A STABLE VERSION OF HARBOURNE'S CONJECTURE CMS WINTER MEETING 2018

Eloísa Grifo (University of Michigan)

Background

Symbolic Power

The n-th **symbolic power** of a radical ideal I in a regular ring R is

$$I^{(n)} = \bigcap_{P \in Min(R/I)} (I^n R_P \cap R).$$

How do symbolic powers compare to ordinary powers?

- (1) $I^n \subseteq I^{(n)}$ for all $n \ge 1$.
- (2) $I^{(n+1)} \subseteq I^{(n)}$ for all $n \geqslant 1$.

How do symbolic powers compare to ordinary powers?

(3) If I is generated by a regular sequence, then $I^n = I^{(n)}$ for all n.

- (1) $I^n \subseteq I^{(n)}$ for all $n \geqslant 1$.
- (2) $I^{(n+1)} \subseteq I^{(n)}$ for all $n \ge 1$.

How do symbolic powers compare to ordinary powers?

- (1) $I^n \subset I^{(n)}$ for all $n \ge 1$.
- (2) $I^{(n+1)} \subseteq I^{(n)}$ for all $n \geqslant 1$. (3) If I is generated by a regular sequence, then $I^n = I^{(n)}$ for all n.

(4) In general, $I^n \neq I^{(n)}$.

Containment Problem (Schenzel)

When is $I^{(b)} \subseteq I^a$?

Theorem (Ein-Lazersfeld-Smith, 2001, Hochster-Huneke, 2002, Ma-Schwede, 2017)

Let I be a radical ideal in a^1 regular ring R and h be the big height of I. Then for all $n \ge 1$, $I^{(hn)} \subseteq I^n$.

¹Excellent in the mixed characteristic case.

Theorem (Ein-Lazersfeld-Smith, 2001, Hochster-Huneke, 2002, Ma-Schwede, 2017)

Let I be a radical ideal in a^1 regular ring R and h be the big height of I. Then for all $n \ge 1$, $I^{(hn)} \subseteq I^n$.

EXAMPLE

$$P \subseteq R = k[x, y, z]$$
 the defining ideal of $k[t^3, t^4, t^5]$.

$$h=2 \Rightarrow P^{(2n)} \subset P^n \Rightarrow P^{(4)} \subset P^2$$
.

¹Excellent in the mixed characteristic case.

Theorem (Ein-Lazersfeld-Smith, 2001, Hochster-Huneke, 2002, Ma-Schwede, 2017)

Let I be a radical ideal in a^1 regular ring R and h be the big height of I. Then for all $n \ge 1$, $I^{(hn)} \subseteq I^n$.

EXAMPLE

$$P \subseteq R = k[x, y, z]$$
 the defining ideal of $k[t^3, t^4, t^5]$.

$$h=2\Rightarrow P^{(2n)}\subseteq P^n\Rightarrow P^{(4)}\subseteq P^2.$$

In fact, $P^{(3)} \subset P^2$.

¹Excellent in the mixed characteristic case.

Question (Huneke, 2000)

Let P be a height 2 prime in a regular local ring. Is $P^{(3)} \subseteq P^2$?

Question (Huneke, 2000)

Let P be a height 2 prime in a regular local ring. Is $P^{(3)} \subseteq P^2$?

Conjecture (Harbourne, ≤ 2008)

Let I be a radical ideal in a regular ring, and let h be the big height of I. For all $n\geqslant 1$, $I^{(hn-h+1)}\subset I^n.$

Theorem (Hochster-Huneke)

Let I be a radical ideal of big height h in a regular ring of characteristic p>0. Then for all $q=p^e$,

teristic
$$p>0$$
 . Then for all $q=p^e$, $I^{(hq)}\subset I^{[q]}\subset I^q$.

Notation: $I^{[q]} = (f^q \mid f \in I)$.

Theorem (Hochster-Huneke)

Let I be a radical ideal of big height h in a regular ring of characteristic p>0. Then for all $q=p^e$,

$$I^{(hq-h+1)} \subset I^{[q]} \subset I^q$$
.

Notation: $I^{[q]} = (f^q \mid f \in I)$.

Harbourne's Conjecture

Let I be a radical ideal in a regular ring, and let h be the big height of I. For all $n \ge 1$,

DUMNICKI, SZEMBERG, TUTAJ-GASINSKA, 2015

There exists a radical ideal in
$$\mathbb{C}[x, y, z]$$
 such that $I^{(3)} \nsubseteq I^2$:

 $I = (z(x^3 - y^3), x(y^3 - z^3), y(z^3 - x^3)).$

$$I^{(hn-h+1)}\subseteq I^n.$$

Harbourne's Conjecture

Let I be a radical ideal in a regular ring, and let h be the big height of I. For all $n\geqslant 1$, $I^{(hn-h+1)}\subset I^n.$

When does Harbourne's Conjecture hold?

- \bigcirc For general points in \mathbb{P}^2 (Harbourne–Huneke), \mathbb{P}^3 (Dumnicki).
- If R/I is an F-pure ring (G-Huneke).
 Eg, when I is a squarefree monomial ideal, or when R/I is direct summand of a polynomial ring over a perfect field.

Theorem (G–Ma–Schwede)

 $n \geqslant 1$.

Let (R, \mathfrak{m}) be an F-finite Gorenstein local ring of characteristic p > 0 and $Q \subseteq R$ be a radical ideal of finite projective dimension

- with big height h.
- 1) If R/Q is F-pure, then $Q^{(hn-h+1)} \subseteq Q^n$ for all $n \ge 1$.

2) If R/Q is strongly F-regular, then $Q^{((h-1)(n-1)+1)} \subset Q^n$ for all

HARBOURNE'S CONJECTURE

(STABLE VERSION)

Main Question

Does Harbourne's Conjecture always hold eventually?

Evidence for the Stable Harbourne Conjecture

Let $a \ge 3$, k be a field, and the Fermat ideal

This is a well-known counterexample to $I^{(3)} \subseteq I^2$. However,

$$I^{(2n-1)} \subset I^n$$

for all $n \ge 3$, which follows from work of Dumnicki, Harbourne, Nagel, Seceleanu, Szemberg, and Tutaj-Gasińska.

 $I = (x(y^{a} - z^{a}), y(z^{a} - x^{a}), z(x^{a} - y^{a})).$

Main Question

Does Harbourne's Conjecture always hold eventually?

Harbourne's Conjecture (stable version)

Given a radical ideal $\it I$ of big height $\it h$ in a regular ring, does

$$I^{(hn-h+1)} \subseteq I^n$$

for all $n \gg 0$?

Question

If there exists a value of m such that

$$I^{(hm-h+1)}\subseteq I^m,$$

does that imply that

$$I^{(hn-h+1)}\subseteq I^n,$$

for all $n \gg 0$?

Question

If there exists a value of m such that

$$I^{(hm-h+1)} \subseteq I^m$$

does that imply that

$$I^{(hn-h+1)}\subseteq I^n,$$

for all $n \gg 0$?

GOOD ENOUGH IN PRIME CHARACTERISTIC

In characteristic p, this would prove the stable version of Harbourne's Conjecture, since $I^{(hp-h+1)}\subseteq I^p$.

for all $m \gg 0$.

Let I be a radical ideal of big height h in a regular ring containing a field. If there exists a value of n such that

 $I^{(hn-h)} \subseteq I^n$,

then

 $I^{(hm-h)} \subset I^m$

Let I be a radical ideal of big height h in a regular ring containing a field. If there exists a value of n such that

 $I^{(hm-h)} \subset I^m$.

$$I^{(hn-h)}\subseteq I^n,$$

for all $m \gg 0$.

then

EXAMPLE

The defining ideal of $k[t^3, t^4, t^5]$ in k[x, y, z] verifies $P^{(2\times 3-2=4)}\subseteq P^3$, and thus $P^{(2m-2)}\subseteq P^m$ for all $m\geqslant 6$.

Let k be a field of characteristic not 2 nor 3, let a = 3 or a = 4, and

Let
$$k$$
 be a field of characteristic not 2 nor 3, let $a = 3$ or $a = 4$, and let $a < b < c$ be integers. If P is the defining ideal of $k[t^a, t^b, t^c]$ or $k[t^a, t^b, t^c]$ in $R = k[x, y, z]$ or $R = k[x, y, z]$, repectively. Then

 $P^{(4)} \subset P^3$.

As a consequence, $P^{(2n-2)} \subset P^n$ for all $n \gg 0$.

EXAMPLE

so $P^{(2n-2)} \subset P^n$ for all $n \gg 0$.

The defining ideal P of $k[t^9, t^{11}, t^{14}]$ fails $P^{(4)} \subseteq P^3$, but Macaulay2 computations show that

 $P^{(2\times 4-2=6)}\subset P^4$

EXAMPLE

The squarefree monomial ideal

 $I = \bigcap_{i \in I} (x_i, x_j) \subseteq k[x_1, \dots, x_v].$

has $I^{(2n-2)} \nsubseteq I^n$ for n < v, but $I^{(2v-2)} \subseteq I^v$. Therefore,

 $I^{(2n-2)} \subset I^n$ for all $n \gg 0$.

Definition (Bocci-Harbourne)

The resurgence of an ideal I is given by

$$\rho(I) = \sup \left\{ \frac{a}{b} : I^{(a)} \nsubseteq I^{b} \right\}.$$

Definition (Bocci-Harbourne)

The resurgence of an ideal I is given by

$$\rho(I) = \sup \left\{ \frac{a}{b} : I^{(a)} \nsubseteq I^b \right\}.$$

$$1 \leqslant \rho(I) \leqslant h$$
.

Definition (Bocci-Harbourne)

The resurgence of an ideal I is given by

$$\rho(I) = \sup \left\{ \frac{a}{b} : I^{(a)} \nsubseteq I^{b} \right\}.$$

$$1 \leqslant \rho(I) \leqslant h$$
.

If $\frac{a}{b} > \rho(I)$, then $I^{(a)} \subseteq I^b$.

Observation

Let I is a radical ideal, and h be the big height of I. If $\rho(I) < h$, then for every constant C > 0,

$$I^{(hn-C)} \subset I^n$$

for all $n \gg 0$.

Observation

Let I is a radical ideal, and h be the big height of I. If $\rho(I) < h$, then for every constant C > 0,

$$I^{(hn-C)} \subseteq I^n$$

for all $n \gg 0$.

Question

Is there an ideal I with $\rho(I) = h$?

EXAMPLE

Let $a \ge 3$, k be a field, and Dumnicki, Harbourne, Nagel, Seceleanu, Szemberg, and Tutaj-Gasińska showed that

 $I = (x(y^{a} - z^{a}), y(z^{a} - x^{a}), z(x^{a} - y^{a})).$

has resurgence $\frac{3}{2}$, so $I^{(2n-1)} \subseteq I^n$ for all $n \ge 3$.

Question

Let I be a radical ideal of big height h in a regular ring R. Fix an integer C > 0. Does

$$I^{(hn-C)} \subseteq I^n$$

hold for all $n \gg 0$?

Question

Let I be a radical ideal of big height h in a regular ring R. Fix an integer C > 0. Does

$$I^{(hn-C)} \subseteq I^n$$

hold for all $n \gg 0$?

Yes, if

- \bigcirc if $\rho(I) < h$, and
- \bigcirc if $I^{(hm-C)} \subseteq I^m$ for some m and $I^{(n+h)} \subseteq II^{(n)}$ for all $n \geqslant 1$.

Example (Seceleanu)

The ideal $I = (x(y^3 - z^3), y(z^3 - x^3), z(x^3 - y^3)) \subseteq \mathbb{C}[x, y, z]$ fails $I^{(n+2)} \subseteq II^{(n)}$ for n arbitrarily large.

Yet in this example it is still true that given any C, $I^{(2n-C)} \subseteq I^n$ for all $n \gg 0$.

for all $n \ge k$.

Let R be a regular ring of characteristic p > 0. Let I be an ideal in R such that R/I is an F-pure ring, and let h be the big height

in R such that R/I is an F-pure ring, and let h be the big height of I. Then for all
$$n \ge 1$$
,

 $I^{(n+h)} \subset II^{(n)}$.

In particular, if $I^{(hk-C)} \subset I^k$ for some k and C, then $I^{(hn-C)} \subset I^n$

