

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 16700 N
                                                                   M_{\star}
                                                                             = 380000 Nmm
T_y \\ M_t
                                                                             = 200 \text{ N/mm}^2
           = 10200 N
                                                                             = 200000 \text{ N/mm}^2
          = 10800 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                                                                                      \sigma_{tresca} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 23900 N
                                                                         M_{\star}
                                                                                     = 496000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 200 \text{ N/mm}^2
            = 12200 N
                                                                                     = 200000 \text{ N/mm}^2
           = 12800 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 32000 N
                                                                  M_{\star}
                                                                             = 604000 Nmm
T_y M_t
                                                                             = 200 \text{ N/mm}^2
           = 9620 N
                                                                             = 200000 \text{ N/mm}^2
          = 23400 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 18700 N
                                                                    M_{\star}
                                                                               = 687000 Nmm
T<sub>y</sub>
M₁
                                                                               = 200 \text{ N/mm}^2
           = 13500 N
                                                                               = 200000 \text{ N/mm}^2
           = 19600 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                        \sigma_{\text{IId}}
                                                                                                                                        \sigma_{tresca} =
                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                                                        \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{ld}}
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25800 N	M_{x}	= 598000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 16300 N	$\sigma_{a}^{}$	$= 200 \text{ N/mm}^2$		
M,⊤	= 27900 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_{G}	=	$\tau(M_t)_c$	_d =	σ_{IId}	=
u_{o}	=	$\tau(T_{yc})$) =	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	
A _*	=	$\tau(T_y)_s$	₃ =	$\sigma_{\text{st.ven}}$	=
S_{u}^{n}	=	$\tau(T_y)_c$	₁ =	θ_{t}	=
$egin{array}{c} A \ S_u^* \ C_w \end{array}$	=	σ	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_{v}	=
J_v	=	$ au_{d}$	=	r_o	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$	=	$\sigma_{\sf IIs}$	=	•	
$\sigma(M_x)$) =	$\sigma_{\sf ld}$	=		
♠ Λ		1. 8 4.1	04.00.00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 34500 N
                                                                    M_{\star}
                                                                               = 760000 Nmm
T<sub>y</sub>
M₁
                                                                               = 200 \text{ N/mm}^2
           = 19400 N
                                                                               = 200000 \text{ N/mm}^2
           = 26400 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                         \sigma_{\text{IId}}
                                                                                                                                         \sigma_{tresca} =
                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                                                         \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 32700 N
                                                                   M_{\star}
                                                                             = 826000 Nmm
T_y \\ M_t
                                                                              = 200 \text{ N/mm}^2
           = 16800 N
                                                                             = 200000 \text{ N/mm}^2
          = 30800 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                                                                                      \sigma_{tresca} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 26700 N
                                                                    M_{\star}
                                                                               = 975000 Nmm
T<sub>y</sub>
M₁
                                                                               = 200 \text{ N/mm}^2
           = 18900 N
                                                                               = 200000 \text{ N/mm}^2
           = 40100 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                         \sigma_{\text{IId}}
                                                                                                                                         \sigma_{tresca} =
                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                                                         \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 34800 N
                                                                    M_{\star}
                                                                               = 812000 Nmm
T<sub>y</sub>
M₁
                                                                               = 200 \text{ N/mm}^2
           = 22400 N
                                                                               = 200000 \text{ N/mm}^2
           = 52900 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                         \sigma_{\text{IId}}
                                                                                                                                         \sigma_{tresca} =
                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                                                         \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

				_	2
Ν	= 32700 N	M_x	= -1290000 Nmm	G	$= 75000 \text{ N/mm}^2$
Т	= 26700 N		$= 200 \text{ N/mm}^2$		
· y		$oldsymbol{\sigma}_{a}$			
Μ́ _t	= 24700 Nmm		$= 200000 \text{ N/mm}^2$		
y_{G}	=	$\tau(M_t)$	_d =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$) =	σ_{tresc}	a =
V_{o}	=	$\tau(T_{yb})$) _d =	σ_{mise}	
A _*	=	$\tau(T_{y})$		$\sigma_{\text{st.ve}}$	
S_u	=	$\tau(T_y)$	_d =	Θ_{t}	=
A S _u C _w	=	σ	=	r_{u}	=
J_u	=	$ au_{s}$	=	r_{v}	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
σ(N)		$\sigma_{\sf IIs}$	=	•	
$\sigma(M_x)$	() =	$\sigma_{\sf Id}$	=		
	dalfa Zavalani Dagai Dalitaaniaa		04 00 00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 48300 N
                                                                  M_{\star}
                                                                             = -1890000 Nmm
T_y M_t
                                                                             = 200 \text{ N/mm}^2
          = 24200 N
                                                                             = 200000 \text{ N/mm}^2
          = 32000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 40900 N
                                                                 M_{\star}
                                                                            = -2300000 Nmm
                                                                            = 200 \text{ N/mm}^2
          = 28400 N
                                                                            = 200000 \text{ N/mm}^2
          = 46400 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 39300 N	M _x	= -1530000 Nmm	G	$= 75000 \text{ N/mm}^2$
Т	= 34000 N		= 200 N/mm ²		
M,	= 58500 Nmm	$\begin{matrix} \sigma_a \\ E \end{matrix}$	= 200000 N/mm ²		
y _G	=	$\tau(M_t)_d$	=	σ_{IId}	=
u_{o}	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	
A S _u C _w	=	$\tau(T_{v})_{s}$		$\sigma_{\text{st.ven}}$	=
$\hat{S_u}$	=	$\tau(T_y)_d$	=	θ_{t}	=
C_{w}	=	σ΄	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_{v}	=	$ au_{d}$	=	r_{o}	=
J_t	=	σ_{ls}	=	J_p	=
σ(N)	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
∧ ∠	lalfa Zavalani Dagai Dalitaaniaa	4: N/IIa	no vere 24.09.06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 50100 N	M _x	= -1970000 Nmm	G	$= 75000 \text{ N/mm}^2$
T	= 39900 N		= 200 N/mm ²	•	
M _t	= 49000 Nmm	σ_a E	= 200000 N/mm ²		
y _G	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_{o}	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	=
A _*	=	$\tau(T_y)_s$		$\sigma_{\text{st.ven}}$	=
S_u	=	$\tau(T_y)_d$	=	Θ_{t}	=
A S _u C _w	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_{v}	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
~ (/	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
@ ∧ 4	lalfa Zavalani Dagai Dalitagnica	ط: ۱۸۱۱۸	no vere 24.09.06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 67200 N
                                                                  M_{\star}
                                                                             = -2630000 Nmm
T_y M_t
                                                                             = 200 \text{ N/mm}^2
          = 33800 N
                                                                             = 200000 \text{ N/mm}^2
          = 62200 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 43900 N
                                                                  M_{\star}
                                                                             = -2570000 Nmm
T_y M_t
                                                                             = 200 \text{ N/mm}^2
          = 39400 N
                                                                             = 200000 \text{ N/mm}^2
          = 84900 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 52200 N	M _t	= 103000 Nmm	σ_{a}	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 43800 N	M_x	= -2040000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$		σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67400 N	M₊	= 82200 Nmm	σ_{a}	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 53000 N	M_x	= -2650000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{r}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 36100 N	M _x	= 1270000 Nmm	G	$= 75000 \text{ N/mm}^2$
T.,	= 16100 N	$\sigma_a^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	$= 200 \text{ N/mm}^2$		
M,	= 20800 Nmm	E	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	d=	σ_{mises}	=
A _.	=	$\tau(T_y)_s$	=	$\sigma_{\text{st.ven}}$	
S _u	=	$\tau(T_y)_d$	=	θ_{t}	=
A S _u C _w	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_{v}	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
σ(N)	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
@ \ \	lalfa Zavalani Dagai Dalitagnica	d: N/ila	no voro 24 00 06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 32700 N	M_x	= 1610000 Nmm	•	G	= 75000 N/mm ²
Т	= 19600 N	σ_a	= 200 N/mm ²		•	
M,	= 30800 Nmm	E E	$= 200000 \text{ N/mm}^2$			
•					_	
y_G	=	$\tau(M_t)_c$	=		σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=		σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	d=		σ_{mises}	=
A _.	=	$\tau(T_{v})_{s}$			$\sigma_{\text{st.ven}}$	
Su	=	$\tau(T_y)_d$	=		θ_{t}	=
A S _u C _w	=	σ΄	=		$r_{\rm u}$	=
J_{u}	=	$ au_{s}$	=		r_v	=
J_{v}	=	$ au_{\sf d}$	=		r_{o}	=
J_{t}	=	σ_{ls}	=		J_p	=
σ(N)	=	$\sigma_{\sf IIs}$	=		P	
$\sigma(M_x)$	=	$\sigma_{\sf ld}$	=			
	lalfa Zavalani Dassi Dalitasnisa		04 00 00			

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

				_	2
Ν	= 42700 N	M_x	= 1300000 Nmm	G	$= 75000 \text{ N/mm}^2$
Т	= 22800 N		$= 200 \text{ N/mm}^2$		
. y		$oldsymbol{\sigma}_{a}$ E			
$\dot{M_t}$	= 48000 Nmm		$= 200000 \text{ N/mm}^2$		
y_G	=	$\tau(M_t)_c$	_d =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$) =	$\sigma_{ m tresca}$	=
V_{o}	=	$\tau(T_{yb})$) _d =	σ_{mises}	
A _*	=	$\tau(T_y)_s$	₃ =	$\sigma_{\text{st.ven}}$	
S_{u}^{n}	=	$\tau(T_y)_c$		Θ_{t}	=
A S _u C _w	=	σ	=	r_{u}	=
J_{u}	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$	=	$\sigma_{\sf IIs}$	=	,	
$\sigma(M_x)$) =	$\sigma_{\sf ld}$	=		
	lalfa Zavalani Dasai Dalitaaniaa		04 00 00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 39600 N	M _t	= 33400 Nmm	σ_{a}	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 29200 N	M_x	= 1440000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$		σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 51300 N	M_{x}	= 1830000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 23400 N	σ_{a}^{n}	$= 200 \text{ N/mm}^2$		
Ḿ₊	= 45000 Nmm	E	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	_d =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$		σ_{tresca}	=
V _o	=	$\tau(T_{vb})$		σ_{mises}	=
A	=	$\tau(T_{v})_{s}$		$\sigma_{\text{st.ven}}$	=
$egin{array}{c} A \ S_u^* \ C_w \end{array}$	=	$\tau(T_y)_c$	₃ =	θ_{t}	=
C_{w}	=	σ΄	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_{d}$	=	r_o	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$	=	$\sigma_{\sf IIs}$	=	•	
$\sigma(M_x)$) =	σ_{Id}	=		
		11. 8 411	04.00.00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 44900 N	M _x	= 2280000 Nmm	G	$= 75000 \text{ N/mm}^2$
T .				J	= 73000 N/IIIII
I _y	= 28500 N	σ_{a}	= 200 N/mm ²		
$\dot{M_t}$	= 59300 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	d=	σ_{mises}	=
A.	=	$\tau(T_{v})_{s}$	=	$\sigma_{\text{st.ven}}$	=
S_{u}^{n}	=	$\tau(T_y)_d$	=	θ_{t}	=
A S _u C _w	=	σ	=	\mathbf{r}_{u}	=
J_{u}	=	$ au_{s}$	=	r_{v}	=
J_v	=	$ au_d$	=	r_{o}	=
J_t	=	σ_{ls}	=	J_p	=
σ(N)	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
	lalfa Zavalani Dagai Dalitaaniaa	d: Mila	no vere 24.09.06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 44900 N	M _t	= 72300 Nmm	σ_{a}	$= 200 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 35400 N	M_x	= 1630000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_d$	=	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$		σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

			3		2
Ν	= 53500 N	M_{x}	= 1940000 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ.,	= 39000 N	$\sigma_{a}^{\hat{a}}$	$= 200 \text{ N/mm}^2$		
M,	= 61100 Nmm	E	= 200000 N/mm ²		
•				_	
y_G	=	$\tau(M_t)_c$		σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{vb})$	d=	σ_{mises}	=
A	=	$\tau(T_{v})_{s}$, =	$\sigma_{\text{st.ven}}$	=
$\hat{S_u}$	=	$\tau(T_y)_d$	₁ =	θ_{t}	=
A S _u C _w	=	σ΄	=	r _u	=
J_u	=	$ au_{s}$	=	r_{v}	=
J_{v}	=	$\tau_{\sf d}$	=	r_{o}	=
J_{t}	=	$\sigma_{\sf ls}$	=	J_p	=
σ(N)	=	$\sigma_{\sf IIs}$	=	•	
$\sigma(M_x)$	=	$\sigma_{\sf ld}$	=		
	lalfa Zavalani Dasai Dalitaaniaa		04 00 00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	• •		3		2
N	= 66500 N	M_{x}	= 2380000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,,	= 30600 N	σ_a	$= 200 \text{ N/mm}^2$		
$\dot{M_t}$	= 78500 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	_i =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	d=	σ_{mises}	=
A _.	=	$\tau(T_{v})_{s}$, =	$\sigma_{\text{st.ven}}$	
A S _u C _w	=	$\tau(T_y)_d$	₁ =	θ_{t}	=
C_{w}	=	σ	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_{v}	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_{p}	=
σ(N)	=	$\sigma_{\sf IIs}$	=	·	
$\sigma(M_x)$	=	$\sigma_{\sf ld}$	=		
	alfa Zavalani Danai Dalitaaniaa		04 00 00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	. accitatives rapprocessia				2
Ν	= 26700 N	M_{x}	= -1390000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 18000 N	σ_{a}^{n}	$= 200 \text{ N/mm}^2$		
$\dot{M_t}$	= 23000 Nmm	E	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	d=	σ_{mises}	=
A _.	=	$\tau(T_{v})_{s}$	=	$\sigma_{\text{st.ven}}$	=
A S _u	=	$\tau(T_y)_d$	=	θ_{t}	=
C_{w}	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
σ(N)	=	$\sigma_{\sf IIs}$	=	•	
$\sigma(M_x)$	=	$\sigma_{\sf ld}$	=		
	lalfa Zavalani Dagai Dalitaaniaa		no vere 24.09.06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

			3		•
N	= 36500 N	M_x	= -1190000 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 21700 N	σ_a	$= 200 \text{ N/mm}^2$		
$\dot{M_t}$	= 33800 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	_i =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	=
A _*	=	$\tau(T_y)_s$, =	$\sigma_{\text{st.ven}}$	
S_{u}^{n}	=	$\tau(T_y)_d$	₁ =	θ_{t}	=
A S _u C _w	=	σ	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_{v}	=
J_v	=	$ au_d$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_{p}	=
σ(N)	=	σ_{IIs}	=	·	
$\sigma(M_x)$	=	$\sigma_{\sf Id}$	=		
	alfa Zavalani Dasai Dalitaanisa		04 00 00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 47200 N	M _x	= -1460000 Nmm	G	$= 75000 \text{ N/mm}^2$
Т	= 25000 N		= 200 N/mm ²		
M _t	= 35500 Nmm	σ_a E	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	=
A _*	=	$\tau(T_y)_s$		$\sigma_{\text{st.ven}}$	=
S_u	=	$\tau(T_y)_d$	₁ =	Θ_{t}	=
$\mathbf{S}_{u}^{^{\star}}$ \mathbf{C}_{w}	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_d$	=	r_{o}	=
J_t	=	σ_{ls}	=	J_p	=
~ (/	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
@ ∧ d	lalfa Zavalani Dagai Dalitagnica	d: Mila	no voro 24 00 06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 43400 N
                                                                  M_{\star}
                                                                            = -1590000 Nmm
T_y M_t
                                                                             = 200 \text{ N/mm}^2
          = 21600 N
                                                                            = 200000 \text{ N/mm}^2
          = 37400 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		• • • • • • • • • • • • • • • • • • • •		3		2
1	V	= 37900 N	M_{x}	= -2000000 Nmm	G	$= 75000 \text{ N/mm}^2$
7	Γ.,	= 26100 N	$\sigma_{a}^{}$	$= 200 \text{ N/mm}^2$		
ľ	Μ,	= 49700 Nmm	E	= 200000 N/mm ²		
)	/ _G	=	$\tau(M_t)$	_d =	σ_{IId}	=
ι	J _o	=	$\tau(T_{yc})$) =	$\sigma_{ ext{tresca}}$	=
١	/ ₀	=	$\tau(T_{yb})$) _d =	σ_{mises}	=
/	٩,	=	$\tau(T_y)$	s =	$\sigma_{\text{st.ven}}$	
(S _u	=	$\tau(T_y)$	_d =	Θ_{t}	=
(A S _u C _w	=	σ	=	$r_{\rm u}$	=
	J _u	=	$ au_{s}$	=	r_{v}	=
,	J_v	=	$ au_{d}$	=	r_{o}	=
,	J _t	=	$\sigma_{\sf ls}$	=	J_p	=
	5(N)	=	$\sigma_{\sf IIs}$	=	·	
($\sigma(M_x)$	=	$\sigma_{\sf Id}$	=		
		alfa Zavalani Dasai Dalitaania		04 00 00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 50200 N
                                                                         M_{\star}
                                                                                    = -1690000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 200 \text{ N/mm}^2
            = 31500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 65000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 49600 N
                                                                    M_{\star}
                                                                               = -1820000 Nmm
T<sub>y</sub>
M₁
                                                                               = 200 \text{ N/mm}^2
           = 38800 N
                                                                               = 200000 \text{ N/mm}^2
          = 53400 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                        \sigma_{\text{IId}}
                                                                                                                                        \sigma_{tresca} =
                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                                                        \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

			3		•
N	= 58600 N	M_x	= -2140000 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ.,	= 28800 N	$\sigma_{a}^{}$	$= 200 \text{ N/mm}^2$		
M_t^y	= 68300 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{vc})$		σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$) _d =	σ_{mises}	=
A _.	=	$\tau(T_{v})_{s}$; =	$\sigma_{\text{st.ven}}$	
S_{u}^{n}	=	$\tau(T_y)_d$	_i =	θ_{t}	=
$egin{array}{c} A & & \ S_u^* & \ C_w & \end{array}$	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_{v}	=
J_{v}	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
σ(N)	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
	lalfa Zavalani Danai Dalifa milaa				

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	. acomanico cappidocina				0
N	= 49200 N	M_{x}	= -2610000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 34200 N	$\sigma_{a}^{}$	$= 200 \text{ N/mm}^2$		
$\dot{M_t}$	= 86700 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	=	σ_{IId}	=
u_o	=	$\tau(T_{yc})$		σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	_d =	σ_{mises}	=
A,	=	$\tau(T_y)_s$	=	$\sigma_{\text{st.ven}}$	=
Su	=	$\tau(T_y)_d$	=	θ_{t}	=
$egin{array}{c} A & & \ S_u^* & \ C_w & \end{array}$	=	σ	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_d$	=	r_{o}	=
J_{t}	=	σ_{ls}	=	J_p	=
σ(N)	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
	lalfa Zavalani Dagai Dalitaaniaa		no vere 24.00.06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 29600 N	M _x	= 1150000 Nmm	G	$= 75000 \text{ N/mm}^2$
T	= 24300 N		= 200 N/mm ²	•	
M _t	= 33400 Nmm	σ_{a} E	$= 200000 \text{ N/mm}^2$		
y _G	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_{o}	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	=
A _.	=	$\tau(T_y)_s$		$\sigma_{\text{st.ven}}$	=
Su		$\tau(T_y)_d$		θ_{t}	=
A S _u C _w	=	σ΄	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$	=	$\sigma_{\sf IIs}$	=	·	
$\sigma(M_x)$	=	$\sigma_{\sf ld}$	=		
	lalfa Zavalani Dagai Dalitaaniaa		no voro 24 00 06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 44100 N
                                                                M_{\star}
                                                                          = 1710000 Nmm
T_y M_t
                                                                           = 200 \text{ N/mm}^2
          = 32700 N
                                                                          = 200000 \text{ N/mm}^2
          = 28600 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 55400 N
                                                                  M_{\star}
                                                                             = 2100000 Nmm
T<sub>y</sub>
M₊
                                                                             = 200 \text{ N/mm}^2
          = 25400 N
                                                                             = 200000 \text{ N/mm}^2
          = 42000 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 35200 N
                                                                  M_{\star}
                                                                             = 2070000 Nmm
T<sub>y</sub>
M₊
                                                                             = 200 \text{ N/mm}^2
          = 30700 N
                                                                             = 200000 \text{ N/mm}^2
          = 53400 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 45300 N	M _x	= 1760000 Nmm	G	$= 75000 \text{ N/mm}^2$
T	= 36400 N		= 200 N/mm ²	•	
M _t	= 66300 Nmm	σ_{a} E	= 200000 N/mm ²		
y _G	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	=
A _*	=	$\tau(T_y)_s$		$\sigma_{\text{st.ven}}$	=
S_u	=	$\tau(T_y)_d$	₁ =	θ_{t}	=
A S _u C _w	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_{v}	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
~ (/	=	σ_{IIs}	=		
$\sigma(M_x)$	=	σ_{Id}	=		
@ ∧ 4	lalfa Zavalani Dagai Dalitaaniaa	ط: ۱۸۱۱۸	no vere 24.09.06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 61300 N
                                                                  M_{\star}
                                                                             = 2380000 Nmm
T<sub>y</sub>
M₊
                                                                             = 200 \text{ N/mm}^2
          = 45700 N
                                                                             = 200000 \text{ N/mm}^2
          = 55600 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 59400 N	M _x	= 2340000 Nmm	G	$= 75000 \text{ N/mm}^2$
T	= 35300 N		= 200 N/mm ²	•	70000 14711111
. y M₊	= 76800 Nmm	σ _a Ε	$= 200000 \text{ N/mm}^2$		
y_{G}	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	
A _.	=	$\tau(T_{v})_{s}$		$\sigma_{\text{st.ven}}$	=
$\hat{S_u}$	=	$\tau(T_y)_d$	=	θ_{t}	=
$\mathbf{S}_{u}^{^{\star}}$ \mathbf{C}_{w}	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_{v}	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$	=	$\sigma_{\sf IIs}$	=	ľ	
$\sigma(M_x)$	=	σ_{Id}	=		
	lalfa Zavalani Dagai Dalitaaniaa		no voro 24 00 06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N.I.	40700 NI	N 4	0700000 No.	_	75000 N/2
N	= 46700 N	M_x	= 2760000 Nmm	G	$= 75000 \text{ N/mm}^2$
T.,	= 39600 N	σ_{a}	= 200 N/mm ²		
N A		E	= 200000 N/mm ²		
$\dot{M_t}$	= 94000 Nmm				
y_G	=	$\tau(M_t)_c$	_d =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$) =	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$) _d =	σ_{mises}	
A,	=	$\tau(T_y)_s$		$\sigma_{\text{st.ven}}$	=
$\hat{S_u}$	=	$\tau(T_y)_c$		θ_{t}	=
A S _u C _w	=	σ΄	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$	=	$\sigma_{\sf IIs}$	=	ľ	
$\sigma(M_x)$) =	$\sigma_{\sf Id}$	=		
	lalfa Zavalani Dagai Dalitaaniaa				

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 61000 N	M _x	= 2370000 Nmm	G	$= 75000 \text{ N/mm}^2$
T.,	= 48400 N		= 200 N/mm ²		
M _t	= 111000 Nmm	σ_a E	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_d$	₁ =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$	=	σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$		σ_{mises}	=
A _.	=	$\tau(T_{v})_{s}$	=	$\sigma_{\text{st.ven}}$	
$\hat{S_u}$	=	$\tau(T_y)_d$	=	θ_{t}	=
A S _u C _w	=	σ΄	=	r_u	=
J_{u}	=	$ au_{s}$	=	r_{v}	=
J_v	=	$ au_{d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
~ (/	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
	lalfa Zavalani Dagai Dalitaaniaa	al: N //:1a	nna .vara 04.00.00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 18500 N
                                                                   M_{\star}
                                                                              = -425000 Nmm
T_y \\ M_t
                                                                              = 200 \text{ N/mm}^2
           = 11100 N
                                                                              = 200000 \text{ N/mm}^2
          = 8040 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{IId}}
                                                                                                                                      \sigma_{tresca} =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                      \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 26200 N
                                                                  M_{\star}
                                                                             = -548000 Nmm
T_y M_t
                                                                             = 200 \text{ N/mm}^2
           = 9070 N
                                                                             = 200000 \text{ N/mm}^2
          = 14300 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 23700 N
                                                                  M_{\star}
                                                                             = -662000 Nmm
T_y M_t
                                                                             = 200 \text{ N/mm}^2
          = 10700 N
                                                                             = 200000 \text{ N/mm}^2
          = 25900 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

			3		•
Ν	= 20900 N	M_{x}	= -508000 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ.,	= 14900 N	$\sigma_{a}^{\hat{a}}$	$= 200 \text{ N/mm}^2$		
M_t^y	= 21500 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_{G}	=	$\tau(M_t)_c$	_d =	σ_{IId}	=
u_o	=	$\tau(T_{yc})$		σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	$)_{d}=$	σ_{mises}	=
A _.	=	$\tau(T_y)_s$	_s =	$\sigma_{\text{st.ven}}$	=
S_u	=	$\tau(T_y)_c$	_d =	θ_{t}	=
$egin{array}{c} A \ S_u^{^\star} \ C_w \end{array}$	=	σ	=	r_u	=
J_u	=	$ au_{s}$	=	r_{v}	=
J_v	=	$ au_{\sf d}$	=	r_{o}	=
J_t	=	$\sigma_{\sf ls}$	=	J_p	=
$\sigma(N)$		$\sigma_{\sf lls}$	=	•	
$\sigma(M_x)$) =	$\sigma_{\sf Id}$	=		
	dalfa Zavalani Dasai Dalifaaniaa	al: N 4:1.	04 00 00		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 28600 N
                                                                         M_{\star}
                                                                                     = -669000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 200 \text{ N/mm}^2
            = 17900 N
                                                                                     = 200000 \text{ N/mm}^2
           = 20600 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 37800 N
                                                                    M_{\star}
                                                                               = -841000 Nmm
T<sub>y</sub>
M₊
                                                                               = 200 \text{ N/mm}^2
           = 14300 N
                                                                               = 200000 \text{ N/mm}^2
           = 29500 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                        \sigma_{\text{IId}}
                                                                                                                                        \sigma_{tresca} =
                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                                                        \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24200 N	M _t	= 34000 Nmm	σ_{a}	= 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_y	= 18800 N	M_x	= -904000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 29800 N	M _x	= -721000 Nmm	G	= 75000 N/mm ²
T.,	= 20900 N	σ_a^x	$= 200 \text{ N/mm}^2$		
M,	= 43900 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	=	σ_{IId}	=
u_o	=	$\tau(T_{vc})$		σ_{tresca}	=
V_{o}	=	$\tau(T_{yb})$	d=	σ_{mises}	=
A .	=	$\tau(T_{v})_{s}$	=	$\sigma_{\text{st.ven}}$	=
$S_u^{}$	=	$\tau(T_y)_d$	=	θ_{t}	=
A S _u C _w	=	σ΄	=	r_u	=
J_u	=	$ au_{s}$	=	r_v	=
J_v	=	$ au_{d}$	=	r_o	=
J_t	=	σ_{ls}	=	J_p	=
~ ()	=	σ_{IIs}	=	•	
$\sigma(M_x)$	=	σ_{Id}	=		
	lalfa Zavalani Dagai Dalitaaniaa		no voro 24 00 06		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 38500 N	M _t	= 39100 Nmm	σ_{a}	= 200 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_y	= 24500 N	M_x	= -907000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{d}$	=	σ_{tresca}	=	•	