Nutzen Sie jetzt die Emitterfolgerschaltung, um einen größeren Strom für den Lautprecher bereitzustellen.

Bauen Sie die folgende Schaltung auf.

Verwenden Sie: T1 und T2 wie oben, C1 = 1 μ F, R1 = 1 k Ω , R2 = 100 k Ω , R3 = 10 k Ω , R4 = 1 k Ω , R5 = 100 Ω , C2 = 100 μ F. Achten Sie bei C2 auf die richtige Polung!

Falls es zu unerwünschten Schwingungen durch das Netzgerät kommt, schalten Sie einen Kondensator 1 nF parallel zu R3. Außerdem kann ein Tiefpaßfilter helfen (RF = $10~\Omega$, CF = 10~bis $100~\mu\text{F}$), das zwischen Netzgerät und Schaltung gesetzt wird.

Warum ist das Lautsprechersignal jetzt viel größer?

5. Feldeffekttransistoren

Auch wenn der Basisstrom I_B oft nur wenige μA beträgt, ist das in manchen Anwendungen zu groß. Mit einem Feldeffekttransistor (FET) lassen sich Ströme und Spannungen praktisch leistungslos steuern, denn der Basisstrom ist jetzt im nA-Bereich und kleiner.

Bauen Sie die folgende Schaltung auf. Als FET verwenden Sie einen J-FET, den BF244. Er kann maximal 50 mA schalten, wählen Sie daher R2 = 1 k Ω bei U1 = 10 V. Beachten Sie die negative Polung von U0! Zum Schutz vor Beschädigung des FET bei falscher Polung setzen Sie R1 = 10 k Ω ein. Sie müssen *nicht* alle vier Größen I_S, I_G, U_{GS}, U_{DS} gleichzeitig messen, sondern nur die jeweils angegebenen.

Messen Sie $I_S=f(U_{GS})$. Für welchen Spannungsbereich leitet der Transistor, für welchen sperrt er?

Versuchen Sie, für einige Werte von U0 den Gatestrom I_G zu messen. Beachten Sie, dass Sie nicht den Strom durch das Voltmeter ($R_i = 10 \text{ M}\Omega$) mitmessen dürfen. Schalten Sie das Amperemeter I_G also unmittelbar vor den Gate-Anschluß. Wahrscheinlich ist I_G so klein, daß Sie selbst im μ A-Bereich des Amperemeters nichts sehen. Dann hilft folgender Trick: Stellen Sie