STA 702: Lecture 4

Comparing Estimators & Prior/Posterior Checks

Merlise Clyde

9/13/2022

Normal Model Setup from Last Class

- independent observations $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$ where each $y_i \sim \mathsf{N}(\theta, 1/\tau)$ (iid)
- The likelihood for θ is proportional to the sampling model

$$\mathcal{L}(\theta) \propto \tau^{\frac{n}{2}} \exp\left\{-\frac{1}{2}\tau \sum_{i=1}^{n} (y_{i} - \theta)^{2}\right\}$$

$$\propto \tau^{\frac{n}{2}} \exp\left\{-\frac{1}{2}\tau \sum_{i=1}^{n} [(y_{i} - \bar{y}) - (\theta - \bar{y})]^{2}\right\}$$

$$\propto \tau^{\frac{n}{2}} \exp\left\{-\frac{1}{2}\tau \left[\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + \sum_{i=1}^{n} (\theta - \bar{y})^{2}\right]\right\}$$

$$\propto \tau^{\frac{n}{2}} \exp\left\{-\frac{1}{2}\tau \left[\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + n(\theta - \bar{y})^{2}\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\tau n(\theta - \bar{y})^{2}\right\}$$

Exercises for Practice

Try this

- 1) Use $\mathcal{L}(\theta)$ based on n observations to find $\pi(\theta \mid y_1, \dots, y_n)$ based on the sufficient statistics and prior $\theta \sim N(\theta_0, 1/\tau_0)$
- 2) Use $\pi(\theta \mid y_1, \dots, y_n)$ to find the posterior predictive distribution for Y_{n+1}

After n observations

Posterior for θ

$$heta \mid y_1, \dots, y_n \sim \mathsf{N}\left(rac{ au_0 heta_0 + n au ar{y}}{ au_0 + n au}, rac{1}{ au_0 + n au}
ight)$$

Posterior Predictive Distribution for Y_{n+1}

$$Y_{n+1} \mid y_1, \dots, y_n \sim \mathsf{N}\left(rac{ au_0 heta_0 + n auar{y}}{ au_0 + n au}, rac{1}{ au} + rac{1}{ au_0 + n au}
ight)$$

Shrinkage of the MLE to the prior mean

Results with Jeffreys' Prior

- What if $au_0 o 0$? (or $\sigma_0^2 o \infty$)
- Prior predictive $N(\theta_0, \sigma_0^2 + \sigma^2)$ (not proper in the limit)
- Posterior for θ (formal posterior)

$$heta \mid y_1, \dots, y_n \sim \mathsf{N}\left(rac{ au_0 heta_0 + n auar{y}}{ au_0 + n au}, rac{1}{ au_0 + n au}
ight)$$

$$egin{aligned}
ightarrow & heta \mid y_1, \ldots, y_n \sim \mathsf{N}\left(ar{y}, rac{1}{n au}
ight). \end{aligned}$$

Posterior Predictive $Y_{n+1} \mid y_1, \dots, y_n \sim \mathsf{N}\left(ar{y}, \sigma^2(1+rac{1}{n})
ight)$

Comparing Estimators

Expected loss (from frequentist perspective) of using Bayes Estimator

Posterior mean is optimal under squared error loss (min Bayes Risk)
 [also absolute error loss]

Compute Mean Square Error (or Expected Average Loss)

$$\mathsf{E}_{ar{y}| heta}\left[\left(\hat{ heta}- heta
ight)^2\mid heta
ight]$$

$$=\mathsf{Bias}(\hat{ heta})^2+\mathsf{Var}(\hat{ heta})$$

■ For the MLE \bar{Y} this is just the variance of \bar{Y} or σ^2/n

MSE for Bayes

$$\mathsf{E}_{ar{y}| heta}\left[\left(\hat{ heta}- heta
ight)^2\mid heta
ight]=\mathsf{MSE}=\mathsf{Bias}(\hat{ heta})^2+\mathsf{Var}(\hat{ heta})$$

Bias of Bayes Estimate

$$\mathsf{E}_{ar{Y}| heta}\left[rac{ au_0 heta_0+ au nar{Y}}{ au_0+ au n}
ight]- heta=rac{ au_0(heta_0- heta)}{ au_0+ au n}$$

Variance

$$\mathsf{Var}\left(rac{ au_0 heta_0+ au nar{Y}}{ au_0+ au n}- heta\mid heta
ight)=rac{ au n}{(au_0+ au n)^2}$$

(Frequentist) expected Loss when truth is θ

$$\mathsf{MSE} = rac{ au_0^2(heta - heta_0)^2 + au n}{(au_0 + au n)^2}$$

Behavior?

Plot

Exercise

Repeat this for estimating a future Y under squared error loss using a proper prior and Jeffreys' prior

$$\mathsf{E}_{Y_{n+1}\mid heta}\left[(Y_{n+1} - \mathsf{E}[Y_{n+1}\mid y_1,\ldots,n])^2]
ight]$$

Uses of Posterior Predictive

- Plot the entire density or summarize
- Available analytically for conjugate families
- Monte Carlo Approximation

$$p(y_{n+1} \mid y_1, \dots y_n) pprox rac{1}{T} \sum_{t=1}^T p(y_{n+t} \mid heta^{(t)})$$

where $heta^{(t)} \sim \pi(heta \mid y_1, \dots y_n)$ for $t = 1, \dots, T$

- T samples from the posterior distribution
- Empirical Estimates & Quantiles from Monte Carlo Samples

Model Diagnostics

- Need an accurate specification of likelihood function (and reasonable prior)
- George Box: *All models are wrong but some are useful*
- "Useful" → model provides a good approximation; there aren't clear aspects of the data that are ignored or misspecified

Example

$$Y_i \sim \mathsf{Poisson}(\theta)$$
 $i = 1, \dots, n$

How might our model be misspecified?

- Poisson assumes that $E(Y_i) = Var(Y_i) = \theta$
- it's *very* common for data to be **over-dispersed** $E(Y_i) < Var(Y_i)$
- zero-inflation many more zero values than consistent with the poisson model
- Can we use the Posterior Predictive to diagnose whether these are issues with our observed data?

Posterior Predictive (PP) Checks

- $y^{(n)}$ is observed & fixed training data
- $p(y_{n+1} \mid y^{(n)})$ is PP distributoin
- lacksquare $ilde{y}_t^{(n)}$ is $t^{ ext{th}}$ new dataset sampled from the PP of size n (same as training)
- $p(\tilde{y}_t^{(n)} \mid y^{(n)})$ is PP of new data sets
- compare some feature of the observed data to the datasets simulated from the PP

Formally

- choose a "test statistic" $t(\cdot)$ that captures some summary of the data, e.g. $Var(y^{(n)})$ for over-dispersion
- $t(y^{(n)}) \equiv t_{\text{obs}}$ value of test statistic in observed data
- $t(\tilde{y}^{(n)}) \equiv t_{\mathrm{pred}}$ value of test statistic for a random dataset drawn from the posterior predictive
- plot posterior predictive distribution of $t(\tilde{y}^{(n)})$
- add $t_{\rm obs}$ to plot
- How *extreme* is t_{obs} compared to the distribution of $t(\tilde{y}^{(n)})$

Example Over Dispersion

Posterior Predictive Distribution

Posterior Predictive p-values (PPPs)

- p-value is probability of seeing something as extreme or more so under a hypothetical "null" model & are uniformally distributed under the "null" model
- PPPs advocated by Gelman & Rubin in papers and BDA are not valid p-values. They are do not have a uniform distribution under the hypothesis that the model is correctly specified
- the PPPs tend to be concentrated around 0.5, tends not to reject (conservative)
- theoretical reason for the incorrect distribution is due to double use of the data

DO NOT USE as a formal test! use as a diagnostic plot to see how model might fall flat

Better approach is to split the data use one piece to learn θ and the other to calculate $t_{\rm obs}$

Zero Inflated Distribution

• Let the t() be the proportion of zeros

$$t(y) = \frac{\sum_{i=1}^n \mathbb{1}(y_i = 0)}{n}$$

Posterior Predictive Distribution

Posterior Predictive Distribution

Modeling Over-Dispersion

- Original Model $Y_i \mid \theta \sim \mathsf{Poisson}(\theta)$
- cause of overdispersion is variation in the rate

$$Y_i \mid heta \sim \mathsf{Poisson}(heta_i)$$
 $heta_i \sim \pi_{ heta}()$

- $\pi_{\theta}()$ characterizes variation in the rate parameter across inviduals
- Simple Two Stage Hierarchical Model

Example

$$heta_i \sim \mathsf{Gamma}(\phi\mu,\phi)$$

- Find pmf for $Y_i \mid \mu, \phi$
- Find $E[Y_i \mid \mu, \phi]$ and $Var[Y_i \mid \mu, \phi]$
- Homework:

$$heta_i \sim \mathsf{Gamma}(\phi, \phi/\mu)$$

- Can either of these model zero-inflation?
- See Bayarri & Berger (2000) for more discussion about why PPP should not be used as a test

