Stereo Image Geometry

Coplanarity

Coplanarity

Dependent Relative Orientation (RO)

<u>Left Image</u> (Fixed)

Xc=0

 $Y^c=0$

 $Z^c=0$

 $\omega = 0$

φ=0

κ=0

Right Image

 $X^c = b_X$ (fixed)

 $Y^c = b_y$ (solved)

 $Z^c = b_z$ (solved)

 ω =0 (solved)

 ϕ =0 (solved)

 κ =0 (solved)

Base Vector

$$\vec{\mathbf{B}} = \begin{pmatrix} \mathbf{b}_{\mathbf{X}} \\ \mathbf{b}_{\mathbf{Y}} \\ \mathbf{b}_{\mathbf{Z}} \end{pmatrix}$$

Space Intersection

Y-Parallax

Dependent RO Example

- ▶ RC8 camera (c = 152.15 mm)
 - 6 points used in the RO
 - ▶ IO: affine transformation, pp reduction, distortion, refraction
 - Point locations are indicated below

Observations, Y-parallaxes and model co-ordinates

id	xl (mm)	yl (mm)	xr (mm)	yr (mm)	pY (mm)	X (mm)	Y (mm)	Z (mm)
30	106.399	90.426	24.848	81.824	0.0030	108.9302	92.5786	-155.7695
40	18.989	93.365	-59.653	88.138	-0.0020	19.5304	96.0258	-156.4878
72	70.964	4.907	-15.581	-0.387	-0.0087	71.8751	4.9657	-154.1035
127	-0.931	-7.284	-85.407	-8.351	0.0067	-0.9473	-7.4078	-154.8060
112	9.278	-92.926	-78.81	-92.62	-0.0027	9.6380	-96.5329	-158.0535
50	98.681	-62.769	8.492	-68.873	0.0036	100.4898	-63.9177	-154.9389

Estimated parameters

RO parameters			
bX (fixed) (mm)	92.0000		
bY (mm)	5.0455		
bZ (mm)	2.1725		
omega (dd)	0.4392		
phi (dd)	1.5080		
kappa (dd)	3.1575		

Correlation coefficient matrix of the parameters

	bY	bZ	ω	ф	κ
bY	1				
bZ	0.25	1			
ω	-0.99	-0.25	1		
ф	-0.29	-0.71	0.26	1	
κ	0.07	-0.19	0.03	0.03	1

- Why is there high correlation between
 - \triangleright b_Y and ω ?
 - \triangleright b_Z and ϕ ?

Analyze the network geometry

Analyze the design matrix columns to find linear dependencies

In this case $A_1 \cong A_3$, but why?

- Analyze the partial derivatives
- Since

 - $b_X >> b_Y \text{ and } b_Z$
 - $y_L \cong y_R = y$
- ▶ The partial derivatives are approximately

$$\frac{\partial \Delta}{\partial b_{Y}} = \begin{vmatrix} 0 & 1 & 0 \\ \overline{x}_{L_{i}} & \overline{y}_{L_{i}} & -c \\ \overline{x}'_{R_{i}} & \overline{y}'_{R_{i}} & \overline{z}'_{R_{i}} \end{vmatrix} \approx cp_{x} \qquad \frac{\partial \Delta}{\partial \omega} = \begin{vmatrix} b_{x} & b_{y} & b_{z} \\ \overline{x}_{L_{i}} & \overline{y}_{L_{i}} & -c \\ 0 & -\overline{z}'_{R_{i}} & \overline{y}'_{R_{i}} \end{vmatrix} \approx b_{x} \left(y^{2} + c^{2}\right)$$

- \triangleright The x-parallax, p_x , is approximately constant
- $c^2 >> y^2$
- So, both derivatives are nearly constant

Autonomous Relative Orientation

Traditional RO

- Operator selects and measures points
- Points selected in standard locations
- Only a few (e.g. 6) points
- Points may be measured stereoscopically
- Points measured very accurately, say ±5 μm

Left

Right

Autonomous RO

- Features are extracted automatically
- Points randomly selected
- Large number of features and high redundancy
- Points are automatically matched across images
- Feature matching accuracy may be low (i.e. ± a few pixels)

Left

Autonomous Relative Orientation (cont'd)

Autonomous RO can be performed using

- Interest points
- Edge pixels
- Edge entities

Interest points

- Interest point: a point distinct from its surroundings (high radiometric variance)
- An interest point operator is passed over each image
- For an interest point in the left image, a **search space** is defined in the right image in which a search is performed for the most probable match point location

Reducing the Search Space

Epipolar line constraint

- Reduces the problem from a
 2D to a ID search—do not
 need to search the entire image
- Requires known RO: can be iteratively refined

Epipolar plane

Contains the 2 PCs and the object point

Epipolar line

 Line of intersection of epipolar and image planes

Reducing the Search Space (cont'd)

Elevation range constraint

- The linear search space (epiploar line) can be further reduced by approximating the feature height
- The approximate height range, ∆Z, can be back projected into the image, resulting in a smaller search range on the epipolar line

Reducing the Search Space (cont'd)

Image pyramid

 The search space can be further reduced by reducing the image resolution in a pyramid structure

The search is first performed at the lowest resolution

- The match location is projected onto the next highest resolution level of the pyramid at the centre of the search window
- The match location is improved and projected to the next highest level
- Process repeats until the match is made at the original resolution

Level 0 (Full Resolution Original)

Area-Based Matching

The matching entity location is determined by comparing the brightness values of a **template** patch (e.g. from the left image) with those of a **search window** in the corresponding image (e.g. the right)

Essentially, the template is translated through the search

window

Methods of comparison

- Cross-correlation
- Least-squares matching
- Many, many more...

The Influence of Texture

Dense Image Matching

Sparse image matching:

- Produces a set of high-quality matches for a stereo pair
- Used to compute the RO parameters, from which the epipolar lines can be computed

Dense image matching

- Produces (lower-quality) matches for every pixel of a stereo pair
- Used to produce a dense 3D point cloud for a scene

Dense Image Matching (cont'd)

Image source: http://homepages.inf.ed.ac.uk/rbf/CAMERA/RESULTS/YEAR3/node8.html

Dense Image Matching (cont'd)

Semi-global dense matching from oblique aerial imagery

Image source: http://www.ifp.uni-stuttgart.de/forschung/Image_Processing/Dense_Matching/index.en.html

Summary of Equations

Coplanarity condition

$$\vec{\mathbf{B}} = \begin{pmatrix} \mathbf{b}_{\mathbf{X}} & \mathbf{b}_{\mathbf{Y}} & \mathbf{b}_{\mathbf{Z}} \end{pmatrix}^{T} \qquad \vec{\mathbf{v}}_{\mathbf{L}_{i}} = \begin{pmatrix} \overline{\mathbf{x}}_{\mathbf{L}_{i}} & \overline{\mathbf{y}}_{\mathbf{L}_{i}} & -\mathbf{c} \end{pmatrix}^{T} \\ & & & & & \\ \vec{\mathbf{W}}_{\mathbf{R}}^{T} \vec{\mathbf{v}}_{\mathbf{R}_{i}} = \mathbf{M}_{\mathbf{R}}^{T} \begin{pmatrix} \overline{\mathbf{x}}_{\mathbf{R}_{i}} \\ \overline{\mathbf{y}}_{\mathbf{R}_{i}} \\ -\mathbf{c} \end{pmatrix} = \begin{pmatrix} \overline{\mathbf{x}}_{\mathbf{R}_{i}}' \\ \overline{\mathbf{y}}_{\mathbf{R}_{i}}' \\ \overline{\mathbf{z}}_{\mathbf{R}_{i}}' \end{pmatrix} \qquad \vec{\mathbf{B}} \bullet \begin{pmatrix} \vec{\mathbf{v}}_{\mathbf{L}} \times \mathbf{M}_{\mathbf{R}}^{T} \vec{\mathbf{v}}_{\mathbf{R}} \end{pmatrix} = \begin{pmatrix} \mathbf{b}_{\mathbf{X}} & \mathbf{b}_{\mathbf{Y}} & \mathbf{b}_{\mathbf{Z}} \\ \overline{\mathbf{x}}_{\mathbf{L}_{i}} & \overline{\mathbf{y}}_{\mathbf{L}_{i}} & -\mathbf{c} \\ \overline{\mathbf{x}}_{\mathbf{K}_{i}}' & \overline{\mathbf{y}}_{\mathbf{K}_{i}}' & \overline{\mathbf{z}}_{\mathbf{K}_{i}}' \end{pmatrix} = \mathbf{0}$$

Space intersection

$$\begin{split} X^m_{L_i} &= \lambda_i \overline{x}_{L_i} & \qquad X^m_{R_i} &= \mu_i \overline{x}'_{R_i} + b_X \\ Y^m_{L_i} &= \lambda_i \overline{y}_{L_i} & \qquad Y^m_{R_i} &= \mu_i \overline{y}'_{R_i} + b_Y \\ Z^m_{L_i} &= -\lambda_i c & \qquad Z^m_{R_i} &= \mu_i \overline{z}'_{R_i} + b_Z \end{split} \qquad \qquad \lambda_i = \frac{b_X \overline{z}'_{R_i} - b_Z \overline{x}'_{R_i}}{\overline{x}_{L_i} \overline{z}'_{R_i} + c \overline{x}'_{R_i}} \qquad \mu_i = \frac{-b_X c - b_Z \overline{x}_{L_i}}{\overline{x}_{L_i} \overline{z}'_{R_i} + c \overline{x}'_{R_i}} \\ Z^m_{L_i} &= -\lambda_i c & \qquad Z^m_{R_i} &= \mu_i \overline{z}'_{R_i} + b_Z \\ & \qquad \qquad \left(X^m_i \\ Y^m_i \\ Z^m_i \right) = \left(\frac{X^m_{L_i}}{2} \\ Z^m_{L_i} \right) = \left(\frac{X^m_{R_i}}{2} \\ Z^m_{R_i} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \\ Z^m_{R_i} \right) = \left(\frac{X^m_{R_i}}{2} \\ Z^m_{R_i} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \\ Z^m_{R_i} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_{R_i}}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right) \\ & \qquad \qquad \left(\frac{X^m_i}{2} \right) = \left(\frac{X^m_i}{2} \right)$$

Coplanarity Condition Partial Derivatives

- ▶ (Dependent RO)
- The partial derivatives can be expressed as determinants

$$\frac{\partial \Delta}{\partial b_{\mathrm{Y}}} = \begin{vmatrix} 0 & 1 & 0 \\ \overline{x}_{L_{\mathrm{i}}} & \overline{y}_{L_{\mathrm{i}}} & -c \\ \overline{x}'_{R_{\mathrm{i}}} & \overline{y}'_{R_{\mathrm{i}}} & \overline{z}'_{R_{\mathrm{i}}} \end{vmatrix}$$

$$\frac{\partial \Delta}{\partial \mathbf{b}_{\mathrm{Y}}} = \begin{vmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \overline{\mathbf{x}}_{\mathrm{L}_{\mathrm{i}}} & \overline{\mathbf{y}}_{\mathrm{L}_{\mathrm{i}}} & -\mathbf{c} \\ \overline{\mathbf{x}}'_{\mathrm{R}_{\mathrm{i}}} & \overline{\mathbf{y}}'_{\mathrm{R}_{\mathrm{i}}} & \overline{\mathbf{z}}'_{\mathrm{R}_{\mathrm{i}}} \end{vmatrix}$$

$$\frac{\partial \Delta}{\partial \mathbf{b}_{\mathrm{Z}}} = \begin{vmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \overline{\mathbf{x}}_{\mathrm{L}_{\mathrm{i}}} & \overline{\mathbf{y}}_{\mathrm{L}_{\mathrm{i}}} & -\mathbf{c} \\ \overline{\mathbf{x}}'_{\mathrm{R}_{\mathrm{i}}} & \overline{\mathbf{y}}'_{\mathrm{R}_{\mathrm{i}}} & \overline{\mathbf{z}}'_{\mathrm{R}_{\mathrm{i}}} \end{vmatrix}$$

$$\frac{\partial \Delta}{\partial \omega} = \begin{vmatrix} b_{\mathrm{X}} & b_{\mathrm{Y}} & b_{\mathrm{Z}} \\ \overline{x}_{\mathrm{L}_{\mathrm{i}}} & \overline{y}_{\mathrm{L}_{\mathrm{i}}} & -c \\ 0 & -\overline{z}'_{\mathrm{R}_{\mathrm{i}}} & \overline{y}'_{\mathrm{R}_{\mathrm{i}}} \end{vmatrix}$$

$$\frac{\partial \Delta}{\partial \phi} = \begin{vmatrix} b_{\mathrm{X}} & b_{\mathrm{Y}} & b_{\mathrm{Z}} \\ \overline{x}_{\mathrm{L}_{\mathrm{i}}} & \overline{y}_{\mathrm{L}_{\mathrm{i}}} & -c \\ A & B & C \end{vmatrix}$$

$$\frac{\partial \Delta}{\partial \kappa} = \begin{vmatrix} b_{\mathrm{X}} & b_{\mathrm{Y}} & b_{\mathrm{Z}} \\ \overline{x}_{\mathrm{L}_{\mathrm{i}}} & \overline{y}_{\mathrm{L}_{\mathrm{i}}} & -c \\ D & E & F \end{vmatrix}$$

$$\frac{\partial \Delta}{\partial \boldsymbol{\varphi}} = \begin{vmatrix} \boldsymbol{b}_{X} & \boldsymbol{b}_{Y} & \boldsymbol{b}_{Z} \\ \overline{\boldsymbol{x}}_{L_{i}} & \overline{\boldsymbol{y}}_{L_{i}} & -\boldsymbol{c} \\ \boldsymbol{A} & \boldsymbol{B} & \boldsymbol{C} \end{vmatrix}$$

$$\frac{\partial \Delta}{\partial \kappa} = \begin{vmatrix} b_{X} & b_{Y} & b_{Z} \\ \overline{x}_{L_{i}} & \overline{y}_{L_{i}} & -\alpha \\ D & E & F \end{vmatrix}$$

$$A = -\overline{y}'_{R_i} \sin \omega^0 + \overline{z}'_{R_i} \cos \omega^0$$

$$B=\overline{x}_{R_{i}}^{\prime }\sin \omega ^{0}$$

$$C = -\overline{x}'_{R_i} \cos \omega^0$$

$$D = -\overline{y}'_{R_1} \cos \omega^0 \cos \phi^0 - \overline{z}'_{R_2} \sin \omega^0 \cos \phi^0$$

$$E = \overline{x}'_{R_i} \cos \omega^0 \cos \phi^0 - \overline{z}'_{R_i} \sin \phi^0$$

$$F = \overline{x}'_{R_i} \sin \omega^0 \cos \phi^0 + \overline{y}'_{R_i} \sin \phi^0$$

Misclosure

$$\begin{split} \boldsymbol{\Delta}_{i}^{0} &= \boldsymbol{f} \Big(\boldsymbol{b}_{Y}^{0}, \boldsymbol{b}_{Z}^{0}, \boldsymbol{\omega}^{0}, \boldsymbol{\varphi}^{0}, \boldsymbol{\kappa}^{0}, \vec{\boldsymbol{v}}_{L_{i}}, \boldsymbol{M}_{R}^{T} \vec{\boldsymbol{v}}_{R_{i}} \Big) \\ &= \begin{vmatrix} \boldsymbol{b}_{X} & \boldsymbol{b}_{Y}^{0} & \boldsymbol{b}_{Z}^{0} \\ \overline{\boldsymbol{x}}_{L_{i}} & \overline{\boldsymbol{y}}_{L_{i}} & -\boldsymbol{c} \\ \overline{\boldsymbol{x}}_{P}^{\prime} & \overline{\boldsymbol{y}}_{P}^{\prime} & \overline{\boldsymbol{z}}_{P}^{\prime} \end{vmatrix} \end{split}$$