

Outline

- Introduction
 - Semantic segmentation (SS)
 - Depth estimation (DE)
- Multi-task Learning
 - Multi-task architecture
 - Proses training dan evaluasi model
- Cloud Computing
 - Intro to cloud services

- Demonstrasi program
 - Quick setup google colab
 - Implementasi python script
 - Train-val-test
- Github repo
 - https://github.com/oskarnatan/mtl-bisaai

LOCALLY ROOTED, GLOBALLY RESPECTED

Introduction

LOCALLY ROOTED, GLOBALLY RESPECTED

ugm.ac.id

Apa itu Image Segmentation?

- Dalam image processing dan computer vision, image segmentation (segmentasi citra) adalah proses mempartisi citra digital menjadi beberapa segmen citra (set piksel).
 - Tujuan dari segmentasi adalah untuk menyederhanakan dan/atau mengubah representasi suatu citra menjadi sesuatu yang lebih mudah untuk dianalisis.
 - Singkatnya, segmentasi citra adalah proses pemberian label (proses klasifikasi) ke setiap piksel dalam gambar.
 - Pixel-wise classification

^{*}Sumber gambar: Lambda Labs

Pixel-wise Classification

Input Semantic Labels

• Model DL memproses input gambar RGB (3xHxW) dan menghasilkan output matrix (1xHxW), dimana setiap elemen matrix berupa class/label tertentu dari sebuah obyek

*Sumber gambar: jeremyjordan.me

One-hot encoding

Categorical		One hot encoded				
Nama Obyek	Class	Orang	Tas	Tumbuhan	Trotoar	Bangunan
Orang	1	1	0	0	0	0
Tas	2	0	1	0	0	0
Tumbuhan	3	0	0	1	0	0
Trotoar	4	0	0	0	1	0
Bangunan	5	0	0	0	0	1

 Model tidak memprediksi matrix dengan dimensi (1 x H x W), melainkan memprediksi matrix dengan dimensi (Nc x H x W). Nc adalah jumlah label class.

*Sumber gambar: jeremyjordan.me

Apa itu Depth Estimation?

- Depth estimation adalah kemampuan visual untuk melihat dunia dalam koordinat tiga dimensi (3D).
 - H x W x D, D adalah depth yang merepresentasikan jarak suatu obyek, atau secara spesifik informasi jarak dari setiap piksel pada gambar.

*Sumber gambar: Google AI blog

Estimasi dengan Stereo Camera

depth map

- 2 camera dengan konfigurasi tertentu dapat digunakan untuk mengestimasi depth pada setiap piksel gambar
 - Kelemahan: (1)harus tahu berbagai parameter camera (2)jika peletakan berubah (vibrasi, perubahan posisi, dll) maka depth tidak dapat diestimasi dengan baik

*Sumber gambar: CMU Lecture

Aplikasi Depth Sensing

- Depth to cloud
 - Sebagai pengganti LiDAR dengan jumlah point cloud yang lebih banyak dan lebih padat (resolusi lebih tinggi)
 *Sumber video: Stereolabs

Semantic Depth Cloud Mapping

- Dalam autonomous driving, proyeksi antara segmentation map dan depth map memungkinkan model Al untuk melakukan persepsi dalam perspektif BEV (bird's eye view)
 - Mengetahui free dan occupied area lebih baik
 - Mengetahui drivable region lebih baik
 - Representasi ini menyimpan informasi yang lebih baik sebagai acuan untuk controller

^{*}O. Natan and J. Miura, "End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent," IEEE Trans. Intelligent Vehicles, 2022.

^{*}Google Ai blog

Multi-task Learning

LOCALLY ROOTED, GLOBALLY RESPECTED

Apa itu Multi-task Learning (MTL)?

- MTL adalah paradigma learning dimana beberapa task/tugas diselesaikan secara **simultan**.
 - Hal ini dapat menghasilkan peningkatan **efisiensi learning dan performa model** jika dibandingkan dengan melatih model secara terpisah.
- Tujuan MTL adalah untuk **meningkatkan generalisasi** dengan menggunakan mekanisme **feature sharing**. (feature yang diextract oleh backbone yang sama)
 - Apa yang dipelajari untuk menyelesaikan task A, dapat membantu untuk menyelesaikan task B

Jenis-jenis MTL

Hard sharing: Setiap task-specific layer memproses feature yang sama yang diextract oleh backbone yang sama.

Soft sharing: Mekanisme feature sharing terjadi pada seluruh layer di setiap backbone.

Single Task Architecture

- Standard UNet untuk single task model SemSeg atau DepEst.
 - Pada semantic segmentation, output channel C = jumlah class label yang hendak diprediksi. Sementara pada depth estimation, output channel C = 1 (nilai depth setiap pixel)

Multi-Task Architecture

- Multi-task model: SemSeg dan DepEst.
 - Pada semantic segmentation, output channel C = jumlah class label yang hendak diprediksi. Sementara pada depth estimation, output channel C = 1 (nilai depth setiap pixel)

Contoh MTL Architecture

• Input: RGB, Output: Segmentation dan Depth

*Sumber gambar: arxiv 1901.05808

Convolutional Neural Networks

LOCALLY ROOTED, GLOBALLY RESPECTED

ugm.ac.id

CNN (ConvNet)

UNIVERSITAS GADJAH MADA

- CNN adalah salah satu jenis deep neural nets yang paling sering digunakan untuk image processing dan computer vision.
- Berbeda dengan MLP yang "fully-connected", CNN justru hanya "locally-connected" dimana setiap neuron dalam layernya hanya terkoneksi dengan beberapa neuron pada layer lain.

Independent weights

Shared weights

Convolution

Convolution: proses cross correlation antara input dan kernel filter

$$(0x0) + (1x1) + (3x2) + (4x3) = 19$$

$$(1x0) + (2x1) + (4x2) + (5x3) = 25$$

$$(3x0) + (4x1) + (6x2) + (7x3) = 37$$

$$(4x0) + (5x1) + (7x2) + (8x3) = 43$$

*Sumber gambar: Dive into DL Book & towardsdatascience.com

Kernel

Kernel: shared weights yang dituning selama proses training

*Sumber gambar: Dive into DL Book

Padding & Stride

Padding: menambahkan elemen pada tepian input

Stride: mengatur pergeseran kernel filter

*Sumber gambar: Dive into DL Book

Pooling & Upsampling

Pooling bekerja dengan mengambil nilai tertinggi (max pooling) atau nilai rata-rata (avgpooling)

Tujuan upsampling adalah untuk mendistribusikan satu nilai ke resolusi yang lebih tinggi.

*Sumber gambar: Dive into DL Book & jeremyjordan.me

Activation Function

- Semantic segmentation --> persoalan pixel-wise binary classification
- Aktivasi ReLU digunakan untuk mengaktivasi neuron pada layer output DE
 - Depth estimation -->
 persoalan regresi untuk range
 nilai +F

 $\max(0,x)$

^{*}Sumber gambar: towardsdatascience.com

Training

LOCALLY ROOTED, GLOBALLY RESPECTED

ugm.ac.id

Dataset

*Sumber gambar: cityscapes dataset

- Dalam paradigma supervised learning, diperlukan suatu dataset berlabel untuk mentraining sebuah model DL
 - SS --> label class
 - DE --> label jarak
- Dataset untuk semantic segmentation dan depth estimation
 - Cityscapes dataset
 - NYUD dataset

Learning Process

Image - Tensor - Batch

UNIVERSITAS GADJAH MADA

• Komputer membaca sebuah gambar dalam bentuk array berdimensi c x h x w

Batch: 3 x 3 x h x w

Batch Processing

MTL Loss & Metric Functions

- Binary Cross Entropy (BCE) digunakan sebagai loss function pada persoalan pixelwise classification (0 atau 1).
- MAE digunakan sebagai loss function pada persoalan regresi (0 s/d 1).
- Multi-task loss:
 - Loss MTL = BCE + MAE, atau:
 - Loss MTL = a x BCE + b x MAE
 - Di mana a dan b adalah bobot loss function (menentukan kefokusan model terhadap salah satu task)
 - Bobot loss function ini juga dapat dituning secara adaptif

- Perhitungan metric dapat dilakukan secara terpisah:
 - IoU untuk semantic segmentation
 - MAE untuk depth estimation

$$J(Yt, Yp) = \frac{Yt \& Yp}{Yt \mid Yp} \qquad MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

Transfer Learning

- Dengan transfer learning dari suatu pretrained model, maka model kita lebih cepat convergence dan (umumnya) performa lebih baik
 - Akan tetapi, model (terutama bagian backbone/base) menjadi tidak fleksibel untuk dimodifikasi

*Sumber gambar: arXiv 2107.04537

Cloud Computing

LOCALLY ROOTED, GLOBALLY RESPECTED

Apa itu Cloud Computing?

- Cloud computing adalah <u>sumber daya</u> <u>sistem komputer</u> berdasarkan permintaan, terutama untuk penyimpanan data (storage) dan kekuatan komputasi (computing power), tanpa pengelolaan aktif secara langsung oleh pengguna.
- Cloud computing environment sering memiliki fungsi yang didistribusikan di beberapa lokasi.
- Cloud computing bergantung pada berbagi sumber daya untuk mencapai koherensi dan biasanya menggunakan model "bayar sesuai penggunaan" (payas-you-go) yang dapat membantu mengurangi biaya modal.
 - Tetapi juga dapat menyebabkan biaya operasional yang membengkak bagi pengguna yang tidak teliti.

*Sumber gambar: wikipedia

Cloud Services

HUAWEI CLOUD

- Amazon Web
 Services
- Google Cloud
 Platform
- Microsoft Azure Cloud
- Alibaba Cloud
- Huawei Cloud
- IBM Cloud

*Sumber gambar: google images

Google Colab

- Google Colab adalah <u>IPYNB</u> environment gratis yang sepenuhnya berjalan <u>di google</u> cloud.
 - Tidak memerlukan setup (instalasi library, driver GPU, dll).
 - Colab mendukung banyak library machine learning populer (pytorch, TF, dll).
 - Terdapat limitation untuk free account: Jumlah GPU, kapasitas drive, dll

- More Tutorials:
 - https://machinelearningmastery.co
 m/google-colab-for-machine-
 learning-projects/
 - https://www.tutorialspoint.com/go ogle colab/what is google colab.h
 tm

*Sumber gambar: google colab

Code

https://github.com/oskarnatan/mtl-bisaai

LOCALLY ROOTED, GLOBALLY RESPECTED

ugm.ac.id