RELACIJE

Relaciju možemo posmatrati kao povezivanje elemenata nekog skupa A sa elementima nekog skupa B ali za koju znamo da su elementi skupa A u nekoj vezi (relaciji) sa elementima skupa B.

Najčešće se takvo povezivanje (relacija) posmatra samo u okviru jednog skupa.

Recimo posmatramo skup svih učenika jedne škole – skup Š. Označimo sa $x \rho y$ činjenicu da se učenik $x \in \check{S}$ poznaje sa učenikom $y \in \check{S}$. Onda smo na taj način definisali jednu binarnu relaciju izmedju elemenata skupa Š, odnosno izmedju učenika te škole .

Definicija:

Neka je ρ podskup skupa $X \times Y$. Kaže se da je element $x \in X$ u relaciji sa elementom $y \in Y$ ako i samo ako je $(x,y) \in \rho$. Tada se piše $x \rho y$, ρ je **binarna relacija** izmedju elemenata skupa X i elemenata skupa Y.

Kako sve možemo predstaviti neku relaciju?

- 1. Možemo neposredno nabrajati uredjene parove koji su u toj relaciji. Medjutim, to ume da bude naporno....
- 2. Možemo koristiti tablicu relacije
- 3. Možemo koristiti graf relacije

Evo primera na kome ćemo probati da naučimo sve tri opcije.

Dat je skup $A = \{1, 2, 3, 4, 6\}$ i relacija ρ definisana sa $x \rho y \Leftrightarrow x/y$ (ovo je oznaka za x deli y)

Ajmo najpre da nabrojimo uredjene parove koji zadovoljavaju ovu relaciju.

Krenemo od 1.

On najpre deli sam sebe, 1:1=1 pa je (1,1) prvi uredjeni par, zatim 1 deli 2, tj 2:1=2 pa je drugi uredjeni par (1,2), dalje znamo da je svaki broj deljiv sa 1 pa su uredjeni parovi : (1,1),(1,2),(1,3),(1,4),(1,6) za jedinicu. Ovo znači da je $1\rho1,1\rho2,1\rho3,1\rho4,1\rho6$.

Za 2 imamo:

2 ne deli 1 (1:2 = 0,5), 2 deli 2, 2 deli 4 i 2 deli 6 pa su uredjeni parovi (2,2), (2,4) i (2,6)

Za 3 imamo:

3 ne deli 1, ne deli 2, ne deli 4 pa zaključujemo (3,3) i (3,6) su parovi za trojku.

Za 4 i 6 je jasno da je $4\rho 4$ i $6\rho 6$ odnosno ovde imamo uredjene parove (4,4) i (6,6).

Sad zapišemo sve uredjene parove:

$$\rho = \{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)\} \subset A \times A$$

Ako želimo da ovo predstavimo tablicom, radimo sledeće:

Napravimo tablicu 6 puta 6 (jer ima 5 elementa)

ρ	1	2	3	4	6
1					
2					
3					
4					
6					

Ako su dva elementa u relaciji, stavimo T a ako nisu u relaciji stavljamo \perp .

ρ	1	2	3	4	6
1	Т	Т	Т	Т	Т
2	Т	Т	T	Т	Т
3	Т	Т	Т	1	Т
4	上	Т	上	Т	Т
6	1	1	Ι	Τ	Т

Na ovaj način smo dobili tablicu relacije.

Ako profesor traži graf relacije, radimo sledeće:

1

slika 3.

Napišemo sve elemente kao da pripadaju kružnici (ne mora baš idealna kružnica....) (slika 1.)

Činjenicu da je svaki u relaciji sam sa sobom na grafu predstavljamo tako što napravimo kružić sa strelicom. (slika 2.)

Zatim gledamo ko je s kim u relaciji . Kako je 1 u relaciji sa 2 , to predstavimo malo zakrivnjenom linijom sa strelicom prema 2, onda je 1 u relaciji sa 3 pa nacrtamo liniju sa strelicom od 1 ka 3 i tako dalje.

Na taj način smo napravili graf relacije!

Osobine relacija

Posmatrajmo relaciju $\rho \subset A \times A$. Za relaciju ρ kažemo da je :

- i) (R) Refleksivna ako je $(\forall x \in A)(x \rho x)$ t.j. svaki je u relaciji sam sa sobom.
- ii) (S) Simetrična ako je $(\forall x, y \in A)(x \rho y \Rightarrow y \rho x)$ t.j. ako je x u relaciji sa y , onda je i y u relaciji sa x
- iii) **(AS) Antisimetrična** ako $(\forall x, y \in A)(x\rho y \land y\rho x \Rightarrow x = y)$ t.j. ako je x u relaciji sa y i y u relaciji sa x, to znači da su oni jednaki.
- iv) (T) Tranzitivna ako $(\forall x, y, z \in A)(x\rho y \land y\rho z \Rightarrow x\rho z)$ t.j. ako je prvi u relaciji sa drugim i drugi sa trećim, onda je prvi u relaciji sa trećim.

Relacija ekvivalencije

Binarna relacija $\rho \subset A \times A$ je relacija ekvivalencije ako i samo ako ima osobine:

- (R) Refleksivna ako je $(\forall x \in A)(x \rho x)$ t.j. svaki je u relaciji sam sa sobom.
- (S) Simetrična ako je $(\forall x, y \in A)(x \rho y \Rightarrow y \rho x)$ t.j. ako je x u relaciji sa y, onda je i y u relaciji sa x
- **(T) Tranzitivna** ako $(\forall x, y, z \in A)(x\rho y \land y\rho z \Rightarrow x\rho z)$ t.j. ako je prvi u relaciji sa drugim i drugi sa trećim, onda je prvi u relaciji sa trećim.

Skraćeno, profesori ovu relaciju obeležavaju RST.

Primer 1.

Relacija "=" (jednakost) iz skupa R (realnih brojeva) je relacija ekvivalencije. Zašto?

Ispitajmo koje osobine ona zadovoljava.....

- 1. $(\forall x \in R)(x = x)$ refleksivna je jer je svaki broj jednak sam sa sobom
- 2. $(\forall x, y \in R)(x \rho y \Rightarrow y \rho x)$ simetrična je
- 3. $(\forall x, y, z \in R)(x \rho y \land y \rho z \Rightarrow x \rho z)$ tranzitivna je.

Primer 2.

Relacija **paralelnost** "||" u skupu X svih pravih Euklidova prostora je relacija ekvivalencije.

Opet ispitujemo koje osobine postoje.....

- 1. $(\forall x \in X)(x \parallel x)$ refleksivna je jer je svaka prava paralelna sama sa sobom
- 2. $(\forall x, y \in X)(x \parallel y \Rightarrow y \parallel x)$ simetrična je jer ako je jedna prava paralelna sa drugom i druga je paralelna sa prvom
- 3. $(\forall x, y, z \in X)(x \parallel y \land y \parallel z \Rightarrow x \parallel z)$ tranzitivna je. Prva prava paralelna sa drugom i druga paralelna sa trećom, onda je i prva paralelna sa trećom.

Svaka relacija ekvivalencije stvara na skupu na kojem je data takozvane klase ekvivalencije.

Definicija:

Neka je ρ relacija ekvivalencije skupa X i $x \in X$. Skup svih elemenata iz X koji su u relaciji ρ sa X zove se klasa ekvivalencije elemenata x i označava se sa C_x .

To bi matematički mogli da zapišemo $C_x = \{y \mid y \in X \land x \rho y\}$.

Zapamtimo da za klase ekvivalencije važi:

- 1) Svaka klasa ekvivalencije je neprazan skup (ima bar 1 element).
- 2) Svake dve različite klase ekvivalencije su medjusobno disjunktne, to jest nemaju zajedničkih elemenata.

Da bi ovo malo pojasnili, vratimo se na primer relacije **paralelnost** "||" za koju smo dokazali da je relacija ekvivalencije. Klase ekvivalencije ovde čine prave koje su medjusobno paralelne:

Sve prave koje su medjusobno paralelne čine klasu ekvivalencije....

Relacija poretka

Binarna relacija $\rho \subset A \times A$ je relacija poretka ako i samo ako ima osobine:

- (R) Refleksivna ako je $(\forall x \in A)(x \rho x)$ t.j. svaki je u relaciji sam sa sobom.
- (AS) Antisimetrična ako $(\forall x, y \in A)(x\rho y \land y\rho x \Rightarrow x = y)$ t.j. ako je x u relaciji sa y i y u relaciji sa x, to znači da su oni jednaki.
- **(T) Tranzitivna** ako $(\forall x, y, z \in A)(x\rho y \land y\rho z \Rightarrow x\rho z)$ t.j. ako je prvi u relaciji sa drugim i drugi sa trećim, onda je prvi u relaciji sa trećim.

Skraćeno, ovu relaciju možemo zapisati RAST.

Primer 3.

Relacija "≤" (manje ili jednako) u skupu realnih brojeva je relacija poretka.

Ispitajmo osobine:

 $(\forall x \in R)(x \le x)$ svaki element je jednak sam sa sobom pa refleksivnost važi

$$(\forall x, y \in R)(x \le y \land y \le x \Rightarrow x = y)$$
 antisimetrična je

$$(\forall x, y, z \in R)(x \le y \land y \le z \Rightarrow x \le z)$$
 tranzitivna je

Dakle, ovo je relacija poretka.

Sad ćemo uraditi nekoliko zadataka da još malo pojasnimo stvari.

Zadatak 1.

U skupu $A = \{-2, -1, 0, 1, 2\}$ definisana je relacija $x \rho y \Leftrightarrow x + y = 0$.

Nacrtati graf relacije i ispitati osobine relacije.

Rešenje:

Najpre malo razmislimo.... Relacija je definisana tako da kada saberemo dva broja iz skupa A njihov zbir bude 2.

Krenemo redom, od -2.

- -2+(-2)=-4 dakle, nisu u relaciji
- -2+(-1)=-3 nisu u relaciji
- -2+0=-2 nisu u relaciji
- -2+1=-1 nisu u relaciji
- -2+2=0 u relaciji su

Zaključujemo da je -2 u relaciji samo sa 2, tj. $-2\rho 2$. Na grafu to je linija čija strelica ide ka 2.

Naravno, vi ne morate sve ovo da pišete, samo one koji su u relaciji.....

Sad razmišljamo za −1.

Očigledno je samo -1+1=0, pa je -1 u relaciji samo sa 1 tj. $-1\rho 1$ (strelica ka 1)

Dalje zaključujemo da je:

$$0+0=0 \rightarrow 0\rho 0$$

$$1+(-1)=0\to 1\rho(-1)$$

$$2 + (-2) = 0 \rightarrow 2\rho(-2)$$

Imamo znači da je:

$$\rho = \{(-2,2), (-1,1), (0,0), (1,-1), (2,-2)\}$$

U tablici, to bi izgledalo ovako:

ρ	-2	-1	0	1	2
-2	Т	T	Т	Т	Т
	_	T	1	Т	Τ
0	Т	Т	Т	Т	Т
1		Т	Т	Τ	1
2	Т	Т	Τ	1	T

Da ispitamo sada osobine

Refleksivnost iz tablice možemo videti tako što na glavnoj dijagonali moraju biti sve T (tačno)

Naša relacija nije refleksivana, jer nije svuda tačno!

Simetričnost iz tablice možemo videti tako što su svi simetrični u odnosu na glavnu dijagonalu.

Glavna dijagonala

ρ	-2	-1	0	1	2
-2	Т	Ţ	Т	Ţ	Т
-1	1	7	$/\!$	Т	
				./	
0			Т	ľ	Т Т
1	1	T	T	1	1

Prikazani samo neki koji su simetrični, da ne zakomplikujemo sliku....Naša relacija jeste simetrična!

Za tranzitivnost nam treba:

(T) Tranzitivna ako $(\forall x, y, z \in A)(x\rho y \land y\rho z \Rightarrow x\rho z)$ t.j. ako je prvi u relaciji sa drugim i drugi sa trećim, onda je prvi u relaciji sa trećim.

Kod nas je recimo (-2,2) i (2,-2) ali nije (-2,-2) pa **nije tranzitivna!**

Dakle, od osobina imamo samo simetričnost.

Da vidimo kako bi izgledao graf:

Sa grafa refleksivnost "vidimo" tako što svaki element ima strelicu sam u sebe, a kod nas ima samo 0, pa tako zaključimo da nije refleksivna.

Simetričnost na grafu "vidimo" tako što svaki element 'vraća 'strelicu onome elementu koji je ''poslao''.

Naša relacija jeste simetrična!

Zadatak 2.

U skupu $S = \{x \mid x \in N \land x \le 7\}$ definisana je relacija $(\forall x, y \in S) : x \rho y \Leftrightarrow x \equiv y \pmod{3}$.

Nacrtati graf relacije i ispitati osobine relacije.

Rešenje:

Profesori često vole da daju ovu relaciju kao zadatak.

Ova relacija se naziva relacija kongruencije. Šta to ustvari znači?

 $x \equiv y \pmod{3}$ znači da 3 deli razliku brojeva x i y , to jest, matematički zapisano : 3 (x-y) ili se može reći da

brojevi x i y imaju isti ostatak pri deljenju sa 3. Neki profesori vole zapis $x \equiv_3 y$.

Vi naravno radite po komandi svog profe....

Na primer $x \equiv y \pmod{5}$ znači da 5 deli razliku brojeva x i y , to jest 5 (x-y)

Da se vratimo na zadatak i odredimo najpre koji su elementi u skupu S:

$$S = \{x \mid x \in N \land x \le 7\} = \{1, 2, 3, 4, 5, 6, 7\}$$

Sad razmišljamo (naravno redom) koja razlika je deljiva sa 3....

$$1-1=0 \to 0:3=0$$
 pa je $1\rho 1$

$$1-4=-3 \to -3: 3=1 \to 1\rho 4$$

$$1-7 = -6 \rightarrow -6 : 3 = -2 \rightarrow 1\rho 7$$

Sad za 2:

$$2-2=0 \to 0: 3=0$$
 pa je $2\rho 2$

$$2-5 = -3 \rightarrow -3: 3 = -1 \rightarrow 2\rho 5$$

Nastavljamo tako postupak za svaki broj i dobijamo:

$$\rho = \{(1,1),(1,4),(1,7),(2,2),(2,5),(3,3),(3,6),(4,1),(4,4),(4,7),(5,2),(5,5),(6,3),(6,6),(7,1),(7,4),(7,7)\}$$

Sad da nacrtamo graf relacije.

Možemo kao i obično da poredjamo u krug brojeve i obeležavamo linijama sa strelicom koji je s kojim u relaciji.

Medjutim, ovde je pametnije da najpre uočite "grupice" koje su medjusobno u relaciji!

Jednu "grupicu" čine brojevi 1,4,7, drugu grupicu 2 i 5, treću 3 i 6.

Ovo je pametno raditi ovako jer odmah izdvajamo klase ekvivalencije!

Da ispitamo osobine:

- 1. $(\forall x \in S)(x \equiv x \pmod{3})$ refleksivna je , na grafu vidimo da svaki ima strelicu " u sebe"
- 2. $(\forall x, y \in S)(x \equiv y \pmod{3}) \Rightarrow y \equiv x \pmod{3})$ simetrična je
- 3. $(\forall x, y, z \in S)(x \equiv y \pmod{3}) \land y \equiv z \pmod{3} \Rightarrow x \equiv z \pmod{3}$ transitivna je.

Dakle, ovo je relacija ekvivalencije. Klase ekvivalencije su : $S/\rho = \{\{1,4,7\},\{2,5\},\{3,6\}\}$.

Zadatak 3.

U skupu Z celih brojeva definisana je relacija $(\forall x, y \in Z): x \rho y \Leftrightarrow x \equiv y \pmod{3}$.

Ispitati osobine relacije i odrediti odgovarajuće klase ekvivalencije.

Rešenje:

Ovo je ustvari zadatak isti kao prethodni, ali sada nam je dat ceo skup Z pa moramo da radimo uopšteno....

Refleksivnost

 $(\forall x \in Z)(x \equiv x \pmod{3})$ Kako je x – x = 0, a 0:3=0 refleksivnost važi

Simetričnost

$$(\forall x, y \in Z)(x \equiv y \pmod{3}) \Rightarrow y \equiv x \pmod{3}$$

 $x \equiv y \pmod{3}$ znači da je x - y deljivo sa 3 odnosno možemo zapisati x - y = 3k

Sad krenemo od y-x i malo prepravimo y-x=-(x-y)=-3k, odavde je $y\equiv x \pmod{3}$

Znači da simetričnost važi.

Tranzitivnost

$$(\forall x, y, z \in Z)(x \equiv y \pmod{3} \land y \equiv z \pmod{3}) \Rightarrow x \equiv z \pmod{3})$$

 $x \equiv y \pmod{3}$ znači da je x - y deljivo sa 3 odnosno možemo zapisati x - y = 3k

 $y \equiv z \pmod{3}$ znači da je y-z deljivo sa 3 odnosno možemo zapisati y-z=3p

Da dokažemo da je $x \equiv z \pmod{3}$.

Opet malo "trikče"!

x-z=x-y+y-z=3k+3p=3(k+p) pa je i ovo deljivo sa 3 to jest, tranzitivnost važi!

Dokazali smo da je ovo relacija ekvivalencije.

Šta bi bile klase ekvivalencije?

Prvu klasu bi činili brojevi $\{0,\pm 3,\pm 6,\pm 9,...\}$ a to možemo uopšteno zapisati $\{3k | k \in Z\}$.

Nazovimo ovu klasu sa : $Z_0 = \{3k | k \in Z\}$

Drugu klasu bi činili brojevi $\{..., -5, -2, 1, 4, 7, 10,\}$ a nju možemo zapisati kao $Z_1 = \{3k + 1 | k \in Z\}$

Treću klasu bi činili brojevi $\{..., -4, -1, 2, 5, 8, 11,\}$ i to zapisujemo $Z_2 = \{3k + 2 | k \in Z\}$

Da rezimiramo:

Klase ekvivalencije su:

$$Z_0 = \{3k \mid k \in Z\}$$
$$Z_1 = \{3k + 1 \mid k \in Z\}$$

$$Z_2=\{3k+2\,\big|\,k\in Z\}$$

a količnički skup je $Z / \rho = \{Z_0, Z_1, Z_2\}$