

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2016/2017

EPM4086 – DIGITAL CONTROL SYSTEMS (RE)

29 MAY 2017 2.30 p.m. - 4.30 p.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 6 pages including cover page with 4 Questions only.
- 2. Attempt **ALL** questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. Table of Transform pairs has been included in Appendix.

- (a) The following signals are sampled by an ideal sampler with sampling period T. Determine the pulse transform $Y^*(s)$
 - (i) $y(t) = \cos \omega t$; $t \ge 0$

[9 marks]

(ii) $y(t) = e^{-5t} \sin 4t$; $t \ge 0$

[6 marks]

(b) Find the inverse z-transform of following function using partial-fraction expansion.

$$F(z) = \frac{4z}{(z-1)(z^2 - 0.1z - 0.2)}$$

[8 marks]

(c) Find the final values of x(k) if its z-transform is given as:

$$X(z) = \frac{10z(z - 0.2)(z - 0.5)}{(z - 1)(z^2 - 0.6z + 0.4)}$$

[2 marks]

Continued...

PV 2/6

(a) Determine the discrete-time output C(z) of the closed-loop control system as shown in Fig Q2(a).

(Note: R(s) is system input, C(s) is system output, $G_1(s)$, $G_2(s)$, H(s) are three continuous-time transfer functions of the respective blocks, M(s) and $M^*(s)$ are respectively the sampler input and output, T is the sampling period).

[15 marks]

(b) The transfer function of a discrete control system is given as

$$G(z) = \frac{z(z+0.3)}{(z+0.5)*(z-0.4)}$$

(i) Determine the poles and zeros of the system and locate them in a z-plane.

[7 marks]

(ii) Determine whether the system is stable or not? Justify.

[3 marks]

Continued...

PV 3/6

(a) The characteristic equation of a linear discrete-time control system is given as

$$F(z) = z^3 + 5z^2 - z + 5K = 0$$

Determine the values of K for the system to be stable using Routh Hurwitz criteria.
[10 marks]

(b) The sampled data control system as shown in Fig Q3 (b),

Fig Q3 (b)

Determine the following

(i) Closed loop transfer function of the system

[10 marks]

(ii) Stability of the system

[1 mark]

- (iii) Position error constant, Velocity error constant and Acceleration error constant [3 marks]
- (iv) Steady state error when the input applied is unit step.

[1 mark]

Continued...

(a) The state space model of a linear discrete-time system is given by

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.4 & -1.3 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 0.8 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

where $x_1(k)$ and $x_2(k)$ are state variables, u(k) is the system input and y(k) is the system output. Determine the complete Controllability and Observability of the system.

[13 marks]

(b) A linear time-invariant system is characterized by homogeneous state equation

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

Determine the state transition matrix $\varphi(k)$.

[12 marks]

Continued...

PV 5/6

Appendix

TABLE OF Z-TRANSFORM PAIRS

(e = Euler number)

Time	Laplace Transform	Z-transform
function	F(s)	F(z), T = Sampling time
$\left f(t); t > 0 \right $		
$u_s(t)$	1/s	z/(z-1)
t	1/s ²	$Tz/(z-1)^2$
t^2	2/s ³	$T^2 z(z+1)/(z-1)^3$
ε^{-at}	1/(s+a)	$z/(z-\varepsilon^{-aT})$
$1-\varepsilon^{-at}$	$a/\{s(s+a)\}$	$z(1-\varepsilon^{-aT})/\{(z-1)(z-\varepsilon^{-aT})\}$
$t \varepsilon^{-at}$	$1/(s+a)^2$	$Tz\varepsilon^{-aT}/(z-\varepsilon^{-aT})^2$
sin at	$a/(s^2+a^2)$	$z\sin aT/(z^2-2z\cos aT+1)$
cosat	$s/(s^2+a^2)$	$z(z-\cos aT)/(z^2-2z\cos aT+1)$
$\varepsilon^{-at} \sin bt$	$b/\{(s+a)^2+b^2\}$	$z\varepsilon^{-aT}\sin bT/(z^2-2z\varepsilon^{-aT}\cos bT+\varepsilon^{-2aT})$
$\varepsilon^{-at}\cos bt$	$(s+a)/{(s+a)^2+b^2}$	$(z^2 - z\varepsilon^{-aT}\cos bT)/(z^2 - 2z\varepsilon^{-aT}\cos bT + \varepsilon^{-2aT})$

End of Page

PV 6/6