Занятие 11

Лабораторная работа №4

Моделирование матричной игры 2×2

Задание на лабораторную работу

- 1. Решите аналитически матричную игру 2×2, заданную платежной матрицей (найдите оптимальные стратегии игроков и цену игры).
- 2. Напишите программу, моделирующую результаты игры, разыграв 1000 партий. Программа должна выводить:
 - результаты моделирования в виде заполненной таблицы с заголовками:

Номер партии	Стратегия игрока А	Случайное число для игрока А	Случайное число для игрока В	Стратегия игрока В	Выигрыш игрока А	Накопленный выигрыш А	*Средний выигрыш А
-----------------	-----------------------	------------------------------	------------------------------	-----------------------	---------------------	--------------------------	--------------------------

^{*}средний выигрыш игрока А находится как отношение накопленного выигрыша к количеству сыгранных партий.

- относительные частоты использования чистых стратегий каждым игроком.
 - 3. Сравните результаты, полученные в п.1 и 2 и сделайте выводы.

Пример для тестирования программы:

$$A = \begin{pmatrix} 10 & 7 \\ 8 & 11 \end{pmatrix}.$$

Нижняя цена игры α =8, β =10. $\alpha \neq \beta$, следовательно, игра не имеет седловой точки, решение игры будет в смешанных стратегиях.

Аналитическое решение:
$$p^* = (0.5; 0.5), q^* = (0.67; 0.33), v = 9$$
.

Далее пишем программу, моделирующую разыгрывание 1000 партий игры с применением оптимальных смешанных стратегий игроками. Для этого для каждого игрока с помощью датчика случайных чисел сгенерируем по 1000 случайных чисел из диапазона [0;1]. Выбор стратегий игроками будем осуществлять, используя геометрическое определение вероятности. Так как все случайные числа из отрезка [0; 1], то чтобы стратегия A_1 появлялась примерно в половине случаев, будем ее выбирать, если случайное число меньше 0.5; в остальных случаях выбирается стратегия A_2 . Аналогично для игрока B_1 Стратегию B_1 будем выбирать, если соответствующее случайное число меньше 0.67, в противном случае выбираем стратегию B_2 .