Lecture 28-29: L'Hôpital's Rule (LHR)

Math 1151 Applications of derivatives Tae Eun Kim. Ph.D. Limits -> Differential · related rates · graphing functions Autumn 2021 o optimization (max./min.) linear approximation · computation of hard limit problems (L'Hôpital's Rule)

1/10

Basic Ideas

7 also spelled as "L'Hospital"

This is our final application of derivatives: using derivatives to calculate difficult limits. Enter L'Hôpital's rule.

Theorem (L'Hôpital's Rule)

Let f(x) and g(x) be functions that are differentiable near a. If

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \qquad \text{or } \pm \infty,$$

and $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists, and $g'(x)\neq 0$ for all x near a, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Indeterminate Form

v. not Quotient Rule.

o Bimply the natio of individual derivatives

Geometry of L'H

Observe

· Sample Scienario a 75 some number

•
$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x)$$

•
$$\lim_{n\to a} \frac{f(n)}{g(n)} = \lim_{n\to a} \frac{f(n)}{2(n/a)}$$

Form:
$$\frac{0}{0}$$
 = $\lim_{\chi \to 0} \frac{4}{2} = 2$.

. General scenario

Now assume f, g are not linear.

tan fax = 0 = tan gradon x-2

$$L_{g}(x) = \frac{1}{2}(\alpha)^{2} + \frac{1}{2}(\alpha)(x - \alpha)$$

$$L_{g}(x) = \frac{1}{2}(\alpha)^{2} + \frac{1}{2}(\alpha)(x - \alpha)$$

 $\frac{f(x)}{f(x)} = \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Near a

$$\frac{f(x)}{g(x)} \approx \frac{L_{f}(x)}{L_{g}(x)} = \frac{f'(x)(y(x))}{g'(x)(y(x))} \quad (\text{ratio of thopes})$$

Caveats

 $\lim_{\lambda \to a} \frac{f(x)}{g(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f(x)}{g(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f(x)}{g(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f(x)}{g(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$ $\lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)} = \lim_{\lambda \to a} \frac{f'(\lambda)}{g'(x)}$

- 1. RHS is the lamit of ratio of derivatives. (Not Q.R.)
- 2. L'H works even for
 - · "1 > a t (one-sided famils)
 - · " 2 > ±00" (timits at infinity)
- 3. May be applied repeatedly until you obtain an answer.

 (Simplify before next application of L'H.)

List of Indeterminate Forms

can be handled by L'H eventually.

In each of these cases, the value of the limit is **not** immediately obvious. Hence, a careful analysis is required!

Examples: Basic Indeterminate Forms

Question. Compute
$$\lim_{x\to 0} \frac{\sin(x)}{x}$$
. Form: $\frac{0}{0}$ "

Solu L'H

 $\lim_{x\to 0} \frac{\cos(x)}{1}$
 $\lim_{x\to 0} \frac{\cos(x)}{1}$

Since the fairly has been evaluated.

Ans. 1 (taught in Sqz. Thm. Sec. relied on geometry.)

Exercise The following important identifies were presented a whole back (expected to memorize)

$$\sqrt[4]{\lim_{\theta \to 0} \frac{Sin(\theta)}{\theta}} = 1$$

$$\sqrt[4]{\lim_{\theta \to 0} \frac{1 - \cos(\theta)}{\theta}} = \sqrt[4]{\lim_{\theta \to 0} \frac{\cos(\theta) - 1}{\theta}} = 0$$

$$\sqrt[4]{\lim_{\theta \to 0} \frac{e^{t} - 1}{t}} = 1$$

$$\sqrt[4]{\lim_{\theta \to 0} \frac{e^{t} - 1}{t}} = 1$$

Confirm these using L'H.

Question. Compute
$$\lim_{x \to \pi/2^+} \frac{\sec(x)}{\tan(x)}$$
.

$$= \lim_{\lambda \to \underline{\mathbb{T}}^+} \frac{\tan(\lambda)}{\sec(\lambda)} = \cdots$$

Samplify:
$$\frac{\sec(x)}{\tan(x)} = \frac{1}{\cos(x)} \cdot \frac{\cos(x)}{\sin(x)} = \frac{1}{\sin(x)}$$

Lv. 1

The following $0 \cdot \infty$ can be reduced to one of the two previous ones. For instance:

Question. Compute $\lim_{x\to 0^+} x \ln x$.

Examples: Indeterminate Forms Involving Subtraction

$$\infty - \infty''$$

The name of the game once again is reduction. We will transform differences into either quotients or products then apply L'Hôpital's rule on the basic forms. Question. Compute $\lim_{x \to 0} (\cot(x) - \csc(x))$.

Question. Compute $\lim_{x\to\infty} \left(\sqrt{x^2+x}-x\right)$.

This pertains to the forms

$$1^{\infty}$$
, 0^{0} , ∞^{0}

Suppose we have functions u(x) and v(x) such that

$$\lim_{x \to a} u(x)^{v(x)}$$

falls into one of the forms described above. We use the inverse relation between \exp and \log functions to rewrite the limit as

$$\lim_{x \to a} e^{v(x) \ln(u(x))}.$$

Using the fact that the exponential function is continuous, the limit equals to

$$\exp[\lim_{x\to a} v(x) \ln(u(x))]$$
.

Note that the limit now is in one of the previously presented forms.

Question. First determine the form of the limit, then compute the limit.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x.$$