

Copyright © 2024. Todos os direitos reservados ao CeMEAI-USP. Proibida a cópia e reprodução sem autorização.

# **AULA 7 - MODELOS DE REGRESSÃO**

por Cibele Russo

ICMC/USP - São Carlos SP

#### **PROGRAMA**

- Modelos lineares.
- Regressão múltipla.
- Regressão multivariada.
- A qualidade do ajuste.
- Seleção de modelos.
- Análise de diagnóstico.

#### Referências:

- Draper, N. R., & Smith, H. (1998). Applied regression analysis. 3rd edition. Wiley.
- James, Gareth et al. (2013) An introduction to statistical learning. New York: Springer.
- Dobson, A. J.; Barnett, Adrian G. (2018). An introduction to generalized linear models. CRC press.

section\*Modelos de regressão

#### **Objetivos**

Predizer Y a partir do conhecimento de variáveis em X = x.

Em notação matricial, um modelo linear geral é dado por

$$Y = f(X, \beta) + \epsilon$$
,

em que

- Y é a variável resposta (vetor de variáveis aleatórias observáveis),
- X contém variáveis preditoras (matriz conhecida, ou seja, não-aleatória),
- $\beta$  é um vetor de parâmetros de interesse, que queremos estimar,
- f é uma função das variáveis preditoras e dos parâmetros de interesse,
- $\epsilon$  é o **erro aleatório** (vetor de erros aleatórios não observáveis).



section\*Modelos lineares

### **Objetivos**

Predizer Y a partir do conhecimento de variáveis em X=x utilizando uma função linear dos parâmetros  $\beta$ .

Em notação matricial, um modelo linear geral é dado por

$$Y = X\beta + \epsilon$$
,

em que

- Y é a variável resposta (vetor de variáveis aleatórias observáveis),
- X contém variáveis preditoras (matriz conhecida, ou seja, não-aleatória),
- $\beta$  é um vetor de parâmetros de interesse, que queremos estimar,
- $\epsilon$  é o **erro** aleatório (vetor de erros aleatórios não observáveis).

# **MODELO DE REGRESSÃO LINEAR SIMPLES**

Suponha que são observados os pares  $(X_1,Y_1),\ldots,(X_n,Y_n)$  de variável preditora e resposta, respectivamente.

Um modelo linear simples para explicar a variabilidade de Y usando a variabilidade de X seria:

$$Y_j = \beta_0 + \beta_1 X_j + \epsilon_j$$
, para  $j = 1, \dots, n$ .

Nomenclatura: -  $Y_j$ : j-ésima observação da variável resposta (dependente, aleatória), -  $\beta_0$  e  $\beta_1$ : parâmetros desconhecidos e que queremos estimar (fixo e desconhecido), -  $X_j$ : j-ésima observação da variável preditora (fixa, ou seja, não aleatória), -  $\epsilon_j$ : j-ésimo erro aleatório não observável.

Suposições:

- $E(\epsilon_i) = 0$  para j = 1, ..., n,
- $Var(\epsilon_j) = \sigma^2$  para  $j = 1, \dots, n$ ,
- $Cov(\epsilon_i, \epsilon_j) = 0$  para i, j = 1, ..., n e  $i \neq j$ .







# INTERPRETAÇÃO DOS PARÂMETROS

- $\beta_0$ : valor esperado de Y quando X é zero.
- $\beta_1$ : aumento esperado em Y quando X é acrescido de uma unidade.

# MODELO DE REGRESSÃO LINEAR MÚLTIPLA

Motivação: Deseja-se construir um modelo para explicar

- $Y_i$ : valor de mercado de uma casa utilizando variáveis explicativas
- $X_{1j}$ : área
- $X_{2j}$ : localização
- $X_{3j}$ : valor da casa no ano anterior
- $X_{4j}$ : qualidade da construção

Um possível modelo linear (nos parâmetros) seria:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{4i} + \epsilon_{i}.$$

Nomenclatura: -  $Y_j$ : variável resposta (dependente), -  $\beta_i$ : parâmetros desconhecidos, -  $X_{ij}$ : variáveis explicativas (covariáveis, variáveis independentes), -  $\epsilon_j$ : erro aleatório.

### Suposições:

- $E(\epsilon_i) = 0$  para \$ j=1,...,n\$,
- $Var(\epsilon_i) = \sigma^2$  para \$ j=1,...,n\$,

•  $Cov(\epsilon_i, \epsilon_j) = 0$  para \$ i,j=1,...,n\$ e  $i \neq j$ .

Poderíamos estender esse modelo para p covariáveis,

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_n X_{ni} + \epsilon_i, i = 1, \ldots, n.$$

Note que a variável resposta  $Y_i$  é unidimensional.

Poderíamos "empilhar" os dados de n indivíduos em linhas. Teríamos então matricialmente

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, X = \begin{bmatrix} 1 & X_{11} & \dots & X_{1p} \\ 1 & X_{21} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & \dots & X_{np} \end{bmatrix}, \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}, \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

ou seja,

$$Y_{n\times 1} = X_{n\times (p+1)}\beta_{(p+1)\times 1} + \epsilon_{n\times 1}.$$

# INTERPRETAÇÃO DOS PARÂMETROS

- $\beta_0$ : valor esperado de Y quando  $X_{1i}, X_{2i}, \dots, X_{pi}$  são todas zero.
- $\beta_k$ : aumento esperado em Y quando  $X_k$  é acrescido de uma unidade e todas as outras são mantidas fixadas,  $k=1,\ldots,p$ .

# **ESTIMAÇÃO DOS PARÂMETROS**

Alguns métodos podem ser usados para estimar os parâmetros, por exemplo

- Método de mínimos quadrados ordinários (EMQ ou MQO)
- Método de máxima verossimilhança (EMV)

No modelo linear geral

$$Y = X\beta + \epsilon.$$

com as suposições

- $E(\epsilon) = 0$ ,
- $Var(\epsilon) = \sigma^2 I$ .

o estimador de mínimos quadrados que minimiza a soma de quadrados dos resíduos, é dado por

$$\widehat{\beta} = (X^{\top} X)^{-1} X^{\top} Y.$$

Se  $\epsilon \sim N(0, \sigma^2 I)$ , então



o estimador de máxima verossimilhança de  $\beta$  é dado (também) por

$$\widehat{\beta} = (X^{\top} X)^{-1} X^{\top} Y.$$

Nesse caso,

$$\widehat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^\top \boldsymbol{X})^{-1}\right)$$

e é comum estimar  $\sigma^2$  com

$$\widehat{\sigma}^2 = MSE$$
.

#### Observação

O EMV de  $\beta$  é não-viesado e consistente, que são boas propriedades estatísticas.

### **VALOR AJUSTADO DE** *Y*

O valor ajustado de Y, para um determinado X=x é obtido fazendo

$$\hat{Y} = X\hat{\beta}.$$

O erro quadrático médio, MSE, é usado para estimar  $\sigma^2$ , fazendo

$$\hat{\sigma}^{2} = \frac{SQE}{n-p} = \frac{\sum_{i=1}^{n} (Y - \hat{Y})^{\top} (Y - \hat{Y})}{n-p}$$

# COEFICIENTE DE DETERMINAÇÃO DO MODELO

O coeficiente de determinação, ou coeficiente de explicação do modelo, é dado por

$$R^2 = 1 - \frac{SQE}{SOT},$$

 $\text{em que } SQT = Y^\top Y - \frac{1}{n} Y^\top \mathbb{F}^\top \mathbb{F} Y, \text{ em que } \mathbb{F} \text{ indica um vetor de uns de mesma dimensão de } Y.$ 

Para levar em conta o aumento da explicação da variabilidade da resposta quando aumentamos o número de covariáveis, é comum considerar o coeficiente de determinação do modelo ajustado:

$$R_{ajustado}^2 = 1 - \frac{n-1}{n-p} \frac{SQE}{SQT}.$$

Tanto  $R^2$  quanto  $R^2_{ajustado}$  estão entre 0 e 1, e pode ser usado como um **indício** de qualidade do ajuste, quanto maior o coeficiente de determinação, melhor é o modelo linear.



# MODELO DE REGRESSÃO LINEAR MULTIVARIADA

Considere agora que, para cada indivíduo, sejam observadas m variáveis respostas, e que cada uma delas tenha uma relação linear com as p covariáveis.

Assim, teriamos m modelos de regressão:

$$Y_{1} = \beta_{01} + \beta_{11}X_{1} + \beta_{21}X_{2} + \beta_{31}X_{3} + \dots + \beta_{p1}X_{p} + \epsilon_{1}$$

$$Y_{2} = \beta_{02} + \beta_{12}X_{1} + \beta_{22}X_{2} + \beta_{32}X_{3} + \dots + \beta_{p2}X_{p} + \epsilon_{2}$$

$$\vdots$$

$$Y_{m} = \beta_{0m} + \beta_{1m}X_{1} + \beta_{2m}X_{2} + \beta_{3m}X_{3} + \dots + \beta_{pm}X_{p} + \epsilon_{m}$$

Para cada um dos n indivíduos, vamos observar as m variáveis resposta e as p covariáveis. Assim, podemos definir um modelo de regressão multivariado

$$Y_{n \times m} = X_{n \times (p+1)} \beta_{(p+1) \times m} + \epsilon_{n \times m}$$

em que

$$Y = \begin{bmatrix} Y_{11} & Y_{12} & \dots & Y_{1m} \\ Y_{21} & Y_{22} & \dots & Y_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{n1} & Y_{n2} & \dots & Y_{nm} \end{bmatrix}, X = \begin{bmatrix} 1 & X_{11} & \dots & X_{1p} \\ 1 & X_{21} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & \dots & X_{np} \end{bmatrix},$$

$$\beta = \begin{bmatrix} \beta_{01} & \beta_{02} & \dots & \beta_{0m} \\ \beta_{11} & \beta_{12} & \dots & \beta_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{p1} & \beta_{p2} & \dots & \beta_{pm} \end{bmatrix}, \ \epsilon = \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \dots & \epsilon_{1m} \\ \epsilon_{21} & \epsilon_{22} & \dots & \epsilon_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \epsilon_{n1} & \epsilon_{n2} & \dots & \epsilon_{nm} \end{bmatrix}$$

### **MATERIAL COMPLEMENTAR**

Para as suposições e demais desenvolvimentos no modelo de regressão linear multivariado, veja a aula de Regressão multivariada em https://youtu.be/9Qlh71MQ2xQ

# **ANÁLISE DE DIAGNÓSTICO**

Os resíduos contém indicativos de adequabilidade das suposições do modelo

Os resíduos ordinários do modelo são dados por

$$e = Y - \widehat{Y}$$
.

É comum construir gráficos dos resíduos ordinários contra a ordem das observações, os valores ajustados  $\hat{Y}$  e  $X_i$ , para algumas das variáveis preditoras de interesse.



Espera-se que os resíduos sejam aleatoriamente distribuídos em torno de zero.

Alguns padrões de resíduos são ilustrados a seguir:





- mínimos quadrados ponderados
- transformação em Y



#### Rever modelo!

Se o padrão for observado no gráfico contra o tempo, pode faltar termo linear no tempo.

Se o padrão for observado no gráfico contra X, rever preditores.



# Possíveis soluções:

- Adicionar termos extras ou transformar Y

Se o padrão for observado no gráfico contra o tempo, testar a inclusão de termos lineares ou quadráticos no tempo





Presença de outliers. Verificar suposições do modelo.



Presença de Autocorrelação

Existem algumas propostas para a padronização de resíduos:

Temos que

$$e = Y - \hat{Y} = Y - X(X^{\top}X)^{-1}X^{\top}Y = (I - X(X^{\top}X)^{-1}X^{\top})Y = (I - H)Y,$$

em que  $H = X(X^{T}X)^{-1}X^{T}$  é a matriz hat (matriz chapéu). Seja  $h_{ii}$  o i-ésimo elemento da diagonal de H.

Pode-se mostrar que

$$Var(e_i) = (1 - h_{ii})\sigma^2$$

Assim, podemos definir dois novos resíduos:

Resíduo Studentizado internamente:

$$s_i = \frac{e_i}{s\sqrt{1 - h_{ii}}},$$

em que s é uma estimativa de  $\sigma$ , usualmente a raiz do MSE.

• Resíduo Studentizado externamente

$$t_i = \frac{e_i}{s(i)\sqrt{1 - h_{ii}}},$$

em que s(i) é uma estimativa para  $\sigma^2$  sem a observação i.

Observação: Com  $h_{ii}$  é possível identificar **pontos de alavanca**, que são outliers no espaço dos X e não necessariamente são ponto influentes, ou seja, não necessariamente mudam a inferência do modelo.

Existem técnicas para identificar **pontos influentes**, como DFFITS e Distância de Cook, que veremos na prática.



# ILUSTRAÇÃO DE RESÍDUOS E PONTOS DE ALAVANCA

Conjuntos de dados de Anscombe: https://pt.wikipedia.org/wiki/Quarteto\_de\_Anscombe

```
[1]: import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```



```
[3]: # Gráficos de diagnóstico para o modelo linear simples com estimadores MQO

# Fonte: https://stackoverflow.com/questions/46607831/

→python-linear-regression-diagnostic-plots-similar-to-r

# Fonte: https://stackoverflow.com/questions/46304514/

→access-standardized-residuals-cooks-values-hatvalues-leverage-etc-easily-i/

→55764402#55764402
```



```
from matplotlib import pyplot as plt
from pandas.core.frame import DataFrame
import scipy.stats as stats
import statsmodels.api as sm
def linear_regression(df: DataFrame) -> DataFrame:
    """Perform a univariate regression and store results in a new data frame.
    Args:
        df (DataFrame): orginal data set with x and y.
    Returns:
        DataFrame: another dataframe with raw data and results.
    mod = sm.OLS(endog=df['y'], exog=df['x']).fit()
    influence = mod.get_influence()
    res = df.copy()
    res['resid'] = mod.resid
    res['fittedvalues'] = mod.fittedvalues
    res['resid_std'] = mod.resid_pearson
    res['leverage'] = influence.hat_matrix_diag
    return res
def plot_diagnosis(df: DataFrame):
    fig, axes = plt.subplots(nrows=2, ncols=2)
    plt.style.use('seaborn')
    # Residual against fitted values.
    df.plot.scatter(
        x='fittedvalues', y='resid', ax=axes[0, 0]
    axes[0, 0].axhline(y=0, color='grey', linestyle='dashed')
    axes[0, 0].set_xlabel('Fitted Values')
    axes[0, 0].set_ylabel('Residuals')
    axes[0, 0].set_title('Residuals vs Fitted')
    # qqplot
```



```
sm.qqplot(
             df['resid'], dist=stats.t, fit=True, line='45',
             ax=axes[0, 1], c='#4C72B0'
         axes[0, 1].set_title('Normal Q-Q')
         # The scale-location plot.
         df.plot.scatter(
             x='fittedvalues', y='resid_std', ax=axes[1, 0]
         axes[1, 0].axhline(y=0, color='grey', linestyle='dashed')
         axes[1, 0].set_xlabel('Fitted values')
         axes[1, 0].set_ylabel('Sqrt(|standardized residuals|)')
         axes[1, 0].set_title('Scale-Location')
         # Standardized residuals vs. leverage
         df.plot.scatter(
             x='leverage', y='resid_std', ax=axes[1, 1]
         )
         axes[1, 1].axhline(y=0, color='grey', linestyle='dashed')
         axes[1, 1].set_xlabel('Leverage')
         axes[1, 1].set_ylabel('Sqrt(|standardized residuals|)')
         axes[1, 1].set_title('Residuals vs Leverage')
        plt.tight_layout()
         plt.show()
[4]: df = data=anscombe.query("dataset == 'IV'")
     df = df.drop('dataset', axis=1)
[5]: df = linear_regression(df)
[6]: plot_diagnosis(df)
```





### section\*Seleção de modelos

Algumas formas de avaliar e selecionar modelos, além da análise de diagnóstico, são

- Validação com bases de treinamento e teste
- Avaliação de métricas de qualidade do ajuste
- Seleção de variáveis
- Validação cruzada (K-fold Cross-Validation): ver https://scikit-learn.org/stable/modules/cross\_validation.html

# MÉTRICAS PARA AVALIAR A QUALIDADE DO AJUSTE

# **ERRO ABSOLUTO MÉDIO (EAM, MAE)**

O erro quadrático médio (EQM) ou mean absolute error (MAE) é a média do valor absoluto dos erros.

$$\mathsf{MAE} = \frac{1}{n} \sum_{j=1}^{n} |y_j - \widehat{y}_j|$$

# **ERRO QUADRÁTICO MÉDIO (EQM, MSE)**

O erro quadrático médio (EQM) ou mean squared error (MSE) é a média dos erros quadráticos.



$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

# RAIZ DO ERRO QUADRÁTICO MÉDIO (REQM, RMSE)

A raiz do erro quadrático médio (REQM) ou root mean squared error (RMSE) é a raiz da média dos erros quadráticos.

$$\mathsf{RMSE} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \widehat{y}_j)^2}$$

# **APLICAÇÃO**

Suponha que desejamos predizer o valor de venda de uma casa utilizando variáveis preditoras como número de guartos, número de banheiros, tamanho da sala, número de andares, entre outras.

Fonte e alguns desenvolvimentos adicionais: ver https://www.kaggle.com/burhanykiyakoglu/predicting-house-prices

```
[7]: !pip install folium
[8]: import numpy as np
     import pandas as pd
     from sklearn.model_selection import train_test_split
     from sklearn import linear_model
     from sklearn.neighbors import KNeighborsRegressor
     from sklearn.preprocessing import PolynomialFeatures
    from sklearn import metrics
     from sklearn.model_selection import cross_val_score
     import matplotlib.pyplot as plt
     import seaborn as sns
     from mpl_toolkits.mplot3d import Axes3D
     import folium
     from folium.plugins import HeatMap
     %matplotlib inline
     import warnings
     warnings.filterwarnings('ignore')
     evaluation = pd.DataFrame({'Model': [],
                                'Details':[],
                                'Root Mean Squared Error (RMSE)':[],
```



'R-squared (training)':[],

```
'Adjusted R-squared (training)':[],
                                'R-squared (test)':[],
                                'Adjusted R-squared (test)':[],
                                '5-Fold Cross Validation':[]})
     # Faça a leitura dos dados localmente
     #df = pd.read_csv('/hdd/MBA/ECD/Data/kc_house_data.csv')
     # Ou faça a leitura direto do github
     df = pd.read_csv('https://raw.githubusercontent.com/cibelerusso/
      →Estatistica-Ciencia-Dados/main/Data/kc_house_data.csv')
     df.head()
[8]:
                id
                               date
                                        price bedrooms bathrooms sqft_living \
    0 7129300520 20141013T000000 221900.0
                                                               1.00
                                                                            1180
    1 6414100192 20141209T000000 538000.0
                                                      3
                                                               2.25
                                                                            2570
    2 5631500400 20150225T000000 180000.0
                                                      2
                                                               1.00
                                                                             770
    3 2487200875 20141209T000000 604000.0
                                                       4
                                                               3.00
                                                                            1960
    4 1954400510 20150218T000000 510000.0
                                                       3
                                                               2.00
                                                                            1680
        sqft_lot floors waterfront
                                      view
                                               grade sqft_above sqft_basement
    0
            5650
                     1.0
                                   0
                                         0
                                                    7
                                                           1180.0
                                                                               0
    1
            7242
                     2.0
                                   0
                                         0
                                                    7
                                                           2170.0
                                                                             400
    2
           10000
                     1.0
                                   0
                                         0 ...
                                                    6
                                                           770.0
                                                                               0
    3
            5000
                     1.0
                                   0
                                         0 ...
                                                    7
                                                           1050.0
                                                                             910
            8080
                     1.0
                                                    8
                                                           1680.0
                                                                               0
                                                      long sqft_living15
        yr_built
                  yr_renovated zipcode
                                             lat
    0
            1955
                                  98178 47.5112 -122.257
                             0
                                                                     1340
    1
            1951
                          1991
                                  98125 47.7210 -122.319
                                                                     1690
    2
                                  98028 47.7379 -122.233
                                                                     2720
            1933
                             0
                                  98136 47.5208 -122.393
    3
                             0
                                                                     1360
            1965
    4
            1987
                             0
                                  98074 47.6168 -122.045
                                                                     1800
        sqft_lot15
    0
              5650
    1
              7639
    2
              8062
    3
              5000
              7503
```



# [9]: df.describe()

| [9]: |       | id           | price        | bedrooms      | bathrooms     | sqft_living \             |  |
|------|-------|--------------|--------------|---------------|---------------|---------------------------|--|
|      | count | 2.161300e+04 | 2.161300e+04 | 21613.000000  | 21613.000000  | 21613.000000              |  |
|      | mean  | 4.580302e+09 | 5.400881e+05 | 3.370842      | 2.114757      | 2079.899736               |  |
|      | std   | 2.876566e+09 | 3.671272e+05 | 0.930062      | 0.770163      | 918.440897                |  |
|      | min   | 1.000102e+06 | 7.500000e+04 | 0.000000      | 0.000000      | 290.000000                |  |
|      | 25%   | 2.123049e+09 | 3.219500e+05 | 3.000000      | 1.750000      | 1427.000000               |  |
|      | 50%   | 3.904930e+09 | 4.500000e+05 | 3.000000      | 2.250000      | 1910.000000               |  |
|      | 75%   | 7.308900e+09 | 6.450000e+05 | 4.000000      | 2.500000      | 2550.000000               |  |
|      | max   | 9.900000e+09 | 7.700000e+06 | 33.000000     | 8.000000      | 13540.000000              |  |
|      |       | sqft_lot     | floors       | waterfront    | view          | condition \               |  |
|      | count | 2.161300e+04 | 21613.000000 | 21613.000000  | 21613.000000  | 21613.000000              |  |
|      | mean  | 1.510697e+04 | 1.494309     | 0.007542      | 0.234303      | 3.409430                  |  |
|      | std   | 4.142051e+04 | 0.539989     | 0.086517      | 0.766318      | 0.650743                  |  |
|      | min   | 5.200000e+02 | 1.000000     | 0.000000      | 0.000000      | 1.000000                  |  |
|      | 25%   | 5.040000e+03 | 1.000000     | 0.000000      | 0.000000      | 3.000000                  |  |
|      | 50%   | 7.618000e+03 | 1.500000     | 0.000000      | 0.000000      | 3.000000                  |  |
|      | 75%   | 1.068800e+04 | 2.000000     | 0.000000      | 0.000000      | 4.000000                  |  |
|      | max   | 1.651359e+06 | 3.500000     | 1.000000      | 4.000000      | 5.000000                  |  |
|      |       | grade        | sqft_above   | sqft_basement | yr_built      | <pre>yr_renovated \</pre> |  |
|      | count | 21613.000000 | 21611.000000 | 21613.000000  | 21613.000000  | 21613.000000              |  |
|      | mean  | 7.656873     | 1788.396095  | 291.509045    | 1971.005136   | 84.402258                 |  |
|      | std   | 1.175459     | 828.128162   | 442.575043    | 29.373411     | 401.679240                |  |
|      | min   | 1.000000     | 290.000000   | 0.000000      | 1900.000000   | 0.000000                  |  |
|      | 25%   | 7.000000     | 1190.000000  | 0.000000      | 1951.000000   | 0.000000                  |  |
|      | 50%   | 7.000000     | 1560.000000  | 0.000000      | 1975.000000   |                           |  |
|      | 75%   | 8.000000     | 2210.000000  | 560.000000    | 1997.000000   |                           |  |
|      | max   | 13.000000    | 9410.000000  | 4820.000000   | 2015.000000   | 2015.000000               |  |
|      |       | zipcode      | lat          | long          | sqft_living15 | sqft_lot15                |  |
|      | count | 21613.000000 | 21613.000000 | 21613.000000  | 21613.000000  | 21613.000000              |  |
|      | mean  | 98077.939805 | 47.560053    | -122.213896   | 1986.552492   | 12768.455652              |  |
|      | std   | 53.505026    | 0.138564     | 0.140828      | 685.391304    | 27304.179631              |  |
|      | min   | 98001.000000 | 47.155900    | -122.519000   | 399.000000    | 651.000000                |  |
|      | 25%   | 98033.000000 | 47.471000    | -122.328000   | 1490.000000   | 5100.000000               |  |
|      | 50%   | 98065.000000 | 47.571800    | -122.230000   | 1840.000000   | 7620.000000               |  |



```
75% 98118.000000 47.678000 -122.125000 2360.000000 10083.000000
max 98199.000000 47.777600 -121.315000 6210.000000 871200.000000
```

```
[10]: fig, ax = plt.subplots(figsize=(12,12))
sns.heatmap(df.drop(['id', 'date'], axis=1).corr(),annot=True, square=True)

plt.title('Matriz de correlações de Pearson',fontsize=25);
```



## **MODELO LINEAR SIMPLES**

```
[11]: from statsmodels.formula.api import ols

#Ajusta o modelo de regressão linear simples para o preço das casas

mod = ols('price~sqft_living',data=df)
```



```
res = mod.fit()
print(res.summary())
```

# OLS Regression Results

| Dep. Variable: | price            | R-squared:                     | 0.493     |
|----------------|------------------|--------------------------------|-----------|
| Model:         | OLS              | Adj. R-squared:                | 0.493     |
| Method:        | Least Squares    | F-statistic:                   | 2.100e+04 |
| Date:          | Thu, 16 May 2024 | <pre>Prob (F-statistic):</pre> | 0.00      |

Time: 01:32:52 Log-Likelihood: -3.0027e+05
No. Observations: 21613 AIC: 6.005e+05
Df Residuals: 21611 BIC: 6.006e+05

Df Model: 1
Covariance Type: nonrobust

-----

| coef                      | std err  | t         | P> t       | [0.025    | 0.975]     |
|---------------------------|----------|-----------|------------|-----------|------------|
| Intercept -4.358e+04      | 4402.690 | -9.899    | 0.000      | -5.22e+04 | -3.5e+04   |
| sqft_living 280.6236      | 1.936    | 144.920   | 0.000      | 276.828   | 284.419    |
|                           |          |           |            |           | =======    |
| Omnibus:                  | 14832.49 | 0 Durbin- | -Watson:   |           | 1.983      |
| <pre>Prob(Omnibus):</pre> | 0.00     | 0 Jarque- | Bera (JB): |           | 546444.713 |
| Skew:                     | 2.82     | 4 Prob(JE | 3):        |           | 0.00       |
| Kurtosis:                 | 26.97    | 7 Cond. N | lo.        |           | 5.63e+03   |

\_\_\_\_\_\_

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

### Modelo ajustado

 $\widehat{Y}_i = -43580 + 280.62 \ \mathrm{sqft\_living}$ 

# **MODELO LINEAR MÚLTIPLO**



```
y = df['price'].values

[13]: from statsmodels.formula.api import ols

#Ajusta o modelo de regressão linear múltipla para o preço das casas

modelo = ols('price ~ bedrooms + bathrooms + sqft_living + sqft_lot + floors +___

waterfront + view + condition + grade',data=df)

res = modelo.fit()
```

# OLS Regression Results

print(res.summary())

| ======================================= |                  |                     |             |
|-----------------------------------------|------------------|---------------------|-------------|
| Dep. Variable:                          | price            | R-squared:          | 0.605       |
| Model:                                  | OLS              | Adj. R-squared:     | 0.605       |
| Method:                                 | Least Squares    | F-statistic:        | 3673.       |
| Date:                                   | Thu, 16 May 2024 | Prob (F-statistic): | 0.00        |
| Time:                                   | 01:32:53         | Log-Likelihood:     | -2.9757e+05 |
| No. Observations:                       | 21613            | AIC:                | 5.952e+05   |
| Df Residuals:                           | 21603            | BIC:                | 5.952e+05   |
| Df Model:                               | 9                |                     |             |
| Covariance Type:                        | nonrobust        |                     |             |

|             | coef       | std err  | t       | P> t  | [0.025    | 0.975]    |
|-------------|------------|----------|---------|-------|-----------|-----------|
|             |            |          |         |       |           |           |
| Intercept   | -6.827e+05 | 1.73e+04 | -39.509 | 0.000 | -7.17e+05 | -6.49e+05 |
| bedrooms    | -3.367e+04 | 2159.240 | -15.594 | 0.000 | -3.79e+04 | -2.94e+04 |
| bathrooms   | -1.142e+04 | 3449.874 | -3.309  | 0.001 | -1.82e+04 | -4653.384 |
| sqft_living | 196.3657   | 3.454    | 56.855  | 0.000 | 189.596   | 203.135   |
| sqft_lot    | -0.3462    | 0.039    | -8.931  | 0.000 | -0.422    | -0.270    |
| floors      | -1.312e+04 | 3575.901 | -3.669  | 0.000 | -2.01e+04 | -6109.502 |
| waterfront  | 5.783e+05  | 1.99e+04 | 29.128  | 0.000 | 5.39e+05  | 6.17e+05  |
| view        | 6.327e+04  | 2348.558 | 26.939  | 0.000 | 5.87e+04  | 6.79e+04  |
| condition   | 5.499e+04  | 2521.782 | 21.805  | 0.000 | 5e+04     | 5.99e+04  |
| grade       | 1.006e+05  | 2231.983 | 45.064  | 0.000 | 9.62e+04  | 1.05e+05  |
| ========    |            |          |         |       |           | =======   |

| Omnibus:       | 15533.601 | Durbin-Watson:    | 1.983        |
|----------------|-----------|-------------------|--------------|
| Prob(Omnibus): | 0.000     | Jarque-Bera (JB): | 900296.321   |
| Skew:          | 2.871     | Prob(JB):         | 0.00         |
| Kurtosis:      | 34.093    | Cond. No.         | 5.59e+05     |
|                | ========= |                   | ============ |



#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.59e+05. This might indicate that there are strong multicollinearity or other numerical problems.

# **MÉTRICAS**

```
[14]: # R2 ajustado de

# https://www.kaggle.com/burhanykiyakoglu/predicting-house-prices

def adjustedR2(r2,n,k):
    return r2-(k-1)/(n-k)*(1-r2)
```

```
[15]: | # Fonte: https://www.kaggle.com/burhanykiyakoglu/predicting-house-prices
     train_data,test_data = train_test_split(df,train_size = 0.8,random_state=3)
     features =
      →['bedrooms','bathrooms','sqft_living','sqft_lot','floors','waterfront', 'view',
      complex_model_1 = linear_model.LinearRegression()
      complex_model_1.fit(train_data[features],train_data['price'])
     print('Intercept: {}'.format(complex_model_1.intercept_))
     print('Coefficients: {}'.format(complex_model_1.coef_))
     pred = complex_model_1.predict(test_data[features])
     rmsecm = float(format(np.sqrt(metrics.
      →mean_squared_error(test_data['price'],pred)),'.3f'))
     rtrcm = float(format(complex_model_1.

→score(train_data[features],train_data['price']),'.3f'))

     artrcm = float(format(adjustedR2(complex_model_1.

→score(train_data[features],train_data['price']),train_data.
      →shape[0],len(features)),'.3f'))
     rtecm = float(format(complex_model_1.

→score(test_data[features],test_data['price']),'.3f'))
```



```
artecm = float(format(adjustedR2(complex_model_1.
      →score(test_data[features],test_data['price']),test_data.
      ⇔shape[0],len(features)),'.3f'))
      cv = float(format(cross_val_score(complex_model_1,df[features],df['price'],cv=5).
      →mean(),'.3f'))
     r = evaluation.shape[0]
      evaluation.loc[r] = ['Multiple Regression-1', 'selected_
      →features',rmsecm,rtrcm,artrcm,rtecm,artecm,cv]
      evaluation.sort_values(by = '5-Fold Cross Validation', ascending=False)
     Intercept: -682602.5354521909
     Coefficients: [-3.37785908e+04 -1.09025075e+04 1.99448654e+02 -3.50854472e-01
      -1.48240739e+04 5.45051297e+05 6.50285793e+04 5.58998443e+04
       9.95878298e+04]
[15]:
                        Model
                                         Details Root Mean Squared Error (RMSE) \
     O Multiple Regression-1 selected features
                                                                      221680.867
        R-squared (training) Adjusted R-squared (training) R-squared (test) \
     0
                       0.602
                                                      0.602
                                                                        0.617
        Adjusted R-squared (test) 5-Fold Cross Validation
     0
                            0.616
                                                     0.601
     SELEÇÃO DE VARIÁVEIS (FEATURE SELECTION)
```



```
from sklearn.feature_selection import mutual_info_regression
from matplotlib import pyplot
# feature selection
def select_features(X_treino, y_treino, X_teste):
        # configure to select all features
        fs = SelectKBest(score_func=mutual_info_regression, k='all')
        # learn relationship from treinoing data
        fs.fit(X_treino, y_treino)
        # transform treino input data
        X_treino_fs = fs.transform(X_treino)
        # transform teste input data
        X_teste_fs = fs.transform(X_teste)
        return X_treino_fs, X_teste_fs, fs
# split into treino and teste sets
X_treino, X_teste, y_treino, y_teste = train_test_split(X, y, test_size=0.2,_u
→random_state=1)
# feature selection
X_treino_fs, X_teste_fs, fs = select_features(X_treino, y_treino, X_teste)
# what are scores for the features
for i in range(len(fs.scores_)):
        print('Feature %d: %f' % (i, fs.scores_[i]))
# plot the scores
pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_)
pyplot.show()
```

Feature 0: 0.073221
Feature 1: 0.209489
Feature 2: 0.352033
Feature 3: 0.063594
Feature 4: 0.070467
Feature 5: 0.008940
Feature 6: 0.056564
Feature 7: 0.013337
Feature 8: 0.334368







```
rtecm = float(format(complex_model_1.

¬score(test_data[features],test_data['price']),'.3f'))

      artecm = float(format(adjustedR2(complex model 1.
       →score(test_data[features],test_data['price']),test_data.
       ⇔shape[0],len(features)),'.3f'))
      cv = float(format(cross_val_score(complex_model_1,df[features],df['price'],cv=5).
       →mean(),'.3f'))
      r = evaluation.shape[0]
      evaluation.loc[r] = ['Multiple Regression-3', 'selected_
       →features',rmsecm,rtrcm,artrcm,rtecm,artecm,cv]
      evaluation.sort_values(by = '5-Fold Cross Validation', ascending=False)
     Intercept: -598022.8027257539
     Coefficients: [ 186.877963 97878.7708715]
[18]:
                         Model
                                          Details Root Mean Squared Error (RMSE) \
     O Multiple Regression-1 selected features
                                                                       221680.867
                                                                       242366.385
      1 Multiple Regression-3 selected features
         R-squared (training) Adjusted R-squared (training) R-squared (test) \
     0
                        0.602
                                                       0.602
                                                                         0.617
                        0.533
     1
                                                       0.533
                                                                         0.542
         Adjusted R-squared (test) 5-Fold Cross Validation
     0
                             0.616
                                                      0.601
                             0.542
                                                      0.533
     1
```

# **ANÁLISE DE RESÍDUOS**



```
# objeto para a análise de pontos influentes
infl = res.get_influence()

# diagonal da matriz hat
hii = infl.hat_matrix_diag

# resíduo studentizado (internamente)
res_stud = infl.resid_studentized_internal

# resíduo studentizado com i-ésima observação deletada (externamente)
res_stud_del = infl.resid_studentized_external

# DFFITS
(dffits,p) = infl.dffits

# Distância de Cook
(cook,p) = infl.cooks_distance
```

```
[20]: fig, (ax1, ax2, ax3) = plt.subplots(3)
    ax1.scatter(ypred, residuo)
    ax1.set_ylabel('$y-\hat{y}$')
    ax1.set_title('Residuos')
    ax1.hlines(0,xmin=min(ypred),xmax=max(ypred),color='gray')
    ax2.scatter(ypred, res_stud)
    ax2.set_ylabel('studentizado')
    ax2.hlines(0,xmin=min(ypred),xmax=max(ypred),color='gray')
    ax3.scatter(ypred, res_stud_del)
    ax3.set_ylabel('studentizado -(i)')
    ax3.hlines(0,xmin=min(ypred),xmax=max(ypred),color='gray')
    ax3.set_xlabel('$\hat{Y}$')

for ax in fig.get_axes():
    ax.label_outer()
```





```
[21]: fig, (ax1, ax2, ax3) = plt.subplots(3)
    ax1.scatter(df.index, dffits)
    ax1.set_ylabel('DFFITS')
    ax1.set_title('Detecção de pontos influentes')
    #ax1.hlines(0,xmin=1,xmax=102,color='gray')

ax2.scatter(df.index, cook)
    ax2.set_ylabel('distância de Cook')

ax3.scatter(df.index, hii)
    ax3.scatter(df.index, hii)
    ax3.set_ylabel('$h_{ii}$')
    ax3.set_xlabel('indice')

for ax in fig.get_axes():
    ax.label_outer()
```





```
[22]: # Verificando a suposição de distribuição Normal dos resíduos

stats.probplot(residuo, plot=plt)
plt.xlabel('quantis teóricos')
plt.ylabel('resíduos ordenados')
plt.show()
```





# TRANSFORMAÇÃO EM Y

Transformação de Box Cox: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html



```
residuo = res.resid
      # objeto para a análise de pontos influentes
      infl = res.get_influence()
      # diagonal da matriz hat
      hii = infl.hat_matrix_diag
      # resíduo studentizado (internamente)
      res_stud = infl.resid_studentized_internal
      # resíduo studentizado com i-ésima observação deletada (externamente)
      res_stud_del = infl.resid_studentized_external
      # DFFTTS
      (dffits,p) = infl.dffits
      # Distância de Cook
      (cook,p) = infl.cooks_distance
[26]: fig, (ax1, ax2, ax3) = plt.subplots(3)
      ax1.scatter(ypred, residuo)
      ax1.set_ylabel('$y-\hat{y}$')
      ax1.set_title('Residuos')
      #ax1.hlines(0,xmin=min(ypred),xmax=max(ypred),color='gray')
      ax2.scatter(ypred, res_stud)
      ax2.set_ylabel('studentizado')
      ax2.hlines(0,xmin=min(ypred),xmax=max(ypred),color='gray')
      ax3.scatter(ypred, res_stud_del)
      ax3.set_ylabel('studentizado -(i)')
      ax3.hlines(0,xmin=min(ypred),xmax=max(ypred),color='gray')
      ax3.set_xlabel('$\hat{Y}$')
      for ax in fig.get_axes():
```



ax.label\_outer()



```
[27]: fig, (ax1, ax2, ax3) = plt.subplots(3)
    ax1.scatter(df.index, dffits)
    ax1.set_ylabel('DFFITS')
    ax1.set_title('Detecção de pontos influentes')

#ax2.hlines(0,xmin=1,xmax=102,color='gray')
    ax2.scatter(df.index, cook)
    ax2.set_ylabel('distância de Cook')

ax3.scatter(df.index, hii)
    ax3.scatter(df.index, hii)
    ax3.set_ylabel('$h_{ii}$')
    ax3.set_xlabel('indice')

for ax in fig.get_axes():
    ax.label_outer()
```





```
[28]: # Verificando a suposição de distribuição Normal dos resíduos

stats.probplot(residuo, plot=plt)
plt.xlabel('quantis teóricos')
plt.ylabel('resíduos ordenados')
plt.show()
```





```
[29]: #!pip install plotly
[30]: \# x and y given as DataFrame columns
      import plotly.express as px
      fig = px.scatter(x = df.index, y=cook)
      fig.show()
[31]: df['grade'].describe()
[31]: count
               21613.000000
                   7.656873
      mean
      std
                   1.175459
                   1.000000
      min
      25%
                   7.000000
      50%
                   7.000000
      75%
                   8.000000
                  13.000000
      max
      Name: grade, dtype: float64
```



```
[32]: df.iloc[12777,:]
#2.280.000
```

```
[32]: id
                                  1225069038
      date
                             20140505T000000
      price
                                   2280000.0
      bedrooms
                                            7
      bathrooms
                                          8.0
      sqft_living
                                       13540
      sqft_lot
                                      307752
      floors
                                          3.0
                                            0
      waterfront
      view
                                            4
      condition
                                            3
                                           12
      grade
                                      9410.0
      sqft_above
      sqft_basement
                                         4130
      yr_built
                                         1999
                                            0
      yr_renovated
                                       98053
      zipcode
      lat
                                     47.6675
                                    -121.986
      long
                                         4850
      sqft_living15
      sqft_lot15
                                      217800
      price_transformado
                                      4.1345
```

Name: 12777, dtype: object

```
[33]: sns.boxplot(df['sqft_living'])
```

[33]: <Axes: ylabel='sqft\_living'>



```
[35]: px.scatter(y = df['price_transformado'], x=df['sqft_living'])
[36]: res.params
[36]: Intercept
                     3.983499
      sqft_living
                     0.000009
                     0.008750
      grade
      dtype: float64
[37]: res.predict()
[37]: array([4.055955 , 4.06915421, 4.04331154, ..., 4.05443567, 4.06869342,
             4.054435671)
[38]: X = df[['sqft_living', 'grade']].values.reshape(-1,2)
      Y = df['price']
      x = X[:, 0]
      y = X[:, 1]
      z = Y
[39]: # Visualização do modelo de regressão múltipla em Python
```

[34]: px.scatter(y = df['price'], x=df['sqft\_living'])



```
## Fonte: https://aegis4048.github.io/
→ mutiple_linear_regression_and_visualization_in_python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from mpl_toolkits.mplot3d import Axes3D
X = df[['sqft_living', 'grade']].values.reshape(-1,2)
Y = df['price_transformado']
############################# Preparação para a visualização
x = X[:, 0]
y = X[:, 1]
z = Y
x_pred = np.linspace(290, 13540, 30) # grade de valores para x
y_pred = np.linspace(1, 13, 30) # grade de valores para y
xx_pred, yy_pred = np.meshgrid(x_pred, y_pred)
model_viz = np.array([xx_pred.flatten(), yy_pred.flatten()]).T
ols = linear_model.LinearRegression()
model = ols.fit(X, Y)
predicted = model.predict(model_viz)
r2 = model.score(X, Y)
```



```
plt.style.use('default')
fig = plt.figure(figsize=(12, 4))
ax1 = fig.add_subplot(131, projection='3d')
ax2 = fig.add_subplot(132, projection='3d')
axes = [ax1, ax2]
for ax in axes:
   ax.plot(x, y, z, color='k', zorder=15, linestyle='none', marker='o', alpha=0.
   ax.scatter(xx_pred.flatten(), yy_pred.flatten(), predicted,__
\rightarrowfacecolor=(0,0,0,0), s=20, edgecolor='#70b3f0')
   ax.set_xlabel('sqft_living', fontsize=12)
   ax.set_ylabel('grade', fontsize=12)
   ax.set_zlabel('price_transformado', fontsize=12)
   ax.locator_params(nbins=4, axis='x')
   ax.locator_params(nbins=5, axis='x')
ax1.view_init(elev=20, azim=-10)
ax2.view_init(elev=0, azim=290)
fig.suptitle('R^2 = .2f'' % r2, fontsize=20)
fig.tight_layout()
```



# $R^2 = 0.53$





```
[40]: for ii in np.arange(0, 180, 1):
    ax1.view_init(elev=20, azim=(2*ii))
    ax2.view_init(elev=0, azim=(2*ii))
    fig.savefig('gif_image%d.png' % ii)
```

# MÉTRICAS COM BASES DE TREINO E TESTE

```
[41]: # Ajusta o modelo de regressão linear múltipla para o preço das casas com duas⊔

→preditoras

from statsmodels.formula.api import ols

modelo = ols('price ~ sqft_living + grade', data=train_data)

res = modelo.fit()
```

[42]: previsao = res.predict(X\_teste)

[43]: from sklearn.metrics import mean\_absolute\_error, mean\_squared\_error mean\_absolute\_error(previsao, y\_teste)

[43]: 168694.27817451468

[44]: mean\_squared\_error(previsao, y\_teste)

[44]: 79633647247.60545

### Exercício



É possível melhorar esse modelo?

Testar outros métodos para a seleção de variáveis.

