

Direcciones de seis vectores.

- e) Como v está en el cuarto cuadrante y $\arctan^{-1}(-1) = -\frac{7\pi}{4}$.
- f) La definición de arctan $\left(\frac{b}{a}\right)$ de $\theta = \frac{\pi}{2}$.

En general, si b > 0

Dirección de
$$(0, b) = \frac{\pi}{2}$$
 y dirección de $(0, -b) = \frac{3\pi}{2}$ $b > 0$

En la sección 2.1 se definió la suma de vectores y la multiplicación por un escalar. ¿Qué significan en términos geométricos estos conceptos? Se comienza con la multiplicación por un escalar. Si $\mathbf{v} = (a, b)$, entonces $\alpha \mathbf{v} = (\alpha a, \alpha b)$. Se encuentra que

$$|\alpha \mathbf{v}| = \sqrt{\alpha^2 a^2 + \alpha^2 b^2} = |\alpha| \sqrt{a^2 + b^2} = |\alpha| |\mathbf{v}|$$
 (4.1.3)

es decir,

Magnitud de α v

Multiplicar un vector por un escalar diferente de cero tiene el efecto de multiplicar la longitud del vector por el valor absoluto de ese escalar.

Más aún, si $\alpha > 0$, entonces $\alpha \mathbf{v}$ está en el mismo cuadrante que \mathbf{v} y, por lo tanto, la dirección de $\alpha \mathbf{v}$ es la *misma* que la dirección de \mathbf{v} ya que $\arctan^{-1}\left(\frac{\alpha b}{\alpha a}\right) = \arctan^{-1}\left(\frac{b}{a}\right)$. Si $\alpha < 0$, entonces $\alpha \mathbf{v}$ tiene dirección opuesta a la de \mathbf{v} . En otras palabras,

Dirección de $\alpha \mathbf{v} = (\text{dirección de } \mathbf{v}) + \pi \text{ si } \alpha < 0$

Dirección de
$$\alpha$$
v
Dirección de α v = dirección de v, si $\alpha > 0$ (4.1.4)