSOMAL PROTEIN L15; CHAIN: J; RIBOSOMAL PROTEIN L15; CHAIN: J; RIBOSOMAL PROTEIN L15; CHAIN: J; RIBOSOMAL PROTEIN L18; CHAIN: K; RIBOSOMAL
SeqFold Score		
PMF Score		1.00
Verify Score	,	0.18
PSI BLAST		5.16-32
End		135
Start AA		
Chain ID		O
PDB ID		- III
SEQ D NO:		288

PDB Annotation	50S RIBOSOMAL PROTEIN L22P, HMAL22, HL23; 50S RIBOSOMAL PROTEIN L23P, HMAL23, HL25, L21; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L24E, HL21/HL22; 50S RIBOSOMAL PROTEIN L29P, HMAL29, HL33; 50S RIBOSOMAL PROTEIN L30P, HMAL30, HL20, HL16; 50S RIBOSOMAL PROTEIN L31E, L34, HL30; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L39E, HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E, L4, HL4; 50S RIBOSOMAL PROTEIN L6P, HMAL6, HL10 RIBOSOMAE ASSEMBLY, RNA-RNA, PROTEIN-RNA, PROTEIN-RNA, PROTEIN-RNA, PROTEIN-ROTEIN-RNA, PROTEIN-ROTEIN-RNA, PROTEIN-ROTEIN		COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)
Сотроипа	PROTEIN L18E; CHAIN: L; RIBOSOMAL PROTEIN L19; CHAIN: M; RIBOSOMAL PROTEIN L21E; CHAIN: N; RIBOSOMAL PROTEIN L22; CHAIN: O; RIBOSOMAL PROTEIN L23; CHAIN: P; RIBOSOMAL PROTEIN L24; CHAIN: Q; RIBOSOMAL PROTEIN L24; CHAIN: R; RIBOSOMAL PROTEIN L29; CHAIN: S; RIBOSOMAL PROTEIN L30; CHAIN: T; RIBOSOMAL PROTEIN L31E; CHAIN: U; RIBOSOMAL PROTEIN L32E; CHAIN: Y; RIBOSOMAL PROTEIN L37AE; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L37AE; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L44E; CHAIN: Z; RIBOSOMAL PROTEIN L3 Z; RIBOSOMAL PROTEIN L3 Z; RIBOSOMAL PROTEIN L3 Z; RIBOSOMAL PROTEIN L3 Z; RIBOSOMAL PROTEIN L3 Z; RIBOSOMAL PROTEIN L3, RIBOSOMAL PROTEIN L3, RIBOSOMAL		QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSK ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: R. C.	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	OGSR ZINC FINGER PEPTIDE; CHAIN: A DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	QGSR ZINC FINGER PEPTIDE;
SeqFold Score								
PMF Score			0.98	0.84	0.46	0.45	0.05	0.17
Verify Score			0.06	0.09	0.04	-0.47	-0.10	0.05
PSI BLAST			1.4e-40	9e-44	1.26-39	1.7e-30	6.8e-31	5.le-27
End			4	1132	1715	1906	1934	639
Start AA			1023	1051		1826	1854	559
Chain			¥	Ą	∢	V	¥.	A
PDB ED			laih	lath	laih	lalh	laih	1a1h
SEQ NO:		9	687	289	289	289	289	289

	ပ	ပ	Ŋ	T 2	U	U	Ţ ₀	7.	Ţ.,	7
PDB Annotation	COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGERIDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX CANCER PROCEDURE, COMPLEX CANCER PROCEDURES	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGERDINA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTIRE, COMPLEX
Compound	CHAM: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAM: B. C:	QGSK ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	OGSR ZING FINGER PEPTIDE; OGSR ZING FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING STEE, CHAIN: P. C.	OLIGONULEOTIDE BINDING	GISTON CENTRAL STATES OF THE S	QGST SINC FINGER PEPTIDE; QGST SINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	DNA: CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;
SeqFold Score										
PMF Score		0.11	0.93	0.72	0.78	1.00	1.00	00.1	1.00	1.00
Verify Score		0.15	0.22	0.04	-0.00	0.21	0.28	0.34	0.35	0.16
PSI BLAST		1.5e-29	6e-45	3e-42	4.5e-42	9e-42	1.4e-39	1.7e-41	1.7e-43	3.46-45
End		899	992	1020	1047	1075	1103	1131	1159	1187
Start AA		592	911	939	296	995	1022	1050	1078	1106
Chain ID		∢	∢	V V	Y	٧	ပ .	U	U	υ
PDB ID		lalh	lalh	lalh	lalh	laih	Imey	lmey	Imey	Imey
SEQ NO:		289	289	289	289	289	289	289	289	289

										 -											_								_				_		_			
PDB Annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	IN EKACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (2)NC FINGER DNA) 2PMC	FINGER PROTEIN-DNA	INTERACTION PROTEIN DEGIGN 2	CRYSTAL STRUCTURE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC
Сотроила		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E; CONSENSIIS ZINC ENGED	PROTEIN; CHAIN: C. F. G.	•		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSOS ZINC FINGER	FROIEIN; CHAIN: C. F. G;		DNA: CHAIN: A. B. D. E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C. F. G.			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHARL A B B B	DNA; CHAIN: A, B, D, E;
SeqFold Score						-		-																			•			•								1
PMF Score		1.00				8.				1.00				5	3				0.1				5	3				8.					0.99	-			9	3,1
Verify Score		-0.08			,	0.45				0.44				,,,	77.0			;	0.05				000	67.0				0.04					0.24				0.50	7
PSI BLAST		6.8e-47			9	5. le-48				1.7e-48				1 40 40	1.45-47			,	1.46-49				3 40.50	0.46-00				3.4e-49					le-47				8.5e-47	
End AA		1215			1242	1243	_			1271				1200	6671			-	132/				1355	5	_			1383				-	141				1439	4
Start AA		1134			1163	7011				1190				1218	2		-		0#71				1274	1				1302	•			\dagger	1330				1358	1
Chain ID	ļ	ပ			ر	ر				ပ				c)			,					ر)				ပ	-			,	 ر				U	
PDB ID		Ішеу			, au	incy				Imey				lmev				l mont	, mey			_	1mev					1mey					, mey				1mey	
SEQ NO:	000	687			280	}				586				289		-		280	607				289					586				000					289	

PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER PROTEIN-DNA	INTERACTION, PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER TONA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (7NC ENCER (PMA)	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRICTIBE COMMITTEE	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRICTS BY CO. ST. 12.	CIVISTAL STRUCTORE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CALLSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEY
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA: CHAIN: A B D F.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: O P. O.			DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	INCIEIN, CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN; C. F. G.	6		DNA; CHAIN: A, B, D, E;		-		~	PROTEIN; CHAIN: C, F, G;
SeqFold Score										103.44		•					1		-	+					<u> </u>) <u>a</u>		Č	- C	1
PMF Score		0.1				00.1		<u> </u>					00				 00:1			-	3.				 2				<u>-</u>	
Verify Score		0.31				0.50		<u></u>			-		0.38			1	0.31 1.			0 13		·		\dagger	00:1 			1 00		-
FSI BLAST	-	1.7e-47			\dashv	1.2e-48 (1 40-40		. <u> </u>		1 4e-49		 ,-	1	16-49 0.	_		1 78-49				3 40-40 0 24				1.7e-49 0.26		
AA A		1467			-+	1495			1496				1523			1561				1579 17				1607 3.4				1635 1.7		
AA		1386			7777	4			1414				1442		-	1470				1498				1526				+		
А		O							U				<u>၂</u>			1								15				1554		_
A		Imey			Imev				Imey			\neg	Imey C		-	Imey				Imey	<u>-</u>			ley C	<u>.</u>			C cs		-
NO.		289			289				289			7	789 Ir			289 In	-			289 Im				289 Imey				289 Imey		_

	_	-,																																					
PDB Annotation	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC PINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	PITED A OTTON	CRYSTAL STRICTURE COLOR	CAISTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) 7INC
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;	•		DNA; CHAIN: A, B, D, E;	CONSENSOS ZINC FINGER	FROIEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		F. 1	DNA; CHAIN: A, B, D, E; CONSENSIIS ZINC ENGER	PROTEIN: CHAIN: OF G.	, , , , , , , , , , , , , , , , , , ,		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;			DNA; CHAIN: A, B, D, E;	CONSENSOS ZINC FINGER	rkolein; chain: C, F, G;		MA: Citabi 4 B B B	DINA; CHAIN: A, B, D, E;	DOUGENSOS ZINC FINGER	raditaly; Chain; C, F, G;		Mit Ottini i s -	CONSENSITE AND DES	PONSEINSOS ZINC FINGER	INCIPIN, CHAIN: C, F, G;		DNA CHAIN: A D D C.	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
SeqFold Score																				_		_				-		+								-			
PMF Score		1.00			5	66.0				1.00	-		_	6	<u></u>				0.98					71.0				0.48			-		0.78					0.58	
Verify Score		0.09			000	0.70				0.52				0.41	; ;				0.03				50	77.0-				20.00					02.0-		_			0.35	
PSI BLAST		1.7e-48			170-11	1.75				8.5e-44				5 Ie-49	2	-		,	1.46-49				2 do 45	Ct-ot-o				10-49	·				le-49					1.7e-33	
End		1663			1686	3				1742				1770	 ? :			-+	96/				1822			_		19061	_				1934					1938 1	
Start AA	1600	1382			1610	2				9991				1689				21.21			_		1745					1825					1853				1	1881	
Chain 1D	ľ	 ر			S			_	,	 ر				O				ľ					O					C		_	_		0						
PDB ID	, men				Imey					ııııcy	•			Imey				1 von					Imey					1mey (-				Imey		-		\dagger	mey	
SEQ NO:	289	}			289				280				\dashv	289				289			-		289					289 11				1	289 Ir				+	ul 697	

PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAI STRITCHING COMMITTEE	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRISIAL SIRUCIURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) 7NC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGED INA)	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEY
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C F, C.	(, C, C, C, C, C, C, C, C, C, C, C, C, C,	DNA; CHAIN: A, B, D, E;	CONSENSOS ZINC FINGER PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E,	CONSEINSUS ZINC FINGER DBOTERI: CITARI O P. O.	INCIEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	INCLEIN, CHAIN; C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	FROIEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAIN: A B D E.	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;
SeqFold Score							_								_		-		_		-		П		<u></u>			-	<u>.</u>
PMF Score		0.55		0.82			00.1				00.1				0.98				1.00			7	00.1				1.00	_	-
Verify Score		-0.04		-0.05			0.23			7	0.03								0.19				0.05				0.34		
PSI BLAST		3.4e-44		3.4e-46		!	1.4e-47			9	8.5e-49			,	1e-49		-	\dashv	6.8c-50				6.8e-50				le-49 (
End AA		639		299	-	18				722				210	_			-				+	835 6				863 1		
Start AA		558		586		7.53	± 10			643	7+0			809	060			7	07/				4c/				782 8		
Chain ID		U		ာ		C																ľ	-						
PDB		Ітеу		Imey		1mev				lmev				lmev	-			They			-		, incy				Imey C		
SEQ NO:		687	G			280			<u>-</u>	289				289		·—-		289	_	_		280				\dashv	289 Ir		

		ZINC	2,2		ZINC	· ·			ZINC	2,2	<u>~</u>	ZINC		, 2	 X	ZINC		7,7	×		 SINC	,	, ×	:				NOL	EIN				NOL
PDB Annotation	(DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA	INTERACTION. PROTEIN DESIGN, 2	CR (STAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA NITER ACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	EIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	EIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	DINA)	COMPLEX (ZINC FINGER/DNA) ZINC	NTERACTION PROTEIN DESIGN 2	CRYSTAL STRUCTURE, COMPLEX	DNA)	ANSCRIPTION	KEGULA HONDNA) COMPLEX	ONA). RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	ANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION	ONA), RNA	POLYMERASE III, 2 TRANSCRIPTION
PD	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGE FINGER, PROTEIN-DNA	INTERACTION	(ZINC FINGER/DNA)	COMPLEX (ZIN	FINGER, PROTEIN-DNA	CRYSTAL STRI	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGE	INTERACTION	CRYSTAL STRUCTU	COMPLEX (ZIN	FINGER, PROTEIN-DNA	INTERACTION	CRYSTAL STRUCTO	COMPLEX (ZIN	FINGER, PROTEIN-DNA	NTERACTION,	CRYSTAL STRI	COM OF THE CONTRACTOR OF THE C	COMPLEX (ZINC FINGE)	NTERACTION	CRYSTAL STRI	(ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION	CECULA LICE/UN	REGULATION/DNA), RNA	POLYMERASE	INITIATION, ZII	COMPLEX (TRANSCRIPTION	KEGULATION/DN/	REGULATION/DNA), RNA	POLYMERASE
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER PROTEIN: CHAIN: C F G:	, , , , , , , , , , , , , , , , , , , ,		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA. CUAIN: A B D E.	DIAA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C. F. G:			TFIIIA; CHAIN: A, D. 5S BIBOSOMAI BMA GENE: CHAIN.	B.C.E.F.	: : :			TFIIIA; CHAIN: A, D; 5S	RIBOSOMAL KNA GENE; CHAIN: B. C. E. F:		
SeqFold Score																														113.59			
PMF Score		1.00			1.00				86:0			1.00				1.00				760	 S				0.86					-			
Verify Score		0.32			0.04				0.03			0.16				0.59		-		0.46	2				81.0								
PSI BLAST		3.4e-49			3.4e-44				8.5e-41			3.4e-42				1.4e-39				1.5e-10	2			1	1.2e-33				76 74 1	1./6-30			
End		891			935				26.			166				1075				935	}				96				2001	7/71		-	
Start AA		810			838			22,0	900			910				994				808	}			,,,,,	1601				1105	B)			
Chain		ပ			ပ			C	ر			၁				ပ				S					<					ς			
PDB ID		Imey			Imey				ıncy			1mey				Imey				Imey	•			257	0111				1+66	0717			
SEQ NO:		588		000	687			200	607			289				585				289				200	607				280	3			

			T				Т				_	_		-		7					_					_			
PDB Annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION	KEGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION. ZINC FINGER PROTFIN	COMPLEX (TRANSCRIPTION	(TRANSCRIPTION)	REGULATION/DNA), RNA	POLIMERASE III, 2 I RANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	KEGULATION/DNA) COMPLEX (TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIFTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGILI ATTOMAN COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION	COMPLEY (TO ANSCRIPTION	REGULATION/DNA) COMPLEX	(TRANSCRIPTION	REGULATION/DNA), RNA	FOLYMERASE III, 2 TRANSCRIPTION INITIATION ZINC PINGER PROTERY	COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION	REGULATION/DNA) RNA	POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION	(TRANSCRIPTION) COMPLEX	REGULATION/DNA), RNA	POLYMERASE III, 2 TRANSCRIPTION INITIATION 2 INC. ENICED PROTECTION
Compound	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F,		TFIIIA; CHAIN: A, D; 5S RIBOSOMAI, RNA GENE: CHAIN:	B, C, E, F;			TFIIIA; CHAIN: A, D; 5S	B. C. E. F.			TEILIA. CHARLA E 20	ITILIA; CHAJN: A, D; 5S RIBOSOMAL RNA GENE: CHAJN:	B, C, E, F;			TFIIIA; CHAIN: A. D: 5S	RIBOSOMAL RNA GENE; CHAIN:	B, C, E, F;			TFIIIA; CHAIN: A, D; 5S	B, C, E, F;				RIBOSOMAL RNA GENE: CHAIN:			
SeqFold Score											1							-								- 24	<u>m</u>		
PMF Score	0.86		66.0			80	06.0			- ,	0.76	2	-			0.64					C7:0				0.17		-	_	
Verify Score	-0.10		/0.0			02.0	0.39				0.20	}				-0.13				\neg	67:0-				0.04				
PSI BLAST	1.7e-36	76.00 7	0.06-37			1 10 36	1.46-30				3.4e-37					1.2e-33				1,000					1.7e-30				,
End	1308	1420	074.			1532	7001				1588					1695				1800					676 1				700
Start	1163	1775	<u>:</u>			1387	<u> </u>		_		1443				233	555				1667					532				6/13
Chain ID	₹	▼				4					∢				\ \	ς .	_								A		_,_		4
PDB ID	146	1tf6				1466			_		116				1166	2				1466					1tf6				1166
SEQ ID NO:	289	289				289					583				289					289					289				289

PDB Annotation	REGULATIONDNA) COMPLEX (TRANSCRIPTION REGULATIONDNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION NITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATIONDNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2
Compound	RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D, 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score							
PMF Score		0.94	0.87	0.42	0.94	0.94	0.93
Verify Score		-0.10	0.05	-0.12	0.04	0.05	-0.46
PSI BLAST		6.8e-38	3.4e-30	6.8e-31	1.5e-54	1e-55	3e-53
End		849	951	1033	1131	1187	1244
Start AA		669	811	867	1020	1077	1104
Chain 1D		¥	¥	¥	ပ	U	ပ
PDB 1D		1tf6	146	146	lubd	lubd	Iubd
SEQ ID NO:		289	289	289	289	289	289

PDB Annotation	FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)
Сотроинд		YYI: CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INTITATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.72		0.89	0.98	0.99
Verify Score		0.00	0.18	90.0	0.30	0.33
PSI BLAST		1.5e-52	3.4e-34	6e-52	1.46-34	1.26-52
End		1271	1299	1327	1327	1356
Start AA		0911	1198	1216	1226	1245
Chain ID		U	U	v	ပ	U
PDB CII		lubd	lubd	lubd	Iubd	lubd
SEQ NO:		588	289			586

		-T		_			-				_																									
PDB Annotation	REGILI ATTONOMAN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRAINSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	INTIATOR ELEMENT XX1 2500 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	PEGIII ATTONIONI VIDEO	TRANSCRIPTION INITIATION	INITIATOR ELEMENT, YYL ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1,	PHENOCKIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC 2	PECOCNITION 2 COASS TO	TECOCINI TION, 3 CONFILEX	REGILLATION ON A	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA:	CHAIN: A. B.				VVI. CHAIN: C. ADENO	ASSOCIATED VIRIS PS	INITIATOR ELEMENT DNA:	CHAIN: A, B;				VVI. CITABLE ARMIS	1 1 CHAIN: C; ADENO-	ASSOCIATED VIKUS PS	CHAIN: A B:	, a				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;				YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5
SeqFold Score																		•									_									
PMF Score		0.78					0.86				-		0.93							100	3				_			 0:							66.0	\dashv
Verify Score		0.01				, 0	0.70				•		0.11		_					0.03	3			-				60.0		_		_			-0.29	-
PSI BLAST		7.5e-50				32.60	26-20						4.5e-52							4.5e-55	3						7	3.4e-34							4.5e-49	
End AA		1383				1430	454						1496							1579					_		-+	/001							1635 4	1
Start AA		1272				1328	9701						1384	-						1469				-			\dagger	9061	_					\exists	1524	1
Chain ID	,	ر				C)						၁							ပ					_				_						 ن	
PDB ID	1.1.1.2	9091				lubd							Iubd							lubd							3	2						7	 ban r	
SEQ NO:	280	6				289							289							289							280	```						- 600		

Tubd C 1562 1663 1-32 0.04 0.54 TVI; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: A, B; CHAIN: A, B; CHAIN: A, B; CHAIN: A, B; CHAIN: A, B; CHAIN: A, B; CHAIN: A, B; CHAIN: C, ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; CHAIN: A, B; CHAIN: A, A, B; CHAIN: A, A, B; CHAI															_																												
Tubd C 1562 1663 16-32 0.04 0.94 TVI; CHAIN; C. ADENO- ASSOCIATED VIRUS P5 0.11 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06	PDB Annotation		TRANSCRIPTION INITIATION, INITIATION, INITIATOR ELEMENT YY! 7NG 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	I KANSCKIP I ION INTITATION,	FRICED PROTEST ST. 21NC2	FINGER FROIEIN, DNA-PROTEIN	(TD ANICORDIDATION)	(TEGULATION DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) VING-YANG 1	TRANSCRIPTION INITIATION	INITIATOR ELEMENT, YYL 21NC 2	FINGER PROTEIN DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	REGULATION/DNA) YING-YANG 1;	TRANSCRIPTION INITIATION,	INITIATOR ELEMENT, YY1, ZINC2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION	KEGULA HON/DNA)	COMPLEX (TRANSCRIPTION	TE ANSON DETICAL STATE OF THE ANG I;	INTIATION INITIATION,	ENITED PROTEST ST. 21NC2	FINGER PROTEIN, DNA-PROTEIN	KECOGNITION, 3 COMPLEX	TRANSCRIPTION	REGULATION/DNA)	COMPLEX (TRANSCRIPTION	TRANSCRIPTION DITTIATION	NITIATOR ELEMENT VVI 27NC 2	FINGER PROTEIN DNA-PROTEIN	1171 TO 1 TO 1 TO 1 TO 1 TO 1
Tubd C 1562 1742 1770 6.8e-32 0.019 0.90 0.010 0.90 0.01	Compound	The state of the s	CHAIN: A, B;				VVI: CHAIN: C: ADENO	ASSOCIATED VIDIO DE	NITIATOR ELEMENT DNA.	CHAIN: A R.	.	-			YY1; CHAIN: C; ADENO-	ASSOCIATED VIRUS P5	INITIATOR ELEMENT DNA;	CHAIN: A. B;					YYI; CHAIN: C; ADENO-	ASSOCIATED VIRUS PS	MILLATOR ELEMENT DNA;	CHAIN: A, B;				VVI. CUANI. C. APENO		NA.	, CND INTERIOR		•					NA:			
EQ PDB Chain Start End PSI Verify Score D D D D AA A BLAST Score I tubd C 1562 1663 1e-32 0.04 0 I tubd C 1618 1714 6e-52 0.12 0 I tubd C 1636 1742 7.5e-51 -0.22 0.8 I tubd C 1674 1770 6.8e-32 -0.19 0.9	SeqFold	Score															,											-				_		-	- ,		_				_		
EQ PDB Chain Start End PSI Verify Score I by The Chain Start End PSI Score I lubd C 1562 1663 16-32 0.04 I lubd C 1618 1714 3.46-30 -0.01 I lubd C 1636 1742 7.5e-51 -0.22	PMF	Score					0.94								0.31		-		•			0,00			-		·			0.83	<u> </u>							06.0					
Tubd C 1636 1742 7.5e-51 1ubd C 1674 1770 6.8e-32 1ubd C 1636 1742 7.5e-51 1ubd C 1636 1742 7.5e-51 1ubd C 1674 1770 6.8e-32 1ubd C 1674 1770 1770 100	Verify	Score					0.04								0.12					_		100	?							r								T					
Tubd C 1562 1663 1714 C 1618 1714 C 1618 1714 C 1618 1714 C 1618 1714 C 1618 1714 C 1618 1714 C 1618 1714 C 1618 1714 C 1618 17170 C 1618 1770 C 1618 1770 C 1618 1770 C 1618 1770 C 1618 1770 C 1618 1770 C 1618 1770 C 1618 1770 C 1618 C 1674 1770 C 1618 C 1674 1770 C 1674	PSI BIACT	DLASI					le-32								70-20							3 40-30	3							.5e-51					-			\vdash					
D D Chain O: O: O: O: O: O: O: O: O: O: O: O: O:	<u> </u>	-+-					1663							12.1	<u>-</u>							╀		_												_		┝					
PDB C C Iubd C C Iubd C C C Iubd C C C C C C C C C C C C C C C C C C C	<u> </u>						1562		··					1600	200							1618								1636								1674					
PDB O O O O O O O O O O O O O O O O O O O	Chain	!					ပ							ر)							O					•																
O A O	PDB OI						pqnı							luhd								lubd								pqnI							1						
289 289 289 289 289 289 289 289 289 289	SEQ	NO				600	697							289								289				•			1								+						

PDB Annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION PEGIT ATTOMESTAL)	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
Compound		YY I; CHAIN: C; ADENO. ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO. ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C: ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		. 0,12	0.06	0.41	0.86	0.86
Verify Score		-0.13	-0.21	0.20	-0.19	-0.17
PSI BLAST		1.7e-30	6.8e-29	1.5e-31	3e-42	3.4e-32
End AA		1822	639	667	569	695
Start AA	·	1725	540		584	589
Chain ID	C	Ú	ပ	U	ပ	U
PDB ID]	B	lubd	lubd	pqn[pqn
SEQ NO:	780	607	289		289	289

COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION,
YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 NITIATOR ELEMENT DNA; SHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;
					7 4 6
0.51	0.77	0.92	0.57	7.93	0.93
0.04	-0.15	-0.06	10.0		0.22 0.
1.5e-47	1.2e-52	1.2e-33			16-33 0
724	752	751	677		835 16
619	640		89		
U	O			22	734
pqn				O P	O
					289 lubd
	1ubd C 619 724 1.5e-47 0.04 0.51 YY1; CHAIN: C, ADENO-ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	9 lubd C 619 724 1.5e-47 0.04 0.51 YYY1; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 Introduced by the control of the c	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 1 2 1 2 2	1 1 1 1 1 1 1 1 1 1

F						
PDB Annotation	INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGII ATIONINA)	COMPLEX (TRANSCRIPTION REGULATIONDA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	RECOLLATIONIDNA) COMPLEX (TRANSCRIPTION REGULATIONIDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATIONDNA) COMPLEX (TRANSCRIPTION REGULATIONDNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION)	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN
Compound	CHAIN: A, B,	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.87	0.95	0.92	0.83	0.66
Verify Score		0.26	00.00	-0.14	0.04	-0.28
PSI BLAST		8.5e-33	96-53	1.2e-31	9e-53	1.5e-27
End AA		891	935	935	166	166
Start AA		790	808	81 8	864	874
Chain ID	(U	v	U	v	U
PDB ID		, pqn	lubd	lubd	lubd	Iubd
SEQ NO:	G	55 88 78	289	289	289	289

PDB Annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2	FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEINDNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GIJ; GLI, ZINC FINGER, COMPI FX CHA-	BINDING PROTEINDNA) COMPLEX (DNA-BINDING PROTEINDNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GL1; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII: CHAIN: A: DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;
SeqFold Score											
PMF Score		66.0		96.0	0.89	1.00	86.0	0.86	00.1	0.92	0.16
Verify Score		0.10		-0.09	0.05	0.30	0.12	0.04	0.19	-0.20	-0.17 0
PSI BLAST		3e-53		3e-72	7.5e-71	1.3e-67	5.1e-34	4.5e-67	4.5e-67	12-99	1.5e-66
End	1047	9/01		1188	1273	1329	1382	1469 4	1525 4	1580 6	1716 1.
Start AA	064	400		1022	1106	1190	1254	1302	1386	1414	1498
Chain ID	c)		4	¥	4	A	A	A	A	A .
PDB ID	54.1	3		2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli
SEQ NO:	289			687	289	289	586	289	289 2	289 2	289 2

PDB Annotation	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING) PROTEIN/DNA)	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING) BE OFFERIONALLY	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-RNDING) PROTEIN/DNA A	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING) PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING) PROTEIN/DNA)	COMPLEX (DATABLE) TO COMPLEX (DATABLE) COMPLEX (DATABLE) GLI; GLI, ZINGER, COMPLEX (DNA-BINDING PROTEINMANA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; BOLLINGER, COMPLEX (DNA-BINDING)	COMPLEX (DNA-BINDING) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI;
Compound	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A, DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C. D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;
SeqFold Score											
PMF Score	0.63	0.59	0.78	0.86	0.62	0.62	61.0	0.49	0.46	96:0	0.84
Verify Score	0.03	-0.17	-0.13	0.18	0.00	-0.28	-0.31	-0.20	0.11	0.01	-0.19
PSI BLAST	1.7e-32	4.5e-67	1.7e-30	4.5e-65	8.5e-33	3.4e-33	1.5e-53	1.5e-63	1e-33	1.5e-68	3e-66
End	1662	1744	1713	1768	1797	694	725	781	753	808	837
Start AA	1534	1554	1590	1638	1646	558	587	614	622	642	029
Chain ID	⋖	4	Y	٧	∢	Ą	¥	∢	∢	A	A
PDB 1D	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli
SEQ ID NO:	289	289	289	289	289	289	289				289

PDB Annotation	GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GIL, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-	BINDING FKO LEINDNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING DE OTTENIONA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB COMPLEX, IDIOTOPE, ANTI-IDIOTOPE	IMMUNE SYSTEM BET V I-A, BETVI ALLERGEN; BV16 FAB-FRAGMENT, KAPPA MOPC2I CODING SEQUENCE; HEAVY CHAIN OF THE MONOCLONAL ANTIBODY MST2;
Compound		ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN; A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	IG HEAVY CHAIN V REGIONS; CHAIN: A; IG HEAVY CHAIN V REGIONS; CHAIN: B; IG HEAVY CHAIN V REGIONS; CHAIN: C; IG HEAVY CHAIN V REGIONS;	MAJOR POLLEN ALLERGEN BET V 1-4; CHAIN: A, D, G, J; IMMUNOGLOBULIN KAPPA LIGHT CHAIN; CHAIN: B, E, H, K; ANTIBODY HEAVY CHAIN FAB;
SeqFold Score										
PMF Score		0.98	0.82	0.40	0.69	0.81	96'0	0.87	0.06	0.00
Verify Score		0.00	90.0	-0.04	-0.00	-0.10	-0.01	0.03	-0.58	-0.56
PSI BLAST		89-99	1.5e-33	1.7e-30	1.5e-69	1.7e-26	4.5e-70	1.5e-69	1.5e-23	8.5e-22
End		893	862	934	992	993	1077	1105	99	99
Start AA		726	734	790	838	874	910	938	20	50
Chain ID		∢	4	4	A	<	∀	4	m m	U
PDB ID		2gli	2gli	2gli	2gli	2gli		2gli	loic	1fsk
SEQ NO:		289	289	289	289	289		289		291

											
PDB Annotation	BET V I, BV16 FAB FRAGMENT,	ANTIBOOT ALLERGEN COMPLEX				TRANSFERASE BRUTON'S AGAMMAGLOBULNEMIA TYROSINE KINASE, BTK; TRANSFERASE, PH DOMAIN, BTK MOTIF, ZINC BINDING, X-LINKED 2 AGAMMAGLOBULNEMIA,	I YROSINE-PROTEIN KINASE SIGNAL TRANSDUCTION PROTEIN		SIGNALING PROTEIN DAPPI, PHISH, BAM32; PLECKSTRIN, 3- PHOSPHOINOSITIDES, INOSITOL TETRAKISPHOSPHATE 2 SIGNAL TRANSDUCTION PROTEIN, ADAPTOR	SIGNALING PROTEIN ARFI GUANINE NUCLEOTIDE EXCHANGE FACTOR	AND PH DOMAIN
Compound	CHAIN: C, F, I, L;	COMPLEX(ANTIBODY-ANTIGEN) FV FRAGMENT (IGG1, KAPPA) (LIGHT AND HEAVY VARIABLE DOMAINS 1JHL 3 NON- COVALENTLY ASSOCIATED) OF MONOCLONAL ANTI-HEN EGG 1JHL 4 LYSOZYME ANTIBODY D11.15 COMPLEX WITH PHEASANT EGG 1JHL 5 LYSOZYME 1JHL 5		GLYCOPROTEIN VARIANT SURFACE GLYCOPROTEIN (N- TERMINAL DOMAIN) 1VSG 3		BRUTON'S TYROSINE KINASE; CHAIN: A, B;	BETA-SPECTRIN; 1BTN 4 CHAIN:	NULL; 1BTN 5	DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3- CHAIN: A;	GRPI; CHAIN: A;	PHOSPHORYLATION PLECKSTRIN (N-TERMINAL PLECKSTRIN HOMOLOGY DOMALN) MUTANT 1PLS 3 WITH LEU GLU (HIS)6 ADDED TO THE C TERMINUS 1PLS 4 (INS(G105- LEHHIRHH)) (NMR 25
SeqFold Score											
PMF Score		0.09		60.0		0.07	0.25	6	26:0	0.77	0.95
Verify Score		-0.72		0.36		0.21	0.20	†	79:0	0.48	0.69
PSI BLAST		6.8e-22		0.00075		66-09	1.3e-08	1 50.10	81-6	1.5e-14	1.5e-14
End AA		99		181	7	8	011	114		115	115
Start AA		20		123		30	30	22	3	6	
Chain ID		ı	1	<		∢		A		∢	
PDB ID		lhŲ.	1	ASA T		XX	lbta mtg	1fb8		Ifgy	sign .
SEQ NO:		167	262	767	†		295	295			295

	,																											
PDB Annotation		SIGNAL TRANSDUCTION SON OF	SEVENLESS; PLECKSTRIN, SON OF SEVENLESS, SIGNAL TRANSDITCHON	SIGNAL TRANSDUCTION IRS-1; BETA-SANDWHICH, SIGNAL TP ANSHIPTION	NOT DO TON	TRANSFERASE GLYCOSYLTRANSFERASE	TRANSCRIPTION INHIBITOR BETA-	TRANSCRIPTION INHIBITOR BIFTA-	TRANSCRIPTION INHIBITOR BETA-	TRANSCRIPTION INHIBITOR BETA-	PROPELLER	COMPLEX (GTP- BINDING/TRANSDUCER) BETA	TRANSDUCIN BETA SUBUNIT:	GAMMAI, TRANSDUCIN GAMMA	SUBUNII; COMPLEX (GTP.	HETEROTRIMER 2 SIGNAL	TRANSDUCTION	COMPLEX (GTP-	BINDING/TRANSDUCER) BETA1.	TRANSDUCIN BETA SUBUNIT;	GAMMAI, IRANSDUCIN GAMMA	SUBUNII; COMPLEX (GTP.	BINDING/TRANSDUCER), G PROTEIN,	TRANSDIPTION	COMPLEX (GTP.	BINDING/TRANSDUCER) BETAI,	TRANSDUCIN BETA SUBUNIT;	SUBUNIT; COMPLEX (GTP.
Compound	STRUCTURES) IPLS 5	SOS 1; CHAIN: NULL;		INSULIN RECEPTOR SUBSTRATE I; CHAIN: A, B;		SPORE COAT POLYSACCHARIDE BIOSYNTHESIS PROTEIN CHAIN: A:	TRANSCRIPTIONAL REPRESSOR	TRANSCRIPTIONAL REPRESSOR	TRANSCRIPTIONAL REPRESSOR	TRANSCRIPTIONAL REPRESSOR	TOP I; CHAIN: A, B, C;	GI-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B;	GT-GAMMA; CHAIN: G;					GT-ALPHA/GI-ALPHA CHIMERA;	CHAIN: A; GI-BETA; CHAIN: B;						نزا		GI-GAMMA; CHAIN: G;	
SeqFold Score							_					- 1		<u> </u>							-							
PMF Score		10.0		-0.14		0.13	0.34	-0.09	0.34	0.95	17	<u>.</u>		- ,)	0.16		_		_			0.98			
Verify Score		0.13		0.20		-0.21	0.03	0.24	-0.04	0.21	1,00		-			-	+	-0.24					-		0.33 (-
PSI BLAST		1.5e-11	ļ	3e-18		4.5e-05	1.7e-59	5.1e-58	1.7e-47	6.8e-50	3 40-56	2					2 46 30	75-57			•			\dashv	3.4e-44		7	
End		114		204		467	437	481	251	352	479						250			_				+	297 3			1
Start AA	;	33	ç	33		296	901	183	2	54	170						2							7	- -			
Chain ID			-	∢		4	4	∢	V	Ą	В		-				m m							1	, n	· · · · ·	_	
PDB ID		strid t	200	1448		Iqgq	lerj.	lerj	lerj	1erj	lgot					-	Pot							+	1 801			
SEQ ID NO:	205	767	205	667	ì	967	297	297	787	297	297						297		-					707		_		

SEQ NO:	PDB ID	Chain ID	Start AA	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
										BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL TRANSDUCTION
297	1got	В	35	369	3.46-66			59.96	GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL
297	lgot	æ	52	349	8.5e-51	0.12	0.96		GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL
297	lgot	м	86	389	3.4e-66	0.28	0.77		GT-ALPHA/GI-ALPHA CHIMERA; CHAIN: A; GT-BETA; CHAIN: B; GT-GAMMA; CHAIN: G;	COMPLEX (GTP- BINDING/TRANSDUCER) BETA1, TRANSDUCIN BETA SUBUNIT; GAMMA1, TRANSDUCIN GAMMA SUBUNIT; COMPLEX (GTP- BINDING/TRANSDUCER), G PROTEIN, HETEROTRIMER 2 SIGNAL
298	la4y	A	32	208	7.5e-12	0.44	0.58		RIBONUCLEASE INHIBITOR; CHAIN: A, D; ANGIOGENIN; CHAIN: B, E;	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS
298	la4y	Y	49	223	1.4e-10		0.98		RIBONUCLEASE INHIBITOR; CHAIN: A, D: ANGIOGENIN; CHAIN: B, E;	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS
298	la9n	¥	112	218	0.00051	0.18	0.40		U2 RNA HAIRPIN IV; CHAIN: Q, R; U2 A'; CHAIN: A, C; U2 B"; CHAIN: B, D; .	COMPLEX (NUCLEAR PROTEIN/RNA) COMPLEX (NUCLEAR PROTEIN/RNA), RNA,

	-			_					_				_			_	_																	
PDB Annotation	SNRNP, RIBONUCL EOPROTEIN	CELL ADHESION LEUCINE RICH REPEAT, CALCTUM BINDING, CELL	ADHESION	TRANSFERASE CRYSTAL	STRUCTURE, RAB GERANYI GERANYI TRANSEERASE	2.0 A 2 RESOLUTION. N.	FORMYLMETHIONINE, ALPHA	SUBUNIT, BETA SUBUNIT	CONTRACTILE PROTEIN LEUCINE-	RICH REPEAT, BETA-BETA-ALPHA	CHLAMYDOMONAS ELAGELLA	RNA BINDING PROTEIN TAP (NFX1);	RIBONUCLEOPROTEIN (RNP, RBD OR	RRM) AND LEUCINE-RICH-REPEAT 2 (LRR)	RNA BINDING PROTEIN TAP (NFX1);	RIBONUCLEOPROTEIN (RNP, RBD OR RRM) AND TELICINE-PICH BENEAUS	(LRR)	LIGASE CYCLIN A/CDK2-	ASSOCIATED PROTEIN P45; CYCLIN	A/CDK2-ASSOCIATED PROTEIN P19;	SKPI, SKP2, F-BOX, LKR, LEUCINE-	RICH REFEAT, SCF, UBIQUITIN, 2 E3, UBIOUITIN PROTEIN I IGASE	LIGASE CYCLIN A/CDK2-	ASSOCIATED PROTEIN P45; CYCLIN	A/CDK2-ASSOCIATED PROTEIN P19;	SKP1, SKP2, F-BOX, LRR, LEUCINE.	RICH REPEAT, SCF, UBIQUITIN, 2 E3,	UBIQUITIN PROTEIN LIGASE	ASSOCIATED PROTEIN PASSOCIATED	A/CDK2-ASSOCIATED PROTEIN P19:	SKP1, SKP2, F-BOX, LRR, LEUCINE-	RICH REPEAT, SCF, UBIQUITIN, 2 E3,	UBIQUITIN PROTEIN LIGASE	ASSOCIATED PROTEIN P45; CYCLIN
Compound		INTERNALIN B; CHAIN: A;	474	KAB	GERANYLGERANYLTRANSFERA SE ALPHA SUBUNIT: CHAIN: A. C.	RAB	GERANYLGERANYLTRANSFERA	SE BETA SUBUNIT; CHAIN: B, D;	OUTER ARM DYNEIN; CHAIN: A;			NUCLEAR RNA EXPORT FACTOR	I; CHAIN: A, B;		NUCLEAR RNA EXPORT FACTOR	1, Chair. A. B.		SKP2; CHAIN: A, C, E, G, I, K, M, O;	SKF1; CHAIN: B, D, F, H, J, L, N, P;				SKP2; CHAIN: A, C, E, G, I, K, M, O;	SKP1; CHAIN: B, D, F, H, J, L, N, P;				+	SKP1; CHAIN: B, D. F. H. J. L. N. P.				SKP2: CHAIN: A C B C I V M C.	
SeqFold Score																															_			
PMF Score		0.64	300	6.6		•	•		0.04			0.37			0.13			0.46	-				-0.02					1.00					96.0	
Verify Score		0.22	50	70.0				,,,,	90.0-			0.13			90:0			0.28					0.04					0.95					0.54	\dashv
PSI BLAST		5.1e-13	1 70-07	10-01-1				6	1.26-09			1.7e-09			1.7e-09		:	0.1e-11			-		1.5e-08					3e-21					6.8e-19	\dashv
End		219	174	<u>.</u>				216	212			210			210		;	414	•				140					161					207	\dashv
Start AA	,	4 V	53	3				112	3			124			124		50.	671					33					39					49	
Chain ID		∢	A	:				4	;			⋖			ф								∢					4					٧	
PDB ID	10F	aoni	1dce	:	_			1469			,	101		,	101		1600	<u>.</u>	-	-		,	- vb.i					1 fqv			-		Ifqv	
SEQ ID NO:	300	730	298				•	298	}		900	867		Ş	798		208	3				900	967					298					298	
															155						_										_			J

PDB Annotation	A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2- ASSOCIATED PROTEIN P45; CYCLIN A/CDK2-ASSOCIATED PROTEIN P19; SKP1, SKP2, F-BOX, LRR, LEUCINE- RICH REPEAT, SCF, UBIQUITIN, 2 E3, UBIOLIUTIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2- ASSOCIATED P45: CYCLIN A/CDK2- ASSOCIATED P19: SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	LIGASE CYCLIN A/CDK2- ASSOCIATED P45; CYCLIN A/CDK2- ASSOCIATED P19; SKP1, SKP2, F-BOX, LRRS, LEUCINE-RICH REPEATS, SCF, 2 UBIQUITIN, E3, UBIQUITIN PROTEIN LIGASE	TRANSCRIPTION RNAIP; RANGAP; GTPASE-ACTIVATING PROTEIN FOR SPII, GTPASE-ACTIVATING PROTEIN, GAP, RNAIP, RANGAP, LRR, LEUCINE- 2 RICH REPEAT PROTEIN, TWINNING, HEMIHEDRAL TWINNING, 3 MEROHEDRAL TWINNING, MEROHEDRAY	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE-RICH REPEATS	ACETYLATION RNASE INHIBITOR, RIBONUCLEASE/ANGIOGENIN INHIBITOR ACETYLATION, LEUCINE-RICH REPEATS	MUSCLE PROTEIN MDE; MUSCLE PROTEIN	MUSCLE PROTEIN MDE; MUSCLE
Compound		SKP2; CHAIN: A, C, E, G, I, K, M, O; SKP1; CHAIN: B, D, F, H, J, L, N, P;	SKP2; CHAIN: A, C; SKP1; CHAIN: B. D;	SKP2; CHAIN: A, C; SKP1; CHAIN: B, D;	GTPASE-ACTIVATING PROTEIN RNA1_SCHPO; CHAIN: A, B;	RIBONUCLEASE INHIBITOR; CHAIN: NULL;	RIBONUCLEASE INHIBITOR; CHAM: NULL;	MYOSIN; CHAIN: A, B, C, D, E, F, G, H;	MYÓSIN; CHAIN: A, B, C, D, E, F,
SeqFold Score									219.13
PMF Score		0.92	0.27	0.77	0.23	0.76	1.00	1.00	
Verify Score		0.85	-0.35	0.64	-0.38	0.31	0.32	0.91	
PSI BLAST		4.5e-19	5.16-11	6.8e-19	1e-08	1.4e-08	16-10	3.4e-44	3.4e-44
End		661	214	207	220	223	217	151	151
Start AA		70	129	49	111	113	53	4	4
Chain ID		∀	⋖	Ą	∢			В	В
PDB ID		lfqv	162	1 fs2	lyrg	2bnh	2bnh	1br1	lbr1
SEQ NO:		298	298	298	298	298	298	299	299

PDB Annotation													ź		ځ					NG,			~~~		T	ເກົ	2,5
1 1	PROTEIN											3 (2004)	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION DISORDER	CALCIUM-REGULATED MUSCLE	CONTRACTION MUSCLE CONTRACTION, CALCILIM-BING	TROPONIN, E-F HAND, 2 OPEN	CONFORMATION REGULATOR Y DOMAIN, CALCIUM-REGULATED 3	MUSCLE CONTRACTION	CALCIUM-REGULATED MUSCLE	CONTRACTION, CALCIUM-BINDING,	TROPONIN, E-F HAND, 2 OPEN	CONFORMATION REGULATORY	MUSCLE CONTRACTION			CALMODULIN, CALCIUM BINDING,	HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING
Compound	G, H;	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING	DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT	PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN	WITH CALMODULIN-BINDING	DOMAIN OF ICDM 3	CALMODULIN-DEPENDENT PROTEIN KINASE II 1CDM 4	CALCIUM-BINDING PROTEIN	CALMODOLIN (VERTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE)	ICLL 3	CALMODOLIN; CHAIN: A;	TROPONIN C; CHAIN: NULL;				The second of th	INOPONIN C; CHAIN: NOLL;					CONTRACTILE SYSTEM PROTEIN	CONTRACTILE SYSTEM PROTEIN	N: A; RS20;	_
SeqFold Score				00.00	103.28		-	-			113.59			89.97											83.80		
PMF Score	;	00.			_				1.00			00						9						00.1	00	1.00	
Verify Score		0.00							0.49			0.40	2					0.38		_	_		7	0.57		0.72	
PSI BLAST	1	1.76-30		170.56	00-5/-1	180			6.8e-62		6.8e-62	1.4e-59		1.7e-48	-			1.7e-48					7	5.16-49	5.1e-49	1.2e-60	
End	9,7	5+1		140	È				149		150	150						148	!				7		151	149	
Start AA	-	+		4					4		4	4		·				4									
Chain ID	4	;		A	 _							A		<u>-</u>				1					1	*	4	7	-
PDB ID	lcdm			Icdm				=				lexr /	100	3				Itcf					1402		l top	lvrk	-
SEQ NO:	299			299				000		000		299	200					299 1					200	\dashv	_	299	

PDB Annotation	Н	V0; CALMODULIN, CALCTUM BINDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	INTEGRIN INTEGRIN, CELL ADHESION, GLYCOPROTEIN	COLLAGEN-BINDING COLLAGEN-	BINDING, HEMOSTASIS, DINUCLEOTIDE BINDING FOLD	COLLAGEN-BINDING COLLAGEN-	BINDING, HEMOSTASIS,	WILLEBRAND WILLEBRAND, BLOOD		GLYCOPROTEIN	NILLEBRAND WILLEBRAND, BLOOD N: COAGHLATION PLATELET		K, B; STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, A PLESTON	+	igi; immune system von v willebrand factor.			(WILLEBRAND/IMMUNOGLOBULIN)	BLOOD COAGOLATION LYFE 3.2B VON WILLEBRAND DISEASE	CELL ADHESION PROTEIN A-	DOMAIN INTEGRIN, CELL ADHESION	PROTEIN, GLYCOPROTEIN,	CYTOSK ELETON	CELL ADHESION PROTEIN A-	DOMAIN INTEGRIN, CELL ADHESION	PROTEIN, GLYCOPROTEIN,	EXTRACELLULAR 2 MATRIX, CYTOSKELETON	-
Compound		CALMODULIN; CHAIN: A; RS20; CHAIN: B;	INTEGRIN ALPHA 2 BETA; CHAIN: A. B;	VON WILLEBRAND FACTOR;	CHAIN: A, B;	VON WILLEBRAND FACTOR;	CHAIN: A, B;	A1 DOMAIN OF VON	WILLEBRAND FACTOR; CHAIN:	NOLL;	AI DOMAIN OF VON. WILLEBRAND FACTOR: CHAIN:	NULL;	INTEGRIN ALPHA-1; CHAIN: A, B;	SY LOUGH HIGO LOCKED AND	IMMUNOGLOBULIN NMC-4 IGGI; CHAIN: L; IMMUNOGLOBULIN	NMC-4 IGG1; CHAIN: H; VON	WILLEBRAND FACTOR; CHAIN:	Ą;		INTEGRIN; CHAIN: NULL;				INTEGRIN; CHAIN: NULL;				CD11A; ILFA 5 CHAIN: A, B; ILFA
SeqFold Score		115.21		72.47				62.36	·											59.31								
PMF Score			0.83			1.00				,	8.1		1.00	000	0.90							-		00.1				0.99
Verify Score			0.37			0.88				,	0.57		0.58	02.0	2.5									0.61				0.53
PSI BLAST		1.2e-60	1.7e-28	1.5e-23		1.5e-23		1.4e-35			1.4e-35		5.1e-29	\$ 10.34	5.16-54					5.le-31				5.1e-31				8.5e-23
End		151	215	226		218		227		1	727		217	227	77					224				217				226
Start AA	,	7	36	38		39		23			67		36	3,4	2					39				41				38
Chain D		∢	٧	4		∢							∢	V	ζ													∢
PDB CI	-	A A	laox	latz		latz		lauq			bneı		Ick4	1 fnc	3					lido				lido				lifa
SEQ ID NO:	000	667	300	300		300		300		300	200		008	300	}					300				300				300

			T 1	
PDB Annotation	LYBETA-2 INTEGRIN, A-DOMAIN;	ILFA 8 CELL ADHESION INTEGRIN, CELL ADHESION	RNA BINDING PROTEIN RIBOSOMAL PROTEIN, PROTEIN SYNTHESIS, RNA BINDING, 2 ANTIBIOTICS RESISTANCE, RNA BINDING	RIBOSOME 50S RIBOSOMAL PROTEIN L2P, HMAL2, HL4; 50S RIBOSOMAL PROTEIN L3P, HMAL3, HL1; 50S RIBOSOMAL PROTEIN L4B, HMAL2, HL4; 50S RIBOSOMAL PROTEIN L1B, HMAL13; SOS RIBOSOMAL PROTEIN L13P, HMAL13; SOS RIBOSOMAL PROTEIN L13P, HMAL13; SOS RIBOSOMAL PROTEIN L14P, HMAL14, HL27; 50S RIBOSOMAL PROTEIN L15P, HMAL15, HL9; 50S RIBOSOMAL PROTEIN L18P, HMAL18, HL12; 50S RIBOSOMAL PROTEIN L18E, HL29, L19; 50S RIBOSOMAL PROTEIN L19E, HMAL19, HL24; 50S RIBOSOMAL PROTEIN L2P, HMAL24, HL15; 50S RIBOSOMAL PROTEIN L23P, HMAL23, HL25, L21; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L24P, HMAL24, HL16, HL15; 50S RIBOSOMAL PROTEIN L31E, L34, HL30; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S
Compound	CDIIA; ILFA 5 CHAIN: A, B; ILFA 6	ALPHAI BETAI INTEGRIN; CHAIN: A; ALPHAI BETAI INTEGRIN: CHAIN: B:	RIBOSOMAL PROTEIN L22; CHAIN: A;	23S RRNA; CHAIN: 0; SS RRNA; CHAIN: 9; RIBOSOMAL PROTEIN L2; CHAIN: 9; RIBOSOMAL PROTEIN L2; CHAIN: 13; CHAIN: 14; CHAIN: 15; CHAIN: 15; CHAIN: 15; CHAIN: 15; RIBOSOMAL PROTEIN L3; CHAIN: 15; CHAIN: 16; CHAIN: 16; CHAIN: 17, RIBOSOMAL PROTEIN L13; CHAIN: 16; RIBOSOMAL PROTEIN L14; CHAIN: 16; RIBOSOMAL PROTEIN L15; CHAIN: 17; RIBOSOMAL PROTEIN L15; CHAIN: 18; RIBOSOMAL PROTEIN L19; CHAIN: 18; CHAIN: 19; CHAIN: 19; CHAIN: 19; CHAIN: 19; CHAIN: 19; CHAIN: 19; CHAIN: 19; CHAIN: 19; CHAIN: 19; RIBOSOMAL PROTEIN L21; CHAIN: 19; RIBOSOMAL PROTEIN L23; CHAIN: 19; RIBOSOMAL PROTEIN L23; CHAIN: 19; RIBOSOMAL PROTEIN L29; CHAIN: 15; RIBOSOMAL PROTEIN L29; CHAIN: 15; RIBOSOMAL PROTEIN L29; CHAIN: 15; RIBOSOMAL PROTEIN L29; CHAIN: 15; RIBOSOMAL PROTEIN L29; CHAIN: 15; RIBOSOMAL PROTEIN L29; CHAIN: 15; RIBOSOMAL PROTEIN L39; CHAIN: 10;
SeqFold Score	53.04			
PMF Score		0.94	0.71	1.00
Verify Score		0.41	-0.14	0.02
PSI BLAST	8.5e-23	1.4e-28	1.7e-33	1.7e-44
End AA	227	217	153	152
Start AA	38	37	13	
Chain ID	A	Ą	A	0
PDB ID	Ilfa	1905	lbxe) ·
SEQ ID NO:	300	300	301	301

							·		
PDB Annotation	HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E, LA, HLA; 50S RIBOSOMAL PROTEIN L6P, HMAL6, HL10 RIBOSOME ASSEMBLY, RNA- RNA, PROTEIN-RNA, PROTEIN- PROTEIN			PROTEINDNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEINDNA	PROTEINÍDNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	PROTEINDNA HOMEODOMAIN, DNA, COMPLEX, DNA-BINDING PROTEIN, PROTEIN/DNA	TRANSCRIPTION/DNA ULTRABITHORAX; PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVELOPMENT 2 SPECIFICITY	TRANSCRIPTION/DNA ULTRABITHORAX; PBX PROTEIN; DNA BINDING, HOMEODOMAIN, HOMEOTIC PROTEINS, DEVELOPMENT 3 SPECIFICITY	
Compound	CHAIN: V; RIBOSOMAL PROTEIN L37AE; CHAIN: W; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L44E; CHAIN: Z; RIBOSOMAL PROTEIN L6; CHAIN: 1;	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 1AHD 3 REPLACED BY SER (C39S) COMPLEX WITH DNA (NMR, 1AHD 4 16 STRUCTURES) 1AHD 5	DNA-BINDING PROTEIN ANTENNAPEDIA PROTEIN (HOMEODOMAIN) MUTANT WITH CYS 39 1AHD 3 REPLACED BY SER (C39S) COMPLEX WITH DNA (NMR, 1AHD 4 16 STRUCTURES) 1AHD 5	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E;	HOMEOBOX PROTEIN HOX-B1; CHAIN: A; PBX1; CHAIN: B; DNA CHAIN: D; DNA CHAIN: E:	ULTRABITHORAX HOMEOTIC PROTEIN IV; CHAIN: A; HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (5- CHAIN: C; DNA (5- CHAIN: D;	ULTRABITHORAX HOMEOTIC PROTEIN IV; CHAIN: A; HOMEOBOX PROTEIN EXTRADENTICLE; CHAIN: B; DNA (5-CHAIN: C: DNA (5-CHAIN: D.	DNA-BINDING FUSHI TARAZU
SeqFold Score			72.79	69.28			61.07		71.20
PMF Score		0.98			0.99	1.00		0.83	
Verify Score		-0.16			-0.07	-0.29		60.0	
PSI BLAST		16-33	le-33	1.5e-30	1.5e-30	1.7e-27	4.5e-30	4.5e-30	1.2e-28
End		208	209	203	203	204	202	201	210
Start AA		143	143	137	143	147	143	144	142
Chain D		Ь	Ω.	∢	∢	Ą	Α	∢	
PDB CI		lahd	lahd	1672	1672	1672	1b8i	158i	1ftz
SEQ ID NO:		302	302	302	302	302	302	302	302

			_									_,																												
PDB Annotation															_				COMPLEY (DNA PRIDATO	PROTFIN/DNA) HD: HOWEODOWARI	COMPLEX (DNA-BINDING	PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) HD: HOMEODOMAIN	COMPLEX (DNA-BINDING	PROTEIN/DNA)		SIGNALING PROTEIN PROTEIN.	LIGAND COMPLEX, POLYPROLINE	RECOGNITION, BETA TURN		SIGNALING PROTEIN PLECKSTRIN	HOMOLOGY DOMAIN FOLD	COMPLEX (SMALL	GIPASE/NUCLEAR PROTEIN)	COMPLEX (SMALL	GIFASE/NUCLEAR PROTEIN), SMALL GTPASE 2 NICT FAD TO ANGROUSE	ואס ווסיוטיון אי ווסיוטים (ביי	GENE REGULATION INITIATION	FACTOR
Сотроина	PROTEIN (HOMEODOMAIN)	(NMR, 20 STRUCTURES) 1FTZ 3	DNA-BINDING FUSHI TARAZU PROTEIN (HOMFODOMAIN)	(NMR, 20 STRUCTURES) IFTZ 3	DNA-BINDING PROTEIN	ANTENNAPEDIA PROTEIN	(HOMEODOMAIN) MUTANT	WITH CYS 39 ISAN 3 REPLACED	BY SER AND RESIDUES 1-6	DELETED (C39S DEL 1-6) 19AN A	(NMR, 20 STRUCTURES) ISAN 5	DNA-BINDING PROTEIN	ANTENNAPEDIA PROTEIN	(HOMEODOMAIN) MITTANT	WITH CYS 39 1SAN 3 REPLACED	BY SER AND RESIDUES 1-6	DELETED (C39S DEL 1-6) ISAN A	(NMR, 20 STRUCTURES) 1SAN 5	ANTENNAPEDIA PROTEIN:	CHAIN: A, B; DNA; CHAIN: C, D. E.	ů.		ANTENNAPEDIA PROTEIN;	CHAIN: A, B; DNA; CHAIN: C, D, E,				GLGF-DOMAIN PROTEIN HOMER;	CHAIN: A; METABOTROPIC	GLU I AMA I E KECEPTOR	MGLURS; CHAIN: B;	GLGF-DOMAIN PROTEIN HOMER;	ANI CHARI. A CAMOR SA	POPE COMPLEX STORY	NI IP348: CHAIN: B D.				NOI	FACTOR IF3; CHAIN: A;
SeqFold Score					69.53				-													1	68.47			1		_	_	_				4 D					<u> </u>	3
PMF Score		0.50	60:0									1.00				-			1.00								77,0				0,40	 	96.0						0.89	
Verify Score		0.50	?									0.0							0.38			1		_		-	870				0 62 0		0.57					7	0.62	
PSI BLAST		1.2e-28	}		3.4e-31							3.4e-31						1	5.1e-31			\$ 10.21	10-21.0	-			0 0003				0.00015		1.5e-25 0					1	1.26-16	
End		208		- 1	607						3	807							202			202	707				8				96		101				+	\dagger		
Start AA		144		97.1	× + 1		_				140	149						5	/ + 1			147	:				4				4		7					150	6	
Chain ID								_	_									<	τ.								4				A		<u>. </u>				- -	\dagger		
FDB ED		1ftz		Isan							Isan	100						Oant				9ant					1ddv				1ddw '	1	lrrp I					2ife A		
SEQ NO:		302		302	}						302	!						302				302				1	307 1				307	\dagger	30./ 					309 2	\neg	

PCT/US2001/027093

PDB Annotation	SIGNALING PROTEIN GBP. GTP	HYDROLYSIS, GDP, GMP, INTERFERON INDUCED, DYNAMIN 2 RELATED LARGE GTPASE FAMILY	GMPPNP, GPPNHP.	OUTER MEMBRANE PROTEIN	DEOTED NON SPECIFIC BODEN	OSMOBODINI 2 DETA DADDET	TRANSMEMBRANE	HYDROLASE DOUBLE BETA	BARREL, BACTERIAL SERINE PROTEASE	HYDROLASE DOUBLE BETA	BARREL, BACTERIAL SERINE PROTEASE	SERINE PROTEASE SERINE	PROTEASE, LOW TEMPERATURE,	HYDROLASE, 2 SERINE PROTEINASE	SERINE PROTEASE SERINE	HYDROLASE, 2 SERINE PROTEINASE		COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	NITION I CANDAIR CAID STORY	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN		COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC
Compound	INTERFERON-INDUCED	GUANYLATE-BINDING PROTEIN I; CHAIN: A;		OMPK36; CHAIN: A, B, C;				ALPHA-LYTIC PROTEASE;	CHAIN: A;	ALPHA-LYTIC PROTEASE;	CHAIN: A;	ALPHA-LYTIC PROTEASE;	CHAIN: NULL;		ALPHA-LYTIC PROTEASE;	CICEIN: NOCE,		QGSR ZINC FINGER PEPTIDE;	OLIGONUCLEOTIDE BINDING	SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE;	CHAIN: A; DUPLEX	SITE; CHAIN: B. C.	QGSR ZINC FINGER PEPTIDE;	CHAIN: A; DUPLEX	OLIGONUCLEOTIDE BINDING	SITE; CHAIN: B, C;	DNA; CHAIN: A, B, D, E;	PROTEIN: CHAIN: C F G.		DM4: CH4Bl: 4 B B B	DIAA, CHAIN: A, B, D, E;
SeqFold Score																										-						
PMF Score	0.03			-0.20				0.04		-0.08		-0.06			-0.20			0.27			0.11			0.12				0.22			0.05	
Verify Score	-0.27			1.73				1.84		1.29		1.63			1.03			-0.02			-0.24			-0.46	•		70.0	90.7	•		20.0	1
PSI BLAST	0.0049			1.36-15				1.2e-11		3e-09		le-11			01-97.1			8.5e-18			1.2e-39			6e-37			3 40 22	75-24.0			1 7e-39	,,,,,,
End	167		8	35				611		96		611		T	7						448			728		- <u></u>	105				223	1
Start AA	107		c	>				4		∞		4		0	•			9			339			619			105	3			142	
Chain ID	∢		<	<				⋖		∢								< -						≺			C				U	
PDB ID	1fSn		locm.	TIRO T	_			1qq4		1994		Ital		1 to 1			1							lath			Imev	_			Imey	
SEQ ID NO:	310		310	2				016		310		310		310	2		::		· _	\dagger				311			311		,		311	

PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGERONA)	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	INTER ACTION PROTECTION 2	CRYSTAL STRUCTURE COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROJEIN-DNA	INTERACTION, PROTEIN DESIGN, 2	(ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC	FINGER, PROTEIN-DNA	CRYSTAL STRUCTURE. COMPLEX
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER PROTEIN: CHAIN: C. F. G.		DNA; CHAIN: A, B. D. E.	CONSENSUS ZINC FINGER	PROTEIN: CHAIN: C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA. CUADI. A B B B	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C. F. G.			DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	rnotein; Chain; C, F, G;		DNA; CHAIN: A, B, D, E;	CONSENSUS ZINC FINGER	PROTEIN; CHAIN: C, F, G;		DNA: CHAIN: A B D E.	CONSENSITY A, B, D, E;	PROTEIN: CHAIN: O F O.	() (1, C) (1, C)		DNA; CHAIN: A, B, D, E;	PROTEIN; CHAIN: C. F. G.	
SeqFold Score			-			_					-		+							-			_				-	- Д) <u>a</u> ,	
PMF Score		1.00	,		0.99				1.00				060	`			-	 3:-				0.99		_		86.0	·				 3:		
Verify Score		0.19			0.17				0.27	<u> </u>			-0.02				76.0				\exists	90.0-		_		0.07				1	0.0 0.0		
PSI BLAST		1.7e-42			1.2e-44				3.4e-46				1.7e-46		-		8 50 17			_	7	1.56-46				1.7e-46				2 12 17			
End		251			279				307				335				363		-		十	165			-	419 1				447			
Start AA		170			198			ì	077				254				282				210	 2				338				1995			
Chain ID		C			U			,	_				ن ن				C				T			_						1			
PDB ID		Ітеу			Imey			, in					Imey	_			1mey (_		1mev					lmey C				ev C		-	
SEQ NO:		311			311			311				1	31.		_		311 1				311				\dashv	311 1m				311 Imey			

PDB Annotation	(ZINC FINGERDNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER DNA)	COMPLEX (CINC FINGER/DNA) ZINC FORGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX CANCER FINGER DANA	CONTENT (SINCE FINGER/DNA) ZINC FONGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZING FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION. PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZING FINGER DANA)	COMPLEX (ZING FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER ANA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER ANA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER DAY)	COMPLEX (ZINC FINGER/DNA) ZINC
Compound	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E;
SeqFold Score					108.14				
PMF Score	1.00	1.00	1.00	00.1		1.00	66.0	1.00	0.82
Verify Score	0.32	0.06	0.18	0.37		0.14	0.14	-0.00	0.04
PSI BLAST	6.8e-49	le-49	3.4e-49	1.2e-48	3.46-49	8.5e-49	1.5e-48	6.8e-49	6.8e-49
End	475	503	531	559	560	587	615	643	671
Start AA	394	422	450	478	478	506	534	562	290
Chain ID	U	U	ပ	ပ	ပ	U	ပ	ပ	O
PDB ID	lmey	Imey	Ітеу	Imey	Imey	Ітеу	1mey	Imey	lmey
SEQ ID NO:	311	311	311	311			·	311	311

		T	- 						
PDB Annotation	INTERACTION, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(CLINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGERDNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CAN STALL STRUCTURE, COMPLEX	(ZINC FINGERDNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	CLINC FINGERIDNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	COMPLEX (ZINC FINGERDNA) COMPLEX (ZINC FINGERDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION THE STORY OF TRANSCRIPTION
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F. G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA: CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;
SeqFold Score	·								
PMF Score		0.94	0.98	1.00	1.00	1.00	1.00	00.1	0.98
Verify Score		-0.22	-0.03	0.23	0.31	0.08	-0.03	-0.09	0.00
PSI BLAST		1.7e-49	1.2e-50	1.2e-50	6.8e-51	3.4e-50	1.7e-50	1.5e-40	1.7e-34
End AA		669	727	755	783	811	839	852	345
Start AA		618	646	674	702	730	758	786	661
Chain ID		ပ	U	ပ	၁	υ		O .	∢
PDB ID		Imey	Imey	Imey	Imey	Imey		'n	ltf6
SEQ NO:		311	311	311	311				311

PDB Annotation	POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POL YMERASE III. 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN
Compound		TFIIIA: CHAIN: A. D; 5S RIBOSOMAL RNA GENE: CHAIN: B, C. E, F:	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAÎN: A, D; 5S RIBOSOMAL RNA GENE; CHAÎN: B, C, E, F;	TFIIIA; CHAIN: A, D: 5S RIBOSOMAL RNA GENE: CHAIN: B, C, E, F:	TFIIIA; CHAIN: A. D. 5S RIBOSOMAL RNA GENE; CHAIN: B, C. E, F.	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
Seq Fold Score		116.05						
PMF Score			88.0	0.48	0.45	0.46	0.98	0.86
Verify Score			0.21	-0.03	-0.36	-0.22	0.19	-0.02
PSI BLAST		1.7e-37	1.7e-37	3.4e-36	1.4e-36	1.46-36	6.8e-38	5.1e-25
End		260	540	652	708	764	852	223
Start		394	395	507	563	619	703	911
Chain ID		∢	∢	∢	∢	∢	∢	U
PDB ID		1176	1166	1116	1116	1116	1166	lubd
SEQ NO:		311	3.1 -	311	311	311	311	311

PDB Annotation	RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI: CHAIN: C. ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.94	0.66	00.1	0.93	0.72
Verify Score		11.0-	60'0-	0.06	-0.15	-0.10
PSI BLAST		1.5e-41	66-51	8.5e-32	6e-53	3e-52
End AA		251	279	307	307	336
Start AA		74	168	201	203	224
Chain ID		U	C	C	C	U
PDB ID		Pqn1	Inbd	lubd	lubd	lubd
SEQ ID NO:		-	311	311	311	311

	N YANG 1; ON, ZINC 2 OTEIN	N YANG 1; JN, , ZINC 2 OTEIN X	NYANG 1; YANG 1; ON, OTEIN X	YANG 1; YANG 1; ON, ZINC 2 OTEIN	on Yang I; On, I, Zinc 2 Otein X	ON, ON,
PDB Annotation	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION,
	COMP REGU TRAN INITIA FINGE RECO (TRAN	COMP REGU TRAN INITI/ FINGE RECO (TRAN	COMF REGU TRAN TRAN INITI, FINGI RECO (TRAI	COMI REGU TRAN INITI, FINGI RECO	REGL TRAN INITI FING FECC (TRAI	COMI REGL TRAN
Compound	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C: ADENO- ASSOCIATED VIRUS P5 INTIATOR ELEMENT DNA; CHAIN: A. B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C. ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA;
SeqFold Score						
PMF Score	0.54	0.86	0.80	69.0	0,46	0.98
Verify Score	-0.40	-0.17	-0.10	-0.13	-0.17	0.22
PSI BLAST	1.5e-48	3e-50	le-34	1.5e-54	7.5e-57	1.7e-34
End	447	476	475	503	529	531
Start	308	371	374	394	420	430
Chain ID	U	U	v	U .	U	C
PDB 10	lubd	lubd	lubd	lubd	l ubd	Iubd
SEQ ID NO:	311	311	311	31	311	311

	Γ	T	1	1		
PDB Annotation	INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION. 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILI ATION/NA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION S COMPLEX RECILI ATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGILIATION/DNA)	COMPLEX (TRANSCRIPTION TRANSCRIPTION) YING-YANG I: TRANSCRIPTION INITIATION. INITIATION. INITIATION. INITIATION. INITIATION. FINGER PROTEIN. DNA-PROTEIN (TRANSCRIPTION, 3 COMPLEX (TRANSCRIPTION)	COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX
Сотроипа	CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I: CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C, ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;
SeqFold Score						
PMF Score		0.93	0.80	0.21	0.21	0.45
Verify Score		-0.07	0.16	-0.42	-0.41	-0.33
PSI BLAST		1.7e-33	1.36-51	1.7e-34	3e-49	1.7e-34
End AA		559	519	669	755	727
Start AA		458	504	898	616	626
Chain ID		O	O	O	၁	U
PDB ID		pgn	lubd	lubd	pqn	lubd
SEQ ID NO:		- -	3.	311	311	311

			· · · · · · · · · · · · · · · · · · ·	r 			\neg
PDB Annotation	(TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1: TRANSCRIPTION INITIATION, INITIATOR ELEMENT. YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION. 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I: TRANSCRIPTION INITIATION. INITIATOR ELEMENT. YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION
Compound		YYI; CHAIN: C: ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A. B;	YYI: CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B:	YYI; CHAIN: C: ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO-
SeqFold Score		93.95					
PMF			68.0	0.90	66.0	86.0	0.51
Verify Score			-0.02	-0.12	0.00	80.0-	-0.20
PSI BLAST		3e-57	1.7e-34	3e-57	1.5e-54	1.4e-34	1.2e-44
End		784	783		839	839	852
Start AA		672	682	700	728	738	756
Chain ID		ပ	O	v	ပ	υ .	၁
PDB ID		Jubd	lubd	lubd	Inbd	lubd	lubd
SEQ ID NO:		311	311	311	311	311	.311

PDB Annotation	REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLJ; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER CILI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINÇ FINGER, COMPLEX (DNA-
Compound	ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLIT; CHAIN: A: DNA; CHAIN: C, D:	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLIT: CHAIN: A: DNA: CHAIN: C. D:
SeqFold Score										102.20
PMF Score		86.0	0.53	86.0	0.86	0.95	09:0	0.84	00.1	
Verify Score		-0.17	0.02	-0.17	0.34	90:0	0.04	80.0	90.0	
PSI BLAST		1.4e-28	6e-55	8.5e-32	1.5e-65	4.5e-66	4.5e-64	5.1e-32	7.5e-72	7.5e-72
End AA		250	281	334	337	365	477	474	533	561
Start AA		611	143	861	201	226	310	346	394	422
Chain ID		Y	¥	¥ .	¥	٧	٧	¥	∢	4
PDB ID		2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli	2gli
SEQ ID NO:		311	311	311	311	311	311	311	311	311

PDB Annotation	BINDING PROTEIN/DNA) COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; CI J ZINC FINGER COMPLEX (DNA-	BINDING PROTEIN/DNA)	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA-	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI:	GLI, ZINC FINGER, COMPLEX (DNA-	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING	PROTEIN/DNA) FIVE-FINGER GLI;	BINDING PROTEIN/DNA)	RNA BINDING PROTEIN SNRNP,	SPLICING, SPLICEOSOME, SM, CORE SNRNP DOMAIN, 2 SYSTEMIC LUPUS	ERYTHEMATOSUS, SLE
Compound	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC ENICED DPOTEIN CLIL	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	Chain: A; Diva; Chain: C, D;	ZINC FINGER PROTEIN GLII:	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC EINGED DOOTEIN GLII.	CHAIN: A: DNA: CHAIN: C. D.			ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		ZINC FINGER PROTEIN GLII;	CHAIN: A; DNA; CHAIN: C, D;		SMALL NUCLEAR	CHAIN: A: SMALL NUCLEAR	RIBONUCLEOPROTEIN SM D2:
SeqFold Score																												
PMF Score	0.78	370	6.0		0.07		0.55			0.63			640	30.0			0.84			08.0			08.0			0.30		
Verify Score	0.32	000	-0.09		-0.19		0.17			-0.08			200	5			-0.14			0.12			0.17		_	0.29		
PSI BLAST	3.4e-33	97.6.1	1.2e-08		1.2e-33		1.2e-33			4.5e-70			\$ 10.33	0.16.0			6.8e-34			9e-e0			3.4e-29			4.5e-23		
End AA	558	213	è		869		782			841			810	2			841			852			851			18		
Start AA	430	470	0/4		\$70		654			674			683	700			210			730			738			2		
Chain ID	<		₹		٧		٧			4			\ 				Ą			<			¥			٧		
PDB (D	2gli	ilet	1187		2gli		2gli			2gli			iloc	197			2gli			2gli			2gli			1534		
SEQ NO:	311	112	-	i	311		311			311			1	:			311			311			311			312		

	, , , , , , , , , , , , , , , , , , , ,							
PDB Annotation	RNA BINDING PROTEIN SNRNP, SPLICING, SPLICEOSOME, SM, CORE SNRNP DOMAIN, 2 SYSTEMIC LUPUS ERYTHEMATOSUS, SLE	RNA BINDING PROTEIN SNRNP, SPLICING, SPLICEOSOME, SM. CORE SNRNP DOMAIN, 2 SYSTEMIC LUPUS ERYTHEMATOSUS, SLE	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SILE, RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SLE, RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SILE, RNA RINDING PROTEIN	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP PROTEIN SNRNP, SPLICING, SM, CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SI.E, RNA RINDING PROTEIN	SNRNP PROTEIN D3 CORE SNRNP PROTEIN, B CORE SNRNP PROTEIN SNRNP, SPLICING, SM. CORE SNRNP DOMAIN, SYSTEMIC LUPUS 2 ERYTHEMATOSUS, SLE, RNA BINDING PROTEIN	RNA BINDING PROTEIN D3 CORE SNRNP PROTEIN; B CORE SNRNP
Compound	CHAIN: B; SMALL NUCLEAR RIBONUCLEOPROTEIN SM D1; CHAIN: A; SMALL NUCLEAR RIBONUCLEOPROTEIN SM D2; CHAIN: B;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D1; CHAIN: A; SMALL NUCLEAR RIBONUCLEOPROTEIN SM D2; CHAIN: B;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C, E, G, I, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J, L,	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A. C, E, G, I, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F. H. J, L;	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C. E, G, I, K, SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J,	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C, E, G, I, K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J,	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3; CHAIN: A, C, E, G, I, K, SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D, F, H, J,	SMALL NUCLEAR RIBONUCLEOPROTEIN SM D3;
SeqFold Score								
PMF Score	0.04	0.18	0.07	0.05	90.0-	0.04	-0.05	-0.01
Verify Score	0.08	0.46	0.28	0.63	0.34	10.0-	0.76	0.11
PSI BLAST	3.4e-17	1.26-12	1.7e-14	1.1e-20	7.5e-18	1.7e-15	6.8e-16	1.5e-17
End	1,2	72	72	92	78	70	70	78
Start AA	6	7	\$	7	01	6	4	6
Chain ID	4	В	∢	ď	Ф	В	Ω	Ω
PDB ID	1534	1634	1436	143b	1436	1436	1d3b	1436
SEQ ID NO:	312	312	312	312	312	312	312	312

PDB Annotation	PROTEIN SNRNP, SPLICING, SM. CORE SNRNP DOMAIN. SYSTEMIC LUPUS 2 ERYTHEMATOSUS. SLE, RNA BINDING PROTEIN	OXIDOREDUCTASE PDZ DOMAIN, NNOS, NITRIC OXIDE SYNTHASE	PEPTIDE RECOGNITION PEPTIDE RECOGNITION, PROTEIN LOCALIZATION	SIGNAL TRANSDUCTION HDLG, DHR3 DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, REPEAT	PEPTIDE RECOGNITION PSD-95; PDZ DOMAIN, NEURONAL NITRIC OXIDE SYNTHASE, NMDA RECEPTOR 2 BINDING	HYDROLASE PDZ DOMAIN, HUMAN PHOSPHATASE, HPTP1E, PTP-BAS, SPECIFICITY 2 OF BINDING	COMPLEX (INHIBITOR/NIIC) EASE)	COMPLEX (INTIBITOR/UCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	COMPLEX (INHIBITOR/NUCLEASE) COMPLEX (INHIBITOR/NUCLEASE), COMPLEX (RI-ANG), HYDROLASE 2 MOLECULAR RECOGNITION, EPITOPE MAPPING, LEUCINE-RICH 3 REPEATS	SIGNAL TRANSDUCTION SRC HOMOLOGY DOMAIN; SIGNAL TRANSDUCTION, SH3 DOMAIN, EPS8, PROLINE RICH PEPTIDE	CYTOSKELETON CAPPING PROTEIN, CALCIUM-BINDING, DUPLICATION, REPEAT, 2 SH3 DOMAIN,
Compound	CHAIN: A. C, E. G, I. K; SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED CHAIN: B, D. F. H, J. L:	NEURONAL NITRIC OXIDE SYNTHASE; CHAIN: A; HEPTAPEPTIDE: CHAIN: B:	PSD-95; CHAIN: A; CRIPT; CHAIN: B;	HUMAN DISCS LARGE PROTEIN; CHAIN: NULL;	POSTSYNAPTIC DENSITY PROTEIN 95; CHAIN: A;	TYROSINE PHOSPHATASE (PTP- BAS, TYPE I): CHAIN: A;	RIBONIICI EASE INHIBITOR:	CHAIN: B. E;	RIBONUCLEASE INHIBITOR: CHAIN: A, D; ANGIOGENIN; CHAIN: B, E:	EPS8; CHAIN: A, B;	ALPHA-SPECTRIN; CHAIN: NULL;
SeqFold Score											
PMF Score		0.15	0.99	0.90	66.0	0.76	09 0		00.1	0.30	0.64
Verify Score		0.08	0.19	0.13	0.27	0.73	0.52		0.54	-0.80	-0.30
PSI BLAST		1.3e-06	8.5e-05	0.0012	0.00034	3e-09	4 5e-05		7.5e-08	91 - 99	1.1e-07
End		173	175	175	172	061	893		877	647	. 429
Start AA		101	113	113	611	601	805	3	815	290	577
Chain 1D		4	4		4	<	▼		K	4	
PDB ID		1589	1be9	1 pdr	19lc	3pdz	1247	?	1a4 <i>y</i>	laoj	ltud
SEQ ID NO:		314	314	314	314	314	316		316	316	316

PDB Annotation	CYTOSKELETON	CELL CYCLE/GENE REGULATION COMPLEX, SIGNAL TRANSDUCTION, PHOSPHOTYROSINE BINDING 2 DOMAIN (PTB), ASYMETR IC CELL DIVISION, CELL CYCLE/GENE 3	REGULATION	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB, ANTIBODY, ANTI-E, SELECTIN	COMPLEX	COMPLEX	(IMMUNOGLOBULIN/AUTOANTIGEN	J, RHEUMALOID FACTOR 2 AUTO- ANTIBODY COMPLEX	IMMUNOGLOBULIN IMMUNOGLOBULIN, FAB	FRAGMENT, HUMANISATION	COMPLEX (VIRAL	CA. HIV CA. HIV P24. P24; FAB. FAB	LIGHT CHAIN, FAB HEAVY CHAIN	CAPSID/IMMINOGIOBIII IN HIV	CAPSID PROTEIN, 2 P24	IMMUNOGLOBULIN HUMAN FAB,	ANTI-TETANUS TOXOID, HIGH	AFFINITY, CRYSTAL 2 PACKING	PRODESIGNATO COVETAL LIZE 3	IMMINOGLOBILI IN	IMMUNOGLOBULIN HUMAN FAB.	ANTI-TETANUS TOXOID, HIGH	AFFINITY, CRYSTAL 2 PACKING	MOTIF, PROGRAMMING	PROPENSITY TO CRYSTALLIZE, 3 IMMI MOGI OBLILIN	IMMUNOGLOBULIN HUMAN FAB.	ANTI-TETANUS TOXOID, HIGH	AFFINITY, CRYSTAL 2 PACKING
Compound		NUMB PROTEIN; CHAIN: A; GPPY PEPTIDE; CHAIN: B;		MONOCLONAL ANTI-E-SELECTIN 7A9 ANTIBODY; CHAIN: L, H;	IGG4 REA; CHAIN: A; RF-AN	IOWEANIBLA, CHAIN: n, E;			ANTIBODY CTM01; CHAIN: L, H;		HUMAN IMMUNODEFICIENCY	B: ANTIBODY FAB25.3	FRAGMENT; CHAIN: H, K. L. M:			FAB B7-15A2; CHAIN: L, H;					FAB B7-15A2; CHAIN: L, H;					FAB B7-15A2; CHAIN: L, H;		
SeqFold Score				69.16					64.20							65.54					64.54							
PMF Score		0.10			0.35						1.00									-						0.74		
Verify Score		-0.13			0.18						0.11															0.21		
PSI BLAST		9e-14		1.4e-20	6.8e-29				1.7e-22		1.7e-23					3.4c-20					1.7e-26					1.7e-26		
End AA		263		246	241				255		236		*			247					260					241		
Start AA		155		38	41				38		38					39					40					41		
Chain ID		∢		н	7				I		I					I					L			-		٦		
PDB ID		2nmb		laSf	ladq		_		lae6		lafv					laqk				_	laqk					laqk		
SEQ ID NO:		316		318	318				<u>8</u>		<u>8</u>					3.8					318					318		

							
PDB Annotation	MOTIF, PROGRAMMING PROPENSITY TO CRYSTALLIZE, 3 IMMUNOGLOBULIN	IMMUNOGLOBULIN IMMUNOGLOBULIN, ANTIBODY, FAB, ENZYME INHIBITOR, PCR, 2 HOT START	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY. FAB. 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRYCTURE, GAMMA-3 INTERFERON, IMMUNE SYSTEM	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRYCTURE, GAMMA-3 INTERFERON, IMMINE SYSTEM	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRYCTURE, GAMMA-3 INTERFERON IMMINE SYSTEM	ANTIBODY ENGINEERING ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODIES, 2 FAB. X-RAY STRUCTURES, GAMMA-INTERFERON	
Compound		TP7 FAB; CHAIN: L, H;	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN): CHAIN: H;	ANTIBODY (LIGHT CHAIN); CHAIN; L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	ANTIBODY; CHAIN: L, H;	IMMUNOGLOBULIN FAB FRAGMENT OF MURINE MONOCLONAL ANTIBODY AN02 COMPLEX IBAF 3 WITH ITS HAPTEN (2.2,6,6-TETRAMETHYL- I-PIPERIDINYLOXY- IBAF 4 DINITROPHENYL) IBAF 5
SeqFold Score			63.67	64.13		67.97	65.16
PMF Score		0.28			0.07		
Verify Score		-0.10			0.00		
PSI BLAST		8.5e-23	1.2e-19	1.56-23	1.5e-23	1.2e-19	8.5e-21
End AA		236	247	259	232	247	259
Start AA		20	39	38	39	39	37
Chain 1D		エ	I	ے	٦	н	Τ
8Ω4 Ω1		layı	162w	162w	162w	1 b 4j	l baf
SEQ ID NO:		318	318	318	318	318	31.8

PDB Annotation	B; INSECT IMMUNITY INSECT IMMUNITY, LPS-BINDING, HOMOPHILIC ADHESION	-, ×,			DY 194 CATALYTIC ANTIBODY CATALYTIC IN: L: ANTIBODY. TERPENOID SYNTHASE, DY 1944 CARBOCATION, 2 CYCLIZATION AIN: H: CASCADE		CELL ADHESION NEURAL CELL ADHESION		THE FACTOR GROWTH FACTOR/GROWTH FACTOR BLAST RECEPTOR FGF, FGFR, IMMUNOGLOBULIN-LIKE, SIGNAL TRANSDUCTION, 2 DIMERIZATION, GROWTH FACTOR/GROWTH FACTOR RECEPTOR	
Compound	HEMOLIN; CHAIN: A, B;	FAB FRAGMENT: CHAIN: L, H, J, K; VASCULAR ENDOTHELIAL GROWTH FACTOR; CHAIN: V, W;	LOC - LAMBDA I TYPE LIGHT. CHAIN DIMER; IBJM 6 CHAIN: A, B; IBJM 7	IMMUNOGLOBULIN OPG2 FAB, CONSTANT DOMAIN; CHAIN: L. IMMUNOGLOBULIN OPG2 FAB. VARIABLE DOMAIN: CHAIN: H.	CATALYTIC ANTIBODY 19A4 (LIGHT CHAIN); CHAIN: L: CATALYTIC ANTIBODY 19A4 (HEAVY CHAIN); CHAIN: H:	IG HEAVY CHAIN V REGIONS; CHAIN: A; IG HEAVY CHAIN V REGIONS; CHAIN: B; IG HEAVY CHAIN V REGIONS; CHAIN: C; IG HEAVY CHAIN V REGIONS;	AXONIN-1; CHAIN: A;	7C8 FAB FRAGMENT; SHORT CHAIN; CHAIN: A, C; 7C8 FAB FRAGMENT; LONG CHAIN; CHAIN: B, D	FIBROBLAST GROWTH FACTOR 2; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	FIBROBLAST GROWTH FACTOR 2: CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C D.
SeqFold Score				68.28	64.09	67.07		64.34		
PMF Score	0.41	0.11	0.11				0.77		0.34	0.34
Verify Score	0.30	0.22	0.07				0.03		0.27	0.22
PSI BLAST	8.5e-20	16-22	1.7e-26	6.8e-21	5.1e-22	5.1e-22	1.7e-32	3.4e-22	1.7e-12	1.7e-12
End	246	232	241	259	254	257	247	259	249	249
Start	06	39	40	37	37	38	45	38	174	174
Chain ID	Y .		¥	I	I	Ø	4	В	ن ن	Q
PDB ID	1bih	15j1	15jm	lbm3	lcß	lcic	9sɔ1	lct8	lcvs	lcvs
SEQ ID NO:	318	318	318	318	318	318	318	318	318	318

PDB Annotation	RECEPTOR	C, E; IGM IMMUNE SYSTEM FAB-IBP COMPLEX CRYSTAL STRUCTURE 2.7A SINDING RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY	<u> </u>			CONTRACTILE PROTEIN IMMUNOGLOBULIN FOLD, BETA BARREL		SION IUMAN)	(1GG1) OF COMPLEX (IMMUNOGLOBULIN H: 1IA1 7 IGG1/IGG2A) 19:5:3 M, I 1IA1	
Compound		IGM RF 2A2; CHAIN: A, C, E; IGM RF 2A2; CHAIN: B, D, F; IMMUNOGLOBULIN G BINDING PROTEIN A; CHAIN: G, H;	FIBROBLAST GROWTH FACTOR 2; CHAIN: A. B. C. D; FIBROBLAST GROWTH FACTOR RECEPTOR 2: CHAIN: E. F, G, H;	FIBROBLAST GROWTH FACTOR 1; CHAIN: A, B; FIBROBLAST GROWTH FACTOR RECEPTOR 1; CHAIN: C, D;	IMMUNOGLOBULIN FAB FRAGMENT FROM A MONOCLONAL ANTI-ARSONATE ANTIBODY, R19.9 1FA1 3 (IGG2B,KAPPA) 1FA1 4	TELOKÍN; CHAÍN: A	IMMUNOGLOBULIN FAB FRAGMENT OF HUMANIZED ANTIBODY 4D5, VERSION 4 IFVD 3	T LYMPHOCYTE ADHESION GLYCOPROTEIN CD2 (HUMAN) IHNF 3	IDIOTYPIC FAB 730.1.4 (IGG1) OF VIRUS IIAI 5 CHAIN: L, H: IIAI 7 ANTI-IDIOTYPIC FAB 409.5.3 (IGG2A): IIAI 9 CHAIN: M, I IIAI	
SeqFold Score					63.84		66.24		10:59	
PMF Score		90.0	0.25	0.13		0.16		0.10		
Verify Score		0.15	0.13	0.37		0.27		0.02		
PSI BLAST		3.4e-23	1.7e-13	1.7e-12	3.4e-19	l.5e-08	5.1e-21	1.3e-23	5.1e-20	
End AA		232	249	249	254	247	247	232	254	
Start AA		39	173	174	38	154	37	43	38	
Chain ID		∢	ш	U	Ξ.	∢	æ		I	
PDB ID		ldee	lev2	levi	l fai	1fhg	l fvd	lhnf	liai	
SEQ ID NO:		318	318	318	318	318	318	318	318	

	Chain ID		End AA	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
r.		× ×	524	1.56-21			67.34	HYDROLASE(O-GLYCOSYL) N9 NEURAMINIDASE-NC41 (E.C.3.2.1.18) COMPLEX WITH FAB INCA 3	
x		37	254	1.4e-22			65.27	IGG FAB (IGGI, KAPPA); INSN 4 CHAIN: L, H; INSN 5 STAPHYLOCOCCAL NUCLEASE; INSN 9 CHAIN: S: INSN 10	COMPLEX (IMMUNOGLOBULIN/HYDROLASE) NI0 FAB IMMUNOGLOBULIN; INSN 7 STAPHYLOCOCCAL NUCLEASE RIBONUCLEATE, INSN 11 IMMUNOGLOBULIN. STAPHYLOCOCCAL NUCLEASE INSN 25
<		47	262	7.5e-28	0.19	0.29		T-CELL SURFACE GLYCOPROTEIN CD4; CHAIN: A, B;	GLYCOPROTEIN CD4; IMMUNOGLOBULIN FOLD. TRANSMEMBRANE, GLYCOPROTEIN, T-CELL, 2 MHC LIPOPROTEIN, POLYMORPHISM
エ		38	255	5.1e-23			64.25	IGG 5C8; CHAIN: L, H;	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION
エ		50	236	5.le-23	0.12	0.19		IGG 5C8; CHAIN: L, H;	CATALYTIC ANTIBODY CATALYTIC ANTIBODY, FAB, RING CLOSURE REACTION
I		37	254	1.2e-17			65.11	IMMUNOGLOBULIN IGG2B (KAPPA) FAB FRAGMENT COMPLEXED WITH ANTIGEN 2CGR 3 N-(P-CYANOPHENYL)-N'- (DIPHENYLEMETHYL) GUANIDINEACETIC ACID 2CGR 4	
→		40	241	1.5e-25	0.29	0.37		IMMUNOGLOBULIN IMMUNOGLOBULIN FAB 2FB4 4	
<u>ا</u>		39	232	1.2e-23	0.27	10:0		IMMUNOGLOBULIN FAB FRAGMENT OF A HUMANIZED VERSION OF THE ANTI-CD18 2FGW 3 ANTIBODY 'HS2' (HUH52- OZ FAB) 2FGW 4	
_		40	241	1.2e-27	0.14	0.30		IMMUNOGLOBULIN IMMUNOGLOBULIN LAMBDA LIGHT CHAIN DIMER (/MCG\$) 2MCG 3 (TRIGONAL FORM) 2MCG 4	
<u>m</u>		38	255	3.4e-21			68.25	IMMUNOGLOBULIN; CHAIN: A, B,	IMMUNOGLOBULIN

PDB Annotation	IMMUNOGLOBULIN	IMMUNE STSTEM FAB, ANTIBOUT, AROMATASE, P450	IMMUNE SYSTEM METAL CHELATASE, CATALYTIC ANTIBODY, FAB FRAGMENT, IMMUNE 2 SYSTEM	CELL ADHESION PROTEIN NCAM MODULE 2; CELL ADHESION, GLYCOPROTEIN, HEPARIN-BINDING, GPI-ANCHOR, 2 NEURAL ADHESION MOLECULE. IMMUNOGLOBULIN FOLD, HOMOPHILIC 3 BINDING, CELL ADHESION PROTEIN			SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS	SIGNALING PROTEIN GTP-BINDING PROTEINS, PROTEIN-PROTEIN COMPLEX, EFFECTORS	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC CRYSTALLOGRAPHY, 2 SIGNALING PROTEIN	SIGNALING PROTEIN G PROTEIN, GTP HYDROLYSIS, KINETIC CRYSTALLOGRAPHY, 2 SIGNALING PROTEIN	SIGNALING PROTEIN PROTEIN- PROTEIN COMPLEX, ANTIPARALLEL COILED-COIL	ENDOCYTOSIS/EXOCYTOSIS G-
Сотроила	C, D;	IGGI ANTIBODY 32C2; CHAIN: A;	METAL CHELATASE CATALYTIC ANTIBODY; CHAIN: A, C: METAL CHELATASE CATALYTIC ANTIBODY; CHAIN: B, D;	NEURAL CÉLL ADHESION MOLECULE. LARGE ISOFORM: CHAIN: A:	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB' NEW (LAMBDA LIGHT CHAIN) 7FAB 3	IMMUNOGLOBULIN FAB FRAGMENT FROM HUMAN IMMUNOGLOBULIN IGGI (LAMBDA, HIL) 8FAB 3	RAS-RELATED PROTEIN RAP-1A; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN KINASE CHAIN: B;	RAS-RELATED PROTEIN RAP-1A; CHAIN: A; PROTO-ONKOGENE SERINE/THREONINE PROTEIN KINASE CHAIN: B;	TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A:	TRANSFORMING PROTEIN P21/H- RAS-1; CHAIN: A:	HIS-TAGGED TRANSFORMING PROTEIN RHOA(0-181); CHAIN: A; PKN; CHAIN: B;	RAB6 GTPASE; CHAIN: A;
SeqFold Score			66:99				109.08		108.57		108.33	
PMF Score	5	0.13		-0.14	0.17	0.18		1.00		00.1		00.
Verify Score	100	0.21		0.09	0.00	0.39		0.82		0.88		0.83
PSI BLAST	7.42.33	3.46-23	8.5e-19	4.5e-09	1.7c-26	1.4e-26	1.4e-63	1.4e-63	6.8e-65	6.8c-65	3.46-55	6e-67
End AA	22.0	230	247	245	241	241	171	171	172	171	172	165
Start AA	9	OC .	37	168	40	43	8	6	∞	6	3	6
Chain ID	٥	۵	В	<	ר	¥	∢	¥	4	∢	V	4
PDB ID	3363	2276	3fcı	Зпст	7fab	8fab	lcly	lcly	lctq	lctq	lcxz	1d5c
SEQ ID NO:	318	e c	318 ·	318	318	318	319	319	319	319	319	319

S T		Start End	PSI BLAST	Verify Score	PMF	Seq Fold Score	Compound	PDB Annotation PROTEIN, GTPASE, RAB6,
9 169 5.1c		5.16	5.1e-63	0.87	1.00		RAB6 GTPASE; CHAIN: A;	VESICULAR TRAFFICKING ENDOCYTOSIS/EXOCYTOSIS G- PROTEIN, GTPASE, RAB6, VESICULAR TRAFFICKING
9 170 1.5e			I.Se-55	0.73	1.00		RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 2; CHAIN: A; RHO GDP-DISSOCIATION INHIBITOR 2; CHAIN: B;	SIGNALING PROTEIN P21-RAC2; RHO GDI 2, RHO-GDI BETA, LY-GDI; BETA SANDWHICH, PROTEIN-PROTEIN COMPLEX, G-DOMAIN, 2 IMMUNOGLOBULIN FOLD, WALKER FOLD, GTP-BINDING PROTEIN
9 169 5.1e-61		5.16	- - -	0.93	00:1		GTP-BINDING PROTEIN YPT51; CHAIN: A;	ENDOCYTOSIS/EXOCYTOSIS G PROTEIN, VESICULAR TRAFFIC, GTP HYDROLYSIS, YPT/RAB 2 PROTEIN, ENDOCYTOSIS, HYDROLASE
8 172 1.26	<u> </u>	1.26	1.2e-59			109.78	RAP2A; CHAIN: NULL;	GTP-BINDING PROTEIN GTP. BINDING PROTEIN, SMALL G PROTEIN, RAP2, GDP, RAS
9 169 1.24		1.26	1.2e-59	96.0	00.1		RAP2A; CHAIN: NULL;	GTP-BINDING PROTEIN GTP- BINDING PROTEIN, SMALL G PROTEIN, RAP2, GDP, RAS
6 170 1.16-36		<u>-</u>	.56			79.76	P50-RHOGAP: CHAIN: A: TRANSFORMING PROTEIN RHOA: CHAIN: B:	COMPLEX(GTPASE ACTIVATN/PROTO-ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP, COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
7 170 1.1e-56		I. le	56	0.65	1.00		PSO-RHOGĀP; CHAIN: A; TRANSFORMING PROTEIN RHOA; CHAIN: B;	COMPLEX(G1PASE ACTIVATN/PROTO-ONCOGENE) GTPASE-ACTIVATING PROTEIN RHOGAP; COMPLEX (GTPASE ACTIVATION/PROTO-ONCOGENE), GTPASE, 2 TRANSITION STATE, GAP
3 178 5.16-70		5.16-	0/			154.65	RAB-34; CHAIN: A; RABPHILIN- 3A; CHAIN: B;	COMPLEX (GTP-BINDING/EFFECTOR) RAS-RELATED PROTEIN RAB3A; COMPLEX (GTP- BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN
5 175 5.1e-70	-	5.1e-	0,	0.92	00.1		RAB-34; CHAIN: A; RABPHILIN-	COMPLEX (GTP-BINDING/EFFECTOR)

PDB Annotation	COMPLEX (GTP- BINDING/EFFECTOR), G PROTEIN, EFFECTOR, RABCDR, 2 SYNAPTIC EXOCYTOSIS, RAB PROTEIN, RAB3A, RABPHILIN	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE	HYDROLASE G PROTEIN, VESICULAR TRAFFICKING, GTP HYDROLYSIS, RAB 2 PROTEIN, NEUROTRANSMITTER RELEASE, HYDROLASE	TRANSFERASE RECEPTOR TYROSINE KINASE, PROTEIN INTERACTION MODULE, 2 DIMERIZATION DOMAIN, TRANSFERASE	SIGNAL TRANSDUCTION SAM DOMAIN, EPH RECEPTOR, SIGNAL TRANSDUCTION, OLIGOMER	TYROSINE-PROTEIN KINASE NMR, RECEPTOR OLIGOMERIZATION, EPH RECEPTORS, TYROSINE 2 PHOSPHORYLATION, SIGNAL TRANSDUCTION, TYROSINE- PROTEIN 3 KINASE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE,
Сотроипа		RAB3A; CHAIN: A;	RAB3A; CHAIN: A:	EPHA4 RECEPTOR TYROSINE KINASE: CHAIN: A:	EPHB2; CHAIN: A, B, C, D, E. F, G, H;	EPHRIN TYPE-B RECEPTOR 2; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	SERINETHREONINE PROTEIN PHOSPHATASE 5: CHAIN: NULL;	SERINE/THREONINE PROTEIN
SeqFold Score			170.48						
PMF Score		00.1		66:0	0.74	0.92	0.43	-0.01	-0.02
Verify Score		0.71		1.26	0.85	0.84	0.15	0.30	0.17
PSI BLAST		1.5e-70	1.5e-70	1.5e-05	1.2e-13	3c-06	3.4e-12	4.5e-14	6e-08
End		172	172	287	297	287	266	279	318
Start AA		4	4	227	226	226	114	130	157
Chain ID		¥	∢	¥	4				
PDB ID		3rab	3rab	160x	1 b4 f	15gg	la!7	1817	la!7
SEQ ID NO:		319	319	321	321	321	323	323	323

PDB Annotation	TRP: HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE, TRP: HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	HYDROLASE TETRATRICOPEPTIDE, TRP; HYDROLASE, PHOSPHATASE, PROTEIN-PROTEIN INTERACTIONS, TPR, 2 SUPER-HELIX, X-RAY STRUCTURE	CLATHRIN CLATHRIN, TRISKELION, COATED VESICLES, ENDOCYTOSIS, SELF- 2 ASSEMBLY, ALPHA-ALPHA SUPERHELIX	SIGNALLING COMPLEX RACI: P67PHOX: SIGNALLING COMPLEX, GTPASE. NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX, TPR MOTIF	SIGNALLING COMPLEX RACI; P67PHOX; SIGNALLING COMPLEX, GTPASE, NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX, TPR MOTIF	SIGNALLING COMPLEX RACI; P67PHOX: SIGNALLING COMPLEX, GTPASE, NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX. TPR MOTIF	SIGNALLING COMPLEX RACI; P67PHOX; SIGNALLING COMPLEX, GTPASE, NADPH OXIDASE, PROTEIN- PROTEIN 2 COMPLEX. TPR MOTIF	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING
Compound	PHOSPHATASE 5; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	SERINE/THREONINE PROTEIN PHOSPHATASE 5; CHAIN: NULL;	CLATHRIN HEAVY CHAIN: CHAIN: A;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE I: CHAIN: A: NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B:	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE I; CHAIN: A; NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE I; CHAIN: A; NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	RAS-RELATED C3 BOTULINUM TOXIN SUBSTRATE 1; CHAIN: A; NEUTROPHIL CYTOSOL FACTOR 2 (NCF-2) CHAIN: B;	TPR2A-DOMAIN OF HOP, CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;
SeqFold Score										
PMF		0.22	-0.12	0.07	0.04	0.11	-0.06	-0.14	-0.02	06:0
Verify Score		0.22	0.34	0.43	0.05	0.31	0.31	0.16	0.27	0.50
PSI BLAST		6.8e-13	1.7e-13	5.1e-16	0.00017	6.8c-11	6.8e-10	1.2e-08	1.26-10	1.7e-15
End		380	400	143	275	318	601	392	232	114
Start AA		246	293	4	=	162	2	245	82	=
Chain ID					٧	8	В	8	eg.	٧
PDB ID		1817	1a17	lal7	1689	1e96	1696	9691	1e96	1elr
SEQ ID NO:		323	323	323	323	323	323	323	323	323

	· · · · ·				1	т		1	Τ	T		Т	T
PDB Annotation	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSP90, 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN. PEPTIDE-COMPLEX, HELICAL REPEAT. HSP90. 2 PROTEIN BINDING	CHAPERONE HOP. TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT HSP90 2 PROTEIN RINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT HSP90 2 PROTEIN RINNING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT HSP90, 2 PROTEIN RINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT HSP90 2 PROTEIN RINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT HSP90 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT HSP90. 2 PROTEIN BINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN RINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN RINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN RINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX, HELICAL REPEAT, HSC70, 2 HSP70, PROTEIN RINDING	CHAPERONE HOP, TPR-DOMAIN, PEPTIDE-COMPLEX HELICAL
Сомроинд	TPR2A-DOMAIN OF HOP; CHAIN: A: HSP90-PEPTIDE MEEVD; CHAIN: B;	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD: CHAIN: B:	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B:	TPR2A-DOMAIN OF HOP; CHAIN: A; HSP9Q-PEPTIDE MEEVD; CHAIN: B:	TPRZA-DÓMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B:	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B;	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B:	TPRZA-DOMAIN OF HOP; CHAIN: A; HSP90-PEPTIDE MEEVD; CHAIN: B:	TPR1-DOMAIN OF HOP; CHAIN: A, B; HSC70-PEPTIDE; CHAIN: C, D:	TPR I-DOMAIN OF HOP; CHAIN: A, B: HSC70-PEPTIDE; CHAIN: C, D:	TPRI-DOMAIN OF HOP; CHAIN: A, B; HSC70-PEPTIDE; CHAIN: C, D;	TPRI-DOMAIN OF HOP; CHAIN: A, B; HSC70-PEPTIDE; CHAIN: C, D;	TPRI-DOMAIN OF HOP; CHAIN: A, B; HSC70-PEPTIDE: CHAIN: C. D.
SeqFold Score													
PMF	0.22	90.0	-0.01	-0.03	0.05	-0.18	0.21	0.28	0.81	0.19	•0.08	0.62	-0.11
Verify Score	0.42	0.04	0.40	0.58	0.05	0.04	-0.03	0.19	0.18	0.20	0.29	0.56	0.18
PSI BLAST	1.2e-12	3.4e-13	1c-09	1.2e-15	1.2e-13]e-]]	1.5e-07	1.7e-13	3.4e-11] J	3.4e-11	3.4e-14	1.2e-08
End	233	274	74	313	356	411	157	194	244	366	393	121	208
Start AA	121	691	_	212	252	332	5 6	88	126	249	293	্য	81
Chain ID	٧	٧	Y	Y	Y	٧	٧	٧	٧	٧	∢	٧	٨
PDB ID	lelr	letr	lelr	lelr	lelr	lelr	lelr	lelr	lelw	lelw	lelw	lelw	lelw
SEQ ID NO:	323	323	323	323	323	323	323	323	323	323	323	323	323

PDB Annotation	REPEAT, HSC70, 2 HSP70, PROTEIN BINDING	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT, TPR, 2 HEI ICA1, PEPEAT	SINCE CONTROLL STATES OF THE S	SIGNALING PROTEIN PEROXISMORE RECEPTOR 1, PTS1-BP, PEROXIN-5, PTS1 PROTEIN-PEPTIDE COMPLEX, TETRATRICOPEPTIDE REPEAT. TPR, 9 HEI ICAI PEPEAT	PROJECT TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	PROTEIN TRANSPORT HELIX-TURN-HELIX TPR-LIKE REPEAT. PROTEIN TRANSPORT	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	PROTEIN TRANSPORT HELIX-TURN- HELIX TPR-LIKE REPEAT, PROTEIN TRANSPORT	SIGNAL TRANSDUCTION SAM DOMAIN, EPH RECEPTOR, SIGNAL TRANSDUCTION, OLIGOMER	RNA-BINDING PROTEIN/RNA TRA PRE-MRNA; SPLICING REGULATION, RNP DOMAIN, RNA COMPLEX	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA
Compound		PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTIDE; CHAIN: C, D;	PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTIDE; CHAIN: C, D;	PEROXISOMAL TARGETING SIGNAL I RECEPTOR; CHAIN: A, B; PTSI-CONTAINING PEPTIDE; CHAIN: C, D;	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	VESICULAR TRANSPORT PROTEIN SECI 7: CHAIN: A;	VESICULAR TRANSPORT PROTEIN SECI7; CHAIN: A;	VESICULAR TRANSPORT PROTEIN SEC17; CHAIN: A;	EPHB2; CHAIN: A, B, C, D, E, F, G, H;	SXL-LETHAL PROTEIN; CHAIN: A, B; RNA (5* RNA (5* RP*GP*UP*UP*GP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP*UP	POLYDENYLATE BINDING PROTEIN 1: CHAIN: A, B, C, D, E, F, G. H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*
SeqFold Score								54.55			
PMF Score		-0.02	0.87	0.99	0.58	-0.09	0.19		06.0	86.0	0.52
Verify Score		0.02	0.37	0.36	0.14	0.01	0.48		0.19	-0.15	0.00
PSI BLAST		le-31	1.2e-29	3.4e-23	3.4e-10	3.4e-10	le-11	3.4e-10	0.00045	5.1e-20	1.7e-21
End		410	317	263	375	388	188	359	74	559	547
Start AA		104	=	2	120	221	3	89	28	421	423
Chain ID		∢	¥	< −	¥	٧	∢	<	A	V	¥.
PDB ID		lfch	1fch	l feh	lqqe	lqqe	lqqe	lqqe	lb4f	1676	Icvj
SEQ ID NO:		323	323	323	323	323	323	323	324	329	329

$\overline{}$					_				
PDB Annotation		GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	GENE REGULATION/RNA POLY(A) BINDING PROTEIN I, PABP I; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	RNA-BINDING DOMAIN RNA- BINDING DOMAIN, ALTERNATIVE SPLICING	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA). HETEROGENEOUS NUCLEAR 2	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME
Compound	AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN I; CHAIN: A, B, C, D, E, F, G, H; RNA (5:- R(*AP*AP*AP*AP*AP*AP*AP* AP*AP*A)-3); CHAIN: M, N, O, P, O, R, S, T;	POLYDENYLATE BINDING PROTEIN I; CHAIN: A. B, C, D, E, F, G, H; RNA (3- R(*AP*AP*AP*AP*AP*AP*AP* AP*AP*A)-3): CHAIN: M, N, O. P. O, R, S. T;	POLYDENYLATE BINDING PROTEIN I: CHAIN: A, B, C. D, E. F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP* AP*AP*A)-3); CHAIN: M, N, O, P, O, R, S, T.	HU ANTIGEN C; CHAIN: A;	HNRNP AI; CHAIN: NULL;	SEX-LETHAL PROTEIN; CHAIN: NULL;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1; CHAIN: A; 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	SEX-LETHAL; CHAIN: A, B. C;
SeqFold Score		·							
PMF Score		0.63	0.87	0.49	0.82	0.03	96'0	0.05	0.89
Verify Score		60.0	0.54	-0.03	0.12	-0.01	0.37	-0.04	0.05
PSI BLAST		3.46-20	3.4e-17	1.4e-17	6.8e-19	1.7e-17	1.2e-16	le-17	1.7e-19
End AA		535	502	535	496	544	496	550	559
Start AA		423	423	423	418	416	421	415	421
Chain ID		.	ĹĻ	Ŧ	٨			∢ .	A
PDB ID		lcvj	lcvj	levj	148z	lha!	2sxl	2up1	3sxl
SEQ NO:		329	329	329	329	329	329	329	329

PDB Annotation	DOSAGE COMPENSATION	COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN) COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN), RHEUMATOID FACTOR 2 AUTO- ANTIBODY COMPLEX	COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN) COMPLEX (IMMUNOGLOBULIN/AUTOANTIGEN), RHEUMATOID FACTOR 2 AUTO- ANTIBODY COMPLEX	IMMUNOGLOBULIN HUMAN FAB. ANTI-TETANUS TOXOID, HIGH AFFINITY, CRYSTAL 2 PACKING MOTIF, PROGRAMMING PROPENSITY TO CRYSTALLIZE, 3 IMMUNOGLOBULIN	IMMUNE SYSTEM IMMUNOGLOBULIN; IMMUNOGLOBULIN ANTIBODY ENGINEERING, HUMANIZED AND CHIMERIC ANTIBODY, FAB, 2 X-RAY STRUCTURE, THREE-DIMENSIONAL STRYCTURE, GAMMA-3 INTERFERON, IMMUNE SYSTEM	IMMUNOGLOBULIN BENCE-JONES PROTEIN; 1BJM 8 BENCE JONES, ANTIBODY, MULTIPLE OUATERNARY STRUCTURES 1BJM 13	IMMUNE SYSTEM IMMUNOGLOBULIN, IMMUNORECEPTOR, IMMUNE SYSTEM	IMMUNE SYSTEM FAB-1BP COMPLEX CRYSTAL STRUCTURE 2.7A RESOLUTION BINDING 2 OUTSIDE THE ANTIGEN COMBINING SITE SUPERANTIGEN FAB VH3 3 SPECIFICITY
Compound		IGG4 REA; CHAIN: A; RF-AN IGM/LAMBDA; CHAIN: H, L;	IGG4 REA; CHAIN: A; RF-AN IGM/LAMBDA; CHAIN: H, L;	FAB B7-15A2; CHAIN: L, H;	ANTIBODY (LIGHT CHAIN); CHAIN: L; ANTIBODY (HEAVY CHAIN); CHAIN: H;	LOC - LAMBDA I TYPE LIGHT. CHAIN DIMER; IBJM 6 CHAIN: A, B; IBJM 7	ALPHA-BETA T CELL RECEPTOR (TCR) (D10); CHAIN: A;	IGM RF 2A2; CHAIN: A, C. E; IGM RF 2A2; CHAIN: B. D, F; IMMUNOGLOBULIN G BINDING PROTEIN A; CHAIN: G, H:
SeqFold Score			301.73	318.27		322.11		
PMF Score		1.00			00.1		0.33	00:1
Verify Score		0.86			0.76		-0.07	0.84
PSI BLAST		86-99	96-99	6.8e-88	5.1e-90	3.4e-85	3.4e-21	le-90
End AA		268	268	268	267	268	191	267
Start AA		57	57	56	55	55	7	55
Chain ID		_	_1	L	بــ	∢	V	∀
PDB ID		ladq	ladq	lagk	1b2w	16jm	lbwm	Idee
SEQ ID NO:		332	332	332	332	332	332	332

PDB Annotation	COMPLEX (ANTIBODY ANTIGEN) 1,4-BETA-N-ACETYLMURAMIDASE C; SINGLE-DOMAIN ANTIBODY, TURKEY EGG-WHITE LYSOZYME, 2 ANTIBODY-PROTEIN COMPLEX, SINGLE-CHAIN FV FRAGMENT	IMMUNE SYSTEM IG-FOLD, IMMUNO COMPLEX, ANTIBODY-ANTIGEN. BETA-TURN	IMMUNOGLOBULIN INTACT IMMUNOGLOBULIN V REGION C REGION, IMMUNOGLOBULIN	IMMUNOGLOBULIN IMMUNOGLOBULIN, BENCE JONES PROTEIN	IMMUNOGLOBULIN IMMUNOGLOBULIN, BENCE JONES PROTEIN					
Сомроинд	SCFV FRAGMENT 1F9; CHAIN: A, B; TURKEY EGG-WHITE LYSOZYME C; CHAIN: X, Y;	ACETYLCHOLINE RECEPTOR ALPHA: CHAIN: A; FV ANTIBODY FRAGMENT; CHAIN: B:	IGG2A INTACT ANTIBODY • MAB231; CHAIN: A. B, C, D	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	LAMBDA III BENCE JONES PROTEIN CLE; CHAIN: A, B	IMMUNOGLOBULIN ANTI- PHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASE C DIABODY ILMK 3 SYNONYMS: L5MK 16 DIABODY, SINGLE- CHAIN FV DIMER ILMK 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MC/PC\$603) IMCP 4	IMMUNOGLOBULIN IMMUNOGLOBULIN FAB FRAGMENT (MC/PC\$603) IMCP 4	IMMUNOGLOBULIN IMMUNOGLOBULIN HETIEROLOGOUS LIGHT CHAIN DIMER IMCW 3 (/MCG\$-/WEIR\$ HYBRID) IMCW 4	IMMUNOGLOBULIN FV FRAGMENT (MURINE SE155-4) COMPLEX WITH THE TRISACCHARIDE: IMFA 3 ALPHA-D-GALACTOSE(1- 2)[ALPHA-D-ABEQUOSE(1- 3)]ALPHA- IMFA 4 D-MANNOSE
SeqFold Score					299.68			202.00	294.22	
PMF Score	0.46	86:0	00.1	00:1		0.92	00:-			0.01
Verify Score	0.09	0.14	0.68	98'0		0.12	0.79			-0.34
PSI BLAST	5.1e-60	1.4c-61	1.2e-89	4.5e-99	4.5e-99	3.46-59	3.4e-91	3.4e-91	le-82	3.4e-21
End	162	164	267	268	268		267	267	268	161
Start AA		1	55	25	58	-	55	55	55	_
Chain ID	∢	8	∢	٧	٧	Y	L	-1	A	
PDB ID	1dzb1	113r	ligt	=	1111	l Imk	1 тср	1 тср	Imcw	l m fa
SEQ ID NO:	332	332	332	332	332	332	332	332	332	332

			т—												_														
PDB Annotation					TAME OF THE PROPERTY OF THE PR	HEAVY (VH) DOMAIN, VARIABLE	LIGHT (VL) ANTIBODY FRAGMENT, MILLIVALENT ANTIBODY	DIABODY, DOMAIN 2 SWAPFING,	IMMUNOGLOBULIN	IMMUNOGLOBULIN	AUTOANTIBODY, COLD	AGGLUTININ, HUMAN IGM 2 FAB	IMMUNOGLOBULIN	IMMUNOGLOBULIN, SINGLE-CHAIN	ANTIGEN	MONOCLONAL ANTIBODY	MONOCLONAL ANTIBODY, FAB.	FRACMENI, REPRODUCTION											
Compound	(PI-OME) (PART OF THE CELL- SURFACE CARBOHYDRATE IMFA 5 OF PATHOGENIC	SALMONELLA) IMFA 6	HYDROLASE(O-GLYCOSYL) N9 NEURAMINIDASE-NC41	(E.C.3.2.1.18) COMPLEX WITH FAB	SINGLE-CHAIN ANTIBODY	FRAGMENT; CHAIN: A, C,			IGM K APPA CHAIN VIII (K AT)	COLD AGGLUTININ); CHAIN: A,	C; IGM FAB REGION IV-J(H4)-C	CHAIN: B. D.	MFE-23 RECOMBINANT	AN HBODY FRAGMENT; CHAIN: A:		MONOCLONAL ANTIBODY 3A2;	CHAIN: H. L.	IMMUNOGLOBULIN	MMUNOGLOBULIN FAB 2FB4 4	IMMUNOGLOBULIN	IMMUNOGLOBULIN LAMBDA	2MCG 3 (TRIGONAL FORM) 2MCG	MMINOOI OBLIEVE	IMMUNOGLOBULIN FAB' NEW	(LAMBDA LIGHT CHAIN) 7FAB 3	IMMUNOGLOBULIN	IMMONOCLOBULIN FAB' NEW (LAMBDA LIGHT CHAIN) 7FAB 3	IMMUNOGLOBULIN FAB	FRAGMENT FROM HUMAN
SeqFold Score										•	_							326.11	\dashv	304.84			290.47		7	_		291.96	<u>. =</u>
PMF Score		8	3		0.53				00.1		-		0.42			 00:1		<u></u>	1	<u> </u>			7			 8:		29	
Verify Score		0.70	0		0.17		-		0.65				0.45 (-	\dashv	0.89							-		\dagger	 			
PSI BLAST		5 10.01			5.1e-61			_	1.5e-89			\exists	1.7e-61		7	3.4e-92 (6.8c-87	70 07	00-5/	-		3e-95		30.05			5.1e-87	
End		267	<u> </u>		163			-	267			┪	791		+	/07		268 6	368				264 3		2,4		\dashv	264 5.	\dashv
Start AA		33			_				55						,			55	55		<u> </u>		55		3,		1	80	\dashv
Chain ID					¥				V						-	_					-				\dagger		1		\dashv
PDB ID		Inca			l nqb				lqir			1001			Iche		\exists	Z154	2mcg)	•		7fab L		7fab L		of ch	a0 A	
SEQ NO:		332		\neg	332		 -	\dashv	332			332			332		\top	7 755	332 2	-	-		332 71		332 76		33 622		-

	П	T		\top	T	Τ	Т	Γ	Т	Т	 	T	<u>T</u>
PDB Annotation		IMMUNE SYSTEM IMMUNOGLOBULIN FOLD	HYDROLASE HOMODIMER, ALPHA/BETA HYDROLASE FOLD, DISTIBLED LIBER 2 NUMBEROL	DISCUSSITIONED ONCA 2 INTIBITION HYDROLASE HOMODIMER. ALPHA/BETA HYDROLASE FOLD, DISTINGTOR 2 INHIBITION	HYDROLASE HAD-FAMILY ALPHA/BETA CORE DOMAIN. MG(II) BINDING SITE 5, 2 HEI IX BINDI F	HYDROLASE HAD-FAMILY ALPHA/BETA CORE DOMAIN, MG(II) BINDING SITE 5. 2 HE IX RINDI F	HYDROLASE L-2-HALOACID DEHALOGENASE HYDROLASE	HYDROLASE L-2-HALOACID DEHALOGENASE HYDROLASE	DEHALOGENASE DEHALOGENASE, HYDROLASE	DEHALOGENASE DEHALOGENASE, HYDROLASE	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN. 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Compound	(LAMBDA, HIL) 8FAB 3	BLUE FLUORESCENT ANTIBODY (19G2)-HEAVY CHAIN; CHAIN: H, A; BLUE FLUORESCENT ANTIBODY (19G2)-LIGHT CHAIN; CHAIN: L, B;	EPOXIDE HYDROLASE; CHAIN: A, B;	EPOXIDE HYDROLASE, CHAIN: A. B;	PHOSPHONOACETALDEHYDE HYDROLASE; CHAIN: A, B. C. D;	PHOSPHONOACETALDEHYDE HYDROLASE; CHAIN: A. B, C. D.	L-2-HALOACID DEHALOGENASE: CHAIN: A. B:	L-2-HALOACID DEHALOGENASE; CHAIN: A. B:	L-2-HALOACID DEHALOGENASE; CHAIN: NULL:	L-2-HALOACID DEHALOGENASE; CHAIN: NULL;	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C:	QGSR ZINC FINGER PEPTIDE; CHAIN: 4; DUPLEX OLIGONUCLEOTIDE BINDING SITE: CHAIN: R. C.	DNA: CHAIN: A, B. D. E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G:
SeqFold Score							51.58		57.26				
PMF Score		0.22	0.19	0.54	0.82	1.00		9.65		0.76	-0.05	0.12	0.10
Verify Score		-0.04	-0.04	0.25	0.37	0.56		0.32		0.29	0.02	0.13	-0.21
PSI BLAST		0.00034	3.46-14	1.5e-17	4.5e-29	1.5e-23	3.4e-26	3.4e-26	1.7e-28	1.7e-28	8.5e-24	3.4e-30	3.4c-38
End		117	349	349	330	366	386	362	362	361	213	241	213
Start AA		39	225	132	130	130	130	131	130	131	129	191	145
Chain 1D		د	V	В	Y	٧	A	٧			∢	4	၁
PDB ID		1f13	lek l	lekl	lfez	lfez	lqq5	1qq5	Izn	Izm	lalh	lath	Ітеу
SEQ 1D NO:		338	342	342	342	342	342	342	342	342	343	343	343

1	PDB ID	Chain ID	Start	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
E	Imey	U	091	241	6.8e-50	0.09	0.54		DNA: CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX ZINC FINGER/DNA)
É	Імеу	ပ .	88	269	5.1e-50	-0.08	0.89		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
l E	Imey .	U	216	297	5.1e-50	0.20	0.1		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
E	Imey	ပ	244	325	3.4e-50	0.22	1.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
É	Imey	ပ	272	353	1.4e-49	0.47	00.1		DNA; CHAIN: A. B. D. E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F. G:	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
l Ē	Imey	U	272	354	3.4e-50			103.55	DNA: CHAIN: A. B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G:	COMPLEX (ZINC.FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN. 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
ΙĒ	Imey	U	300	357	3.4e-33	0.42	00.1		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FOMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN DESIGN, 2 INTERACTION, PROTEIN DESIGN, 2 CYNC FINGER/DNA)
ا ۋا	Imey	O	39	142	5.1e-43	-0.12	0.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
Imey		O	158	185	1.2e-12	0.50	0.71		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2

PDB Annotation	CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION RECULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I;
Compound		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A, D: 5S RIBOSOMAL RNA GENE: CHAIN: B, C, E. F:	YYI: CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YY1; CHAIN: C; ADENO- ASSOCIATED VIRUS P5
Seq Fold Score				89.34				
PMF Score		0.13	99.0		1.00	69.0	0.93	0.99
Verify Score		-0.39	-0.20		0.13	-0.19	-0.09	0.03
PSI BLAST		1.7e-11	8.5e-38	8.5e-38	3.4e-35	5.1e-35	1.2e-52	6e-53
End		2	313	353	355	269	325	353
Start AA		37	191	187	217	168	214	242
Chain ID		ပ	∢	∢	⋖	U	ပ	ပ
PDB 10		Imey	911	1tf6	11.76	lubd	lubd	lubd
SEQ 10 NO:		343	343	343	343	343	343	343

WO 2002/018424

	T	Υ		·			· · · · · · ·		
. PDB Annotation	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT. YY1, ZINC 2 FINGER PROTEIN. DNA-PROTEIN RECOGNITION. 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT. YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLJ; GLJ. ZINC FINGER. COMPLEX (DNA- BINDING PROTFIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI: GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING
Compound	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A: DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA: CHAIN: C, D;	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D:	ZINC FINGER PROTEIN GLII;
SeqFold Score		86.36					19:56		
PMF Score			00.1	0.27	1.00	66:0		86.0	0.00
Verify Score			60.0	0.00	0.41	0.42		0.43	-0.10
PSI BLAST		6e-53	6.8e-34	1.2e-31	1.2e-61	1.5e-67	1.5e-67	3.4e-33	3e-23
End		354	353	268	327	353	355	352	243
Start AA		244	252	157	188	216	216	224	40
Chain ID		O	ပ	٧	٧	¥	٧	∢	V
PDB ID		lubd	lubd	2gli	2gli	2gli	2gli	2gli	2gli
SEQ ID NO:		343	343	343	343	343	343	343	343

PDB Annotation	PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	(Cartina Cartina COMPLEX (TRANSFERASE/PEPTIDE) COMPLEX (TRANSFERASE/PEPTIDE), SIGNAL TRANSDUCTION, 2 SH3	DOMAIN	COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE) COMPLEX (SIGNAL TRANSDUCTION/PEPTIDE),	SHS DOMAIN										PHOSPHOTIB ANGEED ASE BIZK STIZE	1PHT 9 PHOSPHATIDYLINOSITOL 3-	KINASE, P85-ALPHA SUBUNIT, SH3						CIRCULAR PERMUTANT PWT:	CIRCULAR PERMUTANT, SH3	CYTOSKEL ETON CYTOSKEI ETON	MEMBRANE, SH3 DOMAIN	SIGNAL TRANSDUCTION PROTEIN	
Compound	CHAIN: A: DNA; CHAIN: C. D:		ABL TYROSINE KINASE, CHAIN: A. C, E, G; PEPTIDE P41; CHAIN: B, D, F, H;	GRB2: CHAIN: 4: 8OS 1: CHAIN:	G.C.S., CANIN. A, S.C.S1, CHAIN. B;	SIGNAL TRANSDUCTION	PROTEIN GROWTH FACTOR	RECEPTOR-BOUND PROTEIN 2	DOMAIN) COMPLEXED WITH	SOS-A PEPTIDE IGBR 4 (NMR, 29	STRUCTURES) 1GBR 5	ADAPTOR PROTEIN CONTAINING	RECEPTOR-BOUND PROTEIN 2	(GRB2) IGFC 3 (C-TERMINAL SH3	DOMAIN) (NMR. MINIMIZED MEAN STRUCTURE) IGFC 4	PHOSPHATIDY LINOSITOL 3-	KINASE P85-ALPHA SUBUNIT;	IPHT 6 CHAIN; NULL; IPHT 7	PHOSPHOTRANSFERASE	PHOSPHATIDY LINOSITOL 3-	KINASE (E.C.2.7.1.137) (PI3K) 1PKS	S (SHS DOMAIN) (NMR, MINIMIZED AVERAGE	STRUCTURE) IPKS 4	ALPHA SPECTRIN; CHAIN: NULL;		ALPHA II SPECTRIN; CHAIN: A:		SEM-5; ISEM 3 CHAIN: A, B; ISEM 5 10-RESIDUE PROLINE-RICH
SeqFold Score																		_						_				22 46
PMF Score			0.72	0.88		86.0			_		60	0.89	_			0.33			0:30					0.99		96.0	5	0.92
Verify Score		١		-0.22		-0.04					500	/7.0				-0.32			-0.24					-0.09		0.13	0.00	
PSI BLAST		1 50 15	4.36-13	3e-16		3e-16					30.16	51-26				1.2e-15			1.5e-14					/.se-16		7.5e-16	\$1.99	
End AA		15	3	63		65					15	3										-	\forall	3	·	8	285	\exists
Start AA		-		∞		∞					~	•				×			×o				-	_				
Chain ID		4		¥		∢											-						1	·		<	V	
PDB ID		lbbz		1gbq		gor					lefc	b	•		1				- bks				l vici			Iqkw	Isem	
NO:		345		345		343					345			-	3//2	3		345	-				345		7	. —	345	

$\overline{}$					
PDB Annotation	PEPTIDE-BINDING PROTEIN, ISEM 18 2 GUANINE NUCLEOTIDE EXCHANGE FACTOR ISEM 19	OXIDOREDUCTASE FERROCYTOCHROME CAOXYGEN OXIDOREDUCTASE; OXIDOREDUCTASE; CYTOCHROME(C)-OXYGEN,	CYIOCHROME C.COXIDASE OXIDOREDUCTASE OXIDOREDUCTASE, OXIDOREDUCTASE, CYTOCHROME(C)-OXYGEN, CYTOCHROME C 2 OXIDASE	RNA BINDING PROTEIN RIBOSOMAL PROTEIN, PROTEIN SYNTHESIS, RNA BINDING, 2 ANTIBIOTICS RESISTANCE, RNA BINDING	RIBOSOME 50S RIBOSOMAL PROTEIN L2P, HMAL2. HL4; 50S RIBOSOMAL PROTEIN L4E, HMAL3, HL1; 50S RIBOSOMAL PROTEIN L4E, HMAL4, HL6; 50S RIBOSOMAL PROTEIN L5P, HMAL5, HL13; 30S RIBOSOMAL PROTEIN L13P, HMAL13; 50S RIBOSOMAL PROTEIN L13P, HMAL14, HL27; 50S RIBOSOMAL PROTEIN L15P, HMAL15, HL9; 50S RIBOSOMAL PROTEIN L18P, HMAL14; 50S RIBOSOMAL PROTEIN L18P, HMAL18, HL12; 50S RIBOSOMAL RROSOMAL PROTEIN L21E, HL31; 50S RIBOSOMAL PROTEIN L21E, HL31; 50S RIBOSOMAL PROTEIN L21E, HMAL22, HL23; 50S RIBOSOMAL PROTEIN L123P, HMAL23, HL25, L21; 50S RIBOSOMAL PROTEIN L25P, HMAL24, HL16, HL15; 50S
Сотроипа	PEPTIDE FROM MSOS ISEM 8 CHAIN: C, D ISEM 10	CYTOCHROME C OXIDASE; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	CYTOCHROME C OXIDASE; CHAIN: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q,	RIBOSOMAL PROTEIN L22: CHAIN: A;	235 RRNA; CHAIN: 0; 55 RRNA; CHAIN: 9; RIBOSOMAL PROTEIN L2; CHAIN: A; RIBOSOMAL PROTEIN L2; CHAIN: A; RIBOSOMAL PROTEIN L3; CHAIN: B; RIBOSOMAL PROTEIN L4; CHAIN: C; RIBOSOMAL PROTEIN L5; CHAIN: B; RIBOSOMAL PROTEIN L13; CHAIN: B; RIBOSOMAL PROTEIN L14; CHAIN: H; RIBOSOMAL PROTEIN L14; CHAIN: H; RIBOSOMAL PROTEIN L15; CHAIN: J; RIBOSOMAL PROTEIN L15; CHAIN: J; RIBOSOMAL PROTEIN L18; CHAIN: J; RIBOSOMAL PROTEIN L18; CHAIN: J; RIBOSOMAL PROTEIN L19; CHAIN: M; RIBOSOMAL PROTEIN L19; CHAIN: M; RIBOSOMAL PROTEIN L21E; CHAIN: N; RIBOSOMAL PROTEIN L21E; CHAIN: N; RIBOSOMAL PROTEIN L21E; CHAIN: N; RIBOSOMAL PROTEIN L21E; CHAIN: N; RIBOSOMAL PROTEIN L22E; CHAIN: O;
SeqFold Score			69.07		
PMF Score		0.60		00.1	0.60
Verify Score		-0.76		0.90	0.21
PSI BLAST		8.56-27	8.5c-27	5.1e-43	3.4e-23
End		78	78	175	174
Start AA		30	30	99	54
Chain ID		ㅈ	쪼	A	0
909 10		20cc	20cc	lbxe	TR.
SEQ ID NO:		348	348	355	355

PDB Annotation	RIBOSOMAL PROTEIN L24E, HL21/HL22; 50S RIBOSOMAL PROTEIN L29P, HMAL29, HL33; 50S RIBOSOMAL PROTEIN L30P, HMAL30, HL20, HL16; 50S RIBOSOMAL PROTEIN L31E, L34, HL30; 50S RIBOSOMAL PROTEIN L32E, HL5; 50S RIBOSOMAL PROTEIN L32E, L35E; 50S RIBOSOMAL PROTEIN L39E, HL39E, HL46E; 50S RIBOSOMAL PROTEIN L44E, L4, HLC4; 50S RIBOSOMAL PROTEIN L6P, HMAL6, HL10 RIBOSOME ASSEMBLY, RNA- RNA, PROTEIN-RNA, PROTEIN-	TRANSFERASE METHYLTRANSFERASE	METHYLTRANSFERASE TRANSFERASE, METHYLTRANSFERASE, RESTRICTION SYSTEM	COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR) NF-AT, TRANSCRIPTION FACTOR, PROTEIN-DNA COMPLEX, NFAT, NF-AT, 2 AP-1, FOS-JUN, QUATERNARY PROTEIN-DNA COMPLEX, CRYSTAL 3 STRUCTURE, TRANSCRIPTION SYNERGY, COMBINATORIAL GENE 4 REGULATION, COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE)	COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR) NF-AT; TRANSCRIPTION FACTOR, PROTEIN-DNA COMPLEX, NF-AT, 2 AP-1, FOS-JUN, QUATERNARY PROTEIN-DNA
Сотроина	RIBOSOMAL PROTEIN L23; CHAIN: P; RIBOSOMAL PROTEIN L24; CHAIN: Q; RIBOSOMAL PROTEIN L24E: CHAIN: R; RIBOSOMAL PROTEIN L29; CHAIN: S; RIBOSOMAL PROTEIN L31E; CHAIN: U; RIBOSOMAL PROTEIN L32E; CHAIN: V; RIBOSOMAL PROTEIN L37AE; CHAIN: W; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L44E; CHAIN: Z; RIBOSOMAL PROTEIN L37E; CHAIN: X; RIBOSOMAL PROTEIN L39E; CHAIN: Y; RIBOSOMAL PROTEIN L44E; CHAIN: Z; RIBOSOMAL	GLYCINE N- METHYLTRANSFERASE; CHAIN: A. B. C. D:	ADENINE-NG-DNA- METHYLTRANSFERASE TAQI; CHAIN: A. B;	NFAT: CHAIN: N. C-FOS. CHAIN: F. C-JUN: CHAIN: J. DNA; CHAIN: A, B;	NFAT; CHAIN: N; C-FOS; CHAIN: F; C-JUN; CHAIN: J; DNA; CHAIN: A, B;
SeqFold Score					62.39
PMF Score		0.17	-0.11	0.17	
Verify Score		0.20	0.14	-0.36	
PSI BLAST		1.2e-14	6.8e-13	4.5e-13	4.5e-13
End		190	209	091	160
Start AA		70	99	801	801
Chain ID		A	∢	Ĺ	(1 -,
PDB 10		1d2h	2adm	1a02	1a02
SEQ ID NO:		369	369	371	371

PDB Annotation	COMPLEX, CRYSTAL 3 STRUCTURE, TRANSCRIPTION SYNERGY, COMBINATORIAL GENE 4 REGULATION, COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR)	COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR) NF-AT; TRANSCRIPTION FACTOR, PROTEIN-DNA COMPLEX, NFAT, NF-AT, 2 AP-I, FOS-JUN. QUATERNARY PROTEIN-DNA COMPLEX, CRYSTAL 3 STRUCTURE, TRANSCRIPTION SYNERGY. COMBINATORIAL GENE 4 REGULATION, COMPLEX (TRANSCRIPTION/NUCLEAR/NUCLE AR)			HYDROLASE INHIBITOR ULTRA- HIGH RESOLUTION	OXIDOREDUCTASE OXIDOREDUCTASE	
Сотроила		NFAT; CHAIN: N; C-FOS; CHAIN: F; C-JUN; CHAIN: J; DNA; CHAIN: A, B;	COMPLEX (GENE-REGULATORY PROTEIN/DNA) C-JUN PROTO-ONCOGENE (TRANSCRIPTION FACTOR AP-1) DIMERIZED IFOS 4 WITH C-FOS AND COMPLEXED WITH DNA IFOS 5 COILED-COIL, DNA-BINDING PROTEIN, HETERODIMER IFOS 19	COMPLEX (GENE-REGULATORY PROTEIN/DNA) C-JUN PROTO-ONCOGENE (TRANSCRIPTION FACTOR AP-1) DIMERIZED 1FOS 4 WITH C-FOS AND COMPLEXED WITH DNA 1FOS 5 COILED-COIL, DNA-BINDING PROTEIN, HETERODIMER 1FOS 19	GUANINE NUCLEOTIDE DISSOCIATION INHIBITOR; CHAIN: A;	FLAVOCYTOCHROME C3 FUMARA'TE REDUCTASE; CHAIN: A, D;	OXIDOREDUCTASE DIHYDROLIPOAMIDE
SeqFold Score			70.24				
PMF Score		69.0		0.76	1.00	0.17	0.36
Verify Score		-0.05		-0.39	0.32	0.01	-0.12
PSI BLAST	·	3.46-10	3.4e-10	3.4e-10	0	0.0045	900.0
End AA		146	991	146	598	46	48
Start AA		115	107	115	166	8	8
Chain ID		ட	ច	3	∢	¥	٧
PDB ID		1a02	lfos	lfos	ld5t	1908	3lad
SEQ ID NO:		175	371	371	373	373	373

		1					T			\neg		`	_	T		``		Γ			Т	,	,		٢			[,	ر		Γ		
PDB Annotation			COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN	COMPLEX (ZINC FINGER/DNA)			COMPLEX (ZINC FINGER/DNA)	FINGER, DNA-BINDING PROTEIN		COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	FINGER, DNA-BINDING PROTEIN		COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGERODA), ZINC	FINGER, DNA-BINDING PROTEIN	CANCELLY CINIC CINICA VOTION (A)	COMPLEX (ZINC FINGENDINA) COMPLEX (ZINC FINGER/DNA), ZINC	FINGER. DNA-BINDING PROTEIN		COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGEROUNA), ZINC EINCEP DNA BINDING PROTEIN	THOUSE, DAYS BEING TO THE STATE OF THE STATE	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/DNA), ZINC	TINGEN. DIAN-BINDING INCIDEN	COMPLEX (ZINC FINGER/DNA)	COMPLEX (ZINC FINGER/UNA), ZIN	FINGER, DNA-BINDING PROTEIN	COMPLEY (71NC EINCEP/DNA)	COMPLEX (ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA), ZINC	רוויטבה, טויסביווטריטיום הייביויי
Compound	DEHYDROGENASE (E.C.1.8.1.4) 3LAD 3		QGSR ZINC FINGER PEPTIDE; CHAIN: A: DUPLEX	OLIGONUCLEOTIDE BINDING SITE: CHAIN: B. C.	QGSR ZINC FINGER PEPTIDE;	CHAIN: A; DUPLEA OLIGONUCLEOTIDE BINDING	SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE;	CHAIN: A; DUPLEX OLIGONUCLEOTIDE BINDING	SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE;	CHAIN: A; DUPLEX	OLIGONUCLEOTIDE BINDING	SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE;	CHAIN: A; DUPLEX	OLIGONUCLEOTIDE BINDING	SILE, CHAIN. B, C,	QGSR ZING FINGER PEPTIDE;	OLIGONUCLEOTIDE BINDING	SITE; CHAIN: B, C;	QGSR ZINC FINGER PEPTIDE;	CHAIN: A; DUPLEX	SITE: CHAIN: B, C:	QGSR ZINC FINGER PEPTIDE;	CHAIN: A: DUPLEX	OLIGONOCIEO IDE BINDING STIFF CHAIN: B. C.	QGSR ZINC FINGER PEPTIDE:	CHAIN: A; DUPLEX	OLIGONUCLEOTIDE BINDING	SILL, CHAIN. B, C,	QGSR ZINC FINGER PEPTIDE; CHAIN: A; DUPLEX	OLIGONUCLEO I IDE BINDING
SeqFold Score																	·								86.81							سعبر	
PMF Score			0.05		0.30			0.12			00:1				1.00				0.92			1.00	_					1.00			١	8 -	_
Verify Score			0.00		-0.03			09.0			-0.01				-0.32				0.03			0.64						0.57				0.43	
PSI BLAST			5.1e-15		6.8e-22			3.4e-23			1.2e-29				1.2e-32	•			le-30			1.2e-37			1.2e-37			1.2e-34				1.7e-31	
End			252		280			304			388				389				416			472			502			556			-	\$56	
Start AA			891	_	188			228			308				308				336	_		393			420			476				476	
Chain ID			4		٧			4			\ \				4				٧			A			<			 				⋖	
PD8 ID			lalh		lath			lalh			lalh				lalh				lath			lath			lalh			lalh				lalh	
SEQ ID	į		374		374			374			374				374				374			374			374			374				374	

	PDB ID	Chain ID	Start AA	End	PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
1 1									SITE; CHAIN: B, C;	
	Imey	ပ	981	280	3.4e-38	0.45	0.75		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	Imey	U	227	304	8.5e-41	0.40	0.84		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	Ітеу	U	255	360	le-43	-0.15	0.35		DNA: CHAIN: A. B. D. E. CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F. G;	COMPLEX (ZINC FINGERDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
ı	Imey	U	307	388	le-48	90.0	00.1		DNA; CHAIN: A. B. D. E. CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F, G;	COMPLEX (ZINC FINGENDNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGENDNA)
L	Imey	U	335	416	5.1e-50	-0.05	00.1		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
ı	lmey	U	363	444	le-50	0.39	1.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX: (ZINC FINGER/DNA)
,	Imey	U	391	472	1.7e-51	0.48	1.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	Ітеу	ပ	419	200	6.8e-51	0.55	1.00		DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN: CHAIN: C, F. G;	COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC FINGER/DNA)
	lmey	C	447	\$28	1.2e-50	0.51	1.00		DNA; CHAIN: A. B, D. E;	COMPLEX (ZINC FINGER/DNA) ZINC

		U	U	U	ii ~ O	7		1
PDB Annotation	FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX (ZINC ENCORPLEX)	COMPLEX (ZINC FINGER/DNA) ZINC FOMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGERDNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (ZINC FINGER/DNA) ZINC FINGER, PROTEIN-DNA INTERACTION, PROTEIN DESIGN, 2 CRYSTAL STRUCTURE, COMPLEX	(ZINC FINGER/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) TFIIIA; 5S GENE; NMR, TFIIIA, PROTEIN, DNA, TRANSCRIPTION FACTOR, 5S RNA 2 GENE, DNA BINDING PROTEIN, ZINC FINGER, COMPLEX 3 (TRANSCRIPTION	REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN COMPLEX (TRANSCRIPTION REGULATION/DNA) COMPLEX (TRANSCRIPTION
Compound	CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA; CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C, F, G;	DNA: CHAIN: A, B, D. E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C. F, G;	DNA: CHAIN: A, B, D, E; CONSENSUS ZINC FINGER PROTEIN; CHAIN: C. F. G;	TRANSCRIPTION FACTOR IIIA; CHAIN: A; 5S RNA GENE; CHAIN: E, F;	TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA: CHAIN: A. D: 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;	TFIIIA; CHAIN: A. D: 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F;
SeqFold Score		106.37					117.85	
PMF Score			00.1	69.0	90.0-	-0.07		0.98
Verify Score			0.37	-0.12	0.06	0.05		0.01
PSI BLAST		6.8e-51	1.7e-50	1.56-10	6.8c-14	5.1e-29	8.5e-39	6.8e-38
End		529	556	252	276	341	470	453
Start AA		447	475	225	187	. 187	307	308
Chain ID		O	U	5	∢	∢	₹	ď
PDB ID		Imey	lmey	Imey	£	11f6	ltf6	1166
SEQ NO.		374	374	374	374	374	374	374

Compound PDB Annotation	POLYMERASE III, 2 TRANSCRIPTION INITIATION, ZINC FINGER PROTEIN	a GENE; CHAIN: REGULATION/ONA) COMPLEX (TRANSCRIPTION COMPLEX (TRANSCRIPTION)	REGULATION/DNA), RNA POLYMERASE III, 2 TRANSCRIPTION	D: 5S COMPLEX (TRANSCRIPTION		(TRANSCRIPTION REGILI ATIONIONA) RNA	POLYMERASE III, 2 TRANSCRIPTION		COMPLEX (TRANSCRIPTION OF STREET OF		REGIL ATIONONA BNA	POLYMERASE III. 2 TRANSCRIPTION	INITIATION, ZINC FINGER PROTEIN				INITIATOR ELEMENT, YYI, ZINC 2	FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX	(TRANSCRIPTION			FEAT DNA: TRANSCRIPTION INITIATION		FINGER PROTEIN, DNA-PROTEIN	RECOGNITION, 3 COMPLEX		(TRANSCRIPTION										
		TFIIIA; CHAIN: A, D; 5S RIBOSOMAL RNA GENE; CHAIN: B, C, E, F:		TFIIIA; CHAIN: A, D: 5S	RIBOSOMAL RNA GENE; CHAIN:		-	-	TFILIA; CHAIN: A. D. 5S	R C F F:	: : :			YY1; CHAIN: C; ADENO.	ASSOCIATED VIRUS PS	INITIATOR ELEMENT DNA;	CHAIN: A, B;					YYI; CHAIN: C; ADENO-	INITIATOR FI FMENT DNA:	CHAIN: A. B.						YYI; CHAIN: C; ADENO.	YYI; CHAIN: C; ADENO ASSOCIATED VIRUS PS	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INTIATOR ELEMENT DNA; CHAIN: A R:	YYI; CHAIN: C; ADEN ASSOCIATED VIRUS P INTIATOR ELEMENT CHAIN: A. B;	YYI; CHAIN: C; ADEN ASSOCIATED VIRUS P INITIATOR ELEMENT CHAIN: A. B;	YYI; CHAIN: C; ADEN ASSOCIATED VIRUS P INTIATOR ELEMENT CHAIN: A. B;	YYI; CHAIN: C; ADEN ASSOCIATED VIRUS P INTIATOR ELEMENT CHAIN: A. B;	YYI; CHAIN: C; ADEN ASSOCIATED VIRUS P INITIATOR ELEMENT CHAIN: A. B;	YYI; CHAIN: C; ADEN ASSOCIATED VIRUS P INITIATOR ELEMENT CHAIN: A. B;
Score																																						
PMF Score		00.1		96.0				,	0.46					0.05							3,0	0.60					•			0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Verify Score		0.12		0.13				9, 9	81.0 		•			0.10							6	0.28								-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15
PSI BLAST		1.7e-38		8.5c-39					3.4e-30				į	8.5e-25							2 4 0.2	3.46-27								8.5e-29	8.5c-29	8.5e-29	8.5e-29	8.5e-29	8.5c-29	8.5e-29	8.5e-29	8.5c-29
End		481		538					226					280							705	304 404								360	360	360	360	360	360	360	360	360
Start AA		336		392					8448					991							9	<u>8</u>								263	263	263	263	263	263	263	263	263
Chain ID		۷ _		4					<					ပ							,	ر						_		S	O	U	U	O	S	O	O	S
PDB 1D		1116		9,11	-			2	9		-		_	pqn_							7	000								lubd	lubd	lubd	lubd	lubd	Jubd	lubd	lubd	lubd
SEQ ID NO:		374	1	374				12.	3/4					374					•		72.0	5/4 -							1	374	374	374	374	374	374	374	374	374

PDB Annotation	REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I: TRANSCRIPTION INITIATION. INITIATOR ELEMENT. YYI. ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I;
Compound		YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA: CHAIN: A. B:	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5
SeqFold Score							
PMF Score		0.94	1.00	66.0	00'1	00:1	1.00
Verify Score		0.12	0.13	0.0	0.30	0.23	0.18
PSI BLAST		5.1e-34	96-41	1.5e-34	1.5e-34	5.le-36	1.5e-51
End		388	444	416	444	200	529
Start		287	312	315	343	399	418
Chain 1D		U	U	v	υ	ပ	S
PD8 1D		Pqn	Pdn	lubd	Pan J	lubd	lubd
SEQ NO:		374	374	374	374	374	374

PDB Annotation	TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG I; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YYI, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	COMPLEX (TRANSCRIPTION REGULATION/DNA) YING-YANG 1; TRANSCRIPTION INITIATION, INITIATOR ELEMENT, YY1, ZINC 2 FINGER PROTEIN, DNA-PROTEIN RECOGNITION, 3 COMPLEX (TRANSCRIPTION REGULATION/DNA)	ZINC FINGER DNA BINDING DOMAIN DNA BINDING MOTIF, ZINC FINGER DNA BINDING DOMAIN	TRANSCRIPTION REGULATION TRANSCRIPTION REGULATION. ADR.I. ZINC FINGER, NMR	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI: GLI, ZINC FINGER, COMPLEX (DNA-
Compound	INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	YYI: CHAIN: C; ADENO- ASSOCIATED VIRUS PS INITIATOR ELEMENT DNA: CHAIN: A. B;	YY I; CHAIN: C; ADENO- ASSOCIATED VIRUS P5 INITIATOR ELEMENT DNA; CHAIN: A, B;	SWIS; CHAIN: NULL;	ADRI; CHAIN: NULL;	ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	ZINC FINGER PROTEIN GLI1; CHAIN: A: DNA; CHAIN: C. D:
SeqFold Score		98.87						
PMF Score			86.0	00.1	0.30	90:0	-0.11	0.87
Verify Score			0.20	0.21	90.0	-0.04	0.07	0.18
PSI BLAST	=	1.5e-51	1.5e-46	1.5e-34	6.8e-05	3.4e-11	8.5e-24	1.2e-34
End		529	556	556	558	254	303	415
Start AA		421	445	455	532	681	191	287
Chain ID		O .	၁	3			V	V.
PDB ID	·	lubd	pqinI	lubd	pjz I	2adr	2gli	2gli
SEQ ID NO:		374	374	374	374	374	374	374

Chain Start End		End AA		PSI BLAST	Verify Score	PMF Score	SeqFold Score	Compound	PDB Annotation
H	H								BINDING PROTEIN/DNA)
A 335 474 1.2e-61	474		1.2e-61				106.08	ZINC FINGER PROTEIN GLII; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA-BINDING PROTEIN/DNA)
A 393 530 1.2e-61 0.49	530 1.2e-61	1.2e-61		0.49		00.1		ZINC FINGER PROTEIN GLI1; CHAIN: A; DNA; CHAIN: C, D;	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI, ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
A 420 557 4.5e-58 0.36	557 4.5e-58	4.5e-58		0.36		1.00		ZINC FINGER PROTEIN GL/1: CHAIN: A; DNA; CHAIN: C, D:	COMPLEX (DNA-BINDING PROTEIN/DNA) FIVE-FINGER GLI; GLI. ZINC FINGER, COMPLEX (DNA- BINDING PROTEIN/DNA)
			7						
A 1 76 16-31 0.68	le-31	le-31		0.6 8		00:	-	ID8 UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIQUITIN
A 1 76 16-31			16-31		<u> </u>		102.61	ID8 UBIQUITIN; CHAIN: A;	DE NOVO PROTEIN PROTEIN DESIGN, HYDROPHOBIC CORE, PACKING, ROTAMERS, ROC, 2 UBIQUITIN, DE NOVO PROTEIN, UBIQUITIN
B 1 72 1.2e-32 0.97	1.26-32	1.26-32		0.97		1.00	}	UBIQUITIN TETRAUBIQUITIN ITBE 3	
B 1 72 1.2e-32			1.2e-32				97.63	UBIQUITIN TETRAUBIQUITIN ITBE 3	
1 76 le-33 1.07	1e-33	1e-33		1.07		1.00		CHROMOSOMAL PROTEIN UBIQUITIN IUBI 3	
1 76 7.5e-36			7.5e-36				105.89	CHROMOSOMAL PROTEIN UBIQUITIN 1UBI 3	
1 76 7.5e-36 1.07	7.5e-36	7.5e-36		1.07		90.1		CHROMOSOMAL PROTEIN UBIOUITIN IUBI 3	
A 1 76 1.2e-32 0.96	1.2e-32	1.2e-32		96.0		00.1		UBIQUITIN CORE MUTANT 1D7; CHAIN: A;	UBIQUITIN UBIQUITIN, DESIGNED CORE MUTAN'E
1 76 1.2e-32			1.2e-32				102.60	UBIQUITIN CORE MUTANT 1D7: CHAIN: A;	UBIQUITIN UBIQUITIN. DESIGNED CORE MUTANT
		,	7	Į,	1				
5 144 1.2e-62 0.90	144 1.26-62	1.2e-62		9.9		8.		CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODIL IN BINDING	

PDB Annotation						CALCIUM-BINDING PROTEIN CALMODULIN APO TR2C-DOMAIN; ICMF 9	CALCIUM-BINDING PROTEIN CALMODULIN APO TR2C-DOMAIN; ICMF 9	METAL TRANSPORT CALMODULIN, HIGH RESOLUTION, DISORDER	TRANSPORT PROTEIN CALCILIM BINDING, EF HAND, FOUR-HELIX BUNDLE	CALCIUM-BINDING PROTEIN EF. HAND ITNX 14	CALCIUM-BINDING PROTEIN EF. HAND ITNX 14	CALMODULIN, CALCIUM BINIJING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	CALMODULIN, CALCIUM BINIDING, HELIX-LOOP-HELIX, SIGNALLING, 2 COMPLEX(CALCIUM-BINDING PROTEIN/PEPTIDE)	RNA-BINDING PROTEIN/RNA TRA	RNP DOMAIN, RNA COMPLEX
Compound	DOMAIN OF ICDM 3 CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN CALMODULIN COMPLEXED WITH CALMODULIN-BINDING	CALMODULIN-DEPENDENT PROTEIN KINASE II ICDM 4	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALCIUM-BINDING PROTEIN CALMODULIN (VERTEBRATE) ICLL 3	CALMODULIN (VERTEBRATE): ICMF 6 CHAIN: NULL; ICMF 7	CALMODULIN (VERTEBRATE); ICMF 6 CHAIN: NULL; ICMF 7	CALMODULIN; CHAIN: A;	CALMODULIN; CHAIN: A;	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	TROPONIN C; ITNX 4 CHAIN: NULL; ITNX 5	CALMODULIN; CHAIN: A; RS20; CHAIN: B;	CALMODULIN: CHAIN: A; RS20. CHAIN: B;	SXL-LETHAL PROTEIN: CHAIN: A. B. PAIA (5)	R(P*GP*UP*UP*GP*UP*UP*UP
SeqFold Score		149.72			156.05	79.20				127.27			156.22		
PMF Score				00:1			00'1	00.1	00.1		1.00	1.00		66.0	
Verify Score				1.07			06:0	96.0	1.14		0.85	80.1		0.43	
PSI BLAST		1.2e-62		3.4e-66	3.4e-66	1.5e-23	1.5c-23	5.1e-64	1.5e-23	3.4e-50	3.4e-50	1.5e-66	1.5e-66	1.7c-21	
End AA		144		144	145	146	143	143	143	143	143	146	146	113	
Start AA		vs		S	S	74	81	3	81	_	5	7	2	2	
Chain ID		⋖						٧	¥.			∢	∢	₹	
PDB 1D		lcdm		Icli	Icli	lcmf	lcmf	lexr	1771	ltnx	Itnx	lvrk	l vrk	1b7f	
SEQ ID NO:		377		377	377	377	377	377	377	377	377	377	377	384	

	_							_					_	_																		_								
PDB Annotation		RNA-BINDING PROTEIN/RNA TRA	RNF DOMAIN, RNA COMPLEX	ANA DIMONIO BONTANA TEL	PRE-MRNA: SPI ICING REGILI ATION	RNP DOMAIN, RNA COMPLEX		GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM,	PROTEIN-RNA COMPLEX, GENE	NEGOLA LIGINALIA		GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1: RRM.	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1: RRM	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM,	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN 1, PABP 1; RRM,	PROTEIN-RNA COMPLEX, GENE	REGULATION/RNA			GENE REGULATION/RNA POLY(A)	BINDING PROTEIN I, PABP I; RRM,	PROTEIN-RNA COMPLEX, GENE	
Compound	*UP*UP*UP*U)- CHAIN: P. Q;	SXL-LETHAL PROTEIN; CHAIN: A,	R(P*GP*UP*UP*GP*UP*UP*UP*UP	SXI.I ETHAI PROTEIN: CHAIN: A	B; RNA (5'-	R(P*GP*UP*UP*GP*UP*UP*UP	*UP*UP*UP*U)- CHAIN: P, Q;	POLYDENYLATE BINDING	PROTEIN 1; CHAIN: A, B, C, D, E,	F, G, H; KNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M. N. O. P.	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C, D, E,	F, G, H; RNA (5'-	K(*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'): CHAIN: M, N, O, P,	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN I: CHAIN: A. B, C, D, E.	F. G, H; RNA (5'-	R(*AP*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M, N, O. P.	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN 1; CHAIN: A, B, C, D, E.	F, C, H; KNA (5'-	K(*Al*Al*Al*Al*Al*Al*Al*	AP*AP*A)-3'); CHAIN: M, N, O, P,	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C, D, E,	F, C, H; KNA (S-	K(*AP*AP*AP*AP*AP*AP*	AP*AP*A)-3'); CHAIN: M, N, O, P,	Q, R, S, T;	POLYDENYLATE BINDING	PROTEIN I; CHAIN: A, B, C, D, E,	1, U, H, KINA (3 - R(*AP*AP*AP*AP* R(*AP*AP*AP*AP*AP*	
SeqFold Score				84.87				-						-			•		•								*****					_	• • • •							
PMF Score		1.00					į	 8					 8:						8						 80:1					1	3				-		3			
Verify Score		1.07	,				١	0.42				1	0.72						0.16					1	0.31					550						†	0.33		_	
PSI BLAST		3.4e-43		3.4e-43	-			1.56-51				,	1.4c-43						3.46-23				_	\dagger	07-38.0		-			1 70 27						†	97-20.0			
End		205		205			-	<u> </u>										╁	<u></u>					\dagger	<u>.</u> _		_	-		188						170			-	
Start AA		33		33		_	,	7					<u> </u>					370	9/6					,	7					37						2.2	<u> </u>			
Chain ID		⋖		4				c					<						ς		·							-		8			-			11				
PDB ID	3671	1/01		167f			ivi	_					<u>.</u>					. i.	<u> </u>					10.1		-				ivi	•					icvi				
SEQ ID NO:	307	† 00	_	384			384	5				384	5					384	5					184	5					384				-		384				

PDB Annotation		GENE REGULATION/RNA POLY(A) BINDING PROTEIN 1, PABP 1; RRM, PROTEIN-RNA COMPLEX, GENE REGULATION/RNA	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	RNA BINDING PROTEIN RNA- BINDING DOMAIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN AI, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1, NUCLEAR PROTEIN, HNRNP, RBD, RRM, RNP, RNA BINDING, 2 RIBONUCLEOPROTEIN	NUCLEAR PROTEIN HETEROGENEOUS NUCLEAR
Compound	AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	POLYDENYLATE BINDING PROTEIN 1; CHAIN: A, B, C, D, E, F, G, H; RNA (5'- R(*AP*AP*AP*AP*AP*AP*AP*AP* AP*AP*A)-3'); CHAIN: M, N, O, P, Q, R, S, T;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C; CHAIN: A;	HU ANTIGEN C; CHAIN: A:	HNRNP A1; CHAIN: NULL;	HNRNP AI; CHAIN: NULL;	HNRNP A1; CHAIN: NULL;	HNRNP AI; CHAIN: NULL;	HNRNP AI; CHAIN: NULL:
SeqFold Score								74.92			
PMF Score		1.00	1.00	0.0	00.1	1.00	1.00		-0.05	0.63	1.00
Verify Score		0.46	0.61	0.83	0.77	0.72	0.70		0.63	0.33	0.70
PSI BLAST		1.4e-28	5.1e-22	4.5e-24	1.5e-17	4.5e-23	1.7e-51	1.7e-51	le-23	6.8e-22	3.4e-28
End AA		181	117	201	120	105	205	204	494	£	498
Start AA		37	32	419	36	418	30	31	376	4	413
Chain ID		Ι	A	4	٧	4					
PDB ID		Icvj	z8b1	148z	l d9a	1d9a	lha!	lha!	lha!	lha l	lhal
SEQ ID NO:		384	384	384	384	384	384	384	384	384	384

SEQ ID	PDB CD	Chain	Start	End	PSI BLAST	Verify	PMF	Seq Fold Score	Compound	PDB Annotation
ö										RIBONIICLEOPROTEIN AT NIICLEAR
										PROTEIN, HNRNP, RBD, RRM. RNP, RNA BINDING, 2
, ,										RIBONUCLEOPROTEIN
384		⋖	36	===	le-22	16:0	0.1		HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN DO:	RNA BINDING PROTEIN RNA. BINDING DOMAIN
									CHAIN: A;	
384	<u> </u>	Ψ.	419	494	8.5e-24	1.02	66.0		HETEROGENEOUS NUCLEAR	RNA BINDING PROTEIN RNA-
									RIBONUCLEOPROTEIN DO;	BINDING DOMAIN
, 0,	 -		ļ	7					CHAIN: A;	
784	I SXI		2	201	66-25	0.48	0.99		RNA-BINDING PROTEIN SEX-	
								-	LETHAL PROTEIN (C-TERMINUS,	
									OR SECOND RNA-BINDING	
								_	DOMAIN ISXL 3 (RBD-2),	
								_	RESIDUES 199 - 294 PLUS N-	
									TERMINAL MET) 1SXL 4 (NMR, 17	
į									STRUCTURES) ISXL 5	
384	Zmss	∢	36	= 3	6.8e-18	0.50	0.58		MUSASHII; CHAIN: A;	RNA BINDING PROTEIN RNA- BINDING DOMAIN
384	2sxl		33	<u>*</u>	3.4e-20	0.63	1.00		SEX-LETHAL PROTEIN; CHAIN:	RNA-BINDING DOMAIN RNA-
									NULL;	BINDING DOMAIN, ALTERNATIVE
384	Jung	•	ç	910	1 42.63	9,0	5			Si cicilio
*	ıdnz	<	67	710	1.46-53	60.0	3		HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1;	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP
				-					CHAIN: A; 12-NUCLEOTIDE	AI, UPI; COMPLEX
									SINGLE-STRANDED TELOMETRIC	(RIBONUCLEOPROTEIN/DNA),
									DINA; CHAIN: B;	HEIEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN AI
384	2up]	<	30	213	1.4c-53			77.86	HETEROGENEOUS NUCLEAR	COMPLEX
							-		RIBONUCLEOPROTEIN A 1;	(RIBONUCLEOPROTEIN/DNA) HNRNP
				•			-		CHAIN: A: 12-NUCLEO'TIDE	A1. UP1; COMPLEX
					_		•		SINGLE-STRANDED TELOMETRIC	(RIBONUCLEOPROTEIN/DNA).
									DNA: CHAIN: B;	HETEROGENEOUS NUCLEAR 2
384	2up1	<	376	499	1c-24	-0.07	90.0		HETEROGENEOUS NUCLEAR	COMPLEX
									RIBONUCLEOPROTEIN A1;	(RIBONUCLEOPROTEIN/DNA) HNRNP
									CHAIN: A: 12-NUCLEOTIDE	A1. UP1: COMPLEX
									SINGLE-STRANDED TELOMETRIC	(RIBONUCLEOPROTEIN/DNA),
							•		DNA; CHAIN: B;	HETEROGENEOUS NUCLEAR 2
384	2up1	٧	4	611	5.1e-23	0.44	0.63		HETEROGENEOUS NUCLEAR	COMPLEX
									RIBONUCLEOPROTEIN A1;	(RIBONUCLEOPROTEIN/DNA) HNRNP

PDB Annotation	A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	COMPLEX (RIBONUCLEOPROTEIN/DNA) HNRNP A1, UP1; COMPLEX (RIBONUCLEOPROTEIN/DNA), HETEROGENEOUS NUCLEAR 2 RIBONUCLEOPROTEIN A1	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	RNA BINDING DOMAIN RNA BINDING DOMAIN, RBD, RNA RECOGNITION MOTIF, RRM, 2 SPLICING INHIBITOR, TRANSLATIONAL INHIBITOR, SEX 3 DETERMINATION, X CHROMOSOME DOSAGE COMPENSATION	KINASE KINASE, SIGNAL TRANSDUCTION, CALCIUM/CALMODULIN	TRANSFERASE TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, CASEIN KINASE, 2 SER/THR KINASE	TRANSFERASE TRANSFERASE, SERINE/THREONINE-PROTEIN KINASE, CASEIN KINASE, 2 SER/THR KINASE	
Compound	CHAIN: A; I2-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA; CHAIN: B;	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A1: CHAIN: A: 12-NUCLEOTIDE SINGLE-STRANDED TELOMETRIC DNA: CHAIN: B:	SEX-LETHAL; CHAIN: A, B, C,	SEX-LETHAL; CHAIN: A, B, C;	CALCIUM/CALMODULIN- DEPENDENT PROTEIN KINASE; CHAIN: NULL;	PROTEIN KINASE CK2/ALPHA- SUBUNIT: CHAIN: NULL;	PROTEIN KINASE CKZ/ALPHA- SUBUNIT; CHAIN: NUCL;	TRANSFERASE(PHOSPHOTRANSF ERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) IAPM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 IAPM 4 REPLACED BY ALA (/S139A\$)
SeqFold Score	:				98.83	153.21		116.50
PMF Score		00:1	0.99	00.1			00'1	
Verify Score		0.87	0.47	0.72			0:30	
PSI BLAST		1.5e-29	1.2e-20	3.4e-41	1.7e-63	1.2e-81	1.2e-81	6e-55
End		501	901	189	327	296	295	324
Start AA		412	2	35	_	-	°	
Chain ID		∀	V	Y				ന
PDB ID		2up1	3sxl	3sxl	1a06	la60	la6o	Тарт
SEQ ID NO:		384	384	384	391	391	391	391

PDB Annotation				PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS, INHIBITION	PROTEIN KINASE CDK2; PROTEIN KINASE, CELL CYCLE, PHOSPHORYLATION, STAUROSPORINE, 2 CELL DIVISION, MITOSIS. INHIBITION	COMPLEX (KINASE/INHIBITOR) CDK6; P191NK4D; CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE, CYCLIN DEPENDENT KINASE INHIBITORY 2 PROTEIN, CDK, INK4, CELL CYCLE, COMPLEX (KINASE/INHIBITOR) HEADER HELLX	COMPLEX (KINASE/INHIBITOR) CDK6: P19INK4D; CYCLIN DEPENDENT KINASE, CYCLIN
Compound	COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 1APM 6	TRANSFERASE(PHOSPHOTRANSF ERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) 1APM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 1APM 4 REPLACED BY ALA (/S139A\$) COMPLEX WITH THE PEPTIDE 1APM 5 INHIBITOR PK1(5-24) AND THE DETERGENT MEGA-8 1APM 6	TRANSFERASE(PHOSPHOTRANSF ERASE) \$C-/AMP\$-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (\$C/APK\$) IAPM 3 (CATALYTIC SUBUNIT) ALPHA ISOENZYME MUTANT WITH SER 139 IAPM 4 REPLACED BY ALA (/S139A\$) COMPLEX WITH THE PEPTIDE IAPM 5 INHIBITOR PKI(5-24) AND THE DETERGENT MEGA-8 IAPM 6	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	CYCLIN-DEPENDENT PROTEIN KINASE 2; CHAIN: NULL;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A, C; CYCLIN- DEPENDENT KINASE INHIBITOR; CHAIN: B, D;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A. C. CYCLIN- DEPENDENT KINASE INHIBITOR;
SeqFold Score					212.68	182.71	
PMF Score		1.00	1.00	00'1			1.00
Verify Score		0.45	0.31	0.37			0.04
PSI BLAST		le-53	6e-55	0	0	3.4e-91	3.4e-91
End		288	304	294	298	289	289
Start AA		2		2	2	æ	4
Chain ID		ы	ω .			¥	4
PDB 1D		mda1	mge	laq I	laq1	1bi8	1618
SEQ ID NO:		391	36	391	391	391	391

										_	
PDB Annotation	DEPENDENT KINASE INHIBITORY 2 PROTEIN. CDK. INK4. CELL CYCLE. COMPLEX (KINASE/INHIBITOR) HEADER HELIX	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	COMPLEX (INHIBITOR PROTEIN/KINASE) INHIBITOR PROTEIN, CYCLIN-DEPENDENT KINASE, CELL CYCLE 2 CONTROL, ALPHA/BETA, COMPLEX (INHIBITOR PROTEIN/KINASE)	TRANSFERASE CSK; PROTEIN KINASE, C-TERMINAL SRC KINASE, PHOSPHORYLATION, 2 STAUROSPORINE, TRANSFERASE	PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18	PHOSPHOTRANSFERASE PROTEIN KINASE ICKI 18	TRANSFERASE STRESS-ACTIVATED PROTEIN KINASE-3, ERK6. ERK5; P38-GAMMA. GAMMA, PHOSPHORYLATION, MAP KINASE			PHOSPHOTRANSFERASE	
Compound	CHAIN: B. D;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	CYCLIN-DEPENDENT KINASE 6; CHAIN: A; P19INK4D; CHAIN: B;	C-TERMINAL SRC KINASE; CHAIN: A;	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	CASEIN KINASE I DELTA; ICKI 6 CHAIN: A, B; ICKI 7	PHOSPHORYLATED MAP KINASE P38-GAMMA: CHAIN: A, B:	PHOSPHOTRANSFERASE CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	PHOSPHOTRANSFERASE CAMP- DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ICMK 3 (E.C.2.7.1.37) ICMK 4	CASEIN KINASE-1; ICSN 4	TRANSFERASE(PHOSPHOTRANSF ERASE) CAMP-DEPENDENT PROTEIN KINASE (E.C.2.7.1.37) (CAPK) ICTP 3 (CATALYTIC SUBUNIT) ICTP 4
SeqFold Score		202.88		74.19	19.89			111.92		77.16	109.28
PMF Score	!		8:			68.0	00.1		1.00		
Verify Score			0.27			0.17	0.42		0.46		
PSI BLAST		1.76-99	1.7e-99	36-34	3e-55	3e-55	0	6.8e-56	6.8e-56	5.1e-18	1.5e-56
End			291	303	281	288	326	324	288	284	311
Start AA		-	4	-	2 .	4			7	_	
Chain ID		V	∢	V	¥.	ď	<	ப	ш		3
PDB ID		lbíx	- lbix	lbyg	Icki	1cki	lcm8	lcmk	lcmk	Icsn	lctp
SEQ ID NO:		391	391	391	391	391	391	391	391	391	391

PDB Annotation	TRANSFERASE KINASE DOMAIN, AUTOINHIBITORY FRAGMENT. HOMODIMER	PHOSPHOTRANSFERASE FGFRIK. FIBROBLAST GROWTH FACTOR RECEPTOR 1; TRANSFERASE, TYROSINE-PROTEIN KINASE, ATP. BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE	PHOSPHOTRANSFERASE FGFRIK, FIBROBLAST GROWTH FACTOR RECEPTOR 1; TRANSFERASE, TYROSINE-PROTEIN KINASE, ATP-BINDING, 2 PHOSPHORYLATION, RECEPTOR, PHOSPHOTRANSFERASE	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	PROTEIN KINASE CDK2; TRANSFERASE, SERINE/THREONINE PROTEIN KINASE, ATP-BINDING, 2 CELL CYCLE, CELL DIVISION, MITOSIS, PHOSPHORYLATION	SERINE/THREONINE-PROTEIN KINASE CSBP, RK, P38: PROTEIN SER/THR-KINASE, SER/THR-FONINE-PROTEIN KINASE	SERINE/THREONINE-PROTEIN KINASE CSBP, RK, P38; PROTEIN SER/THR-KINASE, SERINE/THREONINE-PROTEIN KINASE	COMPLEX (TRANSFERASE/SUBSTRATE) TYROSINE KINASE, SIGNAL TRANSDUCTION, PHOSPHOTRANSFERASE, 2 COMPLEX (KINASE/PEPTIDE
Сотроинд	SERINETHREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: A, B; SERINETHREONINE-PROTEIN KINASE PAK-ALPHA; CHAIN: C. D;	FGF RECEPTOR 1; CHAIN: A, B:	FGF RECEPTOR 1; CHAIN: A, B;	HUMAN CYCLIN-DEPENDENT KINASE 2; CHAIN: NULL;	HUMAN CYCLIN-DEPENDENT KINASE 2: CHAIN: NULL:	P38 MAP KINASE: CHAIN: NULL:	P38 MAP KINASE; CHAIN: NULL;	INSULIN RECEPTOR; CHAIN: A; PEPTIDE SUBSTRATE; CHAIN: B;
SeqFold Score		95.41	101.29		239.66		163.36	79.01
PMF Score	1.00			00.1		1.00		·
Verify Score	0.41			0.67		0.12		
PSI BLAST	7.5e-67	1.5e-38	7.5e-37	0	0	0	0	4.5e-37
End	297	299	298	294	298	328	328	275
Start AA	£	_		2	2	_	-	_
Chain ID	v	∢	В					∢
PDB ID	113m	Ifgk	l fgk	Ihcl	Ihcl	lian	lian	lir3
SEQ ID NO:	391	391	391	391	391	391	168	391

			Ι	ı ——	Γ	T				Γ	ī	_
PDB Annotation	SUBSTRATE/ATP ANALOG), ENZYME, 3 COMPLEX (TRANSFERASE/SUBSTRATE)	TRANSFERASE JNK3; TRANSFERASE, JNK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE	TRANSFERASE JNK3; TRANSFERASE, JNK3 MAP KINASE, SERINE/THREONINE PROTEIN 2 KINASE	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN, INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN. INTRASTERIC REGULATION	KINASE KINASE, TWITCHIN. INTRASTERIC REGULATION	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE; TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P38	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE; TRANSFERASE, MAP KINASE, SERINE/THREONINE-PROTEIN KINASE, 2 P38	KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM, TRANSFERASE, SERINE/THREONINE- PROTEIN, 2 KINASE, ATP-BINDING, CALMODULIN-BINDING	KINASE RABBIT MUSCLE PHOSPHORYLASE KINASE; GLYCOGEN METABOLISM. TRANSFERASE, SERINETHREONINE- PROTEIN, 2 KINASE, A TP-BINDING, CALMODULIN-BINDING	TRANSFERASE MAP KINASE.
Compound		C-JUN N-TERMINAL KINASE; CHAIN: NULL;	C-JUN N-TERMINAL KINASE; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: NULL;	TWITCHIN; CHAIN: A, B:	TWITCHIN; CHAIN: A. B;	MAP KINASE P38; CHAIN: NULL:	MAP KINASE P38; CHAIN: NULL;	PHOSPHORYLASE KINASE; CHAIN: NULL;	PHOSPHORYLASE KINASE; CHAIN: NULL;	ERK2; CHAIN: NULL:
SeqFold Score			161.78		86.80		124.22		191.19	123.81		
PMF Score		1.00		1.00		00'1		1.00			00.1	1.00
Verify Score		0.46		0.26		0.26		0.47			0.37	0.53
PSI BLAST		0	0	le-57	le-57	1.7e-57	1.7e-57	0	0	1.7e-66	1.7e-66	0
End		323	331	302	358	292	357	328	332	291	291	330
Start AA		- '	-	_	1	_	-	_	_	: _	E.	-
Chain ID						4	٧					
PDB ID		ljnk	ljnk	1koa	lkoa	Ikob	1kob	1p38	1p38	lphk	l phk	Ipme
SEQ ID NO:		391	391	391	391	391	391	391	391	391	391	391

PDB Annotation	SERINE/THREONINE PROTEIN KINASE, TRANSFERASE	TRANSFERASE MAP KINASE, SERINE/THREONINE PROTEIN KINASE, TRANSFERASE	SERINE KINASE SERINE KINASE, TITIN, MUSCLE, AUTOINHIBITION	TRANSFERASE MITOGEN ACTIVATED PROTEIN KINASE, MAP	2, ERK2; TRANSFERASE, SERINE/THREONINE-PROTEIN	TRANSFERASE MITOGEN	ACTIVATED PROTEIN KINASE, MAP	2, ERK2, TRANSFERASE, SEPINEMENT OF THE SEPINE THE SEPI	KINASE, MAP KINASE, 2 ERK2	COMPLEMENT COMPLEMENT: EGF, CALCIUM BINDING, SERINE PROTEASE	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING. COLLAGEN, ADHESION	STRUCTURAL PROTEIN I-DOMAIN, METAL BINDING, COLLAGEN, ADHESION	BLOOD COAGULATION, SERINE	PROTEASE, COMPLEX, CO-FACTOR,	2 RECEPTOR ENZYME, INHIBITOR,	BOTE 4 SECTION OF A STATE OF A ST	PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE	PROTEASE, COMPLEX, CO-FACTOR,	2 RECEPTOR ENZYME, INHIBITOR,	GLA, EGF, 3 COMPLEX (SERINE	PROTEASE/COFACTOR/LIGAND)	SINISS INCITA INCIDA CO GOOD	PROTEASE COMPLEX CO-FACTOR	2 RECEPTOR ENZYME, INHIBITOR,
Compound		ERK2; CHAIN: NULL;	TITIN; CHAIN: A, B;	EXTRACELLULAR REGULATED KINASE 2: CHAIN: NULL;		EXTRACELLULAR REGULATED	KINASE 2; CHAIN: NULL;			COMPLEMENT PROTEASE CIR: CHAIN: NULL:	INTEGRIN ALPHA-I; CHAIN: A, B;	INTEGRIN ALPHA-1; CHAIN: A, B;	BLOOD COAGULATION FACTOR	VIIA; CHAIN: L, H; SOLUBLE	TISSUE FACTOR; CHAIN: T, U; D-	PHE-PHE-ARG-	(DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR	VIIA; CHAIN: L, H; SOLUBLE	TISSUE FACTOR; CHAIN: T, U; D-	PHE-PHE-ARG-	CHLOROMETHYLKETONE	PLOOP COACH! ATION EACTOR	VIA: CHAIN: L. H: SOLUBLE	TISSUE FACTOR; CHAIN: T, U; D-
SeqFold Score		183.19	114.84	187.32																					
PMF Score						00.1				1:00	00.1	00:1	9.65					01.0					** 0	C0	
Verify Score						0.54				-0.02	0.51	1.12	-0.44					-0.30					¥.	<u>}</u>	
PSI BLAST		0	1.7e-45	0		0				1.5e-11	6e-25	le-46	4.5e-20					3e-32					4 50 21	10-30-4	
End AA		331	358	325		326				154	Ξ	709	205					246					287	\o_*	
Start AA		-	_	_		-				120	~	527	116		·			124					891	3	
Chain 1D			۷.								V	A	7					٦					_	ـــــــــــــــــــــــــــــــــــــ	
PDB ID		Ipme	ltki	3erk		3erk				lapq	1ck4	lck4	Idan					Idan		_			Idan		
SEQ 1D NO:		391	391	391		391				393	393	393	393			_	-	393					191	}	

				·		·		
PDB Annotation	GLA. EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGANIS)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA. EGF. 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION. SERINE PROTEASE, COMPLEX, CO-FACTOR. 2 RECEPTOR ENZYME. INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE PROTEASE/COFACTOR/LIGAND)	BLOOD COAGULATION, SERINE PROTEASE, COMPLEX, CO-FACTOR, 2 RECEPTOR ENZYME, INHIBITOR, GLA, EGF, 3 COMPLEX (SERINE
Compound	PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA: CHAIN: L. H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C;	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG- CHLOROMETHYLKETONE (DFFRCMK) WITH CHAIN: C:	BLOOD COAGULATION FACTOR VIIA; CHAIN: L, H; SOLUBLE TISSUE FACTOR; CHAIN: T, U; D- PHE-PHE-ARG-
SeqFold Score								
PMF Score		0.57	11.0	0.84	0.47	0.17	0.00	0.05
Verify Score		-0.25	-0.40	-0.17	-0.32	-0.23	-0.42	-0.12
PSI BLAST		6e-31	3e-25	6.8e-16	3.4c-16	9e-25	1.7e-18	9e-26
End		328	369	358	397	451	447	492
Start AA		207	248	276	317	332	336	372
Chain ID		J	د	٦	_			د.
PDB ID		Idan	ldan	ldan	ldan	ldan	ldan	ldan
SEQ ID NO:		393	393	393	393	393	393	393