Chap 15. Differentiation: Global Properties

15.1 The mean-value theorem

Theorem MVT

$$f(x): \left\{ \begin{array}{ll} \text{conti on } [a,b] \\ \text{diff on } (a,b) \end{array} \right. \Rightarrow \exists c \in (a,b) \text{ s.t. } f(b)-f(a)=f'(c)(b-a)$$

- Everybody knows its geometric meaning.
- Note. The hypothesis of MVT can be stated as:

$$f(x): \left\{ \begin{array}{ccc} \text{diff on } (a,b) & \text{$(\stackrel{\text{known}}{\Rightarrow}$ conti on } (a,b)) \\ \text{conti at the endpoints } a \& b \\ \text{one-sided continuity} \end{array} \right.$$

Ex. Discuss the applicability of MVT to

(a)
$$f(x) = |x|$$
 on $[-1, 2]$; (b) $f(x) = \sqrt{x}$ on $[0, a]$

(b)
$$f(x) = \sqrt{x}$$
 on $[0, a]$

Sol. (a)

f(x) = |x| is not diff at 0, so the MVT does not apply.

In fact, the conclusion does not hold; because

$$\frac{f(2) - f(-1)}{2 - (-1)} = \frac{2 - 1}{3} = \frac{1}{3},$$

while f'(x) can only be ± 1

$$f(x) = \sqrt{x}$$
 is diff on $(0, a]$ but not at 0.

However, since f(x) is right conti at 0, it satisfies the Hypo of MVT. So the conclusion also holds. For example, we can see:

$$\frac{f(a) - f(0)}{a - 0} = \frac{1}{\sqrt{a}};$$
 $f'(c) = \frac{1}{\sqrt{a}}, \text{ if } c = \frac{a}{4} \text{ since } f'(x) = \frac{1}{2\sqrt{x}}$

Rolle's theorem (The special case of MVT where f(x) is zero at both ends) Lemma

$$f(x): \left\{ \begin{array}{ll} \mathrm{conti} \ \mathrm{on} \ [a,b] \\ \mathrm{diff} \ \mathrm{on} \ (a,b) \end{array} \right., \quad \mathrm{and} \quad f(b)=f(a)=0 \quad \Rightarrow \quad \exists \ c \in (a,b) \ \mathrm{s.t.} \quad f'(c)=0$$

$$\text{Pf} \qquad f \in C[a,b] \ \, \Rightarrow \ \, \exists x_{\max}, x_{\min} \, \in [a,b] \ \, \text{s.t.} \, f(x_{\min}) \leq f(x) \leq f(x_{\max}) \, \, \forall x \in [a,b]$$

Suppose $x_{\max} = c$ for some $c \in (a,b)$; so that c is a local extremum pt for f(x). Then

$$f'(c) = 0$$
 (by Theorem 14.3 B --- Fermat's Critical Point Theorem)

Suppose $x_{\min} = c$ for some $c \in (a,b)$; so that c is a local extremum pt for f(x). Then

$$f'(c) = 0$$
 (again by Fermat's Critical Point Theorem)

If both x_{\max} & x_{\min} are end pts of [a,b] (i.e., $\{x_{\max},x_{\min}\}=\{a,b\}$), then we have

$$f(x) \equiv 0 \ \ \text{on} \ \ [a,b] \big(\Leftarrow f(a) = f(b) = 0 \big); \ \ \text{and thus (trivially)} \ \ f'(c) = 0 \quad \forall c \in (a,b).$$

Remark. A version of Rolle's theorem (often called just Rolle's theorem)

[A special case of MVT where f(x) has the same value at both ends]

$$f(x): \begin{cases} \text{conti on } [a, b] \\ \text{diff on } (a, b) \end{cases}$$
, and $f(b) = f(a)$ (it is not nec zero) $\Rightarrow \exists c \in (a, b)$ s.t. $f'(c) = 0$

Pf. Apply the usual Rolle's theorem to g(x) = f(x) - f(a).

Pf of the MVT

Set
$$g(x) = f(x) - L(x)$$
. Then

$$g(x) = f(x) - L(x). \text{ Then}$$

$$g(x) : \begin{cases} \text{conti on } [a, b] \\ \text{diff on } (a, b) \end{cases}, \text{ and } g(b) = g(a) = 0 \iff L(a) = f(a), L(b) = f(b))$$

Rolle's theorem
$$\Rightarrow$$
 $\exists c \in (a, b)$ s.t. $g'(c) = 0$, that is, $L'(c) = f'(c)$ for some $c \in (a, b)$

$$\Leftrightarrow$$
 $\exists c \in (a, b) \text{ s.t. } \frac{f(b) - f(a)}{b - a} = f'(c)$

15.2 Applications of the MVT

Theorem

Let f(x) be diff on the interval I. Then on I

$$f'(x) > 0 \implies f(x)$$
 is strictly inc

$$f'(x) < 0 \implies f(x)$$
 is strictly dec

$$f'(x) \ge 0 \implies f(x) \text{ is inc}$$
 $f'(x) \le 0 \implies f(x) \text{ is dec}$

$$f'(x) < 0 \implies f(x)$$
 is dec

$$f'(x) = 0 \implies f(x)$$
 is constant

Pf of $\sqrt{}$. Suppose $x_1 < x_2$, where $x_1, x_2 \in I$.

By MVT, $\exists c \in I$ such that

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

Thus

$$f'(x) \ge 0$$
 on $I \Rightarrow f'(c) \ge 0$
 $\Rightarrow f(x_2) \ge f(x_1)$
 $\Rightarrow f(x)$ is inc

Exa. Using MVT, show that

(a) $\sin x < x$, for all x > 0

(b) given
$$\varepsilon > 0$$
, $\ln x_2 - \ln x_1 < \varepsilon(x_2 - x_1)$ if $x_2 > x_1 \gg 1$

Pf. (a)
$$x > 1 \implies \sin x \le 1 < x \implies \sin x < x$$

$$0 < x \le 1 \quad \Rightarrow \quad \sin x - \sin 0 \overset{\text{MVT}}{=} (\cos c) \cdot (x - 0) \text{ for some } c \text{ s.t. } 0 < c < x \le 1$$
$$\Rightarrow \quad \sin x < x \quad (\because 0 < c < 1 (< \pi/2) \quad \Rightarrow \quad 0 < \cos c < 1)$$

(b) Let $\varepsilon > 0$. Then, for $x_2 > x_1$,

$$\begin{array}{lll} \ln x_2 - \ln x_1 & \stackrel{\text{MVT}}{=} & \frac{1}{c}(x_2 - x_1) & \text{for some } c \text{ s.t. } x_1 < c < x_2 \\ & < & \varepsilon(x_2 - x_1) & \text{since } \frac{1}{c} < \frac{1}{x_1} < \varepsilon \text{ if } x_1 > \frac{1}{\varepsilon} \end{array}$$

Remark. MVT remains true even if b < a:

So MVT has the same form, regardless of a < b or b < a.

Therefore, if we replace b by x, we can write the MVT in the following useful form.

Approximation form of the MVT

f(x): diff on an interval $I \& a \in I$

 \Rightarrow $\forall x \in I$, $\exists c (= c_{a,x})$ between a and x such that f(x) = f(a) + f'(c)(x - a) (Note: The form is simple, but we do not know where the point c is exactly) (Caution: f(a) + f'(c)(x - a)는 x 에 관한 1차식이 아님 (why?)

Linear approximation
$$f(x) pprox \underline{f(a) + f'(a)(x-a)}$$
 for $x pprox a$, x 에관한 1차석

with
$$\lim_{x \to a} \frac{e(x)}{x-a} = 0$$
; $e(x) = f(x) - \{f(a) + f'(a)(x-a)\}$

즉, 한 점 a에서의 f(a)와 f'(a)의 값을 알면, a근방에서의 f(x)의 근사값을 알 수 있다.

$$\lim_{x \to a} \frac{e(x)}{x - a} = \lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f'(a) = f'(a) - f'(a) = 0.$$
 / /

Consider $\sin x$, for x > 0Remark.

 $\sin x < x$, for x > 0 (seen earlier) MVT says:

Linear Approx says: $\sin x \approx x$, for $x \approx 0$ (: $f(x) = \sin x \Rightarrow f(0) = 0$, f'(0) = 1)

15.3 Extension of the MVT

Theorem Cauchy's MVT (a parametric form of the ordinary MVT)

Hypo:

Hypo:
$$f(t) \& g(t) : \text{conti on } [a, b] \& \text{diff on } (a, b)$$

 $\Rightarrow \exists c \in (a, b) \text{ s.t. } f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)]$

Accordingly, $\exists c \in (a, b)$ s.t. $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$ if, in addition, $g'(t) \neq 0$ on (a, b)

Note1. Hypo
$$g(t)$$
:
$$\begin{cases} \text{conti on } [a, b] \\ \text{diff on } (a, b) \end{cases} \text{ plus } g'(t) \neq 0 \text{ on } (a, b) \Rightarrow g(b) - g(a) \neq 0 \end{cases}$$
$$(\because g(b) - g(a) = 0 \Rightarrow 0 = g(b) - g(a) \underset{MVT}{\overset{\exists c \in (a,b)}{\underset{\neq 0}{\text{on }}}} \underbrace{g'(c)}_{\underset{\neq 0}{\text{on }}} \cdot (b - a) \neq 0; \text{ contradiction})$$

Note 2. This does not follow directly from the ordinary MVT

$$(\because \frac{f(b) - f(a)}{g(b) - g(a)} \quad \stackrel{\text{ordinary MVT only says}}{=} \quad \frac{f'(c_1)}{g'(c_2)}, \text{ with different } c_1 \& c_2)$$

First pf. (It is simple but it is geometrically "less" appealing)

$$h(t) := f(t) - \left[f(a) + \frac{f(b) - f(a)}{g(b) - g(a)} (g(t) - g(a)) \right]$$

Seen that

$$g: \text{conti on } [a, b], \text{ diff on } (a, b) \& g'(t) \neq 0 \text{ on } (a, b) \overset{\text{MVT}}{\Rightarrow} g(b) \neq g(a)$$

$$\therefore \frac{f(b) - f(a)}{g(b) - g(a)} \text{ is well defined, so is } h(t).$$

Note that h: conti on [a, b], diff on (a, b) & h(a) = h(b) = 0. Thus

$$\begin{array}{ll}
\text{Rolle's thm} \\
\Rightarrow & \exists c \in (a, b) \text{ s.t. } h'(c) = 0 \\
\Rightarrow & f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} g'(c) = 0; \text{ so } \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}, \quad c \in (a, b).
\end{array}$$

A variant of first proof: Let
$$h(t):=f(t)-\left(rac{f(b)-f(a)}{g(b)-g(a)}
ight)g(t)$$
 . Then

$$h$$
 : conti on $[a,\,b],\,$ diff on $(a,\,b)\,$ & $\,h(a)=\frac{f(a)g(b)-g(a)f(b)}{g(b)-g(a)}=h(b)\,.$ Thus

Rolle's thm
$$\Rightarrow$$
 $\exists c \in (a, b)$ s.t. $h'(c) = 0$ $\Rightarrow f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0;$ so $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)},$ $c \in (a, b).$

Second pf. [similar to the first pf] (most common and simple pf)

$$F(t) : \stackrel{\text{let}}{=} f(t)[g(b) - g(a)] - g(t)[f(b) - f(a)]$$

$$\Rightarrow F(t) : \text{ conti on } [a, b]$$

$$\text{diff on } (a, b)$$
&
$$F(a) = f(a)g(b) - g(a)f(b) = F(b) \text{ (easy)}$$

Rolle's thm
$$\Rightarrow$$
 $\exists c \in (a, b)$ s.t. $F'(c) = 0$
 $\therefore 0 = f'(c)[g(b) - g(a)] - g'(c)[f(b) - f(a)]$

Third pf. [similar to the second pf]

$$F(t) : \stackrel{\text{let}}{=} [f(t) - f(a)][g(b) - g(a)] - [g(t) - g(a)][f(b) - f(a)]$$

$$\Rightarrow F(t) : \text{ conti on } [a, b]$$

$$\text{diff on } (a, b)$$
& $F(a) = F(b) = 0$

$$\overset{\text{Rolle's thm}}{\Rightarrow} \exists c \in (a, b) \quad \text{s.t.} \quad 0 = F'(c) = f'(c)[g(b) - g(a)] - g'(c)[f(b) - f(a)]$$

Remark: Each of the above three proofs is elementary (; not beyond high-school math)

***** A geometric interpretation of the Cauchy's MVT:

Set
$$x=g(t), \ y=f(t)$$
 . Then the map

$$(x,y):[a,b]\ni t\mapsto (x(t),y(t))\ \stackrel{\text{i.e.}}{=}\ (g(t),f(t))\in\mathbb{R}^2$$

gives a parametric representation of a plane curve that begins at P(x(a), y(a)) and ends at Q(x(b), y(b))

Claim: Suppose $\begin{cases} f: \text{ conti on } [a,b] \text{ and diff on } (a,b) \\ \& \\ g' \in C[a,b] & \& \quad g'(t) \neq 0 \text{ on } (a,b) \end{cases}$

- --- slightly stronger hypo than the usual statement of Cauchy's MVT ---
- \Rightarrow The (parametrically defined) curve is the graph of a diff-function y=y(x) on the open interval (x(a),(x(b)) (or on (x(b),x(a)))

Pf of claim: Assume $g' \in C[a, b]$ & $g'(t) \neq 0$ on (a, b)

 \Rightarrow g'(t) does not change sign on (a, b)

[Fact (proved later): Assume g: diff on (a,b) & $g'(t) \neq 0$ on (a,b)

 \Rightarrow g'(t) does not change sign on (a, b)]

That is, either g'(t) > 0 or g'(t) < 0 on (a, b)

$$g$$
 is strictly \uparrow g is strictly \downarrow

x = g(t) has an inverse, write $t = g^{-1}(x)$ on (x(a), x(b)) (or on (x(b), x(a))

Assume, wlog, g'(t) > 0 on (a, b). Then by the inverse function theorem for diff,

$$g^{-1}(x)$$
 is diff on $(x(a), x(b))$
 $\therefore y = f(t) = f(g^{-1}(x)) \equiv y(x)$ is diff on $(x(a), x(b))$. ///

Thus by the chain rule, say, on the interval (x(a), x(b)),

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{dy/dt}{dx/dt} = \frac{f'(t)}{g'(t)} - - - (\#)$$

By the interpretation of ordinary MVT,

the slope of the secant PQ = the slope of the curve at some point R

Thus if we let $t = c \in (a, b)$ be the corresponding value to the point R, then we have

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{dy}{dx}\Big|_{t=c} = \frac{f'(t)}{g'(t)}\Big|_{t=c} = \frac{f'(c)}{g'(c)}$$

Consequently, we have

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \underbrace{\frac{f'(c)}{g'(c)}}_{\text{slope of the tangent line to the curve } (x(t), y(t))(a \le t \le b)}_{\text{at some point } c \in (a, b)}$$

Applications of Cauchy's MVT:

Exa. Prove
$$1 - \frac{x^2}{2} < \cos x$$
 for $x \neq 0$

Pf. Since $1 - \frac{x^2}{2}$ & $\cos x$ are even functions, it suffices to show that

$$1 - \frac{x^2}{2} < \cos x$$
 for $x > 0$ or $1 - \cos x < \frac{x^2}{2}$ for $x > 0$

By Cauchy's MVT applied to the pair of functions $f(x) = 1 - \cos x$ & $g(x) = \frac{x^2}{2}$ where x > 0 \Rightarrow

$$\frac{1 - \cos x}{\frac{x^2}{2}} = \frac{f(x) - f(0)}{g(x) - g(0)} = \frac{f'(c)}{g'(c)} = \frac{\sin c}{c} < 1 \left[\leftarrow \sin x < x \text{ for } x > 0 \right] \text{ for some } 0 < c < x$$

Home Study. Show that $x - \frac{x^3}{3!} < \sin x$ for x > 0

Exa. Show that if r > 0 & x > 1, then $\ln x < \frac{x^r - 1}{r}$

In particular,
$$\ln x < \frac{x^3-1}{3}$$
 & $\ln x < 3\left(x^{1/3}-1\right)$ for every $x>1$

Pf. Apply Cauchy MVT to the pair of functions $f(x) = x^r \& g(x) = \ln x \implies$

$$\frac{x^r - 1}{\ln x} = \frac{f(x) - f(1)}{g(x) - g(1)} = \frac{f'(c)}{g'(c)} (1 < c < x) = \frac{rc^{r-1}}{1/c} = rc^r > r$$

This proves that $\ln x < \frac{x^r - 1}{r}$ for x > 1

• Another interpretation of Cauchy's MVT:

If $F = (f,g): [a,b] \to \mathbb{R}^2$ is conti on [a,b] & diff on (a,b), then $\exists c \in (a,b)$ such that F'(c) and F(b) - F(a) [as two-dimensional vectors] are **parallel** i.e., $\exists c \in (a,b)$ such that $\left(f'(c),g'(c)\right) / \left(f(b) - f(a),g(b) - g(a)\right)$

In particular, $\exists c \in (a,b)$ s.t. $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$ provided that $g'(t) \neq 0 \ \forall t \in (a,b)$

lacktriangle Parametrically defined curves in \mathbb{R}^2

• A (differentiable) plane curve can be parametrized by one parameter as $\mathbf{r} = \mathbf{r}(t) : [a,b] \to \mathbb{R}^2$ $\mathbf{r}(t) = (x(t), y(t))[\mathbf{r} = (x, y) = x\mathbf{i} + y\mathbf{j}]$ $\mathbf{r}'(t) = (x'(t), y'(t))$ (see below)

Def. We say that $\mathbf{r}(t) = (x(t), y(t)) : [a, b] \to \mathbb{R}^2$ is differentiable at $t_0 \in [a, b]$ if $\mathbf{r}'(t_0) = \lim_{h \to 0} \frac{\mathbf{r}(t_0 + h) - \mathbf{r}(t_0)}{h}$ exists.

Note that $\frac{{m r}(t_0+h)-{m r}(t_0)}{h} = \left(\frac{x(t_0+h)-x(t_0)}{h}, \frac{y(t_0+h)-y(t_0)}{h}\right)$. Hence $\lim_{h\to 0} \frac{{m r}(t_0+h)-{m r}(t_0)}{h}$ exists iff both $\lim_{h\to 0} \frac{x(t_0+h)-x(t_0)}{h}$ & $\lim_{h\to 0} \frac{y(t_0+h)-y(t_0)}{h}$ exist.

That is, $\mathbf{r}(t) = (x(t), y(t))$ is diff at $t_0 \Leftrightarrow \text{both } x(t)$ and y(t) are diff at t_0 . Thus if $\mathbf{r}(t) = (x(t), y(t))$ is diff at t_0 , then $\mathbf{r}'(t_0) = (x'(t_0), y'(t_0))$

A useful geometric meaning of r'(t):

From the above figure, we see that r'(t) is a **tangent vector** to the curve at r(t)

15.3 **L'Hospital's rule** for indeterminate forms (← actually, due to Bernoulli) (an application of Cauchy's MVT)

Q: How can we evaluate $\lim_{x \to a} \frac{f(x)}{g(x)}$?

An easy case:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{\substack{x \to a \\ \text{if } \lim_{x \to a} f(x) \text{ exists } \& \lim_{x \to a} g(x) \text{ (exists)} \neq 0}} \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$= \lim_{x \to a} \frac{f(x)}{\lim_{x \to a} g(x)}$$

$$= \lim_{x \to a} \frac{f(a)}{g(a)}$$
if $f \& g$ are conti, and $g(a) \neq 0$

• How about if $\lim_{x\to a} g(x) = 0$ (or g(a) = 0)?

(i) If, in addition,
$$\lim_{x \to a} f(x) \neq 0$$
 (or $f(a) \neq 0$), then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \infty \text{ or } -\infty \text{ (Ex)}$$

(ii) If, in addition,
$$\lim_{x\to a} f(x) = 0$$
 (or $f(a) = 0$), then
$$\lim_{x\to a} \frac{f(x)}{g(x)}$$
 is said to be "indeterminate"

Theorem A L'Hospital's rule (elementary case)

If f(a) = g(a) = 0, and the right side below is defined, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$ Pf (easy).

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}} = \frac{f'(a)}{g'(a)} \text{ (if the right exists)}$$

Exa.

(a)
$$\lim_{x \to 0} \frac{x^3 - 2x}{x^3 + x} \stackrel{L}{=} \frac{3x^2 - 2}{3x^2 + 1} \Big|_{x=0} = -2$$

***** (b)
$$\lim_{x\to 0} \frac{\sin x}{x} = \frac{\sin'(0)}{1} = \frac{\cos 0}{1} = 1$$
 (Is the argument right?)

Ans. It is a cheat. Why?

In fact, $\lim_{x\to 0} \frac{\sin x}{x} \stackrel{L}{=} \frac{\sin'(0)}{1}$ can only happen if $\sin'(0)$ exists.

How can we know whether $\sin'(0)$ exists?

Recall that
$$\sin'(0) = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \lim_{x \to 0} \frac{\sin x}{x}$$
 (if the limit exists).

So, to seek the value $\sin'(0)$, we first need to prove that $\lim_{x\to 0} \frac{\sin x}{x}$ exists.

Therefore, we can not apply L'Hospital's rule to calculate $\lim_{x\to 0} \frac{\sin x}{x}$

Ex. (Seen in High-School Math) Show that $\sin x < x < \tan x \ (= \frac{\sin x}{\cos x})$, for $x \approx 0^+$ Pf of Ex.

Comparing areas of small triangle, circular sector, and big triangle, we see that

$$\sin x < x < \tan x$$
 for $0 < x < \pi/2$ (: for $x \approx 0^+$)

From this, we easily get

$$\cos x < \frac{\sin x}{x} < 1, \ \ \text{for} \ \ x \mathop{\approx}_{\neq} 0^+ \,, \quad \text{which clearly implies} \quad \lim_{x \to 0^+} \frac{\sin x}{x} = 1.$$

We also have
$$\lim_{x \to 0^-} \frac{\sin x}{x} = \lim_{t \to 0^+} \frac{\sin(-t)}{-t} = \lim_{t \to 0^+} \frac{\sin t}{t} = 1$$
. (or since $\frac{\sin x}{x}$ is even)

Accordingly,
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.

Comment [seen]: $0 < x < \pi/2 \implies x \cos x < \sin x < x$

(c)
$$\lim_{x\to 0} \frac{1-\cos x}{\sin x} = \frac{\text{L}}{\cos 0} = \frac{0}{1} = 0.$$

(d)
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \stackrel{L}{=} \frac{\sin x}{\sin x + x \cos x} \Big|_{x=0} (\text{still } \frac{0}{0})$$

$$\stackrel{L}{=} \frac{(\sin x)'}{(\sin x + x \cos x)'} \Big|_{x=0} ??$$

To answer the last question (??), we need a variant of ordinary L'Hospital's rule.

Theorem B [L'Hospital's rule for 0/0 as $x \to a$] Suppose that

$$f(x)$$
 and $g(x)$ are of class C^1 for $x \approx a$, and

$$f(a) = g(a) = 0$$
, but $g'(x) \neq 0$ for $x \approx a$

Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
 if the limit on the right exists.

Pf. For $x \approx a$, we have

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} \stackrel{\text{Cauchy's MVT}}{=} \frac{f'(c_x)}{g'(c_x)} \text{ for some } c_x \text{ between } a \text{ and } x.$$

Letting $x \to a$ gives

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \text{ since the last limit exists by hypo.}$$

Exa. (a)
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \stackrel{\text{L}}{=} \lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x} \stackrel{\text{L}}{=} \lim_{x \to 0} \frac{\cos x}{2 \cos x - x \sin x} = \frac{1}{2}$$

Reasoning: the 3rd limit exists(easy) \Rightarrow the 2rd limit exists \Rightarrow the 1st limit exists

(b)
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \stackrel{L}{=} \lim_{x \to 0} \frac{e^x - 1}{2x} \stackrel{L}{=} \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}$$

Remark.

L'Hospital's rule also works for one-sided limits as $x \to a^+$ or $x \to a^-$. (Theorem B' below)

It also holds for limits taken as $x \to \infty$, since the change of variable x = 1/t reduces it to the case $t \to 0^+$. (Theorem B'' below)

Theorem B' [L'Hospital's rule for 0/0 as $x \to a^+$] Suppose that

$$f(x)$$
 and $g(x)$ are of class C^1 for $x \approx a^+$, and

$$f(a) = g(a) = 0$$
, but $g'(x) \neq 0$ for $x \approx a^+$

Then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$
 if the limit on the right exists.

Pf. For $x \approx a^+$, we have

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} \quad \stackrel{\text{Cauchy's MVT}}{=} \quad \frac{f'(c_x)}{g'(c_x)} \quad \text{for some } c_x \in (a, x).$$

Letting $x \to a^+$ gives

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to a^+ \Rightarrow c_x \to a^+} \lim_{x \to a^+} \frac{f'(x)}{g'(x)}, \text{ since the last limit exists by hypo.}$$

Exa.
$$\lim_{x \to 0^+} \frac{\sin x}{\sqrt{x}} \left(\frac{0}{0} \right) \quad \stackrel{\text{L}}{=} \quad \lim_{x \to 0^+} \frac{\cos x}{\frac{1}{2\sqrt{x}}} = \lim_{x \to 0^+} 2\sqrt{x} \cos x = 0$$

Theorem B'' [L'Hospital's rule for 0/0 as $x \to \infty$] Suppose that

$$f(x)$$
 and $g(x)$ are of class C^1 for $x \gg 1$, and

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0, \text{ but } g(x) \& g'(x) \neq 0 \text{ for } x \gg 1$$

Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
 if the limit on the right exists.

Pf. Note that $x \stackrel{\text{let}}{=} 1/t \implies x \to \infty \Leftrightarrow t \to 0^+$, and apply Theorem B'

Alternative direct pf (for High-School Math Teachers). Let $y > x \gg 1$. Then

$$\frac{f(x) - f(y)}{g(x) - g(y)} \stackrel{\text{Cauchy's MVT}}{=} \frac{f'(c_{x,y})}{g'(c_{x,y})}, \quad x < c_{x,y} < y$$

Here the hypothesis ' $g'(x) \neq 0$ for $x \gg 1$ ' is used

Fix x, and let $y \to \infty \Rightarrow$

LHS
$$\rightarrow \frac{f(x)}{g(x)} [g(x) \neq 0 \text{ for } x \gg 1 \text{ is used}]$$
 RHS $\rightarrow \frac{f'(c_x)}{g'(c_x)}$ $(x < c_x)$

$$\therefore \frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}, \quad c_x \in (x, \infty)$$

Letting $x \to \infty$ gives

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to \infty} \int_{c_x \to \infty} \lim_{x \to \infty} \frac{f'(x)}{g'(x)}, \text{ since the last limit exists by hypo}$$

Theorem C [L'Hospital's rule for ∞/∞ as $x \to \infty$] Suppose that

$$f(x)$$
 and $g(x)$ are diff, $g'(x) \neq 0$ for $x \gg 1$, and
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty.$$

Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
 if the limit on the right exists.

Pf (for High-School Math Teachers). Let $y > x \gg 1$. Then

$$\frac{f(y) - f(x)}{g(y) - g(x)} \stackrel{\text{Cauchy's MVT}}{=} \frac{f'(c_{x,y})}{g'(c_{x,y})}, \quad x < c_{x,y} < y$$

Since $f(y) \& g(y) \neq 0 (> 0)$, we get

LHS =
$$\frac{f(y)\left[1 - \frac{f(x)}{f(y)}\right]}{g(y)\left[1 - \frac{g(x)}{g(y)}\right]} = \frac{f'(c_{x,y})}{g'(c_{x,y})}$$

Thus if we fix x and letting $y \to \infty \ (\Rightarrow \frac{f(x)}{f(y)} \& \frac{g(x)}{g(y)} \to 0) \ \Rightarrow$

$$\lim_{y \to \infty} \frac{f(y)}{g(y)} = \frac{f'(c_x)}{g'(c_x)}, \text{ where } x < c_x$$

$$\lim_{y \to \infty} \frac{f(y)}{g(y)} = \lim_{x \to \infty} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

* Remark. Theorem C above also holds, under somewhat weaker hypothesis (below):

Theorem
$$C'$$
 [L'Hospital's rule for $\frac{\text{anything}}{\infty}$ as $x \to \infty$]

(i.e., don't need to know the behavior of f(x) as $x \to \infty$)

Suppose that

$$f(x)$$
 and $g(x)$ are diff, $g'(x) \neq 0$ for $x \gg 1$, and $\lim_{x \to \infty} g(x) = \infty$.

Then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ if the limit on the right exists.

Pf. Let
$$L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
. Then

$$\forall \ \varepsilon > 0, \quad \frac{f'(x)}{g'(x)} \approx L \quad \text{for } x \gg 1, \quad \text{say for } x > a \quad ---(\#)$$

For that a,

$$\frac{f(x) - f(a)}{g(x) - g(a)} \stackrel{=}{=} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(x)}}{\frac{1}{g(x)}} \approx \underset{\varepsilon}{\approx} \frac{f(x)}{g(x)} \text{ for } x \gg 1 \text{ (say for } x > b)$$

$$(g(x) \neq 0 > 0) \text{ for } x \gg 1 \text{ by hypo}$$

On the other hand,

$$\frac{f(x) - f(a)}{g(x) - g(a)} \stackrel{\text{Cauchy's MVT}}{=} \frac{f'(c_x)}{g'(c_x)}, \quad a < c_x < x$$

$$\approx L \quad \text{(by (\#)) since } c_x > a$$

$$\underset{\varepsilon}{\approx} \ L \quad \text{(by $(\#)$)} \ \ \text{since $c_x > a$}$$
 So
$$\frac{f(x)}{g(x)} \underset{2\varepsilon}{\approx} \ L \ \ \text{for $x \gg 1$} \ \ (\text{say for $x > \max\{a,b\}}) \qquad \therefore \ \lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

Alternative pf (for High-School Math Teachers). Let $\ y>x\gg 1.$ Then

$$\frac{f(y) - f(x)}{g(y) - g(x)} \stackrel{\text{Cauchy's MVT}}{=} \frac{f'(c_{x,y})}{g'(c_{x,y})}, \quad x < c_{x,y} < y$$

Since $g(y) \neq 0 > 0$, we get

LHS =
$$\frac{f(y)}{g(y)} - \frac{f(x)}{g(y)}$$

$$1 - \frac{g(x)}{g(y)} = \frac{f'(c_{x,y})}{g'(c_{x,y})}$$

Thus if we fix x and letting $y \to \infty \ (\Rightarrow \frac{f(x)}{g(y)} \& \frac{g(x)}{g(y)} \to 0) \ \Rightarrow$

$$\lim_{y \to \infty} \frac{f(y)}{g(y)} = \frac{f'(c_x)}{g'(c_x)}, \text{ where } x < c_x$$

$$\lim_{y \to \infty} \frac{f(y)}{g(y)} = \lim_{x \to \infty} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

Exa.
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{1/x}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$

Theorem
$$C''$$
 [L'Hospital's rule for $\frac{\text{anything}}{\infty}$ as $x \to a^+$]

(i.e., don't need to know the behavior of f(x) as $x \to a^+$)

Suppose that

$$f(x)$$
 and $g(x)$ are diff, $g'(x) \neq 0$ for $x \approx a^+$, and $\lim_{x \to a^+} g(x) = \infty$.

Then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$
 if the limit on the right exists.

Pf. Let $a < x < y < a + \delta$. Then

$$\frac{f(x) - f(y)}{g(x) - g(y)} \quad \stackrel{\text{Cauchy's MVT}}{=} \quad \frac{f'(c_{x,y})}{g'(c_{x,y})}, \quad x < c_{x,y} < y$$

Since $g(x) \neq 0 > 0$, we get

LHS =
$$\frac{\frac{f(x)}{g(x)} - \frac{f(y)}{g(x)}}{1 - \frac{g(y)}{g(x)}} = \frac{f'(c_{x,y})}{g'(c_{x,y})}$$

Thus if we fix y and letting $x \to a^+ \ (\Rightarrow \frac{f(y)}{g(x)} \& \frac{g(y)}{g(x)} \to 0) \Rightarrow$

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} \quad = \quad \frac{f'(c_y)}{g'(c_y)}, \quad \text{where} \ \ a < c_y < y$$

Since LHS is independent of $\ y$, $\ \ \mbox{letting} \ \ y \rightarrow a^+ \ \ (\Rightarrow c_y \rightarrow a^+) \ \ \mbox{gives}$

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{y \to a^+} \frac{f'(c_y)}{g'(c_y)} = \lim_{y \to a^+} \frac{f'(y)}{g'(y)}$$

Ex. $\lim_{x \to 0^+} x \ln x = ??$

Sol.
$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} \left(\frac{\text{anything}}{\infty} \right)^{\text{in fact}} = \frac{-\infty}{\infty} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$

HS. If f is twice differentiable on some open interval containing a, prove that

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{\frac{1}{2}(x - a)^2} = f''(a)$$

Ex. (Technical)

Let f(x) be diff for $x \gg 1$, and suppose that

$$\lim_{x \to \infty} \left(f(x) + f'(x) \right) = 2010.$$

Prove that

$$\lim_{x \to \infty} f(x) = 2010 \quad \text{and} \quad \lim_{x \to \infty} f'(x) = 0.$$

Pf.
$$\frac{\left(e^x f(x)\right)'}{\left(e^x\right)'} = \frac{e^x \left(f(x) + f'(x)\right)}{e^x} = f(x) + f'(x) \xrightarrow{\text{Hypo}} 2010 \text{ as } x \to \infty$$
and $e^x \to \infty$ as $x \to \infty$.

Thus by L'Hospital's rule [$\frac{\text{anything}}{\infty}$ as $x \to \infty$: Theorem C'],

$$\frac{e^x f(x)}{e^x} = f(x) \quad \underset{\text{Hypo}}{\longrightarrow} \quad 2010 \text{ as } x \to \infty$$

$$\therefore \quad \lim_{x \to \infty} f(x) = 2010 \quad \text{and} \quad \lim_{x \to \infty} f'(x) = 0.$$

Ex (easy) Using L'Hospital's rule or using the definition of derivative, show that

(i) If
$$a, b > 0$$
, then show that $\lim_{n \to \infty} \left(\frac{\sqrt[p]{a} + \sqrt[n]{b}}{2} \right)^n = \lim_{x \to \infty} \left(\frac{\sqrt[x]{a} + \sqrt[x]{b}}{2} \right)^x = \sqrt{ab}$

(ii) If f is twice diff on an interval containing a, show that

$$\lim_{h \to 0} \frac{f(a+2h) - 2f(a+h) + f(a)}{h^2} = f''(a)$$

(iii) If f is three times diff on an interval containing a, show that

$$\lim_{h \to 0} \frac{f(a+3h) - 3f(a+2h) + 3f(a+h) - f(a)}{h^3} = f^{(3)}(a)$$

Suggestion for (ii) & (iii): Regard the respective numerator as the function of h

Home Study.

- 1. Summarize several types of L'Hospital's rule
- 2. Apply L'Hospital's rule to solve (related) problems in High-School Math.

Ex (Darboux's IVT for derivative) [Any derivative has IVP (Intermediate Value Property)]

Let f be diff on [a, b]. If k is a number such that f'(a) < k < f'(b) or f'(a) > k > f'(b). Then show that

$$\exists c \in (a, b)$$
 such that $f'(c) = k$.

Note: Here we do not assume the continuity of f' on [a, b].

Lemma. Let $f: I(= \text{open interval}) \to \mathbb{R}, c \in I$, and assume that f'(c) exists. Then

(a)
$$f'(c) > 0 \implies \exists \delta > 0 \text{ s.t.} \begin{cases} f(x) > f(c) \text{ for all } x \in I \text{ with } c < x < c + \delta \\ f(x) < f(c) \text{ for all } x \in I \text{ with } c - \delta < x < c \end{cases}$$

In particular, f has no (local) minimum at $c \in [\leftarrow \text{consider the interval } c - \delta < x < c]$

(b)
$$f'(c) < 0 \implies \exists \delta > 0 \text{ s.t.} \begin{cases} f(x) < f(c) \text{ for all } x \in I \text{ with } c < x < c + \delta \\ f(x) > f(c) \text{ for all } x \in I \text{ with } c - \delta < x < c \end{cases}$$

In particular, f has no (local) minimum at $c \in (c-c)$ [c-c] consider the interval $c < x < c + \delta$]

Pf [already seen in Chap14]. We (re)prove only (a): Hypo says $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = f'(c) > 0$

$$\overset{\text{FLT}}{\Rightarrow} \quad \frac{f(x) - f(c)}{x - c} > 0 \text{ for } x \underset{\delta}{\approx} c \quad \text{(i.e., for } x \in I \text{ with } x \in (c - \delta, c + \delta)$$

$$\Rightarrow$$
 $f(x) - f(c) > 0$ for all $x \in I$ with $c < x < c + \delta$

$$\left[\& \ f(x) - f(c) < 0 \quad \text{for all } x \in I \text{ with } c - \delta < x < c \right]$$

$$\Rightarrow f(x) > f(c) \quad \text{for all } x \in I \text{ with } c < x < c + \delta$$

$$\left[\& f(x) < f(c) \quad \text{for all } x \in I \text{ with } c - \delta < x < c \right]$$

Pf of Darboux. WLOG, we may assume that f'(a) < k < f'(b).

Define $\varphi:[a,b]\to\mathbb{R}$ by $\varphi(x)=f(x)-kx$. Then obviously φ is diff on [a,b], and

$$\varphi'(a) = f'(a) - k < 0 - -(i)$$
 and $\varphi'(b) = f'(b) - k > 0 - -(ii)$

Note that

- (i) implies that the minimum of φ can not occur at x=a --- ① [by Lemma-(b)] Similarly,
- (ii) implies that the minimum of φ can not occur at x = b --- ② [by Lemma-(a)]

However, since $\varphi \in C[a, b]$, it attains a minimum value on [a, b] --- \Im (by MmT).

Combining \bigcirc , \bigcirc & \bigcirc yields that φ must have its minimum at some point c in (a, b).

Thus $c \in (a, b)$ is a local minimum(extremum) point of the differentiable function φ

Therefore, we conclude that $0 = \varphi'(c) = f'(c) - k$

(by **Theorem B**, in Section 14.3 [= **Fermat's Critical Point Theorem**])

Hence f'(c) = k, for some $c \in (a, b)$.

Warning:

 $\varphi'(a) < 0$ does **not** implies that φ is locally strictly decreasing at x = a Similarly

 $\varphi'(b) > 0$ does **not** implies that φ is locally strictly increasing at x = b --- see the next question ---

Question: $f'(c) > 0 \implies f$ is \nearrow in some nbd $(c - \delta, c + \delta)$ of the point c

Answer is unexpectedly **no**.

Set
$$f(x) = \begin{cases} \frac{x}{2} + x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
. Then $f'(0) = \lim_{x \to 0} \left(\frac{1}{2} + x \sin \frac{1}{x} \right) = \frac{1}{2} > 0$

Note that
$$f'(x) = \begin{cases} \frac{1}{2} - \cos\frac{1}{x} + 2x\sin\frac{1}{x} & \text{if } x \neq 0\\ \frac{1}{2} & \text{if } x = 0 \end{cases}$$
: conti for $x \neq 0$; but **not** conti at $x = 0$

Choose two sequences
$$x_n=\frac{1}{2n\pi}$$
 and $y_n=\frac{1}{2n\pi+\frac{\pi}{2}}$ $(n\gg 1); \ x_n \ \& \ y_n \approx 0 \ \ \text{if} \ n\gg 1 \, .$

Obviously $x_n > y_n$, but

$$\begin{split} f(x_{_{n}}) - f(y_{_{n}}) &= \frac{1}{4n\pi} - \left[\frac{1}{4n\pi + \pi} + \frac{1}{(2n\pi + \pi \: / \: 2)^{^{2}}} \right] \\ &= \frac{1}{4n\pi} - \left[\frac{1}{4n\pi + \pi} + \frac{4}{(4n\pi + \pi)^{^{2}}} \right] = \frac{1 + 4n\left(1 - 4\: / \: \pi\right)}{4\pi n(4n + 1)^{^{2}}} < 0 \text{ for } n \gg 1 \Big[\leftarrow 1 - 4\: / \: \pi < 0 \Big] \end{split}$$

This shows that f is not increasing in any neighborhood of 0

HS. Prove that if f is diff on a nbd of c with f'(c) > 0 and f' is continuous at c $\Rightarrow f$ is strictly \nearrow on some nbd of c

Application of Darboux.

Ex. Let
$$g:[-1,1] \to \mathbb{R}$$
 be the function defined by $g(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{for } x < 0 \end{cases}$

Show that there is no differentiable function f such that f'(x) = g(x) for all $x \in [-1, 1]$.

In other words, g is not the derivative on [-1, 1] of any function on this interval.

Pf. Suppose that such a function f were exist.

That is, suppose that \exists a diff fct f with f'(x) = g(x) on [-1,1]

Then g = f' clearly fails to satisfy the IVP on the interval [-1, 1].

This contradicts the Darboux's theorem. Therefore, such a function f cannot exist.

Comment: We know that

$$g' \in C[a, b]$$
 & $g'(t) \neq 0$ on (a, b)

 \Rightarrow g'(t) does not change sign on (a, b)

The hypothesis can be slightly weakened as:

Ex (A reformulation of Darboux's IVT for derivative) [or Bolzano's theorem for derivative]

Let g be diff on
$$(a, b)$$
 & $g'(t) \neq 0$ on (a, b)

$$\Rightarrow$$
 $g'(t)$ does not change sign on (a, b)

Pf 1. (Use Darboux' theorem) By contraposition, it suffices to prove:

if g'(c) > 0 and g'(d) < 0 (with $c, d \in (a, b)$), then $\exists \xi$ between c and d such that $g'(\xi) = 0$. But this is obviously true by Darboux's IVT for derivative

Pf 2. (a direct pf) By contraposition, it suffices to prove:

if g'(c) > 0 and g'(d) < 0 (with $c, d \in (a, b)$), then $\exists \xi$ between c and d such that $g'(\xi) = 0$.

Suppose c < d and let $\xi \in [c, d]$ be a point such that $g(\xi) = \max_{x \in [c, d]} g(x)$

Shall show: $\xi \neq c$ and $\xi \neq d$.

$$g'(c) > 0$$
 $\overset{\text{Lemma-(a)}}{\Rightarrow}$ $g(x) > g(c)$ for $x \underset{\neq}{\approx} c^+$ $\Rightarrow \xi \neq c$

$$g'(d) < 0$$
 $\stackrel{\text{Lemma-(b)}}{\Rightarrow}$ $g(x) > g(d)$ for $x \underset{\neq}{\approx} d^ \Rightarrow \xi \neq d$

Thus we showed that $\ c < \exists \xi < d \ \& \ g(\xi) = \max_{x \in [c,d]} g(x)$.

This says that, on the open interval (c, d), g(x) has a local maximum at ξ ; which implies $g'(\xi) = 0$.

Another pf of Cauchy's MVT (using more natural auxiliary function) --- optional

Suppose f(t) & g(t): conti on [a, b], diff on (a, b), and $g'(t) \neq 0$ on (a, b).

Then
$$\exists \ c \in (a,b)$$
 such that $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Observe that the equation of the x' - axis is $y = mx = \frac{f(b) - f(a)}{g(b) - g(a)}x$;

[A parametric form of the line y = mx is given by L(t) = (t, mt)]

$$\therefore \quad \underline{H}(t) = \frac{f(t) - mg(t)}{\sqrt{m^2 + 1}} \quad (= \text{ the directed distance from the line } y = mx \text{ to a pt } (g(t), f(t)))$$

Note that hypo implies

$$H(t) = \frac{f(t) - mg(t)}{\sqrt{m^2 + 1}} : \begin{cases} \text{conti on } [a, b] \\ \text{diff on } (a, b) \end{cases}, \text{ and } H(a) = H(b)$$

Rolle's theorem $\exists c \in (a, b)$ s.t. H'(c) = 0, that is, $\frac{f'(c) - mg'(c)}{\sqrt{m^2 + 1}} = 0$ for some $c \in (a, b)$

$$\exists c \in (a, b) \text{ s.t. } f'(c) - mg'(c) = 0 \ \left(\text{ i.e., } \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \right)$$