Scilab Textbook Companion for Concepts Of Modern Physics by A. Beiser¹

Created by
Debajyoti Nag
B.Tech. (pursuing)
Computer Engineering
Echelon Institute of Technology
College Teacher
Prof. Prateek Uniyal
Cross-Checked by
Prashant Dave, IIT Bombay

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Concepts Of Modern Physics

Author: A. Beiser

Publisher: Tata McGraw - Hill Education

Edition: 6

Year: 2006

ISBN: 0-07-049553-X

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Relativity	6
2	Particle Properties of Waves	12
3	Wave Properties of Particles	19
4	Atomic Structure	26
5	Quantum Mechanics	33
6	Quantum Theory of the Hydrogen Atom	36
7	Many Electron Atoms	37
8	Molecules	40
9	Statistical Mechanics	43
10	The Solid State	47
11	Nuclear Structure	50
12	Nuclear Transformations	54

List of Scilab Codes

Exa 1.1	Speed of spaceship relative to Earth
Exa 1.2	Fine imposed on speeding driver
Exa 1.3	Red shift in green spectral line
Exa 1.4	Signals received by Dick and Jane
Exa 1.6	Mass of body before explosion
Exa 1.7	Mass of Sun lost in radiation
Exa 1.8	Total energy for electron and photon 10
Exa 1.11	Speed of Spacecraft Beta
Exa 2.1	Energy of Tuning fork and Atomic oscillator
Exa 2.2	Photoelectric effect
Exa 2.3	Shortest possible x ray wavelength
Exa 2.4	X rays
Exa 2.6	Energy of protons
Exa 2.7	Linear attenuation
Exa 2.8	Frequency of falling photon
Exa 3.1	De Broglie wavelength
Exa 3.2	Kinetic energy
Exa 3.3	Kinetic energy and phase and group velocity 20
Exa 3.4	Permitted energies of electron
Exa 3.5	Permitted energies of marble
Exa 3.6	Uncertainty in position
Exa 3.7	Minimum energy of electron
Exa 3.8	Minimum energy for electron
Exa 3.9	Uncertainty in frequency
Exa 4.1	Orbital radius and velocity of electron
Exa 4.2	Energy transferred in inelastic collision
Exa 4.3	Rydberg Atom
Eva 4 4	Longest wavelength in Balmer series 28

Exa 4.5	Revolution of electrons	28
Exa 4.7	Muonic atom	30
Exa 4.8	Alpha particles	31
Exa 5.4		33
Exa 5.6		34
Exa 6.4		36
Exa 7.1		37
Exa 7.2		37
Exa 7.3		38
Exa 7.8		39
Exa 8.1	Energy and angular velocity	40
Exa 8.2		41
Exa 8.3		41
Exa 9.1		43
Exa 9.4		44
Exa 9.5		44
Exa 9.6		45
Exa 9.7	Surface temperature of sun	45
Exa 9.8		46
Exa 10.1		47
Exa 10.2	Drift velocity	48
Exa 10.3		48
Exa 11.1	Density of Carbon12 nucleus	50
Exa 11.2		50
Exa 11.3	Proton in a magnetic field	51
Exa 11.4	Atomic mass of Neon20 isotope	52
Exa 11.6		52
Exa 12.2	Decay time for radon	54
Exa 12.3		54
Exa 12.4		55
Exa 12.5	Carbon dating	55
Exa 12.6		56
Exa 12.7	Daughter nuclide of Polonium	56
Exa 12.8	Absoprtion of neutron by Cadmium	57
Exa 12.9	- · · · · · · · · · · · · · · · · · · ·	58
Exa 12.10		59
Exa 12.11		60

Chapter 1

Relativity

Scilab code Exa 1.1 Speed of spaceship relative to Earth

```
1
2 t0= 3600; // time interval on Earth, seconds
3 t= 3601; //time interval for spacecraft as measured
    from Earth, seconds
4 c= 2.998 *(10^8); //speed of light, m/s
5 v=c*sqrt((1-((t0/t)^2))); //relative velocity of
    spacecraft, m/s
6 disp(v, "The speed of the Spacecraft relative to
    Earth (in m/s) is: ")
7
8 //Result
9 //The speed of the Spacecraft relative to Earth (in
    m/s) is:
10 // 7064882.
```

Scilab code Exa 1.2 Fine imposed on speeding driver

1

```
2 fg= 5.6*(10^14); //frequency of green color, Hz
3 fr= 4.8*(10^14); //frequency of red color, Hz
4 c= 3*(10^8); //velocity of light, m/s
5 v= c*((fg^2 - fr^2)/(fg^2 + fr^2)); //longitudinal speed of observer, m/s
6 v= v*3.6; //convert to km/h
7 R= 1; //rate at which fine is to be imposed per km/h, $
8 l= 80; //speed limit upto which no fine is to be imposed, km/h
9 fine= v-l; // fine to be imposed, $
10 disp(fine, "The fine imposed (in $) is: ")
11
12 //Result
13 // The fine imposed (in $) is:
14 // 1.652D+08
```

Scilab code Exa 1.3 Red shift in green spectral line

Scilab code Exa 1.4 Signals received by Dick and Jane

```
2 StartingAge= 20; //starting age for both Dick and
     Jane
3 c = 3*(10^8); //velocity of light, m/s
4 v= 0.8*c; //rate of separation of Dick and Jane, m/s
5 to= 1; //interval for emission of signals, yr
6 t1= t0*((1+v/c)/(1-v/c)); //interval for reception
     of signals on outward journey, yr
7 t1= t0*(sqrt((1+v/c)/(1-v/c))); //interval for
     reception of signals on outward journey, yr
8 t2= t0*(sqrt((1-v/c)/(1+v/c))); //interval for
     reception of signals on return trip, yr
10 //Dick's frame of reference
11 Tout1 = 15; //duration of outward trip, yr
12 Tin1= 15; //duration of return trip, yr
13 JaneAge = StartingAge + (Tout1/t1) + (Tin1/t2); //Jane's
     age according to Dick
14
15 //Jane's frame of reference
16 Tout2= 25; //duration of outward trip, yr
17 d= 20; //delay in transmission of signal to Jane,
      caused by distance of the star, yr
18 Tin2= 5; //duration of return trip
19 DickAge= StartingAge+((Tout2+d)/t1)+(Tin2/t2); //
     Dick's age according to JAne
20
21
  disp(JaneAge, "According to Dick, age of Jane(in yr)
23 disp(DickAge, "According to Jane, age of Dick(in yr)
     is:")
24
25 // Result
26
27 // According to Dick, age of Jane(in yr) is:
```

```
28 // 70.
29
30 // According to Jane, age of Dick(in yr) is:
31 // 50.
```

Scilab code Exa 1.6 Mass of body before explosion

Scilab code Exa 1.7 Mass of Sun lost in radiation

Scilab code Exa 1.8 Total energy for electron and photon

```
1
2 c= 3*(10^8); //Velocity of light, m/s
3 me= 0.511/(c^2); //mass of electron, MeV
4 mp=0; //mass of proton, MeV
5 p= 2.000/c; //momenta for both particles, MeV
7 ///Using Eq. 1.24 and 1.25, Page 31
8 Ee=sqrt(((me^2)*(c^4))+((p^2)*(c^2))); //Total
     energy of electron, MeV
9 Ep= p*c; //Total energy of proton, MeV
10
11 disp(Ee, "Total energy of Electron, in Mev, is: ")
12 disp(Ep, "Total energy of Photon, in Mev, is: ")
13
14 // Results
15
16 // Total energy of Electron, in Mev, is:
       2.0642483
17 //
18
19 // Total energy of Photon, in Mev, is:
```

20 // 2.

Scilab code Exa 1.11 Speed of Spacecraft Beta

```
2 c=3*(10^8); //velocity of light, m/s
3 VaE= 0.90*c; //velocity of spacecraft alpha w.r.t
     Earth, m/s
4 VbA= 0.50*c; //velocity of spacecraft beta w.r.t.
     Alpha, m/s
6 VbE = (VaE + VbA)/(1 + ((VaE * VbA)/(c^2))); //velocity of
     beta w.r.t Earth, m/s
7 VbE=VbE/c; //Converting to percent of c
9 disp(VbE, "The required velocity of spacecraft Beta w
      .r.t. Earth, in m/s, in terms of percent of c, is
     : ")
10
11 //Result
12
13 // The required velocity of spacecraft Beta w.r.t.
     Earth, in m/s, in terms of percent of c, is:
14 // 0.9655172
```

Chapter 2

Particle Properties of Waves

Scilab code Exa 2.1 Energy of Tuning fork and Atomic oscillator

```
2 Ft= 660; //frequency of tuning fork, Hz
3 Fo= 5.00*(10^14); //frquency of atomic oscillator,
     Hz
4 Ef = 0.04; //vibrational energy of tuning fork, J
5 h = 6.63*(10^{(-34)}); //Planck's constant, J.s
7 E1= h*Ft; //Total energy of tuning fork, J
8 E2= h*Fo; //Total energy of atomic oscillator, J
9 E2= E2/(1.60*(10^(-19))); //converting to eV
10
11 disp(E1, "Energy of tuning fork, in J, is: ")
12
13 disp(E2, "Energy of atomic oscillator, in J, is: ")
14
15 // Result
16
17 // Energy of tuning fork , in J, is:
18 // 4.376D-31
19
20
```

```
21 //Energy of atomic oscillator , in J , is: 22 // 2.071875
```

Scilab code Exa 2.2 Photoelectric effect

```
1
2 l= 350; //Wavelength of UV light, nm
3 i= 1.00; //intensity of UV light, W/m^2
5 // Part (a)
7 l= 1*10^(-9); //converting to m
8 Ep= (1.24*(10^{(-6)}))/1; //energy of photon, using
     Eqn (2.11) on Page 66, e.V
9 t= 2.2; //work function of Potassium surface, eV
10
11 KEmax = Ep-t //Max KE of the phototelectrons, eV
  disp(KEmax, "MAximum KE of photoelectrin, in eV, is:
12
     ")
13
14 // Part (b)
15
16 A= 1.00; //Surface area, cm^2
17 A = A * 10^(-4); // converting to m<sup>2</sup>
18 E= 5.68*(10^{(-19)}); //Photon energy, J
19 Np= i*A/E; //number of incident photon, per second
20 Ne = (0.0050) * Np; //number of photoeectrons emitted,
     per second
21
22 disp(Ne," Rate of emission of photoelectrons, per
     second, is: ")
23
24 //Result
25
26 // Rate of emission of photoelectrons, per second,
```

```
is:
27 // 8.803D+11
```

Scilab code Exa 2.3 Shortest possible x ray wavelength

```
1
2 AP= 50000; //Accelerating potential of the x-ray
     machine, V
3 l = (1.24*(10^{(-6)}))/AP*(10^{(9)}); //Minimum
     wavelength, nm
4 disp(1, "Minimum wavelength possible, in nm, is: ")
6 Fmax = 3*(10^8)/(1*(10^(-9))); //Maximum frequency,
  disp(Fmax, "Maximum frequency possible, in Hz, is: ")
8
9
10 //Result
12 // Minimum wavelength possible, in nm, is:
13 //
          0.0248
14
      Maximum frequency possible, in Hz, is:
15 //
16 //
         1.210D+19
```

Scilab code Exa 2.4 X rays

```
1
2
3 //part (a)
4 l= 10; //wavelength of x-ray, pm
5 r= 45; //angle of scattered articles, degree
```

```
6 lc= 2.426*(10^(-12)); //Compton wavelength for
      electron, m
7 k = cosd(45);
8 lc= lc* 10^12; // converting to pm
10 12= 1+ lc*(1-k) / using Eqn 2.23
11 disp(12,"The wavelength of scattered x-ray, in pm,
      is: ")
12
13 //Result
14 // The wavelength of scattered x-ray, in pm, is:
15 // 10.710559
16
17
18 // Part (b)
19
20 lmax = 1+(1c*2); //for (1-k)=2
21 disp(lmax, "Maximum wavelength, in pm, is: ")
22
23 // Result
24 // Maximum wavelength, in pm, is:
25 //
         14.852
26
27 // Part (c)
28 h= 6.63*(10^{(-34)}); //Planck's constant, J.s
29 c= 3*10^8; //velocity of light, m/s
30 c=c*10^12; //converting to pm/s
31 KEmax = (h*c)*((1/1)-(1/lmax)); //J
32 disp(KEmax,"The maximum KE of recoil electrons, in J
      , is: ")
33
34 // Result
35 // The maximum KE of recoil electrons, in J, is:
36 //
        6.498D - 15
```

Scilab code Exa 2.6 Energy of protons

```
1
2 //Example 2.6 (b)
4 c=3*10^8; //velocity of light, m/s
5 V= 0.5*c; //velocity of electron and positron, m/s
6 y= 1/sqrt(1-(V/c^2)); //gamma, for relativistic
     momentum
  m=0.511/c^2; /MeV
9 K= 2*y*m*V; //difference in momentum of both photons
10 L= 2*y*m*c; //conservation of energy, sum of
     momentum of both photons
11
12 p1= (L+K)/2; //momentum of first photon, MeV
13 disp(p1*c, "The momentum of forst photon, in MeV /c,
      is: ")
14 disp((1-p1*c), "The momentum of second photon, in
     MeV / c, is: ")
15
16 // Result
17 // The momentum of forst photon, in MeV /c, is:
18 //
      0.7665
19
20 // The momentum of second photon, in MeV /c, is:
21 //
        0.2335
```

Scilab code Exa 2.7 Linear attenuation

```
5 //Part (a)
7 x= 10; //distance travelled under water, cm
8 x= x/100; //converting to m
9 Irel= %e^{-(-(M*x))}; // Relative intensity
10 disp(Irel, "Relative intensity of the beam is: ")
11
12 // Result
13 // Relative intensity of the beam is:
14 // 0.6126264
15
16 // Part (b)
17
18 Ip= I/100; //Present intensity, 1 percent of
     Original, MeV
19 x2 = log(I/Ip)/M; //distance travelled, m
20 disp(x2, "The distance travelled by the beam is: ")
21
22 //Result
23 // The distance travelled by the beam is:
24 // 0.9398307
```

Scilab code Exa 2.8 Frequency of falling photon

```
1
2 H= 22.5; //Height of fall, m
3 F= 7.3*(10^14); //Original frequency, Hz
4 c= 3*(10^8); //velocity of light, m/s
5 g= 9.8; //Acceleration due to gravity, m/s^2
6
7 Frel= g*H*F/(c^2); //Change in frequency, Hz
8 disp(Frel, "The change in frquency of a photon fallin through 22.5 m, in Hz, is: ")
9
10 //Result
```

```
11 // The change in frquency of a photon fallin through 22.5 m, in Hz, is:  
12 // 1.7885
```

Chapter 3

Wave Properties of Particles

Scilab code Exa 3.1 De Broglie wavelength

```
1 //Example 3.1 (a)
2 \text{ m= } 46; //\text{mass}, \text{gms}
3 \text{ v=30; } //\text{velocity, m/s}
4 h= 6.63*(10^{(-34)}); //Planck's constant, J.s
5 m=m/1000; //convert to kgs
6 a=h/(m*v); //de Broglie wavelength, m
7 disp(a,"The de Broglie wavelength of the golf ball (
      in m) is:")
8
9 //Result
10 // The de Broglie wavelength of the golf ball (in m)
       is:
         4.804D - 34
11 //
12
13 //Example 3.1(b)
14 m = 9.1*(10^{(-31)}); //mass, kg
15 v=10^7; //velocity, m/s
16 h= 6.63*(10^{(-34)}); //Planck's constant, J.s
17 a=h/(m*v); //de Broglie wavelength, mts
18 disp(a,"de Broglie wavelength for the electron (in m
      ) is: ")
```

Scilab code Exa 3.2 Kinetic energy

```
2 a=10^(-15); //de Broglie wavelength, mts
3 Eo= 0.938; //proton rest energy, GeV
4 h= 4.136*(10^{(-15)}); //Planck's constant, eV.s
5 c = 2.998*(10^8); //velocity of light, m/s
6 p= h/a; // p is momentum, kg.m/s
7 pc= (h*c)/a; //Photon's energy, ev
8 pc=pc*(10^(-9)); //convert to GeV
9
                   //pc>E0, relativistic calculation
10 E = sqrt((Eo^2) + (pc^2)); //total energy, GeV
11 KE = E-Eo; //Kinetic energy, GeV
12 KE= KE*1000; // convert to MeV
13 disp(KE, "Kinetic Energy of the proton (in MeV) is: "
14
15
16 //Result
17 // pc =
18 //
         1.2399728
19
20 // Kinetic Energy of the proton (in MeV) is:
21 //
         616.79148
```

Scilab code Exa 3.3 Kinetic energy and phase and group velocity

1

```
2 a= 2*(10^(-12)); //de Broglie wavelength, mts
3 h= 4.136*(10^{(-15)}); //Planck's constant, eV.s
4 c= 3*(10^8); //velocity of light, m/s
5 pc= (h*c)/a; //p is momentum, pc is electron's
     energy, eV
6 pc= pc/1000; //convert to keV
7 Eo = 511; //rest energy, keV
8 E= sqrt((Eo^2)+(pc^2)); //Total Energy, keV
9 KE= E-Eo; //Kinetic energy, keV
10 disp(KE, "kinetic energy of the electron (in keV) is:
      ")
11
12 //Result
13 // kinetic energy of the electron (in keV) is:
14 //
         292.75193
15
16 vg= c*(sqrt(1-(Eo^2/E^2))) //group velocity, m/s
17 vp= c^2/vg //phase velocity, m/s
18 disp(vg, "group velocity of the electron (in m/s) is:
19 disp(vp, "phase velocity of the electron (in m/s) is:
20
21 // Result
\frac{22}{\sqrt{group}} velocity of the electron (in m/s) is:
23 //
         2.316D+08
24
25 // phase velocity of the electron (in m/s) is:
         3.887D + 08
26 //
```

Scilab code Exa 3.4 Permitted energies of electron

1

```
2 m= 9.1*(10^(-31)); //mass, kg
3 L= 0.10; //length of box, nm
4 L= L*(10^(-9)); //convert to m
5 h= 6.63*(10^(-34)); //Planck's constant, J.s
6
7 for n= 1:5; //for energy levels 1 to 5
8 En=(n^2)*(h^2)/(8*m*(L^2)); //Permitted energies, J
9 disp(n, "for level:")
10 disp(En, "Permitted ernergis (in J): ")
11 En=38*(n^2);
12 disp(En, "Permitted energies (in eV): ")
13 end
```

Scilab code Exa 3.5 Permitted energies of marble

```
1 m= 10; //mass, gms
2 m= m/1000 //convert to kgs
3 L= 10; //Length of box, cms
4 L= L/100 //convert to mts
5 h= 6.63*(10^(-34)) //Planck's constant, J.s
6
7 for n= 1:5; //for energy levels 1 to 5
8 En=(n^2)*(h^2)/(8*m*(L^2)); //Permitted energies, J
9 disp(n, "for level:")
10 disp(En, "Permitted ernergis (in J): ")
11 end
12
13 //corresponding kinetic energy is very low, hence
    Quantum effects are imperceptible, and Newtonian
    mechanics is dominant
```

Scilab code Exa 3.6 Uncertainty in position

Scilab code Exa 3.7 Minimum energy of electron

```
1 r= 5*(10^{(-15)}); //radius of nucleus, mts
2 Xo = 5*(10^{(-15)}); //assumed initial uncertainty, mts
3 hb= 1.054*(10^(-34)); //reduced Planck's constant, J
     . S
4 p= hb/(2*Xo); //uncertainty in momentum, kg.m/s
5 disp(p," Uncertainty in momentum of the electron is:
      ")
7 c= 3*(10^8); //velocity of light, m/s
8 KE= p*c; //minimum kinetic energy required, J
9 KE= KE/(1.6*(10^{(-19)})); //convert to eV
10 KE= KE/(10<sup>6</sup>); //convert to MeV
11 disp(KE, "The minimum energy required (in MeV) is: "
     )
12
13
14 //Result
15 // Uncertainty in momentum of the electron is :
16 // 1.054D-20
```

```
17  
18 // The minimum energy required (in MeV) is :  
19 // 19.7625
```

Scilab code Exa 3.8 Minimum energy for electron

```
1 r= 5.3*(10^{(-11)}); //radius of atom, mts
2 Xo= 5.3*(10^(-11)); //uncertainty in position, mts
3 hb= 1.054*(10^(-34)); //Reduced planck Constant, J.s
4 p= hb/(2*Xo); //uncertainty in momentum, kg.m/s
5 \text{ m} = 9.1*(10^{(-31)}); //\text{mass}, \text{ kg}
6 KE= p^2/(2*m); // minimum kinetic energy, J
7 KE= KE/(1.6*(10^{(-19)})); //convert to eV
8 disp(KE, "The minimum possible kinetic energy for an
      electron in the atom (in eV) is: ")
9
10
11 //Result
12 // The minimum possible kinetic energy for an
      electron in the atom (in eV) is:
13 //
         3.3952997
```

Scilab code Exa 3.9 Uncertainty in frequency

Chapter 4

Atomic Structure

Scilab code Exa 4.1 Orbital radius and velocity of electron

```
2 E= -13.6; //Energy required to separate electron and
      proton, eV
3 = 1.6*(10^{(-19)}); //charge of an electron, C
4 E= E*e; //converting to J
5 Po= 8.85*(10^(-12)); //Permittivity of free space, F
6 r= e^2/(8*(\%pi)*Po*E); //radius, m
7 \text{ r= -r};
8 m= 9.1*(10^{(-31)}); //mass of electron, kg
9 v=e/sqrt(4*(\%pi)*Po*m*r); //velocity, m/s
10
11 disp(r,"The orbital radius of the electron, in m, is
12 disp(v, "The velocity of electron, in m/s, is: ")
13
14
15 // Result
16 //The orbital radius of the electron, in m, is:
         5.289D-11
17 //
18
```

```
19 // The velocity of electron , in m/s , is: 20 // 2186873.9
```

Scilab code Exa 4.2 Energy transferred in inelastic collision

```
1
2 n1=1; //initial state
3 n2=3; //final state
4 E= -13.6; //energy in ground state, eV
5
6 dE= E*((1/n2^2)-(1/n1^2)); //Change in energy, eV
7 disp(dE,"The energy change of Hydrogen atom, in eV, is: ")
8
9 //Result
10 // The energy change of Hydrogen atom, in eV, is:
11 // 12.088889
```

Scilab code Exa 4.3 Rydberg Atom

```
1
2 //Part(a)
3 Rn= 10^(-5); //radius of Rydberg atom, m
4 Ao= 5.29*(10^(-11)); //Bohr radius, m
5 n= sqrt(Rn/Ao); //Quantum number
6
7 disp(n,"The quantum number of the Rydberg atom is: ")
8
9 //Result
10 // The quantum number of the Rydberg atom is:
11 // 434.78261
```

```
// Part (b)
// Part (b)
Let E1= -13.6; // Ground state energy level, eV
En= E1/n^2; // Nth state energy level, eV
disp(En, "The energy of the rydberg atom is: ")
// Result
// The energy of the rydberg atom is:
// - 0.0000719
```

Scilab code Exa 4.4 Longest wavelength in Balmer series

```
1
2     n1= 3;     //initial state
3     n2= 2;     //final state
4     R= 1.097*(10^7);     //Rydberg's constant, m^(-1)
5     k= (1/n2^2)-(1/n1^2);
6     l= 1/(k*R);     //longest wavelength, m
7     l= 1*(10^9);     //converting to nm
8
9     disp(1,"The longest in Balmer series of Hydrogen, in nm, is: ")
10
11     //Result
12     // The longest in Balmer series of Hydrogen, in nm, is:
13     // 656.33546
```

Scilab code Exa 4.5 Revolution of electrons

```
1
2 //Part (a)
3 //Caption: find frequency of revolution of electrons
4
```

```
5 n1=1; //initial state
6 n2=2; //final state
7 E1= 2.18*(10^{(-18)}); //Rydberg's constant, J
8 h= 6.63*(10^{(-34)}); //Planck's constant, J.s
9 f1= (E1/h)*(2/n1^3); //Frequency for first orbit,
     rev/s
10 f2= (E1/h)*(2/n2^3); //Frequency for second orbit,
     rev/s
11 disp(f1, "Frequency of revolution for orbit n=1, in
     rev/s, is: ")
12 disp(f2, "Frequency of revolution for orbit n=2, in
     rev/s, is: ")
13
14 // Result
15 // Frequency of revolution for orbit n=1, in rev/s,
     is:
16 // 6.576D+15
17
18 // Frequency of revolution for orbit n=2, in rev/s,
     is:
19 // 8.220D+14
20
21 // Part (b)
22 // Caption: find frequency of emitted photon
23
24 n1=2; //initial orbit
25 n2=1; // final orbit
26 f = (E1/h)*((1/n2^2)-(1/n1^2)); //frequency, Hz
27 disp(f, Frequency of emitted photon, in Hz, is: ")
28
29 // Result
30 // Frequency of emitted photon, in Hz, is:
         2.466D+15
31 //
32
33
34 // Part (c)
35 // Caption: find number of revolutions an electron
     makes in given time
```

```
36
37 n= 2; //orbit
38 f= f2; //from part (a)
39 dt= 10^(-8); // time duration, s
40 N= f*dt; //Number of revolutions
41 disp(N,"Number of revolutions the electron makes is:
")
42
43 //Result
44 // Number of revolutions the electron makes is:
45 // 8220211.2
```

Scilab code Exa 4.7 Muonic atom

```
2 // Part (a)
3 Me= 9.1*(10^(-31)); //mass of electron, kg
4 m= 207*Me; //mass of muon, kg
5 Mp= 1836*Me; //mass of proton, kg
6 Mreduced = (m*Mp)/(m+Mp); //reduced mass, kg
7 Ao = 5.29*(10^(-11)); //Bohr's orbit for n=1, m
8 r1= Ao; //expected orbit for atom, m
9 r2= (Me/Mreduced)*r1; //reduced radius of orbit, m
10
11 disp(r2, Radius of the mounic atom formed, in m, is:
      ")
12
13 // Result
14 // Radius of the mounic atom formed, in m, is:
15 // 2.844D-13
16
17 // Part (b)
18 E=-13.6; // energy for electron in n=1, eV
19 Ereduced= (Mreduced/Me)*E; //energy for eectron in
     mounic atom, eV
```

```
20 Ereduced = Ereduced/(10^3); // converting to keV
21 disp(Ereduced, "Ionisation energy for the muonic atom
        , in keV, is: ")
22
23 // Result
24 // Ionisation energy for the muonic atom, in keV, is
        :
25 // - 2.5299595
```

Scilab code Exa 4.8 Alpha particles

```
2 I= 7.7; //Intensity of beam, MeV
3 Dgold= 1.93*(10^4); //density of gold foil used, kg/
4 u= 1.66*(10^(-27)); //atomic mass unit, kg
5 Mgold= 197*u; //atomic mass of gold, per atom
6 n= Dgold/Mgold; //number of atoms per unit volume,
     atoms/m<sup>3</sup>
7 Zgold= 79; //atomic number of gold
8 e= 1.6*(10^(-19)); //electronis charge, C
9 KE= (I*e)/(10^{(-6)}); //converting to J
10 angle= 45; //degree
11 p=cotd(angle/2);
12 Po= 8.85*(10^(-12)); //Permittivity of free space, F
13 t= 3*(10^{(-7)}); //thickness of foil, m
15 f = (\%pi)*n*t*(((Zgold*(e^2))/(4*(\%pi)*Po*KE))^2)*(p)
     ^2) //using Rutherford scattering formula
16 disp(f, Fraction of the beam scattered through 45
      degree or more, in percent, is: ")
17
18 // Result
19 // Fraction of the beam scattered through 45 degree
```

```
or more, in percent, is: 20\ //\ 0.0000706
```

Chapter 5

Quantum Mechanics

Scilab code Exa 5.4 Positional probability

```
2 L= 1; //assuming Length L of box to be 1, this would
      not affect the probability
3 \times 1=0.45*L; //lower bound
4 x2=0.55*L; //upper bound
6 function y=f(x)
7 y = ((sin(n*(%pi)*x))^2)
8 endfunction //defined the function
9
10 n=1;
11 P1= (2/L)*intg(x1,x2,f); //for ground state
12
13 n=2;
14 P2= (2/L)*intg(x1,x2,f); //for first excited state
15
16 disp(P1, "The probability n ground state is: ")
17 disp(P2,"The probability in first excited state is:
     ")
18
19 // Result
```

```
20 // The probability n ground state is:
21 // 0.1983632
22
23 // The probability in first excited state is:
24 // 0.0064511
```

Scilab code Exa 5.6 Transmission probability

```
1
2 // Part (a)
3 E1= 1.0; //energy of first electron, eV
4 E2= 2.0; //energy of second electron, eV
5 Eb= 10.0; //height of barrier, eV
6 Wb= 0.50; //width of barrier, nm
7 Wb= Wb* 10^{(-9)}; //converting to m
8 hbar= 1.054*(10^(-34)); //reduced Planck's conctaant
     , J.s
9 Me= 9.1*(10^{(-31)}); //mass of electron, kg
10 e= 1.6*(10^(-19)); //charge of an electron, J/eV
11 k1= sqrt(2*Me*(Eb-E1)*e)/hbar; //for first electron,
      m^{(-1)}
12 k2= sqrt(2*Me*(Eb-E2)*e)/hbar; //for second electron
     , m^{(-1)}
13 T1= (%e)^((-2)*k1*Wb) //transmission probability for
      first electron
14 T2= (%e)^((-2)*k2*Wb) // for second electron
15 disp(T1, "Transmission probability for electrons with
      energy 1.0 eV is: ")
16 disp(T2, "Transmission probability for electrons with
      energy 2.0 eV is: ")
17
18 // Part (b)
19 Wb= Wb*2; //Barrier width doubled
20 T11= (%e)^((-2)*k1*Wb) // changed transmission
     probability for first electron
```

```
21 T22= (%e)^((-2)*k2*Wb) // for second electron
```

- 22 disp(T11, "Transmission probability for electrons with energy 1.0 eV is: ")
- 23 disp(T22, "Transmission probability for electrons with energy 2.0 eV is: ")

Quantum Theory of the Hydrogen Atom

Scilab code Exa 6.4 Zeeman components

```
1
2 B= 0.300; //magnetic field, T
3 Lambda= 450; //wavelength, nm
4 Lambda= Lambda*(10^(-9)); //converting to m
5 e= 1.6*(10^(-19)); //charge of an electron, C
6 Me= 9.1*(10^(-31)); //mass of electron, kg
7 c= 3 *(10^8); //speed of light, m/s
8 dLambda= e*B*(Lambda^2)/(4*(%pi)*Me*c); //m
9 dLambda= dLambda*(10^9); //converting to nm
10 disp(dLambda, "The separation between Zeeman components is: ")
11 //Result
12 // The separation between Zeeman components is:
13 // 0.0028333
```

Many Electron Atoms

Scilab code Exa 7.1 Equatorial velocity of electron

Scilab code Exa 7.2 Effective charge on outer electron

```
1
2 n= 2; //outer (2s) orbit of lithium
3 E2= -5.39; //Ionisation energy of lithium, for n=2
    eV
4 E1= -13.6; //for n=1, eV
5 Z= n*(sqrt(E2/E1)) //modification factor for
    effective charge
6 e= 1.6*(10^(-19)); //charge of an electron, C
7 Ceffective = Z*e;
8
9 disp(Ceffective, "The effective charge, in C, is: ")
10
11 //Result
12 // The effective charge, in C, is:
13 // 2.015D-19
```

Scilab code Exa 7.3 Magnetic energy for electron

```
1
2 n = 2; //for 2p state
3 Ao = 5.29*(10^(-11)); //Bohr's orbit for n=1, m
4 \text{ r= (n^2)*Ao; //orbital radius, m}
5 f= 8.4*(10^14); //frequency of revolution, Hz , using
      Eqn 4.4
6 Mo= 4*(\%pi)*(10^{(-7)}); //Magnetic constant, T.m/A
7 e= 1.6*(10^(-19)); //charge of an electron, C
8 B= (Mo*f*e)/(2*r); //Magnetic field, T
9 Mb= 9.27*(10^(-24)); //Bohr Magneton, J/T
10 Um = Mb * B; // Magnetic energy, J
11 Um = Um/e; //converting to eV
12 disp(Um, "The magnetic energy for electron, in eV, is
      : ")
13
14 // Result
15 // The magnetic energy for electron, in eV, is:
```

```
16 // 0.0000231
```

Scilab code Exa 7.8 X ray lines

```
1
2 l= 0.180; //wavelength, nm
3 l= l* 10^(-9); //converting to m
4 c= 3*(10^8); //velocity of light, m/s
5 f= c/1; //frequency, Hz
6 R= 1.097*(10^7); //Rydberg's constant, per m
7 Z= 1+(sqrt((4*f)/(3*c*R))); //using Eqn 7.21
8 disp(Z,"The element has atomic number: ")
9
10 //Result
11 // The element has atomic number:
12 // 26.985424
```

Molecules

Scilab code Exa 8.1 Energy and angular velocity

```
2 // Part (a)
3 r = 0.113; //bond length, nm
4 Mc= 1.99*(10^(-26)); //mass of C12, kg
5 Mo= 2.66*(10^{-26}); //mass of O16, kg
6 Mco= (Mc*Mo)/(Mc+Mo); //mass of CO, kg
7 I= Mco*((r*(10^(-9)))^2); //moment of inertia, kg.m
8 J=1; //lowest rotational state
9 h= 6.63*(10^{(-34)}); //Planck's constant, J.s
10 hbar= h/(2*(%pi)); //reduced Planck's constant, J.s
11 E1= (J*(J+1)*(hbar^2))/(2*I); //energy corresponding
      to state J=1, J
12 e= 1.6*(10^(-19)); //charge of an electron, C
13 E1= E1/e; //converting to eV
14 disp(E1, "The energy of CO molecule, in eV, is: ")
15
16 // Result
17 // The energy of CO molecule, in eV, is:
         0.0004787
18 //
19
```

```
20 //Part(b)
21 w= sqrt((2*E1*e)/(I)); //angular velocity, rad/s
22 disp(w,"The angular velocity, in rad.sec, is: ")
23
24 //Result
25 // The angular velocity, in rad.sec, is:
26 // 1.027D+12
```

Scilab code Exa 8.2 Bond length of CO

```
2 Ji=0; //initial state
3 Jf=1; //final state
4 f= 1.15*(10^11); //frequency for the absorption, Hz
5 h= 6.63*(10^{(-34)}); //Planck's constant, J.s
6 hbar= h/(2*(%pi)); //reduced Planck's constant, J.s
  Ico= hbar*Jf/(2*(%pi)*f); //moment of inertia , kg.m
8 Mco= 1.14*(10^(-26)); //Mass of CO, refer Exa 8.1
9 r= sqrt(Ico/Mco); //bond length, m
10 r= r*(10^9); //converting to nm
11 disp(r,"The bond length of CO molecule, in nm, is: "
     )
12
13 // Result
14 // The bond length of CO molecule, in nm, is:
         0.1131815
15 //
```

Scilab code Exa 8.3 Infrared radiation by CO

```
1 //Part (a)
2 f= 6.42*(10^13); //frequency of absorbed radiation,
Hz
```

```
3 Mco= 1.14*(10^(-26)); //mass of CO, kg
4 k= 4*((\%pi)^2)*(f^2)*Mco; //using Eqn 8.15, Page 287
5 disp(k,"The forcs constant for the bond in CO
      molecule, in N/m, is: ")
6
7 // Result
8 // The forcs constant for the bond in CO molecule,
     in N/m, is:
      1854.9604
10
11 // Part (b)
12 h= 6.63*(10^(-34)); //Planck's constant, J.s
13 dE= h*f; //separation, J
14 disp(dE, "The separation in its vibrational eergy
     levels, in J, is: ")
15
16 // Result
17 // The separation in its vibrational eergy levels,
     in J, is:
18 // 4.256D-20
```

Statistical Mechanics

Scilab code Exa 9.1 Atoms of hydrogen

```
1 k=8.617*10^{(-5)}; //Boltzmann constant, eV/K
2 To=273; //initial temperature, K
3 E1= -13.6; //energy of ground state, eV
4 E2= -3.4; //energy of first excited state, eV
5 dE= E2-E1; //difference in energy levels
6 g1=2; //number of energy states for E1
7 g2=8; //number of energy states for E2
9 J= dE/(k*To);
10 Nratio1= (g2/g1)*(\%e)^(-J); //ratio of number of
     atoms in level 2 and level 1 at To
11
12 T1=10273; //K
13 J1= J*To/T1;
14 Nratio2= (g2/g1)*(\%e)^(-J1); //at T1
15
16 disp(To, "The ration at 273 K is: ")
17 disp(T1, "The ratio at 10273 k is: ")
```

Scilab code Exa 9.4 RMS speed of oxygen molecule

```
1
2 Moxygen= 16.0; //atomic mass,u
3 Mo2= 32.0; //Molecular mass, u
4 u= 1.66*(10^(-27)); //atomic mass unit, kg
5 Moxygen= Mo2*u; //mass, kg
6 t= 273; //temperature, K
7 k= 1.38*10^(-23); //Boltzmann constant, J/K
8 Vrms= sqrt(3*k*t/Moxygen); // m/s
9 disp(Vrms, "The rms velocity of oxygen is: ")
10
11 //Result
12 // The rms velocity of oxygen is:
13 // 461.26708
```

Scilab code Exa 9.5 Photons

```
1
2 // Part (a)
3 \ V = 1.00; //volume, cm^3
4 V = V*10^(-6); //converting to m<sup>3</sup>
5 dI= 2.404; //standard value of definite Integral
      used
6 \text{ k= } 8.617*10^{(-5)}; //Boltzmann constant, eV/K}
7 h= 4.13*(10^(-15)); //Planck's constant, eV.s
8 T= 1000; //temperature, K
9 c= 3 * (10^8); //speed of light, m/s
10 N= 8*(\%pi)*V*dI*[(k*T/(h*c))^3];
11 disp(N," the number of photons is: ")
12
13 // Result
14 // the number of photons is:
15 // 2.032D+10
16
```

Scilab code Exa 9.6 Energy density of radiation

Scilab code Exa 9.7 Surface temperature of sun

```
1
2 Rearth= 1.5*10^(11); //radius of earth, m
3 r= 1.4; //rate of arrival of sunlight, kW/m^2
4 P= (r*10^3)*4*(%pi)*(Rearth^2); //total power reaching Earth
```

Scilab code Exa 9.8 Fermi energy in copper

The Solid State

Scilab code Exa 10.1 Cohesive energy in NaCl

```
2 Ro = 0.281; //equilibrium distance between ions, nm
3 alpha= 1.748; //Madelung constant
4 n= 9; //exponent, from observed compressibilities of
      NaCl
5 e= 1.6*(10^{(-19)}); //charge of an electron, C
6 Po= 8.85*(10^{(-12)}); // Permittivity of free space, F
7 K=1/(4*(\%pi)*Po); //constant, N.m^2/C^2
8 Uo= -(K*alpha*(e^2)*(1-(1/n)))/(Ro*(10^(-9))); //
      Potential energy per ion pair, J
9 Uo = Uo/e; //converting to eV
10 E1= 5.14; //Ionisation energy for Na, eV
11 E2= -3.61; //electron affinity of Cl, eV
12 E= E1+E2; //Electron transfer energy, eV
13 Ecohesive = (Uo +E); //per electron pair, eV
14 Ecohesive = Ecohesive/2; //for each ion, eV
15 disp(Ecohesive," The cohesive energy in NaCl, in eV,
     is: ")
16
17 // Result
```

```
18 // The cohesive energy in NaCl, in eV, is: 19 // - 3.2125847
```

Scilab code Exa 10.2 Drift velocity

```
1
2 A= 1; //cross-sectional area of wire, mm^2
3 I= 1; //current in wire, A
4 n= 8.5*(10^28); // electrons/m^3
5 e= 1.6*(10^(-19)); //charge of an electron, C
6 Vdrift= I/(n*(A*(10^(-6)))*e); //m/s
7 disp(Vdrift, "The drift velocity of electrons in the copper wire, in m/s, is: ")
8
9 //Result
10 // The drift velocity of electrons in the copper wire, in m/s, is:
11 // 0.0000735
```

Scilab code Exa 10.3 Mean free path

```
1
2 n= 8.48*(10^28); // free electron density, m^(-3)
3 Vfermi= 1.57*(10^6); // Fermi Velocity, m/s
4 rho= 1.72*(10^(-8)); // resistivity, ohm
5 e= 1.6*(10^(-19)); // charge of an electron, C
6 Me= 9.1*(10^(-31)); // mass of electron, kg
7 lambda= Me*Vfermi/(n*(e^2)*rho); //m
8 lambda= lambda*(10^9); // converting to nm
9 disp(lambda, The mean free path, in nm, is: ")
10
11 // Result
12 // The mean free path, in nm, is:
```

13 // 38.262803

Nuclear Structure

Scilab code Exa 11.1 Density of Carbon12 nucleus

```
1
2 u= 1.66*(10^(-27)); //atomic mass unit, kg
3 Mc= 12*u; // atomic mass of Carbon-12, kg
4 R= 2.7; //radius of nucleus, fm
5 R=R*(10^(-15)); //converting to m
6 density= Mc/((4/3)*(%pi)*(R^3)); // kg/m^3
7 disp(density,"Density of Carbon 12 nucleus, in kg/m ^3, is: ")
8
9 //Result
10 // Density of Carbon 12 nucleus, in kg/m^3, is:
11 // 2.416D+17
```

Scilab code Exa 11.2 Repulsive electric force

```
1
2 r= 2.4; //distance between centre of the protons, fm
3 r= r*(10^(-15)); //converting to m
```

Scilab code Exa 11.3 Proton in a magnetic field

```
1
2 // Part (a)
3 //Caption: find energy difference between spin-up ad
      spin-down states
4 B= 1; //strength of magnetic field, T
5 Mneutron= 3.152*(10^(-8)); //Magnetic moment for
      neutron, eV/T
6 Mproton= 2.793*Mneutron; //Magnetic moment for
     proton, eV/T
7 dE= 2*Mproton*B; //eV
8 disp(dE, "The energy difference, in eV, is: ")
9
10 //Result
11 // The energy difference, in eV, is:
12 // 0.0000002
13
14 // Part (b)
15 //Caption: find Larmor frequency for a proton in the
16 h= 4.13*(10^{(-15)}); //Planck's constant, eV.s
17 Flarmor = dE/h; //Hz
18 Flarmor = Flarmor/(10<sup>6</sup>); //converting to MHz
```

Scilab code Exa 11.4 Atomic mass of Neon20 isotope

Scilab code Exa 11.6 Binding energy of Zinc64 isotope

```
1
2 Z= 30; //proton number
3 N=34; //Neutron number
4
5 //Using Eqn 11.7
```

```
6 Mh = 1.007825; //Mass of H1 atom, u
7 Mn= 1.008665; //Mass of neutron, u
8 Mzinc= 63.929; //atomic mass of zinc, u
9 Ebinding= [(Z*Mh)+(N*Mn)-Mzinc]*931.49; //MeV
10 disp(Ebinding, Binding energy of Zinc 64 isotope, in
       MeV, is: ")
11
12 // Result
13 // Binding energy of Zinc 64 isotope, in MeV, is:
         559.22934
15
16
17 //Using semiempirical formula, Eqn 11.18, Page 407
18 a1= 14.1; //\text{Mev}
19 a2= 13.0; //\text{MeV}
20 a3= 0.595; //\text{Mev}
21 a4= 19.0; //\text{MeV}
22 \text{ a5} = 33.5; //\text{MeV}
23 A = Z + N;
24
25 E2= [(a1*A)-(a2*(A^(2/3)))-(a3*Z*(Z-1)/(A^(1/3)))-(
      a4*((A-2*Z)^2)/A)+(a5/(A^3/4)); //MeV
26 disp(E2,"The binding energy using semi-empirical
      formula, in MeV, is: ")
27
28 // Result
29 // The binding energy using semi-empirical formula,
      in MeV, is:
        561.718
30 //
```

Nuclear Transformations

Scilab code Exa 12.2 Decay time for radon

```
1
2 Thalf= 3.82; //half-life in days, d
3 Lambda= 0.693/Thalf; //decay constant
4 p= 0.6; // 60.0 percent of sample
5 No= poly(0, 'No'); //Number of undecayed nuclei, at time t=0
6 N= (1-p)*No; //Number of undecayed nuclei, at time t
7 k= 1-p; //ratio of N to No
8 t= (1/Lambda)*(log(k)); //decay time in days, d
9 t= t*(-1);
10
11 disp(t, "The decay time for Radon, in d, is: ")
12
13 //Result
14 // The decay time for Radon, in d, is:
15 // 5.0508378
```

Scilab code Exa 12.3 Activity of Radon

Scilab code Exa 12.4 Activity of Radon after a week

```
//Refer to Example 12.3

Ro= 155; //initial activity, Ci
Lambda= 2.11*(10^(-6)); //decay constant, s^(-1)

t= 7; //days
t= t*86400; //converting to s
R= Ro*((%e)^(-(Lambda*t))); //final activity, Ci
disp(R,"The activity after one week, in Ci, is: ")

// Result
// The activity after one week, in Ci, is: ")
// Result
// The activity after one week, in Ci, is: ")
```

Scilab code Exa 12.5 Carbon dating

```
1
2 R= 13; //present activity,
3 Ro= 16; //activity of live wood
4 Thalf= 5760; //half life of radiocarbon, y
5 Lambda= 0.693/(Thalf); //decay constant, y^(-1)
6 t= (1/Lambda)*(log(Ro/R)); //age of sample, y
7 disp(t,"The age of the wooden sample, in years, is:
")
8
9 //Result
10 // The age of the wooden sample, in years, is:
11 // 1725.8337
```

Scilab code Exa 12.6 Half life of Uranium238

Scilab code Exa 12.7 Daughter nuclide of Polonium

```
1
2 Npolonium= 84; //atomic number of polonium
3 Nalpha= 2; //atomic number of alpha particle
```

```
4 Z= Npolonium-Nalpha; //atomic number of daughter
      nuclide
5 Mpolonium = 209.9829; //mass number of polonium, u
6 Malpha= 4.0026; //mass number of alpha particle, u
7 A= Mpolonium-Malpha; //mass number of daughter
      nuclide
8 disp(Z, "The daughter nuclide has atomic number: ")
9 disp(A, "and mass number: ")
10
11 // The daughter nuclide has atomic number:
12 //
        82.
13
14 // and mass number:
15 //
         205.9803.
16
17 Ealpha= 5.3; //energy of alpha particle, MeV
18 Q = Mpolonium * Ealpha/A; //disintegration energy, MeV
19 Mq= Q/931; //mass equivalent for Q, u
20 Mnuclide= Mpolonium-Malpha-Mq; //u
21 disp(Mnuclide,"The atomic mass of the daughter
      nuclide is: ")
22 //Result
23 // The atomic mass of the daughter nuclide is:
24 //
        205.9745
```

Scilab code Exa 12.8 Absortion of neutron by Cadmium

```
7 // Part (a)
9 t= 0.1; //hickness of sheet used, mm
10 t= t*10^(-3); //converting to m
11 p= 12; //percent of Cadmium-113 in natural cadmium
12 u= 1.66*(10^{(-27)}); //atomic mass unit, kg
13 n= (p/100)*density/(Mcadmium*u); //number of atoms,
     atoms/m<sup>3</sup>
14 Fabsorbed= 1- ((\%e)^{(-n)}*(CrossSection)*(t))); //
      absorbed fraction
15 disp(Fabsorbed,"The fraction of incident beam
     absorbed is: ")
16
17 //Result
18 // The fraction of incident beam absorbed is:
19 // 0.6721891
20
21 // Part (b)
22
23 t2= (-(log(0.01)))/(n*CrossSection); //required
      thickness, m
24 t2= t2*10^(3); //converting to mm
25 disp(t2,"The thickness required to absorb 99 percent
       of incident thermal neutrons, in mm, is: ")
26
27 // Result
28 // The thickness required to absorb 99 percent of
     incident thermal neutrons, in mm, is:
29 //
        0.4129018
```

Scilab code Exa 12.9 Thermal neutrons

```
\frac{1}{2} //refer to Example 12.8
```

```
CrossSection= 2*(10^4); // capture cross section of
    Cadmium-113, b

CrossSection= CrossSection*(10^(-28)); // converting
    to m^2

n= (12/100)*(8.64*10^3)/(112*(1.66*10^(-27))); //
    number of atoms, atoms/m^3

Lambda= 1/(n*CrossSection); //mean free path, m

Lambda= Lambda*10^3; //converting to, mm

disp(Lambda, "The mean free path, in mm, is: ")

// Result
// The mean free path, in mm, is:
// 0.0896605
```

Scilab code Exa 12.10 Irradiation of gold foil

```
1
2 Thalf = 2.69; //half life of gold,d
3 Lambda= 0.693/(Thalf*86400); //\text{decay constant}, s
      ^{(-1)}
4 R= 200; //required activity, mCi
5 R= R*10^(-6); //converting to Ci
6 dN= R/(Lambda/(3.70*10^{\circ}(10))); //atoms
7 Wgold= 10; //mass of foil, mg
8 u= 1.66*(10^{(-27)}); //atomic mass unit, kg
9 Mgold= 197; // u
10 n2= Wgold*10^(-6)/(Mgold*u); //total no. of atoms
11 phi= 2*10^(16); //flux, neutrons/m<sup>2</sup>
12 CrossSection= 99*10^{-28}; /m^2
13 dT= dN/(phi*n2*CrossSection); //s
14 disp(dT,"The irradiation period required, in seconds
      , is: ")
15
16 // Result
17 //The irradiation period required, in seconds, is:
```

Scilab code Exa 12.11 Alpha particle in lab system

```
2 \text{ m1} = 14.00307; //u
 3 \text{ m2} = 4.00260; //u
4 \text{ m3} = 1.00783; //u
5 \text{ m4} = 16.99913; //u
 6 k= m1+m2-m3-m4; // difference in total mass of
      reactants and products, u
7 Q= k*931.5; //energy exchanged, MeV
 8 KEcm = -Q; //minimum KE needed in centre of mass
      system, MeV
 9 KElab = KEcm * (m2+m1)/m1; //minimum KE in laboratory
      system
10 disp(KElab,"The minimum KE required by the alpha
      particle, in MeV, is: ")
11
12 //Result
13 // The minimum KE required by the alpha particle, in
      MeV, is:
14 // 1.5451071
```