有机化学习题课

少年班 2302 张杰铭

2025.4.11

张杰铭 有机化学习题课 2025.4.11 1

本讲内容

- 卤代烃的命名
- 卤代烃的结构分析
- 卤代烃的亲核取代反应
- 卤代烃的 β 消除反应
- 亲核取代反应与 β 消除反应的竞争

卤代烃的 IUPAC 命名法中。需要特别注意的有以下两点:

 张杰铭
 有机化学习题课
 2025.4.11

卤代烃的 IUPAC 命名法中。需要特别注意的有以下两点:

• 对主碳链标号时,让优先官能团的编号最小。

张杰铭 有机化学习题课 2025.4.11 3/28

卤代烃的 IUPAC 命名法中。需要特别注意的有以下两点:

- 对主碳链标号时,让优先官能团的编号最小。
 - 一些官能团的优先顺序: 羧基 > 醇 > 醚 > 烯 > 炔 > 卤素

张杰铭 有机化学习题课 2025.4.11 3/28

卤代烃的 IUPAC 命名法中。需要特别注意的有以下两点:

- 对主碳链标号时,让优先官能团的编号最小。
 - 一些官能团的优先顺序: 羧基 > 醇 > 醚 > 烯 > 炔 > 卤素
- 卤素的前缀: fluoro-, chloro-, bromo-, iodo-。

 张杰铭
 有机化学习题课
 2025.4.11
 4 / 28

例

张杰铭 有机化学习题课 2025.4.11 4/2

 张杰铭
 有机化学习题课
 2025.4.11
 4 / 28

 张杰铭
 有机化学习题课
 2025.4.11
 4 / 28

称与卤素原子 X 直接相连的碳为 α -C,与 α -C 直接相连的碳为 β -C,示意如下:

 张杰铭
 有机化学习题课
 2025.4.11
 5 / 28

称与卤素原子 X 直接相连的碳为 α -C,与 α -C 直接相连的碳为 β -C,示意如下:

于是,我们可以得到:

5/28

张杰铭 有机化学习题课 2025.4.11

称与卤素原子 X 直接相连的碳为 α -C,与 α -C 直接相连的碳为 β -C,示意如下:

于是,我们可以得到:

α-C 易被其他亲核试剂攻击,从而 X⁻ 被取代。
 (亲核取代, Nucleophilic Substitution)

称与卤素原子 X 直接相连的碳为 α -C,与 α -C 直接相连的碳为 β -C,示意如下:

于是,我们可以得到:

- α-C 易被其他亲核试剂攻击,从而 X⁻ 被取代。
 (亲核取代, Nucleophilic Substitution)
- X^- 与 β -C 上的 H^+ 易失去,从而 α -C 与 β -C 之间形成双键。 (β 消除, β Elimination)

张杰铭 有机化学习题课 2025.4.11 5/28

亲核取代反应的通式

亲核取代反应的通式如下:

其中,Nu:- 是亲核试剂,X 是离去基团 (leaving group)。它们两个与参与反应的卤代烃 (有时也称为底物) 的性质共同影响着反应的进行。

杰铭 有机化学习题课 2025.4.11 6/28

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ ● のQで

张杰铭 有机化学习题课 2025.4.11 7/28

Ċl

 OCH_2CH_3

 张杰铭
 有机化学习题课
 2025.4.11
 7 / 28

S_N2 反应

200

张杰铭 有机化学习题课 2025.4.11

|S_N1 反应

the locations of the two lobes of the empty
$$p$$
 orbital of the carbocation allow the nucleophile to attack from either face

张杰铭 有机化学习题课 2025.4.11 9 / 28

S_{N2} 反应与 S_{N1} 反应的对比

反应类型	S _N 2 反应	S _N 1 反应
反应步骤	一步: 断键成键同时	两步: 先断键后成键
决速步骤	/	第一步 (断键)
反应速率	k[底物][亲核试剂]	k[底物]
立体构型	构型反转	外消旋化

张杰铭 有机化学习题课 2025.4.11 10 / 28

判断 S_{N2} 与 S_{N1} 反应的方法

一、空间位阻

空间位阻是判断 S_N 2 与 S_N 1 反应时最重要的因素之一。由于 S_N 2 反应中 C-X 键的断裂与 C-Nu 键的形成同时进行,亲核试剂需要从背后进攻 α -C。于是, $\frac{}{}$ α -C 是叔碳时,没有足够的空间使亲核试剂接触 α -C,从而 S_N 2 反应不能发生。

判断 S_{N2} 与 S_{N1} 反应的方法

一、空间位阻

空间位阻是判断 S_N 2 与 S_N 1 反应时最重要的因素之一。由于 S_N 2 反应中 C-X 键的断裂与 C-Nu 键的形成同时进行,亲核试剂需要从背后进攻 α -C。于是, $\frac{}{}$ α -C 是叔碳时,没有足够的空间使亲核试剂接触 α -C,从而 S_N 2 反应不能发生。

二、电子效应

在 S_N1 反应中,反应中间体(碳正离子)的稳定性越强,第一步反应 (即决速步骤)的活化能就越低,于是反应就更容易进行。于是,当 α -C 是仲碳或叔碳时,由于 α -C 所连基团较多,且这些基团都具有给电子的效应,它们可以使碳正离子相对稳定,从而 S_N1 反应可以发生;当 α -C 是伯碳或卤素直接与甲基相连时,碳正离子很少或不能得到其他基团所给电子,于是稳定性差,从而 S_N1 反应难以发生。

米杰铭 有机化学习题课 2025.4.11 11 / 28

判断 S_{N2} 与 S_{N1} 反应的方法

三、亲核试剂强弱

 S_{N^2} 反应的反应速率受到底物与亲核试剂的共同影响,而 S_{N^1} 反应的反应速率只与底物有关。因此当亲核试剂较强时, S_{N^2} 更容易发生; 当亲核试剂较弱时, S_{N^1} 有可能发生。

 张杰铭
 有机化学习题课

 2025.4.11
 12 / 28

判断 S_{N^2} 与 S_{N^1} 反应的方法

三、亲核试剂强弱

 S_{N^2} 反应的反应速率受到底物与亲核试剂的共同影响,而 S_{N^1} 反应的反应速率只与底物有关。因此当亲核试剂较强时, S_{N^2} 更容易发生;当亲核试剂较弱时, S_{N^1} 有可能发生。

四、溶剂的质子性

在 S_N1 反应中,反应中间体(碳正离子)和离去基团(卤素阴离子)越稳定,反应就越容易进行。而在质子性溶剂中,质子溶剂通过其部分带负电的氧原子与阳离子之间的静电相互作用,以及其部分带正电的氢原子与阴离子之间的静电相互作用,来稳定离子化合物的阴离子和阳离子组分。从而质子性溶剂有利于 S_N1 反应的发生。在 S_N2 反应中,亲核试

剂的活性对于反应非常重要。非质子溶剂与阴离子的相互作用较弱,阴离子在溶液中保持较高的反应活性,从而使亲核试剂更容易攻击底物。于是,非质子性溶剂有利于 S_{N^2} 反应的发生。

小结

下表总结了 S_{N^2} 反应与 S_{N^1} 反应的发生条件。据此可以判断一个亲核取代反应是 S_{N^2} 反应还是 S_{N^1} 反应。

反应类型	S _N 2 反应	S _N 1 反应
甲基	发生	不发生 (中间体不稳定)
伯碳	发生	不发生 (中间体不稳定)
仲碳	强亲核试剂、非质子性溶剂	弱亲核试剂、质子性溶剂
叔碳	不发生 (空间位阻)	发生

β 消除反应的通式

β 消除反应的通式如下:

张杰铭 有机化学习题课 2025.4.11 14/28

β 消除反应的通式

β 消除反应的通式如下:

然而,如果 α – C 是仲碳或叔碳,那么 β – C 就会有多个。此时哪个 β – C 上的 H⁺ 会更容易失去呢?

张杰铭 有机化学习题课 2025.4.11 14/28

β 消除反应中的扎伊采夫规则

当 β – C 有多个时,反应会生成多种产物,其中最稳定的就是反应的主产物。产物的稳定性与碳碳双键上的取代基有关。碳与取代基之间的 σ 键与碳碳之间的 π 键可以形成 σ – π 超共轭效应,从而使产物更加稳定。那么,碳碳双键上取代基较多的产物就较为稳定,于是会成为主产物。

 张杰铭
 有机化学习题课
 2025.4.11
 15 / 28

β 消除反应中的扎伊采夫规则

当 $\beta-C$ 有多个时,反应会生成多种产物,其中最稳定的就是反应的主产物。产物的稳定性与碳碳双键上的取代基有关。碳与取代基之间的 σ 键与碳碳之间的 π 键可以形成 $\sigma-\pi$ 超共轭效应,从而使产物更加稳定。那么,碳碳双键上取代基较多的产物就较为稳定,于是会成为主产物。

于是我们得到了这样的结论:

扎伊采夫规则 (Zaitsev's rule)

β 消除反应的主要产物是最稳定的烯烃;也就是说,主要产物是碳碳双键上取代基数量最多的烯烃。

杰铭 有机化学习题课 2025.4.11 15 / 28

 张杰铭
 有机化学习题课
 2025.4.11
 16 / 28

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

 张杰铭
 有机化学习题课
 2025.4.11
 16 / 28

E1 反应与 E2 反应

$$\begin{array}{c} \operatorname{CH_3} & \operatorname{cH_3} \\ - \operatorname{CH_3-C-CH_3} & \operatorname{determining} \\ & \operatorname{CH_3-C-CH_3} & \operatorname{CH_3-C-CH_3} + : \overrightarrow{\operatorname{Br}} \\ & & \operatorname{A carbocation} \\ & & \operatorname{intermediate} \end{array}$$

图: E1 反应第一步

图: E1 反应第二步

图: E2 反应

2025.4.11 17 / 28

张杰铭 有机化学习题课

E1 反应与 E2 反应的对比

反应类型	E1 反应	E2 反应
反应步骤	两步: 先失去 H+ 后失去 X-	一步: 同时失去
决速步骤	第一步 (失去 H+)	/
反应速率	k[底物]	k[底物][碱]

 张杰铭
 有机化学习题课
 2025.4.11
 18 / 28

亲核取代反应与 β 消除反应的竞争

因为所有的亲核试剂也都是碱,所以亲核取代反应和碱促进的 β 消除反应是相互竞争的反应。

两种反应之间的竞争常受<mark>卤代烃的结构、试剂的亲核性强弱、试剂的碱性强弱、试剂的体积大小及反应的温度</mark>等多种因素共同影响和控制。

亲核取代反应与 β 消除反应间竞争的影响因素

一、卤代烃的结构

在前面的讨论中,我们知道 α -C 所连碳原子的数量决定着亲核取代反应的类型。事实上,它与 β 消除反应也密切相关。

张杰铭 有机化学习题课 2025.4.11 20/28

亲核取代反应与 β 消除反应间竞争的影响因素

一、卤代烃的结构

在前面的讨论中,我们知道 α -C 所连碳原子的数量决定着亲核取代反应的类型。事实上,它与 β 消除反应也密切相关。

• 在 E1 反应中,与在 S_N 1 反应中类似地,反应中间体中的碳正离子需要周围的基团给电子以维持自身稳定。于是,当 α -C 是伯碳时,碳正离子稳定性差,E1 反应难以进行。

一、卤代烃的结构

在前面的讨论中,我们知道 α -C 所连碳原子的数量决定着亲核取代反应的类型。事实上,它与 β 消除反应也密切相关。

- 在 E1 反应中,与在 S_N 1 反应中类似地,反应中间体中的碳正离子需要周围的基团给电子以维持自身稳定。于是,当 α -C 是伯碳时,碳正离子稳定性差,E1 反应难以进行。
- β 消除反应中, β -C 上的氢离子需要失去。当 α -C 上所连的基团越多, β -C 上的氢离子数量就越多, β 消除反应就更容易进行。

二、试剂的亲核性强弱与碱性强弱 我们知道,在 S_N 2 反应中,试剂的亲核性强弱对于反应速率影响较大;而 β 消除反应主要由碱性所影响。

张杰铭 有机化学习题课 2025.4.11 21 / 28

- 二、试剂的亲核性强弱与碱性强弱 我们知道,在 S_N 2 反应中,试剂的亲核性强弱对于反应速率影响较大;而 β 消除反应主要由碱性所影响。
 - 当试剂的亲核性较强时, S_{N^2} 反应与 E^2 反应更有可能发生。在试剂的碱性强时,多发生 E^2 反应;在试剂的碱性弱时,一般只能发生 S_{N^2} 反应。

 张杰铭
 有机化学习题课
 2025.4.11
 21 / 28

- 二、试剂的亲核性强弱与碱性强弱 我们知道,在 S_N 2 反应中,试剂的亲核性强弱对于反应速率影响较大;而 β 消除反应主要由碱性所影响。
 - 当试剂的亲核性较强时, S_{N^2} 反应与 E_{2} 反应更有可能发生。在试剂的碱性强时,多发生 E_{2} 反应;在试剂的碱性弱时,一般只能发生 S_{N^2} 反应。
 - 当试剂的亲核性较弱时,一般发生 S_N1 反应与 E1 反应。它们二者的 竞争主要受反应温度的影响,我们后面会讨论它。

张杰铭 有机化学习题课 2025.4.11 21/28

三、试剂的体积大小

在 S_{N^2} 反应中,亲核试剂需要从背后进攻 α -C,于是空间位阻容易成为 阻碍 S_{N^2} 反应发生的因素。当亲核试剂碱性较强且体积较大时,有时 S_{N^2} 反应可能受到阻碍,从而发生 E2 反应。

长杰铭 有机化学习题课 2025.4.11 22 / 28

三、试剂的体积大小

在 S_{N^2} 反应中,亲核试剂需要从背后进攻 α -C,于是空间位阻容易成为 阻碍 S_{N^2} 反应发生的因素。当亲核试剂碱性较强且体积较大时,有时 S_{N^2} 反应可能受到阻碍,从而发生 E2 反应。

四、反应的温度

亲核取代反应中仅涉及 C-X 键的断裂,所需能量相对较低;而 β 消除 反应中涉及 C_{α} -X 键和 C_{β} -H 键的断裂,所需能量相对较高。因此,反 应温度较低时,取代反应容易发生;反应温度较高时,更有利于消除反 应的进行。即:低温取代,高温消除。

长杰铭 有机化学习题课 2025.4.11 22 / 28

底物	反应类型	发生条件
甲基	S_N2	唯一发生的反应
	S_{N1}	不发生 (中间体不稳定)
	E	不发生 (无 β-C)
伯碳	$S_N 2$	碱性强/碱性弱且亲核性强
	E2	碱性强且体积大
	$S_N1/E1$	不发生 (中间体不稳定)
仲碳	$S_N 2$	碱性弱且亲核性强
	E2	碱性强且亲核性强
	$S_N1/E1$	亲核性弱,质子性溶剂
叔碳	$\frac{S_N 2}{}$	不发生 (空间位阻)
	E2	碱性强
	$S_N1/E1$	碱性/亲核性弱

4□ > 4ⓓ > 4≧ > 4≧ > ½ 900

 张杰铭
 有机化学习题课
 2025.4.11
 24 / 28

张杰铭 有机化学习题课 2025.4.11 24/2

 张杰铭
 有机化学习题课
 2025.4.11
 25 / 28

张杰铭 有机化学习题课 2025.4.11 26 /

4□ > 4□ > 4□ > 4□ > 4□ > 4□

 张杰铭
 有机化学习题课
 2025.4.11
 27 / 28

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

 张杰铭
 有机化学习题课
 2025.4.11
 27 / 28

- 卤代烃的命名
- 卤代烃的结构分析
- 卤代烃的亲核取代反应
- 卤代烃的 β 消除反应
- 亲核取代反应与 β 消除反应的竞争

