

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM180400345104

Fax: +86 (0) 755 2671 0594 Page: 1 of 89

TEST REPORT

Application No.: SZEM1804003451CR

Applicant: BRAGI GMBH

Address of Applicant: Sendlinger Strasse 7 / Angerblock 2. OG, 80331 München, Germany

Manufacturer: BRAGI GMBH

Address of Manufacturer: Sendlinger Strasse 7 / Angerblock 2. OG, 80331 München, Germany

Factory: VTech (Dongguan) Communications Ltd.

Address of Factory: Xia Ling Bei Management Zone, Liaobu Town, Dongguan City, Guangdong

Province, China

Equipment Under Test (EUT):

EUT Name: Bragi Ears

Model No.: BE1000, BE1001, BE1002, BE1003, BE1004, BE1005, BE1006, BE1007,

BE1008, BE1009 4

Please refer to section 2 of this report which indicates which model was actually

tested and which were electrically identical.

Trade mark: Bragi

FCC ID: 2AF5T-BE1000R

Standards: 47 CFR Part 15, Subpart C 15.247

Date of Receipt: 2017-02-13(for original report SZEM170200080201)

Date of Test: 2017-02-14 to 2017-03-17(for original report SZEM170200080201)

Date of Issue: 2017-04-20(for original report SZEM170200080201)

2018-05-03(for new report SZEM180400345104)

Test Result : Pass*

SERVICES COMMINS OF THE PROPERTY OF THE PROPER

Keny Xu EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM180400345104

Page: 2 of 89

	Revision Record							
Version	Chapter	Date	Modifier	Remark				
01		2018-05-03		Original				

Authorized for issue by:		
	Hank Van.	
	Hank Yan /Project Engineer	
	Eric Fu	
	Eric Fu /Reviewer	

Report No.: SZEM180400345104

Page: 3 of 89

2 Test Summary

Radio Spectrum Technical Requirement							
Item	Standard	Method	Requirement	Result			
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass			
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g), (h)	Pass			

Radio Spectrum Matt	Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result			
Conducted Disturbance at AC Power Line(150kHz- 30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	N/A			
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass			
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass			
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass			
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass			
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass			
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass			
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass			
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass			

Report No.: SZEM180400345104

Page: 4 of 89

Remark:

Original model No. in report SZEM170200080201: B1002-01R

The model B1002-01R was only tested in report SZEM170200080201.

New model No. in report SZEM180400345104: BE1000, BE1001, BE1002, BE1003, BE1004, BE1005, BE1006, BE1007, BE1008, BE1009

This report was an additional report copied from the report SZEM170200080201, just changed the information of product description and model No.. Since the electrical circuit design, layout, components used and internal wiring for the models in this report were exactly the same as the model in the original report SZEM170200080201, only the different on firmware especially user interface.

Therefore, original data were kept in this report.

Report No.: SZEM180400345104

Page: 5 of 89

3 Contents

			Page
1	COV	ER PAGE	1
2	TES.	Г SUMMARY	3
3	CON	TENTS	5
4		ERAL INFORMATION	
7			
		TAILS OF E.U.T.	
		SCRIPTION OF SUPPORT UNITS	
		EASUREMENT UNCERTAINTY	
		ST LOCATIONst Facility	
		ST FACILITY	
		BNORMALITIES FROM STANDARD CONDITIONS	
5		IPMENT LIST	
6		O SPECTRUM TECHNICAL REQUIREMENT	
	6.1 Ar	VTENNA REQUIREMENT	14
	6.1.1		
	6.1.2		
		THER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE	
	6.2.1		
	6.2.2	Conclusion	13
7	RAD	O SPECTRUM MATTER TEST RESULTS	16
	7.1 20	dB Bandwidth	16
	7.1.1		
	7.1.2	·	
	7.1.3	, -	
	7.2 Cc	NDUCTED PEAK OUTPUT POWER	17
	7.2.1	=	
	7.2.2	1 5	
	7.2.3		
		RRIER FREQUENCIES SEPARATION	
	7.3.1	•	
	7.3.2 7.3.3	, ,	
		OPPING CHANNEL NUMBER	
	7.4.1		
	7.4.2		
	7.4.3	1 5	
		VELL TIME	
	7.5.1		
	7.5.2		
	7.5.3		
		ONDUCTED SPURIOUS EMISSIONS.	
	7.6.1	'	
	7.6.2	, ,	
	7.6.3		
	7.7 RA	DIATED SPURIOUS EMISSIONS	24

Report No.: SZEM180400345104

Page: 6 of 89

	7.7.1	E.U.T. Operation	25
	7.7.2	Test Setup Diagram	25
	7.7.3	Measurement Data	26
		ATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.8.1	E.U.T. Operation	31
	7.8.2	Test Setup Diagram	31
	7.8.3	Measurement Data	32
	7.9 Coni	DUCTED BAND EDGES MEASUREMENT	37
	7.9.1	E.U.T. Operation	37
	7.9.2	Test Setup Diagram	37
	7.9.3	Measurement Data	37
8	РНОТО	OGRAPHS	38
	8.1 Radi	ATED SPURIOUS EMISSIONS TEST SETUP	38
	8.2 EUT	CONSTRUCTIONAL DETAILS.	40
9	APPEN	IDIX	41
	9.1 Appe	NDIX 15.247	41-89

Report No.: SZEM180400345104

Page: 7 of 89

4 General Information

4.1 Details of E.U.T.

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.0 Dual-mode
	This report is for classic mode.
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	-6dBi
Power Supply:	Right headphone: DC 3.7V, 100mAh rechargeable battery Charged by the docking(Charged from Adapter via USB cable)
Cable:	USB charging line: 18.5cm, shielded

Report No.: SZEM180400345104

Page: 8 of 89

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle

frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM180400345104

Page: 9 of 89

4.2 Description of Support Units

The EUT has been tested independently.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.25 x 10-8		
2	Duty cycle	0.37%		
3	Occupied Bandwidth	3%		
4	RF conducted power	0.75dB		
5	RF power density	2.84dB		
6	Conducted Spurious emissions	0.75dB		
7	DE Dadiated name	4.5dB (below 1GHz)		
8	RF Radiated power	4.8dB (above 1GHz)		
	Dadistad Courieus amississatust	4.5dB (30MHz-1GHz)		
9	Radiated Spurious emission test	4.8dB (1GHz-18GHz)		
	Temperature test	1℃		
10	Humidity test	3%		
11	Supply voltages	1.5%		
12	Time	3%		

Report No.: SZEM180400345104

Page: 10 of 89

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180400345104

Page: 11 of 89

5 Equipment List

nducted Disturbance at AC Power Line(150kHz-30MHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13		
LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09		
LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25		
8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28		
4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28		
2 Line ISN	Fischer Custom	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28		

20dB Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09		
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09		

Conducted Peak Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Carrier Frequencies Separation					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM180400345104

Page: 12 of 89

Hopping Channel Number					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Dwell Time					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Conducted Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Conducted Band Edges Measurement					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM180400345104

Page: 13 of 89

Radiated Spurious Emissions					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10
EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
Low Noise Amplifier	Black Diamond Series	BDLNA- 0118-352810	SEM005-05	2016-10-09	2017-10-09
Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

General used equipment					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2016-10-12	2017-10-12
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2016-10-12	2017-10-12
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2016-10-12	2017-10-12
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2016-05-18	2017-05-18

Report No.: SZEM180400345104

Page: 14 of 89

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247

6.1.2 Conclusion

Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -6dBi.

Report No.: SZEM180400345104

Page: 15 of 89

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247

6.2.2 Conclusion

Standard Requirment:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- > Number of shift register stages: 9
- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individ

Report No.: SZEM180400345104

Page: 16 of 89

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.7

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting with all kind of modulation and all kind of data type.

Mode:

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Data

Report No.: SZEM180400345104

Page: 17 of 89

7.2 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(1)

Test Method: ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting with all kind of modulation and all kind of data type.

Mode:

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

Report No.: SZEM180400345104

Page: 18 of 89

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Data

Report No.: SZEM180400345104

Page: 19 of 89

7.3 Carrier Frequencies Separation

Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)
Test Method: ANSI C63.10 (2013) Section 7.8.2

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than

0.125W

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Hopping transmitting with all kind of modulation and all kind of data type.

Mode:

Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Data

Report No.: SZEM180400345104

Page: 20 of 89

7.4 Hopping Channel Number

Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii)

Test Method: ANSI C63.10 (2013) Section 7.8.3

Limit:

Frequency range(MHz)	Number of hopping channels (minimum)
902-928	50 for 20dB bandwidth <250kHz
902-926	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode Hopping transmitting with all kind of modulation

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Data

Report No.: SZEM180400345104

Page: 21 of 89

7.5 Dwell Time

Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii)
Test Method: ANSI C63.10 (2013) Section 7.8.4

Limit:

Frequency(MHz)	Limit
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)
902-926	0.4S within a 10S period(20dB bandwidth≥250kHz)
2400 2492 5	0.4S within a period of 0.4S multiplied by the number
2400-2483.5	of hopping channels
5725-5850	0.4S within a 30S period

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test Mode: Hopping transmitting with all kind of modulation and all kind of data type.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400345104

Page: 22 of 89

7.6 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 7.8.8

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the

desired power, based on either an RF conducted or a radiated

measurement.

7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Exploratory Test Non-hopping transmitting with all kind of modulation and all kind of data type

Mode:

Mode:

Final Test Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400345104

Page: 23 of 89

Report No.: SZEM180400345104

Page: 24 of 89

7.7 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/met er)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM180400345104

Page: 25 of 89

7.7.1 E.U.T. Operation

Operating Environment:

Humidity: 50 % RH Atmospheric Pressure: 1020 mbar 25 °C Temperature:

Exploratory Test Non-hopping transmitting mode with all kind of modulation and all kind of

Mode: data type

Transmitting mode

Final Test Mode: Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst

For below 1GHz part, through pre-scan, the worst case is the lowest channel.

Only the worst case is recorded in the report.

7.7.2 Test Setup Diagram

Below 30MHz

Above 1GHz

Report No.: SZEM180400345104

Page: 26 of 89

7.7.3 Measurement Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM180400345104

Page: 27 of 89

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

Condition: 3m VERTICAL

Job No. : 0802CR Test mode: TX mode

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5	43.51 90.22 271.32 480.53 719.20	0.68 1.10 1.77 2.53 2.96	8.71 12.73 17.80	27.31 27.21 26.47 27.60 27.39	26.91 25.79 27.08	9.51 13.82 19.81	43.50 46.00	-33.99 -32.18 -26.19
6 pp				26.61				

Report No.: SZEM180400345104

Page: 28 of 89

Condition: 3m HORIZONTAL

Job No. : 0802CR Test mode: TX mode

	mouci in	mouc						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	32.86	0.60	17.10	27.35	25.48	15.83	40.00	-24.17
2	104.54	1.21	8.87	27.17	29.82	12.73	43.50	-30.77
3	216.02	1.49	11.03	26.64	27.93	13.81	46.00	-32.19
4	381.25	2.15	16.07	27.01	26.04	17.25	46.00	-28.75
5	584.79	2.69	19.37	27.57	26.98	21.47	46.00	-24.53
6 p	p 903.31	3.60	23.21	26.75	25.68	25.74	46.00	-20.26

Report No.: SZEM180400345104

Page: 29 of 89

Transmitter Emission above 1GHz										
Test mode:		GFSK Te		channel:	Lowest	Rema	ark:	Peak		
Frequency (MHz)	equency Loss Factor		Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)			Polarization		
1498.912	25.80	4.47	38.06	47.81	40.50	74.00	-33.50	Vertical		
3135.986	31.56	6.04	38.28	43.29	43.28	74.00	-30.72	Vertical		
4804.000	34.17	7.73	39.03	50.53	53.79	74.00	-20.21	Vertical		
7206.000	36.41	9.65	38.18	44.28	52.42 74.00		-21.58	Vertical		
9608.000	37.52	11.06	36.99	40.12	52.16	74.00	-21.84	Vertical		
12461.220	38.88	13.08	38.77	39.61	53.42	74.00	-20.58	Vertical		
1333.284	25.10	4.26	38.04	42.35	34.17	74.00	-39.83	Horizontal		
3010.828	31.32	5.94	38.21	42.86	43.04	74.00	-30.96	Horizontal		
3863.900	33.24	6.60	38.64	42.56	44.24	74.00	-29.76	Horizontal		
4804.000	34.17	7.73	39.03	49.71	52.97	74.00	-21.03	Horizontal		
7206.000	36.41	9.65	38.18	44.33	52.47	74.00	-21.53	Horizontal		
9608.000 37.52 11.06 36.99 40.06			40.06	52.10	74.00	-21.90	Horizontal			

Test mode:		GFSK	Test	t channel:	Middle	Rer	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1333.284	25.10	4.26	38.04	46.34	38.16	74.00	-35.84	Vertical
3325.070	31.90	6.18	38.38	42.47	42.76	74.00	-31.24	Vertical
4882.000	34.30	7.84	39.06	54.30	57.79	74.00	-16.21	Vertical
7323.000	36.37	9.73	38.07	44.57	52.84	74.00	-21.16	Vertical
9764.000	37.55	11.21	36.92	40.42	52.72	74.00	-21.28	Vertical
12241.140	38.75	12.76	38.55	39.87	53.52	74.00	-20.48	Vertical
1468.696	25.68	4.43	38.06	43.17	35.70	74.00	-38.30	Horizontal
1958.189	27.65	4.97	38.10	42.61	38.23	74.00	-35.77	Horizontal
3738.129	32.89	6.50	38.58	42.82	44.14	74.00	-29.86	Horizontal
4882.000	34.30	7.84	39.06	52.59	56.08	74.00	-17.92	Horizontal
7323.000	36.37	9.73	38.07	45.62	53.89	74.00	-20.11	Horizontal
9764.000	37.55	11.21	36.92	39.72	52.02	74.00	-21.98	Horizontal

Report No.: SZEM180400345104

Page: 30 of 89

Test mode:		GFSK		t channel:	Middle	Re	mark:	Average
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line	I I imit	Polarization
4882.000	34.30	7.84	39.06	39.81	43.30	54.00	-10.70	Vertical
4882.000	34.30	7.84	39.06	38.69	42.18	54.00	-11.82	Horizontal

Test mode:		GFSK	Tes	t channel:	Highest	Rem	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1498.912	25.80	4.47	38.06	47.57	40.26	74.00	-33.74	Vertical
3299.775	31.86	6.16	38.37	43.44	43.69	74.00	-30.31	Vertical
4960.000	34.43	7.94	39.09	49.34	53.05	74.00	-20.95	Vertical
7440.000	36.33	9.81	37.95	44.37	52.78	74.00	-21.22	Vertical
9920.000	37.58	11.35	36.84	40.15	52.70	74.00	-21.30	Vertical
11752.000	38.85	13.25	39.06	39.95	53.52	74.00	-20.48	Vertical
1115.673	24.05	3.95	38.02	42.40	32.82	74.00	-41.18	Horizontal
1663.803	26.52	4.66	38.07	42.65	36.29	74.00	-37.71	Horizontal
3151.992	31.59	6.05	38.29	42.91	42.91	74.00	-31.09	Horizontal
4960.000	34.43	7.94	39.09	49.42	53.13	74.00	-20.87	Horizontal
7440.000	36.33	9.81	37.95	43.21	51.62	74.00	-22.38	Horizontal
9920.000	37.58	11.35	36.84	40.07	52.62	74.00	-21.38	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM180400345104

Page: 31 of 89

7.8 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

Measurement Distance: 3m

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 24 °C Humidity: 52 % RH Atmospheric Pressure: 1015 mbar

Exploratory Test Non-hopping transmitting mode with all kind of modulation and all kind of

Mode: data type

Transmitting mode

Final Test Mode: Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst

case.

For below 1GHz part, through pre-scan, the worst case is the lowest channel.

Only the worst case is recorded in the report.

7.8.2 Test Setup Diagram

30MHz-1GHz Above 1GHz

Report No.: SZEM180400345104

Page: 32 of 89

7.8.3 Measurement Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM180400345104

Page: 33 of 89

Polarization:Horizontal; Modulation Type:GFSK; ; Channel:Low

Condition: 3m HORIZONTAL

Job No: : 802CR

Mode: : 2402 Band edge

	Freq		Preamp Factor			Remark
-		 	dB	 	 	
	2390.000 2401.945					

Report No.: SZEM180400345104

Page: 34 of 89

Polarization: Vertical; Modulation Type: GFSK; ; Channel: Low

Condition: 3m VERTICAL

Job No: : 802CR

Mode: : 2402 Band edge

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2390.000	5.34	29.08	38.14	43.04	39.32	74.00	-34.68	
2 pp	2402.047	5.35	29.11	38.15	91.73	88.04	74.00	14.04	

Report No.: SZEM180400345104

Page: 35 of 89

Polarization:Horizontal; Modulation Type:GFSK; ; Channel:High

Condition: 3m HORIZONTAL

Job No: : 802CR

Mode: : 2480 Band edge

		Frea			Preamp Factor					Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	рр	2479.955	5.41	29.34	38.15	98.25	94.85	74.00	20.85	
2		2483.500	5.41	29.35	38.15	47.85	44.46	74.00	-29.54	
3		2483.597	5.41	29.35	38.15	48.14	44.75	74.00	-29.25	

Report No.: SZEM180400345104

Page: 36 of 89

Polarization: Vertical; Modulation Type: GFSK; ; Channel: High

Condition: 3m VERTICAL

Job No: : 802CR

Mode: : 2480 Band edge

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2479.955	5.41	29.34	38.15	91.17	87.77	74.00	13.77	
2	2483.500	5.41	29.35	38.15	43.37	39.98	74.00	-34.02	

Report No.: SZEM180400345104

Page: 37 of 89

7.9 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 7.8.6

7.9.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Exploratory Test Hopping and Non-hopping transmitting with all kind of modulation and all kind of

Mode: data type

Final Test Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

Mode: type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

7.9.2 Test Setup Diagram

Ground Reference Plane

7.9.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180400345104

Page: 38 of 89

8 Photographs

8.1 Radiated Spurious Emissions Test Setup

Report No.: SZEM180400345104

Page: 39 of 89

Report No.: SZEM180400345104

Page: 40 of 89

8.2 EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1804003451CR.

Report No.: SZEM180400345104

Page: 41 of 89

9 Appendix

9.1 Appendix 15.247

1.20 dB Bandwidth

Test Mode	Test Channel	EBW[MHz]	Limit[MHz]	Verdict
DH5	2402	0.948		PASS
DH5	2441	0.948		PASS
DH5	2480	0.946		PASS
2DH5	2402	1.264		PASS
2DH5	2441	1.264		PASS
2DH5	2480	1.262		PASS
3DH5	2402	1.268		PASS
3DH5	2441	1.240		PASS
3DH5	2480	1.246		PASS

Report No.: SZEM180400345104

Page: 42 of 89

Report No.: SZEM180400345104

Page: 43 of 89

Report No.: SZEM180400345104

Page: 44 of 89

Report No.: SZEM180400345104

Page: 45 of 89

Report No.: SZEM180400345104

Page: 46 of 89

Report No.: SZEM180400345104

Page: 47 of 89

2.Conducted Peak Output Power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	-2.88	<20.96	PASS
DH5	2441	2.11	<20.96	PASS
DH5	2480	1.86	<20.96	PASS
2DH5	2402	-1.97	<20.96	PASS
2DH5	2441	2.9	<20.96	PASS
2DH5	2480	2.71	<20.96	PASS
3DH5	2402	-1.64	<20.96	PASS
3DH5	2441	2.86	<20.96	PASS
3DH5	2480	2.52	<20.96	PASS

Report No.: SZEM180400345104

Page: 48 of 89

Report No.: SZEM180400345104

Page: 49 of 89

Report No.: SZEM180400345104

Page: 50 of 89

Report No.: SZEM180400345104

Page: 51 of 89

Report No.: SZEM180400345104

Page: 52 of 89

Report No.: SZEM180400345104

Page: 53 of 89

3. Carrier Frequency Separation

Test Mode	Test Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	2441	0.993	>=0.632	PASS
3DH5	2441	1.011	>=0.843	PASS
2DH5	2441	0.999	>=0.845	PASS

Report No.: SZEM180400345104

Page: 54 of 89

Report No.: SZEM180400345104

Page: 55 of 89

Report No.: SZEM180400345104

Page: 56 of 89

4.Dwell Time

Test Mode	Test Channel	Burst Width[ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Limit[s]	Verdict
DH1	2402	0.39	320	0.125	<0.4	PASS
DH3	2402	1.65	160	0.264	<0.4	PASS
DH5	2402	2.89	110	0.318	<0.4	PASS
2DH1	2402	0.4	320	0.128	<0.4	PASS
2DH3	2402	1.66	160	0.266	<0.4	PASS
2DH5	2402	2.9	110	0.319	<0.4	PASS
3DH1	2402	0.4	320	0.128	<0.4	PASS
3DH3	2402	1.66	160	0.266	<0.4	PASS
3DH5	2402	2.9	110	0.319	<0.4	PASS

Report No.: SZEM180400345104

Page: 57 of 89

Report No.: SZEM180400345104

Page: 58 of 89

Report No.: SZEM180400345104

Page: 59 of 89

Report No.: SZEM180400345104

Page: 60 of 89

Report No.: SZEM180400345104

Page: 61 of 89

Report No.: SZEM180400345104

Page: 62 of 89

Report No.: SZEM180400345104

Page: 63 of 89

Report No.: SZEM180400345104

Page: 64 of 89

Report No.: SZEM180400345104

Page: 65 of 89

Report No.: SZEM180400345104

Page: 66 of 89

5.Hopping Channel Number

Test Mode	Test Channel	Number of Hopping Channel[N]	Limit[N]	Verdict
DH5	2402	79	>=15	PASS
2DH5	2402	79	>=15	PASS
3DH5	2402	79	>=15	PASS

Report No.: SZEM180400345104

Page: 67 of 89

Report No.: SZEM180400345104

Page: 68 of 89

Report No.: SZEM180400345104

Page: 69 of 89

6.Band-edge for RF Conducted Emissions

Test Mode	Test Channel	Hopping	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit[dBm]	Verdict
DH5	2402	Off	-3.470	-65.955	<-23.47	PASS
DH5	2480	Off	0.900	-59.182	<-19.1	PASS
2DH5	2402	Off	-5.400	-65.417	<-25.4	PASS
2DH5	2480	Off	0.110	-46.803	<-19.89	PASS
3DH5	2402	Off	-4.650	-64.839	<-24.65	PASS
3DH5	2480	Off	-0.050	-45.607	<-20.05	PASS
DH5	2402	On	-9.170	-63.330	<-29.17	PASS
DH5	2480	On	-7.590	-63.077	<-27.59	PASS
2DH5	2402	On	-1.750	-59.224	<-21.75	PASS
2DH5	2480	On	-1.330	-48.150	<-21.33	PASS
3DH5	2402	On	-2.120	-58.343	<-22.12	PASS
3DH5	2480	On	-2.650	-48.478	<-22.65	PASS

Report No.: SZEM180400345104

Page: 70 of 89

Report No.: SZEM180400345104

Page: 71 of 89

Report No.: SZEM180400345104

Page: 72 of 89

Report No.: SZEM180400345104

Page: 73 of 89

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400345104

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the limit of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

2.4 MHz/

Start 2.476 GHz

Stop 2.5 GHz

Report No.: SZEM180400345104

Page: 75 of 89

Report No.: SZEM180400345104

Page: 76 of 89

7.RF Conducted Spurious Emissions

Report No.: SZEM180400345104

Page: 77 of 89

Report No.: SZEM180400345104

Page: 78 of 89

Report No.: SZEM180400345104

Page: 79 of 89

Report No.: SZEM180400345104

Page: 80 of 89

Report No.: SZEM180400345104

Page: 81 of 89

Report No.: SZEM180400345104

Page: 82 of 89

Report No.: SZEM180400345104

Page: 83 of 89

Report No.: SZEM180400345104

Page: 84 of 89

Report No.: SZEM180400345104

Page: 85 of 89

Report No.: SZEM180400345104

Page: 86 of 89

Report No.: SZEM180400345104

Page: 87 of 89

Report No.: SZEM180400345104

Page: 88 of 89

Report No.: SZEM180400345104

Page: 89 of 89

