

AD-A 054 326

AD

MEMORANDUM REPORT ARBRL-MR-02819
(Supersedes IMR Nos. 552 and 573)

PROCEDURE FOR ESTIMATING ZERO YAW DRAG
COEFFICIENT FOR LONG ROD PROJECTILES AT
MACH NUMBERS FROM 2 TO 5

William F. Donovan
Bertram B. Grollman

TECHNICAL
LIBRARY

March 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 5

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute endorsement of any commercial product.*

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER MEMORANDUM REPORT ARBRL-MR-02819	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) PROCEDURE FOR ESTIMATING ZERO YAW DRAG COEFFICIENT FOR LONG ROD PROJECTILES AT MACH NUMBERS FROM 2 TO 5.		5. TYPE OF REPORT & PERIOD COVERED MEMORANDUM REPORT
7. AUTHOR(s) William F. Donovan Bertram B. Grollman		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory ATTN: DRDAR-BLP Aberdeen Proving Ground, MD 21005		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 1L662603AH78
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research and Development Command U.S. Army Ballistic Research Laboratory ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005		12. REPORT DATE MARCH 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 32
16. DISTRIBUTION STATEMENT (of this Report)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES This report supersedes IMR 552, 573		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Drag Coefficient Long Rod Projectiles Finned Projectiles Flared Projectile Component Drag		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) jmk Procedures for estimating the drag coefficient of either finned or flared projectiles are presented for application in the Mach range from 2 to 5. The techniques are based on linearizations of curves and simplifications of analyses as extracted from AMC Pamphlet 706-280.		

TABLE OF CONTENTS

	Page
LIST OF ILLUSTRATIONS	5
LIST OF SYMBOLS	7
I. INTRODUCTION	9
II. PROCEDURE	9
III. RESULTS	16
IV. CONCLUSIONS	16
REFERENCES	19
APPENDIX A	21
APPENDIX B	25
DISTRIBUTION LIST	31

LIST OF ILLUSTRATIONS

Figures		Page
1a	APFSDS Projectile.	10
1b	Outline Sketch of Flared Projectile.	11
2a	Nomenclature Specifications for Finned Projectile. . .	12
2b	Nomenclature Specifications for Flared Projectile. . .	13
3a	Drag Coefficient Comparison, Finned Projectile	17
3b	Drag Coefficient Comparison, Flared Projectile	18
A-1	Calculating Table for Flechette - Input Parameters . .	22
A-2	Calculating Table for Minuteman - Input Parameters . .	23
B-1	Nose Wave Drag Coefficient	26
B-2	Base Drag Coefficient.	27
B-3	Conversion of $M-C_F'$	28
B-4	Flare Wave Drag Coefficient.	29

LIST OF SYMBOLS

$A_{\text{base body}}$	Area of body exposed to base pressure (cal) ²
$A_{\text{base fin}}$	Area of fin exposed to base pressure (cal) ²
A_{ref}	Reference area (.785 cal ²)
$A_{\text{wetted surface}}$	Area of particular surface assigned viscous flow drag (cal ²)
C_D	Total drag coefficient (Reference Symbol) = $\frac{2 D}{\rho v^2 A_{\text{ref}}}$
C_{DBB}	Pressure drag coefficient - base of body
C_{DBF}	Pressure drag coefficient - base of fins
C_{DT}	Total drag coefficient
C_{DTB}	Total body drag coefficient
C_{DTF}	Total fin drag coefficient
C_{DVB}	Viscous drag coefficient - body
$C_{\text{DV(B+F)}}$	Viscous drag coefficient - body & flare
C_{DWB}	Wave drag coefficient - body (nose)
C_{DWF}	Wave drag coefficient - flare or fin
Δ_{DB}	Interference drag coefficient
C_F	Skin friction factor for flat plate viscous flow
$C_{F'}$	Empirical constant
$C_{F''}$	Conversion factor between flat plate and cylindrical viscous flow
D	Drag Force
M	Mach number
Re	Reynolds number

c	Chord length of base fin (cal)
d	Representative diameter of cylindrical reference area (1.0 cal)
d_b	Base flare dia. (cal)
h	Span of fin (cal)
j	Length of leading edge of fin (cal)
ℓ_{ab}	Length of after body of projectile (cal)
ℓ_f	Axial length of flare (cal)
ℓ_n	Axial length of projectile nose (cal)
ℓ_{sn}	Slant height of projectile nose (cal)
ℓ_{sf}	Slant height of flare (cal)
n	Number of blades per fin assembly
t	Representative fin thickness (cal)
v	Projectile velocity (length/time)
β	Thermodynamic parameter $(M^2 - 1)^{1/2}$
θ	Flare half angle (rad in calculations and degrees on reference charts)
ρ	Ambient air density (mass/unit volume)

I. INTRODUCTION

The preliminary design of projectiles must include a determination of drag coefficient in order to establish the retardation which is required to estimate the velocity of the projectile at the target. In lieu of range test results defining a particular configuration, the appropriate values are calculated. Predictive calculating schedules include BRLESC computer codes¹ and tabulations²; wherein, the retarding forces acting on the projectile are composed as wave drag, viscous drag and base (pressure) drag. Reference 1 is derived in rigorous mathematical expression to model the forward fluid flow but is limited to axisymmetric bodies of revolution. Reference 2 requires extensive use of selected charts which are geometrically restrictive in application.

This report presents a simplified technique for estimating the component drag in algebraic expression. Drag coefficients for both finned and flared projectiles are calculated and the results compared with aerodynamic range test data³.

II. PROCEDURE

Figure 1-a is a schematic of a long rod projectile with a fin empennage and Figure 1-b a projectile with a flare. Figures 2-a and 2-b define the common nomenclature.

Considering the body drag:

1. The wave drag coefficient is given as

$$C_{DWB} = .7M^{-0.28} \lambda_n^{-1.73}$$

directly from Figure 8-29 of Reference 2 and reproduced as Figure B-1 of Appendix B. Both conical and ogival noses are described adequately by this equation with divergence occurring only where there is a combination of short nose length and high Mach number. The expression applies to both the finned and the flared projectiles for the Mach range $M > 0.8$.

-
1. Robert L. McCoy, "MACDRAG" BRLESC computer program.
 2. AMCP 706-280, "Design of Aerodynamically Stabilized Free Rockets", 1968.
 3. Walter F. Braun, "Aerodynamic Data for Small Arms Projectiles," BRL Report 1630, January 1973, p. 187-188. (AD #909757L)

- DIMENSIONS IN CALIBERS
- FLIGHT MODEL FIN HAS REFLEX CURVED LEADING EDGE AND ROUNDED CORNERS

Figure 1-a APFSDS Projectile

DIMENSIONS IN CALIBERS

Figure 1-b Outline Sketch of Flared Projectile

Figure 2-a Nomenclature Specification for Finned Projectile

Figure 2-b. Nomenclature Specification for Flared Projectile

2. The base drag is deduced from a linearization of Figure 8-41, Reference 2, modified to Figure B-2 of Appendix B. This takes the form

$$C_{DBB} = (-.048M + .265) e^{.6\theta} d_b^2$$

where the factor $e^{.6\theta}$ converts the flare half-angle data to an approximation of the linearized characteristic.

Note that a tapered afterbody on finned projectile presents special difficulties in estimating base drag and Reference 2 does consider such projectiles. However, this requires an assumption that the expanding flow from a fenced channel (a cornered lattice) is equivalent to flow around an unbounded two dimensional corner. Efforts to validate this assumption by either calculation or by aerodynamic range data have been unavailing. In this report the maximum fin hub diameter is taken to identify the base drag area for the finned application.

3. The viscous drag coefficient is obtained from a combination of Figures 8-39 and 8-40 of Reference 2, converted to Figure B-3 of Appendix B. $C_F' = f(M)$ is the flat plate friction factor, an empirical constant, ($C_F'' = 1.51$) is established by comparison with Reference 1, and a multiplier ($C_F''' = 1.15$) transposes the classical flat plate coefficients⁴ to cylindrical application.

$$\begin{aligned} C_{DV(B+F)} &= C_F' C_F'' C_F''' \frac{A_{\text{wetted surface}}}{A_{\text{ref}}} \\ &= 10^{-4} (28.75 - 4.166 M)(1.51)(1.15) \frac{A_{\text{wetted surface}}}{A_{\text{ref}}} \\ &= 0.000173 (28.75 - 4.166 M) \frac{A_{\text{wetted surface}}}{A_{\text{ref}}} \end{aligned}$$

The drag effect of the driving grooves is assumed as part of the empirical constant C_F''' .

The $A_{\text{wetted surface}}$ includes the conical flare surface, Figure 2-b, for the flared projectile. For the finned projectile, the fin viscous drag is separately determined.

4. L. Michael Freeman, Robert H. Korkegi, "Projectile Aft-Body Drag Reduction by Combined Boat-Tailing and Base Blowing," AFAPL-TR-75-111, February 1976.

4. A wave drag contribution, emanating from a shock at the body-flare junction, is given in Reference 2 as Figure 8-33, and as Figure B-4 in Appendix B, whereby

$$C_{DWF} = \frac{3\theta}{M} \left(.75 - \frac{.6}{d_b} \right)$$

The $\frac{.6}{d_b}$ term approximates the compressed curves.

5. Considering the fin drag:

A. The wave drag coefficient for the fins is suggested by Reference 5 and is recommended for fins with a single bevel leading edge.

$$C_{DWF} = \frac{n}{\beta} \left(\frac{t}{j} \right)^2 \frac{A_{\text{wetted fin}}}{A_{\text{ref}}}$$

B. The fin base drag refers to the axial drag at the fin trailing edge. An area ratio with the body base area determines this quantity.

$$C_{DBF} = \frac{A_{\text{base fin}}}{A_{\text{base body}}} C_{DBB}$$

This report considers that the full thickness fin area represents the drag cross section. This is a conservative assumption. Also, some effects on drag coefficient may result from fin-body interference flow in the base region. This is given⁵ by

$$\Delta C_{DB} = \frac{t}{c} \left(\frac{.825}{M^2} - \frac{.05}{M} \right) (n) \frac{A_{\text{base fin}}}{A_{\text{base body}}}$$

C. The fin viscous drag is taken as the area ratio of the respective wetted surfaces of the fin and body as modified by the flat plate cylinder correlation coefficient.

$$C_{DVF} = \frac{1}{1.15} \frac{A_{\text{wetted fin}}}{A_{\text{wetted body}}} C_{DVB}$$

5. Sighard F. Hoerner, Dr. Ing, Fluid Dynamic Drag, Published by the author, 1958.

6. The total zero yaw drag coefficient is then equal to that of the sum of the parts.

III. RESULTS

Figures 3-a and 3-b show the results of the calculating procedures for a typical finned and an atypical flared projectile. Correspondence with range test data appears satisfactory.

IV. CONCLUSIONS

The modifications of the calculating scheme and the reference data of AMC Pamphlet 706-280 to predict zero yaw drag coefficient in the Mach range from 2 to 5 is demonstrated. The technique is to simply linearize the region of interest. Agreement with available test data^{3,6} indicates that the procedure warrants employment in preliminary estimating or in screening analyses.

6. Eugene D. Boyer, "Free Flight Range Tests of a MINUTEMAN Re-Entry Stage Model", BRL MR 1346, May 1961 (AD 326744).

Figure 3-a Drag Coefficient Comparison, Finned Projectile

Figure 3-b Drag Coefficient Comparison - Flared Projectile

REFERENCES

1. Robert L. McCoy, "MACDRAG" BRLESC computer program.
2. AMCP 706-280, "Design of Aerodynamically Stabilized Free Rockets", 1968.
3. Walter F. Braun, "Aerodynamic Data for Small Arms Projectiles," BRL Report 1630, January 1973, p. 187-188. (AD #909757L)
4. L. Michael Freeman, Robert H. Korkegi, "Projectile Aft-Body Drag Reduction by Combined Boat-Tailing and Base Blowing," AFAPL-TR-75-111, February 1976.
5. Sighard F. Hoerner, Dr. Ing, Fluid Dynamic Drag, Published by the author, 1958.
6. Eugene D. Boyer, "Free Flight Range Tests of a MINUTEMAN Re-Entry Stage Model", BRL MR 1346, May 1961 (AD 326744).

APPENDIX A

	BODY GEOMETRY									FIN GEOMETRY								
COLUMN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
SYMBOL	l_n	l_{ab}	α	l_s	A_{ref}	A_{wet}	θ	d	A_{wet}	c	i	h	n	A_{form}	A_{wet}	A_{base}		
UNITS	cal	cal	rad	cal	cal^2	cal	rad	cal	cal	cal	cal	cal	cal	cal^2	cal^2	cal^2		
FLECHETTE	2.84	15.7	.175	2.88	.785	53.9				53.9	4.2	.157	3.38	1.0	4	2.6	5.2	.157

Figure A-1. Calculating Table for Fletchette - Input Parameters

BODY/FLARE GEOMETRY										
COLUMN	1	2	3	4	5	6	7	8	9	10
SYMBOL	ℓ_n	ℓ_{ab}	α	ℓ_{sn}	Aref.	ℓ_f	θ	ℓ_{sf}	d_b	A_{wet}
UNITS	cal	cal	rad	cal	cal^2	cal	rad	cal	cal	cal^2
										$wetted\ surface\ area$ $\pi(5\ell_n \sec \alpha + \ell_{ab} + \ell_f \sec \theta (1 + \ell_f \tan \theta))$
										$diameter\ of\ base\ of\ flare$
										$flare\ slant\ height$ $\ell_f \sec \theta$
										$flare\ half\ angle$
										$flare\ length$
										$reference\ area,\ \pi/4$
										$nose\ slant\ height,\ \ell_n \sec \alpha$
										$nose\ half\ angle$
										$afterbody\ length$
										$nose\ length$
MINUTEMAN	.967	1.101	.393	1.047	7.85	1.180	.262	1.220	1.632	10.156

Figure A-2 Calculating Table for Minuteman - Input Parameters

APPENDIX B

Figure B-1. Nose Wave Drag Coefficient

Figure B-2. Base Drag Coefficient

Figure B-3. Conversion of $M-C_F'$,

Figure B-4. Flare Wave Drag Coefficient

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	1	Commander US Army Missile Research and Development Command ATTN: DRDMI-R Redstone Arsenal, AL 35809
1	Director Defense Advanced Research Projects Agency ATTN: C. R. Lehner 1400 Wilson Boulevard Arlington, VA 22209	1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-RWL Warren, MI 48090
1	Director Institute for Defense Analyses ATTN: Dr. H. Wolfhard 400 Army Navy Drive Arlington, VA 22202	2	Commander US Army Mobility Equipment Research & Development Cmd ATTN: Tech Docu Cen, Bldg 315 DRSME-RZT Fort Belvoir, VA 22060
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166	3	Commander US Army Armament Research and Development Command ATTN: DRDAR-LCS-T, MAJ J. Houle Dover, NJ 07801
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	3	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS DRDAR-LCA-F, Mr. A. Loeb DRDAR-LCA-FF, Mr. S. Wasserman Dover, NJ 07801
1	Commander US Army Electronics Command ATTN: DRSEL-RD Fort Monmouth, NJ 07703	1	Director Benet Weapons Laboratory ATTN: DRDAR-LCB-DS, Pat Vottis US Army Watervliet Arsenal Watervliet, NY 12189

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army White Sands Missile Range ATTN: STEWS-VT White Sands, NM 88002	1	Chief of Naval Research ATTN: Code 473 800 N. Quincy Street Arlington, VA 22217
1	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783	2	Commander US Naval Surface Weapons Center ATTN: Tech Lib, Dr. L.L.Pate Dahlgren, VA 22338
1	Project Manager, XM1 US Army Tank Automotive Research & Development Cmd 28150 Dequindre Road Warren, MI 48090	1	Commander US Naval Research Laboratory ATTN: Code 6180 Washington, DC 20375
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	1	Commander US Naval Ordnance Station ATTN: Dr. A. Roberts Indian Head, MD 20640
1	Commander US Army Artillery and Missile School ATTN: AKPSIAS-G-CN AKPSIAS-G-RK Fort Sill, OK 73504	<u>Aberdeen Proving Ground</u>	
1	Commander US Army Research Office ATTN: Tech Lib P. O. Box 12211 Research Triangle Park NC 27706	Marine Corps Ln Ofc Dir, USAMSAA Cdr, USATECOM ATTN: STEAP-MT-EA Mr. Barnhart	