Longitudinal analyses of serological data

May 23, 2025

Seroanalytics Training Blantyre, Malawi

Outline

- Longitudinal data
- Antibody kinetics
- Value of analyses of quantitative titers

Reminder: longitudinal data

(From Lecture 0)

- Repeated samples from the same individuals
- Could be days, weeks, months, years apart
- Could span various time periods

Binary serostatus often does not tell the full story

Binary serostatus often does not tell the full story

Even without longitudinal data, there is still value in analyzing quantitative titers

Carcelen, Winter, et al. (2022) Sci Reports.

Even without longitudinal data, there is still value in analyzing quantitative titers

Carcelen, Winter, et al. (2022) Sci Reports.

Longitudinal data can help us analyze...

- Initial response to infection/vaccination
- Incidence and time-since-infection (TSI)
- Boosting (from exposure or vaccination)
- Waning or decay

Initial response to infection / vaccination

Including immunogenicity studies

Cross-Sectional Study of Varicella Zoster Virus Immunity in Healthy Korean Children Assessed by Glycoprotein Enzyme-Linked Immunosorbent Assay and Fluorescent Antibody to Membrane Antigen Test

by Yunhwa Kim ¹ , Ji-Young Hwang ¹ , Kyung-Min Lee ¹ , Eunsil Lee ² and Hosun Park ^{1,3,*}

1 Department of Misrebiology College of Medicine, Youngam Hajusprity Decay 42445. Korea

- ¹ Department of Microbiology, College of Medicine, Yeungnam University, Daegu 42415, Korea
- ² Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Korea
- ³ Immunogenicity Evaluation Laboratory, Clinical Trial Center, Yeungnam University Medical Center, Daegu 42415, Korea
- * Author to whom correspondence should be addressed.

Nginache Nampota-Nkomba, ^{a.b} Osward M. Nyirenda, ^{a.} Shrimati Datta, ^{b.} Victoria Mapemba, ^{a.} Priyanka D. Patel, ^{c.} Theresa Misiri, ^{c.} Felistas Mwakiseghile, ^{c.} John M. Ndaferankhande, ^{c.} Bright Lipenga, ^{c.} Jennifer Oshinsky, ^{b.} Marcela F. Pasetti, ^{b.} Leslie P. Jamka, ^{b.} Melita A. Gordon, ^{c.} Matthew B. Laurens, ^{b.} and Kathleen M. Neuzil, ^{b.d.*} on behalf of the TyVAC team

^aBlantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi

^bCenter for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States

^cMalawi-Liverpool-Wellcome Program, Kamuzu University of Health Sciences, Blantyre, Malawi

dFogarty International Center, National Institute of Health, Bethesda, MD, United States

Seroincidence estimation

 Cross sectional data can show us the proportion of people seropositive / above some threshold at any given time

This is a metric of <u>prevalence</u>

 Longitudinal data can show us changes within individuals in the population which allows us to estimate new infection/exposure

• This is a metric of incidence

Recovery

Time-since-infection (TSI)

- Use mathematical model to predict antibody level as a function of TSI (or vaccination)
- Requires longitudinal samples following known exposure
- Can use information from one or more antigens / biomarkers simultaneously

Example: TSI

Boosting

- Can use kinetics to understand rate of boosting following vaccination or infection
- Additionally, asymptomatic cases or carriage

Waning models

Application: Longitudinal VPD titers

- Decay expected, but infrequently quantified
 - Explicit mechanisms affecting rate of decay hypothesized but also not often quantified (especially in low- and middle-income settings)

Declining measles titers (IU/mL) across age:

• 2 years: 1465 (1353 – 1604)

• 5 years: 889 (837 – 953)

8 years: 645 (584 – 713)

Current titer related to maternal antibody concentration and date of vaccination

 Did not examine additional factors that might influence rate of decay (e.g., nutritional status)

Longitudinal tetanus titers

- Tetanus primary series: 3 doses before age 6 months
- Substantial waning expected
- WHO recommends 3 boosters
 - Prevent outbreaks
 - Achieve and maintain maternal and neonatal tetanus elimination (MNTE)
 - Relatively low cost (between \$0.40 -\$1.49 for all boosters per child)
- EPI programs per country determine booster schedule

WHO Immunological Basis for Immunization Series Module 3: Tetanus (Update 2018)

Application: assessing tetanus antibody decay

- Program for Resistance, Immunology, Surveillance, and Modelling of Malaria (PRISM)
 - Longitudinal cohort with quarterly sampling
- Objective: characterize tetanus antibody waning overall and by key study characteristics

Kamya, et al. (2015) AJTMH.

Tetanus antibody decay

Half-life of antibody titers is 3.9 years (95% CI: 3.5–4.4 years).

Estimated age of sero-reversion is 8.1-years-old (95% CI: 7.2- to 9.2-years-old).

Decay by study site

Half-life of tetanus antibody titers in Jinja (15.2 years [95% CI: 9.7 to 34.6 years]) is statistically more than in Tororo (2.8 years [95% CI: 2.6 to 3.1 years])).

We can still consider the correlate of protection when evaluating longitudinal data

	Jinja	Tororo	Total
Sero-reversion event	37	52	89
during study period	3/	52	09
No sero-reversion event	161	70	231
during study period			
Total	198	122	320

Hazard model: estimates the probability that an event will occur during a specified time period

Among children who were seropositive at the start of the study period, there
was a 2.35 (95% CI: 1.53 to 3.62) times increased risk of sero-reversion in
Tororo relative to Jinja (p < 0.001).

Questions?