Optimal Skill Mixing Under Technological Advancements

Elmer Zongyang Li

Department of Economics

Cornell University

Midwest Macro

November 2023

Motivation

Intro

Evidence

vlodel

Conclusion

The nature of work has changed dramatically

 Decline in "routine" tasks and related worker skills Acemoglu(1999), Autor, Levy and Murane (2003), Autor and Dorn (2013)

Rising importance of social skills Cortes, Jaimovich, and Siu (2021), Deming (2017)

Remains unclear

specific specialized skill \iff a broad range of skills ("skill mixing")

- Different implications
 - Specialization in skill demand → experts in a single dimension
 - Skill mixing → multidisciplinary schooling and training

This Paper

Intro

Evidence

eturns

1odel

Conclusion

1. Documents new facts about skill mixing

- Rich data: incumbent jobs + new vacancies, employer vs. worker
- New angle-based measure

2. A directed search model with occupation design

- Multi-dimensional skills + non-linear technology
- Before producing, firms first design the occupation, st a cost (Acemoglu, '99)
- Endogenous human capital evolvement

3. **Quantify** the underlying drivers

Skill mixing changes and related employment, wage dynamics

Findings

Intro

- Return
- 1odel
- Quantitative
- Conclusion

- Substantial ↑ in skill mixing 2005-2018, even within granular occ.
 - o Mainly for non-routine [analytical, interpersonal, computer, leadership, design...]
 - Mainly for medium- to low-wage occupations
 - Source: within-occupation > worker reallocation
 - Persists controlling gender, industry, occ, skill supply (edu, exp)
- Important distribution and wage implications
 - Explains major part of employment/wage polarization
 - Wage returns: 1.7/6.5 percent in skill mixed occupation/being skill-mixed
- Main channel:
 † skill complementarity, cost
 - Analytical, computer / routine skills becomes ↑/↓ efficienct
 - These drive skill mixing + employment & wage dynamics

Contributions to the Literature

- Labor market dynamics that focuses on skill mixing
 - Skill/task biased: Tinbergen (1975); Katz and Murphy (1992); ALM (2003); Acemoglu and Autor (2011); Autor and Dorn (2013); Deming (2017); Deming and Kahn (2018)
 - Within-occupation variation: Autor and Handel (2013); Atalay et al. (2020); Freeman,
 Ganguli, and Handel (2020); Cortes, Jaimovich, and Siu (2021)
- Directed search model w/. endogenous demand + multi-d non-linear
 - Menzio and Shi (2010,2011); Kaas and Kircher (2015); Schaal (2017); Baley, Figueiredo, and Ulbricht (2022); Braxton and Taska (2023)
- Matching focusing on firm skill demand trade-offs under GE forces
 - o 1-D: Shi (2001); Hagedorn, Law, and Manovskii (2017)
 - Multi-D: Yamaguchi (2012); Lindenlaub (2017); Lise and Vinay (2020); Ocampo (2022)
 - Bundling: Rosen (1983); Murphy (1986); Heckman and Sedlacek (1985), Choné and Kramarz (2021); Edmond and Mongey (2021)

Intro

Evidence

eturns

lodel

1odel

Qualititative

Conclusion

Evidence of Skill Mixing

Angle Measure of Skill Mixing [2D]

Occ.	Length	$Angle\ (\theta)$	$Cosine(\theta)$
$A(y_A)$	0.4	38.7	0.78
$B(y_B)$	0.8	38.7	0.78
$C(y_C)$	0.4	8.1	0.99

ntro

Evidence

Return

Model

Quantitative

Angle Measure of Skill Mixing [Multi-D]

Definition (Degree of Skill Mixing of an occupation)

The skill mixing index for an occupation $\mathbf{y} = \{y_1, ..., y_k, ..., y_K\} \in S \subset \mathbb{R}^{K+}$ is the cosine similarity between its skill vector and the norm $\hat{\mathbf{v}}$.

$$\textit{Mix}(\mathbf{y}) = \frac{\mathbf{y}\hat{\mathbf{v}}}{||\mathbf{y}||\cdot||\hat{\mathbf{v}}||}, \textit{ where } \hat{\mathbf{v}} = [1,1,...,1]' \subseteq \mathbb{R}^{K+}$$

Interpretation

- Essentially, $Cosine(\theta)$ in multi-d, $\hat{\mathbf{v}}$ is norm
- Accommod. multi-d, focuses on angle similarity, normalized in [0,1]
- Alternative: Inverse Herfindahl, Absolute Distance details

Intro

Evidence

Returns

Model

Quantitative

Data and Skill Measures

Intro

Evidence

\Cturrs

viodei

- Occupational Information Network (O*NET) 2005-2018
 - Detailed descriptors for 970 7-digit occupations
 - Survey of <u>incumbent workers</u>, info on skill importance (intensive margin)
- Lightcast (formerly "Burning Glass") 2007-2017
 - Analyzes millions of online job postings into codified skills
 - Info on whether a skill is required for a vacancy (extensive margin)
- Skill Measures Acemoglu and Autor (2011) & More
 - Non-routine: analytical, interpersonal, computer; routine ["RNR"] details
 - More non-routine: leadership, design, these 5 ["broader non-routine"]
 - Lightcast: keywords based Braxton & Taska (2022) details

Fact 1: Increase in Skill Mixing at 7-Digit Occupations

Figure: Density for Skill Mixing Indexes (Cosine Distances), 2005 vs. 2018

Weighted Density Non-parametric

ntro

Evidence

Returns

10del

Quantitative

Fact 2: Growth in Skill Mixing

Figure: Trend of Skill Mixing in the US Economy, 2005-2018

ntro

Evidence

Returns

Model

Quantitative

Fact 2: Growth in Skill Mixing

Figure: Trend of Skill Mixing in the US Economy, 2005-2018

total	within	across
10.12	9.46	0.66
12.37	9.72	2.65

total	within	across
10.09	10.74	-0.65
11.00	9.69	1.31

total	within	across
5.16	4.37	0.78

Shift-share decomposition

ntro

Evidence

Returns

Model

Quantitative

Fact 3: Skill Mixing Increases Regardless of Workforce

	RNR Skills	Non-routine Skills
Full O*NET	0.70***	0.71***
	[0.10]	[0.09]
Constant Updates	0.75***	0.65***
	[0.11]	[0.11]
Lightcast		0.33**
		[0.15]
$Sex \times industry \times occ. \; FE$	Χ	X
Exp. and edu. controls	Χ	X

Table: Within Occupation Changes in Skill Mixing Indexes

$$Mix(\mathbf{y})_{ijt}^{\text{percentile}} = \lambda Year_t + \xi X_{ijt} + \delta_j + \epsilon_{ijt} \text{ where } j = \text{sex} \times \text{industry} \times \text{occ.}$$

Intro

Evidence

Returns

Model

Ouantitative

Fact 4: Medium- to Low-Wage Occupations More Mixed

Figure: Skill Mixing Index Change by Occupation Groups, 2005-2018

By industry Skill pairs

ntro

Evidence

D = 4.

1odel

Quantitativ

Fact 5: Skill Mixing Accounts for Polarization

Figure: Smoothed Employment and Wage Changes by Skill Percentile, 2005-2018

ntro

Evidence

Returns

Model

Quantitativ

Returns to Skill Mixing

National Longitudinal Survey of Youth (NLSY) 2005-2019

Detailed employment and educational histories + pre-market abilities

Analytical: AFQT; Interpersonal: social (Deming, '17); Computer: occ/major's computer skill

College major's skill mixing: emp-weighted avg. of O*NET measures

Dependent: In (hourly wage)	(1)	(2)	(3)
Mix (non-routine skills): Occ	0.017***	0.015***	0.014***
	[0.005]	[0.005]	[0.005]
Mix (non-routine skills): Worker		0.065***	
		[0.017]	
Ethnicity Gender, Age/Year, Region, Edu FE	X	X	X
Occupation FE	X	X	X
Worker FE			X
Observations	88,391	79,343	88,391
R-squared	0.416	0.430	0.756

Table: Return to Skill Mixing: Occupations and Workers

Intro

Fyidence

Returns

10del

Quantitativ

Intro

Evidence

Returns

Model

Conclusion

A Directed Search Model with Occupation Design

Environment

- Multi-dimensional Skill Set-up
 - Discrete time, 1-1 matching, $K \ge 2$ skills
 - A unit of heterogeneous workers $\mathbf{x} = \{x_1, ..., x_k, ..., x_K\} \in S \subset \mathbb{R}^{K+1}$
 - A mass of risk-neutral firms $\mathbf{y} = \{y_1, ..., y_k, ..., y_K\} \in S \subset \mathbb{R}^{K+}$
 - o CES Matching production Lindenlaub (2017); Lise & Postel-Vinay (2020)

$$f(\mathbf{x}, \mathbf{y}) = \left[\sum_{k=1}^{K} (x_k \alpha_k y_k)^{\sigma} \right]^{\frac{1}{\sigma}}$$

- Endogeneous Occupation Design
 - Both vacant & incumbent firms optimally choose y before producing
 - Pay $C(\mathbf{y}) = \boldsymbol{\tau}[\sum_{k=1}^K (y_k)^{\boldsymbol{\rho}}]$ rep. cost of operating an occ for given \mathbf{y}
- Labor Market timing
 - \circ Continuum submarkets by (x,y) and surplus share ω , tightness $\theta(x,y,\omega)$
 - δ separatn, matching $M(s,v)=\mu s^{\eta}v^{1-\eta}$, markov evolvement $\pi(x_j'|x_j,y_j)$

Intro

Evidence

eturns

Model

Quantitative

Model Equilibrium

Worker's Problem

$$\begin{split} U(\mathbf{x}) &= b + \beta E \left\{ \max_{\mathbf{y}',\omega'} \underbrace{p(\theta(\mathbf{x}',\mathbf{y}',\omega'))W(\mathbf{x}',\mathbf{y}',\omega')}_{\text{get employed}} + \underbrace{\left[(1 - p(\theta(\mathbf{x}',\mathbf{y}',\omega')) \right] U(\mathbf{x}')}_{\text{stay unemployed}} \right\} \\ W(\mathbf{x},\mathbf{y},\omega) &= \underbrace{\omega(f(\mathbf{x},\mathbf{y}) - C(\mathbf{y}))}_{\text{get surplus}} + \beta (1 - \delta) E \left\{ \max_{\widetilde{\mathbf{y}}',\widetilde{\omega}'} \underbrace{p(\theta(\mathbf{x}',\widetilde{\mathbf{y}}',\widetilde{\omega}'))W(\mathbf{x}',\widetilde{\mathbf{y}}',\widetilde{\omega}')}_{\text{change employer}} \right. \\ &+ \underbrace{\left[(1 - p(\theta(\mathbf{x}',\widetilde{\mathbf{y}}',\widetilde{\omega}')) \right] W(\mathbf{x}',\mathbf{y}',\omega)}_{\text{stay with current employer}} \right\} + \delta U(\mathbf{x}') \end{split}$$

Intro

Evidence

Returns

Model

Quantitativ

Model Equilibrium

Worker's Problem

$$U(\mathbf{x}) = b + \beta E \left\{ \max_{\mathbf{y}', \omega'} p(\theta(\mathbf{x}', \mathbf{y}', \omega')) W(\mathbf{x}', \mathbf{y}', \omega') + \left[(1 - p(\theta(\mathbf{x}', \mathbf{y}', \omega'))) \right] U(\mathbf{x}') \right\}$$

$$W(\mathbf{x}, \mathbf{y}, \omega) = \omega(f(\mathbf{x}, \mathbf{y}) - C(\mathbf{y})) + \beta(1 - \delta)E\left\{ \max_{\tilde{\mathbf{y}}', \tilde{\omega}'} p(\theta(\mathbf{x}', \tilde{\mathbf{y}}', \tilde{\omega}'))W(\mathbf{x}', \tilde{\mathbf{y}}', \tilde{\omega}') + \left[(1 - p(\theta(\mathbf{x}', \tilde{\mathbf{y}}', \tilde{\omega}'))]W(\mathbf{x}', \mathbf{y}', \omega) \right\} + \delta U(\mathbf{x}') \right\}$$

retain the worker

Model

Firm's Problem

design occupation

$$P_{1} \text{ free on true} = P_{2} \left\{ \sigma(O(n_{1}, n_{2}, n_{3})) \right\} \left\{ (n_{1}, n_{2}, n_{3}) \right\}$$

By free-entry: $c = \beta E \{ q(\theta(\mathbf{x}, \mathbf{y}, \omega)) J(\mathbf{x}, \mathbf{y}, \omega) \}$

- **Equilibrium Properties**
 - Block-recursive Menzio & Shi (2010,2011) due to directed search + submarkets

 $J(\mathbf{x}, \mathbf{y}, \omega) = \max_{\mathbf{y}} \underbrace{(1 - \omega)(f(\mathbf{x}, \mathbf{y}) - C(\mathbf{y}))} + \beta(1 - \delta)E\left\{\underbrace{(1 - p(\theta(\mathbf{x}', \mathbf{\tilde{y}}', \omega'))J(\mathbf{x}', \mathbf{y}', \omega)}\right\}$

 Δ skill mixing, wage, employment: complementarity, cost, skill supply

Intro

Evidence

leturns

1odel

Quantitative

Conclusion

What Are the Drivers of Skill Mixing and How Do They Affect Labor Market Dynamics?

Measurement and Calibration

- Simulated Methods of Moments (NLSY, 2005–2006 and 2016–2019)
 - Occ: high-wage (professional & white-collar), low-wage (blue-collar & service)
 - Worker: low-type (avg. of below mean x_i^{low}), high-type (skill supply

	A. Externally calibrated - search	(Details)	
	β , δ , ω , b , η , μ , γ_k		
	B. Externally calibrated - skill efficiency	2005	2018
α_a	Efficiency of analytical/computer skill	0.63	0.95
α_p	Efficiency of interpersonal skill	0.05	0.08
α_r	Efficiency of routine skill	0.14	0.06
	C. Internally estimated	2005	2018
σ	Elasticity parameter of skills in production (low-wage)	1.00	0.30
σ	Elasticity parameter of skills in production (high-wage)	0.58	0.30
τ	Scaler of occupation operation cost	1.31	1.96
ρ	Convexity of occupation operation cost	2.74	4.98
С	Vacancy posting over quarterly output	0.68	0.82

Intr

Evidence

Returns

1odel

Quantitative

Counterfactual Analysis

ntro

Evidence

Returns

Model

Quantitative

Conclusion

Additional counterfactual

Conclusion

ntro

Evidence

Return

Model

Quantitative

Conclusion

- Skills are inevitably embedded in workers → demand of skill mixtures
- New facts about skill mixing, important for distributions & workers
- New framework of directed search & occ. design, complementarity matters

Educators and policymakers ought to provide more "mixed" skills to workers to take advantage of the complementarity side of technological change.

Elmer Zongyang Li

Website: www.elmerli.net

E-mail: zl685@cornell.edu

- Research Fields: Macroeconomics, Labor Economics, Trade
- References: Philipp Kircher*, Michael Lovenheim*, Julieta Caunedo,
 Mathieu Taschereau-Dumouchel

Appendix

13. Negotiation

Bringing others together and trying to reconcile differences.

A. How important is NEGOTIATION to the performance of your current job?

Not	Somewhat		Very	Extremely
Important*	Important	Important	Important	Important
1				
U_	4	-	4	9

^{*} If you marked Not Important, skip LEVEL below and go on to the next skill.

B. What <u>level</u> of NEGOTIATION is needed to perform your current job?

Highest Level

O*NET Modules and Principle Content (back)

Survey	Main content
Education/ training	Required education, related work experience, training
C	
Knowledge	Various specific functional and academic areas (e.g., physics, marketing, design, clerical, food production, construction)
Skills	Reading, writing, math, science, critical thinking, learning, resource management, communication, social relations, technology
Abilities	Writing, math, general cognitive abilities, perceptual, sensory-motor, dexterity, physical coordination, speed, strength
Work activities	Various activities (e.g., information processing, making decisions, thinking creatively, inspecting equipment, scheduling work)
Work context	Working conditions (e.g., public speaking, teamwork, conflict resolution, working outdoors, physical strains, exposure to heat, noise, and chemicals, job autonomy)
Work style	Personal characteristics (e.g., leadership, persistence, cooperation, adaptability)

O*NET Versions and Corresponding Years (back)

	Released Year	Division	Work Context	Work Activities	Knowledge	Skills	Abilities	Considered Year
O*NET 13.0	2008	Post 2005	73.79%	73.79%	73.79%	73.79%	73.79%	2005
		Before 2005	26.21%	26.21%	26.21%	26.21%	26.21%	
O*NET 18.0	2013	Post 2009	57.15%	57.21%	57.21%	99.89%	57.21%	2009
		Before 2009	42.85%	42.79%	42.79%	0.11%	42.79%	
O*NET 22.0	2017	Post 2013	57.84%	57.67%	57.67%	57.67%	57.67%	2013
		Before 2013	42.16%	42.33%	42.33%	42.33%	42.33%	
O*NET 25.0	2022	Post 2018	54.52%	54.52%	54.52%	54.52%	54.52%	2018
		Before 2018	45.48%	45.48%	45.48%	45.48%	45.48%	

Notes: The table summarizes different versions of the O*NET (Occupational Information Network) database, along with their released year, year division for the 5 modules (work context, work activities, knowledge, skills, abilities), and the considered year for each version. The "Post" and "Before" rows indicate whether the data in each version was collected post or before a particular year. The "Considered Year" column represents the year considered to be corresponding to each release of O*NET based on the year division of data.

Non-routine Analytical	Routine
Analyzing data/information	Importance of repeating the same tasks
Thinking creatively	Importance of being exact or accurate
Interpreting information for others	Structured v. Unstructured work (reverse)
Non-routine Interpersonal	Pace determined by speed of equipment
Establishing and maintaining personal relationships	Controlling machines and processes
Guiding, directing and motivating subordinates	Spend time making repetitive motions
Coaching/developing others	Leadership
Computer	Making Decisions and Solving Problems
Interacting With Computers	Developing Objectives and Strategies
• Programming	Organizing, Planning, and Prioritizing Work
Computers and Electronics	Coordinating the Work and Activities of Others
Design	Developing and Building Teams
• Design	Guiding, Directing, and Motivating Subordinates
Drafting, Laying Out, and Specifying Technical	Provide Consultation and Advice to Others
Devices, Parts, and Equipment	

Broad O*NET Skills back

Analytical	Mechanical	Interpersonal
Deductive Reasoning	Multilimb Coordination	Assisting and Caring for Others
 Inductive Reasoning 	Speed of Limb Movement	 Selling or Influencing Others
Mathematical Reasoning	Mechanical	Resolving Conflicts and Negotiating
Number Facility	Performing General Physical Activities	 Coaching and Developing Others
 Mathematics 	Handling and Moving Objects	Staffing Organizational Units
Economics and Accounting	Controlling Machines and Processes	Service Orientation
Reading Comprehension	Operate Vehicles, Mechanized Devices or Equipmnt	Administration and Management
• Writing	Repairing and Maintaining Mechanical Equipment	 Customer and Personal Service
 Speaking 	Repairing and Maintaining Electronic Equipment	
 Oral Comprehension 	Installation	
Written Comprehension	Equipment Maintenance	
 Oral Expression 	Repairing	
Written Expression	Production and Processing	

Lightcast Key Words (back)

Analytical	Interpersonal	Computer
• "research"	• "communication"	"computer"
• "analy"	• "teamwork"	 Any skill flagged
• "decision"	• "collaboration"	as software related
• "solving"	"negotiation"	
• "math"	"presentation"	
• "statistic"		
• "thinking"		

Skill Mixing at 7-digit Occupations back

Figure: Density for Skill Mixing Indexes (Cosine Distances), 2005 vs. 2018

Skill Mixing at 7-digit Occupatoins back

Panel B. 7-Digit Occupations Weighted by OEWS

Alternative Depiction of Skill Mixing back

Figure: Non-parametric Depiction of Skill Intensities, 2005 vs. 2018

Time Pattern back

Figure: Trend of Skill Mixing with Alternative Skill Measures

Alternative Skill Mixing Indexes back

Inverse Herfindahl-Hirschman Index (HHI)

$$\left[\left(\frac{y_a^j}{y_a^j + y_s^j} \right)^2 + \left(\frac{y_s^j}{y_a^j + y_s^j} \right)^2 \right]^{-1}$$

Normalized Absolute Distance

$$-\frac{|y_a^j - y_s^j|}{y_a^j + y_s^j}$$

Time Pattern back

Figure: Trend of Skill Mixing with Alternative Indexes

Full and Updated O*NET back

Decomposition: Intensive vs. Extensive back

	Skill Groups	7-di	7-digit Occupations			4-digit Occupations		
	3kiii Groups	total	within	across	total	within	across	
Full O*NET	RNR Skills	6.78	4.93	1.85	10.12	9.46	0.66	
Full O NET	Non-routine Skills	9.21	5.62	3.59	12.37	9.72	2.65	
C	RNR Skills	5.59	6.73	-1.14	10.09	10.74	-0.65	
Constant Updates	Non-routine Skills	4.05	5.33	-1.29	11.00	9.69	1.31	
Lightcast	Non-routine Skills				5.16	4.37	0.78	

Table: Shift-Share Decomposition of Skill Mixing Index Changes

Notes: This table shows a shift-share decomposition of changes in the average level of different mixing indexes between 2005-2018 in percentile units. Specifically, for a change in the percentile of a mixing index over two periods t and τ , its change $\Delta T_{\tau} = T_{\tau} - T_{t}$ which can be decomposed to $\Delta T = \sum_{j} \left(\Delta E_{j\tau} \alpha_{j} \right) + \sum_{j} \left(E_{j} \Delta \alpha_{j\tau} \right) = \Delta T^{a} + \Delta T^{w}$ where $E_{j\tau}$ is employment weight in occupation j in year τ , and $\alpha_{j\tau}$ is the level of mixing index h in occupation j in year τ , $E_{j} = \frac{1}{2} (E_{jt} + E_{j\tau})$ and $\alpha_{j} = \frac{1}{2} (\alpha_{jt} + \alpha_{j\tau})$. ΔT^{a} and ΔT^{w} then represent across-occupation and within-occupation change.

Decomposition: Intensive vs. Extensive back

	Skill Groups	6-dig	6-digit Occupations			4-digit Occupations		
	Skiii Groups	total	within	across	total	within	across	
	analytical + computer	10.52	6.40	4.12	10.49	6.60	3.89	
	analytical + interpersonal	5.36	2.90	2.46	8.17	4.08	4.09	
Full O*NET	computer + routine	4.38	2.41	1.97	5.16	2.94	2.22	
Full O'NET	computer + interpersonal	7.23	3.60	3.63	11.81	7.51	4.30	
	routine + analytical	4.00	2.29	1.71	4.23	3.16	1.07	
	routine + interpersonal	1.93	0.12	1.81	2.35	1.08	1.26	
	analytical + computer	5.59	6.03	-0.44	6.42	5.89	0.53	
	analytical + interpersonal	3.53	4.58	-1.05	4.00	3.00	1.00	
Constant Updates	computer + routine	2.88	3.69	-0.81	0.52	1.93	-1.42	
Constant Opulates	computer + interpersonal	0.78	1.86	-1.09	6.86	5.93	0.93	
	routine + analytical	2.04	2.13	-0.09	1.48	3.60	-2.12	
	routine + interpersonal	0.81	0.82	-0.01	-0.33	1.47	-1.80	
	analytical + computer				12.64	11.74	0.90	
Lightcast	analytical + interpersonal				2.51	2.20	0.31	
	computer + interpersonal				-4.18	-3.79	-0.39	

Table: Decomposition of Mixing Indexes' Changes by Skill Pairs

Mixing Index Change by Skill Pairs, 2005-2018 [back]

Figure

Skill Measures in NLSY back NLSY back quant

O*NET Measure	NLSY Measure	y learn Y school	γ_j^{up}	γ_j^{down}
analytical	AFQT score	0.33	0.36	0.10
interpersonal	Deming (2017) social skill	0.33	0.05	0.00003
routine	ASVAB	0.33	1	0.36
computer	OCC/Major's 2005 Value	0.33	0.36	0.10

Table: Skill Measures in NLSY and Annual Skill Learning and Depreciation Rate

Notes: This table illustrates for each O*NET skill measure, its corresponding skill measure using NLSY79&97 data, and the learning and depreciation rate for these different skills. The AFOT is the same as the one used by Altonii, Bharadwai, and Lange (2012) followed by Deming (2017), which controls for age-at-test, test format, and other idiosyncrasies. Deming (2017)'s social skill measure consists of sociability in childhood and sociability in adulthood in NLSY79, and two questions from the Big 5 inventory gauging the extraversion in NLSY97. The average of workers' ASVAB mechanical orientation and electronics test scores are used for mechanical skill. Since ASVAB scores are not available for the NLSY97 survey, they are imputed based on predictive regression using the NLSY79 survey. Workers' occupations' or college majors' O*NET computer skill scores in the year 2000 are used as their endowed computer skill. The skill accumulation/depreciation rate is directly from Lise and Postel-Vinay (2020)'s estimates based on monthly data converted to annual values. Skill learning/depreciating while attending college is specified to be 33% per year.

Model in Action back

- Continuum submarkets by (x, y), surplus share ω , tightness $\theta(x, y, \omega)$
- Endogenous skill investment & job ladder

Salesperson (x^s)

- Unemployed
- Occupation B (y^A)
 - \triangleright Surplus share ω_1 : $p(\theta(x^s, y^A, \omega_1))$
 - \triangleright Surplus share ω_2 : $p(\theta(x^s, y^A, \omega_2))$
 - ▷ .
- Occupation B (y^B)
 - ▷ Surplus share $ω_1$: $p(θ(x^s, y^B, ω_1))$
 - \triangleright Surplus share ω_2 : $p(\theta(x^s, y^B, \omega_2))$
 - ▷ ...
- Occupation ...

Computer Scientist (x^c)

- Unemployed
- Occupation A (y^A)
 - ▷ Surplus share $ω_1$: $p(θ(x^c, y^A, ω_1))$
 - ▷ Surplus share $ω_2$: $p(θ(x^c, y^A, ω_2))$
 - ▷ ...
- Occupation B (y^B)
 - \triangleright Surplus share ω_1 : $p(\theta(x^c, y^B, \omega_1))$
 - ▷ Surplus share $ω_2$: $p(θ(x^c, y^B, ω_2))$
 - ▷ ...
- Occupation ...

Calibration of Skill Supply (back)

- Skill supply calibration: between data periods and within model period
- Across-period Skill Supply Variation:
 - Skills adjusted based on occupation or college major requirements.
 - Skill accumulation at rate $\gamma_i \times$ skill gap.
 - Annual rates adjusted by number of working weeks (47).
- Markov Skill Supply Adjustment:
 - Skill evolution follows Markov process $\pi(x_i'|x_i,y_i)$.
 - Upward adjustment probability:

$$\frac{x_j^{up} - x_j}{y_j - x_j} \mathbf{1}(x_j^{up} < y_j) \times \frac{\gamma_j^{up}}{4}$$

Downward adjustment probability:

$$\frac{x_j^{down} - x_j}{y_j - x_j} \mathbf{1}(y_j < x_j^{down}) \times \frac{\gamma_j^{down}}{4}$$

Targeted Moments (back)

	First	Period	Second Period	
	Data	Model	Data	Model
Worker moments				
Relative wage of high type				
Analytical/computer	1.46	1.56	1.60	1.62
Interpersonal	1.05	1.13	1.20	1.27
Routine	1.12	1.18	0.92	1.40
Wage return of skill mixing (untargeted)	0.07	0.04	0.07	0.04
Unemployment Rate	0.05	0.09	0.04	0.07
Occupation moments				
Relative wage of high-wage	1.30	1.22	1.56	1.40
Corr. wage & abilities (low-wage)	0.23	0.25	0.49	0.52
Corr. wage & abilities (high-wage)	0.35	0.45	0.60	0.61
Employ. share (low-wage)	0.43	0.54	0.37	0.28
Employ. share (high-wage)	0.57	0.46	0.63	0.72
$100 \times \text{Skill mixing (low-wage)}$	97.54	97.65	98.96	99.10
$100 \times \text{Skill mixing (high-wage)}$	95.74	95.71	94.12	97.93

Identification of Parameters (back)

• Estimate σ using relative wage within occupation:

$$\Delta w(\mathbf{x}, \mathbf{y}) = \omega \left[\sum_{k=1}^{K} (x^k y^k)^{\sigma} \right]^{\frac{1}{\sigma}} - A$$

- Adjust wage for occupation fixed effects and other factors; use MLE for σ .
- Cost parameters ρ and τ identified via firms' optimization of skill demand and employment distribution across occupations.
- Vacancy posting cost c and relative skill level of high-skill worker α_k determined by unemployment levels and relative wages, respectively.

Algorithm (back)

na a na a nta

- Given $\Theta = \{\sigma, \rho, \tau, c, \alpha_k\}$, each iteration of SMM first solves the steady state firm and worker policy function
 - 1. Fix the number of periods T
 - 2. Starting from the terminal period T, solve the firm problem
 - 3. Use the free entry condition to obtain the market tightness $\theta_T(\mathbf{x}, \mathbf{y}, \omega)$
 - 4. With the market tightness, solve the worker dynamic programming problem
 - 5. Repeated stepping back from t = T 1, ..., 1
 - 6. Check if the difference in worker value $U_{t+1} U_t$, $W_{t+1} W_t$ and the firm value $J_{t+1} J_t$ is less than a predetermined tolerance level. If yes stop, if not increase T and go back to first step
- Next, simulate 10,000 workers for T(T > 200) periods, burning the first 40
- Obtain dist of LM outcomes across different occ. and worker types
- SMM minimizes the distance between the model-implied moments data

Additional Counterfactual Analysis back

Notes: These figures plot the model generated changes in skill mixing in high-skill occupations (panel 1) and changes in employment share of high-skill occupation (panel 2). Panel (3) and (4) depict the model generated changes in skill mixing in low-skill occupation and the relative wage of high-skill occupations by shutting down the skill efficiency differential for analytical/computer, interpersonal, and routine skills individually; also by shutting down τ and ϕ individually.

Caliberated Parameters **back**

Parameter	Description	V	alue
	A. Externally calibrated search		
β	Discount Rate	().96
δ	Job separation rate	(0.10
ω	Worker share of surplus	(0.60
b	Unemployment benefit as share of output	(0.42
η	Elasticity of the matching function	(0.50
μ	Matching efficiency	(0.65
	B. Externally calibrated – skill adjustment	(Upward)	(Downward
γ_a	Annual adjustment speed of analytical/computer skill	0.36	0.10
γ_p	Annual adjustment speed of interpersonal skill	0.05	0.00
γ_r	Annual adjustment speed of routine skill	1.00	0.36
	C. Externally calibrated – skill efficiency	(Period 1)	(Period 2)
α_a	Skill efficiency of analytical/computer skill	0.63	0.95
α_p	Skill efficiency of interpersonal skill	0.05	0.08
α_r	Skill efficiency of routine skill	0.14	0.06
	D. Internally estimated	(Period 1)	(Period 2)
σ^{low}	Elasticity parameter of skills in production (low-wage)	1.00	0.30
σ^{high}	Elasticity parameter of skills in production (high-wage)	0.58	0.30
τ	Scaler of occupation operation cost	1.31	1.96
ϕ	Convexity of occupation operation cost	2.74	4.98
c	Vacancy posting cost as a share of output	0.68	0.82

Top College Majors in Skill Mixing (back)

Hybrid Index – Level	Hybrid Index – Change					
analytical + computer + interpersonal						
Physical Sciences	Architecture and Environmental Design					
Engineering	Computer and Information Sciences					
Letters	Communications					
analytical + computer						
Physical Sciences	Interdisciplinary Studies					
Engineering	Area Studies					
Letters	Computer and Information Sciences					
analytical +	- interpersonal					
Public Affairs and Services	Architecture and Environmental Design					
Business and Management	Computer and Information Sciences					
Social Sciences	Communications					
computer +	- interpersonal					
Social Sciences	Architecture and Environmental Design					
None, General Studies	Computer and Information Sciences					
Public Affairs and Services	Engineering					
routine	+ computer					
Transportation	Social Sciences					
Fine and Applied Arts	Agriculture and Natural Resources					
Engineering	Foreign Languages					
routine	+ analytical					
Transportation	Agriculture and Natural Resources					
Health Professions	Social Sciences					
Computer and Information Sciences	Foreign Languages					
routine +	interpersonal					
Transportation	Agriculture and Natural Resources					
Health Professions	Architecture and Environmental Design					
Military Sciences	Social Sciences					

Return to Skill Mixing Full Table with Individual Skills (back)

Dependent: ln(hourly wage)	(1)	(2)	(3)	(4)	(5)
Occupation Skills					
Analytical	-0.023**	-0.023**	-0.015*	-0.026*	
•	[0.009]	[0.010]	[0.008]	[0.014]	
Computer	-0.008	-0.014	-0.009	-0.019	
	[0.010]	[0.011]	[0.009]	[0.016]	
Interpersonal	-0.009	-0.014	-0.013*	-0.002	
	[0.009]	[0.009]	[0.008]	[0.012]	
Mechanical	0.021**	0.029***	0.019**	0.034*	
	[0.010]	[0.011]	[0.009]	[0.018]	
Mix (non-routine skills)	0.017***	0.015***	0.014***	0.005	
	[0.005]	[0.005]	[0.005]	[0.009]	
Mix (routine + computer)	-0.035***	-0.045***	-0.037***	-0.045***	
	[0.008]	[0.008]	[0.007]	[0.013]	
Mix (routine + analytical)	-0.041***	-0.045***	-0.039***	-0.007	
	[0.007]	[0.008]	[0.007]	[0.013]	
Mix (routine + interpersonal)	0.029***	0.035***	0.025***	0.014	
	[0.009]	[0.009]	[0.008]	[0.015]	
Worker Skills					
Afqt (analytical)		0.074***		-0.048*	-0.009**
		[0.011]		[0.028]	[0.004]
Computer		0.045***		0.031	0.056***
•		[0.006]		[0.025]	[0.002]
Social (interpersonal)		0.016***		0.032	-0.001
		[0.005]		[0.030]	[0.002]
ASVAB (routine)		-0.015		0.015	-0.002
		[0.015]		[0.024]	[0.005]
Mix (non-routine skills)		0.065***		0.030**	0.135***
		[0.017]		[0.013]	[0.009]
Mix (ASVAB mechanical + computer)		0.029*		-0.004	0.038***
		[0.017]		[0.018]	[0.010]
Mix (ASVAB mechanical + afqt)		0.006		-0.013	0.000
		[0.008]		[0.026]	[0.004]
Mix (ASVAB mechanical + social)		-0.039***		0.011	-0.030***
		[0.008]		[0.017]	[0.004]
Ethnicity*Gender, Age, Region, Edu FE	X	X	X	X	X
Occupation FE	X	X	X	X	
Worker FE	00.201	70.242	X	X 21.020	04.062
Observations R-squared	88,391 0.416	79,343 0.430	88,391 0.756	31,029 0.704	94,062 0.136
r-squareu	0.410	0.430	0.730	0.704	0.130

Return to Skill Mixing Including Major (back)

Dependent: In(hourly wage)	(1)	(2)	(3)
Mix (Non-routine Skills): Occupation	0.017***	0.015***	0.014***
	[0.005]	[0.005]	[0.005]
Mix (Non-routine Skills): Worker		0.065***	
		[0.017]	
Ethnicity*Gender, Age/Year, Region, Edu FE	X	X	X
Occupation FE	X	X	X
Worker FE			X
Observations	88,391	79,343	88,391
R-squared	0.416	0.430	0.756

Robustness Checks of Return to Skill Mixing (back)

Dependent: ln(hourly wage)	(1)	(2)	(3)	(4)
Analytical	-0.014*	-0.008	-0.009	-0.013
	[0.008]	[0.033]	[0.008]	[0.008]
Computer	-0.002	0.069**	0.002	-0.038***
	[0.009]	[0.027]	[0.009]	[0.010]
Interpersonal	-0.019**	-0.118***	-0.018**	-0.014*
	[0.008]	[0.030]	[0.008]	[0.008]
Routine	0.026***	0.091***	0.005	0.010
	[0.009]	[0.017]	[0.008]	[0.008]
Mix (analytical + computer)	0.007	-0.040	0.008*	0.020***
	[0.005]	[0.036]	[0.005]	[0.007]
Mix (analytical + interpersonal)	0.010**	0.156***	0.006	0.025***
	[0.004]	[0.042]	[0.004]	[0.005]
Mix (computer + routine)	-0.028***	-0.045***	-0.021**	-0.087***
	[0.007]	[0.015]	[0.008]	[0.013]
Mix (computer + interpersonal)	-0.011**	-0.019	-0.013***	-0.021***
	[0.005]	[0.033]	[0.005]	[0.008]
Mix (routine + analytical)	-0.033***	-0.080***	-0.041***	-0.041**
	[0.007]	[0.015]	[0.008]	[0.018]
Mix (routine + interpersonal)	0.010	0.033**	0.033***	0.026**
	[0.007]	[0.016]	[0.006]	[0.012]
Ethnicity \times Gender, Age, Region, Edu FE	X	X	X	X
Occupation FE	X	X	X	X
Worker FE	X	X	X	X
Observations	87,655	87,655	87,655	87,655
R-squared	0.757	0.757	0.757	0.758