Neural Network with Memory

Memory is important

1 dimension

Network needs memory to achieve this

Outline

Vanilla Recurrent Neural Network (RNN)

Variants of RNN

Long Short-term Memory (LSTM)

Outline

Vanilla Recurrent Neural Network (RNN)

Variants of RNN

Long Short-term Memory (LSTM)

Application

(Simplified) Speech Recognition

We use DNN. All the frames are considered independently.

The order cannot change. RNN χ³ Input of RNN is RNN input: one utterance y³=softmax(W^oa³) Wo copy $a^3 = \sigma(W^i x^3 + W^h a^2)$ memory \mathbf{W}^{h} x^3

RNN

The same network is used again and again.

Output yi depends on x1, x2, xi

RNN

The same network is used again and again.

Output yi depends on x1, x2, xi

Cost

$$C = \frac{1}{2} \sum_{n=1}^{N} ||y^n - \hat{y}^n||^2 \qquad C = \frac{1}{2} \sum_{n=1}^{N} -\log y_{r^n}^n$$

w is an element in W^h, Wⁱ or W^o $\implies w \leftarrow w - \eta \partial C / \partial w$

Backpropagation through time (BPTT)

RNN Training is very difficult in practice.

More Applications

Input and output are vector sequences with <u>the same</u>
 length

POS Tagging

More Applications

- Name entity recognition
 - Identifying names of people, places, organizations, etc.
 from a sentence
 - Harry Potter is a student of Hogwarts and lived on Privet Drive.
 - people, organizations, places, not a name entity
- Information extraction
 - Extract pieces of information relevant to a specific application, e.g. flight booking
 - I would like to leave Boston on November 2nd and arrive in Taipei before 2 p.m.
 - place of departure, destination, time of departure, time of arrival, other

Outline

Vanilla Recurrent Neural Network (RNN)

Variants of RNN

Long Short-term Memory (LSTM)

Elman Network & Jordan Network

Deep RNN

Bidirectional RNN

下列文句何者不是倒裝句型?

- (A)惟兄嫂是依
 - (B)白雪紛紛何所似
 - (C)撒鹽空中差可擬
 - (D)不患人之不已知

Many to one

Input is a vector sequence, but output is only one vector

Many to Many (Output is shorter)

 Both input and output are vector sequences, <u>but the output</u> is shorter.

Many to Many (Output is shorter)

- Both input and output are vector sequences, <u>but the output</u> is shorter.
- Connectionist Temporal Classification (CTC)
 - Add an extra symbol "φ" (同上)

Many to Many (No Limitation)

 Both input and output are vector sequences with different lengths. → Sequence to sequence learning

Many to Many (No Limitation)

- 推文接龍
 - Ref: http://pttpedia.pixnet.net/blog/post/168133002-%E6%8E%A5%E9%BE%8D%E6%8E%A8%E6%96%87

Many to Many (No Limitation)

 Both input and output are vector sequences <u>with different</u> lengths. → Sequence to sequence learning

One to Many

• Input is one vector, but output is a vector sequence

Outline

Vanilla Recurrent Neural Network (RNN)

Variants of RNN

Long Short-term Memory (LSTM)

Long Short-term Memory (LSTM)

Original Network:

➤ Simply replace the neurons with LSTM

LSTM - Example

When $x_2 = 1$, add the numbers of x_1 into the memory When $x_2 = -1$, reset the memory

When $x_3 = 1$, output the number in the memory.

What is the next wave?

Attention-based Model

Recommended Reading List

- The Unreasonable Effectiveness of Recurrent Neural Networks
 - http://karpathy.github.io/2015/05/21/rnneffectiveness/
- Understanding LSTM Networks
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Attention Is All You Need
 - https://arxiv.org/abs/1706.03762