22-R-IM-TW-37

In the spirit of E-week, you want to determine how fast a foosball travels just after being hit. You measure the moment of inertia of the foosball figure to be $I_O = 0.004 \text{ kg} \cdot \text{m}^2$ and the length l to be 7 cm. Also, in the spirit of Engineering, you approximate the coefficient of restitution to be e = 1. If the foosball figure rotates 270° due to an applied moment of 0.8 N·m before it hits the 0.04 kg ball (which is initially at rest), how fast will the ball be travelling just after impact?

Solution:

$$\theta = 270 \cdot \frac{\pi}{180} = \frac{3\pi}{2}$$

$$M = I_O \alpha$$

$$\alpha = \frac{M}{I_O} = \frac{0.8}{0.004} = 200 \text{ [rad/s}^2\text{]}$$

$$\omega_0^2 = 2\alpha\Delta\theta$$

$$\omega_0 = \sqrt{2\alpha\Delta\theta} = \sqrt{2(200)(3\pi/2)} = 43.4 \text{ [rad/s]}$$

$$H_0 = I_O \omega_0$$

$$H_f = I_O \omega_f + m_b v_b l$$

$$H_0 = H_f$$

$$I_O \omega_0 = I_O \omega_f + m_b v_b l$$

$$v = \omega r$$

$$e = 1 = \frac{v_b - v_f}{v_0} = \frac{v_b - \omega_f l}{\omega_0 l}$$

$$\omega_0 l = v_b - \omega_f l$$

$$\omega_f = \frac{v_b}{l} - \omega_0$$

$$I_{O}\omega_{0} = \frac{I_{O}v_{b}}{l} - I_{O}\omega_{0} + m_{b}v_{b}l$$

$$2I_{O}\omega_{0} = v_{b}\left(\frac{I_{O}}{l} + m_{b}l\right)$$

$$v_{b} = \frac{2I_{O}\omega_{0}}{\frac{I_{O}}{l} + m_{b}l} = \frac{2(0.004)(43.4)}{\frac{0.004}{0.07} + (0.04)(0.07)} = 5.79 \text{ [m/s]}$$