Functions: Basic Definitions and Exercises

Sabrina & Joseph

Oct. 3, 2025

1 Basic Definitions

Definition 1.1. A function f from a set D to a set C is a rule which assigns every element of D to a single element of C. We write $f: D \to C$, where D is the *domain* and C the *codomain*.

Definition 1.2. The **image** of $f: D \to C$ is the set

$$\operatorname{im}(f) = \{f(x) : x \in D\} \subseteq C.$$

Definition 1.3. A function $f: D \to C$ is

- injective (one-to-one) if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- surjective (onto) if im(f) = C.
- bijective if it is both injective and surjective.

Definition 1.4. If $f: D \to C$ is bijective, its **inverse function** $f^{-1}: C \to D$ is defined by

$$f^{-1}(y) = x$$
 whenever $f(x) = y$.

Definition 1.5. If $f: D \to E$ and $q: E \to C$ are functions, their **composition** is

$$g \circ f : D \to C$$
, $(g \circ f)(x) = g(f(x))$.

2 Exercises

- 1. Define $f(x) = x^2$ and $g(x) = \sin(x)$ as functions $\mathbb{R} \to \mathbb{R}$. Prove that these are well-defined. Give examples of domains or codomains where these rules would not define functions.
- 2. Let S be any set. Define a function $\emptyset \to S$ and a function $S \to \emptyset$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ with f(0) = 0. Prove that f is unique.
- 4. Prove that the functions $f:\{1\}\to\mathbb{R}, f(x)=x-1, \text{ and } g:\{1\}\to\mathbb{R}, g(x)=\log x, \text{ are equal.}$
- 5. Show that any two functions $\emptyset \to X$ are equal (why?).
- 6. Prove that $f: X \to Y$ is injective if and only if there exists a function $g: Y \to X$ such that g(f(x)) = x for all $x \in X$.
- 7. Let $g: Y \to X$. Show that if there exists $f: X \to Y$ such that g(f(x)) = x for all $x \in X$, then g is surjective. (\bigstar) Is the converse true?
- 8. Let $f: X \to Y$, $g: Y \to Z$.
 - (a) Show that if f and g are injective, then $g \circ f$ is injective.
 - (b) Show that if f and g are surjective, then $g \circ f$ is surjective.