Notes - 3.5 Limits at infinity

Juan J. Moreno Santos

October 2023

1 Sketch the derivative of |x|

where q(x) is the quotient of $\frac{g(x)}{d(x)}$ and r(x) the remainder.

There is a root at g(x) = 0

There is a vertical asymptote at d(x) = 0

There are holes when the function results in $\frac{0}{0}$

If r is a positive rational number and c is any real number, then Notes - 3.6 A summary of curve sketching

2 BOBY0

B: Bigger

O: On

B: Bottom

Y: Y = 0

0: Zero

The degree on the bottom (the $3x^5$ is fifth-degree); therefore, y=0 is the end behavior asymptote.

3 BOTN0

B: Bigger

O: On

B: Top

Y: No (horizontal asymptote)

0: Zero

Let $f(x) = \frac{x^3 - x^2 - 4x - 4}{x + 3} = x^2 - 4x + 8 - \frac{20}{x + 3}$

 $q(x) = x^2 - 4x + 8$ is the oblique asymptote, and $r(x) = -\frac{20}{x+3}$ is the remainder.

4 EATSDC

E: Exponents

A: Are

T: The

S: Same

D: Divide

C: Coefficients

Let $f(x) = \frac{7x^4 - 7x + 5}{2x^4 - 2}$. Dividing coefficients (7 and 2) yields $y = \frac{7}{2}$.