华东的在大学期中设备 2015 -- 2016 华年第 - 李切

课例名称: 高等数学书

学生姓名:

₩ xike ____

课程性质:专业必修

9 9,____

年級/班級: 15 級

 -	=	四	五	大	t	1	总分	阅卷人签名
				1000				

一、(8分, 每小题4分)

(1) 求函数
$$f(x) = \ln(x-1) + \frac{1}{\sqrt{x^2-1}}$$
 的定义域:

(2) 求函数
$$y = -\sqrt{1-x^2}$$
 在[0,1]上的反函数.

二、计算下列极限(25分,每小题5分)

(1)
$$\lim_{x\to 0} \frac{x-1}{\sqrt{x+1}}$$
;

(2)
$$\lim_{x\to 2} \frac{1-\sqrt{x-1}}{x-2}$$
;

(3)
$$\lim_{x \to 0} \frac{x - \sin x}{\tan x - x}$$

(4)
$$\lim_{s\to 1} x^{\frac{1}{s^2-1}}$$
.

(5)
$$\lim_{x\to 0} \frac{e^{\tan x} - e^{\sin x}}{\sqrt{1 + \sin^3 x} - 1}$$

三、求下列函数的导数或微分(20分,每小题5分)

(1) 设
$$y = 2^x + x^2 + \arctan x$$
, 求 y'

(1)
$$\partial y = 2^x + x^2 + \arctan x$$
, $\dot{x}y'$; (2) $\partial y = \frac{1 + \ln x}{1 - \ln x}$, $\dot{x} dy$;

(3)
$$\partial y = \arcsin x + \ln(1+x^2)$$
, $\partial y = x^{\sin x} (x>0)$; $\partial y = x^{\sin x} (x>0)$;

(4) 设
$$y = x^{\sin x}$$
 ($x > 0$); 求 y'

(1)
$$W(0)$$
, $W(x > 0)$ $W(1 + x) > x - \frac{x^2}{2}$,

(2) 求函数 $f(x) = 2x^3 - 6x + 5$ 在区间[0, 2]上的最大值和最小值。

五、(12分,每小题6分)

(1) 求曲线
$$\begin{cases} x = \sin t, \\ y = \cos 2t \end{cases}$$
 在 $t = \frac{\pi}{4}$ 处的切线方程和法线方程;

(2) 求由方程 $e^y + xy - e = 0$ 所确定的隐函数的二阶导数 $\frac{d^2y}{dx^2}$.

六、(12分,每小题6分)

(1) 设
$$\lim_{x \to \infty} \left(\frac{x^2 + 2a}{x^2 - ax} \right)^x = 8$$
, 求常数 a 的值:

(2)
$$\rightleftharpoons \lim_{x \to 0} \frac{\ln\left(1 + \frac{f(x)}{\arcsin x}\right)}{1 - \cos x} = 5$$
. $\Re \lim_{x \to 0} \frac{f(x)}{x^3}$.

七、(6分)证明方程 $x^6 + x^3 + 3x^2 - 2 = 0$ 至少有一个实根.

八、(7分) 设 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导。假定 A(a,f(a)) 、 B(b,f(b)) 的 连线与曲线 y=f(x) 交于 C(c,f(c)) (其中 a < c < b)。证明至少有一点 $\xi \in (a,b)$,使得 $f''(\xi) = 0$.