

Algoritmo de Dijkstra Caminho mínimo de origem única

Bruno Santos de Lima brunoslima4@gmail.com

Estrutura de dados Docente: Profa. Dra. Roberta Spolon Programa de Pós-Graduação em Ciência da Computação (PPGCC)

Índice

- Caminho mínimo
- Algoritmo de Dijkstra
- Aplicações do algoritmo
- Considerações finais
- Referencias Bibliográficas

- Um motorista deseja sair de São Paulo e ir ao Rio de Janeiro
 - Qual é o caminho mais curto entre essas duas cidades?

Figura 1: Caminho de São Paulo até o Rio de Janeiro – Fonte: Google Maps

- Como saber se o caminho anterior é o mais curto?
 - Afinal, existem vários caminhos distintos para esse trajeto!

Figura 2: Caminho de São Paulo até o Rio de Janeiro – Fonte: Google Maps

- Uma abordagem para resolver esse problema seria um algoritmo que liste todas as rotas possíveis
 - Conhecendo todas as possíveis rotas, basta calcular a distância de cada uma delas.
 - Após isso, escolher a rota com a menor distância!

Simples!!!

- Uma abordagem para resolver esse problema seria um algoritmo que liste todas as rotas possíveis
 - Conhecendo todas as possíveis rotas, basta calcular a distância de cada uma delas.
 - Após isso, escolher a rota com a menor distância!

Na verdade não!!!

Essa abordagem para solucionar o problema é simples e intuitiva, porem em casos reais haverá milhões ou bilhões de possibilidades resultando em um tempo muito alto para encontrar uma resposta!

Complexidade Exponencial

- Outra abordagem:
 - Verificar se a rota incompleta possui distancia maior que a melhor rota conhecida.
 - Se isso acontecer, essa rota incompleta pode ser descartada do conjunto solução.

Figura 3: Caminho de São Paulo até o Rio de Janeiro – Fonte: Google Maps

- Variantes do problema [3]:
 - Caminho mínimo de origem única
 - Caminho mínimo de destino único
 - Caminho mínimo de um único par
 - Caminho mínimo de todos para todos

- Variantes do problema [3]:
 - Caminho mínimo de origem única
 - Algoritmo de Dijkstra
 - Caminho mínimo de destino único
 - Caminho mínimo de um único par
 - Caminho mínimo de todos para todos

Mapeamento do problema através Grafos

No caso da menor distância entre cidades:

A – Presidente Prudente

B – Martinópolis

C – Rio Claro

D - Bauru

E – São José do Rio Preto

Mapeamento do problema através Grafos

- Caminho mínimo de origem única
- Considerando um grafo ponderado: G = (V, A).
 - Um <u>caminho</u>: $c = (v_0, v_1, \dots, v_n)$
 - Os <u>pesos de um caminho c</u> é a <u>s</u>oma de todos os pesos das arestas do caminho:

$$p = \sum_{i=1}^{n} p(v_{i-1,i}v_i)$$

Sendo o <u>caminho mais curto</u> definido por:

$$\delta(u,v) = \begin{cases} \min\{p(c): u \to v\}, & \text{se existir um caminho de } \mathbf{u} \text{ a } \mathbf{v}, \\ \infty, & \text{caso contrário} \end{cases}$$

"O algoritmo de Dijkstra resolve o problema de caminho mais curto de fonte única em dígrafos com pesos não-negativos [4]."

- Algoritmo de Dijkstra:
 - Concepção: 1956 Publicação: 1959 [1]
 - Edsger Wybe Dijkstra (1930 2002)
 - Um dos mais influentes na Ciência da Computação.
 - Recebeu o Prêmio ACM Turing.

Figura 3: Edsger W. Dijkstra [6]

• Propriedades:

- Grafo:
 - Direcionado ou não direcionado
 - Ponderado
 - Pode conter ciclos
 - As arestas não podem possuir pesos negativos

Algoritmo Guloso

• Exato, sempre encontra a melhor solução, no caso, menor caminho da raiz para todos os nós do grafo.

• Resultado do algoritmo:

"Ao final da execução do algoritmo de Dijkstra é produzido uma arvore de caminhos mais curtos de um vértice origem <u>s</u> para todos os vértices alcançáveis a partir de <u>s</u> [2]."


```
Dijkstra(grafo,peso,verticeInicial)
  Inicializar(grafo, verticeInicial);
  S = \{\};
  Q = grafo->getVertices();
  Enquanto Q != vazio
     u = ExtrairMinimo(Q);
     S += u;
     para cada v \in Adj(u)
         Relaxamento(u,v,peso);
     fim para
   fim enquanto
fim
```

- Funções auxiliares:
 - ✓ Inicializar();
 - ✓ Relaxamento();
 - ✓ ExtrairMinimo();
- **Estruturas auxiliares:**
 - ✓ Grafo
 - ✓ Fila, lista ou outra: Variáveis S e Q
 S: vértices com distância definitiva

Q: Vértices com distância provisória

Funções auxiliares

```
Inicializar(grafo,verticeInicial)
  para cada v ∈ grafo
    dis[v] = ∞;
  pai[v] = null;
  fim para
  dis[verticeInicial] = 0;
Relaxamento(u, v, peso)
  se dis[v] > (dis[u] + peso(u,v)) então
    dis[v] = dis[u] + peso(u,v);
  pai[v] = u;
  fim se
  fim
```

- ✓ dis[v]: Distância da origem até v
- ✓ pai[v]: Vértice pai de v

Funções auxiliares

```
Inicializar(grafo, verticeInicial)
  para cada v ∈ grafo
    dis[v] = ∞;
    pai[v] = null;
  fim para
    dis[verticeInicial] = 0;
fim
```

- ✓ dis[v]: Distância da origem até v
- ✓ pai[v]: Vértice pai de v

Verificar se o caminho atual é melhor que o melhor caminho já conhecido!

Exemplificação do algoritmo de Dijkstra

Vértices	Α	В	С	D	E
Dis					
Pai					
Q					
S					

Vértices	Α	В	С	D	E
Dis	0	00	00	00	∞
Pai	null	null	null	null	Null
Q					
S					

Vértices	Α	В	С	D	E
Dis	0	∞	∞	∞	8
Pai	null	null	null	null	Null
Q	Х	Х	Х	Х	Х
S	-	-	-	1	•

Vértices	Α	В	С	D	E
Dis	0	∞	∞	∞	8
Pai	null	null	null	null	Null
Q	X	Х	Х	Х	Х
S	-	-	-	-	-

Vértices	Α	В	С	D	E
Dis	0	∞	∞	∞	8
Pai	null	null	null	null	Null
Q	-	Х	Х	Х	Х
S	Х	-	-	-	-

Vértices	Α	В	С	D	Е
Dis	0	00	00	∞	∞
Pai	null	null	null	null	Null
Q	-	Х	Х	Х	Х
S	Х	-	-	-	-

Vértices	Α	В	С	D	E
Dis	0	5	10	∞	∞
Pai	null	A	Α	null	Null
Q	-	Х	Х	Х	Х
S	Х	-	-	-	-

Vértices	Α	В	С	D	Е
Dis	0	5	10	∞	∞
Pai	null	Α	Α	null	Null
Q	-	Х	Х	Х	Х
S	Х	-	-	-	-

Vértices	Α	В	С	D	E
Dis	0	5	10	∞	∞
Pai	null	Α	Α	null	Null
Q	-	-	Х	Х	Х
S	Х	Х	-	-	-

Vértices	Α	В	С	D	E
Dis	0	5	10	∞	00
Pai	null	Α	Α	null	Null
Q	-	-	Х	Х	Х
S	Х	Х	-	-	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	14
Pai	null	Α	В	В	В
Q	-	-	Х	Х	Х
S	Х	Х	-	-	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	14
Pai	null	Α	В	В	В
Q	-	-	Х	Х	Х
S	Х	Х	-	-	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	14
Pai	null	Α	В	В	В
Q	-	-	Х	-	Х
S	Х	Х	-	Х	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	14
Pai	null	Α	В	В	В
Q	-	-	Х	-	Х
S	Х	Х	-	Х	ı

Vértices	Α	В	С	D	E
Dis	0	5	8	7	13
Pai	null	Α	В	В	D
Q	-	-	Х	-	Х
S	Х	Х	-	Х	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	13
Pai	null	Α	В	В	D
Q	-	-	X	-	Х
S	Х	Х	-	Х	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	13
Pai	null	Α	В	В	D
Q	-	-	-	-	Х
S	Х	Х	Х	Х	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	13
Pai	null	Α	В	В	D
Q	-	-	-	-	X
S	X	X	Х	X	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	9
Pai	null	Α	В	В	С
Q	-	-	-	-	Х
S	Х	Х	Х	Х	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	9
Pai	null	Α	В	В	С
Q	-	-	-	-	X
S	Х	Х	Х	Х	-

Vértices	Α	В	С	D	E
Dis	0	5	8	7	9
Pai	null	Α	В	В	С
Q	-	-	-	-	-
S	Х	Х	Х	Х	Х

Vértices	Α	В	С	D	E
Dis	0	5	8	7	9
Pai	null	Α	В	В	С
Q	-	-	-	-	-
S	Х	Х	Х	Х	Х

Vértices	Α	В	С	D	E
Dis	0	5	8	7	9
Pai	null	Α	В	В	С
Q	-	-	-	-	-
S	Х	Х	Х	Х	Х

Vértices	Α	В	С	D	E
Dis	0	5	8	7	9
Pai	null	A	В	В	C

Caminho A para B?

 $A \rightarrow B$

Custo: 5

Caminho A para C?

 $A \rightarrow B \rightarrow C$

Custo: 8

Caminho A para D?

 $A \rightarrow B \rightarrow D$

Custo: 7

Caminho A para E?

 $A \rightarrow B \rightarrow C \rightarrow E$

Custo: 9

Vértices	Α	В	С	D	E
Dis	0	5	8	7	9
Pai	null	A	В	В	С

Caminho A para B?

 $A \rightarrow B$

Custo: 5

Caminho A para C?

 $A \rightarrow B \rightarrow C$

Custo: 8

Caminho A para D?

 $A \rightarrow B \rightarrow D$

Custo: 7

Caminho A para E?

 $A \rightarrow B \rightarrow C \rightarrow E$

Custo: 9

- Complexidade do algoritmo:
 - Depende de como é implementado a função de extrair o mínimo!!!
 - Abordagem 1:
 - Busca sequencial
 - Custo quadrático: Número de Vértices X busca sequencial: $n^2 = O(v^2)$.
 - Abordagem 2:
 - Estrutura de Heap Fila de prioridade utilizando Heap.
 - Custo logaritmo: Número de vértices X complexidade Heap = $n * \log n = O(v \log v)$

Aplicações do algoritmo

Aplicações

• Problemas de rotas rodoviárias

Figura 4: Melhor caminho de custo mínimo entre cidades – Fonte: Google Maps

Aplicações

Figura 5: Rotas de roteamento entre redes de computadores

• Redes de computadores

 Utilizado o algoritmo de Dijkstra para calcular rotas de enlace, a topologia da rede e todos os custos dos enlaces são conhecidos e fornecidos como entrada [5].

Aplicações

Figura 6: Rota de fuga da cena de incêndio

- Sistema inteligente de evacuação em caso de incêndio.
 - Utilização do algoritmo de Dijkstra para calcular rotas para chegar até a saída em caso de incêndio [8].

Considerações finais

- O Algoritmo de Dijkstra é relativamente simples e poderoso.
 - Algoritmo de abordagem gulosa, com solução sempre ótima.
 - Complexidade pode ser $O(n \log n)$, dependendo da função de extrair mínimo.
 - Aceleração do algoritmo de Dijkstra pode ser realizada com processamento paralelo [7].
 - Não aplicado em problemas que necessitam de pesos negativos.
 - Para este tipo de problema é recomendado o algoritmo de Bellman-Ford.
 - Se o problema utilizar somente grafos acíclicos, melhor algoritmo é o de ordenação topológica

Considerações finais

- Implementações do algoritmo de Dijkstra podem ser acessadas em:
 - Repositório no GitHub:
 - https://github.com/brunoslima/Dijkstra-Algorithm

Referências Bibliográficas

- [1] Dijkstra, E. W. "A Note on Two Problems in Connection with Graphs", In: Numerische Mathematik, 1, p. 269–271, 1959.
- [2] ZIVIANI, Nivio. Projeto de algoritmos com implementações Pascal e C. 4. Ed. São Paulo : Pioneira, 1999.
- [3] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., & Stein, C. Algoritmos: teoria e prática. Editora Campus, 2 Ed, 2002.
- [4] SEDGEWICK, R, WAYNE, K. Algorithms. 4th Edition. Addison-Wesley, 2011.

Referências Bibliográficas

- [5] KUROSE, J. F. e ROSS, K. Redes de Computadores e a Internet 5ª Ed., Pearson, 2010
- [6] RICHARDS, H. Manuscripts of Edsger W. Dijkstra, University Texas at Austin. Disponível em: http://www.cs.utexas.edu/users/EWD/>.
- [7] A. Prasad, S. K. Krishnamurthy and Y. Kim, "Acceleration of Dijkstra's algorithm on multi-core processors," 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, 2018, pp. 1-5.
- [8] Y. Xu, Z. Wang, Q. Zheng and Z. Han, "The Application of Dijkstra's Algorithm in the Intelligent Fire Evacuation System," 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, Jiangxi, 2012, pp. 3-6.