

Programmation par Contraintes

Module du Master "Systèmes Informatiques Intelligents" 2ème année

Annexe 5

Logique du premier ordre

Mr ISLI

Département d'Informatique Faculté d'Electronique et d'Informatique Université des Sciences et de la Technologie Houari Boumediène BP 32, El-Alia, Bab Ezzouar DZ-16111 ALGER

http://perso.usthb.dz/~aisli/TA_PpC.htm aisli@usthb.dz

Annexe 5

Logique du premier ordre

La logique du premier ordre est également appelée

- calcul des prédicats
- logique des prédicats
- logique des prédicats du premier ordre

Syntaxe

- Les termes
- Les propositions atomiques
- Les formules logiques

Syntaxe

Les termes :

Soient S_F un ensemble dénombrable de symboles de fonction dénotés par f, g, ... (α (f) est l'arité de f) ; V un ensemble infini dénombrable de variables (d'arité 0) dénotées par x, y, L'ensemble T des termes du premier ordre est le plus petit ensemble satisfaisant :

- V⊂T
- Si $f \in S_F$ avec $\alpha(f) = n$, et $M_1, ..., M_n \in T$, alors $f(M_1, ..., M_n) \in T$

Syntaxe

Les propositions atomiques :

Soit S_P un ensemble de symboles de prédicat dénotés par p, q, L'arité d'un prédicat p est désignée par $\alpha(p)$. L'ensemble P_a des propositions atomiques du premier ordre est défini comme suit :

$$P_a = \{p(M_1, ..., M_n) \mid p \in S_p, \alpha(p) = n \text{ et } M_1, ..., M_n \in T\}$$

Syntaxe

Les formules logiques :

Soit $S_L = \{\neg, \lor, \exists\}$ l'ensemble des symboles usuels de négation logique, de ou logique et de quantification existentielle. L'ensemble P des formules logiques du premier ordre est le plus petit ensemble satisfaisant :

- $P_a \subseteq P$
- $\phi \in P \Longrightarrow \neg \phi \in P$
- $\phi, \phi \in P \Rightarrow \phi \lor \phi \in P$
- $x \in V, \phi \in P \Rightarrow \exists x \phi \in P$

Syntaxe

Variables libres (free variables) :

L'ensemble des variables libres d'une formule ϕ , dénoté par FV(ϕ), est défini comme suit :

- $FV(x)=\{x\}$
- $FV(f(M_1,...,M_n)) = \bigcup_{i=1...n} FV(M_i)$
- $FV(p(M_1,...,M_n)) = \bigcup_{i=1...n} FV(M_i)$
- FV(¬⋄)=FV(⋄)
- $FV(\phi \lor \phi) = FV(\phi) \cup FV(\phi)$
- FV(∀xφ)=FV(∃xφ)=FV(φ)\{x}

Syntaxe

Variables liées (bound variables) :

L'ensemble des variables liées d'une formule ϕ , dénoté par BV(ϕ), est défini comme suit :

- BV(x)=∅
- BV($f(M_1,...,M_n)$)= \varnothing
- BV(p($M_1,...,M_n$))= \varnothing
- BV(¬⋄)=BV(⋄)
- $BV(\phi \lor \phi) = BV(\phi) \cup BV(\phi)$
- BV($\forall x \phi$)=BV($\exists x \phi$)={x} \cup BV(ϕ)

Syntaxe

Formule close :

Soit ϕ une formule logique avec $FV(\phi) = \{x_1, ..., x_n\}$

- \forall (ϕ) désigne la formule close $\forall x_1... \forall x_n \phi$
- \exists (ϕ) désigne la formule close $\exists x_1...\exists x_n \phi$

Syntaxe

Littéral :

Un littéral est :

- une proposition atomique : on parle alors de littéral positif
- ou la négation d'une proposition atomique : on parle alors de littéral négatif

Clause :

Une clause est une disjonction de littéraux universellement quantifiés : $\forall (L_1 \lor ... \lor L_n)$

Clause de Horn :

Clause ayant au plus un littéral positif

Sémantique

Pré-interprétation :

Une pré-interprétation d'un langage du premier ordre est une paire <D,[]>, D étant un domaine d'interprétation, et [] une fonction sémantique associant à tout symbole de constante $c \in S_F$ un élément $[c] \in D$, et à tout symbole de fonction $f \in S_F$ d'arité supérieure ou égale à 1 une fonction $[f]:D^n \rightarrow D$

Sémantique

Valuation :

- Une valuation des variables est une fonction $\rho: V \rightarrow D$
- La valuation des termes induite par une valuation ρ des variables et une pré-interprétation <D,[]> est définie comme suit :
 - 1. $[]_{\rho}: T \rightarrow D$
 - [X]_{ρ}= ρ (X), pour toute variable X
 - [c]₀=[c], pour tout $c \in S_F$ avec c d'arité 0 (symbole de constante)
 - 4. $[f(M_1,...,M_n)]_{\rho} = [f]([M_1]_{\rho},...,[M_n]_{\rho})$

Annexe 5

Logique du premier ordre

Sémantique

Interprétation :

Pré-interprétation <D,[]> associant à tout symbole de prédicat $p \in S_P$ d'arité n une relation $[p]:D^n \rightarrow \{0,1\}$