California Housig Price Prediction

July 15, 2020

0.1 California Housing Price Prediction Project

0.1.1 Part A: Predict housing prices using all feature variables

1. Import Necessary libraries to use

```
[1]: import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

2. Read housing data from Excel file and inspect the data and datatypes

```
[2]: df_California_housing_data = pd.read_excel("California_housing_data.xlsx") df_California_housing_data.head()
```

[2]:	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	\
0	-122.23	37.88	41	880	129.0	
1	-122.22	37.86	21	7099	1106.0	
2	-122.24	37.85	52	1467	190.0	
3	-122.25	37.85	52	1274	235.0	
4	-122.25	37.85	52	1627	280.0	

	population	households	median_income	ocean_proximity	median_house_value
0	322	126	8.3252	NEAR BAY	452600
1	2401	1138	8.3014	NEAR BAY	358500
2	496	177	7.2574	NEAR BAY	352100
3	558	219	5.6431	NEAR BAY	341300
4	565	259	3.8462	NEAR BAY	342200

[3]: df_California_housing_data.dtypes

[3]:	longitude	float64
	latitude	float64
	housing_median_age	int64
	total_rooms	int64
	total_bedrooms	float64
	population	int64

households	int64
median_income	float64
ocean_proximity	object
median_house_value	int64

dtype: object

- 3. From above we got to know that only ocean_proximity is non-numeric column, lets replace it with numeric values in step 6.
- 4. Standardize the target and fill missing values with mean of respective columns.

```
[4]: df_California_housing_data["median_house_value"] = np.

→log(df_California_housing_data["median_house_value"])
```

[5]: #Check for ROWS with MISSING VALUES
df_California_housing_data[df_California_housing_data.isnull().any(axis=1)]

[5]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	\
	290	-122.16	37.77	47	1256	NaN	
	341	-122.17	37.75	38	992	NaN	
	538	-122.28	37.78	29	5154	NaN	
	563	-122.24	37.75	45	891	NaN	
	696	-122.10	37.69	41	746	NaN	
	•••	•••		•••	•••	•••	
	20267	-119.19	34.20	18	3620	NaN	
	20268	-119.18	34.19	19	2393	NaN	
	20372	-118.88	34.17	15	4260	NaN	
	20460	-118.75	34.29	17	5512	NaN	
	20484	-118.72	34.28	17	3051	NaN	
		population	household	ds median_income oc	cean_proximity	\	
	290	570	21	18 4.3750	NEAR BAY		
	341	732	25	59 1.6196	NEAR BAY		
	538	3741	127	73 2.5762	NEAR BAY		
	563	384	14	4.9489	NEAR BAY		
	696	387	16	3.9063	NEAR BAY		
		•••	•••	•••	•••		
	20267	3171	77	79 3.3409	NEAR OCEAN		
	20268	1938	76	1.6953	NEAR OCEAN		
	20372	1701	66	5.1033	<1H OCEAN		
	20460	2734	81	14 6.6073	<1H OCEAN		

median_house_value 290 11.994734 341 11.351582

1705

495

20484

5.7376

<1H OCEAN

```
538
                 12.063356
563
                 12.417548
696
                 12.091783
20267
                 12.303653
20268
                 12.028141
20372
                 12.925618
20460
                 12.461102
20484
                 12.294999
```

[207 rows x 10 columns]

```
[6]: #From above observation total_bedrooms column has missing values so replace it

with mean of total_bedrooms.

df_California_housing_data["total_bedrooms"] =

df_California_housing_data["total_bedrooms"].replace(np.

nan,df_California_housing_data["total_bedrooms"].mean())
```

- [7]: Empty DataFrame
 Columns: [longitude, latitude, housing_median_age, total_rooms, total_bedrooms,
 population, households, median_income, ocean_proximity, median_house_value]
 Index: []
 - 5. Check the total categories available for non-numeric categorical column, "ocean_proximity".
- [8]: df_California_housing_data.groupby('ocean_proximity').describe()

[8]:	longitude						\
	count	mean	std	min	25%	50%	
ocean_proximi	ty						
<1H OCEAN	9136.0 -	118.847766	1.588888	-124.14	-118.50	-118.275	
INLAND	6551.0 -	119.732990	1.900950	-123.73	-121.35	-120.000	
ISLAND	5.0 -	118.354000	0.070569	-118.48	-118.33	-118.320	
NEAR BAY	2290.0 -	122.260694	0.147004	-122.59	-122.41	-122.250	
NEAR OCEAN	2658.0 -	119.332555	2.327307	-124.35	-122.02	-118.260	
		lati	tude		. median	$_{ t income}$ \	
	75%	max c	ount	mean	•	75%	
ocean_proximi	.ty				•		
<1H OCEAN	-118.0000 -	116.62 91	36.0 34.5	60577	. 5	. 180500	
INLAND	-117.8400 -	114.31 65	51.0 36.7	'31829 . .	. 3	.961500	
ISLAND	-118.3200 -	118.32	5.0 33.3	358000	. 2	.833300	

NEAR BAY NEAR OCEAN	-122.1400 - -117.1825 -		90.0 58.0	37.803 34.738			054425 337400	
	me	dian_house_	value					\
	max		count		mean	std	min	
ocean_proximity								
<1H OCEAN	15.0001	9	136.0	12.29	96695	0.429593	9.769956	
INLAND	15.0001	6	551.0	11.6	10977	0.482824	9.615739	
ISLAND	3.3906		5.0	12.82	29966	0.221861	12.568978	
NEAR BAY	15.0001	2	290.0	12.34	45131	0.507030	10.021271	
NEAR OCEAN	15.0001	2	658.0	12.299245		0.521518	10.021271	
	25%	50%		75%		max		
ocean_proximity								
<1H OCEAN	12.008231	12.277695	12.57	4528	13.12	22365		
INLAND	11.258033	11.594505	11.91	1366	13.12	22365		
ISLAND	12.611538	12.935311	13.01	17003	13.01	17003		
NEAR BAY	11.998433	12.362221	12.75	3327	13.12	22365		
NEAR OCEAN	11.918391	12.343440	12.68	34633	13.12	22365		

6. There is one categorical column called ocean_proximity with 5 categories. Replace categorical column with integer values and view the modified dataframe.

[5 rows x 72 columns]

```
[9]: cleanup_cats = {"ocean_proximity":
                                              {"<1H OCEAN": 1, "INLAND": 2, "ISLAND": L
     →3,"NEAR BAY":4, "NEAR OCEAN":5 }}
     df_California_housing_data.replace(cleanup_cats, inplace=True)
     df_California_housing_data.head()
[9]:
        longitude
                              housing_median_age
                                                   total_rooms
                                                                 total_bedrooms
                   latitude
          -122.23
                       37.88
                                               41
                                                            880
                                                                          129.0
     0
     1
          -122.22
                       37.86
                                               21
                                                          7099
                                                                          1106.0
     2
          -122.24
                       37.85
                                               52
                                                          1467
                                                                          190.0
     3
          -122.25
                       37.85
                                               52
                                                          1274
                                                                          235.0
          -122.25
                       37.85
                                               52
                                                          1627
                                                                          280.0
                                 median_income ocean_proximity median_house_value
        population households
     0
                                                                4
               322
                            126
                                         8.3252
                                                                            13.022764
     1
              2401
                           1138
                                         8.3014
                                                                            12.789684
     2
               496
                            177
                                         7.2574
                                                                4
                                                                            12.771671
     3
               558
                            219
                                                                             12.740517
                                         5.6431
               565
                            259
                                         3.8462
                                                                            12.743151
```

7. Split features and target variables in to X_features and Y_target

```
[10]: X_features = df_California_housing_data.iloc[:,:-1]
      Y_target = df_California_housing_data.iloc[:,-1:]
     8. View Features dataset and shape of the dataframe
[11]: X_features.head()
                                                    total_rooms
[11]:
         longitude
                     latitude
                               housing_median_age
                                                                  total bedrooms
           -122.23
                        37.88
                                                41
                                                             880
                                                                            129.0
           -122.22
      1
                        37.86
                                                21
                                                            7099
                                                                           1106.0
      2
           -122.24
                        37.85
                                                52
                                                            1467
                                                                            190.0
           -122.25
                                                52
      3
                        37.85
                                                            1274
                                                                            235.0
           -122.25
                        37.85
                                                52
                                                            1627
                                                                            280.0
         population households
                                  median_income ocean_proximity
      0
                 322
                             126
                                          8.3252
      1
               2401
                            1138
                                          8.3014
                                                                 4
      2
                496
                             177
                                          7.2574
                                                                 4
      3
                558
                                          5.6431
                             219
                                                                 4
      4
                565
                             259
                                          3.8462
                                                                 4
[12]: X_features.shape
[12]: (20640, 9)
     9. View Target dataset
[13]: Y_target.head()
[13]:
         median_house_value
      0
                   13.022764
                   12.789684
      1
                   12.771671
      2
      3
                   12.740517
      4
                   12.743151
[14]: Y_target.shape
[14]: (20640, 1)
```

10. Split the original dataset in to training and test datasets with 80% training and 20% test dataset

```
[15]: X_train, X_test, Y_train, Y_test = train_test_split(X_features, U_ → Y_target, test_size=0.2, random_state = 1)
```

```
11. view the shape of splitted train and test datasets
[16]: X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
[16]: ((16512, 9), (4128, 9), (16512, 1), (4128, 1))
     12: Create a model to predict the housing prices outcome
[17]: linreg = LinearRegression()
      linreg.fit(X_train, Y_train)
[17]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
[18]: #Print the intercept and coefficients
      linreg.coef_, linreg.intercept_
[18]: (array([[-2.83742511e-01, -2.85020462e-01, 3.30446057e-03,
               -2.55046046e-05, 3.82669160e-04, -1.75730920e-04,
                3.29035909e-04, 1.76792041e-01, -1.14211075e-02]]),
       array([-12.49089022]))
     13. Predict the House Price from our trained model
[19]: #Predict the outcome for the testing dataset
      Y_pred = linreg.predict(X_test)
      Y_pred
[19]: array([[12.27225661],
             [11.52356751],
             [12.28176997],
             [12.4349876],
             [12.30948071],
             [11.77940924]])
     14: Calculate the Mean Square Error (MSE)
[20]: #Import required libraries for calculating root MSE (mean square error)
      from sklearn import metrics
[21]: #root mean squared error calculation:
      rmse = np.sqrt(metrics.mean_squared_error(Y_test,Y_pred))
      rmse
```

[21]: 0.34835878102223805

```
[22]: #taking exponent to get correct values as we normalized the prices using log
      print(np.exp(Y_test.values[0]),np.exp(Y_pred[0]))
      print(np.exp(Y_test.values[10]),np.exp(Y_pred[10]))
      print(np.exp(Y_test.values[4101]),np.exp(Y_pred[4101]))
     [355000.] [213684.64980857]
     [293800.] [201067.31760443]
     [324700.] [335781.23144686]
[23]: import seaborn as sns
      import matplotlib.pyplot as plt
      %matplotlib inline
[24]: X_test['median_income']
[24]: 4712
               3.2500
      2151
               1.9784
      15927
               4.0132
      82
               1.5208
      8161
               5.1795
      2319
               2.3173
      5341
               2.1875
      16888
               5.0480
      6823
               4.8750
      11878
               2.7054
      Name: median_income, Length: 4128, dtype: float64
[25]: plt.hist(np.array(Y_pred), bins=75,label = "expected")
      plt.hist(np.array(Y_test['median_house_value']), bins=75,label = "predicted")
      sns.distplot(np.array(Y_test['median_house_value']))
```

[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb02afc6bd0>

0.1.2 Part B: Predict housing prices using median income feature

```
[27]: # lets use median_income as feature column and nuild our model. We already_
        \mathrel{\mathrel{\hspace*{1pt}\hbox{$\scriptscriptstyle\frown$}}} cleaned the data and amputed missing values with mean in section A and \mathrel{\mathrel{\hspace*{1pt}\hbox{$\scriptscriptstyle\Box$}}}
        →converted categorical column to numeric.
       X_features_B = df_California_housing_data["median_income"]
       Y_target_B = df_California_housing_data.iloc[:,-1:]
[28]: #take a look at our data
       X_features_B, Y_target_B
[28]: (0
                    8.3252
         1
                    8.3014
         2
                    7.2574
         3
                    5.6431
                     3.8462
         20635
                    1.5603
         20636
                    2.5568
         20637
                    1.7000
                    1.8672
         20638
         20639
                    2.3886
```

```
Name: median_income, Length: 20640, dtype: float64,
              median_house_value
       0
                       13.022764
                       12.789684
       1
       2
                       12.771671
       3
                       12.740517
       4
                       12.743151
                       11.265745
       20635
                       11.252859
       20636
                       11.432799
       20637
       20638
                       11.346871
       20639
                       11.400876
       [20640 rows x 1 columns])
[29]: #Split the training and test data and look at their shape
      X_train_B, X_test_B, Y_train_B, Y_test_B = train_test_split(X_features_B,__
      →Y_target_B,test_size=0.2, random_state = 1)
      X_train_B.shape,X_test_B.shape, Y_train_B.shape, Y_test_B.shape
[29]: ((16512,), (4128,), (16512, 1), (4128, 1))
[30]: #create linear regression model using scikit learn
      linreg_B = LinearRegression()
      linreg_B.fit(X_train_B.values.reshape(-1,1), Y_train_B)
[30]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
[31]: #Print the intercept and coefficients
      linreg_B.coef_, linreg_B.intercept_
[31]: (array([[0.19809328]]), array([11.32193123]))
[32]: #Predict the outcome for the testing dataset
      Y_pred_B = linreg_B.predict(X_test_B.values.reshape(-1,1))
      np.exp(Y_pred_B)
[32]: array([[157272.3666001],
             [122251.90391769],
             [182941.04003019],
             [224561.7769342],
             [216996.38772007],
             [141188.73186901]])
```

```
[33]: #lets plot a graph of predicted and expected values
plt.scatter(X_test_B,Y_test_B,label = "expected")
plt.scatter(X_test_B,Y_pred_B, label = "predicted")
plt.title('median income vs house value in California')
plt.xlabel('median income')
plt.ylabel('house value')
plt.legend()
plt.show()
```

median income vs house value in California

