Random Variables and Distributions, Bernoulli and binomial distribution

STA 032: Gateway to data science Lecture 14

Jingwei Xiong

May 3, 2023

Recap

- Conditional probability
 - General multiplication rule: $P(A \cap B) = P(B)P(A|B)$
 - Sum of conditional probabilities: $P(A_1|B)+...+P(A_k|B)=1$
 - Law of total probability: $P(B) = P(B \cap A_1) + \ldots + P(B \cap A_k) = P(B \mid A_1)P(A_1) + \ldots + P(B \mid A_k)P(A_k)$
- Marginal and joint probability
- Revisiting independence

$$\circ P(A \mid B) = P(A) \text{ and } P(B \mid A) = P(B)$$

Bayes' Theorem

$$\circ \ \ P(A \mid B) = rac{P(A \cap B)}{P(B)} = rac{P(B \mid A)P(A)}{P(B)} = rac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A^c)P(A^c)}$$

Today

- Random variables
 - Expectation and variance
 - Discrete and continuous random variables
- Common probability distributions

Random variables

- A random variable is a mapping or a function from possible outcomes in a sample space to a probability space.
- Recall: sample space is the set of all possible outcomes from a random process

Toss 1 Coin Example

Source: https://medium.com/jun94-devpblog/prob-stats-1-random-variable-483c45242b3c

Random variables

Toss 1 Coin Example

Source: https://medium.com/jun94-devpblog/prob-stats-1-random-variable-483c45242b3c

- Let *X* be the random variable indicating whether a coin flip results in heads.
- Instead of saying P(heads), we say P(X = 1)
- This representation allows us to apply mathematical frameworks and get a better understanding of real-world phenomenon

Random variables

- Random variables are usually denoted by capital letters, most commonly $X,\,Y,\,Z$
- A **realization** or draw of the random variable is denoted by a lowercase letter, x, y, z
- Other examples of random variables:
 - Mass of classroom chairs
 - Ages of students at UC Davis
- For discrete random variables:
 - Each outcome has an associated probability $P(X=x_i)$ where $i=1,\ldots,k$ (k outcomes are denoted by lower-case, x_1,\ldots,x_k)
 - \circ Sometimes also written as p_1, \ldots, p_k

Another example:

Let's assume, we have a sample space containing 4 students {A, B, C, D}. If we now randomly pick student A and measure the height in centimeters, we can think of the random variable (H) as the function with the input of student and the output of height as a real number.

Depending on the outcome — which student is randomly picked — our random variable (H) can take on different states or different values in terms of height in centimeters.

Probability Distribution

The description of how likely a random variable takes one of its possible states can be given by a probability distribution.

Thus, the probability distribution is a mathematical function that gives the probabilities of different outcomes for a random variable.

• More generally it can be described as the function

$$P:A o\mathbb{R}$$

Which maps an input space A — related to the sample space — to a real number, namely the probability.

For the above function to characterize a probability distribution, it must follow all of the axioms:

- 1. All probabilities must between 0 and 1. $0 \le p(x) \le 1$
- 2. All probabilities must summed up to be 1. $\sum p(x) = 1$

Discrete RV distribution

Discrete RV: it can only take on a finite number of values within an interval, and the value has the natural gaps

The **probability mass function (PMF)** describes the probability distribution over a **discrete** random variable.

In other terms, it is a function that returns the probability of a random variable being exactly equal to a specific value. P(X=i)=P(i)

The **cumulative distribution function (CDF)** describes the probability that a random variable is less than or equal than a given value.

$$F(x) = P(X \le x) = \sum_{X < x} P(X = x)$$

probability mass function (PMF) for Discrete RV

- Example: Two books are assigned for a statistics class: a textbook and its corresponding study guide. The university bookstore determined 20% of enrolled students do not buy either book, 55% buy the textbook only, and 25% buy both books, and these percentages are relatively constant from one quarter to another.
- Formally: Let X = number of books sold per student
- The three possible outcomes are x_1 = 0 books, x_2 = 1 book (1 textbook for each student), x_3 = 2 books (1 textbook and 1 study guide for each student)

i	1	2	3
x_i	0	1	2
$P(X=x_i)$.2	.55	.25

CDF for discrete RV

- Example: Two books are assigned for a statistics class: a textbook and its corresponding study guide. The university bookstore determined 20% of enrolled students do not buy either book, 55% buy the textbook only, and 25% buy both books, and these percentages are relatively constant from one quarter to another.
- Formally: Let X = number of books sold per student
- The three possible outcomes are x_1 = 0 books, x_2 = 1 book (1 textbook for each student), x_3 = 2 books (1 textbook and 1 study guide for each student)

i	1	2	3
x_i	0	1	2
$P(X=x_i)$.2	.55	.25
$F(X \leq x_i)$.2	.75	1

Two books are assigned for a statistics class: a textbook and its corresponding study guide. The university bookstore determined 20% of enrolled students do not buy either book, 55% buy the textbook only, and 25% buy both books, and these percentages are relatively constant from one quarter to another.

- How many books should the bookstore expect to sell per student?
- Intuitively: .2 * 0 + .55 * 1 + .25 * 2 = 1.05
- Another way to think about it: say the class has 100 students. How many books should the bookstore expect to sell to the class?

- Formally: Let X = number of books sold per student
- The three possible outcomes are x_1 = 0 books, x_2 = 1 book (1 textbook for each student), x_3 = 2 books (1 textbook and 1 study guide for each student)

i123
$$x_i$$
012 $P(X = x_i)$.2.55.25

$$egin{aligned} E(X) &= x_1 imes P(X=x_1) + x_2 imes P(X=x_2) + \ldots + x_k imes P(X=x_k) \ &= \sum_{i=1}^k x_i P(X=x_i) \end{aligned}$$

• Using this definition: E(X) = 0 * .2 + 1 * .55 + 2 * .25 = 1.05.

- Say we are interested in the amount of revenue that the bookstore can expect to earn per student. Say the textbook costs \$ 137 and the study guide costs \$ 33.
- What modifications do we need?
 - \circ Formally: Let X = number of books sold per student
 - The three possible outcomes are $x_1 = 0$ books, $x_2 = 1$ books (1 textbook for each student), $x_3 = 2$ books (1 textbook and 1 study guide for each student)

i	1	2	3
x_i	0	1	2
$P(X=x_i)$.2	.55	.25

• Using this definition: E(X) = 0 * .2 + 1 * .55 + 2 * .25 = 1.05.

- Say we are interested in the amount of revenue that the bookstore can expect to earn per student. Say the textbook costs \$ 137 and the study guide costs \$ 33.
- What modifications do we need?
 - \circ Formally: Let X = revenue from books sold per student
 - The three possible outcomes are $x_1 = \$ 0$, $x_2 = \$ 137$ (1 textbook for each student), $x_3 = \$ 170$ (1 textbook and 1 study guide for each student)

i	1	2	3
x_i	0	137	170
$P(X=x_i)$.2	.55	.25

• Using this definition: E(X) = 0 * .2 + 137 * .55 + 170 * .25 = 117.85.

- The expectation is denoted by E(X), μ or μ_x
- This is the expected or average outcome of *X*, where *X* is a random variable
- Given a probability distribution for a discrete random variable, we can calculate it using

$$egin{aligned} E(X) &= x_1 imes P(X=x_1) + x_2 imes P(X=x_2) + \ldots + x_k imes P(X=x_k) \ &= \sum_{i=1}^k x_i P(X=x_i) \end{aligned}$$

- Recall: this is a **population parameter**, a fixed quantity
 - \circ The sample version, the **sample statistic**, is the sample mean \bar{x}

Properties of the expectation

- E[c] = c, where c is a constant
- E[aX] = aE[X]
- E[aX+c] = aE[X] + c
- To calculate $E(X^2)$ (will be useful later), simply replace x_i in the sum by x_i^2 , i.e.,

$$egin{align} E(X^2) &= x_1^2 imes P(X=x_1) + x_2^2 imes P(X=x_2) + \ldots + x_k^2 imes P(X=x_k) \ &= \sum_{i=1}^k x_i^2 P(X=x_i) \end{aligned}$$

• More generally, $E[g(X)] = \sum_{i=1}^k g(x_i) P(X=x_i)$ (Law of the unconscious statistician)

Variance

- Recall: we saw the **sample variance**, calculated for a data set
 - Take the square of deviations and find the mean

$$\circ \ s^2 = rac{(x_1 - ar{x})^2 + (x_2 - ar{x})^2 + ... + (x_n - ar{x})^2}{n-1}$$

- **Population variance** is often denoted by σ^2 , σ_x^2 , or Var(X)
- Given a probability distribution for a discrete random variable, we can calculate it using

$$egin{split} Var(X) &= E[(X-\mu)^2] \ &= (x_1-\mu)^2 imes P(X=x_1) + (x_2-\mu)^2 imes P(X=x_2) + \ldots + (x_k-\mu)^2 imes P(X=x_k) \ &= \sum_{i=1}^k (x_i-\mu)^2 P(X=x_i) \end{split}$$

 Note: rather than summing over observations, these are over possible outcomes, weighted by their probabilities

Variance

Another common way to write the variance is

$$egin{aligned} Var(X) &= E[(X-E(X))^2] \ &= E[(X^2-2XE(X)+[E(X)]^2)] \ &= E(X^2)-2E(X)E(X)+[E(X)]^2 \ &= E(X^2)-[E(X)]^2 \end{aligned}$$

- Recall: $E(X) = \sum_{i=1}^k x_i P(X = x_i)$
- To calculate $E(X^2)$, simply replace x_i in the sum above by x_i^2 , i.e.,

$$egin{aligned} E(X^2) &= x_1^2 imes P(X = x_1) + x_2^2 imes P(X = x_2) + \ldots + x_k^2 imes P(X = x_k) \ &= \sum_{i=1}^k x_i^2 P(X = x_i) \end{aligned}$$

Properties of the variance

- Var[c] = 0, where c is a constant
- $Var[aX] = a^2 Var[X]$
- $\bullet \ Var[aX+c] = a^2Var[X]$

Linear combinations of random variables

- Often we care not just about a single random variable, but a combination of them
- E.g.,
 - The total revenue of our bookstore is a combination of books from different classes, not just our one statistics class
 - The total gain or loss in a stock portfolio is the sum of the gains and losses in its components
 - Total weekly commute time is a combination of daily commute
- Let W be the weekly commute time per student at UC Davis
 - \circ X_1 = commute time per student on Monday
 - X_2 = commute time per student on Tuesday
 - o ...
 - X_5 = commute time per student on Friday
 - $\circ W = X_1 + X_2 + \ldots + X_5$ is also a random variable

Linear combinations of random variables

• A **linear combination** of two random variables, *X* and *Y*, is of the form

$$aX + bY$$
,

where a and b are constants.

- a and b are also called coefficients
- In our example, $W = X_1 + X_2 + ... + X_5$ is a linear combination with coefficients 1.

Expectation of linear combinations of random variables

• The expectation for a linear combination of random variables is given by

$$E(aX + bY) = aE(X) + bE(Y)$$

- In our example, say $E(X_1) = \ldots = E(X_5) = 21$ minutes.
- Then, E(W) = 1 * 21 + 1 * 21 + 1 * 21 + 1 * 21 + 1 * 21 = 105 minutes.

Variance of linear combinations of random variables

• The variance for a linear combination of **independent** random variables

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y)$$

- Note: this is only true if *X* and *Y* are independent.
- In our example, say $Var(X_1) = ... = Var(X_5) = 5$ minutes.
- Commute times on each day of the week are independent.
- Then, $Var(W) = 1^2 * 5 + 1^2 * 5 + 1^2 * 5 + 1^2 * 5 + 1^2 * 5 = 25$ minutes.

Bernoulli random variable

- Note on terminology: when we say we have a Bernoulli random variable, we mean that the random variable follows a Bernoulli distribution
- Same with normal (or Gaussian) random variable, ...
- Consider a binary random variable *Y*. By definition, *Y* must assume one of two possible values, e.g.
 - failure or success
 - dead or alive
 - UC Davis student or not
 - current smoker or not
 - heads or tails (coin flip)
 - Y chromosome or not
- A random variable of this type is known as a **Bernoulli** random variable, and we describe the probability of response using the parameter π or p.

Bernoulli random variable

- Y=1 is often called a "success," Y=0 is called a "failure", and π or p is defined as the probability of a success, i.e., P(Y=1).
- The probability of a "failure," P(Y = 0) is then 1 p
- Examples:
 - Coin flip: let Y = 1 if heads and Y = 0 if tails, then P(Y = 1) = p = 0.5
 - Vegetarian in US: Y = 1 if vegetarian and Y = 0 if not, then P(Y = 1) = p = 0.05 and P(Y = 0) = 1 p = 1 0.05 = 0.95
 - Vegetarian in India: Y = 1 if vegetarian and Y = 0 if not, then P(Y = 1) = p = 0.31 and P(Y = 0) = 1 p = 1 0.31 = 0.69

Bernoulli random variable

- Probability mass function for a Bernoulli distributed random variable is $P(Y=y)=p^y(1-p)^{1-y}$
 - $\circ \ \ P(Y=1) = p^1(1-p)^0 = p \ ext{(remember } x^0 = 1 \ ext{for any } x)$

$$P(Y=0) = p^0(1-p)^1 = 1-p^1$$

- For the Bernoulli random variable, we don't really need this formality
- However, we want to extend this to more complex settings
- ullet $E(Y)=\sum_{i=1}^k y_i P(Y=y_i)=p ext{ and } Var(Y)=p(1-p)$

From Bernoulli to binomial...

- Y takes value 1 with probability p and value 0 with probability 1-p
- $P(Y = y) = p^y (1 p)^{1 y}$
 - $P(Y = 1) = p^{1}(1 p)^{0} = p$ (remember $x^{0} = 1$ for any x)

$$P(Y=0) = p^0(1-p)^1 = 1-p^1$$

- For the Bernoulli random variable, we don't really need this formality
- However, we want to extend this to more complex settings
- For example, in a randomly-selected group of 3 high school students, how surprising would it be to get 2 who have smoked e-cigarettes in the past month?
- Could consider three draws from a Bernoulli distribution

- The CDC reports that 19.6% of high school students have smoked ecigarettes in the past 30 days. We'll round this to 20% for simplicity.
- P(Y = 1) = P(Smoker) = p = 0.2 and P(Y = 0) = 0.8
- Now suppose we randomly select two independent high school students and define a new random variable *X* representing the number of smokers. X can take the values 0, 1, or 2.
- Let Y_1 be the smoking status of the first student and Y_2 be the smoking status of the second student, where $Y_j = 1$ if student j smokes and 0 otherwise.

Next we'll talk about how to get the *probability distribution* of *X*.

Y_1	Y_2	X	P(X)
0	0	0	
1	0	1	
0	1	1	
1	1	2	

- Recall: If events A and B are independent, then $P(A \cap B) = P(A) \times P(B)$.
- Let A_1 be the event that $Y_1 = 1$ and let A_2 be the event that $Y_2 = 1$.
- Since the students are independent,

$$egin{aligned} P(Y_1 = Y_2 = 1) &= P(A_1 \cap A_2) \ &= P(A_1)P(A_2) \ &= p imes p \ &= 0.2(0.2) \ &= 0.04. \end{aligned}$$

Now we can fill in the bottom row of the probability distribution of X.

Y_1	Y_2	X	P(X)
0	0	0	
1	0	1	
0	1	1	
1	1	2	$0.02 \times 0.02 = 0.04$

It's straightforward to fill in the rest of the table in the same way

Y_1	Y_2	X	P(X)
0	0	0	$0.8\times0.8=0.64$
1	0	1	$0.2\times0.8=0.16$
0	1	1	$0.8\times0.2=0.16$
1	1	2	$0.2 \times 0.2 = 0.04$

Recall our table:

Y_1	Y_2	X	P(X)
0	0	0	$0.8\times0.8=0.64$
1	0	1	$0.2\times0.8=0.16$
0	1	1	$0.8\times0.2=0.16$
1	1	2	$0.2 \times 0.2 = 0.04$

We can clean up the table to get the probability distribution of *X*:

X	0	1	2
P(X = x)	0.64	0.32	0.04

So if we randomly sample two US high schoolers, the probability that both are recent e-cig smokers is 0.04 (4% chance), the probability only one recently smoked is 0.32 (this can happen two ways -- either only the first smoked or only the second smoked), and the probability neither smoked e-cigs recently is 0.64.

Now suppose we randomly sample 3 independent high school students

Y_1	Y_2	Y_3	X	P(X)
0	0	0	0	
1	0	0	1	
0	1	0	1	
0	0	1	1	
1	1	0	2	
1	0	1	2	
0	1	1	2	
1	1	1	3	

Because these are independent high school students, we can calculate the probabilities in the same manner as before.

Y_1	Y_2	Y_3	X	P(X)
0	0	0	0	0.8(0.8)(0.8)=0.512
1	0	0	1	0.2(0.8)(0.8)=0.128
0	1	0	1	0.8(0.2)(0.8)=0.128
0	0	1	1	0.8(0.8)(0.2)=0.128
1	1	0	2	0.2(0.2)(0.8)=0.032
1	0	1	2	0.2(0.8)(0.2)=0.032
0	1	1	2	0.8(0.2)(0.2)=0.032
1	1	1	3	0.2(0.2)(0.2)=0.008

The probability that 2 of 3 are recent e-cig smokers is 0.032 + 0.032 + 0.032 = 0.096 or 9.6%

Y_1	Y_2	Y_3	X	P(X)
0	0	0	0	0.8(0.8)(0.8)=0.512
1	0	0	1	0.2(0.8)(0.8)=0.128
0	1	0	1	0.8(0.2)(0.8)=0.128
0	0	1	1	0.8(0.8)(0.2)=0.128
1	1	0	2	0.2(0.2)(0.8)=0.032
1	0	1	2	0.2(0.8)(0.2)=0.032
0	1	1	2	0.8(0.2)(0.2)=0.032
1	1	1	3	0.2(0.2)(0.2)=0.008

The probability distribution of X, the number of recent e-cig smokers out of three high school students, is now

X	0	1	2	3
P(X = x)	0.512	0.384	0.096	0.008

- Extending to 4 and more students, we can see why computing the probablities by hand, as we've done, is intractable
- We can use the **binomial distribution** to describe this random variable

Binomial random variable

- The **binomial distribution** gives us the probability of X "successes" from a sequence of n independent Bernoulli trials (size n). This is often denoted binomial(n, p).
- In our example, each student would represent an independent Bernoulli trial (either an e-cig smoker, or not).
 - 1 draw from the binomial distribution is made of 3 independent draws from the Bernoulli distribution
- This distribution involves three assumptions.
 - \circ There is a fixed number n of Bernoulli trials, each of which results in one of two mutually-exclusive outcomes
 - The outcomes of the *n* trials are independent
 - \circ The probability of success p is the same for each trial

Binomial distribution

- The probability mass function for the binomial distribution is given by $P(X=x)=inom{n}{x}p^x(1-p)^{n-x}$
- Compare this with $P(Y = y) = p^y (1 p)^{1-y}$ for the Bernoulli distribution.
- First, look at the second part, $p^x(1-p)^{n-x}$. This is just multiplying the right combination of p and 1-p as in the previous tables.
 - There will be a total of *n* terms being multiplied, one probability for each draw of the distribution (each student in this case)
 - For example, if we want the probability of 3 e-cig smokers, X = 3, the second part is $p^x(1-p)^{n-x} = 0.2^3(0.8)^0 = 0.008$, just as in the table.

Binomial distribution

$$P(X=x)=\left(egin{array}{c} n\ x \end{array}
ight)p^x(1-p)^{n-x}$$

- If we want the probability of 2 e-cig smokers and 1 non-smoker, i.e., x=2, the second part is $p^x(1-p)^{n-x}=0.2^2(0.8)^{3-2}=0.032$, which is what we see in any single row in which we have two smokers and one non-smoker.
 - This is the probability of any one specific combination of 2 smokers and 1 nonsmoker. Then we need to figure out how many combinations of 2 smokers and 1 nonsmoker we could get.
- The first part, $\binom{n}{x}$, accounts for all the possible ways in which we can have 2 smokers out of 3 people.

Summary

- Random variables
 - Expectation and variance
 - Discrete and continuous random variables
- Common probability distributions
 - Bernoulli
 - Binomial distribution