Permit Number 22046

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Pre-Startup of Thermal Oxidizer and Backup Flare System (EPNs H-001 & FR-001) (Project No. 347018)

Air Contaminants Data

Emission Point No.	Source Name (2) Air Contaminant Name (3)	Emission	Rates	
(1)			lbs/hour	TPY (4)
		voc	2.62	11.47
		HCI	0.03	0.15
156-FUG	Process Fugitives	H ₂ S	0.01	0.03
	(5)	Na ₂ S	0.03	0.12
		S	0.01	0.01
		Cl ₂	0.03	0.11
		S ₂ Cl ₂	0.06	0.25
		voc	0.11	0.37
		NO _x	0.83	3.65
FI-06	Thermal Oxidizer (7)	со	0.70	3.07
		SO ₂	0.01	0.02
		РМ	0.06	0.28
		PM ₁₀	0.06	0.28
		PM _{2.5}	0.06	0.28
		voc	0.03	0.11
		H ₂ S	0.04	0.01
		SO ₂	67.10	2.23
FI-07	Thermal Oxidizer (8)	NOx	0.68	2.98
		со	0.46	2.03

1			
	PM	0.03	0.12
	PM ₁₀	0.03	0.12
	PM _{2.5}	0.03	0.12
Acid Gas Absorber	VOC	0.41	0.01
	H ₂ S	0.01	0.01
D-31 Scrubber	VOC	0.02	0.02
	H ₂ S	0.02	0.02
	NaHS	0.01	0.01
	NA ₂ S	0.01	0.01
	NA ₂ CO ₃	0.01	0.01
Storage Tank	voc	0.01	0.01
	H ₂ S	0.01	0.01
Thermal Oxidizer	NO _x	1.52	6.66
	со	1.28	5.59
	VOC	0.62	2.98
	HRVOC	0.47	2.06
	SO ₂	2.78	13.36
	H ₂ S	0.02	0.02
	HCI	0.85	3.81
	РМ	0.12	0.51
	PM ₁₀	0.12	0.51
	PM _{2.5}	0.12	0.51
Process Flare (6)	NO _x	1.42	1.26
	со	7.06	5.70
	voc	10.86	3.96
	(9) D-31 Scrubber Storage Tank Thermal Oxidizer	PM ₁₀ PM _{2.5} Acid Gas Absorber (9) VOC H ₂ S D-31 Scrubber VOC H ₂ S NaHS NA ₂ S NA ₂ CO ₃ Storage Tank VOC H ₂ S Thermal Oxidizer NO _x CO VOC HRVOC SO ₂ H ₂ S HCI PM PM ₁₀ PM _{2.5} Process Flare (6) NO _x CO NO _x CO NO _x CO PM _{2.5} Process Flare (6) NO _x CO NO _x	PM₁0 0.03 PM2.5 0.03 PM2.5 0.03 PM2.5 0.03 PM2.5 0.041 H₂S 0.01 PM₂S 0.02 PM₃S 0.02 NA₁S 0.01 NA₂S 0.01 NA₂CO₃ 0.01 NA₂CO₃ 0.01 P1

		HRVOC	9.33	3.39
		SO ₂	2.79	1.02
		H ₂ S	0.03	0.01
		HCI	0.65	1.02
B-SH1	Start-up Heater	NO _x	0.78	0.05
		СО	0.66	0.04
		voc	0.04	0.01
		SO ₂	0.01	0.01
		PM	0.06	0.01
		PM ₁₀	0.06	0.01
		PM _{2.5}	0.06	0.01
CT-13	Cooling Tower	voc	0.73	1.19
		PM	0.09	0.31
		PM ₁₀	0.05	0.23
		PM _{2.5}	0.01	0.01
J-4 and J-5	Filter Feed Tanks	РМ	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
J-2	Filter Feed Tank	РМ	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
J-10	Filter Feed Tank	PM	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
OS-2	Alkylated Benzene Tank	voc	0.15	0.03

OS-3	Alkylated Benzene Tank	VOC	0.15	0.03
West P&F	Plate and Frame Filter	VOC	0.18	Please see Plate and Frame Filter Cap
P&F-3	Plate and Frame Filter	VOC	0.21	Please see Plate and Frame Filter Cap
	Plate and Frame Filter Cap	VOC		0.47
S-03	Spray Column Absorber	voc	1.38	0.36
	7 10001001	H ₂ S	0.01	0.01
S-23	Water Spray Column	HCI	0.03	0.03
S-25B	Venturi Scrubber	HCI	0.01	0.01
		SO ₂	0.01	0.01
		Cl ₂	0.01	0.01
S-51	Absorber	H ₂ S	0.02	0.01
		SO ₂	0.11	0.02
156-ALKLR	Loading	VOC	0.45	0.01
156-SAMPLE	Loading	VOC	0.20	0.01
156-WOLR	Loading	VOC	0.06	0.01
156-CT13-1	Cooling tower tote	VOC	0.26	0.01
156-CT13-3	Cooling tower tote	H ₂ SO ₄	0.01	0.01
156-CT13-2	Cooling tower tote	NaOCI	0.30	0.01
156-WO	Tank	VOC	0.45	0.01
156-MSS	Planned Maintenance	VOC	3.73	0.09

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

HRVOC - highly reactive volatile organic compounds as defined in 30 TAC § 115.10

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide HCI - hydrogen chloride

S - sulfur Cl_2 - chlorine Na_2S - sodium

 Na_2S - sodium sulfide S_2Cl_2 - sulfur chloride H_2S - hydrogen sulfide NaOCl - sodium hypochlorite

H₂SO₄ - sulfuric acid

NaHS - sodium hydrosulfide Na₂S - sodium sulfide Na₂CO3 - sodium carbonate

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Flare designated as EPN 13 is authorized to operate as back-up to the Fume Incinerator designated as EPN SC-FI-10 up to 720 hours per year.
- (7) Emissions from the CS Vent shall route to Incinerator FI-06 (EPN FI-06) with no less than 99.9% control of VOC.
- (8) Emissions from Storage Tank AG-12, Vessels BL-4 and BL-5 shall route to Incinerator FI-07 (EPN FI-07) with no less than 99.9% control of VOC and/or H₂S.
- (9) Emissions from Storage Tanks SS-32, SS-33, SS-34, RA-2 shall route to Scrubber S-60 (EPN S-60) with no less than 99% removal of H₂S.

Phase I – Post Start-up of Thermal Oxidizer and Backup Flare System (EPNs H-001 & FR-001) (10)

Emission Point No.	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
(1)	Source Name (2)	All Contaminant Name (3)	lbs/hour	TPY (4)
		voc	2.62	11.47
		HCI	0.03	0.15
		H ₂ S	0.01	0.03
156-FUG	Process Fugitives (5)	Na ₂ S	0.03	0.12
		S	0.01	0.01
		Cl ₂	0.03	0.11
		S ₂ Cl ₂	0.06	0.25
		voc	0.26	1.04
	Incinerator (7)	NO _x	1.14	5.07
		со	3.15	14.26
11.001		РМ	0.28	1.24
H-001		PM ₁₀	0.28	1.24
		PM _{2.5}	0.28	1.24
		SO ₂	1.97	3.11
		H ₂ S	<0.01	<0.01
		voc	1.84	0.45
		NO _x	8.04	2.59
FR-001	Backup Flare (7) (8)	со	68.89	22.18
		SO ₂	2.00	0.27
		H ₂ S	<0.01	<0.01
FLIC	Eusitives (E) (O)	voc	0.45	1.98
FUG	Fugitives (5) (9)	H ₂ S	<0.01	<0.01

AG-5	Storage Tank	VOC	0.01	0.01
		H₂S	0.01	0.01
SC-FI-10	Thermal Oxidizer	NO _x	1.52	6.66
		со	1.28	5.59
		VOC	0.62	2.98
		HRVOC	0.47	2.06
		SO ₂	2.78	13.36
		H ₂ S	0.02	0.02
		HCI	0.85	3.81
		PM	0.12	0.51
		PM ₁₀	0.12	0.51
		PM _{2.5}	0.12	0.51
13	Process Flare (6)	NO _x	1.42	1.26
		со	7.06	5.70
		VOC	10.86	3.96
		HRVOC	9.33	3.39
		SO ₂	2.79	1.02
		H₂S	0.03	0.01
		HCI	0.65	1.02

B-SH1	Start-up Heater	NOx	0.78	0.05
	Start up i leater			
		СО	0.66	0.04
		VOC	0.04	0.01
		SO ₂	0.01	0.01
		PM	0.06	0.01
		PM ₁₀	0.06	0.01
		PM _{2.5}	0.06	0.01
CT-13	Cooling Tower	VOC	0.73	1.19
		PM	0.09	0.31
		PM ₁₀	0.05	0.23
		PM _{2.5}	0.01	0.01
J-4 and J-5	Filter Feed Tanks	РМ	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
J-2	Filter Feed Tank	PM	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
J-10	Filter Feed Tank	PM	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
OS-2	Alkylated Benzene Tank	voc	0.15	0.03
OS-3	Alkylated Benzene Tank	voc	0.15	0.03
West P&F	Plate and Frame Filter	VOC	0.18	Please see Plate and Frame Filter Cap

P&F-3	Plate and Frame Filter	VOC	0.21	Please see Plate and Frame Filter Cap
	Plate and Frame Filter Cap	VOC		0.47
S-03	Spray Column Absorber	voc	1.38	0.36
		H ₂ S	0.01	0.01
S-23	Water Spray Column	HCI	0.03	0.03
S-25B	Venturi Scrubber	HCI	0.01	0.01
		SO ₂	0.01	0.01
		Cl ₂	0.01	0.01
S-51	Absorber	H ₂ S	0.02	0.01
		SO ₂	0.11	0.02
156-ALKLR	Loading	voc	0.45	0.01
156-SAMPLE	Loading	voc	0.20	0.01
156-WOLR	Loading	voc	0.06	0.01
156-CT13-1	Cooling tower tote	voc	0.26	0.01
156-CT13-3	Cooling tower tote	H ₂ SO ₄	0.01	0.01
156-CT13-2	Cooling tower tote	NaOCI	0.30	0.01
156-WO	Tank	voc	0.45	0.01
156-MSS	Planned Maintenance	VOC	3.73	0.09

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

HRVOC - highly reactive volatile organic compounds as defined in 30 TAC § 115.10

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

⁽²⁾ Specific point source name. For fugitive sources, use area name or fugitive source name.

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

 PM_{10} - total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide HCI - hydrogen chloride

 $\begin{array}{ccc} S & & - \mbox{ sulfur} \\ Cl_2 & & - \mbox{ chlorine} \end{array}$

 $\begin{array}{lll} \text{Na}_2 S & - \text{ sodium sulfide} \\ \text{S}_2 \text{Cl}_2 & - \text{ sulfur chloride} \\ \text{H}_2 S & - \text{ hydrogen sulfide} \\ \text{NaOCl} & - \text{ sodium hypochlorite} \\ \end{array}$

 H_2SO_4 - sulfuric acid Na_2S - sodium sulfide

(4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

- (6) Flare designated as EPN 13 is authorized to operate as back-up to the Fume Incinerator designated as EPN SC-FI-10 up to 720 hours per year.
- (7) The Incinerator (EPN H-001) and Backup Flare System (EPN FR-001) shall control the CS Vent, Vessels BL-4, BL-5, AG-12, and Storage Tank D-31 with 99.9% DRE for the Incinerator and 98% DRE for the Backup Flare System.
- (8) The Backup Flare (EPN FR-001) shall operate as a back-up to the Incinerator (EPN H-001) up to 720 hours per year.
- (9) Emissions are for Project No. 347018 Amendment only. The emissions are in addition to those authorized for EPN 156-FUG
- (10) Phase I emission rates shall apply at the start-up of Thermal Oxidizer H-001 and shutdown of Thermal Oxidizers FI-06 and FI-07, in accordance with Special Condition No. 26. The permit holder shall submit a permit application to remove references to Pre-Construction limits within 180 days of start-up, Thermal Oxidizer H-001 start-up and Thermal Oxidizers FI-06 and FI-07 shutdown.

Phase II - Post Shutdown of Scrubber S-60 (EPN S-60) (10)

Emission Point No.	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
(1)	Source Name (2)	All Contaminant Name (3)	lbs/hour	TPY (4)
		voc	2.62	11.47
		HCI	0.03	0.15
		H ₂ S	0.01	0.03
156-FUG	Process Fugitives (5)	Na ₂ S	0.03	0.12
		S	0.01	0.01
		Cl ₂	0.03	0.11
		S ₂ Cl ₂	0.06	0.25
	Incinerator (7)	voc	0.29	1.04
		NO _x	1.14	5.07
		со	3.16	14.27
11.001		РМ	0.28	1.24
H-001		PM ₁₀	0.28	1.24
		PM _{2.5}	0.28	1.24
		SO ₂	6.02	3.52
		H ₂ S	<0.01	<0.01
		voc	2.39	0.46
		NO _x	8.04	2.59
FR-001	Backup Flare (7) (8)	со	68.91	22.20
		SO ₂	5.97	0.30
		H ₂ S	0.01	<0.01
FLIC	Fugitives (F) (0)	voc	0.45	1.98
FUG	Fugitives (5) (9)	H ₂ S	<0.01	<0.01

SC-FI-10	Thermal Oxidizer	NO _x	1.52	6.66
		СО	1.28	5.59
		VOC	0.62	2.98
		HRVOC	0.47	2.06
		SO ₂	2.78	13.36
		H ₂ S	0.02	0.02
		HCI	0.85	3.81
		РМ	0.12	0.51
		PM ₁₀	0.12	0.51
		PM _{2.5}	0.12	0.51
13	Process Flare (6)	NO _x	1.42	1.26
		со	7.06	5.70
		VOC	10.86	3.96
		HRVOC	9.33	3.39
		SO ₂	2.79	1.02
		H ₂ S	0.03	0.01
		HCI	0.65	1.02
B-SH1	Start-up Heater	NO _x	0.78	0.05
		со	0.66	0.04
		VOC	0.04	0.01
		SO ₂	0.01	0.01
		РМ	0.06	0.01
		PM ₁₀	0.06	0.01
		PM _{2.5}	0.06	0.01
CT-13	Cooling Tower	VOC	0.73	1.19

•				
		PM	0.09	0.31
		PM ₁₀	0.05	0.23
		PM _{2.5}	0.01	0.01
J-4 and J-5	Filter Feed Tanks	РМ	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
J-2	Filter Feed Tank	PM	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
J-10	Filter Feed Tank	РМ	0.01	0.01
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
OS-2	Alkylated Benzene Tank	voc	0.15	0.03
OS-3	Alkylated Benzene Tank	VOC	0.15	0.03
West P&F	Plate and Frame Filter	voc	0.18	Please see Plate and Frame Filter Cap
P&F-3	Plate and Frame Filter	voc	0.21	Please see Plate and Frame Filter Cap
	Plate and Frame Filter Cap	VOC		0.47
S-03	Spray Column Absorber	voc	1.38	0.36
	7.0301001	H ₂ S	0.01	0.01
S-23	Water Spray Column	HCI	0.03	0.03
S-25B	Venturi Scrubber	HCI	0.01	0.01
		SO ₂	0.01	0.01

		Cl ₂	0.01	0.01
S-51	Absorber	H ₂ S	0.02	0.01
		SO ₂	0.11	0.02
156-ALKLR	Loading	voc	0.45	0.01
156-SAMPLE	Loading	VOC	0.20	0.01
156-WOLR	Loading	VOC	0.06	0.01
156-CT13-1	Cooling tower tote	VOC	0.26	0.01
156-CT13-3	Cooling tower tote	H ₂ SO ₄	0.01	0.01
156-CT13-2	Cooling tower tote	NaOCI	0.30	0.01
156-WO	Tank	VOC	0.45	0.01
156-MSS	Planned Maintenance	VOC	3.73	0.09

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

HRVOC - highly reactive volatile organic compounds as defined in 30 TAC § 115.10

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide HCI - hydrogen chloride

 $\begin{array}{ccc} S & & - \mbox{ sulfur} \\ Cl_2 & & - \mbox{ chlorine} \end{array}$

 $\begin{array}{lll} \text{Na}_2 S & - \text{ sodium sulfide} \\ \text{S}_2 \text{Cl}_2 & - \text{ sulfur chloride} \\ \text{H}_2 S & - \text{ hydrogen sulfide} \\ \text{NaOCl} & - \text{ sodium hypochlorite} \\ \end{array}$

H₂SO₄ - sulfuric acid Na₂S - sodium sulfide

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Flare designated as EPN 13 is authorized to operate as back-up to the Fume Incinerator designated as EPN SC-FI-10 up to 720 hours per year.
- (7) The Incinerator (EPN H-001) and Backup Flare System (EPN FR-001) shall control the CS Vent, Vessels BL-4, BL-5, AG-12, and Storage Tanks D-31, SS-32, SS-33, SS-34, RA-2, SA-6, AG-5, D-4, D-62, D-78, D-82.
- (8) The Backup Flare (EPN FR-001) shall operate as a back-up to the Incinerator (EPN H-001) up to 720 hours per year.
- (9) Emissions are for Project No. 347018 Amendment only. The emissions are in addition to those authorized for EPN 156-FUG
- (10) Phase II emission rates shall apply at the shutdown of Scrubber S-60, in accordance with Special Condition No. 35. The permit holder shall submit a permit application to remove references to Pre-Construction limits within 180 days of Scrubber S-60 shutdown.