HW 17

Section 32

31. THE SCHRODER-BERNSTEIN THEOREM

Exercise 31.1. Let X, Y, and Z be sets. Prove that if $X \subseteq Y \subseteq Z$, and |X| = |Z|, then |X| = |Y| as well.

Proof: We suppose directly that $X \subseteq Y \subseteq Z$ and that |X| = |Z|. Then there is a bijective function $f: X \to Z$. Since $S \subseteq X$, then $f|_{f^{-1}(S)}: X \to S$ restricted to the preimage of S is a bijective function. Since there is a bijective function from $X \to S$, then |X| = |Y|.

Exercise 31.2. Prove that [5,16) and $(0,\infty)$ have the same cardinalities.

Proof: To show that the sets A=[5,16) and $B=(0,\infty)$ have the same cardinalities, we will show that there are two injective functions $f:A\to B$ and $g:B\to A$, and use the Schroder-Bernstein Theorem to show that the sets A and B have the same cardinalities.

 $(f:A \to B)$ Injective: Since $A \subseteq B$, let $f = id_A$ such that f(x) = x. This is injective since the identity function is injective.

 $(g:B \to A)$ **Injective**: Let g be defined as $\arctan(x) + 5$ which has a codomain of $C = \left(0, 5 + \frac{\pi}{2}\right)$ which is a subset of A. To show that it is injective, we assume contrapositively that $g(b_1) = g(b_2)$ for some $b_1, b_2 \in B$. Then

$$g(b_1) = g(b_2)$$
$$\arctan(b_1) + 5 = \arctan(b_2) + 5$$
$$\arctan(b_1) = \arctan(b_2).$$

Since the function arctan is injective, we have that $b_1 = b_2$. Therefore, the function g is injective. Since the both g and f are injective, then A and B have the same cardinalities.

Exercise 31.3. Given sets A and B, prove that if there is an injection $f: A \to B$ and a surjection $g: A \to B$, then |A| = |B|.

Proof: We assume directly that f is an injection and g is a surjection from A to B. Since g is surjective, we know that for all $b \in B$, there exists and $a \in A$, such that g(a) = b. Let $C \subseteq A$ be the subset of A such that $g|_C$ is a bijection, then |C| = |B|. In addition, since $C \subseteq A$, $|C| \le |A|$. Also, because the injection f exists, we know that $|A| \le |B|$. Due to the facts that $|C| \le |A|$, |C| = |B|, and $|A| \le |B|$ we get that |A| = |B|.

Exercise 31.4. Complete the proof in case 2 of the Schroder-Bernstein theorem, by showing that $f|_{A_2}$ is a function from A_2 to B_2 , and also that it is bijective.

Proof: We suppose directly that the sets A_2 and B_2 correspond to the chain that never loops and has an ultimate ancestor in A. Let $a_i \in A_2$ and $b_i \in B_2$ with a_0 being the ultimate ancestor in A_2 . Using $f|_{A_2}$ and $g|_{B_2}$, we get the chain

$$a_0 \mapsto b_0 \mapsto a_1 \mapsto b_1 \mapsto \cdots \mapsto a_n \mapsto b_n$$
,

with . Since f is injective, then $f|_{A_2}$ is injective. From the chain we can see that any $b_i \in B_2$ is simply $f(a_i)$, thus $f|_{A_2}$ is surjective. Since the function $f|_{A_2}$ is both injective and surjective, it is bijective.

Exercise 31.5. In exercise 31.6 we showed that $|R| \leq |\mathcal{P}(\mathbb{N})|$. Here is another way to do that.

Define a function $f:(0,1)\to \mathcal{P}\left(\mathbb{N}\right)$, by sending (the decimal expansion of) a real number $0.a_1a_2a_3\ldots$ (not ending in repeating 9's) to the set

$$\{a_1, 10a_2, 100a_3, \ldots\} - \{0\} \subseteq \mathbb{N}.$$

Prove that this is an injective function.

Proof: We suppose contrapositively that $f\left(x\right)=f\left(y\right)$ for some $x,y\in\left(0,1\right)$, then

$$f(x) = f(y)$$

$$\{x_1, 10x_2, 100x_3, \ldots\} = \{y_1, 10y_2, 100y_3, \ldots\}.$$

The two sets can only be equivalent if they have the same elements. Since the elements of the sets are constructed uniquely from the decimal digits of x and y, this means that x and y must have the same decimal digits. And, since 0 < x, y < 1, we get that x = y since their decimal values are equivalent. Thus the function is injective.