Tầng Mạng

Mục TIÊU

Thiết lập kết nối giữa 2 host để truyền dữ liệu

từ host - host

Application

Presentation

Session

Transport

Network

Data link

Physical

TẦNG MẠNG VS TẦNG VẬN CHUYỂN

- Tầng mạng: cung cấp kết nối logic giữa các host
- Tầng vận chuyến: cung cấp kết nối logic giữa các tiến trình
 - Dựa trên, mở rộng dịch vụ của tầng mạng

Ví dụ:

A gởi B 1 bức thư qua đường bưu điện

- processes = A, B
- o app messages = bức thư
- hosts = nhà của A, nhà của B
- transport protocol ???
- o network-layer protocol????

Nội dung

- Giới thiệu
- Định tuyến chuyển tiếp
- Giao thức IP
- Giao thức ICMP
- Giao thức NAT

NHẮC LẠI

GIỚI THIỆU - 1

- Thực hiện chuyển các segment từ host gởi đến host nhận
- Tại host gởi:
 - Nhận các segment từ transport layer
 - Đóng gói thành các packet
- o Tại host nhận:
 - Nhận các packet từ data link layer
 - Chuyển các segment lên transport layer
- o Tại các router:
 - Dựa vào thông tin đích đến để chuyển các packet đến host nhận
 - Định tuyến: quyết định gói tin đi đường nào
 - Chuyển tiếp: chuyển gói tin từ interface nhận ra interface gởi

GIỚI THIỆU - 2

- Tầng mạng cung cấp 2 loại dịch vụ
 - Hướng kết nối (Connection)
 - Virtual Circuit
 - o Trước khi truyền dữ liệu, 2 host phải thiết lập kết nối
 - Hướng không kết nối (Connectionless)
 - Datagram Network
 - Không cần thiết lập kết nối trước khi gởi
- Trong 1 kiến trúc mạng: chỉ hỗ trợ duy nhất 1 loại dịch vụ

VIRTUAL CIRCUIT (VC) NETWORK - 1

- o Thiết lập, quản lý, duy trì mỗi kết nối khi truyền dữ liệu
 - 1 đường đi ảo khi truyền dữ liệu
 - Số hiệu VC (VC number)
 - Khác nhau trên mỗi link
 - Mỗi gói tin có một virtual circuit identifier (VC ID)
 - Các router duy trì trạng thái kết nối đi qua
 - o bảng chuyển đổi VC ID
 - Thay thế thông tin VD ID của gói tin đi ngang qua router
- Thông tin định tuyến: Virtual Circuit number (VC ID)
- Dùng trong ATM, X.25, Frame-Relay,...

VIRTUAL CIRCUIT (VC) NETWORK - 2

VIRTUAL CIRCUIT NETWORK - 3

Cổng vào3	VC# vào	Cổng ra	VC# ra
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
			•••

Routers duy trì thông tin về trạng thái kết nối!

DATAGRAM NETWORK - 1

- Không thiết lập kết nối trước khi truyền dữ liệu
 - Router không cần quản lý trạng thái kết nối
- Thông tin định tuyến: địa chỉ đích đến
 - Mỗi router duy trì một bảng định tuyến
- Dùng trong Internet

DATAGRAM NETWORK - 2

Destination Network	Subnetmask	Out Interface	Nexthop
210.245.10.0	255.255.255.0	3	
210.245.15.0	255.255.255.0	1	
210.245.15.192	255.255.255.192	2	

Nội dung

- o Giới thiệu
- Định tuyến chuyển tiếp
- Giao thức IP
- Giao thức ICMP
- Giao thức NAT

ĐịNH TUYẾN - CHUYỂN TIẾP - 1

• Định tuyến:

- Quyết định "lộ trình" mà gói tin di chuyển từ host nguồn đến host đích đến
- Sử dụng thông tin toàn cục

o Chuyển tiếp:

- Di chuyển gói tin từ cổng vào đến cổng ra
- Sử dụng thông tin cục bộ

ĐịNH TUYẾN - CHUYỂN TIẾP - 2

Vạch ra lộ trình đi: NVCừ → NTMKhai

ĐịNH TUYẾN - 1

- Được thực hiện bởi các bộ định tuyến.
 - VD: router
- Dùng bảng định tuyến (routing/forwarding table)
 - destination/subnetmask
 - Out interface
 - next hop
 - chi phí
 - Hop count
 - Delay
 - Bandwidth
 - 0 ...

VÍ DỤ - ĐỊNH TUYẾN

Destination Network	Subnet mask	Nexthop	Out Interface
210.245.10.0	255.255.255.0	192.168.3.2	3
210.245.15.0	255.255.255.0	192.168.1.2	1
210.245.15.192	255.255.255.192	192.168.2.2	2

ĐịNH TUYẾN - 2

- Router định tuyến một gói tin như thế nào?
 - Dùng địa chỉ đích đến và bảng định tuyến
 - Thực hiện:
 - Tìm record thích hợp trong bảng định tuyến
 - Tính địa chỉ đường mạng giữa địa chỉ đích đến với subnetmask của từng record
 - So sánh destination network với địa chỉ đường mạng vừa tính
 - Gởi gói tin theo thông tin của record tìm được
- VD: R1 nhận gói tin có destination 210.245.10.5
 - 255.255.255.192
 - Net: 210.245.10.0 → không có record thoả
 - 255.255.255.0
 - o Net: 210.245.10.0 → record số 1 thoả
 - → gói tin chuyển ra interface số 3 và nơi nhận gói tin tiếp theo là 192.168.3.2

Bảng định tuyến

- Xây dựng bảng định tuyến:
 - Tĩnh (static): con người tự thiết lập
 - Động (dynamic): học
 - o Distance Vector:
 - o Gởi theo định kỳ
 - Gởi toàn bộ bảng định tuyến
 - VD: RIP, IGRP, ...
 - Link State:
 - Gởi khi có thay đổi
 - Gởi tình trạng kết nối
 - o VD: OSPF, ISIS, ...

STATIC ROUTE

- Biết: Sơ đồ mạng
- Xây dựng:
 - Vẽ "đường đi" tối ưu
- Khi có thay đổi:
 - Tự cập nhật bằng tay

DYNAMIC ROUTE

- Biết: không
- Xây dựng:
 - Sử dụng các giao thức định tuyến
 - o Thông qua các gói tin "thu thập" thông tin
 - o Thành phần:
 - Gởi và nhận thông tin từ các router khác
 - Tính đường đi tối ưu
 - Phản ứng khi có thay đổi
- Khi thay đổi
 - Cập nhật tự động

STATIC ROUTE - VÍ Dụ - 1

Yêu cầu: cấu hình thông tin định tuyến cho R1 và R2 để các máy trong LAN1 có thể liên lạc với các máy trong LAN2

Tại router R1:

Destination network	Out interface	Next hop
192.168.8.0/24	172.29.50.7	172.29.50.8

Tại router R2:

Destination network	Out interface	Next hop
192.168.7.0/24	172.29.50.8	172.29.50.7

STATIC ROUTE - VÍ DỤ 2

Yêu cầu: cấu hình thông tin định tuyến cho các router để tất cả các máy trong có thể liên lạc với nhau và có thể truy cập Internet

STATIC ROUTE – VÍ DỤ 2

Tại router R1:

Destination network	Out interface	Next hop
172.29.90.0/24	E1	172.29.60.2
172.29.80.0/24	E1	172.29.60.3
172.29.50.0/24	E1	172.29.60.4
0.0.0.0	E1	172.29.60.5

Tại router R2:

Destination network	Out interface	Next hop
172.29.70.0/24	E1	172.29.60.1
172.29.80.0/24	E1	172.29.60.3
172.29.50.0/24	E1	172.29.60.4
0.0.0.0	E1	172.29.60.5

R1: N3, **N4** – 0 hop

R2		
N2, N4	0 hop	
N3	1 hop	

R1		
N3, N4	0 hop	
N2	1 hop	
N1 2 hops		

R3		
N1, N2	0 hop	
N4	1 hop	
N3	2 hops	

Yêu cầu: cấu hình thông tin định tuyến cho các router để tất cả các máy trong có thể liên lạc với nhau và có thể truy cập Internet

```
Rl#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - RIGRP, EX - RIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.29.0.0/24 is subnetted, 5 subnets
        172.29.50.0 [110/2] via 172.29.60.4, 00:00:15, FastEthernet0/0
0
        172.29.60.0 is directly connected, FastEthernet0/0
C
       172.29.70.0 is directly connected, FastEthernetO/1
0
       172.29.80.0 [110/2] via 172.29.60.3, 00:00:15, FastEthernet0/0
Π
       172.29.90.0 [110/2] via 172.29.60.2, 00:00:46, FastEthernet0/0
```

Nội dung

- o Giới thiệu
- Định tuyến chuyển tiếp
- Giao thức IP
- Giao thức ICMP
- Giao thức NAT

- Giao thức được định tuyến (routed protocol):
 - qui định cách thức đóng gói dữ liệu truyền trên đường truyền
 - VD: IP (IPv4, IPv6), IPSec,...

Routing protocol	Routed protocol
Tạo bảng định tuyến	Đóng gói gói tin tại tầng mạng

IP protocol version number header length (bytes) "type" of data

max number remaining hops (decremented at each router)

upper layer protocol to deliver payload to

- Version (4)
 - version của IP
- Header Length (4):
 - Chiều dài IP header (byte)
- Type of service (8)
 - Chứa định thông tin ưu tiên
 - Ít sử dụng
- Total length (16)
 - Tổng chiều dài của datagram (tính cả header) (byte)
- o Identifier (16):
 - Khi một gói tin IP bị chia nhỏ ra thành nhiều đoạn, thì mỗi đoạn được gán cùng số ID
 - Dùng khi tổng hợp

• Flag (3)

- DF
 - Don't fragment, không chia nhỏ
- MF
 - More fragment, còn gói tin nhỏ tiếp
 - Khi 1 gói tin bị chia nhỏ, tất cả các gói nhỏ (trừ gói tin cuối cùng), bit này được bật lên
- Fragment offset (13)
 - Vị trí gói nhỏ trong gói tin ban đầu
- Time to live TTL (8)
 - Thời gian sống của gói tin (hop count)
 - Giảm mỗi khi gói tin đến 1 router mới
 - Khi hop count =0 thì gói tin bị loại bỏ

- Protocol (8)
 - Chỉ ra nghi thức nào ở tầng transport mà gói tin đang sử dụng
 - VD: TCP = 6, UDP = 17
- Internet (Header) checksum (16)
 - Kiểm tra tính đúng đắn nội dung của IP header
 - Không theo cách kiểm tra tuần tự
- Source and destination addr (32)
 - Địa chỉ IP của bên gửi và bên nhận
- Options (32)
 - Có thể dài đến 40 bytes
 - Dùng cho các tính năng mở rộng của IP
 - Vd: source routing, security, record route, ...
- o Data:
 - Dữ liệu ở tầng transport gởi xuống

Nội dung

- o Giới thiệu
- o Định tuyến chuyển tiếp
- o Giao thức IP
- Giao thức ICMP
- NAT

GIAO THỨC ICMP

- ICMP (Internet Control Message Protocol)
- Được sử dụng bởi các host và router để trao đổi thông tin ở tầng mạng
 - Báo lỗi:
 - Mang, host, protocol, port ... không vươn đến được
 - Báo mạng bị tắt nghên
 - Báo timeout
 - Echo request/reply (ping)

GÓI TIN ICMP

Thông điệp ICMP được đóng gói trong gói tin IP

Protocol = 1

IP header

Source, Destination Address, TTL, ...

ICMP MSG

Message type, Code, Checksum, Data

CÂU TRÚC THÔNG ĐIỆP ICMP - 1

CÁU TRÚC THÔNG ĐIỆP ICMP - 2

ICMP Type	Code	Description
0	0	echo reply
3	0	destination network unreachable
3	1	destination host unreachable
3	2	destination protocol unreachable
3	3	destination port unreachable
3	6	destination network unknown
3	7	destination host unknown
4	0	source quench (congestion control)
8	0	echo request
9	0	router advertisement
10	0	router discovery
11	0	TTL expired
12	0	IP header bad

CÂU TRÚC THÔNG ĐIỆP ICMP - 3

- o Không đến được đích:
 - Nguyên nhân: liên kết mạng bị đứt, đích đến không tìm thấy, ...
 - Type = 3
 - Code:
 - 0: unreachable network
 - 1: unreachable host
 - 2: unreachable protocol
 - 3: unreachable port
 - 4: không được phép fragment
 - 5:source route bị sai

CÂU TRÚC THÔNG ĐIỆP ICMP - 4

- o Quá hạn:
 - Nguyên nhân:
 - o TTL = 0 trước khi đến đích
 - Quá hạn thời gian tái lắp ghép các fragment
 - Type = 11
 - Code:
 - o 0: TTL
 - o 1: hết thời gian tái lắp ghép

GIAO THỨC ICMP

- Các trường hợp GỚI ICMP msg:
 - Datagram không đạt đến đích
 - Time out
 - Error xuất hiện trong header
 - Router/host bị tắt nghên
- Oác trường hợp KHÔNG gởi ICMP msg:
 - Bản thân ICMP msg có lỗi
 - Broadcast, multicast (gói DL định tuyến)
 - Những fragment khác với fragment đầu tiên

Nội dung

- o Giới thiệu
- o Định tuyến chuyển tiếp
- o Giao thức IP
- o Giao thức ICMP
- NAT

NHẮC LẠI

- Địa chỉ IP:
 - Kích thước: 32 bits → không gian: 2³² địa chỉ
 - o 0.x.x.x/8, 127.0.0.0/8, lớp D, lớp E; không dùng
 - Số lượng node trên Internet "khổng lồ"
 - → Giải quyết:
 - o dùng địa chỉ private trong mạng LAN
 - Dùng địa chỉ public khi giao tiếp bên ngoài Internet
- Gởi dữ liệu giữa 2 host
 - Địa chỉ host gởi
 - Địa chỉ host nhận

NAT – GIỚI THIỆU

- NAT = Network Address Translation
- o RFC 1631, 1918, 2663
- Chức năng: "thay đổi" địa chỉ
 - Incoming: thay đổi thông tin đích đến
 - Outgoing: thay đổi thông tin nguồn

NAT – THUẬT NGỮ

NAT – BẢNG CHUYỂN ĐỔI ĐỊA CHỈ

- Dùng chuyển đổi global <-> local
 - Thông tin cục bộ bên trong (Inside local)
 - Thông tin toàn cục bên trong (Inside global)
- Thông tin trong bảng chuyển đổi
 - Static
 - dynamic

NAT - PHÂN LOẠI

- Static
 - Cố định: 1 local IP ⇔ 1 global IP
- Dynamic
 - n local IP ⇔ m global IP
 - NAT: chọn 1 global IP còn rảnh để NAT
- Overloading
 - n local IP ⇔ 1 global IP
 - NAT: <local IP, local port> ⇔ <global IP, global port>
- Overlapping
 - Cố định: <local IP, port> ⇔ <global IP, port>

- Thứ tự gởi các gói tin như sau:
 - Máy 10.0.0.1 gởi 1 gói tin đến 128.119.40.186, 80 từ ứng dụng 3345
 - Úng dụng <128.119.40.186, 80> gởi lại gói tin phản hồi
 - Máy 10.0.0.3 gởi 1 gói tin đến 158.19.20.16, 80 từ ứng dụng 1234
 - Úng dụng <120.11.40.18, 3345> gởi gói tin truy cập dịch vụ web tại máy 10.0.0.1

STATIC NAT

- Cấu hình cố định: 1 local IP ⇔ 1 global IP
 - Số máy kết nối ra ngoài bằng với số địa chỉ IP global
 - Bên ngoài (outside) có thể chủ động tạo kết nối với bên trong (inside)

Global	Local
138.76.29.7	10.0.0.1

DYNAMIC NAT

- Cấu hình: n local IP ⇔ m global IP
 - Có m kết nối đồng thời
 - Bên ngoài (outside) không thể chủ động tạo kết nối với bên trong (inside)
- Ví dụ: 10.0.0.0/24 ⇒ 138.76.29.7 và 138.76.29.8

OVERLOADING NAT

- Cấu hình: n local IP ⇔ 1 global IP
 - NAT: <local IP, local port> ⇔ <global IP, global port>
 - Có n kết nối đồng thời
 - Bên ngoài (outside) không thể chủ động tạo kết nối với bên trong (inside)

OVERLAPING NAT

- Cấu hình cổ định: <local IP, port> ⇔ <global IP, port>
 - Bên ngoài (outside) có thể chủ động tạo kết nối với bên trong (inside)
 - Dùng để publish một dịch vụ ra ngoài

NAT – MÔ TẢ BÀI TOÁN

192.168.1.0/24

Yêu cầu:

- Các máy tính trong LAN: 192.168.1.0/24 có thể truy cập ra ngoài bằng IP: 172.29.1.1
- Bên ngoài có thể truy cập dịch vụ FTP trên máy 192.168.3.253

NAT – CÁU HÌNH TRÊN WINS 2K3

Chọn card public và private

Private: 192.168.1.1

Public: 172.29.1.1

Chọn dịch vụ để publish (nếu có): Web

Local IP: 192.168.1.253

Incoming port: 80

Outcoming port: 80

TÀI LIỆU THAM KHẢO

 Slide của J.F Kurose and K.W. Ross về Computer Networking: A Top Down Approach