МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ

по лабораторной работе C: СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ: ФРАНКИС, ДЭВИСОН И НАБЛЮДАТЕЛИ

Вариант 17

по дисциплине «Теория автоматического управления»

Студент:

Группа № R3338

А.А. Нечаева

Предподаватель:

ассистент факультера СУиР, к. т. н.

А.В. Пашенко

СОДЕРЖАНИЕ

1	СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ: МАТРИЧНЫЕ УРАВНЕНИЯ 3				
	1.1	Определение характера внешнего возмущения			
	1.2	Определение матриц генератора задающего воздействия			
	1.3	3 Схема моделирования системы			
	1.4	Синтез «feedback»-компоненты			
	1.5	Синтез следящей компоненты регулятора			
	1.6	Синтез компенсирующей компоненты регулятора			
	1.7	Компьютерное моделирование			
	1.8	Вывод	Ι	17	
2	СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ ПО ВЫХОДУ.			18	
	2.1	Схема моделирования			
	2.2	Синтез наблюдателя			
	2.3	Синтез наблюдателя расширенной размерности			
	2.4	Компьютерное моделирование			
	2.5	Анализ результатов		28	
3	СЛЕ	ЕЖЕНИ	Е И КОМПЕНСАЦИЯ: НАБЛЮДАТЕЛИ		
	ВОЗМУЩЕНИЯ2			29	
			одатель возмущения по состоянию	30	
		3.1.1	Схема моделирования	30	
		3.1.2	Синтез наблюдателя возмущения по состоянию	30	
		3.1.3	Компьютерное моделирование	31	
	3.2 Наблюдатель возмущения по выходу		одатель возмущения по выходу	35	
		3.2.1	Схема моделирования	35	
		3.2.2	Синтез наблюдателя возмущения по выходу	35	
		3.2.3	Компьютерное моделирование	36	
	3.3	Анализ результатов		40	
4	ВЫІ	ВЫВОЛ			

1 СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ: МАТРИЧНЫЕ УРАВНЕНИЯ.

Возьмем матрицы A, B, B_f , C, D, D_f , Γ_f и Y_f и рассмотрим систему

$$\begin{cases} \dot{x} = Ax + Bu + B_f f, \\ y = Cx + Du + D_f f, \end{cases} \qquad x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T, \tag{1}$$

где

$$A = \begin{bmatrix} 5 & 8 & 5 \\ -6 & -9 & -8 \\ 6 & 6 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, B_f = \begin{bmatrix} -3 & 1 \\ 3 & 0 \\ 0 & 0 \end{bmatrix},$$

$$C^T = \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix}, D = \begin{bmatrix} 7 \end{bmatrix}, D_f^T = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, (2)$$

генератор внешнего возмущения

$$\begin{cases} \dot{w}_f = \Gamma_f w_f, \\ f = Y_f w_f, \end{cases} \quad w_f(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T, \tag{3}$$

где

$$\Gamma_f = \begin{bmatrix}
0 & 1 & 0 & 1 \\
-26 & -7 & 20 & -11 \\
0 & 1 & -1 & 2 \\
16 & 4 & -14 & 8
\end{bmatrix}, \quad Y_f^T = \begin{bmatrix}
2 & -4 \\
0 & -2 \\
-2 & 4 \\
1 & -3
\end{bmatrix}$$
(4)

и генератора задающего воздействия

$$\begin{cases} \dot{w}_g = \Gamma_g w_g, \\ g = Y_g w_g, \end{cases} \qquad w_g(0), \tag{5}$$

где

$$g(t) = \cos(2t) - 2 \tag{6}$$

Выполним следующие шаги:

— Найдем собственные числа матрицы Γ_f и определим характер внешнего возмущения.

- Определим, при каких матрицах Γ_g и Y_g и начальных условиях $w_g(0)$ генератор (5) способен порождать задающее воздействие g(t). Определим собственные числа матрицы Γ_g .
- Построим схему моделирования системы (1), замкнутой регулятором

$$u = Kx + K_g w_g + K_f w_f, (7)$$

обеспечивающим выполнение целевого условия

$$\lim_{t \to \infty} |g(t) - y(t)| = 0 \tag{8}$$

- Синтезируем «feedback»-компоненту K регулятора (14)
- Составим систему матричных уравнений Франкиса-Дэвисона для синтеза следящей компоненты K_g регулятора (14). Проверим условие существования решения системы уравнений и синтезируем K_g . Приведем выкладки проверки существования решения, процедуры синтеза и полученную матрицу K_g .
- Составим систему матричных уравнений Франкиса-Дэвисона для синтеза компенсирующей компоненты K_f регулятора (14). Проверим условие существования решения системы уравнений и синтезировать K_f . Приведем выкладки проверки существования решения, процедуры синтеза и полученную матрицу K_f
- Выполним компьютерное моделирование...
 - …разомкнутой системы (u=0) и построим графики внешнего возмущения f(t), задающего воздействия g(t), вектора состояния объекта управления x(t) и выхода y(t).
 - …системы, замкнутой регулятором только с «feedback»- компонентой (u=Kx) и построим графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t) и выхода y(t).
 - …системы, замкнутой регулятором без следящей компоненты $(u=Kx+K_fw_f)$ и построим графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t), выхода y(t) и ошибки регулирования e(t)=g(t)-y(t).

- …системы, замкнутой регулятором без компенсирующей компоненты $(u=Kx+K_gw_g)$ и построим графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t), выхода y(t) и ошибки регулирования e(t)=q(t)-y(t).
- …системы, замкнутой регулятором (14) и построим графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t), выхода y(t) и ошибки регулирования e(t)=g(t)–y(t).
- Проанализируем полученные результаты и сделаем выводы.

1.1 Определение характера внешнего возмущения

Найдем собственные числа матрицы Γ и определим характер внешнего возмущения.

$$\Gamma_{f} = \begin{bmatrix}
0 & 1 & 0 & 1 \\
-26 & -7 & 20 & -11 \\
0 & 1 & -1 & 2 \\
16 & 4 & -14 & 8
\end{bmatrix} \Rightarrow \begin{cases}
\lambda_{1,2} = \pm 2i \in \overline{\mathbb{C}_{+}} \\
\lambda_{3,4} = \pm i \in \overline{\mathbb{C}_{+}}
\end{cases} \tag{9}$$

Характер внешнего возмущения: незатухающие колебания (синусоиды).

1.2 Определение матриц генератора задающего воздействия

Определим, при каких матрицах Γ_g и Y_g и начальных условиях $w_g(0)$ генератор (5) способен порождать задающее воздействие $g(t) = \cos(2t) - 2$. Определим собственные числа матрицы Γ_g .

Собственные числа Γ_g должны быть $\lambda_{1,2}=\pm 2i$ для генерации части $\cos(2t)$ и $\lambda_3=0$ для генерации константы -2, таким образом

$$\Gamma_g = \begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} \lambda_{1,2} = \pm 2i \\ \lambda_3 = 0 \end{cases}$$
(10)

Выход генератора $g=Y_gw_g$, отсюда

$$w_g(t) = \exp\left(\Gamma_g t\right) w_g(0) \tag{11}$$

$$\exp(\Gamma_g t) = \begin{bmatrix} \cos(2t) & \sin(2t) & 0\\ -\sin(2t) & \cos(2t) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(12)

Выберем

$$w_g(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad Y_g = \begin{bmatrix} 1 & 0 & -2 \end{bmatrix}$$
 (13)

1.3 Схема моделирования системы

Построим схему моделирования системы (1), замкнутой регулятором

$$u = Kx + K_q w_q + K_f w_f, (14)$$

Рисунок 1 — Схема моделирования системы.

1.4 Синтез «feedback»-компоненты

Синтезируем «feedback»-компоненту K регулятора (14), воспозьзовавшись системой

$$\begin{cases} AP_K - P_K \Gamma = BY_K \\ K = -Y_K P_K^+ \end{cases}$$
 (15)

Пусть желаемый спектр замкнутой системы $\sigma(A+BK)=\{-3,\ -4,\ -5\}\in\mathbb{C}_-$. Составим матрицу Φ в Жордановой форме так, чтобы её спектр совпадал с $\sigma(A+BK)$.

$$\Phi = \begin{bmatrix}
-5 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -3
\end{bmatrix}$$
(16)

Теперь подберем такую матрицу Y_K , чтобы (Y_K, Φ) была ненаблюдаема для неуправляемого собственного числа $\lambda = -3$ и наблюдаема для всех остальных собственных чисел.

$$Y_K = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \tag{17}$$

После решения системы получим

$$P_K = \begin{bmatrix} 0.1379 & 0.1333 & 0 \\ 0.2069 & 0.2667 & 0 \\ -0.2069 & -0.2667 & 0 \end{bmatrix}, \quad K = \begin{bmatrix} -6.50 & -0.25 & 0.25 \end{bmatrix}$$
 (18)

1.5 Синтез следящей компоненты регулятора

Составим систему матричных уравнений Франкиса-Дэвисона для синтеза следящей компоненты K_g регулятора (14).

$$\begin{cases} P_g \Gamma_g - (A + BK)P_g = BK_g \\ (C + DK)P_g + DK_g = Y_g \end{cases}$$
 (19)

Проверим условие существования решения системы уравнений и синтезируем K_g .

Запишем матричные уравнения Франкиса-Дэвисона в общем виде:

$$\begin{cases} AP + BK + Y_1 = P\Gamma \\ CP + DK + Y_2 = 0 \end{cases}$$
 (20)

Решение относительно P и K для произвольных Y_1 и Y_2 есть, если

$$rank\begin{bmatrix} A - I\lambda_{i\Gamma} & B \\ C & D \end{bmatrix} =$$
число строк, (21)

где $\lambda_{i\Gamma}$ собственные числа Γ .

Перепишем это условие для следящей компоненты (19)

$$rank\begin{bmatrix} A+BK-I\lambda_{i\Gamma_g} & B \\ C+DK & D \end{bmatrix} =$$
 число строк, (22)

Для $\lambda_{1\Gamma_g}=-2i$

$$rank \begin{bmatrix} A + BK - I\lambda_{1\Gamma_g} & B \\ C + DK & D \end{bmatrix} =$$

$$= rank \begin{bmatrix} -8 + 2i & 7.5 & 5.5 & 2 \\ -6 & -9 + 2i & -8 & 0 \\ 6 & 6 & 5 + 2i & 0 \\ -43.5 & -4.75 & -0.25 & 7 \end{bmatrix} = 4 (23)$$

Для $\lambda_{2\Gamma_a}=2i$

$$rank \begin{bmatrix} A + BK - I\lambda_{2\Gamma_g} & B \\ C + DK & D \end{bmatrix} =$$

$$= rank \begin{bmatrix} -8 - 2i & 7.5 & 5.5 & 2 \\ -6 & -9 - 2i & -8 & 0 \\ 6 & 6 & 5 - 2i & 0 \\ -43.5 & -4.75 & -0.25 & 7 \end{bmatrix} = 4 (24)$$

Для $\lambda_{3\Gamma_q}=0$

$$rank \begin{bmatrix} A + BK - I\lambda_{3\Gamma_g} & B \\ C + DK & D \end{bmatrix} = rank \begin{bmatrix} -8 & 7.5 & 5.5 & 2 \\ -6 & -9 & -8 & 0 \\ 6 & 6 & 5 & 0 \\ -43.5 & -4.75 & -0.25 & 7 \end{bmatrix} = 4 \quad (25)$$

Условие существования решения относительно P_g и K_g выполнено.

С помощью MATLAB решим систему уравнений (19) и приведем полученные матрицы P_g и K_g

$$P_{g} = \begin{bmatrix} -0.0040 & 0.0482 & -0.0374 \\ -0.1109 & -0.0674 & 0.2243 \\ 0.1109 & 0.0674 & -0.2243 \end{bmatrix}, \quad K_{g} = \begin{bmatrix} 0.0468 \\ 0.2563 \\ -0.3738 \end{bmatrix}^{T}$$
 (26)

1.6 Синтез компенсирующей компоненты регулятора

Составим систему матричных уравнений Франкиса-Дэвисона для синтеза компенсирующей компоненты K_f регулятора (14).

$$\begin{cases} P_f \Gamma_f - (A + BK)P_f - B_f Y_f = BK_f, \\ (C + DK)P_f + DK_f = -D_f Y_f \end{cases}$$
(27)

Проверим условие существования решения системы уравнений (27). Решение относительно P_f и K_f есть, если

$$rank\begin{bmatrix} A + BK - I\lambda_{i\Gamma_f} & B \\ C + DK & D \end{bmatrix} =$$
число строк, (28)

Для $\lambda_{1\Gamma_f} = -2i$

$$rank \begin{bmatrix} A + BK - I\lambda_{1\Gamma_f} & B \\ C + DK & D \end{bmatrix} =$$

$$= rank \begin{bmatrix} -8 + 2i & 7.5 & 5.5 & 2 \\ -6 & -9 + 2i & -8 & 0 \\ 6 & 6 & 5 + 2i & 0 \\ -43.5 & -4.75 & -0.25 & 7 \end{bmatrix} = 4 (29)$$

Для $\lambda_{2\Gamma_f}=2i$

$$rank \begin{bmatrix} A + BK - I\lambda_{2\Gamma_f} & B \\ C + DK & D \end{bmatrix} =$$

$$= rank \begin{bmatrix} -8 - 2i & 7.5 & 5.5 & 2 \\ -6 & -9 - 2i & -8 & 0 \\ 6 & 6 & 5 - 2i & 0 \\ -43.5 & -4.75 & -0.25 & 7 \end{bmatrix} = 4 \quad (30)$$

Для
$$\lambda_{3\Gamma_f} = -i$$

$$rank \begin{bmatrix} A + BK - I\lambda_{3\Gamma_f} & B \\ C + DK & D \end{bmatrix} = rank \begin{bmatrix} -8 + i & 7.5 & 5.5 & 2 \\ -6 & -9 + i & -8 & 0 \\ 6 & 6 & 5 + i & 0 \\ -43.5 & -4.75 & -0.25 & 7 \end{bmatrix} = 4 \quad (31)$$

Для $\lambda_{4\Gamma_f}=i$

$$rank \begin{bmatrix} A + BK - I\lambda_{4\Gamma_f} & B \\ C + DK & D \end{bmatrix} = rank \begin{bmatrix} -8 - i & 7.5 & 5.5 & 2 \\ -6 & -9 - i & -8 & 0 \\ 6 & 6 & 5 - i & 0 \\ -43.5 & -4.75 & -0.25 & 7 \end{bmatrix} = 4 (32)$$

Условие существования решения относительно P_f и K_f выполнено.

С помощью MATLAB решим систему уравнений (27) и приведем полученные матрицы P_f и K_f

$$P_{f} = \begin{bmatrix} 2.3053 & 0.8395 & -1.5377 & 0.7462 \\ -0.3772 & -0.6474 & 0.2971 & -0.3641 \\ -1.9305 & -0.2757 & 1.0875 & -0.3282 \end{bmatrix}, \quad K_{f} = \begin{bmatrix} 16.0012 \\ 6.4817 \\ -11.3156 \\ 6.2353 \end{bmatrix}^{T}$$
(33)

1.7 Компьютерное моделирование

Выполним компьютерное моделирование и построим графики внешнего возмущения f(t) (рисунок 2), задающего воздействия g(t) (рисунок 3), вектора состояния объекта управления x(t) (рисунок 4) и выхода y(t) (рисунок 5) для разомкнутой системы u=0 (рисунок 6), также построим графики формируемого регулятором управления u(t) (рисунок 7), вектора состояния систем x(t) (рисунки 8, 9, 10, 11), выхода y (рисунок 12) и ошибки регулирования e(t)=g(t)-y(t) (рисунок 13) для замкнутых систем.

Рисунок 2 — График внешнего возмущения f(t).

Рисунок 3 — График задающего воздействия g(t).

Рисунок 4 — График вектора состояния объекта управления x(t) при u=0.

Рисунок 5 — График выходного сигнала y(t) при u=0.

Рисунок 6 — График управления u = 0.

Рисунок 7 — Графики управления u(t) для замкнутых систем.

Рисунок 8 — График вектора состояния объекта управления x(t) при u = Kx.

Рисунок 9 — График вектора состояния объекта управления x(t) при $u = Kx + K_f w_f$.

Рисунок 10 — График вектора состояния объекта управления x(t) при $u=Kx+K_gw_g.$

Рисунок 11 — График вектора состояния объекта управления x(t) при $u = Kx + K_f w_f + K_g w_g.$

Рисунок 12 — Графики выходного сигнала y(t) для замкнутых систем.

Рисунок 13 — Графики ошибки управления e(t) = g(t) - y(t) для замкнутых систем.

1.8 Вывод

Как можно заметить наиболее близкие результаты выходного сигнала y(t) к задающему g(t) достигаются для систем, замкнутых регуляторами с компенсирующей компонентой (рисунок 13), то есть $u=Kx+K_fw_f$ и $u=Kx+K_fw_f+K_gw_g$, последний из которых оказывается эффективнее (рассмотрим дополнительный график ошибки только для этих двух случаев – рисунок 14), без учета следящей компоненты сохраняются колебания ошибки управления. Таким образом, целевое условие (8) достигается для выходного сигнала системы, замкнутой полным регулятором со следящей, компенсирующей и «feedback»-компонентой.

Рисунок 14 — Графики ошибки управления e(t) для $u=Kx+K_fw_f$ и $u=Kx+K_fw_f+K_gw_g.$

2 СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ ПО ВЫХОДУ.

Используя данные предыдущего задания, рассмотрим систему (1), генератор внешнего возмущения (3) и генератор задающего воздействия (5).

Воспользуемся матрицами регулятора

$$K = \begin{bmatrix} -6.50 \\ -0.25 \\ 0.25 \end{bmatrix}^{T}, K_g = \begin{bmatrix} 0.0468 \\ 0.2563 \\ -0.3738 \end{bmatrix}^{T}, K_f = \begin{bmatrix} 16.0012 \\ 6.4817 \\ -11.3156 \\ 6.2353 \end{bmatrix}^{T}$$
(34)

и выполним следующие шаги:

Построим схему моделирования системы (1), замкнутой регулятором, состоящим из наблюдателя задающего воздействия, наблюдателя расширенной размерности и закона управления

$$u = K\hat{x} + K_a\hat{w}_a + K_f\hat{w}_f,\tag{35}$$

обеспечивающим выполнение целевого условия (8).

- Синтезируем наблюдатель задающего воздействия, задавшись его динамикой и найдя соответствующую матрицу смены базиса Q.
- Сформируем расширенную систему и синтезируем наблюдатель расширенной размерности.
- Выполним компьютерное моделирование замкнутой системы с нулевыми начальными условиями наблюдателей. Построим график формируемого регулятором управления u(t), сравнительные графики $\begin{bmatrix} w_f(t) \\ x(t) \end{bmatrix}$ и $\begin{bmatrix} \hat{w}_f(t) \\ \hat{x}(t) \end{bmatrix}$, график ошибки наблюдателя расширенной размерности $e_f = \begin{bmatrix} w_f(t) \\ x(t) \end{bmatrix} \begin{bmatrix} \hat{w}_f(t) \\ \hat{x}(t) \end{bmatrix}$, сравнительные графики $w_g(t)$ и $\hat{w}_g(t)$, график ошибки наблюдателя задающего воздействия $e_g(t) = w_g(t) \hat{w}_g$, график выхода y(t) и график ошибки управления e(t) = g(t) y(t).
- Проанализируем результаты и сделаем выводы.

2.1 Схема моделирования

Построим схему моделирования системы (1), замкнутой регулятором, состоящим из наблюдателя задающего воздействия, наблюдателя расширенной размерности и закона управления

$$u = K\hat{x} + K_q \hat{w}_q + K_f \hat{w}_f, \tag{36}$$

обеспечивающим выполнение целевого условия (8).

Рисунок 15 — Схема моделирования системы.

2.2 Синтез наблюдателя

Рассмотрим уравнение для преобразования базиса

$$\bar{w}_q = Q\hat{w}_q,\tag{37}$$

где \hat{w}_g — оценка вектора состояния, \bar{w}_g — вектор состояния наблюдателя.

Наблюдатель сигнала задания:

$$\dot{\bar{w}}_q = \Gamma \bar{w}_q + Yg \tag{38}$$

Синтезируем наблюдатель задающего воздействия, задавшись его динамикой и найдя соответствующую матрицу смены базиса Q.

Соответствующее уравнение типа Сильвестра

$$Q\Gamma_q - \Gamma Q = YY_q \tag{39}$$

Если $\sigma(\Gamma)\cap\sigma(\Gamma_g)=\emptyset$, пара (Γ,Y) управляема, а пара (Y_g,Γ_g) наблюдаема, то почти всегда существует решение Q. Матрицы Γ_g и Y_g известны из первого задания

$$\Gamma_g = \begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad Y_g = \begin{bmatrix} 1 & 0 & -2 \end{bmatrix}$$

$$\tag{40}$$

Составим матрицу наблюдаемости для (Y_q, Γ_q)

$$V = \begin{bmatrix} Y_g \\ Y_g \Gamma_g \\ Y_g \Gamma_g^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ -4 & 0 & 0 \end{bmatrix} \Rightarrow rank(V) = 3$$
 (41)

Так как ранг V равен размерности системы, то пара (Y_g, Γ_g) наблюдаема.

Пусть

$$\Gamma = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1.5 \end{bmatrix}, \quad Y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 (42)

Заметим, что условие $\sigma(\Gamma)\cap\sigma(\Gamma_g)=\emptyset$ выполнено, проверим управляемость пары (Γ,Y) – вычислим ранг матрицы управляемости

$$U = \begin{bmatrix} Y & \Gamma Y & \Gamma^2 Y \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & -1.5 & 2.25 \end{bmatrix} \Rightarrow rank(U) = 3$$
 (43)

Так как ранг U равен размерности системы, то пара (Γ, Y) управляема.

Вычислим значение Q, решив уравнение (39)

$$Q = \begin{bmatrix} 0.2 & -0.4 & -2\\ 0.25 & -0.25 & -1\\ 0.24 & -0.32 & -1.3333 \end{bmatrix}$$
 (44)

2.3 Синтез наблюдателя расширенной размерности

Сформируем расширенную систему

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ \dot{x} = Ax + Bu + B_f Y_f w_f \\ y = Cx + Du + D_f Y_f w_f \end{cases} \Rightarrow \begin{cases} \dot{x}_f = \bar{A}x_f + \bar{B}u \\ y = \bar{C}x_f + Du \end{cases}, \tag{45}$$

где

$$x_{f} = \begin{bmatrix} w_{f} \\ x \end{bmatrix}, \ \bar{A} = \begin{bmatrix} \Gamma_{f} & 0 \\ B_{f}Y_{f} & A \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ -26 & -7 & 20 & -11 & 0 & 0 & 0 \\ 0 & 1 & -1 & 2 & 0 & 0 & 0 \\ 16 & 4 & -14 & 8 & 0 & 0 & 0 \\ -10 & -2 & 10 & -6 & 5 & 8 & 5 \\ 6 & 0 & -6 & 3 & -6 & -9 & -8 \\ 0 & 0 & 0 & 0 & 6 & 6 & 5 \end{bmatrix},$$

$$\bar{B} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \ \bar{C} = \begin{bmatrix} D_{f}Y_{f} & C \end{bmatrix} = \begin{bmatrix} -14 \\ -12 \\ 14 \\ -13 \\ 2 \\ -3 \\ -2 \end{bmatrix}$$
(46)

И синтезируем наблюдатель повышенной размерности

$$\begin{cases} \dot{\hat{x}}_f = \bar{A}\hat{x}_f + (\bar{B} + LD)u + L(\hat{y} - y) \\ \hat{y} = \bar{C}\hat{x}_f \end{cases}$$

$$(47)$$

Для нахождения матрицы L решим уравнение Сильвестра

$$\begin{cases} \bar{\Gamma}Q_L - Q_L \bar{A} = \bar{Y}\bar{C} \\ L = Q_L^{-1}\bar{Y} \end{cases} \tag{48}$$

Условия существования решения Q_L : $\sigma(\bar{\Gamma})\cap\sigma(\bar{A})=\emptyset$, $(\bar{\Gamma},\bar{Y})$ – управляема, (\bar{C},\bar{A}) – наблюдаема.

Составим матрицу наблюдаемости для (\bar{C}, \bar{A}) и найдем ее ранг

$$V = \begin{bmatrix} \bar{C} \\ \bar{C}\bar{A} \\ \vdots \\ \bar{C}\bar{A}^6 \end{bmatrix} = \begin{bmatrix} -14 & -12 & 14 & -13 & 2 & -3 & -2 \\ 66 & 28 & -34 & 21 & 16 & 31 & 24 \\ -366 & -112 & 274 & -145 & 38 & -7 & -48 \\ 170 & 36 & -62 & 5 & -56 & 79 & 6 \\ 178 & -12 & -322 & 263 & -718 & -1123 & -882 \\ 4962 & 2428 & -4042 & 2709 & -2144 & -929 & 984 \\ -3918 & -952 & -1190 & 1919 & 758 & -2887 & 1632 \end{bmatrix}$$

$$rank(V) = 7 \quad (49)$$

Ранг матрицы наблюдаемости равен размерности системы, следовательно, пара (\bar{C}, \bar{A}) – наблюдаема.

Определим спектр матрицы \bar{A} :

$$\sigma(\bar{A}) = \begin{cases} \lambda_1 = -3 \\ \lambda_{2,3} = 2 \pm 3i \\ \lambda_{4,5} = \pm 2i \\ \lambda_{6,7} = \pm i \end{cases}$$
 (50)

Выберем матрицы $\bar{\Gamma}$ и \bar{Y} :

$$\bar{\Gamma} = \begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1.5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -3.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -4.5
\end{bmatrix}, \bar{Y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
(51)

Заметим, что условие $\sigma(\bar\Gamma)\cap\sigma(\bar A)=\emptyset$ выполнено, убедимся в том, что $(\bar\Gamma,\bar Y)$ – управляема: составим матрицу управляемости и найдем ее ранг

$$U = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & -1.5 & 2.2 & -3.4 & 5.1 & -7.6 & 11.4 \\ 1 & -2 & 4 & -8 & 16 & -32 & 64 \\ 1 & -2.5 & 6.3 & -15.6 & 39.1 & -97.7 & 244.1 \\ 1 & -3.5 & 12.3 & -42.9 & 150.1 & -525.2 & 1838.3 \\ 1 & -4 & 16 & -64 & 256 & -1024 & 4096 \\ 1 & -4.5 & 20.3 & -91.1 & 410.1 & -1845.3 & 8303.8 \end{bmatrix} \Rightarrow rank(U) = 7 (52)$$

Теперь решим систему (48) и найдем L:

$$L = \begin{bmatrix} -0.0062\\ 0.3177\\ 1.9709\\ 3.1379\\ -6.5057\\ -10.4921\\ 10.7697 \end{bmatrix}$$
(53)

2.4 Компьютерное моделирование

Выполним компьютерное моделирование замкнутой системы с нулевыми начальными условиями наблюдателей. Построим график формируемого регулятором управления u(t) (рисунок 16), сравнительные графики $\begin{bmatrix} w_f(t) \\ x(t) \end{bmatrix}$ и $\begin{bmatrix} \hat{w}_f(t) \\ \hat{x}(t) \end{bmatrix}$ (рисунки 17 и 18), график ошибки наблюдателя расширенной размерности $e_f = \begin{bmatrix} w_f(t) \\ x(t) \end{bmatrix} - \begin{bmatrix} \hat{w}_f(t) \\ \hat{x}(t) \end{bmatrix}$ (рисунок 19), сравнительные графики $w_g(t)$ и $\hat{w}_g(t)$ (рисунок 20), график ошибки наблюдателя задающего воздействия $e_g(t) = w_g(t) - \hat{w}_g$ (рисунок 21), график выхода y(t) (рисунок 22) и график ошибки управления e(t) = g(t) - y(t) (рисунок 23).

Рисунок 16 — График формируемого регулятором управления u(t).

Рисунок 17 — Сравнительные графики $w_f(t)$ и $\hat{w}_f(t)$.

Рисунок 18 — Сравнительные графики x(t) и $\hat{x}(t)$.

Рисунок 19 — График ошибки наблюдателя расширенной размерности e_f .

Рисунок 20 — Сравнительные графики $w_g(t)$ и $\hat{w}_g(t)$.

Рисунок 21 — График ошибки наблюдателя задающего воздействия $e_g(t) = w_g(t) - \hat{w}_g$.

Рисунок 22 — График выхода y(t).

Рисунок 23 — График ошибки управления e(t) = g(t) - y(t).

2.5 Анализ результатов

Заметим, что целевое условие (8) выполнено, графики ошибок $e_f(t)$, $e_g(t)$ и e(t) сходятся к нулю. По сравнению с результатами в первом задании (для полного регулятора) в данном случае время, за которое e(t) становится неотличим от нуля больше: t=10 с во втором задании и t=3 с — в первом. Большее время установления нулевой ошибки во втором задании компенсируется тем, что управление осуществляется в условиях, когда напрямую не измеряются x, w_q и w_f .

3 СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ: НАБЛЮДАТЕЛИ ВОЗМУЩЕНИЯ.

Используя данные первого задания, рассмотрим систему (1), генератор внешнего возмущения (3) и генератор задающего воздействия (5).

Используя матрицы регулятора

$$K = \begin{bmatrix} -6.50 \\ -0.25 \\ 0.25 \end{bmatrix}^{T}, K_g = \begin{bmatrix} 0.0468 \\ 0.2563 \\ -0.3738 \end{bmatrix}^{T}, K_f = \begin{bmatrix} 16.0012 \\ 6.4817 \\ -11.3156 \\ 6.2353 \end{bmatrix}^{T}$$
(54)

и матрицу наблюдателя задающего воздействия

$$Q = \begin{bmatrix} 0.2 & -0.4 & -2 \\ 0.25 & -0.25 & -1 \\ 0.24 & -0.32 & -1.3333 \end{bmatrix},$$

выполним следующие шаги:

- Считая вектор состояния x(t) доступным к измерению, рассмотрим два варианта наблюдателей возмущения:
 - по состоянию;
 - ... по выходу.

Для каждого из рассмотренных вариантов наблюдателя возмущения:

Построим схему моделирования системы (1), замкнутой регулятором, состоящим из наблюдателя задающего воздействия, рассматриваемого наблюдателя возмущения и закона управления

$$u = Kx + K_g \hat{w}_g + K_f \hat{w}_f, \tag{55}$$

обеспечивающим выполнение целевого условия (8).

- Синтезируем наблюдатель возмущения.
- Выполним компьютерное моделирование замкнутой системы с нулевыми начальными условиями наблюдателей. Построим график формируемого регулятором управления u(t), состояния

системы x(t), сравнительные графики $w_f(t)$ и $\hat{w}_f(t)$, график ошибки наблюдателя возмущения $e_f(t)=w_f(t)-\hat{w}_f(t)$, график выхода y(t) и график ошибки управления e(t)=g(t)-y(t).

– Проанализируем полученные результаты и сделаем выводы.

3.1 Наблюдатель возмущения по состоянию

3.1.1 Схема моделирования

Построим схему моделирования системы (1), замкнутой регулятором, состоящим из наблюдателя задающего воздействия, рассматриваемого наблюдателя возмущения и закона управления

$$u = Kx + K_g \hat{w}_g + K_f \hat{w}_f, \tag{56}$$

обеспечивающим выполнение целевого условия (8).

Рисунок 24 — Схема моделирования системы.

3.1.2 Синтез наблюдателя возмущения по состоянию

Запишем формулу наблюдателя редуцированной размерности

$$\begin{cases} \hat{w}_f = \hat{z} + L\bar{C}x\\ \dot{\hat{z}} = F\hat{z} + (FL\bar{C} - L\bar{C}A)x - L\bar{C}Bu \end{cases}$$
(57)

Найдем матрицу \bar{C} из условия $\bar{C}B_f=I$

$$\bar{C} = \begin{bmatrix} 0 & 0.3333 & 0 \\ 1 & 1 & 0 \end{bmatrix} \tag{58}$$

Найдем матрицу L, решив следующую систему уравнений

$$\begin{cases} Q_f \Gamma - \Gamma_f^T Q_f = Y_f^T Y \\ L^T = -Y Q_f^{-1} \end{cases}$$

$$(59)$$

В первом задании был найден спектр матрицы Γ_f $\sigma(\Gamma_f)=\{\pm 2i,\pm i\}.$ Тогда чтобы обеспечить выполнение условий существования решения системы (59) $\sigma(\Gamma)\cap\sigma(\Gamma_f^T)=\emptyset$, пара (Γ_f^T,Y_f^T) – управляема, пара (Y,Γ) – наблюдаема, выберем следующие матрицы Γ и Y

$$\Gamma = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1.5 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -5 \end{bmatrix}, Y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 (60)

Теперь решим систему уравнений (59) и найдем матрицы Q_f и L

$$Q_f = \begin{bmatrix} 10.4 & 7.52 & 5.4 & 1.305 \\ 3.4 & 2.6215 & 2 & 0.6393 \\ -8 & -5.8215 & -4.2 & -1.0504 \\ 5 & 3.68 & 2.7 & 0.756 \end{bmatrix}, L = \begin{bmatrix} 9.25 & 9.25 \\ 4.5 & 4.5 \\ 6.6667 & 6.6667 \\ -11.8333 & -11.8333 \end{bmatrix}$$
(61)

Значение матрицы F найдем из соотношения

$$F = \Gamma_f - LY_f = \begin{bmatrix} 18.5 & 19.5 & -18.5 & 19.5 \\ -17 & 2 & 11 & -2 \\ 13.3333 & 14.3333 & -14.3333 & 15.3333 \\ -7.6667 & -19.6667 & 9.6667 & -15.6667 \end{bmatrix}$$
(62)

3.1.3 Компьютерное моделирование

Выполним компьютерное моделирование замкнутой системы с нулевыми начальными условиями наблюдателей. Построим график формируемого регулятором управления u(t) (рисунок 25), состояния системы x(t) (рисунок 26), сравнительные графики $w_f(t)$ и $\hat{w}_f(t)$ (рисунок 27), график ошибки

наблюдателя возмущения $e_f(t)=w_f(t)-\hat{w}_f(t)$ (рисунок 28), график выхода y(t) (рисунок 29) и график ошибки управления e(t)=g(t)-y(t) (рисунок 30).

Рисунок 25 — График формируемого регулятором управления u(t).

Рисунок 26 — График состояния системы x(t).

Рисунок 27 — Сравнительные графики $w_f(t)$ и $\hat{w}_f(t)$.

Рисунок 28 — График ошибки наблюдателя возмущения $e_f(t) = w_f(t) - \hat{w}_f(t)$.

Рисунок 29 — График выхода y(t).

Рисунок 30 — График ошибки управления e(t) = g(t) - y(t).

3.2 Наблюдатель возмущения по выходу

3.2.1 Схема моделирования

Построим схему моделирования системы (1), замкнутой регулятором, состоящим из наблюдателя задающего воздействия, рассматриваемого наблюдателя возмущения и закона управления

$$u = Kx + K_g \hat{w}_g + K_f \hat{w}_f, \tag{63}$$

обеспечивающим выполнение целевого условия (8).

3.2.2 Синтез наблюдателя возмущения по выходу

Запишем систему для наблюдателя возмущения

$$\begin{cases} \hat{f} = D_f f = y - Cx - Du \\ \dot{\bar{w}}_f = \Gamma \bar{w}_f + Y \hat{f} \\ \hat{w}_f = Q_{f2}^{-1} \bar{w}_f \end{cases}$$

$$(64)$$

Для нахождения Q_{f2} решим уравнение Сильвестра

$$Q_{f2}\Gamma_f - \Gamma Q_{f2} = Y D_f Y_f \tag{65}$$

Выберем матрицы Γ и Y, удовлетворяющие условиям существования решения

$$\Gamma = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1.5 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -5 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$(66)$$

Тогда решением уравнения (65) будет

$$Q_{f2} = \begin{bmatrix} -59.6 & -19.6 & 46 & -29 \\ -43.04 & -15.0892 & 33.4892 & -21.36 \\ -30.9 & -11.5 & 24.2 & -15.7 \\ -7.6233 & -3.6976 & 6.2334 & -4.5013 \end{bmatrix}$$
(67)

3.2.3 Компьютерное моделирование

Выполним компьютерное моделирование замкнутой системы с нулевыми начальными условиями наблюдателей. Построим график формируемого регулятором управления u(t) (рисунок 31), состояния системы x(t) (рисунок 32), сравнительные графики $w_f(t)$ и $\hat{w}_f(t)$ (рисунок 33), график ошибки наблюдателя возмущения $e_f(t) = w_f(t) - \hat{w}_f(t)$ (рисунок 34), график выхода y(t) (рисунок 35) и график ошибки управления e(t) = g(t) - y(t) (рисунок 36).

Рисунок 31 — График формируемого регулятором управления u(t).

Рисунок 32 — График состояния системы x(t).

Рисунок 33 — Сравнительные графики $w_f(t)$ и $\hat{w}_f(t)$.

Рисунок 34 — График ошибки наблюдателя возмущения $e_f(t) = w_f(t) - \hat{w}_f(t)$.

Рисунок 35 — График выхода y(t).

Рисунок 36 — График ошибки управления e(t) = g(t) - y(t).

3.3 Анализ результатов

Для обоих наблюдателей возмущения и по состоянию, и по выходу выполнено целевое условие (8), причем время, после которого графики e(t) становятся неотличимы от нуля, близко к 7 секундам, но для наблюдателя возмущения по состоянию этот показатель чуть меньше. По сравнению с результатами, полученными в ходе выполнения задания 2, графики e(t) становятся неотличимы от нуля за меньшее время (7 с для третьего задания, и 10 с для второго), также графики управления u(t) имеют меньшие по модулю значения максимальной амплитуды (около 60 для второго задания, и менее 20 для третьего). При сравнении графиков управления для наблюдателя возмущения по состоянию и наблюдателя возмущения по выходу видимых различий не наблюдается.

4 ВЫВОД

В ходе выполнения лабораторной работы были применены на практике знания о решении задач слежения и компенсации с помощью уравнений Франкиса-Дэвисона. В первом задании была решена задача слежежения и компенсации — синтезирован регулятор, способный обеспечить стремление выходного сигнала системы к задающему воздействию с течением времени (целевое условие). Во втором задании была решена задача слежения и компенсации по выходу с помощью синтеза наблюдателя задающего воздействия и наблюдателя расширенной размерности. Целевое условие также было выполнено. В третьем задании были синтезированы наблюдатели влзмущения: в первой части — по состоянию, во второй — по выходу. Целевое условие также было выполнено.