Beer's Law Example

This example shows how to compute an extinction coefficient k_{λ} at a given wavenumber λ using absorbance spectra A_{λ} of known concentrations c. The Beer's law relationship is $ck_{\lambda} = A_{\lambda}$.

Copyright 2022 Battelle Memorial Institute

The Data

Load the napalm data.

clearvars
load pnnl_napalm_data
whos

Name	Size	Bytes	Class	Attributes
A_train A_unknown C_train C_validation ConcentrationUnits ConstituentNames WavenumberLabel Wavenumbers	20x1713 12x1713 20x3 12x3 1x4 1x3 1x20 1x1713	274080 164448 480 288 8 364 40 13704	double double double char cell char double	
ans	1x1	8	double	

The concentration matrix C_{train} contains the percent by weight of each of 20 solutions in the training data. The columns correspond to benzene, polystyrene, and gasoline.

benzene polystyrene gasoline

- 1	2 2	O	
0	0	100.0000	1
5.1309	0	94.8691	2
10.0660	0	89.9300	3
20.1799	0	79.8201	4
40.0120	0	59.9878	5
59.9972	0	40.0028	6
79.8412	0	20.1588	7
89.8273	0	10.1727	8
100.0000	0	0	9
90.0264	9.9736	0	10
80.1375	19.8625	0	11
64.9950	35.0005	0	12
21.0228	45.9197	33.0575	13
49.9507	5.0599	44.9895	14
40.0182	20.0385	39.9433	15
40.0154	10.0036	49.9810	16
30.0059	10.0282	59.9659	17
40.0340	39.9670	19.9990	18
49.9393	3.3748	46.6859	19
46.6501	13.4658	39.8840	20
	5.1309 10.0660 20.1799 40.0120 59.9972 79.8412 89.8273 100.0000 90.0264 80.1375 64.9950 21.0228 49.9507 40.0182 40.0154 30.0059 40.0340 49.9393	5.1309010.0660020.1799040.0120059.9972079.8412089.82730100.0000090.02649.973680.137519.862564.995035.000521.022845.919749.95075.059940.018220.038540.015410.003630.005910.028240.034039.967049.93933.3748	5.1309094.869110.0660089.930020.1799079.820140.0120059.987859.9972040.002879.8412020.158889.8273010.1727100.00000090.02649.9736080.137519.8625064.995035.0005021.022845.919733.057549.95075.059944.989540.018220.038539.943340.015410.003649.981030.005910.028259.965940.034039.967019.999049.93933.374846.6859

The absorbance spectra for each of the 20 solutions in the training data are the rows of A_{train} .

pnnl_napalm_plot_training_spectra

Pure Spectra

Look at the rows of C_{train} and you can see that row 9 is pure benzene and row 1 is pure gasoline. A pure spectra of polystyrene is inferred from a combination of rows 12 and 9.

$$C_{\text{train}}([1,9,12],\ :\) = \begin{bmatrix} 0 & 0 & 100.0000 \\ 100.0000 & 0 & 0 \\ 64.9950 & 35.0005 & 0 \end{bmatrix} \begin{array}{c} 1 \\ 9 \\ 12 \end{array}$$

A_pure = pnnl_napalm_pure_spectra; pnnl_napalm_plot_pure_spectra

Locate the best index for benzene

Plot the absorbances with 1:m as the x-axis so you can find the index that corresponds to the best peak for each of the constituents.

```
m = size(A_pure,2);
figure
stackedplot(1:m,A_pure','LineWidth',2,'FontSize',14,'DisplayLabels',ConstituentNames);
xlabel('Index')
```


Hover over the plot to examine the peaks of the benzene spectrum. The largest peak in the benzene spectrum seems like the natural one to choose, but there are peaks in the other spectra coinciding with the largest peak, so choose the second largest peak to examine. It has index 175. This corresponds to wavenumber $\lambda_{175} = 1035.587$.

```
index = 175;
lambda = Wavenumbers(index)
```

lambda = 1.0356e+03

Beer's Law for Benzene

Pull out the concentration column for benzene and the absorbtion column for $\lambda_{175} = 1035.587 cm^{-1}$.

```
c_benzene = C_train(:,1);
A_lambda = A_train(:,index);
```

Compute the extinction coefficient $k_{\lambda_{175}}$ for benzene for wavenumber $\lambda_{175}=1035.587 {\rm cm}^{-1}$ that best fits the following equation. The fit won't be exact because, for example, looking at the first row there is no value that makes $0 \cdot k_{\lambda_{175}}=0.1239$ true. However, we can compute a value for $k_{\lambda_{175}}$ that minimizes the sum of squares of the difference $c_{\rm benzene} \cdot k_{\lambda_{175}} - A_{\lambda_{175}}$ (hence the name "least squares").

C_{benzene}		$A_{\lambda_{175}}$
[0		0.1239
5.1309		0.1801
10.0660		0.2207
20.1799		0.3423
40.0120		0.6381
59.9972		0.8222
79.8412		1.1272
89.8273		1.3174
100.0000		1.4965
90.0264	1- 24	1.4311
80.1375	$k_{\lambda_{175}} \approx$	1.3286
64.9950 21.0228		1.2203
		0.5492
49.9507		0.6973
40.0182		0.6603
40.0154		0.5863
30.0059		0.4573
40.0340		0.8525
49.9393		0.6905
46.6501		0.7131

MATLAB's backslash operator computes the least-squares solution to $c_{\text{benzene}} \cdot k_{\lambda} = A_{\lambda}$.

```
k_lambda = c_benzene \ A_lambda
```

 $k_{ambda} = 0.0156$

Plot the measured absorbtion vs the least-squares best fit $A_{\lambda} = ck_{\lambda}$.

```
figure;
plot(c_benzene,A_lambda,'.','MarkerSize',35)
colorOrder = pnnl_colorOrder(1);
hold on
plot(c_benzene, c_benzene*k_lambda,'Color',colorOrder(1,:))
legend(sprintf('benzene, \\lambda = %d cm^{-1}',round(lambda)),'A_\lambda = ck_\lambda
xlabel('Concentration (wt %)')
ylabel('Absorbance')
set(gca,'FontSize',14)
```


Choose peaks for the remaining constituents

Choose bands for each constituent that meet the following criteria:

- 1. High intensity
- 2. Don't have high overlap with bands from other constituents.

The following bands for benzene, polystyrene, and gasoline, respectively, met those criteria, but we did not do an exhaustive search. There might be others that are more optimal.

```
wavenumber_index = [175, 468, 1128];
wavenumbers_of_interest = Wavenumbers(wavenumber_index)
wavenumbers_of_interest = 1×3
```

```
wavenumbers_of_interest = 1x3

10<sup>3</sup> x

1.0356  1.6006  2.8734
```

Plot the chosen peaks in each spectra.

```
n = size(C_train,2);
colorOrder = pnnl_colorOrder(n);
figure;
h = gobjects(1,n);
for j = 1:n
    h(j) = subplot(n,1,j);
    plot(Wavenumbers,A_pure(j,:),'LineWidth',2,'Color',colorOrder(j,:));
```

```
hold on
  plot(Wavenumbers(wavenumber_index(j)), A_pure(j, wavenumber_index(j)), 'xk', 'MarkerSi
  title(ConstituentNames{j})
  ylabel('Absorbance')
end
linkaxes(h)
xlabel(WavenumberLabel)
set(h, 'FontSize', 14)
```


Repeat for each of the other spectra

Repeat the process for computing extinction coefficients k_{λ} for each of the other spectra and plot the results.

```
k_lambda = zeros(1,n);
for j = 1:n
    k_lambda(j) = C_train(:,j) \ A_train(:,wavenumber_index(j));
end
```

The extinction coefficients are for benzene, polystyrene, and gasoline respectively.

```
k_{\text{lambda}}
k_{\text{lambda}} = 1 \times 3
0.0156
0.0077
0.0098
```

Cross Validation

Cross-validate by running CLS for each of the rows in the training set, leaving one row out, and using that row as the unknown data.

```
p = size(C_train,1);
C_cross_validation = zeros(p,n);
for i = 1:p
    for j = 1:n
        C_cross_validation(i,j) = pnnl_cls(A_train([1:i-1,i+1:p],wavenumber_index(j)),
    end
end
```

Compute Root Mean Square Errors

```
RMSEC = zeros(1,n);
RMSECv = zeros(1,n);
RMSEP = zeros(1,n);
for j = 1:n
    RMSEC(j) = pnnl_rmse(A_train(:,wavenumber_index(j))/k_lambda(j), C_train(:,j));
    RMSECv(j) = pnnl_rmse(C_cross_validation(:,j), C_train(:,j));
    RMSEP(j) = pnnl_rmse(A_unknown(:,wavenumber_index(j))/k_lambda(j), C_validation(:,end
pnnl_display_rmse("Beer's Law",ConstituentNames,RMSEC,RMSECV,RMSEP)
```

Beer's Law	Benzene	Polystyrene	Gasoline
RMSEC	6.9805	5.6428	8.2886
RMSECV	7.3288	5.6911	8.8853
RMSEP	11.019	2.753	25.521

Plot the results

Plot the results with lines of best fit.

```
figure;
colorOrder = pnnl_colorOrder(n);
legend_string = cell(1,2*n);
legend_number = 0;
for j = 1:n
    plot(C_train(:,j),A_train(:,wavenumber_index(j)),'o',...
        'MarkerEdgeColor',colorOrder(j,:),...
        'MarkerFaceColor',colorOrder(j,:),...
        'DisplayName', sprintf('%s, \\lambda = %d cm^{-1}', ConstituentNames{j}, round(wa
    hold on
    plot(C_train(:,j), C_train(:,j)*k_lambda(j),'Color',colorOrder(j,:),...
        'DisplayName', sprintf('%s fit, k_{\\lambda} = %f', ConstituentNames{j}, k_lambda
end
legend('Location','northwest')
xlabel('Concentration (wt %)')
ylabel('Absorbance')
```


Disclaimer

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830