Self-supervised Learning for Semi-supervised Time Series Classification

Shayan Jawed^(⊠), Josif Grabocka, and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab, University of Hildesheim, Hildesheim, Germany {shayan,josif,schmidt-thieme}@ismll.uni-hildesheim.de

Presented by Christer Rustand

Content

- Motivation
- Problem description
- Related work
- Method
- Experimental settings and results
- Conclusion
- My thoughts

Motivation

- High cost to label large datasets
- Gathering large amounts of time series data is often trivial
- So, less labeling * large datasets = winning

Problem description

 Accurately predict classes of time series classification problems where there are few labeled samples using deep learning

Related work

Seminal work

- Nearest neighbor classifiers(with meta-feature distance)
- Clustering
- Graphs(distance functions and label propagation)
- Shapelets

Recent work

- Tasks inherent in the data itself

Most related work

- Multi-task self-supervised network

Data preparation

Splitting univariate time series dataset X;

- XL -> Labeled set
- XU -> Unlabeled set

Sliding window function w(.);

- Made up by stride s and horizon h
- Builds forecasting samples XF

Objective

Forecasting function f(.) Classification function g(.)

$$YF = f(XF)$$

 $YL = g(XL)$

Loss functions

Forecasting loss function Lf(.)

$$L_f(X^F, \theta_f) = \frac{1}{n \times m \times h} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{t=1}^{n} (y_{jt}^i - \hat{y}_{jt}^i)^2$$

Classification loss function Lc(.)

$$L_c(X^L, \theta_{\mathbf{e}}) = -\frac{1}{l} \sum_{i}^{l} log \left(\frac{e^{\hat{y}_{i=c}}}{\sum_{j}^{C} e^{\hat{y}_{i}}} \right)$$

Combined loss function

$$L_{MTL}(X^F, \theta_f, X^L, \theta_c) = L_c(X^L, \theta_c) + \lambda L_f(X^F, \theta_f)$$

Further elaboration

- Forecasting as an auxiliary task
- Horizon and stride
- Multi-task learning
- Key challenges
- Intuition?

Experimental settings and results

Baselines

- Wei's method
- DTW-D
- SUCCESS
- Xu's method
- Bag-of-words
- SSSL
- Base
- Π-model
- Transfer learning

Results

	Coffee	CBF	ECG	Face- Four	OSULf	Italy- Power	Light.2	Light.7	Gun- Point	Trace	Word- Syn	Olive- Oil	Star-Light
#	56	930	200	112	442	1096	121	143	200	200	905	60	9236
C	2	3	2	4	6	2	2	7	2	4	25	4	3
T	286	128	96	350	427	24	637	319	150	275	270	570	1024

Datasets	Resul	ts verbati	m from	Proposed						
	Wei.	DTW-D	SUC.	Xu.	BoW	SSSL	Base	П	Tr.	MTL
Coffee	0.571	0.601	0.632	0.588	0.620	0.792	1.0	1.0	1.0	1.0
CBF	0.995	0.833	0.997	0.921	0.873	1.0	1.0	1.0	0.784	1.0
cre ECG	0.763	0.953	0.775	0.819	0.955	0.793	0.9	0.875	0.9	0.975
FaceFour	0.818	0.782	0.800	0.833	0.744	0.851	0.913	0.913	0.739	0.957
OSULf	0.468	0.701	0.534	0.642	0.685	0.835	0.977	0.977	0.460	0.978
ItalyPower	0.934	0.664	0.924	0.772	0.813	0.941	0.986	0.986	0.959	0.991
Light.2	0.658	0.641	0.683	0.698	0.721	0.813	0.92	0.84	0.88	0.92
Light.7	0.464	0.503	0.471	0.511	0.677	0.796	0.758	0.689	0.482	0.828
GunPoint	0.925	0.711	0.955	0.729	0.925	0.824	1.0	1.0	0.825	1.0
Trace	0.950	0.801	1.0	0.788	1.0	1.0	1.0	1.0	1.0	1.0
WordSyn	0.590	0.863	0.618	0.639	0.795	0.875	0.497	0.491	0.342	0.519
OliveOil	0.633	0.732	0.617	0.639	0.766	0.776	0.916	1.0	0.833	1.0
StarLight	0.860	0.743	0.800	0.755	0.851	0.872	0.982	0.983	1.0	0.991

Settings used

Datasets	s:	0.05	0.1			0.2	
	h:	0.1	0.2	0.1	0.2	0.1	0.2
Coffee		1.0	1.0	1.0	1.0	1.0	1.0
CBF		1.0	1.0	1.0	1.0	1.0	1.0
ECG		0.950	0.9	0.925	0.9	0.975	0.875
FaceFr.		0.913	0.913	0.870	0.957	0.957	0.913
OSULf.		0.966	0.966	0.978	0.955	0.978	0.955
ItalyPower		0.986	0.991	0.986	0.986	0.982	0.991
Light.2		0.840	0.920	0.840	0.880	0.880	0.880
Light.7		0.828	0.828	0.759	0.759	0.793	0.759
GunPoint		1.0	1.0	1.0	1.0	1.0	1.0
Trace		1.0	1.0	1.0	1.0	1.0	1.0
WordSyn.		0.497	0.519	0.508	0.497	0.503	0.508
OliveOil		1.0	1.0	1.0	1.0	1.0	1.0
StarLight		0.983	0.983	0.99	0.97	0.983	0.991

Conclusion

- Novel self-supervised task
- More accurate than a majority of baselines on benchmark datasets
- Multivariate time series next
- Github repo available for reproducibility

My thoughts

- Liked the concept
- Not too hard to read
- Maybe relevant to my thesis