Конспекты к экзамену по математической статистике

June 1, 2016

Contents

0.0	Список вопросов к экзамену по математической статистике .	2
0.1	Случайная выборка, генеральная совокупность, функция распре	делени
	выборки	3
0.2	Эмпирическая функция распределения, гистограмма	4
0.3	Выборочные характеристики. Выборочные моменты	6
0.4	Точечные оценки	7
	0.4.1 Характеристики оценок	7
0.5	Функция правдоподобия. Неравенство Крамера-Рао	9

0.0 Список вопросов к экзамену по математической статистике

- 1. 1. Случайная выборка и генеральная совокупность
 - 2. Функция распределения выборки
- 2. 1. Эмпирическая функция распределения
 - 2. Гистограмма
- 3. Выборочные характеристики. Выборочные моменты
- 4. Точечные оценки и их свойства
- 5. Функция правдоподобия. Неравенство Крамера-Рао
- 6. Метод максимального правдоподобия, свойства оценок максимального правдоподобия
- 7. Метод моментов для точечных оценок
- 8. Достаточные статистики
- 9. Интервальные оценки. Доверительные интервалы
- 10. Интервальные оценки.

Доверительные интервал для дисперсии нормальной генеральной совокупности

11. Асимптотические свойства оценки максимального правдоподобия.

Асимптотический доверительный интервал

12. Проверка статистических гипотез.

Критерий Неймана-Пирсона проверки простых гипотез

- 13. Наиболее мощный критерий. Теорема Неймана-Пирсона
- 14. Проверка статистических гипотез о параметрах нормального распределения
- 15. Критерии для сложных гипотез
- 16. Функция мощности при альтернативе
- 17. Критерий согласия χ^2 -Пирсона
- 18. Критерий согласия Колмогорова
- 19. Критерий однородности Колмогорова-Смирнова
- 20. Критерий однородности χ^2

0.1 Случайная выборка, генеральная совокупность, функция распределения выборки

Def. 1. Выборка (sample) Пусть эксперемент состоит в проведении n испытаний, результат j-го из которых является случайной величиной $X_j:\Omega_j\to\mathcal{X}_j.$

Кортёж из этих случайных величин (случайный вектор) $X=(X_1,\ldots,X_n)$ называется (случайной) выборкой, а r.v. X_j называются элементами выборки

А значение $x=(x_1,\ldots,x_n)=X(\omega)$ называется реализацией выборки

Далее всегда, если не указано иное, случайные величины будут обозначаться заглавными буквами, а их реализации соответствующими строчными

Далее X_i полагаются независимыми

Def. 2. Выборочное пространство (sample space) Выборочным пространством называется измеримое пространство $(\mathcal{X}, \mathcal{A})$, где $\mathcal{X} = \{X(\omega); \omega \in \Omega\}$ есть множество возможных значений выборки, а \mathcal{F} — σ -алгебра в \mathcal{X}

Особенно важен случай, когда случайные величины X_j являются независимыми и имеют распределение одной случайной величины ξ . Этот случай соответствует повторению n раз одного эксперемента, описываемого случайной величиной ξ

Def. 3. Генеральная совокупность (population) Генеральной совокупностью называют распределение $\mathcal{L}(\xi)$ случайной величины ξ

Оно может быть задано, например, множеством возможных значений ${\rm r.v.}~\xi$ и её функцией распределения

При этом X называют выборкой из (генеральной совокупности) $\mathcal{L}(\xi)$

Def. 4. Функция распределения выборки $X \in \mathcal{L}(\xi)$

$$F_X(x) = \mathbb{P}\{X \le x\} = \prod \mathbb{P}\{X_j \le x_j\} = \prod F_{X_j}(x_j)$$

Эмпирическая функция распределения, гистограмма

Пусть $A \subset \Omega_0$ событие, происходящее в ходе испытания с вероятностью $\mathbb{P}A = p$, и пусть эксперимент состоит в проведении n таких независимых испытаний

Тогда

$$\Omega = \prod_{j=1}^{n} \Omega_0$$

А случайная величина

$$X_j = I_{\{\omega; \omega_j \in A\}} = \begin{cases} 1; & \omega_j \in A \\ 0; & \omega_j \notin A \end{cases}$$

является индикатором того, что в ходе j-го испытания случилось событие A Пусть r.v. $k=\sum_{j=1}^n X_j$ — число проявлений A в ходе эксперимента.

Введём r.v. $p_n^* = \frac{1}{n} \sum_{j=1}^n X_j$. Очевидно $\mathbb{E}p_n^* = p$.

Кроме того, из ЗБЧ в форме Бернулли следует

$$\lim_{n \to \infty} \mathbb{P}\{|p_n^* - p| < \varepsilon\} = 1 \quad \forall \varepsilon > 0$$

Таким образом, значение случайной величины p_n^* можно считать приближённой оценкой величины р

Пусть теперь $X=(X_1,\dots,X_n)$ — выборка объёма n из генеральной совокупности $\mathcal{L}(\xi)$, $x = (x_1, \dots, x_n)$ — реализация.

 $\mathbf{Def.}$ 5. Порядковые статистики Каждой реализации x можно сопоставить в соответствие его перестановку $x_{(1)} \leq \cdots \leq x_{(n)},$

j-й порядковой статистикой назвается случайная величина $X_{(j)},\,$ при каждой реализации $X(\omega) = x$, принимает значение $X_{(j)}(\omega) = x_{(j)}$

Def. 6. Вариационный ряд Случайный вектор $(X_{(1)}, \dots, X_{(n)})$ называется вариационным рядом

Def. 7. Эмпирическая функция распределения Для каждого $t \in \mathbb{R}$ зададим случайную величину $\mu_n(x)$, равную количеству элементов выборки X, значения которых не превосходят t:

$$\mu_n(x) = \sum I_{\{X_j \le t\}}$$

Эмпирической функцией распределения, построенной по выборке X, называют случайную функцию $F_n: t \mapsto \mathcal{L}^0(\Omega)$

$$F_n(x) = \frac{1}{n}\mu_n(t)$$

 ${\rm E\ddot{e}}$ значение в точке t является случайной величиной, сходящейся по вероятности к значению F(t) теоретической функции распределения

EDF можно перезаписать с помощью функции Хевисайда (Heaviside):

$$H(t) = \begin{cases} 0; & t < 0 \\ 1; & t \ge 0 \end{cases}$$

$$F_n(t) = \frac{1}{n} \sum_{i=1}^{n} H(t - X_{(k)})$$

Def. 8. Гистограмма Разобьём область значений r.v. ξ на равные интервалы Δ_i , и для каждого Δ_i подсчитаем число n_i элементов x_j вектора x, попавших в Δ_i , $n=\sum n_i$.

Построим график ступенчатой функции

$$t \mapsto \frac{n_i}{nh_i}, \quad t \in \Delta_i, h_i = |\Delta_i|$$

Полученный график (при желании, само отображение) называется Γ истограммой, построенной по данной реализации выборки

Соединим середины смежных отрезков этого графика. Полученная ломанная называется полигоном частот

С уменьшением $\max\{h_i\}$, гистограмма и полигон частот всё более точно приближают вероятности попадания в каждый из интервалов разбиения

0.3 Выборочные характеристики. Выборочные моменты

Пусть $X=(X_1,\ldots,X_n)$ — выборка из $\mathcal{L}(\xi),\ F$ и F_n — соответственно теоритическая и эмпирическая функции распределения.

Всякой характиристике \tilde{g} случайной величины ξ

$$\tilde{g} = \int_{\mathbb{R}} g(t) \mathrm{d}F(t)$$

можно поставить в соответствие статистический аналог — случайную величину G:

$$G = \int_{\mathcal{X}} g(x) dF_n(x) = \frac{1}{n} \sum_{j=1}^n g \circ X_j$$

$$G(\omega) = \int_{\mathcal{X}} g(x) d\left((F_n(x))(\omega) \right) = \frac{1}{n} \sum_{i=1}^n g(x_i)$$

Выборочным моментом k-го порядка называется статистический аналог характеристики $\alpha_k = \mathbb{E} \xi^k = \int_{\mathbb{R}} t^k \mathrm{d} F(t)$:

$$A_k = \frac{1}{n} \sum_{j=1}^n X_j^k$$

 $\bar{X} = A_1$ называют выброчным средним.

Выборочным центральным моментом k-го порядка называют случайную величину M_k — статистический аналог характеристики $\mu_k=\mathbb{E}(\xi-\mathbb{E}\xi)^k=\int_{\mathbb{R}}(t-\alpha_1)^k\mathrm{d}F(t)$

$$M_k = \frac{1}{n} \sum_{j=1}^{n} (X_j - \bar{X})^k$$

 M_2 называют выборочной дисперсией

 $NB\ 1.$ Выборочное среднее является несмещённой оценкой математического ожидания

$$\mathbb{E}\bar{X} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}X_{i} = \frac{n\alpha_{1}}{n} = \alpha_{1}$$

0.4 Точечные оценки

Пусть некоторый процесс описывается вероятностной моделью $(\Omega, \mathcal{A}, \mathbb{P})$, где Ω — пространство элементарных событий, $\mathcal{A} \subset 2^{\Omega}$ — σ -алгебра событий, \mathbb{P} : $\mathcal{A} \to [0,1]$ — вероятностная мера, а проводимый эксперимент соответствует случайной величине $\xi \in \mathcal{L}^0$, с функцией распределения F.

Рассмотрим задачу определения распределения случайной величины, в случае когда известно, что её функция распределения F принадлежит некоторому классу распределений, зависящих от параметра

$$F \in \mathcal{F} = \{F_{\theta}; \theta \in \Theta\}$$

где Θ — множество значений некоторого параметра θ . То есть известно, что распределение определяется некоторым неизвестным значением θ , и задача сводится к его оценке.

Пусть $X=(X_1,\ldots,X_n)$ — выборка из $\mathcal{L}(\xi)$. Говорят, что пара $(\mathcal{X},\mathcal{F})$ задаёт "статистическую модель".

Def. 9. Статистика Статистикой называется случайная величина — композиция $g \circ X$ некоторой (вообще говоря борелевской) функции g и выборки X

$$(g \circ X)(\omega) = g(x)$$

Def. 10. Точечная оценка параметра θ есть статистика $T \circ X$ (или для простоты сама функция T), реализацию $(T \circ X)(\omega) = T(x)$ которой принимают за приближённое значение парамтра θ

0.4.1 Характеристики оценок

Def. 11. Несмещённость (unbiasedness) Несмещённой называют такую оценку T, что её математическим ожиданием является искомый параметр θ :

$$\mathbb{E}(T\circ X)=\theta$$

Def. 12. Состоятельность (consistency) Оценка T называется состоятельной, если она сходится по вероятности к оцениваемому параметру:

$$\lim_{n \to \infty} \mathbb{P}\{\omega \in \Omega; |(T \circ X)(\omega) - \theta| < \varepsilon\} = \lim_{n \to \infty} \mathbb{P}\{|T(x) - \theta| < \varepsilon\} = 1$$

Def. 13. Оптимальность (effectiveness) Оценка T_0 называется *оптимальной* в классе несмещённых оценок \mathcal{T} , если среди всех оценок класса \mathcal{T} , оценка T_0 имеет минимальную дисперсию, то есть для любого $T \in \mathcal{T}$

$$\mathbb{D}(T_0 \circ X) \le D(T \circ X)$$

Оценка называется *оптимальной*, если она оптимальна в классе всех несмещённых оценок

Thm. 1. Единственность оптимальной оценки Если две несмещённые оценки T_1, T_2 параметра θ оптимальны, то они равны почти-всюду $T_1 \stackrel{\mathbb{P}}{=} T_2$:

$$\mathbb{P}\{T_1 \neq T_2\} = 0$$

0.5 Функция правдоподобия. Неравенство Крамера-

Пусть $f_{\theta}: \mathbb{R} \to [0,1]$ — плотность распределения r.v. ξ при данном значении параметра $\theta, X = (X_1, \dots, X_n)$ — выборка из $\mathcal{L}(\xi), x = X(\omega)$ — реализация выборки. Символом $f_{\theta}: \mathcal{X} \to [0,1]$ будем обозначать плотность распределения выборки $f_{\theta}(x) = \prod_{i=1}^{n} f_{\theta}(x_i)$

Def. 14. Функция правдоподобия (likelihood fuction) При фиксированном $x \in \mathcal{X}$ функция $L_x : \theta \mapsto f_{\theta}(x)$ называется функцией правдоподобия. Далее будем считать, что при любом x отображение $\theta \mapsto f_{\theta}(x)$ дифференцируемо

Def. 15. Вклад (score) выборки При каждом $\theta \in \Theta$ введём случайную величину $L_X(\theta)$, реализация $L_x(\theta)$ которой есть правдоподобие значения параметра θ при данной реализации выборки x. Обозначим $L_{X_j}: \theta \mapsto (f_\theta \circ X_j),$ $L_{x_j}: \theta \mapsto f_\theta(x_j),$

Случайная величина U

$$U = \frac{\partial \ln L_X(\theta)}{\partial \theta}$$
$$U(\omega) = u(x) = \sum_{j=1}^{n} \frac{\partial \ln L_{x_j}(\theta)}{\partial \theta}$$

Называется вкладом выборки X

Def. 16. Регулярная статистическая модель Статистическая модель, позволяющая дифференцировать (всякие $\int L$ и вообще всё что вздумается) по θ , переставлять операторы интегрирования и дифференцирования, и разрешающая прочий матан называется регулярной

Далее рассматриваются регулярные модели

Thm. 2. Свойства функции правдоподобия и вклада

$$\mathbb{E}_{\theta} L_X(\theta) = \int_{\mathcal{X}} f_{\theta}(x) dx = 1 \quad \forall \theta \in \Theta$$

$$\mathbb{E}_{\theta} U = 0$$

Proof. Первое равенство естественно. Продифференцируем его:

$$0 = \frac{\partial \int_{\mathcal{X}} L_x(\theta) dx}{\partial \theta} = \int_{\mathcal{X}} \frac{\partial L_x(\theta)}{\partial \theta} dx$$

Заметим

$$U(\omega) = \frac{\partial \ln L_x(\theta)}{\partial L_x(\theta)} = \frac{\partial L_x(\theta)}{\partial \theta} \frac{1}{L_x(\theta)} L_x(\theta) = \frac{\partial L_x(\theta)}{\partial \theta}$$

Значит

$$0 = \int_{\mathcal{X}} \frac{\partial \ln L_x(\theta)}{\partial L_x(\theta)} dx = \int_{\mathcal{X}} u(x) f_{\theta}(x) dx = \mathbb{E}_{\theta} U$$