

Presents

15thMarch 2020 AAKAAR, IIT Bombay

INTERNET OF THINGS

SINKU KUMAR

AGENDA

- Introduction
- ❖ IoT vs Others
- Reference Models
- ❖ I/O Interface
- ❖ Domain Specific IoT
- Development Boards
- ❖ Day I Hands-On
- ❖ Day 2 Hands-On

GITHUR COM/SINKULL96

❖ Task Based Competition

- ❖ Atmel Studio Installation
- USBasp Driver Installation
- ❖ AVR Dude Configuration
- ❖ USB-TTL Driver Installation
- ❖ Serial Terminal Installation

INTERNET OF THINGS

INTERNET

- ✓ Inter-Connected Network
- ✓ Global System of Inter-Connected Computer Systems
- ✓ Uses Internet Protocol Suite(TCP/IP)
- ✓ It's a Network of Networks

IOT VS IOE VS M2M

- ✓Internet of Things
- ✓ Allows physical devices to connect with each other
 - **√**Connect
 - √ Control
 - ✓ Sense

IOT VS IOE VS M2M

- ✓ Machine to Machine
- ✓ Used for Over 10 years
- ✓ Notable in Telecom Area
- ✓ Connects One Machine to Another

IOT VS IOE VS M2M

- ✓ Internet of Everything
- ✓ Unclear Idea
- ✓ IoE Incorporates Wide range of Associations
- ✓ The Idea Has Consequently
 The Most Astounding Scope

IOT ECOSYSTEM

- Components that enable businesses, governments, and consumers to connect.
- Includes
 - Remotes
 - Dashboards
 - Networks
 - Gateways
 - Analytics
 - Data Storage

GITHOB: 25 FASIDIKITA 6

DEVELOPMENT BOARD

MICROPROCESSORS

MICROCONTROLLERS

ATMEGA 16

*JTAG are only available on ATmega16/32

MEGATRON

- ☐ Motor Connector
- **□**8 LEDs PORTB(0-7)
- □Buzzer PORTA7
- □LCD Connector
- □Atmega | 6
- □ I6Mhz Clock

KIT CONTENTS

- ☐Megatron Board
- **□**USBasp
- **□**USB-TTL
- □ Relay
- **□**Jumpers

GITHUB.COM/SIN ESP8266

TRANSDUCERS, SENSORS AND ACTUATORS

- Transducer
 - Sensor
 - Actuator

REGISTER DESCRIPTION FOR I/O PORTS

	7	6	5	4	3	2	1	0
Data Register	PORTx7	PORTx6	PORTx5	PORTx4	PORTx3	PORTx2	PORTxI	PORTx0

Data Direction D	DDx7	DDx6	DDx5	DDx4	DDx3	DDx2	DDxI	DDx0	
-------------------------	------	------	------	------	------	------	------	------	--

Input Pins	PINx7	PINx6	PINx5	PINx4	PINx3	PINx2	PINxI	PINx0	
------------	-------	-------	-------	-------	-------	-------	-------	-------	--

CONTROLLING ONBOARD ELECTRONIC COMPONENTS

□LED, Buzzer, Relay

□DDRx

□PORTx

DDRB = 0b10110101; PORTB = 0b10110101;

0: Input 0: Low

I: Output I: HIGH

COMMUNICATION

□uart_init()	Initialize UART
--------------	-----------------

uart_char()
Sends Character

uart_string()
Sends String

uart_num()
Sends Number

uart_read()
Reads an Input

REGISTER DESCRIPTION FOR UART

	7	6	5	4	3	2	1	0
UCSRA	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM
				•				
		l					l	
UCSRB	RXIE	TXIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8
UCSRC	URSEL	UMSEL	UPMI	UPM0	UBS	UCSZI	UCSZ0	UCPOL
-		0						

ANALOG SENSOR INTERFACING

□adc_init() Initialize ADC

☐getdata() Reads an Input on ADC Pin

REGISTER DESCRIPTION FOR ADC

IOT REFERENCE MODEL

LEVEL I: PHYSICAL DEVICES AND CONTROLLERS

■ Sensors, Robots etc.

LEVEL 2: CONNECTIVITY

- Edge Devices, Routers, Hubs etc.
- Protocols like Bluetooth, Wi-Fi, etc.

LEVEL 3: EDGE(FOG) COMPUTING

- Peer to Peer Communication
- Data Filtering
- Cleanup
- Packet Content Inspection

LEVEL 4: DATA ACCUMULATION

- Storage
 - Sampling
 - Filtering
 - Aggregation
 - Data Conversion

LEVEL 5: DATA ABSTRACTION

- Aggregation and Access
- Information Integration

LEVEL 6: APPLICATION

- Control Applications
- Business Intelligence
- Analytics

LEVEL 7: COLLABORATION AND PROCESS

■ People and Business Process

INTRODUCTION TO WI-FI(ESP8266) MODULE

- **□**AT Commands
- ☐ Hayes Style Commands
- □Room I 5 GitHub
- □Perform AT Commands

CONTROLLING ESP8266

□AT OK

□AT+RST Resets Wi-Fi Module

□ATE0 Enable/Disable Echo

□AT+CWMODE=3 Set Wi-Fi Mode

□AT+CWJAP="Wi-Fi Name", "Password" Connect to Hotspot

□AT+CIPSTART Start Connection with Server

□AT+CIPSEND Send Data to Server

GITHUB.COM/SINKUI 196

□AT+CIPCLOSE Closes the Existing Connection

INTERFACING ESP8266 WITH MEGATRON

□ESP8266 – Megatron

 $\square Rx => Tx$

 $\Box Tx => Rx$

□Gnd => Gnd

IOT PLATFORM: THINGSPEAK

- ☐ Create an Account on ThingSpeak
- □Create a Channel on ThingSpeak
- □Copy Write API Key
- □Paste it in Code

UPDATING FIELD DATA MANUALLY

- □Copy Write API Request
- □Paste it in a new tab of browser
- ☐ Modify the field value
- Press enter to submit data

UPLOADING SENSOR DATA TO THINGSPEAK

- □Create a Channel on ThingSpeak
- □Copy Write API Key
- □Paste it in Code
- ■Modify Wi-Fi Credentials
- □Build your solution
- Total your hex file to board

DOMAIN SPECIFIC IOT

HOME AUTOMATION

SMART CITIES

ENVIRONMENT

RETAIL

LOGISTICS

AGRICULTURE Real time **Climate Monitoring** Smart Drone **Smart Agriculture** Smart Tractor **Real Time** Monitoring GITHUB.COM/SINKU1196

HEALTH AND LIFESTYLE

IOT PROTOCOLS

WHAT TO DO NEXT?

TASK BASED COMPETITION

CONGRATULATIONS TO: