

# Real Estate.

# **Business Problem**

### 1.1 Problem Context

Our client is a large Real Estate Investment Trust (REIT).

- They invest in houses, apartments, and (complex of buildings) within a small county in New York state.
- As part of their business, they try to predict the fair transaction price of a property before it's sold.
- They do so to calibrate their internal pricing models and keep a pulse on the market.

## 1.2 Problem Statement

The REIT has hired us to find a data-driven approach to valuing properties.

- They currently have an untapped dataset of transaction prices for previous properties on the market.
- The data was collected in 2016.
- Our task is to build a real-estate pricing model using that dataset.
- If we can build a model to predict transaction prices with an average error of under US Dollars 70,000, then our client will be very satisfied with the our resultant model.

## 1.3 Business Objectives and Constraints

- Deliverable: Trained model file
- Win condition: Avg. prediction error < \$70,000
- Model Interpretability will be useful
- · No latency requirement

# 2. Machine Learning Problem

## 2.1 Data Overview

For this project:

- 1. The dataset has 1883 observations in the county where the REIT operates.
- 2. Each observation is for the transaction of one property only.
- 3. Each transaction was between \$200,000 and \$800,000.

#### **Target Variable**

• 'tx\_price' - Transaction price in USD

#### Features of the data:

#### Public records:

- 'tx\_year' Year the transaction took place
- 'property\_tax' Monthly property tax
- 'insurance' Cost of monthly homeowner's insurance

#### Property characteristics:

- 'beds' Number of bedrooms
- 'baths' Number of bathrooms
- 'sqft' Total floor area in squared feet
- 'lot\_size' Total outside area in squared feet
- 'year built' Year property was built
- 'active\_life' Number of gyms, yoga studios, and sports venues within 1 mile
- 'basement' Does the property have a basement?
- 'exterior walls' The material used for constructing walls of the house
- 'roof' The material used for constructing the roof

#### Location convenience scores:

- 'restaurants' Number of restaurants within 1 mile
- 'groceries' Number of grocery stores within 1 mile
- 'nightlife' Number of nightlife venues within 1 mile
- 'cafes' Number of cafes within 1 mile
- 'shopping' Number of stores within 1 mile
- 'arts entertainment' Number of arts and entertainment venues within 1 mile
- 'beauty\_spas' Number of beauty and spa locations within 1 mile
- 'active life' Number of gyms, yoga studios, and sports venues within 1 mile

#### Neighborhood demographics:

- 'median\_age' Median age of the neighborhood
- 'married' Percent of neighborhood who are married
- 'college\_grad' Percent of neighborhood who graduated college

#### Schools:

- 'num\_schools' Number of public schools within district
- 'median\_school' Median score of the public schools within district, on the range 1 10

# Mapping business problem to ML problem

## 2.2.1 Type of Machine Learning Problem

It is a regression problem, where given the above set of features, you need to predict the transaction price of the house.

NB: This project must be submitted upon completion.