

CLAIMS

1. A method for defining quadrature-axis magnetizing inductance of a synchronous machine when the synchronous machine is fed with an inverter, characterized in that the method comprises the steps of
 - starting the synchronous machine without load or with reduced load, keeping the rotor current of the synchronous machine substantially at zero,
 - accelerating the synchronous machine to initial angular velocity of measurement,
 - controlling the load angle (δ_s) of the synchronous machine substantially to 90 degrees,
 - defining the stator voltage (\bar{u}_s), the stator current (\bar{i}_s) and the electrical angular velocity (ω) of the synchronous machine, and
 - defining the quadrature-axis magnetizing inductance (L_{mq}) of the synchronous machine on the basis of the stator voltage (\bar{u}_s), the stator current (\bar{i}_s) and the electrical angular velocity (ω) of the machine.
2. A method as claimed in claim 1, characterized in that the start-up of the synchronous machine comprises a step of starting the synchronous machine at reduced flux.
3. A method as claimed in claim 1 or 2, characterized in that the method also comprises a step of changing the flux of the synchronous machine and performing the definition of the stator voltage (\bar{u}_s), stator current (\bar{i}_s), and electrical angular velocity (ω) of the machine, and the definition of quadrature-axis magnetizing inductance (L_{mq}) based thereon repeatedly as the flux changes.
4. A method as claimed in claim 3, characterized in that the flux of the synchronous machine is changed step by step, and the measurements are made after each stepwise change.
5. A method as claimed in claim 3 or 4, characterized in that the method also comprises a step of accelerating the speed of the machine.
6. A method as claimed in claim 1 or 2, characterized in that the start-up of the machine comprises a step of starting the machine at a limited load angle.
7. A method as claimed in any one of the preceding claims 1 to 2, characterized in that keeping the rotor current of the machine substan-

tially at zero comprises a step of shorting out the rotor coils, opening them or equipping them with a resistor, or of feeding the rotor coils from a current supply.

8. A method as claimed in any one of the preceding claims 1 to 7, characterized in that the quadrature-axis magnetizing inductance (L_{mq}) of the synchronous machine is calculated by formula $L_{mq} = -\frac{u_{sd}}{\omega i_{sq}} - L_{s\sigma}$,

wherein u_{sd} is the direct-axis component of the stator voltage, ω is the electrical angular velocity of the motor, i_{sq} is the quadrature-axis component of the stator current, and $L_{s\sigma}$ is the known leakage inductance of the stator.

9. A method as claimed in any one of the preceding claims 1 to 7, characterized in that the definition of the quadrature-axis magnetizing inductance of the synchronous machine comprises the steps of

calculating by means of the quadrature-axis magnetizing inductance (L_{mq}), known leakage inductance ($L_{s\sigma}$) of the stator, electrical angular velocity (ω) of the motor and the defined direct-axis component (i_{sq}) of the stator current an estimate ($u_{sd,est}$) for the direct-axis component of the stator voltage by using the formula the $u_{sd,est} = -\omega i_{sq} (L_{mq} + L_{s\sigma})$,

comparing the estimate ($u_{sd,est}$) of the stator voltage direct-axis component with the defined stator voltage (u_{sd}), and

correcting the magnitude of the quadrature-axis magnetizing inductance (L_{mq}) on the basis of the comparison.