Spatio-temporal statistics (MATH4341)

Michaelmas term, 2023

Problem class sheet 3

(DRAFT, TO BE REFINED AFTER THE PROBLEM CLASS)

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1. $(\star\star)$

Inventory of useful formulas.

[Normal distr. conditioning] Let $x_1 \in \mathbb{R}^{d_1}$, and $x_2 \in \mathbb{R}^{d_2}$. If

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}_{d_1 + d_2} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix} \right)$$

then it is

$$x_2|x_1 \sim N_{d_2}(\mu_{2|1}, \Sigma_{2|1})$$

where

$$\mu_{2|1} = \mu_2 + \Sigma_{21}\Sigma_1^{-1}(x_1 - \mu_1)$$
 and $\Sigma_{2|1} = \Sigma_2 - \Sigma_{21}\Sigma_1^{-1}\Sigma_{21}^{\top}$

Consider the Bayesian Kriging from your lecture notes:

$$Z(s) = Y(s) + \varepsilon(s), \ s \in \mathcal{S}$$

where

$$\varepsilon(\cdot) \sim \text{GP}\left(0, c_{\varepsilon}(\cdot, \cdot | \tau)\right)$$

with $c_{\varepsilon}(s, s'|\tau) = \tau^2 \mathbb{1}_{\{0\}}(\|s - s'\|)$ and

$$Y(\cdot) | \beta, \theta \sim GP(\mu(\cdot|\beta), c_Y(\cdot, \cdot|\sigma^2, \phi))$$

with mean function $\mu(\cdot|\beta)$ (to be specified later) labeled by unknown parameter β and covariance function $c_Y(\cdot,\cdot|\sigma^2,\phi) = \sigma^2 r(\cdot,\cdot|\phi)$.

Assume there is available a dataset $\{(s_i, Z_i)\}_{i=1}^n$ where $Z_i = Z(s_i)$ is a realization of a stochastic process (Z_s) .

- (1) Write the hierarchical spatial model $Z\left(\cdot\right)|Y\left(\cdot\right),\beta,\varphi$ and $Y\left(\cdot\right)|\beta,\varphi$ where $\varphi=\left(\sigma^{2},\phi,\tau\right)^{\top}$
- (2) Write the marginal process $Z(\cdot) | \beta, \varphi$ where $\varphi = (\sigma^2, \phi, \tau)^{\top}$, its mean function denoted as $\mu(\cdot|\cdot)$, and its covariance function denoted as $c(\cdot|\cdot)$.

Hint:: Let Y and X be independent random variables with $X \sim N(\mu_X, \Sigma_X)$, $Y \sim N(\mu_Y, \Sigma_Y)$. Let A and B be fixed matrices. Let c be a fixed vector. Then

$$AX + BY + c \sim N \left(A\mu_X + B\mu_Y + c, A\Sigma_X A^\top + B\Sigma_Y B^\top \right)$$

(3) Compute the predictive process $Z(\cdot)|Z,\beta,\varphi|$ as

$$Z(\cdot)|Z,\beta,\varphi \sim GP(\mu_1(\cdot|\beta,\varphi),c_1(\cdot,\cdot|\varphi))$$

with

$$c_1(s, s'|\varphi) = c(s, s|\varphi) + (C(S, s|\varphi))^{\top} (C(S, S|\varphi))^{-1} C(S, s'|\varphi)$$

$$\mu_1(s|\beta, \varphi) = \mu(s|\beta) - (C(S, s|\varphi))^{\top} (C(S, S|\varphi))^{-1} (\mu(S|\beta) - Z)$$

Hint: See the Conditional Normal formula above.

- (4) Assume $\mu(s|\beta) = \psi(s)^{\top} \beta$. Consider a conjugate prior on β as $\beta \sim N(b, B)$ where B > 0.
 - (a) Write down the Bayesian statistical model involving $[Z|\beta,\varphi]$, and $[\beta|\varphi]$.
 - (b) Compute the posterior distribution as

$$\beta | Z, \varphi \sim N(b_n(\varphi), B_n(\varphi))$$

with

$$B_n = (B^{-1} + \Psi^{\top} (C(S, S|\varphi))^{-1} \Psi)^{-1}$$
$$b_n = B_n (B^{-1}b + \Psi^{\top} (C(S, S|\varphi))^{-1} Z)$$

where $R(S, S|\varphi)$ is a matrix with $[R(S, S|\varphi)]_{i,j} = r(s_i, s_j|\varphi)$.

Hint: Use the following identity

$$(y - \Phi \beta)^{\top} \Sigma^{-1} (y - \Phi \beta) + (\beta - \mu)^{\top} V^{-1} (\beta - \mu) = (\beta - \mu^*)^{\top} (V^*)^{-1} (\beta - \mu^*) + S^*;$$

$$V^* = (V^{-1} + \Phi^{\top} \Sigma^{-1} \Phi)^{-1}; \qquad \mu^* = V^* (V^{-1} \mu + \Phi^{\top} \Sigma^{-1} y)$$

$$S^* = \mu^{\top} V^{-1} \mu - (\mu^*)^{\top} (V^*)^{-1} (\mu^*) + y^{\top} \Sigma^{-1} y;$$

(c) Compute the (posterior) predictive process $Z\left(\cdot\right)|Z,\varphi$ given the data Z and given the parameters φ as

$$Z(\cdot)|Z,\varphi \sim \operatorname{GP}(\mu_2(\cdot|\varphi),c_2(\cdot,\cdot|\varphi))$$

with

$$\mu_{2}(s|\varphi) = \left(\Psi C^{-1} (C(s))^{\top} - \psi(s)\right)^{\top} \left(B^{-1} + \Psi^{\top} C^{-1} \Psi\right)^{-1} B^{-1} b$$

$$+ \left[(C(s))^{\top} + \left(\Psi C^{-1} (C(s))^{\top} - \psi(s)\right)^{\top} \left(B^{-1} + \Psi^{\top} C^{-1} \Psi\right)^{-1} \Psi \right] C^{-1} Z$$

$$c_{2}(s, s'|\varphi) = c(s, s'|\varphi) - (C(s))^{\top} C^{-1} C(s')$$

$$+ \left(\Psi C^{-1} (C(s))^{\top} - \psi(s)\right)^{\top} \left(B^{-1} + \Psi^{\top} C^{-1} \Psi\right)^{-1} \left(\Psi C^{-1} (C(s'))^{\top} - \psi(s')\right)$$

with column vector $C(s) := (c(s, s_1|\varphi), ..., c(s, s_n|\varphi))^{\top}$, and matrix $C := C(S, S|\varphi)$.

(d) Compute the marginal likelihood $Pr(Z|\varphi)$ in the form

$$\Pr(Z|\sigma^{2},\varphi) = N\left(Z|\Psi b, \left(C^{-1} - C^{-1}\Psi\left(B^{-1} + \Psi^{\top}B^{-1}\Psi\right)^{-1}\Psi^{\top}C^{-1}\right)^{-1}\right)$$

where Ψ is a matrix with $[\Psi]_{i,j} = \psi_j(s_i)$, and R is a matrix with $[C]_{i,j} = c(s_i, s_j | \varphi)$.

Hint-2:: It is

$$\int \mathcal{N}(Z|\Psi\beta, C) \mathcal{N}(\beta|b, B) d\beta = \mathcal{N}(Z|\Psi b, C + \Psi B \Psi^{\top})$$

Hint 3:: [Woodbury matrix identity]

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1} VA^{-1}$$

(5) Consider non-informative prior $\Pr(\beta) \propto 1$ for β by specifying $b \to 0$ and letting $B^{-1} \to 0$. Argue whether such a prior can be used. Recompute the (asymptotic) quantities $\Pr(Z|\varphi)$, $[Z(\cdot)|Z,\varphi]$ under this new prior.

Solution.

(1) The hierarchical model was

$$Z(\cdot) | Y(\cdot), \tau \sim GP(Y(\cdot), c_{\varepsilon}(\cdot, \cdot | \sigma^{2}, \xi))$$
$$Y(\cdot) | \beta, \sim GP(\mu(\cdot | \beta), c_{Y}(\cdot, \cdot | \sigma^{2}, \phi))$$

with
$$c_{\varepsilon}(\cdot, \cdot | \sigma^2, \xi) = \sigma^2 \xi^2 \mathbb{1}_{\{0\}}(\|s - s'\|)$$

(2) We use the additive property of the Gaussian distribution (Hint-1) it is

$$Z(\cdot) | \beta, \xi, \sigma^2, \phi \sim GP(\mu(\cdot|\beta), c(\cdot, \cdot|\xi, \sigma^2, \phi))$$

where

$$c(s, s'|\xi, \sigma^2, \phi) = c_Y(s, s'|\sigma^2, \phi) + c_{\varepsilon}(s, s'|\sigma^2, \xi)$$

(3) Assume a vector of "unseen" sites $S_* = (s_{*,1}, ..., s_{*,q})^{\top}$ for any $q \in \mathbb{N}_0$. Let convenient notation Z := Z(S), and $Z_* := Z(S_*)$. The join marginal distribution of $(Z_*, Z)^{\top}$ given β , $\theta = (\sigma^2, \phi, \tau)^{\top}$ is

(0.1)
$$\begin{pmatrix} Z_* \\ Z \end{pmatrix} | \beta, \varphi \sim \mathcal{N} \left(\begin{pmatrix} \mu(S_*; \beta) \\ \mu(S; \beta) \end{pmatrix}, \begin{pmatrix} C(S_*, S_* | \varphi) & (C(S_*, S | \varphi))^\top \\ C(S_*, S | \varphi) & C(S, S | \varphi) \end{pmatrix} \right)$$

by using convenient notation $[C(S_*, S|\varphi)]_{i,j} = s(s_{*,i}, s_j|\varphi)$ and $[\mu(S;\beta)]_i = \mu(s_i;\beta)$. Using the Normal distribution conditioning, I get

$$Z_*|Z,\beta,\varphi \sim N(\mu_*(S_*|\beta,\varphi),C_*(S_*,S_*|\varphi))$$

where

$$C_* (S_*, S_* | \varphi) = C (S_*, S_* | \varphi) + (C (S, S_* | \varphi))^{\top} (C (S, S | \varphi))^{-1} C (S, S_* | \varphi)$$
$$\mu_* (S_* | \beta, \varphi) = \mu (S_* | \beta) - (C (S, S_* | \varphi))^{\top} (C (S, S | \varphi))^{-1} (\mu (S | \beta) - Z)$$

As it is for any length of any vector S_* , then it is a Gaussian process

$$Z(\cdot)|Z,\beta,\varphi \sim GP(\mu_1(\cdot|\beta,\varphi),c_1(\cdot,\cdot|\varphi))$$

with

$$c_1(s, s'|\varphi) = c(s, s|\varphi) + (C(S, s|\varphi))^{\top} (C(S, S|\varphi))^{-1} C(S, s'|\varphi)$$
$$\mu_1(s|\beta, \varphi) = \mu(s|\beta) - (C(S, s|\varphi))^{\top} (C(S, S|\varphi))^{-1} (\mu(S|\beta) - Z)$$

(4)

(a) the Bayesian model is

(0.2)
$$\begin{cases} Z|\beta, \varphi \stackrel{\text{ind}}{\sim} \operatorname{N}(\Psi\beta, C(S, S|\varphi)) \\ \beta|\varphi \sim \operatorname{N}(b, B) \end{cases}$$

(b) Let $C := C(S, S|\varphi)$. The posterior distribution is

$$\Pr(\beta|Z,\varphi) \propto \Pr(Z|\beta,\varphi) \Pr(\beta|\varphi)$$

$$= \operatorname{N}(Z|\Psi\beta,C) \operatorname{N}(\beta|b,B)$$

$$\propto \exp\left(-\frac{1}{2} (Z - \Psi\beta)^{\top} C^{-1} (Z - \Psi\beta)\right) \exp\left(-\frac{1}{2} (\beta - b)^{\top} B^{-1} (\beta - b)\right)$$

$$= \exp\left(-\frac{1}{2} \left[(Z - \Psi\beta)^{\top} C^{-1} (Z - \Psi\beta) + (\beta - b)^{\top} B^{-1} (\beta - b)\right]\right)$$

By using the hint I have

$$(Z - \Psi \beta)^{\top} C^{-1} (Z - \Psi \beta) + (\beta - b)^{\top} B^{-1} (\beta - b) = (\beta - b_n)^{\top} (B_n)^{-1} (\beta - b_n) + R_n$$
where by denoting $B_n := B_n (\varphi)$, and $b_n := b_n (\varphi)$ I get
$$B_n = (B^{-1} + \Psi^{\top} C^{-1} \Psi)^{-1}$$

$$b_n = B_n (B^{-1} b + \Psi^{\top} C^{-1} Z)$$

and R_n is a "constant" quantity that does not contain any β . Hence

$$\Pr(\beta|Z,\varphi) \propto \exp\left(-\frac{1}{2}(\beta - b_n)^{\top} (B_n)^{-1} (\beta - b_n) - \frac{1}{2}R_n\right)$$
$$\propto \exp\left(-\frac{1}{2}(\beta - b_n)^{\top} (B_n)^{-1} (\beta - b_n)\right)$$

Well, from the above, I recognize the kernel of the Multivariate Normal distribution, as

$$\beta | Z, \varphi \sim N(b_n(\varphi), B_n(\varphi))$$

(c) Assume a vector of "unseen" sites $S_* = (s_{*,1}, ..., s_{*,q})^{\top}$ for any $q \in \mathbb{N}_0$. Let convenient notation Z := Z(S), and $Z_* := Z(S_*)$. It is

$$\Pr(Z_*|Z,\varphi) = \int \Pr(Z_*|Z,\varphi) \Pr(\beta|Z,\varphi) d\beta$$
$$= \int N(Z_*|\mu_1(S_*), C_1(S_*, S_*)) N(\beta|b_n, B_n) d\beta$$

Let $\Psi_* = \Psi(S_*)$, $C_* = C(S_*, S|\varphi)$, and $C_{**} = C(S_*, S_*|\varphi)$. Notice that

$$\mu_1(S_*) = \Psi_* \beta - C_* C^{-1} (\Psi \beta - Z)$$
$$= \left[\Psi_* - C_* C^{-1} \right] \beta + C_* C^{-1} Z$$

Hence, for given/fixed Z, φ , it is

$$Z_* = C_*C^{-1}Z + \left[\Psi_* - C_*C^{-1}\right]\beta + \zeta, \quad \zeta \sim N(0, C_1(S_*, S_*))$$

Hence, because $\beta \sim \mathrm{N}(b_n, B_n)$, and because $Z_*|Z, \varphi$ is a linear combination of the Normally distributed random vector $\beta \sim \mathrm{N}(b_n, B_n)$, $Z_*|Z, \varphi$ follows a Normal distribution, with mean

$$\mu_{2}(S_{*}) = \mathbb{E}_{\beta \sim \mathcal{N}(b_{n}, B_{n})} (Z_{*} | \mu_{1}(S_{*}), C_{1}(S_{*}, S_{*}))$$

$$= (\Psi_{*} - C_{*}C^{-1}) \mathbb{E}_{\beta \sim \mathcal{N}(b_{n}, B_{n})} (\beta) + C_{*}C^{-1}Z$$

$$= (\Psi_{*} - C_{*}C^{-1}) b_{n} + C_{*}C^{-1}Z$$

$$= (\Psi_{*} - C_{*}C^{-1}) (B^{-1} + \Psi^{\top}C^{-1}\Psi)^{-1} (B^{-1}b + \Psi^{\top}C^{-1}Z) + C_{*}C^{-1}Z$$

$$= (\Psi_{*} - C_{*}C^{-1}) (B^{-1} + \Psi^{\top}C^{-1}\Psi)^{-1} B^{-1}b$$

$$+ \left[(\Psi_{*} - C_{*}C^{-1}) (B^{-1} + \Psi^{\top}C^{-1}\Psi)^{-1} \Psi^{\top} + C_{*} \right] C^{-1}Z$$

and with covariance matrix

$$C_{2}(S_{*}, S_{*}) = \operatorname{Var}_{\beta \sim \mathcal{N}(b_{n}, B_{n})} (Z_{*} | \mu_{1}(S_{*}), C_{1}(S_{*}, S_{*}))$$

$$= \operatorname{Var}_{\beta \sim \mathcal{N}(b_{n}, B_{n})} ([\Psi_{*} - C_{*}C^{-1}] \beta) + \operatorname{Var}_{\zeta \sim \mathcal{N}(0, C_{1}(S_{*}, S_{*}))} (\zeta)$$

$$= [\Psi_{*} - C_{*}C^{-1}] B_{n} [\Psi_{*} - C_{*}C^{-1}]^{\top} + C_{1}(S_{*}, S_{*})$$

$$= [\Psi_{*} - C_{*}C^{-1}] (B^{-1} + \Psi^{\top}C^{-1}\Psi)^{-1} [\Psi_{*} - C_{*}C^{-1}]^{\top}$$

$$+ C_{**} + (C_{*})^{\top} C^{-1}C_{*}$$

Since this is for any vector S_* of any length, then

$$Z(\cdot)|Z,\varphi \sim GP(\mu_2(\cdot|\varphi),c_2(\cdot,\cdot|\varphi))$$

with mean function at s

$$\begin{split} \mu_2\left(s|\varphi\right) &= \left(\psi\left(s\right) - C\left(s\right)C^{-1}\right)\left(B^{-1} + \boldsymbol{\Psi}^{\intercal}C^{-1}\boldsymbol{\Psi}\right)^{-1}B^{-1}b \\ &+ \left[\left(\psi\left(s\right) - C\left(s\right)C^{-1}\right)\left(B^{-1} + \boldsymbol{\Psi}^{\intercal}C^{-1}\boldsymbol{\Psi}\right)^{-1}\boldsymbol{\Psi}^{\intercal} + C\left(s\right)\right]C^{-1}Z \end{split}$$

and covariance function as s, s'

$$c_{2}(s, s'|\varphi) = \left[\psi(s) - C(s)C^{-1}\right] \left(B^{-1} + \Psi^{\top}C^{-1}\Psi\right)^{-1} \left[\psi(s) - C(s)C^{-1}\right]^{\top} + c(s, s'|\varphi) + (C(s))^{\top}C^{-1}C(s)$$

(d) It is, from Hint-2,

$$\Pr(Z|\varphi) = \int \Pr(Z|\beta,\varphi) \Pr(\beta) d\beta$$

$$= \int \operatorname{N}(Z|\Psi\beta, C(S, S|\varphi)) \operatorname{N}(\beta|b, B) d\beta$$

$$= \int \operatorname{N}(Z|\Psi\beta, C(S, S|\varphi)) \operatorname{N}(\Psi\beta|\Psi b, \Psi B \Psi^{\top}) d\beta$$

$$= \operatorname{N}(Z|\Psi b, C(S, S|\varphi) + \Psi B \Psi^{\top})$$

where by letting $C = C(S, S|\varphi)$ and using the Hint I get

$$(C + \Psi B \Psi^{\top})^{-1} = C^{-1} - C^{-1} \Psi (B^{-1} + \Psi^{\top} C^{-1} \Psi)^{-1} \Psi^{\top} C^{-1}$$

(5) Denote $C = C(S, S|\varphi)$. It is

$$\lim_{B^{-1} \to 0} \Pr(Z|\varphi) = \lim_{B^{-1} \to 0} \operatorname{N}\left(Z|\Psi b, C + \Psi B \Psi^{\top}\right)$$

$$b \to 0$$

$$\propto \lim_{B^{-1} \to 0} \operatorname{N}\left(Z|0, \left(C^{-1} - C^{-1}\Psi\left(\Psi^{\top}C^{-1}\Psi\right)^{-1}\Psi^{\top}C^{-1}\right)^{-1}\right)$$

$$b \to 0$$

$$<\infty$$

namely the bottom part of the fraction of the posterior of $\beta|Z,\varphi$ is bounded (finite), which implies a proper posterior. It is

$$\Pr\left(\beta|Z,\varphi\right) \propto \exp\left(-\frac{1}{2}\left(\beta - b_n\right)^{\top} B_n^{-1}\left(\beta - b_n\right)\right)$$

$$\lim_{B^{-1} \to 0} \exp\left(-\frac{1}{2} (\beta - b_n)^{\top} B_n^{-1} (\beta - b_n)\right) = b \to 0$$

$$\exp\left(-\frac{1}{2}\left(\beta-\left(\Psi^{\top}C^{-1}\Psi\right)^{-1}\Psi^{\top}C^{-1}Z\right)^{\top}\left(\Psi^{\top}C^{-1}\Psi\right)\left(\beta-\left(\Psi^{\top}C^{-1}\Psi\right)^{-1}\Psi^{\top}C^{-1}Z\right)\right)$$

hence the limiting case is

$$\beta | Z, \varphi \stackrel{\text{approx}}{\sim} \text{N} \left(\left(\Psi^{\top} C^{-1} \Psi \right)^{-1} \Psi^{\top} C^{-1} Z, \left(\Psi^{\top} C^{-1} \Psi \right)^{-1} \right)$$

The predictive process becomes

$$Z\left(\cdot\right)|Z,\varphi \overset{\text{approx}}{\sim} \operatorname{GP}\left(\mu_{3}\left(\cdot|\varphi\right),c_{3}\left(\cdot,\cdot|\varphi\right)\right)$$

$$\mu_{3}\left(s|\varphi\right) = \left[\left(\psi\left(s\right)-C\left(s\right)C^{-1}\right)\left(\Psi^{\top}C^{-1}\Psi\right)^{-1}\Psi^{\top}+C\left(s\right)\right]C^{-1}Z$$

$$c_{3}\left(s,s'|\varphi\right) = \left(\psi\left(s\right)-C\left(s\right)C^{-1}\right)\left(\Psi^{\top}C^{-1}\Psi\right)^{-1}\left(\psi\left(s\right)-C\left(s\right)C^{-1}\right)^{\top}$$

$$+c\left(s,s'|\varphi\right)+\left(C\left(s\right)\right)^{\top}C^{-1}C\left(s\right)$$

Exercise 2. (*) Show that the extension variance $\sigma_E^2(v, V)$ of a small volume v to a larger volume V is obtained by

$$\sigma_E^2(v, V) = 2\bar{\gamma}(v, V) - \bar{\gamma}(v, v) - \bar{\gamma}(V, V)$$

where

$$\bar{\gamma}(v, V) = \frac{1}{|v||V|} \int_{s \in v} \int_{s \in V} \gamma(s - s') \,dsds'$$

Solution. Essentially I need to show that that

$$\operatorname{Var}(Z(A) - Z(B)) = \frac{1}{|A| |B|} \int_{x \in A} \int_{y \in B} \gamma(x - y) \, dx dy$$
$$- \frac{1}{|A| |A|} \int_{x \in A} \int_{y \in A} \gamma(x - y) \, dx dy$$
$$- \frac{1}{|B| |B|} \int_{x \in B} \int_{y \in B} \gamma(x - y) \, dx dy$$

where I use A, B instead of v, V and x, y instead of s, s' for clarity on notation.

It is

$$Var(Z(A) - Z(B)) = Cov(Z(A) - Z(B), Z(A) - Z(B))$$

$$= Cov(Z(A), Z(A)) + Cov(Z(B), Z(B)) - 2Cov(Z(A), Z(B))$$

$$= \frac{1}{|A|} \int_{|A|} \int_{x \in A} \int_{y \in A} Cov(Z(x), Z(y)) dxdy$$

$$+ \frac{1}{|B|} \int_{|B|} \int_{x \in A} \int_{y \in B} Cov(Z(x), Z(y)) dxdy$$

$$- 2\frac{1}{|A|} \int_{|B|} \int_{x \in A} \int_{y \in B} Cov(Z(x), Z(y)) dxdy$$

OK, now I need to write all these Cov as γ ; I know that

$$\gamma(x - y) = \frac{1}{2} \operatorname{Var}(Z(x) - Z(y))$$
$$= \frac{1}{2} \operatorname{Var}(Z(x)) + \frac{1}{2} \operatorname{Var}(Z(y)) - \operatorname{Cov}(Z(x), Z(y))$$

that is

$$Cov (Z(x), Z(y)) = \frac{1}{2} Var (Z(x)) + \frac{1}{2} Var (Z(y)) - \gamma (x - y)$$

Now I'll gonna put all these in the quantity of interest, one by one

$$\frac{1}{|A|} \int_{x \in A} \int_{y \in A} \operatorname{Cov}\left(Z\left(x\right), Z\left(y\right)\right) dx dy = \frac{1}{|A|} \int_{A|} \int_{A} \int_{y \in A} \frac{1}{2} \operatorname{Var}\left(Z\left(x\right)\right) dx dy
+ \frac{1}{|A|} \int_{A|} \int_{A} \int_{y \in A} \frac{1}{2} \operatorname{Var}\left(Z\left(y\right)\right) dx dy
- \frac{1}{|A|} \int_{A|} \int_{A|} \int_{A|} \gamma\left(x - y\right) dx dy
= \frac{1}{|A|} \int_{x \in A} \operatorname{Var}\left(Z\left(x\right)\right) dx
- \frac{1}{|A|^{2}} \int_{A|} \int_{A|} \operatorname{Var}\left(Z\left(x\right)\right) dx
- \frac{1}{|A|^{2}} \int_{A|} \int_{A|} \operatorname{Var}\left(Z\left(x\right)\right) dx dy$$

and by symmetry

$$\frac{1}{|B| |B|} \int_{x \in B} \int_{y \in B} \operatorname{Cov} \left(Z\left(x\right), Z\left(y\right) \right) \mathrm{d}x \mathrm{d}y = \frac{1}{|B|} \int_{x \in B} \operatorname{Var} \left(Z\left(x\right) \right) \mathrm{d}x - \frac{1}{|B|^2} \int_{x \in B} \int_{y \in B} \gamma \left(x - y \right) \mathrm{d}x \mathrm{d}y$$

and finally,

$$\frac{1}{|A| |B|} \int_{x \in A} \int_{y \in B} \operatorname{Cov}\left(Z\left(x\right), Z\left(y\right)\right) \mathrm{d}x \mathrm{d}y = \frac{1}{|A| |B|} \int_{x \in A} \int_{y \in B} \frac{1}{2} \operatorname{Var}\left(Z\left(x\right)\right) \mathrm{d}x \mathrm{d}y$$

$$+ \frac{1}{|A| |B|} \int_{x \in A} \int_{y \in B} \frac{1}{2} \operatorname{Var}\left(Z\left(y\right)\right) \mathrm{d}x \mathrm{d}y$$

$$- \frac{1}{|A| |B|} \int_{x \in A} \int_{y \in B} \gamma\left(x - y\right) \mathrm{d}x \mathrm{d}y$$

$$= \frac{1}{2} \frac{1}{|A|} \int_{x \in A} \operatorname{Var}\left(Z\left(x\right)\right) \mathrm{d}x$$

$$+ \frac{1}{2} \frac{1}{|B|} \int_{x \in B} \operatorname{Var}\left(Z\left(x\right)\right) \mathrm{d}x$$

$$- \frac{1}{|A| |B|} \int_{x \in A} \int_{y \in B} \gamma\left(x - y\right) \mathrm{d}x \mathrm{d}y$$

Putting all these together, we get the result.