INFO-H-303 Bases de données Séance d'exercices 10 Normalisation

F. Servais et B. Verhaegen

25 novembre 2009

But de la normalisation

EmpDept

EName	<u>SSN</u>	BDate	Address	D#	DName	DMgrSSN
Smith	1234	21/07/39		1	Research	1234
Narayan	6668	18/01/43		1	Research	1234
English	4534	8/05/53		2	Account	4534
Wong	9788	30/11/49		3	Admin	9788
Zelaya	6677	23/08/60		3	Admin	9788

- Objectif : construire un schéma relationnel évitant la redondance
- La redondance implique des anomalies lors de
 - l'insertion (nouvel employé, nouveau département)
 - la suppression (du dernier employé d'un département)
 - la modification (changement de manager)

Dépendances fonctionnelles (DF)

$$\begin{aligned} \mathsf{DF1} : \mathit{SSN} &\rightarrow \{\mathit{EName}, \mathit{BDate}, \mathit{Address}, \mathit{D\#}\} \\ \mathsf{DF2} : \mathit{D\#} &\rightarrow \{\mathit{DName}, \mathit{DMgrSSN}\} \end{aligned}$$

Soit
$$R(A_1,...,A_n)$$
 avec $X,Y\subseteq\{A_1,...,A_n\}$

Il y a une dépendance fonctionnelle $X \to Y$ (X détermine Y) si pour chaque paire de tuple t_1, t_2 de R, si $t_1[X] = t_2[X]$ alors $t_1[Y] = t_2[Y]$.

Dépendances fonctionnelles : exemple

DF1 : $SSN \rightarrow \{EName, BDate, Address, D\#\}$ DF2 : $D\# \rightarrow \{DName, DMgrSSN\}$

EmpDept

EName	<u>SSN</u>	BDate	Address	D#	DName	DMgrSSN
Smith	1234	21/07/39		1	Research	1234
Narayan	6668	18/01/43		1	Research	1234
English	4534	8/05/53		2	Account	4534
Wong	9788	30/11/49		3	Admin	9788
Zelaya	6677	23/08/60		3	Admin	9788

Première forme normale

Une relation R est en première forme normale si :

- R respecte la définition du modèle relationnel
- R ne possède pas d'attribut composés ou multivalués

Toutes les relations que l'on a vu jusqu'à présent respectent la première forme normale.

Première forme normale : exemple

Department					
DName	<u>D Number</u>	DMgr	{DLocations}		
_		•	•		

Department

DName	<u>DNumber</u>	DMgr	{DLocations}
Research	5	333445555	$\{Bellaire, Sugarland, Houston\}$
Administration	4	987654321	$\{Stafford\}$
Headquarters	1	888665555	$\{Houston\}$

\Downarrow 1NF Normalization

Department

DName	<u>DNumber</u>	DLocations	DMgr
Research	5	Bellaire	333445555
Research	5	Sugarland	333445555
Research	5	Houston	333445555
Administratio	n 4	Stafford	987654321
Headquarters	. 1	Houston	888665555

Deuxième forme normale

Une relation R est en deuxième forme normale si :

- ▶ R est en première forme normale
- ▶ il n'y a pas d'attribut ne faisant pas partie d'une clé qui dépend d'une partie de cette clé

Deuxième forme normale : exemple

Troisième forme normale

Une relation R est en troisième forme normale si :

- ► R est en deuxième forme normale
- ▶ il n'y a pas d'attribut ne faisant pas partie d'une clé qui dépend transitivement de cette clé

Troisième forme normale : exemple

Forme normale de Boyce-Codd (BCNF)

Une relation R est en BCNF si :

- R est en troisième forme normale
- la partie gauche de chaque DF est une clé candidate entière

La plupart des relations en troisième forme normale sont en BCNF.

Décomposition

Décomposition sans perte

Lors de la décomposition, il faut veiller à ne perdre ni information ni dépendance fonctionnelle.

Soit une relation R décomposée en deux relations R1 et R2. Si l'ensemble des attributs communs de R1 et R2 est une clé d'une des deux relations, alors la décomposition est sans perte d'information.

Si dans une relation R on peut trouver trois ensembles d'attributs A,B et C tel qu'il existe une dépendance fonctionnelle $A \to B$, alors R peut être décomposée en deux relations R1(A,B) et R2(A,C) sans perte d'information.