

HANDBOOK OF STANDARD DETAILS

HANDBOOK OF STANDARD DETAILS

FOR ENGINEERS, DRAFTSMEN
AND STUDENTS

BY

CHARLES H. HUGHES

AUTHOR OF "HANDBOOK OF SHIP CALCULATIONS, CONSTRUCTION AND OPERATION"

ILLUSTRATED

D. APPLETON AND COMPANY NEW YORK LONDON

TJ151 H75 Engineering Library

D. APPLETON AND COMPANY

PREFACE

This book was compiled especially for engineers and draftsmen, so they might have, in convenient form, drawings, tables, and formulæ of standard details for use in designing.

The data have been obtained from a variety of sources. Many of the tables have been furnished by the leading machine-tool manufacturers in the United States and represent their current practice.

Besides being of use to engineers and draftsmen, students, purchasing agents, and others interested in mechanical engineering will find the book of value.

CHAS. H. HUGHES

NEW YORK.

CONTENTS

SECTION I DRAWINGS

Notes on drawings

Clutches

Collars .

Bearings

PAGE 1

99 105

106

Limit standards	3
U. S. Patent Office drawings	9
Shrinkage of castings	12
Geometrical constructions	12
SECTION II	
FASTENINGS	
Bolts	25
Nuts	36
Screws	42
Threads for bolts, nuts, screws and pipe	58
Tap drills	77
Nails	77
Spikes	81
Keys	83
Gibs and keys	88
T slots	89
Cotters	90
SECTION III	
POWER TRANSMISSION	
Shafting	91
Quill drives	92
Couplings	94

viii CONTENT	S								
D. II.									PAGE
Pulleys		•	•	•		•			110
Mule stands		•	•	•		•	٠		117
Belting	•			•					
Belt drives			•					•	124
Rope sheaves and pulleys	•	•	•		•	•	•		127
Chains for transmitting power							•		132
Sprockets			•	•	•	•			139
Gearing		•	•			•			141
Spur		•	•		•	•	•		142
Witter and bever		•	•	•	•	•	•	•	150
Worm		•	٠	•		•	•		
Helical		1		•		•			160
Herringbone	:	:	•	•		•	•	•	161
SECTION I	V								
PIPE, TUBES AND	FIT	TI	NG	S					
Trade customs								4	162
Standard wrought iron pipe	Hel								163
Extra strong wrought iron pipe									164
Double extra strong wrought iron pipe									165
Couplings									166
Couplings									167
Boiler tubes									167
Steel tubes									168
Pipe bends									170
Flanges									172
Flanges									176
Fittings									177
Valves									182
Cocks									192
Expansion joints	-								193
SECTION '	V								
ROPE AND CHAIN	FIT	TI	NO	35					
									000
Turnbuckles									
Thimbles									
Sockets									205
Clevis nuts									
Sister hooks						11			210

CONTENTS	ìx
	PAGE
Eye bolts	
Hooks	212
bhackles	
Slings—rope and chain	
Chain—hoisting and anchor	221
Drum scores for chain and rope	224
SECTION VI	
MISCELLANEOUS DETAILS	
	227
	232
	236
	237
	238
	239
Spanners	242
Stuffing boxes	245
Washers	
	249
	250
Angle couplings	
	259
	261
Tool straps and bolts	
Finished ends of shafts, studs, screws and bushings	
Standard squares for chuck screws and wrenches	267
Standard squares for chuck screws and wrenches	. 201
SECTION VII	
STRUCTURAL DETAILS	
Rivets	268
Riveted joints	276
Structural shapes	277
Wire and sheet metal gauges	284
Plates	
Gauges for punching	286
	288
Beam connections	292

CONTENTS

SECTION VIII

USEFUL TABLES

	PAGE
Weights and measures	294
Metric units	
Metric and U.S. equivalent measures	297
Decimal equivalents of an inch	300
Inches and fractions in decimals of a foot	301
Strength of materials	302
Specific gravities and weights of materials	303
Fauivelent reluce of machanical electrical and heat unita	204

HANDBOOK OF STANDARD DETAILS

HANDBOOK OF STANDARD DETAILS

SECTION I

DRAWINGS

NOTES ON SHOP DRAWINGS—LIMIT STANDARDS—U. S. PATENT OFFICE DRAWINGS—SHRINKAGE OF CASTINGS—GEOMETRICAL CONSTRUCTIONS

NOTES ON SHOP DRAWINGS

COMMON ABBREVIATIONS

Csk. = countersunk U.S.G. = United States Gauge

B.W.G. = Birmingham or Stubs Wire Gauge

B. & S. = Brown & Sharpe or American Standard Wire Gauge

A.W.G. = American Wire Gauge c.i. = cast iron w.i. = wrought iron m.i. = malleable iron

c.s. = cast steel Br. = brass

Bz. = bronze O.d. = outside dia. I.d. = inside dia.

Zn. = zinc # or lb. = pound Ft.B.M. = feet board measure or deg. = degree

Ft.B.M. = feet board measure or deg. = degree

 π = 3.14159 C. to C. = center to center

Dimensions not to scale should be underscored or marked "Not to Scale."

Where several pieces are shown on a drawing always have a bill of material and a table for noting alterations and date.

The title is preferably printed in the lower right hand corner.

SHOP DRAWINGS

	Line of object
	Line of invisible part
	Center line
	Projection line
← — — — — — — — — — — — — — — — — — — —	Dimension line
	Cutting plane for section
	Breaking of part
	Rectangular bar
	Circular bar
	Pipe
	Wood
-9-3-5-9-0-000	Chain
	Angle
	Channel
	I beam

HATCHINGS FOR SECTIONS

RIVET MARKINGS, see page 275.

LIMIT STANDARDS

EXPLANATION

Symbols used on drawing—Using 1" as an example

- I" Rough gauge.—Shaft to be ground and to use gauge for shaft work preparatory to grinding.
- I" Finish gauge.—Shaft to be turned or ground to gauge furnished and within the "Go" and "No Go" limits.
- 1" Drive gauge.—Shaft to be turned or ground for a drive fit, and to be furnished to limits of "Go" and "No Go" gauge.
- 1" Free hole (Free holes taking in running and sliding fits).—Hole to be bored or reamed to plug furnished and to come within "Go" and "No Go" limits.
- 1" Standard plug.—Hole to be bored or reamed to standard plug furnished and to come within limits of "Go" and "No Go" gauges.

SYMBOL—FINISH GAUGE STANDARD SHAFT USE WITH STANDARD HOLE (WRINGING FIT) USE WITH FREE HOLE (BUNNING FIT)

DIA. IN INCHES

USE WITE	INCHES		
Maximum	Minimum	Tolerance	
.3750	.3743	.0007	3/8
.4375	.4368	.0007	16
.5000	.4990	.0010	63
.5625 .6250	.5615	.0010	16
.6875	.6240	.0010	11/2
.7500	.7490	.0010	3/2
.8125	.8115	.0010	13/6
.8750	.8740	.0010	7/8
.9375	.9365	.0010	15/16
1.0000	.9990	.0010	1
1.0625	1.0615	.0010	11/16
1.1250	1.1240	.0010	1 1/8 1 3/16
1.1875 1.2500	1.1865 1.2490	.0010	1116
1.3125	1.3115	.0010	15%
1.3750	1.3740	.0010	13%
1.4375	1.4365	.0010	17/6
1.5000	1.4990	.0010	11/2
1.5625	1.5615	.0010	1%
1.6250	1.6240	.0010	15/8
1.6875	1.6865	.0010	111/16
1.7500	1.7490	.0010	13/4
1.8125 1.8750	1.8115 1.8740	.0010	113/6 17/8
1.9375	1.9365	.0010	115/16
2,0000	1.9990	.0010	2 10
2.1250	2.1240	.0010	2 21/8
2.2500 2.3750	2.2490	.0010	21/4
2.3750	2.3740	.0010	23/8
2.5000	2,4990	.0010	214 23/8 21/2 25/8 25/8 27/8 3
2.6250 2.7500	2.6240 2.7490	.0010	2%
2.8750	2.7490	.0010 .0010	274
3.0000	2.9985	.0015	3/8
3.1250	3.1235	.0015	31/8
3.2500	3.2485	.0015	314
3.3750	3.3735	.0015	28%
3.5000	3.4985	.0015	31/2 35/8 33/4
3.6250	3.6235	.0015	35/8
3.7500 3.8750	3.7485	.0015	3%
4.0000	3.8735 3.9985	.0015 .0015	37/8
4.1250	4.1235	.0015	41/8
4.2500	4,2485	.0015	414
4.3750	4.3735	.0015	43%
4.5000	4.4985	.0015	41/2
4.6250	4.6235	.0015	45/8
4.7500	4.7485	.0015	484
4.8750 5.0000	4.8735	.0015	47/8
5.1250	4.9985 5.1235	.0015	5
5.2500	5.2485	.0015	51/
5.3750	5.3735	.0015	58%
5.5000	5,4985	.0015	51/2
5,6250	5.6235	.0015	55/8
5.7500 5.8750	5.7485	.0015	534
5.8750	5.8735	.0015	57/8
6.0000	5.9980	.002	6
6.1250	6.1230 6.2480	.002	61/8
6.2500 6.3750	6.3730	.002	614
0.0100	0.0100	.002	078

SYMBOL—ROUGH GAUGE
ROUGH TURNING
PREPARATORY to GRINDING
(Special Cases on Long Shafts)
SCREW MACHINE WORK

DIA. IN INCHES

SCREV	V MACHINE	WORK	
Maximum	Minimum	Tolerance	1
.387	.383	.004	3/6
.449	.445	.004	7/10
.512	.508	.004	1/2
.575	.570	.005	9%
.638	.633	.005	5/6
.701	.695	.006	11/8
.765	.759	.006	316
	.709		13/
.827.	.821	.006	16
.890	.884	.006	1/8
.952	.946	.006	15/16
1.016	1.010	.006	1
1.078	1.072	.006	11/16
1.141	1.135	.006	11/8
1.203	1.197	.006	13/16
1.268	1.262	.006	11/4
1.330	1.324	.006	15/16
1.393	1.387	.006	13/8
1.455	1.449	.006	17/16
1.518	1.512	.006	11/2
1.580	1.574	.006	19/16
1.643	1.637	.006	15%
1.705	1.699	.006	111/16
1.771	1.765	006	13/
1.833	1.827	006	113/16
1.896	1.890	006	17%
1.958	1.952	.006	115/16
2.028	2.020	008	2 16
2.153	2.145	.008	21/8
2.278	2.270	.008	21/4
2.403	2.395	008	23%
2.528	2.520	.008	21/2
2.653	2.645	.008	25%
	2.770	.008	23/4
2.778		.008	077
2.903			
3.035	3.025	.010	3
3.160	3.150	.010	31/8
3 285	3.275	.010	31/4
3.410	3.400	.010	33/8
3.535	3.525	.010	31/2
3.660	3.650	.010	35/8
3.785	3.775	.010	3 ³ / ₄ 3 ⁷ / ₈
3.910	3.900	.010	37/8
4.035	4.025	.010	4
THE RESERVE AND ADDRESS OF THE PARTY OF THE		Control of the second of the s	

SYMBOL—STANDARD PLUG WRINGING AND DRIVE FITS STANDARD HOLE WRINGING FIT, USE WITH ST'D SHAFT

DRIVE FIT, USE WITH DRIVE FIT SHAFT

DIA. IN INCHES SYMBOL-FREE HOLE RUNNING AND SLIDING FITS

FREE HOLE
USE WITH STANDARD SHAFT]

	SHAFT				11015		
Maximum	Minimum	Tolerance		Maximum	Minimum	Tolerance	
.3750	.3747	.0003	3/6	.3760	.3755	.0005	
.4375	.4372	.0003	3/8 7/16	.4385	.4380	.0005	
.5000	.4995	.0005	1/2	.5015	.5008	.0007	
.5625	.5620	.0005	9/16	.5640	.5633	.0007	
.6250	6245	.0005	5/8	.6265	.6258	.0007	
.6875	.6870	.0005	11/16	.6890	.6883	.0007	
.7500	.7495	.0005	3/4	.7515	.7508	.0007	
.8125	.8120	.0005	13/16	.8140	.8133	.0007	
.8750	.8745	.0005	1/8	.8765	.8758	.0007	
.9375	.9370	.0005	15/16	.9390	.9383	.0007	
1.0000	.9993	.0007	1	1.0020	1.0010	.0010	
1.0625	1.0618	.0007	11/16	1.0645	1.0635	.0010	
1.1250	1.1243	.0007	11/8	1.1270	1,1260	.0010	
1.1875	1.1868	.0007	13/16	1.1895	1.1885	.0010	
1.2500	1.2493	.0007	11/4	1.2520	1.2510	.0010	
1.3125	1.3118	.0007	15/16	1.3145	1.3135	.0010	
1.3750	1.3743	.0007	13/8	1.3770	1.3760	.0010	
1.4375	1.4368	.0007	17/16	1.4395	1.4385	.0010	
1.5000	1.4993	.0007	11/2	1.5025	1.5012	.0013	
1.5625	1.5618	.0007	19/16	1.5650	1.5637	.0013	
1.6250	1.6243	.0007	15/8	1.6275	1.6262	.0013	
1.6875	1.6868	.0007	111/16	1.6900	1.6887	.0013	
1.7500	1.7493	.0007	13/4	1.7525	1.7512	.0013	
1.8125	1.8118	.0007	113/16 17/8	1.8150	1.8137	.0013	
1.8750	1.8743	.0007	1/8	1.8775	1.8762	.0013	
$\frac{1.9375}{2.0000}$	1.9368 1.9990	.0007	115/16	1.9400 2.0030	1.9387 2.0015	.0013	
2.1250	2.1240	.0010	21/8	2.1280	2.1265	.0015	
2.2500	2.2490	.0010	214	2.2530	2.2515	.0015	
2.3750	2.3740	.0010	23/8	2.3780	2.3765	.0015	
2.5000	2.4990	.0010	21/2	2.5030	2.5015	.0015	
2.6250	2.6240	.0010	25/8	2.6280	2.6265	.0015	
2.7500	2.7490	.0010	234	2.7530	2.7515	.0015	
2.8750	2.8740	.0010	27/8	2.8780	2.8765	.0015	
3.0000	2.9990	.0010	3	3.0035	3.0020	.0015	
3.1250	3.1240	.0010	31/8	3.1285	3.1270	.0015	
3.2500	3.2490	.0010	31/4	3.2535	3.2520	.0015	
3.3750	3.3740	.0010	33/8	3.3785	3.3770	.0015	
3.5000	3.4990	.0010	31/2	3.5035	3.5020	.0015	
3.6250	3.6240	.0010	35/8	3.6285	3.6270	.0015	
3.7500	3.7490	.0010	33/4	3.7535	3.7520	.0015	
3.8750	3.8740	.0010	37/8	3.8785	3.8770	.0015	
4.0000	3.9990	.0010	4	4.0035	4.0020	.0015	
H BURELL			41/8	4.1290	4.1270	.002	
4.2500	4.2485	.0015	41/4	4.2540	4.2520	.002	
		The Line State	43/8	4.3390	4.3370	.002	
		10000	41/2	4.5045	4.5025	.002	
		The Parks	45/8	4.6295	4.6275	.002	
		ALE NO	43/4	4.7545	4.7525	.002	

Continued from page 6

WRINGING F	—STANDARI NG AND DRI NDARD H IT, USE WITH E FIT, USE FIT SHAFT	OLE H STANDARD	DIA. IN INCHES	RUNNIN	HOLE ING FITS E ED SHAFT	
Maximum	Minimum	Tolerance		Maximum	Minimum	Tolerance
			45555555555666666666666666666666666666	4.8795 5.0050 5.1300 5.2550 5.3800 5.5055 5.7555 5.7855 6.0070 6.1320 6.2570 6.3825 6.7575 6.6325 7.0080	4.8775 5.0030 5.1280 5.2530 5.3780 5.5035 5.6285 5.7535 6.0040 6.1290 6.2540 6.3790 6.5045 6.6295 7.0050	.002 .002 .002 .002 .002 .002 .002 .002

PRESS AND SHRINK FITS

Press fits.—Either one or both parts are given a slight taper as ½ to ½ in. per foot. The allowance between a hole in a cast iron hub and a steel shaft to be pressed in, may be taken as about .004 in., and for a steel hub and shaft .003. Press fits are not as satisfactory as shrink for resisting torsional stresses.

Shrink fits.—Both hole and shaft are generally cylindrical altho sometimes a slight taper is given. For cast iron and steel shrink fits an allowance of .0015 times the diameter of the shaft plus .005 in. may be used. Some companies make no difference in allowance between press and shrink fits.

BRONZE BEARING LIMIT STANDARD

STANDARD SHAFT BEARING PLUG ALLOWANCE FOR RUNNING FIT

			A STATE OF THE STA	NG FII	
Size	Maximum	Minimum	Tolerance	Maximum	Minimum
5/8	.6273	.6258	.0015	.0033	.0008
5/8 11/16	.6898	.6883	.0015	.0033	.0008
3/4 13/16	.7523	.7508	.0015	.0033	.0008
13/16	.8148	.8133	.0015	.0033	.0008
7/8 15/16	.8773	.8758	.0015	.0033	.0008
15/16	.9398	.9383	.0015	.0033	.0008
1	1.0030	1.0010	.002	.0040	.0010
11/16	1.0655	1.0635	.002	.0040	.0010
11/6	1.1280	1.1260	.002	.0040	.0010
13/16	1.1905	1.1885	.002	.0040	.0010
11/4	1.2530	1.2510	.002	.0040	.0010
15/16	1.3155	1.3135	.002	.0040	.0010
13/8	1.3780	1.3760	.002	.0040	.0010
17/16	1.4410	1.4385	.0025	.0045	.0010
11/2	1.5037	1.5012	.0025	.0047	.0012
19/16	1.5662	1.5637	.0025	.0047	.0012
15/8	1.6287	1.6262	.0025	.0047	.0012
111/16	1.6912	1.6887	.0025	.0047	.0012
13/4	1.7537	1.7512	.0025	.0047	.0012
113/16	1.8162	1.8137	.0025	.0047	.0012
17/8	1.8787	1.8762	.0025	.0047	.0012
115/16	1.9412	1.9387	.0025	.0047	.0012
2	2.0045	2.0015	.003	.0055	.0015
21/8	2.1295	2.1265	.003	.0055	.0015
21/4	2.2545	2.2515	.003	.0055	.0015
$\frac{2\frac{3}{8}}{2\frac{1}{2}}$	2.3795 2.5045	2.3765	.003	.0055	.0015
25/8	2.6295	$2.5015 \\ 2.6265$.003	.0055	.0015
23/	2.0295 2.7545	2.7515	.003	.0055	.0015
$\frac{2\frac{3}{4}}{2\frac{7}{8}}$	2.8795	2.8765	.003	.0055	.0015
3	3.0050	3.0020	.003	.0065	.0020
31/8	3.1300	3.1270	.003	.0065	.0020
31/4	3.2550	3.2520	.003	.0065	.0020
33/8	3.3800	3.3770	.003	.0065	.0020
31/2	3.5050	3.5020	.003	.0065	.0020
35%	3.6300	3.6270	.003	.0065	.0020
35/8 33/4	3.7550	3.7520	.003	.0065	.0020
37/8	3.8800	3.8770	.003	.0065	.0020
4	4.0055	4.0020	.0035	.0070	.0020
41/8	4.1305	4.1270	.0035	.0070	.0020
	1	-11/450-81/1	The second		

LIMIT OF WEAR ON PLUG GAUGES

Standard Plugs	Free Hole, Roughing and Special Plugs
Tolerance of .0003 to .0005—.0002 "	Tolerance of .0005 to .001—.0003 " ".001 ".005—.0005 " over .005—.001

U. S. PATENT OFFICE DRAWINGS

Drawings must be made upon pure white paper of a thickness corresponding to two-sheet or three-sheet Bristol board. The surface of the paper must be calendered and smooth. India ink alone must be used, to secure perfectly black and solid lines.

The size of a sheet on which a drawing is made must be exactly 10 by 15 ins. One inch from its edges a single marginal line is to be drawn, leaving the "sight" precisely 8 by 13 ins. Within this margin all work and signatures must be included. One of the shorter sides of the sheet is regarded as its top, and, measuring downward from the marginal line, a space of not less than $1\frac{1}{4}$ ins. is to be left blank for the heading of title, name, number and date.

All drawings must be made with the pen only. Every line and letter (signatures included) must be absolutely black. This direction applies to all lines, however fine, to shading, and to lines representing cut surfaces in sectional views. All lines must be clean, sharp and solid, and they must not be too fine or crowded. Surface shading, when used, should be open. Sectional shading should be made by oblique parallel lines, which may be about one-twentieth of an inch apart. Solid black should not be used for sectional or surface shading. Free-hand work should be avoided wherever it is possible to do so.

Drawings should be made with the fewest lines possible consistent with clearness. Shading (except on sectional views) should be used only on convex and concave surfaces, where it should be used sparingly, and may even there be dispensed with if the drawing be otherwise well executed. The plane upon which a sectional view is taken should be indicated on the general view by a broken or dotted line, which should be designated by numerals corresponding to the number of the sectional view. Heavy lines on the shade sides of objects should be used, except where they tend to thicken the work and obscure letters of reference. The light is always sup-

THE SIZE OF THE SHEET MUST BE EXACTLY

posed to come from the upper left hand corner at an angle of 45 degs.

The scale to which a drawing is made ought to be large enough to show the mechanism without crowding, and two or more sheets should be used if one does not give sufficient room to accomplish this end; but the number of sheets must never be more than is absolutely necessary.

The different views should be consecutively numbered. Letters and figures of reference must be carefully formed. They should, if possible, measure at least one-eighth of an inch in height, so that they may bear reducing to one twenty-fourth of an inch; and they may be much larger when there is sufficient room. They must be so placed in the close and complex parts of drawings as not to interfere with a thorough comprehension of the same, and therefore should rarely cross or mingle with the lines. When necessarily grouped around a certain part they should be placed at a little distance, where there is available space, and connected by lines with the parts to which they refer. They should not be placed upon shaded surfaces, but when it is difficult to avoid this, a blank space must be left in the shading where the letter occurs, so that it shall appear perfectly distinct and separate from the work. If the same part of an invention appear in more than one view of the drawing it must always be represented by the same character, and the same character must never be used to designate different parts.

The signature of the applicant should be placed at the lower right hand corner of each sheet, and the signatures of the witnesses, if any, at the lower left hand corner, all within the marginal line, but in no instance should they trespass upon the drawings. The title should be written with pencil on the back of the sheet. The permanent names and title constituting the heading will be applied subsequently by the office in uniform style.

All views on the same sheet must stand in the same direction and must if possible stand so that they can be read with the sheet held in an upright position. If views longer than the width of the sheet are necessary for the proper illustration of the invention the sheet may be turned on its side. The space for heading must then be reserved at the right and the signatures placed at the left, occupying the same space and position as in the upright views and being horizontal when the sheet is held in an upright position. One figure must not be placed upon another or within the outline of another.

Drawings transmitted to the U. S. Patent Office should be sent flat, protected by a sheet of heavy binder's board; or should be rolled for transmission in a suitable mailing tube, but should never be folded.

An agent's or attorney's stamp, or advertisement or written address will not be permitted upon the face of a drawing, within or without the marginal line.

Weight of Wood Patterns Compared to Weight of Castings

A pattern weighing one pound (less weight of core boxes) made of	Cast Iron Lbs.	Brass Lbs.	Bronze Lbs.	Copper Lbs.	Zine Lbs.
Pine or fir. Mahogany. Brass. Pear.	11.7	18.8 13.2 .95 11.5	19.3 13.5 .98 11.8	19.7 13.7 .99 11.9	15.5 11.2 .81 9.8

Thus if a pine pattern weighed one pound, a casting of cast iron from it would weigh 16 lbs., of brass 18.8 lbs., of bronze 19.3 lbs., etc.

SHRINKAGE OF CASTINGS

Patterns for castings should be made larger than dimensions given on drawings to allow for shrinkage. For iron castings (gray and malleable) the allowance for shrinkage is ½ inch per foot, for steel ¼ inch, for brass ¾ inch, for lead ½ inch, for tin ½ inch and for zinc ¾ inch.

GEOMETRICAL CONSTRUCTIONS

To Bisect a Straight Line and Draw a Perpendicular to It.—With the ends as centers and with a radius greater than one-half the line, describe arcs intersecting on both sides of the line. A line through the intersections will bisect the line and be perpendicular to it.

To Draw a Right Triangle, Given One Side.—Let A B be the side, and divide it into 6 equal parts. With A as center and radius equal to 8 parts describe an arc. With B as center and radius equal to 10 parts describe another arc. From their intersection C draw A C and C B, A C being perpendicular to A B.

To Divide a Line Into a Number of Equal Parts when the divisions on the scale are larger than the parts. If A B is the line, draw B C perpendicular to it. Suppose A B is to be divided into 5 equal parts—take a scale or a foot rule and place one end at A and the division 5 of the scale on the line B C. Draw horizontal lines through the divisions 1, 2, 3 and 4,—then their intersections on A B as 1', 2', 3' and 4' are equal parts of the line A B.

To Lay Off a 45 Deg. Angle.—Let A B and B C be two equal lines forming a right angle. A line connecting A and C will be at an angle of 45 degs. to A B.

To Lay Off a 60 Deg. Angle.— From the line AB, with A as center, and any radius draw arc BC. With the same radius and B as center describe an arc cutting BC at C. Join A and C. The line AC will make an angle of 60 degs. with AB. For an angle of 30 degs. bisect BC. To Draw a Tangent to a Circle From a Point on the Circumference.—If A is the point, draw a radial line O A. At A draw a line B C at right angles to O A, which line will be tangent to the circumference at A.

To Draw a Hexagon When the Length of One Side is Given.—Let A B be the given side, then with A B as a radius and A and B as centers draw arcs intersecting at O. With O as center and radius A B draw a circle through A and B. With the same radius and C as center describe an arc cutting the circle at D. Points E and F are obtained in a similar way. Connecting B, C, D, E, F and A gives the required hexagon.

To Draw a Hexagon, Given the Long Diameter.—Bisect the long diameter A D at O. With O as center and A O as radius describe a circle. Using the same radius and A as center, draw an arc cut-

ting the circle at B and F. With D as center describe an arc cutting the circle at C and E. Connect A, B, C, D, E and F.

To Inscribe a Hexagon in a Circle.—Divide the circle into six parts by stepping around the circumference with dividers a chord equal to the radius. Draw lines connecting the consecutive points.

To Circumscribe a Hexagon About a Circle.—Lay off a chord A B equal to the radius of the circle, and bisect its arc at C. At C draw a tangent D E meeting O D and O E. Describe a circle with radius O D, and space O D around the circle—the points thus obtained when joined will form a hexagon.

Or draw a line O D. Lay a 60 deg. triangle on O D so that it is tangent to the circle at C. The tangent drawn will be one side of the hexagon. At E draw a horizontal line tangent to the given circle. By the continued use of the 60 deg. triangle the other sides of the hexagon can be drawn.

To Inscribe an Octagon in a Square.—Draw the diagonals of the square. With the corners as centers and a radius of one-half a

diagonal draw arcs cutting the sides of the square. Connect the intersections of the arcs and the sides of the square.

To Inscribe an Octagon in a Circle.—Draw A B perpendicular to C D. Bisect the arc B D at E, A D at F, etc. Join points B, E, D, F, etc.

To Draw an Arc Through Three Points A, B and C.—Join the points. Bisect A B and B C, and at their centers draw perpendiculars. Where the perpendiculars meet is the center of the required arc.

To Construct a Polygon of n Sides Having Given One Side AB.—With AB as radius and A as center describe a semicircle and divide

it into n parts. From n subtract 2, the remainder being the number of parts through which lines G A, A F, etc. are drawn. In the present case n = 7, and there are thus 5 parts from B to G. With A B as radius and B as center describe an arc cutting A C at C,—with the same radius and C as center describe an arc cutting A D, and so on, giving points E, F and G. By connecting the points a polygon is formed.

To Draw an Ellipse.—First Method.—With C as a center draw two circles, one with the diameter equal to the major axis of the ellipse and the other equal to the minor axis. Divide the circumference of the large circle into any number of equal parts and draw from the divisions lines to the center C. Draw vertical lines from A, B, C, etc., and horizontal from A', B', C', etc. The intersections of the vertical and horizontal lines will be points on the ellipse.

Second Method.—Lay off D E equal to the difference between the major and minor axes of the required ellipse. Bisect A E and erect a perpendicular to A D at G, cutting A B at H and D K at K. Follow the same procedure on B D. Then H and K are cen-

ters for two arcs approximately forming part of an ellipse—the centers for the other two arcs are found in a similar manner to that just outlined.

Cycloid.—This curve is traced by a point on the circumference of a circle rolling on a straight line without slipping. If A E is the diameter of the generating circle, divide the semi-circumference into n equal parts, and lay off the arcs A B, A C, etc., along the base

line A E. On horizontal lines through B, C, etc., lay off A B, A C, etc. A curve through the ends of these lines will be a cycloid.

Epicycloid.—A curve generated by a point on the circumference of a circle which rolls without slipping on the outside of another

circle—is an epicycloid. Divide the semi-circumference of the rolling circle into n equal parts (in the present case into 4) and lay off the arcs A B, A C, A D and A E on the circumference of the base circle. With O as center draw arcs through B, C, D, E cutting the extended radii of the base circle at F, G, H, K. From F, G, H lay off arcs equal to BB', CC', DD'. A curve passing through B", C", etc., is an epicycloid.

Hypocycloid.—This curve is generated by a point on the circumference of a circle which rolls without slipping on the inside of

another circle. Divide the semi-circumference of the rolling circle into n equal parts (in the present case into 4) and lay off the arcs A B, A C, A D on the circumference of the base circle. With O as center draw arcs through B, C, D, E cutting the radii of the base circle at F, G, H, K. From F, G, H lay off arcs equal to B B', C C', D D'. A curve passing through B", C", etc. is a hypocycloid.

Involute.—A curve traced by the end of a taut string unwound from the circumference of a circle is an involute. If B C is tangent

to the circle, lay off on it, the arc A B—then the point C is on the involute. By drawing more tangents other points can be found.

Parabola.—Height A B and base C D given. Divide C D into

any number of even parts as 10, and erect perpendiculars. Divide the sides C F and D E into the same number of parts as C B and B D. From the divisions on C F and D E draw lines to the apex A. Where these lines cut the perpendiculars from C D are points in the parabola.

Hyperbola.—Let A B be the distance between the two branches of the hyperbola, and F and F' the foci. Take any distance as F' C and with F' as center describe an arc. Lay off F' D = A B.

With F as center and radius D C describe an arc cutting the previous one at G and G', which are points on the hyperbola. Other points can be found in a similar way.

LAYING OFF ANGLES WITH A TWO-FOOT RULE

To lay off an angle, open the ends of the rule to the distance given in the following table. Thus for a 45 deg. angle open the rule until the ends are 9.20 ins. apart.

Degrees]	Inches	Degrees	Inches	Degrees	Inches
1	.21	15	3.12	55	11.08
2	.422	20	4.17	60	12
3	.633	25	$\begin{array}{c} 5.21 \\ 6.21 \end{array}$	65	12.89 13.76
4	.837 1.04	30 35	7.20	70 75	14.61
7.5	1.57	40	8.21	80	15.43
10	2.09	45	9.20	85	16.21
14.5	3.015	50	10.12	90	16.97

TABLE FOR THE DIVISION OF THE CIRCUMFERENCE OF A CIRCLE

		7			
Number of Divisions in the Circum- ference	Angle of Correspond- ing Division of Circle; Degrees	Length of Chord in Decimal Fraction of Radiùs	Number of Divisions in the Circum- ference	Angle of Correspond- ing Division of Circle; Degrees	Length of Chord in Decimal Fraction of Radius
3 4 4 5 6 6 7 7 8 8 9 10 11 112 113 114 115 116 117 118 119 220 221 223 224 225 226 227 228 229 30 311 322 333 334 335 336 337 338 339 40 411 422 423 424 45 446 477 448 48 49 50 511	120 90 72 60 51.25 45 40 36 32.43 30 27 25 24 22.30 21.10 20 18.56 18 17.08 16.21 15.39 15.39 15.14 13.50 13.20 12.51 12.24 11.36 11.15 10.54 10.35 10.17 10 9.43 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.1	1.73206 1.41422 1.17558 1 0.86732 0.76536 0.68404 0.563 0.51764 0.4782 0.4448 0.41582 0.39018 0.36734 0.32894 0.31286 0.29792 0.2841 0.272 0.26106 0.25066 0.25066 0.24086 0.23218 0.23218 0.23218 0.18416 0.17894 0.17432 0.1691 0.16504 0.17894 0.17438 0.1692 0.15286 0.14938 0.1459 0.14242 0.13952 0.13603 0.133128 0.130806 0.127904 0.125582	52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 89 90 91 92 93 94 95 95 97 98 99 99 99 99 99 99 99 99 99 99 99 99	6.55 6.47 6.40 6.32 6.25 6.12 6.06 5.54 5.42 5.37 5.27 5.17 5.13 5.08 5.42 5.37 5.27 5.17 4.48 4.44 4.36 4.30 4.20 4.21 4.11 4.08 4.02 4.02 4.02 4.03 3.54 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.4	0.120356 0.118032 0.11629 0.113966 0.111644 0.1099 0.108158 0.106414 0.1094 0.102928 0.101186 0.99442 0.9977 0.096538 0.094794 0.093632 0.091888 0.090765 0.088402 0.087238 0.085496 0.084332 0.085388 0.081426 0.080264 0.07356 0.087388 0.073766 0.07356 0.07356 0.07356 0.07356 0.07356 0.07356 0.073868 0.077366 0.073868 0.0772124 0.073868 0.0772124 0.073868 0.072706 0.072124 0.070962 0.07098 0.0686362 0.0680546 0.0674732 0.06863646 0.0639840
William Street		0.122678	100	3.36	0.0628216

SECTION II

FASTENINGS

BOLTS—NUTS—SCREWS—THREADS FOR BOLTS, NUTS, SCREWS AND
PIPE—TAP DRILLS—NAILS—SPIKES—KEYS—GIBS AND
KEYS—T SLOTS—COTTERS

BOLTS

MEASUREMENT OF BOLTS, SCREWS AND RIVETS

The length of flat head screws, stove bolts and countersunk oval head screws includes the head and half the head of round head wood screws—but excludes the head of round and fillister head machine screws and round head stove bolts.

The length of rivets is exclusive of the head except countersunk heads, where the length of the head is included.

The diameter of screws is measured by the Brown and Sharpe gauge, see page 43.

The diameter of structural rivets is given in inches or fractions thereof. See Structural Details, pages 270 and 271.

MATERIALS

The material selected depends on the purpose the bolt is to be used for. The U. S. Navy for class B open hearth carbon steel requires a tensile strength of 58,000 lb. per sq. in., elastic limit 30,000 lb. per sq. in., elongation in 8 ins. of 289 and be bent cold 180 degs. without showing fracture. Special bolts as Society of Automotive Engineers hexagon head cap screws can be obtained with a tensile strength of 100,000 lb. per sq. in. and elastic limit of 60,000. Bolts, screws and nuts are also made of bronze and composition.

UNITED STATES STANDARD BOLT HEADS AND NUTS

Finished	Head .	Finished	Nut
F	Н	F	G
1.5 D + ½"	D — ½6"	1.5 D + 1/16"	.5 F — ½6"

Hexagon heads and nuts.—The distance between opposite corners (the long diameter) = $1.155 \times$ the distance between sides (the short diameter).

Square heads and nuts.—The distance between opposite corners (the long diameter) = $1.414 \times$ the diameter between sides (the short diameter).

FINISHED HEXAGON HEADS AND NUTS

Dia.	Threads	Diar	neter	Hoight	Dia.	Threads	Diar	neter	Height
bolt	per in.	Short	Long	Height	bolt	per in.	Short	Long	Height
1/4 5/16	20 18	7/16 17/32	1/2 39/64	3/16 1/4	$1\frac{1}{2}$ $1\frac{5}{8}$	6 5½	$\frac{25}{16}$ $\frac{21}{2}$	$2^{43}/_{64}$ $2^{57}/_{64}$	17/16 19/16
3/8	16 14	5/8 23/32	53/32	0/0	13/4 17/8	5 5	211/16 27/8	37/64	1 ¹¹ / ₁₆ 1 ¹³ / ₁₆
1/2	13 12	13 ³² 16 29 ³²	15/16	7/16	2 21/4	$\frac{4\frac{1}{2}}{4\frac{1}{2}}$	31/16	$3^{5/16}$ $3^{17/32}$ $3^{31/3}$	$ \begin{array}{c} 1^{15}/_{16} \\ 2^{3}/_{16} \end{array} $
3/8 7/16 1/2 9/16 5/8 3/4 7/8	11 10	1 1 ³ / ₁₆	1^{1}_{64} 1^{5}_{32} 1^{21}_{64}	7/16 1/2 9/16 11/16	2½ 2¾ 2¾	4 4	$ \begin{array}{c} 37/16 \\ 313/16 \\ 43/16 \end{array} $	3^{31}_{32} 4^{13}_{32} 4^{27}_{32}	27/16 211/16
7/8	9	13/8	119/00	16/16	3	31/2	49/16 415/16	53/32 543/64	2 ¹⁵ / ₁₆ 3 ³ / ₁₆
11/8	8 7	19/16 13/4	113/16 21/64	15/16 11/16	3½ 3½	$\frac{3\frac{1}{2}}{3\frac{1}{4}}$	55/16 511/16	67/64 635/64	37/16
$ \begin{array}{c c} 1\frac{1}{4} \\ 1\frac{3}{8} \end{array} $	6 6	$\frac{1^{15}}{21/8}$	$\begin{array}{c} 2^{15} 64 \\ 2^{29} 64 \end{array}$	13/16 15/16	334	31/4 3 3	61/16	631/32	37/16 311/16 315/16

U. S. Standard is the same as the Franklin Institute. For working stress see U. S. Standard threads, page 59.

MANUFACTURERS' SQUARE AND HEXAGON BOLT HEADS

No universal standard has been adopted by all manufacturers. The following table gives dimensions commonly used:

Dia. of bolt	Short dia.	Height	Dia. of bolt	Short dia.	Height
1/4	3/8	3/16	3/4	$\frac{11/8}{15/16}$	9/16
5/16	15/32	15/64	7/8		21/ ₃₂
3/8	9/16	9/32	11/8	1½	3/4
7/16	21/32	21/64		111/16	27/32
1/4	3/	3/6		17/4	15/16
9/16 5/8	27/ ₃₂ 15/ ₁₆	27/64 15/32	13/8 11/2	$ \begin{array}{c c} 21 & 8 \\ 21 & 16 \\ 21 & 4 \end{array} $	$1\frac{1}{32}$ $1\frac{1}{8}$

[Russell, Burdsall & Ward Bolt & Nut Co., Port Chester, N. Y.]
For threads per inch see U. S. Standard Bolt Heads,

SCREW ENDS OF STANDARD HEXAGON-HEADED BOLTS

[Niles-Bement-Pond Co., New York, N. Y.]

A = diameter of bolt $B = 1\frac{1}{2}A$ $C = 1\frac{1}{2}A + \frac{1}{4}$ " $D = \frac{1}{8}$ " for bolts up to and including $\frac{5}{8}$ " diameter and $\frac{1}{4}$ " for those larger.

 $E = \frac{1}{16}$ " for bolts up to and including $\frac{7}{8}$ " diameter and $\frac{1}{8}$ " for

those larger.

Height or thickness of nut is taken as equal to the diameter of the bolt, which is approximately true.

Studs in cast iron—depth of tap should be the same as for tap bolts, viz.: 1½ times the diameter of the stud.

Drilled holes which are to be tapped should not extend into spaces subject to pressure.

SOCIETY OF AUTOMOTIVE ENGINEERS BOLTS AND NUTS

Castle Nut Hexagon Bolt and Nut

S. A. E. Screw Thread

D = Diameter of Screw

P = Pitch of Thread

B = Short dia. of Nuts and Screw Heads

 $\frac{1}{D}$ = Number of threads per in. d = Diameter of Cotter Pin

 $D \times 1.5 + \frac{1}{4}$ in. = Length of

Threaded Portion

 $\frac{P}{Q}$ = Flat Top

	1	1			1	1	1				1
D	1/4	5/16	3/8	7/16	1/2	9/16.	5/8	11/16	3/4	7/8	1
Thds perin.	28	24	24	20	20	18	18	16	16	14	14
A	9/32	21/64	13/32	29/64	9/16	39/64	23/32	49/64	13/16	29/32	1
A-1	7/32	17/64	21/64	3/8	7/16	31/64	35/64	19/32	21/32	49/64	7/8
В	7/16	1/2	9/16	5/8	3/4	7/8	15/16	1	11/16	11/4	17/16
C	3/32	3/32	1/8	1/8	3/16	3/16	1/4	1/4	1/4	1/4	1/4
E	5/64	5/64	1/8	1/8	1/8	5/32	5/32	5/32	5/32	5/32	5/32
H	3/16	15/64	9/32	21/64	3/8	27/64	15/32	33/64	9/16	21/32	3/4
I	3/32	7/64	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8
K	1/16	1/16	3/32	3/32	3/32	3/32	3/32	3/32	3/32	3/32	3/32
d	1/16	1/16	3/32	3/32	3/32	1/8	1/8	1/8	1/8	1/8	1/8
Tap drill	7/32	17/64	21/64	3/8	7/16	. 1/2	9/16	39/64	43/64	25/32	29/32
			100		-				1		

Heads and nuts semi-finished.

DECK BOLTS

Round head, square under.

				Diameter		
		3/8"	7/16"	1/2"	9/16"	5/8"
		lbs.*	lbs.*	lbs.*	lbs.*	lbs.*
SS	13/4	91/2				
Length Over All in Inches	2	101/2	161/2	22		
n I	21/4	111/2	171/2	221/2		
	21/2	121/2	181/2	23	331/2	40
er /	23/4	13½	191/2	241/2	34	42
Ó						
th	3			26	341/2	44
Ceng	31/2			29	37½	48
	4			32	401/2	52
	41/2	Z X		35	44	56
Size	of Head	3/4 x 1/8	7/8 x 3/16	1 x 3/16	1 x ½	1½ x ¼
	of Nut	5/8 x 5/16	23/32 x 3/8	13/16 x 7/16	29/32 x 1/2	1 x 33/64
Thre	ead per In.	16	14	13	12	11

[Hoopes & Townsend, Philadelphia, Pa.]

May be obtained black or galvanized.

^{*}Approximate weight per 100.

TRACK BOLTS

Track bolts are manufactured with U. S. Standard rolled thread, buttress and U. S. Standard cut thread. With rolled and buttress threads the diameter of the threaded portion is about ½6 in. greater than the unthreaded, while with cut threads the diameter of the threaded and unthreaded portion is the same. Bolts may be obtained with either square or hexagon nuts.

U. S. STANDARD ROLLED THREAD TRACK BOLT

		He	ad		Shou	lder		Length of	Dia.	N	ıt
Dia. A	Length B	С	D	E	F	G	Н	thread J	Shank	Height	Width across flats
3/8 1/2 5/8 3/4 25/3/2 13/16 15/16 1	Per order	$\begin{array}{c} 11_{16} \\ 13_{16} \\ 1^{1}_{32} \\ 1^{1}_{4} \\ 1^{9}_{32} \\ 1^{5}_{16} \\ 1^{7}_{16} \\ 1^{1}_{2} \\ 1^{5}_{8} \\ 1^{11}_{16} \end{array}$	15/32 15/32 1/2 17/32 9/16 5/8 21/32	17,32 11,16 29,32 11,16 11,16 11,16 17,32 17,32 13,8 13,8	1/2 $21/32$ $7/8$ $11/32$ $11/32$ $13/16$ $13/16$ $111/32$ $111/32$	1/2	11/32 29/64 37/64 11/16 23/32 3/4 13/16 7/8 15/16	rder	11/ ₃₂ 29/ ₃₂ 37/ ₆₄ 11/ ₁₆ 23/ ₃₂ 3/ ₄ 13/ ₁₆ 7/ ₈ 15/ ₁₆	3/8 1/2/8 1/5/8 3/4/8 3/4/8 1 1	11/16 7/8 11/16 11/4 11/4 13/8 17/16 15/8 15/8

[Illinois Steel Co., Chicago, Ill.]

Bolts can be obtained with cut, rolled and rolled buttress threads.

STUD BOLTS

LENGTHS OF THREADS ON STANDARD STUDS

N = Nut End T = Tap End

=	N. W.							Dia	met	er		a l			
	Length	3/	8	3/	6	1/2		5/	Ŕ	3	4	3	8	1	ile
Ţ.		N	Т	N	Т	N	Т	N	Т	N	Т	N	Т	N	Т
Oval of point is in addition to listed length	1 114 114 1134 2 214 214 234 3 3 314 314 34 4 44 44 44 434	1/2 5/8 5/8 5/8 3/4 3/4 3/4 3/4 3/4	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	1/2 5/8 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/8 7/8 1 1 1	1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/1 1/6	34 34 38 78 1 1 1 114 114 114 114	1/2 1/2 5/8 5/8 5/8 5/8 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	1¼ 1¼ 1¼ 1¼ 1¼	5/8 5/8 3/4 3/4 3/4 3/4 3/4 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8	7/8 7/8 7/8 7/8 1 1 1 11/4 11/4 11/4 11/4 11/4 11/4 1	34 78 78 78 78 78 78 78 78 78 11 1	1 11/8 11/8 11/8 11/8 11/4 11/4 11/4 11/	1 1 1 1 1 1 1 1,1 1,1 1,1,6 1,1,6 1,1,6	11/4 11/4 11/4 11/4 11/2 11/2 13/4 13/4	11/8 11/8 11/8 11/8 11/8 11/4 11/4 11/4
Ova	5 5½ 5½ 5¾ 6					11/4	7/8	1½ 1½ 1½ 1½ 1½ 1½	7/8 7/8 7/8 7/8 7/8	1½ 1½ 1¾ 1¾ 1¾ 1¾	1 1 1 1	134 134 134 134 134	11/8 11/8 11/8 11/4 11/4	2 2 2 2	1½ 1½ 1½ 1½ 1½ 1½
	Number of reads to inch	1	6	1	4	13	2	1	1	P-	10	()	8	3

[Hartford Machine Screw Co., Hartford, Conn.]

Studs may be of steel or bronze, the latter material is used where exposed to excessive moisture.

CARRIAGE BOLTS

Dia. of bolt	Dia. of head	Thickness of head	Length
14 516 38 716 12 916 58 34 778	1/2 5/8 3/4 7/8 1 11/8 11/4 11/2 13/4 2	1/8	14, 5/6, 3/8 & 1/6" dia. bolts 11/2 to 10" advancing by 1/2", 1/2, 9/6, 5/8, 3/4, 7/8 & 1" dia. bolts 2/2 to 10" advancing by 1/2"

[National Serew and Tack Co., Cleveland, O.] Length of thread 2 to 4 times diameter of bolt.

STOVE BOLTS
Flat, Round and Oval Heads

Dia. of bolt									
Threads per in	32	28	24	22	18	18	16	14	13

BOILER PATCH BOLTS OR TAP RIVETS

Diameter	1/2"	5/8"	3/4"	7/8"	1"
Threads per inch	14	12	12	12	12
Length from largest dismeter of bevel to point.	3/4 7/8 1 11/8 11/4 11/2	3/4 7/8 1 11/8 11/4 11/2	7/8 1 11/8 11/4 11/2	1 1 ¹ / ₈ 1 ¹ / ₄ 1 ¹ / ₂	$ \begin{array}{c} \vdots \\ 1 \\ 1 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 2 \end{array} $

[Hoopes & Townsend, Philadelphia, Pa.]

BOILER STAY BOLTS

34", 13%6", 78", 15%6", 1", 11%6", 11%8", 13%6" and 114" dia. All diameters have 12 threads per inch. Length of threaded part from 2½" up,—cut to order. Stay bolts after being screwed into place may have nuts on the ends, instead of being riveted over.

[Hoopes & Townsend, Philadelphia, Pa.]

TAP BOLTS
Square and Hexagon Heads

Diameter	1/4"	. 5/16"	3/8"	7/16"	1/2"	5/8"	8/4"	7/8"	1"	11/8"	11/4"
Threads per inch	20	18	16	14	13	11	10	9	8	7	7
Sizes of square and hexagon heads	3/8 X 3/16	15/32 X 15/64	9/16 X 9/32	21/82 X 21/64	3/4 X 3/8	15/16 X 15/32	1½8 X %6	15/16 X 21/32	1½ x ¾	111/16 X 27/32	17/8 X 15/16

[Hoopes & Townsend, Phila., Pa.]

PLANER HEAD BOLTS

Dia. of screw Short dia. of head Thickness of head	1½" 1½" 38"	9/16 " 1 1/8 " 3/8 "	5/8" 1 ¹ / ₄ " 3/8"	11/16" 11/4 3/8"	17/16" 1/2"
--	-------------------	----------------------------	---	------------------------	----------------

Length under head to extreme point all sizes 1'', $1\frac{1}{4}''$, $1\frac{1}{2}''$, $1\frac{3}{4}''$, 2''.

All sizes have 12 threads per inch.

Bolts have either square or hexagon heads.

Nuts same size as heads.

[Hartford Machine Screw Co., Hartford, Conn.]

NUTS

For U. S. and Franklin Institute standard hexagon and square nuts see page 26. For S. A. E. (Society Automotive Engineers) hexagon nuts see page 29. Nuts can be obtained hot pressed, cold punched or milled from bars.

DEVICES TO PREVENT NUTS FROM COMING LOOSE

Nuts can be prevented from coming loose by lock or check nuts, set screws or split pins. In the latter case castellated nuts are often used. See pages 29 and 38.

LOCK OR CHECK NUTS

As the greatest load is on the top nut this should be the largest as shown in A. Spanners are seldom thin enough to take a thin bottom nut, and the nuts are sometimes arranged as in B which is convenient but faulty theoretically. C is a compromise of A and B, both nuts being the same size. Short diameter of nuts same as U. S. Standard—which see.

NUTS WITH SET SCREWS

Hexagon Head:

Head-Standard U.S. Nut.

A = dia. of bolt or stud

 $B = 1\frac{1}{2}A + \frac{1}{8}$ "

 $C = \frac{A}{8} + \frac{1}{4}".$

 $D = 1\frac{3}{4}C$

 $E = H - \frac{C}{2}$

 $F = 1\frac{1}{2}A + \frac{1}{16}$ "

 $G = F - \frac{1}{22}$ "; depth of G = C

 $H = 1\frac{1}{8}C$

K for wrot iron and brass = $C + \frac{1}{6}$ "

" cast iron = $\frac{13}{6}C + \frac{1}{16}$ "

Slotted Head:

Head—see Slotted Nuts.

B' = A + D, other dimensions same as for hexagon head.

There is another type having a collar with the depth E and diameter F, below the ring with a diameter G. With this design the nut cannot slip by the set screw.

CASTELLATED HEXAGON NUTS

Screw Diameter	Total Thickness of Nut	Height of Castle	Diameter of Nut Across Flats of Hex.	Diameter of Castle	Diameter of Facing	Depth of Facing	Number of Slots in Castle	Depth of Slots in Castle (to round bottom)	Width of Slot in Castle	Diameter of Cotter Pin Used	Threads per inch
1/4	9/32	3/32	7/16	7/16	7/16	1/64	6	3/32	5/64	1/16	28
5/16	21/64	3/32	1/2	1/2	1/2	1/64	6	3/32	5/64	1/16	24
3/8	13/32	1/8	9/16	9/16	9/16	1/64	6	1/8	1/8	3/32	24
7/16	29/64	1/8	5/8	5/8	5/8	1/64	6	1/8	1/8	3/32	20
1/2	9/16	3/16	3/4	3/4	3/4	1/64	6	3/16	1/8	3/32	20
9/16	39/64	3/16	7/8	7/8	7/8	1/64	6	3/16	5/32	1/8	18
5/8	23/32	1/4	15/16	15/16	15/16	1/64	6	1/4	5/32	1/8	18
11/16	49/64	1/4	1	1	1	1/64	6	1/4	5/32	1/8	16
3/4	13/16	1/4	11/16	11/16	11/16	1/64	6	1/4	5/32	1/8	14
7/8	29/32	1/4	11/4	11/4	11/4	1/64	6	1/4	5/32	1/8	14

[Hartford Machine Screw Co., Hartford, Conn.]

This nut can be kept from coming loose by cotter pin through the slots. For Society Automotive Engineers castellated nut see page 29.

PLANER HEAD NUTS (See Planer Head Bolts)

THUMB OR WING NUTS

A	В	C	D	E	F	T
5/8 23/32 13/4	1/4 9/32 5/4	7/32 1/4	3/16 7/32	13/32 7/16 17/32 5/8	3/32 3/32	3/32*-56† 1/8 -40
5/8 23/32 13/16 17/32 15/6 11/5/32 21/8 21/8 21/9/32 231/32 37/32	1/4 9/32 5/16 7/16 1/2 9/16 5/8	7.22.44 9.52.45 15.52.25 16.46 1.56.66 1.14.86 1.14.86 1.14.86	3/6/22/4/22/4/23/8/6/6/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/6/8/8/23/8/8/8/23/6/8/8/23/8/8/8/23/8/8/8/23/8/8/8/23/8/8/8/23/8/8/8/8	5/8 11/16	3,52 3,52 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} 1^{10}_{32} \\ 1^{21}_{32} \\ 2^{1}_{8} \end{array}$	16 5/8 3/4	9 16 3 4	16 1/2 9/16	11 16 3 4 13 16 9 16 5 8 23 32 13 16 15 16	532 532 316	3/8 —18 3/8 —16 7/16 —14
$\begin{array}{c} 2^{3}/16 \\ 2^{19}/32 \\ 2^{31}/32 \end{array}$	13/4 13/16 7/8 1	13/16 15/16 11/16	5/8 23/32 13/16	5/8 23/32 13/16	3/16 7/32 1/4	$\frac{1}{2}$ -13 $\frac{9}{16}$ -12 $\frac{5}{8}$ -11
37/32	15/32	11/8	15/16	15/16	1/4	34 —10

[Billings & Spencer, Hartford, Conn.]

^{*} Diameter.

[†] Threads per inch.

THUMB OR WING NUTS-Continued

A *	Threads per inch	В	C	D	Е	F	G
3/16	24	11/8	3/16	3/16	11/8	3/16	3/8
1/4	20	11/4	3/16	3/16	11/4	3/16	1/2
5/16	18	15/8	3/16	1/4	13/8	1/4	5/8
3/8	16	111/16	1/4	5/16	19/16	1/4	11/16
7/16	14	2	1/4	3/8	.15/8	5/16	3/4,
1/2	13	21/8	5/16	7/16	13/4	5/16	7/8
5/8	11	25/8	5/16	9/16	17/8	3/8	11/8
3/4	10	211/16	5/16	5/8	2	3/8	13/16

^{*} A can be tapped and threaded as thumb nuts on page 39. Wing nuts may be made of cast iron, composition or of drop forged steel.

EYE NUTS

Size	A Inches	B Inches	C Inches	In. U. S. S.	E Inches	F Inches	G Inches	H	I Inches
3/8 1/2 5/8 3/4	7/8 11/8 13/8 11/2	5/16 7/16 9/16 3/4	1/4 3/8 1/2 3/4	3/8*-16† 1/2 -13 5/8 -11 3/4 -10	3/4 1 11/4 13/4	3/4 1 11/4 11/4	3/4 1 11/4 11/8	3/4 1 11/4 11/2	2½ 3 3¾ 3½ 3½
$\frac{7}{8}$ $\frac{1}{11/4}$ $\frac{11/4}{11/2}$	$1\frac{5}{8}$ $1\frac{3}{4}$ 2 $2\frac{1}{2}$	$\frac{7}{8}$ $\frac{1}{11/4}$ $\frac{13}{8}$	3/4 7/8 1 ¹ /8 1 ¹ /4	$ \begin{array}{r} 7/8 - 9 \\ 1 - 8 \\ 11/4 - 7 \\ 11/2 - 6 \end{array} $	2 2½ 2½ 3½ 3½	$1\frac{1}{4}$ $1\frac{5}{8}$ $1\frac{7}{8}$ $2\frac{1}{8}$	$ \begin{array}{c} 1 \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{3}{4} \end{array} $	$\begin{array}{c} 1 {}^{11}{}_{16} \\ 1 {}^{7}{}_{8} \\ 2 {}^{1}{}_{4} \\ 2 {}^{5}{}_{8} \end{array}$	$ \begin{array}{r} 3 ^{15} 16 \\ 4 ^{3} 4 \\ 5 ^{1} 2 \\ 6 ^{1} 2 \end{array} $
$\frac{13}{4}$	3 31/2	$\frac{1\frac{1}{2}}{1\frac{5}{8}}$	13/8 11/2	$1\frac{3}{4} - 5$ $2 - 4\frac{1}{2}$	3½ 4	23/8	2 2½	3 33/8	73/8 87/8

^{*} Diameter.

[†] Threads per inch.

SLOTTED ROUND NUTS

d = diameter of bolt.

A = .2d C = .13d

B = .3d

D = .75d

SCREWS

STYLES OF HEADS AND SCREW POINTS

Note.—Rd. Fill. = Round Fillister. Flat Fill. = Flat Fillister.

TABLE OF DECIMAL EQUIVALENTS OF SCREW GAUGE

For Machine and Wood Screws, Brown & Sharpe Standard The difference between consecutive sizes is .01316 inch

No. of Screw Gauge	Size in Decimals of in.	No. of Screw Gauge	Size in Decimals of in.	No. of Screw Gauge	Size in Decimals of in.
000	.03152	9	.17628	20	.32104
00	.04468	. 10	.18944	21	.33420
0	.05784	11	.20260	22	.34736
1	.07100	12	.21576	23	.36052
2	.08416	13	.22892	24	.37368
3	.09732	14	.24208	25	.38684
4	.11048	15	.25524	26	.40000
5	1.12364	16	.26840	27	.41316
6	.13680	17	.28156	28	.42632
7	.14996	18	.29472	29	.43948
8	.16312	19	.30788	30	.45264

WOOD SCREWS (Standard and Drive)

Standard Wood Screws (Iron and Brass)

Flat Head

Round Head

Standard wood screws, if driven with a hammer, loose their holding power. Screws perpendicular to the grain have about 25% more holding power than those parallel to the grain.

Dimensions of Heads (Standard Wood Screws)

Num- ber of	A Dia.		Flat	Head			Round	Head	
Screw Gauge	in ins.	В	C	Е	F	В	С	E	F
0	.0578	.1105	.0303	.025	.0101	.1060	.0524	.025	.0314
1	.0710	.1368	.0378	.027	.0126	.1302	.0598	.027	.0359
2	.0842	.1631	.0454	.030	.0151	.1544	.0672	.030	.0403
3	.0973	.1894	.0530	.032	.0177	.1786	.0746	.032	.0448
4	.1105	.2158	.0605	.034	.0202	.2028	.0820	.034	.0492
5	.1236	.2421	.0681	.036	.0227	.2270	.0894.	.036	.0536
6	.1368	.2684	.0757	.039	.0252	.2512	.0968	.039	.0580
7	.1500	.2947	.0832	.041	.0277	.2754	.1042	.041	.0625
8	.1631	.3210	.0908	.043	.0303	.2996	.1116	.043	.0670
9	.1763	.3474	.0984	.045	.0328	.3238	.1190	.045	.0714
10	.1894	.3737	.1059	.048	.0353	.3480	.1264	.048	.0758
11	.2020	.4000	.1135	.050	.0378	.3701	.1338	.050	.0803
12	.2158	.4263	.1210	.052	.0403	.3922	.1412	.052	.0847
13	.2289	.4526	.1286	.054	.0429	.4143	.1486	.054	.0891
14	.2421	.4790	.1362	.057	.0454	.4364	.1560	.057	.0936
15	.2552	.5053	.1438	.059	.0479	.4585	.1634	.059	.0980
. 16	.2684	.5316	.1513	.061	.0504	.4806	.1708	.061	.1024
17	.2816	.5579	.1589	.063	.0530	.5027	.1782	.063	.1069
18	.2947	.5842	.1665	.066	.0555	.5248	.1856	.066	.1114
20	.3210	.6368	.1816	.070	.0605	.5690	.2004	.070	.1202
22	.3474	.6865	.1967	.075	.0656	.6106	.2152	.075	.1291
24	.3737	.7421	.2118	.079	.0706	.6522	.2300	.079	.1380
26	.4000	.7948	.2270	.084	.0757	.6938	.2448	.084	.1469
28	.4263	.8474	.2421	.088	.0807	.7354	.2596	.088	.1558
30	.4526	.9000	.2573	.093	.0858	.7770	.2744	.093	.1646
		H							

[Am. Screw Co., Prov., R. I.]

DIAMETER AND LENGTH (Standard Wood Screws)

30	.452	88.44.00 12.44.00
28	.426	8844400 12 12 12 12 12 12 12 12 12 12 12 12 12 1
26	.400	8844400 % % %
24	.374	2290004400 7754 72 72
22	.347	11444444 14 74
20	.321	11110000000000000000000000000000000000
18	294	1111100000004400 747% 747% 70 70
17	.281	
16	.268	2000 12 12 12 12 12 12 12 12 12 12 12 12 12
15	.255	2000 1000000000000000000000000000000000
14	.242	" " " " " " " " " " " " " " " " " " "
15	.228	2004 14 14 14 14 14 14 14 14 14 14 14 14 14
12	.215	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=	.203	200 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10	.189	11-11-0000000 14/2/4 14/2/4 74
6	.176	1200000 121-00000
∞	.163	" " " " " " " " " " " " " " " " " " "
1	.150	%/2/%/%/4/2 14/2%4
9	.136	%_1470,0041,00 1414,004
5	.123	74/2/4/2/2/4/2
4	.110	14%/14%/8/A/% 14/4
60	760.	14%/2/%/2/% 14
64	.084	14/2/4/2/2/2/2
-	.071	14/0/1/10/
0	.057	74%
Vumber of Screw Gauge.	Diameter, ins	ength, ins

For dimensions of heads, see page 44. Wood screws are sold by the gross.

CAP SCREWS

FLAT FILLISTER OR ROUND HEAD

OVAL FILLISTER HEAD

D and C	A	Threads per in.	E	F	G	Н	R
1/8	3/16	40	.032	1/16	5/64	9/64	1/4
3/16	1/4	24	.040	1/16	3/32	7/32	5/16
1/4	3/8	20	.064	1/16	3/32	9/32	1/2
5/16	7/16	18	.072	5/64	1/8	23/64	5/8
3/8	9/16	16	.091	3/32	9/64	15/32	3/4
7/16	5/8	14	.102	7/64	11/64	1/2	7/8
1/2	3/4	13	.114	1/8	3/16	9/16	11/16
9/16	13/16	12	.114	9/64	7/32	41/64	11/8
5/8	7/8	11	.128	5/32	15/64	45/64	11/4
3/4	1	10	.133	3/16	9/32	27/32	11/2
7/8	11/8	9	. 133	7/32	21/64	63/64	15/8
1	11/4	8	.165	1/4	3/8	11/8	13/4

SQUARE AND HEXAGON HEADS

		_										
Dia. of screw	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1	11/8	11/4
Dia. of sq. head	3/8	7/16	1/2	9/16	5/8	11/16	3/4	7/8	11/8	11/4	13/8	11/2
Dia. of hex. head	7/16	1/2	9/16	5/8	3/4	13/16	7/8	1	11/8	11/4	13/8	11/2
Height of sq. and hex. heads	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1	11/8	11/4

CAP SCREWS-Continued

BUTTON HEAD

FLAT OR COUNTERSUNK HEAD

D	A	C	E	F	R	н	K
1/8 3/16 1/4	7/32 5/16 7/16	7,64 5,32 7,32	.035 .051 .072	3/64 1/16 3/64 3/32 7/64	7,64 5,32 7,32	1/4 3/8 15/32	3/32 9/64 5/32
5/16 3/8 7/16	5/8	9/32 5/16 3/8	.091 .102 .114	3/32 7/64 1/8	9/32 5/16 3/8	5/8 3/4 13/16	7/32 17/64 17/64
16 1/2 9/16 5/8 3/4	13/16 15/16 1 11/4	764 5/32 7/32 9/32 5/16 3/8 13/32 15/32 1/2	.035 .051 .072 .091 .102 .114 .114 .113 .133	1/8 5/32 11/64 3/16 7/32	7.64 5.732 7.322 9.732 5.766 3.8 18.732 15.732 17.22 5.8	1 1 ¹ / ₈ 1 ³ / ₈	3/32 9/64 5/82 7/82 17/64 17/64 17/64 5/16

On all screws of 1 inch and less in diameter, and 4 inches long and under, threads are cut three quarters of the length. Longer than 4 inches, threads are cut one-half of length. Cap screws are also made with hexagon heads. For number of threads per inch, see table, page 46.

[Atlas Bolt & Screw Co., Cleveland, Ohio.]

HANGER SCREWS

Dias. $\frac{3}{8}$ ", $\frac{7}{16}$ ", $\frac{1}{2}$ ", $\frac{5}{8}$ ", $\frac{3}{4}$ ", $\frac{7}{8}$," 1". Overall lengths from $\frac{21}{2}$ " up, advancing by $\frac{1}{2}$ ".

DRIVE SCREWS

DIMENSIONS OF FLAT, ROUND AND OVAL HEADS

U.	r 91	ANI	DARD DETAILS
	20	.321	11111000000004 14184 14184 12
	18	.294	111110101000004 1416/4 1416/4 12
	16	.268	2/2 14/2 14/2 12
	15	.255	24 444 444 4
	14	.242	2004/20 14/24 14/24 12 10/4/20 14/24 14/24 12
	13	.228	%%4% 4%4 14%4 12
	12	.215	12/2/4/2 14/2/4 14/2/4 12
	11	.203	10000000000000000000000000000000000000
	10	.189	12/2/4/2 14/2/4 14/2/4 14
	6	.176	1/2/2/2/2 14/2/4 14/2/4 14
	∞	.163	75%4% 747% 7478 74
	2	.150	12/8/4/8 14/2/4 14/2/4
	9	.136	75/8/4/8 74/8/4 74/8/4
	5	.123	75%4% 74%4 74%
	4	.110	75/8/4/6 74/4
	Number of screw gauge	Diameter, ins	Length, ins

SET SCREWS

SQUARE HEADLESS

 $\dot{D} = dia.$ of screw.

Dia. of screw	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1	11/8	11/4
Threads per inch	20	18	16	14	12 or 13	12	11	10	9	8	7	7

May be obtained with conical, dog, oval, cup or flat points. See page 42.

SAFETY OR SOCKET SET SCREWS

Dias in ins.	Length ins.	U. S. Standard Threads per in
1/4	5/16	20
5/16	5/6 or 3/8	18
3/8	3/8 " 1/2	16
7/16	7/16 " 1/2	14
1/2	1/2 " 5/8	13
9/16	9/16	12
5/8	5/8 " 3/4	11
3/1	3/4 " 1	10
7/8	7/8 " 11/8	9
1	1 " 11/	8

[Hartford Mach. Screw Co., Hartford, Conn.]

THUMB SCREWS

Dia.	Threads per inch	A	В	С	D	E*	G*
3/16 1/4 5/16 3/8 7/16 1/2	24 20 18 16 14	$ \begin{array}{c} 3/4 \\ 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \end{array} $	1/2 5/8 3/4 7/8 1 11/8	3/16 1/4 5/16 3/8 7/16	1/8 1/8 3/16 3/16 1/4	3/8 7/16 9/16 5/8 3/4 7/8	3/32 3/32 3/32 1/8 1/8

^{*} E and G apply only to shoulder thumb screws.

LENGTH OF SCREWS

Dia.		Length									
3/16 1/4 5/16 3/8 7/16 1/2	1/2 1/2 1/2 1/2 1/2 1/2	3/4 3/4 3/4 3/4 	1 1 1 1 1 1	1½ 1¼ 1¼ 1¼ 1¼ 1¼ 1¼	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array} $	2 2 2 2 2 2 2	$\begin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	3 3 3 3 3			

COACH OR LAG SCREWS

Cone or gimlet points. Screws with gimlet points can be obtained from $\frac{5}{6}$ " to $\frac{3}{4}$ " dia. Square or hexagon heads.

Approximate				ches)	erew (Ir	ter of Sc	Diame			
length of threa for all	11/4	11/8	1	7/8	3/4	9/16 & 5/8	1/2	7/16	3/8	1/4 & 5/16
diam- eters			s)	(inche	to point	er head	th unde	Leng		
To hea 1/2 2 2 1/4 2 1/2 3 3 3/2 4 4 4 1/2 5 5 6 6 6 7 7 7 7	6 6 ¹ / ₂ 7 7 ¹ / ₂ 8 9 10 11 12	5 5½ 6 6½ 7 7½ 8 9 10 11	3½ 4 4½ 5 5½ 6½ 7 7½ 8 9 10 11	3 3 ¹ / ₂ 4 4 ¹ / ₂ 5 5 ¹ / ₂ 6 ¹ / ₂ 7 ¹ / ₂ 8 9 10 11 12	2½ 3 3½ 4 4½ 5 5½ 6½ 7 7½ 8 9 10 11 12	2 2 3 3 4 4 4 5 5 6 6 1 2 7 7 7 2 8 9 10 11 12	1½ 2 2½ 3 3½ 4 4½ 5 5½ 6 6½ 7 7½ 8 9 10 11	1½ 2 2½ 3 3½ 4 4½ 5 5½ 6 6½ 7 7 8 9	1½ 2 2½ 3 3½ 4½ 5 5½ 6	1½ 21½ 33½ 4½ 55½ 6
		Mangl			er inch	hreads p	Т			
	3	3	3	41/2	41/2	5	6	7	7	10
			n)	hexago	are and	ads (squ	e of hea	Siz		
Width across flats	17/8	111/16	11/2	15/16	11/8	27/32 15/16	3/4	21/32	%6	3/8 15/32
Thick- ness	15/16	27/32	3/4	21/32	9/16	27/64 15/32	3/8	21/64	9/52	3/16 15/64

STATE																B.
1	¥.4	.0338	.0443	0549	.0602	.0654	0760	9980	.0971	.1077	1182	1384	1499	1605	1710	.1816
PA	田	.030	.034	030	.041	.043	048	.052	.057	.061	920	075	020	084	.088	.093
Fillister Head	*0	.0126	.0166	.0205	.0225	. 0245	0285	.0324	.0364	.0403	.0443	0520	.0562	1090	.0641	1890.
Fill	O	.0549	.0720	.0892	8260.	1140	1235	.1407	.1578	1750	1261	2267	.2436	.2608	.2779	.2951
	В	.1350	1772	.2195	.2406	2617	.3040	.3462	.3884	.4307	5159	. 5574	.5996	.6419	.6841	.7264
,	F	.0403	.0492	.0580	.0625	0790	.0758	.0847	.0936	1024	19061	1291	.1380	.1469	.1558	.1646
Head	田	.030	.034	030	.041	243	.048	.052	.057	190.	020	.075	620.	.084	880.	.093
Round Head	O	.0672	0820	8960	.1042	1100	1264	.1412	.1560	1056	2004	.2152	.2300	.2448	. 2596	.2744
	В	.1544	2028	2512	.2754	3538	.3480	.3922	4364	5946	5690	9019	.6522	. 6938	.7354	0222
	দ	.0151	.0202	.0252	.0277	0303	.0353	.0403	.0454	.0504 0555	0605	.0656	9020	.0656	9020.	.0757
Head	E	.030	.034	.039	041	540	.048	.052	.057	100.	020	.075	620.	.084	.088	.093
Flat Head	O	.0454	.0605	.0757	.0832	0908	1059	.1210	1362	1665	1816	1961	.2118	. 1967.	.2118	.2270
	B	.1631	.2158	2684	.2947	.3474	.3737	.4263	.4790	5849	6368	6895	.7421	.7421	.7948	.8474
Diameter	Inches	.0842	1105	.1368	.1500	1763	1894	.2158	2421	2004	3210	.3474	.3737	.4000	.4263	.4526
Number	Gauge	61 61	4 v	9	1-0	× o	10	12	47	180	20	22	24	26	28	. 30

D* = round of head. F* = depth of slot. For threads per inch and size of drill see page 53.

STANDARD MACHINE SCREW—THREADS PER INCH AND SIZE OF DRILL

Screw	Dia. of body ins.	Threads per in.	No. of drill	Size of drill ins.	Screw Gauge	Dia. of body ins.	Threads per in.	No. of drill	Size of drill ins.
2 3 4 5 6 7 8 9 10 12	.1236	48, 56, 64 48, 56, 32, 36, 40 32, 36, 40 30, 32, 36 30, 32, 36 24, 30, 32 24, 30, 32 20, 24	42 38 35 30 29 27	.0730 .0820 .0935 .1015 .1100 .1285 .1360 .1440 .1495 .1730	14 16 18 20 22 24 26 28 30	.2421 .2684 .2947 .3210 .3474 .3737 .4000 .4263 .4526	18, 20, 24 16, 18, 20 16, 18, 20 16, 18 16, 18 14, 16, 18 14, 16 14, 16	13 6 1 D J N P R U	. 1850 . 2040 . 2280 . 246 . 277 . 302 . 323 . 339 . 368

COLLAR SCREWS

A	Threads per in.	В	C	D	E	F
5/16 3/8 7/16 1/2/5/8 3/4 7/8 1 1/8 1/4	18 16 14 13 11 10 9 8 7	964 554 1164 3/16 7/32 1/4 9/32 5/16 11/32 3/8	7/16 1/2 9/16 5/8 3/4 7/8 1 1/8 11/4 13/8	27/64 $33/64$ $19/32$ $11/16$ $55/64$ $31/32$ $1/32$ $1/32$ $1/32$ $1/32$ $1/32$ $1/32$ $1/32$ $1/32$	17,32 5,8 23,32 13,16 1 13,16 13,16 13,16 13,16 13,16 13,16 13,16 13,16 13,16	5/16 3/8 7/16 1/2 5/8 3/4 7/8 1 11/8 11/4

[Cincinnati Bickford Tool Co., Cincinnati, Ohio]

Lengths from 34" to 61/2" advancing by 1/4".

UPSET SCREW ENDS FOR ROUND BARS

:									
	Diam- eter of Bar	Area of Body of	Diam- eter of Screw	Length of Upset	at Root of	Number of Threads per	per Foot of Steel	Add for Upset	Excess of Area at Root of Thread over that of
	A	Bar	В	C	Thread	Inch	Bar		Body of Bar
	Inches	Sq. Ins.	Inches	Inches	Sq. Ins.		Pounds	Inches	Per Cent
	1/2 9/16 5/8 11/16	.196 .249 .307 .371	· 3/4 3/4 7/8	$\begin{array}{c} 4\frac{1}{4} \\ 4\frac{1}{4} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	302 .302 .420 .550	10 10 9 8	.668 .845 1.043 1.262	$\frac{4\frac{1}{4}}{5\frac{1}{2}}$	54 21 37 48
	3/4 13/16 7/8 15/16	.442 .519 .601 .690	$ \begin{array}{c} 1 \\ 1 \frac{1}{8} \\ 1 \frac{1}{4} \\ 1 \frac{1}{4} \end{array} $	4½ 4¾ 4¾ 4¾ 4¾	.550 .694 .893 .893	8 7 7	1.502 1,763 2.044 2.347	51/2	25 34 49 29
	$1 \\ 1^{1}_{16} \\ 1^{1}_{8} \\ 1^{3}_{16}$.785 .887 .994 1.108	$1\frac{3}{8}$ $1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{1}{2}$	5 5 5 5	1.057 1.057 1.295 1.295	6 6 6	2.670 3.014 3.379 3.766	41/4 43/4	35 19 30 17
	$1\frac{1}{4}$ $1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$	1.227 1.353 1.485 1.623	$1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{3}{4}$ $1\frac{7}{8}$	5½ 5¼ 5¼ 5½ 5½	1.515 1.744 1.744 2.048		4.173 4.600 5.049 5.518	5 4	23 29 18 26
	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \end{array}$	1.767 1.918 2.074 2.237	2 2 2½ 2½ 2½ 2½	5½ 5½ 5½ 5¾ 5¾	2.302 2.302 2.650 2.650	4½ 4½ 4½ 4½ 4½	6.008 6.520 7.051 7.604	5½ 4½ 5 4¼	30 20 28 18

UPSET SCREW ENDS FOR ROUND BARS-Continued

Diameter of Bar	Area of Body of Bar	Diameter of Screw	Length of Upset	Area at Root of Thread	Number of Threads per Inch	per	Add for Upset	Excess of Area at Root of Thread over that of Body of Bar
Inches	Sq. Ins.	Inches	Inches	Sq. Ins.		Pounds	Inches	Per Cent
$\begin{array}{c} 1\frac{3}{4} \\ 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \end{array}$	2.405 2.580 2.761 2.948	$2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$	5 ³ / ₄ 5 ³ / ₄ 6 6	3.023 3.023 3.419 3.715	4½ 4½ 4½ 4½ 4½	8.178 8.773 9.388 10.020	4 ³ / ₄ 4 4 ¹ / ₂ 5	26 17 24 26
$\begin{array}{c} 2 \\ 2^{1}/_{16} \\ 2^{1}/_{8} \\ 2^{3}/_{16} \end{array}$	3.142 3.341 3.547 3.758	$2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{5}{8}$ $2\frac{3}{4}$	$\begin{bmatrix} 6 \\ 6\frac{1}{4} \\ 6\frac{1}{4} \\ 6\frac{1}{4} \end{bmatrix}$	3.715 4.155 4.155 4.619	4	10.68 11.36 12.06 12.78	4½ 4¾ 4¾ 4 4½	18 24 17 23
$2\frac{1}{4}$ $2\frac{5}{16}$ $2\frac{3}{8}$ $2\frac{7}{16}$	3.976 4.200 4.430 4.666	27/8 27/8 3 31/8	$\begin{array}{c} 6\frac{1}{2} \\ 6\frac{1}{2} \\ 6\frac{1}{2} \\ 6\frac{3}{4} \end{array}$	5.108 5.108 5.428 5.957	4	13.52 14.28 15.07 15.86	5½ 4½ 4¾ 5½	28 22 23 28
$2\frac{1}{2}$ $2\frac{9}{16}$ $2\frac{5}{8}$ $2\frac{11}{16}$	4.909 5.157 5.412 5.673	3½ 3¼ 3¼ 3¼ 3¾ 3¾	$\begin{bmatrix} 6\frac{3}{4} \\ 6\frac{3}{4} \\ 6\frac{3}{4} \\ 7 \end{bmatrix}$	5.957 6.510 6.510 7.087	$\frac{31/2}{31/2}$	16.69 17.53 18.40 19.29	4 ³ / ₄ 5 ¹ / ₄ 4 ¹ / ₂ 5	21 26 20 25
$2\frac{3}{4}$ $2^{13}/_{16}$ $2\frac{7}{8}$ $2^{15}/_{16}$	5.940 6.213 6.492 6.777	3 ³ / ₈ 3 ¹ / ₂ 3 ⁵ / ₈ 3 ⁵ / ₈	7 7 7¼ 7¼ 7¼	7.087 7.548 8.171 8.171	31/4	20.20 21.12 22.07 23.04	4½ 4¾ 5¼ 4¾ 4¾	19 22 26 21
3 3½ 3½ 3¼ 3¾ 33/8	7.069 7.670 8.296 8.946	$3\frac{3}{4}$ $3\frac{7}{8}$ 4 $4\frac{1}{8}$	$7\frac{1}{4}$ $7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{3}{4}$	8.641 9.305 9.993 10.706	3	24.03 26.08 28.20 30.42	5 5 ¹ / ₄ 4 ³ / ₄ 4 ³ / ₄	22 21 20 20
$\frac{3\frac{1}{2}}{3\frac{5}{8}}$ $\frac{3^{3}}{4}$ $\frac{3^{7}}{8}$	9.621 10.321 11.045 11.793	$4\frac{1}{4}$ $4\frac{1}{2}$ $4\frac{5}{8}$ $4\frac{3}{4}$	81/4	11.329 12.743 13.544 14.220	$ \begin{array}{c c} 2\frac{3}{4} \\ 2\frac{3}{4} \end{array} $	32.71 35.09 37.56 40.10	4½ 5¼ 5¼ 5¼ 5	18 23 23 21
4	12.566	5	81/2	15.763	2½	42.73	51/4	25

UPSET SCREW ENDS FOR SQUARE BARS

Side of Square Bar	Area of Body of Bar	Diam- eter of Screw	Length of Upset	Area at Root of Thread	Number of	Weight per Foot of Steel	Add for Upset	Excess of Area at Root of Thread
A		В	C		Threads per Inch	Bar		Over that of Body of Bar
Inches	Sq. Ins.	Inches	Inches	Sq. Ins.		Pounds	Inches	Per Cent
1/2 9/16 5/8 11/16	.250 .316 .391 .473	3/4 7/8 1 1	$\begin{array}{c} 4\frac{1}{4} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \end{array}$.302 .420 .550 .550	9 8	.850 1.076 1.328 1.607	5	21 33 41 17
3/4 13/16 7/8 15/16	. 563 . 660 . 766 . 879	$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{3}{8} \end{array} $	4 ³ / ₄ 4 ³ / ₄ 5 5	.694 .893 1.057 1.057	7	1.913 2.245 2.603 2.989	5 53/4	23 35 38 20
$1\\1^{1/16}\\1^{1/8}\\1^{3/16}$	1.000 1.129 1.266 1.410	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \end{array}$	5 5½ 5¼ 5¼ 5¼	1.295 1.515 1.515 1.744	$\frac{5\frac{1}{2}}{5\frac{1}{2}}$	3.400 3.838 4.303 4.795	51/2 41/4	29 34 20 24
$1\frac{1}{4}$ $1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$	1.563 1.723 1.891 2.066	2	$5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{3}{4}$	2.048 2.048 2.302 2.650	5 41/2	5.312 5.851 6.428 7.026	$\frac{4\frac{1}{4}}{4\frac{1}{2}}$	31 19 22 28
$1\frac{1}{2}$ $1\frac{9}{16}$ $1\frac{5}{8}$ $1\frac{11}{16}$	2.250 2.441 2.641 2.848	$ \begin{array}{c} 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{3}{8} \\ 2\frac{3}{8} \end{array} $	5 ³ / ₄ 5 ³ / ₄ 6 6	2.650 3.023 3.419 3.419	$\frac{41}{2}$ $\frac{41}{2}$	7.650 8.300 8.978 9.682	4½ 5	18 24 30 20
$\begin{array}{c} 134 \\ 1^{13} 6 \\ 178 \\ 1^{15} 6 \end{array}$	3.063 3.285 3.516 3.754	25/8	6 6½ 6¼ 6¼ 6¼	3.715 4.155 4.155 4.619	4 4	10.410 11.170 11.950 12.760	5 41/4	21 26 18 23

UPSET SCREW ENDS FOR SQUARE BARS-Continued

Side of Square Bar	Area of Body of Bar	Diam- eter of Screw	Length of Upset	Area at Root of Thread	of	Weight per Foot of Bar	Add for Upset	Excess of Area at Root of Thread Over that of
A		В	С		Threads per Inch		No.	Body of Bar
Inches	Sq. Ins.	Inches	Inches	Sq. Ins.		Pounds	Inches	Per Cent
$\begin{array}{c} 2 \\ 2^{1}/6 \\ 2^{1}/8 \\ 2^{3}/6 \end{array}$	4.000 4.254 4.516 4.785	27/8 27/8 3 31/8	$6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{3}{4}$	5.108 5.108 5.428 5.957	$\begin{array}{c} 4 \\ 4 \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	13.60 14.46 15.35 16.27	5 4 ¹ / ₄ 4 ¹ / ₂ 5	28 20 20 24
$2\frac{1}{4}$ $2\frac{5}{16}$ $2\frac{3}{8}$ $2\frac{7}{16}$	5.063 5.348 5.641 5.941	3½ 3½ 3½ 3¾ 3¾ 3¾ 3¾	6 ³ / ₄ 6 ³ / ₄ 7	5.957 6.510 7.087 7.087	31/2	17.22 18.19 19.18 20.20	$4\frac{1}{4}$ $4\frac{3}{4}$ $5\frac{1}{4}$ $4\frac{1}{2}$	18 22 26 19
$2\frac{1}{2}$ 2^{9} 16 2^{5} 8 2^{11} 16	6.250 6.566 6.891 7.223	$3\frac{1}{2}$ $3\frac{5}{8}$ $3\frac{5}{8}$ $3\frac{3}{4}$	7 7½ 7¼ 7¼ 7¼	7.548 8.171 8.171 8.641	3½ 3½ 3¼ 3¼ 3 3	21.25 22.33 23.43 24.56	$4\frac{3}{4}$ $5\frac{1}{4}$ $4\frac{1}{2}$ $4\frac{3}{4}$	21 24 19 20
$2\frac{3}{4}$ $2\frac{13}{16}$ $2\frac{7}{8}$ $2\frac{15}{16}$	7.563 7.910 8.266 8.629	37/8 37/8 4 41/8	$7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$	9.305 9.305 9.993 10.706	3 3 3 3	25.71 26.90 28.10 29.34	5½ 4½ 4¾ 5	23 18 21 24
3 3½ 3½ 3¼ 3¾ 3¾	9.000 9.766 10.563 11.391	4½ 4¾ 4¾ 4½ 45/8		10.706 12.087 12.743 13.544	$ \begin{array}{c} 3 \\ 2\frac{7}{8} \\ 2\frac{3}{4} \\ 2\frac{3}{4} \end{array} $	30.60 33.20 35.92 38.73	4½ 5¼ 5 5	19 24 21 19
$\frac{35/8}{33/4}$	12.250 13.141 14.063 15.016	47/8 5 51/8 51/4	8½ 8¾	15.068 15.763 16.658 17.572	$2\frac{5}{8}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	41.65 44.68 47.82 51.05	5½ 5¼ 5 4¾	23 20 18 17
4	16.000	51/2	9	19.267	23/8	54.40	51/4	20

The weight of steel in round and square bars (pages 54 and 56) is 486.9 lb. per cu. ft. or .28 lb. per cu. in.

THREADS FOR BOLTS, NUTS, SCREWS AND PIPE

DEFINITIONS

(National Screw Thread Commission, Washington, D. C.)

Screw Thread.—A ridge of uniform section wound in the form of a helix on the inside or outside surface of a cylinder or cone.

Screw Helix.—The path of a point moving at a uniform angular rate on a cylindrical or conical surface and at the same time moving at a uniform axial rate.

Major Diameter (formerly known as outside diameter).—The largest diameter of the thread on the screw or nut. The term major diameter replaces the term outside diameter as applied to the thread of a screw and also the term full diameter as applied to the thread of a nut.

Minor Diameter (formerly known as core diameter).—The smallest diameter of the thread on the screw or nut. The term minor diameter replaces the term core diameter as applied to the thread of a screw and also the term inside diameter as applied to the thread of a nut.

Pitch Diameter.—On a straight screw thread the diameter of an imaginary cylinder which would pass through the threads at such points as to make the width of the threads and the width of the spaces cut by the surface of the cylinder equal.

Pitch.—The distance from a point on a screw thread to a corresponding point on the next thread measured parallel to the axis.

Pitch = $\frac{1}{\text{Number of threads per inch.}}$

Lead.—The distance a screw thread advances axially in one turn. On a single thread screw, the lead and pitch are identical; on a double thread screw the lead is twice the pitch, on a triple thread screw the lead is three times the pitch, etc.

Angle of Thread.—The angle included between the sides of the thread measured in an axial plane.

Helix angle.—The angle made by the helix of the thread at the pitch diameter with a plane perpendicular to the axis.

Crest.—The top surface joining the two sides of a thread.

Root.—The bottom surface joining the sides of two adjacent threads.

Crest Clearance.—Defined on a screw form as the space between the top of a thread and the root of its mating thread.

Fit.—The relation between two mating parts with reference to ease of assembly, for example:

Wrench fit

Medium fit Loose fit

The quality of fit is dependent upon both the relative size and the quality of finish of the mating parts.

THREADS FOR BOLTS AND NUTS United States Standard

$$p = pitch = \frac{1}{No. thds. per in.}$$
 $d = depth = p \times .64952$
 $f = flat = \frac{p}{8}$

		Dia. at Root of Thread		Area in Squ	uare Inches	Tensile	Working Strength
Dia.	No. of Threads per Inch		Dia. of Tap Drill	Bolt	Bottom of Thread	Strength at Stress of 6000 lbs.	at Stress of 6000 lbs. per Sq. In.
1,4 5,16 3,8 7,16 1,2 9,16 5,8 3,4 7,8	20 18 16 14 13 12 11 10 9	0.185 0.240 0.294 0.345 0.400 0.454 0.507 0.620 0.731	13/64 1/4 5/16 23/64 27/64 15/32 17/32 41/64 3/4	0.307	0.026 0.045 0.068 0.093 0.126 0.162 0.202 0.302 0.419	160 270 410 560 760 1000 1210 1810 2520	260 680 1210

THREADS FOR BOLTS AND NUTS—Continued
United States Standard

				Area in Sq	uare Inches	Tensile	Working
Dia.	No. of Threads per Inch	Dia. at Root of Thread	Dia. of Tap Drill	Bolt	Bottom of Thread	Strength at Stress of 6000 lbs. per Sq. In.	Strength at Stress of 6000 lbs. per Sq. In.
1 11/4 11/4 11/4 11/3 11/3 11/3 11/3 11/	87 66 66 51/2 55 41/2 4 4 31/2 31/4 33/4 25/8 21/2 23/8 21/4	0.838 0.939 1.064 1.158 1.283 1.389 1.490 1.615 1.711 1.961 2.175 2.425 2.629 2.879 3.100 3.317 3.567 3.798 4.028 4.2480 4.730 4.953 5.203 5.423	55/44 31/32 11/32 11/32 11/32 11/32 11/32 11/44 11/32 11/46 21/44 21/46	$\begin{array}{c} 0.785 \\ 0.994 \\ 1.227 \\ 1.485 \\ 1.767 \\ 1.074 \\ 2.405 \\ 2.761 \\ 3.142 \\ 3.976 \\ 4.909 \\ 5.940 \\ 7.069 \\ 8.296 \\ 9.621 \\ 11.045 \\ 12.566 \\ 14.186 \\ 15.904 \\ 17.721 \\ 19.635 \\ 21.648 \\ 23.758 \\ 25.967 \\ 28.274 \end{array}$	0.551 0.694 0.893 1.057 1.295 1.515 1.746 2.051 2.302 3.023 3.719 4.602 5.428 6.510 7.548 8.641 9.963 11.340 12.750 14.215 15.760 17.570 19.260 21.250 23.090	3300 4160 5350 6340 7770 9090 10470 12300 13800 18100 22300 27700 32500 39000 45300 51800 59700 68000 76500 85500 94000 105500 116000 127000 138000	1790 2470 3470 4260 5500 6630 7830 9470 10800 14700 23600 28000 34100 40000 50100 58000 66000 74000 82500 93000 103000 114000

Tap drill sizes given provide for a slight clearance at the root of thread to facilitate tapping and reduce tap breakage. Where full threads are required use the diameters specified for root of thread.

V Threads

$$p = pitch = \frac{1}{Number of threads per in.}$$

 $d = depth = p \times .866$

Whitworth Threads
(Standard in Great Britain)

$$p = pitch = \frac{1}{Number of threads per in.}$$

$$d = depth = p \times .64033$$

$$r = radius = p \times .1373$$

Diameter Ins.	Threads per in.	Diameter at Root of Thread	Radius	Diameter Ins.	Threads per Inch	Diameter at Root of Thread	Radius
1/4 5/16 3/8 7/16	20 18 16 14	.186 .241 .295 .346	.0069 .0076 .0086 .0098	17/8 2 21/4 21/2	4½ 4½ 4 4	1.590 1.715 1.930 2.180	.0305 .0305 .0343 .0343
1/2 9/16 5/8 3/4	12 12 11 10	.393 .456 .508 .622	.0114 .0114 .0125 .0137	23/4 3 31/4 31/2	3½ 3½ 3½ 3¼ 3¼ 3¼	2.384 2.634 2.856 3.105	.0393 .0393 .0422 .0422
7/8 1 11/8 11/4	9 8 7 7	.732 .840 .942 1.067	.0152 .0176 .0196 .0196	3 ³ / ₄ 4 4 ¹ / ₂ 5	$\frac{3}{3}$ $\frac{27/8}{2^{3}/4}$	3.320 3.573 4.0546 4.5343	.0458 .0458 .0477 .0499
$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	6 6 5 5	1.161 1.286 1.368 1.494	.0229 .0229 .0275 .0275	5½ 6	25/8 21/2	5.0121 5.4877	.0523 .0549

British Standard Fine Threads

British standard fine threads have the same form as Whitworth,

but in the British there are more threads per inch.

Dia.	Threads per in.	Dia.	Threads per in.	Dia.	Threads per in.
14 9/32 5/66 3/8 7/66 1/2	26 26 22 20 18 16	9/16 5/8 11/16 3/4 13/16 7/8	16 14 14 12 12 12	1 11/8 11/4 13/8 11/2	10 9 9 8 8

British Association Standard Thread (B. A. S.)

(Used for small screws)

Ins. Mm. .0394 1.00 .0354 .90 .0319 .81 .0287 .73	4.8 4.22 3.73 3.22	Num- ber 13 14 15 16	Ins. .047 .039 .035	Mm. 1.20 1.00 .90	Ins. .0098 .0091 .0083	Mm25 -23 -21	.90
.0354 .90 .0319 .81 .0287 .73	4.22 3.73 3.22	14 15	.039	1.00	.0091	.23	.72
.0319 .81 .0287 .73	4.22 3.73 3.22	14 15	.039	1.00	.0091	.23	.72
.0287 .73	3.22				.0083		
		16	001				.65
			.031	.79	.0075	.19	.56
.0260 .66	2.81	17	.028	.70	.0067	.17	.50
.0232 .59	2.49	18	.024	.62	.0059	.15	.44
.0209 .53	2.16	19	.021	.54	.0055	.14	.37
.0189 .48	1.92	20	.019	.48	.0047	.12	.34
						.11	.29
							.25
							.22
							.19
	0169 .48 0169 .43 0154 .39 0138 .35 0122 .31 0110 .28	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

French (Metric) Standard Thread

$$p = pitch$$
 $f = flat = \frac{p}{8}$ $d = depth = p \times .64952$

Diameter Mm.	Pitch Mm.	Diameter Mm.	Pitch Mm.	Diameter Mm.	Pitch Mm.
3 4 5	0.5	16	2.0	36	2.0
	0.75	18	2.5	38	4.0
	0.75	20	2.5	40	4.0
6 7 8 9	$1.0 \\ 1.0 \\ 1.0 \\ 1.0$	22 24 26 28	$2.5 \\ 3.0 \\ 3.0 \\ 3.0$	42 44 46 48	4.5 4.5 4.5 5.0
10	$1.5 \\ 1.5 \\ 2.0$	30	3.5	50	5.0
12		32	3.5	52	5.0
14		34	3.5	56	5.5

Sellers Square Thread

p = pitch

Dia. Ins.	Threads per in.	Dia. root of thread	Dia. Ins.	Threads/per in.	Dia. root of thread	Dia. Ins.	Threads per in.	Dia. root of thread
1/4 5/16 3/8 7/16 1/2 9/16	10 9 8 7 6½ 6	.162 .215 .265 .312 .365 .416	5/8 11/16 3/4 13/16 7/8 15/16	5 ¹ / ₂ 5 5 4 ¹ / ₂ 4 ¹ / ₂	.466 .512 .575 .618 .680 .718	$ \begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \end{array} $	4 3½ 3½ 3 3 2¾	.781 .875 1.000 1.083 1.208 1.307

Buttress Thread

Buttress thread takes load in one direction.

Acme Thread

Comparison of Acme and Square Threads.

$$p = pitch$$

 $d = depth = .5p + .01 in.$

flat top f = .3707pd = depth = .5p + .01 in. flat bottom = .3707p - .0052 in.

Number of Threads per In.	Pitch of Single Thread	Depth of Thread	Width at Top of Thread	Width at Bottom of Thread	Space at Top of Thread	Thickness at Root of Thread
1	1.000	.5100	.3707	.3655	.6293	.6345
11/3	.750	.3850	.2780	.2728	.4720	.4772
2 -	.500	.2600	.1853	.1801	.3147	.3199
3	.333	.1767	.1235	.1183	.2098	.2150
4	.250	.1350	.0927	.0875	.1573	.1625
5	.200	.1100	.0741	.0689	.1250	.1311
6	.166	.0933	.0618	.0566	.1049	.1101
7	.142	.0814	.0529	.0478	.0899	.0951
8	.125	.0725	.0463	.0411	.0787	.0839
9	.111	.0655	.0413	.0361	.0699	.0751
10	.100	.0600	.0371	.0319	.0629	.0681

S. A. E. Standard Thread

Society of Automotive Engineers (S. A. E.) standard thread has the United States standard form, but has more threads per inch.

n = number of threads per inch
$$p = pitch = \frac{1}{n}$$

$$d = depth = p \times .6495 = \frac{.6495}{n}$$

$$f = flat = \frac{p}{2}$$

Diameter Ins.	Decimal Equivalent Outside Diameter	Threads per Inch	Basic Pitch Diameter	Root Diameter	(d) Depth of Thread .6495 n
14 5,66 3,68 7,66 1,52 9,66 11,66 3,4 7,8 1,14 1,3,8 1,14 1,3,8 1,12	.250 .3125 .375 .4375 .500 .5625 .625 .6875 .750 .8750 .875 1.000 1.125 1.250 1.375 1.500	28 24 24 20 20 18 18 16 16 14 18 11 12 12 12	.2269 .2855 .3480 .4050 .4675 .5264 .5889 .6469 .7094 .8286 .8389 .9536 1.0709 1.1959 1.3209 1.4459	.2038 .2585 .3210 .3725 .4350 .4903 .5528 .6063 .6688 .7822 .8028 .9072 1.0168 1.1418 1.2668 1.3918	.0231 .0270 .0270 .0325 .0325 .0361 .0361 .0406 .0464 .0361 .0464 .0541 .0541

Threads Recommended by National Screw Thread Commission, Washington, D. C.

[1919-1920]

Symbols.—For using formulæ for expressing relations of screw threads and for use on drawings the following list should be used. For definitions see page 58

of definitions see page 90	
Major diameter	D
(corresponding radius)	d
Pitch diameter	E
(corresponding radius)	e
Minor diameter	K
(corresponding radius)	k
Angle of thread	A
(One-half angle of thread)	a
Number of turns per inch	N
" "threads " "	n
Lead	$P = \frac{1}{N}$
Pitch or thread interval	$p = \frac{1}{n}$
Helix angle	8
Tangent of helix angle	$S = \frac{P}{3.1416 \times E}$
Width of basic flat at top, crest or root	
Depth of basic truncation	f
" " sharp V thread	H
" " National (U.S.) form of thread	h
Included angle of taper	Y
(One-half included angle of taper)	y

The basis of the system is the initial letters of the series, preceded by the diameter in inches (or the screw number) and number of threads per inch, all in Arabic characters, followed by the classification of fit in Roman numerals.

Examples Mark

National Coarse Thread System. To specify a threaded part 1 inch diameter, 8 threads per inch, Class one fit.

National Fine Thread System. Threaded 1"—14—NF—III part 1" diameter, 14 threads per inch, Class three fit.

Threads Recommended by National Screw Thread Commission, Washington, D. C.—Continued

[1919-1920]

National Form, Special Pitch. Threaded 1"—12—N—IV part 1" diameter, 12 threads per inch, Class four fit.

Form of Thread.—The national form of thread profile, known previously as the United States Standard or Sellers' Profile, is recommended by the Commission (National Screw Thread Commission, Washington, D. C.) and shall hereafter be known as the National Form of Thread.

a. Where Used.—The national form shall be used for all screw thread work except when otherwise specified for special purposes.

b. Specifications.—The basic angle of thread (A) between the sides of the thread measured in an axial plane shall be 60 degs. The line bisecting this 60 deg. angle shall be perpendicular to the axis of the screw thread.

The basic flat at the root and crest of the thread form will be $\frac{1}{8} \times p$. The basic depth of the thread form will be .649519 $\times p$ __.649519

 $=\frac{.049313}{n}$

Where p = pitch in inches.

n = number of threads per inch.

c. Clearance in Nut.—(1) Clearance at minor diameter.—A clearance shall be provided at the minor diameter of the nut by removing the thread form at the crest by an amount equal to ½ to ¼ of the basic thread depth. (2) Clearance at major diameter.—A clearance at the major diameter of the nut shall be provided by decreasing the depth of the truncation triangle by an amount equal to ½ to ½ of its theoretical value.

Thread Series Recommended.—National Coarse Threads and National Fine Threads. The National Coarse Threads (see Table 1) are recommended for general use in engineering work, in machine construction where conditions are favorable to the use of bolts, screws and other threaded components where quick and easy assembly of the parts is desired, and for all work where conditions do not require the use of fine pitch threads.

TABLE 1-NATIONAL COARSE THREAD SERIES

Identifi	ication	Basi	c Diamet	ers		Thread Data	
1	2	3	4	5	6	7	8
Num- bered and Frac-	n Number of Threads	D Major Dia.	E Pitch Dia.	K Minor Dia.	Metric Equivalent of Major Dia.	p Pitch	h Depth of Thread
tional Sizes	per In.	In.	In.	In.	Mm.	In.	In.
1	64	0.073	0.0629		1.854	0.0156250	0.0101
2	56	0.086	0.0744	0.0628	2.184	0.0178572	0.0116
2 3	48	0.099		0.0719	2.515	0.0208333	0.0135
4	40	0.112	0.0958	0.0795	2.845	0.0250000	0.0162
5	40	0.125	0.1088	0.0925	3.175	0.0250000	0.0162
6	32	0.138		0.0974	3.505	0.0312500	0:0203
8	32	0.164		0.1234	4.156	0.0312500	0.0203
10	24	0.190		0.1359		0.0416667	0.0271
12	24	0.216	0.1889	0.1619	5.486	0.0416667	0.0271
1/4 5/16 3/8 7/16 1/2	20			0.1850		0.0500000	0.0325
216	18			0.2403		0.055556	0.0361
3/8	16			0.2938		0.0625000	0.0406
16	14		0.3911		11.11	0.0714286	0.0464
1/2	13	0.5000	0.4500	0.4001	12.69	0.0769231	0.0500
9/16 5/8 3/4 7/8	12			0.4542		0.0833333	0.0541
%	11			0.5069		0.0909091	0.0590
3/4	10	0.7500	0.6850	0.6201	19.05	0.1000000	0.0650
1/8	9			0.7307		0.1111111	0.0722
1	8	1.0000	0.9188	0.8376	25.40	0.1250000	0.0812
$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \end{array} $	7			0.9394		0.1428572	0.0928
1/4	7			1.0644		0.1428572	0.0928
1/2	6			1.2835		0.1666667	0.1083
1%	5			1.4902		0.2000000	
2	41/2	2.0000	1.8557	1.7113	50.80	0.222222	0.1443
$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$ 3	41/2	2.2500	2.1057	1.9613	57.15	0.222222	0.1443
21/2	4			2.1752		0.2500000	
23/4	4			2.4252	69.85	0.2500000	
3	4		2.8376			0.2500000	

The National Fine Threads (see Table 2) are recommended for general use in automotive and aircraft work, for use where the de-

sign requires both strength and reduction in weight, and where special conditions require a fine thread, as for instance, on large sizes where sufficient force cannot be secured to set properly a screw or bolt of coarse pitch, by exerting on an ordinary wrench the strength of a man. The form of thread for coarse and fine threads is the same as outlined in the paragraph Form of Thread.

National Form of Thread for Minimum Nut and Maximum Screws

In the figure no allowance is shown. This condition exists in Class II. Medium Fit where both the minimum nut and the maximum screw are basic.

Notation

Angle of thread.

 $A = 60^{\circ}$

 $= \frac{1}{6} h$

a	= 30°	One-half angle of thread.
p	$=\frac{1}{n}$	Pitch
n	-	Number of threads per inch.
\mathbf{H}	= .866025p	Depth of 60° sharp V thread.
h	= .649519p	" " standard form thread.
5/6h	= .541266p	
F	= .125000p	Width of flat at crest and root of standard form.
f	= .108253p	
	$= \frac{1}{8} H$	

Depth of truncation.

TABLE 2-NATIONAL FINE THREAD SERIES

Identifi	ication	Basi	c Diame	ters		Thread Data	
1	2	3	4	5	6	7 .	8
Num- bered and Frac-	n Number of Threads	D Major Dia.	E Pitch Dia.	K Minor Dia.	Metric Equivalent of Major Dia.	p Pitch	h Depth of Thread
tional Sizes	per In.	In.	In.	In.	Mm.	In.	In.
0 1 2 3 4	80 72 64 56 48	0.060 0.073 0.086 0.099 0.112	0.0519 0.0640 0.0759 0.0874 0.0985	$0.0550 \\ 0.0657 \\ 0.0758$	1.524 1.854 2.184 2.515 2.845	0.0125000 0.0138889 0.0156250 0.0178571 0.0208333	0.00902 0.01014 0.01160
5 6 8 10 12	44 40 36 32 28	0.125 0.138 0.164 0.190 0.216	$egin{array}{c} 0.1102 \\ 0.1218 \\ 0.1460 \\ 0.1697 \\ 0.1928 \\ \end{array}$	$0.1055 \\ 0.1279 \\ 0.1494$	3.175 3.506 4.166 4.826 5.486	0.0227273 0.0250000 0.0277778 0.0312500 0.0357143	0.01624 0.01804 0.02030
1/4 5/16 3/8 7/16 1/2	28 24 24 20 20	$0.3125 \\ 0.3750 \\ 0.4375$	0.2268 0.2854 0.3479 0.4050 0.4675	$0.2584 \\ 0.3209 \\ 0.3726$	6.350 7.938 9.525 11.11 12.70	0.0357143 0.0416667 0.0416667 0.0500000 0.0500000	$ \begin{array}{r} 0.02706 \\ 0.02706 \\ 0.03248 \end{array} $
9/16 5/8 3/4 7/8	18 18 16 14 14	$0.6250 \\ 0.7500 \\ 0.8750$	0.5264 0.5889 0.7094 0.8286 0.9536	$0.5528 \\ 0.6688 \\ 0.7822$	14.29 15.88 19.05 22.22 25.40	0.0555556 0.0555556 0.0625000 0.0714286 0.0714286	$0.03608 \\ 0.04060 \\ 0.04640$
$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array} $	12 12 12 12 12 12	$1.2500 \\ 1.5000$	1.0709 1.1959 1.4459 1.6959 1.9459	1.1418 1.3918 1.6418	28.57 31.75 38.10 44.45 50.80	0.0833333 0.0833333 0.6833333 0.0833333 0.0833333	0.05413 0.05413 0.05413
2½ 2½ 2¾ 3	12 12 12 10	2.2500 2.5000 2.7500 3.0000	$2.4459 \\ 2.6959$	$2.3918 \\ 2.6418$	63.50 69.85	0.0833333 0.0833333 0.0833333 0.1000000	$0.05413 \\ 0.05413$

Classification of Fits.

Class I Loose fit Includes screw thread work of rough commercial quality, such as hose couplings, etc.

Class II Medium fit Subdivision "A" (Regular)

Includes the great bulk of screw thread work of ordinary quality of finished and semi-finished bolts and nuts, machine screws, etc.

Subdivision "B" (Special)

Includes the better grade of interchangeable screw thread work, such as high grade automobile and aircraft bolts and nuts.

Class III Close fit Includes screw thread work requiring a fine snug fit, somewhat closer than the medium fit special. In this class of fit selective assembly of parts may be required.

Class IV Wrench fit Subdivision "A"

Includes screw threads used in light sections with moderate stresses, such as aircraft and automobile engine work.

Subdivision "B"

Includes screw threads used in heavy sections with heavy stresses, such as steam engine and heavy hydraulic work.

PIPE THREADS

The standard in the United States is the Briggs, and in Great Britain is the Whitworth. In Briggs, the pipe is tapered 1/16 in. per in.

Briggs Pipe Threads

N = number of threads per inch. Depth of thread = $\frac{.8}{N}$ Length of perfect thread = $\frac{.8D + 4.8}{N}$ where D represents the actual outside diameter of pipe.

	Pipe Diamet	ters	m ı			Total
Nomi- nal Pipe Size	i- pe Actual Actual Inch		Threads per Inch	Depth of Thread	Length of Perfect Threads	Length of Thread on Pipe
1/8 1/4 3/4 1/2 3/4 1 1/4 1/2 2 1/2 2 1/2 3 1/2 5 6 7 8 9	.270 .364 .494 .623 .824 1.048 1.380 1.610 2.067 2.468 3.067 3.548 4.026 4.508 5.045 6.065 7.023 7.982	.405 .540 .675 .840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625 7.625 8.625	27 18 18 14 14 11 12 11 12 11 12 11 12 8 8 8 8 8 8 8 8	.029 .044 .044 .057 .057 .069 .069 .069 .100 .100 .100 .100 .100	.19 .29 .30 .39 .40 .51 .54 .55 .58 .89 .95 1.00 1.16 1.26 1.36 1.46	.412 .624 .630 .819 .831 1.03 1.06 1.07 1.10 1.64 1.75 1.80 1.85 1.91 2.01 2.11
9 10	9.000	$9.625 \\ 10.750$	8	.100	1.57 1.68	2.32 2.43

Whitworth or British Standard Pipe Threads

N = number of threads per inch. Depth of thread = $\frac{.64}{N}$

Nom-	A	В			Е	F
inal Bore of Pipe Ins.	Approx. Outside Dia. of Pipe Ins.	Gauge Dia. Top of Thread Ins.	Single Depth of Thread Ins.	Num- ber of Threads per Inch	Length of Thread on Pipe Ins.	Dist. of Gauge Dia. from End of Pipe Ins.
1/6	13/0	.383	.0230	28	3/6	5/2
1/1	13/32 17/32	.518	.0335	19	7/16	3/16
1/8 1/4 3/8 1/2 5/8 3/4 7/8	11 16 27 32 15 16	.656	.0335	19	3/8/6/2/8/8/4/4/8	532 316 14
1/2	27/32	.825	. 0455	14	5/8	1/4
5/8	15/16	.902	.0455	14	5/8	1/4
3/4	11/16	1.041	.0455	14	3/4	1/4 3/8 3/8 3/8 1/2 1/2 1/2 5/8 11/6 11/4
7/8	11/16 17/32 11/32 11/16 129/32 25/32 28/8 31/4 33/4	1.189	.0455	14	3/4	3/8
1	111/32	1.309	.0580	11	7/8	3/8.
$1\frac{1}{4}$	111/16	1.650	.0580	11	1	1/2
$1\frac{1}{2}$	$1^{29}/_{32}$	1.882	.0580	11	1	1/2
$1\frac{3}{4}$	$2\frac{5}{32}$	2.116	.0580	11	11/8	5/8
2	23/8	2.347	.0580	11	11/8	5/8
$2\frac{1}{4}$	25/8	2.587	.0580	11	11/4	11/16
$2\frac{1}{2}$	3	2.960	.0580	11	11/4	11/16
23/4	31/4	3.210	.0580	11	1 ¹ / ₈ 1 ¹ / ₄ 1 ¹ / ₄ 1 ³ / ₈ 1 ³ / ₈	13/16
3	31/2	3.460	.0580	11	13/8	13/16
$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$ 2 $2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$ $3\frac{1}{4}$ $3\frac{1}{4}$ $3\frac{3}{4}$	33/4	3.700	.0580	11	11/2	13/16 13/16 13/16 7/8 7/8 7/8
31/2	4 41/4	3.950	.0580	11	11/2	78
3%	41/4	4.200	.0580	11	11/2	1/8
THE YEAR	40 80 00				1000	

(Continued on page 74)

Whitworth or British Standard Pipe Threads-Continued

inal Bore of Pipe Ins.	Approx. Outside Dia. of Pipe Ins.	Gauge Dia. Top of Thread Ins.	Single Depth of Thread In.	Number of Threads per In.	Length of Thread on Pipe Ins.	Dist. of Gauge Dia. from End of Pipe Ins.
4 4 ¹ / ₂ 5 5 ¹ / ₂	4½ 5	4.450	.0580	.11 11 11	15/8	1
41/2	5	4.950	.0580	11	15/8	1
5	51/2	5.450	.0580	11	$1\frac{5}{8}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$ 2 $2\frac{1}{8}$	11/8
51/2	6	5.950	.0580	11	17/8	114 138 138
6 7 8 9	61/2	6.450	.0580	11	2	13/8
7	$ \begin{array}{c c} 7\frac{1}{2} \\ 8\frac{1}{2} \end{array} $	7.450	.0640	10	21/8	13/8
8	81/2	8.450	.0640	10	21/4	1/2
	91/2	9.450	.0640	10	$\frac{21/4}{23/8}$	11/2
10	101/2	10.450	.0640	10	23/8	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{5}{8} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \end{array} $
11	111/2	11.450	.0800	8	$2\frac{1}{2}$	15/8
12	$12\frac{1}{2}$	12.450	.0800	8	$2\frac{1}{2}$	15/8
13	1334	13.680	.0800	8	25/8	15/8
14	143/4	14.680	.0800	8	23/4	134
15	153/4	15.680	.0800	8	$2\frac{3}{4}$	134
16	163/4	16.680	.0800	8 8 8 8 8 8	21/2 21/2 25/8 23/4 27/8 3	17/8
17	173/4	17.680	.0800	8	3	2
18	1834	18.680	.0800	8	3	. 2

Threads for Pipe and Fire Hose Couplings Recommended by National Screw Thread Commission, Washington, D. C., 1919–1920

The Commission favored the adoption in practically its present shape of the Briggs standard pipe thread size as recommended by the Am. Society of Mechanical Engineers and the fire hose coupling as established by National Fire Protective Association.

NATIONAL PIPE THREADS

Formulæ for Basic Size. (See Table 3, page 76)

$$\begin{split} L &= \frac{0.8D + 4.8}{n} & E_3 = K_3 + \frac{0.8}{n} \\ K_3 &= D = \frac{0.05D + 1.9}{n} & E_2 = E_3 + \frac{L_2}{16} \\ E_1 &= E_3 + \frac{L_1}{16} & w = \frac{1}{16 \text{ n}} \end{split}$$

National Fire Hose Coupling Threads. Form of Thread, see page 67.

National Fire Hose Couplings

Basic Min. Coupling Dimensions

Nom- inal Size	Num- ber of threads per inch	Pitch	Depth of Thread		liameter	Pitch dia.	Minor dia.	Allow- ance
	per men	Ins.	Ins.	Mm.	Ins.	Ins.	Ins.	Ins.
2.50 3.00 3.50 4.50	7.5 6.0 6.0 4.0	.13333 .16667 .16667 .25000	.0955 .1243 .1243 .1765	78.550 92.837 108.712 147.320	3.0925 3.6550 4.2800 5.8000	2.9970 3.5307 4.1556 5.6235	2:9015 3.4063 4.0313 5.4470	.03 .03 .03 .05

Basic Max. Nipple Dimensions

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.3763 .03 4.0013 .03
---	--------------------------

76

	Difference in Dia. for One Thread	W	0.00232 0.00347 0.00347 0.00446 0.00446	0.00543 0.00543 0.00543 0.00543 0.00781	0.00781 0.00781 0.00781 0.00781 0.00781	0.00781 0.00781 0.00781 0.00781	0.00781 0.00781 0.00781 0.00781 0.00781 0.00781
	Pitch Dia. at Large End	E2	0.3800 0.6025 0.6375 0.7918 1.0018	1.2563 1.6013 1.8413 2.3163 2.7906	3.4156 3.9156 4.4156 4.9156 5.4786	6.5406 7.5410 8.5410 9.5410 10.6660	12.6670 13.9160 14.9160 15.9160 17.9160 21.9160 23.9160
	Inches Thickness American Briggs Ring	L_1	0.180 0.240 0.320 0.339	0.420 0.420 0.430 0.436 0.682	0.766 0.821 0.844 0.875	0.958 1.000 1.063 1.130 1.210	1.360 1.562 1.687 1.812 2.000 2.125 2.250
	Thickness Full Briggs Ring	La	0.2638 0.4018 0.4078 0.5337 0.5457	0.6828 0.7068 0.7235 0.7565 1.1375	1.2500 1.3500 1.3500 1.4063	1.5125 1.6120 1.7120 1.8120 1.9250	2.1250 2.2500 2.2500 2.2500 2.6500 3.0500 3.2500
2	Outside Dia. of Pipe	Д	0.405 0.540 0.675 0.840 1.050	1.315 1.660 1.900 2.375 2.875	3.500 4.000 5.000 5.563	6.625 7.625 8.625 9.625 10.750	12.750 14.000 15.000 16.000 18.000 22.000 24.000
	Min. Pitch Dia. Straight Female Lock Nut Thread	Ē	0.3863 0.5073 0.6444 0.8008 1.0112	1.2658 1.6106 1.8495 2.3234 2.8012	3.4276 3.9279 4.4262 4.9250 5.4884	6.5450 7.5410 8.5390 9.5370 10.6600	12,6580 13,9120 14,9540 15,9150 17,9140 19,9100 21,9050 23,9000
	Max. Pitch Dia. Straight Male Lock Nut Thread	Ē	0.3840 0.5038 0.6410 0.7963 1.0067	1.2604 1.6051 1.8441 2.3180 2.7934	3.4198 3.9201 4.4184 4.9172 5.4806	6.5372 7.5340 8.5310 9.5290 10.6520	12.6500 13.9040 14.9050 15.9060 17.9060 19.9020 21.8970 23.8920
	Pitch Dia. at Gauge Notch Basic	E ₁	0.3748 0.4899 0.6270 0.7784 0.9888	1.2386 1.5834 1.8223 2.2963 2.7622	3.3885 3.8888 4.3871 4.8859 5.4493	6.5060 7.5020 8.5000 9.4980 10.6210	12.6190 13.8730 14.8740 15.8760 17.8750 19.8700 21.8660 23.8610
-	Pitch Dia. at End of Pipe	E3	0.3635 0.4774 0.6120 0.7584 0.9677	1.2136 1.5571 1.7961 2.2690 2.7195	3.3406 3.8375 4.3344 4.8212 5.3907	6.4460 7.4400 8.4340 9.4270 10.5450	12.5340 13.7750 14.7690 15.7620 17.7500 19.7380 21.7250 23.7120
	Depth of Thread	0.8n	0.0296 0.0444 0.0444 0.0571 0.0571	0.0696 0.0696 0.0696 0.0696	0.1000 0.1000 0.1000 0.1000	0.1000 0.1000 0.1000 0.1000	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
	Threads per In.	n.	27 18 18 14 14	1111118 747474	∞∞∞∞∞	∞∞∞∞∞	ထထထထထထ ထထထ
-	Pipe Size in In.		10/4/0/4/4	77.2 %	88447 2 /2	6 9 9 10	2520 2520 2520 2520

TAP DRILLS

FOR STANDARD PITCH THREADS

	U. 8	S. S.	Whit	worth	S. A	. E.		U. S	s. s.	Whit	worth
Thread Diameter	Threads per Inch	Tap Drill Size	Threads per Inch	Tap Drill Size	Threads per Inch	Tap Drill Size	Thread Diameter	Threads per Inch	Tap Drill Size	Threads per Inch	Tap Drill Size
378 15 4 15 8 15 16 15 4 15 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 40 32 20 18 16 14 13 12 11 10 10 9 9 8 7 7 7 6 6 5 1/2	13-64 1-4 1-5-7-64 23-64 15-52 17-52 17-52 17-52 45-64 49-64 5-55-64 17-52 17-	48 40 24 20 18 16 14 12 11 11 10 9 9 8 7 7 6 6 5	13,64 31,64 35,64 35,64 21,62 23,22 25,22 11,12 11,22 11,22 11,22	28 24 24 20 20 20 18 16 16 11 11 12 12 12	No. 2 1764 2154 2254 122 3764 156 34 156 1516 1844 11164 11964 12764	13/4/8 12/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/2/8/4/8/4	55 4 4 4 4 4 4 4 5 3 3 3 3 3 3 3 3 3 3 3	135 43 42 22 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	5 4 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 %6 1 ²⁵ / ₃₂

Above Tap Drill Sizes are computed to allow approximately 75% of full thread.

NAILS

Wire nails have a circular cross section, the steel wire gauge is used for designating their diameter. The length is given in the penny system, the letter d being the selected symbol, thus a

Cut nails have a rectangular cross section, with taper from head to point.

A keg of nails weighs 100 lbs.

Cement coated nails have practically twice the holding power of common wire nails. Cement coated nails (as manufactured by Wickwire Bros., Cortland, N. Y.) are like common nails except in the style of head.

NAIL HEADS AND POINTS

COMMON NAILS

Size	Length	Steel Wire Gauge	Approx. No. to Lb.
2d	1 inch	No. 15	876
3d	11/4 "	" 14	568
- 4d	11/2 "	" 121/6	316
5d	134 "	" 14 " 12½ " 12½	271
6d	2 "	" 111/2	181
7d	21/4 "	" 111/2	161
8d	21/2 "	" 101/4	106
9d	23/ "	" 1014	96
10d	23/4 "	" 9	69
12d	31/4 "	" 0	63
16d	31/2 "	" 9 " 8	49
20d	4 "	" 6	31
30d		" 6 " 5	24
40d	4½ " 5 "	" 1	18
		" 4 " 3 " 2	
50d	072	" 3	14
60d	6 "	. 2	11

COMMON BRADS

Size	Length	Steel Wire Gauge	Approx. No. to Lb.		
2 d	1 inch	No. 15	876		
3d	11/4 "	" 14	568		
4d	11/2 "	" 12½	316		
5d	13/4 "	" 121/2	271		
6d	2 "	" 111/2	181		
7d	21/4 "	" 111/2	161		
8d	21/2 "	" 101/4	106		
9d	23/4 "	" 1014	96		
10d	3 "	" 9"	69		
12d			64		
16d	31/4 " 31/2 "	" 8	49		
20d	4 "	" 6	31		
30d		" 5	24		
40d	41/2 "	" 1	18		
50d	51/2 "	" 3	16		
60d	6 "	" 9 " 8 " 6 " 5 " 4 " 3	11		
000		4			

FLOORING BRADS

Sizes 6d, 7d, 8d, 9d, 10d, 12d, 16d and 20d have the same length as common brads but average one gauge lighter.

CLINCH NAILS (Flat Oval Head)

Size	Length	Steel Wire Gauge	Approx. No. to Lb
2d	1 inch	No. 14	710
2d 3d	11/4 "	" 13	429
4d	11/2 "	" 12	274
5d	134 "	" 12	235
6d	2' "	" 11	157
7d	21/4 "	" 11	139
4d 5d 6d 7d 8d 9d	21/2 "	" 10	99
9d	21/2 " 23/4 "	" 10	90
10d	3 "	" 9	69
12d	31/4 "		62
16d	31/2 "	" 8	49
20d	4 "	" 9 " 8 " 7	49 37

CASING NAILS

Size	Length	Steel Wire Gauge	Approx. No. to Lb.		
2d	1 inch	No. 15½	1010		
3d	11/4 "	" 141/2	635		
4d	11/2 "	" 14	473		
5d	134 "	" 14	406		
6d	2 "	" 12½	236		
7d	21/4 "	" 121/2	210		
8d	21/2 "	" 111/2	145		
9d	23/4 "	" 111%	132		
10d	3 " "	" 101/2	94		
12d	31/4 "	" 101/2	87		
16d	31/2 "	" 10	71		
20d	4 "	" 9	62		
30d	41/2 "	" 9	46		
40d	5 "	" 8	35		

ROOFING NAILS

Size	No. 8	No. 9	No. 9½	No. 10
Dia. of head, ins	1/2	1/2	1/2	7/16 & 1/2

Lengths, all sizes, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{1}{12}$, $\frac{11}{4}$, $\frac{11}{2}$, $\frac{13}{4}$ ins. [Wickwire Bros., Cortland, N. Y.]

SPIKES

SQUARE

Railroad Spikes

A standard railroad spike has a square cross section with a chisel point as in figure below. Reverse point has the cutting edge parallel to the length of the head—this type of spike is often used on bridge stringers, where the stringers run parallel to the track.

			Не	ad		Approx.
Length	Thickness of shank	Thickness of neck	Length	Width	Length of taper	number per keg of 200 lbs.
A	В	C	D	E	F	200 108.
21/2	5/16	5/16	3/4	5/8	5/8	2200
$\frac{2\frac{1}{2}}{2\frac{1}{2}}$	3/8	5/16 3/8 3/8	1	5/8 3/4 3/4 3/4	5/8 3/4 3/4 7/8 7/8	1520 1340
31/2	3/8	3/8 7/16	1 11/8	77	3/4	1170 684
4 3½	16 1/2	9/16	11/4	11/16	7/8	620
4 4 1/2	1/2	9/16 9/16	$\frac{1\frac{1}{4}}{1\frac{1}{4}}$	$1\frac{1}{16}$ $1\frac{1}{16}$	1	600 536
4 4 ¹ / ₂ 5 5 5 ¹ / ₂	5/6/8/8/8/8/8/8/1/1/2/2/2/6/6/6/8/8/8/8/8/8/8/8/8/8/8/8/8/8	9/16	1 1/4 17/16	$1\frac{1}{16}$ $1\frac{1}{4}$	1	490 370
$\frac{5}{5\frac{1}{2}}$	9/16	9/16 5/8 5/8 3/4	17/16	11/4	$\begin{array}{c c} 1\frac{1}{8} \\ 1\frac{1}{8} \\ 1\frac{1}{4} \end{array}$	340
6	5/8	3/4	19/16	13/8	11/4	269

[Illinois Steel Co., Chicago, Ill.]

Spikes are made of Bessemer or open hearth steel having the following properties: Tensile strength, 55,000 lb. per sq. in.; yield point, 27,500 lb. per sq. in.; elongation, 25 per cent in 2 ins. The body of the full-size finished spike shall bend cold through 180 degs.

flat on itself, without cracking on the outside portion. The head of the full-size finished spike shall bend backward to the line of the face of the spike, without cracking on the outside of the bent portion.

Nail, Barge, Button and Boat Head Spikes

(Approximate number per keg of 200 lb.)

Inches				L	ength	of Spik	e—In	ches			118	
Inc	3	4	5	6	7	8	9	10	11	12	14	16
5/8 1/2				450	375	260 335	240 300	220 275	205 260	190 240	175	160
5/8 1/2 7/16 8/8 5/16 1/4	1320	1140	940	600 800	590 650	510 600	400 525	360 475	320	230		
16	1660 3000	1360 2375	1230 2050	1175 1825	990	880						

ROUND

These can be obtained with chisel or diamond points and with flat heads.

ROUND—Continued

Size	Length	Am. Steel Wire Gauge	Approx. No. to		
10d	3 inch	No. 6	41		
12d		" 6	38		
16d	31/4 " " "	" 5	30		
20d	4 "	" 4	23		
30d	41/2 "	" 4	17		
40d	5 "	" 2	13		
50d	5½ "	" 1	10		
60d	6 "	" 1	8		
7 inch	7 "	" 0	7		
8 "	8 "	" 00	6		
9 "	9 "	" 00	5		
10 "	10 "	3% inch	4		
12 "	12 "	3/8 "	4 3		

KEYS
FOR SHAFTS, GEARS, PULLEYS AND COUPLINGS

Dia. of Shaft	Size of Key	Dia. of Shaft	Size of Key	Dia. of Shaft	Size of Key
In. 13/66 11/4 13/8 11/62 11/6	In. 7.52 x 7.52 7.66 x 7.66 6 x 7.66 x 7.66 9.66 x 9.66 9.66 x 9.66 11.66 x 11.66 11.66 x 11.66 11.66 x 11.66 11.66 x 11.66	In. 3 3 8 3 8 3 3 8 3 3 8 3 7 6 3 1 2 3 1 5 1 6 6 7 6 6 1 7 7 7 6	In. 11/16 x 11/16 11/16 x 11/16	In. 71/2 715/6 8 87/6 81/2 81/5 81/6 9 97/6 91/2 915/6 10 107/6 101/2 1015/6 11 117/6 111/2 1115/6 12 121/2	In. 11/6 x 11/6 13/6 x 13/6 13/6 x 13/6 13/6 x 13/6 13/6 x 13/6 13/6 x 15/6 15/6 x 15/6 15/6 x 15/6 17/6 x 17/6 17/6 x 17/6 11/6 x 17/6 11/6 x 11/6 2 x 2 2 x 2 2 x 2 2 x 2 2 x 2

[Cresson-Morris Co., Phila., Pa.]

SPECIAL KEYS FOR HEAVY MACHINERY

Dia. of Shaft	Size of Key	Dia. of Shaft	Size of Key	Dia. of Shaft	Size of Key
In. 2 ¹⁵ / ₁₆	In. 7/8 x 5/8	In. 4 ¹⁵ / ₁₆ 5	In. 1½ x ½	In. 7½ 715/16	In. 134 x 114
$\frac{3}{3\frac{1}{8}}$	7/8 x 5/8 7/8 x 5/8 7/8 x 5/8	5 5 ⁷ / ₁₆ 5 ¹ / ₂	1 1/4 x 7/8 1 1/4 x 7/8 1 1/4 x 7/8 1 1/4 x 7/8	7 ¹⁵ / ₁₆ 8 8 ⁷ / ₁₆	2 x 13/8 2 x 13/8 2 x 13/8 2 x 13/8
$ \begin{array}{r} 3^{3} 16 \\ 3^{1} 4 \\ 3^{7} 16 \\ 3^{1} 2 \\ 3^{15} 16 \end{array} $	7/8 x 5/8	515/16	$\frac{1\frac{1}{2} \times 1}{1\frac{1}{2} \times 1}$	8 ¹ / ₂ 8 ¹⁵ / ₁₆	21/4 x 11/2
$\frac{3\frac{1}{2}}{3^{15}}_{16}$	78 x 58 78 x 58 1 x 34 1 x 34	$\begin{array}{c} 6^{7} 16 \\ 6^{1} 2 \\ 6^{15} 16 \end{array}$	$ \begin{array}{c cccc} 1\frac{1}{2} \times 1 \\ 1\frac{1}{2} \times 1 \\ 1\frac{3}{4} \times 1\frac{1}{4} \end{array} $	9 9 ⁷ / ₁₆ 9 ¹ / ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 ⁷ / ₁₆ 4 ¹ / ₂	1 x 3/4 1 x 3/4	7 77/16	13/4 x 11/4 13/4 x 11/4	9 ¹⁵ / ₁₆ 10	2½ x 1½ 2¼ x 1½ 2¼ x 1½

[Cresson-Morris Co., Phila., Pa.]

KEY SEATS IN SHAFTS AND WHEELS

Diameter	Key-	-way	Diameter	Key-way		Diameter	Key-way		
of Shaft	A Width	B Depth	of Shaft	A Width	B Depth	of Shaft	A Width	B Depth	
15/16 to 11/4 1 5/16 to 13/4 1 13/16 to 21/4 2 5/16 to 23/4 2 13/16 to 33/4 3 5/16 to 33/4 4 5/16 to 48/4 4 4 5/16 to 51/4 5 5/16 to 55/4	3/8/22/8 3/4/8 1 1 1/8/14	1/8 3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8	513/6t0 61/4 65/6 to 71/4 75/6 to 715/6 8 to 81/4 85/6 to 91/4 105/6 to 111/4 115/6 to 121/4 125/6 to 131/4 135/6 to 141/4	1½2 1¾4 2 2½2 2¼4 2½2 3¾4 3½3 3½4	3/4/4/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/	145/6 to 15/4 155/6 to 16/4 165/6 to 17/4 175/6 to 18/4 175/6 to 19/4 205/6 to 20/4 205/6 to 21/4 225/6 to 23/4 235/6 to 24/4	3 ³ / ₄ 4 4 1/ ₄ 4 1/ ₂ 4 3/ ₄ 5 5 1/ ₄ 5 5 3/ ₄ 6	1 1114 1114 1114 1114 1112 1112 1112 11	

[Dodge Sales & Eng'g Co., Mishawaka, Ind.]

NOTES ON KEYS AND KEY SEATS

On pulleys and gears the key seat is under an arm on all sizes up to 74 ins. dia., when practical with a set screw over the keyway. Large pulleys and gears having 8 arms, when made in two parts have the key seat in the center of one half, that is between two arms.

The following represents practice at Gisholt Machine Co., Madison, Wis. For shafts up to $1^{13}'_{16}''$ dia., Woodruff keys. Sliding parts for shafts up to $1^{13}'_{16}''$ dia. square keys and over this diameter flat keys. For hollow shafts and sleeves not transmitting their full power, use a key for a shaft of 1/2 the diameter of the hollow shaft or sleeve. If full power is transmitted use if possible the standard key for solid shafts, if this is not possible then 2 keys for a shaft of 1/2 the diameter of the sleeve.

Key seats as left milled by cutters are measured from the bottom of the key seats. Key seats with drilled or square ends are measured from the ends.

GIB HEAD KEYS

Gib head keys are used when the small end of the key is inaccess-

ible; with the exception of the head they are the same as tapered keys.

A	В	C	D	A	В	C	D
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/8/16/8/16/8/16/8/16/8/16/8/16/8/16/8/	14 5/6 18/32 9/6 11/6 11/8 11/8 15/6 11/8 11/8 11/8 11/8 11/8 12/8 11/8 12/	7 52 9 52 11 3 52 11 3 52 12 3 52 13 3 52 15 16 15 16 16 11 16 17 16	15/8 111/6 13/4 113/6 17/8 115/6 21/	15/8 11/1/6 13/4 11/3/6 17/8 11/5/16 21/16	25/4 21/8 31/8 33/8/8/4/8 33/4/8 41/8/2 45/8/4/4 45/8/4/8 45/8/4 45/8 45/8	17/8 11/8/16 2 1/8 2

WOODRUFF KEYS

Woodruff keys are suitable for shafts up to 21/2 ins. diameter,

WOODRUFF KEYS-Continued

but they cannot be used as sliding keys.

Num- ber of Key	Dia. of Key	Thick- ness	Depth of key- way	D	Ultimate shearing strength lbs.	Num- ber of Key	Dia. of Key	Thick- ness	Depth of key- way C	D	Ultimate shearing strength lbs.
1 2 3 4 5 6 7 8 9 10 11 12 A 13 14 15 B 16 17 18 C	111120000000000000000000000000000000000	16 27 8 27 8 27 8 27 14 15 27 4 16 16 27 14 16	1.3.1.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.	\$ 14 16 16 16 16 16 16 16 16 16 16 16 16 16	1,566 2,350 3,132 2,937 3,915 4,894 4,700 5,872 7,050 6,850 8,221 10,961 9,375 10,937 12,500 15,625 10,545 12,305 14,062 17,575	19 20 21 D E 22 23 F 24 25 G 26 27 28 29 30 31 32 33 34	111113888111111111111111111111111111111	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$2.51 @ \$2.51	5 5 5 6 6 6 6 5 5 5 7 7 7 7 7 7 7 7 7 7	11,718 13,671 15,625 19,530 23,436 17,187 21,484 25,781 18,750 23,437 28,125 15,910 20,888 25,312 29,702 53,850 61,840 69,525 76,781 83,918

[Whitney Mfg. Co., Hartford, Conn.]

Woodruff Keys to Use with Various Shafts

Dia. of . Shaft	Numbers of Keys— see above table	Dia. of	Numbers of Keys	Dia. of Shaft	Numbers of Keys
5/16-3/8 7/16-1/2 9/16-5/8 11/16-3/4 13/16	1 2, 4 3, 5 3, 5, 7 6, 8	$\begin{array}{c} 7_8 - 1^5 /_{16} \\ 1 \\ 1^1 /_{16} - 1^1 /_{8} \\ 1^3 /_{16} \\ 1^1 /_{4} - 1^5 /_{16} \end{array}$	6, 8, 10 9, 11, 13 9, 11, 13, 16 11, 13, 16 12, 14, 17, 20	$\begin{array}{c} 1^{3} & 1^{7} & 6 \\ 1^{1} & 2^{-1} & 5 & 8 \\ 1^{11} & 6^{-1} & 3 & 4 \\ 1^{13} & 6^{-2} & 2^{1} & 6^{-2} & 2^{1} & 2 \\ \end{array}$	14, 17, 20 15, 18, 21, 24 18, 21, 24 23, 25 25

If the pulley or gear to be keyed on the shaft has an exceptionally long hub, then two keys should be fitted.

KEYWAYS FOR MILLING CUTTERS

Square Keyway

Half-Round Keyway

[Pratt & Whitney, Hartford, Conn.]

GIBS AND KEYS (Cottered Joints)

Taper of key 1/20 to 1/100, if more than 1/25 the key is likely to slip.

d = dia. of rod C = .2d A = 1.2d D = .4d

Thickness of key at center = .3 d

B = .4d

MISCELLANEOUS FASTENINGS

T SLOTS

Width of Slot A Ins	Dia. of Neck of Cutter	Width of Slot B	Depth C	Extreme Limit D		
5/16 3/8	9/32 11/32	5/8 11/16	5/32 7/32 7/32 7/32	3/8		
7/16	3/8 7/16	13 16 15 16	7 ³² 9 ³² 9 ³² 13 ³	7/16 9/16		
3/4 7/8	21/32 21/32 25/32 29/32	15/16 15/16 15/8	13/32 17/32 11/16	1 1 ¹ / ₁₆		
1	29/32	17%	13/16	13/16		

[Brown & Sharpe, Prov., R. I.]

BOLT HEADS FOR T SLOTS

Width of slot A Ins.	Diameter beit	Side of sq. bolt head	Thickness of head
5/16 3/	1/4	9/16 5/8	1/8
7/8 7/16 1/6	3/8 7/2	3/4 7/6	3/16 1/
5/8 3/4	1/16 1/2 5/6	1½ 1¼	3/8 1/2
7/8	3/4 7/8	19/16 113/16	5/8 3/4

SPRING COTTERS

Wire Gauge	Diameter	Lengths*	Wire Gauge	Diameter	Lengths*
13 12 11 10 9 8	3/32 7/64 1/8 9/64 5/32 11/64	1/2 to 2 1/2 " 2 1/2 " 21/2 1/2 " 21/2 1/2 " 21/2 1/2 " 21/2	7 6 5 4 1	3/16 13/64 7/32 1/4 5/16	3/4 to 3 3/4 " 3 1 " 3 1 " 4 1 " 4

^{*} Advancing by 1/4".

Flat Spring Key

FLAT SPRING KEYS

Width	Length									Y.
3/8 1/2 5/8 3/4	1½ 1¼ 1¼	1½ 1½ 1½	134 134 134	2 2 2 2 2	$ \begin{array}{c c} 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \end{array} $	$ \begin{array}{c c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	$ \begin{array}{c c} 2\frac{3}{4} \\ 2\frac{3}{4} \\ 2\frac{3}{4} \\ 2\frac{3}{4} \end{array} $	3 3 3 3	3½ 3¼ 3¼	3½ 3½ 3½

[F. P. Smith & Co., Sharon Hill, Pa.]

SECTION III

POWER TRANSMISSION

SHAFTING — QUILL DRIVES — COUPLINGS — CLUTCHES — COLLARS
— BEARINGS — PULLEYS — MULE STANDS — BELTING
— BELT DRIVES — ROPE SHEAVES AND PULLEYS —
CHAINS FOR TRANSMITTING POWER—SPROCKETS
— GEARING: SPUR, MITRE, BEVEL, WORM,
HERRINGBONE—THRUST OF SPIRAL

SHAFTING

AND HELICAL GEARS

Rolled shafts for power transmission in mills and factories can be obtained up to 8 ins. dia., and in stock lengths 10, 12, 14, 16, 18, 20, 22 and 24 ft. lengths. For general use the sizes in the table are recommended.

Dia.	Weight lbs. per ft.	Dia.	Weight lbs. per ft.	Dia.	Weight lbs. per ft.
$ \begin{array}{c} 13/6 \\ 17/6 \\ 111/6 \\ 115/6 \\ 23/6 \end{array} $	3.76 5.52 7.60 10.02 12.78	$\begin{array}{c} 27_{16} \\ 21_{516} \\ 33_{16} \\ 37_{16} \\ 31_{516} \end{array}$	15.86 23.04 27.13 31.56 41.40	47_{16} 41_{16} 41_{16} 57_{16} 51_{16} 51_{16}	52.58 65.10 78.95 94.14

Forged steel shafting is preferable to rolled for sizes 6 ins. dia. and above, as it is stronger and more homogeneous. Forged steel shafting as manufactured by Dodge Manufacturing Co. has the following characteristics: tensile strength per sq. in. 60,000 to 70,000 lbs., elastic limit 30,000 to 36,000 lbs., elongation in 2 ins. 25 to 30%, reduction in area 40%.

Shafting in machine shops should run at about 160 rev. per min., and in wood working shops 250.

Shafting should be supported so the deflection is not greater than .01 in, per ft. See pages 93 and 106.

QUILL DRIVES

For heavy duty and where it is necessary to use a clutch on the driving shaft, quill drives can be installed to advantage.

A quill is a hollow shaft, usually cast iron, larger in diameter than the line shaft. The quill is supported by independent bearings (indicated by crosses in the figure) the clutch is attached to the face F, and at H is keyed the pulley. The clutch when disengaged is stationary. The line shaft supported by its own bearings revolves but does not come in contact with the quill. The quill relieves the line shaft of the weight of the pulley and belt pull.

DIMENSIONS IN INCHES

Shaft Sizes	A	В	С	D	G	Н	F and T	Keyseat in Swell
$\begin{array}{c} 2^{15} 16 \\ 3^{7} 16 \\ 3^{16} 16 \\ 4^{7} 16 \\ 4^{15} 16 \\ 5^{7} 16 \\ 6^{7} 16 \\ 6^{15} 16 \\ 7^{7} 16 \\ 7^{15} 16 \end{array}$	$\begin{array}{c} 5^{11} 16 \\ 3^{3} 16 \\ 6^{11} 16 \\ 7^{7} 16 \\ 8^{3} 16 \\ 8^{11} 16 \\ 9^{3} 16 \\ 10^{3} 16 \\ 10^{11} 16 \\ 11^{11} 16 \\ 12^{3} 16 \\ \end{array}$	12 14 14 16 16 18 18 21 21 24 24	3/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	$\begin{array}{c} 6^{11} \\ 7^{3} \\ 16 \\ 7^{3} \\ 16 \\ 8^{7} \\ 16 \\ 8^{7} \\ 16 \\ 9^{3} \\ 16 \\ 10^{3} \\ 16 \\ 11^{3} \\ 16 \\ 12^{11} \\ 16 \\ 13^{3} \\ 16 \\ \end{array}$	13/4 13/4 2 2 2 21/4 21/4 21/2 21/2 23/4 23/4	Not less than width of face of pulley.	Determined by size of clutch used.	1 1/4 x 1/4 1 1/2 x 1/4 1 1/4 x 1/4 1 1/4 x 1/4 1 1/4 x 1/4 2 x 3/8 2 x 3/8 2 1/4 x 3/8 2 1/2 x 3/8 2 3/4 x 3/8 3 x 3/8 3 x 3/8

[T. B. Wood's Sons Co., Chambersburg, Pa.]

HORSE POWERS OF SHAFTING UNDER DIFFERENT CONDITIONS

0 41		200	17 30 48	73 105 145	194 254 406	610	:::	:::
with no		400	38 38	58 84 116	155 203 325	488 699 963	:::	:::
power w	nute	300	2382	44 63 87	117 152 244	366 524 723	998	
n of po	Revolutions per minute	250	24 24 24	36 52 72	97 127 203	305 437 602	832 1080 1373	1715
missio.	tions I	200	120	245 288	78 101 163	244 350 482	666 864 1099	1372 1688 2048
trans	tevolu	150	14	22 31 43	58 76 122	183 262 361	499 648 824	1029 1266 1536
For simple transmission of power with no bending strains. H. P. = $\frac{D^3R}{50}$	I	100	100	15 21 29	39 51 81	122 175 241	333 432 549	686 844 1024
For		20	010010	7 10 14	19 25 41	61 87 120	166 216 275	343 422 512
		500	111 20 32	970	129 169 271	407	:::	:::
rings D*R 75	te	300 400	16	39	104 135 217	326 466 642	:::	:::
bea.	nin	300	120	29 58 58	78 101 163	244 350 481	999	:::
with H. P.	per n	250	100	4824	135	204	555 720 915	1143
fts,	Revolutions per minute	200	1384	19 39 39	52 68 108	163 233 321	444 576 732	915 1125 1365
or line sha every 8 ft.	evolu	150	100	15 21 29	39 51 81	122 175 241	333 432 549	686 844 024
r lin	R	00	2140	10 11 19	28420	81 117 161	222 288 366	457 563 683
Fo	-	50 100		10	13 27 27	588	111 144 183	229 281 341
		200	19 19	23 28 58	78 100 162	244		NNW
strains, D ³ R 125		400	15	8333 46	62 81 130	195 280 385	:::	:::
и	Revolutions per minute	300	47-11	17 25 34	46 61 97	146 210 290	400 520	• • • • • •
heavy , etc. H. P.	per n	250	3.3	15 21 29	39 50 81	122 175 240	332 432 550	989
For head shafts, heavy shafts with gears, etc. H. P.	tions	200	0.00 0.00	12 17 23	31 40 65	98 140 192	265 345 440	550 675 820
ad sl	noon	150	8.4 8	13	23 80 40 40	73 105 144	330	412 506 614
r he	R	100	2.3	1286	15 20 32	49 70 96	133 173 220	275 337 410
Fo		20	1.2	640	1001	428 48 48 48	986	137 170 205
Dia.	Ins.		13/6 17/6 111/6	115/6 23/6 27/6	211/6 2215/16 37/6	315,6 47,76 415,6 37,6 37,6	67%	877,2

Dodge Sales & Eng'g Co., Mishawaka, Ind.] [In formulæ—D = dia. of shaft, and R = rev. per min.

COUPLINGS

FLANGE COUPLINGS

Male and Female Type

Standard Plain Face Type

Shaft Sizes	A	В	Shaft Sizes	A	В
13/6	6	45/8	311/6	12	10
17/6	634	51/8	315/6	12 ¹ / ₂	1058
11/6	714	53/4	47/6	13 ¹ / ₂	1358
111/6	8	63/8	418/6	16 ¹ / ₄	1438
23/6	81/2	67/8	57/6	17 ¹ / ₂	1518
27/6	9	73/8	518/6	19	1618
211/6	934	73/8	67/6	20	1634
215/6	101/2	87/8	618/6	21	1712
33/6	107/8	87/8	77/6	22 ¹ / ₂	1812
37/6	111/4	93/8	718/6	24	1912

Couplings are forced on shafts by hydraulic press and keyed. Shafts are then centered in a lathe and the couplings faced. Number of bolts = .78 dia. of shaft + 2. Bolt dia. = .13 dia. of shaft + $\frac{1}{4}$ ". Total thickness of web = .5 dia. of shaft + $\frac{3}{8}$ ".

Double Cone Compression Couplings

D Shaft Sizes Ins.	A	В	С	D Shaft Sizes Ins.	A	В	С
$\begin{array}{c} 1^{15}_{16} \\ 2^{3}_{16} \\ 2^{7}_{16} \\ 2^{11}_{16} \\ 2^{15}_{16} \\ 3^{3}_{16} \\ 3^{7}_{16} \\ 3^{15}_{16} \\ 3^{15}_{16} \\ 4^{7}_{16} \end{array}$	$5\frac{1}{2}$ 6 $6\frac{5}{8}$ 7 $7\frac{1}{8}$ $8\frac{1}{4}$ 9 $9\frac{5}{8}$ $10\frac{1}{8}$ $11\frac{1}{4}$	778 858 912 1014 1112 1214 13 1414 15 1612	3 3 3 4 4 1 8 2 4 7 8 8 6 6 3 4 4 1 8 8 6 3 4 4 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	415/16 57/16 515/16 67/16 615/16 77/16 715/16 87/16 815/16	12½4 13¼ 14 15¼ 16¼ 17½ 20½ 20½	18 19 ³ / ₄ 21 ¹ / ₂ 23 ¹ / ₄ 25 27 29 32 32	7½ 8¼ 9 9³¼ 10½ 11¼ 12 13½ 13½

[T. B. Wood's Sons Co., Chambersburg, Pa.]

The coupling consists of shell, two cones and bolts. Each cone has a keyway cut in it as also in each end of the shafts. By drawing up the bolts an equal pressure is exerted on the cones, which are compressed and drawn into the outside shell. With this type of coupling the shafts may be slightly out of alignment yet transmit power satisfactorily.

Universal Giant Compression Couplings

D Shaft	Dime	ensions in l	Inches	D Shaft	Dime	Dimensions in Inches				
Sizes Inches	Sizes Inches A B C	С	Sizes Inches	A	В	C				
15/16 $13/16$ $17/16$ $111/16$ $115/16$ $23/16$ $27/16$	45/8 53/8 61/4 61/2 73/8 73/4	3 ³ / ₄ 4 ³ / ₈ 5 ¹ / ₄ 6 ¹ / ₈ 7 77/ ₈ 8 ³ / ₄	$\begin{array}{c} 2\\ 2\frac{1}{4}\\ 2\frac{5}{8}\\ 3\frac{1}{8}\\ 3\frac{1}{2}\\ 4\\ 4\frac{3}{8} \end{array}$	$\begin{array}{c} 2^{11}_{16} \\ 2^{15}_{16} \\ 3^{3}_{16} \\ 3^{7}_{16} \\ 3^{11}_{16} \\ 3^{15}_{16} \end{array}$	$ \begin{array}{c} 9\frac{1}{4} \\ 10 \\ 10\frac{3}{4} \\ 12 \\ 12\frac{1}{2} \\ 13 \end{array} $	$\begin{array}{c} 9^{5/8} \\ 10^{1/2} \\ 10^{1/2} \\ 11^{3/8} \\ 12^{1/4} \\ 13 \end{array}$	47/8 51/4 51/4 53/4 61/4 63/4			

[T. B. Wood's Sons Co., Chambersburg, Pa.]

This type of coupling is suitable for repairing a broken shaft quickly. It is designed to use without shaft keys, and consists of a slotted sleeve with a reverse taper on the outside, and compression flanges. By tightening bolts in the flanges, they are drawn together causing the sleeve to grip the shaft. To obtain an even grip the flanges should be equidistant.

RIBBED COMPRESSION COUPLINGS

A	В	Number of Bolts	Dia. of Bolts
41/8	51/2	4	3/8
5	7	4	3/8 3/8 3/2
63/8	87/8 97%		. 5/8
7½ 8¾	107/8	6	5/8
914	$12\frac{3}{4}$ $13\frac{3}{4}$	6	7/8 7/8
12	$14\frac{7}{8}$ $16\frac{1}{2}$	6	7/8
	4½ 4¾ 5 6 6¾ 7¼ 7½ 8¾ 9¼ 10 105%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Keys are required.

[T. B. Wood's Sons Co., Chambersburg, Pa.]

RING COMPRESSION COUPLINGS

These couplings consist of two half sleeves tapered on the outside and two forged steel rings bored to match at each end. In fitting couplings to shafts the rings are driven towards each other, forcing the sleeves to grip the shafts. Keys are required.

+					1 1		-						
Shaft dia.	115/16	23/16	27/16	211/16	215/16	33/16	37/16	311/16	315/16	47/16	415/16	57/16	515/16
Length of coupling	8	9	10	11	12	13	14	15	16	18	20	22	24

FLEXIBLE COUPLINGS

Outside Diameter A Inches	Maximum Shaft Diameter Inches	No. of Links	B Inches	C Inches	H. P. at 100 Rev. Steady Load
5 7 9 12	15/16 13/16	3	1 11/2	13/4 21/2 3 31/2 31/2 4 6 6 7 7 9 9 111/2 13	$\frac{1}{2^{3}\!4}$
	17/6	1	11/2	272	434
10	1 16 1 15 16	9	21/2	21/	1112
12	23/16	3	278	21/	$\frac{11^{\frac{1}{2}}}{15}$
12	27/16	4	21/8	3/2	21
10	23/16	4	21/8	4	47
15 18 18	37/6	4	3/8	0	67
24	2 ³ / ₁₆ 2 ⁷ / ₁₆ 3 ³ / ₁₆ 3 ⁷ / ₁₆ 3 ¹⁵ / ₁₆	0	3/8	7	98
24	47/	0	35/8 35/8 35/8	7	130
24 30	415	6	51/4	0	225
30 .	57/	8	51/	0	300
36	57 16 47 16 415 16 57 16 57 16 67 16 67 16	3 4 3 4 4 6 6 8 8 8	51/	111/6	380
36	67/10	10	51/4	111/6	480
42	615/16	10	61/4	13	680
42	77/16	12	617	13	820
48	7 ⁷ / ₁₆ 7 ¹⁵ / ₁₆	12	61/4	14	960
54	87/16	12	71/	14 15	1220
54	815/16	14	71/4	15	1420
60	87/16 815/16 97/16 1015/16	16	71/4	16½ 18	1710
72	1015/16	12	71/4	18	2360
72	117/16	14	71/4	18	2770
72	$\begin{array}{c} 11^{7/16} \\ 11^{15/16} \end{array}$	16	71/4	18	3160
	The Part	Source State			

CLUTCHES

SPLIT FRICTION CLUTCH

Clutch Sizes Ins.	Max. dia.of Shaft	B	С	D	Е	F	G	н	К	S	w
10 12 14 16 18 20 22 24 28 30 36 42 48 54 60	2½ 3 3½ 4½ 5 6 6 6½ 7 7½ 8 10 10 12 12 15	21/2 21/2 21/2 3 3 3 3 3 3/2 3/2 2 1/2 2 1/2	678 713/6 813/4 878 813/6 91/8 11 11 1/2 11 1278 16 161/2 203/4	334 414 414 414 454 454 577 778 11 1238 16	14 17 19 21 23 25½ 27 29¼ 34¼ 40¼ 48 60½ 67¾ 83	214 258 3 358 4 438 51/2 7 878 938 11 11 131/4	nd To suit bore of grees of pulley	412 412 578 6 7 784 858 934 1134 1143 1412 1912	1 34 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	155% 169% 1734 19 19 19% 203% 231/2 2534 Use quills	10 ⁵ 8 11 ⁹ / ₁ 6 12 ³ / ₄ 13 13 13 ³ / ₄ 6 14 ³ / ₆ 16 ¹ / ₂ 8 18 ³ / ₄ 18 ⁷ / ₆ 22 ³ / ₆ 28 ³ / ₆ 30 ¹ / ₆ 36 ³ / ₄

[Dodge Sales & Eng'g Co., Mishawaka, Ind.]

FRICTION CLUTCH

Style of Friction Clutch Cutoff Coupling as used on 37-inch and 43-inch

FRICTION CLUTCH—Continued

Clutch	ter of	hest Speed Cut-off could Run	H. P. at 50 R. P. M. oder normal conditions	, Di	mensio	ns of W	hole Clu	tches O	nly	Weight Pounds
Size of Clu Inches	Diameter Shaft	Highest Cut-	H. F. 100 R. under r condi	A	В	C	E	F	G	We
5 6 8 10 12 14 16 18 20 22 24 28 32	15/6 13/6 17/6 111/6 115/6 23/6 21/6 21/6 21/6 33/6 33/6 31/6 47/6	400 400 400 350 300 275 250 225 200 200 200 200	134 212 5 7 12 18 25 34 45 55 65 85 112	1 1½2 13/8 1½2 2 2½2 21/4 21/2 23/4 31/2 31/4 41/2 5	21/2 21/2 21/2 34 51/8 5 61/4 61/2 63/4 71/2	234 234 334 451 551 551 771 814 91	7 ³ / ₄ 9 11 13 15 ¹ / ₂ 18 20 ¹ / ₄ 22 ¹ / ₄ 22 ¹ / ₂ 25 ¹ / ₂ 28 29 ³ / ₄ 34 39	2 2 1/2 3 1/4 3 1/2 4 1/2 5 5 1/4 5 5 5 1/4 5 6 6 3/4	3½ 4 4¼ 5 6 6 6½ 7 7 7½ 73,4 8½ 9	33 42 68 115 202 295 367 479 715 862 1010 1269 1765

[Moore & White Co., Phila., Pa.]

SAFETY TYPE MULTIPLE DISC SOLID CLUTCH COUPLING

Clutch Size, Inches	A	В	С	D	E	F	н	J	K	L	М	N
6 8 10 12 14	2 2½ 3 3½ 4	2 ³ / ₄ 3 ¹ / ₄ 3 ³ / ₄ 4 ¹ / ₂ 5	41/8 47/8 53/8 73/6 73/8	3 4 4 ¹ / ₂ 5 5 ³ / ₄	$1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{5}{8}$ $1\frac{11}{16}$ $1\frac{7}{8}$	1 1 1 ¹ / ₄ 1 ³ / ₄ 1 ³ / ₄	$\begin{array}{c} 75/8 \\ 101/8 \\ 125/8 \\ 151/8 \\ 171/2 \end{array}$	$\begin{array}{c} 8\\ 10^{3} \\ 8\\ 11^{6} \\ 8\\ 13^{3} \\ 8\\ 16^{1} \\ 2\\ \end{array}$	$2\frac{3}{4}$ $3\frac{3}{8}$ $3\frac{11}{16}$ $5\frac{3}{16}$ $6\frac{1}{16}$	117/8 143/8 165/8 203/8 221/8	67/8 91/4 103/8 117/8 143/4	9/16 5/8 11/16 13/16 15/16

Horse Power Capacities, Largest Bores and Safe Speeds Multiple Disc Solid Clutch Coupling

Clutch Size, Inches	H. P. at 100 R. P. M.	/Largest Possible Bore, Inches	Size of Shaft Equal in Capacity to Coupling, Inches	Speed Allowable for Coupling as Ordinarily Made
6	4	2	1 ⁷ / ₁₆ 1 ¹⁵ / ₁₆	560
8	8	23/4	1 15 16	520
10	15	$3\frac{1}{4}$	23/16	480
12	25	33/4	$\frac{2^{3}}{16}$ $\frac{2^{7}}{16}$	440
14	40	41/2	215/16	400

[Dodge Sales & Eng'g Co., Mishawaka, Ind.]

SOLID FRICTION CLUTCH

Size of	Larges	t Shaft				1. 3	- 7			
Clutch Ins.	Reg.	Specl.	A	В	С	D	Е	F	ĸ	S
4	11/4		41/2	4	43/4	11/2	53/8	3/4	43/8	1034
4 5 6	11/2		5	41/2	43/4	13/4	61/2	3/4	43/8	111/2
6	13/4		6	51/2	63/8	17/8	711/16	11/4	57/8	141/4
7	2		7	61/4	67/8	21/8	87/8	11/4	63/8	16
8 9	21/4		8	71/4	71/2	21/4	101/8	11/2	7	173/4
9	$2\frac{1}{2}$		10	$9\frac{1}{4}$	75/8	23/8	113/8	11/2	7	20
10	3		11	101/4	71/2	21/2	125/8	1	67/8	21
12	3	4	12	11	81/2	23/4	151/8	11/4	73/4	231/4
14	31/2	5	13	12	9	3	175/8	11/4	81/8	25
16	41/2	6	14	13	97/8	41/8	191/2	11/2	9	28

[Dodge Sales & Eng'g Co., Mishawaka, Ind.]

This clutch is adapted particularly for use on countershafts and other places where a solid clutch is required.

Size of Clutch, ins.	Max. Rev. per Min.	Horse Power	Size of Clutch, ins.	Max. Rev. per Min.	Horse Power
4	500	51/2	9	500	23
5	500	9	10	500	40
6	500	12	12	450	59
7	500	16	14	400	102
8	500	19	16	400	170

JAW CLUTCH

Shaft Size, Ins.	A	В	С	D	Е	F	н	Shaft Size, Ins.	A	В	С	D	Е	F	н
15 16 1 7 16 1 17 16 1 11 16 1 15 16 2 8 16 2 17 16 2 11 16 2 11 16	$\begin{array}{c} 6^{3}4\\ 7^{5}8\\ 8^{3}8\\ 9^{1}8\\ 9^{7}8\\ 10^{1}2\\ 11^{5}8\\ 12^{1}8\\ 12^{7}8\\ \end{array}$	31/4 41/2 51/4 57/8 61/2 7 78/4 81/8	31/8 31/2 37/8 41/2 41/2 51/4 55/8	21/2 27/8 31/8 31/2 33/4 41/2 45/8 47/8	1/2 5/8 5/8 11/16 11/16 8/4 7/8 7/8	11/8 11/4 13/8 11/2 15/8 13/4 17/8 2 21/8	7/8 1 11/8 11/8 11/4 13/8 11/2 16/8 13/4	315/16 4 7/16 415/16	141/8 153/8 165/8 183/4 201/4 22 233/4 251/2	10½ 11¾ 13 14¾ 16⅓	6½ 7 77/8 8½ 9¼ 10 10 ³ / ₄ 11 ³ / ₄	53/8 6 1/4 7 1/4 7 3/4 8 1/2 9 1/4 9 3/4	$ \begin{array}{c} 1^{1}_{16} \\ 1^{3}_{16} \\ 1^{3}_{16} \\ 1^{3}_{16} \\ 1^{3}_{8} \end{array} $	23/8 21/2 3 31/4 31/2 33/4	17/8 2 21/8 21/2 23/4 3 31/4 31/2

Spiral Jaw Clutch Arrangements Clutch Drives Wheel

Right-Hand Clutch

Left-Hand Clutch

Left-Hand Clutch

Right-Hand Clutch

SOLID AND SPLIT SAFETY COLLARS

(See opposite page for table)

Spiral Jaw Clutch Arrangements Wheel Drives Clutch

Right-Hand Clutch

Right-Hand Clutch

Left-Hand Clutch

SOLID AND SPLIT SAFETY COLLARS—for figure see page 104.

Shaft	Solid C	collars	Split C	ollars	Shaft Size	Solid C	ollars	Split C	Collars
Size Inches	A	В	A	В	Inches	A	В	A	В
$\frac{13}{16}$ $\frac{17}{16}$	2 ⁷ / ₁₆	13/8 15/8	3½ 3½ 3½	$\frac{13/8}{15/8}$	63/4	107/8 107/8	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	11 11	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$
$\frac{1^{11}}{1^{15}}$	$\frac{3^{3}}{16}$	15/8 15/8	35/8	15/8 15/8	71/4 71/2	$11\frac{3}{8}$ $11\frac{3}{8}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	$11\frac{5}{8}$ $11\frac{5}{8}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$
2^{3}_{16} 2^{7}_{16} 2^{11}_{16}	4 ¹ / ₁₆ 4 ⁵ / ₁₆	17/8	$\begin{array}{c} 4^{11} & 6 \\ 4^{15} & 6 \\ 53 & 6 \end{array}$	17/8	7 ³ ⁄ ₄ 8 8 ¹ ⁄ ₄	117/8 117/8 13	$ \begin{array}{r} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{3}{4} \end{array} $	$\begin{bmatrix} 12\\12\\13 \end{bmatrix}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$
215/2	$\begin{array}{c} 49_{16}^{10} \\ 4^{15}_{16} \\ 5_{16}^{3} \\ \end{array}$	$\frac{178}{178}$	$\begin{array}{r} 5^{3} & 16 \\ 5^{7} & 16 \\ 5^{11} & 16 \end{array}$	17/8 17/8 2	8 ¹ / ₂ 8 ³ / ₄	$13 \\ 13\frac{1}{2}$	3 ³ / ₄ 3 ³ / ₄	$\begin{vmatrix} 13 \\ 13 \\ 13 \frac{1}{2} \end{vmatrix}$	3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄
3 ³ / ₁₆ 3 ⁷ / ₁₆ 3 ¹¹ / ₁₆ 3 ¹⁵ / ₁₆	$\frac{5^{7}}{16}$ $\frac{5^{15}}{16}$	$\frac{2}{2\frac{1}{4}}$	$\begin{array}{c} 5^{15} & 16 \\ 6^{5} & 8 \end{array}$	$\frac{2}{2\frac{1}{4}}$	9 91/4	$13\frac{1}{2}$ 14	$\frac{3\frac{3}{4}}{3\frac{3}{4}}$	$\begin{vmatrix} 13\frac{1}{2} \\ 14 \end{vmatrix}$	33/4 33/4
315/16	63/16	21/4	7	21/4	91/2	14	33/4	14	33/4

(Continued on page 106.)

SOLID AND SPLIT SAFETY COLLARS-Continued

Shaft	Solid C	Collars	Split C	Collars	Shaft	Solid C	ollars	Split C	Collar
Size Inches	A	В	A	В	Size Inches	A	В	. A	В
4 ¹ / ₄ 4 ¹ / ₂ 4 ³ / ₄ 5 ¹ / ₂ 5 ¹ / ₄ 5 ¹ / ₂ 6 ¹ / ₄ 6 ¹ / ₂	73/8 75/8 77/8 81/8 85/8 85/8 91/8 91/8 103/8	31/4 31/4 31/4 31/4 31/4 31/4 31/4 31/2 31/2	7 ³ / ₄ 8 8 ¹ / ₄ 8 ¹ / ₂ 9 9 9 ¹ / ₂ 9 ¹ / ₂ 10 ¹ / ₂ 10 ¹ / ₂	31/4 31/4 31/4 31/4 31/4 31/4 31/4 31/2 31/2	9 ³ / ₄ 10 10 ¹ / ₄ 10 ¹ / ₂ 10 ³ / ₄ 11 11 ¹ / ₄ 11 ¹ / ₂ 11 ³ / ₄ 12	14½ 14½ 1558 1558 1618 1658 1658 17½ 17½	3 ³ / ₄ 3 ³ / ₄ 4 4 4 4 4 4	14½ 14½ 1558 1558 16⅓ 16⅓ 16⅓ 16³8 1658	3 ³ / ₄ 3 ³ / ₄ 4 4 4 4 4 4

Collars for shafts 3 ins. dia. and under have but one set screw. [Dodge Sales & Eng'g Co., Mishawaka, Ind.]

BEARINGS

Bearings (pillow block and hanger) in ordinary shop practice are spaced about 8 ft. apart (see page 93). The spacing should be such that the shaft deflection is not greater than .01 ins. per ft.

Length of heavy fixed bearings $2\frac{1}{2}$ to $3\frac{1}{2}$ times the shaft diameter; of light self adjusting 3 to $4\frac{1}{2}$. The allowable bearing pressure in lbs. per sq. in. of projected area babbitt or bronze lined is 100 to 155 lbs.

In locating bearings and in selecting the size of shaft it must be remembered that additional pulleys are often installed after the shafting is in place, and it is necessary to allow for them.

For oiling devices see page 107.

RIGID PILLOW BLOCKS

Shaft Sizes, Inches	A	В	C.	D	E	Bolts F	G	н	J	K	M
1 % to 114 1 1/4 to 114 1 1/4 to 114 1 1/4 to 124 2 1/4 to 124 2 3/4 to 224 2 1/4 to 234 2 1/4 to 33/4 3 1/4 to 33/4 3 1/4 to 33/4 3 1/4 to 4 1/4 3 1/4 to 6 1/4 3 1/4 to 6 1/4 6 1/4 to 7 1/4 7 1/4 to 8 1/4 8 1/4 to 10 1/4 9 1/4 to 10 10/4 9 1/4 to 10 10/4 9 1/4 to 10 10/4	5 6 6 7 1/2 8 9 7 9 7 9 10 10 11 12 13 14 14 11 11 14 14 14 14 14 14 14 14 14	7 61/2 8 5/8 91/2 101/4 111 3/4 112 121/4 114 1/2 115 1/2 17 118 1/2 20 3/4 225 13/4 14/2 25 1/2 26/8	23/8/8/2 25/8 3 3 4 4 4 4 5 5 5 6 6 7 7 3 4 3 5 8 9 9 1 1 2 3 4 1 4 1 1 2 3 1 1 4 1 1 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	53/8 55/8 63/4 63/4 63/4 63/4 63/4 63/4 63/4 63/4	41/2 43/4 53/8 661/2 77/2 83/8 910	11111111111111111111111111111111111111	111111111111111111111111111111111111111	15.00.00.00.00.00.00.00.00.00.00.00.00.00	337.1.5.4.1.8.6.5.6.6.7.7.8.9.6.6.4.6.6.6.4.6.6.6.6.6.6.6.6.6.6.6.6	414 55 53.8 66.34 71.9 85.9 95.8 80.34 112.34 115.34 117 118 119.34 211.42 211.43	13, 2 2, 2, 2, 2, 2, 2, 3, 3 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

Oil holes at each end of cap are tapped to permit use of grease cups.

[Dodge Sales & Eng'g Co., Mishawaka, Ind.]

LUBRICATING DEVICES FOR BEARINGS

Oil and grease cups. Oil cups are usually cast into the bearing cap and filled with waste saturated with oil. Instead of oil cups, grease cups may be tapped into the cap at each end.

Capillary oilers as made by the Dodge Manufacturing Co. consist of a wood block fastened in the bottom of the bearing sleeve, having alternate saw cuts through which the oil rises by capillary attraction from the reservoir below the sleeve.

Oiling rings (see figure). The rings as the shaft revolves, bring oil from the reservoir to the shaft.

RING OILING BEARINGS-Continued.

Dia. of Shaft	A	В	Е	н	Dia. of Shaft	A	В	E	Н
$\begin{array}{c} 2^{7} \overset{.}{16} \\ 2^{11} \overset{.}{16} \\ 2^{15} \overset{.}{16} \\ 3^{3} \overset{.}{16} \\ 3^{7} \overset{.}{16} \\ 3^{15} \overset{.}{16} \\ 4^{7} \overset{.}{16} \\ 4^{15} \overset{.}{16} \end{array}$	12 13 14 15 16 18 $20^{3}4$ $22^{1}/2$	5 ³ / ₈ 5 ⁷ / ₈ 6 ³ / ₈ 6 ⁷ / ₁ / ₂ 8 ³ / ₈ 9 ³ / ₄ 11 ³ / ₈	6 6½ 7 7½ 8 9 10¾ 11¼	10 11 12 13 14 16 18 20	5 ⁷ 16 5 ¹⁵ 16 6 ⁷ 16 6 ¹⁵ 16 7 ⁷ 16 7 ¹⁵ 16 8 ⁷ 16	24½ 26¾ 29¼ 30 31¼ 31½ 31¾	1114 1134 1238 1334 1412 1514 1618	12½ 13¾ 14½ 15 15 15½ 15¾ 15¾ 15¾	22 24 26 27 28 28 28 28

[Cresson-Morris Co., Phila., Pa.]

ADJUSTABLE PILLOW BLOCKS

					S HERVE	12	Во	lts
Dia. of Shaft	A	В	С	D	E	F	No.	Size
In. 13/6 17/6 11/16 115/16 23/16 21/16 33/16 33/16 41/16 55/16 55/16 55/16 65/15/16	In. 7½2 8½2 10½2 11 12½ 13½ 14 16 17 20 22½2 23½ 25 27½	In. 6 7 8 9 10 10 12 11 2 12 13 13 13 12 15 12 17 12 20 22 12	In. 2½ 3 3½ 4 4½ 55½ 6½ 7 7½ 8 8½ 9½ 10	In. 5 6 61/2 71/2 81/2 9 91/2 10 11 111/2 131/2 15 16 17 18	In. 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	In. 2½2 3½8 33¾4 4½8 4½8 4½8 5½4 5½2 53¾4 65½8 7 5½8 8¾4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	In. 1/2/5/8/8/5/8/8/3/4/8 1 1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1

[Cresson-Morris Co., Phila., Pa.]

HANGERS-8 TO 46 IN. DROP

PULLEYS

Ordering Pulleys.—The following outline can be used to advantage in ordering pulleys.

- Service.—State whether for single or double belt. If neither is specified, single belt pulleys will be furnished.
 - If greater horse power than a double belt is required, the horse power, rev. per min. and service should be given.
- Description.—State whether solid, split, clamp hub, flange or special.

If no description is given, plain solid pulleys will be furnished. In sending sketches, follow the instructions on page 111.

- 3. Diameter.—Specify diameter in inches. This should be the first dimension.
 - If exact diameter is required, mention this fact and state whether measurement shall be made at crown or edge of rim. An extra charge is made for exact diameter.
- 4. Face.—Specify face in inches. This should be the second dimension given, and should be specified as the width of belt to be used, unless an exact width of face is desired, in which case this should be noted on order by having the word "exact" follow dimension of face.
- 5. Bore.—Specify exact diameter of shaft in inches. This should be the third dimension.
 - If shaft is of an odd or special diameter make a gauge to accompany order.
 - Never send orders as pulley to be bored 1^{15} /6" scant, $2\frac{7}{8}$ " full or about $\frac{1}{4}$ " under 3".
- Crown or Straight Face.—After specifying dimensions of pulley, state whether crown or straight face. If neither is specified, crown face pulleys will be furnished.

Pulleys for belts which do not shift should have crown face. Pulleys for shifting belts should have straight face.

Keyseat or Set Screw.—State whether keyseated or set screwed or both.

If neither is specified, set screws only will be furnished.

If keyseated, state whether straight or taper.

Pulleys keyseated and not set screwed should have taper keyseat.

Taper keyseats will be cut with ½" taper per foot, unless otherwise specified. Split hub pulleys are recommended to have straight keyseat with set screws on top.

[Data from T. B. Wood's Sons Co., Chambersburg, Pa.]

In making sketches, especial care should be taken to indicate those dimensions required to be exact. The bore will always be considered an exact dimension, but the diameter, width of face and length of hub are dimensions which are not always required to be of an exact size. Cast-iron pulleys are known in the trade by the terms—single belt, double belt and triple belt which terms refer to leather belting.

Single belt pulleys can be held on the shaft by set screws, while double belt require keys with two set screws over the keyway.

Single and double belt pulleys up to 40 ins. dia. are balanced to run at 300 ft. per min., and over 40 ins. at 3,500.

NUMBER OF ARMS

Dia. of Pulley	Width of Face	N	umber of
		Arms	Sets of Arms
up to 14 ins. 15 " 39 "	up to 19 ins.	4	1
	20 " 49 "	6	2
40 " 120 "	up " 19 " 20 " 49 "	8	$\frac{1}{2}$
	49 and over	8	3

Diameter every half inch from 6 to 24 ins., every inch 25 to 50, and every 2 ins. 52 to 120. Split pulleys can be obtained in nearly all the sizes as solid.

For intermittent driving of a machine, tight and loose pulleys are employed—both having the same diameter with the faces crowned, or one pulley has a 45 deg. flange, with the face crowned, the flange

having the same outside diameter as the tight pulley at the edge of the rim, the belt surface being one inch smaller in diameter than that of the tight, thus the belt is relieved of strain when running idle. The hub of the tight pulley is flush with the edge of the rim on each side, with one end of the hub faced off. The hub of the loose pulley extends $\frac{1}{8}$ in. beyond the edge of the rim on each side, with both ends of hub faced off.

Internal or drop flanges greatly strengthen the rim. Pulleys with such flanges are installed when heavy, tight belts are used.

Pulleys can also be obtained with external flanges at center or side.

PROPORTIONS

Width of face $C = 1.13 \times \text{width of belt.}$ $D = \frac{1}{5} A$

R = radius of pulley $E = 1\frac{1}{8} \text{ dia. of shaft}$

 $A = \frac{1}{4}'' + \frac{C}{4} + .014R$ $F = \frac{1}{2}B$

 $B = \frac{3}{4}A$ $G = \frac{1}{2}A$ Thickness of metal around shaft = .3 dia. of shaft.

Pulleys for shifting belts should have a straight face and for non-shifting a crown. The crown up to 12 ins. in width varies with different manufacturers from $\frac{1}{2}$ 8 to $\frac{1}{4}$ in., and above 12 ins. from $\frac{1}{2}$ 8 to $\frac{1}{4}$ in. per foot. When a belt is shifted from one side of the center line to the other, the face should be straight.

CROWNED CAST IRON PULLEY (Gisholt Machine Co

E STEE													(GI	SHUI	0 141	aci	IIIC	00
Width of	Leat	her B	elting	g			1/2	5	8	8/4	7/8	1	11/4	13	2 1	3/4	2	21/4
Width of	Pull	ey Fa	ce				3/4	7	8 1		11/8	11/4	11/2	13	4 2		234	21/2
Radius of	Cro	wn						5			63/4			10	/2		1	5
(Based of Width,	n Ur App	iwin's r.)	For	mula	of 1	-24	4 1											
Crowning	(Ris	e at (Cente	r of F	lim.).	••••	.014	.01	0.0	19 .	024	.029	.027	.03	7 .0	48 .	042	. 052
D'WITE.									`						P	ROP	ORT	ON
Diam			6				8				10					12		
Face		2	3	4	2	3	4	5	2	3	4	5	6	2	3	4	5	6
RIM	A	1/8	1/8	1/8	1/8	3/8	1/8	1/8	1/8	1/8	1/8	1/8	5/32	5/32	5/2	5/32	5/32	5/32
	В	7/82	34	%2	7/32	34	%2	5/16	7/32	1/4	%2	5/16	3/8	1/4	%2	5/16	11/32	3/8
ARM	C	34	3/4	7/8	3/4	3/4	7/8	1	7/8	7/8	1	11/8	11/4	7/8	7/8	1	11/8	11/4
	D	3/8	3/8	7/16	3/8	3/8	7/16	1/2	3/8	8/8	7/16	1/2	9/16	3/8	3/8	7/16	1/2	%6
HUB	E	1/2	1/2	%6	%6	%6	5/8	5/8	5/8	5/8	5/8	11/16	11/16	5/8	5/8	5/8	11/16	11/16
	F	1½	21/4	23/4	13/4	21/4	23/4	31/2	13/4	21/4	23/4	31/2	41/2	13/4	21/4	23/4	31/2	41/2
Diam					22		A ₁₁	N		Į,		24						A
Face		2	3	4	5	6	7	8	3	4	5	6	7	8	9	3	4	5
RIM	A	3/16	3/16	⁸ / ₁₆	7/52	7/32	7/32	7/32	7/22	7/82	7/2	7/22	7/82	7/32	7/32	7/32	1/2	7/52
	В	%2	⁵ /16	11/22	13/32	7/16	15/32	1/2	11/32	3/8	13/82	7/16	15/32	1/2	17/32	11/82	3/8	13/32
ARM	С	1	1	11/8	11/4	11/2	11/2	13/4	11/8	11/8	11/4	1½	13/4	17/8	17/8	11/8	11/8	11/4
	D	7/6	7/16	1/2	%6	11/16	11/16	3/4	1/2	1/2	%6	11/16	3/4	13/16	18/16	1/2	1/2	%6
HUB	E	11/16	8/4	3/4	3/4	13/16	7/8	7/8	3/4	13/16	13/16	7/8	7/8	15/16	15/16	13/16	13/16	7/8
	F	13/4	21/2	31/2	41/4	51/4	6	7	23/4	31/2	41/2	51/4	6	7	8	23/4	31/2	41/2
	-		000			-						-	•		2100	T.		1 17

FOR LEATHER BELTING (see Figure on page 116)
Madison, Wis.

																				1.0				
21/2	2	3/4	3	3	1/4	31/2	2 3	33/4	4		41/2	.5		51/2	6		61/2	7		8		9	10	11
23/4	3		33/8	3	5/8	37/8	4	1/8	43/	8	5	51	2	6	6	1/2	7	7	8/4	83/4	1	0	11	12
			20					25				3	3				42			5	61/2		70	0
				T					15		Ţ,	1		1							1			
063	.08	56	.071	0.0	82	.075	0.0	85	.09	7 .	095	.11	5 .	133	.12	26	146	.1	79	170	.2	22 .	217	.258
F	PU	LLE	YS																				N.	
300	7	14					1	6		_		,		18							20			
2	3	4	5	6	2	3	4	5	6	7	2	3	4	5	6	7	8	2	3	4	5	6	7	8
5/32	5/82	\$/32	3/32	5/32	5/32	5/82	5/82	5/82	5/32	3/16	3/16	3/16	3/16	3/16	3/16	3/16	7/32	3/16	3/16	3/16	3/16	3/16	3/16	7/52
1/4	%2	5/16	11/82	8/8	1/4	%2	8/16	11/22	3/8	7/16	%32	5/16	11/32	3/8	13/32	7/16	1/2	%2	⁵ /16	11/82	8/8	18/32	1/16	1/2
7/8	7/8	1	11/8	11/4	1	1	11/8	11/4	11/4	11/2	1	1	11/8	11/4	11/2	11/2	13/4	1	1	11/8	11/4	11/2	11/2	13/4
3/8	3/8	7/16	1/2	%6	7/16	7/16	1/2	9/16	%16	11/16	7/16	7/16	1/2	%6	11/16	11/16	3/4	3/16	7/6	1/2	%16	11/16	11/16	3/4
11/16	11/16	11/16	3/4	3/4	11/16	11/16	3/4	3/4	13/16	13/16	11/16	11/16	3/4	3/4	13/16	13/16	7/8	11/16	11/16	3/4	3/4	13/16	13/16	7/8
3/4	$2\frac{1}{4}$	23/4	31/2	41/2	13/4	21/4	23/4	3½	41/2	51/4	13/4	21/2	31/2	41/4	51/4	6	7	13/4	21/2	31/2	41/4	51/4	6	7
26				127			28	Ī						0							32			
6	7	8	9	3	4	5	6	7	8	9	3	4	5	6	7	8	9	3	4	5	6	7	8	9
7/32	7/32	1/4	1/4	7/32	7/32	7/32	7/32	1/4	1/4	1/4	7/32	752	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	%2	9/32
7/16	15/16	17/32	%6	11/32	3/8	13/32	7/16	1/2	17/32	%6	11/32	3/8	7/16	15/32	1/2	17/32	9/16	3/8	13/32	1/16	15/32	1/2	%6	8/8
1/2	13/4	17/8	17/8	11/4	11/4	11/2	11/2	13/4	17/8	2	11/4	11/4	11/2	11/2	13/4	17/8	2	11/4	1½	11/2	13/4	17/8	2	2
11/16	8/4	13/16	13/16	%6	%6	11/16	1i/16	3/4	13/16	7/8	%6	%16	11/16	11/16	3/4	13/16	7/8	%16	11/16	11/16	3/4	13/16	7/8	7/8
7/8	18/16	15/16	1	7/8	7/8	15/16	15/16	1	1	11/8	15/16	15/16	1	1	11/8	11/8	11/4	15/16	15/16	1	1	11/8	11/8	13/4
1/4	6	7	8	23/4	31/2	41/2	51/4	6	7	8	23/4	31/2	41/2	51/4	6	7	8	23/4	31/2	41/2	51/4	6	7	8

Steel pulleys can be run at higher speeds than cast iron as they are stronger and lighter. Furthermore, tests have shown that belts slip less on steel than on cast iron or wood.

Steel pulleys are of split construction, no keys being required, the pulleys being held to the shaft by compression of hub by bolts.

Data on steel pulleys as manufactured by the American Steel Pulley Co., Philadelphia, Pa., are given on pages 122 and 123.

Wood pulleys are cheaper and lighter than cast iron, and under certain conditions give excellent service. They should not be run in damp places nor at high speeds. A wood rim of hard maple segments, properly laid up in glue, has nearly three times the strength of good cast iron for resisting the stresses set up by its own rotation.

The tractive pull of a leather belt upon a wood rim is greater than upon any metallic rim. With wood pulleys looser belts can be run, and belt slippage can be reduced to a minimum.

There are no standard dimensions as manufacturers have developed their own designs. Below are sizes manufactured by the Dodge Mfg. Co., Mishawaka, Ind.

$$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2}$$

May be obtained in a variety of face widths—widths above 6 ins. advancing by two, as 6, 8, 10, 12, etc.

MULE STANDS

STATIONARY

Pulley Dia.x Face	A	В .	С	D	F	н	K	Rods Dia. x Lth.
10 x 3 10 x 4 12 x 5 12 x 6 12 x 7 16 x 8 24 x 10 24 x 12 30 x 14	4'0" 4'0" 4'0" 5'0" 5'0" 5'0" 6'0" 6'0"	$\begin{array}{c} 1^{15} 1_{6} \\ 1^{15} 1_{6} \\ 1^{15} 1_{6} \\ 2^{7} 1_{6} \\ 2^{7} 1_{6} \\ 2^{15} 1_{6} \\ 2^{15} 1_{6} \\ 2^{15} 1_{6} \\ 2^{15} 1_{6} \\ \end{array}$	10 10 10 12 12 12 13 13 13 18 13 78	8 ¹ / ₁₆ 8 ¹ / ₁₆ 8 ¹ / ₁₆ 10 10 10 11 ⁵ / ₈ 11 ⁵ / ₈	5/5/5/3/4/4/8/8/8	1 1 1 1 ¹ / ₈ 1 ¹ / ₈ 1 ¹ / ₄ 1 ¹ / ₄ 1 ¹ / ₄	3 3 3 ¹ / ₂ 3 ¹ / ₂ 3 ¹ / ₂ 4 4	14 x 5' 6" 14 x 5' 6" 14 x 5' 6" 38 x 5' 6" 38 x 7' 0" 12 x 7' 0" 12 x 8' 6" 58 x 8' 6"

ADJUSTABLE

Pulley Dia.x Face	A	В	С	D	F	н	J	к	Rods Dia. x Lth.
10 x 3 10 x 4 12 x 5 12 x 6 12 x 7 16 x 8 24 x 10 24 x 12 30 x 14	4'0" 4'0" 4'0" 5'0" 5'0" 6'0" 6'0"	$\begin{array}{c} 1^{15} & 16 \\ 1^{15} & 16 \\ 1^{15} & 16 \\ 2^{7} & 16 \\ 2^{7} & 16 \\ 2^{7} & 16 \\ 2^{7} & 16 \\ 2^{15} & 16 \\ 2^{15} & 16 \\ 2^{15} & 16 \\ \end{array}$	$ \begin{array}{c c} 12 \\ 12 \\ 12 \\ 137_8 \\ 137_8 \end{array} $	115%	3/4 3/4 7/8 7/8	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1^{1/8} \\ 1^{1/8} \\ 1^{1/8} \\ 1^{1/4} \\ 1^{1/4} \\ 1^{1/4} \end{array}$	$\begin{array}{c} 1^{11} & 6 \\ 1^{11} & 16 \\ 1^{11} & 16 \\ 1^{15} & 16 \\ 1^{15} & 16 \\ 2^{7} & 16 \\ 2^{7} & 16 \\ 2^{7} & 16 \\ \end{array}$	27/16 27/16 27/16 3 3 31/2 31/2 31/2	3/8 x 5/6" 3/8 x 5/6" 1/2 x 5/6" 1/2 x 7/0" 1/2 x 7/0" 5/8 x 7/0" 5/8 x 8/6" 3/4 x 8/6"

BELTING

Wide, thin belts are not as satisfactory as narrow thick ones. To get the best results shaft centers should be from 20 to 25 ft. apart. The most economical speeds for belts are from 4,000 to 4,500 ft. per min.

Leather Belts.—For high speeds, the leather should be cut along the spine of the hide, and for low across the shoulder.

Single leather belts are 1/32 to 1/4 inch thick, double 21/64 to 23/64.

Single belts for pulleys up to 11 ins. dia.

Double " " from 12 ins. and up.

Triple " " " 20 " " "

U. S. Navy specifications call for oak tanned single leather belts to have a tensile strength of 4,000 lbs. per sq. in., and double 3,600.

Commercial sizes—widths increase by $\frac{1}{8}$ inch up to 1 inch, $\frac{1}{4}$ inch up to 4, and $\frac{1}{2}$ inch to 7. Above 7 ins. depends on the manufacturer.

Rubber belts are made of duck saturated with rubber. They are particularly suited for running in damp places.

Rubber belts are often figured as averaging 1/16 inch thickness per ply.

2	ply	rubber	belt	=	light	single	leather	belt.
3	"	"	"	=	medium	"	66	"
4	66	66	"	=	heavy	"	"	"
5	"	"			light	double	"	"
6	46	"			medium		"	"
7	66	"	"	=	heavy	,66	66	"
8	66	"			triple	"	"	"

Commercial sizes

Ply	W	idth	1
2, 3 and 4	1 to		
5	11/2 "	"	"
6	2 "		
7	4 "		"
8	6 "	. 66	- "

Widths from 1 to 2 ins. increase by $\frac{1}{4}$ in., 2 to 5 by $\frac{1}{2}$, 5 to 16 by 1, and 16 to 60 by 2.

Canvas belts have about the same strength as leather.

Commercial sizes

Ply	Width
4	$1\frac{1}{2}$ to 18 ins.
6	3 " 30 "
8	4 " 48 "
10	12 " 60 "

Widths from 1½ to 5 ins. increase by ½ in., 5 to 14 by 1, from 14 to 32 by 2. Above 32 ins. special widths can be obtained from manufacturer.

Balata Belts.—These consist of a cotton fabric which is thoroughly impregnated with a solution, the chief ingredient of which is balata. Balata belts should not be installed where the temperature is over 120 degs. F., and they should be kept free from oil. The following table was furnished by R. & J. Dick Co., Passaic, N. J., manufacturers of balata belts.

The following table shows the horse power which each inch of width of belting, from 3 ply to 10 ply, will transmit at the speed given.

Speed of Belt per min.	3 Ply	4 Ply	5 Ply	6 Ply	7 Ply	8 Ply	9 Ply	10 Ply
Ft. 500 750 1000 1250 1500 2250 2250 2250 3250 3250 3750 4000	H. P. 0.60 0.90 1.21 1.51 1.81 2.12 2.42 2.72 3.03 3.33 3.63 3.93 4.24 4.84	H. P. 0.90 1.36 1.81 2.27 2.72 3.18 3.63 4.09 4.54 4.99 5.44 5.90 6.36 6.81 7.27	H. P. 1.21 1.81 2.42 3.03 3.63 4.24 4.85 5.45 6.06 6.66 7.26 7.87 8.48 9.09 9.70	H. P. 1.51 2.27 3.03 3.79 4.55 5.30 6.06 6.82 7.58 8.34 9.10 9.85 10.60 11.36 12.12	H. P. 1.81 2.72 3.63 4.55 5.45 6.36 7.27 8.18 9.10 10.00 10.90 11.81 12.72 13.63 14.54	H. P. 2.12 3.18 4.24 5.30 6.36 7.42 8.48 9.54 10.60 11.66 12.72 13.78 14.84 15.90	H. P. 2.42 3.63 4.84 6.06 7.27 8.48 9.70 10.90 12.12 13.32 14.52 15.74 17.96 18.18 19.40	H. P. 2.71 4.08 5.44 6.82 8.17 9.54 10.90 12.27 13.64 14.99 16.34 17.71 19.08 20.44 21.81
	9 50	5	288		18	The First	7	W. T.

Horse Power and Widths of Leather Belts.—Speed of belt in ft. per min. = $.2618 \times \text{dia}$. of pulley in ins. \times rev. per min.

The difference in tension in a belt when running, between the tight and the slack side for a single leather belt may be taken at 40 lbs. per inch of width, for a double belt 65 lbs. and triple 90.

To find H. P. a belt will transmit:

H. P. =
$$\frac{\text{Speed in ft. per min.} \times \text{width in ins.} \times \text{tension in lbs.}}{33,000}$$

To find width of a belt to transmit a given H. P.:

Width =
$$\frac{33,000 \times \text{H. P.}}{\text{Speed in ft. per min.} \times \text{tension in lbs.}}$$

Horse Power Table for Leather Belting Single Belts

Feet	Width of Belt in Inches														
inu	2	3	4	5	6	8	10	12	14	16	18	20			
Speed per M	н.Р.	н.Р.	н.Р.	н.Р.	н.Р.	н.Р.	н.Р.	н.Р.	н.Р.	н.Р.	Н.Р.	н.Р.			
400	1	11/2	2	21/2	3	4	5	6	7	8	9	10			
600 800	$\frac{1\frac{1}{2}}{2}$	$\frac{21/4}{3}$	3	33/4	$\frac{4\frac{1}{2}}{6}$	6 8	7½ 10	$\frac{9}{12}$	$\frac{10\frac{1}{2}}{14}$	12 16	$\frac{13\frac{1}{2}}{18}$	15 20			
1000	21/2	.31/4	5	61/4	71/2	10	121/2	15	171/2	20	221/2	25			
$\frac{1200}{1500}$	3 3 3 4	$\frac{4\frac{1}{2}}{5\frac{3}{4}}$	$\frac{6}{7\frac{1}{2}}$	$ \begin{array}{c c} 7\frac{1}{2} \\ 9\frac{1}{2} \end{array} $	$\frac{9}{11\frac{1}{2}}$	12 15	15 183/4	18 22½	$\frac{21}{26\frac{1}{2}}$	30	27 33¾	30 37½			
1800	41/2	63/4	9	111/4	131/2	18	$22\frac{1}{2}$	27	$31\frac{1}{2}$	36	401/2	45			
$\frac{2000}{2400}$	5	71/2	$\frac{10}{12}$	$\frac{12\frac{1}{2}}{15}$	15 18	$\begin{array}{c} 20 \\ 24 \end{array}$	25 30	30 36	$\begin{array}{c} 35 \\ 42 \end{array}$	40 48	45 54	50 60			
2800	7	101/2		171/2	21	28	35	42	49	56	63	70			
3000	71/2	$\frac{11\frac{1}{4}}{13}$	15	$\frac{18\frac{3}{4}}{22}$	221/2	30 35	371/2	45 52½	$\frac{52\frac{1}{2}}{61}$		671/2	75			
$\frac{3500}{4000}$	$\frac{83/4}{10}$	15	$\frac{17\frac{1}{2}}{20}$	25 25	26 30	40	44 50	$\frac{32}{60}$	70	70 80	79 90	88 100			
4500	111/4	17	$22\frac{1}{2}$	28	34	45	57	69	78	90	102	114			
5000	121/2	19	25	31	$37\frac{1}{2}$	50	$62\frac{1}{2}$	75	871/2	100	112	125			

For double belts see page 124.

TABLE FOR CALCULATING HORSE POWERS WHICH MAY BE TRANSMITTED

on "	Maximum R.P.M. Rec- ompended	per min. (rim speed)	7636	4581	3272	2863	2290	2082	1908	1636	1527	1431	1347	1205	1145	1090	1041	986	916	881	818	763	673	636	602	572	545	497
PULLEYS		36				:			:			::::	:	:		-:		:		:			:	1.296	1 368	1.440	1 512	1.656
		34				:		:	:			:		:				:				:		1.224	1 292	1.360	1.428	1.564
C STEEL		32	1			:		:										:			:	1004	088	1.152	1.216	1.280	1.344	472
ED BY of Face.		30	1			:		:			:		:				: : :	:				006	080	080	1.140	1.200	260	1.380
Width Phila		28				:		:	:		:	:					: : :	:				840	959	1.008	1.064	1.120	1.176	1.288
IRANS Inch V ey Co.,		26	1			:		::	:		:	:	:			:	::	:		:		.780				1.040	- i-	1.196
I MAY BE TH 5 Lbs. Pull per In Am. Steel Pulley		24				:		:	:		:		:				:	:		:	:	•	•	•		·,		2 1.104
MAY Lbs. Pu m. Steel	ches	22						:	:		:	:	:			:	:	:										01.012
12	s in In	20	:			:		:	:		:	:	:				:	:					•					. 920
W HICH t and 125 illeys.	Pulley	18						:	:		:	:	:			:	:						٠.					828
ERS ontac	Faces of Pulleys in Inches	16						:				:	:		:			•	٠.				•	٠.				.736
CALCULATING HORSE FOWERS Based on 180° Are of Belt Contact This Table Applies to Stock Pu	Fac	14						:	:		:	:	:															.644
c of B		12							156			•				-	_											. 552
COLLATING HOUSE FOWERS WHI Based on 180° Arc of Belt Contact and This Table Applies to Stock Pulleys.		10			: :6	080	100	011.	130	140	.150	120	180	190	.200	.210	2270	240	.250	.260	.280	320	340	.360	.380	.400	.420	.460
on 18		∞				.064	080	880	104	112	.120	128	144	152	.160	.168	100	192	.200	.208	.224	256	272	288	.304	.320	.336	368
Based		9		036	045	0.048	090	990	078	.084	060	1000	108	114	.120	126	132	144	150	156	.168	100	204	216	.228	. 240	252	276
CAL	184	70	.020	.025	.035	042	020	.022	98	020	.075	080	000	.095	.100	105	110	120		:	:	:			:	:	:	
ABLE FOR	118	4	012	020	028	.036	040	440	052	056	090	1004	022	076	080	.084	.088	960	100	104	.108	1280	136	. 144	. 152	. 160	. 168	
BLE		ಣ	000	015	021	.024	.030	.033	030	.042	.045	.048	0.00	057	090	. 063	990.	072		::	:				:	:	:	
77		73	90.8	010	10.	010		·	-		<u></u>	÷	:		:	:	:			:	:	:			:	:	:	
	Dia. of Pulley	Inches	€ 4	100	-	000	10	12	13 15	14	15	10	2 2	19	20	21	776	242	25	26	200	32	34	36	38	40	47	46

409	424	400	394	381	369	357	347	336	327	318	300	301	293	286	279	272	266	260	254	249	243	238	233	250	224	221	216	212	208	204	200	107	101	184	180
																4		K																	
1.872	944	910.	.088	. 160	. 232	304	3.376	3.448	520	2.592	664	2.736	808.	88.	.952	024	960	168	240	312	384	456	528	900	672	744	816	888	096	035	104	176	0 0	2000	1.320
268			_			-	-		_		-			7.			924	_				264	_	_	_	_	604	_		80	876	44	1010	71	080
	<u>-i</u>	<u>-</u>		<u>01</u>	2	67	67	2	2	2	5	2	2	7	2	2	67	2	65	60	63	60	60	co	60	3	3	65	3	cr	cc	· cc		4.4	4.0
1.664	1.728	1.792	1.856	1.920	1.984	2.048	2.112	2.176	2.240	2.304	2.368	2.432			2.624	2.688	2.752	2.816			2.008	3.072		3 200	3 264		3.392	3 456	3.520	3.584	3 648	3 719	0 770	9.110	3.840
260	620	089	740	800	860	920	086	040	100	160	220	280	340	400	460	520	580	640	200	260	820	880	940	000	090	120	180	240	300	360	420	480	E A D	040	3
9	2 1	8	4	0 1.	6 1.	2 1.	8 1.	4 2	0 2	-	-	8	4 2			_	92	_	0				4		9	2 3	8	4	0 3	9	2	00	9	90	0 0
-;	1.512	-i	-	-		-				c.	ci.	ci.	2.18		2.29	2.35	2.408	2.46	2.52	2.576	2.63	2	2	5	2		2.968		3.08	3 13	3.19	3 94	000	90.00	3.30
.352	.404	.456	. 508	560	. 612	. 664	.716	.768 1.	.820 1.	.872	924	926	2.028 2.	2.080	. 132	.184	2.236 2.	288	340	.392 2.	444	496	548	9		.704	.756 2.	808	.860	912	964	016		190	170
248 1	296 1	344 1	392 1	440 1	488 1	536 1	584 1	632 1	680 1	728 1	776 1	824 1.	872 2	920 2	896	016	064	112	160	208	256	304	352	400	448	496	544	592	640	688	736	784 3	000	2000	noon a
	188 1.	-	-	320 1.	364 1.	-	-	-	540 1.	84 1.	28 1.	672 1.	1611.	760 1.	_	S	892 2.	2	5	2	Si	112 2.	0	2	2	2		2	420 2.	54 2	08 2	552 2		400	*0 7.
	i		_	_	_	1.4	1.4	-	-	1.58	-	-	Η.		٠.	-	-	-	-	-	~	2	ci.	N	2	2	2	3	3	2	2.50			3.0	2.
1.040	1.080	1.120	1.160	1.200	1.240	1.280	1.320	1.360	1.400	1.44(1.480	1.520	1.56	-:	1.640	1.680	1.720	1.760				1.920	_:	0	~	0	2.120	2.160	2.200	2.240	2.280	2 32	966	9.00	4. #U
936	972	800	044	080	116	152	188	224	260	296	332	368	404	440	476	512	548	584	620	656 1	692	728	764	800	836	872	806	944	086	910	052	88	194	161	3
32	864	96 1.	28 1	60 1.	92 1	24 1.	199	088 1	120 1	152 1.	184 1.	216 1.	48 1.	280 1.	312 1.	344 1.	376 1.	408 1	440 1	72 1.	504 1.	536 1.	-	-	632 1.	-	696 1.	28 1.	60 1.	92 2	824 2.(856 2	6 00	000	400
						_	-	-	-	-	-	-	-	_;	-	1	-	_	-	-	-	-	-	-	-	-	1	-	-	-	-	41.8	_	11	1.0
	.756									_	1.036	1.064	1.092	-	=	1.176	-	1.232	-	1.288	1.316	-	1.372	1.40	1.428	1.45	1.484	1.512	-	1.568	1.596	1.62	1 659	1 680	1.00
624	648	.672	969.	.720	.744	.768	.792	.816	.840	.864	888	.912	.936	960	984	800	.032	990	080	104	.128	.152	.176	200	. 224	.248	.272	.296	.320	.344	.368	.392	416	440	OFF.
520	240	260	280	009	620	640	099	089	200	720	740	092	280	800	820	840 1	860 1	880 1	900	920 1	940 1	960 1	980	000	020	040	090	$080 \frac{1}{1}$	1001	1201	-:	-		:	:
		90		0			90	-	0	9		90	_		_	_	_	_		-:	:	:	:	-	-	<u>-:</u>				=	:	-		: :	:
41	.432	44	.46	.48	-49	.51	.52	.54	.56	.57	. 59	8	. 62	. 64	.65	. 67	. 68	20		:	:	1	:	:	:	:	:	:	:	:	:	:		:	:
312	.324	.336	348	360	.372	.384	396	408	.420	432			:	:	:				١	:		:	:		:	:	:	:	:	:	:				
: :	:	:	:	:	:	:	:		:					:	:		:					:	:	:			:	:	:	:	:			:	:
: :	:	:	:	:	:	:							:	:	:		:			:	:		:			:	:	:	:	:		-		:	:
: :	:	:	:	:	:	:	-						:	:	:	-							:			:	:	:	:	:	:			:	:
	:	:	:	:	:	:				1			:	:	:				-				:			:	:	:	:			:		:	:
	:																												:						
520	54	56	58	. 09	62	64	99	89	20	72	74	76	78	-		84	98	88	06	-	-	96	86	90	05	04	90	80	10	12	14	16	10	00	03
						_						1		-					1			Ŕ		Ĩ		-	1	1	1			1	-	-	1

To find revolutions per minute necessary for a given pulley to transmit a given horse power, divide H. P. by number opposite size of pulley; multiply result by 1.66 for a normal belt pull of 75 lbs, per inch width of pulley face—or

Note—All Figures are for Double Belt H. P. + NO (Form Table) = Rev. per Min. [normal belt pull of 75 lbs.]

(At 125 lbs. Per Inch Width of Belt) pull of 75 lbs.

DOUBLE BELTS

(Continued from page 121.)

Feet ute					Widt	h of Bel	t in Inc	hes			Ray
Speed in Feet per Minute	4	6	8	10	12	14	16	18	20	22	24
Spe	H.P.	н.Р.	н.Р.	н.Р.	н.Р.	H.P.	H.P.	н.Р.	H.P.	н.Р	н.Р.
400	23/4	41/4	53/4	71/4	81/2		111/2	13	141/2		171/2
600 800	$\frac{4\frac{1}{4}}{5\frac{3}{4}}$	$\frac{6\frac{1}{2}}{8\frac{1}{2}}$	$11\frac{1}{2}$	$14\frac{1}{2}$		15 20½	$\begin{vmatrix} 17\frac{1}{2} \\ 23 \\ 20 \end{vmatrix}$	26	29	32	26 34½
1000 120 0 1500	$7\frac{1}{4}$ $8\frac{1}{2}$ $10\frac{3}{4}$	13	$14\frac{1}{2}$ $17\frac{1}{2}$ $21\frac{3}{4}$		$ \begin{array}{c c} 21\frac{1}{2} \\ 26 \\ 32\frac{1}{2} \end{array} $	301/2	$ \begin{array}{r} 29 \\ 34\frac{1}{2} \\ 43\frac{1}{2} \end{array} $	$\begin{vmatrix} 32\frac{1}{2} \\ 39 \\ 49 \end{vmatrix}$	$ \begin{array}{r} 36 \\ 44 \\ 54 \frac{1}{2} \end{array} $	40 48 60	$ \begin{array}{r r} 43\frac{1}{2} \\ 52\frac{1}{2} \\ 65\frac{1}{2} \end{array} $
1800 2000	13	$19\frac{1}{2}$	26	$32\frac{3}{4}$ $36\frac{1}{2}$	$ \begin{array}{c c} 32 \\ 39 \\ 43 \\ \end{array} $	451/2	52	59 65½	651/2	72 80	$ \begin{array}{c c} \hline $
2400 2800	171/4	26	$34\frac{3}{4}$	44	$ \begin{array}{c c} 52\frac{1}{2} \\ 61 \end{array} $	$\frac{60\frac{1}{2}}{71}$	69½ 81	781/2 911/2	88	96 112	105 122
3000 3500	$\frac{21\frac{1}{2}}{25\frac{1}{2}}$	$\frac{32\frac{1}{2}}{38}$	$\frac{43\frac{1}{2}}{50\frac{3}{4}}$	$63\frac{1}{2}$		89	$87\frac{1}{2}$ 101	98 114	108 127	120 140	131 153
4000	$32\frac{1}{9}$	49	65	82	87 98	101 114	116 131		145 163	160 180	174 196
5000	301/2	541/2	723/4	91	109	127	145	163	182	200	218

[Foote Bros. Gear & Mach. Co., Chicago]

For single belts see page 121.

LENGTH OF BELT FOR A GIVEN DRIVE

C = distance between centers of pulleys.

R = radius of large pulley.

r = " " small "

A = arc of contact of large pulley.

B = "" " small "

Length of open belt = $A + B + 2\sqrt{C^2 - (R - r)^2}$

" crossed belt = A + B + $2\sqrt{C^2 - (R + r)^2}$

BELT DRIVES

Power may be lost by journal friction and belt slipping. To prevent the former the belt should not be run too tight. As to belt slipping, this may be largely overcome by applying a dressing.

Shafts with Parallel Axes.—Here the center line of the driving and following sides of the belt fall in the middle planes of both pulleys—hence the belt can run in either direction. The arc of contact of crossed belts is equal on both pulleys and is always more than 180 degrees. The gain in contact is lost by the twist in the belt, which causes it to run unevenly on the pulley. However, the arc is generally taken at 180 degrees in making calculations.

Shafts in Parallel Planes but Inclined to Each Other.—The center line of the driving side of the belt is in the middle plane of both pulleys, but the following side is not—thus the belt can run in one direction only.

Shafts with Inclined Axes.—A and B (page 127) are the centers of two pulleys, θ being the angle between their planes A x y and B x y. Any two points as x and y are taken on the line of inter-

section x y of the planes, and tangents drawn to the pulleys A and B. The center circles of the guide pulleys C and D must be tangent to the tangents drawn from x and y, to the pulleys A and B.

BELT DRIVE WITH SHAFTS AT INCLINED AXES (See page 125.)

ROPE DRIVES

Transmission rope is made from hemp or manila fibres with 3, 4 or 6 strands, the 3 strands for small drives and the 4 and 6 for large drives. A table of 4-strand manila rope is given on page 129.

WIRE ROPE SHEAVES (Cast Iron) (See next page for table.)

1
127.
page
(See
PULLEYS
AND
SHEAVES
POPE SI
2

R Wt.		7	_	_	-	_	_	_	_	_	_		_	_	_	_	_	1	-	_	-	_	-	_	_		_	-		41	_	_	7				15,22
0	4	4	4	4		* 4	H -	* -	41	0	4	4	ı) H	0	0	4	10	rC.	10	9	9	10	10	10	9 9	9	9	10	10	2	9	9	9	9	9	9
д	2%	7,	11/	172	4/00	1/4	111	4,4	7	2,4	-	18/	914	20,0	27.7	37%	11%	1/2	21/2	, 65	000	317	15/2	27,8	230	27%	370	41/0	*/6	21%	25%	, 00	4	21%	22/2	334	234
0	23%	· co	31%	4	93/	21%	2,60	4/0	0	634	3%	48%	617	10	22	80	43/	61%	7	%18	101	11114	200	634	×1×	10/	11	14	616	000	716	103%	131%	716	101%	13	1014
z	2%	2	:	:	11/	8,3	**	**	;	:	13%	,,,	:	**	:	:	111/6	2 39	***	**	:	**	6	1:	:	:	;;	**	216	*:	:	:	:	21%	***	3	23%
M	24	2,5	99		3/	42	99	**		•	15/6	2,3	**	;		:	11%	0,,,	,,	:	,,	,,	154	1,16	:	:	:	:	11%	200	:	:	:	111/4		:	17/8
L	13/6	2,3	**	**		-:	**	**		:	11/4	177	:	,,		:	11%	917	**	:	**	"	1117	97,7	;	;		:	177	8,7	,,	,,	,,	21/6	23	"	21/4
M	11/2	111	,,	:	111/	7,7	**			=	12/2	0 77	**	***		,,	21%	*:	;	,,	;	:	786	823	:	:	**	**	6	-	**	;	:	38%	0:	:	334
r	200	299	;	,	1	4:	77	,,,		:	3/6	2,1	"	***	:	;	8%	03	**	:	,,	"	11	979	,,	"	,,	;	11	9:	"	**	:	76	9;	:	100
н	11,6	200	9.9	,,	15./	. 33	**	: :		,	19%	70,11	,,,	***	:	;	711	977	***	:	**	**	187	97:	**	:	:	***	15./	27:	,,	"	"	117	01/1	**	18/2
D	9%	7,5	,,	,,	, ,	, %;	***	: :	:	**	15%	7.	**		:	,	3/6	97,9	**	;	**	**	1 66	25:	. "	:	,,	,,	3/	4:	,,	3	;	27.6	7:	**	15/6
F	15.6	3:	**	:	, ,	,			:	:	25 %	25.	**	: :	:	,,	157	97.9	**	**	**	*	100	1%	:	:	:	**	111	4,3	,,	,,	**	1187	7	3	19/6
国	3,8	4:	:	:	,	13	:	:	:	;	11/	477			:	**	111	17,2	**	*	***	,,	10.	1%	*		:	:	•	7:	**	**	"	917	47.7		21%
D	11	7:	:	**		Si.			:	**	117	7.	;	:	,,	**	25	2,5	**	**		:	``	22	***		**	**		25		;	:	75	×2:	:	11/6
O	111	4.76	9/10	0.76	91,1	4	5%	634	83/	1034	207	0.76	8,76	107/6	127/1	147/10	917.47	8,00	10%	8/71	1478	16%	1878	91.516	111,76	1319/6	91,01	1/10/16	21.2/16	11/2	13/2	10/2	911/2	153/	178/1	91376	167%
В	l a	0 0	210	-0	×	9	2	00	10	19	10	0 0	10	12	14	18	100	07	7:	14	91	18	07	77	4.	10	200	25	7.4	14	01	010	200	101	000	200	20

MANTEA	TRANSMISSION	ROPE
TATATATAT	TUVINOMINOPION	TOLE

Dia. of rope ins.	W't per ft.	Breaking strength lbs.	Length req'd for splice ft.	Small- est dia. of sheave	of rope	Weight per ft.	Breaking strength lbs.	Length req'd for splice ft.	Small- est dia. of sheave
3/4	.20	4500	8	28	13/8	.65	15125	12	50
7/8	.26	6125	8	32	11/2	.77	18000	12	54
1	.34	8000	10	36	15/8	.90	21125	12	60
11/8	.43	10125	10	40	134	1.04	24500	12	64
11/4	.53	12500	10	46	2	1.36	32000	14	72

[T. B. Wood's Sons Co., Chambersburg, Pa.]

American system of rope transmission has one continuous rope winding from one groove or sheave to another. In this system a uniform tension is kept on the rope, by a traveling tension carriage.

DODGE STANDARD 60° V AND U GROOVES FOR AMERICAN SYSTEM ROPE TRANSMISSION

Rope Size	A	В			D	1	7	G	н	I	J	K
3/4 7/8 1 11/8	1 1½8 1¼ 1¾ 13/8 1½	1 ¹ / ₄ 1 ³ / ₈ 1 ¹ / ₂ 1 ⁵ / ₈ 1 ³ / ₄	V Gr.	U Gr.	1 8 1 8 1 8 1 8 1 8 1 8 8 16 8 16 8 16	V Gr.	3/8 7/16 1/2 9/16 5/8	\$ 16 \$ 16 \$ 16 \$ 16 \$ 16 \$ 16 \$ 16 \$ 716 716	1/2 9/6 5/8 11/6 3/4 13/16	16 16 18 18 18 18 18 18	100000000000000000000000000000000000000	7,32 8,16 5,32 5,32 1,48 8,32 7,32 7,32 8,16
1 1 3 8 1 1 2 1 3 4 2	16/8 13/4 2 21/4	17/8 2 21/2 23/4	1 11/8 11/4	11 16 34 7/8	1 8 1 8 8 16 8 16 8 16	1/2 1/2 5/8 3/4	1 16 3/4 7/8 1	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	13 16 13 16 15 16 11 16	1/8 1/8 1/8 1/8	16 14 14 14 14	1/8 3/32 7/32 3/16

In the English or separate warp system, a single endless rope is required for each groove or sheave. The English system is now little used except in main drives, as from engine to countershaft.

> Engineers' Standard V and U Grooves -For English System Rope Transmission

Rope		*			2]	F	G	*			
Size		U Gr.	В	V Gr.	U Gr.	V Gr.	U Gr.	V Gr.	U Gr.	Н	I	JK
3/4 7/8 1 11/8 11/4 13/8 11/2 13/4 2	15 16 11 16 15 16 13 8 11 2 19 16 111 16 115 16	7/8 15/6 13/6 11/4 15/6 13/8 11/2 13/4 115/6	13/8 11/2 17/8 2 21/8 21/8 21/4 21/2 23/4	5 8 11 16 78 15 16 11 14 13 8 19 16 19 16	3/8 7/16 1/2 9/16 5/8 11/16 3/4/8 1	7 122 9 322 17 64 11 32 11 32 11 32 3 8 7 16 21 52	3/8 7/16 1/2 9/16 1/4 1/8 1/8	3/8 7/16 9/16 9/16 5/8 11/16 3/4 7/8	5 16 5 16 7 16 7 16 7 16 7 16 11 2 9 16 11 16	13/6 7/8 13/6 11/4 15/6 13/8 19/6 111/6	1/8 1/8 3/16 3/16 3/16 3/16 3/16 3/16 3/16 3/16	1 8 1 8 3 16 3 16 3 16 3 16 3 16 3 16

^{*} A and G dimensions for ONE V Groove same as for U Grooves.
[Dodge Sales & Eng'g Co., Mishawaka, Ind.]

Wire rope may also be used for drives. The average speed for wire and manila rope is 4500 ft. per min.

The larger the sheaves, the lower is the operating cost as the rope wears longer. A single sheave with a filler is not suitable for transmitting more than 300 H.P., hence it is often necessary to have pulleys with a number of grooves. U grooves are preferable for outdoor service. When the distance between the driving and the driven pulley exceeds 150 ft. an idler should be installed.

WIRE ROPE PULLEY FOR POWER TRANSMISSION

D = diameter of rope in inches.

Number of arms, 6 for pulleys 2 to 4 ft. dia., 8 from 5 to 8 ft.

Arms have elliptic cross section, short dia. given in figure, long dia. 1.5 times short.

Pulley of cast iron, rope runs on a leather filler.

Diameter of pulley not less than 36 D.

Length of hub 2 to 21/2 times dia. of shaft.

If a pulley with wider sides is required have the angle between the sides 60 degs. and the grooves for the rubber 30 degs.

CHAINS FOR TRANSMITTING POWER

Block Chains are for small power drives where the speed is from 600 to 800 ft. per min.

SIZES OF BLOCK CHAIN

The letters in the table refer to sprocket wheel on page 135.

1 -	ਮ	12/2 = =	17/2
E	4	2 2 2 2	3,4%
5	4	.056	65.
۲)	292 23	19%
Þ	1	.380	.534
	1	. 493 . 595 . 658 . 783	.898
Wt. per	ft. lbs.	88.33.50	.89
lbs.	Max.	135 160 180 200	398
Pull lbs.	Normal	45 56 68 92	133
Max.	R. P. M.	2135 2225 2318 2453	1213
P.	Max.	3.4 4.0 5.0	9.9
H.	Normal	1.1.1.2.2.2.3	8.3 4.1
Dia. of	block	.325"	.532
Pitch		ב ב ב ב	17%
Chain	Number	201 × 201 ×	105 x ½

In the column Chain Number—the second number as 14, 56, etc. is the width of the chain. [Diamond Chain & Mfg. Co., Indianapolis, Ind.]

ROLLER CHAINS

Roller Chains are for heavier loads than block and for speeds of 800 to 1,200 ft. per min.

Referring to the figure, a roller and pin are shown in the center, at the left a roller and at right a pin. A chain is made up of rollers and pins (as the center in the figure) with alternate in and out links.

ROLLER CHAINS FOR TRANSMITTING POWER

Sizes Recommended by Soc. of Automotive Engineers and Am. Soc. of Mechanical Engineers

1	0	4		11/32	13/2	17/32	11/16	13/16	61/64	13/32	:
51	E	1		11/32	15/32	91/9	11/16	15/16	29/32	15/32	:
	Þ	4	:	.056	890.	60.	.113	.135	33/2	.180	:
	ر		:	3/16	. 225	19/4	,% %	29/4	17/32	19%	:
	þ	1		.551	.612	.82	1.18	1.40	1.65	1.90	:
	<u></u>	1	:	.822	1.063	1.45	1.73	2.20	2.24	2.65	:
	Wt. per	ft. lbs.		619	98.	1.81	2.69	4.15	4.96	6.32	:
	lbs.	Max.		325	442	877	1189	1888	2160	2925	:
1	Pull lbs.	Normal		108	147	292	396	629	720	975	
	Max.	R. P. M.		1993	1608	929	640	200	388	334	:
	P.	Max.		8.1	11.0	22.0	29.7	47.2	54.0	73.1	
-	H. P.	Normal		2.7	80.00	7.3	6.6	15.7	18.0	24.4	
	Dia. of	roller	.306	.400	.469	.625	.75	.875	1.000	1.125	1.562
	1,410	FIGH	1/2	× ×	84	-	11/4	11/2	134	5	21/2
	Chain	Number	66 x 5/6	149 x 3%	153 x ½	154 x 5%	160 x 34	162 x 1	164 x 1	168 x 114	:

Letters L, H, etc., refer to wheel, page 135. [Diamond Chain & Mfg. Co., Indianapolis, Ind.] The normal pull given in the table corresponds to a pressure of 1,000 lbs. per sq. in. of projected rivet area. The maximum pull is about three times the normal pull, but does not exceed one-tenth of the ultimate strength of the chain.

The projected rivet area for any chain may be found by dividing the number representing the normal pull by 1,000. For example, the normal pull for chain 160 x 34 is 396 lbs., and the projected rivet area is .396 sq. ins. Projected rivet area is the product of the rivet diameter and the length of the bushing in which

The maximum horse power given is the maximum only when the chain pull does not exceed the limit The normal horse power given in the table corresponds to the normal pull at a chain speed of 800 ft, per

given in the sixth column of table on page 134.

Sprocket teeth cross sections are given in columns C, E, T and R. F in the figure is the diameter of the rim or hub. It should not exceed pitch diameter minus 1.1 × H as clearance must be allowed for the side bars of the chain.

Silent Link. - The Morse Chain, page 137, (Morse Chain Co., Ithaca, N. Y.), is an example of this type. The important feature is the rocker joint, one of the pins being the seat pin and the other the rocker. The manufacturer's claim, 1st, positive speed ratio between driving and driven shafts with the added feature of flexibility, 2nd, 981/2 to 99% sustained efficiency, 3rd, quietness at high speeds and 4th, long life.

DATA TO BE USED IN THE DESIGN OF MORSE CHAINS

က	17 35	19-31	131	55-115	0.955	0.30	3.0	750	6.00 0.145 4.0
22	17 31	17-31	129	55-115	0.636	0.20	2.0	450 350	4.00 0.058 2.0
11/2	17 29	17-27	129	55-115	0.477	0.15	1.5	270	3.00 0.035 1.0
$1^{2}/_{10}$	15 29	17-23	129	55-105	0.2865 0.382	0.12	1.2	200	2.40 0.023 0.7
9/10	15	17-23	125	55-95		0.09	06:0	150	1.80 0.013 0.45
% 4	13	17-21	115	55-85	0.239	0.075	0.75	120 95	1.50 0.009 0.35
% 8	13	17-21	109	55-75	0.199	0.06	0.62	100	1.25 0.0063 0.25
172	13	15-17	66	55-75	0.159	0.05 2,400	0.50	80	1.00 0.0045 0.16
%8	133	15-17	22	35-45	0.1193	6,000	0.375	99	0.75 0.003 0.10
Pitch, inches	Small sprocket driver	driver sprockets			multiply number of teeth by (inches). Addendum. For outside diam-	eter of sprockets 33 to 130 1. (See Note 1) inches. Maximum R. P. M.	required for chain, inches	Small sprocket driver	inch width, I foot long, pounds for solid pinions.

Note 1.-Number of teeth = T.

When T has less than 33 teeth, D = pitch diameter. When T has more than 32 teeth, D = pitch diam-Exact outside diameter = D.

Note 8.—Horizontal drives preferred; tight chain on top desir-Note 9.—Adjustable wheel centers desirable for horizontal

able for short drives without center adjustment. number of teeth in the wheels are desirable.

lrives and necessary for vertical drives.

Note 10.—Avoid vertical drives.

Note 7.-An even number of links in the chain and an odd

Note 2.—Use sprockets having an odd number of teeth whenever eter + (2 \times addendum).

Note 3.—When specially authorized, a larger number of teeth than shown may be cut in large sprocket.

Note 4.—Thickness of sprocket rim, including teeth should be at least 1.2 times the chain pitch.

Note 5.-The number of grooves in the sprocket, their width and distance apart varies according to pitch and width

Note 6.-The width of the sprocket should be 1/8 to 1/4 inch greater than nominal width of the chain.

Note 11.-Allow a side clearance for chain (parallel to axis of sprockets and measured from nominal width of chain) equal to the pitch.

Note 12.—Maximum linear velocity for commercial service 1200 to 1600 feet per minute.

its true pitch diameter while in contact with the wheel. The Referring to the figure the link contact with the teeth is resisted at R which is below the line of tension T T, while the resultant force F due to the lever action tends to maintain the chain link at rolling action is shown by the two positions of the joint pins at

LENGTH OF CHAIN

N = number of teeth on large sprocket

n = " " " small "

R = radius of large sprocket, ins.

r = " " small P = pitch of chain, ins.

A = distance between centers in pitches.

 $B = A \cos a$

Chain lengths in pitches =
$$2 A + \frac{N+n}{2} + \frac{\left(\frac{N-n}{2 n}\right)^2}{c}$$

= $2 A + \frac{N+n}{2} + \frac{.0257 (N-n)^2}{c}$

If the chain length in pitches comes a fractional part of a pitch, use the next whole number. The length of chain in inches is equal to the product of the number of pitches by the pitch.

Chain length in inches =
$$NP\left(\frac{180^{\circ} + 2a}{360^{\circ}}\right) + nP\left(\frac{180^{\circ} - 2a}{360^{\circ}}\right) + 2A \cos a$$

Distance A between centers should not be less than $1\frac{1}{2}$ times the diameter (2 R) of the larger sprocket nor more than $60 \times P$.

In using the above formula for calculating the length of block chains, the length should be a multiple of the pitch. For roller, the length is a multiple of two times the pitch, as the ends have to be joined by an inside and outside link. A sprocket wheel should not have less than 15 teeth. On sprockets of the same diameter a short pitch chain will last longer and run more quietly than a long pitch.

As to tooth forms, the Diamond Chain & Manufacturing Co. has developed a tooth having a constant pressure angle and a variable space angle. A large pressure angle is one of the advantages claimed. Besides, an elongated chain will run as well on a 100 tooth sprocket as on a 20.

SPROCKET WHEELS

DIAMETERS OF SPROCKET WHEELS FOR BLOCK CENTER AND TWIN ROLLER CHAINS

P = pitch of chain

N = number of teeth in sprocket

 $E = \frac{180^{\circ}}{N}$

Pitch dia. = $\frac{P}{\sin E}$

D = diameter of roller

Outside diameter of sprocket wheel $=\frac{P}{\sin E} + D$

Bottom " " " = $\frac{P}{\sin E}$ - I

DIAMETERS OF SPROCKET WHEELS FOR ROLLER AND BUILT UP BLOCK CHAINS

A = center to center of holes in side links (usually .6)

" " " chain block (usually .4)

b = diameter of round part of chain block (usually .325)

N = number of teeth

$$E = \frac{180^{\circ}}{N}$$

Tan C =
$$\frac{\sin E}{\frac{B}{A} + \cos E}$$

Pitch dia. =
$$\frac{A}{\sin C}$$

Outside diameter of sprocket wheel $=\frac{A}{\sin c} + b$ Bottom " " " $=\frac{A}{\sin c} - b$

Bottom " " " =
$$\frac{A}{\sin c}$$
 - k

[Whitney Mfg. Co., Hartford, Conn.]

Formulae

Pitch dia. approx. of sprocket wheel = .318 × number of teeth × pitch ins.

Chain pull in pounds = $\frac{33,000 \times \text{horse power}}{\text{vel. of chain ft. per min.}}$

[Diamond Chain & Mfg. Co., Indianapolis.]

GEARING

SPUR GEARS

Circular pitch (P') is the distance measured along the pitch circle from the center of one tooth to the center of the next. Circular pitch = $\frac{3.1416}{\text{diameter pitch}}$.

Diametral pitch (P) is the number of teeth to each inch of the pitch diameter. Diametral pitch = $\frac{3.1416}{\text{circular pitch.}}$

Addendum is the distance from the pitch circle to the outside diameter.

Dedendum is the distance from the pitch circle to the bottom of the working depth.

Clearance is the distance from the working depth to the bottom of the tooth.

P' = circular pitch.

P = diametral pitch.

D' = diameter of pitch circle.

D = outside diameter.

N = number of teeth.

a = addendum.

c = clearance.

t = thickness of tooth.

Then

$$P' = \frac{3.1416}{P} = \frac{D}{.3183N + 2} = \frac{D'}{.3183N}$$

$$P = \frac{3.1416}{P'}$$

$$D' = .3183 \text{ N P'} = \frac{N D}{N + 2} = \text{ N a}$$

$$D = a (N + 2) = .6366 \text{ P'} + \text{ D'}$$

$$a = .3183 \text{ P'}$$

$$c = .05 \text{ P} = \frac{t}{10}$$

$$t = \frac{P'}{2}$$

Usual width of face of spur gears is $2\frac{1}{2}$ to 3 times the circular pitch.

Small pinions which run with large diameter gears should be shrouded as the shrouding gives additional strength to the pinion. The shrouding on each side may be taken equal to .4 circular pitch plus ½ in.

Tooth Forms.—Gear teeth may be constructed with involute, epicycloid or hypocycloid curves (see pages 23–22). The curve generally selected is the involute above the pitch line with radial flanks. The outlines of involute and epicycloidal teeth may be laid out by Grant's odontograph.

Involute gears to be interchangeable must have the same angle of obliquity. Gears with cycloidal tooth outlines to be interchangeable must have the same rolling circle on both flanks and faces.

The addendum line is drawn outside of the pitch line at a distance equal to one divided by the diametral pitch, or to one-third of the circular pitch. The dedendum line is inside of the pitch line by the same distance. The clearance line is inside of the dedendum line by one-eighth of this distance. The base line is inside of the pitch line by one-sixtieth of the pitch diameter.

To Draw a Gear.—Draw the pitch line, addendum, dedendum, clearance and base lines. Space the pitch line for the tooth points, either by dividing the full circle, or by stepping off half the circular pitch.

In the odontograph table at 12 teeth (the number of teeth in the gear to be drawn), is found the face radius 2.51 and this, divided by the diametral pitch 2, gives 1.25. With compass set to this face radius viz. 1.25 draw the faces of the teeth from the addendum

line to the pitch line, from centers on the base line. If the number of teeth is greater than 36, or if the pitch is small, this face radius should be continued to the base line.

At twelve teeth in the table is found the flank radius .96, and this divided by the diametral pitch gives a quotient of .48. With the compass set to .48, and from centers on the base line, draw in all the flanks of the teeth from the pitch line to the base line.

From the base line continue the flanks of the teeth to the dedendum line by straight radial lines, and round them into the clearance line, completing the teeth.

To Draw a Rack.—Draw straight lines at an angle of 15 degs. with the radius line. The point of the tooth, from the halfway point to the point b must be rounded over by an arc drawn from a center on the pitch line, and with the compasses set to 2.10 ins. divided by the diametral pitch, or .67 inch multiplied by the circular pitch.

Grant's Odontograph for Involute Teeth

Pressure angle = 15 degs. Addendum = .3183 \times circular pitch = $\frac{1}{\text{diametral pitch}}$. Clearance = $\frac{\text{addendum}}{8}$

No.	Divide diametr	by the al pitch	Multiply	y by the pitch	Number	Divide diametra		Multipl circula	y by the r pitch
of teeth	Face rad.	Flank rad.	Face rad.	Flank rad.	of Teeth	Face rad.	Flank rad.	Face rad.	Flank rad.
10	2.28	.69	.73	.22	28	3.92	2.59	1.25	.82
11	2.40	.83	.76	.27	29	3.99	2.67	1.27	.85
12	2.51	.96	.80	,31	30	4.06	2.76	1.29	.88
13	2.62	1.09	.83	.34	31	4.13	2.85	1.31	.91
14	2.72	1.22	.87	.39	32	4.20	2.93	1.34	.93
15	2.82	1.34	.90	.43	33	4.27	3.01	1.36	.96
16	2.92	1.46	.93	.47	34	4.33	3.09	1.38	.99
17	3.02	1.58	.96	.50	35	4.39	3.16	1.39	1.01
18	3.12	1.69	.99	.54	36	4.45	3.23	1.41	1.03
19	3.22	1.79	1.03	.57	37-40	4.2	4.2	1.34	1.34
20	3.32	1.89	1.06	.60	41-45	4.63	4.63	1.48	1.48
21	3.41	1.98	1.09	.63	46-51	5.06	5.06	1.61	1.61
22	3.49	2.06	1.11	.66	52-60	5.74	5.74	1.83	1.83
23	3.57	2.15	1.13	.69	61-70	6.52	6.52	2.07	2.07
24	3.64	2.24	1.16	.71	71-90	7.72	7.72		2.46
25	3.71	2.33	1.18	.74	91-120		9.78		3.11
26	3.78	2.42	1.20		121-180		13.38	4.26	4.26
27	3.85	2.50	1.23	.80	181–360	21.62	21.62	6.88	6.88

Grant's Odontograph for Epicycloidal Teeth

 $Addendum = .3183 \times circ. \ pitch = \frac{1}{dia'l \ pitch}. \quad Clearance = \frac{addendum}{8}$

	mber of teeth	For any o	one d other p	iametral p pitch, divid pitch	itch: for le by that		othe	. circular j r pitch mu that pitch		
		Fac	es	Fla	nks	Fa	ces	Fla	nks	
Ex- act	Inter- vals	Rad.	Dis- tance	Rad.	Dis- tance	Rad.	Dis- tance	Rad.	Dis- tance	
10	10	1.99	.02	- 8.00	4.00	.62	.01	-2.55	1.27	
11	11	2.00	.04	-11.05	6.50	.63	.01	-3.34	2.07	
12	12	2.01	.06	Straight	Straight	.64	.02	Straight	Straight	
131/2	13-14	2.04	.07	15.10	9.43	.65	.02	4.80	3.00	
151/2		2.10	.09	7.86	3.46	.67	.03	2.50	1:10	
171/2		2.14	.11	6.13	2.20	.68	.04	1.95	.70	
20	19–21	2.20	.13	5.12	1.57	.70	.04	1.63	.50	
23	22-24	2.26	.15	4.50	1.13	.72	.05	1.43	.36	
27	25-29	[2.33]	.16	4.10	.96	.74	.05	1.30	.29	
33	30-36	2.40	.19	3.80	.72	.76	.06	1.20	.23	
42	37–48	2.48	.22	3.52	.63	.79	.07	1.12	.20	
58		2.60	.25	3.33	.54	.83	.08	1.06	.17	
97	73-144		.28	3.14	.44	.90	.09	1.00	.14	
290		2.92	.31	3.00	.38	.93	.10	.95	.12	
Rack	Rack	2.96	.34	2.96	.34	.94	.11	• .94	.11	

[Phila. Gear Works, Phila., Pa.]

Stub Teeth

Stub teeth generally have a pressure angle of 20 degs., and the distance from the pitch diameter to the end of the tooth less than in ordinary teeth. For instance, for a 6 pitch tooth an 8 pitch addendum is used, as per following table which gives dimensions of stub teeth.

Diam- etral pitch	Thick- ness on pitch line	Adden- dum	Deden- dum	Diam- etral pitch	Thick- ness on pitch line	Adden- dum	Deden- dum
4/5	.3927	.2000	.2500	$ \begin{array}{c c} 8/10 \\ 9/11 \\ 10/12 \\ 12/14 \end{array} $.1962	.1000	.1250
5/7	.3142	.1429	.1785		.1744	.0909	.1137
6/8	.2617	.1250	.1562		.1571	.0833	.1042
7/9	.2243	.1111	.1389		.1308	.0714	.0893

CIRCULAR PITCH

With its Equivalent in Diametral Pitch, Depth of Space and Thickness of Tooth

Circular	Diametral	Thickness of Tooth	Depth to be	Addendum
Pitch	Pitch	On Pitch Line	Cut in Gear	
$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 3 \frac{1}{2} \end{array} $.5236	3.0000	4.1196	1.9098
	.6283	2.5000	3.4330	1.5915
	.7854	2.0000	2.7464	1.2732
	.8976	1.7500	2.4031	1.1140
$3 \\ 2^{3} \cancel{4} \\ 2^{1} \cancel{2} \\ 2^{1} \cancel{4}$	1.0472	1.5000	2.0598	.9550
	1.1424	1.3750	1.8882	.8754
	1.2566	1.2500	1.7165	.7958
	1.3963	1.1250	1.5449	.7162
$2 \\ 178 \\ 134 \\ 158$	1.5708	1.0000	1.3732	.6366
	1.6755	.9375	1.2874	.5968
	1.7952	.8750	1.2016	.5570
	1.9333	.8125	1.1158	.5173
$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{3}{8} \\ 1\frac{1}{4} \\ 1\frac{1}{8} \end{array} $	2.0944	.7500	1.0299	.4775
	2.2848	.6875	.9441	.4377
	2.5133	.6250	.8583	.3979
	2.7925	.5625	.7724	.3581
1	3.1416	.5000	.6866	.3183
75/16	3.3510	.4687	.6437	.2984
7/8	3.5904	.4375	.6007	.2785
13/16	3.8666	.4062	.5579	.2586
3/4	4.1888	.3750	.5150	.2387
11/16	4.5696	.3437	.4720	.2189
5/8	5.0265	.3125	.4291	.1989
9/16	5.5851	.2812	.3862	.1790
1/2	$\begin{array}{c} 6.2832 \\ 7.1808 \\ 8.3776 \\ 10.0531 \end{array}$.2500	.3433	.1592
7/16		.2187	.3003	.1393
3/8		.1875	.2575	.1194
5/16		.1562	.2146	.0995
1/4	12.5664	1250	.1716	.0796
1/8	25.1327	.0625	.0858	.0398
1/16	50.2655	.0312	.0429	.0199

DIAMETRAL PITCH

With its Equivalent in Circular Pitch, Depth of Space and Thickness of Tooth

Diametral	Circular	Thickness of Tooth	Depth to be	Addendum
Pitch	Pitch	on Pitch Line	Cut in Gear	
1/2	6.2832	3.1416	4.3142	2.0000
3/4	4.1888	2.0944	2.8761	1.3333
1	3.1416	1.5708	2.1571	1.0000
11/4	2.5133	1.2566	1.7257	.8000
$1\frac{1}{2}$ $1\frac{3}{4}$ 2 $2\frac{1}{4}$	2.0944	1.0472	1.4381	.6666
	1.7952	.8976	1.2326	.5714
	1.5708	.7854	1.0785	.5000
	1.3963	.6981	.9587	.4444
$2\frac{1}{2}$ $2\frac{3}{4}$ 3 $3\frac{1}{2}$	1.2566	.6283	.8628	.4000
	1.1424	.5712	.7844	.3636
	1.0472	.5236	.7190	.3333
	.8976	.4488	.6163	.2857
4	.7854	.3927	.5393	.2500
5	.6283	.3142	.4314	.2000
6	.5236	.2618	.3595	.1666
7	.4488	.2244	.3081	.1429
8	.3927	.1963	.2696	.1250
9	.3491	.1745	.2397	.1111
10	.3142	.1571	.2157	.1000
11	.2856	.1428	.1961	.0909
12	.2618	.1309	.1798	.0833
14	.2244	.1122	.1541	.0714
16	.1963	.0982	.1348	.0625
18	.1745	.0873	.1198	.0555
20	.1571	.0785	.1079	.0500
22	.1428	.0714	.0980	.0455
24	.1309	.0654	.0898	.0417
26	.1208	.0604	.0829	.0385
28	.1122	.0561	.0770	.0357
30	.1047	.0524	.0719	.0333
32	.0982	.0491	.0674	.0312
36	.0873	.0436	.0599	.0278
40	.0785	.0393	.0539	.0250
48	.0654	.0327	.0449	.0208

Horse Power and Working Loads of Cut Cast Iron Spur Gears

Under the heading W L is given the working load or number of pounds of power transmitting strain which can safely be brought on each inch width of tooth of a cut cast iron gear or pinion of the size indicated at left of table, when it is running at the speed listed at top. For horse power and working loads of cut cast steel spur gear multiply the figures in the table by 204.

Under the heading H.P. this is converted into Horse Power transmitted at the speed named.

These figures should be multiplied by the width of working face in inches, for the power of the gear in question.

The feet per minute at pitch line equals pitch diameter in inches multiplied by revolutions per minute and by .2618.

SPEED OF PITCH LINE

al	ф	eth		Feet per minute										
Diametral Pitch	Arc Pitch	of Teeth	10	00	200		300		600		900		1200	
Di	Ar	No.	w.L	H.P.	w.L	H.P.	w.L	H.P.	w.L	н.р.	w.L	н.р.	w.L	н.р.
10	.3142	12 20 40 60 130	90 120 145 152 160	.27 .36 .44 .46 .49	79 105 127 133 140	.47 .63 .76 .80 .84	113 119	.63 .85 1.02 1.07 1.12		.96 1.27 1.55 1.62 1.71	42 56 68 71 74	1.15 1.53 1.86 1.94 2.02	56 60	1.27 1.71 2.04 2.18 2.26
8	.392	12 20 40 60 130	113 150 180 190 200	.34 .45 .55 .58 .61	98 130 158 165 174	.59 .78 .95 .99	87 116 141 148 155		66 87 105 110 115	1.20 1.58 1.91 2.00 2.09	52 70 84 88 92	1.42 1.91 2.29 2.40 2.51	58 70	1.60 2.11 2.54 2.69 2.80
4	.785	12 20 40 60 130	225 300 360 380 400		260 315 330	1.17 1.56 1.89 1.98 2.10	230 280 295	1.58 2.08 2.52 2.68 2.79	210	2.36 3.18 3.82 4.00 4.18	105 140 170 177 185	2.86 3.82 4.64 4.83 5.05	87 116 140 147 155	3.16 4.22 5.09 5.35 5.64
3	1.047	12 20 40 60 130	300 400 480 503 530	1.45	350 420 440	1.56 2.10 2.52 2.64 2.77	310 373 391	2.08 2.79 3.36 3.52 3.70	175 232 280 295 310	3.18 4.22 5.10 5.37 5.64	140 185 225 235 248	3.82 5.05 6.14 6.42 6.77	116 155 187 196 206	4.22 5.64 6.80 7.13 7.50

SPEED OF PITCH LINE—Continued

le:	ch	Teeth					F	eet p	er mi	nute					
Diametral Pitch	Arc. Pitch	Jo	10	100		200		300		600		900		1200	
Д	A	No.	w.L	H.P.	W.L	H.P.	W.L	H.P.	W.L	H.P.	W.L	H.P.	W.L	H.P.	
2	1.57	12 20 40 60 130	600 720 760	1.37 1.82 2.18 2.30 2.40	520 630 663	2.34 3.12 3.78 3.98 4.17	467 560 592	3.15 4.20 5.04 5.33 5.57	260 350 420 442 462	4.73 6.37 7.64 8.05 8.40		5.71 7.64 9.50 9.70 10.10	295	6.33 8.44 10.20 10.72 11.23	
1½	2.09	12 20 40 60 130	800 963	1.80 2.42 2.92 3.06 3.21	700 840 880	3.12 4.20 5.04 5.28 5.55	620 750 780	4.16 5.58 6.75 7.03 7.38	466 560 585	6.34 8.47 10.20 10.65 11.22	470		372 390	8.37 11.28 13.52 14.20 14.90	

[Link Belt Co., Chicago, Ill.]

Forms for Ordering

SPUR GEAR AND PINION

INTERNAL GEAR AND PINION

Gear			Pinion		
Number of Teeth		-	Number of Teeth		
Pitch Circular Diametral	=	C	Pitch Circular Diametral	=	c
Diametral	=	11.00	Diametral	=	
Face	=	F	Face	=	f
Bore	=	В	Bore	=	b
Pitch Diameter	=	D'	Pitch Diameter	=	d'
Outside Diameter	=	D	Outside Diameter	=	d
Diameter of Hub	=	H	Diameter of Hub	=	h
Length of Hub	=	L	Length of Hub	=	1
Projection of Hub	=	P	Projection of Hub	=	p
Keyway			Keyway		
Material			Material		

Distance between centers = A

Materials for Gears

Gears may be of cast iron, cast steel, bronze or rawhide. Cast iron gears can be obtained either with cast (molded) teeth or generated (cut). Cast teeth are for rough drives but for accuracy, cut teeth are preferable; in any case a peripheral speed of 1,100 ft. per min. must not be exceeded as the noise becomes excessive. For working

loads of cast iron gears, see page 147. Rawhide gears run quietly, but the pressure on the teeth should not exceed 240 lbs. per in. of face.

MACHINE RACK AND PINION

Rack			Pinion		
Ditab Circular	=	C	Number of Teeth	=	
Pitch. $\begin{cases} \text{Circular} \\ \text{Diametral} = 3.14 \end{cases}$	116-	÷C	Pitch Circular	=	
Thickness		T	$Pitch$ $\begin{cases} Circular \\ Diametral \end{cases}$	=	*
Face	=	W	Pitch Diameter	=	d
Length of Rack			Outside Diameter	=	d'
Material	=		Bore	=	b
A Shirt San be Later to a			Face	=	f
Center of Pinion to Bot-			Keyway	=	
tom of Rack	=	A	Material	=	

^{*} Number of teeth to inch of Pitch Diameter.

[Foote Bros. Gear & Machine Co., Chicago, Ill.]

MITER AND BEVEL

Miter gears have their axes meet at 90 degs., both gears being the same size. Bevel gears have their axes meet at other than 90 degs.

Center Angle.—Divide the number of teeth in the pinion by the number of teeth in the gear, the quotient is the tangent of the center angle of the pinion and cotangent of center angle of gear.

Increase Angle.—Divide double the sine of the center angle by the number of teeth in the pinion, the quotient is the tangent of increase angle for pinion or gear.

Face Angle.—Add the increase angle to the center angle of either gear, and the sum is the face angle.

Cut Angle.—Subtract the increase angle from the center angle of either gear, and the remainder is the cut angle.

Back Angle.—Subtract the increase angle from 90 degrees and the r mainder is the back angle for either gear.

Diameter Increase.—Double the cosine of the center angle and divide it by the diametral pitch, the quotient is the diameter increase, which added to the pitch diameter, is the outside diameter. The diameter increase is not the same for pinion and gear. They are calculated separate from center angles as above.

To Find the Length of Face on a Pair of Bevel Gears.—Multiply the secant of center angle of pinion by the radius of gear, and take one-third of product. Example: A gear is 6 ins. dia., and pinion 3 ins., find the face of the gear.

$$\frac{3''}{6''}$$
 = .5000 = tangent of angle.

Secant of angle = $1.1174 \times 3''$ (radius gear) = 3.352.

Face of gear
$$= \frac{3.352}{3} = 1.11$$
".

In bevel gears, to find the thickness of tooth at small end, divide the distance from apex to small end of tooth by the distance from apex to pitch diameter, and the quotient is the ratio. Multiply the thickness of tooth at pitch line by the ratio just found, and the product is the thickness of tooth at the pitch line of small end of tooth.

To find the pitch line at the small end of the tooth, multiply the ratio as obtained above by the addendum, the product is the addendum at the small end of the tooth.

[Foote Bros., Gear & Mach. Co., Chicago, Ill.]

To Draw a Pair of Bevel Gears at any Shaft Angle. (See page 152.)—Draw the given axes A C and D C meeting at the apex C. Lay off the distances A B and D G equal to the pitch radii of the gears. Draw B H and G H parallel to the axes, and from their intersection, the pitch point H, draw the center line H C to the apex. Lay off H S equal to the given face. Draw Q H R at right angles to H C.

Lay off H P and H M each equal to the known addendum and M N equal to the known clearance. Draw P C, M C and N C.

P C H is the increment angle or the addendum angle. P C D is the face angle, N C D is the cut angle.

The "backing" is the distance from the pitch line to the back end of the hub.

The small ends of the teeth are at the "front," and the large ends at the "back" of the gear.

The working pitch diameter of the gear is the diameter H V. The outside diameter is P T. The increment or difference between

the pitch and the outside diameters, is variable with the angle of the gear, not being the same for all gears of the same pitch, as with spur gears.

[Phila. Gear Works, Phila., Pa.]

		Pinion		
=	. 14	Number of Teeth	=	
=	C	Pitch Circular	-	
=	*	Diametral	=	*
=	F	Face	=	f
=	В	Bore	=	b
=	D'	Pitch Diameter	=	d'
=	X	Backing	=	X
=	L	Length Through Hub.	=	1
=	H	Diameter of Hub	-	h
=		Keyway	=	
=		Material	=	
		= F = B = D' = X = L = H	Number of Teeth C	Number of Teeth =

When ordering either gear or pinion, always give number of teeth of mate. Distance x is sometimes taken to the pitch diameter—always state how it is taken.

^{*} Number of teeth to inch of pitch diameter.

Mitre Gear Angles and Outside Diameter of One Diametral Pitch

Note—To obtain outside diameter, divide diameter given in table by the required diametral pitch. Angles given are fixed for the number of teeth as listed.

Number of teeth	Face Angle	Back Angle	O.D. for one Dia. Pitch	Number of teeth	Face Angle	Back Angle	O.D. for one Dia. Pitch
8	55.12	10.12	9.41	76	46.06	1.06	77.41
9	54.00	9.00	10.41	77	46.05	1.05	78.40
10	53.10	8.10	11.41	78	46.03	1.03	79.41
11	52, 36	7.36	12.41	79	46.02	1.02	80.41
12	51.75	6.75	13.41	80	46.00	1.00	81.41
13	51.23	6.23	14.41	81	46.00	1.00	82.41
14	50.79	5.79	15.41	82	45.98	.98	83.41
15	50.40	5.40	16.41	83	45.97	.97	84.41
16	50.06	5.06	17.41	84	45.96	.96	85.41
17	49.80	4.80	18.41	85	45.95	.95	86.41
18	49.50	4.50	19.41	86	45.94	.94	87.41
19	49.30	4.30	20.41	87	45.93	.93	88.41
20	49.05	4.05	21.41	88	45.92	.92	89.41
21	48.86	3.86	22.41	89	45.91	.91	90.41
22	48.68	3.68	23.41	90	45.90	.90	91.41
23	48.52	3.52	24.41	91	45.89	.89	92.41
24	48.37	3.37	25.41	92	45.88	.88	93.41
25	48.24	3.24	26.41	93	45.88	.88	94.41
26	48.11	3.11	27.41	94	45.87	.87	95.41
27	48.00	3.00	28.41	95	45.87	.86	96.41
28	47.89	2.89	29.41	96	45.86	.85	97.41
29	47.79	2.79	30.41	97	45.86	.84	98.41
30	47.67	2.67	31.41	98	45.85	.83	99.41
	}				1.00		

Number	Face	Back	O.D. for one	Number	Face	Back	O.D. for one
of teeth	Angle	Angle	Dia. Pitch	of teeth	Angle	Angle	Dia. Pitch
					-,		
31	47.61	2.61	32.41	99	45.85	.83	100.41
32	47.53	2.53	33.41	100	45.84	.82	101.41
33	47.45	2.45	34.41	102	45.79	.79	103.41
34	47.39	2.39	35.41	104	45.78	.78	105.41
35	47.31	2.31	36.41	105	45.77	.77	106.41
36	47.24	2.24	37.41	106	45.76	.76	107.41
37	47.19	2.19	38.41	108	45.75	.75	109.41
38	47.13	2.13	39.41	110	45.73	.73	111.41
39	47.08	2.03	40.41	112	45.72	.72	113.41
40	47.00	2.00	41.41	114	45.71	.71	115.41
41	46.97	1.97	42.41	116	45.70	.70	117.41
42	46.93	1.93	43.41	118	45.69	.69	119.41
43	46.88	1.88	44.41	120	45.68	.68	121.41
44	46.84	1.84	45.41	122	45.66	.66	123.41
45	46.80	1.80	46.41	124	45.65	.65	125.41 125.41
46	46.76	1.76	47.41	126	45.64	.64	127.41
47	46.72	1.72	48.41	128	45.63	.63	129.41
48	46.68	1.68	49.41	130	45.62	.62	131.41
49	46.65	1.65	50.41	132	45.61	.61	133.41
50	46.62	1.62	51.41	134	45.60	.60	135.41
51	46.58	1.58	52.41	136	45.59	.59	137.41
52	46.55	1.55	53.41	138	45.58	.58	139.41
53	46.52	1.52	54.41	140	45.57	.57	141.41
54	46.50	1.50	55.41	142	45.56	.56	143.41
55	46.47	1.49	56.41	144	45.55	.55	145.41
56	46.44	1.49	57.41	146	45.55	.55	145.41
57	46.41	1.41	58.41	148	45.55	.55	149.41
58	46.38	1.38	59.41	150	45.54	.54	151.41
59	46.35	1.35	60.41	152	45.54	.54	153.41
60	46.33	1.34	61.41	154	45.53	.53	155.41
61	46.32	1.32	62.41	156	45.52	.52	157.41
62	46.30	1.32	63.41	158	45.51	.51	159.41
63	46.28	1.28	64.41	160	45.50	.50	161.41
64	46.26	1.26	65.41	100	40.00	.00	101.41
65	46.24	1.24	66.41				
66	46.22	1.22	67.41				
67	46.20	1.20	68.41				
68	46.19	1.19	69.41				••••
69	46.18	1.18	70.41				
70	46.16	1.16	71.41			-	
71	46.15	1.15	72.41		• • •	1:	
72	46.11	1.11	73.41				
73	46.09	1.09	74.41				
74	46.08	1.08	75.41				
75	46.06	1.06	76.41				
10	10.00	1.00	70.41		• •		
		-					

Copyright by Foote Bros. Gear and Machine Co., Chicago.

WORM GEARING

Terms—pitch and diametral pitch are same as for spur gears. Lead = number of threads \times linear pitch. Linear pitch of worm = circular pitch of wheel. Normal pitch = cosine of lead angle \times linear pitch. Pitch dia. of wheel = $\frac{\text{number of teeth} \times \text{cir. pitch.}}{\pi}$

Cotangent of lead angle = $\frac{\text{pitch dia. of worm} \times \pi}{\text{lead}}$. In gear table on pages 158 and 159, axial tooth angle = 60 degs., pressure angle = 30 degs.

Worm wheels have straight or concave faces, an illustration of the latter is shown on page 157. Angle A is preferably 30 degs., although it may be between 30 and 35. Wheels may have the following proportions in terms of circular pitch P. Width of face = 2 P. Dimensions of tooth on pitch line, thickness = .49 P, height = .35 P, depth = .45 P.

CURVED WORM

Worms are either straight or curved. The straight has a constant pitch diameter over its entire surface. In the curved, the worm has the form of an hour glass, the object being to get a greater surface contact than can be obtained with a straight worm. The Hindley worm is of the curved type. To get the maximum efficiency the worm should be as small in diameter as practical. Length generally six times the pitch.

Form for Ordering Worm and Worm Gear

Worm Gear			Worm		
Number of Teeth	=		Pitch	=	c
Pitch (Circular)	=	C	(Distance from center to		
Face	=	F	center of teeth.)		1
Bore	=	В	Lead (Advance in one		
Pitch Diameter	=	D'	revolution)		
Length Through Hub.	=	L	Pitch Diameter	=	d'
Projection from Center	=	M	Outside Diameter	=	d
Keyway			Bore	=	b
Material		1018	Length	=	1
Right or Left Hand			Projection of Hub	=	p
			Keyway		
			Material		
			Right or Left Hand		

Distance between Centers.....

STEP IN	
H. P. at 1000 R. P. M.	% %%%% 255555 8 0800 88
Used For	Engine Timing Gears Refrigerating Mach. Self Statent Engine Timing Gears Refrigerating Mach. Roman Truck Mach. Refrigerating Truck Industrial
Hand	
Ctr's. Change Per Wheel Tooth	1008 00583 00583 0049 0049 00582 11572 11572 11573 1153
Lead	1. 90625 1. 750 2. 070 2. 070 2. 070 2. 070 2. 070 3. 0. 00 3. 00
Lead	25.00 25
Pitch Dia. of Worm	2 222 1 2474 1 2474 1 115 1 115 1 115 1 115 1 115 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 2 200 1 150 1 175 1 17
Lineal Pitch	.6335 24756 373 373 373 345 345 345 345 372 4493 86103 1.10704
Normal Pitch	4488 4488 24445 314 200 314 403 314 403 403 403 403 403 403 403 403 403 40
Reduction	2.20 17.26 17.26 1.33 6.33 6.33 6.33 6.23 1.4-11 12.5 6.2 12.5 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
Ratio	1
Centers	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Aass.
field
10
Springfiel
_
100
0
Tool
m
~
-
-
02
138
na
aush l

55555	888288 888 888288		33 45 25 38 38 38 38 38 38 38
1 Ton Truck 1 Ton Truck 1 Ton Truck 1 Ton Truck	Motor Bus 13, Ton Truck 13, Ton Truck 13, Ton Truck 13, Ton Truck 13, Ton Truck 13, Ton Truck 2 Ton Truck 2 Ton Truck 2 Ton Truck	2 Ton Truck 2 Ton Truck 2 Ton Truck 2 Ton Blee. 3 Ton Blee. 3 Ton Truck 1 Ton Truck 2 Ton Truck 2 Ton Truck 2 Ton Truck 2 Ton Truck	1 Tor Truck 3 and 5 Ton Truck 5 and 6 Ton Truck 5 and 6 Ton Truck 5 and 7 Truck 5 and 7 Truck 7 Ton Truck 7 Ton Truck 7 Ton Truck 8 and 6 Ton Truck 1 Truck 8 and 8 Truck 1 Truck 9 Truck 1 Truck 9 Truck 1 Truck 1 Truck 9 Truck 1 Truck 2 Truck 1 Truck 1 Truck 1 Truck 1 Truck 1 Truck 1 Truck 2 Truck 1 Truck 1 Truck 1 Truck 1 Truck 2 Truck 1 Truck 1 Truck 1 Truck 2 Truck 1 Truck 2 Truck 1 Truck 2 Truck 2 Truck 2 Truck 2 Truck 2 Truck 3 Truck 2 Truck 3 Truck 4 Truck 4 Truck 5 Truck 6 Truck 6 Truck 7 Truck 7 Truck 8 Truc
		ामममममममममममम दिल्लास्यक्षित्रस्थ	
.1567 .1562 .1355	1982 2080 2080 1620 1427 1428 2064 2064 2330	2288 2029 2029 2029 2337 2113 2117 2117 2117 220 230 230 230 230 230 230 230 230 230	2189 2189 2253 2437 2437 2437 2189 2189 2286 2286
5.90625 4.9075 4.250 3.840	5.9375 6.32185 6.32185 6.32185 4.0936 4.4848 6.4848 5.500 5.1873 3.738	4 750 2 825 2 825 2 825 2 825 4 400 2 472 4 725 4 725 4 725 4 725 4 725 4 725	4 125 4 125 7.0778 4 59375 4 125 5 339 5 500 5 500
40°-3′ 34°-35′ 31°-28′ 25°-48′	23.25.25.25.25.25.25.25.25.25.25.25.25.25.	24°-52°-52°-52°-52°-52°-52°-52°-52°-52°-52	25°-31' 32°-11' 39°-1' 26°-2' 26°-2' 25°-31' 21°-16' 27°-53'
2.2366 2.265 2.210 2.527	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
.984375 .9815 .850 .960	1.1875 1.2643 1.3124 1.0234 1.0234 89706 1.375 1.2968	1.1875 1.4375 1.275 1.275 1.3487 1.368 1.200 1.210 1.3681 1.3681 1.444	1.375 1.03125 1.03125 1.41557 1.53125 1.53125 1.375 1.375 1.375
.7535 .80798 .72496 .8642	1,0801 1,0242 1,12698 90753 7879 775105 1,10801 1,104 1,104	1.0774 1.1236 1.192 1.84629 1.31498 1.1652 1.1656 1.0776 1.1831 7.79113	1.241 .925 1.1636 1.0997 1.3758 1.3758 1.241 1.037 1.215
6.2 7.7 7.75 6.55	8 10 7 2 6 6 7 8 8 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7.75 6.55 9.66 14.66 10 17.25 17.5 17.5 17.75 17.75 17.33	11.33 11.75 11.75 10.33 10.66 15.66 14.33 14.33
6-31 5-31 4-31 4-26	**************************************	4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24444 2444 24444 24444 24444 24444 24444 24444 24444 24444 24444 24444 2
5.975 5.975 5.975 6.000 6.548	6.622 6.622 6.622 6.622 6.880 7.125 7.490 7.490	7.1490 7.1490 7.1721 7.721 8.250 8.250 8.250 8.250 8.250	8.815 9.050 9.050 9.050 9.050 9.050 9.690 9.690 9.750

HELICAL GEARS

Helical gears (often miscalled spiral gears) have angular teeth, and can be used when the shafts to be connected are not parallel.

The tooth dimensions are obtained from the normal pitch (determined by the cutter used) which is the same as the circular pitch of spur gears. The circumferential pitch depends on the tooth angle, and when this is 45 degs., the velocity at the pitch line is the same for both gears, but at angles other than 45 the velocity is different. With helical gears the velocity ratio depends on the tooth angles and the diameters of the pitch surfaces.

DIRECTION OF ROTATION AND THRUST OF HELICAL GEARS

[Boston Gear Works, Norfolk Downs, Mass.]

The driving gear is the one having the greatest tooth angle, the velocity being independent of the pitch diameters. Gears of the same hand will run together on shafts set at 90 degs., and those of opposite hand on parallel shafts. Helical gears are preferable to bevel when smooth running is required—furthermore greater speed reductions can be obtained with helical.

Formulæ

Driver	Follower .	
Pitch dia. = number of teeth × cir. pitch	Pitch dia. = number of teeth × cir. pitch	
π	π	
Circular pitch = $\frac{\pi \times \text{pitch dia.}}{\text{number of teeth}}$	Circular pitch = $\frac{\pi \times \text{pitch dia.}}{\text{number of teeth}}$	
Cosine tooth pitch angle of driver $= \frac{\text{normal circular pitch}}{\text{circular pitch}}.$	Tooth angle of follower = angle between shafts — tooth angle of driver	

When the axes of the gears are at right angles, the number of teeth either in the driver or the follower = pitch dia. \times normal pitch \times cosine of tooth angle.

HERRINGBONE GEARS

Herringbone or double helical gears consist of two single helical gears reversed, that is, one right hand helix and one left hand. The teeth may meet at the center of the gear face, or the teeth may be staggered one half pitch apart as in the Wuest gear with a groove cut of one half the pitch on each side of the center of the gear face. In Wuest gears the teeth have a pitch angle of 23 degs., and are of involute form with a 20 deg. angle of obliquity.

P' = circular pitch	N = number of teeth in a gear		
P = diametral pitch	W = width of face		
Pitch dia. (20 teeth and over)	Pitch dia. (under 20 teeth)		
_ <u>N</u>	$=\frac{.95 \text{ N} + 1}{P}$		
= P	P		
Addendum $=\frac{.8}{P}$	$Dedendum = \frac{1}{P}$		
Full depth = $\frac{1.8}{P}$	Working depth = $\frac{1.6}{R}$		

Standard face width for gears with pinions of not less than 25 teeth is equal to 6 P', and for face widths for high ratio gears with small pinions 6 P' to 12 P'.

SECTION IV

PIPE, TUBES AND FITTINGS

TRADE CUSTOMS—STANDARD WROUGHT IRON PIPE—EXTRA STRONG WROUGHT IRON PIPE—DOUBLE EXTRA STRONG WROUGHT IRON PIPE—COUPLINGS—NIPPLES—BOILER TUBES—STEEL TUBES—BRASS AND COPPER TUBES—PIPE BENDS—FLANGES—FITTINGS—VALVES—COCKS—

EXPANSION JOINTS

Trade Customs Pertaining to Wrought Iron and Steel Pipe for Steam, Water and Gas.

Specify whether wrought iron or steel pipe is required.

Pipe is designated by its nominal inside diameter from ½ to 15 ins.; above 15 ins. by the outside diameter, the thickness being specified.

The outside diameter of pipe heavier than standard has the same diameter as standard, the extra thickness being on the inside.

The inside diameter of casings is always given.

The sizes of boiler tubes are indicated by their outside diameter.

Pipe is shipped in random lengths 18 to 21 ft. with threads and couplings, except extra and double extra strong which are shipped with plain ends. There is an extra charge for pipe cut to specified lengths—couplings not being furnished unless specified—pipe so cut is always measured to include the couplings.

Standard pipe cut to given lengths is always furnished with threaded ends. Extra strong and double extra strong have plain ends.

Pipe is furnished either butt or lap welded. Butt welded pipe may be obtained up to 3 ins. diameter, and lap welded from 11/4 in. up.

Pipe threads—see chapter on Threads.

In cutting pipe to order all dimensions should be given from center to center of valves and fittings.

STANDARD WROUGHT IRON AND STEEL PIPE

	Number of Threads per Inch of Screw	28844111111 24444 24444
Nominal Weight per Foot	Threaded and	2.568 2.
Noming	Plain	2.4 4.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5
H-es	of Pipe Con- taining One Cubic Foot	2533 .775 2533 .775 270 .034 166 .618 166 .618 19 .670 19 .670 10 .670
Length of Pipe per Square Foot of	Exter- Inter- nal nal Surface Surface Feet Feet	14.199 10.493 7.7477 7.7473 7.7473 7.7473 8.611 10.245 11.
Length per S Fo	Exter- nal Surface Feet	7.073 7.073
reas	Metal Sq. Ins.	072 1127 1167 1230 1333 1494 1076 1170 1170 1170 1170 1170 1170 1170
Transverse Areas	Inter- nal Sq. Ins.	
-	External nal	
Circumference	Inter- nal Inches	
Circum	Exter- nal Inches	1.272 1.696 2.121 3.299 4.131 5.216 10.096 11.566 11.566 22.081 22.081 23.055 27.096 2
	Nominal Thickness	0.068 0.091 1.1109 1.11
Diameter	Approximate Internal	2.69 3.64 4.63 5.62 5.62 5.62 5.62 5.62 5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63
Dian	Size External	.405 5.405 5.405 6.755 6.755 6.755 6.755 6.625 6
	Size	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EXTRA STRONG WROUGHT IRON AND STEEL PIPE

Nominal	Weight per Foot Plain Ends	. 314 . 738 . 738 . 738 . 738 . 738 . 738 . 74 . 74 . 75 . 75 . 75 . 75 . 75 . 75 . 75 . 75
Length of	Pipe Containing One Cubic Foot	3966. 392 2010. 290 1024. 689 615. 017 200. 193 112. 256 48. 766 48. 766 202 112. 522 12. 522 12. 522 12. 522 14. 522 15. 522 16. 522 17. 522
	Internal Surface Feet	17. 766 12. 648 9. 903 6. 993 6. 993 1. 1. 644 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Length of Pipe per Square Foot of	External Surface Feet	9.45 6.658 7.658 7.568 7.668 1.091 1
98.8	Metal Sq. Inches	0.093 1.577 2.320 6.539 6.539 1.647 1.477 1.477 2.188 3.016 8.405 5.118 8.405 5.119 11.192 11
Transverse Areas	Internal Sq. Inches	036 072 072 141 234 1283 11283 11283 12963 8 888 1114497 114497 118 194 26 603 26 663 27 463 28 426 28 426 38 426 39 473 40 403 40 403 403 40 403 40 403 403
Tra	External Internal Metal Sq. Inches Sq. Inches	229 229 229 229 2358 2286 2286 24835 24835 24835 24835 24835 24835 24835 24836
Circumference	External Internal Inches Inches	. 675 1. 349 1. 712 2. 331 3. 007 4. 015 4. 015 6. 092 9. 111 10. 568 11. 202 11. 202 11. 202 11. 202 11. 203 11. 203
Circum		1. 272 2. 212 2. 212 2. 212 2. 212 2. 212 2. 213 2.
	Nominal Thickness Inches	095 1126 1126 1126 1127 1127 1127 1127 1127
Diameter	Approxi- mate Internal Diameter Inches	215 302 546 546 546 742 742 1 278 1 278 1 939 1 939 1 938 2 306 1 938 4 290 4 290 6 625 6 625 7 61 6 750 1 750 1 750
	Exter- nal Inches	. 405 . 5405 . 5
	Nomi- nal- Inter- nal Inches	**************************************

DOUBLE EXTRA STRONG WROUGHT IRON AND STEEL PIPE

Nomi-	nal Weight per Foot Plain Ends	Pounds	1 714 2 440 3 659 5 2 640 5 2 114 6 408 19 695 118 583 27 541 32 530 53 160 63 079
	Length of Pipe Con- taining One Cubic Foot	Feet	2887.164 973.404 510.998 151.528.379 151.528.379 24.659 34.659 14.306 11.107 7.646 5.312 3.879
f Pipe per Foot of	Internal Surface	Feet	15.157 8.801 6.376 4.263 3.472 2.154 1.660 1.211 1.211 1.066 1.211 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.210 1.210
Length of Pipe per Square Foot of	External Surface	Feet	4.547 2.3637 2.301 2.301 1.308
eas	Metal	Sq. Inches	504 1.718 1.634 1.834 1.885 2.656 4.028 6.721 8.101 8.101 11.340 11.340 11.340 11.340 11.340 11.340 11.340
Transverse Areas	Internal	Sq. Inches Sq. Inches	.050 .148 .282 .630 .930 .1774 2.464 2.464 2.464 2.464 2.464 1.155 5.845 7.803 11.966 112.966 112.966 27.109
Tra	External	Sq. Inches	.554 1.866 1.858 2.164 2.835 4.430 6.492 19.621 19.635 24.472 45.664 58.426
Circumference	External Internal	Inches	792 1.363 1.363 1.363 2.815 2.815 3.456 4.722 5.726 6.570 9.909 9.570 11.247 11.247 11.238 11.247 11.238 11.247 11.238 11
Circum		Inches	2. 639 3. 299 3. 299 4. 131 5. 215 5. 215 6. 032 10. 996 12. 566 12. 566 14. 137 15. 708 17. 477 15. 477 15. 472 20. 813 23. 955 27. 096
i de la	Nominal Thickness	Inches	294 308 308 358 358 358 400 600 600 600 600 600 600 600 600 600
er	Approxi- mate Internal Diameter	Inches	. 252 . 434 . 434 . 599 . 596 . 1100 . 170 . 171 . 172 . 172 . 172 . 172 . 172 . 172 . 172 . 173 . 173
Diameter	Exter- nal	Inches	
	Nominal Internal	Inches	11111000004400c0

Standard, extra strong and double extra strong pipe for a given size have the same outside diameters. The strength of extra strong and double extra strong is secured by decreasing the inside diameter. PIPE COUPLINGS FOR STANDARD WROUGHT IRON PIPE

Dia. of Coupling	Length	Weight lbs.	Size of Pipe	Dia. of Coupling	Length	Weight lbs.
.562	7/8	.029	4½ 5	5.591 6.296	35/8 41/8	5.241 8.091
.848 1.024	1½ 1¾ 13/8	.070	6 7	7.358 8.358	4½ 4½ 4½	9.554 10.932 13.905
1.576 1.950	17/8	.343	9 10	10.358 11.721	5½ 6½	17.236 29.877
2.760	25/8	1.208	12	13.958	61/8	$ \begin{array}{r} 32.550 \\ 43.098 \\ 47.152 \end{array} $
3.948 4.591	$\frac{31/8}{35/8}$	$2.498 \\ 4.241$	14 15	16.446 17.446	6½ 6½	59.493 63.294
	Coupling .562 .685 .848 1.024 1.281 1.576 1.950 2.218 2.760 3.276 3.948	Coupling .562 .685 .848 1½ 1.024 1.281 1.576 1.950 2.218 2.218 2.760 2.58 3.276 2.58 3.948 4.591 358	18 18 18 18 18 18 18 18	Coupling Length Ibs. Pipe	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

For threads per inch see table of Standard Wrought Iron Pipe.
[National Tube Co., Pittsburgh, Pa.]

Nipples for Standard Wrought Iron Pipe (Right and left hand threads)

Short and long nipples have an unthreaded portion or shoulder as shown in figure. Close nipples have no shoulder. See table page 167.

NIPPLES (Continued)

Size, Inches	Length, Inches											
Inches	*Close	*Short	(7 - T) T	Lo	ong							
1/8 1/4 3/8 1/2 3/4 1 1/4 1/2 2 2/2 3 3/2 4 4/2 5 6 7 8 9 10 112	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/2 11/2 11/2 11/2 2 21/2 21/2 21/2 3 4 4 4 41/2 5 5 5 6	2 2 2 2 2 2 2 1/2 3 3 3 3 1/2 4 1/2 4 4 1/2 5 5 5 5	21/2 21/2 21/2 21/2 3 3/2 3 3/2 4 4 5 5 5/2 5 5/2	3 3 3 3 3 3 1/2 4 4 4 4 4 4 5 1/2 5 1/2 5 6 6	31/2 31/2 31/2 31/2 4 4 41/2 41/2 5 6 6 6 6 6 61/2						

^{*} These lengths conform to the Manufacturers' Standard.

STANDARD BOILER TUBES

Dia	meter	Thick-	auge	Circum	ference	Tran	sverse A	rea	Leng tube sq. f	Nom-	
Ex- ter- nal	In- ternal	Nominal T	Nearest B. W. Gauge	Ex- ternal			In- ternal	Metal	Ex- ternal Sur- face	In- ternal Sur- face	Weight Per Foot
Ins.	Ins.	Ins.	No.	Ins.	Ins.	Sq. ins.	Sq. ins.	Sq.	Feet	Feet	Lbs.
13/4 21/4/2 23/4 31/4/2 33/4 41/2 5 6 7 8 9 10 11 11 13	1.560 1.810 2.060 2.282 2.532 2.782 3.010 3.260 3.510 3.732 4.232 4.704 5.670 7.670 8.640 9.594 10.560 11.542 12.524	.095 .095 .109 .109 .120 .120 .120 .134 .148 .165 .165 .165 .185 .203 .220	10 9 8 8 8 7 6 5	11.781 12.566 14.137 15.708 18.850 21.991 25.133 28.274 31.416 84.558 37.699	5.686 6.472 7.169 7.955 8.740 9.456 10.242 11.027 11.724 13.295 14.778 17.813 20.954 24.096 27.143 30.140 33.175 36.260	2,405 3,142 3,976 4,909 5,940 7,069 8,296 8,296 11,045 12,566 15,904 15,904 15,904 15,033 38,485 50,265 63,617 78,540 95,033 113,097	8.347 9.677 10.939 14.066 17.379 25.249 34.942 46.204 58.629 72.292 87.582 104.629	.569 .643 .819 .904 .990 1.180 1.274 1.368 2.256 3.025 3.543 4.061 4.988 6.248 7.451 8.468	1.697 1.527 1.388 1.273 1.175 1.091 1.018 .954 .763 .636 .545 .477 .424 .381 .347 .318	2.110 1.854 1.673 1.508 1.373 1.269 1.171 1.088 1.023 .902 .812 .673 .572 .498 .442 .398 .361 .330	1.679 1.932 2.186 2.783 3.074 3.365 4.011 4.331 4.652 5.532 6.248 7.669 10.282 12.044 13.807 16.955 21.240 25.329 28.788 32.439

Lap welded boiler tubes, as manufactured by the National Tube Co., are of open hearth steel. Sizes including 4 in. dia. are tested to 750 lbs. per sq. in. and above this size to 500.

STEEL TUBES

Cold drawn Shelby seamless steel tubes can be obtained from $\frac{3}{16}$ in, to 9 ins. O. D.

Hot rolled can be rolled from 2 to 9 ins. They cannot be rolled smaller than 2 ins. O. D. nor with a wall thickness less than 3% of the outside diameter, provided further that the wall is not thinner than 11 gauge. Hot rolled tubes are desirable when it is necessary to machine the outside or inside to finished dimensions.

Comparison of Standard Wrought Iron Pipe and Shelby Seamless Steel Tubing

Inside l	nal Size Diameter Iron Pipe	Nominal Weight	Nominal Thickness	Nearest Fractional Size of Seamless Steel Tubing			
Size	O. D.	per Foot	of Wall	O. D.	Thickness B. W. G.		
1/8 1/4 3/8 1/2 3/4 1 1/1/2 2 2 1/2 3 3 3/2 4 4/2 5 6 7 8 9 10 11 12	.405 .540 .675 .840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625 7.625 8.625 9.625 10.750 11.750	$\begin{array}{c} .244\\ .424\\ .567\\ .850\\ 1.130\\ 1.678\\ 2.272\\ 2.717\\ 3.652\\ 2.717\\ 3.652\\ 5.793\\ 7.575\\ 9.109\\ 10.790\\ 12.538\\ 14.617\\ 18.974\\ 23.544\\ 28.554\\ 33.907\\ 40.483\\ 45.557\\ 49.562\\ \end{array}$.068 .088 .091 .109 .113 .133 .140 .145 .154 .203 .216 .226 .237 .247 .258 .280 .301 .322 .342 .365 .375	$\begin{array}{c} 1_{3} \\ 1_{7} \\ 2_{1} \\ 2_{1} \\ 2_{2} \\ 2_{1} \\ 2_{2} \\ 2_{2} \\ 2_{2} \\ 2_{2} \\ 2_{2} \\ 2_{2} \\ 2_{2} \\ 2_{3} \\ 2_{1} \\ 2_{3} \\ 2_{4} \\ 2_{4} \\ 2_{5} \\$	16 Ga. 14 Ga. 13 Ga. 12 Ga. 12 Ga. 10 Ga. 9 Ga. 9 Ga. 7 Ga. 4 Ga. 14 9 9 9 Ga. 14 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		

TENSILE AND PHYSICAL PROPERTIES OF SHELBY COLD DRAWN STEEL TUBES

					,	h = 1 -			,		0.1-		
		Appearance and Condition		Surface dull and fairly scale free. Unless otherwise speci- fied, material is always furnished to this tenner.	Surface dull and very slightly scaled. Material of this temper will stand a moderate amount of cold forming.	Surface dull and slightly scaled. Material of this temper being very soft and ductile, will stand considerable cold forming and is in excellent shape for machining. How- ever, the tool should have a 30 deg. too rake, so the ching	are long and tough. Surface bright and scale free. Material of maximum strength with but slight ductility.	Surface slightly scaled. This temper is suitable for all purposes: it stands cold forming and manipulation	Surface considerably scaled. Especially suitable for stay-	Surface dull and fairly scale free. Unless otherwise speci- fed material is always furnished to this temper. It is used for mechanical purposes on parts requiring medium high	tensile properties but little ductility. Surface dull and slightly scaled. This temper is suitable for purposes requiring medium tensile strength and ductility and shock resisting power. This temper will stand	reasonable cool forming. Surface bright and scale free. This material has maximum strength but hardly any ductility, and should not be used where subjected to shock. Mitterfail, provided it is not subjected to cold working or manipulation, and is to be heated above, 500°C during subsequent manufacture,	should be lurnished to this temper.
		Reduc- tion of Area		30	35 .	45	18	90	52	20	32	123	
		ga- n	%8%	10	15	. 55	က	27	28	10	18		
	Minima	Elonga- tion	7,2"	17	32	45	10	20	52	18	32	10	
	M	Tensile Strength Lbs. per Sq. In.		58000	52000	20000	63000	47000	20000	80000	65000	85000	
		Yield Point	Lbs. per Sq. In.	45000	38000	35000	55000	27000	28000	65000	48000	70000	
	Grade Treatment Steel		Temper "T" Finish Anneal	Temper "U" Special Anneal	Temper "V" Medium Anneal	Unannealed	Temper "W"	Temper "X"	Temper "T" Finish Anneal	Temper "U" Medium Anneal	Unannealed		
			.17 Carbon	.17 Carbon	.17 Carbon	.17 Carbon	Boiler Tube	Boiler Tube	.35 Carbon	35 Carbon	.35 Carbon		

[Tubes made by the Shelby process are manufactured by National Tube Co., Pittsburgh, Pa.]

PIPE BENDS

LAP WELDED STEEL PIPE

Minimum radius of pipe bend, 5 times the outside diameter of the pipe. Bends with shorter radii have practically no expansion value as they buckle in bending. All radii taken to center line of pipe.

			_			-					-			_					
Size of pipe, ins.	21/2	3	31/2	4	41/2	5	6	7	8	9	10	12	14	15	16	18	20	22	24
R = minimum advisable ra- dius, ins	121/2	15	17½	20	221/2	25	30	35	40	45	50	60	70	75	80	108	120	132	144
L = minimum tangent length ins	-4	4	5	5	6	6	7	8	9	11	12	14	16	16	18	18	18	18	18

COPPER AND STEEL PIPE

Minimum radius should be at least 5 times the outside diameter of the pipe.

THICKNESS OF STEEL PIPE FOR BENDS Up to 125 Pounds Working Pressure

Radius	Pipe Size	Pipe
4 to 5 diameters	7 inches and smaller	.Extra strong
	8 inches and larger	.½ inch thick
Over 5 diameters	7 inches and larger	.Full weight
	8 inches	.28.55 pounds per foot
10	0 inches	.40.48 pounds per foot
1:	2 inches	:49.56 pounds per foot
1	4 inches to 16 inches, inclusive	5/16 inch thick
18	8 inches to 22 inches, inclusive	. 3/8 inch thick
2	4 inches to 30 inches, inclusive	7/16 inch thick

125 Pounds to 250	Pounds Working Pressure
4 to 5 and 6 diameters 7 inches	
8 inches	and larger½ inch thick
Over 6 diameters 7 inches	and smallerFull weight
8 inches	
10 inches	
12 inches	
14 inches	to 16 inches, inclusive. 3/8 inch thick
18 inches	to 22 inches, inclusive. 7/6 inch thick
24 inches	to 30 inches, inclusive. ½ inch thick
21 menes	to be menest merasive, /2 men emek

250 Pounds to 350 Pounds Working Pressure

4 diameters and	over	7 inches and smaller Extra	strong
		8 inches and larger	thick

FLANGES

STANDARD AND LOW PRESSURE FLANGES (For pressures up to 125 lbs.)

Size	Diameter of Flanges Inches	Thickness of Flanges Inches	Bolt Circle Inches	Number of Bolts	Size of Bolts Inches	Length of Bolts Inches
1 1½ 1½ 2 2½	4 4½ 5 6 7 7½ 8½ 9	7,16 1,2 9,16 5,8 11,16 3,4 13,16 15,16 15,16	3 3 ³ / ₈ 3 ⁷ / ₈ 4 ³ / ₄ 5 ¹ / ₂ 6 7	4 4 4 4 4	7/16 7/16 1/2 5/8 5/8	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{2} \end{array} $
$1\frac{1}{4}$ $1\frac{1}{2}$ 2 $2\frac{1}{2}$ $3\frac{1}{2}$ 4 $4\frac{1}{2}$ 5 6 7 8 9 10 12 14 15 16 18 20 22	91/4	3/4 13/16 15/16 15/16 15/16	$ \begin{array}{c} 6 \\ 7 \\ 7\frac{1}{2} \\ 7\frac{3}{4} \\ 8\frac{1}{2} \\ 9\frac{1}{6} \end{array} $	4 4 4 4 4 4 8 8 8 8 8 12 12 12 12 12 16 16	76,6(2)6(8)8(8)8(4)4,4(4)4(8)8	2½ 2½ 2¾ 2¾ 2¾ 2¾ 3¼
7 8 9 10 12	11 12½ 13½ 15 16 19	11/16 11/8 11/8 13/16 11/4 13/8 13/8 17/16 19/16 111/16 113/16	7½ 7¾ 8½ 9½ 10¾ 11¾ 13¼ 14¼ 17 18¾	8 8 12 12 12	3/4 3/4 3/4 7/8 7/8	2½ 2¾ 2¾ 2¾ 3 3 3¼ 3¼ 31¼ 31¼ 31½ 31½
14 15 16 18 20	21 22½ 23½ 25 27½ 29½ 32	13/8 13/8 17/16 19/16 111/16	18¾ 20 21¼ 22¾ 25 27¼ 201	12 16 16 16 20 20	1 1 1 1 ¹ / ₈ 1 ¹ / ₈	4 4 4 4 ¹ / ₂ 4 ³ / ₄ 5 5 ¹ / ₄ 5 ¹ / ₂ 5 ³ / ₄
24 26 28 30	32 34 ¹ / ₄ 36 ¹ / ₂ 38 ³ / ₄ 41 ³ / ₄ 43 ³ / ₄	11/8 2 21/16 21/6	31 ³ / ₄ 34 36	20 24 28 28 28 28	11/8 11/4 11/4 11/4 11/4 11/2 11/2 11/2 15/8 15/8	5 1/4 5 1/2 5 1/2 5 3/4 6 1/
32 34 36 38 40	43 ³ / ₄ 46 48 ³ / ₄ 50 ³ / ₄	$\begin{array}{c} 214 \\ 2516 \\ 2516 \\ 238 \\ 238 \\ 212 \\ \end{array}$	38½ 40½ 42¾ 45¼ 47¼	32 32 32 32 36	1 1/2 1 1/2 1 1/2 1 5/8 1 5/8	614 612 612 612 634 7

American standard in effect January 1, 1915. Flanges can be obtained in cast iron, malleable iron and cast steel. The drilling

templates are in multiples of four, so that fittings may be made to face in any quarter and bolt holes straddle the center line. Bolt holes are drilled $\frac{1}{8}$ inch larger than nominal diameter of bolts.

TEMPLATES FOR DRILLING

Extra Heavy and Medium Flanged Valves and Extra Heavy Flanged Fittings—American Standard—Effective January 1, 1915.

-							
Size in inches	Diameter in inches of Flanges	Thickness of Flanges in inches	Bolt Circle in inches	Number of Bolts	Size in inches of Bolts	Length in inches of Bolts	Length in inches of Studs with 2 Nuts
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 2 3 3 1 1 2 4 4 1 1 2 5 6 6 7 8 9 9 10 11 2 11 4 11 5 11 6 11 8 20 22 24 24 26 22 8 30 32 33 4 33 6	4½ 5 .6 .6 .6 .6 .7 .2 .7 .2 .8 .4 .9 .10 .10 .12 .11 .12 .2 .14 .15 .16 .4 .4 .17 .2 .2 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	11/6 3/4 /6 11/8 1 1/8 1 1/8 2 1/8 2 1/4 2 1/8 2 2/8 2 2/8 2 2/8 2 2/8 3 3/8 3 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8	3 1/4 3 3/4 4 1/2 5 5/8 6 5/8 7 1/4 7 7/8 8 1/2 1 10/8 1 11 1/8 1 13/4 1 15/4 1 16/4 2 11/2 2 2 2 4/3 2 2 2 4/3 2 3 4 1/2 3 3 7 3 9 1/4 4 4 1/2 4 4 3 1/2 4 6 5/8 8 7 1/4 8 7 1/4	4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 16 16 20 20 20 24 24 24 24 22 28 28 28 28 28 28 28 28 28 28 28 28	1/2/2/6/8/4/4/4/4/4/4/4/4/8/4/4/8/8/4/4/4/8/8/1/8/8/8/8	2 14/2/2 2 1/4/4 2 2 2 1/3/4 1/4/2 2 2 1/3/4 1/4/2 2 2 1/3/4 1/4/2 1/3/4 1/4/2	9½ 10 10 10½ 11 11½ 11½ 11½ 11½ 11½
38 40 42 44 46 48	$52\frac{1}{4}$ $54\frac{1}{2}$ 57 $59\frac{1}{4}$ $61\frac{1}{2}$ 65	37/16 39/16 311/16 33/4 37/8	48 50 \frac{1}{4} 52 \frac{3}{4} 55 57 \frac{1}{4} 60 \frac{3}{4}	32 36 36 36 40 40	17/8 17/8 17/8 2 2 2	$\begin{array}{c} 914\\ 914\\ 914\\ 912\\ 934\\ 10\\ 1014\\ 1012\\ \end{array}$	$ \begin{array}{c} 11\frac{1}{2} \\ 12 \\ 12 \\ 12\frac{1}{2} \\ 13 \\ 13 \end{array} $

EXTRA HEAVY COMPANION FLANGES (For pressures up to 250 lbs.)

Cast iron, malleable iron, ferrosteel, cast steel, forged steel

24	36 36 36 36 36 36 36 36 36 36 36 36 36 3
22	33 25% 37/6
20	3012
18	37,6
16	251/2
15	241/2 23/6 218/6 218/6
14	23,8
12	201/2
10	171 178 238 238
6	161 134 214 214
00	15 · 15 8 23/16
~	14 11/2 21/6
9	123/2 17/6 2
10	11.00
41/2	101/2 15/6 113/6
4	11,4,4,1
31/2	15%
63	81 11 19 19 19 18
272	17.2
63	13,72%
11/2	98,11
11/4	20 11
1 11/4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SizeInches	A—Diameter of Flange . Inches B—Thickness of Flange, Inches C—Length of HubInches

For drilling see page 173.

These flanges have a $\frac{1}{16}$ in. raised face, the face having sufficient height to hold a copper gasket in place. Sizes in effect Jan. 1, 1915, recommended by American Society of Mechanical Engineers.

Other types of extra heavy flanges are shown on page 175.

-Length of Hub, Short...-Length of Hub, Forged Ste

-Diameter of Lap .. Length of Hub,

Cranelap Craneweld Shrink

Size

Diameter of Flange....

SS	175
24	26.877.8
22	25,18,88
20	23.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
18	21,25,31,4,8,6,1,8,7,1,1,8,1,8,1,1,8,1,1,1,1,1,1,1,1,1
16	251/2 6 27/8 191/8 191/8
15	25.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5
14	23 25,173 25,173 173,4,4 173,4,4
12	2012 2012 2013 2013 153,88 153,88 153,88
10	1211482448
6	167 4187 4187 4187 4187 4187 4187 4187 418
00	15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18
-	41 11,74 10,85 10,
9	121/2 17/2 2 4/4 9 37/6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
20	11411857 81417887 87878888
41/2	13,12,72,72,72,73,73,73,73,73,73,73,73,73,73,73,73,73,
4	010113347478
Inches	Inches Inches Inches Inches Inches Eel Inches

BRASS AND COPPER TUBES

When ordering seamless brass and copper tubes state whether inside or outside diameter is required, otherwise outside diameter is shipped. In designating thickness, Stubs' (Birmingham Wire Gauge) or Brown and Sharpe is given. Tubes can be obtained with hard or soft temper, the latter should be specified if they are to be bent or flanged. They can be obtained in a variety of dimensions, the following table gives common sizes.

SEAMLESS BRASS* TUBES

Outside dia., ins.	Stubs' gauge—exact	Weight per foot, lbs.	Outside dia., ins.	Stubs' gauge—exact	Weight per foot, lbs.
1/8	21	.034	15/8 13/4	14 13	1.48
16 1/4 5/	$\begin{array}{c} 21 \\ 20 \\ 20 \end{array}$.057 .087 .112	2 2	13 16	$ \begin{array}{c c} 1.82 \\ 2.09 \\ 1.45 \end{array} $
3/8 7/2	19 19	.161 .192	2½ 2½ 2½	12 16	2.69 1.64
1/8/11/4/16/8/16/21/16/8/4/8	18 18	.255	$ \begin{array}{c c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	12 16	3.01
5/8 3/4	18 17	.326	2 ³ ⁄ ₄	12 11	3.32 3.99
1	17 16	.547 .700	3 3½ 3½	16 10	$\frac{2.20}{4.82}$
$\frac{1\frac{1}{8}}{1\frac{1}{4}}$	16 15	.790 .98	31/2	10 10	5.21 5.98
13/8 11/2	14 14	$\frac{1.24}{1.36}$			

^{*}For weight of copper tubes multiply by 1.051.

Seamless brass and copper tubes are also rolled in standard iron pipe sizes $\frac{1}{8}$, $\frac{1}{4}$, $\frac{3}{8}$, $\frac{1}{2}$, $\frac{3}{4}$, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 4, 4, 2, 5, 6, 7, 8, 9 and 10 ins., and in extra heavy iron pipe sizes $\frac{1}{8}$, $\frac{1}{4}$, $\frac{3}{8}$, $\frac{1}{2}$, $\frac{3}{4}$, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 4, 4, 2, 5, 6, 7 and 8 ins. For outside and inside diameters see pages 163 and 164. Brass .307 cu. in. weighs 1 lb., copper .321 cu. in. weighs 1 lb.

FITTINGS

Standard fittings are guaranteed to 125 lbs. working pressure and extra heavy to 250 lbs.

Standard fittings and flanges are plain faced, while extra heavy inside of the bolt holes have a raised surface 1/16" high.

In describing fittings the run is first named, then the outlet.

Length of Thread on Pipe that is Screwed into Valves of Fittings to Make a Tight Joint

Dia. of pipe	Length of thread on pipe	Dia. of pipe	Length of thread on pipe	CAL
1/8 1/4 3/6	1/4 3/8	3½ 4	1 1	PO
3/8 1/2 3/4	3/8 1/2 1/2	4½ 5 6	1 1 1	SITY
$ \begin{array}{c} 1 \\ 1\frac{1}{4} \\ 1\frac{1}{2} \end{array} $	5/8 5/8 5/8	7 8 9	1 1¼ 1½	VER
$2^{1/2}$ $2^{1/2}$ 3	3/4 7/8	10 12	134 134	S

Extra Heavy Cast Iron Screw Fittings (For steam pressures up to 250 lbs.)

(See figures, page 178)

SizeInches A-Center to FaceInches AA-Face to FaceInches B-Center to FaceInches	1/2 15/32 25/16 3/4	13/8 13/8 23/4 7/8	1 1 ¹¹⁹ / ₃₂ 3 ³ / ₁₆ 1	11/4 115/6 37/8 13/6	1½ 2½ 4½ 1¼	2 2½ 5 1½	2½ 3 6 1¾
E-Outside Diameter of BeadInches F-Width of BeadInches G-Thread LengthInches	1 ²¹ / ₃₂ 7/ ₁₆ 9/ ₁₆	1 ²⁹ / ₃₂ 1/ ₂ 5/ ₈	25/16 9/16 11/16	23/4 11/16 13/16	31/16 3/4 7/8	334 78 1	4%16 1 11/8
SizeInches A-Center to FaceInches	2 311/6	3½ 4½ 4½	4 415/2	41/2 427/32	5 57/32	6 513/6	8 78/16
AA-Face to FaceInches B-Center to FaceInches	73/8 21/4	81/16 27/16	815/16 211/16	911/16	107/16 31/8	115/8 35/16	143/8 315/16
E-Outside Diameter		2 716	199	1	1		
of BeadInches	53/8	6	613/16	73/8.	715/16	95/16	119/16
F-Width of BeadInches G-Thread LengthInches	11/4	15/16	17/16	19/16	111/16	134	17/8

STANDARD CAST IRON SCREW FITTINGS (For steam pressures up to 125 lbs.)

Size Inches A-Center to Face Inches AA-Face to Face Inches B-Center to Face Inches C-Center to Face Inches D-Face to Face Inches E-O.D. of Bead Inches F-Width of Bead Inches G-Thread Length Inches	14 34 11/2 7/16 1	3/8 7/8 13/4 9/16 17/16 11/8 5/16 7/16	1 1/16 2 1/8 11/16 1 1/8 11/16 1 1/16 1 1/16 3/8 1/2	3/4 15/16 25/8 13/16 21/16 23/4 13/4 7/16	$\begin{array}{ c c c }\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	334	1 ¹ / ₂ 2 4 1 ³ / ₁₆ 3 ¹ / ₄ 4 ³ / ₄ 2 ³ / ₄ 5 ⁵ / ₈ 1 ³ / ₁₆	2 2 ³ / ₈ 4 ³ / ₄ 1 ³ / ₈ 4 5 ¹ / ₂ 3 ³ / ₈ 11/ ₁₆ 7/ ₈	$\begin{array}{c} 2\frac{1}{2} \\ 2\frac{7}{8} \\ 5\frac{3}{4} \\ 1\frac{5}{8} \\ 6\frac{13}{16} \\ 4\frac{1}{8} \\ 1\frac{3}{16} \\ 1 \end{array}$	3 3 ⁵ / ₁₆ 6 ⁵ / ₈ 1 ⁷ / ₈ 5 ⁵ / ₈ 4 ³ / ₄ 1 ⁵ / ₁₆ 1
Size. Inches A-Center to Face. Inches AA-Face to Face. Inches B-Center to Face. Inches C-Center to Face. Inches D-Face to Face. Inches E-O. D. of Bead. Inches F-Width of Bead. Inches G-Thread Length. Inches	3 ¹ / ₂ 3 ¹¹ / ₆ 7 ³ / ₈ 2 ¹ / ₁₆ 6 ³ / ₈ 8 ³ / ₄ 5 ¹ / ₄ 1 1 ¹ / ₁₆	4 4 8 2 ¹ / ₄ 7 ¹ / ₈ 9 ³ / ₄ 6 1 ¹ / ₈	4½ 47/6 87/8 27/6 77/8 10½ 69/6 11/8 11/4	5 4 ¹¹ / ₁₆ 9 ³ / ₈ 2 ⁹ / ₁₆ 8 ¹ / ₂ 11 ⁵ / ₁₆ 7 ¹ / ₁₆ 1 ¹ / ₈ 1 ¹ / ₄	$10\frac{5}{8}$ 2^{13} 6 9^{15} $13\frac{1}{8}$	$ \begin{array}{c} 12\frac{1}{8} \\ 3\frac{1}{8} \\ 11\frac{1}{4} \end{array} $	8 613 16 135 8 39 16 12 15 16 16 13 16 107 8 138 158	9 7½ 15 378 14½ 19 12½ 17/16 13/4	$\frac{16}{20\%}$	12 99/6 191/8 47/8 155/8 13/4 17/8

The Center to Face and Face to Face dimensions of Reducing Tees and Crosses are determined as follows: For AA-Face to Face, add to the outside diameter E of outlet bead, twice the width F of the run bead.

For A-Center to Face, add to the width F of outlet bead, one-half the diameter E of the run-bead.

X = A - G Y = B - G Z = C - G

For Example AA of a 2 x 3/4

equals $1\frac{3}{4} + \frac{11}{16} + \frac{11}{16} = \frac{3}{16}$ Inches.

 $A = \frac{7}{16} + \frac{111}{16} = \frac{21}{8}$ Inches.

[Walworth Mfg. Co., Boston, Mass.]

The sizes of fittings are determined by the largest opening whether in run or branch.

STANDARD AND LOW PRESSURE FLANGED FITTINGS

1 % %%
20 20 20 20 20 20 20 20 20 20 20 20 20 2
2612 2612 272 272 272 272 272 273 273 273 273 27
237 237 237 237 237 237 237 237
22120 2842 2842 2842 2842 2843 2843 2843 2843
(0)(0) (00)
2 2 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2421 100 100 100 100 100 100 100 100 100 1
122 252 251 11 20
0001100 45 100 100 100 100 100 100 100 100 100 10
220 45 27 41 E
74/4/4/4/4 1470 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 9 8 11 2 8 14 15 0 11 1
21747188 01 214747188 01 317474 22 23 23 23 23 23 23 23 23 23 23 23 23
144r 94 455 87 75
1,2,1
4 60 04 25 6 6 6
8,510,88,411,80,83
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20 4 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
20 14 9 20 10 1 20 10 10 10 10 10 10 10 10 10 10 10 10 10
100 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11,8,0000000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4:::::::::
es.
oose ross s.
Cr.
als.
Tees and C s. Tees and C Ladius Elbo 45° Elbows aterals. Laterals. Laterals. Laterals. S.
ry, Tees and Radius El Radius El Laterals. Laterals. Laterals. Laterals Reducers. es.
bow ng ace, lace,
Fac
s of
e. — Face to Face, — C. to F., Elbows C. to F., Long R. Center to Face, L. Center to Face, L. Center to Face, C. Center to Face, Eace to Face, R. Marker of Flanges of Flanges of Flanges
Size
244年の 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本

STANDARD AND LOW PRESSURE FLANGED FITTINGS-Continued

											7			
62	06	45	811/2	31		62	314						1	
09	88	44		30	: :		323			•				
58	84 8	42	761/2 79	59	: :		31%	-	148	74	129	200	1734	43/8
26	83	41	74	28			3,4	88 1	146	73	1261/2	46	100	43%
54	82	39	711/2	27	: :	: 4	6674	96	142 1	11	-	48	1/4	41/4
2	7	en			: :	: AC	29	6			1211/2 124			4
52	74	37	69	26	: :	:50	25%	1 94	138	69	121	47		4
20	20	35	661/2	25			6134		136	89	119	46	1083	41/8
48	89	34	64	24		48	5912	06	134	29	1161/2	45	1061/2	41/8
46	99	33	611/2	23	: :	46	5714	88	130	65	114	44	1041/4	4
44	64	32	59	22	: :		5514	86	126	63	1111/2	43	000	4
42	62	31	561/2	21			10	0	124	62	-	67:	934	378
40 4	9 09	30	54	20 2	: :		5034 53	82 8	120 1	09	1061/2 109	41	971/2 993/4	378
38	28	59	511/2	19	: :		4834	80	118	99			9514	
36 3	56 5	28	40	18 1	1				116	28	1011/2 104	39	93	334
34	54	27	461/2	17			3414 3612 3834 4134 4334 46	1 92	112 1	99		38	3034	358
32	52	26		16			21.6	74	108	54	961/2 99	37	10	35/8
		25 2	411/2 44			0	47	2 7	106			90	86168	31/2
130	20			-	56 59 461% 49	12	227	172	102	53	911/2 94	100	841/8	31/2
128	48	24	361/2 39	_		0,0	14 36	120		51				
26	46	23	36	13	4912 53	4	1		100	30	2 89	34	821/4	33
24	44	22	234	=	493	60	32		96	\$	861/2	888	88	33
22	40	20	311/2	10	371/2 401	100	291/2	64	94	47	84	35	4.8	31/4
In.	:		=	:	: :	: :	: :	In.	:	3	:	: :		=
	AA—Face to Face, Tees and Crosses.	and Crosses	, Long Ka	C—Center to Face, 45 Elbows	D-Face to Face, Laterals.	F-Center to Face, Laterals	U—Face to Face, Reducers. Diameter of Flanges		AA—Face to Face, Tees and Crosses	A—C. to F., Elbows, Tees and Crosses.	B—C. to F., Long Kadius Elbows.	bows.	G—Face to Face, Keducers.	Thickness of Flanges

Standard and Low Pressure Flanged Fittings are furnished plain faced unless otherwise ordered. All reducing fittings 1 to 16" inc. have the same face to face dimensions as straight size fittings.

Cast Iron, Ferrosteel and Cast Steel EXTRA HEAVY FLANGED FITTINGS (See figures, page 179)

24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	
23.25 21.25	848444
2012 2712 2012 2012 2012	
012 28 10 10 10 10 10 10 10 10 10 10 10 10 10	44. 22. 22. 44. 44. 33. 44. 33. 44.
10110120 2272201101101101101101101101101101101101101	2174 374 2174 217 217 3176
2002 140 150 150 150 150 150 150 150 150 150 15	
2111 22 111	38 110 110 110 110 110 110 110 11
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	242 250 250 250 250 250 250 250 25
74 12 12 12 12	34 34 34 34 31 31 31 31 31 31 31 31 31 31
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4.60 100 100 100 100 100 100 100 100 100 1
427.648487.01	30 2715 29 4115 4115 4115 30 32 30 32 34 34 34 34 34 35 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37
13.72 13.72 14.4 15.72 15.72 16.72 16.72 17.72 17.73 17.	28 30 25 55 55 27 55 39 41 5 14 15 28 30 28 30 21% 43 3 21% 3
EE 0 8 4 5 5 5 6 9 1	28 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28
651 65 65 65 65 65 65 65 65 65 65 65 65 65	26 48 24 361/2 113 26 383/4 213/6
17: 21/2 21/2 21/2 21/2 21/2 21/2 21/2 21/	2277 2277 2277 2277 2277 236 236 237 247 257 257 257 257 257 257 257 257 257 25
20113 612 20113 113 113 113 113 113 113 113 113 113	10 1 10 10 10 10 10 10 10 10 10 10 10 10
2012 2012 2012 2012 2012 2012 2012 2012	086600000000000000000000000000000000000
104000000 00 00 00 00 00 00 00 00 00 00 0	23 23 23 23 23 23 23 23 23 23 23 23 23 2
	161 161 161 142 142 142 143 143 143 143 143 143 143 143 143 143
j:::::::::	4:::::::::
	Crosses
Cros oows.	d Cro
osses s and s Elb	es and self Elli
nd Cr Radiu Bows bows Is.	ace, Tees and Crosses. ace, Libows, Tees and Crosses. ace, Long Radius Elbows. ace 45° Elbows. ace 45° Elbows ace faterals ace Laterals ace Laterals ace Laterals ace Laterals and mirges
ees al lbows lbows ong 5° El terals atera atera ducer	ces a clook ong la cong la con
ce, T ce, E ce, E ce, La ce, La ce, I ce, I ce, I nges.	ce, T vee, I vee, I vee, I vee, I vee, I e, Ree nges.
to Factor	to Factor From to Factor From to Factor From From From From From From From Fr
Face onter anter anter anter onter o	Face enter e
Size	Size. A—Face to Face, Ties and Crosses A—Center to Face, Elbows, Tees a B—Center to Face, Elbows, Tees a D—Face to Face, Laterals B—Center to Face, Laterals F—Center to Face, Laterals F—Center to Face, Laterals F—Center to Face, Laterals F—Center to Face, Reducers F—Face, Face, Reducers F—Face, Face,

All extra heavy flanges have a 1/5 inch raised face inside of bolt holes. This raised face is included in face to face, center to face and thickness of

flange dimensions.

VALVES

Check valves are only for use when the flow of steam or water is always in one direction. Globe and angle valves should be installed to close against pressure, for if installed the opposite way they could not be opened if the valve disc became detached from the stem. Gate valves should always have their spindles vertical.

Standard valves are for pressures up to 125 lbs., extra heavy for

pressures up to 250.

Valves under 6 ins. have screwed ends, over this size the valves

are generally flanged.

The following data on check, globe, angle and gate valves was supplied by Crane Co., Chicago, Ill.

HORIZONTAL PATTERN, CUSHIONED—CHECK VALVE EXTRA HEAVY BRASS

DIMENSIONS

Size Ins.	Α .	В	н	J
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	2 ¹⁵ / ₁₆	3 ³ / ₄	4	7/16
	3 ¹ / ₂	4 ³ / ₈	4½	1/2
	4 ¹ / ₁₆	4 ¹³ / ₁₆	5	17/32
	4 ⁵ / ₈	5 ¹ / ₂	6	9/16
	5 ³ / ₄	6 ¹ / ₂	6½	5/8

GLOBE, ANGLE AND CROSS VALVES—STOP AND SCREW DOWN CHECK

- 1 Body
- 2 Seat
- 3 Disc (stop)
- 4 Cotter pin
- 5 Disc nut
- 6 Bonnet
- 7 Bonnet studs
- 8 Gland

- 9 Gland studs
- 10 Stem stop
 - 11 Wheel
 - 12 Wheel nut

(Continued on page 184)

STOP AND SCREW DOWN CHECK VALVES-Continued

DIMENSIONS—STANDARD IRON BODY

Size Ins.	В	C	Н	J	R	Т
2 2½ 3 3½ 4 4½ 5 6 6 7 8 10	8 8½ 9½ 10½ 11½ 11½ 12 13 14 16 17 20 24	4 4 ¹ / ₄ 4 ³ / ₄ 5 ³ / ₄ 5 ³ / ₄ 6 6 ¹ / ₂ 7 8 8 ¹ / ₂ 10 12	6 7 71/2 81/2 9 91/4 10 11 121/2 131/2 16 19	58 11,66 3,44 13,66 15,66 15,66 1,166 1,166 1,166 1,166 1,166 1,166 1,166 1,166 1,166	6½ 6½ 7½ 7½ 9 9 10 12 14 16 18 20	11½ 11¾ 13¼ 13½ 13½ 15¾ 15½ 17¼ 19 21¼ 23¾ 27¾ 32½

DIMENSIONS—EXTRA HEAVY BRASS

Size Ins.	В	C	Н	J	R	Т
1½ 2 2½ 3 3½ 4 4½	63/8 73/8 83/4 10 107/8 111/2 121/4 13 15	3 ³ / ₄ 4 ¹ / ₈ 4 ⁵ / ₈ 5 ¹ / ₄ 5 ³ / ₄ 6 ³ / ₈	6 6½ 7½ 8¼ 9 10 10½	9/16 55/8 11/16 3/4 13/6 7/8	5½ 6½ 7½ 7½ 9 9 10 10	9 10½ 11½ 12½ 12¾ 14½ 15¾ 16½
5 6	13 15	$ \begin{array}{r} 63/8 \\ 63/4 \\ 73/4 \end{array} $	$11 \\ 12\frac{1}{2}$	1 1 8 15 16 1	12 14	18 22

SWINGING CHECK-EXTRA HEAVY BRASS

Number	Part	Number	Part
1	Body	5	Cotter pin
2	Disc	6	Hinge pin
3	Hinge	7	Stop plug
4	Disc nut	8	Cap

DIMENSIONS

Size Ins.	A	В	н	J
1 1½ 1½ 2	$35/8$ $41/8$ $4^{13}/16$ $5^{13}/16$	55/8 61/4 73/6 81/8	$ \begin{array}{c} 4\frac{1}{2} \\ 5 \\ 6 \\ 6\frac{1}{2} \end{array} $	1/2 17/32 9/16 5/8

In the valve shown, the swing of the disc can be controlled by the plug stop.

SWINGING CHECK—STANDARD IRON BODY

Number	Part	Number	Part
1	Body	6	Hinge
2	Seat	7	Hinge pin
3	Disc	8	Cap
4	Disc nut	9	Cap bolts
5	Disc pin		

DIMENSIONS

Size Ins.	В	н	J	Size Ins.	В	н	J
2½ 3 4 5	10 11 13 15	7 7½ 9 10	11 ₁₆ 3/4 15 ₁₆ 15 ₁₆	6 8 10 12	16 18 22 26	$11 \\ 13\frac{1}{2} \\ 16 \\ 19$	$ \begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \end{array} $

Horizontal and angle pattern, bolted bonnet, extra heavy brass

Number	1	2	3	4	5
Part	Body	Seat	Disc	Cap	Cap Studs
					CAN SELECTION SELECTION

DIMENSIONS

Size, Inches.	В	C	Н	J
11/2	63/8	33/4	6	9/16
2	73/8	41/8	61/2	5/8
21/2	83/4	45/8	71/2	11/16
3	10	51/4	81/4	3/4

THROTTLE VALVES

A	В	С	E	F	G	I	J	K	L	М	N	Lift of valve
4 5 5½ 6½ 8½ 9 11 12 13	6½ 7½ 7¼ 7¼ 8½ 9¾ 11 11½ 14	6½ 8½ 9¾ 11 11½ 16½ 125%	35/8 43/16 43/16 51/2 7 71/4 81/4 91/16 93/4	7/8	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\$	4	1½ 1½ 1½	8 8 8 9 10	7/8 7/8 7/8 11/8 11/2 11/2 11/2 11/2	4 ⁵ / ₁₆ 6 ¹ / ₄ 7 ³ / ₄ 8 ³ / ₄ 9 ¹ / ₂ 11 ¹ / ₂	$ \begin{array}{c} 2\frac{1}{2} \\ 3 \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 6 \\ 6\frac{1}{2} \\ 7 \\ 9 \end{array} $	$\begin{array}{c} 1\frac{1}{4} \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2\frac{1}{4} \\ 2^{13} \\ 32 \end{array}$

All dimensions in inches. Valve shown operated either by wheel K or by lever I.

GATE VALVES

STANDARD BRASS-Non-RISING STEM

Number	Part	Number	Part
1	Body	6	Gland
2	Disc	7	Stem
3	Bonnet	8	Wheel
4	Stuffing box	x 9	Wheel nut
5	Stuffing nu	t	

DIMENSIONS

Size Ins.	A	В	н	J	P	s
$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 2 \end{array} $	$\begin{array}{c} 25/8 \\ 2^{15}/6 \\ 3^{1}/4 \\ 3^{29}/32 \end{array}$	$3\frac{3}{8}$ $3\frac{7}{8}$ $4\frac{3}{8}$ $5\frac{1}{2}$	4 4½ 5 6	3/8 13/32 7/16 1/2	57/16 67/16 71/4 83/4	$2\frac{3}{4}$ $3\frac{1}{16}$ $3\frac{5}{8}$ $4\frac{1}{16}$

IRON BODY-RISING AND NON-RISING STEM

Number	Part	Number	Part
1	Body	5	Stem ring
2	Disc	6	Stem
3	Body ring	. 7	Bonnet
4	Pin	8	Bonnet bolts

Number	Part	Number	Part
9	Bonnet bushing	14	Yoke sleeve
10	Gland	15	Wheel
11	Gland studs	16	Stuffing box bushing
12	Yoke	17	Stuffing box
13	Yoke bolts	18	Wheel nut

STANDARD DIMENSIONS

Size Ins.	В	н	J	0	P	R
2 2 ¹ / ₂ 3 3 ¹ / ₂ 4 4 ¹ / ₂ 5 6 7 8 9 10 12	7 71/2 8 81/2 9 91/2 10 101/2 11 111/2 12 13 14	6 7 7 7½ 8½ 9 9¼ 10 11 12½ 13½ 15 16	58 111/6 34 13/6 15/16 15/16 11/6 11/8 11/8 13/6 11/4	14½ 16 19 21¼ 24 25½ 28½ 31¾ 37¼ 41 44¾ 50 57¼	1134 1234 1414 1514 1614 1758 19 2034 23 26 28 3014 3514	6½ 6½ 7½ 7½ 7½ 9 9 10 12 12 14 14 16 18

EXTRA HEAVY DIMENSIONS

Size Ins.	В	Н	J	0	P	R
114 112 2 212 3 312 4 412 5 6 7 8 9	6½ 7½ 8½ 9½ 11½ 8½ 11½ 11½ 11½ 15% 16½ 16½ 17% 18 19¾	5 6 6 6 ¹ / ₂ 7 ¹ / ₂ 8 ¹ / ₄ 9 10 10 ¹ / ₂ 11 12 ¹ / ₂ 14 15 16 ¹ / ₄ 17 ¹ / ₂ 20 ¹ / ₂	34 13/16 7/8 1 1/8 1 1/8 1 1/4 1 1/5/16 1 1/2 1 1/8 1 1/8 1 1/8 1 1/8	105/8 121/4 133/4 16 191/2 22 241/2 27 293/4 341/8 38 423/4 47 523/4	8 ³ 4 9 ⁵ 8 10 ¹ / ₂ 12 ⁷ / ₈ 14 ⁵ / ₈ 15 ¹ / ₂ 17 ³ / ₄ 18 ³ / ₄ 20 ¹ / ₄ 23 ³ / ₄ 28 ³ / ₄ 30 ³ / ₄ 30 ³ / ₄ 37 ¹ / ₄	5 51/2 61/2 71/2 9 10 12 12 14 16 18 20 20 22

COCKS

EXPANSION JOINTS

Of the joints shown on the following pages, the copper expansion joints are for pressures up to 25 lbs., while those of the stuffing box type are for higher pressures as in main steam lines.

COPPER EXPANSION JOINTS

Copper expansion joints A and B are recommended where the expansion and contraction does not exceed ¼ in. A is particularly suitable for high vacuum systems. Besides the joints shown there are others made of corrugated copper which may be used for pressures higher than 25 lbs. Pipe lines must be anchored to force the joints to compensate for the expansion and contraction in the pipe.

Size of		o face inges	Dia.	Size of		o face	Dia.
pipe	Type A	Type B	flanges	pipe	Type A	Type B	flanges
4 5 6 7 8 9 10 12	5½ 5½ 6 6 6 6 6	8 9 9 10 10 11 11 11	$\begin{array}{c} 9 \\ 10 \\ 11 \\ 12\frac{1}{2} \\ 13\frac{1}{2} \\ 15 \\ 16 \\ 19 \end{array}$	14 15 16 18 20 22 24 26	6 6 6 6 ¹ / ₂ 6 ¹ / ₂ 7 7 8	12 12 12 13 13 14 14 15	$\begin{array}{c} 21 \\ 22 \frac{1}{4} \\ 23 \frac{1}{2} \\ 25 \\ 27 \frac{1}{2} \\ 29 \frac{1}{2} \\ 32 \\ 34 \frac{1}{4} \end{array}$

GUIDED EXPANSION JOINT

					-	-									-
Pipe Size	11/4	11/2	61	21/2	· m	372	4	41/2	73	9	2	00	6	10	12
(4" Trav	1519%	1519%	161%	1615%	171%	71%	1729%	18114	18154	18176	19154	2117	918	9577	9514
A J 8" Trav	9315%	93154	9315%	21176	_	9534	9537	2614	9615/	96117	9631	9018/	0000	2010	2/07
	78/ 07	70 / 37	20 /10	727		8	75	20732	20. VE	70-7%	20-732	40-72	4074	90	30,200
(12" Trav	3115/2	3115/2	3115/6	3211/2	337%	333%	3337/22	341/22	347/2	3411/2	3431/22	3613/2	3634	3819/2	3815/6
B	77%	27/8	876	9%	111/8	12	12	121/2	1314	1414	161/2	173%	183%	2034	221/2
) a	334	41/2	2	27%		734	77/8	81/2	974	105%	117/8	13	14	1514	1784
E High Press	10	9	61/2	71/2	814	6	10	101/2	11	121/2	14	15	1614	171/2	201/2
F (4-1/2	4-5%	4-5%	4-34	8-34	8-34	8-84	8-84	8-34	12-34	12-78	12-78	12-1	16-1	16-11/8
D C	33%	378	434	51/2		2	73/2	734	81/2	91/2	1034	1134	1314	1414	17
E Low Press	41/2	2	. 9	7	7%	83%	6	914	10	11	121/2	131/2	15		19
F (4-1/16	4-1/2	4-5%	4-5%	45%	45%	8-2/8	8-34	8-34	8-34	8-34	8-8/4	12-34		12-7/8
M	1/8	1/8	1/8	1	11/8	13/6	114	15/6	13%	17/6	11/2	15%	13%	17/8	7
(4" Trav	1511/2	1511/2	1578	165/22	1678	173%	1719/2	1731/22	181/2	183/2	191/2	2034	2034	2434	2434
N \ 8" Trav	237/22	237/2	2311/6	241/22	2434	25	2517/22	2521/22	261/2	2529/2	2619%	2729/32	281/8	2929%	30%
(12" Trav	317/22	317/2	3111/6	321/2	3234	33	3317/2	3321/2	3325/2	3329/22	3417/2	3529/2	361%	3729/2	383/6
		100	MC . CA					No. of Co.		Ile Maria					

[Howard Iron Works, Buffalo, N. Y.]

GUIDED EXPANSION JOINT WITH EXTENSION FLANGE. Type B

1	1		16	16							16	91				
12	223%	333%	4115	5315	19	17	12	7/8		333%	4115	5315	201/2	1734	16	11%
10	20%	331/8	415%	535%	16	141/4	12	1/8		331/8	415%	535%	171/2	1514	91	п
6	183%	59	395/6	515/6	15	131/4	12	%		53	395/6	513/6	1614	14	12	-
∞	173%	285%	3815/6	5015%	131/2	1134	00	%	The state of	285%	3815/6	5015/6	15	13	12	1%
2	1612	2714	377%	497%	121/2	1034	∞	%	2	2714	377%	497%	14	1178	12	1%
.9	1414	257/6	3678	4878	11	91/2	×	%	A.	2576	3678	487/8	121/2	105%	12	%
70	1314	253%	373%	4834	10	81/2	00	%		253/8	373%	4834	11	914	00	%
41/2	121/2	255/16	365%	485%	914	734	00	% /4		255/16	365%	485/8	101/2	872	00	%
4	12	247/8	365/6	485/16	6	73%	00	8		2478	365/6	485/16	10	77/8	∞	%
31/2	12	247/6	3513/6	4713/16	81/2	7	4	18		247/6	3513/6	4713/6	6	71/4	∞	18/4
8	111/8	23 1/2	3576	477/16	73%	9	4	2%	u.	231/2	357/6	477/s	814	8/99	00	%4
21/2	95%	227/8	3434	4634	7	572	4	12/8		227%	3434	4634	71/2	578	4	%
2	816	225%	347/6	4676	9 .	43/4	4	200	0	225%	3476	467/16	61/2	5	4	100
11/2	77%	221/6	3311/6	4511/16	5	37/8	4	72	The Action	221/16	3311/6	4511/6	9	41/2	4	%
11/4	77/8	2115/6	339%	45%	41/2	33%	4	78		2115/16	33%	45%	20	334	4	72
A—Size of Pipe	B = Diam. of Joint	C = Length of 4" Travel	C = Length of 8" Travel	C = Length of 12" Travel	D = Diam. Flange	E = Bolt Circle	F = No. Bolts	G = Size of Bolts	TO SELECTION OF THE PARTY OF TH	H = Length of 4" Travel	H = Length of 8" Travel	H = Length of 12" Travel	I = Diam. Flange	J = Bolt Circle	K = No. Bolts	L = Size of Bolts
			.886	Pre	M	Г				Ī	·S	168	I U	gil	I	

[Howard Iron Works, Buffalo, N. Y.]

FLANGED BODY EXTRA HEAVY STEEL PIPE K. SIZE HOLKS PACHING BASE No AND PACHING TYPE C EXTENSION A.

GUIDED EXPANSION JOINT WITH VAN STONE FLANGE

	w 1	M	83%	878	13%	51/2		_	71/2	134	37%	172	34	13/4	374	1/4	1
	All Trav'ses			7					2.2						100		
	Ė	A	41	2	9	~	73	83	6	16	10	11	123	133	15	16	19
	4.8e	В	151/8	151/8	15%	151/2	1513/6	1578	165/6	16%	163%	1676	1634	.1776	177/6	183%	187/6
ure	12" Trav'se	4	45%	453%	46%	475%	48	485/6	4829	49%	49%	4915/2	50%	5125	523/8	549%	5413/16
Low Pressure	, se	В	111/8	111/8	117/6	111/2	1113/6	117/8	125/6	125/6	125/8	127/6	123/4	137/6	137/6	143/8	1476
Low	8" Trav'se	A	3329	332%	34%	355%	36	365%	3629	373/2	3717/2	3715%	389/2	3925	403/8	41%	4213/6
	4" Trav'se	æ	71/4	71/4	75%	75%	715%	00	83/8	85/8	85%	858	978	934	934	1034	1034
	Tra	V	221/2	221/22	2234	23%	241/8	247/6	2431/2	2513%	2517/2	2521/22	2774	285/8	29	331/8	333%
A.		Pipe							4						6	10	12
-		M	63	69	4	4	4	4	41/2	20	20	2	20	9	9	~	~
		ы	2	20	9	61/2	61/2	2	772	00	∞	00	6	6	914	10	=
Both Pressure	v'ses	M	4-9%	4-3/6	4-5%	4-58	4-5%	4-5/8	4-34	4-34	4-34	4-34	4-34	4-7/8	4-1/8	4	4-1
oth Pr	All Trav'ses	٠,	51/2	51/2	61/2	7	71/2	73%	00	81/2	81/2	81/2	1014	101/2	111/2	121/2	131/2
В		н	31/2	31/2	31/2	31/2	31/2	31/2	4	41/2	41/2	41/2	20	20	20	9	9
		н	67,8	8/9	75%	75%	73/4	75%	8	8/8	81/8	878	834	91/4	974	101/4	10%
	ses	阿	33,4	41/2	20	.57%	8/9	77%	778	81/2	974	105%	1178	13	14	151/4	1734
	All Trav'ses	Q	22	9	7/9	772	814	6	10	101/2	=	121/2	14	15	1614	171/2	201/2
		щ	153/8	1538	1511/6	1513/6	163/6	1614	165%	1611/6	1613/6	1676	173/6	1715/6	181/16	191/6	193/6
ıre	12" Trav'se	A	46%	469/2	4613/6	4715/2	483%	4811/6	4972	4915/2	4926	4929	5023/2	52%	53	54316	55%
High Pressure	r'se	В		_		_	_		_	_							15%
High	8" Trav'se	A	345%	34%	3413%	3515	363%	3611/6	377%	3715/2	3781/2	3729	38 3/2	40%	41	4231/2	43%
	v,8e	В	71/2	73/2	77/8	715/6	85/6	838	811/6	6	91/6	91/6	966	1014	108/8	117/6	111/2
	4" Trav'se	A	229%	2218/2	23	2319%	241/2	2413/6	25%	25 5%	2531/2	263%	2711/6	291/8	295%	3313/6	341/8
		Pipe	74	7		7		12		17					6		

[Howard Iron Works, Buffalo, N. Y.]

SECTION V

ROPE AND CHAIN FITTINGS

TURNBUCKLES—SLEEVE NUTS—THIMBLES—SOCKETS—WIRE ROPE—
SHACKLES—SISTER HOOKS—CLEVIS NUTS—EYE BOLTS—
HOOKS—SLINGS—ROPE AND CHAIN—CHAIN-HOIST—
ING AND ANCHOR—DRUM SCORES FOR
CHAIN AND ROPE

TURNBUCKLES

Turnbuckles may have rods with eye or hook ends of sizes shown on pages 211 and 212, one of which is threaded right hand and the other left.

PIPE TURNBUCKLES

Dia. of screw	Threads per in.	Size of pipe*	Overall length of turnbuckle	Length of screw end	Dia. of screw end
3/8	16	1/2	5	5/8	3/4
1/2	13	3/4-	51/2	7/8	1
5/8	11	1	7	11/8	11/4
3/4	10	1	7	11/8	11/2
7/8	9	11/4	8	11/4	13/4
1	8	11/2	91/2	11/2	2

^{*} See page 163. Hole for pin ¼ in. dia.

TURNBUCKLES WITH PLAIN STUBS

Size D Out. Dia, Screw, Inches	A Inches	B Inches	C Inches	E Inches	H Inches	F Inches	G Inches
3/8/16/20/16/8/4/8 /8/4/8/2/8/4/8 /8/4/8/2/8/4/8 /8/4/8/2/8/4/8 /8/4/8/2/8/4/8 /8/4/8/2/8/4/8 /4/2/4	6666666666666666666666699999	9 16 82 4 82 16 8 16 2 16 8 16 8 16 8 16 8 16 8 1	7 5 1/8 7 5 1/2 7 7 1/1/16 8 1/2 7 7 1/1/16 8 8 5 8 9 9 3/8 4 4 10 7/8 11 1/2 3/8 1/2 12 3/8 1/2 12 3/8 1/2 12 13 1/2 8 1/2 1/2 13 1/2 8 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	9 (6) 8 (8) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	11/668 113/66 119/66 21/4/66 22/4/66 22/4/66 22/4/66 23/4/66 33/4 33/4	3/16/4/4/16/16/5/3/16/16/3/3/3/16/16/3/3/3/16/16/3/3/3/16/16/3/3/3/3	12888844788 1 144122815844 12 115844 12 2 1284 3 3 1444 2 2 156 6 12 2 156 6 12 2 156 6 12 2 156 6 12 2 156 6 12 2 156 6 12 2 156 6 12

HEXAGON END PIPE TURNBUCKLES

Diameter of Screw	Threads per Inch	Length of Swivel B	Length between Heads D	Length of Heads	Outside diameter of Pipe E
3/8/24/8 1/24/8 3/4/8	16 13 11 10 9	in. 5 5½ 7 7 8	in. 334 334 434 434 51/2	in. 5/8 7/8 11/8 11/8 11/4	in. .840 1.050 1.315 1.315 1.660
1 11/8 11/4 13/8 11/2 15/8 13/4 17/8	8 7 7 6 6 5 5 5 5	9½ 9½ 11½ 11½ 13½ 13½ 13½ 13½	6½ 6 8 8 8½ 8½ 8½ 8½ 9½	1½ 13¼ 13¼ 13¼ 2½ 2½ 2½ 2½ 2¾ 23¼	1.900 1.900 2.375 2.375 2.875 2.875 2.875 3.500
2 2 ¹ / ₈ 2 ¹ / ₄ 2 ³ / ₈ 2 ¹ / ₂ 2 ³ / ₄	4 ¹ / ₂ 4 ¹ / ₂ 4 ¹ / ₂ 4 4 4	15 15 16½ 16½ 18½ 18½ 18½	9½ 9½ 11 11 12 12	23/4 23/4 23/4 23/4 31/4	3.500 3.500 4.000 4.000 4.500 4.500
3	3½	19½	12¾	33/8	5.000

[Hoopes & Townsend Co., Philadelphia, Pa.]

With this type of turnbuckle a wrench with an hexagonal opening (page 238) is required to turn it.

HEXAGON SLEEVE NUTS

Dia. of Screw	A	В	С	J D	Е	F	Wt. Lbs.
7/8 1 1/8 1 1/4/8/22/8 1 1/3/8/22/8 1 1/3/8/22/4/8 1 1/3/8/22/4/8 1 1/3/8/22/4/8 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 1/2	1 1 2 1 1 3 4 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15/8/8 15/8/8 22/3/8/8/8/2/2/8/8/8/2/2/3/3/3/3/3/3/3/3	1 7 8 8 1 6 1 6 8 8 1 6 1 6 2 2 2 2 3 3 3 5 5 8 16 16 2 2 2 2 3 3 3 5 5 8 16 16 2 2 2 2 3 3 3 5 5 8 16 16 2 2 16 16 2 2 16 16 2 2 16 16 2 16 16 16 16 16 16 16 16 16 16 16 16 16	11.3868686888888888888888888888888888888	14/4/6/6/6/8/8/6/6/8/8/6/8/8/6/8/8/6/8/8/6/8/6/6/8/6/6/8/6/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6/6/8/6	3 3 4 4 5 6 8 9 10 11 14 15 18 19 23 27 28 35 40 47 55 65 75

[Pocket Companion-Carnegie Steel Co.]

Hexagon sleeve nuts largely used in tie rod connections.

ROPE THIMBLES

A	В	С	D	E	F	G	н	I	J	K	L	M	N	0	Weight per 100
18 16 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18	21/4 21/2 23/4 3 31/4 31/2 33/4 4 41/2	13.05 % 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$2.8\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16,276,274,274,276,276,276,276,276,276,276,276,276,276	\$25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	122-64-64-64-64-64-64-64-64-64-64-64-64-64-	1 11/2 22/2 3 31/2 4 41/2 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	21.5% 17.50 11.7% 22.5% 14.7% 22.5% 14.7% 22.5% 14.7% 22.5% 14.7% 22.5% 14.7% 22.5% 14.7% 22.5% 14.5% 22.5% 10.5% 22.5% 23.1% 25.5% 22.5% 23.1% 25.5% 22.5% 23.1% 25.5% 22.5% 23.1% 25.5% 22.5% 23.1% 25.5% 22.5% 23.1% 25.5% 23.1% 25.5% 23.1% 25.5% 23.1% 25.5% 23.1% 25.5% 23.1% 25.5% 23.1% 25.5% 23.1% 25.5%	14 32 2 2 4 4 5 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	122 64 64 64 64 64 64 64 64 64 64 64 64 64	27 64 27 28 64 27 28 64 27 28 64 27 28 64 27 28 64 27 28 64 27 28 64 27 28 65 28 28 28 28 28 28 28 28 28 28 28 28 28	16 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13/64 25/2/64 22/1/42/2/64 32/5/2/64 42/2/64 4	17/6 21/8 221/4 35/6 4 421/2 35/6 4 421/2 55/6 2 75/6 105/8 1115/6 1115/6 1515/6 1211/4 2328/8 2297/8 317/8	.3 .9 1.3 .9 5.4 7.9 11. 25 .38 .62 .94 .118 .134 .208 .208 .208 .208 .208 .208 .208 .100 .200 .200 .200 .200 .200 .200 .200

^{*[}Upson-Walton Co., Cleveland, O.]

Thimbles are usually galvanized.

WIRE ROPE SOCKETS

CLOSED

Size Rope	Extreme	Basket								
Dia.	Length	Length	Large Diameter Outside	Small Diameter Outside						
14 55/6 38 7/6 1/2 9/6 5/8 3/4 1 1/8 1/8 1/2 1/8 1/8	358 358 412 412 514 514 618 7 8 914 914 1112 13 13	15/8 15/8 2 2 21/4 21/4 25/8 3 31/2 4 4 5 5 53/4 53/4	13/16 13/16 17/16 17/16 13/4 13/4 2 23/8 23/4 31/4 31/4 4 4 43/4 43/4	5 8 13/16 13/16 1 1 13/16 1 15/8 115/16 115/16 123/8 23/8 23/4 23/4						

The socket should have a tapered hole or one as shown on page 207. The rope wires may be bent over, and lead or other soft metal poured in.

	Y/E		Basket		S HIK
Size Rope Dia.	Extreme Length	Length	Large Diameter Outside	Small Diameter Outside	Diameter Pin
14/6/8/6/8/4/8 11/2/6/8/4/8 11/3/6/8/4/8 11/3/4/8/22/8 11/5/8	37/16 37/16 43/8 43/8 43/8 55/8 55/8 6 67/8 91/8 113/8 113/8 113 13	15/8 $15/8$ 2 2 $21/4$ $25/8$ $31/2$ 4 5 $53/4$ $53/4$	13/6 13/6 17/6 17/6 17/6 13/4 13/4 22/3/4 23/4 31/4 4 4 4/3/4 4/3/4	5 8 5 8 13 16 13 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2/2/5/8 5/8/3/4/8 1/4/2/2/1/7/8 1/7/8 1/7/8 2/1/4/2 2/1/4/2

[J. H. Williams Co., Brooklyn, N. Y.]

Pins have a ½ in. split pin in end close to shoulder. For securing rope in socket see pages 205 and 207.

WIRE ROPE SOCKETS

WIRE ROPE SOCKETS—Continued

HANDBOO	OK OF STANDARD DETAILS
t,Lbs.	. 37 . 59 . 59 . 72 . 72 . 72 . 72 . 73 . 73 . 74 . 75 . 75 . 75 . 75 . 75 . 75 . 75 . 75
Weight Open with Pin	25.05.05.05.05.05.05.05.05.05.05.05.05.05
D .	######################################
H	728777878 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. ω	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
22	68.4444.000990000000000000000000000000000
0	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
요 *	20
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Z	11111111111111111111111111111111111111
×	76/26/26/26/26/26/26/26/26/26/26/26/26/26
н	1888 1988 1988 1988 1988 1988 1988 1988
M	10/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2
5	72/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
-	74% 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H	2,2,4,5,5,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
Ö	4.8/4.8/4 %8/5/8/4/4/4/8/4 /8/4
[icq	11-11-10-199 28 4 4 7 12 0 12 1 7 8 0 0
园	2002 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
А	212111112222222444222222222 2421212122222222
Ö	%/2/2/2 121112000000000000000000000000000
В	% 724 72
A	23.25.25.25.25.25.25.25.25.25.25.25.25.25.
Rope Dia.	475%75476%47% 10/4/0/4/0/4/2 /4/2

[Upson-Walton Co., Cleveland, O.] * P = Cotter or Split Pin.

CLEVIS NUTS

				, ,			Dia	mete	r of]	Pin					
Tap D	3/4	7/8	1	11/4	11/2	13/4	2	21/4	21/2	23/4	3	31/4	31/2	33/4	4
1/2 5/8 3/4 7/8 1 11/8 11/4 11/8 11/8 11/8 11/8 22/8 21/8 21/8 21/8	2 2 2	2 2 2 1/2 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	2 21/2 21/2 21/2 21/2 3 	21/221/221/2333333333333333333333333333	21/221/23 33 33 33 31/24	4 43/4	31/23 31/23 31/23 31/24 44 43/4 43/4 43/4 43/4	$5\frac{3}{4}$ $5\frac{3}{4}$	Roo 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 5 3 4 4 5 5 3 4 4 5 5 3 4 6 3 4 6 3 4	sed with displaying the sed with the sed wit	ith V 50,00 534 534 534 634 634 634	5344 634 634 634	ght I	63/4/88	8
2 ³ ⁄ ₄											8	8	8	8	8

For dimensions of nuts see page 210.

CLEVIS NUTS-Continued

I	В	A	K	G	F	E	J
2 2½3 3½4 434 534 634 8	1 1/4 1 3/8 1 3/4 2 2 3/8 2 3/4 3 1/2 4 4 1/2 4 3/4	5½ 5½ 6 6½ 7 8 9 10 12 12	1 1/8 17/6 111/6 115/6 2 1/4 2 2 5/8 3 3/6 3 7/8 4 1/2 5	1 1½4 15% 17% 2½8 2½ 3 3¼ 4 4½	3/8 7/16 1/2 9/16 5/8 23/32 27/32 15/16 11/16	3/8 15/32 17/32 19/32 21/32 21/32 25/32 15/16 11/4 11/4	To suit Pin Plate

Dimension "E" will vary slightly, depending upon dimension "J." [Cleveland City Forge & Iron Co., Cleveland, O.]

SISTER HOOKS WITH WIRE ROPE THIMBLE

Size of Iron, Inches	Size Score of Thimble, Inches	Length of Hook, Inches	Diameter of Eye, Inside Inches	Gov't Test. Maximum Strength in Pounds
14 5/6 8/8 1/2 5/8 3/4 1/8 11/8	3/16 1/4 5/16 7/16 1/2 5/8 3/4 7/8 1 1/8	21/8 23/8 27/8 31/2 41/8 51/4 63/8 61/2 71/4	9/6 5/8 11/6 7/8 11/16 13/8 15/8 13/4	940 1,420 2,030 3,800 7,100 8,920 11,020 11,100 13,050 19,200

For dimensions of thimbles see page 204.

EYE BOLTS

Sh	ank	Maxi-	Diame	ter Eye	Capa	Capacity, Net Tons			
Diam.	Standard Length under Shldr.	mum Length in Stock	Inside	Outside	Safe Working Load	Average Load at Elastic Limit	Approx- imate Breaking Strain		
14 56 38 76 19 96 8 34 78 1 14 11 12 13 2	1 11/8 11/4 13/8 11/5 13/4 2 21/4 22/8 3 3 3 3 4	3 4 4 4 4 2 4 4 2 5 5 5 6 6 6 6	34 748 1 1352 1352 1352 1176 1136 1136 2 2376 2172 314	13/16 17/16 121/32 127/32 21/16 22/22 21/3/16 31/4 39/16 4 47/16 61/16 61/16	.2 .4 .7 1. 1.3 1.5 2. 3.5 4.5 7.5 9. 11.	.5 .9 1.4 2. 2.5 3. 4. 6. 7. 8. 10. 15. 18. 21. 25.	1.5 2.3 3.4.5 6.8.12.16.20.23.33.42.53.68.		

[J. H. Williams Co., Brooklyn, N. Y.]

Plain eye with shank used for turnbuckle ends. Length of ends made to suit turnbuckle.

Ноізт Ноок

Discourse		To de la Constitución de la Cons	Dimensions	Cap	acity, Net	T ons
Diamete	Diameter of Eye		Imensions	Safe Working	Average Load at	Approxi- mate Load Required
Inside	Outside	Length	Width	Load	Elastic Limit	toStraight en out
$\frac{\frac{3}{4}}{\frac{7}{8}}$ $\frac{1}{1\frac{1}{8}}$	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \end{array}$	43/8 47/8 53/8 63/16	27/8 31/8 31/2 37/8	.5 .6 .7 1.2	$\begin{array}{c} .9 \\ 1.2 \\ 1.5 \\ 2.5 \end{array}$	1.9 2.3 3. 5.7
$1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$	2½ 2¾ 3 3¼	67/8 75/8 89/16 99/16	43/8 47/8 55/8 63/8	1.7 2.1 2.5 3.	3.5 4.2 5.4 6.2	7. 8.5 10. 13.
$ \begin{array}{c} 1^{3}4 \\ 2 \\ 2^{3}/8 \\ 2^{3}/4 \end{array} $	3½ 4 · 45/8 5¼	$ \begin{array}{c} 10\frac{3}{8} \\ 11\frac{1}{2} \\ 13 \\ 14\frac{3}{4} \end{array} $	67/8 71/2 81/4 91/4	4. 4.7 5.5 6.8	8. 9. 11. 13.	17. 19. 26. 32.
$ \begin{array}{c} 3\frac{1}{8} \\ 3\frac{1}{2} \\ 4 \end{array} $	6½ 7 8½	$\begin{array}{c} 16\frac{3}{4} \\ 19\frac{1}{8} \\ 22\frac{1}{2} \end{array}$	$10\frac{7}{8}$ 13 $14\frac{3}{4}$	8. 11. 20.	17. 21. 40.	35. 48. 80.

[J. H. Williams Co., Brooklyn, N. Y.]

Hook without eye, but with plain shank used for turnbuckle ends

CRANE HOOK

Based upon a stress of 3,500 lbs. per sq. in., dia. d of shank of hook = .02 $\sqrt{\text{load}}$. The width of the hook W = B the width of the hook body, the thickness being $\frac{2B}{3}$.

Diameter of hook circle D = B + 1.5 B

E = .5 B + .7 d K = 1.7 d

F = 4.5 d L = 2. d

G = 1.1 d M = .7 d

H = .8 d

SHACKLES

n	2/4/5/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
H	4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2
\$	085485110008770444 247
R	~2444444444444444444444444444444444444
d*	%/4/2/%/2/2/2/4/%/4/2/2/2/2/4/%/4/2/2/2/2
0	2/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2
z	17/2/2/2/4 /2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
M	\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
L	18/8/8/2/2/3/8/8/8/0/0/0/2/2/2/4/4/4
M	11111111111111111111111111111111111111
17	12 2 2 2 0 0 0 2 2 2 2 2 2 2 4 2 2 2 2 2
П	%\%\%\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
H	14/2/0/2/0/2/0/4/0 10/4/0/1/2/0/4/0/4/0/4/0/4/0/4/0/4/0/4/0/4/0/4/0
Ö	* 74/7 74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E	10000000000000000000000000000000000000
E	%
D	10 10 10 10 10 10 10 10
O	21 11111100000444000 82 4583 558485558
В	2%/4/21 %/4/2 121111000000 2%/4/21 8/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
A	"Z'472%/274/2/2/4/2 "D'4/2/4/2/4

†S = threads per in. * P = dia. of collar on screw pin. [Upson-Walton Co., Cleveland, O.]

SWIVEL SHACKLES Stationary Chain Swivels

d = diameter of chain

A = 2	d	H = 4	d
B = 7	d	K = 2	d
C = 5	d	L = 2	d
D = 3	d	M = 2	d
E = 7	d	N = 2	d
F = 1.3	8 d	0 = 4.3	3 d
0 0	1	D - 1	5 4

Anchor Chain Swivels

Diameter of metal in swivel = 1.8 d

Inside diameter of swivel = 6 d

Inside length of swivel = 9 d

Thickness of swivel at shackle = 2 d

Swivel pin (N) dia. = 1.4 d

Dia. of metal in shackle = 1.4 d

For dimensions of shackles see pages 214 and 215.

In an anchor chain there should be three or four swivels, the first

WIRE ROPE SLINGS

EQUALIZING SLINGS WITH HOOK (Grommet Construction)

EQUALIZING BRIDLE SLINGS WITH HOOKS

		ds in tons 00 lbs.		Hook			Equalizing Thimbles										
Dia. Sling	When Used	When Used	F	G H			Set '	'M'	,	1	Set	"L"		S	et "	SP"	
	Vertical	60° Angle				A	В	c	D	A	¦B	C	D	A	В	C	D
1 Casicoletic Carlesionicalesia	3 4.5 6.25 9 11.5 14 17 20 23 25 29	17 20 22	35/16 33/4 41/2	10^{5}_{16} 11^{11}_{16} 12^{7}_{16} 13^{5}_{8} $15^{\frac{1}{2}}$	3 1 3 1 4 4	33737314141414	517 518 514 514 8 714 914 114 115	11" 114 114 114 114 114 114 114 114 114 114	10½ 10½ 10½	658 7 7 812 812	10¼" 10¼ 10½ 10½ 10½ 13	115 // 116 2 2 2 18 2 8	13" 13 13 13 13 16 14 16 14 16 14	8" 8 8 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	12" 12 13 13 13		15" 15 16 16 16 16‡

[J. A. Roebling's Sons Co., Trenton, N. J.]

	Safe I	oads in To	ns of 2,00	00 Lbs.	Fittings				
Dia . Sling	When used Vertical	When used 60° Angle	When used 45° Angle	When used 30° Angle	A	В	D .	E	
1/2" 5/8 3/4 7/8 1 11/8 11/4 13/8 11/2 15/8 13/4	4 8 12 16 21 26 30 34 40 44 50	4 7 10 13.5 18 22 26 29 34 38 43	3 5.5 8.5 11 15 18.5 21 24 28 31 35	2 4 6 8 10.5 13 15 17 20 22 25	6" 6 7½ 7½ 9 10 10 12 13 13 14	6" 6 7½ 7½ 9 10 10 12 13 13 15	12" 12 15 15 18 20 20 24 26 26 30	734" 838 838 8 8 8 8 8 1114 1114 1114 1114	

Note—Dimensions "F, L, P and W" of shackles are designed to suit the member

HOOK BRIDLE SLINGS

Same construction as Shackle Bridle Slings except hooks are used instead of shackles. For size of hooks see Equalizing Bridle Slings with Hooks.

SLINGS FOR HANDLING STONE BLOCKS

The wire rope grommet ring may be omitted, the equalizing thimbles being attached to the hook. In this case the length of the sling $l=2\ L+W$.

The sling shown is also suitable for handling steel plates.

SIZE OF SLINGS REQUIRED FOR DIFFERENT LOADS AND ANGLES OF INCLINATION

my t la af Dlada	Approximate	Angle of Inclination					
Weight of Block	Cubic Feet	60°	45°	30°			
4,000*	24	1/9"	1/3"	1/3"			
8,000	48	1/2	1/2" 5/8 5/8 3/4 7/8	5/8			
10,000	60	5/8	5/8	3/4			
15,000	90	3/4.	3/4	7/8			
20,000	120	3/4	7/8	1			
25,000	150	7/8	1	11/8			
30,000	180	1	1	11/4			
35,000	210	1	11/8	13/8			
40,000	240	11/8	11/4	11/2			
50,000	300	11/4	11/2	X			

^{*}Note—Above figured from—"Marble" at 165 lbs. per cu. ft.; "Granite" 3% heavier.

CHAINS

HOISTING CHAINS

The working load of a chain should not be above one fourth, and at most not over one third of its breaking strength, or but little over one half the proof test.

The distance from the center of one link to the center of the next is the pitch of the chain.

Chains for hoisting purposes should have short links in order to wrap snugly around the drum or sheave without bending.

The life of a chain can be increased by frequent annealing and lubricating. If the wear is not uniform throughout the length, the chain should be cut and pieced where partially worn.

Chain having the trade name "B B B" crane chain, dimensions of which are given on page 222, is widely used not only for cranes but for general hoisting.

Drum scores for chain are given on pages 224-225.

Rings are made of heavier stock than the chain—see page 226.

B. B. B. CRANE CHAIN

Size Inches	Approximate Links per Foot	Outside Length Inches	Outside Width Inches	Weight per 100 Feet	Proof Test	Approximate Breaking Strain
3/16 1/4 5/16 3/8 7/16	15 14 12 11 10 9	$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{3}{8} \\ 1\frac{5}{8} \\ 1\frac{7}{8} \\ 2\frac{1}{8} \\ 2\frac{3}{8} \end{array} $	$\begin{array}{c} 3/4 \\ 15/16 \\ 11/8 \\ 17/16 \\ 19/16 \\ 13/4 \end{array}$	52 83 118 175 215 275	1,200 1,750 3,400 4,500 6,300 8,000	2,400 4,500 7,000 9,000 12,500 16,500
1/2 9/16 5/8 3/4 7/8 1/4 11/4	81/4 71/2 53/4 5 43/4 41/2 4	234 3 3 ¹ / ₂ 4 ¹ / ₁₆ 4 ⁵ / ₈ 5 ¹ / ₈ 5 ³ / ₄	2 2½ 2½ 3 3½ 3½ 3½ 4¼	340 435 620 830 1,040 1,400 1,665	10,000 12,500 17,750 24,000 31,350 38,000 47,000	22,000 25,000 35,000 47,500 64,500 78,000 95,000

[Columbus-McKinnon Chain Co., Columbus, O.]

ANCHOR STUD LINK CABLE CHAIN

Studs in chains keep the chains from closing when they are overstrained.

One shot of chain = 15 fathoms = 90 ft.

Ships built in the United States have anchor chain of the dimensions given on page 223.

(New American Measurements, adopted Aug. 21, 1917)

Size Chain Inches	Outside Length of Link Inches	Outside Width of Link Inches	Length of Six Links Outside Feet In.	Average Weight Per Fathom Pounds	Proof Test Pounds	Breaking Strain Pounds
Inches 34 13-66 7.8 13-66 15-16 11-16 11-8 13-16 11-16 11-8 11-16 11-8 11-16 11-8 11-16 11-8 11-16 11-8 11-16 11-8 11-16 11-8 11-16 11-8 11-16					Pounds 22,680 26,600 30,800 35,392 40,320 45,472 50,960 69,440 76,160 83,160 90,720 98,336 106,400 114,800 123,480 132,440 141,680 151,200 161,280 171,360 182,000 192,920 204,120 204,120 215,600 227,360 239,456 252,000 261,408 270,816 280,224 289,632 298,816 308,224 317,408 326,592 335,552 344,400 353,248	Rounds 33,880 39,872 46,200 53,088 60,480 68,096 76,440 85,120 94,360 104,160 114,240 124,600 131,488 137,536 148,960 160,720 172,760 185,360 198,240 225,792 239,904 254,800 269,920 285,600 301,840 335,160 352,800 365,960 379,120 392,280 405,440 418,320 431,480 444,360 457,184 469,728 482,160 494,480

CHAIN SLINGS

The table shows safe working loads in pounds of special "CC" sling chains when operated at different angles. When handling molten metals, sling chains should be 25% stronger than in the table

The safe working loads given are for each single strand. When used double or in other multiples, the loads may be increased proportionately.

	Diameter of Iron Inches	When Used Straight	When Used at 60-Degree Angle	When Used at 45-Dègree Angle	When Used at 30-Degree Angle
"CC" Dredge Chain (Best Grade of Hand-made, Tested, Short Link Chain.)	14 38 12 58 34 78 1 118 118 114 112	1,330 2,660 5,330 8,330 12,000 16,330 20,830 26,660 32,000 46,660	1,000 2,050 4,100 6,800 9,400 12,800 16,000 20,400 25,500 38,000	850 1,700 3,400 5,600 7,800 10,400 13,200 16,800 21,000 32,000	600 1,200 2,400 4,000 5,500 7,400 9,400 12,000 15,000 22,000

[Columbus-McKinnon Chain Co., Columbus, O.]

DRUM SCORES

FOR CHAIN

DRUM SCORES FOR CHAIN-Continued

Size of Chain	A	В	C	D	E	F	G	н
3/8 -7/16 1/2 9/16 5/8 11/16	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{11}{16} \\ 1\frac{7}{8} \\ 2\frac{1}{6} \end{array} $	9/16 5/8 11/16	3 16 9 32 5 16 11 32	3/16 7/32 1/4 9/32 5/16 11/32 3/3	$ \begin{array}{c} 1 \frac{1}{4} \\ 1 \frac{7}{16} \\ 1 \frac{9}{16} \\ 1 \frac{3}{4} \end{array} $	3/16 7/32 1/4 9/53	11 32 3/8 7/16 15/32	1 1½ 1½ 1¾ 13/8
5 8 11 16 3 4 13 16 7 8 15 16	$ \begin{array}{c} 2^{1}/16 \\ 2^{5}/16 \\ 2^{1}/2 \\ 2^{11}/16 \\ 2^{7}/8 \end{array} $	13/16 7/8 15/16	3/8 13/32 7/16 15/32	13/29	$1\frac{7}{4}$ $1\frac{7}{8}$ $2\frac{1}{16}$ $2\frac{3}{16}$ $2\frac{3}{8}$ $2\frac{1}{2}$	7/32 1/4 9/32 5/16 11/32 3/8 13/32 7/16	9/16 5/2	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{7}{6} \end{array} $
7/8 15/16 1	$ \begin{array}{c c} 31/8 \\ 35/16 \\ 31/2 \end{array} $	$\begin{array}{c} 1^{1}/_{16} \\ 1^{1}/_{8} \\ 1^{3}/_{16} \end{array}$	1/2 17/32 9/16	7/16 15/32 1/2	$\begin{array}{c} 2\frac{1}{2} \\ 2^{11}/6 \\ 2^{13}/6 \end{array}$	7/16 15/32 1/2	21/32 23/32 3/4 13/16	$ \begin{array}{c} 2 \\ 2 \frac{1}{8} \\ 2 \frac{1}{4} \end{array} $

Chain drums and sheaves are usually made with a diameter of 20 to 25 times the thickness of the chain iron, the diameter being taken to the center of the chain.

FOR ROPE

Dia. of Rope	A	В	С	D	Dia. of Rope	A	В	С	D
3/8 7/16 1/2 9/16 5/8 11/16	7/16 1/2 9/16 5/8 11/16 3/4	7/32 1/4 9/32 5/16 11/32 -3/8	3/32 3/32 3/32 1/8 1/8	3/32 1/8 1/8 5/32 5/32 3/16	3/4 13/16 7/8 15/16 1 11/8	13/16 7/8 15/16 1 11/16 13/16	15/32 1/2 17/32 19/32	5 32 5 32 5 32 3 16 3 16 1 4	3/16 7/32 7/32 1/4 1/4 5/16

See also Pulley Grooves for Rope Transmission, pages 129 and 130.

HOOKS AND RINGS FOR CHAIN

Round slip hooks should be made from the best hammered iron three times the diameter of the material in the chain. Thus a slip hook for a ¾ inch chain should be of 2¼ inch stock.

Square grab hooks should be made from material twice the diameter of the chain. A grab hook for a ¾ inch chain, use 1½ stock.

Inside diameter of ring should be six times the diameter of the chain iron, and the ring stock twice the size of the chain. A ring for a $\frac{3}{4}$ inch chain should be made from $1\frac{1}{2}$ inch material and be $4\frac{1}{2}$ inches inside diameter.

TREATMENT OF STEEL

Annealing gives the steel a finer grain, and makes it more ductile. Steel castings and anchor chains are frequently annealed to increase their tensile strength and resistance to sudden shocks.

Hardening steel increases its tensile strength and elastic limit, but decreases its ductility. Steel is heated to a high temperature and then plunged into oil or water. Cutting tools for lathes, shapers, etc., are hardened.

Case hardening causes the steel to have a hard exterior surface and a soft interior. Gears and armor are case hardened.

Tempering is reheating hardened steel to restore a part of its ductility. Drills, metal working tools, etc., are tempered.

SECTION VI

MISCELLANEOUS DETAILS

HANDLES—HAND WHEELS—KNOBS—KNURLED SET—WRENCHES—
STUFFING BOXES—DRILL SHANKS—WASHERS—CLINCH RINGS—
SPRINGS — ANGLE COUPLINGS — KNUCKLE JOINTS — YOKE
ENDS—ROD ENDS—TOOL STRAPS AND BOLTS—TAPER
PINS — FINISHED ENDS OF SHAFTS, STUDS,
SCREWS AND BUSHINGS—STANDARD SQUARES
FOR CHUCK SCREWS AND WRENCHES

MACHINE HANDLES

CONE PATTERN

A	В	D	E	F	Dia. of Shank
2 2½ 3 3¼ 3½ 3¾ 3¾	$\begin{array}{c} & {}^{3}4\\ 1\\ 1^{1}/8\\ 1^{3}/6\\ 1^{5}/6\\ 1^{3}/8\\ \end{array}$	7/16 9/16 5/8 3/4 7/8	1/8 5/82 3/16 3/16 1/4	1/8 5/32 3/16 1/4 5/16 3/8	5/6 3/8 1/2 5/8 11/16 3/4

BALL PATTERN

A	В	C	D	E	F	G	н	J	K	R_1	R_2	Ra	R4	Rs
7/16	⁸ /16	5/16	.252	3/8	5/8	1/4	1/32	7/16	123/32	3/16	57/64	53/64	9/16	1/8
5/8	5/16	3/8	.252	7/16	49/64	11/64	3/32	7/16	129/32	9/52	11/16	11/4	5/8	1/8
3/4	3/8	9/16	.253	33/64	55 64	1/4	3/32	7/16	25/2	28/64	58/64	13/8	3/8	3/16
18/16	\$/16	1/2	.3155	5/8	31/32	8∕16	3/32	7/16	27/16	23/64	111/64	27/32	9/16	3/16
7/8	3/8	9/16	.3155	5/8	11/16	5/16	1/8	9/16	211/16	18/32	19/32	17/64	19/32	3/16
1	7/16	11/16	.378	3/4	11/8	3/8	1/8	11/16	31/16	7/16	19/32	11/16	5/8	3/16
11/8	7/6	11/16	.4405	7/8	111/32	13/32	1/8	11/16	37/16	1/2	121/32	17/32	45/64	1/4
13/16	1/2	3/4	.4405	7/8	13/4	7/16	5/82	11/16	329/32	9/16	21/16	27/16	29/32	1/4
11/4	1/2	7/8	.4405	1	17/8	17/22	7/32	15/16	49/16	9/16	25/16	221/32	3/4	5/16
13/8	1/2	15/16	.504	1	21/8	3/4	3/16	15/16	5	21/32	225/32	21/2	17/6	5/16
11/2	5/8	11/8	.504 .628 .629	11/8	21/4	7/8	B/16	13/16	53/4		100	31/2	119/32	5/8

[Cincinnati Ball Crank Co., Cincinnati, O.]

Handles can be obtained with plain shanks that are riveted over, or with threaded shanks. The latter are preferable as it is not necessary to drill through the part the handle is to operate. Shanks of handles operating wheels or cranks turning right handed should have left hand threads to prevent unscrewing.

Handles are usually of drop forged steel, and are finished all over.

TAPERED SIDES

A	В	C	D	E	F
$2\frac{1}{2}$ 3 $3\frac{1}{2}$ 4	3/4 1 11/8 11/4	1/2 5/8 11/16	34 7/8 1 11/8	3 32 1/8 5/82 3/16	3/8 7/16 1/2 5/8

SPHERICAL END

A	В	C	D	E	F
$ \begin{array}{c} 34\\ 1\\ 1_{3/8}\\ 1_{5/8}\\ 1_{3/4} \end{array} $	5/8 3/4 1 1/4 13/8	1/4 5/16 3/8 1/2 3/4	3 32 1 8 1 8 1 8 5 32 3 16	7/16 1/2 11/16 1 11/8	1/4 5/6 3/8 1/2 5/8

BALANCED CRANK

							Small Ball		
A	В	С	D	E	F	G	Dia, of Hole	Depth of Hole	
$\begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 2 \end{array}$	$\begin{array}{c} 7/8 \\ 1 \\ 1 \frac{1}{8} \\ 1 \frac{1}{4} \\ 1 \frac{5}{16} \\ 1 \frac{3}{8} \\ 1 \frac{1}{2} \\ 1 \frac{13}{16} \end{array}$	5/8 3/4 13/6 15/6 1 1 1 11/1 11/4	1/2 1/2 9/16 9/16 11/16 3/4 27/32	1½ 1¾ 2 2¼ 2½ 3 4 5½	3 3½ 4 4½ 5 6 8 11	3/8 3/8 7/16 7/16 15/32 1/2 17/32 5/8	.25 .3125 .3125 .375 .4375 .4375 .4375	1/2 9/16 9/16 11/16 25/32 25/32 11/32	

[Cincinnati Ball Crank Co., Cincinnati, O.]

For handles see Machine Handles.

The center ball B may have a flat surface at the top as at the bottom.

The crank can be secured to the part it is to operate in a variety of ways. For instance, the ball B may have a square hole fitting over the end of the operated part, which is squared to suit and finished with a thread at the end. A nut is screwed onto the thread, thus holding the crank in place. Instead of a nut, the end may be riveted over.

Handles shown are screwed on, but by drilling through the balls and countersinking they can be riveted over.

Instead of the crank having a handle screwed or riveted into the ball C, the crank with handle can be made in one piece of drop forged steel.

A	В	C	D	E	F	G
5/8 3/4 3/4 3/4 7/8 11/16 11/16	$13 \frac{16}{16}$ $1^{1} \frac{16}{16}$ $1^{1} \frac{16}{16}$ $1^{3} \frac{16}{16}$ $1^{3} \frac{13}{8}$	5 16 13 32 3 8 13 32 7 16 1 12 1 12	3/8 13/32 7/16 7/16 17/32 5/8	15 ₃₂ 9,16 9,16 9,16 9,16 11,16 25 ₃₂	$\begin{array}{c} 15_{16} \\ 7/8 \\ 11/8 \\ 13/8 \\ 19/6 \\ 111/6 \\ 131/32 \end{array}$	$2\frac{1}{2}$ $2\frac{1}{2}$ $3\frac{1}{2}$ $4\frac{4\frac{1}{2}}{5}$

[Cincinnati Ball Crank Co., Cincinnati, O.]

For handles see Machine Handles.

Steel cranks and compound rests which come in contact with moisture should be lacquered to prevent rusting.

HANDWHEELS

STRAIGHT

	Rim			Arm	. 1			Hub		
Diameter	Thickness	Width at Small End	Width at Large End	Thickness at Small End	Thickness at Large End	Number of Arms	Length	Bore	Dia.	Size of Keyway
A	В	D	Е	F	G	Z	н	J	K	
7 8 9 10 12 14 16 18 20 24	7/8 1 11/8 11/4 11/2 11/2 11/2 15/8 15/8 13/4	7/8 15/16 1 1 13/8 11/2 11/2 15/8 11/2 13/4	$\begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{1}{4} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \\ 2 \\ 2\frac{1}{4} \end{array}$	3/8/7/16/8/8/1/2/8/8/1/2/8/8/8/8/4/3/4/3/4/3/4/3/4	1/2 7/16 5/8 7/8 7/8 1 1	4 4 4 4 4 6 6 6 6	27/8 2 13/8 31/2 11/2 23/4 21/4 33/4 2 31/8	7/8 13/16 19/32 11/4 11/2 11/2 13/8 13/8 19/16 13/4	2½ 1¾ 2½ 2½ 2½ 2¾ 3 3 1½ 4½ 378	3/6 x 3/22 3/16 x 3/22 3/16 x 3/22 1/4 x 1/8 3/8 x 3/16 1/4 x 1/8 3/8 x 3/16 1/4 x 1/8 3/8 x 3/16 1/4 x 1/8

[Niles-Bement-Pond Co., New York.]

For handles see Machine Handles.

DISHED

	Rim	Arm						Hub			
Diameter	Thickness	Width at Small End	Width at Large End	Thickness at Small End	Thickness at Large End	Number of Arms	Dish to Hub Face	Bore	Length	Diameter	Size of Keyway
A	В	1		F	G	AA	Н	J	K	L	MS:
$\begin{array}{c} 9 \\ 10 \\ 12 \\ 13 \\ 14\frac{1}{2} \\ 18 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \end{array}$	11/8 11/4 11/2 11/2 11/2 11/2 15/8 15/8 15/8	1 1 1 ¹ / ₈ 1 ¹ / ₄ 1 ¹ / ₄ 1 ¹ / ₂ 1 ³ / ₈ 1 ³ / ₈	11/4 11/4 13/4 13/4 13/4 17/8 13/4 13/4	3/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	5/8 5/8 7/8 3/4 1 1 1 1 1	4 4 4 4 5 6 6 6 6	9/16 1 $1/3/4$ 2 $1/8$ $2/8$ $2/8$ $2/8$ $2/8$ $2/8$	$1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{7}{8}$ $1\frac{7}{8}$ 2 $1\frac{7}{8}$ $1\frac{3}{4}$ 2 2	$\begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 5 \\ 8 \\ 3 \\ 1 \\ 4 \\ 9 \\ \end{array}$	2 ¹ / ₂ 2 ¹ / ₂ 2 ¹ / ₂ 2 ¹ / ₂ 3 ¹ / ₂ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄ 3 ³ / ₄	14 x 1/8 14 x 1/8 14 x 1/8 14 x 1/8 14 x 1/8 14 x 1/8 14 x 1/8 12 x 1/4 38 x 3/16 3/8 x 3/16

STAR

A	В	С	E	F	
2 2½ 3 3½ 4 5	7/8 1 11/4 13/8 11/2 15/8	5/16 3/8 7/16 7/16 1/2 5/8	1/8 1/8 5/32 3/16 1/4	5 16 5 16 3 8 7 16 1 2 5 8	Depth of hub to suit work

This wheel is usually of cast iron, and can be connected to the part it is to operate by a cylindrical, square or hexagonal projection to which it is pinned.

The dimension B is dependent on the size of the projection on which the star wheel is to be fitted.

No finish is generally required.

CAPSTAN

A	В	C	D	Е	F	G
2½ 3 3½	5/8 3/4 15/16	5/16 3/8 15/32	$\frac{11/4}{13/4}$	3/8 1/2 9/16	$ \begin{array}{c c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \end{array} $	1/16 1/16 3/32

May be keyed on, or fitted on the squared end of operated part.

KNOBS

C = .2 cD = d

Length of hub to suit work.

E = 1.8 d
Radius F = 6 d
Pin G,
$$\frac{1}{2}$$
" dia. for rods $\frac{3}{16}$ " to $\frac{1}{2}$ "

 $\frac{1}{4}$ " dia. for rods $\frac{7}{16}$ " to 1"

To obtain the flutings on the side, divide the circumference of the circle having a diameter equal to 4d into any number of divisions, arbitrarily selected in the present case as 18, and describe arcs which are tangent to each other at the circumference of the circle. As the half circles spaced around will leave sharp points, cut them back so there is a flat face of ½6" or ¾2".

KNURLED SETS

PLAIN KNURLED SET

A	В	С
3/4 7/8 11/8	3/16 1/4 5/16 3/4	1/8 5/32 3/16 1/4

SHOULDER SINGLE KNURLED

A	В	C	D	E	F
5/8 3/4 7/8	5/16 3/8 7/16 1/2	3/8 1/2 5/8 3/4	3/16 1/4 5/16 3/8	3/32 1/8 1/8 5/32	3/4 7/8 15/16 11/16

WRENCHES FOR BOLTS AND NUTS

OPEN WRENCH

SQUARE BOLTS AND NUTS

D = dia, of bolt

Angle $\theta = 0$ degs, for machine tool wrenches

= 15 degs. for engineer's wrenches

= $22\frac{1}{2}$ degs. for textile machines

Length of wrench = 12 to 16 D.

Finishes

Unfinished or rough—opening milled, otherwise rough. Semifinished—opening milled, head brightened and case hardened. Finished—opening milled, case hardened and polished all over.

BOX WRENCH

For D, θ and length see Open Wrench.

A	В	C	D	Thickness
3/4 ·	7/32 15/64	5 5½	3/16 3/16	1/4
1 1½ 1½	17/4	6 61/2	1/4 5/16	5/16
1 ½ 1½ 15%	9 32 19 64 5 16	71/2	7/8 7/16 1/2	7/16 1/6
134	21/64	81/2	9/16	1/2

The diameter of the holes in the operated part should be 1/4 in. greater than the diameter of the pin B.

For diameter of hole, see note, page 239.

OFFSET HANDLE SOCKET WRENCH

U. S. Standard Bolt Dia.	A	В	C	D	E	F
3/8 1/2 5/8 3/4 7/8 1 11/8 11/4	1½8 1¼4 1½8 1½8 2½ 2½2 2½2	45/64 57/64 15/64 19/32 115/32 121/32 127/32 21/32	11/16 7/8 7/8 1 11/8 11/4 13/8 11/2	11/16 7/8 7/8 1 11/8 11/4 13/8	1/2 5/8 3/4 7/8 1 11/8 11/8 13/6	$ \begin{array}{c} 6\frac{1}{2} \\ 7\frac{3}{4} \\ 9 \\ 10 \\ 10\frac{3}{4} \\ 11\frac{1}{4} \\ 11\frac{1}{2} \\ 12 \end{array} $

Depth of hole in wrench should be 1/6 in. less than thickness of nut.

T HANDLE SOCKET WRENCH

U. S. Standard Bolt Dia.	A	В	С	D	E	F	G
14 566 376 3776 1122 968 3478 11144 1138 1112	$\begin{matrix} & & & & & & & \\ & & & & & & \\ & & & & $	33/64 39/64 45/64 51/64 63/64 19/52 115/52 121/52 21/52 21/52 21/52 21/52	916 558 11/16 334 778 778 1 11/4 13/8 11/2 11/6 113/16	3/8 7/16 1/6 9/16 5/8 11/8 11/8 11/8 13/6 13/8	51/4 51/2 53/4 6 61/2 71/2 81/2 91/4 101/4 103/4 111/4 121/4	1/4 5/16 3/8 3/16 1/2/2 9/16 5/8 5/8 4/7/8 11/16 11/16	4½ 4½ 478 5 5½ 6 7 8 8¾ 9½ 9½ 10 11 11

Hexagon head for pin same size as bolt head. For depth of hole, see note, page 240.

STUFFING BOXES

BOLTED FLANGE TYPE

d - die of rod

u — uia. 01 10u	
A = 1.31 d	H = .63 d
B = 1.8 d	K =44 d
C = 2. d	L = 2.8 d
D = .7 d	M = .56 d
E = .31 d	N = 2.75 d
$F = .44 d_{\scriptscriptstyle /}$	O = 2. d
G = 1.13 d	For rods $\frac{1}{2}$ " to $\frac{1}{16}$ " dia. of stud P = $\frac{3}{8}$
	" " 34" " 114" " " " " " = 1/2
	" " 13/" " 15/" " " " " - 5/

The top gland may be of composition instead of cast iron lined with composition. For large rods the gland in contact with the rod is reduced in length to cut down friction.

 $u \quad u \quad 134'' \quad 218'' \quad u \quad u \quad u = 34''$ $u \quad u \quad 216'' \quad u \quad u \quad u = 76''$

Studs of steel or bronze with steel nuts. Bronze studs with steel or composition nuts should be fitted where there is excessive moisture. Hole in gland for stud 1/16 in, larger than stud.

The part K may be cast on the engine cylinder or on the valve body, thus doing away with bolts.

It is important that the gland stud nuts be equally tightened so the pressure on the rod is the same at all points in its circumference. If the rod is well oiled the friction may be considerably reduced.

For low steam pressures hemp and cotton packings are suitable, but for high, metallic should be used.

SCREW TYPE

a	=	dia. of	rod	
A	=	.34 d	L	= 1.5 d
В	=	.52 d	M	= 2. d
C	=	.43 d	N	= 2.37 d
E	=	.75 d	0	= .31 d
F	=	1.4 d	P	= 2.62 d
G	=	.31 d	R	= d
H	=	.5 d	Gla	and of composition
K	=	.15 d		

The screw type is for smaller rods than the bolted flange and als for installations where the studs would be in the way. The gland i screwed down by using a wrench on the part A, which can be mad with 6 or 8 notches or ribs in its circumference.

TAPERED DRILL SHANKS

Morse Twist Drill & Mach. Co.

No.	A	В	C	D	E	F	Taper in 12-Inch
0 1 2 3 4 5 6	2^{11}_{32} 2^{9}_{16} 3^{1}_{16} 3^{3}_{4} 4^{3}_{4} 6 8^{5}_{16}	27 ₃₂ 23/8 27/8 39/16 41/2 53/4 8	.240 .356 .556 .759 .997 1.446 2.077	.356 .475 .700 .938 1.231 1.748 2.494	5/32 13/64 1/4 5/16 15/32 5/8 3/4	9/32 3/8 7/16 9/16 5/8 3/4 11/8	.625 .600 .602 .602 .623 .630

Brown & Sharpe

No.	A	В	С	D	Е	F	Taper in 12-Inch
4 5 6 6 7 7 8 9 9 10 10 10 11 11	$\begin{array}{c} 134\\ 2932\\ 2314\\ 2314\\ 22314\\ 22314\\ 22314\\ 22314\\ 2327\\ 22314\\ 2344\\ 2$	121 52 23/16 27/8 33/4 317/32 417/32 41/8 45/8 47/8 613/52 615/16 715/16	.333 .432 .479 .578 .578 .727 .874 .874 1.022 1.022 1.022 1.220 1.466	.402 .523 .599 .635 .725 .767 .898 1.067 1.277 1.260 1.289 1.312 1.531 1.797	7 52 14 14 15 15 16 16 17 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	11 32 3 8 7 16 7 16 15 32 15 32 1 2 9 16 21 32 21 32 21 32 21 32 21 32 21 32 21 32	.500 .500 .500 .500 .500 .500 .500 .500

JARNO

$$D = Dia. of large end = \frac{No. of taper}{8}$$

$$C = Dia. of small end = \frac{No. of taper}{10}$$

$$B = Length of taper = \frac{No. of taper}{2}$$

A	В	С	. D	Taper in 12 Inches
11/8	1	.20	.250	.600
15/8	11/2	.30	.375	.600
23/16	2	.40	.500	.600
211/16	21/2	.50	.625	.600
33/16	3	.60	.750	.600
311/16	31/2		.875	.600
43/16	4			.600
411/16	41/2			.600
51/4	5			.600
53/4	51/2			.600
61/4	6			.600
63/4	61/2			.600
71/4	7			.600
73/4	71/2			.600
85/16	8			.600
813/16	81/2			. 600
95/16	9			.600
913/16	91/2			.600
10%16	10	2.00	2.500	.600
A A A A A A A A A A A A A A A A A A A				
	A 1 18 1 58 2 3/16 2 211/16 3 3/16 3 31/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 4 3/16 5 1/4 6 3/4 7 3/4 8 5/16 8 13/16 9 5/16 9 13/16 10 5/16	11/8 1 1 1/2 23/6 2 2 11/6 21/2 33/6 3 31/6 31/2 43/6 41/6 41/2 51/4 53/4 61/2 71/4 7 73/4 61/4 7 73/4 71/2 85/6 813/6 81/2 91/6 91/2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

WASHERS

CIRCULAR PLATE IN EFFECT JAN. 20, 1910 U. S. Standard

Diameter	Size of Hole	Thick	ness	Ci. A.D.H	Number in
Diameter	Size of Hole	Wire Gauge	Ins.	Size of Bolt	100 Lbs.
9/16 3/4 7/8	1/4	18	.05	3/16	39,400
3/4	5/16	16	.06	1/4	15,600
7/8	3/8	16	.06	5/16	11,250
1	7/16	14	.08	3/8	6,800
11/4	1/2	14	.08	7/16	4,300
13/8	9/16	12	.11	1/2	2,600
11/2	5/8	12	.11	9/16	2,250
$\frac{11/2}{13/4}$		10	.14	5/8	1,300
2	13 16	9	.16	34	900
$\frac{2\frac{1}{4}}{2\frac{1}{2}}$	10/16	8	.17	7/8	782
21/2	11/16	8	.17	1	568
23/4	11/4	8	.17	11/8	473
2 ³ ⁄ ₄ 3	13/8	8 8 8 8	.17	11/4	364
$\frac{31/4}{31/2}$	11/2	7	.18	13/8	275
31/2	15%	7	.18	1/2	256
33/4	15/8 13/4	7	.18	15/8	220
4	17/8	7	.18	15/8 13/4	197
41/4	2	. 7	.18	17/8	174
4½ 4½	21/8	7	.18	2	160

SQUARE PLATE

Inches Square	Size of Hole, Inches	Thickness, Inches	Thickness Decimal Parts of an Inch	Size of Bolt, Inches	Average Number in 100 Lbs.
$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 3\frac{3}{4} \\ 4\frac{4}{2} \\ 5 \end{array} $	7/6 1/2 9/16 23/5/2 27/3/3 31/3/2 13/3/2 11/4 13/8 11/2	1/8 1/8 3/66 1/4 1/4 1/4 3/8 3/8 3/8 3/8	.125 .125 .1875 .25 .25 .25 .25 .375 .375 .375	3/8 7/16 1/5/2 5/8 3/4 7/8 1 1/8 1/4 1/3/8	1,300 1,100 500 315 250 165 87 65 48 40
$\frac{6}{6}\frac{1}{2}$	$\begin{array}{c c} 1\frac{5}{8} \\ 1\frac{7}{8} \\ 2\frac{1}{8} \end{array}$	3/8 3/8 3/8	.375 .375 .375	$\begin{bmatrix} 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{bmatrix}$	28 24 21

PLANER HEAD BOLT WASHERS

Dia. of bolt	17/16	9/16 17/16 1/16	5/8 11/2 1/16	11/16 19/16 - 1/16	$\begin{array}{ c c }\hline & 3/4 \\ 1^{13}/16 \\ 9/32 \\ \end{array}$
--------------	-------	-----------------------	---------------------	--------------------------	--

O. G. CAST IRON WASHERS

Dia. of Bolt, Inches	A	В	C	D	Е	Approximate Weight Each
3/8 1/22 5/8 3/4 7/8 1 1/8 1 1/4 1 1/4 1 1/2	1 15/8 2 2 21/2 21/2 21/2 31/2 31/2 31/4	$\begin{array}{c} 1\\1\\1\\1\\1\\1\\6\\1\\1\\5\\1\\6\\1\\1\\1\\1\\6\\1\\1\\1\\1\\6\\1\\1\\1\\1\\1\\1\\6\\1$	7/66 5/8 3/4 7/8 1 11/8 11/4 13/8 11/2 15/8	11/4 21/2 3 3 31/2. 4 41/2 51/4 6	7/16 1/2 5/8 3/4 7/8 1 11/8 11/4 11/4 11/2	2½ oz. 7 oz. 12 oz. 1 lb. 1 lb. 6 oz. 2 lb. 2 lb. 6 oz. 4 lb. 4 oz. 4 lb. 4 oz. 6 lb.

Washers for Screws

Dia. of Washer	Thickness
11/16	5/32
15/16 15/16	3/16 1/4
$\frac{1^{1}_{16}}{1^{3}_{16}}$	5/16 3/8
17/16 111/2	3/8
115/16	1/2
	11 ₁₆ 13 16 15 16 11 ₁₆ 11 ₁₆ 11 ₁₆ 11 ₁₆ 11 ₁₆ 11 ₁₆

CLINCH RINGS

COUNTER SUNK OR RECESSED HOLE

Size of	Outside	Thick-	Number	Size of	Outside	Thick-	Number
Hole,	dia.,	ness	in one	Hole,	dia.,	ness	in one
Ins.	Ins.	Ins.	Lb.	Ins.	Ins.	Ins.	Lb.
1/2 5/8 3/4 7/8	13/8 11/2 15/8 13/4	3/16 7/32 7/82 7/82 7/82	18 15 11 10	$ \begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \end{array} $	2½8 2¾8 25% 25% 27%	9 32 5 16 5 16 7 16	5 3 ³ / ₄ 2 ³ / ₄ 2 ¹ / ₄

STRAIGHT HOLE

Size of	Outside	Thickness	Size of Hole	Outside	Thickness
Hole, Ins.	Dia., Ins.	Ins.	Ins.	Dia., Ins.	Ins.
5/16	3/4	1/8	3/4	1 ⁹ / ₁₆	7/32
3/8	15/16	5/32	7/8		7/32
16 1/2 5/8	$1 \\ 1^{1}_{16} \\ 1^{7}_{16}$	5/32 8/16 7/32	1 4 ½ 1 3/8	$\begin{array}{c} 2 \\ 2^{9}/_{16} \\ 2\frac{7}{8} \end{array}$	9 ³² 5 ¹⁶ 7 ¹⁶

SPRINGS

In general a helical compression spring will give the best results if its outside diameter equals eight times the diameter of the wire. In designing compression springs with squared ends, two inactive coils should be allowed for squaring.

The load a spring will sustain can be increased by increasing the diameter of the wire, diminishing the number of coils or decreasing the outside diameter.

Torsion springs should be so designed that their action will be in the direction that tends to reduce the diameter of the spring.

SPECIFICATIONS FOR ORDERING SPRINGS

Compression Type

Material.

Size of wire.

Inside diameter if spring works on a rod.

Outside " " " in "hole.

Free length.

Pitch, or number of coils.

Style of ends, whether plain, squared only, ground only or squared and ground.

Distance to be compressed and with what weight or power.

Extension Type

Material.

Size of wire.

Outside diameter.

Length of coils in inches, or number of coils.

Length over all.

Style of ends, whether loop or hook, parallel or at right angles. Distance to be extended and with what weight or power.

[W. Barnes Co., Bristol, Conn.]

SPRING FORMULÆ

P = safe load in lbs. r = mean radius of coil

E = modulus of elasticity d = dia. of coil wire

G = modulus of torsion l = length of spring

s = safe shearing stress in lbs. per sq. in. n = number of coils

f = deflection of spring in ins. for $\pi = 3.1416$

load P.

SPRING IN COMPRESSION OR TENSION WHEN LOADED AXIALLY

Cylindrical helical spring, circular cross section. $P = \frac{s\pi d^3}{16r}$;

$$f = \frac{32 \text{ Plr}^2}{\pi d^4 G} = \frac{64 \text{ Pnr}^3}{d^4 G}.$$

Rectangular cross section, t = thickness, w = width.

$$P = \frac{st^2w^2}{3r\sqrt{t^2\!+\!w^2}}; \; f = \frac{3\; Pr^2l\; (t^2+w^2)}{Gt^3w^3}. \label{eq:power_problem}$$

SPRING SUBJECT TO BENDING

Rectangular plate $P = \frac{St^2w}{6l}$; $f = \frac{Pl^3}{Et^3w}$.

Triangular plate $P = \frac{St^2w}{6l}$; $f = \frac{6 Pl^3}{Et^3w}$.

Compound (leaf or laminated) triangular plates. k = number of plates. $P = \frac{Skt^2w}{6l}$; $f = \frac{6}{Elr^4sw}$.

TABLE FOR DETERMINING CAPACIT

D = Outside Diam. of Spring. W = Safe I

Size of Wire	D	.250	.3125	.375	.4375	.500	. 5625	.625	1.750	.875	1.000	1.125	1
#26	W	.41	.31	.27	.23	.20	.175	.16 .	.13	.11	.098		1
.016	F	.1302	.302	.470	.760	1.150	1.66	2.30	4.02	6.95	9.42	- 9	
#24	W	1.18	.92	.76	.45	.56	.50	.45	.37	.31	.28	.24	
.0225	F	.0278	.0631	.1135	.1857	.282	.408	.569	.975	1.66	2.42	3.46	
#22	W	2.35	1.84	1.49	1.26	1.095	.96	.865	.715	.61	.53	.47	1
.028	F	.0119	.0250	. 0453	.0742	.1140	.165	.231	.408	.660 1.20	.995	1.42	
#20	W	4.70	3.64	2.97	2.5	2 18	1.92	1.72	1.42	1.20	1.05	.93	١.
.035 #19	F	.00451	.00952	.0175	.0290	.0447	.0651	.0914	.163	.264	.400	.575	١.
#19	W	7.87	6.05	4.93	4.15	3.58	3.16	2.82	2.32	1.97	1.74	1.54	ľ
.041	F	.00234		.0088	.0106	.0228	.0334	.0410	.0842	,1370	.208	.305	l
#18	W	12.05	9.2	7.40	6.57	5.4	4.75	4.23	3.48	2.95	2.85	2.27	1
.047 #17	F	.00115	.00294	.00488	.00824	.0132	.0187	.0264	.0396	.0785	.126	.175	1
#17	W	18.9	14.3	11.5	9.67	8.3	7.3	6.47	5.32	4.5	3.91	3.45	4
.054	F		.00138	.00256	.0044	.00702	.0103	.0145	.0267	.0437	.067	.0971	l
#16	W	31.5	23.61	18.8	15.7	13.8	11.8	10.5 .00704	8.57	7.25	6.28	5.04	1
.063 #15	F	.00026	.00065	.00122	.00222	.0051	.0053	.00704	.0129	.0233	.0327	.0476	
#15	W			29	24.1	20.5	17.9	15.85	12.92	10.9	9.46	8.35	1
.072	F	100		.00066	.0012	:0018	.0029	.00404	.0074	.0124	.0189	.0279	1
#14	W	74 Y		41	33.5	28.8	24.9	22.2	18.1	15.2	13.15	11.6	1
-080 #13	F			.00041	.00074		.00203		.0057	.0082	.0127	.0186	-
#13	W					45.7	40.7	35	28.4	23.8	20.3	17.75	l
.092	F					.00063	.00085		.00266		.0072	.01035 26 74	ŀ
#12	W						1	52.5	42.2	35.4	30.4	26 74	
.105 #11	F					11111	1	.00069			.0039	.0058	ı
#11	Ŵ							1	65	54	46	40.51	i
.120	F							U- 01	.0008	.0013	.00219		1
#10	W		1				1	100		77	67	58.6	-
.135	F					36. 1		The same	2	.00081	.00135		į
# 9 .148	Ŵ									105		78	1
.148	F			1500	A STATE OF	Sel		2 1 2	100	.00053	.00035		i
# 8	W			-	1	3720	- 2				120 -	104	1
.162	F					10.3					.00057	.00087	ł
.162 # 7 .177	W					35113	- X				159	138	l
.177	F				111	130	9	1 3 2	SULV		.00038	.00058	i
# 6	W								12	- 10	1000		
.192	F									112			
# 5	W	-	17.5	357	1 6	791119	Diva			2 3 2 1			ı
.203	F						100				1		i
# 4	W		107		-			100				100	İ
.225	F		,					1 35	7				Į
# 3	F	X III										201	
.244	II.							12.12.1					I
# 2	W							180 H	100		1.00		l
.263	F	Se					1				ALL PA		I
# 1 -	F				71.00	10.5		10000			17		
	H.				14		100 30			77.75			1
.283			1										
# 0			1 h		TRIL	-77					195	JIN. V	1
# 0 .307		200			Trails		100			116	The s		-
# 0	W F W F	- 41	5										

ILLUSTRATION OF THE

Required a spring ½" O. D. that will give a resistance of 42 lbs. when compressed to a length of 3".

What size of wire is required?
 What will be the uncompressed length of the spring?

3. How many coils?

.382

In the table we follow the horizontal column, giving the values of D, until we come to the vertical columnation of Searching down this column we find 45.7 lbs. as the nearest W. (safe load) value to the 42 lbs. required. Glancing from this point toward the left we find the size wire to be .092" and the F Value (deflection of

coil under one lb.) to be .00063.

FOR ROUND WIRE HELICAL SPRINGS

in Lbs. F = Deflection of One Coil per One Lb. given safe load by 1.2 and the given deflection by .59.

OF THE ABOVE TABLE

total deflection of the spring when resisting a load of 42 lbs. We have then: .092 as the size wire required 3'' + .728 = 3.728 as the free length. Thirty as the number

Note: The above tables are not guaranteed to be absolutely correct, as allowances have to be made for various grades of material. They will, however, be a good working basis for general estimating and experimental purposes.

[Copyrighted by W. Barnes Co., Bristo, Com.]

Assuming that the spring is not to be at its solid height when compressed to the specified 3" we have 3' divided by .092 equal to 32.6 coils as the number in the solid height or 30 coils as a desirable number for the spring.

There being 28 free coils in a spring containing 30 coils we have 28 multiplied by .026 equal to .728 as the

ANGLE COUPLINGS

(Universal Joints)

SINGLE ANGLE COUPLING

A = d = dia. of shaft	E = 1.5 d
B = .5 d	F = d
C = .56 d	G = 1.1 d
D = .32 d	H = .56 d

SINGLE ANGLE COUPLING

Will work to an angle of 25 degs.

Dia. of Shaft	A	Dia. of Shaft	A	Dia. of Shaft	A
Inches	Inches	Inches	Inches	Inches	Inches
$\begin{array}{c} 15 & 16 \\ 13 & 16 \\ 17 & 16 \\ 111 & 16 \\ 115 & 16 \end{array}$	$3\frac{1}{2}$ $4\frac{1}{2}$ $6\frac{1}{4}$ $6\frac{1}{4}$ 8	$\begin{array}{c} 2^{3}/_{16} \\ 2^{7}/_{16} \\ 2^{11}/_{16} \\ 2^{15}/_{16} \\ 3^{7}/_{16} \end{array}$	8 10 10 11 ¹ / ₂ 11 ¹ / ₂	3 ¹⁵ / ₁₆ 4 ⁷ / ₁₆ 4 ¹⁵ / ₁₆	14 16 20

[A. & F. Brown, Elizabeth, N. J.]

With single angle couplings the angular velocity is variable and is dependent on the angle of inclination of the shafts. The variation is of little consequence except where extreme accuracy is required as in time recording machines.

The joint shown is often installed in line shafts of motor boats and in shafts from engine to driving gear on the rear axle of automobiles.

The shafts in coupling on page 255 are keyed or pinned in, while those on page 256 are keyed and the parts held together by bolts.

Angle couplings are sometimes called Hooke's joints.

The type shown on page 254 is more frequently used where the angle between the shafts is large.

SINGLE ANGLE COUPLING

Will work to an angle of 25 degs.

Dia. of Shaft	A	В	С	D	Е	F	Standard Keyway
1 ³ / ₁₆ 1 ⁷ / ₁₆	8½ 9	41/4 41/2	7½ 7¾	$\frac{2}{2\frac{1}{4}}$ $\frac{2}{2\frac{1}{2}}$	$\frac{4\frac{1}{2}}{5}$ $\frac{5\frac{1}{2}}{5}$	3½ 3½	7/32 5/16
$ \begin{array}{c} 1^{7} 16 \\ 1^{11} 16 \\ 1^{15} 16 \\ 2^{3} 16 \end{array} $	93/4 10 11	$\begin{array}{c} 5 \\ 6 \\ 6^{1/2} \end{array}$	8½ 10 10 ³ / ₄	$\frac{3\frac{1}{4}}{3\frac{3}{4}}$	7 71/2	$\frac{4}{4\sqrt[3]{4}}$ $5\sqrt[3]{4}$	7,32 5,16 7,16 7,16 9,16 9,16 11,16
$ \begin{array}{c} 2^{3} & 16 \\ 2^{7} & 16 \\ 2^{11} & 16 \\ 2^{15} & 16 \end{array} $	$ \begin{array}{c c} 12 \\ 12 \frac{1}{2} \\ 12 \frac{3}{4} \end{array} $	7 7½ 8¼ 8¾ 8¾	$ \begin{array}{c c} 11\frac{1}{2} \\ 12\frac{1}{4} \\ 13 \end{array} $	4 4 4 ³ ⁄ ₄	7 ³ / ₄ 8 ³ / ₄ 9 ³ / ₄	$\frac{6}{6^{3}4}$ $7\frac{1}{2}$	11/16 11/16
3 ⁷ / ₁₆ 3 ¹⁵ / ₁₆	$\begin{array}{c c} 13\frac{1}{2} \\ 14\frac{1}{4} \\ 15\frac{1}{2} \end{array}$	9	14½ 16 18	5 5 5½	$ \begin{array}{ c c c c c } \hline 10\frac{1}{4} \\ 10\frac{1}{2} \\ 11\frac{1}{2} \end{array} $	$ \begin{array}{c} 8 \\ 8 \\ 8 \\ \\ 8 \\ \\ \end{array} $	11 16 11 16 11 16 13 16 13 16 13 16
$\frac{47}{16}$ 4^{15} 16	$\begin{array}{c c} 16\frac{1}{2} \\ 17\frac{3}{4} \end{array}$	$\begin{array}{c c} 10\frac{3}{4} \\ 11\frac{1}{2} \end{array}$	20 22	6 61/2	$\begin{array}{ c c c c c }\hline 12\frac{1}{2}\\ 13\frac{1}{2}\\ \end{array}$	$\frac{91}{4}$	13/16 13/16

[Cresson-Morris Co., Phila., Pa.]

Double Angle Coupling

Will work to an angle of 70 degs.

Dia. of Shaft Ins.	A Ins.	B Ins.	Dia. of Shaft Ins.	A Ins.	B Ins.	Dia. of Shaft Ins.	A Ins.	B Ins.
$\begin{array}{c} 15 & 16 \\ 13 & 16 \\ 17 & 16 \\ 111 & 16 \\ 1^{15} & 16 \end{array}$	3½ 4½ 6¼ 8 8	4 ³ / ₄ 5 ¹ / ₂ 8 ¹ / ₄ 8 ¹ / ₄ 10	$\begin{array}{c} 2^{3}/_{16} \\ 2^{7}/_{16} \\ 2^{11}/_{16} \\ 2^{15}/_{16} \\ 3^{7}/_{16} \end{array}$	8 10 10 11 ¹ / ₂ 11 ¹ / ₂	$ \begin{array}{c} 10 \\ 12^{3} \cancel{4} \\ 12^{3} \cancel{4} \\ 14^{1} \cancel{2} \\ 14^{1} \cancel{2} \end{array} $	$3^{15}/_{16}$ $4^{7}/_{16}$ $4^{15}/_{16}$	14 16 20	17½ 20 24

The variation in angular velocity is overcome by two single angle joints connecting two parallel shafts through an intermediate shaft.

KNUCKLE JOINTS

d = diameter of pin

A = .43 d B = .75 d F = 1.5 dG = 1.25 d

C = 1.25 d H = .9 d C = 1.25 d H = .9 d H = .

E = 1.93 d

Diameter of head of pin same as washer F.

For tables of yoke and rod ends for forming knuckle joints see pages 259–261.

YOKE ENDS

Dimensions of yoke and rod ends given in the following tables are of steel, drop forged. The dimensions can be followed in making castings of iron and composition, but neither will be equivalent to steel in strength.

PLAIN
SOCIETY OF AUTOMOTIVE ENGINEERS' STANDARD

A	В	С	D	E	F	G
$1\frac{1}{4}$ $1\frac{3}{4}$ 2 $2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{1}{2}$	3/16 1/4 5/16 3/8 7/16 1/2	$ \begin{array}{c} 7/8 \\ 1\frac{1}{4} \\ 13/8 \\ 17/6 \\ 1\frac{1}{2} \\ 15/8 \end{array} $	7/16 5/8 3/4 27/32 1 1 1/8	3/16 9/32 11/32 7/16 1/2 9/16	7/16 5/8 3/4 7/8 1 11/8	3/16 1/4 5/16 3/8 7/16

BILLINGS AND SPENCER STANDARD

(See next page for table.)

BILLINGS AND SPENCER STANDARD

A	В	D .	E	F	G
4½ 4¾ 4¾	1/4 5/16	25 15 16	5/16 3/8 7/	3/4 7/8	5/16 5/16
4½ 4¾ 5 5¼ 5½ 5¾ 6¼	7/8 7/16 1/2	25,22 15,16 11,16 15,52 17,16 17,16 17,16 27,52 21,75 21,75 22,95 23,75 23	5/6 3/8 7/6 1/2 9/6 5/8 3/4 7/8	1 1 1/8 1 1/4 1 3/	5/16 5/16 3/8 7/16 1/2 9/16 5/8 3/4 7/8
	7/16 5/8 3/4 7/8	15/16 15/8 115/16	7/8	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{5}{8}$ $1\frac{7}{8}$ $2\frac{3}{6}$ $2\frac{1}{2}$ $2\frac{13}{6}$ $3\frac{1}{8}$	716 5/8 3/4
7 ³ ⁄ ₄ 8 ¹ ⁄ ₂ 9 ¹ ⁄ ₄ 10	$\frac{1}{1\frac{1}{8}}$ $\frac{1}{1\frac{1}{4}}$	$\begin{array}{c} 2\frac{7}{32} \\ 2^{17}\frac{7}{32} \\ 2^{29}\frac{7}{32} \end{array}$	$\begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \end{array}$	$\begin{array}{c} 2^{3} & 16 \\ 2^{1} & 2 \\ 2^{13} & 16 \end{array}$	1 1 ¹ / ₈ 1 ¹ / ₄
10,	11/4	31/32	13/8	31/8	11/4

Adjustable
Society of Automotive Engineers' Standard

					- H LA			T
A	В	С	D	Ė	F	G	Dia.	S. A. E. threads per inch
2 2 ¹ / ₄ 2 ¹ / ₂ 2 ⁷ / ₈ 3	7/16 1/2 5/8 23/32 13/16	7/8 1 11/8 11/4 13/8	11/4 17/16 15/8 17/8 17/8	9/32 11/32 7/16 1/2 9/16	5/8 3/4 7/8 1 11/8	1/4 5/16 3/8 7/16 1/2	1/4 5/16 3/8 7/16 1/2	28 24 24 20 20

ROD ENDS

SOCIETY OF AUTOMOTIVE ENGINEERS' STANDARD

A	В	D	E	Dia. of Hole
11/4	316	3/8	3/16	3 16
11/4	144	1/2	9/32	14
13/8	516	19/32	11/32	5 16
11/2	38	11/16	7/16	3 8
11/2	716	13/16	- 1/2	7 16
13/4	12	15/16	9/16	1 2

BILLINGS AND SPENCER STANDARD

A	В	D	Е	G
3^{15}_{16} 4^{1}_{16} 4^{1}_{4} 4^{7}_{16} 4^{5}_{8}	1/4 5/16 3/8 7/16 1/2	11/16 13/16 7/8 1 1 1/8	5/6/8/16/29/16/8/4/8	5/16 5/16 3/8 7/16 1/2
315/6 41/16 41/4 47/16 45/8 413/16 53/16 59/16 62/32 61/2 71/32	1/2 9/16 5/8 3/4 7/8 1	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{8}$	5/8 3/4 7/8 1 11/8 11/4 13/8	1/2 9/16 5/8 3/4 1 1
79/16	1½ 1½	27/8	13/8	1½ 1¼ 1¼

TOOL STRAPS AND BOLTS

	Strap					Bolt						Nut			
A	В	C	D	Е	F	G	Н	J	к	L	М	N	0	P	Q
5 6 6 7 7½ 8¼	1 1 1 ¹ / ₄ 1 ¹ / ₈ 1 ³ / ₁₆ 1 ⁵ / ₁₆ 1 ¹ / ₄	3 3 ¹ / ₂ 3 ³ / ₄ 4 ⁵ / ₈ 4 ⁷ / ₈ 5 ³ / ₄	1 1 1 ¹ / ₄ 1 ¹ / ₈ 1 ³ / ₆ 1 ⁵ / ₆ 1 ¹ / ₄	$1\frac{3}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$ $2\frac{1}{8}$ $2\frac{1}{8}$ $2\frac{1}{8}$ $2\frac{1}{8}$	13/16 13/16 15/16 11/16 13/16 13/16 15/16	13/16 13/16 15/16 11/16 13/16 13/16 15/16	1½ 1½ 1½ 1¾ 2¼ 2¼ 2½ 2½ 2½ 2¾ 2¾	3/4 3/4 7/8 1 11/8 11/8 11/4	13/16 13/16 15/16 11/16 13/16 11/4 15/16	111/16	415/16	$\begin{array}{c} 1^{13}_{52} \\ 1^{31}_{52} \\ 2^{1}_{16} \\ 2^{1}_{16} \\ 2^{9}_{16} \\ 2^{3}_{4} \\ 3^{5}_{16} \end{array}$	13/16 3/8 23/32 3/4 3/4 3/4 3/4	7½ 7½ 8³½ 95% 10³¼ 12 2	11/4 11/4 11/2 15/8 13/4 15/4

For dimensions see page 263.

		Bolt					Strap			Nut
of bolt	A dia. at root of thread	С	D	E	F,	G	Н	J	К	L
3/4 1 11/8 11/8 11/4 11/4 13/4	.620 .838 .939 .939 1.064 1.064 1.490	2½8 3 2¾4 5½ 5 3½ 5 3½ 5	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \\ 2 \\ 2\frac{1}{2} \\ 1\frac{3}{4} \\ 2\frac{1}{2} \end{array} $	61/4 81/2 91/8 101/4 12 91/4 13	7/8 11/8 11/4 11/4 13/8 13/8 17/8	1½ 2 2½ 2½ 2½ 2½ 2½ 3¼	1½ 2 2½ 2½ 2½ 2½ 2½ 3¼	4 6 5½ 6 8 5½ 10½	7 9 9 ³ ⁄ ₄ 10 ³ ⁄ ₄ 14 10 18	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \\ 2 \\ 2\frac{1}{2} \end{array} $

[Niles-Bement-Pond Co., New York.]

MATERIALS OF MACHINE PARTS

Cast Iron—weak in tension and strong in compression. Tensile strength 22,500 lbs. per sq. in., compression 90,000. Weight per cu. ft. 449 lbs.

Malleable Iron—cast iron heated in retorts with an oxide of iron. Malleable iron has a tough outside surface like wrought iron and an interior like cast iron. Pipe fittings often made of it. Tensile strength 37,000 lbs.

Wrought Iron—tough, ductile, weldable but cannot be tempered. Tensile strength 50,000 lbs., compression 55,000. Weight per cu. ft. 485 lbs.

Composition or Brass—copper 65.3%, zinc 32.7%, lead 2%. The lead content makes a soft brass that can be readily machined. Navy brass 62% copper, 36 to 37% zinc, 1 to 1½% tin. Weight per cu. ft. 505 lbs.

Cast Steel—has a lower carbon content than cast iron, and is used for parts which would be too weak if made of iron. Tensile strength 60,000 lbs. Weight per cu. ft. 490 lbs.

Bronze—as ordinarily understood is an alloy of copper and tin, varying from 8 to 25% of tin. Other metals may be added as phosphorus, making an alloy known as phosphor bronze containing 82.2% copper, 12.95% tin, 4.28% lead and .52% phosphorus. This bronze has a tensile strength of about 50,000 lbs. Weight per cu. ft. 508 lbs.

TAPER PINS

The pins should force the parts together, and in proper relation to each other when driven home, thus preventing the pins from working loose. They are made of steel and finished all over.

PLAIN

A	Approximate Equivalent	A	Approximate Equivalent
.156 .172 .193 .219 .250 .289	5 \(\frac{5}{42} \) 11 \(\frac{64}{64} \) 3 \(\frac{7}{42} \) 1 \(\frac{1}{4} \) 19 \(\frac{64}{44} \)	.341 .409 .492 .591 706	11/ ₃₂ 13/ ₃₂ 1/ ₂ 19/ ₃₂ 45/ ₆₄

Taper 1/4" in 12".

Lengths 5/8", 1" to 53/4" advancing by 1/4".

[Cincinnati Bickford Tool Co., Cincinnati, O.]

SQUARE HEAD

For dimensions see page 265.

A	Approximate Equivalent	В	. с	D
.156	5 ₃₂ .	1/4	3/16	11/32
.172	11 ₆₄	1/4	3/16	11/32
. 193	3/16	1/4	\$ 16	11/32
. 219	7/32	1/4	\$ 16	11/32
. 250	1/4	3/8	14	17/32
.172 .193 .219 .250 .289 .341 .409	19 ₆₄ 11 ₃₂ 13 ₃₂	3/8 3/8 1/2	1/4 1/4 3/8	17/ ₃₂ 17/ ₃₂ 23/ ₃₂
.492	1/2	1/2	3/8	$23\frac{32}{32}$ $1\frac{1}{16}$ $1\frac{1}{16}$
.591	9/32	3/4	1/2	
706	45/64	3/4	1/2	

Taper 1/4" in 12".

Lengths from 34" to 51/2" advancing by 14".

[Cincinnati Bickford Tool Co., Cincinnati, O.]

FINISHED ENDS OF SHAFTS, BOLTS AND BUSHINGS

SOLID OR HOLLOW SHAFTS

Dia. of Shaft D	A	B End of Shaft to Bearing
14 to 12 9/6 " 1 11/6 " 2 21/6 " 3 31/6 " 4 41/6 " 6 6 " 8	1 32 1 16 3 32 1 8 5 32 3 16 14	1/6 3/6 3/2 1/8 3/6 3/6 1/4 3/8

Dia. of D	A	В
14 to 7/6 1/2 " 11/6 3/4 " 15/6 1 " 11/4 15/6 " 15/8	11/ ₃₂ 19/ ₃₂ 27/ ₃₂ 11/ ₈ 115/ ₃₂	1 16 3 32 1 8 5 32 7 32

BOLTS

Dia. of Bush D	A
1/4 to 1 11/16 " 2 21/16 " 5	1/32 1/16 3/32
51/16 " 8	1/8

RADA

GEARS AND RACKS

Diametral Pitch	Circular Pitch	A		
1 to 11/4	3.142 to 2.513	1/2		
21/4 " 3	2.094 " 1.571 1.396 " 1.047	3/16		
3½ " 4 5 " 7	.898 " .785 .628 " .449	1/8 3/32		
8 " 10 11 " 16	.393 " .314 .286 " .196	1/16		

[Gisholt Mach. Co., Madison, Wis.]

Screw points—see page 42. Nail points—see page 78.

STANDARD SQUARES FOR CHUCK SCREWS AND WRENCHES

11%	16%	17%	23/2	.142	84	1.767	122	11/2
13/8	11/2	111/16	234	.092	88	1.592	22/2	13%
1	15/6	13%	115/6	101.	86	1.414	8/22	114
18%	11/8	15/16	111/6	.112	82	1.237	1/6	-
%	31/23	13%	17/16	.094	82	1.062	1/6	1%
11/16	1/8	1	15/16	760.	80	.972	1/6	13/6
8/8/	13/6	15/16	13/8	.072	83	.884	1,76	%
97/8	28,52	18/6	1	.078	80	. 796	1/16	11/16
72	21,52	84	15/6	.051	85	707.	3,64	%
16/23	. 19/2	11/16	1/8	.068	62	.662	3,64	3/16
3/16	3/6	88	13/6	.055	82	.618	364	16
18,32	17/2	976	80/ 1/4	.043	85	.574	1,52	72
180	81,64	122	88	.046	11	.530	1,52	7/8
5/6	18/32	7/16	3/6	.036	84	.442	1/32	%
74	5/6	88	15/22	.041	77	.353	1/2	. 91/8
7,82	8	5/6	13/2	.029	81	.310	1/64	276
3/6	15,64	3/2	88	.031	92	.265	1,64	74
5,82	13,64	1/4	5/6	.018	83	.221	1/61	74
1,8	8/25	3/6	1/4	.021	92	771.	1/64	7/2
l	В		0	E	% of A	Sharp Corners	5	75

[Gisholt Machine Co., Madison, Wis.]

SECTION VII

STRUCTURAL DETAILS

RIVETS—RIVETED JOINTS—STRUCTURAL SHAPES—PLATES—WIRE AND SHEET METAL GAUGES—GAUGES FOR PUNCHING—RIVET SPACING—BEAM CONNECTIONS

RIVETS

There are no universal proportions for structural and ship rivets, but those given on the following pages represent good practice.

STRUCTURAL RIVETS

American Bridge Co. Standard

Full driven head, diameter, $A = 1.5 D + \frac{1}{8}$ Full driven head, depth, C = .425 AFull driven head, radius, E = 1.5 CCountersunk head, depth, F = .5 DCountersunk head, diameter, G = 1.577 D

Dia. D	A	C	Е	F	G
2/	11./	10/	7/	3/	197
1/2	11/16 7/8	19 ₆₄ 3/8	7/16 9/16	3/16 1/4	19/ ₃₂ 25/ ₃₂
3/4	$\frac{1}{1}\frac{1}{4}$	78 2964 1732 3964 1116 4964 2732	916 2964 5164 5964	5/16 3/8	13/16
1 1/8	$\frac{17_{16}}{15_{8}}$	39 ₆₄ 11 ₁₆	11/32	16 1/2	13/8
$\frac{11/8}{11/4}$	1 ¹ / ₈ 1 ¹³ / ₁₆ 2	49/64 27/29	$ \begin{array}{c} 1\frac{1}{32} \\ 1\frac{5}{32} \\ 1\frac{9}{32} \end{array} $	9/16 5/8	$\frac{13_4}{1^{15}_{16}}$

Points for structural work are generally button while for ship they may be either button or flush, and for Button heads for structural work. Pan and flush for ship. For steeple head, see page 270.

boilers, steeple.

RIVET HEAD FORMULÆ

Hoopes & Townsend

$$\begin{array}{lll} \text{Cone Head} & . & \{ \begin{array}{lll} D \ x \ 1.75 & = W \\ D \ x & .875 & = T \\ D \ x & .9375 = F \end{array} \\ \text{Button Head} & \{ \begin{array}{lll} D \ x \ 1.75 & = W \\ D \ x & .75 & = T \end{array} \end{array} \end{array}$$

Countersunk Head D x
$$.50=T$$

Steeple Head $....$ $\begin{cases} D \times 2. &=W \\ D \times 1. &=T \end{cases}$

Sizes of Rivet Heads

		Cone			Button		Countersunk		Steeple	
		Wide	Thick	Тор	Wide	Thick	Wide	Thick	Wide	Thick
Diameter	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 78 \\ 63 \\ 64 \\ 13 \\ 32 \\ 113 \\ 64 \\ 117 \\ 52 \\ 141 \\ 64 \\ 131 \\ 32 \\ 25 \\ 64 \\ 23 \\ 16 \end{array}$	7/16 1/2 35/44 39/64 21/32 45/64 49/64 13/16 7/8 59/64 63/64 11/32 13/32	15 32 17 32 37 64 41 64 45 64 49 64 53 64 7 8 15 16 1 11 16 1 17 64 1 11 64	$\begin{array}{c} 78 \\ 63 \\ 64 \\ 13 \\ 32 \\ 113 \\ 42 \\ 15 \\ 16 \\ 127 \\ 64 \\ 117 \\ 52 \\ 141 \\ 64 \\ 134 \\ 4155 \\ 64 \\ 131 \\ 52 \\ 2564 \\ 23 \\ 16 \\ \end{array}$	3/8 27/64 15/32 33/64 21/32 45/64 3/4 51/64 27/32 57/64 15/16	$\begin{array}{c} 15 & 16 \\ 11 & 16 \\ 15 & 32 \\ 11 & 4 \\ 13 & 8 \\ 14 & 2 \\ 15 & 8 \\ 13 & 4 \\ 113 & 16 \\ 131 & 32 \\ 21 & 16 \\ 23 & 16 \\ 25 & 16 \\ \end{array}$	1/4 9/52 5/6 11/3/2 13/8 13/82 7/6 15/32 1/2 17/32 9/16 19/32 5/8	1 11/8 11/4 13/8 11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2	1/2 9/16 5/16 11/16 3/4 13/16 15/16 1 11/16 11/18 13/16 11/14

Champion Rivet Co., Cleveland, Ohio

let d = dia. of rivet

Cone Head. Least dia. = 15 ₁₆ \times d Greatest dia. = $1.75 \times$ d Height = $\frac{1}{8} \times$ d

Button Head. Dia. = $1.75 \times d$ Height = $.75 \times d$

Steeple Head. Dia. = $2 \times d$ Height = $1\frac{1}{8} \times d$

Flat Head Countersunk. Height = $\frac{1}{2} \times d$. Taper 78 degs.

Pan Head. Greatest dia. = $1.75 \times d$ Height = $\frac{9}{6} \times d$

Flat surface on top of head equals diameter of rivet, tapering in a rounding oval to the outside edge.

Oval Countersunk. Greatest dia. = $1.75 \times d$ 78 degs. taper of countersink. Height of countersink = $.5 \times d$ "" oval = 3 /₆ × d Radius of oval = 2/₄ × d

SHIP RIVETS

Lloyds

Form of Rivet, in Outside Plating.

Tapered neck of rivet to be of suitable length in relation to the thickness of plate in which it will be used.

Countersink Rivets.—The countersink is to extend through the whole thickness of the plate when not more than .60 of an inch in thickness, when .60 of an inch or above, the countersink is to extend through nine tenths the thickness of the plate.

Tests.—Rivet shank bent cold on itself without cracking. Heads while hot can be flattened without cracking. Tensile strength 50,000 to 60,000 lbs. per sq. in., with an elongation of not less than 25% of the gauge length of eight times the diameter of the test piece.

SHIP RIVETS

Lloyds

Dia. of Rivet, Ins.	A, Ins.	B, Ins.
58 34 78 1 114 114	$\begin{array}{c} 1\\ 1^{3} \\ 1^{3} \\ 8\\ 1^{9} \\ 1^{6} \\ 1^{3} \\ 1^{15} \\ 1^{6} \end{array}$	11, 16 13, 16 15, 16 11, 16 13, 16 15, 16

TRUSS HEAD RIVETS

D = 2.5d

h = .5d

R = 2d

t = .4375d

l = 1.81d

d	D	h	R	t	1
1/8	.3125	.0625	.250	.055	.240
5/32	.3000	.0780	.312	.0680	. 282
5/32 3/16	.4687	.0937	.375	.082	.360
7/32	.5450	.1090	.437	.095	.395
1/	.6250	.1250	.500	.109	.480
9/32	.7250	.1400	.562	.125	.510
	.7812	.1560	. 625	.137	. 600
3/6	.9375	.1875	.750	.164	.720
7/16 1/2	1.0937	.2187	.875	.191	.840
1/2	1.2500	.2500	1.000	.218	.960

In rivet calculations (page 276) it is customary to disregard friction and proportion rivets to the entire stress to be transmitted.

WAGON BOX HEAD RIVETS

D = 2.8d

h = .4375d

R = 2.8d

t = .375d

d	D	° h	R	t	1	
1/8	.350	.0547	.3500	.0467	.285	
5/32	.4375	.0680	.4375	.0585	.356	
3/16	.525	.0820	.5250	.0700	.427	
7/29	.6093	.0950	.6093	.0820	.497	
1/1	.7031	.1090	.7031	.0940	.570	
9/20	.7812	.1230	.7812	.1050	.644	
5/16	.875	.1365	.8750	.1170	.712	
3/6	1.050	.1640	1.0500	.1400	.855	
1/8 5/32 3/16 7/32 1/4 9/32 5/16 3/8 7/16 1/2	1.220	.1910	1.2200	.1640	.996	
1/2	1.400	.2188	1.4000	.1875	1.140	

[The Atlas Bolt and Screw Co., Cleveland, Ohio.]

Lengths of Rivets for Ordering

The length for ordering pan and button head rivets is measured exclusive of the head; for countersunk rivets and taps the ordered length includes the head to the top of the countersink.

ALLOWANCE FOR POINTS IN LENGTH OF RIVETS WITH TWO THICK-NESSES CONNECTED

	Diameters of Rivets (Ins.)								
Type of point	1/2	5/8	3/4	7/8	1	11/8			
Countersunk	1/2 1/2 7/8 7/8	5/8 1/2 1 7/8	3/4 1/2 11/8	7/8 5/8 11/4	1 5/8 13/8	1½ 5/8 1½			

TINNERS RIVETS

Size	Max. Dia. d	1	D	t	'L
Size 6 oz. 8 " 10 " 12 " 14 " 1 lb. 11/4 " 11/2 " 21/2 " 3 " 4 " 4 " 5 " 6 "	Max. Dia. d .082 .092 .095 .106 .109 .112 .120 .130 .134 .144 .148 .161 .165 .176 .181 .186	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	D 11 64 3 16 13 64 7 52 15 64 17 4 17 64 9 52 19 64 5 16 21 64 11 52 43 64 3 88 25 64	.027 .031 .032 .035 .036 .037 .040 .043 .044 .048 .049 .053 .055 .058	1L 9 52 9 52 5 16 19 64 11 52 27 64 15 52 37 64 27 64 16 5 68 41 64 11 16 23 62
6 " 7 " 8 " 9 " 10 " 12 " 14 " 16 "	.203 .216 .225 .234 .238 .259 .284 .300	25/8 13/32 7/16 29/64 15/32 1/2 33/64 17/32	732 716 1532 3164 1/2 3364 916 3916 4164	.062 .067 .072 .075 .078 .079 .086 .094	1136 23 82 25 82 49 64 27 82 55 64 53 64 7 8

In ordering rivets, the diameter should be given first and then the length, thus— $\frac{1}{2}$ " x 3". Rivets are usually shipped in kegs of 100 lbs.

CONVENTIONAL SIGNS FOR RIVETS

RIVET SIGNS

SHOP RIVETS

HEADS

CSK FAR SIDE

SIDE

CHIPPED 1/8" HIGH

C'S'K BOTH SIDES

NEAR SIDE C'5'K NOT

FAR SIDE

BOTH SIDES

FIELD RIVETS

2 FULL HEADS

C'S'K FAR SIDE AND CHIPPED

C'S'K NEAR SIDE AND CHIPPED

C'S'K BOTH SIDES AND CHIPPED

Allowable Single Shearing Stress in lbs. per sq. in.

Field rough bolts..... 8,000

RIVETED JOINTS

Diameter of rivet is 1.2 to 1.4 times $\sqrt{}$ thickness of plate.

Distance from center of rivet to plate edge $1\frac{1}{2}$ to 2 times the diameter of the rivet; for water tight work use $1\frac{5}{8}$.

Water tight spacing $3\frac{1}{2}$ times the diameter of the rivet; oil tight, 3 to $3\frac{1}{2}$ times.

In chain riveting distance between rows of rivets is 2 to $2\frac{1}{2}$ times the diameter of the rivet. In staggered riveting 1.7.

Tensile strength of steel plates generally taken at 60,000 lbs. per sq. in. Shearing strength of rivets 50,000 lbs. per sq. in.

Shearing strength of a rivet in double shear is usually about 1.75 times the strength in single shear.

Let d = diameter of rivet

t = thickness of plate
p = pitch of rivets

T = tensile strength of plate
C = crushing " "rivet
S = shearing " " "

All dimensions in inches, and stresses in pounds per square inch. Lap Joint, Single Riveted

Resistance to tearing plate between rivets = t (p-d) T

" crushing of one rivet = t d C

" shearing " " " = $\frac{1}{4}\pi d^2 S$

Lap Joint, Double Riveted

Resistance to tearing plate between two rivets = t (p-d) T " crushing of two rivets = 2 td C " shearing " " = $\frac{2 \pi d^2 S}{d}$

Butt Strap, Single Riveted, Two Cover Plates

Resistance to tearing plate = t (p-d) T

" "crushing of one rivet = t d C

" "shearing " " = $\frac{2 \pi d^2 S}{}$

Butt Strap, Double Riveted, Two Cover Plates Resistance to tearing plate

" crushing of two rivets

"shearing" "

= t (p-d) T = 2 t d C $4 \pi d^2 S$

STRUCTURAL SHAPES

(Rolled by Carnegie Steel Co.)

I = moment of inertia about line through center of gravity

y = distance from center of gravity to extreme fiber

s = section modulus = $\frac{I}{y}$ Λ = area of section

 $r = radius of gyration = \sqrt{\frac{I}{A}}$.

STRUCTURAL CHANNELS

	h of	ht	oo	h of	of	A	xis 1-1		Axis 2-2				
Section	Depth of Channel	Weight per Foot	Area of Section	Width Flange	Thick- ness of Web	I	г	8	I	r	8	x	
	In.	Lbs.	Sq.ins.	In.	In.	In.4	In.	In.3	In.4	In.	In.8	In.	
C1	15	55.0 50.0 45.0 40.0 35.0 33.0	14.71 13.24 11.76 10.29	3.818 3.720 3.622 3.524 3.426 3.400	.818 .720 .622 .524 .426 .400	430.2 402.7 375.1 347.5 319.9 312.6	5.16 5.23 5.32 5.43 5.58 5.62	57.4 53.7 50.0 46.3 42.7 41.7	12.2 11.2 10.3 9.4 8.5 8.2	.87 .87 .88 .89 .91	4.1 3.8 3.6 3.4 3.2 3.2	.82 .80 .79 .78 .79 .79	
C 2	12	40.0 35.0 30.0 25.0 20.5	10.29 8.82	3.418 3.296 3.173 3.050 2.940	.758 .636 .513 .390 .280	196.9 179.3 161.7 144.0 128.1	4.09 4.17 4.28 4.43 4.61	32.8 29.9 26.9 24.0 21.4	6.6 5.9 5.2 4.5 3.9	.75 .76 .77 .79 .81	2.5 2.3 2.1 1.9 1.7	.72 .69 .68 .68 .70	
C 3	10	35.0 30.0 25.0 20.0 15.0	8.82 7.35	3.183 3.036 2.889 2.742 2.600	.823 .676 .529 .382 .240	115,5 103.2 91.0 78.7 66.9	3.35 3.42 3.52 3.66 3.87	23.1 20.7 18.2 15.7 13.4	4.7 4.0 3.4 2.9 2.3	.67 .67 .68 .70 .72	1.9 1.7 1.5 1.3 1.2	.70 .65 .62 .61 .64	

STRUCTURAL CHANNELS—Continued

_													
g y	Depth of Channel	Weight per Foot	Area of Section	Width of Flange	ck- of	A	xis 1-	1		Axis	2-2		
Section	Dep	Wei	Area	Wid	Thick- ness of Web	I	r	S	I	r	8	x	
	In.	Lbs.	Sq.ins.	In.	In.	In.4	In.	In.8	In.4	In.	In.3	In.	
C4	9	25.0 20.0 15.0 13.25	5.88 4.41	2.815 2.652 2.488 2.430	.615 .452 .288 .230	70.7 60.8 50.9 47.3	3.10 3.21 3.40 3.49	15.7 13.5 11.3 10.5	3.0 2.5 2.0 1.8	.64 .65 .67 .67	1.4 1.2 1.0 0.97	.62 .59 .59 .61	
C 5	8	21.25 18.75 16.25 13.75 11.25	4.78	2.622 2.530 2.439 2.347 2.260	.582 .490 .399 .307 .220	47.8 43.8 39.9 36.0 32.3	2.77 2.82 2.89 2.98 3.11	11.9 11.0 10.0 9.0 8.1	2.3 2.0 1.8 1.6 1.3	.61	1.1 1.0 0.95 0.87. 0.79	.59 .57 .56 .56	
C 6	7	19.75 17.25 14.75 12.25 9.75	5.81 5.07 4.34 3.60 2.85	2.513 2.408 2.303 2.198 2.090	.633 .528 .423 .318 .210	33.2 30.2 27.2 24.2 21.1	2.39 2.44 2.50 2.59 2.72	9.5 8.6 7.8 6.9 6.0	1.9 1.6 1.4 1.2 0.98	.56 .57 .57 .58 .59	0.96 0.87 0.79 0.71 0.63	.58 .56 .54 .53 .55	
C7	6	15.5 13.0 10.5 8.0	4.56 3.82 3.09 2.38	2.283 2.160 2.038 1.920	.563 .440 .318 .200	19.5 17.3 15.1 13.0	2.07 2.13 2.21 2.34	6.5 5.8 5.0 4.3	1.3 1.1 0.88 0.70	.53 .53 .53 .54	0.74 0.65 0.57 0.50	.55 .52 .50 .52	
C 8	5	11.5 9.0 6.5	3.38 2.65 1.95	2.037 1.890 1.750	.477 .330 .190	10.4 8.9 7.4	1.75 1.83 1.95	4.2 3.6 3.0	$0.82 \\ 0.64 \\ 0.48$.49 .49 .50	0.54 0.45 0.38	.51 .48 .49	
C 9	4	7.25 6.25 5.25	2.13 1.84 1.55	1.725 1.652 1.580	.325 .252 .180	4.6 4.2 3.8	1.46 1.51 1.56	2.3 2.1 1.9	$0.38 \\ 0.44 \\ 0.32$.46 .45 .45	0.35 0.32 0.29	.46 .46 .46	
C 72	3	6.0 5.0 4.0	1.76 1.47 1.19	1.602 1.504 1.410	.362 .264 .170	2.1 1.8 1.6	1.08 1.12 1.17	1.4 1.2 1.1	$\begin{array}{c} 0.31 \\ 0.25 \\ 0.20 \end{array}$.42 .42 .41	$0.27 \\ 0.24 \\ 0.21$.46 .44 .44	

EQUAL ANGLES

	a.	Weight	Area	Ax	is 1–1 ar	nd Axis 2	-2	Axis 3-3
Section Index	Size	Foot	of Section	I	r	8	x	r min.
	Ins.	Pounds	In.2	In.4	In.	In.3	In.	In.
A 3 A 4 A 5 A 6 A 7 A 8 A 88	6 x 6 x 3/4 11/16 5/8 9/16 1/2 7/16 3/8	28.7 26.5 24.2 21.9 19.6 17.2 14.9	8.44 7.78 7.11 6.43 5.75 5.06 4.36	28.2 26.2 24.2 22.1 19.9 17.7 15.4	1.83 1.83 1.84 1.85 1.86 1.87 1.88	6.7 6.2 5.7 5.1 4.6 4.1 3.5	1.78 1.75 1.73 1.71 1.68 1.66 1.64	1.17 1.17 1.17 1.18 1.18 1.19 1.19
A 11 A 12 A 13 A 14 A 15 A 16 A 17	5 x 5 x 3/4 11/6 5/8 9/16 1/2 7/16 3/8	23.6 21.8 20.0 18.1 16.2 14.3 12.3	6.94 6.40 5.86 5.31 4.75 4.18 3.61	15.7 14.7 13.6 12.4 11.3 10.0 8.7	1.50 1.51 1.52 1.53 1.54 1.55 1.56	4.5 4.2 3.9 3.5 3.2 2.8 2.4	1.52 1.50 1.48 1.46 1.43 1.41 1.39	.97 .97 .97 .98 .98 .98
A 19 A 20 A 21 A 22 A 23 A 24 A 25	4 x 4 x 3/4 11/16 5/8 9/16 1/2 7/16 3/8	18.5 17.1 15.7 14.3 12.8 11.3 9.8	5.44 5.03 4.61 4.18 3.75 3.31 2.86	7.7 7.2 6.7 6.1 5.6 5.0 4.4	1.19 1.19 1.20 1.21 1.22 1.23 1.23	2.8 2.6 2.4 2.2 2.0 1.8 1.5	1.27 1.25 1.23 1.21 1.18 1.16 1.14	.77 .77 .77 .78 .78 .78 .78
A 29 A 30 A 31 A 32 A 33 A 99 A 285	3½x3½x5/8 9/16 1/2 7/16 3/8 6/16 1/4	13.6 12.4 11.1 9.8 8.5 7.2 5.8	3.98 3.62 3.25 2.87 2.48 2.09 1.69	4.3 4.0 3.6 3.3 2.9 2.5 2.0	1.04 ⁷ 1.05 1.06 1.07 1.07 1.08 1.09	1.8 1.6 1.5 1.3 1.2 .98 .79	1.10 1.08 1.06 1.04 1.01 .99 .97	.68 .68 .68 .69 .69
A 36 A 37 A 38 A 39 A 40	3 x 3 x ½ 7/16 3/8 5/16 1/4	9.4 8.3 7.2 6.1 4.9	2.75 2.43 2.11 1.78 1.44	2.2 2.0 1.8 1.5 1.2	.90 .91 .91 .92 .93	1.1 .95 .83 .71 .58	.93 .91 .89 .87 .84	.58 .58 .58 .59 .59
A 48 A 49 A 50	2½x2½x ³ / ₈ ⁵ / ₆ ¹ / ₄	5.9 5.0 4.1	1.73 1.47 1.19	.98 .85 .70	.75 .76 .77	.57 .48 .39	.76 .74 .72	.48 .49 .49
A 59 A 60	2 x 2 x 1/4 8/16	3.19 2.44	.94 .71	.35 .28	.61 .62	.25	.59	.39

Structural Shapes—of steel made by the open hearth process. The steel used in ships has a tensile strength of 58,000-68,000 lbs. per sq. in.; yield point minimum .5 tensile strength; elongation in 8 ins. minimum per cent $\frac{1,500,000}{\text{tensile strength}}$. Steel for buildings has a slightly lower tensile strength.

I BEAMS

dex	Depth of Beam	Weight per Foot	of ion	Width of Flange	of of	A	xis 1-1		A	xis 2-	2			
Section Index	Dep of B	Weig per	Area of Section	Wid of F	Thick- ness of Web	I	r	s	I	r	8			
Sect	In.	Lbs.	In.2	In.	In.	In.4	In.	In.3	In.4	In.	In.			
B 61	27	. 90	26.33	9,000	.524	2958.3	10.60	219.1	75.3	1.69	16.7			
B 24	24	115 110 105	33.98 32.48 30.98	8.000 7.938 7.875	.750 .688 .625	2955.5 2883.5 2811.5	9.42	$246.3 \\ 240.3 \\ 234.3$	83.2 81.0 78.9	1.57 1.58 1.60	$20.8 \\ 20.4 \\ 20.0$			
B 1	24	100 95 90 85 80	29.41 27.94 26.47 25.00 23.32	7.254 7.193 7.131 7.070 7.000	.754 .693 .631 .570 .500	2379.6 2309.0 2238.4 2167.8 2087.2	9.09 9.20 9.31	198.3 192.4 186.5 180.7 173.9	48.6 47.1 45.7 44.4 42.9	1.28 1.30 1.31 1.33 1.36	13.4 13.1 12.8 12.6 12.3			
B 62	24	74	21.70	9.000	.476	1950.1	9.48	162.5	61.2	1.68	13.6			
B 63	21	60.5	17.68	8.250	.428	1235.5	8.36	117.7	43.5	1.57	10.6			
B 2	20	100 95 90 85 80	29.41 27.94 26.47 25.00 23.73	7.284 7.210 7.137 7.063 7.000	.884 .810 .737 .663 .600	1655.6 1606.6 1557.6 1508.5 1466.3	7.58 7.67 7.77	165.6 160.7 155.8 150.9 146.6	52.7 50.8 49.0 47.3 45.8	1.34 1.35 1.36 1.37 1.39	14.5 14.1 13.7 13.4 13.1			
В 3	20	75 70 65	22.06 20.59 19.08	6.399 6.325 6.250	.649 .575 .500	1268.8 1219.8 1169,5	7.70	126.9 122.0 117.0	30.3 29.0 27.9	1.17 1.19 1.21	9.5 9.2 8.9			
B 81	18	90 85 80 75	26.47 25.00 23.53 22.05	7.245 7.162 7.083 7.000	.807 .725 .644 .562	1260.4 1220.7 1181.0 1141.3	6.99	140.0 135.6 131.2 126.8	52.0 50.0 48.1 46.2	1.40 1.42 1.43 1.45	14.4 14.0 13.6 13.2			
B 80	18	70 65 60 55	20.59 19.12 17.65 15.93	6.259 6.177 6.095 6.000	.719 .637 .555 .460	921.2 881.5 841.8 795.6	6.69 6.79 6.91 7.07	102.4 97.9 93.5 88.4	24.6 23.5 22.4 21.2	1.09 1.11 1.13 1.15	7.9 7.6 7.3 7.1			
B 64	18	48	14.08	7.500	.380	737.1	7.23	81.9	30.0	1.46	8.0			
B 5	15	75 70	22.06 20.59	6.292	.882	691.2 663.7	5.60 5.68	92.2 88.5	30.7	1.18	9.8			

			3			Real-section					
xəpu	Depth of Beam	Weight per Foot	Area of Section	Width of Flange	ck- s of	A	xis 1-1		A	xis 2-	2
Section Index	Del of J	Wei	Are	Wic of F	Thick- ness of Web	I	r	8	I	r	8
Sec	In.	Lbs.	In.2	In.	In.	In.4	In.	In.3	In.	In.	In.3
В 7	15	55 50 45 42	16.18 14.71 13.24 12.48	5.746 5.648 5.550 5.500	.656 .558 .460 .410	511.0 483.4 455.9 441.8	5.62 5.73 5.87 5.95	68.1 64.5 60.8 58.9	17.1 16.0 15.1 14.6	1.02 1.04 1.07 1.08	5.9 5.7 5.4 5.3
B 65	15	37.5	10.91	6.750	.332	405.5	6.10	54.1	19.9	1.35	5.9
В 8	12	55 50 45 40	16.18 14.71 13.24 11.84	5.611 5.489 5.366 5.250	.821 .699 .576 .460	321.0 303.4 285.7 269.0	4.45 4.54 4.65 4.77	53.5 50.6 47.6 44.8	17.5 16.1 14.9 13.8	1.04 1.05 1.06 1.08	6.2 5.9 5.6 5.3
В 9	12	35 31. 5	$10.29 \\ 9.26$	5.086 5.000	.436 .350	228.3 215.8	4.71 4.83	38.0 36.0	10.1 9.5	.99 1.01	4.0 3.8
B 66	12	28	8.15	6.000	.284	199.4	4.95	33.2	12.6	1.24	4.2
B 11	10	40 35 30 25	11.76 10.29 8.82 7.37	5.099 4.952 4.805 4.660	.749 .602 .455 .310	158.7 146.4 134.2 122.1	3.67 3.77 3.90 4.07	31.7 29.3 26.8 24.4	9.5 8.5 7.7 6.9	.90 .91 .93 .97	3.7 3.4 3.2 3.0
B 67	10	22.25	6.54	5.500	.252	113.6	4.17	22.7	9.0	1.17	3.3
B 13	9	35 30 25 21	10.29 8.82 7.35 6.31	4.772 4.609 4.446 4.330	.732 .569 .406 .290	111.8 101.9 91.9 84.9	3.29 3.40 3.54 3.67	24.8 22.6 20.4 18.9	7.3 6.4 5.7 5.2	.84 .85 .88 .90	3.1 2.8 2.5 2.4
B 15	8	25. 5 23 20. 5 18	7.50 6.76 6.03 5.33	4.271 4.179 4.087 4.000	.541 .449 .357 .270	68.4 64.5 60.6 56.9	3.02 3.09 3.17 3.27	17.1 16.1 15.2 14.2	4.8 4.4 4.1 3.8	.80 .81 .82 .84	2.2 2.1 2.0 1.9
B 68	8	17. 5	5.12	5.000	.220	58.4	3.38	14.6	6.2	1.10	2.5
B 17	7	20 17. 5 15	5.88 5.15 4.42	3.868 3.763 3.660	.458 .353 .250	42.2 39.2 36.2	2.68 2.76 2.86	12.1 11.2 10.4	3.2 2.9 2.7	.74 .76 .78	1.7 1.6 1.5
B 19	6	17.25 14.75 12.25	5.07 4.34 3.61	3.575 3.452 3.330	.475 .352 .230	26.2 24.0 21.8	2.27 2.35 2.46	8.7 8.0 7.3	2.4 2.1 1.9	.68 .69 .72	1.3 1.2 1.1
B 21	5	14.75 12.25 9.75	4.34 3.60 2.87	3.294 3.147 3.000	.504 .357 .210	$15.2 \\ 13.6 \\ 12.1$	1.87 1.94 2.05	6.1 5.5 4.8	1.7 1.5 1.2	.63 .63 .65	1.0 .92 .82
B 23	4	10. 5 9. 5 8. 5 7. 5	3.09 2.79 2.50 2.21	2.880 2.807 2.733 2.660	.410 .337 .263 .190	7.1 6.8 6.4 6.0	1.52 1.55 1.59 1.64	3.6 3.4 3.2 3.0	1.0 .93 .85 .77	.57 .58 .58 .59	.70 .66 .62 .58
В 77	3	7. 5 6. 5 5. 5	2.21 1.91 1.63	2.521 2.423 2.330	.361 .263 .170	2.9 2.7 2.5	1.15 1.19 1.23	1.9 1.8 1.7	.60 .53 .46	.52 .52 .53	.48 .44 .40

			Size		W'ght.	Area	A	xis 1	-1	A	xis 2-	-2	Axis 3-3
t	ec- ion idex	Depth	Flanges	Thick- ness	Foot	Sec- tion	I	r	8	I	r	s	min.
		In.	In.	In.	Lbs.	In.2	In.4	In.	In.8	In.4	In.	In.3	In.
Z	3	61/8 61/16 6	35/8 39/16 31/2	7/8 13/16 3/4	34.6 32.0 29.4	10.17 9.40 8.63	46.1	2,22	16.4 15.2 14.0	17.3	1.36	6.0 5.5 4.9	.83 .82 .81
Z	2	6½ 6½ 6	35/8 39/16 31/2	11 16 5/8 9/16	28.1 25.4 22.8	8.25 7.46 6.68	43.2 38.9 34.6	2.28	$14.1 \\ 12.8 \\ 11.5$	14.4	1.39	5.0 4.4 3.9	.84 .82 .81
Z	1	6 ¹ / ₈ 6 ¹ / ₁₆ 6	35/8 39/16 31/2	1/2 7/16 3/8	21.1 18.4 15.7	6.19 5.39 4.59	34.4 29.8 25.3	2.35	9.8	$12.9 \\ 11.0 \\ 9.1$	1.43	3.8 3.3 2.8	.84 .83 .83
Z	6	51/8 51/16 5	3 ³ / ₈ 3 ⁵ / ₁₆ 3 ¹ / ₄	13/16 3/4 11/16	28.4 26.0 23.7	8.33 7.64 9.96	28.7 26.2 23.7	1.86 1.85 1.84	$11.2 \\ 10.3 \\ 9.5$	14.4 12.8 11.4	1.31 1.30 1.28	4.8 4.4 3.9	.76 .74 .73
Z	5	51/8 51/16 5	3 ³ / ₈ 3 ⁵ / ₁₆ 3 ¹ / ₄	5/8 9/16 1/2	$22.6 \\ 20.2 \\ 17.9$	6.64 5.94 5.25	24.5 21.8 19.2	1.91		$12.1 \\ 10.5 \\ 9.1$		3.9 3.5 3.0	.76 .75 .74
Z	4	51/8 51/16 5	33/8 35/16 31/4	7/16 3/8 5/16	16.4 14.0 11.6	4.81 4.10 3.40	19.1 16.2 13.4	1.99	7.4 6.4 5.3	9.2 7.7 6.2	1.38 1.37 1.35	$\frac{2.9}{2.5}$.77 .76 .75
Z	9	4½ 4½ 4½ 4	3 ³ / ₁₆ 3 ¹ / ₈ 3 ¹ / ₁₆	3/4 11/ ₁₆ 5/8	23.0 20.9 18.9	6.75 6.14 5.55	15.0 13.5 12.1	1.48	7.3 6.7 6.1	$11.2 \\ 10.0 \\ 8.7$	1.27	$\frac{4.0}{3.6}$ $\frac{3.6}{3.2}$.68 .67 .66
Z	8	41/8 41/16 4	3 ³ / ₁₆ 3 ¹ / ₈ 3 ¹ / ₁₆	9/16 1/2 7/16	18.0 15.9 13.8	5.27 4.66 4.05	12.7 11.2 9.7	1.55 1.55 1.55	$6.2 \\ 5.5 \\ 4.8$	9.3 8.0 6.7	1.31	3.2 2.8 2.4	.68 .67 .66
Z	7	4½ 4½ 4½ 4	3 ³ / ₁₆ 3 ¹ / ₈ 3 ¹ / ₁₆	3/8 5/16 1/4	12.5 10.3 8.2	3.66 3.03 2.41	9.6 7.9 6.3	1.62	4.7 3.9 3.1	6.8 5.5 4.2	1.34	$\frac{2.3}{1.8}$ $\frac{1.4}{1.4}$.69 .68 .67
Z 1	2	31/16	23/4 211/16	9/16 1/2	14.3 12.6	4.18 3.69	5.3	1.12	3.4	5.7		2.3	.54
Z 1	1	31/16	23/4 211/16	7/16 3/8	11.5	3.36 2.86	4.6	1.17	3.0	4.8	1.19	1.9	.55 .54
Z 1	0	31/16	23/4 211/16	8/16 1/4	8.5 6.7	2.48 1.97	3.6	1.21	2.4	3.6	.21	1.4	.56 .55

UNEQUAL ANGLES

	Size Weig		Area		Axi	s 1–1			Ax	is 2–2		Axis 3-3
Section Index	Size	Foot	of section	I	r	8	x	I	r	8	x	r min.
MA.	Ins.	Pounds	In.2	In.4	In.	In.3	In.	In.4	In.	In.s	In.	In.
A 171 A 172 A 173 A 174 A 175 A 176 A 177	6x3½x34 11/6 5/8 9/16 1/2 7/6 3/8	22.4 20.6 18.9 17.1 15.3 13.5 11.7	6.56 6.06 5.55 5.03 4.50 3.97 3.42	23.3 21.7 20.1 18.4 16.6 14.8 12.9	1.89 1.90 1.91 1.92 1.93	5.6 5.2 4.7 4.2 3.7	2.18 2.15 2.13 2.11 2.08 2.06 2.04	5.8 5.5 5.1 4.7 4.3 3.8 3.8	.94 .95 .96 .96 .97 .98	2.3 2.1 1.9 1.8 1.6 1.4 1.2	.93 .90 .88 .86 .83 .81	.75 .75 .75 .75 .76 .76
A 201 A 202 A 203 A 280	5 x 3 x 1/2 7/16 3/8 5/16	12.8 11.3 9.8 8.2	3.75 3.31 2.86 2.40	8.4 7.4	1.59 1.60 1.61 1.61	$\frac{2.6}{2.2}$	1.75 1.73 1.70 1.68	2.6 2.3 2.0 1.8	.83 .84 .84 .85	1.1 1.0 .89 .75	.75 .73 .70 .68	.65 .65 .65
A 225 A 226 A 227 A 228	4 x 3 x 1/2 7/16 3/8 5/16	11.1 9.8 8.5 7.2	3.25 2.87 2.48 2.09	4.5	1.25 1.25 1.26 1.27	$\frac{1.7}{1.5}$	1.33 1.30 1.28 1.26	2.4 2.2 1.9 1.7	.86 .87 .88 .89	1.1 1.0 .87 .74	.83 .80 .78	.64 .64 .64
A 234 A 235 A 236 A 237 A 286	3½x3x½ 7/16 3/8 5/16 14	10.2 9.1 7.9 6.6 5.4	3.00 2.65 2.30 1.93 1.56	3.1 2.7 2.3	1.07 1.08 1.09 1.10 1.11	1.3 1.1 .96	1.13 1.10 1.08 1.06 1.04	2.3 2.1 1.8 1.6 1.3	.88 .89 .90 .90	1.1 .98 .85 .72 .58	.88 .85 .83 .81 .79	.62 .62 .62 .63 .63
A 255	3x2½x3/8	6.6	1.92	1.7	.93	.81	.96	1.0	.74	.58	.71	.52
A 256 A 257	5/6 1/4	5.6 4.5	1.62 1.31	1.4 1.2	.94	.69	.93	.90 .74	.74 .75	.49	.68	.53

Ordering Shapes.—Beams, channels, bulb angles, Tees and Zees should be ordered to weight per linear foot. Angles may be ordered either to weight per foot or to thickness, but never both.

WIRE AND SHEET METAL GAUGES

DIAMETERS AND THICKNESSES IN DECIMAL PARTS OF AN INCH

	gauge n & Sharpe	90	Steel wire gauge or Washburn & Moen or Roebling	1 6		TOTAL	
H	ge	wire G.)	Mo	ပိ	wire	वन	
Gauge number	K Sau	SB	S &	Trenton Iron	¥.	Standard eet metal	wire S.
un	a d	3.	eel wire ge ashburn & Roebling	4	98	an an	\$00€
9	vir	I)	win	do	To .	S. Star	igi.
Sn Sn	B.	Str	Ro	- ut	gqı	S, de	Ne Ne
G	Am. wire or Brown	Birmingham gauge (B. W. or Stubs	or We	Ä	Stubs' steel	for for	Imperial or N. B.
000000							
00000		• • • • •		4500		.4687	.464
0000	1600	.454	2020			.4375	.432
	.4600	.454	.3938	.4000		.4062	.400
000		.425	.3625	.3600		.3750	.372
	.3648	.380	.3310	.3300		.3437	.348
0	.3249	.340	.3065	.3050	007	.3125	.324
1	.2893 $.2576$.300	.2830	.2850	.227	.2812	.300
2 3		.284	.2625	.2650	.219	.2656	.276
0	.2294	.259 .238	.2437 $.2253$.2450 $.2250$.212	.2500	.252
4 5 6 7	.1819	.400	.2253		.207	.2344	.232
6	.1620	.220	.1920	.2050	.204	.2187	.212
7	.1020		.1770			.2031	.192
8	.1285	.180	.1620	.1750	.199	.1875	.177
9	.1144	.105	.1020		.194	.1719	1144
10	.1019	.134	.1350	.1450	.194	.1302	.144
11	.0907	.120	.1205	.1300	.188	.1250	.128
12	.0808	.109	.1055	.1050		.1094	.104
13	.0720	.095	.0915	.1030	.185	.0937	.092
14	.0641	.083	.0800	.0800	.180	.0781	.080
15	.0571	.072	.0720	.0700	.178	.0703	.072
16	.0508	.065	.0625	.0610	175	.0625	.064
17	.0453	.058	.0540	.0525	.175 .172	.0562	.056
18	.0403	.049	.0475	.0450	.168	.0502	.048
19	.0359	.042	.0410	.0400	.164	.0437	.040
20	.0320	.035	.0348	.0350	.161	.0375	.036
21	.0285	.032	.0317	.0310	.157	.0344	.032
22	.0253	.028	.0286	.0280	.155	.0312	.028
23	.0226	.025	.0258	.0250	.153	.0281	.024
24	.0201	.022	.0230	.0225	.151	.0250	.022
25	.0179	.020	.0204	.0200	.148	.0219	.020
26	.0159	.018	.0181	.0180	.146	.0187	.018
27	.0142	.016	.0173	.0170	.143	.0172	.0164
28	.0126	.014	.0162	.0160	.139	.0156	.0148
29	.0113	.013	.0150	.0150	.134	.0141	.0136
30.	.0100	.012	.0140	.0140	.127	.0125	.0124
31	.0089	.010	.0132	.0130	.120	.0109	.0116
32	.0079	.009	.0128	.0120	.115	.0102	.0108
33	.0071	.008	.0118	.0110	.112	.0094	.0100

Gauge number	Am. wire gauge or Brown & Sharpe	Birmingham wire gauge (B. W. G.) or Stubs.	Steel wire gauge or Washburn & Moen or Roebling.	Trenton Iron Co.	Stubs' steel wire	U. S. Standard for sheet metal	Imperial wire or N. B. S.
34	.0063	.007	.0104	.0100	.110	.0086	.0092
34 35	.0056	.005	.0095	.0095	.108	.0078	.0084
36	.0050	.004	.0090	.0090	.106	.0070	.0076
36 37	.0045			.0085	.103	.0066	.0068
38	.0040		·	.0080	.101	.0062	.0060
39	.0035			.0075	.099		.0052
40	.0031			.0070	.097		.0048

WEIGHT OF FLAT BAR STEEL, PER LINEAL FOOT

Size	1/2	5/8	3/4	7/8	1	11/8	11/4	13/8	11/2	13/4	2	21/4	2½	23/4	3	31/2
1/8 3/16 1/4 5/16 3/8 7/16 1/2 9/5/8 11/6 3/4	.213 .319 .425 .531 .638 .744	.399 .533 .665 .798 .931 1.07	.480 .640 .800 .960 1.12 1.28 1.44 1.60 1.76	.558 .743 .929 1.12 1.30 1.49 1.67 1.86 2.04 2.23	.639 .852 1.06 1.28 1.49 1.70 1.91 2.12 2.34 2.55	.718 .958 1.20 1.43 1.67 1.91 2.15 2.39 2.63 2.86	.530 .790 1.06 1.33 1.59 1.86 2.13 2.39 2.66 2.92 3.19 3.45	.878 1.17 1.46 1.75 2.05 2.34 2.63 2.92 3.22 3.50	.960 1.28 1.60 1.91 2.23 2.55 2.87 3.19 3.51 3.83	1.12 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.46	.850 1.28 1.70 2.13 2.55 2.98 3.40 3.83 4.26 4.68 5.10 5.53	.955 1.43 1.91 2.39 2.87 3.35 3.83 4.30 4.79 5.26 5.74 6.22	1.07 1.60 2.13 2.66 3.20 3.72 4.26 4.78 5.32 5.84 6.40 6.91	1.18 1.76 2.34 2.92 3.51 4.09 4.68 5.26 6.43 7.02 7.60	1.28 1.92 2.56 3.19 3.83 4.46 5.10 5.74 6.39 7.01 7.65 8.29	1.49 2.24 2.98 3.72 4.46 5.21 5.96 6.69 7.44 8.18 8.92 9.67
13 16 7 8 15 16 1					$\frac{2.98}{3.19}$	3.34 3.59	3.72 3.98 4.25	4.09 4.38	$\frac{4.46}{4.78}$	5.21 5.58	5.96 6.38 6.80	6.70 7.17 7.66	7.46 7.97 8.52	8.19 8.77	8.94	10.42 11.20

WEIGHTS OF STEEL PLATES

Thickness Ins.	Weight per Sq. Ft. Lbs.	Thickness Ins.	Weight per Sq. Ft. Lbs.	Thickness Ins.	Weight per Sq. Ft. Lbs.
1/4 9/32 5/16 11/32 3/8 13/32 7/16 15/32 1/2	10.200 11.475 12.750 14.025 15.300 16.575 17.850 19.125 20.400	17/52 9/16 19/52 5/8 21/52 11/16 23/52 3/4 25/52	21.675 22.950 24.225 25.500 26.775 28.050 29.325 30.600 31.875	13/6 27/52 7/8 29/52 15/6 31/52 1	33.150 34.425 35.700 36.975 38.250 39.525 40.800

GAUGES FOR PUNCHING

As punching injures the metal around the hole, the hole should be punched $\frac{1}{16}$ in. smaller than the rivet and then reamed, the finished hole being about $\frac{1}{16}$ in. greater than the diameter of the rivet. The burr caused by punching must be removed before the parts are riveted together.

Drilled holes are $\frac{1}{16}$ in. larger than the bolt or rivet. When holes are drilled, the metal is not injured as in punching. For boilers the plates are drilled, as they are also in many cases for tanks.

I BEAMS

Depth of beam	Gage G	Max. rivet in flange	Depth of beam	Gage G	Max. rivet in flange
27 24 21 20 18 15 12 10	4 4 4 3 ³ / ₄ 3 ¹ / ₂ 3 2 ³ / ₄	7/8/8/8/8/8/3/4/4/4	9 8 7 6 5 4	2½ 2¼ 2¼ 2¼ 2 1¾ 1½ 	3/4 3/4 5/8 5/8 1/2 1/2

The spacing of the rivets longitudinally in structural shapes depends on the loads to be carried. In ship work the rivet spacing in frames, beams and stiffeners is given in the classification rules (Lloyds or American Bureau of Shipping) under which the ship is built.

For spacing in riveted joints see page 276.

CHANNELS

Depth of channel and weight	Gage G	Max. rivet in flange	Depth of channel and weight	Gage G	Max. rivet in flange
15 \\ 33-45 \\ 15.	21/2	7/8	8 { 16.25-21.25 11.25-13.75	1½ 1¾ 1¾8	3/4
$ \begin{array}{c} 13 & 40-45 \text{ lb.} \\ 32-37 \\ 12 & 35-40 \\ 20.5-30 \end{array} $	$ \begin{array}{c} 2\frac{3}{4} \\ 2\frac{1}{2} \\ 2 \\ 1\frac{3}{4} \end{array} $	7/8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1½ 1¼ 1¾ 13/8 1½	5/8 5/8
10 \ 25 to 35 15 to 20 20 to 25	$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{1}{2}$	3/4 3/4			
9 \\ 13.25 to 15	13/8				

[Carnegie Steel Co., Pittsburgh, Pa.]

TEES

A	G G'		A	G	G'	
$ \begin{array}{c} 4 \\ 3\frac{1}{2} \\ 2\frac{3}{4} \\ 2\frac{1}{2} \end{array} $	$2\frac{1}{4}$ 2 $1\frac{7}{8}$ $1\frac{3}{8}$	2 1 ³ ⁄ ₄ 1 ³ ⁄ ₈ 1 ¹ ⁄ ₄	2½ 2 1½ 	1½ 1½ 1½ 3¼	1½ 1 34	

ZEES

A	В	G	A	В	G
6 5	3½ 3¼	2 1¾	4 3	3 23/4	13/4 11/2

ANGLES

Leg. $G^1 \dots G^2 \dots$		8 41/2 3	21/2	$\frac{3\frac{1}{2}}{2\frac{1}{2}}$	2	4 2½ 	3½ 2	3 13⁄4 	2½ 1¾ 1,3%	2 1½ 	13/4 1	1½ 7/8	13/8	11/4 3/4	1 5/8	3/4 1/2
G ³ Max.	rivet	$\frac{3}{1\frac{1}{8}}$	1	21/4	7/8	7/8	7/8	7/8	3/4	5/8	1/2	3/8	3/8	3/8	1/4	1/4

For column details 6'' leg ($\frac{1}{2}$ inch thick or less) against column shaft $G^2 = \frac{1}{3}\frac{3}{4}''$, $G^3 = \frac{3}{4}$.

For diagonal angles, etc., gauge in middle, where riveted leg equals or exceeds 3" for $\frac{3}{4}$ " rivets, $\frac{3}{2}$ " for $\frac{7}{8}$ " rivets.

RIVET SPACING

RIVETS IN CRIMPED ANGLES

Distance A should never be less than 2 ins. This applies to button, pan and countersunk head rivets, and also whether angles are watertight or non-watertight.

See also pages 276 and 286.

CLEARANCE FOR COVER PLATE RIVETING

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$\frac{4}{3\frac{1}{8}}\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
---	---	--

CLEARANCE FOR WEB RIVETING

Minimum A	Standard A						
7/8" 1 11/8 11/4 13/8	118" for 58" rivets 114 " 34 " 138 " 78 " 112 " 1 158 " 118 "						

MINIMUM RIVET SPACING

STAGGER OF RIVETS TO MAINTAIN NET SECTION Am. Bridge Co.—Standard

One hole out

Two holes out

a = sum of gauges minus thickness of angle.

$$y = diameter of rivet + \frac{1}{8}$$

$$a - v = \sqrt{a^2 + b^2 - 2v}$$

$$a^{1} - 2y = \sqrt{a^{2} + b^{2} - 3y}$$

 $b = \sqrt{2ay + y^{2}}$

$$b = \sqrt{2ay + y^2}$$

Dimensions in inches

a	34" Rivet	7/8" Rivet	al	34" Rivet	7/8" Rivet	
1	b	b		b	b	
1 1½2 2 2½ 3 3½2 4 4½	$\begin{array}{c} 15/8 \\ 17/8 \\ 21/16 \\ 21/4 \\ 27/16 \\ 29/16 \\ 2^{13}/16 \\ 2^{15}/16 \end{array}$	$\begin{array}{c} 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \\ 2\frac{7}{6} \\ 2\frac{5}{8} \\ 2\frac{13}{16} \\ 3 \\ 3\frac{3}{16} \end{array}$	5 5½ 6 6½ 7 7½ 8 8½	31/66 31/4 33/8 31/2 35/8 33/4 37/8	35/16 31/2 35/8 33/4 37/8 4 41/8 41/4	5%" rivets can be taken at ½" less than for ¾", and 1" rivets at ½" more than for ½"

DISTANCE CENTER TO CENTER OF STAGGERED RIVETS

All dimensions in inches

Values of X for varying values of A and B

Value						Val	ues o	f B						
of A 11/8 11/4 13/8 11/5/8 11/5/8 11/6 21/6 21/4 23/8 21/2	7/8 17/16 19/16 15/8 13/4 17/8 11/5/16 21/16 25/16 27/16 21/2 21/2	1 11/2 15/8 111/6 113/6 17/8 2 21/8 22/4 25/6 29/6 211/6	$\begin{array}{c} 1\frac{1}{8}8\\ 19\frac{1}{16}\\ 19\frac{1}{16}\\ 13\frac{1}{4}\\ 17\frac{1}{8}\\ 2\frac{1}{16}\\ 2\frac{3}{16}\\ 2\frac{3}\\ 2\frac{3}{16}\\ 2\frac{3}{16}\\ 2\frac{3}{16}\\ 2\frac{3}{16}\\ 2\frac{3}{16}\\ 2\frac{3}{$	$\begin{array}{c} 1 \frac{1}{4} \\ 1 \frac{1}{1} \frac{1}{16} \\ 1 \frac{3}{4} \\ 1 \frac{7}{8} \\ 1 \frac{1}{5} \frac{1}{16} \\ 2 \frac{1}{1} \frac{1}{8} \\ 2 \frac{3}{8} \\ 2 \frac{9}{16} \\ 2 \frac{1}{1} \frac{1}{16} \\ 2 \frac{1}{3} \frac{3}{16} \end{array}$	2 ¹ / ₈ 2 ³ / ₁₆ 2 ⁵ / ₁₆ 2 ¹ / ₂ 2 ⁵ / ₈ 2 ³ / ₄	$\begin{array}{c} 1\frac{1}{2}\\ 178\\ 178\\ 2\frac{15}{16}\\ 2\\ 2\frac{1}{8}\\ 2\frac{3}{16}\\ 2\frac{5}{16}\\ 2\frac{1}{2}\\ 2\frac{1}{1}\\ 2\frac{15}{16}\\ 2\frac{15}{16}\\ 2\frac{15}{16}\\ \end{array}$	15/8 21/16/21/8 23/16/21/8 23/16/21/16/23/4 21/1/16/23/4 23/4 23/4 23/4 23/4 23/4 23/4	$\begin{array}{c} 1^{3}4\\ 2^{1}/6\\ 2^{1}/8\\ 2^{3}/6\\ 2^{5}/6\\ 2^{5}/6\\ 2^{7}/6\\ 2^{7}/6\\ 2^{7}/8\\ 2^{7}/8\\ 2^{7}/8\\ 2^{1}/6\\ 3^{1}/6\\ \end{array}$	21/4 25/16 23/8	2 2 5/16 2 3/8 2 2 5/8 2 2 5/8 2 2 1 5/16 2 2 1 5/16 3 3 1/8 3 3 8/16	23/4 213/6	31/16	2 ³ / ₈ 2 ⁵ / ₈ 2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹³ / ₁₆ 2 ¹⁶ / ₁₆ 3 3 3 3 3 1/ ₈ 3 3 3 1/ ₈ 3 3 3 1/ ₈ 3 3 1/ ₈ 3 3 1/ ₈ 3 3 1/ ₈ 3 1/ ₈ 1/ ₈ 3 1/ ₈ 3 1/ ₈ 1/	2 ¹ / ₂ 2 ³ / ₄ 2 ¹ / ₈ / ₆ 2 ⁷ / ₈ / ₆ 3 ¹ / ₆ / ₆

Note—Values below or to right of upper zigzag lines are large enough for ¾" rivets.

MINIMUM STAGGER FOR RIVETS

			-2.5	4 10	HILL	Min	imu	m sta	gger	D, ir	ıs.			N. A.		100
Dia. of Rivet	17							C, ir	13.							
	11/8	13/16	11/4	15/16	13/8	17/16	11/2	19/16	15/8	111/16	13/4	113/16	17/8	115/16	21/16	23/16
5/8 8/4 7/8 1 11/8	15/16 11/4 11/2 1 13/16 21/16	7/8 1 ³ / ₁₆ 1 ⁷ / ₁₆ 1 ³ / ₄ 2	13/16 11/8 13/8 111/16 1 15/16	15/16 15/16 15/8	15/16	5/16 7/8 13/16 11/2 1 13/16	3/4 11/8 17/16 13/4	1	3/8 15/16 15/16 15/8	13/16 13/16 19/16	11/8	7/16 1 13/8	7/8 1 ⁵ / ₁₆	3/4 11/4	1	11/16

BEAM CONNECTIONS

5'', 6'' and 7'' beams 2 angles $6'' \times 4'' \times \frac{3}{8}'' \times 3''$, wt. 7 lbs.

12" I beam connections two angles $4" \times 4" \times \frac{7}{16}" \times 8\frac{1}{2}"$ wt. 17 lbs., 3 rivets 3" pitch

15", 18", 20" beam connections two angles $4" \times 4" \times \frac{7}{16}" \times 11\frac{1}{2}"$ wt. 23 lbs., 4 rivets 3" pitch

21" beam connections two angles 4" \times 4" \times ½" \times 1"—2½" wt. 33 fbs., 5 rivets 3" pitch

8'', 9'' and 10'' beams 2 angles $6'' \times 4'' \times \frac{3}{8}'' \times 5\frac{1}{2}''$, wt. 13 fbs.

24" beam connections two angles 4"×4"×½"×1"—5½" wt. 39 lbs., 6 rivets 3" pitch

27" beam connections two angles 4" \times 4" \times ½" \times 1"—8½" wt. 46 fbs., 7 rivets 3" pitch

Rivets and bolts 3/4" diameter

Weights given are for 34" shop rivets and angle connections, about 20% should be added for field rivets or bolts.

LIMITING VALUES OF BEAM CONNECTIONS

		Value of web con-	Values	of outsts	anding l	egs of con	nection a	ngles
1 186	ams	nection	Fie	eld rivets		Fi	ield bolts	
Depth ins.	Weight lbs. per ft.	Shop rivets in enclosed bearing lbs.	3/4 in. rivets or turned bolts single shear lbs.	Mini- mum allow- able span in ft. uniform load	t in.	3/4 in. rough bolts single shear lbs.	Mini- mum allow- able span in ft. uniform load	t in.
27 24 21 20 18 15 12 10 9 8 7	90 80 60½ 65 55 42 31½ 25 21 18 15	82530 67500 48150 45000 41400 36900 23600 27900 26100 24300 11300	61900 53000 44200 35300 35300 35300 26500 17700 17700 17700 8800	18.9 17.5 14.2 17.6 13.3 8.9 8.1 7.4 5.7 4.3 6.2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	49500 42400 35300 28300 28300 21200 14100 14100 7100	23.6 21.9 17.8 22.1 16.7 11.1 9.0 9.2 7.1 5.4 7.8	5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8
6 5	$12\frac{1}{4}$ $9\frac{3}{4}$	10400 9500	8800 8800	$\frac{4.4}{2.9}$	5/8	7100 7100	5.5 3.6	5/8

t = web thickness in bearing to develop max. allowable reactions when beams frame opposite. [Pocket Companion, Carnegie Steel Co.]

SECTION VIII

USEFUL TABLES

WEIGHTS AND MEASURES—METRIC SYSTEM—METRIC AND U.S.
EQUIVALENT MEASURES—DECIMAL EQUIVALENTS OF AN INCH—
INCHES AND FRACTIONS IN DECIMALS OF A FOOT—STRENGTH
OF MATERIALS—SPECIFIC GRAVITIES AND WEIGHTS OF
MATERIALS—EQUIVALENT VALUES OF ELECTRICAL,
MECHANICAL AND HEAT UNITS

WEIGHTS AND MEASURES (United States and Great Britain)

TROY WEIGHT

24 grains = 1 pennyweight (pwt.) 20 pwts. = 1 ounce

12 ounces = 1 pound

APOTHECARIES' WEIGHT

20 grains = 1 scruple 8 drams = 1 ounce 3 scruples = 1 dram 12 ounces = 1 pound

AVOIRDUPOIS WEIGHT

16 drams = 1 ounce 2000 pounds = 1 short ton 16 ounces = 1 pound 2240 pounds = 1 long ton

SHIPPING WEIGHT

16 ounces = 1 pound 28 pounds = 1 quarter 4 quarters or 112 pounds = 1 hundredweight (cwt.) 20 cwt. 2240 pounds = 1 ton.

LINEAR MEASURE (Land)

12 inches = 1 foot 40 rods = 1 furlong 3 feet = 1 yard 8 furlongs $5\frac{1}{2}$ yards = 1 rod or 5280 ft. = 1 mile

LINEAR MEASURE (Nautical)

6 feet = 1 fathom 6080 feet = 1 nautical mile or knot

120 fathoms = 1 cable length 3 knots = 1 league

SQUARE MEASURE

144 square inches = 1 square foot 40 square rods = 1 rood 9 square feet = 1 square vard 4 roods = 1 acre 301/4 square yards = 1 square rod 640 acres = 1 square mile

TIME MEASURE

60 seconds = 1 minute 24 hours = 1 day 60 minutes = 1 hour 7 days = 1 week

28, 29, 30 or 31 days = 1 calender month (30 days = 1 month in computing interest)

365 days = 1 year 366 days = 1 leap year

CIRCULAR MEASURE

60 seconds = 1 minute 90 degrees = 1 quadrant

60 minutes = 1 degree 360 degrees = 1 circumference

Instead of an angle being given in degrees it can be given in radians, one radian being equal to the arc of a circle whose length is the radius. Thus if R denotes the radius, the circumference of the circle 2π R, then the circular measure of 90 = $\frac{\frac{1}{4} \times 2\pi}{R} = \frac{\pi}{2}$; similarly the circular measure of $180^{\circ} = \pi$; $60^{\circ} = \frac{\pi}{2}$ &c.

DRY MEASURE

2 pints = 1 quart 4 pecks = 1 bushel 8 quarts = 1 peck 36 bushels = 1 chaldron

One United States struck bushel contains 2150.42 cu. ins. or 1.244 cu. ft. A British bushel contains 2218.19 cu. ins. or 1.2837 cu. ft. or 1.032 U.S. bushels.

LIQUID MEASURE

 $4 ext{ gills} = 1 ext{ pint}$ $31\frac{1}{2} ext{ gallons} = 1 ext{ barrel}$ $2 ext{ pints} = 1 ext{ quart}$ $2 ext{ barrels or 63 gallons} = 1 ext{ hogs-}$ $4 ext{ quarts} = 1 ext{ gallon}$ head

One United States gallon contains 231 cu. ins. or .134 cu. ft. or 1 cu. ft. = 7.481 gallons. One British Imperial gallon both liquid and dry contains 277.27 cu. ins. or .160 cu. ft.

BOARD MEASURE

To find the number of feet board measure in a stick of timber, multiply the length in feet, by the breadth in feet, by the thickness in inches.

Example. Find the board measure of a piece of timber 20 ft. long, 2 ft. wide by 2 ins. thick.

20 ft. × 2 ft. × 2 ins. = 80 ft. board measure

CUBIC MEASURE

1,728 cubic inches = 1 cubic foot
27 cubic feet = 1 cubic yard
128 cubic feet = 1 cord of wood

SURVEYOR'S OR GUNTER'S MEASURE

METRIC SYSTEM

The fundamental units are—meter for length, liter for volume and gram for weight. Multiples are obtained by prefixing deka (10), hekto (100) and kilo (1,000), and divisions by deci (1/10), centi (1/100) and milli (1/1000). Abbreviations of the multiples begin with a capital letter, and of the divisions with a small.

MEASURES OF LENGTH

10 millimeters (mm.)	=	1 centimeter	cm.
10 centimeters	-	1 decimeter	dm.
10 decimeters	-	1 meter	m.
10 meters	_	1 dekameter	Dm.
10 dekameters	=	1 hektometer	Hm.
10 hektometers	-	1 kilometer	Km.

MEASURES OF SURFACE (NOT LAND)

100 square millimeters (mm.2)	=	1 square centimeter	cm.2
100 square centimeters	=	1 square decimeter	dm.2
100 square decimeters	=	1 square meter	m.2

MEASURES OF VOLUME

1000 cubic millimeters (mm.3)	=	1 cubic centimeter	cm.3
1000 cubic centimeters	-	1 cubic decimeter	dm.3
1000 cubic decimeters	-	1 cubic meter	m.3

MEASURES OF CAPACITY

10 mililiters (ml.)	=	1 centiliter	cl.
10 centiliters	= "	1 deciliter	dl.
10 deciliters	=	1 liter	1.
10 liters	=	1 dekaliter	Dl.
10 dekaliters	=	1 hekoliter	Hl.
10 hekoliters	=	1 kiloliter	Kl.

Note.—The liter is equal to the volume occupied by 1 cubic decimeter.

MEASURES OF WEIGHT

10 milligrams (mg)	=	1 centigram	cg.
10 centigrams	=	1 decigram	dg.
10 decigrams	=	1 gram	. g.
10 grams	=	1 dekagram	Dg.
10 dekagrams		1 hektogram	Hg.
10 hektograms	=	1 kilogram	Kg.
1000 kilograms	=	1 ton	T.

Note.—The gram is the weight of one cubic centimeter of pure distilled water at a temperature of 39.2° F., the kilogram is the weight of 1 liter of water, the ton is the weight of 1 cubic meter of water.

Equivalent Values of Metric and United States (Great Britain) Measures

MEASURES OF LENGTH

 $1 \text{ meter} = \begin{cases} 39.37 \text{ inches} \\ 3.28083 \text{ feet} \\ 1.0936 \text{ yards} \end{cases}$ 1 centimeter = .3937 inch $1 \text{ millimeter} = \begin{cases} .03937 \text{ inch, or} \\ 1/25 \text{ inch nearly} \end{cases}$ 1 kilometer = 0.62137 mile 1 foot = .3048 meter $1 \text{ inch} = \begin{cases} 2.54 \text{ centimeters} \\ 25.4 \text{ millimeters} \end{cases}$

MEASURES OF SURFACE

1 square meter = $\begin{cases} 10.764 \text{ square feet} \\ 1.196 \text{ square yards} \end{cases}$ 1 square centimeter = .155 square inch

1 square millimeter = .00155 square inch

1 square vard = .836 square meter

1 square foot = .0929 square meter

1 square inch = $\begin{cases} 6.452 \text{ sq. centimeters} \\ 645.2 \text{ sq. millimeters} \end{cases}$

MEASURES OF VOLUME AND CAPACITY

(35.314 cubic feet 1 cubic meter = {1.308 cubic yards 264.2 gallons (231 cubic inch)

1 cubic decimeter = $\begin{cases} 61.023 \text{ cubic inch} \\ .0353 \text{ cubic feet} \end{cases}$

1 cubic centimeter = .061 cubic inch

1 cubic decimeter 61.023 cubic inches

.0353 cubic foot 1.0567 quarts (U. S.) .2642 gallon (U. S.)

2.202 lbs. of water at 62° F.

1 cubic yard = .7645 cubic meter

(.02832 cubic meter 1 cubic foot = {28.317 cubic decimeters 28.317 liters

1 cubic inch = 16.393 cubic centimeters

1 gallon (British) = 4.543 liters

1 gallon (U.S.) = 3.785 liters

MEASURES OF WEIGHT

1 gram = 15.432 grains

1 kilogram = 2.2046 pounds

(.9842 ton of 2240 lbs.

1 metric ton = $\{19.68 \text{ cwts.}\}$ 2204.6 lbs.

1 grain = .0648 gram

1 ounce avoirdupois = 28.35 grams

1 pound = .4536 kilogram

1 ton of 2240 lbs. = $\begin{cases} 1.016 \text{ metric ton} \\ 1016 \text{ kilograms} \end{cases}$

MISCELLANEOUS

1 kilogram per meter = .6720 pounds per foot

1 gram per square millimeter = 1.422 pounds per square inch

1 kilogram per square meter = 0.2084 pounds per square foot

1 kilogram per cubic meter = .0624 pounds per cubic foot

- 1 degree centigrade = 1.8 degrees Fahrenheit
- 1 pound per foot = 1.488 kilograms per meter
- 1 pound per square foot = 4.882 kilograms per square meter
- 1 pound per cubic foot = 16.02 kilograms per cubic meter
- 1 degree Fahrenheit = .5556 degrees centigrade
- 1 Calorie (French Thermal Unit) = 3.968 B. T. U. (British Thermal Unit)
- 1 Horse Power = $\begin{cases} 33,000 \text{ foot pounds per minute} \\ 746 \text{ Watts} \end{cases}$
- 1 Watt (Unit of Electrical Power) = $\begin{cases} .00134 \text{ Horse Power} \\ 44.22 \text{ foot pounds per minute} \end{cases}$ $\begin{cases} 1000 \text{ Watts} \end{cases}$

1 Kilowatt = $\begin{cases} 1.34 \text{ Horse Power} \\ 44220 \text{ foot pounds per minute} \end{cases}$

Conversion Table of Inches and Feet to Millimeters, Centimeters and Meters

Inches	Feet	Milli- meters	Centi- meters	Me- ters	Inches	Feet	Milli- meters	Centi- meters	Me- ters
15/6 1 15/6 1 17/6 1 17/6 1 17/6 1 17/6 2 22/6 2 22/6 2 21/6 2 21/6 2 21/6 3 3 3 6 3 3 16 4 4 16 4 4 16 4 4 16 6 7 8 9 10 11 11 11 11 11 11 12 13 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18	1/2	23.8 25.4 30.1 36.5 38.1 42.9 49.2 50.8 55.5 61.9 63.3 74.6 80.9 87.3 88.9 93.7 100.0 101.6 104.7 111.3 114.3 117.5 123.8 127.0 152.4 177.8 203.2 228.6 279.4 304.8	2.38 2.54 3.01 3.65 3.81 4.29 5.78 5.55 6.19 6.33 7.46 8.73 8.89 9.37 10.00 10.16 11.43 11.75 12.38 11.75 22.38 22.86 23.30 24.92 22.86 23.86 24.92 24.92 25.86 26	.023 .025 .030 .036 .038 .049 .055 .061 .063 .076 .087 .089 .093 .100 .101 .111 .114 .117 .123 .127 .152 .233 .228 .279 .304	14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 50 52 54 56 66 66 68 70 72	1½ 2 2 2½ 3 3 3½ 4 4 4 5 5 5½ 6 7 8 9 10	355.6 406.4 457.2 508.0 609.6 660.4 711.2 762.0 812.8 863.6 914.4 965.2 1016.0 1066.8 1117.6 118.4 1219.2 11270.2 1320.8 1371.6 1422.4 1473.2 1473.2 1774.8 1625.6 1676.4 1727.2 1778.0 1828.8 1828.8 1828.8 1838.6	35.56 40.64 45.72 50.80 60.96 66.04 71.12 76.20 81.28 86.36 63.6 91.44 96.52 101.60 106.68 111.76 116.84 121.92 132.08 132.08 134.44 121.92 147.32	.355 .406 .457 .508 .558 .609 .711 .762 .863 .914 .916 1.016 1.066 1.117 1.168 1.219 1.371 1.423 1.524 1.524 1.778

DECIMAL EQUIVALENTS OF AN INCH AND MILLIMETER-INCH CONVERSION TABLE

Fract.	Dec.	MM.	Fract.	Dec.	, MM.	MM.	Dec. Inch	мм.	Dec. Inch
14	.015625	.397	33/64	.515625	13.1	1	.039370	51	2.007892
1/64 1/52	.03125	.79	17/32	.53125	13.49	2	.078740	52	2.047262
	040075	1 10		F.400	10.00	2 3 4 5 6 7	.118110	53	2.086632
3/64	.046875	1.19	85/64 9/16	.546875	13.89 14.29	4 5	.157480	54 55	2.126002 2.165372
716	.0020	1.09		.0020	14.29	6	.196650	56	2.105372
5/64	.078125	1.98	87/64	.578125	14.68	7	.275509	57	2.244112
3/22	.09375	2.38	37/64 19/32	.59375	15.08	8	.314960	58	2.283482
7/	.109375	2.77	39/64	.609375	15.48	10	.354330	59	2.322852
764 1/8	.125	3.17	5/8	.625	15.48	11	.393704	60	2.362226 2.401596
	.120	0.11		.020	10.01	12	.472444	62	2.440966
964	.140625	3.57	41/64 21/32	.640625	16.27	13	.511814	63	2.480336
5/32	. 15625	3.97	21/32	.65625	16.7	14	.551184	64	2.519706
11.7	474074	4.05		074077	48.00	15	.590554	65	2.559076
11/84	.171875	4.37	43/64	.671875	17.06	16 17	.629924	66	2.598446
3/16	.1875	4.76	11/16	.6875	17.46	18	.708664	68	2.637816 2.677186
13/4	.203125	5.16	45/4	.703125	17.86	19	.748034	69	2.716556
13/64 7/32	.21875	5.56	45/64 28/32	.71875	18.26	20	.787409	70	2.755930
The state of the s		- 3	V20011			21	.826779	71	2.795300
15/64	,234375	5.95	47/64	.734375	18.65	22	.866149	72	2.834670
1/4	.25	6.35	3/4	.75	19.05	23 24	.905519 .944889	73 74	2.874040 2.913410
17/64	.265625	6.75	49/64	.765625	19.45	25	.984259	75	2.952780
/04	.200020	00	/64		10.10	26	1.023629	76	2.992150
9/32	.28125	7.14	25/32	.78125	19.84	27	1.062999	77	3.031520
19/64	.296875	7.54	51/84	.796875	20.24	28	1.102369	78	3.078090
8/	.3125	7.94	197	.8125	90.04	29 30	1.141739	79	3.110260
5/16	.3123	1.94	13/16	.8125	20.64	31	1.181113 1.220483	80 81	3.149635 3.189005
21/64	.328125	8.33	53/64 27/82	.828125	21.03	32	1.259853	82	3.228375
11/32	.34375	8.73	27/2	.84375	21.43	33	1.299223	83	3.267745
A STATE OF THE STA					W. Carlot	34	1.338593	84	3.307115
23/64	.359375	9.13	55/64	.859375	21.83	35	1.377963	85	3.306485
3/8	.375	9.52	7/8	.875	22.22	36 37	1.417333	86	3.385855
25/64	.390625	9.92	57/64	.890625	22.62	38	1.496073	88	3.425225 3.464595
/04	.000020	0.02	764	.000020	22.02	39	1.535443	89	3.503965
13/32	.40625	10.32	29/32	.90625	23.02	40	1.574817	90.	3.543339
27/64	.421875	10.72	59/64	.921875	23.41	41	1.614187	91	3.582709
7/	.4375	11 11	157	007"	00.01	42	1.653557	92.	3.622079
1/16	.43/3	11.11	15/16	.9375	23.81	43	1.692927 1.732297	93 94	3.661449 3.700819
29/64 15/32	.453125	11.51	61/64	.953125	24.21	45	1.771667	95	3.740189
15/32	.46875	11.91	81/32	.96875	24.61	46	1.811037	96	3.779559
			THE PARTY OF THE PARTY OF	3v 30	100	47	1.850407	97	3.818929
31/64	.484375	12.30	63/64	.984375	25	48	1.889777	98	3.858299
1/2	.5	12.7	1	12 000	25.4001	49 50	1.929147 1.968522	99	3.897669 3.937043
7000 346	1	- 12/5-3		E miles	31.5	90	1.900022	100	0.937043

INCHES AND FRACTIONS IN DECIMALS OF A FOOT

	1	1-					
Inches	Decimals	Inches	Decimals	Inches	Decimals	Inches	Decimals
and	of a	and	of a	and	of a	and	of a
fractions	foot	fractions	foot	fractions	foot	fractions	foot
1/	0050	917	0220	01/	5050	01/	TEFO
116	.0052	31/16	.2552	61/16	.5052	91/16	.7552
1/8	.0104	31/8	.2604	61/8	.5104	91/8	.7604
3/16	.0156	33/16	.2656	63/16	.5156	93/16	.76562
1/4	.0208	31/4	.2708	61/4	.5203	91/4	.77080
5/16	.0260	35/16	.2760	65/10	.5260	95/6	.77600
3/6	.0312	33/8	.2812	63/8	.5312	93/8	.78125
7%	.0364	07/	.2865	67/6	.5364		.7865
116	.0417	3'16	.2917	616	.5417	9/16	.7917
62		372		072		9946	.7968
9 16 5 8	.0468	39/16	.2968	6916	.5468		
18	.0521	. 35/8	.3021	65/8	.5521	95/8	.8021
11 16	.0573	311/16	.3073	611/16	.5573	911/16	.8073
3/4	.0625	33/4	.3125	63/4	.5625	93/4	.8125
13 16	.0677	313/16	.3177	613/16	.5677	913/16	.8177
	.0729	0 / 2	.3229	0/8	.5729	91/8	.8229
15/16	.0781	315/16	.3281	615/16	.5781	915/16	.8281
1 10	.0833	4	.3333	7	.5833	10	.8333
11/16	.0885	41/	.3385	71/	.5885	101/16	.8385
11/8	.0937	41/16 41/8	.3437	716	.5937	101/6	.8437
-64				71/8			.8490
13/16	.0990	43/16	.3490	1916	.5990	103/16	
1/4	.1042	41/4	.3542	1/4	.6042	$10\frac{1}{4}$.8542
15/16	.1093	45/16	.3593	7516	.6093	105/16	.8593
13/8	.1146	43/8	.3646	73/8	.6146	103/8	.8646
17/16	.1198	47/16	.3698	77/16	.6198	107/16	.8698
11/2	.1250	41/2	.3750	71/2	.6250	101/2	.8750
19/16	.1302	49/16	.3802	79/2	.6302	10%	.8802
15%	.1354	45%	.3854	75%	.6354	105/8	.8854
111/2	.1406	411/4	.3906	711/	.6406	1011/16	.8906
13/16	.1458	43/	.3958	73/	.6458	1034	.8958
113/	.1510	413/6	.4010	713/	.6510	1013/16	.9010
1 7/16		10		713/16		107/6	
17/8	.1562	47/8	.4062	77/8	.6562	107/8	.9062
115/16	.1615	41516	.4114	715/16	.6615	1015/16	.9115
2	.1667	5	.4167	8	.6667	.11	.9167
$2\frac{1}{16}$.1718	51/16	.4218	81/16	.6718	111/16	.9218
$2\frac{1}{8}$.1771	51/8	.4271	81/8	.6771	111/6	.9271
23/16	.1823	53/16	.4323	83/16	.6823	113/16	.9323
21/4	.1875	51/4	.4375	81/4	.6875	111/4	.9375
25/16	.1927	55/16	.4427	85/16	.6927	115/16	.9427
23/6	.1979	53/8	.4479	83/6	.6979	113%	.9479
27%	.2031	P7 /	.4531	87/	.7031	117/6	.9531
21/16	.2083	51/2	.4583	01/16	.7083	11 1/6	.9583
272		-/4		072		/4	
25/16	.2135	59/16	.4635	8 16	.7135	119/16	.9635
29/8	.2187	2%8	.4687	. 8%	.7187	11%	.9687
211/16	.2240	511/16	.4740	811/16	.7240	1111/16	.9740
23/4	.2292	53/4	.4792	83/4	.7292	113/4	.9792
213/16	.2343	513/16	.4843	813/16	.7343	1113/16	.9843
27/8	.2395	57/8	.4896	87/8	.7396	111%	.9896
215/16	.2448	515/16	.4948	815/16	.7448	1115/16	.9948
3	.2500	6	.5000	9	.7500	12	1.0000
-	.2000		.0000				2.0000

Strength of Materials
Stresses per Square Inch

Tension Election							
Tension Elastic Com- Bending Shearing Ofelasticidum Com- Infinite Ultimate Ulti		Stresses in	thousands	punod jo		Modul	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tension	Elastic limit	Com- pression ultimate			of elasticity pounds	Elongation %
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 30-65	6.5	12		12	11,000,000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18-24	40	300	20	36	9,000,000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88588	2888	125			,	
27-27 27-27 25	28.5 15-18	40 19 6	42 80	43.7	18–20	4,500,000 10,000,000 12,000,000	
. 58–68 ½ tensile tensile tensile 34 tensile 29,000,000 55–65 ½ tensile tensile tensile 24, tensile 29,000,000 48 20 55–65 25 4 tensile tensile tensile 45 tensile 29,000,000 tensile tensile 5-6 tensile 29,000,000 50 50 50 50 50 50 50 50 50 50 50 50	27-35 25-35 55-65	15-20	46	22 23	30	10,000,000	
		tensile 1/2 tensile 31.5	tensile tensile tensile tensile	tensile tensile tensile tensile	% tensile % tensile % tensile 5-6 tensile		25.9-22.1 27.3-23.0 18

Specific Gravities and Weights of Materials metals and alloys

Specific Per cu. ft. gravity lbs.	8.9 537 21.5 1330 10.5 656 7.72 459 7.1 440
Substance	Nickel Platinum, east-hammered Silver, east-hammered Steel, tool Steel, tool Tin, cast-hammered Zine, cast-rolled.
Wt. per cu. ft. lbs.	165 481 534 550 1205 1205 450 485 710 476 849
Specific gravity	2.6 7.7 8.5 7.4-7.9 19.0 19.3 7.2 7.6-7.9 7.2-7.9 7.2-8.0
Substance	Aluminum, east-harmered Aluminum, bronze Bruss, cast-rolled Copper, cast-rolled Gold, east-harmered Iron, cast Licon, wrought. Lead Mangameee

TIMBER, U. S. SEASONED 15 to 20% moisture

Ash, white-red	265 4(0 II Maple, white.	33
Cedar, white-red32	.3238	Oak live	200
	.66 41	Oak, chestnut	24.
Cypress	.48 3(Pine, Oregon.	32
		Pine, white	98
		Pine, long leaf vellow.	44
		Pine, short leaf vellow.	38
Hickory		Spruce	27
Locust	.67 46	Teak, African	62
Mahogany		_	000

MISCELLANEOUS MATERIALS

	CTM	CELLAINE	MISCELLIANEOUS MATERIALS		
Water, fresh, 4° C max. dens. 1.0 Water, salt. 1.02-1.03 We salt. 1.02-1.03 Petroleum. 88- 93 Petroleum.	1.02-1.03 .8893	62.42 64 57 54	Petroleum, gasoline 775 45 45 Cement, Portland, loose 1.4 90 Coal, anthracte 1.4-1.7 97 Coal, bruminous 1.2-1.5 84 Coal, bruminous 1.	.775 1.4 1.4-1.7	45 90 97 84

Equivalent Values of Mechanical, Electrical and Heat Units

Unit Equivalent value in other units

1 Ft. lb. 1.3558 joules

.0000003766 K. W. hour .0012861 B. T. U.

1 H. P. 745.7 watts .7457 K. W.

33,000 ft. lbs. per min. 42.44 B. T. U. per min.

2.62 lbs. water evap. per hour from and at 212

degs. F.

1 Kilowatt 1,000 watts

1.3410 horse power 44,253 ft. lbs. per min. 56.92 B. T. U. per min.

3.52 lbs. water evap. per hour from and at

212 degs. F.

1 Joule 1 watt second

.000000278 K. W. hour .0009486 B. T. U.

.73756 ft. lb.

1 lb. of water evap. from and at 212 degs. F. .2841 K. W. hour .3811 H. P. hour 970.4 B. T. U. 1,023,000 joules 754,525 ft. lbs.

1 B. T. U.

1,054.2 watt seconds 777.54 ft. lbs. .0002928 K. W. hour .0003927 H. P. hour

INDEX

Addendum (gear teeth), 141, 145, 146 American system of rope transmission, 129 wire gauge, 284 Anchor chain, 222, 223 shackle, 214, 215 swivel, 222 Angle, angles: couplings, 254-257 equal leg, structural, 278-279 laying off, 23 punching of, 288 unequal leg, structural, 283 valves, 183, 187 Annealing chain, 221 steel, 226 Apothecaries' weight, 294 Area, metric measures of, 296 U.S. measures of, 295 Avoirdupois weight, 294 Balata belts, 120 Bar steel, weight of, 285 Beam, beams: connections, 292, 293 gauges for punching, 286 I, 280, 281 Bearings, 106-109 Belt, belting: balata, 120 canvas, 120 drives, 124-127 length of, 124 h. p. transmitted by, 120, 121, 124 leather, 119, 121, 124 ply, 119 pull, 116 rubber, 119 widths of, 119, 120 Bends, pipe, 170, 171 Bevel gears, 150-153

Abbreviations, 1, 66, 277

Acme threads, 64

Birmingham wire and sheet gauges, 284 Block chain, 132 Boiler patch bolts, 34 stay bolts, 34 tubes, 167, 168 Bolt, bolts, 25-35 ends of, 28, 265 heads for T slots, 89 measurement of, 25 strength of, 59 U.S. threads for, 59 Board measure, 296 Box wrench, 239 Brads, 78, 79 Brass, composition of, 263 tubes, 176 Bridle slings, 218-220 Briggs pipe thread, 71, 72 British Association thread, 62 fine threads, 61, 62 thermal unit, 304 Brown and Sharpe screw gauge, 43 sheet and wire gauge, 284 Bushings, finished ends of, 266 Butt welded pipe, 162 Buttress threads, 64 Buttstrap, riveting of, 276

Canvas belts, 120
Cap screws, 46, 47
Capillary oilers, 107
Capstan wheel, 235
Carriage bolts, 33
Case hardening steel, 226
Casing nails, 78, 80
Cast iron, properties of, 263
flanged fittings, 179–181
flanges, 172
gears, 144, 147, 149
pulleys, 112–115
screw fittings, 177, 178
sheaves, 127–130
washers, 248

Cast steel, 226, 263 Castellated nuts, 29, 38 Castings, shrinkage of, 12 weight of, 12 Cement coated nails, 77 Centimeters to inches, 299 Chain, chains: anchor, 222, 223 block, 132 crane, 222 drives, 105 for transmitting power, 132-138 hoisting, 221-226 length of, 138 roller, 133, 134 shackle, 214, 215 silent link, 135-137 slings, 224 sprocket wheels, 135-137, 139, 140 swivels, 216 Channels, sizes of, 277, 278 punching of, 286 Check nuts, 36 valves, 182-187 Chords, lengths of, 24 Chuck screws, squares for, 267 Circle, divisions of, 24 Circular measure. 295 pitch (gears), 141, 145 Clearance for cover plate riveting, 289 web riveting, 289 gear teeth, 141 Clevis nuts, 209 Clinch nails, 78, 80 rings, 249 Clutches, jaw, 103, 104 split friction, 99-101 solid, 101, 102 Coach screws, 51 Coarse threads, 68 Cocks, 192 Cold drawn steel tubes, 168, 169 Collar screws, 53 shaft, 105 Companion flanges, 172-174 Composition, 263 Compression couplings, 95-97 Copper expansion joints, 193 tubes, 176 Cottered joints, 88

Cotters, spring, 90

Couplings, angle, 254-257 hose, 76 pipe. 166 shaft, 91, 94-98 Crane chain, 222 hook, 213 Cranks, 230, 231 Crest of thread, 59 Cross section hatchings, 3 valve, 183 Crossed belts, 124, 125 Crown of pulley, 110, 113-115 Cubic measure, metric, 296, 298 U. S., 296 Cushioned check valve, 182 Cut nails, 77 Cycloid, construction of, 19 Decimal equivalents of screw gauge, 43 of an inch. 300 Decimals of a foot, inches in, 301 equivalent circular pitch, 146

Deck bolts, 30 Dedendum (gear teeth), 141 Diametral pitch, 141 Double angle coupling, 257 belt pulleys, 112 belts, 124 extra strong pipe, 165 Drawings, notes on, 1 patent office, 9 Drill, drills: for machine screws, 53 shanks, 245, 246 tap, 60, 77 Drilled holes, 286 Drilling flanges, 172, 173 Drive fit, 6 screws, 48 Drop flange pulley, 112, 113 Drum scores for chain, 224, 225 rope, 225

Electrical units, 304
Ellipse, construction of, 18
Ends of bolts, 28, 265
English system rope transmission, 130
Epicycloid, construction of, 20
Equalizing thimble, 218

Dry measure, 295

Expansion bends, 170, 171 joints, 193–199
Extra heavy flanged fittings, 181 flanges, 174, 175 screwed fittings, 177
Extra strong wrought iron pipe, 164
Eye bolts, 211 nuts. 41

Face spanner, 240

Fastenings, 25–90 Feet to centimeters, 299

Field rivets, 275 Fine threads, 61, 70 Finish, abbreviation of, 1 of wrenches, 238 Finished ends of bolts, 265 bushings, 266 collars, 266 gears, 266 shafts, 265 Fits, screw threads, 59, 71 shaft, 4, 5, 6, 7 Fittings, pipe: screw, 177, 178 flange, 179-181 Flange couplings, 94 Flanged fittings, 179-181 Flanges, pipe, 172-176 Flexible couplings, 98 Flooring brads, 79

Franklin Institute bolts and nuts, 27

Friction clutches, 99-103

Gate valves, 189–191
Gauge, gauges:
for punching, 286–288
screw, 43
sheet metal, 284
wire, 284
Gear, gears:
bevel, 150–153
finish of, 266
forms for ordering, 148–150
helical, 161
herringbone, 161
horse power of, 147
materials for, 149
mitre, 150–154

spur, 141-150

Gear, gears:
tooth construction, 142
worm, 156-159
Geometrical constructions, 12-23
Gib head keys, 85
Gibs and keys, 88
Globe valve, 183, 184
Grease cups, 107
Grommets, 217, 219
Grooves for chain, 224, 225
rope, 129, 130, 225

Half round keyways, 88 turn belts, 126 Hand wheels, 232-235 Half round keyways, 88 turn belts, 126 Hand wheels, 232-235 Handles, 227-231 Hanger screws, 47 Hangers, shaft, 91, 109 Hardening steel, 226 Hatchings for sections, 3 Heads, bolt, 26-29, 89 nail, 78 rivet, 269-274 screw, 42, 44, 46, 47 spike, 81-83 Heat unit, B. t. u., 304 Helical gears, 160 Helix angle of thread, 59 Herringbone gears, 161 Hexagon bolts, 26, 27 construction of, 14, 15 nuts, 26, 27, 36, 38 sleeve nuts, 203 Hoisting chains, 221, 222 Hook, hooks: bridle sling, 217, 218 crane, 213 hoist, 212, 226 Horse power: B. t. u. equivalent of, 304 of belts, 120, 121, 124 of chains, 132, 134, 136 of gears, 147 of shafting, 93 transmitted by steel pulleys, 122, 123 Hose couplings, 75 Hyperbola, construction of, 23 Hypocycloid, construction of, 21

I beams, sizes of, 280, 281 Malleable iron, 263 gauges for punching, 286 Manila rope, 129 Imperial wire gauge, 284 Inch. inches: in decimals of a foot, 301 millimeter conversion table, 299. 300 Involute: construction of, 22 teeth. 142 Jaw clutch, 103, 104 Joint, length of thread for, 177 Kevs: gib head, 85 half round, 88 rectangular, 84 square, 83, 88 tapered, 85, 86 Woodruff, 86, 87 Keyways, keyseats, 84, 85, 88, 110, 111 Kilowatt, 304 Knobs, 236 Knuckle joints, 258 Knurled sets, 237 Lag screws, 51 Lap joint, 276 welded pipe, 162 welded tubes, 167, 168 Lead of screw, 58 Leather Belt. See Belt Nuts: Limit standards, 3 Linear measure, metric, 296, 297 U.S., 294, 295 Lines in drawings, 2 Liquid measure, metric, 297, 298 U.S., 295 Lock nuts, 36, 37 Loose pulley, 112 threads for, 59 Low pressure flanged fittings, 179, 180 wing, 39, 40 flanges, 172 screwed fittings, 178 Lubricating devices, 107

Machine handles, 227–231 screws, 52, 53 screws, drills for, 53 Materials:
for bolts, 25
for gears, 149
properties of, 263
strength of, 302
weights of, 303
Measurement of bolts, screws and rivets, 25
Mechanical units, 304
Metric conversion tables, 297–300
measures and weights, 296, 297
screw threads, 63
Millimeter-inch conversion table, 299, 300
Milling cutters, keys for, 88
Minimum rivet spacing, 289
Mitre gear, 150, 154
Moment of inertia, 277
Mule stands, 117, 118

Mitre gear, 150, 154 Moment of inertia, 277 Mule stands, 117, 118 Nails: brads, 79 casing, 80 cement coated, 77 clinch, 80 common, 79 heads and points, 78 penny, 77 roofing, 80 National screw thread commission, 58, 66, 74-76 Nipples, pipe, 75, 166, 167 castellated, 29, 38 eye, 41 hexagon, 26, 27, 36 lock, 36 planer, 35 slotted round, 42 square, 26, 27

Octagon, construction of, 16 Odontograph for gear teeth, 142, 143, 144 O. G. Washers, 248 Oil cups, 107

Oilers, capillary, 107 Oiling rings, 107, 108 Open belts, 124, 125 wrench, 238 Ordering gears, 148-150 pipe, 162 pulleys, 110 rivets, 273, 274 shapes, 283 tubes, 176 worm gears, 157 Outside flange pulley, 112 Parabola, construction of, 22 Patent office drawings, 9 Patterns, weight of, 12 Penny nails, 77 Pillow blocks, 106, 108

Pinion, 148–150
Pinion, 148–150
Pins, split, 90
taper, 264, 265
Pipe bends, 170, 171
couplings, 166
double extra strong, 165
extra strong, 164
fittings, 177–181
flanges, 172–176
ordering, 162
nipples, 75, 166, 167
standard, 163
threads, 71–76
turnbuckles, 200, 202
Pitch, circular (gears), 141, 1

turnbuckles, 200, 202
Pitch, circular (gears), 141, 145, 146
diameter (threads), 58
diametral (gears), 141, 145, 146
of chain, 221
of rivets, 276
of threads, 58
Planer head bolts, 35
nuts, 35
Plates etcal weights of 285

Plates, steel, weights of, 285 Plug gauges, 9

Ply, belting, 121, 122

Points, nail, 78 rivet, 269

screw, 42
Polygon, construction of, 17
lengths of sides, 24

Power transmission, 91–161 by belt, 124–127 by chain, 105, 132–140 Power transmission—Continued by gears, 141–161 by rope, 127–131 Press fit, 7 Pull, belt, 116 chain, 132, 134, 136 Pulley, pulleys: cast iron, 112–115, 128, 131

Pulley, pulleys: cast iron, 112–115, 128, 131 keys, 83–88 steel, 116, 122, 123 wood, 116 Punched holes, 286

Punching, gauges for, 286-288

Quarter turn belts, 126 Quill drives, 91, 92

Rack, construction of, 143 finish of, 266 form for ordering, 150 Radian, 295 Radius of gyration, 277 Railroad spikes, 82 Rings, chain, 226 clinch, 249

Rings, chain, 226 clinch, 249 Rivet, rivets: heads, 269–274 holes, 286 joints, 276 measurement of, 25 points, 269 proportions, 268–274 signs, 275 spacing, 288–291 tests, 271, 275 Rods, circular, 54, 55 ends of, for yokes, 261

ends of, for yokes, 201 square, 56, 57 upset screw ends of, 54–57 Roller chain, 133, 134 Roofing nails, 78, 80 Rope, drives, 127–131 drums, 225

Manila, 129 sheaves, 127, 128 slings, 217–221 sockets, 205–208

thimbles, 204, 210 Rough turning, 5 Rubber belts, 119

Running fit, 4, 7, 8

Safety set screws, 49	Shrink fit, 7
Screw, screws:	Shrinkage of castings, 12
cap, 46	
coach, 51	Shrouded gears, 141
	Silent link chain, 135–137
collar, 53	Single belt, 119, 121
ends of bolts, 28, 265	pulley, 112
round bars, 54, 55	Sister hooks, 210
square bars, 56, 57	Sleeve nuts, 203
fittings (pipe), 177, 178	Sliding fit, 6
gauge, 43	Slings, chain, 224
hanger, 47	rope, 217–221
heads, 42, 44, 46, 47	Slotted nuts, 37, 42
lag, 51	Society of Automotive Engineers's
machine, 52, 53	bolts and nuts, 29
measurement of, 25	rod ends, 261
points, 42	threads, 29, 65
set, 49, 85, 110–112	yoke ends, 259, 260
thread, National Commission, 58, 64,	Socket, rope, 205–208
74–76	set screws, 49
threads, 58–71	wrench, 240, 241
thumb, 50	Solid friction clutch, 101–103
wood, 43–45, 48	Spanner wrench, 239, 240
Seamless brass tubes, 176	Specific gravities of materials, 303
copper tubes, 176	Spikes, railroad, 81, 82
steel tubes, 168, 169	round, 82, 83
Section modulus, 277	square, 81, 82
Set screws, dimensions of, 49	Spiral gears, 161
position of, 85, 110–112	jaw clutch, 104
Shackle bridle sling, 219	Split friction clutches, 99–101
for chain and anchor, 214, 215	pins, 90
swivel, 216, 217	Spring, springs:
Shaft, shafts, shafting:	compression, 250
bearings for, 106–109	cotters, 90
clutches, 91, 99-104	ends, 250
collars, 105	extension, 250
couplings, 94–98	formulæ, 251
dimensions of, 91	keys, 90
finished ends of, 265	table, 252, 253
hangers, 91, 109	Sprocket teeth, 134, 139
horse power, 93	wheels, 139, 140
key seats in, 83, 84	Spur gears, 141–150
materials of, 91	circular pitch of, 141, 145
Shearing stresses, 276, 302	construction of, 142-144
Sheaves, grooves in, 129, 130	diametral pitch of, 141, 146
wire rope, 127, 128	forms for ordering, 148–150
Sheet metal gauges, 284	h. p. of, 147
Shifting belts, 113	tooth forms, 142, 144
Ship rivets, 271, 272	working loads, 147
Shipping weight, 294	Square ends for chuck screws, 267
Shop rivets, 275	headed bolts, 26, 27
Shot of chain, 222	keys, 88

Square nuts, 26, 27 rods, 56, 57 threads, 63 washers, 247 Stagger of rivets, 290, 291 Standard pressure flanged fittings, 179 flanges, 172 screw fittings, 178 Star wheel, 234 Stay bolts, 34 Steel bars, flat, 285 round, 54, 55 square, 56, 57 bolts, strength of, 59 cast. 263 pipe, 162 plates, 285 pulleys, 116, 122, 123 rivets, 268-275 shafts, 91 strength of, 271, 275, 279, 302 structural shapes, 277-283 treatment of, 226 tubes, 168, 169 Stop valve, 183 Stove bolts, 33 Strength of materials, 302, see also material in question Structural details, 286-293 rivets, 268-271 shapes, 277-283 Stub teeth, 144 Stub's steel wire gauge, 284 Stud bolts, 28, 32 link chain, 222, 223 Stuffing boxes, 242-244 Swinging check valve, 185, 186 Swivel, 222 shackles, 216 Tempering steel, 226

link chain, 222, 223
Stuffing boxes, 242–244
Swinging check valve, 185, 186
Swivel, 222
shackles, 216

Tempering steel, 226
Tap bolts, 28, 35
drills, 59, 60, 77
rivets, 34
Tapered drill shanks, 245, 246
keys, 85, 86
pins, 264, 265
Tees, pipe fittings, 178–181
shapes, punching of, 287
Templates for drilling flanges, 173

Tensile strength, see material in question Thimbles, 204, 210 equalizing, 218 Thread, threads: Acme, 64 angle, 59 Briggs pipe, 71, 72 British Association, 62 British fine, 61, 62 buttress, 64 fits of, 71 forms of, 59-70 French (metric), 63 lead, 58 length of pipe, 177 National, Commission, 58, 66, 74-76 pipe, 71-76 pitch, 58 Soc. Aut. Eng'rs. 65 square, 63 U. S. Standard, 59, 60 V, 60 Whitworth, 61, 73, 74 Throttle valves, 188 Thumb nuts, 39, 40 screws, 50 Timber, 303 Time measure, 295 Tinners rivets, 274 Tool straps, 262, 263 Tooth forms, gear, 142 strength of, 147 thickness of, 145, 146 Track bolts, 31 Troy weight, 294 Truss head rivets, 272 T slots, 89 Tubes, boiler, 167 brass, 176 copper, 176 steel, 168, 169 Turnbuckles, 200-203

Universal joints, 254-257 U. S. bolts, 26 measures, 297 nuts, 26 sheet metal gauge, 284 threads, 59, 60 wire gauge, 284 Units, electrical, 304 heat, 304 mechanical, 304

Valve, valves: check, 182, 185-187 gate, 189, 190 stop, 183 throttle, 188 V threads, 60

Wagon box head rivets, 273
Washers, circular, 247, 248
O. G., 248
square, 247
Weight, weights (see material in question):
and measures, metric, 297
U. S., 294
of common substances, 303
Wheels, sprocket, 135–137, 139, 140
Whitworth threads, bolt, 61
pipe, 73
Widths of belts, 119–121
Wing nuts. 39, 40

Wire gauges, 284 nails, 77 rope sheaves, 127, 128, 131 slings, 217-221 sockets, 205-208 thimbles, 204, 210 Wood, woods: properties of, 303 pulleys, 116 screws, 43-45 Woodruff keys, 86, 87 Working loads of gears, 147 Worm gearing, 156-159 Wrenches, box, 239 open, 238 socket offset handle, 240 T handle, 241 spanner, 239 squares for, 267 Wringing fit, 4 Wrought iron, 263 pipe, 163-165

Yoke ends for rods, 259, 260

Zees, properties of, 282 punching of, 287

