<Figure size 432x288 with 0 Axes>

Data Prep

Getting data for users who completed the experiment

```
In [6]: 1 user_df = participants[participants['workerID'].isin(wids) & participan
2 user_df
```

Out[6]:

	userID	workerID	userIP	completedTask	timeTaken
22	-M3pVTw9ili6muvdZKg4	27046826551	-188934845	1	546.814
23	-M3qqejnlf4v_ja8eE7n	67313721753	727219182	1	526.296
29	-M3rSxyqKh87n8lxCNFz	14715705020	1146968680	1	597.604
31	-M3tou9y2NuJSM2wEped	65643517184	-15487531	1	712.426
33	-M3wWKZuvM6607THGsj3	86979612220	-1107186255	1	308.230
34	-M3xbEdg3XIZca4MA7SZ	26312944991	-1470029051	1	924.305
36	-M40VLLla6hlhfPLwyWk	4949336941	-1012892879	1	921.908
55	-M4RJU1sPJwCqxkN93qZ	46875911951	1225707233	1	706.181
58	-M4WPYQVe_g2Cz7JGkvf	43605166255	565906706	1	380.887

```
In [7]: 1 users = participants[participants['workerID'].isin(wids) & participants
2 results = trials[trials['userID'].isin(users)]
3 results
```

Out[7]:

	trialID	userID	trialIndex	trialType	prevChanged	lemma
206	- M3pVhmrS4LVzC6_glcJ	-M3pVTw9ili6muvdZKg4	1	training	1	bank_n
207	- M3pVhmrS4LVzC6_glcJ	-M3pVTw9ili6muvdZKg4	1	training	1	bank_n
208	- M3pVhmrS4LVzC6_glcJ	-M3pVTw9ili6muvdZKg4	1	training	1	bank_n dep
209	-M3pVmug0DJj2iajKlnK	-M3pVTw9ili6muvdZKg4	2	training	0	bass_n
210	-M3pVmug0DJj2iajKInK	-M3pVTw9ili6muvdZKg4	2	training	0	bass_n
775	- M4WQil33JL5IUOVqtkX	- M4WPYQVe_g2Cz7JGkvf	17	repeat	1	book_n
776	- M4WQil33JL5IUOVqtkX	- M4WPYQVe_g2Cz7JGkvf	17	repeat	1	book_n
777	- M4WQktKprTLtiCVjEuZ	- M4WPYQVe_g2Cz7JGkvf	18	repeat	0	glass_n
778	- M4WQktKprTLtiCVjEuZ	- M4WPYQVe_g2Cz7JGkvf	18	repeat	0	glass_n
779	- M4WQktKprTLtiCVjEuZ	- M4WPYQVe_g2Cz7JGkvf	18	repeat	0	glass_n

562 rows × 9 columns

Repeat Trial Results

Original WN sense definitions(make sure to click "Show Sense Numbers" under "Display Options"): http://wordnetweb.princeton.edu/perl/webwn (<a href="http://wordnetweb.prin

Distance matrices for when a subject got the same word (2x per trial). Spearman rank correlations between the subject's original and repeat trials are also recorded.

```
In [11]: 1 repeat_corr = plot_all_repeats(results, users)
```

0.45940746440938823 User 22 Correlation User 23 Correlation 0.7341597796143251 User 29 Correlation 0.6554621848739496 User 31 Correlation 0.8508410434878082 User 33 Correlation -0.2100840336134454 User 34 Correlation 0.34210526315789475 User 36 Correlation 0.6470588235294118 Correlation 0.2162534435261708 User 55 User 58 Correlation 0.3676470588235294

Correlation of all original vs. repeat trials 0.4429744199162231

Original 0.0 0.307 0.242 0.841 earth n 01 0.307 0.0 0.264 populace_n_01 0.264 0.451 0.242 0.0 universe_n_01 0.451 0.288 world_n_02 0.288 world_n_03 0.841 1.0 0.0 Aprild 10 02 Thirtie Lot

Shared Words

All subjects received a set of homonymous words. It appears there's some consistency in the results for foot, table, degree, and plane, but model and right were harder to distinguish.

Spearman rank correlations between one subject's data and the average of the rest of the subjects

```
In [13]: 1 shared_results = results[results['trialType'] == 'shared']
    shared_corrs = group_consistency(shared_results, users)

Hold One Out Correlation for User 22 -0.027329898660652777
    Hold One Out Correlation for User 23 0.767339462395251
    Hold One Out Correlation for User 29 0.6685313672375064
    Hold One Out Correlation for User 31 0.5444956733160823
    Hold One Out Correlation for User 33 0.06622244675465866
    Hold One Out Correlation for User 34 0.3973346805279519
    Hold One Out Correlation for User 36 -0.245969087945875
    Hold One Out Correlation for User 55 0.8167435099741234
    Hold One Out Correlation for User 58 -0.23335528856403523
```

MDS for Shared Trials

```
In [113]: 1 all_shared_defs = display_sense_definitions(results, 'shared')
In [114]: 1 plot_individual_mds(results, 'foot_n', 'shared', users, db, all_shared_
Out[114]:
```

Sense Type Definition

212 foot_n_01 foot_n the part of the leg of a human being below the ankle joint

213 foot_n_02 foot_n a linear unit of length equal to 12 inches or a third of a yard

214 foot_n_03 foot_n the lower part of anything

In [115]: 1 plot_individual_mds(results, 'table_n', 'shared', users, db, all_shared

Out[115]:

Definition	іуре	Sense	
a set of data arranged in rows and columns	table_n	table_n_01	215
a piece of furniture having a smooth flat top that is usually supported by one or more vertical legs	table_n	table_n_02	216
a piece of furniture with tableware for a meal laid out on it	table_n	table_n_03	217

In [116]: 1 plot_individual_mds(results, 'plane_n', 'shared', users, db, all_shared

Out[116]:

	Sense	Туре	Definition
218	airplane_n_01	plane_n	an aircraft that has a fixed wing and is powered by propellers or jets
219	plane_n_02	plane_n	(mathematics) an unbounded two-dimensional shape
220	plane_n_03	plane_n	a level of existence or development

In [117]: 1 plot_individual_mds(results, 'degree_n', 'shared', users, db, all_share

Out[117]:

	Sense	Туре	Definition
221	academic_degree_n_01	degree_n	an award conferred by a college or university signifying that the recipient has satisfactorily completed a course of study
222	degree_n_01	degree_n	a position on a scale of intensity or amount or quality
223	degree_n_02	degree_n	a specific identifiable position in a continuum or series or especially in a process

In [118]: 1 plot_individual_mds(results, 'right_n', 'shared', users, db, all_shared

Out[118]:

	Sense	Туре	Definition
224	right_n_01	right_n	an abstract idea of that which is due to a person or governmental body by law or tradition or nature; ; - Eleanor Roosevelt
225	right_n_02	right_n	location near or direction toward the right side; i.e. the side to the south when a person or object faces east
226	right_n_04	right_n	those who support political or social or economic conservatism; those who believe that things are better left unchanged

In [119]: 1 plot_individual_mds(results, 'model_n', 'shared', users, db, all_shared

Out[119]:

Definition	Туре	Sense	
a hypothetical description of a complex entity or process	model_n	model_n_01	227
a type of produc	model_n	model_n_02	228
a person who poses for a photographer or painter or sculpto	model_n	model_n_03	229

Consistency Metrics

```
In [36]: 1    user_time_word_changes = get_time_and_changes(results, user_df)
2    consistency = pd.DataFrame({'Group Consistency': shared_corrs, 'Self Co}
3    corrs = user_time_word_changes.merge(consistency, on = user_time_word_c
4    corrs['Correlation with SN'] = my_correlations(participants, trials, re
5    corrs
```

Out[36]:

	userID	timeTaken	changes	Group Consistency	Self Consistency	Correlation with SN
0	-M3pVTw9ili6muvdZKg4	546.814	5	-0.027330	0.459407	0.328158
1	-M3qqejnlf4v_ja8eE7n	526.296	3	0.767339	0.734160	0.782120
2	-M3rSxyqKh87n8lxCNFz	597.604	14	0.668531	0.655462	0.571734
3	-M3tou9y2NuJSM2wEped	712.426	10	0.544496	0.850841	0.585118
4	- M3wWKZuvM6607THGsj3	308.230	3	0.066222	-0.210084	0.230193
5	-M3xbEdg3XIZca4MA7SZ	924.305	9	0.397335	0.342105	0.731799
6	-M40VLLla6hlhfPLwyWk	921.908	0	-0.245969	0.647059	-0.115632
7	- M4RJU1sPJwCqxkN93qZ	706.181	11	0.816744	0.216253	0.790685
8	-M4WPYQVe_g2Cz7JGkvf	380.887	3	-0.233355	0.367647	-0.276231

timeTaken: Duration of experiment for each user (in seconds)

Changes: Number of times a subject changed the existing layout (benefit of grid layout over similarity judgements)

Group Consistency: Hold one out correlation on shared trials (taken from above results). Spearman rank correlation with subject's matrix and the average of all the other subjects' matrices.

Self Consistency: Spearman rank correlation over the two repeated words a participant received

Correlation with SN: The leftmost column in the dataframe is the Spearman rank correlation with my results, which would be the closet thing we have to ground truth data. For all the shared words, my correlation with the average was 1 for plane.n, degree.n, foot.n, and table.n, and 0.5 for right.n and model.n.

We replicate the self and group consistency metrics with matrices initialized for 100 random subjects.


```
In [50]: 1 random_group = [random_vs_all(shared_results) for _ in range(100)]
2 plot_consistency_hist(random_group, corrs['Group Consistency'],
3 "Group Consistency of Subjects vs. Random Matrice"
```

