### Présentation Alternance

William Amory M1 BI-IPFB Université de Paris

24/01/2022





### Section 1

## CEA - Genoscope



## CEA - Genoscope

### CEA (Commissariat à l'énergie atomique et aux énergies)

- créé le 18 octobre 1945 par Charles de Gaulle
- 20 000 Salariés
- 4 directions opérationnelles et 9 directions fonctionnelles

### Genoscope (Centre National de Séquençage)

- 250 salariés
- Créé en 1996
  - Participation projet Génome humain (Séquençage du chromosome 14 humain)
  - Développer programmes de génomiques en France
  - Plus grand centre de séquençage français et européen



# Organigrame CEA - Genoscope - LBGB



Figure 1: Organigramme situant l'équipe du Laboratoire de Bioinformatique pour la Génomique et la Biodiversité (LBGB) au sein du genoscope et du CEA

CEA - Genoscope Contexte Objectifs Perspective

## Section 2

### Contexte



# LBGB (Laboratoire de Bioinformatique pour la Génomique et la Biodiversité)

#### missions

- Veille technologique
- Contrôle qualité
- Assemblage
- Annotation
- Visualisation

#### Plusieurs équiques

- Production
- Annotation
- Assemblage
- Evaluation des technologies de séquençage



# LBGB (Production)

#### Missions

- Veille technologique
- Evaluation de nouveaux outils
- developper, tester et maintenir les codes
- Répondre au besoin des équipes de recherche et de production
- Mise en place de pipeline automatisés
  - génération des FATSQ
  - Contrôle qualité
  - Analyses biologiques



### LBGB - Workflow NGS



Figure 2: Workflow de génération, de controle qualité et d'analyse biologique des FASTQ

### LBGB - MGI

#### Arrivé de séquenceurs MGI

- 2 DNBSEQ-G400
- 1 DNBSEQ-T7





https://en.mgi-tech.com/products/



# La technologie MGI



Figure 3: Différences entre Illumina et MGI de technologie NGL



# La technologie MGI



Figure 4: Schéma techno MGI



EA - Genoscope Contexte **Objectifs** Perspective

### Section 3

# Objectifs



## Développement d'un pipeline automatique pour MGI

#### Objectifs du pipline

- Générer les fichiers FASTQ à partir des Bases Calls
- Mise à jour de la base de données NGL
- Analyses des FASTQ générés
- Rennomage et déplacement des fichiers en fonction des projets
- Mise à jour de l'état d'un run



# Développement d'un pipeline automatique pour MGI

#### Comment?

- Déterminer les outils et methodes nécessaires
  - utilisation de nouveaux outils ?
  - utisation d'outils et méthodes existant pour Illumina ?
  - création de nouvelles méthodes pour MGI ?
- Ecriture du pipeline
  - déterminer de l'ordre d'utilisation des outils et méthodes
  - choix du langage de programation (Perl)



# Apprentissage du Perl

#### Pouquoi?

- Raison historique du laboratoire
- Toutes les librairies et modules utilisés sont en Perl
- Worflow d'Illumina écrit en Perl

#### Réalisation

- Programme effectuant des analyses statistiques élémentaires
  - compter le taux de GC
  - moyene de la qualité de chaque read
  - ect ...
- Lecture des modules utilisé dans le workflow d'illumina



CEA - Genoscope Contexte Objectifs

Test de 2 software de génération de FASTQ (bcl2fastq et bcl-convert)



# bcl2fastq vs bcl-convert (Temps total)



Figure 5: Temps total de génération des FASTQ pour bcl2fastq



Figure 6: Temps total de génération des FASTQ pour bcl-convert

# bcl2fastq vs bcl-convert (Temps cpu)



Figure 7: Temps cpu de génération des FASTQ pour bcl2fastq



Figure 8: Temps cpu de génération des FASTQ pour bcl-convert

# bcl2fastq vs bcl-convert (Pourcentage d'utilisation cpu)



Figure 9: Pourcentage d'ulisation cpu pour la génération des FASTQ pour bcl2fastq



Figure 10: Pourcentage d'ulisation cpu pour la génération des FASTQ pour bcl-convert

### Section 4

# Perspective



## Perspective

### Détermination de la Migration de bcl2fastq vers bcl-convert

- Mise à jour du pipeline de génération des FASTQ
- Prise en charge des sorties de bcl-convert pour les autres pipelines

#### Worflow MGI

Automatisation total du workflow

