MPC-NAI SZZ

Vypracované otázky k SZZ 2022

Mikroelektronika, FEKT VUT

Text: -

Korektura: –

Obsah

1	TRANZISTOROVA ROVNICE PRO BIPOLARNI TRANZISTOR	1
2	SOUBĚH (MATCHING)	4
3	PROUDOVÉ ZRCADLO, PROUDOVÝ ZDROJ	6
4	PROUDOVÉ ZRCADLO, PROUDOVÝ ZDROJ	7
5	AKTIVNÍ ZÁTĚŽ	8
6	DIFERENCIÁLNÍ TRANZISTOROVÝ STUPEŇ	9
7	DIFERENCIÁLNÍ TRANZISTOROVÝ STUPEŇ	10
8	PROUDOVÝ ZDROJ IPTAT	11
9	PROUDOVÝ ZDROJ IPTAT	12
10	OPERAČNÍ ZESILOVAČ	13
11	OPERAČNÍ ZESILOVAČ	14
12	OPERAČNÍ ZESILOVAČ	15
13	BAND GAP REFERENCE	16

1 DVOJRAMPOVÝ OSCILÁTOR S VCO CHARAKTE-RISTIKOU

Nastavení střídy oscilátoru, výpočet kmitočtu oscilátoru, nastavení minimální a maximální frekvence oscilátoru s ohledem na řídící napětí

2 MANAGEMENT NAPÁJECÍHO NAPĚTÍ INTEGRO-VANÉHO OBVODU

UVLO (řízení obvodu pomocí vstupního napájecího napětí, komparace vstupního napětí), Power on Reset (UV signál), realizace a výpočet nastaveni komparačních úrovní

3 PRINCIP VYPÍNACÍ OCHRANY ZAŘÍZENÍ TYPU LATCH při chybovém signálu

Nastavení doby zpoždění, reset pomocí signálu UV

4 ZÁKLADY A TEORIE PŘESNÉHO NÁVRHU S OHLE-DEM NA SOUBĚH PARAMETRŮ PRVKŮ INTEGRO-VANÉHO OBVODU

Normální rozložení, Gaussova křivka, směrodatná odchylka, metoda Monte Carlo, princip superpozice (příklad součtu výstupních proudů z proudových zrcadel zatížených chybou souběhu)

5 ZÁKLADNÍ VZTAHY PRO VÝPOČET CHYB V ANA-LOGOVÝCH OBVODECH

Princip superpozice, celková chyba součtu a součinu dvou chybových veličin, přepočet chyb v obvodu diferenčního zapojení (výpočet vstupní napěťové nesymetrie komparátoru s BJT při známé chybě saturačního proudu vstupních tranzistorů)

6 PŘESNÁ TRANZISTOROVÁ DVOJICE

Souběh, proudové zrcadlo, diferenční stupeň, vliv rozměrů MOS tranzistorů na přesnost, Pelgromova rovnice

7 PŘESNÝ DIFERENCIÁLNÍ STUPEŇ (MOS/bipolar, odporová zátěž, aktivní zátěž)

Analýza, pravidla přesného návrhu, ekvivalentní vstupní ofset, proudová nesymetrie transkonduktačního diferenčního stupně, výstupní napěťová nesymetrie zesilovače a jejich vztahy

8 PŘESNÝ DVOUSTUPŇOVÝ OPERAČNÍ ZESILOVAČ

Základní koncept přesného návrhu zesilovače, vstupní bipolární stupeň, princip eliminace chyby, postup návrhu

9 ŠUM

Definice šumové hustoty a integrální hodnoty šumu a jejich vzájemný vztah, korelovaný a nekorelovaný příspěvek šumu, šumová charakteristika aktivních prvků (bílý a 1/f šum)

10 ŠUM ODPORU, ŠUM MOS TRANZISTORU

Základní charakteristiky a rovnice pro výpočet, vliv parametrů odporů a MOS, ekvivalentní vstupní šum MOS tranzistoru, ekvivalentní vstupní šum MOS zesilovače

11 ŠUM PN PŘECHODU, ŠUM BJT

Zdroje šumu bipolárního tranzistoru, výpočet výstupního šumu jednoduchého proudového zrcadla

12 ZÁKLADNÍ KONCEPT NÍZKOŠUMOVÉHO NÁVRHU

Principy návrhu nízkošumového CMOS proudového zrcadla, principy návrhu CMOS nízkošumového diferenčního zesilovače