Systèmes de transmission

TP n 3 : Etude d'une boucle à verrouillage de phase.

Carole BOUTIN & Sébastien ROTH 09/12/2008

I. Principe de fonctionnement

Q1. Préparation

II. L'oscillateur commande en tension (V.C.O.)

Q2. Expériences :

- Commentaires : Pour $V_k=0$ Volt, le signal est symétrique en zéro, le sommet du pique est atteint pour 1500 Hz, tandis que pour $V_k=1$ V, le sommet est atteint pour 1600 Hz et pour $V_k=-1$ V, le sommet est atteint pour 1400 Hz.
- La fréquence de l'oscillateur est linéaire en fonction de sa commande d'entrée V_k , avec un coefficient 100. Donc la sensibilité λ est de 100 Hertz par Volt. On peut déduire l'égalité :

$$f_s = f_p + \lambda . V_k$$

Où f_s correspond à la fréquence de sortie du V.C.O.

Commentaires : Plus la sensibilité λ est élevé, plus la variation de fréquence de sortie est visible.

Q4.

Nous avons superposez le signal du V.C.O. et la fonction sinusoïdale sur le chronogramme afin des les observer. Ainsi, nous pouvons constater que le signal de la fonction sinusoïdale a une retard de 1/4 par rapport au signal du V.C.O. donc qu'il a un déphasage de $\frac{\pi}{2}$.

III. Détection et mesure d'une phase

Q5. Préparation – Cf Copie rendue.

Q6.

Observations:

Déphasage en degrés	-90	-60	-30	0	30	60	90
ε(λ)	0,5	0,43	0,25	0	-0,25	-0,43	-0,5

Représentation graphique par Excel:

On constate qu'au voisinage de zéro, on a une fonction linéaire d'environ -1/2 qui correspond à notre approximation de sin alpha = alpha.

Q7.

Plus f_c est petite, meilleure sera la précision mais le temps de calcul sera plus long.

Q8.

- On constate que plus l'ordre est grand, plus la précision est meilleure.
- f_c=10hz à l'ordre 2 est un bon compromis entre qualité et temps de calcul.

IV. Asservissement de phase

Q9.

L2 - Groupe D

Q10.

• Pour $\Phi = -90^{\circ}$

Pour Φ = -60°

Pour Φ= -30°

Pour $\Phi = 0^{\circ}$

- Pour chaque simulation V_k finit toujours à 0. Le V.C.O. et le signal source sont de même fréquence, V_k correspond à l'erreur qui est une fonction quadratique. Le V.C.O. a donc corrigé cette erreur à la fin de la simulation.
- En fonction de λ pour Φ fixé à 90° :

Plus λ est petit, moins d'oscillations il y aura sur V_k .

• En fonction de f_c pour Φ fixé à 90°:

Pour $f_c=1$ Hz Pour f_c=300 Hz .08 - .06 - .02 - .02 - .04 - .06 - .06 -• D ₽ .08 .15 Time (sec) .15 Time (sec) .25 .05 .0006 .001 .0016 .0025 .003 002 .0005 .001 .0015 .0025 Time (sec) Time (sec)

Plus f_c est petit, plus la précision est meilleur mais V_k mettra beaucoup plus de temps à se stabiliser.

• En fonction de l'ordre n pour Φ fixé à 90° :

Plus l'ordre est élevé, plus le signal mettra de temps à se stabiliser.

Optimisation de sa convergence : Un gain de 100 Hz/V avec un filtre d'ordre 2 et de F_c =10 Hz parait être un bon compromis.

Q11.

On constate que le VCO et le signal AM sont de même phase.

Q12.

 V_k ne se stabilise pas, le VCO ne délivre donc jamais de fréquence fixe. Il ne peut pas rattraper l'erreur car elle est trop grande.