第五章 动态规划

第五节 动态规划的应用

- ✓ 最短路问题
- ✓ 投资分配问题
- ✓ 背包问题
- 多阶段生产安排问题
 - 生产与库存问题

第五节 动态规划的应用

四. 多阶段生产安排问题

- 一问题的提出
 - 建立动态规划基本方程
 - 计算举例

四. 多阶段生产安排问题

1. 问题的提出

有某种原料,可用于两

产后,除产生一定的收益外,还可以回收一部分。 生产信息由下表给出:

问题: 今有原料 c 吨,计划进行n个阶段的生产,问每 阶段如何分别确定两种生产方式原料的投入量, 使总收益最大?

生产方式	方式1	方式2
收益函数	$g_1(x)$	$g_2(x)$
回收函数	a_1x	a_2x

x是原料投入量 a_1, a_2 是原料回收率 $0 < a_1, a_2 < 1$

设 $f_k(x)$ = 原料投入量为x 吨,进行k个阶段的生产所得的最大总收益。

四. 多阶段生产安排问题

1. 问题的提出

有某种原料,可用于两种方式的生产。原料用于生产后,除产生一定的收益外,还可以回收一部分。生产信息由下表给出:

问题: 今有原料 c 吨,计划进行n个阶段的生产,问每阶段如何分别确定两种生产方式原料的投入量,使总收益最大? 所求: $f_n(c)$

生产	方式1	方式2
收益函数	$g_1(x)$	$g_2(x)$
回收函数	a_1x	a_2x

x是原料投入量 a_1, a_2 是原料回收率 $0 < a_1, a_2 < 1$

设 $f_k(x)$ = 原料投入量为x 吨,进行k个阶段的生产所得的最大总收益。 k个阶段

分析:

第1阶段

后k-1个阶段

$$0 \le y \le x$$
 方式1 方式2

原料投入量x吨

y

x - y

 $a_1y + a_2(x-y)$

总收益 $g_1(y) + g_2(x-y) + f_{k-1}[a_1y + a_2(x-y)]$

原料回收量 $a_1y + a_2(x-y)$

$$f_{k}(x) = \max_{0 \le y \le x} \left\{ g_{1}(y) + g_{2}(x - y) + f_{k-1}[a_{1}y + a_{2}(x - y)] \right\}$$

$$f_{1}(x) = \max_{0 \le y \le x} \left\{ g_{1}(y) + g_{2}(x - y) \right\}$$

例5 在多阶段生产安排问题中,

设收益函数分别为:
$$g_1(x) = 0.6x(万元)$$

$$g_2(x) = 0.5x(万元)$$

回收率分别为: $a_1 = 0.1, a_2 = 0.4$

生产阶段数为: n=3

原料投入量: x = 100吨 求: $f_3(100)$

$$f_1(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y)\}$$

例5 在多阶段生产安排问题中,

$$g_1(x) = 0.6x$$
 $a_1 = 0.1, a_2 = 0.4$
 $g_2(x) = 0.5x$ $n = 3$ $x = 100$ $x : f_3(100)$

解:

$$f_{1}(x) = \max_{0 \le y \le x} \{g_{1}(y) + g_{2}(x - y)\}$$

$$= \max_{0 \le y \le x} \{0.6y + 0.5(x - y)\}$$

$$= \max_{0 \le y \le x} \{0.5x + 0.1y\} = 0.6x \quad (y = x)$$

$$y \quad x-y$$
1 2

当投入量为x,只进行一个阶段生产时,最优策略是把全部原料都投入生产方式1,所得最大收益为0.6x(万元)。

$$f_1(x) = 0.6x (y = x)$$

例5
$$g_1(x) = 0.6x(万元)$$
 $a_1 = 0.1, a_2 = 0.4$ $n = 3$ $g_2(x) = 0.5x(万元)$ $x = 100$ 吨 求: $f_3(100)$

$$f_{2}(x) = \max_{0 \le y \le x} \{g_{1}(y) + g_{2}(x - y) + f_{1}[a_{1}y + a_{2}(x - y)]\}$$

$$= \max_{0 \le y \le x} \{0.6y + 0.5(x - y) + 0.6[0.1y + 0.4(x - y)]\}$$

$$= \max_{0 \le y \le x} \{0.74x - 0.08y\}$$

$$= 0.74x (y = 0)$$

$$f_{k}(x) = \max_{0 \le y \le x} \left\{ g_{1}(y) + g_{2}(x - y) + f_{k-1}[a_{1}y + a_{2}(x - y)] \right\}$$

例5
$$g_1(x) = 0.6x(万元)$$
 $a_1 = 0.1, a_2 = 0.4$ $n = 3$ $g_2(x) = 0.5x(万元)$ $x = 100$ 吨 求: $f_3(100)$

解:

$$f_2(x) = 0.74x (y = 0)$$

当投入量为x,进行两个阶段生产时,最优策略:第一阶段把全部原料都投入生产方式2,第二阶段把所有回收原料都投入生产方式1,则两个阶段所得最大收益为0.74x(万元)。

$$f_2(x) = 0.74x (y = 0)$$

例5
$$g_1(x) = 0.6x(万元)$$
 $a_1 = 0.1, a_2 = 0.4$ $n = 3$ $g_2(x) = 0.5x(万元)$ $x = 100$ 吨 求: $f_3(100)$

$$f_3(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_2[a_1y + a_2(x - y)]\}$$

$$= \max_{0 \le y \le x} \{0.6y + 0.5(x - y) + 0.74[0.1y + 0.4(x - y)]\}$$

$$= \max_{0 \le y \le x} \{0.796x - 0.122y\}$$

$$= 0.796x (y = 0)$$

$$f_{k}(x) = \max_{0 \le y \le x} \left\{ g_{1}(y) + g_{2}(x - y) + f_{k-1}[a_{1}y + a_{2}(x - y)] \right\}$$

例5
$$g_1(x) = 0.6x(万元)$$
 $a_1 = 0.1, a_2 = 0.4$ $n = 3$ $g_2(x) = 0.5x(万元)$ $x = 100吨 求: f_3(100)$

解:

#:
$$f_3(x) = 0.796x (y = 0)$$

$$f_3(100) = 0.796 \times 100$$

$$= 79.6 ($\overline{\mathcal{H}}$ $\overline{\mathcal{H}}$)

1 2 1 2 1 2 1 2 3$$

当投入量为x,进行三个阶段生产时,最优策略:第一阶段把全部原料都投入生产方式2,第二阶段把所有回收原料都投入生产方式2,第三阶段把所有回收原料都投入生产方式1,则三个阶段所得最大收益为0.796x(万元)。

例4
$$g_1(x) = 0.6x(万元)$$
 $a_1 = 0.1, a_2 = 0.4$ $n = 3$ $g_2(x) = 0.5x(万元)$ $x = 100吨 求: f_3(100)$

解:
$$f_1(x) = 0.6x (y = x)$$

 $f_2(x) = 0.74x (y = 0)$
 $f_3(x) = 0.796x (y = 0)$

结论: 原料投入量: x 吨

阶识粉

別权数	第一 例段		取八以皿
	方式1	方式2	
1	\boldsymbol{x}	0	0.6x
2	0	\boldsymbol{x}	0.74x
3	0	\boldsymbol{x}	0.796x

是十份兴

 $f_3(100) = 79.6 (万元)$

3

例5
$$g_1(x) = 0.6x(万元)$$
 $a_1 = 0.1, a_2 = 0.4$ $n = 3$ $g_2(x) = 0.5x(万元)$ $x = 100吨 求: f_3(100)$

解:

$$f_1(x) = 0.6x (y = x)$$
 100 40 16 $f_2(x) = 0.74x (y = 0)$ 1 2 1 2

分析阶段收益和阶段回收量:

原料投入量: 100吨,安排3个阶段生产时,

第几阶段	阶段收益	阶段原料回收量
1	0.5×100=50(万元)	$0.4 \times 100 = 40$ (吨)
2	$0.5 \times 40 = 20 (万元)$	$0.4\times40=16(阵)$
3	$0.6 \times 16 = 9.6 (\overline{T}_1 \overline{T}_2)$	$0.1 \times 16 = 1.6$ (吨)

2

 $f_3(100) = 79.6 (万元)$

3

例5
$$g_1(x) = 0.6x(万元)$$
 $a_1 = 0.1, a_2 = 0.4$ $n = 3$ $g_2(x) = 0.5x(万元)$ $x = 100吨 求: f_3(100)$

解:

$$f_1(x) = 0.6x (y = x)$$
 100 40 16 $f_2(x) = 0.74x (y = 0)$ 1 2 1 2 1 2 $f_3(x) = 0.796x (y = 0)$

结论: 安排3个阶段生产时,

2
$$0.5 \times 40 = 20 (万元)$$

$$f_3(100) = 0.796 \times 100 = 79.6$$

= $50 + 20 + 9.6$

$$f_2(40) = 0.74 \times 40 = 29.6$$

$$=20+9.6$$

$$f_1(16) = 0.6 \times 16 = 9.6$$

第五节 动态规划的应用

四. 多阶段生产安排问题

- ✔ 问题的提出
- ✓ 建立动态规划基本方程
- ✓ 计算举例

第五章 动态规划

第五节 动态规划的应用

- ✓ 最短路问题
- ✓ 投资分配问题
- ✓ 背包问题
- ✓ 多阶段生产安排问题
 - 生产与库存问题

作业1

求多阶段生产安排问题的最优策略。

其中收益函数为:
$$g_1(x) = 8x$$

$$g_2(x) = 5x$$

回收率为: $a_1 = 0.7, a_2 = 0.9$

生产阶段数为: n=5

原料投入量: x = 100吨

求: $f_5(100)$

第五节 动态规划的应用

五. 生产与库存问题

- 一问题的提出
 - 建立动态规划基本方程
 - 计算举例

五. 生产与库存问题

■生产与库存问题是实际生产中经常遇到的问题。增 加产量可以降低生产成本,但当产量超过市场需求时, 就会造成产品积压,增加库存费用。如果按市场需求 安排生产,当订单小时会造成开工不足,当订单大时, 会加班加点造成生产成本的增加。因此,合理利用库 存调节产量、满足市场需求是十分有意义的。

五. 生产与库存问题

●所谓生产与库存问题,就是一个生产部门在已知生产成本、库存费用和各阶段市场需求的条件下如何决定各阶段的产量,使计划期内的费用总和为最小的问题。1 2 3

■生产与库存模型也适用于商业经营管理。只需将产量变成采购量就可以得到采购与库存模型。

1. 问题的提出

设某一生产部门,生产计划周期为n个阶段,已知

	已知
\boldsymbol{x}_1	最初库存量
d_{k}	阶段k的市场需求量
N	生产的固定成本
\boldsymbol{L}	生产单位产品的费用
h	单位产品的阶段库存费用
M	仓库容量
B	阶段生产能力

问题: 应如何安排各个阶段的产量,使计划周期内 (*n*个阶段)的费用总和为最小。

设 x_k — 阶段k的初始库存量;

- ▶由于计划末期的库存量通常 也是给定的,为简便起见, 假定 $x_{n+1} = 0$
- \rightarrow 阶段k的库存量 x_k 既不能超 过库存容量M,也不应超过阶 段k至阶段n的需求总量,即:

 $X_k X_{k+1}$

$$0 \le x_k \le \min\{M, d_k + d_{k+1} + \dots + d_n\}, \ k = 1, 2, \dots, n$$

已知 x_1 最初库存量 d_k 阶段k的市场需求量 生产的固定成本 生产单位产品的费用 单位产品的库存费用 仓库容量 \boldsymbol{B} 阶段生产能力

设 x_k ------ 阶段k的初始库存量; u_k ------ 阶段k的产量; $x_{n+1} = 0$

$$0 \le x_k \le \min\{M, d_k + d_{k+1} + \dots + d_n\}$$

〉阶段k的产量 u_k 在不超过生产能力B的条件下,应充分满足该阶段的需求 d_k ,同时还要满足计划末期的库存为0的要

三知 X₁ 最初库存量 d_k 阶段k的市场需求量 N 生产的固定成本 L 生产单位产品的费用 h 单位产品的库存费用

k k+1 n

 \boldsymbol{x}_{n+1}

仓库容量

 $x_k u_k x_{k+1}$

阶段生产能力

 \boldsymbol{B}

求, 即: $d_k - x_k \le u_k \le \min\{B, d_k + d_{k+1} + \dots + d_n - x_k\}$ $x_k + u_k \ge d_k \Rightarrow u_k \ge d_k - x_k$ $u_k + x_k \le d_k + d_{k+1} + \dots + d_n \Rightarrow u_k \le d_k + d_{k+1} + \dots + d_n - x_k$

设 x_k -----阶段k的初始库存量; u_{k} ------ 阶段k的产量: $x_{n+1} = 0$ $0 \le x_k \le \min\{M, d_k + d_{k+1} + \dots + d_n\}$ $d_k - x_k \le u_k \le \min\{B, d_k + d_{k+1} + \dots + d_n - x_k\}$

 \rightarrow 阶段k末或阶段k+1的初始 库存量 $x_{k+1} = x_k + u_k - d_k$

已知

- x_1 最初库存量
- d_k 阶段k的市场需求量
- 生产的固定成本
- 生产单位产品的费用
- 单位产品的库存费用
- 仓库容量
- \boldsymbol{B} 阶段生产能力

军存量
$$x_{k+1} = x_k + u_k - d_k$$
1
 $x_k = x_k + u_k - d_k$
1
 $x_k = x_k + u_k - u_k$
1
 $x_k = x_k + u_k - u_k$
1
 $x_k = x_k + u_k - u_k$
1
 $x_k = x_k + u_k$
1
 x_k

 \triangleright 阶段k的费用=生产费+库存费:

$$N + Lu_k \quad hx_{n+1} = h(x_k + u_k - d_k)$$

注:为简便起见,不计算本阶段销售产品的库存费

阶段k的费用 $r_k(x_k,u_k) = N + Lu_k + h(x_k + u_k - d_k)$

设 x_k -----阶段k的初始库存量; u_{k} ------ 阶段k的产量: $x_{n+1} = 0$ $0 \le x_k \le \min\{M, d_k + d_{k+1} + \dots + d_n\}$ $d_k - x_k \le u_k \le \min\{B, d_k + d_{k+1} + \dots + d_n - x_k\}$ $X_{k+1} = X_k + U_k - d_k$

设 $f_k(x_k)$ = 阶段k的初始库存量

为x_k时,阶段k到计划期末的最小费用。

$$r_k(x_k, u_k) = N + Lu_k + h(x_k + u_k - d_k)$$

- x_1 最初库存量
- d_k 阶段k的市场需求量
- 生产的固定成本
- 生产单位产品的费用
- 单位产品的库存费用
- 仓库容量
- 阶段生产能力

动态规划基本方程为:

$$f_k(x_k) = \min_{u_k} \{ N + Lu_k + h(x_k + u_k - d_k) + f_{k+1}(x_{k+1}) \}$$

例5-10 求解生产与库存问题 求: $f_1(x_1)$

当
$$k = 3$$
时, $u_3 = d_3 - x_3 = 3 - x_3$

$$f_4(x_4) = 0, \quad x_4 = x_3 + u_3 - d_3 = 0$$

$$f_3(x_3) = \min_{u_3} \{ N + Lu_3 + h(x_3 + u_3 - d_3) + f_4(x_4) \} \quad d_1 = 3, \quad d_2 = 4, \quad d_3 = 3, \quad x_4 = 0$$

$$= \min\{ 8 + 2u_3 \} = 8 + 2(3 - x_3)$$

$$=14-2x_3$$

$$0 \le x_3 \le \min\{M, d_3\} = \min\{4, 3\} = 3$$

		已知
n	3	计划周期, 阶段数
\boldsymbol{x}_1	1	最初库存量
d_{k}		阶段k的市场需求量
N	8	生产的固定成本
\boldsymbol{L}	2	生产单位产品的费用
h	2	单位产品的库存费用
M	4	仓库容量
\boldsymbol{B}	6	阶段生产能力

$$d_1 = 3$$
, $d_2 = 4$, $d_3 = 3$, $x_4 = 0$

	1		2		3	
x_1	u_1	x_2	u_2	x_3	u_3	x_4

x_3	$f_3(x_3)$	u_3^*
0	14	3
1	12	2
2	10	1
3	8	0

$$f \ 0 \le x_k \le \min\{M, d_k + d_{k+1} + \cdots$$

例5-10 求解生产与库存问题

求: $f_1(x_1)$

解:

当
$$k=2$$
时,

$$x_3 = x_2 + u_2 - d_2$$

$$0 \le x_2 \le \min\{M, d_2 + d_3\} = \min\{4, 7\} = 4$$

$$4 - x_2 \le u_2 \le \min\{B, d_2 + d_3 - x_2\} = \min\{6, 7 - x_2\}$$

已知

$$x_1$$
 1 最初库存量

$$d_k$$
 阶段 k 的市场需求量

$$B$$
 6 阶段生产能力

$$d_1 = 3$$
, $d_2 = 4$, $d_3 = 3$, $x_4 = 0$

$$\begin{split} f_2(x_2) &= \min_{u_2} \{ 8 + 2u_2 + 2(x_2 + u_2 - d_2) + f_3(x_3) \} \\ &= \min_{u_2} \{ 8 + 2u_2 + 2(x_2 + u_2 - 4) + f_3(x_2 + u_2 - 4) \} \end{split}$$

$$\int_{0}^{\infty} d_{k} - x_{k} \le u_{k} \le \min\{B, d_{k} + d_{k+1} + \dots + d_{n} - x_{k}\}, n$$

例5-10 求解生产与库存问题 求: $f_1(x_1)$

解: 当
$$k = 2$$
时, $x_3 = x_2 + u_2 - d_2$ $0 \le x_2 \le 4$ $4 - x_2 \le u_2 \le \min\{6, 7 - x_2\}$

$f_2(x_2) = \min\{8 +$	$+2u_2 +$	$-2(x_2-$	$+u_2-$	4) + $f_3(x_2 + u_2 - 4)$ }
u_2	4	0	4	14
	5	0	5	12
	3	1	3	14
	5	2	5	8

	u_2	0	1	2	3	4	5	6	$f_2(x_2)$	u_2^*
	0					30	32	32	30	4
	1				28	30	32	34	28	3
\boldsymbol{x}_2	2			26	28	30	32		26	2
	3		24	26	28	32			24	1
	4	22	24	26	28				22	0

x_2	$f_2(x_2)$	u_2^*
0	30	4
1	28	3
2	26	2
3	24	1
4	22	0

运筹学5-5

例5-10 求解生产与库存问题 求: $f_1(x_1)$

解:

当
$$k = 1$$
时, $x_1 = 1$
 $x_2 = x_1 + u_1 - d_1 = 1 + u_1 - 3 = u_1 - 2$
 $x_2 = x_1 + u_1 - d_1 = 1 + u_1 - 3 = u_1 - 2$
 $x_1 \le u_1 \le \min\{B, d_1 + d_2 + d_3 - x_1\}$
 $x_2 \le u_1 \le \min\{6, 10 - 1\} = 6$

已知 计划周期,阶段数 n X_1 1 最初库存量 d_{k} 阶段k的市场需求量 N生产的固定成本 2 生产单位产品的费用 2 单位产品的库存费用 \boldsymbol{M} 仓库容量 阶段生产能力

$$d_1 = 3$$
, $d_2 = 4$, $d_3 = 3$, $x_4 = 0$

$$f_1(x_1) = \min_{u_1} \{8 + 2u_1 + 2(x_1 + u_1 - d_1) + f_2(x_2)\}$$

$$= \min_{u_1 = 2,3,4,5,6} \{8 + 2u_1 + 2(u_1 - 2) + f_2(u_1 - 2)\}$$

$$f_k \left[d_k - x_k \le u_k \le \min\{B, d_k + d_{k+1} + \dots + d_n - x_k\} \right]_{+1}$$

例5-10 求解生产与库存问题

求:
$$f_1(x_1)$$

解:

当
$$k = 1$$
时, $: x_1 = 1 : x_2 = u_1 - 2, 2 \le u_1 \le 6$

$$f_1(x_1) = \min_{u_1=2,3,4,5,6} \{8 + 2u_1 + 2(u_1 - 2) + f_2(u_1 - 2)\} = 42, \ u_1^* = 2$$

$$\begin{array}{c} 30 \\ 28 \\ 26 \\ \end{array}$$

u_1	{···}	x_2	$ f_2(x_2) $	u_2^*
2	42	0	30	4
3	44	1	28	3
4	46	2	26	2
5	48	3	24	1
6	50	4	22	0

运筹学5-5

已知

计划周期,阶段数

阶段k的市场需求量

最初库存量

N 8 生产的固定成本

n

 d_{k}

 x_1 1

例5-10 求解生产与库存问题

求:
$$f_1(x_1)$$

$$d_1 = 3$$
, $d_2 = 4$, $d_3 = 3$, $x_4 = 0$

 $x_3 = x_2 + u_2 - d_2$

解:

当
$$k = 1$$
时, $: x_1 = 1 : x_2 = u_1 - 2 \rightarrow x_2^* = 0 \rightarrow u_2^* = 4 \rightarrow x_3^* = 0$

$$f_1(x_1) = \min_{u_1=2,3,4,5,6} \{8 + 2u_1 + 2(u_1 - 2) + f_2(u_1 - 2)\} = 42, \ u_1^* = 2 \quad u_3^* = 3$$

最优产量 u_k^* :

最优库存量 x_k^* :

最小费用: 42

<i>k</i>	u_k^*	x_k^*	
1	2	1	
2	4	0	
3	3	0	

			λ_2	$J_2(x_2)$	u_2
x_3	$f_3(x_3)$	u_3^*	0	30	4
0	14	3	1	28	3
1	12	2	2	26	2
2	10	1	3	24	1
3	8	0	4	22	0

运筹学5-5

第五节 动态规划的应用

五. 生产与库存问题

- ✔ 问题的提出
- ✓ 建立动态规划基本方程
- ✓ 计算举例

第五章 动态规划

第五节 动态规划的应用

- ✓ 最短路问题
- ✓ 投资分配问题
- ✓ 背包问题
- ✓ 多阶段生产安排问题
- ✓ 生产与库存问题

作业1

求多阶段生产安排问题的最优策略。

其中收益函数为:
$$g_1(x) = 8x$$

$$g_2(x) = 5x$$

回收率为: $a_1 = 0.7, a_2 = 0.9$

生产阶段数为: n=5

原料投入量: x = 100吨

求: $f_5(100)$

作业2

P351 7

P283 7

解答:
$$g_1(x) = 8x$$
 $g_2(x) = 5x$ $a_1 = 0.7, a_2 = 0.9$ $n = 5$ $x = 100$ 吨 求: $f_5(100)$

$$f_1(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y)\}$$

$$= \max_{0 \le y \le x} \{8y + 5(x - y)\}$$

$$= \max_{0 \le y \le x} \{5x + 3y\} = 8x \quad (y = x)$$

解答:
$$g_1(x) = 8x$$
 $g_2(x) = 5x$ $a_1 = 0.7, a_2 = 0.9$ $n = 5$ $x = 100$ 吨 求: $f_5(100)$

$$f_{1}(x) = \max_{0 \le y \le x} \{g_{1}(y) + g_{2}(x - y)\} = 8x \quad (y = x)$$

$$f_{2}(x) = \max_{0 \le y \le x} \{g_{1}(y) + g_{2}(x - y) + f_{1}[a_{1}y + a_{2}(x - y)]\}$$

$$= \max_{0 \le y \le x} \{5x + 3y + 8[0.7y + 0.9(x - y)]\}$$

$$= \max_{0 \le y \le x} \{12.2x + 1.4y\}$$

$$= 13.6x \quad (y = x)$$

解答:
$$g_1(x) = 8x$$
 $g_2(x) = 5x$ $a_1 = 0.7, a_2 = 0.9$ $n = 5$ $x = 100吨 求: f_5(100)$ 解:
$$f_1(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y)\} = 8x \quad (y = x)$$

$$f_2(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_1[a_1y + a_2(x - y)]\} = 13.6x \quad (y = x)$$

$$f_3(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_2[a_1y + a_2(x - y)]\}$$

$$= \max_{0 \le y \le x} \{5x + 3y + 13.6[0.9x - 0.2y]\}$$

$$= \max_{0 \le y \le x} \{17.24x + 0.28y\}$$

$$= 17.52x \quad (y = x)$$

解答:
$$g_1(x) = 8x$$
 $g_2(x) = 5x$ $a_1 = 0.7, a_2 = 0.9$ $n = 5$ $x = 100$ 吨 求: $f_5(100)$ 解:
$$f_1(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y)\} = 8x \quad (y = x)$$

$$f_2(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_1[a_1y + a_2(x - y)]\} = 13.6x \quad (y = x)$$

$$f_3(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_2[a_1y + a_2(x - y)]\} = 17.52x \quad (y = x)$$

$$f_4(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_3[a_1y + a_2(x - y)]\}$$

$$= \max_{0 \le y \le x} \{5x + 3y + 17.52[0.9x - 0.2y]\}$$

$$= \max_{0 \le y \le x} \{20.768x - 0.504y\}$$

$$= 20.768x \quad (y = 0)$$

解答:
$$g_1(x) = 8x$$
 $g_2(x) = 5x$ $a_1 = 0.7, a_2 = 0.9$ $n = 5$ $x = 100吨 求: f_5(100)$ 解:
$$f_1(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y)\} = 8x \quad (y = x)$$

$$f_2(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_1[a_1y + a_2(x - y)]\} = 13.6x \quad (y = x)$$

$$f_3(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_2[a_1y + a_2(x - y)]\} = 17.52x \quad (y = x)$$

$$f_4(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_3[a_1y + a_2(x - y)]\} = 20.768x \quad (y = 0)$$

$$f_5(x) = \max_{0 \le y \le x} \{g_1(y) + g_2(x - y) + f_4[a_1y + a_2(x - y)]\}$$

$$= \max_{0 \le y \le x} \{5x + 3y + 20.768[0.9x - 0.2y]\}$$

$$= \max_{0 \le y \le x} \{23.6912x - 1.1536y\}$$

$$= 23.6912x \quad (y = 0)$$

解答:
$$g_1(x) = 8x$$
 $g_2(x) = 5x$ $a_1 = 0.7, a_2 = 0.9$ $n = 5$ $x = 100$ 吨 求: $f_5(100)$

$$\begin{split} f_1(x) = & \max_{0 \leq y \leq x} \left\{ g_1(y) + g_2(x - y) \right\} = 8x \quad (y = x) \\ f_2(x) = & \max_{0 \leq y \leq x} \left\{ g_1(y) + g_2(x - y) + f_1[a_1y + a_2(x - y)] \right\} = 13.6x \quad (y = x) \\ f_3(x) = & \max_{0 \leq y \leq x} \left\{ g_1(y) + g_2(x - y) + f_2[a_1y + a_2(x - y)] \right\} = 17.52x \quad (y = x) \\ f_4(x) = & \max_{0 \leq y \leq x} \left\{ g_1(y) + g_2(x - y) + f_3[a_1y + a_2(x - y)] \right\} = 20.768x \quad (y = 0) \\ f_5(x) = & \max_{0 \leq y \leq x} \left\{ g_1(y) + g_2(x - y) + f_4[a_1y + a_2(x - y)] \right\} = 23.6912x \quad (y = 0) \end{split}$$

$$f_5(100) = 23.6912 \times 100 = 2369.12$$

2369.12

运筹学5-5