

NextRAN-AI - 09/05/2025

Integrated Systems Laboratory (ETH Zürich)

Marco Bertuletti Yichao Zhang Mahdi Abdollahpour Alessandro Vanelli-Coralli Luca Benini mbertuletti@iis.ee.ethz.ch
yiczhang@iis.ee.ethz.ch
mahdi.abdollahpout@unibo.it
avanelli@iis.ee.ethz.ch
lbenini@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

DNNs for combined CHE&MMSE

	P
•	(b)
	P

Name	Processing	NSC	NRXxNTX	Modulation	Model	SNR@BER10 ⁻³ *
[1] Deep-RX	Ch.Est. + Det.	312	2x1	16QAM	ResNet	6dB vs 8.5dB
[2] Deep-RX MIMO	Ch.Est. + Det.	312	16x4	16QAM	ResNet	18dB vs 22dB
[3] Neural-RX	Ch.Est. + Det.	2604	16x4	16QAM	ResNet	2.6dB vs 3.1dB
[4] Neural-RX RT	Ch.Est. + Det.	2604	16x4	16QAM	ResNet	3.2dB vs 3.1dB

^{*} vs XXdB required for conventional LMMSE Ch.Est. & MMSE MIMO detection

Trainable param.s

[5] Dianxin'22

Self-Attention mechanism is deployed to achieve improved channel estimation

Channel gains not equally important (correlation matrix not diagonal)

- **Encoder** = transformer, focuses on LS-estimates strongly correlated with channel predictions
- **Decoder** = ResNet, receives selected features and produces the channel estimate

https://arxiv.org/pdf/2204.13465

https://github.com/dianixn/Attention_Based_Neural_Networks for Wireless Channel Estimation

[5] Dianxin'22

Channel estimation transformer-based methods achieve superior performance wrt ResNet-based methods

(FD-MMSE assumes **prior statistical knowledge** of the channel and non-causal statistical information)

[6] Shuangshuang'24

To counteract near/far field effects,

- → Mixed attention
- Feature-Attention enhances the channel, suppressing noise and secondary features,
- Spatial-Attention focuses on the relation between different spatial positions. The model can recognize spatial correlations.

^{*}XLCNet = ResNet-based network, HY-OMP = Hybrid field orthogonal matching pursuit

[7] Zou'25

Multi-layer data transmission with superimposed pilots (different power levels for pilots and data)

→ Making the network deeper with multiple cascaded transformer blocks increases performance

Al-models for Channel Estimation

Name	Processing	fd/tdSamples	NRXxNTX	Modulation	Model	SNR@BER10 ⁻³
[1] Deep-RX	Ch.Est. + Det.	312	2x1	16QAM	ResNet	6dB vs 8.5dB*
[2] Deep-RX MIMO	Ch.Est. + Det.	312	16x4	16QAM	ResNet	18dB vs 22dB*
[3] Neural-RX	Ch.Est. + Det.	2604	16x4	16QAM	ResNet	2.6dB vs 3.1dB*
[4] Neural-RX RT	Ch.Est. + Det.	2604	16x4	16QAM	ResNet	3.2dB vs 3.1dB*
[5] Dianxin'22	Ch.Est.	72	1x(-)	QPSK	Attention	-
[6] Shuangshuang'24	Ch.Est.	1	256x1	-	Attention	-
[7] Zou'25	Ch.Est.	96	4x32	-	Attention	-

- [1] DeepRX, https://arxiv.org/abs/2005.01494
- [2] DeepRX-MIMO, https://arxiv.org/abs/2010.16283
- [3] NeuralRX, https://arxiv.org/pdf/2312.02601
- [4] NeuralRX-RT, https://arxiv.org/abs/2409.02912
- [5] Dianxin'22, https://arxiv.org/pdf/2204.13465
- [6] Shuangshuang'24, https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10827075
- [7] Zou'25, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10890516&tag=1

^{*} vs XXdB required for conventional LMMSE Ch.Est. & MMSE MIMO detection

Computational complexity & Memory Footprint (Attention-based)

Total memory footprint depends on tiling. We assume all *loops* stay in L1.

RedMulE wide access can cause conflicts at the Tile interface

(shared interconnect resources to access out-of-Tile memory locations)

Local parallel access → No conflict, all requests to different banks

- Local parallel access → No conflict, all requests to different banks
- Remote parallel access → Conflict, all requests to the same remote port

1. Replace the parallel request with a burst request → send a) first address, b) burst length

3. Retire responses

When we retire responses

- The burst manager ensures that responses to a burst come back in-order
- When the burst is longer than the Tile boundary?
 - We **cut** the burst request in two bursts

TeraPool's PEs-to-L1-banks Interconnect Design

TeraPool is NUMA (Non-Uniform Mem Access) Cluster

TeraPool is a large single cluster:

- 1024 cores with 4096 SW-managed L1 banks;
- All cores shared all L1 banks, uni-address;

• Large-scale requires hierarchical design:

Different latency to each Hier -> NUMA;

PPA consideration:

- 1000+ small cores
 -> single-pipeline tiny core
- Extendable -> extension port per core
- Core's outstanding support -> Transaction Table per core
- Low-latency interconnect -> Full-Comb. Log. Crossbar

Multi-stage Hierarchical Crossbar design

- Fully combinational Logarithmic Crossbar:
 - 1 cycle low-latency memory access.
 - Spill reg can be added on hierarchy interface, breaking long distance path.
- Each out-Tile interface to different Hier-blocks:
 - Conflict happens when: Cores in same Tile, access to same Hierblock, in same cycle.

How many implement hierarchy we need?

- More hierarchies -> more arbitration -> more conflict.
- Less hierarchies -> more complex crossbar -> physical routing limited.
- For one crossbar, n input k output:
 - Routing complexity = n x k;
 - Combinational stage delay: $\log_2 n + \log_2 k$;
- GF12nm, 13 Metal layers:

Routing Quality of Logarithmic-Staged Crossbar Interconnect at Different Complexities (GF12nm, 13M)

Interco.	(Congestion [*]	Area	Critical	
Complexity	Н	V	Overall	(kGE)	Path (ns)
1024	0.56%	0.12%	0.34%	361	0.91
1280	1.72%	0.47%	1.09%	503	1.06
1536	3.25%	0.82%	2.04%	669	1.08
2048	34.46%	15.09%	24.77%	923	1.13
3072	172.30%	294.31%	233.31%	1274	1.27
4096	247.10%	368.90%	308.00%	1485	1.47

^{*} The average routing track overflow rate for each horizontal, vertical layer, and overall design. The in/outputs span from the center of the west/east boundary.

How many implement hierarchy we need? -> Three

Hierarchical Interconnect Design Analysis for 1024 PEs Fully Connect 4096 L1-Memory Banks

		Interconnect Quality						Design Challenge			
Hierarchy Interco.*	ZeroLd (cyc)	AMAT (cyc)	Throughput (req/pe/cyc)	Total Complex.	Critical Complex.	Critical Comb. Delay	Physical Routing	Path Balance	Base Block Scale	Interco. Perform.	
1024C	1.000	1.130	0.885	4194304	4194304	22					
4C-256T	2.992	6.081	0.245	87040	65536	16					
8C-128T	2.984	10.075	0.124	54272	16384	14					
16C-64T	2.969	18.077	0.062	74752	4096	12					
4C-16T-16G	4.867	5.318	0.431	163840	320	8.3					
4C-32T-8G	4.742	5.443	0.409	122880	1024	10					
8C-16T-8G	4.734	5.794	0.358	90112	512	9					
8C-32T-4G	4.484	6.676	0.272	69632	1024	10					
16C-8T-8G	4.719	6.669	0.273	110592	1536	10.6					
16C-16T-4G	4.469	8.612	0.178	90112	1280	10.3					
4C-16T-4SG-4G	6.367	8.457	0.270	121856	4096	12					
8C-8T-4SG-4G	6.359	9.198	0.230	89088	1024	10					
16C-4T-4SG-4G	6.344	11.049	0.159	109568	1536	10.6					

^{*4096 1} KiB SPM banks are split across each hierarchy with PEs, using a banking factor of 4.

^{*}The hierarchy is denoted as $\alpha C - \beta T - \gamma SG - \delta G$, where δ is the number of Groups, each with γ SubGroups, β Tiles per SubGroup, and α PEs per Tile.

TeraPool: 3 Hierarchical, Multi-Stage Xbars Interconnect

Only one Spill Reg add at "outgoing req/rsp" ports of

each Hier-interfaces, avoiding critical path at

interconnects.

"Tile": "SubGroup"

8 cores -> 32 Banks. 8 Tiles.

1 cycle accessing. 3 cycles accessing.

"Groups"

4 SubGroups each, 5 cycles.

4 Groups total, 9 cycles.

Thank you!

