Two-stage cluster sampling estimation

Week 7 (5.3)

Stat 260, St. Clair

1/23

3 / 23

Design: Two-Stage Cluster Sample

Defined: We take a **SRS of clusters** and take a **SRS of observation units** within each selected cluster.

https://spot.pcc.edu/~evega/section-4.html

Design: One-Stage Cluster Sample

Defined: We take a SRS of n clusters and survey every observation unit in selected clusters.

https://spot.pcc.edu/~evega/section-4.html

Design: Two-Stage Cluster Sample

- Primary Sampling Units (PSU): clusters
 - $\circ~N$: number of clusters in the population
 - $\circ~$ n: number of clusters sampled
- Secondary Sampling Units (SSU): observation units
 - $\circ \ y_{ij}$: measurement for unit j in cluster i
 - $\circ \,\, M_i$: number of observation units in cluster i
 - $\circ \ m_i \leq M_i$: number of sampled observation units in cluster i
 - $\circ \ M_0 = \sum_{i=1}^N M_i$: total number of observation units in the population

4 / 23

Example: California API scores

A SRS of 40 school districts was selected from the 757 districts in the state.
 Data from a SRS of schools within each selected district was collected.
 Design??

Inclusion probabilities: Two-Stage Cluster

What is the probability that unit j from cluster i is selected?

5 / 23

Sampling weights: Two-Stage Cluster

What is the sampling weight for unit j from cluster i under a one-stage cluster design?

Estimation plan: Two-Stage Cluster

• One option! Use an unbiased Horvitz-Thompson estimator to estimate the (overall) population total

$$\hat{t}_{HT} = \sum_{ ext{sampled units}} w_{ij} y_{ij}$$

Population Total: Two-Stage Cluster

- Parameter: $t = \sum_{i=1}^N \sum_{j=1}^{M_i} y_{ij} = \sum_{i=1}^N t_i$
- · Unbiased Estimator:

$$\hat{t}_{unb} = \sum_{i=1}^n rac{N}{n} M_i ar{y}_i = \sum_{i=1}^n rac{N}{n} \hat{t}_i$$

where \hat{t}_i is the *estimated* total response in cluster i.

· Standard error:

$$SE(\hat{t}_{unb}) = \sqrt{N^2 \left(1 - rac{n}{N}
ight) rac{s_t^2}{n} + rac{N}{n} \sum_{i=1}^n \left(1 - rac{m_i}{M_i}
ight) M_i^2 rac{s_i^2}{m_i}}$$

where s_t is the sample standard deviation of *estimated* cluster totals and s_i is the sample SD within cluster i.

Population Mean: Two-Stage Cluster

- Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$
- Assume that M_0 is known
- · Unbiased Estimator:

$$\hat{ar{y}}_{unb} = rac{\hat{t}_{\;unb}}{M_0}$$

· Standard error:

$$SE(\hat{ar{y}}_{unb}) = rac{SE(\hat{t}_{unb})}{M_0}$$

9 / 23

Population Proportion: Two-Stage Cluster

- Parameter: $p=rac{t}{M_0}$
- · Use formulas for mean where
 - $\circ \,\, {ar y}_i = {\hat p}_i$ is cluster sample proportion
 - $\circ \; \hat{t}_i$ estimates the number of observation units in cluster i that are a "success"

$$egin{aligned} \circ \ s_i^2 = rac{m_i}{m_i-1} \hat{p}_i (1-\hat{p}_i) \end{aligned}$$

Example: California API scores

Estimate the number of schools that have over 50% of students who are eligible for a subsidized meal.

```
> schools$meals_level <- ifelse(schools$meals > 50, "above 50%", "509
> glimpse(schools)
Rows: 126
Columns: 11
                <chr> "Alta-Dutch Flat Elementary", "Tenaya Elementar
$ sname
                <int> 3269, 5979, 4958, 4957, 4956, 4915, 2548, 2550
$ snum
                <chr> "Alta-Dutch Flat Elem", "Big Oak Flat-Grvlnd Ur
$ dname
                <int> 15, 63, 83, 83, 83, 117, 132, 132, 132, 152, 15
$ dnum
                <int> 821, 773, 600, 740, 716, 811, 472, 520, 568, 59
$ api00
                <int> 36, 55, -32, 0, 5, 32, 40, 26, -21, 6, -10, 29
$ growth
                <int> 27, 43, 33, 11, 5, 25, 78, 76, 68, 42, 63, 54,
$ meals
$ ell
                <int> 0, 0, 5, 4, 2, 5, 38, 34, 34, 23, 42, 24, 3, 6
                <int> 152, 312, 173, 201, 147, 234, 184, 512, 543, 33
$ enroll
$ district_size <int> 1, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
$ meals_level <chr>> "50% or below", "50% or below", "50% or below"
```

Example: California API scores

```
> schools_by_district <- schools %>%
+ group_by(dnum) %>% # group by cluster (district number)
+ summarize(p_hat = mean(meals_level == "above 50%"),
+ m_i = n(), # sample size per cluster
+ M_i = first(district_size), # pop size per cluster
+ t_hat_i = M_i*p_hat) %>%
+ arrange(desc(M_i)) # arrange by big to small clusters
> kable(schools_by_district, digits = 2)
```

dnum	p_hat	m_i	M_i	t_hat_i
620	1.00	5	72	72.0
570	0.80	5	36	28.8
575	0.00	5	28	0.0
638	0.40	5	14	5.6
200	1.00	5	11	11.0
731	0.20	5	9	1.8
596	0.00	5	7	0.0

Example: California API scores

Estimate the number of schools that have over 50% of students who are eligible for a subsidized meal.

```
> N <- 757 # number of clusters in pop
> n <- 40 # number of clusters sampled
> schools_by_district %>%
+ summarize(t_unb = (N/n)*sum(t_hat_i))
# A tibble: 1 x 1
    t_unb
    <dbl>
1 2729.
```

13 / 23

Example: California API scores

But, we should be using the survey package instead:

Example: California API scores

But, we should be using the survey package instead:

Population Mean: Two-Stage Cluster

• Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$

• What if M_0 is unknown!

Population Total: Two-Stage Cluster

• Parameter: $t=M_0ar{y}_{\mathcal{U}}$

• Assume that M_0 is known!!

• Biased Ratio Estimator:

$$\hat{t}_{\,r}=M_0\hat{ar{y}}_{\,r}$$

- Standard error: for large \boldsymbol{n}

$$SE(\hat{t}_{\,r})pprox M_0SE(\hat{ar{y}}_{\,r})$$

Population Mean: Two-Stage Cluster

• Parameter: $ar{y}_{\mathcal{U}} = rac{t}{M_0}$

• Assume that M_0 is unknown

• Biased Ratio Estimator:

$$\hat{ar{y}}_r = rac{\sum_{i=1}^n \hat{t}_{\,i}}{\sum_{i=1}^n M_i} = rac{\sum_{i=1}^n M_i ar{y}_{\,i}}{\sum_{i=1}^n M_i}$$

• **Standard error**: for large *n*:

$$SE(\hat{ar{y}}_r) pprox \sqrt{\left(1 - rac{n}{N}
ight) rac{\sum_{i=1}^n (M_i ar{y}_i - \hat{ar{y}}_r M_i)^2}{n ar{M}^2 (n-1)} + rac{1}{n N ar{M}^2} \sum_{i=1}^n \left(1 - rac{m_i}{M_i}
ight) M_i^2 rac{s_i^2}{m_i}}$$

17 / 23

Example: California API scores

Estimate the proportion of schools that have over 50% of students who are eligible for a subsidized meal.

Example: California API scores

```
> kable(schools_by_district, digits = 2)
```

dnum	p_hat	m_i	M_i	t_hat_i
620	1.00	5	72	72.0
570	0.80	5	36	28.8
575	0.00	5	28	0.0
638	0.40	5	14	5.6
200	1.00	5	11	11.0
731	0.20	5	9	1.8
596	0.00	5	7	0.0
639	0.00	5	7	0.0
781	0.00	5	6	0.0
295	0.00	5	5	0.0
403	0.00	5	5	0.0
480	0.40	5	5	2.0

Estimate the *proportion* of schools that have over 50% of students who are eligible for a subsidized meal.

Example: California API scores

21 / 23

Example: California API scores

But, we should be using the survey package instead: