

PuppetGAN: Cross-Domain Image Manipulation by Demonstration

Ben Usman ^{1,2}, Nick Dufour ¹, Kate Saenko ², Chris Bregler ¹
¹Google AI ²Boston University

Task

Our model can manipulate a **single** specific **attribute** of a **real** image **A** using a **synthetic** reference **B**.

It is trained exclusively on synthetic demonstrations and unlabeled real images.

Related Work

Unsupervised Cross-Domain Adaptation produces entangled representations (e.g. CycleGAN).

Unsupervised Cross-Domain Disentanglement might disentangle wrong attributes (e.g. MUNIT).

Supervised Single-Domain Disentanglement fails to generalize to a different domain

MUNIT Cycle-VAE (e.g. InfoGAN, Cycle-Consistent VAE).

Existing Supervised Cross-Domain Disentanglement Methods yield degenerate solution that ignore parts of the learned embeddings (e.g. DiDA). The PuppetGAN model is more resilient against such degenerate solution.

Method

Results

Other techniques we used:

- reconstruction and cycle losses
- adversarial domain alignment
- regularization with instance noise

Other findings reported in the paper:

ai.bu.edu/puppetgan

- disentanglement quality metrics
- failure case analysis
- input outlier robustness
- comparison to other models

Model	Disentanglement quality (MNIST ≠ Rendered Digits)							
	Size				Rotation			
	Acc ↑	$r_{ m attr}^{ m syn}\uparrow$	$r_{ m rest}^{ m syn}\downarrow$	$V_{ m rest}\downarrow$	Acc ↑	$r_{ m attr}^{ m syn}\uparrow$	$r_{ m rest}^{ m syn}\downarrow$	$V_{ m rest}\downarrow$
PuppetGAN	<u>0.73</u>	<u>0.85</u>	<u>0.02</u>	<u>0.02</u>	<u>0.97</u>	<u>0.40</u>	<u>0.11</u>	<u>0.01</u>
CycleGAN [28]	0.10	0.28	<u>0.06</u>	0.28	0.11	<u>0.54</u>	0.37	0.33
DiDA [2]	<u>0.71</u>	0.18	0.09	<u>0.02</u>	<u>0.86</u>	0.04	0.35	$\underline{0.02}$
MUNIT [10]	<u>0.96</u>	0.06	0.09	<u>0.01</u>	<u>1.00</u>	0.00	0.15	<u>0.01</u>
Cycle-VAE [8]	0.17	<u>0.92</u>	0.16	<u>0.01</u>	0.29	<u>0.45</u>	$\underline{0.10}$	<u>0.01</u>
PuppetGAN [†]	<u>0.64</u>	0.28	0.07	<u>0.01</u>	0.10	0.06	<u>0.04</u>	$\underline{0.01}$

 \dagger larger discrepancy in attribute distributions between A and B \Rightarrow lower disentanglement quality

(a) supervised disentanglement

(b) compositional consistency