ГУАП

КАФЕДРА № 41

ОТЧЕТ
ЗАЩИЩЕН С ОЦЕНКОЙ
ПРЕПОДАВАТЕЛЬ

доц., канд. техн. наук		О.А. Кононов
должность, уч. степень, звание	подпись, дата	инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №11

по курсу: ОСНОВЫ МИКРОПРОЦЕССОРНОЙ ТЕХНИКИ

РАБОТУ ВЫПОЛНИЛ	П		
СТУДЕНТ ГР. №	4711		Хасанов Б.Р.
		подпись, дата	инициалы, фамилия

Цель работы

Изучить работу с LCD дисплеем на примере процессора STM32F103C4.

1 Листинги программы, написанной на языке программирования С

Для моделирования работы STM32F103C4 воспользуемся средой компьютерного моделирования «Proteus». Для начала создадим проект и соберем схему, которая представлена на рисунке 1. Процессор соединен с дисплеем по 8-ми битному интерфейсу.

Подробнее про дисплей. Имеет он следующие характеристики:

- контраст: настраивается потенциометром;
- напряжение питания: 5 В;
- интерфейс: 8-бит или 4-бит;
- размеры: 82мм х 35мм х 18мм.

Таблица 1 – Порты ввода-выводы дисплея LM016L

Pin No.	Symbol	Level	Description
1	V_{SS}	0V	Ground
2	V_{DD}	5.0V	Supply Voltage for logic
3	VO	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU→Module) L: Write(MPU→Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	A	_	LED +
16	K	_	LED —

Рисунок 1 – Схема усройства в среде моделирования Proteus

Выведем на дисплей текст. Для этого напишем код работы микроконтроллера.

```
Код основной программы:
#include "stm32f103x6.h"
#include "hd44780_driver.h"

volatile uint32_t msTicks; // отсчет 1 мс
extern void Delay (uint32_t dlyTicks);
void SysTick_Handler(void){
  msTicks++;
```

```
}
void Delay (uint32_t dlyTicks){
 uint32_t curTicks;
  curTicks = msTicks;
 while ((msTicks - curTicks) < dlyTicks){
    __NOP();
  }
}
int main(void){
  RCC->APB2ENR |= RCC_APB2ENR_IOPAEN;
  GPIOA->CRL |= (GPIO_CRL_MODE0_1 |
          GPIO_CRL_MODE1_1 |
          GPIO_CRL_MODE2_1 |
          GPIO_CRL_MODE3_1 |
          GPIO_CRL_MODE4_1 |
          GPIO_CRL_MODE5_1 |
          GPIO_CRL_MODE6_1 |
          GPIO_CRL_MODE7_1);
  GPIOA->CRH |= (GPIO_CRH_MODE8_1 |
          GPIO_CRH_MODE9_1);
SysTick_Config(8000000UL / 1000);
                                 // SysTick 1 msec interrupts
     LCD(COM, 0x30);
     Delay(4);
     LCD(COM, 0x30);
     Delay(2);
     LCD(COM, 0x30);
     Delay(2);
     LCD(COM, 0x3C);
     Delay(2);
     LCD(COM, 0x0C);
```

```
Delay(2);
     LCD(COM, 0x01);
     Delay(2);
     LCD(COM, 0x80);
     Delay(2);
     LCD_STRING("Hello world");//вывод текста в указанную строку
     LCD(COM, 0xC0);
     LCD_STRING("Chasanov OMPT"); //вывод текста в указанную строку
  while (1){
    GPIOA->ODR ^=(uint16_t)(1<<0);
    Delay(500); // задержка
  }
}
void SystemInit()
{
}
Код работы с дисплеем:
#include "hd44780_driver.h"
void Delay (uint32_t dlyTicks);
void LCD(uint8_t RS_level, uint8_t byte){
  if (RS_level == COM){
    LCDPORT->ODR &= \sim(RS);
  }
  if (RS_level == DATA){
    LCDPORT->ODR |= RS;
  }
LCDPORT->ODR &= \sim((uint16_t)0x00FF);
LCDPORT->ODR |= (int16_t)byte;
Delay(1);
```

```
LCDPORT->ODR |= EN;
Delay(1);
LCDPORT->ODR &= ~(EN);
Delay(1);
}
void LCD_STRING(const char *message){
  uint8_t i = 0;
  while ((i < 16) & (message[i] != 0)){
    LCD(DATA, message[i]);
    i++;
  }
}</pre>
```

3 Результаты работы программы

Программа работает следующим образом: микроконтроллер выводит на дисплей текст, который был ему задан в коде заранее. На рисунке 2 представлен результаты компиляции проекта в среде программирования Keil. На рисунке 3 изображен результат работы — вывод на дисплей текста при помощи микроконтроллера.

Рисунок 2 – Компиляция программы (build output)

Рисунок 3 — Результат работы программы; полученные случайные значения

Вывод

В результате выполнения лабораторной работы была изучена работа с дисплеем на примере платы STM32F103C4. На дисплей был выведен текст, который задавался программно. Текст, выведенный на дисплей, полностью совпадает с тем, который был задан, что говорит о правильном выполнении работы.

Список источников

- $1\,$ Техническая документация по STM32F103C4/ STMicroelectronics STM32: 2020-99 с.
 - 2 Reference manual/ STMicroelectronics STM32: 2019 1749 c.