MATH 2602, Midterm 2

July 2nd, 2012

Name:	GTID:_	
Section:		

Problem	Points
1	
2	
3	
4	
5	

TOTAL:_____

Please do show all your work including intermediate steps. Partial credit is available.

Problem 1 (24 points).

Determine whether each of the following statements is true-or-false. If the statement is true, circle the " \mathbf{T} "; if false, circle the " \mathbf{F} ".

- $[T \setminus F]$ A general graph is Eulerian if and only if every vertex of the graph is even.
- $[\mathbf{T} \setminus \mathbf{F}]$ An Eulerian graph is Hamiltonian, but a Hamiltonian graph is not necessarily Eulerian.
- $[T \setminus F]$ A graph that contains a proper cycle cannot be Hamiltonian.
- $[T \setminus F]$ Any edge added to a tree must produce a cycle.
- $[\mathbf{T} \setminus \mathbf{F}]$ The complete graph K_4 has four vertices and four edges.
- $[\mathbf{T} \setminus \mathbf{F}]$ If A is the adjacency matrix of the graph K_5 , then the (2, 4)-entry of A^2 is 4.
- $[T \setminus F]$ A tree with more than one vertex has at most two leaves.
- $[T \setminus F]$ If a graph G has a unique spanning tree, then G is a tree.

Problem 2 (21 points).

A die is tossed ten times and the sequence of the outcomes is observed.

- 1. How many different sequences are possible?
- 2. How many of these sequences contain exactly two 1's?
- 3. How many of these sequences contain at most two 1's?

Problem 3 (15 points).

Find the coefficient of x^6 in the binomial expansion of

$$\left(2x + \frac{3}{x^2}\right)^{18}$$

Problem 4 (28 points).

Given the following two graphs G_1 and G_2

- 1. Find the adjacency matrix of G_1 ;
- 2. Explain why G_1 is not Hamiltonian;
- 3. Explain why G_2 is not Eulerian;
- 4. Show that G_1 and G_2 are isomorphic.

Problem 5 (12 points).

Do **ONE** of the following two problems.

a) In a group of 2n people, each person has at least n friends. Show that the group can be seated in a circle, each person next to at least one friend.

Hint: Consider a graph G on 2n vertices. v_av_b is an edge in graph G if and only if person a and person b are friends.

b) Prove that

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

Hint: Consider drawing n balls from a box with 2n balls.