RECITATION 2 ANALYSIS OF ALGORITHMS

2016 SPRING

Outline

- Problem 1 BFS Example
- Problem 2 BFS and Shortest Path Problem
- Problem 3 DFS Example
- Problem 4 Bipartite Graph Example
- Problem 5 Greedy Alg, Coffee Shop Problem

Graph Traversal

- Application examples
 - Given a graph representation and a vertex s in the graph
 - Find all paths from s to the other vertices
- Two common graph traversal algorithms
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Data Structures for DFS and BFS Implementation

What is the main data structures employed when implementing DFS and BFS?

✓ BFS → QUEUE (FIFO Queue can be used)

 We trace the graph layer by layer by considering all of the children of a node before starting to trace nodes further away

✓ DFS → STACK

- Algorithm considers the immediate unexplored children before considering the other children of a node while moving from parent node to child node.
- It goes deeper through the branches of the graph, before tracing other branches.

BFS Algorithm using Queue

```
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
    for each vertex v
        do flag[v] := false; // flag[]: visited or not
2.
3. Q = \text{empty queue}; Why use queue? Need FIFO
4. flag[s] := true;
5. enqueue(Q, s);
6. while Q is not empty
7.
       \mathbf{do} \ v := dequeue(Q);
8.
           for each w adjacent to v
               do if flag[w] = false
9.
10.
                     then flag[w] := true;
                           enqueue(Q, w)
11.
```

Problem 1 - BFS Example

Adjacency List

0	8			
1	3	7	9	2
2	8	1	4	
3	4	5	1	
1 2 3 4 5 6	2	3		
5	3	6		
6	7	5		
7	1	6		
8	2	0	9	
9	1	8		

Visited Table (T/F)

0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F
9	F

Initialize "visited" table (all False)

$$Q = \{ \}$$

Initialize **Q** to be empty

7

Adjacency List

Visited Table (T/F)

0	F
1	F
2	T
3	F
4	F
5	F
6	F
7	F
8	F
9	F

Flag that 2 has been visited

$$Q = \{ 2 \}$$

Place source 2 on the queue

 $Q = \{2\} \rightarrow \{8, 1, 4\}$

Dequeue 2. Place all unvisited neighbors of 2 on the queue

Mark newly visited neighbors 0, 9

$$\mathbf{Q} = \{ 8, 1, 4 \} \rightarrow \{ 1, 4, 0, 9 \}$$

Dequeue 8.

- -- Place all unvisited neighbors of 8 on the queue.
- -- Notice that 2 is not placed on the queue again, it has been visited!

Visited Table (T/F)

0	T
1	Т
2	Т
3	T
4	T
5	F
6	F
7	T
8	T
9	T

Mark newly visited neighbors 3, 7

$$\mathbf{Q} = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \}$$

Dequeue 1.

- -- Place all unvisited neighbors of 1 on the queue.
- -- Only nodes 3 and 7 haven't been visited yet.

$$\mathbf{Q} = \{4, 0, 9, 3, 7\} \rightarrow \{0, 9, 3, 7\}$$

Dequeue 4.

-- 4 has no unvisited neighbors!

$$\mathbf{Q} = \{0, 9, 3, 7\} \rightarrow \{9, 3, 7\}$$

Dequeue 0.

-- 0 has no unvisited neighbors!

$$Q = \{9, 3, 7\} \rightarrow \{3, 7\}$$

Dequeue 9.

-- 9 has no unvisited neighbors!

Adjacency List Visited Table (T/F)

Т
Т
Т
Т
Т
Т
F
Т
Т
Т

Mark new visited Vertex 5

$$Q = \{3, 7\} \rightarrow \{7, 5\}$$

Dequeue 3.

-- place neighbor 5 on the queue.

Visited Table (T/F)

0	Т
1	Т
2	Т
3	Т
4	Т
5	Т
6	Т
7	Т
8	Т
9	Т

Mark new visited Vertex 6

$$Q = \{7, 5\} \rightarrow \{5, 6\}$$

Dequeue 7.

-- place neighbor 6 on the queue

Visited Table (T/F)

1000	
0	T
1	T
2	Т
3	Т
4	Т
5	T
6	T
7	T
8	T
9	T

$$Q = \{5, 6\} \rightarrow \{6\}$$

Dequeue 5.

-- no unvisited neighbors of 5

$$Q = \{6\} \rightarrow \{\}$$

Dequeue 6.

-- no unvisited neighbors of 6

Q = { } STOP!!! Q is empty!!!

Adjacency List

Visited Table (T/F)

0	T
1	T
2	T
3	T
4	T
5	T
6	T
7	T
8	T
9	T

What did we discover?

Look at "visited" tables.

There exists a path from source vertex 2 to all vertices in the graph

Applications of BFS

What can we do with the BFS code we just discussed?

- Is there a path from source s to a vertex v?
 - Check flag[v].
- Is an undirected graph connected?
 - Scan array flag[].
 - If there exists flag[u] = false then ...
- Is a directed graph strongly connected?
 - Scan array flag[].
 - If there exists flag[u] = false then ...

Other Applications of BFS

- To find the shortest path from a vertex s to a vertex v in an unweighted graph
- To find the length of such a path
- To find out if a graph contains cycles
- To find the connected components of a graph that is not connected
- To construct a BSF tree/forest from a graph

Problem 2 - BFS and Shortest Path Problem

- Given any source vertex **s**, BFS visits the other vertices at increasing distances away from **s**. In doing so, BFS discovers shortest paths from **s** to the other vertices.
- What do we mean by "distance"? The number of edges on a path from s (unweighted graph)

Finding Shortest Paths Using BFS

- The BFS code we have seen
 - find outs if there exist a path from a vertex s to a vertex v
 - prints the vertices of a graph (connected/strongly connected).
- What if we want to find
 - the shortest path from s to a vertex v (or to every other vertex)?
 - the length of the shortest path from s to a vertex v?
- In addition to array flag[], use an array named prev[], one element per vertex.
 - prev[w] = v means that vertex w was visited right after v

Finding Shortest Paths Using BFS

```
Algorithm BFS(s)
    for each vertex v
2.
        do flag(v) := false;
                                              initialize
           pred[v] := -1;
3.
                                              all pred[v] to -1
4. Q = \text{empty queue};
5. flag[s] := true;
6. enqueue(Q, s);
7. while Q is not empty
8.
       do v := dequeue(Q); already got shortest path from s to v
           for each w adjacent to v
9.
10.
               do if flag[w] = false
11.
                     then flag[w] := true;
                                                record where you
                           pred[w] := v;
12.
                                                came from
                           enqueue(Q, w)
13.
```

Example

Adjacency List

Visited Table (T/F)

				10.5
0	Т		8	
1	Т		2	
2	Т		э.	
3	Т		1	
4	Т		2	
5	Т		3	
6	Т		7	
7	Т		1	
8	Т		2	
9	Т		8	
		p	rev	1

Q = { } STOP!!! Q is empty!!!

prev[] now can be traced backward
to report the path!

Example

```
for each w adjacent to v
  if flag[w] = false {
     flag[w] = true;
     prev[w] = v; // visited w right after v
     enqueue(w);
}
```

- To print the shortest path from s to a vertex u, start with prev[u] and backtrack until reaching the source s.
 - Running time of backtracking = ?
- To find the length of the shortest path from s to u, start with prev[u], backtrack and increment a counter until reaching s.
 - Running time = ?

Example of Path Reporting

nodes visited from

727-14	2000
0	8
1	2
2	
3	1
4	2
5	3
6	7
7	1
8	2
9	8

Try some examples; report path from s to v:

 $Path(2-0) \Rightarrow$

Path(2-6) \Rightarrow

Path(2-1) \Rightarrow

Apply DFS to the following graph

DFS Discovered Order= {A}
Stack={B,D,G}

DFS Discovered Order= {A,G}
Stack={B,D,E}

head

DFS Discovered Order= {A,G,E}
Stack={B,D,B}

DFS Discovered Order= {A,G,E,B}
Stack={B,D,F}

DFS Discovered Order= {A,G,E,B,F}
Stack={B,D,C,D}

DFS Discovered Order= {A,G,E,B,F, D}
Stack={B,D,C}

DFS Discovered Order= {A,G,E,B,F, D, C}
Stack={B,D,H}

DFS Discovered Order= {A,G,E,B,F, D, C, H}
Stack={}
head

What is a bipartite graph? Is the following graph

is bipartite?

 A bipartite graph is a graph whose vertices can be grouped into two groups such that all the edges are between these two vertex group and there is no edge within a group.

 What is a bipartite graph? Is the following graph is bipartite?

 If a graph can be two colored and there is no odd length cycles then the graph is bipartite.

- 4 and 7 has same color. So this graph is not bipartite.
- Also there many odd length cycles. One of them is (1,2,3)

Greedy Algorithm:

"An algorithm that builds a solution in small steps, choosing a decision at each step myopically [=locally, not considering what may happen ahead] to optimize some underlying criterion."

- Produces optimum solution for some problems.
 - Minimum spanning tree
 - Single-source shortest paths
 - Huffman trees
- Produces good aproximate solutions for some other problems.
 - NP-Complete problems such as graph coloring

Problem 5 - Coffee Shop

- You own a coffee shop that has n customers.
- It takes t_i minutes to prepare coffee for the i^{th} customer.
- i^{th} customer's value for you (i.e. how frequent s/he comes to your shop) is v_i
- If you start preparing coffee for the i^{th} customer at time S_i you finish at $f_i = S_i + t_i$
- All customers arrive at the same time.
- You can prepare one coffee at a time.
- There is no gap after you finish one coffee and start another.

Coffee Shop

You are asked to design an algorithm.

Input: n, t_i , V_i

Output: A schedule (i.e. ordering of customer requests)

Aim: Minimize wait time especially for valued customers

$$Minimize: \sum_{i=1}^{n} f_i * v_i$$

- What is the time complexity of your algorithm?
- Run your algorithm for a sample input.

Algorithm

```
input : t[], v[], n
1 for i \leftarrow 1 to n do
\mathbf{2} \quad | \quad \mathbf{w}[i,1] \leftarrow \mathbf{v}[i]/t[i];
                                           // weight of each custome:
w[i,2] \leftarrow i
4 sort(w, dec, 1);
5 t \leftarrow 0;
6 cost \leftarrow 0;
7 for j \leftarrow 1 to n do
        schedule[j] \leftarrow w[j, 2];
8
        f[j] \leftarrow t + t[schedule[j]];
        t \leftarrow f[j];
10
        cost \leftarrow cost + f[schedule[j]] * v[schedule[j]];
11
12 return schedule, f, cost
```

Complexity of the algorithm

- Both for loops take O(n) time.
- Complexity of the algorithm depends on sort method.
- Typically O(nlogn)

A sample input

Input:

- t1= 2, t2= 3, t3= 1
- V1 = 10, v2 = 2, v3 = 1

Output:

- Weights = 5, 0.67, 1
- Schedule: 1, 3, 2
- Finish times: 2, 3, 6
- Cost: 2*10 + 3*1 + 6*2 = 35