Nummernschilderkennung mit Python

Anne-Sophie Bollmann, Susanne Klöcker, Pia von Kolken, Christian Peters 19. Januar 2021

Inhalt

1. Einleitung

2. Extraktion des Nummernschildes

3. OpenCV

4. Tesseract

Einleitung

Einleitung

Ziel: Erkennen von Nummernschildern auf Fotos und Auslesen der Nummernschilder

Herausforderungen:

- Vielfältigkeit der Nummernschilder
- Rahmenbedingungen der Bildaufnahme (Beleuchtung)

Beispiel

Abbildung 1: Beschreibung

Yolo

Auffassung der Objekterkennung als Regressionsproblem Herausforderungen:

- System zur Objekterkennung
- Generierung potenzieller Bounding Boxes in einem Bild
- Klassifizierung

Extraktion des Nummernschildes

Convolutional Neural Networks

Abbildung 2: Convolutional Neural Network. ¹

Input: Bild mit Auto → **Output:** Bounding Box

¹Bildquelle: https://de.wikipedia.org/wiki/Convolutional_Neural_Network

Implementierung

Netzarchitektur:

- Inspiriert durch YOLO (You Only Look Once) [?]
- Kann sowohl Klassen als auch Bounding Boxes vorhersagen
 - \rightarrow Wir brauchen nur Bounding Boxes von Nummernschildern, also Vereinfachung nötig

Implementierung:

- Open Source Deep-Learning Bibliothek Keras
- Geschrieben in Python

OpenCV

OpenCV

Was ist OpenCV?

- OpenCV ist eine plattformübergreifende Bibliothek, für Echtzeit-Computer-Vision-Anwendungen
- beinhaltet Algorithmen für die Bildverarbeitung und im Rahmen von Computer Vision (CV) auch für maschinelles Lernen

Wofür nutzen wir OpenCV?

 Nutzung für die Verarbeitung des erkannten Nummernschildes (z.B. Tresholding), um die Zeichen besser zu erkennen und richtig auszulesen

Beispiel für die Anwendung von OpenCV

OpenCV wurde bereits auf Nummernschildverarbeitung verwendet:

Abbildung 3: Original

Abbildung 4: Graustufen

Beispiel für die Anwendung von OpenCV

Abbildung 5: Tresholding

Abbildung 6: Konturen

Beispiel für die Anwendung von OpenCV

Abbildung 7: Aussortierung

Abbildung 8: Schwarze Schrift auf weissem Hintergrund

Auf das finale Bild (Abbildung 7) wird anschliessend Tesseract angewendet, das die Nummern und Buchstaben ausgibt

Tesseract

Tesseract

- freie Software zur Texterkennung mit vielen vorimplementierten Sprachen
- häufig erprobt für eine Vielzahl von Problemen

Validierung:

$$\frac{\text{\#character} - \text{\#errors}}{\text{\#character}},$$

wobei #character Anzahl der Ziffern im Text und #errors Anzahl der fehlerhaft erkannten Ziffern

Definieren der Funktionen

Ausblick:

Zusammenführung der Quellcodes

Literatur i