

Recordando: pandas

pandas para manipular datos tabulares.

Creación de columnas derivadas.

Agrupaciones y filtros.

Exportación en CSV y Parquet.

Recordando: Duckdb

DuckDB como alternativa SQL embebida:

Consultas directas sobre CSV/Parquet.

Integración con pandas.

Recordando: pandas

Pandas nos permite representar una serie de pasos encadenados, un pipeline de datos:

```
import pandas as pd

df = pd.read_csv("ventas.csv")

df["total"] = df["precio"] * df["cantidad"]

resumen = df.groupby("categoria", as_index=False)["total"].sum()

resumen.to_parquet("resumen.parquet", index=False)
```


Pipeline de datos

Las funciones individuales pueden combinarse en operaciones continuas, actuando como **un flujo organizado de datos.**

DATA PIPELINE

Una **secuencia organizada de pasos** que procesan datos de manera reproducible.

Pipeline de datos

Pipelines \rightarrow flujo estructurado, reutilizable y automatizable.

Ejemplo conceptual en pandas: Ingesta → Transformación → Exportación.

```
import pandas as pd

(
   pd.read_csv("ventas.csv")
     .assign(precio_total=lambda d: d["precio"] * d["cantidad"])
     .query("precio_total > 0")
     .groupby("categoria", as_index=False)
     .agg(total_ventas=("precio_total", "sum"))
     .to_parquet("resumen.parquet", index=False)
)
```


Complejidad

Cuando el análisis crece, incrementa la complejidad del proceso.

- •Múltiples fuentes (varios CSV, bases de datos, APIs).
- •Normalización de columnas y formatos distintos.
- ·Consolidación en un único dataset.
- •Validaciones adicionales (duplicados, nulos, rangos).

Complejidad

Eventualmente, las pipelines dejan de ser puramente lineales. Se convierten en **procesos con múltiples entradas, pasos y salidas**.

Organizar el flujo en funciones claras permite mantener el control a medida que crece la complejidad.

Encuesta

La pipeline funciona correctamente.

Pero, ¿qué problemas genera esta forma de implementarla?

- A) Difícil de validar cada paso de manera aislada.
- B) Duplica lógica si se necesita en otro pipeline.
- C) Cambiar una fuente obliga a modificar todo el script.
- D) No se recomienda Pandas y Duckdb en conjunto.
- E) Rastrear errores es complejo, todo está en un mismo bloque.

```
# 1) Ingesta ventas (pandas)
df = pd.read csv(sales path)
df.columns = [c.strip().lower() for c in df.columns]
# Normalización mínima de tipos
for col in ("precio", "cantidad"):
   if col in df.columns:
        df[col] = pd.to_numeric(df[col], errors="coerce")
# 2) Ingesta catálogo (DuckDB con SQL, puede ser .parquet o .csv)
con = duckdb.connect()
cat = con.execute(f"SELECT * FROM '{catalog path}'").df()
cat.columns = [c.strip().lower() for c in cat.columns]
# Asegurar columnas esperadas para el join/enriquecimiento
for col in ("producto", "categoria_norm", "impuesto"):
   if col not in cat.columns:
        cat[col] = pd.NA
# 3) Transformar ventas + enriquecer con catálogo
df["precio total"] = df["precio"] * df["cantidad"]
df = df[df["precio_total"] > 0]
df = df.merge(cat[["producto", "categoria_norm", "impuesto"]], on="producto", how="left")
# 4) Ajustes con impuesto (si existe; por defecto 0)
df["impuesto"] = df["impuesto"].fillna(0)
df["precio total con impuesto"] = df["precio total"] * (1 + df["impuesto"])
# 5) Resumen por categoría
resumen = (
    df.groupby("categoria_norm", as_index=False)
          total_ventas=("precio_total_con_impuesto", "sum"),
          n_items=("cantidad", "sum"),
          precio promedio=("precio", "mean")
      .sort_values("total_ventas", ascending=False)
# 6) Exportar resultado
resumen.to_parquet(out_path, index=False)
```

Encuesta

La pipeline funciona correctamente.

Pero, ¿qué problemas genera esta forma de implementarla?

- A) Difícil de validar cada paso de manera aislada.
- B) Duplica lógica si se necesita en otro pipeline.
- C) Cambiar una fuente obliga a modificar todo el script.
- D) No se recomienda Pandas y Duckdb en conjunto.
- E) Rastrear errores es complejo, todo está en un mismo bloque.

```
# 1) Ingesta ventas (pandas)
df = pd.read csv(sales path)
df.columns = [c.strip().lower() for c in df.columns]
# Normalización mínima de tipos
for col in ("precio", "cantidad"):
    if col in df.columns:
        df[col] = pd.to_numeric(df[col], errors="coerce")
# 2) Ingesta catálogo (DuckDB con SQL, puede ser .parquet o .csv)
con = duckdb.connect()
cat = con.execute(f"SELECT * FROM '{catalog path}'").df()
cat.columns = [c.strip().lower() for c in cat.columns]
# Asegurar columnas esperadas para el join/enriquecimiento
for col in ("producto", "categoria_norm", "impuesto"):
    if col not in cat.columns:
        cat[col] = pd.NA
# 3) Transformar ventas + enriquecer con catálogo
df["precio total"] = df["precio"] * df["cantidad"]
df = df[df["precio_total"] > 0]
df = df.merge(cat[["producto", "categoria_norm", "impuesto"]], on="producto", how="left")
# 4) Ajustes con impuesto (si existe; por defecto 0)
df["impuesto"] = df["impuesto"].fillna(0)
df["precio total con impuesto"] = df["precio total"] * (1 + df["impuesto"])
# 5) Resumen por categoría
resumen = (
    df.groupby("categoria_norm", as_index=False)
          total_ventas=("precio_total_con_impuesto", "sum"),
          n_items=("cantidad", "sum"),
          precio promedio=("precio", "mean")
      .sort_values("total_ventas", ascending=False)
# 6) Exportar resultado
resumen.to_parquet(out_path, index=False)
```


Complejidad

Organizar el flujo en funciones claras permite mantener el control a medida que crece la complejidad.

- Módulos y funciones separadas.
- Reutilización de lógica en distintos flujos.
- Testeo de unidad e integracion.
- Cambiar una fuente o regla no exige tocar todo el pipeline.

Complejidad

```
import pandas as pd
def limpiar(df: pd.DataFrame) -> pd.DataFrame:
    return (df
            .assign(
                precio_total=lambda d: d["precio"] * d["cantidad"],
                categoria_norm=lambda d: d["categoria"].str.strip().str.lower()
            .query("precio_total > 0"))
def resumir_por_categoria(df: pd.DataFrame) -> pd.DataFrame:
    return (df
            .groupby("categoria_norm", as_index=False)
            .agg(total_ventas=("precio_total", "sum")))
  pd.read_csv("ventas.csv")
    .pipe(limpiar)
    .pipe(resumir_por_categoria)
    .to_parquet("resumen.parquet", index=False)
```


De Pipelines a ETL

Lo que hicimos con pandas + DuckDB ya es un mini pipeline de ETL:

- •Extract (E) → leer archivos CSV, Parquet, bases de datos.
- •Transform (T) → limpiar, crear columnas, unir catálogos, agrupar.
- •Load (L) → exportar a Parquet, CSV, bases de datos o dashboards.

ETL = sistematizar el proceso de llevar datos crudos a datos listos para análisis o consumo.

Ejecutar un proyecto ETL "a mano" puede funcionar en pruebas, pero en la práctica los datos cambian cada día, cada hora, incluso cada minuto.

Dependiendo de la Proyecto, se necesita:

- Ejecuciones recurrentes (ej. cada mañana 8am).
- Monitoreo de fallas.
- Escalabilidad cuando aumentan las fuentes o las reglas.

CRON: Linux / macOS

Servicio del sistema que ejecuta tareas en horarios definidos.

Cada usuario puede definir un archivo, mediante un lenguaje de horarios: crontab.

Ejemplo: correr un script cada día a las 7:30

30 7 * * * /usr/bin/python3 /home/usuario/proyecto/run_pipeline.py

CRON: Linux / macOS

Limitaciones de cron

- •No sabe de **dependencias** entre tareas (todas corren aisladas).
- •Sin reintentos automáticos: si algo falla, no se vuelve a ejecutar hasta el siguiente horario.
- •Monitoreo limitado: solo logs locales por defecto.

Difícil de escalar cuando hay muchos scripts o flujos interdependientes.

Task Scheduler (Windows)

Equivalente a cron, pero en Windows.

- Herramienta integrada para programar tareas recurrentes.
- Interfaz gráfica → elegir programa, frecuencia y condiciones.
- También se puede usar por línea de comandos (schtasks).

Limitaciones similares a las de cron.

Automatización local

Aceptable para:

- Scripts utilitarios (enviar correos, backups simples).
- Pipelines locales simples (ejecutar un ETL una vez al día).
- Pipelines locales complejas pero no optimizadas.

Útiles cuando **no se necesitan garantías adicionales** como:

- Reintentos automáticos.
- Manejo de dependencias entre múltiples pasos.
- Escalado a varios nodos o entornos distribuidos.

Encuesta

Un pipeline tiene 3 pasos. Cada paso se agenda POR SEPARADO con cron.

- 1. Descargar ventas de una API cada mañana.
- 2. Limpiar y validar los datos.
- 3. Generar un reporte y enviarlo por correo.

¿Cuál es el mayor riesgo en este flujo?

Encuesta

Un pipeline tiene 3 pasos. Cada paso se agenda POR SEPARADO con cron.

- 1. Descargar ventas de una API cada mañana.
- 2. Limpiar y validar los datos.
- 3. Generar un reporte y enviarlo por correo.

¿Cuál es el mayor riesgo en este flujo?

Que los pasos se ejecuten de forma inconsistente.

Un gran problema

Cuando se usan sistemas de automatización sin gestión de dependencias, cada paso se ejecuta de forma aislada, lo que genera el riesgo de producir datos incompletos o inválidos.

De automatización a orquestación

Orquestadores existen para gestionar pipelines complejas, críticas y de forma escalable.

¿Qué es un orquestador?

Herramienta que coordina la ejecución de pipelines de datos.

- Manejo de dependencias entre pasos.
- Reintentos automáticos.
- Monitoreo centralizado y alertas.
- Escalabilidad: ejecución en clústeres o nube.

La orquestación es crítica

La orquestación es el paso natural después de la automatización básica.

- ETL en masa: pipelines que integran múltiples fuentes.
- Streaming + batch: cuando conviven flujos de datos en tiempo real y procesos programados.
- Machine Learning: entrenar modelos con datos frescos, validar.
- BI / dashboards: asegurar que los reportes se alimenten con datos actualizados y correctos.

Data Orchestration Landscape

Orquestadores

Existen orquestadores independientes de un lenguaje

Ejemplo: Argo Workflows, corre sobre Kubernetes.

Define pipelines como **manifiestos YAML**. No está atado a un lenguaje: se orquestan contenedores con cualquier stack.

Desventaja:

Complejidad operacional

Data Orchestration Landscape

Orquestadores

Existen orquestadores ligados a un lenguaje, como Python.

Ejemplo: Dagster.

Los pipelines se definen como código Python.

Ofrece integración natural con librerías de datos (pandas, duckdb, soda, etc).

Desventaja:

Menos flexible si el stack es heterogéneo (Java, R, Go, etc.).

Dagster

Orquestador de datos centrado en Python.

- Modela el pipeline en términos de "assets" (datasets/artefactos) y sus dependencias.
- Incluye checks (validaciones) y UI para visualizar ejecuciones, estados y dependencias.

DAG

Concepto clave en los orquestradores:

Directed Acyclic Graph (Grafo Dirigido Acíclico).

- Directed: cada flecha indica el flujo de datos o el orden de ejecución
- Acyclic: no hay ciclos, un paso no puede depender de sí mismo
- **Graph**: nodos (datasets, cálculos) y aristas (dependencias).

DAG

En Dagster una pipeline se modela como un DAG

Nodos → pasos del pipeline: *input datasets, transformaciones, dataset final*.

Aristas \rightarrow dependencias entre pasos.

Flujo siempre avanza hacia adelante, nunca vuelve atrás.

DAG

- Claridad: describe explícitamente qué depende de qué.
- Confiabilidad: asegura que un paso no corra antes de sus dependencias.
- Paralelismo: pasos independientes pueden ejecutarse al mismo tiempo.
- Monitoreo: fácil de visualizar el estado de cada nodo (éxito, fallo, pendiente).

Encuesta

¿Qué es un DAG?

Encuesta

¿Qué es un DAG?

Un **grafo** que representa dependencias entre pasos de una pipeline.

Modelo de ejecución

Sin Orquestación

La única forma de garantizar el resultado correcto:

Con Orquestación

Se optimiza la ejecución y puntos de paralelización

Dagster

Arquitectura modular que ofrece:

Desarrollo local → definir y experimentar pipelines como código.

Ejecución en producción → horarios automatizados con monitoreo.

Todo se organiza en torno a **assets**, que representan los datasets y productos intermedios.

Dagster: UI

Dagster ofrece un entorno de gestión y monitoreo desde el primer momento a traves de su UI.

Dagster: Asset

Un asset es un dataset o artefacto producido por un paso del pipeline.

Son declarativos: describen qué producen y de qué dependen.

Ejemplo: un archivo Parquet, una tabla en DuckDB, un DataFrame en memoria.

Asset: Usando funciones

Dagster pemite declarer qué función produce un asset. Mediante **introspección automática**, Dagster detecta las **relaciones de dependencia**.

Explorando metadatos

Como parte de la orquestación, Dagster almacena información descriptiva de cada ejecución.

Dagster: Job

Un Job es la unidad principal de ejecución.

Permite materializar (ejecutar) un subconjunto del DAG de assets.

Dagster:

- Resuelve automáticamente el orden de ejecución a partir de las dependencias entre assets.
- Gestiona la computación: paraleliza pasos independientes (cuanto sea possible)

Dagster: Schedule

Un Schedule automatiza un job en intervalos definidos.

```
from dagster import define_asset_job, ScheduleDefinition

# Definimos un Job que materializa ingresos_totales
ingresos_totales_job = define_asset_job(
    "ingresos_totales_diario",
    # Incluye ingresos_totales y todas sus dependencias (ventas, productos)
    selection=["*ingresos_totales"]
)

# Definimos un Schedule: ejecutar todos los días a las 07:30 AM
daily_schedule = ScheduleDefinition(
    job=ingresos_totales_job,
        cron_schedule="30 7 * * *"
)
```

Investigando

La UI permite identificar de forma rápida y efectiva dónde falló la ejecución.

Chequeos

Un Asset Check es una tarea asociada a un asset que ejecuta validaciones definidas por el usuario.

Los Asset Checks están integrados con la orquestación y pueden bloquear la ejecución de assets dependientes si las validaciones fallan.

Chequeos

Las validaciones se definen totalmente en código, aprovechando toda la potencia de Python y sus librerías.

Recursos Externos

Un Resource es un componente configurable y reutilizable.

Sirve para interactuar con dependencias externas:

Bases de datos.

APIs externas.

Sistemas de archivos o almacenamiento en la nube.

Recursos Externos

Los **assets** pueden depender de resources para realizar sus tareas.

Los resources se pueden configurar por trabajo (Job), adaptándose a distintos entornos.

Beneficio:

Separar la lógica de datos (assets) de la infraestructura (resources).

Recursos Externos


```
from dagster import asset, resource, Definitions

@resource
def conexion_db():
    # Aquí podrías abrir una conexión a PostgreSQL, DuckDB, etc.
    import duckdb
    return duckdb.connect()

@asset
def leer_clientes(conexion_db):
    return conexion_db.execute("SELECT * FROM clientes").df()

defs = Definitions(assets=[leer_clientes], resources={"conexion_db": conexion_db})
```

Datos entre Assets

Un IO Manager define cómo se almacenan y recuperan los datos entre ejecuciones de assets.

Separa la **lógica de procesamiento de datos** (assets) del **código de lectura y escritura** (persistencia). Permite que el mismo pipeline use diferentes backends y facilite la distribución de la computación.

Por defecto, Dagster usa el disco local.

Datos entre Assets

En ejecución local o en un servidor único, el disco duro es suficiente.

Pero en un context distributido, ¿como acceden otros nodos al resultado de un asset?

Un IO Manager que permita gestionar un almacenamiento accesible a todos los nodos.

- S3 / GCS / Azure Blob (almacenamiento en la nube).
- Bases de datos (ej. Postgres, Snowflake, BigQuery).
- Sistemas de archivos distribuidos (ej. NFS, HDFS).

Procesos Avanzados

Dagster permite construir pipelines más dinámicos, reactivos y escalables.

- Partitioning: dividir un asset en partes (tiempo, categorías, ejes) para procesar datasets grandes en lotes pequeños.
- Sensors: reaccionar a eventos (archivo nuevo, corrida completada) para disparar jobs o
 materializar assets.
- **Ejecución distribuida**: usar colas de trabajo (ej. Celery) para escalar la ejecución en múltiples workers.

Dagster

https://docs.dagster.io/getting-started/concepts

El Beneficio

Dagster es excelente para **equipos Python** que buscan claridad y validación integrada, pero puede presentar desafíos en **adopción**, **despliegue y ecosistemas heterogéneos**.

Limitaciones

El modelo basado en assets y checks es poderoso, pero puede resultar complejo al inicio.

- Requiere entender bien la arquitectura (assets, ops, jobs, schedules, IO managers).
- El uso en local es sencillo con dagster dev, pero en producción, configurar workers distribuidos (Celery, Kubernetes) puede ser complejo. Requiere experiencia en infraestructura.
- Menos cantidad de ejemplos y tutoriales disponibles.

Instalando Dagster

Componentes clave (instalados vía pip/uv):

•dagster-web-server: visualización, ejecución manual, logs.

•dagster: gestiona schedules y sensors, el corazon del orquestrador

•create-dagster: opcional, crea el esqueleto para un Proyecto.

Base de datos de metadatos:

Si no configuras una, **usa SQLite local por defecto**. Suficiente para la clase y desarrollo local.

https://docs.dagster.io/etl-pipeline-tutorial

Operando Dagster

La interfaz del servidor web permite directamente ejecutar o manejar operaciones. Sin embargo, la CLI permite ejecutar todos los procesos de manera programática.

Encuesta

Tienes un pipeline en Dagster con cinco elementos:

- productos (lee un catálogo desde CSV)
- ventas (lee datos de ventas desde otro CSV)
- ingresos_totales (combina ambos y calcula ingresos)
- check_ingresos (valida que no haya ingresos negativos)
- publicar_reporte (publica los datos de ingresos_totales)

El job está programado con un horario diario a las 07:30 AM.

¿Qué sucederá si mañana a las 07:30 AM ocurre un error generando ventas?

Encuesta

Tienes un pipeline en Dagster con cinco elementos:

- productos (lee un catálogo desde CSV)
- ventas (lee datos de ventas desde otro CSV)
- ingresos_totales (combina ambos y calcula ingresos)
- check_ingresos (valida que no haya ingresos negativos)
- publicar_reporte (publica los datos de ingresos_totales)

El job está programado con un horario diario a las 07:30 AM.

¿Qué sucederá si mañana a las 07:30 AM ocurre un error generando ventas?

Dagster reporta el error, y bloquea el flujo a los siguientes pasos.

Tutorial

- Repositorio aislado en Codespaces
- Definición de dependencias y requisitos
- Instalación de Dagster
- Recorrido por la interfaz
- Creación de un asset de ejemplo con pandas
- Configuración de un schedule de ejemplo
- Definición de un chequeo de ejemplo