МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

Кафедра комп'ютерної інженерії та електроніки

ЗВІТ З ПРАКТИЧНОЇ РОБОТИ №1

з навчальної дисципліни

«Алгоритми та методи обчислень»

Тема «Асимптотична складність алгоритмів. О-нотація»

Студентка гр. КН-24-1 Бояринцова П. С.

Викладач Сидоренко В. М.

Тема роботи: Асимптотична складність алгоритмів. О-нотація

1.1 Постановка завдання.

Ознайомитися з теоретичними основами асимптотичного аналізу алгоритмів. Виконати індивідуальні завдання згідно з варіантом. Відповісти на контрольні питання.

1.2 Розв'язання задачі згідно зі своїм варіантом.

Задача 3: Дано функцію $f(n) = \log n + 2n^2 + 11$. Знайти асимптотичну складність у О-нотації.

Розв'язання:

Не зважаємо на константи: $f(n) = \log n + n^2$

За правилом спрощення, при великому n домінуючим членом є n^2 , оскільки він зростає швидше за $\log(n)$ (рис. 1). Отже, асимптотична складність: $f(n) = O(n^2)$.

Рисунок 1 – Поведінка функцій

Задача 8: Довести, що $f(n) = 2n^2 + 10n + 3 = O(n^2)$.

Розв'язання:

Згідно з визначенням О-нотації, потрібно знайти такі константи c і n_0 , що виконується: $2n^2+10n+3 \le cn^2$ для $\forall \ n \ge n_0$.

Маємо:

$$2n^2 + 10n + 3 \le 2n^2 + 10n^2 + 3n^2$$
, для $n \ge 1$.

$$2n^2 + 10n + 3 \le 15n^2$$

Отже, можна взяти c = 15, $n_0 = 1$. Це доводить, що $f(n) = O(n^2)$.

Рисунок 2 – Графік до задачі 8

1.3 Отримані результати.

Визначено асимптотичну складність заданих функцій.

Доведено правильність обчислень згідно з визначенням О-нотації.

1.4 Відповіді на контрольні питання.

1. Що таке асимптотична складність алгоритму?

Асимптотична складність алгоритму — це міра зростання часу виконання або використання пам'яті алгоритмом при збільшенні вхідних даних.

2. Яким чином визначається О-нотація і яка її сутність?

О-нотація використовується для оцінки верхньої межі зростання функції. Вона визначається як множина функцій, які не зростають швидше за певну граничну функцію з точністю до константи.

3. Які основні правила використання О-нотації при аналізі алгоритмів? Залишаємо тільки найшвидше зростаючий член.

Ігноруємо константні множники.

Використовуємо визначення О-нотації для формального доведення.

- 4. Що означають вирази O(1), O(n), $O(n^2)$ в контексті асимптотичної складності?
- O(1) алгоритм виконується за сталий час, незалежно від розміру вхідних даних.
- O(n) час виконання алгоритму зростає лінійно зі збільшенням розміру вхідних даних.
 - $O(n^2)$ час виконання алгоритму зростає квадратично.
 - 5. Яким чином визначити асимптотичну складність алгоритму за його кодом або математичним виразом?

Аналізувати вкладені цикли та рекурсію.

Використовувати правила спрощення О-нотації.

Виділяти найшвидше зростаючий член у виразі складності.

