LITERATURE SURVEY ON DEEP LEARNING FUNDUS IMAGE ANALYSIS FOR EARLY DETECTION OF DIABETIC RETINOPATHY

APPLICATION	AUTHOR	YEAR	FEATURES
	NAME		
DEEP LEARNING	Jaako Sahlsten,	2019	In this study, we have presented a
FUNDUS IMAGE	Joel Jaskari, Jyri		systematiccomputational methodology
ANALYSIS FOR	Kivinen, Lauri		for diabetic retinopathy and macular
DIABETIC	Turunen		edema classification, and assessed its
RETINOPATHY			performance on a non-open dataset
AND MASCULAR			using five different diabetic
EDEMA			retinopathy and macular edema
GRADING			classification systems.We have found
			that our deep learning model achieved
			comparable or better results with only
			a small fraction (<1/4) of training set
			images than used recently by two other
			groups to obtain the state-of-the-art
			results in the nonreferable/referable
			diabetic retinopathy (NRDR/RDR)
			classification, with similar model
			architecture. The goodness of these
			results can most likely be attributed on
			one hand to regularizing image
			preprocessing and on the other hand to
			the features in the dataset and in the

			experimental setting. For example, our
			database was prepared with
			class/grade-balance in mind, so that its
			grade-distribution when considering
			the NRDR/RDR classification, was
			aimed to be uniform and include as
			many severe cases as possible, thus
			having a grade distribution which does
			not necessarily follow a population or
			a clinical distribution. We have also
			investigated the effect of the size of the
			images used in training, on the
			performance of the trained deep
			learning system in the fundus image
			classification, an assessment which
			was limited in previous studies to
			image sizes less than 779 × 779 pixels,
			thus excluding near native retinal
			camera resolutions.
AUTOMATED	Rishab Gargeya,	2017	The objective of this study was to
IDENTIFICATION	Theodore Leng		develop robust diagnostic technology
OF DIABETIC			to automate DR screening. Referral of
RETINOPATGHY			eyes with DR to an ophthalmologist for
USING DEEP			further evaluation and treatment would
LEARNING			aid in reducing the rate of vision loss,
			enabling timely and accurate
			diagnoses. We developed and
			evaluated a data-driven deep learning
			algorithm as a novel diagnostic tool for
			automated DR detection. The
			algorithm processed color fundus

			images and classified them as healthy
			or having DR, identifying relevant
			cases for medical referral. We used
			area under the receiver operating
			characteristic curve (AUC) as a metric
			to measure the precision-recall trade-
			off of our algorithm, reporting
			associated sensitivity and specificity
			metrics on the receiver operating
			characteristic curve. Our model
			achieved a 0.97 AUC with a 94% and
			98% sensitivity and specificity,
			respectively, on 5-fold cross-validation
			using our local data set. A fully data-
			driven artificial intelligence-based
			grading algorithm can be used to
			screen fundus photographs obtained
			from diabetic patients and to identify,
			with high reliability, which cases
			should be referred to an
			ophthalmologist for further evaluation
			and treatment. The implementation of
			such an algorithm on a global basis
			could reduce drastically the rate of
			vision loss attributed to DR.
MACHINE	Nikita Gurudath,	2014	First order features provide less than
LEARNING	Mehmet Celenk,		reliable data for Classification of
IDENTIFICATION			diabetic retinopathy. The fractal
OF DIABETIC			features emphasize the severity of the
RETINOPATHY			disease. Using a combination of the

			two, a classification accuracy as high
			as 98.1% is obtained using the SVM.
			The original color fundus images are
			smooth in appearance Thus,
			classification utilizing the features
			extracted from them directly does not
			yield high recognition accuracy.
			Classification using the neural net
			greatly depends on how well the
			training steps can map the data from
			the higher dimensional feature space to
			the linearly separable classification
			space. As expected the processing
			performance depends on the number of
			neurons in the hidden layer. A major
			outcome, this research aims to check
			for consistency in classification
			accuracy when presented with a larger
			sample set. Considerations for future
			work include developing an e-health
			digital computer based-system that
			reliably implements the processing
			steps summarized in the commercial
			implementation of a certified hardware
			prototype could then function as
			an effective diagnosis tool to aid in the
			diagnosis of individuals in regions
			where access to health care is limited.
INDIAN	Prasanna Porwal,	2018	Diabetic Retinopathy (DR) is the result
DIABETIC	Samiksha Pachade,		of microvascular retinal changes
	Girish Deshmukh		triggered by diabetes and it is the most
<u> </u>		1	

RETINOPATHY	common leading cause of preventable
IMAGE DATASET	blindness in the working-age
	population in the world. In India it is
	the sixth common cause of blindness
	Early diagnosis and treatment of DR
	can prevent vision loss. Hence,
	diabetic patients are referred to do a
	regular biannual or annual follow-up
	and frequent consultation for the
	screening of their retina. In the Indian
	subcontinent, against national eye care
	experts: population ratio of 1:107,000,
	in various regions this ratio is 1:9000
	whereas in some other parts there is
	only one eye care expert for 608,000
	population. Due to the large number of
	people that require a continuous
	follow-up and shortage
	of ophthalmologists, management of
	DR needs attention to develop
	computer-aided diagnosis tool. The
	recent technological advances in
	computing power, communication
	systems, and machine learning
	techniques provide opportunities to the
	biomedical engineers and computer
	scientists to meet the requirements of
	clinical practice. The raw images with
	ground truths facilitates the scientific
	community for development,
	validation, comparison and aid in the

			further improvement of DR lesion
			detection algorithms used in clinical
			application. Precise pixel level
			annotation of abnormalities associated
			with DR like microaneurysms, soft
			exudates, hard exudates and
			hemorrhages is invaluable resource for
			performance evaluation of individual
			lesion segmentation techniques.
			Whereas, the reliable information
			about disease severity level of DR, and
			DME is useful in development and
			evaluation of image analysis and
			retrieval algorithms for early detection
			of the disease.
PROPOSED	Valliappan Raman,	2016	Diabetic retinopathy is a common eye
RETINAL	Patrick,		disease in diabetic patients and is the
ABNORMALITY	Putra Sumari		main cause of blindness in the
DETECTION AND			population. Early detection of diabetic
CLASSIFICATION			retinopathy protects patients from
APPROACH			losing their vision. Thus, this paper
			proposes a computer-assisted
			diagnosis based on the digital
			processing of retinal images in order to
			help people detecting diabetic
			retinopathy in advance. The main goal
			is to automatically classify the grade of
			non-proliferative diabetic retinopathy
			at any retinal image. For that, an initial
			image processing stage isolates blood
			vessels, microaneurysms and hard
			vessers, increancurysins and flatu

exudates in order to extract features that can be used by a support vector machine to figure out the retinopathy grade of each retinal image. This proposal has been tested on a database of 400 retinal images labeled according to a 4-grade scale of non-proliferative diabetic retinopathy. As a result, we obtained a maximum sensitivity of 95% and a predictive capacity of 94%. Robustness with respect to changes in the parameters of the algorithm has also been evaluated.