Kinerja Model Regresi Linear dan Polinomial dalam Memprediksi Konsumsi Daya Rumah Tangga

Disusun oleh

- Willy Jonathan Arsyad
- Agil Mughni
- Alfi Zamriza
- T.M Fadlul Ihsan
- M. Arkan Haris

Sumber dan Deskripsi Dataset

Sumber Data

Dataset "Individual household electric power consumption" dari UCI Machine Learning Repository.

Mencatat konsumsi listrik rumah tangga di Prancis selama Desember 2006 hingga November 2010.

Interval Pengumpulan

Data dikumpulkan setiap satu menit selama periode empat tahun.

Total data mencapai lebih dari 2 juta baris observasi.

Variabel Penting dalam Dataset

Nama Variabel	Deskripsi
Date	Tanggal pencatatan (format: dd/mm/yyyy)
Time	Waktu pencatatan (format: hh:mm:ss)
Global_active_power	Konsumsi daya aktif global (kilowatt) - target regresi
Global_reactive_power	Konsumsi daya reaktif global (kilowatt)
Voltage	Tegangan (volt)
Global_intensity	Intensitas arus global (ampere)

Statistika Deskriptif Dataset

Konsumsi Daya Aktif

Rata-rata: 1.090 kW

Minimum: 0.076 kW

Maksimum: 11.122 kW

Tegangan Listrik

Rata-rata: 237.837 V

Minimum: 1.000 V

Maksimum: 254.150 V

Intensitas Arus

Rata-rata: 4.582 A

Minimum: 0.200 A

Maksimum: 48.400 A

Pra-pemrosesan Data

Penggabungan Kolom Date dan Time

Menggabungkan kolom Date dan Time menjadi satu kolom DateTime.

Memudahkan analisis berbasis waktu (harian, mingguan, bulanan).

Konversi Tipe Data

Mengubah tipe data kolom menjadi numerik dengan errors='coerce'.

Nilai tidak valid diubah menjadi NaN untuk analisis yang akurat.

Penanganan Missing Values

Terdapat 25.979 nilai NaN pada setiap kolom numerik.

Nilai ini perlu ditangani sebelum pemodelan dilakukan.

Perubahan Nama Kolom dan Ukuran Dataset

Perubahan Nama Kolom

Ukuran Dataset

Sub_metering_1 menjadi Sub_metering_kitchen untuk area dapur.

Sub_metering_2 menjadi Sub_metering_laundry untuk ruang cuci. Total 2.075.259 baris dan 8 kolom setelah prapemrosesan.

Dataset besar memungkinkan analisis pola konsumsi yang detail.

Pengecekan Duplikat

Memeriksa dan menangani data duplikat untuk menjaga kualitas data.

Memastikan setiap observasi unik dan valid untuk analisis.

Electricity Consumption Patterns

Analisis Time Series Konsumsi Daya

Pola Jangka Panjang

Menganalisis konsumsi daya rumah tangga seiring waktu dalam bentuk time series.

Identifikasi Tren

Memeriksa pola atau tren konsumsi daya yang terjadi sepanjang periode empat tahun.

3 Deteksi Anomali

Menemukan penyimpangan atau lonjakan konsumsi daya yang tidak biasa.

Analisis Musiman

Mengidentifikasi pola musiman dalam konsumsi daya (bulanan, tahunan).

Pola Harian Konsumsi Daya

Analisis pola konsumsi daya berdasarkan waktu dalam sehari menunjukkan peningkatan pada pagi hari, puncak di sore/malam hari, dan penurunan di tengah malam.

Perbandingan Sub-metering Area Rumah

Dapur

Penggunaan energi untuk peralatan dapur seperti kompor dan kulkas.

Ruang Cuci

Konsumsi energi untuk mesin cuci dan pengering.

Pemanas Air/AC

Energi untuk sistem pemanas air dan pendingin ruangan.

Area Lainnya

Konsumsi daya untuk penerangan dan peralatan lainnya.

Korelasi Antar Variabel Konsumsi Daya

Korelasi Kuat

Global_active_power dan Global_intensity memiliki korelasi sangat kuat (1.00).

Menunjukkan hubungan linear yang hampir sempurna antara kedua variabel.

Korelasi Sedang

Sub_metering_3 berkorelasi cukup kuat dengan Global_active_power (0.64).

Pemanas air/AC berkontribusi signifikan terhadap konsumsi daya total.

Korelasi Negatif

Voltage dan Global_reactive_power memiliki korelasi negatif (-0.66).

Peningkatan tegangan cenderung menurunkan daya reaktif.

Perbandingan Hari Kerja vs Akhir Pekan

Pola Hari Kerja

Konsumsi daya pada hari kerja (Senin-Jumat) menunjukkan pola yang lebih teratur.

Terdapat puncak di pagi hari saat persiapan berangkat kerja.

Puncak tertinggi terjadi di malam hari saat semua anggota keluarga di rumah.

Pola Akhir Pekan

Konsumsi daya pada akhir pekan (Sabtu-Minggu) lebih merata sepanjang hari.

Tidak ada puncak pagi yang signifikan seperti pada hari kerja.

Konsumsi total cenderung lebih tinggi karena penghuni lebih banyak di rumah.

Linear Regression Model implementation workflow

Implementasi Model Regresi Linear

Persiapan Data

茼

今

96

(+;)

Membuat fitur waktu tambahan: jam, hari dalam minggu, dan bulan.

Memisahkan fitur (X) dan target (Global_active_power).

Pembagian Dataset

80% data untuk training dan 20% untuk testing.

Memastikan model diuji pada data yang belum pernah dilihat.

Normalisasi Fitur

Menggunakan StandardScaler untuk standarisasi data fitur.

Mengubah data agar memiliki rata-rata 0 dan standar deviasi 1.

Pelatihan Model

Membangun model LinearRegression dari scikit-learn.

Melatih model pada data training yang telah distandarisasi.

Implementasi Model Regresi Polinomial

Evaluasi dan Perbandingan Model

0.9980

R² Linear

Koefisien determinasi model regresi linear.

0.9988

R² Polinomial

Koefisien determinasi model regresi polinomial.

0.0022

MSE Linear

Mean Squared Error model linear.

0.0013

MSE Polinomial

Mean Squared Error model polinomial.

Linear vs. polynomial regression

Linear vs Fine Regression

www.exunomkiingvifity.con

Kesimpulan dan Fitur Penting

