Temporal Drift of User Rating On Movie Recommender Systems

Mustafa Katipoğlu

RA. Sercan AYGÜN

Aim Of The Project

- Creating a new similarity measure that is based on Temporal effects.
- Research on the temporal aspects.

Making Recommendations

- User Based and Item Based Collaborative Filtering(CF).
- User based CF is more personalized.
- Uses similarities between the neighbors.

Pearson Correlation

- The classical way of making prediction.
- Based on statistical correlations of the ratings given by the users.

Datasets

- Movielens 100k Dataset
- Netflix Prize Dataset(Truncated)

Average User Ratings

Ratings Given Per Year

The Problem

- Temporal aspects is overlooked.
- Drift of user preferences.

Proposed Approach

Time-bin Based Nearest Neighborhood

- Focus on temporal drift
- Focus on temporal locality

Presented Framework

- Written in Python
- Skeleton Framework
- Demand on future work.

Timebin Based Nearest Neighborhood

- Take Time-bins
- Find Similar Time-bins
- Predict as weighted average.

Timebins

First Way: Static Length of Time – Dynamic Size of Bins

Actual Way: Dynamic Length of Time – Static Size of Bins

Time-bin Size (N)

Constraints

- For Target: At least Time-bin size number of rating history.
- For Neighbors:
 - Need to rate the target movie
 - Need to have at least 2 more common rating

Finding Similar Timebins

- Make sure all the constraints are met
- Use pearson correlation between time-bins only.
- Use the common ratings found in the time-bins.
- Take the avg of the user as the avg of the whole watch history.

Multi Class Classifiacation Based Evaluation

Why?

- → Inconsistent datasets.
- Netflix I to 5 5 rating class
- Movielens 0.5 to 5 10 rating class

How?

- Suppose there are three classes: C1, C2, and C3
- "TP of CI" is all CI instances that are classified as CI.
- "TN of CI" is all non-CI instances that are not classified as CI.
- "FP of CI" is all non-CI instances that are classified as CI.
- "FN of CI" is all CI instances that are not classified as CI.
- To find these four terms of C2 or C3 you can replace C1 with C2 or C3.

RMSE

Threshold Accuracy

Recall

Precision

Fl Score

Accuracy

Balanced Accuracy

Matthews Correlation Coefficient

Informedness

Markedness

Specificity

- We present Time-bin Based Neighborhood.
- Importance of temporal drifts.
- Space for future work on temporal drifts.

References

Our Temporal Drift Github Repository

One Against All Approach