抽象代數

群論

陽明交通大學應數系營隊

群論

群(Group)是一個集合,並且配上一個良好的二元運算,而群論 (Group Throry)是一們研究群這種結構的數學分支。群論在許多領域上有著廣泛的應用,以下介紹一些應用。

倍立方、化圓為方、三等分角等,尺規作圖問題。

我們都知道一元二次方程 $ax^2 + bx + c = 0$ 的解為

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

但是對於一元五次方程 $x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0$,可以用 群論證明,我們無法用根式解析解來表示。

除了數學上的應用外,在其他領域也有著廣泛的應用,例如

- 密碼學
- •「李群」在近代物理中有重要作用
- 標準粒子模型中的對稱性

除了數學上的應用外,在其他領域也有著廣泛的應用,例如

- 密碼學
- •「李群」在近代物理中有重要作用
- 標準粒子模型中的對稱性

Group

Definition 1.1: $\langle G, * \rangle$ 是一個集合 G 與一個二元運算 $*: G \times G \mapsto G$,滿足以下條件:

 \mathcal{G}_1 : 對於所有的 $a, b, c \in G$,

$$(a*b)*c = a*(b*c)$$
 結合律

 G_{0} : 存在一個元素 $e \in G$, 使得對於所有的 $a \in G$,

$$a*e=e*a=a$$
 單位元素

 G_3 : 對於每一個 $a \in G$, 存在一個元素 $a^{-1} \in G$, 使得

$$a*a^{-1} = a^{-1}*a = e$$
 反元素

Example:

- 整數集合 \mathbb{Z} 與加法運算+構成一個群。 $\langle \mathbb{Z}, + \rangle$ 單位元素為0,反元素為-a。
- 整數集合型與乘法運算本是一個群。乘法在整數裡沒有反元素。
- $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ 與加法運算 $+_4$ 構成一個群。 其中 $+_4$ 定義為 $a +_4 b = (a + b) \mod 4$ 。

Definition 1.2: 讓G是一個群,定義|G|是G的元素個數,稱為G的 order。

Definition 1.3: 一個群G如果滿足交換率 i.e. 對於所有的 $a, b \in G$,

$$a * b = b * a$$

,則稱G是一個**交換群**(Abelian groups)。

Definition 1.2: 讓G是一個群,定義|G|是G的元素個數,稱為G的 order。

Definition 1.3: 一個群G如果滿足交換率 i.e. 對於所有的 $a,b \in G$,

$$a * b = b * a$$

,則稱G是一個**交換群**(Abelian groups)。

Example:

- 整數集合 Z 與加法運算 + 是一個交換群。
- \mathbb{Z}_4 的 order \mathbb{A}_4 。
- 可逆矩陣的集合與矩陣乘法是一個群,但不是交換群。

$$a * b = a * c \Rightarrow b = c$$

$$b * a = b * c \Rightarrow b = c$$

$$a * b = a * c \Rightarrow b = c$$

$$b*a = b*c \Rightarrow b = c$$

Proof: 讓G是一個群, $a,b,c \in G$ 。假設a*b=a*c。

$$a * b = a * c$$

$$\Rightarrow b = a$$

$$a*b = a*c \Rightarrow b = c$$

 $b*a = b*c \Rightarrow b = c$

Proof: 讓G是一個群, $a,b,c\in G$ 。假設a*b=a*c。 因為 $a\in G$,所以a的反元素 a^{-1} 存在,且 $a*a^{-1}=e$ 。

$$a * b = a * c$$

$$\Rightarrow a^{-1} * a * b = a^{-1} * a * c$$

$$\Rightarrow b = a$$

$$a*b = a*c \Rightarrow b = c$$

 $b*a = b*c \Rightarrow b = c$

Proof: 讓G是一個群, $a,b,c \in G$ 。假設a*b=a*c。 因為 $a \in G$,所以a的反元素 a^{-1} 存在,且 $a*a^{-1}=e$ 。

$$a * b = a * c$$

$$\Rightarrow a^{-1} * a * b = a^{-1} * a * c$$

$$\Rightarrow b = a$$

$$a * b = a * c \Rightarrow b = c$$

 $b * a = b * c \Rightarrow b = c$

Proof: 讓G是一個群, $a,b,c \in G$ 。假設a*b=a*c。 因為 $a \in G$,所以a的反元素 a^{-1} 存在,且 $a*a^{-1}=e$ 。

$$a * b = a * c$$

$$\Rightarrow a^{-1} * a * b = a^{-1} * a * c$$

$$\Rightarrow e * b = e * a$$

$$\Rightarrow b = a$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

$$e_2 * a = a$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

$$e_2 * e = e$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

$$e_2 * e = e$$

$$= e_2$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

我們得到 $e_2 = e$

$$e_2 * e = e$$

$$= e_2$$

Theorem 1.3: 讓G是一個群, $ab \in G$,那麼

$$(ab)^{-1} = b^{-1}a^{-1}$$

Theorem 1.3: 讓G是一個群, $ab \in G$,那麼

$$(ab)^{-1} = b^{-1}a^{-1}$$

Proof: 我們直接相乘

$$(ab)b^{-1}a^{-1} = a(bb^{-1})a^{-1}$$

= aea^{-1}
= aa^{-1}
= e

根據反元素的定義, $(ab)^{-1} = b^{-1}a^{-1}$

置換群

Permutation Group

$$A = \{1, 2, 3, 4, 5\}$$

$$\begin{array}{c} 1 \rightarrow 3 \\ 2 \rightarrow 4 \\ 3 \rightarrow 5 \\ 4 \rightarrow 2 \\ 5 \rightarrow 1 \end{array} \qquad \begin{array}{c} 1 \rightarrow 2 \\ 2 \rightarrow 3 \\ 3 \rightarrow 2 \\ 4 \rightarrow 5 \\ 5 \rightarrow 1 \end{array}$$

Figure 5: σ

Definition 2.1: 一個A的是**置換**是一個一一對應的函數 $\varphi: A \to A$ 。 (one-one and onto)

$$1 \rightarrow 3$$
 $2 \rightarrow 4$
 $3 \rightarrow 5$
 $4 \rightarrow 2$
 $5 \rightarrow 1$

Figure 7: 一個置換
$$\sigma$$

$$1 \rightarrow 2$$

$$2 \rightarrow 3$$

$$3 \rightarrow 2$$

$$4 \rightarrow 5$$

$$5 \rightarrow 1$$

Figure 8: 不是置換

置换的合成

Definition: 讓σ和τ是兩個置換,定義σ和τ的**合成**是一個新的置換σοτ,使得對於所有的 $a \in A$,

$$(\sigma \circ \tau)(a) = \sigma(\tau(a))$$

置换的合成

Definition: 讓σ和τ是兩個置換,定義σ和τ的**合成**是一個新的置換σοτ,使得對於所有的 $a \in A$,

$$(\sigma \circ \tau)(a) = \sigma(\tau(a))$$

$$(\sigma \circ \tau)(x) = \sigma(\tau(x))$$
$$A \xrightarrow{\tau} A \xrightarrow{\sigma} A$$

因為 σ 和 τ 都是一一對應的函數,所以 σ 。 τ 也是一一對應的函數。 所以 σ 。 τ 是一個置換。

Eaxmple 置換

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

Eaxmple 置換

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \qquad \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

Eaxmple 置換

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

Definition 2.2: 一個集合A的所有置換構成一個群,稱為A的**置換群**,記為 S_A 。

Definition 2.2: 一個集合A的所有置換構成一個群,稱為A的**置換群**,記為 S_A 。

Remark: n個元素的集合的置換群計為 S_n 的 order 為n!。

Definition 2.2: 一個集合A的所有置換構成一個群,稱為A的**置換群**,記為 S_A 。

Remark: n個元素的集合的置換群計為 S_n 的 order 為n!。

Example:

上述的例子中,au和 σ 是 S_5 的元素。 S_5 的 order 為5!=120。

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = (1, 3, 5)(2, 4)$$

空間對稱群

Symmetry Group

順時針旋轉 120 度

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1, 2, 3)$$

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1, 2, 3) \qquad \qquad \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (1)(2, 3)$$

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1, 2, 3) \qquad \qquad \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (1)(2, 3)$$

我們稱這些置換為對稱置換。

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1, 2, 3)$$

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (1)(2,3)$$

$$\tau_1 \circ \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1, 3, 2)$$

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1, 2, 3) \qquad \qquad \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (1)(2, 3)$$

$$\tau_1 \circ \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1, 3, 2)$$

對稱置換的合成還是一個對稱置換。

我們把三角形的所有對稱的置換枚舉出來:

$$e=
ho_0=(1)(2)(3)$$
 不動 $ho_1=(1,2,3)$ 旋轉 120 度 $ho_2=(1,3,2)$ 旋轉 240 度 $au_1=(1)(2,3)$ 鏡射 $au_2=(1,3,2)$ 鏡射 $au_3=(1,2)(3)$ 鏡射

我們把三角形的所有對稱的置換枚舉出來:

$$e=
ho_0=(1)(2)(3)$$
 不動 $ho_1=(1,2,3)$ 旋轉 120 度 $ho_2=(1,3,2)$ 旋轉 240 度 $au_1=(1)(2,3)$ 鏡射 $au_2=(1,3,2)$ 鏡射 $au_3=(1,2)(3)$ 鏡射

把上述的對稱置換構成的群稱為 D_3 ,稱為正三角形的空間對稱群。

$$D_3$$

$$D_3 = \{e, \rho_1, \rho_2, \tau_1, \tau_2, \tau_3\}$$

0	e	ρ_1	ρ_2	$ au_1$	$ au_2$	$ au_3$
e	e	$ ho_1$	$ ho_2$	$ au_1$ $ au_3$ $ au_2$ $ extit{e}$ $ extit{ ho}_2$ $ extit{ ho}_1$	$ au_2$	$ au_3$
$ ho_1$	$ ho_1$	$ ho_2$	e	$ au_3$	$ au_1$	$ au_2$
$ ho_2$	$ ho_2$	e	$ ho_1$	$ au_2$	$ au_3$	$ au_1$
$ au_1$	$ au_1$	$ au_3$	$ au_2$	e	$ ho_2$	$ ho_1$
$ au_2$	$ au_2$	$ au_1$	$ au_3$	$ ho_2$	e	$ ho_1$
$ au_3$	$ au_3 $	$ au_2$	$ au_1$	$ ho_1$	$ ho_2$	e

$$D_4$$

$$D_4 = \{e, \rho_1, \rho_2, \rho_3, \tau_1, \tau_2, \tau_3, \tau_4\}$$

$$e = (1)(2)(3)(4)$$
 $\rho_1 = (1, 2, 3, 4)$
 $\rho_2 = (1, 3)(2, 4)$
 $\rho_3 = (1, 4, 3, 2)$
 $\tau_1 = (1)(2, 4)(3)$
 $\tau_2 = (1, 3)(2)(4)$
 $\tau_3 = (1, 2)(4, 3)$
 $\tau_4 = (1, 4)(2, 3)$

值得注意的是 $\sigma = (1,2)(4)(3)$ 他是一個置換,但不是一個對稱置換,因為他不能把正方形打回自身。

如何計算空間對稱群

正n邊形的對稱群的 order 是多少?。 立方體的有多少不同的旋轉。

如何計算空間對稱群

正n邊形的對稱群的 order 是 2n。 立方體的有24個不同的旋轉。

作用群

Group Action

作用群

Definition 4.1: 一個群G對一個集合A的作用是一個映射 $*: G \times A \to A$,滿足以下條件:

- 1. 對於所有 $a \in A$ ea = a
- 2. 對於所有 $a \in A$ 和 $g, h \in G$,(gh)a = g(ha)

在這個情況下,我們稱A是一個G-set。

像是在上一章節中,我們考慮了對稱群 D_3 對正三角形的作用。

Theorem 4.1: 讓X是一個G-set。如果 $gx_1 = gx_2$,那 $x_1 = x_2$

Proof: 假設 $gx_1=gx_2$,那麼 $g^{-1}gx_1=g^{-1}gx_2$,所以 $ex_1=ex_2$,所以 $x_1=x_2$ 。 ■

Remark: 如果 $x \neq y$, 那 $gx \neq gy$

Fixed point, Stabilizers subgroup, Orbits

Definition 4.2: 讓X是一個G-set, 讓 $x \in X$, $g \in G$ 。我們定義;

$$\operatorname{Stab}_G(x) = \{ g \in G \mid gx = x \}$$
$$X^g = \{ x \in X \mid gx = x \}$$

 $\operatorname{Stab}_{G}(x)$ 稱為x的穩定子群, X^{g} 稱為g的不動點。