#### **SBA Statistical Business Analyst using SAS**

#### **SBA3 Predictive Modeling with Logistic Regression**

#### **W3a Handling Missing Values**

#### **Data Preparation Overview**



#### **Handling Missing Values**

#### Introduction





# In this topic, you learn to do the following:

- identify the possible reasons for missing values
- identify the limitations of complete case analysis for predictive modeling
- identify common methods of missing value imputation
- identify the advantages of using missing value indicator variables
- impute missing values using the STDIZE procedure

#### **Reasons for Missing Data**



# Randomized Experimental Designs

missing completely at random: MCAR



#### lurking inputs $X_2$ $X_4$ X, X, $X_3$ X<sub>8</sub> $X_5$ ? ? ? ? The probability that ? a value is missing ? might depend on... . ? ? the value of unobserved ? variables ? ? ?







#### **Complete Case Analysis** X<sub>1</sub> X<sub>2</sub> $X_3$ $X_4$ $X_5$ $X_6$ X<sub>7</sub> X<sub>8</sub> X, X10 **PROC LOGISTIC** complete case analysis No missing values. X<sub>1</sub> X<sub>3</sub> X10 $X_2$ $X_5$ $X_6$ X, X<sub>8</sub> **PROC LOGISTIC** complete case analysis











| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | X <sub>8</sub> | X <sub>9</sub> | X <sub>10</sub> |
|----------------|----------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|----------------|-----------------|
|                |                | -                     |                       |                       | -              |                       | -              | -              | -               |
|                | -              |                       |                       |                       |                | -                     |                | -              |                 |
|                |                |                       |                       |                       |                |                       |                |                | -               |
|                |                |                       |                       |                       |                |                       |                |                |                 |
|                |                |                       |                       |                       | -              |                       | -              |                | -               |
|                | -              |                       |                       |                       | -              | -                     | -              | -              |                 |
|                |                |                       |                       |                       |                |                       | -              | -              | -               |
|                |                |                       |                       |                       | -              |                       |                | -              |                 |
|                |                |                       |                       | -                     |                |                       |                |                | -               |
| -              |                |                       |                       |                       | -              | -                     | -              | -              |                 |
|                |                |                       |                       |                       | -              |                       |                |                |                 |
|                |                |                       |                       |                       |                |                       |                |                |                 |







complete case analysis







#### **Methods for Imputing Missing Values**



| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | X <sub>8</sub> |
|----------------|----------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|
| 6              | 03             | 2.6                   | 0                     | 8.3                   | 42             | 66                    | C03            |
| 12             | 04             | 1.8                   | 0                     | 0.5                   | 86             | 65                    | C14            |
| ?              | 01             | ?                     | ?                     | 4.8                   | 37             | ?                     | C00            |
| 8              | 01             | 2.1                   | 1                     | 4.8                   | 37             | 64                    | C08            |
| 6              | 01             | 2.8                   | 1                     | 9.6                   | 22             | 66                    | ?              |
| 3              | ?              | 2.7                   | 0                     | 1.1                   | 28             | 64                    | C00            |
| 2              | 02             | 2.1                   | 1                     | 5.9                   | 21             | 63                    | C03            |
| 10             | 03             | 2.0                   | 0                     | ?                     | ?              | 63                    | ?              |
| 7              | 01             | 2.5                   | 0                     | 5.5                   | 62             | 67                    | C12            |
| ?              | 01             | 2.4                   | 0                     | 0.9                   | 29             | ?                     | C05            |

| ا | Common Imputation Methods |
|---|---------------------------|
|   | x <sub>1</sub> : median   |
| • | x <sub>2</sub> : mode     |
| • | x <sub>3</sub> : mean     |
| • | x <sub>4</sub> : mean     |
| • |                           |
| • |                           |
|   |                           |
|   |                           |

| X <sub>1</sub> | X <sub>2</sub> | Х <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | X, | X <sub>8</sub> |
|----------------|----------------|----------------|----------------|-----------------------|----------------|----|----------------|
| 6              | 03             | 2.6            | 0              | 8.3                   | 42             | 66 | C03            |
| 12             | 04             | 1.8            | 0              | 0.5                   | 86             | 65 | C14            |
| 6.5            | 01             | 2.3            | .33            | 4.8                   | 37             | 66 | C00            |
| 8              | 01             | 2.1            | 1              | 4.8                   | 37             | 64 | C08            |
| 6              | 01             | 2.8            | 1              | 9.6                   | 22             | 66 | C99            |
| 3              | 01             | 2.7            | 0              | 1.1                   | 28             | 64 | C00            |
| 2              | 02             | 2.1            | 1              | 5.9                   | 21             | 63 | C03            |
| 10             | 03             | 2.0            | 0              | 0.8                   | 0              | 63 | C99            |
| 7              | 01             | 2.5            | 0              | 5.5                   | 62             | 67 | C12            |
| 6.5            | 01             | 2.4            | 0              | 0.9                   | 29             | 63 | C05            |

Median is better to be used for imputation method if the values are only 0 and 1 for X4.

# **Common Imputation Methods**

x<sub>1</sub>: median

x<sub>2</sub>: mode

x<sub>3</sub>: mean

x<sub>4</sub>: mean

x<sub>5</sub>: regression

x<sub>6</sub>: subject-matter knowledge

| X <sub>1</sub> | X <sub>2</sub> | Х <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | X, | X <sub>8</sub> |
|----------------|----------------|----------------|-----------------------|-----------------------|----------------|----|----------------|
| 6              | 03             | 2.6            | 0                     | 8.3                   | 42             | 66 | C03            |
| 12             | 04             | 1.8            | 0                     | 0.5                   | 86             | 65 | C14            |
| 6.5            | 01             | 2.3            | .33                   | 4.8                   | 37             | 66 | C00            |
| 8              | 01             | 2.1            | 1                     | 4.8                   | 37             | 64 | C08            |
| 6              | 01             | 2.8            | 1                     | 9.6                   | 22             | 66 | C99            |
| 3              | 01             | 2.7            | 0                     | 1.1                   | 28             | 64 | C00            |
| 2              | 02             | 2.1            | 1                     | 5.9                   | 21             | 63 | C03            |
| 10             | 03             | 2.0            | 0                     | 0.8                   | 0              | 63 | C99            |
| 7              | 01             | 2.5            | 0                     | 5.5                   | 62             | 67 | C12            |
| 6.5            | 01             | 2.4            | 0                     | 0.9                   | 29             | 63 | C05            |

 $Num\_Items\_Purchased$ 

# **Common Imputation Methods**

- x<sub>1</sub>: median
- x<sub>2</sub>: mode
- x<sub>3</sub>: mean
- x<sub>4</sub>: mean
- x<sub>5</sub>: regression
- x<sub>6</sub>: subject-matter knowledge
- x<sub>7</sub>: hot-deck imputation
- x<sub>8</sub>: new category

| X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | X <sub>6</sub> | <b>X</b> <sub>7</sub> | X <sub>8</sub> |
|----------------|----------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|
| 6              | 03             | 2.6                   | 0                     | 8.3                   | 42             | 66                    | C03            |
| 12             | 04             | 1.8                   | 0                     | 0.5                   | 86             | 65                    | C14            |
| 6.5            | 01             | 2.3                   | .33                   | 4.8                   | 37             | 66                    | C00            |
| 8              | 01             | 2.1                   | 1                     | 4.8                   | 37             | 64                    | C08            |
| 6              | 01             | 2.8                   | 1                     | 9.6                   | 22             | 66                    | C99            |
| 3              | 01             | 2.7                   | 0                     | 1.1                   | 28             | 64                    | C00            |
| 2              | 02             | 2.1                   | 1                     | 5.9                   | 21             | 63                    | C03            |
| 10             | 03             | 2.0                   | 0                     | 0.8                   | 0              | 63                    | C99            |
| 7              | 01             | 2.5                   | 0                     | 5.5                   | 62             | 67                    | C12            |
| 6.5            | 01             | 2.4                   | 0                     | 0.9                   | 29             | 63                    | C05            |

#### Missing Value Imputation with Missing Value Indicator Variables

### numeric input

# **Handling Missing Values**

- 1. Create a missing value indicator variable.
- 2. Impute a value.

|      | X, |  |
|------|----|--|
| Ŷ.   | 34 |  |
| 00   | 63 |  |
|      |    |  |
| - 10 | 22 |  |
|      | 26 |  |
|      | 54 |  |
|      | 18 |  |
| 8    |    |  |
|      | 47 |  |
| 9    | 20 |  |



missingness target variable

# numeric input

# **Handling Missing Values**

- Create a missing value indicator variable.
- 2. Impute a value.

| $\mathbf{X}_{j}$ |   |
|------------------|---|
| 34               |   |
| 63               |   |
| 30               |   |
| 22               |   |
| 26               |   |
| 54               |   |
| 18               |   |
| 30               |   |
| 47               | 1 |

| $\mathbf{MI}_{j}$ |
|-------------------|
| 0                 |
| 0                 |
| 1                 |
| 0                 |
| 0                 |
| 0                 |
| 0                 |
| 1                 |
| 0                 |
| 0                 |
|                   |

# median = 30

# numeric input

# **Handling Missing Values**

- Create a missing value indicator variable.
- 2. Impute a value.

missing values <= 50%

| $\mathbf{x}_{j}$ | MI |
|------------------|----|
| 34               | 0  |
| 63               | 0  |
| 30               | 1  |
| 22               | 0  |
| 26               | 0  |
| 54               | 0  |
| 18               | 0  |
| 30               | 1  |
| 47               | 0  |
| 20               | 0  |

When should I use this method?

# numeric input

# **Handling Missing Values**

- Create a missing value indicator variable.
- 2. Impute a value.

missing values > 50%

| $\mathbf{X}_{j}$      |
|-----------------------|
| 34                    |
| 63                    |
| 30                    |
| -22                   |
| <b>X</b> <sub>6</sub> |
| 54                    |
| 18                    |
| 30                    |
| 47                    |
| 20                    |

| MIj |
|-----|
| 0   |
| 0   |
| 1   |
| 0   |
| 0   |
| 0   |
| 0   |
| 1   |
| 0   |
| 0   |

# **Handling Missing Values**

- Create a missing value indicator variable.
- 2. Impute a value.

# categorical input





# **Handling Missing Values**

- Create a missing value level.
- 2. Impute a value.

# categorical input

| $\mathbf{X}_{j}$ |  |
|------------------|--|
| C03              |  |
| C14              |  |
| C99              |  |
| C08              |  |
| C00              |  |
| C00              |  |
| C03              |  |
| C99              |  |
| C12              |  |

C05

missing value level = C99

# **Handling Missing Values**

- Create a missing value indicator variable or level.
- 2. Impute a value.



# **Goals of Predictive Modeling**

- Retain all the original data for model development.
- 2. Score all new cases.
- Capture relationship of missingness with target.

# **Handling Missing Values**

- Create a missing value indicator variable or level.
- 2. Impute a value.





# **Question 3.01**

Which of the following statements is true regarding missing values in predictive modeling applications?

Missing value indicator variables can be used to capture the relationship between the target variable and missing inputs.

# The SAS System

#### The MEANS Procedure

| Variable | Label                    | N     | N Miss | Mean       | Minimum      | Maximum     |
|----------|--------------------------|-------|--------|------------|--------------|-------------|
| AcctAge  | Age of Oldest Account    | 30194 | 2070   | 5.9086772  | 0.3000000    | 61.5000000  |
| DDA      | Checking Account         | 32264 | 0      | 0.8156459  | 0            | 1.0000000   |
| DDABal   | Checking Balance         | 32264 | 0      | 2170.02    | -774.8300000 | 278093.83   |
| Dep      | Checking Deposits        | 32264 | 0      | 2.1346082  | 0            | 28.0000000  |
| DepAmt   | Amount Deposited         | 32264 | 0      | 2232.76    | 0            | 484893.67   |
| CashBk   | Number Cash Back         | 32264 | 0      | 0.0159621  | 0            | 4.0000000   |
| Checks   | Number of Checks         | 32264 | 0      | 4.2599182  | 0            | 49.0000000  |
| DirDep   | Direct Deposit           | 32264 | 0      | 0.2955616  | 0            | 1.0000000   |
| NSF      | Number Insufficient Fund | 32264 | 0      | 0.0870630  | 0            | 1.0000000   |
| NSFAmt   | Amount NSF               | 32264 | 0      | 2.2905464  | 0            | 666.8500000 |
| Phone    | Number Telephone Banking | 28131 | 4133   | 0.4056024  | 0            | 30.0000000  |
| Teller   | Teller Visits            | 32264 | 0      | 1.3652678  | 0            | 27.0000000  |
| Sav      | Saving Account           | 32264 | 0      | 0.4668981  | 0            | 1.0000000   |
| SavBal   | Saving Balance           | 32264 | 0      | 3170.60    | 0            | 700026.94   |
| ATM      | ATM                      | 32264 | 0      | 0.6099368  | 0            | 1.0000000   |
| ATMAmt   | ATM Withdrawal Amount    | 32264 | 0      | 1235.41    | 0            | 427731.26   |
| POS      | Number Point of Sale     | 28131 | 4133   | 1.0756816  | 0            | 54.0000000  |
| POSAmt   | Amount Point of Sale     | 28131 | 4133   | 48 9261782 | 0            | 3293 49     |

```
title1 "Variables with Missing Values";

proc print data=work.train(obs=15);

var ccbal ccpurc income hmown;

run;

title1;
```

# Variables with Missing Values

| Obs | CCBal    | CCPurc | Income | HMOwn |
|-----|----------|--------|--------|-------|
| 1   | 0.00     | 1      | 4      | 1     |
| 2   | 65.76    | 0      | 125    | 1     |
| 3   | 85202.99 | 0      | 55     | 1     |
| 4   |          |        | 20     | 0     |
| 5   | 0.00     | 0      | 25     | 1     |
| 6   | 0.00     | 0      | 8      | 1     |
| 7   | 0.00     | 0      | 100    | 1     |
| 8   | 323.13   | 0      | 13     | 1     |
| 9   | 32366.86 | 0      |        | 1     |
| 10  | 0.00     | 0      | 9      | 0     |
| 11  | 1378.46  | 1      | 60     | 1     |
| 12  |          |        | 25     | 0     |

```
/* Create missing indicators */

**data work.train_mi(drop=i);

set work.train;

/* name the missing indicator variables */

array mi(*) MIAcctAg MIPhone MIPOS MIPOSAmt

MIInv MIInvBal MICC MICCBal

MICCPurc MIIncome MIHMOwn MILORes

MIHMVal MIAge MICRScor;
```

```
/* select variables with missing values */
array x{*}
    acctage phone pos posamt
    inv invbal cc ccbal
    ccpurc income hmown lores
    hmval age crscore;

do i=1 to dim(mi);
```

```
do i=1 to dim(mi);
    mi{i}=(x{i}=.);
    nummiss+mi{i};
    end;
run;
```

```
/* Impute missing values with the median */

proc stdize data=work.train_mi reportly method=median out=work.train_impute
   var &inputs;
run;
```

```
title1 "Imputed Values with Missing Indicators";

proc print data=work.train_imputed(obs=12);

var ccbal miccbal ccpurc miccpurc income miincome hmown mihmown nummis
run;

title1 ; I
```

### Imputed Values with Missing Indicators

| Obs | CCBal    | MICCBal | CCPurc | MICCPurc | Income | Milncome | HMOwn | MIHMOwn | nummiss |
|-----|----------|---------|--------|----------|--------|----------|-------|---------|---------|
| 1   | 0.00     | 0       | 1      | 0        | 4      | 0        | 1     | 0       | 0       |
| 2   | 65.76    | 0       | 0      | 0        | 125    | 0        | 1     | 0       | 0       |
| 3   | 85202.99 | 0       | 0      | 0        | 55     | 0        | 1     | 0       | 0       |
| 4   | 000      | 1       | 0      | 1        | 20     | 0        | 0     | 0       | 8       |
| 5   | 0.00     | 0       | 0      | 0        | 25     | 0        | 1     | 0       | 8       |
| 6   | 0.00     | 0       | 0      | 0        | 8      | 0        | 1     | 0       | 9       |
| 7   | 0.00     | 0       | 0      | 0        | 100    | 0        | 1     | 0       | 9       |
| 8   | 323.13   | 0       | 0      | 0        | 13     | 0        | 1     | 0       | 9       |
| 9   | 32366.86 | 0       | 0      | 0        | 35     | 1        | 1     | 0       | 13      |
| 10  | 0.00     | 0       | 0      | 0        | 9      | 0        | 0     | 0       | 13      |
| 11  | 1378.46  | 0       | 1      | 0        | 60     | 0        | 1     | 0       | 13      |
| 12  | 0.00     | 1       | 0      | 1        | 25     | 0        | 0     | 0       | 21      |

```
/* Run this code before demo I3d1 */
/* ========== */
/* Lesson 1, Section 1: l1d1.sas
 Demonstration: Examining the Code for Generating
 Descriptive Statistics and Frequency Tables
/* ========== */
data work.develop;
 set pmlr.develop;
run;
%global inputs;
%let inputs=ACCTAGE DDA DDABAL DEP DEPAMT CASHBK
     CHECKS DIRDEP NSF NSFAMT PHONE TELLER
     SAV SAVBAL ATM ATMAMT POS POSAMT CD
     CDBAL IRA IRABAL LOC LOCBAL INV
     INVBAL ILS ILSBAL MM MMBAL MMCRED MTG
     MTGBAL CC CCBAL CCPURC SDB INCOME
     HMOWN LORES HMVAL AGE CRSCORE MOVED
     INAREA;
proc means data=work.develop n nmiss mean min max;
 var &inputs;
run;
proc freq data=work.develop;
 tables ins branch res;
run;
```

```
/* ========= */
/* Lesson 1, Section 2: l1d2.sas
 Demonstration: Splitting the Data */
/* ========= */
/* Sort the data by the target in preparation for stratified sampling. */
proc sort data=work.develop out=work.develop_sort;
 by ins;
run;
/* The SURVEYSELECT procedure will perform stratified sampling
 on any variable in the STRATA statement. The OUTALL option
 specifies that you want a flag appended to the file to
 indicate selected records, not simply a file comprised
 of the selected records. */
proc surveyselect noprint data=work.develop_sort
        samprate=.6667 stratumseed=restore
        out=work.develop_sample
        seed=44444 outall;
 strata ins;
run;
/* Verify stratification. */
proc freq data=work.develop_sample;
```

```
tables ins*selected:
run;
/* Create training and validation data sets. */
data work.train(drop=selected SelectionProb SamplingWeight)
  work.valid(drop=selected SelectionProb SamplingWeight);
 set work.develop_sample;
 if selected then output work.train;
 else output work.valid;
run;
/* ========= */
/* Lesson 2, Section 1: I2d1.sas
 Demonstration: Fitting a Basic Logistic
 Regression Model, Parts 1 and 2
                                        */
/* ========= */
title1 "Logistic Regression Model for the Variable Annuity Data Set";
proc logistic data=work.train
      plots(only maxpoints=none)=(effect(clband x=(ddabal depamt checks res))
      oddsratio (type=horizontalstat));
 class res (param=ref ref='S') dda (param=ref ref='0');
 model ins(event='1')=dda ddabal dep depamt
       cashbk checks res / stb clodds=pl;
 units ddabal=1000 depamt=1000 / default=1;
 oddsratio 'Comparisons of Residential Classification' res / diff=all cl=pl;
```

```
effectplot slicefit(sliceby=dda x=ddabal) / noobs;
 effectplot slicefit(sliceby=dda x=depamt) / noobs;
run;
title1;
/* ========== */
/* Lesson 2, Section 1: I2d2.sas
                                          */
 Demonstration: Scoring New Cases
/* ============ */
/* Score a new data set with one run of the LOGISTIC procedure with the
 SCORE statement. */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
 score data = pmlr.new out=work.scored1;
run;
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored1(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
title1 "Mean of Predicted Probabilities from Scored Data Set";
proc means data=work.scored1 mean nolabels;
 var p_1;
run;
```

```
/* Score a new data set with the OUTMODEL= amd INMODEL= options */
proc logistic data=work.train outmodel=work.scoredata noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
run;
proc logistic inmodel=work.scoredata noprint;
 score data = pmlr.new out=work.scored2;
run;
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored2(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
/* Score a new data set with the CODE Statement */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
 code file="&PMLRfolder/pmlr_score.txt";
run;
data work.scored3;
 set pmlr.new;
 %include "&PMLRfolder/pmlr_score.txt";
run;
```

```
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored3(obs=10);
 var p_ins1 dda ddabal dep depamt cashbk checks res;
run;
title1;
/* ========= */
/* Lesson 2, Section 2: I2d3.sas
                                             */
 Demonstration: Correcting for Oversampling
/* ========= */
/* Specify the prior probability to correct for oversampling. */
%global pi1;
%let pi1=.02;
/* Correct predicted probabilities */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')=dda ddabal dep depamt cashbk checks res;
 score data=pmlr.new out=work.scored4 priorevent=&pi1;
run;
title1 "Adjusted Predicted Probabilities from Scored Data Set";
proc print data=work.scored4(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
```

```
title1 "Mean of Adjusted Predicted Probabilities from Scored Data Set";
proc means data=work.scored4 mean nolabels;
 var p_1;
run;
title1;
/* Correct probabilities in the Score Code */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')=dda ddabal dep depamt cashbk checks res;
 /* File suffix "txt" is used so you can view the file */
 /* with a native text editor. SAS prefers "sas", but */
 /* when specified as a filename, SAS does not care. */
 code file="&PMLRfolder/pmlr_score_adj.txt";
run;
%global rho1;
proc SQL noprint;
 select mean(INS) into :rho1
 from work.train;
quit;
data new;
 set pmlr.new;
 off=log(((1-&pi1)*&rho1)/(&pi1*(1-&rho1)));
run;
```

```
data work.scored5;
 set work.new;
 %include "&PMLRfolder/pmlr_score_adj.txt";
 eta=log(p_ins1/p_ins0) - off;
 prob=1/(1+exp(-eta));
run;
title1 "Adjusted Predicted Probabilities from Scored Data Set";
proc print data=scored5(obs=10);
 var prob dda ddabal dep depamt cashbk checks res;
run;
title1;
/* ========= */
/* Lesson 3, Section 1: I3d1.sas
 Demonstration: Imputing Missing Values
 [m643_1_h; derived from pmlr03d01.sas]
                                           */
/* ======== */
title1 "Variables with Missing Values";
proc print data=work.train(obs=15);
 var ccbal ccpurc income hmown;
run;
title1;
/* Create missing indicators */
data work.train_mi(drop=i);
 set work.train;
```

Suhaimi William Chan

```
/* name the missing indicator variables */
 array mi{*} MIAcctAg MIPhone MIPOS MIPOSAmt
       MIInv MIInvBal MICC MICCBal
       MICCPurc Milncome MIHMOwn MILORes
       MIHMVal MIAge MICRScor;
 /* select variables with missing values */
 array x{*} acctage phone pos posamt
       inv invbal cc ccbal
       ccpurc income hmown lores
       hmval age crscore;
 do i=1 to dim(mi);
   mi{i}=(x{i}=.);
   nummiss+mi{i};
 end;
run;
/* Impute missing values with the median */
proc stdize data=work.train_mi reponly method=median out=work.train_imputed;
 var &inputs;
run;
title1 "Imputed Values with Missing Indicators";
proc print data=work.train_imputed(obs=12);
 var ccbal miccbal ccpurc miccpurc income miincome hmown mihmown nummiss;
run;
title1;
```

# Variables with Missing Values

| Obs | CCBal    | CCPurc | Income | HMOwn |
|-----|----------|--------|--------|-------|
| 1   | 0.00     | 1      | 4      | 1     |
| 2   | 65.76    | 0      | 125    | 1     |
| 3   | 85202.99 | 0      | 55     | 1     |
| 4   |          |        | 20     | 0     |
| 5   | 0.00     | 0      | 25     | 1     |
| 6   | 0.00     | 0      | 8      | 1     |
| 7   | 0.00     | 0      | 100    | 1     |
| 8   | 323.13   | 0      | 13     | 1     |
| 9   | 32366.86 | 0      |        | 1     |
| 10  | 0.00     | 0      | 9      | 0     |
| 11  | 1378.46  | 1      | 60     | 1     |
| 12  |          |        | 25     | 0     |
| 13  | 0.00     | 0      | 54     | 0     |
| 14  | 1466.87  | 0      | 45     | 0     |
| 15  |          |        | 31     | 0     |

# Imputed Values with Missing Indicators

| Obs | CCBal    | MICCBal | CCPurc | MICCPurc | Income | MlIncome | HMOwn | MIHMOwn | nummiss |
|-----|----------|---------|--------|----------|--------|----------|-------|---------|---------|
| 1   | 0.00     | 0       | 1      | 0        | 4      | 0        | 1     | 0       | 0       |
| 2   | 65.76    | 0       | 0      | 0        | 125    | 0        | 1     | 0       | 0       |
| 3   | 85202.99 | 0       | 0      | 0        | 55     | 0        | 1     | 0       | 0       |
| 4   | 0.00     | 1       | 0      | 1        | 20     | 0        | 0     | 0       | 8       |
| 5   | 0.00     | 0       | 0      | 0        | 25     | 0        | 1     | 0       | 8       |
| 6   | 0.00     | 0       | 0      | 0        | 8      | 0        | 1     | 0       | 9       |
| 7   | 0.00     | 0       | 0      | 0        | 100    | 0        | 1     | 0       | 9       |
| 8   | 323.13   | 0       | 0      | 0        | 13     | 0        | 1     | 0       | 9       |
| 9   | 32366.86 | 0       | 0      | 0        | 35     | 1        | 1     | 0       | 13      |
| 10  | 0.00     | 0       | 0      | 0        | 9      | 0        | 0     | 0       | 13      |
| 11  | 1378.46  | 0       | 1      | 0        | 60     | 0        | 1     | 0       | 13      |
| 12  | 0.00     | 1       | 0      | 1        | 25     | 0        | 0     | 0       | 21      |

# **Cluster Imputation**







Case with Missing Value

$$(x_1, x_2) = (13, ?)$$



$$X_2 = ?$$



**Education** X<sub>1</sub> = 13

Case with Missing Value

$$(x_1, x_2) = (13, 85,000)$$

See Cluster Imputation Using PROC FASTCLUS in the Resources section.



```
/* Run this code before doing practice I3p1 */
/* ========= */
/* Lesson 1, Practice 1
 Practice: Exploring the Veterans' Organization Data
 Used in the Practices
                                */
/* ========= */
data pmlr.pva(drop=control_number
        MONTHS SINCE LAST_PROM_RESP
        FILE_AVG_GIFT
        FILE_CARD_GIFT);
 set pmlr.pva_raw_data;
 STATUS_FL=RECENCY_STATUS_96NK in("F","L");
 STATUS_ES=RECENCY_STATUS_96NK in("E","S");
 home01=(HOME_OWNER="H");
 nses1=(SES="1");
 nses3=(SES="3");
 nses4=(SES="4");
 nses_=(SES="?");
 nurbr=(URBANICITY="R");
 nurbu=(URBANICITY="U");
 nurbs=(URBANICITY="S");
 nurbt=(URBANICITY="T");
 nurb_=(URBANICITY="?");
run;
proc contents data=pmlr.pva;
run;
```

```
proc means data=pmlr.pva mean nmiss max min;
 var _numeric_;
run;
proc freq data=pmlr.pva nlevels;
 tables _character_;
run;
/* ========= */
/* Lesson 1, Practice 2
 Practice: Splitting the Data
/* -----*/
proc sort data=pmlr.pva out=work.pva_sort;
 by target_b;
run;
proc surveyselect noprint data=work.pva_sort
       samprate=0.5 out=pva_sample seed=27513
       outall stratumseed=restore;
 strata target_b;
run;
data pmlr.pva_train(drop=selected SelectionProb SamplingWeight)
  pmlr.pva_valid(drop=selected SelectionProb SamplingWeight);
 set work.pva_sample;
 if selected then output pmlr.pva_train;
```

```
else output pmlr.pva_valid;
run;
/* ========== */
/* Lesson 2, Practice 1
 Practice: Fitting a Logistic Regression Model
/* ========= */
/* Modifications for your SAS software:
 (Optional) To avoid a warning in the log about the
 suppression of plots that have more than 5000
 observations, you can add the MAXPOINTS= option
 to the PROC LOGISTIC statement like this:
 plots(maxpoints=none only). Omitting the
 MAXPOINTS= option does not affect the results
 of the practices in this course.
*/
%global ex_pi1;
%let ex_pi1=0.05;
title1 "Logistic Regression Model of the Veterans' Organization Data";
proc logistic data=pmlr.pva_train plots(only)=
      (effect(clband x=(pep_star recent_avg_gift_amt
      frequency_status_97nk)) oddsratio (type=horizontalstat));
 class pep_star (param=ref ref='0');
 model target_b(event='1')=pep_star recent_avg_gift_amt
```

```
frequency_status_97nk / clodds=pl;

effectplot slicefit(sliceby=pep_star x=recent_avg_gift_amt) / noobs;

effectplot slicefit(sliceby=pep_star x=frequency_status_97nk) / noobs;

score data=pmlr.pva_train out=work.scopva_train priorevent=&ex_pi1;

run;

title1 "Adjusted Predicted Probabilities of the Veteran's Organization Data";

proc print data=work.scopva_train(obs=10);

var p_1 pep_star recent_avg_gift_amt frequency_status_97nk;

run;

title;
```

|                     | The CONTENTS Procedure                                |                      |       |
|---------------------|-------------------------------------------------------|----------------------|-------|
| Data Set Name       | PMLR.PVA                                              | Observations         | 19372 |
| Member Type         | DATA                                                  | Variables            | 58    |
| Engine              | V9                                                    | Indexes              | 0     |
| Created             | 09/18/2021 20:51:40                                   | Observation Length   | 432   |
| Last Modified       | 09/18/2021 20:51:40                                   | Deleted Observations | 0     |
| Protection          |                                                       | Compressed           | NO    |
| Data Set Type       |                                                       | Sorted               | NO    |
| Label               |                                                       |                      |       |
| Data Representation | SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64 |                      |       |
| Encoding            | utf-8 Unicode (UTF-8)                                 |                      |       |

| Engine/Host Dependent Information |                                           |  |  |  |  |  |
|-----------------------------------|-------------------------------------------|--|--|--|--|--|
| Data Set Page Size                | 131072                                    |  |  |  |  |  |
| Number of Data Set Pages          | 65                                        |  |  |  |  |  |
| First Data Page                   | 1                                         |  |  |  |  |  |
| Max Obs per Page                  | 303                                       |  |  |  |  |  |
| Obs in First Data Page            | 281                                       |  |  |  |  |  |
| Number of Data Set Repairs        | 0                                         |  |  |  |  |  |
| Filename                          | /home/u58304328/EPMLR51/data/pva.sas7bdat |  |  |  |  |  |
| Release Created                   | 9.0401M6                                  |  |  |  |  |  |
| Host Created                      | Linux                                     |  |  |  |  |  |
| Inode Number                      | 10881694450                               |  |  |  |  |  |
| Access Permission                 | rw-rr                                     |  |  |  |  |  |
| Owner Name                        | u58304328                                 |  |  |  |  |  |
| File Size                         | 8MB                                       |  |  |  |  |  |
| File Size (bytes)                 | 8650752                                   |  |  |  |  |  |

# The MEANS Procedure

| Variable            | Mean       | N Miss | Maximum     | Minimum   |
|---------------------|------------|--------|-------------|-----------|
| TARGET B            | 0.2500000  | 0      | 1.0000000   | 0         |
| TARGET D            | 15.6243444 | 14529  | 200.0000000 | 1.0000000 |
| MONTHS SINCE ORIGIN | 73.4099732 | 0      | 137.0000000 | 5.0000000 |
| DONOR ĀGE           | 58.9190506 | 4795   | 87.0000000  | 0         |
| IN HOUSE            | 0.0731984  | 0      | 1.0000000   | 0         |
| INCOME_GROUP        | 3.9075434  | 4392   | 7.0000000   | 1.0000000 |
| PUBLISHED_PHONE     | 0.4977287  | 0      | 1.0000000   | 0         |
| MOR_HIT_RATE        | 3.3616560  | 0      | 241.0000000 | 0         |
| WEALTH RATING       | 5.0053967  | 8810   | 9.0000000   | 0         |

#### The FREQ Procedure

| Number of Variable Levels |        |  |  |
|---------------------------|--------|--|--|
| Variable                  | Levels |  |  |
| URBANICITY                | 6      |  |  |
| SES                       | 5      |  |  |
| CLUSTER_CODE              | 54     |  |  |
| HOME_OWNER                | 2      |  |  |
| DONOR_GENDER              | 4      |  |  |
| OVERLAY_SOURCE            | 4      |  |  |
| RECENCY_STATUS_96NK       | 6      |  |  |

| URBANICITY | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|------------|-----------|---------|-------------------------|-----------------------|
| ?          | 454       | 2.34    | 454                     | 2.34                  |
| С          | 4022      | 20.76   | 4476                    | 23.11                 |
| R          | 4005      | 20.67   | 8481                    | 43.78                 |
| S          | 4491      | 23.18   | 12972                   | 66.96                 |
| T          | 3944      | 20.36   | 16916                   | 87.32                 |
| U          | 2456      | 12.68   | 19372                   | 100.00                |

| SES | Frequency | Percent | Cumulative Frequency | Cumulative<br>Percent |
|-----|-----------|---------|----------------------|-----------------------|
| 1   | 5924      | 30.58   | 5924                 | 30.58                 |
| 2   | 9284      | 47.92   | 15208                | 78.51                 |
| 3   | 3323      | 17.15   | 18531                | 95.66                 |
| 4   | 387       | 2.00    | 18918                | 97.66                 |
| ?   | 454       | 2.34    | 19372                | 100.00                |

| CLUSTER_CODE | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|--------------|-----------|---------|-------------------------|-----------------------|
|              | 454       | 2.34    | 454                     | 2.34                  |
| 01           | 239       | 1.23    | 693                     | 3.58                  |
| 02           | 380       | 1.96    | 1073                    | 5.54                  |
| 03           | 300       | 1.55    | 1373                    | 7.09                  |
| 04           | 113       | 0.58    | 1486                    | 7.67                  |
| 05           | 199       | 1.03    | 1685                    | 8.70                  |
| 06           | 123       | 0.63    | 1808                    | 9.33                  |
| 07           | 184       | 0.95    | 1992                    | 10.28                 |
| 08           | 378       | 1.95    | 2370                    | 12.23                 |
| 09           | 153       | 0.79    | 2523                    | 13.02                 |
| 10           | 387       | 2.00    | 2910                    | 15.02                 |
| 11           | 484       | 2.50    | 3394                    | 17.52                 |
| 12           | 631       | 3.26    | 4025                    | 20.78                 |
| 13           | 579       | 2.99    | 4604                    | 23.77                 |
| 14           | 454       | 2.34    | 5058                    | 26.11                 |
| 15           | 223       | 1.15    | 5281                    | 27.26                 |
| 16           | 384       | 1.98    | 5665                    | 29.24                 |
| 17           | 349       | 1.80    | 6014                    | 31.04                 |
| 18           | 619       | 3.20    | 6633                    | 34.24                 |
| 19           | 98        | 0.51    | 6731                    | 34.75                 |
| 20           | 317       | 1.64    | 7048                    | 36.38                 |
| 21           | 353       | 1.82    | 7401                    | 38.20                 |
| 22           | 251       | 1.30    | 7652                    | 39.50                 |
| 23           | 293       | 1.51    | 7945                    | 41.01                 |
| 24           | 795       | 4.10    | 8740                    | 45.12                 |
| 25           | 273       | 1.41    | 9013                    | 46.53                 |

| 26 | 202 | 1.04 | 9215  | 47.57  |
|----|-----|------|-------|--------|
| 27 | 666 | 3.44 | 9881  | 51.01  |
| 28 | 343 | 1.77 | 10224 | 52.78  |
| 29 | 170 | 0.88 | 10394 | 53.65  |
| 30 | 519 | 2.68 | 10913 | 56.33  |
| 31 | 249 | 1.29 | 11162 | 57.62  |
| 32 | 152 | 0.78 | 11314 | 58.40  |
| 33 | 109 | 0.56 | 11423 | 58.97  |
| 34 | 284 | 1.47 | 11707 | 60.43  |
| 35 | 727 | 3.75 | 12434 | 64.19  |
| 36 | 716 | 3.70 | 13150 | 67.88  |
| 37 | 204 | 1.05 | 13354 | 68.93  |
| 38 | 240 | 1.24 | 13594 | 70.17  |
| 39 | 512 | 2.64 | 14106 | 72.82  |
| 40 | 830 | 4.28 | 14936 | 77.10  |
| 41 | 431 | 2.22 | 15367 | 79.33  |
| 42 | 284 | 1.47 | 15651 | 80.79  |
| 43 | 468 | 2.42 | 16119 | 83.21  |
| 44 | 383 | 1.98 | 16502 | 85.18  |
| 45 | 482 | 2.49 | 16984 | 87.67  |
| 46 | 369 | 1.90 | 17353 | 89.58  |
| 47 | 185 | 0.95 | 17538 | 90.53  |
| 48 | 180 | 0.93 | 17718 | 91.46  |
| 49 | 675 | 3.48 | 18393 | 94.95  |
| 50 | 156 | 0.81 | 18549 | 95.75  |
| 51 | 460 | 2.37 | 19009 | 98.13  |
| 52 | 60  | 0.31 | 19069 | 98.44  |
| 53 | 303 | 1.56 | 19372 | 100.00 |
|    |     |      |       |        |

| HOME_OWNER | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|------------|-----------|---------|-------------------------|-----------------------|
| Н          | 10606     | 54.75   | 10606                   | 54.75                 |
| U          | 8766      | 45.25   | 19372                   | 100.00                |

| DONOR_GENDER | Frequency | Percent | Cumulative Frequency | Cumulative<br>Percent |
|--------------|-----------|---------|----------------------|-----------------------|
| Α            | 1         | 0.01    | 1                    | 0.01                  |
| F            | 10401     | 53.69   | 10402                | 53.70                 |
| M            | 7953      | 41.05   | 18355                | 94.75                 |
| U            | 1017      | 5.25    | 19372                | 100.00                |

| OVERLAY_SOURCE | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|----------------|-----------|---------|-------------------------|-----------------------|
| В              | 8732      | 45.08   | 8732                    | 45.08                 |
| M              | 1480      | 7.64    | 10212                   | 52.72                 |
| N              | 4392      | 22.67   | 14604                   | 75.39                 |
| Р              | 4768      | 24.61   | 19372                   | 100.00                |

| RECENCY_STATUS_96NK | Frequency | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |
|---------------------|-----------|---------|-------------------------|-----------------------|
| Α                   | 11918     | 61.52   | 11918                   | 61.52                 |
| Е                   | 427       | 2.20    | 12345                   | 63.73                 |
| F                   | 1521      | 7.85    | 13866                   | 71.58                 |
| L                   | 93        | 0.48    | 13959                   | 72.06                 |
| N                   | 1192      | 6.15    | 15151                   | 78.21                 |
| S                   | 4221      | 21.79   | 19372                   | 100.00                |

# Logistic Regression Model of the Veterans' Organization Data

#### The LOGISTIC Procedure

| Model Information         |                  |  |  |
|---------------------------|------------------|--|--|
| Data Set                  | PMLR.PVA_TRAIN   |  |  |
| Response Variable         | TARGET_B         |  |  |
| Number of Response Levels | 2                |  |  |
| Model                     | binary logit     |  |  |
| Optimization Technique    | Fisher's scoring |  |  |

| Number of Observations Read | 9687 |
|-----------------------------|------|
| Number of Observations Used | 9687 |

| Response Profile |                    |      |  |  |
|------------------|--------------------|------|--|--|
| Ordered<br>Value | Total<br>Frequency |      |  |  |
| 1                | 0                  | 7265 |  |  |
| 2                | 1                  | 2422 |  |  |

### Probability modeled is TARGET\_B=1.

| Class Level Information      |   |   |  |  |
|------------------------------|---|---|--|--|
| Class Value Design Variables |   |   |  |  |
| PEP_STAR                     | 0 | 0 |  |  |
|                              | 1 | 1 |  |  |

| Model Convergence Status                      |
|-----------------------------------------------|
| Convergence criterion (GCONV=1E-8) satisfied. |

| Model Fit Statistics                             |           |           |  |  |  |
|--------------------------------------------------|-----------|-----------|--|--|--|
| Criterion Intercept Only Intercept and Covariate |           |           |  |  |  |
| AIC                                              | 10897.230 | 10663.061 |  |  |  |
| SC                                               | 10904.409 | 10691.776 |  |  |  |
| -2 Log L                                         | 10895.230 | 10655.061 |  |  |  |

| Testing Global Null Hypothesis: BETA=0 |          |   |        |  |  |  |
|----------------------------------------|----------|---|--------|--|--|--|
| Test Chi-Square DF Pr > ChiSq          |          |   |        |  |  |  |
| Likelihood Ratio                       | 240.1690 | 3 | <.0001 |  |  |  |
| Score                                  | 242.9486 | 3 | <.0001 |  |  |  |
| Wald                                   | 237.2875 | 3 | <.0001 |  |  |  |

| Type 3 Analysis of Effects      |   |         |        |  |  |  |  |
|---------------------------------|---|---------|--------|--|--|--|--|
| Effect DF Chi-Square Pr > ChiSq |   |         |        |  |  |  |  |
| PEP_STAR                        | 1 | 43.4902 | <.0001 |  |  |  |  |
| RECENT_AVG_GIFT_AMT             | 1 | 3.9559  | 0.0467 |  |  |  |  |
| FREQUENCY_STATUS_97N            | 1 | 83.8209 | <.0001 |  |  |  |  |

| Analysis of Maximum Likelihood Estimates             |   |   |          |         |          |        |  |  |
|------------------------------------------------------|---|---|----------|---------|----------|--------|--|--|
| Parameter DF Estimate Standard Chi-Square Pr > ChiSq |   |   |          |         |          |        |  |  |
| Intercept                                            |   | 1 | -1.6454  | 0.0831  | 392.4480 | <.0001 |  |  |
| PEP_STAR                                             | 1 | 1 | 0.3371   | 0.0511  | 43.4902  | <.0001 |  |  |
| RECENT_AVG_GIFT_AMT                                  |   | 1 | -0.00579 | 0.00291 | 3.9559   | 0.0467 |  |  |
| FREQUENCY_STATUS_97N                                 |   | 1 | 0.2179   | 0.0238  | 83.8209  | <.0001 |  |  |

| Association of Predicted Probabilities and Observed Responses |          |           |       |  |  |  |
|---------------------------------------------------------------|----------|-----------|-------|--|--|--|
| Percent Concordant                                            | 59.9     | Somers' D | 0.208 |  |  |  |
| Percent Discordant                                            | 39.0     | Gamma     | 0.211 |  |  |  |
| Percent Tied                                                  | 1.1      | Tau-a     | 0.078 |  |  |  |
| Pairs                                                         | 17595830 | С         | 0.604 |  |  |  |

| Odds Ratio Estimates and Profile-Likelihood Confidence Intervals |        |          |            |             |  |
|------------------------------------------------------------------|--------|----------|------------|-------------|--|
| Effect                                                           | Unit   | Estimate | 95% Confid | ence Limits |  |
| PEP_STAR 1 vs 0                                                  | 1.0000 | 1.401    | 1.267      | 1.549       |  |
| RECENT_AVG_GIFT_AMT                                              | 1.0000 | 0.994    | 0.988      | 1.000       |  |
| FREQUENCY_STATUS_97N                                             | 1.0000 | 1.243    | 1.187      | 1.303       |  |













## Adjusted Predicted Probabilities of the Veteran's Organization Data

| Obs | P_1      | PEP_STAR | RECENT_AVG_GIFT_AMT | FREQUENCY_STATUS_97NK |
|-----|----------|----------|---------------------|-----------------------|
| 1   | 0.046390 | 1        | 15.00               | 1                     |
| 2   | 0.033094 | 0        | 17.50               | 1                     |
| 3   | 0.064890 | 0        | 8.33                | 4                     |
| 4   | 0.090167 | 1        | 5.00                | 4                     |
| 5   | 0.059152 | 1        | 8.33                | 2                     |
| 6   | 0.058117 | 1        | 11.57               | 2                     |
| 7   | 0.046941 | 1        | 12.86               | 1                     |
| 8   | 0.031733 | 0        | 25.00               | 1                     |
| 9   | 0.045126 | 1        | 20.00               | 1                     |
| 10  | 0.032091 | 0        | 23.00               | 1                     |

```
/* Solution for I3p1 */
/* step 2 */
data pmlr.pva_train_mi(drop=i);
 set pmlr.pva_train;
 /* name the missing indicator variables */
 array mi{*} mi_DONOR_AGE mi_INCOME_GROUP
       mi_WEALTH_RATING;
 /* select variables with missing values */
 array x{*} DONOR_AGE INCOME_GROUP WEALTH_RATING;
 do i=1 to dim(mi);
   mi{i}=(x{i}=.);
   nummiss+mi{i};
 end;
run;
/* step 3 */
proc rank data=pmlr.pva_train_mi out=work.pva_train_rank groups=3;
 var recent_response_prop recent_avg_gift_amt;
 ranks grp_resp grp_amt;
run;
/* step 4 */
proc sort data=work.pva_train_rank out=work.pva_train_rank_sort;
```

```
by grp_resp grp_amt;
run;
/* step 5 */
proc stdize data=work.pva_train_rank_sort method=median
     reponly out=pmlr.pva_train_imputed;
 by grp_resp grp_amt;
 var DONOR_AGE INCOME_GROUP WEALTH_RATING;
run;
/* step 6 */
options nolabel;
proc means data=pmlr.pva_train_imputed median;
 class grp_resp grp_amt;
 var DONOR_AGE INCOME_GROUP WEALTH_RATING;
run;
options label;
```

| The MEANS Procedure |                                     |      |                                            |                                      |  |  |  |
|---------------------|-------------------------------------|------|--------------------------------------------|--------------------------------------|--|--|--|
| grp_resp            | o_resp   grp_amt   N Obs   Variable |      |                                            | Median                               |  |  |  |
| 0                   | 0                                   | 487  | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 65.0000000<br>4.0000000<br>5.0000000 |  |  |  |
|                     | 1                                   | 1147 | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 58.0000000<br>4.0000000<br>5.0000000 |  |  |  |
|                     | 2                                   | 1612 | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 58.0000000<br>4.0000000<br>6.0000000 |  |  |  |
| 1                   | 0                                   | 671  | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 65.0000000<br>4.0000000<br>4.5000000 |  |  |  |
|                     | 1                                   | 1270 | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 59.0000000<br>4.0000000<br>5.0000000 |  |  |  |
|                     | 2                                   | 1202 | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 57.0000000<br>4.0000000<br>5.0000000 |  |  |  |
| 2                   | 0                                   | 2155 | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 63.0000000<br>4.0000000<br>5.0000000 |  |  |  |
|                     | 1                                   | 733  | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 61.0000000<br>4.0000000<br>6.0000000 |  |  |  |
|                     | 2                                   | 410  | DONOR_AGE<br>INCOME_GROUP<br>WEALTH_RATING | 58.5000000<br>4.0000000<br>6.0000000 |  |  |  |

# **Practice: Imputing Missing Values**

For the veterans' organization project, impute missing values for several variables in the **pmlr.pva\_train** data set.

**Reminder**: If you started a new SAS session, you must run **setup.sas** to define the **pmlr** library before you do this practice.

 $\underline{Step~1} \hbox{: Open $l3p01\_runFirst.sas} \ from the \ practices \ folder \ and \ run \ the \ code.$ 

<u>Step 2</u>: Open **l3p01.sas** in your SAS software. Write a DATA step that creates missing value indicators for the following inputs in the **pmlr.pva\_train** data set: **Donor\_Age**, **Income\_Group**, and **Wealth\_Rating**. Also add a cumulative count of the missing values. Name the output data set **pmlr.pva\_train\_mi**. Highlight and submit the DATA step you wrote and check the log.

<u>Step 3</u>: In your program, view the code for step 3. This program uses PROC RANK to group the values of the variables **Recent\_Response\_Prop** and **Recent\_Avg\_Gift\_Amt** into three groups each. Note that this code creates an output data set named **work.pva\_train\_rank**. Highlight and submit the step 3 code and check the log.

<u>Step 4</u>: Sort the work.pva\_train\_rank data set by Grp\_Resp and Grp\_Amt. Name the output data set work.pva\_train\_rank\_sort. Submit the code and check the log to verify that the code ran without errors.

<u>Step 5</u>: To impute missing values in the **work.pva\_train\_rank\_sort** data set for each BY group and create an output data set named **pmlr.pva\_train\_imputed**, add a PROC STDIZE step with a BY statement. Submit the code and check the log.

**Step 6**: Use PROC MEANS to determine the values that were used to replace the missing values in the **pmlr.pva\_train\_imputed** data set. Add OPTIONS statements to display variable names instead of labels in the output from PROC MEANS (using the NOLABEL option) and then to reset the display of labels. Submit the code and look at the results.

For **Grp\_Resp=**0 and **Grp\_Amt=**0, what value replaced the missing value of **Donor\_Age**?

The results indicate that, for **Grp\_Resp**=0 and **Grp\_Amt**=0, the missing value for **Donor\_Age** was replaced with the value 65.

For the complete solution code, open l3p1\_s.sas from the practices/solutions folder.