

Impact of lab curricula on students' critical thinking skills

Cole Walsh & N.G. Holmes, AAPT Summer Meeting 2019

NSF DUE-IUSE: 1611482

Impact of lab curricula on students' critical thinking skills

New perspectives on students' performance on physics concept inventories

Cole Walsh & N.G. Holmes, AAPT Summer Meeting 2019

Study rationale

• Previous research using concept inventories and attitudes surveys have found differences in performance between men and women

• The instruments are often assumed to provide objective measurements whose results are interpreted using a deficit model.

• Using a recently developed instrument that <u>assesses critical thinking</u> (CT) skills in physics labs with a <u>unique testing format</u>, we offer new perspectives.

How do different students perform on the PLIC?

- Prior preparation; dependent variable: Prescore
- Student gains; dependent variable: Gain = Postscore Prescore
- Focus on gender here

Why do different students perform differently?

- Confidence on Survey
- Attitudes towards labs
- Self-efficacy towards labs
- Test format
- Test construct

Traxler et al. (2018); Henderson et al. (2018); Kalendar et al. (2018); Follette et al. (2017); Salehi et al. (2019)

How to assess critical thinking?

The Physics Lab Inventory of Critical thinking (PLIC)

 <u>Context</u>: case studies of hypothetical groups performing a mass on a spring experiment

What features were most important in comparing the two k values? Please select no more than 3 items.

☐ The difference between the two k-values	The size of the uncertainty (or variability between data)	
The difference between the two k-values compared to the uncertainty	☐ How they accounted for human error	
The percent difference between the k-values (i.e. the fraction [k1-k2]/[k1+k2])	Other (Please describe)	Walsh et al. 2019
☐ The difference between the two periods		

How to assess critical thinking?

- What does it measure?: Students' critical thinking (CT) skills in the context of physics experimentation
 - evaluate models,
 - evaluate methods,
 - proposing follow-up investigations

See PERC poster (B58 Poster Session II Wed 8:15pm) for more details!

Data Sources

- Matched data from **2434 students** from:
 - <u>56 courses</u> (32 first-year [FY], 24 beyond-first-year [BFY])
 - 23 institutions (9 four-year colleges, 2 master's-granting, 12 PhD granting)

Participation by self-declared gender

- How do different students perform on the PLIC?
 - Prior preparation; dependent variable: Prescore
 - Student gains; dependent variable: Gain = Postscore Prescore
 - Focus on gender in this talk
- Why do different students perform differently?
 - Confidence on Survey
 - Attitudes towards labs
 - Self-efficacy in labs
 - Test format
 - Test construct

Modeling Prior Preparation

- Linear Mixed Model for <u>Prescores</u>
 - Random intercepts for courses
 - Fixed effects for:
 - Lab Level (FY or BFY)
 - Major (Physics, Engineering, Other)
 - Gender (Men or Women)
 - URM Status (URM or Majority)

Predicted Prescores

•
$$\beta_{Women} = 0.08 \pm 0.04, p = 0.08$$

• If there is a difference, its small...

For an idea of scale...

•
$$\beta_{BFY} = 0.38 \pm 0.13, p < 0.01$$

 The difference between students in FY and BFY labs is almost 5X the difference between men and women, on average.

For an idea of scale...

•
$$\beta_{BFY} = 0.38 \pm 0.13, p < 0.01$$

 The difference between students in FY and BFY labs is almost 5X the difference between men and women, on average.

How do different students perform on the PLIC?

- Prior preparation; dependent variable: Prescore
- Student gains; dependent variable: Gain = Postscore Prescore
- Focus on gender here

Why do different students perform differently?

- Confidence on Survey
- Attitudes towards labs
- Self-efficacy in labs
- Test format
- Test construct

Modeling Student Gains

- Linear Mixed Model for Gains
 - Random intercepts for courses
 - Fixed effects for:
 - Prescores
 - Lab Level (FY or BFY)
 - Major (Physics, Engineering, Other)
 - Gender (Men or Women)
 - URM Status (URM or Majority)

Predicted Gains

• $\beta_{Women} = 0.01 \pm 0.05, p = 0.782$

• There's really no difference here even after controlling for prior preparation.

- How do different students perform on the PLIC?
 - Prior preparation; dependent variable: Prescore
 - Student gains; dependent variable: Gain = Postscore Prescore
 - Focus on gender here
- Why do different students (not) perform differently?
 - Confidence on Survey
 - Attitudes towards labs
 - Self-efficacy in labs
 - Test format
 - Test construct

Multilevel structural equation modeling (SEM)

Follette et al. (2017); Kalendar et al. (2018); Nokes-Malach et al. (2018)

- How do different students perform on the PLIC?
 - Prior preparation; dependent variable: Prescore
 - Student gains; dependent variable: Gain = Postscore Prescore
 - Focus on gender here
- Why do different students (not) perform differently?
 - Confidence on Survey
 - Attitudes towards labs
 - Self-efficacy in labs
 - Test format
 - Test construct

Conclusions

- Practically no difference in prescores for men and women on the PLIC and both men and women improve equally, on average.
 - In future work we will explore the intersectionality of students' identities
- Why are our results different from those collected using other instruments in PER?
 - Our findings about students' confidence, attitudes, and self-efficacy agree with prior literature, but don't explain the discrepancy in performance results
 - Is it because of the measurement tool (i.e., the multiple-response format)?

Or is there something that distinguishes CT skills from conceptual knowledge and attitudes?

Nature of science and general CT assessments have observed similar results (VASS, VNOS, CLA+, CWRA+, CAT, CCTST)

Halloun (1996); Khalick (2000); Council for Aid to Education (2014, 2015, 2016, 2017); Stein et al. (2007); Facione (1990)

Thank You! Questions?

Students trained in labs designed to develop lab skills see larger gains, on average.

Purpose

- Reinforce concepts
- Develop lab skills
- Both about equally

HMI results; Prescore

- After survey, student, and course filters, 4211 students remained in our dataset
- We imputed data for students who were missing either a pre or postsurvey using hierarchical multiple imputation (HMI)
- Results agreed with that from matched sample with improved precision

Confidence, attitudes, and self-efficacy questions from the PLIC

Confidence about responses to survey

- How difficult were the questions in this survey?
- How confident do you feel in your responses to this survey?
- How much effort did you put into this survey?

Attitudes about labs

- Lab Experiments are:
 - Interesting -> Boring
 - Useful -> Useless
 - Easy -> Hard
 - Fun -> Scary

Self-efficacy in labs

- I feel confident analyzing data
- I feel confident doing experiments in labs

Thank you!

Questions?