Universidad de Guanajuato División de Ciencias Naturales y Exactas

BIOESTADÍSTICA

Luis Javier Torres Tetuan Jesús Hernández González Rodolfo Ferro Pérez

ANÁLISIS DE DATOS EN TWITTER

Introducción

¿Por qué hacer análisis de datos en redes sociales?

2. PLANTEAMIENTO DEL PROBLEMA

Pretendemos **analizar** qué tan necesario es para 2 usuarios elegidos al azar, usar el total de caracteres permitidos en la red social (**Twitter**) para causar un mayor **impacto** en lo que desean postear.

Los individuos en cuestión son un usuario especializado en **biología** y uno especializado en **política**.

Diferencias

entre un **tweet** de un **usuario** especializado en temas de **biología** y uno de **política**.

3. OBJETIVOS

- Análisis estadístico de la información de un usuario con contenido específico (Biología)
- Comparación estadística con otro tipo de usuarios (Política)

4. HIPÓTESIS

Las medias entre tweets de un usuario especializado en distintas áreas son iguales, es decir:

$$H_0$$
: $\mu_E = \mu_P = \mu$

 H_A : $\mu_i \neq \mu_j$, para $i \neq j$, $i, j = \{E, P\}$

Donde:

 μ es la media global

 $\mu_{\rm E}$ es la media de usuario especializado

 μ_P es la media de usuario promedio

5. Materiales:

- Computadora
- Lenguaje de Programación

6. PROCEDIMIENTO

1. Creación de una aplicación en Twitter

Create New App

2. Extracción de la información

In [4]: for tweet in tweets: print(tweet.text) print("Fecha de creación:", tweet.created_at) print("Geolocalización:", tweet.geo) print("Longitud del tweet:", lent(tweet.text), '\n')

A cis cold memory element & amp; a trans epigenome reader med iate Polycomb silencing of FLC by vernalisation https://t.c o/83utueEB8G

Fecha de creación: 2016-11-29 17:26:04 Geolocalización: None Longitud del tweet: 131

Cytokinin response factors integrate auxin and cytokinin pat hways for female reproductive organ development https://t.c o/JBN8QzZuIt Fecha de creación: 2016-11-29 14:25:28

Fecha de Creacion: 2016-11-29 14:25:28 Geolocalización: None Longitud del tweet: 131

Ovary-derived precursor gibberellin A9 is essential for fema le flower development in cucumber https://t.co/VvCeCghuD8 Fecha de creación: 2016-11-29 14:25:10 Geolocalización: None Longitud del tweet: 117

3. Análisis de los datos

Histograma:

In [13]:
fig, ax = plt.subplots(figsize=(10,7.5))
plt.hist(data['Longitud'], normed=False,
color='lightseagreen', linewidth=1.5,

color='lightseagreen', linewidth=1.5,
edgecolor='white')
plt.title("Histograma de longitudes de Tweets")
plt.grid(True)

5 5 5 5 5 5 5 5

BioStat_FinalProject Final Project of my school subject.

Twitter Apps

7. ANÁLISIS DE DATOS

- El análisis lo hicimos con base en la longitud de texto escrito en cada tweet
- Los tweets usados fueron los 200 más recientes de cada usuario
- Los usuarios analizados fueron 2:
 - @plantbiology
 @EPN

Extrajimos 200 tweets para cada usuario y los ordenamos en una tabla de este tipo.

-		
	Tweet	Longitud
0	A cis cold memory element & amp; a trans epigen	131
1	Cytokinin response factors integrate auxin and	131
2	Ovary-derived precursor gibberellin A9 is esse	117
3	Demethylation of ERECTA receptor genes by IBM1	119
4	5000-year-old cobs reveal corn domestication i	79

MEDIDAS DE TENDENCIA CENTRAL:

Media aritmética:

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

```
In [8]:
```

```
np.mean(data['Longitud'])
```

Out[8]:

90.6

Mediana:

$$M_{pos} = \frac{n+1}{2}$$

In [10]:

```
np.median(data['Longitud'])
```

Out[10]:

85.5

Moda

In [9]:

```
np.argmax(np.bincount(data['Longitud'])
```

Out[9]:

83

MEDIDAS DE TENDENCIA CENTRAL:

Media armónica:

$$MA = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

In [12]:

len(data['Longitud'])/np.sum(1./data['L
ongitud'])

Out[12]:

82.61347934524194

Media geométrica:

$$G=\sqrt[n]{x_1\cdots x_n}$$

In [11]:

np.prod(np.power(data['Longitud'], 1./1
en(data['Longitud'])))

Out[11]:

86.765131610856642

MEDICIÓN DE LA VARIABILIDAD:

Desviación estándar:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

In [17]:

np.std(data['Longitud'])

Out[17]:

25.976912826585078

Varianza:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

In [18]:

np.var(data['Longitud'])

Out[18]:

674.8000000000003

MEDICIÓN DE LA VARIABILIDAD:

Grados de libertad:

$$\gamma = N - 1$$

In [19]:

len(data['Longitud']) - 1

Out[19]:

199

Coeficiente de variación:

$$CV = \frac{\sigma}{\mu} \times 100$$

In [20]:

np.std(data['Longitud'])/np.mean(data[':
gitud'])*100

Out[20]:

28.672089212566316

7.2 RESULTADOS GRÁFICOS

Frecuencia

Diagrama de puntos

7.2 RESULTADOS GRÁFICOS

Diagrama de tallo y hoja

```
2 | 3 7

4 | 1 9

5 | 1 2 3 3 4 5 6 7 8 8 9 9 9

6 | 0 1 1 1 1 1 1 2 3 3 3 4 4 4 6 6 6 6 7 8 8 8 9 9 9

7 | 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 8 8 9 9

8 | 0 0 1 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 6 6 7 8 8 9 9

9 | 0 0 1 2 2 3 3 4 4 4 4 5 5 5 6 6 8 8 9 9

10 | 1 2 3 3 3 3 4 4 4 5 5 6 6 6 8 9 9

11 | 0 1 2 3 3 3 3 4 5 5 6 7 7 9 9

12 | 0 1 1 1 3 3 5 5 5 5 5 7 8

13 | 0 1 1 1 2 2 4 4 5 5 5 6 6

14 | 0 0 0 0 0 4 4 4 4 6 7
```

Diagrama de caja y bigotes

Comparación de medias (desv. est.):

Hipótesis:

$$H_0: \bar{x_1} = \bar{x_2}$$

 $H_A: \bar{x_1} \neq \bar{x_2}$
 $F = \frac{s_1}{s_2}, F \ge 1$

```
In [28]: F = np.std(data['Longitud']) / np.std(p_data['Longitud'])
    print("F = {} > 1".format(F))
F = 1.708643605642507 > 1
```

Entonces,

$$F_0 = 1.7086,$$

 $GL_1 = GL_2 = 199.$

F_0	Comp.	$F_{0.05,199,199}$	H_0
1.7086	>	1.26	х

Se rechaza la hipótesis de tener la misma desv. estándar.

Ahora se calculan los estadísticos:

$$t = \frac{(\bar{x_1} - \bar{x_2})}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$GL = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}\right)}$$

Se hace la comparación:

t_0	Comp.	t _{0.05,321}	H_0
16.8866	>	1.96	х

Y de aquí se concluye que SÍ hay diferencia estadística entre las medias.

@plantbiology

@EPN

Comparación de medias (t pareada):

Hipótesis:

$$H_0: \mu_d = 0$$

Calculamos el estadístico:

$$t = \frac{\bar{d}\sqrt{n}}{s_d} = 18$$

$$GL = 200 - 1 = 199$$

Hacemos la comparación:

t_0	Comp.	t _{0.05,199}	H_0
18	^	1.96	Χ

De aquí que hay consistencia en la diferencia estadística de las medias.

8. DISCUSION

140

Es el número máximo de caracteres que están disponibles para cada Tweet escrito por usuario.

Plant biology

Con una media de 90.6 caracteres por tweet, de una muestra de 200 tweets.

EnriquePeñaNieto

Con una media de 125.6 caracteres por tweet, en una muestra de 200 tweets.

8. DISCUSIÓN

Después de analizar los doscientos tweets de cada usuario, se puede estimar la **media** en su uso de caracteres, el límite se conoce en 140 y se nota que el usuario EPN utiliza en la mayoría de sus tweets el **máximo** posible, ya que trata de generar empatía y sentido de profesionalismo.

8. DISCUSIÓN

En cambio en el usuario especializado en biología Plant Biology busca ser **conciso, claro y directo** a la hora de postear para atraer la atención y expresar en **pocas palabras** la idea principal de un tema específico que usualmente profundiza dejando un link de acceso.

9. CONCLUSIONES

Los valores estadísticos para el uso de caracteres por parte del usuario especializado en **biología son menores** comparación a un usuario de índole **política**, tal vez se debe al ámbito en el que debe expresar cada usuario.

El político tiene a adornar sus tweets para aumentar sus seguidores, en cambio un usuario especializado sabe que debe ser claro y expresar en el menor número de palabras una idea principal para atraer atención del público en general

10. BIBLIOGRAFÍA

- Miller, Estadística y Quimiometría para Química Analítica, 2005.
- Jupyter Notebook Documentation: https://jupyter.readthedocs.io/en/latest/
- Tweepy Documentation: http://docs.tweepy.org/en/v3.5.0/

¿Alguna pregunta?

CRÉDITOS:

- Rodolfo Ferro Pérez
- Luis Xavier Torres Tetuan
- Jesús Hernández González

https://rodolfoferro.github.io/biostat_finalproj/