- 1. (1) *Proof.* Assume to the contrary that q is a real root. Then $\text{Im}(f(q)) = 2q = 0 \Rightarrow q = 0$. However, $f(0) = -\sqrt[5]{17} \neq 0$.
 - (2) *Proof.* Let α be one of its root. By (1), we have $\alpha \notin \mathbb{R}$. Let

$$K = \mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt[4]{7}, \sqrt[5]{17}, i).$$

Since α is a root of a function $f(x) \in K[x]$ of degree 11, we have $[K(\alpha) : K] \leq 11$. Note that $\sqrt{2}, \sqrt{5}, \sqrt[4]{7}, \sqrt[5]{17}, i$ are all algebraic in \mathbb{Q} , K is a finite extension of \mathbb{Q} . Thus by the tower theorem, $K(\alpha)$ is a finite extension of \mathbb{Q} . Thus $\alpha \in K(\alpha)$ is algebraic over \mathbb{Q} .

(3) *Proof.* Note that

$$\sqrt{2}$$
 is a root for $x^2 - 2$
 $\sqrt{5}$ is a root for $x^2 - 5$
 $\sqrt[4]{7}$ is a root for $x^4 - 7$
 $\sqrt[5]{17}$ is a root for $x^5 - 17$
 i is a root for $x^2 + 1$,

thus we have

$$\begin{split} & [K(\alpha):\mathbb{Q}] \\ = & [K(\alpha):K] \cdot [K:\mathbb{Q}] \\ \leq & 11 \cdot [K:\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt[4]{7},\sqrt[5]{17})] \cdot [\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt[4]{7},\sqrt[5]{17}):\mathbb{Q}] \\ \leq & 11 \cdot 2 \cdot [\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt[4]{7})(\sqrt[5]{17}):\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt[4]{7})] \cdot [\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt[4]{7}):\mathbb{Q}] \\ \leq & \cdots \\ \leq & 11 \cdot 2 \cdot 2 \cdot 4 \cdot 5 \cdot 2 \\ = & 1760. \end{split}$$

2. Proof. Since these two conditions are symmetric, we only need to prove one side. Assume that f is irreducible over $K(\beta)$. Let $\deg(f) = m$. If g is reducible over $K(\alpha)$, there exists $g_1(x), g_2(x) \in K(\alpha)[x]$ such that $g(x) = g_1(x)g_2(x)$. Since $g(\beta) = 0$, at least one of $g_1(\beta)$, $g_2(\beta)$. Without loss of generality, let $g_1(\beta) = 0$. However $\deg(g_1) < \deg(g)$, in order not to contradict the minimal-

ism, we have $g_1(x) \notin K[x]$. Write

$$g_1(x) = a_0 + a_1 x + \dots + a_n x^n$$
.

Since $g_1(x) \in K(\alpha)[x]$, we can write $a_i = \sum_{j=0}^{t_i} c_{ij} \alpha^j$ and $t_i < m$ for i = 0, 1, ..., n. And $g_1(x) \notin K[x]$ shows that at least one of t_i is positive. Let $t = \max\{t_0, t_1, ..., t_n\}$, then 0 < t < m. And we define

$$b_{ij} = \begin{cases} c_{ij} & \text{if } j \le t_i; \\ 0 & \text{otherwise} \end{cases}$$

for all $0 \le i \le n$ and $0 \le j \le t$. Then

$$g_1(\beta) = \sum_{i=0}^n a_i \beta^i = \sum_{i=0}^n \sum_{j=0}^{t_i} c_{ij} \alpha^j \beta^i = \sum_{i=0}^n \sum_{j=0}^t b_{ij} \alpha^j \beta^i$$
$$= \sum_{j=0}^t \sum_{i=0}^n b_{ij} \beta^i \alpha^j = \sum_{j=0}^t b_j \alpha^j = f_1(\alpha),$$

where $b_j = \sum_{i=0}^n b_{ij}\beta^i$ and $f_1(x) = \sum_{j=0}^t b_j x^j \in K(\beta)[x]$. Since $g_1(\beta) = 0$, $f_1(\alpha) = 0$, and thus contradicts the minimalism of f as t < m.

- 3. (1) Sol. It is not constructible. The minimal polynomial for $\sqrt[3]{7}$ is $x^3 7$. Thus $[\mathbb{Q}[\sqrt[3]{7}] : \mathbb{Q}] = 3$, and is not a power of 2.
 - (2) Sol. It is not constructible. The minimal polynomial for $\sqrt[3]{3}$ is $x^3 3$. Thus $[\mathbb{Q}[\sqrt[3]{3}] : \mathbb{Q}] = 3$, and is not a power of 2.
- 4. a) Sol. $f(x) = x^3 2 = (x \sqrt[3]{2})(x \sqrt[3]{2}\omega)(x \sqrt[3]{2}\omega^2)$ where $\omega = e^{2\pi i/3}$. Thus the splitting field for f over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2}, \omega)$. Since $\sqrt[3]{2}$ is a root for $x^3 2$ which is irreducible in \mathbb{Q} , and ω is a root for $x^2 + x + 1$ which is irreducible in $\mathbb{Q}[\sqrt[3]{2}]$, so by the tower theorem

$$[\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}(\sqrt[3]{2})] \cdot [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3 \cdot 2 = 6.$$

b) Sol. f(x) = (x-1)(x+1)(x+i)(x-i). So the splitting field for f over \mathbb{Q} is $\mathbb{Q}(-1,1,i,-i) = \mathbb{Q}(i)$. Since i is a root for the function $x^2 + 1$ which

is irreducible in \mathbb{Q} , we have

$$[\mathbb{Q}(i):\mathbb{Q}]=2.$$

c) Sol. $f(x) = (x - \sqrt{2})(x + \sqrt{2})(x^3 - 2)$. So the splitting field of f over \mathbb{Q} is the splitting field of $x^2 - 2$ over $\mathbb{Q}(\sqrt[3]{2}, \omega)$. We claim that $x^2 - 2$ is irreducible in $\mathbb{Q}(\sqrt[3]{2}, \omega)$, otherwise

$$\sqrt{2} = a + b\sqrt[3]{2} + c\sqrt[3]{2}^2 + d\omega$$

for rational number a, b, c and d. Then square both sides, we have

$$2 = a^{2} + 4bc + (2ab + 2c^{2})\sqrt[3]{2} + (2ac + b^{2})\sqrt[3]{2} + 2(a + b\sqrt[3]{2} + c\sqrt[3]{2})d\omega + d^{2}\omega^{2}.$$

So $ab+c^2=2ac+b^2=d=0$. If $a\neq 0$, then $b=-c^2/a$. So $2ac+c^4/a^2=0$, $2a^3+c^3=0$, which is impossible. Thus a=0, and b=c=0, which is also impossible. Therefore x^2-2 is irreducible in $\mathbb{Q}(\sqrt[3]{2},\omega)$, and by the tower theorem

$$[\mathbb{Q}(\sqrt[3]{2},\omega,\sqrt{2}):\mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2},\omega,\sqrt{2}):\mathbb{Q}(\sqrt[3]{2},\omega)] \cdot [\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}] = 2 \cdot 6 = 12.$$

- 5. Proof. Let p(x) be an irreducible polynomial in M[x] with a root α in L. Since L is algebraic over K, there exists a minimal polynomial $q(x) \in K[x]$ such that α is one of its roots. Since $K[x] \subset M[x]$, by the minimalism we have q(x)|p(x). And by the irreducibility of p(x), we have p(x) = kq(x) for some constant $k \in M$. Since $K \subset L$ is normal and q has a root $\alpha \in L$, q splits over L, and so does p.
- 6. Proof. Assume to the contrary that $\mathbb{Q}(\sqrt[3]{2})$ is a splitting field of some polynomial in $\mathbb{Q}[x]$. Then $\mathbb{Q}(\sqrt[3]{2})$ is a finite and normal extension of \mathbb{Q} . However, x^3-2 , being an irreducible polynomial in $\mathbb{Q}[x]$ that has a root $\sqrt[3]{2}$ in $\mathbb{Q}(\sqrt[3]{2})$, does not split over $\mathbb{Q}(\sqrt[3]{2})$ ($e^{2\pi i/3} \notin \mathbb{Q}(\sqrt[3]{2})$). Thus $\mathbb{Q}(\sqrt[3]{2})$ is not a normal extension of \mathbb{Q} , and we arrive at a contradiction.