MATH UN1208, Honors Math B

Columbia University, Spring 2020

Mateo Maturana

Contents

_		
1	Jan 1.1 1.2 1.3 1.4 1.5	uary 22, 20201Introduction1Linear Algebra Recap1Continuation2Linear maps from \mathbb{R}^n to \mathbb{R}^m 3Matrices4
2	Jan 2.1 2.2 2.3 2.4	uary 27, 2020 4 TA Office Hours 4 Classifying linear maps $\mathbb{R}^n \to \mathbb{R}^m$ by matrix 4 Proof that matrices work as linear transformations of linear maps 5 Basis Vectors 6
3	Jan 3.1 3.2 3.3	uary 29, 20207Definitions from Last Class7Examples of Linear Dependence/Independence7Basis8
1	J	anuary 22, 2020
1.	1]	Introduction
Ac	lmini	strative Stuff
	• W	Tebpage/honorsmathB
• HW 1 due in a week (1/29)		W 1 due in a week $(1/29)$
	• O	ffice Hours: T 9 - 11, F 1-2
	• M	idterm in class last Wed before Spring Break
	• Te	extbook: Vol II this semester
		Yill cover almost all linear algebra, multivariable calculus with fund thm calculus in dim ≤ 3
1.	2	Linear Algebra Recap
	• W	We defined a field (e.g. $\mathbb{R}, \mathbb{Q}, \mathbb{C}$)
		We defined vector spaces. Has vector addition and scalar multiplication beying various laws. (e.g. $\mathbb{R}^n := \{\text{functions }[n] \to \mathbb{R}\}$ = $\{\text{n-tuples of elements in }\mathbb{R}\}$)
		We defined linear maps $V \to W$ (i.e. a function $F: V \to W$ such that $(V_1 + V_2) = \overline{F(V_1) + F(V_2)}$ and $F(cV_1) = cF(V_1)$)

• We defined a subspace of a vector space

 $W_1, W_2 \subseteq V$ subspaces $\Rightarrow W_1 \cap W_2$ is a subspace

1.3 Continuation

Definition. Given a linear map $f: V \to W$,

$$\ker f := \{ v \in V \mid f(v) = 0 \} \subseteq V$$

$$\operatorname{im} f := f(V) = \{w \in W \mid \exists v \in V, f(V) = W\}$$

Proposition. Given a linear $f: V \to W$,

- 1. f injective \iff ker $f = \{0\}$
- 2. f surjective \iff im f = W

"Pf". .

- 1. HW
- 2. Obvious

Definition. A linear $f: V \to W$ is an isomorphism if it is bijective.

Proposition. A linear map $f: V \to W$ is bijective if and only if it has a linear inverse.

Proof. Assume f is a bijection. Let $g:W\to V$ be the inverse. Need to check that g is linear. We know $f\circ g=Id_W$ and $g\circ f=Id_V$. Given $W_1,W_2\in W$,

$$\begin{split} g(W_1 + W_2) &= g(f(g(W_1))) + f(g(W_2)) \\ &= g(f(g(W_1) + g(W_2))) \\ &= g(W_1) + g(W_2) \end{split}$$

$$g(cW_1) = g(cf(g(W_1)))$$
$$= g(f(cg(W_1)))$$
$$= cg(W_1)$$

Definition. V, W vector spaces/F

$$\mathcal{L}(V, W) := \{ linear \ maps \ V \to W \} \subseteq \{ functions \ V \to W \}$$

On HW: Check that $\mathcal{L}(V, W)$ is a vector space.

Proposition. If $f: U \to V$ and $g: V \to W$ are linear, then $g \circ f: V \to W$ is linear.

Proof.

$$(g \circ f)(cV_1) = g(f(cV_1))$$

$$= g(cf(V_1))$$

$$= cg(f(V_1))$$

$$= c(g \circ f)(V_1)$$

and similar for addition.

1.4 Linear maps from \mathbb{R}^n to \mathbb{R}^m

Definition. The <u>standard basis vectors</u> of \mathbb{R}^n are $e_i = (0, 0, \dots, 1, \dots, 0)$.

e.g.
$$e_1 = (1, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, \dots, 0, 1)$

Notation: if $X \in \mathbb{R}^n$, then $x = (x_1, \dots, x_n)$. Call x_i then ith component of x.

 $(e_i)_j = \delta_{ij}$ "Kronecker delta"

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Proposition. $\forall x \in \mathbb{R}^n$,

$$\forall i, x_i = a_i \Longleftrightarrow x = \sum_{i=1}^n a_i e_i$$

In other words, $x = \sum_{i=1}^{n} x_i e_i$.

Proof.

$$\sum_{i=1}^{n} x_i e_i = (1, 0, 0, \dots, 0) x_1 + (0, 1, \dots, 0) x_2 + \dots + (0, 0, \dots, 1) x_n$$
$$= (x_1, 0, 0, \dots, 0) + (0, x_2, 0, \dots) + \dots + (0, 0, \dots, x_n)$$
$$= (x_1, x_2, \dots, x_n)$$

In other words, any vector in \mathbb{R}^n can be uniquely written as a linear combinations of the e_i .

1.5 Matrices

Definition. For $m, n \in \mathbb{Z}_{\geq 0}$, an $m \times n$ matrix over F is a $m \times n$ box of elements of F.

$$e.g. \begin{bmatrix} 0 & 3 \\ -3 & \pi \\ 0 & 4 \end{bmatrix}$$

Better Definition. An $m \times n$ matrix A over F is a function $[m] \times [n] \to F$.

Notation: Write $A((i,j)) =: A_{ij}$

$$B = \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix} B_{11} = 1, B_{12} = 0, B_{21} = 2, B_{22} = 5$$

Set of $m \times n$ matrices over F is called $M_{m \times n}(F)$. It is a vector space!

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{pmatrix}$$
$$c \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = \begin{pmatrix} cA_{11} \\ cA_{21} \end{pmatrix}$$

Overall Result $\Rightarrow M_{m \times n}(F)$ is an F - vector space.

Will prove: $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is isomorphic to $M_{m \times n}(\mathbb{R})$.

2 January 27, 2020

2.1 TA Office Hours

M 9 -11 (Carson) T 12-2 (Ahmed) W 9 -12 (Sayan)

2.2 Classifying linear maps $\mathbb{R}^n \to \mathbb{R}^m$ by matrix

Want to defined a linear map $M: M_{m \times n}(\mathbb{R}) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

$$A \mapsto (T : \mathbb{R}^n \to \mathbb{R}^m, T(x) = \begin{pmatrix} \sum_{j=1}^n A_{1j} x_j \\ \sum_{j=1}^n A_{2j}, x_j \\ \vdots \\ \sum_{j=1}^n A_{nj}, x_j \end{pmatrix})$$

We write

$$\begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{bmatrix}$$

Check that $\mu(A)$ is linear $(T = \mu(A))$:

$$(T(x+y))_i = \sum_{j=1}^n A_{ij}(x_j + y_j)$$

$$= \sum_{j=1}^n A_{ij}x_j + \sum_{j=1}^n A_{ij}y_j$$

$$= (T(x))_i + (T(y))_i$$

$$= (T(x) + T(y))_i$$

$$(T(cx))_i = \sum_{j=1}^n A_{ij} cx_j$$
$$= c \sum_{j=1}^n A_{ij} x_j$$
$$= c(T(x))_i$$
$$= (cT(x))_i$$

2.3 Proof that matrices work as linear transformations of linear maps

Theorem 2.1. M is a linear isomorphism.

Proof. Let T_A denote $\mu(A)$.

Linearity: T_{A+B} sends x to the vector with i^{th} componen

$$\sum_{j=1}^{n} (A+B)_{ij} x_j = \sum_{j=1}^{n} (A_{ij} + B_j) x_j$$
$$= \sum_{j=1}^{n} A_{ij} x_j + \sum_{j=1}^{n} B_{ij} x_j$$

 $T_A + T_B$ sends x to vector w/ ith component.

$$\sum A_{ij}x_j + \sum B_{ij}x_j \checkmark$$

Scalar Multiplication - similar

Injective: Suffices to show that $\ker \mu = \{0\}$. Suppose $T_A(x) = \widehat{0}$ for all x. By plugginh in $e_i, \ldots, e_n \left[(e_i)_j = \delta_{ij} \right]$

$$(T_A(e_k))_i = \sum_{j=1}^n A_{ij}(e_k)_j = A_{ik} \cdot 1 = A_{ik} = 0 \Rightarrow A = 0$$

Surjective: Suppose we have a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$. Consider the vectors

$$T(e_k) = \begin{pmatrix} A_{1k} \\ \vdots \\ A_{mk} \end{pmatrix}$$

Now let $A \in M_{m \times n}(\mathbb{R})$ such that

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}$$

We have to check $T_A = T$. Need to check that $T_A(x) = T(x) \, \forall x \in \mathbb{R}^n$. Write $x = (x_1, \dots, x_n) = \sum_{i=1}^n x_i e_i$.

$$T_A(x) = T_A\left(\sum_{i=1}^{j} x_i e_i\right) = \sum_{i=1}^{n} x_i T_A(e_i)$$

$$T(x) = T\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i T(e_i)$$

So it suffices to show that $T_A(e_i) = T(e_i)$ for each i.

$$T(e_i) = \begin{pmatrix} A_{1i} \\ \vdots \\ A_{mi} \end{pmatrix}$$

$$T_A(e_i) = \begin{pmatrix} \sum_{j=1}^n A_{1i}(e_i)_j \\ \sum_{j=1}^n A_{2j}(e_j)_j \\ \vdots \\ \sum_{i=1}^n A_{nj}(e_i)_j \end{pmatrix} = \begin{pmatrix} A_{1i} \\ A_{2i} \\ \vdots \\ A_{mi} \end{pmatrix}$$

Lesson: Standard basis vectors are very useful!

2.4 Basis Vectors

Recall: A <u>linear combo</u> of $v_1, \ldots, v_n \in V$ is a vector of the form $\sum_{i=1}^n c_i v_i$ where F is a field and V is a vector space over F.

Definition. A <u>linear combo</u> of a set of vectors S is any vector of the form $\sum_{i=1}^{n} c_i v_i$ where $c_i \in F$ and $v_i \in S$.

Definition. A set of vectors $S \subseteq V$ <u>spans V</u> if every $v \in V$ is a linear combo of S.

i.e. $\forall v \in V, \exists v_i, \dots, v_n \in S \text{ and } c_i, \dots, c_n \in F \text{ such that } v = \sum_{i=1}^n c_i v_i.$ Write span(S) = V.

$$\underline{\mathrm{Ex}} \quad \mathrm{span}(\{e_1,\ldots,e_n\}) = \mathbb{R}^n$$

$$\underline{\mathbf{E}}\mathbf{x} \quad \{\} \text{ spans } \mathbb{R}^0 = \{0\}$$

$$\underline{\text{Ex}} \quad \text{span}(\{(1,0),(0,1),(3,2)\}) = \mathbb{R}^2$$

Definition. A set $S \subseteq V$ is linearly independent if whenever

$$\sum_{i=0}^{n} c_i v_i = 0 \Longrightarrow \ all \ c_i = 0$$

Note:

Linear Independence
$$\iff$$
 whenever $\sum_{i=1}^n c_i v_i = \sum_{i=1}^n d_i v_i, c_i = d_i$

3 January 29, 2020

3.1 Definitions from Last Class

Recall: Let $S \subseteq V \ V$ a v.s. /F

- 1. $S \underset{v}{\underline{\text{spans }}} V$ if for every $v \in V$, $\exists s_1, \dots, s_n \in S$ and $c_1, \dots, c_n \in F$ such that $v = \sum_{i=1}^n c_i s_i$.
- 2. S is linearly independent if whenever $\sum_{i=1}^{n} c_i s_i = \vec{0}$ with $c_i \in F$ and $s_i \in S$, we have $\forall i, c_i = 0$.

3.2 Examples of Linear Dependence/Independence

- 1. If $\vec{0} \in S$, then S is dependent. $c\vec{0} = \vec{0}$ for any c, so c can be $\neq 0$. Uniqueness fails.
- 2. $V = \mathbb{R}^3$. Take 3 vectors. These are independent.

$$(1,0,0) \quad (1,1,0) \quad (1,0,1)$$

$$c_1(1,0,0) + c_2(1,1,0) + c_3(1,0,1) = (0,0,0)$$

$$\begin{cases} c_1 + c_2 + c_3 = 0 \\ c_2 = 0 \\ c_3 = 0 \end{cases}$$

$$\Rightarrow c_i \text{ all } = 0$$

3. $V = \mathbb{R}^2$. Take 3 vectors. These are dependent.

$$(1,0)$$
 $(0,1)$ $(1,01)$

$$1 \cdot (1,0) + (-1) \cdot (0,1) + (-1)(1,-1) = (0,0).$$

Thus, coefficients not all = 0.

4. $V = \mathbb{R}^n$, set of standard basis elements is independent.

$$\sum_{i=1}^{n} c_i e_i = \vec{0} \Rightarrow c_i = 0$$

5. $S = \emptyset$ is independent. No coefficients to choose, so vacuous.

6. $S = \{V\}$ is independent $\iff V \neq \vec{0}$

7. $S = \{V_1, V_2\}$ is independent \iff there is no $c \in F$ such that $V_1 = CV_2$ or $V_2 = CV_1$.

S dependent $\iff \exists a, b \text{ not both zero such that } aV_1 + bV_2 = \vec{0}.$ If $a \neq 0$ then $V_1 = \frac{-b}{a}V_2$. If $b \neq 0$ then $V_2 = \frac{-a}{b}V_1$.

3.3 Basis

Definition. $S \subseteq V$ is a <u>basis</u> if S is linearly independent and S spans V.

 $\underline{\text{Ex}}$ Let $V = \text{all polynomials} / \mathbb{R}$.

Claim:
$$S = \{1, x, x^2, x^3, x^4, \ldots\}$$

= $\{x^n \mid n \in \mathbb{Z}_{\geq 0}\}$

S spans V by definition: every polynomial is $\sum_{i=1}^{n} c_i x_i = \text{linear combo of } x^i$.

S linearly independent: Check that $\sum_{i=1}^{n} c_i x^i = 0 \Rightarrow c_i = 0$ (from one long problem on final exam!)

Plug in $x = 0 \Rightarrow c_0 = 0$

$$\sum_{i=1}^{n} c_i i x^{i-1} = 0$$

Plug in $x = 0 \Rightarrow c_1 = 0$

etc... Keep differentiating

 $\underline{\mathbf{E}}\mathbf{x}$

$$f(x) = x(x-1)$$

$$g(x) = (x-1)(x-2)$$

$$h(x) = x(x-2)$$

Claim: These are independent.

$$c_1 f(x) + c_2 g(x) + c_3 h(x) = 0$$

Plug in $x = 0 \Rightarrow c_2 \cdot 2 = 0 \Rightarrow c_2 = 0$

Plug in $x = 1 \Rightarrow c_3(-1) = 0 \Rightarrow c_3 = 0$

Plug in $x = 2 \Rightarrow c_1 \cdot 2 = 0 \Rightarrow c_1 = 0$

Lemma 3.1 (Lemma of Preceding Elements). V v.s./F $v_1, \ldots v_n$ is a sequence of elements of V. Suppose that $\{v_1, \ldots, v_n\}$ is dependent.

 \Rightarrow Some v_k may be written as a linear combo of v_1, \ldots, v_{k-1} .

Proof. $\{v_1, \ldots, v_n\}$ dependent $\Rightarrow \exists c_1 \in F$ not all = 0 such that $\sum_{i=1}^n c_i v_i = \vec{0}$. Let c_k be the last nonzero coefficient.

Then
$$\sum_{i=1}^{k} c_i v_i = 0 \Rightarrow c_k v_k = -\sum_{i=1}^{k-1} c_i v_i$$
$$\Rightarrow v_k = -\frac{1}{c_k} \sum_{i=1}^{k-1} c_i v_i$$

Definition. A vector space is <u>finite dimensional</u> if it has a finite basis. It is infinite-dimensional if not.

 $\underline{\mathbf{E}}\mathbf{x}$ \mathbb{R}^n is a finite-dimensional vector space. (standard basis have n elements)

Theorem 3.2. Let $\{v_1, \ldots, v_n\}$ be a basis of V. Suppose $\{u_1, \ldots, u_k\}$ is independent. Then $k \leq n$. (i.e. a basis has max size over all independent sets)

Proof. Equivent: if k > n, then $\{u_1, \ldots, u_k\}$ are dependent.

 $u_1 \in \operatorname{span}\{v_1, \dots, v_n\}$

 (v_1, \ldots, v_n, u_1) is linearly dep.

 (u_1, v_1, \ldots, v_n) is linearly dep.

Lemma \Rightarrow some element is linear combination of previous elements.

If it's u_1 , then $v_1 = 0 \Rightarrow$ we're done.

If not, then $v_i \in \text{span}(u_1, v_1, \dots v_{i-1})$.

Therefore $\{u_1, v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}$ spans V

 $\Rightarrow \{u_1, v_1, \dots, \hat{v_i}(\text{hat} := \text{remove element}), \dots, v_n, u_2\} \text{ is dependent.}$

 $\Rightarrow \{u_1, u_2, v_1, \dots, \hat{v_i}, \dots, v_n\}$ is dependent.

Lemma \Rightarrow some element is combo of previous ones. If u_1 or u_2 is said element, we're done.

```
Proceed by induction: get that, since k > n, \{u_1, u_2, \dots, u_n\} spans V \Rightarrow u_{n+1} is linear combo of \{u_1, \dots, u_n\} \Rightarrow we're done.
```

Corollary 3.2.1. Any two finite bases have some number of elements.

Proof.

$$\{v_1, \dots v_n\} \quad \text{Thm} \Rightarrow k \leq n \\ \{u_1, \dots, u_k\} \quad \text{Thm applied to Switching them} \Rightarrow n \leq k \Rightarrow k = n.$$

 $\textbf{Definition.}\ \ V\ \textit{finite-dimensional}\ v.s.$

$$\dim(V) = number of elements in any basis of V$$

 $\underline{\mathrm{Ex}}$ $\dim(\mathbb{R}^n) = n$

Proposition. If V is finite-dimensional, then any independent set $\{v_1, \ldots, v_k\}$ may be extended to a basis. (i.e. $\exists \{v_1, \ldots, v_n\}$ that is a basis)

Proof. If $\{v_1, \ldots, v_k\}$ spans V, we're done. Otherwise, pick some $v_{k+1} \in V$ - span $\{v_1, \ldots, v_k\}$. By lemma of preceding element, $\{v_1, \ldots, v_{k+1}\}$ still independent. Continue inductively.