反设还存在另一个块 $B_t \in \mathcal{B}$, $B_t \neq B_s$ 且 $H \subseteq B_s \cap B_t$,则由 $|V(H)| \geq 2$ 可知, $|V(B_s) \cap V(B_t)| > 2$ 。这与结论 (3) 矛盾。这就是说,H 只会被包含在唯一的一个块中。

- (5) 对任意 $e = (x, y) \in E_i \cap E_j$, 应有 $x, y \in V_i \cap V_j$, 但由结论 (3) 可知, $V_i \cap V_j$ 中至多有 1 个顶点。所以就有 x = y。也即, e = (x, x) 是环。反过来,设 $v \in V_i \cap V_j$,由结论 (1) 可知,若 $(v, v) \in E(G)$,则有 $(v, v) \in E_i \cap E_j$ 。
- (6) $\cup \mathscr{B} \subseteq G$ 是显然的。下面证 $G \subseteq \cup \mathscr{B}$ 。

首先证明 G 中每一条非环的边都在 $\cup \mathscr{B}$ 中。对任意非环的边 $e = (u,v) \in E(G)$, $u \neq v$,由 (u,v) 导出的子图 $H = G[\{(u,v)\}]$ 是 2 阶图,且没有割点,从而由结论 (4) 可知,H 在 G 的某个块 B_s 中,从而 $e \in E(B_s) \subset E(\cup \mathscr{B})$ 。

下面证明 $V(G) \subseteq V(\cup \mathcal{B})$ 。由于 G 是连通图,所以 G 中每个顶点 v 至少与一个非环的 边相关联,而前面已经证明,每条非环的边都在 $\cup \mathcal{B}$ 中,从而 v 也在 $\cup \mathcal{B}$ 中。这就证明了 $V(G) \subseteq V(\cup \mathcal{B})$ 。

最后说明,G 中的每一个环也在 $\cup \mathscr{B}$ 中。设 $(v,v) \in E(G)$ 是 G 中任意一个环。前面已知, $v \in V(\cup \mathscr{B})$,也即,存在某个 $B_s \in \mathscr{B}$,使得 $v \in V(B_s)$ 。由结论 (1) 即有, $(v,v) \in E(B_s) \subseteq E(\cup \mathscr{B})$ 。。

这就证明了 $G \subseteq \cup \mathcal{B}$, 从而有 $G = \cup \mathcal{B}$ 。

再证原题。

证明: 充分性。

不妨设 G 中共有 k 个块,分别是 B_1, B_2, \cdots, B_k 。若 G 的每个块都是欧拉图,则由教材定理 8.1 可知,对 G 的每一个块 B_i ,都存在若干个边不重的圈 $S_i = \{C_{i_1}, C_{i_2}, \cdots, C_{i_{n_i}}\}$,使得 $B_i = \cup S_i$ 。令 $S = \bigcup_{i=1}^n S_i$,由引理 8.1(6) 可知, $G = \cup S$ 。下面证明,S 中的各圈也是边不重的。

设 C_{i_j} , $C_{s_t} \in S$, $C_{i_j} \neq C_{s_t}$ 是 S 中两个不同的圈。若 i = s, 则 C_{i_j} 和 C_{s_t} 同属一个块,而由前提,它们应该是边不重的。若 $i \neq s$,则由引理 8.1(5) 可知,若它们有公共边,则公共边只能是环。但,如果一个圈 C' 中含有环 (x,x),则 C' 只能是环本身,即 C' = (x,x) (否则,x 将在 C' 中连续出现两次,这与圈的定义矛盾)。这就是说,如果 C_{i_j} 与 C_{s_t} 有公共边 e,则 e = (x,x) 必为环,且 $C_{i_j} = C_{s_t} = G[\{e\}]$ 。这与前提 $C_{i_j} \neq C_{s_t}$ 矛盾。

这就证明了 $G = \cup S$ 是若干个边不重的圈的并,从而由教材定理 8.1 可知,G 是欧拉图。必要性。

若 G 是欧拉图,则由教材定理 8.1 可知, G 是若干个边不重的圈的并,记这些圈为 $S = \{C_1, C_2, \cdots C_r\}$ 。设 B_i 为 G 的任意一个块,令 $S_i = \{C_j \mid C_j \in S \land E(C_j) \cap E(B_i) \neq \emptyset\}$ 。显然, S_i 中的圈都是边不重的。下面证明 $B_i = \cup S_i$ 。

首先证明 $B_i \subseteq \cup S_i$ 。这是因为, B_i 的每条边 $e \in E(B_i)$ 都在某个圈 C_j 中(因为 $G = \cup S$),而由定义有 $C_j \in S_i$ 。所以有 $e \in E(C_j) \subseteq E(\cup S_i)$ 。这就是说, $E(B_i) \subseteq \cup S_i$ 。而 B_i 是连通的,所以每个顶点 v 至少关联于一条边 $e \in E(B_i) \subseteq E(\cup S_i)$,从而有 $v \in V(\cup S_i)$ 。也即 $V(B_i) \subseteq V(\cup S_i)$ 。这就证明了 $B_i \subseteq \cup S_i$ 。

下面证明 $\cup S_i \subseteq B_i$ 。若不然,就存在 $C_j \in S_i$,且 $C_j \not\subseteq B_i$ 。由 S_i 的定义,应当存在某条 边 $e = (u,v) \in E(C_j) \cap E(B_i)$ 。注意到 e 不可能是环(因为如果 e 是环,则必有 $C_j = e$ 。从而由 $C_j \cap B_i \neq \emptyset$ 可知, $e \in E(B_i)$, $\{e\} = C_j \subseteq B_i$,矛盾),所以必有 $u \neq v$ 。由引理 8.1(6) 可知, C_j 应当在某个块 B_s 之中(显然, $B_s \neq B_i$),从而有 $(u,v) \in E(B_i) \cap E(B_s)$, $u,v \in V(B_i) \cap V(B_s)$,而这与引理 8.1(3) 矛盾。

这就证明了 $B_i = \cup S_i$ 是若干个不相交的圈的并。由 B_i 的任意性和教材定理 8.1 可知,G 的每一个块都是欧拉图。