Homework 6

Feng Zhao June 10, 2021

6.1. We first consider the probability of first return to zero for 2n+2 steps: $f_{2n+2}=P(S_1\neq 0,S_2\neq 0,\ldots,S_{2n+1}\neq=0,S_{2n+2}=0)=2P(X_1=1,X_1+X_2\geq 1,\ldots,\sum_{i=1}^{2n+1}X_i=1,X_{2n+2}=-1)=2P(S_1\geq 0,S_2\geq 0,\ldots,S_{2n}=0).$ This implies that $P(S_1\geq 0,S_2\geq 0,\ldots,S_{2n}=0)=\frac{1}{2}f_{2n+2}=\frac{1}{2}\frac{1}{2n+1}P(S_{2n+2}=0)$ by the formula of f_n . Therefore, $P(S_1\geq 0,S_2\geq 0,\ldots,S_{2n}\geq 0|S_{2n}=0)=\frac{1}{2}\frac{f_{2n+2}}{P(S_{2n}=0)}=\frac{1}{2}\frac{1}{2n+1}\frac{P(S_{2n+2}=0)}{P(S_{2n}=0)}=\frac{1}{2}\frac{1}{2n+1}\frac{\binom{2n+2}{n+1}}{\binom{2n}{n}}=\frac{1}{n+1}.$

6.2. We claim that $f(p) = -\frac{1}{\log p}$. Let $k = c \log n$ First notice that $P(L_i \geq k) = p^k = n^{c \log p}$. Then by union bound, $P(L_{\max}^{(n)} \geq k) \leq \sum_{i=1}^n P(L_i \geq k) = np^k = n^{1+c \log p}$. When c > f(p), $1 + c \log p < 0$. Therefore, $\lim_{n \to \infty} P(L_{\max}^{(n)} \geq k) = 0$. On the other hand, we will show that $\lim_{n \to \infty} P(L_{\max}^{(n)} < k) = 0$ when $1 + c \log p > 0$.

$$P(L_{\max}^{(n)} < k) = P(L_i < k, \forall 1 \le i \le n)$$

$$\le P(L_i < k, \text{ for } i = 1, k+1, 2k+1, \dots, k \lfloor \frac{n}{k} - 1 \rfloor + 1)$$

$$\stackrel{(a)}{=} \prod_{j=0}^{\lfloor \frac{n}{k} - 1 \rfloor} P(L_{jk+1} < k)$$

$$= (1 - p^k)^{\lfloor \frac{n}{k} - 1 \rfloor} \sim \exp(-\frac{n^{1+c \log p}}{c \log n}) \to 0$$

where (a) comes from the independent conditions of X_i . Note: the result implies that $\frac{L_{\max}^{(n)}}{\log(n)} \stackrel{p}{\to} -\frac{1}{\log p}$.

We can further show that

$$\limsup_{n \to \infty} \frac{L_n}{\log(n)} = f(p) \text{ with probability 1}$$
 (1)

The above equation is guaranteed if

 $P(L_n \ge c \log(n) \text{ occurs infinitely often}) = 0 \text{ for any constant } c > f(p)$ (2)

$$P(L_n \ge c \log(n) \text{ occurs infinitely often}) = 1 \text{ for any constant } c < f(p)$$
(3)

Notice that (1) says that $\lim_{m\to\infty}\sup_{n\geq m}\frac{L_n}{\log p}=f(p)$ with probability 1. Then for any $\epsilon>0$, $\lim_{m\to\infty}P(|\sup_{n\geq m}\frac{L_n}{\log n}-f(p)|>\epsilon)=0$ Let

 $C_n(\epsilon) = \{w \mid |\frac{L_n(w)}{\log n} - f(p)| > \epsilon\}.$ Then $P(\limsup_{n \to \infty} C_n) = 0$. Further let $A_n(\epsilon) = \{w \left| \frac{L_n(w)}{\log n} - f(p) > \epsilon \} \text{ and } B_n(\epsilon) = \{w \left| \frac{L_n(w)}{\log n} - f(p) < -\epsilon \} \}$. Then $\limsup_{n\to\infty} C_n(\epsilon) \subset \limsup_{n\to\infty} A_n(\epsilon) \bigcup \liminf_{n\to\infty} B_n(\epsilon)$. Therefore, (2) and (3) imply (1).

We can use Borel Cantelli lemma to prove (2). We will show that $\sum_{n=1}^{\infty} P(L_n \ge c \log(n)) = \sum_{n=1}^{\infty} n^{c \log p} < +\infty.$ Since $c \log p < -1$, the converge of the series is guaranteed.

To prove (3), we cannot use Borel Cantelli lemma directly since the events are not independent. We consider $P(\liminf_{n\to\infty} B_n(\epsilon))$ with $\epsilon = f(p) - c$. That is, we will prove

 $\lim_{m \to \infty} P(\bigcap_{n=m}^{+\infty} \{ w | L_n(w) < c \log n \}) = 0. \text{ Since}$

 $P(\bigcap_{n=m}^{+\infty} \{w | L_n(w) < c \log n\})$ is an non-decreasing sequence about m, we only need to show $P(\bigcap_{n=m}^{+\infty} \{w | L_n(w) < c \log n\}) = 0$ for any m. Let $k = c \log n$. When we consider $n = m, m + k, m + 2k, \ldots$, the event series $B_n(\epsilon)$ becomes independent. Since $P(L_n < k) = 1 - p^k$, we have $P(\bigcap_{n=m}^{+\infty} \{w | L_n(w) < c \log n\}) \le \prod_{t=0}^{+\infty} (1 - p^{c \log(m+tk)})$. Since $c\log p > -1, \sum_{t=0}^{+\infty} (m+tk)^{c\log p} = +\infty \Rightarrow \sum_{t=0}^{+\infty} \log(1 - p^{c\log(m+tk)}) = -\infty \Rightarrow \prod_{t=0}^{+\infty} (1 - p^{c\log(m+tk)}) = 0.$

6.3. (a) $P(N_m \ge 1|X_1 = -1) = 0$ while $P(N_m \ge 1|X_1 = 1)$ is the probability that the particle first hits m before hitting 0 starting from position 1. This probability is $\frac{1}{m}$ from the gambler's win problem with two players. Then

problem with two players. Then
$$P(N_m \ge 1) = P(N_m \ge 1 | X_1 = 1) P(X_1 = 1) = \frac{1}{2m}$$
 (b)
$$P(N_m = n) = P(N_m = n - 1) \cdot \frac{1}{2} (\frac{m-1}{m} + 1) = \frac{2m-1}{2m} P(N_m = n - 1) = \frac{(2m-1)^{n-1}}{(2m)^{n+1}}.$$

$$(n-1) = \frac{(2m-1)^{n-1}}{(2m)^{n+1}}.$$

6.4. (a)
$$W = \sum_{i=1}^{N(T)} (T - T_i)$$

$$\mathbb{E}[W] = \sum_{s=1}^{+\infty} P(N(T) = s) \,\mathbb{E}[W|N(T) = s]$$
$$= \sum_{s=1}^{+\infty} \frac{(\lambda T)^s e^{-\lambda T}}{s!} (\sum_{i=1}^s [T - \mathbb{E}[T_i|N(T) = s]])$$

Given N(T) = s, T_i is uniformly distributed in the interval [0, T]. Then $\mathbb{E}[T_i|N(T)=s]=\frac{T}{2}$, and

$$\mathbb{E}[W] = \frac{T}{2} \sum_{s=1}^{+\infty} \frac{(\lambda T)^s e^{-\lambda T}}{(s-1)!}$$
$$= \frac{\lambda T^2}{2}$$

- (b) Using the conclusion from (a) and the memoryless property of Poisson process, $\mathbb{E}[W] = \frac{\lambda S^2}{2} + \frac{\lambda (T-S)^2}{2}$
- 6.5. Since $p = (1 + o(1)) \frac{\log n}{n}$, the probability that G has an isolated subset with size more than 2 tends to zero as $n \to \infty$. Therefore $\lim_{n \to \infty} P(G \text{ is connected}) = \lim_{n \to \infty} P(G \text{ has no isolated vertex})$. Let $Z_{\text{iso}} = \sum_{v \in [n]} \mathbb{1}(v \text{ is isolated})$. Then $P(G \text{ has no isolated vertex}) = P(Z_{\text{iso}} = 0)$. We will show that

 $P(G \text{ has no isolated vertex}) = P(Z_{\text{iso}} = 0)$. We will show $Q_{\text{iso}} \stackrel{d}{\to} \text{Pois}(e^{-c})$, and obtain $P(Z_{\text{iso}} = 0) = \exp(-e^{-c})$.

To achieve such purpose, we only need to show that $\mathbb{E}\left(\frac{Z_{\text{iso}}}{r}\right) \to \frac{e^{-rc}}{r!}$.

$$\mathbb{E}\begin{pmatrix} Z_{\text{iso}} \\ r \end{pmatrix} = \sum_{1 \le v_1 < v_2 < \dots < v_r \le n} P(v_i \text{ is isolated for all } i \in [r])$$
$$= \binom{n}{r} (1-p)^{r(n-1)-\binom{r}{2}} \to \frac{e^{-rc}}{r!}$$

In conclusion, $\lim_{n\to\infty} P(G \text{ is connected}) = \exp(-e^{-c})$

6.6. We claim that $\delta_0 = \frac{2}{3}$. Define a set

$$\binom{\lfloor n \rfloor}{4} := \left\{ \{i,j,k,l\} : i,j,k,l \in [n], i < j < k < l \right\}$$

Let \mathbb{Z}_n be the number of 4-vertex cliques. Then

$$Z_n := \sum_{T \in \binom{\lfloor n \rfloor}{4}} \mathbb{1}(T \in G)$$

By linearity of expectation, $\mathbb{E}[Z_n] = \binom{n}{4}p^6 = O(n^{4-6\delta})$. If $\delta > \delta_0$, $\mathbb{E}[Z_n] \to 0$. By Markov's inequality, $P(Z_n \neq 0) \leq \mathbb{E}[Z_n] \to 0$. Therefore, we have shown that

 $\lim_{n\to\infty} P(G \text{ contains 4 vertices that are pairwise connected }) = 0 \text{ if } \delta > \delta_0$. For the other part, we use the Chebyshev's inequality for Z_n : $P(Z_n = 0) \leq \frac{\operatorname{Var}[Z_n]}{\mathbb{E}[Z_n]^2}$. Notice that

$$\operatorname{Var}[Z_n] = \sum_{S,T \in \binom{\lfloor n \rfloor}{4}} \operatorname{Cov}(\mathbb{1}(S \in G), \mathbb{1}(T \in G))$$

We split the summation according to $|S \cap T| = 0, 1, ..., 4$. Then we have $\operatorname{Var}[Z_n] \leq c_1 n^4 p^6 + c_2 n^5 p^9 + c_3 n^6 p^{11}$ where c_1, c_2, c_3 are permutation constant. Then

 $P(Z_n = 0) \le \frac{c_1}{n^4 p^6} + \frac{c_2}{n^3 p^3} + \frac{c_3}{n^2 p} = c_1 n^{6\delta - 4} + c_2 n^{3\delta - 3} + c_3 n^{\delta - 2} \to 0$ when $\delta < \delta_0 = \frac{2}{3}$. Therefore, we have

 $\lim_{n\to\infty} P(G \text{ contains 4 vertices that are pairwise connected }) = 1 \text{ if } \delta < \delta_0.$