Sumário

1	Eler	nentos l	Finitos para estruturas Unidimensionais de Barra	3
	1.1	Formu	ılação das Equações Diferenciais da Barra	3
		1.1.1	Modelo cinemático para a Barra	4
		1.1.2	Modelo de Material, Escolha da Lei Constitutiva	5
		1.1.3	Equações de Equilíbrio da Barra	6
		1.1.4	Condições de Contorno para o Caso da Barra	8
		1.1.5	Resumo das Equações da Barra em Movimentos Axiais	8
	1.2	Aprox	imação por Elementos Finitos: Barra	9
		1.2.1	Método dos Resíduos Ponderados, Discretização e Aproxima-	
			ção nodal	9
		1.2.2	Aplicação do Método dos Resíduos Ponderados	10
		1.2.3	Escolha das funções de ponderação : Método Galerkin	11
		1.2.4	Aplicação do Método dos Elementos Finitos	11
		1.2.5	Matriz de Rigidez e Vetor de Força Nodal Equivalente para o	
			Elemento Barra	14
	1.3	Exercí	ícios e Tarefas Computacionais	15
2	Eler	nentos]	Finitos para estruturas Unidimensionais de Viga	19
	2.1	Formu	ılação das Equações Diferenciais da Viga	19
		2.1.1	Modelo Cinemático para a Viga	21
		2.1.2	Modelo de Material, Escolha da Lei Constitutiva	23
		2.1.3	Equações de Equilíbrio da Viga	23
		2.1.4	Equação Diferencial para Flexão de Vigas	27
		2.1.5	Condições de Contorno para a Viga	29
		2.1.6	Resumo das Equações da Viga em Flexão	30
	2.2	Obten	ção da Equação Matricial para o Elemento de Viga	30
		2.2.1	Aplicação do Método dos Resíduos Ponderados	30
		2.2.2	Aplicação do Método dos Elementos Finitos	31

3	Elementos Finitos para estruturas Reticuladas		
	3.1	Introdução	37
	3.2	Obtenção da Matriz de Rigidez Global para o Elemento de uma Treliça	37
	3.3	Obtenção da Matriz de Rigidez Global para o Elemento de um Pórtico .	41
	3.4	Pós-processamento para Elementos de Treliça	46
	3.5	Pós-processamento para Elementos de Pórtico	47

Capítulo 1

Em se tratando de estruturas reticuladas, a aplicação do Método dos Elementos Finitos, no que se refere a discretização, consiste em fazer a análise da estrutura inteira levando-se em consideração a influência de cada elemento. No caso da treliça, um elemento cuja deformação restringe-se a deslocamentos nodais, e, no caso do pórtico um elemento cuja deformação envolve deslocamentos nodais, torção e flexão, ou seja, sua matriz de rigidez corresponde a uma superposição das matrizes obtidas para os casos específicos estudados nos capítulos anteriores.

Além de superpor estas matrizes, para se tornar possível a análise de estruturas planas e espaciais, os elementos devem ser descritos num sistema de referência global, e não no sistema de referência local do elemento.

1.2 Obtenção da Matriz de Rigidez Global para o Elemento de uma Treliça

Será analisado primeiramente o caso de uma treliça plana. Para um elemento plano, a representação dos sistemas de referência local (\bar{x}, \bar{y}) e global (x, y) está representado na figura 3.1.

Pela figura 3.1 obtém-se a seguinte relação entre os dois sistemas de coordenadas:

$$\bar{x} = x\underline{\cos}\theta\mathbf{i} + y\underline{\sin}\theta\mathbf{j}$$
$$\bar{y} = -x\underline{\sin}\theta\mathbf{i} + y\underline{\cos}\theta\mathbf{j}$$

onde i e j indicam as direções globais x e y, respectivamente.

Figura 1.1: Representação dos Sistemas de Referência Global e Local

Tem-se então que a matriz de transformação de coordenadas T corresponde a:

$$T = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
 (1.1)

Dos capítulos anteriores, tem-se que para um elemento sujeito somente a forças axiais (elemento barra) a equação matricial que relaciona as forças aplicadas com os deslocamentos nodais é:

$$\frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \begin{Bmatrix} F_{1u} \\ F_{2u} \end{Bmatrix}$$

Introduzindo v_1 , v_2 , deslocamentos nodais na direção \bar{y} , F_{1v} e F_{2v} , forças na direção \bar{y} , a equação acima fica:

$$\frac{AE}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{cases} u_1 \\ v_1 \\ u_2 \\ v_2 \end{cases} = \begin{cases} F_{1u} \\ F_{1v} \\ F_{2u} \\ F_{2v} \end{cases}$$
(1.2)

A forma compacta desta equação é:

$$[\bar{K}]\{\bar{u}\} = \{\bar{F}\}$$
 (1.3)

A barra colocada sobre as letras significa que estão representadas no sistema de referência local. Para passar o vetor de deslocamento \bar{u} e o de forças \bar{F} para o sistema de referência global, basta fazer:

$$\begin{cases} F \} = [T_g]^{-1} \{ \bar{F} \} \\ \{ u \} = [T_g]^{-1} \{ \bar{u} \} \end{cases} \qquad \forall - [T_g] \quad (1.4)$$

onde

$$[T_g] = \begin{bmatrix} T & 0\\ 0 & T \end{bmatrix} \tag{1.5}$$

Uma das propriedades da matriz $[T_q]$ é que sua inversa é igual a sua transposta. Com base neste fato e nas equações 3.4, pode-se reescrever a equação 3.3 da seguinte forma:

$$[T_g]\{F\} = [\bar{K}]\{T_g\}\{u\} \qquad \Rightarrow \qquad \underline{\{F\}} = [T_g]^{`}[\bar{K}][T_g]\{u\} = [K]\{u\}$$

Nota-se portanto que:

$$[K] = [T_g]'[\bar{K}][T_g] \tag{1.6}$$

 $[K] = [\underline{T_g}] \cdot [\bar{K}][T_g] \tag{1.6}$ Conhecendo-se da equação 3.2 $[\bar{K}]$ e da equação 3.5 $[T_g]$, e representando $cos\theta = \lambda$ e $sen\theta = \mu$, chega-se a:

$$K = \frac{AE}{L} \begin{bmatrix} \lambda^2 & \underline{\text{Sim.}} \\ \lambda \mu & \mu^2 & \\ -\lambda^2 & -\lambda \mu & \lambda^2 \\ -\lambda \mu & -\mu^2 & \lambda \mu & \mu^2 \end{bmatrix}$$

$$(1.7)$$

que corresponde a matriz de rigidez global de um elemento de treliça plana.

O vetor de forças F denotará:

$$F = \left\{ \begin{array}{c} F_{1x} \\ F_{1y} \\ F_{2x} \\ F_{2y} \end{array} \right\}$$

forças segundo o sistema de referência global (x,y) aplicadas nos nós 1 e 2. O vetor de deslocamentos u denotará:

$$u = \begin{cases} \mathbf{A}_1 \\ \mathbf{W}_1 \\ \mathbf{A}_2 \\ \mathbf{Y}_2 \end{cases}$$

deslocamentos segundo o sistema de referência global (x,y) aplicadas nos nós 1 e 2.

A generalização para a treliça espacial não envolve conceitos novos.

Da figura 3.2, pode-se escrever:

Figura 1.2: Representação Genérica de Elemento de Treliça Espacial

$$\bar{x} = \cos\theta_{x\bar{x}}\mathbf{i} + \cos\theta_{y\bar{x}}\mathbf{j} + \cos\theta_{z\bar{x}}\mathbf{k}$$

$$\bar{y} = \cos\theta_{x\bar{y}}\mathbf{i} + \cos\theta_{y\bar{y}}\mathbf{j} + \cos\theta_{z\bar{y}}\mathbf{k}$$

$$\bar{z} = \cos\theta_{x\bar{z}}\mathbf{i} + \cos\theta_{y\bar{z}}\mathbf{j} + \cos\theta_{z\bar{z}}\mathbf{k}$$

onde, representando de uma maneira geral, θ_{ab} é o ângulo entre os eixos a e b. Adotando a notação:

$$\begin{array}{lll} \lambda_u = \cos\theta_{x\bar{x}} & \lambda_v = \cos\theta_{x\bar{y}} & \lambda_w = \cos\theta_{x\bar{z}} \\ \mu_u = \cos\theta_{y\bar{x}} & \mu_v = \cos\theta_{y\bar{y}} & \mu_w = \cos\theta_{y\bar{z}} \\ \nu_u = \cos\theta_{z\bar{x}} & \nu_v = \cos\theta_{z\bar{y}} & \nu_w = \cos\theta_{z\bar{z}} \end{array}$$

tem-se que a matriz de transformação de coordenadas, formada pelos cossenos diretores, corresponde então a:

$$T = \begin{bmatrix} \lambda_u & \mu_u & \nu_u \\ \lambda_v & \mu_v & \nu_v \\ \lambda_w & \mu_w & \nu_w \end{bmatrix}$$
 (1.8)

Introduzindo na equação 3.2, referente ao elemento de treliça plana, w_1 , w_2 , F_{1w} e F_{2w} , deslocamentos e forças, respectivamente, em \bar{z} , tem-se:

$$\frac{AE}{L} \begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
u_1 \\ v_1 \\ w_1 \\ w_2 \\ v_2 \\ w_2
\end{bmatrix} = \begin{bmatrix}
F_{1u} \\ F_{1v} \\ F_{1w} \\ F_{2u} \\ F_{2v} \\ F_{2v} \\ F_{2w}
\end{bmatrix} \tag{1.9}$$

A definição de $[T_g]$ é exatamente a mesma da treliça plana. Note, no entanto, que as matrizes de transformação de coordenadas [T] são diferentes para cada caso. Assim como para $[T_g]$, a definição de [K] também é similar, sendo tal matriz definida pela equação 3.6. Portanto, conhecida da equação 3.9 $[\bar{K}]$, chega-se a:

$$K = \frac{AE}{L} \begin{bmatrix} \lambda^{2} & & \text{Sim.} \\ \lambda \mu & \mu^{2} & \\ \lambda \nu & \mu \nu & \nu^{2} & \\ -\lambda^{2} & -\lambda \mu & -\lambda \nu & \lambda^{2} & \\ -\lambda \mu & -\mu^{2} & -\mu \nu & \lambda \mu & \mu^{2} & \\ -\lambda \nu & -\mu \nu & -\nu^{2} & \lambda \nu & \mu \nu & \nu^{2} \end{bmatrix}$$
(1.10)

onde

$$\lambda = \lambda_u$$

$$\mu = \mu_u$$

$$\nu = \nu_u$$
(1.11)

Esta matriz corresponde à matriz de rigidez global de um elemento de treliça espacial. Os vetores de força F e deslocamento u são análogos aos definidos para treliça plana, porém com acréscimo de forças e deslocamentos em z referentes aos nós 1 e 2.

1.3 Obtenção da Matriz de Rigidez Global para o Elemento de um Pórtico

Primeiramente será analisado o caso de um elemento de pórtico plano. Por ser considerado num plano, este tipo de elemento pode estar submetido a dois esforços simultaneamente, que correspondem a momentos de flexão e cargas axiais, como mostra a figura 3.3.

Para obter a matriz de rigidez para esta configuração de esforços, basta superpor as matrizes obtidas para cada caso específico de carregamento: axial e de flexão. A superposição leva ao seguinte resultado:

$$\begin{bmatrix} u_1 & v_1 & \theta_{z1} & u_2 & v_2 & \theta_{z2} \\ \frac{AE}{L} & & & SIM. \\ 0 & \frac{12EI_{zz}}{L^3} & & \\ 0 & -\frac{6EI_{zz}}{L^2} & \frac{4EI_{zz}}{L} & & \\ -\frac{AE}{L} & 0 & 0 & \frac{AE}{L} & \\ 0 & -\frac{12EI_{zz}}{L^3} & \frac{6EI_{zz}}{L^2} & 0 & \frac{12EI_{zz}}{L^3} \\ 0 & -\frac{6EI_{zz}}{L^2} & \frac{2EI_{zz}}{L} & 0 & \frac{6EI_{zz}}{L^2} & \frac{4EI_{zz}}{L} \end{bmatrix}$$

$$(1.12)$$

Figura 1.3: Configuração de Esforços para Elemento de Pórtico Plano

Esta matriz, porém, ainda esta representada no sistema de coordenadas local do elemento. O próximo passo é então representá-la no sistema de referência global. Em se tratando de um problema plano, a matriz de transformação de coordenadas [T] é similar ao caso de elemento de treliça plana (equação 3.1). No entanto, uma vez que a rotação θ_z é representada no eixo z, deve-se acrescentar a esta matriz, linha e coluna referentes a este eixo. Como, neste caso, o eixo z é coincidente com o eixo \bar{z} , a matriz de transformação de coordenadas [T] fica:

$$[T] = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Tendo-se a matriz $[T_g]$ dada pela equação 3.5, e a matriz de rigidez $[\bar{K}]$ explicitada anteriormente, aplicando-se a equação 3.6, chega-se a:

que corresponde a matriz de rigidez descrita no sistema de referência global para o caso de um elemento de pórtico plano.

Figura 1.4: Configuração de Esforços para Elemento de Pórtico Espacial

O caso geral de configuração de esforços ocorre quando se analisa um elemento de pórtico espacial. Este elemento pode estar submetido a forças axiais,flexão oblíqua (momentos fletores em dois eixos) e torção, como mostra a figura 3.4.

Para obter a matriz de rigidez para esta configuração de esforços, basta superpor as matrizes obtidas para cada caso específico de carregamento: axial, flexão e torção. Estas matrizes correspondem às obtidas nos capítulos anteriores. Para simplificar a notação, o ângulo de torção ϕ está aqui representado por θ_x , E os momentos de inércia são denotados por $I_{yy} = I_v$ e I_{zz} . A superposição leva ao seguinte resultado:

Figura 1.5: Representação do Ponto de Referência

onde

A = área da seção transversal

L =comprimento do elemento

E =módulo de elasticidade do material

G =módulo de elasticidade transversal

J = momento de inércia polar

 $I_v =$ momento de inércia da seção transversal com relação a \bar{y}

 $I_w =$ momento de inércia da seção transversal com relação a \bar{z}

Esta matriz está representada no sistema local. Em relação a este sistema, é importante observar como devem ser definidos os eixos que o descrevem, de forma a se obter os elementos da matriz de transformação de coordenadas [T] de maneira correta, posteriormente.

O eixo \bar{x} positivo deve ser sempre considerado do nó 1 para o 2, ou, de maneira genérica, de i para j. O eixo \bar{y} deve coincidir com uma direção principal de inércia da seção do elemento. Neste plano $\bar{x}\bar{y}$ define-se então um ponto de referência R(figura 3.5), o qual, juntamente com as coordenadas dos nós do elemento, descrevem a posição deste no espaço. Este ponto é necessário uma vez que uma rotação em torno do eixo \bar{x} , no caso de elementos com seção assimétrica, pode alterar as matrizes elementares.

Tendo-se as coordenadas dos nós i e j no referencial global, (x_i, y_i, z_i) e (x_j, y_j, z_j) respectivamente, tem-se que os cossenos diretores do eixo \bar{x} em relação aos eixos xyz globais são definidos por:

$$\lambda_u = \frac{x_j - x_i}{L} \quad \mu_u = \frac{y_i - y_u}{L} \quad \nu_u = \frac{z_j - z_i}{L}$$
 onde
$$L = ((x_j - x_i)^2 + (y_j - y_i)^2 + (z_j - z_i)^2)^{\frac{1}{2}}$$
 (1.15)

Definindo no sistema de referência global as coordenadas do ponto de referência R como (x_r, y_r, z_r) , pode-se determinar as direções $\vec{V}_{O\bar{x}}$ e \vec{V}_{OR} da seguinte forma:

$$\vec{V}_{Ou} = \left\{ \begin{array}{c} x_j - x_i \\ y_j - y_i \\ z_j - z_i \end{array} \right\} \qquad \qquad \text{e} \qquad \qquad \vec{V}_{OR} = \left\{ \begin{array}{c} x_r - x_i \\ y_r - y_i \\ z_r - z_i \end{array} \right\}$$

onde O indica a origem do referencial elementar, neste caso o nó 1.

Supondo-se que o ponto de referência está no plano $\bar{x}\bar{y}$ local, pode-se calcular o eixo $\vec{V}_{O\bar{z}}$ utilizando-se da definição de produto vetorial:

$$\vec{V}_{O\bar{z}} = \vec{V}_{O\bar{x}} \times \vec{V}_{OR}$$

Efetuando este produto vetorial, chega-se a:

$$\vec{V}_{O\bar{z}} = \left\{ \begin{array}{l} (y_j - y_i)(z_r - z_i) - (z_j - z_i)(y_r - y_i) \\ (z_j - z_i)(x_r - x_i) - (x_j - x_i)(z_r - z_i) \\ (x_j - x_i)(y_r - y_i) - (y_j - y_i)(x_r - x_i) \end{array} \right\} = \left\{ \begin{array}{l} a \\ b \\ c \end{array} \right\}$$

Assim, pode-se definir os cossenos diretores dos ângulos formados entre o eixo local \bar{z} e os globais xyz:

$$\lambda_{w} = \frac{(y_{j} - y_{i})(z_{r} - z_{i}) - (z_{j} - z_{i})(y_{r} - y_{i})}{L_{z}}
\mu_{w} = \frac{(z_{j} - z_{i})(x_{r} - x_{i}) - (x_{j} - x_{i})(z_{r} - z_{i})}{L_{z}}
\nu_{w} = \frac{(x_{j} - x_{i})(y_{r} - y_{i}) - (y_{j} - y_{i})(x_{r} - x_{i})}{L_{z}}$$
(1.16)

onde $L_z=(a^2+b^2+c^2)^{\frac{1}{2}}$. Ainda resta, para a determinação dos componentes da matriz de transformação de coordenadas, a determinação dos cossenos diretores do eixo \bar{y} em relação aos globais. Para isso, utiliza-se novamente da definição de produto vetorial para se determinar a direção $\vec{V}_{O\bar{y}}$:

$$\vec{V}_{O\bar{y}} = \vec{V}_{O\bar{z}} \times \vec{V}_{O\bar{x}}$$

Efetuando este produto, pode-se finalmente definir estes cossenos diretores através das seguintes expressões:

$$\lambda_{v} = \frac{b(z_{j}-z_{i})-c(y_{j}-y_{i})}{L_{y}}
\mu_{v} = \frac{c(x_{j}-x_{i})-a(z_{j}-z_{i})}{L_{y}}
\nu_{v} = \frac{a(y_{j}-y_{i})-b(x_{j}-x_{i})}{L_{y}}$$
(1.17)

$$\text{onde } L_y = \{[b(z_j-z_i)-c(y_j-y_i)]^2 + [c(x_j-x_i)-a(z_j-z_i)]^2 + [a(y_j-y_i)-b(x_j-x_i)]^2\}^{\frac{1}{2}} + [a(y_j-y_i)-b(x_j-x_i)]^2 + [a(y_j-y_i)-b(x_j-x_i)]^2 + [a(y_j-y_i)-b(x_j-x_i)]^2 + [a(y_j-y_i)-b(x_j-x_i)]^2 + [a(y_j-y_i)-b(x_j-x_i)]^2 + [a(y_j-y_i)-b(x_j-x_i)]^2 + [a(y_j-x_i)-b(x_j-x_i)]^2 + [a(y_j-x_i)-b(x_j-x_i)-b(x_j-x_i)]^2 + [a(x_j-x_i)-b(x_j-x_i)-b(x_j-x_i)-b(x_j-x_i)]^2 + [a(x_j-x_i)-b(x_j-x_i)-b(x_j-x_i)-b(x_j-x_i)-b(x_j-x_i)]^2 + [a(x_j-x_i)-b(x_j-x_i)$$

A partir das expressões 3.15, 3.16 e 3.17, obtém-se a matriz de transformação de coordenadas [T] definida pela equação 3.8 desenvolvida na seção de análise de treliça espacial.

A matriz $[T_g]$ que passa a matriz de rigidez do referencial local para o global é então definida por:

$$[T_g] = \left[egin{array}{ccc} T & & & 0 \ & T & & \ & & T & \ 0 & & & T \end{array}
ight]$$

Com auxílio da equação 3.6, tendo $[T_g]$ definida acima e $[\bar{K}]$ definida por 3.14, obtém-se a matriz de rigidez [K] descrita no sistema de referência global.

1.4 Pós-processamento para Elementos de Treliça

Para elementos de treliça, seja ela plana ou espacial, as variáveis relevantes que podem ser achadas a partir dos deslocamentos já calculados são as tensões internas de cada elemento e as reações dos apoios.

As tensões internas são obtidas através da Lei de Hooke:

$$\sigma_{xx} = E\varepsilon_{xx}$$

O módulo de elasticidade E é sempre um dado de entrada do problema. A deformação ε_{xx} é calculada a partir dos deslocamentos nodais nas direções x, y e z, que são os eixos que descrevem o referencial global. Estes deslocamentos são armazenados na matriz de resultados durante a operação de execução. Sabendo-se o valor dos cossenos diretores entre os eixos xyz globais e o eixo \bar{x} local do elemento, cuja direção coincide com o mesmo, pode-se obter as componentes dos deslocamentos nesta direção, apenas multiplicando-os por seus respectivos cossenos diretores. Assim, define-se ε_{xx} como:

$$\varepsilon_{xx} = \frac{1}{L} \begin{bmatrix} \lambda & \mu & \nu \end{bmatrix} \begin{Bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{Bmatrix}$$

E chega-se, portanto, ao valor das tensões internas através da seguinte expressão, válida tanto para o caso de treliças planas quanto para espaciais:

$$\sigma_{xx} = \frac{E}{L} \begin{bmatrix} \lambda & \mu & \nu \end{bmatrix} \begin{Bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{Bmatrix}$$

Uma vez calculadas as tensões internas, multiplicando seus valores pelas respectivas áreas de seção transversal de cada elemento, otém-se as forças internas. Tendo-se as forças internas, para os nós onde há condições de deslocamento restrito, ou seja, apoios, as reações podem ser achadas simplesmente utilizando-se o Método dos Nós. Para isso,

foi criado um alogorítimo que decompõe as forças internas de cada elemento que tenha alguma de suas extremidades apoiada, nas direções x e y. Após este procedimento, basta somar a contribuição de cada elemento, para achar as reações nos apoios.

1.5 Pós-processamento para Elementos de Pórtico

Para elementos de pórtico, apresentam-se como variáveis relevantes no pós-processamento as forças e momentos associados aos elementos da estrutura, uma vez que estes permitem o cálculo da distribuição de tensão dentro dos mesmos. Este cálculo é feito a partir da equação de equilíbrio estático da estrutura:

$$[K]\{u\} = \{F\}$$

Esta equação pode ser utilizada separadamente para cada elemento. No caso de pórticos planos são calculadas forças em x e y e momentos em z, e, no caso de espaciais forças e momentos em todas as direções que descrevem o referencial global.

As equações utilizadas para o cálculo da distribuição de tensão normal para os elementos de pórtico plano são dadas por:

$$\frac{1}{
ho} = \frac{arepsilon_{xx}}{y}$$
 e $\frac{1}{
ho} = \frac{d^2v}{dx^2}$

desenvolvidas na seção de obtenção da equação diferencial da viga, chega-se a:

$$\varepsilon_{xx} = y \frac{d^2 v}{d\bar{x}^2}$$

onde a origem de y representa a linha neutra, que é uma propriedade geométrica definida pelo usuário.

A variável v por sua vez foi aproximada por:

$$v = [N] \left\{ v_i \quad \gamma_{zi} \quad v_j \quad \gamma_{zj} \right\}^T$$

onde [N] são as funções de forma, já obtidas.

Utilizando-se então a Lei de Hooke, chega-se a seguinte expressão para o cálculo da distribuição de tensão normal σ :

$$\sigma_{xx} = Ey \begin{bmatrix} \frac{d^2 N_1}{d\bar{x}^2} & \frac{d^2 N_2}{d\bar{x}^2} & \frac{d^2 N_3}{d\bar{x}^2} & \frac{d^2 N_4}{d\bar{x}^2} \end{bmatrix} \begin{Bmatrix} v_i \\ \gamma_{zi} \\ v_j \\ \gamma_{zj} \end{Bmatrix}$$

é importante notar que os deslocamentos devem estar representados no referencial local.

Referências Bibliográficas

Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. (2002). *Concepts and applications of finite element analysis*. John Wiley & Sons, Inc., 4 edition.

J.S., P. (1985). Theory of Matrix Structural Analyses. Dover Publications, New York.

Popov, E. P. (1998). Engineering Mechanics of Solids. Prentice-Hall International.

Zienkienwicz, O. C. (1971). The Finite Element Method. MacGraw-Hill, New York.

Zienkienwicz, O. C. and Morgan, K. (1983). *Finite Elements and Aproximations*. Dover - New York.