Homework 4

Samuel Lindskog

September 18, 2024

Problem 1

Suppose $n \in \mathbb{N}$. Suppose to the contrary that there exists $n \geq 2$ such that $(a_n > a_{n-1} \geq 4)$ and $(a_{n+1} \leq a_n \vee a_n, a_{n+1} < 4)$. It follows

$$3(a_n - 1) \le a_n$$
$$a_n \le \frac{3}{2}$$

and a contradiction arises because $a_n > 4$. Therefore

$$\forall n \ge 2 \in N, \ (a_n > a_{n-1} \ge 4) \Rightarrow (a_{n+1} > a_n \ge 4)$$

and because $a_1 = 4$ and $a_2 = 9$, for all n > 2 we have $a_n > a_{n-1}$. Let $n, m \in \mathbb{R}$, and suppose to the contrary that $a_n = a_m$ with $n \neq m$. But if $n \neq m$, then wlog n < m and $a_n < a_m$, a contradiction because < is transitive.

Problem 2