

ENEE 3587
Microp Interfacing

Simple Parallel Interfaces

- Simple parallel interfaces:
 - Simple input/output devices
 - No interrupts needed
 - Connected to port pins
 - Not using any peripherals
- Examples:
 - Drive LED's
 - Read push button
 - Read dip switch

Voltage Characteristics

- Voltage parameters related to electrical compatibility
 - ➤ Input high voltage (V_{IH})
 - ➤ Input low voltage (V_{IL})
 - Output high voltage (V_{OH})
 - Output low voltage (V_{OL})
- For device X to drive (i.e. control/provide input to) device Y:
 - VOH of device X ≥ VIH of device Y.
 - VOL of device X ≤ VIL of device Y
- In case of miss-maching characteristics we need to condition the signals
 - E.g. use op-amps

Current Characteristics

- Current parameters related to electrical compatibility
 - ➤ Input high current (I_{IH})
 - ➤ Input low current (I_{II})
 - Output high current (I_{OH})
 - Output low current (I_{OL})
- Device X current driving device Y:
 - Current flows out from the device X when the driving voltage is high.
 - Current flows into the device X when the driving voltage is low.
 - Device X must have enough sourcing (supply current) and sinking (absorb current) capability.
- If a device X cannot source or sink enough current, then using buffer device is a common solution.

Mega2560 DC Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
V _{IL}	Input Low Voltage, Except XTAL1 and Reset pin	V _{CC} = 1.8V - 2.4V V _{CC} = 2.4V - 5.5V	-0.5 -0.5		0.2V _{CC} ⁽¹⁾ 0.3V _{CC} ⁽¹⁾		
V _{IL1}	Input Low Voltage, XTAL1 pin	V _{CC} = 1.8V - 5.5V	-0.5		0.1V _{CC} ⁽¹⁾		
V _{IL2}	Input Low Voltage, RESET pin	V _{CC} = 1.8V - 5.5V	-0.5		0.1V _{CC} ⁽¹⁾		
V _{IH}	Input High Voltage, Except XTAL1 and RESET pins	V _{CC} = 1.8V - 2.4V V _{CC} = 2.4V - 5.5V	0.7V _{CC} ⁽²⁾ 0.6V _{CC} ⁽²⁾		V _{CC} + 0.5 V _{CC} + 0.5	v	
V _{IH1}	Input High Voltage, XTAL1 pin	V _{CC} = 1.8V - 2.4V V _{CC} = 2.4V - 5.5V	0.8V _{CC} ⁽²⁾ 0.7V _{CC} ⁽²⁾		V _{CC} + 0.5 V _{CC} + 0.5		
V _{IH2}	Input High Voltage, RESET pin	V _{CC} = 1.8V - 5.5V	0.9V _{CC} ⁽²⁾		V _{CC} + 0.5		
V _{OL}	Output Low Voltage ⁽³⁾ , Except RESET pin	I _{OL} = 20mA, V _{CC} = 5V I _{OL} = 10mA, V _{CC} = 3V			0.9 0.6		
V _{OH}	Output High Voltage ⁽⁴⁾ , Except RESET pin	I _{OH} = -20mA, V _{CC} = 5V I _{OH} = -10mA, V _{CC} = 3V	4.2 2.3				
I _{IL}	Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin low (absolute value)			1		
I _{IH}	Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin high (absolute value)			1	μΑ	
R _{RST}	Reset Pull-up Resistor		30		60		
R _{PU}	I/O Pin Pull-up Resistor		20		50	kΩ	

Symbol	Parameter	Min.	Тур.	Max.	Units			
I _{cc}	Power Supply Current ⁽⁵⁾	Active 1MHz, V _{CC} = 2V (ATmega640/1280/2560/1V)		0.5	0.8			
		Active 4MHz, V _{CC} = 3V (ATmega640/1280/2560/1L)		3.2	5			
		Active 8MHz, V _{CC} = 5V (ATmega640/1280/1281/2560/2561)	10	14				
		Idle 1MHz, V _{CC} = 2V (ATmega640/1280/2560/1V)		0.14	0.22			
		Idle 4MHz, V _{CC} = 3V (ATmega640/1280/2560/1L)		0.7	1.1			
		Idle 8MHz, V _{CC} = 5V (ATmega640/1280/1281/2560/2561)		2.7	4			
	Devices device seeds	WDT enabled, V _{CC} = 3V		<5	15	μА		
	Power-down mode	WDT disabled, V _{CC} = 3V		<1				
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$		<10	40	mV		
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50		50	nA		
t _{ACID}	Analog Comparator Propagation Delay	V _{CC} = 2.7V V _{CC} = 4.0V		750 500		ns		

Input and output voltage levels of common logic families

Logic family	VCC	V _{IH}	V _{OH}	V _{IL}	V _{OL}
S ⁴ LS ⁴ AS ⁴ F ⁴ HC ³ HCT ³ ACT ³ ABT ⁵ BCT ⁵ FCT ⁵	5 V V V V V S 5 V V S 5 V V S 5 V V S 5 V V S 5 V V S 5 V V S 5 V	2 V 2 V 2 V 3.5 V 3.5 V 2 V 2 V 2 V	3.0~3.4 V ¹ 3.0~3.4 V ¹ 3.0~3.4 V 3.4 V 4.9 V 4.9 V 4.9 V 3 V 3.3 V 2.4 V	0.8 V 0.8 V 0.8 V 1.5 V 1.5 V 0.8 V 0.8 V 0.8 V	0.4~0.5 V ² 0.4~0.5 V ² 0.35 V 0.3 V 0.1 V 0.1 V 0.1 V 0.55 V 0.42 V 0.55 V

Notes.

- 1. V_{OH} value will get lower when output current is larger.
- 2. V_{OL} value will get higher when output current is larger. The V_{OL} values of different logic gates are slightly different.
- 3. HC, HCT, ACT are based on the CMOS technology.
- 4. S, LS, AS and F logic families are based on the bipolar technology.
- 5. ABT, BCT, and FCT are using the Bi-CMOS technology.

Current capabilities of common logic families ¹

Logic family	VCC	I _{IH}	I _{IL}	I _{OH}	I _{OL}
S LS AS F HC ³ HCT ³ ACT ³ ABT ³	5 V 5 V 5 V 5 V 5 V 5 V	50 mA 20 mA 20 mA 20 mA 1 mA 1 mA 1 mA 1 mA	1.0 mA 0.2 mA 0.5 mA 0.5 mA 1 mA 1 mA 1 mA 1 mA	1 mA 15 mA 15 mA 1 mA 25 mA 25 mA 24 mA 32 mA	20 mA 24 mA 64 mA 20 mA 25 mA 25 mA 24 mA 64 MA
BCT FCT ³	5 V 5 V	20 mA 1 mA	1 mA 1 mA	15 mA 15 mA	64 mA 64 mA

Notes.

- 1. Values are based on the 74xx244 of Texas Instrument (xx is the technology name: S, LS, AS, F, ... etc.)
- 2. The values for I_{IH} and I_{II} are input leakage currents.

Interfacing with LED Devices

- Circuit (a) and (b) are recommended for LEDs that need only small current to light (1~2mA).
- Circuit (c) is recommended for LEDs that need larger current to light.
- \bullet Current limiting resistors should be 1.5k-2k Ω .

GPIO Programming for LEDs

- Design Process:
 - Choose a port/pin to connect the LED to.
 - Determine LED type: forward vs inverse driven
 - Pin = HI for ON vs Pin = LO for ON
 - > Set DDR register of the pin to output
 - Set/Clear pin using PORT register
- Example: Use pin 7 of port B to control direct driven LED

```
DDRB = 0x80; //output on pin7
```

PORTB = 0x80; //portb_pin7 = HI

Driving a 7-Segment Displays

- Not advisable to connect without a buffer chip when other IOs are connected
- Octal buffer chip: 74HC244 provides 8 buffered lines.
 - > VOH = 5V
 - \triangleright Use 300 Ω to provide drive current of 10mA
- 7 segments: a-g
 - ➤ Dot is a typical 8th LED
- 2 Variations
 - Common Cathode:
 - All LEDs are grounded
 - Send "1" to turn LED on
 - Common Anode:
 - All LEDs are connected to Vcc
 - Send a "0" to turn LED on

Common Cathode 7SD Table

BCD	Segments							
digit	a	b	c	d	e	f	g	
0	1	1	1	1	1	1	0	
1	0	1	1	0	0	0	0	
2	1	1	0	1	1	0	1	
3	1	1	1	1	0	0	1	
4	0	1	1	0	0	1	1	
5	1	0	1	1	0	1	1	
6	1	0	1	1	1	1	1	
7	1	1	1	0	0	0	0	
8	1	1	1	1	1	1	1	
9	1	1	1	1	0	1	1	

GPIO Programming for Single 7SD

Design Process:

Determine if 7SD type: common cathode vs anode

Common GND pin vs common VCC pin for LEDs

■ LED on: HI input vs LO input

- Determine PORT/pins connections
 - A min of 7 pins
- Set the DDR register to output
- Convert the table into an array of inputs
- To display digit i, output array[i]

7SDx1 Common Cathode Example 1

```
CHAR SSD[]=\{0x7e, 0x30, 0x6d, 0x79, ..., 0x7b\};

DDRB = 0x7F; //PORTB PINS 6-0 OUTPUT
```

PORTB = SSD[0]; //DISPLAYS "0" ON 7SD

Digit	xabcdefg	HEX
0	*1111110	0x7E
1	*0110000	0x30
2	*1101101	0x6D
3	*1111001	0x79
4	*0110011	0x33
5	*1011011	0x5B
6	*1011111	0x5F
7	*1110000	0x70
8	*1111111	0x7F
9	*1111011	0x7B

7SDx1 Common Cathode Example 2

Using the same circuit as before, display 0 to 9 repeatedly on the 7SD. Each digit will be displayed for 1sec.

Delay functions

- Crude method: Use multiple loops
 - One loop to control micro increments (e.g. 1ms, 1us, etc.)
 - Micro increments must be converted into count
 - Count is controlled by the number of cycles AND frequency of device
 - Another to control macro increments
- Calculating delay in seconds: delay time = cycles/Clock
 - For a clock of 16MHz: 1ms = 16K/16M
- Function format:

Multiple 7SD

- For multiple 7-segmnets display: Commonly scanning is implemented
 - > Another port used to select which chip to activate
 - > A NPN transistor (2N2222) can be employed to help switch on the chip
 - NPN is connected to common cathode. If the cathode is allowed to connect to ground the chip will light up.

 \triangleright A small resistance 200 Ω ~1k Ω is needed to drive the transistor into

saturation

Multiple 7SDs Diagram

Coding Example: Multiple 7SD

Given: 3x7SDs driven by PB6-PB0. 7SD GND is connected to PA2-PA0. Write a program that will display and repeat the pattern:

Each line of the pattern should display for 1 sec.

Multiple 7SD Example Solution

Idea:

- display each digit for a very short time (10ms-20ms).
- > Turn on a 7SD by outputting 0 for its corresponding pin in PORTA
 - Only one 7SD should be ON
 - All others use output 1 (OFF)
- > Repeat the line over for 1s.
 - Each 7SD displays for 10ms
 - For 1s repeat: Repeat 1s/delay = 1000ms/(30ms+30ms+30ms) ~ 30x
 - Must experimentally determine 1s for accurate count
- Move to the next line
 - Start with digit 1
 - Display digit, digit+1, digit+2
 - For next line increment digit

Multiple 7SD Example Algorithm

```
Create an array for each digit: "1","2,"...,"9","0","1","2"
Set the PORTA,B for output
For i = 1 to 10:
                                                  //10 lines of patterns
                                                  //Assume 30x30ms ~ 1s
           For j = 1 to 30:
                   PORTB = array[i]
                   PORTA = ~4
                                          //4=b100; ~4= 011; PA2=011
                   delay1ms(10)
                   PORTB = array[i+1]
                   PORTA = ~2
                                          //2=b010; ~2=101; PA1=101
                   delay1ms(10)
                   PORTB = array[i+2]
                   PORTA = ~1
                                          //1=b001; ~1=110; PA0=110
                   delay1ms(10)
```

4x Seven Segment Display

- ❖ 5643A: common cathode; 5643B: common anode;
- Segments a,b,c,d,e,f,g: pins 11,7,4,2,1,10,5
- * "Enable" pins for 7SD1,2,3,4: pins 12, 9,8,6
 - Common cathode: GND
 - Common anode: VCC
- dot segment: pin 3

Interfacing DIP Switches

- Dual inline package (DIP): simple input device
- DIP switches are often used to provide setup information to MCU.
- \bullet For inputs = 5V use $10k\Omega$ to provide 0.5mA input to MCU
- When in ON position current flows from input to MCU

8xDIP Switch to LEDs

❖ An 8 input DIP switch is used to turn on 4 LEDs as showt in the diagram. When the switch is ON, turn the corresponding LED ON.

DIP, LED Example Code

- Configure PORTS for input/output:
 - > PORTB must be input; PORTA must be an output port
- Read PORTB:
 - Use PINB
 - \rightarrow When switch x is ON: PBx = 0
- Turn LEDs ON:
 - When PAx=0: LEDx is ON
 - > PORTA = PINB

```
DDRA = 0xFF; //output
DDRB = 0; //input
while(1)
```

PORTA = PINB; //BE (NOT) AWARE OF BOUNCE

Bounce of a DIP switch On falling edge 200µs

Push buttons

- Do not require advanced synchronization
- A push-button is switch
 - Can be mechanical, membrane, capacitors, or Hall-effect in construction.
- Mechanical switches are most popular.
 - Problem: contact bounce.
 - Closing a mechanical switch generates a series of pulses because the switch contacts do not come to rest immediately.
- Humans cannot type more than 50 keys in a second. Reading the switch more than 50 times a second will read the same key stroke too many times.
 - > 1/50 = 0.02s = 20ms

Timing Compatibility

- There is no timing problem when driving a peripheral pin that does not contain latches or flip-flops.
- When driving a latch or flip-flop device, one needs to make sure that the data set up time (t_{SU}) and data hold time (t_{HD}) are both satisfied.
- Not a big issue with simple devices

Push Button

- Port must be used as input
- Strategy:
 - Scan the port for a 0
 - Debounce button
- Hardware Debouncing Techniques
 - SR latches
 - Non-inverting CMOS gates
 - Integrating debouncer
- Software debouncing:
 - > <200µs delay for DIP; <1ms delay for pushbutton
 - > Adv: cheaper, controllable
 - Disadv.: consumes power (interrupt driven methods less power consumption).

Hardware Debouncing

Figure 7.42 Hardware debouncing techniques

Push Button Example

Coding for Push button

- Set port direction:
 - \triangleright Read: DDRx = 0
- Optional: Set the port to PULL-UP (if device PULLUP is used)
 - Enable pullup on the port
- Read pin
 - Use PINx
 - \triangleright PIN = 0 => button is ON
 - If activity is detected, delay 10ms and read again

```
DDRA = 0;
while(PINA==0x0F);  //wait until a button is pressed
delay1ms(10);  //wait for bounce to be over (debounce)
```

Keypad

- Array of pushbutton switches.
 - Typically 12-24 buttons
- Example: 16 keypad interface
 - Rows configured as input
 - Columns configured as output
 - Pullup network connected to rows
 - To scan a column, output configured to 0
 - When button is not pressed input is 1
 - > When button is pressed circuit is connected and input 0

Strategy

- 1. Use the built in PULLUP Port circuit
- 2. Enable a single column (send a 0)
- 3. Read rows (one by one)
- 4. If key is pressed, delay by 10ms then read again
 - To overcome bouncing
 - Use row, col combination to determine key pressed
 - > (col,row) = (0,0) is "1" (col,row) = (4,4) is "D"
 - STOP if key is pressed
- 5. Enable next column
- 6. Jump to 2

Code 4x4 Keypad

```
char keypad(void)
       char col[] = \{0x70, 0xB0, 0xD0, 0xE0\}, char key[][] = \{\{"1","2","3","A"\},...\}
       int r;
       DDRA = 0xF0;
                                            //PA7-4: controls columns, PA3-0: input rows
       for (int c = 0; c < 4; c++)
                                         // enable each column 1 at a time
              PORTA = col[c];
              if (PINA != 0x0F)
                      delay1m(10);
                                           //debounce
                      switch (PINA & 0x0F)
                             case(0b0111): r = 0; break;
                             case(0b1011): r = 1; break;
                             case(0b1101): r = 2; break;
                             case(0b1110): r = 3; break;
                             default:
                      return (key[r][c]);
```

LCD

- Most common type allows light to pass through when activated
 - activated when a low frequency bipolar signal in the range of 30 Hz to 1KHz is applied to it.
- Can display characters and graphics.
- Often sold in a module with LCDs and controller unit built in.

LCM1602A LCD Kit

- Display capability: 2 x 16
- DB0-7 can be used to:
 - Send characters to be display on LCD
 - Send commands to LCD (control cursor, fonts, etc.)
 - Receive status/configuration info from LCD

1-2 Lines LCD

Pin No.	symbol	I/O	Function
1	Vss	-	Power supply (GND)
2	V_{cc}	-	Power supply (+5 V)
3	V_{EE}	-	Contrast adjust
4	RS	ı	0 = instruction input, 1 = data input
5	R/\overline{W}	- 1	0 = write to LCD, 1 = read from LCD
6	Ε	ı	Enable signal
7	DB0	1/0	Data bus line 0
8	DB1	1/0	Data bus line 1
9	DB2	1/0	Data bus line 2
10	DB3	1/0	Data bus line 3
11	DB4	1/0	Data bus line 4
12	DB5	1/0	Data bus line 5
13	DB6	1/0	Data bus line 6
14	DB7	I/O	Data bus line 7

Pins 15,16 control back lighting

3-4 Line LCD

- . .

Pin No.	symbol	1/0	Function
1	DB7	1/0	Data bus line 7
2	DB6	1/0	Data bus line 6
3	DB5	1/0	Data bus line 5
4	DB4	1/0	Data bus line 4
5	DB3	1/0	Data bus line 3
6	DB2	1/0	Data bus line 2
7	DB1	1/0	Data bus line 1
8	DB0	1/0	Data bus line 0
9	E1	ı	Enable signal row 0 and 1
10	R/₩	ı	0 = write to LCD, 1 = read from LCD
11	RS	ı	0 = instruction input, 1 = data input
12	V_{EE}	-	Contrast adjust
13	V_{SS}	-	Power supply (GND)
14	V_{cc}	-	Power supply (+5 V)
15	E2	ı	Enable signal row 2 and 3
16	N.C	-	

Instruction Format

				Co	de						December	Execution Time
Instruction	RS	R/W	В7	В6	В5	В4	ВЗ	В2	В1	во	Description	
Clear display	0	0	0	0	0	0	0	0	0	1	Clears display and returns cursor to the home position (address 0)	1.64 ms
Cursor home	0	0	0	0	0	0	0	0	1	*	Returns cursor to home position without changing DDRAM contents. Also returns display being shifted to the original position.	1.64 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction (I/D); specifies to shift the display (S). These operations are performed during data read/write.	40 μs
Display on/ off control	0	0	0	0	0	0	1	D	С	В	Sets on/off of all display(D), cursor on/off (c), and blink of cursor position character (B).	40 μ s
Cursor/ display shift	0	0	0	0	0	1	S/C	R/L	. *	*	Sets cursor-move or display-shift (S/C), shift direction (R/L). DDRAM contents remain unchanged.	40 μs
Function set	0	0	0	0	1	DL	N	F	*	*	Sets interface data length (DL), number of display line (N), and character font (F).	40 μs
Set CGRAM address	0	0	0	1		CGF	RAM	ado	ires	6	Sets the CGRAM address. CGRAM data are sent and received after this setting.	40 μs
Set DDRAM address	0	0	1		DD	RA	M a	ddre	ss		Sets the DDRAM address. DDRAM data are sent and received after this setting.	40 μs
Read busy flag and address counter	0	1	BF	CGF	RAM	/DI	DRA	M a	ddre	ss	Reads busy flag (BF) indicating internal operation being performed and reads CGRAM or DDRAM address counter contents (depending on previous operation).	0 μs
Write CGRAM or DDRAM	1	0			wr	ite (data				Writes data to CGRAM or DDRAM	40 μs
Read from CGRAM or DDRAM	1	1			re	ad (data	1			Reads data from CGRAM or DDRAM	40 μs

Instruction Bits

Bit Name	S	ettings
I/D	0 = decrement cursor position.	1 = increment cursor position
S	0 = no display shift.	1 = display shift
D	0 = display off	1 = display on
С	0 = cursor off	1 = cursor on
В	0 = cursor blink off	1 = cursor blink on
S/C	0 = move cursor	1 = shift display
R/L	0 = shift left	1 = shift right
DL	0 = 4-bit interface	1 = 8-bit interface
N	0 = 1/8 or 1/11 duty (1 line)	1 = 1/16 duty (2 lines)
F	0 = 5 × 8 dots	$1 = 5 \times 10 \text{ dots}$
BF	0 = can accept instruction	1 = internal operation in progress

Display Data RAM (DDRAM)

- 2x16 LCD Module: 2 lines, 16 characters per line
- Each character location has an address
- Write in that address a character to display it on the LCD

Display Size	Visible						
Display Size	Character Positions	DDRAM Addresses					
2 * 16	0015	0x000x0F + 0x400x4F					
2 * 20	0019	0x000x13 + 0x400x53					
2 * 24	0023	0x000x17 + 0x400x57					
2 * 32	0031	0x000x1F + 0x400x5F					
2 * 40	0039	0x000x27 + 0x400x67					

ROM/RAM & Registers

- CGROM: Character generator ROM
 - > generates 5x8 or 5x10 character patterns from a 8-bit code
- CGRAM: Character generator RAM
 - User can rewrite character patterns into CGRAM.
 - Up to eight 5x8 patterns or four 5 x10 patterns can be programmed.
- Registers: two 8-bit user accessible registers:
 - Instruction register (IR): for display control
 - Data register (DR): to write and read

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.).
0	1	Read busy flag (DB7) and address counter (DB0 to DB6).
1	0	DR write as an internal operation (DR to DDRAM or CGRAM).
1	1	DR read as an internal operation (DDRAM or CGRAM to DR).

Commands

Clear display

- Writes 0x20 (space character) to all DDRAM locations.
- > Sets 0 to the address counter (return cursor to upper left corner of the LCD)
- Sets increment mode

Return Home

- Sets address counter to 0.
- > DDRAM contents are not changed.

Entry Mode Set

- Sets incrementing or decrementing of the DDRAM address.
- Controls the shifting (shifts if S bit = 1) of the display

Display On/Off Control

- Turns on/off display
- > Turns on/off cursor
- Turns on/off cursor blinking

Cursor vs Shift

- Cursor can move to right or left
 - Supports different languages
- Display Shift
 - Entire display shifts

S/C	R/L	Operation
0	0	Shifts the cursor position to the left. (AC is decremented by 1)
0	1	Shifts the cursor position to the right. (AC is incremented by 1)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

Function Set

- Sets the interface length (DL bit) to be 4- or 8-bit.
 - Using the 4 bit mode is more complex
 - Data must be sent twice (upper 4 bits are sent first then lower 4 bits)
 - Save on number of used ports/pins
 - Chip starts in 8 bit mode
 - > 4 bit mode data transfers on the upper data pins, D4-D7.
- Selects the number of lines (N bit) to be one or two lines.
- selects character font (F bit) to be 5x8 or 5x10

Address Regs & Flag

Set CGRAM Address

> This command contains the address to be written into the address counter.

Set DDRAM Address

This command allows the user to set the starting address to display information.

Read Busy Flag and Address

- This command reads the busy flag and the address counter.
- User can use this command to determine whether the LCD controller is ready to accept another command.
- > User can use this command to control where to start displaying information.

Setup

- LCD kit as an I/O device
- Use 4 bit-interface to save on pins

Timing: Write to LCD

Writing an Instruction to IR

Process:

- 1. IR instruction write: RS = 0
- 2. Write: R/W = 0
 - Based on diagram on previous slide R/W is always 0 => ignore this step
- 3. Enable input: E = 1
- 4. Output port = instruction
 - Configure IO Port for output before
- 5. Disable input: E = 0
- ❖ 4-bit interface requires sending the upper bits first, then the lower 4-bits

Writing a Character to LCD

Process:

- 1. DR Character write: RS = 1
- 2. Write operation: R/W = 0
- 3. Enable input: E = 1
- 4. Output port = instruction
 - Configure IO Port for output before
- 5. Disable input: E = 0
- ❖ 4-bit interface requires sending the upper bits first, then the lower 4-bits

Coding Examples

- Create the following functions:
 - byte2LCD:
 - Send a byte of data to the LCD
 - Bytes can be instructions or characters to display
 - Bytes are sent in 2 cycles: upper 4 bits, lower 4 bits
 - > setupLCD: sends instructions to the LCD kit:
 - Uses byte2LCD
 - 4-bit data, 2-line display, 5x8 font
 - turn on display, display a blinking cursor
 - Set display to display left to right
 - Clear display, move cursor home
 - > str2LCD: displays a string on LCD
 - Uses byte2LCD

Definitions

```
#define F CPU 16000000L // Specify 16MHz frequency
#include <avr/io.h> // GPIO reg def
#include <util/delay.h>
                         // delay function
       LCD_DAT PORTA
#define
                         // Port A drives LCD data pins, E & RS
#define LCD_DIR
               DDRA
                         // Direction of LCD port
#define LCD_E 0x20
                         // E signal
#define LCD_RS1 0x10
                         // RS signal: 0 for instr, 1 for char
#define LCD_RS0 0x00
                         // RS signal: 0 for instr, 1 for char
```

ENEE 3587

byte2LCD

```
void byte2LCD (char data, char IR DR)
      char temp;
      LCD DAT = IR DR; // set instr or character
      temp = data >> 4;  // get upper 4 bits
      LCD_DAT = IR_DR|LCD_E;  // pull E signal to high
      _delay_ms(5000);
      temp = temp | IR_DR;
      temp = temp LCD_E;
      LCD DAT = temp;
                                 // output upper four bits, E, and RS
      _{delay\_ms(1)};
                                  // wait until the send is complete
      LCD DAT = IR DR; // set instr or character
      temp = data & 0x0F;
                                 // keep lower 4 bits
      temp = temp LCD_E;
      LCD DAT = IR DR LCD E; // pull E to high
      temp = temp | IR_DR;
      LCD_DAT = temp;
                                 // output upper four bits, E, and RS
      _delay_ms(1);
                                 // wait until the command is complete
      LCD_DAT = 0;
                                  // pull E clock to low
```

setupLCD

57

str2LCD

```
void str2LCD (char *ptr)
{
    while (*ptr) //ascii-Z strings (null-terminated)
    {
        byte2LCD(*ptr, LCD_RS1);
        ptr++;
    }
}
```

Example Program

```
int main (void)
       char *msg1 = "hello world!";
       char *msg2 = "LCD is working!";
       setupLCD();
       str2LCD(msg1);
       byte2LCD(0xC0,LCD_RS0);  // move cursor to 2nd row, 1st column
       str2LCD(msg2);
       while(1);
```