Problem Sheet 1

Robin Elias Piet Schimke Andrea Farfan Aragon

All the programming task are solved using the julia programming language. To reproduce the solution pull https://github.com/relias96/Epidemiologie and following the Instructions in the READMEmd file. Then run scripts11.jl

\mathbf{A}

Given the DGL $\frac{dI}{dT}=\beta SI-\gamma I$ and the assumption S=N=const. can be simplified:

$$\frac{dI}{dT} = \beta NI - \gamma I = I(\beta N - \gamma)$$

Since this DGL is linear in I, the solution of the DGL can be determined as:

$$I(t) = I_0 * e^{\beta N - \gamma}$$

 \mathbf{B}

Figure 1: Germany

Figure 2: Italy

Figure 3: China

Country	λ	R_0
Germany	0.203	2.62
Italy	0.199	2.59
China	0.028	1.224

\mathbf{C}

Our Model only fits under the disease-free equilibrium assumtion. For longer timeseries this assumtion is violated and the Model no longer fits the data as well as for short timeseries.

\mathbf{D}

Since $R_0 = \frac{\beta N}{\gamma}$ is density dependent in N China should have a higher R_0 Value. However, because our model cannot account for policies such as quarantine, our model is inaccurate in that respect.