ĐỂ 1 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 2019.3

Nhóm 1: MI1111. Khóa: K64. Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thị

Câu 1. Tìm hàm ngược của hàm số $y = \frac{x}{x+1}$.

Câu 2. Tìm tập xác định của hàm số $y = \sqrt{2x-1} + \arccos(1-x^2)$.

Câu 3. So sánh hai vô cùng bé $f(x) = x \arcsin x$, $g(x) = \arctan x \ln(1+x)$ khi $x \to 0$.

Câu 4. Tính giới hạn $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$.

Câu 5. Tìm cực trị của hàm số $y = x\sqrt{1-x^2}$.

Câu 6. Tính đạo hàm cấp cao $y^{(10)}(0)$ của hàm số $y = (2x+1)\sin x$.

Câu 7. Tính gần đúng nhờ vi phân $A = \sqrt[5]{32,5}$.

Câu 8. Tính các tích phân sau

$$a) \int \frac{x \ln(1+x^2)}{\sqrt{1+x^2}} dx \qquad b) \int \frac{dx}{2^x + 5}.$$

Câu 9. Cho các số thực a,b,c thỏa mãn a+3b+2c=0. Chứng minh rằng phương trình $7ax^5+15bx^3+4c=0$ có ít nhất một nghiệm thực thuộc khoảng (0,1).

Thang điểm: Câu 2 điểm: Câu 8.

Câu 1 điểm: Câu 1, 2, 3, 4, 5, 6, 7, 9.

-----HÉT-----

VIỆN TOÁN ỨNG DỤNG VÀ TIN HỌC

ĐỀ 2 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 2019.3

Nhóm 1: MI1111. Khóa: K64. Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1. Tìm hàm ngược của hàm số $y = \frac{x}{x-1}$.

Câu 2. Tìm tập xác định của hàm số $y = \sqrt{2x+1} + \arcsin(1-x^2)$.

Câu 3. So sánh hai vô cùng bé $f(x) = x \sin 2x$, $g(x) = \tan x \ln(1+2x)$ khi $x \to 0$.

Câu 4. Tính giới hạn $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.

Câu 5. Tìm cực trị của hàm số $y = x\sqrt{4-x^2}$.

Câu 6. Tính đạo hàm cấp cao $y^{(10)}(0)$ của hàm số $y = (2x+1)\cos x$.

Câu 7. Tính gần đúng nhờ vi phân $A = \sqrt[5]{31,5}$.

Câu 8. Tính các tích phân sau

$$a) \int \frac{x \ln(2+x^2)}{\sqrt{2+x^2}} dx \qquad b) \int \frac{dx}{3^x+4}.$$

Câu 9. Cho các số thực a,b,c thỏa mãn a+3b+2c=0. Chứng minh rằng phương trình $7ax^5+15bx^3+4c=0$ có ít nhất một nghiệm thực thuộc khoảng (0,1).

Thang điểm: Câu 2 điểm: Câu 8.

Câu 1 điểm: Câu 1, 2, 3, 4, 5, 6, 7, 9.

-----HÉT-----

ĐỂC ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20193 Mã HP: MI1112 (nhóm 2). Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu mỗi câu 1 điểm)

Câu 1. Xét tính chẵn lẻ của hàm số $f(x) = \sqrt[3]{2-x} + \sqrt[3]{2+x}$.

Câu 2. Tìm hàm ngược của hàm số $y = \frac{2e^x}{e^x - 1}$ xác định trên $(1, +\infty)$.

Cấu 3. So sánh các vô cùng bé sau khi $x \to 0$:

$$\alpha(x) = \frac{e^x - e^{-x}}{2} \text{ và } \beta(x) = e^x - 1.$$

Câu 4. Cho hàm số $f(x) = \begin{cases} \arctan(\frac{1}{|x|}) & khi \ x \neq 0, \\ \frac{\pi}{2} & khi \ x = 0. \end{cases}$

Xét tính khả vi của hàm số tại x = 0.

Câu 5. Với n bằng bao nhiều thì hàm số sau liên tục tại x = 0

n nguyên dương)
$$f(x) = \begin{cases} \frac{\sin(2x)}{x^n} & khi \ x \neq 0, \\ 2 & khi \ x = 0. \end{cases}$$

Câu 6. Tìm khai triển MacIoranh của hàm số $f(x) = \ln(|\cos x|)$ đến số nạng x^2 .

Câu 7. Cho hàm số $f(x) = \frac{1}{1+x^2}$. Tính $f^{(1000)}(0)$.

Câu 8. Cho $b \ge a$. CMR $\frac{a-b}{2} \le \cos(\frac{a+b}{2})\sin(\frac{a-b}{2}) \le \frac{b-a}{2}$.

Câu 9. Tìm tiệm cận của hàm số $f(x) = \ln(1 + e^{-x})$.

Câu 10. Cho hàm số liên tục $f:[0,2] \rightarrow [0,2]$. CMR tồn tại $c \in [0,2]$ sao tho f(c) = c.

ĐỀ 4 ĐỀ THI GIỮA KỲ MÔN GIẢI TÍCH 1 – Học kì 20193 Mã HP: MI1112 (nhóm 2). Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu (mỗi câu 1 điểm)

Câu 1. Xét tính chẵn lẻ của hàm số $f(x) = \sqrt[3]{3-x} + \sqrt[3]{3+x}$.

Câu 2. Tìm hàm ngược của hàm số $y = \frac{2e^x}{e^x + 1}$ xác định trên $(0, +\infty)$.

Câu 3. So sánh các vô cùng bé sau khi $x \to 0$:

$$\alpha(x) = \frac{e^{2x} - e^{-2x}}{2}$$
 và $\beta(x) = 2(e^x - 1)$.

Câu 4. Cho hàm số
$$f(x) = \begin{cases} \operatorname{arccot}(\frac{1}{|x|}) & khi \ x \neq 0, \\ 0 & khi \ x = 0. \end{cases}$$

Xét tính khả vi của hàm số tại x = 0.

Câu 5. Với *n* bằng bao nhiều thì hàm số sau liên tục tại x = 0

(*n* nguyên dương)
$$f(x) = \begin{cases} \frac{\tan(2x)}{x^n} & khi \ x \neq 0, \\ 2 & khi \ x = 0. \end{cases}$$

Câu 6. Tìm khai triển MacIoranh của hàm số $f(x) = \ln(|\cos 2x|)$ đến số hạng x^2 .

Câu 7. Cho hàm số $f(x) = \frac{1}{1+x^3}$. Tính $f^{(1500)}(0)$.

Câu 8. Cho $b \ge a$. CMR $\frac{a-b}{2} \le \sin(\frac{a+b}{2})\sin(\frac{a-b}{2}) \le \frac{b-a}{2}$.

Câu 9 Tìm tiệm cận của hàm số $f(x) = \ln(1 + e^{-2x})$.

Câu 10. Cho hàm số liên tục $f:[0,3] \rightarrow [0,3]$. CMR tồn tại $c \in [0,3]$ sac cho f(c) = c.

ĐÈ 5 ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 – Học kì 20193

Nhóm 3. Mã học phần MI 1113 Thời gian: 60 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thị

Câu 1: [1đ] Tìm hàm ngược của hàm $y = \frac{e^x + e^{-x}}{2}$, x < 0.

Câu 2: [1đ] Tìm giới hạn của dãy số $\{x_n\}$ thỏa mãn $x_{n+1} = \frac{2}{3}x_n + \frac{1}{3}$.

Câu 3: [1đ] Tìm a để hàm số sau liên tục tại x = 0:

$$f(x) = \begin{cases} \frac{\sin 2x + \tan x^2 + x \arcsin x}{\arctan 3x + \ln(1 + x^2)}, & x \neq 0 \\ a & , x = 0 \end{cases}$$

Câu 4: [1d] Cho $f(x) = \ln(x^2 + 1)\arccos(x^3)\arctan\sqrt{x^4 + 1}$. Tính f'(0).

Câu 5: [1đ] Cho hàm số $f(x) = xe^{2x}$. Tính $f^{(100)}(0)$.

Câu 6: [1đ] Tìm khai triển Maclaurin của hàm số $f(x) = xe^{2x}$ đến x^4 .

Câu 7: [1đ] Tìm giá trị lớn nhất và nhỏ nhất của $f(x) = \frac{e^{x^2}}{x}$ trên đoạn [1;2]

Câu 8: [1đ] Tìm tiệm cận của đường cong cho bởi tham số: $\begin{cases} x(t) = \frac{t}{t-1} \\ y(t) = \frac{1}{t} \end{cases}$

Câu 9: [1đ] Tính tích phân $\int \frac{6x^2 - 17x + 6}{x(x-2)(x-3)} dx$

Câu 10: [1đ] Tính $\lim_{x\to 0} \frac{e^{\sin x} - 1 - x - x^2/2}{\arcsin x^2 \cdot \ln(1+x^2)}$.

-----Hết-----

 \overrightarrow{DE} $\overrightarrow{6}$ \overrightarrow{DE} THI GIỮA KÌ MÔN GIẢI TÍCH 1 – Học kì 20193

Nhóm 3. Mã học phần MI 1113 Thời gian: 60 phút

VIEN TOAN UNG DUNG VA TIN HOC

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thị

Câu 1: [1đ] Tìm hàm ngược của hàm $y = \frac{e^x + e^{-x}}{2}$, x > 0.

Câu 2: [1đ] Tìm giới hạn của dãy số $\{x_n\}$ thỏa mãn $x_{n+1} = \frac{3}{4}x_n + \frac{1}{4}$.

Câu 3: [1đ] Tìm α để hàm số sau liên tục tại x = 0:

$$f(x) = \begin{cases} \frac{\tan 2x + \arctan x^2 + x \arctan x}{\arcsin 3x + \ln(1 + 3x^2)}, & x \neq 0 \\ a & , x = 0 \end{cases}$$

Câu 4: [1đ] Cho $f(x) = \ln(3x^2 + 1)\arccos(x^2)\arcsin\sqrt{x^3 + 1}$. Tính f'(0).

Câu 5: [1đ] Cho hàm số $f(x) = xe^{3x}$. Tính $f^{(100)}(0)$.

Câu 6: [1đ] Tìm khai triển Maclaurin của hàm số $f(x) = xe^{3x}$ đến x^4 .

Câu 7: [1đ] Tìm giá trị lớn nhất và nhỏ nhất của $f(x) = \frac{e^{x^2}}{x}$ trên đoạn [2;3]

Câu 8: [1đ] Tìm tiệm cận của đường cong cho bởi tham số: $\begin{cases} x(t) = \frac{t}{t+1} \\ y(t) = \frac{2}{t} \end{cases}$

Câu 9: [1đ] Tính tích phân $\int \frac{6x^2 + 17x + 6}{x(x+2)(x+3)} dx$

Câu 10: [1đ] Tính $\lim_{x\to 0} \frac{e^{\sin x} - 1 - x - x^2/2}{\arctan x^2 \cdot \ln(1+x^2)}$.

-----Hết-----