Divergent Transformation Paths: An Anatomy of the Baumol Cost Disease

Selim Elbadri¹ Juan Ignacio Vizcaino¹

¹School of Economics, University of Nottingham

Universidad Andrés Bello December 4, 2024

Baumol's Cost Disease

...the very progress of the technologically progressive sectors inevitably adds to the costs of the technologically unchanging sectors of the economy...

William Baumol *Macroeconomics of Unbalanced Growth: The Anatomy of Urban Crisis -* AER,1967

Sectoral TFP Growth and Structural Change in the US

- lacktriangle Structural Transformation \leftrightarrow Productivity Slowdown
- ► Reallocation of economic activity
 - ► from dynamic ...
 - ► ...into less-dynamic sectors

Source: Own calculations based on US KLEMS, March 2017 Release

Main Implication

► Lower measured TFP growth due to compositional effects

Source: Own calculations based on US KLEMS, March 2017 Release

Structural Change, Innovation, and Growth

- ► Sectoral productivity growth is not fixed
- ► The state and structure of the economy also affect
 - Incentives to innovate
 - Allocation of R&D resources
- Shaping sectoral and aggregate productivity growth
- ► This paper studies:
 - ► The determinants of the sectoral allocation of R&D
 - ► How they vary with structural change and development
 - ► Implications for sectoral and aggregate TFP growth

Introduction

Contribution and Findings

- 1. New Evidence on Innovation and Struct. Transformation (ST)
 - ► ST in **innovation** from manufacturing to services
 - ► Divergent Transformation Paths
 - ► Research activity moves to **high R&D** services
 - Production shifts to low R&D services
- 2. We build quantitative theory of ST and Innovation and study
 - ► Mechanisms driving the sectoral allocation of RD
 - ► Implications for sectoral and aggregate productivity growth
 - Potential role for policy interventions
- 3. Quantitative Findings; (US 1947-2014)
 - ► ST contributed to TFP slowdown (-2.0 p.p; vs. 11.0 p.p.)
 - ► Similar quant. effect as pop. growth slowdown (-2.8 p.p.)
 - ► Market power and markups hindered TFP growth (-7.8 p.p.)
 - ► Cross-sector spillovers helped sustain TFP growth (+10.2 p.p.)

Plan

Related Literature

Empirical Facts

Model

Calibration

Quantitative Exercises

Conclusion

Appendix

Related Literature

- 1. Drivers of Secular Stagnation
 - ▶ **Demographics** Abiry et al. (2016); Eggertsson et al. (2019)
 - ► Productivity growth slowdown Bergeaud et al. (2018); Platzer & Peruffo (2022); Liu et al. (2022)

We study the role of SC in driving growth slowdown

- 2. Causes & Consequences of Structural Change
 - ► Documenting structural change Stigler et al. (1956); Kuznets, (1957); Fuchs et al. (1968); Herrendorf et al. (2014)
 - ► Causes of structural change Ngai & Pissarides (2007); Kongsamut et al. (2001); Boppart (2014); Comin et al. (2021)
 - ► Heterogeneous services Buera & Kaboski (2012); Duernecker et al. (2024)
 - i) document SC in innovation ii) endogenise sectoral prod. growth

Plan

Related Literature

Empirical Facts

Model

Calibration

Quantitative Exercises

Conclusion

Appendix

Data

We merge several data sources together:

Variable	Source
Scientists	National Science Foundation (BERD survey)
Patents ¹	US Patent & Trademark Office (PTO)
Cross-citations	OECD Citations Database
VA, TFP, Lab. Prod.	World KLEMS (March 2017 release)

¹USPC-industry crosswalk from (Goldschlag, et al., 2019)

Structural Change in Innovation

From Manufacturing/Goods to Services

Structural Change in Innovation

More Prominent Towards High R&D Services

Driving Heterogeneous Productivity Paths

Rich Structure of Cross-Sector Knowledge Spillovers

Manufacturing ideas have a relevant effect on services

		Citing Setor			
		MFG RI-SERV NRI-SERV			
Cited Sector	MFG	0.93	0.62	0.82	
	RI-SERV	0.03	0.32	0.05	
	NRI-SERV	0.03	0.06	0.13	

► Robustness

Plan

Related Literature

Empirical Facts

Model

Calibration

Quantitative Exercises

Conclusion

Appendix

Key Model Features

- Traditional representative household structure
- ► Standard ST model via:
 - 1. relative price effects
 - 2. income effects
- ► Endogenous sector-level prod. growth à la Acemoglu (2002)
- ► With innovation incentives shaped by
 - 1. price effect
 - 2. market size effect
 - 3. knowledge spillovers
 - 4. marginal costs/markups

Household Preferences & Demographic Structure

- ightharpoonup Continuum of homogeneous workers of mass L(t)
- ▶ Labor force grows at (time-variant) rate n(t)
- ► Workers can work in:
 - ▶ The production sector $(L^P(t))$, making wages $w_l(t)$
 - ► The R&D sector $(L^{S}(t))$, making wages $w_{s}(t)$
 - $ightharpoonup L^{P}(t) + L^{S}(t) = L(t)$
- ▶ In per-capita terms: $s(t) = \frac{L^{S}(t)}{L(t)}$, $I(t) = \frac{L^{P}(t)}{L(t)}$
- ▶ Standard CRRA preferences (χ) , given by

$$U(c(t),L(t)) = \int_0^\infty e^{-\rho t} L(t) \left(\frac{c(t)^{1-\chi}-1}{1-\chi}\right) dt$$

Production Technologies

- ► Three-sector economy
- ► Nested non-homothetic CES structure
- ▶ Final good: composite of $Y_m(t)$ and $Y_s(t)$ output

$$\left[\theta_m^{\frac{1}{\sigma}}\left(Y(t)^{-\zeta_m}Y_m(t)\right)^{\left(\frac{\sigma-1}{\sigma}\right)}+\theta_s^{\frac{1}{\sigma}}\left(Y(t)^{-\zeta_s}Y_s(t)\right)^{\left(\frac{\sigma-1}{\sigma}\right)}\right]^{\left(\frac{\sigma}{\sigma-1}\right)}=1$$

► Services: composite of $Y_{rs}(t)$ and $Y_{ns}(t)$ output

$$\left[\psi_{rs}^{\frac{1}{\epsilon}}\left(Y_{s}(t)^{-\zeta_{rs}}Y_{rs}(t)\right)^{\left(\frac{\epsilon-1}{\epsilon}\right)} + \psi_{ns}^{\frac{1}{\epsilon}}\left(Y_{s}(t)^{-\zeta_{ns}}Y_{ns}(t)\right)^{\left(\frac{\epsilon-1}{\epsilon}\right)}\right]^{\left(\frac{\epsilon}{\epsilon-1}\right)} = 1$$

Sectoral Technologies

► Sectoral output produced according to

$$Y_j(t) = \left(\frac{1}{1-\beta}\right) X_j(t)^{1-\beta} \left(B_j(t) L_j^P(t)\right)^{\beta} \quad \text{for} \quad j \in \{m, rs, ns\}$$

- ▶ With
 - $ightharpoonup L_i^P$: production labor in j
 - $ightharpoonup \vec{B}_j$: labor-augmenting technology in j
 - \triangleright X_i : aggregate machine input in j
- \triangleright X_i is defined by the CES aggregator

$$X_j(t) = \left(\int_0^{N_j(t)} x_j(\nu,t)^{\mu_j} d\nu\right)^{(1/\mu_j)}$$

- \blacktriangleright $x_i(\nu, t)$ is the quantity of machines of type ν in time t
- \triangleright $N_i(t)$ is the measure of machine varieties

Machine Producers' Technologies

- lacktriangle Each variety u is produced by an intermediate goods producer
- ► Technology given by

$$x_j(\nu,t)=a_j(t)y_j^x(\nu,t)$$

- \triangleright $y_i^{\times}(\nu,t)$ are units of the final good used in $x_j(\nu,t)$
- ightharpoonup $a_i(t)$ is the sector-specific productivity of machine producers

Research & Development (R&D)

- ► Directed innovation
 - ► Large number of research labs
 - Create new machine variety blueprints
 - R&D efforts directed to a specific sector
 - Successful innovators obtain fully-enforced perpetual patents
 - Machines fully depreciate after one period
 - ▶ Patents can be sold to machine produces at price $V_j(t)$
- Aggregate research efforts yield the following flow of ideas

$$N_j(t) = \eta_j \Lambda_j(t)^{\gamma} L_j^{S}(t)^{(1-\alpha)}$$

- $ightharpoonup \eta_j$ exogenous arrival rate of ideas in j
- ► $L^{S}(t)$: R&D workers in j
- $lackbrack \Lambda_j(t) = N_j(t)^{\delta_{jj}} N_i(t)^{\delta_{ji}} N_k(t)^{\delta_{jk}}$ ideas aggregator

Market Value of Patents

 \blacktriangleright Value of owning a patent of type ν in sector j is

$$V_j(\nu,t) = \int_{s=t}^{\infty} e^{-\int_{s'=0}^{s} r(s')ds'} \pi_j(\nu,s)ds$$

▶ The corresponding Hamilton-Jacobi-Bellman equation is

$$r(t)V_j(\nu,t)=\pi_j(\nu,t)+\dot{V}_j(\nu,t)$$

- $ightharpoonup \pi_j(\nu,t)$: profits for a machine variety producer
- ightharpoonup r(t): real interest rate

Sectoral Output Demand

► Sectoral output demands are

$$Y_m(t)=rac{e_m(t)Y(t)}{p_m(t)}$$
 $Y_k(t)=(1-e_m(t))rac{e_k(t)Y(t)}{p_k(t)}$ $k\in\{rs,ns\}$

► With sectoral output shares given by

$$e_m(t) = \theta_m Y(t)^{(\zeta_m - 1)(1 - \sigma)} p_m(t)^{1 - \sigma}$$

$$e_k(t) = \theta_k \left(\frac{p_k(t)}{p_s(t)}\right)^{1-\epsilon} Y_s(t)^{(\zeta_k-1)(1-\epsilon)}$$

Markups, Profits & Output

► Machine producers in each sector face (inverse) demand

$$ho_j^{ imes}(
u,t) = \left(rac{p_j(t)Y_j(t)}{X_j(t)}
ight) \left(rac{X_j(t)}{x_j(
u,t)}
ight)^{(1-\mu_j)}$$

Optimal pricing of machine producers in each sector

$$p_j^{\mathsf{x}}(\nu,t) = rac{1}{\mu_i} rac{p(t)}{\mathsf{a}_i(t)}$$

► Profits for each sector's machine producers are

$$\pi_j(
u,t) = \left(rac{1-\mu_j}{\mu_j}
ight)rac{p(t) x_j(
u,t)}{a_j} \quad ext{where} \quad x_j(
u,t) = rac{lpha p_j(t) Y_j(t) a_j(t)}{N_j(t)}$$

Output is

$$Y_{j}(t) = C_{j}(\beta, \mu_{j})N_{j}(t)^{\left(\frac{1-\beta}{\beta}\right)\left(\frac{1-\mu_{j}}{\mu_{j}}\right)} \left(p_{j}(t)a_{j}(t)\right)^{\left(\frac{1-\beta}{\beta}\right)} B_{j}(t)L_{j}^{P}(t)$$

Drivers of Directed Technical Change

- ▶ Profits for machine producers drive incentives to innovate
- ► Directed technical change (Acemoglu, 2002)

$$\pi_j^{DTC}(\nu,t) = \beta p_j(t)^{1/\beta} L_j^P(t)$$

- lacktriangle sector size effect and relative price effect key ightarrow ST
- ► Here we get

$$\pi_j(\nu,t) = (1-\mu_j) \left(\frac{1}{1-\beta}\right)^{\frac{1}{\beta}} N_j(t)^{\frac{1-\mu_j-\beta}{\mu_j\beta}} \left(\mu_j a_j(t)\right)^{\frac{1-\beta}{\beta}} \frac{B_j(t) \pi_j^{DTC}}{\beta}$$

► Heterogenous sectoral trends in machine productivity → different marginal costs in each sector → influence sector profits

Innovation Dynamics and Wages

► Free entry into the innovation sector yields

$$N_j(t)V_j(t)=w_s(t)L_j^S(t) \quad ext{for} \quad j\in\{m,rs,ns\}$$

► Implying that the wage for scientists is

$$\eta_j \Lambda_j(t)^{\gamma} L_j^{\mathcal{S}}(t)^{-\alpha} V_j(t) = w_s(t)$$

► Free labor mobility between production and innovation

$$w_s(t) = w_l(t)$$

Sectoral Allocations for Workers and Scientists

► Employment shares equal output shares

$$rac{L_{j}^{P}(t)}{L(t)}=e_{j}(t)\quad j\in\{ extit{m,rs,ns}\}$$

► Sectoral R&D employment is given by

$$S_m(t) = rac{S(t)}{\left[1 + \left(rac{\eta_{rs}\Lambda_{rs}(t)^{\gamma}V_{rs}(t)}{\eta_m\Lambda_m(t)^{\gamma}V_m(t)}
ight)^{1/lpha} + \left(rac{\eta_{ns}\Lambda_{ns}(t)^{\gamma}V_{ns}(t)}{\eta_m\Lambda_m(t)^{\gamma}V_m(t)}
ight)^{1/lpha}
ight]} \ S_i(t) = S_m(t) \left(rac{\eta_i\Lambda_i(t)^{\gamma}V_i(t)}{\eta_m\Lambda_m(t)^{\gamma}V_m(t)}
ight)^{1/lpha}} i \in \{rs, ns\}$$

Plan

Related Literature

Empirical Facts

Model

Calibration

Quantitative Exercises

Conclusion

Appendix

Externally Calibrated Parameters

Parameter	Description	Value	Source
β	labor intensity	0.65	macro literature
χ	intertemporal elasticity of sub.	1.50	macro literature
ρ	discount factor	0.05	macro literature
δ_{mm}	knowledge spillover intensity MFG to MFG	0.92	authors calc.
δ_{rm}	knowledge spillover intensity MFG to RI-S	0.57	authors calc.
δ_{nm}	knowledge spillover intensity MFG to NRI-S	0.72	authors calc.
δ_{mr}	knowledge spillover intensity RI-S to MFG	0.04	authors calc.
δ_{rr}	knowledge spillover intensity RI-S to RI-S	0.27	authors calc.
δ_{nr}	knowledge spillover intensity RI-S to NRI-S	0.10	authors calc.
δ_{mn}	knowledge spillover intensity NRI-S to MFG	0.05	authors calc.
δ_{rn}	knowledge spillover intensity NRI-S to RI-S	0.16	authors calc.
δ_{nn}	knowledge spillover intensity NRI-S to NRI-S	0.18	authors calc.
γ	spillover elasticity	0.50	robustness checks
$1-\alpha$	scientist elasticity	0.35	robustness checks

Structurally Estimated Parameters

Via Simulated Method of Moments

Parameter	Interpretation	Value
σ	elasticity of sub. b/w MFG and SERV	0.05
ϵ	elasticity of sub. b/w RI-S and NRI-S	1.07
ζ_m	MFG non-homotheticity parameter	0.51
ζ_{rs}	RI-S non-homotheticity parameter	1.00
ζ_{ns}	NRI-S non-homotheticity parameter	1.25
η_m	MFG arrival rate of innovation	0.036
η_{rs}	RI-S arrival rate of innovation	0.005
η_{ns}	NRI-S arrival rate of innovation	0.001
$g_{b,m}$	growth in MFG labor-augmenting technology	0.0138
g _{b,rs}	growth in RI-S labor-augmenting technology	0.0129
g _{b,ns}	growth in NRI-S labor-augmenting technology	0.0103
θ_m	MFG sector weight (1947)	0.596
$\theta_{\it rs}$	RI-S sector weight (1947)	0.236
θ_{ns}	NRI-S sector weight (1947)	0.749

Plan

Related Literature

Empirical Facts

Model

Calibration

Quantitative Exercises

Conclusion

Appendix

Counterfactual TFP Growth

Pane	l A. Benchmark Value	Aggregate TFP Growth (2010-1947, %) 29.9	Difference w.r.t Benchmark (p.p.)
Pane	B. Drivers of Structural Change in Pr	oduction	
B.1	No Income Effects	31.4	+1.5
B.2	No Income and Substitution Effects	31.9	+2.0
Pane	C. Other Drivers of Sectoral Innovation	on	
C.2	No Change in Markups	37.7	+7.8
C.1	No Cross-Sector Spillovers	19.7	-10.2
Pane	D. No Population Growth Slowdown	32.7	+2.8

Productivity Growth in the Future

Model's Predicted Structural Change in Employment and Innovation

Variable	1947 (-67 years)	2014	2081 (+67 years)	p.p. △ (2081-2014)
$e_m(t)$	0.598	0.338	0.197	-14.1
$e_{ns}(t)$	0.764	0.758	0.754	-0.4
$e_{rs}(t)$	0.236	0.242	0.246	+0.4
$L_m^S(t)/L^S(t)$	0.947	0.866	0.483	-38.4
$L_{rs}^{S}(t)/L^{S}(t)$	0.016	0.078	0.358	+28.0
$\frac{L_{ns}^{S}(t)/L^{S}(t)}{L_{ns}^{S}(t)}$	0.037	0.056	0.160	+10.4

- ► Structural change out of manufacturing predicted to continue
- Stable shares within services
 - income and substitution effects offset each other
- ► Scientists continue moving to RIS (markups!)

Productivity Growth in the Future

Model's Predicted Sectoral and Aggregate TFP Growth

Variable	1947	2014	2075	x_{2075}/x_{2010}
y(t)	1.00	3.03	6.14	2.02
$N_m(t)$	1.00	1.44	2.04	1.49
$N_{ns}(t)$	1.00	1.21	1.66	1.37
$N_{rs}(t)$	1.00	1.29	2.14	1.66
TFP(t)	1.00	1.30	1.91	1.47

- Re-allocation hinders output growth (lab. prod)
- ► TFP growth speeds up in services
 - Scientists drive TFP growth in NRIS
- Scientists continue moving into RIS

Plan

Related Literature

Empirical Facts

Model

Calibration

Quantitative Exercises

Conclusion

Appendix

Conclusion

- Document divergence in structural change patterns in innovation and and production employment/VA
- 2. Built a theory that rationalises these trends
 - ► Feedback between direction of tech. change and ST
 - Sectoral allocation of R&D activity depends on ST, spillovers and markups
- 3. Main results
 - ► Markpus main force behind divergent transformation paths
 - ► ST contributed to TFP slowdown (-2.0 p.p)
 - ► Market power and markups hindered TFP growth (-7.8 p.p.)
 - ► Cross-sector spillovers helped sustain TFP growth (+10.2 p.p.)

Plan

Related Literature

Empirical Facts

Model

Calibration

Quantitative Exercises

Conclusion

Appendix

Services Split By Research-Intensity

		Patents per Hour			
Industry	Description	Av. ('63-'14)	Initial ('63)	Sector	
51	Information	0.522	0.063	RI-Serv.	
48-49	Transportation & Warehousing	0.130	0.089	RI-Serv.	
54	Prof., Scientific & Technical Serv.	0.115	0.017	RI-Serv.	
52	Finance & Insurance	0.104	0.062	NRI-Serv.	
621-623	Healthcare and Social Assistance	0.058	0.056	NRI-Serv.	
NA	Others	0.050	0.040	NRI-Serv.	
55	Management of Comp. & Enterp.	0.042	0.021	NRI-Serv.	
44-45	Retail Trade	0.034	0.005	NRI-Serv.	
53	Real Estate, Rental & Leasing	0.002	0.002	NRI-Serv.	
42	Wholesale Trade	0.001	0.000	NRI-Serv.	

▶ Back to Facts

Post-Industrial Economies Observe Similar Trends

Countries included: Australia, Austria, Belgium, China, Czechia, Spain, Estonia, France, Greece, Hungary, Iceland, Italy, Korea, Mexico, the Netherlands, Norway, Poland, Portugal, Singapore, Slovakia, Slovenia, USA Back to Facts

Conditional Probabilities Robust To Different Specs.

► Cited Conditional Probabilities (has X)

		Citing Setor		
		MFG	RI-SERV	NRI-SERV
	MFG	0.92	0.56	0.72
Cited Sector	RI-SERV	0.03	0.27	0.10
	NRI-SERV	0.05	0.17	0.19

► Cited Conditional Probabilities (has XY)

		Citing Setor			
		MFG RI-SERV NRI-SERV			
	MFG	0.92	0.57	0.73	
Cited Sector	RI-SERV	0.03	0.26	0.10	
	NRI-SERV	0.05	0.16	0.17	

► Cited Conditional Prob (has X only)

		Citing Setor			
		MFG	RI-SERV	NRI-SERV	
Cited Sector	MFG	0.91	0.55	0.70	
	RI-SERV	0.04	0.27	0.10	
	NRI-SERV	0.05	0.17	0.19	

Conditional Probabilities Robust To Different Years

► Cited Probability (> 2000)

		Citing Setor		
		MFG RI-SERV NRI-SERV		
	MFG	0.92	0.56	0.72
Cited Sector	RI-SERV	0.03	0.27	0.10
	NRI-SERV	0.05	0.17	0.18

► Cited Probability (> 2010)

		Citing Setor		
		MFG	RI-SERV	NRI-SERV
	MFG	0.92	0.55	0.73
Cited Sector	RI-SERV	0.03	0.28	0.10
	NRI-SERV	0.05	0.17	0.18

▶ Back to Citations

Matching Behavior of US Economy

Sectoral Data Aggregates: 1947-2014

:	2014 TFP (1947 = 1)			2014 Relative Prices (1947 = 1)			
	MFG	RI-S	NRI-S	MFG	RI-S	NRI-S	
Moment	1.48	1.32	1.23	0.93	0.97	1.08	
	2014 Output Shares				2000 Scientist Shares		
	MFG	RI-S	NRI-S	MFG	RI-S	NRI-S	
Moment	0.33	0.16	0.51	0.59	0.25	0.16	
	1947 Output Shares			2014	2014 Output p. w. (1947 = 1)		
	MFG	RI-S	NRI-S		Aggregate		
Moment	0.60	0.09	0.031		3.18		

▶ Back to Estimation

Income Elasticity Computations

Income elasticities according to CLM specification (2021) are

$$\Omega_{i} \equiv \frac{\partial \log Y_{i}}{\partial \log Y} = \sigma + (1 - \sigma) \frac{\zeta_{i}}{\bar{\zeta}} \quad \forall i = m, s$$

$$\Omega_{k} \equiv \frac{\partial \log Y_{k}}{\partial \log p_{s} Y_{s}} = \epsilon + (1 - \epsilon) \frac{\zeta_{k}}{\bar{\zeta}_{s}} \quad \forall k = rs, ns$$

where

$$\bar{\zeta} = \sum_{i} e_{i} \zeta_{i}$$
 and $\bar{\zeta}_{s} = \sum_{k} \frac{e_{k}}{e_{s}} \zeta_{k}$

Calibrated non-homotheticity parameters imply income elasticities

	MFG	RI-S	NRI-S
1947 shares	0.67	1.01	1.00
2014 shares	0.55	1.01	1.00

TFP Growth Counterfactuals

Robustness ($\gamma = 0.30$)

		Aggregate TFP Growth (2010-1947, %)	Difference w.r.t Benchmark (p.p.)
Panel	A. Benchmark Value	29.9	
Panel	B. Drivers of Structural Change in Pr	oduction	
B.1	No Income Effects	31.6	+1.7
B.2	No Income and Substitution Effects	32.0	+2.1
Panel	C. Other Drivers of Sectoral Innovation	on	
C.2	No Change in Markups	38.1	+8.2
C.1	No Cross-Sector Spillovers	20.7	-9.2
Panel	D. No Population Growth Slowdown	32.7	+2.8

TFP Growth Counterfactuals

Robustness ($\gamma = 0.70$)

		Aggregate TFP Growth (2010-1947, %)	Difference w.r.t Benchmark (p.p.)		
Pane	I A. Benchmark Value	29.9			
Panel B. Drivers of Structural Change in Production					
B.1	No Income Effects	31.5	+1.6		
B.2	No Income and Substitution Effects	31.9	+2.0		
Pane	C. Other Drivers of Sectoral Innovation	on			
C.2	No Change in Markups	37.9	+8.0		
C.1	No Cross-Sector Spillovers	20.1	-9.8		
Pane	D. No Population Growth Slowdown	32.8	+2.9		