CS 418-301: Algorithms Design and Analysis Homework #2

Due: 7/07/2022 11:59pm

<u>Note</u> You must provide one compressed file that includes your all your work. Make sure you test your implementations on different inputs. I may ask you for a demo of your work.

<u>Problem</u> 1(10 pts). What is the difference between Big-O, Big- Ω , Big- Θ and best case, average case, worse case scenarios?

 $\underline{\text{Problem}}$ 2(10 pts). Complete the following table and sort all big-O notations from smallest (fastest) to largest (slowest).

Expression.	Dominating term	Dominating term in Big-O
$5 + 0.001n^3 + 0.025n$	$0.001n^3$	$O(n^3)$
$n! + n^n$		
$2^{3^2} + 3^{2^n}$		
$n^2 \log n + n(\log n)^2$		
$n \log n + 9^{9999999999999999999999999999999999$		

<u>Problem</u> 3(20 pts). Use Master method to solve the below recurrences:

- (a) T(n) = 2T(n/4) + 1
- **(b)** $T(n) = 2T(n/4) + \sqrt{n}$
- (c) T(n) = 2T(n/4) + n
- (d) $T(n) = 2T(n/4) + n^2$

 $\underline{\text{Problem}}$ 4(30 pts) Solve the following recurrences (using recursive tree or substitution method) and prove your result by induction.

- (a) T(n) = T(n-1) + 1 where T(1) = 1.
- **(b)** T(n) = T(n-1) + n where T(1) = 10.
- (c) $T(n) = T(n-1) + 2n^2$ where T(1) = 10.
- (d) T(n) = 2T(n-1) where T(1) = 1.
- (e) $T(3^n) = T(3^n/3) + 1$ where T(1) = 1.

<u>Problem</u> 5(30 pts) For each of the following pairs of functions f(n) and g(n), determine whether f(n) = O(g(n)), g(n) = O(f(n)), or both (Hint: use mathematical limits.)

- (a) $f(n) = n^5 100n^{17} + 2^5$, $g(n) = n^{17}$
- **(b)** $f(n) = n^{-2} + \log(n^{10}), g(n) = n \log n$
- (c) $f(n) = n(\log n)^2$, $g(n) = 2^n + n^2 \log n$
- (d) $f(n) = n^2 \log n, g(n) = n^2 \log(n^2)$
- (e) $f(n) = 2\log(2^n), g(n) = 2n + 1$
- (f) $f(n) = n^n, g(n) = n!$
- (g) $f(n) = 2^n$, $g(n) = n^2$