# I/O Registers in AVR

# I/O Registers

 Special purpose registers for Input and Output in AVR.

> **Program Memory Data Memory** 16-bits 8-bits \$000 .\$000 32 General Purpose Registers Flash \$01F \$020 4K x 16 64 1/0 Registers **Application Flash Section** \$05F \$060 SRAM 512 x 8 **Boot Flash Section** SFFF



# Address and Function of I/O registers

| Address     | Hex Name | Function                               |
|-------------|----------|----------------------------------------|
| \$3F (\$5F) | SREG     | Status Register                        |
| \$3E (\$5E) | SPH      | Stack Pointer High                     |
| \$3D (\$5D) | SPL      | Stack Pointer Low                      |
| \$3B (\$5B) | GIMSK    | General Interrupt MaSK Register        |
| \$3A (\$5A) | GIFR     | General Interrupt Flag Register        |
| \$39 (\$59) | TIMSK    | Timer/Counter Interrupt MaSK Register  |
| \$38 (\$58) | TIFR     | Timer/Counter Interrupt Flag Register  |
| \$35 (\$55) | MCUCR    | MCU general Control Register           |
| \$33 (\$53) | TCCR0    | Timer/Counter 0 Control Register       |
| \$32 (\$52) | TCNT0    | Timer/Counter 0 (8-bit)                |
| \$2F (\$4F) | TCCR1A   | Timer/Counter 1 Control Register A     |
| \$2E (\$4E) | TCCR1B   | Timer/Counter 1 Control Register B     |
| \$2D (\$4D) | TCNT1H   | Timer/Counter 1 High Byte              |
| \$2C (\$4C) | TCNT1L   | Timer/Counter 1 Low Byte               |
| \$2B (\$4B) | OCR1AH   | Output Compare Register A High Byte    |
| \$2A (\$4A) | OCR1AL   | Output Compare Register A Low Byte     |
| \$29 (\$49) | OCR1AH   | Output Compare Register B High Byte    |
| \$28 (\$48) | OCR1AL   | Output Compare Register B Low Byte     |
| \$25 (\$45) | ICR1H    | T/C 1 Input Capture Register High Byte |
| \$24 (\$44) | ICR1L    | T/C 1 Input Capture Register Low Byte  |
| \$21 (\$41) | WDTCR    | Watchdog Timer Control Register        |

# Address and Function of I/O registers

| Address          | Hex Name  | Function                                      |
|------------------|-----------|-----------------------------------------------|
| \$1B (\$38)      | PORTA     | Data Register, Port A                         |
| \$1A (\$3A)      | DDRA      | Data Direction Register, Port A               |
| \$19 (\$39)      | PINA      | Input Pins, Port A                            |
| \$18 (\$38)      | PORTB     | Data Register, Port B                         |
| \$17 (\$37)      | DDRB      | Data Direction Register, Port B               |
| \$16 (\$36)      | PINB      | Input Pins, Port B                            |
| \$15 (\$35)      | PORTC     | Data Register, Port C                         |
| \$14 (\$34)      | DDRC      | Data Direction Register, Port C               |
| \$13 (\$33)      | PINC      | Input Pins, Port C                            |
| \$12 (\$32)      | PORTD     | Data Register, Port D                         |
| \$11 (\$31) DDRD | Data Dire | ection Register, Port D                       |
| \$10 (\$30)      | PIND      | Input Pins, Port D                            |
| \$0F (\$2F)      | SPDR      | SPI I/O Data Register                         |
| \$0E (\$2E)      | SPSR      | SPI I/O Status Register                       |
| \$0D (\$2D)      | SPCR      | SPI I/O Control Register                      |
| \$0C (\$2C)      | UDR       | UART I/O Data Register                        |
| \$0B (\$2B)      | USR       | UART Status Register                          |
| \$0A (\$2A)      | UCR       | UART Control Register                         |
| \$09 (\$29)      | UBRR      | UART Baud Rate Register                       |
| \$08 (\$28)      | ACSR      | Analog Comparator Control and Status Register |
|                  |           |                                               |

<sup>\*</sup>Deskripsi lebih lengkap baca AVR IO Registers Application Note!

# Instructions for I/O

- P: I/O Register
- Data Transfer:

```
    IN Rd, P ; Rd ← P
    OUT P, Rs ; P ← Rs
```

## Bit Operation:

```
SBI P, b ; P(b) ← 1, Bit # b of register P is set to "1"
CBI P, b ; P(b) ← 0, Bit # b of register P is set to "0"
```

## Special:

```
SEI ; Global Interrupt enableCLI ; Global Interrupt disable
```

### IN - Load an I/O Location to Register

#### Description:

Loads data from the I/O Space (Ports, Timers, Configuration Registers etc.) into register Rd in the Register File.

Operation:

(i)  $Rd \leftarrow I/O(A)$ 

Syntax:

Operands:

**Program Counter:** 

(i) IN Rd,A

 $0 \leq d \leq 31,~0 \leq A \leq 63$ 

 $PC \leftarrow PC + 1$ 

#### 16-bit Opcode:

| 1011 | 0AAd | dddd | AAAA |
|------|------|------|------|

### OUT – Store Register to I/O Location

#### Description:

Stores data from register Rr in the Register File to I/O Space (Ports, Timers, Configuration Registers etc.).

Operation:

(i) I/O(A) ← Rr

Syntax: Operands:

**Program Counter:** 

(i) OUT A,Rr

 $0 \le r \le 31, \, 0 \le A \le 63$ 

 $PC \leftarrow PC + 1$ 

16-bit Opcode:

| 1011 | 1AAr | rrrr | AAAA |
|------|------|------|------|

#### SBI - Set Bit in I/O Register

#### Description:

Sets a specified bit in an I/O Register. This instruction operates on the lower 32 I/O Registers - addresses 0-31.

Operation:

(i) I/O(A,b) ← 1

Syntax:

Operands:

**Program Counter:** 

(i) SBI A,b

 $0 \le A \le 31, 0 \le b \le 7$ 

 $PC \leftarrow PC + 1$ 

16-bit Opcode:

| 1001 | 1010 | AAAA | Abbb |
|------|------|------|------|

#### Status Register (SREG) and Boolean Formula:

| - 1 | Т | Н | S | V | N | Z | С |
|-----|---|---|---|---|---|---|---|
| -   | - | - | - | - | 1 | - | - |

#### Example:

```
out $1E,r0 ; Write EEPROM address
sbi $1C,0 ; Set read bit in EECR
in r1,$1D ; Read EEPROM data
```

### CBI – Clear Bit in I/O Register

#### Description:

Clears a specified bit in an I/O Register. This instruction operates on the lower 32 I/O Registers - addresses 0-31.

Operation:

(i)  $I/O(A,b) \leftarrow 0$ 

Syntax:

Operands:

**Program Counter:** 

(i) CBI A,b

 $0 \le A \le 31, 0 \le b \le 7$ 

 $PC \leftarrow PC + 1$ 

16-bit Opcode:

| 1001 | 1000 | AAAA | Abbb |
|------|------|------|------|

#### Status Register (SREG) and Boolean Formula:

| - 1 | T | Н | S | V | N | Z | С |
|-----|---|---|---|---|---|---|---|
| -   | _ | - | _ | - | _ | - | - |

#### Example:

cbi \$12,

\$12,7 ; Clear bit 7 in Port D

#### SEI - Set Global Interrupt Flag

#### Description:

Sets the Global Interrupt Flag (I) in SREG (Status Register). The instruction following SEI will be executed before any pending interrupts.

Operation:

(i) I ← 1

Syntax: Operands:

**Program Counter:** 

(i) SEI

None

 $PC \leftarrow PC + 1$ 

16-bit Opcode:

| 1001 | 0100 | 0111 | 1000 |
|------|------|------|------|

#### Status Register (SREG) and Boolean Formula:



I: 1

Global Interrupt Flag set

#### Example:

### CLI - Clear Global Interrupt Flag

#### Description:

Clears the Global Interrupt Flag (I) in SREG (Status Register). The interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction.

Operation:

(i) I ← 0

Syntax: Operands: Program Counter: (i) CLI None  $PC \leftarrow PC + 1$ 

16-bit Opcode:

#### Status Register (SREG) and Boolean Formula:



I: 0
Global Interrupt Flag cleared

#### Example:

```
in temp, SREG; Store SREG value (temp must be defined by user)

cli ; Disable interrupts during timed sequence

sbi EECR, EEMWE; Start EEPROM write

sbi EECR, EEWE

out SREG, temp; Restore SREG value (I-Flag)
```

# I/O Ports

Port is used to connect CPU with external

components.

## .include "m8515def.inc"

EECR =\$1c equ equ PORTA =\$1b DDRA =\$1a .equ PINA =\$19 equ PORTB =\$18 .equ DDRB =\$17 equ PINB =\$16 equ PORTC =\$15 .equ DDRC =\$14 .equ PINC =\$13 .equ PORTD =\$12 .equ DDRD =\$11 equ PIND =\$10 .equ



Each port has three I/O registers associated with it.



DDRx = Data Direction Register

PORTx = Data Register

PINx = Port Input Pins

- I/O Registers are 8-bit wide
- Each port has a maximum of 8 pins
- Relations between the Registers and the Pins of AVR



- Any port can be used as an input or output port
- DDRx I/O register is used to make a given port as an input or output port
  - Input : bit DDR o
  - Output: bit DDR 1

| Bit No.       | 7   | 6   | 5          | 4   | 3   | 2        | 1   | O   |
|---------------|-----|-----|------------|-----|-----|----------|-----|-----|
| Name          | Рх7 | Px6 | Px5        | Px4 | Px3 | Px2      | Px1 | Pxo |
| Initial Value | 0   | 0   | 0          | 0   | 0   | 0        | 0   | 0   |
|               |     |     | <u> </u>   |     |     | Y        |     |     |
|               |     | Hig | gher Nible |     |     | Lower Ni | ble |     |







- For example:
  - To make all Port A pins as input port:
    - DDRA = obooooooo
  - To make all Port B pins as output port:
    - DDRB = ob11111111
  - To make lower nibble pins of Port A as output and higher nible pins as input:
    - DDRA = oboooo1111;

```
LDI R16, oxFF ; R16 = oxFF = ob 11111111
OUT DDRB, R16 ; make Port B an output port
LDI R16, ox55 ; R16 = ox55 = ob 01010101
OUT PORTB, R16 ; put ox55 on port B pins
```

It must be noted that unless we set the DDRx bits to one, the data will not go from the port register to the pins of AVR. If we remove the first two lines of the above code, the ox55 value will not get to the pins. It will be sitting in the I/O register of Port B inside the CPU