

INVESTOR IN PEOPLE

PN - JP61285424 A 19861216

PD - 1986-12-16

PR - JP19850128983 19850613

OPD - 1985-06-13

TI - OPTICAL BEAM DEFLECTOR

IN - ADACHI HIDEO

PA - OLYMPUS OPTICAL CO

IC - G02B26/10

CT - JP52116252 A []; JP48074245 A []

OPAJ/JPO

PN - JP61285424 A 19861216

PD - 1986-12-16

AB

AP - JP19850128983 19850613

IN - ADACHI HIDEO

PA - OLYMPUS OPTICAL CO LTD

TI - OPTICAL BEAM DEFLECTOR

- PURPOSE:To obtain a comparatively large displaced variable quantity by fixing respective base ends of bimorph type piezo-electric elements on a base board so that respective terminals are displaced in the contacting/separating direction with/from the base board and supporting a reflection mirror to reflect an optical beam by the mirror.
 - CONSTITUTION: Three projection parts11-13 are formed on one side surface of the cylindrical base board 10 having 15mm inner diameter and 25mm outer diameter and made of metal such as SUS and titanium. Respective base ends of the bimorph type piezo-electric elements 21-23 are fixed on the projection parts 11-13 with a bonding agent. The elements 21-23 are shaped like circular arcs and respective leading ends are extended in the circumferential direction of the base board 10 so as to be displaced. One electrode plate of the elements 21-23 is connected to terminals 41-43 through lead wires 31-33 and the other electrode plate is connected to the conductive part of the base board. The conductive part is connected to a terminal through a lead wire 34 and three-corner parts 51-53 of an optical beam reflecting mirror 50 shaped like a regular triangle are supported by the respective leading end parts of the elements 21-23 through flexible members.

THIS PAGE BLANK (USPTO)

⑩ 日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭61-285424

(全5頁)

@Int Cl.⁴

識別記号

庁内整理番号

43公開 昭和61年(1986)12月16日

G 02 B 26/10

101

7348-2H

図発明の名称 光ビーム偏向器

> 到特 顖 昭60-128983

22出 昭60(1985)6月13日

四発 明 安達 日出夫

東京都渋谷区幡ケ谷2丁目43番2号 オリンパス光学工業

審査請求 未請求 発明の数 1

株式会社内

②出

オリンパス光学工業株

東京都渋谷区幡ケ谷2丁目43番2号

式会社

砂代

弁理士 坪 井 外2名

1. 発明の名称

光ビーム偏向器

2. 特許請求の範囲

基台と、この基台上に各基端を固定されそれぞ れの先端が前記基台に対して接離する方向へ変位 可能な如く設けられたパイモルフ型圧電素子と、 これらのバイモルフ型圧電素子の各先増により支 持され光ピームを反射する如く設けられた反射ミ ラーとからなる圧電式アクチュエータを備えたこ とを特徴とする光ピーム偏向器

3. 発明の詳細な説明

(産業上の利用分野)

本発明はレーザ光等の光ピームを所定角度に偏 向する光ピーム偏向器に関し、特に反射ミラーの 角度を駆動制御するアクチュエータの改良に関す

レーザ文字描画装置、レーザ顕微鏡等に用いられ

る光ピーム偏向器においては、レーザ光ピームを X-Y方向に走査するスキャナを必要とする。こ のスキャナにおける反射ミラーを駆動制御するア クチュエータとして、圧電素子を利用した圧電式 アクチュエータが研究されている。

第3回はこれまでに研究開発された従来の圧電 式アクチュエータの一例を示す斜視図である。第 3 図において1 は基台であり、この基台1上には 4gの積層型圧電素子2a~2dが正四角形の各 コーナ部に位置するように配置されている。これ らの積度型圧電素子2a~2dの各上端には、反 射ミラー3の四脚3a~3dの各先端部が結合さ れている。

上記構成の圧電式アクチュエータにおいては、 積層型圧電素子2aと2cに電圧を印加しない状 態において、積簡型圧電素子2bと2dに極性が 反対の電圧を同時に印加すると、反射ミラー3は X軸を中心に回動する。また上記とは逆に積層型 いて、積周型圧電素子2aと2cに極性が反対の

Best Available Copy

電圧を印加すると、反射ミラー3はY輪を中心に 回動する。かくして積層型圧電素子2a~2dk 印加する電圧を道宜制御し、積層型圧電素子2a ~2dの上端を矢印で示すように上下方向に伸縮 動作させて反射ミラー3の角度を顧次変更制御す ることにより、反射ミラー3によってレーザ光の 偏向が行われ、X~Y走査が行なわれることにな る。なお積層型圧電素子2a~2dは強誘電体で あるジルコンチタン酸鉛(PZT)にて形成され ているため、いわゆるヒステリシス特性を有して いる。このため上記圧電式アクチュエータを実用 に供する場合には、高精度な位置センサと共にク ローズド・ループ・システムを構成し、上記セン サーからの信号に基いてヒステリシスの影響が生 じないように、印加する電圧の大きさを制御する 必要がある。上記ヒステリシスの問題を解決する 手段として、積層型圧電素子2a~2dの代りに ヒステリシス特性を有していない電歪素子を用い ることが考えられる。しかし第4図のA. B曲線 に示すように、電歪素子は圧電素子に比べて温度

特性が著しく悪い。このため格別の温度補償手段を設けなければならず、実用には供し難たい。 (発明が解決しようとする問題点)

前記した圧電式アクチュエータによれば、他の型式のアクチュエータに比べ、①高速度応答が可能である、②ランダムスキャンが容易に行なえる、③精造が小型で軽量なものとなる、等の長所がある。しかしながら次のような解決すべき問題があった。

(1)積曆型圧電素子2a~2dは500

[V_{P-P}] ・100[ha]の電圧を印加したとき、5・6[m・rad]程度の偏向角が得られるだけであり、偏向角が比較的小さいという欠点がある。すなわち第5図のC・D線にて示すように、一般に積層型圧電素子はバイモルフ型圧電素子に比べて印加電圧に対する変位量が小さい。なお第4図の特性はクローズド・ループでヒステリシスを補償した場合のものである。

(2)積層型圧電素子が発生する変位力はパイモルフ型圧電素子等に比べて非常に大きい。 しかる

に駆動対象は比較的軽量をなりまう一名である。。 したがって、それほど大きなどの力は必要でな必要でな必要をおけれたカートルクテーは必要をある。 とするものアクチュエスははチャンであるのアクチュエスはカーカーのであるが、光ピームのでは、できない。 といるといるというでは、無駄が大きいという間がある。

(3) 積層型圧電素子2 a ~ 2 d は薄い圧電セラミックスを多数枚積層する工程、積層された圧電セラミックスをリード線により並列接続する工程、等の煩雑な工程を必要としているので、コスト高になるという難点がある。

そこで本発明は、大きな偏向角が得られ、無駄のない駆動制御を行ない得、しかも低コストで製作可能な圧電式アクチュエータを備えた光ビーム偏向器を提供することを目的とする。 (問題点を解決するための手段)

(作用)

このような手段を講じたことにより、比較的大きな変位量が容易に得られると共に、パイモルフ型圧電素子の変位力が反射ミラーを駆動するのに丁度適した大きさのものとなる。また積層型圧電素子を使用する場合のような積層工程は全であり、かつ並列接続工程も著しく簡単化することになる。

(実施例)

第1図(a)~(c)は本発明の一実施例の主

要部の構成を示す図で、(a)は光ピーム偏向器 における圧電式アクチュエータの斜視図であり、 (b) は上記圧電式アクチュエータを真上からみ た平面図であり、(C)は上記圧電式アクチュエ ータを真横からみた側面図である。

第1図(a)~(c)において、10はSUS やチタンなどの金属、アクリルやエポキシなどの 樹脂、窒化けい素やアルミナなどのセラミックス、 客で形成された内径15%の、外径25%のの円 環状をなす基台であり、その一 側面上には3個の 突起郎 1 1~13 が設けられている。なお基台 1 〇を非導電性部材にで形成した場合には、その表 面にメッキ等の手段により導電性被膜を形成し、 少なくとも一部に導電部を備えたものとなす。突 起部11~13にはバイモルフ型圧電素子21~ 2 3 の 各 基 端 が た と え ば エ ポ キ シ 樹 脂 等 の 接 碧 剤 により接着固定されている。バイモルフ型圧電素 子21~23は円弧状をなしており、各先端部位 が前記基台10の円周方向に沿って延長され、か つ先端が基台10の一側面に対して接触する方向

接続し、非接合面側の各電極板64.65を短絡 して前記端子44に相当する端子T2に接続して いる。(b)は直列構造のバイモルフ型圧電素子 70の構造を示す図である。このパイモルフ型圧 電素子70は一対の圧電セラミックス71、72 を矢印で示すように分極方向が反対となるように 接合し、非接合面側の一方の電極板74を前記端 子41~43に相当する端子T1に接続し、他方 の電極板75を前記端子44に相当する端子T2 に接続している。なお機械的強度を確保するため に、実際には圧電セラミックス61.62の間お よび71、72の間に薄い金属板のような補強材 を挟み込む場合が多い。上記以外にも、圧電セラ ミックスと、金属やプラスチックなどの非圧電セ ラミックスとを一体に接合し、圧電セラミックス の両側の電板板を端子T1、T2に接続した構造 ・ -の-も-の-も-あ-る-。

第2図(a)に示す並列構造のパイモルフ型圧 電素子60と、同図(b)に示す直列構造のパイ モルフ型圧電素子70とを比較すると、電圧を印で

へ変位可能な如く設けられている。パイモルフ型 圧電素子21~23の各一方の電極板はリード盤 3 1 ~ 3 3 を 介 し て 端 子 4 1 ~ 4 3 に そ れ ぞ れ 接 続されており、各他方の電極板は基台10の導電 郎に接続されている。そして上記導電部はリード 韓34を介して囃子44に接続されている。50 は正三角形をなす光ピーム反射用の反射ミラーで あり、三つの角部51~53がパイモルフ型圧電 素子21~23の各先端部にて支持されている。 なお角郎51~53とパイモルフ型圧電景子21 の先端郎とは、かたく結合固定されているのでは なく、例えばシリコーンゴムなどのフレキシアル . な部材を介して結合されている。

第 2 図 (a) (b) はパイモルフ型圧電素子 2 1~23の構造例を示す側面図である。(a)は 並列構造のパイモルフ型圧電素子60を示す図で ある。このパイモルフ型圧電素子60は圧電セラ ミックス61、62を分極方向が矢印で示すよう に同一方向を向くように接合し、接合面の電極板 63を前記端子41~43に相当する端子T1に

加することにより大きな変位量を得る場合には (a)の方が適している。したがって本実施例に おける以下の説明では(a)を用いた場合を想定 して説明する。

上記パイモルフ型圧電素子60の変位量Δxお よび発生する変位力AFは、

 $\Delta x = 3 \ell^{2} \cdot d_{31} \cdot V / t^{2} \cdots (1)$

ΔF=36t·Vd31·E/42··(2)

ただし、E:ヤング率、2:バイモルフ型圧電 素 子 の 長 さ 、 t : バ イ モ ル フ 型 圧 電 素 子 の 厚 み で

比較のために積層型圧電素子の変位量Δ×およ び発生する変位力ムFを示すと、

 $\Delta x = n \cdot d_{3} \cdot V$... (3)

 $\Delta F - S \cdot E \cdot \Delta \ell / \ell \cdots (4)$

ただし、△ℓ:積層型圧電素子の変位量、であ

上記(1)式と(3)式の比較から分るように、 積層型圧電素子の変位は寸法形状とは無関係であ るのに対し、バイモルフ型圧電素子の変位は寸法

7000 9€00€00€000 −123− Best Available Copy

このように構成された本実施例によれば、第1 図(a)~(c)に示す各パイモルフ型圧電素子 2 1に、例えばパイモルフ型圧電素子 2 2には電圧を印加せず、パイモルフ型圧電素子 2 2には + 100[V]. パイモルフ型圧電素子 2 3には - 100[V]なる電圧を印加すると、れてして型圧電素子 2 2、2 3にはそれれでれた 2 0 モルフ型圧電素子 2 2、2 3にはそれれでいた。 モルフ型圧電素子 2 2、2 3にはそれが、2 0 モルフ型圧電素子 3 に生じる。その結果、反射ミラー50は第1図(b)の破線部分を軸として

弧状のものを示したが、必ずしも円弧状のものを示したが、必ずしもののではなく、直線状のものの数は3個にない。またパイモルフ型圧電素子の個数は3個にで限られるものではなく、2個あるいは4個の支持手段等においては、適宜を変変においては、適宜を変変である。 で、変形実施可能であるのは勿論である。 で、変形実施可能であるのは勿論である。

(発明の効果)

本発明の光ビーム偏向器は、基台上にバイモルフ型圧電素子の各基端を固定しし、これらのパイモルフ型圧電素子の各生端が前記基台に対しして接触する方向へ変位可能な知く設け、これらの水を増し、この反射ミラーによって光ビームを反射としている。

したがって本発明によれば、比較的大きな変位 量が容易に得られると共に、パイモルフ型圧電素 回動し、同図(C)に示すように、 8 なる傾きを生じる。その結果、 2 8 なる角度に相当する偏角 8 月 2 0 [m. rad]が得られる。この点、 積層型圧電素子の場合には 5 0 0 [V_P-P] の電圧を印加したとき、 5 . 6 [m. rad] 程度の偏向角が得られるに過ぎなかったのに比べると、 偏向角が大幅に改善されたことになる。

をます21~23が状を場所において、
において、
ない
において、
ない
において、
ない
において、
ない
においる
においる
においる
においる
においる
においる
においる
においる
にはいる
にはいるいる
にはいる
にはいる
にはいる
にはいる
にはいる
にはいる
には

なお本発明は、前記一実施例に限定されるものではない。例えばパイモルフ型圧電素子として円

子の変位力が反射ミラーを駆動するのに丁度適した大きさのものとなる。また積層型圧不要では発用するのような積層工程は全くするにないのは、大きな偏向外得られ、無駄作のの結果、大きな偏向かのも低コストで製作のおいまないのがである。 正電式アクチュエーを備えた光ピーム偏向器を提供することができる。

4. 図面の簡単な説明

第1図(a)(b)(c)は本発明の一実施例における主要部の構成を示す図、第2図(a)(b)は同実施例のバイモルフ型圧霉素子の構造例を示す側面図、第3図は従来例の構成を示す斜視図、第4図および第5図は従来例の問題点を説明するための特性図である。

特開昭 61-285424 (5)

60…並列構造のパイモルフ型圧電素子、70… 直列構造のパイモルフ型圧電素子、61.62お

第 5 図

-125- Best Available Copy

THIS PAGE BLANK (USPTO)