FCC TEST REPORT

FOR

WolfVision GmbH

RC for Presentation Device

Model No.: AM003

Prepared for WolfVision GmbH

Address Oberes Ried 14, A-6833 Klaus / Austria

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd

Address 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Date of receipt of test sample : March 31, 2016

Number of tested samples : 1

Serial number : Prototype

Date of Test : March 31, 2016 ~ May 20, 2016

Date of Report May 20, 2016

FCC TEST REPORT

FCC CFR 47 PART 15 C(15.249): 2015

Report Reference No.: LCS1604211709E

Date of Issue: May 20, 2016

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name: WolfVision GmbH

Address: Oberes Ried 14, A-6833 Klaus / Austria

Test Specification

Standard.....: FCC CFR 47 PART 15 C(15.249): 2015

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: RC for Presentation Device

Trade Mark: WolfVision

Model/ Type reference: AM003

Ratings.....: DC 3.0V by 2*AAA batteries

Result: Positive

Compiled by:

Supervised by:

Approved by:

Aking Jin / File administrators

Aking Jin

Glin Lu / Technique principal

Gavin Liang / Manager

FCC -- TEST REPORT

May 20, 2016 **Test Report No.: LCS1604211709E** Date of issue

Type / Model.....: AM003 EUT.....: RC for Presentation Device Applicant.....: : WolfVision GmbH Address.....: Oberes Ried 14, A-6833 Klaus / Austria Telephone.....: : / Fax.....:: : / Manufacturer.....: Dongguan Anycon Industry Co., Ltd. Address..... No 12, Limin Road, Jinxiaotang Industrial Park, Fenggang, Dongguan, Guangdong, China Telephone....:: / Fax....:: / Factory.....: Dongguan Anycon Industry Co., Ltd. Address.....: No 12, Limin Road, Jinxiaotang Industrial Park, Fenggang, Dongguan, Guangdong, China Telephone.....: : / Fax.....:: : /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	2016-05-20	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	. 6
1.1. Description of Device (EUT)	6
1.2. Host System Configuration List and Details	
1.3. External I/O	
1.4. Description of Test Facility	
1.5. Statement of the measurement uncertainty	
1.6. Measurement Uncertainty	
1.7. Description of Test Modes	
1.8 List of Measuring Equipment	8
2. TEST METHODOLOGY	
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	9
3. CONNECTION DIAGRAM OF TEST SYSTEM	10
3.1. Justification	
3.2. EUT Exercise Software	10
3.3. Special Accessories	
3.4. Block Diagram/Schematics	10
1 1	10
1	10
4. SUMMARY OF TEST RESULTS	11
5. ANTENNA REQUIREMENT	12
5.1. Standard Applicable	12
**	12
6. RADIATED EMISSION MEASUREMENT	13
6.1. Standard Applicable	13
	13
6.3. Test Procedure	14
	18
6.6. Results of Radiated Emissions (30MHz~1GHz)	19
6.7. Results for Radiated Emissions (Above 1GHz)	21
6.8. Results for Band edge Testing (Radiated)	22
7. 20 DB BANDWIDTH MEASUREMENT	23
7.1. Limit	23
7.2. Block Diagram of Test Setup	23
7.3. Test Procedure	23
	-

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : RC for Presentation Device

Model Number : AM003

Power Supply : DC 3.0V by 2*AAA batteries

Frequency Range : 11 channels hopping from 2402.00-2480.00MHz (See

section 1.7)

Modulation Technology: GFSK

Antenna Type and Gain: PCB Antenna, 2.0dBi (Max.)

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate

1.3. External I/O

I/O Port Description	Quantity	Cable
		-

1.4. Description of Test Facility

Site Description

EMC Lab. : CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1. VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
Dediction Uncertainty		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	٦	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	4.00dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

Channel list:

Frequency(MHz)	2402	2405	2409
	2419	2429	2439
	2449	2459	2469
	2479	2480	

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items. And the new battery is used during the measurement.

The EUT received DC 3.0V power from 2*AAA batteries which are new and full power.

All test modes were tested, only the result of the worst case was recorded in the report.

The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Mode of Operations	Transmitting Frequency (MHz)
	2402
GFSK	2439
	2480
For Conduct	red Emission
Test Mode	N/A
For Radiate	ed Emission
Test Mode	TX Mode

Note: The EUT is designed to use DC 3.0V 2*AAA batteries for power supply, so the conducted emission testing is not applicable.

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(TX-Low Channel(2402MHz, GFSK)).

1.8 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18,2015	June 17,2016
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	July 16,2015	July 15,2016
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18,2015	June 17,2016
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18,2015	June 17,2016
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18,2015	June 17,2016
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18,2015	June 17,2016
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	30M-1GHz 3m	June 18,2015	June 17,2016
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18,2015	June 17,2016
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16,2015	July 15,2016
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16,2015	July 15,2016
Spectrum Analyzer	Agilent	E4407B	MY41440292	9k-26.5GHz	July 16,2015	July 15,2016
MAX Signal Analyzer	Agilent	N9020A	MY50510140	20Hz~26.5GHz	Oct. 27,2015	Oct. 26,2016
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18,2015	June 17,2016
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10,2015	June 09,2016
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10,2015	June 09,2016
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	June 10,2015	June 09,2016
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18,2015	June 17,2016
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18,2015	June 17,2016
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18,2015	June 17,2016
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 18,2015	June 17,2016
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18,2015	June 17,2016
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 18,2015	June 17,2016
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	June 18,2015	June 17,2016
Note: All equipment through GRGT EST calibration						

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

FCC ID: 2AFSXAM003

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions (N/A)

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C			
FCC Rules	FCC Rules Description of Test Result		
§15.205(a), §15.209(a), §15.249(a), §15.249(c) Radiated Emissions Measurement		Compliant	
§15.205, §15.249(d) Emissions at Restricted Band		Compliant	
§15.207(a)	AC Line Conducted Emissions	N/A	
§15.203 Antenna Requirements Compliant		Compliant	
Note: This is a DXX test report for RC for Presentation Device (AM003)			

5. ANTENNA REQUIREMENT

5.1. Standard Applicable

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

5.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 2.0dBi (Max.), and EUT is equipped with an onboard PCB antenna and no consideration of replacement. Please see EUT photo for details.

Result: Compliance.

6. RADIATED EMISSION MEASUREMENT

6.1. Standard Applicable

1. According to §15.249 (d): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

2. According to §15.249 (a): Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field strength	of fundamental	Field strength	of harmonics
Fundamental	millivolts/meter	dBuV/m	microvolts/mete	dBuV/m
frequency			r	
902-928 MHz	50	94	500	54
2400-2483.5 MHz	50	94	500	54
5725-5875 MHz	50	94	500	54
24.0-24.25 GHz	250	108	2500	68

As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth

6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- --- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- --- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- --- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor-standing and typically installed with its base in direct electrical contact with, or connected to, a grounded metal floor or grid, the EUT shall be connected to, or placed directly on, the test site (or turntable) reference ground plane in a manner representative of this contact or connection.
- --- If the EUT is a floor-standing and not typically installed with its base in direct electrical contact with, or connected to, a metal floor or grid, the EUT shall not be placed in direct electrical contact with the test site (or turntable) reference ground plane. If necessary to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.4. Block Diagram of Test Setup

For radiated emissions below 30MHz

Below 30MHz

For radiated emissions above 30MHz

Below 1GHz

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

6.6. Results of Radiated Emissions (30MHz~1GHz)

PASS.

Only record the worst test result in this report.

The radiated emissions from 9 kHz to 30MHz are at least 20dB below the official limit and no need to report.

The test data please refer to following page:

Results of Radiated Emissions (30MHz~1000MHz)

Only record the worst test result in this report.

Env./Ins: :log

3 4

24℃/56%

	F	HORT ZONTA	7.17				
Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
43.81	2.82	0.41	13.56	16.79	40.00	-23.21	QP
99.88	3.04	0.60	13.15	16.79	43.50	-26.71	QP
245.95	4.02	0.97	12.08	17.07	46.00	-28.93	QP
293.08	3.08	1.08	12.93	17.09	46.00	-28.91	QP
558.73	2.67	1.39	17.68	21.74	46.00	-24.26	QP
986.07	4.45	1.97	21.65	28.07	54.00	-25.93	QP

- Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that ate 20db blow the offficial limit are not reported

24°C/56% Env./Ins: VERTICAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
1	39.99	1.73	0.38	13.58	15.69	40.00	-24.31	QP
2	47.66	3.40	0.35	13.39	17.14	40.00	-22.86	QP
3	95.76	2.27	0.58	12.89	15.74	43.50	-27.76	QP
4	308.91	2.38	1.08	13.18	16.64	46.00	-29.36	QP
5	487.32	2.87	1.37	16.26	20.50	46.00	-25.50	QP
6	691.99	5.16	1.66	18.78	25.60	46.00	-20.40	QP
3 4 5	95.76 308.91 487.32	2.27 2.38 2.87	0.58 1.08 1.37	12.89 13.18 16.26	15.74 16.64 20.50	43.50 46.00 46.00	-27.76 -29.36 -25.50	QP QP QP

Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that ate 20db blow the offficial limit are not reported

***Note:

Pre-scan all modes and recorded the worst case results in this report (TX-Low Channel). Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

 $Corrected \ Reading: Antenna \ Factor + Cable \ Loss + Read \ Level - Preamp \ Factor = Level.$

6.7. Results for Radiated Emissions (Above 1GHz)

	Field Strength Of Fundamental										
Frequency (MHz)	1 POI Result										
2402	Н	83.56	80.16	114	94	Pass					
2402	V	84.21	80.26	114	94	Pass					

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.11	44.97	33.06	35.04	3.94	46.93	74	-27.07	Peak	Horizontal
4804.13	33.80	33.06	35.04	3.94	35.76	54	-18.24	Average	Horizontal
4804.11	44.82	33.06	35.04	3.94	46.78	74	-27.22	Peak	Vertical
4804.13	34.57	33.06	35.04	3.94	36.53	54	-17.47	Average	Vertical

Field Strength Of Fundamental										
Frequency (MHz)	· · Pol Result									
2439	Н	82.25	78.14	114	94	Pass				
2439	V	82.36	79.25	114	94	Pass				

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4878.13	43.48	33.16	35.15	3.96	45.45	74	-28.55	Peak	Horizontal
4878.15	33.13	33.16	35.15	3.96	35.10	54	-18.90	Average	Horizontal
4878.13	44.02	33.16	35.15	3.96	45.99	74	-28.01	Peak	Vertical
4878.16	35.65	33.16	35.15	3.96	37.62	54	-16.38	Average	Vertical

Field Strength Of Fundamental									
Frequency (MHz)	POLL RESULT								
2480	Н	81.26	78.48	114	94	Pass			
2480	V	81.56	77.26	114	94	Pass			

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.10	43.37	33.26	35.14	3.98	45.47	74	-28.53	Peak	Horizontal
4960.13	33.98	33.26	35.14	3.98	36.08	54	-17.92	Average	Horizontal
4960.11	42.86	33.26	35.14	3.98	44.96	74	-29.04	Peak	Vertical
4960.13	34.72	33.26	35.14	3.98	36.82	54	-17.18	Average	Vertical

Notes:

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3. No emission was be recorded above 18GHz means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

6.8. Results for Band edge Testing (Radiated)

Only record the worst test case (TX, GFSK, Non-hopping) as following:

TX (Low Channel)

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
2376.11	45.45	32.89	35.16	3.51	46.69	74	-27.31	Peak	Horizontal
2376.13	35.52	32.90	35.16	3.51	36.77	54	-17.23	Average	Horizontal
2400.00	46.26	32.92	35.16	3.54	47.56	74	-26.44	Peak	Horizontal
2399.99	36.90	32.92	35.16	3.54	38.20	54	-15.80	Average	Horizontal
2378.81	44.91	32.89	35.16	3.51	46.15	74	-27.85	Peak	Vertical
2378.83	34.79	32.90	35.16	3.51	36.04	54	-17.96	Average	Vertical
2400.00	46.73	32.92	35.16	3.54	48.03	74	-25.97	Peak	Vertical
2399.99	37.14	32.92	35.16	3.54	38.44	54	-15.56	Average	Vertical

TX (High Channel)

		(222822							
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
2483.50	45.46	33.06	35.18	3.60	46.94	74	-27.06	Peak	Horizontal
2483.51	33.70	33.08	35.18	3.60	35.20	54	-18.80	Average	Horizontal
2486.67	44.18	33.08	35.18	3.62	45.70	74	-28.30	Peak	Horizontal
2486.70	34.88	33.08	35.18	3.62	36.40	54	-17.60	Average	Horizontal
2483.50	46.12	33.06	35.18	3.60	47.60	74	-26.40	Peak	Vertical
2483.53	34.84	33.08	35.18	3.60	36.34	54	-17.66	Average	Vertical
2487.01	45.12	33.08	35.18	3.62	46.64	74	-27.36	Peak	Vertical
2487.03	35.11	33.08	35.18	3.62	36.63	54	-17.37	Average	Vertical

7. 20 DB BANDWIDTH MEASUREMENT

7.1. Limit

No Limit

7.2. Block Diagram of Test Setup

7.3. Test Procedure

- A. Place the EUT on the table and set it in transmitting mode.
- B. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- C. Set to the maximum power setting and enable the EUT transmit continuously.
- D. For 20dB bandwidth measurement, use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW/VBW=30 KHz/ 100KHz; Sweep = auto; Detector function = peak; Trace = max hold.

7.4 Test Results

The Measurement Result For GFSK Modulation		
20dB Bandwidth Measurement		
Channel	20dB Bandwidth (MHz)	Limit
Low	1.1978	Non-specified
Middle	1.2787	Non-specified
High	1.3477	Non-specified

The test data refer to the following page.

-----THE END OF REPORT-----