Biostatistics & Epidemiological Data Analysis using R

11

Linear mixed models

Stefan Konigorski

Health Intervention Analytics Group, HPI

January 27, 2022

Content

Block	Class	Content	Date
R, Data manipulation, Descriptives	1	Overview & Introduction to R and data analysis	2021.10.28
	2	First steps in data analysis using R	2021.11.04
	3	Second steps in data analysis using R	2021.11.11
Epidemiology & Statistics: concepts	4	Epidemiological study designs	2021.11.18
	5	Estimation	2021.11.25
	6	Hypothesis testing & study planning	2021.12.02
	7	Missing data	2021.12.09
Data analysis w/ regression models	8	Linear regression I	2021.12.16
	9	Linear regression II	2022.01.13
	10	Regression models for binary and count data	2022.01.20
	11	Analysis of variance & Linear mixed models I	2022.01.27
	12	Linear mixed models II & Meta analysis	2022.02.03
	13	Survival analysis	2022.02.10
	14	Causal inference & Data analysis challenge	2022.02.17

(see full schedule online)

1

Mixed models - Introduction

What is a linear mixed model?

Overview

- Linear mixed model = linear model (in GLM) with fixed and random effects.
- Generalized linear mixed model (GLMM) = GLM with fixed and random effects.

What is a linear mixed model?

Overview

- Linear mixed model = linear model (in GLM) with fixed and random effects.
- Generalized linear mixed model (GLMM) = GLM with fixed and random effects.

Notation

- Mixed models
- Models with fixed and random effects
- Hierarchical models, multilevel analysis
- "Conditional model" (in contrast to "marginal model")
- Variance component models

What are fixed and random effects?

What are fixed effects (of predictors)?

- All models we have discussed so far had only fixed effects.
- Fixed effect = parameter (β or βX) that refers to a variable with fixed values that are of interest.
- Population-average effects
- Example: Sex with values "male", "female".

What are fixed and random effects?

What are fixed effects (of predictors)?

- All models we have discussed so far had only fixed effects.
- Fixed effect = parameter (β or βX) that refers to a variable with fixed values that are of interest.
- Population-average effects
- Example: Sex with values "male", "female".

What are random effects?

- Random effect = parameter that refers to a variable denoting clusters (=groups) or individuals that have been drawn randomly and whose values are not of interest per se.
- Subject-specific effects
- Examples: dataset with students from 20 randomly selected schools → school = random effect.

When are mixed models relevant for data analysis?

 When observations are not independent eg when they are in clusters/hierarchical layers. eg students in schools, multiple measures of a person — hierarchical, clustered, longitudinal observations.

When are mixed models relevant for data analysis?

- When observations are not independent eg when they are in clusters/hierarchical layers. eg students in schools, multiple measures of a person — hierarchical, clustered, longitudinal observations.
- When the analysis should be adjusted for the effect of categorical covariates that have many and random categories which are not of interest. eg it is not of interest if a student in school A or school B is better, but the analysis shoul be adjusted for differences between 50 schools

When are mixed models relevant for data analysis?

- When observations are not independent eg when they are in clusters/hierarchical layers. eg students in schools, multiple measures of a person — hierarchical, clustered, longitudinal observations.
- When the analysis should be adjusted for the effect of categorical covariates that have many and random categories which are not of interest. eg it is not of interest if a student in school A or school B is better, but the analysis shoul be adjusted for differences between 50 schools.
- When you are interested in interactions between variables on the individual and on the group level.
- If you are interested in a variance decomposition on multiple layers.

When are mixed models relevant for data analysis?

- When observations are not independent eg when they are in clusters/hierarchical layers. eg students in schools, multiple measures of a person — hierarchical, clustered, longitudinal observations.
- When the analysis should be adjusted for the effect of categorical covariates that have many and random categories which are not of interest. eg it is not of interest if a student in school A or school B is better, but the analysis shoul be adjusted for differences between 50 schools.
- When you are interested in interactions between variables on the individual and on the group level.
- If you are interested in a variance decomposition on multiple layers.
- If you are interested in modeling trajectories (e.g. blood pressure over time).

What can you do with mixed models?

Model dependencies and structures (clusters, hierarchical layers) in the observations, to

- consider this in the estimation of fixed effects (regression coefficients) and their standard errors + confidence intervals,
- consider this in hypothesis tests of fixed effects,
- not have to include 50 dummy variables for "school" in the model,
- investigate the variance decomposition or trajectories of *Y* in detail.

Which questions/data can be investigated using mixed models?

 Question: Is there an association between the age of the lecturer and the learning performance of the students?
Data: 10 lecturers with each 15 evaluations in the class.

Which questions/data can be investigated using mixed models?

- Question: Is there an association between the age of the lecturer and the learning performance of the students?
 - Data: 10 lecturers with each 15 evaluations in the class.
- Question: Is there an association between humidity and the number of accidents?
 - Data: from 50 cities in 50 countries (single measurement).

Which questions/data can be investigated using mixed models?

- Question: Is there an association between the age of the lecturer and the learning performance of the students?
 - Data: 10 lecturers with each 15 evaluations in the class.
- Question: Is there an association between humidity and the number of accidents?
 - Data: from 50 cities in 50 countries (single measurement).
- Question: Is there an association between humidity and the number of accidents?
 - Data: from 50 cities in 50 countries, each 30 measurements over 1 year.

Which questions/data can be investigated using mixed models?

 Question: Is there an association between the age of the lecturer and the learning performance of the students?

Data: 10 lecturers with each 15 evaluations in the class.

 Question: Is there an association between humidity and the number of accidents?

Data: from 50 cities in 50 countries (single measurement).

 Question: Is there an association between humidity and the number of accidents?

Data: from 50 cities in 50 countries, each 30 measurements over 1 year.

Distinguish:

Observations in clusters are independent (hierarchical).

Observations in clusters are not independent (longitudinal).

Mixed models in R

Overview

- Some mixed models can be computed using the aov function and Error option (not in the focus here).
- The two most used R functions for mixed models are lme in the nlme (nonlinear mixed effects) package and lmer in the lme4 (linear mixed effects with S4 classes) package.

Comparison

- Many models can be computed with both functions yielding the same results.
- lmer: newer, faster, no p-values for fixed effects.
- lme: older, better documentation, p-values for fixed effects, can model more correlation and variance structures.

Example: Mathematical Achievement dataset

Dataset MathAchieve

- Available in nlme package.
- Dataset on "Mathematics achievement scores" (variable MathAch) of 7185 students with further variables School, Minority (yes/no), Sex, SES (socioeconomic status), MEANSES (mean SES of the school in which the students are).

Main research question

• Is the SES associated with the math scores?

- \longrightarrow In the following, we will look at different models and their interpretation in the MathAchieve dataset.
- \longrightarrow see R_11b_exercise_LMM.Rmd

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean:

$$Math_i = \beta_0 + \varepsilon_i$$

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean:

$$Math_i = \beta_0 + \varepsilon_i$$

• This is a normal linear regression without predictors (only β_0 as fixed effect).

Model

 Predict the grade of each child i = 1...n by the general mean:

$$Math_i = \beta_0 + \varepsilon_i$$

• This is a normal linear regression without predictors (only β_0 as fixed effect).

Which assumptions does this model contain?

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean:

$$Math_i = \beta_0 + \varepsilon_i$$

• This is a normal linear regression without predictors (only β_0 as fixed effect).

Which assumptions does this model contain?

- The math grade is the same in all students.
- → Is this assumption realistic (i.e. fits the data)?

Model

 Predict the grade of each child i = 1...n by the general mean:

$$Math_i = \beta_0 + \varepsilon_i$$

• This is a normal linear regression without predictors (only β_0 as fixed effect).

Which assumptions does this model contain?

- The math grade is the same in all students.
- → Is this assumption realistic (i.e. fits the data)?

in R

• $lm(MathAch \sim 1, data = MathAchieve)$

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean and SES:

$$\mathsf{Math}_i = \beta_0 + \beta_1 SES_i + \varepsilon_i$$

• This is still a regular linear regression (with β_0, β_1 as fixed effects).

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean and SES:

$$\mathsf{Math}_i = \beta_0 + \beta_1 SES_i + \varepsilon_i$$

• This is still a regular linear regression (with β_0, β_1 as fixed effects).

Which assumptions does this model contain?

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean and SES:

$$\mathsf{Math}_i = \beta_0 + \beta_1 SES_i + \varepsilon_i$$

• This is still a regular linear regression (with β_0, β_1 as fixed effects).

Which assumptions does this model contain?

- The math grade only depends on the SES and is the same in all students with the same SES.
- → Is this assumption realistic (i.e. fits the data)?

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean and SES:

$$\mathsf{Math}_i = \beta_0 + \beta_1 SES_i + \varepsilon_i$$

• This is still a regular linear regression (with β_0, β_1 as fixed effects).

Which assumptions does this model contain?

- The math grade only depends on the SES and is the same in all students with the same SES.
- → Is this assumption realistic (i.e. fits the data)?

in R

• $lm(MathAch \sim SES, data = MathAchieve)$

Model

 Predict the grade of each child i = 1...n by the general mean, SES, sex and minority:

$$Math_i = \beta_0 + \beta_1 SES_i + \beta_2 Sex_i + \beta_3 Minority_i + \varepsilon_i$$

• Multiple linear regression with $\beta_0, \beta_1, \beta_2, \beta_3$ as fixed effects.

Model

 Predict the grade of each child i = 1...n by the general mean, SES, sex and minority:

$$Math_i = \beta_0 + \beta_1 SES_i + \beta_2 Sex_i + \beta_3 Minority_i + \varepsilon_i$$

• Multiple linear regression with $\beta_0, \beta_1, \beta_2, \beta_3$ as fixed effects.

Which assumptions does this model contain?

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean, SES, sex and minority:

$$Math_i = \beta_0 + \beta_1 SES_i + \beta_2 Sex_i + \beta_3 Minority_i + \varepsilon_i$$

• Multiple linear regression with $\beta_0, \beta_1, \beta_2, \beta_3$ as fixed effects.

Which assumptions does this model contain?

- The math grade only depends on the SES, sex and minority.
- → Is this assumption realistic (i.e. fits the data)?

Model

• Predict the grade of each child $i = 1 \dots n$ by the general mean, SES, sex and minority:

$$Math_i = \beta_0 + \beta_1 SES_i + \beta_2 Sex_i + \beta_3 Minority_i + \varepsilon_i$$

• Multiple linear regression with $\beta_0, \beta_1, \beta_2, \beta_3$ as fixed effects.

Which assumptions does this model contain?

- The math grade only depends on the SES, sex and minority.
- \longrightarrow Is this assumption realistic (i.e. fits the data)?

in R

• $lm(MathAch \sim SES + Sex + Minority, data = MathAchieve)$

Interim evaluation

Questions

- Can the models so far predict the math grade well?
- Does school play a role?
- If yes, how can we incorporate this in the analysis?

Possibility 1

Include dummy variable for every school in regression/ANOVA

Assumptions

 How is school considered? Which assumption is made on the association between SES and math grade?

Possibility 1

Include dummy variable for every school in regression/ANOVA

Assumptions

- How is school considered? Which assumption is made on the association between SES and math grade?
- Assumption: the association between SES and math grade is the same in all schools and only differs by a constant (i.e. same slope of the regression line, different intercept).

Possibility 1

Include dummy variable for every school in regression/ANOVA

Assumptions

- How is school considered? Which assumption is made on the association between SES and math grade?
- Assumption: the association between SES and math grade is the same in all schools and only differs by a constant (i.e. same slope of the regression line, different intercept).

Model

$$\begin{split} \mathsf{Math}_i = & \beta_0 + \beta_1 SES_i + \beta_2 Sex_i + \beta_3 \mathit{Minority}_i + \sum_j \beta_{4j} \mathit{School}_{ij} + \varepsilon_i \text{ or } \\ \mathsf{Math}_{ij} = & \beta_0 + \beta_{4j} + \beta_1 SES_{ij} + \beta_2 Sex_{ij} + \beta_3 \mathit{Minority}_{ij} + \varepsilon_{ij} \text{ in school j.} \end{split}$$

Possibility 1

Include dummy variable for every school in regression/ANOVA

Assumptions

- How is school considered? Which assumption is made on the association between SES and math grade?
- Assumption: the association between SES and math grade is the same in all schools and only differs by a constant (i.e. same slope of the regression line, different intercept).

Consequences/Summary

- Consequence: loss of degrees of freedom and power!
- But: if differences between schools are of interest, then this is the way to go!

Possibility 2

• Include school as continuous variable in the regression.

Assumptions

• How is school considered? Which assumption is made on the association between SES and math grade?

Possibility 2

• Include school as continuous variable in the regression.

Assumptions

- How is school considered? Which assumption is made on the association between SES and math grade?
- Assumption 1: Math grade increases constantly between ordered school (nonsense!).
- Assumption 2: Association between SES and math grade is same in all schools and only differs by a constant ("fixed increasing") constant (also nonsense!).

Possibility 3

• Stratified analysis, separately for each school.

Possibility 3

• Stratified analysis, separately for each school.

Possibility 3

• Stratified analysis, separately for each school.

- Small sample size, low power.
- No aggregated results.
- Variables on school level cannot be considered.

Possibility 4

- Analysis not on individual but school level.
- I.e. aggregate all variables on school level (compute means), then do regression with these observations.

Possibility 4

- Analysis not on individual but school level.
- I.e. aggregate all variables on school level (compute means), then do regression with these observations.

Possibility 4

- Analysis not on individual but school level.
- I.e. aggregate all variables on school level (compute means), then do regression with these observations.

- Small sample size.
- Results have to be interpreted on the school level, not on the individual level (ecological fallacy!).

Possibility 4

- Analysis not on individual but school level.
- I.e. aggregate all variables on school level (compute means), then do regression with these observations.

- Small sample size.
- Results have to be interpreted on the school level, not on the individual level (ecological fallacy!).
- → Still these are all models with fixed effects!

Possibility 5

- School as random effect in a mixed model.
- (a) ... in mixed model with random intercept.
- (b) ... in mixed model with random intercept and random slope.

Random intercept model

Model

Math_{ij} = $(\beta_0 + \gamma_{0j}) + \beta_1 SES_{ij} + \beta_2 Sex_{ij} + \beta_3 Minority_{ij} + \varepsilon_{ij}$ of student i in school j with $\gamma_0 \sim N(0, \sigma_1^2)$, $\varepsilon \sim N(0, \sigma_2^2)$, where γ_0 and ε are independent.

Assumption

Association between SES and math grade is the same in all schools (same slope β_1) except for random constant (γ_0) .

Random intercept model

in R

- nlme::lme(MathAch \sim SES + Sex + Minority, random = \sim 1|School, data = MathAchieve)
- lme4::lmer(MathAch \sim SES + Sex + Minority + (1|School), data = MathAchieve)

Random intercept, random slope model

Model

$$\begin{split} & \mathsf{Math}_{ij} = & (\beta_0 + \gamma_{0j}) + (\beta_1 + \gamma_{1j}) \mathsf{SES}_{ij} + \beta_2 \mathsf{Sex}_{ij} + \beta_3 \mathsf{Minority}_{ij} + \varepsilon_{ij} \\ & \mathsf{of} \ \mathsf{student} \ i \ \mathsf{in} \ \mathsf{school} \ j \ \mathsf{with} \ \gamma_0 \sim \mathsf{N}(0,\sigma_1^2), \ \gamma_1 \sim \mathsf{N}(0,\sigma_2^2), \\ & \varepsilon \sim \mathsf{N}(0,\sigma_3^2), \ \mathsf{where} \ \gamma_0 \ \mathsf{and} \ \varepsilon \ \mathsf{as} \ \mathsf{well} \ \mathsf{as} \ \gamma_1 \ \mathsf{and} \ \varepsilon \ \mathsf{are} \ \mathsf{independent}, \\ & \gamma_0 \ \mathsf{and} \ \gamma_1 \ \mathsf{may} \ \mathsf{correlate}. \end{split}$$

Random intercept, random slope model

Model

Math_{ij} =
$$(\beta_0 + \gamma_{0j}) + (\beta_1 + \gamma_{1j})SES_{ij} + \beta_2Sex_{ij} + \beta_3Minority_{ij} + \varepsilon_{ij}$$
 of student i in school j with $\gamma_0 \sim N(0, \sigma_1^2)$, $\gamma_1 \sim N(0, \sigma_2^2)$, $\varepsilon \sim N(0, \sigma_3^2)$, where γ_0 and ε as well as γ_1 and ε are independent, γ_0 and γ_1 may correlate.

Assumption

Association between SES and math grade varies by a random constant (γ_0) and random factor (γ_1) between the schools.

Random intercept, random slope model

Model

Math_{ij} =
$$(\beta_0 + \gamma_{0j}) + (\beta_1 + \gamma_{1j})SES_{ij} + \beta_2Sex_{ij} + \beta_3Minority_{ij} + \varepsilon_{ij}$$

of student i in school j with $\gamma_0 \sim N(0, \sigma_1^2)$, $\gamma_1 \sim N(0, \sigma_2^2)$, $\varepsilon \sim N(0, \sigma_3^2)$, where γ_0 and ε as well as γ_1 and ε are independent, γ_0 and γ_1 may correlate.

in R

- nlme::lme(MathAch \sim SES + Sex + Minority, random = \sim SES|School, data = MathAchieve)
- lme4::lmer(MathAch \sim SES + Sex + Minority + (SES|School), data = MathAchieve)

What's the use of these (complicated) models?

- The estimates of the fixed effects and their standard errors consider the random effects i.e. the random variation between schools.
- In detail 1: the estimated fixed effect is a weighted mean of the standard regression coefficient estimate and the random effect.
- In detail 2: If observations are highly correlated, this reduces the effective sample size and power - but not as much if you use mixed models compared to dummy variables!
- The not explained variance of the school grades (SS between groups) can be partly explained by the random effects.

Interpretation of the effects in mixed models

Interpretation of the fixed effects

- The fixed effects (i.e. regression coefficients β of the fixed effects) are "conditional effects": conditional on the other predictors (as in standard linear regression) and conditional on the random effects.
- I.e. the regression coefficients describe the mean change in Y for a 1-unit change in X, when holding all other predictors constant and adjusting for the random (normally-distributed) differences between clusters (i.e. for a person in a specific cluster) "cluster-specific", "subject-specific effects".

Interpretation of the random effects

 \longrightarrow look at how much variance can be explained: variance components.

Interpretation of the effects in mixed models

Visualization of fixed effects

- For a better understanding of the fixed effects and their variation between schools, the school-specific associations between SES and math grade can be inspected.
- The predicted math grade of the students consists of the prediction by the fixed effects plus the school-specific random term.
- The school-specific predictions can be extracted (like in regression) by using the predict function (predict(lme())).
- A better understanding can often be gained through a visualization, see R_11b_exercise_LMM.Rmd.

Questions?

References

- Many descriptions and tutorials online, e.g. https://socialsciences.mcmaster.ca/jfox/Courses/ soc761/Appendix-Mixed-Models.pdf
- Agresti (2002). Categorial data analysis. Wiley.
- Bates (2010). Ime4: Mixed-effects modeling with R. Springer.
- Galecki (2013). Linear mixed-effects models using R. Springer.