海南大学 2014-2015 学年度第 2 学期试卷

科目:《线性代数》(A1/A2/B1)(3学分)试题(A卷)

学院:							4: _ }: _			_	
成绩登	记表(由闽	冬秋师	用紅色	、笔填写)				-	
大趋号	-	=	lu-	N	五	六	七	^	九	+	总分
得分											
阅春枝师:							20	15 年	Л	Ħ	
考试说明: 本	、课程为自	司包持	试,可	16年							
9分 评卷			选择	题 (在	題有	唯一]	正确答	案, 4	事小脛	[4分]	, 共 20 分
1、行列式	2 k (0 = 0 f	的充分	条件						()
(A) k = 2			(B) k			(0) k=	0		(D)	k = 4
2、矩阵 A=	0 -1 3 0	b 0	则矩阵	A的秩	为					()
(4)1		(B)			(C)			(D)	不能	豫定	
3、关于线性	方程组	6x,		=4	的解。	下列	说法证	E确的	£	()

(B) 无解 (C) 有唯一解

(4)有无穷多解

(D)解的情况不能确定

4、设齐次线性方程组 Ax=0,其中 A 为 $m\times n$ 矩阵,且 r(A)=n-3。 ν_1,ν_2,ν_3 是方程组的三 个线性无关的解向量,则()是Ax=0的基础解系

- (A) $v_1 + v_2 v_3, 2v_1 v_2, 3v_1 v_3$ (B) $v_1 v_2, v_2 v_3, v_3 v_1$

- (C) $v_1, v_1 + v_2, v_1 + v_2 + v_3$ (D) $v_1 v_2 v_1, v_3 + v_2 + v_4, -2v_3$

5、设 4 是 3 阶不可逆矩阵。 α_1, α_2 是 AX = 0 的基础解系。 α_1 是属于特征值 $\lambda = 1$ 的特征 向量,下列不是 4 的特征向量的是

- $(A) \alpha_1 + 3\alpha_2 \qquad (B) \alpha_1 \alpha_2$
- (C) $2\alpha_1$ (D) $\alpha_1 + \alpha_2$

得分 评卷老师 二、填空题(每小题 4 分, 共 20 分):

1、 若 A. B 均为 3 阶方阵, 且 A = 2, B = 3, 则 (3A B) =

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \underline{\hspace{1cm}}$$

3. 设
$$AX = A + X$$
, 且 $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 3 \\ 0 & 1 & 0 \end{pmatrix}$, 则 $X =$ ______

4、向量组 $\alpha_1 = (1 \ 2 \ 3 \ 4 \ 5)^T$, $\alpha_2 = (2 \ 6 \ 8 \ 4 \ 9)^T$, $\alpha_3 = (3 \ 2 \ 5 \ 8)^T$ 。 $\alpha_4 = (6 \ 3 \ 4 \ 7 \ 9)^T$, $\alpha_5 = (1 \ 3 \ 7 \ 14 \ 6)^T$, $\alpha_6 = (3 \ 4 \ 7 \ 8 \ 8)^T$ 是线性 (填 "相关"或"无关")的.

5、设 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 都是非齐次线性方程组AX=b的解,如果 $c_1\alpha_1+c_2\alpha_2+\cdots+c_r\alpha_r$ 还是 AX = b 的解,则 $c_1 + c_2 + \cdots + c_r =$ ______.

得分 评卷老师

三、计算题(共50分)

1. (10分) 计算行列式
$$D = \begin{vmatrix} 1 & 1 & 0 & 5 \\ 0 & 1 & 1 & 4 \\ 0 & 2 & 3 & 1 \\ 5 & 5 & 2 & 3 \end{vmatrix}$$
, 并求 $A_{21} + 3A_{31} + 2A_{42}$ 的值,

其中A。表示D的代数余子式。

2、 (10 分) 设
$$A = \begin{pmatrix} 3 & 4 & 6 & 3 & 8 \\ 0 & 2 & 7 & 2 & 2 \\ 0 & 0 & 4 & 6 & 1 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
, A *表示 A 的伴随矩阵,求 A * A 。

3、 (10 分) 求矩阵 $A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix}$ 的列向量组的一个极大无关组,并把其

余向量用该极大无关组线性表示

4、(10 分)
$$\lambda$$
取何值时,非齐次统性万程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$
(1) 有唯一解: (2) 无解: (3) 有无穷多个解。

5、 (10 分) 设
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$$
 相似于对角矩阵 Λ 、确定常数 a 的值,并求可逆矩阵 P ,使得

 $P^{-1}AP = \Lambda$.

得分	评卷老师

四、证明题: (本题清分 10 分) 证明,如果向量组 α,β,γ 线性无关,则向量组 $\alpha+\beta$ 。 $\beta + \gamma_* \gamma + \alpha$ 也线性无关