Mathematics Homework Sheet 6

Authors: Abdullah Oguz Topcuoglu & Ahmed Waleed Ahmed Badawy

Problem 2

(a)

 U_1 :

 U_1 is subspace of R[x].

Not empty:

 U_1 is not empty because $0 \in U_1$ (zero polynomial).

Closed under addition:

Let $p(x), q(x) \in U_1$. Then p(0) = 0 and q(0) = 0.

Then, (p+q)(0) = p(0) + q(0) = 0 + 0 = 0.

Closed under scalar multiplication:

Let $p(x) \in U_1$ and $c \in R$. Then, (cp)(0) = c(p(0)) = c(0) = 0.

Thus, U_1 is closed under scalar multiplication.

 U_2 :

 U_2 is not a subspace of R[x]. Because U_2 doesn't contain the zero polynomial. (every vector space has to contain the zero vector which is the zero polynomial in this case)

 U_3 :

 U_3 is subspace of R[x].

Not empty:

 U_3 is not empty because $0 \in U_3$ (zero polynomial).

Closed under addition:

Let $p(x), q(x) \in U_3$. Then p(1) = 0 and q(1) = 0.

Then, (p+q)(1) = p(1) + q(1) = 0 + 0 = 0.

Closed under scalar multiplication:

Let $p(x) \in U_3$ and $c \in R$. Then, (cp)(1) = c(p(1)) = c(0) = 0.

Thus, U_3 is closed under scalar multiplication.

 U_4 :

 U_4 is subspace of R[x].

Not empty:

 U_4 is not empty because $0 \in U_4$ (zero polynomial).

Closed under addition:

Let $p(x), q(x) \in U_4$. Then $\int_0^1 p(x)dx = 0$ and $\int_0^1 q(x)dx = 0$.

Then, $\int_0^1 (p+q)(x) dx = \int_0^1 p(x) dx + \int_0^1 q(x) dx = 0 + 0 = 0$. Closed under scalar multiplication:

Let $p(x) \in U_4$ and $c \in R$. Then, $\int_0^1 (cp)(x) dx = c \int_0^1 p(x) dx = c(0) = 0$. Thus, U_4 is closed under scalar multiplication.

 U_5 :

 U_5 is subspace of R[x].

Not empty:

 U_5 is not empty because $0 \in U_5$ (zero polynomial).

Closed under addition:

Let
$$p(x)$$
, $q(x) \in U_5$. Then $p'(0) + p''(0) = 0$ and $q'(0) + q''(0) = 0$.
Then, $(p+q)'(0) + (p+q)''(0) = p'(0) + q'(0) + p''(0) + q''(0) = 0 + 0 = 0$.

Closed under scalar multiplication:

Let
$$p(x) \in U_5$$
 and $c \in R$. Then, $(cp)'(0) + (cp)''(0) = c(p'(0)) + c(p''(0)) = c(p'(0) + p''(0)) = c(0) = 0$.

Thus, U_5 is closed under scalar multiplication.

 U_6 :

 U_6 is not a subspace of R[x]. Becuase it is not closed under addition Let $p(x), q(x) \in U_6$. Then p'(0)p''(0) = 0 and q'(0)q''(0) = 0. Then, (p+q)'(0)(p+q)''(0) = (p'(0)+q'(0))(p''(0)+q''(0)) = p'(0)p''(0) + p'(0)q''(0) + q'(0)p''(0) + q'(0)q''(0) = p'(0)q''(0) + q'(0)p''(0)

Which is not necessarily equal to 0. Thus U_6 is not closed under addition.