

2.	perplexity, sigma and target number of neighbors
	intuitive understanding:
	A perplexity is more or less a target number of
	neighbors for our central point
	Basically, 1 perplesity -> variance 1
	if we set perplexity to 4, it searches the right value
	of o to "fit" 4 neighbors
	Technical derivation.
	"SNE performs a binary search for the value of o
	that produces probability distribution with a fixed
	perplesity that is specified by the user Perp (Pi) = 2-\frac{7}{7}Pjii log_2Pjii
	Perp (Pi) = 2 - F Pili log 2 Pili
	where - = Pjii log · Pjii is Shannon Entropy
	Typical perplexity value ranges between 5 and 50
3,	t-distribution & t-SNE.
	for low-dimensional space, Gaussian creates crowding
	problem. To solve this, we are going to use student
	t-distribution with a single degree of freedom.
	1 - 1/2 (1/2 v))
	$-\frac{exp(-x^2/(2x^2))}{-(1+x^2)^{-1}}$
	$-(1 \uparrow \chi)$
1	

2103	
	$q_{ij} = \frac{(1 + y_i - y_j ^2)^{-1}}{\sum_{k \neq l} (1 + y_k - y_l ^2)^{-1}}$
1,	advantages of t:
	1. It "falls" quickly and has a "long tail", so points won't
	get squashed into a single point
	2. we don't have to bother with o' because we don't have one in Pij
4.	finding embedding in low dimensinal space.
	C= XXx PRL(PHQ) = xEx PLX) tog (200).
	C=KL(P11Q) boss function
	= F F Pij log Pij
	= F= (Pij log Pij - Pij log Pij)
	J Gradient descent
News News	$\frac{3C}{3y_i} = 4 \frac{1}{5} (P_{ij} - q_{ij}) (y_i - y_j) (y_i + y_j) (y_i - y_j)^{-1}$
5.	Tricks done in t-SNE to perform better.
	early compression (not to focus on local groups)
	early esaggeration.
<i>I</i>	