Presentación Asignatura Estructuras de Datos

Docente: Pamela Landero Sepúlveda

p.landero@uandresbello.edu

Proyecto Educativo - Ejes del Modelo

- EXCELENCIA
- RESPONSABILIDAD
- PLURALISMO
- RESPETO
- INTEGRIDAD

Perfil de egreso de la carrera Ingeniería en Computación e Informática

EL INGENIERO EN COMPUTACIÓN E INFORMÁTICA DE LA UNIVERSIDAD ANDRÉS BELLO, ES CAPAZ DE DESARROLLAR SISTEMAS DE SOFTWARE, DISEÑAR SOLUCIONES PARA PROYECTOS DE TECNOLOGÍAS DE INFORMACIÓN, PROPONER ALTERNATIVAS EN LA EVALUACIÓN, DIRECCIÓN Y CONTROL DE PROYECTOS DE TECNOLOGÍAS DE LA INFORMACIÓN; APLICANDO SU CAPACIDAD PARA TRABAJAR EN EQUIPOS MULTIDISCIPLINARIOS, FORMAR EQUIPOS DE TRABAJO; COMPRENDIENDO LAS NORMAS DE RESPONSABILIDAD SOCIAL, ÉTICAS, AMBIENTALES Y PROFESIONALES PROPIAS DE LA ACTIVIDAD

LÍNEAS DE FORMACIÓN

Malla de la Carrera

I Semestre	II Semestre	III Semestre	IV Semestre	V Semestre	VI Semestre	VII Semestre	VIII Semestre
Introducción a las Matemáticas	Cálculo Diferencial	Cálculo Integral y Probabilidades	Química y Ambiente	Costos y Presupuestos	Ingeniería Económica	Administración Financiera de Proyectos T.I	
Física General	Introducción a la Mecánica	Lenguajes de Programación	Teoría Autómatas y Lenguajes Formales	Metodologías de Desarrollo de Software	Diseño de Software	Tópicos de Especialidad en Informática I	Testing y Calidad de Software
Programación I	Programación II	Diseño de Algoritmos	Sistemas Operativos	Redes de Computadores	Ingeniería de Requerimientos	Tópicos de Especialidad en Informática II	Tópicos de Especialidad en Informática III
Introducción a la Ingeniería en Computación		Estructura de Datos	Base de Datos	Gestión de la Información	Dirección de Proyectos T.I.	Proyecto de Título I	Proyecto de Título II
	Responsabilidad Social (Etica. Soc y Trab)		Inglés I	Inglés II	Inglés III	Inglés IV	
Pensamiento Analitico y Critico (Met. de Aprend.)	Comunicación Oral y Escrita (Comunic. Efectiva)					Práctica Profesional	Taller de Emprendimiento

Docentes y Horarios

Cátedra:

Docente : Pamela Cristina Landero Sepúlveda

Horario : Viernes de 19:00 a 20.30 horas.

Viernes de 20:40 a 22.10 horas.

• Sala : A2-404

Laboratorio:

Profesor : Tomás Lara Valdovinos

Horario : Sábado de 10:20 a 12.00 horas

• Sala : _____

Metodología de enseñanza - aprendizaje

Cátedra:

- Explicación de los contenido a través de diapositivas y pizarra
- Aplicación de contenidos desarrollando actividades grupales
- Evaluación a través de actividades semanales y 3 solemnes
- Tareas: listados entregados en clases

Laboratorio:

- Cada sesión será evaluada con un control de entrada y se incluirán trabajos a desarrollar en horario de laboratorio.
- Proyecto a desarrollar fuera del horario de clases.

Cronograma

UNIDADES DE APRENDIZAJE	NRO SEMANA	FECHA	APRENDIZAJES ESPERADOS	CONTENIDOS	INSTRUMENTOS EVALUATIVOS		
UNIDAD 1: INTRODUCCIÓN A LAS ESTRUCTURAS	Sem 1	10-mar	- Implementa diversos algoritmos usando punteros y estructuras en lenguaje C.	Punteros, arreglos y estructuras (lenguale C). Algoritmos de búsqueda y ordenamiento (análisis	- DIAGNÓSTICO - Actividades grupales en cátedra		
DE DATOS Y ALGORITMOS	Sem 2	17-mar	- Compara y selecciona los algoritmos de búsqueda y ordenamiento considerando su eficiencia.	de eficiencia).			
UNIDAD 2: ESTRUCTURAS LINEALES	Sem 3	24-mar			- Actividades grupales en cátedra - Control laboratorio 1 - Control laboratorio 2 - TAREA RECURSIVIDAD (GANAR TIEMPO)		
	Sem 4	31-mar	- Implementar listas y sus variantes - Compara y selecciona la variante de lista apropiada para un problema dado.	Listas Enlazadas. Pilas. Colas simples, dobles y circulares			
	Sem 5	07-abr	- Compara resultados de experimentar con las diferentes implementaciones de listas y sus variantes.				
SOLEMNE 1 (25%)	Sem 7	21-abr	UNIDADES 3, 4 y 5 => Viernes 21/04/2	Instrumento escrito con preguntas de desarrollo			
UNIDAD 3: RECURSIVIDAD y ÁRBOLES	Sem 8	28-abr	- Explica la utilización de la estructura de árbol y sus variantes para un conjunto de problemas. - Selecciona e implementa el árbol más adecuado para un problema dado.	Recursividad. Conceptos de árboles y recorridos. Implementaciones clásicas y variantes de árboles.	- Actividades grupales en cátedra - Control laboratorio 3		
UNIDAD 4: COLAS DE PRIORIDAD	Sem 9	05-may	- Implementa una cola de prioridad en el contexto de un problema dado.	Conceptos de cola de prioridad. Implementación mediante Heaps y operaciones básicas. Heapsort.	- ENTREGA DEL PROYECTO - Actividades grupales en cátedra		
UNIDAD 5: ÁRBOLES CON BALANCE	Sem 10	12-may	- Implementa las variantes de árboles con balance. - Compara resultados de experimentar con las implementaciones de los diferentes árboles con balance.	Conceptos de balance. Ventajas y desvantajas. Árboles AVL. Implementación.	- Actividades grupales en cátedra - Control laboratorio 4		
SOLEMNE 2 (25%)	Sem 11	19-may	UNIDADES 3, 4 y 5 => Viernes 19/05/2	Instrumento escrito con preguntas de desarrollo			
UNIDAD 6: CONJUNTOS e INDEXACIÓN	Sem 12	26-may	- Compara y selecciona la mejor implementación de conjuntos para un problema dado.	Operaciones de conjuntos. Indexación mediamte hashing. Hashing abierto y cerrado.	- Actividades grupales en cátedra - Control laboratorio 5		
	Sem 13	02-jun	-Contrasta y selecciona, de una lista de funciones hashing, la más adecuada para un problema dado.				
UNIDAD 7: GRAFOSyOTRASESTRUCTURAS	Sem 14	09-jun	- Construye las distintas implementaciones para grafos y sus algoritmos asociados.	Conceptos de grafos e implementaciones clásicas. Recorridos y algoritmos. Árbol de cobertura de	- REVISIÓN DEL PROYECTO - Actividades grupales en cátedra - Control laboratorio 6		
	Sem 15	16-jun	-Selecciona el tipo de grafo y la implementación apropiada para un problema dado.	costo mínimo y camino mínimo (Algoritmos)			
SOLEMNE 3 (25%)	Sem 16	23-jun	UNIDADES 6 y 7 => Viernes 23/06/20	Instrumento escrito con preguntas de desarrollo			
			PERIODO DE EXAMEN: Martes 27 Junio al Sábado 08 de Julio				

Evaluaciones:

Nota de cátedra (NC):

Prueba Solemne 1: 25%
 Viernes 21 Abril 2017

Prueba Solemne 2: 25%Viernes 19 Mayo 2017

Prueba Solemne 3: 25%
 Viernes 23 Junio 2017

Actividades y controles: 25%
 Cada semana

► Nota de Laboratorio (NL):

Si reprueba laboratorio, REPRUEBA ASIGNATURA

Promedio de Controles: 60%

Proyecto: 40%

▶ Nota Presentación a Examen (NPE) y Nota Final (NF):

• NPE = 0.6*NC + 0.4*NL

• NF = $0.7^{*}PE + 0.3^{*}EXAMEN$

Consideraciones Importantes:

- Para rendir examen debe tener aprobado el laboratorio
- Para eximirse del examen, la nota de presentación a examen debe ser igual o superior a 5.0 y notas parciales aprobadas
- La asistencia mínima obligatoria es un 75%, tanto en cátedra como en laboratorio
- Los estudiantes que no asistan a las evaluaciones (actividades evaluadas, controles y solemnes) que se realizan en clases la nota que obtendrá es un 1.
- Las tareas que solicite el docente deben ser resueltas en el tiempo indicado y deben enviarla al correo p.landero@uandresbello.edu, adjuntando un archivo comprimido con todos los ejercicios resueltos. El ASUNTO debe decir: "Desarrollo tarea ______ sección _____"
- Toda copia, de cualquier índole no referenciada, será calificada con nota mínima
- La revisión de los proyectos y laboratorios serán recompilados para su corrección. Sí no compilan, obtendrá nota mínima en esa evaluación.
- No usar celulares durante las evaluaciones

Bibliografía

Obligatoria:

Joyanes Aguilar Luis: Algoritmos y Estructuras de datos. Una perspectiva en C

Complementaria:

- 1) Joyanes Aguilar, Luis (2000): Programación en C++: algoritmos, estructura de datos y objetos 1a Edición. Madrid: McGraw Hill
- 2) Joyanes Aguilar, Luis (2003). Fundamentos de programación: Algoritmos, estructura de datos y objetos 3a Edición. Madrid: McGraw-Hill
- > 3) Tanenbaum, Aaron M. (1993). Estructuras de datos en C. México: Prentice-Hall Hispanoamericana
- 4) Cairo, Osvaldo (2002). Estructura de Datos 2a Edición. México: McGraw Hill Joyanes Aguilar, Luis (1999). Estructura de datos: libro de problemas 1a Edición. Madrid: McGraw Hill