Поиск ближайших соседей. Кластеризация.

Отметься на портале!

План занятия

- Деревья поиска (бинарные, AVL)
- KD-tree и ANN (Annoy, FAISS)
- Кластеризация (K-means, DBScan)
- Кластеризация на графах
- Union-Find

Двоичное дерево

Структура данных в которой каждый узел имеет не более 2х потомков

- у каждого узла есть ключ
- оба поддерева двоичные деревья поиска
- у всех узлов <u>левого</u> поддерева некоторого узла значения ключей <u>меньше</u>, чем значение ключа у самого узла
- у всех узлов <u>правого</u> поддерева некоторого узла значения ключей <u>не меньше</u>, чем значение ключа у самого узла

Используется для работы с упорядоченными множествами

Свойства:

- поиск элемента по ключу (O (log n))
- вставка (O (log n))
- удаление узла (O (log n))

Какие проблемы?

если добавление в новое дерево вырождено т.е. добавляются элементы по возрастанию то сложность поиска в таком дереве O(n)

Решается - балансировкой

Какие проблемы?

- если добавление в новое дерево вырождено т.е. добавляются элементы по возрастанию то сложность поиска в таком дереве O(n)

Решается - балансировкой (поворот)

A < x < B < y < C

AVL дерево

сбалансированное по высоте двоичное дерево поиска: для каждого узла высота поддеревьев различается не более чем на 1.

тутор по AVL

немного о красно-черных деревьях

AVL

There are 4 cases in all, choosing which one is made by seeing the direction of the first 2 nodes from the unbalanced node to the newly inserted node and matching them to the top most row.

Root is the initial parent before a rotation and Pivot is the child to take the roof's place.

Структура данных с разбиением пространства для упорядочивания точек в к-мерном пространстве.

Построение

- случайно выбираем признак
- считаем значение медианы и делим по ней

Поиск в диапазоне

- сравниваем медиану в узле и значение диапазона
- на основе сравнения выбираем поддеревья куда спускаться

Поиск соседей

- определяем потенциального соседа и смотрим расстояние до него
- запускаем из корня поиск по диапазону

Поиск приближенных соседей

LSH (Locality-sensitive hashing) - идея: подберем такое семейство хешфункций чтобы похожие объекты с бОльшей вероятностью попадали в один "бакет", а перебирать в "бакете" - дешевле.

MinHash, SimHash

https://habr.com/company/mailru/blog/338360/ - обзор методов ANN

Approximate Nearest Neighbors Oh Yeah

Идея:

<u>если точки близки в пространстве, то</u> вероятно они будут близки в дереве

- берем две точки
- разделяем гиперплоскостью
- строим дерево
 (узлы гиперплоскость, листья точки)
- строим так несколько деревьев

Approximate Nearest Neighbors Oh Yeah

Поиск

- набираем потенциальных соседей из узлов спускаясь по М деревьям (исследуя "обе стороны сплита")
 - спустились в узел взяли всех как кандидатов
 - пошли в соседний взяли и его кандидатов
- получили небольшое подмножество элементов в котором уже не так дорого считать расстояние до всех
- отсортировали по расстоянию и вернули топ_К ближайших

Есть обучающая выборка x1, x2, ..., xn.
Требуется расставить метки y1, .., yn таким образом, чтобы похожие друг на друга объекты имели одинаковую метку, а непохожие - разную.
Т.е. необходимо разбить объекты на несколько групп.

Метрики.

Среднее расстояние внутри кластера.

$$\frac{\sum_{i < j} [y_i = y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]} \to \min$$

Среднее расстояние между кластерами.

$$\frac{\sum_{i < j} [y_i \neq y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i \neq y_j]} \to \max$$

- разная форма кластеров
- наличие иерархии в данных
- разный размер кластеров

- основная задача
 (кластеризация новостей)
- вспомогательная задача (сегментация аудитории)

универсального алгоритма кластеризации нет

Метод К-средних

Выбираем число кластеров (К), случайно выбираем К точек

- считаем для каждого элемента расстояние до каждого центроида и относим его к ближайшему
- пересчитываем для каждого
 кластера центроид как средний элемент
- повторяем пока на итерации центроиды не останутся прежними

Метод К-средних

Недостатки:

- Попадает в локальный оптимум, а не глобальный. Лучше перезапускать несколько раз (или использовать умные инициализации наподобие k-means++).

- Нужно знать число кластеров заранее.

DBSCAN

плотностный алгоритм кластеризации

- плотность количество объектов внутри сферы заданного радиуса ерѕ
- core-объект (основной) плотность вокруг него больше min_pts
- граничный объект плотность меньше min_pts, но рядом есть core-объект
- шум ни core, ни граничный

тутор оригинальная статья

DBScan

- 1. Разделить точки на core (основные), пограничные и шумовые.
- 2. Отбросить шумовые точки.
- 3. Соединить основные точки, которые находятся на расстоянии ε фруг от вруга.
- 4. Каждую группу соединенных основных точек объединить в свой кластер.
- 5. Отнести пограничные точки к соответствующим им кластерам.

http://scikit-learn.org/stable/modules/clustering.html#dbscan

Оставьте обратную связь!!!

Q?

Почитать

- https://ru.coursera.org/lecture/algorithms-part1/guick-union-ZgecU
- https://www.geeksforgeeks.org/union-find-algorithm-set-2-union-by-rank/
 Про соседей
- https://habr.com/company/mailru/blog/338360/
- https://www.youtube.com/watch?v=UUm4MOyVTnE

Про кластеризацию

- <u>https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68</u>
- http://www.leonidzhukov.net/hse/2015/networks/papers/GraphClustering_Sch aeffer07.pdf