# Project Review: Age Estimation

**Artificial Vision** 



#### **TEAM**

- Gargiulo Michele
- Marchesano Riccardo
- Sabini Pietro
- Valitutto Andrea







Given the image of the face of a subject, estimate its age rounded to the closest integer number.

#### **DIFFICULTIES**

- 1. Signs of people's ages shown in multiple ways.
- 2. Different lighting conditions.
- 3. Both male and female subjects.

#### **DATASET DESCRIPTION**

- The dataset is made up of 3.3 million images of ~9.000 different subjects
  (identities). Each identity has a number of images corresponding to different
  ages of the subject
- The identity-age distribution is not uniform, meaning that there are more images of a certain age of each subject, than there are of other ages
- The age is represented by a float number
- Each identity has a different number of images for each age
- Not every identity has all the possible ages.
- Age range is different among different identities

#### TRAINING/VALIDATION SET



- **Training set:** 255998 samples (80% of 319998)
- Validation set: 63999 samples (20% of 319998)

For each identity, the age range was divided into 4 groups and 9 images were taken for each group. The remaining 2 were taken on an experimental basis by the group that would have led to a distribution closer to the original one. Obviously, they were taken from the most common one, and not from the other bands, otherwise they would no longer have been available for a test set.

#### TRAINING/VALIDATION SET

AIICA COLONIA DO COLONIA DE COLONIA DO COLONIA DE COLON

- On the left: original distribution
- · On the right: distribution after splitting





# PROPOSED SOLUTION

#### ARCHITECTURE



- ResNet-50 using VGGFace2 weights
- ResNet-50 is an architecture particularly suited for facialfeature extraction, 50 layers deep
- 6 layers were added after the feature-extraction layers,
   reported in the next slide

### ARCHITECTURE MODIFICATION

| Layer                   | Description                                                                                                                                                       | # of       |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                         |                                                                                                                                                                   | parameters |
| Flatten                 | Necessary to flatten the tensor to 1 dimension. Size is 2048, and represents the feature vector                                                                   | 0          |
| Dense (2048, relu)      | First Dense Layer, using Relu activation. Same size of Flatten layer                                                                                              | 4196352    |
| Dropout (0.5)           | First Dropout layer, used to reduce overfitting. Probability set to 50%                                                                                           | 0          |
| Dense (512, relu)       | Second Dense layer, 512 is size, with Relu activation                                                                                                             | 1049088    |
| Dropout (0.5)           | Second Dropout layer, used to reduce overfitting. Probability set to 50%                                                                                          | 0          |
| Dense (101,<br>Softmax) | Last dense layer. Size equal to the number of classes considered in the problem. Softmax activation allows the model to output a 101-sized one-hot encoded vector | 51813      |



### ARCHITECTURE MODIFICATION

| activation_45 (Activation)      | (None, | 7, 7, | 2048) | 0       | add_14[0][0]                                         |
|---------------------------------|--------|-------|-------|---------|------------------------------------------------------|
| conv5_3_1x1_reduce (Conv2D)     | (None, | 7, 7, | 512)  | 1048576 | activation_45[0][0]                                  |
| conv5_3_1x1_reduce/bn (BatchNor | (None, | 7, 7, | 512)  | 2048    | conv5_3_1x1_reduce[0][0]                             |
| activation_46 (Activation)      | (None, | 7, 7, | 512)  | 0       | conv5_3_1x1_reduce/bn[0][0]                          |
| conv5_3_3x3 (Conv2D)            | (None, | 7, 7, | 512)  | 2359296 | activation_46[0][0]                                  |
| conv5_3_3x3/bn (BatchNormalizat | (None, | 7, 7, | 512)  | 2048    | conv5_3_3x3[0][0]                                    |
| activation_47 (Activation)      | (None, | 7, 7, | 512)  | 0       | conv5_3_3x3/bn[0][0]                                 |
| conv5_3_1x1_increase (Conv2D)   | (None, | 7, 7, | 2048) | 1048576 | activation_47[0][0]                                  |
| conv5_3_1x1_increase/bn (BatchN | (None, | 7, 7, | 2048) | 8192    | conv5_3_1x1_increase[0][0]                           |
| add_15 (Add)                    | (None, | 7, 7, | 2048) | 0       | conv5_3_1x1_increase/bn[0][0]<br>activation_45[0][0] |
| activation_48 (Activation)      | (None, | 7, 7, | 2048) | 0       | add_15[0][0]                                         |
| avg_pool (AveragePooling2D)     | (None, | 1, 1, | 2048) | 0       | activation_48[0][0]                                  |
| flatten (Flatten)               | (None, | 2048) |       | 0       | avg_pool[0][0]                                       |
| dense (Dense)                   | (None, | 2048) |       | 4196352 | flatten[0][0]                                        |
| dropout (Dropout)               | (None, | 2048) |       | 0       | dense[0][0]                                          |
| dense_1 (Dense)                 | (None, | 512)  |       | 1049088 | dropout[0][0]                                        |
| dropout_1 (Dropout)             | (None, | 512)  |       | 0       | dense_1[0][0]                                        |
| Logits (Dense)                  | (None, | 101)  |       | 51813   | dropout 1[0][0]                                      |

Total params: 28,858,405 Trainable params: 28,805,285 Non-trainable params: 53,120



#### PRE-PROCESSING

- RATICA QUARTE DIVINIS A LANGE OF THE PARTY O
- The main step implemented for pre-processing is the approach suggested by VGGFace2 authors, which is face normalization
- The applied technique is to subtract, for each image, the average of the 3 color channels
- The function used to perform such pre-processing was already coded and called 'mean\_std\_normalize', provided by the MiviaLab framework, in the 'dataset\_tools' section

#### **DATA AUGMENTATION**

- The 'VGGFace2' mode has been specified for data augmentation.
- it performs random variations in terms of flip, brightness, contrast and grayscale conversion
- Other augmentation were tested, but they only resulted in worse performances or slightly better performances but with significantly prolonged training times
- A time-performance trade-off was considered for augmentation choice

#### LOSS FUNCTION

#### Ordinal Categorical Cross-entropy

- This is a Keras implementation of a loss function for ordinal datasets, based on the built-in categorical crossentropy loss.
- The assumption is that the relationship between any two consecutive categories is uniform, for example,

$$\{[1, 0, 0, 0], [0, 0, 1, 0]\}$$

will be penalised to the same extent as

$$\{[0, 1, 0, 0], [0, 0, 0, 1]\}$$

• where {x, y} are the (truth, prediction) pairs.



#### **METRIC**

Custom MAE (Mean Aboslute Error): is used to determine the model performance, but it is implemented in order to calculate the MAE based on the distance between the predicted classes and the real ones

• The weights whose model has the best custom MAE on validation are saved

#### **TRAINING**

- Mixed approach between Training from scratch and Fine tuning
- Warm-up phase: many models were tested, with different augmentations, final-layers architectures, weights and training parameters
- Each model Fine-tuned for 30 epochs
- Once the best model had been selected, a training phase for all layers was performed, resuming from the weights found before (for 50 epochs)





#### Callback Lists:

- *Early-stopping*: was implemented to reduce the training times (monitor='val\_loss', min\_delta=0,002, patience=15)
- TensorBoard: used to plot the traning and validation
- ModelChackpoint: Used to save the best model on 'val\_mae'
- Reduction of Ir: It is used 'ReduceLROnPleatau' from keras to reduce
  Ir when the monitor not improve. (monitor='val\_loss', factor=0.2,
  patience=5, min\_lr=0.001).



#### **RESULTS**

The following report shows different results for the various models tested. The best model is Resnet 50 at 41° epoch

| Model     | Weights  | Training MAE | Validation MAE |
|-----------|----------|--------------|----------------|
| Vgg16     | Imagenet | 1.9          | 4.5            |
| MobileNet | Imagenet | 2.3          | 4.8            |
| Senet     | imagenet | 2.2          | 3.7            |
| ResNet50  | VggFace2 | 1,30         | 2.51           |



## THANKS FOR YOUR ATTENTION