SIT330-770: Natural Language Processing

Week 7 - Neural Networks and Neural LMs

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

Andrew Ng

Neural Networks and Deep Learning

Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:

- Text classification
- 2. Language modeling

 State-of-the-art systems use more powerful neural architectures, but simple models are useful to consider!

Classification: Sentiment Analysis

- We could do exactly what we did with logistic regression
- Input layer are binary features as before
- Output layer is o or 1

Sentiment Features

Var	Definition
$\overline{x_1}$	$count(positive lexicon) \in doc)$
x_2	$count(negative lexicon) \in doc)$
<i>x</i> ₃	<pre> { 1 if "no" ∈ doc</pre>
x_4	$count(1st and 2nd pronouns \in doc)$
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_6	log(word count of doc)

Feedforward nets for simple classification

- Just adding a hidden layer to logistic regression
 - o allows the network to use non-linear interactions between features
 - which may (or may not) improve performance.

Even better: representation learning

- The real power of deep learning comes from the ability to **learn** features from the data
- Instead of using hand-built human-engineered features for classification
- Use learned representations like embeddings!

Neural Net Classification with embeddings as input features!

Issue: texts come in different sizes

- This assumes a fixed size length (3)!
- Kind of unrealistic.
- Some simple solutions (more sophisticated solutions later)
- 1. Make the input the length of the longest review
 - If shorter then pad with zero embeddings
 - Truncate if you get longer reviews at test time
- Create a single "sentence embedding" (the same dimensionality as a word) to represent all the words
 - Take the mean of all the word embeddings
 - Take the element-wise max of all the word embeddings
 - For each dimension, pick the max value from all words

Reminder: Multiclass Outputs

- What if you have more than two output classes?
 - Add more output units (one for each class)
 - And use a "softmax layer"

$$softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}} \quad 1 \le i \le D$$

Neural Language Models (LMs)

- Language Modeling: Calculating the probability of the next word in a sequence given some history.
 - We've seen N-gram based LMs
 - But neural network LMs far outperform n-gram language models
- State-of-the-art neural LMs are based on more powerful neural network technology like Transformers
- But simple feedforward LMs can do almost as well!

Simple feedforward Neural Language Models

Task: predict next word w_t

given prior words w_{t-1} , w_{t-2} , w_{t-3} , ...

Problem: Now we're dealing with sequences of arbitrary length.

Solution: Sliding windows (of fixed length)

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-N+1}^{t-1})$$

Neural Language Model

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed.

Never seen: dog gets fed

Test data:

- I forgot to make sure that the dog gets _____
- N-gram LM can't predict "fed"!
- Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog