Réponses aux questions :

Exercice 1

a. La valeur d'indice n dans T sera la valeur la plus grande après le premier passage. L'algorithme de tri à bulles est prouvé car on a un variant de boucle (T, qui est la liste que l'on tri au fur et à mesure) et un invariant de boucle (tri==1, la condition qui doit être respecté tant que la liste n'est pas triée), donc le programme se termine et fait bien ce que l'on attend de lui.

```
Algorithme:
Trie←1

Compteur ←0

Tant que Trie=1

Trie←0

Pour i allant de 0 à longueur tableau − 1 (0 à longueur tableau—Compteur)

Compteur ← Compteur + 1

Si T[i] > T[i+1]

Trie←1

Echanger T[i] et T[i+1]

Fin Si

Fin Pour

Fin Tant que

(le vert est pour l'exercice 3)
```

b. Le nombre de comparaison d'élément de tableau est (n-1)^2 pour une liste de longueur n, le nombre maximum d'échange est n(n-1)/2, le nombre minimum d'échange est lorsqu'à chaque comparaison on ne fait aucun échange c'est-à-dire qu'il est a 0. Par exemple :

Dans une liste de longueur 5, le tableau qui représente le maximum d'échange est : [5,4,3,2,1]

Le nombre d'échange étant 10

Celui qui représente le minimum d'échange est :

[1,2,3,4,5]

Le nombre d'échange étant 0

Exercice 3

a. La propriété de la portion de tableau dont les indices sont inférieurs à cet indice particulier est que ce sont des valeurs non classées

Amélioration en vert dans l'exercice 1

```
b. Oui on peut généraliser
Algorithme:
Trie←1
Start←0
Fin← longueur tableau - 1
Tant que Trie=1
 Trie←0
 Pour i allant de Start à Fin
  Si T[i] > T[i+1]
   Trie←1
   Echanger T[i] et T[i+1]
  Fin Si
 Fin Pour
 Start←Start + 1
 Renverser le tableau
 Pour i allant de Start à Fin
  Si T[i] < T[i+1]
   Trie←1
   Echanger T[i] et T[i+1]
  Fin Si
 Fin Pour
 Fin←Fin-1
 Renverser le tableau
Fin Tant que
```

Programmes

Programme exercice 1

```
bulle(T):
Fonction avec une liste comme parametre et renvoi une liste triée (le tri à bulle)
trie=1
comparaisons=0
                    # Compteur de comparaisons
                    # Compteur d'echanges
echanges=0
while trie==1: # La condition est tant qu'on fait au moins un echange dans la boucle
                # Si la variable reste à 0 apres la boucle, la liste est triee est on peut sortir de la boucle tant que
    for i in range(len(T)-1):
        comparaisons+=1
        if T[i]>T[i+1]:
            echanges+=1
            trie=1
            T[i],T[i+1]=T[i+1],T[i]
return T,echanges,comparaisons
```

Programme exercice 3

```
shaker(T):
Fonction avec une liste comme parametre et renvoi une liste triée (le tri shaker)
start,fin=0,len(T)-1
echange=0
while trie==1:
    trie=0
    for i in range(start,fin):
        if T[i]>T[i+1]:
            echange+=1
            trie=1
            T[i],T[i+1]=T[i+1],T[i]
    start+=1
    T=list(reversed(T))
    for i in range(start,fin):
        if T[i]<T[i+1]:</pre>
            echange+=1
            trie=1
            T[i],T[i+1]=T[i+1],T[i]
    fin-=1
    T=list(reversed(T))
return T,echange
```

Programme liste valeurs au hasard (pour les résultats experimentaux)

n=int(input()) a=[random.randint(0,n) for i in range (n)]

Les résultats expérimentaux :

Programme Exercice 1 : (nb d'échanges)

Valeurs	1 000	2 000	4000
Test 1	248 502	989 974	4 019 540
Test 2	248 593	1 002 410	4 001 840
Test 3	253 121	1 001 652	3 987 914
Moyenne	250 072	998 012	4 003 031

Programme Exercice 3: (nb d'échange)

	,		
Valeurs	1000	2000	4000
Test 1	246 937	996 016	3 989 519
Test 2	248 712	995 853	3 989 398
Test 3	251 967	1 010 871	4 000 905
Moyenne	249 205	1 000 913	3 993 274

Les deux programmes ont donc des complexités moyennes plus ou moins identique en nombre d'échanges qui est à $(n^2-n)/4$.