CS310M: Automata Theory (Minor)

Topic 7: Myhill Nerode Theorem

Paritosh Pandya

Indian Institute of Technology, Bombay Course URL: https://cse.iitb.ac.in/~pandya58/CS310/automata.html

Autumn, 2023

Let \equiv be an equivalence relation over Σ^* .

Let \equiv be an equivalence relation over Σ^* .

• \equiv is right congruent if $\forall x, y \in \Sigma^*, \ a \in \Sigma$ we have $x \equiv y \implies x \cdot a \equiv y \cdot a$

Let \equiv be an equivalence relation over Σ^* .

- \equiv is right congruent if $\forall x, y \in \Sigma^*, \ a \in \Sigma$ we have $x \equiv y \implies x \cdot a \equiv y \cdot a$
- Let $R \subseteq \Sigma^*$ (not necessarily regular).
 - $\equiv \text{ refines } R \text{ if } \forall x, y \in \Sigma^*$ $x \equiv y \quad \Rightarrow \quad (x \in R \Leftrightarrow y \in R)$

Let \equiv be an equivalence relation over Σ^* .

- \equiv is right congruent if $\forall x, y \in \Sigma^*, \ a \in \Sigma$ we have $x \equiv y \implies x \cdot a \equiv y \cdot a$
- Let $R \subseteq \Sigma^*$ (not necessarily regular).
 - $\equiv \text{ refines } R \text{ if } \forall x, y \in \Sigma^*$ $x \equiv y \quad \Rightarrow \quad (x \in R \Leftrightarrow y \in R)$
- \equiv is of finite index if \equiv partitions the Σ^* into only finitely many equivalence classes.

Let \equiv be an equivalence relation over Σ^* .

- \equiv is right congruent if $\forall x, y \in \Sigma^*, \ a \in \Sigma$ we have $x \equiv y \implies x \cdot a \equiv y \cdot a$
- Let $R \subseteq \Sigma^*$ (not necessarily regular).
 - $\equiv \text{ refines } R \text{ if } \forall x, y \in \Sigma^*$ $x \equiv y \quad \Rightarrow \quad (x \in R \Leftrightarrow y \in R)$
- \equiv is of finite index if \equiv partitions the Σ^* into only finitely many equivalence classes.

Myhill Nerode Relations

- Equivalence relation \equiv is called Myhill-Nerode Relation refining R if it satisfies all the three properties above.
- ■ is called Weak Myhill Nerode relation Refining R if it satisifies the first two properties.

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ define the induced equivalence

 \equiv_A over Σ^* as follows:

ver
$$\Sigma^*$$
 as follows: $x \equiv_A y \stackrel{\text{def}}{=} \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y).$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ define the induced equivalence \equiv_A over Σ^* as follows:

$$x \equiv_A y \stackrel{\text{def}}{=} \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y).$$

Proposition \equiv_A is a Myhill-Nerode relation refining L(A).

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ define the induced equivalence \equiv_{A} over Σ^* as follows:

$$x \equiv_A y \stackrel{\text{def}}{=} \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y).$$

Proposition \equiv_A is a Myhill-Nerode relation refining L(A).

Proof Method Check the following:

- (d) \equiv_A is of finite index.

(a) \equiv_A is an equivalence relation over Σ^* . (b) $x \equiv_A y \Rightarrow \forall a. \ xa \equiv_A ya.$ (c) $x \equiv_A y \Rightarrow x \in L(A) \Leftrightarrow y \in L(A)$

Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ define the induced equivalence Ξ_A over Σ^* as follows:

$$x \equiv_A y \stackrel{\text{def}}{=} \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y).$$

Proposition \equiv_A is a Myhill-Nerode relation refining L(A).

Proof Method Check the following:

- (a) \equiv_A is an equivalence relation over Σ^* .
- (b) $x \equiv_A y \Rightarrow \forall a. \ xa \equiv_A ya.$
- (c) $x \equiv_A y \Rightarrow x \in L(A) \Leftrightarrow y \in L(A)$
- (d) \equiv_A is of finite index.

Example: We give automaton A and the induced equivalence partitions.

From Equivalence to DFA

Let \equiv be Myhill-Nerode refining R. Define DFA

$$\mathbf{A}_{\equiv} \stackrel{\mathrm{def}}{=} (Q, \Sigma, \delta, q_0, F)$$
 as follows:

$$Q \stackrel{\text{def}}{=} \{[x] \mid x \in \Sigma^*\}$$

$$q_0 \stackrel{\text{def}}{=} [\epsilon]$$

$$F \stackrel{\text{def}}{=} \{[x] \mid x \in R\}$$

$$\delta([x], a]) \stackrel{\text{def}}{=} [xa]. \checkmark$$
(Check well-formedness.)

From Equivalence to DFA

```
Let \equiv be Myhill-Nerode refining R. Define DFA
A = \stackrel{\text{def}}{=} (Q, \Sigma, \delta, q_0, F) as follows:
           Q \stackrel{\text{def}}{=} \{ [x] \mid x \in \Sigma^* \}
           q_0 \stackrel{\text{def}}{=} [\epsilon]
           F \stackrel{\text{def}}{=} \{ [x] \mid x \in R \}
           \delta([x], a]) \stackrel{\text{def}}{=} [xa].
(Check well-formedness.)
Theorem L(A_{=}) = R.
```

From Equivalence to DFA

Let
$$\equiv$$
 be Myhill-Nerode refining R . Define DFA $A_{\equiv} \stackrel{\mathrm{def}}{=} (Q, \Sigma, \delta, q_0, F)$ as follows: $Q \stackrel{\mathrm{def}}{=} \{[x] \mid x \in \Sigma^*\}$ $q_0 \stackrel{\mathrm{def}}{=} [\epsilon]$ $F \stackrel{\mathrm{def}}{=} \{[x] \mid x \in R\}$ $\delta([x], a]) \stackrel{\mathrm{def}}{=} [xa]$. (Check well-formedness.) Theorem $L(A_{\equiv}) = R$. Lemma $\hat{\delta}([x], y) = [xy]$. Prov: Indian $f([x], y) = [xy]$. $f([x], y) = [xy]$.

Correspondence

$$= \xrightarrow{\text{aut}} A = \xrightarrow{\text{equ}} = (A =)$$

The \equiv_A and A_\equiv are inverses of each other.

Theorem
$$\equiv_{A_{=}} = \equiv$$
.

Theorem If A is automaton without unreachable states then A_{\equiv_A} is isomorphic to A.

$$A \longrightarrow \equiv_A \longrightarrow A (\equiv_A)$$

Refining Equivalences

• Definition An equivalence relation \equiv_1 refines equivalence relation \equiv_2 provided $x \equiv_1 y \Rightarrow x \equiv_2 y$.

.

Refining Equivalences

- Definition An equivalence relation \equiv_1 refines equivalence relation \equiv_2 provided $x \equiv_1 y \Rightarrow x \equiv_2 y$.
- Set theoretically, \equiv_1 refines \equiv_2 provided $\equiv_1 \subseteq \equiv_2$.

Refining Equivalences

- Definition An equivalence relation \equiv_1 refines equivalence relation \equiv_2 provided $x \equiv_1 y \Rightarrow x \equiv_2 y$.
- Set theoretically, \equiv_1 refines \equiv_2 provided $\equiv_1 \subseteq \equiv_2$.
- $\equiv_1 \subseteq \equiv_2$ means \equiv_1 makes finer partitions compared to \equiv_2 .

$$N = \{0,1,2,\dots\} \quad \text{iff}$$

$$= \{ [0], [1], [2], [3], [4], [5] \quad \text{iff} \quad \text{wed } 2$$

$$= \{ [0], [1], [2], [3], [4], [5] \quad \text{iff} \quad \text{wed } 2$$

$$= \{ [0], [1], [2], [3], [4], [5], \dots \} \quad \text{iff} \quad \text{$$

Language Induced Equivalence (Nerode Congruence)

Given a language R (not necessarily regular), we extract an equivalence relation \equiv_R from it.

Language Induced Equivalence (Nerode Congruence)

Given a language R (not necessarily regular), we extract an equivalence relation \equiv_R from it.

Definition

Given
$$R \subseteq \Sigma^*$$
, $x \equiv_R y \stackrel{\text{def}}{=} \forall z \in \Sigma^*$. $(xz \in R \Leftrightarrow yz \in R)$.

Language Induced Equivalence (Nerode Congruence)

Given a language R (not necessarily regular), we extract an equivalence relation \equiv_R from it.

Definition

Given $R \subseteq \Sigma^*$, $x \equiv_R y \stackrel{\text{def}}{=} \forall z \in \Sigma^*. \ (xz \in R \Leftrightarrow yz \in R).$

Example: Let $R = (aa)^*a$

 \bullet $a \equiv_R aaa?$

• What are the equivalence classes?

$$[G] = (an)^{*}$$

 $[a] = [aa)^{*}$

Language Induced Equivalence is also called Nerode Congruence

Example

Let $R = \{a^n b^n \mid 0 \le n\}$. Give equivalence classes of \equiv_R . 二美9 aab = aan bb

P.K. Pandva

Recall
$$x \equiv_R y \stackrel{\text{def}}{=} \forall z \in \Sigma^*. (xz \in R \Leftrightarrow yz \in R).$$

Recall $x \equiv_R y \stackrel{\text{def}}{=} \forall z \in \Sigma^*$. $(xz \in R \Leftrightarrow yz \in R)$.

Proposition \equiv_R is right congruent.

Proposition
$$\equiv_R$$
 refines R .
 $\chi \equiv_R y \rightleftharpoons Y_2 \cdot (\chi_2 \leftarrow R \rightleftharpoons Y_3 \leftarrow R)$
 $= \chi_2 \cdot (\chi_3 \leftarrow R \rightleftharpoons Y_4 \leftarrow R)$
 $= \chi_3 \cdot (\chi_3 \leftarrow R \rightleftharpoons Y_4 \leftarrow R)$
 $= \chi_4 \cdot (\chi_3 \leftarrow R \rightleftharpoons Y_4 \leftarrow R)$
 $= \chi_4 \cdot (\chi_3 \leftarrow R \rightleftharpoons Y_4 \leftarrow R)$

Lemma: $TF \equiv io q$ yld congruence then $x \equiv y \Rightarrow \forall y$. $x \not \equiv y \not \in X$. Recall $x \equiv_R y \stackrel{\text{def}}{=} \forall z \in \Sigma^*$. $(xz \in R \Leftrightarrow yz \in R)$.

Proposition \equiv_R is right congruent.

Proposition \equiv_R refines R.

Proposition(Coarseness) Let \equiv be right-congruent refining R. Then, $\equiv \subseteq \equiv_R$.

Myhill-Nerode Theorem

Let $R \subseteq \Sigma^*$. The following statements are equivalent.

- R is regular
- 2 There exists a Myhill-Nerode relation refinining R.
- **3** The relation \equiv_R is of finite index.

The automaton A_{\equiv_R} gives the minimal DFA for R.

State Minimization using Quotienting is Optimal

Let A recognise R. Consider the quotient automaton $M=A/\approx$ as before, and assume that it has no inaccessible states.

Lemma
$$x \equiv_R y \Leftrightarrow x \equiv_M y$$

 $x \equiv_R y \text{ iff } \forall_3 . (3c_3c_R \rightleftharpoons 3 + 3c_R)$
 $\mathcal{E}_{N}(\hat{S}(9c_3x), 3) \leftarrow_F) \rightleftharpoons \hat{S}_{N}(\hat{S}(9c_3x), 3) \leftarrow_F)$
 $\hat{S}(9c_3x) \approx_N \hat{S}(9c_3x) =_P \hat$

