UGANDA CDARTURS UNIVERSITY

FORT PORTAL CAMPUS

FACULTY:

ENGINEERING AND APPLIED SCIENCE

DEPARTMENT:

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE CODE: DME2203 COURSE NAME: THERMODYNAMIC II

FINAL ASSESSMENT

ACADEMIC YEAR 2023/2024 SEMESTER I

DIPLOMA IN MECHANICAL ENGINEERING

Date of Examination: 13TH DECEMBER 2023

Time allowed: 3 Hours (9:00AM -12:00PM)

Instructions to Candidates:

Read the following before answering the examination questions.

- 1) The paper consists of six (6) questions.
- 2) Question one is COMPULSORY.
- 3) Attempt any other three questions.
- 4) All Questions carry equal marks.
- 5) Show all the necessary workings.
- 6) Start each question on a fresh page.
- 7) Read other instructions on the answer booklet.
- 8) Do NOT write anything on this question paper.

You should have the following in this Examination.

Answer Booklet, Drawing instruments, graph papers, steam tables and non-programmable calculator.

QUESTION ONE (COMPULSORY)

a) Explain the principles of operation of a Diesel Engine.

(10 Marks)

- b) Describe how the following automobile components work.
 - Wenkel Engine.

(5 Marks)

ii. Turbo Charger.

(5 Marks)

c) Explain three advantages and two disadvantages of two-stroke cycle over four-stroke cycle engines. (5 Marks)

QUESTION TWO

Explain the term "Engine blowby loss".

(2 Marks)

b) Differentiate between thermal efficiency and Heat Balance

(3 Marks)

c) A gasoline engine works on Otto cycle. It consumes 8 liters of gasoline per hour and develops power at the rate of 25 kW. The specific gravity of gasoline is 0.8 and its calorific value is 44000 kJ/kg. Find the indicated thermal efficiency of the engine.

(10 Marks)

A single cylinder engine operating at 2000 rpm develops a torque of 8 N-m. The indicated power of the engine is 2.0 kW. Find the loss due to friction as the percentage of brake power.

(10 Marks)

QUESTION THREE

a) Explain the "term isothermal compression efficiency"

(2 Marks)

- b) Explain the relevance of clearance in reciprocating compressors. Elaborate its effect on the performance of reciprocating compressor. (3 Marks)
- With the aid of a P-V diagram, discuss the operational stages of a two-stage reciprocating air compressor.

(10 Marks)

A single stage reciprocating compressor takes 1m3 of air per minute at 1.013 bar and 15°C and delivers it at 7 bars. Assuming that the law of compression is PV^{1.35}= constant, and the clearance is negligible, determine the indicated power.

(10 Marks)

QUESTION FOUR

a) An air compressor cylinder has 150mm bore and 150mm stroke and the clearance is

Page 2 of 4

15%. It operates between 1 bar, 27° C and 5 bar. Take polytrophic exponent n = 1.3 for compression and expansion processes, determine the following.

i. Cylinder volume at the various salient points of in cycle. (5 Marks)

ii. Flow rate in m³ /min at 720 rpm. (4 Marks)

iii. The deal volumetric efficiency. (6 Marks)

b) Calculate the diameter and stroke for a double acting single stage reciprocating air compressor of 50kW having induction pressure 100 kN/m² and temperature 150°C. The law of compression is PV^{1.2} = C and delivery pressure is 500 kN/m². The revolution/sec =1.5 and mean piston speed in 150 m/min. Clearance is neglected.

(10 Marks)

QUESTION FIVE

A single acting reciprocating air compressor has a swept volume of 2000 cm³ and runs at 800 rpm. It operates with pressure ratio of 8 and clearance of 5% of the swept volume. Inlet pressure and temperature are 1.013 bar, and 15° C respectively. Assume n = 1.25 for both compression and expansion. Given that the mechanical efficiency is 85%, determine the following parameters.

i.	Indicated power.	(4 Marks)
ii.	Volumetric efficiency.	(4 Marks)
iii.	Mass flow rate	(4 Marks)
iv.	FAD.	(4 Marks)
٧.	Isothermal efficiency	(4 Marks)
vi.	Actual Power required to drive the compressor	(5 Marks)

QUESTION SIX

- a) With the aid of labelled sketches, explain the working principle of four stroke petrol engine.
 (10 Marks)
- b) Following data refer to a four stroke double acting diesel engine having cylinder Diameter 200 mm and Piston stroke 350 mm.

 MEP on cover side 	= 6.5 bar
• MEP on crank side = 7	par Speed = 420 rpm
Diameter of the Piston	rod = 20mm

Page 3 of 4

	Dead load on the brake	= 1370 N
	Spring balance reading	= 145 N
•	Brake wheel diameter	= 1.2 m
•	Brake rope diameter	= 20 mm.
	시간 그는 것은 사람들이 살아왔다면요? 그렇게 그렇다면요?	

Determine mechanical efficiency.

(15 Marks)

QUESTION SEVEN

In a trial of a single cylinder oil engine working on dual cycle, the following observations were made.

•	Compression ratio	= 15.
•	Oil consumption	= 10.2 kg/h.
•	Calorific value of fuel	= 43890 kJ/kg.
•	Air consumption	= 3.8 kg/min.
•	Speed	= 1900 r.p.m.
٠	Torque on the brake drum	= 186 N-m
•	Quantity of cooling water used	= 15.5 kg/min.
•	Temperature rise	= 36 °C.
٠	Exhaust gas temperature	= 410 °C.
•	Room temperature	= 20 °C.
•	Cp for exhaust gases	= 1.17 kJ/kgK.

Calculate:

i.	Brake power.	(8 Marks)
ii.	Brake specific fuel consumption.	(8 Marks)
iii.	Brake thermal efficiency.	(9 Marks)

END