Ryan 双路 ADC 模组硬件说明

1. 产品概述

Ryan 双路 ADC 模块是一款高性能、双通道的模数转换器(ADC)采集卡,核心采用 3PA1030 芯片,支持最高 50MSPS 的采样率与 10 位分辨率。模块集成了完备的模拟前端调 理电路 (基于 TPH2502 运放、TPH2501 运放等)、高稳定性电源管理电路,并引出所有数字 I/O,方便用户与 FPGA、MCU 等主控制器连接,适用于高速数据采集、工业控制等应用场景。

2. 产品特性

- 核心 ADC: 3PA1030,双通道,10位分辨率,50MSPS 采样率。
- 输入接口: 2路 SMA 接口, 配置为单端输入, 输入范围-5V~+5V。
- 模拟前端: 内置 TPH2502 高速运放调理电路,提供缓冲与抗混叠滤波。
- 电源需求: 单电源 5V 直流输入。
- 内部电源: 生成+3.3V(数字)、运放供电: +2.8V、-2.8V。
- 数字接口: 2.54mm 间距排针,包含 2x10 位数据总线、时钟、使能、溢出标志等。
- **扩展接口**: 预留蓝牙串口模块接口,支持无线数据传输(可选功能)。
- 板载指示灯: 电源指示灯 (PWR)。

3. 硬件接口定义

3.1 模拟信号输入接口

• SMA接口

- 通道 1 RXA: 对应 ADC 芯片 AIN1。
- 通道 2 RXB: 对应 ADC 芯片 AIN2。
- SMA 输入信号范围: -5V~+5V
- Ain 输入信号范围: 0V ~ 2V (默认最高 2V 模式)。严禁输入超过 AVDD (+3.3V) 或低于 AGND 的电压,否则可能永久损坏芯片。

• 3.2 40pin 引脚原理图如下

3.3 模数转换功能详解

模组通过 40pin 扩展口与 FPGA 进行连接,模数转换时钟由 FPGA 提供。模数转换功能的流程框图如下:

3PA1030 芯片的输入模拟电压转换范围是 0V~2V, 所以电压输入端需要先经过电压 衰减电路, 使输入 的-5V~+5V 之间的电压衰减到 0V~2V 之间, 然后经过 3PA1030 芯片 将模拟电压信号转换成数字信号。

3.4 原理图设计

Ryan 双路 ADC 模块主要由扩展接口、蓝牙拓展接口、模数转换(AD)芯片、电源电路、低通滤波器及衰减电路等部分构成。以下首先介绍扩展接口与电源电路部分。

如图所示,双路 AD 模块的引脚均连接至 40pin 接口,其中包括 10 位数据线、时钟信号及电源等引脚。电源转换部分采用 U1 将输入 5V 电压转换为 VCC+(+2.8V), U3 进一步将 VCC+转换为 VCC-(-2.8V),最终形成±2.8V 双电源,为双电源运放 TPH2501、TPH2502供电。此外,U4 负责将 5V 电压转换为 VCC(3.3V),用于其他电路模块。

衰减电路部分如下图所示(图略)。上下两路电路结构一致,现以上侧电路为例进行说明:输入模拟信号(V1)经衰减电路处理后,输出(VO)。两者之间的电压关系为: VO = VI / 5 + 1。

以下是 AD 模块与盘古 50K 开发板的管脚分配表. (注意: 这里的 17-23 管脚是有引出蓝牙引脚的,详情可以参考双路 AD 采集原理图)

管脚	ryan_ad	FPGA	管脚	ryan_ad	FPGA
1	GND		21	NC	AB9
2	5V		22	NC	Y9
3	AD10E	AB13	23	NC	V9
4	AD1D0	Y13	24	OTR2	U9
5	AD1D1	AB11	25	AD20E	U8
6	AD1D2	Y11	26	AD2D0	T8
7	AD1D3	W11	27	AD2D1	W8
8	AD1D4	V11	28	AD2D2	V7
9	AD1D5	AB10	29	AD2D3	AB8
10	AD1D6	AA10	30	AD2D4	AA8
11	AD1D7	Y10	31	AD2D5	Y6
12	AD1D8	W10	32	AD2D6	W6
13	AD1D9	T11	33	AD2D7	AB5
14	OTR1	R11	34	AD2D8	Y5
15	NC	Y12	35	AD2D9	AB4
16	AD1CLK	W12	36	AD2CLK	AA4
17	NC	U12	37	GND	
18	NC	T12	38	GND	
19	NC	U10	39	NC	
20	NC	T10	40	NC	

4. 使用方法与验证

4.1 上电前检查

- 1. 万用表确认供电电源为 5V DC, 极性正确。
- 2. 确认 ADC 的模拟输入范围在 0V ~ 2V 之间。
- 3. 使用优质同轴线缆连接信号源与模块的 SMA 接口。

4.2 连接步骤

- 1. **连接信号**: 将待采样的模拟信号(信号发生器)接入 RXA 或 RXB, 调节发送的波形。
- 2. 连接主控板: 将模块的 40pin 引脚与 FPGA 相连。
- 3. **量程检查**: 如果 OTR 引脚变为高电平,说明输入信号已超出量程,请减小信号幅度。

4.3 实物验证

实物连接图:

使用 PDS 和下载器给 FPGA 烧录程序后,我们使用信号发生器调整好要发送的波形信号,然后再抓取波形。可以看到,通道一通道二抓取的正弦波、三角波波形,且频率和幅值与信号发生器发的设定一致, 说明 ADC 模块验证成功。

5. 注意事项

- 静电防护 (ESD): ADC 和运放芯片对静电敏感, 拿取和操作时请做好防静电措施。
- **散热**: 长时间全速工作时,ADC 和运放芯片会有一定发热,属于正常现象。请保证空气流通,避免长时间过度烫手。
- **电源噪声**: 使用低噪声、高稳定性的电源为模块供电,巨大的电源噪声会严重影响 ADC 的动态性能。

6. 故障排除

现象可能原因及解决方案

PWR 灯不亮 检查 5V 电源。

输出数据全为 0 或全为

1

检查 OE 引脚是否已使能 (低电平); 检查时钟信号是否正常。

采样值随机跳动,噪声

大

检查电源质量;检查接地是否良好;检查信号源本身是否稳

定。

测量值偏差大

检查输入信号是否超量程 (观察 OTR 标志); 检查参考电压

配置。

7. 免责声明

用户在使用本产品时,应确保遵守所在国家的相关法律法规。因误操作(如电源反接、输入过压等)导致的产品损坏,不在保修范围之内。

8. 技术支持与资源

- 本产品为开源硬件,相关资源(原理图、PCB、BOM、示例代码)可在我们的 Github 仓库获取。
- 如有任何技术问题,欢迎通过官方客服渠道联系我们。