

Общероссийский математический портал

А. М. Вершик, А. Ю. Окуньков, Новый подход к теории представлений симметрических групп. II, Зап. научн. сем. ПОМИ, 2004, том 307, 57–98

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 85.93.41.58

3 июня 2017 г., 16:10:07

А. М. Вершик, А. Ю. Окуньков

НОВЫЙ ПОДХОД К ТЕОРИИ ПРЕДСТАВЛЕНИЙ СИММЕТРИЧЕСКИХ ГРУПП. II

Памяти Д. Коксетера

ПРЕДИСЛОВИЕ

Эта статья является переработанным русским переводом статьи тех же авторов (см. ссылку ниже) и посвящена нетрадиционному подходу к теории представлений симметрических групп (а более общо - к теории представлений коксетеровских и локальных групп). Перевод был подготовлен к русскому изданию книги В. Фултона Таблицы Юнга. Приложения к теории представлений и геометрии (W. Fulton, Young Tableaux. With applications to representation theory and geometry. Cambrige Univ. Press, Cambrige, 1997), которая, как я надеюсь, рано или поздно все же выйдет. В предисловии редактора к русскому переводу книги объясняется, в чем недостаток общепринятого подхода к теории представлений симметрических групп: он не учитывает важных свойств этих групп, а именно того факта, что это группы Коксетера, что они образуют индуктивную цепочку, из чего вытекает, что теория должна строиться индуктивно. Прямым следствием этих недостатков является, в частности, некоторая немотивированность появления диаграмм и таблиц Юнга, возникающих как бы ad hoc; лишь после доказательства теоремы ветвления их присутствие оправдывается.

[&]quot;A new approach to representation theory of symmetric groups," Selecta Math., New Series 2, No. 4, 581-605 (1996). Краткая заметка тех же авторов опубликована в журнале Успехи мат. наук [4]. Многочисленные вставки и изменения в тексте сделаны первым автором для этой публикации; лишь некоторые из этих изменений оговорены далее. Особенно серьезны упрощения и изменения в §§3, 4, 7; изменены также названия и порядок некоторых параграфов. Поэтому мы снабдили название статьи цифрой II.

Теория, излагаемая в этой статье, призвана исправить указанные дефекты. Первой попыткой была статья автора (см. [30]), в которой доказывалось, что если принять условие дистрибутивности графа ветвления неприводимых комплексных представлений цепочки групп S_n , то им может быть только граф Юнга. Как выяснилось, в этом априорном предположении нет нужды – дистрибутивность является прямым следствием кокстеровости группы S_n , если только привлечь замечательные образующие подалгебры Гельфанда-Цетлина групповой алгебры, а именно образующие Юнга¹-Юциса²-Мерфи (см. [19, 30]). Но все без исключения многочисленные последующие изложения, включая и хорошую книгу Фултона, следовали классической версии, идущей от Фробениуса-Шура-Юнга, которая хотя и дополнялась удачными упрощениями вроде лемм фон Неймана, Г. Вейля, понятиями таблоидов и др., но оставляла без изменений общую схему построения теории³. Ссылки на книги по теории представлений симметрических групп читатель найдет в монографии Джеймса и Кербера [18], в переведенной на русский язык книге Г. Джеймса [17] и в более ранней учебной литературе.

Ключевое место, объясняющее и появление таблиц Юнга, и общий смысл нашего метода, состоит в том, что точки спектра алгебры Гельфанда—Цетлина относительно образующих Юнга—Юциса—Мерфи есть целочисленные векторы (векторы содержаний) в \mathbb{R}^n , удовлетворяющие простым условиям, следующим из соотношений Коксетера, а координаты этих целочисленных векторов есть так называемые содержания клеток таблиц Юнга (см. §6); а поскольку вектор содержаний определяет таблицу Юнга, то точки спектра и есть таблицы Юнга. Соответствующие собственные векторы определяют в любом представлении

¹ Так называемые ортогональная и полунормальная формы Юнга для описания действия коксетеровских транспозиций в неприводимых представлениях были определены в последних его работах и, по-видимому, рассматривались им лишь как иллюстрация; эти формы играют существенную роль в нашей теории (см. §§3, 7). А. Ласку некоторое время назад отметил, а недавно Р. Стенли дал точную ссылку на то место статьи Юнга, где эти образующие явно указаны. Но, видимо, Юнг сам не вполне оценил их роль.

 $^{^2}$ А.-А. А. Юцис (1936–1998) – литовский математик. Работа [19], в которой он ввел эти образующие, долгое время не была замечена; английский математик Γ . Мерфи переоткрыл их, а затем нашел и работу Юциса.

³Наш способ изложения теории представлений симметрических групп недавно использован в [35].

базис, а множество векторов, отвечающих таблицам с данной диаграммой, образует базис неприводимого представления группы S_n (базис Юнга-Гельфанда-Цетлина). Тем самым соответствие «диаграммы» \leftrightarrow «неприводимые представления» получает естественное (можно сказать, спектральное) объяснение.

Наш подход дает не только методические преимущества в изложении классических результатов, он позволяет рассматривать представления более общих групп и алгебр, например «локальных групп и алгебр» в смысле [30], в тех случаях, когда выполнены условия конечности группы или конечномерности алгебры. Попытка перенести этот метод на другие группы и, в частности, на группы Коксетера B-C-D содержится в работах [12] и [28].

Недавно скончался замечательный и оригинальный математик Дональд Коксетер (1907–2003), которому современная математика обязана важными, глубокими идеями и красивейшими геометрическими и групповыми конструкциями. Этот, переработанный, вариант статьи посвящается памяти Д. Коксетера.

А. Вершик

0. Введение

Цель этой статьи – изложить новый простой и прямой способ построения теории комплексных представлений группы подстановок S_n .

Существует два основных способа строить неприводимые представления группы S_n . Первый фактически основывается на теории представлений полной линейной группы GL(N) и двойственности между группой S_n и группой GL(N) в пространстве

$$\underbrace{\mathbb{C}^N \otimes \mathbb{C}^N \otimes \cdots \otimes \mathbb{C}^N}_{n \text{ pa3}},$$

которую называют двойственностью Шура-Вейля (см. [1]). Ключевую роль при таком подходе играют характеры группы GL(N), то есть функции Шура. Построение характеров группы S_n на базе функций Шура, близкое к первоначальной конструкции Фробениуса, изложено, например, в [23].

Второй подход, обычно связываемый с именем Юнга, получивший дальнейшее развитие в работах фон Неймана и Вейля,

основывается на комбинаторике таблиц. Неприводимое представление (называемое иногда модулем Шпехта) фактически определяется при этом как единственная общая компонента двух простых представлений, индуцированных с одномерных (единичного и знакопеременного) представлений одной и той же подгрупны Юнга. Эту неприводимую компоненту и сопоставляют разбиению (диаграмме), соответствующему подгруппе Юнга. Поскольку разложение индуцированных представлений на неприводимые довольно сложно и неконструктивно, то и соответствие «диаграммы» \leftrightarrow «неприводимые представления» выглядит достаточно малоестественным. Такой подход является традиционным, и его можно найти в большинстве книг по этой тематике, например в одной из последних монографий [18]. Для вывода какой-нибудь формулы для характеров группы S_n при этом подходе нужны заметные усилия.

Оба эти подхода важны, но их все-таки следует признать довольно косвенными: они основаны на глубоких и нетривиальных вспомогательных конструкциях. Возникает естественный вопрос, можно ли получить основные комбинаторные объекты теории (диаграммы, таблицы и т. д.) более прямым и естественным способом. Мы полагаем, что теория представлений симметрических групп должна удовлетворять следующим трем условиям:

- (1) Симметрические группы образуют естественную цепочку групп (группа S_{n-1} вкладывается в S_n), и теория представлений этих групп должна строиться индуктивно, опираясь на эти вложения, т.е. теория представлений группы S_n должна основываться на теории представлений группы S_{n-1} , $n=1,2,\ldots$
- (2) Комбинаторика диаграмм и таблиц Юнга, отражающая правило ветвления для сужения

$$S_n \perp S_{n-1}$$
,

должна появляться как естественный вспомогательный элемент построения, а не ad hoc; она должна выводиться из внутренней структуры симметрических групп. Только в этом случае правило ветвления (являющееся одной из основных теорем теории) возникает естественным образом, а не как финальное следствие построения всей теории.

(3) Симметрические группы являются группами Коксетера, и методика, применимая к этим группам, должна быть применима и ко всем классическим сериям коксетеровских групп.

В этой статье мы предлагаем новый подход, удовлетворяющий сформулированным выше принципам и делающий всю теорию более естественной и простой. Важными для нашего метода являются следующие понятия:

- (1) Алгебра и базис Гельфанда—Цетлина (GZ-алгебра и GZ-базис).
- (2) Элементы Юнга-Юциса-Мерфи (YJM-элементы).
- (3) Алгебры с локальной системой образующих как общий контекст теории.

Базис Гельфанда—Петлина был определен И. М. Гельфандом и М. Л. Цетлиным в пятидесятых годах [5, 6] для унитарной и ортогональной групп. Общее понятие GZ-алгебры для индуктивных пределов алгебр может быть введено тем же способом и для произвольного индуктивного предела полупростых алгебр (это было сделано, например, в [3]). По поводу общего определения алгебр Гельфанда—Цетлина и образующих Юнга—Юциса—Мерфи см. также [34].

Понятие алгебр или групп с локальной системой образующих и локальными соотношениями между образующими (коротко – локальных алгебр или групп) обобщает и включает в себя группы Коксетера, группы кос, алгебры Гекке, локально-свободные алгебры и др. (см. [30, 31]). Это понятие позволяет определить индукционный процесс построения представлений, который здесь применяется для групп S_n .

Специальные образующие GZ-алгебры симметрической группы S_n были введены фактически в работах А. Юнга, а затем переоткрыты независимо А.-А. А. Юцисом [19] и Г. Е. Мерфи [24]. Эти YJM-образующие выглядят следующим образом:

$$X_i = (1 i) + (2 i) + \dots + (i - 1 i), \quad i = 1, 2, \dots, n;$$

 $X_0 = 0, \quad X_1 = (1, 2), \quad \dots$

Существует инвариантный способ их определения (см. ниже), применимый для очень широкого класса алгебр с локальной системой образующих, в частности для всех коксетеровских групп.

Очень существенно, что эти образующие не лежат в центрах соответствующих групповых алгебр, однако порождают GZ-алгебру, содержащую все центры.

Сложность симметрической группы по сравнению, например, с полной линейной группой состоит в том, что коксетеровские соотношения

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$$

для образующих s_i группы S_k не имеют вида коммутационных соотношений. Более того, в группе S_k нет также никакой достаточно большой коммутативной подгруппы, которая бы могла играть роль картановской подгруппы. Несмотря на это, наш подход отчасти напоминает теорию старшего веса Картана, где роль картановой подгруппы играет коммутативная GZ-подалгебра алгебры $\mathbb{C}[S_n]$. Образующие Юнга-Юциса-Мерфи этой подалгебры могут быть одновременно приведены к диагональному виду в любом представлении группы S_n , и вся теория представлений этой группы закодирована в их спектре. Таким образом, задача заключается в описании этого спектра, т.е. в том, чтобы понять, какие собственные значения возможны для YJM-элементов и какие из них возникают в конкретном неприводимом представлении.

 \mathfrak{D} та задача аналогична описанию старших весов редуктивной группы. Мы решаем ее, используя индукцию по n и элементарный анализ коммутационных соотношений

$$s_i X_i + 1 = X_{i+1} s_i$$
, $i = 1, 2, ..., n-1$, (0.1)

между YJM-элементами и коксетеровскими образующими s_i . В некотором смысле, алгебра H(2) (вырожденная аффинная алгебра Гекке порядка 2), порожденная образующей s_i и двумя коммутирующими элементами X_i и X_{i+1} (образующая X_{i+1} выражается через X_i и s_i), профакторизованная по соотношению (0.1), играет в нашей статье такую же роль, какую играет группа $\mathfrak{gl}(2)$ в теории представлений редуктивных групп.

Порядок изложения в статье следующий. Мы определяем схему ветвления неприводимых представлений групп S_n и доказываем, что это граф (а не мультиграф), т.е. кратности неприводимых представлений группы S_{n-1} при ограничении на нее неприводимых представлений группы S_n простые. Затем мы изучаем максимальную коммутативную подалгебру групповой алгебры —

алгебру Γ ельфанда-Цетлина, или GZ-алгебру, диагонализация которой в каждом неприводимом представлении определяет линейный базис в нем, и показываем, что спектр этой алгебры есть множество целочисленных векторов в \mathbb{R}^n , определяемых простыми условиями, описанными в §5 (так называемых векторов содержаний). В свою очередь вектор, удовлетворяющий этим условиям, есть не что иное, как вектор «содержаний» клеток таблиц Юнга (такой вектор однозначно определяет таблицу), и, тем самым, мы приходим к основному выводу, что базисы всех неприводимых комплексных представлений группы S_n занумерованы таблицами Юнга. На векторах содержаний есть отношение эквивалентности - принадлежность к одному неприводимому представлению. Доказывается, что эта эквивалентность таблиц означает, что они имеют одинаковые диаграммы Юнга, и это завершает доказательство главной теоремы - теоремы ветвления: граф ветвления (диаграмма Браттели) неприводимых представлений групп S_n совпадает с графом диаграмм Юнга (графом Юнга).

Два обстоятельства позволяют реализовать этот план: вопервых, выбор так называемых элементов Юнга-Юциса-Мерфи (ҮЈМ-элементов) в качестве образующих алгебры Гельфанда-Цетлина, относительно которых берется спектр, и, во-вторых, возможность прямого описания представлений вырожденной аффинной алгебры Γ екке H(2), играющей роль «приращения» в индуктивном переходе от групповой алгебры $\mathbb{C}[S_{n-1}]$ к групповой алгебре $\mathbb{C}[S_n]$. Этот переход возможен благодаря роли, которую играют образующие Коксетера групп S_n и соотношения Коксетера между ними: они непосредственно дают условия на элементы спектра GZ-алгебры – векторы содержаний. Одно из основных преимуществ нашего построения теории представлений симметрических групп (и других серий коксетеровских групп) заключается в том, что мы получаем правило ветвления одновременно с описанием представлений и вводим диаграммы и таблицы Юнга, используя только анализ спектра GZ-алгебры. Можно сказать, что наш план реализует также некоммутативный вариант анализа Φ урье на симметрических группах, в силу которого *множе*ство таблиц Юнга появляется естественно в качестве спектра двойственного объекта группы S_n , а множество диаграмм дает список представлений.

Как приложение этих результатов мы выводим классические

формулы Юнга для действия коксетеровских образующих s_i группы S_n и новое доказательство правила Мурнагана—Накаямы для характеров этой группы. Последний шаг в доказательстве формул Юнга совпадает с работой [24]. На самом деле, в работе Мерфи элементы X_i и вводились для вывода формул Юнга. Однако, в отличие от работы [24], мы не предполагаем известным ни один факт из теории представлений S_n , а, наоборот, выводим все из исследования простых коммутационных соотношений⁴.

Первая попытка разработки нового подхода к теории представлений симметрической группы была сделана в работах [30, 31], в которых вводилось понятие алгебр с локальной системой образующих. Правило ветвления и ортогональная форма Юнга были получены в [30] из коксетеровских соотношений для образующих группы S_n и предположения, что граф ветвления (см. ниже) группы S_n является диаграммой Хассе дистрибутивной решетки. Подход, предлагаемый в этой статье, не требует каких-либо дополнительных предположений.

Наша схема может быть применена к некоторым другим алгебрам с локальной системой образующих, и в первую очередь ко всем коксетеровским группам серий B-C-D и к сплетениям симметрических групп с некоторыми конечными группами. Все эти обобщения будут рассмотрены в дальнейших работах.

Мы не делаем попытки дать полную библиографию по предмету. Подходящие аналоги элементов Юнга-Юциса-Мерфи для бесконечной симметрической группы S_{∞} оказались чрезвычайно мощным инструментом для изучения бесконечномерной теории представлений; см. [8, 9, 10, 11]. О бесконечной симметрической группе см. также [20, 32, 3, 21]. В серии работ [30, 31, 32] первый автор развивает новый подход к теории представлений группы

 $^{^4}$ С точки зрения традиционной теории представлений групп S_n может показаться, что в использовании индуктивных семейств $S_1 \subset \cdots \subset S_{n-1} \subset S_n$ для целей построения теории представлений одной группы S_n есть элемент произвола (таких семейств много, хотя они и изоморфны). Но именно эта «неинвариантность» подхода позволяет связать теорию с диаграммами и таблицами Юнга — без нее нет теоремы ветвления, нет GZ-базисов, RSK соответствия и пр. Более того, соответствие «неприводимые представления» \leftrightarrow «диаграммы Юнга» без фиксации индуктивных семейств теряет точный смысл и остается лишь произвольным актом конструкции модулей Шпехта. Разумеется, другие индуктивные цепочки (например, $S_2 \subset S_4 \subset \ldots$ с периодическими вложениями) приводят к другим теоремам ветвления и к другим базисам.

 S_n , связанный с асимптотическими задачами.

Существует большое количество других приложений YJMэлементов к классической теории представлений (см., например,
[15]; мы узнали об этом важном препринте после того, как статья была завершена). Элементы Юнга-Юциса-Мерфи естественным образом возникают в связи с высшими тождествами Капелли
(см. [27]). В работах [13, 16] эти элементы рассматривались в
контексте теории вырожденных аффинных алгебр Гекке. Элементы Юнга-Юциса-Мерфи для коксетеровских групп были определены в [26, 28]; из более ранних работ упомянем [7].

В дальнейшем предполагается, что читатель знаком только с элементарными фактами абстрактной теории представлений конечных групп. Мы не используем никаких фактов из теории представлений симметрических групп.

Мы хотим поблагодарить М. Назарова за полезные сведения о литературе, С. Керова и Г. Ольшанского за дискуссии по этому вопросу и рецензента за его замечания.

Краткое сообщение о наших результатах было сделано в [4].

1. Алгебра и базис Гельфанда-Цетлина

Рассмотрим индуктивную цепочку конечных групп

$$\{1\} = G(0) \subset G(1) \subset G(2) \subset \dots$$
 (1.1)

Обозначим через $G(n)^{\wedge}$ множество классов эквивалентности неприводимых комплексных представлений группы G(n). Графом (точнее, мультиграфом) ветвления (или диаграммой Браттели) этой цепочки по определению является следующий ориентированный граф. Вершинами графа являются элементы множества (несвязного объединения)

$$\bigcup_{n\geqslant 0} G(n)^{\wedge}.$$

Обозначим G(n)-модуль, отвечающий представлению $\lambda \in G(n)^{\wedge}$, через V^{λ} . Вершины $\mu \in G(n-1)^{\wedge}$ и $\lambda \in G(n)^{\wedge}$ соединены k ориентированными ребрами (из λ в μ), если

$$k = \dim \operatorname{Hom}_{G(n-1)}(V^{\mu}, V^{\lambda}),$$

то есть если k есть кратность представления μ в ограничении представления λ на группу G(n-1). Мы будем называть множество $G(n)^{\wedge}$ n-м əma жом графа ветвления и будем писать

$$\mu \geq \lambda$$
,

если вершины μ и λ соединены ребром в графе ветвления, и

$$\mu \subset \lambda$$
,

где $\mu \in G(k)^{\wedge}$, $\lambda \in G(n)^{\wedge}$ и $k \leqslant n$, если кратность вхождения представления μ в сужение представления λ на подгруппу G(k) больше нуля. Иначе говоря, $\mu \subset \lambda$, если существует путь из μ в λ в графе ветвления. Единственный элемент множества $G(0)^{\wedge}$ обозначим через \varnothing . То же определение графа ветвления можно дать и для произвольного индуктивного семейства конечномерных полупростых алгебр

$$M(0) \subset M(1) \subset M(2) \subset \dots$$

(см. [3] и приведенную там литературу). Если кратности ограничений равны 0 и 1, то эта диаграмма есть граф (а не мультиграф); в таких случаях говорят о простых кратностях, или о простом ветвлении. Хорошо известно, и мы докажем это в следующем параграфе, что это так для цепочки симметрических групп $G(n) = S_n$ (см. также, например, [18, 17]). В этом случае разложение

$$V^{\lambda} = \bigoplus_{\mu \in G(n-1)^{\wedge}, \mu \nearrow \lambda} V^{\mu}$$

в сумму G(n-1)-подмодулей определено однозначно. По индукции мы получаем каноническое разложение модуля V^{λ} на G(0)-модули (т.е. одномерные подпространства)

$$V^{\lambda} = \bigoplus_{T} V_{T},$$

которые нумеруются всеми возможными цепочками

$$T = \lambda_0 / \lambda_1 / \dots / \lambda_n, \tag{1.2}$$

где $\lambda_i \in G(i)^{\wedge}$ и $\lambda_n = \lambda$. Такие цепочки – это возрастающие пути в графе (или мультиграфе) ветвления, идущие от вершины \varnothing к вершине λ .

Выбирая в каждом одномерном пространстве V_T по единичному (относительно G(n)-инвариантного скалярного произведения (\cdot,\cdot) в V^{λ}) вектору v_T , мы получаем базис $\{v_T\}$ в модуле V^{λ} , который называется базисом Гельфанда-Цетлина (GZ-базисом). В работах [5, 6] такой базис задавался для представлений групп SO(n) и U(n); мы используем то же название в общей ситуации (см. [3]). Из определения v_T очевидно, что

$$\mathbb{C}[G(i)] \cdot v_T, \quad i = 1, 2, \dots, n, \tag{1.3}$$

есть неприводимый G(i)-модуль V^{λ_i} . Очевидно также, что вектор v_T однозначно (с точностью до множителя) этим свойством определяется.

Обозначим через Z(n) центр алгебры $\mathbb{C}[G(n)]$. Рассмотрим подалгебру $GZ(n)\subset \mathbb{C}[G(n)]$, порожденную подалгебрами

$$Z(1), Z(2), \ldots, Z(n)$$

алгебры $\mathbb{C}[G(n)]$. Легко видеть, что алгебра GZ(n) коммутативна. Она называется подалгеброй Гельфанда-Цетлина (GZ-алгеброй) индуктивного семейства (групповых) алгебр. Напомним следующий фундаментальный изоморфизм:

$$\mathbb{C}[G(n)] = \bigoplus_{\lambda \in G(n)^{\wedge}} \operatorname{End}(V^{\lambda})$$
(1.4)

(сумма берется по всем классам эквивалентных неприводимых комплексных представлений).

Предложение 1.1. Алгебра GZ(n) есть алгебра всех операторов, диагональных в базисе Гельфанда-Цетлина. В частности, алгебра GZ(n) есть максимальная коммутативная подалгебра алгебры $\mathbb{C}[G(n)]$.

Доказательство. Обозначим через $P_T \in GZ(n)$ произведение центральных идемпотентов

$$P_{\lambda_1}P_{\lambda_2}\dots P_{\lambda_i}$$
, $P_{\lambda_i}\in Z(i)$,

отвечающих представлениям $\lambda_1, \lambda_2, \ldots, \lambda$ соответственно. Очевидно, P_T есть проектор на V_T . Таким образом, алгебра GZ(n) содержит алгебру операторов, диагональных в базисе $\{v_T\}$, которая является максимальной коммутативной подалгеброй. Поскольку алгебра GZ(n) коммутативна, предложение доказано. \square

Замечание 1.2. Отметим, что, в силу предыдущего предложения, любой вектор из базиса Гельфанда-Цетлина в любом неприводимом представлении группы G(n) единственным образом (с точностью до скалярного сомножителя) определяется отвечающими этому вектору собственными значениями элементов алгебры GZ(n).

Замечание 1.3. Для произвольного индуктивного семейства полупростых алгебр GZ-подалгебра является максимальной коммутативной алгеброй в том и только в том случае, если граф ветвления не содержит кратных ребер.

Следующий критерий простоты ветвления использует важное понятие централизатора. Пусть M — полупростая конечномерная \mathbb{C} -алгебра и N — ее подалгебра; $\mathit{централизатором}\ Z(M,N)$ пары называется подалгебра всех элементов M, коммутирующих с N.

Предложение 1.4. Следующие два утверждения эквивалентны.

- (1) Ограничение конечномерных неприводимых комплексных представлений алгебры M на подалгебру N имеет простую кратность.
- (2) Централизатор Z(M,N) коммутативен.

Доказательство. Пусть V^{μ} и V^{λ} — конечномерные пространства неприводимых представлений алгебр N и M соответственно. Рассмотрим M-модуль $\mathrm{Hom}_N(V^{\mu},V^{\lambda})$. Он является неприводимым Z(M,N) модулем и, следовательно, одномерен, если централизатор коммутативен.

Наоборот, если существует более чем одномерное неприводимое представление централизатора Z(M,N), то тем самым кратность ограничения некоторого представления алгебры M на подалгебру N также больше единицы.

В следующем параграфе мы применим этот критерий к групповым алгебрам симметрических групп.

2. Элементы Юнга-Юциса-Мерфи

С этого момента мы полагаем

$$G(n) = S_n$$

и будем изучать структуру алгебры Гельфанда-Цетлина с помощью специального базиса.

ТЕОРИЯ ПРЕДСТАВЛЕНИЙ S_n 69 Для $i=1,2,\ldots,n$ рассмотрим следующие элементы $X_i\in\mathbb{C}[S_n]$:

$$X_i = (1 i) + (2 i) + \cdots + (i - 1 i).$$

В частности, $X_1=0$. Эти элементы мы будем называть *элемен*тами Юнга-Юциса-Мерфи (или ҮЈМ-элементами).

Очевидно, что

$$X_i = \text{сумма}$$
 всех транспозиций в S_i
- сумма всех транспозиций в S_{i-1} , (2.1)

т.е. разность элемента из Z(i) и элемента из Z(i-1). Поэтому $X_i \in GZ(n)$ при всех $i \leqslant n$. В частности, отсюда следует, что элементы Юнга-Юциса-Мерфи коммутируют.

 Π усть A,B,\ldots,C – элементы или подалгебры некоторой алгебры M; через $\langle A,B,\ldots,C \rangle$ будем обозначать подалгебру алгебры M, порожденную A, B, \ldots, C .

Теорема 2.1. Рассмотрим в алгебре $\mathbb{C}[S_n]$ ее центр Z(n) и центр Z(n-1) подалгебри $\mathbb{C}[S_{n-1}] \hookrightarrow \mathbb{C}[S_n]$. Тогда

$$Z(n) \subset \langle Z(n-1), X_n \rangle$$
.

Доказательство. Напомним, что

$$X_n = \sum_{i=i}^{n-1} (i, n) = \sum_{i \neq j; i, j=1}^{n} (i, j) - \sum_{i \neq j; i, j=1}^{n-1} (i, j).$$

Второе слагаемое лежит в Z(n-1), поэтому первое лежит в $\langle Z(n-1), X_n \rangle$. Имеем

$$X_n^2 = \sum_{i,j=1}^n (i,n)(j,n) = \sum_{i \neq j; i,j=1}^{n-1} (i,j,n) + (n-1)\mathbb{I}.$$

Следовательно, элемент $\sum_{i \neq j; i,j=1}^{n-1} (i,j,n)$ лежит в $\langle Z(n-1), X_n \rangle$. Добавляя к нему элемент

$$\sum_{i \neq j}^{n-1} (i, j, k)$$

из Z(n-1), мы получим следующий элемент из Z(n):

$$\sum_{i \neq j \neq k; i, j, k=1}^{n} (i, j, k).$$

Таким образом, мы доказали, что индикатор класса сопряженности в S_n циклов, состоящих из трех элементов, также лежит в $\langle Z(n-1), X_n \rangle$.

Применим индукцию и рассмотрим общий случай

$$X_n \cdot \sum_{i_1, \dots, i_{k-1}=1}^n (i_1, \dots, i_{k-1}, n) = \sum_{i \neq i_s, s=1, \dots, n-1} (i, n)(i_1, \dots, i_{k-1}, n) + \sum_{i_1, i_1, \dots, i_{k-1}}^n (i, i_1, \dots, i_{k-1}, n).$$

Добавляя к первому слагаемому класс

$$\sum_{i,j,i_1,...,i_{k-1}=1}^n (i,j)(i_1,...,i_{k-1}),$$

лежащий в Z(n-1), мы получим класс сопряженности в S_n произведения цикла длины 2 на цикл длины k, т.е. элемент из Z(n). Следовательно, второе слагаемое, класс цикла длины k+1, также лежит в $\langle Z(n-1), X_n \rangle$. Опять-таки, складывая второе слагаемое

$$\sum_{i,i_1,\ldots,i_k} (i,i_1,\ldots,i_{k-1},i_k) \in Z(n-1),$$

мы получим класс сопряженности цикла длины k+1 в группе S_n . Итак, классы всех одноцикловых 5 подстановок в S_n лежат в алгебре $\langle Z(n-1), X_n \rangle$. Остается применить классическую теорему о том, что центр групповой алгебры $\mathbb{C}[S_n]$ порождается мультипликативными образующими – классами одноцикловых подстановок. Эта теорема сводится к утверждению о том, что степенные суммы $\sum_{i=1}^n x_i^r \equiv p_r$ образуют мультипликативный базис в кольце симметрических функций [23, гл. 1]. Таким образом,

$$Z(n) \subset \langle Z(n-1), X_n \rangle.$$

 $^{^{5}\}Pi$ од одноцикловыми понимаются подстановки, имеющие один неединичный цикл.

Следствие 2.2. Алгебра Гельфанда-Цетлина порождается элементами Юнга-Юциса-Мерфи:

$$GZ(n) = \langle X_1, X_2, \dots, X_n \rangle.$$

Доказательство. По определению,

$$GZ(n) = \langle Z(1), \dots, Z(n) \rangle.$$

Очевидно, $GZ(2) = \mathbb{C}[S_2] = \langle X_1 = 0, X_2 \rangle = \mathbb{C}$. Пусть доказано, что

$$GZ(n-1) = \langle X_1, \dots, X_{n-1} \rangle.$$

Тогда требуется доказать, что

$$GZ(n) = \langle GZ(n-1), X_n \rangle$$
.

Включение

$$GZ(n) \supset \langle GZ(n-1), X_n \rangle$$

очевидно, поэтому достаточно проверить, что

$$Z(n) \subset \langle GZ(n-1), X_n \rangle$$
.

Но по теореме 2.1

$$Z(n) \subset \langle Z(n-1), X_n \rangle \subset \langle GZ(n-1), X_n \rangle.$$

Замечание 2.3. Обратим внимание на то, что YJM-элементы не лежат в соответствующих центрах: $X_k \not\in Z(k), \ k=1,\ldots,n$. Казалось бы, естественно искать базис алгебры GZ(n), состоящий из элементов центров $Z(1),\ldots,Z(n)$. Однако полезным оказывается «нецентральный» базис.

Теорема 2.4. Централизатор $Z(n-1,1) \equiv Z(\mathbb{C}[S_n], \mathbb{C}[S_{n-1}])$ подальяебры $\mathbb{C}[S_{n-1}]$ в алгебре $\mathbb{C}[S_n]$ порожден центром Z(n-1) подальебры $\mathbb{C}[S_{n-1}]$ и элементом X_n :

$$Z(n-1,1) = \langle Z(n-1), X_n \rangle.$$

Доказательство. Линейный базис в централизаторе Z(n-1,1) есть объединение линейного базиса в Z(n-1) с классами вида

$$\sum (i_1^{(1)}, \dots, i_{k_1-1}^{(1)}, n)(i_1^{(2)}, \dots, i_{k_2}^{(2)}) \dots (i_1^{(3)}, \dots, i_{k_3}^{(3)}),$$

где суммирование ведется по различным индексам i_s^l , пробегающим числа от 1 до n-1. Но, складывая, как и в доказательстве теоремы 2.1, такие классы с классами

$$\sum (i_1^{(1)}, \dots, i_{k_1}^{(1)})(i_1^{(2)}, \dots, i_{k_2}^{(2)}) \dots (i_1^{(3)}, \dots, i_{k_3}^{(3)})$$

(суммирование по всем индексам от 1 до n-1) из Z(n-1), мы получим все классы из Z(n). Следовательно, линейный базис в Z(n-1,1) можно получить как линейную комбинацию элементов базисов алгебр Z(n-1) и Z(n), т.е.

$$Z(n-1,1) \subset \langle Z(n-1), Z(n) \rangle$$
.

А так как $Z(n)\subset \langle Z(n-1),X_n\rangle$ (теорема 2.1), то теорема доказана. \sqcap

Теорема 2.5. Ветвление цепочки $\mathbb{C}[S_1] \subset \cdots \subset \mathbb{C}[S_n]$ простое, т.е. кратности ограничений неприводимых представлений алгебры $\mathbb{C}[S_n]$ на подалгебру $\mathbb{C}[S_{n-1}]$ равны 0 или 1.

Доказательство. Поскольку централизатор Z(n-1,1) коммутативен (т.к. $Z(n-1,1) \subset \langle Z(n-1), X_n \rangle$), то достаточно применить критерий простоты из предложения 1.4.

Следствие 2.6. Алгебра GZ(n) является максимальной коммутативной подалгеброй алгебры $\mathbb{C}[S_n]$. Поэтому в каждом неприводимом представлении группы S_n задан базис Гельфанда-Цетлина из одномерных подпространств.

Этот базис называется базисом Юнга. А. Юнг рассматривал его в представлениях, но не мог описать его как глобальный базис, поскольку для этого нужны неизвестные в то время GZ-алгебра и YJM-элементы.

Базис Юнга является общим базисом из собственных векторов для YJM-элементов. Пусть v – вектор этого базиса в некотором неприводимом представлении; обозначим через

$$\alpha(v) = (a_1, \dots, a_n) \in \mathbb{C}^n$$

собственные значения, которые принимают на v элементы X_1 , ..., X_n . Назовем вектор $\alpha(v)$ весом вектора v. Обозначим через

$$Spec(n) = {\alpha(v), v}$$
 принадлежит базису Юнга

спектр YJM-элементов. В силу предложения 2.1 и замечания 1.2 точка $\alpha(v) \in \mathrm{Spec}\,(n)$ задает вектор с точностью до скалярного множителя. Понятно, что

$$|\operatorname{Spec}(n)| = \sum_{\lambda \in S_n^{\wedge}} \dim \lambda.$$

Иначе говоря, размерность алгебры Гельфанда—Цетлина равна сумме размерностей всех попарно неэквивалентных неприводимых представлений.

По определению базиса Юнга множество $\mathrm{Spec}\,(n)$ находится в естественном соответствии с множеством путей (1.2) в графе ветвления. Обозначим это соответствие через

$$T \mapsto \alpha(T), \quad \alpha \mapsto T_{\alpha}.$$

Обозначим через v_{α} вектор базиса Юнга (единственный с точностью до ненулевого скалярного множителя), отвечающий весу α . Существует следующее естественное отношение эквивалентности \sim на множестве Spec (n). Мы будем писать

$$\alpha \sim \beta$$
, $\alpha, \beta \in \text{Spec}(n)$,

если векторы v_{α} и v_{β} лежат в одном неприводимом S_n -модуле, иначе говоря, если пути T_{α} и T_{β} имеют общий конец. Понятно,

$$|\operatorname{Spec}(n)/\sim|=|S_n^{\wedge}|.$$

Наш план состоит в том, чтобы

- (1) описать множество $\operatorname{Spec}(n)$,
- (2) описать отношение эквивалентности \sim ,
- (3) вычислить матричные элементы в базисе Юнга,
- (4) вычислить характеры неприводимых представлений.

3. Действие образующих и алгебра H(2)

Коксетеровские образующие

$$s_i = (i \ i+1), \quad i = 1, \dots, n-1,$$

группы S_n коммутируют, если только они не соседние. Это свойство было названо в [30] локальностью. «Локальность» здесь понимается в физическом смысле этого слова; она означает, что разделенные в пространстве образующие коммутируют и, значит, не влияют друг на друга. Локальность проявляется в следующем свойстве базиса Юнга.

Предложение 3.1. Для любого вектора

$$v_T$$
, $T = \lambda_0 \nearrow \ldots \nearrow \lambda_n$, $\lambda_i \in S_i^{\wedge}$,

и любого $k=1,\ldots,n-1$ вектор

$$s_k \cdot v_T$$

является линейной комбинацией векторов

$$v_{T'}$$
, $T' = \lambda'_0 \nearrow \ldots \nearrow \lambda'_n$, $\lambda'_i \in S_i^{\wedge}$,

для которых

$$\lambda_i' = \lambda_i, \quad i \neq k.$$

Другими словами, действие образующий s_k отражается только на k-м этаже графа ветвления.

Доказательство. Пусть i > k. Так как $s_k \in S_i$ и модуль

$$\mathbb{C}[S_i] \cdot v_T$$

неприводим, то

$$\mathbb{C}[S_i] s_k \cdot v_T = \mathbb{C}[S_i] \cdot v_T = V^{\lambda_i}, \tag{3.1}$$

где V^{λ_i} — неприводимый S_i -модуль, отвечающий вершине $\lambda_i \in S_i^{\wedge}$. Поскольку s_k коммутирует с подгруппой S_i , то (3.1) верно и для всех i < k. Значит, в силу (1.3) вектор $s_k \cdot v_T$ может разлагаться только по таким векторам $v_{T'}$, которые удовлетворяют условиям предложения.

Таким же образом несложно показать, что коэффициенты этой линейной комбинации зависят только от $\lambda_{k-1}, \lambda_k, \lambda_k', \lambda_{k+1}$ и от выбора нормировки для векторов Юнга. Таким образом, образующая s_k изменяет координаты пути только на k-м этаже, а коэффициенты соответствующей матрицы зависят только от координат пути на этажах графа ветвления с номерами $k-1,\ k,\ k+1$. Более подробные формулы даны в $\S 4$.

Доказанное предложение легко следует также из очевидных соотношений

$$s_i X_j = X_j s_i, \quad j \neq i, i+1.$$
 (3.2)

Более интересное (и хорошо известное) соотношение связывает s_i с X_i и X_{i+1} . Мы имеем

$$s_i X_i + 1 = X_{i+1} s_i, (3.3)$$

что очевидным образом переписывается в виде

$$s_i X_i s_i + s_i = X_{i+1}.$$

Действие YJM-элементов на базис Юнга также локально. Из (2.1) очевидно следует, что если для пути

$$T = \lambda_0 \nearrow \ldots \nearrow \lambda_n$$

мы рассмотрим собственные значения

$$\alpha(T) = (a_1, \dots, a_n),$$

то для всех k значение a_k будет разностью функции, зависящей от λ_k , и функции, зависящей от λ_{k-1} .

Обозначим через H(2) алгебру, порожденную элементами Y_1 , Y_2 и s, удовлетворяющими соотношениям

$$s^2 = 1$$
, $Y_1 Y_2 = Y_2 Y_1$, $sY_1 + 1 = Y_2 s$.

Образующую Y_2 можно исключить, так как $Y_1 = sY_2s + s$, поэтому алгебра H(2) порождена образующими Y_1 и s, но технически удобнее включать в число образующих и Y_2 .

Эта алгебра занимает центральное место в дальнейшем изложении. Она является простейшим примером вырожденной аффинной алгебры Гекке (см. далее). Уже непосредственно из этих соотношений можно вывести, что неприводимые конечномерные представления этой алгебры либо одномерны, либо двумерны. Действительно, поскольку образующие Y_1 и Y_2 коммутируют, то они обладают общим базисом из собственных векторов; взяв любой вектор v из них и применив к нему инволюцию s, мы получим не более чем двумерное H(2)-инвариантное подпространство. Важность алгебры H(2) основана на следующем очевидном, но полезном факте.

Предложение 3.2. Алгебра $\mathbb{C}[S_n]$ порождена алгеброй $\mathbb{C}[S_{n-1}]$ и алгеброй H(2) с образующими $Y_1=X_{n-1},\ Y_2=X_n,\ s=s_n,\ где$ $X_{n-1},\ X_n$ — соответствующие YJM-элементы, а $s_n=(n-1,n)$ — коксетеровская образующая.

Конечно, алгебра $\mathbb{C}[S_n]$ порождена подалгеброй $\mathbb{C}[S_{n-1}]$ и одной образующей s_n , но именно учет избыточных образующих X_{n-1} и X_n дает основы для индукции — каждый шаг от n-1 к n сводится к изучению представления алгебры H(2).

Другое важное свойство коксетеровских образующих и YJMэлементов состоит в том, что соотношения между ними инвариантны относительно сдвига индексов. Такие соотношения были названы в работе [30] *стационарными* соотношениями.

Замечание 3.3. Вырожденная аффинная алгебра Гекке H(n) порождена коммутирующими переменными Y_1,Y_2,\ldots,Y_n и коксетеровскими инволюциями s_1,\ldots,s_{n-1} с соотношениями $(3.2),\ (3.3)$ (см. $[16,\ 13]$). Если положить $Y_1=0$, то фактор алгебры H(n) по соответствующему идеалу канонически изоморфно отображается на $\mathbb{C}[S_n]$.

4. Неприводимые представления алгебры H(2)

Как уже отмечалось в $\S 3$, все неприводимые представления алгебры H(2) не более чем двумерны и содержат вектор v, для которого

$$Y_1v = av, \quad Y_2v = bv, \quad a, b \in \mathbb{C}.$$

Если векторы v и sv линейно независимы, то из соотношения

$$sY_1 + 1 = Y_2s \tag{4.1}$$

следует, что элементы Y_1 и Y_2 действуют в базисе $v,\ sv$ следующим образом:

$$Y_1 = \begin{pmatrix} a & -1 \\ 0 & b \end{pmatrix}, \quad Y_2 = \begin{pmatrix} b & 1 \\ 0 & a \end{pmatrix}, \quad s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Если $b \neq a \pm 1$, то это представление содержит одно из двух одномерных подпредставлений; обозначим его через $\pi_{a,b}$. Если $b=a\pm 1$, то это представление содержит единственное одномерное подпредставление

$$Y_1 \mapsto a$$
, $Y_1 \mapsto b$, $s_1 \mapsto \pm 1$,

в котором векторы v и sv коллинеарны; и наоборот, если векторы $v,\ sv$ коллинеарны, то

$$sv = \pm v$$
,

и из (4.1) следует, что

$$b = a \pm 1.$$

Заметим, что всегда $a \neq b$, так как в противном случае операторы $\pi_{a,b}(Y_i)$ не диагонализуемы и поэтому такие представления

не могут встретиться в действии на базисе Юнга. Если $a \neq b$, то операторы $\pi_{a,b}$ диагонализуются, например, следующим образом:

$$Y_1 = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \quad Y_2 = \begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix}, \quad s_1 = \begin{pmatrix} \frac{1}{b-a} & 1 - \frac{1}{(b-a)^2} \\ 1 & \frac{1}{a-b} \end{pmatrix}.$$
 (4.2)

Сформулируем наши результаты в виде предложения, которое описывает представления в терминах преобразований весов (т.е. векторов собственных значений).

Предложение 4.1. Пусть

$$\alpha = (a_1, \ldots, a_i, a_{i+1}, \ldots, a_n) \in \operatorname{Spec}(n).$$

Tогда $a_i \in \mathbb{Z}$ и

- (1) $a_i \neq a_{i+1}$ das ocer i;
- (2) $e c \Lambda u \ a_{i+1} = a_i \pm 1$, $mo \ s_i \cdot v_\alpha = \pm v_\alpha$;
- (3) $e c \wedge u \ a_{i+1} \neq a_i \pm 1, mo$

$$\alpha' = s_i \cdot \alpha = (a_1, \dots, a_{i+1}, a_i, \dots, a_n) \in \text{Spec}(n)$$

и $\alpha' \sim \alpha$ (см. определение отношения \sim в §2). Кроме того,

$$v_{\alpha'} = \left(s_i - \frac{1}{a_{i+1} - a_i}\right) v_{\alpha},$$

и элементы s_i, X_i, X_{i+1} действуют в базисе $v_{\alpha}, v_{\alpha'}$ по формулам (4.2), где элемент Y_1 нужно заменить на X_i , а элемент Y_2 – на X_{i+1} .

Напомним, что транспозиции s_i из пункта (3) предложения 4.1 есть коксетеровские транспозиции. Чтобы подчеркнуть их роль в контексте этого параграфа (как операций на весах α), мы назовем их ∂ опустимым u транспозициями. Допустимые транспозиции сохраняют множество $\operatorname{Spec}(n)$ и множество $\operatorname{Cont}(n)$, определенное в следующем параграфе. Два случая этого предложения отвечают случаям цепочки и ромба из §7.

Отметим, что если $a_{i+1} \neq a_i \pm 1$, то в базисе

$$\left\{v_{\alpha},c_{i}(s_{i}-d_{i}\mathbb{I})v_{\alpha}\right\},$$

78 — А. М. ВЕРШИК, А. Ю. ОКУНЬКОВ где $c_i = (a_{i+1} - a_i)^{-1}, \; d_i = (1 - c_i^2)^{-1/2}, \;$ матрица транспозиции s_i ортогональна:

$$s_i = \begin{pmatrix} 1/r & \sqrt{1 - 1/r^2} \\ \sqrt{1 - 1/r^2} & -1/r \end{pmatrix},$$

где $r = a_{i+1} - a_i$. В работах Юнга эта разность называлась $a\kappa$ сиальным (осевым) расстоянием; это есть разность содержаний (см. §5) соответствующих клеток таблиц Юнга.

5. Основные теоремы

В этом параграфе мы опишем множество $\operatorname{Spec}(n)$, введенное в $\S 2$, и отношение эквивалентности \sim . Введем множество $\mathrm{Cont}\,(n)$ векторов содержания длины п.

Определение.

$$\alpha = (a_1, \dots, a_n) \in \text{Cont}(n) \subset \mathbb{Z}^n$$

если а удовлетворяет следующим условиям:

- (2) $\{a_q 1, a_q + 1\} \cap \{a_1, \dots, a_{q-1}\} \neq \emptyset$ diff $b \in Q \in Q \setminus Q = 0$ $a_q > 0$, mo $a_i = a_q - 1$ при некотором i < q, а если $a_q < 0$, то $a_i = a_q + 1$ npu некотором i < q);
- (3) $e \operatorname{cau} a_p = a_q = a$ для некоторого p < q, то

$${a-1, a+1} \subset {a_{p+1}, \dots, a_{q-1}}$$

(т.е. между двумя вхождениями числа а в вектор содержаний должены входить также числа a-1 и a+1).

Понятно, что

$$Cont(n) \subset \mathbb{Z}^n$$
.

Теорема 5.1.

Spec
$$(n) \subset Cont(n)$$
.

Нам потребуется следующая лемма.

Лемма 5.2. Пусть

$$\alpha = (a_1, \ldots, a_n)$$

 $u\ a_i=a_{i+2}=a_{i+1}-1\ \partial$ ля некоторого $i,\ m.e.\$ вектор $\alpha\$ содержит ϕ рагмент (a, a + 1, a). Тогда

$$\alpha \notin \operatorname{Spec}(n)$$
.

Доказательство леммы. Пусть $\alpha \in \operatorname{Spec}(n)$. В силу части (2) предложения 5.1

$$s_i v_\alpha = v_\alpha, \quad s_{i+1} v_\alpha = -v_\alpha,$$

т.е. $s_i s_{i+1} s_i v_\alpha = -v_\alpha$, а $s_{i+1} s_i s_{i+1} v_\alpha = v_\alpha$, что противоречит коксетеровским соотношениям

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}. \qquad \square$$

Доказательство теоремы. Пусть $\alpha = (a_1, \dots, a_n) \in \operatorname{Spec}(n)$. Так как $X_1 = 0$, то $a_1 = 0$.

Проверим условия (2) и (3) индукцией по n. Случай n=2 очевиден. Пусть теперь $\{a_n-1,a_n+1\}\cap\{a_1,\ldots,a_{n-1}\}=\varnothing$. Тогда транспозиция элементов a_{n-1} и a_n является допустимой, и

$$(a_1, \ldots, a_{n-2}, a_n, a_{n-1}) \in \text{Spec}(n).$$

Следовательно, $(a_1, \ldots, a_{n-2}, a_n) \in \text{Spec}(n-1)$ и, очевидно,

$${a_n - 1, a_n + 1} \cap {a_1, \dots, a_{n-2}} = \varnothing,$$

что противоречит индуктивному предположению. Это доказывает необходимость свойства (2).

Пусть $a_p = a_n = a$ для некоторого p < n, и пусть

$$a-1 \notin \{a_{p+1},\ldots,a_{n-1}\}.$$

Мы можем предположить, что p выбрано максимальным, т.е. что между a_p и a_n число a уже не встречается:

$$a \notin \{a_{p+1}, \ldots, a_{n-1}\}.$$

Тогда в силу индукционного предположения число a+1 встречается в множестве $\{a_{p+1},\ldots,a_{n-1}\}$ не более одного раза. Действительно, если бы оно встречалось хотя бы два раза, то по индукционному предположению встретилось бы и число a. Таким образом, существует две возможности: либо

$$(a_p, \ldots, a_n) = (a, *, \ldots, *, a),$$

либо

$$(a_n, \ldots, a_n) = (a, *, \ldots, *, a + 1, *, \ldots, *, a),$$

где *, . . . , * означает последовательность чисел, отличных от a-1, $a,\ a+1$.

В первом случае, применяя n-p-1 раз допустимую транспозицию, мы получим

$$\alpha \sim \alpha' = (\ldots, a, a, \ldots),$$

что противоречит части (1) предложения 5.1.

Во втором случае те же рассуждения приводят нас к соотношению

$$\alpha \sim \alpha' = (\ldots, a, a+1, a, \ldots),$$

что противоречит лемме 5.2.

Нам понадобится еще одно отношение эквивалентности. Будем писать

$$\alpha \approx \beta$$
, $\alpha, \beta \in \mathbb{C}^n$,

если β является допустимой перестановкой элементов вектора α (произведением допустимых транспозиций). Теперь мы готовы к появлению диаграмм и таблиц Юнга. А именно, мы увидим, что векторы из $\mathrm{Cont}(n)$ есть $\mathrm{\it sekmopi}$ $\mathrm{\it codep}$ жапий таблиц Юнга.

Напомним определения. Обозначим через $\mathbb Y$ граф Юнга (см. рис. 1).

Рис. 1. Граф Юнга.

По определению, вершинами графа $\mathbb Y$ являются диаграммы Юнга, и две вершины ν и η соединены ориентированным ребром, если $\nu \subset \eta$ и разность η/ν состоит из одной клетки. В этом случае мы будем писать $\nu \nearrow \eta$. Для любой клетки $\square \in \eta$ можно определить число

 $c(\Box)=x$ -координата клетки $\Box-y$ -координата клетки $\Box,$ называемое codep жанием клетки \Box (см. рис. 2).

Рис. 2. Содержания клеток.

Обозначим через $\mathrm{Tab}(\nu)$ множество путей в графе $\mathbb Y$ из \emptyset в ν ; такие пути называются $\mathit{стандартнымu}$ таблицами или таблицами Юнга. Удобный способ представить путь $T \in \mathrm{Tab}(\nu)$,

$$\emptyset = \nu_0 / \ldots / \nu_n = \nu,$$

заключается в том, чтобы записать числа $1,\dots,n$ в соответствующие клетки $\nu_1/\nu_0,\dots,\ \nu_n/\nu_{n-1}$ диаграммы $\nu_n.$ Обозначим

$$\operatorname{Tab}(n) = \bigcup_{|\nu|=n} \operatorname{Tab}(\nu).$$

Следующее предложение может быть легко проверено.

Предложение 5.3. Пусть

$$T = \nu_0 \nearrow \ldots \nearrow \nu_n \in \operatorname{Tab}(n).$$

Отображение

$$T \mapsto (c(\nu_1/\nu_0), \ldots, c(\nu_n/\nu_{n-0}))$$

является биекцией мно жесства таблиц Tab(n) на мно жесство векторов содержаний Cont(n), определенных в начале этого параграфа. При этом $\alpha \approx \beta$, α , $\beta \in Cont(n)$, в том и только в том случае, если пути имеют общий конец, т.е. если они являются таблицами на одной и той же диаграмме.

Доказательство. Векторы содержаний клеток любой стандартной таблицы Юнга очевидно удовлетворяют условиям (1), (2), (3) определения, и эти условия однозначно определяют таблицу как последовательность клеток диаграммы Юнга.

В терминах таблиц Юнга допустимые транспозиции – это транспозиции, переставляющие числа, находящиеся в различных строках и различных столбцах.

Пемма 5.4. Любые две таблицы Юнга $T_1, T_2 \in \text{Tab}(\nu)$ на диаграмме ν могут быть получены одна из другой при помощи последовательности допустимых транспозиций. Другими словами, если $\alpha, \beta \in \text{Cont}(n)$ и $\alpha \approx \beta$, то β может быть получен из α при помощи допустимых транспозиций.

Доказательство. Мы покажем, что при помощи допустимых транспозиций можно получить из любой таблицы Юнга $T \in \mathrm{Tab}(\nu), \ \nu = (\nu_1, \dots, \nu_k),$ следующую таблицу с той же диаграммой (и горизонтальной монотонной нумерацией):

$$\begin{array}{c|cccc}
1 & 2 & \cdots & \nu_1 \\
\hline
\nu_1 + 1 & \cdots & \nu_1 + \nu_2 \\
\hline
\vdots & \vdots & \ddots & \vdots \\
\hline
n - \nu_k + 1 & \cdots & n
\end{array}$$

отвечающую вектору содержаний

$$\alpha(T^{\nu}) = (0, 1, 2, \dots, \nu_1 - 1, -1, 0, \dots, \nu_2 - 2, -2, -1, \dots)$$

множества $\mathrm{Cont}\,(n)$. Для этого рассмотрим последнюю клетку последней строки диаграммы ν . Пусть в этой клетке таблицы T

написано число i. Переставим числа i и i+1, затем i+1 и i+2, ..., и, наконец, n-1 и n. Понятно, что все эти транспозиции являются допустимыми и что мы получим таблицу, у которой в последней клетке последней строки стоит число n. Повторим всю процедуру с числами $n-1, n-2, \ldots, 2$ и т.д.

Следствие 5.5. $Ec_{A}u \ \alpha \in \operatorname{Spec}(n) \ u \ \alpha \approx \beta, \ \beta \in \operatorname{Cont}(n), \ mo \ \beta \in \operatorname{Spec}(n) \ u \ \alpha \sim \beta.$

Замечание 5.6. Наша цепочка транспозиций в доказательстве леммы 5.4, связывающая таблицы T и T^{ν} , является минимальной в следующем смысле. Обозначим через s подстановку, переводящую таблицу T в T^{ν} , т.е. сопоставляющую числу, стоящему в данной клетке, число, стоящее в той же клетке таблицы T^{ν} . Положим число $\ell(s)$ равным числу инверсий в подстановке s, т.е.

$$\ell(s) = \#\{(i,j) \in \{1,\ldots,n\} \mid i < j, s(i) > s(j)\}.$$

Общеизвестно, что подстановка s может быть записана как произведение $\ell(s)$ транспозиций s_i и не может быть записана в виде более короткого произведения s_i . Несложно проверить, что наша цепочка состоит в точности из $\ell(s)$ допустимых транспозиций. Иначе говоря, множество $\mathrm{Cont}(n)$ является «вполне геодезическим» подмножеством множества \mathbb{Z}^n для действия группы S_n . То есть $\mathrm{Cont}(n)$ с каждыми двумя векторами содержит цепочки векторов, реализующие минимальный путь между ними в смысле словесной метрики относительно коксетеровских образующих.

В доказательстве леммы 5.4 использовалось то обстоятельство, что только коксетеровскими транспозициями можно преобразовать любую таблицу с данной диаграммой в любую другую таблицу с той же диаграммой, – это и гарантировало, что векторы базиса Юнга с одной диаграммой лежат в одном представлении. Таким образом, с каждым неприводимым представлением связана структура графа, вершины которого есть векторы базиса Юнга, а ребра помечаются образующими Коксетера и соединяют пары векторов, которые могут быть соответствующей образующей переведены друг в друга. Эти графы обобщают граф (порядок) Брюа на самой группе S_n .

⁶Просто потому, что $\ell(s_i g) = \ell(g) \pm 1$ для всех i и $g \in S_n$.

Замечание 5.7. В работах первого автора (см. [2]) были определены так называемые адические преобразования на пространстве путей градуированных графов. В частности, преобразование (автоморфизм) Юнга в пространстве бесконечных таблиц (т.е. путей в графе) Юнга. Это преобразование переводит таблицу в следующую таблицу в смысле лексикографического порядка на таблицах с данной диаграммой. Поэтому любые две конечные таблицы с одной и той же диаграммой лежат на одной траектории автоморфизма Юнга. Отрезок траекторий, проходящий по таблицам с данной диаграммой, начинается с таблицы, помещенной на рисунке выше (последовательная нумерация по горизонтали), а кончается таблицей, в которой последовательная нумерация идет по вертикали. Но эти траектории, разумеется, не являются геодезическими, как цепочка преобразований, определенных выше, которая составляет лишь часть траектории.

Напомним, что граф Юнга $\mathbb Y$ есть бесконечный $\mathbb Z$ -градуированный граф диаграмм Юнга с очевидной градуировкой и множеством ребер. Граф, состоящий из первых n этажей, обозначим через $\mathbb Y_n$.

Мы переходим к доказательству центральной теоремы работы.

Теорема 5.8. Граф Юнга $\mathbb Y$ является графом ветвления симметрических групп; спектр алгебры Гельфанда-Цетлина GZ(n) есть пространство путей в конечном графе $\mathbb Y_n$, т.е. пространство таблиц Юнга с n клетками; при этом $\operatorname{Spec}(n) = \operatorname{Cont}(n)$, где $\operatorname{Spec}(n)$ есть спектр алгебры GZ(n) относительно YJM-образующих X_1,\ldots,X_n , а $\operatorname{Cont}(n)$ – мно жество векторов содержаний; соответствующие отношения эквивалентности совпадают: $\sim = \approx$.

Доказательство. Как мы видели, множество классов $\mathrm{Cont}\,(n)/\approx$ есть множество классов таблиц, имеющих общую диаграмму. Поэтому

$$\#\{\operatorname{Cont}(n)/\approx\}=p(n),$$

где p(n) есть число разбиений числа n, т.е. число диаграмм с n клетками. В силу следствия 5.5 каждый класс эквивалентности в $\mathrm{Cont}(n)/\approx$ или не содержит элементов множества $\mathrm{Spec}\,(n)$, или является подмножеством какого-либо класса в $\mathrm{Spec}\,(n)/\sim$. Но

$$\#\{\operatorname{Spec}(n)/\sim\}=\#\{S_n^{\wedge}\}=p(n),$$

так как число неприводимых представлений равно числу классов сопряженности, которое снова есть число разбиений числа n (как число циклических типов подстановок). Следовательно, каждый класс множества $\mathrm{Cont}\,(n)/\approx \mathrm{coвпадает}$ с каким-либо из классов множества $\mathrm{Spec}\,(n)/\sim$. Иначе говоря,

$$Spec(n) = Cont(n)$$
 и $\sim = \approx$.

Отсюда очевидно следует, что граф $\mathbb Y$ является графом ветвления цепочки симметрических групп.

Таким образом, основная теорема доказана. Но приведенный анализ дает гораздо больше, чем доказательство теоремы ветвления; в следующих параграфах мы получим на его основе явную модель представлений (ортогональную форму Юнга) и наметим вывод формулы для характеров.

6. Формулы Юнга

 \mathcal{A} о этого момента векторы v_T из базиса Юнга рассматривались с точностью до скалярных сомножителей. В этом параграфе мы зададим выбор этих сомножителей.

Начнем с таблицы T^{λ} , определенной в доказательстве леммы 5.4 (см. рисунок). Выберем какой-нибудь вектор $v_{T^{\lambda}}$, отвечающий этой таблице.

Теперь рассмотрим некоторую таблицу $T \in \mathrm{Tab}(\lambda)$ и положим

$$\ell(T) = \ell(s),$$

где s — подстановка, переводящая таблицу T^{λ} в T. Напомним, что P_T обозначает ортогональную проекцию на V_T (см. §1). Положим

$$v_T = P_T \cdot s \cdot v_{T^{\lambda}}. \tag{6.1}$$

В силу леммы 5.4 подстановка s может быть записана как произведение $\ell(T)$ допустимых транспозиций. Таким образом, из определения (6.1) и формул (4.2) мы получаем

$$s \cdot v_{T^{\lambda}} = v_T + \sum_{R \in \text{Tab}(\lambda), \ell(R) < \ell(T)} \gamma_R v_R, \tag{6.2}$$

где γ_R – некоторые рациональные числа. В частности, пусть $T'=s_iT$ и

$$\ell(T') > \ell(T)$$
.

Пусть

$$\alpha(T) = (a_1, \dots, a_n) \in \text{Cont}(n)$$

- последовательность содержаний клеток таблицы T. Тогда из (4.2), (6.1) и (6.2) следует, что

$$s_i \cdot v_T = v_{T'} + \frac{1}{a_{i+1} - a_i} v_T. \tag{6.3}$$

И, опять в силу (5.2),

$$s_i \cdot v_{T'} = \left(1 - \frac{1}{(a_{i+1} - a_i)^2}\right) v_T - \frac{1}{a_{i+1} - a_i} v_{T'}.$$
 (6.4)

Это доказывает следующее предложение.

Предложение 6.1. Существует базис $\{v_T\}$ представления V^{λ} , в котором коксетеровские образующие s_i действуют по формулам (6.3), (6.4). Все неприводимые представления группы S_n определены над полем \mathbb{Q} .

 Π ругой способ доказательства этого предложения — это непосредственная проверка того, что эти формулы задают представления группы S_n (т.е. проверка коксетеровских соотношений).

Базис, использованный выше, дает полунормальную форму On-2a представления V^{λ} . Если мы ортогонализуем все векторы v_T , то мы получим ортогональную форму On-2a представления V^{λ} . Эта форма определена уже над \mathbb{R} . Обозначим нормализованные векторы тем же символом v_T . Тогда транспозиции s_i действуют в двумерном пространстве, натянутом на векторы v_T и $v_{T'}$, посредством ортогональной матрицы. Таким образом,

$$s_i = \begin{pmatrix} r^{-1} & \sqrt{1 - r^{-2}} \\ \sqrt{1 - r^{-2}} & -r^{-1} \end{pmatrix}, \tag{6.5}$$

где

$$r = a_{i+1} - a_i$$
.

Это число часто называется осевым расстоянием (см. [18], а также [30]). Если записывать действие коксетеровских образующих s_i в базисе стандартных таблиц, то оно выглядит следующим образом:

• если i и i+1 стоят в одной строке, то s_i оставляет таблицу T неизменной;

- если i и i+1 стоят в одном столбце, то s_i умножает таблицу T на -1;
- если i и i+1 стоят в разных строках и столбцах, то в двумерном пространстве, натянутом на эту таблицу и таблицу (также стандартную), в которой элементы i и i+1 поменяны местами, s_i действует по формуле (6.5).

Предложение 6.2. Существует ортогональный базис $\{v_T\}$ представления V^{λ} , в котором образующие s_i действуют по формулам (6.5).

Замечание 6.3. Так как вес $\alpha(T^{\lambda})$ вектора $v_{T^{\lambda}}$ является максимальным весом представления V^{λ} при лексикографическом упорядочении, мы можем назвать вес $\alpha(T^{\lambda})$ старшим весом представления V^{λ} , а вектор $v_{T^{\lambda}}$ – старшим вектором представления V^{λ} .

7. Комментарии и следствия

Предыдущие параграфы содержали построение первой части теории представлений симметрических групп — описание неприводимых представлений, ветвление представлений, выражение для коксетеровских транспозиций в представлениях. В частности, была вскрыта внутренняя связь между комбинаторикой диаграмм и таблиц Юнга, графа Юнга с одной стороны и теорией представлений симметрических групп с другой.

Лальнейший план, включающий связь с симметрическими функциями (характеристическое отображение), формулы для характеров, теорию индуцированных представлений, правило Литтлвуда-Ричардсона, связь с теорией представлений GL(n) и алгебр Гекке, с асимптотической теорией, также может быть реализован с помощью тех же идей, основная из которых – индуктивный подход к серии групп S_n .

Из всего этого мы наметим в следующем параграфе лишь вывод формул Мурнагана-Накаямы, оставляя дальнейшее до другого случая.

В этом параграфе мы приведем несколько простых следствий из результатов, полученных в $\S 1-6$. В первую очередь, извлечем следствия из теоремы ветвления, утверждающей, что ветвление неприводимых представлений групп S_n описывается графом Юнга.

Спедствие 7.1. Кратность вхождения неприводимого представления π_{μ} группы S_n в представление π_{λ} группы S_{n+k} равна числу путей между диаграммами λ и μ ($\lambda \vdash n + k$, $\mu \vdash n$); в частности, если $\mu \not\subset \lambda$, то она равна 0, а в общем случае она не превышает k! и эта оценка достигается.

Доказательство. Нуждается в доказательстве лишь последнее утверждение. Число таблиц в косой диаграмме λ/μ не больше числа различных способов последовательно добавить к диаграмме μ новые k клеток. Если эти k клеток можно поставить в различные строки и столбцы, то число этих способов равно k!.

В частности, если k=2, то имеется только три различных случая:

- (1) кратность вхождения μ в λ равна 0, и вершины μ и λ не соединены в графе ветвления;
- (2) кратность вхождения равна 1, и интервал, соединяющий μ и λ , это цепь

$$\mu$$
— ν — λ ;

(3) кратность вхождения равна 2, и интервал между μ и λ это ромб

$$\mu \left\langle {\stackrel{\nu}{n}} \right\rangle \lambda$$
.

В случае цепочки, очевидно, перестановка s_{l+1} действует на все векторы вида

$$v_T$$
, $T = \dots / \mu / \nu / \lambda / \dots$,

умножением на число (которое есть ± 1 ввиду соотношения $s_{l+1}^2=1$). Действие перестановки s_{l+1} в случае ромба было рассмотрено в предыдущем параграфе. Заметим, что граф Юнга есть так называемая диаграмма Хассе дистрибутивной решетки конечных идеалов решетки $\mathbb{Z}_++\mathbb{Z}_+$, поэтому интервалы в графе Юнга имеют стандартное описание, а интервал общего вида есть булева алгебра. А priori этот важный факт совершенно неочевиден, но в конечном итоге он оказался следствием коксетеровских соотношений. Беря его в качестве предположения, также можно вывести теорию ветвления (см. [30, 31]).

Следующий важный вывод – абстрактное описание образующих Юнга-Юциса-Мерфи, основанное на полученных результатах.

Определим отображение

$$\tilde{p}_n: S_n \to S_{n-1}$$

с помощью следующей операции отбрасывания последнего символа:

$$\tilde{p}_n((\ldots,n,\ldots)(\ldots)) = ((\ldots,\not h,\ldots)(\ldots)),$$

где в скобках стоит разложение подстановки $g \in S_n$ на циклы и все циклы кроме первого, содержащего n, остаются неизменными, а в первом символ n удаляется. Очевидные свойства отображения \tilde{p}_n таковы:

- (1) $\tilde{p}_n(\mathbb{I}_n) = \mathbb{I}_{n-1}$, где \mathbb{I}_k единица в S_k ;
- (2) $\tilde{p}_n|_{S_{n-1}} = \mathrm{id}_{S_{n-1}} \quad (S_{n-1} \subset S_n);$
- (3) $\tilde{p}_n(g_1hg_2) = g_1\tilde{p}_n(h)g_2, \quad g_1, g_2 \in S_{n-1}, h \in S_n.$

Заметим, что условия (1) и (2) следуют из (3). Действительно, из (3) следует, что

$$\tilde{p}_n(g\mathbb{I}) = g\tilde{p}_n(\mathbb{I}) = \tilde{p}_n(\mathbb{I}g) = \tilde{p}_n(\mathbb{I})g$$

при всех $g\in S_{n-1},$ откуда $\tilde{p}_n(\mathbb{I})=\mathbb{I}.$ Но тогда $\tilde{p}_n(g)=g$ для $g\in S_{n-1}.$

Через p_n обозначим продолжение отображения \tilde{p}_n по линейности на групповую алгебру $\mathbb{C}[S_n]$:

$$p_n: \mathbb{C}[S_n] \to \mathbb{C}[S_{n-1}].$$

Таким образом, p_n есть проекция алгебры $\mathbb{C}[S_n]$ на подалгебру $\mathbb{C}[S_{n-1}]$. При n=2,3 такая проекция не единственна, однако при $n\geqslant 4$ условие (3) определяет единственную операцию $\tilde{p}_n:S_n\to S_{n-1}$. Легко видеть, что наличие проекции \tilde{p}_n означает существование двусторонне S_{n-1} -инвариантного разбиения группы S_n на (n-1)! множеств из n элементов. Такое свойство пары групп (G,H) выполнено нечасто, однако существует обобщение этой конструкции на полупростые алгебры (в частности на групповые алгебры) в самом общем случае.

Предложение 7.2.

$$p_n^{-1}(\{c\mathbb{I}\}) \cap Z(n-1,1) = \{aX_n + b\mathbb{I}\}, \quad a, b, c \in \mathbb{C}.$$

Иначе говоря, прообраз скаляров пересекается с централизатором группы S_{n-1} в алгебре $\mathbb{C}[S_n]$ по двумерному подпространству, натянутому на единицу и элемент Юнга-Юциса-Мерфи X_n . В частности, X_n определяется однозначно с точностью до множителя как элемент пересечения

$$p_n^{-1}(\{c\mathbb{I}\}) \cap Z(n-1,1),$$

ортогональный константам.

Доказательство. Если $p_n(\sum\limits_{g\in S_{n-1}}c_gg)=c\mathbb{I}$, то элемент A=

 $\sum_{g \in S_{n-1}} c_g g$ должен иметь вид линейной комбинации $A = \sum_{i=1}^n b_i(i,n)$. Такой элемент коммутирует с S_{n-1} тогда и только тогда, когда

$$b_1 = \cdots = b_{n-1} = a$$
, $b_n = b$, r.e. $A = aX_n + b\mathbb{I}$.

Проекция p_n позволяет определить обратный спектр (проективный предел) групп S_n как S_{n-1} -бимодулей

$$\lim(S_n, \tilde{p}_n) = \mathfrak{S};$$

пространство \mathfrak{S} уже не является группой, но на нем определено левое и правое действие группы S_{∞} финитных подстановок, поскольку проекция \tilde{p}_n коммутирует с левым и правым действиями S_{n-1} при всех n. Этот объект назван в [20] пространством виртуальных подстановок и детально изучается в [21]. Имеется обобщение этой конструкции на другие индуктивные семейства групп и алгебр.

В заключение обобщим теорему о централизаторе Z(l,k) подалгебры $\mathbb{C}[S_n]$ в алгебре $\mathbb{C}[S_{n+k}]$.

Теорема 7.3 [10]. Централизатор

$$Z(l,k) \equiv \mathbb{C}[S_{n+k}]^{\mathbb{C}[S_n]}$$

порожден центром Z(n) подалгебры $\mathbb{C}[S_n]\subset \mathbb{C}[S_{n+k}]$, группой S_n , переставляющей элементы $n+1,\ldots,n+k$, и YJM-элементами X_{n+1},\ldots,X_{n+k} .

Основной случай k=1 доказан в $\S 2$. Общий случай может быть доказан тем же методом.

Заметим, что указанный способ доказательства отличен от и проще метода, приведенного в [4] и [10, 11], а именно, полезным является предварительное рассмотрение подалгебры $\langle Z(n), X_{n+1}, \ldots, X_{n+k} \rangle$, как в §2.

Замечание 7.4. Формулы, задающие действие симметрической группы в представлениях, ассоциированных с косыми диаграммами Юнга (т.е. с диаграммами, равными разности двух диаграмм, одна из которых содержит другую), аналогичны формулам из §6.

Действительно, пусть λ есть разбиение числа l+k, а μ есть разбиение числа l и $\mu\subset\lambda$. Через $V^{\lambda/\mu}$ мы обозначим Z(l,k)-модуль

$$V^{\lambda/\mu} = \operatorname{Hom}_{S_{i}}(V^{\mu}, V^{\lambda}).$$

Понятно, что этот модуль имеет ортонормированный базис Юнга, индексируемый всеми таблицами Юнга на косой диаграмме λ/μ (аналогичный базису представления, ассоциированного с обычной диаграммой Юнга). Образующие

$$X_{l+i}, \quad i=i,\ldots,k,$$

алгебры Z(l,k) действуют в этом базисе умножением на содержание i-й клетки, а коксетеровские образующие подгруппы $S_k \subset Z(l,k)$ действуют по формулам (6.5).

Теорема 7.3 используется при доказательстве формулы для характеров в следующем параграфе.

8. Характеры симметрических групп

В этом параграфе мы даем набросок доказательства правила Мурнагана—Накаямы для характеров симметрической группы. В отличие от предыдущих параграфов, мы не напоминаем определений некоторых известных понятий. Ключевую роль играет предложение 8.3, опирающееся на теорему 7.3.

Напомним, что диаграмма Юнга γ называется $\kappa p w \kappa o M$, если γ имеет вид $(a+1,1^b)$, $a,b\in\mathbb{Z}_+$. Число b называется высотой крюка. Назовем косую диаграмму λ/μ косым крюком, если она связна и никакие две клетки в ней не лежат на одной диагонали. Иными словами, λ/μ есть косой крюк, если содержания всех клеток из λ/μ образуют отрезок (мощности $|\lambda/\mu|$) множества \mathbb{Z} . Число

строк, занимаемых косым крюком λ/μ , уменьшенное на единицу, будем называть высотой косого крюка и обозначать через $\langle \lambda/\mu \rangle$. Положим $k=|\lambda/\mu|$. Пусть $V^{\lambda/\mu}$ есть представление группы S_k , отвечающее косой диаграмме λ/μ , а $\chi^{\lambda/\mu}$ есть соответствующий характер. Мы хотим доказать следующую хорошо известную теорему.

Теорема 8.1. Имеет место следующая формула:

$$\chi^{\lambda/\mu}((12\dots k)) = \begin{cases} (-1)^{\langle \lambda/\mu \rangle}, & \textit{ecau } \lambda/\mu \;\;\textit{ecmb kocoŭ kprok}, \\ 0 & \textit{unave}. \end{cases} \tag{8.1}$$

Пусть теперь ρ есть разбиение числа k. Рассмотрим следующую подстановку из класса сопряженных элементов, отвечающего ρ :

$$(12 \dots \rho_1)(\rho_1 + 1 \dots \rho_1 + \rho_2)(\dots) \dots$$

Ясно, что, последовательно применяя теорему к действию этой подстановки в базисе Юнга, мы получаем следующее классическое правило.

Правило Мурнагана—Накаямы. Пусть ρ есть разбиение числа k. Значение $\chi_{\rho}^{\lambda/\mu}$ характера $\chi^{\lambda/\mu}$ на подстановке с длинами циклов ρ равно

$$\chi_{\rho}^{\lambda/\mu} = \sum_{S} (-1)^{\langle S \rangle},$$

где сумма берется по всем последовательностям S,

$$S: \quad \mu = \lambda_0 \subset \lambda_1 \subset \lambda_2 \cdots = \lambda,$$

для которых λ_i/λ_{i-1} есть косой крюк из ρ_i клеток, и

$$\langle S \rangle = \sum_{i} \langle \lambda_i / \lambda_{i-1} \rangle.$$

Хорошо известно и просто доказывается (см., например, [23, гл. 1, упр. 3.11]), что это правило эквивалентно всем остальным определениям характеров, таким, как, например, соотношение между симметрическими функциями

$$p_{\rho} = \sum_{\lambda} \, \chi_{\rho}^{\lambda} \, s_{\lambda}$$

(см. [23]) или детерминантная формула (см. [23, 18]). Заметим, что теорема, которую мы хотим доказать, есть, очевидно, частный случай правила Мурнагана-Накаямы.

То же доказательство следующего предложения было дано в работе [15].

Предложение 8.2. Формула (8.1) справедлива при $\mu = \varnothing$.

Доказательство. Легко проверить (например, по индукции; см. также доказательство теоремы 2), что

$$X_2 X_3 \dots X_k = \text{сумма всех циклов длины } k \text{ в } S_k.$$
 (8.2)

Значение (8.2) на любом векторе из базиса Юнга для V^λ равно

$$(-1)^b b! (k-b-1)!$$

если λ есть крюк высоты b, и равно нулю во всех остальных случаях. Легко видеть, что в группе S_k имеется ровно (k-1)! одноцикловых подстановок и что

$$\dim \lambda = \binom{k-1}{b},$$

если λ есть крюк высоты b. Вычисляя след элемента (8.2), получаем утверждение предложения.

Предложение 8.3. Для любого вектора v из базиса H ига для $V^{\lambda/\mu}$

$$\mathbb{C}[S_k] \cdot v = V^{\lambda/\mu}.$$

Доказательство. Пространство $V^{\lambda/\mu}$ есть неприводимый модуль над вырожденной аффинной алгеброй Гекке H(k). Вектор v есть собственный вектор всех операторов X_i , поэтому, как следует из коммутационных соотношений в H(k), пространство

$$\mathbb{C}[S_k] \cdot v$$

инвариантно под действием H(k). Поэтому оно совпадает с $V^{\lambda/\mu}$. \square

Предложение 8.4. Если диаграмма λ/μ несвязна, то

$$\chi^{\lambda/\mu}((12\ldots k))=0.$$

Доказательство. Пусть $\lambda/\mu = \nu_1 \cup \nu_2$, где ν_1, ν_2 суть две косые диаграммы Юнга, не граничащие ни по какому ребру. Пусть $|\nu_1| = a, \ |\nu_2| = b$. Рассмотрим в $V^{\lambda/\mu}$ подпространство, натянутое на такие таблицы формы λ/μ , что числа $1, 2, \ldots, a$ стоят в диаграмме ν_1 , а числа $a+1, \ldots, k$ стоят в диаграмме ν_2 . Очевидно, что таких таблиц ровно столько, сколько существует пар таблиц формы ν_1 и ν_2 соответственно. Рассмотрим действие подгруппы $S_a \times S_b$ группы S_k на наше подпространство. Из формул Юнга следует, что оно как $S_a \times S_b$ -модуль изоморфно

$$V^{\nu_1} \otimes V^{\nu_2}$$
.

В силу предложения 8.3 мы имеем эпиморфизм

$$\operatorname{Ind}_{S_a \times S_b}^{S_k} V^{\nu_1} \otimes V^{\nu_2} \longrightarrow V^{\lambda/\mu}. \tag{8.3}$$

Размерности правой и левой части (8.3) равны

$$\binom{k}{a}$$
 dim ν_1 dim ν_2 .

Поэтому (8.3) есть изоморфизм.

В естественном базисе в индуцированном представлении матрица оператора, отвечающего подстановке $(12 \dots k)$, имеет на диагонали одни нули (как и для любой другой подстановки, не сопряженной никакому элементу подгруппы $S_a \times S_b$). Это доказывает предложение.

Предложение 8.5. Если в диаграмме λ/μ две клетки лежат на одной диагонали, то

$$\chi^{\lambda/\mu}((12\dots k))=0.$$

Доказательство. Предположим, что такие две клетки есть. Тогда существует такая диаграмма η , что

$$\mu \subset \eta \subset \lambda$$

и η/μ есть 2×2 квадрат

$$\eta/\mu = \boxplus$$
.

Тогда $V^{\lambda/\mu}$ содержит S_4 -подмодуль V^{\boxplus} . По предложению 8.3 мы имеем эпиморфизм

$$\operatorname{Ind}_{S_4}^{S_k} V^{\boxplus} \longrightarrow V^{\lambda/\mu}. \tag{8.4}$$

По правилу ветвления (и двойственности Фробениуса) в левую часть (8.4) входят только такие неприводимые S_k -модули V^δ , для которых $\boxplus \subset \delta$. В частности, δ никогда не может быть крюком, так что всегда

$$\chi^{\delta}((12\ldots k))=0$$

в силу предложения 8.2. Это доказывает предложение.

Фактически мы доказали, что в условиях предложения 8.5

$$\operatorname{Hom}_{S_k}(V^{\gamma}, V^{\lambda/\mu}) = 0$$

для любой крюковой диаграммы γ .

Предложение 8.6. Пусть λ/μ есть косой крюк. Тогда для любого крюка $\gamma = (a+1,1^b)$

$$\operatorname{Hom}_{S_k}(V^{\gamma}, V^{\lambda/\mu}) = \left\{ \begin{matrix} \mathbb{C}, & b = \langle \lambda/\mu \rangle, \\ 0 & unaue. \end{matrix} \right.$$

Доказательство. Поскольку параллельные переносы косой диаграммы очевидно сохраняют соответствующий S_k -модуль, мы можем считать, что λ и μ выбраны минимальными, то есть

$$\lambda_1 > \mu_1, \quad \lambda_1' > \mu_1'.$$

Покажем, что если $b < \langle \lambda/\mu \rangle$, то

$$\operatorname{Hom}_{S_k}(V^{\gamma}, V^{\lambda/\mu}) = 0.$$

Действительно, модуль V^{γ} содержит вектор, инвариантный относительно подгруппы S_{k-b} , а так как такого вектора при нашем предположении нет даже в V^{λ} (это следует из правила ветвления), то его нет и в $V^{\lambda/\mu}$. Случай $b > \langle \lambda/\mu \rangle$ аналогичен.

Пусть теперь $b=\langle \lambda/\mu \rangle$. Рассмотрим пространство

$$\operatorname{Hom}_{S_k}(V^{\gamma}, V^{\lambda}).$$

Как легко видеть, например, из следующего рисунка (и формул Юнга),

это пространство есть неприводимый $S_{|\mu|}$ -модуль V^{μ} . Поэтому, очевидно,

$$\operatorname{Hom}_{S_k \times S_{|\mu|}}(V^{\gamma} \otimes V^{\mu}, V^{\lambda}) = \mathbb{C},$$

и, значит,

$$\operatorname{Hom}_{S_k}(V^{\gamma}, V^{\lambda/\mu}) = \mathbb{C}.$$

Tеорема очевидным образом вытекает из доказанных предложений.

Поддержано грантом Президента РФ для поддержки ведущих научных школ HIII-2251.2003.1.

Литература

- Г. Вейль, Классические группы. Их инварианты и представления. Гос. изд. иностр. лит., М., 1947.
- 2. А. М. Вершик, *Равномерная алгебраическая аппроксимация оператора* сдвига и операторы умножения. ДАН СССР **259**, № 3 (1981), 526-529 [добавлена при переводе].
- 3. А. М. Вершик, С. В. Керов, *Локально полупростые алгебры. Комбинатор- ная теория и К*₀-функтор. В кн.: «Итоги науки и техники. Современные проблемы математики. Новейшие достижения», т. 26. ВИНИТИ, М., 1985, с. 3-56.
- 4. А. М. Вершик, А. Ю. Окуньков, Индуктивный подход к построению теории представлений симметрических групп. УМН 51, № 2 (1996), 153–154.
- 5. И. М. Гельфанд, М. Л. Цетлин, Конечномерные представления группы унимодулярных матриц. ДАН СССР 71 (1950), 825-828.
- 6. И. М. Гельфанд, М. Л. Цетлин, Конечномерные представления группы ортогональных матриц. ДАН СССР 71 (1950), 1017-1020.
- 7. В. Ф. Молчанов, О матричных элементах неприводимых представлений симметрической группы. Вестник Моск. унив. 1 (1966), 52-57.

- 8. А. Ю. Окуньков, Теорема Тома и представления бесконечной симметрической группы. Функц. анал. и его прил. 28, № 2 (1994), 31-40.
- 9. А. Ю. Окуньков, О представлениях бесконечной симметрической группы. Зап. научн. семин. ПОМИ **240** (1996), 166-228.
- 10. Г. И. Ольшанский, Расширение алгебры $U(\mathfrak{g})$ для бесконечномерных классических алгебр Ли \mathfrak{g} и янгианы $Y(\mathfrak{gl}(m))$. ДАН СССР **297**, № 5 (1987), 1050-1054
- 11. Г. И. Ольшанский, Унитарные представления (G,K)-пар, связанных с бесконечной симметрической группой $S(\infty)$. Алгебра и анализ 1, № 4 (1989), 178–209.
- 12. И. А. Пушкарев, *К теории представлений сплетений конечных групп с симметрическими группами.* Зап. научн. семин. ПОМИ **240** (1997), 229-244 [добавлена при переводе].
- 13. И. В. Чередник, О специальных базисах неприводимых представлений вырозиденной аффинной алгебры Гекке. — Функц. анал. и его прил. 20, № 1 (1986), 87–88.
- 14. I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras. Invent. Math. 106, No. 2 (1991), 411-431 [добавлена при переводе].
- P. Diaconis, C. Greene, Applications of Murphy's elements. Stanford University Tech. Report, No. 335.
- V. Drinfeld, Degenerated affine Hecke algebras and Yangians. Funct. Anal. Appl. 20 (1986), 56-58.
- 17. G. D. James, The Representation Theory of the Symmetric Group. Springer-Verlag, Berlin, 1978 [имеется перевод: Г. Джеймс, «Теория представлений симметрических групп», Мир, М., 1982].
- 18. G. James, A. Kerber, The Representation Theory of the Symmetric Group. Addison-Wesley, Reading, Mass., 1981.
- A. Jucys, Symmetric polynomials and the center of the symmetric group ring. Reports Math. Phys. 5 (1974), 107-112.
- S. Kerov, G. Olshanski, A. Vershik, Harmonic analysis on the infinite symmetric group. A deformation of the regular representation. — C. R. Acad. Sci. Paris Ser. I. Math. 316, No. 8 (1993), 773-778.
- S. Kerov, G. Olshanski, A. Vershik, Harmonic analysis on the infinite symmetric group. — Invent. Math (2004), to appear.
- 22. G. Lusztig, Affine Hecke algebras and their graded version. J. Amer. Math. Soc. 2, No. 3 (1989), 599-635 [добавлена при переводе].
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition. Охford University Press, New York, 1995 [имеется перевод первого издания: И. Макдональд, «Симметрические функции и многочлены Холла», Мир, М., 1985].
- 24. G. Murphy, A new construction of Young's seminormal representation of the symmetric group. J. Algebra 69 (1981), 287-291.
- 25. M. L. Nazarov, Projective representations of the infinite symmetric group. In: Representation Theory and Dynamical Systems, A. Vershik (ed.), Adv. Soviet Math. 9, Amer. Math. Soc., Providence, RI, 1992 [добавлена при переводе].

- M. Nazarov, Young's orthogonal form for Brauer's centralizer algebra. J. Algebra 182, No. 3 (1996), 664-693.
- A. Okounkov, Young basis, Wick formula, and higher Capelli identities. Internat. Math. Res. Notices 17 (1996), 817-839.
- 28. A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras.
 Proc. London Math. Soc. (3) 75 (1997), 99-133.
- 29. J. D. Rogawski, On modules over the Hecke algebra of a p-adic group. Invent. Math. 79, No. 3 (1985), 443-465 [добавлена при переводе].
- A. Vershik, Local algebras and a new version of Young's orthogonal form. In: Topics in Algebra, Part 2: Commutative Rings and Algebraic Groups, Banach Cent. Publ., vol. 26, part 2, 1990, 467-473.
- 31. A. Vershik, Local stationary algebras. Amer. Math. Soc. Transl. (2) 148 (1991), 1-13.
- 32. A. Vershik, Asymptotic aspects of the representation theory of symmetric groups.

 Selecta Math. Sov. 11, No. 2 (1992), 159-180 (расширенный перевод послесловия к русскому переводу книги [17]).
- 33. Asymptotic Combinatorics with Applications to Mathematical Physics, A. M. Vershik (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 2003 [добавлена при переводе].
- 34. A. M. Vershik, Gelfand-Tsetlin algebras, expectations, inverse limits, Fourier analysis. In: Unity of Mathematics. Conference dedicated to I. M. Gelfand, to арреаг [добавлена при переводе].
- 35. D. Zagier, Appendix to the book S. K. Lando, A. K. Zvonkin, Graphs on Surfaces and Their Applications. Springer, Berlin, 2004 [добавлена при переводе].

Vershik A. M., Okounkov A. Yu. A new approach to the representation theory of the symmetric groups. II.

The present paper is a revised Russian translation of the paper "A new approach to representation theory of symmetric groups," Selecta Math., New Series, 2, No. 4 (1996), 581-605. Numerous modifications to the text were made by the first author for this publication.

С-.Петербургское отделение Математического института им. В. А. Стеклова РАН *E-mail*: vershik@pdmi.ras.ru

 Π оступило 2 марта 2004 г.

Princeton University