Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5
З дисципліни «Методи наукових досліджень»
За темою:

«Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів (центральний ортогональний композиційний план)»

ВИКОНАВ: Студент II курсу ФІОТ Групи IB-91 Гутов В.В. Номер у списку - 8

ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета: Провести трьохфакторний експеримент з урахуванням квадратичних членів ,використовуючи центральний ортогональний композиційний план. Знайти рівняння регресії, яке буде адекватним для опису об'єкту.

Завдання:

- 1. Взяти рівняння з урахуванням квадратичних членів.
- 2. Скласти матрицю планування для ОЦКП
- Провести експеримент у всіх точках факторного простору (знайти значення функції відгуку Y). Значення функції відгуку знайти у відповідності з варіантом діапазону, зазначеного далі. Варіанти вибираються по номеру в списку в журналі викладача.

$$\begin{aligned} y_{i \max} &= 200 + x_{cp \max} \\ y_{i \min} &= 200 + x_{cp \min} \end{aligned}$$
 ГДС $x_{cp \max} = \frac{x_{1 \max} + x_{2 \min} + x_{3 \min}}{3}, \ x_{cp \min} = \frac{x_{1 \min} + x_{2 \min} + x_{3 \min}}{3} \end{aligned}$

- 4. Розрахувати коефіціснти рівняння регресії і записати його.
- Провести 3 статистичні перевірки.

$\mathcal{N}_{\underline{0}}$	X	1	У	Κ2	X 3		
варіанту	min	max	min	max	min	max	
108	-5	7	-10	3	-7	1	

Програмний код

```
from scipy.stats import f, t
   y = np.zeros(shape=(n, m))
```

```
def add_sq_nums(x):
    x table.rows.append([*x[i]])
   x_norm_table.rows.append([*x_norm[i]])
   res.append(round(s, 3))
```

```
res.append(b)
```

```
y new.append(round(regression([x[j][i] for i in range(len(ts)) if
x_aver_max = sum([x[1] for x in x_range]) / 3
main(15, 3)
```

```
"D:\4 semestr\MND\venv\Scripts\python.exe" "D:/4 semestr/MND/lab5/main_lab5.py"
x matrix:
| 1 | -5 | -10 | -7 | 50 | 35 | 70 | -350 | 25 | 100 | 49 |
| 1 | 7 | -10 | -7 | -70 | -49 | 70 | 490 | 49 | 100 | 49 |
| 1 | -5 | 3 | -7 | -15 | 35 | -21 | 105 | 25 | 9 | 49 |
| 1 | 7 | 3 | -7 | 21 | -49 | -21 | -147 | 49 | 9 | 49 |
| 1 | -5 | -10 | 1 | 50 | -5 | -10 | 50 | 25 | 100 | 1 |
| 1 | 7 | -10 | 1 | -70 | 7 | -10 | -70 | 49 | 100 | 1 |
| 1 | -5 | 3 | 1 | -15 | -5 | 3 | -15 | 25 | 9 | 1 |
| 1 | 7 | 3 | 1 | 21 | 7 | 3 | 21 | 49 | 9 | 1 |
| 1 | 8 | -3 | 1 | -24 | 8 | -3 | -24 | 64 | 9 | 1 |
| 1 | -6 | -3 | 1 | 18 | -6 | -3 | 18 | 36 | 9 | 1 |
| 1 | 1 | 4 | 1 | 4 | 1 | 4 | 4 | 1 | 16 | 1 |
| 1 | 1 | -10 | 1 | -10 | 1 | -10 | -10 | 1 | 100 | 1 |
| 1 | 1 | -3 | 5 | -3 | 5 | -15 | -15 | 1 | 9 | 25 |
```

Normalized x matrix:										
1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0	-1.0	1.0	1.0	1.0
1.0	1.0	-1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0	1.0	1.0
1.0	-1.0	1.0	-1.0	-1.0	1.0	-1.0	1.0	1.0	1.0	1.0
1.0	1.0	1.0	-1.0	1.0	-1.0	-1.0	-1.0	1.0	1.0	1.0
1.0	-1.0	-1.0	1.0	1.0	-1.0	-1.0	1.0	1.0	1.0	1.0
1.0	1.0	-1.0	1.0	-1.0	1.0	-1.0	-1.0	1.0	1.0	1.0
1.0	-1.0	1.0	1.0	-1.0	-1.0	1.0	-1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1.0 	-1.2 15	0.0 	0.0	-0.0 	 -0.0 	- 0.0 	-0.0 -0.0	1.47	0.0	0.0
1.0 	 1.21 5	 0.0 	0.0	0.0	 0.0 	 0.0 	 0.0 	1.47	0.0	0.0
1.0 	 0.0 	-1.2 15	0.0 	 -0.0 	 0.0 	 -0.0 	 -0.0 	 0.0 	1.47 6	0.0
1.0 	 0.0 	1.21 5	0.0 	 0.0 	 0.0 	 0.0 	 0.0 	 0.0 	1.47 6	0.0
1.0	0.0 0.0	0.0 0.0	-1.2 15	0.0 	 -0.0 	-0.0 	 -0.0 	0.0	0.0 	1.47 6
1.0 1.10	0.0	+ 0.0 	+ 1.21 5		+ 0.0 +		i	0.0 	-+ 0.0 	-++ 1.47 6
1.0	0.0	0.0 					0.0 -		0.0 -+	0.0 -+

```
Coefficients of the regression equation:
[198.857, 0.094, -0.129, -0.309, 0.022, 0.085, -0.037, 0.001, -0.013, -0.008, -0.038]

The result of the equation with found coefficients:
[197.188 195.784 198.631 199.567 199.7 197.815 196.775 198.479 198.344
190.288 197.896 199.226 197.257 199.433 198.953]

Check the equation:

The average value of y: [197.333, 195.667, 198.667, 198.667, 198.6, 198.0, 196.0, 197.667, 198.0, 200.0, 197.0, 198.667, 198.33]

The variance y: [11.556, 5.556, 5.556, 4.222, 6.222, 4.667, 4.667, 8.667, 10.889, 16.222, 14.0, 2.0, 4.667, 10.889, 10.889]

Kohren check
gp = 0.13443386453851]

With a probability of 0.95 dispersions are homogeneous.

Student criterion:
[468.821, 0.646, 0.961, 0.372, 0.999, 0.473, 1.104, 0.158, 342.085, 342.24, 341.697]:

The coefficients [8.094, -0.129, -0.309, 0.022, 0.005, -0.037, 0.001] are statistically insignificant, so we exclude them from the equation. The value of y with coefficients [198.897, -0.013, -0.008, -0.038]:
[198.798, 198.798, 198.798, 198.798, 198.798, 198.798, 198.798, 198.838, 198.838, 198.845, 198.845, 198.801, 198.801, 198.857]

Fisher adequacy check
fp = 0.97772913733320998

ft = 2.125558760875511

The mathematical model is adequate to the experimental data

Process finished with exit code 0
```

Висновок

Виконуючи дану лабораторну роботу, я провів трьохфакторний експеримент при пикористанні рівняння регресії з урахуванням квадратичних членів(центральний ортогональний композиційний план). Склав матрицю планування та знайшов коефіцієнти рівняння регресії, провів статистичні перевірки.

Результати роботи програми наведені вище. Під час виконання роботи проблем не виникло.