$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Für
$$T o 0$$
 E_{F} M

Für $T o 0$ $E_{$

Ex.3 a)

```
\begin{split} &\text{In}[67] := &\text{ n}[\text{e}\_, \text{ T}\_] := 1 \, / \, (\text{Exp}[(\text{e}\_1) \, / \, \text{T}] + 1) \\ &\text{ Plot}[\{\text{n}[\text{e}, \, 0.01], \, \text{n}[\text{e}, \, 0.2], \, \text{n}[\text{e}, \, 0.5]\}, \, \{\text{e}, \, 0, \, 2\}, \\ &\text{ PlotLegends} \to \{ \text{"}\beta = 0.01 \text{"}, \, \text{"}\beta = 0.1 \text{"}, \, \text{"}\beta = 0.2 \text{"}, \, \text{"}\beta = 0.5 \text{"}\}, \, \text{AxesLabel} \to \big\{ \text{"}\epsilon \, (\mu) \text{"}, \, \text{"n"} \big\} \big] \end{split}
```

Out[68]=

In[173]:= atomic mass molar mass M := | copper MINERAL copper ELEMENT mass density rho := 🖨 hbar := **□** ħ $NA := \square N_A$ T := ■ 300 K ··· ✓ $EF = UnitConvert[hbar^2/(2 m)*(3 Pi^2 rho NA/M)^(2/3), "eV"]$ TF = UnitConvert[EF / k] Out[180]= 0.0000608113 eV Out[181]= 0.705686 K In[152]:= $P = UnitConvert[2/5 * EF * rho / M * NA + Pi^2 rho * NA * k^2 * T^2/(6 * M * EF), "bar"]$ Out[152]=

Ex.4

 $2.45927 \times 10^6 \text{ bar}$

Bei β = 0.346 (maximalgeschwindigkeit im fermigas) müsste man relativistische Effekte berücksichtigen

Täglich grüßt der harmonische Oszillator

Max Koppelstätter, Alexander Helbok

June 9, 2024

Betrachten wir ein System aus N nicht miteinander wechselwirkenden, unterscheidbaren harmonischen oszillatoren mit den Energieeigentwerten $E_n = \hbar\omega(n+1/2)$ im großkanonischen Ensemble

- 1. Ermitteln Sie die Zustandssumme eines einzelnen Oszillators und vereinfachen Sie diese.
- 2. Berechne die großkanonische Zustandssumme des Systems. Falls Sie die vorige Teilaufgabe nicht lösen konnten, verwenden Sie

$$Z_1 = e^{-\beta\hbar\omega}/(1 + e^{-\beta\hbar\omega}).$$

- 3. Was würde sich hier ändern, wären die Oszillatoren ununterscheidbar und warum?
- 4. Berechnen Sie die mittlere Energie des Systems. Falls sie die vorige Aufgabe nicht lösen konnten, verwenden Sie

$$Y = e^{-\beta\hbar\omega}/(1 + e^{-\beta\hbar\omega}).$$