Part a: show
$$X_n \in (0,1)$$
, $n=0,1,\cdots$, for an $\Gamma \in (0,1)$
 $X_{n+1} = \Gamma \sin(T \in X_n)$, $X_0 = 0.5$

bare case: $x_0 = 0.5 \in (0.1)$

Inductive Step (N -> N+1):

assume $\chi_n \in (0,1) \Longrightarrow T \chi_n \in (0,T_U)$

=> Sin(TUXn) & [0,1]

 \Rightarrow $\chi_{n+1} = \Gamma \sin(\pi i \chi_n) \in (0, \Gamma)$

if sin(TuXn)=1 (max at Xn=05)=> Xn+1= r</

ΓΕ(0,1) ⇒ Xn+1 € (0,1)

(Xn E(D,1) for an n E N

Part c: Show that iteration $X_{n+1} = f(X_n) = f(X_n)$ Genverges to 0 when $f(X_n)$ The fixed print X = 0 since sin(0) = 0

To determine stability, first compute derivative

$$f'(x) = \int T U \cos(T U X)$$

At $\chi^{*}=0$ $+'(0)=\Gamma TU CUS(0)=\Gamma TU$

For fixed point state, If(0) < 1

.; When $\Gamma < \frac{1}{10}$, χ_n sequence converges to 0