

PULPino: A small single-core RISC-V SoC

Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou, Eric Flamand, Frank K. Gürkaynak, Luca Benini

Our group: Prof. Luca Benini

- ETH Zurich, Integrated Systems Lab (IIS)
- University of Bologna, Micrel Lab
- Around 40 people
 - Most involved in the PULP project
- Close Collaborations
 - Politecnico di Milano
 - CEA-LETI
 - EPFL

- Industrial Support from STMicroelectronics
 - Silicon access to 28nm FDSOI

Computing for the Internet of Things

Sense

Analyze and Classify

Transmit

 $100 \mu W \div 2 mW$

Battery + Harvesting powered

→ a few mW power envelope

Idle: ~1µW

Active: ~ 50mW

Computing for the Internet of Things

 $100 \mu W \div 2 mW$

Battery + Harvesting powered

→ a few mW power envelope

Idle: ~1µW

LoRa SEMTECH

Active: ~ 50mW

Long range, low BW

PULP: Parallel Ultra-Low-Power Processor

- **Exploit parallelism**
 - Multiple small cores organized in clusters
 - Share memory within the cluster
 - Multiple clusters per chip
- Simple but efficient processor cores
 - Based on OpenRISC/RISC-V
 - Custom ISA extensions
- **Dedicated accelerators**
- Multiple Technologies
 - Near-threshold operation

PULP related chips

- Main PULP chips (ST 28nm FDSOI)
 - PUI Pv1
 - PULPv2
 - PULPv3 (in production)
 - PULPv4 (in progress)
- PULP development (UMC 65nm)
 - Artemis IEEE 754 FPU
 - Hecate Shared FPU
 - Selene Logarithic Number System FPU
 - Diana Approximate FPU
 - Mia Wallace full system
 - Imperio PULPino chip (Jan 2016)
 - Fulmine Secure cluster (Jan 2016)
- RISC-V based systems (GF 28nm)
 - Honey Bunny

- Early building blocks (UMC180)
 - Sir10us
 - Or10n
- Mixed-signal systems (SMIC 130nm)
 - VivoSoC
 - EdgeSoC (in planning)
- IcySoC chips approx. computing platforms (ALP 180nm)
 - Diego
 - Manny
 - Sid

PULPino: A single-core RISC-V SoC Motivation

- We want to publish our work as open-source
- But PULP is huge
 - Energy efficient many-core SoC
 - Large number of IPs
 - Software frameworks (OpenMP, OpenVX, ...)
 - Custom toolset (Virtual Platform, profiling tools, toolchain, ...)
- PULPino as a first step
 - Focused on simplicity
 - Minimal system
 - Single-core

PULPino: A single-core RISC-V SoC Overview

- Microcontroller-style platform
- Focused on core
- No caches, no memory hierarchy, no DMA
- Re-uses IPs from the PULP project
 - Same peripherals, same cores
- Available for FPGA
- First ASIC tapeout end of January
 - Student project using UMC 65nm

- Core directly connected to instruction and data RAM
 - Single-cycle access, no waiting for memories
- Single-port RAMs
 - Multi-banked RAMs for ASIC
 - Block RAMs for FPGA

- Central AXI interconnect
 - Core connects via bridge
 - RAM multiplexed between AXI port and core port

- APB for peripherals
 - Fine grained clock gating for peripherals
 - Easy to add new peripherals

- Internal event unit
 - Clock gates core when inactive (sleep)
 - Waits for events and wakes up core

- SPI slave acts as master on AXI
 - Provides access to whole memory map of the SoC from external
- SPI slave supports standard SPI and QPI

- Debug support via adv. debug unit
 - Provides JTAG port
 - Access to whole memory map via JTAG

- **Boot ROM**
 - Bootloader loads program from SPI flash

PULPino on FPGA ZedBoard

- Program PULPino via SPI or JTAG
- Interface fully compatible with final ASIC

PULPino Build & Run Flow Managed via CMake

RISC-V & OpenRISC

- Evaluating RISC-V in comparisons to OpenRISC
- Our interest in RISC-V
 - More modern than OpenRISC
 - No set flag instructions
 - No delay slot
 - Compressed instructions
 - Easily extendable

Extending RISC-V

- Our goals
 - Energy-efficient signal processing
 - Tune the core micro-architecture and ISA towards this
 - Extensions should have low overhead in area & power
- Adding non-standard extensions for
 - Hardware loops
 - Post-incrementing load and store instructions
 - Multiply-Accumulate
 - ALU extensions (min, max, absolute value, ...)

RI5CY Extension: Hardware Loops

Simple vector addition

```
for (i = 0; i < 100; i++) {
   d[i] = a[i] + 1;
}
```

with hardware loops Baseline mv x4, 0 lp.setupi 100, Lend mv x5, 100 1w x2, 0(x10)Lstart: lw x2, 0(x10)addi x10, x10, 4 addi x10, x10, 4 addi x2, x2, 1 5 instr. addi x2, x2, 1 sw x2, 0(x11)sw x2, 0(x11)Lend: addi x11, x11, 4 addi x11, x11, 4 7 instr. + branch cost addi x4, x4, 1 bne x4, x5, Lstart_

RI5CY Extension: Post-incrementing LD/ST

Simple vector addition

```
for (i = 0; i < 100; i++) {
  d[i] = a[i] + 1;
}</pre>
```

with hardware loops

```
lp.setupi 100, Lend
lw x2, 0(x10)
addi x10, x10, 4
addi x2, x2, 1
sw x2, 0(x11)
Lend: addi x11, x11, 4
```

with hardware loops & post-incr.

```
lp.setupi 100, Lend
lw x2, 4(x10!)
addi x2, x3, 1
Lend: sw x2, 4(x11!)
```

4 instructions + branch cost saved

RI5CY Core ISA Support

- Full support for RV32I
- Partial support for RV32M
 - Basically just the mul instruction
 - Single-cycle multiplication
- Support for compressed instructions
- Support for our own custom instruction set extensions

RI5CY Core Features

- Interrupts
 - Vectorized on 32 lines
- **Events**
 - Allows the core to sleep and wait for an event
- Exceptions
- Debug
 - Software breakpoints
 - Access to all registers
- Performance Counters

RI5CY Core

Simple 32-bit 4-stage in-order RISC-V core

RI5CY Interfaces

- **Data Interface**
 - Supports variable-latency systems
 - Request-Grant protocol

- Instruction Interface
 - Identical to Data Interface, but read-only
- **Debug Interface**
 - Aligned with Adv. Debug Bridge

RI5CY Performance

- Compiler used
 - ARM: Official GCC ARM Embedded Toolchain (GCC 4.9)
 - OR1k: Custom GCC Toolchain (GCC 5.2)
 - RISC-V: Custom GCC Toolchain (GCC 5.2)

RI5CY Performance

- Compiler used
 - ARM: Official GCC ARM Embedded Toolchain (GCC 4.9)
 - OR1k: Custom GCC Toolchain (GCC 5.2)
 - RISC-V: Custom GCC Toolchain (GCC 5.2)

RI5CY in Comparison

	RI5CY	ARM Cortex M4 ²	
Technology	65 nm	90nm	65 nm
Conditions	25°C, 1.2V	25°C, 1.2V	25°C, 1.2V
Dynamic Power $[\mu W/MHz]$	17.5	32.82	23.2 ¹
Area $[mm^2]$	0.050	0.119	0.0621

Critical paths in RI5CY

	Delay	Delay [#ND2 Equiv.]
Internal	1.15 ns	29
Memory Request	0.6 ns + mem. delay	15 + mem. delay
Memory Response	mem. delay + 0.4 ns	mem. delay + 10

Area Breakdown

PULPino

Component	Area [GE]	
RI5CY Core	34'500	6.9%
Peripherals	50'000	10%
Instruction RAM (32kB)	190'000	38%
Data RAM (32kB)	190'000	38%
AXI Interconnect	10'000	2%
Adv. Dbg Unit	6'000	1.2%
Total	500'000	100%

RI5CY

Component	Area [GE]	
Prefetch Buffer	3'500	10.1%
Decoder	420	1.2%
Compressed Decoder	400	1.1%
Register File	10'600	30.7%
Multiplier	4'300	12.5%
ALU	2'700	7.8%
LSU	1'500	4.3%
CSR	2'160	6.3%
Total	34'500	100%

Open Source Release

- What we release
 - Complete PULPino RTL source
 - Including RI5CY core
 - Including all IPs
 - FPGA build flow
 - Simulation/build infrastructure for software
 - FreeRTOS port
- Liberal license: SolderPad
- When?
 - Awaiting final approval

Summary

- PULP: Energy-efficient many-core SoC
- PULPino: Single-core SoC
 - A complete system that can be easily employed in various projects
 - Easily extendable
 - Ready to use system for educational purposes
- RI5CY: Small and optimized RISC-V core
- Check our website: pulp.ethz.ch

Outlook

- First tape out of PULPino end of this month
- IP-XACT port of PULPino
- RI5CY features
 - Floating-point support
 - Already available for our OpenRISC core
 - Branch prediction
 - Evaluate further non-standard ISA extensions

