{desafío} latam_

Ensambles Secuenciales: Boosting

Sesión Presencial 1

Itinerario

Activación de conceptos	Desarrollo Desafío	Panel de discusión
	: :	

Activación de conceptos

¿Cuáles son los pasos de Bagging?

- 1. Entrenamos una serie de modelos $h \in \mathcal{H}$, generamos predicciones, aleatorizamos y ponderamos.
- Dado un conjunto de datos, se muestra dentro de éstos con Bootstrap y posteriormente entrenamos, generamos predicciones y asignamos valor.
- 3. Entrenamos iterativamente un modelo $h \in \mathcal{H}$, corrigiendo por error de clasificación.

¿Podemos implementar Bagging con sklearn.linear_model.LogisticRegression?

- Si podemos, de hecho genera mejores resultados que con un árbol de decisión.
- No podemos.
- Si podemos, pero Bagging funciona mejor con modelos que presenten alta varianza.

¿Cuál es el principal problema de Bagging?

- No presenta problema alguno, dado que minimiza la varianza y estabiliza el sesgo.
- Tiene una tendencia a correlacionar las predicciones de cada modelo en el ensamble.
- Presenta el problema de maximizar la varianza de los modelos en el ensamble

¿Cómo resuelve Random Forest el problema de modelos correlacionados?

- De manera adicional al muestreo de datos, selecciona atributos de forma aleatoria en cada modelo.
- Genera un muestreo de los datos en el conjunto de entrenamiento.
- Penaliza las estimaciones del modelo mediante P₁ o P₂.

¿Cuál es una de las principales desventajas de Random Forest?

- Es sensible a la escala de los atributos.
- Tiene una baja interpretabilidad dado la selección aleatorizada de atributos.
- Es ineficiente en espacios N-dimensionales.

No Free Lunch

- Wolpert y Macready (1997): No existe un algoritmo que presente soluciones satisfactorias para todos los problemas.
- Implementar múltiples algoritmos es la mejor manera de encontrar la solución óptima.

Razones para implementar múltiples soluciones:

- Necesidades de la industria
- 2. Pureza de los datos
- 3. Interpretabilidad de los modelos

¿Qué sabemos hasta ahora?

- Modelos de instancia específica:
 - Regresión Lineal
 - Logística
 - Algoritmos generativos (Naive Bayes, LDA)
 - Máquinas de Soporte Vectorial
 - Árboles...
- Modelos de ensamble paralelo:
 - Bagging
 - Random Forest

Ensambles secuenciales

AdaBoost: Boosting Adaptativo

Rudimentos I

- Dado un vector objetivo $y \in \mathcal{Y} = \{-1,1\}$ y una matriz de atributos **X**, entrenamos un clasificador débil
- Con un ensamble H de clasificadores h(-) podemos estimar la tasa de error de una observación en específico:

$$\tilde{\varepsilon}_i = \frac{\sum_{i=1}^{N} \mathbb{I}(y_i \neq h(x_i))}{N}$$

Rudimentos II

Predicción de una clase en un ensamble:

$$\mathcal{H}_m = \operatorname{sign}\left(\sum_{i=1}^M \alpha_m h_m(x)\right)$$

- El algoritmo busca predecir, estimar y el error y actualizar los pesos recorriendo todos los modelos.

AdaBoost como secuencia de clasificadores

AdaBoost como concatenación de clasificadores

Comportamiento del ponderador

Comportamiento en la exactitud general

Implementación con sklearn.ensemble.AdaBoostClassifier

Generamos el decision stump

```
In [29]: decision_stump = DecisionTreeClassifier(max_depth=1, random_state=11238)
```

Generamos AdaBoost

```
In [30]: adaboost_classifier = AdaBoostClassifier(base_estimator=decision_stump, random_state=1123
8)
```

Guardamos predicciones de clase

```
In [31]: adaboost_yhat = adaboost_classifier.fit(X_train, y_train).predict(X_test)
    decision_stump_yhat = decision_stump.fit(X_train, y_train).predict(X_test)
```


Desempeño de AdaBoost

```
In [32]: print("Adaboost Performance: \n", get_metrics(y_test, adaboost_y_hat))
    print("Decision Stump Performance: \n", get_metrics(y_test, decision_stump_yhat))

Adaboost Performance:
    [0.933, 0.915]
    Decision Stump Performance:
    [0.787, 0.745]
```

Hiperparámetros: Cantidad de modelos

Hiperparámetros: Tasa de aprendizaje

GBoost: Gradient Boosting

Rudimentos I

- Sabemos que AdaBoost se entrena de forma secuencial en los errores de clasificación.
- Gradient Boosting se entrena de forma secuencial en los errores residuales del modelo previo.
- Debemos optimizar la siguiente función de pérdida:

$$f_0(\mathbf{x}) = \underset{\gamma \in \Gamma}{\operatorname{argmin}} \sum_{i=1}^N \ell(y_i, \phi(\mathbf{x}_i, \gamma))$$

Rudimentos II: Funciones de pérdidas

Elección de la función de pérdida = Naturaleza del Vector Objetivo + Métrica a minimizar

Existen múltiples variantes (para ver mpas detalle, refiérase a Freund y Schapire, 2012)

Tipo	Función	Algoritmo
Cuadrática	$\frac{1}{2}(y_i, \phi(\mathbf{x}_i, \gamma)^2)$	L2Boosting
Absoluta	$ y_i, \phi(\mathbf{x}_i, \gamma)) $	Gradient Boosting
Exponencial	$\exp(-\tilde{y}_i\phi(\mathbf{x}_i,\gamma))$	AdaBoost
Logloss	$\log(1 + \exp(-\tilde{y}_i \phi_i))$	LogitBoost

Visualización de la función de pérdida

Gradient Boosting como entrenamiento en los residuos

In [36]: afx.gboost_stage_one()

In [37]: afx.gboost_stage_two()

{desafío} latam_

In [38]: afx.gboost_stage_three()

Implementación con sklearn.ensemble.GradientBoostingClassifier

```
In [39]:
           gradient_boost_model = GradientBoostingClassifier().fit(X_train, y_train)
In [40]:
           gboost_y_hat = gradient_boost_model.predict(X_test)
In [41]:
           print("Decision Stump Performance: \n", get_metrics(y_test, decision_stump_yhat))
           print("Adaboost Performance: \n", get_metrics(y_test, adaboost_y_hat))
           print("Gradient Boosting Performance: \n", get_metrics(y_test, gboost_y_hat) )
           Decision Stump Performance:
            [0.787, 0.745]
           Adaboost Performance:
            [0.933, 0.915]
           Gradient Boosting Performance:
            [0.949, 0.936]
```


Elementos internos de Gradient Boosting

Comportamiento de la función de pérdida

Hiperparámetro: Tasa de aprendizaje

In [45]: afx_gboost_learning_hyperparams(X_train, X_test, y_train, y_test) 6000 Estimadores Tasa de aprendizaje variante Learning Rate: 0.01 = 0.281 12 Learning Rate: 1 = 0.336 10 0.8 Test Bir 0.4

200

600

Estimadores

0.2

Hiperparámetro: Subsample de entrenamiento

/* Desafío*/

Panel de discusión

{desafío} Academia de latam_ talentos digita

talentos digitales