Mean Shift clustering algorithm

Lorenzo Agnolucci

Università degli Studi di Firenze Dipartimento di Ingegneria dell'Informazione

Firenze, 27 Aprile 2020

Outline

- Introduction
- OpenMP
- 3 CUDA
 - Naive version
 - Tiling version
- Experimental results
 - OpenMP
 - CUDA
 - Global comparison
- Conclusions

Introduction

- Mean Shift is a non-parametric clustering algorithm
- It is based on Kernel Density estimation
- The only parameter is the bandwidth
- O(n²) computational cost
- Common application in computer vision: image segmentation
- It is embarassingly parallel

Algorithm

- At each step a kernel function is applied to each point to make it shift towards the local maxima
- Most used kernel: Gaussian kernel

$$K(x) = e^{-\frac{x^2}{2\sigma^2}} \tag{1}$$

New position x' where x has to be shifted is computed as:

$$x' = \frac{\sum_{x_i \in N(x)} K(dist(x, x_i)) x_i}{\sum_{x_i \in N(x)} K(dist(x, x_i))}$$
(2)

N(x) is the neighborhood of x, a set of points for which $K(x_i) \neq 0$

 Algorithm stops when all points have stopped shifting, that is they have reached the local maxima

Sequential implementation

Algorithm 1 Mean shift core

```
function MEANSHIFT(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
for each point p in shiftedPoints do
p ← SHIFTPOINT(p, originalPoints)
```

Algorithm 2 Shift a single point

OpenMP implementation

Algorithm 3 OpenMP Mean shift

core

```
function OPENMPMEANSHIFT(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
#pragma parallel for schedule(static)
for each point p in shiftedPoints do
p ← SHIFTPOINT(p, originalPoints)
```

Algorithm 4 Shift a single point

```
function SHIFTPOINT(p, originalPoints) shiftedP \leftarrow 0 weight \leftarrow 0 for each point x in originalPoints do dist \leftarrow dist(p, x) w \leftarrow GKernel(dist, BW) shiftedP \leftarrow shiftedP + w * x weight \leftarrow weight + w return shiftedP (weight
```

- just a pragma directive
- static scheduling: loop divided statically in chunks of equal size

Exploiting GPUs: CUDA

Taking advantage of GPUs:

- One thread for each point to shift
- Coalescing of accesses to memory:
 - Points stored as a Structure of Arrays

$$[x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n]$$
 (3)

Access to the array in the form of:

$$blockDim.x * blockldx.x + threadldx.x$$
 (4)

Naive CUDA implementation

Algorithm 6 CUDA Naive version Kernel

Algorithm 5 CUDA Naive version Mean Shift core

```
function NAIVECUDAMS(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
NAIVEKERNEL(shiftedPoints. originalPoints)
```

Tiling CUDA

A further optimization is possible:

- Each thread reads O(n) points from global memory to compute the shift
- Shared Memory can be exploited with the Tiling pattern
- TILE_WIDTH = BLOCK_DIM
- O(n) accesses reduced to O(n/TILE_WIDTH)

Tiling CUDA implementation

Algorithm 8 CUDA Tiling version Kernel

```
function TILINGKERNEL(shiftedPts, originalPts)
    tx \leftarrow threadIdx x
    bx \leftarrow blockldx.x
    idx \leftarrow bx * blockDim.x + tx
    tile ← SharedMemArray[TILE WIDTH]
    shiftedP \leftarrow 0
    weight \leftarrow 0
    for tileIter < numTiles do
        tileldx \leftarrow tilelter * TILE WIDTH + tx
       if tileldx < |originalPts| then
           tile[tx] \leftarrow originalPts[tileIdx]
       else
           tile[tx] \leftarrow nullPoint
        synchthreads()
                                                                  if idx < |originalPts| then
           p \leftarrow shiftedPts[idx]
           for i with i < TILE WIDTH do
               x \leftarrow tile[i]
               if x! = nullPoint then
                   dist \leftarrow dist(p, x)
                   w \leftarrow GKernel(dist, BW)
                   shiftedP \leftarrow shiftedP + w * x
                   weight \leftarrow weight + w
        synchthreads()
                                                              ▶ End of computing
    if idx < |originalPts| then
```

Algorithm 7 CUDA Tiling version Mean Shift core

function TILINGCUDAMS(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
TILINGKERNEL(shiftedPoints, originalPoints)

shiftedPts[idx] ← shiftedP/weight

Experimental results

Performances compared with the speedup metric, computed as:

$$S = \frac{t_{S}}{t_{P}} \tag{5}$$

- Tests executed on a machine with:
 - OS: Ubuntu 18.04 LTS
 - CPU: Intel Core i7-8565U 1.8GHz up to 4.6GHz with Turbo Boost, 4 cores/8 threads
 - RAM: 16 GB DDR4
 - GPU: NVidia GeForce MX250 2GB with CUDA 10.1
- Each time is the average of 5 experiments for the sequential and OpenMP versions and of 15 experiments for both CUDA implementations

Experimental results (cont.)

- The implementations have been evaluated on gaussian distributions composed by respectively 100, 1000, 10000, 100000 and 250000 3D points
- bandwidth set to 2
- MAX_ITERATIONS constant set to 10, which has been empirically estimated to be enough to make all points converge to the local maxima

OpenMP: Increasing threads

Number of threads gradually increased for each dataset

Not tested on 250k points dataset: too long execution time

Tiling CUDA: TILE_WIDTH

Execution time for 10000 points for the CUDA tiling implementation varying *TILE_WIDTH*

TILE_WIDTH	CUDA Tiling
16	0.334405 s
32	0.176171 s
64	0.171354 s
128	0.172666 s
256	0.173306 s
512	0.175091 s
1024	0.18845 s

Naive vs Tiling CUDA

Dim	CUDA Naive	Naive CUDA Tiling		
100	0.000401 s	0.000437 s	1.09	
1000	0.003044 s		1.11	
10000	0.171354 s		1.12	
100000	15.79 s	18.29 s	1.16	
250000	100.38 s	121.10 s	1.20	

Tiling CUDA speedup

Dim	Sequential	CUDA Tiling	Speedup
100	0.005384 s	0.000401 s	13.43
1000	0.475485 s	0.003044 s	156.21
10000	49.29 s	49.29 s 0.171354 s	287.64
100000	4560.37 s	15.79 s	288.80
250000	† 27768 s	100.38 s	† 276.61

• † time has been estimated with a quadratic regression (due to the $O(n^2)$ computational cost)

Global comparison

Global comparison between sequential, OpenMP and Tiling CUDA best results:

- Greatest speedups with CUDA, at the expense of a more complicated implementation
- OpenMP lets to reach noticeable speedups with a simple implementation (just a directive)

Dim	Sequential	OpenMP	OpenMP Speedup	CUDA Tiling	CUDA Speedup
100	0.005384 s	0.001473 s	3.66	0.000401 s	13.43
1000	0.475485 s	0.140161 s	3.39	0.003044 s	156.21
10000	49.29 s	15.25 s	3.24	0.171354 s	287.64
100000	4560.37 s	1403.78 s	3.25	15.79 s	288.80
250000	† 27768 s	† 8720 s	† 3.18	100.38 s	† 276.61

Table: † times have been estimated with a quadratic regression

Conclusions

- The embarassingly parallel structure of Mean Shift makes it suitable for parallel implementations
- OpenMP has an excellent speedup and development cost ratio
- CUDA makes Mean Shift applicable to datasets intractable with a CPU