

Online selejtező, 2022. február 3-4.

marathon2 • HU

Készülés a Maratonra 2 (marathon2)

Heteken át tartó edzés után William végül rájött, hogyan tudja megnyerni a maratont: csalással! Összeállt egy ügyes sofőrrel - a barátjával Alessandroval - és azt tervezi, hogy autóval megy futás helyett.

A maraton a mesés Pordenone városában zajlik, amely N kereszteződésből és M kétirányú útból áll. Az i-edik út hossza pontosan w_i méter.

A maraton a 0-s számú kereszteződésből indul, és az (N-1)-es számú kereszteződésben ér véget. A maratonfutók át kell haladjanak K ellenőrzőponton, melyek az $S_0, S_1, \ldots S_{K-1}$ kereszteződésekben találhatóak. Két egymást követő ellenőrzőpont között bármilyen útvonalon haladhatnak.

1. ábra. William próbálja megtalálni az ellenőrzőpontokat

William terve a következő:

- elfut a starttól (0-s számú kereszteződés) az első ellenőrzőpontig;
- aztán bemászik Alessandro kocsijába és azzal eljut a második ellenőrzőpontig;
- ezután elfut a harmadik ellenőrzőpontig;
- majd bemászik Alessandro kocsijába és azzal eljut a negyedik ellenőrzőpontig;
- \bullet ... így tovább felváltva, amíg el nem éri a célt, az (N-1)-es számú kereszteződést

Mivel William meg szeretné nyerni a maratont, ezért mindig a **legrövidebb útvonalat** választja két ellenőrzőpont között. Szerencsétlenségére azonban, amíg próbálta elrejteni a csalás nyomait, William elvesztette az eredeti sorrendjét az ellenőrzőpontoknak!

Hogy felkészüljön a legrosszabb eshetőségre, William szeretné tudni a legnagyobb távolságot amit futva kellhet megtennie, az ellenőrzőpontok összes lehetséges sorrendjét figyelembe véve. Tudtok neki segíteni?

marathon 2 1 / 3. oldal

Bemenet

Az első sor tartalmazza az N és M számokat. A második sor tartalmazza a K számot, és utána a K darab S_i számokat.

A következő M sor 3-3 számot tartalmaz: u_i az i-edik út egyik végének sorszáma, v_i a másik végének sorszáma, és w_i az út hossza (méterben).

Kimenet

A kimenet egyetlen sort tartalmazzon, egyetlen számmal: a legnagyobb távolság amit Williamnek futva kellhet megtennie, az összes lehetséges sorrendet figyelembe véve.

Korlátok

- $1 \le N \le 500$.
- $1 \le M \le \frac{N(N-1)}{2}$.
- $0 \le K \le N 2$, K páros.
- $0 \le u, v \le N 1$.
- $0 \le w \le 10^9$.

Pontozás

- 1. Részfeladat (0 pont)Példák.
- 2. Részfeladat (25 pont) K = 0.
- 2 Discipled at (25 mart) V < 19
- 3. Részfeladat (35 pont) $K \leq 18$.
- **4. Részfeladat** (40 pont) Nincs további megkötés.

Példák

bemenet	kimenet
7 8	27
2 4 3	
0 1 5	
0 2 3	
1 4 1	
2 3 4	
1 3 13	
4 5 6	
1 6 10	
5 6 2	

marathon 2 2 / 3. oldal

kimenet
0
8

Magyarázat

Az első példában a [4,3] sorrend adja a legnagyobb távolságot:

- először William elfut a 0-s számú kereszteződéstől (start) a 4-es számúig: a legrövidebb útvonal a $0 \to 1 \to 4$, amelynek 5+1=6 méter a hossza;
- ezután Alessandro elviszi Williamet a 3-as számú kereszteződéshez;
- végül William elfut a 3-as számú kereszteződéstől a 6-os számúig (cél): a legrövidebb útvonal a $3 \rightarrow 2 \rightarrow 0 \rightarrow 1 \rightarrow 4 \rightarrow 5 \rightarrow 6$, amelynek 4+3+5+1+6+2=21 méter a hossza.

A teljes futva megtett távolság 6 + 21 = 27.

A második példában nincsenek ellenőrzőpontok, tehát William egyből a célhoz kell fusson. A legrövidebb út a $0 \to 2 \to 1 \to 3$.

marathon2 3 / 3. oldal