گزارش پروژه سوم داده کاوی

پرهام طالبیان و بهزاد اسمی خانلو

مقدمه

این گزارش به بررسی و اجرای یک پروژه پردازش زبان طبیعی (NLP) با استفاده از SciSpaCy میپردازد. در این پروژه، دادههای متنی پردازش و تجزیه و تحلیل شدهاند تا بتوان از آنها برای خوشه بندی و مدل سازی موضوعی استفاده کرد.

پیشنیازها

ابتدا باید کتابخانهها و ابزارهای مورد نیاز را نصب کنیم. این ابزارها شامل pandas ، numpy ابتدا باید کتابخانهها و ابزارهای مورد نیاز را نصب کنیم. این ابزارها شامل scikit- ، en_core_sci_lg و مدل spacy ، langdetect ، tqdm ، seaborn ، matplotlib می باشند. همچنین ، فایل داده $10k_{\rm df.csv}$ نیز باید در دسترس باشد.

بارگذاری و پیشپردازش دادهها

ابتدا دادهها را بارگذاری کرده و برخی پیشپردازشها را انجام میدهیم.

```
# Block 2
df_10k = pd.read_csv('10k_df.csv')

# Block 3
df_10k.fillna(value=" ", inplace=True)

# Block 4
df = df_10k.sample(1500, random_state=42)
del df_10k
```

تشخیص زبان و پیشپردازش متون

در این بخش، زبان متون تشخیص داده میشود، توکنها استخراج و ریشهیابی شده و کلمات توقف حذف میشوند.

```
# Block 5
from langdetect import detect
import en_core_sci_lg
from nltk.stem import PorterStemmer
```

```
from nltk.corpus import stopwords
import re
def detect_language(text):
return detect(text)
def tokenize text(text):
parser = en_core_sci_lg.load(disable=["tagger", "ner"])
parser.max length = 3000000
doc = parser(text)
tokens = [token.text for token in doc]
return tokens
def stem_text(tokens):
stemmer = PorterStemmer()
stemmed_tokens = [stemmer.stem(token) for token in tokens]
return stemmed tokens
def remove_stopwords(tokens):
stop_words = set(stopwords.words("english"))
filtered_tokens = [token for token in tokens if token not in stop_words]
return filtered_tokens
def remove_punctuation(text):
{\tt clean\_text = re.sub(r"[^{w}s]", "", text)}
return clean text
# Sample usage
text = " "
language = detect_language(text)
tokens = tokenize_text(text)
stemmed tokens = stem text(tokens)
filtered_tokens = remove_stopwords(tokens)
clean text = remove punctuation(text)
```

استخراج ويژكىها

ویژگیهای متون پیشپردازششده با استفاده از TF-IDF استخراج میشوند.

```
# Block 6
def extract_tfidf_features(texts):
vectorizer = TfidfVectorizer(max_features=4096)
features = vectorizer.fit_transform(texts)
return features

preprocessed_texts = df['preprocessed_text'].tolist()
features = extract_tfidf_features(preprocessed_texts)
print(" ": , features.shape)
```

كاهش بعد

بعد ویژگیها با استفاده از PCA کاهش مییابد تا %۹۵ واریانس حفظ شود.

خوشەبندى

با استفاده از روش KMeans، تعداد بهینه خوشهها تعیین و دادهها خوشهبندی میشوند.

```
# Block 8
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import numpy as np
```

```
max_clusters = 30
inertia = []
for n_clusters in range(1, max_clusters+1):
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
kmeans.fit(reduced_features)
inertia.append(kmeans.inertia )
plt.plot(range(1, max_clusters+1), inertia, marker='o')
plt.xlabel( '
plt.ylabel(
plt.title('Elbow Method')
plt.show()
distances = []
for i in range(1, len(inertia)):
distances.append(inertia[i-1] - inertia[i])
elbow index = np.argmax(distances) + 1
best_n_clusters = elbow_index
              ": , best n clusters)
print("
kmeans = KMeans(n clusters=best n clusters, random state=42)
kmeans.fit(reduced features)
labels = kmeans.labels_
unique, counts = np.unique(labels, return counts=True)
cluster_counts = dict(zip(unique, counts))
                   ": , cluster_counts)
print("
```

نمایش دادهها

برای نمایش دادههای خوشهبندی شده از $t ext{-SNE}$ استفاده می شود.

```
# Block 9
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
```

```
import matplotlib.pyplot as plt

tsne = TSNE(n_components=2, random_state=42)
tsne_features = tsne.fit_transform(reduced_features)

kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(reduced_features)
cluster_labels = kmeans.labels_

plt.scatter(tsne_features[:, 0], tsne_features[:, 1], c=cluster_labels)
plt.title('t-SNE Scatterplot')
plt.xlabel( ' t-SNE')
plt.ylabel( ' t-SNE')
plt.show()
```

مدلسازي موضوعي

```
با استفاده از LDA، مدلسازی موضوعی برای هر خوشه انجام می شود.
```

```
# Block 10
from sklearn.decomposition import LatentDirichletAllocation
num_topics_per_cluster = 5
for cluster_id in range(num_clusters):
cluster_articles = articles[cluster_labels == cluster_id]
vectorizer = TfidfVectorizer(max_df=0.8, min_df=2, stop_words='english')
tfidf = vectorizer.fit_transform(cluster_articles)

lda = LatentDirichletAllocation(n_components=num_topics_per_cluster, random_stalda.fit(tfidf)

feature_names = vectorizer.get_feature_names()
for topic_id, topic in enumerate(lda.components_):
topic_keywords = [feature_names[i] for i in topic.argsort()[:-6:-1]]
```

print(f" {cluster_id} - {topic_id}: {', '.join(topic_keywords)}")

نتيجهگيري

در این پروژه، با استفاده از ابزارهای مختلف NLP و الگوریتمهای یادگیری ماشین، دادههای متنی پردازش و تحلیل شده و به خوشههای مختلف تقسیم شدند. همچنین، با استفاده از LDA مدلسازی موضوعی برای هر خوشه انجام گرفت.

توضيحات الكوريتمها

در این بخش، توضیحاتی در مورد الگوریتمهای استفادهشده ارائه میشود:

تشخيص زبان

الگوریتم LangDetect برای تشخیص زبان متون استفاده میشود. این الگوریتم با تحلیل کاراکترهای متون، زبان هر متن را تشخیص میدهد.

استخراج توكنها

الگوریتم SciSpaCy برای استخراج توکنها استفاده می شود. این الگوریتم با استفاده از مدلهای پیش آموزش داده شده، توکنهای متون علمی را استخراج می کند.

ریشهیابی و حذف کلمات توقف

الگوریتم PorterStemmer برای ریشه یابی کلمات استفاده می شود. همچنین، از لیست کلمات توقف NLTK برای حذف کلمات توقف از متون استفاده می شود.

استخراج ويژگىها

الگوریتم TF-IDF برای استخراج ویژگیها استفاده می شود. این الگوریتم با محاسبه اهمیت کلمات در متون مختلف، ویژگیهای متون را استخراج می کند.

كاهش بعد

الگوریتم PCA برای کاهش بعد ویژگیها استفاده میشود. این الگوریتم با حفظ واریانس بیشینه، بعد ویژگیها را کاهش می دهد.

خوشەبندى

الگوریتم KMeans برای خوشهبندی دادهها استفاده می شود. این الگوریتم با محاسبه فاصله نمونهها از مراکز خوشهها، دادهها را به خوشههای مختلف تقسیم می کند.

نمایش دادهها

الگوریتم t-SNE برای نمایش دادههای خوشهبندی شده در فضای دوبعدی استفاده می شود. این الگوریتم با حفظ ساختار فاصلهها در فضای ویژگی، دادهها را به فضای دوبعدی تبدیل می کند.

مدلسازي موضوعي

الگوریتم ${
m LDA}$ برای مدلسازی موضوعی استفاده می شود. این الگوریتم با تحلیل همزمان توزیع کلمات در متون، موضوعات مختلف را استخراج می کند.