Raciocinando sobre conhecimento e probabilidade

Isaque Macalam Saab Lima

October 26, 2015

Outline

O que é Lógica Epistêmica Probabilística?

Lógica Epistêmica

Adicionando o operador de probabilidade

Linguagem

Semântica

Exemplos

"Input and Coin"

Porta dos desesperados

O conteúdo destes slides foi baseado no artigo Reasoning about Knowledge and Probability (Ronald Fagin e Joseph Y. Halpern) e nas notas do professor Mario Benevides.

O que é Lógica Epistêmica Probabilística?

É a lógica epistêmica acrescida do operador de probabilidade (w_i) , que permite representar expressões do tipo: "de acordo com o agente i, a fórmula φ é verdadeira com probabilidade maior ou igual a b" $(w_i(\varphi) >= b)$.

Lógica Epistêmica

Lógica epistêmica é a lógica modal utilizada para raciocinar sobre conhecimento (K_i) . Normalmente representa o que o agente considera possível diante das informações que ele possui. Como cada agente pode ter um conhecimento diferente sobre os possíveis mundos.

Permite representar expressões do tipo:

- O agente i sabe que φ é verdadeiro $(K_1\varphi)$.
- Se o agente i sabe φ então ϕ é verdadeiro. $(K_i \varphi \to \phi)$
- O agente i não sabe φ . $(\neg K_i \varphi)$

Podemos também representar informações de alta ordem("high order information"), exemplos:

- O agente a sabe que o agente b sabe que o agente c sabe φ $(K_aK_bK_c\varphi)$.
- O agente a sabe que o agente b não sabe a carta de c $(K_a \neg K_b c)$

Adicionando o operador de probabilidade

A fórmula $K_i \varphi$ afirma que φ é verdadeiro em todos os mundos que o agente i considera possível. Queremos estender a nossa linguagem para permitir fórmulas do tipo: "de acordo com o agente i o agente j sabe φ com probabilidade maior ou igual a b" $(w_i(K_j \varphi) \geq b)$.

Aplicando esse conceito podemos montar expressões do tipo: $a_1w_i(\psi_1)+\ldots+a_kw_i(\psi_k)\geq c$ ("i-probability formula"), onde ψ_1,\ldots,ψ_k são fórmulas, $a_q,\ldots a_k$ são números racionais e a expressão $a_1w_i(\psi_1)+\ldots+a_kw_i(\psi_k)$ é chamada de termo.

Diferente da lógica probabilística, que só permite que φ seja booleano, a lógica epistêmica probabilística permite termos arbitrários na "i-probabilistic formula", dando uma maior flexibilidade para expressar relações entre probabilidade e eventos.

Podemos representar fórmulas probabilísticas de alta ordem ("high order probability formula"): $w_i(w_j(\varphi) \geq b) \geq c$.

Fórmulas misturadas, como $w_i(\varphi) + w_i(\psi) \ge c$, não são permitidas.

Linguagem

A linguagem consiste em um conjunto Φ de símbolos proposicionais contáveis, um conjunto de agentes $\{1,...,n\}$, os conectivos booleanos \neg e \wedge e as probabilidades $w_i(\varphi)$, uma para cada agente.

Formulas:

$$\varphi ::= p \mid \top \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid a_1 w_i(\varphi) + \dots + a_k w_i(\varphi) \geq c$$

where $p \in \Phi$ (primitive prepositions).

Abreviações:

- $w_i(\varphi) \ge w_i(\psi) \equiv w_i(\varphi) w_i(\psi) \ge 0$;
- $w_i(\varphi) \leq b \equiv -w_i(\varphi) \geq -b$;
- $w_i(\varphi) < b \equiv \neg (w_i(\varphi) \ge b);$
- $w_i(\varphi) = b \equiv (w_i(\varphi) \ge b) \land (w_i(\varphi) \le b);$
- $K_i^c(\varphi) \equiv K_i(w_i(\varphi) \ge c)$.
 - "o agente i sabe que a probabilidade de φ é $\geq c$ ".

Pode parecer que a fórmula $w_i(\varphi) \geq c$, mesmo sem o operador K_i , afirma que: "o agente i sabe que a probabilidade de φ é maior ou igual a b".

Isso não é correto!

Dado um estado s, as expressões $K_i^c(\varphi)$ e $w_i(\varphi) \geq c$ têm os seguintes significados:

- $K_i^c(\varphi)$: "o agente i sabe que a probabilidade de φ é $\geq c$ ".
- $w_i(\varphi) \geq c$: "a probabilidade do agente i atribuir φ ao estado s é $\geq c$ ".

Semântica

Modelo

Dado um conjunto contável de proposições atômicas P e um conjunto finito de agentes A, um modelo de Probabilidade e Conhecimento é uma estrutura $M=(S,\pi,\kappa_1,...,\kappa_n,\mathcal{P})$, onde:

- ullet S é um conjunto de estados;
- π é a função de valoração: $\pi: \Phi \mapsto 2^S$;
- $\kappa_i(s)$ é a função, que produz, para cada agente i, uma relação de acessibilidade, onde κ_i está contido em $S \times S$. Dizemos que $(s,t) \in \kappa_i(s)$ se no estado s o agente i considera o estado t possível.

- \mathcal{P} é a atribuição de probabilidade, que atribui para cada agente i e estado s um espaço de probabilidade $P(i,s) = (S_{i,s}, \mathcal{X}_{i,s}, \mu_{i,s})$, onde:
 - $S_{i,s} \subseteq S$, geralmente é o conjunto de estados que o agente i considera possível;
 - $\mathcal{X}_{i,s}$ são subconjuntos de $S_{i,s}$ fechados sob complemento e união, esses elementos são chamados de conjuntos mensuráveis;
 - $\mu_{i,s}$ é a medida de probabilidade definida nos elementos de $\mathcal{X}_{i,s}$.

Satisfação

- $(M,s) \models \neg \varphi$ sse $(M,s) \not\models \varphi$
- $\bullet \ (M,s) \models \varphi \wedge \psi \text{ sse } (M,s) \models \varphi \text{ e } (M,s) \models \psi$
- $(M,s) \models K_i \varphi$ sse $(M,t) \models \varphi$ para todo $t \in \kappa_i(s)$
- $(M,s) \models a_1 w_i(\varphi_1) + \ldots + a_k w_i(\varphi_k) \ge b$ sse $a_1(\mu_{i,s})_* (S_{i,s}(\varphi_1)) + \ldots + a_k(\mu_{i,s})_* (S_{i,s}(\varphi_k)) \ge b$

Exemplos

"Input and Coin"

Considere um jogo com dois agentes, onde o Agente2 recebe um bit de entrada (1 ou 0). Ele joga uma moeda, não viciada, e realiza uma ação a se a moeda for igual ao bit de entrada (cara=1, coroa=0).

Assumi-se que o Agente1 não sabe o bit de entrada e nem o resultado da moeda.

Podemos notar que de acordo com o Agente2, que sabe o valor do bit de entrada, a probabilidade (depois da moeda ser lançada) de realizar a ação a é de 1/2. Podemos notar também que de acordo com o Agente1, que não sabe o valor do bit de entrada, a probabilidade do Agente2 realizar a ação é de 1/2.

Isso porque o Agente1 considera 4 estados possíveis, onde apenas em 2 a ação é realizada(destacados em azul).

Estados:

- s1 (0,cara)
- s2 (0,coroa)
- s3 (1,cara)
- s4 (1,coroa)

Proposições:

- ullet A eventos onde a ação a é realizada;
- *H* moeda dando cara;
- T moeda dando coroa;
- B_0 Bit de entrada do Agente2 é 0;
- B₁ Bit de entrada do Agente2 é 1;

Porta dos desesperados

O jogo consiste em 3 portas fechadas e atrás de apenas uma delas tem um premio. O jogador pode escolher uma das portas, das duas portas que restaram, a que não tem premio é aberta. O jogador agora tem que escolher se é melhor ficar com a porta escolhida ou trocar para a outra porta que restou.

O que você faria?

Podemos modelar esse jogo com a estrutura da lógica epistêmica probabilística, onde:

- O conjunto P de proposições é: p1(premio na porta1), p2(premio na porta2), p3(premio na porta3), onde $(p1 \land \neg p2 \land \neg p3) \lor (\neg p1 \land p2 \land \neg p3) \lor (\neg p1 \land \neg p2 \land p3)$ é verdadeiro. Ou seja, o premio não pode estar ao mesmo tempo em duas portas diferentes.
- O conjunto S de possíveis mundos consiste em 3 estados: s1 (p1 verdadeiro)
 , s2 (p2 verdadeiro)
 , s3 (p3 verdadeiro)
- Computamos a probabilidade de cada proposição em cada estado dado os estados que o agente considera possível.

Modelo do jogo "porta dos desesperados":

Como todos os estados estão ligados (o agente a não consegue diferenciar), as probabilidades das proposições serão iguais em todos os estados. Logo:

- $\mu_a(p1) = 1/3$
- $\mu_a(p2) = 1/3$
- $\mu_a(p3) = 1/3$
- $\mu_a(p1 \vee p2) = 2/3$
- $\mu_a(p1 \vee p3) = 2/3$
- $\mu_a(p2 \vee p3) = 2/3$
- $\mu_a(p1 \lor p2 \lor p3) = 1$

