Motion-Compensated Coding

- Motion estimation
 - Blockmatching
 - Matching criterion for blockmatching
 - Sub-pixel accurate motion
- Motion-compensated coding
 - Motion-compensated prediction error
 - Prediction error coding
- Standard video codec architecture
- Video compression standards

Block-Matching Algorithm

block of current frame S_k

- Subdivide every image into square blocks.
- Find one displacement vector for each block.
- Within a search range, find a best "match" that minimizes an error measure.
- Intelligent search strategies can reduce computation.

Block-Matching Algorithm

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match Rectangular array of pixels is selected as a measurement window

Block-Matching Algorithm

. . . process repeated for another measurement window position.

Blockmatching: Matching Criterion

Sum of Squared Differences to determine similarity

 Alternative matching criteria: SAD (Sum of Absolute Differences), cross correlation, . . .

SSD Values Resulting from Blockmatching

Motion-Compensated Prediction: Example

Previous frame

Prediction with displacement vectors

Motion-compensated prediction error

Blockmatching: Search Strategies

Full search

- All possible displacements within the search range are compared.
- Computationally expensive
- Highly regular, parallelizable

Hierarchical Blockmatching

Sub-Pixel Accuracy

- Interpolate pixel raster of the reference image to desired sub-pixel accuracy (for example by bi-linear interpolation)
- Straightforward extension of displacement vector search to fractional accuracy
- Example: half-pixel accurate displacements

$$\begin{pmatrix} d_x \\ d_y \end{pmatrix} = \begin{pmatrix} 4.5 \\ 4.5 \end{pmatrix}$$

Bi-Linear Interpolation

Sub-Pixel Accuracy with Resolution Pyramid

Motion-Compensated Coding

Motion-compensated prediction + intraframe coding

- Intraframe coding
- Motion-compensated prediction error
- Prediction error coding

PSD of Typical Intraframe

Intraframe Coding of Gaussian Image

Motion-Compensated Prediction Error

Motion-compensated signal

$$c(x) = s(x - \Delta_x) - n(x)$$

Prediction error

Previous

frame

PSD of Motion-Compensated Prediction Error

P Picture

B Picture

GOP Structure Example

- Each I picture starts a Group of Pictures (GOP) that can be decoded independently.
- Encoder can flexibly choose I picture, P pictures and B pictures.

Standard Video Codec Architecture

Video Compression Standards

Intraframe coding: only spatial correlation exploited

→ DCT [Ahmed, Natarajan, Rao 1974], JPEG [1992]

Complexity increases

Conditional replenishment, DPCM, scalar quantization

→ H.120 [1984]

Motion compensation: integer-pel accurate displacements

→ H.261 [1991]

Half-pel accurate motion compensation

→ MPEG-1 [1993], MPEG-2/H.262 [1994]

Variable block-size motion compensation

→ H.263 [1996], MPEG-4 [1999]

Multi-frame motion compensation

→ H.264/MPEG-4 AVC [2003]

