▶ **Orthogonality weight.** Varying λ shifts macro F1 by ≈< 0.003. This implies that the OT scalar already explains the signal. ▶ **Style dimension.** Performance is effectively flat between 64 and 256 dimensions, which means that stylistic information is low-rank. ▶ **Projection dimension.** There is no gain beyond $n_{\pi} = 32$, and larger values simply lead to slower training.

▶ Blur ($\sqrt{\varepsilon}$). Best results are achieved with blur ≈ 0.003 . Larger values lead to more bias, smaller values cause more variance, so F1

decreases in either direction.

Apart from blur tuning in the feature-free balanced OT method, OT variants are not particularly sensitive to orthogonality weight/projection dimension/style dimension tuning in the context of style shift detection.