ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ВИЗУАЛИЗАЦИИ ДАННЫХ РЕГИСТРАТОРОВ ЕИЭМПЗ

Ивченко А.Ю.,Ботыгин И.А. Томский политехнический университет ayi11@tpu.ru

Ввеление

Человечество активно взаимодействует с природой. Соответственно, возникает потребность в прогнозировании различных природных процессов и катаклизмов. Многоканальный геофизический регистратор МГР-1 предназначен для регистрации электромагнитных процессов в земной коре, геофизической разведки, поиска структурных и литологических неоднородностей, мониторинга геодинамического движения земной коры, экспресс-оценки сейсмической опасности [1-3].

В настоящей работе представлена разработка платформо-независимого комплекса программ для эффективной визуализации и автоматического анализа наблюдений с регистраторов МГР-1, находящихся на серверах в сети Интернет.

Описание алгоритма

Файл регистратора МГР-1 структурирован в блоки по тринадцать байт следующим образом: первые тринадцать байтов файла содержат идентификатор станции и серийный номер, в каждой следующей последовательности по тринадцать байт закодировано время (три однобайтовых значения), количество импульсов по трем каналам (по одной беззнаковой переменной размером два байта на канал) и амплитуда по двум каналам (по одной знаковой переменной размером два байта на канал).

Программное обеспечение имеет оконный интерфейс, реализованный с использованием пакета JavaSwing. Разработанный интерфейс позволяет выбирать несколько файлов расширением mgr для обработки, выбирать временной промежуток измерений и усреднять ланные по заданному интервалу межлу мгновенными значениями, строить графики выбранных данных, масштабировать их и сохранять на жестком диске в стандартных форматах хранения.

Программа реализует выбор указанных файлов из каталога сервера, согласно установленным временным условиям. На первом этапе выборки происходит чтение web-страницы, осуществляемое при помощи пакетов JavaIO API и JavaNet API [4, 5]. Структура web-страницы должна соответствовать определенному шаблону. Считанная web-страница представляется как набор папок и станций, элемент которого можно выбрать для последующий действий: «войти» в подпапку или обработать все файлы с данным серийным номером в данной директории и во всех поддиректориях, соответственно (рис. 1, рис. 2).

Рис. 1. Поиск станции

Выбранный каталог содержит с подкаталоги и станции:	следующие
2011/	
2012/	
2013/	
2014/	
2015/	
2016/	
station 26727EE0BF9F15BA	
station 71C404EA000000E0	
	▼
Выберите один из пунктов и наж	кмите "Обработать запрос"
Обработать запрос	

Рис. 2. Содержание каталога

После выбора серийного номера станции пользователь вводит интересующий его временной промежуток. Данные контролируются и конвертируются в таблицу исходных данных согласно пользовательским временным ограничениям при помощи класса DataInputStream пакета JavaIO API. Каждая строка таблицы отображает мгновенное значение измеряемых величин в определенный момент времени.

Для графического представления данных используется пользовательский пакет JFreeChart, который также реализует возможность сохранения графика в ПЗУ и позволяет масштабировать

графики выделением нужной площадки компьютерной мышкой, а также увеличением размера окна. Визуализация происходит на основе обработанных данных, помещенных в объект типа XYSeries [6].

Диалоговый интерфейс (рис. 2) содержит четыре поля ввода: верхние два поля предназначены для ввода начальной и конечной даты измерения, два нижних — для ввода временного промежутка измерений. Из рис 2. видно, что пользователя интересуют данные с четвертого по шестое июня с четырех до шести утра

Рис. 2. Задание временных параметров Диалоговый интерфейс (рис. 3) также позволяет выбрать графики и их интервал усреднения, а также вывести и сохранить таблицу данных (рис. 4), на основе которой строятся графики (рис. 5)

Рис. 3. Интерфейс вывода

<u>\$</u>						×	-
Дата	Время	Импульсы	Импульсы	Импульсы	Амплитуда	Амплитуда	Г
170604	00:15:00	4608	19754	0	-297	-4521	-
170604	00:18:00	3925	15872	0	2646	8406	E
170604	00:21:00	2304	15317	0	-1407	982	Г
170604	00:24:00	4480	15829	0	-1577	-2900	1
170604	00:27:00	2816	9600	0	10369	4994	1
170604	00:30:00	3541	10368	0	5803	-4692	1
170604	00:33:00	3456	9728	0	8918	-4265	1
170604	00:36:00	2816	12160	0	6955	13313	
170604	00:39:00	4266	13909	0	257	13014	_
170604	00:42:00	3754	13610	0	030	6002	•

Рис. 5. Импульсы Н СЮ

Для разработки и отладки программного обеспечения использовалась интегрированная среда разработки «NetBeansIDE 8.1».

Заключение

На основе изученной структуры данных, получаемых с датчиков регистрации естественных импульсов электромагнитного поля Земли (ЕИЭМПЗ) было разработано программное обеспечение для работы с удаленными серверами, позволяющее читать содержимое файлов с данными, конвертировать их в форматы удобные для восприятия и обработки.

Список использованных источников

- 1. Многоканальный геофизический регистратор МГР 01. [Электронный ресурс]. URL: http://archive.sbras.ru/expo/expo/doc/350.pdf(дат а обращения 12.10.2016).
- 2. Метод естественного импульсного электромагнитного поля Земли [Электронный ресурс]. URL: http://nedraproject.com/method.htm(дата обращения 12.10.2016).
- 3. Геопатогенные зоны и естественное импульсное электромагнитное поле Земли[Электронный ресурс]. URL: http://traidi.at.ua/publ/geopatogennye_zony_i_este stvennoe_impulsnoe_ehlektromagnitnoe_pole_ze mli/3-1-0-9(дата обращения 12.10.2016).
- Руководство по языку программирования Java. [Электронный ресурс]. – URL: http://metanit.com/java/tutorial/ (дата обращения 1.04.2016).
- 5. Java™ Platform, Standard Edition 7 API Specification. [Электронный ресурс]. URL: https://docs.oracle.com/javase/7/docs/api/(дата обращения 1.04.2016).
- 6. JFreeChart QuickGuide. [Электронный ресурс]. URL: http://www.tutorialspoint.com/jfreechart/jfreechart quick guide.htm (дата обращения 15.04.2016).