

LoRa1276-C1

100mW Long Range Spread Spectrum Modulation Wireless Transceiver Module

Product Specification

Catalogue

1. Overview		•••••	3 -
2. Features			3 -
2. Features	G. Alice	G.Alt.	3 -
4. Electrical Characteristics			4 -
5. Schematic			5 -
6. Speed rate correlation table	O NiceRI	G NiceRF	5 - iteRf
7. Pin definition			6 -
8. Accessories			7 -
9. Mechanical Dimensions (Unit:mm) 10. Order information	G-Nice R.F.	G-Nices (7 - 8 - 8 -
11. FAQ:			8 -
Appendix 1: SMD Reflow Chart			

Note: Revision History

Revision	Date	Comment		
V1.0	2017-3	First release		
V1.1	2017-06	Logo updated	28	4
V1.2	2018-12-15	Update PIN photo	G.Nicet	G-Nice

1. Overview

Lora1276-C1 integrates Semtech RF transceiver chip SX1276, which adopts LoRa TM Spread Spectrum modulation frequency hopping technique. The features of long distance and high sensitivity (-139 dBm) make this module perform better than FSK and GFSK module. Multi-signal won't affect each other even in crowd frequency environment; it comes with strong anti-interference performance. This module is 100mW and ultra small size, widely used in AMR, remote industrial control filed.

2. Features

■ Frequency Range: 868 / 915 MHz

(Customizable:137~1020MHz)

■ Sensitivity up to -139dBm @Lora

■ Maximum output power: 20 dBm

■ 13mA@receiver mode

■ Sleep current <200 nA

■ Data transfer rate: @FSK,1.2-300 Kbps

■ @Lora TM, 0.018-37.5 Kbps

Lora TM, FSK, GFSK & OOK Modulation mode

- Built-in ESD Protection
- 127 dB Dynamic Range RSSI
- Packet engine up to 256 bytes with FIFO and CRC
- Hopping frequency
- Built-in temperature sensor and low battery indicator
- Excellent blocking immunity
- Operating Temperature Range: -40 ~ + 85 °C

3. Applications

- Remote meter reading
- Industrial control
- Home automation remote sensing
- Toys control

- Sensor network
- Tire pressure monitoring
- Health monitoring
- Wireless PC peripherals

4. Electrical Characteristics

Parameter	Min	Тур.	Max.	Unit	Condition	
Operation condition						
Working voltage	1.8	3.3	3.7	V		
Temperature range	-40		85	C		
		C	urrent cor	sumption	n	
RX current		10.8		mA		
TX current	a F	120		mA	@20dBm	
Sleep current	Nice	<0.2	G-Nice	uA	G-Nices G-Nices	
RF parameter						
Ref	800	868	900	MHz	@868MHZ	
Frequency range	900	915	1000	MHz	@915MHZ	
M 112	1.2		300	Kbps	FSK	
Modulation rate	0.018		37.5	⊗ Kbps	LoraTM	
Output power range	-1		20	dBm	0	
		-123		dBm	@FSK data=1.2kbps, Fdev=10kHZ	
Receiving sensitivity	NiceRF	-139	G-Nice	dBm	@Lora BW=125KHz_SF = 12_CR=4/5	

Note: According to the design of the module, the maximum bit of register 0x09 must be set as 1. PaSelect must be set 1;

	- oRI		ORI		-0	Rr oF
G	RegPaConfig	7	PaSelect	rw	0x00	Selects PA output pin 0 → RFO pin. Output power is limited to +14 dBm. 1 → PA_BOOST pin. Output power is limited to +20 dBm
	(0x09)	6-4	MaxPower	rw	0x04	Select max output power: Pmax=10.8+0.6*MaxPower [dBm]
		3-0	OutputPower	rw	0x0f	Pout=Pmax-(15-OutputPower) if PaSelect = 0 (RFO pin) Pout=17-(15-OutputPower) if PaSelect = 1 (PA_BOOST pin)
	77%		- 1/6"			1/6.

5. Schematic

6. Speed rate correlation table

SingnalBandWidth	tion table SpreadingFactor	Sensitivity(dbm)	ActualBandRate(pbs)
62.5kHz	SF=7	-126	2169
62.5kHz	SF=8	-129	1187
62.5kHz	SF=9	-132	656
62.5kHz	SF=10	-135	296
62.5kHz	SF=11	-137	164
62.5kHz	SF=12	-139	91
125kHz	SF=7	-123	4338
125kHz	SF=8	-126	2375
125kHz	SF=9	-129	1312
125kHz	SF=10	-132	733
125kHz	SF=11	-133	328
125kHz	SF=12	-136	183
250kHz	SF=7	-120	8676
250kHz	SF=8	-123	4750
250kHz	SF=9	-125	2624
250kHz	SF=10	-128	1466
250kHz	SF=11	-130	778
250kHz	SF=12	-133	366
500kHz	SF=7	-118	17353
500kHz	SF=8	-121	9501
500kHz	SF=9	-124	5249
500kHz	SF=10	-127	2932
500kHz	SF=11	-129	1557
500kHz	SF=12	-130	830

7. Pin definition

Pin NO.	Pin name	Description	340	
1	GND	Power ground		
2	MISO	SPI Output for SPI data	.ceRf	· · · · R
3	MOSI	SPI Input for SPI data	G. Park	G-IN
4	SCK	Serial clock for SPI interface		
5	NSS	SPI enable	eRF	. eR
6	NRESET	Reset input	C.Part	G-Mi
7	DIO5	Digital I/O		
8	GND	Power ground	RF	,R
9	ANT	Connect with 50 ohm coaxial antenna	C.Nic	G-Mil
10	GND	Power ground		
RF 11	DIO3	Digital I/O	RF	R
12	DIO4	Digital I/O	C'Alcon	G-Nie
13	VCC	Power supply (default3.3V)		
14	DIO0	Digital I/O	al	Q
15	DIO1 ^{G-Nice}	Digital I/O	C'alles.	G-Nikel
16	DIO2	Digital I/O		

8. Accessories

1)Antenna

antenna is very important for RF communication, its performance will affect the communication directly. Module needs antenna in 50ohm. Common antenna has rubber straight/ elbow/ foldable rod and sucker antenna and etc. Users can order accordingly. To ensure module in the best performance, we suggest to use the our antenna

- ★ To ensure modules get the best performance, user must obey the following principles when using the antennas:
- Put the antenna away from the ground and obstacles as possible as you could;
- If you choose the sucker antenna, pull straight the lead wire as possible as it can be, the sucker under arches should be attached on the metal object.

9. Mechanical Dimensions (Unit:mm)

10. Order information

LoRa1276-C1-868

Product name

Frequency

For example: If the customer needs 868MHz Frequency, the order no. shall be LoRa1276-C1-868.

Here are the product types:

Product Name	Description
LoRa1276-C1-868	SX1276 chip, Working frequency 868MHz
LoRa1276-C1-915	SX1276 chip, Working frequency 915MHz

11. FAQ:

- a) Why module can not communicate properly?
 - 1) Check if the band, channel, rate has set to the same;
 - 2) Check if there is power connection error;
 - 3) Check if the antenna connection is not correct;
 - 4) Check if the module is damaged.
- b) Why transmission distance is not far as it should be?
 - 1) Power supply ripple is too large;
 - 2) The antenna types do not match, or not properly installed;
 - 3) The surrounding environment is harsh, strong interference sources;
 - 4) Surrounding co-channel interference;

Appendix 1: SMD Reflow Chart

We recommend you should obey the IPC related standards in setting the reflow profile:

IPC/JEDEC J-STD-020B the condition	big size components
for lead-free reflow soldering	(thickness >=2.5mm)
The ramp-up rate (Tl to Tp)	3℃/s (max.)
preheat temperature	
- Temperature minimum (Tsmin)	150℃
- Temperature maximum (Tsmax)	200℃
- preheat time (ts)	60~180s
Average ramp-up rate(Tsmax to Tp)	3℃/s (Max.)
- Liquidous temperature(TL)	217℃
- Time at liquidous(tL)	60~150 second
peak temperature(Tp)	245+/−5℃