

Agenda

- Welcome
- NERSC Updates/Housekeeping
- Cuda C/C++ (Part 1)
 - Introduction to Heterogeneous Parallel Computing
 - Portability and Scalability in Heterogeneous Parallel Computing
 - CUDA C vs. CUDA Libs vs. OpenACC
 - Memory Allocation and Data Movement API Functions
- Questions & Open Discussion

User Engagement Group - Our People

Rebecca Hartman-Baker **UEG Group Lead**

Kevin Gott

Lipi Gupta

Lisa Claus

Liz Ball

Margie Wylie

Helen He

Charles Lively

Kelly Rowland

Annette Greiner

NERSC User Group (NUG)

- Community of NERSC users
- Source of advice and feedback for NERSC (we listen!)
- Regular teleconferences hosted by NERSC
- Join the NUG Slack:

 https://www.nersc.gov/users/user-news/join-the-nersc-users-slack-sponsored-by-nug-today

NERSC User Training

- NERSC provides a robust training program for users of all skill levels, interests, and personas
 - All trainings are recorded, professionally captioned, & posted to <u>NERSC YouTube channel</u>
 - Slides posted to training event webpage
- For more information on upcoming and past events, see https://www.nersc.gov/users/training/events/
- Training Events Archive
 - includes collection of previous archived training events

Some Logistics

- In-person attendees please also join Zoom for full participation
- Please change your name in Zoom session
 - to: first_name last_name
 - Click "Participants", then "More" next to your name to rename
- Click the CC button to toggle captions and View Full Transcript
- Session is being recorded
- Users are muted upon joining Zoom
 - Feel free to unmute and ask questions or ask in GDoc below
- GDoc is used for Q&A (instead of Zoom chat)
 - https://tinyurl.com/2m3vn85u
- Please answering a short survey afterward
 - https://forms.gle/bdpRddkZiDxtMMYr8

Some Logistics

- Slides and videos will be available on NERSC Training Event page
 - https://www.nersc.gov/nug-community-calls/nug-community-call-a-birds-e
 ye-view-of-using-cuda-with-cc-on-perlmutter-part-1
- Encourage to attend Perlmutter Office Hours, Jun-Aug 2025
 - https://www.nersc.gov/perlmutter-office-hours-2025
 - Weekly, on different weekdays, 1.5 hrs

Hands-on Exercises on Perlmutter

ssh <user>@perlmutter.nersc.gov, land on login node:

- % cd \$SCRATCH
- % git clone https://github.com/NERSC/NUG-CUDA-C-2025
- References
 - Running Jobs: https://docs.nersc.gov/jobs/
 - Interactive Jobs: https://docs.nersc.gov/jobs/interactive/

Using Perlmutter Compute Node Reservations

- Existing NERSC users (at time of registration) have been added to "trn017" project
- Account in trn012 is valid through June 30
- Perlmutter node reservations: 10:30 am 4:30 pm PDT today
 - --reservation=nug_cuda_c -A trn017 -C gpu for sbatch or salloc sessions
 - No need to use --reservation or -A when outside of the reservation hours

Heterogeneous Computing Objectives

- To learn the major differences between latency devices (CPU cores) and throughput devices (GPU cores)
- To understand why winning applications increasingly use both types of devices

Heterogeneous Parallel Computing

Use the best match for the job (heterogeneity in mobile SOC)

CPU and GPU are designed very differently

CPUs: Latency Oriented Design

GPUs: Throughput Oriented Design

- Small caches
 - To boost memory throughput
- Simple control
 - No branch prediction
 - No data forwarding
 - Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies
 - Threading logic
 - Thread state

Winning Applications Use Both CPU and GPU

- CPUs for sequential parts where latency matters
 - CPUs can be 10X+ faster than GPUs for sequential code

- GPUs for parallel parts where throughput wins
 - GPUs can be 10X+ faster than CPUs for parallel code

Heterogeneous Parallel Computing in Many Disciplines

Data **Engineering Medical** Scientific **Financial** Intensive **Imaging Simulation Simulation Analysis Analytics Electronic** Biomedical **Digital Video** Computer **Digital Audio** Design Vision **Informatics Processing Processing** Automation **Statistical Numerical** Modeling Methods **Ray Tracing** Interactive Rendering **Physics**

Scalability and Portability

Objectives

To understand the importance and nature of scalability and portability in parallel programming

Software Dominates System Cost

• SW lines per chip increases at 2x/10 months

• HW gates per chip increases at 2x/18 months

• Future systems must minimize software redevelopment

Scalability

- Scalability
 - The same application runs efficiently on new generations of cores

- Scalability
 - The same application runs efficiently on new generations of cores
 - The same application runs efficiently on more of the same cores

More on Scalability

- Performance growth with HW generations
 - Increasing number of compute units (cores)
 - Increasing number of threads
 - Increasing vector length
 - Increasing pipeline depth
 - Increasing DRAM burst size
 - Increasing number of DRAM channels
 - Increasing data movement latency

The programming style we use in this course supports scalability through fine-grained problem decomposition and dynamic thread scheduling

- Scalability
- Portability
 - The same application runs efficiently on different types of cores

- Scalability
- Portability
 - The same application runs efficiently on different types of cores
 - The same application runs efficiently on systems with different organizations and interfaces

More on Portability

- Portability across many different HW types
 - Across ISAs (Instruction Set Architectures) X86 vs. ARM, etc.
 - Latency oriented CPUs vs. throughput oriented GPUs
 - Across parallelism models VLIW vs. SIMD vs. threading
 - Across memory models Shared memory vs. distributed memory

NERSC Hardware

NERSC system roadmap

2020

NERSC-8: Cori Manycore CPU architectures NERSC-9: Perlmutter CPU and GPU nodes Expanded Simulation, Learning & Data **NERSC-10: Doudna**

GPU nodes
Accelerating
end-to-end
workflows

2030+

2026

2016

Increasingly energy-efficient architectures

We name our systems after scientists

- Saul Perlmutter shared the 2011
 Nobel Prize in Physics for discovery
 of the accelerating expansion of the
 universe.
- Supernova Cosmology Project, lead by Perlmutter, was a pioneer in using NERSC supercomputers combine large scale simulations with experimental data analysis
- Login "saul.nersc.gov"

CPU nodes

GPU nodes

CPU nodes

Nodes are combined into "blades"

GPU nodes

CPU nodes

Nodes are combined into "blades"

Stack blades sideways into server racks

GPU nodes

CPU nodes

Nodes are combined into "blades"

Compute racks
64 blades

GPU nodes

CPU nodes

Nodes are combined into "blades"

Compute racks
64 blades

Introduction to CUDA C

Objectives

- To learn the main venues and developer resources for GPU computing
 - Where CUDA C fits in the big picture

3 Ways to Accelerate Applications

Applications

Libraries

Compiler Directives

Programming Languages

Libraries: Easy, High-Quality Acceleration

- Ease of use: Using libraries enables GPU acceleration without in-depth knowledge of GPU programming
- "Drop-in": Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes
- Quality: Libraries offer high-quality implementations of functions encountered in a broad range of applications

NVIDIA GPU Accelerated Libraries

DEEP LEARNING

LINEAR ALGEBRA

SIGNAL, IMAGE, VIDEO

PARALLEL ALGORITHMS

Vector Addition in Thrust

```
#include <thrust/device vector.h>
#include <thrust/copy.h>
int main(void) {
 size t inputLength = 500;
 thrust::host vector<float> hostInput1(inputLength);
 thrust::host vector<float> hostInput2(inputLength);
 thrust::device vector<float> deviceInput1(inputLength);
 thrust::device vector<float> deviceInput2(inputLength);
 thrust::device vector<float> deviceOutput(inputLength);
 thrust::copy(hostInput1.begin(), hostInput1.end(), deviceInput1.begin());
 thrust::copy(hostInput2.begin(), hostInput2.end(), deviceInput2.begin());
 thrust::transform(deviceInput1.begin(), deviceInput1.end(),
                  deviceInput2.begin(), deviceOutput.begin(),
                  thrust::plus<float>());
```

Compiler Directives: Easy, Portable Acceleration

- Ease of use: Compiler takes care of details of parallelism management and data movement
- Portable: The code is generic, not specific to any type of hardware and can be deployed into multiple languages
- Uncertain: Performance of code can vary across compiler versions

OpenACC

Compiler directives for C, C++, and FORTRAN

```
#pragma acc parallel loop
copyin(input1[0:inputLength],input2[0:inputLength]),
copyout(output[0:inputLength])
  for(i = 0; i < inputLength; ++i) {
     output[i] = input1[i] + input2[i];
}</pre>
```

Programming Languages: Most Performance and Flexible Acceleration

- Performance: Programmer has best control of parallelism and data movement
- Flexible: The computation does not need to fit into a limited set of library patterns or directive types
- Verbose: The programmer often needs to express more details

GPU Programming Languages

CUDA - C

Applications

Libraries

Compiler Directives

Programming Languages

Easy to use Most Performance Easy to use Portable code

Most Performance
Most Flexibility

CUDA C API Functions

Objectives

- To learn the basic API functions in CUDA host code
 - Device Memory Allocation
 - Host-Device Data Transfer

Data Parallelism - Vector Addition Example

Vector Addition – Traditional C Code

```
// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
    int i;
    for (i = 0; i < n; i++) h C[i] = h A[i] + h B[i];
int main()
    // Memory allocation for h A, h B, and h C
    // I/O to read h A and h B, N elements
    (h A, h B, h C, N);
```

Heterogeneous Computing vecAdd CUDA Host Code

Part 1


```
#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
  int size = n* sizeof(float);
 float *d_A, *d_B, *d_C;
 // Part 1
 // Allocate device memory for A, B, and C
 // copy A and B to device memory
 // Part 2
 // Kernel launch code – the device performs the actual vector addition
 // Part 3
        // copy C from the device memory
```


- Device code can:
 - R/W per-thread registers
 - R/W all-shared global memory
 - Host code can
 - Transfer data to/from per grid global memory

We will cover more memory types and more sophisticated memory models later.

CUDA Device Memory Management API functions

– cudaMalloc()

- Allocates an object in the device global memory
- Two parameters
 - Address of a pointer to the allocated object
 - Size of allocated object in terms of bytes
- cudaFree()
 - Frees object from device global memory
 - One parameter
 - Pointer to freed object

Host-Device Data Transfer API functions

– cudaMemcpy()

- memory data transfer
- Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
- Transfer to device is synchronous with respect to the host

Vector Addition, Explicit Memory Management

```
... Allocate h_A, h_B, h_C ...
```

```
void vecAdd(float *h A, float *h B, float *h C, int n)
  int size = n * sizeof(float); float *d A, *d B, *d C;
  cudaMalloc((void **) &d A, size);
  cudaMalloc((void **) &d B, size);
  cudaMalloc((void **) &d C, size);
  cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
  cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);
    Kernel invocation code – to be shown later
  cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);
  cudaFree(d A); cudaFree(d B); cudaFree (d C);
.. Free h A, h B, h C ...
```


Device Memory

Host Memory

Unified Memory

- cudaMallocManaged(void** ptr, size t size)
 - Single memory space for all CPUs/GPUs
 - Maintain single copy of data
 - CUDA-managed data
 - On-demand page migration
 - Compatible with cudaMalloc(), cudaFree()
 - Can be optimized
 - cudaMemAdvise(),cudaMemPrefetchAsync(),
 - cudaMemcpyAsync()

Vector Addition, Unified Memory

```
float *A, *B, *C
cudaMallocManaged(&A, n * sizeof(float));
cudaMallocManaged(&B, n * sizeof(float));
cudaMallocManaged(&C, n * sizeof(float));
// Initialize A, B
void vecAdd(float *A, float *B, float *C, int n)
// Kernel invocation code – to be shown later
cudaFree(A);
cudaFree(B);
cudaFree(C);
```


In Practice, Check for API Errors in Host Code

cudaError_t err = cudaMalloc((void **) &d_A, size);

```
if (err != cudaSuccess) {
    printf("%s in %s at line %d\n", cudaGetErrorString(err), __FILE__,
    __LINE__);
    exit(EXIT_FAILURE);
}
```

Objective

- To learn about CUDA threads, the main mechanism for exploiting of data parallelism
 - Hierarchical thread organization
 - Launching parallel execution
 - Thread index to data index mapping

Data Parallelism - Vector Addition Example

CUDA Execution Model

- Heterogeneous host (CPU) + device (GPU) application C program
 - Serial parts in host C code
 - Parallel parts in device SPMD kernel code

From Natural Language to Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

A program at the ISA level

- A program is a set of instructions stored in memory that can be read, interpreted, and executed
 - Both CPUs and GPUs are designed based on (different) instruction sets
- Program instructions operate on data stored in memory and/or registers.

A Thread as a Von-Neumann Processor

A thread is a "virtualized" or "abstracted" Von-Neumann Processor

Arrays of Parallel Threads

- A CUDA kernel is executed by a grid (array) of threads
 - All threads in a grid run the same kernel code (Single Program Multiple Data)
 - Each thread has indexes that it uses to compute memory addresses and make control decisions

Thread Blocks: Scalable Cooperation

- Divide thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks do not interact

blockldx and threadldx

Each thread uses indices to decide what data to work on

blockldx: 1D, 2D, or 3D (CUDA 4.0)

threadIdx: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - ...

Unified Memory in CUDA

Objectives

- -To learn the basic API functions in CUDA host code for CUDA Unified Memory
 - Unified Memory Allocation
 - Data Transfer in Unified Memory

CUDA Unified Memory (UM)

- •Is a single memory address space accessible both from the host and from the device.
- •The hardware/software handles automatically the data migration between the host and the device maintaining consistency between them.

Unified Memory

- Device code can:
 - R/W per-thread registers
 - R/W all-shared global memory
 - R/W managed memory (Unified Memory)
- Host code can
 - Transfer data to/from per grid global memory
 - R/W managed memory

cudaMallocManaged()

- Allocates an object in the Unified Memory address space.
- Two parameters, with an optional third parameter.
 - Address of a pointer to the allocated object
 - Size of the allocated object in terms of bytes
 - [Optional] Flag indicating if memory can be accessed from any device or stream

- cudaFree()

- Frees object from unified memory.
- One parameter
 - Pointer to freed object

cudaMemcpy()

- Memory data transfer
- Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
- Depending on the transfer type, the driver may decide to use the memory on the host or the device.
- In Unified Memory this function is utilized to copy data between different arrays, regardless of position.

Putting it all together, vecAdd CUDA host code using **Unified Memory**

```
int main() {
  float *m A, float *m B, float *m C, int n;
  int size = n * sizeof(float);
  cudaMallocManaged((void**) &m A, size);
  cudaMallocManaged((void**) &m_B, size);
                                                      Allocation of Managed Memory
  cudaMallocManaged((void**) &m_C, size);
                                                      m A, m B gets initialized on the host
  // Memory initialization on the Host
  // Kernel invocation code - to be shown later -
                                                      The device performs the actual vector
                                                       addition
  cudaFree(m A); cudaFree(m B); cudaFree(m C);
```

CUDA Unified Memory for different architectures

Prior to compute capability 6.x

- There is no specialized hardware units to improve UM efficiency.
- For data migration the full memory block needs to be copied synchronically by the driver.
- No memory oversubscription.

Compute capability 6.x onwards

- There are specialized hardware units managing page faulting.
- Data is migrated on demand, meaning that data gets copied only on page fault.
- Possibility to oversubscribe memory, enabling larger arrays than the device memory size.

