CONDITION NUMBERS & PROBABILITY gor EXPLAINING ALGORITHMS

Josue Tonelli-Cueto

CooEx Seminar

A Foundational Myth Turing vs. Wilkinson

Source: King's College [ATM/K/7/11]

Source: U. of Manchester

Source: 1970 Turing Lecture

We are in 1946... at the NPL in Manchester

The computer 4 years after!

Source: U. of Manchester

However, it happened that some time after my arrival, a system of 18 equations arrived in Mathematics Division and after talking around it for some time we finally decided to abandon theorizing and to solve it. A system of 18 is surprisingly formidable, even when one has had previous experience with 12, and we accordingly decided on a joint effort.

Wilkinson, 1970 Turing Lecture

Source: Beryl Turing & King's College

It will work! Let's do it with Complete pivoting.

Source: U. of Manchester

And it succeeded!

I suppose this must be regarded as a defeat for Turing since he, at that time, was a keener adherent than any of the rest of us to the pessimistic school.

ROUNDING-OFF ERRORS IN MATRIX PROCESSES

By A. M. TURING

(National Physical Laboratory, Teddington, Middlesex)

[Received 4 November 1947]

The second round undoubtedly went to Turing!

do some algorithms

perform better than predicted?

Not an isolated phenomenon: the Simplex Method

Linear Programming
max CTX

s.t. AX \lequib

Danzig (1947)
Simplex Method

Very efficient in practice,
but... why?

Spielman & Teng (2001) Justify Simplex Method using smoothed analysis Complexity

thus Algorithms

Worst-case form of complexity estimate: run-time (ALGORITHM, Input) < & (size (Input))

Sometimes size has several parameters (e.g. #variables, degree ...)

Complexity of Numerical Algorithms

In usual form of complexity fails!

ALL INPUTS OF THE SAME SIZE ARE EQUAL, BUT SOME INPUTS ARE MORE EQUAL THAN OTHERS

Condition Numbers

(Turing) (Goldstine, von Neumann)

cond(Input):

measure of numerical sensitivity of Input

cond small => big' variations of Input

small variations of Output

cond is a property of the computational problem,

not of the algorithm!

Turing Condition Number

AECnxn

cond(A):= || A|| || A-1||

Linear System: Ax=6

rel-error(x) < cond(A) max { rel-error(A), rel-error(6)}

Can we have

a complexity estimate

of a numerical algorithm

only depending on size?

Randomize your Input (Goldstine & von Neumann) (Smale) (Demmel)

Random Input -> Probabilistic Complexity

How do we randomize the Input?

Choice depends on the context!

Probabilistic Complexity (Goldstine & von Neumann) (Smale) (Demmel)

5 moothed Complexity (Spielman & Teng)

sup from [runtime (ALGORITHM, Input + onoise)] < \(\)(s, \size (Input) = size (Input) = s

Why Smoothed is better?

Worst-case form of complexity estimate run-time (ALGORITHM, Input) $\leq g(size(Input))$ \uparrow $\sigma \rightarrow 0$

Smoothed form of complexity estimates

Probabilistic form of complexity estimates

[Probabilistic form of complexity estimates

[run-time (ALGORITHM, input) > t] \le \(\frac{3}{5}(5,t) \)

Where to find all the details?

Linear Systems

Systems
of Polynomial
Equations

Grundlehren der mathematischen Wissenschaften 349A Series of Comprehensive Studies in Mathematics

Peter Bürgisser Felipe Cucker

Condition

The Geometry of Numerical Algorithms

Linear Programming (Interior Point Method)

Drawings by Jorge Cham

Felipe

A Case Study of the Framework in Action: the DESCARTES Solver For Finding real roots of real univariate polynomials

Joint work of

Elias TSIGARIDAS

Josué TONELLI- CUETO

Alperen A. Ergür

Photo while working on this project

Real Root Isolation I: The Problem

INPUT:

OUTPUT:

Intervals Ja,..., JK s.t.

- 0) J = (ai,bi) with ai,bi E @
- 1) Z(3)n尽 E U J:
- 2) 岁,# 足(8) 1 1;=1

INPUT SIZE PARAMETERS:

d: degree of &

7: bit-size of coefficients of & MEASURE OF RUN-TIME

Bit complexity

We can also

handle continuous

inputsl

DESCARTES SOLVER I: Rule of Signs

V(8):= # sign variations of 80.81...

THM (Descartes rule of signs)

$$\#Z(8,R) \leq V(8)$$

Moreover, $V(8) \leq 1 \Rightarrow Equality$

Portrait by Frans Hal Source: Wiki Media Commons

$$\#Z(\S,(a,b)) \leq V(\S,(a,b)) := V\left((X+1)^{d} \S\left(\frac{bX+a}{X+1}\right)\right)$$

$$(0,\alpha) \to (a,b)$$
bijection

DESCARTES SOLVER II:

Rule of Signs in Action

$$\begin{cases} (0, \infty) \\ 8 = 2x^{3} - 9x^{2} + 12x - 6 \end{cases}$$

$$(x+1)^{3} 8(\frac{x}{x+1})$$

$$(0, 1)$$

$$-6 - 6x - 3x^{2} - x^{3}$$

$$(1, 2)$$

$$-1 - 3x^{2} + 2x^{3}$$

$$(2, \infty)$$

$$-2 + 3x^{2} + 2x^{3}$$

Real Roots of 3:

2.677650698804...

$$(2,3) \qquad (3,\infty) -2-6X-3X^2+3X^2 \qquad 3+12X+9X^2+2X^3$$

DESCARTES SOLVER II:

The Descartes Oracle

- 1) Over counting: $\#Z(8,J) \leq V(8,J)$
- 2) Exactness I: V(8,J)≤1⇒ Equality
 - 3) Exactness II:

 $\#Z(8,D(m(J),cw(J)) \leq K \Rightarrow V(8,J) \leq K$

ObreshKoff's Thm: Descartes sees the complex roots around!

4) Subadditivity:

 $\bigcup J_i \subseteq J \Rightarrow \sum V(\S,J_i) \leq V(\S,J)$

DESCARTES SOLVER IV

Subdivide until for all J, $V(8, J) \leq 11$

Output Z

Real Root Isolation I:

The State of the Art

STURM SOLVER

DESCARTES SOLVER

ANEWDSC (Sagraloff & Mehlhorn; 2016)

PAN'S ALGORITHM (Pan; 2002) $\widetilde{\mathcal{O}}_{\mathcal{B}}\left(d^{4}\gamma^{2}\right)$

 $\widetilde{\mathcal{O}}_{\mathcal{B}}\left(d^{4}\gamma^{2}\right)$

 $\widetilde{\mathcal{O}}_{\mathrm{B}}\left(d^3+d^2\gamma\right)$

 $\widetilde{\mathcal{O}}_{B}\left(d^{2}\gamma\right)$

Q: Can we beat the champion?

Real Root Isolation II: What do we wish?

 $O_{B}(\mathcal{A}_{\gamma})$

We wish to find real roots almost as fast as we read the polynomial Real Root Isolation II: Are we being pessimistic?

DESCARTES SOLVER seems to behave faster in practice!

Why?

SPOILER:

DESCARTES

is almost-optimal on average!

What do we mean?

Real Root Isolation V:

Beyond pessimism

What's a good random model for &?

Many choices of randomness &

Beyond pessimism I: Uniform Random Bit Polynomials & A SIMPLE MAIN THEOREM

$$F = \sum_{k=0}^{J} F_k X^k$$

s.t. $F_{\kappa} \sim \mathcal{U}([-2^{\gamma}, 2^{\gamma}] \cap \mathbb{Z})$ independent

SIMPLE MAIN THM

On average, DESCARTES is almost optimall

Beyond pessimism I:

Random Bit Polynomials

$$F = \sum_{k=0}^{J} F_k X^k \in \mathbb{Z}[X]$$

bit-size of
$$F$$
:

s.t. F_k independent

 $\gamma(F) := \min\{\gamma \mid \forall K, P(|F_k| \le 2^{\gamma}) = 1\}$

weight of f:

No middle indexes!

$$W(f) := \max \{ P(F_K = c) | c \in \mathbb{R}, k \in \{0, d\} \}$$

uniformity of f:
$$u(f) := \ln(w(f)(1+2^{r(f)+1}))$$

Beyond pessimism II:

MAIN THEOREM

MAIN THM

$$\mathbb{E}_{cost}(Descartes, F) = \mathcal{O}_{B}(J^{2} + J_{r})(1 + u(f))^{4}$$

Note: F uniform \Rightarrow u(F) = 0

Claim: For many cases, u(f) = 0(1)

If $\gamma = SP(d)$, almost like reading!

On average, DESCARTES is almost optimall

Beyond pessimism IV: Examples of Random Bit Polynomials I

· Support control {0,d} SA $F = \sum_{K \in A} f_K \chi^K \text{ with } f_K \sim \mathcal{U}([-2^7, 2^7] / \mathbb{Z})$

... then u(F) = 0• Sign control $\sigma \in \{-1, +1\}^{\{0, \dots, d\}}$ $F = \sum_{k=1}^{d} F_k X^k$ with $F_k \sim \mathcal{U}(\sigma_k([1, 2^n] \cap M))$... then u(F) < In 3

Beyond pessimism V: Examples of Random Bit Polynomials II · Exact bitsize

$$F = \sum_{k=1}^{d} F_k X^k \text{ with } F_k \sim \mathcal{U}(\{n \in \mathbb{Z} \mid \lfloor \log n \rfloor = r\})$$
... then $u(F) \leq \ln 3$

+ their combinations

Our random model is flexible

Beyond pessimism V: Smoothed case included!

$$F = \sum_{k=1}^{d} F_k X^k$$
 random bit polynomial $g = \sum_{k=1}^{d} g_k X^k$ fix polynomial of entries of size γ

Then:

 $F_{\sigma} = 3 + \sigma F$ random bit polynomial $2 u(F_{\sigma}) \leq 1 + u(F) + \max\{\gamma - \gamma(F), \gamma(\sigma)\}$

Summing UP:

DESCARTES

is almost-optimal on average!

The Ingredients of the Analysis O: DESCARTES' tree

$$\gamma(8, T)$$

run-time of DESCARTES(8, I)

size of
$$\Upsilon(8, I)$$

depth $(\Upsilon(8, I))$ width $(\Upsilon(8, I))$

We only need to control the size of subdiv. tree!

The Ingredients of the Analysis I: Condition Numbers

$$C(8) := \max_{x \in [-1,1]} \frac{\int_{\kappa=0}^{d} |3_{\kappa}|}{\max \{|8_{(x)}|, |8_{(x)}|/d\}}$$

Upper bounds on C(8)

-> Lower bounds for root separation of & -> Upper bounds for depth of DESCARTES' tree

The Ingredients of the Analysis I: Bounds for Number of Complex Roots

Upper bounds for about nearby roots! # complex roots of & around [-1,1]

Upper bounds For width of DESCARTES' Tree

The Ingredients of the Analysis II: Probabilistic Toolbox

Ball's smoothing: X 巨 型 N discrete random variable $y \in \mathbb{R}^N$ s.t. $y: \sim \mathcal{U}((-12,12))$ i.i.d. Then: x + y continuous random var.

We can use our old cont. toolbox! AI am omitting a lot of technical details.

TAKE HOME MESSAGE:

to EXPLAIN

the Success of some Algorithms,

we need

CONDITION NUMBERS & PROBABILITY

to avoid PESSIMISTIC ESTIMATES

Eskerrik Asko zure arretagatik

Transl.: Thank you for your attention!