Cloud Computing

Cloud Computing, Spring 2024

Cloud Computing

- Lecturer: Dr. Kristian F. D. Rietveld
 - TA: Weikang Weng MSc
- Full semester course, 6 EC
 - Designed for and mandatory for "Advanced Computing and Systems" (ACS) track.
 - Limited capacity for students from other tracks.
 - Selection procedure for remaining places.
 - This will be an advanced **computer systems** course, therefore participants are expected to have taken *computer architecture* and *operating systems* courses on a BSc level.
- Brightspace course: all information can be found there.
 - All students that participate with the first assignment & paper selection will receive a final grade, also if the remainder of the course is not finished.

Course plan

- Study the research area of Cloud Computing together.
- Planned structure:
 - ~6 broad **introductory lectures** by the lecturer.
 - **Paper presentations** by all course participants.
 - Recently published paper (last ~3 years, 8+ pages). Lecturer to provide a list of papers to choose from.
 - Home work and Lab assignments will run along lectures and presentations.
 - Final lecture: wrap-up / closing / what did we learn?
 - Written exam in June.

Examination

- The final grade consists of three parts:
 - Lab assignments (40%)
 - Paper presentation (25%)
 - Form your own opinion of the content and scientific contribution of the paper; in fact a mini review.
 - Peer review: your presentation will be graded by the lecturer and two randomly picked participants. You are required to participate in peer review.
 - Written exam with open & essay questions (35%)
- \rightarrow All components must be sufficient (>= 5.5) to pass the course.
- Homework is mandatory but don't count against the final grade.

Lab Assignments

- > Teams of 2 are allowed.
- Linux & programming skills required.
- > Two lab assignments are planned:
 - 1. Small, automatically scaling web application on top of Linux container technology and virtual networking. **40%**
 - 2. Write a Cloud-like application on top of typical components used in Cloud software. Scaling & fault tolerance experiments.
 Goal: become familiar with Cloud technologies. 60%

Textbook

- > The course does not have a prescribed textbook; the lecturer couldn't find something suitable.
- > Therefore, we will read academic literature.
- A reading list of papers used as source for these slides will be made available on BrightSpace.

Course contents

What will we be discussing?

What is Cloud Computing anyway?

What is Cloud Computing anyway?

What is Cloud Computing anyway?

Your ideas?

What is Cloud Computing?

- This is actually a good question, and several papers have been written on this topic!
 - E.g. L. Vaquero et al. (2009): *A Break in the Clouds: Towards a Cloud Definition*.
- An MIT technology review article suggests that
 - Cloud computing was coined as marketing term in a 1996 business proposal.
 - In 2006 the term started to be used by big companies (Google, Amazon) to describe SaaS architectures.
 - Source: https://www.technologyreview.com/s/425970/who-coinedcloud-computing/

What is Cloud Computing (2)

- What do different papers have to say?
- L. Vaquero et al. (2009): overall picture confusing; but boils down to a large collection of virtualized resources that can be dynamically scaled and are billed through pay-per-use model.
- > G. Pallis (2010): new multidisciplinary research field, consisting of several trends coming together.
- M. Armburst et al. (2010): the combination of SaaS and utility computing.

NIST definition

- Published in September 2011.
 - Source: https://csrc.nist.gov/publications/detail/sp/800-145/final
- Five essential characteristics:
 - *On-demand self-service*: customers can provision compute time and data storage without requiring intervention of a system administrator at the service provider.
 - *Broad network access*: widely accessible over the network using standard protocols.
 - (see next slide)

NIST definition (2)

- Five essential characteristics:
 - *Resource pooling*: with the same set of resources multiple customers are served; resources can be dynamically reassigned. Customer has no control over exact location of resource (apart from specifying region).
 - Rapid elasticity: automatic acquisition and release of resources to enable up- and downscaling. Available capacity appears unlimited to the customer.
 - *Measured service*: all use of resources is metered. Can be used for monitoring and billing.

Novelty

- How novel is Cloud Computing?
- > There appears to be consensus that Cloud Computing is in fact the combination of a number of existing technologies.
- The individual technologies are not new:
 - Virtualization has been around for a long time.
 - Utility computing, the idea of paying another company as you go to run your computations, was already thought about in the '60s and '70s.
 - Service metering is common practice for computational clusters.
 - Broad network access is also not new, although it is true that this has improved significantly in the last decade.

What about Grid Computing?

- > The idea of grid computing was to combine multiple cluster computers (administered by different organizations) into a "single" large cluster computer.
 - Not really *on-demand self-service* and *rapid elasticity*, but rather classic HPC job scheduling.
- Special grid middleware was developed to achieve this.
- > The different clusters are typically heterogeneous and located at different geographical locations.
- Original HPC grids were usually private.
- The largest grid is the one built for CERN LHC. It comprises 170 computing centers in 42 countries (http://wlcg-public.web.cern.ch/).

NIST definition (3)

- Three service models:
 - Software as a Service (SaaS)
 - Platform as a Service (PaaS)
 - Infrastructure as a Service (IaaS)

Of course many more have been devised. XaaS.

Figure 1. A general layered architecture of cloud infrastructures. Cloud computing uses IT infrastructure as a service. Its architecture defines three distinct layers from computing resources to end-user applications.

Image source: G. Pallis (2010): *Cloud Computing, The New Frontier of Internet Computing.* IEEE Internet Computing.

SaaS

- Applications running on a provider's cloud infrastructure, accessible through a "thin client" interface (for example web browser, smartphone App).
- Examples: web-based e-mail, web-based document processing, social media platforms, online bookshops.

PaaS

- Deploy applications onto cloud infrastructure, written using languages/libraries/services supported by the cloud provider.
- > This is an abstract deployment, there's no control of underlying hardware resources.
- Examples: Google App Engine
 - Ability to develop web applications in one of the supported languages (Python, Java, Go, PHP, Node.js)
 - Access to several frameworks
 - Automatic upscaling on demand
 - Code can only be called from a HTTP request

IaaS

- * "Rent" computing resources: CPU time, storage, networking. Arbitrary software can be run on these resources (cf. PaaS!).
- Think about provisioning virtual machines, block and object storage.
- Examples: Amazon EC2, Google Compute Engine, RackSpace, Linode and many other VPS (virtual private service) providers.

Addition: Serverless Computing

- FaaS: Functions as a Service
- > The idea is to write functions that are hosted "in the cloud".
 - No need to think about servers and infrastructure.
 - Function is invoked by an app running on a terminal (e.g. smartphone) and then executed.
- You pay per function invocation (or accumulated function running time).
 - When no code is executing, there is no charge (cf. IaaS)
- Only functions are hosted in the cloud, not an entire web application (cf. PaaS).

NIST definition (4)

- Four deployment models:
 - *Private Cloud*: cloud infrastructure private to a single organization.
 - *Public Cloud*: infrastructure open for use by general public.
 - Community Cloud: exclusive use by a specific community of users.
 - Hybrid Cloud: infrastructure that is any combination of the above.
 - Example: surge computing: we run everything on a private cloud, but in case of peak demand also resources from a public cloud are used.

Addition: multi-cloud

- Use resources from multiple cloud providers, because you might not want to rely on a single provider.
- Interoperability challenge:
 - Underlying virtualization techniques might be different.
 - Different APIs for managing resources.
 - Different SLA / cost.
 - Different authentication techniques.
- Concisely summarized and described in:
 R. Ranjan (2014): The Cloud Interoperability Challenge. IEEE Cloud Computing.

Addition: Federated Clouds

- Multiple organizations pooling their cloud infrastructure together, to create a single larger infrastructure.
- Individual cloud infrastructures may be heterogeneous, middleware required to make this work (and to solve interoperability challenges).

Other examples of federated technologies are SMTP (e-mail) and XMPP (Jabber messaging).

Business Aspects (Cloud Economics)

- Several papers tout the advantages of cloud computing for businesses:
 - Start-up companies don't need a lot of capital up front to build their own infrastructure.
 - Much easier to deal with peak demand:
 - It is no longer required to have this on premises, you can simply rent infrastructure when necessary.
 - Also much cheaper: idle machines on premises are expensive, in the case of cloud computing you pay as you use.
 - For smaller companies: no need to have in-house system administration, so they can focus on their product.

Topics to be covered

- Technical fundamentals of cloud infrastructure
- Resource management, availability, elasticity
- Cloud programming models and tools
- Emerging topics in cloud computing

(We will explicitly not discuss economics, management, DevOps software engineering)

Next week

- We discuss the technical foundations of Cloud Computing.
 - Virtual machines, Hypervisors, trap-and-emulate, CPU extensions, nested page tables, ...

Information on selection procedure will follow on Brightspace.

