Convexity. Strong convexity.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Line Segment

Suppose x_1, x_2 are two points in \mathbb{R}^{κ} . Then the line segment between them is defined as follows:

$$x = \theta x_1 + (1 - \theta)x_2, \ \theta \in [0, 1]$$

Figure 1: Illustration of a line segment between points x_1 , x_2

∂ ດ **ø**

Convex Set

The set S is called **convex** if for any x_1, x_2 from S the line segment between them also lies in S, i.e.

$$\forall \theta \in [0, 1], \ \forall x_1, x_2 \in S : \theta x_1 + (1 - \theta)x_2 \in S$$

i Example

Any affine set, a ray, a line segment - they all are convex sets.

Figure 2: Top: examples of convex sets. Bottom: examples of non-convex sets.

Convex Sets

i Question

Prove, that ball in \mathbb{R}^n (i.e. the following set $\{\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}_c|| \leq r\}$) - is convex.

i Question

Is stripe - $\{x \in \mathbb{R}^n \mid \alpha \leq a^\top x \leq \beta\}$ - convex?

i Question

Let S be such that $\forall x,y \in S \to \frac{1}{2}(x+y) \in S$. Is this set convex?

i Question

The set $S = \{x \mid x + S_2 \subseteq S_1\}$, where $S_1, S_2 \subseteq \mathbb{R}^n$ with S_1 convex. Is this set convex?

Convex Function

The function f(x), which is defined on the convex set $S \subseteq \mathbb{R}^n$, is called convex on S, if:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

for any $x_1, x_2 \in S$ and $0 \le \lambda \le 1$.

If the above inequality holds as strict inequality $x_1 \neq x_2$ and $0 < \lambda < 1$, then the function is called **strictly convex** on S.

Figure 3: Difference between convex and non-convex function

Strong Convexity

f(x), defined on the convex set $S \subseteq \mathbb{R}^n$, is called μ -strongly convex (strongly convex) on S, if:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \frac{\mu}{2}\lambda(1 - \lambda)||x_1 - x_2||^2$$

for any $x_1, x_2 \in S$ and $0 \le \lambda \le 1$ for some $\mu > 0$.

Figure 4: Strongly convex function is greater or equal than Taylor quadratic approximation at any point

Functions

First-order differential criterion of convexity

The differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is convex if and only if $\forall x,y \in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x)$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$f(x + \Delta x) \ge f(x) + \nabla f^{T}(x) \Delta x$$

Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is called μ -strongly convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$\nabla^2 f(x) \succeq \mu I$$

In other words:

$$\langle y, \nabla^2 f(x)y \rangle \ge \mu ||y||^2$$

Motivational Experiment with JAX

Why convexity and strong convexity is important? Check the simple \$\display*code snippet.

i Question

Show, that f(x) = ||x|| is convex on \mathbb{R}^n .

Show, that $f(x) = x^{\top} A x$, where $A \succeq 0$ - is convex on \mathbb{R}^n .

i Question

Show, that if f(x) is convex on \mathbb{R}^n , then $\exp(f(x))$ is convex on \mathbb{R}^n .

i Question

If f(x) is convex nonnegative function and $p \ge 1$. Show that $g(x) = f(x)^p$ is convex.

i Question

Show that, if f(x) is concave positive function over convex S, then $g(x) = \frac{1}{f(x)}$ is convex.

i Question

Show, that the following function is convex on the set of all positive denominators

$$f(x) = \frac{1}{x_1 - \frac{1}{x_2 - \frac{1}{x_3 - \frac{1}{x_3}}}}, x \in \mathbb{R}^n$$

Let $S=\{x\in\mathbb{R}^n\mid x\succ 0, \|x\|_\infty\leq M\}$. Show that $f(x)=\sum_{i=1}^n x_i\log x_i$ is $\frac{1}{M}$ -strongly convex.

Polyak-Lojasiewicz (PL) Condition

PL inequality holds if the following condition is satisfied for some $\mu>0$,

$$\|\nabla f(x)\|^2 \ge \mu(f(x) - f^*) \forall x$$

The example of a function, that satisfies the PL-condition, but is not convex.

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Example of PI non-convex function **@**Open in Colab.

Given

Data: $X \in \mathbb{R}^{m \times n}, y \in \{0, 1\}^n$.

i Given

Data: $X \in \mathbb{R}^{m \times n}, y \in \{0, 1\}^n$.

I To find

Find function, that translates object x to probability p(y = 1|x):

$$p: \mathbb{R}^m \to (0,1), \ p(x) \equiv \sigma(x^T w) = \frac{1}{1 + \exp(-x^T w)}$$

i Given

Data: $X \in \mathbb{R}^{m \times n}, y \in \{0, 1\}^n$.

To find

Find function, that translates object x to probability p(y = 1|x):

$$p: \mathbb{R}^m \to (0,1), \ p(x) \equiv \sigma(x^T w) = \frac{1}{1 + \exp(-x^T w)}$$

Binary cross-entropy (logistic loss):

$$L(p,X,y) = -\sum_{i=1}^{n} y_{i} \log p\left(X_{i}\right) + (1-y_{i}) \log \left(1-p\left(X_{i}\right)\right),$$
 that is minimized with respect to w .

Given

Data: $X \in \mathbb{R}^{m \times n}, y \in \{0, 1\}^n$.

To find

Find function, that translates object x to probability p(y = 1|x): $p: \mathbb{R}^m \to (0,1), \ p(x) \equiv \sigma(x^T w) = \frac{1}{1 + \exp(-x^T w)}$

Criterion

Binary cross-entropy (logistic loss):

Entirely cross-entropy (logistic loss).
$$L(p,X,y) = -\sum_{i=1}^{n} y_{i} \log p\left(X_{i}\right) + (1-y_{i}) \log\left(1-p\left(X_{i}\right)\right),$$
 that is minimized with respect to w .

Figure 6: Logistic Loss in Parameter Space for x=(1.1), v=1

We can make this problem μ -strongly convex if we consider regularized logistic loss as criterion: $L(p,X,y) + \frac{\mu}{2} ||w||_2^2$.

Check the logistic regression experiments.

i Given

 $\text{Data: } X \in \mathbb{R}^{m \times n}, y \in \{-1,1\}^n.$

i Given

Data: $X \in \mathbb{R}^{m \times n}, y \in \{-1, 1\}^n$.

I To find

Find a hyperplane that maximizes the margin between two classes:

$$f:\mathbb{R}^m \to \{-1,1\}, \ f(x) = \mathrm{sign}(w^Tx + b).$$

i Given

Data: $X \in \mathbb{R}^{m \times n}, y \in \{-1, 1\}^n$.

I To find

Find a hyperplane that maximizes the margin between two classes: $f: \mathbb{R}^m \to \{-1,1\}, \ f(x) = \text{sign}(w^T x + b).$

Hinge loss:

 $L(w,X,y) = \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \max(0,1-y_i(X_i^Tw+b)),$ that is minimized with respect to w and b.

This problem is strongly-convex due to squared Euclidean norm.

Check the SVM experiments in the same notebook.

i Given

Data: $X \in \mathbb{R}^{m \times n}, y \in \{-1, 1\}^n$.

To find

Find a hyperplane that maximizes the margin between two classes:

$$f: \mathbb{R}^m \to \{-1, 1\}, \ f(x) = \text{sign}(w^T x + b).$$

Criterion

Hinge loss:

$$L(w,X,y) = \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \max(0,1-y_i(X_i^T w + b)),$$
 that is minimized with respect to w and b .

This problem is strongly-convex due to squared Euclidean norm.

Check the SVM experiments in the same notebook.

Figure 7: Support Vector Machine

Figure 8: L_2 -Regularized Hinge Loss in Parameter Space for x=(1,1), y=1 $_{\P}$ 0 0

• Low-rank matrix approximation

$$\min_{X} \|A - X\|_F^2 \text{ s.t. } rank(X) \le k.$$

• Low-rank matrix approximation

$$\min_{X} \|A - X\|_F^2 \text{ s.t. } rank(X) \le k.$$

i Question

Is it convex?

Low-rank matrix approximation

$$\min_{X} \|A - X\|_F^2 \text{ s.t. } rank(X) \le k.$$

i Question

Is it convex?

By Eckart-Young theorem this can be solved using SVD: $X^* = U_k \Sigma_k V_k^T$, where $A = U \Sigma V^T$.

എ റ ഉ

Low-rank matrix approximation

$$\min_{X} \|A - X\|_F^2 \text{ s.t. } rank(X) \le k.$$

i Question

Is it convex?

By Eckart-Young theorem this can be solved using SVD: $X^* = U_k \Sigma_k V_k^T$, where $A = U \Sigma V^T$.

Convex relaxation via nuclear norm

$$\min_{X} rank(X)$$
, s.t. $X_{ij} = M_{ij}$, $(i, j) \in I$.

Low-rank matrix approximation

$$\min_{X} ||A - X||_F^2 \text{ s.t. } rank(X) \le k.$$

i Question

Is it convex?

By Eckart-Young theorem this can be solved using SVD: $X^* = U_k \Sigma_k V_k^T$, where $A = U \Sigma V^T$.

Convex relaxation via nuclear norm

$$\min_{X} rank(X)$$
, s.t. $X_{ij} = M_{ij}$, $(i, j) \in I$.

NP-hard problem, but $||A||_* = trace(\sqrt{A^TA}) = \sum_{i=1}^{rank(A)} \sigma_i(A)$ is a convex envelope of the matrix rank.

