Static-22

Title

Simply supported cylindrical shell

Description

Compute the axial deformations and vertical displacements of a shell structure under its self weight.

Only a quarter model may be analyzed due to symmetry.

(a) Cylindrical structure with simple supports at longitudinal ends

(b) Quarter model

Structural geometry and analysis model

MODEL

Analysis Type

3-D static analysis

Unit System

ft, lbf

Dimension

Length 25 ft Radius 25 ft Central angle 40°

Element

Plate element (Thick type)

Material

Modulus of elasticity $E = 4.32 \times 10^8 \, lbf/ft^2$ Weight density $\gamma = 360 \, lbf/ft^3$

Element Property

Element size $a \times b = [25/6 \text{ ft} \times 40 \times (\pi/180)] \times [25/6 \text{ ft}]$ Thickness t = 0.25 ft

Boundary Condition

Nodes $1 \sim 7$; Constrain Dx, Dz and Ry. (Simple supports)

Nodes $1 \sim 43$; Constrain Dx, Ry and Rz. (Symmetric about Y-Z plane)

(at an increment of 7)

Nodes $43 \sim 49$; Constrain Dy, Rx and Rz. (Symmetric about X-Z plane at Y=25 ft)

Load Case

Self weight is imposed in the -Z direction.

Results

Axial displacements of the structure

Vertical displacements of the structure

Displacements

	Node	Load	DX (ft)	DY (ft)	DZ (ft)	RX ([rad])	RY ([rad])	RZ ([rad])
•	1	CASE1	0,000000	0,000018	0,000000	0,002796	0,000000	0,000000
	2	CASE1	0,000000	0,000530	0,000000	0,001865	0,000000	0,000153
	3	CASE1	0,000000	0,001773	0,000000	-0,000832	0,000000	0,000771
	4	CASE1	0,000000	0,002870	0,000000	-0,004996	0,000000	0,002237
	5	CASE1	0,000000	0,002381	0,000000	-0,010114	0,000000	0,004725
	6	CASE1	0,000000	-0,001664	0,000000	-0,015540	0,000000	0,008069
	7	CASE1	0,000000	-0,011798	0,000000	-0,019058	0,000000	0,014188
	43	CASE1	0,000000	0,000000	0,046312	0,000000	0,000000	0,000000
	44	CASE1	-0,000989	0,000000	0,030876	0,000000	0,010536	0,000000
	45	CASE1	-0,008815	0,000000	-0,013010	0,000000	0,019817	0,000000
	46	CASE1	-0,028478	0,000000	-0,078432	0,000000	0,026688	0,000000
	47	CASE1	-0,061735	0,000000	-0,155399	0,000000	0,030443	0,000000
	48	CASE1	-0,106984	0,000000	-0,233722	0,000000	0,031402	0,000000
	49	CASE1	-0,161394	0,000000	-0,306798	0,000000	0,031306	0,000000

Comparison of Results

Unit: ft

3.T. 1. —	Axial defo	$ormation(\delta_Y)$		Vertical displacement(δ_z)		
Node -	Theoretical	MIDAS/Civil	Node -	Theoretical	MIDAS/ Civil	
1	0.0004	0.0	43	0.045	0.046	
2	0.0009	0.0005	44	0.027	0.031	
3	0.0020	0.0018	45	-0.018	-0.013	
4	0.0030	0.0029	46	-0.082	-0.078	
5	0.0021	0.0024	47	-0.155	-0.155	
6	-0.0016	-0.0017	48	-0.241	-0.234	
7	-0.0120	-0.0118	49	-0.309	-0.307	

References

MacNeal, R. H. and Harder, R. L., "A Proposed Standard Set of Problems to Test Finite Element Accuracy", Finite Elements in Analysis and Design 1, 1985, pp. 3-20, North-Holland.

Zienkiewicz, O. C., "The Finite Element Method", McGraw-Hill, 1977.

Scordelis, A. C., and Lo, K. S., "Computer Analysis of Cylindrical Shells", Journal of the American Concrete Institute, Vol. 61, May 1964.