Listas de Variedades

henrique

October 25, 2025

Contents

0	Introdução e Notação	1
1	Lista 1 (18/08/2025)	2
2	Lista 2 (02/09/2025)	5
3	Lista 3 (15/10/25)	9

0 Introdução e Notação

Ao decorrer do curso, vou escrever minhas resoluções dos exercícios nesse arquivo. Tem alguns motivos para isso:

- 1. Posso reutilizar resultados passados.
- 2. Está tudo organizado se um futuro henrique quiser rever.
- 3. Há uma certo senso de completude no final do curso.

Por isso, peço desculpa ao monitor e ao professor se não gostarem desse formato, me avisem que eu posso separar os arquivos. O código fonte pode ser encontrado em https://github.com/hnrq104/variedades/tree/main/listas.

Por enquanto encontrei os seguintes usos de notação pessoal no texto:

1. Denoto $[n] = \{1, \dots, n\}$ o conjunto dos primeiros n naturais.

1 Lista 1 (18/08/2025)

Problemas feitos:

1. Exercício 1.1 : ✓

2. Exercício 1.2 : ✓

3. Exercício 1.3 : ✓

4. Exercício 1.4 : ②

Problem 1.1.

Proof. Defina (S^1, \mathcal{F}) a parametrização do círculo pelas projeções esfereográficas. Isto é,

$$\mathcal{F} = \langle (S^1 - \{(0,1)\}, \pi_N), (S^1 - \{(0,-1)\}, \pi_S) \rangle$$

Onde $\pi_N: S^1 - \{(0,1)\} \to \mathbb{R}$ e $\pi_S: S^1 - \{(0,-1)\} \to \mathbb{R}$ são as projeções do polo norte e sul respectivamente. Vimos em aula que, com essas coordenadas, (S^1, \mathcal{F}) é uma variedade C^{∞} . Defina \mathcal{G} elevando \mathcal{F} ao cubo,

$$\mathcal{G} = \langle (S^1 - \{(0,1)\}, (\pi_N)^3), (S^1 - \{(0,-1)\}, (\pi_S)^3) \rangle$$

Afirmo que \mathcal{G} é uma estrutura diferenciável de S^1 . Isso segue do fato que π_N^3 e π_S^3 continuam sendo homeomorfismos e a composição de cartas dão a mesma coisa que em \mathcal{F} . Para verificar isso, escreva $s(t)=t^3$, então, no intervalo de definição \mathbb{R}^* ,

$$[(\pi_N)^3] \circ [(\pi_S)^3]^{-1}(t) = (s \circ \pi_N) \circ (s \circ \pi_S)^{-1}(t)$$

$$= s \circ \pi_N \circ \pi_S^{-1} \circ s^{-1}(t)$$

$$= s \circ \pi_N \circ \pi_S^{-1}(t^{1/3})$$

$$= s \left(\frac{1}{t^{1/3}}\right) = \frac{1}{t} \in C^{\infty}$$

Onde na quarta igualdade usamos que $\pi_N \circ \pi_S^{-1}(x) : \mathbb{R}^* \to \mathbb{R}^* = 1/x$. A mesma conta serve para a outra composição $[s \circ \pi_S] \circ [s \circ \pi_N]^{-1}$.

Vamos provar que $\mathcal{F} \neq \mathcal{G}$. Suponha que fossem iguais, então a composição $\pi_N \circ [s \circ \pi_N]^{-1}(t) = s^{-1}(t) = t^{1/3}$ seria C^{∞} que sabemos que é falso.

Para provar que são diffeomorfas, considere:

$$F: (S^1, \mathcal{F}) \to (S^1, \mathcal{G})$$

$$p \neq (0, 1) \mapsto (\pi_N^{-1}) \circ s^{-1} \circ \pi_N(p)$$

$$p \neq (0, -1) \mapsto (\pi_S^{-1}) \circ s^{-1} \circ \pi_S(p)$$

Do jeito que está, F pode não parecer bem definida. Seja $p \neq (0,1), (0,-1)$. Queremos mostrar que:

$$(\pi_N^{-1}) \circ s^{-1} \circ \pi_N(p) = (\pi_S^{-1}) \circ s^{-1} \circ \pi_S(p)$$
(1)

Mas temos que todas as funções são homeomorfismos e, principalmente, $\pi_N \circ \pi_S^{-1} = 1/x$. Seja $\pi_N(p) = t$, então $t = [\pi_N \circ \pi_S^{-1}] \circ \pi_S(p) = 1/(\pi_S(p))$, ou seja $\pi_S(p) = 1/t$. Substituindo em (1)

$$(\pi_N^{-1}) \circ s^{-1}(t) = (\pi_S^{-1}) \circ s^{-1}(1/t)$$

$$s^{-1}(t) = (\pi_N \circ \pi_S^{-1}) \circ s^{-1}(1/t)$$

$$t^{1/3} = \frac{1}{s^{-1}(1/t)} = t^{1/3}$$

Onde na segunda igualdade aplicamos π_N dos dois lados e na terceira usamos a composição usual. Como tudo pode ser feito de trás para frente, provamos que F está bem definida.

Agora basta provar que os seguintes mapas são diffeos C^{∞} em seus dominios (interseções das cartas):

- 1. $[s \circ \pi_N] \circ F \circ \pi_N^{-1}$
- $2. \ [s \circ \pi_N] \circ F \circ \pi_S^{-1}$
- 3. $[s \circ \pi_S] \circ F \circ \pi_N^{-1}$
- 4. $[s \circ \pi_S] \circ F \circ \pi_S^{-1}$

E para isso é só expandi-los, farei (1) e (2) pois os outros dois são análogos.

1.
$$s \circ \pi_N \circ F \circ \pi_N^{-1} = s \circ \pi_N \circ (\pi_N^{-1}) \circ s^{-1} \circ \pi_N \circ \pi_N^{-1} = id$$

2.
$$s \circ \pi_N \circ F \circ \pi_S^{-1} = s \circ \pi_N \circ (\pi_N^{-1}) \circ s^{-1} \circ \pi_N \circ \pi_S^{-1} = 1/x$$

Para não perder nenhum detalhe, vou enunciar aqui a principal ferramenta desta lista.

Theorem 1.1. Seja M uma variedade diferenciável e $\{U_{\alpha} : \alpha \in A\}$ uma cobertura aberta de M. Então existe uma partição contável da unidade $\{\varphi_i : i \in \mathbb{N}\}$ subordinada a cobertura $\{U_{\alpha}\}$ com supp φ_i compacto para cada i. Se não for preciso suportes compactos, então existe uma partição da unidade $\{\varphi_{\alpha}\}$ subordinada à $\{U_{\alpha}\}$ (supp $\varphi_{\alpha} \subset U_{\alpha}$) com no máximo contáveis φ_{α} não identicamente nulos.

Problem 1.2.

Proof. Pelo Teorema da Partição da Unidade 1.1, dada uma cobertura $\{U_{\alpha}\}$, existe uma partição φ_{α} subordinada. Tome $V_{\alpha} = \varphi_{\alpha}^{-1}[(0,2)]$ abertos. Temos $\overline{V_{\alpha}} = \operatorname{supp} \varphi_{\alpha} \subset U_{\alpha}$ e, para todo $p \in M$, como $\sum_{\alpha} \varphi_{\alpha}(p) = 1$, existe α tal que $\varphi_{\alpha}(p) > 0$, logo $p \in V_{\alpha}$. Portanto $M \subset \{V_{\alpha}\}$ e temos um refinamento de $\{U_{\alpha}\}$.

Problem 1.3.

Proof. Sejam A e B fechados disjuntos de M, então $\{A^c, B^c\}$ formam uma cobertura de M. Pelo Teorema da Partição da Unidade 1.1, existem $\varphi_{A^c} \ge 0$ e $\varphi_{B^c} \ge 0$ em $C^{\infty}(M)$, com supp $\varphi_{A^c} \subseteq A^c$ e supp $\varphi_{B^c} \subseteq B^c$. Como para todo $p \in M$, $\varphi_{A^c}(p) + \varphi_{B^c}(p) = 1$ e $\varphi_{B^c} = 0$ em B, então temos

$$\varphi_{A^c}(A) = \{0\}$$

$$\varphi_{A^c}(B) = \{1\}$$

E achamos a segunda parte da questão, uma função contínua que vale 0 em A e 1 em B. Tome então os abertos disjuntos $W_A = \varphi_{A^c}^{-1}[(-\infty, 1/2)]$ e $W_B = \varphi_{A^c}^{-1}[(1/2, \infty)]$. Claramente $A \subset W_A$ e $B \subset W_B$.

Problem 1.4.

Conversando na aula de segunda (25/08), perguntamos para o Prof. Heluani se deveríamos provar esse resultado (estender o acima para funções não limitadas). Ele nos disse que o interesse maior nesse problema era mostrar que esse resultado (Teorema da Extensão de Tietze) é válido para Variédades vistas como espaços topológicos. Isso é consequência de elas serem espaços normais (visto no problema anterior). Segue o enunciado do Teorema

Theorem 1.2. (Extensão de Tietze) Seja X um espaço topológico normal, $A \subseteq X$ um subconjunto fechado e $f: A \to \mathbb{R}$ uma função contínua. Então existe uma função contínua $\tilde{f}: X \to \mathbb{R}$ tal que a $\tilde{f}|_A = f$.

Sobre a extensão ser C^{∞} , devemos dar uma definição para o que isso significaria - uma função ser suave em um fechado. Aqui segui a ideia do Davi na monitoria, de que existe um abertinho maior em que ela está definida. Depois devemos verificar se é possível estender funções assim para toda a variedade. A resposta dessa afirmação é positiva, mas requer também um pouco mais de teoria do que vimos. A seguir temos uma tentativa.

Lemma 1.3. Seja M uma variedade, $A \subseteq M$ um conjunto fechado e $U \supseteq A$ um aberto onde está definida uma função suave $f: U \to \mathbb{R}$. Existe uma função $\tilde{f}: M \to \mathbb{R}$ suave tal que as restrições $\tilde{f}_A = f_A$ são idênticas.

Proof. Para cada ponto $p \in A$, escolha uma vizinhança e uma função suave (V_p, \tilde{f}_p) tal que $\tilde{f}_p : V_p \to \mathbb{R}$ é idêntica a f em $V_p \cap A$. Isso é possível usando funções bump e aproveitando o fato que M é localmente compacta - o que não foi provado. Tomamos uma partição da unidade $\{\varphi_p : p \in A\} \cup \{\varphi_{A^c}\}$ subordinada a cobertura $\{V_p : p \in A\} \cup \{A^c\}$. Para cada $p \in A$, o produto $\varphi_p \tilde{f}_p$ é C^{∞} em V_p e tem uma extensão natural 0 fora do suporte de φ_p . Definimos então $\tilde{f} = \sum_{p \in A} \varphi_p \tilde{f}_p$.

2 Lista 2 (02/09/2025)

Problemas feitos:

1. Exercício 2.1 : ✓

2. Exercício 2.2 : ✓

3. Exercício 2.3 : ✓

4. Exercício 2.4 : ✓

5. Exercício 2.5 : ✓

Problem 2.1.

Proof. Considere o atlas de $S^1 \subset \mathbb{C}$ gerado por (U, θ_1) e (V, θ_2) onde $U = S^1 - \{1\}$ e θ_1 é definida tomando o ramo apropriado do logaritmo de forma que

$$\theta_1: U \to (0, 2\pi)$$

$$z \mapsto \frac{\log(z)}{i}$$

Semelhantemente, $V = S^1 - \{-1\}$ e escolhemos um outro ramo de log a fim que

$$\theta_2: V \to (-\pi, \pi)$$

$$z \mapsto \frac{\log(z)}{i}$$

Sabemos que esses ramos log são diffeos em seus domínios e a composição $\theta_1 \circ \theta_2^{-1} : (-\pi, 0) \cup (0, \pi)$ dada por

$$\theta_1 \circ \theta_2^{-1}(x) = \begin{cases} x & \text{se } 0 < x < \pi \\ x + \pi & \text{se } 0 < x < \pi \end{cases}$$

Essa função é C^{∞} , pois os abertos da definição são disjuntos. Da mesma forma $\theta_2 \circ \theta_1^{-1} \in C^{\infty}$.

Para mostrar que $e^{ix}: \mathbb{R} \to S^1$ é C^{∞} , basta ver que a composições com os mapas é C^{∞} . Para todo $x \in \mathbb{R}$, existe $n \in \mathbb{Z}$ tal que

$$x \in (2\pi n, 2\pi(n+1)) \quad \forall \quad x \in (2\pi n - \pi, 2\pi(n+1) - \pi)$$

No primeiro caso, claramente $\theta_1(e^{ix}) = x - 2\pi n$ que é C^{∞} . No segundo caso, $\theta_2(e^{ix}) = x - 2\pi n - \pi \in \mathbb{C}^{\infty}$. Assim mostramos que para qualquer ponto de \mathbb{R} , existe um aberto U tal que a composição $\theta_i \circ e^{ix}|_U$ é C^{∞} , como consequência, e^{ix} é C^{∞} .

Problem 2.2.

Proof. Tome o mesmo atlas que na questão anterior, note que se (U,θ) é uma carta e $V \subset U$, então $(V,\theta|_V)$ é óbviamente uma carta do atlas também. Para mostrar que $z^2 \in C^{\infty}$ vamos verificar então que para todo $z \in S^1$, existe um uma carta (A,θ) ao redor de z e uma carta (B,ϕ) ao redor de z^2 tal que a composição $\phi \circ z^2 \circ \theta^{-1}$ é C^{∞} .

Separamos 4 cartas de S^1 e qual coordenadas usaremos na imagem de cada vizinhança,

1.
$$(A_1 = \{z : \text{Re}(z) > 0\}, \theta_2|_{A_1}) \in (B_1 = V, \theta_2)$$

2.
$$(A_2 = \{z : \text{Im}(z) > 0\}, \theta_1|_{A_2}) \in (B_2 = U, \theta_1)$$

3.
$$(A_3 = \{z : \text{Re}(z) < 0\}, \theta_1|_{A_3}) \in (B_3 = U, \theta_1)$$

4.
$$(A_4 = \{z : \text{Im}(z) < 0\}, \theta_2|_{A_4}) \in (B_4 = V, \theta_2)$$

Claramente os A_i cobrem S^1 e como para cada i, $z^2(A_i) = B_i$, estamos cobrindo a imagem de z^2 . Substituindo os índices, falta verificar que em cada item que a composição $\theta_k \circ z^2 \circ (\theta_k|_{A_i})^{-1}$ é C^{∞} . Calculando-as, temos

1.
$$\theta_2 \circ z^2 \circ (\theta_2|_{A_1})^{-1} : (-\pi/2, \pi/2) \to (-\pi, \pi)$$
 é tal que $z \mapsto 2z$

2.
$$\theta_1 \circ z^2 \circ (\theta_1|_{A_2})^{-1} : (0,\pi) \to (0,2\pi) \text{ \'e tal que } z \mapsto 2z$$

3.
$$\theta_1 \circ z^2 \circ (\theta_1|_{A_3})^{-1} : (\pi/2, 3\pi/2) \to (-\pi, \pi) \text{ \'e tal que } z \mapsto 2z - 2\pi$$

4.
$$\theta_2 \circ z^2 \circ (\theta_2|_{A_4})^{-1} : (-\pi, 0) \to (0, 2\pi) \text{ \'e tal que } z \mapsto 2z + 2\pi$$

Como todas são C^{∞} , z^2 é C^{∞} .

Para os próximos dois problemas, vamos enunciar a ferramenta principal e sua versão em variedades - presumo que ainda será bastante utilizada no curso.

Theorem 2.1. (Teorema da Função Implícita) Seja $U \subset \mathbb{R}^{c-d} \times \mathbb{R}^d$ aberto e $f: U \to \mathbb{R}^d \in C^{\infty}$. Denote o sistema canônico de coordenadas em $\mathbb{R}^{c-d} \times \mathbb{R}^d$ por $(r_1, \ldots, r_{c-d}, s_1, \ldots, s_d)$. Suponha que no ponto $(r_0, s_0) \in U$

$$f(r_0, s_0) = 0$$

e que a matriz

$$\left\{\frac{\partial f_i}{\partial s_j}\right\}_{i,j=1,\dots,d}$$

é não singular. Então existe uma vizinhança aberta V de r_0 em R^{c-d} e uma vizinhança aberta W de s_0 em \mathbb{R}^d tal que $V \times W \subset U$, e existe um mapa C^{∞} $g: V \to W$ tal que para cada par $(p,q) \in V \times W$

$$f(p,q) = 0 \iff q = q(p)$$

Theorem 2.2. Assuma que $\psi: M^c \to N^d$ é C^{∞} , que n é um ponto de N, tal que $P = \psi^{-1}(n)$ é não vazio, e que $d\psi: M_m \to N_{\psi(m)}$ é sobrejetiva para todo $m \in P$. Então P tem uma estrutura diferenciável única tal que (P,i) é subvariedade de M, onde i é o mapa da inclusão. Além do mais, $i: P \to M$ é uma imersão, e a dimensão de P é c-d.

Problem 2.3.

Proof. Vamos provar que $SL(n, \mathbb{R})$ é uma subvariedade de $\mathbb{R}^{n \times n}$ invocando o teorema anterior com a função det : $\mathbb{R}^{n \times n} \to \mathbb{R}$. Para isso, basta mostrar que 1 é valor regular de det, ou seja, se $A \in SL(n, \mathbb{R})$, então $d(\det)|_A$ é sobrejetiva em \mathbb{R} . Como o contradomínio é \mathbb{R} , basta mostrar que em uma coordenada x_{ij} vale que

$$\left. \frac{\partial \det}{\partial x_{ij}} \right|_A \neq 0$$

Mas isso segue da decomposição de Cramer do determinante. Seja $X_{i,j}^c$ a matriz dos cofatores de uma matriz X em i, j. Por Cramer, para qualquer $k \in [n]$,

$$\det(X) = \sum_{i=1}^{n} (-1)^{k+i} x_{k,i} \det(X_{k,i}^{c})$$
(2)

Naturalmente,

$$\frac{\partial \det}{\partial x_{k,j}} \bigg|_{X} = (-1)^{k+j} \det(X_{k,i}^c)$$

Como det(A) = 1, aplicando a regra em k = 1, segue que existe alguma matriz de cofatores $A_{1,i}^c$ com determinante não nulo. Portanto,

$$\frac{\partial \det}{\partial x_{1,i}}\Big|_{A} = (-1)^{1+i} \det(A_{1,i}^c) \neq 0$$

e o diferencial é sobrejetivo. Por 2.2, $\mathrm{SL}(n,\mathbb{R})$ é uma imersão em $\mathbb{R}^{n\times n}$ de dimensão n^2-1 .

Problem 2.4.

Primeira prova usual rápida.

Proof. Considere $F: \mathrm{GL}(d,\mathbb{R}) \to \mathbb{R}^{d(d+1)/2}$ tal que

$$F(A) = A \cdot A^T$$

Note que como $(A \cdot A^T)^T = A \cdot A^T$, F(A) é simétrica e o contradomínio faz sentido. Vamos provar que I (como matriz simétrica) é valor regular da função F para que possamos aplicar 2.2. A diferencial de F em A em relação a um vetor H pode ser obtida facilmente considerando a diferença (que é linear) de F(A+H) - F(A).

$$DF_A(H) = F(A+H) - F(A) = H \cdot A^T + A \cdot H^T$$

Para mostrar que essa diferencial é sobrejetiva, tome B tal que $B=B^T$, então escolhendo H=BA/2, temos que

$$DF_A(BA/2) = \frac{(BA)A^T}{2} + \frac{A(BA)^T}{2} = \frac{B}{2} + \frac{B^T}{2} = B$$

Onde usamos que $AA^T = I$ na segunda igualdade. Portanto, DF_A é sobrejetiva para cada $A \in F^{-1}(I)$, logo, pelo Teorema da Função Implícita, $F^{-1}(I)$ é uma subvariedade de $GL(d, \mathbb{R})$ de dimensão d(d-1)/2.

Segunda prova, delineada pelo Warner em 1.40(b).

Proof. Novamente, seja F como na prova anterior. Usaremos a mesma estratégia, queremos mostrar que dF_A é sobrejetiva para cada $A \in O(d)$. Dado $A \in O(d)$, defina o diffeo $r_A : GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$ que para $M \in GL(n, \mathbb{R})$,

$$r_A(M) = M \cdot A$$

Quando se espressa $d(r_A)$ em coordenadas é claro que - como função linear, $d(r_A) = A$, logo é C^{∞} . Da mesma forma, a inversa $r_{A^{-1}}$ é C^{∞} . Aqui está a ideia principal do Warner, note que

$$F = F \circ r_A$$

pois, para todo X,

$$F(X) = XX^T = (XA)(XA)^T = F \circ r_A(X)$$

Portanto podemos diferenciar a função da direita ao invés de somente F, usando a regra da cadeia, encontramos que

$$dF_A = d(F \circ r_{A^{-1}})_A = dF_I \circ d(r_{A^{-1}})_A = dF_I \circ A^{-1}$$

Como A^{-1} é invertível, para saber se dF_A é sobrejetiva, basta verificar se dF_I é sobrejetiva. Mas isso seguirá imediatamente do fato que para $i \leq j$ e $l \leq k$,

$$\left. \frac{\partial F_{i,j}}{\partial x_{l,k}} \right|_{I} = \delta_{l,k}^{i,j}$$

Isso é, a derivada de F em I em relação a coordenada (l,k) é justamente a matriz simétrica com 1 somente na coordenada (l,k) e 0 nas outras entradas. Para a prova, note que

$$F(X)_{i,j} = \sum_{m=1}^{d} x_{i,m} x_{j,m}$$
(3)

Logo, se l, k = i, j,

$$\left. \frac{\partial F_{i,j}}{\partial x_{i,j}} \right|_{X=I} = x_{j,j}|_{I} = 1$$

Se $l \neq i$,

$$\frac{\partial F_{i,j}}{\partial x_{l,k}} = 0$$

Pois $x_{l,k}$ sequer aparece na soma (3). Se l = i, mas $k \neq j$, então

$$\left. \frac{\partial F_{i,j}}{\partial x_{i,k}} \right|_{X=I} = x_{j,k}|_{I} = 0$$

E provamos a a identidade que queriámos. Portanto, dF_I é sobrejetiva, por consequência, dF_A é sobrejetiva para todo $A \in O(d)$, logo O(d) é naturalmente subvariedade de $GL(n, \mathbb{R})$.

Problem 2.5.

Esse problema é capcioso, eu infelizmente já havia visto a solução antes da lista estar disponível.

Proof. Como M é compacto, a imagem f(M) é compacta, logo existe $m \in M$ tal que a primeira coordenada $f_1(m)$ atinge o valor máximo. Dado $(x_i)_{i=1}^d$ um sistema de coordenadas na vizinhança de m, como $f_1(m)$ é máximo, para cada i

$$\frac{\partial f_1}{\partial x_i} = 0$$

Portanto a matriz jacobiana

$$\left\{\frac{\partial f_i}{\partial x_j}\right\}_{i,j\in[d]}$$

é composta de 0's na primeira linha. df não pode ser sobrejetiva.

3 Lista 3 (15/10/25)

Como não consegui responder quase nenhum problema completamente, não vou colocar a lista de problemas resolvidos.

Theorem 3.1. (3.58 Warner) Seja H um subgrupo fechado do grupo de Lie G. Seja $\pi: G \to G/H$ a projeção $\pi(g) = gH$. Então G/H tem uma única estrutura diferenciável tal que π é C^{∞} .

Theorem 3.2. (3.62 Warner) Seja $G \times M \to M$ uma ação transitiva do grupo de Lie G na variedade M. Seja $m \in M$ e H o grupo de isotropia de m. O mapa

$$\beta: G/H \to M \quad \beta(gH) = gm_0$$

é um difeomorfismo.

Exercise 3.1.

Proof. Vou mostrar algo um pouco mais geral, seja V um R espaço vetorial n dimensional, $G_k(V)$ o conjunto de subespaços k dimensionais de V, então

$$G_k(V) \cong \frac{O(n)}{O(k) \times O(n-k)}.$$

Em particular, $G_2(R^4) = O(4)/(O(2) \times O(2))$ de onde seguirá que ela é compacta de dimensão 4.

Em V, fixe uma base $E_1, \ldots E_n$. As matrizes O(n) agem em V por multiplicação e mandam k-subespaços vetoriais em k-subespaços vetoriais (não vou provar isso). Dessa forma, O(n) age naturalmente em $G_k(V)$. É outro fato da vida (fácil de ver em R^n com Gram-Schmidt) que para V_0 e V_1 dois k-subespaços de V existem transformações ortogonais que mandam V_0 em V_1 , portanto a ação O(n) é transitiva.

Seja $P = \langle E_1, \dots E_k \rangle$ e H < O(n) o grupo de isotropia de P. Se $A \in H$, então como A fixa P, A deve mandar os vetores E_1, \dots, E_k em $\langle E_1, \dots E_k \rangle$ e, sendo invertível, os vetores $E_{k+1} \dots E_n$ em $\langle E_{k+1}, \dots E_n \rangle$. Portanto já determinamos que A deve ser da forma

$$A = \begin{pmatrix} F & 0 \\ 0 & H \end{pmatrix}$$

onde F é uma matrix $k \times k$ e H é $(n-k) \times (n-k)$. Como $A^t A = I$, segue que

$$I = A^t A = \begin{pmatrix} F^t & 0 \\ 0 & H^t \end{pmatrix} \begin{pmatrix} F & 0 \\ 0 & H \end{pmatrix} = \begin{pmatrix} F^t F & 0 \\ 0 & H^t H \end{pmatrix}$$

e portanto $F^tF = I$ e $H^tH = I$, ou seja $F \in O(k)$ e $H \in O(n-k)$. Interessantemente, qualquer escolha de F e G em $O(k) \times O(n-k)$ fixa P (satisfaz as condições), então podemos identificar H justamente como $O(k) \times O(n-k)$. Note que H é um grupo fechado, é a interseção de pré-imagems de fechados por funções contínuas; dado $B \in O(n)$, escrevemos

$$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

e H se torna

$$H = \{B \in O(n) : B_{11}^t B_{11} = I\} \cap \{B \in O(n) : B_{12} = \vec{0}\}$$

$$\cap \{B \in O(n) : B_{22}^t B_{22} = I\} \cap \{B \in O(n) : B_{21} = \vec{0}\}$$

Portanto, podemos dar uma estrutura diferenciável para $G_k(V)$ correspondente a $O(n)/(O(k) \times O(n-k))$. Segue por [3.1] que O(n)/H é a imagem por uma função suave $\pi: O(n) \to O(n)/H$ de O(n), portanto $O(n)/H = G_k(V)$ é imagem de compacto logo compacto.

Para calcular a dimensão de $G_2(R^4)$, lembramos que $\dim(O(4)) = 4 \cdot 3/2 = 6$ e $\dim(O(2)) = 1$, portanto $\dim(O(4)/(O(2) \times O(2))) = 6 - (1+1) = 4$.

Sobre ser diffeomorfa com $S^2 \times S^2$, eu não sei provar. Pelo jeito a respota é negativa. \Box

Exercise 3.2.

Proof. Seguirei a solução do David bonitinha de fazer na mão as cartas da variedade.

Antes de mais nada, vamos mostrar que Q é compacto. Como f, é contínua, $f^{-1}(0)$ é um fechado de $\mathbb{C}^4 - \vec{0}$, como o mapa do quociente $\pi : \mathbb{C}^4 - \{\vec{0}\} \to \mathbb{C}P^3$ é fechado, segue que $\pi(f^{-1}(\{0\}))$ é um fechado de $\mathbb{C}P^3$, como $\mathbb{C}P^3$ é compacto, segue que Q é compacto.

Agora vamos dar uma estrutura diferenciável para Q - ele já é N2 pela topologia induzida. Dada uma carta de $\mathbb{C}P^3$, digamos $U_1 = \{x_1 \neq 0\}$ com coordenadas $\varphi_1([1:x_2:x_3:x_4]) = (x_2,x_3,x_4) \in \mathbb{C}^3$, é evidente que $U_1 \cap Q$ são os pontos satisfazendo $g_1([1:x_2:x_3:x_4)] = x_4 - x_2x_3 = 0$. Olhando $h(x_2,x_3,x_4) = g_1 \circ \varphi^{-1}$ como uma função em \mathbb{C}^3 , ela tem rank constante (basta olhar para x_4) e portanto, $M_1 = h^{-1}(\{0\})$ é um embedding em \mathbb{C}^3 .

Seja ψ uma carta qualquer de M_1 , daremos a $Q \cap U_1$ as cartas definidas pela composição de cartas $\psi \circ \varphi_1$,

$$Q \cap U_1 \xrightarrow{\varphi_1} M_1 \subset \mathbb{C}^3 \xrightarrow{\psi} W \subset \mathbb{C}^2$$

Como M_1 é um embedding, $\psi^{-1}(W) = B \cap M_1$, onde B é um aberto de \mathbb{C}^3 , definimos a carta em Q por $(Q \cap \varphi_1^{-1}(B), \psi \circ \varphi_1)$.

A construção anterior de cartas para Q pode ser repetida para $U_2 = \{x_2 \neq 0\}, U_3 = \{x_3 \neq 0\}$ e $U_4 = \{x_4 \neq 0\}$. A menos de troca de variáveis (e sinal) as funções h são identicas para cada um desses abertos de $\mathbb{C}P^3$. Completamos nossas coordenadas de Q com as $\psi \circ \varphi_i$ definidas em cada $Q \cap U_i$.

Falta mostrar que troca de coordenadas é C^{∞} , seja $F_{ij} = \psi_j \circ \varphi_j \circ \varphi_i^{-1} \circ \psi_i^{-1}$

Como composição de funções C^{∞} , (e o fato de ψ_j serem embeddings para a continuidade), segue que F_{ij} é C^{∞} . E portanto Q é uma variedade diferenciável compacta de dimensão complexa 2 (e dimensão real 4).

Sobre ser diffeomorfa com $S^2 \times S^2$, acho que o David falou que era, não tenho ideia de como provar.

Exercise 3.3. Essa questão é copiar palavra por palavra a solução do Warner. Não acho que vale a pena escrever. Se fizer, farei por último.

Exercise 3.4.

Proof. A primeira coisa a notar é que, como subconjuntos de $GL(2,\mathbb{R})$ e $GL(3,\mathbb{R})$, $SL(2,\mathbb{R})$ não é compacto, pois

$$\begin{pmatrix} 1/n & 0 \\ 0 & n \end{pmatrix} \in SL(2, \mathbb{R})$$

10

para todo n, portanto, não é limitado. Já $SO(3,\mathbb{R})$ é um fechado do compacto $O(3,\mathbb{R})$ então é compacto. E já temos que $SL(2,\mathbb{R})$ não pode ser diffeomorfa a $SO(3,\mathbb{R})$.

Seja $F: M \to N$ de rank constante e $S \subset M$ embedding dado por $S = F^{-1}(0)$ - pelo Teorema do Rank Constante. Sabemos que para $p \in S$, $T_pS = \ker(dF_p)$, usaremos isso para calcular $\mathfrak{so}(3,\mathbb{R})$ e $\mathfrak{sl}(2,\mathbb{R})$.

Já que $SO(3,\mathbb{R})$ é um subgrupo aberto de $O(3,\mathbb{R})$, $T_ISO(3,\mathbb{R})=T_IO(3,\mathbb{R})$. Então, para calcular $\mathfrak{so}(3,\mathbb{R})$, $\mathfrak{o}(3,\mathbb{R})$ que sabemos ser o kernel da transformação

$$A \in GL(3,\mathbb{R}) \xrightarrow{\Phi} A^t A \in M(3,\mathbb{R})$$

Já calculamos $d\Phi_I$ e vimos que

$$d\Phi_I(B) = B + B^t$$

portanto, $\mathfrak{so}(3,\mathbb{R}) = \ker(d\Phi_I) = \{B \in M(3,\mathbb{R}) : B = -B^t\}$, ou seja $\mathfrak{so}(3,\mathbb{R})$ é a algebra de Lie das matrizes 3×3 antissimétricas com o colchete sendo o comutador (por que é subálgebra de $Lie(GL(3,\mathbb{R}))$).

Lembrando que $SL(2,\mathbb{R}) = \det^{-1}(\{1\}) \subset GL(2,\mathbb{R})$ e que $d(\det)_I(B) = \operatorname{tr}(B)$, calculamos, pela mesma observação anterior que $\mathfrak{sl}(2,\mathbb{R}) = \{B \in M(2,\mathbb{R}) : \operatorname{tr}(B) = 0\}$ com o colchete do comutador novamente.

Vamos dar bases para as duas álgebras de Lie e mostrar que elas não são isomorfas pela observação do Roger.

Uma base para $\mathfrak{so}(3,\mathbb{R})$ pode ser

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

E depois de um cálculo meio chato dos colchetes (lembrando que $C^t = -C$ e $(FG) = (F^tG^t)^t$ nessas matrizes) temos

$$[A,B] = C \quad [B,C] = A \quad [A,C] = -B$$

Note que o colchete de dois vetores L.I leva em um terceiro L.I aos dois.

Uma base para $\mathfrak{sl}(2,\mathbb{R})$ é dada por

$$E = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad F = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad G = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Calculando os colchetes, achamos

$$[E, F] = 2F$$
 $[F, G] = E$ $[E, G] = -2G$

Mas então, o colchete em $\mathfrak{sl}(2,\mathbb{R})$ leva dois vetores em L.I (digamos E,F) em um vetor L.D com os dois 2F. Portanto $\mathfrak{so}(3,\mathbb{R}) \not\cong \mathfrak{sl}(2,\mathbb{R})$.

Exercise 3.5.

Proof. Para calcular $\mathfrak{sl}(2,\mathbb{C})$ e $\mathfrak{so}(3,\mathbb{C})$, exatamente as mesmas contas anteriores servem, mas, curiosamente, sobre os complexos, as algebras de Lie são isomorfas. Usando os mesmos vetores que na questão anterior e definindo $T:\mathfrak{so}(3,\mathbb{C})\to\mathfrak{sl}(2,\mathbb{C})$ por

$$A \mapsto \frac{i}{2}(F+G)$$

$$B \mapsto \frac{1}{2}(G-F)$$

$$C \mapsto \frac{i}{2}(E)$$

Vemos que T manda linearmente uma base em outra, logo é invertível. Falta verificar que é homomorfismo de álgebras de Lie, para isso temos que verificar que preserva o colchete, segue as computações necessárias.

$$[TA, TB] = [(F+G)i/2, (G-F)/2] = ([F,G] + [G,-F])i/4 = [F,G]i/2 = Ei/2 = TC$$

$$[TB, TC] = [(G-F)/2, Ei/2] = ([G,E] - [F,E])i/4 = (2G+2F)i/4 = (G+F)i/2 = TA$$

$$[TC, TA] = [Ei/2, (F+G)i/2] = -([E,F] + [E,G])/4 = -(2F-2G)/4 = (G-F)/2 = TB$$

segue que T é homomorfismo. Sobre se $SO(3,\mathbb{C})$ e $SL(2,\mathbb{C})$ serem diffeomorfas ou não, não sei fazer. \square

Exercise 3.6.

Proof. (1.a) É fácil ver que D é suave de dimensão 2, pois podemos escolher os campos suaves em SO(3) associados a e_1 e e_2 em $\mathfrak{so}(3)$. Mais precisamente, os campos suaves $d(L_g)e_1$ e $d(L_g)e_2$ definidos em toda variedade por definição geram D pontualmente, logo D é suave.

(1.b) Como os campos são associados a translação, vale que

$$d(L_g)([X,Y]) = [d(L_g)X, d(L_g)Y]$$

portanto basta checar na identidade. Mas vimos que $[e_1, e_2] = e_3 \notin \langle e_1, e_2 \rangle$, portanto a distribuição não é involutiva.

- (1.c) Pelo teorema de Frobënius, D é integrável se e somente se for involutiva, como não é involutiva, não é integrável.
- (2) Como $SO(3,\mathbb{R}) \subset GL(3,\mathbb{R})$ é subgrupo de Lie, para encontrar uma curva integral de $SO(3,\mathbb{R})$, basta aplicar a exponenciação em $GL(3,\mathbb{R})$. A curva integral dada por $X = e_1$ começando no ponto g será $g \cdot \exp(te_1)$

Identificando \mathbb{C} com o grupo de matrizes

$$a+ib = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a & -b \\ 0 & b & a \end{pmatrix}$$

é fácil verificar que e_1 é mandado em i e $\exp(e_1t)$ terá exatamente o mesmo papel que $\exp(it)$. Isso é só uma forma fácil de ver que, expandindo a definição de $\exp(e_1t)$ teremos algo do tipo

$$\exp(e_1 t) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sin(t) & -\cos(t) \\ 0 & \cos(t) & \sin(t) \end{pmatrix}$$

(que pode ser explicitamente verificado expandindo a conta em cada coordenada e usando as expansões de Taylor). Segue que as curvas integrais são fechadas com período 2π . Já sabemos que ela deveriam ser completas pois SO(3) é compacto e portanto fechadas (por serem imagens de \mathbb{R}). Mas verifica-se justamente que as curvas são rotações sobre o primeiro eixo em SO(3).