Outliers STAT Ship Group Project Final

February 6, 2024

1 Outliers STAT Ship Group Project Final

1.0.1 Import All Important Libraries

```
[64]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_absolute_error
      from sklearn.metrics import mean_squared_error
      from patsy import dmatrices
      from statsmodels.stats.outliers_influence import variance_inflation_factor
      import statsmodels.api as sm
      from bioinfokit import visuz
      from faker import Faker
      import warnings
      warnings.filterwarnings('ignore')
      from sklearn.cluster import KMeans
      import statsmodels.api as sm
      import pylab as py
      from sklearn.model_selection import cross_val_score, cross_val_predict
```

1.0.2 Importing Dataset and Defining Dataframes

```
[65]: shipset = pd.read_excel("RegressionDataset.xlsx")
     Exhibit 1
[66]: shipset.rename(columns={"Age at Sale": "Age_at_Sale"},inplace = True); shipset
[66]:
                                                  YearBuilt
           SaleDate
                                   Vessel Price
                                                             Age_at_Sale
                                                                            DWT
        2022-01-07
                                                                       8 170.2
      0
                          Lowlands Beilun
                                            73.0
                                                       1999
      1 2022-01-07
                                            45.0
                                                                      16 150.2
                                 CHS Moon
                                                       1991
      2 2022-01-07
                             Spring Brave
                                            62.0
                                                       1995
                                                                      12 151.1
      3 2022-01-07
                            Martha Verity
                                            60.0
                                                                      12 158.0
                                                       1995
      4 2022-01-07
                                  TMT TBN
                                                                      14 174.7
                                            61.3
                                                       1993
      5 2022-02-07
                              Pantelis SP
                                            83.0
                                                       1999
                                                                       8 169.9
      6 2022-02-07
                                   Amazon
                                            45.0
                                                       1990
                                                                      17 149.5
```

7	2022-03-07	Cape Kassos	100.0	2004	3	170.0
8	2022-03-07	Johnny K	65.0	1994	13	165.3
9	2022-03-07	Zorbas	70.0	1996	11	165.1
10	2022-03-07	Americana	33.0	1987	20	149.0
11	2022-03-07	Martha Verity	63.0	1995	12	158.0
	2022-03-07	Ullswater	43.0	1990	17	123.5
	2022-04-07	Formosabulk Brave	95.0	2001	6	170.1
	2022-04-07	Formosabulk Clement	95.0	2001	6	170.1
	2022-04-07	Nautical Dream	63.5	1994	13	151.4
	2022-04-07	Formosabulk Allstart	67.0	1995	12	150.4
17	2022-04-07	Arimathian	62.0	1994	13	149.8
18	2022-04-07	Boss	31.0	1985	22	139.8
19	2022-05-07	Zorbas II	86.0	1996	11	174.5
20	2022-05-07	Fertilia	50.5	1997	10	172.6
21	2022-05-07	Ingenious	64.2	1996	11	170.0
22	2022-06-07	Anangel Dawn	67.0	1994	13	149.3
23	2022-06-07	Orient Fortune	28.0	1984	23	161.4
24	2022-07-07	Great Moon	30.0	1984	23	146.0
25	2022-07-07	Gran Trader	105.0	2001	6	172.5
26	2022-08-07	Cape Brazil	22.0	1981	26	140.8
27	2022-09-07	Thalassini Kyra	133.0	2002	5	164.2
28	2022-10-07	Tiger Lily	90.0	1995	12	149.2
29	2022-10-07	Dong-A-Helios	47.0	1986	21	146.9
30	2022-10-07	Marine Hunter	45.0	1984	23	164.5
31	2022-10-07	Peace Glory	57.0	1984	23	166.1
32	2022-11-07	Sumihou	106.0	1996	11	171.1
33	2022-11-07	Gran Trader	152.0	2001	6	172.6
34	2022-11-07	Netadola	97.0	1993	14	149.5
35	2022-11-07	Nordstar	38.0	1983	24	150.7
36	2022-11-07	Captain Vangelis L	87.5	1992	15	148.2
37	2022-12-07	Voutakos	78.0	1987	20	188.3
38	2022-12-07	Sachuest	35.0	1986	21	98.4
39	2022-01-08	Sinfonia	83.7	1991	17	184.4
40	2022-01-08	Jin Tai	155.0	2004	4	173.9
41	2022-02-08	Dias	58.0	1988	20	135.0
42	2022-03-08	Desimi	83.0	1989	19	207.1
43	2022-03-08	Samos	25.0	1982	26	137.0
44	2022-03-08	Cape Sun	135.0	1999	9	171.7
	2022-04-08	Nightflight	158.0	2004	4	170.0
	2022-05-08	Cape Falcon	87.2	1993	15	161.5
47	2022-05-08	Castle Peak	82.0	1990	18	145.4

	Capesize	Month
0	4647	1
1	4647	1
2	4647	1
3	4647	1

4	4647	1
5	4878	2
6	4878	2
7	5245	3
8	5245	3
9	5245	3
10	5245	3
11	5245	3
12	5245	3
13	5752	4
14	5752	4
15	5752	4
16	5752	4
17	5752	4
18	5752	4
19	6201	5
20	6201	5
21	6201	5
22	6618	6
23	6618	6
24	6980	7
25	6980	7
26	7441	8
27	8181	9
28	8886	10
29	8886	10
30	8886	10
31	8886	10
32	9663	11
33	9663	11
34	9663	11
35	9663	11
36	9663	11
37	10299	12
38	10299	12
39	10526	1
40	10526	1
41	10844	2
42	11193	3
43	11193	3
44	11193	3
45	11614	4
46	12479	5
47	12479	5

1.0.3 Mean, STD, and other Metrics for the variables Exhibit 2 $\,$

```
[67]: shipset.describe()
                                                                      Capesize
[67]:
                 Price
                           YearBuilt
                                       Age_at_Sale
                                                            DWT
      count
              48.00000
                           48.000000
                                         48.000000
                                                      48.000000
                                                                     48.000000
              72.95625
                         1992.916667
                                         14.270833
                                                     158.935417
                                                                  7643.708333
      mean
              33.89537
                                                                  2499.309368
      std
                            6.330720
                                          6.330405
                                                      17.650984
      min
              22.00000
                         1981.000000
                                                      98.400000
                                                                  4647.000000
                                          3.000000
      25%
              46.50000
                         1987.750000
                                         10.750000
                                                     149.275000
                                                                  5245.000000
      50%
              66.00000
                         1994.000000
                                         13.000000
                                                     161.450000
                                                                   6799.000000
      75%
              88.12500
                         1996.250000
                                         20.000000
                                                     170.125000
                                                                  9663.000000
             158.00000
                         2004.000000
                                                     207.100000
                                                                  12479.000000
      max
                                         26.000000
                 Month
             48.000000
      count
              5.312500
      mean
      std
              3.543987
      min
              1.000000
      25%
              3.000000
      50%
              4.000000
      75%
              8.250000
             12.000000
      max
     1.0.4 Distributions of Variables in the dataset
```

```
Exhibit 3
```

```
[68]: sns.distplot(shipset['Price'], color = 'pink')
plt.title("Price Distribution")
```

[68]: Text(0.5, 1.0, 'Price Distribution')


```
Exhibit 4
[69]: sns.distplot(shipset['DWT'], color = 'blue')
plt.title("DWT Distribution")
```

[69]: Text(0.5, 1.0, 'DWT Distribution')


```
Exhibit 5
[70]: sns.distplot(shipset['Age_at_Sale'], color = 'black')
plt.title("Age at Sale Distribution")
```

[70]: Text(0.5, 1.0, 'Age at Sale Distribution')


```
Exhibit 6
[71]: sns.distplot(shipset['Capesize'], color = 'blue')
plt.title("Capesize Distribution")
```

[71]: Text(0.5, 1.0, 'Capesize Distribution')

1.0.5 Relations of Variables in the dataset

```
Exhibit 7
```

```
[72]: sns.regplot(x = shipset['Age_at_Sale'], y = shipset['Price'],marker = 'o', u 

color = 'grey')
plt.title('Age_at_Sale vs Price')
```

[72]: Text(0.5, 1.0, 'Age_at_Sale vs Price')

Exhibit 8 [73]: sns.regplot(x = shipset['Capesize'], y = shipset['Price'],marker = '*', color = 'orange') plt.title('Capesize vs Price')

[73]: Text(0.5, 1.0, 'Capesize vs Price')


```
Exhibit 9

[74]: sns.regplot(x = shipset['DWT'], y = shipset['Price'],marker = '*', color = 'red')

plt.title('DWT vs Price')
```

[74]: Text(0.5, 1.0, 'DWT vs Price')

Exhibit 10 [75]: sns.regplot(x = shipset['YearBuilt'], y = shipset['Price'],marker = '+', color_u -= 'black') plt.title('Yearbuilt vs Price')

[75]: Text(0.5, 1.0, 'Yearbuilt vs Price')

1.1 Bet Performer Identification

Exhibit 11: Using Euclidean Distance Performed on Excel by Arunabh Choudhury

```
[76]: BetPerformer = pd.read_excel("s.xlsx","final"); BetPerformer.sort_values(by = ∪ → ['Euclidean Distance'], ascending = True).head(1)
```

[76]: Vessel Price Euclidean Distance Manhattan Distance
0 Cape Sun 135.0 0.185856 0.253952

1.1.1 Correlation and VIF

Exhibit 12

```
[77]: shipset.corr()
```

```
[77]:
                      Price YearBuilt
                                       Age_at_Sale
                                                          DWT
                                                               Capesize
                                                                            Month
      Price
                   1.000000
                             0.808303
                                          -0.787491
                                                     0.514805
                                                              0.352348
                                                                        0.037932
      YearBuilt
                  0.808303
                              1.000000
                                          -0.998059 0.441826 -0.172633 -0.282364
      Age_at_Sale -0.787491 -0.998059
                                           1.000000 -0.431264 0.217360
                                                                         0.262640
     DWT
                   0.514805
                             0.441826
                                          -0.431264 1.000000 0.042766 -0.160653
      Capesize
                  0.352348
                                           0.217360 0.042766 1.000000
                                                                         0.427984
                            -0.172633
      Month
                  0.037932 -0.282364
                                           0.262640 -0.160653 0.427984
                                                                        1.000000
```

```
[78]: fig,ax = plt.subplots(figsize=(8,6)) sns.heatmap(shipset.corr(),vmin=-0.8, annot=True, cmap='Greys',ax=ax);
```



```
Exhibit 13
[79]: Y, X = dmatrices('Price ~ DWT+Age_at_Sale+Capesize', data=shipset,__
       →return_type='dataframe')
[80]: vif = pd.DataFrame()
      vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
      vif['variable'] = X.columns ; vif
[80]:
                VIF
                        variable
        131.944976
                       Intercept
      1
           1.258727
                             DWT
      2
           1.318729
                    Age_at_Sale
                        Capesize
      3
           1.075427
```

1.2 Linear Regression (without Standardization)

```
[81]: shipset_regression = shipset[["Age_at_Sale","DWT","Capesize","Price"]].copy();
       ⇒shipset regression results =
       [82]: X = shipset_regression.values[:,:-1]; Y = shipset_regression.values[:,-1]
     LR1 = LinearRegression().fit(X,Y)
[84]: m = LR1.coef_.flatten(); b = LR1.intercept_.flatten()
[85]: print("m = {0}".format(m)); print("b = {0}".format(b))
     m = [-4.54380392 \quad 0.24215462 \quad 0.00720692]
     b = [44.22554998]
[86]: LR1_Y_predicted = LR1.predict(X)
[87]: shipset_regression_results['LR1_Y_predicted'] = LR1_Y_predicted
[88]:
     shipset_regression_results
[88]:
         Age_at_Sale
                        DWT
                             Capesize Price LR1_Y_predicted
     0
                      170.2
                                 4647
                                        73.0
                                                    82.580410
     1
                  16
                     150.2
                                 4647
                                        45.0
                                                    41.386886
     2
                  12 151.1
                                 4647
                                        62.0
                                                    59.780041
     3
                  12 158.0
                                 4647
                                        60.0
                                                    61.450908
     4
                  14 174.7
                                 4647
                                        61.3
                                                    56.407282
     5
                   8 169.9
                                 4878
                                        83.0
                                                    84.172563
     6
                  17 149.5
                                 4878
                                        45.0
                                                    38.338373
     7
                   3 170.0
                                 5245
                                       100.0
                                                   109.560739
     8
                  13 165.3
                                 5245
                                        65.0
                                                    62.984573
     9
                  11 165.1
                                 5245
                                        70.0
                                                    72.023750
     10
                  20 149.0
                                 5245
                                        33.0
                                                    27.230825
     11
                  12 158.0
                                 5245
                                        63.0
                                                    65.760648
     12
                  17 123.5
                                 5245
                                        43.0
                                                    34.687294
     13
                   6 170.1
                                 5752
                                        95.0
                                                    99.607453
                   6 170.1
     14
                                 5752
                                        95.0
                                                    99.607453
     15
                  13 151.4
                                 5752
                                        63.5
                                                    63.272534
     16
                  12 150.4
                                 5752
                                        67.0
                                                    67.574183
     17
                  13 149.8
                                 5752
                                        62.0
                                                    62.885087
                  22 139.8
                                 5752
     18
                                        31.0
                                                    19.569305
     19
                     174.5
                                 6201
                                        86.0
                  11
                                                    81.189822
     20
                  10 172.6
                                                    85.273532
                                 6201
                                        50.5
     21
                  11 170.0
                                 6201
                                        64.2
                                                    80.100126
     22
                  13 149.3
                                 6618
                                        67.0
                                                    69.005205
     23
                  23 161.4
                                 6618
                                        28.0
                                                    26.497237
```

```
24
                   23 146.0
                                  6980
                                        30.0
                                                     25.376962
      25
                   6 172.5
                                  6980
                                       105.0
                                                    109.038726
      26
                   26 140.8
                                 7441
                                         22.0
                                                     13.808738
      27
                   5 164.2
                                 8181
                                       133.0
                                                    120.228162
                   12 149.2
                                 8886
                                                     89.870096
      28
                                        90.0
      29
                   21
                      146.9
                                 8886
                                        47.0
                                                     48.418906
                  23 164.5
                                 8886
                                        45.0
      30
                                                     43.593219
      31
                   23 166.1
                                 8886
                                         57.0
                                                     43.980666
      32
                   11 171.1
                                 9663
                                        106.0
                                                    105.316866
      33
                   6 172.6
                                 9663
                                        152.0
                                                    128.399118
      34
                   14 149.5
                                 9663
                                         97.0
                                                     86.454915
      35
                   24 150.7
                                 9663
                                         38.0
                                                     41.307461
      36
                   15 148.2
                                 9663
                                         87.5
                                                     81.596310
                                                     73.171294
      37
                   20 188.3
                                 10299
                                        78.0
      38
                   21
                       98.4
                                 10299
                                         35.0
                                                     46.857790
      39
                   17 184.4
                                 10526
                                        83.7
                                                     87.494274
      40
                   4 173.9
                                 10526
                                       155.0
                                                    144.021102
      41
                   20 135.0
                                 10844
                                        58.0
                                                     64.192226
      42
                   19 207.1
                                 11193
                                        83.0
                                                     88.710595
      43
                   26 137.0
                                 11193
                                        25.0
                                                     39.928928
      44
                   9 171.7
                                 11193 135.0
                                                    125.576360
      45
                    4 170.0
                                 11614
                                       158.0
                                                    150.917832
      46
                   15 161.5
                                 12479
                                                    105.111663
                                        87.2
      47
                   18 145.4
                                 12479
                                        82.0
                                                     87.581562
[89]: residuals_LR1 = Y - LR1_Y_predicted
[90]: shipset_regression_results['LR1 Residuals'] = residuals_LR1
[91]: r_squared_LR1 = LR1.score(X, Y); print(r_squared_LR1)
     0.9204352585883622
[92]: print(mean_absolute_error(Y, LR1_Y_predicted))
     6.860174471941046
[93]: print(mean_squared_error(Y, LR1_Y_predicted))
     89.50721469438948
     1.2.1 Residual Plot for Linear Regression (without Standardization)
     Exhibit 14
[94]: sns.scatterplot(data = shipset_regression_results, x = 'LR1_Y_predicted' , y = __
      plt.title("Residual vs Predicted Plot for Linear Regression (without
       ⇔Standardization)")
      plt.axhline(y=0)
```

plt.ylim(-75,75)

[94]: (-75.0, 75.0)

Residual vs Predicted Plot for Linear Regression (without Standardization)

Exhibit 15

[95]: sns.distplot(residuals_LR1, color = 'orange')
 plt.title("Residual Plot for Linear Regression without Standardization")
 plt.xlabel("Residuals")

[95]: Text(0.5, 0, 'Residuals')

Cross Validation of Linear Regression without Standardization

```
[96]: scores = cross_val_score(LR1, X, Y, cv=5)
      print ("Cross-validated scores:", scores.mean())
```

Cross-validated scores: 0.8715531823056342

1.4 OLS on Non Standardized Dataset

```
[97]: X = sm.add_constant(X)
[98]: ols1 = sm.OLS(Y, X).fit()
[99]: ols1_predictions = ols1.predict(X)
      shipset_regression_results['OLS1_Y_predicted'] = ols1_predictions
[100]:
[101]: shipset_regression_results['OLS1_Residuals'] = ols1.resid; print(ols1.resid.
        →mean())
      4.794979228487743e-12
```

[102]: print(mean_absolute_error(Y, ols1_predictions))

6.860174471941328

[103]: print(mean_squared_error(Y, ols1_predictions))

89.50721469438948

[104]: shipset_regression_results

[104]:	Age_at_Sale	DWT	Capesize	Price	LR1_Y_predicted	LR1 Residuals	\
0	8	170.2	4647	73.0	82.580410	-9.580410	
1	16	150.2	4647	45.0	41.386886	3.613114	
2	12	151.1	4647	62.0	59.780041	2.219959	
3	12	158.0	4647	60.0	61.450908	-1.450908	
4	14	174.7	4647	61.3	56.407282	4.892718	
5	8	169.9	4878	83.0	84.172563	-1.172563	
6	17	149.5	4878	45.0	38.338373	6.661627	
7	3	170.0	5245	100.0	109.560739	-9.560739	
8	13	165.3	5245	65.0	62.984573	2.015427	
9	11	165.1	5245	70.0	72.023750	-2.023750	
10	20	149.0	5245	33.0	27.230825	5.769175	
11	12	158.0	5245	63.0	65.760648	-2.760648	
12	17	123.5	5245	43.0	34.687294	8.312706	
13	6	170.1	5752	95.0	99.607453	-4.607453	
14	6	170.1	5752	95.0	99.607453	-4.607453	
15	13	151.4	5752	63.5	63.272534	0.227466	
16	12	150.4	5752	67.0	67.574183	-0.574183	
17	13	149.8	5752	62.0	62.885087	-0.885087	
18	22	139.8	5752	31.0	19.569305	11.430695	
19	11	174.5	6201	86.0	81.189822	4.810178	
20	10	172.6	6201	50.5	85.273532	-34.773532	
21	11	170.0	6201	64.2	80.100126	-15.900126	
22	13	149.3	6618	67.0	69.005205	-2.005205	
23	23	161.4	6618	28.0	26.497237	1.502763	
24	23	146.0	6980	30.0	25.376962	4.623038	
25	6	172.5	6980	105.0	109.038726	-4.038726	
26	26	140.8	7441	22.0	13.808738	8.191262	
27	5	164.2	8181	133.0	120.228162	12.771838	
28	12	149.2	8886	90.0	89.870096	0.129904	
29	21	146.9	8886	47.0	48.418906	-1.418906	
30	23	164.5	8886	45.0	43.593219	1.406781	
31	23	166.1	8886	57.0	43.980666	13.019334	
32	11	171.1	9663	106.0	105.316866	0.683134	
33	6	172.6	9663	152.0	128.399118	23.600882	
34	14	149.5	9663	97.0	86.454915	10.545085	
35	24	150.7	9663	38.0	41.307461	-3.307461	
36	15	148.2	9663	87.5	81.596310	5.903690	
37	20	188.3	10299	78.0	73.171294	4.828706	
38	21	98.4	10299	35.0	46.857790	-11.857790	
39	17	184.4	10526	83.7	87.494274	-3.794274	
40	4	173.9	10526	155.0	144.021102	10.978898	

41	20	135.0		58.0	64.192226	-6.192226
42	19	207.1		83.0	88.710595	-5.710595
43	26	137.0		25.0	39.928928	-14.928928
44	9	171.7		135.0	125.576360	9.423640
45	4	170.0	11614	158.0	150.917832	7.082168
46	15	161.5	12479	87.2	105.111663	-17.911663
47	18	145.4	12479	82.0	87.581562	-5.581562
	OLS1_Y_predi	cted	OLS1_Residu	ıals		
0	82.58	0410	-9.580	410		
1	41.38	6886	3.613	3114		
2	59.78	0041	2.219	959		
3	61.45		-1.450			
4	56.40		4.892			
5	84.17		-1.172			
6	38.33		6.661			
7	109.56		-9.560			
8	62.98		2.015			
9	72.02		-2.023			
10	27.23		5.769			
11	65.76		-2.760			
12	34.68		8.312			
13	99.60		-4.607			
14	99.60		-4.607			
15	63.27		0.227			
16	67.57		-0.574			
17	62.88		-0.885			
18	19.56		11.430			
19	81.18	9822	4.810	178		
20	85.27	3532	-34.773	3532		
21	80.10	0126	-15.900	126		
22	69.00	5205	-2.005	205		
23	26.49	7237	1.502	2763		
24	25.37	6962	4.623	8038		
25	109.03	8726	-4.038	3726		
26	13.80	8738	8.191	.262		
27	120.22	8162	12.771	.838		
28	89.87	0096	0.129	904		
29	48.41	8906	-1.418	3906		
30	43.59	3219	1.406	3781		
31	43.98		13.019	334		
32	105.31		0.683			
33	128.39		23.600			
34	86.45		10.545			
35	41.30		-3.307			
36	81.59		5.903			
37	73.17		4.828			
51	13.11	1234	4.020	7100		

38	46.857790	-11.857790
39	87.494274	-3.794274
40	144.021102	10.978898
41	64.192226	-6.192226
42	88.710595	-5.710595
43	39.928928	-14.928928
44	125.576360	9.423640
45	150.917832	7.082168
46	105.111663	-17.911663
47	87.581562	-5.581562

Exhibit 16

[105]: ols1.summary()

[105]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

		010 100	======		:=====================================		
Dep. Varia	ble:		у	R-squ	ared:		0.920
Model:			OLS	-	R-squared:		0.915
Method:		Least Squa	ares	F-sta	tistic:		169.7
Date:	•	Thu, 10 Nov 2	2022	Prob	(F-statistic)	:	3.39e-24
Time:		12:3	7:33	Log-L	ikelihood:		-175.97
No. Observ	ations:		48	AIC:			359.9
Df Residua	ls:		44	BIC:			367.4
Df Model:			3				
Covariance	Type:	nonrol	bust				
	coef	std err		t	P> t	[0.025	0.975]
const	44.2255	16.383	2.	. 699	0.010	11.207	77.244
x1	-4.5438	0.261	-17	.378	0.000	-5.071	-4.017
x2	0.2422	0.092	2.	643	0.011	0.058	0.427
хЗ	0.0072	0.001	12.	.051	0.000	0.006	0.008

Omnibus: 13.373 Durbin-Watson: 1.749 Prob(Omnibus): 0.001 Jarque-Bera (JB): 19.393 Skew: -0.851 Prob(JB): 6.15e-05 Kurtosis: Cond. No. 5.607 9.23e+04 ______

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.23e+04. This might indicate that there are strong multicollinearity or other numerical problems.

1.5 Linear Regression Equation

```
1.6 \quad \text{Price} = \text{Age\_at\_Sale}(-4.54) + DWT(0.242) + \text{Capesize*}(0.00720) + 44.22 [106]: \quad \text{DWT\_custom} = \text{float(input('What is the ship\'s DWT \n'))};
```

What is the ship's DWT 172

[107]: Age_at_Sale_custom = int(input('What is the ship\'s age during sale \n'));

What is the ship's age during sale

[108]: Capesize_index = float(input('What is the ship\'s capesize \n'));

What is the ship's capesize 12479

Estimated Price of the ship is = 125.7528000000001

2 OLS on Standardized Dataset

```
[110]: shipset_standard = shipset[["Age_at_Sale","DWT","Capesize","Price"]].copy()
```

[111]: shipset_standard=(shipset_standard-shipset_standard.min())/(shipset_standard.min())

```
[112]: shipset_standard
```

```
[112]:
         Age_at_Sale
                        DWT
                            Capesize
                                       Price
                            0.000000
     0
           0.217391
                   0.660534
                                    0.375000
     1
                            0.000000 0.169118
           0.565217 0.476541
     2
           0.391304 0.484821
                            0.000000
                                    0.294118
     3
           0.391304 0.548298 0.000000 0.279412
     4
           0.478261 0.701932 0.000000 0.288971
     5
           0.217391 0.657774 0.029494 0.448529
     6
           0.608696 0.470101 0.029494 0.169118
     7
           0.000000 0.658694 0.076353 0.573529
     8
           9
           10
           0.739130  0.465501  0.076353  0.080882
     11
           0.391304 0.548298 0.076353 0.301471
     12
           0.608696 0.230911 0.076353 0.154412
```

```
13
              0.130435
                        0.659614 0.141088
                                             0.536765
       14
                        0.659614
                                  0.141088
              0.130435
                                             0.536765
       15
              0.434783
                        0.487580
                                  0.141088
                                             0.305147
       16
              0.391304
                        0.478381
                                   0.141088
                                             0.330882
       17
              0.434783
                        0.472861
                                  0.141088
                                             0.294118
       18
              0.826087
                        0.380865
                                  0.141088
                                             0.066176
                        0.700092
                                  0.198417
       19
              0.347826
                                             0.470588
       20
              0.304348
                        0.682613
                                  0.198417
                                             0.209559
       21
              0.347826
                        0.658694
                                  0.198417
                                             0.310294
       22
              0.434783
                        0.468261
                                   0.251660
                                             0.330882
       23
              0.869565
                        0.579577
                                  0.251660
                                             0.044118
       24
              0.869565
                        0.437902
                                  0.297880
                                             0.058824
       25
              0.130435
                        0.681693
                                  0.297880
                                             0.610294
       26
              1.000000
                        0.390064
                                  0.356742
                                             0.000000
       27
              0.086957
                        0.605336
                                  0.451226
                                             0.816176
       28
              0.391304
                        0.467341
                                  0.541241
                                             0.500000
       29
              0.782609
                        0.446182
                                  0.541241
                                             0.183824
       30
                                  0.541241
              0.869565
                        0.608096
                                             0.169118
       31
              0.869565
                        0.622815
                                  0.541241
                                             0.257353
       32
              0.347826
                        0.668813
                                  0.640449
                                             0.617647
       33
              0.130435
                        0.682613
                                  0.640449
                                             0.955882
              0.478261
                        0.470101
                                   0.640449
       34
                                             0.551471
       35
              0.913043
                        0.481141
                                  0.640449
                                             0.117647
       36
              0.521739
                        0.458142
                                  0.640449
                                             0.481618
       37
              0.739130
                        0.827047
                                   0.721655
                                             0.411765
       38
              0.782609
                        0.000000
                                  0.721655
                                             0.095588
              0.608696
       39
                        0.791168
                                  0.750638
                                             0.453676
       40
                                  0.750638
              0.043478
                        0.694572
                                             0.977941
       41
              0.739130
                        0.336707
                                   0.791241
                                             0.264706
       42
              0.695652
                        1.000000
                                  0.835802
                                             0.448529
       43
              1.000000
                        0.355106
                                  0.835802
                                             0.022059
       44
              0.260870
                        0.674333
                                  0.835802
                                             0.830882
       45
              0.043478
                        0.658694
                                   0.889556
                                             1.000000
       46
              0.521739
                        0.580497
                                   1.000000
                                             0.479412
       47
              0.652174
                        0.432383
                                  1.000000
                                             0.441176
[113]:
       sns.distplot(shipset_standard['DWT'], color = 'teal')
       plt.title("Scaled DWT Distribution")
```

[113]: Text(0.5, 1.0, 'Scaled DWT Distribution')


```
[114]: XS = shipset_standard.values[:,:-1]; Y = shipset_standard.values[:,-1]
[115]: XS = sm.add_constant(XS)
[116]: ols2 = sm.OLS(Y, XS).fit()
       ols2_predictions = ols2.predict(XS)
[117]:
[118]: ols2_residuals = ols2.resid
       shipset_regression_results['OLS2 Residuals'] = ols2_residuals
[119]:
[120]: shipset_regression_results['OLS2_Y_predicted'] = ols2_predictions
[121]: shipset_regression_results['OLS2_Y_predicted'] = ___
        shipset_regression_results['OLS2_Y_predicted']*136 + 22
[122]: shipset_regression_results
[122]:
           Age_at_Sale
                          {\tt DWT}
                               Capesize
                                         Price
                                                LR1_Y_predicted
                                                                  LR1 Residuals
                       170.2
                                   4647
                                           73.0
                                                       82.580410
                                                                      -9.580410
                    16 150.2
                                   4647
       1
                                           45.0
                                                       41.386886
                                                                       3.613114
       2
                    12 151.1
                                   4647
                                           62.0
                                                       59.780041
                                                                       2.219959
                    12 158.0
                                   4647
                                           60.0
                                                       61.450908
                                                                      -1.450908
```

4	14	174.7	4647	61.3	56.407282	4.892718
5	8	169.9	4878	83.0	84.172563	-1.172563
6	17	149.5	4878	45.0	38.338373	6.661627
7	3	170.0	5245	100.0	109.560739	-9.560739
8	13	165.3	5245	65.0	62.984573	2.015427
9	11	165.1	5245	70.0	72.023750	-2.023750
10	20	149.0	5245	33.0	27.230825	5.769175
11	12	158.0	5245	63.0	65.760648	-2.760648
12	17	123.5	5245	43.0	34.687294	8.312706
13	6	170.1	5752	95.0	99.607453	-4.607453
14	6	170.1	5752	95.0	99.607453	-4.607453
15	13	151.4	5752	63.5	63.272534	0.227466
16	12	150.4	5752	67.0	67.574183	-0.574183
17	13	149.8	5752	62.0	62.885087	-0.885087
18	22	139.8	5752	31.0	19.569305	11.430695
19	11	174.5	6201	86.0	81.189822	4.810178
20	10	172.6	6201	50.5	85.273532	-34.773532
21	11	170.0	6201	64.2	80.100126	-15.900126
22	13	149.3	6618	67.0	69.005205	-2.005205
23	23	161.4	6618	28.0	26.497237	1.502763
24	23	146.0	6980	30.0	25.376962	4.623038
25	6	172.5	6980	105.0	109.038726	-4.038726
26	26	140.8	7441	22.0	13.808738	8.191262
27	5	164.2	8181	133.0	120.228162	12.771838
28	12	149.2	8886	90.0	89.870096	0.129904
29	21	146.9	8886	47.0	48.418906	-1.418906
30	23	164.5	8886	45.0	43.593219	1.406781
31	23	166.1	8886	57.0	43.980666	13.019334
32	11	171.1	9663	106.0	105.316866	0.683134
33	6	172.6	9663	152.0	128.399118	23.600882
34	14	149.5	9663	97.0	86.454915	10.545085
35	24	150.7	9663	38.0	41.307461	-3.307461
36	15	148.2	9663	87.5	81.596310	5.903690
37	20	188.3	10299	78.0	73.171294	4.828706
38	21	98.4	10299	35.0	46.857790	-11.857790
39	17	184.4	10526	83.7	87.494274	-3.794274
40	4	173.9	10526	155.0	144.021102	10.978898
41	20	135.0	10844	58.0	64.192226	-6.192226
42	19	207.1	11193	83.0	88.710595	-5.710595
43	26	137.0	11193	25.0	39.928928	-14.928928
44	9	171.7	11193	135.0	125.576360	9.423640
45	4	170.0	11614	158.0	150.917832	7.082168
46	15	161.5	12479	87.2	105.111663	-17.911663
47	18	145.4	12479	82.0	87.581562	-5.581562

 OLS1_Y_predicted
 OLS1_Residuals
 OLS2_Residuals
 OLS2_Y_predicted

 82.580410
 -9.580410
 -0.070444
 82.580410

1	41.386886	3.613114	0.026567	41.386886
2	59.780041	2.219959	0.016323	59.780041
3	61.450908	-1.450908	-0.010668	61.450908
4	56.407282	4.892718	0.035976	56.407282
5	84.172563	-1.172563	-0.008622	84.172563
6	38.338373	6.661627	0.048983	38.338373
7	109.560739	-9.560739	-0.070300	109.560739
8	62.984573	2.015427	0.014819	62.984573
9	72.023750	-2.023750	-0.014881	72.023750
10	27.230825	5.769175	0.042420	27.230825
11	65.760648	-2.760648	-0.020299	65.760648
12	34.687294	8.312706	0.061123	34.687294
13	99.607453	-4.607453	-0.033878	99.607453
14	99.607453	-4.607453	-0.033878	99.607453
15	63.272534	0.227466	0.001673	63.272534
16	67.574183	-0.574183	-0.004222	67.574183
17	62.885087	-0.885087	-0.006508	62.885087
18	19.569305	11.430695	0.084049	19.569305
19	81.189822	4.810178	0.035369	81.189822
20	85.273532	-34.773532	-0.255688	85.273532
21	80.100126	-15.900126	-0.116913	80.100126
22	69.005205	-2.005205	-0.014744	69.005205
23	26.497237	1.502763	0.011711	26.497237
24	25.376962	4.623038	0.033993	25.376962
25	109.038726	-4.038726	-0.029697	109.038726
26	13.808738	8.191262	0.060230	13.808738
27	120.228162	12.771838	0.093911	120.228162
28	89.870096	0.129904	0.000955	89.870096
29	48.418906	-1.418906	-0.010433	48.418906
30	43.593219	1.406781	0.010344	43.593219
31	43.980666	13.019334	0.095730	43.980666
32	105.316866	0.683134	0.005023	105.316866
33	128.399118	23.600882	0.173536	128.399118
34	86.454915	10.545085	0.077537	86.454915
35	41.307461	-3.307461	-0.024320	41.307461
36	81.596310	5.903690	0.043409	81.596310
37	73.171294	4.828706	0.035505	73.171294
38	46.857790	-11.857790	-0.087190	46.857790
39	87.494274	-3.794274	-0.027899	87.494274
40	144.021102	10.978898	0.080727	144.021102
41	64.192226	-6.192226	-0.045531	64.192226
42	88.710595	-5.710595	-0.041990	88.710595
43	39.928928	-14.928928	-0.109772	39.928928
44	125.576360	9.423640	0.069291	125.576360
45	150.917832	7.082168	0.052075	150.917832
46	105.111663	-17.911663	-0.131703	105.111663
47	87.581562	-5.581562	-0.041041	87.581562

[123]: ols2.summary()

[123]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

============	===========		=========
Dep. Variable:	у	R-squared:	0.920
Model:	OLS	Adj. R-squared:	0.915
Method:	Least Squares	F-statistic:	169.7
Date:	Thu, 10 Nov 2022	Prob (F-statistic):	3.39e-24
Time:	12:37:43	Log-Likelihood:	59.835
No. Observations:	48	AIC:	-111.7
Df Residuals:	44	BIC:	-104.2
Df Model:	3		

Df Model: 3
Covariance Type: nonrobust

========		========		========		========
	coef	std err	t	P> t	[0.025	0.975]
const	0.4847	0.054	9.002	0.000	0.376	0.593
x1	-0.7684	0.044	-17.378	0.000	-0.858	-0.679
x2	0.1935	0.073	2.643	0.011	0.046	0.341
x3	0.4150	0.034	12.051	0.000	0.346	0.484
========		========	=======	========		=======
Omnibus:		13	.373 Durb	in-Watson:		1.749
Prob(Omnibu	ıs):	0	.001 Jarq	ue-Bera (JB):	:	19.393
Skew:		-0	.851 Prob	(JB):		6.15e-05
Kurtosis:		5	.607 Cond	. No.		11.6

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Exhibit 18

```
[124]: sns.distplot(ols2_residuals, color = 'purple')
plt.title("Residual Plot for OLS with Standardization")
plt.xlabel("Residuals")
```

[124]: Text(0.5, 0, 'Residuals')

Exhibit 19 [125]: sns.scatterplot(data = shipset_regression_results, x = 'OLS2_Y_predicted' , y = \(\times \) 'OLS2_Residuals', color = 'grey') plt.title("Residual vs Predicted Plot for Linear Regression (with_\(\times \) Standardization)") plt.axhline(y=0) plt.ylim(-30,30)

[125]: (-30.0, 30.0)


```
[126]: print(mean_absolute_error(Y, ols2_predictions))
```

0.050442459352507706

3 Synthetic Data: Created by Gretel. AI with 86% similarity rate


```
[131]: sns.regplot(x = synthdata['DWT'], y = synthdata['Price'],marker = 'o', color = o'red')
plt.title('Age_at_Sale vs Price')
```

[131]: Text(0.5, 1.0, 'Age_at_Sale vs Price')

[132]: Text(0.5, 1.0, 'Age_at_Sale vs Price')


```
[133]:
       synthdata.corr()
[133]:
                              YearBuilt
                                          Age_at_Sale
                                                                  Capesize
                                                                                Month
                       Price
                                                             {\tt DWT}
       Price
                    1.000000
                                0.783345
                                            -0.764145
                                                        0.547482
                                                                  0.266079
                                                                             0.061637
       YearBuilt
                    0.783345
                                1.000000
                                            -0.998150
                                                        0.503380 -0.252008 -0.286505
       Age_at_Sale -0.764145
                               -0.998150
                                              1.000000 -0.494307
                                                                  0.293563
                                                                             0.270693
       DWT
                                            -0.494307
                                                        1.000000 -0.130340 -0.292551
                    0.547482
                                0.503380
                                              0.293563 -0.130340
       Capesize
                    0.266079
                               -0.252008
                                                                  1.000000
                                                                             0.519398
                    0.061637
                                              0.270693 -0.292551 0.519398
       Month
                               -0.286505
                                                                             1.000000
[134]: sns.distplot(synthdata['Price'], color = 'blue')
       plt.title("Synthetic Price Distribution")
```

[134]: Text(0.5, 1.0, 'Synthetic Price Distribution')


```
[135]: sns.distplot(synthdata['Price'], color = 'blue')
plt.title("Synthetic Price Distribution")
```

[135]: Text(0.5, 1.0, 'Synthetic Price Distribution')

4 Linear Regression by Treating Original Dataset as Training and Synthetic Data as Test

```
[141]: X_test = synthdata_regression.values[:,:-1]; Y_test = synthdata_regression.
        ⇔values[:,-1]
[142]: LR_synth = LinearRegression().fit(X_train, Y_train)
[143]: LR_synth_predicted = LR_synth.predict(X_test)
[144]: LR_synth.score(X_test,Y_test)
[144]: 0.8766474942576405
[145]: Y_synth_predicted = LR_synth.predict(X_test)
[146]: LR_Synth_Residuals = Y_test - Y_synth_predicted
[147]: | #synthdata regression['LR Synth Predicted Values'] = Y synth predicted;
       \#synthdata\_regression['LR\_Synth\_Residuals'] = LR\_Synth\_Residuals
[148]: print(mean_absolute_error(Y_test, Y_synth_predicted));
       print(mean_squared_error(Y_test, Y_synth_predicted))
      6.9132861257138725
      124.20078328000722
[149]: sns.distplot(ols2_residuals, color = 'purple')
       plt.title("Residual Plot for OLS with Standardization")
       plt.xlabel("Residuals")
[149]: Text(0.5, 0, 'Residuals')
```



```
[150]: m = LR_synth.coef_.flatten(); b = LR_synth.intercept_.flatten(); print("m = 0].format(m)); print("b = {0}".format(b))

m = [-4.54380392  0.24215462  0.00720692]
b = [44.22554998]
```

5 OLS by Treating Original Dataset as Training and Synthetic Data as Test

	Exhibit 20 synthdata.describe()							
	Price	YearBuilt	Age_at_Sale	DWT	Capesize	\		
count	250.000000	250.000000	250.000000	250.000000	250.000000			
mean	70.704800	1992.668000	14.496000	156.716000	7567.416000			
std	31.794977	6.065057	6.094469	18.951273	2523.703905			
min	22.000000	1981.000000	3.000000	98.400000	4647.000000			
25%	45.000000	1988.000000	11.000000	149.000000	5245.000000			
50%	65.000000	1994.000000	13.000000	158.000000	6618.000000			
75%	87.500000	1996.000000	20.000000	170.100000	9663.000000			
max	158.000000	2004.000000	26.000000	207.100000	12479.000000			

Month

```
5.436000
       mean
       std
                3.556473
       min
                1.000000
       25%
                3.000000
       50%
                4.000000
       75%
                8.750000
       max
               12.000000
[152]:
      shipset.describe()
[152]:
                                                                      Capesize \
                  Price
                            YearBuilt
                                       Age_at_Sale
                                                             DWT
               48.00000
       count
                            48.000000
                                          48.000000
                                                      48.000000
                                                                     48.000000
       mean
               72.95625
                          1992.916667
                                          14.270833
                                                     158.935417
                                                                   7643.708333
                                                                   2499.309368
       std
               33.89537
                             6.330720
                                           6.330405
                                                      17.650984
               22.00000
                                           3.000000
                                                      98.400000
                                                                   4647.000000
       min
                          1981.000000
       25%
               46.50000
                          1987.750000
                                          10.750000
                                                     149.275000
                                                                   5245.000000
       50%
               66.00000
                          1994.000000
                                          13.000000
                                                     161.450000
                                                                   6799.000000
       75%
               88.12500
                          1996.250000
                                          20.000000
                                                     170.125000
                                                                   9663.000000
              158.00000
                          2004.000000
                                          26.000000
                                                     207.100000
       max
                                                                  12479.000000
                  Month
              48.000000
       count
       mean
               5.312500
       std
               3.543987
       min
               1.000000
       25%
               3.000000
       50%
               4.000000
       75%
               8.250000
       max
              12.000000
[153]: Y_synth, X_synth = dmatrices('Price ~ DWT+Age_at_Sale+Capesize',_
        →data=synthdata_regression, return_type='dataframe')
[154]: vif = pd.DataFrame()
       vif['VIF'] = [variance inflation factor(X synth.values, i) for i in_
        →range(X_synth.shape[1])]
       vif['variable'] = X_synth.columns ; vif
[154]:
                 VIF
                          variable
       0
          130.130663
                         Intercept
       1
            1.323765
                               DWT
       2
            1.423994
                      Age_at_Sale
       3
            1.094652
                          Capesize
[155]: X_test = sm.add_constant(X_test); X_train = sm.add_constant(X_train)
```

250.000000

count

```
[156]: ols_synth = sm.OLS(Y_train, X_train).fit()
[157]: predictions_synth = ols_synth.predict(X_test)
[158]: #synthdata regression['OLS Synth Predicted Values'] = predictions synth
     \#synthdata\_regression['OLS\_Synth\_Residuals'] = abs(synthdata\_regression['Price']_{f U}
      → synthdata_regression['OLS_Synth_Predicted Values'])
[159]: print(mean_absolute_error(Y_test, predictions_synth))
     6.913286125713921
[160]: print(mean_squared_error(Y_test, predictions_synth))
     124.20078328001003
[161]: ols_synth.summary()
[161]: <class 'statsmodels.iolib.summary.Summary'>
                            OLS Regression Results
     ______
     Dep. Variable:
                                                                0.920
                                     R-squared:
     Model:
                                 OLS Adj. R-squared:
                                                                0.915
     Method:
                        Least Squares F-statistic:
                                                                169.7
     Date:
                      Thu, 10 Nov 2022 Prob (F-statistic):
                                                             3.39e-24
                                                              -175.97
     Time:
                            12:37:44 Log-Likelihood:
     No. Observations:
                                 48 AIC:
                                                                359.9
     Df Residuals:
                                    BIC:
                                                                367.4
                                 44
     Df Model:
     Covariance Type:
                            nonrobust
     ______
                   coef
                         std err
                                       t
                                             P>|t|
                                                      [0.025
                                                               0.975]
     ______
                44.2255
                         16.383
                                                               77.244
                                    2.699
                                             0.010
                                                      11.207
     x1
                -4.5438
                          0.261
                                  -17.378
                                             0.000
                                                      -5.071
                                                               -4.017
                 0.2422
                           0.092
                                    2.643
                                             0.011
                                                      0.058
                                                                0.427
     x2
                 0.0072
                           0.001
                                  12.051
                                             0.000
                                                       0.006
                                                                0.008
     ______
                                     Durbin-Watson:
                                                                1.749
     Omnibus:
                              13.373
     Prob(Omnibus):
                               0.001
                                     Jarque-Bera (JB):
                                                               19.393
                              -0.851 Prob(JB):
     Skew:
                                                              6.15e-05
     Kurtosis:
                               5.607 Cond. No.
                                                              9.23e+04
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 9.23e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Exhibit 21

```
[162]: sns.distplot(LR_Synth_Residuals,color = 'brown')
plt.title("Residual Plots for Synthetic Data")
```

[162]: Text(0.5, 1.0, 'Residual Plots for Synthetic Data')


```
[164]: sns.scatterplot(x = predictions_synth , y = LR_Synth_Residuals, color = 'grey')
plt.title("Residual vs Predicted Plot for Linear Regression on Synthetic Data")
plt.axhline(y=0)
plt.ylim(-75,75)
```

[164]: (-75.0, 75.0)

Exhibit 22

Thank You

[]: