- Under application of an ac signal (v_i), the dynamic operating point (DOP) will move along the load line
- For *positive* v_i , the DOP will move Q towards saturation $(V_{CE} \rightarrow 0, I_C \rightarrow I_{C,max})$
 - The *output signal* (v_0) will be in its *negative excursion*
 - ightharpoonup If Q enters *saturation*, *negative peak* of v_0 will get *clipped*
 - > Distorted output

- For negative v_i , the DOP will move Q towards cutoff $(V_{CE} \rightarrow V_{CC}, I_C \rightarrow 0)$
 - The *output signal* (v_0) will be in its *positive excursion*
 - \triangleright If Q *cuts off*, *positive peak* of v_0 will get *clipped*
 - > Distorted output
- Golden rule of thumb for BJT biasing:
 - To get maximum undistorted peak-topeak swing of v_0 , Q-point must be chosen to be at the middle of the load line

• Role of R_C :

- ightharpoonup Under FA mode, R_C does not control I_C , however, it changes V_{CE} (= $V_{CC} I_C R_C$)
- \triangleright If $R_C \uparrow$, $V_{CE} \downarrow \Rightarrow Q$ moves towards saturation
- $ightharpoonup \operatorname{If} R_{C} \downarrow, V_{CE} \uparrow \Rightarrow Q \operatorname{moves} \operatorname{towards} \operatorname{cutoff}$
- Thus, different values of R_C can produce different Q-points (in terms of V_{CE})

• DC Power Dissipation:

$$P_{D} = V_{BEQ} \times I_{BQ} + V_{CEQ} \times I_{CQ}$$

$$\approx V_{CEQ} \times I_{CQ} (under FA \ mode)$$

Some Observations

- Q should be *biased* such that it is in the *FA* mode of operation
 - ➤ Behaves like a constant and ideal current source with infinite output resistance, since I_C is independent of V_{CE}
 - > Ideal region to bias a BJT
- For very high R_C, I_{C,max} very small
 - Load line may not have any intersection point in the FA region at all

- > Q-point moves to saturation region
- > Ceases to become a constant current source, since in saturation, I_C becomes a strong function of V_{CE}
- > Disastrous way of biasing a BJT
- Similar situation will arise if R_C is very small
 - ➤ I_{C,max} will become *very large* and *Q-point will move towards cutoff*
 - > Another disastrous way of biasing a BJT

- Example: Let $V_{CC} = V_B = 5 \text{ V}$, $R_B = 430 \text{ k}\Omega$, and $\beta = 100 \text{ }$
 - $ightharpoonup I_B = (V_B V_{BE})/R_B = (5 0.7)/(430 \text{ k}\Omega) = 10$ μA (assuming *FA* mode of operation with V_{BE} = 0.7 V)
 - $I_C = \beta I_B = 1 \text{ mA}$
 - \triangleright V_{CE} will *depend* on our *choice* of R_C
 - ightharpoonup R_C for *best biasing* (BB) (V_{CE}(BB) = V_{CC}/2):
 - $R_C(BB) = V_{CC}/(2I_C) = 2.5 \text{ k}\Omega$
 - $ightharpoonup R_C$ that puts Q at OS (VCE(OS) = 0.7 V):
 - $R_C(OS) = [V_{CC} V_{CE}(OS)]/I_C = 4.3 \text{ k}\Omega$

Any value of R_C higher than 4.3 $k\Omega$ would push Q in saturation

- ightharpoonup Choose $R_C = 20 \text{ k}\Omega$:
 - Assuming FA operation is maintained, V_{CE} comes out to be -15 V!
 - Golden rule:
 - * Potential at any point in a circuit can never go beyond the positive and negative extremes of the power supply voltages, unless there is a power source within the circuit
 - Thus, $V_{CE} = -15 \text{ V is } absurd$
 - Hence, Q is *no more* in the *FA* mode of operation, rather it has been pushed into *saturation*