ENGINEERING DATA ON NEW AEROSPACE STRUCTURAL MATERIALS

O. L. DEEL and H. MINDLIN

Battelle . . Columbus Laboratories

TECHNICAL REPORT AFML-TR-71-249

DECEMBER 1971

Approved for public release; distribution unlimited

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Conference
Springfield VA 22151

Air Force Materials Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

ENGINEERING DATA ON NEW AEROSPACE STRUCTURAL MATERIALS

O. L. Deel and H. Mindlin

Approved for public release; distribution unlimited.

FOREWORD

This report was prepared by Battelle's Columbus Laboratories, Columbus, Ohio, under Contract F33615-70-C-1070. This contract was performed under Project No. 7381, "Materials Applications", Task No. 738106, "Engineering and Design Data". The work was administered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, by Mr. Clayton Harmsworth (AFML/LAE), technical manager.

This final report covers work conducted from January, 1970, to July, 1971. This report was submitted by the authors on November 30, 1971.

This technical report has been reviewed and is approved.

a Olivitat

Chief, Materials Engineering Branch Materials Support Division Air Force Materials Laboratory

Security Classification				
DOCUMENT CONTI	ROL DATA - R &	, D		
(Security classification of title, body of abstract and indexing a	ennotation must be e			
1. ORIGINATING ACTIVITY (Corporate author)		26, REPORT SECURITY CLASSIFICATION		
Battelle Columbus Isboratories			SSIFIED	
Columbus Laboratories 505 King Avenue Columbus Obio 43201		26. GROUP		
505 King Avenue, Columbus, Ohio 43201		I NA		
Engineering Data on New Aerospace Structur	ral Material:	3		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		· ·		
Final Summary Report - January, 1970, to J	July, 1971			
O. L. Deel and Harold Mindlin				
4. REPORT DATE	74. TOTAL NO. OI	PDAGES	76, NO. OF REFS	
December, 1971	190	г глуц-	6	
DECEMBER, 1971	98. ORIGINATOR'S	REPORT NUM		
F33615-70-C-1070				
b. PROJECT NO.	AFML-TR-	71-249		
7381				
с.	9b. OTHER REPOR	RT NO(S) (Any o	ther numbers that may be seeigned	
Task No. 738106				
d.	<u> </u>			
Approved for public release; distribution				
(1: SUPPLEMENTARY NOTES	12. SPONSORING N			
	1		: Laboratory ir Force Base, Ohio	
IB. ABSTHACT				
The major objectives of this redeveloped structural materials of potents system, and then to provide "data sheet" for these materials. The effort covered 700 sheet, X5090 sheet, AF2-1DA sheet, Is round bur, PH 14-8 Mo sheet, and Ti-6Al-2	ial interest type presen in this repo nconel 625 s	to the Ai tations of ort has co heet, HA-1	r Force weapons f engineering data oncentrated on Udimet	
The properties investigated incimpact, fracture toughness, fatigue, creat at appropriate temperatues.				

Security Classification

Security Classification	LIN	K A	LIN	K B	LINI	< с
KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WΤ
Mechanical Properties						
Chemical Composition						
Corrosion Resistance						
Physical Properties						
Aluminum Alloy						l
Titanium Alloy						
Nickel Ailoy	}					
Stainless Steel						
Udimet 700				•		
X5090						
AF2-1DA						
Inconel 625	}					
HA-188				!		
Custom 455 /						
PH 14-8 Mo						
Ti-6A1-2Sn-4Zr-2Mo						·
				!		
·						
	į					
•						
	·					
	İ					
	}]	

TABLE OF CONTENTS

	Page
INTRODUCTION	1
EXPERIMENTAL PROCEDURE	2
Mechanical Properties	2
Specimen Identification	3
Test Description	14
Tension	14
Compression	14
Shear	15
Bend	15
Creep and Stress Rupture	15
Stress Corrosion	16
Thermal Expansion	17
Fatigue	17
Fracture Toughness	18
MATERIALS INFORMATION AND TEST RESULTS	19
Udimet 700 Alloy	19
Material Description	19
Processing and Heat Treating	19
Test Results	19
X5090 Alloy	35
Material Description	35
Processing and Heat Treating	35
Test Results	37
AF2-IDA Alloy	53
Material Description	53
Processing and Heat Treating	53
Test Results	55
Incouel 625 Alloy	71
Material Description	71
Processing and Heat Treating	72
Test Results	72
HA-188 Alloy	89
Material Description	89
Processing and Heat Treating	89
Test Results	89
Custom 455 Alloy	107
Material Description	107
Processing and Heat Treating	108
Test Results	108

TABLE OF CONTENTS (Continued)

			Page
CON	6A1-	4-8 Mo Stainless Steel Material Description Processing and Heat Treating Test Results 2Sn-4Zr-2Mo Titanium Material Description Processing and Heat Treating Test Results NOF PROGRAM RESULTS	121 121 121 121 137 137 137 137 153
REF	ERENCE	S	156
		LIST OF TABLES	
Tables	r	Tension Test Results for Udimet 700 Sheet	Page 22
	II	Compression Test Results for Udimet 700 Sheet	24
	III	Shear Test Results for Udimet 700 Sheet at Room Temperature	26
	IV	Axial-Load Fatigue Test Results for Unnotched Udimet 700 Sheet at a Stress Ratio of R = 0.1	27
	V	Axial-Load Fatigue Test Results for Notched (K. = 3.0) Udimet 700 Sheet at a Stress Ratio of R = 0.1	28
	VI	Summary Data on Creep and Rupture Properties of Udimet 700 Sheet	29
	VII	Tension Test Results for X5090 Aluminum Sheet	38
	VIII	Compression Test Results for X5090 Aluminum Sheet	40
	IX	Shear Test Results for X5090 Aluminum Sheet at Room Temperature	42
	x	Axial Load Fatigue Test Results for Unnotched X5090 Aluminum Sheet at a Stress Ratio of R \simeq 0.1	43
	XI	Axial-Load Fatigue Test Results for Notched (Kt = 3.0) X5090 Aluminum Sheet at a Stress Ratio of R = 0.1	44

(Continued)

		Page
XII	Summary Data on Creep and Rupture Properties of X5090 Aluminum Sheet	45
XIII	Tension Test Results for AF2-1DA Sheet	56
XIV	Compression Test Results for AF2-1DA Sheet	58
χv	Shear Test Results for AF2-1DA Sheet	60
XVI	Axial-Load Fatigue Test Results for Unnotched AF2-1DA Sheet at a Stress Ratio of R = 0.1	61
XVII	Axial-Load Fatigue Test Results for Notched $(K_t = 3.0)$ AF2-1DA Sheet at a Stress Ratio of R = 0.1	62
XVIII	Summary Data on Creep and Rupture Properties for AF2-IDA Sheet	63
XIX	Tension Test Results for Inconel 625 Sheet	74
ХХ	Compression Test Results for Inconel 625 Sheet	76
XXI	Shear Test Results for Inconel 625 Sheet at Room Temperature	78
XXII	Axial-Load Fatigue Test Results for Unnotched Incomel 625 Sheet at a Stress Ratio of R = 0.1	79
XXIII	Axial-Load Fatigue Test Results for Notched ($K_t = 3.0$) Incomel 625 Sheet at a Stress Ratio of R = 0.1	80
XXIV	Summary Data on Creep and Rupture Properties for Inconel 625 Sheet	81
XXV	Tension Test Results for HA-188 Alloy Sheet	92
XXVI	Compression Test Results for HA-188 Sheet	94
IIVXX	Shear Test Results for NA-188 Sheet at Room Temperature	96
XXVIII	Axial-Load Patigue Test Results for Unnotched HA-188 Sheet at a Stress Ratio of R = 0.1	97
XXIX	Axial-Load Fatigue Test Results for Notched (K = 3.0) HA-188 Sheet at a Stress Ratio of R = 0.1	98

LIST OF TABLES

(Continued)

		Page
XXX	Summary Data on Creep and Rupture Properties HA-188 Sheet	99
XXXI	Tension Test Results for Custom 455 Round Bar	109
XXXII	Compression Test Results for Custom 455 Round Bar	110
XXXIII	Shear Test Results for Custom 455 Round Bar at Room Temperature	111
XXXIV	Fracture Toughness Test Results for Custom 455 Round Bar	112
VXXX	Axial-Load Fatigue Test Results for Unnotched Custom 455 Bar at a Stress Ratio of R = 0.1	113
IVXXX	Axial-Load Fatigue Test Results for Notched (Kt = 3.0) Custom 455 Bar at a Stress Ratio of R = 0.1	114
IIVXXX	Summary Data on Creep and Rupture Properties for Custom 455 Round Bar	115
IIIVXXX	Tension Test Results for PN 14-8 No Sheet	124
XXXXIX	Compression Test Results for PH 14-8 Mo Sheet	125
XL	Shear Test Results for PH 14-8 No Sheet at Room Temperature	126
XLI	Axial Load Fatigue Test Results for Unnotched PH 14-8 No Sheet at a Stress Ratio of R * 0.1	127
XLII	Axial Load Fatigue Test Results for Notched ($K_t = 3.0$) PH 14-8 No Sheet at a Stress Ratio of R = 0.1	128
XLIII	Summary Data on Creep and Rupture Properties of PN 14-8 No Sheet	129
XLIV	Tension Test Results for Ti-6Al-2Sn-4Zr-2No Sheet	147
XLV	Compression Test Regults for Ti-6Al-2Sn-4Zr-2No Sheet	148
XLVI	Shear Tost Results for Ti-6Al-2Sn-4Zr-2No at Room Temperature	149
XLVII	Axial Load Patigue Test Results for Unnotched Ti-6Al-2Sn- 4Zr-2No Sheet at a Stress Ratio of R = 0.1	150
XLVIII	Axial Load Fatigue Test Results for Notched ($K_{\rm g}=3.0$) Ti-6Al-2Sn-4Zr-2No Sheet at a Stress Ratio of R = 0.1	151
XLIX	Summary Data on Creep and Rupture Properties of Ti-6-2-4-2 Alloy Sheet	152

			Page
Figure	1.	Sheet and Thin-Plate Tensile Specimen	5
	2.	Round Tensile Specimen	5
	3,	Sheet Compression Specimen	б
	4.	Round Compression Specimen	6
	5.	Sheet Creep- and Stress-Rupture Specimen	7
	6.	Round Creep- and Stress-Rupture Specimen	7
	7.	Sheet Shear Test Specimen	8
	8.	Pin Shear Specimen	, B .
	9.	Unnotched Sheet Fatigue Specimen	· ' 9
	10.	Notched Sheet Patigue Specimen	9
	n.	Unnotched Round Fatigue Specimen	10
	12.	Notched Round Fatigue Specimen	10
	13.	Sheet Fracture Toughness Specimen	11
	14.	Slow Bend Fracture Toughness Specimen	11
	15.	Stress-Corrosion Specimen	12
	16.	Thermal-Expansion Specimen	12
	17.	Sheet Bend Specimen	12
	18.	Notched Impact Specimen	13
	19.	Specimen Layout for Udimet-700 Sheet	20
	20.	Typical Stress-Strain Curves for Udimet-700 Sheet (Longitudinal and Transverse)	30
	21.	Typical Compressive Stress-Strain and Tangent Modulus Curves for Udimet-700 Sheet (Longitudinal and Transverse).	31
	22.	Effect of Temperature on the Tensile Properties of Udimet-700 Sheet	32
	23.	Effect of Temperature on the Compressive Properties of Udimet-700 Sheet	32

Figure 24.		Page 33
25.	Axial-Load Fatigue Results for Notched (K = 3.0) Udimet-700 Sheet	33
26	Stress-Rupture and Plastic Deformation Curves for Udimet-700 Sheet	34
27	. Specimen Layout for X5090 Aluminum Sheet	36
28.	Typical Stress-Strain Curves for X-5090 Aluminum Sheet (Longitudinal)	46
29	Typical Stress-Strain Curves for X-5090 Aluminum Sheet (Transverse)	47
30	. Typical Compressive Stress-Strain and Tangent Modulus Curves for X-5090 Aluminum Sheet (Longitudinal)	48
31	. Typical Compressive Stress-Strain and Tangent Modulus Curves for X-5090 Aluminum Sheet (Transverse)	49
32	effect of Temperature on the Tensile Properties of X-5090 Aluminum Sheet	50
33	Effect of Temperature on the Compressive Properties of X-5090 Aluminum Sheet	50
34	Axial-Load Fatigue Results for Unnotched X-5090 Aluminum Sheet	51
35	. Axial-Load Fatigue Results for Notched (K _t = 3.0) X-5090 Aluminum Sheet	51
36	. Stress-Rupture and Plastic Deformation Curves for X-5090 Aluminum Sheet	52
37	. Specimen Layout for AF2-1Da Sheet	54
38	. Typical Tensile Stress-Strain Curves for AF2-10A Sheet (Longitudinal)	64
39	. Typical Tensile Stress-Strain Curves for AF2-1Da Sheet (Transverse)	6\$
40	. Typical Compression Stress-Strain and Tangent Modulus Curves for AP2-1DA Sheet (Longitudinal)	66

			Page
Figure	41.	Typical Compression Stress-Strain and Tangent Modulus Curves for AF2-IDA Sheet (Transverse)	67
	42.	Effect of Temperature on the Tensile Properties of AF2-IDA Sheet	68
	43.	Effect of Temperature on the Compressive Properties of AF2-IDA Sheet	68
	44.	Axial-Load Fatigue Results for Unnotched AF2-IDA Sheet	69
	45.	Axial-Load Fatigue Results for Notched (K _t =3.0) AF2-IDA Sheet	69
	46.	Stress-Rupture and Plastic Deformation Curves for AF2-IDA Sheet	70
	47.	Specimen Layout for Inconel 625 Sheet	73
	48.	Typical Tensile Stress-Strain Curves for Inconel 625 Sheet (Longitudinal)	82
	49.	Typical Tensile Stress-Strain Curves for Inconel 625 Sheet (Transverse)	83
	50.	Typical Compression Stress-Strain and Tangent Modulus Curves for Inconel 625 Sheet (Longitudinal)	84
	51.	Typical Compression Stress-Strain and Tangent Modulus Curves for Inconel 625 Sheet (Transverse)	85
	52.	Effect of Temperature on the Tensile Properties of Inconel 625 Sheet	86
	53.	Effect of Temperature on the Compressive Properties of Inconel 625 Sheet	86
	54.	Axial-Load Fatigue Results for Unnotched Inconel 625 Sheet	87
	55.	Axial-Load Fatigue Results for Notched (K _t =3.0) Incone1 625 Sheet	87
	56.	Stress-Rupture and Plastic Deformation Curves for Inconel 625 Sheet	88
	57.	Specimen Layout for HA-188 Sheet	90
	58,	Typical Tensile Stress-Strain Curves for HA-188 Sheet (Longitudinal)	100

			Page
Figure	59.	Typical Tensile Stress-Strain Curves for HA-188 Sheet (Transverse)	101
	60.	Typical Compression Stress-Strain and Tangent Modulus Curves for HA-188 (Longitudinal)	102
	61.	Typical Compression Stress-Strain and Tangent Modulus Curves for HA-188 Sheet (Transverse)	103
	62.	Effect of Temperature on the Tensile Properties of HA-188 Alloy Sheet	104
	63.	Effect of Temperature on the Compressive Properties of HA-188 Alloy Sheet	104
	64.	Axial-Load Fatigue Results for Unnotched HA-188 Sheet	105
	65.	Axial-Load Fatigue Results for Notched (K _t =3.0) HA-188 Sheet	105
	66.	Stress-Rupture and Plastic Deformation Curves for HA-188 Sheet	106
	67.	<pre>fypical Tensile Stress-Strain Curves for Custom 455 Round Bar (Longitudinal)</pre>	116
	68.	Typical Compression Stress-Strain and Tangent Modulus Curves for Custom 455 Round Bar (Longitudinal)	117
	69.	Effect of Temperature on the Tensile Properties of Custom 455 Round Bar	118
	70.	Effect of Temperature on the Compressive Properties of Custom 455 Round Bar	118
	71.	Axial-Load Fatigue Results for Unnotched Custom 455 Round Bar	119
	72.	Axial-Load Fatigue Results for Notched (K _t =3.0) Custom 455 Round Bar	119
	73.	Stress-Rupture and Plastic Deformation Curves for Custom 455 Round Bar	120
	74.	Specimen Layout for PH 14-8Mo Sheet	122
	75.	Typical Tensile Stress-Strain Curves for PH 14-8Mo	130

List of Figures

			Page
Figure	76.	Typical Tensile Stress-Strain Curves for PH 14-8Mo Sheet (Transverse)	131
	77.	Typical Compressive Stress-Strain and Tangent Modulus Curves for PH 14-8Mo Sheet (Longitudinal)	132
	78.	Typical Compressive Stress-Strain and Tangent Modulus Curves for PH 14-8Mo Sheet (Transverse)	13.
	79.	Effect of Temperature on the Tensile Properties of PH 14-8Mo Sheet	134
	80.	Effect of Temperature on the Compressive Properties of PH 14-8Mo Sheet	134
	81.	Axial Load Fatigue Results for PH 14-8Mo Sheet	135
	82.	Stress-Rupture and Plastic Deformation Curves for PH 14-8Mo Sheet	135
	83.	Creep-Rupture Data for the PH 14-8Mo Sheet at 700, 900, and 1100 F	. 136
	84.	Specimen Layout for Ti-6-2-4-2	138
	85.	Typical Tensile Stress-Strain Curves for Ti-6A1-2Sn-4Zr-2Mo Sheet (Longitudinal)	140
	86.	Typical Tensile Stress-Strain Curves for Ti-6A1-2Sn-4Zr-2Mo Sheet (Transverse)	141
	87.	Typical Compressive Stress-Strain and Tangent Modulus Curves for Ti-6A1-2Sn-4Zr-2Mo Sheet (Longitudinal)	142
	88.	Typical Compressive Stress-Strain and Tangent Modulus Curves for Ti-6A1-2Sn-4Zr-2Mo Sheet (Transverse)	143
	89.	Effect of Temperature on the Tensile Properties of Ti-6A1-2Sn-4Zr-2Mo Sheet	144
	90.	Effect of Temperature on the Compressive Properties of Ti-6A1-2Sn-4Zr-2Mo Sheet	144
	91.	Axial Load Fatigue Results for Ti-6A1-2Sn-4Zr-2Mo Sheet	145
	92.	Axial Load Fatigue Results for Notched (K _t =3.0) Ti-6A1-2Sn-4Zr-2Mo Sheet	145
	93.	Stress-Rupture and Plastic Deformation Curves for Ti-6-2-4-2 Sheet	146
	94.	Ultimate Tensile Strength as a Function of Temperature	154
	95.	Tensile Yield Strength as a function of Temperature	155

The series of the property of the series of

INTRODUCTION

The transfer of the second of

The selection of structural materials to most effectively satisfy new environmental requirements and increased design load requirements for advanced Air Force weapons systems is of vital importance. A major difficulty that design engineers frequently encounter, especially for newly developed materials, materials processing, and product forms, is a lack of sufficient engineering data information to evaluate the relative potential of these developments for a particular application.

The Air Force, in recognition of this need, has sponsored several programs at Battelle's Columbus Laboratories to provide comparative engineering data for newly developed structural materials. The materials included in these programs were carefully selected to insure that they were either available or could become quickly available upon request and that they would represent potentially attractive alloy projections for weapons system usage. The results of these programs have been published in three technical reports, AFML-TR-67-418(1)*, AFML-TR-68-211(2), and AFML-TR-70-252(3).

This technical report is a result of the continuing effort to relieve the above iltuation and stimulate interest in the use of newly developed alloys, or new processing techniques for older alloys, for advanced structures.

The materials evaluated under this program are as follows:

- (1) Udimet 700 sheet
- (2) X5090 sheet
- (3) AF2-IDA sheet
- (4) Inconel 625 sheet
- (5) HA-188 shrat
- (6) Custom 455 round bar
- (7) PH 14-8 Mo sheet
- (8) Ti-6Al-2en-42r-2Mo sheet

The heat-treat or temper conditions selected for evaluation are described in each material section.

The program approach was, as on previous contracts, to search the published literature and to contact metal producers and aerospace companies for any pertinent data. Tests were then scheduled to fill in the gaps in the existing information. Upon completion of each material evaluation, a "data sheet" was issued to make the data immediately available to potential users rather than defer publication to the end of the contract term and the summary technical report. These data sheets are reproduced in the conclusions section of this report.

^{*}Numbers in parentheses refer to references at the end of the text.

Detailed information concerning the properties of interest and test techniques are described in subsequent sections of this report.

EXPERIMENTAL PROCEDURE

Mechanical Properties

The various mechanical properties of interest for each of the materials are as follows:

- (1) Tension
 - (a) Tensile ultimate strength, TUS
 - (b) Tensile yield strength, TYS
 - (c) Elongation, e,
 - (d) Reduction in area, RA
 - (e) Modulus of elasticity, E,.
- (2) Compression
 - (a) Compressive yield strength, CYS
 - (b) Modulus of elasticity, E_c.
- (3) Creep and stress-rupture
 - (a) Stress for 0.2 or 0.5 percent deformation in 100 hours and 1000 hours
 - (b) Stress for rupture in 100 hours and 1000 hours.
- (4) Shear
 - (a) Shear ultimate strength, SUS
- (5) Axial fatigue*
 - (a) Unnotched, R = 0.1, lifetime: 10³ through 10⁷ cycles
 - (b) Notched ($K_t = 3.0$), R = 0.1, lifetime: 10^3 through 10^7 cycles

^{*&}quot;R" represents the algebraic ratio of the minimum stress to the maximum stress in one cycle; that is, $R = S_{min}/S_{max}$. "K_t" represents the Neuber-Peterson theoretical stress concentration factor.

- (6) Fracture toughness, K_{Ic} or K_{c}
- (7) Stress corrosion
 - (a) 80 percent TYS for 1000 hours maximum, 3-1/2 percent NaCl solution.
- (8) Thermal expansion.
- (9) Bend
 - (a) Minimum radius.
- (10) Impact
 - (a) Charpy V-notch.
- (11) Density.

Specimen Identification

A simple system of numbers and letters was used for specimen identification. Coding consisted of a number indicating the type of test and also indicating a comparable area on the sheet, plate, or forging. For certain test types, the number was followed by a letter signifying specimen orientation (L for longitudinal, T for transverse, ST for short transverse). The test types where the letter did not appear were creep, fatigue, and bend since, in these cases, only one specimen orientation was used. The next number in the coding specifies the location from which the specimen blank was taken from the original material configuration. Coding was as follows:

Assigned Number	Test Type
1	Tension
2	Compression
3	Creep and stress-rupture
4	Shear
5	Fatigue
6	Fracture toughness
7	Stress corrosion
8	Thermal expansion

Assigned Number	Test Type		
9	Bend		
10	Impact		
11	Density		

As an example, a specimen numbered 2-T5 is a compression specimen, transverse orientation, cut from Location 5. Also, a specimen numbered 5-12 is a fatigue specimen cut from Location 12.

Specimen designs used in this program are shown in Figures 1 through 18. These specimens conform to dimensional and tolerance specifications outlined in relevent ASTM Standards, in Federal Test Method Standard No. 151a, in AIA Publication ARTC-13(4), or in MAB Publication MAB 192-M(5).

FIGURE I. SHEET AND THIN-PLATE TENSILE SPECIMEN

- Notes: I. Ends must be flat and parallel to within 0.0002".
 - 2. Surface must be free from nicks and scratches.

FIGURE 3. SHEET COMPRESSION SPECIMEN

Note: Ends to be flat and parallel to within 0.0002" of ©

A-1003

FIGURE 4. ROUND COMPRESSION SPECIMEN

FIGURE 5. SHEET CREEP- AND STRESS-RUPTURE SPECIMEN

FIGURE 6. ROUND CREEP- AND STRESS-RUPTURE SPECIMEN

FIGURE 7. SHEET SHEAR TEST SPECIMEN

FIGURE 8. PIN SHEAR SPECIMEN

FIGURE 9. UNNOTCHED SHEET FATIGUE SPECIMEN

FIGURE 10. NOTCHED SHEET FATIGUE SPECIMEN

FIGURE II. UNNOTCHED ROUND FATIGUE SPECIMEN

FIGURE 12 NOTCHED ROUND FATIGUE SPECIMEN

FIGURE 13. SHEET FRACTURE TOUGHNESS SPECIMEN

FIGURE 14. SLOW BEND FRACTURE TOUGHNESS SPECIMEN

FIGURE 15. STRESS-CORROSION SPECIMEN

FIGURE 16. THERMAL-EXPANSION SPECIMEN

FIGURE 17. SHEET BEND SPECIMEN A-1009

AND THE PROPERTY OF THE PROPER

FIGURE 18. NOTCHED IMPACT SPECIMEN

Test Description

Tension

Procedures used for tension testing are those recommended in ASTM methods E8-68 and E21-66T as well as in Federal Test Method standard No. 151a (method 211.1). Six specimens (three longitudinal and three transverse) were tested at each temperature to determine ultimate tensile strength, 0.2 percent offset yield strength, elongation, and reduction in area. The modulus of elasticity was obtained from load-strain curves plotted by an autographic recorder during each test.

All tensile tests were carried out in Baldwin Universal testing machines. These machines are calibrated at frequent intervals in accordance with ASTM method E4-64 to assure loading accuracy within 0.2 percent. The machines are equipped with integral automatic strain pacers and autographic strain recorders.

Specimens tested at elevated temperatures were heated in standard wire-wound resistance-type furnaces. Each furnace was equipped with a Foxboro controller capable of maintaining the test temperature to within 5 F of the control temperature over a 2-inch gage length. Chromel-Alumel thermocouples attached to the specimen gage section were used to monitor temperatures. Each specimen was soaked at temperature at least 20 minutes before being tested.

An averaging-type linear differential transformer extensometer was used to measure strain. For elevated temperature testing, the extensometer was equipped with extensions to bring the transformer unit out of the furnace. The extensometer conformed to ASTM E3-64T Classification Bl having a sensitivity of 0.000l inch/inch. The strain rate in the elastic region was maintained at 0.005 inch/inch/minute. After yielding occurred, the head speed was increased to 0.1 inch/inch/minute until fracture.

Compression

Procedures for conducting compression tests are outlined in ASTM Method E9-67 along with temperature control provisions of E21-66T. All sheet and thin plate tests were carried out in Baldwin Universal testing machines using a North American type compression fixture as shown in Reference 2. Specimen heating was accomplished by a forced-air furnace for temperatures up to 1000F. Specimen temperature was maintained by means of a Wheelco pyrometer. Three Chromel-Alumel thermocouples attached to the fixture were used to monitor temperatures to within 3F of the test temperature. For higher temperatures, wire-wound furnaces were used with controls as described in the tensile test section.

The extensometer used for the compression tests was quite similar to that used in the tensile testing. The extension arms were fastened to the specimen at small notches spanning a 2-inch gage length. The output from the microformer was f d into a load-strain recorder to provide autographic load-strain curves. During testing the strain rate was adjusted to 0.005 inch/inch/minute.

for bar and forging material, cylindrical specimens similar to those described in ASTM E9-67 were used with appropriate temperature control and strain measurement as described above.

Six specimens (three longitudinal and three transverse) were tested at each temperature.

Shear

Single-shear sheet-type specimens were used for sheet and thin-plate material; for bar and forgings, a double-shear pin-type was used. Shear testing was performed at room temperature only. A minimum of six specimens (three longitudinal and three transverse) were used to determine ultimate shear strength.

Bend

The procedures for conducting bend tests are described in Report MAB-192-M. The specimens were placed in a rigid three-point loading fixture and bending tups of various sizes were used to determine the minimum bend radius at room temperature.

Creep and Stress Rupture

Standard dead-weight type creep testing frames were used for the creep and stress-rupture tests. These machines are calibrated to operate well within the accuracy requirements of ASTM method E139-66T.

Specimens similar to those used for tension tests were used for the creep and stress-rupture studies. A platinum strip "slide rule" extensometer is attached for measuring creep strain and three Chromel-Alumel thermocouples are attached to the gage section for temperature measurements. Extensometer measurements were made visually through windows in the furnace by means of a filar micrometer microscope in which the smallest division equals 0.00005 inch.

The furnace was of conventional Chromel A wire wound design with taps along the side to allow for correcting small temperature differences. Furnace temperature was maintained to within \pm 2F by Foxboro controllers in response to signals from the centrally located thermocouple. The temperature of a specimen under test was stabilized for at least 1/2 hour prior to loading.

For each temperature condition creep and stress-rupture data were obtained to 100 and 1000 hours using as many specimens as necessary to obtain precise information. The percent creep deformation obtained was dependent on the material under test. In most instances stress-time curves were defined for 0.2 and 0.5 percent elongation.

Stress Corrosion

Seven specimens of each alloy were tested for susceptibility to stress-corrosion cracking by alternate immersion in 3-1/2 percent sodium chloride solution at room temperature.

Specimens were prepared for testing by degreasing with acetone. Where a surface film remained from heat treating, it was abraded off one side and the adjacent long edge of five of the specimens, and left intact on the other two.

Each specimen was placed in a four-point loading fixture and deflected to a stress corresponding to 80 percent of the tensile yield strength of the particular material. The specimen was electrically insulated from the fixture by means of glass or sapphire rods. Deflection for a given maximum fiber stress was calculated by the following expression:

$$y = \frac{\sigma(3\ell^2 - 4a^2)}{12dE}$$

where

y = deflection

σ = maximum fiber stress

L = distance between outer load points

a = distance between outer and inner load points

d = specimen thickness

E = modulus of specimen material

Each stressed specimen was suspended on an alternate immersion unit. This unit alternately immersed specimens in the 3.5 percent sodium chloride solution for ten minutes and held them above the solution to dry for 50 minutes. Tests were continued to the first sign of cracking or for 1000 hours, whichever occurred first.

Specimens were given frequent low-power microscopic examinations to detect cracks. At the first sign of cracking the specimen was removed. At the conclusion of the test, selected samples were sectioned and examined metallographically for any indication of cracking. Representative samples in which cracks were found were also given a metallographic examination to establish the type and extent of the cracks.

Thermal Expansion

Linear-thermal-expansion measurements were performed in a recording dilatometer with specimens protected by a vacuum of about 2×10^{-5} mm of mercury. In this apparatus a sheet-type specimen is supported between two graphite structures inside a tantalum-tube heater element. On heating, the differential movement of the two structures caused by specimen expansion results in the displacement of the core of a linear-variable differential transformer. The output of the transformer is recorded continuously as a function of specimen temperature. The entire assembly is enclosed in a vacuum chamber.

The furnace is controlled to heat at the desired rate, usually 5F per minute. Errors associated with measurements in this apparatus are estimated not to exceed ±2 percent. This is based on calibration with materials of known thermal-expansion characteristics.

<u>Fatigue</u>

Two types of fatigue equipment were used to perform the axial-load tension fatigue tests. One type was the Krouse axial-load machine, either 5,000- or 10,000-pound capacity. The specific machine was dependent upon the test load requirements dictated by the product form and heat treatment. Fatigue tests on high-strength materials were conducted on the second type machine, namely, the MTS electrohydraulic-servocontrolled testing machine.

The Krouse axial-load equipment is mechanically driven and provides loads on a constant-deflection basis. These machines normally operate at 1725 cpm. Hydraulic load maintainers stabilize the mean load should some creep deformation occur.

The frequency at cycling of the MTS electrohydraulic fatigue machines is variable to beyond 2,000 cpm depending on specimen rigidity. These machines operate with closed-loop deflection, strain, or load control. Under load control used in this program, cyclic loads were automatically maintained (regardless of the required amount of ram travel) by means of load-cell feedback signals. The calibration and alignment of each machine are checked periodically. In each case, the dynamic load-control accuracy is better than ±3 percent of the test load.

For elevated-temperature studies, electrical-resistance, wire-wound furnaces of conventional design were used to heat the specimens. Three Chromel-Alumel thermocouples, placed near the center of each specimen at 1 inch intervals, were employed in furnace calibration. During a fatigue test, the center thermocouple was used in conjunction with a Foxboro controller to adjust electrical input to the furnace. The thermal gradient along the test section was continuously monitored by the other two thermocouples. During tests, the center of the specimen was held to within ±5 degrees of the control temperature.

After machining and heat treating (when required), the edges of all sheet and plate specimens were polished according to Battelle-Columbus' standard practice prior to testing. The unnotched specimens were held against a rotating drum covered with emery paper and polished using a kerosene lubricant. Successively finer grits of emery paper were used, as required, to produce a surface of about 10 rms. Unnotched round specimens were polished in the Battelle-Columbus polishing apparatus. This machine utilizes a rotating belt sander driven rectilinearly along the specimen test section while the specimen is being rotated. The belt speed and specimen speed are adjusted so that polishing marks on the specimen are in the longitudinal direction. The surface finish is about the same as that on the flat specimens. The notched flat specimens were held in a fixture and polished with a slurry of oil and alundum grit applied liberally to a rotating wire. Notched round specimens are polished in the same manner, except that the specimen is rotated.

A shadowgraph optical comparator was used for measuring the test sections of all polished specimens and for inspection of the root radius in the case of the notched specimens.

The stress ratio for all specimens was R=0.1. Stresses for notched $(K_t=3.0)$ and unnotched specimens were selected so that S-N curves were defined between 10^3 and 10^7 cycles using approximately 10 specimens for each set of fatigue conditions.

Fracture Toughness

Two types of fracture toughness tests were used. For heavy section materials, the chevron-notched, slow bend test specimen of ASTM Method E-399-70T was selected. For thinner section sheet materials, center through-cracked tension panels were used as test specimens. All specimens were precracked in fatigue and subsequently fractured in a servocontrolled electrohydraulic testing system of appropriate load capacity.

The slow-bend type specimens were precracked and tested under 3-point loading. The pop-in load for materials susceptible to brittle fracture was determined from the load-compliance curve. When pop-in was not detectable, the curves were analyzed using the 5 percent secant offset method of the ASTM procedure.

The thin sheet center through-crack tension panels were initially sawcut and then precracked in constant amplitude fatigue loading. In order to maintain a flat fatigue crack and not plastically strain the uncracked section, the maximum stresses were adjusted to keep the applied stress-intensity factor less than one-third or one-quarter of that anticipated at fracture. This usually involved stepping down the stresses as the cracking proceeded. The crack was extended to approximately one-quarter of the panel width. Buckling guides were attached and a clip-type compliance gage was mounted in the central notch. The panels were fractured in a rising load test at a stress rate in the range

.002 E <
$$\hat{S}$$
 < .005 E ksi/min

which corresponds nominally to the gross strain rate of standard tensile testing.

MATERIALS INFORMATION AND TEST RESULTS

Udimet 700 Alloy

Material Description

Udimet 700 is one of the older heat-resistant nickel-base alloys that has seen limited use in engines as forging and bar products. The Air Force has funded an intensive effort at Union Carbide Corporation to develop a sheet manufacturing process for this alloy. The material for this evaluation was supplied GFM from this effort. The development history and processing for the Udimet 700 sheet is contained in Reference (6).

The material tested was nominally 0.032-inch-thick sheet.

Processing and Heat Treating

The specimen layout for Udimet 700 sheet is shown in Figure 19. Specimens were machined in the as-received condition and heat-treated as follows:

2150 F for 2 hours with rapid air cool.

1950 F for 4 hours with air cool,

1550 F for 24 hours with air cool,

1400 F for 16 hours with air cool.

This heat treatment is designed to give the best stress-rupture properties while maintaining good mechanical properties.

Test Results

Tension. Results of tests in both the longitudinal and transverse directions at room temperature, 1000 F, 1400 F, and 1800 F are presented in Table I. Stress-strain curves at temperature are shown in Figure 20. Effect-of-temperature curves are shown in Figure 22.

Compression. Results of tests in the longitudinal and transverse directions are given in Table II for room temperature, 1000 F, 1400 F, and 1800 F. Compressive stress-strain and tangent-modulus curves at temperature are shown in Figure 21. Effect-of-temperature curves are shown in Figure 23.

# 1	T	505	530	640
51	513	525	539	549
52	514	526	538	550
53	515	527	539	551
54	516	528	540	552
55	517	529 Fatigue	541	553
56	518	530 2 X 8	542	554
57	519	531	543	555
58	520	532	544	556
59	521	533	545	557
510	522	534	546	558
511	523	535	547	559
512	524	536	548	560
\$1 \$1	- 271 P	20 31	IT!	
		N - 32	115	
/ 162		NN 33	11.2	
Siress/ 95	275	NN 34	174	
Corrosion 95	276	39	175	
9 Y	→ 64 217 N	NN 36	ITS Tension	╌┧╏╏╏╏
30	219 6	N N 36 5 37	177	======
09	L	1 11.3KI L.F. (40)	178	
	SAID	22 39	179	N-0
	2412 10	№ 39 = 5 310	LITIO	
	4TI	311	JT11	
412		312	ITIZ	
	473	314		
	474	315		
Made - 12 - 11 - 11 - 12 - 12 - 12 - 12 - 1				A-iOii

FIGURE 19. SPECIMEN LAYOUT FOR UDIMET-700 SHEET

Shear. Test results at room temperature for both the longitudinal and transverse directions are given in Table III.

Bend. Test results are given in the data sheet in the conclusions section of this report.

Fracture Toughness. Test specimens were the full sheet thickness (0.032 inch) x 18 inch x 48 inch with an EDM flaw in the center. The average K_C value obtained was 210 ksi $\sqrt{\text{in}}$. The net section yield stress at fracture was less than the tensile yield strength of the material. Therefore, the K_C value is considered valid.

Fatigue. Axial-load tests were conducted at room temperature, 1000 F, and 1400 F for unnotched and notched transverse specimens. Test results are presented in Tables IV and V. S-N curves are shown in Figures 24 and 25.

Creep and Stress Rupture. Tests were conducted at 1000 F, 1400 F, and 1800 F. Results are presented in tabular form in Table VI and as log stress-versus-log time in Figure 26.

Stress Corrosion. Specimens were tested as described in the experimental procedure section of this report. No failures or cracks occurred in the 1000-hour test duration.

Thermal Expansion and Density. Values obtained are given in the "data sheet" in the conclusions section of this report.

TABLE I. TENSION TEST RESULTS FOR UDIMET 700 SHEET

	Ultimate Tensile	0.2 Percent	Planatian	Toroile
Speedman	Strength,	Offset Yield Strength,	Elongation in 2 inches,	Tensile Modulus,
Specimen No.	ksi	ksi	percent	psi x 106
			percent	ps1 x 10
	Longi	tudinal at Room	Temperature	
1L1	224.0	150.0	22.0	32.6
1L2	224.0	150.0	22.0	32.4
1L3	226.0	151.0	21.0	33.7
	Tran	sverse at Room	Temperature	
1 T 1	214.0	150.0	20.0	34.0
1T2	213.0	150.0	21.0	33.4
113	214.0	150.0	22.0	34.9
		Longitudinal at	1000 F	
	23.7.0		16.0	20. 4
11.4 11.5	214.0 213.0	141.0 139.0	16.0	30.4 28.4
11.5 11.6	212.0	139.0	15.0	28.5
		Transverse at	1000 F	
174	199.0	138.0	16.0	34.6
175	201.0	138.0	18.0	30.5
176	199.0	139.0	15.0	30.0
		Longitudinal at	1400 F	
11.7	128.0	122.0	35.0	23.4
11.8	127.0	121.0	35.0	22.7
1L9	127.0	121.0	34.0	23.4
		Transverse at	1400 F	
177	127.0	124.5	25.0	24.8
178	128.0	125.0	25.0	25.1
119	128.0	125.0	30.0	25.4

TABLE I. (Concluded)

Specimen	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 inches, percent	Tensile Modulus, psi x 106
	3	Longitudinal at	1800 F	
11.10	26.5	22.7	50.0	(a)
1L11	26.9	22.7	48.0	12.7
1L12	27.4	23.1	36.0	14.0
		Transverse at	1800 F	
1710	26.4	22.2	36.0	14.9
1711	27.1	23.3	35.0	(e)
1112	27.2	23.2	38.0	12.5

⁽a) Load-strain curve not suitable for modulus determination.

TABLE II. COMPRESSION TEST RESULTS FOR UDIMET 700 SHEET

	0.2 Percent	
	Offset Yield	Compression
Specimen	Strength,	Modulus, psi x 106
No.	ksi	ps1 x 10°
Longi	tudinal at Room To	emperature
2L1	160.0	34.7
2L2	160.0	33.1
2L3	162.0	32.8
Tran	sverse at Room Te	perature
2 T 1	157.0	36.6
2 T 2	163.0	35.4
213	163.0	36.2
	Longitudinal at 1	000 F
21.4	142.0	28.8
21.5	149.0	30.7
21.6	149.0	33.6
	Transverse at 10	00 F
214	145.0	32.1
215	148.0	35.1
216	150.0	31.6
	Longitudinal at l	400 F
2L7	123.0	23.9
2L8	126.0	23.9
2L9	126.0	25.1
	Transverse at 14	100 F
217	123.0	24.9
218	125.0	26.1
279	127.0	22.8

TABLE II. (Concluded)

	0.2 Percent Offset Yield	Compression
Specimen	Strength,	Modulus,
No.	ksi	psi x 10 ⁶
1	ongitudinal at l	.800 F
2L10	21.6	12.6
2L11	21.8	12.4
2L12	21.6	11.9
	Transverse at 18	300 F
2710	(a)	(a)
2 T 11	22.2	11.6
2 T 12	20.8	11.6

⁽a) Machine malfunction.

TABLE III. SHEAR TEST RESULTS FOR UDIMET 700 SHEET AT ROOM TEMPERATURE

Specimen No.	Ultimate Shear Strength, ksi
	Longitudinal
4L1 4L2 4L3 4L4	144.0 145.0 142.0 142.0
	Transverse
4T1 4T2 4T3 4T4	150.0 149.0 (a) 145.0

⁽a) Did not full in shear.

TABLE IV. AXIAL-LOAD FATIGUE TEST RESULTS FOR UNNOTCHED UDIMET 700 SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cyclas
	Room Temperatu	re
543	200	8
544	180	24,926
545	160	71,159
540	140	168,024
541.	120	342,670
542	110	525,300
539	100	847,200
538	90	1,418,800,
537	80	10,075,600 (a)
	1000 F	
558	180	8,700
556	170	8,200
550	160	15,200
549	150	15,600
551	140	1.837 100.
548	12C	10,024,800 ^(a)
	1400 F	
	directivity burginghingson,	
553	160	9,700
531	150	2,900
554	140	105,200
532	130	1,304,100
555	120	439,500
546	110	2,673,100
557	100	6.484.000
552	90	14,000,100 ^(a)

⁽a) Did not fail.

TABLE V. AXIAL-LOAD FATIGUE TEST RESULTS FOR NOTCHED ($K_{\rm t}$ = 3.0) UDIMET 700 SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperature	
530	140	. 7,800
5 29	130	13,300
528	120	15,300
526	110	16,400
527	90	35,400
524	80	84,700
525	70	166,700
523	60	217,300
522	50	533,200
521	40	10,028,500 (a)
	1000 F	
517	130	2,700
520	120	4,700
512	110	6,900
519	100	8,700
511	90	14,100
513	85	32,800
516	80	29,200
53	6 ύ	2 040 000
510	50	11,583,100 ^(a)
	1400 F	
56	9 0	4,700
514	80	9,900
57	75	56,700
51	70	267,800
58	65	562 200
552	60	14,567,900 (a)
		

⁽a) Did not fall

TABLE VI. SUMMARY DATA ON CREEP AND RUPTURE PROPERTIES OF UDIMET 700 SHEET

Specimen	Stress,	Temp.	Hours to Indi	Indicated	Creep De	cated Creep Deformation, percent	percent	Initial Strain,	Rupture Time,	Elongation in 2 Inches,	Minimum Creep Rate,
No.	ksi	F		0.2	0.5	1.0	2.0	percent	hr	percent	percent/hr
U-316	199.0	1000	1		1	1	ł		On loading	12.4	1
U-317	190.0	1000	0.01	0	0.15	0.4	1.5	12.12	8.3	21.3	0.58
U-312	180.0	1000	0.1	0.2	9.0	2.5	10.0	8.60	100.6	20.0	80.0
U-37	160.0	1000	0.47	7	18.0	165.0	925.0	4.102	604.5(2)	5.69	0.0012
U-314	135.0	1000	2000.0(+)	7500.0(1)		ł	ļ	0.496	$626.7_{(2)}^{(2)}$	0.571	0.000018
U-313	120.0	1000	1	ł	1	1	1	0.386	456.4	0.422	:
U-38	80.0	1400	0.3	0.7	1.8	3.7		0.147	13.3	8.0	0.24
	70.0	1400	1.4	3.0	0.6			0.149	53.4	11.6	0.050
6 U-39	52.0	1400	10.0	20.0	47.0	80.0	130.0	0.145	248.3	13.3	600.0
U - 310	35.0	1400	32.0	84.0	237.0/1			0.078	1317.0(2)	15.6	0.0017
U-315	20.0	1400	185.0	440.0	1160.0'17	• •	ł	0.062	407.5	0.255	0.0004
U-31	15.0	1800	0.02	0.04	0.08	0.16	0.33		1.4	26.7	6.0
U-32	10.0	1800	0.04	0.10	0.20	0.40	0.85	0.193	5.0	27.1	2.0
U-33	4.0	1800	0.13	9.0	1.7	3.6	7.6		56.5	39.6	0.26
U-35	1.6	1800	2.1	5.0	13.0	25.0	44.0(1)		838.4(2)	122.7	0.040
0-311	0.4	1800	100.0	145.0	292.0	585.0	1100.011	0	413.7(2)	0.685	0.0020

3E

Estimated. Test discontinued.

FIGURE 20. TYPICAL STRESS-STRAIN CURVES FOR UDIMET-700 SHEET (LONGITUDINAL AND TRANSVERSE)

FIGURE 21. TYPICAL COMPRESSIVE STRESS-STRAIN AND TANGENT MODULUS CURVES FOR UDIMET-700 SHEET (LONGITUDINAL AND TRANSVERSE)

FIGURE 22. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF UDIMET-700 SHEET

FIGURE 23. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROP-ERTIES OF UDIMET-700 SHEET

FIGURE 24. AXIAL-LOAD FATIGUE RESULTS FOR UDIMET-700 SHEET

FIGURE 25. AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K,=30) UDIMET-700 SHEET

FIGURE 26. STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR UDIMET-700 SHEET

X5090 Alloy

Material Description

Alloy X5090 is a recent development of the Aluminum Division, Olin Corporation. As a basic aluminum-7% magnesium alloy, it is designed to offer exceptional mechanical properties in the cold-worked and stabilized temper without susceptibility to stress-corrosion cracking. A combination of controlled chemistry of minor elements and controlled thermal processing has resulted in light gage, full-hard sheet materials with mechanical properties in excess of those of 2024-T3. The alloy, as reported by Olin, is characterized by low density, excellent fracture toughness, excellent fatigue strength, and excellent general corrosion resistance, as well as freedom from susceptibility to stress-corrosion cracking.

Composition limits of this alloy are as follows:

Chemical	
Composition	Percent
Silicon	0.50 max
Iron	0.50 max
Copper	0.25 max
Manganese	0.35 max
Magnesium	6.0 to 8.0
Chromium	0.05 to 0.30
Zinc	0.20 max
Titanium	0.015 max
Beryllium	0.001 to 0.002
Boron	0.001 to 0.050
Others	0.15 max
Aluminum	balance

The material was obtained as 0.025-inch x 38-inch x 96-inch sheet.

Processing and Heat Treating

The specimen layout for X5090 alloy is presented in Figure 27. Specimens were tested in the 75 percent cold-rolled and stabilized -H38 condition.

51	5:3	525	539	549
52	514	526	538	550
53	515	527	539	551
54	516	528	540	552
55	517	529 Fatigue	541	553
56	518	530 2 x 8	542	554
57	519	531	543	555
58	520	532	544	556
59	521	533	545	557
510	522	534	546	558
511	523	535	547	559
512	524	536	548	560
91 92 93 93 95 Corrosion 95 96 99	273 214 215 215 6 216 217 218 219 219 210 210 210		TT; TT2 TT3 TT4 TT5 TT6 Tension TT7 TT8 TT9 TT10 TT10 TT11	11.2 11.5 11.4 11.15 11.5 11.15 11.6 11.17
	474			

4-K)12

FIGURE 27. SPECIMEN LAYOUT FOR X5090 ALUMINUM SHEET

Test Results

Tension. Results of tests in both the longitudinal and transverse directions at room temperature, 200 F, 325 F, and 400 F are presented in Table VII. Stress-strain curves at temperature are shown in Figures 28 and 29. Effect-of-temperature curves are shown in Figure 32.

Compression. Results of tests at room temperature, 200 F, 325 F, and 400 F for both the longitudinal and transverse directions are given in Table VIII. Compressive atress-strain and tangent-modulus curves are presented in Figures 30 and 31. Effect-of-temperature curves are shown in Figure 33.

Shear. Results of room-temperature tests in the longitudinal and transverse directions are given in Table IX.

Bend. Results of bend tests show the minimum bend radius to be about 4t in the longitudinal direction and 3.5t in the transverse direction.

Fracture Toughness. Test specimens were sheet thickness x lfl inch x 48 inch with an EDM flaw in the center. The average $K_{\rm C}$ obtained was 49 ksi/in. The net section yield stress at fracture was less than the tensile yield strength of the material. Therefore, the $K_{\rm C}$ values are considered valid.

Fatigue. Axial-load tests were conducted at room temperature. 200 F. and 325 F for transverse specimens, both unnotched and notched. Tabular test results are presented in Tables X and XI. S-N curves are shown in Figures 34 and 35.

Green and Stress Ruptule. Results of transverse tests at 200 F. 225 :. and 400 F are given in tabular form in Table XII. Log stress-versus-log time curves are shown in Figure 36.

Stress Corrosion. Specimens were tested as described in the experimental procedure section of this report. No failures or cracks occurred in the 1000-hope test duration.

Thermal Expansion and Density. Values obtained are given in the "data sheet" in the conclusions section of this report.

TABLE VII. TENSION TEST RESULTS FOR X5090 ALUMINUM SHEET

	Ultimate	0.2 Percent		
	Tensile	Offset Yield	Elongation	Tensile
Specimen	Strength,	Strength,	in 2 Inches,	Modulus,
No.	ksi	ksi.	percent	psi x 10 ⁶
	Longi	tudinal at Room	Temperature	
11.1	73.5	58.4	6.0	12.5
11,2	75.1	59.2	8.0	12.8
1L3	73.1	58.4	6.5	13.4
	Tran	sverse at Room '	Temperature	
171	72.6	52.6	10.0	10.5
172	72.0	52.6	9,0	10.4
173	72.4	53.2	8.0	10.6
		longitudinal at	200 F	
	62.2(a)			0.4
11.4	62.4(a)	54.1 54.8	11.5	9.4 9.2
11.5 11.6	63.3 ^(a)	54.8	12.0 15.5	9.5
		Transverse st	200 F	
174	61.8	50.6	20.0	9.4
175	62.3	50.9	21.0	9.2
176	61.8	59.6	22.0	9.7
		Longitudinal at	325 F	
11.7	35.4	30.7	39.0	7.0
11.8	35.9	30.1	50.0	7.2
119	36.5	30.8	52.0	7.2
		Transverse at	325 F	
177	41.1	36.9	42.0	7.5
118	41.8	38.3	39.0	7.7
179	41.7	37.7	36.0	7.3

TABLE VII. (Concluded)

Specimen No.	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, percent	Tensile Modulus, psi x 106
		Longitudinal a	t 400 F	
1L10	18.9	12.7	84.0	(b)
1L11	19.3	12.8	82.0	4.8
1L12	19.4	14.5	72.0	4.2
		Transverse at	400 F	
1710	22.8	19.6	38.0	5.6
1711	23.4	20.6	56.0	5.0
1712	22.4	19.6	54.0	4.8

⁽a) Failed under knife edge.

⁽b) Load strain curve not suitable for modulus determination.

TACLE VIII. COMPRESSION TEST RESULTS FOR X5090 ALUMINUM SHEET

	0.2 Percent	
	Offset Yield	Compression
Specimen	Strength,	Modulus,
No.	ksi	psi x 10 ⁶
Longitu	idinal at Room (Temperature
2L1	57.4	10.6
2L2	57.4	10.5
2L3	57.6	10.5
Trans	verse at Room T	emperature
2T1	62.8	10.8
2T2	63.8	10.7
2T3	64.0	10.7
	Longitudinal at	200 F
2L4	57.1	10.6
2L5	57.8	10.5
2L6	59.0	10.8
	Transverse at	200 F
	Transverse ac	200 F
2T4	65.0	11.2
2T5	67.6	11.1
2T6	65.7	11.3
	Longitudinal at	325 F
	10.7	7.0
2L7	40.6	7.8
2L8	42.6	7.9
2L9	41.5	8.5
	Transverse at	325 F
217	46.2	8.2
° 217	48.3	8.3
219	46.5	8.0
.,		

TABLE VIII. (Concluded)

Specimen	0.2 Percent Offset Yield Strength, ksi	Compression Modulus,6 psi x 10
Lo	ongitudinal at	400 F
2L10	18.1	7.1
2L11	20.6	6.8
2L12	18.7	6.6
-	Transverse at 40	
2T10	29.9	6.8
2T11	29.9	6.4
2T12	27.8	6.8

TABLE IX. SHEAR TEST RESULTS FOR X5090 ALUMINUM SHEET AT ROOM TEMPERATURE

Specimen No.	Ultimace Shear Strength, ksi
Lo	ngitudinal
4Lì	42.9
4L2	42.9
4L3	43.0
4L4	43.1
<u>T</u> :	ransverse
4T1	41.9
4T2	41.9
4T3	41.9
4T4	41.9

TABLE X. AXIAL LOAD FATIGUE TEST RESULTS FOR UNNOTCHED X5090 ALUMINUM SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperatur	<u>e</u>
5-56	80.0	5
5-52	70.0	7,562
5-55	60.0	21,289
5-51	50.0	39,210
553	40.0	112,340
5-57	35.0	4,731,010
5-54	30.0	10,050,800 ^(a)
	200 F	
5-50	60.0	40
5-49	60.0	440
5-46	55.0	4,520
5-48	50.0	19,670
5-42	45.0	28,440
5-36	40.0	112,560
5-43	35.0	58,390
5-44	30.0	1,052,540
5-45	27.5	1.743.190.
5-37	35.0	15,533,200 (a)
	<u>325 F</u>	
5-31	50.0	30
5-35	50.0	50
5-33	45.0	12,540
5 - 32	40.0	21,460
5-38	35.0	63,110
5-34	30.0	96,460
5-41	25.0	507,670
5-39	20.0	791.900
5-40	15.0	10,624,100 (a)
	-	

⁽a) Did not fail.

TABLE XI. AXIAL-LOAD FATIGUE TEST RESULTS FOR NOTCHED (K_{t} = 3.0) X5090 ALUMINUM SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperatur	<u>:e</u>
5-29	50.0	1,200
5-30	40.0	4,860
5-25	35.0	8,400
5-28	30.0	40,720
5-27	25.0	8,210
5-24	25.0	24,310
5-26	20.0	2,040,540
5-13	20.0	8,278,900
5-17	15.0	4,468,480
	200 F	
5-19	45.0	1,600
5-14	40.0	3,510
5-21	35.0	7,080
5-40	30.0	12,150
5-20	25.0	27,057
5-23	20.0	58,120
5-22	15.0	387,540,
5-12	12.5	12.158.200\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5-18	10.0	16,671,360 ^(a)
	325 F	
5-10	40.0	750
5-9	35.0	1,650
5-11	30.0	4,450
5-8	25.0	8,960
5-15	20.0	20,000
5-6	15.0	62,460
5~5	10.0	492,860 (a)
5-1	5.0	10,003,400

⁽a) Did not fail.

TABLE XII. SUMMANY DATA ON CREEP AND RUPTURE PROPERTIES OF X-5090 ALUMINUM SHEET

	Stress, Ter Esi	Temp, .	Hours to	Indicated 0.2	Hours to Indicated Creep Deformation, percent 0.1 0.2 0.5 1.0 2.0	rmation,	percent 2.0	Initial Strain, percent	Rupture Time, hr	Elongation in 2 Inches, percent	Minimum Creep Rate, percent/hr
		g	0.1	0.25	1.0	1	4.5	Į.	20.8	24.9	0.27
		00	0.75	2.2	10.0	26.0	53.0	0.418	204.7	28.0	0.035
		00	2.2	6.3	25.0	85.0	142.0		580.6	29.8	0.014
		00	4.5	10.0	0.06	"	520.0		455.2(5)	1,986	0.0034
		00	20.0	102.0	515.0	1300.0(4)	2100.0(4)		529.7(5)	0.742	0.00064
		200	70.0	0.094	1850.0(4)	!	-		523.2(0)	0.342	0.00020
3-9 25.0		125	0.02	90.0	0.18		0.9		5.0	37.8	2.0
		125	0.2		1.6		13.0		88.6	27.6	0.12
		125	9.0		6.0	0.04	197.0	0.016	$1307.1_{(E)}$	28.9	0.0050
		325	70.0		1100.0(a)		l		335.4(0)	0.233	0.0004
•		0	0.04		0.3		1.4	0.338	12.7	29.0	1.3
		00	0.2		1.7		11.0	0.215	91.5	41.3	0.15
		400	9.0		16.0	46.0	160.0	0.186	979.3(F)	28.0	0.0086
3-12 1.5		001	100.0	335.0	3000.0		1	0.011	695.3(5)	0.251	0.00010

⁽a) Estimate.(b) Test discontinued.

FIGURE 28. TYPICAL STRESS-STRAIN CURVES FOR X-5090 ALUMINUM SHEET (LONGITUDINAL)

FIGURE 29. TYPICAL STRESS-STRAIN CURVES FOR X-5090 ALUMINUM SHEET (TRANSVERSE)

FIGURE 30. TYPICAL COMPRESSIVE STRESS-STRAIN AND TANGENT MODULUS CURVES FOR X-5090 ALUMINUM SHEET (LONGITUDINAL)

FIGURE 31. TYPICAL COMPRESSIVE STRESS-STRAIN AND TANGENT MODULUS CURVES FOR X-5090 ALUMINUM SHEET (TRANSVERSE)

FIGURE 32. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF X5090 ALUMINUM SHEET

FIGURE 33. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROP-ERTIES OF X5090 ALUMINUM SHEET

FIGURE 34. AXIAL-LOAD FATIGUE RESULTS FOR UNNOTCHED X5090 ALUMINUM SHEET

FIGURE 35. AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K) = 3.0) X5090 ALUMI-NUM SHEET

SHEET ALUMINUM FOR X-5090 STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES 35 FIGURE

AF2-IDA Alloy

Material Description

AF2-IDA is a recently developed high-temperature nickel-base alloy. It was developed by the Universal-Cyclops Specialty Steel Division under Air Force Contract AF 33(616)-1729. Early development was in thick-section form for turbine wheel/bucket applications. An evaluation of extruded material is reported in Reference (3).

A sheet manufacturing process for AF2-IDA was developed at Union Carbide Corporation, also under Air Force Sponsorship (Contract F33615-3883). The 0.060-inch material evaluated and reported herein was supplied by the Air Force from the sheet manufacturing program.

The composition of the alloy was as follows:

Chemical	
Composition	Percent
Carbon	0.32
Molybdenum	2.98
Zirconium	0.10
Tantaluz	1.60
Tungates	5.79
Cobalt	9.68
Chronium	12.18
Aluminum	4.36
Titanium	3.16
Boron	0.014
Nickel	Balance

Processing and Heat Treating

The specimen layout for AF2-IDA is shown in Figure 37. The heat treatment used for the material was as follows:

2225 F for 2 hours with rapid air cool,

1950 F for 2 hours with air cool,

1400 F for 16 hours with air cool.

FIGURE 37 SPECIMEN LAYOUT FOR AF2-IDA SHEET

Test Results

Tension. Test results at room temperature, 1000 F, 1400 F, and 1800 F for both the longitudinal and transverse directions are given in tabular form in Table XIII. Stress-strain curves are presented in Figures 38 and 39. Effect-of-temperature curves are shown in Figure 42.

Compression. Results of tests in both the longitudinal and transverse directions at room temperature, 1000 F, 1400 F, and 1800 F are presented in Table XIV. Compressive stress-strain and tangent-modulus curves at temperature are shown in Figures 40 and 41. Effect-of-temperature curves are shown in Figure 43.

Shear. Results of room-temperature shear tests in the longitudinal and transverse directions are presented in Table XV.

Fatigue. Axial-load tests were conducted at room temperature, 1000 F, and 1400 F for both unnotched and notched transverse specimens. Tabular test results are presented in Tables XVI and XVII. S-N curves are shown in Figures 44 and 45.

Creep and Stress Rupture. Transverse tests were conducted at 1000 F, 1400 F, and 1800 F. Test results are given in tabular form in Table XVIII and presented as log stress-versus-log time curves in Figure 46.

Stress Corrosion. Tests were performed as described in the experimental procedure section of this report. No failures or cracks occurred in the 1000-hour test duration.

Thermal Expansion and Density. Values obtained are shown in the "data sheet" in the conclusions section of this report.

TABLE XIII. TENSION TEST RESULTS FOR AF2-1DA SHEET

Specimen No.	Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, percent	Tensile Modulus, psi x 10 ⁶
	Long	itudinal at Room	n Temperature	
	<u>nong.</u>	z z z z z z z z z z z z z z z z z z z		
1L1	190.0	145.0	11.0 ^(a)	31.2
1L2	191.0	143.0	12.5	31.8
1L3	194.0	145.0	12.5	32.8
	Tra	nsverse at Room	Temperature	
1 10 7	177 0	142.0	10.5 ^(b)	20.7
1T1 1T2	177.0 180.0	143.0 143.0	11.0	28.7 33.4
112 1T3	183.0	141.0	14.5	30.4
113	103.0	¥4X.0	2110	3011
		Longitudinal at	1000 F	
1L4	151.0	136.0	2.0	26.9
1L5	154.0	137.0	2.5	28.5
1L6	154.0	139.0	2.5	28.8
		Transverse at	1000 F	
1T4	154.0	139.0	2,0	29.5
1T5	149.0	134.0	2.0	27.6
1T6	152.0	138.0	1.5	27.6
		Longitudinal at	1400 F	
1L7	126.0		0.5	25.4
1L8 1L9	132.0 132.0	131.0 129.0	1.0 1.0	23.4 24.1
TUJ	132.0	127.0	1.0	24.1
		Transverse at	1400 F	
1T7	131.0	129.0	1.5	24.6
1T8	131.0	131.0	1.5 0.5(c)	23.4
1T9	132.0	130.0	1.0	

TABLE XIII. (Concluded)

Specimen No.	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, percent	Tensile Modulus, psi x 10 ⁶
		Longitudinal at	1800 F	
1L10 1L11 1L12	44.3 45.9 48.9	36.2 37.2 38.9	7.0 ^(d) 8.5 8.0	17.9 18.5
1012	40.9	Transverse at		10.5
		iransverse at		
1T10	47.5	39.9	4.0 ^(c)	
1 T 11	48.4	40.6	5.5	19.7
1T12	48.6	40.1	6.5	17.7

⁽a) Failed in bench mark.

⁽b) Failed outside bench mark.

⁽c) Failed under knife edge.

⁽d) Grip pin sheared. Specimen width reduced to 0.250 inch and retested.

TABLE XIV. COMPRESSION TEST RESULTS FOR AF2-1DA SHEET

	0.2 Percent	
	Offset Yield	Compression
Specimen	Strength,	Modulus,
No.	ksi	psi x 10 ⁶
Tonati	tudinal at Daam To	
rougi	tudinal at Room Te	emperature
2L1	151.0	30.9
2L2	156.0	31.8
2L3	152.0	31.3
W	arrango at Boam Tor	
Iran	sverse at Room Ter	peracure
2T1	156.0	32.7
2T2	152.0	32.6
2T3	151.0	31.8
		000 B
•	Longitudinal at 1	000 F
2L4	145.0	36.8
2L5	143.0	34.9
2L6	141.0	31.1
	Transverse at 10	ሰለ ጆ
	Transverse at 10	00 F
2T4	145.0	30.3
2T5	145.0	(a)
2T6	140.0	29.0
	Longitudinal at 1	400 F
2L7	134.0	26.2
2L8	136.0	25.3
2L9	139.0	(a)
	Transverse at 140	0 F
2T7	136.0	25.4
2T8	134.0	26.7
2T9	126.0	27.0

TABLE XIV. (Concluded)

Specimen	0.2 Percent Offset Yield Strength, ksi	Compression Modulus, psi x 106
·	Longitudinal at 1	L800 F
2L10	34.0	(a)
2L11	36.5	17.6
2L12	36.1	17.7
	Transverse at 18	300 F
2T10	37.8	(a)
2T11	39.1	18.4
2T12	39.7	18.0

⁽a) Curve not suitable for modulus.

TABLE XV. SHEAR TEST RESULTS FOR AF2-1DA SHEET

Specimen No.	Ultimate Shear Strength, ksi
Lo	ongitudinal
4L-1 4L-2 4L-3 4L-4	(a) (a) 123.0 118.0
1	ransverse
4T-1 4T-2 4T-3 4T-4	(a) 122.0 117.0 121.0

⁽a) Did not fail in shear.

Statistics and the second of the second
TABLE XVI. AXIAL-LOAD FATIGUE TEST RESULTS FOR UNNOTCHED AF2-1DA SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperature	
58	190	50
54	180	2,430
53	160	8,350
52	140	25,020
55	130	62,330
56	120	112,540
57	110	84,300
5 9	100	370,200
510	85	205,400
511	75	485,900
512	65	2,154,900
	1000 F	
517	160	5,050
516	140	7,900
515	120	62,860
514	100	344,220
519	80	310,750
521	80	4,478,720
	<u>1400 F</u>	
520	160	10
529 523	160 80	10 400
523 528	70	8,700
525	60	102,900
527	50	601,200
526	40	8,010,400

TABLE XVII. AXIAL-LOAD FATIGUE TEST RESULTS FOR NOTCHED (K = 3.0) AF2-1DA SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles

532	140	2,420
531	110	6,290
542	80	22,500
543	60	72,960
533	40	1,068,600
534	35	1,077,400 (a
535	25	11,610,900 ^{(a}
	1060 F	
545	100	1,460
550	80	4,880
544	70	11,580
549	60	18,550
546	50	19,370
548	40	8,373,670
	1400 F	
560	140	10
559	80	300
551	70	740
553	60	3,000
552	50	3,100
558	40	21,960
556	30	553,000
554	30	7,949,300
555	20	12,958,000 (a

⁽a) Did not fail.

TABLE XVIII. SUPPARY DATA ON CREEP AND RUPTURE PROPERTIES FOR AF2-IDA SHEET

いまい こうしょう かいこうかん くんじょう かんかいこう かいような 一般ない 大変な 大変な しゅうしゅう

Specimen	Stress,	Tenc.	Fours to	o Indicated	Creen Bef	ormation.	, contract	Initial	Rupture	Elongation	Minimum
No.	ksi	[h.	0.1	0.1 0.2 0.5 1.0 2.0	0.5	1.0	2.0	percent	hr	in 2 inches, percent	creep kare, percent/hr
A£2-5	160	1000	ľ	1	ł	1		i	On loading	7 '	
AF 2-8	150	1000	0.3	1.0	1	i	i		on roading	0 6	7.
AF2-11	145	1000	1.6	18.0	1	;	ł	1.495	24.3	6.0	0.0047
AF 2-10	140	1000	120.0	160.0(4)	1	:	l i	0.623	164.0	6.0	0.00026
AF2-2		1400	2.5	6.5	20.0	ł	}	177	25.2	o C	0000
AF2-3	70	1400	3.0	14.0	46.0	*	{	0.413	62.6	7.7	0.022
AF2-6		1400	10.0	72.0	245.0	!	1	0.257	411.7	6 · C	0.003
AF2-9		1400	30.0	200.0	830.0(4)	Į.	1	0.199	335.9(b)	0.468	0.00048
AF2-13		1400	118.0	625.0	28no.0(a)	ł	i i	0.160	626.9(b)	0.361	0.00015
AF2-1	70	1800	90.08	0.2	0.7	99	3.5	0.298	8,9	7.9	15 0
AF2-4	10	1800	0.45	1.7	7.5	16.5	32.0	0.157	73.7		0.01
AF2-7	vi	1800	12.0	റ	85.0	16	275.0	0.016	736 8	13.7	0.000
AF2-12	2.5	1800	0.044	900.0(a)	2900.0(a)			0	842.7(b)	0.171	0.00015
CONTRACTOR OF THE PERSON OF TH		A. S.	The state of the s								

(e)

Estimated. Test discontinued.

FIGURE 38 TYPICAL TENSILE STRESS-STRAIN CURVES FOR AF2-IDA SHEET (LONGITUDINAL)

FIGURE 39. TYPICAL TENSILE STRESS-STRAIN CURVES FOR AF2-IDA SHEET (TRANSVERSE)

FIGURE 40. TYPICAL COMPRESSION STRESS-STRAIN AND TANGENT MODULUS CURVES FOR AF2-IDA SHEET (LONGITUDINAL)

FIGURE 41. TYPICAL COMMERCESSION STOCKS STRAIN AND TANGENT MODULUS CURVES FOR AFZ-IDA SHEFT (CRANSVERSE)

FIGURE 42. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF

FIGURE 43. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF AF2-IDA SHEET

FIGURE 44 AXIAL-LOAD FATIGUE RESULTS FOR UNNOTCHED AF2-IDA SHEET

FIGURE 45. AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K: 30) AF2-IDA SHEET

STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR AF2-IDA SHEET 46. FIGURE

Inconel 625 Alloy

Material Description

Inconel 625 is a relatively new product of Huntington Alloy Products Division of The International Nickel Company. It is reported to have high strength and toughness from cryogenic temperatures to 2000 F. Inconel 625 is a nonmagnetic alloy deriving its strength from the stiffening effect of molybdenum and columbium on its nickel-chromium matrix. It has good oxidation resistance and is virtually immune to chloride-ion stress-corrosion cracking.

The alloy is readily fabricated by common industrial practices and has excellent weld qualities, requiring no postweld thermal treatment for maintenance of its corrosion resistance. The material has been used in numerous aerospace applications and is currently being evaluated for use in the chemical and marine fields.

The composition of the material evaluated on this program is as follows:

Chemical	Danie a and b
Composition	Percent
Carbon	0.04
Manganese	0.04
Iron	3.30
Sulfur	0.006
Silicon	0.20
Chromium	22.12
Aluminum	0.27
Titanium	0.25
Molybdenum	9.13
Columbium + . Tantalum	3.47
Nickel	Balance

The material was obtained as 0.125-inch x 36-inch x 120-inch sheet.

Processing and Heat Treating

The specimen layout for Incomel 625 sheet is shown in Figure 47. The alloy was tested in the as-received annealed condition.

Test Results

<mark>in in November de la monte della monte de</mark>

Tension. Results of tests in both the longitudinal and transverse directions at room temperature, 800 F, 1200 F, and 1600 F are presented in Table XIX. Stress-strain curves at temperature are shown in Figures 48 and 49. Effect-of-temperature curves are presented in Figure 52.

Compression. Results of tests in both the longitudinal and transverse directions at room temperature, 800 F, 1200 F, and 1600 F are given in tabular form in Table XX. Compressive stress-strain and tangent-modulus curves at temperature are shown in Figures 50 and 51. Effect-of-temperature curves are shown in Figure 53.

Shear. Results of room temperature tests in both the longitudinal and transverse directions are presented in Table XXI.

Bend. Test results are given in the "data sheet" in the conclusions section of this report.

Fracture Toughness. Tests were conducted on specimens of full sheet thickness x 18 inches x 48 inches. Average K was 158 ksi \sqrt{in} . The net section yield stress at fracture was greater than the tensile yield strength of the material. Therefore, the K values are considered not valid.

Fatigue. Axial-load test results at room temperature, 800 F, and 1200 F for unnotched and notched transverse specimens are presented in tabular form in Tables XXII and XXIII. S-N curves are shown in Figures 54 and 55.

Creep and Stress-Rupture. Tests were conducted at 800 F, 1200 F, and 1600 F on transverse specimens. Results are presented in tabular form in Table XXIV. Log stress-versus-log time curves are shown in Figure 56.

Stress Corrosion. Tests were conducted as described in the experimental procedure section of this report. No failures or cracks occurred in the 1000-hour test duration.

Thermal Expansion and Density. Values obtained are presented in the "data sheet" in the conclusions section of this report.

FIGURE 47. SPECIMEN LAYOUT FOR INCONEL 625 SHEET

B-1029

TABLE XIX. TENSION TEST RESULTS FOR INCONEL 625 SHEET

	*			
Specimen No.	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, percent	Tensile Modulus, psi x 106
	Longi	tudinal at Room	Temperature	
1L1	139.0	69.9	52.0	28.4
1L2	139.0	69.2	51.0	28.4
1L3	138.0	69.4	51.0	28.1
	Tran	sverse at Room '	Temperature	
1T1	137.0	69.5	50.0	30.7
1T2	137.0	70.0	51.0	30.2
1T3	136.0	69.8	49.0	30.1
		Longitudinal at	800 F	
1L4	124.0	52.9	51.0	24.1
1L5	123.0	53.7	50.0	23.6
1L6	123.0	53.2	50.0	24.5
		Transverse at	800 F	
1T 4	122.0	53.8	51.0	25.7
1T5	122.0	54.3	48.0	24.1
1T6	123.0	53.7	53.0	25.1
		Longitudinal at	: 1200 F	
1L7	113.0	49.4	96.0	22.0
1L8	111.0	48.4	110.0	22.9
1L9	113.0	48.9	84.0	22.7
		Transverse at	1200 F	
1T7	114.0	49.8	75.0	23.5
1T8	112.0	49.1	91.0	25.4
1179	113.0	50.0	78.0	25.3

TABLE XIX. (Concluded)

Specimen	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, percent	Tensile Modulus, psi x 10 ⁶
		Longitudinal at	1600 F	
1L10 1L11 1L12	28.3 30.1 31.0	28.2 29.9 31.0	127.0 113.0 129.0	15.4 14.1 (a)
		Transverse at	1600 F	
1T10 1T11 1T12	29.0 30.4 28.5	29.0 30.1 28.4	121.0 110.0 124.0	17.8 17.5 18.9

⁽a) Load-strain curve not suitable for modulus determination.

TABLE XX. COMPRESSION TEST RESULTS FOR INCONEL 625 SHEET

	0.2 Percent	
	Offset Yield	Compression
Specimen	Strength,	Modulus,
No.	ksi	psi x 10 ⁶
Longi	tudinal at Room Te	emperature
2L1	71.6	29.4
2L2	71.4	28.8
2L3	71.4	29.0
Tran	sverse at Room Te	nperature
0m1	72 0	30.2
2T1	73.0	
2T2	73.4	31.1
2T3	73.8	30.8
	Tamalanda 9	70 E
•	Longitudinal at 8	<u>1 00</u>
2L4	57.1	23.2
2L5	57.6	23.8
2L6	57.9	25.1
	Transverse at 80	0 F
2T4	59.5	26.1
2T5	58.4	26.3
2T6	59.2	(a)
	Longitudinal at 1	200 F
9v 7	54.1	25.4
2L7	• • • • •	
2L8	57.8	23.9 25.1
2L9	55.0	23.1
	Transverse at 12	00 F
0=3	E / 7	24.7
2T7	54.7	24.7 25.7
2T8	55.1 54.9	25.7
2T9	54,9	43.4

TABLE XX. (Concluded)

Specimen	0.2 Percent Offset Yield Strength, ksi	Compression Modulus psi x 106
	Longitudinal at 10	600 F
2L10 2L11 2L12	31.9 31.2 31.6	15.4 15.5 15.5
	Transverse at 16	00 F
2T10 2T11 2T12	32.0 30.8 31.0	14.0 14.4 14.3

⁽a) Load-strain curve not suitable for modulus determination.

TABLE XXI. SHEAR TEST RESULTS FOR INCONEL 625 SHEET AT ROOM TEMPERATURE

Ultimate Shear Strength, ksi
ngitudinal
116.0
112.0
112.0
118.0
ransverse
115.0
115.0
119.5
113.5

TABLE XXII. AXIAL-LOAD FATIGUE TEST RESULTS FOR UNNOTCHED INCONEL 625 SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperature	
513	140	13
517	130	23,970
512	120	49,754
516	110	72,400
511	100	117,730
515	90	262,200
510	80	8,583,300
514	70	11,224,100 (a
	800 F	
529	120	160
533	115	26,900
534	110	30,210
527	110	34,550
528	105	56,030
535	100	10,483,900 (
	1200 F	
51	100	300
53	95	5,090
56	90	9,760
52	85	33,180
59	80	43,700(
537	75	14,244,400/
54	70	14,004,000/
58	60	10,182,900

⁽a) Did not fail.

TABLE XXIII. AXIAL-LOAD FATIGUE TEST RESULTS FOR NOTCHED ($K_t=3.0$) INCOMEL 625 SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperatu	ıre
543	120	2,386
542	110	3,840
536	100	5,180
537	80	13,810
544	70	63,298
538	60	119,800
539	50	5,964,200
540	50	443,700
541	40	10,032,400 (8)
547 546 545 549	800 F 100 90 80 70	2,333 3,300 15,820 11,600
568	60	43,020
567	50	84,070
566	40	13,655,200 ^(a)
	1200 F	
550	80	406
555	70	4,200
556	65	5,300
551	50	10,200
554	55	1,614,000
553	50	3.110.200.
552	40	10.141.300 ^(a)

⁽a) Did not fail.

TABLE MXIV. SUMMARY DATA ON CREEP AND RUPTURE PROPERTIES FOR INCINEL 625 SHEET

The state of the s

300 127.7.7 38 120.00 35 90.00 36 50.00 36 50.00 314 90.00	1 × × × × × × × × × × × × × × × × × × ×	Temp.	Hours 1	Hours to Indiated Green Deformation, percent	d Creep De	formation,	per cent	Initial Strain, percent	Rupture Time, hr	Elongation in 2 Inches, percent	Minimum Creep Rate, percent/hr
***	27.7	500	(£x;	(Extensementer incourable due no large	(2000Table	due to la	ree		On loading		
	20.05	600	77.0	COLECES BERRESSE	- C C T #		, 2		431.1(5)		1
	30.0	800		No Asset 19	Nomentae stoke occurred	tour red		80	531.0(b)		;
	50.0	800			10 mg				379.7(5)	0.167	;
	J. O.	067:	0.03	0	0,23	8.0	0.	7.137	18.0	67	1,8
	\$0.0	0021	0	9.0	ens Fyl	~	11.0	2.322	54.5	23.6	0.16
	70.0	3.200	3.0	***	0, 15	2.8	77.0	1,322	163.2	000	0.017
	6.16	0027	3 0.0	(?) 144 144 144	203.0	275.0	340.0	0.233	688.7	15.1	3,00
	67.70	3.200	15.0	3. S.	325.0	6.80.08.	ł	0,378	337.7(b)	\$. 9 35	0.000
	33.6	0071	200.0	365.0	\$ 7. V	\$00.00\$	ţ	0.240	717.2(b)	0.840	0.00036
i i	0.0	0097	3.43	0.0	#*) • 1	· ii	9.3	0.035	28.3	35.1	0.38
	6.3	00%	4,73	wrt	6.4	 eo	e) e)	0.042	165.9	37.0	0.10
	3.5	0091	• •	6.0	18.0	\$0.04	107.0	0,307		80.0	0.014
	Ç.,	000	58.0	7.74	で、小学に	700.0	1360,004	£.013		0.787	0.0015
313	-44 - 3	6004	4.6.5	ଂ ପ୍ର	の、大大は水	1650.014)	1	0	480.6	0.533	0,00040

Katlmaled. Text alknobilound. <u>3</u> &

FIGURE 48. TYPICAL TENSILE STRESS-STRAIN CURVES FOR INCONEL 625 SHEET (LONGITUDINAL)

FIGURE 49. TYPICAL TENSILE STRESS-STRAIN CURVES FOR INCONEL 625 SHEET (TRANSVERSE)

FIGURE 50. TYLICAL COMPRESSION STRESS-STRAIN AND TANGENT MODULUS CURVES FOR INCONEL 625 SHEET (LONGITUDINAL)

FIGURE 51. TYPICAL COMPRESSION STRESS-STRAIN AND TANGENT MODULUS CURVES
FOR INCONEL 625 SHEET (TRANSVERSE)

FIGURE 52. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF INCONEL 625 SHEET

FIGURE 53 EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF INCONEL 625 SHEET

FIGURE 54. AXIAL-LOAD FATIGUE RESULTS FOR UNNOTCHED INCONEL 625 SHEET

FIGURE 55. AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K: =3.0) INCONEL 625 SHEET

FIGURE 56. STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR INCONEL 625 SHEET

HA-188 Alloy

Material Description

THE PROPERTY OF THE PROPERTY O

Haynes Alloy 188 is a new cobalt-base alloy development of the Stellite Division of the Cabot Corporation. It is reported to have excellent high-temperature strength and oxidation resistance, and good post-aging ductility. It can be strengthened and hardened by cold work. The alloy can be welded by conventional techniques and exhibits good restraint-welding characteristics. Studies are currently in progress to define the aging characteristics of this alloy.

The composition of this material is as follows:

Chemical Composition	Percent
Chromium	22.3
Tungsten	13.6
Carbon	0.13
Nickel	22.0
Silicon	0.28
Manganese	0.69
Iron	2.0
Phosphorus	0.013
Sulfur	0.003
Cobalt	Balance

This alloy was obtained as 0.078-inch x 36-inch x 96-inch sheet.

Processing and Heat Treating

The specimen layout for HA-188 is presented in Figure 57. Testing was conducted in the as-received annealed and pickled condition.

Test Results

Tension. Results of longitudinal and transverse tests at room temperature, 600 F, 1000 F, and 1400 F are presented in Table XXV. Stress-strain

FIGURE 57. SPECIMEN LAYOUT FOR HA-188 SHEET

curves at temperature are shown in Figures 58 and 59. Effect-of-temperature curves are presented in Figure 62.

Compression. Results of longitudinal and transverse tests at room temperature, 600 F, 1000 F, and 1400 F are given in Table XXVI. Compressive stress-strain and tangent-modulus curves at temperature are shown in Figures 60 and 61. Effect-of-temperature curves are shown in Figure 63.

Shear. Results of room-temperature tests in the longitudinal and transverse directions are given in Table XXVII.

Bend. Bend test data are given in the "data sheet" in the conclusions section of this report.

Fracture Toughness. Tests were performed on specimens of full sheet thickness x 18 inches x 48 inches. Average $K_{\rm C}$ was 175 ksi $\sqrt{1}$ n. The net section yield stress at fracture was greater than the tensile yield strength of the material. Therefore, the $K_{\rm C}$ values are considered not valid.

Fatigue. Axial-load tests were conducted on unnotched and notched specimens at room temperature, 1000 F, and 1400 F. Results are given in tabular form in Tables XXVIII and XXIX. S-N curves are shown in Figures 64 and 65.

Creep and Stress Rupture. Tests were conducted at 800 F, 1200 F, and 1600 F for transverse specimens. Results are presented in tabular form in Table XXX. Log stress-versus-log time curves are shown in Figure 66.

Stress Corrosion. Tests were conducted as described in the experimental procedure section of this report. No failures or cracks occurred in the 1000-hour test duration.

Thermal Expansion and Density. Values obtained are presented in the "data sheet" in the conclusions section of this report.

TABLE XXV. TENSION TEST RESULTS FOR HA-188 ALLOY SHEET

pecimen Number	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, Percent	Tensile Modulus psi x 10
	Longitu	dinal at Room Temp	erature	
1L1	146.0	77.6	60.0	35.3
11.2	146.0	79.4	60.0	34.9
1L3	146.0	78.5	59.5	35.0
	Transv	erse at Room Tempe	rature	
1T1	145.0	68.0	60.0	36.6
112	146.0	69.5	59.5	32.6
1T3	145.5	68.8	59.8	34.5
	<u>L</u>	ongitudinal at 600	<u>F</u>	
7. L 4	128.0	55,3	66.0	37.9
11.5	129.0	55.2	61.0	34.9
	128.6	55.2	63.6	36.3
		Transverse at 600F	,	
174	128.0	49.0	66.5	31.4
1 T 5	127.0	49.0	60.5	34.9
1T6	127.6	49.0	63.7	33.0
	<u>Lo</u>	ngitudinal at 1000	F	
1L7	119.5	51.4	55.5	33.8
11.8	120.0	51.3	57.5	27,3
119	119.0	51.3	56.4	30.6
	1	Transverse at 1000F		
177	118.0	45.3	54.0	33.4
178	118.0	46.1	59.0	32.4
119	118.1	45.6	56.4	31.6

... Are media templombe kikkada kikhada kida saskas a dita and att dia territoria (att.

TABLE XXV. (Concluded)

Specimen Number	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, Percent	Tensile Modulus psi x 10°
	Lo	ngitudinal at 1400	<u>1</u>	
1L10	69.3	46.6	51.0	25.4
1L11	70.9	47.2	50.0	27.2
1L12	70.0	47.0	50.4	26.2
	Ţ	ransverse at 1400F		
1110	71.8	43.7	45.5	24.9
1711	69.6	44.7	52.0	24.1
1112	70.6	44.1	48.8	23,6

TABLE XXVI. COMPRESSION TEST RESULTS FOR HA-188 SHEET

	0.2 Percent	
	Offset Yield	Compression
Specimen	Strength,	Modulus,
No.	ksi	psi x 10 ⁶
Longi	tudinal at Room T	emperature
2L1	49.8	(a)
2L2	50.6	33.2
2L3	49.8	33.2
Trans	verse at Room Tem	perature
Omi	73.6	22.2
2T1 2T2	73.7	33.2 32.7
212 2T3	74.1	33.0
213	74.1	33.0
	Longitudinal at 6	00 F
2L4	43.5	31.2
2L5	43.2	29.0
2L6	43.8	30.0
	Transverse at 60	00 F
2'1'4	54.8	31.4
2T5	54.6	28.5
2T6	53.2	28.6
	Longitudinal at 1	1000 F
2L7	40.6	32.4
2L8	41.5	28.9
2L9	41.8	29.8
	Transverse at 10	000 F
2T7	48.0	26.8
2T'8	49.5	30.2
2T9	50.9	30.1

TABLE XXVI. (Concluded)

Specimen No.	0.2 Percent Offset Yield Strength, ksi	Compression Modulus, psi x 10 ⁶
	Longitudinal at le	400 F
2L10	43.9	24.4
2L11 2L12	(b) 44.6	(b) 24.6
	Transverse at 14	00 F
2T10 2T11	47.5 45.2	25.6 24.6
2111 2T12	45.8	27.1

⁽a) Load-strain curve not suitable for modulus determination.

⁽b) Specimen accidentally overloaded.

TABLE XXVII. SHEAR TEST RESULTS FOR HA-188 SHEET AT ROOM TEMPERATURE

TABLE XXVIII. AXIAL-LOAD FATIGUE TEST RESULTS FOR UNNOTCHED HA-188 SHEET AT A STRESS RATIO OF R = 0.1

Specimen	Maximum Stress,	Lifetime,
No.	ksi	cycles
	Room Temperature	
	***************************************	•
515	160	10
516	145	860
519	140	25,928
514	130	50,220
520	120	83,140
517	110	138,950
513	100	322,340
521	90	775,600 (a)
518	80	10,317,300
	1000 F	
	1000 t	
59	100	90,490
58	90	164,110
510	90	90 820
512	80	16,280,100 ^(a)
57	70	6,657,800
	1400 F	
53	70	90
54	60	13,700
55	55	17,100
56	55	33,270
52	50	1,660,650

⁽a) Did not fail.

TABLE XXIX. AXIAL-LOAD FATIGUE TEST RESULTS FOR NOTCHED ($K_t=3.0$) HA-188 SHEET AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperatur	<u>'e</u>
561	140	263
563	120	4,099
562	100	12,130
567	90	22,200
560	80	45,570
566	70	89,100
564	60	197,700
565	50	1,198,100
568	40	12,591,400
	1000 F	
569	90	5,270
554	90	2,756
536	80	4,277
556	70	27,090
555	70	27,990
558	60	87,600
557	50	6,018,100
559	40	10,241,200
	1400 F	
553	70	390
548	60	2,700
552	50	4,330
547	45	20,800
550	40	57,300
546	35	51,900
551	30	10,471,700

⁽a) Did not fail.

TABLE XXX. SUMMARY DATA ON CREEP AND RUPTURE PROPERTIES OF HA-188 SHEET

一般のないのではないとうできないというからないとう こうしゅうしゅうしゅうしゅう

Specimen	Stress	Temp.		Hours to Inc	Indicated Creep Deformation, percent	ep Deformat	ion,	Initial Strain,	Rupture Time,	Elongation in 2 Inches,	Minimum Creep Rate,
No.	ksí	íu,	0.1	0.2	0.5	1.0	2.0	percent	hr	percent	percent/hr
34	117.5	800	1	-	1	ł	- across	1	On loading		1
36	115.0	800	1	į	1	ı	1	44.727	524.8(b)	44.775	¦
32	80.0	1200	1	1	1	ł	}	15.28	18.6	27.3	1
31	70.0	1200	2.5	5.0	15.0	30.0	40.0	6.98	59.7	19.8	0.50
33	50.0	1200	12.0	37.0	100.0	190.0	320.0	0.760	1286.67	14.1	0.0045
39	35.0	1200	0.09	190.0	560.0	1185.0(4)	1	0.163	651.2(5)	0.745	0.00081
37	25.0	1600	1	0.02	0.15		0.65	0.167	7.1	36.1	2.6
35	15.0	1600	1.2	2.5	7.2	15.0	27.0	0.099	152.9	35.5	0.063
38	11.0	1600	8.7	30.0	94.0	_	290.0	0.021	928.5/2)	16.3	0.0055
310	7.5	1600	230.0	485.0	1250.0 ^(a)	2500.0 ^(a)	ŀ	0.046	600.1(8)	0.291	0.00039

Estimated. Test discontinued. (a)

FIGURE 58. TYPICAL TENSILE STRESS-STRAIN CURVES FOR HA-188 SHEET (LONGITUDINAL)

FIGURE 59. TYPICAL TENSILE STRESS-STRAIN CURVES FOR HA-188 SHEET (TRANSVERSE)

FIGURE 60. TYPICAL COMPRESSION STRESS-STRAIN AND TANGENT MODULUS CURVES FOR HA-188 SHEET (LONGITUDINAL)

FIGURE 61. TYPICAL COMPRESSION STRESS-STRAIN AND TANGENT MODULUS CURVES FOR HA-188 SHEET (TRANSVERSE)

FIGURE 62. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF HA-188 ALLOY SHEET

FIGURE 63. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF HA-188 ALLOY SHEET

FIGURE 64. AXIAL-LOAD FATIGUE RESULTS FOR UNNOTCHED HA-188 SHEET

FIGURE 65. AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K1 = 3.0) HA-188 SHEET

FIGURE 66. STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR HA-188 SHEET

Custom 455 Alloy

Material Description

Custom 455 is a new martensitic age-hardenable stainless steel developed by The Carpenter Research Laboratories of The Carpenter Technology Corporation. The alloy is relatively soft and easily formable in the annealed condition. A simple, single-step aging treatment develops good yield strengths with good ductility and toughness.

Custom 455 can be machined in the annealed condition and welded in the same manner as other stainless steels. It is easily formable because of its low work-hardening rate. The dimensional change during hardening is only about 0.001 in./in. which permits close tolerance finish machining in the annealed state. The alloy is designed to be used where simplicity of heat treatment, ease of fabrication, high strength, and corrosion resistance are required in combination.

The material used in this evaluation was obtained as 3/4-inch round bar with the following composition:

Chemical	
Composition	Percent
Carbon	0.009
Hanganese	0.07
Silicon	0.17
Phosphorus	0.010
Sulfur	0.005
Chronium	11.61
Nickėl	8.75
Holybdenum	0.01
Copper	2.15
Titanium	1.19
Columbum + Tantalum	0.23
Iron	Balanco

Processing and Heat Treating

No specimen layout is shown since the specimens were all longitudinal, cut from 3/4-inch round bar. The alloy was tested after aging at 950 F for 4 hours and air cooled.

Test Results

Tension. Results of tests in the longitudinal direction at room temperature, 400 F, 600 F, and 800 F are given in tabular form in Table XXXI. Stress-strain curves at temperature are presented in Figure 67. Effect-of-temperature curves are presented in Figure 69.

Compression. Results of longitudinal tests at room temperature, 400 F, 600 F, and 800 F are presented in tabular form in Table XXXII. Compressive stress-strain and tangent-modulus curves at temperature are shown in Figure 68. Effect-of-temperature curves are shown in Figure 70.

Shear. Results of pin-shear type tests at room temperature are presented in Table XXXIII.

Impact. Results of Charpy V-notch tests at room temperature and -90 F are given in the "data sheet" in the conclusions section of this report.

Fracture Toughness. Results of slow-bend Chevron-notched-type tests are given in Table XXXIV. Average K_{Ic} was 55.8 ksivin. This number is considered valid.

Fatigue. Axial-load tests were conducted at room temperature, 400 F, and 800 F for unnotched and notched specimens. Tabular test results are given in Tables XXXV and XXXVI. S-N curves are presented in Figures 71 and 72.

Creep and Stress Rupture. Tests were conducted at 400 F, 600 F, and 850 F. Results are presented in tabular form in Table XXXVII. Log stress-versus-log time curves are shown in Figure 73.

Stress Corrosion. Tests were conducted as described in the experimental procedures section of this report. No failures or cracks occurred during the 1000-hour test duration.

Thermal Expansion and Density. Values obtained are presented in the "data sheet" in the conclusions section of this report.

TABLE XXXI. TENSION TEST RESULTS FOR CUSTOM 455 ROUND BAR

Specimen	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, percent	Reduction in Arca, percent	Tensile Modulus, psi x 10 ⁶
		Longitudinal	at Room Tempera	ture	
1L1 1L2 1L3	248.3 249.0 247.8	247.7 247.7 246.8	10.0 10.0 10.0	46.1 44.9 45.1	27.8 28.3 28.8
•		Longitud	inal at 400 F		
1L4 1L5 1L6	217.7 213.7 216.3	216.0 211.5 215.7	10.5 10.7 10.5	49.3 51.6 49.2	27.5 28.3 27.7
		Longitud	inal at 600 F		
1L7 1L8 1L9	201.5 201.7 200.3	197.2 198.7 195.6	11.5 12.0 11.5	54.8 52.9 54.8	26.6 26.8 26.6
		Longitud	inal at 800 F		
1L10 1L11 1L12	181.4 180.5 180.0	174.3 174.3 173.7	14.0 15.0 15.0	63.0 63.0 63.5	24.6 24.5 24.4

TABLE XXXII. COMPRESSION TEST RESULTS FOR CUSTOM 455 ROUND BAR

Specimen No.	0.2 Percent Offset Yield Strength, ksi	Compression Modulus, psi x 10 ⁶
Long	itudinal at Room Te	emperature
2L1 2L2 2L3	256.0 255.0 255.0	29.8 29.7 29.7
	Longitudinal at 40	00 F
2L4 2L5 2L6	221.0 220.0 214.0	27.6 27.9 27.7
	Longitudinal at 60	00 F
2L7 2L8 2L9	202.0 202.0 202.0	26.9 26.5 26.1
	Longitudinal at 80	00 F
2L10 2L11 2L12	179.0 177.0 174.0	23.6 23.4 24.6

TABLE XXXIII. SHEAR TEST RESULTS FOR CUSTOM 455 ROUND BAR AT ROOM TEMPERATURE

Specimen No.	Ultimate Shear Strength, ksi
4L1	152.0
4L2	152.0
41.3	152.0
4L4	152.0

TABLE XXXIV. FRACTURE TOUGHNESS TEST RESULTS FOR CUSTOM 455 ROUND BAR

Specimen No.	Thickness, in.	Width, in.	Crack Length, in.	Span, in.	K _{Ic} , ksi√in.
61	0.324	0.650	0.302	2.6	57.4
62	0.3245	0.650	0.320	2.6	54.9
63	0.3245	0.650	0.316	2.6	53.2
64	0.3245	0.650	0.308	2.6	56.5
65	0.3248	0.6492	0.340	2.6	57.1
66	0.325	0.650	0.311	2.6	50.6

TABLE XXXV. AXIAL-LOAD FATIGUE TEST RESULTS FOR UNNOTCHED CUSTOM 455 BAR AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
NO.	r21	cycles
	Room Temperature	
53	240	4,660
52	230	4,790
51	220	9,989
54	210	12,910
55	200	8,010
56	190	13,310
57	180	26,660
58	170	19,000
59	150	23,240
510	130	94,600 (a
511	120	15,117,500
	400 F	
522	240	10
521	220	2,080
513	200	6,860
514	190	5,350
515	- 180	4,380
516	160	37,600
517	150	27,600
518	130	64,500 (b 67,100 (b
519	120	67,100
520	120	10,069,800 ^{(a}
	800 F	
526	180	2,600
531	160	8,300
523	150	55,900
532	140	239,900 (b
524	130	64,400
525	130	1,004,100
528	120	816,800
529	110	1,663,400

⁽a) Did not fail.

⁽b) Failed at thermocouple.

TABLE XXXVI. AXIAL—LOAD FATIGUE TEST RESULTS FOR NOTCHED ($K_{\mbox{\scriptsize t}}$ = 3.0) CUSTOM 455 BAR AT A STRESS RATIO OF R = 0.1

Specimen No.	Maximum Stress, ksi	Lifetime, cycles
	Room Temperature	
538	140	2,460
539	120	2,650
533	100	5,510
534	80	10,430
535	60	51,960
536	40	138,020
537	30	138,020 (a) 15,099,400 (a)
	400 F	
540	120	2,190
541	100	5,530
544	90	8,880
542	80	29,000
545	70	23,700
543	60	3,375,600
546	50	4.663.600.
547	40	10,436,600
	800 F	
550	120	1,980
549	100	4,690
548	80	6,300
552	70	35,890
551	60	725,190
553	50	1,412,900,
554	40	10,331,600

⁽a) Did not fail.

TABLE XXXVII. SUMMARY DATA ON CREEP AND RUPTURE PROPERTIES FOR CUSTOM 455 ROUND BAR

	1		Hours	Hours to Indicated Creep Deformation, percent	d Creep Defe	ormation. B	ercent	Initial Strain,	Rupture Time,	Elongation in 2 in.,	Reduction of Area,	Minimum Creep Rate,
No.	ksí	i.	0.1	0.2	0.5	1.0	2.0	percent	hr	percent	percent	percent/hr
									;	(6	
35	218.0	700	1	1	1	1	1	1	On loading	٠. م	78.5	ł
112	215.0	007	!	1	1	ı	1	1.562	0.01	9.6	50.9	!
37	210.0	007	0.2	18.0,	5000.0(8)	1	1	1.052	$815.2^{(0)}_{(1)}$	1.359	!	0.000045
314	200.0	00,7	0,006	6300.0(4)	-	1	1	0.913	764.4(0)	1.003	ţ	!
1.1	212 5	600	ł	1		1		ł	On loading	8.9	53.7	1
7 7	2000	9	0.03	0.05	0.17	0.7		1.488	5.0	10.4	49.7	0.48
0	0.061	909	0.12	0.55	7.0	30.0		_	375.2/2	8.9	11.4	0.012
33	175.0	9	5.0	24.0	195.0	990.0	2640.0 ^(a)	_	$959.2^{(0)}_{(k)}$	1.714	ŀ	0.00061
311	160.0	909	57.0	250.0	1750.0(4)	4700.0(a)		0.722	194.9(0)	1.041	!	0.00017
3.7	0 561	c y	60.0	œ.	8.0	1.9		0.641	12.9	20.7	66.3	0.42
; ;	0.001	2 2	0.35	0.85	9.9	13.7		0.492	92.8	20.0	66.2	0.055
; A	0.08	850	0.60	3.2	30.0	77.0,77	188.0	0.403	656.1 _(k)	35.6	64.0	600.0
36	50.0	850	12.0	65.0	600.0(4)	2100.0(4)	ŀ	0.267	409.1(5)	0.707	ł	0.00035
310	35.0	850	38.0	250.0	1	1	ł	0.263	455.2(0)	0.522	1	i
e de la capación de l				THE PERSON NAMED IN COLUMN	***************************************							

⁽a) Estimated.(b) Test discontinued.

FIGURE 67. TYPICAL TENSILE STRESS-STRAIN CURVES FOR CUSTOM 455 ROUND BAR (LONGITUDINAL)

FIGURE 68 TYPICAL COMPRESSION STRESS-STRAIN AND TANGENT MODULUS CURVES FOR CUSTOM 455 ROUND BAR (LONGITUDINAL)

FIGURE 69. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF CUSTOM 455 ROUND BAR

FIGURE 70. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF CUSTOM 455 ROUND BAR

FIGURE 71. AXIAL-LOAD FATIGUE RESULTS FOR UNNOTCHED CUSTOM 455 ROUND BAR

FIGURE 72 AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K1 = 3 0) CUSTOM 455 ROUND BAR

STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR CUSTOM 455 ROUND BAR 73, FIGURE

PH 14-8 Mo Stainless Steel

Material Description

PH 14-8 Mo is a recent addition to the Armco Steel Company's family of precipitation hardenable stainless steels. It is a semi-austenitic alloy developed to provide a sheet and strip product with higher resistance to crack propagation than the older 17-7 PH and PH 15-7 Mo alloys. It is heat treatable to high strengths and exhibits good elevated temperature properties. Since it is austenitic in the anneald condition, it is readily formable by methods currently used for austenitic or other semiaustenitic stainless steels. The alloy does work harden rapidly and may require intermediate anneals for deep drawn or other severely formed parts.

PH 14-8 Mo is available in the form of sheet and strip.

One sheet of 0.070-inch by 36-inch x 120-inch material from Heat V6448 was purchased from Armco for this evaluation.

The composition of this material was as follows:

Chemical	
Composition	Percent
Carbon	0.038
Manganese	0.10
Phosphorus	0.003
Sulfur	0.004
Silicon	0.10
Chromium	14.95
Nicke l	8.31
No lybdenum	2.15
Aluminum	1.17
	Balance

Processing and Heat Treating

The specimen layout is shown in Figure 74. The sheet was received in the annealed condition (Condition A). After machining, the specimens were heat-treated to Condition SRH 1050 as recommended by Armco. This involves heating to 1700F, holding for 1 hour, air cool to 75F and within 1 hour cool to -100F, hold at -100F for 8 hours, heat to 1050F, hold for 1 hour, and air cool.

Test Results

Tension. Tests were performed at room temperature, 400F, 700F, and 900F in both the longitudinal and transverse directions. Tabular test results are presented in Table XXXVIII. Stress-strain curves at temperature are shown in Figures 75 and 76. Effect-of-temperature curves are presented in Figure 79.

FIGURE 74. SPECIMEN LAYOUT FOR PH 14-8Mo SHEET

Compression. These tests were also conducted at room temperature, 400F, 700F, and 900F for both the longitudinal and transverse directions. Results are given in tabular form in Table XXXIX. Stressstrain and tangent modulus curves at temperature are presented in Figures 77 and 78. Effect-of-temperature curves are presented in Figure 80.

Shear. Results of shear tests in the longitudinal and transverse directions at room temperature are given in Table XL.

Fracture Toughness. Tests were conducted on specimens of full sheet thickness x 18 inches x 48 inches. The average K obtained was 270 ksi/Inch. This number is considered valid.

Fatigue. Axial-load tests were conducted for unnotched and notched transverse specimens at room temperature, 400F, and 700F. Tabular results are given in Tables XLI and XLII. S-N curves are presented in Figures 81 and 82.

<u>Creep and Stress-Rupture</u>. Tests on transverse specimens were conducted at 700F, 900F, and 1100F. Tabular test results are given in Table XLIII. Log-stress versus log-time curves are presented in Figure 83.

Stress Corrosion. No cracks appeared in the specimens after testing as described in the experimental procedure section of this report.

Thermal Expansion. Values are given in the data sheet in the conclusions section of this report.

 $\underline{\text{Density}}.$ Values are given in the data sheet in the conclusions section of this report.

TABLE XXXVIII. TENSION TEST RESULTS FOR PH 14-8 Mo SHEET

Specimen Number	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 inches, percent	Tensile modulus psi x 10 ⁶
	Longitudir	nal at Room Temperat	ure	
1L1	205.0	201.0	7.0	26.4
1L2	203.0	200.0	7.0	27.8
1L3	202.0	197.0	8.5	27.3
	Transvers	e at Room Temperatu	ire	
171	207.0	202.0	7.0	28.6
1T2	207.0	201.0	7.0	29.4
IT3	208.0	202.0	7.5	27.8
	Long	gitudinal at 400F		
1L4	183.0	175.0	6.0	26.3
1L5	182.0	173.0	6.0	25.3
1L6	182.0	173.0	6.0	26.4
	Tre	insverse at 400F		
1 T 4	186.0	178.0	5.0	28.0
1T5	186.0	177.0	5.5	28.8
1T6	185.0	176.0	5.5	28.4
	Lo	ngitudinal at 700F		
1L7	164.0	151.0	10.0	26.4
1L8	163.0	151.0	9.5	25.2
11.9	166.0	154.0	9.5	25.1
	Tr	ansverse at 700F		
117	168.0	157.0	7.5	25.0
1T8	168.0	157.0	9.0	26.3
1 T 9	167.0	155.0	8.5	27.1
	Lo	ngitudinal at 900F		
1L10	132.0	120.0	17.5	23.1
1L11	130.0	121.0	18.5	22.8
1L12	131.0	119.0	18.5	23.5
	<u>Tr</u>	ensverse at 900F		
1T10	134.0	125.0	16.0	24.1
1711	134.0	124.0	16.0	24.0
1T12	134.0	122.0	15.0	22.3

TABLE XXXIX. COMPRESSION TEST RESULTS FOR PH 14-8 Mo SHEET

Specimen _Number	0.2 Percent Offset Yield Strength, ksi	Compressive Modulus, psi x 10'6
	Longitudinal at Room Temperature	
2L1	219.0	27.4
2L2	218.0	27.6
2L3	218.0	27.8
	Transverse at Room Temperature	
2T1	220.0	30.7
2T 2	218.0	30.6
2T3	219.0	30.2
	Longitudinal at 400F	
2L4	198.0	25.0
2L5	197.0	25.7
2L6	198.0	25.8
	Transverse at 400F	
2T4	205.0	26.8
2T5	201.0	27.4
2T6	203.0	27.0
	Longitudinal at 700F	
2L7	177.0	25.8
2L8	176.0	25.0
2L9	176.0	24.7
	Transverse at 700F	
217	181.0	26.3
2T8	179.0	26.2
2T9	182.0	26.4
	Longitudinal at 900F	
2L10	137.0	24.6
2L11	138.0	24.5
2L12	138.0	24.1
	Transverse at 900F	
2T 10	146.0	25.5
2T11	147.0	25.5
2T 12	147.0	26.1

TABLE XL. SHEAR TEST RESULTS FOR PH 14-8 MO SHEET AT ROOM TEMPERATURE

Specimen Number		Ultimate Shear Strength, ksi
	Longitudina1	
4L1		130.0
4L2		130.0
4L3		130.0
4 L 4		131.0
	<u>Transverse</u>	
4T1		129.0
4T2		129.0
4 T 3		128.0
4T4		129.0

TABLE XLI. AXIAL LOAD FATIGUE TEST RESULTS FOR UNNOTCHED PH 14-8 Mo SHEET AT A STRESS RATIO OF R=0.1

Specimen	Maximum	Lifetime,
Number	Stress, ksi	Cycles
	Room Temperature	
51	190.0	1,072
52	170.0	12,000
53	170.0	11,200
54	150.0	21,500
55	130.0	33,000
56	110.0	80,800
57	100.0	121,200
58	90.0	10,000,000(a)
	<u>400F</u>	
59	190.0	125
510	170.0	8,100
511	150.0	14,600
512	130.0	28,600
513	110.0	183,000
514	100.0	44,400
515	90.0	126,300
516	80.0	11,765,900(a)
	700F	
518	190.0	300
519	170.0	1,100
520	150.0	6,700
522	130.0	17,400
523	110.0	35,100
524	100.0	47,100
525	90.0	73,700
526	80.0	6,446,000

⁽a) Did Not Fail

TABLE XLII. AXIAL LOAD FATIGUE TEST RESULTS FOR NOTCHED ($K_t=3.0$) PH 14-8 Mo SHEET AT A STRESS RATIO OF R = 0.1

Specimen Number	Maximum Stress, ksi	Lifetime, Cycles
	Room Temperature	
528	100.0	9,200
529	90.0	8,700
530	70.0	21,400
531	50.0	36,400
532	40.0	131,200
533	30.0	16,771,300 ^(a)
	400 F	
542	100,6	6,500
543	90.0	9,000
544	80.0	11,300
545	70.0	20,700
546	60.0	23,500
547	50.0	50,900
548	40.0	51,500
549	30.0	14,260,000 ^(a)
	700 F	
535	100.0	4,000
536	90.0	4,900
538	70.0	8,720
539	60.0	18,800
540	50.0	29,700
541	40.0	11,698,000 ^(a)

⁽a) Did not ail.

TABLE XIIII. SUMMAN DAIN ON CREEP AND RUPTURE PROPERTIES OF PHIGHNIC SHIE.

170 700	524. June	3: 40 % :	The state of the s	,	Hours to indicate	ted Greep Deformation, percent	ormar fon	1001001	Initial	:4	Elongani r	Minimum
170 700 0.3 0.83 1.324	<i>i</i>	1653	lu.	3.0		6.5	1.0	2.0	percent	hr.	in I inches. percent	Creep Nate, percent/hr
140 100 0.03 0.13 0.3 0.83 1.324 120 0.13 0.7 3.7 20 135 0.546 120 900 24 800 9100/cst 0.505 120 900 3 5 1.9 3 12 0.667 130 900 4 5 1.4 5 112 0.667 140 900 4 5 2500/cst 6000/cst 0.024 150 1100 0.01 0.02 0.04 0.17 0.4 0.360 150 1100 0.10 0.2 0.5 1.3 3.9 0.131 150 1.4 1.4 650/cst 0.107 150 1.4 1.4 650/cst 0.107 150 1.5 1.5 1.5 1.5 1.5 150 1.5 1.5 1.5 1.5 1.5 150 1.5 1.5 1.5 1.5 150 1.5 1.5 1.5 1.5 150 1.5 1.5 1.5 1.5 150 1.5 1.5 1.5 1.5 150 1.5 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 1.5 150 1.5 1.5 150 1.5 1.5 1.5 150	š.	170	200	!								
1.324	3	• •) ; ; ;	i .	ŧ ŝ	(t	•	;	;	On Loading	3.0	i
125	ì	 	300	0.03	0.05	0.13	6.0	0.83	1.324	2.7	6.	7
125 700 24 800 910045821 0.505 126 900 0.505 130 900 5 5 5. 200 780 13004681 0.187 27 900 5.7 25004681 0.004 28 1100 0.01 0.02 0.08 0.17 0.4 0.360 30 1100 0.01 0.2 0.5 1.3 3.9 0.131 29 1100 0.10 0.4 5.0 17 195 0.174 4 1100 0.10 0.4 650481 0.107	g. M	JF ₩	700	0.13	5.0) m	20	135	975.0	1080 3 (4)		0000
130 900 1.6 3 12 0.667 130 900 3 5. 100 780 1300(est) 0.187 13 900 873 2500(est) 6000(est) 0.024 15 1100 0.01 0.02 0.05 1.3 3.9 0.131 23 1100 0.10 0.1 5.0 1 1 195 0.174 25 1100 1.6 1.6 1.6 650(est) 0.107	3	fa f • 7 h	700	ři	800	63000088	:	\$ \$	0.505	985.1 ^(a)		0,000035
130 900												
130 900 3 5. 1.5 3 12 0.667 0.00 900 3 5. 1.00 780 1300(est) 0.187 0.00 900 47 2500(est) 6000(est) 0.024 0.00 900 900 900 900 900 900 900 900 90	r e • 18 773	Ç Az ∓X	900	;	:	;	į	!		•	•	
70 900 5 3. 400 780 1300(est) 0.187 70 900 5 3. 400 780 1300(est) 0.187 71 900 57 2500(est) 6000(est) 0.024 72 1100 0.01 0.05 0.5 1.3 3.9 0.131 73 1100 0.10 0.4 5.0 17 195 0.174 74 1100 1.4 1.4 650(est) 0.107	5		9				1	:	:	1 . 8.	12.0	1
79 900 \$ 5. 400 780 1300(est) 0.187 37 900 \$73 2500(est) 6000(est) 0.024 5 1100 0.01 0.02 0.08 0.17 0.4 0.360 30 1100 0.01 0.2 0.5 1.3 3.9 0.131 50 1100 0.10 0.4 5.0 17 195 0.174 \$ 1100 1.6 1.6 1.6 650(est) 0.107	: :# :4	27.1	26	0.13	24.0	ufi e eva	181	27	0.667	47.3	13.3	7.0
3' 90c 673 2500(cs:) 6000(csc) 0.024 -5 1100 0.01 0.02 0.08 0.17 0.4 0.360 30 1100 0.01 0.3 1.3 3.9 0.131 20 1100 0.10 0.4 5.0 17 195 0.174 † 1100 1.4 14 650(csc) 0.107	Ä	<u>ر</u> -	900	чħ	ų	00.	780	1300(051)	131	1105 0(8)	l .	0.10
25 1100 0.00 0.01 0.02 0.08 0.17 0.4 0.360 30 1100 0.07 0.2 0.5 1.3 3.9 0.131 29 1100 0.10 0.4 5.0 1 195 0.172 1 2100 1.4 (\$50:est) 0.107		:	Ç	; ;					9	4127.2	7.900	0,20383
100 0.01 0.02 0.06 0.17 0.4 0.360 30 1100 0.07 0.2 0.5 1.3 3.9 0.131 30 1100 0.10 0.4 5.0 17 195 0.174 1 4 1100 1.4 14 650:est) 0.107	•	`	7	^ &		6000 rest)	1	:	0.024	816.2 ^(a)	0.136	0.00006
30 1100 0.00 0.2 0.5 1.3 3.9 0.131 29 1100 0.10 0.4 5.0 1 195 0.174 1 1100 1.4 14 650:est) 0.107	·.	*,	11:00	9	ć	q C						
29 1100 0.10 0.1 5.0 1 1.9 3.9 0.131 29 1100 0.10 0.1 5.0 1 195 0.174 1 5 1100 1.4 14 650:est) 0.107				• • •	÷	ກ ວ ້	, ,	٠, ع	0.360	o. ه. ه	6.07	3.6
29 1100 0.10 0.4 5.0 17 195 0.174 I 1100 1.4 14 650/est) 0.107		(a)	2011	0.0	0.3	6.5	1.3	3.0	0.131	103.5	2 60	: :
f 1100 1.4 th 650/est) 0.107		Ç.	1100	0.10	, · ·	5.0	t *****	195	0 176	1101 2(a)		77.0
701:0	<u>.</u>	.	50.	.š.	-1-	650.053	i		, , ,	212 0(8)		0.002
2.5 1100 990 2400/480 6700/4821	::	\$ 5	1100	රජුණ	2:00:22)	6700/2823	: :	;	701.0	21 /.0	0.467	0.00034

is) test discontinued.

FIGURE 75. TYPICAL TENSILE STRESS-STRAIN CURVES FOR PH 14-8 Mo SHEET (LONGITUDINAL)

FIGURE 76. TYPICAL TENSILE STRESS-STRAIN CURVES FOR PH 14-8 No SHEET (TRANSVERSE)

FIGURE 77. TYPICAL COMPRESSIVE STRESS-STRAIN AND TANGENT MODULUS CURVES FOR PH 14-8 Mo SHEET (LONGITUDINAL)

FIGURE 78. TYPICAL COMPRESSIVE STRESS-STRAIN AND TANGENT MODULUS CURVES FOR PH 14-8 No SHEET (TRANSVERSE)

FIGURE 79 EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF PH 14-8 MO SHEET

FIGURE 90. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF PH 14-9 Mo SHEET

FIGURE 81. AXIAL LOAD FATIGUE RESULTS FOR PH 14-8Mo SHEET

FIGURE 82. AXIAL LOAD FATIGUE RESULTS FOR NOTCHED (K+3.0) PH 14-8 Mo SHEET

FIGURE 83. STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR PH 14-8 Mo STAINLESS STEEL SHEET

6A1-2Sn-4Zr-2Mo Titanium

Material Description

The 6-2-4-2 alloy was developed originally as one of the so-called "super" alpha alloys for engine usage, principally as forgings. However, it has also been produced in the form of flat-rolled products. These products are characterized by their high strength and stability at temperatures up to 1050 F.

Approximately 22 square reet of 0.080-inch-thick sheet was obtained from The Titanium Metals Corporation of America for this evaluation. The composition of the sheet was as follows:

Chemical Composition	Percent
Carbon	0.026
Iron	0.08
Nitrogen	0.008
Aluminam	5.8
Molybdenum	2.0
Hydrogen	0.007
Zirconium	4.2
Tin	2.1
Oxygen	0.10

Processing and Heat Treating

The specimen layout for this material is shown in Figure 84. After specimen machining, the alloy was triplex-annealed as follows: 1650 F for 1/2 hour, air cool; plus 1450 F for 1/4 hour, air cool; plus 1400 F for 2 hours and air cool. This treatment was recommended by The Titanium Metals Corporation of America.

Test Results

Tension. Testing was performed for both longitudinal and transverse specimens at room temperature, 400 F, 700 F, and 1000 F. Stress-strain curves at temperature are shown in Figures 85 and 86. Tabular test results are presented in Table XLIV. Effect-of-temperature curves are shown in Figure 89.

Compression. Testing was conducted for both longitudinal and transverse specimen at room temperature, 400 F, 700 F, and 1000 F. Tabular test results are given in Table XLV. Stress-strain and tangent-modulus curves at temperature are shown in Figures 87 and 88. Effect-of-temperature curves are presented in Figure 90.

FIGURE 84. SPECIMEN LAYOUT FOR TI-6-2-4-2

Shear. Tests were performed at room temperature for longitudinal and transverse specimens. Results are given in Table XLV1.

 $\underline{\mathtt{Bend}}$. Bend test results are given in the data sheet in the Conclusions section of this report.

Fracture Toughness. Tests were conducted on specimens of full-sheet thickness by 18 inches by 48 inches. The average K_c obtained was 135 ksi \sqrt{inch} . This number is considered valid.

Fatigue. Axial-load fatigue tests were conducted on unnotched and notched transverse specimens at room temperature, 400 F, and 700 F. Tabular test results are given in Tables XLVII and XLVIII. S-N curves are presented in Figures 91 and 92.

Creep and Stress Rupture. Tests were performed at 400 F, 700 F, and 1000 F on transverse specimens. Tabular test results are given in Table XLIX and log-stress versus log-time curves are presented in Figure 93.

Stress Corrosion. No cracks appeared in the specimens after testing as described in the Experimental Procedure section of this report.

Thermal Expansion and Density. Values obtained are given in the data sheet in the Conclusions section of this report.

FIGURE 85. TYPICAL TENSILE STRESS-STRAIN CURVES FOR Ti-6AI-2Sn-4Zr-2Mo SHEET (LONGITUDINAL)

FIGURE 86. TYPICAL TENSILE STRESS-STRAIN CURVES FOR TI-6AI-2Sn-4Zr-2Mo SHEET (TRANSVERSE)

FIGURE 87. TYPICAL COMPRESSIVE STRESS-STRAIN AND TANGENT MODULUS CURVES FOR TI-6AI-2Sn-4Zr-2 Mo SHEET (LONGITUDINAL)

FIGURE 88. TYPICAL COMPRESSIVE STRESS-STRAIN AND TANGENT MODULUS CURVES FOR TI-6 AI-2Sn-4Zr-2Mo SHEET (TRANSVERSE)

FIGURE 89. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF TI-6AI-2Sn-4Zr-2Mo SHEET

FIGURE 90. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF TI-6AI-2Sn-4Zr-2 Mo SHEET

FIGURE 91. AXIAL LOAD FATIGUE RESULTS FOR TI-6AI-2Sn-4Zr-2Mo SHEET

FIGURE 92. AXIAL LOAD FATIGUE RESULTS FOR NOTCHED (K1=3.0) TI-6AI-2Sn-4Zr-2Mo SHEET

FIGURE 93. STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR TI-6-2-4-2 SHEET

TABLE XLIV. TENSION TEST RESULTS FOR Ti-6A1-2Sn-4Zr-2Mo SHEET

Specimen Number	Ultimate Tensile Strength, ksi	0.2 Percent Offset Yield Strength, ksi	Elongation in 2 Inches, percent	Tensile Modulus, psi x 10
		udinal at Room Tem		
11.1	146.0	144.0	3.0	17.3
1L2	146.0	144.0	3.0	16.7
113	147.0	145.0	3.0	16.9
	Trans	verse at Room Temp	erature	
171	147.0	146.0	2.7	18.5
1T2	148.0	145.0	2.7	17.6
113	148.0	146.0	2.7	17.5
		Longitudinal at 40	0 F	
11.4	129.0	110.0	11.0	16.4
11.5	129.0	109.0	10.0	15.8
11.6	129.0	110.0	11.5	15.6
		Transverse at 400	F	
174	129.0	110.0	13.0	16.9
175	129.0	112.0	10.0	16.5
116	129.0	112.0	9.0	16.7
		Longitudinal at 70	<u>0 F</u>	
11.7	121.0	93.8	11.0	14.2
118	120.0	94.3	12,0	14.3
119	119.0	94.3	11.5	14.6
		Iransverse at 700	4	
117	121.0	97.8	12.0	14.9
118	120.0	96.0	10.0	14.7
179	119.0	97.1	10.5	15.3
		Longitudinal at 10	<u> 1 001</u>	
1110	103.0	83.6	15.5	12.6
1111	103.0	83.6	16.0	12.1
11.12	102.0	83.1	20.0	11.9
		Transverse at 100	<u>10 F</u>	
1710	104.0	86.0	17.0	13.8
1711	104.0	87.5	16.5	13.2
1712	102.0	84.4	16.0	13.5

TABLE XLV. COMPRESSION TEST RESULTS FOR Ti-6A1-2Sn-4Zr-2Mo SHEET

	0.2 Percent	Compressive
Specimen	Offset Yield	Modulus,
Number	Strength, ksi	psi x 10 ⁶
	Longitudinal at Room Tempera	ture
2L1	155.0	18.6
21.	156.0	18.5
2L3	158.0	18.7
	Transverse at Room Temperat	ure
2T1	168.0	19.7
212	169.0	20.0
213	169.0	19.9
	Longitudinal at 400 F	
214	116.0	17.7
21.5	116.0	17.2
2 L 6	116.0	17.5
	Transverse at 400 F	
214	125.0	18.8
215	125.0	18.2
216	125.0	18.0
	Longitudinal at 700 F	
21.7	101.0	15.5
213	101.0	15.5
219	101.0	15.3
	Transvarga et 700 F	
277	109.0	16.3
278	105.0	16.5
279	109.0	16.6
	Longitudinal at 1000	E
21.10	89.9	13.8
2111	93.8	14.3
2L12	92.5	14.3
	Transverse at 1000 F	
2110	102.0	15.2
2T11	100.0	15.2
2112	101.0	15.2

TABLE XLVI. SHEAR TEST RESULTS FOR Ti-6A1-2Sn-4Zr-2Mo AT ROOM TEMPERATURE

Specimen	Ultimate Shear
Number	Strength, ksi
	Longitudinal
4L1	99.0
4L2	101.0
4L3	100.0
4L2	101.0
	Transverse
4T1	101.0
4T2	101.0
4T3	102.0
474	100.0
4L3 4L2 4T1 4T2 4T3	100.0 101.0 Transverse 101.0 101.0 102.0

TABLE XLVII. AXIAL LOAD FATIGUE TEST RESULTS FOR UNNOTCHED Ti-6A1-2Sn-4Zr-2Mo SHEET AT A STRESS RATIO OF R = 0.1

Specimen	Maximum	Lifetime,
Number	Stress, ksi	cycles
	Room Temperature	
51	85.0	7,900
52	75.0	13,500
53	65.0	27,000
55	55.0	36,400
56	45.0	70,100
57	35.0	202,400
58	25.0	10,000,000(a)
		•
	400 F	
		
59	85.0	16,300
510	75.0	30,500
511	65.0	35,000
512	55.0	73,800
513	45.0	121,600
514	35.0	$10,787,100(\epsilon)$
		,,
	<u>700 F</u>	
515	85.0	17,600
516	75.0	18,600
517	65.0	25,100
518	55.0	78,200
519	45.0	49,000
520	45.0	61,400
521	35.0	12,742,000(a)
341	33.0	12,742,000(4)

⁽a) Did not fail.

TABLE XLVIII. AXIAL LOAD FATIGUE TEST RESULTS FOR NOTCHED ($K_{\text{C}}=3.0$) Ti-6A1-2Sn-4Zr-2Mo SHEET AT A STRESS RATIO OF R = 0.1

Specimen	Maximum	Lifetime,
Number	Stress, ksi	cycles
	Room Temperature	
522	55.0	3,300
523	45.0	11,600
524	35.0	15,000
525	25.0	88,800
526	15.0	840,600
527	10.0	10,180,000(a)
•		
	<u>400 F</u>	
528	55.0	10,400
529	45.0	18,800
530	35.0	43,000
531	25.0	109,900
532	15.0	826,700
533	10.0	11,069,300 ^(a)
	700 5	
	<u>700 F</u>	
535	55.0	11,000
536	45.0	13,500
537	35.0	56,200
538	25.0	84,800
539	15.0	265,200
540	10.0	$11,412,800^{(a)}$
J40	401	,

⁽a) Did not fail.

TABLE XLIX. SUMMARY DATA ON CREEP AND RUPTURE PROPERTIES OF T1-6-2-4-2 ALLOY SHEET

							***************************************				* . * . *	
			Hours to	_	Indicated Creep Deformation,	Deform	ation,	Initial	au	Elongation	Reduction	Minimum Creep
Specimen	Stress, Temp,	Temp,			percent			Strain,	Time,	tn 2 tn.,	of Area,	Rate,
No.	ksi	L	0.1	0.2	0.5	1.0	2.0	percent	hr	percent	percent	percent/hr
Ti-6242-31	128.5	400	1	!	!	:	ļ		On loading		1	Į į
Ti-6242-34	124.0	=		}	0.03	0.15	1		600.3*		!	0.00002
Ti-6242-37	110.0	:		0.05		!	1		119.6*		!	ł i
Ti-6242-39	105	:	0.07	1000	i	}	1	0.669	1007.7*	C.876	!	0.00001
/10 0707 FM	06.1	7							01		!	
11-0747-11	777	2	!	ļ		!	!		on roading		l I	i i
Ti-6242-312	116	:	!	6.5		950	!		1126,9*		1	0.00040
Ti-6242-310	112	=	;	3.5	470	2500**	ł	3,965	671.5*	4.53	!	0,00025
Ti-6242-32	100	=	0.05	55	3828**	i	i		665.1*		i	0.000075
Ti-6242-313	90	=	009	3000**		ļ	ļ	0.658	307*	0.780	1	0.00004
T. 627.7 35	C O	0001	0		,	6	·	400	0.00	9		**
11-0247-22	20	7007	20.0		;	٠,	4.7	20	13.3	70.0	,	t t t
Ti-6242-33	09	=	0.35		0.9	17	45	0.558	133.8	24.9	!	0.031
Ti-6242-38	40	=	2.5	12	65	145	225	0.198	745.2	36.9	i i	0.0075
Ti-6242-36	25	=	11	45	202	365	200**	0.453	289.4*	1.193	!	0.0019
Ti-6242-311	10	=	515	800	1625**	1	1	0.069	963.6*	0.327	1	0.00036

*Test discontinued. **Estimate.

DISCUSSION OF PROGRAM RESULTS

As has been stated in previous reports issued on the Air Force "data sheet" program, the tendency in an evaluation program of this type is to compare the materials property information obtained with similar data on materials already in use. Whether such a comparison should be the deciding factor for interest in a newer alloy is open to question. Many criteria, such as forming characteristics, weldability, oxidation resistance, etc., can be of particular importance so that strength properties may become secondary. However, since first comparisons are usually made on the basis of mechanical strength (tensile ultimate and tensile yield) the data generated on this program are compared to information for similar alloys. Figures 94 and 95 are effect-of-temperature curves concerned with these properties.

CONCLUSIONS

The objective of this program was the generation of useful engineering data for newly developed structural materials. During the contract term the following materials were evaluated:

- (1) Udimet 700 Alloy Sheet
- (2) X5090 Alloy Sheet
- (3) AF2-IDA Alloy Sheet
- (4) Inconel 625 Alloy Sheet
- (5) HA-188 Alloy Sheet
- (6) Custom 455 Alloy Bar
- (7) PH 14-8 Mo Alloy Sheet
- (8) 6A1-2Sn-4Zr-2Mo Titanium Alloy Sheet.

A data sheet was issued for each material. As a summary, each of the data sheets is reproduced in this section of this final report.

FIGURE 94. ULTIMATE TENSILE STRENGTH AS A FUNCTION OF TEMPERATURE

FIGURE 95. TENSILE YIELD STRENGTH AS A FUNCTION OF TEMPERATURE

REFERENCES

- 1. Deel, O. L., and Hyler, W. S., "Engineering Data on Newly Developed Structural Materials", AFML-TR-67-418 (April 1968).
- 2. Deel, O. L., and Hyler, W. S., "Engineering Data on Newly Developed Structural Materials". AFML-TR-68-211 (July 1968).
- 3. Deel, O. L., and Mindlin, H., "Engineering Data on New and Emerging Structural Materials", AFML-TR-70-252 (October 1970).
- 4. "Standard Elevated Temperature Testing Procedures for Metallic Materials", ARTC-13, prepared by the Aerospace Research and Testing Committee (July 1957, revised March 1958 and June 1959).
- 5. "Evaluation of Test Methods for Refractory Metal Sheet Material", MAB 192-M (April 1963).
- 6. Kelley, E. W., "Manufacturing Process for Improved High-Strength Superalloy Sheet", AFML-TR-69-114 (June 1969).

meel 625 Allo

Iconel 0.25 is a relatively new product of Huntington Alloy Products Division of The International Nickel Company, Inc. It is reported to have high strength and toughness from cryogenic temperatures to 2000 F. It is a normagnetic alloy Activing, its strength from toe stiffening effect of molybdenum and columbium on its nickel-chromium matrix. It has good oxidation resistance and is virtually immune to thieride-ion stress-corrosion cracking.

inconel 615 is readily (abricated by common industrial practices and has excellent wild qualities, requiring no postweld thermal treatment for maintenance of its corrosion registance. The alloy has already been used in numerous acrospace applications and is currently being evaluated for use in the chemical and marine fields.

Stanuard mill forms including speet, strip, rods and bars, shapps, tube and plate are available.

The numinal composition of income! 625 is as follows.

0.43	
(S. 6)	រូន
70.0-23.0	12 34 XI.
51.00.50	1.7.7.
\$ 0.015	0.015
<u>₹.0</u>	3 0.1
0.10 0.53	0,01-0.8

Incomel 625 Data (a)

如果是我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们也不是一个一个一个一个一个,我们也不是一个一个一个一个一个一个一个一个一个一个一个一个

Condition: Annealed Thickness: 0.125-inch sheet

		Temper	ature. P	
Properties	RT	800 17	ᄓᇟᆝ	1600
Tens ion				
-	138.7	123.3	112.3	29.8
TUS (transverse), ksi TVS (fone(rudinm)) ksi	136.7	122.3	113.0	29.3
_	9.69	53.6	9.67	29.0
	51.1	50.0	97.0	123.0
	20. 0	51.0	81.3	118.0
E' (longitudinal), 10º psi E' (transverse), 13º paí	28.3 30.3	24.1 25.0	22.5	14.6
Compression				
11 17 17	;		7 33	
CTV (longitudinal), KVI CVA (respective) Fet	73.4	0.00	0.00	2.15 2.15 4.15
E (longitudinal), 10 psi	29.1	24.0	24.8	15.5
(transverse), 100 pi	7.0%	26.2	25.2	14.2
Shear (b)				
SUS (longitudinal), ksi	114.5	ŋ(e)	n	Þ
(transverse),	115.8	a	Ð	ם
Bend (c)				
Longitudinal, minimum radius Transverse, minimum radius	1/5	פכ	50	ສະ
Fracture Toughness, K (d)				
kst/fa.	(p)	a	n	Þ
Asial Fatigue (transverse)				
Unnotched, R = 0	•	į	;	;
105 cycles, kei	970	120	180 180	:
10, cycles, mai 10 cycles, ksi	22	707	8 9 8 9	. .
TO B M TO F M Y PARTY SON				
cycles, kst	130	114	08	Ω
10, cycles, kg1 10, cycles, kg1	9 4	2 24	8 , 4	= =
Creep (cransverse)				
0.21 plastic deformation, 100 hr 0.21 plastic deformation, 1000 hr	¥ ¥	ĒĒ	% %	4.0 8.0

Income! 625 Data (continued)

		Tempera	Temperature, F	
Properties	11	903	1200	1600
Stress Ruptore (transverse)				
Eupture, 100 hr	Y.M	-120	Ľ	\$
Rupture, 1000 hr	ផ	120	^	2.5
Stress Corrostun				
80% IYS, 1000-hr naximum	Wo cracks (6)			
Coefficient of Thermal Expansion				

in./in./F (70 to 500 F) in./in./F (70 to 1500 F) 7.4 × 10-6 1

Dens fry

0.305 lb/tm.3

- Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue, creep, and stress-rupture values are from curves generated using the results of a greater number of tests. 3
- Single-shear sheet-type specimen. **P**
- Specimens tested at RT, +12 F, and -90 F. No cracks at either temperature. છે
- Specimens were full sheet thickness x 18 in, x 45 in, with EM (law in center, kwarage K was 156 ksivin. The net section yield stress at fracture was greater than the Emslie yield strength of the material; therefore, the K values are considered not valid. 3
- unavailable; MA, not applicable. ઉ
- "h" represents the algebraic ratio of minimum stress to maximum stress in one cycle; that is, R = S 1/5 = 1. "K" represents the Meuber-Peterson theoretical stress concentration with the 3
- Room-temperature three-point bend test. Aiternate immersion in 3-1/22 MaCl. 3
- Extensometer inoperative due to large initial strain; negative creep occurred æ

FIGURE 2 EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF INCONEL 625 SHEET

Time, hours
STRESS-RUPTURE AND PLASTIC DEFORMATION
CURVES FOR INCONEL 625 SHEET

Notoned Tronswerse R:O.1 K, : 3.0

£

HOSIMum Shess, tes

1200 F.

Lifetime, cycles ş

AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K1.3.0) INCOME. 625 SHEET FIGURE 4.

FIGURE 5

... 124 Aile

AFT-1DA is a recently deput Bight-compersion mithol-bear alloy. It was developed by the Iniversal-Cyclope Specialcy Start Division under Accrete conteact by the Iniverse Specialcy Start Division under Accrete conteact by Iniverse might conteact bear and the conteact might conteact bear shown; for entruded misterial was tasued under an eartier conteact (FISO). A Tasia shown; for entruded misterial was tasued under an eartier conteact (FISO).

A sheer named secretary process for ASI-10A story was drively and structures of this action was second at the contract of the

:-	**	+6.3	61.6	4.40	1.73	4.44	12.04	; ;	5.56	434
7 7 7	1000	Mo Lyndorian	A to continue	\$\$00.4 i.ms	Cott Bunt	5.4 4 Cash	the smitself	A ; you tourn	12 6 4 to 1/2m	\$20.00E

424347

AF2-1DA Data (a)
Condition: STA
Thickness: 0.060-inch sheet

THE PROPERTY OF THE PROPERTY O

Propertien	TH.	1000	1.3	1800
Tenslon				
TES (longicudinal), ksi	191.7	153.0	130.0	46.4
	180.0	151.7	131.3	7.87
TVS (longicudinal), ksi	144.3	137.3	130.0	37.4
	142.3	137.0	130.0	40.2
e, (longicudinal), percent in 2 in.	12.0	2.3	8.0	7.8
o' (transverse), percent in 7 in.	12.0	8:	1.0	5.2
Il (longicudinal), 306 psi	31.4	28.1	24.3	18.2
f (transverse), 10° psi	30.8	28.2	24.0	18.7
Commy Form ton				
				;
CTS (longitudinal), kai	153.0	143.0	136.0	7.00
(ACCEPTANCE OF S. B.	25.0	1,5	0.751	
A CHARTENATION OF THE PART OF THE CHARTENATION	32.4	29.6	26.4	18.2
Sand of the				
\$1.4 (1000 to 1610 to 1). hts.	120.5	(c) ⁿ	2	دة
Elia (cransverse), kus	120.0	بن	د	Ð
Fraction Toughtons, K.				
	છ	=	:	:
、行動で映画展		.	د	.
antel fatigue (transverse) (e)				
Sprace Check . St C				
	190	160	90	2
	115	108	58	ນ
10 cycles, asi	9	7.5	ጽ	ຍ
No. 6 (1.1)				
the kel	150	106	79	a
cycles,	ኢ	63	ž	2
	30	36	37	ະ
Cross (Itensensia)				
a. 22 elestic deformation, 100 hr. hel	KA	108	63	2.9
5.2% placific deformation, 1000 hr, hai	ž	106	20	2.1

ATT-104 Duca (candiament)

	AND THE PROPERTY OF THE PROPER	AND STREET, ST	and the particular to the contract of the cont	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		a de la Calenta	B. What has the state of	
	CASA)	CKXX	2,400.62	ercue?
Espesa (1225,480 (1840,470,000)				
Ruphape, 100 kg. kgs Ruphape, 1000 kg., ket	22 A	35	4 8	60 A
Eccept Correspond				;
for fry, 1000-he materia	(A) STRIBER OF SIX	Þ	دة	ž
Ewelthy bank of Themsel Towns			•	,

THE PARTY OF THE P

8.5 s 10"6 tn./l.a./7 (48 co. 1700 f)

Patre 1 tz

0.392 tb/ta. 3

Desse and and statement of sold-to-sele species residenties, or medically selected the outsident restricts reserved to the outside species of the contract of the outside the contract of the ŝ

,这是是自己的是他的,我就是这个女子的不是,他们的自己的是我们。 Ē

V. smarstebbis; Mr. suc spettishe.

GFM massecket granotter mos endetstands hue to expira. Ĵ

3

Procedurate was a serie of the state of the ŝ

EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROP. ERTIES OF AF2-1DA SMEET FIGURE 2.

, . (a,

Sand on 421 24 500

Country than 155 for a term one of the chapters of the country terminate and additional according to the chapters of the country terminates of the country of the country terminates of the country terminates of the chapter terminates of the country term

Plus nine stabilities essent ages be machinare in the fore accused anniforming god and below the same named to a collect stabilities as a collect stabilities as a collect stabilities as a collect to a collect the foreign and the foreign and the collection of the collection of the collection of the collection and the

inversion 45% for Breingeral for the conservations and property of the scripture of the scr

The state of the s

Carter 455 Date (a)

ANAMATA

Condition: Aged Thickness: 1-inch-dispeter Bar

			Temper	ture. F	
kai	Fropertion	KŢ	007	009	
kai kai 248.4 215.9 201.2 kai 10 pet 26.3 20.0 34.2 100 pet 26.3 20.0 34.2 100 pet 26.3 20.0 34.2 100 pet 26.3 20.0 34.2 100 pet 27.2 27.3 202.0 3 kai 25.4 218.3 202.0 3 29.7 27.7 26.5 100 pet 27.0 pet 27.2 100 pet 27.0 pet 27.2 100 pet 27.0 pet 27.2 100 pet 27.0 pet 27.2 100 pet	Tents 1 on				
kai percent in 2 in, 247.4 214.2 197.2 percent in 2 in, 10.0 10.6 11.8 percent in 2 in, 10.0 10.6 11.8 10.0 10.6 11.8 10.6 pai 255.4 218.3 202.9 10.6 pai 255.4 218.3 202.9 10.0 c c c c 15.0 c c 15.0 c	This (lungicudinal), hai	7 876	915		VG .
Mark	A Committee of the Comm			7.10.7	180.0
hercent in 2 in, 10.0 10.6 11.8 loo per cont in 2 in, 10.0 10.6 11.8 loo per cont in 2 in, 10.0 10.6 11.8 loo per cont in 2 in, 10.0 10 10 10 10 10 10 10 10 10 10 10 10 10	Carlo Contract of the Contract	4.7.4	717.7	197.2	174.3
Mail	'toweleading!', parcent in 1	0.0	10.6	11.8	14.7
100 pet 26.3 27.8 26.7 25.4 27.8 26.7 25.4 27.2 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 27.2 26.5 26.5 27.2 26.5 26.5 27.2 26.5 26.5 27.2 27.2 26.5 27.2	(Sengiridian),	45.3	Ş	6 75	
Kai 255.4 218.3 202.0 20.5	(lange cucinal), 100	4	2.0		
Kai 255.4 218.3 202.9 29.7 27.7 26.5 20.5			•		۲۴.۶
Kai	Cantest era # 3 or:				
100 ge1	Car (Language and mark) has	1 334	9	4 4 4	
kei (52.0 U ^(d) U 1b 15.0 U ^(d) U 1s.e (/ Scott 1 cold 2 cold		613.3	502.0	3:7.7
15.0 U U U U U U U U U	01 1/2011 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 4.	27.7	26.5	23.9
15.0 v. (d) v. (d) v. (d) v. (e) v. (
15.0 U U 15.0 U U 15.6 U U 15.6 U U 17.6 U U 17.6 U U 17.0 U	Comment of the second of the s		9)		
15.6 t v 15.6 t v 15.6 t v 24. 220 u 13. 127 t 130 127 t 150 137 t 150 v 45 t 30 t 44 t 163 44 t 163 44 t NA 207 163 155 163 NA 215 193 NA 215 193 NA 215 193	TOR TORINGS IN COLUMN	0.75.	: ,	÷	ນ
15.6 () U 15.6 () U 240 220 U 13.1 127 U 120 120 U 120 120 U 150 134 U 150 134 U 150 U 245 60 U 250 U					
15.0 U U 15.6 U U 240 220 U 131 127 U 131 127 U 130 130 U 150 130 U 250					
15.6 i U 24c 220 U 131 127 U 130 120 U 150 134 U 150 137 U 150 134 U 150	indicated Charpy, for 10	15.0	ย	ىد	ະ
15.6 () 240 220 U 131 127 U 130 120 U 130 134 U 156 U 156 U 156 U 156 U 156 U 157 U 158	(3)				
15.6 i U 240 220 U 131 127 U 130 137 U 150 134 U 45 60 U 45 60 U 30 44 U 45 60 U 50 U	OR DAIL OF STREET STREET				
131 220 U 131 127 E 131 127 E 130 130 U 150 130 U 150 134 U 150 134 U 150 0 U 150 134 U 150 0 U 150 134 U 150 135 Hdinall NA 207 163 155 NA 215 193 NA 215 193 NA 215 193	*	* 2 ,	•	:	;
13.4° 220 U 13.1 127 U 120 120 U 120 120 U 150 134 U 45 60 U 30 44 U 46 U 30 44 U 163 (46 U 30 KA 203 155 Hdinil NA 203 155 NA 215 193 NA 215 188				io e	ລ
24° 220 U 131 127 U 120 120 U 120 120 U 150 134 U 45 60 U 30 44 U 45 60 U 30 45 U 45 60 U 80 U 8	Antist Factorine (Longestructions)				
240 220 B 131 127 E 120 120 E 120 120 E 120 120 E 150 134 C 150 100 hr NA 207 163 144 1000 hr NA 207 163 1441nall NA 215 193 NA 215 193 NA 215 193	- man & Che d , K = 0.1				
1340 220 8 120 127 5 120 120 120 120 120 120 120 120 120 120					
131 127 E 120 120 E 150 134 C 45 60 C 30 44 U 140 100 hr NA 207 163 144 Ld. Ld. NA 207 163 144 Ld. NA 207 163 144 Ld. NA 207 163 164 U 165 NA 215 193 NA 215 193 NA 215 193		.347	220	3	183
120 120 U 150 134 U 150 134 U 150 134 U 150 100 U 20 U	the case of the ca	131	127	÷	123
150 134 C 45 60 C 30 44 U 150m, 100 hr NA 207 163 1441mil NA 215 188 NA 215 188 NA 215 188 NA 215 188	THE CHARLES WAS	120	120	ت	40%
150 134 C 45 60 C 30 44 U 149 Ldfmall NA 207 163 163 Ldfmall NA 203 155 NA 215 193 NA 215 193 NA 215 193	9 W .0.				
134 C 150 134 C 150 150 150 C 15		•			
45 60 U 30 44 U 30 kt NA 207 163 44 U 441nall NA 203 155 441nall NA 203 155 NA 215 193 NA 215 188 NO Cracks (F)		2	7.	د	133
30 44 U 110m, 100 hr NA 207 163 1155 Hdinall NA 210 193 NA 215 188 NO Cracks (F)		-7	Ç	ت:	9
tion, 100 hr NA 207 163 tion, 1000 hr NA 203 155 hdinall NA 216 193 NA 215 188 NA 215 188	the resolute that	ጸ	77	ב	77
tion, 100 hr NA 207 163 tion, 1000 hr NA 203 155 hdinall NA 216 193 NA 215 188 NO cracks (F)					
tion, 100 hr NA 207 163 (tor. 1000 hr NA 203 155 <u>hdinall</u> NA 210 193 NA 215 188 NO cracks (?)	(The company of the company	;			
#441n#1.1 NA 203 155 #441n#1.1 NA 216 193 NA 215 188 NO CTACKS (F.)		¥.	207	163	8,77
NA 210 193 NA 215 193 NO CTACKS (F.)	O. I'm plantir defermation, 1000 hr	N.A	203	155	9) (2
MA 210 193 NA 215 198 NO CTACKS (?)				}	₹
NA 216 193 NA 215 188 No cracks (!;)	Sifesa furture (Longithding)				
NA 215 188 No cracks (F.)	Papitate, 100 hr	XX.	216.	(0)	9) 00
No cracks (F.)		××	21.5	9 00	37 (8
		į	:	901	
	Mense Correstus		(
	AND THE ORDER OF THE STANK	No crack	,, vş		

Composition	RT 400 800	
	Properties	

Coefficient of Inernal Expansion

6.08 x 10^{-C} in./in./F (72 to 400 F) 6.57 x 10⁻⁶ in./in./F (72 to 800 F)

Density

0.280 lb/in.³

- (a) Data are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Farigue, creep, and stresstrupture values are from curves generated using a greater number of tests.
 - (b) Double-shear pin-type specimen, 0.250-inch diameter.
- (c) 10.0 at -90 F.
- (d) T, unavailable; NA, not applicable.
- (e) Slow-bend chevron-notched-type specimen.
- (f) "R" represents the algebraic ratio of minimum stress to maximum stress in one cycle; that is, R = S $^{\prime}$ /S $^{\prime}$ /S $^{\prime}$ /S $^{\prime}$ /C represents the Neuber-Peterson theoretical stress concentration factor.
 - (g) .ta for 850 F.
- (h) Noom-temperature three-point bend test. Alternate immersion in 3-1/2 percent NaCl.

FIGURE 2. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF CUSTOM 455 ROUND BAR

850F

200

00

Stress, ksi

A PARTIE TO THE AND THE PROPERTY AND THE

は我の情報をはないない。

AXIAL-LOAD FATIGUE RESULTS FOR UNNOTCHED CUSTOM 455 ROUND BAR AT THREE TEMPERATURES FIGURE 3

AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (Kt. 3.0) CUSTOM 455 ROUND BAR AT THREE TEMPERATURES FIGURE 4.

õ

Rupture

STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR CUSTOM 455 ROUND BAR

HA-18. Alloy

Haynes Alloy 188 is a new cobalt-base alloy development of the Stellitz Division of The Cabot Corporation. It is reported to have excellent high-terperature strength and oxidation refistance, and good post-aging ductility. It can be strengthened and hardened by cold work. The alloy can be welded by conventional techniques and exhibits good restraint-welding characteristics. Studies are now in progress to define the aging characteristics of this alloy.

The nominal composition of Alloy 188 is as follows.

Co Balance
La 0.08
Fe 1.5
0.75
Si 0.20
N1 22.0
0.08
H 12.21
Cr 22.0

4A-188 Data^(a)

SARAGERIA SARAGER

Condition: Annealed Thickness: 0.078-inch sheet

AND THE TRANSPORT OF THE PROPERTY OF THE PROPE	racia: hercana ar cabener s.a.	Temperat	Tennerature. 7	Andrew States with
Properties	RT	009	1000	1400
Tension				
_	146.0	128.5	119.5	70.1
(transverse),	145.5	127.5	118.0	70.7
TYS (longitudinal), ksi	78.5	55.2	51.3	6.95
(transverse), ksi	68.7	0.67	45.7	44.2
(rengicudinal), percent in	0.09	63.5	56.5	20.5
	0.4.0	0.50	7.00	7.8.7
E (transverse), 10 ⁶ psi	3.6	33.1	32.5	24.2
Compression				
CYS (longitudinal), ksi	0 05	73 6	73.3	
(transverse), ks1,	73.8	54.9	49.5	7.4.7
E (longitudinal), 10 psi	33.2	30.1	30.5	24.5
(a)		6:67	0.63	7.67
	132.8	η(e)	ຍ	i)
SUS (transverse), ksi	137.1	ພ	ລ	5
Bend (c)				
Longitudinal, minimum radius Transverse, minimum radius	T/5 T/5	ac	a n	22
Fracture Toughness, K				
ksi/in.	(p)	5	Þ	ಕ
Axial Fatigue (trancverse) $^{(f)}$				
	:			
105 cycles, ksi 107 cycles, ksi	145	: c	120	25
	S	5	99	45.5
Notched, K = 3.0, R = 0.	;			
10, cycles, Kai 10, cycles tes	138	5 :	2 (65
10 cycles, ksi	07	o 5	6 7	£ 5

EA-188 Data (continued)

		Temperature F	11 011	
rroperties	RT	800	1200	1600
Creep (transverse)				
0.2% plastic deformation, 100 hr 0.2% plastic deformation, 1000 hr	W.	116 115	77.6	6/1
Stress Rupture, transverse			3	
Rupture, 100 hr Rupture, 1000 hr	NA NA	116.5	\$9 E	16
Stress Corrosion			ξ.	7 7
80% TYS, 1960-hour maximum	No cracks (g)			
Coefficient of Thermai Expansion				

8

(78 to 600 F) (78 to 1400 F) in./in./F in./in./F 6.8 x 10⁻⁵ 9.2 x 16⁻⁶

Density

0.333 1b/in.³

Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue, creep, and stress-rupture values are from curves generated using the results of a greater number of tests. (a)

Single-shear sheet-type specimens 9

No cracks at either temperature. Specimens tested at RI, +32, and -90 F. 3

Speciners were full sheet thickness x 18 in. x 48 in. with EDM flaw in center. Average K was 175 ksivin. The net section yield stress at fracture was greater than the tensile yield strength of the material; therefore, the K values are considered not valid. (E)

U, unavailabie; NA, not applicable. <u>e</u>

"R" represents the algebraic ratio of minimm stress to maximum stress in one cycle; that is, R = S /S "K" represents the Neuber-Peterson theoretical stress-concentration factor. **£**

Room-temperature three-point bend test. Alternate immersion in 3-1/2 percent NaCl. 8

FIGURE I. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF HA-188 SHEET

EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF HA-188 SHEET FIGURE 2.

ō

5

_ي٥

S

1000F

8

Moximum Stress, kei

STREET, STREET

. 9

:60

041

AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K4=3.0) HA-188 SHEET AT THREE TEMPERATURES Lifetime, cycles FIGURE 4

₽

1400F

STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR HA-189 SHEET

FIGURE 5.

Time, hours

FIGURE 3

160

õ

ies , esente mumisoM

X5090-H38 Aluminum Alloy

Alloy X5090 is a development of the Aluminum Division, Olin Creperation. As a basic Aluminum-7. Magnesium alloy, it is designed to ...fer exceptional mechanical properties in the cold-worked and stabilized temper utthour susceptibility to stress corrosion cracking. A combination of controlled chemistry of minor elements and controlled thermal processing has resulted in light gage, full-hard sheet material with mechanical properties in excess of those of 2024-13. The alloy, as reported by Olin. Is characterized by low density, excellent fracture toughness, excellent fatigue strength, and excellent general corrosion resistance, as to stress corrosion cracking.

Composition limits of this allo; are as follows;

0.50 max	0.50 ====	0.25 max	0.35 max	6.0 tc 8.0	0.05 to 0.30	0.20 max	0.015 max	0.001 to 0.02	0.001 to 0.050	0.15 max
31	ii.	Ö	ş.	선	ð	Zn	Ti	a.	ρl	Others

The #35 condition is 75 percent cold-rolled and stabilized.

X5090 Aluminum Data(a)

Condition: -H38 Thickness: 0.025-inch sheet

		Temperature	11	
Properties	RT	200	325	700
Tension				
Tis (longitudina) ksi	73.9	62.9	35.9	19.2
(transverse), k	72.3	62.0	41.5	22.9
(longitudinal)	58.7	54.6	30.5	13.3
(transverse),	52.8	50.7	37.6	19.9
(longitudinal),	6.8	13.0	47.0	79.3
(transverse), percent in 2 fr	0.6	21.0	39.0	49.3
(longitudinal), 10° psi	12.9	9.6	7.1	4.5
	10.5	7.6	7.5	5.3
Compression				
CYS (longitudinal), ksi	57.5	58.0	41.6	19.1
(transverse),	63.5	66.1	47.1	28.9
E _C (longitudinal), 10° psi	10.5	10.6	8.1	6.8
E_{c} (transverse), 10^{6} psi	10.7	11.2	8.2	6.7
Shear (b)				
SHS (Tonoitudinal) bei	0 6 7	(0)	=	:
(transverse), k	41.9	בי) =	-
•		,	•	•
Bend				
Longitudinal, minimum radius	٠ţ.	Þ	b	::
Transverse, minimum radius	3.5t	n	b	Þ
(p) A (q)				
Tongoness,	67	ລ	ອ	5
ksi/in.				
Axial Fatigue (transverse)				
Unnotched. R = 0.1(e)				
cycles, k	73	9	20	n
, ,	77	37	ç	· =
cycles,) e	26	13) 5
Notched K = 3 O B = 0				
ksi, ksi	C.S.	87	3,8	E
cycles	22	18	3 2) =
cycles,	14	12	٠,	. 5
Creep (transverse)				
0.5% plastic deformation, 100 hr	ΝA	25	ve	
plastic deformation,	NA	, ω	3.5	2

X5090 Aluminum Data (Continued)

		Temperature, F	ure, F	
Properties	KT	200	325	400
Stress Rupture (transverse)				
Rupture, 100 hr	¥.	41	15	7
Rupture, 1000 hr	KA K	35	10	4.5
Stress Corrosion 80% TYS, 1000-hour maximum	No cracks ^(f)	s(f)		

Coefficient of Thermal Expansion

12.8 x 10⁻⁶ in./in./F (68 to 212 F)

Density

0.095 lb/fa.*

- (a) Each value given is the average of at least three tests conducted at Battelle under the subject contract, unless otherwise indicated. Fatigue, creep, and stress-rupture values are from curves generated using a greater number of tests.
- (b) Single-shear sheet-type test.
- (c) U, unavailable; NA, not applicable.
- (d) Specimens were full sheet thickness x 18 in. x 48 in. with EDM flaw in center. The net section yield streas at fracture was less than the tensite yield strength of the material; therefore, the K values are considered valid.
- (e) "R" represents the algebraic ratio of minimum stress to maximum stress in one cycle; i.e., R = S /S av. "K" represents the Neuber-Peterson theoretical stress concentration factor.
- (f) Room-temperature three-point bend test. Alternate immersion in 3% percent NaCl.

FIGURE 2. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF X5090 ALLUMINUM ALLOY

FIGURE 5. STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR X-5090 ALUMINUM SHEET AT THREE TEMPERATURES

FIGURE 4 AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K4=3.0) X5090 ALUMI-NUM SHEET AT THREE TEMPERATURES

Company of the second s

Cdimer 700 Alloy

that has seen limited use in engines as forging and bar products. The Air Force has funded on intensive effort (Contract AF 33(615)-3883) at Union Carbide Corporation to develop a sheet manufacturing process for this alloy. The material for this evaluation was supplied OPM from this effort. History and processing for the Udiner 700 sheet is contained in Reference 1. The specimens were heat-treated as follows:

2150F for 2 hours with rapid air cool, 1950F for 4 hours with ir cool, 1550 F for 24 hours with air cool,

1400 F for 16 hours with air cool.

According to Reference 1, this heat ireatment is designed to give the bast arress-rupture properties while maintaining good mechanical properties.

(1) Ealley, E. W., "Manufacturing Process for Exproved High-Strength Superalloy Sheet", AFML-TR-69-114 (June 1969).

Udimet 700 Data^(a)

Condition: STA Thickness: 0.032-inch sheet

		Temperature,	ure, F	
Properties	RT	1000	1400	180
Tension				
TUS (longitudinal), ksi	224.7	213.0	127.3	26.
(transverse),	213.7	199.7	127.7	26.
(longitudinal)	150.7	139.7	121.3	27.
(transverse),	150.0	138.3	174.7	77
(longlitudinal), percent in 2 (transmers) nearcent in 2 is	21.0	16.7	26.7	60,
(longitudinal), 10° psi	32.9	29,1	23.2	13.
10° p	34.1	31.7	25.4	13.
Compression				
CYS (longitudinal), ksi	161.3	146.7	125.0	21.
(transverse),	161.0	147.7	125.0	21.
E_{c} (longitudinal), 10^{c} ksi	33.5 36.2	33.0	24.3	12.
(righteract), 10	7.00	•		:
Shear(b)				
SUS (longitudinal), ksi	143.2	ŋ(c)	Þ	a
	148.0	n	Ð	D
Bend				
Loneitudinal minimm radius	1.5-2t	a	n	Ω
Transverse, minimum radius	1,5-2t	n	a	Ð
Fracture Toughness, K _C (d)	2.0	n	Þ	þ
Axial Fatigue (transverse)				
Unnotched, $R = 0.1^{(e)}$				
	200	190	162	Ð
cycles,	152	140	136	: c
10' cycles, ksi	80	126	96	5
ed, K _t =	,		,	;
10 cycles, ksi	158 75	047	017	> =
cycles,	45	25	9	9 5
Greep (transverse)				
0.2% plastic deformation, 100 hr	NA(c)	150	35	o.
plastic deformation,	NA	100	12	0

Udimet 700 Data (Continued)

Č		Jemperature, F	ure, F	
roperties	Ħ	1000	1400	1800
Stress Rupture (transverse)				
Rupture, 100 hr	i			
Rupture, 1000 hr	3 3	120	3 %	w
Stress Correston			₹	C:1
86% 715, 1000-hour maximum	No cracks(f)	cks(f)		

Utimate

8

8

Coefficient of Thermal Expansion

8.0 x 10" and in /F (87 to 1200 F)

0,285 16 16,

- Rath salve given is the average of it least three tests conducted at Battelle under the subject tentract, unless otherwise indicated. Faligue, creep, and stress-rupture values its from curves generated using a greater number of tests.
 - Mindie-shear sheer-type test. Ä
- U. umavailable, MA, not applicable, ċ
- Specimens were full sheet intimnes x 18 in. x 48 in. with EDM flaw in center. The Det Section yield stress at fracture was less than the tensile vield strength of the material interfure, the K values are considered valid. ŷ
 - "F" represents the algebraic ratio of minimum stress to maximum stress in one crole; i.e., B. § \(\frac{1}{2} \) \(\ 9
- Room-temperature three-point bend test. Aiternate immersion in 3% percent hafil. ÷:

EFFECT OF TEMPERATURE ON THE COMPRESSION PROP-ERTIES OF U-700 SHEET

a de la companya del la companya de la companya de

AXIAL-LOAD FATIGUE RESULTS FOR NOTCHED (K1.3.0) U.700 SHEET FIGURE

11 - 6 A1 - 2 Sc - - 2c - 2 No Atloy

This is one of the so-called "super" sighs alloys having an alphasid strontime. The bess-reabilitating addiction, mitphenium, increases good and strontium. The bess-reabilitating addiction, mitphenium, increases good selectedly for for ongine usage, stronged and stability. It was developed also been produced as flaterilled products. The alloy presents to has also been produced as flaterilled products. The alloy presents good acrossity and stability up to 1000 F. See formability and woldability rempare favoreably with other titation alloys.

the composition of the naturals, wast by this oration and to the composition of

· [2]	
0.00.	
리	
4	
2 0 0	
10.0 0.03	
0.01%	1 1 2 1 2 1

3 to 0

Ti - 6 Al - 2 Sn - 4 Zr - 2 Mo Data (a)

alandaria de la compositación d

Alexander and the second secon

Condition: Triplex-annealed Thickness: 0.980-inch sheet

		Temperature	nre. F	
Properties	¥	007	10	1000
Intelon				
And Change and Annual Court	146.3	129.0	120.0	102.6
(transverse), ka	147.6	129.0	120.0	103.3
	144.3	9.601	94.1	4.50
(gransverse), ksi	145.6	111.6) ·	2.00
(longicudinal), percent		8.01	7.0	7.71
(transverse).	7.7	10.1	7.0	12.2
(!sagitudinal), iC	.:	1 7 7	2.7	1 2 5
	۲۰۰۱		7	:
Cropy es 6 les				
	156.3	116.0	101.0	91.7
CIV (Longity Contract), and	168.6	125.0	9.801	101.0
(lower tradenal)	18.6	17.5	15.4	1.21
100 ps	6'61	18.3	16.5	15.2
(n) Testes		,		
SUS (longitudinal), ksi SUS (transvorse), ksi	100.0	n n	ຍຍ	22
fracture foughtness, h				
1665 · 40.	135(4)	ప	2	Þ
Aniai Fasigue (sransverse)(c)				
	•	5	[0]	=
٠,	701 701	3 5	107	. =
102 cycles, Ksi 107 cycles, ksi	2 %	32	32	Þ
		;	ř	=
103 cycles, tai	2 64	2 52	5 2	, ,
cycles.	12	01	10	Þ
(reap (cransverse)	•			
0.22 plactic deformation, 100 hr 0.22 plactic deformation, 1000 hr	K (5)	106.0 105.0	99.0	9.2

To - 6 Al - 2 So - 6 Re - 2 No Casa Countlemed)

•		Tomber's	furth 7	
中華でいた意味がなる。	ū	400	356	1000
ELENDS PHOENER (CEARDINGTON)				
Rupture, 180 hr Rupture, 1869 hr	3 3	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 (c	\$ 1 \$ 1
\$5.600 Gerraling			•	2
\$02 TIS, 1078-50 nakinum	(3) examp on	(6)		
ERESTIGATION OF PROTING BASAGES -				

5.4 = 10 th laten'r eng to 1000 p)

Pers itz

3, ten 18/30. 3

- (a) Walsen are krotege of tripleance earts aroundeded at Apricative cuteof the subject to confer the property of the subject to confer the conference of the property of the p
- tioner thanks and to come thanks of most (a)
- (4) Aperimens where fully except threshouses of templar is the seather which \$700 Class in manager. The next seather were seather when the construction of the next seather when the construction of the seather when - (B) "F" from process of the signification of minimum expens to another nitroses to respond to the first fine of the first fine of the first fine of the first fine theorem is the first fine of the first fine theorem is the first fine first fine first fine the first fine first - (5) Birons congestatives though being boing seas. Arthorough innovers in 1-1-15; he (5)

8

Ç the transport authorities

300¢

000 F

Undokument Transcensie

.

ô

ist cestic mamacilis

The second secon

Company of the Compan

・ Spains a datal i Cordo それがは1度 RSSAS だち そのは AGではMEの Ref+をG) 下・右右・そちかっそとってMo SMと名と Carolic Granders

ç

FIGURE 5 STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR TI-6AI+25n-4Zr-2 No SHEET

Time, hours

8 \$-1084

PH 14-8 Mo Ailoy

family of precipitation hardenable stainless steels. It is a semiaustenitic alloy developed to provide a sheet and strip product with higher resistance to crack propagation than the older 17-7PH and PHI5-7 Mo alloys. It is heat treatable to high strengths and exhibits good elevated temperature properties. Since it is austenitic in the annealed condition, it is readily formable by methods currently used for austenitic or other semiaustenitic steels. The alloy does work harden rapidly and may require intermediate anneals for deep drawn or other severly formed parts.

The alloy is commercially available in the form of sheet and strip. The composition of the material used for this evaluation was as

follows.

PH 14-8 N. Data (a)

THE PARTY OF THE P

Condition: SRH 1050 Thickness: 0.070-inch sheet

		Тепрета	ture, F	
Properties	R	400		006
Tension				
(longitudinal)	203.3	182.3	164.3	131.0
	207.3	185.6	167.6	134.0
TYS (longitudinal), Esi	199.3	177.0	152.0	123.7
۸ `	7.5	0.4	9.6	18.2
(reasserverse) percent in 2 (s	7.2	4.0	8	15.6
(longitudinal), 106 psi	27.2	26.0	25.5	23.1
.×	28.6	78.4	26.1	23.5
Compression				
CYS (longingl), ksi	218.3	197.6	176.5	137.6
	219.0	203.0	180.6	146.6
Ec (longitudinal), 106 psi	27.6	25.5	25.2	24.4
(4)				
		(e)	:	;
SUS (longitudinal), kai SUS (transverse), ksi	129.0		ອອ	פב
<u>Bend</u>				
minimum račius	II	a	a	Ð
Fracture Toughness, K				
ksi vin.	270 ^(d)	p	Þ	2
Axial Facigue (transvars.) (e)				
	9	281	130	:
100 Cycles, Ker 105 cycles ker	102	92	98	5
cycles,	06	80	92	n
žć, K				
	119	117	110	:
105 cycles, kei	30	æ 9	3 3	છ 5
cycles,	3) 1	?	,

Pe Balance

PH 14-8 No Data (continued)

		Lenderature	TILE .	
Properties	멅	853	82	906
Creep (transverse)				
0.2% plastic deformation, 100 hr 0.2% plastic deformation, 1000 hr	KK (c)			
Stress Empture (transverse)				
Supture, 100 hr Rupture, 1000 hr	NA NA			
Stress Corrosion (f)				
80% IYS, 1000-br meximum	No cracks			
Coefficient of Thermal Expansion				

10⁻⁶ in/in/F = (70-200 F) 5.3 (70-600 F) 6.2 (70-1000 F) 6.4

Den31CY

Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue, creep, and stress rupture values are from curves generated using a greater number of tests. 3

- Single shear sheet type specimen. 3
- U, unavailable; NA, not applicable. ઉ
- Specimens were full sheet thickness x 18 inches x 36 inches with EDM flow in center. The net section yield stress at fracture was less than the tensile yield strength of the material. The K walue is considered vaild. ਉ
 - "R" represents the algebraic ratio of minimum stress to maximum stress in one cycle; that is, R = S_{min}/S_{max} . "Rt" represents the Neuber-Peterson theoretical stress concentration factor. હ
- Room-temperature three-point bend test. Alternate immersion in 3-1/2% NaCl. $\widehat{\mathbf{H}}$

FIGURE !. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF PH 14-8 MO SHEET

FIGURE 2. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF PH 14-8 Mo SHEET

0.278 1b/in.3

_0

Unnotched Transverse R=0.1

700 F

400 F

12 to

Maximum Stress, ksi

20

FIGURE 3. AXIAL LOAD FATIGUE RESULTS FOR PH 14-8Mo SHEET

Lifetime, cycles

Ş

8