SMT Presentations: Computation

Motivation

Big data

Problem

Datasets no longer fit on a single machine!

Q2 2010 Q2 2010 Q1 2011 Q2 2011 Q2 2011 Q2 2012 Q2 2012 Q2 2014 Q3 2014 Q4 2014 Q5 2014 Q6 2014 Q7 201

Distributed Computing

MapReduce [DG08]

- Job-level dependency tracking
- Disk I/O every iteration

SparkNet Training Deep Networks in Spark [MNSJ15]

Feynman Liang

CUED

May 17, 2016

Goals

- "Our goal is not to outperform custom computational frameworks but rather to propose a system that can be easily implemented in popular batch frameworks and that performs nearly as well..."
- "...integration with a fast and general engine for big data processing such as Spark allows researchers and practitioners to draw from a rich ecosystem of tools to develop and deploy their models"
- "In SparkNet, training a deep network on the output of a SQL query, or a graph computation, or a streaming data source is straightforward"

Caffe [JSD+14]

- Separation of concerns
 - Model specification
 - Solver
 - CPU↔GPU
- Model Zoo
- GPU parallelism

```
name: "LogReg"
laver {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  data_param {
    source: "input_leveldb"
    batch size: 64
laver {
  name: "ip"
  type: "InnerProduct"
  bottom: "data"
  top: "ip"
  inner_product_param {
    num_output: 2
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip"
  bottom: "label"
  top: "loss"
```


SparkNet's Net API

Java Native Access (JNA) wrapper around Caffe

```
class Net {
    def Net(netParams: NetParams): Net
    def setTrainingData(data: Iterator[(NDArray,Int)])
    def setValidationData(data: Iterator[(NDArray,Int)])
    def train(numSteps: Int)
    def test(numSteps: Int): Float
    def setWeights(weights: WeightCollection)
    def getWeights(): WeightCollection
}
```

Example CNN NetParams

Compiled to protobuf Caffe network specification

```
val netParams = NetParams(
   RDDLayer("data", shape=List(batchsize, 1, 28, 28)),
   RDDLayer("label", shape=List(batchsize, 1)),
   ConvLayer("conv1", List("data"), kernel=(5,5), numFilters=20),
   PoolLayer("pool1", List("conv1"), pool=Max, kernel=(2,2), stride=(2,2)),
   ConvLayer("conv2", List("pool1"), kernel=(5,5), numFilters=50),
   PoolLayer("pool2", List("conv2"), pool=Max, kernel=(2,2), stride=(2,2)),
   LinearLayer("ip1", List("pool2"), numOutputs=500),
   ActivationLayer("relu1", List("ip1"), activation=ReLU),
   LinearLayer("ip2", List("relu1"), numOutputs=10),
   SoftmaxWithLoss("loss", List("ip2", "label"))
)
```

Spark [ZCD+12]

Resilient Distributed Datasets (RDDs)

- Lineage graph describing lazy dataset
- Aggressive in-memory caching (project Tungsten)
- Partition-level dependency tracking

Parallelizing SGD

- Master broadcasts model parameters to workers
- **2** Each worker runs SGD on its subset for $\tau = 50$ iterations
- Worker model parameters collected and averaged on master

```
var trainData = loadData(...)
var trainData = preprocess(trainData).cache()
var nets = trainData.foreachPartition(data => {
    var net = Net(netParams)
    net.setTrainingData(data)
    net
7)
var weights = initialWeights(...)
for (i <- 1 to 1000) {
    var broadcastWeights = broadcast(weights)
    nets.map(net => net.setWeights(broadcastWeights.value))
    weights = nets.map(net => {
        net.train(50)
        net.getWeights()
    }).mean() // an average of WeightCollection objects
}
```

SparkNet Architecture

Inter-machine communication bottleneck

Worker machines must frequently read and write the global shared parameters.

Question: How does SparkNet's $\tau=50$ affect communication? Convergence rate?

Inter-machine communication bottleneck

Worker machines must frequently read and write the global shared parameters.

Question: How does SparkNet's $\tau=50$ affect communication? Convergence rate?

- ullet Communication once every au instead of every single SGD iteration
- Workers obtain parameter estimates more biased to own partition

The straggler problem

Many algorithms require synchronization barriers, which are rate-limited by the slowest machines.

Question: Why might some machines be slower than others?

The straggler problem

Many algorithms require synchronization barriers, which are rate-limited by the slowest machines.

Question: Why might some machines be slower than others?

- Imbalanced workload partitioning
- Network congestion
- Other processes in multi-tenant environments

Addressing the straggler problem: asynchronous SGD

Not addressed by SparkNet, but an active research area:

- HogWild! Correctness guaranteess [RRWN11]
- Parameter server Distributed implementation [HCC⁺13], flexible consistency models in V3 [LZY⁺13]

Tuning au

- All experiments on EC2 g2.8xlarge nodes
- AlexNet [KSH12]
- K = 5 workers

Training curves

- AlexNet [KSH12]
- 8 layer CNN, ILSVRC2010
- $\tau = 50$

- GoogLeNet [SLJ⁺15]
- 22 layer CNN, ILSVRC2014
- τ = 50

Speedups relative to single-GPU Caffe

- Why is K=1 largely unaffected by τ ?
- Why does performance deteriorate with increasing K? Increasing τ ?

May 17, 2016

Related work

- Distbelief [DCM⁺12]
 - Both data-parallel and model-parallel DNNs
 - Asynchronous (downpour SGD) and batch (sandblaster L-BFGS
 - Google Borg CPU cluster
- FireCaffe [IAMK15]
 - Caffe parameter server
 - Cray GPU cluster
 - SoA 47× speedup training GoogLeNet on 128 GPUs
- Yahoo/CaffeOnSpark [CNF16]
 - Infiniband/ethernet for GPU parameter exchange
 - Spark and EC2 integration

Conclusion

- Contributions
 - Data-parallel integration between a popular deep CNN tool (Caffe) and a general-purpose cluster computing (Spark) framework
 - Empirical studies on τ and K
- Criticisms
 - Does not solve straggler problem: synchronization barrier at each parameter collection step
 - No comparison against related work
 - Experiments are too small (10 nodes max)
- Future work
 - ullet Mathematical analysis of au's effects on learning convergence
 - Lock-free parameter updates (will require extending Spark)

References I

- Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al., *Tensorflow: Large-scale machine learning on heterogeneous distributed systems*, arXiv preprint arXiv:1603.04467 (2016).
- Jun Shi Cyprien Noel and Andy Feng, Large scale distributed deep learning on hadoop clusters, 2015 (accessed May 17, 2016).
- Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al., Large scale distributed deep networks, Advances in Neural Information Processing Systems, 2012, pp. 1223–1231.

References II

- Jeffrey Dean and Sanjay Ghemawat, *Mapreduce: simplified data* processing on large clusters, Communications of the ACM **51** (2008), no. 1, 107–113.
- Seth Gilbert and Nancy Lynch, *Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services*, ACM SIGACT News **33** (2002), no. 2, 51–59.
- Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing, More effective distributed ml via a stale synchronous parallel parameter server, Advances in neural information processing systems, 2013, pp. 1223–1231.

References III

- Forrest N landola, Khalid Ashraf, Mattthew W Moskewicz, and Kurt Keutzer, Firecaffe: near-linear acceleration of deep neural network training on compute clusters, arXiv preprint arXiv:1511.00175 (2015).
- Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell, *Caffe: Convolutional architecture for fast feature embedding*, Proceedings of the ACM International Conference on Multimedia, ACM, 2014, pp. 675–678.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, *Imagenet classification with deep convolutional neural networks*, Advances in neural information processing systems, 2012, pp. 1097–1105.

References IV

- Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander Smola, *Parameter server for distributed machine learning*, Big Learning NIPS Workshop, vol. 1, 2013.
- Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan, Sparknet: Training deep networks in spark, arXiv preprint arXiv:1511.06051 (2015).
- Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, Advances in Neural Information Processing Systems, 2011, pp. 693–701.

References V

- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, *Going deeper with convolutions*, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
- Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica, *Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing*, Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, USENIX Association, 2012, pp. 2–2.