Project 4: Video Search

Problem description

- Video search engine
- YouTube does not use visual content
- Input: visual query as text (innovative)
- Output: List of links with specified time

Method

First step: Mapping video to text.

Metadata Collect data around the videos e.g. title, description, likes, etc.

Captions Neural description of video frames - description of visual content.

Expansion Expanding human-like neural description with WordNet hypernyms and hyponyms.

 Second step: Getting a "good" search engine on those special text documents

Requirements: high precision and recall, fast and ergonomic

Data

- Generated Video-captions
- Meta-data
 - Title, Description
 - Views, Favorites, Votes, Comments

Visual content to text mapping

Generated human-like neural descriptions.

Expanded descriptions.

Experiments

Evaluating search engine with three queries:

- Large airplane
- Playing with a dog
- Man on a bench

For each query:

- Precision and recall at 1, 3, 5, 10, 20, 30
- Area under the precision-recall graph

Results

Choice of:

Language model for text mapping

Search	CNN_S	ILSVRC_16
Q1	0.150	0.404
Q2	0.500	0.092
Q3	0.185	0.45
Average	0.278	0.315

 Retrieval model → ranked retrieval using tf-idf and popularity.

Figure: Precision - recall graph using different weights for the popularity compared to the tf-idf.

Conclusions

We provide users a video search engine available online:

- Fast and ergonomic.
- Precision: generally high for top 3 results, then very low

