

Algorítmica

Capitulo 3. Algoritmos Greedy Ejercicios prácticos

Objetivos de las prácticas

- Con estas prácticas se persigue:
 - 1. Apreciar la utilidad de los algoritmos greedy para resolver problemas de forma muy eficiente, en algunos casos obteniendo soluciones óptimas y en otros soluciones cercanas a las óptimas.
 - 2. Constatar la utilidad del enfoque greedy en problemas que se planteen sobre grafos.
 - 3. Comprobar la utilidad de las heurísticas en Algorítmica
 - 4. Trabajar comprometidamente en equipo
 - 5. Aprender a expresar en público las ventajas, inconvenientes y alternativas empleadas, para lograr la solución alcanzada

Greedy y grafos: PVC

• Encontrar un circuito hamiltoniano para el grafo que define la siguiente matriz de costos,

Nodo	1	2	3	4	5	6
1	2	3	21	19	8	18
2	23	24	21	2	25	2
3	10	10	11	5	26	7
4	20	10	5	13	26	9
5	2	2	15	26	20	7
6	16	10	14	6	22	5

• ¿Es de costo mínimo?

Your company name

Greedy y grafos: Kruskal

• Aplicar el Algoritmo de Kruskal al siguiente grafo,

• ¿Es de costo mínimo? ¿Por qué?

Greedy y grafos

 Una compañía de TV por cable está planeando una red para dar servicio de TV a 9 áreas de desarrollo, para lo cual está usando el siguiente grafo,

 en el que los pesos asociados a cada rama de conexión representan la longitud de cable en kilómetros que se necesita para conectar dos áreas cualesquiera. Se ha decidido que en el nodo 1 estén los Estudios Centrales de la estación de TV. Se quieren determinar los enlaces que originan el uso mínimo de cable a la vez que se garantiza que todas las áreas estén conectadas, así como la longitud total del cable necesario.

Greedy y grafos

 Un electricista tiene que visitar a diferentes clientes, que identifica por colores, recorriendo la menor distancia posible. Para diseñarle la ruta que ha de seguir, encontrar un circuito hamiltoniano (a ser posible mínimo) que empiece y termine en Naranja, sobre el grafo definido por la siguiente matriz de distancias,

:	Blanco An	marillo Na	ranja l	Rojo I	Negro
Blanco		150	120	100	110
Amarillo	170		110	90	100
Naranja	200	170		80	100
Rojo	220	190	100		90
Negro	300	210	180	130	

- La solución óptima de este problema es,
- Naranja, rojo, negro, amarillo, blanco, naranja: 80+90+210+170+120 =670