CSC373 Worksheet 7 Solution

August 14, 2020

1. Notes

• Decision Problem

 Is the problem if determining ansewr to a class of yes/no questions about some objects of interest

Example:

• P

– Is set of problems that can be solved by a deterministic Turing machine in Polynomial time (i.e. $\mathcal{O}(n^k)$) [2].

Example:

- 1) Shortest path problems
- 2) Calculating the greatest common divisor
- 3) Finding maximum bipartite matching

• NP (Non-deterministic Polynominal):

- Is set of decision problems that can be solved by a Non-deterministic Turing Machine in Polynomial time.^[2]
- Has no particular rule is followed to make a guess ^[1].
- Can be solved in polynominal time via a "lucky algorithm", a magical algorithm that always make a right guess $^{[2]}$
- $-P \subseteq NP$

• NP-Complete:

- A decision problem is **NP-complete** if
 - 1) Decision problem L is in NP
 - * A certificate (a solution constructed by student) can be verified (can be checked) to have polynominal time
 - 2)
- Is not likely that there is an algorithm solving it in polynominal number of steps

• NP-Hard:

Example:

1) Alan Turing's Halting Problem

References

- 1) Encyclopedia Britannica, NP-Complete Problem, link
- 2) Geeks for Geeks, NP-Completeness, link
- 3) Wikipedia, NP-complete, link