MAE267 Parallel Computations in Fluid/Thermal Sciences Fall 2015 Schedule

CLASS	DAY- DATE	LEC DIS	TOPICS	ASSIGNMENT. (read before class)	DUE HW
1	TR-9/24	L	Introduction , Overview of Course, Engineering problem types that must consider parallel computing	HW1, Chap. 1-4 Chapman	
		L	Examples of parallel simulations, parallel computer systems, tutorial on how to log in to hpc1 and compile		
2	T-9/29	L	Fortran 95/03 for engineering programs, structure of statements and programs, assignment statements, intrinsic functions, I/O, branches and loops		
3	TR-10/1	L	Fortran 95/03 for engineering programs, I/O, arrays, procedures, functions	Chap. 5-9 Chapman	
4	T-10/6	L,D L	Programming Workshop, Algorithms Fortran 95/03 for engineering programs, data-types, pointers, memory allocation	HW2, Chaps. 1 and 2 Grama et al.	HW1
		D	Project-1 : The Heat Conduction Poisson Problem, HW1 discussion	Project-1	
5	TR-10/8	L	Parallel Computer Architectures: SIMD, MIMD, SMPs, distributed-memory, Beowulf clusters, inter-connections		
		D	Programming Workshop, Single-Block Code, Numerical Techniques for 2 nd Difference Operators, Different Algorithms		
6	T-10/13	L	MPI: Distributed memory programming, message passing interface, basic routines, send, receive, buffering, non-blocking	HW3	HW2
		D	Programming Workshop, Algorithms, HW2 discussion		
7	TR-10/15	L	Data Structures for Parallel Computing: multi-block structured, unstructured, hybrid, mesh refinement, implicit and explicit algorithms	Chap. 4-6 Gropp et al.	Project-1
		D	Programming Workshop, Project-1 discussion	Project-2	
8	T-10/20	L	Computer Programming: Importance of Single Processor Performance and Possible Parallel Programming Models	Chap. 1-3 Gropp et al. and Chap. 6 Grama et al.	
		D	Project-2 : Establishing a data structure for the multi-block Heat Conduction Problem		
9	TR-10/22	L	MPI: Distributed memory programming, message passing interface, basic communication	HW4, Chap. 6 Grama et al.	HW3
		D	Programming Workshop, Algorithms, HW3 discussion		
10	T-10/27	L	MPI: Distributed memory programming, Advanced programming using MPI, derived datatypes, advanced routines	Chaps. 3, 4, and 10 Grama et al., Project-3	Project-2
		D	Programming Workshop, Parallel Algorithms, Project-3		

11	TR-10/29	L	Domain Decomposition: types of decomposition		HW4
		D	Project-3 Discussion: The multi-block, serial Heat Conduction Poisson Solver, Project-2 Discussion		
12	T-11/3	L	Domain Decomposition: static graph partitioning, bisection, Metis, ParMetis, Chaco, dynamic decomposition	Chap. 5 Grama et al. HW5 (reading)	
		D	Programming Workshop, Parallel Algorithms, Decomposition Techniques		
13	TR-11/5	L	Data Structures for Decomposed Domains: streamlining parallel PDE/ODE solvers for parallel computing. Performance Performance: Parallel Performance Models and Analysis, Amdahl's law	HW6 (reading)	Project-3
		D	Project 4 : A Data Structure for a Parallel Heat Conduction Solver, Programming Workshop, Parallel Algorithms	Project-4	
14	T-11/10	L	Performance: Multi-Processor Performance, bandwidth, latency, speedup, hypercubes	Chap. 7 Grama et al.	
		D	Project-4 Discussion	HW7 (reading)	
15	TR-11/12	L	Shared Memory Parallel Computing: OpenMP, compiler options	Chap. 9 and 11 Grama et al.	
		D	Project-5: Distributed/Shared Parallel Computing of the Heat Conduction Poisson Problem	Project-5	
16	T-11/17	L	OpenMP Constructs: examples, when to use shared-memory vs distributed memory parallel		Project-4
		D	Project-4 and Project-5 Discussion		
17	TR-11/19	L	Accelerators: Graphical Processing Units (GPUs): GPGPU, GPU architecture, CUDA programming, OpenACC	HW8 (reading) CUDA programming	
		D	Project-5 and GPU computing discussion		
	T-11/24		Accelerators: Intel Xeon-Phi, vector processors, OpenMP		
	TR-11/26		Holiday - Thanksgiving		
18	T-12/1	L	Direct Matrix Methods: dense linear algebra solvers, BLAS and LINPACK	HW9 (reading), Chap. 8 and 13 Grama et al.	
		D	Programming Workshop		
19	TR-12/3	L	Parallel Scientific Libraries: LAPACK, SCALAPACK libraries		
		L,D	MPI Communicators for Multi-Disciplinary Applications, Programming Workshop, Project- 5 discussion		Project-5

Books:

[&]quot;Introduction to Fortran 90/95," by Stephen J. Chapman, First Edition, WCB-McGraw-Hill, 1998 or

[&]quot;Introduction to Fortran 95/2003 for Scientists & Engineers", by Stephen J. Chapman,

[&]quot;Using MPI, Portable Parallel Programming with the Message-Passing Interface," William Gropp, Ewing Lusk, and Anthony Skjellum, Second Edition, MIT Press, 1999.

[&]quot;Introduction to Parallel Computing," by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Second Edition, Addison Wesley Publishing, 2003