Chapter 14

The Basic Elements and Phasors, power, impedance

OBJECTIVES

- Become familiar with the response of a resistor, an inductor, and a capacitor to the application of a sinusoidal voltage or current.
- Learn impedance
- Understand how to calculate power B

DERIVATIVE

 To understand the response of the basic R, L, and C elements to a sinusoidal signal, you need to examine the concept of the derivative in some detail.

- Resistor
- Inductor
- Capacitor

FIG. 14.4 Determining the sinusoidal response for a resistive element.

FIG. 14.5 The voltage and current of a resistive element are in phase.

FIG. 14.6 Defining the opposition of an element to the flow of charge through the element.

FIG. 14.7 Defining the parameters that determine the opposition of an inductive element to the flow of charge.

FIG. 14.8 Investigating the sinusoidal response of an inductive element.

FIG. 14.9 For a pure inductor, the voltage across the coil leads the current through the coil by 90°.

FIG. 14.11 Investigating the sinusoidal response of a capacitive element.

FIG. 14.12 The current of a purely capacitive element leads the voltage across the element by 90°.