

Probabilidades e Estatística E Ano Letivo 2017/18

Teste 3 A 14 junho 2018 Duração: 1h30m

Nome completo:			
Γ			
N o aluno	Curso:		

Nas alíneas das perguntas 1 e 2 apenas uma das respostas está correta. Determine-a e assinale-a com uma <u>cruz</u> no quadrado correspondente. Uma resposta incorreta desconta 0.3, 0.2 ou 0.1 valores consoante a pergunta ou alínea vale 2.0, 1.5 ou 1.0 valores, respetivamente. Uma não resposta nada vale nem desconta. A pergunta 3 deverá ser resolvida nas folhas do caderno.

1. Considere a seguinte a amostra das resistências, em ohms, recolhida de 36 componentes eletrónicos. Pretendese testar a aleatoriedade da mesma usando o teste das sequências ascendentes e descendentes.

10.09	9.98	9.97	9.28	10.77	10.21	9.73	10.04	9.74	10.55	9.99	10.22
10.62	9.70	9.57	9.33	10.26	10.27	10.36	10.07	10.07	10.06	9.91	9.62
10.47	10.19	9.87	9.80	10.03	9.74	10.28	10.91	9.75	9.85	10.14	9.86

(1.0) (a) O número de sequências observadas na correspondente amostra de sinais é:

lacksquare lacksquare

- (1.0) (b) Para um nível de significância de 2%, a região de rejeição do teste é: $\boxed{\mathbb{A} \mid -\infty, -2.05[\cup]2.05, +\infty[} \boxed{\mathbb{B} \mid -\infty, -2.33[\cup]2.33, +\infty[} \boxed{\mathbb{C} \mid -\infty, -1.28[} \boxed{\mathbb{D} \mid 2.05, +\infty[}$
- (2.0) (c) F Dado uma outra amostra de igual dimensão, para a qual o número de sequências observadas foi de 28 e onde não há observações consecutivas repetidas, devemos rejeitar, ao nível 1% de significância, a hipótese de que a amostra é aleatória.
- (1.5) (d) Outra amostra de igual dimensão forneceu um valor observado da estatística de teste de -1.23 então o valor-p do teste das sequências ascendentes e descendentes é:

 A
 0.8907
 B
 0.1093
 C
 0.2186
 D
 0.0123
- (1.0) (e) $\overline{\mathbb{V}}$ $\overline{\mathbb{F}}$ Se obtivermos um valor-p de 0.2143 para o teste das sequências então para um nível de significância de 5% devemos rejeitar a hipótese nula.
 - 2. Pretende-se estudar a relação existente entre o período de gestação (x), em dias, e o tempo médio de vida (Y), em anos, em mamíferos. A seguinte tabela apresenta os valores registados em 10 mamíferos.

	urso	hipopótamo	canguru	leopardo	leão	macaco	rato	porco	cão	gato
x_i	219	238	42	98	100	164	21	112	61	63
Y_i	18	25	7	12	15	15	3	10	12	12

$$\sum x_i = 1118 \quad \sum x_i^2 = 173544 \quad \sum Y_i = 129 \quad \sum Y_i^2 = 1989 \quad \sum x_i Y_i = 17993$$

- (2.0) (a) F Por cada dia de aumento no período de gestação dos mamíferos, espera-se um aumento de 0.0735 anos no seu tempo médio de vida.
- (1.0) (b) O coeficiente de determinação tem valor:

 $oxed{\mathbb{A}} \simeq 1$ $oxed{\mathbb{B}} \simeq 0.55$ $oxed{\mathbb{C}} \simeq 0$ $oxed{\mathbb{D}} \simeq 0.81$

(V.S.F.F.)

Total de folhas entregues: _____

(1.0)	(c)	O período de gestação de uma girafa é de 425 dias. O tempo médio de vida que se prevê para a girafa
		ý.

A 25 anos B 15 anos C 12 anos D Nenhuma das anteriores

(2.0) (d) O intervalo de confiança com nível 95% para β_0 é: (nos cálculos intermédios use 4 casas decimais)

(1.5) (e) $\overline{\mathbb{V}}$ F Num teste à nulidade do parâmetro β_1 , obteve-se valor-p = 0.000401. Para um nível de significância de 1%, deve rejeitar-se H_0 .

[Responda nas folhas do caderno]

3. Considere a seguinte amostra (ordenada) de 60 valores de X, o tempo, em minutos, entre chamadas consecutivas para uma linha de emergência médica.

(4.0) (a) Teste a hipótese de X ter distribuição E(0,10) (modelo exponencial com função de distribuição $F(x) = P(X \le x) = 1 - e^{-0.1x}, \ x \ge 0$). Use o nível de significância 10%.

Considere na resolução as classes $]0,3], \]3,6], \]6,9], \]9,15], \]15,24], \]24,36]$ e $]36,\infty[$.

Admitindo válida a hipótese nula, temos:

$$F(3) = 0.2592$$
 $F(6) = 0.4512$ $F(9) = 0.5934$ $F(15) = 0.7769$ $F(24) = 0.9093$ $F(36) = 0.9727$

(2.0) (b) Supondo um valor observado da estatística de teste de 3.00, determine o valor-p do teste de hipóteses realizado na alínea anterior.

Probabilidades e Estatística E Ano Letivo 2017/18

Teste 3 B 14 junho 2018 Duração: 1h30m

Nome completo:			
r			
N.º aluno:	Curso:		

Nas alíneas das perguntas 1 e 2 apenas uma das respostas está correta. Determine-a e assinale-a com uma cruz no quadrado correspondente. Uma resposta incorreta desconta 0.3, 0.2 ou 0.1 valores consoante a pergunta ou alínea vale 2.0, 1.5 ou 1.0 valores, respetivamente. Uma não resposta nada vale nem desconta. A pergunta 3 deverá ser resolvida nas folhas do caderno.

1. Considere a seguinte a amostra das resistências, em ohms, recolhida de 36 componentes eletrónicos. Pretendese testar a aleatoriedade da mesma usando o teste das sequências ascendentes e descendentes.

10.09	9.98	9.97	9.28	10.77	10.21	9.73	10.04	9.74	10.55	9.99	10.22
10.62	9.70	9.57	9.33	10.26	10.27	10.36	10.07	10.07	10.06	9.91	9.62
10.47	10.19	9.87	9.80	10.03	9.74	10.28	10.91	9.75	9.85	10.14	9.86

(a) O número de sequências observadas na correspondente amostra de sinais é: (1.0)

B 19

C 22

(b) Para um nível de significância de 2%,a região de rejeição do teste é: (1.0)

 $\fbox{A} \hspace{0.1cm}] \hspace{0.1cm} -\infty, -2.33 \hspace{0.1cm} [\hspace{0.1cm} \cup \hspace{0.1cm}] 2.33, +\infty [\hspace{0.1cm} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}}]\hspace{0.1cm} 2.05, +\infty [\hspace{0.1cm} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} -\infty, -1.28 [\hspace{0.1cm} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} \boxed{\hspace{0.1cm}} -\infty, -2.05 \hspace{0.1cm} [\hspace{0.1cm} \cup \hspace{0.1cm}] 2.05, +\infty \hspace{0.1cm} \boxed{\hspace{0.1cm}} \boxed$

- (c) 🔻 E Dado uma outra amostra de igual dimensão, para a qual o número de sequências observadas foi (2.0)de 28 e onde não há observações consecutivas repetidas, devemos rejeitar, ao nível 1% de significância, a hipótese de que a amostra é aleatória.
- (d) Outra amostra de igual dimensão forneceu um valor observado da estatística de teste de -1.23 então (1.5)o valor-p do teste das sequências ascendentes e descendentes é:

A 0.0123

B 0.1093

C 0.8907

D 0.2186

- (e) $\boxed{\mathbb{V}}$ Se obtivermos um valor-p de 0.2143 para o teste das sequências então para um nível de signi-(1.0)ficância de 10% devemos rejeitar a hipótese nula.
 - 2. Pretende-se estudar a relação existente entre o período de gestação (x), em dias, e o tempo médio de vida (Y), em anos, em mamíferos. A seguinte tabela apresenta os valores registados em 10 mamíferos.

	urso	hipopótamo	canguru	leopardo	leão	macaco	rato	porco	cão	gato
\bar{x}_i	219	238	42	98	100	164	21	112	61	63
Y_i	18	25	7	12	15	15	3	10	12	12

$$\sum x_i = 1118 \quad \sum x_i^2 = 173544 \quad \sum Y_i = 129 \quad \sum Y_i^2 = 1989 \quad \sum x_i Y_i = 17993$$

- (a) F Por cada dia de aumento no período de gestação dos mamíferos, espera-se um aumento de (2.0)0.0735 anos no seu tempo médio de vida.
- (b) O coeficiente de determinação tem valor: (1.0)

 $A \simeq 0$

 $\boxed{\mathsf{B}} \simeq 0.81$

 $\boxed{\mathtt{C}} \simeq 0.55$

 $\square \simeq 1$

(V.S.F.F.)

Total de folhas entregues: ___

(1.0)	(c)	${\cal O}$ período de gestação de uma girafa é de 425 dias. O tempo médio de vida que se prevê para a girafa
		é:

A 12 anos B 25 anos C 15 anos D Nenhuma das anteriores

(2.0) (d) O intervalo de confiança com nível 95% para β_0 é: (nos cálculos intermédios use 4 casas decimais)

(1.5) (e)
$$\overline{\mathbb{V}}$$
 $\overline{\mathbb{F}}$ Num teste à nulidade do parâmetro β_1 , obteve-se valor-p = 0.000401. Para um nível de significância de 5%, não se deve rejeitar H_0 .

[Responda nas folhas do caderno]

3. Considere a seguinte amostra (ordenada) de 60 valores de X, o tempo, em minutos, entre chamadas consecutivas para uma linha de emergência médica.

(4.0) (a) Teste a hipótese de X ter distribuição E(0,10) (modelo exponencial com função de distribuição $F(x) = P(X \le x) = 1 - e^{-0.1x}, \ x \ge 0$). Use o nível de significância 10%.

Considere na resolução as classes [0,3], [3,6], [6,9], [9,15], [15,24], [24,36] e $[36,\infty[$.

Admitindo válida a hipótese nula, temos:

$$F(3) = 0.2592$$
 $F(6) = 0.4512$ $F(9) = 0.5934$ $F(15) = 0.7769$ $F(24) = 0.9093$ $F(36) = 0.9727$

(2.0) (b) Supondo um valor observado da estatística de teste de 3.00, determine o valor-p do teste de hipóteses realizado na alínea anterior.