Gas de Bose

1.1 Cuánticos IV -reubicar-

algunos temitas sueltos:

números de ocupación

gas de Fermi $p y c_v$

gas de Fermi $p y c_v$

Condensado de Bose

El coeficiente lineal del virial $1/2^{5/2}=0.1767767$ sale considerando las $f_{\nu}(z)$ hasta orden uno y tirando términos más allá.

El requerimiento $\mu < 0$ viene de que el fundamental n_0 no puede tener población negativa

$$\begin{split} n_0 &= \frac{1}{\mathrm{e}^{\beta(e_0 - \mu)} - 1} = \frac{1}{\mathrm{e}^{-\beta\mu} - 1} \geq 0 \\ &= \mathrm{e}^{-\beta\mu} - 1 > 0 \quad \Rightarrow \quad \mu < 0 \end{split}$$

Con $\mu \to 0^-$ tenemos $n \to \infty$

En el caso del condensado establecemos desde

$$\frac{\lambda^3(T)}{v} = g_{3/2}(1)$$

que lleva para T_c (para v fijo) o v_c (para T fija) versiones evaluadas de la anterior ecuación.

Para la población de los estados excitados

$$p_x = \frac{h}{V^{1/3}} n_x \Rightarrow \mathbf{p} = \frac{h}{V^{1/3}} \mathbf{n}$$

¿El condensado BE requiere población de los niveles o V total de algún tipo? Tenia unas consultas agarradas con clip: ¿porqué hay una cúspide en C_v ? ¿transiciones?

$$\frac{n_{e_i}}{V} = \frac{1}{V} \frac{1}{z^{-1} \operatorname{e}^{\beta e_i} - 1} \leq \frac{1}{V(\operatorname{e}^{\beta e_i} - 1)} = \frac{1}{V(\sum_{l=1}^{\infty} (\beta e_i)^l / l!)}$$
 pués $z^{-1} = 1/z \leq 1$

 βe