Résumé du cours de physique générale I: Mécanique

- Sensibilisation aux objectifs de la mécanique
 balistique, oscillateur harmonique
 Cinfematique et dynamique du point matériel
 référentiels, repères, vitesse, accélération, coordonnées cylindriques et
 sphériques, rotations, contraintes
- 3. Travail, énergie (potentielle), forces (non-)conservatives
- Gravitation, moment cinétique
 Systèmes de points matériels, lois de conservation centre de masse, collisions, choc
- Come de masse, conisions, chocs
 Cinématique et dynamique du solide indéformable
 effets gyroscopiques, tenseur l'inertie, rotations des solides
 Mouvement relatif et changement de référentiel

Produit scalaire

Définition d'un scalaire (nombre):

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

= (norme de \vec{a}) × (norme de la projection de \vec{b} sur \vec{a})

= (norme de \vec{b}) × (norme de la projection de \vec{a} sur \vec{b})

Produit vectoriel

• Définition d'un « vecteur »

direction de $\vec{a} \wedge \vec{b}$ = normale au plan défini par \vec{a} et \vec{b}

sens de $\vec{a} \wedge \vec{b}$ = conventionnel (règle de la main droite) norme de $\vec{a} \wedge \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$

Repère direct ou « droit »:

Ressorts et oscillateur harmonique

- Force de rappel d'un ressort élastique: $|\overrightarrow{F} = -k \overrightarrow{\Delta x}|$ Loi de Hooke
- Si position d'équilibre en x=0
 Loi de Hooke: F = -kx
 2^{hne} loi de Newton: F = ma
 mx = -kx
 countion différentielle k = constante élastique du ressort $\Delta \hat{x}$ = vecteur de déplacement relativement à la longueur à vide

Equation différentielle de l'oscillateur harmonique $\ddot{x} + \omega_0^2 x = 0$: Solution générale: $x(t) = A \cos(\omega_0 t) + B \sin(\omega_0 t)$ ou $x(t) = C \sin(\omega_0 t + D)$ $\begin{array}{lll} \mbox{Deux constantes d'intégration à déterminer par les conditions initiales:} \\ A=x_0\mbox{ et }B=v_0/\omega_0, & \mbox{ou} & C^2=x_0^2+(v_0/\omega_0)^2\mbox{ et } tg(D)=\omega_0\ x_0/v_0 \end{array}$

Oscillateur harmonique amorti:

 $x + 2\gamma x + \omega_0^2 x = 0$ avec $\gamma = \frac{b}{2m}$ et $\omega_0 = \sqrt{\frac{k}{m}}$ (+ solutions)

Oscillateur harmonique amorti + forcé:

 $\ddot{x} + 2\gamma \dot{x} + \omega_0^{\ 2} \ x = \alpha_0 \ sin(\omega t) \quad \ avec \ \ \gamma = \frac{b}{2m} \ , \ \ \omega_0 = \sqrt{\frac{k}{m}} \quad et \ \ \alpha_0 = \frac{f}{m} \ \ \Big|_{(+ \ solutions)}$

Repère en rotation et mouvement circulaire uniforme

Norme de l'accélération centripète: $\mathbf{a} = \mathbf{v}^2/\mathbf{r} = (\mathbf{p}^2\mathbf{r})$

 $\vec{a} = -\omega^2 \vec{r}$

Coordonnées cylindriques Coordonnées sphériques

$\vec{r} = \rho \hat{e}_{\rho} + z \hat{e}_{z}$ $\vec{v} = \dot{\rho}\,\hat{e}_{\rho} + \rho \dot{\varphi}\,\hat{e}_{\varphi} + \dot{z}\,\hat{e}_{z}$ $\ddot{a} = (\ddot{\rho} - \rho \dot{\phi}^2) \hat{e}_{\rho} + (\rho \ddot{\phi} + 2 \dot{\rho} \dot{\phi}) \hat{e}_{\phi} + \ddot{z} \hat{e}_{z}$

$\vec{r} = r \hat{e}_r$ $\vec{v} = \dot{r} \; \hat{e}_{_{\rm f}} + r \dot{\theta} \; \hat{e}_{_{\theta}} + r \dot{\varphi} \sin\theta \; \hat{e}_{_{\varphi}} \label{eq:varphi}$ $\vec{a} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2\theta) \hat{e}_r$ $+\left(r\ddot{\theta}+2\dot{r}\dot{\theta}-r\dot{\phi}^2\sin\theta\cos\theta\right)\hat{e}_{\theta}$ $+ \left(r\ddot{\varphi}\sin\theta + 2\dot{r}\dot{\varphi}\sin\theta + 2\dot{r}\dot{\varphi}\dot{\theta}\cos\theta\right)\hat{e}_{\phi}$

Forces de liaison et forces de frottement

- Force de liaison pour respecter une contrainte géométrique

 - toujours perpendiculaire à la courbe ou à la surface
 la force de liaison devient nulle
 ⇔ la contrainte disparaît

- Force de <u>frottement sec</u>

 - opposée au mouvement réel ou possible
 toujours tangente à la courbe ou à la surface

Lois de Coulomb
$$\begin{array}{c} \text{Si } v = 0: \quad F_{\text{frot}} \leq F_{\text{frot}}^{\text{max}} = \mu_s N \\ \text{Si } v \neq 0: \quad \vec{F}_{\text{frot}} = -\mu_c N \frac{\vec{v}}{v} \\ \end{array}$$
 $\mu_s = \text{coefficient de frottement statique}$ $\mu_c = \text{coefficient de frottement statique}$

• Force de frottement fluide

 opposée au mouven $\vec{F}_{frot}^{laminaire} = -b \vec{v}, \quad \vec{F}_{frot}^{turbulent} = -cv^2 \hat{v}, \dots$

Travail et énergie cinétique

Travail d'une force : $\delta W = \vec{F} \cdot d\vec{r} \implies W_{12} = \int_{1}^{2} \delta W = \int_{1}^{2} \vec{F} \cdot d\vec{r}$

Energie cinétique : $K = \frac{1}{2}m\vec{v}^2$

La variation de l'énergie cinétique est égale à

l'énergie cinétique

Pour un point matériel:

$$K_2 - K_1 = W_{12} \Leftrightarrow \frac{dK}{dt} = P = \vec{F} \cdot \vec{v}$$

Pour un système de points matériels

$$K_2^{\text{tot}} - K_1^{\text{tot}} = W_{12}^{\text{tot, ext}} + W_{12}^{\text{tot, int}} \quad \Leftrightarrow \quad \frac{dK^{\text{tot}}}{dt} = P^{\text{tot, ext}} + P^{\text{tot, int}}$$

Attention: les forces internes peuvent travailler

Energie potentielle et théorème de l'énergie

forces dont le travail ne dépend que des points de départ et d'arrivée

Exemple de force: Energie potentielle associée: Ressort F=-kx $V = \frac{1}{2}kx^2 + C$ $\begin{array}{ll} Pesanteur & \vec{F}\!=\!m\vec{g}\!=\!-mg\hat{e}_z & V\!=\!mgz\!+\!C \\ Gravitation & \vec{F}\!=\!-\!\left(GMm/r^2\right)\!\hat{e}_r & V\!=\!-GMm/r\!+\!C \end{array}$ $Centrale \quad \vec{F}{=}F(r)\hat{e}_{_{f}}$ $V = -\int_0^r F(r')dr' + C$

 Energie potentielle dont Frottement $\vec{F} = -f(v)\hat{v}$

dérive une force conservative: $V(\vec{r}) = \int_{\text{position du point matériel}}^{\text{prosition de référence}} \vec{F} \cdot d\vec{r} \implies F_x = -\partial V/dx, \ F_y = -\partial V/dy, \ F_z = ...$

• Energie mécanique: $E = K + V(\vec{r}) = \frac{1}{2} m \vec{v}^2 + \sum_k V_k(\vec{r})$

Théorème de l'énergie

 $E_2 - E_1 = W_{12}^{NC} \iff \frac{dE}{dt} = P^{NC} = \vec{F}^{NC} \cdot \vec{v}$ La variation (dérivée) de l'énergie mécanique est égale au travail (à la puissance) des forces non-conservatives

Si seules des forces conservatives travaillent:

OS/FB, automne 2016

OS/FB, automne 2016

Equilibre et petites oscillations

- L'étude de la fonction énergie potentielle totale permet de déterminer les points d'équilibre du système, ainsi que les fréquences des petites oscillations autour des points d'équilibre stables
- Cas à une dimension x:

OS/FB automne 2016

Système de points matériels

O: point quelconque du référentiel P_{α} : points du système (α =1, ..., N) G: centre de masse du système

 $\vec{F}^{\beta \to \alpha} + \vec{F}^{\alpha \to \beta} = 0$ Forces internes $\vec{M}_{O}^{\beta \rightarrow \alpha} + \vec{M}_{O}^{\alpha \rightarrow \beta} = 0$

 $\boxed{\overrightarrow{OG} = \frac{1}{M} \sum_{\alpha} m_{\alpha} \overrightarrow{OP_{\alpha}} \text{ où } M = \sum_{\alpha} m_{\alpha} = \text{masse totale}}$ $\vec{p} = \sum_{\alpha} m_{\alpha} \vec{v}_{\alpha} = M \vec{v}_{\alpha} = quantité de mouvement totale$ $\vec{L}_{O} = \sum_{\alpha}^{\alpha} \overline{OP_{\alpha}} \wedge m_{\alpha} \vec{v}_{\alpha} = \text{moment cinétique total}$ par rapport à O

Théorème du centre de masse Théorème du

$$\begin{bmatrix} \frac{d\vec{p}}{dt} &= \sum \vec{F}_{\alpha}^{ext} \\ \frac{d\vec{L}_{\rm O}}{dt} &= \sum \vec{M}_{{\rm O},\alpha}^{ext} &= \sum \vec{r}_{\alpha} \wedge \vec{F}_{\alpha}^{ext} \end{bmatrix}$$

 $\begin{array}{c|c} \text{Conditions d'équilibre} \\ \text{d'un système au repos} \\ \text{(statique), pour tout O} \end{array} \quad \begin{array}{c|c} 0 = \sum \vec{F}_{\alpha}^{ext} \\ 0 = \sum \vec{M}_{0,\alpha}^{ext} \end{array}$

Théorème du transfer

$$\frac{d\vec{L}_{Q}}{dt} = \sum \vec{M}_{Q,\alpha}^{ext} - \vec{v}_{Q} \wedge M\vec{v}_{G}$$

 $v_Q // v_G$, en particulier si Q = G ou $v_Q = 0$

OS/FB automne 2016

Solide indéformable

- Relation entre les vitesses de deux points A et P d'un solide: $\vec{v}_p = \vec{v}_A + \vec{\omega} \wedge \overrightarrow{AP}$ où $\vec{\omega} = \text{vitesse}$ instantanée de rotation
- Moment cinétique par rapport à un point A du solide:

$$\boxed{ \underbrace{\vec{L}_A = \overrightarrow{AG} \land \overrightarrow{Mv}_A + \widetilde{1}_A \cdot \overrightarrow{o}}_{= 0 \text{ si } \overrightarrow{A} = \overrightarrow{G} \text{ ou si } v_A = 0} \text{ Tenseur d'inertie au point } }_{\text{au point } A} \left[(\widetilde{1}_A)_{ij} = \sum_\alpha m_\alpha \left[\overrightarrow{AP_\alpha}^2 \delta_{ij} - \left(\overrightarrow{AP_\alpha} \right)_i \left(\overrightarrow{AP_\alpha} \right)_j \right]$$

• Moment cinétique par rapport à un point C sur l'axe de rotation Δ:

Théorème de Steiner

Energie cinétique d'un solide

Mouvement central et loi des aires

Lois de Kepler

- 2eme loj (tol des aires): Le rayon-vecteur du Soleil à une planète balaie des aires égales en des temps égaux.

 <u>| lère loi</u> : Les trajectoires des planètes sont des ellipses dont le Soleil occupe l'un des foyers.

- $\underline{3\mathrm{\grave{e}me\ loi}}$: Les carrés des périodes de révolution sont proportionnels au

(période)2 $\frac{'}{(\text{grand axe})^3} = \text{constante}$

I, 0 0

référentiel R

Système de points matériels

Pour un système isolé:

$$\begin{split} \frac{d\vec{p}}{dt} &= \sum \vec{F}_{\alpha}^{ext} = 0 \implies \vec{p} = constante \\ \frac{d\vec{L}_{O}}{dt} &= \sum \vec{M}_{O,\alpha}^{ext} = 0 \implies \vec{L}_{O} = constante \end{split}$$

• Pour un système partiellement isolé selon une direction û:

$$\begin{split} \sum_{} \vec{F}^{\text{ext}}_{\alpha} \cdot \hat{u} &= 0 \Rightarrow \quad \vec{p} \cdot \hat{u} = \text{constante} \\ \sum_{} \vec{M}^{\text{ext}}_{0,\alpha} \cdot \hat{u} &= 0 \Rightarrow \quad \vec{L}_{0} \cdot \hat{u} = \text{constante} \end{split}$$

Conservation de la quantité de mouvement totale Conservation du moment cinétique total par rapport à n'importe quel point O

• Système de deux points matériels (« problème à deux corps »):

Equation du mouvement relatif $\vec{F}_{2\rightarrow 1} = \mu \vec{r}$ où $\mu = \frac{m_1 m_2}{m_2 + m_2}$ $\mu = \text{masse r\'eduite}$ $\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$ $m_1 + m_2$

- Collisions ou chocs (conservation de p et L si système isolé)
 - Choc élastique: énergie cinétique conservée
 - Choc inélastique: énergie cinétique non conservée
 - Choc mou: choc inélastique avec vitesse relative finale nulle

vide: $I_1 = I_2 = I_3 = I_{\Delta} = \frac{2}{3}MR^2$

Transformation des accélérations:

