中国科学院大学 网络空间安全学院 专业普及课

量子信息与量子密码

Quantum Information & Quantum Cryptology

[第7次课] 量子算法

授课教师: 杨理

授课时间: 2022年4月18日

内容概要

第一部分: Shor因子分解量子算法

- 一、 量子Fourier变换
- 二、相位估计
- 三、离散对数量子算法举例
- 四、求阶
- 五、因子分解

1. 量子Fourier变换

经典离散 Fourier 变换 (DFT)

$$y_k \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N}$$
.

量子情形, 定义

$$|j\rangle \xrightarrow{\text{QFT}(N)} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle,$$

易知,对任意态
$$\sum_{j=0}^{N-1} x_j | j \rangle \quad \text{有}:$$

$$\sum_{j=0}^{N-1} x_j | j \rangle \xrightarrow{\text{QFT}(N)} \sum_{j=0}^{N-1} x_j \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} | k \rangle$$

$$= \sum_{k=0}^{N-1} \left(\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N} \right) | k \rangle$$

$$= \sum_{k=0}^{N-1} y_k | k \rangle.$$

QFT的酉性: 只需证明 $|j_1'\rangle = \text{QFT}(N)|j_1\rangle = |j_2'\rangle = \text{QFT}(N)|j_2\rangle$ 满足 $\langle j_1'|j_2'\rangle = \delta_{j_1'j_2'}$ 即可.

QFT的积形式:
$$\begin{cases} j \, \text{可表示为} \, j_1 j_2 \cdots j_n \, \mathbb{R}$$
式(二进制), $j = j_1 2^{n-1} + j_2 2^{n-2} + \cdots + j_n$.

$$|j_{1}, \dots, j_{n}\rangle \xrightarrow{\text{QFT}} \frac{1}{\sqrt{2^{n}}} (|0\rangle + e^{2\pi i \cdot 0.j_{n}} |1\rangle) (|0\rangle + e^{2\pi i \cdot 0.j_{n-1}j_{n}} |1\rangle) \dots$$

$$\cdots (|0\rangle + e^{2\pi i \cdot 0.j_{1}j_{2}\cdots j_{n}} |1\rangle).$$

其中
$$0.j_l j_{l+1} \cdots j_m \equiv \frac{j_l}{2} + \frac{j_{l+1}}{4} + \cdots + \frac{j_m}{2^{m-l+1}}$$
 称为二进制小数。证明:

$$\begin{aligned}
\operatorname{QFT} |j\rangle &= \frac{1}{2^{n/2}} \sum_{k=0}^{2^{n}-1} e^{2\pi i j k / 2^{n}} |k\rangle = \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{1} \cdots \sum_{k_{n}=0}^{1} e^{2\pi i j \sum_{l=1}^{n} k_{l} 2^{-l}} |k_{1} \cdots k_{n}\rangle \\
&= \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{1} \cdots \sum_{k_{n}=0}^{1} e^{2\pi i j k_{1} 2^{-l}} |k_{1}\rangle \cdots e^{2\pi i j k_{n} 2^{-n}} |k_{n}\rangle \\
&= \frac{1}{2^{n/2}} (|0\rangle + e^{2\pi i j 2^{-l}} |1\rangle) \cdots (|0\rangle + e^{2\pi i j 2^{-n}} |1\rangle) \\
&= \frac{1}{2^{n/2}} (|0\rangle + e^{2\pi i 0.j_{n}} |1\rangle) (|0\rangle + e^{2\pi i 0.j_{n-1}j_{n}} |1\rangle) \cdots (|0\rangle + e^{2\pi i 0.j_{1}j_{2}\cdots j_{n}} |1\rangle)
\end{aligned}$$

QFT的有效线路:

其中
$$R_k \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{bmatrix}$$
.

注意: 受控酉运算在控制位上

会产生一个相位差 $e^{i\alpha}$ 。

这是一个 $\Theta(n^2)$ 算法, 远较经典算法 $\left(\Theta(n2^n)\right)$ 为好。

3qubit QFT,
$$\mathbb{P} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$
 $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$

二、相位估计

调用量子黑盒的算法。

利用 $U|u\rangle = e^{2\pi i \varphi}|u\rangle$,

即:构造 U 算子及其本征态 $|u\rangle$,使得其本征值为 $e^{2\pi i \varphi}$.

受控 U 运算: 把 $|j\rangle|u\rangle$ 变为 $|j\rangle U^j|u\rangle$.

$$\frac{1}{2^{t/2}} \left(\left| 0 \right\rangle + e^{2\pi i 2^{t-1} \varphi} \left| 1 \right\rangle \right) \cdots \left(\left| 0 \right\rangle + e^{2\pi i 2^{0} \varphi} \left| 1 \right\rangle \right) = \frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} e^{2\pi i \varphi k} \left| k \right\rangle$$

$$\stackrel{\text{d}}{=} \varphi = \frac{j}{N}, \quad N = 2^{t} \quad \text{时, } \quad \mathcal{B} \, \mathbb{L}:$$

$$\left(\text{QFT} \right)^{-1} \left[\frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} e^{2\pi i j k/N} \left| k \right\rangle \right] = \left| j \right\rangle \stackrel{\text{ind}}{\Rightarrow} \varphi = \frac{j}{N}$$

相位估计的总线路图:

上面的t 个量子位('l',表示一束线)是第一个寄存器; 下面的一些量子位是第二个寄存器,其量子位数目须保证可以 执行U.

② 逆QFT:

$$\frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} e^{2\pi i \varphi k} |k\rangle \xrightarrow{QFT^{-1}} \frac{1}{2^{t}} \sum_{k,l=0}^{2^{t}-1} e^{-2\pi i k l/2^{t}} e^{2\pi i \varphi k} |l\rangle$$

当 $\varphi = t$ 比特整数/ 2^t , 即 $\varphi = 0.\varphi_1 \cdots \varphi_t$, 则

①中线路给出结果正是**QFT**的积形式 $\stackrel{\mathsf{QFT}^{-1}}{\Rightarrow} | \varphi_1 \cdots \varphi_t \rangle$.

否则 QFT -1 后给出的是计算基态的叠加。

可以证明能够实现以给定的概率得到 φ 的一个给定精度内的近似值。

教材上(5.22)式写得不明确:

如果 $|\tilde{\varphi}\rangle$ 表示计算基的叠加态,就不能写成 $\tilde{\varphi}$,因为 $\tilde{\varphi}$ 又被认为是 φ 的近似值。

③参数估计:

取 $0 < b < 2^t - 1$, $b/2^t = 0$. $b_1 \cdots b_t$, 满足 $0 \le \delta \equiv \varphi_u - b/2^t \le 2^{-t}$, 即: 在小于 φ 的数中 $b \in \varphi$ 的 t 比特最佳近似。

$$\frac{1}{2^t} \sum_{k,l=0}^{2^t-1} e^{-2\pi i k l/2^t} e^{2\pi i \varphi k} \left| l \right\rangle \equiv \sum_{k} a_l \left| (b+l) \left(\text{mod } 2^t \right) \right\rangle$$

则可得:

$$a_{l} = \frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1} \left(e^{2\pi i \left(\varphi - (b+l)/2^{t} \right)} \right)^{k}$$

$$= \frac{1}{2^{t}} \frac{1 - e^{2\pi i \left(2^{t} \varphi - (b+l) \right)}}{1 - e^{2\pi i \left(\varphi - (b+l)/2^{t} \right)}}$$
(1)

$$p(|m-b| > e) = \sum_{|l-b| > e} |a_l|^2$$

$$= \sum_{-2^{t-1} < l < -(e+1)} |a_l|^2 + \sum_{e+1 < l < 2^{t-1}} |a_l|^2$$
(2)

曲(1),当 $-2^{t-1} < l < 2^{t-1}$ 时,

$$\left|a_{l}\right| \leq \left|\frac{1}{2^{t+1}\left(\delta - l/2^{t}\right)}\right| \tag{3}$$

又 $0 \le 2^t \delta \le 1$,所以有

$$p(|m-b|>e)\leq \frac{1}{2(e-1)}.$$

选择相位 φ 估计的精确度:

精确到 $2^{-n} \rightarrow e = 2^{t-n} - 1$,

如果算法中用 t = n + p 量子比特,可知获得此精度的概率为

$$1-p(|m-b|>e)|_{e=2^{t-n}-1}$$

$$\geq 1 - \frac{1}{2(e-1)} = 1 - \frac{1}{2(2^{t-n}-2)} \equiv 1 - \varepsilon$$
,

则有:
$$2\varepsilon = \frac{1}{2^{t-n}-2}$$
 , $\frac{1}{2\varepsilon} + 2 = 2^{t-n}$, $t = n + \left\lceil \log\left(2 + \frac{1}{2\varepsilon}\right) \right\rceil$

$$t = n + \left\lceil \log\left(2 + \frac{1}{2\varepsilon}\right) \right\rceil$$

④ 量子相位估计算法

输入: (1) 对整数 j 进行受控 U^j 运算的黑箱;

(2) 制备出U 的本征值为 $e^{2\pi i \varphi_u}$ 的本征态 $|u\rangle$,

(3) 初始化 $t = n + \left\lceil \log\left(2 + \frac{1}{2\varepsilon}\right) \right\rceil$ 个量子比特处于 $\left|0\right\rangle$.

输出: φ_u 的 n 比特近似值 $\tilde{\varphi}_u$.

运行时间: $O(t^2)$ 个操作和一个受控 U^j 运算

成功率 $\geq 1-\varepsilon$.

Procedure:

1.
$$|0\rangle|u\rangle$$
 initial state

2.
$$\rightarrow \frac{1}{\sqrt{2t}} \sum_{i=1}^{2^{k-1}} |j\rangle |u\rangle$$
 create superposition

3.
$$ightharpoonup rac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle U^j |u
angle$$
 apply black box

$$=rac{1}{\sqrt{2^t}}\sum_{j=0}^{2^t-1}e^{2\pi i jarphi_u}|j
angle|u
angle$$
 result of black box

4.
$$ightarrow |\widetilde{arphi_u}
angle |u
angle$$
 apply inverse Fourier transform

5.
$$\longrightarrow \widetilde{\varphi_u}$$
 measure first register

测量后系统进入的是计算基底态 | m >。中译本改得不对。

即:

当 φ_u 不能精确地表为t 比特时, $\left|\tilde{\varphi}_u\right\rangle$ 应是一个计算基底态的叠加。测量后才随机地进入一个计算基底态 $\left|m\right\rangle$,而且 $\left|m/2^t-\varphi\right|<2^{-n}$ 的概率为 $1-\varepsilon$.

Diffie-Hellman 体制: 经典的密钥交换, 最初的密钥交换协议。

- ①基于计算假设。
- ②可被量子计算机攻破,不得不发展量子密钥分配(QKD)协议。 p为大素数,g为模 p 的原根,

p,g: 公开参数。

- 1. A:选 0 < a < p 发送 $g^a \pmod{p}$
- 2. B: 选 0 < b < p 发送 $g^b \pmod{p}$
- 3. A 计算 $(g^b)^a \equiv g^{ab} \pmod{p}$,

B 计算
$$(g^a)^b \equiv g^{ab} \pmod{p}$$
.

 $g^{ab} \pmod{p}$ 即为 A、B 约定的密钥。

易见,如果能解 $n \equiv g^x \pmod{p}$ 问题(即: Z_p 上的离散对数问题),上述协议无安全性可言,而量子算法即能有效完成此任务。。

阶、原根与指数:

- ① $h \ni p$ 互素,满足 $h^r \equiv 1 \pmod{p}$ 的最小整数 r 称为 h 模 p 的阶;
- ② 阶为 p-1 的数 g 称为模 p 的一个原根;
- ③ $\forall n, p$ 不能整除 $n, \exists a$ 满足 $n \equiv g^a \pmod{p}, 0 \le a < p-1$ 则称 a 为 n 模 p 的指数: $a = \operatorname{ind}_g n$ 。 (用原根来表达的幂次,即离散 对数)

离散对数问题 $\log_P Q \equiv ? \pmod{N}$ 的简单量子算法(van Dam): 设 $P^k \equiv Q \pmod{N}$,

$$\frac{1}{N} \sum_{x,y=0}^{N-1} |x\rangle_{\mathbf{I}} |y\rangle_{\mathbf{\Pi}} |0\rangle_{\mathbf{III}} \to \frac{1}{N} \sum_{x,y=0}^{N-1} |x\rangle_{\mathbf{I}} |y\rangle_{\mathbf{\Pi}} |Q^{x} \cdot P^{y}\rangle_{\mathbf{III}}$$

$$= \frac{1}{N} \sum_{x,y=0}^{N-1} |x\rangle_{\mathbf{I}} |y\rangle_{\mathbf{\Pi}} |P^{kx+y}\rangle_{\mathbf{III}}$$

测量量子寄存器Ⅲ,得

$$\frac{1}{N} \sum_{x=0}^{N-1} |x\rangle_{\mathbf{I}} |c - kx\rangle_{\mathbf{II}} |P^{c}\rangle_{\mathbf{III}}$$

应用 $QFT_N \otimes QFT_N$ 到量子寄存器I和II:

$$\rightarrow \frac{1}{N} \sum_{x=0}^{N-1} \left(\sum_{i=o}^{N-1} \zeta_N^{ix} | i \rangle_{\mathbf{I}} \otimes \sum_{j=0}^{N-1} \zeta_N^{j(c-xk)} | j \rangle_{\mathbf{II}} \right)
= \sum_{i,j=0}^{N-1} \zeta_N^{jc} \left(\frac{1}{N} \sum_{x=0}^{N-1} \zeta_N^{x(i-jk)} \right) | i \rangle_{\mathbf{I}} | j \rangle_{\mathbf{II}}
= \sum_{j=0}^{N-1} \zeta_N^{jc} | jk \rangle_{\mathbf{I}} | j \rangle_{\mathbf{II}}$$

这里用到

$$\left(\frac{1}{N}\sum_{x=0}^{N-1}\zeta_N^{x(i-jk)}\right)=\delta_{0,i-jk},$$

上式可从 $i-jk \neq 0$ 时

$$\sum_{j=0}^{N-1} \zeta^{jk} = \frac{1 - \zeta^{kN}}{1 - \zeta^{k}} = \frac{1 - \left(e^{2\pi i}\right)^{k}}{1 - e^{2\pi i \cdot \frac{k}{N}}} = 0.$$

看出。

测量量子寄存器 I,II,比较即得 k.

因为寄存器有限位,所以都是在 mod N 意义上讨论的。

四、求阶

由
$$|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left[\frac{-2\pi i s k}{r}\right] |x^k \mod N\rangle$$
,

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |u_s\rangle = \frac{1}{r} \sum_{s,k=0}^{r-1} \exp\left[\frac{-2\pi i s k}{r}\right] |x^k \mod N\rangle$$

$$= \sum_{k=0}^{r-1} \left[\frac{1}{r} \sum_{s=0}^{r-1} \exp\left[\frac{-2\pi i k s}{r}\right]\right] |x^k \mod N\rangle$$

$$= \sum_{k=0}^{r-1} \delta_{0,k} |x^k \mod N\rangle$$

$$= |1\rangle$$

一、任给正整数k有:

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2\pi i s k/r} \left| u_s \right\rangle = \left| x^k \bmod N \right\rangle$$

证明: 记 $k_0 = k \pmod{r}$,

$$\Xi = \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2\pi i s k/r} \frac{1}{\sqrt{r}} \sum_{k'=0}^{r-1} \exp\left[\frac{-2\pi i s k'}{r}\right] \left| x^{k'} \bmod N \right\rangle
= \frac{1}{r} \sum_{s=0}^{r-1} \sum_{k'=0}^{r-1} e^{2\pi i \frac{s}{r}(k_0 - k')} \left| x^{k'} \bmod N \right\rangle = \frac{1}{r} \sum_{k'=0}^{r-1} \left(\sum_{s=0}^{r-1} e^{-2\pi i \frac{k' - k_0}{r} s} \right) \left| x^{k'} \bmod N \right\rangle
= \frac{1}{r} \sum_{k'=0}^{r-1} r \cdot \delta_{k'k_0} \left| x^{k'} \bmod N \right\rangle = \left| x^{k_0} \bmod N \right\rangle
= \left| x^k \bmod N \right\rangle$$

二、证明:
$$U|u_s\rangle = \exp\left[\frac{2\pi is}{r}\right]|u_s\rangle$$
.

(1)
$$|u_s\rangle$$
的定义: $|u_s\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left[\frac{-2\pi i s k}{r}\right] |x^k \mod N\rangle$

(2)
$$U$$
算子的定义: $U|y\rangle \equiv |xy \pmod{N}\rangle$

(3) 阶的定义:
$$x^r \equiv 1 \pmod{N}$$

$$\begin{split} &= \exp\left[\frac{2\pi i s}{r}\right] \frac{1}{\sqrt{r}} \sum_{k=1}^{r} \exp\left[\frac{-2\pi i s k}{r}\right] \left|x^{k} \bmod N\right\rangle \\ &= \exp\left[\frac{2\pi i s}{r}\right] \frac{1}{\sqrt{r}} \left[\sum_{k=1}^{r-1} \exp\left[\frac{-2\pi i s k}{r}\right] \left|x^{k} \bmod N\right\rangle + \exp\left[-2\pi i s\right] \left|x^{r} \bmod N\right\rangle\right] \\ &= \exp\left[\frac{2\pi i s}{r}\right] \frac{1}{\sqrt{r}} \left[\sum_{k=1}^{r-1} \exp\left[\frac{-2\pi i s k}{r}\right] \left|x^{k} \bmod N\right\rangle + \exp\left[-2\pi i \cdot 0\right] \left|x^{0} \bmod N\right\rangle\right] \\ &= \exp\left[\frac{2\pi i s}{r}\right] \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp\left[\frac{-2\pi i k}{r}\right] \left|x^{k} \bmod N\right\rangle \\ &= \exp\left[\frac{2\pi i s}{r}\right] \left|u_{s}\right\rangle. \end{split}$$

Procedure:

.
$$|0\rangle|1\rangle$$
 initial state

2.
$$\rightarrow \frac{1}{\sqrt{2t}} \sum_{j=1}^{2^{t}-1} |j\rangle |1\rangle$$
 create superposition

3.
$$o rac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j
angle |x^j mod N
angle$$
 apply $U_{x,N}$

$$pprox rac{1}{\sqrt{r2^t}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^t-1} e^{2\pi i s j/r} |j
angle |u_s
angle$$

4.
$$o rac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\widetilde{s/r}\rangle |u_s\rangle$$
 apply inverse Fourier transform to first register

5.
$$\rightarrow \widetilde{s/r}$$
 measure first register

6.
$$\rightarrow r$$
 apply continued fractions algorithm

问题: 1. 第三步中的约等号可以是等号吗?

- 2. 第四步中的 $\left| (s/r)' \right\rangle$ 应代表由逆Fourier变换生成的叠加态,不是单一的计算基态,只是相对s/r 近似较好的分量几率幅较大,
- 到第五步时才由于测量而坍缩到一个确定的态。
- 3. 测量值(s/r) 是s/r的2L+1比特近似,即2L+1有效位二进制小数。

曲
$$r \le N \le 2^L$$
,知 $\left| s/r - \left(s/r \right)' \right| \le 2^{-2L-1} \le \frac{1}{2N^2} \le \frac{1}{2r^2}$

记 $\varphi \equiv \left(\frac{s}{r}\right)'$,有 $\left|\frac{s}{r} - \varphi\right| \le \frac{1}{2r^2}$,则由定理 5.1可知 $\frac{s}{r}$ 是 φ 的一个渐近值,且可用连分式算法在 $O(L^3)$ 个运算之内计算出所有的渐近值,即得到 $\left\{\frac{s_i'}{r_i'}, i=1,\cdots,n\right\}, n=O(L).$

由于 φ 的任意两个相邻的渐近分数中至少有一个满足 $\left|\frac{s}{r}-\varphi\right| \leq \frac{1}{2r^2}$,似乎无法确定 $\left\{\frac{s_i'}{r_i'},i=1,\cdots,n\right\}$ 中哪一个是 $\left|\frac{s}{r}\right|$,一种办法是逐个验算:

 $x^{r_i'} \mod N \stackrel{?}{=} 1$,一种办法是证明事实上只有一个值满足不等式。

五、因子分解

设 $N = p \cdot q$,分解 N等价于求解 $F_N(a) \equiv y^a \mod N$ 的周期:

若 $F_N(a) = F_N(a + kr)$,即 $r \in F_N$ 的周期,则有 $y^r \equiv 1 \mod N$ 。 从欧拉定理知r < N。 设 r已求出。

当r为偶数时,令 $x = y^{r/2}$,则有 $x^2 \equiv 1 \mod N$, $(x-1)(x+1) \equiv 0 \mod N,$

故知 p, q 必包含在 x-1 和 x+1 的因子之中,

即计算
$$\begin{cases} \gcd(x-1,N) & \text{可得} \\ \gcd(x+1,N) \end{cases}$$

因子分解

例:
$$N = 15$$
, 取 $y = 7$, $7^2 \equiv 4 \mod 15$, $7^4 \equiv 1 \mod 15 \Rightarrow r = 4$. $x = y^{r/2} = 49$, $(x+1)(x-1) = 50 \times 48 = 10 \times 16 \times 15 \equiv 0 \mod 15$, $\gcd(50,15) = 5$, $\gcd(48,15) = 3$, 从而得到: $N = 3 \times 5$

连分式展开:

$$[a_0, a_1, \dots, a_M] \equiv a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_M}}}$$

$$\dots + \frac{1}{a_M}$$

内容概要

第二部分: Grover量子搜索算法

-、 U_a 变换

二、 U_s 变换

三、Grover 迭代

四、从N中求 1 问题

五、多搜索目标问题

六、关于"量子摇晃"

Grover算法 ——"从干草堆中找出一根针"

一、 U_a 变换

设有量子黑盒,可计算函数 $f_a(x)$,

$$\begin{cases} f_a(x=a) = 1, \\ f_a(x \neq a) = 0. \end{cases}$$

$$a = (a_1, \dots, a_n) \in \{0,1\}^n$$
, $|a\rangle$ 是计算基态之一。

基于调用黑盒,定义酉算子 U_a :

$$U_a |x\rangle |y\rangle \equiv |x\rangle |y \oplus f_a(x)\rangle,$$

U_a 变换

可知
$$U_a \left[|x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \right]$$

$$= |x\rangle \frac{1}{\sqrt{2}} (|0 \oplus f_a(x)\rangle - |1 \oplus f_a(x)\rangle)$$

$$= (-1)^{f_a(x)} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle).$$

略去辅助量子比特,可将酉算子记为

$$U_a |x\rangle = (-1)^{f_a(x)} |x\rangle.$$

U_a 变换

设在上述情形中 $\{|x\rangle|x\}$ 为一组正交态,可将 U_a 表达为:

$$U_a = I - 2|a\rangle\langle a|.$$

不知道 a 的情况下,可通过辅助比特和量子黑盒实现 U_a . U_a 对态空间一般矢量的作用的几何图像: 只将 $|a\rangle$ 方向分量的符号改变,相当于对任意态作关于垂直于 $|a\rangle$ 的超平面的反射。

二、Us 变换

设 $|a\rangle$ 是计算基态之一, $|s\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$, $N = 2^n$ ($H^{(n)} |0\rangle = |s\rangle$),则 $\langle a|s\rangle = \frac{1}{\sqrt{N}}$,构造 $U_s = 2|s\rangle\langle s| - I$,可见 U_s 保持 $|s\rangle$ 态不变,即 $U_s |s\rangle = 2|s\rangle - \langle s| = |s\rangle$,但对于任意与 $|s\rangle$ 正交的态 $|s'\rangle$ 有 $U_s |s'\rangle = 2|s\rangle\langle s|s'\rangle - |s'\rangle = -|s'\rangle$,

 $|s'\rangle$ 易于构造:任意两计算基态相减即可。

U_s 变换

 U_s 对态空间一般矢量的作用的几何图像:

在与 $|s\rangle$ 正交的 2^n-1 维子空间中做中心反射变换。即:改变所

有与 $|s\rangle$ 垂直的分量的符号。

三、Grover 迭代

构造酉算子: $U = U_s U_a$,

由于

$$\left|\left\langle a\right|s\right\rangle\right| = \frac{1}{\sqrt{N}}\stackrel{\text{id}}{=}\sin\theta$$
,

可知 $|s\rangle = \pm \sin \theta |a\rangle \pm \cos \theta |a^{\perp}\rangle$

即: $|s\rangle$ 是一个与 $|a^{\perp}\rangle$ 相差 θ 角的态矢量。

Grover 迭代

$$U = U_s U_a$$
 的作用: $U|x\rangle = U_s |x'\rangle = |x''\rangle$.

故知: U 的作用是将任意态矢量在 由 $|a\rangle$ 和 $|s\rangle$ 确定的平面中转过 2θ 角, 其中 θ 满足 $\sin\theta = \frac{1}{\sqrt{N}}$. ($|x\rangle$ 与 $|x''\rangle$ 的夹角是 $\alpha + \beta$.)

四、从 N 中求 1 问题

黑盒中的参数 a是未知的,计算者制备初态 $|s\rangle$ 后,进行 $U|s\rangle$ 运 算一次,调用黑盒一次。

问:调用黑盒多少次,可以在测量态矢量时以接近 1 的概率得到 a?

从N中求 1 问题

用类似经典的方法,随机选取一个 x, 计算 $f_a(x)$, 遇到 $f_a(x)=1$

(即x=a)的概率是 $\frac{1}{N}$. 因此平均需要 $\frac{1}{2}N$ 次调用黑盒才能知道 a.

现用 Grover 迭代 T 次后, $|s\rangle$ 与 $|a^{\perp}\rangle$ 的角度为 $\theta+2T\theta$.

如果
$$T$$
 满足 $(2T+1)\theta \approx \frac{\pi}{2}$, 即 $T \approx \frac{\pi}{4} \cdot \frac{1}{\theta} \approx \frac{\pi}{4} \sqrt{N}$, $|s\rangle \xrightarrow{U^{(T)}} |a\rangle$,

测量系统末态即可以接近 1 的概率得到黑盒的 a.

五、多搜索目标问题

即:

$$f_a(x) = \begin{cases} 1, \stackrel{\square}{\Longrightarrow} x \in \{a_1, \dots, a_r\}, \\ 0, \stackrel{\square}{\Longrightarrow} x \notin \{a_1, \dots, a_r\}. \end{cases}$$

设
$$|a\rangle = \frac{1}{\sqrt{r}} \sum_{i=1}^{r} |a_i\rangle$$
,则 $\langle s|a\rangle = \sqrt{\frac{r}{N}} \stackrel{\text{id}}{=} \sin\theta \approx \theta \ (N\Box \ r)$.

从
$$|s\rangle$$
 出发进行 $T \approx \frac{\pi}{2} / 2\theta \approx \frac{\pi}{4} \sqrt{\frac{N}{r}}$ 次 Grover 迭代,可将 $|s\rangle$ 变换

为近于 $|a\rangle$.

多搜索目标问题

测量系统末态,则以接近 $\frac{1}{r}$ 概率坍缩到某一个 $|a_i\rangle(i=1,\cdots,r)$ 寻 找 r 个目标问题化为一个概率问题,平均需要 $r\cdot\sum_{k=1}^r\frac{1}{k}\Box r\ln r$ 次测

量。(每一次测量之前需进行约 $\frac{\pi}{4}\sqrt{\frac{N}{r}}$ 次 Grover 迭代)。共需调

用黑盒 $\Box \frac{\pi}{4} \sqrt{rN} \ln r$ 次。

六、关于"量子摇晃"

直接看 Grover 迭代是怎样放大 $|a\rangle$ 的几率幅的。仍取 $|s\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$,

设系统状态为任意态
$$|\varphi\rangle = \sum_{x=0}^{N-1} C_x |x\rangle$$
, 记 $\langle C_x \rangle = \frac{1}{N} \sum C_x$, 则

$$\langle s | \varphi \rangle = \frac{1}{\sqrt{N}} \sum_{x} C_{x} = \sqrt{N} \cdot \frac{1}{N} \sum_{x} C_{x} = \sqrt{N} \langle C_{x} \rangle,$$

$$U_{s} | \varphi \rangle = (2|s\rangle\langle s|-1)|\varphi\rangle = 2|s\rangle\langle s|\varphi\rangle - |\varphi\rangle$$

$$=2\left|s\right\rangle\sqrt{N}\left\langle C_{x}\right\rangle -\sum_{x=0}^{N-1}C_{x}\left|x\right\rangle$$

$$= \sum_{x=0}^{N-1} \left(2 \left\langle C_x \right\rangle - C_x \right) |x\rangle \stackrel{\text{id}}{=} \sum_{x=0}^{N-1} C_x' |x\rangle.$$

关于"量子摇晃"

考虑 $|x\rangle$ 的几率幅与平均几率幅之差: $(U_s$ 作用后不改变 $\langle C_x\rangle)$

$$C_{x} - \langle C_{x} \rangle \xrightarrow{U_{s}} 2 \underline{\langle C_{x} \rangle - C_{x}} - \underline{\langle C_{x} \rangle} = \underline{\langle C_{x} \rangle - C_{x}} = -\underline{\langle C_{x} - \langle C_{x} \rangle},$$

$$+ \underline{\langle C_{x} \rangle} + \underline{\langle C_{x} \rangle} = \underline{\langle C_{x} \rangle - \langle C_{x} \rangle} + \underline{\langle C_{x$$

即: U_s 使此量反号。由此可推知 U 的作用如下:

① U_a 使 $|a\rangle$ 的几率幅反号:

关于"量子摇晃"

② U_s 使系统在 $|x\rangle$ 上的几率幅与平均几率幅之差 $C_x - \langle C_x \rangle$

反号: 1)
$$C_a - \langle C_x \rangle < 0 \xrightarrow{U_s} C'_a - \langle C'_x \rangle = -(C_a - \langle C_x \rangle) > 0$$

2)
$$x \neq a$$
 时, $C_x - \langle C_x \rangle > 0 \xrightarrow{U_s} - (C_x - \langle C_x \rangle) < 0$

即:

关于"量子摇晃"

 U_s 使各几率幅相对于 $\langle C_x' \rangle$ 线反转。 每次反转后 C_a 的增量与 $\langle C_x' \rangle$ 有关,故作用逐次递减。易知

$$C'_{a} = 2\langle C_{x} \rangle + C_{a} \approx 3C_{a}$$
 $C''_{a} = 2\langle C'_{x} \rangle + C'_{a} \approx 5C_{a}$
 \vdots
 $C_{a}^{(l)} = 2\langle C_{x}^{(l-1)} \rangle + C_{a}^{(l-1)}$
 $\Rightarrow C_{a}^{(l)} \square lC_{a} = \frac{l}{\sqrt{N}},$
故需进行 $l \square \sqrt{N}$ 次迭代。

中国科学院大学 网络空间安全学院 专业普及课

第六章 量子算法

