

Auto-IA Workshop HMTM Hannover

TOPIC MODELING FOR SOCIAL SCIENTISTS

Model selection and evaluation

Gregor Wiedemann | g.wiedemann@leibniz-hbi.de Media Research Methods Lab Leibniz-Institute for Media Research | Hans-Bredow-Institut

Andreas Niekler | aniekler@informatik.uni-leipzig.de Abteilung Automatische Sprachverarbeitung, Institut für Informatik Universität Leipzig

This lecture

- 1. Model selection and evaluation
 - 1. Manual approaches
 - 2. Numeric approaches
- 2. Variants of topic models
 - 1. HDP
 - 2. sLDA
 - 3. ATM, CTM, RTM, STM

Model selection and evaluation

- Use of Text Mining is of no end in itself for qualitative data analysis
- instead TM procedures should to be
 - embedded into a methodological framework
 - selected in accordance with the research question
 - applied in a thoughtful systematic analysis workflow
 - run with optimal parameters regarding the data
 - carefully evaluated w.r.t. to the research goal

Compatibility of Text Mining and QDA

- "4 Principles of Automated Text Analysis" (Justin Grimmer 2013)
 - 1. All Quantitative Models of Language Are Wrong—But Some Are Useful
 - 2. Quantitative Methods Augment Humans, Not Replace Them
 - 3. There Is No Globally Best Method for Automated Text Analysis
 - 4. Validate, Validate, Validate
- Blended reading:
 - systematic combination of distant reading interpretations with close reading validation of findings (Lemke/Stulpe 2015; Lewis et al. 2013)

Model selection and evaluation

- 2 closely linked goals: selection and evaluation of models
 - <u>selection</u>: finding best model and parameters to fit a model with respect to the data
 - reference: models against each other
 - evaluation: procedure to determine / measure the quality of a model
 - reference: absolute quality criteria
- 2 ways of quality assessment / validity check:
 - qualitative evaluation: human judgement on model results
 - numeric optimization: algorithmic judgement

Model selection and evaluation

- 2 closely linked g
 - <u>selection:</u> finding respect to the dat

terrorist, raf, schmidt, baader, haus, fahndung, jahr, politik, polizei, bka

raf, terrorist, mord, baader, bka, fahndung, buback, ensslin stammheim

nodels del with

- reference: models against each er
- evaluation: procedure to determine / measure the quality of a model

and

ara

- reference: absolute quality criteria
- 2 ways of quality as ity check:
 - qualitative evaluation
 - numeric optimization.
- $f(M_1) = 0.78$

n model results $t(M_2) = 0.56$

/nt

Quality criteria

Objectivity:

 if model assumptions of the generative process of text origin hold true, algorithmic solution guarantees maximum intersubjectivity

Validity:

 model caputures semantic coherence prominent in and relevant for a text collection properly

Reliability:

 repeated runs of model inference with same parameters on the same data produce same (or at least similar) results

Challenges

- Topic models ~ semantic clusters of document collections
- Validity:
 - Evaluation of clustering as heuristic instrument is generally hard
 - Example: divide the following 2 lists each in 2 clusters:
 - A) ostrich, **penguin**, **wale**, zebra
 - B) grandson, granddaughter, grandmother, grandfather
- Reliability:
 - Stochastic process for model inference -> only nearby, not exact solutions!
- Model selection: find model parameters resulting in valid and reliable models

Challenges

- Topic model Human clusters of document collections
- Validity:
 - Evaluation of clustering as heuristic instrument is generally hard
 - Example: divide the following 2 lists each in 2 clusters:
 - A) ostrich, penguin, wal

judgement

B) grandson, grandN

Numeric evaluation

dmother, grandfather

- Reliability:
 - Stochastic process for model inference -> only nearby, not exact solutions!
- Model selection: find model parameters resulting in valid and reliable models

Manual evaluation

- 3 steps proposed by Evans (2014):
 - 1) check semantic coherence of top N terms of each topic: Can you assign a topic label?
 - 2) employ additional numeric measures of topic coherence to identify broad / incoherent topics
 - 3) check if topic distribution over time complies with researcher intuition
- 2 methods introduced by Chang et al. (2009):
 - Word intrusion
 - Topic intrusion
- 1 tool for visual analysisby Sievert (2014): LDAvis
 - Nearness of topics (using PCA)
 - Re-Ranking of topic terms

Manual evaluation

- 3 steps proposed by Evans (2014):
 - 1) check semantic coherence of top N terms of each topic: Can you assign a topic label?
 - 2) employ additional numeric measures of topic coherence to identify broad / incoherent topics
 - 3) check if topic distribution over time on with researcher intuition
- 2 methods introduced by Chang et al. (2
 - Word intrusion
 - Topic intrusion
- 1 tool for visual analysisby Sievert (2014): LDAvis
 - Nearness of topics (using PCA)
 - Re-Ranking of topic terms

LDAvis

LDAvis

Time series

- Option 1: Aggregate probabilities by time period
- Option 2: Count documents per time period containing a certain topic
- Compliance with researcher intuition?

Topic raf

Word intrusion

- Idea Chang et al. (2009):
 - top topic words should represent semantic coherence; coherence could be evaluated by finding inappropriate intruder term
- Experiment:
 - repeat n times for random topic k
 - create top word list L for topic k
 - choose intruder term t not in top words of k, but relevant in other topic
 - put intruder word into shuffled L
 - ask evaluator to find t in L
 - calculate correct guesses / n

Topic intrusion

D4: TERRORISTEN | Vor dem Oberlandesgericht Düsseldorf muß sich die mutmaßliche Terroristin Angelika Speitel wegen Mordes verantworten. Es geht auch um Beteiligung an der Ermordung von Buback, Ponto und Schleyer. [...]

T1: raf, terrorist, mord, baader, bka

T2: polizei, daten, burg, vs, hamburg

T3: deutsch, muslim, islamist, anschlag

T4: gericht, jahr, richt, verfahren, vs

- Idea: read document (or at least beginning of it) and find intruded topic from presented list
 - sample document d
 - get 3 most prominent topics in d
 - select 1 topic not prominent in d
 - let user choose suspected intruder from shuffled list

Word / topic intrusion

• (Dis-)Advantages:

- + provide substantial numeric measures in range [0,1]
- + allows for comparison of models against each other
- - large effort for substantial evaluations of multiple models
- - human evaluators perform different in this task
- aspired quality not clear (~0.7 cp. to inter-rater reliability in content analysis?)

Numeric evaluation

- Goal: Entirely automatic approaches to judge on model quality
 - → determine model quality in one numeric measure
- 3 Approaches:
 - Perplexity (Wallach et al. 2009)
 - How well performs generalization of a learned model to unseen data?
 - Coherence (Mimno et al. 2011)
 - How often do we oberve predicted semantic coherence actually in the data?
 - Reliability (Lancichinetti et al. 2015, Koltsov 2012, ...)
 - How reproducible are model results between repeated inference runs?
- CAUTION: None of them replaces careful manual inspection!

Perplexity

• Perplexity:

- surprise of the model, when presented with new data -> a.k.a "Held-out Log Likelihood"
- What is the probality of the words in a test documents under the pre-trained model?

• Assumption:

 The lower the perplexity, the better model captures semantic coherence in the collection

Perplexity

- Variant: Document completion
 - Use X % of document content for training and remaining 100 – X % for testing

Topic Coherence

- Chang et al. (2009):
 - large user studies with word intrusion and topic intrusion
 - low perplexity does not correspond well with user perecption of coherent topics
- Mimno et al. (2011):
 - Idea: measure co-occurrence of highly-probable topic terms in documents instead of perplexity
 - The higher the coherence, the better the model captures actual semantics
 - Higher correlation of the coherence measure with user perception than perplexity

k raf
terrorist
mord
baader
bka

bka baader bka raf mord

terrorist ... raf mord ...

 $C(k, V^k) = \sum_{n=2}^{N} \sum_{l=1}^{n-1} log \left(\frac{D(v_n^k, v_l^k) + 1}{D(v_l^k)} \right)$

k – topic k
 V^k – top N words
 of topic k
 D(t)– number of

documents containing t

Perplexity / coherence

• (Dis-)Advantages:

- + provide substantial numeric measures in range
- + allows for comparison of models against each other
- + coherence allows for assessment on single topics k, and entire models → mean of coherence(k) for all k in 1:K
- no bounded value range → no absolute comparison
- high coherence seems to correlate with low priors → overfitting
- as single optimization goal they miss the goal of inference of good models too!

- ullet numerous local optima of $p(eta_{\scriptscriptstyle 1:K}, heta_{\scriptscriptstyle 1:D}, z_{\scriptscriptstyle 1:D}, w_{\scriptscriptstyle 1:D})$
- solution possible only via stochastic inference
- → random sampling → results near optimal solution, but varying in probability space
- depending on
 - parameter initialization
 - sampling strategy
 between repeated inference may vary greatly
- quality criterion in social science: determine reliability of measurement instruments!

• Idea:

- compare pairs of models of repeated inference runs
- measure similarity of results, e.g. how many topics can be reproduced reliably

• Challenges:

- identification of matching topic pairs ← no stable identifier due to stochastic inference process
- definition of similarity: when are topics considered "equal"

• State-of-the-art:

- problem identified in social science (e.g. Lancichinetti in 2015)
- Approaches:
 - Roberts et al. 2016 (STM): Spectral Clustering for initialization + Random Seed fixation, fully reproducible
 - Maier et al. 2018 (LDA): LL-Co-occurrence Clustering for initialization, increased stability
 - Rieger 2020 (LDA): IdaProtoype, select the LDA run from N = 100 runs with highest mean pairwise similarity

- 2 types of approaches two compare two models $m_1 = (\beta_{1:K}, \theta_{1:D})$ and $m_2 = (\beta'_{1:K}, \theta'_{1:D})$
- Approach I: matching topics topic-term-distributions β:
 - choose similarity measure SIM and define similarity threshold s
 - similarity measures:
 - Kullback-Leibler-Divergence (KLD), Jensen-Shannon-Divergence (JSD) (Koltsov 2012)
 - Cosine Similarity on top N topic words (Niekler 2015)
 - for each β_k find most similar β'_k where SIM(β_k , β'_k) > s

- compare two models $m_1 = (\beta_{1:K}, \theta_{1:D})$ and $m_2 = (\beta'_{1:K}, \theta'_{1:D})$
- Approach II: matching topics by document-topic-distributions θ (Lancichinetti 2015):
 - topic distribution given document p(k|d) from θ and θ' cannot be compared directly due to unknown topic matching \to Idea:
 - **compare** p(d|k) because document indexes are fixed and known
 - p(d|k) can be obtained via Bayes' Rule: p(d|k) = p(k|d) * p(d) / p(k)
 - calculate manhattan distance on p(d|k) and p(d|k') for all topic pairs from m₁ and m₂ and match least distant topics (best match)
 - correct for distance obtained by randomly sampled topic distribution over documents
 - Reliability score = average chance corrected manhattan distance between matched pairs

- (Dis-)Advantages Approach I (comparing β and β '):
 - + provides measure in range [0;1]
 - + follows analysts intuition of comparing semantic coherence of terms
 - + especially cosine distance concentrating on top topic terms
 - measuring similarity with KLD or JSD for comparing probability distributions (information loss) is less intuitive
 - measures need to assume theresholds for similarity -> high influence on reliability score
 - cosine measure also need parameter N for top topic words to match

- (Dis-)Advantages Approach II (comparing θ and θ '):
 - + provides measure in range [0;1]
 - + does not rely on thresholds for comparison
 - + chance correction
 - +/- considers unequal importance of topics by weighting distance with overall topic probability
 - no bipartite matching of pairs from m₁ and m₂ guaranteed
 - Manhattan distance on probabilities less intuitive
 - rather conservative scoring of reliability

Increasing reliability

- Reducing K:
 - lowered number of topics → more stable clusterings
- Fixed initialization of topic assignments to words **z** before/during Gibbs sampling
 - Seed: random, but fixed initialization (does this really improve model reliability?)
 - Clustered: using term co-occurrence clusters as informed prior for fixed initialization
 - Variant 1: "Topic Mapping" by Lancichinetti et al. 2015: initialize **z** by term co-ooccurrence clusters of documents in the collection; run Topic Model inference for only 1 iteration → Reliability = 1 (but: it is actually not longer topic modeling…)
 - Variant 2: run Topic Model inference for N iterations → Reliability < 1, but still improved (next slide)
 - Change sampling process as suggested by Koltsov 2012: force sampled topic for word w onto its left and right neighbors -> co-occurring words tend to have same topic; But:no straightforward implementation on bag-of-words representations in R
- Pragmatic approach:
 - Leave out unreliable / in incoherent topics in final analysis

Increasing reliability

Best Practice Suggestion (Maier et al. 2018)

- General advice:
 - avoid model selection solely based on numeric evaluation measures (!correspondence with human judgement)
 - make theoretically sound selections insteand and check manually
- Workflow:
 - 1. Preprocessing: clean documents/remove biolerplate, lowercase, remove punctuation, remove stop words, remove infreqent terms (df(w) < 0.5 % document frequency), lemmatization/stemming
 - 2. (initialize topic assignments for LDA)
 - a) set seed, or
 - b) cluster terms by their co-occurrence statistics
 - 3. Compute a variety of models with different parameters K, alpha, (fix eta = 1 / K)
 - 1. for each K, select model with alpha wih highest topic coherence
 - 2. select model with best interpretable K topics (use LDAvis as helper tool)
 - 4. Validate selected model
 - rank words: term probability + lambda relevance score (LDAvis) → interprete semantic coherence → label
 - rank topics: topic probability + rank1 (background vs major topics), coherence (compared to other topics)
 - read N documents for each topic with highest topic probability
 - check reliability to repeated inference runs
 - 5. Final analysis: time series, cross-sectional analysis
 - leave out uninterpretable models
 - leave out unreliable models

END