

SECOND SEMESTER 2018 - 2019

Course Handout Part II

07.01.2019

In addition to Part I (general Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F379

Course Title : Thin film technology

Instructors : **Dr. V. Satya Narayan Murthy** & Prof. Harihara

Venkataraman

Course Description: This course gives an overview of thin film technology - Basics of vacuum science and technology, Thin film deposition techniques; Kinetics and diffusion mechanisms, Surface nucleation and film growth, Structure and morphology of thin films, Electrical and magnetic properties, Special topics on thin film application.

Scope & Objective:

- ➤ The course introduces the concepts in vacuum deposition techniques, nucleation and growth of thin films.
- > Techniques to characterize the thin films and some of the physical properties of films and their applications.

Text Book: No single textbook exists. Lecture notes will be distributed.

Reference Books:

- ➤ Materials Science of Thin Films Milton Ohring, 2nd Edition (Elsevier)
- A User's Guide to Vacuum Technology J.F. O' Hanlan
- > Thin film deposition principles and practice Smith Donald
- > Thin Film Phenomena Kasturi L Chopra (McGraw Hill)

Course Plan:

Lectur e No.	Learning Objectives	Topics to be covered	Reference (Chap/Sec)
1 - 6	Vacuum technology	Mean free path, gas flow regimes, conductance, pumping speed, vacuum levels, working principles of different vacuum pumps, vacuum gauges, vacuum leak detection, vacuum seals	notes + relevant portions

7 - 10	Thin film deposition	Differences between CVD and PVD, different PVD techniques – thermal and electron beam evaporation, sputtering, PLD, MBE, etc., evaporation rate, evaporation of multielement materials and alloys	reference books
11 - 14	Film thickness	Thickness measurement techniques,	
	uniformity and purity	deposition geometry, thickness uniformity	
15 - 20	Nucleation and	Thermodynamic aspects of	
	growth of thin film	nucleation and growth – capillarity	
		theory of heterogeneous nucleation,	
		atomistic theory, growth modes	
21 - 28	Characterization	Structural techniques (XRD), imaging	
	techniques	techniques (SEM / TEM), optical	
		techniques, chemical techniques	
29 - 34	Properties of thin	Electrical, dielectric, ferroelectric and	
	films	magnetic properties	
35 - 40	Applications	Sensors, solar cells, giant	
		magnetoresistance, ferroelectronic	
		effect, multiferroics	

Evaluation Scheme:

EC No	Evaluation Scheme	Duratio n	Weightag e (%)	Date & Time	Nature of Componen t
1.	Midsem	90 mins	35	12/3 1.30 -3.00 PM	Closed
	Examination			1130 3100 1111	Book
2.	Quiz/Seminar		20		Open Book
3.	Comprehensive	3 hrs	45	04/05 FN	Open Book
	Examination				

Notices: Notices for the course will be displayed on **Physics** notice board.

Make-up Policy: Make up will be given strictly to **genuine cases only** i.e. **(i)** <u>Sickness leading to hospitalization</u>, **(ii)** <u>Out of station with prior intimation & permission</u>. No make-up for Quiz / Seminar components.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

