Math 341: Midterm 2

Daniel Ko

Spring 2020

§1

Let

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} e \\ f \end{pmatrix}$$
 (1)

a. Suppose that $a \neq 0$, compute the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ using row reduction and provide the conditions on a, b, c, d such that your computations are valid. Express the result as a simplified expression. (**Hint:** recall that you can not divide by zero)

Proof. We perform reduced row echelon form (rref) on the augmented matrix

$$(A|b) = \begin{bmatrix} a & b & | & e \\ c & d & | & f \end{bmatrix}$$

$$R_2 \leftarrow R_2 - \frac{c}{a}R_1 \begin{bmatrix} a & b & | & e \\ 0 & d - \frac{cb}{a} & | & f - \frac{ce}{a} \end{bmatrix}$$

$$\begin{bmatrix} a & b & | & e \\ 0 & \frac{ad-cb}{a} & | & \frac{af-ce}{a} \end{bmatrix}$$

$$R_2 \leftarrow \frac{a}{ad-cb}R_2 \quad \text{Assuming that } ab-cd \neq 0 \quad \begin{bmatrix} a & b & | & e \\ 0 & 1 & \frac{af-ce}{ad-cb} \end{bmatrix}$$

$$R_1 \leftarrow R_1 - bR_2 \begin{bmatrix} a & 0 & | & e - b\frac{af-ce}{ad-cb} \\ 0 & 1 & \frac{af-ce}{ad-cb} \end{bmatrix}$$

$$R_1 \leftarrow \frac{R_1}{a} \begin{bmatrix} 1 & 0 & | & \frac{1}{a}(e-b\frac{af-ce}{ad-cb}) \\ 0 & 1 & \frac{af-ce}{ad-cb} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | & \frac{de-bf}{ad-cb} \\ 0 & 1 & | & \frac{af-ce}{ad-cb} \end{bmatrix}$$

 $x = \begin{bmatrix} \frac{de - bt}{ad - cb} \\ \frac{af - ce}{ad - cb} \end{bmatrix} \quad \text{where } ad - cb \neq 0$

b. If a=0, and $c\neq 0$, is your above computation still valid? How would you modify it? (explain briefly) (**Hint:** recall that you can swap the equations and the result is the same)

Proof. If a=0, and $c\neq 0$, then the above computation will not be valid as we divided by a multiple times when we computed the rref. I would swap the first and second rows so that it would look like

 $\left[\begin{array}{c|c} c & d & f \\ 0 & b & e \end{array}\right]$

1

and compute the rref, assuming that $b \neq 0$. We obtain the rref,

$$\left[\begin{array}{cc|c} 1 & 0 & \frac{bf-de}{bc} \\ 0 & 1 & \frac{e}{b} \end{array}\right]$$

c. If a=0, c=0, but $b \neq 0$, $d \neq 0$, what are the conditions on e and f such that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution? Is the solution unique? (**Hint:** recall that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} can be written as a linear combination of the columns of \mathbf{A})

Proof. If a=0, c=0, $b\neq 0$, $d\neq 0$, we get the augmented matrix

$$\left[\begin{array}{cc|c} 0 & b & e \\ 0 & d & f \end{array}\right]$$

Performing row reduction,

$$\left[\begin{array}{cc|c} 0 & 1 & \frac{e}{b} \\ 0 & 1 & \frac{f}{d} \end{array}\right]$$

So the condition of the solution is,

$$x_2 = \frac{e}{b} = \frac{f}{d}$$

Thus, there exists a infinite amount of solution.

d. Solve the system

$$\begin{bmatrix} \sqrt{2} & 3\sqrt{2} \\ 2\sqrt{2} & \sqrt{2} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5\sqrt{2} \\ 5\sqrt{2} \end{pmatrix}. \tag{2}$$

(Hint: You may want to use the formula you just deduced)

Proof.

$$x_{1} = \frac{de - bf}{ad - cb}$$

$$= \frac{\sqrt{2}(5\sqrt{2}) - 3\sqrt{2}(5\sqrt{2})}{\sqrt{2}\sqrt{2} - 3\sqrt{2}(2\sqrt{2})}$$

$$= \frac{10 - 30}{2 - 12}$$

$$= \frac{-20}{-10}$$

$$= 2$$

$$x_2 = \frac{\sqrt{2}(5\sqrt{2}) - 2\sqrt{2}(5\sqrt{2})}{\sqrt{2}\sqrt{2} - 3\sqrt{2}(2\sqrt{2})}$$
$$= \frac{10 - 20}{-10}$$
$$= 1$$

- **§2**
- §3
- **§4**