	PART – B ($5 \times 10 = 50$ Marks) Answer ALL Questions	Marks	BL	СО	PO
26. a.	Evaluate by changing the order of integration in $\int_0^4 \int_{x^2/4}^{2\sqrt{x}} dy dx$.	10	3	1	2
	The second secon				
b.	(OR) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ by using triple integration.	10	4	1	1
27. a.	Verify Gauss divergence theorem for $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ taken over the cube bounded by the plane $x=y=z=0$, $z=2$, $y=2$, $x=2$.	10	3	2	1
	nutring 20 cm participation of the company of the c				
	(OR)	10	4	2	2
b.	Show that the vector $\vec{F} = (6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is	10	4	2	2
	irrotational and hence find the scalar potential.				
00	(a)	10	2	2	1
28. a.	Solve $(D^2 - 4D + 8)y = e^{2t}$, given $y(0) = 2$, $y'(0) = -2$ using Laplace	10	3	3	1
	transform.				
	(OP)				
b.	Find the Laplace transform of $f(t) = \begin{cases} t, & 0 \le t \le 2 \\ 4-t, & 2 \le t \le 4 \end{cases}$ where	10	4	3	2
	f(t+4)=f(t).				
29. a.	If $u - v = e^x (\cos y - \sin y)$, find the analytic function in terms of z.	10	3	4	1
	I miles be along most fire of the subsequences as well				
b.	(OR) Find the bilinear transformation which maps the points	10	3	4	2
	$z_1 = 0, z_2 = 1, z_3 = \infty$ into $\omega_1 = i, \omega_2 = -1, \omega_3 = -i$ respectively.				
30. a.	Γ 1.6() 1	10	3	5	1
	(i) $ z < 1$				

1 < |z| < 2(OR) b. Evaluate, using contour integration $\int_0^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$. Reg. No.

B.Tech. DEGREE EXAMINATION, MAY 2022

Second Semester

18MAB102T - ADVANCED CALCULUS AND COMPLEX ANALYSIS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

(i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

Γime: 2½ Hours								Marks: 7		
			$A (25 \times 1 = 25)$ wer ALL Question	•	1	Marks	BL	СО	PO	
	1. Fin	and the value of $\int_0^1 \int_0^1 dx dx$	ly is			1	1	1	1	
	(A)) 1	(B) (D)	2 4						
	2. Ch	ange the order of integ	ration in $\int_0^a \int_0^x dy$	vdx is		1	2	1	1	
	(A)	$\int_0^a \int_0^x dx dy$		$\int_0^a \int_0^x x dy dx$						
	(C)	$\int_0^a \int_y^a dx dy$	(D)	$\int_0^a \int_0^y dx dy$						
	3. Wh	nat is the value of $\int_0^1 \int_0^x$	dxdy			1	1	1	2	
) ½		-1 1/3						
	4. Th	the name of the curve $r = \frac{1}{r}$	$=a(1+\cos\theta)$ is			1	1	1	1	
		Cycloid Cardioid	(B) (D)	Hypocycloid Hemicircle						
	5. Fin	d the value of $\int_0^{\pi/2} \int_0^{\sin \theta}$	$r^4 dr d\theta$			1	1	1	2	
	(A) (C)	8/75 8/65	(B) (D)	6/75 4/75						
	6. If ¢	$b(x,y,z) = xyz$ then ∇c	∮ is			1	2	2	1	
	(A)	$yz\vec{i} + zx\vec{j} + xy\vec{k}$	(B)	$xy\vec{i} + yz\vec{j} + zx\vec{k}$						
	(C)	$zx\vec{i} + xy\vec{j} + y\vec{k}$	(D)	0						
	7. Fin	d curl (grad φ) is				1	1	2	2	
	(A)	-1	(B)							
	(C)	0	(D)	ф						

8. What is the condition for \vec{F} to be conservative (A) Solenoidal vector (B) Irrotational vector (C) Rotational vector (D) Neither solenoidal nor irrotational		1	2	1	16. Find the critical point of transformation $\omega = z^2$ is (A) $z=2$ (B) $z=0$ (C) $z=1$ (D) $z=-2$		1	4	1
9. Find the value of $\nabla(r^n)$ is	1	2	2	2	17. The function $f(z) = log z$ is (A) Differentiable (B) Analytic everywhere		1	4	1
(A) $n\vec{r}$ (B) $n\vec{r} r^n$				3	(C) Analytic (D) Analytic everywhere except at the origin				
(C) $nr^{n-2}\vec{r}$ (D) nr^n					18. An analytic function with constant modulus is		1	4	1
10. If \overline{r} is the position vector of the point (x,y,z) with respect to the origin, then div \overrightarrow{r} is	1	2	2	1	(A) Function of x (B) Function of y (C) Function of z (D) Constant				
(A) 2 (C) 0 (B) 3 (D) 1					19. Relate a function $u(x,y)$ satisfies $u_{xx} + u_{yy} = 0$ then u is		1	4	2
11. Find L (cos2t)	1	1	3	2	(A) Analytic (B) Harmonic (C) Differential (D) Continuous				
(A) $\frac{s}{s^2+4}$ (B) $\frac{s}{s+2}$ (C) $\frac{2}{s^2+2}$ (D) $\frac{4}{s^2+4}$					20. If $u+iv$ is analytic, then the curve $u=c_1$ and $v=c_2$. (A) Intersect each other (B) Cut orthogonally (C) Parallel (D) Coincides		1	4	1
12. If $L(f(t)) = F(s)$ then $L(e^{-at}f(t)) =$	1	1	3	1	Find the value of $\int_{c}^{z} \frac{z}{(z-1)^2} dz$, where c is the circle $ z =2$ is	l	1	5	2
(A) $F(s+a)$ (B) $F(s-a)$ (C) $F(s)$ (D) $\frac{1}{a}F(s/a)$					(A) πi (C) 4πi (B) 2πi (D) 0				
$a^{1}(0,a)$	1	1	2	2	22. If $f(z) = \frac{\sin z}{z}$, then	1	2	5	1
13. Find inverse Laplace transform of $\frac{1}{s^2 - a^2}$ is (A) $\sin at$ (B) $\sinh at$	1	1	3	2	(A) z=0 is a simple pole (B) z=0 is a pole of order 2 (C) z=0 is a removable singularity (D) z=0 is a zero of f(z)				
$\frac{a}{a}$ (C) $\sin at$ (D) $\sinh at$					23. If $f(z)$ is analytic inside and on c, the value of $\int_{C} f(z)dz$, where c is the simple	1	1	5	1
14. $L(t^4)$ is equal to $(\Lambda) \frac{3!}{s^4} $ (B) $\frac{4!}{s^4}$	- 1	- 1	3	1	closed curve and 'a' is any point within c, is (A) $f(a)$ (B) $2\pi i f(a)$ (C) $\pi i f(a)$ (D) 0				
(C) $\frac{s^4}{\frac{4!}{s^5}}$ (D) $\frac{5!}{s^4}$					24. The annular region for the function $f(z) = \frac{1}{z(z-1)}$ is	1	1	5	2
15. Find the value of $L \left[e^{-3t} \right] =$	1	2	3	2	(A) $0 < z < 1$ (B) $1 < z < 2$ (C) $1 < z < 0$ (D) $ z < 1$				
(A) $\frac{1}{s+3}$ (B) $\frac{1}{s-3}$ (C) $\frac{2}{s+3}$ (D) $\frac{3}{s-3}$					25. Find the residue of $f(z)=\cot z$ is (A) π (B) 1 (C) -1 (D) 0	1	1	5	1