EE263 Autumn 2015 S. Boyd and S. Lall

Example: Least-squares filtering

Example: estimation / filtering

▶ signal u is piecewise constant, period $1 \sec$, $0 \le t \le 10$:

$$u(t) = x_j, \quad j - 1 \le t < j, \quad j = 1, \dots, 10$$

▶ filtered by system with impulse response h(t):

$$w(t) = \int_0^t h(t - \tau)u(\tau) d\tau$$

- ▶ sample at 10Hz: $\tilde{y}_i = w(0.1i)$, i = 1, ..., 100
- ▶ 3-bit quantization: $y_i = Q(\tilde{y}_i), i = 1, \dots, 100$, where Q is 3-bit quantizer characteristic

$$Q(a) = (1/4) \left(\mathbf{round} (4a + 1/2) - 1/2 \right)$$

problem: estimate $x \in \mathbb{R}^{10}$ given $y \in \mathbb{R}^{100}$

Linear model

we have y = Ax + v, where

- $lacksquare A \in \mathbb{R}^{100 imes 10}$ is given by $A_{ij} = \int_{j-1}^j h(0.1i au) \; d au$
- $v \in \mathbb{R}^{100}$ is quantization error: $v_i = Q(\tilde{y}_i) \tilde{y}_i$ (so $|v_i| \le 0.125$)

Results from least-squares estimation

- ▶ plot shows *least-squares estimate*: $x_{ls} = (A^TA)^{-1}A^Ty$ in red
- ▶ RMS error is $\frac{\|x x_{\rm ls}\|}{\sqrt{10}} = 0.03$
- ▶ better than if we had no filtering! (RMS error 0.07)

Rows of the left-inverse

- ightharpoonup some rows of $B_{ls} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$
- \blacktriangleright rows show how sampled measurements of y are used to form estimate of x_i for i=2,5,8
- ▶ to estimate x_5 , which is the original input signal for $4 \le t < 5$, we mostly use y(t) for $3 \le t \le 7$