

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 4

Manuel A. Sánchez 2024.08.21

Métodos de pasos múltiples lineales

Métodos de pasos múltiples lineales

Método de Euler de primer orden

 \longrightarrow

Métodos de Runge-Kutta de orden más alto

Paso simple: $y_{n+1} = \text{función}(y_n)$

Alternativamente, podemos obtener métodos de orden más alto usando múltiples pasos anteriores para calcular una nueva aproximación.

Ejemplo. Si tenemos los puntos x_{n-1} , x_n , x_{n+1} ,

$$y(x_{n+1}) = y(x_{n-1}) + \int_{x_{n-1}}^{x_{n+1}} y'(x) dx$$

$$= y(x_{n-1}) + \int_{x_{n-1}}^{x_{n+1}} f(x, y(x)) dx$$

$$\approx y(x_{n-1}) + \frac{(x_{n+1} - x_{n-1})}{6} \left(f(x_{n-1}, y(x_{n-1})) + 4f(x_n, y(x_n)) + f(x_{n+1}, y(x_{n+1})) \right)$$

Métodos de pasos múltiples lineales

Para llegar a ordenes mas altos se pueden ocupar métodos como Runge-Kutta, donde se requieren mas evaluaciones de la función f para avanzar un paso, o se pueden ocupar métodos de pasos múltiples donde se ocupan mas puntos para poder integrar.

Definición

Dada una sucesión de puntos x_n con paso h, consideramos el método de k-pasos lineal general

$$\sum_{j=0}^{k} \alpha_j y_{n+j} = h \sum_{j=0}^{k} \beta_j f(x_{n+j}, y_{n+j})$$

con coeficientes $\{\alpha\}_{j=0}^k$ y $\{\beta\}_{j=0}^k$ son constantes reales, tales que $\alpha_k \neq 0$ y α_0 u β_0 no son ambas 0

- \square $\beta_{n+k} = 0 \rightarrow \text{m\'etodo expl\'ecito}$
- $\beta_{n+k} \neq 0 \rightarrow \text{m\'etodo implícito}$

Ejemplos de métodos de pasos múltiples

1 Adams-Bashforth, orden 4 explicito

$$y_{n+4} = y_{n+3} + \frac{1}{24}h(55f_{n+3} - 59f_{n+2} + 37f_{n+1} - 9f_n)$$

2 Adams-Moulton, orden 3 implícito

$$y_{n+3} = y_{n+2} + \frac{1}{24}h(9f_{n+3} + 19f_{n+2} - 5f_{n+1} + 1f_n)$$

Usamos la notación $f_{n+j} = f(x_{n+j}, y_{n+j})$.

Pregunta: ¿Como derivamos estas fórmulas? \rightarrow Ayudantía. **Pregunta:** ¿Como calculamos los primeros k-pasos del método?

Ejemplos de métodos de pasos múltiples

1 Adams-Bashforth, orden 4 explicito

$$y_{n+4} = y_{n+3} + \frac{1}{24}h(55f_{n+3} - 59f_{n+2} + 37f_{n+1} - 9f_n)$$

2 Adams-Moulton, orden 3 implícito

$$y_{n+3} = y_{n+2} + \frac{1}{24}h(9f_{n+3} + 19f_{n+2} - 5f_{n+1} + 1f_n)$$

Usamos la notación $f_{n+j} = f(x_{n+j}, y_{n+j})$.

Pregunta: ¿Como derivamos estas fórmulas ? → Ayudantía. Pregunta: ¿Como calculamos los primeros k-pasos del método ? No hay un método definido pero se puede ocupar Runge-Kutta del orden requerido para aproximas los primeros k-pasos

Cero- estabilidad

Definición

Un método de k-pasos lineal se dice **cero-estable** si existe una constante K tal que para toda $\{y_n\}$ y $\{z_n\}$ que han sido generadas por la misma formula pero por valores iniciales distintos $y_0, ..., y_{k-1}$ y $z_0, ..., z_{k-1}$ respectivamente, tenemos

$$|y_n-z_n| \leq K \max_{j \in \{0,\dots,k-1\}} |y_j-z_j|, \quad \textit{para } x_n \leq x_M, \textit{ y } h o 0$$

Raíces del polinomio característico

Lema

Considere la relación de secuencia lineal (asociada al problema homogéneo)

$$\alpha_k y_{n+k} + ... + \alpha_0 y_n = 0, \quad n = 0, 1, 2, ..., N,$$
 (1)

 $\operatorname{con} \alpha_k \neq 0, \alpha_0 \neq 0, \alpha_j \in \mathbb{R}$ y defina el polinomio característico $\rho(z) = \sum_{i=0}^{\kappa} \alpha_i z^i$.

Sean $\{z_r\}_{r=1}^l$, $l \le k$, las **raíces distintas** del polinomio $\rho(z)$ y sea m_r la multiplicidad de z_r , con $\sum_{r=1}^l m_r = k$. Si una sucesión $\{y_n\} \subseteq \mathbb{C}$ satisface (1), entonces

$$y_n = \sum_{r=1}^l p_r(n) z_r^n, \quad \forall n \geq 0$$

donde p_r es un polinomio, con variable n, de grado $(m_r - 1)$, $1 \le r \le l$.

Demostración

Consideremos el caso cuando todas las raíces $z_1, z_2, ..., z_k$ son simples. Como $\alpha_0 \neq 0$ entonces $z_i \neq 0$, i = 1, ..., k. Como

$$\rho(z_r) = 0, \implies y_n = (z_r^n)$$
 satisface (1)

Para mostrar que una solución de (1) es una combinación lineal de $z_1^n, ..., z_k^n$, debemos probar que estas son l.i. Suponemos entonces que existen $C_1, ..., C_k$ tales que

$$C_1 z_1^n + C_2 z_2^n + ... + C_k z_k^n = 0, \quad n = 0, 1, 2$$

Implica que

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_k \\ \vdots & \vdots & \ddots & \vdots \\ z_1^{k-1} & z_2^{k-1} & \dots & z_k^{k-1} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Demostración

Matriz de Vandermonde

Tiz de Vandermonde
$$D = \begin{vmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_k \\ \vdots & \vdots & \ddots & \vdots \\ z_1^{k-1} & z_2^{k-1} & \dots & z_k^{k-1} \end{vmatrix} = \prod_{r < s} (z_s - z_r) \neq 0 \implies C_1 = C_2 = \dots = C_k = 0$$

Ahora, si y_n es solución de (1), entonces existen únicas C_1, \dots, C_k tales

$$y_m = C_1 z_1^m + C_2 z_2^m + ... + C_k z_k^m, \quad m = 0, 1, ..., k - 1.$$

Esto implica que al sustituir en (1) para n=0

$$0 = \alpha_k y_k + \alpha_{k-1} (C_1 z_1^{k-1} + \dots + C_k z_k^{k-1}) + \dots + \alpha_0 (C_1 + \dots + C_k)$$

$$= \alpha_k y_k + C_1 (\rho(z_1) - \alpha_k z_1^k) + \dots + C_k (\rho(z_k) - \alpha_k z_k^k)$$

$$= \alpha_k (y_k - (C_1 z_1^k + \dots + C_k z_k^k))$$

$$\implies y_k = (C_1 z_1^k + \dots + C_k z_k^k).$$

Condición de Raíces

Teorema

Un método de paso múltiple es cero-estable para cualquier problema de valor inicial donde f satisface las condiciones del Teorema de Picard, si y solo si, todas las raíces de $\rho(z)$ del método están dentro del disco unitario cerrado en el plano complejo, con toda raíz en el disco unitario es simple.

Esta condición, se conoce como la condición de raíces.

Demostración

 (\Longrightarrow) Consideramos el método de k-pasos lineal, aplicado al problema y'=0, esto es:

$$\alpha_k y_{n+k} + \dots + \alpha_0 y_n = 0$$

Por el Lema anterior, toda solución de esta ecuación tiene la forma

$$y_n = \sum_{r=1}^l p_r(n) z_r^n,$$

donde z_r es una ráiz, de multiplicidad $m_r \ge 1$, del primer polinomio característico ρ , y el polinomio p_r es de grado $m_r - 1$.

Si $|z_r| > 1$, entonces existen valores iniciales $y_0, y_1, ..., y_{k-1}$ para los cuales la solución correspondiente crece como $|z_r|^n$.

Si $|z_r| = 1$, y la multiplicidad $m_r > 1$, la solución crece como n^{m_r-1} .

En cualquiera de los casos, las soluciones crecen cuando $n \to \infty$ lo que implica que el método no es cero estable.

Demostración

 (\Longrightarrow) Ver página 353, W. Gautschi, Numerical Analysis: an Introduction. Considerando los valores iniciales $y_0, y_1, ..., y_{k-1}$

Ejemplos, métodos cero estable

1. Método de Euler explícito

$$y_{n+1}=y_n+hf_n$$
 $y_{n+1}-y_n=hf_n
ightarrowlpha_0=-1; lpha_1=1$ $ho(z)=z-1 \xrightarrow{\mathsf{Raiz}} z_1=1$

2. Método de Euler implícito

$$y_{n+1} = y_n + hf_{n+1}$$

3. Método de Regla trapezoidal

$$y_{n+1} = y_n + \frac{h}{2}(f_{n+1} + f_n)$$

Ejemplos, métodos cero estable

4. Método de Adams-Bashforth

$$y_{n+4} = y_{n+3} + \frac{h}{24} (55f_{n+3} - 59f_{n+2} + 37f_{n+1} - 9f_n)$$

$$\alpha_0 = 0, \alpha_1 = 0, \alpha_2 = 0, \alpha_3 = -1, \alpha_4 = 1$$

$$\rho(z) = z^4 - z^{3-} = z^3(z - 1)$$

- 5. Método de Adams-Moulton
- 6. Método de Simpson
- 7. Determine si el siguiente método es cero estable

$$11y_{n+3} + 27y_{n+2} - 27y_{n+1} - 11y_n = 3h(f_{n+3} + 9f_{n+2} + 9f_{n+1} + f_n)$$

8. Determine si el siguiente método es cero estable

$$y_{n+3} + y_{n+2} - y_{n+1} - y_n = 2h(f_{n+2} + f_{n+1})$$

Consistencia

Definición

El error de truncación de un método de k-pasos lineal se define por

$$T_n = \left(\sum_{j=0}^k (\alpha_j y(x_{n+j}) - h\beta_j f(x_{n+j}, y(x_{n+j})))\right) / \left(h\sum_{j=0}^k \beta_j\right)$$

Observe que este corresponde al residual que se obtiene al evaluar la solució del PVI en el método.

Definición

El metodo de k-pasos lineal se dice consistente con el PVI si el error de truncación es tal que

$$\forall \epsilon > 0, \exists h(\epsilon) : |T_n| < \epsilon, \text{ para } 0 < h < h(\epsilon).$$

Segundo polinomio característico

Definición

Se define el segundo polinomio característico asociado al método de k-pasos lineal por:

$$\sigma(z) = \sum_{j=0}^k \beta_j z^j$$

Observe que

$$\sigma(1) = \sum_{i=0}^{k} \beta_i$$

entonces

$$T_n = \frac{1}{h\sigma(1)} \sum_{i=0}^{k} (\alpha_j y(x_{n+j}) - h\beta_j f(x_{n+j}, y(x_{n+j})))$$

Condiciones para la consistencia

A continuación estudiamos condiciones para la consistencia. Usamos la expansión de Taylor y la ecuación

$$y(x_{n+j}) = y(x_n) + (jh)y'(x_n) + \frac{(jh)^2}{2!}y''(x_n) + \frac{(jh)^3}{3!}y'''(x_n) + \dots$$

$$f(x_{n+j}, y(x_{n+j})) = y'(x_{n+j})$$

Entonces, tenemos

$$T_{n} = \frac{1}{h\sigma(1)} \sum_{j=0}^{k} (\alpha_{j} y(x_{n+j}) - h\beta_{j} f(x_{n+j}, y(x_{n+j})))$$

$$= \frac{1}{h\sigma(1)} (C_{0} y(x_{n}) + C_{1} h y'(x_{n}) + C_{2} h^{2} y''(x_{n}) + \dots + C_{q} h^{q} y^{(q)}(x_{n}) + \dots)$$

Condiciones para la consistencia

Donde

$$C_0 = \sum_{j=0}^{k} \alpha_j$$

$$C_1 = \sum_{j=0}^{k} (j\alpha_j - \beta_j)$$

$$C_2 = \sum_{j=0}^{k} \left(\frac{j^2}{2!}\alpha_j - j\beta_j\right)$$

$$\vdots$$

$$C_q = \sum_{j=0}^{k} \left(\frac{j^q}{q!}\alpha_j - \frac{j^{q-1}}{(q-1)!}\beta_j\right)$$

Verifical

Condiciones para la consistencia

Por lo tanto, para que el método sea consistente necesitamos que:

$$C_0 = 0$$
 y $C_1 = 0$

Observe

$$\square C_0 = \sum_{i=0}^k \alpha_i = \rho(1)$$

$$\square \ \ C_1 = \sum_{i=0}^k (j\alpha_j - \beta_j) = \rho'(1) - \sigma(1)$$

Consistente
$$\begin{cases}
ho(1) &= 0 \\
ho'(1) &= \sigma(1) \end{cases}$$

Orden

Definición

El método de paso múltiple lineal se dice de orden p, si p es el entero positivo mas grande tal que, para cualquier solución suficientemente suave en D del PVI, existen constantes K y h_0 tales que

$$|T_n| \leq Kh^p$$
 para $0 < h \leq h_0$

para cualquiera de los k + 1 puntos $(x_n, y(x_n)), ..., (x_{n+k}, y(x_{n+k}))$

Proposición

El método es de orden p si y solos si

$$C_0 = C_1 = C_2 = ... = C_p = 0, \ y \ C_{p+1} \neq 0$$

Ejercicio

Determine $b \in \mathbb{R}$ para que el método

$$y_{n+3} + (2b-3)(y_{n+2} - y_{n+1}) - y_n = hb(f_{n+2} + f_{n+1})$$

sea

- Cero-estable
- de orden 4

Además deduzca el orden mayor del método cero-estable.

Ejercicio: Método de 2-pasos explicito mas preciso

Determine los parámetros tales que el método de 2 pasos tenga el orden de precisión mas alto posible

$$\alpha_2 y_{n+2} + \alpha_1 y_{n+1} + \alpha_0 y_n = h(\beta_1 f_{n+1} + \beta_0 f_n)$$

Equivalencia de Dahlquist

Valores iniciales consistentes: $y_i = \eta_i = \eta_i(h) \text{ con } y_i \to y_0 \text{ cuando } h \to 0.$

Teorema

Para un método de k-pasos lineal que es **consistente** con el PVI, donde f se asume que satisface la condición de Lipschitz, y con valores iniciales consistentes, la **cero-estabilidad** es necesaria y suficiente para **convergencia**. Además si la solución y tiene una derivada continua de orden p+1 y error de truncación $\mathcal{O}(h^p)$, entonces el error global del método

$$e_n = y(x_n) - y_n$$

es de orden $\mathcal{O}(h^p)$

Barrera de Dahlquist

Teorema

El orden de precisión de un método cero-estable de k-pasos no puede exceder:

- \square k+1 si k es impar
- \square k+2 si k es par

Ejemplos

- □ El Teorema de Barrera de Dahlquist indica que cuando k = 1, el orden de precisión de un método cero estable no puede ser mayor que 2. La regla del trapecio es de orden 2 y es cero estable.
- Muestre que el siguiente método de 2 pasos es cero-estable y que su orden es 4

$$y_{n+2} = y_n + \frac{h}{3}(f_{n+2} + 4f_{n+1} + f_n)$$

Determine el orden y la cero-estabilidad del siguiente método de 3-pasos

$$11y_{n+3} + 27y_{n+2} - 27y_{n+2} - 11y_n = 3h(f_{n+3} + 9f_{n+2} + 9f_{n+1} + f_n)$$

Manuel A. Sánchez 26/2

Ejemplos

- \square El Teorema de Barrera de Dahlquist indica que cuando k=1, el orden de precisión de un método cero estable no puede ser mayor que 2. La regla del trapecio es de orden 2 y es cero estable.
- Muestre que el siguiente método de 2 pasos es cero-estable y que su orden es 4

$$y_{n+2} = y_n + \frac{h}{3}(f_{n+2} + 4f_{n+1} + f_n)$$

Determine el orden y la cero-estabilidad del siguiente método de 3-pasos

$$11y_{n+3} + 27y_{n+2} - 27y_{n+2} - 11y_n = 3h(f_{n+3} + 9f_{n+2} + 9f_{n+1} + f_n)$$

Es de orden 6, no puede ser cero estable

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE