Final Review

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Exam code

- Exam on Dec 21 (7:40-)8:00-9:40 at Dong Shang Yuan 407 (lecture classroom)
- Finish the exam paper by yourself
- Allowed:
 - Calculator, watch (not smart)
- Not allowed:
 - Books, materials, cheat sheet, ...
 - Phones, any smart device
- No entering after 8:30
- Early submission period: 8:30--

Grading policy

- Attendance and participance: 5%
- Assignments: 35%
- Midterm exam: 20%
- Project: 10%
- Final exam: 30%

Covered topics

- Basics
 - Graphs, paths/walks/cycles, bipartite graphs
- Connectivity
- Trees
- Matchings
- Coloring
- Planarity
- Ramsey Theory

Basic Concepts

Graphs

- A graph G is a pair (V, E)
 - *V*: set of vertices
 - *E*: set of edges
 - $e \in E$ corresponds to a pair of endpoints $x, y \in V$
- Two graphs $G_1 = (V_1, E_1)$, $G_1 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \to V_2$ s.t.

$$e = \{a, b\} \in E_1 \Leftrightarrow f(e) := \{f(a), f(b)\} \in E_2$$

We mainly focus on Simple graph:
No loops, no multi-edges

Example: Complete graphs

• There is an edge between every pair of vertices

Example: Regular graphs

• Every vertex has the same degree

Example: Bipartite graphs

- The vertex set can be partitioned into two sets X and Y such that every edge in G has one end vertex in X and the other in Y
- Complete bipartite graphs

Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

Figure 1.4

Subgraphs

- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and the ends of an edge $e \in E(H)$ are the same as its ends in G
 - H is a spanning subgraph when V(H) = V(G)
 - The subgraph of G induced by a subset $S \subseteq V(G)$ is the subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S

Subgraph (in red)

Induced Subgraph

Paths (路径)

- A path is a nonempty graph P=(V,E) of the form $V=\{x_0,x_1,\dots,x_k\}\quad E=\{x_0x_1,x_1x_2,\dots,x_{k-1}x_k\}$ where the x_i are all distinct
- P^k : path of length k (the number of edges)

Walk (游走)

- A walk is a non-empty alternating sequence $v_0e_1v_1e_2\dots e_kv_k$
 - The vertices not necessarily distinct
 - The length = the number of edges
- Proposition (1.2.5, W) Every u-v walk contains a u-v path

Cycles (环)

- If $P=x_0x_1\dots x_{k-1}$ is a path and $k\geq 3$, then the graph $C\coloneqq P+x_{k-1}x_0$ is called a cycle
- C^k : cycle of length k (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

- Two vertices $a \neq b$ are called adjacent if they are joined by an edge
 - N(x): set of all vertices adjacent to x
 - neighbors of x
 - A vertex is isolated vertex if it has no neighbors

Handshaking Theorem (Euler 1736)

- Theorem A finite graph *G* has an even number of vertices with odd degree.
- Proof The degree of x is the number of times it appears in the right column. Thus

$$\sum_{x \in V(G)} \deg(x) = 2|E(G)|$$

edge	ends
a	x, z
b	y,w
c	x, z
d	z,w
e	z,w
f	x, y
g	z,w

Figure 1.1

Degree

- Minimal degree of $G: \delta(G) = \min\{d(v): v \in V\}$
- Maximal degree of $G: \Delta(G) = \min\{d(v): v \in V\}$
- Average degree of $G: d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{2|E|}{|V|}$
- All measures the 'density' of a graph

• $d(G) \ge \delta(G)$

Distance and diameter

- The distance $d_G(x,y)$ in G of two vertices x,y is the length of a shortest $x{\sim}y$ path
 - if no such path exists, we set $d(x, y) := \infty$
- The greatest distance between any two vertices in G is the diameter of G

Girth

• The minimum length of a cycle in a graph G is the girth g(G) of G

- Example: The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties
- A tree has girth ∞

Bipartite graphs

Theorem (1.2.18, W, Kőnig 1936)
 A graph is bipartite ⇔ it contains no odd cycle

Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Trees

Definition and properties

- A tree is a connected graph T with no cycles
- Recall that a graph is bipartite
 ⇔ it has no odd cycle
- (Ex 3, S1.3.1, H) A tree of order $n \ge 2$ is a bipartite graph

- Recall that an edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G
- ⇒ Every edge in a tree is a bridge
- T is a tree \iff T is minimally connected, i.e. T is connected but T-e is disconnected for every edge $e \in T$

Equivalent definitions (Theorem 1.5.1, D)

- T is a tree of order n
 - \Leftrightarrow Any two vertices of T are linked by a unique path in T
 - $\Leftrightarrow T$ is minimally connected
 - i.e. T is connected but T e is disconnected for every edge $e \in T$
 - $\Leftrightarrow T$ is maximally acyclic
 - i.e. T contains no cycle but T+xy does for any non-adjacent vertices $x,y\in T$
 - \Leftrightarrow (Theorem 1.10, 1.12, H) T is connected with n-1 edges
 - \Leftrightarrow (Theorem 1.13, H) T is acyclic with n-1 edges

Leaves of tree

- A vertex of degree 1 in a tree is called a leaf
- Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order $n \geq 2$. Then T has at least two leaves
- (Ex3, S1.3.2, H) Let T be a tree with max degree Δ . Then T has at least Δ leaves
- (Ex10, S1.3.2, H) Let T be a tree of order $n \ge 2$. Then the number of leaves is

$$2 + \sum_{v:d(v)\geq 3} (d(v)-2)$$

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex

Properties

- The center of a tree
- Theorem (1.15, H) In any tree, the center is either a single vertex or a pair of adjacent vertices
- Tree as subgraphs
- Theorem (1.16, H) Let T be a tree of order k+1 with k edges. Let G be a graph with $\delta(G) \geq k$. Then G contains T as a subgraph

Spanning tree

- Given a graph G and a subgraph T, T is a spanning tree of G if T is a tree that contains every vertex of G
- Example: A telecommunications company tries to lay cable in a new neighbourhood
- Proposition (2.1.5c, W) Every connected graph contains a spanning tree

Matchings

Definitions

- A matching is a set of independent edges, in which no pair shares a vertex
- The vertices incident to the edges of a matching M are M-saturated; the others are M-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is n!
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n=(2n-1)(2n-3)\cdots 1=(2n-1)!!$

Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

 Every maximum matching is maximal, but not every maximal matching is a maximum matching

Stable matching

- A family $(\leq_v)_{v\in V}$ of linear orderings \leq_v on E(v) is a set of preferences for G
- A matching M in G is stable if for any edge $e \in E \setminus M$, there exists an edge $f \in M$ such that e and f have a common vertex v with $e <_v f$
 - Unstable: There exists $xy \in E \setminus M$ but $xy', x'y \in M$ with $xy' <_x xy$ $x'y <_y xy$

3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

```
Men \{x, y, z, w\} Women \{a, b, c, d\}

x: a > b > c > d a: z > x > y > w

y: a > c > b > d b: y > w > x > z

z: c > d > a > b c: w > x > y > z

w: c > b > a > d d: x > y > z > w
```

Gale-Shapley Proposal Algorithm

- Input: Preference rankings by each of n men and n women
- Idea: Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom
- Iteration: Each man proposes to the highest woman on his preference list who has not previously rejected him
 - If each woman receives exactly one proposal, stop and use the resulting matching
 - Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list
 - Every woman receiving a proposal says "maybe" to the most attractive proposal received

Example

Example (gif)

Theoretical guarantee for the Proposal Algorithm

- Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching
- Who proposes matters (jobs/candidates)
- When the algorithm runs with women proposing, every woman is as least as happy as when men do the proposing
 - And every man is at least as unhappy

3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

```
Men \{x, y, z, w\} Women \{a, b, c, d\}

x: a > b > c > d a: z > x > y > w

y: a > c > b > d b: y > w > x > z

z: c > d > a > b c: w > x > y > z

w: c > b > a > d d: x > y > z > w
```

Coloring

Motivation: Scheduling and coloring

- University examination timetabling
 - Two courses linked by an edge if they have the same students
- Meeting scheduling
 - Two meetings are linked if they have same member

Definitions

- Given a graph G and a positive integer k, a k-coloring is a function $K:V(G) \longrightarrow \{1, ..., k\}$ from the vertex set into the set of positive integers less than or equal to k. If we think of the latter set as a set of k "colors," then K is an assignment of one color to each vertex.
- We say that K is a proper k-coloring of G if for every pair u, v of adjacent vertices, $K(u) \neq K(v)$ that is, if adjacent vertices are colored differently. If such a coloring exists for a graph G, we say that G is k-colorable

Chromatic number

- Given a graph G, the chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable
- Examples

$$\chi(C_n)=\left\{egin{array}{ll} 2 & ext{if n is even,} \\ 3 & ext{if n is odd,} \end{array}
ight. \ \chi(P_n)=\left\{egin{array}{ll} 2 & ext{if $n\geq 2$,} \\ 1 & ext{if $n=1$,} \end{array}
ight. \ \chi(K_n)=n, \ \chi(E_n)=1, \ \chi(K_{m,n})=2. \end{array}
ight.$$

• (Ex5, S1.6.1, H) A graph G of order at least two is bipartite \iff it is 2-colorable

Bounds on Chromatic number

- Theorem (1.41, H) For any graph G of order $n, \chi(G) \leq n$
- It is tight since $\chi(K_n) = n$
- $\chi(G) = n \Leftrightarrow G = K_n$

Greedy algorithm

- First label the vertices in some order—call them $v_1, v_2, ..., v_n$
- Next, order the available colors (1,2,...,n) in some way
 - Start coloring by assigning color 1 to vertex v_1
 - If v_1 and v_2 are adjacent, assign color 2 to vertex v_2 ; otherwise, use color 1
 - To color vertex v_i , use the first available color that has not been used for any of v_i 's previously colored neighbors

Examples: Different orders result in different number of colors

Bound of the greedy algorithm

- Theorem (1.42, H) For any graph G, $\chi(G) \leq \Delta(G) + 1$
- The equality is obtained for complete graphs and cycles with an odd number of vertices

Brooks's theorem

• Theorem (1.43, H; 5.1.22, W; 5.2.4, D; Brooks 1941) If G is a connected graph that is neither an odd cycle or a complete graph, then $\chi(G) \leq \Delta(G)$

Chromatic number and clique number

- The clique number $\omega(G)$ of a graph is defined as the order of the largest complete graph that is a subgraph of G
- Example: $\omega(G_1) = 3$, $\omega(G_2) = 4$

• Theorem (1.44, H) For any graph G, $\chi(G) \ge \omega(G)$

Chromatic number and independence number

• Theorem (1.45, H; Ex6, S1.6.2, H) For any graph
$$G$$
 of order n ,
$$\frac{n}{\alpha(G)} \le \chi(G) \le n+1-\alpha(G)$$

The Four Color Problem

- Q: Is it true that the countries on any given map can be colored with four or fewer colors in such a way that adjacent countries are colored differently?
- Theorem (Four Color Theorem) Every planar graph is 4-colorable
- Theorem (Five Color Theorem) (1.47, H) Every planar graph is 5colorable

Theorem 1.35. If G is a planar graph, then G contains a vertex of degree at most five. That is, $\delta(G) \leq 5$.

Definition and examples

- It is brought up by George David Birkhoff in 1912 in an attempt to prove the four color theorem
- Define $c_G(k)$ to be the number of different colorings of a graph G using at most k colors
- Examples:
 - How many different colorings of K_4 using 4 colors?
 - 4 × 3 × 2 × 1
 - $c_{K_4}(4) = 24$
 - How many different colorings of K_4 using 6 colors?
 - $6 \times 5 \times 4 \times 3$
 - $c_{K_4}(6) = 360$
 - How many different colorings of K_4 using 2 colors?
 - 0
 - $c_{K_4}(2) = 0$

Examples

• If $k \ge n$

$$c_{K_n}(k) = k(k-1)\cdots(k-n+1)$$

• If *k* < *n*

$$c_{K_n}(k) = 0$$

- *G* is *k*-colorable $\iff \chi(G) \le k \iff c_G(k) > 0$
- $\chi(G) = \min\{k \ge 1 : c_G(k) > 0\}$

Chromatic recurrence

• G - e and G/e

FIGURE 1.98. Examples of the operations.

• Theorem (1.48, H; 5.3.6, W) Let G be a graph and e be any edge of G. Then

$$c_G(k) = c_{G-e}(k) - c_{G/e}(k)$$

Use chromatic recurrence to compute $c_G(k)$

- Example: Compute $c_{P_3}(k) = k^4 3k^3 + 3k^2 k$
- Check: $c_{P_3}(1) = 0$, $c_{P_3}(2) = 2$

FIGURE 1.102. Two 2-colorings of P_3

More examples

• Path P_{n-1} has n-1 edges (n vertices)

$$c_{P_{n-1}}(k) = k(k-1)^{n-1}$$

Any tree T on n vertices

$$c_T(k) = k(k-1)^{n-1}$$

• Cycle C_n

$$c_{C_n}(k) = (k-1)^n + (-1)^n(k-1)$$

- When n is odd, $c_{C_n}(2) = 0$, $c_{C_n}(3) > 0$
- When n is even, $c_{C_n}(2) > 0$

Properties of chromatic polynomials

- Theorem (1.49, H; Ex 3, S1.6.4, H) Let G be a graph of order n
 - $c_G(k)$ is a polynomial in k of degree n
 - The leading coefficient of $c_G(k)$ is 1
 - The constant term of $c_G(k)$ is 0
 - If G has i components, then the coefficients of $k^0, ..., k^{i-1}$ are 0
 - G is connected \Leftrightarrow the coefficient of k is nonzero
 - The coefficients of $c_G(k)$ alternate in sign
 - The coefficient of the k^{n-1} term is -|E(G)|
 - A graph G is a tree \iff $c_G(k) = k(k-1)^{n-1}$

 \Leftrightarrow (Theorem 1.10, 1.12, H) T is connected with n-1 edges

• A graph G is complete $\Leftrightarrow c_G(k) = k(k-1)\cdots(k-n+1)$

Planarity

Definition and examples

- A graph G is said to be planar if it can be drawn in the plane in such a way that pairs of edges intersect only at vertices
- If G has no such representation, G is called nonplanar
- A drawing of a planar graph G in the plane in which edges intersect only at vertices is called a planar representation (or a planar embedding) of G

Region

- Given a planar representation of a graph G, a region is a maximal section of the plane in which any two points can be joined by a curve that does not intersect any part of G
- The region R_7 is called the exterior (or outer) region

An edge bounds a region

 An edge can come into contact with either one or two regions

FIGURE 1.76. Edges e_1 , e_2 , and e_3 touch one region only.

- Example:
 - Edge e_1 is only in contact with one region S_1
 - Edge e_2 , e_3 are only in contact with S_2
 - Each of other edges is in contact with two regions
- An edge e bounds a region R if e comes into contact with R and with a region different from R
- The bounded degree b(R) is the number of edges that bound the region
 - Example: $b(S_1) = b(S_3) = 3$, $b(S_2) = 6$

The relationship between numbers of vertices, edges and regions

- The number of vertices *n*
- The number of edges *m*
- ullet The number of regions r

$$n = 7$$

$$m = 9$$

$$r = 4$$

$$n = 8$$

$$m = 12$$

$$r = 6$$

$$n = 10$$

$$m = 9$$

$$r = 1$$

Euler's formula

• Theorem (1.31, H; Euler 1748) If G is a connected planar graph with n vertices, m edges, and r regions, then

$$n-m+r=2$$

- Need Lemma: (Ex4, S1.5.1, H) Every tree is planar
- (Ex6, S1.5.2, H) Let G be a planar graph with k components. Then n-m+r=k+1

$K_{3,3}$ is nonplanar

• Theorem (1.32, H) $K_{3,3}$ is nonplanar

FIGURE 1.72. Original routes.

Upper bound for *m*

- Theorem (1.33, H) If G is a planar graph with $n \ge 3$ vertices and m edges, then $m \le 3n 6$. Furthermore, if equality holds, then every region is bounded by 3 edges.
- (Ex4, S1.5.2, H) Let G be a connected, planar, K_3 -free graph of order $n \ge 3$. Then G has no more than 2n-4 edges
- Corollary (1.34, H) K_5 is nonplanar
- Theorem (1.35, H) If G is a planar graph, then $\delta(G) \leq 5$
- (Ex5, S1.5.2, H) If G is bipartite planar graph, then $\delta(G) < 4$

Subdivision 细分

- A subdivision of an edge e in G is a substitution of a path for e
- A graph H is a subdivision of G if H can be obtained from G by a finite sequence of subdivisions
- Example:
 - The graph on the right contains a subdivision of K_5
 - In the below, *H* is a subdivision of *G*

Kuratowski's Theorem

• Theorem (1.39, H; Ex1, S1.5.4, H) A graph G is planar \iff every subdivision of G is planar

• Theorem (1.40, H; Kuratowski 1930) A graph is planar \iff it contains no subdivision of $K_{3,3}$ or K_5

Ramsey Theory

The friendship riddle

 Does every set of six people contain three mutual acquaintances or three mutual strangers?

https://plus.maths.org/content/friends-and-strangers Wikipedia

(classical) Ramsey number

- A 2-coloring of the edges of a graph ${\cal G}$ is any assignment of one of two colors of each of the edges of ${\cal G}$
- Let p and q be positive integers. The (classical) Ramsey number associated with these integers, denoted by R(p,q), is defined to be the smallest integer n such that every 2-coloring of the edges of K_n either contains a red K_p or a blue K_q as a subgraph
- It is a typical problem of extremal graph theory

Examples

- R(1,3) = 1
- (Ex2, S1.8.1, H) R(1, k) = 1
- R(2,4) = 4
- (Ex3, S1.8.1, H) R(2, k) = k
- Theorem (1.61, H) R(3,3) = 6

Examples (cont.)

• Theorem (1.62, H) R(3,4) = 9

Theorem A finite graph G has an even number of vertices with odd degree

• (Ex4, S1.8.1, H) R(p,q) = R(q,p)

Values /	known b	ounding	ranges fo	r Ramsev	numbers /	R(r. s	r) (sequence	∆212954₺	in the OEIS)
values /	KIIOWIII D	ounding	i aliyes iv	namsey	HIUHHDEIS	411140) (3Equelle	ME I ESSTE	III LIIE OLIGI

rs	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	40–42
4				18	25 ^[10]	36–41	49–61	59 ^[14] –84	73–115	92–149
5					43–48	58–87	80–143	101–216	133–316	149 ^[14] –442
6						102–165	115 ^[14] –298	134 ^[14] –495	183–780	204–1171
7							205–540	217–1031	252-1713	292–2826
8								282-1870	329–3583	343-6090
9									565-6588	581-12677
10										798–23556

Bounds on Ramsey numbers

- Theorem (1.64, H; 2.28, H) If $q \geq 2$, $q \geq 2$, then $R(p,q) \leq R(p-1,q) + R(p,q-1)$ Furthermore, if both terms on the RHS are even, then the inequality is strict Theorem A finite graph G has an even number of vertices with odd degree
- Theorem (1.63, H; 2.29, H) $R(p,q) \le {p+q-2 \choose p-1}$
- Theorem (1.65, H) For integer $q \ge 3$, $R(3, q) \le \frac{q^2 + 3}{2}$
- Theorem (1.66, H; Erdős and Szekeres 1935) If $p \ge 3$, $R(p,p) > |2^{p/2}|$

Graph Ramsey Theory

- Given two graphs G and H, define the graph Ramsey number R(G, H) to be the smallest value of n such that any 2-coloring of the edges of K_n contains either a red copy of G or a blue copy of H
 - The classical Ramsey number R(p,q) would in this context be written as $R(K_p,K_q)$
- Theorem (1.67, H) If G is a graph of order p and H is a graph of order q, then $R(G,H) \leq R(p,q)$
- Theorem (1.68, H) Suppose the order of the largest component of H is denoted as C(H). Then $R(G,H) \ge (\chi(G)-1)(C(H)-1)+1$

Graph Ramsey Theory (cont.)

• Theorem (1.69, H) $R(T_m, K_n) = (m-1)(n-1) + 1$

Theorem (1.45, H; Ex6, S1.6.2, H) For any graph G of order n, $\frac{n}{\alpha(G)} \le \chi(G) \le n + 1 - \alpha(G)$

A graph G is called k-critical if $\chi(G) = k$ and $\chi(G - v) < k$ for each vertex v of G.

- (a) Find all 1-critical and 2-critical graphs.
- (b) Give an example of a 3-critical graph.
- (c) If G is k-critical, then show that G is connected.
- (d) If G is k-critical, then show that $\delta(G) \geq k 1$.
- (e) Find all of the 3-critical graphs. Hint: Use part (d).

Theorem (1.16, H) Let T be a tree of order k+1 with k edges. Let G be a graph with $\delta(G) \ge k$. Then G contains T as a subgraph

Peterson graph

- The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties
- $\kappa = 3, \alpha = 4$
- Radius=2, diameter=2
- Has a Hamiltonian path but no Hamiltonian cycle
- Chromatic number is 3

