### Exercícios de Probabilidade e Estatística

## 13 – Tabelas e gráficos

1 – Considere a seguinte planilha de dados quanto às topologias de rede de computadores na resposta do tempo ao usuário:

```
In [1]:
    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np

In [2]:
    df = pd.read_excel('13 - Tabelas e gráficos estatísticos.xlsx', sheet_name = 'Table
    # index_col = 0 -> Por padrao, a funcao vem com uma coluna a mais. Index = 0 previne
    df
Out[2]:
    Topologia Tempo de Resposta
```

| Informacao |    |     |
|------------|----|-----|
| 1          | C1 | 6.0 |
| 2          | C2 | 7.0 |
| 3          | C3 | 5.0 |
| 4          | C1 | 6.3 |
| 5          | C2 | 6.8 |
| 6          | C2 | 7.2 |
| 7          | C1 | 6.0 |
| 8          | C2 | 6.7 |
| 9          | C1 | 5.7 |
| 10         | C2 | 6.5 |
| 11         | C3 | 6.4 |
| 12         | C1 | 5.7 |
| 13         | C3 | 7.2 |
| 14         | C3 | 6.8 |
| 15         | C3 | 6.5 |
| 16         | C2 | 7.5 |

Construa um gráfico de setores para

# topologia.

```
In [3]:
    df_topologia_sum = df.groupby(['Topologia']).sum()
    df_topologia_sum
```

#### Out[3]: Tempo de Resposta

| Topologia  |      |
|------------|------|
| <b>C</b> 1 | 29.7 |
| C2         | 41.7 |
| <b>C</b> 3 | 31.9 |

```
In [4]:
    explosao = (0.1, 0.1, 0.1)
    nomes = ['C1', 'C2', 'C3']
    c = ['#003153', '#0000EF', '#3b5998']

    plt.pie(df_topologia_sum['Tempo de Resposta'], labels = nomes, autopct =" %1.2f %% "
    plt.show()
```



# 2. Suponha que uma empresa esteja analisando o número de vendas de notebooks de duas marcas diferentes nos primeiros 4 meses do ano.

```
In [5]:
    df02 = pd.read_excel('13 - Tabelas e gráficos estatísticos.xlsx', sheet_name = 'Tabl
    df02
```

#### Out[5]: Marca A Marca B

| 10 | 20      |
|----|---------|
| 16 | 30      |
| 9  | 25      |
| 12 | 20      |
|    | 16<br>9 |

# Construa um gráfico de linhas para as duas marcas.

```
In [6]:
         barWidth = 0.25
         fig = plt.subplots(figsize =(12, 8))
         Marca_1 = df02['Marca A']
         Marca_2 = df02['Marca B']
         br1 = np.arange(len(Marca_1))
         br2 = [x + barWidth for x in br1]
         plt.bar(br1, Marca_1, color ='r', width = barWidth,
                 edgecolor ='grey', label ='Marca A')
         plt.bar(br2, Marca_2, color ='g', width = barWidth,
                 edgecolor ='grey', label ='Marca B')
         plt.xlabel('Mês', fontweight ='bold', fontsize = 15)
         plt.ylabel('Quantidade vendida', fontweight ='bold', fontsize = 15)
         plt.xticks([r + barWidth for r in range(len(Marca_1))], ['janeiro', 'Fevereiro', 'Marc
         plt.legend()
         plt.show()
```

