Reductions of K3 surfaces via intersections on GSpin Shimura varieties

Yunqing Tang

CNRS. Université Paris-Sud

October 21, 2020

Joint work with Ananth Shankar, Arul Shankar and Salim Tayou and with Davesh Maulik and Ananth Shankar

Main result for K3 surfaces

Let K be a number field and X/K an (algebraic) K3 surface; i.e., X/K a smooth projective surface such that its canonical bundle is trivial and $H^1(X, \mathcal{O}_X) = 0$.

Consider $\mathcal{X}/\mathcal{O}_K$ an integral model of X/K and let \mathfrak{p} be a prime of \mathcal{O}_K at which \mathcal{X} has good reduction.

Fact.
$$\operatorname{Pic}(X_{\overline{K}}) \hookrightarrow \operatorname{Pic}(\mathcal{X}_{\overline{\mathbb{F}}_{\mathfrak{p}}});$$

in particular, $\operatorname{rk}_{\mathbb{Z}}\operatorname{Pic}(X_{\overline{K}}) \leqslant \operatorname{rk}_{\mathbb{Z}}\operatorname{Pic}(\mathcal{X}_{\overline{\mathbb{F}}_{\mathfrak{p}}}).$

Theorem (Ananth Shankar, Arul Shankar, T., Salim Tayou)

Assume X/K has potentially good reduction everywhere. Then there are infinitely many $\mathfrak p$ s.t. $\mathrm{rk}_{\mathbb Z}\operatorname{Pic}(X_{\overline{K}})<\mathrm{rk}_{\mathbb Z}\operatorname{Pic}(\mathcal X_{\overline{\mathbb F}_p})$.

Remark. For certain K3 surfaces, by the work of Charles, the set of such primes is of density 0.

Motivation: Abelian surfaces

Let A/K be an abelian surface over a number field K.

Conjecture (Achter-Howe 2017)

Assume A is principally polarizable and $\operatorname{End}(A_{\overline{K}}) = \mathbb{Z}$, then

$$\#\{\mathfrak{p}\mid \mathsf{Nm}\,\mathfrak{p}< N, A_{\mathbb{F}_{\mathfrak{p}}} \ \textit{not simple}\ \} \asymp \frac{N^{1/2}}{\log N},\ N\to\infty.$$

They also expect a similar heuristic replacing not simple by not geometrically simple.

Achter 2009, Zywina 2014: for any abelian variety A/K such that $A_{\overline{K}}$ is simple and $\operatorname{End}(A_{\overline{K}})$ is commutative, then (after a finite extension of K), $\{\mathfrak{p} \mid A_{\overline{\mathbb{F}}_{\mathfrak{p}}} \text{ not simple } \}$ is of density 0.

Main result for abelian surfaces

Theorem (Ananth Shankar, Arul Shankar, T., Salim Tayou)

For an abelian surface A/K with potentially good reduction everywhere, there are infinitely many primes $\mathfrak p$ such that $A_{\overline{\mathbb F}_{\mathfrak p}}$ is not simple.

Previous work.

- (1) Charles 2018: for E_1 , E_2/K elliptic curves, there are infinitely many $\mathfrak p$ such that $E_{1,\overline{\mathbb F}_{\mathfrak p}}$ is isogenous to $E_{2,\overline{\mathbb F}_{\mathfrak p}}$.
- (2) Ananth Shankar–T. 2020: for A/K an abelian surface such that $\operatorname{End}(A_{\overline{K}}) \otimes \mathbb{Q}$ contains a real quadratic field, there are infinitely many $\mathfrak p$ such that $A_{\overline{\mathbb{F}}_{\mathfrak p}}$ is isogenous to the self-product of some elliptic curve (depending on $\mathfrak p$).
- (No good reduction assumption in these results.)

GSpin Shimura varieties

(V,Q) a non-deg. quad. vector space over \mathbb{Q} with sig. (b,2); L a maximal lattice in V with Q being \mathbb{Z} -valued; C(V), C(L) the Clifford algebras of V, L.

$$G := \mathsf{GSpin}(V, Q)$$
, i.e., for a \mathbb{Q} -alg. R ,
$$G(R) = \{g \in C^+(V_R)^\times \mid gV_Rg^{-1} = V_R\};$$

Hermitian domain $D := \{ [z] \in \mathbb{P}(V_{\mathbb{C}}) \mid [\overline{z}, z] < 0, Q(z) = 0 \},$

where
$$[x, y] := Q(x + y) - Q(x) - Q(y);$$

Open compact $\mathbb{K} := G(\mathbb{A}_f) \cap C(L \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}});$

Shimura variety of Hodge type $M(\mathbb{C}) = G(\mathbb{Q}) \backslash D \times G(\mathbb{A}_f) / \mathbb{K}$ with canonical model M/\mathbb{Q} .

There is a universal family of Kuga–Satake abelian varieties A^{univ} over M such that $H_{1,B}(-,\mathbb{Q})$ for each fiber over \mathbb{C} is isomorphic to C(V).

Examples. Moduli of polarized abelian surfaces; moduli of quasi-polarized K3 surfaces.

Special endomorphisms

Let A be a Kuga–Satake abelian scheme (i.e., for a M-scheme S, we take A_s^{univ}).

A special endomorphism s of A is an endomorphism of A whose Betti realization lies in $V \subset \operatorname{End}(C(V)) \cong \operatorname{End}(H_{1,B}(A_{\sigma}(\mathbb{C}),\mathbb{Q}))$, where A_{σ} is a \mathbb{C} -fiber of A and V acts on C(V) by left multiplication.

Examples.

(1) For a polarized abelian surface A, one may consider special endomorphisms as $s \in \text{End}(A)^{\text{tr}=0,\dagger=\text{id}}$;

moreover, if $Q(s) = m^2$ for some $m \in \mathbb{Z}_{>0}$, then s - [m] is not invertible and cut out a non-trivial isogeny factor of A and hence A is not simple.

(2) For a polarized K3 surface X, a special endomorphism of its Kuga–Satake abelian variety gives an element in $Pic(X_{\overline{K}})$ perpendicular to the given polarization.

Integral models and special divisors

Kisin, Madapusi Pera, Andreatta-Goren-Howard-Madapusi-Pera constructed a normal flat integral model \mathcal{M}/\mathbb{Z} of M/\mathbb{Q} such that $\mathcal{M}_{\mathbb{Z}_p}$ is smooth if L is self-dual at p;

 A^{univ} extends to an abelian scheme $\mathcal{A}^{\mathrm{univ}}$ over \mathcal{M} and there is a notion of special endomorphisms over \mathbb{Z} using de Rham, étale, and crystalline realizations.

Example. For abelian surfaces, we may still define special endomorphisms to be $s \in \text{End}(A)^{\text{tr}=0,\dagger=\text{id}}$.

Special divisors $\mathcal{Z}(m)$ param. Kuga–Satake abelian varieties with special endomorphisms s such that $s \circ s = [m]$ for $m \in \mathbb{Z}_{>0}$.

- Facts. (1) $\mathcal{Z}(m)$ is étale locally a Cartier divisor on \mathcal{M} .
 - (2) $\mathcal{Z}(m)_{\mathbb{O}}$ is also a GSpin Shimura variety.

Main theorem for number fields

Theorem (Shankar-Shankar-T.-Tayou)

Let (L,Q) be a max. quad. lattice of signature (b,2) with $b\geqslant 3$ and let $\mathcal M$ denote the integral model of the GSpin Shimura variety attached to (L,Q). Fix $D\in\mathbb Z_{>0}$.

For $\mathcal{Y} \in \mathcal{M}(\mathcal{O}_K)$ such that $\mathcal{Y}_K \in \mathcal{M}(K)$ doesn't lie in any $\mathcal{Z}(m)_{\mathbb{Q}}$, there are infinitely many primes \mathfrak{p} such that $\mathcal{Y}_{\mathbb{F}_{\mathfrak{p}}} \in \mathcal{Z}(Dm^2)$ for some $m \in \mathbb{Z}_{>0}$.

Remarks.

- (1) It recovers the abelian surface theorem by taking D = 1.
- (2) It recovers the K3 surface theorem by taking L being the transcendence part of $H^2_B(X(\mathbb{C}),\mathbb{Z})$.
- (3) A similar theorem for unitary Shimura varieties of signature (n,1) is a direct consequence of the main theorem.

Main theorem for global function fields

p>2 prime and L self-dual at p hence $\mathcal{M}_{\mathbb{F}_p}$ is smooth. For simplicity, we assume $\operatorname{rk} L\geqslant 5$.

Theorem (Davesh Maulik-Ananth Shankar-T.)

Assume $p \geqslant 5$ and $C \subset \mathcal{M}_{\overline{\mathbb{F}}_p}$ irreducible projective curve such that $C[\text{ord}] \neq \emptyset$ and $C \not\subset \mathcal{Z}(m)_{\overline{\mathbb{F}}_p}, \forall m$. Then there are infinitely many $\overline{\mathbb{F}}_p$ -points on C such that they lie on $\bigcup_{p \nmid m} \mathcal{Z}(m)_{\overline{\mathbb{F}}_p}$.

Moreover if $\mathcal{M}=\mathcal{A}_2$, the moduli space of principally polarized abelian surfaces, then there are infinitely many $\overline{\mathbb{F}}_p$ -points on C which correspond to non-simple abelian surfaces for $p\geqslant 5$.

Remark. We have a similar theorem when \mathcal{M} is the Hilbert modular surface without assuming C being projective.

Previous work

Chai–Oort 2006. For a non-isotrivial pair of elliptic curves E_1 , E_2 over k(C), if E_1 , E_2 are ordinary, then there are infinitely many places v such that $E_{1,v}$ is geometrically isogenous to $E_{2,v}$.

Question. Why ordinary?

(non-)Example. Consider $C \subset X_0(1) \times X_0(1)$ and $C = X_0(1) \times P$, where $P \in X_0(1)(\overline{\mathbb{F}}_p)$ supersingular.

The points on C corresponding to a pair of geometrically isogenous elliptic curves must be supersingular in the first $X_0(1)$ and hence finitely many.

An application of Thm[MST]

A special case of the Hecke orbit conjecture by Chai–Oort. Let $x \in \mathcal{M}(\overline{\mathbb{F}}_p)$ be an ordinary point. Let T_x denote the union of all prime-to-p Hecke orbits of x. Then $\overline{T_x}^{\operatorname{Zar}} = \mathcal{M}_{\overline{\mathbb{F}}_p}$.

Strategy. Induction on dim $\mathcal{M}_{\mathbb{Q}}$.

- (1) $\overline{T_x}^{\operatorname{Zar}} \not\subset \mathcal{Z}(m), \forall m \text{ and dim } \overline{T_x}^{\operatorname{Zar}} \geqslant 1$, so we may pick $C \subset \overline{T_x}^{\operatorname{Zar}}$ such that $C[\operatorname{ord}] \neq \emptyset$ and $C \not\subset \mathcal{Z}(m), \forall m$.
- (2) $\forall y \in C \text{ ord.}, \ \overline{T_y}^{\operatorname{Zar}} \subset \overline{T_x}^{\operatorname{Zar}} \text{ b/c } \overline{T_x}^{\operatorname{Zar}} \text{ is stable under any}$ prime-to-p Hecke translation. So it suffices to prove $\overline{T_y}^{\operatorname{Zar}} = \mathcal{M}_{\overline{\mathbb{F}}_p}$.
- (3) If we may choose C to be proj., $\mathsf{Thm}[\mathsf{MST}] \implies \exists y \in C$ ord. s.t. $y \in \mathcal{Z}(m)(\overline{\mathbb{F}}_p)$ for some $p \nmid m$. The induction hypothesis $\implies \overline{T_y}^{\mathrm{Zar}} \supset \mathcal{Z}(m)_{\overline{\mathbb{F}}}$.
- (4) Conclude by the fact that the Zariski closure of all prime-to-p Hecke orbits of $\mathcal{Z}(m)_{\overline{\mathbb{F}}_2}$ is $\mathcal{M}_{\overline{\mathbb{F}}_2}$.

On the existence of projective $C \subset \overline{T_x}^{\operatorname{Zar}}$

Let $\mathcal{M}^{\mathrm{BB}}_{\mathbb{F}_p}$ denote the Bailey–Borel compactification of $\mathcal{M}_{\overline{\mathbb{F}}_p}$ (constructed by Madapusi Pera). The boundary $\mathcal{M}^{\mathrm{BB}}_{\overline{\mathbb{F}}_p} \backslash \mathcal{M}_{\overline{\mathbb{F}}_p}$ consists of 0-dimensional and 1-dimensional cusps.

- 1. If the closure of $\overline{T}_x^{\operatorname{Zar}}$ in $\mathcal{M}_{\overline{\mathbb{F}}_p}^{\operatorname{BB}}$ doesn't hit the boundary, then any C we pick is projective.
- 2. If it hits the 0-dimensional cusp, then an argument along the same line as Chai's proof of the Hecke orbit conjecture for \mathcal{A}_g when the Zariski closure of Hecke orbits hits a totally degenerated point applies to our case.
- 3. If the closure of $\overline{T_x}^{Zar}$ hits some 1-dimensional cusp, we use a toroidal compactification and the Hecke action on the formal neighborhood of the 1-dimensional cusp to either prove the theorem directly or construct a projective curve C.

Strategy of the proof of Thm[MST]

Recall that $C \subset \mathcal{M}_{\overline{\mathbb{F}}_p}$ and $Z(m) := \mathcal{Z}(m)_{\mathbb{F}_p}$ special divisors.

Goal: as $X \to \infty$,

1. For $P \in C(\bar{\mathbb{F}}_p)$ not supersingular,

$$\sum_{\substack{X \leqslant m \leqslant 2X \\ p \nmid m}} (C.Z(m))_P = o\Big(\sum_{\substack{X \leqslant m \leqslant 2X \\ p \nmid m}} (C.Z(m))\Big);$$

2. There exists an absolute constant $0 < \alpha < 1$ such that

$$\begin{split} \sum_{\substack{P \in C(\overline{\mathbb{F}}_p) \\ \text{supersingular}}} \sum_{\substack{X \leqslant m \leqslant 2X \\ p \nmid m}} (C.Z(m))_P \leqslant & \alpha \sum_{\substack{X \leqslant m \leqslant 2X \\ p \nmid m}} C.Z(m) \\ & + o\Big(\sum_{\substack{X \leqslant m \leqslant 2X \\ X \leqslant m \leqslant 2X}} (C.Z(m))\Big). \end{split}$$

1. + 2. \Longrightarrow infinitely many $\bar{\mathbb{F}}_p$ -points on $C \cap (\cup_{p \nmid m} Z(m))$.

Asymptotic of C.Z(m)

By Borcherds theory (or the arith. version Howard–Madapusi-Pera), the generating series $-(C.\omega)+\sum_{m=1}^{\infty}(C.Z(m))q^m$ is a (part of a vector-valued) non-cuspidal modular form of $\mathrm{Mp}_2(\mathbb{Z})$ of weight (b+2)/2, where ω is the line bundle of modular forms of weight 1 (corresponding to $\mathrm{Fil}^1 V \subset V$).

Decompose into Eisenstein + cuspidal;

For $b \ge 3$, *m*-th Fourier coefficients for Eis. (if not zero) $\approx m^{b/2}$; trivial bound for *m*-th Fourier coefficients for cusp. $= O(m^{(b+2)/4})$.

Hence
$$C.Z(m) \approx m^{b/2}$$
, $\sum_{\substack{X \leqslant m \leqslant 2X \\ p \nmid m}} (C.Z(m)) \approx X^{1+b/2}$.

Local intersection number at non-ss points

For any $P \in (C \cap Z(m))(\bar{\mathbb{F}}_p)$,

let t be a local coordinate (i.e., $\widehat{C}_P = \operatorname{Spf} \overline{\mathbb{F}}_p[[t]]$) and let L_n denote the lattice of special endomorphisms of the pullback of $\mathcal{A}^{\mathrm{univ}}$ to $\overline{\mathbb{F}}_p[t]/t^n$.

These L_n are equipped with positive definite quadratic forms Q compatible with $L_n \subset L_{n-1}$. By the moduli interpretation of Z(m),

$$(C.Z(m))_P = \sum_{i=1}^{\infty} \#\{v \in L_n : Q(v) = m\}.$$

This formula + asymptotic of C.Z(m) implies

Lemma. Let $a_n := \min_{0 \neq v \in I_n} Q(v)^{1/2}$. Then $a_n \gg n^{1/b}$.

Lemma + a geom-of-numbers argument \implies

$$\sum_{X \leqslant m \leqslant 2X} (C.Z(m))_P = o\left(\sum_{X \leqslant m \leqslant 2X} C.Z(m)\right) \text{ b/c rk } L_n \leqslant b \text{ (nonss)}.$$

Local intersection number at supersingular points

Apply the previous Lemma on $a_n + a$ geom-of-numbers argument to supersingular P (equivalently, $\operatorname{rk} L_n = b + 2$), we reduce Goal 2 to that there exists an absolute constant $\alpha' < 1$ such that

$$\sum_{\substack{P \in C(\bar{\mathbb{F}}_p) \\ \text{supersingular}}} (C.Z(m))_P^{\text{main}} \leqslant \alpha' C.Z(m) + o(m^{b/2}),$$

where $(C.Z(m))_P^{\text{main}} = \sum_{n=1}^N \#\{v \in L_{n,P} : Q(v) = m\}$; here $N \gg 1$ is a large constant (only depending on $\alpha, \alpha', (L, Q)$).

Thus the LHS is a finite sum of theta series attached to $L_{n,P}$ for $1 \leqslant n \leqslant N, P \in C(\bar{\mathbb{F}}_p)$ supersingular. Using the trivial bound on Fourier coefficients of cusp forms, we reduce the desired inequality into a comparison of Eisenstein series $E_{n,P}$ attached to these theta series and the Eisenstein series E attached to

$$-(C.\omega)+\sum^{\infty}(C.Z(m))q^{m}.$$

Comparing the Eisenstein series

Bruinier–Kuss + Siegel mass formula give explicit formula for the Fourier coefficients of these Eisenstein series in terms of local density of the lattices L, $L_{n,P}$ and also their discriminants.

Howard–Pappas $L_{n,P} \otimes \mathbb{Q}_{\ell} \cong L \otimes \mathbb{Q}_{\ell}$ for all $\ell \neq p$ and their work and Ogus's work also give explicit classification of $L_{1,P} \otimes \mathbb{Z}_p$ (the lattice of special endomorphisms of the supersingular point P).

Thus by a standard estimate of local density following Hanke, we obtain

$$\sum_{\substack{P \in \mathcal{C}(\bar{\mathbb{F}}_p) \\ \text{supersingular}}} \sum_{n=1}^N q_{E_{n,P}}(m) \leqslant \alpha' q_E(m),$$

once we have a good enough lower bound of disc $L_{n,P}$, where $q_G(m)$ denotes the m-th Fourier coefficient of a modular form G.

A lower bound of disc L_n

The number field case. Let \mathcal{A} denote the Kuga–Satake abelian scheme over \mathcal{Y} and let $\mathfrak{p} \mid p$ be a finite place of \mathcal{O}_K unram in K/\mathbb{Q} ; Let Λ denote the \mathbb{Z}_p -lattice of the special endomorphisms of the p-divisible group $\mathcal{A}[p^{\infty}]$ over $\mathcal{O}_{K_{\mathfrak{p}}^{nr}}$; note that $\mathrm{rk}\,\Lambda \leqslant b$.

Grothendieck–Messing $\Rightarrow L_{n_0+k} = (\Lambda + p^k L_{n_0} \otimes \mathbb{Z}_p) \cap L_{n_0}, n_0 \gg 1.$ In particular, (disc L_n)^{1/2} $\gg p^{2n}$.

The global function field case.

Decay Lemma. There exists a rank 2 saturated \mathbb{Z}_p -submodule of $L_{1,P}\otimes\mathbb{Z}_p$ such that for each primitive w in this submodule, for any $r\geqslant 0$, the special endomorphism p^rw does not lift to an end of $\mathcal{A}[p^\infty]$ mod t^{h_r+1} , where $h_r=[h(p^r+\cdots+1+1/p)]$ and h is the t-adic valuation of the Hasse inv restricted to k[[t]].

Supersingular vs superspecial

Let E_0 denote the Eisenstein series given by $(C.\omega)^{-1}E$ (i.e., constant term -1). Then Bruinier–Kuss implies that $\frac{q_{E_{n,P}}(m)}{q_{E_0}(m)} \approx (\operatorname{disc}_p L_{n,P})^{-1/2}$, and for n=1, this ratio is p^{-1} for P superspecial and $\leqslant p^{-2}$ for P supersingular but not superspecial.

By the Decay Lemma above, the first h_P lattices $L_{n,P}$ has the same p-adic disc as $L_{1,P}$ and thus if all non-ordinary points on C are superspecial (worst scenario), then

$$\sum_{\substack{P \in C(\bar{\mathbb{F}}_p) \\ \text{supersingular}}} \sum_{n=1}^{h_P} \frac{q_{E_{n,P}}(m)}{q_{E_0}(m)} \approx \sum_{\substack{P \in C(\bar{\mathbb{F}}_p) \\ \text{supersingular}}} p^{-1} h_P \approx C.\omega,$$

where we use the fact that the global Hasse inv is a section of ω^{p-1} .

A stronger version of Decay Lemma for superspecial point

Decay Lemma. If P is superspecial, then there exists a primitive vector $w \in L_{1,P} \otimes \mathbb{Z}_p$ such that w does not lift to an endomorphism of $\mathcal{A}[p^\infty] \mod t^{[a+a/p]+1}$ for some $a \leqslant h_P/2$.

This 1/2-factor ensure that for $p \gg_{\epsilon} 1$,

$$\sum_{\substack{P \in \mathcal{C}(\bar{\mathbb{F}}_p) \\ \text{supersingular}}} \sum_{n=1}^N q_{E_{n,P}}(m) \leqslant \big(\frac{1}{2} + \epsilon\big) q_E(m).$$

Heuristic reason: the superspecial points are the singular points in the non-ordinary locus.

Ingredients in the proof of the Decay Lemmas

de Jong: a Dieudonne theory for p-divisible groups over rings in char p; our decay result is amount to study horizontal sections of the F-crystal \mathbb{L}_{cris} , the crystalline realization of $L \subset C(L)$.

Ogus/Howard-Pappas + Kisin: explicit description of \mathbb{L}_{cris} on $\widehat{\mathcal{M}}_P$ for supersingular points P.

Kisin (Dwork's trick): the horizontal sections are given by $\lim_{n\to\infty} F^n(v_0)$, where $v_0\in\mathbb{L}_{\mathrm{cris},P}(W)$ is Frob invariant and F is the semi-linear Frobenius on $\mathbb{L}_{\mathrm{cris}}$.

Our result follows from an explicit computation of the product F^n .

