Ukázka sazby diplomové nebo bakalářské práce Diploma Thesis Typesetting Demo

2016 Jiří Dvorský

Tuto stránku nahradíte v tištěné verzi práce oficiálním zadáním Vaší diplomové či bakalářské práce.

Souhlasím se zveřejněním této bakalářské práce dle požadavků čl. 26, odst. 9 *Studijního a zkušebního řádu pro studium v bakalářských programech VŠB-TU Ostrava*.

Zde vložte text dohodnutého omezení přístupu k Vaší práci, chránící například firemní know-how. Zde vložte text dohodnutého omezení přístupu k Vaší práce, chránící například firemní know-how. A zavazujete se, že

- 1. o práci nikomu neřeknete,
- 2. po obhajobě na ni zapomenete a
- 3. budete popírat její existenci.

A ještě jeden důležitý odstavec. Konec textu dohodnutého omezení přístupu k Vaší práci.

V Ostravě 16. dubna 2009	+++

Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně. Uvedla jsem všechny literární prameny a publikace, ze kterých jsem čerpala.

V Ostravě 16. dubna 2009 + ++++

Abstrakt

Tohle je nějaký abstrakt. Tohle je nějaký abstrakt.

Klíčová slova: typografie, LATEX, diplomová práce

Abstract

This is English abstract. This is English abstract. This is English abstract. This is English abstract. This is English abstract.

Keywords: typography, LATEX, master thesis

Seznam použitých zkratek a symbolů

DVD – Digital Versatile Disc

TNT – Trinitrotoluen

OASIS - Organization For The Advancement Of Structured Infor-

mation Systems

HTML – Hyper Text Markup Language

Obsah

1	Úvod	9
2	Ukázky sazby2.1Ukázka nadpisů2.2Sazba definic, vět atd2.3Výpisy programů2.4Obrázky a tabulky	11 11 11 12 13
3	Závěr	17
4	Reference	19
Př	ílohy	19
A	Grafy a měření	21

Seznam tabulek

1	Pokusná tabulka	13
2	Experimental Files — Detailed Statistics	15

Seznam obrázků

1	Pokusný obrázek – relativní velikost	13
2	Pokusný obrázek – otočený naležato	14
3	Nějaký graf	22

Seznam výpisů zdrojového kódu

1	Program v jazyce Java	12
2	Program v jazyce Java, načtený z externího souboru	12
3	Program v Pascalu	13

1 Úvod

Tento text je ukázkou sazby diplomové práce v La pomocí třídy dokumentů diploma. Pochopitelně text není skutečnou diplomovou prací, ale jen ukázkou použití implementovaných maker v praxi. V kapitole 2 jsou ukázky použití různých maker a prostředí. V kapitole 3 bude "jako závěr". Zároveň tato kapitola slouží jako ukázka generování křížových odkazů v La prostředí.

2 Ukázky sazby

2.1 Ukázka nadpisů

Toto je nadpis podsekce, generováno makrem \subsection.

2.1.1 subsection

2.1.1.1 paragraph

2.1.1.1.1 subparagraph Ale tak hluboko se asi stejně nikdo nedostane.

2.2 Sazba definic, vět atd.

Určitě se bude hodit prostředí pro sazbu definice jako je definice binárního vyhledávacího stromu, viz definice 2.1.

Poznámka 2.1 Následující definice a věty nedávají dohromady příliš smysl. Jsou tu jen pro ukázku.

Definice 2.1 Binární strom je struktura definovaná nad konečnou množinou uzlů, která:

- neobsahuje žádný uzel,
- je složena ze tří disjunktních množin uzlů: kořene, binárního stromu zvaného levý podstrom a binárního stromu tzv. pravého podstromu.

Pak by se taky mohla hodit nějaká věta a k ní důkaz.

Věta 2.1 Průměrná časová složitost neúspěšného vyhledání v hashovací tabulce se separátním zřetězením je $\Theta(1+\alpha)$, za předpokladu jednoduchého uniformního hashování.

Důkaz. Za předpokladu jednoduchého uniformního hashování se každý klíč k hashuje se stejnou pravděpodobností do libovolného z m slotů tabulky. Průměrný čas neúspěšného hledání klíče k je proto průměrný čas prohledání jednoho z m seznamů. Průměrná délka každého takového seznamu je rovna faktoru naplnění $\alpha = n/m$. Tudíž lze očekávat, že budeme nuceni prozkoumat α prvků. Z toho plyne, že celkový čas pro neúspěšné hledání (plus navíc konstantní čas pro výpočet h(k)) je $\Theta(1+\alpha)$.

Příklad 2.1

Mějme napsat funkci, která spočítá uzly ve stromu. Předpokládejme, že binární strom je definován způsobem uvedeným v definici 2.1 na straně 11. Naše úloha se výrazně zjednoduší uvědomíme-li si její rekurzivní charakter a předpokládáme, že aktuální uzel je R.

ullet Je-li R prázdný strom (tj. R=NULL), pak počet jeho uzlů je pochopitelně nula. Tím máme problém vyřešen.

V opačném případě víme, že ve stromu určitě jeden uzel existuje (R) a počty uzlů v levém a pravém podstromu se dají určit obdobným způsobem rekurzivně. To znamená, že počet uzlů ve stromu s kořenem R je 1+pocet_uzlu(A)+pocet_uzlu(B)

Počty uzlů pro jednotlivé podstromy se předávají jako výsledky volání funkcí prostřednictvím zásobníku programu, nejsou tudíž potřeba žádné pomocné proměnné.

Poznámka 2.2 Program z příkladu 2.1 pochopitelně chybí, ale můžete se podívat třeba na program uvedený ve výpisu 1.

2.3 Výpisy programů

Tato diplomová práce má nastaven výchozí jazyk Java, jak je vidět z výpisu 1. Výpis kódu 1 zároveň demonstruje možnost přímého vložení zdrojového kódu programu do textu práce. Druhou možností je načtení zdrojového kódu programu z externího souboru, viz výpis 2. Pokud potřebujeme změnit programovací jazyk pro konkrétní výpis kódu, můžeme jeho to provést přímo v záhlaví prostředí lstlisting. Výpis 3 je v jazyku Pascal. Všimněte si zvýraznění klíčových slov.

Poznámka 2.3 Pro správnou sazbu je třeba pro odsazování používat tabulátory, nikoliv mezery.

Výpis 1: Program v jazyce Java

```
public class MyClass
{
   public int MyMethod(int a, int b)
   {
      while (a != b)
      {
        if (a < b)
            b -= a;
      else
            a -= b;
    }
}</pre>
```

q	$\delta(q,0)$	$\delta(q,1)$
q_0	q_1	q_0
q_1	q_1	q_2
q_2	q_1	q_0

Tabulka 1: Pokusná tabulka

}

Výpis 2: Program v jazyce Java, načtený z externího souboru

```
procedure X(i : integer; var x : real);
begin
    x := i + 3;
end;
```

Výpis 3: Program v Pascalu

2.4 Obrázky a tabulky

A ještě si můžeme zkusit vysázet obrázek. Obrázek ?? má určenu absolutní velikost, zatímco obrázek 1 je určen relativně vůči šířce textu.

A ještě zkusíme vysázet několik tabulek, ale jen kvůli seznamu tabulek v úvodu. Tabulka 1 představuje jednoduchou tabulku, která se svou šířkou pohodlně vejde do šířky textu. Velké tabulky, stejně jako obrázky, můžeme vysázet naležato. Ukázkou velké, komplikované tabulky¹ je tabulka 2.

¹Pokud, ale píšete práci česky, měly by být tabulky také česky – mě se jen nechtěla předělávat do češtiny.

	132							Maximal length of control
	3							Minimal length of control
	253		700		56		4	Maximal length of nonword
	П		1				1	Minimal length of nonword
	58		41		27		18	Maximal length of word
	<u> </u>		<u> </u>				Ľ	Minimal length of word
	4648.88							Control average frequency
	26183.595		2257.539		710.34		16300.66	Nonword average frequency
	134.978		39.455		14.833		55.743	Word average frequency
0.401%	2123							Number of unique controls
0.582%	3079	1.718%	4304	2.045%	482	0.341%	47	Number of unique nonwords
99.018%	524280	98.282%	246266	97.955%	23082	99.659%	13744	Number of unique words
100%	529482	100%	250570	100%	23564	100%	13791	Number of unique tokens
6.12%	9869572							Number of controls
49.995%	80619289 49.995%	50%	9716449	50%	342384	50%	766131	Number of nonwords
43.885%	70766067	50%	9716449	50%	342383	50%	766131	Number of words
100%	161254928	100%	19432898	100%	684767	100%	1532262	Number of tokens
	498360166		64573143		2473400		4047392	Size of file [bytes]
1L	SGML	text	Plain text	ı text	Plain text	text	Plain text	Format
ish	English	ch	Czech	lish	English	lish	English	Language
s.txt	latimes.txt	txt	law.txt	d.txt	world.txt	e.txt	bible.txt	File

Tabulka 2: Experimental Files — Detailed Statistics

3 Závěr

Tak doufám, že Vám tato ukázka k něčemu byla. Další informace najdete v publikacích [1, 2].

Jiří Dvorský

4 Reference

- [1] Goossens, Michel, The LaTeX companion, New York: Addison, 1994.
- [2] Lamport, Leslie, *Lambort Etels: a document preparation system: user's guide and reference manual,* New York: Addison-Wesley Pub. Co., 1994.

A Grafy a měření

Tohle je příloha k práci. Většinou se sem dávají grafy, tabulky, které by vzhledem ke svému počtu překážely v textu diplomky.

Obrázek 1: Nějaký graf