

Motivation

- Seiberg and Witten determined the exact low-energy solutions of $\mathcal{N}=2$ supersymmetric gauge theories using 'Seiberg-Witten curves'. [Seiberg, Witten 1994]
- Simplest 4d $\mathcal{N}=2$ SCFTs were found on the Coulomb branches of SU(2) gauge theories with N_f fundamentals, based on their Seiberg-Witten geometries. [Argyres, Douglas 1995; Argyres, Plesser, Seiberg, Witten 1996]

5d SCFTs

• Consider a 5d Yang-Mills theory:

$$S = \int d^5x \left(\frac{1}{g_{5d}^2} Tr(F \wedge *F) + \dots \right) .$$

The scaling dimension of the gauge coupling is negative, so action is non-renormalizable: $[g_{5d}^2] = -1$.

- ullet UV completion of certain $\mathcal{N}=1$ theories to strongly coupled SCFTs has been argued to exist in string theory. [Seiberg 1996]
- Various ways to engineer 5d SCFTs: systems of five-branes in IIB [Aharony, Hanany, Kol 1997], or M-theory compactifications on canonical threefold singularities [Witten 1996]:

$$\mathcal{T}_{m{X}}^{5d}$$
 on $\mathbb{R}^5 \longleftrightarrow \mathsf{M} ext{-theory on } \mathbb{R}^5 imes m{X}$.

5d SCFTs

- Focus for today will be on the simplest 5d SCFTs the E_n Seiberg theories. [Seiberg 1996; Morrison, Seiberg 1996]
- These theories admit mass deformations to 5d $\mathcal{N}=1$ gauge theories in IR, with $N_f=n-1$ fundamentals, which break the flavour symmetry:

• Are there non-trivial RG flows from 5d $\mathcal{N}=1$ SCFTs to 4d $\mathcal{N}=2$ SCFTs? Partial answer given by [Ganor, Morrison, Seiberg 1996]

Motivation

- Can we find different RG flows? Seiberg-Witten geometry should be able to tell us! Expect more 'flows' from relation to q-Painleve equations.
 [Bonelli, Del Monte, Tanzini, Grassi ...]
- Here $E_5 = D_5$, $E_4 = A_4$, $E_3 = A_2 \oplus A_1$, $E_2 = A_1 \oplus \mathfrak{u}(1)$, $E_1 = A_1$, $\widetilde{E}_1 = \mathfrak{u}(1)$ and $E_0 = \emptyset$, so more breaking patterns allowed purely from a group theory perspective.

Motivation

- Part of motivation has to do with localization and the so called *u*-plane integral. [Moore, Witten 1997; Korpas, Manschot, Nidaiev, Aspman, Furrer...]
- In our setting, more natural to consider the 5d theories on $\mathbb{R}^4 \times S^1$, leading to 4d $\mathcal{N}=2$ KK theories:

$$D_{S^1}\mathcal{T}_{\pmb{X}}^{5d} \text{ on } \mathbb{R}^4 \quad \cong \quad \mathcal{T}_{\pmb{X}}^{5d} \text{ on } \mathbb{R}^4 \times S^1_\beta \ .$$

• We introduce a scale $\mu=\frac{1}{\beta}$, so $D_{S^1}\mathcal{T}_{\boldsymbol{X}}^{5d}$ are not conformal. Can we determine the BPS spectra of these theories? [Eager, Selmani, Walcher, 2016; Banerjee, Longhi, Romo, 2019, 2020; Closset, Del Zotto, 2019; Longhi, 2020; Mozgovoy, Pioline, 2020]

Outline

- 1 Seiberg-Witten theory and rational elliptic surfaces
- **2** *U*-plane and local mirror symmetry
- 3 Modularity and BPS quivers

Seiberg-Witten theory and rational elliptic surfaces

4d $\mathcal{N}=2$ SYM

• Classical vacua of 4d $\mathcal{N}=2$ given by vanishing of scalar potential:

$$V = \frac{1}{2} \text{Tr} \left[\overline{\phi}, \phi \right]^2 \stackrel{!}{=} 0 \ .$$

• In such vacua, the scalar field ϕ belongs to the Cartan subalgebra $\mathfrak h$ of G, e.g. for G=SU(2):

$$\phi = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}, \qquad a \in \mathbb{C} .$$

ullet The VEV of ϕ breaks the gauge group to $SU(2)\longrightarrow U(1)$ by Higgs mechanism, leading to a U(1) LEET. This moduli space is the *Coulomb Branch*, being parametrized by the gauge invariant operator:

$$u = \operatorname{Tr} \phi^2 = 2a^2 (+ \dots) .$$

Coulomb Branch

• The LEEA is obtained by integrating out the massive degrees of freedom, with the Coulomb branch having a special-Kähler structure:

$$\tau(a) = \frac{\partial^2 \mathcal{F}}{\partial a^2} = \frac{\partial a_D}{\partial a} , \qquad a_D = \frac{\partial \mathcal{F}}{\partial a} .$$

• $SL(2,\mathbb{Z})$ duality of U(1) LEET acts on τ or, equivalently, on (a_D,a) :

$$\tau \to \gamma \tau$$
, $\begin{pmatrix} a_D \\ a \end{pmatrix} \to \gamma \begin{pmatrix} a_D \\ a \end{pmatrix}$, $\gamma \in \mathrm{SL}(2,\mathbb{Z})$.

• LEEA breaks down where states become massless, leading to u-plane singularities. Due to $\mathrm{SL}(2,\mathbb{Z})$ duality, paths around singularities induce monodromies: u_{∞}

$$\prod_{\mathsf{sing}} \mathbb{M}_* = 1 \ .$$

Seiberg-Witten solution

ullet Seiberg and Witten proposed that au should be interpreted as the complex structure modulus of an elliptic curve, such that:

$$a = \oint_A \lambda_{SW} , \qquad a_D = \oint_B \lambda_{SW} .$$

• One can generally bring the curves to Weierstrass form:

$$y^2 = 4x^3 - g_2(u)x - g_3(u) ,$$

with the singularities given be the zeroes of the discriminant locus:

$$\Delta(u) = g_2(u)^3 - 27g_3(u)^2 .$$

Elliptic Surfaces

Definition. An elliptic surface is a genus one fibration $f: S \to C$ from a smooth projective surface S to a smooth projective curve C, with a section $\sigma_0: C \to S$.

ullet All but finitely many fibres F_v are smooth genus one curves. The *singular* fibers can be resolved through blow-ups:

$$F_v = \sum_{i=0}^{m_v - 1} \mu_{v,i} \Theta_{v,i} ,$$

where m_v is the number of (distinct) irreducible components, $\Theta_{v,i}$ the irreducible components and $\mu_{v,i}$ the multiplicity of $\Theta_{v,i}$.

• The component denoted by $\Theta_{v,0}$ is the unique component of F_v which intersects the zero section $[\sigma_0]$.

Elliptic Surfaces

- If F_v is irreducible, then it must be either a rational curve with a node (type I_1), or a rational curve with a cusp (type II).
- All possible reducible fibers have been classified by Kodaira:

C.I.	1/)	. 1/	1/ A)		TN AT	
fiber	$ord(g_2)$	$ord(g_3)$	$ord(\Delta)$	m_v	\mathbb{M}_*	\mathfrak{g}
I_k	0	0	k	k	T^k	$\mathfrak{su}(k)$
I_k^*	2	3	k+6	k+5	$-T^k$	$\mathfrak{so}(2k+8)$
I_0^*	≥ 2	≥ 3	6	5	$-\mathbb{I}$	$\mathfrak{so}(8)$
II	≥ 1	1	2	1	$(ST)^{-1}$	-
II^*	≥ 4	5	10	9	(ST)	E_8
III	1	≥ 2	3	2	S^{-1}	$\mathfrak{su}(2)$
III^*	3	≥ 5	9	8	S	E_7
IV	≥ 2	2	4	3	$(ST)^{-2}$	$\mathfrak{su}(3)$
IV^*	≥ 3	4	8	7	$(ST)^2$	E_6

Singular fibres

Rational Elliptic Surfaces

• An elliptic surface S is *rational* if it is birationally equivalent to \mathbb{P}^2 . In this case, the base curve C is the projective line \mathbb{P}^1 . Can view SW geometry as a one-parameter family of elliptic curves over the u-plane:

$$E \hookrightarrow S \longrightarrow \overline{\mathcal{M}}_{CB} \cong \mathbb{P}^1$$
,

where $\overline{\mathcal{M}}_{CB}$ is the u-plane with the point at infinity added and the fiber E is the 'Seiberg-Witten' curve.

- The configurations of singular fibres of rational elliptic surfaces have been classified by Persson and Miranda.
- Important constraint:

$$\sum_{\alpha}\operatorname{ord}(\Delta)=12\ .$$

Fixing the fibre at infinity

- 'UV physics' fixed by fiber at infinity: e.g. for pure SU(2), from one-loop computation: $\tau \to \tau 4$, i.e. the monodromy is T^{-4} , or $(-T^4)$, and thus corresponds to an I_4^* singularity. [Caorsi, Cecotti 2018]
- ullet One can add matter (hypermultiplets) in the fundamental representation of the gauge group, which will lead to $I_{4-N_f}^*$ singularities. Note that for $N_f>4$ the theories are IR free:

$$SU(2) N_f$$
 flavours $\longrightarrow F_{\infty} = I_{4-N_f}^*$.

• Only one configuration with a I_4^* singularity in Persson's list, namely:

$$(I_4^*, I_1, I_1)$$
.

Persson's list

• Consider configurations with one flavour. There are two such configurations with a $I_{4-N_f}^*=I_3^*$ singularity, namely:

$$(I_3^*, I_1, I_1, I_1)$$
, (I_3^*, I_1, II) .

ullet How do we interpret physically the type II singularity? 'Zoom in' around this singularity:

ullet This is one of the configurations for which the value of the complex structure parameter au is fixed and, in physical terms, the coupling is pinned at the strongly-coupled value. This corresponds to one of the Argyres-Douglas $\mathcal{N}=2$ SCFTs.

U-plane and local mirror symmetry

The U-plane at last

- We established that the fiber at infinity fixes the 4d $\mathcal{N}=2$ theory: SQCD with I_n^* , MN with II,III or IV and AD with II^*,III^*,IV^* . What about the simplest I_n fibers?
- Consider the E_n theories on a circle, engineered on $X = \text{Tot}(\mathcal{K} \to dP_n)$:

M-theory on
$$\mathbb{R}^4 imes S^1 imes oldsymbol{X} \longleftrightarrow \ \mathsf{IIA} \ \mathsf{on} \ \mathbb{R}^4 imes oldsymbol{X}$$
 .

 Similar to usual 4d $\mathcal{N}=2$ SU(2) gauge theories, we have a low-energy U(1) scalar:

$$a = i(\varphi + iA_5)$$
, $e^{2\pi iA_5} = e^{\int_{S^1} A}$,

and define the gauge invariant order parameter:

$$U = \frac{1}{2} \left(e^{2\pi i a} + e^{-2\pi i a} \right) + \dots .$$

ullet Complexified mass parameters: $M=e^{2\pi i \mu}$. [Closset, del Zotto, Saxena 2018]

Local mirror symmetry

• For toric geometries, SW geometry is encoded in the mirror:

IIA on
$$\tilde{\boldsymbol{X}} \longleftrightarrow \mathsf{IIB}$$
 on $\hat{\boldsymbol{Y}}$,

where the mirror given by Hori-Vafa construction:

$$E \times \mathbb{C}^* \longrightarrow \hat{\mathbf{Y}} \longrightarrow \mathbb{C} \cong \{W\}$$
,

with:

$$F(w,t;W) = 0,$$
 $v_1v_2 = U - W,$

where F(w,t) is the Newton polynomial associated with the toric diagram. Their SW geometry is the mirror curve:

$$F(w,t;U) = 0.$$

• For non-toric del Pezzos ($n \ge 4$), mirror curves were found as limits of the E-string theory SW curve. [Eguchi, Sakai 2002; Ganor, Morrison, Seiberg, Hanany...]

E_n theories from dP_n

The missing piece

• Computing prepotential from gauge theory perspective for $D_{S^1}\mathcal{T}_{m{X}}^{5d}$, one finds monodromy: [Nekrasov 1998]

$$a_D \longrightarrow a_D + (9-n)a + \dots$$

or $\mathbb{M}_{\infty} = T^{9-n}$, *i.e.* an I_{9-n} singularity!

• Look at E_3 theory, i.e. $\mathbb{M}_{\infty}=T^6$. In 5d, this is the UV completion of 5d $\mathcal{N}=1$ SU(2) with $N_f=2$, so we have 3 parameters in the SW curve: 2 flavour masses M_i and the exponentiated gauge coupling λ .

 $(\lambda,M_1,M_2)=(1,1,1)$ is the massless limit. For $(\lambda,M_1,M_2)=(1,i,-i)$ we get a IV singularity!

Complete Picture

In the massless limit $\lambda = 1$, $M_i = 1$, we get the (bulk) singularities:

$$E_{8} : II^{*} \oplus I_{1} ,$$

$$E_{7} : III^{*} \oplus I_{1} ,$$

$$E_{6} : IV^{*} \oplus I_{1} ,$$

$$D_{5} = E_{5} : I_{1}^{*} \oplus I_{1} ,$$

$$A_{4} = E_{4} : I_{5} \oplus I_{1} \oplus I_{1} ,$$

$$A_{2} \oplus A_{1} = E_{3} : I_{3} \oplus I_{2} \oplus I_{1} ,$$

$$A_{1} \oplus \mathfrak{u}(1) = E_{2} : I_{2} \oplus I_{1} \oplus I_{1} \oplus I_{1} ,$$

$$A_{1} = E_{1} : I_{2} \oplus I_{1} \oplus I_{1} ,$$

$$\mathfrak{u}(1) = \widetilde{E}_{1} : I_{1} \oplus I_{1} \oplus I_{1} ,$$

$$\emptyset = E_{0} : I_{1} \oplus I_{1} \oplus I_{1} .$$

Non-abelian flavour symmetry is manifest in the mirror curve. Note that this is the maximal flavour symmetry, as massless limit is the origin of the extended CB, so corresponds to S^1 reduction of the SCFT. [Ganor, Morrison,

Complete picture

• Since configurations of singular fibers are completely classified, just look for configurations containing a I_{9-n} fiber for each E_n theory. Recall:

$$\sum_{v} \operatorname{ord}(\Delta(F_v)) = 12.$$

Flavour symmetry

ullet Recall mirror threefold is a double fibration over a W-plane, at fixed U and mass parameters: [Hori, Vafa 2002]

$$E \times \mathbb{C}^* \hookrightarrow \hat{\mathbf{Y}} \to \mathbb{C} \cong \{W\}$$
.

Then, from the IIB picture:

F-theory on
$$\mathbb{R}^4 \times \hat{\boldsymbol{Y}} \times T^2$$
,

we interpret the elliptic fiber as the axio-dilaton instead of the T^2 factor!

- Non-abelian flavour symmetry algebra is encoded in the Kodaira fibers [Sen, Banks, Douglas, Seiberg, Aspinwall, Fukae, Yamada, Yang ...]
- Fiber at infinity does not contribute to flavour symmetry!

Local CY Mirror

 \mathbb{C}^* fiber degenerates at W=U , while cycle γ of elliptic fiber degenerates at $W=W_*.$ BPS states arrise from D3 branes wrapping Lagrangian 3-cycles:

$$\gamma \times S^1_* \longrightarrow S^3_\gamma \longrightarrow \alpha_\gamma$$
.

[Feng, He, Kennaway, Vafa]

Mordell-Weil Group

- (Rational) elliptic surfaces can be thought of as elliptic curves over function fields E/K, with K=k(U).
- \bullet The K-rational points of E/K form a group (Mordell-Weil group), which, by the celebrated MW theorem, is finitely generated.

$$\Phi = \mathbb{Z}^r \oplus \Phi_{tor} .$$

ullet The K-rational points of E/K are isomorphically mapped to rational sections of the elliptic surface.

Flavour symmetry

- Claim: Abelian flavour symmetry is $U(1)^r$, with r the rank of the MW group. [Morrison, Park, Mayrhofer, Till, Weigand, Cvetic, Lin, Moore, Monnier ...]
- ullet Torsion part of Φ restricts global form of the flavour symmetry. Define:

$$\mathcal{Z}^{[1]} = \{ P \in \Phi_{tor} : (P) \text{ intersects } \Theta_{v,0} \text{ for all } F_{v \neq \infty} \}$$
,

and denote by \mathcal{F} the cokernel of the inclusion map $\mathcal{Z}^{[1]} \to \Phi_{tor}$. Thus, we have the short exact sequence:

$$0 \to \mathcal{Z}^{[1]} \to \Phi_{tor} \to \mathcal{F} \to 0$$
.

Claim: The flavour symmetry group of the theory $\mathcal{T}_{F_{\infty}}$ is given by:

$$G_F = \widetilde{G}_F / \mathcal{F} ,$$

with \widetilde{G}_F the simply connected group with algebra \mathfrak{g}_F from Kodaira fibers.

Flavour symmetry

$\{F_v\}$	$\Phi_{ m tor}$	4d theory	\mathfrak{g}_F	G_F
II^*, II	-	AD H_0	-	-
11 ,11		E_8 MN	E_8	E_8
III*, III	\mathbb{Z}_2	$AD\ H_1$	A_1	$SU(2)/\mathbb{Z}_2$
111 ,111	Z2·2	E_7 MN	E_7	E_7/\mathbb{Z}_2
IV^*, IV	\mathbb{Z}_3	AD H_2	A_2	$SU(3)/\mathbb{Z}_3$
10,10	<i>2</i> 43	E_8 MN	E_6	E_6/\mathbb{Z}_3
I_0^*, I_0^*	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$SU(2), N_f = 4$	D_4	$\operatorname{Spin}(8)/\mathbb{Z}_2 \times \mathbb{Z}_2$

New observation for AD H_2 , others also discussed recently elsewhere.

[Closset, Schafer-Nameki, Wang, Del Zotto, García Etxebarria, Hosseini, Bhardwaj, Hubner, Apruzzi, Cordova, Shao, Buican, Nishinaka]

Higher form symmetries

• Given the previous short exact sequence, it is natural to conjecture:

$$\mathcal{Z}^{[1]}\cong ext{ 1-form symmetry of } \mathcal{T}_{F_{\infty}}$$
 ,

while when Φ_{tor} is a non-trivial extension, we have:

$$\Phi_{tor}\cong ext{ 2-group symmetry of } \mathcal{T}_{F_{\infty}}$$
 .

There are not many examples of such theories. In fact, we only have:

$$\begin{array}{ll} \text{4d pure } SU(2): & (I_4^*;I_1,I_1), & \Phi = \mathcal{Z}^{[1]} = \mathbb{Z}_2 \;, \\ & D_{S^1}E_0: & (I_9;I_1,I_1,I_1), & \Phi = \mathcal{Z}^{[1]} = \mathbb{Z}_3 \;, \\ & D_{S^1}E_1: & (I_8;I_2,I_1,I_1), & \Phi = \mathbb{Z}_4 \;, \mathcal{Z}^{[1]} = \mathbb{Z}_2 \;, \\ & & (I_8;I_1,I_1,I_1), & \Phi_{tor} = \mathcal{Z}^{[1]} = \mathbb{Z}_2 \;, \end{array}$$

which agree with known results. [Gaiotto, Kapustin, Seiberg, Willet 2014; Morrison, Schafer-Nameki, Willet 2020; Albertini, Del Zotto, García Etxebarria, Hosseini 2020]

Modularity and BPS quivers

Modularity

- In certain cases, the configuration of interest is *modular*. That is, the rational elliptic surface is constructed from the quotient \mathbb{H}/Γ with \mathbb{H} the upper half-plane and $\Gamma \in \mathrm{PSL}(2,\mathbb{Z})$, together with a finite number of points.
- Subgroups of $\mathrm{PSL}(2,\mathbb{Z})$ have a set of special points: *elliptic points* points with non-trivial stabilizer, and *cusps* points in the $\mathrm{PSL}(2,\mathbb{Z})$ -orbit of $\tau=i\infty$. These points are mapped to the U-plane singularities. [Shioda 1972]
- When RES is modular, $U=U(\tau)$ is a modular function for Γ and periods are modular forms. Can also map U-plane to upper half-plane isomorphically. [Aspman, Furrer, Manschot 2020-2021; HM, Closset 2021; HM 2022]
- Advantage is that upper-half plane knows about monodromies!

Example: the massless E_1

• For massless E_1 , monodromy group is $\Gamma^0(8)$, having four cusps of widths (8; 1, 2, 1), which correspond to fibers $(I_8; I_1, I_2, I_1)$.

• Monodromies are easy to read from fundamental domains:

$$\mathbb{M}_{\tau=0} = STS^{-1}$$
, $\mathbb{M}_{\tau=2} = (T^2S)T^2(T^2S)^{-1}$, $\mathbb{M}_{\tau=4} = (T^4S)T(T^4S)^{-1}$,

from which we get the light BPS states:

$$(1,0), 2(-1,2), (1,-4).$$

Conclusions and Outlook

- (Rank-one) Seiberg-Witten geometries have a natural interpretation as rational elliptic surfaces, where RG flows are 'trivial'. Non-abelian part of flavour symmetry algebra encoded in singular fibers, while abelian part and global aspects encoded in MW group.
- Classification of 4d $\mathcal{N}=2$ SCFTs involves theories with *undeformable* singularities. How do we understand these geometries?
- ullet Modularity allows one to determine light BPS states and BPS quivers. Can modularity shed some light on BPS spectra? Can we find the quiver super-potentials from the U-plane?
- Going past modularity: do fundamental domains retain information about monodromies even when configurations are not modular?

Thank you!

Persson's list

• Consider configurations with one flavour. There are two such configurations with a $I_{4-N_f}^*=I_3^*$ singularity, namely:

$$(I_3^*, I_1, I_1, I_1)$$
, (I_3^*, I_1, II) .

• How do we interpret physically the type II singularity? 'Zoom in' around this singularity:

