- => A half-adder has two 1-bit inputs and there is no provision to add any carry which could have been generaled from lower bit order Conditions.
- => The limitation of half-adder Circuit is overcomed in Full-adder.
- => The full adder is a Combinational logic Circuit
 That has the provision to add a Carry.

			1			,
	9 puts		Cin	(2)	(Cow)	* 3 input bits, Lo total
	A .			0		no. of Combinations
	0	0	0		0	*from 000 to 111
	2 0	<u>Q</u>	Cir		0	
	-0	Ī	1	0	- 1	
	3 -	0	0		6	
	" 1	0				
	5					
	6		0	0		
	7 (11	1	1	1		
	8					
Prous -	1:- To fin	nd In		xpression	of Sun!	(): 110
						The Value I'm
	SOb.					
	. ',	8 =			ABCIN	+ ABCI
				+BCin +		
٩	(A Simpl	ify	using Booke	an Algebra	(=)
		=	A	B+AB) cin +	(AB+ AB) (C)
		0	(A	(DB) ci	n + (A	OB) cin
						(= x-mor)
		Bertines,	A F	BA Cin		
				T. Cons	Sidercoins A	OR - X1 6-4

NOW, POOR C = ABCINT ABCINTABCIN +ABCIN +ABCINTA

Prous - 2: - By Using Rimato Technique: -

** It is Suggested in earlier Clames also for Simplification in SOP or Pas forms please use R-map **

Here, no groupe are possible.

* This particular type in K. map is known

of theck-board configuration.

* whenever the Configuration Comes, He can write it is Simply X-OR to operation.

.. S = A @ B @ Cin

Representation cesing Hatter dogic Galis: -

Full-Adder using Universal Logic:-

1) NAND Logic: -

logic, S = xy + xy = x + xy . y. xy

for half-adder S = AR + AR = A. AB. B. AB

Now, for full-adder.

B= A DB D Cin

= (ABB). (ABB) cin · (Cin · (ABB) Cin

Cin = Cin (A (B) + AB = Cin (A (B) · AB

I from De-Margani

Similarly like half adder >

Cir

(2) NOR-Logic: - from & half-adder > $A \oplus B = \overline{A + B} + \overline{A} + \overline{0}$ For full-adder; S = A @ B @ Cin (A (B) + (in + (A (B)) + (in Cout = AB+Cin(ABB) = A+B + Cin + (ABB) [using De-morganis Theorem]

Full-adder using Half radders: -

= AB + Cin (ADB) [: I+ cin =]

Logic Diagram of full adder using half-adders: -

