Exercices EDP

Maxence Caucheteux

4 août 2024

Exercice 1.71

Pour K compact de \mathbb{R}^2 . Avec $K = K_1 \times K_2$ où K_1, K_2 compacts de \mathbb{R} . Pour $\varphi \in \mathcal{D}_K(\mathbb{R}^2)$,

$$\begin{split} |(T,\varphi)| &= \left| \int_0^{+\infty} \varphi(z,2z) dz \right| \\ &\leq \int_0^{+\infty} |\varphi(z,2z)| dz \quad \text{inégalité triangulaire} \\ &= \int_{[0,+\infty[\cap K_1]} |\varphi(z,2z)| dz \\ &\leq \lambda([0,+\infty[\cap K_1)||\varphi||_{\infty}] \end{split}$$

Et $\lambda([0, +\infty[\cap K_1) < +\infty \text{ car } K_1 \text{ est un compact de } \mathbb{R}$. Ainsi, T définit une distribution.

Pour $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\begin{split} (\frac{\partial T}{\partial x} + 2\frac{\partial T}{\partial x}, \varphi) &= -(T, \frac{\partial \varphi}{\partial x}) - 2(T, \frac{\partial \varphi}{\partial y}) \\ &= -\int_0^{+\infty} (\frac{\partial \varphi}{\partial x}(z, 2z) + 2\frac{\partial \varphi}{\partial x}(z, 2z)) dz \\ &= -\int_0^{+\infty} \nabla \varphi(\gamma(z)) . \gamma'(z) dz \end{split}$$

avec $\gamma: z \mapsto (z, 2z)$.

Puis:

$$(\frac{\partial T}{\partial x} + 2\frac{\partial T}{\partial x}, \varphi) = -\int_0^{+\infty} (\varphi \circ \gamma)'(t)dt$$
$$= [\varphi \circ \gamma(z)]_0^{+\infty}$$
$$= \varphi(0, 0)$$
$$= (\delta_{(0,0)}, \varphi)$$

Par suite:

$$\boxed{\frac{\partial T}{\partial x} + 2\frac{\partial T}{\partial y} = \delta_{(0,0)}}$$

Exercice 1.72

1/ Pour $x \neq 0$, $v_n(x) \underset{n \to +\infty}{\longrightarrow} 0$ et pour x = 0, $v_n(0) = n \underset{n \to +\infty}{\longrightarrow} \infty$.

Ainsi, $v_n \xrightarrow[n\infty]{\text{CVS}} v = 0$ presque partout.

2/ Pour $\alpha > 0$,

$$\begin{split} \int_{]-\infty,-\alpha[\cup]\alpha,+\infty[} |v_n(x)| dx &= \int_{-\infty}^{-\alpha} \frac{n}{1+n^2 x^2} dx + \int_{\alpha}^{+\infty} \frac{n}{1+n^2 x^2} dx \\ &= \int_{-\infty}^{-n\alpha} \frac{du}{1+u^2} du + \int_{n\alpha}^{+\infty} \frac{du}{1+u^2} du \ \text{cdv } u = nx \\ &= \pi - 2 \operatorname{Arctan}(n\alpha) \longrightarrow 0 \end{split}$$

Ainsi,
$$v_n \longrightarrow 0$$
 dans $L^1(]-\infty, -\alpha[\cup]\alpha, +\infty[)$

 $3/w_n$ définit une distribution car elle est L^1_{loc} . Pour $\varphi \in \mathcal{D}(\mathbb{R})$,

$$(w_n, \varphi) = \int_{-\infty}^{+\infty} w_n(x)\varphi(x)dx$$
$$= \int_K g_n(x)dx$$

avec $K = \operatorname{Supp}(\varphi)$ compact, $g_n(x) = \operatorname{Arctan}(nx)\varphi(x)$. Les g_n sont mesurables et $g_n(x) \underset{n \to \infty}{\longrightarrow} \frac{\pi}{2}\operatorname{sgn}(x)$. De plus, pour $n \in \mathbb{N}$, $x \in \mathbb{R}$, $|g_n(x)| \leq \frac{\pi}{2}||\varphi||_{\infty}$ intégrable sur K. Si bien que par convergence dominée,

$$(w_n, \varphi) = \int_K g_n(x) dx \xrightarrow[n \to \infty]{} \int_K \frac{\pi}{2} \operatorname{sgn}(x) \varphi(x) dx = (\frac{\pi}{2} \operatorname{sgn}, \varphi)$$

On conclut que $w_n \xrightarrow[n \to \infty]{\pi} \operatorname{sgn} \operatorname{dans} \mathcal{D}'(\mathbb{R}).$

 $4/v_n$ est L^1_{loc} donc définit une distribution. Pour $\varphi \in \mathcal{D}(\mathbb{R})$,

$$(v_n, \varphi) = \int_{\mathbb{R}} \frac{n}{1 + n^2 x^2} \varphi(x) dx$$
$$= \int_{\mathbb{R}} \frac{\varphi(u/n)}{1 + u^2} du \quad \text{cdv } u = nx$$
$$= \int_{\mathbb{R}} g_n(u) du$$

avec $g_n(u) = \frac{\varphi(u/n)}{1+u^2}$. Les g_n sont mesurables car continues et pour $u \in \mathbb{R}$, $g_n(u) \xrightarrow[n \to \infty]{} \frac{\varphi(0)}{1+u^2}$. De plus pour $n \in \mathbb{N}$, $u \in \mathbb{R}$, $|g_n(u)| \leq \frac{\|\varphi\|_{\infty}}{1+u^2}$ intégrable sur \mathbb{R} car continue sur \mathbb{R} et intégrable en $\pm \infty$ par Riemann. La convergence dominée nous donne donc :

$$(v_n, \varphi) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} \frac{\varphi(0)}{1 + u^2} du = \pi \varphi(0)$$

D'où
$$(v_n, \varphi) \xrightarrow[n \to \infty]{} (\pi \delta_0, \varphi)$$
 pour tout $\varphi \in \mathcal{D}(\mathbb{R})$ i.e. $v_n \xrightarrow[n \to \infty]{} \pi \delta_0$ dans $\mathcal{D}(\mathbb{R})$.

Exercice 1.77

1/ Si $f \in L^1_{loc}$, F est également L^1_{loc} , par exemple car pour $K \subset \mathbb{R}$ compact,

$$\int_{K} |F(x)| dx = \int_{K} \left| \int_{0}^{x} f(t) dt \right| dx$$

$$\leq \int_{K} \left| \int_{0}^{x} |f(t)| dt \right| dx \quad (*)$$

$$\leq \int_{K} \int_{x_{1}}^{x_{2}} |f(t)| dt dx \quad \text{avec } x_{1} = \inf K, \ x_{2} = \sup K$$

$$\leq \lambda(K) \int_{x_{1}}^{x_{2}} |f(t)| dt < +\infty \quad \text{car} f \in L_{\text{loc}}^{1}$$

Ce qui conclut.

(*): Inégalité triangulaire, mais on doit bien garder les deux modules car si on ne met pas les deux et que x < 0 on majore par un truc négatif, ce qui est terrifiant humainement parlant.

Montrons maintenant que $\frac{dF}{dx} = f$ au sens des distributions. 2/ On traite d'abord le cas où f est continue. Avec f continue, une **IPP** (licite car tout est donc C^1 et par convergence de deux termes) nous donne le résultat :

$$(\frac{dF}{dx}, \varphi) = -\int_{\mathbb{R}} F(x)\varphi'(x)dx$$
$$= -[F(x)\varphi(x)]_{-\infty}^{+\infty} + \int_{\mathbb{R}} F'(x)\varphi(x)dx \text{ IPP licite}$$

Le premier terme étant nul car φ est à support compact et en se rappelant que F'=f, on obtient $(\frac{dF}{dx},\varphi)=(f,\varphi)$, puis $\frac{dF}{dx}=f$.

3/ Cas général : si f est simplement L^1_{loc} . Soit $\varphi \in \mathcal{D}(\mathbb{R})$. Soit $\varepsilon > 0$. On note K le support de φ qui est donc compact. On a donc $f \in L^1(K)$. Par densité des fonctions continues dans $L^1(K)$, il existe g continue telle que $||f-g||_1 \leq \varepsilon$. On écrit :

$$|(\frac{dF}{dx} - f, \varphi)| = |-(F, \varphi') - (f, \varphi)|$$

$$= |-(F - G, \varphi') - (G, \varphi') - (f, \varphi)|$$

$$= |-(F - G, \varphi') + (\frac{dG}{dx}, \varphi) - (f, \varphi)|$$

$$= |-(F - G, \varphi') + (g, \varphi) - (f, \varphi)| \quad \text{par } \mathbf{2}/$$

$$= |-(F - G, \varphi') + (g - f, \varphi)|$$

$$\leq |(F - G, \varphi')| + |(g - f, \varphi)| \quad \text{inégalité triangulaire}$$

Or, on remarque que:

$$\begin{split} |(F-G,\varphi')| &= \left| \int_K \left(\int_0^x (f(t)-g(t))dt \right) \varphi'(x) dx \right| \\ &\leq \int_K \left| \int_0^x |f(t)-g(t)|dt \right| |\varphi'(x)| dx \quad \text{in\'egalit\'e triangulaire} \\ &\leq \|\varphi'\|_\infty \lambda(K) \|f-g\|_1 \\ &\leq \|\varphi'\|_\infty \lambda(K) \varepsilon \end{split}$$

De même, par inégalité triangulaire :

$$\left| |(g - f, \varphi)| = \left| \int_K (f(t) - g(t))\varphi(t)dt \right| \le ||\varphi||_{\infty} ||f - g||_1 \le ||\varphi||_{\infty} \varepsilon \right|$$

Si bien que:

$$\left| \left| \left(\frac{dF}{dx} - f, \varphi \right) \right| \le (\|\varphi\|_{\infty} + \lambda(K) \|\varphi'\|_{\infty}) \varepsilon \right|$$

Cela étant vrai quel que soit $\varepsilon > 0$, on obtient finalement $(\frac{dF}{dx} - f, \varphi) = 0$. Cela étant vrai pour tout φ , on a finalement le résultat voulu :

$$\frac{dF}{dx} = f$$

Exercice ajouté 1

On a vu que pour $f \in H^1$:

$$||f||_{H^1}^2 = ||f||_{L^2}^2 + ||\nabla f||_{L^2}^2$$

Pour $f \in H^2$, on a :

$$\|f\|_{H^2}^2 = \|f\|_{L^2}^2 + \|\nabla f\|_{L^2}^2 + \sum_{i=1}^n \sum_{j=1}^n \left\| \frac{\partial^2 f}{\partial x_i \partial x_j} \right\|_{L^2}^2$$

Ce que l'on peut écrire à l'aide de la matrice Hessienne \mathcal{H}_f de f :

$$||f||_{H^2}^2 = ||f||_{H^2}^2 = ||f||_{L^2}^2 + ||\nabla f||_{L^2}^2 + ||H_f||_{L^2}^2$$

Exercice 1.70

Soit $K \subset \mathbb{R}$ un compact. Pour $\varphi \in \mathcal{D}(\mathbb{R})$, on a :

$$|(T,\varphi)| = |\sum_{n=1}^{+\infty} \frac{1}{n} (\varphi(\frac{1}{n}) - \varphi(0))|$$

$$\leq \sum_{n=1}^{+\infty} \frac{1}{n} |\varphi(\frac{1}{n}) - \varphi(0)|$$

Par inégalité des accroissements finis, $|\varphi(\frac{1}{n}) - \varphi(0)| \leq \frac{1}{n} ||\varphi'||_{\infty}$ pour tout $n \in \mathbb{N}$. Par suite :

$$|(T,\varphi)| \le \sum_{m=1}^{+\infty} \frac{\|\varphi'\|_{\infty}}{n^2} = \frac{\pi^2}{6} \|\varphi'\|_{\infty}$$

T est donc une donc une distribution d'ordre ≤ 1 .

Exercice 1.73

1/ Il est clair que $f_n \xrightarrow[n\infty]{\text{CVS}} 0$ car f est à support compact.

Cependant, on n'a pas la convergence dans $L^1(\mathbb{R})$ car :

$$\int_{\mathbb{R}} |f_n(x)| dx = \int_{\mathbb{R}} |f(x-n)| dx$$

$$\leq \int_{\mathbb{R}} |f(u)| du \text{ cdv } u = x - n$$

$$= ||f||_1 \xrightarrow{\text{CVS}} ||f||_1 > 0$$

excepté si f=0 presque partout, mais on choisit f non nulle dans L^1 pour éviter ce cas.

Ainsi on n'a pas la convergence de (f_n) vers 0 dans L^1 .

 $\mathbf{2}/$

Lemme 1

 $G = a\mathbb{Z} + b\mathbb{Z}$ est dense dans \mathbb{R} ssi $a/b \in \mathbb{Q}$.

Sens direct: On suppose que $a/b \notin \mathbb{Q}$. Si par l'absurde on avait $G = m\mathbb{Z}$ avec m > 0. Alors comme $a, b \in G$, on peut écrire a = mp, b = mq avec $p, q \in \mathbb{Z}$. Ainsi $a/b = p/q \in \mathbb{Z}$, ce qui est absurde. Donc G n'est pas de la forme $m\mathbb{Z}$. Un résultat bien connu sur les sous-groupes de \mathbb{R} nous assure alors que G est dense dans \mathbb{R} .

Sens indirect : C'est essentiellement Bézout. En effet, si a/b = p/q avec p,q deux entiers premiers entre eux. Alors :

$$a\mathbb{Z} + b\mathbb{Z} = \frac{p}{q}b\mathbb{Z} + b\mathbb{Z}$$
$$= \frac{b}{q}(p\mathbb{Z} + q\mathbb{Z})$$
$$= \frac{b}{q}\mathbb{Z}$$
 Bézout

Ce qui conclut : G est de la forme voulue.

Lemme 2

La suite $u = (e^{in\alpha})_{n \in \mathbb{N}}$ est dense dans \mathbb{U} ssi $\frac{\alpha}{\pi} \in \mathbb{R} \setminus \mathbb{Q}$.

Sens direct : Immédiat car la suite prend un nombre fini de valeurs.

Sens indirect: Notons $g: x \mapsto e^{ix}$ l'exponentielle complexe. On pose $G = \alpha \mathbb{Z} + 2\pi \mathbb{Z}$. On note que G est un sous-groupe de \mathbb{Z} . On pose $V = \{u_n \mid n \in \mathbb{Z}\}$. On a alors:

$$g(G) = V$$

Par lemme 1, comme $\frac{\alpha}{\pi} \in \mathbb{R} \setminus \mathbb{Q}$, G est dense dans \mathbb{R} . Par continuité de g, on a donc également la densité de V dans \mathbb{U} .

Cela prouve que $(e^{in\alpha})_{n\geq 0}$ diverge. En effet, si par l'absurde elle convergeait, $(e^{-in\alpha})_{n\geq 0}$ convergerait aussi (raisonner sur la partie réelle et imaginaire) et donc on n'aurait pas la densité prédite par ce qui précède.

Ainsi, $(f_n(x))_{n>0}$ diverge pour tout $x \in \mathbb{R} \setminus \mathbb{Q}$ donc presque partout.

Cependant que : pour $\varphi \in \mathcal{D}(\mathbb{R})$, avec $K = \text{Supp}(\varphi)$,

$$(f_n, \varphi) = \int_{\mathbb{R}} e^{inx} \varphi(x) dx$$

$$= \int_{K} e^{inx} \varphi(x) dx \xrightarrow[n \to +\infty]{} 0 \text{ Riemann-Lebesgue}$$

Donc on a la convergence de (f_n) vers 0 dans $\mathcal{D}'(\mathbb{R})$.

3/ La question est fausse.

 $4/(f_n(x))$ converge vers 0 pour tout $x \neq 0$ par croissances comparées puisque $\sigma_n \longrightarrow 0$.

Un changement de variable suivi d'un TCD (non rédigé car j'ai la MMC à rattraper) montre la convergence souhaitée dans $\mathcal{D}'(\mathbb{R})$.