Exercise 1 (Fréchet-Hoeffding bounds inequality; 4 Points). Let C be a 2-dimensional copula. Prove that for every (u, v) in $[0, 1]^2$,

$$\max(u+v-1,0) \le C(u,v) \le \min(u,v).$$

Hint. Use the monotonicity in each component for the upper bound. For the lower bound use the inclusion–exclusion principle.

We follow the proof of Theorem 2.2.3 in [Nel06]. Let (u,v) be an arbitrary point in $[0,1]^2$. By proposition 1.10.iii C is 2-increasing, so for $\varepsilon=1-u$ we get $C\big((u,v)+\varepsilon(1,0)\big)=C(1,v)\geq C(u,v)$ and accordingly $C(u,1)\geq C(u,v)$. By proposition 1.10.ii C has uniform univariate marginals, so C(1,v)=v and C(u,1)=u. All together $C(u,v)\leq \min(u,v)$. Also by proposition 1.10.i C is grounded, so $0=C(0,v)\leq C\big((0,v)+u(1,0)\big)=C(u,v)$, again because C is 2-increasing. Finally, because C is 2-increasing

$$0 \le \Delta_u^{1-u} \Delta_v^{1-v} C(u,v) .$$

By definition of delta we get

$$= \Delta_u^{1-u} (C(u,1) - C(u,v))$$

= $C(1,1) - C(1,v) - C(u,1) + C(u,v)$.

Because C has uniform univariate marginals, we arrive at

$$= 1 - v - u + C(u, v).$$

Solving for C(u,v) yields $C(u,v) \ge u+v-1$, so that all together we get $C(u,v) \ge \max(u+v-1,0)$.

Exercise 2 (Survival Copula; 4 Points). For a pair (X,Y) of real-valued random variables with joint distribution function H, the joint survival function is given by $\overline{H}(x,y) = P[X > x,Y > y]$. The marginal distribution functions of X and Y are denoted by F and G, respectively. The corresponding survival functions are given by $\overline{F} = 1 - F$ and $\overline{G} = 1 - G$, respectively. Let C be a copula for (X,Y), i.e, C is a copula such that H(x,y) = C(F(x), G(y)). Define the survival copula $\hat{C}(u,v) = u+v-1+C(1-u,1-v)$ and show that

$$\overline{H}(x,y) = \hat{C}(\overline{F}(x), \overline{G}(y)).$$

Moreover, prove that \hat{C} is indeed a copula.

We follow the explanation in the beginning of section 2.6 of [Nel06]. We use the inclusion-exclusion principle, which tells us that $P(X>x,Y>y)=P(X>x)+P(Y>y)-P(\{X>x\}\cup\{Y>y\})$ so that

$$\overline{H}(x,y) = P(X > x) + P(Y > y) - 1 + P(X \le x, Y \le y).$$

by definitions of \overline{F} and \overline{G} and the fact that H(x,y)=C(F(x),G(y)) we get

$$= \overline{F}(x) + \overline{G}(y) - 1 + C(F(x), G(y)).$$

Finally, again by definition of \overline{F} and \overline{G} , we get

$$= \overline{F}(x) + \overline{G}(y) - 1 + C(1 - \overline{F}(x), 1 - \overline{G}(y)).$$

Now if we define the survival copula \hat{C} as above, we arrive at $\overline{H}(x,y) = \hat{C}(\overline{F}(x), \overline{G}(y))$. To see that \hat{C} is a copula we use proposition 1.10 and prove

that it is grounded, has uniform univariate marginals and is 2-increasing. Because $\hat{C}(u,0)=u-1+C(1-u,1)=0$ and analogously $\hat{C}(0,v)=0$, so \hat{C} is grounded. Also $\hat{C}(u,1)=u+C(1-u,0)=u$ and accordingly for v, so that it has uniform univariate marginals. Finally we want to see whether \hat{C} is 2-increasing. By definition of $\Delta_u^{\varepsilon_u}$, as already used in exercise 1, we see that

$$\Delta_u^{\varepsilon_u} \Delta_v^{\varepsilon_v} \hat{C}(u, v) = \hat{C}(u + \varepsilon_u, v + \varepsilon_v) - \hat{C}(u + \varepsilon_u, v) - \hat{C}(u, v + \varepsilon_v) + \hat{C}(u, v).$$

By definition of the survival copula we get

$$= C(1 - u - \varepsilon_u, 1 - v - \varepsilon_v) - C(1 - u - \varepsilon_u, 1 - v)$$
$$- C(1 - u, 1 - v - \varepsilon_v) + C(1 - u, 1 - v).$$

Again by definition of Δ^{ε} we arrive at

$$= \Delta_u^{\varepsilon_u} \Delta_v^{\varepsilon_v} C(1 - u - \varepsilon_u, 1 - v - \varepsilon_v) \ge 0,$$

since C is a copula and thus 2-increasing.

Exercise 3 (Invariance properties; 4 Points). Let X and Y be random variables with distribution function F_X and F_Y , respectively. Let F_{XY} be the joint distribution function of (X,Y) and C_{XY} be a copula for (X,Y), i.e, $F_{XY}(x,y) = C_{XY}(F_X(x),F_Y(y))$. If a and b are strictly increasing and continuous on $\operatorname{Ran}(X)$ and $\operatorname{Ran}(Y)$, respectively, then C_{XY} is also a copula for the random vector (a(X),b(Y)), i.e, the joint distribution function of (a(X),b(Y)) fulfills $F_{a(X)b(Y)}(x,y) = C_{XY}(F_{a(X)}(x),F_{b(Y)}(y))$. Thus, C_{XY} is invariant under strictly increasing transformations of X and Y.

We follow the proof of theorem 2.4.3 in [Nel06]. Because a and b are strictly increasing, we can apply a^{-1} inside of P. That is we have $F_{a(X)}(x) = P(a(X) \le x) = P(X \le a^{-1}(x)) = F_X(a^{-1}(x))$ and accordingly $F_{b(Y)}(y) = F_Y(b^{-1}(y))$ so that for every $x, y \in \mathbb{R}$ by Sklar's theorem we get

$$C_{a(X)b(Y)}(F_{a(X)}(x), F_{b(Y)}(y)) = P(a(X) \le x, b(Y) \le y),$$

= $P(X \le a^{-1}(x), Y \le b^{-1}(y)),$

with the same trick as above. Using Sklar's theorem again, we can rewrite this to

$$= C_{XY}(F_X(a^{-1}(x)), F_Y(b^{-1}(y)),$$

= $C_{XY}(F_{a(X)}(x), F_{b(Y)}(y)),$

yet again by the relation we found out in the beginning. Now X and Y are continuous. That means that $\operatorname{Ran} F_{a(X)} = F_{b(Y)} = [0,1]$ so we get the equality indeed for every $(x,y) \in [0,1]^2$ and together with $F_{a(X)b(Y)}(x,y) = C_{a(X)b(Y)}(F_{a(X)}(x), F_{b(Y)}(y))$ we get $F_{a(X)b(Y)}(x,y) = C_{XY}(F_{X}(x), F_{Y}(y))$.

Exercise 4 (Distributional transform; 4 Points). Let X be a real-valued random variable with distribution function F, and let $V \sim \mathrm{U}(0,1)$ be an independent random variable uniformly distributed on (0,1). The generalized distribution function of X is defined by

$$F(x, \lambda) = P(X < x) + \lambda P(X = x),$$

or equivalently

$$F(x,\lambda) = F(x-) + \lambda (F(x) - F(x-)),$$

and the generalized distribution transform U of X is given by U = F(X, V). Show that $U \sim \mathrm{U}(0, 1)$.

Hint: Define $p = P(X < F^{-1}(\alpha))$ and $q = P(X = F^{-1}(\alpha))$ and show the equality

$$\{U \le \alpha\} = \{X < F^{-1}(\alpha)\} \cup \{X = F^{-1}(\alpha), p + Vq \le \alpha\}.$$

You can use without proof that $F(F^{-1}(\alpha)) \leq \alpha$ and if F is continuous at $F^{-1}(\alpha)$ that it holds that $F(F^{-1}(\alpha)) = \alpha$.

We follow the proof of proposition 2.1 in [Rü09]. By definition of F we have $U = F(X, V) \le \alpha$ iff $(X, V) \in \{(x, \lambda) \colon P(X < x) + \lambda P(X = x) \le \alpha\}$. Now consider the case that $0 = q = P(X = F^{-1}(\alpha))$. Then

$$\begin{split} P(\{U \leq \alpha\}) &= P(\{P(X < x) \leq \alpha\}) = P(\{X < F^{-1}(\alpha)\}) \\ &= P(X \leq F^{-1}(\alpha)) = F(F^{-1}(\alpha)) = \alpha \,, \end{split}$$

since F is continuous at α . Now if q > 0, then

$$(X, V) \in \{(x, \lambda) \colon P(X < x) + \lambda P(X = x) \le \alpha\}$$

is equivalent to

$$(X, V) \in \{X < F^{-1}(\alpha)\} \cup \{X = F^{-1}(\alpha), p + Vq \le \alpha\},\$$

however also here I don't really see how this works. Employing we again get

$$P(U \le \alpha) = P(F(X, V) \le \alpha)$$
.

Solving $q + V\beta \le \alpha$ for V we get

$$= q + \beta P(V \le (\alpha - q)/\beta)$$
.

However I don't quite get how this works. Since $V \sim U(0,1)$ we get

$$= q + \beta \frac{\alpha - q}{\beta} = \alpha .$$

So that in both cases $P(U \le \alpha) = \alpha$ and thus $U \sim \mathrm{U}(0,1).$

References

[Nel06] Nelsen, Roger B.: An introduction to copulas. Springer, 2006

[Rü09] RÜSCHENDORF, Ludger: On the distributional transform, Sklar's theorem, and the empirical copula process. In: *Journal of Statistical Planning and Inference* 139 (2009), Nr. 11, 3921-3927. https://www.sciencedirect.com/science/article/pii/S037837580900158X