

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Отчёт по лабораторной работе №1

Дисциплина: "Информационные системы и базы данных"

Преподаватель: Гаврилов Антон

Студент: Закиров Бобур

Группа: Р33312

Санкт-Петербург $2021 \, \text{г.}$

Текст задания

Для выполнения лабораторной работы №1 необходимо:

- На основе предложенной предметной области (текста) составить ее описание. Из полученного описания выделить сущности, их атрибуты и связи.
- Составить инфологическую модель.
- Составить даталогическую модель. При описании типов данных для атрибутов должны использоваться типы из СУБД PostgreSQL.
- Реализовать даталогическую модель в PostgreSQL. При описании и реализации даталогической модели должны учитываться ограничения целостности, которые характерны для полученной предметной области.
- Заполнить созданные таблицы тестовыми данными.

Описание предметной области

Вариант 289307

Основной объект данного текста – это *тестер*, тестирующий различные *схемы*. В его *состав* входят: *дисплей*, *кнопка* и *микроскоп*. В свою очередь, микроскоп содержит *линзу*. Также, некоторые сущности могут иметь *цвет*.

Для *испытания* или *проверки* схемы, тестеру необходимо вставить одну из *карточек*, находящихся в *картотеке* поиска неисправностей.

Список сущностей и их классификация

Сущность	Аттрибуты	Вид
Схема	тип, высота, ширина, модель, страна	стержневой
Контроль	время	стержневой
Цвет	название, красный, зелёный, синий	характеристический
Карточка	название, формат, $\kappa apmome\kappa a(id)$, $usem(id)$	стержневой
Картотека	ширина, высота, $uem(id)$	стержневой
Тестер	название, год, компания, $\kappa apmoч\kappa a(id)$	стержневой
ТестерСхема	$mecmep(id),\ cxema(id),\ \kappa oнmponb(id)$	ассоциативный
Дисплей	разрешение, диагональ, энергосбережение	стержневой
Кнопка	радиус, $usem(id)$	стержневой
Линза	тип, радиус кривизны, фокусное расстояние, микроскоп(id)	характеристический
Микроскоп	тип, вес, модель, страна	стержневой
Состав	$mecmep(id), \ \mathit{микроскоn}(id), \ \mathit{дисплей}(id), \ \mathit{кнопкa}(id)$	ассоциативный

Инфологическая модель GitHub

Реализация даталогической модели на SQL

Исходный код в GitHub

Выводы по работе

При выполнение данной лабораторной работы были изучены сущности и их классияикация, инфологическая модель, даталогическая модель, основы postgresql.