Algorithmes de recommandations Netflix

SOAN Tony Ly, Lacenne Yanis, Selvakumar Mathusan

Universite Paris Cité. Paris. France

Semestre 4 - 2023

Sommaire

- Introduction
- L'algorithme de recommandation basé sur la factorisation matricielle
- Les défis liés
- Les impacts
- Conclusion
- Bibliographie

Sommaire

Introduction

Introduction

What's Netflix?

- Entreprise américaine
- Fondée en 1997 par Reed Hastings et Marc Randolph
- Plateforme de streaming et de vidéos à la demande
- Implanté dans 190 pays

Introduction

(b) Évolution du nombre d'abonnés

Introduction

Figure: Version simplifiée de l'algorithme de recommandation de Netflix

Sommaire

- Introduction
- L'algorithme de recommandation basé sur la factorisation matricielle

- Faisant partie du filtrage collaboratif...
- Ce dont on dispose :

Figure: Matrice utilisateur-item notée \mathcal{R}

Problème !!

Solution: Factorisation Matricielle

On note:

- $\mathcal{R} \in \mathcal{M}_{n,p}(\mathbb{R})$,
- $\mathcal{P} \in \mathcal{M}_{n,k}(\mathbb{R})$,
- $Q \in \mathcal{M}_{k,p}(\mathbb{R})$.

L'objectif est de trouver P et Q tels que R = PQ.

La fonction objective :

$$\min_{q,p} \sum_{(u,i) \in \kappa} \left(r_{ui} - q_i^T p_u \right)^2 + \lambda \left(\|q_i\|^2 + \|p_u\|^2 \right)$$

où, κ est l'ensemble des paires (u, i) pour lesquels r_{ui} est connue (training set).

La méthode de descente de gradient stochastique (DGS) se fait avec :

$$q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$$

$$p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$$

où $e_{ui} \stackrel{\mathsf{def}}{=} r_{ui} - q_i^T p_u$ est l'erreur de prédiction pour l'élément r_{ui} de la matrice de notation.

Les avantages et les limites de la méthode de descente de gradient stochastique (DGS)

Une alternative : La méthode des moindres carrés alternés (MCA)

Les avantages et les limites de la méthode des moindres carrés alternés (MCA)

Les avantages et les limites de la factorisation matricielle

Sommaire

- Introduction
- L'algorithme de recommandation basé sur la factorisation matricielle
- Les défis liés

Le problème de démarrage à froid (The Cold Start Problem)

Figure: Chercher un titre à visionner sur Netflix

Le problème de démarrage à froid (The Cold Start Problem)

$$\begin{pmatrix}
5 & 4 & 5 & 1 & 0 \\
5 & 0 & 3 & 5 & 1 \\
? & ? & ? & ? & ? \\
2 & 1 & 3 & 4 & 4 \\
1 & 0 & 1 & 2 & 1
\end{pmatrix}$$

Le problème de démarrage à froid (The Cold Start Problem)

Figure: Jump start

Figure: Satisfaction des utilisateurs Netflix

Les biais liés aux systèmes de recommandations

Table 1. The characteristics of seven types of biases in recommendation and the bias amplification in loop.

Types	Stages in Loop	Cause	Effect	Major solutions	
Selection Bias	User→Data	Users' self-selection	Skewed observed rating distribution	Data Imputation; Propensity Score; Joint Generative Model; Doubly Robust Model	
Exposure Bias	User→Data	Item Popularity; Intervened by systems; User behavior and background	Unobserved interactions do not mean negative	Giving confidence weights by heuristic, sampling or exposure-based model; Propensity Score; Causality-based Model	
Conformity Bias	User→Data	Conformity	Skewed interaction labels	Modeling social or popularity effect	
Position Bias	User→Data	Trust top of lists; Exposed to top of lists	Unreliable positive data	Click models; Propensity Score; Trust-aware Model	
Inductive Bias	Data→Model	Added by researchers or engineers	Better generalization, lower variance or Faster recommendation	-	
Popularity Bias	Model→User	Algorithm and unbalanced data	Matthew effect	Regularization; Adversarial Learning; Causal Graph	
Unfairness	Model→User	Algorithm and unbalanced data	Unfairness for some groups	Rebalancing; Regularization; Adversarial Learning; Causal Modeling	
Bias amplification in Loop	All	Feedback loop	Enhance and spread bias	Break the loop by collecting random data or using reinforcement learning	

(c) Différents types de biais

Les biais liés aux systèmes de recommandations

Table 2. A lookup table for the reviewed methods for recommendation debiasing.

Addressed issues	Categories		How?	Strengths?	Weaknesses?	Publications
Selection Bias	Evaluator	Propensity Score	Weight the data	General, Theoretical-soundness	Requiring proper propensities	[143]
		ATOP	Specific design	Theoretical-soundness	Requiring two strong assumptions	[149]
	Training	Joint Generative Model	Model missing mechanism	Explainable	Requiring assumptions on data generation, Hard to train	[30, 66, 87, 115, 116, 178] [189]
	Training	Data Imputation	Impute pseudo-labels	Simple	Highly sensitive to pesduo-labels	[140, 149, 150]
		Propensity Score	Weight the data	Theoretical-soundness	High variance, Requiring proper propensities	[143, 177]
		Doubly Robust Model	Impute+Weight	Theoretical-soundness, Robust	Requiring proper propensities or pesduo-labels	[176]
Conformity Bias Modeling 1		opularity influence	Disentangle conformity effect from user preference	Explainable	Requiring assumptions on data generation	[110, 215, 217]
	Modeling social influence		Disentangle social effect from user preference	Explainable	Requiring assumptions on data generation	[24, 112, 155, 172]
Exposure Bias	Evaluator	Propensity Score	Weight the data	Theoretical-soundness	Requiring proper propensities	[190]
		Heuristic	Down-weight unobserved data heurstically	Simple	Coarse-grained, Heuristical	[45, 65, 68, 128, 129, 194] [100, 141]
	Training	Sampling	Down-weight unobserved data via sampling	Efficient	Coarse-grained, Requiring heuristic or side information	[32, 46, 47, 138, 175, 194]
		Exposure-based model	Weight the data via exposure model	Explainable, Learn flexible weights	Hard to train	[29, 31, 32, 102, 163]
		Propensity Scores	Weight the observed data	Theoretical-soundness	Requiring proper propensities, High variance	[141, 219]
		Causality-based Methods	Remove spurious associations via causal inference	Explainable	Requiring assumptions on data generation	[108, 187, 191, 208]
		Others			-	[113, 125, 126, 169, 204] [12, 42, 142, 181]

(d) Différentes méthodes pour débiaiser selon les types de biais

Les biais liés aux systèmes de recommandations

		Larra	ı	Requiring assumptions	Le
Position Bias	Click Models	Model the generative process of clicks	Explainable	on data generation, hard to train	[26, 41, 48, 59, 103, 205] [74, 224]
	Propensity Score	Weight the data	Theoretical-soundness	High variance, Requiring proper propensities, Fail to model trust	[6, 67, 77, 136, 144, 153, 169] [10, 52, 77, 77, 134, 157, 171] [8, 35, 60]
	Trust-aware Models	Introduce offset terms to remove trust effect	Theoretical-soundness, Capture trust effect	High variance, Requiring proper propensities, Fail to model trust	[7, 158]
For multiple data biases and their combinations	Universal model	Transfer the knowledge from unbiased data to perform debiasing	Universal, Adaptive	Requiring a set of unbiased data	[17, 28, 106, 107]
Popularity Bias	Regularization	Introduce regularization terms	Simple, Straightforward	Possibly hurt accuracy	[2, 38, 83, 179, 221]
	Adversarial Learning	Leverage adversary to bridge the gap between niche and popular items	Balancing representation	Possibly hurt accuracy	[91]
	Causal Graph	Leverage causal graph to elucidate and mitigate popularity bias	Explainable	Requiring assumptions on data generation	[167, 180, 208, 215, 217]
	Others				[1, 19]
Unfairness	Rebalancing	Directly balance the data or recommendation results	Straightforward	Possibly hurt accuracy	[11, 15, 57, 57, 98, 133, 199] [22, 53, 135, 146]
	Regularization	Formulate the fairness criteria as a regularizer	Straightforward	Possibly hurt accuracy	[80-82, 84, 147, 188, 200] [2, 14, 21, 105, 192, 193]
	Adversarial Learning	Leverage adversary to isolate the effect of sensitive attributes	Fair representation	Possibly hurt accuracy	[13, 18, 50, 99, 183]
	Causal Modeling	Estimate fairness with intervening sensitive attributes	Explainable, Counterfactual fairness	Requiring assumptions on data generation	[93, 93, 122, 185, 186, 202]
	Others	-		-	[55, 69, 97]
Loop effect	Uniform Data	Intervene in the system with a random logging policy	Straightforward, Effective	Hurting the user experience and the system profit	[17, 73, 107, 107, 139, 196] [28, 195]
	Reinforcement learning	Intervene in the system with a smarter strategy for long-term benefits	Adaptively balancing exploration-exploitation	Hard to train, Off-policy evaluation is chanllenging	[36, 96, 161, 173, 209, 213, 214] [27, 34, 70, 170, 210–212, 216] [70, 72, 117, 154]
	Others			-	[148, 152]

[,] Vol. 1, No. 1, Article . Publication date: December 2020.

(e) Différentes méthodes pour débiaiser selon les types de biais

Figure: Biais d'exposition

Les biais liés aux systèmes de recommandations

$$R(\hat{Z}) = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{|\mathcal{S}_u|} \sum_{i \in \mathcal{G}_u} c\left(\hat{Z}_{ui}\right)$$

Figure: Correction du biais d'exposition par IPS

$$\mathsf{AUC} \,: c\left(\hat{\mathcal{Z}}_{ui}
ight) = 1 - rac{\hat{\mathcal{Z}}_{u,i}}{|\mathcal{I}|} \ \mathsf{DCG} \,: c\left(\hat{\mathcal{Z}}_{ui}
ight) = rac{1}{\log_2\left(\hat{\mathcal{Z}}_{ui} + 1
ight)} \$$

DCG@k :
$$c\left(\hat{Z}_{ui}\right) = \frac{1\left\{\hat{Z}_{ui} \leq k\right\}}{\log_2\left(\hat{Z}_{ui} + 1\right)}$$

Recall@k :
$$c\left(\hat{Z}_{ui}\right) = 1\left\{\hat{Z}_{ui} \leq k\right\}$$

Figure: Différents types de métriques

Figure: Biais de sélection

Les biais liés aux systèmes de recommandations

$$\hat{H}_{IPS}(\hat{r} \mid \rho) = \frac{1}{|\mathcal{U}||\mathcal{I}|} \sum_{(u,i):s_{ui}=1} \frac{\delta\left(\hat{r}_{ui}, r_{ui}\right)}{\rho_{ui}}$$

Figure: Correction du biais de sélection par IPS

Figure: Biais de popularité

Les biais liés aux systèmes de recommandations

$$\min_{oldsymbol{\Theta}} \mathcal{L}_{\mathsf{Rec}} + \gamma \mathit{PCC}\left(\widehat{f R}_+, \mathit{pop}(\mathcal{I})\right)^2$$

Figure: Correction du biais de popularité par régularisation avec coefficient de corrélation de Pearson

Les biais liés aux systèmes de recommandations

Fig. 2. Feedback loop in recommendation, where biases occur in different stages.

(a) "Feedback Loop"

Sommaire

- Introduction
- L'algorithme de recommandation basé sur la factorisation matricielle
- Les défis liés
- Les impacts

Part III: Les Impacts

Bulles Sociales

(e) Personne n'est connecté à tout le monde

(f) Ce que l'on aime ne reflète pas ce que la majorité aime

Part III: Les Impacts

Figure: Choisir entre une expérience accrue et le respect de la protection des données

Sommaire

- Introduction
- L'algorithme de recommandation basé sur la factorisation matricielle
- Les défis liés
- Les impacts
- Conclusion

Sommaire

- Introduction
- L'algorithme de recommandation basé sur la factorisation matricielle
- Les défis liés
- Les impacts
- Conclusion
- Bibliographie

Bibliographie

- Matrix Factorization Techniques for Recommender Systems
- Matrix Factorization
- Bias and Debias in Recommender System: A Survey and Future Directions
- Popularity-Opportunity Bias in Collaborative Filtering
- How Netflix's Recommendations System Works
- The Netflix Recommender System: Algorithms, Business Value, and Innovation
- Netflix Beats Competition in Customer Satisfaction
- Recommandés pour vous... ou presque 2/3 binaire