MA 3140: Statistical Inference

Dr. Sameen Naqvi
Department of Mathematics, IIT Hyderabad
Email id: sameen@math.iith.ac.in

Case 1: σ is known and $g(\mu) = \mu$

We know that \overline{X} is a CSS.

Also, since $E(\overline{X}) = \mu$, we conclude that \overline{X} is the UMVUE of μ .

Case 2: σ is known and $g(\mu) = \mu^2$

Since
$$Var(\overline{X}) = \sigma^2/n$$
, we get $E(\overline{X}^2 - \sigma^2/n) = \mu^2$.

Thus, $\overline{X}^2 - \frac{\sigma^2}{n}$ is the UMVUE of μ^2 .

Case 3: σ is known and $g(\mu) = \mu^3$

Since the odd-ordered central moments of a symmetric distribution is 0, we have

$$E(\overline{X} - \mu)^3 = 0$$

$$\Longrightarrow E(\overline{X})^3 - \mu^3 - 3\mu E(\overline{X})^2 + 3\mu^2 E(\overline{X}) = 0$$

$$\Longrightarrow E(\overline{X})^3 - \mu^3 - 3\mu \left(\frac{\sigma^2}{n} + \mu^2\right) + 3\mu^3 = 0$$

$$\Longrightarrow E(\overline{X})^3 - 3\frac{\sigma^2}{n}\overline{X} = 0$$

Thus, we conclude that $\overline{X}^3 - 3\frac{\sigma^2}{n}\overline{X}$ is the UMVUE of μ^3 .

Case 4: μ is known and $g(\sigma) = \sigma^r$

Since it is a one-parameter exponential family, we know that $S^2 = \sum (X_i - \mu)^2$ is a CSS.

Also,
$$Y = S^2/\sigma^2 \sim \chi_n^2$$

$$E[Y^{\frac{r}{2}}] = \int y^{\frac{r}{2}} \frac{1}{\Gamma^{\frac{n}{2}} 2^{\frac{n}{2}}} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}} dy$$

$$= \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} \int y^{\frac{r+n}{2} - 1} e^{-\frac{y}{2}} dy$$

$$= \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} \Gamma(\frac{n+r}{2}) 2^{\frac{n+r}{2}} = \frac{\Gamma(\frac{n+r}{2})}{\Gamma(\frac{n}{2})} 2^{\frac{r}{2}}$$

$$E\left[\frac{S^2}{\sigma^2}\right]^{\frac{r}{2}} = E\left[\frac{S}{\sigma}\right]^r = \frac{\Gamma(\frac{n+r}{2})}{\Gamma(\frac{n}{2})} \ 2^{\frac{r}{2}}$$
$$\Longrightarrow E\left[\frac{\Gamma(\frac{n}{2})S^r}{2^{\frac{r}{2}}\Gamma(\frac{n+r}{2})}\right] = \sigma^r$$

Thus, when μ is known, $K_{n,r}$ S^r is the UMVUE of σ^r , where

$$K_{n,r} = \frac{\Gamma(\frac{n}{2})}{2^{\frac{r}{2}}\Gamma(\frac{n+r}{2})}.$$

Note that for r = 2, $K_{n,r} = 1/n$, and hence $E(S^2) = n\sigma^2$.

Case 5: μ is unknown and $g(\sigma) = \sigma^r$

We know that
$$S_X^2 = \sum (X_i - \overline{X})^2$$
 is a CSS.

Also,
$$Y = S_X^2/\sigma^2 \sim \chi_{n-1}^2$$

Thus, when μ is unknown, $K_{n-1,r}$ S_X^r is the UMVUE of σ^r .

Case 5: μ and σ^2 unknown and $g(\mu, \sigma) = \frac{\mu}{\sigma}$

Now, \overline{X} is the UMVUE for μ and $K_{n-1,-1}$ $\frac{1}{S_X}$ is the UMVUE of $\frac{1}{\sigma}$.

$$E\left[K_{n-1,-1} \frac{1}{S_X}\right] = \frac{1}{\sigma}$$

$$E\left[K_{n-1,-1} \frac{\overline{X}}{S_X}\right] = \frac{\mu}{\sigma} \qquad (\because \overline{X} \text{ and } S^2 \text{ are independent})$$

Thus, $K_{n-1,-1} \frac{\overline{X}}{S_X}$ is the UMVUE of $\frac{\mu}{\sigma}$.

Case 6: Estimating the critical value Within the framework of the Normal one-sample problem, we are often interested in

$$p=P(X_1\leq w).$$

 X_i : performances of past candidates on an entrance examination

w: the cutoff value

 $X \ge w$: passing performance with probability 1 - p.

This is the problem of estimating w above for a given value of p.

Solving the equation

$$p = P(X_1 \le w) = \Phi\left(\frac{w - \mu}{\sigma}\right)$$

for w shows that

$$w = g(\mu, \sigma) = \mu + \sigma \Phi^{-1}(p).$$

It follows that the UMVUE of w is

$$\overline{X} + K_{n-1,1} S \Phi^{-1}(p)$$
.

Case 7: Estimating p for a given value of w.

For
$$\sigma = 1$$
, we have $p = P(X_1 \le w) = \Phi(w - \mu)$.

An UE δ of p is

$$\delta = \begin{cases} 1, & X_1 \le w \\ 0, & \text{o/w} \end{cases}$$

We also know that \overline{X} is a CSS.

The UMVUE of p is

$$\begin{split} E[\delta|\overline{X}] &= P[X_1 \leq w|\overline{X}] \\ &= P[X_1 - \overline{X} \leq w - \overline{x} \mid \overline{x}] \\ &= P[X_1 - \overline{X} \leq w - \overline{x}] \quad (\because X_1 - \overline{X} \text{ is ancillary}) \\ &= \Phi\Big[\sqrt{\frac{n}{n-1}}(w - \overline{x})\Big] \quad (\because X_1 - \overline{X} \sim N(0, (n-1)/n)) \end{split}$$

Thus,
$$\Phi\left[\sqrt{\frac{n}{n-1}}(w-\overline{x})\right]$$
 is the UMVUE of p .

Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independently distributed according to normal distributions $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$, respectively.

Case 1: $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2$ are unknown

The joint density

$$\frac{1}{(\sqrt{2\pi})^{m+n}\sigma_X^m\sigma_Y^n}\exp\left[-\frac{1}{2\sigma_X^2}\sum_i(x_i-\mu_X)^2-\frac{1}{2\sigma_Y^2}\sum_i(y_j-\mu_Y)^2\right]$$

constitutes an exponential family for which

$$\overline{X}, \ \overline{Y}, \ S_X^2 = \sum (X_i - \overline{X})^2, \ S_Y^2 = \sum (Y_j - \overline{Y})^2$$

are sufficient and complete.

Thus, the UMVU estimators of μ_X and σ_X^r are \overline{X} and $K_{n-1,r}$ S_X^r .

The UMVU estimators of μ_Y and σ_Y^r are therefore \overline{Y} and $K_{n-1,r}$ S_Y^r .

Thus, the UMVUE of $\mu_Y - \mu_X$ is $\overline{Y} - \overline{X}$;

and the UMVUE of $\frac{\sigma_Y^r}{\sigma_X^r}$ is $\frac{K_{n-1,r} S_Y^r}{K_{n-1,-r} S_X^{-r}}$.

Case 2: $\sigma_X = \sigma_Y = \sigma$ are unknown.

Then, \overline{X} , \overline{Y} , $S^2 = \sum (X_i - \overline{X})^2 + \sum (Y_j - \overline{Y})^2$ are sufficient and complete.

The natural unbiased estimators of μ_X, μ_Y, σ^r , $\mu_Y - \mu_X$, and $(\mu_Y - \mu_X)/\sigma$ are all UMVU.

Case 3: $\mu_X = \mu_Y$ but $\sigma_X \neq \sigma_Y$.

Then,
$$T = (\overline{X}, \overline{Y}, S_X^2 = \sum (X_i - \overline{X})^2, S_Y^2 = \sum (Y_j - \overline{Y})^2)$$
 are minimal sufficient.

But are they complete??

NO since
$$E(\overline{Y} - \overline{X}) = 0$$
 but $\overline{Y} \neq \overline{X}$ w.p. 1.

Hypothesis Testing

Hypothesis

Hypothesis: An assertion about the parameters of the population.

Examples:

A manufacturer of 10-volt batteries claims that their batteries lasts for *N* hours.

In coin-tossing experiment, one frequently assumes that the coin is fair.

How to check the truth of these assertions?

► Hypothesis Testing: Tests whether a claim (hypothesis) that has been formulated is correct or not.

Null vs. Alternative Hypothesis

Null Hypothesis (denoted by H_0): a condition that is doubted; first tentative specification about the probability model.

$$H_0: p = .75$$
 $H_0: \mu_1 = \mu_2$ $H_0: \sigma_1^2 = \sigma_2^2$

Alternative Hypothesis (denoted by H_1): a condition that we believe in.

$$H_1: p > .75$$
 $H_1: \mu_1 \neq \mu_2$ $H_1: \sigma_1^2 < \sigma_2^2$

Null vs. Alternative Hypothesis cont'd

▶ In general, $\mathbf{X} = (X_1, \dots, X_n)$ and $\mathbf{X} \sim F_{\theta}$, $\theta \in \Theta$.

Consider $\Theta_0 \subset \Theta$ and $\Theta_1 \subset \Theta$ such that $\Theta_0 \cap \Theta_1 = \phi$.

Then, the problem of testing of hypothesis is:

$$H_0: \boldsymbol{\theta} \in \Theta_0 \quad \text{vs.} \quad H_1: \boldsymbol{\theta} \in \Theta_1$$

▶ In the previous slide, $\Theta_0 = \{0.75\}$ and $\Theta_1 = (0.75, 1)$.

Remark

▶ Null and Alternative Hypothesis divide parameter space into disjoint regions.

However, it is not necessary that they will exhaust the parameter space.

▶ In case of Binomial distribution, $\Theta = (0,1)$ but

$$\Theta_0 \cup \Theta_1 = \{0.75\} \cup (0.75,1) \neq (0,1) = \Theta.$$

Simple vs. Composite Hypothesis

- ► The hypothesis which completely specifies a probability model is known as simple hypothesis otherwise, it is referred to as composite hypothesis.
- **► Example:** Let $X \sim N(\mu, \sigma^2)$, μ and σ^2 are unknown, $\Theta = \{(\mu, \sigma^2) : -\infty < \mu < \infty, \sigma^2 > 0\}$.

$$H_0: \mu \le \mu_0, \sigma^2 > 0$$
, where μ_0 is known, is a composite H_0 .

$$H_1: \mu > \mu_0, \sigma^2 > 0$$
, is a composite H_1 .

$$H_0: \mu = \mu_0, \sigma^2 > 0$$
, is a ??? H_0 .

$$H_0: \mu = 0, \sigma^2 = \sigma_0^2$$
, where σ_0^2 is known, is a ??? H_0 .

Test of Statistical Hypothesis

A procedure to decide whether to reject or fail to reject the null hypothesis.

This is done on the basis of the observations that we take from the given population.

Example: Consider a die. Suppose we are interested in p, i.e., probability of occurrence of a six.

$$H_0: p = 1/6$$
 vs. $H_1: p \neq 1/6$

Toss the die say n = 60 times. Let X denote the number of 6's.

If
$$X = 9, 10, 11$$
, we fail to reject (accept) H_0
 $X \neq \{9, 10, 11\}$, we reject H_0 .

Non-randomized test procedure

Based on the sample X, we decide to accept or reject H_0 .

$$\mathfrak{X}$$
 : $A \cup R$,

where \mathcal{X} is the sample space, A is acceptance region for H_0 and R is a rejection region/ critical region for H_0 .

If $X \in A$, we accept H_0 , and if $X \in R$, we reject H_0 .

Examples: Non-randomized test procedure

▶ Let $X \sim P(\lambda)$.

$$H_0: \lambda \leq 1$$
 vs. $H_1: \lambda > 1$

If X = 0 or 1, then accept H_0 otherwise reject H_0 .

$$A = \{0, 1\}, \quad R = \{2, 3, \ldots\}.$$

▶ Let $X_1, \ldots, X_n \sim N(\mu, 1)$.

$$H_0: \mu = -1$$
 vs. $H_1: \mu = 1$

If $\overline{X} \leq 0$ then accept H_0 , and if $\overline{X} > 0$, reject H_0 .

$$A=(-\infty,0], \quad R=(0,\infty).$$

Type I and Type II errors

Decision	Reality	
	H_0 is true	H_0 is false
Reject H ₀	Type I error	Correct
Fail to Reject H_0	Correct	Type II error

- ▶ If we reject H_0 when it is true, we commit Type I error and $P(\text{Type I error}) = \alpha$.
- ▶ If we fail to reject H_0 when it is false, we commit Type II error and $P(\text{Type II error}) = \beta$.

Example on α and β

ightharpoonup Let $X_1, \ldots, X_n \sim N(\mu, 1)$.

$$H_0: \mu = -1/2$$
 vs. $H_1: \mu = 1/2$

If $\overline{X} \leq 0$ then accept H_0 , and if $\overline{X} > 0$, reject H_0 .

$$A=(-\infty,0], \quad R=(0,\infty).$$

$$lpha = P(\text{Type I error}) = P(\text{Rejecting } H_0 \text{ when it is true})$$

$$= P_{\{\mu = -1/2\}}(\overline{X} > 0)$$

$$= P_{\{\mu = -1/2\}}(X > 0)$$

$$= P\left(\sqrt{n}\left(\overline{X} + \frac{1}{2}\right) > \frac{\sqrt{n}}{2}\right) \quad (\because \overline{X} \sim N(\mu, 1/n))$$

Example on α and β cont'd

For
$$n = 16$$
, $\alpha = P(Z > 2) = 0.0228$

 \triangleright Let us now calculate β .

$$eta=P(ext{Type II error})=P(ext{Accepting } H_0 ext{ when it is false})$$

$$=P_{\{\mu=1/2\}}(\overline{X}\leq 0)$$

$$=P\Big(\sqrt{n}\Big(\overline{X}-\frac{1}{2}\Big)\leq -\frac{\sqrt{n}}{2}\Big)$$

$$=\Phi(-2)=0.0228$$

In this case, α and β are equal.

Example on α and β cont'd

In ideal test procedure, both α and β should be minimum (zero).

However, simultaneous minimization of both α and β is not possible.

Consider the modified test procedure for the same problem:

If
$$\overline{X} < -1/4$$
 then accept H_0 , and if $\overline{X} \ge -1/4$, reject H_0 .

$$A^* = (-\infty, -1/4), \quad R^* = [-1/4, \infty).$$

Example on α and β cont'd

$$\alpha^* = P(\text{Rejecting } H_0 \text{ when it is true})$$

$$= P_{\{\mu = -1/2\}}(\overline{X} \ge -1/4)$$

$$= P\left(\sqrt{n}\left(\overline{X} + \frac{1}{2}\right) \ge \sqrt{n}\left(-\frac{1}{4} + \frac{1}{2}\right)\right)$$

$$= P\left(Z \ge \frac{\sqrt{n}}{4}\right) = \Phi(-1) = 0.1586$$

Thus, $\alpha^* > \alpha$.

▶ Let us now calculate β^* .

$$eta^*=P(ext{Accepting } H_0 ext{ when it is false})=P_{\{\mu=1/2\}}(\overline{X}<-1/4)$$

$$=P(Z<-3)$$

$$=\Phi(-3)=0.0013$$

Thus, $\beta^* < \beta$.

Remark

- Thus, it can be seen that we have significantly reduced β but increased α .
- To deal with this, we try to fix an upper bound on one error and then find the test procedure for which the second probability is the minimum.
- \triangleright A standard convention is to fix α .

$$\alpha(\theta) = P_{\theta}(X \in R), \quad \theta \in \Theta_0$$

 $\sup \alpha(\theta) \le \alpha$ (1)

where α is known as the size of the test or level of significance.

Remark

Subject to condition (1), find the test procedure for which

$$\beta(\theta) = P_{\theta}(X \in A), \quad \theta \in \Theta_1 \tag{2}$$

is minimized (over $\theta \in \Theta_1$)

or

$$1 - \beta(\theta) = P_{\theta}(X \in R), \quad \theta \in \Theta_1$$
 (3)

is maximized, where $1 - \beta(\theta)$ is power function of the test.

Thanks for your patience!