Modifikácia skreslení v kužeľovom kartografickom zobrazení Slovenska pomocou Laplaceovej rovnice riešenej Metódou konečných prvkov

Andrea Ábrahámová, Margita Vajsáblová, Marek Macák

Katedra matematiky a deskriptívnej geometrie Stavebná fakulta STU v Bratislave

Obsah príspevku

- > Postup riešenia optimalizácie skreslení v konformnom kartografickom zobrazení:
- Formulácia Airyho-Kavrajského variačného kritéria
- Riešenie Laplaceovej rovnice
- Použitie Metódy konečných prvkov (MKP)
- Modifikované kartografické zobrazenia na území Slovenskej republiky:
- Lambertovo konformné zobrazenie SR (LCC_SR)
- Konformné kužeľové zobrazenie SR v normálnej polohe s minimalizáciou Strednej kvadratickej hodnoty (RMS) dĺžkového skreslenia
- Konformné kužeľové zobrazenie SR vo všeobecnej polohe
- Konformné kužeľové zobrazenie SR vo všeobecnej polohe s minimalizáciou Strednej kvadratickej hodnoty (RMS) dĺžkového skreslenia

Variačné kritérium na hodnotenie kartografických zobrazení

- V príspevku pracujeme s konformnými kartografickými zobrazeniami.
- ightharpoonup Označenie sférických a elipsoidických súradníc: šírka U a φ , dĺžka V a λ , izometrická šírka Q a q.
- ➤ Modul dĺžkového skreslenia m: pomer dĺžkového elementu dS v rovine zobrazenia k prislúchajúcemu elementu dĺžky ds na referenčnej ploche:

$$m = \frac{\mathrm{d} S}{\mathrm{d} s}$$

➤ Airyho-Kavrajského variačné súčtové kritérium hodnotí skreslenie na celej zobrazovanej ploche v konformnom zobrazení, a to pre *n* bodov vhodne rozmiestnených na území:

$$I^2 = \frac{1}{n} \sum_{i=1}^{n} (m_i - 1)^2$$
, príp. $I^2 = \frac{1}{n} \sum_{i=1}^{n} \ln^2 m_i$.

Metóda konečných prvkov v matematickej kartografii

Minimalizácia hodnoty Airyho-Kavrajského kritéria vedie k riešeniu Laplaceovej parciálnej diferenciálnej rovnice pre konformné zobrazenie:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u, \text{ kde } \Delta u = 0 \text{ na doméne } \Omega,$$

kde u je funkcia modulu m dĺžkového skreslenia.

- > Na riešenie Laplaceovej rovnice sme aplikovali Metódu konečných prvkov (MKP):
- 1. Aproximácia domény Ω delením na nepravidelnú trojuholníkovú sieť, na základe toho dochádza k diskretizácii domény na množinu elementov Ω^E , E = 1, ..., N.

Metóda konečných prvkov v matematickej kartografii

2. Prevod pôvodnej diferenciálnej formy ("silná forma") Laplaceovej rovnice na integrálnu formu ("slabá forma"), a to vynásobením váhovou funkciou w:

$$(\Delta u)w = 0w,$$

integrujeme cez prvky Ω^E a dostaneme:

$$\int_{\Omega^E} (\Delta u) w d\Omega = \int_{\partial \Omega^E} 0 dw.$$

Použitím Greenovej formule dostaneme:

$$\int_{\Omega^{E}} \left(\frac{\partial u}{\partial x} \frac{\partial w}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial w}{\partial y} \right) d\Omega - \int_{\partial \Omega^{E}} w \left(\frac{\partial u}{\partial x} n_{x} + \frac{\partial u}{\partial y} n_{y} \right) dS = 0,$$

kde n_x a n_y sú komponenty jednotkového normálového vektora na hranici domény Ω^E .

Metóda konečných prvkov v matematickej kartografii

3. Konštrukcia aproximačných funkcií ψ_j^E na elementoch Ω^E v tvare úplného polynómu, pričom toto približné riešenie je diferencovateľné s nenulovými deriváciami v slabej formulácii.

Následne približné riešenie upravíme do tvaru lineárnej kombinácie funkcií, potom tzv. Galerkinov rozklad a má tvar:

$$u^{E}(x, y) = \sum_{j=1}^{N} u_{j}^{E} \psi_{j}^{E}(x, y)$$

Po dosadení do Greenovej formule dostaneme systém lineárnych rovníc zapísaných v maticovom tvare:

$$\mathbf{K}_{(nxn)}^{E}\mathbf{u}_{(nx1)}^{E}=\mathbf{f}_{(nx1)}^{E},$$

kde:

$$\mathbf{f}^E = f_j^E + Q_j^E.$$

 \mathbf{K}^E sa nazýva matica tuhosti prvku, \mathbf{u}^E je vektor neznámych veličín, \mathbf{f}^E je pravá strana maticovej formy a Q_i^E je prúdenie cez hranicu prvku.

4. Posledným krokom algoritmu MKP je zostavenie a následné riešenie globálneho systému algebraických rovníc.

Lambertovo konformné kužeľové zobrazenie Slovenskej republiky

- Návrh vytvorený na požiadanie Úradu geodézie kartografie a katastra SR v roku 2010 (autorka Vajsáblová).
- Lambertovo konformné kužeľové zobrazenie v normálnej polohe s dvomi neskreslenými rovnobežkami a použitým elipsoidom GRS 80.
- Parametre vypočítané z podmienky na rovnakú absolútnu hodnotu dĺžkového skreslenia na severnej, južnej a základnej rovnobežke
- Postup transformácie:

Neskreslené rovnobežky s elipsoidickými šírkami:

$$\varphi_1 = 48^{\circ} 0' 30'' \text{ a } \varphi_2 = 49^{\circ} 20' 30''$$

Parametre Lambertovho zobrazenia SR		
Elipsoidická dĺžka základného poludníka	$\lambda_0 = 19^{\circ} 40'$	
Elipsoidická šírka základnej rovnobežky	$\varphi_0 = 48^{\circ} \ 40' \ 30''$	
Multiplikatívna konštanta	n = 0,750 993 227 4123	
Polárny polomer základnej rovnobežky	$\rho_0 = 5 618 372,3190 \text{ m}$	

Lambertovo konformné kužeľové zobrazenie Slovenskej republiky

dĺžkového skreslenia v karteziánskych súradniciach *x* a *y* v Lambertovom konformnom kužeľovom zobrazení v normálnej polohe

hraníc Slovenska a modulov m

Zobrazenie

Min dĺžkového	Max dĺžkového	Airyho-Kavrajského
skreslenia	skreslenia	variačné kritérium
- 6,7 cm/km	+ 6,7 cm/km	5,03 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre Lambertovo konformné kužeľové zobrazenie SR

Modifikácia Lambertovho konformného kužeľového zobrazenia Slovenskej republiky riešením Laplaceovej rovnice použitím Metódy konečných prvkov

- Okrajová podmienka hodnoty modulov m dĺžkového skreslenia na hranici Slovenska danej karteziánskymi súradnicami x a y v Lambertovom konformnom kužeľovom zobrazení SR.
- Z uvedených známych hodnôt na hranici sú metódou MKP určené hodnoty funkcie u a moduly m dĺžkového skreslenia v uzlových bodoch domény.
- Výpočty v softvérovom prostredí ANSYS 2019 R3.

Diskretizácia domény Ω v Lambertovom konformnom kužeľovom zobrazení

Modifikácia Lambertovho konformného kužeľového zobrazenia Slovenskej republiky riešením Laplaceovej rovnice použitím Metódy konečných prvkov

- Numerické riešenie je vektor, ktorý pozostáva z hodnôt funkcie u v bodoch s karteziánskymi súradnicami x a y.
- Výpočet dĺžkového skreslenia v cm/km.

Min dĺžkové	Max dĺžkové	Airyho-Kavrajského
skreslenia	skreslenia	variačné kritérium
- 6,7 cm/km	+ 6,8 cm/km	3,24 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre modifikáciu Lambertovho konformného kužeľového zobrazenia SR riešením Laplaceovej rovnice pomocou MKP

Konformné kužeľové zobrazenie v normálnej polohe s minimalizáciou Strednej kvadratickej hodnoty (RMS) dĺžkového skreslenia na území SR

- Využitím Airy-Kavrajského kritéria minimalizujúceho RMS na území sú vypočítané parametre *n* a *k* konformného kužeľového zobrazenia, čím sa optimalizuje distribúcia skreslenia na ploche SR (Vajsáblová, 2015).
- Konformné kužeľové zobrazenie v normálnej polohe s minimalizáciou RMS dĺžkového skreslenia má dve neskreslené rovnobežky a použitý je elipsoid GRS 80.
- Postup transformácie:

Neskreslené rovnobežky s elipsoidickými šírkami:

$$\varphi_1 = 48^{\circ} \ 07' \ 45,6717'' \ a \ \varphi_2 = 49^{\circ} \ 12' \ 54,3553''$$

Parametre Lambertovho zobrazenie SR		
Počet rovnobežkových pásov	20	
Multiplikatívna konštanta	n = 0,750 955 513 8	
Konštanta združujúca ρ_0 a U_0	k = 11 642 467,97 m	

Konformné kužeľové zobrazenie v normálnej polohe s minimalizáciou Strednej kvadratickej hodnoty (RMS) dĺžkového skreslenia na území SR

Zobrazenie hraníc Slovenska a modulov m dĺžkového skreslenia v karteziánskych súradniciach x a y v konformnom kužeľovom zobrazení v normálnej polohe s minimalizáciou RMS dĺžkového skreslenia na území SR.

Min dĺžkové	Max dĺžkové	Airyho-Kavrajského
skreslenia	skreslenia	variačné kritérium
- 4,4 cm/km	+ 9,0 cm/km	3,4 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre konformné kužeľové zobrazenie v normálnej polohe s minimalizáciou RMS dĺžkového skreslenia na území SR

Modifikácia konformného kužeľového zobrazenia s minimalizáciou RMS dĺžkového skreslenia na území SR v normálnej polohe riešením Laplaceovej rovnice použitím Metódy konečných prvkov

Min dĺžkové	Max dĺžkové	Airyho-Kavrajského
skreslenia	skreslenia	variačné kritérium
- 4,4 cm/km	+ 9,0 cm/km	2,4 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre konformné kužeľové zobrazenie v normálnej polohe s minimalizáciou RMS dĺžkového skreslenia na území SR riešením Laplaceovej rovnice pomocou MKP

Porovnanie konformných kužeľových zobrazení v normálnej polohe a ich modifikácií pomocou MKP

Kartografické zobrazenie	Hodnoty dĺžkového skreslenia		Airyho- Kavrajského
Kartograneke zobrazenie	Od [cm/km]	Do [cm/km]	variačné kritérium
Lambertovo konformné kužeľové zobrazenie	-6,7	6,7	5,0 cm/km
Modifikácia Lambertovho konformného kužeľového zobrazenia pomocou MKP	-6,7	6,8	3,2 cm/km
Konformné kužeľové zobrazenie s minimalizáciou RMS dĺžkového skreslenia na území SR	-4,4	9,0	3,4 cm/km
Modifikácia konformného kužeľového zobrazenia s minimalizáciou RMS dĺžkového skreslenia na území SR pomocou MKP	-4,4	9,0	2,4 cm/km

- Extrémne hodnoty dĺžkových skreslení sú v pôvodných zobrazeniach a ich modifikácii približne rovnaké.
- Podľa Airy-Kavrajského variačného kritéria je v modifikovaných zobrazeniach efektívnejšia distribúcia hodnôt dĺžkového skreslenia na území SR.
- Lambertovo konformné kužeľové zobrazenie s parametrami pre SR má najmenšie extrémne dĺžkové skreslenie.
- Modifikácia konformného kužeľového zobrazenia s minimalizáciou RMS dĺžkového skreslenia na území SR pomocou MKP má výrazne najlepšiu distribúciu dĺžkového skreslenia.

Grafické vyjadrenie rozdielov dĺžkových skreslení medzi pôvodnými kužeľovými zobrazeniami v normálnej polohe a ich modifikáciou pomocou MKP

Rozdiely dĺžkových skreslení Lambertovho zobrazenia SR a jeho modifikáciou riešením Laplaceovej rovnice pomocou MKP

Rozdiely dĺžkových skreslení konformného kužeľového zobrazenia s minimalizáciou RMS na území SR a jeho modifikáciou riešením Laplaceovej rovnice pomocou MKP

Konformné kužeľové zobrazenie Slovenskej republiky vo všeobecnej polohe

- Návrh publikovaný vo (Vajsáblová, 2015).
- Konformné kužeľové zobrazenie vo všeobecnej polohe s použitým elipsoidom GRS 80 s kartografickým pólom:

$$U_K = -5^{\circ} 53' 41,1964'' \text{ a } V_K = 32^{\circ} 08' 18,5219''$$

- Dve neskreslené kartografické rovnobežky a parametre vypočítané z podmienky na rovnakú absolútnu hodnotu dĺžkového skreslenia na severnej, južnej a základnej rovnobežke.
- Postup transformácie:

Neskreslené rovnobežky s kartografickými šírkami:

$$\check{S}_1 = 33^{\circ} 38' 35,54602'' \text{ a } \check{S}_2 = 34^{\circ} 50' 17,42458''$$

Parametre konformného kužeľového zobrazenia SR vo všeobecnej polohe	
Elipsoidická šírka základnej rovnobežky	$\check{S}_0 = 34^{\circ} \ 14' \ 29,02992''$
Multiplikatívna konštanta	n = 0,562 680 811 220 5
Polárny polomer základnej rovnobežky	$\rho_0 = 5 618 372,3190 \text{ m}$

Elipsoidické Sférické Kartografické Polárne Karteziánske súradnice súradnice ϕ, λ U, V S, D ρ, ε K
--

Konformné kužeľové zobrazenie Slovenskej republiky vo všeobecnej polohe

Min dĺžkové	Max dĺžkové	Airyho-Kavrajského
skreslenie	skreslenie	variačné kritérium
- 5,4 cm/km	+ 5,4 cm/km	4,0 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre konformné kužeľové zobrazenie vo všeobecnej polohe na území SR

Modifikácia konformného kužeľového zobrazenia Slovenskej republiky vo všeobecnej polohe riešením Laplaceovej rovnice pomocou MKP

Min dĺžkové	Max dĺžkové	Airyho-Kavrajského
skreslenie	skreslenie	variačné kritérium
- 5,4 cm/km	+ 5,8 cm/km	2,1 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre modifikáciu konformného kužeľového zobrazenia vo všeobecnej riešením Laplaceovej rovnice pomocou MKP

Konformné kužeľové zobrazenie vo všeobecnej polohe s minimalizáciou Strednej kvadratickej hodnoty (RMS) dĺžkového skreslenia na území SR

Min dĺžkové	Max dĺžkové	Airyho-Kavrajského
skreslenie	skreslenie	variačné kritérium
- 3,6 cm/km	+ 7,6 cm/km	2,7 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre konformné kužeľové zobrazenie vo všeobecnej polohe s minimalizáciou RMS dĺžkového skreslenia na území SR

Modifikácia konformného kužeľového zobrazenia s minimalizáciou RMS dĺžkového skreslenia na území SR vo všeobecnej polohe riešením Laplaceovej rovnice použitím Metódy konečných prvkov

Min dĺžkové	Max dĺžkové	Airyho-Kavrajského
skreslenie	skreslenie	variačné kritérium
- 4,0 cm/km	+ 8,0 cm/km	1,9 cm/km

Izometrické čiary modulov *m* dĺžkového skreslenia pre modifikáciu konformného kužeľového zobrazenia s minimalizáciou RMS na území SR vo všeobecnej polohe riešením Laplaceovej rovnice pomocou MKP

Porovnanie konformných kužeľových zobrazení vo všeobecnej polohe a ich modifikácií pomocou MKP

Kartografické zobrazenie	Hodnoty dĺžkového skreslenia		Airyho- Kavrajského
Kai togi aneke zobi azenie	Od [cm/km]	Do [cm/km]	variačné kritérium
Konformné kužeľové zobrazenie vo všeobecnej polohe	-5,4	5,4	4,0 cm/km
Modifikácia konformného kužeľového zobrazenia vo všeobecnej polohe pomocou MKP	-5,4	5,8	2,1 cm/km
Konformné kužeľové zobrazenie s minimalizáciou RMS dĺžkového skreslenia na území SR vo všeobecnej polohe	-3,6	7,6	2,7 cm/km
Modifikácia konformného kužeľového zobrazenia vo všeobecnej polohe s minimalizáciou RMS dĺžkového skreslenia na území SR pomocou MKP	-4,0	8,0	1,9 cm/km

- Extrémne hodnoty dĺžkových skreslení sú najefektívnejšie v konformnom kužeľovom zobrazení vo všeobecnej polohe (±5,4 cm/km).
- Podľa hodnoty Airy-Kavrajského variačného kritéria 1,9 cm/km je v konformnom kužeľovom zobrazení s minimalizovanou RMS na území SR modifikovanom pomocou MKP najefektívnejšia distribúcia hodnôt dĺžkového skreslenia na území SR.
- Všetky prezentované modifikácie zobrazení riešením Laplaceovej rovnice pomocou MKP majú lepšiu distribúciu skreslení na území SR, teda menšie skreslenie je na podstatne väčšom území ako v pôvodnom zobrazení.

Grafické vyjadrenie rozdielov dĺžkových skreslení medzi pôvodnými kužeľovými zobrazeniami vo všeobecnej polohe a ich modifikáciou pomocou MKP

Rozdiely dĺžkových skreslení konformného kužeľového zobrazenia SR vo všeobecnej polohe a Rozdiely dĺžkových skreslení konformného kužeľového zobrazenia vo všeobecnej polohe s jeho modifikáciou riešením Laplaceovej rovnice pomocou MKP minimalizáciou RMS na území SR a jeho modifikáciou riešením Laplaceovej rovnice pomocou MKP

Závery

- Uvedené výpočty ukázali pozitívny efekt použitia riešenia Laplaceovej rovnice Metódou konečných prvkov na optimalizáciu skreslenia na zobrazovanom území SR.
- Konformné kužeľové zobrazenie vo všeobecnej polohe navrhnuté vo (Vajsáblová, 2015) sa ukázalo ako najefektívnejšie pre územie Slovenska.
- Modifikácia konformného kužeľového zobrazenia vo všeobecnej polohe s minimalizáciou RMS dĺžkového skreslenia na území Slovenska má najefektívnejšiu distribúciu skreslenia na zobrazenom území.
- Avšak z hľadiska počtu krokov transformácie a priameho zobrazenia referenčného elipsoidu GRS 80 bez použitia sféry sú výhodné v praxi kužeľové zobrazenia v normálnej polohe.
- Prezentované kartografické zobrazenia nadštandardne spĺňajú požiadavky Úradu geodézie, kartografie a katastra SR a sú podstatne efektívnejšie ako Křovákovo zobrazenie záväzne používané v rezorte.

ĎAKUJEME ZA POZORNOSŤ