Projet d'apprentissage semi-supervisé

Détection d'animaux

Sommaire

- I. Introduction
- II. Annotations
- III. Modèle Supervisé
- IV. Modèle Semi Supervisé
- V. Conclusion
- VI. Perspectives

I. Introduction

- <u>Sujet</u>: Détection d'objet par boîte englobante d'animaux
 - Obtenir la boîte englobante (x, y, w, h) et la classe de l'animal

Outils:

- Dataset avec 50 000 images
- 10 classes d'animaux différentes [hamster, cochon d'inde, guépard, jaguar, chat, chimpanzé, lynx, loup, orang outan, covote l

Difficultés :

- Images très pixellisées
- Certaines classes d'animaux se ressemblent beaucoup 0
- Images à annoter à la main (Beaucoup trop!) 0

Etapes:

- Méthode supervisée
- Méthode semi supervisée 0

Object Detection

CAT, DOG, DUCK

II. Annotations

1. Labellisation

1200 images labellisées!

II. Annotations

2. Robotflow

- Hebergement les données
- Créer un dataset (hiérarchie des dossiers)
- Gros avantage importation simple des données

1. Quelle architecture de réseau de neurones utiliser pour la détection ?

Model	mAP	FPS		
	(%)	TeslaT4	1660 Ti	Jetson Nano
YOLOv3	54.3	80	21	8
YOLOv5s	37.6	100	28	15
MobileNet- SSD V2	33.7	94	26	15

- Conclusion sur la performance des réseaux:
 - o <u>Accuracy</u>: Yolov3 > Yolov5s > SSD
 - Rapidité : Yolov5s > SSD > Yolov3
 - <u>+ Récent</u> : Yolov5s > Yolov3 > SSD

Yolov3, Yolov5?

1. Quelle architecture de réseaux de neurones utiliser pour la détection ?

1. Quelle architecture de réseaux de neurones utiliser pour la détection ?

2. Architecture de Yolov5


```
3520 models.common.Conv
                                                         [3, 32, 6, 2, 2]
                  18560 models.common.Conv
                                                         [32, 64, 3, 2]
                  18816 models.common.C3
                                                        [64, 64, 1]
                                                         [64, 128, 3, 2]
                  73984 models.common.Conv
                  115712 models.common.C3
                                                         [128, 128, 2]
                 295424 models.common.Conv
                                                          [128, 256, 3, 2]
                 625152 models.common.C3
                                                         [256, 256, 3]
                 1180672 models.common.Conv
                                                          [256, 512, 3, 2]
                                                         [512, 512, 1]
                 1182720 models.common.C3
                 656896 models.common.SPPF
                                                           [512, 512, 5]
                  131584 models.common.Conv
                                                           [512, 256, 1, 1]
                    0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
                     0 models.common.Concat
                  361984 models.common.C3
                                                         [512, 256, 1, False]
                  33024 models.common.Conv
                                                          [256, 128, 1, 1]
                    0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
                     0 models.common.Concat
17
                                                         [256, 128, 1, False]
                  90880 models.common.C3
                  147712 models.common.Conv
                                                          [128, 128, 3, 2]
                      0 models.common.Concat
                  296448 models.common.C3
                                                         [256, 256, 1, False]
21
                 590336 models.common.Conv
                                                          [256, 256, 3, 2]
                     0 models.common.Concat
            -1 1 1182720 models.common.C3
                                                          [512, 512, 1, False]
     [17, 20, 23] 1 35061 models.yolo.Detect
                                                          [8, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119],
[116, 90, 156, 198, 373, 326]], [128, 256, 512]]
```

Model Summary: 270 layers, 7041205 parameters, 7041205 gradients, 15.9 GFLOPs

https://github.com/ultralytics/yolov5

2. Architecture de Yolov5

Yolov5n sur dataset sans augmentation de données

62	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.327655	0.365876	0.220188	0.102420
std	0.108199	0.124732	0.107349	0.057499
min	0.020937	0.036118	0.007938	0.002257
25%	0.268373	0.283242	0.136635	0.051715
50%	0.347655	0.404820	0.262300	0.119835
75%	0.389143	0.449782	0.310615	0.157095
max	0.544430	0.549290	0.345690	0.171810

Yolov5m

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.118601	0.301396	0.063517	0.021660
std	0.088886	0.114355	0.041027	0.017767
min	0.002943	0.080265	0.002758	0.000576
25%	0.041110	0.198870	0.037900	0.009227
50%	0.107205	0.346165	0.062297	0.018257
75%	0.192570	0.375920	0.088397	0.031453
max	0.303280	0.519500	0.194250	0.088579

Nano YOLOv5n

4 MB_{FP16}

6.3 ms_{V100} 28.4 mAP_{COCO} YOLOv5s

6.4 ms_{V100} 37.2 mAP_{COCO} Medium YOLOv5m

> 8.2 ms_{V100} 45.2 mAP_{coco}

OLOv5m YOLOv5l
41 MB_{ED16} 89 MB_{FP16}

89 MB_{FP16} 10.1 ms_{V100} 48.8 mAP_{COCO} 166 MB_{FP16} 12.1 ms_{V100} 50.7 mAP_{COCO}

XLarge

YOLOv5x

Yolov5s

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	70.000000	70.000000	70.000000	70.000000
mean	0.331811	0.439746	0.264273	0.124017
std	0.098899	0.101768	0.098375	0.054416
min	0.020761	0.027545	0.011898	0.003048
25%	0.274272	0.405672	0.207590	0.090602
50%	0.363945	0.453390	0.284375	0.132305
75%	0.402757	0.499335	0.350465	0.173705
max	0.499950	0.680190	0.378990	0.192490

Yolov5x

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.030153	0.448207	0.018139	0.005594
std	0.044927	0.161762	0.018048	0.006252
min	0.002960	0.044059	0.002546	0.000783
25%	0.011323	0.335715	0.009336	0.002871
50%	0.015212	0.507955	0.013082	0.003780
75%	0.021034	0.577562	0.018516	0.005630
max	0.197450	0.647690	0.103440	0.036297

Architecture de Yolov5

Yolov5n sur dataset sans augmentation de données

6-2	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.327655	0.365876	0.220188	0.102420
std	0.108199	0.124732	0.107349	0.057499
min	0.020937	0.036118	0.007938	0.002257
25%	0.268373	0.283242	0.136635	0.051715
50%	0.347655	0.404820	0.262300	0.119835
75%	0.389143	0.449782	0.310615	0.157095
max	0.544430	0.549290	0.345690	0.171810

Yolov5m

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.118601	0.301396	0.063517	0.021660
std	0.088886	0.114355	0.041027	0.017767
min	0.002943	0.080265	0.002758	0.000576
25%	0.041110	0.198870	0.037900	0.009227
50%	0.107205	0.346165	0.062297	0.018257
75%	0.192570	0.375920	0.088397	0.031453
max	0.303280	0.519500	0.194250	0.088579

XLarge

YOLOv5x

Nano YOLOv5n

Small YOLOv5s

Medium YOLOv5m

YOLOv5I

4 MB_{FP16} 6.3 ms_{V100} 28.4 mAP

14 MB_{FP16} 6.4 ms_{V100}

41 MB_{FP16} 8.2 ms_{V100}

89 MB_{FP16} 10.1 ms_{V100} 48.8 mAP_{COCO}

166 MB_{FP16} 12.1 ms_{V100} 50.7 mAP_{COCO}

Yolov5s

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	70.000000	70.000000	70.000000	70.000000
mean	0.331811	0.439746	0.264273	0.124017
std	0.098899	0.101768	0.098375	0.054416
min	0.020761	0.027545	0.011898	0.003048
25%	0.274272	0.405672	0.207590	0.090602
50%	0.363945	0.453390	0.284375	0.132305
75%	0.402757	0.499335	0.350465	0.173705
max	0.499950	0.680190	0.378990	0.192490

Yolov5x

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.030153	0.448207	0.018139	0.005594
std	0.044927	0.161762	0.018048	0.006252
min	0.002960	0.044059	0.002546	0.000783
25%	0.011323	0.335715	0.009336	0.002871
50%	0.015212	0.507955	0.013082	0.003780
75%	0.021034	0.577562	0.018516	0.005630
max	0.197450	0.647690	0.103440	0.036297

Métriques

$$Precision = \frac{TP}{TP + FP}$$
 $TP = True positive$ $TN = True negative$ $TP = True negative$ $TN = True negative$ $TP = True negative$ $TP = True positive$ $TN = True negative$ $TP = True positive$ $TN = True negative$ $TP = True positive$ $TN = True negative$

The general definition for the Average Precision (AP) is finding the area under the precision-recall curve above

$$ext{AP} = \int_0^1 p(r) dr$$

1200 données labellisées!

3. Entraînements et métriques

Entraînement sans augmentation de données

```
# Train YOLOv5s on ANIMALS DATASET for 40 epochs
!python train.py --img 64 --batch 8 --epochs 40 --data /content/detectionNetwork/yolov5/Projet-IA-1/data.yaml --weights yolov5s.pt
```

<u>Métriques</u>

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.360152	0.420681	0.297729	0.145385
std	0.179933	0.134756	0.137160	0.078336
min	0.013184	0.038409	0.007488	0.001903
25%	0.260390	0.367360	0.196990	0.084771
50%	0.343780	0.440040	0.321390	0.154650
75%	0.473397	0.506050	0.414435	0.217287
max	0.875160	0.636700	0.466220	0.244230

3. Entraînements et métriques

Entraînement avec augmentation de données (Flip and Rotate 90°)

4. Transfert Learning et métriques

Sans augmentation de données

Avec augmentation de données

Entraînement précèdent

mean	0.360152	0.420681	0.297729	0.145385
10000000000000000000000000000000000000				

Entraînement précèdent

mean	0.331159	0.470459	0.313921	0.152733

		metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95	
	count	60.000000	60.000000	60.000000	60.000000	
	mean	0.472389	0.543565	0.496698	0.271417	
	std	0.164020	0.086081	0.010753	0.011298	
	min	0.266930	0.318770	0.470980	0.235130	
	25%	0.324650	0.486170	0.492225	0.265207	
	50%	0.502320	0.531030	0.496855	0.275360	
	75%	0.569172	0.621258	0.502107	0.278383	
	max	0.917080	0.659640	0.522400	0.287320	
_		<u> </u>	·		·	_

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	60.000000	60.000000	60.000000	60.000000
mean	0.612493	0.408656	0.391823	0.203770
std	0.073271	0.042352	0.012378	0.009050
min	0.377880	0.358510	0.366410	0.188420
25%	0.602680	0.387193	0.383430	0.197527
50%	0.630345	0.394345	0.390305	0.202900
75%	0.640705	0.405980	0.399300	0.208230
max	0.739090	0.564870	0.423900	0.227080

5. Prédictions sur des données de tests

1. MixMatch

Cas de la classification :

Difficulté avec la détection:

- pas toujours de prédiction
- nécessité d'effectuer une transformation inverse pour moyenner les bounding box

2. Teacher-Student

2. Teacher-Student

Teacher

=	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.327655	0.365876	0.220188	0.102420
std	0.108199	0.124732	0.107349	0.057499
min	0.020937	0.036118	0.007938	0.002257
25%	0.268373	0.283242	0.136635	0.051715
50%	0.347655	0.404820	0.262300	0.119835
75%	0.389143	0.449782	0.310615	0.157095
max	0.544430	0.549290	0.345690	0.171810

Student

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.300003	0.389194	0.193817	0.083575
std	0.121746	0.117200	0.082252	0.041802
min	0.007887	0.053662	0.005872	0.001319
25%	0.255352	0.366090	0.148528	0.054569
50%	0.314610	0.441045	0.226595	0.092661
75%	0.352492	0.461602	0.259543	0.121327
max	0.624100	0.529480	0.283070	0.132560

+483 pseudo labels avec un seuil de confiance de 0.7 parmis 6k images non labellisées

2. Teacher-Student

2. Teacher-Student

Student 40 epochs

2	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	40.000000	40.000000	40.000000	40.000000
mean	0.300003	0.389194	0.193817	0.083575
std	0.121746	0.117200	0.082252	0.041802
min	0.007887	0.053662	0.005872	0.001319
25%	0.255352	0.366090	0.148528	0.054569
50%	0.314610	0.441045	0.226595	0.092661
75%	0.352492	0.461602	0.259543	0.121327
max	0.624100	0.529480	0.283070	0.132560

Student 60 epoch

	metrics/precision	metrics/recall	metrics/mAP_0.5	metrics/mAP_0.5:0.95
count	70.000000	70.000000	70.000000	70.000000
mean	0.331811	0.439746	0.264273	0.124017
std	0.098899	0.101768	0.098375	0.054416
min	0.020761	0.027545	0.011898	0.003048
25%	0.274272	0.405672	0.207590	0.090602
50%	0.363945	0.453390	0.284375	0.132305
75%	0.402757	0.499335	0.350465	0.173705
max	0.499950	0.680190	0.378990	0.192490

V. Conclusion

- Modèle supervisé > 1200 données, 60 epochs, Transfert Learning, augmentation de données (flip, rotate 90°)
- Modèle semi-supervisé > 1200 données labellisées, 6000 données non-labellisées, Teacher-Student,

VI. Perspectives

- Annoter davantage d'images
- Pré-entraîner le réseau sur un dataset plus pertinent

• Égaliser les instances de classes

Merci de votre attention!