JUL 17 2006 B

SUBSTITUTE SEQUENCE LISTING

<110> Chateau, Michel Gonzalez, Benjamin Meynial-Salles, Isabelle Soucaille, Philippe Noel Paul Zink, Olivier Method for the Production of Evolved Microorganisms Which Permit <120> the Generation or Modification of Metabolic Pathways <130> 34076/US/2 (456180-00005) <140> US 10/546,139 <141> 2005-08-15 <150> PCT/FR2004/000354 2004-02-17 <151> <150> FR0301924 <151> 2003-11-06 <150> FR00305768 2003-05-14 <151> <150> FR00305769 2003-05-14 <151> <150> FR00301924 2003-02-18 <151> <160> 42 <170> PatentIn version 3.3 <210> <211> 100 <212> DNA Artificial <213> <220> <223> Synthetic <400> 1 60 tacccccqac gcaagttctg cgccgcctgc accatgttcg ccagtgccgc gcgggtttct 100 ggccagccgc gcgttttcag catatgaata tcctccttag <210> 2 100 <211> <212> DNA Artificial <213> <220> <223> Synthetic tgacaatatt gaatcacacc ctcggtttcc ctcgcgttgg cctgcgtcgc gagctgaaaa 60 100 aagcgcaaga aagttattgg tgtaggctgg agctgcttcg

		•				
•	•					
	<211> 30 <212> DNA <213> Artificial					
	<220> <223> Synthetic			·		
	<400> 3 ggtttaagca gtatggtggg a	aagaagtcgc				30
	<210> 4 <211> 30 <212> DNA <213> Artificial					
	<220> <223> Synthetic					
	<400> 4 cccggggatg aataaacttg o	ccgccttccc				30
	<210> 5 <211> 1161 <212> DNA <213> Escherichia coli	i				
	<400> 5 atgacgcgta aacaggccac o	catcgcagtg	cgtagcgggt	taaatgacga	cgaacagtat	60
	ggttgcgttg tcccaccgat o	ccatctttcc	agcacctata	actttaccgg	atttaatgaa	120
	ccgcgcgcgc atgattactc g	gcgtcgcggc	aacccaacgc	gcgatgtggt	tcagcgtgcg	180
	ctggcagaac tggaaggtgg t	tgctggtgca	gtacttacta	ataccggcat	gtccgcgatt	240
	cacctggtaa cgaccgtctt t	tttgaaacct	ggcgatctgc	tggttgcgcc	gcacgactgc	300
-	tacggcggta gctatcgcct g	gttcgacagt	ctggcgaaac	gcggttgcta	tcgcgtgttg	360
	tttgttgatc aaggcgatga a	acaggcatta	cgggcagcgc	tggcagaaaa	acccaaactg	420
	gtactggtag aaagcccaag t	taatccattg	ttacgcgtcg	tggatattgc	gaaaatctgc	480
	catctggcaa gggaagtcgg g	ggcggtgagc	gtggtggata	acaccttctt	aagcccggca	540
-	ttacaaaatc cgctggcatt a	aggtgccgat	ctggtgttgc	attcatgcac	gaaatatctg	600
	aacggtcact cagacgtagt g	ggccggcgtg	gtgattgcta	aagacccgga	cgttgtcact	660
•	gaactggcct ggtgggcaaa c	caatattggc	gtgacgggcg	gcgcgtttga	cagctatctg	720
	ctgctacgtg ggttgcgaac g	gctggtgccg	cgtatggagc	tggcgcagcg	caacgcgcag	780
	gcgattgtga aatacctgca a	aacccagccg	ttggtgaaaa	aactgtatca	cccgtcgttg	840
	ccggaaaatc aggggcatga a	aattgccgcg	cgccagcaaa	aaggctttgg	cgcaatgttg	900
	agttttgaac tggatggcga t	tgagcagacg	ctgcgtcgtt	tcctgggcgg	gctgtcgttg	960
	tttacgctgg cggaatcatt a	agggggagtg	gaaagtttaa	tctctcacgc	cgcaaccatg	1020
	acacatgcag gcatggcacc a	agaagcgcgt	gctgccgccg Page	ggatctccga 2	gacgctgctg	1080

cgtatctcca ccggtattga agatggcgaa gatttaattg ccgacctgga aaatggcttc	1140
cgggctgcaa acaaggggta a	1161
<210> 6 <211> 10 <212> PRT <213> Escherichia coli	
<400> 6	
Met Glu Thr Thr His Arg Ala Arg Gly Leu 1 5 10	
<210> 7 <211> 1161 <212> DNA <213> Escherichia coli	
<400> 7 atgacgcgta aacaggccac catcgcagtg cgtagcgggt taaatgacga cgaacagtat	60
ggttgcgttg tcccaccgat ccatctttcc agcacctata actttaccgg atttaatgaa	120
ccgcgcgcgc atgattactc gcgtcgcggc aacccaacgc gcgatgtggt tcagcgtgcg	180
ctggcagaac tggaaggtgg tgctggtgca gtacttacta ataccggcat gtccgcgatt	240
cacctggtaa cgaccgtctt tttgaaacct ggcgatctgc tggttgcgcc gcacgactgc	300
tacggcggta gctatcgcct gttcgacagt ctggcgaaac gcggttgcta tcgcgtgttg	360
tttgttgatc aaggcgatga acaggcatta cgggcagcgc tggcagaaaa acccaaactg	420
gtactggtag aaagcccaag taatccattg ttacgcgtcg tggatattgc gaaaatctgc	480
catctggcaa gggaagtcgg ggcggtgagc gtggtggata acaccttctt aagcccggca	540
ttacaaaatc cgctggcatt aggtgccgat ctggtgttgc attcatgcac gaaatatctg	600
aacggtcact cagacgtagt ggccggcgtg gtgattgcta aagacccgga cgttgtcact	660
gaactggcct ggtgggcaaa caatattggc gtgacgggcg gcgcgtttga cagctatctg	720
ctgctacgtg ggttgcgaac gctggtgccg cgtatggagc tggcgcagcg caacgcgcag	780
gcgattgtga aatacctgca aacccagccg ttggtgaaaa aactgtatca cccgtcgttg	840
ccggaaaatc aggggcatga aattgccgcg cgccagcaaa aaggctttgg cgcaatgttg	900
agttttgaac tggatggcga tgagcagacg ctgcgtcgtt tcctgggcgg gctgtcgttg	960
tttacgctgg cggcatcatt agggggagtg gaaagtttaa tctctcacgc cgcaaccatg	1020
acacatgcag gcatggcacc agaagcgcgt gctgccgccg ggatctccga gacgctgctg	1080
cgtatctcca ccggtattga agatggcgaa gatttaattg ccgacctgga aaatggcttc	1140
cgggctgcaa acaaggggta a	1161

```
<210>
<211>
       8
5
<212>
       PRT
<213>
       Escherichia coli
<400>
       8
Met Glu Thr Thr His
<210>
       9
<211>
       30
<212>
       DNA
       Artificial
<213>
<220>
<223>
       Synthetic
<400> 9
                                                                           30
ggtacagaaa ccagcaggct gaggatcagc
<210>
       10
<211>
       100
<212>
       DNA
<213>
       Artificial
<220>
<223>
       Synthetic
<400> 10
tatgcagctg acgacctttc gcccctgcct gcgcaatcac actcattttt accccttgtt
                                                                           60
                                                                          100
tgcagcccgg aagccatttt caggcaccag agtaaacatt
<210>
       11
<211>
       30
<212>
       DNA
       Artificial
<213>
<220>
<223>
       Synthetic
<400> 11
                                                                           30
cgtccgggac gccttgatcc cggacgcaac
<210>
       12
       32
<211>
<212>
       DNA
       Artificial
<213>
<220>
<223>
       Synthetic
<400> 12
                                                                           32
gcgtttacgc agtaaaaaag tcaccagcac gc
<210>
       13
72
<211>
<212>
       DNA
```

```
<213> Artificial
<220>
<223>
      Synthetic
<400> 13
gcgtttacgc agtaaaaaag tcaccagcac gcaaggtccc gctaaaatcg atcatatgaa
                                                                        60
                                                                        72
tatcctcctt ag
<210>
       14
<211>
       100
<212>
       DNA
      Artificial
<213>
<220>
<223>
       Synthetic
<400> 14
                                                                        60
cggacaaaaa gcttgatact caactggtga atgcaggacg cagcaaaaaa tacactctcg
                                                                       100
gcgcggtaaa tagcgtgatt tgtaggctgg agctgcttcg
<210>
       15
<211>
       100
<212>
       DNA
       Artificial
<213>
<220>
<223>
      Synthetic
<400> 15
                                                                        60
tgttgcaatt ctttctcagt gaagagatcg gcaaacaatg cggtgcttaa ataacgctca
                                                                       100
cccgatgatg gtagaataac catatgaata tcctccttag
<210>
       16
<211>
       100
<212>
       DNA
       Artificial
<213>
<220>
<223>
      Synthetic
<400> 16
                                                                        60
agtaagattt ttgaagataa ctcgctgact atcggtcaca cgccgctggt tcgcctgaat
                                                                       100
cgcatcggta acggacgcat tgtaggctgg agctgcttcg
<210>
       17
       100
<211>
<212>
       DNA
<213>
      Artificial
<220>
<223>
      Synthetic
<400> 17
cccgcccct ggctaaaatg ctcttcccca aacaccccgg tagaaaggta gcgatcgcca
                                                                        60
```

cgatcgcaga tgatcgccac catatgaata tcctccttag	100
<210> 18 <211> 100 <212> DNA <213> Artificial	,
<220> <223> Synthetic	
<400> 18 agtacattag aacaaacaat aggcaatacg cctctggtga agttgcagcg aatggggccg	60
gataacggca gtgaagtgtg tgtaggctgg agctgcttcg	100
<210> 19 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 19 tttttaacag acgcgacgca cgaagagcgc	30
<210> 20 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 20 ggcgcgacgg cgatgtgggt cgattgctat	30
<210> 21 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 21 ggggtgacgg tcaggactca ccaatacttc	30
<210> 22 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 22 gcgcgcatcg ctggccgctg ggctacacac	30

```
23
74
<210>
<211>
<212>
       DNA
       Artificial
<213>
<220>
<223>
       Synthetic
<400> 23
ttagagctgt tgacaattaa tcatccggct cgtataatgt gtggaataaa aactcttaag
                                                                          60
                                                                          74
gacctccaaa tgcc
<210>
       24
<211>
       30
<212>
       DNA
<213>
       Artificial
<220>
<223>
      Synthetic
<400> 24
gctctgtcta gtctagtttg cattctcacg
                                                                          30
       25
<210>
       100
<211>
<212>
       DNA
<213>
       Artificial
<220>
<223>
       Synthetic
<400> 25
cccagaatct cttttgtttc ccgatggaac aaaattttca gcgtgcccac gttcatgccg
                                                                         60
                                                                        100
acgatttgtg cgcgtgccag tgtaggctgg agctgcttcg
<210>
       26
<211>
       100
<212>
       DNA
<213>
       Artificial
<220>
<223>
       Synthetic
<400> 26
                                                                         60
ggtgcgcgcg tcgcagttat cgagcgttat caaaatgttg gcggcggttg cacccactgg
                                                                        100
ggcaccatcc cgtcgaaagc catatgaata tcctccttag
       27
<210>
<211>
       30
<212>
       DNA
       Artificial
<213>
<220>
<223>
       Synthetic
<400>
       27
```

gcgggatcac tttactgcca gcgctggctg	30
<210> 28 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 28 ggccgctcag gatatagcca gataaatgac	30
<210> 29 <211> 100 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 29 gcgccacgct ttatagcggt taatcagacc attggtcgag ctatcgtggc tgctgatttc	60
tttatcatct ttcagctctg catatgaata tcctccttag	100
<210> 30 <211> 100 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 30 ccaacgcaga ccgctgcctg gcaggcacta cagaaacact tcgatgaaat gaaagacgtt	60
acgatcgccg atcttttgc tgtaggctgg agctgcttcg	100
<210> 31 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 31 cggtatgatt tccgttaaat tacagacaag	30
<210> 32 <211> 30 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 32	

gcggggcggt tgtcaacgat ggggtcatgc	30
<210> 33 <211> 100 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 33 ttcgcgcagt ccagccagtc acctttgaac ggacgcttca tgttttcgat agcgtcgatg	60
atgtcgtggt gaaccagctg catatgaata tcctccttag	100
<210> 34 <211> 100 <212> DNA <213> Artificial	
<220> <223> Synthetic	·
<400> 34 ggtgtgttga caagcggcgg tgatgcgcca ggcatgaacg ccgcaattcg cggggttgtt	60
cgttctgcgc tgacagaagg tgtaggctgg agctgcttcg	100
<210> 35 <211> 27 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 35 ccctacgccc cacttgttca tcgcccg	27
<210> 36 <211> 27 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 36 cgcacgcggc agtcagggcc gacccgc	27
<210> 37 <211> 100 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 37	

gcgggaa	aagg taagcgtaaa	ttttttgcgt	atcgtcatgg	gagcacagac	gtgttccctg	60
attgag	tgtg gctgcactcc	catatgaata	tcctccttag			100
<210> <211> <212> <213>	38 99 DNA Artificial					
<220> <223>	Synthetic					
<400> gcgccc1	38 tctc tcgatagcgc	aacaattacc	ccgcaaattt	atcccgaagg	aaaactgcgc	60
tgtacco	gcac cggtgttcgt	gtaggctgga	gctgcttcg			99
<210> <211> <212> <213>	39 26 DNA Artificial					
<220> <223>	Synthetic					
<400> gccggt1	39 tgca ctttgggtaa	gccccg				26
<210> <211> <212> <213>	40 30 DNA Artificial					
<220> <223>	Synthetic					
<400> tggcagg	40 gatc atccatgaca	gtaaaaacgg				30
<210> <211> <212> <213>	41 29 DNA Artificial					
<220> <223>	Synthetic					
<400> cgtgaat	41 ttct tattcatcaa	ttctaataa				29
<210> <211> <212> <213>	42 32 DNA Artificial					
<220> <223>	Synthetic					
<400>	42					