

Depletion Mode MOSFET

IXTT16N10D2 IXTH16N10D2

 $V_{DSX} = 100V$ $I_{D(on)} \ge 16A$ $R_{DOC} \le 64m\Omega$

N-Channel

TO-268 (IXTT)
GS
D (Tab)

Symbol	Test Conditions	Maximum R	atings
V _{DSX}	$T_J = 25^{\circ}C$ to $175^{\circ}C$	100	V
V _{DGX}	$T_J = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	100	V
V _{GSX}	Continuous	±20	V
V _{GSM}	Transient	±30	V
P _D	T _c = 25°C	830	W
T _J		- 55 +175	°C
T _{JM}		175	°C
T _{stg}		- 55 +175	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in
Weight	TO-268	4	g
	TO-247	6	g

G	O-247 (IXTH)	
S D (Tab)	D	D (Tab)

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- Normally ON Mode
- International Standard Packages
- Molding Epoxies Meet UL 94 V-0 Flammability Classification

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)			Chara Min.	cteristic Typ.	Values Max.	
BV _{DSX}	$V_{GS} = -5V, I_{D} = 250\mu A$		100			V
V _{GS(off)}	$V_{DS} = 25V, I_{D} = 4mA$		- 2.0		- 4.5	V
I _{GSX}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
DSX(off)	$V_{DS} = V_{DSX}, V_{GS} = -5V$	T _J = 150°C			5 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 0V$, $I_{D} = 8A$, Note 1				64	mΩ
I _{D(on)}	$V_{GS} = 0V, V_{DS} = 25V, Note 1$		16			Α

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Audio Amplifiers
- Start-up Circuits
- Protection Circuits
- Ramp Generators
- Current Regulators
- Active Loads

Symbol (T _J = 25°		Test Conditions Unless Otherwise Specified)	Char Min.	acteristic Typ.	Values Max.
g _{fs}		$V_{DS} = 20V, I_{D} = 8A, Note 1$	7	11	s
C _{iss})			5700	pF
C _{oss}	}	$V_{GS} = -10V, V_{DS} = 25V, f = 1MHz$		1980	pF
\mathbf{C}_{rss}	J			940	pF
t _{d(on)})	Resistive Switching Times		45	ns
t _r	Ţ	-		43	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = \pm 5V, V_{DS} = 50V, I_{D} = 8A$		340	ns
t _f	J	$R_{\rm G} = 3.3\Omega$ (External)		70	ns
Q _{g(on)})			225	nC
\mathbf{Q}_{gs}	}	$V_{GS} = \pm 5V, V_{DS} = 50V, I_{D} = 8A$		22	nC
\mathbf{Q}_{gd}	J			126	nC
R _{thJC}		TO-247		0.21	0.18 °C/W °C/W
R _{thCS}		10 2 11		0.21	0, 11

Safe-Operating-Area Specification

		Chara	acteristic	c Values
Symbol	Test Conditions	Min.	Тур.	Max.
SOA	$V_{DS} = 100V$, $I_{D} = 5.6A$, $T_{C} = 75^{\circ}C$, $tp = 5s$	556		W

Source-Drain Diode

SymbolTest ConditionsCha $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.				Values Max.
V _{SD}	$I_{\rm F} = 16A, V_{\rm GS} = -10V, \text{ Note 1}$		0.80	1.30 V
t _{rr}	$I_{\rm F} = 8A$, -di/dt = 100A/ μ s		205	ns
I _{RM}	$V_{R} = 100V, V_{GS} = -10V$		8.50	Α .
\mathbf{Q}_{RM}	$\mathbf{v}_{R} = 100v, \ \mathbf{v}_{GS} = -10v$		0.88	μC

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

Terminals: 1 - Gate 2,4 - Drain 3 - Source

MYZ	INCHES		MILLIN	METERS
2114	MIN	MAX	MAX MIN	
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215 BSC		5.45	BSC
Н	.736	.752	18.70	19.10
L	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010 BSC		0.25	BSC
L4	.150	.161	3.80	4.10

	INCH	IE C	MILLIM	METERS
SYM	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
Ь	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3.20
С	.024	.031	0.61	0.80
D	.819	.840	20.80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
Е	.620	.635	15.75	16.13
E1	.545	.565	13.84	14.35
е			5.45	BSC
J		.010		0.25
K		.025		0.64
L	.780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
ØΡ	.140	.144	3.55	3.65
øP1	.275	.290	6.99	7.37
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83
S	.242	42 BSC 6.15 BSC		

IXYS Reserves the Right to Change Limits, Test Conditions, $\$ and $\$ Dimensions.

IXYS Reserves the Right to Change Limits, Test Conditions, $\$ and $\$ Dimensions.

Fig. 15. Forward-Bias Safe Operating Area

© To = 25°C

Fig. 16. Forward-Bias Safe Operating Area

Fig. 17. Maximum Transient Thermal Impedance

