Observación. En los cálculos anteriores se perdió la precisión porque se redondeó a sólo dos decimales de exactitud. Se obtiene una exactitud mayor utilizando una calculadora de mano o una computadora. Por ejemplo, al usar una calculadora es fácil calcular $\lambda_1 = 1.06394103$, $\lambda_2 = -0.5639410298$,

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0.531970515 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -0.2819705149 \end{pmatrix}$, y se ve que la razón de $\frac{P_{j,n}}{P_{a,n}}$ es $\frac{1}{0.5319710515}$

Es notable con cuánta información se cuenta a partir de un sencillo cálculo de valores característicos. Es de gran interés saber si la población al cabo del tiempo crecerá o decrecerá. Aumentará si λ_1

> 1, y la condición para que esto ocurra es
$$\frac{\beta \pm \sqrt{\beta^2 + 4\alpha k}}{2}$$
 > 1 o $\sqrt{\beta^2 + 4\alpha k}$ > 2 - β o $\beta^2 + 4\alpha k$ >

 $(2-\beta)^2 = 4-4\beta+\beta^2$. Esto conduce a $4\alpha k > 4-4\beta$, o sea

$$k > \frac{1 - \beta}{\alpha} \tag{8.2.10}$$

En el ejemplo 8.2.1 se tenía $\beta = 0.5$, $\alpha = 0.3$; entonces (8.2.10) se cumple si $k > \frac{0.5}{0.3} \approx 1.67$.

Antes de cerrar esta sección deben hacerse notar dos limitaciones de este modelo:

- i) Las tasas de nacimiento y muerte cambian con frecuencia de un año a otro y dependen particularmente del clima. Este modelo supone un medio ambiente constante.
- ii) Los ecologistas han encontrado que para muchas especies las tasas de nacimiento y muerte varían con el tamaño de la población. En particular, una población no puede crecer cuando llega a cierto tamaño debido a los efectos de una alimentación limitada y a la sobrepoblación. Es evidente que una población no puede crecer en forma indefinida a una tasa constante. De otra manera, esa población dominaría la Tierra.

PROBLEMAS 8.2

- 1. Demuestre que si $\alpha = \beta$ y $\alpha > \frac{1}{2}$ entonces, a la larga, la población de pájaros aumentará siempre si cada hembra adulta produce al menos una hembra entre sus crías.
- 2. Demuestre que, a la larga, la razón $\frac{P_{j,n}}{P_{a,n}}$ se acerca al valor límite $\frac{k}{\lambda_1}$
- 3. Suponga que se divide la población de pájaros adultos en dos grupos de edad: los que tienen entre 1 y 5 años de edad y los mayores de 5 años. Suponga que la tasa de supervivencia para los pájaros del primer grupo es β, mientras que para el segundo grupo es γ (y β > γ). Suponga que los pájaros del primer grupo se distribuyen en grupos del mismo tamaño en cuanto a su edad (esto es, si hay 100 pájaros en el grupo, 20 tienen 1 año, 20 tienen 2 años, etc.). Formule un modelo utilizando una matriz de 3 × 3 para representar esta situación.

EJERCICIOS CON MATLAB 8.2

1. Considere la población de pájaros dada por

$$A = \begin{pmatrix} 0 & 3 \\ 4 & 6 \end{pmatrix} \quad \mathbf{y} \quad \mathbf{p}_0 = \begin{pmatrix} 0 \\ 12 \end{pmatrix}$$