March 2011

CW for Microcontrollers v10.1 and MQX 3.7

Luis Casado **EMEA FAE**

Contents

- ► Import MQX Libraries
- ▶ Build MQX libraries
- ► Import and Debug MQX Hello World Project
- New MQX project
- ▶ Debugging with J-Link
- ▶ Eclipse Working Set
- ► CW10.1, MQX 3.7 and Processor Expert
- ► CW10.1, MQX 3.7 and PE : New LDD driver

Open CW v10.1

▶ Open CodeWarrior for MCU v10.1

Select your Workspace and press OK

▶ Right-Click on Project Explorer and Import (or) File -> Import

▶ Select Existing Projects into Workspace and Browse

► Select < install mqx folder> mqx

▶ Select bsp_twrk60n512 project

► Select psp_twrk60n512 project

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and Browse

► Select <install mqx folder>\mfs

► Select mfs_twrk60n512 project

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and Browse

► Select <install mqx folder>\rtcs

Select rtcs_twrk60n512 project

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and Browse

► Select <install mqx folder>\usb

► Select usb_ddk_twrk60n512 and usb_hdk_twrk60n512 projects

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and press Browse

► Select <install mqx folder>\shell

► Select **shell_twrk60n512** project

You have now all the libraries imported in your workspace

▶ Right-Click on Project Explorer bsp_twrk60n512 and Build Project

- ▶ Right-Click on Project Explorer psp_twrk60n512 and Build Project
- ▶ Right-Click on Project Explorer mfs_twrk60n512 and Build Project

- ► Right-Click on Project Explorer rtcs_twrk60n512 and Build Project
- ▶ Right-Click on Project Explorer shell_twrk60n512 and Build Project

- ▶ Right-Click on Project Explorer usb_ddk_twrk60n512 and Build Project
- Right-Click on Project Explorer usb_hdk_twrk60n512 and Build Project

Import and Debug MQX Hello World Project

Import 'Hello World' MQX example

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and Browse

Import 'Hello World' MQX example

► Select <install mqx folder>\mqx\examples\hello\CW10\hello_twrk60n512

Build 'Hello World' MQX example

▶ Right-Click on Project Explorer hello_twrk60n512 and Build Project

Build 'Hello World' MQX example

▶ If you receive this message, your connection is not configured properly. We will do it manually later

Prepare your hardware

► Prepare your Tower System:

Connect TWR-SER and TWR-K60N512 to TWR-ELEV (Primary and

Secondary)

Prepare your hardware

► Connect USB Cable to TWR-K60N512 (J13) and laptop

Install OSJTAG Drivers

▶ Windows will detect the new USB device. Do next steps

Install OSJTAG Drivers

► Finish driver installation

Install OSJTAG Drivers

➤ OSJTAG includes two profiles, OSBDM and USB Serial Port. Install driver for USB Serial Port

Install OSJTAG Drivers

► Finish driver installation

Install OSJTAG Drivers

➤ You can see in Device Manager the two new USB devices installed

Change Connection Settings

▶ Configure Connection Settings of the project

Change Connection Settings

► Select TWRK60N512 OSBDM/OSJTAG Remote System

Change Connection Settings

► Click OK

Debug MQX 'Hello World' example

- Select hello_twrk60n512 project and Click 'Debug icon'
- ▶ Select hello_twrk60n512_Int_Ram_Debug_PEOSJTAG Connection

- ► An update of OSJTAG firmware could be needed.
- ► Unplug USB cable
- ► Insert Jumper
- ► Reconnect USB

► Install Bootloader USB driver

Click OK and finish firmware update

You are ready to Run and Debug the project

Run MQX 'Hello World' example

Execute the code 'Resume' icon and 'Pause' execution

Run MQX 'Hello World' example

➤ You can explore the Debugging Eclipse perspective

Run MQX 'Hello World' example

- ► Terminate the Debugging session and change Eclipse perspective
- ➤ You have Run and Debug your first MQX CW10.1 project

- ► File -> New -> MQX 3.7 Project
- ▶ Give a name and click Next

► Select TWRK60n512 Board

► Select Basic application

- Select P&E Open Source JTAG
- Project is created

Build New MQX Project

► Right-Click on Project Explorer New_MQX_Project and Build Project

Debug New MQX Project

- ► Select New_MQX_Project : twrk60n512_Int_RAM
- ► Select New_MQX_Project_twrk60n512_Int_Ram_PnE OSJTAG

Run New MQX Project

Execute the code 'Run' icon

Run New MQX Project

Pause execution

TAD: Task Summary

MQX -> Task Summary

TAD: Task Summary

Observe Tasks in your Application

Run New MQX Project

▶ Terminate execution

Run New MQX Project

► Change to C/C++ Perspective

Debugging with J-Link

► Edit Connection Settings of the project

► Edit Remote System

► Select J-Link\J-Trace for ARM

▶ Confirm changes

► Click OK

Debug with J-Link

- ► Connect J-Link target cable to TWR-K60N512 (J11)
- ► Connect USB J-Link cable to laptop
- ► Connect USB Cable to TWR-K60N512 (J13) and laptop

- ► Select New_MQX_Project : twrk60n512_Int_RAM
- Click Debug

Run New MQX Project

► Execute the code 'Resume' icon

Run New MQX Project

Pause execution

TAD: Stack Usage

► MQX -> Stack Usage

TAD: Stack Usage

▶ Observe Stack Data

Run New MQX Project

▶ Terminate execution

Run New MQX Project

► Change to C/C++ Perspective

Eclipse Working Set

- ▶ If you are managing many projects and some MQX libraries for different Freescale architectures, is useful to create a "Working Set"
- Click in the CodeWarrior Projects view or Project Explorer view toolbar

- ► Click New and OK
- ► Select C/C++ and Next

- ► Give a Name : MQX_LIBS_TWR-K60N512
- Select Projects to add and Finish

- Click in the CodeWarrior Projects view or Project Explorer view toolbar
- Select Working Set…

- ► Click New and OK
- ► Select C/C++ and Next

- ► Give a Name : TWR-K60-MQX-PROJECTS
- Select Projects to add and Finish

- Click in the CodeWarrior Projects view or Project Explorer view toolbar
- ▶ Select Working Set…

► Select TWR-K60-MQX-PROJECTS

► Or Select MQX_LIBS_TWR-K60N512

- You can switch between your Working Sets
- Click in the CodeWarrior Projects view or Project Explorer view toolbar
- Select Working Set

CW10.1, MQX 3.7 and Processor Expert

MQX and Processor Expert

- ► Kinetis BSP projects are CodeWarrior 10.1 Processor Expert Ready
- ► Processor Expert drivers are enabled in MQX RTOS environment
- ► Two BSPs with Processor Expert drivers prepared
 - <mqx>/build/twrk40_pe and
 - <mqx>/build/twrk60_pe

► Right-Click on Project Explorer and Import (or) File -> Import

▶ Select Existing Projects into Workspace and Browse

► Select < install mqx folder> mqx

► Select bsp_twrk60n512_pe project

Import MQX PE Demo

- ▶ Right-Click on Project Explorer and Import
- Select Existing Projects into Workspace and Browse

Import MQX PE Demo

► Select <install mqx folder>\mqx\pe_demo\pe_demo_twrk60n512

- Click in the CodeWarrior Projects view or Project Explorer view toolbar
- Select Working Set…

- Click New and OK
- Select C/C++ and Next

- ► Give a Name : TWR-K60-MQX-PE-PROJECTS
- Select Projects to add and Finish

► We have PE BSP and PE demo in our Working Set

▶ Select in Menu : Processor Expert -> Show Views

Select PE working Set to hide the rest of projects

Expand bsp_twrk60n512_pe project view

Click on PE components to watch the properties

- Processor Expert gives you a easy way to add device drivers to MQX BSP.
- ▶ In BSP example two Timers, GPIO, WatchDog and DAC are included
- Properties of component can be changed easily, for example GPIO pin

- ▶ GPIO1 component in BSP is driving LED's in Tower board
- ► TRG Timer will generate a 64KHz interrupt

▶ PWM configures Channel 0 in Flex Timer 0 a PWM of 4096 timer-ticks

▶ DAC0 configures DAC0 with resolution of 12 bits

► WDog1 enables EWM module with period of 255 ms

- Components has not only Properties
- ▶ It includes Methods and Events that we can enable or disable

Build PE BSP

► Right-Click on Project Explorer bsp_twrk60n512_pe and Build Project

Build PE Demo

- Expand pe_demo_twrk60n512 project view
- ► Hide Processor Expert View

- Demo Application demonstrates how to use Processor Expert to configure MQX BSP:
 - It generates sine signal with given period on DACO pin.
 - PWM signal is generated using FlexTimer FTM0 Channel 0
 - It toggles LEDs (D9-D11) on board using GPIO driver
 - ewm_task task is periodically refreshing watchdog
- Application creates four tasks:

```
* Task template list */
const TASK TEMPLATE STRUCT MQX template list[] =
   /* Task Index,
                    Function,
                                         Priority,
                                                                    Attributes,
                                                                                                   Time Slice
                                 Stack,
                                                      Name,
                                                                                          Param,
                                  400,
                                              8,
                                                      "DAC Task", MQX AUTO START TASK,
                                                                                            Ο,
                                                                                                        0 },
     DAC TASK,
                    dac task,
                                                      "PWM Task", MQX AUTO START TASK,
      PWM TASK.
                    pwm task,
                                  400,
                                              9,
                                                                                                        0 },
      EWM TASK.
                                  300,
                                              10,
                                                      "EWM Task", MQX AUTO START TASK,
                                                                                            Ο,
                                                                                                        0 },
                    ewm task,
                                                      "LED Task", MQX AUTO START TASK,
                                                                                                        0 },
     LED TASK,
                     led task,
                                  200,
                                              11,
    ( 0 )
```

- Application uses PE LDD drivers
- ▶ To use PE drivers, some 'handler' variables must be declared

```
/* DAC */
#define DA1_INTERNAL_BUFFER_SIZE (16)

LDD_TDeviceData *DA1_Device;

LDD_TUserData *DA1_UserDataPtr;

LDD_TError DA1_Error;

LDD_DAC_TBufferWatermark DA1_WatermarkValue = LDD_DAC_BUFFER_WATERMARK_L4;
```

► Task must initialize the LDD components

```
DA1_UserDataPtr = NULL;
DA1_Device = DA1_Init(DA1_UserDataPtr);
if (DA1_Device == NULL) {
   puts("failed");
   _task_block();
} else {
   puts("done");
```

```
PWM_DeviceData = PWM_Init(NULL);
if (PWM_DeviceData == NULL) {
  puts("failed");
    _task_block();
}
else {
    puts("done");
}
```

```
EWM_DeviceData = WDog1_Init(NULL);
if (EWM_DeviceData == NULL) {
  puts("failed");
    _task_block();
}
else {
    puts("done");
}
```

Enable the components

```
PWM_Error = PWM_Enable(PWM_DeviceData);
EWM_Error = WDog1_Enable(EWM_DeviceData);
```

Application can use the components Methods

► And implement the Events

```
void PWM OnCounterRestart LDD TUserData *UserDataPtr)
                                                                                            /* Increment PWM duty-cycle from 0-100% */
                                                                                                  M Init
                                                                                                  🔀 Deinit
    PWM Value += PWM Step;
                                                                                                  M Enable
                                                                                                  🔰 Disable
                                                                                                  🗾 GetInputFrequencyReal
    if (PWM_Value > PWM_MaxValue) PWM_Value = 0;
                                                                                                    GetInputFrequency
                                                                                                  SetPeriodTicks
    /* Set new PWM channel value */
                                                                                                    GetPeriodTicks
    PWM_Error = PWM_SetOffsetTicks(PWM_DeviceData, 0, PWM_Value);
                                                                                                    ResetCounter
                                                                                                  GetCounterValue
                                                                                                  M SetOffsetTicks
                                                                                                  M GetOffsetTicks
                                                                                                  🔀 GetCaptureValue
                                                                                                  SelectOutputAction
                                                                                                  SelectCaptureEdge
                                                                                                  PWM_OnCounterRestart
                                                                                                  OnChannel0
                                                                                                  OnChannel1
```

Build PE Demo

Right-Click on Project Explorer pe_demo_twrk60n512 and Build Project or click on icon

Prepare your hardware

► Prepare your Tower System:

Connect TWR-SER and TWR-K60N512 to TWR-ELEV (Primary and

Secondary)

Prepare your hardware

► Connect USB Cable to TWR-K60N512 (J13) and laptop

Debug Connection MQX PE Demo

- ► Right-Click on Project Explorer pe_demo_twrk60n512 and Build Project
- ► Edit pe_demo_twrk60n512_Int_Ram_Debug_PEOSJTAG

Debug Connection MQX PE Demo

► Select TWRK60N512 OSBDM/OSJTAG Remote System

Debug Connection MQX PE Demo

► Apply changes and OK

Click Debug icon

▶ Select pe_demo_twrk60n512_Int_Ram_Debug_PEOSJTAG

► Click Resume (F8)

► Check PWM output on A67

► Check DAC Output on TP1

CIII_IADO_I	A21	SSI0 MCLK	PTE6 /
SSI_MCLK	A22	SSI0 TX BCLK	PTE12
SSI_BCLK	A23	SSI0 TX FS	PTE11
SSI_FS	A24	SSI0 RXD	PTE7
SSI_RXD	A25	SSI0 TXD	PTE10
SSI_TXD	A26	5510 1715	
GND_12	A27	3R 0 R46	
AN3	A28	2R 0 R47	ADC0_DP0 4,7
AN2	A29	1R 0	ADC0_DM0 4,7
AN1	A30	0R 0	ADC1_DP0 4,7
AN0	A31	<u> </u>	ADC1 DM0 4
GND 13	A32		DACO OUT 4
DAC0	A33	FTM1 CH1 PTA9	
IMBI	A34		
TMR0	A35	FTM1 CH0 PTA8	DTDO
GPI06	A36		PTB9
3.3V 6		ETMO OUO	PTA6
PWM3	A37	FTM0_CH3	-
PWM2	A38	FTM0_CH2_0 R	
PWM1	A39		50 PTC2
PWM0	A40	FTM0_CH0_0 R	51 PTC1
RXD0	A41	UART4_RX	
TXD0	A42	UART4 TX	PTE25
RXD1	A43	UART3_RX	PTE24
	A44	UART3 TX	
TXD1	A45		PTC16
VSSA	A46		PTC17
1 TA40			11017

Name	Value
D/A converter	DAC0
☐ Interrupt service/event	Enabled
D/A interrupt	INT_DAC0
D/A interrupt priority	medium priority
□ Output pin	yes
D/A channel (pin)	DACO OUT
Init value	0 D
D/A resolution	Autoselect
Data mode	unsigned 8 bits, right justified
□ Initialization	
Enabled in init, code	no

CW10.1, MQX 3.7 and PE: New LDD driver

- Expand bsp_twrk60n512_pe project view
- Show Processor Expert View
- ► Select PE Projects Working Set

- Expand Processor Expert Project View
- Search ADC_LDD in Components Library window

- Right click on the component
- Select Add to project

- ▶ Double click on ADC_LDD
- ▶ Select ADC1
- ► Enable Interrupt service

- Select ADC1_DM1 Channel
- Enable Static sample groups
- Open Conversion Time Window

► Select 19.23 us

► ADC LDD Driver is configured

- Click Methods Tab
- Click to generate code for methods

▶ Set 'generate code' for the next Methods:

You can configure more parameters of the components selecting Expert View

Build PE BSP

► Right-Click on Project Explorer bsp_twrk60n512_pe and Build Project

- Expand pe_demo_twrk60n512 project view
- ► Hide Processor Expert View

▶ Double click in main.c to view code


```
© main.c ☎ 🕟 TRG.c
 /* Task enumerations and prototypes */
     DAC TASK = 1,
     PWM TASK,
     LED TASK,
     EWM TASK
 } etask type;
 void dac_task(uint_32);
 void pwm task(uint 32);
 void led task(uint 32);
 void ewm task(uint 32);
 /* Task template list */
 const TASK TEMPLATE STRUCT MQX template list[] =
    /* Task Index,
                    Function,
                                Stack, Priority,
                                                     Name,
                                                                  Attributes,
                                                                                      Param,
                                                                                               Time Slice
     { DAC TASK,
                     dac task,
                                                     "DAC Task",
                                                                 MQX AUTO START TASK,
                                                                                                   0 ),
     { PWM TASK,
                     pwm task,
                                                     "PWM Task", MQX AUTO START TASK,
                                                                                       Ο,
                                                                                                   0 ),
                                 300, 10,
200, 11,
     { EWM TASK,
                     ewm_task,
                                                     "EWM Task", MQX AUTO START TASK, O,
                                                                                                   0 ),
     ( LED TASK,
                    led task,
                                                     "LED Task", MQX AUTO START TASK, O,
                                                                                                   0 ),
     { 0 }
 /* Function prototypes */
 uint 16 ptr GEN CreateTable (int 16 ptr table ptr, uint 16 table size, int 16 peak peak, int 16 offset);
  mqx uint GEN DestroyTable (uint 16 ptr table ptr);
```


Add new task : ADC

```
/* Task enumerations and prototypes */
enum {
    DAC\ TASK = 1,
    PWM TASK
    LED TASK
    EWM TASI
    ADC TASK
} etask type;
void dac task(uint 32);
void pwm task(uint 32);
void led task(uint 32);
void ewm task(uint 32)
void adc task(uint 32);
/* Task template list */
const TASK_TEMPLATE_STRUCT MQX_template_list[] =
   /* Task Index,
                     Function,
                                 Stack, Priority,
                                                      Name,
                                                                   Attributes,
                                                                                         Param,
                                                                                                   Time Slice
    { DAC TASK,
                     dac task,
                                  400,
                                                      "DAC Task", MQX AUTO START TASK,
                                                                                                       0 },
                                                      "PWM Task",
                                                                   MQX AUTO START TASK,
                    pwm_task,
                                  400,
      PWM TASK,
                                                                                                       0 },
      EWM TASK,
                                  300,
                                                   6_"EWM Task",
                                                                   MQX AUTO START TASK,
                                                                                            Ο,
                                                                                                       0 ),
                     ewm task,
                                                      "LED Task". MOX AUTO START TASK.
      LED TASK.
                     led task.
                                  200.
      ADC TASK,
                                                      "ADC Task", MQX AUTO START TASK,
                                                                                                       0 ),
                     adc task,
                                  200,
                                              12,
    { 0 }
```

Add Task function and code

```
#define SAMPLE GROUP SIZE 1U
volatile AD1 TResultData MeasuredValues[SAMPLE GROUP SIZE];
LDD TDeviceData *MyADCPtr;
LDD TError;
void adc task
    uint 32 initial data
   Error = AD1 Enable(MyADCPtr);
   while (1)
   /* Suspend task for 100ms */
      if (MeasuredValues[0]>2000) GPIO1 ToggleFieldBits(LED DeviceData, LED4, 1);
      time delay(200);
```

► Add ADC1 Event function code

```
void AD1_OnMeasurementComplete(LDD_TUserData *UserDataPtr)
{
   Error = AD1_GetMeasuredValues(MyADCPtr, (LDD_TData *)&MeasuredValues); /* Read measured values */
   }
   /* EOF */
```

ADC1 channel is connected to TWR-K60N512 Potentiometer

▶ When ADC value is greater than 20000, LED4 (Blue) toggles

```
while(1)
{
  /* Suspend task for 100ms */
    if(MeasuredValues[0]>2000)GPIO1_ToggleFieldBits(LED_DeviceData, LED4, 1);
    _time_delay(200);
}
```

► Moving potentiometer R52 can start/stop LED4 toggle

Build PE Demo

▶ Right-Click on Project Explorer pe_demo_twrk60n512 and Build Project or click on icon

Click Debug icon

► Click Resume (F8)

▶ Test the new functionality in the application and the new LDD driver

CodeWarrior v10.1

http://www.freescale.com/infocenter/Codewarrior/index.jsp

