N·O·I·I·F·I·A·F

Design of Compact Heat Exchangers

for Aero-Gas Turbines

Presented by:-

Stan Payne Engineering Manager

Steve Hughes Team Leader: Development

Alex Allen New Technology Engineer

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
and reviewing this collection of information. Send con Headquarters Services. Directorate for Information Or	mments regarding this burden esti perations and Reports (0704-0188	mate or any other aspect of this coll 1. 1215 Jefferson Davis Highway. S	ection of information, incl uite 1204. Arlington, VA	luding suggestions for reducin 22202-4302. Respondents sho	gathering and maintaining the data needed, and completing g this burder to Department of Defense, Washington uld be aware that notwithstanding any other provision of F RETURN YOUR FORM TO THE ABOVE ADDRESS.	
1. REPORT DATE (DD-MM-Y 30-05-2001	EPORT TYPE kshop Presentations		3. DATES COVERED (FROM - TO) 30-05-2001 to 01-06-2001			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Design of Compact Heat Exchangers for Aero-Gas Turbines Unclassified				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT N	UMBER	
Payne, Stan;				5e. TASK NUMBER		
Hughes, Steve;				5f. WORK UNIT NUMBER		
Allen, Alex;				JI. WORK CIVII	IVONIBER	
7. PERFORMING ORGANIZATION NAME AND ADDRESS Serck Aviation xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx				8. PERFORMING NUMBER	G ORGANIZATION REPORT	
9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS				10 SPONSOR/M	IONITOR'S ACRONYM(S)	
Office of Naval Research International Field Office				11. SPONSOR/MONITOR'S REPORT		
Office of Naval Research				NUMBER(S)		
Washington, DCxxxxx				NOMBER(S)		
12. DISTRIBUTION/AVAILAI	BILITY STATEME	NT				
APUBLIC RELEASE						
13. SUPPLEMENTARY NOTE	2S					
See Also ADM001348, Thermal	l Materials Worksho	p 2001, held in Camb	ridge, UK on M	fay 30-June 1, 200	1. Additional papers can be	
downloaded from: http://www-n				•	• •	
14. ABSTRACT						
compact heat exchangers						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICA	TION OF:	17. LIMITATION OF ABSTRACT Public Release		19. NAME OF R Fenster, Lynn lfenster@dtic.m	ESPONSIBLE PERSON	
a. REPORT b. ABSTRAC Unclassified Unclassified		•	19b. TELEPHONE NUMBER International Area Code Area Code Telephone Number 703767-9007 DSN 427-9007			
					Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39.18	

The Company

Headline Figures

- 2000 Sales £15m
- Employees 130
- Sole Market in Aerospace (91% export)
- 85% Civil
- 15% Military
- OEM 59% of sales
 - Spares 27% of sales
- R&O 14% of sales

- Pratt and Whitney JT8, JT9, PW2000, PW4000, PW6000, F100
- Rolls Royce Tay, Adour, RB211 524 & 535, Pegasus, Trent, RTM322
- General Electric F404, CF34
- SNECMA CFM56 All Marks
- Boeing 777
- BAe Harrier, Hawk

The Products

- Compact aluminium tubular construction offers the advantage of low weight
- Modular design for repair and overhaul provides low cost of ownership
- Well proven design and robust construction meets High Mean Time Between Failure requirements

Shell & Tube

Compact aluminium construction offers the advantage of low weight and cost.

Brazing technology used provides high joint integrity

- Operating at approximately 1200°F to provide positive cooling to bearing chambers.
- Compact inconel tubular construction offers exceptionally long service life

High Temperature

Existing Products

Type

Applications

Heat transfer area/volume

Fuel/Oil Air/Oil Air/Air

 $650 \text{ m}^2/\text{m}^3$

(Compactness)

* *

Plate - Fin

Tubular

 $800 - 1500 \,\mathrm{m}^2/\mathrm{m}^3$

* Low Pressure & Temperature applications

Metal Foam Heat Exchanger

Construction

Use of Metal foam, (nickel or aluminium) to increase heat transfer.

Several designs under consideration.

Rapid development of product expected.

Benefits

⇒Cost Reduction

⇒ Weight Reduction

⇒ Performance Improvement

Design Option - 1

alternate plates.

中 Note: the foam can be

brazed to the plates.

Plate Fin/Foam Heat Exchanger

Hot fluid flows through the metal foam

Cooler fluid flows around the fins

Fig.1

Metal Foam

Design Option - 2

⇒Contact between tubes and foam is

fixed by brazing.

Tube - Foam Heat Exchanger

⇒Extended secondary surface for heat transfer. fluid.

Cooler fluid flows

Hot fluid counterflows

through the metal

through the narrow

⇒ The materials of construction have

the same thermal expansion.

Fig.2

Metal Foam

Design Option - 3

Rotating Air/Oil Heat Exchanger & Separator:

⇒The Retimet® uses centrifugal action to force the denser oil to separate from the less dense air.

⇒Rotational energy required is available within the gearing system.

⇒ Heat exchange possibilities present in such a configuration.

Key points for consideration

Using metal foam:

⇒ Fouling is likely to occur with a small-celled metal foam. Therefore, can we make larger cells without losing performance, or should it have a filter added?

⇒ Will Foam break/fragment under operation?

Compactness of the Metal Foam HE

Estimated (a) $\approx 2500 \text{ m}^2/\text{m}^3$

Compare with current tubular of 650 m²/m³

Design considerations

► Heat Transfer Performance & pressure loss

> Economic manufacturing cost

>Size, installation and removal for overhaul

>Dynamic loading induced from engine including vibration, blade out,

manoeuvre

>Static loading from internal fluid pressures

➤ Thermal structural loading

>Material properties

Fluid Properties

>Contamination / Fouling

Repair and overhaul

>Life

Structural loading

parts over the engine frequency range (typically from 5 to 3000 Hz with resonant frequencies and displacement of the assembly and component ⇒Design is evaluated by Finite Element Analysis (FEA) to determine 20G load applied above 100Hz).

⇒Static FEA for pressure loads

⇔Dynamic FEA for blade out (120G) and manoeuvre loads

exchangers, a transient thermal FEA is completed using a validated model. This evaluates the induced metal temperatures and strain range throughout strain range, material properties and the number of defined engine cycles an entire flight cycle. A fatigue life analysis can be completed using the ⇒Thermal loading: particularly in the case of high temperature heat

⇒Computation Fluid Dynamics (CFD) is used to identify flow patterns (hot spots, reduced flow zones) within the unit which enables us to refine our heat transfer models. It also provides a good indicator of whether flow induced vibration will be a problem, and if so, how effective different design solutions will be.

Testing

Component Certification for flight worthiness testing will include:

Vibration

Pressure - including Proof/Burst/cycling

May include PTF - pressure/temperature/flow cycling (although this may be avoided with the use of validated

FEA)

Impact

Fire

Icing

Bird Strike/FOD.

Pass by analysis for sand, dust & fungus.