

Parallel Computations for Large-Scale Problems

Fractal Terrain Generation

Rémi Domingues

Giacomo Giudice

Diamond-Square

Generating a realistic 2D height map by increasing resolution at each iteration

Initial terrain (13x10)

Final terrain - 2 iterations (49x37)

Diamond-Square - Sequential algorithm

Diamond-Square - Tricks

Use only one matrix of final size at iteration K

$$(width_K, height_K) = 2^K((width_0, height_0) - 1) + 1$$

- Use virtual coordinates, according to the transformation

$$(i_K, j_K) = 2^{K-k}(i_k, j_k)$$

- Randomness boundaries

$$0 \le r \le scale_k$$

$$scale_{k+1} = \frac{scale_k}{2}$$

Diamond-Square - Parallelization

- 2D processes topology (N = PxQ)
- Scatter data with overlaps (L = width = height)

$$L = \frac{L + \sqrt{N} - 1}{\sqrt{N}} + \mathbb{1}_{rank < (L + \sqrt{N} - 1) \mod \sqrt{N}}$$

- Diamond pass
 - Ghost cells from the square pass: $\frac{L_k-1}{2}$
 - Red-Black communications
- Overall complexity: $\mathcal{O}\left(\frac{L^2}{N}\right)$

Diamond-Square - Benchmarks

Linear Displacement

Iterations: 10

Iterations: 10000

Iterations: 100

Iterations: 100000

Step 1: Generation of partial data

Linear Displacement - Performance

Complexity
$$\underbrace{\mathcal{O}(qL^2/N)\mathcal{O}(L^2/2)}_{\text{iterations}} + \underbrace{\mathcal{O}(L^2\log N)}_{\text{reduce}} = \underbrace{\mathcal{O}(L^4/N)}_{\text{overall}}$$

Fast Fourier Transform

Step 1: Generate noise in frequency space

Fast Fourier Transform - Performance

Complexity

$$\underbrace{\mathcal{O}(qL^2/N)\mathcal{O}(L^2/2)}_{\text{iterations}} + \underbrace{\mathcal{O}(L^2\log N)}_{\text{reduce}} = \underbrace{\mathcal{O}(L^4/N)}_{\text{overall}}$$

