NAVAL POSTGRADUATE SCHOOL

Monterey, California

PROGRAMS FOR A TARGET
POSITION ESTIMATION PROCEDURE

BY

R. N. FORREST

March 1983

Approved for public release; distribution unlimited.

Prepared for: Naval Postgraduate School Monterey, CA 93940

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral J. J. Ekelund Superintendent

David A. Schrady Provost

Reproduction of all or part of this report is authorized.

This report prepared by:

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION F	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NPS71-83-002	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Programs for a Target Position Estimation Procedure		5. TYPE OF REPORT & PERIOD COVERED Technical 6. PERFORMING ORG. REPORT NUMBER
R. N. Forrest		8. CONTRACT OR GRANT NUMBER(s)
Performing organization name and address Naval Postgraduate School Monterey, CA 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, Ca 93940		March 1983 NUMBER OF PAGES 48
4. MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release	; distributio	n unlimited.
. DISTRIBUTION STATEMENT (of the abetract entered in	Block 20, if different from	n Report)
B. SUPPLEMENTARY NOTES		
Bearings-only Position Estimograms Programmable Calculators Probability Areas	mation	

The report contains program listings and user instructions for an HP-41CV, a Sharp PC-1500 (or TRS-80 PC-2), a Sharp PC-1211 (or TRS-80 PC-1), a Casio FX-702P and a TI-59. The programs implement a bearings-only position estimation procedure. A development for the procedure is included in the report.

The programs in this report are for use within the Department of the Navy, and they are presented without representation or warranty of any kind.

The programs in this report are for use within the Department of the Navy, and they are presented without representation or warranty of any kind.

TABLE OF CONTENTS

I.	Introduction
II.	Program Users Instructions
III.	Two Examples
IV.	Program Listings 22
	Appendix 1 33
	Appendix 2 43
	References 44

I. Introduction

This report contains a target position estimation program for each of the following calculators: The Hewlett-Packard HP-41CV, the Sharp PC-1500 (or Radio Shack TRS-80 PC-2), the Sharp PC-1211 (or Radio Shack TRS-80 PC-1), the Casio FX-702P and the Texas Instruments TI-59.

The programs provide a means of implementing a position estimation procedure that is described in Appendix 1. The procedure is based on the following assumptions: Bearings taken on or from a target are available from two or more stations of known position. The positions of the stations and the target are such that they can be considered to be on the surface of a plane (a flat earth model). The error in a bearing taken on or from a station is a normal random variable. Its standard deviation (bearing error) is known and its mean (bias) is zero (if there is bias in a bearing, it is known and it is removed). The errors in bearing measurements are independent.

The position estimation procedure requires an initial estimate of the target's position. In the programs that are given here, the initial estimate is at the intersection of the bearing lines determined by the first two target bearings that are input to the program. Because of the use of this method to choose an initial estimate, the first two stations, with respect to the order of data input, should be chosen so that the intersection of their bearing lines is likely to be closer to the target's position than the intersection of the bearing lines from any other pair of stations.

The target ranges and errors of the bearings of the first two stations determine the distance between the intersection of their bearing lines and the target's position. In particular, if the angular separation between two stations as seen from the target is small relative to the bearing error of one or both of the stations, the bearing lines from the two stations may not intersect. If they do not intersect and they are not parallel, their reciprocal bearing lines will. In this case, if the observed bearings from the two stations were the first two bearing inputs to the program, the initial estimate of the target's position would be at the intersection of the two reciprocal bearing lines, and a gross error in the final position estimate could result.

II. Program User Instructions

Before using a program for the first time, refer to the notes that follow the user's instructions. Also, note the comments in Section I regarding the relationship between the accuracy of the computed estimates and the order of data entry.

For a PC-1211, use the PC-1500 User Instructions. Use the DEF mode and substitute SHFT for DEF wherever DEF appears in the instructions.

Station positions are determined with respect to a known reference point. The reference point can be a station position, in this case the station bearing and range from the reference point are both zero.

Program listings are given in Section IV and two example applications are discussed in Section III.

Position Estimation Program HP-41CV User Instructions

Step	Instruction	Prompt	Press
1	Select USER mode and enter the program (see Note 1). Press $\Sigma+$ to run the program.		Σ+
2	Key in, in decimal degrees, the observed bearing of the target from a station or the reciprocal of the observed bearing of the station from the target (see Note 2).	OBS BRG?	R/S
3	Key in the station bearing in decimal degrees from the reference point. Use zero if the station is the reference point.	STA BRG?	R/S
4	Key in the station range (in any units) from the reference point. Use zero if the station is the reference point.	STA RNG?	R/S
5	Key in the bearing error (standard deviation) in decimal degrees.		R/S
6	Repeat Steps 2, 3, 4 & 5 for one or more additional stations.		
7	Compute bearing & range estimates.		1/x
8	A computed target bearing estimate in decimal degrees is displayed.	BRG=est.	R/S
9	A computed target range estimate in meters. For an elliptical containment region, go to Step 10 or Step 17. To enter additional data from new or old stations, go to Step 24.	RNG=est.	
10	For a containment ellipse of a given containment probability, press LN.		LN
11	Key in the desired containment probability.	PRB?	R/S
12	Computed value of the ellipse size: (See Note 3.)	SIZE=val.	R/S

Step	Instruction	Prompt	Press
13	Computed semi-major axis length:	SMJ=val.	R/S
14	Computed major axis direction:	DRC=val.	R/S
15	Computed semi-minor axis length:	SMI=val.	R/S
16	Computed containment ellipse area: (See Note 4.)	A = val.	
17	For a containment ellipse of a given size, press LOG.		LOG
18	Key in the desired containment ellipse size (see Note 3).	SIZE?	R/S
19	Computed value of the containment probability:	PRB=val.	R/S
20	Computed semi-major axis length:	SMJ=val.	R/S
21	Computed major axis direction:	DRC=val.	R/S
22	Computed semi-minor axis length:	SMI=val.	R/S
23	Computed containment ellipse area: (See Note 4.)	A = val.	}
24	To enter additional data from new or old stations, press \sqrt{x} and then repeat Steps 2, 3, 4 & 5		√x

Notes:

- 1. The program size is 35. The key assignments are: TPE $\rightarrow \Sigma +$, CON $\rightarrow \sqrt{x}$, EST $\rightarrow 1/x$, SIZ \rightarrow LOG and PRB \rightarrow LN. If they are not present, they must be made in order to follow the user instructions. For an alternative, see Appendix 2.
- 2. Reciprocal bearings are used when bearings are taken on known positions from the unknown position (target).
- 3. In the model that is the basis for the program, for a given probability of containment, the minimum area containment region is an ellipse centered on the position estimate. The semimajor axis = $k\sigma_{MJ}$ and semi-minor axis = $k\sigma_{MI}$ where k is the size of the ellipse and σ_{MJ} and σ_{MI} are the standard deviations (uncertainty measure) of the position estimate in the major axis and minor axis directions.
- 4. The area units are the range units squared.

Position Estimation Program PC-1500 User Instructions

Step	Instruction	Prompt	Press
1	Enter the program. To run the program, press DEF, A. For a PC-1211, see Note 5.		DEF A
2	Key in, in decimal degrees, the observed bearing of the target from a station or the reciprocal of the observed bearing of the station from the target (see Note 1).	OBS BRG?	ENTER
3	Key in the station bearing in decimal degrees from the reference point. Use zero if the station is the reference point.	STA BRG?	ENTER
4	Key in the station range (in any units) from the reference point. Use zero if the station is the reference point.	STA RNG?	ENTER
5	Key in the bearing error (standard deviation) in decimal degrees.	BRG ERR?	ENTER
6	Repeat Steps 2, 3, 4 & 5 for one or more additional stations.		
7	Compute bearing & range estimates.		DEF Z
8	A computed target bearing estimate in decimal degrees is displayed.	BRG=est.	ENTER
9	A computed target range estimate is displayed. For an elliptical containment region, go to Step 10 or Step 17. To enter additional data from new or old stations, go to Step 24.	RNG=est.	
10	For a containment ellipse of a given containment probability, press DEF, X.		DEF X
11	Key in the desired containment probability.	PRB?	ENTER
12	Computed value of the ellipse size: See Note 2.	SIZE=val.	ENTER

Step	Instruction	Prompt	Press
13	Computed semi-major axis length:	SMJ=val.	ENTER
14	Computed major axis direction:	DRC=val.	ENTER
15	Computed semi-minor axis length:	SMI=val.	ENTER
16	Computed containment ellipse area: (See Note 3.)	A = val.	
17	For a containment ellipse of a given size, press DEF, S.		DEF S
18	Key in the desired containment ellipse size (see Note 2).	SIZE?	ENTER
19	Computed value of the containment probability:	PRB=val.	ENTER
20	Computed semi-major axis length:	SMJ=val.	ENTER
21	Computed major axis direction:	DRC=val.	ENTER
22	Computed semi-minor axis length:	SMI=val.	ENTER
23	Computed containment ellipse area: (See Note 3.)	A = val.	
24	To enter additional data from new or old stations, press DEF, C and then repeat Steps 2, 3, 4 & 5.		DEF C

Notes:

- Reciprocal bearings are used when bearings are taken on known positions from the unknown position (target).
- 2. In the model that is the basis for the program, for a given probability of containment, the minimum area containment region is an ellipse centered on the position estimate. The semi-major axis = $k\sigma_{MJ}$ and semi-minor axis = $k\sigma_{MI}$ where k is the size of the ellipse and σ_{MJ} and σ_{MI} are the standard deviations (uncertainty measure) of the position estimate in the major axis and minor axis directions.
- 3. The area units are the range units squared.
- 4. For a definition of the program initiating keys and their function, press DEF, H. The display will show:
 TPE = A EST = Z SIZ = S PRB = X. Next press ENTER. The display will show: CON = C. To repeat the display, press ENTER.
- 5. For a PC-1211, use the DEF mode and substitute SHFT for DEF wherever DEF appears in the instructions.

Position Estimation Program

FX-702P User Instructions

Step	Instruction	Prompt	Press
1	Enter the program (see Note 1). To run the program, first press F1, \emptyset .		Fl Ø
2	Next, key in 1 and press EXE.	OPTION?	1 EXE
3	Key in, in decimal degress, the observed bearing of the target from a station or the reciprocal of the observed bearing of the station from the target (see Note 2).	OBS BRG?	EXE
4	Key in the station bearing in decimal degrees from the reference point. Use zero if the station is the reference point.	STA BRG?	EXE
5	Key in the station range (in any units) from the reference point. Use zero if the station is the reference point.	STA RNG?	EXE
6	Key in the bearing error (standard deviation) in decimal degrees.	BRG ERR?	EXE
7	Repeat Steps 3, 4, 5 & 6 for one or more additional stations.		
8	To compute bearing & range estimates, first press F1, \emptyset .		Fl Ø
9	Next, key in 2 and press EXE.	OPTION?	2 EXE
10	A computed target bearing estimate in decimal degrees is displayed.	BRG=est.	CONT
11	A computed target range estimate is displayed. For an elliptical containment region, go to Step 12 or Step 20. To enter additional data from new or old stations, go to Step 28.	RNG=est.	
12	For a containment ellipse of a given containment probability, first press β .		Fl Ø
13	Next, key in 3 and press EXE.	OPTION?	3 EXE

Step	Instruction	Prompt	Press
14	Key in the desired probability.	PRB?	EXE
15	Computed value of the ellipse size: See Note 3.	SIZE=val.	CONT
16	Computed semi-major axis length:	SMJ=val.	CONT
17	Computed major axis direction:	DRC-val.	CONT
18	Computed semi-minor axis length:	SMI=val.	CONT
19	Computed containment ellipse area: See Note 4.	A = val.	
20	For a containment ellipse of a given size, first press F1, \emptyset .		Fl Ø
21	Next, key in 4 and press EXE.	OPTION?	4 EXE
22	Key in the desired containment ellipse size (see Note 3).	SIZE?	EXE
23	Computed value of the containment probability:	PRB=val.	CONT
24	Computed semi-major axis length:	SMJ=val.	CONT
25	Computed major axis direction:	DRC=val.	CONT
26	Computed semi-minor axis length:	SMI=val.	CONT
27	Computed containment ellipse area: See Note 4.	A = val.	
28	To enter additional data from new or old stations, first press Fl, Ø.		Fl Ø
29	Next, key in 5, press EXE and then repeat Steps 3, 4, 5 & 6.	OPTION?	5 EXE

Notes:

- 1. Enter the program in PØ for Fl Ø activation. Before running the program, first press F2 then DEFM then l and then EXE. This is required in order to use the array variables in the program.
- 2. Reciprocal bearings are used when bearings are taken on known positions from the unknown position (target).
- 3. In the model that is the basis for the program, for a given probability of containment, the minimum area containment region is an ellipse centered on the position estimate. The semi-major axis = $k\sigma_{MJ}$ and semi-minor axis = $k\sigma_{MI}$ where k is the size of the ellipse and σ_{MJ} and σ_{MI} are the standard deviations (uncertainty measure) of the position estimate in the major axis and minor axis directions.
- 4. The area units are the range units squared.
- 5. For a definition of the program options and their function, press F1, Ø. Then after OPTION? is displayed, enter Ø and press EXE. The display will show: TPE = 1 EST = 2 SIZ = 3.

 Next, press CONT. The display will show: PRB = 4 CON = 5.

 To repeat the displays, press CONT.

POSITION ESTIMATION PROGRAM

TI-59 USER INSTRUCTIONS

Step	Instruction	Enter	Press	Display
1	Enter the program (see Note 1).			
2	To run the program, press A.		А	9
3	Enter, in decimal degrees, the observed bearing of the target from a station or the reciprocal of the observed bearing of the station from the target (see Note 2).	θ	В	θ
4	Enter the station bearing in decimal degrees from the reference point. Use zero if the station is the reference point.	α	R/S	α
5	Enter the station range from the reference point. Use zero if the station is the reference point. Use any units.	ρ	R/S	ρ
6	Enter the bearing error (standard devi- ation) in decimal degrees. After press- ing R/S, the display indicates the order number of the data entry.	е	R/S	n
7	Repeat Steps 3, 4, 5 & 6 for at least one more station.			
8	Display a bearing estimate $\hat{\phi}$ with respect to the reference station.		С	φ̂
9	Display a range estimate \hat{r} with respect to the reference station. For an elliptical containment region, go to Step 10 or Step 15. To enter additional data from new or old stations, repeat Steps 3, 4, 5 & 6.		R/S	r
.0	For a containment ellipse of a given containment probability, enter the containment probability. Next, press E and display the ellipse size (see Note 3).	р	E	k
.1	Display the semi-major axis length.		R/S	ko _{MJ}
.2	Display the major axis direction.		R/S	Υ
.3	Display the semi-minor axis length.		R/S	ko _{MI}

Step	Instruction	Enter	Press	Displ
14	Display the containment ellipse area. (See Note 4.)		R/S	area
15	For a containment ellipse of a given size, enter the containment ellipse size (See Note 3). Next, press D and display the containment probability.	k	D	р
16	Display the semi-major axis length.		R/S	ko _M J
17	Display the major axis direction.		R/S	Υ
18	Display the semi-minor axis length.		R/S	ko _{MI}
19	Display the containment ellipse area. (See Note 4.)		R/S	area
20	To enter additional data from new or old stations, repeat Steps 3, 4, 5 & 6.			

Notes:

- 1. The program requires the normal partition. If the calculator has been in use, this can be assured by turning the calculator off and then on before loading the program.
- 2. Reciprocal bearings are used when bearings are taken on known positions from the unknown position (target).
- 3. In the model that is the basis for the program, for a given probability of containment, the minimum area containment region is an ellipse centered on the position estimate. The semimajor axis = $k\sigma_{MJ}$ and semi-minor axis = $k\sigma_{MI}$ where k is the size of the ellipse and σ_{MJ} and σ_{MI} are the standard deviations (uncertainty measure) of the position estimate in the major axis and minor axis directions.
- 4. The area units are the range units squared.
- 5. Negative bearing estimates and negative major axis directions can result. To convert a negative bearing estimate to the value that would be output by the other programs, add 360° to the estimate. For example, -5° becomes 355°. To convert a negative direction, add 180°. For example, -5° becomes 175°.

III. Two Examples

In Scenario 1, the scenario for the first example, bearings are taken on a target from three separate stations. Figure 1 on Page 18 shows Scenario 1 and Table 1 below gives the station data. The stations are numbered according to the order of station data input to the program.

			TABLE 1		
		OBS BRG	STA BRG	STA RNG	BRG ERR
Station	1	038°	334°	13500	4°
Station	2	324°	050°	11350	3°
Station	3	003°	000°	0	4°

Note from Table 1 that the reference point is at Station 3.

Program outputs for Scenario 1 are given in List 1 on Page 19. List 1 and List 2 which gives program outputs for Scenario 2, are copies of printer tapes that were generated with a Casio FP-10 printer and a Casio FX-702P using the Casio FX-702P program. With allowance for differences in user instructions, display formats and round-off errors, the tapes indicate the output that should be obtained using any of the other calculator programs except for the TI-59 program where equivalent negative angles occur.

In Scenario 2, the scenario for the second example, bearings are taken from a target on three separate stations. Figure 2 on Page 20 shows Scenario 2 and Table 2 below gives the station data. As in Scenario 1, the stations are numbered according to the order of station data input to the program. In this scenario the reciprocal of the observed bearings are used in order to provide an equivalent scenario that is appropriate for the program.

TABLE 2

	OBS BRG	RCP BRG	STA BRG	STA RNG	BRG ERR
Station 1	211°	031°	000°	0	3°
Station 2	172°	352°	115°	11100	3°
Station 3	146°	326°	082°	13800	3°

Note from Table 2 that the reference point is at Station 1.

Program outputs for Scenario 2 are given in List 2 on Page 21. The two bearing estimates in the list are the reciprocal of the target's estimate of the bearing of Station 1.

Figure 1. A position estimate and a .83 confidence region.

Table 1 gives the bearings of the indicated bearing lines and List 1 gives the bearing and the range of the position estimate from Station 3.

LIST 1

OPTION?	OPTION? 5
0 TPE=1 EST=2 SIZ=3	0BS BR6?
PRB=4 CON=5	3 STA BRG?
OPTIOH?	8 STA RNS?
1 QBS BRG?	BRG ERR?
38 \$TA BR6?	4 08S 8R6?
334 STA RNG?	OPTION?
13500 BRG ERR?	2 8RG= 0.15
4 0BS BR6?	RNG= 19553.78
324 STA BR6?	EHD
50 STA_RNG?	OPTION?
11350 8RG ERR?	3 91ZE?
3 OBS BRG?	2 PRB= 0.86
OPTION?	SMJ= 1712.95
2 BR6= 359.51	DIR= 12.48
RNG= 19494.39	SMI= 1129.90
END	A= 6080418.40
OPTION?	END
3 S1ZE?	OPTION?
2 FRB= 0.86	4 PRB?
SMJ= 1737.32	.9 SIZE= 2.15
DIR= 17.69	SMJ= 1837.97
SMI= 1232.96	DIR= 12.48
A= 6729444.91	SMI= 1212.36
END	A= 7909340.38
OPTION? 4 PRB?	EHD
9 SIZE= 2.15	
SMJ= 1964.12	
DIR= 17.69	
SMI= 1322.94	
R= 7747559.77	
END	

Figure 2. A position estimate and .71 confidence region.

Table 2 gives the bearings of the indicated bearing lines and List 2 gives the reciprocal bearing and the range of the position estimate from Station 1.

List 2

OPTION? 0	OPTION? 5
TPE=1 EST=2 SIZ=3	08S 8R6?
PRS=4 CON=5	326 STR BR6?
OPTION?	82 STA_RNG?
1 OBS BR6?	13800 6RG ERR?
31 STA BR6?	3 088 BRG?
0 Sta RNG?	OPTION?
0 BRG ERR?	2 BRG= 31.65
3 OBS BR6?	RHG= 13765.38
352 STA BRG?	END
115 STA RNG?	OPTION?
11100 BRG ERR?	3 SIZE?
3 OBS 8R6?	2 PRB= 0.86
OPTION?	SMJ= 2023.19
2 BRG= 31.00	DIR= 172.06
RNG= 14792.53	SMI= 967.90
END	R= 6151983.32
OPTION?	ОКЗ
3 SIZE?	OPTION?
2 PRB= 0.86	4 PRB?
SMJ= 3606.56	.9 SIZE= 2.15
DIR= 15.39	SMJ= 2170.85
SHI= 1253.72	DIR= 172.06
A= 14205070.91	SMI= 1038.54
END	A= 7082732.54
OPTION?	END
4 PRB?	
.9 \$IZE= 2.15	
SMJ= 3869.77	
DIR= 15.39	
SMI= 1345.22	
R= 16354192.26	
END	

IV. Program Listings

HP-41CV PROGRAM

ALALOI STOCE	51 -	101 ST+ 10
01+LBL "TPE"	52 SIN	102 RCL IND 10
02 DEG		
93 CLRG	53 *	103 STO 12
94 .001	54 STO 15	104 1
95 STO 99	55 RCL 33	105 ST+ 10
96 26	56 RCL 32	106 RCL IND 10
97 STO 18	57 RCL 31	107 STO 13
08+LBL "CON"	58 -	108 1
	59 SIN	109 ST+ 10
09 FIX 0	60 *	110 RCL IND 18
10 "OBS BRG?"		111 STO 14
11 PROMPT	61 STO 16	
12 STO 11	62 RCL 31	112 XEQ 07
13 "STA BRG?"	63 RCL 27	113 ISG 09
14 PROMPT	64 -	114 GTO 95
15 STO 12	65 SIN	115 GTO "CON"
16 "STA RNG?"	66 STO 17	116*LBL 02
17 PROMPT	67 X=0?	117 XEQ 07
	68 GTO 08	118 GTO "COH"
18 STO 13	69 RCL 15	119+LBL 07
19 "BRG ERR?"	70 RCL 31	120 RCL 01
20 PROMPT		
21 STO 14	71 SIN	121 RCL 13
22 1	72 *	122 RCL 12
23 ST+ 08	73 RCL 16	123 SIM
24 2	74 RCL 27	124 *
25 RCL 08	75 SIN	125 -
26 X>Y?	76 *	126 RCL 02
27 GTO 02	77 -	127 RCL 13
	78 RCL 17	128 RCL 12
28 1	79 /	129 008
29 ST+ 10	80 STO 01	130 *
30 RCL 11		131 -
31 STO IND 10	81 RCL 15	
32 1	82 RCL 31	132 R-P
33 ST+ 10	83 COS	133 STO 16
34 RCL 12	84 *	134 X<>Y
35 STO IND 10	85 RCL 16	135 STO 15
36 1	86 RCL 27	136 RCL 11
37 ST+ 10	87 COS	137 RCL 15
38 RCL 13	88 *	138 -
	89 -	139 180
39 STO IND 10	90 RCL 17	140 X<>Y
40 1	91 /	141 X<=Y?
41 ST+ 10		142 GTO 11
42 RCL 14	92 STO 02	
43 STO IND 10	93 26	143 360
44 1	94 STO 10	144 -
45 RCL 08	95+LBL 05	145+LBL 11
46 X=Y?	96 1	146 RCL 14
47 GTO "COH"	97 ST+ 10	147 /
48 RCL 29	98 RCL IND 10	148 STO 17
49 RCL 28	99 STO 11	149 RCL 16
	100 1	150 RCL 14
50 RCL 27		

151 *	201 RCL 05	251 COS
152 PI	202 RCL 06	252 X12
153 *		
154 180	293 *	253 RCL 05
	204 -	254 *
155 /	205 RCL 20	255 RCL 23
156 STO 18	296 /	256 1
157 RCL 15	207 +	,257 P-R
158 COS	208 STO 26	258 *
159 RCL 18	209 RCL 02	259 2
160 /	210 RCL 03	260 *
161 STO 19	211 RCL 07	261 RCL 04
162 RCL 15	212 *	262 *
163 SIN	213 RCL 04	263 STO 26
164 RCL 18	214 RCL 96	264 -
165 /	215 *	265 RCL 23
166 STO 20	216 -	266 SIN
167 RCL 19	217 RCL 20	267 X†2
168 X12	218 /	268 RCL 93
169 ST+ 03		
170 RCL 19	219 +	269 *
	220 RCL 26	270 +
171 RCL 20	221 X<>Y	271 RCL 20
172 *	222 R-P	272 CHS
173 ST+ 04	223 STO 21	273 /
174 RCL 20	224 X<>Y	274 STO 24
175 X†2	225 X>0?	275 RCL 23
176 ST+ 05	226 GTO 96	276 SIN
177 RCL 17	227 360	277 X†2
178 RCL 19	228 +	278 RCL 05
179 *	229+LBL 06	279 *
180 ST+ 06	230 STO 22	280 RCL 26
181 RCL 17	231 RCL 04	281 +
182 RCL 20	232 RCL 03	282 RCL 23
183 *	233 RCL 05	283 COS
184 ST+ 07	234 X≠Y?	284 X†2
185 RTN	235 GTO 03	285 RCL 03
196+LBL *EST*	236 RCL 84	286 *
187 FIX 2	237 SIGH	287 +
188 RCL 94	238 45	288 RCL 20
189 X†2	239 *	289 CHS
190 RCL 03		
191 RCL 05	240 GTO 04	298 /
192 *	241+LBL 03	291 STO 25
193 -	242 -	292 RCL 24
	243 /	293 X<=Y?
194 STO 20	244 2	294 GTO 01
195 X=0?	245 *	295 STO 25
196 GTO 08	246 ATAN	296 X<>Y
197 RCL 01	247 2	297 STO 24
198 RCL 04	248 /	298 90
199 RCL 07	249+LBL 04	299 ST+ 23
200 *	250 STO 23	300+LBL 01

301 "BRG=" 351 * 302 ARCL 22 352 RCL 11 303 AVIEW 353 RCL 24 304 STOP 354 SQRT 355 * 305 "RNG=" 356 X<>Y 306 ARCL 21 307 AVIEW 357 "S#J=" 308 STOP 358 ARCL X 309 "END" 359 RYIEW 319 GTO 99 360 STOP 361 RCL 23 311+LBL "SIZ" 312 "SIZE" 362 X>0? 363 GTO 10 313 PROMPT 314 STO 11 364 180 315 X12 365 ± 316 2 366+LBL 10 367 *DRC=* 317 / 318 CHS 368 ARCL X 369 AVIEW 319 EfX 370 STOP 328 1 371 "SMI=" 321 X<>Y 322 -372 RDH 323 STO 00 373 ARCL Y 324 "PRB=" 374 AVIEW 325 ARCL 00 375 STOP 326 AVIEW 376 PI 327 STOP 377 * 328 GTO 09 378 * 379 "A=" 329+LBL "PRB" 330 "PRB?" 380 ARCL X 331 PROMPT 381+LBL 00 332 CHS 382 AVIEW 383 STOP 333 1 384 "END" 334 + 385 GTO 00 335 LN 386+LBL 08 336 2 337 * 387 AVIEW 388 STOP 338 CHS 389 "NO SOL" 339 SQRT 390 GTO 08 340 STO 11 341 "SIZE=" 391 END 342 ARCL 11 343 AVIEW 344 STOP 345+LBL 09 346 RCL 23 347 STO 12 348 RCL 11 349 RCL 25 350 SQRT

10)": 11 ? 11	3R: VPI " "	: I G; U; V V T L	i N	P " " I ? " "	U;F S;F NF	 	" IT R	0 B : E	R R	
20 : 25 :	: I =		+ 1 I +	:	A):	(<u>]</u> =0	[-	I)	= I	P
30:	1F :X= :2: :X	= A :	I = (4 () (I N	1 0	() \ \(\)	01 51 3(10 1 Y 3	 - 	1 (A	5 A (A	5 (
35:	1.1 00 00 =U kY)) ; -A:) T (: Z (Ø) (X I N	:= ! ! ! S	S () 51 11	11 2 7 (8	F A	()	AZ I/	(-) Z	! Ø - :
40: 45:	FC P=): (): 0:	CCO R = A = 1+6 NE	OS M (M (A=	=) (:	A : () M - G()	(0] = + 4) A () U) I (: B	/ M O	Z + = 1	2 A フ
50:		SU	JB		12	70	:	G	0	Τ	0
60:	15) !'': :(E	P	Al	JS	SE		11		11 T	:
65:	F= X= F:	:00: +U: Y=	06 - (= U	T(B)) *E	-= - 1	5 C E	0 *!	B D). *:	/ D
70:			N	í	3	4	5				
75 :	T=	. 5	*	A.	_ [1	(2	* !	В.	/
80:	G= T-	(C	* B	, () ()	20	; 1.S	T	*() 	Э:	S
	SI SI H= T+	N (C 2*	T: 1 1:*:	+	# P - N - N	S F I	: :	N G: *: T:	= \ S .	T: []	* G V
90:	SI CO : I 5 Z=										

T+90

```
95: PRINT "BRG="; J
     :PRINT "RNG=";
    K: GOTO 145
100: "H": PRINT " TP
    E=A EST=Z SIZ=
     S PRB=X"
105: PRINT "CON=C":
     GOTO 100
120: "S": INPUT "SIZ
    E? "; S: O=I-EXP
     (-S*S/2)
125: PRINT USING "#
     #.##"; "PRB="; O
     :USING : GOTO 1
     35
130: "X": INPUT "PRB
    ? "; D: S=\(-2*
    LN (1-0));
    PRINT "SIZE=";
135: X=S*G: Y=S*H: N=
    T:PRINT "SMJ="
    ; Y: IF NOOLET N
    =N+180
140:PRINT "DIR=";N
:PRINT "SMI=";
    X: PRINT "A="; I
    *X*Y
145: PRINT "END":
    GOTO 145
150: PRINT "NO SOL"
    :GOTO 150
170:X=U-R*SIN Q:Y=
    U-R*COS Q:
    GOSUB 200
175:W=(P-J):L=K*O*
    Л/180:G=COS J/
    L:H=SIN J/L:IF
    W>=180LET W=W-
    360:GOTO 185
180: IF W< =- 180LET
    W=W+360
185: W=W/O: A=G*G+A:
    B=G*H+B:C=H*H+
    C: D=W*G+D: E=W*
    H+E: RETURN
200: K = I(X * X + Y * Y):
    IF K=0LET J=0:
    RETURN
205: J=ACS (Y/K): IF
    ASN (X/K) (ØLET
    J=360-J
210: RETURN
```

10: "A": CLEAR :	180: Z=H: H=G: G=Z
DEGREE 15: "C": INPUT "O	T=T+90 185: PRINT "BRG=
BS BRG? "IP:	
INPUT "STA B	Ģ=":K:GOTO:
INPUT "STA R	20 20 0: "H": FRINT "
NG? ";R:	PE=A EST=Z
INPUT "BRG E FR? ":0: IF I	IZ=S PRB=X" 205:PRINT "CGN=
=2GOTG 130	200: MRINI "DON= ":60T0 200
75: I=I+1:A(I+26	225: "8": INPUT ":
)=P:A(I+28)= Q:A(I+30)=R:	IZE? ";8:0= -EXP (-8*84)
A(I+32)=0:IF	
I=160T0 15 85:X=A(31)*SIN	230: FRINT USING
(A(29)-A(27)	"##.##";"PR: =";0:USING
):Y=A(32)*	G8T0 300
SIN (A(30)-A (28)):Z=SIN	235: "X": INPUT "M RB? ":0: S=4
(A(28)-A(27)	-2*LN (1-0)
) 90:IF Z=0G0T0 3	:FRINT "SIZ
25	=";5 500: X=8*6: Y=8*H:
95:U=(X*SIN A(2	H=T:PRIHT "S
8)-Y*SIN A(2 7))/Z:V=(X*	NJ=";Y:IF N <=OLET N=N+;
008 A(28)-Y*	80
COS A(27))/Z 105:FOR I=1TO 2:	B15: PRINT "DRO="
F=A(I+26):Q=	;N:PRINT "St I=";X:Z=H*X:
A(I+28):R=A(Y: FRINT "A="
I+30):0=A(I+ 32):608UB 40	;Z
O	GOTO 320
110: NEXT I: GUTO 15	325: PRINT "NO 80 L": GOTO 325
130: GOSUB 400	L .0010 525 400:X=U−R*SIN 0:
135: GOTO 15	Y=V-R*00S Q:
140: "Z":F=(B*B-A *C): IF F=0	508UB 500:W= (P-J):L=K*©
GOTO 325	JU/180:5=008
150: X=U+(B*E-0*D)/F: Y=V+(A*E	JZL:H≠SIM JZ L
-B*D)/F:	415: IF N>=180LET
GOSUB 500 160:T=86N B*45:	№ № 360% GOT0 440
IF A=OTHEN 1	425: IF W<=-180
70 165:T=.5*ATN (2*	LET W=W+360
B/(A-C))	440: ⋈=⋈∠७: A= 5≈5+ A: B= 5≈H+ B: C=
170:6=(C*COS T*	ы»Н+С: Д≃ µ+Б+
COS T-2*E* COS T*SIN T+	D:E=與米H+E: RETURN
A*SIN T*SIN	500: K=4(X*X+Y*Y)
T)/-F:G=FG 175:H=(C*SIN T*	:IF K≔OLET J ≃O:RETURN
SIN T+2*B*	510:M≂ASN (X/K):
COS T*SIN T+ A*COS T*COS	J=ACS (YZK):
A*UDS T*CUS T)/-F:H=\TH:	IF MKOLET J= 860-J
IF H>=GG8T0	515: RETURN
165	

CASIO FX-702P PROGRAM

5	INP "OPTION", J:
19 15 20 25 39 48	SET F2:MODE 4 IF J=0 THEN 175 IF J=2 THEN 100 IF J=3 THEN 145 IF J=4 THEN 150 IF J=5 THEN 45 VAC :SET F2
45	INP "OBS BRG",P :INP "STA BRG", Q:INP "STA RNG", R
50	INP "BRG ERR", 0
55	I=I+I:A(I-1)=P: A(I+1)=Q:A(I+3) =R:A(I+5)=0
60 65	X=A(4)*SIN (A(2)-A(A)):Y=A(5)*
70	SIN (A(3)-A(1)) Z=SIN (A(1)-A(0)):IF Z=0 THEN 170
75	U=(X*SIN A(1)-Y *SIN A(0))/Z:Y= (X*COS A(1)-Y*C OS A(0))/Z
80	FOR M=0 TO 1:P= A(M):Q=A(M+2)
85	R=R(M+4):0=R(M+ 6):6SB 200:NEXT M:60TO 45
90	R=A(M+4):0=R(M+ 6):6SB 200:NEXT M:60TO 45
95 100	6SB 200:60T0 45 F=(B*B-A*C):IF
105	F=0 THEN 170 X=U+(B*E-C*D)/F :Y=V+(A*E-B*D)/
110	F:RPC Y:X T=SGN B*45:IF A =C THEN 120
115	=C THEN 120 T=.5*ATN (2*B/(H-C))
120	6=(C*COS T*COS T-2*8*COS T*SIN

T+8*SIN T*SIN

T)/-F

125 H=(C*SIN T*SIN T+2*B*COS T*SIN T+8*COS T*COS T)/-F 130 6=SQR G:H=SQR H :IF 6>H;Z=H:H=G :G=Z:T=T+90 135 IF Y<0:Y=Y+360 140 PRT "BRG=";Y:PR T "RNG="; X:GOTO 165 145 INP "SIZE", S: 0= 1-EXP (-9*9/2): PRT "PRB=":0:60 TO 155 150 INP "PRB", 0: S=S QR (-2*LN (1-0)):PRT "SIZE=";S 155 X=S*G:Y=S*H:PRT "SMJ=";Y:N=T:I F N(0;N=N+180 160 PRT "DIR=";N:PR T "SMI=":X:PRT "A="; 1*X*; 165 PRT "END": 60TO 165 170 PRT "NO SOL":60 10 170 175 PRT "TPE=1 EST= 2 SIZ=3" 180 PRT **PRB=4 CON= 5":60T0 175 200 X=U-R*SIN Q:Y=Y -R*COS Q:RPC Y, 205 W=(P-Y):L=X*0*π 7180:6=COS Y/L: H=SIN Y/L 210 IF W±180; W=W-36 9:60TO 220 215 IF W4-180; W=W+3 60 220 W=W/O:A=6*6+A:B =6*H+8:C=H*H+C: D=W*G+D:E=W*H+E :RET

TI-59 PROGRAM

001234567890123456789012345678901234567890123456789 000000000000000000000000000000000000	######################################		012345678901234567890123456789012345678901234567890123456789	087318959548595892790619-2285342085302408539559085	ECH DD +S D E HD C9VZ9O6 1ND8 L4DON LOVMON L9 LON			98456786096866767676866888888888888888888888	40446608506666666666666066000046660000000000	DSL48 LO LOS LO LOX DOFFO DO LO II - LO II
---	--	--	--	--	---	--	--	--	--	--

01234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789001234567890012345678900123456789000000000000000000000000000000000000	VRD9 1	012345678901234567890123456789012345678901234456789 222222222222222222222222222222222222	#####################################	0+2345678900+2345678900+2345678900+2345678900+2345678900+2345678900+2345678000000000000000000000000000000000000	4T10 L11VM0 L2VVI0 XIII XIII XIII XIII XIII XIII XIII
193 194 195 196 197 198 199	49 PRD 27 27 33 X² 44 SUM 23 23	243 244 245 246 247	43 RCL 22 22 42 STD 42 42 43 RCL	293 294 295 296 297 298 299	43 RCL 42 42 65 × 43 RCL 25 25

0-204567890-1204567890-2084567890-208454545454746 444444444444444 500000000000000000000	8 TL2 L4 L1 L5 L9 TVRD2 TD3L9RD1 D2D3TD1 D4D5L1D2 3 = 104 X02 + 04 x 02 + 03 = 100 X0 x 00 x 01 x 00 x 01 x 00 x 01 x 00		412		HIVE TO BE SEEN TO BE RESERVED TO BE AND THE TOWN THE TOW
348	12 12 49 PRD	399 399	10 E 75 -	 49 65	K/O X

```
32 X/T
450
451
      65
           \times
452
      89
           11
453
      95
           =
454
      92 RTN
455
      61 GTD
456
      04
           04
457
      54
           54
458
      76 LBL
459
      14
          I
      33 X2
460
      55
461
          ÷
462
463
      32 X:T
      Ō2
          2
464
      95
          =
465
      94 +/-
466
      22 INV
      23 LNX
75 -
467
468
           1
469
      01
470
      95
           =
      94 +/-
471
472
      91 R/S
473
      32 X:T
      34 FX
474
475
      61 GTO
476
      04
           04
477
      10
           10
478
      00
           Ū
479
      00
           0
```

Appendix 1. The Estimation Procedure

In this development the assumptions stated in Section I are required conditions. A rectangular coordinate system is used with the positive y-axis directed north, the positive x-axis directed east and the origin at the reference point and all angles are in radians. Figure 3 shows a station located with respect to the coordinate system. The bearing line of length r goes to the object's unknown position, the bearing line of length r goes to an initial estimate of the object's position and the third bearing line corresponds to an observed bearing.

To determine the coordinates for a final estimate, consider the arc segments $u=r(\theta-\phi)$ where $\theta-\phi$ is the bearing error and $v=r(\phi-\beta)$ and $w=r(\theta-\beta)$ that are defined by the three bearing lines and the circle of radius r that is centered on the station and goes through the initial estimate. The geometry is shown in Figure 3. Note that u can be defined by u=w-v. In this expression, $w=r(\theta-\beta)$ is known, and v can be determined in terms of v and v the unknown coordinates of the target. With the reference point at the initial estimate, to first order, $v=x\cos\beta-y\sin\beta$ and $v=v-x\cos\beta+y\sin\beta$. Since this approximation applies to all stations, its use suggests that, for each station, v=r which is equivalent to having the initial estimate relatively close to the target's position.

Since, for each station i, an observed bearing θ_i is the value of a normal random variable θ_i with mean ϕ_i , the coordinate $u_i = r_i(\theta_i - \phi_i)$ is the value of a normal random variable U_i with mean zero. In addition, since the θ_i are independent, the U_i are

Figure 3. The coordinate geometry. The coordinates of the initial estimate are (x^*,y^*) . In the development, the reference point is at the initial estimate.

also independent. And, consequently, the joint distribution of the U_i is determined.

To estimate x and y, maximum likelihood estimates are used here. The likelihood for a sample θ_1 , θ_2 ,..., θ_n from n stations is

$$L(\theta_1, \theta_2, \dots, \theta_n) = \prod_{\substack{1 \ 1 \ \sqrt{2\pi} \ e_i}}^{n} \exp(-\frac{1}{2} \prod_{\substack{1 \ 1 \ 1 \ }}^{n} (\theta_i - \phi_i)^2 / e_i^2$$

and the likelihood for a cooresponding sample u_1, u_2, \ldots, u_n is

$$L(u_1, u_2, ..., u_n) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma_i} \exp -\frac{1}{2} \prod_{i=1}^{n} u_i^2 / \sigma_i^2$$

with $\sigma_i = r_i e_i$ where e_i is the standard deviation of θ_i .

By definition, the maximum likelihood estimates for x and y are the estimates which make $L(u_1, u_2, \ldots, u_n)$ a maximum. In this case, making $L(u_1, u_2, \ldots, u_n)$ a maximum is equivalent to making $\sum_{i=1}^{n} (u_i^2/\sigma_i^2)$ a minimum. So, to find the maximum likelihood estimates \hat{x} and \hat{y} , solve the following two equations for \hat{x} and \hat{y} :

$$\frac{\partial (\ln L)}{\partial x} | = 0$$
 and $\frac{\partial (\ln L)}{\partial y} | = 0$
 $x = \hat{x}$ $y = \hat{y}$

With $u_i = w_i - x \cos \beta_i + y \sin \beta_i$, the equations can be written as follows:

$$\sum_{i=1}^{n} (w_{i} - \hat{x} \cos \beta_{i} + \hat{y} \sin \beta_{i}) (\cos \beta_{i}) / \sigma_{i}^{2} = 0$$

and

$$\sum_{i=1}^{n} (w_{i} - \hat{x} \cos \beta_{i} + \hat{y} \sin \beta_{i}) (\sin \beta_{i}) / \sigma_{i}^{2} = 0.$$

In terms of the following quantities:

$$A = \Sigma(\cos^2 \beta_i)/\sigma_i^2 , \qquad B = \Sigma(\sin \beta_i \cos \beta_i)/\sigma_i^2 ,$$

$$C = \Sigma(\sin^2 \beta_i)/\sigma_i^2 , \qquad D = \Sigma(w_i \cos \beta_i)/\sigma_i^2 ,$$

 $E = \Sigma(w_i \sin \beta_i)/\sigma_i^2,$

the equations become:

$$A\hat{x} - B\hat{y} = D$$

$$B\hat{x} - C\hat{y} = E$$

The solutions are:

(1)
$$\hat{x} = (BE - CD)/(B^2 - AC)$$

and

(2)
$$\hat{y} = (AE - BD)/(B^2 - AC)$$

A confidence region can be constructed about an estimated position. In order to indicate how this can be done, a probability region about the true position will be considered first.

Both \hat{x} and \hat{y} are values of random variables. If a new set of bearings θ_1 , θ_2 , ..., θ_n is observed (for the same initial estimate and a fixed target), in general, a new pair of values \hat{x} and \hat{y} will be obtained.

If \hat{X} and \hat{Y} represent these random variables,

$$\hat{X} = \frac{1}{(B^2 - AC)} \int_{1}^{n} (W_i/\sigma_i^2) (B \sin \beta_i - C \cos \beta_i)$$

$$\hat{Y} = \frac{1}{(B^2 - AC)} \sum_{i=1}^{n} (W_i / \sigma_i^2) (A \sin \beta_i - B \cos \beta_i)$$

where $W_i = r_i (\Theta_i - \beta_i)$.

Since \hat{X} and \hat{Y} are a linear combination of the n normal random variables W_1 , W_2 , ..., W_n , or equivalently of the n normal random variables Θ_1 , Θ_2 , ..., Θ_n , they have a joint normal distribution. Since $E(W_i) = r_i (\phi_i - \beta_i)$, if $\beta_i = \phi_i$ for $i = 1, 2, \ldots, n$, that is, if the initial estimate of the target's position is at the target's position, $E(W_1) = 0$ for $i = 1, 2, \ldots, n$. In this case $E(\hat{X}) = 0$ and $E(\hat{Y}) = 0$ and the joint normal distribution is centered on the object's position. To the degree of the approximations that have been made, this is also true if the initial estimate is not at the target's position.

A region of minimum area for a given probability of containment of an estimated position can be determined. The region is bounded by an ellipse which is centered on the object's position and whose axes lie along the axes of an x'y'-coordinate system that is obtained by rotating the xy-coordinate system that is centered on the object's position through an angle γ . In this system, $\sigma_{\hat{X}}$, \hat{y} , is 0, that is \hat{x} ' and \hat{y} ' are independent normal random variables. The two coordinate systems are illustrated in

Figure 4. The coordinates of a point in the two systems are related by

$$x' = x \cos \gamma - y \sin \gamma$$

 $y' = x \sin \gamma + y \cos \gamma$

These relations imply:

(3)
$$\sigma_{\hat{x}}^2 = \sigma_{\hat{x}}^2 \cos^2 \gamma - 2\sigma_{\hat{x}\hat{y}} \cos \gamma \sin \gamma + \sigma_{\hat{y}}^2 \sin^2 \gamma ,$$

(4)
$$\sigma_{\hat{Y}'}^2 = \sigma_{\hat{X}}^2 \sin^2 \gamma + 2\sigma_{\hat{X}\hat{Y}} \cos \gamma \sin \gamma + \sigma_{\hat{Y}}^2 \cos^2 \gamma$$

and

(5)
$$\sigma_{\hat{x}'\hat{y}'}^2 = (\sigma_{\hat{x}}^2 - \sigma_{\hat{y}}^2) \sin \gamma \cos \gamma + \sigma_{\hat{x}\hat{y}} (\cos^2 \gamma - \sin^2 \gamma)$$

where γ , the angle of rotation of the coordinate axes, is positive in the clockwise direction. And $\sigma_{X}^{\wedge}, \hat{\gamma}' = 0$ implies

$$\tan 2\gamma = \frac{2\sigma \hat{x}\hat{y}}{\sigma_{\hat{y}}^2 - \sigma_{\hat{x}}^2}$$

With the initial estimate of the target's position at the target's position $E(W_i) = 0$ and therefore, $Var(W_i) = \sigma_i^2$ for i = 1, 2, ..., n. In this case

$$\sigma_{\hat{x}}^2 = \frac{1}{(B^2 - AC)^2} \sum_{i=1}^{n} (1/\sigma_{i}^2) (B \sin \beta_{i} - C \cos \beta_{i})^2,$$

Figure 4. An elliptical confidence region and the primed coordinate system in which the covariance $\sigma_{\hat{X}}$, \hat{y} , is zero. The center of the ellipse and the origin of the coordinate systems are at the target's estimated position. The estimated bearing $\hat{\alpha}$ and estimated range $\hat{\rho}$ are indicated for a reference position.

$$\sigma_{\hat{y}}^2 = \frac{1}{(B^2 - AC)^2} \sum_{i=1}^{n} (1/\sigma_{i}^2) (A \sin \beta_{i} - B \cos \beta_{i})^2$$

and

$$\sigma_{\hat{x}\hat{y}} = \frac{1}{(B^2 - AC)} \int_{1}^{n} (1/\sigma_{i}^{2}) (B \sin \beta_{i} - C \cos \beta_{i}) (A \sin \beta_{i} - B \cos \beta_{i}).$$

Using the definition for A, B and C, the above become

(6)
$$\sigma_{\hat{x}}^2 = \frac{C}{(AC - B^2)},$$

(7)
$$\sigma_{\hat{y}}^2 = \frac{A}{(AC - B^2)},$$

and

(8)
$$\sigma_{\hat{X}\hat{Y}} = \frac{B}{(AC - B^2)}.$$

So tan 2 = 2B/(A-C) for $\beta_i = \phi_i$, i = 1, 2, ..., n.

With the target's position known and, consequently, ϕ_i known for $i=1,\,2,\,\ldots,\,n$, the above expressions for $\sigma_{\hat{X}}^2$, $\sigma_{\hat{Y}}^2$, $\sigma_{\hat{X}\hat{Y}}^2$ and γ can be used, since the initial estimate of the target's position can be taken as the target's position.

With values for $\sigma_{\hat{X}}$, $\sigma_{\hat{Y}}$, $\sigma_{\hat{X}}$, and γ , values for $\sigma_{\hat{X}}$, and $\sigma_{\hat{Y}}$, can be found by using equations (3) and (4). The probability that an estimated position will be within an ellipse of semiaxes $k\sigma_{\hat{X}}$, and $k\sigma_{\hat{Y}}$, which is centered on the target's position is

 $1 - \exp(-k^2/2)$. This result can be found by integrating the bivariate normal density over the ellipse. And the area of the ellipse is $k^2\sigma_{\hat{x}}$, $\sigma_{\hat{y}}$.

Given estimates \hat{x} and \hat{y} found by using Equations (1) and (2), the ellipse with semi-axes $k\sigma_{_{\mathbf{X}}}^{\wedge}$, and $k\sigma_{_{\mathbf{V}}}^{\wedge}$, in a coordinate system that is centered on the point (\hat{x},\hat{y}) and has been rotated through an angle γ is a 1 - exp(-k²/2) confidence region. This follows, since, to the degree of the approximations involved, the bivariate normal distribution of X and Y is centered on the target's position. The confidence ellipse is defined if $\sigma_{\hat{x}}^2$, $\sigma_{\hat{y}}^2$ and $\sigma_{\hat{x}\hat{y}}^2$ can be found, that is if the elements of the covariance matrix can be found. To the degree of the approximations involved, this can be done as follows: First, assume the initial estimate of the target's position is at the target's position. Then, values for $\sigma_{\hat{x}}^2$, $\sigma_{\hat{y}}^2$, $\sigma_{\hat{x}\hat{y}}^2$ and γ can be determined by using Equations (6), (7) and (8). These values can then be used to determine $\sigma_{\hat{x}}^2$, , $\sigma_{\hat{y}}^2$, and $\sigma_{\hat{x}}$, by using Equations (3), (4) and (5). Now, with a value for k, a confidence region can be constructed. the degree of the approximations involved, the shape of the confidence region is independent of both the target's position and of the initial estimate of the target's position.

For the case where bearings are taken from the target on two or more stations, $\theta_{\, i}$ is the reciprocal of the bearing taken from the target.

A discussion of the theory of bearings only position estimation procedures for situations similar to the one considered here is given in Reference 1. Reference 2 gives an essentially

equivalent bearings only procedure. It also gives a range only procedure, a range and bearing procedure and HP-9830A programs with which to implement the procedures. Using the fix determined by two lines of bearing as the initial estimate was suggested by this reference.

The following equations are evaluated in the program to determine the coordinates of the initial estimate:

x*
$$\sin (\theta_2 - \theta_1) = [\rho_1 \sin (\alpha_1 - \theta_1)] \sin \theta_2$$

$$- [\rho_2 \sin (\alpha_2 - \theta_2)] \sin \theta_1$$

and

y*
$$\sin (\theta_2 - \theta_1) = [\rho_1 \sin (\alpha_1 - \theta_1)] \cos \theta_2$$

$$- [\rho_2 \sin (\alpha_2 - \theta_2)] \cos \theta_1 .$$

Reference 3 describes a TI-59 program that is based on an equivalent procedure. The program allows a user to either input the coordinates of the initial estimate or determine them in the manner described here.

Appendix 2. HP-41CV Program Labels

The global labels in the HP-41CV program that are assigned to the keys $\Sigma+$, 1/x, \sqrt{x} , LOG and LN give these keys a mnemonic character. For example, with the calculator in USER mode, if LOG is pressed and held, SIZ will be displayed and then after a delay, NULL.

If a global label is replaced by a local label, this mnemonic character will be lost. However, automatic key assignment will be gained if the key corresponding to the local label has not been previously assigned. If this is the case and if there is a second program in program memory that uses the same local label, then it will be automatically assigned when the calculator is positioned in program memory at that program.

Global labels in the HP-41CV program can be replaced with local labels. If this is done as described below, the user instructions will still be applicable. First, make the following replacements:

Line 329: LBL "PRB" → LBL E. Line 311: LBL "SIZ" → LBL D.

Line 186: LBL "EST" → LBL B. Line 008: LBL "CON" → LBL C.

Line 047: GTO "CON" → GTO C.

Next, after line 001: LBL "TPE", insert LBL A so that it becomes line 002. Finally, if there is a key assignment for a key in the following list: $\Sigma +$, 1/x, \sqrt{x} , LOG and LN, remove it. Now, with the calculator in USER mode, if LOG is pressed and held, XEQ D will be displayed and then, after a delay, NULL. The key's mnemonic character has been lost, but if there is a second program in program memory with the local label D, LOG will be automatically assigned to D when the calculator is positioned in program memory at that program.

REFERENCES

- 1. Daniels, H. E., "The Theory of Position Finding," J. Royal Stat. Soc. (B), Vol. 13, 1951, pp. 186-207.
- 2. Thompson, K. P. and Kullback, J. H., "Position-Fixing and Position-Predicting Programs for the Hewlett-Packard Model 9830A Programmable Calculator," NRL Memorandum Report 3265, Naval Research Laboratory, Washington, DC , April 1976.
- 3. Forrest, R. N., "A Procedure for Estimating an Object's Position Based on Two or More Bearings with a Program for a TI-59 Calculator," NPS55-77-34 (Revised), Naval Postgraduate School, Monterey, CA., 93940, September 1977 (Revised August 1978).

INITIAL DISTRIBUTION LIST

	COPIES
Dean of Research Code 012 Naval Postgraduate School Monterey, California 93940	1
Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
Office of Naval Research Attn: Code ONR-230 800 North Quincy Street Arlington, Virginia 22217	3
Commander Submarine Development Squadron 12 Naval Submarine Base, New London Groton, Connecticut 06340	1
Commander Surface Warfare Development Group Naval Amphibious Base, Little Creek Norfolk, Virginia 23521	1
Director Strategic Systems Projects Office Attn: Code SP2024, Code 20231 1931 Jefferson Davis Highway Arlington, Virginia 20376	2
Navy Tactical Support Activity Attn: M. E. Lannon P. O. Box 1042 Silver Spring, Maryland 20910	1
Naval Air Development Center Johnsville, Pennsylvania 18974	1
Naval Surface Weapons Center White Oak Silver Spring, Maryland 20910	1
Naval Underwater Systems Center Newport, Rhode Island 02840	1
Naval Underwater Systems Center New London Connecticut 06320	1

Naval Ocean Systems Center San Diego, California 92132	1
Naval Intelligence Support Center Attn: Code NISC 20, Library 4301 Suitland Road Washington, DC 20390	2
Naval Electronic Systems Command 2511 Jefferson Davis Highway Arlington, Virginia 20360	1
Naval Air Systems Command Code 370 Washington, DC 20361	1
Antisubmarine Warfare Systems Project Office Department of the Navy Washington, DC 20360	1
Center for Naval Analysis 1401 Wilson Boulevard Arlington, Virginia 22209	1
Code 55Fo Naval Postgraduate School Monterey, California 93940	200

U206425

U206425