

Three cables are used to tether a balloon as shown. Determine the vertical force \mathbf{P} exerted by the balloon at A knowing that the tension in cable AC is 100 lb.

SOLUTION

See Problem 2.103 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$-0.6T_{AB} + 0.3242T_{AC} = 0 (1)$$

$$-0.8T_{AB} - 0.75676T_{AC} - 0.8615T_{AD} + P = 0 (2)$$

$$0.56757T_{AC} - 0.50769T_{AD} = 0 (3)$$

Substituting $T_{AC} = 100$ lb in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms gives

$$T_{AB} = 54 \text{ lb}$$

$$T_{AD} = 112 \text{ lb}$$

 $\mathbf{P} = 215 \text{ lb} \uparrow$

The crate shown in Figure P2.105 and P2.108 is supported by three cables. Determine the weight of the crate knowing that the tension in cable *AB* is 3 kN.

SOLUTION

The forces applied at A are:

$$\mathbf{T}_{AB},\ \mathbf{T}_{AC},\ \mathbf{T}_{AD}$$
 and \mathbf{P}

where $\mathbf{P} = P\mathbf{j}$. To express the other forces in terms of the unit vectors \mathbf{i} , \mathbf{j} , \mathbf{k} , we write

$$\overrightarrow{AB} = -(0.72 \text{ m})\mathbf{i} + (1.2 \text{ m})\mathbf{j} - (0.54 \text{ m})\mathbf{k}, \qquad AB = 1.5 \text{ m}$$

$$\overrightarrow{AC} = (1.2 \text{ m}) \mathbf{j} + (0.64 \text{ m}) \mathbf{k}, \qquad AC = 1.36 \text{ m}$$

$$\overrightarrow{AD} = (0.8 \text{ m})\mathbf{i} + (1.2 \text{ m})\mathbf{j} - (0.54 \text{ m})\mathbf{k}, \qquad AD = 1.54 \text{ m}$$

and

$$\mathbf{T}_{AB} = T_{AB} \boldsymbol{\lambda}_{AB} = T_{AB} \frac{\overline{AB}}{AB} = (-0.48\mathbf{i} + 0.8\mathbf{j} - 0.36\mathbf{k})T_{AB}$$

$$\mathbf{T}_{AC} = T_{AC} \mathbf{\lambda}_{AC} = T_{AC} \frac{\overrightarrow{AC}}{AC} = (0.88235 \mathbf{j} + 0.47059 \mathbf{k}) T_{AC}$$

$$\mathbf{T}_{AD} = T_{AD} \mathbf{\lambda}_{AD} = T_{AD} \frac{\overline{AD}}{AD} = (0.51948\mathbf{i} + 0.77922\mathbf{j} - 0.35065\mathbf{k})T_{AD}$$

Equilibrium Condition with $\mathbf{W} = -W\mathbf{j}$

$$\Sigma F = 0: \quad \mathbf{T}_{AB} + \mathbf{T}_{AC} + \mathbf{T}_{AD} - W\mathbf{j} = 0$$

Substituting the expressions obtained for \mathbf{T}_{AB} , \mathbf{T}_{AC} , and \mathbf{T}_{AD} and factoring \mathbf{i} , \mathbf{j} , and \mathbf{k} :

$$(-0.48T_{AB} + 0.51948T_{AD})\mathbf{i} + (0.8T_{AB} + 0.88235T_{AC} + 0.77922T_{AD} - W)\mathbf{j}$$

$$+ (-0.36T_{AB} + 0.47059T_{AC} - 0.35065T_{AD})\mathbf{k} = 0$$

PROBLEM 2.105 CONTINUED

Equating to zero the coefficients of i, j, k:

$$-0.48T_{AB} + 0.51948T_{AD} = 0$$

$$0.8T_{AB} + 0.88235T_{AC} + 0.77922T_{AD} - W = 0$$

$$-0.36T_{AB} + 0.47059T_{AC} - 0.35065T_{AD} = 0$$

Substituting $T_{AB}=3$ kN in Equations (1), (2) and (3) and solving the resulting set of equations, using conventional algorithms for solving linear algebraic equations, gives

$$T_{AC} = 4.3605 \text{ kN}$$

$$T_{AD} = 2.7720 \text{ kN}$$

 $W = 8.41 \,\mathrm{kN} \,\blacktriangleleft$

For the crate of Problem 2.105, determine the weight of the crate knowing that the tension in cable AD is 2.8 kN.

Problem 2.105: The crate shown in Figure P2.105 and P2.108 is supported by three cables. Determine the weight of the crate knowing that the tension in cable AB is 3 kN.

SOLUTION

See Problem 2.105 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$-0.48T_{AB} + 0.51948T_{AD} = 0$$

$$0.8T_{AB} + 0.88235T_{AC} + 0.77922T_{AD} - W = 0$$

$$-0.36T_{AB} + 0.47059T_{AC} - 0.35065T_{AD} = 0$$

Substituting $T_{AD} = 2.8 \text{ kN}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives

$$T_{AB} = 3.03 \text{ kN}$$

$$T_{AC} = 4.40 \text{ kN}$$

 $W = 8.49 \text{ kN} \blacktriangleleft$

For the crate of Problem 2.105, determine the weight of the crate knowing that the tension in cable AC is 2.4 kN.

Problem 2.105: The crate shown in Figure P2.105 and P2.108 is supported by three cables. Determine the weight of the crate knowing that the tension in cable AB is 3 kN.

SOLUTION

See Problem 2.105 for the figure and the analysis leading to the linear algebraic Equations (1), (2), and (3) below:

$$-0.48T_{AB} + 0.51948T_{AD} = 0$$

$$0.8T_{AB} + 0.88235T_{AC} + 0.77922T_{AD} - W = 0$$

$$-0.36T_{AB} + 0.47059T_{AC} - 0.35065T_{AD} = 0$$

Substituting $T_{AC} = 2.4 \, \mathrm{kN}$ in Equations (1), (2), and (3) above, and solving the resulting set of equations using conventional algorithms, gives

$$T_{AB} = 1.651 \, \text{kN}$$

$$T_{AD} = 1.526 \text{ kN}$$

 $W = 4.63 \text{ kN} \blacktriangleleft$