$$V_{BIAS} = V_{BE18} + V_{BE19} = V_{BE14} + V_{EB20}$$

$$\Rightarrow V_{T} \ln(I_{C18}/I_{S18}) + V_{T} \ln(I_{C19}/I_{S19})$$

$$= V_{T} \ln(I_{C14}/I_{S14}) + V_{T} \ln(I_{C20}/I_{S20})$$

• Since $I_L = 0$:

$$\Rightarrow I_{C14} = I_{C20} = \sqrt{\frac{I_{S14}I_{S20}}{I_{S18}I_{S19}}} \sqrt{I_{C18}I_{C19}}$$

- The sizes of the output transistors are typically much larger than the other devices, to be able to supply large current to the load without overheating
- Assuming $I_{S14} = I_{S20} = 4I_{S18} = 4I_{S19}$: $I_{C14} = I_{C20} = 216 \mu A$
- Thus, the *idling* (*standby*) *power dissipation* of the *output branch* = $(30 \text{ V}) \times (216 \text{ } \mu\text{A}) = 6.5 \text{ mW}$

- Assuming $I_{S18} = I_{S19} = 1$ fA: $V_{BIAS} = V_T ln[I_{C18}I_{C19}/(I_{S18}I_{S19})] = 1.285 \text{ V}$
- This produces a DC bias of ~ 643 mV across the BE junctions of Q_{14} and Q_{20} , keeping them at the verge of conduction
- Note that instead of the *prebias combination* used, if simply *two diodes* were used in *series*, then the *current* through that *branch* would have been *183.3* μA, resulting in a current of *733.2* μA in the *output branch*, thus creating *standby power dissipation* in the *output branch* of *22 mW* (*3.4 times*)
- Finally, $I_{C23A} = I_{C13A} = 183.3 \mu A$

Transistor(s)	Magnitude (μA)
I _{C1} , I _{C2} , I _{C3} , I _{C4} , I _{C5} , I _{C6}	9.5
I _{C7}	12.1
I _{C8} , I _{C9} , I _{C10}	19
I _{C11} , I _{C12}	733.3
I _{C13A} , I _{C23A}	183.3
I _{C13B} , I _{C17}	550
I _{C14} , I _{C20}	216
I _{C16}	17.9
I _{C18}	165.7
I _{C19}	17.6

The DC Bias Currents of Different Transistors

> The *DC power dissipation* of the circuit:

$$\begin{split} P_{DC} &= V_{CC} \times (I_{C12} + I_{C9} + I_{C8} + I_{C13A} + I_{C13B} + \\ &I_{C14} + I_{C7} + I_{C16}) + \\ &|-V_{CC}| \times (I_{C11} + I_{C10} + I_{C5} + I_{C7} + I_{C6} + \\ &I_{R9} + I_{C17} + I_{C23A} + I_{C20}) \\ &= 52.3 \text{ mW} \end{split}$$

- ➤ Note that the *reference branch* consumes the *highest DC power*, followed by the *Darlington branch*
- ➤ On the other hand, the *least DC power* is consumed by the *DA branch*

- ac Analysis:
 - > Primary Goal:
 - To find R_i , R_0 , and A_{vOL}
 - > We will adopt a *modular approach*:
 - Considering each stage individually
 - Finding the 2-port equivalent for each of them
 - Eventually joining them together to get the total response

> Assumed:

$$\beta_{\rm N} = 200$$
, $\beta_{\rm P} = 100$, $V_{\rm AN} = 130$ V, $V_{\rm AP} = 50$ V

- We will also *evaluate* the *required value* of the *compensation capacitor* C_C
- The *analysis* will be *simple* and *highly* approximate, however, the *results* will definitely lie within $\pm 10\%$ of the actual

> Input Stage:

- Differential-mode input v_{id} split into $+v_{id}/2$ and $-v_{id}/2$, and applied at the bases of Q_1 - Q_2
- All terminals having
 fixed DC potentials have
 been tied to ac ground
- Bases of Q₃-Q₄ are at ac
 ground due to perfect
 symmetry of the circuit

- $i_{c3} = i_{c5}$ (neglecting base current of Q_7)
- $i_{c6} = i_{c5}$ (ratioed mirror with $R_1 = R_2$)
- Output current:

$$i_0 = i_{c6} - i_{c4} = i_{c5} - i_{c4} = i_{c3} - i_{c4}$$

■ To find the *short-circuit transconductance* of this stage, we *short the output node to ground*

$$\mathbf{v}_{id}/2 = \mathbf{v}_1 + \mathbf{v}_3$$

• KCL at node A:

$$v_1/r_{\pi 1} + g_{m1}v_1 = v_3/r_{E3}$$

$$\Rightarrow \mathbf{v}_{1} = \frac{\mathbf{r}_{\pi 1}}{\mathbf{r}_{E3}} \frac{1}{1 + \mathbf{g}_{m1} \mathbf{r}_{\pi 1}} \mathbf{v}_{3} = \frac{\mathbf{r}_{\pi 1}}{\mathbf{r}_{E3}} \frac{1}{1 + \beta_{1}} \mathbf{v}_{3} \simeq \frac{\mathbf{r}_{\pi 1}}{\beta_{1}} \frac{1}{\mathbf{r}_{E3}} \mathbf{v}_{3} \simeq \frac{\mathbf{r}_{E1}}{\mathbf{r}_{E3}} \mathbf{v}_{3} = \mathbf{v}_{3}$$

$$\Rightarrow$$
 $v_{id} = 4v_3 \Rightarrow v_3 = v_{id}/4$

$$\Rightarrow i_{c3} = g_{m3}v_3 = g_{m3}v_{id}/4$$
 and $i_{c4} = -g_{m3}v_{id}/4$

$$\Rightarrow i_0 = i_{c3} - i_{c4} = +g_{m3}v_{id}/2$$

■ Thus, the *short-circuit transcoductance*:

$$G_{m1} \triangleq \frac{i_0}{v_{id}}\Big|_{v_0=0} = \frac{g_{m3}}{2} = \frac{I_{C3}}{2V_T} = 182.7 \ \mu \text{ }$$