Quotient by algebraic group

Everything in this section is over an arbitrary field \mathbf{k} unless otherwise specified.

1 Quotient

Definition 1. Let G be an algebraic group acting on a variety X. A *quotient* of X by G is a variety Y together with a morphism $\pi: X \to Y$ such that

- (a) π is G-invariant, i.e., $\pi(g \cdot x) = \pi(x)$ for all $g \in G$ and $x \in X$.
- (b) For any variety Z and any G-invariant morphism $f: X \to Z$, there exists a unique morphism $\overline{f}: Y \to Z$ such that $f = \overline{f} \circ \pi$.

In other words, the following diagram commutes:

$$X \xrightarrow{\pi} Y$$

$$f \searrow \bigcup_{Z} \overline{J}$$

If a quotient exists, it is unique up to a unique isomorphism. Yang: To be continued...

2 Passage to projective space

Theorem 2. Let G be an affine algebraic group and H a closed subgroup. Then there exists a finite-dimensional linear representation V of G and a one-dimensional subspace $L \subseteq V$ such that H is the stabilizer of L.

Proof. Yang: To be filled.

3 More general quotients

Theorem 3. Let G be an affine algebraic group acting on a variety X. Then there exists a variety Y and a rational morphism $\pi: X \dashrightarrow Y$ with commutative diagram

$$\begin{array}{c} X - \xrightarrow{\pi} Y \\ \downarrow f \\ Z \end{array}$$

satisfying the following universal property: If a quotient exists, it is unique up to a unique isomorphism.

Furthermore, if all orbits of G in X are closed, then π is a morphism (i.e., defined everywhere). Yang: To be continued...

Date: September 29, 2025, Author: Tianle Yang, My Homepage