Introdução à Ciência dos Dados

Aula 04 – Inferência Estatística

Sumário

- Introdução
- Teste de hipótese
- Intervalo de confiança
- valor-p

 Imagine um estudante que tirou as seguintes notas nas provas de Programação:

```
30%; 23%; 40%; 30%; 98%
```

• O que podemos concluir?

 Imagine um estudante que tirou as seguintes notas nas provas de Programação:

```
30%; 23%; 40%; 30%; 98%
```

- O que podemos concluir?
 - Nada. A estatística não pode provar nada com certeza.
- Mas podemos usar inferência para tentar determinar a explicação mais provável para algum resultado

 Imagine um estudante que tirou as seguintes notas nas provas de Programação:

```
30%; 23%; 40%; 30%; 98%
```

O que podemos inferir?

 Imagine um estudante que tirou as seguintes notas nas provas de Programação:

30%; 23%; 40%; 30%; 98%

- O que podemos inferir?
 - Com base em anos lecionando a disciplina de Programação, o professor tem dados suficientes para inferir que este estudante provavelmente colou na última prova.
 - O professor pode ter certeza disso? Não. Mas ele tem uma boa chance de estar certo....

- Imagine que um estranho chegue em sua cidade e te ofereça a seguinte aposta:
 - Ele ganha R\$1.000 se tirar 6 em um lance de um dado
 - Você ganha R\$500 se der qualquer outro número

- Imagine que um estranho chegue em sua cidade e te ofereça a seguinte aposta:
 - Ele ganha R\$1.000 se tirar 6 em um lance de um dado
 - Você ganha R\$500 se der qualquer outro número
- Ele então joga e tira dez vezes seguidas o 6, levando R\$10.000

- Imagine que um estranho chegue em sua cidade e te ofereça a seguinte aposta:
 - Ele ganha R\$1.000 se tirar 6 em um lance de um dado
 - Você ganha R\$500 se der qualquer outro número
- Ele então joga e tira dez vezes seguidas o 6, levando R\$10.000
 - Uma explicação possível é que ele teve muita sorte
 - Uma explicação alternativa é que o dado é viciado, pois a probabilidade de tirar o 6 dez vezes seguidas é de uma em 60 milhões
- Você não pode provar que ele trapaceou, mas no mínimo deve ficar desconfiado

- Quando um evento muito raro acontece, podemos desconfiar
- Mas cuidado: coisas extremamente raras acontecem
 - Linda Cooper foi atingida 4 vezes por raios
 - O estudante que tirou 98% na última prova pode ter resolvido se dedicar à Programação depois que já sabia que havia sido reprovado em Cálculo
- Mas um padrão improvável deve ser investigado
 - É assim que Comissão de Valores Imobiliários pega operações com informação privilegiada

- Será que um novo remédio é efetivo no tratamento de doenças cardíacas?
- Será que celulares provocam câncer?
- Será que o meu protocolo é mais eficiente que o já existente?
- Será que a prefeitura da minha cidade está gastando o dinheiro honestamente?
- Será que o remédio Paracetamol cura COVID-19?

- Será que um novo remédio é efetivo no tratamento de doenças cardíacas?
- Será que celulares provocam câncer?
- Será que o meu protocolo é mais eficiente que o já existente?
- Será que a prefeitura da minha cidade está gastando o dinheiro honestamente?
- Será que o remédio Paracetamol cura COVID-19?

A inferência não responde a essas perguntas, mas nos diz o que é provável e o que é improvável.

- Suponha que 91 em cada 100 pacientes recebendo uma nova medicação mostrem uma melhora acentuada, em comparação com 49 em 100 do grupo de controle.
 - Ainda é possível que esse resultado impressionante não esteja relacionado com a nova droga. Mas essa explicação é bem menos provável....

- Suponha que 91 em cada 100 pacientes recebendo uma nova medicação mostrem uma melhora acentuada, em comparação com 49 em 100 do grupo de controle.
 - 1) se o medicamento não tem efeito, raramente veríamos uma variação de resultados dessa dimensão entre os que receberam e os que não receberam o tratamento
 - 2) portanto, é muito improvável que o medicamento não tenha efeito positivo
 - 3) a explicação alternativa, e mais provável, é que o medicamente tenha efeito positivo

- Inferência estatística é o processo pelo qual os dados falam conosco, possibilitando-nos tirar conclusões significativas
 - Dados e probabilidade, com ajuda do teorema central do limite
 - Aceitar ou rejeitar explicações/hipóteses com base na sua relativa probabilidade

- Teste de hipóteses
 - Hipótese Nula implícita ou explícita
 - Premissa de partida, que será rejeitada ou não
 - Se rejeitada, aceitamos alguma hipótese alternativa que seja mais consistente com os dados observados
 - Não será provada verdadeira; apenas pode-se falhar em rejeitá-la
 - Hipótese Alternativa
 - Conclusão que precisa ser verdadeira se é para rejeitar a hipótese nula

Exemplo: Droga para prevenir malária

- Hipótese Nula: nova droga não é mais efetiva em prevenir a malária do que um placebo
- Hipótese Alternativa: nova droga pode ajudar a prevenir a malária
- Dados: um grupo aleatório recebe a nova droga e um grupo de controle recebe placebo
- Resultado: grupo que recebe a droga tem muito menos casos de malária que o grupo de controle

Exemplo: Droga para prevenir malária

- Hipótese Nula: nova droga não é mais efetiva em prevenir a malária do que um placebo
- Hipótese Alternativa: nova droga pode ajudar a prevenir a malária
- Dados: um grupo aleatório recebe a nova droga e um grupo de controle recebe placebo
- Resultado: grupo que recebe a droga tem muito menos casos de malária que o grupo de controle

Resultado extremamente improvável se a droga não tivesse impacto medicinal. Por isso, rejeitamos a hipótese nula e aceitamos a alternativa. Ou seja, essa nova droga pode ajudar a prevenir malária.

Exemplo: Reincidência em crimes

- Hipótese Nula: tratamento para abuso de substâncias químicas para detentos não reduz sua taxa de reincidência
- Hipótese Alternativa: tratamento para abuso de substâncias químicas para detentos reduzirá a probabilidade de reincidência
- Dados: um grupo aleatório de detentos recebe tratamento para abuso de substâncias e o grupo de controle não recebe
- Resultado: Após 5 anos, ambos os grupos têm índices similares de reincidência

Exemplo: Reincidência em crimes

- Hipótese Nula: tratamento para abuso de substâncias químicas para detentos não reduz sua taxa de reincidência
- Hipótese Alternativa: tratamento para abuso de substâncias químicas para detentos reduzirá a probabilidade de reincidência
- Dados: um grupo aleatório de detentos recebe tratamento para abuso de substâncias e o grupo de controle não recebe
- Resultado: Após 5 anos, ambos os grupos têm índices similares de reincidência

Não podemos rejeitar a hipótese nula. Os dados não nos deram razão para descartar nossa premissa inicial de que o tratamento para abuso de substâncias químicas não é uma ferramenta efetiva para diminuir a reincidência.

20

- Muitas vezes, a hipótese nula é criada com a esperança de que seja rejeitada. Nesses exemplos, o "sucesso" da pesquisa envolvia rejeitar a hipótese nula.
- A pergunta a ser respondida quantitativamente:
 - Se a hipótese nula for verdadeira, qual é a probabilidade de observar esse padrão de dados por puro acaso?

- Mas o quanto a hipótese nula deve ser implausível para podermos rejeitá-la e recorrer a alguma explicação alternativa?
 - 5% (0,05) é um dos limiares mais comuns
 - Chamado de nível de significância
 - Limite superior para a probabilidade de observação de algum padrão de dados se a hipótese nula fosse verdadeira
 - Podemos rejeitar a hipótese nula no nível 0,05 se a chance de obter um resultado no mínimo tão extremo quanto o que observamos se a hipótese nula for verdadeira for menor que 5%

- Exemplo do ônibus perdido
 - Pessoas no ônibus (amostra): 60
 - Peso médio da população: 74 KG
 - Desvio padrão da população: 16 KG
 - Erro padrão: 16/sqrt(60) = 2,1

- Exemplo do ônibus perdido
 - Pessoas no ônibus (amostra): 60
 - Peso médio da população: 74 KG
 - Desvio padrão da população: 16 KG
 - Erro padrão: 16/sqrt(60) = 2,1

Espera-se que 95% de todas as amostras de 60 pessoas tenham peso médio dentro de dois erros padrões em relação à média da população, ou aproximadamente entre 70 e 78 quilos.

Inversamente, apenas 5 vezes em 100 uma amostra de 60 pessoas teria um peso médio menor que 70 ou maior que 78 quilos.

- Exemplo do ônibus perdido
 - Pessoas no ônibus (amostra): 60
 - Peso médio da população: 74 KG
 - Desvio padrão da população: 16 KG
 - Erro padrão: 16/sqrt(60) = 2,1
 - Média de peso no ônibus: 86 KG

Espera-se que 95% de todas as amostras de 60 pessoas tenham peso médio dentro de dois erros padrões em relação à média da população, ou aproximadamente entre 70 e 78 quilos.

Inversamente, apenas 5 vezes em 100 uma amostra de 60 pessoas teria um peso médio menor que 70 ou maior que 78 quilos.

- Exemplo do ônibus perdido
 - Pessoas no ônibus (amostra): 60
 - Peso médio da população: 74 KG
 - Desvio padrão da população: 16 KG
 - Erro padrão: 16/sqrt(60) = 2,1
 - Média de peso no ônibus: 86 KG

Como 86 KG é mais de 2 erros padrões acima da média, podemos rejeitar a hipótese nula de que o ônibus contém integrantes da população em análise. Ou seja:

- 1) o peso médio da amostra cai em uma faixa que deveria ocorrer somente 5 em cada 100 vezes, se a amostra viesse da população em análise;
- 2) podemos rejeitar a hipótese com um nível de significância 0,05;
- 3) em média, 95 vezes em 100 teremos rejeitado corretamente a hipótese nula, e apenas 5 vezes em 100 estaremos errados.

- Mas qual a probabilidade específica de obter um resultado no mínimo tão extremo quanto o que você observou se a hipótese nula for verdadeira?
 - valor-p ou p-value
 - No exemplo anterior, 86 KG corresponde a 5,7 erros padrões acima da média
 - A probabilidade da amostra ser da população em análise é de apenas valor-p=0,0001

"Descoberta relação entre autismo e tamanho do cérebro"

- Exames de imagem em 59 crianças com autismo e 38 crianças sem autismo
- Resultados: crianças com autismo têm cérebros que são até 10% maiores que das crianças da mesma idade sem autismo

"Descoberta relação entre autismo e tamanho do cérebro"

 Pergunta: essa descoberta pode ser válida, considerando que os estudos foram baseados em apenas 97 crianças ao todo?

"Descoberta relação entre autismo e tamanho do cérebro"

- Pergunta: essa descoberta pode ser válida, considerando que os estudos foram baseados em apenas 97 crianças ao todo?
 - Sim, pelo teorema central do limite
- A probabilidade de observar as diferenças seria de 2 em 1000 (p = 0,002), se de fato não houvesse diferença real entre os grupos

"Descoberta relação entre autismo e tamanho do cérebro"

- Hipótese nula: não há diferença nos cérebros de crianças com autismo e sem autismo
- Hipótese alternativa: cérebros de crianças com autismo são fundamentalmente diferentes

"Descoberta relação entre autismo e tamanho do cérebro"

- Hipótese nula: não há diferença nos cérebros de crianças com autismo e sem autismo
- Hipótese alternativa: cérebros de crianças com autismo são fundamentalmente diferentes

Crianças com autismo: **média = 1310,4 cm**³

Crianças sem autismo: **média = 1238,8 cm**³

Diferença: 71,6 cm³

Qual a chance de termos diferença, caso a hipótese nula seja verdadeira?

"Descoberta relação entre autismo e tamanho do cérebro"

Crianças com autismo: **média = 1310,4 cm3 / EP = 13 cm3**

Crianças sem autismo: **média = 1238,8 cm3 / EP = 18 cm3**

- 95 vezes em 100 (95% de confiança), o intervalo de 1310,4 +/- 26 conterá o valor médio para todas as crianças com autismo
- 95 vezes em 100 (95% de confiança), o intervalo de 1238,8 +/- 36 incluirá o valor médio para crianças na população sem autismo

"Descoberta relação entre autismo e tamanho do cérebro"

Crianças com autismo: **média = 1310,4 cm3 / EP = 13 cm3**

Crianças sem autismo: **média = 1238,8 cm3 / EP = 18 cm3**

- 95 vezes em 100 (95% de confiança), o intervalo de 1310,4 +/- 26 conterá o valor médio para todas as crianças com autismo
- 95 vezes em 100 (95% de confiança), o intervalo de 1238,8 +/- 36 incluirá o valor médio para crianças na população sem autismo

"Descoberta relação entre autismo e tamanho do cérebro"

Ok, os intervalos de confiança não se sobrepõem. Mas qual a probabilidade de observarmos esses valores se realmente não houver diferença no tamanho dos cérebros entre os dois grupos?

Podemos calcular o valor-p

"Descoberta relação entre autismo e tamanho do cérebro"

Como calcular o valor-p?

- Se pegarmos duas amostras grandes da mesma população, seria de esperar que tenham médias bastante similares, ou idênticas.
- Ou seja, a diferença entre as médias deve ser próxima de zero
- O teorema central do limite nos diz que a diferença entre duas médias estará distribuída aproximadamente como uma distribuição Normal
- Se duas amostras provêm da mesma população, então, em cerca de 68 casos em 100, a diferença entre as médias estará dentro de um erro padrão de zero. E cerca de 95 casos em 100, a diferença estará dentro de dois erros padrões. E em 99,7 casos em 100, a diferença estará dentro de três erros padrões....

"Descoberta relação entre autismo e tamanho do cérebro"

- Como calcular o valor-p?
- Se pegarmos duas amostras grandes da mesma população, seria de esperar que tenham médias bastante similares, ou idênticas.
- Ou seja, a diferença entre as médias deve ser próxima de zero
- O teorema central do limite nos diz que a diferença entre duas médias estará distribuída aproximadamente como uma distribuição Normal
- Se duas amostras provêm da mesma população, então, em cerca de 68 casos em 100, a diferença entre as médias estará dentro de um erro padrão de zero. E cerca de 95 casos em 100, a diferença estará dentro de dois erros padrões. E em 99,7 casos em 100, a diferença estará dentro de três erros padrões....

Erro padrão da diferença: 22,7 (Veja como calcular no próximo slide)

Diferença entre médias: 71,6 → Mais que 3 erros padrões

Valor-p = 0,002

Cálculo do erro padrão para uma diferença de médias

Fórmula para comparar duas médias:

$$\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$$
 \longrightarrow o numerador fornece o valor da diferença entre as médias o denominador fornece o erro padrão para uma diferença entre as médias das duas amostras

onde:

 \overline{x} = média da amostra x

y = média da amostra y

 s_x = desvio padrão para a amostra x

sy = desvio padrão para a amostra y

 n_x = número de observações na amostra x

n_y= número de observações na amostra y

$$X' = 1310,4$$

 $Y' = 1238,8$

$$Nx = 59$$

 $Ny = 38$

Erro padrão da diferença: 22,7

$$X' - Y' = 1310,4 - 1238,8 = 71,6$$

Razão: 71,6 / 22,7 = 3,15

Diferença entre as médias está 3,15 EPs do zero

Cálculo do erro padrão para uma diferença de médias

Fórmula para comparar duas médias:

$$\frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}} \longrightarrow \text{o numerador fornece o valor da diferença entre as médias}$$

$$o denominador fornece o erro padrão para uma diferença entre as médias das duas amostras$$

onde:

$$\overline{x}$$
 = média da amostra x

$$\overline{y}$$
 = média da amostra y

$$s_x$$
 = desvio padrão para a amostra x

$$n_x$$
 = número de observações na amostra x

Diferença entre médias de amostras

- Hipótese nula é rejeitada se probabilidade de encontrarmos os dados observados for menor que um limiar/nível de significância
- Qual o melhor limiar para rejeitar uma hipótese nula?
 - Depende das circunstâncias de cada caso
- Quanto menor o nível de significância, menos provável que a rejeição ocorra, e mais peso estatístico a rejeição tem
- Quanto maior o nível de significância, mais provável de rejeitar a hipótese nula

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - Erro Tipo I: rejeitar equivocadamente uma hipótese nula (Falso Positivo)
 - Quanto maior o limiar, maiores as chances
 - Ex. Inocentes presos, drogas que não funcionam no mercado
 - Erro Tipo II: não rejeitar uma hipótese nula que deveria ser rejeitada (Falso Negativo)
 - Quanto menor o limiar, maiores as chances
 - Ex. Culpados soltos, drogas que funcionam fora do mercado
- Qual tipo de erro é pior?

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - Erro Tipo I: rejeitar equivocadamente uma hipótese nula (Falso Positivo)
 - Quanto maior o limiar, maiores as chances
 - Ex. Inocentes presos, drogas que não funcionam no mercado
 - Erro Tipo II: não rejeitar uma hipótese nula que deveria ser rejeitada (Falso Negativo)
 - Quanto menor o limiar, maiores as chances
 - Ex. Culpados soltos, drogas que funcionam fora do mercado
- Qual tipo de erro é pior?
 - Depende das circunstâncias

		Situação real		
		H ₀ é verdadeira	H ₀ é falsa	
Nossa Decisão	Rejeitar H ₀	$Erro\ Tipo\ I$ (Rejeitar H_0 , quando H_0 é verdadeira)	Decisão correta	
	Não Rejeitar H ₀	Decisão correta	$Erro\ Tipo\ II$ (Não Rejeitar H_0 , quando H_0 é falsa)	

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - 1) Filtro de spam:
 - Hipótese nula: a mensagem **não** é spam

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - 1) Filtro de spam:
 - Hipótese nula: a mensagem não é spam
 - Erro Tipo I: mensagem que não é spam excluída
 - Erro Tipo II: spam continuar na caixa de entrada

Erro Tipo II é mais aceitável. Quanto menor o limiar, menores as chances de Erro Tipo I.

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - 2) Diagnóstico de Câncer:
 - Hipótese nula: a pessoa **não** possui câncer

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - 2) Diagnóstico de Câncer:
 - Hipótese nula: a pessoa **não** possui câncer
 - Erro Tipo I: pessoa sem câncer é diagnosticada (falso positivo)
 - Erro Tipo II: pessoa com câncer não é diagnosticada (falso negativo)

Erro Tipo I é mais aceitável. Quanto maior o limiar, menores as chances de Erro Tipo II.

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - 3) Captura de terroristas:
 - Hipótese nula: a pessoa **não** é terrorista

- Qual o melhor limiar para rejeitar uma hipótese nula?
 - 3) Captura de terroristas:
 - Hipótese nula: a pessoa não é terrorista
 - Erro Tipo I: não terrorista preso e enviado para Guantánamo (falso positivo)
 - Erro Tipo II: terrorista liberado (falso negativo)

Nenhum erro é aceitável. Porém, um único terrorista solto pode ser catastrófico. Decisão complicada.

Exemplos

30 simulações, comparação entre soluções com base nessa amostra de tamanho 30. Essa é uma estimativa da população.

Análise com 2000 usuários

Análise da Google com muitos milhares de usuários

State of Rio de Janeiro

Exemplos

Table 1. Baseline Characteristics of Patients Infected With 2019-nCoV

	No. (%)			
	Total (N = 138)	ICU (n = 36)	Non-ICU (n = 102)	P Value ^a
Signs and symptoms				
Fever	136 (98.6)	36 (100)	100 (98.0)	>.99
Fatigue	96 (69.6)	29 (80.6)	67 (65.7)	.10
Dry cough	82 (59.4)	21 (58.3)	61 (59.8)	.88
Anorexia	55 (39.9)	24 (66.7)	31 (30.4)	<.001
Myalgia	48 (34.8)	12 (33.3)	36 (35.3)	.83
Dyspnea	43 (31.2)	23 (63.9)	20 (19.6)	<.001
Expectoration	37 (26.8)	8 (22.2)	29 (28.4)	.35
Pharyngalgia	24 (17.4)	12 (33.3)	12 (11.8)	.003
Diarrhea	14 (10.1)	6 (16.7)	8 (7.8)	.20
Nausea	14 (10.1)	4 (11.1)	10 (9.8)	>.99
Dizziness	13 (9.4)	8 (22.2)	5 (4.9)	.007
Headache	9 (6.5)	3 (8.3)	6 (5.9)	.70
Vomiting	5 (3.6)	3 (8.3)	2 (2.0)	.13
Abdominal pain	3 (2.2)	3 (8.3)	0 (0)	.02

ICU = UTI

Para anorexia: p-value < 0.001 A probabilidade da diferença entre 67% e 30% ser APENAS pela aleatoriedade da amostragem é menor que 0.001. Ou seja, muito improvável.

From one of the most cited COVID-19 papers Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus Infect ed Pneumonia in Wuhan, China

- A inferência estatística não é mágica nem infalível, mas uma ferramenta extraordinária para explicar várias situações do mundo
- Podemos adquirir grande percepção de muitos fenômenos da vida apenas determinando a explicação mais provável

Você acha que esse cidadão bebeu exageradamente ou foi envenenado por um agente secreto russo?

Sugestão de estudo

- Capítulo 9 (Estatística, Charles Wheelan)
- Inferência Portal Action