Глобальная нормализация для уравнения Ферма: от $o^n = 2 \cdot n$ к ВТФ, с верификацией на Соq

Григорий Деденко

Аннотация Представлено прочтение рукописи Г. Л. Деденко, в котором вводится единый, унифицированный нормализующий фактор $o \in \mathbb{N}, \ o > 1$, не зависящий от показателя степени n. Постулируется, что для любого гипотетического натурального решения уравнения Ферма $x^n + y^n = z^n$ с n > 2 выполняется равенство $o^n = 2 \cdot n$ (эквивалентно, после стандартной параметризации, $\frac{p^n q}{l} = o$). Только из этого равенства элементарно следует, что o = 2 и $n \in \{1,2\}$; следовательно, решений для n > 2 не существует. Весь аргумент формулируется как условная импликация «глобальная нормализация \Rightarrow ВТФ» и полностью формализован на Соq. Доказательство импликации опирается только на элементарное сравнение роста функций; ограничения по чётности из параметризации устанавливаются отдельно (для полноты) и не входят в финальный шаг. Обсуждение функции $f(n) = (2n)^{1/n}$ служит для мотивации ϕ ормы нормализации и не используется в самом доказательстве.

Ключевые слова: Великая теорема Ферма · Деденко · нормализация · Ansatz · Coq · формальная верификация

1 Введение

Мы рассматриваем уравнение Ферма

$$x^{n} + y^{n} = z^{n}, \qquad x, y, z \in \mathbb{N}, \ n \in \mathbb{N}.$$
 (1)

В предлагаемом здесь прочтении, следуя рукописи Деденко, вводится единый глобальный нормализующий фактор $o \in \mathbb{N}$, o > 1, не зависящий от n, и постулируется, что для любого предполагаемого решения (1) с n > 2 выполняется

$$o^n = 2 \cdot n. \tag{2}$$

Эта нормализация позволяет анализировать все показатели степени одновременно. Простое сравнение роста функций затем показывает, что (2) выполняется только для (o, n) = (2, 1) или (2, 2); таким образом, для n > 2 решений не существует.

Мы формализуем вышеупомянутую условную импликацию на Coq. Алгебраическая параметризация для удобства записана над \mathbb{R} , в то время как ограничения по чётности доказываются над \mathbb{Z} . Предположение о глобальной нормализации представлено одним параметром o вместе с универсальным условием (2), применяемым к любому гипотетическому контрпримеру.

2 Алгебраическая постановка и чётность

Следуя стандартному приёму, положим $z:=m^n+p^n$ и $x:=m^n-p^n$ (изначально над \mathbb{R} , чтобы равенства в кольце были очевидны). Тогда

$$y^n = z^n - x^n = (m^n + p^n)^n - (m^n - p^n)^n$$

представляет собой сумму биномиальных коэффициентов с нечётными индексами. При переходе к $\mathbb Z$ подстановка подразумевает, что $z\pm x$ — чётные; в Coq это отражено в лемме $(parity_condition_Z)$. Эти факты о чётности логически не зависят от финального шага, основанного на росте функций, и включены для полноты.

3 Глобальная нормализация (Ansatz)

Мы фиксируем $o\partial uh\ o \in \mathbb{N}, \ o > 1$, и предполагаем:

Definition 1 (Принцип глобальной нормализации). Для любых $n, x, y, z \in \mathbb{N}$, где n > 2, если $x^n + y^n = z^n$ выполняется, то

$$o^n = 2 \cdot n. \tag{3}$$

Эквивалентно, после стандартной параметризации и в обозначениях рукописи, (3) принимает вид $\left(\frac{p^nq}{l}\right)^n=2\cdot n$ или $\frac{p^nq}{l}=o$. Анализ функции $f(n)=(2n)^{1/n}$ объясняет, почему выбор нормализатора в форме n-й cmenehu естественен, но эти аналитические свойства не используются в финальной импликации.

4 Формализация на Coq: рост и основная теорема

В реализации на Соq доказываются элементарные сравнения роста $2^n > 2n$ для $n \ge 3$ и $3^n > 2n$ для $n \ge 1$, которые объединены в:

Lemma 1. Ecnu o > 1 u $o^n = 2 \cdot n$, $e de n \ge 1$, mo(o, n) = (2, 1) unu (2, 2).

В файле Coq это соответствует integer_solution_o. Принимая принцип глобальной нормализации в качестве гипотезы, мы получаем:

Theorem 1 (ВТФ из глобальной нормализации). Предположим Определение 1. Тогда для любого n > 2 не существует решений уравнения (1) в \mathbb{N} . В Coq: fermat_last_theorem_from_normalization.

Доказательство (Идея). Для заданного n > 2 и гипотетического решения, (3) даёт $o^n = 2 \cdot n$; согласно Лемме 1, это приводит к $n \in \{1, 2\}$, что является противоречием.

Для полноты, реализация также включает следствие, в котором выбирается o=2 («нормализация с полным покрытием»), что приводит к $2^n=2 \cdot n$ и тому же противоречию; см. fermat_last_theorem_with_o_two.

5 Что не предполагается

Представленное здесь прочтение ne опирается на какие-либо безусловные сравнения, такие как $(m^n+p^n)^n-(m^n-p^n)^n\equiv 0\pmod{2n}$ (которое в общем случае неверно). Вместо этого, единственным дополнительным предположением является существование единого глобального нормализатора o>1, удовлетворяющего (2) для любого гипотетического контрпримера.

6 Соответствие между статьёй и кодом на Соо

Статья (пункт)	Формализация на Coq (лемма/теорема)
Алгебраическая параметризация над \mathbb{R} ; факты о чётности целых чисел	<pre>sum_diff_from_parameters_R, sum_diff_from_parameters_Z, parity_condition_Z.</pre>
Принцип глобальной нормализации (фиксированный $o > 1$, не зависящий от n)	Секция Normalization_Parameter: Variable o, normalization_gt1, normalization_equation.
Сравнение экспоненциального и линейного роста	pow2_gt_linear, pow3_gt_linear.
Только $(o,n)=(2,1),(2,2)$ являются решениями $o^n=2n$	integer_solution_o.
ВТФ из принципа нормализации	fermat_last_theorem_from_normalization.
Необязательное следствие при «o = 2»	fermat_last_theorem_with_o_two.

Таблица 1. Соответствие между шагами в статье и реализацией на Сод.

7 Заключение

При единственном предположении о глобальной нормализации $o^n = 2 \cdot n$, применимом к любому гипотетическому контрпримеру, в файле Соq выводится ВТФ для всех n > 2 с использованием только элементарных лемм о росте функций. Ограничения по чётности, вытекающие из параметризации, проверяются отдельно. Аналитическое обсуждение функции $f(n) = (2n)^{1/n}$ мотивирует форму нормализатора в виде n-й степени, но не используется в финальной импликации.

Приложение: избранные объявления Соф (имена)

 $\label{lem:condition_Z} $\sup_{\ \ \ \ } \sup_{\ \ \ \ \ \ } \inf_{\ \ \ \ \ } from_parameters_Z, \quad parity_condition_Z, \\ pow2_gt_linear, \quad pow3_gt_linear, \quad integer_solution_o, \quad Normalization_Parameter \\ (cekturs), fermat_last_theorem_from_normalization, fermat_last_theorem_with_o_two. \\ \end{cases}$

Список литературы

- 1. A. Wiles. Modular elliptic curves and Fermat's Last Theorem. Annals of Mathematics 141 (1995), 443–551. (Рус. пер.: Уайлс Э. Модулярные эллиптические кривые и Великая теорема Ферма)
- 2. G. L. Dedenko. The "Difficulties" in Fermat's Original Discourse on the Indecomposability of Powers Greater Than a Square: A Retrospect. Preprint, 2025. DOI: 10.13140/RG.2.2.24342.32321. (Рус. пер.: Деденко Г. Л. «Острые углы» в рассуждении Пьера Ферма о неразложимости степени выше квадрата (обзор) DOI: 10.13140/RG.2.2.24531.39207/12)
- 3. The Coq Development Team. The Coq Proof Assistant. https://coq.inria.fr. (Рус. пер.: Команда разработчиков Coq. Система доказательства теорем Coq)