Vertical Angles

Proofs updated.

Problem 1 Point P is the intersection of lines m and n. Prove that $\angle 1 \cong \angle 3$.

Fixnote: When students write equations about linear pairs, they often write two equations for non-overlapping linear pairs—which doesn't help. The figure above is intended to help avoid that dead end, but it would be worthwhile to discuss that dead end anyway.

(a) It must be that $\angle 1 \cong \angle 3$ because they are both (complementary/supplementary \checkmark / opposite) to $\angle 2$.

Detail: First write down equations about linear pairs of angles:

$$m \angle 1 + m \angle 2 = 180^{\circ}$$

$$m \angle 3 + m \angle 2 = 180^{\circ}$$

By comparing the two equations, it might be clear that $m \angle 1 = m \angle 3$. Other students may need to do some algebra.

Fixnote: In what way(s) might this detail be incorporated into the proof?

(b) A rotation of 180° about P maps m onto itself, maps n onto itself, and swaps $\angle 1$ and $\angle 3$. Because rotations preserve angle measures, it must be that $\angle 1 \cong \angle 3$.

Learning outcomes: Author(s): Brad Findell Detail: Line m is the union of two opposite rays with endpoint P. Check that the 180° rotation about P swaps these opposite rays. The same idea holds for line n so that together the sides of $\angle 1$ become the sides of $\angle 3$ and vice versa.

(c) Reflecting about the bisector of $\angle 2$ swaps $\angle 1$ and $\angle 3$. Because reflections preserve angle measures, it follows that $\angle 1 \cong \angle 3$.

Detail: The reflection swaps the two rays that are the sides of $\angle 2$. Because reflections take lines to lines, that reflection must swap not just the rays but lines m and n.

