

Konfigurácia siete, firewall-u, VPN v OS Linux

RNDr. Jaroslav Janáček, PhD.

Obsah

- Základná konfigurácia siete v OS Linux
- Konfigurácia VLAN
- Konfigurácia bridge
- Netfilter Linux firewall
- Policy routing
- VPN

Základná konfigurácia siete

- parametre sieťových rozhraní (interface)
 - IP adresa, maska, broadcast-ová adresa
- smerovacia tabul'ka (routing table)
 - povolenie smerovania
- údaje pre prevod medzi menami a adresami
 - hosts, nsswitch.conf, DNS
- sieťové služby
 - protocols, services, inetd.conf

- ifconfig [meno]
 - zobrazí základné parametre rozhrania (alebo všetkých aktívnych)
 - a všetky (t.j. aj neaktívne)
- ifconfig meno param1 ...
 - nastaví uvedené parametre

- parametre pre ifconfig
 - adresa netmask maska broadcast br_addr
 - IP adresa, maska, broadcast-ová adresa
 - ifconfig eth0 10.0.0.1 netmask 255.255.255.0 broadcast 10.0.0.255
 - adresa/dlzka
 - dlzka = maska v tvare "počet bitov"
 - ifconfig eth0 10.0.0.1/24

- parametre pre ifconfig
 - up
 - aktivuje interface
 - down
 - deaktivuje interface
 - hw ether 00:11:22:33:44:55
 - nastaví L2 (MAC) adresu
 - mtu 1480
 - nastaví MTU (max. veľkosť rámca)

- parametre pre ifconfig
 - [-]arp
 - zapne/vypne (-) používanie ARP pre interface
 - [-]promisc
 - zapne/vypne príjem všetkých rámcov (normálne len rámce určené pre moju L2 adresu a L2 broadcast/multicast
 - pointopoint adresa
 - nastaví adresu druhej strany pre point-to-point linku
 - treba špecifikovať masku 255.255.255.255

- parametre pre ifconfig
 - add adresa/dlzka
 - pridá IPv6 adresu
 - del adresa/dlzka
 - odstráni IPv6 adresu

- vytvorenie aliasu rozhrania
 - na pridanie ďalšej IPv4 adresy
 - ifconfig eth0:1 1.2.3.4 ...
- odstránenie aliasu
 - ifconfig eth0:1 down

- ifconfig automaticky vytvorí aj záznam v smerovacej tabuľke
 - pre sieť, ak je maska <32 bitov
 - pre 1 počítač v prípade masky 32 bitov a použitia pointopoint

arp

- manipulácia s ARP cache tabuľka používaná na získavanie L2 (napr. Ethernet) adresy pre IPv4 adresu
- arp [-n] vypíše tabuľku
- arp -i eth0 -s 1.2.3.4 00:01:02:03:04:05
 - vytvorí permanentný záznam
- arp -i eth0 -d 1.2.3.4
 - vymaže záznam z tabuľky

- ip
 - súčasť balíka iproute2
 - univerzálny nástroj na konfiguráciu
 - sieťových rozhraní: ip link, ip addr
 - neighbour cache (ARP aj NDP): ip neigh
 - smerovacej tabuľky (IPv4 aj IPv6): ip route
 - tunelov: ip tunnel
 - ...

- ip link
 - konfigurácia L2 parametrov

```
# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
mode DEFAULT
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP mode DEFAULT qlen 1000
    link/ether 18:03:73:c1:16:89 brd ff:ff:ff:ff:ff
```


- ip link set meno ...
 - up | down
 - zapne / vypne rozhranie
 - -arp on | off
 - zapne / vypne ARP pre zariadenie
 - promisc on | off
 - zapne / vypne promiskuitný mód pre zariadenie
 - mtu 1400
 - nastaví MTU

- ip link set meno ...
 - address 00:01:02:03:04:05
 - nastaví L2 adresu rozhraniu
 - name novemeno
 - premenuje rozhranie

- ip addr
 - konfigurácia IPv4/IPv6 adries (L3 parametre)

```
# ip addr list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
    link/ether 18:03:73:c1:16:89 brd ff:ff:ff:ff:ff
    inet 158.195.87.39/25 brd 158.195.87.127 scope global eth0
    inet6 fe80::1a03:73ff:fec1:1689/64 scope link
        valid_lft forever preferred_lft forever
```


- ip addr add ... dev meno
 - -1.2.3.4/24
 - IPv4 adresa a dĺžka masky
 - broadcast 1.2.3.255
 - broadcastová adresa
 - broadcast +
 - vypočíta broadcastovú adresu automaticky
 - peer 3.3.3.3
 - nastaví adresu druhej strany pre point-to-point linku


```
# ip addr add 10.0.0.1/24 broadcast + dev eth0
# ip addr add 10.0.1.1 peer 10.0.1.2 dev eth0
# ip addr add 10.0.2.1 peer 10.0.2.0/24 dev eth0
# ip addr show dev eth0
2: eth0: <BROADCAST, MULTICAST, UP, LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
        link/ether 18:03:73:c1:16:89 brd ff:ff:ff:ff
    inet 158.195.87.39/25 brd 158.195.87.127 scope global eth0
    inet 10.0.0.1/24 brd 10.0.0.255 scope global eth0
    inet 10.0.1.1 peer 10.0.1.2/32 scope global eth0
    inet 10.0.2.1 peer 10.0.2.0/24 scope global eth0
    inet6 fe80::1a03:73ff:fec1:1689/64 scope link
        valid_lft forever preferred_lft forever
```

```
10.0.0.0/24 proto kernel scope link src 10.0.0.1 10.0.1.2 proto kernel scope link src 10.0.1.1 10.0.2.0/24 proto kernel scope link src 10.0.2.1
```


- ip addr del 1.2.3.4/24 dev eth0
 - odstráni adresu z rozhrania
- ip addr add fdaa::1/64 dev eth0
 - príklad ručného pridania IPv6 adresy na rozhranie

- ip neigh
 - konfigurácia neighbour cache (ARP, NDP)
 - ip -4 neigh ...
 - IPv4 (ARP)
 - ip -6 neigh ...
 - IPv6 (NDP)
 - ip neigh add 1.2.3.4 lladdr 00:01:02:03:04:05 dev eth0
 - ip neigh del 1.2.3.4 dev eth0


```
# ip neigh add 10.0.0.2 lladdr 00:01:02:03:04:05 dev eth0
# ip neigh add fdaa::2 lladdr 00:01:02:03:04:05 dev eth0
# ip neigh show
fdaa::2 dev eth0 lladdr 00:01:02:03:04:05 PERMANENT
158.195.87.115 dev eth0 lladdr d2:c5:01:00:00:07 STALE
158.195.87.126 dev eth0 lladdr 00:10:dc:ce:a3:0e REACHABLE
10.0.0.2 dev eth0 lladdr 00:01:02:03:04:05 PERMANENT
158.195.87.111 dev eth0 lladdr 00:10:dc:ce:61:60 REACHABLE
```


Perzistentné uloženie konfigurácie

- Debian / Ubuntu / ...
 - /etc/network/interfaces
- RedHat / Fedora / ...
 - /etc/sysconfig/network
 - spoločné parametre
 - /etc/sysconfig/network-scripts/ifcfg-eth0
 - parametre pre konkrétny interface

- /etc/network/interfaces
 - auto
 - medzerami oddelený zoznam interfacov, ktoré majú byť automaticky nakonfigurované
 - allow-hotplug
 - zoznam interfacov, ktoré majú byť automaticky nakonfigurované pri pripojení (vzniku)
 - iface meno-interface rodina-protokolov metóda parametre
 - konfigurácia konkrétneho interface-u

- metódy pre rodinu inet
 - loopback
 - pre lo
 - dhcp
 - získa konfiguráciu protokolom DHCP
 - static
 - address
 - netmask
 - broadcast
 - gateway

- spoločné parametre
 - pre-up príkaz
 - up | post-up príkaz
 - down | pre-down prikaz
 - post-down príkaz
- skripty v /etc/network/if-param.d/
 - vykonajú sa po vykonaní priamo uvedeného príkazu

- ifup meno-interface-u
 - nakonfiguruje zadaný interface
 - a všetky "auto" interface-y
- ifdown meno-interface-u
 - odkonfiguruje zadaný interface
 - a všetky "auto" interface-y

- route
- ip route

- route add -host adresa [gw router] [dev rozhranie]
 - pridá smerovanie na 1 počítač cez gw alebo priamo
- route add -net adresa netmask maska [gw router] [dev rozhranie]
 - pridá smerovanie na sieť
- route del -host | -net ...
 - odstráni záznam

- ip route add adresa/dlzka [via router] [dev rozhranie]
 - pridá smerovanie na počítač / sieť cez uvedený router alebo priamo
- ip route del ...
 - odstráni smerovanie
 - treba správne uviesť všetky potrebné parametre

- voľba zdrojovej adresy
 - ip route add ... src zdr adresa
 - nastaví, z akej adresy budú štandardne odchádzať packety, ak budú smerované na základe tohto záznamu
 - užitočné, ak máme na rozhraní viac adries


```
# ip route add 10.0.1.0/24 via 10.0.0.2
# ip route add 10.0.2.0/24 dev eth0
# ip route add fdaa:1::/64 via fdaa::2
# ip route add fdaa:2::/64 dev eth0
# ip route show
default via 158.195.87.126 dev eth0
10.0.0.0/24 dev eth0 proto kernel scope link src 10.0.0.1
10.0.1.0/24 via 10.0.0.2 dev eth0
10.0.2.0/24 dev eth0 scope link
158.195.87.0/25 dev eth0 proto kernel scope link src 158.195.87.39
# ip -6 route show
fdaa::/64 dev eth0 proto kernel metric 256
fdaa:1::/64 via fdaa::2 dev eth0 metric 1024
fdaa:2::/64 dev eth0 metric 1024
fe80::/64 dev eth0 proto kernel metric 256
```


Povolenie smerovania

- IPv4
 - /proc/sys/net/ipv4/ip_forward
 - 1 smerovanie zapnuté, 0 vypnuté
- IPv6
 - /proc/sys/net/ipv6/conf/all/forwarding
 - 1 smerovanie zapnuté, 0 vypnuté

```
# echo 1 > /proc/sys/net/ipv4/ip forward
```


Vybrané sieťové parametre IPv4

- /proc/sys/net/ipv4/conf/{all, eth0, ...}/
 - accept redirects
 - send_redirects
 - proxy_arp
 - automatické proxy ARP pre adresy z inej siete
 - rp_filter
 - 0 vypnutý
 - 1 strict zahodí packet, ak príde z iného rozhrania, než kam by bola smerovaná odpoveď
 - 2 loose zahodí packet, ak by nevedel poslať odpoveď

Vybrané sieťové parametre IPv6

- /proc/sys/net/ipv6/conf/{all, eth0, ...}/
 - forwarding
 - accept_ra
 - akceptovať RAdv (0 nie, 1 ak nie je router, 2 áno)
 - potrebné pre autokonfiguráciu
 - disable ipv6
 - zakazuje IPv6 na rozhraní

Prevod medzi menami a adresami

- /etc/hosts
 - lokálna databáza mien a adries
 - adresa meno alias ...

```
127.0.0.1 localhost
10.0.0.1 pocitac.domena.sk pocitac

# The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
```


Prevod medzi menami a adresami

- súbor /etc/resolv.conf
 - obsahuje nastavenie DNS resolvera (klienta)
 - domain lokálna doména
 - search dom1 dom2 ...
 - domain a search sa navzájom vylučujú
 - určujú domény, v ktorých sa skúšajú hľadať neúplné mená
 - nameserver IP_adresa
 - určuje DNS server, ktorého sa resolver bude pýtať
 - max. 3 záznamy

Prevod medzi menami a adresami

- **súbor** /etc/nsswitch.conf
 - určuje, z akých zdrojov sa berú informácie pre mapovanie medzi menami a číslami – aj medzi menami počítačov a IP adresami
 - hosts: files dns
 - najprv /etc/hosts, potom DNS

Sieťové služby

- v súbore /etc/services je priradenie názvov služieb číslam portov a protokolov
 - meno číslo portu/protokol alias
- mená protokolov sa na ich čísla mapujú pomocou súboru /etc/protocols
- programy poskytujúce sieťové služby (démony, servery) buď
 - počúvajú na príslušnom porte čakajú na požiadavky, alebo
 - ich spúšťa "superserver" inetd

- inetd sa riadi súborom /etc/inetd.conf
 - medzerami oddelené položky
 - meno typ protokol wait/nowait user prog args
 - meno názov podľa /etc/services
 - typ dgram alebo stream
 - protokol udp alebo tcp
 - wait = inetd počká na skončenie procesu, kým bude spracovávať ďalšie požiadavky na danom porte
 - nowait = inetd pri ďalšej požiadavke na porte spustí ďalšiu inštanciu programu
 - user používateľ, s ktorého UID sa má program spustiť

- prog cesta k súboru, ktorý sa má spustiť
- args argumenty (vrátane nultého meno programu)
- na spúšťanie serverov z inetd sa často využíva program tcpd, ktorý robí kontrolu prístupu k službám
 - riadi sa súbormi /etc/hosts.allow a
 /etc/hosts.deny
 - najprv sa konzultuje hosts.allow, ak sa nenájde zhoda, tak hosts.deny, ak sa nenájde zhoda ani tam, spojenie sa povolí

- štruktúra /etc/hosts.{allow,deny}
 - zoznam služieb : zoznam klientov
 - služba:
 - meno[@počítač]
 - ALL
 - klient:
 - ALL
 - počítač
 - KNOWN (známe meno)
 - UNKNOWN (neznáme meno)
 - PARANOID (meno nekorešponduje s adresou)

počítač:

- IPv4 adresa 10.0.0.1

- IPv4 adresa/maska 10.0.0.0/255.255.255.0

IPv4 adresa/dĺžka 10.0.0.0/24

- [IPv6 adresa] [fdaa:1::1]

- [IPv6 adresa]/dĺžka [fdaa:1::]/64

- 10.0.

meno abc.xyz.sk

- .xyz.sk

zoznam

- pol1, pol2 EXCEPT pol3


```
/etc/hosts.allow:
hello: 10.0.0.0/24, 127.0.0.1, [::1], [fdaa:1::]/64, aaa.xy.sk
/etc/hosts.deny:
hello: ALL
ALL: PARANOID
```


Sieťové služby

- príkaz netstat
 - výpis sieťových spojení a otvorených portov, routovacej tabuľky, štatistík, ...
 - najbežnejšie parametre
 - -n IP adresy a čísla portov vypisuje číselne (inak sa snaží konvertovať na meno)
 - -a výpis prebiehajúcich spojení aj otvorených portov čakajúcich na spojenie alebo datagram (inak len prebiehajúce)
 - -r výpis routovacej tabuľky
 - -p výpíše aj číslo príslušného procesu

- umožňuje príjem / vysielanie Ethernet-ových rámcov s VLAN tag-om (IEEE 802.1Q)
- cez jedno fyzické sieťové rozhranie je možné pripojiť viacero VLAN
- každá VLAN je reprezentovaná samostatným virtuálnym sieťovým rozhraním s vlastnou konfiguráciou

- vconfig add rozhranie vlan_id
 - vytvorí nové vlan rozhranie pre VLAN s číslom vlan id
- vconfig rem vlan_rozhranie
 - odstráni VLAN rozhranie

- vconfig set_name_type typ
 - nastaví typ pre tvorbu mena VLAN rozhrania
 - VLAN PLUS VID vlan0002
 - VLAN PLUS VID NO PAD vlan2
 - DEV_PLUS_VID eth0.0002
 - DEV PLUS VID NO PAD eth0.2

- v Debian / Ubuntu
 - rozpozná meno VLAN rozhrania v /etc/network/interfaces
 - automaticky vytvorí príslušné VLAN rozhranie
 - pri menách typu vlan... potrebuje informáciu o fyzickom rozhraní
 - vlan-raw-device eth0

- umožňuje vytvoriť softvérový "switch"
- často sa využíva napr. pri virtualizácii
 - na pripojenie virtuálnych počítačov k fyzickej sieti
- podporuje aj STP
 - je možné využiť aj na pripojenie do redundantnej sieťovej infraštruktúry pomocou viacnásobných fyzických liniek

- brctl show
 - ukáže konfiguráciu bridge-ov
- brctl showmacs
 - vypíše tabuľku L2 adries na jednotlivých portoch
- brctl addbr meno
 - vytvorí nový bridge
- brctl delbr meno
 - zruší bridge

- brctl addif meno br meno rozhr
 - pridá rozhranie ako port do bridge-u
- brctl delif meno br meno rozhr
 - odstráni port bridge-u
- brctl stp meno_br on | off
 - zapne / vypne STP
- brctl showstp meno br
 - vypíše parametre a stav STP


```
ifconfig eth0.10 up
# ifconfig eth1 up
# brctl addbr br0
# brctl addif br0 eth0.10
# brctl addif br0 eth1
# brctl stp br0 on
# brctl show
bridge name bridge id
                                 STP enabled
                                              interfaces
br0
             8000.180373c11689
                                              eth0.10
                                 yes
                                              eth1
# ifconfig br0 10.0.0.5 netmask 255.255.255.0 broadcast 10.0.0.255
# brctl delif br0 eth1
# brctl delif br0 eth0.10
# brctl delbr br0
```


Bridge v Debian / Ubuntu

/etc/network/interfaces

```
auto br0
iface br0 inet static
    address 192.168.1.2
    network 192.168.1.0
    netmask 255.255.255.0
    broadcast 192.168.1.255
    bridge_ports eth0 eth1
```


- úlohy firewall-u na koncovom počítači
 - filtrovať prichádzajúcu komunikáciu
 - filtrovať odchádzajúcu komunikáciu
- úlohy firewall-u na router-i
 - filtrovať prechádzajúcu komunikáciu
 - NAT (preklad adries)

- stateless firewall
 - každý packet posudzuje samostatne
 - na základe údajov v hlavičkách
- stateful firewall
 - udržiava prehľad o "spojeniach"
 - packet posudzuje v súvislosti s predchádzajúcimi
 - umožňuje implementovať komplexnejšiu politiku
 - je náročnejší na pamäť a procesorový čas
 - je náchylný na DoS

- súčasť jadra (kernelu) systému
 - subsystém netfilter
- stateful firewall
 - implementuje connection tracking
 - TCP, UDP
 - pomocné moduly pre niektoré "problematické" aplikačné protokoly (napr. FTP)
- aj stateless firewall
 - bez využitia connection tracking-u

- Connection tracking klasifikácia packetu
 - NEW
 - packet je prvým packetom "spojenia"
 - ESTABLISHED
 - packet je súčasťou už existujúceho "spojenia"
 - RELATED
 - packet je prvým packetom očakávaného "spojenia"
 - UNTRACKED
 - úmyselne nesledovaný
 - INVALID

- Connection tracking tabuľka spojení
 - IP adresa zdroja a cieľa
 - L4 protokol
 - bližšie informácie z L4
 - pre TCP a UDP čísla portov
 - timeout
 - stav

- Connection tracking
 - ak sa údaje z packetu v tabuľke nenachádzajú, vytvorí sa záznam o novom "spojení"
 - ak sa nachádzajú, packet je súčasťou existujúceho alebo očakávaného "spojenia", aktualizuje sa timeout a stav
 - po vypršaní timeout-u sa záznam zruší

- Connection tracking default timeout
 - TCP
 - od 10s do 5 dní
 - podľa stavu TCP spojenia
 - UDP
 - 30s (počiatočný)
 - 180s (ak ide o "dlhšiu" komunikáciu)
 - ICMP: 30s
 - generický: 10m

/proc/sys/net/netfilter/

```
nf_conntrack_generic_timeout: 600
nf_conntrack_icmp_timeout: 30
nf_conntrack_tcp_timeout_close: 10
nf_conntrack_tcp_timeout_close_wait: 60
nf_conntrack_tcp_timeout_established: 432000
nf_conntrack_tcp_timeout_fin_wait: 120
nf_conntrack_tcp_timeout_last_ack: 30
nf_conntrack_tcp_timeout_max_retrans: 300
nf_conntrack_tcp_timeout_syn_recv: 60
nf_conntrack_tcp_timeout_syn_sent: 120
nf_conntrack_tcp_timeout_time_wait: 120
nf_conntrack_tcp_timeout_unacknowledged: 300
nf_conntrack_udp_timeout: 30
nf_conntrack_udp_timeout_stream: 180
```


conntrack -L


```
1 26 src=192.168.9.11 dst=1.1.1.1 type=8 code=0 id=6689
[UNREPLIED] src=1.1.1.1 dst=192.168.9.11 type=0 code=0 id=6689 mark=0
         6 431715 ESTABLISHED src=192.168.9.11 dst=158.195.87.39
tcp
sport=59189 dport=22 src=158.195.87.39 dst=192.168.9.11 sport=22
dport=59189 [ASSURED] mark=0
        17 23 src=192.168.9.11 dst=1.1.1.1 sport=36040 dport=3333
[UNREPLIED] src=1.1.1.1 dst=192.168.9.11 sport=3333 dport=36040 mark=0
conntrack v0.9.14 (conntrack-tools): 3 flow entries have been shown.
# cat /proc/net/ip conntrack
        1 23 src=192.168.9.11 dst=1.1.1.1 type=8 code=0 id=6689
[UNREPLIED] src=1.1.1.1 dst=192.168.9.11 type=0 code=0 id=6689 mark=0
         6 431712 ESTABLISHED src=192.168.9.11 dst=158.195.87.39
tcp
sport=59189 dport=22 src=158.195.87.39 dst=192.168.9.11 sport=22
dport=59189 [ASSURED] mark=0
        17 21 src=192.168.9.11 dst=1.1.1.1 sport=36040 dport=3333
udp
[UNREPLIED] src=1.1.1.1 dst=192.168.9.11 sport=3333 dport=36040 mark=0
```


- Počas spracovania packetu sú na viacerých miestach volané funkcie subsystému netfilter, ktoré môžu
 - zastaviť spracovanie packetu
 - povoliť pokračovanie spracovania packetu
 - zmeniť niektoré atribúty packetu

- činnosť riadená pravidlami v niekoľkých tabuľkách
 - filter filtrovanie packetov
 - nat pravidlá pre NAT
 - mangle úprava packetov, značkovanie
 - raw vylúčenie z connection tracking-u
 - security bezpečnostné značkovanie (SELinux)

- každá tabuľka obsahuje reťaze (chains)
 - ret'az obsahuje postupnost' pravidiel
 - reťaze je možné pridávať
 - členenie, sprehľadnenie pravidiel
 - dosiahnutie komplikovanejšieho súboru pravidiel
 - fixné reťaze majú nastaviteľnú default akciu
 - pre prípad, že akcia nie je zmenená niektorým pravidlom

- filter
 - INPUT
 - packety určené pre tento počítač prichádzajpce
 - OUTPUT
 - packety vytvorené týmto počítačom odchádzajúce
 - FORWARD
 - packety prechádzajúce týmto počítačom smerované

- nat
 - PREROUTING
 - prichádzajúce packety pred smerovaním
 - umožňuje meniť cieľ (DNAT)
 - OUTPUT
 - vytvorené packety pred smerovaním
 - POSTROUTING
 - odchádzajúce packety po smerovaní
 - umožňuje meniť zdroj (SNAT)

- mangle
 - PREROUTING
 - OUTPUT
 - INPUT
 - FORWARD
 - POSTROUTING

- raw
 - PREROUTING
 - OUTPUT
- security
 - INPUT
 - OUTPUT
 - FORWARD

Pravidlo

- test
 - môže pozostávať z viacerých podmienok, ak sú všetky splnené, pravidlo sa aplikuje
- cieľ (akcia)
 - ACCEPT pokračovať v spracovaní
 - DROP zahodiť packet
 - meno reťaze pokračovať pravidlami inej reťaze
 - RETURN pokračovať v predošlej reťazi

- prechádzanie reťaze
 - zisti, či test pravidla sedí
 - ak nie, pokračuj ďalším pravidlom
 - ak áno, použi cieľ
 - na konci fixnej reťaze
 - použi default akciu
 - na konci inej reťaze
 - pokračuj ďalším pravidlom do predošlej reťaze

- iptables [-t tab] príkaz
 - tab tabuľka (default: filter)
 - príkaz
 - -A reťaz pravidlo pridá na koniec reťaze
 - -D reťaz pravidlo vymaže pravidlo
 - -D ret'az poradie vymaže pravidlo
 - -I reťaz [poradie] pravidlo vloží pravidlo (def. 1)
 - -R reťaz poradie pravidlo nahradí pravidlo novým

- -L [reťaz] [voľby] vypíše pravidlá
- -F [ret'az] vymaže všetky pravidlá
- -Z [reťaz [poradie]] vynuluje počítadlá pre pravidlo
- -N reťaz vytvorí novú reťaz
- -X ret'az zruší ret'az
- -P ret'az akcia nastaví default akciu ret'azi (policy)

- voľby

- -n neprevádzať čísla (adresy, porty) na mená
- ¬∨ zobraziť detaily
- -x zobraziť presné hodnoty
- --line-numbers zobraziť čísla riadkov (pravidiel)

- pravidlo: testy -j cieľ
- test
 - [!] ¬p protokol L4 protokol (napr. tcp, udp, icmp)
 - [!] -s adresa/maska zdrojová adresa packetu
 - [!] -d adresa/maska cieľová adresa packetu
 - [!] -i rozhranie[+] vstupné sieťové rozhranie
 - [!] -o rozhranie[+] výstupné sieťové rozhranie
 - [!] -f iný ako prvý fragment packetu
 - m modul parametre rozširujúci modul s testom

modul tcp

- [!] --sport port[:port] zdrojový port
- [!] --dport port[:port] cieľový port
- [!] --tcp-flags mask val TCP príznaky
 - (SYN, ACK, FIN, RST, URG, PSH, ALL, NONE)
- [!] --syn nastavený SYN príznak (bez ACK,
 FIN, RST) prvý packet TCP spojenia

modul udp

```
    - [!] --sport port[:port] - zdrojový port
    - [!] --dport port[:port] - cieľový port
```

modul icmp

```
- [!] --icmp-type type/code- [!] --icmp-type typename
```


- modul multiport
 - umožňuje uviesť viac portov a rozsahov portov
 - pre tcp a udp
 - [!] --sports port, port, port: port, ... zdrojové porty
 - [!] --dports port, port, port: port, ... ciel'ové porty
 - [!] --ports port, port, port: port, ... nejaké porty

- modul state
 - [!] --state stav connection tracking klasifikácia
 - NEW
 - ESTABLISHED
 - RELATED
 - UNTRACKED
 - INVALID
 - môže ich byť aj viac oddelených čiarkou

- modul conntrack
 - [!] --ctstate stav connection tracking
 - novšia náhrada modulu state
 - umožňuje aj ďalšie jemnejšie kontrolovanie stavu

NAT

- source-NAT (SNAT)
 - prepisovanie zdrojovej IP adresy a portu
 - umožňuje komunikovať zo siete so súkromnými adresami do Internet-u
- destination-NAT (DNAT)
 - prepisovanie cieľovej IP adresy a portu
 - umožňuje prístup z Internet-u na služby vo vnútornej sieti so súkromnými adresami

SNAT

- prvý packet spojenia (smerom von)
 - použije sa reťaz POSTROUTING v tabuľke nat na nájdenie pravidla pre prepis zdrojovej adresy
 - prepíše sa zdrojová adresa a port
 - údaje sa uložia do conntrack tabuľky
- ďalší packet smerom von
 - zdrojová adresa sa prepíše na hodnoty z conntrack tabuľky
- packet smerom dnu
 - cieľová adresa sa prepíše inverzne podľa conntrack tabuľky

DNAT

- prvý packet spojenia (smerom dnu)
 - použije sa reťaz PREROUTING alebo OUTPUT tabuľky nat na nájdenie pravidla pre prepis cieľovej adresy
 - prepíše sa cieľová adresa a port
 - údaje sa uložia do conntrack tabuľky
- ďalší packet spojenia smerom dnu
 - cieľová adresa a port sa prepíšu podľa conntrack tabuľky
- packet smerom von
 - zdrojová adresa a port sa prepíšu podľa conntrack tabuľky

cieľ SNAT

- --to-source ipaddr[-ipaddr][:port[-port]]
 - rozsah IP adries a prípadne portov, na ktoré sa môže prepísať

cieľ MASQUERADE

- --to-ports port[-port]
 - ako SNAT na vlastnú IP adresu + vymazanie spojení pri down

cieľ DNAT

- --to-destination ipaddr[-ipaddr][:port[-port]]
 - rozsah IP adries a prípadne portov, na ktoré sa môže prepísať

- problémy s niektorými aplikačnými protokolmi
 - ak používajú IP adresy a/alebo porty na aplikačnej vrstve
 - napr. FTP
 - potrebujú pomocný modul pre netfilter
 - analýza L7 protokolu a generovanie očakávaných spojení
 - modifikácia údajov L7 protokolu podľa NAT informácií v conntrack tabuľke
 - alebo musia na aplikačnej vrstve detegovať NAT a prospôsobiť sa (napr. SIP)

cieľ LOG

- odošle informáciu o packete do log-u (a pokračuje ďalej)
- --log-level level priorita logu
- --log-prefix prefix textový prefix správy
- --log-uid do správy pridá aj uid vlastníka socket-u, z ktorého bol packet odoslaný
- --log-tcp-sequence
- --log-tcp-options
- --log-ip-options

Ochrana koncového počítača

```
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT
iptables -P FORWARD DROP
iptables -F
iptables -A INPUT -i lo -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -s 192.168.0.0/24 -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT
iptables -A OUTPUT -m state -state ESTABLISHED, RELATED -j ACCEPT
iptables -A OUTPUT -p tcp -m multiport --dports 80,443,53 -j ACCEPT
iptables -A OUTPUT -p udp --dport 53 -d 192.168.0.1 -j ACCEPT
iptables -A OUTPUT -j LOG --log-prefix "podozrivy packet: "
                                                                    88
```



```
iptables -F
iptables -X
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP
iptables -A INPUT -i lo -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
iptables -A INPUT -i adm -p tcp --dport 22 -s 10.0.2.0/24 -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT
iptables -A OUTPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
iptables -A OUTPUT -p udp -d 10.0.1.5 --dport 53 -j ACCEPT
iptables -A FORWARD -s 10.0.0.0/24 ! -i int -j DROP
iptables -A FORWARD -s 10.0.1.0/24 ! -i dmz -j DROP
iptables -A FORWARD -s 10.0.2.0/24 ! -i adm -j DROP
iptables -A FORWARD -m state --state ESTABLISHED, RELATED -j ACCEPT
```



```
iptables -N www
iptables -N mail
iptables -N dns
iptables -N dnscache
iptables -N acclocal
iptables -N pcout
iptables -N dmzout
iptables -N admout
iptables -A FORWARD -d 10.0.1.2 -j www
iptables -A FORWARD -d 10.0.1.3 -j mail
iptables -A FORWARD -d 10.0.1.4 -j dns
iptables -A FORWARD -d 10.0.1.5 -j dnscache
iptables -A FORWARD -s 10.0.2.0/24 -d 10.0.1.0/24 -j ACCEPT
iptables -A FORWARD -s 10.0.0.0/24 -o ext -j pcout
iptables -A FORWARD -s 10.0.1.0/24 -o ext -j dmzout
iptables -A FORWARD -s 10.0.2.0/24 -o ext -j admout
```



```
iptables -A www -p tcp -m multiport --dports 80,443 -j ACCEPT

iptables -A mail -p tcp -m multiport --dports 25,110,143,995,993 -j
ACCEPT

iptables -A dns -p udp --dport 53 -j ACCEPT

iptables -A dns -p tcp --dport 53 -j ACCEPT

iptables -A dnscache -p udp --dport 53 -j acclocal

iptables -A dnscache -p tcp --dport 53 -j acclocal

iptables -A acclocal -s 10.0.0.0/24 -j ACCEPT

iptables -A acclocal -s 10.0.2.0/24 -j ACCEPT
```



```
iptables -N commonout
iptables -A commonout -p tcp --dport 80 -j ACCEPT
# lepšie by bolo špecifikovať presnejšie adresy, odkiaľ sa budú
# preberať aktualizácie OS, aplikácií, ...
iptables -A dmzout -j commonout
iptables -A dmzout -s 10.0.1.5 -p udp --dport 53 -j ACCEPT
iptables -A dmzout -s 10.0.1.5 -p tcp --dport 53 -j ACCEPT
iptables -A dmzout -s 10.0.1.3 -p tcp --dport 25 -j ACCEPT
iptables -A admout -j commonout
iptables -A admout -p udp --dport 53 -j ACCEPT
iptables -A admout -p tcp --dport 53 -j ACCEPT
iptables -A pcout -j commonout
iptables -A pcout -p tcp -m multiport --dports 80,443 -j ACCEPT
```



```
iptables -t nat -F
iptables -t nat -A POSTROUTING -s 10.0.0.0/24 -o ext -j SNAT
--to-source 1.2.3.4
iptables -t nat -A POSTROUTING -s 10.0.1.0/24 -o ext -j SNAT
--to-source 1.2.3.4
iptables -t nat -A POSTROUTING -s 10.0.2.0/24 -o ext -j SNAT
--to-source 1.2.3.4
iptables -t nat -A PREROUTING -i ext -p tcp -m multiport --dports
80,443 - DNAT --to-destination 10.0.1.2
iptables -t nat -A PREROUTING -i ext -p tcp -m multiport --dports
25,110,143,993,995 -j DNAT --to-destination 10.0.1.3
iptables -t nat -A PREROUTING -i ext -p udp --dport 53 -j DNAT
--to-destination 10.0.1.4
iptables -t nat -A PREROUTING -i ext -p tcp --dport 53 -i DNAT
--to-destination 10.0.1.4
```


- modul length
 - [!] --length dĺžka[:dĺžka] ak je dĺžka packetu v uvedenom rozsahu
- modul mac
 - [!] --mac-source L2adresa zdrojová L2 (MAC) adresa
- modul ttl testuje TTL packetu
 - [!] --ttl-eq *ttl*
 - --ttl-gt *ttl*
 - --ttl-lt *ttl*

modul hashlimit

- umožňuje obmedziť počet packetov za jednotku času za skupinu zdrojových/cieľových adries/portov
- --hashlimit-name *meno* **definuje meno pre limit**
- --hashlimit-upto počet/second|minute|hour|day
- --hashlimit-above počet/second|minute|hour|day
- --hashlimit-burst počet max. počiatočný počet
- -- hashlimit-mode {srcip|srcport|dstip|dstport},...
 - podľa čoho sa budú tvoriť skupiny
- --hashlimit-srcmask dĺžka
- --hashlimit-dstmask dĺžka
 - aká veľká časť adresy sa zohľadní

iptables -A INPUT -p icmp --icmp-type echo-request -m hashlimit
--hashlimit-name icmp --hashlimit-above 30/minute --hashlimit-burst
3 --hashlimit-mode srcip -j DROP

```
$ ping 158.195.87.39
PING 158.195.87.39 (158.195.87.39) 56(84) bytes of data.
64 bytes from 158.195.87.39: icmp req=1 ttl=62 time=13.1 ms
64 bytes from 158.195.87.39: icmp req=2 ttl=62 time=14.3 ms
64 bytes from 158.195.87.39: icmp req=3 ttl=62 time=14.8 ms
64 bytes from 158.195.87.39: icmp req=4 ttl=62 time=13.9 ms
64 bytes from 158.195.87.39:
                             icmp req=5 ttl=62 time=17.9 ms
64 bytes from 158.195.87.39:
                             icmp req=7 ttl=62 time=13.8 ms
64 bytes from 158.195.87.39: icmp req=9 ttl=62 time=12.1 ms
64 bytes from 158.195.87.39:
                             icmp req=11 ttl=62 time=12.3 ms
64 bytes from 158.195.87.39:
                             icmp req=13 ttl=62 time=14.7 ms
                             icmp req=15 ttl=62 time=15.1 ms
64 bytes from 158.195.87.39:
```

```
# cat /proc/net/ipt_hashlimit/icmp
59 158.195.87.244:0->0.0.0.0:0 23424 192000 64000
```


- modul recent
 - umožňuje vytvárať zoznamy IP adries a následne voči nim iné IP adresy porovnávať
 - napr. na detekciu skenovania siete a odfiltrovanie útočníka
 - ak pošle packet na honeypot, tak mu zahodíme všetky packety na reálne služby
 - na port-knocking
 - pred povolením prístupu napr. na ssh musí administrátor poslať niečo na iný port/adresu

modul recent

- --name meno meno pre zoznam
- --set pridá zdrojovú IP adresu do zoznamu
- --rdest namiesto zdrojovej použije cieľovú adr.
- [!] --rcheck overí, či je adresa v zozname
- [!] --update ako rcheck a aktualizuje zoznam
- [!] --remove ako rcheck a odstráni zo zoznamu
- -- seconds sec obmedzí sa na posledných sec sekúnd
- --hitcount hits overí, či je z adresy zaznamenaných aspoň hits packetov
- -rttl overí, či TTL packetu zodpovedá TTL prvého zaznamenaného
- -reap vymaže záznamy o packetoch staršie ako čas v --seconds


```
# iptables -A INPUT -p udp --dport 3333 -m recent --name knock3333
--set
# iptables -A INPUT -p tcp --dport 22 -m recent --name knock3333
--rcheck --seconds 30 -j ACCEPT

# cat /proc/net/xt_recent/knock3333
src=158.195.87.244 ttl: 62 last_seen: 89813806 oldest_pkt: 4
89671926, 89679310, 89810567, 89813806
```


cieľ NOTRACK

- zabráni vytvoreniu záznamu v conntrack tabuľke a klasifikácii packetu
- len v raw tabuľke

cieľ REDIRECT

- prepíše cieľovú adresu na 127.0.0.1
- --to-ports port[-port] prepíše cieľový port
 na niektorý z uvedeného rozsahu (inak nemení)

- cieľ REJECT
 - zahodí packet (ako DROP), ale pošle naspäť ICMP
 - --reject-with typ
 - icmp-net-unreachable
 - icmp-host-unreachable
 - icmp-port-unreachable (default)
 - icmp-proto-unreachable
 - icmp-net-prohibited
 - icmp-host-prohibited
 - icmp-admin-prohibited

cieľ MARK

- umožňuje označovať packety 32-bit číslom
- --set-mark hodn[/maska] x=(x&~m)|h
- -- set-xmark $hodn[/maska] x=(x\&-m)^h$
- --and-mark hodn, --or-mark hodn,
 --xor-mark hodn

modul mark

- [!] --mark hodn[/maska] - zistí, či značka packetu
zodpovedá ((x & mask) == hodn)

cieľ TTL

- modifikuje TTL packetu
- --ttl-set hodnota
- --ttl-dec hodnota
- --ttl-inc hodnota

cieľ TEE

- vytvorí a pošle kópiu packetu
- --gateway IPadresa kam poslať musí byť "sused"

cieľ TCPMSS

- prípadne zníži hodnotu MSS v TCP SYN packete
- --set-mss hodnota zníži MSS ak je viac
- --clamp-mss-to-pmtu automaticky určí
 hranicu ako PMTU 40B

cieľ SECMARK

- umožňuje packetu priradiť SELinux kontext
- v tabuľke security
- potom je možné v SELinux politike určovať práva na prijatie/odoslanie packetu procesom
- --selctx kontext


```
admin@debian:~$ ssh 192.168.122.1 port 22: Connection refused

root@debian:~# iptables -t security -A INPUT -p tcp --sport 22 -j

SECMARK --selctx system_u:object_r:ssh_client_packet_t:s0

root@debian:~# iptables -t security -A OUTPUT -p tcp --dport 22 -j

SECMARK --selctx system_u:object_r:ssh_client_packet_t:s0

admin@debian:~$ ssh 192.168.122.1 -l jerry

jerry@192.168.122.1's password:

Linux jerry 3.2.0-4-686-pae #1 SMP Debian 3.2.63-2+deb7u1 i686
...
```


- ip6tables
 - ako iptables, ale pre IPv6
 - tabuľky raw, mangle, filter, security
 - nemá nat (zatiaľ)
 - rovnaké príkazy
 - rovnaké (+-) testy a ciele
 - adresy sú IPv6

Netfilter – Linux firewall

- iptables-save [-t table]
 - vypíše celú tabuľku (alebo všetky) na výstup
- iptables-restore [-T table]
 - prečíta tabuľku/y zo vstupu a vloží do kernelu
- ip6tables-save [-t table]
 - vypíše celú tabuľku (alebo všetky) na výstup
- ip6tables-restore [-T table]
 - prečíta tabuľku/y zo vstupu a vloží do kernelu

Netfilter & bridge

- aj pakety preposlané bridge-om (IPv4, IPv6) sú spracované netfilter-om
 - umožňuje kontrolovať aj tok medzi jednotlivými portami bridge-u (filter/FORWARD)
 - modul physdev
 - [!] --physdev-in rozhranie
 - [!] --physdev-out rozhranie

- štandardne sa smerovanie robí len na základe cieľovej adresy
- policy routing umožňuje mať viac smerovaích tabuliek a zvoliť jednu z nich na základe niektorých parametrov
 - najrobustnejšie podľa značky packetu, ktorá sa nastavuje pomocou cieľa MARK

- routovacie tabuľky
 - local lokálne adresy, broadcasty
 - main hlavná routovacia tabuľka
 - default prázdna
 - cache obsahuje aktuálne používané záznamy pre konkrétne ciele, vytvára sa automaticky
 - číslo vlastná (1-252)
- ip route ... table tabuľka

- pravidlá
 - priorita určuje poradie, v akom sa aplikujú
 - selektor určuje podmienku, za ktorej sa aplikuje
 - fwmark hodnota
 - akcia zvolí smerovaciu tabuľku
 - table main
 - table 100

• ip rule add|del|show selektor akcia

ip rule show 0: from all lookup local 32766: from all lookup main 32767: from all lookup default

pridanie pravidla s priotitou 100: ak značka = 100, použi tabuľku 100 # ip rule add pref 100 fwmark 100 table 100

ip rule show

```
0: from all lookup local
100: from all fwmark 0x64 lookup 100
32766: from all lookup main
32767: from all lookup default
```

```
odstránenie pravidla s prioritou 100 # ip rule del pref 100
```


IPv6 tunelovanie

- využitie 6to4 na získanie prístupu do IPv6
 - k IPv4 adrese aa.bb.cc.dd je pridelená IPv6 sieť s adresou 2002:aabb:ccdd::/48
 - IPv6 packety sa tunelujú cez IPv4 Internet
 - do iných sietí typu 6to4 prostredníctvom gateway-a s príslušnou IPv4 adresou
 - do IPv6 Internetu cez 192.88.99.1 (anycast)
 - v Linuxe pomocou tunelu typu sit

IPv6 tunelovanie

ip tunnel add tun6to4 mode sit local 158.195.87.39 remote any

```
# ip link set tun6to4 up
# ip addr add 2002:9ec3:5727::1/16 dev tun6to4
# ip route add 2000::/3 via ::192.88.99.1 dev tun6to4
# ip -6 route show
::/96 via :: dev tun6to4 metric 256
2002::/16 dev tun6to4 proto kernel metric 256
2000::/3 via ::192.88.99.1 dev tun6to4 metric 1024
fe80::/64 dev eth0 proto kernel metric 256
fe80::/64 dev vnet0 proto kernel metric 256
fe80::/64 dev dummy0 proto kernel metric 256
fe80::/64 dev tun6to4 proto kernel metric 256
# ping6 -n www.google.sk
PING www.google.sk(2a00:1450:4001:807::101f) 56 data bytes
64 bytes from 2a00:1450:4001:807::101f: icmp seq=1 ttl=59 time=25.6 ms
64 bytes from 2a00:1450:4001:807::101f: icmp seq=2 ttl=59 time=42.0 ms
```


tcpdump -nlp -i eth0

IPv6 tunelovanie

```
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
21:58:00.035953 TP 158.195.87.39.48184 > 158.195.18.163.53: 31764+ AAAA?
www.google.sk. (31)
21:58:00.036826 IP 158.195.18.163.53 > 158.195.87.39.48184: 31764 1/4/4 AAAA
2a00:1450:4001:807::101f (205)
21:58:00.037099 IP 158.195.87.39 > 192.88.99.1: IP6 2002:9ec3:5727::1 >
2a00:1450:4001:807::101f: ICMP6, echo request, seg 1, length 64
21:58:00.059438 IP 192.88.99.1 > 158.195.87.39: IP6 2a00:1450:4001:807::101f >
2002:9ec3:5727::1: ICMP6, echo reply, seq 1, length 64
21:58:01.038605 IP 158.195.87.39 > 192.88.99.1: IP6 2002:9ec3:5727::1 >
2a00:1450:4001:807::101f: ICMP6, echo request, seg 2, length 64
21:58:01.060369 IP 192.88.99.1 > 158.195.87.39: IP6 2a00:1450:4001:807::101f >
2002:9ec3:5727::1: ICMP6, echo reply, seq 2, length 64
```


IPv6 router

- **démon** radvd
 - zabezpečuje posielanie Router Advertisement správ
 - pomocou nich sa automaticky nakonfigurujú klienti
 - konfigurácia v /etc/radvd.conf

```
interface eth0 {
  AdvSendAdvert on;
  prefix 2002:9ec3:5727::/64 {
    AdvOnLink on;
    AdvAutonomous on;
  };
};
```


IPv6 router

```
# ip addr add 2002:9ec3:5727::1/64 dev eth0
# ip -6 addr show
1: lo: <LOOPBACK, UP, LOWER UP> mtu 16436
    inet6 ::1/128 scope host
       valid lft forever preferred lft forever
2: eth0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 glen 1000
    inet6 2002:9ec3:5727::1/64 scope global
       valid lft forever preferred lft forever
    inet6 fe80::1a03:73ff:fec1:1689/64 scope link
       valid lft forever preferred lft forever
96: tun6to4: <NOARP, UP, LOWER UP> mtu 1480
    inet6 2002:9ec3:5727::1/16 scope global
       valid lft forever preferred lft forever
    inet6 :: 158.195.87.39/128 scope global
       valid lft forever preferred lft forever
```


IPv6 router

```
# ip -6 route show
::/96 via :: dev tun6to4 metric 256
2002:9ec3:5727::/64 dev eth0 proto kernel metric 256
2002::/16 dev tun6to4 proto kernel metric 256
2000::/3 via ::192.88.99.1 dev tun6to4 metric 1024
fe80::/64 dev eth0 proto kernel metric 256
fe80::/64 dev vnet0 proto kernel metric 256
fe80::/64 dev dummy0 proto kernel metric 256
fe80::/64 dev tun6to4 proto kernel metric 256
fe80::/64 dev tun6to4 proto kernel metric 256
# service radvd start
Starting radvd: radvd.
```


IPv6 klient

```
# ip -6 addr show dev eth0
2: eth0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 glen 1000
    inet6 2002:9ec3:5727:0:21c:25ff:fe97:1166/64 scope global dynamic
      valid lft 86286sec preferred lft 14286sec
    inet6 fe80::21c:25ff:fe97:1166/64 scope link
      valid lft forever preferred lft forever
# ip -6 route show
2002:9ec3:5727::/64 dev eth0 proto kernel metric 256 expires 86289sec
fe80::/64 dev eth0 proto kernel metric 256
fe80::/64 dev wlan0 proto kernel metric 256
fe80::/64 dev dummy1 proto kernel metric 256
default via fe80::1a03:73ff:fec1:1689 dev eth0 proto kernel metric 1024
expires 1683sec
# ping6 -n www.google.sk
PING www.google.sk(2a00:1450:4001:807::100f) 56 data bytes
64 bytes from 2a00:1450:4001:807::100f: icmp seq=1 ttl=58 time=21.6 ms
64 bytes from 2a00:1450:4001:807::100f: icmp seq=2 ttl=58 time=21.2 ms
```


VPN v OS Linux

úloha

- vytvoriť kryptograficky chránený komunikačný kanál, cez ktorý je možné posielať sieťovú komunikáciu
 - · dôvernosť, integrita, autentifikácia koncov

• použitie

- prepojenie sietí cez nedôveryhodnú sieť (Internet)
- pripojenie počítača (road warrior) zvonku do internej siete

VPN v OS Linux

VPN v OS Linux

- príklad riešení
 - OpenVPN
 - multiplatformové open source riešenie
 - viruálne sieťové rozhranie (tun, tap)
 - výber paketov riešený smerovaním
 - strongSwan
 - IPSec (IKEv1, IKEv2)
 - využíva podporu IPSec v kerneli
 - výber paketov riešený IPSec politikou v kerneli

- komunikačný kanál
 - UDP (preferovaný)
 - TCP
 - TCP cez HTTPS proxy (CONNECT)
- manažment kľúčov
 - staticky (manuálne)
 - dynamicky (po vzore TLS)
- autentifikácia
 - PKI
 - meno + heslo (pomocou skriptu)

- konfigurácia typicky v
 /etc/openvpn/meno.conf
- /etc/default/openvpn
 - AUTOSTART="..." zoznam VPN, ktoré sa majú automaticky spustiť pri štarte služby openvpn
- zapnutie / vypnutie konkrétnej VPN
 - service openvpn start meno
 - service openvpn stop meno


```
#konfiguracia pre rA
```

proto udp
port 1194
dev tun
ifconfig 192.168.200.1 192.168.200.2
route 10.1.0.0 255.255.0.0
ping 15
ping-restart 60

tls-server
ca ca.pem
dh dh1024.pem
cert siteA-cert.pem
key siteA-key.pem
ns-cert-type client

#konfiguracia pre rB

remote 158.195.87.39
proto udp
port 1194
dev tun
ifconfig 192.168.200.2 192.168.200.1
route 10.0.0.0 255.255.0.0
ping 15
ping-restart 60

tls-client
ca ca.pem
cert siteB-cert.pem
key siteB-key.pem
ns-cert-type server

- poznámky k certifikátom
 - dôležité je, aby bol v certifikátoch uvedený správny typ (alebo žiadny)
 - certifikát koreňovej CA aj všetkých medzistupňov musí byť v súbore "ca", v súbore "cert" len vlastný
 - ak by sa použili iné koreňové CA, budú potrebné všetky (aby vedel overiť aj partnera)


```
# service openvpn start siteBA
Starting virtual private network daemon: siteBA.
# ip addr show dev tun0
121: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500
qdisc pfifo_fast state UNKNOWN qlen 100
        link/none
        inet 192.168.200.2 peer 192.168.200.1/32 scope global tun0
# ip route show dev tun0
10.0.0.0/16 via 192.168.200.1
192.168.200.1 proto kernel scope link src 192.168.200.2
# ping 192.168.200.1
PING 192.168.200.1 (192.168.200.1) 56(84) bytes of data.
64 bytes from 192.168.200.1: icmp_req=1 ttl=64 time=0.488 ms
64 bytes from 192.168.200.1: icmp_req=2 ttl=64 time=0.551 ms
```


tcpdump -nlp -i tun0 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on tun0, link-type RAW (Raw IP), capture size 65535 bytes 18:51:12.501403 IP 192.168.200.2 > 192.168.200.1: ICMP echo request, id 2563, seq 1, length 64 18:51:12.501871 IP 192.168.200.1 > 192.168.200.2: ICMP echo reply, id 2563, seq 1, length 64 18:51:13.500416 IP 192.168.200.2 > 192.168.200.1: ICMP echo request, id 2563, seq 2, length 64 18:51:13.500934 IP 192.168.200.1 > 192.168.200.2: ICMP echo reply, id 2563, seq 2, length 64

length 125


```
# tcpdump -nlp -i eth0
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535
bytes
18:53:51.925542 IP 158.195.87.112.1194 > 158.195.87.39.1194: UDP,
length 125
18:53:51.925866 IP 158.195.87.39.1194 > 158.195.87.112.1194: UDP,
length 125
18:53:52.924368 IP 158.195.87.112.1194 > 158.195.87.39.1194: UDP,
length 125
18:53:52.924645 IP 158.195.87.39.1194 > 158.195.87.112.1194: UDP,
```


- klient-server konfigurácia
 - jeden server môže obsluhovať viac klientov
 - server môže prideľovať klientom adresy
 - staticky (podľa konfigurácie pre konkrétnych klientov)
 - dynamicky
 - komunikácia medzi klientami môže byť povolená
 - client-to-client

#konfiguracia pre rA ako server

proto udp
port 1194
dev tap
server 10.0.200.0 255.255.255.0
push "route 10.0.0.0 255.255.0.0"

#client-to-client

keepalive 15 60

ca ca.pem
dh dh1024.pem
cert siteA-cert.pem
key siteA-key.pem
ns-cert-type client

#konfiguracia pre klienta

remote 158.195.87.39 proto udp port 1194 dev tap

client

ca ca.pem
cert siteB-cert.pem
key siteB-key.pem
ns-cert-type server


```
# service openvpn start client
Starting virtual private network daemon: client.
# ip addr show dev tap0
125: tap0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc
pfifo fast state UNKNOWN glen 100
    link/ether 2e:d7:b2:8b:41:06 brd ff:ff:ff:ff:ff
    inet 10.0.200.2/24 brd 10.0.200.255 scope global tap0
# ip route show dev tap0
10.0.200.0/24 proto kernel scope link src 10.0.200.2
10.0.0.0/16 via 10.0.200.1
# ping 10.0.200.1
PING 10.0.200.1 (10.0.200.1) 56(84) bytes of data.
64 bytes from 10.0.200.1: icmp req=1 ttl=64 time=0.939 ms
64 bytes from 10.0.200.1: icmp req=2 ttl=64 time=0.627 ms
64 bytes from 10.0.200.1: icmp req=3 ttl=64 time=0.636 ms
```


- statická konfigurácia parametrov pre klienta
 - pomocou client-config-dir sa zvolí konfiguračný adresár
 - vytvoria sa súbory s menom ako CN v klientskom certifikáte
 - z týchto sa načítajú konfiguračné príkazy špecifické pre konkrétneho klienta

#konfiguracia pre rA ako server

proto udp port 1194 dev tap

server 10.0.200.0 255.255.255.0 nopool push "route 10.0.0.0 255.255.0.0"

keepalive 15 60

ca ca.pem
dh dh1024.pem
cert siteA-cert.pem
key siteA-key.pem
ns-cert-type client

Súbor clients/siteB

ifconfig-push 10.0.200.5 255.255.25.0

client-config-dir clients

- komunikačný kanál
 - UDP pre IKE (port 500)
 - ESP, AH pre dáta
 - UDP enkapsulácia pre NAT-traversal (port 4500)
- manažment kľúčov
 - IKE (v1, v2)
- autentifikácia
 - PSK (preshared key)
 - PKI
 - EAP

- pozostáva z 2 procesov
 - pluto IKEv1
 - charon IKEv2
- konfigurácia
 - /etc/ipsec.conf
 - /etc/ipsec.secrets
 - /etc/ipsec.d/certs certifikáty
 - /etc/ipsec.d/cacerts certifikáty CA
 - /etc/ipsec.d/private kľúče

- spustenie služby
 - service ipsec start
- po zmene konfigurácie
 - ipsec update
- spustenie VPN
 - ipsec up meno
- ukončenie VPN
 - ipsec down meno
- zobrazenie stavu
 - ipsec status, ipsec statusall


```
konfigurácia pre rA
config setup
   nat traversal=yes
   charonstart=yes
   plutostart=no
conn siteAB
  authby=pubkey
  aut.o=add
  keyexchange=ikev2
  left=158.195.87.39
  leftcert=siteA-cert.pem
  right=158.195.87.112
  rightid="C=SK,
L=Bratislava, O=Comenius
University, OU=Department of
Computer Science, CN=siteB"
  leftsubnet=10.0.0.0/16
  rightsubnet=10.1.0.0/16
```

```
config setup
   nat traversal=yes
   charonstart=yes
   plutostart=no
conn siteAB
  authby=pubkey
  auto=add
  keyexchange=ikev2
  left=158.195.87.39
  leftid="C=SK, L=Bratislava,
O=Comenius University,
OU=Department of Computer
Science, CN=siteA"
  right=158.195.87.112
  rightcert=siteB-cert.pem
  leftsubnet=10.0.0.0/16
  rightsubnet=10.1.0.0/16
```

konfigurácia pre rB

ipsec.secrets pre rA

ipsec.secrets pre rB

```
: RSA siteB-key.pem
: RSA siteA-key.pem
# ipsec up siteAB
# ipsec status
Security Associations:
      siteAB[5]: ESTABLISHED 8 seconds ago, 158.195.87.112[C=SK,
L=Bratislava, O=Comenius University, OU=Department of Computer
Science, CN=siteB]...158.195.87.39[C=SK, L=Bratislava, O=Comenius
University, OU=Department of Computer Science, CN=siteAl
      siteAB{5}: INSTALLED, TUNNEL, ESP SPIs: c78fb8ed i
c24489f2 o
      siteAB{5}: 10.1.0.0/16 === 10.0.0.0/16
```


ip rule show


```
0: from all lookup local
220: from all lookup 220
32766: from all lookup main
32767: from all lookup default

# ip route show table 220
10.0.0.0/16 via 158.195.87.39 dev eth0 proto static src 10.1.0.1

# ping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_req=1 ttl=64 time=0.375 ms
64 bytes from 10.0.0.1: icmp_req=2 ttl=64 time=0.414 ms
```



```
konfigurácia pre rA ako server
                                     konfigurácie pre klienta
conn rw
                                    conn vpn
  authby=pubkey
                                      authby=pubkey
  auto=add
                                      auto=add
  keyexchange=ikev2
                                      keyexchange=ikev2
  left=158.195.87.39
                                      left=158.195.87.39
  leftcert=siteA-cert.pem
                                      leftid="C=SK, L=Bratislava,
  right=%anv
                                   O=Comenius University,
  leftsubnet=10.0.0.0/16
                                   OU=Department of Computer
  rightsourceip=10.0.200.0/24
                                    Science, CN=siteA"
                                      leftsubnet=10.0.0.0/16
                                      right=%defaultroute
                                      rightcert=siteB-cert.pem
                                      rightsourceip=%config
```



```
# ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
    link/ether 00:1c:25:97:11:66 brd ff:ff:ff:ff:ff
    inet 158.195.87.112/25 brd 158.195.87.127 scope global eth0
    inet 10.0.200.1/32 scope global eth0

# ip route show table 220
10.0.0.0/16 via 158.195.87.39 dev eth0 proto static src 10.0.200.1
# ping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_req=1 ttl=64 time=0.379 ms
64 bytes from 10.0.0.1: icmp_req=2 ttl=64 time=0.422 ms
```