Midterm Exam

- Thursday, October 24, 7:15 9:15 p.m.
 Last name A Lin in room B130 Van Vleck
 Last name Liou Z in room 3650 Humanities
- Covers topics through Decision Trees, Random Forests, and *k*-Nearest-Neighbors
- Closed book except 8.5" x 11" sheet with notes on both sides (typed or handwritten)
- Bring student ID number, pencil, eraser, calculator (not on a phone)

1

Uninformed Search Methods

- Problem solving as search, problem representation in terms of states, goal test, operators, state-space graph search formulation, closed world assumption, Frontier and Explored lists, expanding a node, partial solution path, solution path, search tree
- Properties and computations
 - completeness, optimality, time and space complexity
- Methods
 - breadth-first search
 - depth-first search
 - uniform-cost search
 - iterative-deepening search
 - bidirectional search

- Covers lecture notes, readings in textbook (except Chapters 1 and 2), and 1 paper (intro to machine learning)
- True/False and multiple choice questions

Informed Search Methods

- Heuristic functions, evaluation function, admissible heuristic (h ≤ h*), consistent heuristic (h(n) ≤ c(n, n') + h(n')), better informed heuristic, devising heuristics, completeness, admissibility, optimality
- Methods

2

- best-first search
- greedy best-first search
- beam search
- algorithm A
- algorithm A*
- IDA*

Local Search Methods

- Local search problem formulation, operators, neighborhood (aka move set), local optima problem
- Methods:
 - hill-climbing algorithm
 - hill-climbing with random restarts,
 - Simulated annealing (stochastic hill-climbing) escaping local optima, Boltzman's equation ($p = e^{\Delta E/T}$), temperature, cooling schedule

5

MCTS Algorithm

Recursively build search tree, where each iteration consists of:

- Selection: Starting at root, successively select best child nodes using scoring method until leaf node L reached
- 2. Expansion: Create and add best (or random) new child node, *C*, of *L*
- 3. Simulation: Perform a (random) playout from C
- 4. Backpropagation: Update score at *C* and all of *C's* ancestors in search tree based on playout results

Game Playing

- Zero-sum games, perfect information games, deterministic vs. stochastic games, game playing as search, search tree, branching factor, ply, static evaluation function, horizon effect
- Methods
 - Minimax algorithm
 - · Minimax principle, optimal playing strategy
 - Alpha-beta pruning algorithm
 - Cutoff tests: If v ≤ α for some MAX node ancestor, don't visit
 any more of the current MIN node's children. If v ≥ β for
 some MIN node ancestor, don't visit any more of the current
 MAX node's children
 - iterative-deepening search with alpha-beta pruning
 - non-deterministic games
 - · chance nodes, expectiminimax value
 - Monte Carlo tree search
 - Pure MCTS, Selection, expansion, simulation, backpropagation, playout, exploitation, exploration

7

Unsupervised Learning

- Inductive learning problem, feature space, feature, attribute, examples (aka instances), labels, classes, training set, tuning set, testing set, classification problems, decision boundaries
- Methods
 - Hierarchical Agglomerative Clustering (HAC)
 - single linkage, complete linkage, average linkage, Euclidean distance, Manhattan distance, dendrogram
 - k-Means Clustering
 - cluster center (centroid), distortion cluster quality measure: For all clusters, sum of squared distances from each point to its cluster center
 - Nothing on mean-shift clustering

Hierarchical Agglomerative Clustering Algorithm

Input: a training sample $\{x_i\}_{i=1}^n$; a distance function d().

- 1. Initially, place each instance in its own cluster (called a singleton cluster).
- 2. while (number of clusters > 1) do:
- 3. Find the closest cluster pair A, B, i.e., they minimize d(A, B).
- 4. Merge A, B to form a new cluster.

Output: a binary tree showing how clusters are gradually merged from singletons to a root cluster, which contains the whole training sample.

10

Supervised Learning

- Inductive bias, preference bias, decision boundaries, training set, tuning set, testing set, overfitting, noisy data, setting parameters
- Methods

12

- K-nearest neighbor (k-NN)
- Decision Trees
 - Ockham's razor, entropy, conditional entropy (aka remainder), information gain, categorical attributes, real-valued attributes, rule extraction, methods to avoid overfitting, pruning algorithm
- Random Forests
 - Ensemble methods, bagging, bootstrap sampling, randomized node optimization, majority/mode classifier
- Performance evaluation
 - Training set accuracy, training set error, testing set accuracy, testing set error, k-fold cross validation, leave-one-out cross validation

K-Means Clustering Algorithm

- Input: x₁, ..., x_n, k where each x_i is a point in a d-dimensional feature space
- Step 1: Select k cluster centers, c₁,..., c_k
- **Step 2**: For each point **x**_i, determine its cluster: Find the closest center (using, say, Euclidean distance)
- Step 3: Update all cluster centers as the centroids

$$\mathbf{c}_{i} = \frac{1}{num_pts_in_cluster_i} \sum_{\mathbf{x} \in \text{cluster } i} \mathbf{x}$$

• Repeat steps 2 and 3 until cluster centers no longer change

• Entropy: $H(Y) = \sum_{i=1}^{k} -p_i \log_2 p_i$

• Conditional Entropy:

$$H(Y \mid X = v) = \sum_{i=1}^{k} -\Pr(Y = y_i \mid X = v) \log_2 \Pr(Y = y_i \mid X = v)$$

$$H(Y \mid X) = \sum_{v: \text{values of } X} \Pr(X = v) H(Y \mid X = v)$$

• Information Gain:

$$I(Y;X) = H(Y) - H(Y \mid X)$$

14

Pruning using a Greedy Algorithm

Prune(tree T, TUNE set)

- 1. Compute T's accuracy on TUNE; call it Acc(T)
- 2. For every internal node N in T:
 - a) New tree T_N = copy of T, but prune (delete) the subtree under N
 - b) N becomes a leaf node in T_N . The class is the majority vote of TRAIN examples reaching N
 - c) $Acc(T_N) = T_N$'s accuracy on TUNE
- 3. Let T* be the tree (among the T_N 's and T) with the largest Acc() Set T = T* /* prune */
- 4. If no improvement then Return T else Goto Step 1

Decision-Tree-Learning Algorithm

buildtree(examples, attributes, default-label)
if empty(examples) then return default-label
if (examples all have same label y) then return y
if empty(attributes) then return majority-class of examples
q = best_attribute(examples, attributes)
tree = create-node with attribute q
foreach value v of attribute q do
v-ex = subset of examples with q == v
subtree = buildtree(v-ex, attributes - {q}, majority-class(examples))
add arc from tree to subtree
return tree

15

Random Forests

For each tree,

- Build a training set by choosing n times with replacement from all N available training examples (aka "taking a bootstrap sample")
- 2. At each node of decision tree during construction, choose a *random subset* of *m attributes* from the total number, *M*, of possible attributes (*m* << *M*)
- 3. Select the best attribute at node using Max-Gain

16 17

K-Fold Cross Validation

- 1. Divide all examples into K disjoint subsets $E = E_1, E_2, ..., E_K$
- 2. For each *i* = 1, ..., *K*
 - let TEST set = E_i and TRAIN set = $E E_i$
 - build decision tree using TRAIN set
 - determine accuracy Acc_i using TEST set
- Compute K-fold cross-validation estimate of performance = mean accuracy = (Acc₁ + Acc₂ + ... + Acc_K)/K

Leave-One-Out Cross Validation

For i = 1 to N do // N = number of examples

- 1. Let (x_i, y_i) be the i^{th} example
- 2. Remove (x_i, y_i) from the dataset
- 3. Train on the remaining *N*-1 examples
- 4. Compute accuracy on *i*th example
- Accuracy = mean accuracy on all *N* runs

19