L3: Analyse matricielle

TD 1

Exercice 1

Pour $a \in \mathbb{R}$, on considère la matrice

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & a \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

- 1. Calculer A^4 , puis montrer que A admet un inverse si et seulement si $a \neq 0$.
- 2. Pour $a \neq 0$, calculer A^{-1} , puis A^n pour n entier quelconque.

Exercice 2

On considère une matrice $B \in M_n(\mathbb{C})$. Pour $i \in \{1, \dots, n\}$, on introduit le disque

$$D_i = \{ z \in \mathbb{C}, |b_{ii} - z| \le \sum_{j \ne i} |b_{ij}| \}.$$

- 1. Montrer que toute valeur propre de B appartient à l'un au moins des disques D_i (ces disques sont appelés disques de Gershgorin).
- 2. On considère une matrice $A \in M_n(\mathbb{C})$ à diagonale strictement dominante.

Montrer que A est inversible.

On considère la matrice A à coefficients réels définies par

$$A = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right).$$

- 3. Établir (sans calculs) que A est inversible puis montrer que les valeurs propres de A sont incluses dans l'intervalle [1,5].
- 4. Donner une autre démonstration que celle donnée au 1. pour établir qu'une matrice $A \in M_n(\mathbb{C})$ à diagonale strictement dominante est inversible.

Exercice 3

On considère le sous-ensemble $GL_n(K)$ constitués des matrices inversibles $(K = \mathbb{R} \text{ ou } \mathbb{C})$.

1. Montrer que $GL_n(K)$ muni de la loi de composition interne . possède une structure de groupe.

Le but des questions qui suivent est de donner des propriétés topologiques du groupe linéaire.

2. On considère une matrice inversible A_0 . En utilisant l'égalité

$$A = ((A - A_0)A_0^{-1} + Id).A_0,$$

montrer que $GL_n(\mathbb{R})$ (respectivement $GL_n(\mathbb{C})$) est un ouvert de $M_n(\mathbb{R})$ (respectivement de $M_n(\mathbb{C})$).

On considère l'application définie sur $M_n(\mathbb{R})$ par $A \mapsto \det(A)$.

3. Donner l'image de $GL_n(\mathbb{R})$ par cette application puis en déduire que $GL_n(\mathbb{R})$ n'est pas un sous-ensemble connexe de $M_n(\mathbb{R})$.

Soit $A \in M_n(K)$ une matrice non inversible. On pose $B_n := A + \frac{1}{n}Id$.

- 4. a. Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$, la matrice B_n est inversible.
- b. En déduire que $GL_n(K)$ $(K = \mathbb{R} \text{ ou } \mathbb{C})$ est un ouvert dense de $M_n(K)$.

On considère le groupe orthogonal O(n) constitué des matrices M à coefficients réels satisfaisant l'égalité ${}^tM.M=I.$

On considère l'application définie sur $M_n(\mathbb{R}) \times M_n(\mathbb{R})$ par

$$(M,N) \mapsto tr({}^tM.N),$$

où tr(A) représente la trace de A.

- 5. a. Montrer que cette application est une forme bilinéaire, symétrique et définie positive.
- b. Montrer que O(n) est un sous-ensemble compact de $M_n(\mathbb{R})$.

Exercice 4

Soient $A, B \in M_n(\mathbb{R})$, deux matrices triangulaires inférieures.

1. Montrer que le produit A.B est une matrice triangulaire inférieure et que $(A.B)_{ii} = a_{ii}.b_{ii}$ pour tout $i \in \{1, \dots, n\}$.

On suppose de plus que $A = (a_{ij})$ est inversible.

2. Montrer que l'inverse de A est triangulaire inférieure et que de plus

$$A_{ii}^{-1} = \frac{1}{a_{ii}}, \ \forall i \in \{1, \dots, n\}.$$

3. Soit $C \in M_n(\mathbb{R})$, une matrice symétrique. On suppose qu'il existe une matrice B triangulaire inférieure satisfaisant $b_{ii} > 0$ pour tout $i \in \{1, \dots, n\}$ et telle que

$$C = B^{t}B$$
.

Montrer qu'une telle matrice est *unique*.