vraag	1	2	3	4	5	6	7	8
antwoord	-							

(1) Men beschikt over een kaartspel van 52 kaarten: 13 \spadesuit , 13 \heartsuit , 13 \diamondsuit en 13 \clubsuit . Men trek tegelijk 2 kaarten. Wat is de kans dat ze beiden van dezelfde soort zijn?

A.
$$0.25$$
B. 0.2353
C. 0.0625
D. 0.3529

$$P(A) = \frac{C_4 C_{43}^2}{C_{52}^2} = \frac{4 \cdot \frac{13(12)}{2}}{\frac{52 \cdot 54}{2}} = \frac{12}{51} = 0.2353$$

(2) Bij het vergelijken van gemiddeldes, waarbij data onderverdeeld is volgens 2 criteria (met 3 rijen en 4 kolommen), zullen de vrijheidsgraden van de interactie gelijk zijn aan

(3-1)×(4-1)=6

(3) Veronderstel dat de verdeling van de lonen in een bedrijf X een mediaan heeft van €35 000. Het eerste en derde kwartiel zijn respectievelijk €21 000 en €53 000. Zijn lonen van €100 000 en €1 dan uitschieters?

IQR = 3de kw - 2Te kw = 53000-21000=32000

Vitschieters: (ab 2-27000 of 7 rod 000)

$$21000 - \frac{3}{2}(32000) = -27000$$

 $53000 + 3/2(32000) = 101000$

(4) De standaarddeviatie van een groep metingen is 10. Als 5 wordt afgetrokken van elke meetwaarde, wat is dan de variantie van de nieuwe metingen

A. 5

D.
$$\sqrt{10}$$

$$V(x) = V(x-5) = 10^{8} = 100$$

(5) Onderstaande tekening toont de regressielijn die y voorspelt in functie van x. De waarden op de tekening stellen de residues voor. Wat is de waarde van SSE?

(6) Bij het testen van $H_0: \mu = 10$ (met $H_1: \mu < 10$) op basis van een steekproef met grootte n = 21 en $t_{ber} = \frac{\bar{x} - \mu}{s/\sqrt{n}}$, verwerpen we de nulhypothese met 90% betreuwebesch in 1 betrouwbaarheid als

A.
$$t_{ber} > 1.32$$

B.
$$t_{ber} > 1.72$$

C.
$$t_{ber} < -1.72$$

$$(D.)t_{ber} < -1.32$$

(7) We beschikken over 2 onafhankelijke steekproeven komende uit normaal verdeelde populaties:

steekproef 1:
$$n_1 = 8$$
 $\overline{x_1} = 10$ $s_1 = 4$ steekproef 2: $n_2 = 9$ $\overline{x_2} = 7$ $s_2 = 5$

Het 95% betrouwbaarheidsinterval voor $\frac{\sigma_2^2}{\sigma_1^2}$ is $\frac{2}{\sigma_2^2} \in \mathbb{R}$. [0.3449, 7.6563]

= $\frac{1}{4.9}$ $\frac{25}{16}$ $\frac{25}{16}$ $\frac{(4.53)}{16}$

(8) Beschouw een lengte x: N(1, 0.2) en een lengte y: N(3, 0.1). Welke verdeling heeft dan x - 2y?

A.
$$N(-5, \sqrt{0.02})$$

B.
$$N(-5, \sqrt{0.08})$$

C.
$$N(-5, 0)$$

D.
$$N(-5, \sqrt{0.06})$$

$$2-2y: N(1-2(3), \sqrt{(0.2)^2 + 2^2(0.1)^2})$$

= $N(1-6, \sqrt{0.04 + 4(0.01)})$

$$= N(-5, \sqrt{0.08})$$