Association Rule Mining

Lesson 4

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered: (Example only)

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}
```

Association Rule Discovery: Application 1

- Marketing and Sales Promotion:
 - Let the rule discovered be
 {Coke, ...} --> {Potato Chips}
 - Operator Chips as consequent => Can be used to determine what should be done to boost its sales.
 - Coke in the antecedent => Can be used to see which products would be affected if the store discontinues selling coke.
 - <u>Coke in antecedent and Potato chips in consequent</u> => Can be used to see what products should be sold with coke to promote sale of Potato chips!

Association Rule Discovery: Application 2

- Supermarket shelf management.
 - Goal: To identify items that are bought together by sufficiently many customers.
 - Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items.
 - ∘ A classic rule --
 - If a customer buys diaper and milk, then he is very likely to buy beer:

$$Diapers \rightarrow Beer, \ support = 20\%, \ confidence = 85\%$$

Association rule discovery basic concepts

- Let $I = \{I_1, I_2, \dots, I_m\}$ be a set of items.
- Let D, the task-relevant data, be a set of database transactions where each transaction T is a set of items such that T ⊆ I. Each transaction is associated with an identifier, called TID.
- Let A be a set of items. A transaction T is said to contain A if and only if A ⊆ T
- An association rule is an implication of the form $A \Rightarrow B$, where $A \subset I$, $B \subset I$, and $A \cap B = \emptyset$.
- The rule $A \Rightarrow B$ holds in the transaction set D with support s, where s is the percentage of transactions in D that contain A u B (i.e., the *union* of sets A and B, or say, both A and B). This is taken to be the probability, $P(A \cup B)$.
- The rule $A \Rightarrow B$ has confidence c in the transaction set D, where c is the percentage of transactions in D containing A that also contain B. This is taken to be the conditional probability, P(B|A). That is,

$$support(A \Rightarrow B) = P(A \cup B)$$

 $confidence(A \Rightarrow B) = P(B|A).$

Rules that satisfy both a minimum support threshold (min sup) and a minimum confidence threshold (min conf) are called strong. By convention, we write support and confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

$$confidence(A\Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support_count(A \cup B)}{support_count(A)}.$$

 In general, association rule mining can be viewed as a two-step process:

- I. Find all frequent itemsets:
 - By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, *min sup*.
- •2. Generate strong association rules from the frequent itemsets:
 - By definition, these rules must satisfy minimum support and minimum confidence.

Let D be database of transactions

– e.g.:

Transaction ID	Items
1000	A, B, C
2000	A, B
3000	A, D
4000	B, E, F

- Let I be the set of items that appear in the database, e.g., I={A,B,C,D,E,F}
 - Each transaction t is a subset of I
- A rule is an implication among itemsets X and Y, of the form by $X \rightarrow Y$, where $X \subset I$, $Y \subset I$, and $X \cap Y = \emptyset$
 - e.g.: {B,C} → {A} is a rule

Itemset

- A set of one or more items
 - E.g.: {Milk, Bread, Diaper}
- k-itemset
 - · An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset (number of transactions it appears)
- E.g. σ({Milk, Bread, Diaper}) = 2

TID	Items			
1	Bread, Milk			
2	Bread, Diaper, Beer, Eggs			
3	Milk, Diaper, Beer, Coke			
4	Bread, Milk, Diaper, Beer			
5	Bread, Milk, Diaper, Coke			

Support

- Fraction of the transactions in which an itemset appears
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

- An itemset whose support is greater than or equal to a minsup threshold

Association Rule discovery steps

- Find the frequent itemsets
 (item sets are the sets of items that have minimum support)
- 2. Use the frequent itemsets to generate association rules

Brute Force Algorithm:

- List all possible itemsets and compute their support
- Generate all rules from frequent itemset
- Prune rules that fail the minconf threshold

Would this work?!

How many itemsets are there?

Scalable methods for mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - □ i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori Algorithm

 C_k : Candidate itemset of size k L_k : Frequent itemset of size k

$$L_{l} = \{ \text{frequent items} \};$$

$$\mathbf{for} \ (k = 1; L_{k} != \emptyset; k++) \ \mathbf{do begin}$$

$$C_{k+l} = \text{candidates generated from } L_{k};$$

$$\mathbf{for \ each} \ \text{transaction} \ t \ \text{in database} \ \mathbf{do}$$

$$\text{increment the count of all candidates in}$$

$$C_{k+l} \ \text{that are contained in } t$$

$$L_{k+l} = \text{candidates in } C_{k+l} \ \text{with min_support}$$

$$\mathbf{end}$$

$$\mathbf{return} \ \cup_{k} L_{k};$$

Join Step: C_k is generated by joining L_{k-1} with itself

Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

Apriori

- Support is "downward closed"
 - If an itemset is frequent (has enough support), then all of its subsets must also be frequent
 - of [AB] is a frequent itemset, both [A] and [B] are frequent itemsets
 - This is due to the anti-monotone property of support

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Corollary: if an itemset doesn't satisfy minimum support, none of its supersets will either
 - this is essential for pruning search space)

support based pruning

Item	Count	
Bread	4	
Coke	2	1
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

minsup = 3/5

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

Association Rule

- X

 Y, where X and Y are nonoverlapping itemsets
- {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - □ Fraction of transactions that contain

■ i.e., support of the itemset X ∪ Y

- both X and Y
- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

TID	Items		
1	Bread, Milk		
2	Bread, Diaper, Beer, Eggs		
3	Milk, Diaper, Beer, Coke		
4	Bread, Milk, Diaper, Beer		
5	Bread, Milk, Diaper, Coke		

Example:

 $\{Milk, Diaper\} \rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.6$$

Transaction-id	Items bought		
10	A, B, D		
20	A, C, D		
30	A, D, E		
40	B, E, F		
50	B, C, D, E, F		

- $Itemset X = \{x_1, ..., x_k\}$
- Find all the rules X → Y with minimum support and confidence
 - ▶ support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $\sup_{min} = 50\%$, $\operatorname{conf}_{min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

Association rules:

$$A \to D$$
 (60%, 100%)
 $D \to A$ (60%, 75%)

Transaction ID	Items Bought	
1001	A, B, C	
1002	A, C	
1003	A, D	
1004	B, E, F	
1005	A, D, F	

Example of Generating Candidates

- ▶ L₃={abc, abd, acd, ace, bcd}
- ▶ Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace

- Pruning:
 - \triangleright acde is removed because ade is not in L_3
- $C_4 = \{abcd\}$

Apriori Example: (minsup = 2)

itemset sup {2 3 5} 2

The final "frequent" item sets are those remaining in L2 and L3. However, $\{2,3\}$, $\{2,5\}$, and $\{3,5\}$ are all contained in the larger item set $\{2,3,5\}$. Thus, the final group of item sets reported by Apriori are $\{1,3\}$ and $\{2,3,5\}$. These are the only item sets from which we will generate association rules.

- Item sets: {1,3} and {2,3,5}
- Recall that confidence of a rule LHS → RHS is Support of itemset (i.e. LHS ∪ RHS) divided by support of LHS.

Candidate rules for {1,3}					
Rule	Conf.	Rule	Conf.	Rule	Conf.
{1}→{3}	2/2 = 1.0	{2,3}→{5}	2/2 = 1.00	{2}→{5}	3/3 = 1.00
{3}→{1}	2/3 = 0.67	{2,5}→{3}	2/3 = 0.67	{2}→{3}	2/3 = 0.67
		{3,5}→{2}	2/2 = 1.00	{3}→{2}	2/3 = 0.67
		{2}→{3,5}	2/3 = 0.67	{3}→{5}	2/3 = 0.67
		{3}→{2,5}	2/3 = 0.67	{5}→{2}	3/3 = 1.00
		{5}→{2,3}	2/3 = 0.67	{5}→{3}	2/3 = 0.67

Assuming a min. confidence of 75%, the final set of rules reported by Apriori are: $\{1\}\rightarrow \{3\}, \{3,5\}\rightarrow \{2\}, \{5\}\rightarrow \{2\} \text{ and } \{2\}\rightarrow \{5\}$