CONSOMMATION D'ÉNERGIE DE SEATTLE

OBJECTIFS

 Prédire la consommation énergétique globale et le total des émissions de gaz à effet de serre (GES) des bâtiments non résidentiels à Seattle en fonction de leurs caractéristiques structurelles.

2. Analyser l'influence de la variable Energy STAR Score sur les prédictions des variables cibles.

LES SOURCES

- Données issues du programme de référencement énergétique des bâtiments de Seattle du bureau du développement durable et de l'environnement,
- Données de 2016,
- Bâtiments non résidentiels (tous les bâtiments type logement sont exclus de l'analyse),
- Analyse sur 1610 observations
- Analyse sur 1063 observations avec ES

VARIABLES CIBLES

VARIABLES CIBLES:

- <u>SITEENERGYUSEWN(KBTU)</u>
 Consommation totale d'énergie ajustée aux conditions météorologiques moyennes.
- <u>TOTALGHGEMISSIONS</u>: Quantité totale d'émission de GES (en tonnes)

VARIABLES EXPLICATIVES

6 variables qualitatives

- Primarypropertytype
- Neighborhood
- Buildingtype
- Largestpropertyusetype
- Secondlargestpropertyusetype
- Thirdlargestpropertyusetype

8 variables quantitatives:

- Propertygfatotal
- Yearbuilt
- Numberoffloors
- Numberofbuildings
- Largestpropertyusetypegfa
- Secondlargestpropertyusetypegfa
- Thirdlargestpropertyusetypegfa
- Energystarscore²

^{2:} est un système d'évaluation créé par l'Environmental Protection Agency (EPA) pour évaluer l'efficacité énergétique des bâtiments. Il attribue une note de 1 à 100, indiquant l'économie d'énergie d'un bâtiment par rapport à d'autres similaires. Un score élevé signifie une meilleure performance énergétique.

GESTION DES VALEURS ABERRANTES

- Pour les variables quantitatives, je vérifie si les années, le nombre d'étages et le nombre de bâtiments semblent raisonnables. Je m'assure que l'EnergyStarScore est compris entre 1 et 100.
- En ce qui concerne les variables de superficie et les cibles, il est essentiel de s'assurer qu'il n'y a pas de valeurs négatives et qu'elles ne présentent pas de problèmes d'échelle.
- Pour les variables qualitatives, j'ai effectué une harmonisation de l'orthographe des quartiers (tous en majuscules et suppression des doublons); je supprime les bâtiments considérés comme résidentiels s'il en reste.

Neighborhood		
BALLARD	64	
Ballard	6	
CENTRAL	49	
Central	5	
DELRIDGE	40	
DELRIDGE NEIGHBORHOOD	S 1	
DOWNTOWN	355	
Delridge	4	
EAST	119	
GREATER DUWAMISH	340	
LAKE UNION	147	
MAGNOLIA / QUEEN ANNE	149	
NORTH	58	
NORTHEAST	126	
NORTHWEST	80	
North	9	
Northwest	5	
SOUTHEAST	46	
SOUTHWEST	41	
Name: OSERuildingID	dtyne: i	n + 6

Name: OSEBuildingID, dtype: int64

GESTION DES VALEURS MANQUANTES

- 1. Traitement manuel lorsque les données manquantes sont peu nombreuses.
- 2. Suppression de l'observation remplies de valeurs NaN, sans possibilité d'imputation.
- 3. Déductions pour les secondes et troisièmes utilisations du bâtiment : Par exemple, si la superficie totale = superficie de l'utilisation principale → pas d'autres utilisations.
- 4. Imputation des variables cibles : Les bâtiments de même taille et type d'usage ont des niveaux de consommation énergétique et des quantités d'émissions de GES comparables. Création de groupes de bâtiments similaires (type & quantile de superficie). Remplacement par la première valeur rencontrée dans chaque groupe.

FEATURE ENGINEERING

- 1. Suppression de la variable ListOfAllPropertyUseTypes,
- 2. Création des variables représentant le pourcentage d'utilisation par type d'énergie:
- Pourcentage d'utilisation de l'électricité :

Electricité consommée / consommation totale

Pourcentage d'utilisation du gaz naturel :

Gaz consommé / consommation totale

Pourcentage d'utilisation de l'énergie thermique à vapeur :

Energie thermique / consommation totale

FEATURE ENGINEERING

3. Création de la variable Ancienneté du bâtiment:

Année actuelle – YearBuilt

4. Transformation des variables quantitatives:

La Skewness évalue l'asymétrie d'une distribution par rapport à une distribution normale, tandis que le Kurtosis mesure le degré d'aplatissement.

- Skewness ≈ 0 indique une distribution symétrique.
- Skewness > 0 signifie une asymétrie à droite, >2 très forte asymétrie.
- Skewness < 0 indique une asymétrie à gauche.
- Kurtosis ≈ 3 indique une distribution normale.
- Kurtosis > 3 révèle de nombreuses valeurs extrêmes.
- Kurtosis < 3 suggère peu de valeurs extrêmes.

Variable	Skewness	Kurtosis
NumberofBuildings	10.183519	116.277327
NumberofFloors	5.116773	34.441585
PropertyGFATotal	4.786011	29.172849
LargestPropertyUseTypeGFA	5.250706	36.513714
SecondLargestPropertyUseTypeGFA	5.201632	36.733839
${\tt ThirdLargestPropertyUseTypeGFA}$	9.340637	117.588919
Electricity_%	-0.339141	-0.980219
NaturalGas(kBtu)_%	0.424373	-1.113223
SteamUse(kBtu)_%	4.708219	22.202180
BuildingAge	0.301209	-1.025280

TRANSFORMATION FEATURES

Les transformations suivantes seront appliquées

• Transformation en log:

NumberofBuldings,

NumberofFloors,

PropertyGFATotal,

LargestPropertyUseTypeGFA,

SecondLargestPropertyUseTypeGFA,

ThirdLargestPropertyUseTypeGFA.

• Transformation en racine carrée:

StreamUse(kBtu)_%

CORRÉLATION

Variables quantitatives : corrélation de Pearson

- Le nombre de bâtiment, la superficie totale et la superficie de l'utilisation principale ont des corrélation positives modérées avec l'émission de GES.
- La superficie totale et la superficie de l'utilisation principale ont des corrélations positives avec la consommation d'énergie globale.

$TEST CHI^2$

Pour la cible GES : toutes les variables qualitatives, à l'exception de ThirdLargestPropertyUseType, sont significativement dépendantes à la cible.

Pour la cible consommation d'énergie : toutes les variables sont significativement liées à cette cible, avec PrimaryPropertyType montrant la plus forte association.

Variables qualitatives : test du Chi²:

- Hypothèse nulle (H0) : Les variables sont indépendantes.
- (H1) : Les variables ne sont pas indépendantes.

```
Chi2 pour BuildingType et TotalGHGEmissions: p-value = 0.0003648353188218136, Chi2 = 38.99919693533765
Chi2 pour PrimaryPropertyType et TotalGHGEmissions: p-value = 5.959313639535879e-84, Chi2 = 749.025448257909
Chi2 pour Neighborhood et TotalGHGEmissions: p-value = 1.0633379939437723e-07, Chi2 = 169.27961325374508
Chi2 pour LargestPropertyUseType et TotalGHGEmissions: p-value = 3.438572037313877e-41, Chi2 = 778.7794433154602
Chi2 pour SecondLargestPropertyUseType et TotalGHGEmissions: p-value = 0.006331813195740377, Chi2 = 272.40121118459894
Chi2 pour ThirdLargestPropertyUseType et TotalGHGEmissions: p-value = 0.12895818263791767, Chi2 = 218.54952042487767

Chi2 pour BuildingType et SiteEnergyUseWN(kBtu): p-value = 6.476526256542697e-09, Chi2 = 67.08505578303263
Chi2 pour PrimaryPropertyType et SiteEnergyUseWN(kBtu): p-value = 5.121537745840572e-139, Chi2 = 1048.9649563916232
Chi2 pour Neighborhood et SiteEnergyUseWN(kBtu): p-value = 5.990758404080496e-17, Chi2 = 240.05557090573757
Chi2 pour LargestPropertyUseType et SiteEnergyUseWN(kBtu): p-value = 9.17249755603484e-59, Chi2 = 907.3606460697424
Chi2 pour SecondLargestPropertyUseType et SiteEnergyUseWN(kBtu): p-value = 7.309861562223303e-13, Chi2 = 398.6468929729858
Chi2 pour ThirdLargestPropertyUseType et SiteEnergyUseWN(kBtu): p-value = 5.509892202682574e-06, Chi2 = 295.5309040530953
```

ENCODAGE ET ACP

Modèles sans ES:

Features explicatives: 16

Features OHE: 148

ACP: 78

Modèles avec ES:

Features explicatives: 17

Features OHE: 98

ACP: 47

Le "One Hot Encoding" permet de convertir les variables catégorielles en variables numériques. Chaque catégorie est représentée par une colonne binaire (0 ou 1), où une seule colonne est égale à 1 pour indiquer la présence de la catégorie, tandis que les autres affichent 0.

- Chaque catégorie est indépendante (pas de poids implicite)
- > Aucune perte d'informations
- > Augmente la dimensionnalité

ACP permet de contrebalancer cet effet en transformant ces variables explicatives en composantes principales.

MODÈLES: ÉMISSIONS DE GES

Modèles testés	Base sans ES	Base avec ES	Log / features transformées sans ES	Log / features transformées avec ES
RandomForest	R ² train: 0,29	R² train: 0,32	R ² train: 0,68	R² train: 0,77
	R ² test: 0,24	R² test: 0,29	R ² test: 0,49	R² test: 0,63
	Overfitting: 0,05	Overfitting: 0,02	Overfitting: 0,18	Overfitting: 0,14
	Timer: 40 secondes	Timer: 22 secondes	Timer: 40 secondes	Timer: 16 secondes
ElasticNet	R ² train: 0,50	R² train: 0,57	R ² train: 0,69	R² train: 0,70
	R ² test: 0,49	R² test: 0,53	R ² test: 0,55	R² test: 0,67
	Overfitting: 0,01	Overfitting: 0,03	Overfitting: 0,14	Overfitting: 0,03
	Timer: 0,29 secondes	Timer: 0,19 secondes	Timer: 0,28 secondes	Timer: 0,32 secondes
GradientBoosting	R ² train: 0,74	R² train: 0,66	R ² train: 0,92	R² train: 0,97
	R ² test: 0,76	R² test: 0,57	R ² test: 0,61	R² test: 0,72
	Overfitting: -0,02	Overfitting: 0,08	Overfitting: 0,3	Overfitting: 0,2
	Timer: 52 secondes	Timer: 25 secondes	Timer: 78 secondes	Timer: 32 secondes
KNN	R² train: 0,43	R² train: 0,99	R² train: 0,99	R² train: 0,99
	R² test: 0,43	R² test: 0,70	R² test: 0,49	R² test: 0,56
	Overfitting: 0,005	Overfitting: 0,30	Overfitting: 0,5	Overfitting: 0,4
	Timer: 1,7 secondes	Timer: 1,3 secondes	Timer: 1,6 secondes	Timer: 1,3 secondes

FEATURE IMPORTANCE 1/2

L'utilisation des valeurs SHAP: indiquent combien chaque feature augmente ou diminue la prédiction par rapport à la valeur moyenne du modèle. Ici ce sont les valeurs SHAP approximatives, puisque les valeurs SHAP réelles sont calculées sur les composantes principales.

Le barplot montre que les variables « types d'utilisation » sont les variables qui impactent le plus la prédiction. La variable ENERGYSTARScore a un impact faible.

FEATURE IMPORTANCE 2/2

Les graphiques en cascade illustrent la feature importance locale pour chaque observation.

Observation 1 : (gauche) un hôtel de 12 étages datant de 1927. Ici, toutes les variables explicatives, sauf « BuildingAge », ont une influence positive sur la prédiction de la cible. L'Energystarscore appartient aux variables qui ont un impact le plus faible.

Observation 78 (droite); bureau financier et parking (2nd utilisation)

La plupart des variables affectent négativement la prédiction de la cible, sauf pour la variable SecondLargestPropertyUseType

MODÈLES: CONSOMMATION D'ÉNERGIE

Modèles testés	Base	Base avec ES	Log / features transformées sans ES	Log / features transformées
RandomForest	R ² train: 0,50	R² train: 0,38	R ² train: 0,45	R ² train: 0,36
	R ² test: 0,32	R² test: 0,38	R ² test: 0,62	R ² test: 0,15
	Overfitting: 0,2	Overfitting: 0,0	Overfitting: -0,1	Overfitting: 0,2
	Timer: 51 secondes	Timer: 35 secondes	Timer: 34 secondes	Timer: 32 secondes
ElasticNet	R² train: 0,64	R² train: 0,56	R² train: 0,32	R ² train: 0,28
	R² test: 0,46	R² test: 0,60	R² test: 0,65	R ² test: 0,15
	Overfitting: 0,2	Overfitting: -0,04	Overfitting: -0,3	Overfitting: 0,1
	Timer: 0,3 seconde	Timer: 0,3 secondes	Timer: 0,24	Timer: 0,3 secondes
GradientBoosting	R ² train: 0,69	R ² train: 0,25	R ² train: 0,90	R ² train: 0,95
	R ² test: 0,43	R ² test: 0,26	R ² test: 0,42	R ² test: 0,25
	Overfitting: 0,2	Overfitting: -0,01	Overfitting: 0,5	Overfitting: 0,7
	Timer: 52 secondes	Timer: 33 secondes	Timer: 44 secondes	Timer: 68 secondes
KNN	R² train: 0,99	R² train: 0,46	R² train: 0,99	R ² train: 0,99
	R² test: 0,45	R² test: 0,53	R² test: 0,46	R ² test: 0,22
	Overfitting: 0,6	Overfitting: -0,07	Overfitting: 0,5	Overfitting: 0,7
	Timer: 1,7 secondes	Timer: 1,7 secondes	Timer: 1,7 secondes	Timer: 1,41 secondes

FEATURE IMPORTANCE 1/2

Les types d'utilisation du bâtiment sont les variables ayant le plus d'impact sur la cible.

FEATURE IMPORTANCE 2/2

La plupart des variables ont un impact positif sur la prédiction de la feature pour l'observation 1, sauf les 8 variables qui ont un impact très faible.

Pour cette observation, toutes les variables explicatives ont un impact négatif sur la prédiction de la cible,

CONCLUSION

- Le modèle le plus performant a été sélectionné en fonction du R² le plus élevé, d'un overfitting faible et d'un temps d'exécution le plus rapide.
- Les modèles Gradient Boosting et ElasticNet se sont imposés comme les modèles les plus performants.
- L'ajout de la variable « EnergyStarScore » n'a pas d'impact significatif sur la prédiction de la quantité totale d'émission de GES
- Le type d'utilisation des bâtiments est le facteur le plus influent sur les prédictions de la consommation d'énergie et de la quantité d'émission des GES

