18.S996: Category Theory for Scientists (David Spivak), Problem Set 1

2.1.1.2

The subsets are \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, and $\{1,2,3\}$.

2.1.2.2

Since each PR cell maps to a unique RG cell, this defines a function $PR \to RG$, but not $RG \to PR$. I would guess that some connections are one-to-one, some are many-to-one, and some are many-to-many.

2.1.2.3

We have $im(f) = \{y_1, y_2, y_4\}.$

2.1.2.4

In general, $|\text{Hom}_{\text{Set}}(A, B)| = |B|^{|A|}$. In this case, we have $|\text{Hom}_{\text{Set}}(A, B)| = 2^5 = 32$, and $|\text{Hom}_{\text{Set}}(B, A)| = 5^2 = 25$.

2.1.2.5

The set A is the terminal element, $\{\cdot\}$, and B is the initial element, \emptyset .

2.1.2.9

There are n! automorphisms of a set with n elements. Note that 0! = 1.

2.1.2.11

The sets A and B are not canonically isomorphic (unless I missed something), so there is no single induced function $A \to \{1, 2, 3, 4, 5\}$, but the induced function is unique up to a unique automorphism of A. All induced functions send some element of A to 1, some other element to 3, and some other element to 4.

2.1.2.12

Only the initial set $(\{\cdot\})$ satisfies this property; the only solution for x to $\forall y, x^y = x$ (where 0^0 is defined conventionally to be equal to one) is x = 1.

2.1.2.13

We have f(4) = c and s = (1, 4, 9, 16, 25, 36, 49).

2.1.2.15

We have $|\{5,6,7\}=3$, $|\mathbb{N}|=\omega$ (or, in your notation, $|\mathbb{N}|\geq\infty$), and $|\{n\in\mathbb{N}|n\leq5\}|=6$ because there are 6 numbers between 0 and 5 (inclusive on both ends).