ОГЭ. Физика. Формулы

Яцулевич Владимир Владимирович

1. КИНЕМАТИКА

Равномерное прямолинейное движение

$$S = vt \qquad v = \frac{s}{t} \qquad t = \frac{s}{v}$$

S — расстояние [м].

t — время [c].

v — скорость [м/с].

Равноускоренное прямолинейное движение

$$v_{\rm cp} = \frac{S}{t}$$
 $a = \frac{v - v_0}{t}$ $v = v_0 + at$ $S = v_0 t + \frac{at^2}{2}$ $S = \frac{v^2 - v_0^2}{2a}$

S — расстояние [м].

t — время [c].

v — скорость [м/с].

 $v_{
m cp}$ — средняя скорость [м/с].

 v_0 — начальная скорость [м/с].

a — ускорение [м/с²].

Движение по окружности

$$a_{\mathbf{H}} = \frac{v^2}{R}$$

 $a_{\rm m}$ — центростремительно ускорение [м/с²].

v — скорость [м/с].

R — радиус окружности [м].

2. ДИНАМИКА

Законы Ньютона

$$F = ma$$
 $F_1 = -F_2$

F — сила [H].

m — масса [кг].

a — ускорение [м/с²].

 F_1 — сила действия [H].

 F_2 — сила противодействия [H].

Импульс тела

$$p = mv$$
 $p - p_0 = Ft$ $p_{\text{до}} = p_{\text{после}}$

p — импульс [кг · м/с].

 p_0 — начальный импульс [кг · м/с].

 $p_{\rm до}$ — импульс до взаимодействия [кг · м/с].

 $p_{\text{после}}$ — импульс после взаимодействия [кг · м/с].

v — скорость [м/с].

F — сила [H].

m — масса [кг].

t — время [c].

Силы

$$\rho = \frac{m}{V} \qquad F_{\text{Tp}} = \mu N \qquad F_{\text{ynp}} = k\Delta x$$

m — масса [кг].

V — объём [м 3].

 ρ — плотность [кг/м³].

 $F_{\rm TP}$ — сила трения [H].

 μ — коэффициент трения.

N — сила реакции опоры [H].

 $F_{\text{упр}}$ — сила упругости [H].

k — коэффициент жёсткости [H/м].

 Δx — длина растяжения [м].

$$F_{ ext{\tiny ГЯЗЖ}}=mg$$
 $F_{ ext{\tiny гр}}=Grac{m_1m_2}{R^2}$ $gpprox 9,81\ {
m M/c}^2$ $Gpprox 6,67\cdot 10^{-11}rac{{
m M}^3}{{
m K}\Gamma\cdot {
m c}^2}$

 m_1, m_2 — масса [кг].

 $F_{\text{тяж}}$ — сила тяжести [H].

 $F_{\rm rp}$ — сила всемирного тяготения [H].

g — ускорение свободного падения [м/с²].

R — расстояние [м].

G — гравитационная постоянная [м³кг⁻¹с⁻²].

3. СТАТИКА

Момент силы

$$M = Fd \qquad F_1 d_1 = F_2 d_2$$

M — момент силы [H·м].

 F, F_1, F_2 — сила [H].

 d, d_1, d_2 — расстояние [м].

4. РАБОТА И ЭНЕРГИЯ

Работа и мощность

$$A = FS$$
 $P = \frac{A}{t}$ $\eta = \frac{A_{\text{пол}}}{A_{\text{зат}}} \cdot 100\%$

A — работа [Дж].

F — сила [H].

S — перемещение [м].

P — мощность [Вт].

t — время [c].

 η — коэффициент полезного действия.

 $A_{\text{пол}}$ — полезная работа [Дж].

 $A_{\text{зат}}$ — затраченная работа [Дж].

Энергия

$$E_{\text{II}} = mgh$$
 $E_{\text{II}} = \frac{k\Delta x^2}{2}$ $E_{\text{K}} = \frac{mv^2}{2}$ $E_{\text{Mex}} = E_{\text{II}} + E_{\text{K}}$

 $E_{\rm n}$ — потенциальная энергия [Дж].

 E_{κ} — кинетическая энергия [Дж].

 E_{mex} — механическая энергия [Дж].

m — масса [кг].

g — ускорение свободного падения [м/с²].

h — высота [м].

k — коэффициент жёсткости [H/м].

 Δx — растяжение [м].

v — скорость [м/с].

5. ГИДРОСТАТИКА

Давление и сила Архимеда

$$F = pS$$
 $p = \rho gh$ $F_{Apx} = \rho gV$

p — давление [Па].

F — сила давления [H].

S — площадь [м²].

ho — плотность [кг/м 3].

h — высота [м].

 $F_{\rm Apx}$ — сила Архимеда [H].

V — объём [м 3].

6. ТЕРМОДИНАМИКА

Теплота нагревания/охлаждения

$$Q_{\text{\tiny H}} = cm(t_2 - t_1)$$
 $T = t + 273$

 $Q_{\mbox{\tiny H}}$ — теплота нагревания/охлаждения [Дж].

c — удельная теплоёмкость [Дж/(кг·К)].

m — масса [кг].

 t_1 — начальная температура [K].

 t_2 — конечная температура [K].

T — температура по шкале Кельвина [K].

t— температура по шкале Цельсия [°C].

Теплота сгорания топлива, плавления, парообразования

$$Q_{\rm cr} = q m$$
 $Q_{\rm in} = \lambda m$ $Q_{\rm in} = L m$

 $Q_{\rm cr}$ — теплота сгорания топлива [Дж].

q — удельная теплота сгорания топлива [Дж/кг].

m — масса [кг].

 $Q_{\rm nn}$ — теплота плавления/кристаллизации [Дж].

q — удельная теплота плавления/кристаллизации [Дж/кг].

 $Q_{\rm nap}$ — теплота парообразования/конденсации [Дж].

L — удельная теплота парообразования/конденсации [Дж/кг].

Энергия

$$Q_{ ext{otd}} = Q_{ ext{fight}}$$
 $E = E_{ ext{mex}} + U$ $\eta = \frac{Q_{ ext{h}} - Q_{ ext{x}}}{Q_{ ext{h}}} \cdot 100\%$

 $Q_{\text{отд}}$ — количество отданной теплоты [Дж].

 $Q_{\text{пол}}$ — количество полученной теплоты [Дж].

E — полная энергия [Дж].

 E_{mex} — механическая энергия [Дж].

U — внутренняя энергия [Дж]. η — коэффициент полезного действия.

 $Q_{\rm H}$ — теплота нагревателя [Дж].

 $Q_{\rm x}$ — теплота холодильника [Дж].

Влажность

$$\varphi = \frac{\rho_{\text{парц}}}{\rho_{\text{Hac}}} \cdot 100\%$$
 $\varphi = \frac{p_{\text{парц}}}{p_{\text{Hac}}} \cdot 100\%$

 φ — относительная влажность.

 $ho_{\mathrm{парц}}$ — парциальная плотность воздуха [кг/м 3].

 $ho_{
m hac}$ — плотность насыщенного пара [кг/м³].

 $p_{\text{парц}}$ — парциальное давление воздуха [кг/м³].

 $p_{\rm hac}$ — давление насыщенного пара [кг/м³].

7. ЭЛЕКТРИЧЕСТВО

5

Электрические заряды

$$F_{
m Ky\pi} = k rac{q_1 q_2}{r^2} \qquad q = Ne$$
 $k pprox 9 \cdot 10^9 rac{
m H \cdot m^2}{
m K\pi^2} \qquad e pprox -1, 6 \cdot 10^{-19} \
m K\pi$

 $F_{\text{Кул}}$ — сила Кулона [H].

k — постоянная Кулона [$H \cdot M^2/K \pi^2$].

 q, q_1, q_2 — электрические заряды [Кл].

r — расстояние между зарядами [м].

N — количество электронов.

e — заряд электрона [Кл].

Сила тока, напряжение

$$I = \frac{q}{t} \qquad U = \frac{A}{q}$$

I — сила тока [A].

q — электрический заряд [Кл].

t — время [c].

U — напряжение [B].

A — работа [Дж].

Закон Ома, сопротивление

$$U = IR$$
 $R = \frac{\rho l}{S}$

I — сила тока [A].

U — напряжение [B].

R — сопротивление [Ом].

 ρ — удельное сопротивление [Ом·м/мм²].

l — длина проводника [м].

S — площадь поперечного сечения проводника [мм 2].

Последовательное соединение

$$U_{
m oбіц} = U_1 + U_2 \qquad I_{
m oбіц} = I_1 = I_2 \qquad R_{
m oбіц} = R_1 + R_2$$

 $U_{\text{общ}}$ — общее напряжение [В].

 U_1, U_2 — напряжение на узлах [В].

 $I_{\text{общ}}$ — общая сила тока [A].

 I_1, I_2 — сила тока на узлах [A].

 $R_{\text{общ}}$ — общее сопротивление [Ом].

 R_1, R_2 — сопротивление [Ом].

Параллельное соединение

$$U_{
m o6m} = U_1 = U_2$$
 $I_{
m o6m} = I_1 + I_2$ $\frac{1}{R_{
m o6m}} = \frac{1}{R_1} + \frac{1}{R_2}$

 $U_{\text{общ}}$ — общее напряжение [В].

 U_1, U_2 — напряжение на узлах [В].

 $I_{\text{общ}}$ — общая сила тока [A].

 I_1, I_2 — сила тока на узлах [A].

 $R_{\text{общ}}$ — общее сопротивление [Ом].

 R_1, R_2 — сопротивление [Ом].

Закон Джоуля-Ленца

$$Q = UIt$$
 $P = UI$

Q — количество теплоты [Дж].

U — напряжение [В].

I — сила тока [A].

t — время [c].

P — мощность [Вт].

8. МАГНЕТИЗМ

Индукция магнитного поля

$$B = \frac{M_{max}}{p_m} \qquad p_m = IS \qquad B = \frac{F}{Il}$$

B — индукция магнитного поля [Тл].

 M_{max} — максимальный вращающий момент [H·м].

 p_m — магнитный момент [A·м²].

I — сила тока [A].

S — площадь контура проводника [м 2].

l — длина проводника [м].

F — сила действия магнитного поля [H].

Магнитный поток

$$\Phi = BS\sin\varphi \qquad \mathcal{E} = \frac{\Delta\Phi}{\Delta t}$$

 Φ — магнитный поток [Вб].

S — площадь контура проводника [м²].

 φ — угол между поверхностью контура и линией магнитной индукции.

 ${\cal E}$ — электродвижущая сила (э.д.с.) [В].

 $\Delta\Phi$ — изменение магнитного потока [Вб].

 Δt — время [c].

Индуктивность катушки

$$\Phi = LI \qquad \mathcal{E} = L \frac{\Delta I}{\Delta t} \qquad E_{\text{mar}} = \frac{LI^2}{2}$$

 Φ — магнитный поток [Вб].

L — индуктивность катушки [Гн].

I — сила тока [A].

 ${\cal E}$ — электродвижущая сила (э.д.с.) [В].

 Δt — время [c].

 ΔI — изменение силы тока [A].

 $E_{\rm mar}$ — энергия магнитного поля [Дж].

9. ВОЛНОВЫЕ ПРОЦЕССЫ

Частота колебания

$$T = \frac{1}{\nu} \qquad \nu = \frac{1}{T}$$

T — период свободных колебаний маятника [c].

u — частота свободных колебания маятника [Гц].

Длина волны, скорость распространения волны

$$\lambda = vT$$
 $v = \lambda \nu$

 λ — длина волны [м].

v — скорость распространения волны [м/с].

T — период колебаний [c].

nu — частота колебаний [Гц].

Элетромагнитные волны

$$\lambda = cT = \frac{c}{\nu}$$
 $c \approx 3 \cdot 10^9 \text{ m/c}$

 λ — длина волны [м].

T — период колебаний [c].

nu — частота колебаний [Гц].

c — скорость света в вакууме [м/с].

Колебательный контур

$$T = 2\pi\sqrt{LC}$$
 $\pi \approx 3,141592$

T — период колебаний [c].

L — индуктивность катушки [Гн].

C — ёмкость конденсатора [Φ].

Энергия кванта

$$E = h\nu$$
 $h \approx 6 \cdot 10^{-34}$ Дж·с

E — энергия кванта [Дж].

h — постоянная Планка [Дж·с].

nu — частота колебаний [Гц].

10. ОПТИКА

Преломление света

$$\frac{\sin \alpha}{\sin \beta} = n_{21} \qquad n_{21} = \frac{v_2}{v_1} \qquad n = \frac{c}{v}$$

 n_{21} — относительный показатель преломления второй среды относительно первой.

 α — угол падения.

 β — угол преломления.

 v_1 — скорость света в первой среде [м/с].

 v_2 — скорость света во второй среде [м/с].

n — абсолютный показатель преломления среды.

c — скорость света в вакууме [м/с].

v — скорость света в среде [м/с].

11. ЯДЕРНАЯ ФИЗИКА

Энергия покоя

$$E = m_0 c^2$$

E — энергия покоя [Дж].

 m_0 — масса покоя [кг].

c — скорость света в вакууме [м/с].

Радиоактивный распад

$$N = N_0 2^{-\frac{t}{T}}$$

N — число радиоактивных атомов.

 N_0 — первоначальное число радиоактивных атомов.

t — время [c].

T — период полураспада [c].