Optimal Resource Dedication in Grouped Random Access for Massive Machine-Type Communications [1]

Yin-Hong Hsu

08 24, 2017

Outline

Introduction

Resource Allocation In Grouped Random Access

Optimized Random Access Channel Resource

Simulation

References

Background

- To Support massive Machine Type Communication (mMTC), Radio Access Network congestion is one of the most important issue.
- RAN congestions are caused by Random Access collisions

Random Access Procedure

RA resource seperation

- The RA resource seperation scheme is different to ACB.
- It can decouple the collision rate problem between HTC and MTC.

Grouped RA

- This study is based on D2D-based grouped RA
- Each group with a GC and several GM
- ► The group is clustered by device class (DC)

Grouped RA

Allocation strategy

- RACH resource can be flexibly allocate to different DC
- The allocation strategy can be concluded into three category
 - full sharing
 - full dedication
 - partial dedication

Allocation strategy

- Full sharing strategy is inflexible.
- This work is focus on full dedicate way.

parameter in the algorithm

- L: number of RAOs
- N: number of classes
- r_i: average RA requests for each DC
- ho_i : collision rate for each DC

```
initialize L, N, \gamma_1, \gamma_2, \ldots, \gamma_N, \hat{p}_1, \hat{p}_2, \ldots, \hat{p}_M;
for i = 1 to M do Reserve RAOs for special DCs
    L_i \leftarrow -\gamma_i/\ln(1-\hat{p_i});
    L \leftarrow L - L_i:
    if L < 0 then
      Exception: RACH resource overload
     end
end
for i = M + 1 to N do Allocate the rest RAOs
   L_i \leftarrow L\gamma_i/\sum_{i=M+1}^N \gamma_i;
end
```

Class	Accessing devices	Avg. access frequency	RA density
1	3000	1/60 Hz	50 Hz
2	30 000	1/300 Hz	100 Hz
3	30 000	1/60 Hz	500 Hz
4	30 000	1/30 Hz	1000 Hz

DC Combination	1&2	1&3	1&4
Optimal. L_1 (estimated)	3600	982	514
Optimal. L_1 (simulated)	3460	1048	534
Collision density at est. opt. L_1 (Hz)	1.766	26.320	95.690
Collision density at sim. opt. L_1 (Hz)	1.998	26.780	97.042
Collision density under full sharing (Hz)	2.166	26.940	97.634

D2D-based grouping result [2]

References

- [1] B. Han, M. A. Habibi, and H. D. Schotten, "Optimal resource dedication in grouped random access for massive machine-type communications," Jul 2017.
- [2] B. Han, O. Holland, V. Sciancalepore, M. Dohler, and H. D. Schotten, "D2d-based grouped random access to mitigate radio access network congestion in massive machine-type communications," May 2017.