HOMEWORK 3

Due date: Tuesday of Week 4

Exercises: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 3.1, 3.2, 3.4, 3.6, pages 379-380 of Artin's book.

Hint for Exercise 2.10: Let $f = \sum_{n\geq 0} a_n x^n \in \mathbb{R}[[x]]$. If $a_0 \neq 0$, show that f is a unit in $\mathbb{R}[[x]]$. Exercise 3.4 is probably not so easy. You can use the fact that $\mathbb{C}[x,y,z,w]$ is a UFD and thus one can define gcd there. These facts are proved in the following problems.

Problem 1. Let R be an integral domain and let $p \in R$ be a prime element. Show that p is irreducible.

(Recall that: p is prime means that p is not a unit and if p|ab, then p|a or p|b; p is irreducible means that p is not a unit and it cannot be factorized further, namely, if p = ab for $a, b \in R$, then one of a, b is a unit.)

Let R be an integral domain and let F be its fractional field. An element $\alpha \in F$ is called integral over R if there exists a monic polynomial $f \in R[x]$ such that $f(\alpha) = 0$. The ring R is called **integrally closed** if for any $\alpha \in F$ integral over R, we have $\alpha \in R$.

Problem 2. (1) Show that \mathbb{Z} is integrally closed.

(2) Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$. Its fractional field is

$$F = \mathbb{Q}(\sqrt{-3}) = \left\{ a + b\sqrt{-3} : a, b \in \mathbb{Q} \right\}.$$

Show that $\omega := \frac{-1+\sqrt{-3}}{2} \in F$ is integral over R but not in R. Thus R is not integrally closed.

Problem 3. (1) Let R be a UFD, show that R is integrally closed. Conclude that the ring $\mathbb{Z}[\sqrt{-3}]$ is not a UFD. Find an irreducible element in $\mathbb{Z}[\sqrt{-3}]$ such that it is not prime.

(2) Let $\omega := \frac{-1+\sqrt{-3}}{2}$. Show that the ring $R = \mathbb{Z}[\omega] = \{a+b\omega : a,b \in \mathbb{Z}\}$ is a Euclidean domain and thus it is a UFD.

Hint for part (2): The proof is similar to the case that $\mathbb{Z}[i]$ is a Euclidean domain.

Let R be a ring. Given two elements $a, b \in R$. An element $d \in R$ is called a greatest common divisor (gcd) of a and b if it satisfies the following two conditions:

- (1) d|a, d|b;
- (2) if $x \in R$ is an element such that x|a, x|b, then x|d.

If such a d exists, and $u \in R^{\times}$, then ud also satisfies the above conditions. Conversely, if d, d' both satisfy the above gcd conditions, then there exists a unit $u \in R^{\times}$ such that d' = ud. To avoid such ambiguity, we use gcd(a,b) to denote the principal ideal (d) if d satisfies the above condition and call this principal ideal the greatest common divisor of a and b.

Note that gcd(a, b) in general is not the ideal (a, b) (which always means the ideal generated by a and b, namely $(a, b) = \{ax + by : x, y \in R\}$). For example, in the ring $\mathbb{C}[x, y]$, we have gcd(x, y) = 1, but $(x, y) \neq (1)$. Actually, $\mathbb{C}[x, y]/(x, y) \cong \mathbb{C}$.

An integral domain R is called a **GCD domain** if for any $a, b \in R$, gcd(a, b) exists.

Problem 4. Let R be a GCD domain.

- (1) Suppose gcd(x,y) exists. Show that $(x,y) \subset gcd(x,y)$. In particular, if (x,y) = 1, then gcd(x,y) = 1. Note that the converse is not true by the above example.
- (2) Let $a_1, \ldots, a_n \in R$. Show that there exists an element $d \in R$ such that $(a) \ d|a_i, \forall i, and (b)$ if $x \in R$ such that $x|a_i, \forall i, then x|d$. This d is called the gcd of a_1, \ldots, a_n and we denote it (or the principal generated by it) by $\gcd(a_1, \ldots, a_n)$.

2 HOMEWORK 3

- (3) Show that $gcd(gcd(a,b),c) = gcd(a,gcd(b,c)), \forall a,b,c \in R$.
- (4) Suppose that gcd(a,b) = 1 for $a,b \in R$. Show that $gcd(a^n,b) = 1$ for any $n \ge 1$.

In class, we showed that a PID is a GCD domain.

Problem 5. (1) Show that a UFD is a GCD domain.

(2) Show that a GCD domain is integrally closed.

Hint for (1): this gcd is what you learned from elementary school. (2), this proof is similar to Problem 3. You might have to use $gcd(a^n, b) = gcd(a, b)$ for $a, b \in R$, a GCD domain.

Thus we have the inclusions

 $ED \subset PID \subset UFD \subset GCD \ domain \subset integrally \ closed \ domain.$

In the following several problems, we will show that if R is a UFD, then R[x] is also a UFD. The proof is basically parallel to the case $\mathbb{Z}[x]$ as we did in class. Let R be a UFD. Given a polynomial $f = a_0 + a_1 x + \cdots + a_n x^n \in R[x]$, define $c(f) := \gcd(a_1, \ldots, a_n)$. Note that c(f) is well-defined up to associates. A polynomial $f \in R[x]$ is called **primitive** if $c(f) \sim 1$. Let F be the fractional field of R.

Problem 6. Let R be a UFD. $f, g \in R[x]$. Show that fg is primitive iff f and g are both primitive.

See Proposition 12.3.4 (b) for the case when $R = \mathbb{Z}$.

Problem 7. Recall that R is a UFD and F is its fractional field.

- (1) Show that every polynomial $f \in F[x]$ can be written as $f = cf_0$ with $c \in F$ and $f_0 \in R[x]$ is primitive. Moreover, if $cf_0 = c'f'_0$ with $c, c' \in F', f_0, f'_0 \in R[x]$ primitive, show that there exists a unit $u \in R^{\times}$ such that $c' = cu, f'_0 = u^{-1}f_0$.
- (2) Show that $c \in R$ iff $f \in R[x]$. Moreover, $f \in R[x]$, then $c \sim c(f)$.
- (3) Suppose $f, g \in R[x]$ are two primitive polynomials. If $f = \alpha g$ for some $\alpha \in F^{\times}$, show that $\alpha \in R^{\times}$.

This is Lemma 12.3.5 when $R = \mathbb{Z}$.

Problem 8. Let R still be a UFD and F be its fractional field.

- (1) Let $f \in R[x]$ with $\deg(f) > 0$. If f is irreducible in R[x], show that f is irreducible in F[x].
- (2) Show that $f \in R[x]$ is irreducible iff f is a prime element in R or a primitive polynomial that is irreducible in F[x].
- (3) Show that every irreducible element in R[x] is a prime element.

This is Proposition 12.3.7 when $R = \mathbb{Z}$.

Problem 9. Let R be a UFD. Show that R[x] is a UFD.

This is Theorem 12.3.10.