Лабораторная работа 3.2.6

Исследование гальванометра

Работу выполнили:

Морозов Матвей Бабушкина Татьяна 678 группа

Цель работы: изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического тока.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

Теоретическая часть

Баллистическим гальванометром называют электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью к току и сравнительно большим периодом колебаний подвижной системы (рамки).

Баллистический гальванометр позволяет измерять как постоянный ток - стационарный режим, так и заряд, протекший через рамку за некоторое время - баллистический режим.

Уравнение движения подвижной системы

На рамку в магнитном поле действует моменты сил: момент закрученной нити, момент магнитных сил и тормозящий момент.

Механический момент: $M_1 = -D\varphi$, где D - модуль кручения нити, φ - угол поворота рамки от положения равновесия.

Момент магнитных сил: $M_2 = 2rlBNI = BSNI$, где r - расстояние от боковой стороны до оси вращения, S - площадь одного витка, N - количество витков, I - ток.

Тормозящий момент:
$$M_3 = BSNI_i = -\frac{(BSN)^2}{R_\sigma} \varphi^\cdot$$
, где I_i - индукционный ток.

Уравнение движения рамки имеет вид: $J\varphi^{..}=\Sigma M$, подставим сумму моментов всех сил, действующих на рамку, и получим: $J\varphi^{..}+\frac{(BSN)^2}{R_\sigma}\varphi^{.}+D\varphi=BSNI$

Уравнение движения рамки примет вид: $\varphi^{..} + 2\gamma \varphi^{.} + w_0^2 \varphi = KI$, где γ - коэффициент затухания, w_0 - собственная частота колебаний рамки.

Режим измерения постоянного тока

$$arphi=rac{K}{w_0^2}I=rac{BSN}{D}I=rac{I}{C_I}$$
, где C_I - динамическая постоянная.

Свободные колебания рамки

В начальный момент времени $\varphi^{..} + 2\gamma \varphi^{.} + w_0^2 \varphi = 0$

Общее решение: $\varphi = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t}$, далее возможны три варианта: 1) Колебательный режим: $\gamma < w_0$, $\varphi = \frac{\varphi}{w_0} sinw_0 t$

- 2) Критический режим : $\gamma < w_0, \, \varphi = \varphi \cdot te^{-\gamma t}$
- 3)Затухание : $\gamma > w_0, \ \varphi = \frac{\varphi}{\omega} e^{-\gamma t} s h \varkappa t$

Определение динамической постоянной

При малых R_1 сила тока, протекающего через гальванометр может быть вычислена по очевидной формуле: $I=U_0\frac{R_1}{R_2}\frac{1}{R_0+R}$, где U_0 - показания вольтметра, $\frac{R_1}{R_2}$ - положение делителя, R– сопротивление магазина, R_0 – внутреннее сопротивление гальванометра

Координата x светового пятна на шкале связана с углом отклонения рамки формулой $x = atg(2\varphi)$, где a расстояние от шкалы до зеркальца. $C_I = \frac{I}{\wp} = \frac{2aI}{x}$.

Определение критического сопротивления гальванометра

Скорость затухания колебаний принято характеризовать декрементом затухания Δ , равным отношению углов двух последовательных отклонений в одну сторону. $\Delta = \frac{\varphi_n}{\varphi_{n+1}} = e^{\gamma t}$, где $T = \frac{2\pi}{w}$. Мы будем рассматривать логарифмический декремент затухания $\theta = ln\Delta = \gamma T = ln\frac{x_n}{x_{n+1}}$ Измеряя зависимость логарифмического декремента затухания от сопротивления внешней цепи, можно найти R_k - критическое сопротивление, при котором $\theta=\infty$: $R_k=\frac{1}{2\pi}\sqrt{\frac{X}{Y}}-R_0$, где $X = (R + R_0)^2, Y = \frac{1}{a^2}$

Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическом режиме

При нормальном положении кнопки K_0 конденсатор C заряжается до напряжения $U_C = \frac{R_1}{R_2} U_0$, заряд конденсатора равен $q = CU_C = \frac{R_1}{R_2}U_0C$.

Баллистическая постоянная определяется при критическом сопротивлении
$$(R_k=R)$$
: $C_Q=rac{q}{arphi_{max}}=2arac{R_1U_0C}{R_2l_{max}},$ где l_{max} - величина первого отброса в критическомм режиме.

Обработка результатов

- **1**) Записали:
- 1) показание вольтметра $U_0=69=1,38B$ 2) положение делителя $\frac{R1}{R_2}=\frac{1}{2000}$ 3) Величину $R_2=10$ кОм
- 4) Внутреннее сопротивление $R_0 = 2000 \, \text{Om}$, указанное на установке.

2) Рассчитаем токи I по формуле $I = U_0 \frac{R_1}{R_2} \frac{1}{R + R_0}$

Таблица 1. Зависимость I от x.

No	x, cm	R, Om	<i>I</i> , нА	№	x, cm	R, Om	I, нА
1	24, 5	10009,9	57,452	15	11, 5	29900, 0	21,630
2	23, 0	11009,9	53,037	16	10,8	31900, 0	20,354
3	21,9	12109, 9	48,902	17	9,9	33900, 0	19, 220
4	21,0	13109, 9	45,665	18	8,9	36900, 0	17,738
5	20,0	14109, 9	42,831	19	8,1	38900, 0	16,687
6	19,0	15309, 9	39,861	20	7,4	41900, 0	15,717
7	18,0	16909, 9	36,489	21	6, 5	45900, 0	14,405
8	17,0	18609, 9	33,479	22	5,9	49900, 0	13,295
9	15, 4	21900, 0	28,870	23	5, 2	54700, 0	12,169
10	14, 7	22999, 0	27,601	24	4,5	61700, 0	10,832
11	14, 2	23900, 0	26,641	25	3,9	68700, 0	9,759
12	13, 4	25900, 0	24,731	26	3, 4	79700, 0	8,446
13	12, 5	27900, 0	23,077	27	2,9	89700,0	7,525
14	12,0	28900, 0	22,330	28	2,5	99909, 9	6,771

3) Построим графих зависимости I(x)

 Γ рафик 1 Зависимость I(x)

При помощи метода наименьших квадратов (МНК) рассчитаем тангенс наклона прямой на графике 1.

Тангенс наклона можно посчитать по формуле: $k = \frac{\langle xI \rangle - \langle x \rangle \langle I \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$.

Погрешность тангенса наклона посчитаем по формуле: $\delta k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2}} - k^2$ Получили: $k = (2, 14 \pm 0, 07) \cdot 10^{-7} \frac{\Delta}{M}$

Посчитаем динамическую постоянную C_I по формуле $C_I=2ak$, где a=1,1м - расстояние от шкалы до зеркальца гальвонометра.

Получили:
$$C_I = (4,71 \pm 0,15) \cdot 10^{-10} \frac{\mathrm{A}}{\mathrm{_{MM/M}}}$$

4) Рассчитаем логарифмический декремент затухания Θ_0 разомкнутого гальвонометра по формуле $\Theta = \ln \frac{x_n}{x_{n+1}}$.

Таблица 2.Расчёт Θ_0

x_1, c_M	24,0	21,8	19,9	18, 1	16,6	14,9	13,5	12, 1	11,0	9,8
x_2 , cm	21,8	19,9	18, 1	16,6	14,9	13, 5	12, 1	11,0	9,8	8,9
θ_0	0,096	0,091	0,095	0,087	0,108	0,099	0, 109	0,095	0,116	0,096

$$\Theta_0 = 0,099$$

5) Построим график $\frac{1}{\Theta^2} = f[(R+R_0)^2]$ и по наклону прямой (в области малых R) рассчита-

Таблица 3

Зависимость $\frac{1}{\Theta^2}$ от $(R+R_0)^2$.

R, Om	x_1, cm	x_2, cm	Θ	$\frac{1}{\Theta^2}$	$(R+R_0)^2$, кОм
43000	15, 5	1,4	2,404	0,173	2025
48000	14, 1	1,6	2,176	0,211	2500
53000	13, 1	1,9	1,931	0,268	3025
58000	11,9	2,0	1,783	0,314	3600
63000	10, 9	2, 1	1,647	0,369	4225
68000	10,0	2, 1	1,561	0,411	4900
73000	9,0	2,2	1,409	0,504	5625
78000	8,2	2,1	1,362	0,539	6400
83000	7,5	2, 1	1,273	0,617	7225
88000	6,8	2, 1	1,175	0,724	8100
93000	6, 4	2, 1	1,114	0,805	9025

ем критическое сопротивление по формуле: $R_{\mathrm{Kp}}=rac{1}{2\pi}\sqrt{rac{\Delta X}{\Delta Y}}-R_0$

 Γ рафик ${f 2}$ Зависимость ${1\over \Theta^2}$ от $(R+R_0)^2$

При помощи метода наименьших квадратов (МНК) рассчитаем тангенс наклона прямой на графике 2.

Тангенс наклона можно посчитать по формуле:
$$k = \frac{<\frac{1}{\Theta^2}(R+R_0)^2> - <\frac{1}{\Theta^2}> <(R+R_0)^2>}{<(R+R_0)^4> - <(R+R_0)^2>^2}.$$
 Погрешность тангенса наклона посчитаем по формуле:
$$\delta k = \frac{1}{\sqrt{n}}\sqrt{\frac{<(\frac{1}{\Theta^2})^2> - <\frac{1}{\Theta^2}>^2}{<(R+R_0)^4> - <(R+R_0)^2>^2} - k^2}$$

Погрешность тангенса наклона посчитаем по формуле:
$$\delta k = \frac{1}{\sqrt{n}} \sqrt{\frac{<(\frac{1}{\Theta^2})^2> - <\frac{1}{\Theta^2}>^2}{<(R+R_0)^4> - <(R+R_0)^2>^2} - k^2}$$

Получили: $k = (8, 91 \pm 0, 18) \cdot 10^{-5}$, кОм²

6) Измерили максимальное отклонение при разомкнутой цепи $L_{max_1} = 18\,$ см.

Таблица 4 Зависимость первого отброса l_{max} от $(R+R_0)^2$.

	_	1 max
$l_{max}, c_{ m M}$	R, Ом	$(R+R_0)^{-1}, \frac{10^{-6}}{O_{\rm M}}$
12, 2	50000	19, 23
11,8	45000	21, 28
10,6	40000	23,81
10, 7	35000	27,03
9,6	30000	31, 25
9,4	25000	37,04
8,5	20000	45, 45
7,6	15000	58,82
5,6	10000	83, 33
4, 5	5000	142,86

Построим график зависимости $l_{max} = f[(R+R_0)^{-1}]$ и определим по графику критическое сопротивление гальванометра с учётом формулы:

$$\varphi_0 = \varphi_1 \cdot \exp(\Theta_0/4)$$
, где

 Θ_0 – логарифмический декремент затухания;

 φ_1 – максимальное отклонение рамки при размокнутой цепи;

 φ_0 – максимальное отклонение рамки при замкнутой цепи;

 Γ рафик 3Зависимость l_{max} от $(R+R_0)^{-1}$

Рассчитаем максимальное отклонение при свободных колебаниях l_{max_0} .

$$\varphi_1 = \arctan(\frac{l_{max_1}}{a})$$

$$\varphi_0 = \arctan(\frac{l_{max_0}}{q})$$

$$l_{max_0} = a \tan[\arctan(\frac{l_{max_1}}{a})\exp(\Theta_0/4)] = 1, 1 \cdot \tan(\arctan(18/110)\exp(0,18/4)) = 18, 8 \text{ cm}$$

Максимальное отклонение в критическом режиме в e раз меньше, чем при свободных колебаниях.

Получим: $l_{max_{\rm kp}} = 6,9\,$ см.

Этому значению на графике соответствует $(R+R_0)^{-1}=63,27\ 10^{-6}/{\rm Om}$. Отсюда найдём критическое сопротивление: $R_{\rm kp}=13,8\ {\rm kOm}$.

- 7) Сравним значения $R_{\rm kp}$, определённые подбором и по графикам для стационарного и баллистического режима.
- а) Определенное подбором: $R_{\rm kp} = 14,31~$ кОм
- б) Определенное по графику $2:R_{\rm kp}=(14,86\pm1,04)\;\;$ кОм
- в) Определенное по графику $3:R_{\rm kp}=13,8\;\;{
 m кОм}$
- 8) Рассчитайте баллистическую постоянную в критическом режиме $C_{Q_{\rm kp}}$ [K/(мм/м)] по формуле $C_{Q_{\rm kp}}=2a\frac{R_1}{R_2}\frac{U_0C}{l_{maxkp}};$

$$C = 2 \cdot 10^{-6} \text{ MK}\Phi;$$

$$\frac{R_1}{R_2} = \frac{1}{100}$$
;

$$C_{Q_{\mathrm{kp}}} = 8,8 \cdot 10^{-10} \ \mathrm{K/(mm/m)}$$

9) Сравним время релаксации $t = R_0 C$ и период свободных колебаний гальванометра T_0 .

$$T_0 = 7,53$$
 c
 $t = 2000 \cdot 2 \cdot 10^{-6} = 4 \cdot 10^{-3}$ c

Вывод

- 1) Изучили работу зеркального гальванометра.
- **2)** Определили динамическую постоянную $C_I = (4,71\pm 0,15)\cdot 10^{-10} \frac{\mathrm{A}}{_{\mathrm{MM/M}}}$
- 3) Определили тремя способами критическое сопротивление гальванометра:
- а) экспериментально : $R_{\rm \kappa p} = 14, 31~{\rm кOm}$
- б) статическим: $R_{\rm kp} = (14, 86 \pm 1, 04) \,$ кОм
- в) баллистическим : $R_{\rm kp} = 13, 8~{\rm kOm}$

и они примерно совпадают.

- 4) Определили баллистическую постоянную $C_{Q_{\mathrm{Kp}}} = 8, 8 \cdot 10^{-10} \;\; \mathrm{K/(mm/m)}$
- **5**) Сравнили время релаксации t и период свободных колебаний T_0 гальванометра.

$$t = 4 \cdot 10^{-3}$$
 c; $T_0 = 7,53$ c; $t \ll T_0$.