Module 1: Approach to Programming

Murali P

Approach to Programming

- Top-down Design
- Correctness Issues
- Implementation Issues
- Efficiency & Complexity

How do you make

• One method (given triangles)

• One method (given triangles)

• Another method (given only trapeziums)

Top-down Design

- Design Approach
- Principle
 - Divide and Conquer
- Steps
 - Divide the problem into sub-problems
 - Basic figures
 - Solve the sub-problems
 - How to make triangles/trapeziums?
 - Combine the (sub-)solutions
 - Rotate appropriately
 - Merge them

Inverse of a Matrix M

Inverse(M) = Cofactor(M) / | M |

 $coafactor_{i,i}(M) = | M - i^{th} row, j^{th} column | * (-1)^{i+j}$

Top-down Design

- How do you solve the sub-problem?
- Divide-and-conquer again!
- Steps
 - 1. Divide the problem into sub-problems
 - 2. Repeat step 1 for each sub-problem until the problem is small enough to have an atomic solution.
 - 3. Combine the solutions.

Example: Sum(n) = 1+2+....(n-1)+nSum(*n*-1) Sum(*n*-2) *n*-1

.

Example $-x^y$

• Consider x^y , where $y=2^k$

Example

- Problem: Compute x^y , for any $y \ge 0$
- (Top-down Design) Solution:
 - Divide y into binary components y_0y_1 , y_2 , ... y_{k-1}
 - each y_i is 0 or a power of 2 and their sum is y.
 - To combine solutions: $x^y = x^{y0*y1} * x^{y2} * ... * x^{yk}$
 - Each sub-problem x^{yj} has a known solution.

Top-down Design – Example

- Algorithm for x^y
 - Initially temp=1;
 - Extract a power of 2 from y, say P.
 - Compute x^P and multiply this to temp
 - Repeat above steps until nothing to extract.

Top-down Design – Example

```
• Algorithm for x^y
  Y_next = y; Power = 1; Result=1;
  while (Y \text{ next} > 0) do
    if (Y next mod 2 == 1)
    then Result = Result * pow(x, Power);
    Power = 2 * Power:
    Y next = Y next / 2;
  endwhile;
```

Illustration: x⁹

Iteration	Result	Power	Y_next
0	1	1	9
1	9%2==1→1*x¹	2	9/2=4
2	Condition fails →x	2*2=4	4/2=2
3	Condition fails →x	2*4=8	2/2=1
4	1%2==1 →x*x ⁸	2*8=16	1/2=0

Illustration: x^8

Iteration	Result	Power	Y_next
0	1	1	8
1	8%2==0 Result=1 Condition fails	2	8/2=4
2	4%2==0 Result=1 Condition fails	2*2=4	4/2=2
3	2%2==0 Result=1 Condition fails	2*4=8	2/2=1
4	1%2==1 →1*x ⁸	2*8=16	1/2=0

Divide and Conquer Example

Problem: Searching an Ordered list

 Given an *ordered sequence* of N elements, find whether there exists an element 'x' in the sequence or not

Broadly speaking

Search x in n terms

Search x in first n/2

Search x in last n/2 terms

terms

Binary Search - design

Broadly speaking

Binary Search - example

Binary Search - Design

Broadly speaking

