Основные требования

- В процессе выполнения практических работ №1 №7 настоятельно рекомендуется использовать один выбранный язык программирования.
- В процессе выполнения практических работ №1 №7 НЕ допускается использование готовых библиотечных решений за исключением упомянутых в «основных требованиях».
- К концу курса на основе выполненных практических работ №1 №7 необходимо собрать библиотеку для генерации больших простых чисел, которые используются в алгоритмах из лабораторных работ.
- Для проверки алгоритмов из практических работ №2 №5 рекомендуется написать дополнительную программу с использованием библиотеки GMP для генерации больших чисел.

Практическая работа №1 «Большие числа»

- 1. Написать реализацию класса больших чисел.
- 2. Написать программу для реализации арифметических операций с большими числами: сложение, вычитание, деление, умножение и возведение в степень.
- 3. Добавить в программу из пункта №2 функционал сравнение двух больших чисел, поиска их наименьшего общего кратного (НОК) и наибольшего общего делителя (НОД).

Практическая работа №2 «Большие простые числа и числа Мерсенна»

- 1. С помощью программы из практической работы №1 вычислить значение (2¹³⁶²⁷⁹⁸⁴¹ 1) самого большого из посчитанных простых чисел. Измерить скорость вычисления.
- 2. Проверить число из пункта №1 на простоту с помощью «стандартного» метода проверки на простоту:
 - проверка на чётность,
 - проверка на деление на 5,
 - проверка на деление суммы цифр на 3, 6 и 9,
 - проверка всех чисел до квадратного корня.

Написать для этого собственную реализацию метода, используя в качестве основы практическую работу №1.

- 3. Проверить число из пункта №1 на простоту с помощью «Решета Эратосфена». Написать для этого собственную реализацию метода, используя в качестве основы практическую работу №1.
- 4. Проверить число из пункта №1 на простоту с помощью «Решета Аткина». Написать для этого собственную реализацию метода, используя в качестве основы практическую работу №1.
- Проверить число из пункта №1 на простоту с помощью теста Люка-Лемера. Написать для этого собственную реализацию метода, используя в качестве основы практическую работу №1.

Практическая работа №3 «Вероятностные методы проверки на простоту»

- 1. Написать реализацию вероятностного теста Миллера-Рабина. Проверить известное простое число 100 раз, собрать статистику.
- 2. Написать реализацию вероятностного теста Люка на сильную псевдопростоту. Проверить известное простое число 100 раз, собрать статистику.
- 3. Написать реализацию вероятностного теста Бейли-Померанца-Селфриджа-Уогстаффа (обобщение тестов из пункта №1 и пункта №2). Проверить известное простое число 100 раз, собрать статистику.
- 4. Сравнить результаты проверки одного и того же простого числа с помощью тестов из пунктов №1 №3.

Практическая работа №4 «Детерминированные методы проверки на простоту»

- 1. Написать реализацию детерминированного теста Агравала-Каяла-Саксены. Проверить известное простое число ($< 2^{32}$), измерить скорость вычислений. Проверить известное простое число ($> 2^{64}$), измерить скорость вычислений. Сравнить результаты.
- 2. Написать реализацию детерминированного теста Миллера. Проверить известное простое число ($< 2^{32}$), измерить скорость вычислений. Проверить известное простое число ($> 2^{64}$), измерить скорость вычислений. Сравнить результаты.
- 3. Сравнить результаты проверки одного и того же простого числа с помощью тестов из пунктов №1 №2.

Практическая работа №5 «Универсальный метод проверки на простоту»

- 1. Написать реализацию универсального алгоритма Аткина-Морейна на эллиптических кривых (ЕСРР). Проверить известное простое число ($< 2^{32}$), измерить скорость вычислений. Проверить известное простое число ($> 2^{64}$), измерить скорость вычислений.
- 2. Сравнить результаты из пункта №1 с результатами, полученными в практической работе №4.
- 3. Проверить на простоту числа $(2^{82589933} 1)$ и $(2^{136279841} 1)$, измерить скорость вычислений.

Практическая работа №6 «Случайные числа»

- 1. Написать линейный конгруэнтный генератор псевдослучайных чисел. Сгенерировать 100, 1000, 10000 значений, определить математическое ожидание, дисперсию, количество совпадающих значений. Построить графики.
- Написать программу для генерации случайных чисел методом вихря Мерсенна.
 Сгенерировать 100, 1000, 10000 значений, определить математическое ожидание, дисперсию, количество совпадающих значений. Сравнить значения характеристик с полученными в пункте №1.
- 3. Написать программу для генерации случайных чисел с использованием накопления энтропии.

Возможные варианты:

Вариант	Источник энтропии
1	Аудиозапись (амплитуда, частота)
2	Изображение (пиксели)
3	Посимвольная печать заданной строки
	(подсчёт времени между нажатиями клавиш)
4	Положение курсора на экране
5	Время прихода прерывания от внешнего устройства
	(мышь, клавиатура)
6	Частоты появления заданных символов в тексте

Допустимо использование альтернативных источников энтропии.

Практическая работа №7 «Случайные простые числа»

- 1. Написать генератор случайных простых чисел размером 512 бит, 512 байт, 1 Кбайт, 32 Кбайта, 128 Кбайт, 256 Кбайт, 512 Кбайт, 1 Мбайт. Размер числа должен вводиться с клавиатуры. Допустимы другие значения размера, не превышающие 1 Мбайт. В качестве генератора начальных значений использовать программу из пункта №3 практической работы №6, а в качестве алгоритма проверки на простоту алгоритм ЕСРР.
- 2. Сгенерировать 1000 простых чисел размером 512 бит, 512 байт, 1 Кбайт и 32 Кбайта. Для каждой генерации среди полученных чисел найти совпадающие, посчитать их количество, вычислить математическое ожидание и дисперсию.
- 3. Проверить генератор случайных простых чисел путём генерации числа размером 32 Мбайта. Измерить скорость работы.