Algorithms and Data Structures

Matrix Approximation Singular Value Decomposition & Principal Component Analysis

Learning goals

- Singular value decomposition
- Principal component analysis

For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r, there exists a decomposition

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$$

with $\mathbf{\textit{U}} \in \mathbb{R}^{m \times m}$ and $\mathbf{\textit{V}} \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ is a diagonal matrix with non-negative diagonal entries sorted in descending order, i.e. $\sigma_1 \geq \sigma_2 \geq ...$

	σ_1			:	
		٠.		 0	
<u>ا</u>			σ_r	:	
		:		:	
	• • •	0		 0	
		:		:)

/ 2

Definition:

- ullet The diagonal elements of the matrix Σ are known as **singular** values of the matrix $oldsymbol{A}$
- The column vectors of U are called left singular vectors
- The row vectors of V are called right singular vectors

A non-negative real number σ is a singular value if both left and right singular vectors ${\bf u}$ and ${\bf v}$ exist, such that

$$\mathbf{A}\mathbf{v} = \sigma \mathbf{u}$$
$$\mathbf{A}^{\mathsf{T}}\mathbf{u} = \sigma \mathbf{v}$$

/ 3

A **truncated** singular value decomposition of rank $k \le r$ is given by

$$\mathsf{U}_k \mathbf{\Sigma}_k \mathsf{V}_k^{ op}$$

where $\Sigma_k \in \mathbb{R}^{k \times k}$ only contains the k largest singular values and \mathbf{U}_k and \mathbf{V}_k the corresponding left/right singular vectors.

/ 4

"Intuition":

- Each matrix defines a matrix transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$. The singular value decomposition splits this transformation into a rotation / mirror $(\mathbf{x} \mapsto \mathbf{V}^{\top}\mathbf{x})$, a scaling $(\mathbf{x} \mapsto \mathbf{\Sigma}\mathbf{x})$ and another rotation / mirror $(\mathbf{x} \mapsto \mathbf{U}\mathbf{x})$.
- In 2D, the singular values can be interpreted as the magnitude of the semiaxis of the ellipse defined by A.
- The columns of U form an orthonormal basis for the column space of A, the columns of V span the row space of A.

/ 5

Example:

Consider
$$\mathbf{A} = \begin{pmatrix} 1 & \frac{1}{2} \\ -\frac{3}{2} & 1 \end{pmatrix}$$
.

The A matrix defines a linear transformation.

/ 6

It can be decomposed using the singular value decomposition:

Note: The red / blue vectors are the canonical unit vectors $(1,0)^{\top}$ and $(0,1)^{\top}$ and their transformations after the respective matrix multiplications.

Given: n data points with p features (*) each

Goal: Projection of the n data points into a k-dimensional space (k < p) with as little information loss as possible

Idea:

- Find a linear tranformation $f: \mathbb{R}^p \to \mathbb{R}^k$, which maps each observation $\mathbf{x} \in \mathbb{R}^p$ to a k-dimensional point \mathbf{z} .
- Lose as little information as possible through this dimensionality reduction.
- As little information as possible is lost if we can reconstruct the point z as good as possible, i.e. we can use a linear function $h: \mathbb{R}^k \to \mathbb{R}^p$, such that $\mathbf{x} \approx h(z)$.

^(*) We assume the data points are centered around 0.

/ 2

The linear transformations f, h are described by matrix multiplication:

$$f: \mathbf{x}^{\top} \mapsto \mathbf{x}^{\top} \mathbf{F} =: \mathbf{z} \text{ and } h: \mathbf{z}^{\top} \mapsto \mathbf{z}^{\top} \mathbf{H}$$

Note: Here, we are writing \mathbf{x} as a **row vector** \mathbf{x}^{\top} , to be in line with the matrix notation in the following slides (the observations are the rows of the design matrix \mathbf{X}).

/ 3

Goal: Minimize the reconstruction error between data $\mathbf{X} \in \mathbb{R}^{n \times p}$ and the projected and reconstructed data \mathbf{XFH} .

$$\min_{\boldsymbol{F} \in \mathbb{R}^{p imes k}, \boldsymbol{H} \in \mathbb{R}^{k imes p}} \| \boldsymbol{X} - \boldsymbol{X} \boldsymbol{F} \boldsymbol{H} \|_F^2$$

Defining $XF =: W \in \mathbb{R}^{n \times k}$, we write this as

$$\min_{\boldsymbol{W}\in\mathbb{R}^{n\times k},\boldsymbol{H}\in\mathbb{R}^{k\times p}}\|\boldsymbol{X}-\boldsymbol{W}\boldsymbol{H}\|_F^2.$$

This is the problem of matrix approximation. One solution is

$$m{XF} = m{W} = m{\mathsf{U}}_k m{\Sigma}_k; \quad m{H} = m{\mathsf{V}}_k^{ op},$$

with $\mathbf{U}_k \in \mathbb{R}^{n \times k}$, $\mathbf{\Sigma}_k \in \mathbb{R}^{k \times k}$, $\mathbf{V}_k \in \mathbb{R}^{p \times k}$ chosen as truncated singular value decomposition of \mathbf{X} .

/ 4

 $H = V_k^{\top} \in \mathbb{R}^{k \times p}$ is the reconstruction transformation matrix. The projection matrix $F = V_k \in \mathbb{R}^{p \times k}$ fulfills $XF = U_k \Sigma_k$:

$$egin{array}{lll} m{X}m{F} &=& m{X}m{V}_k = m{U}m{\Sigma}m{V}^{ op}m{V}_k = m{U}m{\Sigma}egin{pmatrix} m{I}_k \ m{0}_{p-k} \end{pmatrix} = m{U}m{iggl(} m{\Sigma}_k \ m{0}_{n-k} \end{pmatrix} = m{U}_km{\Sigma}_k, \end{array}$$

- The rows of $XF = U_k \Sigma_k \in \mathbb{R}^{n \times k}$ are the projected observations.
- It can be shown (see next slide), that the rows of $\mathbf{H} = \mathbf{V}_k^{\top} \in \mathbb{R}^{k \times p}$ correspond to the k (pair-wise orthogonal) principal components.

/ 5

A more common motivation of PCA is the following: Linearly transform the data to a new coordinate system such that the greatest variance in the (transformed) data is along the first PC, the second greatest variance is along a second PC orthogonal to the first PC, etc.

- In this formulation, it can be shown that the k first principal components correspond to the k eigenvectors with the greatest eigenvalues of the covariance matrix $\mathbf{X}^{\top}\mathbf{X}$.
- The eigenvalue decomposition $\mathbf{X}^{\top}\mathbf{X}$ and the singular value decomposition of \mathbf{X} are related. Given the singular value decomposition of \mathbf{X} , we can derive the eingevalue decomposition of $\mathbf{X}^{\top}\mathbf{X}$:

$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\top}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top} = \mathbf{V}\widehat{\mathbf{\Sigma}}^{2}\mathbf{V}^{\top}$$

with $\widehat{\Sigma}^2 := \Sigma^\top \Sigma \in \mathbb{R}^{\rho \times \rho}$ having the squared singular values of $\textbf{\textit{X}}$ on the diagonal.

/6

• The right singular vectors V of X are equivalent to the eigenvectors of $X^{\top}X$, and the singular values of X are equal to the square-root of the eigenvalues of $X^{\top}X$. So we come up with the same solution for both approaches.

