

Bit-Parallel Algorithms for Exact Search of Extended Patterns

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2024

Review and Today's Lecture

Reminder

- Horspool's Algorithm: O(mn) time worst-case, O(n/m) best-case with long shifts
- Shift-And Algorithm: O(mn/w) time, bit-parallel, w is register width (64 bits)

Review and Today's Lecture

Reminder

- Horspool's Algorithm: O(mn) time worst-case, O(n/m) best-case with long shifts
- Shift-And Algorithm: O(mn/w) time, bit-parallel, w is register width (64 bits)

This lecture: More on bit-parallel algorithms

- 1 How to get longer shifts than Horspool's algorithm?
 - → BNDM algorithm (backward non-deterministic DAWG matching)
- 2 Bit-parallel algorithms for more general patterns

Backward Non-Deterministic DAWG Matching

Reminder: Horspool's Algorithm

Horspool shift function

Text: ?????**A**?????

Pattern: BAAAAB

??????<mark>B</mark>??????

BAAAAB

?????<mark>(</mark>???????

BAAAAB

Approach

- Compare characters from right to left in current window
- Shift window based on last character only

Weak points

Small alphabets lead to short shifts (especially bad for long patterns).

Substring-based Shifts

Ideas

- Read from right to left (like Horspool)
- Read on after mismatch to achieve longer shifts
- When current **substring** of window is not a **substring** of pattern, window can be shifted beyond that **substring**.
- Tracking window suffixes that are pattern prefixes further increases shifts

- Add characters from right to left
- Is window read so far a **substring** of the pattern?
- Is window read so far a prefix of the pattern?

- Add characters from right to left
- Is window read so far a substring of the pattern?
- Is window read so far a prefix of the pattern?

- Add characters from right to left
- Is window read so far a substring of the pattern?
- Is window read so far a prefix of the pattern?

- Add characters from right to left
- Is window read so far a substring of the pattern?
- Is window read so far a prefix of the pattern?

- Add characters from right to left
- Is window read so far a substring of the pattern?
- Is window read so far a prefix of the pattern?

- Add characters from right to left
- Is window read so far a substring of the pattern?
- Is window read so far a prefix of the pattern?

- Add characters from right to left
- Is window read so far a substring of the pattern?
- Is window read so far a prefix of the pattern?

- Add characters from right to left
- Is window read so far a substring of the pattern?
- Is window read so far a prefix of the pattern?

Non-Deterministic Suffix Automaton

Construction

- Construct Pattern Search NFA of reverse pattern.
- Do not use a self-loop inside the first (rightmost) state.
- All states are start states.

Usage

- Use Shift-And approach to maintain set of active states
- Any state is active ⇔ substring occurs in pattern
- Accept state is active ⇔ found prefix
- Accept state is active and |P| characters processed \Leftrightarrow found match

BNDM Algorithm

BNDM Algorithm Outline

For each window:

- Initialize suffix automaton (all states active)
- 2 Read window from right to left until no states active or full window read.
- 3 Keep track of longest window suffix that is a pattern prefix.
- 4 Shift window to align this suffix with pattern prefix

BNDM Algorithm: Code

```
def BNDM(P, T):
   masks, accept_state = compute_masks(P[::-1])
   n, m, pos = len(T), len(P), len(P)
   while pos <= n:
       j, lastsuffix, A = 1, 0, (1 << m) - 1
       while A != 0:
           A \&= masks[T[pos-j]] # update A
           if A & accept_state != 0: # accept state?
               if j == m: # full pattern found?
                   vield (pos - m, pos)
                   break
               else: # no, found proper prefix
                   lastsuffix = j # store suffix
           j += 1; A = A << 1 # qo to next window character
       pos += m - lastsuffix # shift window
```

Deterministic Counterpart: BDM

Names

- BDM: Backward DAWG Matching
- **BNDM**: Backward Non-deterministic DAWG Matching
- DAWG: Directed Acyclic Word Graph

BDM (Backward DAWG Matching) Algorithm

- As before, we could transform the NFA into a DFA → deterministic suffix automaton (a DAWG)
- Use the subset construction (can be inefficient), use a suffix tree (later). or really just used BNDM instead of BDM (if |P| < 64)

Bit-Parallel Algorithms for Extended Patterns

Overview

So far, patterns were simple strings, $P \in \Sigma^*$. For several applications (e.g., transcription factor binding sites on DNA), it is necessary to consider patterns that allow

- $lue{}$ different characters (some subset of Σ) at some positions,
- variable-length runs of arbitrary characters,
- optional characters at some positions.

All of these patterns are subsets of **regular expressions**, which can be searched for by DFAs.

Overview

So far, patterns were simple strings, $P \in \Sigma^*$.

For several applications (e.g., transcription factor binding sites on DNA),

it is necessary to consider patterns that allow

- $lue{}$ different characters (some subset of Σ) at some positions,
- variable-length runs of arbitrary characters,
- optional characters at some positions.

All of these patterns are subsets of **regular expressions**, which can be searched for by DFAs.

Why talk about it?

Specialized bit-parallel implementations for each pattern class are more efficient. All of the above patterns can be recognized by variations of the Shift-And algorithm.

■ A generalized string over Σ is a string over $2^{\Sigma} \setminus \{\emptyset\}$, i.e., a string whose characters are non-empty subsets of Σ .

- A generalized string over Σ is a string over $2^{\Sigma} \setminus \{\emptyset\}$, i.e., a string whose characters are non-empty subsets of Σ .
- Example: Consider the set { Maier, Meier, Mayer, Meyer }.

 It can be written as a single generalized string: { M } { a,e } { i,y } { e } { r }.

 Shorthand: M[ael[iy]er

- A generalized string over Σ is a string over $2^{\Sigma} \setminus \{\emptyset\}$, i.e., a string whose characters are non-empty subsets of Σ .
- Example: Consider the set { Maier, Meier, Mayer, Meyer }.

 It can be written as a single generalized string: { M } { a,e } { i,y } { e } { r }.

 Shorthand: M[ae][iy]er
- **Notation:** Singleton sets are represented by their unique element. Larger sets are represented by square brackets: [ae] for $\{a,e\}$. We write # for $\Sigma \in 2^{\Sigma}$ ("any charachter").

- A generalized string over Σ is a string over $2^{\Sigma} \setminus \{\emptyset\}$, i.e., a string whose characters are non-empty subsets of Σ .
- Example: Consider the set { Maier, Meier, Mayer, Meyer }.

 It can be written as a single generalized string: { M } { a,e } { i,y } { e } { r }.

 Shorthand: M[ae][iy]er
- **Notation:** Singleton sets are represented by their unique element. Larger sets are represented by square brackets: [ae] for $\{a,e\}$. We write # for $\Sigma \in 2^{\Sigma}$ ("any charachter").
- In DNA sequences, the IUPAC code specifies a one-letter code for each subset: size 1: ACGT; size 2: SWRYKM; size 3: BDHV; size 4: N.

The Shift-And Algorithm for Generalized Strings

- Recall the Shift-And algorithm with active state bits D: $D \leftarrow ((D \ll 1) \mid 1) \& \mathsf{mask}(c)$
- The Shift-And algorithm can process generalized strings without modifications.
- The bit masks tell which characters are allowed at which position. It is no problem that more than one bit is set at some positions.

The Shift-And Algorithm for Generalized Strings

Recall the Shift-And algorithm with active state bits *D*:

$$D \leftarrow ((D \ll 1) \mid 1) \& \mathsf{mask}(c)$$

- The Shift-And algorithm can process generalized strings without modifications.
- The bit masks tell which characters are allowed at which position. It is no problem that more than one bit is set at some positions.
- **Example:** $P = abba\#b \text{ over } \Sigma = \{a, b\}.$

```
b#abba (reversed because of bit numbers)

mask[a] 011001

mask[b] 110110
```


Bounded-length Runs of Arbitrary Characters

- A run of arbitrary characters is a sequence of Σ s (written as #s) in a generalized string.
- We allow variable run lengths, but with fixed lower and upper bounds.
- **Notation:** #(L, U) with lower bound L and upper bound U
- **Example:** P = bba#(1,3)a: After bba, we have one to three arbitrary characters, followed by a.

Bounded-length Runs of Arbitrary Characters

- A run of arbitrary characters is a sequence of Σ s (written as #s) in a generalized string.
- We allow variable run lengths, but with fixed lower and upper bounds.
- **Notation:** #(L, U) with lower bound L and upper bound U
- **Example:** P = bba#(1,3)a: After bba, we have one to three arbitrary characters, followed by a.
- Three restrictions:
 - **1** An element #(L, U) does not appear first or last in the pattern. (We could remove them without substantially changing the pattern.)
 - No two such elements appear next to each other. (No problem, just add them: $\#(L,U)\#(L',U') \cong \#(L+L',U+U')$.)
 - We require $1 \le L \le U$. (Allowing L = 0 is technically more challenging.)

An NFA for Bounded-length Runs of Arbitrary Characters

- Before considering a bit-parallel implementation, we design an NFA.
- We need ϵ -transitions, an extension of the standard NFA definition: ϵ -transitions happen instantaneously, without consuming a character.

An NFA for Bounded-length Runs of Arbitrary Characters

- Before considering a bit-parallel implementation, we design an NFA.
- We need ϵ -transitions, an extension of the standard NFA definition: ϵ -transitions happen instantaneously, without consuming a character.
- The ε-transitions allow us to skip the optional characters.
 For technical reasons, they exit the initial state of the run; the first #s in each run are optional.
 (One could do it differently, but that would be harder to implement!)

An NFA for Bounded-length Runs of Arbitrary Characters

- Before considering a bit-parallel implementation, we design an NFA.
- We need ϵ -transitions, an extension of the standard NFA definition: ϵ -transitions happen instantaneously, without consuming a character.
- The ε-transitions allow us to skip the optional characters.
 For technical reasons, they exit the initial state of the run; the first #s in each run are optional.
 (One could do it differently, but that would be harder to implement!)

Example: P = bba#(1,3)a:

Bit-parallel Implementation

- We use the Shift-And algorithm on the maximal-length pattern as a basis. Then we additionally implement the ϵ -transitions.
- Masks are constructed as before (for #: 1-bits for each character).

Bit-parallel Implementation

- We use the Shift-And algorithm on the maximal-length pattern as a basis. Then we additionally implement the ϵ -transitions.
- Masks are constructed as before (for #: 1-bits for each character).

0111000

Example: P = bba#(1,3)a with $\Sigma = \{a,b,c\}$: a###abb mask[a] 1111100 *mask*[b] 0111011 mask[c]

Implementation of ϵ -Transitions

 ϵ -transitions are instantaneous: Whenever a state with outgoing ϵ -transitions becomes active (1-bit), this is immediately propagated to the targets of the outgoing ϵ -edges; these are by construction adjacent to the source state.

Implementation of ϵ -Transitions

- ϵ -transitions are instantaneous: Whenever a state with outgoing ϵ -transitions becomes active (1-bit), this is immediately propagated to the targets of the outgoing ϵ -edges; these are by construction adjacent to the source state.
- The actual propagation of 1-bits will be achieved by subtraction (next slide).
- We use two additional bit masks:
 - Bit mask I marks states with outgoing ϵ -transitions.
 - Bit mask F marks the state after the target of the last ϵ -transition of each run.

a###abb

F 0100000

I 0000100

Propagation of Ones

- Let A be the bit mask of active states. Then A & I selects active I-states.
- Subtraction F (A & I) propagates 1-bits, zeroes F-bits.

Propagation of Ones

- Let A be the bit mask of active states. Then A & I selects active I-states.
- Subtraction F (A & I) propagates 1-bits, zeroes F-bits.

■ Problem: Inactive *I*-states keep corresponding *F*-bit set:

Propagation of Ones (Continued)

- Problem: Inactive *I*-states keep corresponding *F*-bit set.
- Solution: Zero out F-bits by a bitwise and with the negation of F:

F	010000100000
A & I	00000000100
F – (A & I)	010000011100

Propagation of Ones (Continued)

- Problem: Inactive *I*-states keep corresponding *F*-bit set.
- Solution: Zero out *F*-bits by a bitwise and with the negation of *F*:

F	010000100000
A & I	00000000100
F – (A & I)	010000011100
~F	101111011111
$(F - (A \& I)) \& \sim F$	000000011100

Propagation of Ones (Continued)

- **Problem:** Inactive *I*-states keep corresponding *F*-bit set.
- Solution: Zero out *F*-bits by a bitwise and with the negation of *F*:

F	010000100000
A & I	00000000100
F – (A & I)	010000011100
~ F	101111011111
$(F - (A \& I)) \& \sim F$	00000011100

- The resulting modified Shift-And update is thus:
 - 1 Apply standard Shift-And update:

$$A = ((A << 1) | 1) \& mask[c]$$

2 Propagate active *I*-states along ϵ -transitions:

$$A = A \mid ((F - (A \& I)) \& ~F)$$

Patterns with Optional Characters

- Another modification of the Shift-And algorithm allows optional characters.
- **Notation:** Write? after the optional character.
- **Example:** The set {color, colour} becomes P = colou?r.
- Consecutive optional characters ("blocks") are allowed.

Patterns with Optional Characters

- Another modification of the Shift-And algorithm allows optional characters.
- **Notation:** Write? after the optional character.
- **Example:** The set {color, colour} becomes P = colou?r.
- Consecutive optional characters ("blocks") are allowed.

Larger example: P = ban?a?na?s and T = banabanns

Bit-Parallel Implementation of Optional Characters

- Three bit masks:
 - *I*: block start; *O*: targets of ϵ -transitions; *F*: block end
- Note: actual bit patterns are reversed (bit numbering vs. state numbering).

Bit-Parallel Implementation of Optional Characters

- Three bit masks:
 - *I*: block start; *O*: targets of ϵ -transitions; *F*: block end
- Note: actual bit patterns are reversed (bit numbering vs. state numbering).
- Activity of any state within a block must be propagated to the block's end.

Bit-Parallel Implementation of Optional Characters (Continued)

Activity of any state within a block must be propagated to the block's end: Propagate the lowest active bit within a block up to the *F*-bit.

Bit-Parallel Implementation of Optional Characters (Continued)

- Activity of any state within a block must be propagated to the block's end: Propagate the lowest active bit within a block up to the F-bit.
- Consider how 1-bit propagation via subtraction works:

Bits to the left (green) and to the right (black) are unchanged;
 only bits between the rightmost ones in the current block change (red).

Bit-Parallel Implementation of Optional Characters (Continued)

- Activity of any state within a block must be propagated to the block's end: Propagate the lowest active bit within a block up to the *F*-bit.
- Consider how 1-bit propagation via subtraction works:

- Bits to the left (green) and to the right (black) are unchanged;
 only bits between the rightmost ones in the current block change (red).
- We develop the machinery by example:

Bit-Parallel Implementation of Optional Characters (Conclusion)

- **Note:** Bitwise equality X = Y can be implemented as $\sim (X \oplus Y)$.
- Full implementation:
 - 1 Create masks for all characters; treat optional characters as regular characters.
 - **2** Standard Shift-And update of active states *A*:
 - A = ((A << 1) | 1) & mask[c]
 - 3 Propagate active states over optional characters:

```
AF = A | F
A = A | (0 & (~(AF - I) ^ AF))
(Here, ^ denotes the xor-operation.)
```


Summary

Topic

Bit-parallel methods for exact pattern matching of single patterns without text indexing

Properties of bit-parallel algorithms

- Typically only applicable if an "almost linear" NFA recognizes the pattern, and if this NFA has at most 64 (register width) states
- Shift-And approach is simple and very flexible, extends to general patterns; running time is always O(n) for constant |P| < 64.
- BNDM approach is also simple and flexible; may pathologically use O(mn) time even for constant m = |P| < 64, but has best-case running time of O(m + n/m).

Possible exam questions

- Explain the idea of bit-parallel simulation of NFAs.
- Explain the suffix automaton and the BNDM algorithm.
- What are the advantages of BNDM over Horspool's algorithm?
- What are the advantages of BNDM over the Shift-And algorithm?
- What is a generalized string?
- How does the Shift-And algorithm change when you allow generalized strings?
- Why would you want to use the Shift-And algorithm for runs with bounded length, when the algorithms for optional characters is more general (#(3,5) = #?#?##)?
- How do you implement bit-parallel propagation of an active state?

Conclusion

Topic

Exact pattern matching of single patterns without text indexing

Strengths of different algorithms

- Shift-And: simple, applicable if $|P| \le 64$
- **B(N)DM:** for |P| < 64; best case of O(m + n/m); long shifts even for small alphabet + long pattern
- Horspool: best case of O(m + n/m) for large alphabet + long pattern
- **Knuth-Morris-Pratt** (KMP): best worst-case time of O(m+n)
- Automata theory was very useful.
- Next topic: index structures (i.e. preprocessing the text)

