## TP nº 07 – Résolution d'équations simples

#### Ι Résolution d'équations du second ordre

L'objectif est de résoudre les équations de type (E):  $ax^2 + bx + c = 0$  où a, b et c sont des réels, (donc seront des flottants dans vos programmes).

**Exercice 1.** Dans cet exercice, on suppose que  $a \neq 0$ .

Écrire une fonction solution(a,b,c) qui renvoie les solutions de (E):  $ax^2 + bx + c = 0$  et précise la nature de ses solutions. Par exemple :

```
>>> solution(2,-6,4)
Deux solutions reelles x1=1.0 et x2=2.0
>>> solution(4,-4,1)
Une solution double x=0.5
>>> solution(1,-2,2)
Deux solutions complexes x1=1+1j et x2=1-1j
```

Exercice 2. Dans cet exercice, (E) n'est pas forcément une équation du second degré : a peut être nul. Ecrire une fonction solution2 pour prendre en compte tous les cas. (On commencera par construire sur feuille un algorigramme.)

Par exemple:

```
>>> solution2(1,-3,2)
Deux solutions reelles : x1=1.0 et x2=2.0
>>> solution2(0,2,0)
Une solution reelle : x=0.0
>>> solution2(0,0,1)
Pas de solution
>>> solution2(0,0,0)
Une infinite de solutions : tous les reels
```

Exercice 3. 1. Résolvez à la main l'équation suivante :

$$(E_5)$$
:  $x^2 + (1 + 2^{-50})x + 0, 25 + 2^{-51} = 0$ 

2. Résolvez cette équation à l'aide de la fonction solution. Que constatez-vous? Pourquoi?

Exercice 4. 1. Résolvez à la main les deux équations suivantes :

$$(E_3)$$
:  $x^2 + 6x + 9$   $(E_4)$ :  $0.1x^2 + 0.6x + 0.9 = 0$ 

2. Résolvez ces équations à l'aide de la fonction solution. Que constatez-vous? Pourquoi?

#### TT Résolution par dichotomie

ATTENTION: vous aurez besoin de cet algorithme au TP n°10. Donc, sauvegardez proprement et au bon endroit votre programme.

#### Principe II.1

Soit f continue telle que f(a) et f(b) soient de signe contraire. Alors un zéro de f est dans [a,b]. On construit une suite d'intervalles  $[a_n, b_n]$  qui contiennent ce zéro. A chaque étape :

on note 
$$c_n = \frac{a_n + b_n}{2}$$

- on note  $c_n = \frac{a_n + b_n}{2}$ .

   si  $f(a_n)$  et  $f(c_n)$  sont de signe contraire, alors on pose :  $a_{n+1} = a_n$  et  $b_{n+1} = c_n$ .
- sinon, on pose :  $a_{n+1} = c_n$  et  $b_{n+1} = b_n$ .

On s'arrête quand  $c_n = \frac{a_n + b_n}{2}$  est une approximation à  $\epsilon$  près d'une solution, autrement dit quand :

$$b_n - a_n \leqslant 2\epsilon$$

Avantages : dès lors que f(a) et f(b) sont de signe contraire et que f est continue, la méthode converge vers une solution. On peut aussi prévoir à l'avance le nombre d'itérations nécessaires pour une précision choisie.

Inconvénient : la convergence n'est pas très rapide comparée à d'autres méthodes.

### II.2 Application

Exercice 5. Écrire une fonction dicho qui prend comme entrée la fonction f à étudier, les bornes initiales a et b, la précision  $\epsilon$  et qui renvoie  $\frac{a_n + b_n}{2}$ , approximation d'une solution à  $\epsilon$  près.

**Exercice 6.** 1. Testez la fonction dicho sur  $f(x) = x^2 - 2$  pour obtenir une approximation de  $\sqrt{2}$  à  $\epsilon = 0,001$  près.

- 2. Si on prend a=2 et b=3, que renvoie le programme ? Est-ce bien l'approximation d'une solution ? Pourquoi le programme renvoie cette valeur ?
- 3. Faites en sorte que votre fonction dicho affiche un message d'erreur dans ces cas là.

#### III Résolution avec des suites récurrentes

### III.1 Principe

L'objectif est de résoudre une équation du type f(x) = x. On considère une suite définie par récurrence de la façon suivante :

$$\begin{cases} u_0 = \text{constante} \\ u_{n+1} = f(u_n) \end{cases}$$
 (\*)

Dans certains cas favorables, la suite  $(u_n)_{n\in\mathbb{N}}$  converge. À ce moment là, sa limite est un point fixe de f, c'est-à-dire une solution de f(x) = x.

### III.2 Application

Exercice 7. Écrire une fonction rec qui prend comme entrée  $f, u_0, n$  et qui renvoie  $u_n$ , le nième terme de la suite définie par récurence en (\*).

**Exercice 8.** Tester votre function rec avec  $f(x) = \frac{1}{2} \left( x + \frac{2}{x} \right)$  et  $u_0 \in \mathbb{R}^*$ .

On peut montrer que la suite  $(u_n)_{n\in\mathbb{N}}$  converge et que les points fixes de f sont :  $\sqrt{2}$  et  $-\sqrt{2}$ .



**Exercice 9.** Avec la fonction dicho appliquée à g(x) = f(x) - x, on retrouve les solutions de f(x) = x. Testez-le avec la fonction f de l'exercice précédent.

Entre dicho et rec, quel est l'algorithme le plus rapide?

# IV Annexe: les complexes

Un complexe se note : z=1+2j.

Attention : si vous voulez le complexe z = j, il faut écrire z=1j et non pas z=j car Python considère alors j comme une variable et non comme le complexe j.

Quelques fonctions :

 $\begin{array}{ll} {\tt z.conjugate()} & {\tt conjugu\'e de} \ z \\ {\tt abs(z)} & {\tt module de} \ z \\ \end{array}$