TD 6-Séries

Exercice 1

Étudier la convergence des séries suivantes et, le cas échéant, calculer leur somme.

$$1. \sum_{n\geq 0} \frac{n}{7^{n-1}}.$$

3.
$$\sum_{n\geq 0} \frac{(-1)^n n}{3^n}$$
. 5. $\sum_{n\geq 0} \frac{n2^n}{n!}$.

$$5. \sum_{n>0} \frac{n2^n}{n!}.$$

2.
$$\sum_{n>0} \frac{4n^2 + 5n}{5^n}$$
. 4. $\sum_{n>0} \frac{2^n}{(n+1)!}$. 6. $\sum_{n\geq 0} \frac{n}{2^{2n+1}}$.

$$4. \sum_{n>0} \frac{2^n}{(n+1)!}$$

6.
$$\sum_{n\geq 0} \frac{n}{2^{2n+1}}$$

Exercice 2

On considère la série de terme général

$$u_n = \frac{n^3 + 2n^2 - 4n + 1}{n!}$$
 $n \in \mathbb{N}^*$

- 1. Montrer que la famille (1, X, X(X-1), X(X-1)(X-2)) est une base de $\mathbb{R}_3[X]$.
- 2. Déterminer les coordonnées de $X^3 + 2X^2 4X + 1$ dans cette base.
- 3. En déduire que la série $\sum_{n>0} u_n$ converge et calculer sa somme.

Exercice 3

Montrer que la série $\sum_{n\geq 2} \ln\left(1-\frac{1}{n^2}\right)$ converge et calculer sa somme.

Exercice 4

Avec le critère de comparaison des séries à termes positifs, déterminer la nature des séries suivantes :

1.
$$\sum_{n\geq 2}\frac{1}{n-\sqrt{n}}$$
.

2.
$$\sum_{n\geq 1} \frac{1}{\sqrt{n}\cdot n!}$$

Exercice 5

Avec le critère de négligeabilité des séries à termes positifs, déterminer la nature des séries suivantes :

1.
$$\sum_{n\geq 0} e^{-\sqrt{n}}$$
.

2.
$$\sum_{n\geq 2} \frac{1}{\sqrt{n} \ln{(n)}}$$

Exercice 6

suivantes:

1.
$$\sum_{n\geq 1} \ln\left(1+\frac{1}{n\sqrt{n}}\right)$$
. 2. $\sum_{n\geq 1} \left(1-e^{-\frac{1}{\sqrt{n}}}\right)$ 3. $\sum_{k\geq 1} \left(e^{\frac{k^2+1}{k^4+1}}-1\right)$

2.
$$\sum_{n>1} \left(1 - e^{-\frac{1}{\sqrt{n}}}\right)$$

3.
$$\sum_{k>1} \left(e^{\frac{k^2+1}{k^4+1}} - 1 \right)$$

Exercice 7

Déterminer la nature des séries suivantes :

1.
$$\sum_{n\geq 1} \frac{n^3 - n^2 + 1}{5n^5 + 3n^4 + 2n}.$$
 9.
$$\sum_{n\geq 1} \frac{\ln n}{n^2}.$$

9.
$$\sum_{n>1} \frac{\ln n}{n^2}$$
.

2.
$$\sum_{n\geq 1} (-1)^n \frac{n^3 - n^2 + 1}{e^n + 3n^4 + 2n^2}$$
. 10. $\sum_{n\geq 1} \left(\sqrt{n+1} - \sqrt{n}\right)$.

10.
$$\sum_{n>1}^{-1} \left(\sqrt{n+1} - \sqrt{n} \right)$$

$$3. \sum_{n\geq 1} \ln\left(1+\frac{1}{n}\right).$$

11.
$$\sum_{n\geq 1} \ln\left(1 + \frac{(-1)^n}{n\sqrt{n}}\right).$$

4.
$$\sum_{n\geq 1} (n^{\frac{1}{n}}-1)$$
.

12.
$$\sum_{n\geq 1} \left((n+1)^{\frac{1}{4}} - (n-1)^{\frac{1}{4}} \right)$$

5.
$$\sum_{n\geq 1} (-1)^n \ln\left(1 + \frac{1}{n^2}\right)$$
. 13. $\sum_{n\geq 1} \frac{n}{\ln n}$.

$$13. \sum_{n>1} \frac{n}{\ln n}$$

6.
$$\sum_{n \ge 1} \left(1 + \frac{1}{n}\right)^n$$
.

14.
$$\sum_{n\geq 1} \left(\sqrt{n^2 - n + 2} - n \right)$$
.

7.
$$\sum_{n>1} \frac{1}{3^{\ln n}}$$
.

15.
$$\sum_{n\geq 1} \left(1 - \left(1 + \frac{1}{n^2}\right)^n\right)$$
.

$$8. \sum_{n\geq 1} \frac{1}{n^{\ln n}}.$$

$$16. \sum_{n\geq 1} \frac{(\ln n)^7}{n\sqrt{n}}.$$

Exercice 8

- 1. Soit $x \in [0, 1]$. Montrer que $0 < x^2 < x$.
- 2. Soit $\sum_{n>0} u_n$ une série convergente à termes positifs. Montrer que $\sum_{n>0} u_n^2$

Exercice 9 (Une série convergente mais pas absolument convergente)

Soit $(u_n)_{n>1}$ la suite définie par

$$\forall n \ge 1 \quad u_n = \frac{(-1)^n}{\sqrt{n}}.$$

Avec le critère d'équivalence des séries à termes positifs, déterminer la nature des séries

Pour tout $n \ge 1$, on note $S_n = \sum_{k=1}^n u_k$.

- 1. Montrer que la série $\sum_{n>1} u_n$ n'est pas absolument convergente.
- 2. (a) Montrer que les suites $(S_{2n})_{n\geq 1}$ et $(S_{2n+1})_{n\geq 0}$ sont adjacentes.
 - (b) En déduire que la suite $(S_n)_{n\geq 1}$ converge.
 - (c) En déduire que la série $\sum u_n$ converge.

Exercice 10 (Deux suites équivalentes, l'une convergente, l'autre divergente)

Soit $(v_n)_{n>1}$ la suite définie par

$$\forall n \ge 1 \quad v_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}.$$

- 1. Montrer que $v_n \sim u_n$ où $(u_n)_{n>1}$ la suite définie à l'exercice 9.
- 2. Montrer que la série $\sum v_n$ diverge (on pourra utiliser le fait que $\sum u_n$ converge, où $(u_n)_{n\geq 1}$ la suite définie à l'exercice 9).

Exercice 11

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\left\{\begin{array}{c} u_0\in]0,1[\\ \forall n\in\mathbb{N}\ u_{n+1}=u_n-u_n^2 \end{array}\right.$

- 1. Montrer que : $\forall n \in \mathbb{N}, u_n \in]0,1]$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 3. Étudier la convergence de la série $\sum_{n\in\mathbb{N}} u_n^2$ et déterminer sa somme si elle existe.
- 4. Prouver que la série $\sum_{n\geq 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$ diverge.
- 5. En déduire la nature de la série $\sum_{n\geq 0} u_n$.

Exercice 12

On considère, pour tout $n \in \mathbb{N}$, la fonction f_n définie sur \mathbb{R}_+ par

$$\forall x \in \mathbb{R}_+ \quad f_n(x) = x^3 + nx - 1.$$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, l'équation $f_n(x) = 0$ possède une unique solution dans \mathbb{R}_+ . On notera u_n cette solution.
- 2. Montrer que $\forall n \in \mathbb{N}, 0 \leq u_n \leq \frac{1}{n}$.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.
- 4. Montrer que $\lim_{n\to+\infty} nu_n = 1$.
- 5. En déduire la nature de la série $\sum_{n>0} u_n$.

Exercice 13 (EDHEC 2013)

On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}}$, définie par la donnée de $u_0=0$ et par la relation, valable pour tout entier naturel $n:u_{n+1}=\frac{u_n^2+1}{2}$.

- 1. (a) Montrer que, pour tout entier naturel n, on a $0 \le u_n \le 1$.
 - (b) Étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Déduire des questions précédentes que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 2. (a) Écrire une fonction Scilab qui renvoie la valeur de u_n .
 - (b) En déduire un programme, rédigé en Scilab, qui permet de déterminer et d'afficher la plus petite valeur de n pour laquelle on a $0 < 1 u_n < 10^{-3}$.
- 3. Pour tout entier naturel n, on pose $v_n = 1 u_n$.
 - (a) Pour tout entier naturel k, exprimer $v_k v_{k+1}$ en fonction de v_k .
 - (b) Simplifier, pour tout entier naturel n non nul, la somme $\sum_{k=0}^{n-1} (v_k v_{k+1})$.
 - (c) Donner pour finir la nature de la série de terme général v_n^2 ainsi que la valeur de $\sum_{n=0}^{+\infty} v_n^2$.

Exercice 14 (EML, 1992)

On note $f:]1, +\infty[\to \mathbb{R} \ l'application définie par :$

$$\forall x \in]1, +\infty[, f(x) = \frac{1}{x \ln(x)}$$

et pour tout $n \in \mathbb{N}$ tel que $n \ge 2$, on note $S_n = \sum_{k=2}^n f(k)$.

- 1. Étudier les variations de f et tracer sa courbe représentative.
- 2. Montrer, pour tout entier k tel que $k \ge 3$:

$$f(k) \le \int_{k-1}^{k} f(x) dx \le f(k-1)$$

3. (a) Montrer, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$S_n - \frac{1}{2\ln(2)} \le \int_2^n f(x) dx \le S_n - \frac{1}{n\ln(n)}$$

(b) En déduire, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$\ln\left(\ln\left(n\right)\right) - \ln\left(\ln\left(2\right)\right) \le S_n \le \ln\left(\ln\left(n\right)\right) - \ln\left(\ln\left(2\right)\right) + \frac{1}{2\ln\left(2\right)}$$

- (c) Établir: $S_n \underset{n \to +\infty}{\sim} \ln(\ln(n))$
- 4. Pour tout $n \in \mathbb{N}$ tel que $n \ge 2$, on note

$$u_n = S_n - \ln(\ln(n+1))$$
 et $v_n = S_n - \ln(\ln(n))$

- (a) En utilisant le résultat de la question 2., montrer que les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ sont adjacentes. On note ℓ leur limite commune.
- (b) Montrer, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$0 \le v_n - \ell \le \frac{1}{n \ln\left(n\right)}$$

(c) En déduire une valeur approchée de ℓ à 10^{-2} près.