Generatori di forme d'onda

Verranno trattati i circuiti rigenerativi (multivibratori) e lo Schmitt trigger

I circuiti rigenerativi sono particolari circuiti non lineari caratterizzati dalla presenza di uno o più punti di lavoro di equilibrio stabile o instabile.

Comprendono i circuiti bistabili, monostabili e astabili

Bistabile

Circuito con 2 punti di lavoro stabili.

A fronte di impulso in ingresso, passa da uno stato stabile all'altro.

E' importante che la commutazione tra i due stati stabili avvenga nel più breve tempo possibile

E' il circuito più semplice per realizzare elementi di memoria

La teoria e l'implementazione dei circuiti bistabili (flip-flop, latch,....) sono state ampiamente trattate nel corso di Analisi e sintesi dei circuiti digitali

Una realizzazione circuitale verrà analizzata nella parte relativa alle memorie RAM statiche (SRAM)

Monostabile

Circuito con 1 punto di equilibrio stabile.

Una volta perturbato, il circuito si muove dal punto di lavoro stabile ma vi ritorna dopo un certo intervallo di tempo.

L'uscita, bassa quando il circuito è nello stato stabile, diventa alta per tutto il periodo perturbato (metastabilità), per poi tornare bassa.

E' fondamentale che il tempo necessario per ritornare nello stato stabile sia costante ⇒ generatore di ritardo controllabile e costante

Astabile

Circuito con nessun punto di equilibrio stabile.

Una volta acceso, il circuito oscilla in continuazione.

Può essere usato per generare segnali di clock

Effetto bootstrap

Si basa su un principio fondamentale:

istantaneamente la carica sulle armature di un condensatore non cambia

Q = VC ⇒ se Q istantaneamente non cambia ⇒ anche la tensione V ai capi del condensatore istantaneamente non cambia

Se si modifica istantaneamente la tensione sull'armatura di un condensatore (con l'applicazione di un gradino di tensione), anche la tensione sull'altra armatura varia istantaneamente della stessa quantità

⇒ di fatto, istantaneamente il condensatore si comporta da generatore di tensione ideale

L'effetto è solo **istantaneo**, in quanto a seconda del circuito in cui è inserito il condensatore, le tensioni sulle armature del condensatore possono poi variare

Esempio

Al termine del transitorio di carica $V_x = V_{DD} - V_{Tn}$

Nota: il transitorio di carica termina quando $V_{GS} = V_{Tn}$

Se il condensatore è elettricamente isolato, la carica immagazzinata sulle armature rimane invariata

A tempo t = 0, dal momento che la tensione ai capi del condensatore non può cambiare istantaneamente $\Rightarrow V_x = V_{DD} - V_{Tn} + V_B$

Questo effetto viene sfruttato in molti circuiti elettronici

- multivibratori (monostabile, astabile)
- buffer
- survoltori

Grazie all'effetto bootstrap è possibile avere nodi di un circuito a tensione più alta rispetto a quella dell'alimentazione

Monostabile CMOS

In presenza di un impulso in ingresso il circuito esce dal suo stato stabile e genera in uscita un segnale di ampiezza V_{DD} e durata <u>costante</u> T

Hp:

- 1) caratteristica ideale dell'invertitore e del NOR
- 2) ritardi di propagazione attraverso invertitore e NOR trascurabili rispetto al ritardo associato a C

Lo studio del monostabile si effettua determinando dapprima lo stato stabile e valutando poi il comportamento del circuito quando viene applicato un impulso in ingresso

Il comportamento dinamico del circuito dipende da una successione di eventi con una relazione di "causa-effetto" che termina quando il circuito ritorna nel suo stato stabile

Determinazione stato stabile

In condizioni stazionarie la corrente che attraversa un condensatore è nulla, ed è nulla anche la corrente di ingresso dell'invertitore

Nello stato stabile il segnale di ingresso è 0 V

(la tensione a capi del condensatore è 0 V)

 $V_B = V_A = V_{DD} \Longrightarrow V_C = 0$

Funzionamento dinamico

Si applica in ingresso un impulso di durata t_I << T

 La commutazione dell'ingresso fa commutare l'uscita del NOR

_	V_{I}	V_{o}	V_A
	0	0	1
	0	1	0
\	1	0	0
	1	1	0

2. La tensione ai capi di un condensatore non può cambiare istantaneamente (se la tensione sull'armatura A varia di ΔV , la tensione sull'armatura B deve variare della stessa quantità) $\Rightarrow V_C(0^+) = V_C(0^-)$

3.
$$V_B \longrightarrow I'$$
invertitore di uscita commuta $\Rightarrow V_O(0) = V_{DD}$

In realtà, a causa del ritardo attraverso il NOR e l'invertitore, $V_{O} = V_{DD}$ per $t = \tau_{NOR} + \tau_{INV}$

- Quando l'uscita V_O diventa alta, l'uscita del NOR è 0 V indipendentemente dal valore di V_I
 - ⇒ l'impulso di ingresso può terminare.

	V_{l}	V _o	V _A
	0	0	1
	0	1	0
	1	0	0
C	1	1	0

La durata dell'impulso di ingresso deve essere tale da garantire la commutazione dell'uscita (\Rightarrow t_I > τ_{NOR} + τ_{INV})

L'ingresso deve essere riportato a 0 V entro il tempo T, altrimenti il circuito non potrebbe ritornare nello stato stabile

Se $V_B(0^+) = 0 \Rightarrow I_R \neq 0 \Rightarrow$ carica di C

$$I_{R} = \frac{V_{DD} - V_{B}}{R}$$

Il condensatore tende a caricarsi a V_{DD} con costante di tempo τ = RC

5. Quando però $V_B(T) = V_{LT}$ dell'invertitore di uscita, l'invertitore commuta e $V_O(T) = 0$

Università di Ferrara

6. La commutazione di V_0 fa commutare l'uscita del NOR (il segnale di ingresso era già stato riportato a 0 V)

	V_{l}	V _o	V _A
(0	0	1
	0	1	0
	1	0	0
	1	1	0

7. La tensione ai capi di un condensatore non può cambiare istantaneamente

Se
$$V_A(T^-) = 0V$$
 e $V_A(T^+) = V_{DD}$ ($\Rightarrow V_A$ sale istantaneamente di V_{DD})

$$\Rightarrow$$
 $V_B(T^+) = V_B(T^-) + V_{DD} = V_{LT} + V_{DD}$

Se $V_B(T^+) = V_{DD} + V_{LT} \Rightarrow I_R \neq 0 \Rightarrow$ scarica di C

$$I_{R} = \frac{V_{B} - V_{DD}}{R}$$

Il condensatore tende a scaricarsi a V_{DD} con costante di tempo τ = RC

La scarica termina quando $V_B = V_{DD} \Rightarrow I_R = 0$

Solo al tempo T + T' viene raggiunta la condizione di riposo

Tempo di ripristino, necessario per ritornare nello stato stabile dopo che la tensione di uscita è tornata a 0 V

Calcolo di T

La durata dell'impulso di uscita V_o coincide con la durata del transitorio di carica di V_B da 0 V a V_{LT}, tenendo conto che se non commutasse l'invertitore di uscita (facendo commutare nuovamente il NOR), la carica terminerebbe al valore asintotico V_{DD}

$$V_{Bin}(t) = V_{B\infty} + (V_{Bin} - V_{B\infty})e^{-\frac{t}{RC}}$$

$$V_{Bin} = 0, \qquad V_{B\infty} = V_{DD}$$

$$V_{Bin} = 0, \qquad V_{B\infty} = V_{DD}$$

Interessa il valore di V_R (T) = V_{IT}

$$V_{LT} = V_{DD} + (0 - V_{DD})e^{-T/RC}$$

$$e^{-\frac{T}{RC}} = \frac{V_{DD} - V_{LT}}{V_{DD}} \implies -\frac{T}{RC} = \ln \frac{V_{DD} - V_{LT}}{V_{DD}}$$

$$\implies T = RC \ln \frac{V_{DD}}{V_{DD} - V_{LT}}$$

$$Con V_{LT} = V_{DD}/2 \implies T = RC \ln 2$$

$$\Rightarrow T = RC \ln \frac{V_{DD}}{V_{DD} - V_{LT}}$$

Con
$$V_{IT} = V_{DD}/2 \Rightarrow T = RC \ln 2$$

Calcolo del tempo di ripristino T' - T

Il tempo di ripristino può essere stimato, senza fare un calcolo esatto, confrontando escursione di tensione e costante di tempo dei due transitori di commutazione relativi alla durata dell'impulso e al tempo di ripristino

$$\Delta V = (V_{DD} + V_{LT}) - V_{DD} = V_{LT}$$

Costante di tempo: $\tau = RC$ $\Delta V = (V_{DD} + V_{LT}) - V_{DD} = V_{LT}$ Stesse AV Stesse $\Delta V \in \tau \Rightarrow (\underline{in \ prima \ approssimazione}) \ T' \cong T$

In realtà sono due transitori diversi, in quanto per quest'ultimo transitorio $V_B(T') = V_{B\infty} \Rightarrow T' = \infty$

Non è possibile applicare un nuovo impulso prima che il circuito sia ritornato nel suo stato stabile

⇒ Frequenza massima del segnale di ingresso
$$f_{\text{max}} = \frac{1}{T + T'} \cong \frac{1}{2T}$$

Perché non si può applicare un nuovo impulso prima di T + T'?

- Un monostabile deve fornire un'uscita alta per un tempo predefinito T
- T è determinato dalla salita di V_B da 0 V fino alla soglia logica dell'invertitore di uscita (il transitorio di carica termina sempre quando $V_B = V_{LT}$, in quanto commuta l'invertitore di uscita che riporta a 0 V l'uscita del circuito)
- Se cambia il valore iniziale di V_R, cambia T
- Il valore iniziale di V_B é 0 V se e solo se il condensatore, quando viene applicato l'impulso, é scarico (V_A = V_B)

Se l'impulso viene applicato prima di essere ritornati allo stato stabile $\Rightarrow V_B(t_{imp}^+) = V_B(t_{imp}^-) - V_{DD} \neq 0$

Come ridurre il tempo di ripristino nel monostabile?

La durata T dell'uscita alta dipende dalla carica del condensatore C attraverso la resistenza R, con costante di tempo τ = RC

La durata del tempo di ripristino dipende dalla scarica del condensatore C attraverso la resistenza R con costante di tempo τ = RC

Una variazione di R o C comporta la contemporanea variazione sia di T che del tempo di ripristino, dal momento che il circuito di carica/scarica è lo stesso

Una semplice soluzione al problema consiste nel creare due diversi percorsi per la corrente durante i due transitori

La carica avviene attraverso la sola resistenza $\rm R_1$, in quanto il diodo impedisce alla corrente di attraversare $\rm R_2$

La scarica avviene attraverso le due resistenze R_1 e R_2 (almeno fino a quando $V_x > V_{DD} + V_D$ in quanto per valori inferiori di V_x il diodo si spegne)

La scarica, pertanto, è certamente più veloce della carica e, riducendo il valore di R₂, è possibile ridurre il tempi di ripristino senza modificare la durata dell'uscita alta

Astabile CMOS

Può essere realizzato con una cascata di un numero dispari di invertitori in retroazione

L'ingresso del primo invertitore viene fatto continuamente commutare dall'uscita dell'ultimo Il periodo del segnale in uscita dipende dai ritardi di propagazione dei singoli invertitori e quindi non è facilmente controllabile

Esiste un'alternativa circuitale che permette di programmare con cura il periodo del segnale

Hp:

- 1) caratteristica ideale degli invertitori
- 2) ritardi di propagazione attraverso gli invertitori trascurabili rispetto al ritardo associato a C

NOTA Il circuito é privo di punti di equilibrio stabile

- ⇒ non é possibile analizzarlo come fatto per il monostabile
- ⇒ si ipotizza un punto di lavoro e si fa l'analisi partendo da quello. E' molto difficile che il punto di partenza iniziale sia un reale punto di lavoro del circuito. In ogni caso, dopo qualche ciclo il circuito si porta in uno stato di funzionamento reale

HP: punto di lavoro iniziale subito dopo la transizione $V_{OH} \rightarrow V_{OL}$

$$t = 0$$
 $V_{OH} \rightarrow V_{OL}$ se $V_{xL} \rightarrow V_{xH}$ se $V_{BH} \rightarrow V_{BL}$

Subito dopo la transizione:

$$\begin{vmatrix}
V_{O}(0^{+}) = 0 \\
V_{B}(0^{+}) = 0 \\
V_{X}(0^{+}) = V_{DD}
\end{vmatrix}
\Rightarrow V_{C}(0^{+}) = V_{B}(0^{+}) - V_{O}(0^{+}) = 0 V$$

$$\Rightarrow I_{R}(0^{+}) \neq 0$$

trascurando la caduta sul canale p

$$I_{R}(t) = \frac{V_{DD} - V_{B}(t)}{R}$$

Elettronica digitale - 9 - Multivibratori

La corrente che attraversa R tende a caricare il condensatore C e a far salire V_B

1. La carica di C si arresta quando $V_B = V_{LT}$, in quanto commuta l'invertitore I_1

- 2. la commutazione di I_1 porta $V_x = 0 V$
- 3. la commutazione di V_x fa commutare I_2 , che porta $V_O = V_{DD}$
- 4. la commutazione di $V_{\rm O}$ da 0 V a $V_{\rm DD}$ costringe, per effetto bootstrap, a far salire $V_{\rm B}$ della stessa quantità

$$\Rightarrow$$
 $V_B(T_1^+) = V_{LT} + V_{DD}$

Al tempo T_1^+ , $V_B > V_X$, per cui la corrente scorre dal nodo B verso la massa di I_1 , attraverso il pulldown dell'invertitore, scaricando pertanto il condensatore

$$I_R(T_1^+) = \frac{(V_{DD} + V_{LT}) - 0}{R} \neq 0$$

trascurando la caduta sul canale n

La corrente che attraversa R tende a scaricare il condensatore C e a far scendere V_B

5. La scarica di C si arresta quando $V_B = V_{LT}$, in quanto commuta l'invertitore I_1

- 6. la commutazione di I_1 porta $V_x = V_{DD}$
- 7. la commutazione di V_x fa commutare I_2 , che porta $V_0 = 0 \text{ V}$
- 8. la commutazione di V_O da V_{DD} a 0 V costringe, per effetto bootstrap, a far scendere V_B della stessa quantità

$$\Rightarrow$$
 $V_B(T_2^+) = V_{LT} - V_{DD}$

Al tempo T_2^+ , $V_B < V_X$, per cui la corrente scorre dall'alimentazione dell'invertitore I_1 verso il nodo B, attraverso il pull-up dell'invertitore, caricando pertanto il condensatore

La corrente che attraversa R tende a caricare il condensatore C e a far salire V_B

9. La carica di C si arresta quando $V_B = V_{LT}$, in quanto commuta l'invertitore I_1 che a sua volta fa commutare I_2 che a sua volta, per effetto bootstrap, porta $V_B (T_3^+) = V_{LT} + V_{DD}$ e così via.....

NOTA

Il punto iniziale scelto per l'analisi del circuito non è un punto effettivo di lavoro

Le forme d'onda del circuito comprese nell'intervallo $[0 - T_1[$ non sono valide.

La scelta del punto iniziale è servita solo per raggiungere un effettivo punto di lavoro da cui cominciare l'analisi corretta

Calcolo dei tempi T_H e T_L

<u>Calcolo di</u> T_H ($V_O = V_{H,r}$ discesa di V_B)

L'uscita è alta durante la fase di scarica di C, dal valore iniziale $V_B = V_{LT} + V_{DD}$ fino a quando commuta I_1 (per $V_B = V_{LT}$), impedendo quindi di raggiungere il valore asintotico $V_B = 0$ V

$$V_{B}(t) = V_{B\infty} + (V_{Bin} - V_{B\infty})e^{-t/RC}$$

$$T_{H} = RC \ln \frac{V_{Bin} - V_{B\infty}}{V_{B}(T_{H}) - V_{B\infty}}$$

$$V_{Bin} = V_{LT} + V_{DD}$$

$$V_{B\infty} = 0 \qquad \text{Con } V_{LT} = V_{DD}/2$$

$$V_{B}(T_{H}) = V_{LT}$$

$$\Rightarrow T_{H} = RC \ln \frac{V_{LT} + V_{DD}}{V_{LT}} = RC \ln 3$$

<u>Calcolo di</u> T_L ($V_O = V_{L}$, salita di V_B)

L'uscita è bassa durante la fase di carica di C, dal valore iniziale $V_B = V_{LT} - V_{DD}$ fino a quando commuta I_1 (per $V_B = V_{LT}$), impedendo quindi di raggiungere il valore asintotico V_{DD}

$$V_{B}(t) = V_{B\infty} + (V_{Bin} - V_{B\infty})e^{-t/RC}$$

$$T_{L} = RC \ln \frac{V_{Bin} - V_{B\infty}}{V_{B}(T_{L}) - V_{B\infty}}$$

$$V_{Bin} = V_{LT} - V_{DD}$$

$$V_{B\infty} = V_{DD}$$

$$V_{B}(T_{L}) = V_{LT}$$

$$Con V_{LT} = V_{DD}/2$$

$$\Rightarrow T_{L} = RC \ln \frac{V_{LT} - V_{DD} - V_{DD}}{V_{LT} - V_{DD}} = RC \ln 3$$

$$T_H = T_L \Rightarrow Duty Cycle = 50\% \Rightarrow onda quadra$$

Come modificare il duty cycle?

Valgono le stesse considerazioni fatte per il monostabile: la carica e la scarica coinvolgono lo stesso circuito. La soluzione più semplice consiste nel diversificare i circuiti di carica e scarica di C

Trigger di Schmitt

E' un circuito che permette di "squadrare" le forme d'onda di ingresso.

Le due caratteristiche vengono seguite a seconda che la tensione V_I stia crescendo o calando

Definendo la soglia logica come punto in cui $V_0 = V_1$, il circuito ha due diverse soglie logiche V_M e V_m , a seconda dell'andamento crescente o calante di V_1

Realizzazione circuitale

Se
$$V_1 = 0 \Rightarrow V_X = V_{DD} \Rightarrow V_O = 0$$

Per V_I crescente

L'uscita V_O commuta solo quando $V_x < V_{LT}$

Finchè $V_0 = 0 V$, M_{P2} ON e M_{N2} OFF

Il nodo da analizzare per comprendere il funzionamento del circuito è il nodo x

Il circuito che pilota x ha come pull-up 2 pMOS in parallelo e come pull-down 1 nMOS

Pertanto la rete di pull-up è più conduttiva e tende a "tenere" il nodo x verso V_{DD} con più forza rispetto a quella con cui il pull-down lo tira verso massa

Quando $V_I = V_{DD}/2$, la rete di pull-up è ancora più conduttiva rispetto al pull-down e pertanto il nodo x non commuta ancora

Per $V_1 > V_{DD}/2$, M_{P1} tende a spegnersi e M_{N1} diventa pienamente conduttivo

V_x inizia a calare (la conducibilità delle reti di pull-up e pull-down tende a diventare confrontabile)

 V_{O} inizia a salire, riducendo la conducibilità di M_{P2} e portando verso l'accensione M_{N2}

Quando M_{N2} si accende, la rete di pull-down diventa più conduttiva rispetto al pull-up e l'uscita commuta

Per V_I decrescente, succede il contrario (pull-down più conduttivo che tende a "tenere" il nodo x al valore basso)