CLAIMS

1. A compound of formula (I):

5

10

15

20

25

30

wherein

R¹ is a phenyl group which may be optionally substituted;

 R^2 is C_{1-6} alkyl substituted by one to three groups independently selected from OH, oxo, cyano, -S(O)_pR⁴, halogen, C_{1-6} alkoxy, -NR⁵R⁶, -CONR⁵R⁶, -NCOR⁵, -COOR⁵, -SO₂NR⁵R⁶, -NHSO₂R⁵ and -NHCONHR⁵;

 R^3 is the group -CO-NH-(CH₂)_a-R⁷ or -NH-CO-R⁸;

 R^4 is selected from hydrogen, C_{1-6} alkyl, heterocyclyl optionally substituted by C_{1-4} alkyl, and phenyl wherein the phenyl is optionally substituted by up to two groups independently selected from C_{1-6} alkoxy, C_{1-6} alkyl and halogen;

R⁵ and R⁶ are each independently selected from hydrogen and C₁₋₆alkyl;

when q is 0 to 2, R^7 is selected from hydrogen, C_{1-6} alkyl, $-C_{3-7}$ cycloalkyl, $-C_{3-7}$ cycloalkyl

when q is 2, R^7 is additionally selected from $C_{1\text{-}6}$ alkoxy, NHCOR 9 , NHCONHR 9 , NR 9 R 10 and OH;

 $\rm R^8$ is selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, -(CH₂)_r-C₃₋₇cycloalkyl, trifluoromethyl, -(CH₂)_sphenyl optionally substituted by R¹³ and/or R¹⁴, -(CH₂)_sheterocyclyl optionally substituted by R¹³ and/or R¹⁴, -(CH₂)_sheterocyclyl optionally substituted by R¹³ and/or R¹⁴ and -(CH₂)_sfused bicyclyl optionally substituted by R¹³ and/or R¹⁴:

 $\rm R^9$ is selected from hydrogen, C₁₋₆alkyl and phenyl wherein the phenyl group is optionally substituted by up to two substituents selected from C₁₋₆alkyl and halogen,

 R^{10} is selected from hydrogen and C_{1-6} alkyl, or

R⁹ and R¹⁰, together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic or heteroaryl ring optionally containing one additional

WO 2004/089875 PCT/EP2004/003769

heteroatom selected from oxygen, sulfur and nitrogen, wherein the ring may be substituted by up to two C_{1-6} alkyl groups;

 R^{11} is selected from C_{1-6} alkyl, C_{1-6} alkoxy, -CONR¹⁰R¹⁵, -NHCOR¹⁵, -SO₂NHR¹⁵, -NHSO₂R¹⁵, halogen, trifluoromethyl, -Z-(CH₂)_t-phenyl optionally substituted by one or more halogen atoms, -Z-(CH₂)_t-heterocyclyl or -Z-(CH₂)_t-heterocyclyl or heteroaryl group is optionally substituted by one or more substituents selected from C_{1-6} alkyl,

R¹² is selected from C₁₋₆alkyl and halogen, or

5

10

15

20

25

30

35

40

when R^{11} and R^{12} are adjacent to each other they may, together with the carbon atoms to which they are bound, form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring that is formed R^{11} and R^{12} optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

 $\rm R^{13}$ is selected from C₁₋₆alkyl, C₁₋₆alkoxy, -(CH₂)_r-C₃₋₇cycloalkyl, -CONR¹⁶R¹⁷, -NHCOR¹⁷, -SO₂NHR¹⁶, -NHSO₂R¹⁷, halogen, -(CH₂)_kNR¹⁸R¹⁹, oxy, trifluoromethyl, phenyl optionally substituted by one or more R¹⁴ groups and heteroaryl wherein the heteroaryl is optionally substituted by one or more R¹⁴ groups,

 $\rm R^{14}$ is selected from C1-6alkyl, C1-6alkoxy, halogen, trifluoromethyl and - NR18R19, or

 R^{13} and R^{14} , together with the carbon atoms to which they are bound, form a five- or six-membered saturated or unsaturated ring to give a fused bicyclic ring system, wherein the ring that is formed by R^{13} and R^{14} optionally contains one or two heteroatoms selected from oxygen, nitrogen and sulfur;

R¹⁵ is selected from hydrogen and C₁₋₆alkyl;

 R^{16} is selected from hydrogen, C_{1-6} alkyl and phenyl wherein the phenyl group is optionally substituted by one or more R^{14} groups,

R¹⁷ is selected from hydrogen and C₁₋₆alkyl, or

 R^{16} and R^{17} , together with the nitrogen atom to which they are bound, form a five- to six-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N-R²⁰, wherein the ring is optionally substituted by up to two C_{1-6} alkyl groups;

 R^{18} is selected from hydrogen, C_{1-6} alkyl and - $(CH_2)_r$ - C_{3-7} cycloalkyl optionally substituted by C_{1-6} alkyl,

R¹⁹ is selected from hydrogen and C₁₋₆alkyl, or

 R^{18} and R^{19} , together with the nitrogen atom to which they are bound, form a three- to seven-membered heterocyclic ring optionally containing one additional heteroatom selected from oxygen, sulfur and N- R^{20} , wherein the ring may contain up to one double bond and the ring is optionally substituted by one or more R^{21} groups;

R²⁰ is selected from hydrogen and methyl;

 R^{21} is selected from C₁₋₆alkyl, oxy, -CH₂OC₁₋₆alkyl, trichloromethyl and -N(C₁₋₆alkyl)₂;

U is selected from methyl and halogen;

W is selected from methyl and chlorine;

WO 2004/089875 PCT/EP2004/003769

X and Y are each selected independently from hydrogen, methyl and halogen; Z is selected from -O- and a bond;

m is selected from 0, 1, 2, 3 and 4, and may be optionally substituted with up to two groups selected independently from C_{1-6} alkyl;

n, p, q, r and t are independently selected from 0, 1 and 2; s is selected from 0 and 1; and k is selected from 0, 1, 2 and 3;

or a pharmaceutically acceptable derivative thereof.

- 10 2. A compound according to claim 1 wherein R¹ is phenyl.
 - 3. A compound according to claim 1 or claim 2 wherein R^2 is C_{1-4} alkyl substituted by one or two OH groups.
- 4. A compound according to any one of the preceding claims wherein m is 0 or 1.
 - 5. A compound according to any one of the preceding claims wherein R^4 is $-C_{3-7}$ cycloalkyl.
- 20 6. A compound according to claim 1 as defined in any one of Examples 1 to 3, or a pharmaceutically acceptable derivative thereof.
 - 7. A process for preparing a compound according to any one of claims 1 to 6 which comprises:
 - (a) reacting a compound of formula (XXII)

(XXII)

30

25

5

wherein R¹, R², U, W, X, Y, m and n are as defined in claim 1,

WO 2004/089875 PCT/EP2004/003769

with a compound of formula (XXIII)

$$R^7$$
-(CH₂)_q-NH₂

(XXIII)

- wherein R⁷ and q are as defined in claim 1, under amide forming conditions, optionally converting the acid compound (XXII) to an activated form of the acid before reaction with the amine compound (XXIII);
 - (b) reacting a compound of formula (XXIV)

10

15

(XXIV)

wherein \mathbb{R}^3 , U, W, X, Y and n are as defined in claim 1, with a compound of formula (XXV)

$$R^{1}(CH_{2})_{m}NR^{2}H$$

(XXV)

wherein R¹, R² and m are as defined in claim 1, 20 under amide forming conditions;

(c) reacting a compound of formula (XXVI)

5

15

(XXVI)

wherein R³, U, W, X, Y and n are as defined in claim 1, with a compound of formula (XXV) as defined above;

(d) functional group conversion of a compound of formula (XXVII)

10 (XVIII)

wherein R^3 , U, W, X, Y and n are as defined in claim 1 and R^{1A} and R^{2A} are R^1 and R^2 as defined in claim 1 or groups convertible to R^1 and R^2 , to give a compound of formula (I); or

(e) reacting a compound of formula (XXVIII)

5

20

25

(XXVIII)

wherein R^1 , R^2 , U, W, X, Y, m and n are as defined in claim 1, with a compound of formula (XXIX)

(XXIX)

- wherein R⁸ is as defined in claim 1, under amide forming conditions, optionally converting the acid compound (XXIX) to an activated form of the acid before reaction with the amine compound (XXVIII).
- 8. A pharmaceutical composition comprising at least one compound according to any one of claims 1 to 6 or a pharmaceutically derivative thereof, in association with one or more pharmaceutically acceptable excipients, diluents and/or carriers
 - 9. A method for treating a condition or disease state mediated by p38 kinase activity or mediated by cytokines produced by the activity of p38 kinase comprising administering to a patient in need thereof a compound according to any one of claims 1 to 6 or a pharmaceutically acceptable derivative thereof.
 - 10. A compound according to any one of claims 1 to 6 or a pharmaceutically acceptable derivative thereof for use in therapy.
 - 11. Use of a compound according to any one of claims 1 to 6 or a pharmaceutically acceptable derivative thereof in the manufacture of a medicament for use in the treatment of a condition or disease state mediated by p38 kinase activity or mediated by cytokines produced by the activity of p38 kinase.