Московский государственный технический университет им. Н.Э. Баумана

Факультет «И	Інформатика и сист	гемы управлен	«кин
Кафедра ИУ5 «Сист	емы обработки инф	формации и уг	правления»

Курс «Технологии машинного обучения».

Отчет по лабораторной работе №6 «Создание веб-приложения для демонстрации моделей машинного обучения.»

Выполнил: Проверил:

студент группы ИУ5-61Б

Гапанюк Ю. Е.

Головацкий А.Д.

Задание:

Разработайте макет веб-приложения, предназначенного для анализа данных.

Вариант 1. Макет должен быть реализован для одной модели машинного обучения. Макет должен позволять:

- задавать гиперпараметры алгоритма,
- производить обучение,
- осуществлять просмотр результатов обучения, в том числе в виде графиков.

Вариант 2. Макет должен быть реализован для нескольких моделей машинного обучения. Макет должен позволять:

- выбирать модели для обучения,
- производить обучение,
- осуществлять просмотр результатов обучения, в том числе в виде графиков.

Для реализации был выбран вариант 1.

Код программы:

import streamlit as st import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder

st.markdown(

** ** **

```
<style>
     .main {
     background-color: #ebebeb;
     }
  </style>
  unsafe_allow_html=True
)
siteHeader = st.container()
dataExploration = st.container()
newFeatures = st.container()
modelTraining = st.container()
allFeaturesModel = st.container()
def build_model(df):
  X = df.iloc[:, :-1]
  Y = df.iloc[:, -1]
  X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.8)
  st.markdown('**Делим данные**')
  st.write('Обучающая выборка')
  st.info(X_train.shape)
  st.write('Тестовая выборка')
  st.info(X_test.shape)
  st.write('X')
```

```
st.info(list(X.columns))
  st.write('Y')
  st.info(Y.name)
  rf = RandomForestRegressor(n_estimators=number_of_trees,
                  max_depth=max_depth,
                  random_state=1)
  rf.fit(X_train, Y_train)
  st.subheader('Метрики модели')
  Y_pred_train = rf.predict(X_train)
  Y_pred_test = rf.predict(X_test)
  st.write('Коэффициент детерминации ($R^2$):')
  st.info(r2_score(Y_test, Y_pred_test))
  st.write('MSE:')
  st.info(mean_squared_error(Y_test, Y_pred_test))
  st.write('MAE:')
  st.info(mean_absolute_error(Y_test, Y_pred_test))
  st.subheader('Параметры модели')
  st.write(rf.get_params())
with siteHeader:
  st.title('ИУ5-61Б Головацкий Андрей Лабораторная работа №6')
  st.text('Разработайте макет веб-приложения, предназначенного для анализа
данных.\пВариант 1. Макет должен быть реализован для одной модели
```

```
машинного обучения.\nМакет должен позволять:\n задавать гиперпараметры алгоритма,\n производить обучение,\n осуществлять просмотр результатов обучения, в том числе в виде графиков.')
```

```
with dataExploration:
  st.header('Датасет: аренда квартир в Бразилии')
  df = pd.read\_csv('\sim/ML/datasets/houses\_to\_rent\_v2.csv')
  distribution_pickup = pd.DataFrame(df['total (R$)'].value_counts())
  st.write(df.head(10))
  st.text('Кодирование категориальных признаков')
  LE = LabelEncoder()
  for col in df.columns:
    if df[col].dtype == "object":
       df[col] = LE.fit_transform(df[col])
  st.write(df.head(10))
with modelTraining:
  st.header('Обучение модели (Случайный лес)')
  st.text('Можем изменить максимальную глубину, число деревьев или же
выбрать исходный признак')
  selection_col, display_col = st.columns(2)
  max depth = st.slider('Максимальная глубина:', min value=10,
max value=100, value=20, step=10)
  number of trees = st.selectbox('Число деревьев:', options=[100, 200, 300,
400], index=0)
  selection col.text('Список признаков:')
  selection_col.write(df.columns)
  input feature = st.text input('Исходный признак:', 'hoa (R$)')
  regr = RandomForestRegressor(max_depth=max_depth,
n_estimators=number_of_trees, random_state=1)
```

```
X = df[[input_feature]]
y = df[['total (R$)']]

regr.fit(X, y)
prediction = regr.predict(y)
display_col.subheader('MAE:')
display_col.write(mean_absolute_error(y, prediction))
display_col.subheader('MSE:')
display_col.write(mean_squared_error(y, prediction))
display_col.subheader('R2:')
display_col.write(r2_score(y, prediction))

with allFeaturesModel:
st.header('Обучение модели (все признаки)')
build_model(df)
```

Результаты работы:

ИУ5-61Б Головацкий Андрей Лабораторная работа №6

Разработайте макет веб-приложения, предназначенного для анализа данных. Вариант 1. Макет должен быть реализован для одной модели машинного обучения. Макет должен позволять:

задавать гиперпараметры алгоритма, производить обучение, осуществлять просмотр результатов обучения, в том числе в виде графиков.

Датасет: аренда квартир в Бразилии

	city	area	roon	bath	park	floor	animal	furniture	hoa (R\$)	rent am	prope	fire in
0	São Paulo	70	2	1	1	7	acept	furnished	2065	3300	211	42
1	São Paulo	320	4	4	0	20	acept	not furnished	1200	4960	1750	63
2	Porto Alegre	80	1	1	1	6	acept	not furnished	1000	2800	0	41
3	Porto Alegre	51	2	1	0	2	acept	not furnished	270	1112	22	17
4	São Paulo	25	1	1	0	1	not acept	not furnished	0	800	25	11
5	São Paulo	376	3	3	7	ē	acept	not furnished	0	8000	834	121
6	Rio de Janeiro	72	2	1	0	7	acept	not furnished	740	1900	85	25
7	São Paulo	213	4	4	4	4	acept	not furnished	2254	3223	1735	41
8	São Paulo	152	2	2	1	3	acept	furnished	1000	15000	250	191
9	Rio de Janeiro	35	1	1	0	2	acept	furnished	590	2300	35	30

Кодирование категориальных признаков

	city	area	roon	bath	park	floor	anim	furni	hoa (R\$)	rent an	prope	fire ir	total (R\$
0	4	70	2	1	1	32	0	0	2065	3300	211	42	5618
L	4	320	4	4	0	13	0	1	1200	4960	1750	63	7973
2	2	80	1	1	1	31	0	1	1000	2800	0	41	3841
3	2	51	2	1	0	12	0	1	270	1112	22	17	1421
4	4	25	1	1	0	1	1	1	0	800	25	11	836
5	4	376	3	3	7	0	0	1	0	8000	834	121	8955
6	3	72	2	1	0	32	0	1	740	1900	85	25	2750
7	4	213	4	4	4	27	0	1	2254	3223	1735	41	7253
8	4	152	2	2	1	23	0	0	1000	15000	250	191	16440
9	3	35	1	1	0	12	0	0	590	2300	35	30	2955

Обучение модели (Случайный лес)

Можем изменить максимальную глубину, число деревьев или же выбрать исходный признак

Список признаков:

	0
0	city
1	area
2	rooms
3	bathroom
4	parking spaces
5	floor

MAE:

9290.789021161077

MSE:

105302685.49217108

R2:

0.6124599363567498

Исходный признак:

hoa (R\$)

Обучение модели (все признаки)

Делим данные

Обучающая выборка

(2138, 12)

Тестовая выборка

(8554, 12)

v

['city', 'area', 'rooms', 'bathroom', 'parking spaces', 'floor', 'animal', 'furniture', 'hoa (R)', 'rentamount(R)', 'property tax (R)', 'fireinsurance(R)']

٧

total (R\$)

Метрики модели

Коэффициент детерминации (\mathbb{R}^2):

Метрики модели

Коэффициент детерминации (\mathbb{R}^2) :

```
0.7810325024233791
```

MSE:

41181591.67580741

MAE:

268.20769511026583

Параметры модели

```
"{
    "bootstrap": true
    "ccp_alpha": 0
    "criterion": "squared_error"
    "max_depth": 20
    "max_features": "auto"
    "max_leaf_nodes": NULL
    "max_samples": NULL
    "min_impurity_decrease": 0
    "min_samples_leaf": 1
    "min_samples_split": 2
    "min_weight_fraction_leaf": 0
```