(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 7. März 2002 (07.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/18373 A1

(51) Internationale Patentklassifikation?: C07D 405/12, 413/12, 413/14, A61K 31/517, C07D 239/94

Müllerweg 9, 88447 Warthausen (DE). SOLCA, Flavio [CH/AT]; Fimbingergasse 1/9, A-1230 Wien (AT).

(21) Internationales Aktenzeichen:

PCT/EP01/09537

(22) Internationales Anmeldedatum:

18. August 2001 (18.08.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 42 060.5 26. August 2000 (26.08.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; 55216 Ingelheim/Rhein (DE).

•

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HIMMELSBACH, Frank [DE/DE]; Ahornweg 16, 88441 Mittelbiberach (DE). LANGKOPF, Elke [DE/DE]; Schloss 3, 88447 Warthausen (DE). JUNG, Birgit [DE/DE]; Mühlstrasse 23, 55270 Schwabenhein (DE). BLECH, Stefan [DE/DE]; (81) Bestimmungsstanten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: QUINAZOLINE DERIVATIVES, MEDICAMENTS CONTAINING THESE COMPOUNDS, THEIR USE, AND METHODS FOR THE PRODUCTION THEREOF

(54) Bezeichnung: CHINAZOLIN DERIVATE, DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL, DEREN VER-WENDUNG UND VERFAHREN ZU IHRER HERSTELLUNG

(57) Abstract: The invention relates to bicyclic heterocycles of general formula (I), in which R_e, R_b, R_c and n are defined as referred to in Claim No. 1, to their tautomers, their stereoisomers, and to their salts, particularly their physiologically compatible salts with inorganic or organic acids or bases, which have valuable pharmacological properties, in particular, an inhibitive effect on the signal transduction imparted by tyrosine kinases. The invention also relates to the use of said bicyclic heterocycles for treating diseases, especially tumor diseases, disorders of the lung and of the respiratory tract, and to the production thereof.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft bicyclische Heterocyclen der allgemeinen Formel (I), in der R_a, R_b, R_c und n wie im Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere und deren Salze, insbesonders deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Tumorerkrankungen, von Erkrankungen der Lunge und der Atemwege und deren Herstellung.

02/18373 A1

CHINAZOLIN DERIVATE, DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL, DEREN VERWENDUNG UND VERFAHREN ZU IHRER HERSTELLUNG

5 Gegenstand der vorliegenden Erfindung sind bicyclische Heterocyclen der allgemeinen Formel

$$R_a$$
 H $NH - CO - CH = CH - (CH2)n - R_b R_c $(I)$$

deren Tautomere, deren Stereoisomere und deren Salze, insbesonders deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Tumorerkrankungen, von Erkrankungen der Lunge und der Atemwege und deren Herstellung.

In der obigen allgemeinen Formel I bedeutet

 R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R_1 und R_2 substituierte Phenylgruppe, wobei

R₁ ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine .

Methyl-, Trifluormethyl-, Cyan- oder Ethinylgruppe und .

R₂ ein Wasserstoff- oder Fluoratom darstellen, .

R_b eine gegebenenfalls an den Methylengruppen durch 1 oder 2 Methyl- oder Ethylgruppen substituierte R₃O-CO-CH₂-N-CH₂-CH₂-OH 30 Gruppe, wobei

 R_3 ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe darstellt,

eine 2-0xo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert sein kann, oder

eine N-[(1,3-Dioxolan-2-yl)-methyl]-methylamino-Gruppe,

· 5

R_c ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxyethoxy-, 2-Ethoxyethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclobexyloxy-, Cyclopentylmethoxy-, Cyclobutylmethoxy-, Cyclopentylmethoxy-, Cyclohexylmethoxy-, Tetrahydrofuran-

- 3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe und
- n eine ganze Zahl aus dem Bereich von 1 bis 3 mit der Maßgabe, 15 daß folgende Verbindungen
 - 4-[(3-Bromphenyl)amino]-6-({4-[N-(1,3-dioxolan-2-yl-me-thyl)-N-methylamino]-1-oxo-2-buten-1-yl}amino)-7-methoxy-chinazolin,
- 20 4-[(3-Bromphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxychinazolin,
 - 4-[(3-Bromphenyl)amino]-6-[(4-{N-[(tert.butyloxycarbonyl)me-thyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-methoxychinazolin,
- 4-[(3-Bromphenyl)amino]-6-({4-[N-(carboxymethyl)-N-(2-hydroxyethyl)amino]-1-oxo-2-buten-1-yl}amino)-7-methoxychina-zolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxy-2-methyl-propyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxomor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[1-(ethoxy-carbonyl)-ethyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)-amino]-7-cyclopropylmethoxychinazolin und
 - (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin
- 20 ausgeschlossen sind.

- Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen
- 25 R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R_1 und R_2 substituierte Phenylgruppe, wobei
 - R_1 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine "Methyl-, Trifluormethyl-, Cyan- oder Ethinylgruppe und R_2 ein Wasserstoff- oder Fluoratom darstellen,

1.

25

30

R_b eine gegebenenfalls an den Methylengruppen durch 1 oder 2 Methyl- oder Ethylgruppen substituierte R₃O-CO-CH₂-N-CH₂-CH₂-OH Gruppe, wobei

- R₃ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe darstellt, eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert sein kann, oder
- 10 eine N-[(1,3-Dioxolan-2-yl)-methyl]-methylamino-Gruppe,
 - R_c ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxyethoxy-, 2-Ethoxyethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclohexyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-,
- 15 Cyclopentylmethoxy-, Cyclohexylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe und
- 20 n eine ganze Zahl aus dem Bereich von 1 bis 3 mit der Maßgabe bedeuten, daß folgende Verbindungen
 - 4-[(3-Bromphenyl)amino]-6-({4-[N-(1,3-dioxolan-2-yl-me-thyl)-N-methylamino]-1-oxo-2-buten-1-yl}amino)-7-methoxy-chinazolin,
 - 4-[(3-Bromphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxychinazolin,
 - 4-[(3-Bromphenyl)amino]-6-[(4-{N-[(tert.butyloxycarbonyl)me-thyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-meth-oxychinazolin,
 - 4-[(3-Bromphenyl)amino]-6-({4-[N-(carboxymethyl)-N-(2-hydroxyethyl)amino]-1-oxo-2-buten-1-yl}amino)-7-methoxychina-zolin,

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2-oxo-morpholin-.4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxy-2-methyl-propyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxomor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - (R) -4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[1-(ethoxy-carbonyl)-ethyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)-amino]-7-cyclopropylmethoxychinazolin,
 - (R) -4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-[N-(1,3-dioxolan-2-ylmethyl)-N-methylamino]-1-oxo-2-buten-1-yl)amino]-7-cyclo-propylmethoxy-chinazolin,
 - 4-(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmeth-oxy-chinazolin und
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmeth-oxy-chinazolin

ausgeschlossen sind,

deren Tautomere, deren Stereoisomere und deren Salze.

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

 R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die 10 Reste R_1 und R_2 substituierte Phenylgruppe, wobei

 R_1 ein Fluor-, Chlor- oder Bromatom, eine Methyl- oder Ethinylgruppe und

R2 ein Wasserstoff- oder Fluoratom darstellen,

15

· 5 ·

R_b eine an den Methylengruppen durch 1 oder 2 Methyl- oder Ethylgruppen substituierte R₃O-CO-CH₂-N-CH₂-CH₂-OH Gruppe, wobei

R₃ eine C₁₋₄-Alkylgruppe darstellt,

20

35

eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert ist,

R_c ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxyethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe und

30 n die Zahl 1 oder 2 mit der Maßgabe bedeuten, daß folgende Verbindungen

4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxy-2-methyl-propyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin.
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxomor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- 10 (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[1-(ethoxy-carbonyl)-ethyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)-amino]-7-cyclopropylmethoxychinazolin,
 - (R) -4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin und
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-mor-pholin-4-yl).-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin
 - ausgeschlossen sind,

- 25 insbesondere diejenigen, in denen
 - R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R_1 und R_2 substituierte Phenylgruppe, wobei
- R₁ ein Fluor-, Chlor- oder Bromatom und R₂ ein Wasserstoff- oder Fluoratom darstellen,

 R_{b} eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert ist,

R_c ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxy-5 ethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclopropylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe und

n die Zahl 1 mit der Maßgabe bedeuten, daß folgende 10 Verbindungen

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - (R) -4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin und
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin

ausgeschlossen sind,

20

30

deren Tautomere, deren Stereoisomere und deren Salze.

Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

 R_a eine 1-Phenylethyl- oder eine 3-Chlor-4-fluorphenylgruppe,

5

15

25

- R_b eine 2-0xo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methylgruppen substituiert ist, oder
- eine 2-Oxo-morpholin-4-yl-Gruppe, die durch eine Ethylgruppe 10 substituiert ist,

 R_c ein Wasserstoffatom, eine Methoxy-, 2-Methoxyethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclopropylmethoxy-, Tetrahydro-furan-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranyl-methoxy- oder Tetrahydropyranylmethoxygruppe und

n die Zahl 1 mit der Maßgabe bedeuten, daß folgende Verbindungen

- 20 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin und

4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin

5 ausgeschlossen sind,

20

35

deren Tautomere, deren Stereoisomere und deren Salze.

Als besonders bevorzugte Verbindungen der allgemeinen Formel I 10 seien beispielsweise folgende Verbindungen erwähnt:

- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(1,3-dioxolan-2-yl)methyl]-N-methyl-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((s)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-propylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-propylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-propylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-25 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-(2-methoxy-ethoxy)-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclobutyl-oxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclobutyl-oxy-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclobutyl-oxy-chinazolin,

WO 02/18373 PCT/EP01/09537

- 11 -

```
4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-pentyloxy-chinazolin,
```

- $4-[(R)-(1-Phenyl-ethyl) amino]-6-{[4-(5,5-dimethyl-2-oxo-$
- 5 morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(te-trahydrofuran-3-yl)oxy]-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(te-trahydrofuran-3-yl)oxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(tetrahydrofuran-3-yl)oxy]-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(te-trahydrofuran-3-yl)oxyl-chinazolin.
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(te-trahydropyran-4-yl)oxy]-chinazolin,
 - 4-[(R)-(1-Phenyl-ethyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropyl-methoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetrahydropyran-4-yl)oxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydrofuran-2-yl)methoxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(tetra-buduafuman 2-yl)amino}-7-[(S)-(tetra-buduafuman 2-yl)amino
- 35 hydrofuran-3-yl)oxy]-chinazolin,

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(6-ethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropyl-methoxy-chinazolin,

4-[(R)-(1-Phenyl-ethyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-china-zolin,

 $4-[(3-\text{Chlor}-4-\text{fluor-phenyl}) \text{ amino}] -6-\{[4-((S)-6-\text{methyl}-2-\text{oxo-morpholin}-4-\text{yl})-1-\text{oxo-}2-\text{buten-1-yl}] \text{ amino}\} -7-[(R)-(\text{tetra-hydrofuran-3-yl}) \text{ oxy}]-\text{chinazolin},$

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin,
4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-

2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin, 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-

2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydropyran-4-yl)oxy]-chinazolin und

 $4-[(R)-(1-\text{Phenyl-ethyl})\,\text{amino}]-6-\{[4-((S)-6-\text{methyl-2-oxo-morpholin-4-yl})-1-\text{oxo-2-buten-1-yl}]\,\text{amino}\}-\text{chinazolin},$

20 deren Tautomere, deren Stereoisomere und deren Salze.

Die Verbindungen der allgemeinen Formel I lassen sich beispielsweise nach folgenden Verfahren herstellen:

25 a) Umsetzung einer Verbindung der allgemeinen Formel

in der

15

 $R_{\rm a}$ und $R_{\rm c}$ wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

 Z_1 -CO-CH=CH-(CH₂)_n-R_b , (III)

in der

 R_b und n wie eingangs erwähnt definiert sind und Z_1 eine Austrittsgruppe wie ein Halogenatom, z.B. ein Chloroder Bromatom, oder eine Hydroxygruppe darstellt.

Die Umsetzung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid,

10 Acetonitril, Toluol, Chlorbenzol, Tetrahydrofuran, Methylenchlorid/Tetrahydrofuran oder Dioxan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base und gegebenenfalls in Gegenwart eines wasserentziehenden Mittels zweckmäßigerweise bei Temperaturen zwischen -50 und 150°C, vorzugsweise bei Temperaturen zwischen -20 und 80°C, durchgeführt.

Mit einer Verbindung der allgemeinen Formel III, in der Zi eine Austrittsgruppe darstellt, wird die Umsetzung gegebenenfalls . in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylen-.20 chlorid, Dimethylformamid, Acetonitril, Toluol, Chlorbenzol, Tetrahydrofuran, Methylenchlorid/Tetrahydrofuran oder Dioxan zweckmäßigerweise in Gegenwart einer tertiären organischen Base wie Triethylamin, Pyridin, 2-Dimethylaminopyridin, oder N-Ethyl-diisopropylamin (Hūnig-Base), wobei diese organischen 25 Basen gleichzeitig auch als Lösungsmittel dienen können, oder in Gegenwart einer anorganischen Base wie Natriumcarbonat, 🕟 Kaliumcarbonat oder Natronlauge zweckmäßigerweise bei Temperaturen zwischen -50 und 150°C, vorzugsweise bei Temperaturen zwischen -20 und 80°C, durchgeführt. 30

Mit einer Verbindung der allgemeinen Formel III, in der Z₁ eine Hydroxygruppe darstellt, wird die Umsetzung vorzugsweise in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, Hexamethyldisilazan, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcar-

bodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylamino-pyridin, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Toluol, Chlorbenzol, Dimethylsulfoxid, Ethylenglycoldiethylether oder Sulfolan und gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie 4-Dimethylaminopyridin bei Temperaturen zwischen -50 und 150°C, vorzugsweise jedoch bei Temperaturen zwischen -20 und 80°C, durchgeführt.

b) Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

$$R_a$$
 H $NH - CO - CH = CH - (CH2)n - Z2 R_c , (IV)$

•

15

20

10

in der

R_a, R_c und n wie eingangs erwähnt definiert sind und Z₂ eine Austrittsgruppe wie ein Halogenatom oder eine substituierte Sulfonyloxygruppe wie ein Chlor- oder Bromatom, eine Methansulfonyloxy- oder p-Toluolsulfonyloxygruppe oder eine Hydroxygruppe darstellt, mit einer Verbindung der allgemeinen Formel

25

$$H - R_b$$
 , (V)

in der

 R_b wie eingangs erwähnt definiert ist.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Isopropanol, Acetonitril, Butanol, Tetrahydrofuran, Dioxan, Toluol, Chlorbenzol, Dimethylformamid, Dimethylsulfoxid, Methylenchlorid, Ethylenglycolmonomethylether, Ethylen-

glycoldiethylether oder Sulfolan oder in einem Lösungsmittelgemisch gegebenenfalls in Gegenwart einer anorganischen Base, z.B. Natriumcarbonat oder Kaliumhydroxid, oder einer tertiären organischen Base, z.B. Triethylamin oder N-Ethyl-diisopropylamin (Hünig-Base), wobei diese organischen Basen gleichzeitig auch als Lösungsmittel dienen können, und gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie einem Alkalihalogenid bei Temperaturen zwischen -20 und 150°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 100°C, durchgeführt.

Die Umsetzung kann jedoch auch ohne Lösungsmittel oder in einem Überschuß der eingesetzten Verbindung der allgemeinen Formel V durchgeführt werden.

Bedeutet Z₂ in einer Verbindung der allgemeinen Formel IV eine
Hydroxygruppe, dann wird die Umsetzung vorzugsweise in Gegenwart eines aktivierenden Mittels, z.B. in Gegenwart von Thionylchlorid oder Phosphortrichlorid zweckmäßigerweise in einem
Lösungsmittel wie Acetonitril, Methylenchlorid, Tetrahydrofuran, Dioxan, Toluol, Chlorbenzol oder Ethylenglycoldiethylether und gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie Natriumjodid bei Temperaturen zwischen -50 und
150°C, vorzugsweise jedoch bei Temperaturen zwischen -20 und
80°C, durchgeführt.

- Die Verbindung der Formel IV kann auch in einem Eintopfverfahren aus der Verbindung der Formel II und einem entsprechenden Carbonsäurederivat hergestellt und direkt weiter umgesetzt werden.
- 30 c) Cyclisierung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

in der

 R_a , R_c und n wie eingangs erwähnt definiert sind und R_b ' eine durch Cyclisierung in eine gegebenenfalls substituierte 2-0xo-morpholin-4-yl-Gruppe überführbare gegebenenfalls substituierte N-(Carboxymethyl)-N-(2-hydroxyethyl)-amino- oder N-(C_{1-4} -Alkyloxycarbonylmethyl)-N-(2-hydroxyethyl)-aminogruppe bedeutet.

- Die Umsetzung wird gegebenenfalls in einem Lösungsmittel oder 10 Lösungsmittelgemisch wie Methylenchlorid, Acetonitril, Dimethylformamid, Dimethylsulfoxid, Sulfolan, Benzol, Toluol, Chlorenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan zweckmäßigerweise in Gegenwart einer wasserfreien Säure wie Trifluoressigsäure, Methansulfonsäure oder Schwefelsäure 15 oder in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/-N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol, N,N!-Carbo-20 nyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, bei Temperaturen zwischen -20 und 200°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 160°C, durchgeführt.
- 25 Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine gegebenenfalls substituierte 2-Oxo-morpholin-4-yl-Gruppe enthält, so kann dies mittels Hydrolyse in eine entsprechende Verbindung übergeführt werden, die eine gegebenfalls substituierte N-(Carboxymethyl)-N-(2-hydroxy-ethyl)-aminogruppe enthält.

Die gegebenenfalls anschließende Hydrolyse erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid bei Temperaturen WO 02/18373 PCT/EP01/09537

zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, Methyl-, Ethyl-, tert.Bu-tyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe,

als Schutzreste für eine Carboxygruppe die Trimethylsilyl-,
15 Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyranylgruppe und

als Schutzreste für eine Iminogruppe die Formyl-, Acetyl-,
Trifluoracetyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-,
20 Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Diethoxybenzylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.

· 15

20

Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran bei Temperaturen zwischen 0 und 50°C.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre cis- und trans-Isomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.

30 So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971)) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-

WO 02/18373 PCT/EP01/09537

- 19 -

chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie 10 z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren : . Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder 15 Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsaure oder Dibenzoylweinsaure, Di-o-Tolylweinsaure, Apfelsaure, Mandelsaure, Camphersulfonsaure, Glutaminsaure, Asparagin-20 säure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+) - oder (-) -Menthol und als optisch aktiver Acylrest in Amiden beispielsweise. (+)-oder (-)-Menthyloxycarbonyl in Betracht.

25

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

35 Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis VI sind teilweise literaturbekannt oder man erhält diese nach an sich literaturbekannten Verfahren (siehe Beispiele I bis VIII).

Wie bereits eingangs erwähnt, weisen die erfindungsgemäßen

Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf die durch den Epidermal Growth Factor-Rezeptor (EGF-R) vermittelte Signaltransduktion, wobei diese beispielsweise durch eine Inhibition der Ligandenbindung, der Rezeptordimerisierung oder der Tyrosinkinase selbst bewirkt werden kann. Außerdem ist es möglich, daß die Signalübertragung an weiter abwärtsliegenden Komponenten blockiert wird.

Die biologischen Eigenschaften der neuen Verbindungen wurden wie folgt geprüft:

Die Hemmung der EGF-R vermittelten Signalübertragung kann z.B. mit Zellen nachgewiesen werden, die humanen EGF-R exprimieren 20 und deren Überleben und Proliferation von Stimulierung durch EGF bzw. TGF-alpha abhängt. Hier wurde eine Interleukin-3-(IL-3) abhängige Zellinie murinen Ursprungs verwendet, die derart genetisch verändert wurde, daß sie funktionellen humanen EGF-R exprimiert. Die Proliferation dieser F/L-HERC genannten Zellen kann daher entweder durch murines IL-3 oder durch EGF stimuliert werden (siehe von Rüden, T. et al. in EMBO J. 1, 2749-2756 (1988) und Pierce, J. H. et al. in Science 239, 628-631 (1988)).

Als Ausgangsmaterial für die F/L-HERc Zellen diente die Zelllinie FDC-P1, deren Herstellung von Dexter, T. M. et al. in J. Exp. Med. 152. 1036-1047 (1980) beschrieben wurde. Alternativ können aber auch andere Wachstumsfaktor-abhängige Zellen verwendet werden (siehe beispielsweise Pierce, J. H. et al. in Science 239, 628-631 (1988), Shibuya, H. et al. in Cell 70, 57-67 (1992) und Alexander, W. S. et al. in EMBO J. 10, 3683-3691 (1991)). Zur Expression der humanen EGF-R cDNA (siehe Ullrich, A. et al. in Nature 309, 418-425 (1984)) wurden rekombinante Retroviren verwendet, wie in von Rüden, T. et al.,
EMBO J. 7, 2749-2756 (1988) beschrieben, mit dem Unterschied,
daß zur Expression der EGF-R cDNA der retrovirale Vektor LXSN
(siehe Miller, A. D. et al. in BioTechniques 7, 980-990
(1989)) eingesetzt wurde und als Verpackungszelle die Linie
GP+E86 (siehe Markowitz, D. et al. in J. Virol. 62, 1120-1124
(1988)) diente.

10 Der Test wurde wie folgt durchgeführt:

F/L-HERc Zellen wurden in RPMI/1640 Medium (BioWhittaker), supplementiert mit 10 % foetalem Rinderserum (FCS, Boehringer Mannheim), 2 mM Glutamin (BioWhittaker), Standardantibiotika 15. und 20 ng/ml humanem EGF (Promega), bei 37°C und 5% CO2 kultiviert. Zur Untersuchung der inhibitorischen Aktivität der erfindungsgemäßen Verbindungen wurden 1,5 x 10^4 Zellen pro Vertiefung in Triplikaten in 96-Loch-Platten in obigem Medium (200 μ l) kultiviert, wobei die Proliferation der Zellen ent-20 weder mit EGF (20 ng/ml) oder murinem IL-3 stimuliert wurde. Als Quelle für IL-3 dienten Kulturüberstände der Zellinie X63/0 mIL-3 (siehe Karasuyama, H. et al.in Eur. J. Immunol. 18, 97-104 (1988)). Die erfindungsgemäßen Verbindungen wurden in 100% Dimethylsulfoxid (DMSO) gelöst und in verschiedenen Verdünnungen den Kulturen zugefügt, wobei die maximale DMSO Konzentration 1% betrug. Die Kulturen wurden für 48 Stunden bei 37°C inkubiert.

Zur Bestimmung der inhibitorischen Aktivität der erfindungsgemäßen Verbindungen wurde die relative Zellzahl mit dem Cell
Titer 96TM AQueous Non-Radioactive Cell Proliferation Assay
(Promega) in O.D. Einheiten gemessen. Die relative Zellzahl
wurde in Prozent der Kontrolle (F/LHERc Zellen ohne Inhibitor)
berechnet und die Wirkstoffkonzentration, die die Proliferation der Zellen zu 50% hemmt (IC₅₀), abgeleitet. Hierbei wurden folgende Ergebnisse erhalten:

Verbindung (Beispiel Nr.)	Hemmung der EGF-abhängigen Proliferation IC ₅₀ [nM]
2	15
2(1)	9
1(2)	0.02

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I hemmen somit die Signaltransduktion durch Tyrosinkinasen, wie am Beispiel des humanen EGF-Rezeptors gezeigt wurde, und sind daher nützlich zur Behandlung pathophysiologischer Prozesse, die durch Überfunktion von Tyrosinkinasen hervorgerufen werden. Das sind z.B. benigne oder maligne Tumoren, insbesondere Tumoren epithelialen und neuroepithelialen Ursprungs, Metastasierung sowie die abnorme Proliferation vaskulärer Endothelzellen (Neoangiogenese).

Die erfindungsgemäßen Verbindungen sind auch nützlich zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge, die mit einer vermehrten oder veränderten Schleimproduktion einhergehen, die durch Stimulation von Tyrosinkinasen hervorgerufen wird, wie z.B. bei entzündlichen Erkrankungen der Atemwege wie chronische Bronchitis, chronisch obstruktive Bronchitis, Asthma, Bronchiektasien, allergische oder nichtallergische Rhinitis oder Sinusitis, zystische Fibrose, αl-Antitrypsin-Mangel, oder bei Husten, Lungenemphysem, Lungenfibrose und hyperreaktiven Atemwegen.

Die Verbindungen sind auch geeignet für die Behandlung von Erkrankungen des Magen-Darm-Traktes und der Gallengänge und
-blase, die mit einer gestörten Aktivität der Tyrosinkinasen
einhergehen, wie sie z.B. bei chronisch entzündlichen Veränderungen zu finden sind, wie Cholezystitis, M. Crohn, Colitis
ulcerosa, und Geschwüren im Magen-Darm-Trakt oder wie sie bei
Erkrankungen des Magen-Darm-Traktes, die mit einer vermehrten
Sekretion einhergehen, vorkommen, wie M. Ménétrier, sezernierende Adenome und Proteinverlustsyndrome,

desweiteren zur Behandlung von Nasenpolypen sowie von Polypen des Gastrointestinaltraktes unterschiedlicher Genese wie z.B. villöse oder adenomatöse Polypen des Dickdarms, aber auch von Polypen bei familiärer Polyposis coli, bei Darmpolypen im Rahmen des Gardner-Syndroms, bei Polypen im gesamten Magen-Darm-Trakt bei Peutz-Jeghers-Syndrom, bei entzündlichen Pseudopolypen, bei juvenilen Polypen, bei Colitis cystica profunda und bei Pneumatosis cystoides intestinales.

10

Außerdem können die Verbindungen der allgemeinen Formel I und deren physiologisch verträglichen Salze zur Behandlung von Nierenerkrankungen, insbesondere bei zystischen Veränderungen wie bei Zystennieren, zur Behandlung von Nierenzysten, die idiopathischer Genese sein können oder im Rahmen von Syndromen auftreten wie z.B. bei der tuberöser Sklerose, bei dem von-Hippel-Lindau-Syndrom, bei der Nephronophthisis und Markschwammniere sowie anderer Krankheiten verwendet werden, die durch aberrante Funktion von Tyrosinkinasen verursacht werden, wie z.B. epidermaler Hyperproliferation (Psoriasis), inflammatorischer Prozesse, Erkrankungen des Immunsystems, Hyperproliferation hämatopoetischer Zellen etc..

Auf Grund ihrer biologischen Eigenschaften können die erfindungsgemäßen Verbindungen allein oder in Kombination mit an-25 deren pharmakologisch wirksamen Verbindungen angewendet werden, beispielsweise in der Tumortherapie in Monotherapie oder in Kombination mit anderen Anti-Tumor Therapeutika, beispielsweise in Kombination mit Topoisomerase-Inhibitoren (z.B. Etoposide), Mitoseinhibitoren (z.B. Vinblastin), mit Nuklein-30 säuren interagierenden Verbindungen (z.B. cis-Platin, Cyclophosphamid, Adriamycin), Hormon-Antagonisten (z.B. Tamoxifen), Inhibitoren metabolischer Prozesse (z.B. 5-FU etc.), Zytokinen (z.B. Interferonen), Antikörpern etc. Für die Behandlung von 35 Atemwegserkrankungen können diese Verbindungen allein oder in Kombination mit anderen Atemwegstherapeutika, wie z.B. sekretolytisch, broncholytisch und/oder entzündungshemmend wirksamen Substanzen angewendet werden. Für die Behandlung von Erkrankungen im Bereich des Magen-Darm-Traktes können diese Verbindungen ebenfalls alleine oder in Kombination mit Motilitäts- oder Sekretions-beeinflussenden oder entzündungshemmenden Substanzen gegeben werden. Diese Kombinationen können entweder simultan oder sequentiell verabreicht werden.

Die Anwendung dieser Verbindungen entweder alleine oder in Kombination mit anderen Wirkstoffen kann intravenös, subkutan, intramuskulär, intrarektal, intraperitoneal, intranasal, durch Inhalation oder transdermal oder oral erfolgen, wobei zur Inhalation insbesondere Aerosolformulierungen geeignet sind.

Bei der pharmazeutischen Anwendung werden die erfindungsgemäßen Verbindungen in der Regel bei warmblütigen Wirbeltieren, 15 insbesondere beim Menschen, in Dosierungen von 0,01-100 mg/kg Körpergewicht, vorzugsweise bei 0,1-15 mg/kg verwendet. Zur Verabreichung werden diese mit einem oder mehreren üblichen inerten Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellu-20 lose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsaure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/-Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Stearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen in übliche galenische 25 Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen, Lösungen, Sprays oder Zäpfchen eingearbeitet.

٠...

Die nachfolgenden Beispiele sollen die vorliegende Erfindung 30 näher erläutern ohne diese zu beschränken:

Herstellung der Ausgangsverbindungen:

35 Beispiel I

6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-cyclopropyl-methoxy-chinazolin

36.02 g 4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclopropylmethoxy-6-nitro-chinazolin werden in einem Gemisch aus 1080 ml

5 Ethanol, 144 ml Eisessig und 360 ml Wasser suspendiert und zum
Rückfluß erhitzt, wobei die Substanz in Lösung geht. Nun werden vorsichtig 20.70 g Eisenpulver portionsweise zugegeben.
Nach 30 Minuten ist die Umsetzung vollständig und das Reaktionsgemisch wird zur Trockne eingeengt. Der Rückstand wird in

10 1200 ml Methylenchlorid/Methanol (9:1) aufgenommen und mit
33%iger Ammoniak-Lösung alkalisch gestellt. Der Eisenschlamm
wird über abgesaugt und mit 500 ml Methylenchlorid/Methanol

wird über abgesaugt und mit 500 ml Methylenchlorid/Methanol (9:1) nachgewaschen. Das braune Filtrat wird über eine Kieselgelpackung filtriert, mit insgesamt 2000 ml Methylenchlorid/-Methanol (9:1) nachgewaschen und eingeengt. Der Kolbenrück-

15 Methanol (9:1) nachgewaschen und eingeengt. Der Kolbenrückstand wird mit 140 ml Diethylether aufgeschlämmt, abgesaugt und an der Luft getrocknet.

Ausbeute: 29.70 g (89 % der Theorie), Schmelzpunkt: 208°C

20 Massenspektrum (ESI⁺): m/z = 359, 361 [M+H]⁺

Analog Beispiel I werden folgende Verbindungen erhalten:

- (1) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-(2-methoxy25 ethoxy)-chinazolin
 R_t-Wert: 0.48 (Kieselgel, Essigester/Methanol = 9:1)
 Massenspektrum (ESI*): m/z = 363, 365 [M+H]*
- (2) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-cyclobutyloxy30 chinazolin
 Schmelzpunkt: 238°C
 Massenspektrum (ESI*): m/z = 359, 361 [M+H]*
- (3) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-cyclopentyl35 oxy-chinazolin
 Schmelzpunkt: 204°C
 Massenspektrum (ESI*): m/z = 373, 375 [M+H]*

```
(4) 6-Amino-4-[(R)-(1-phenyl-ethyl)amino]-chinazolin
       R_t-Wert: 0.12 (Kieselgel, Essigester)
       Massenspektrum (BI): m/z = 264 [M]^+
   5:
       (5) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-[(R)-(tetra-
       hydrofuran-3-yl)oxy]-chinazolin
      R_{t}-Wert: 0.27 (Kieselgel, Essigester/Methanol = 9:1)
      Massenspektrum (ESI*): m/z = 375, 377 [M+H]*
  10
       (6) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-[(S)-(tetra-
      hydrofuran-3-yl)oxy]-chinazolin
      R_t-Wert: 0.27 (Kieselgel, Essigester/Methanol = 9:1)
      Massenspektrum (ESI<sup>-</sup>): m/z = 373, 375 [M-H]<sup>-</sup>
 15
      (7) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-[(tetrahydro-
      pyran-4-yl)oxy]-chinazolin
      R_t-Wert: 0.41 (Kieselgel, Essigester/Methanol = 9:1)
      Massenspektrum (ESI): m/z = 387, 389 [M-H]
 20
      (8) 6-Amino-4-[(R)-(1-phenyl-ethyl)amino]-7-cyclopropyl-.
     methoxy-chinazolin
     R_{t}-Wert: 0.54 (Kieselgel, Essigester)
     Massenspektrum (ESI*): m/z = 335 [M+H]*
 25
     (9) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-[(tetrahydro-
     furan-2-yl)methoxy]-chinazolin
     Schmelzpunkt-Wert: 162-164°C
     Massenspektrum (ESI<sup>-</sup>): m/z = 387, 389 [M-H]<sup>-</sup>
30
     (10) 6-Amino-4-[(R)-(1-phenyl-ethyl)amino]-7-methoxy-china-
     zolin
    R_{r}-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol/konzentrier-
    te, wäßrige Ammoniaklösung = 90:10:1)
    Massenspektrum (ESI^{+}): m/z = 295 [M+H]^{+}
35
```

(11) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7[(tetrahydrofuran-3-yl)methoxy]-chinazolin
R_f-Wert: 0.40 (Kieselgel, Essigester/Methanol = 9:1)
Massenspektrum (ESI'): m/z = 387, 389 [M-H]

5

(12) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7[(tetrahydropyran-4-yl)methoxy]-chinazolin
R_t-Wert: 0.41 (Kieselgel, Essigester/Methanol = 9:1)
Massenspektrum (ESI*): m/z = 403, 405 [M+H]*

10

Beispiel II

4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclopropylmethoxy-6-nitro-chinazolin

15. 29.36 g Cyclopropylmethanol werden in 310 ml N,N-Dimethyl-formamid gelöst und im Eisbad auf ca. 10°C gekühlt. Dann werden portionsweise 41.58 g Kalium-tert.butylat zugegeben, wobei die Temperatur unter 15°C bleiben sollte. Anschließend wird das Reaktionsgemisch noch 30 Minuten bei 10°C gerührt, dann werden portionsweise 31.19 g 4-[(3-Chlor-4-fluor-phenyl)-amino]-7-fluor-6-nitro-chinazolin zugegeben, wobei die Temperatur wiederum 15°C nicht überschreiten sollte. Das tiefrote

Aufarbeitung wird der Ansatz auf 2.5 l Wasser gegossen und mit 25 2N Salzsäure neutralisiert. Der entstandene gelbliche Niederschlag wird abgesaugt, mit Wasser nachgewaschen und bei 50°C im Trockenschrank getrocknet.

Reaktionsgemisch wird noch eine Stunde bei 15°C gerührt. Zur

Ausbeute: 36.02 g (100 % der Theorie), Schmelzpunkt: 204°C

30 Massenspektrum (ESI*): m/z = 389, 391 [M+H]*

Analog Beispiel II werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(2-methoxy-ethoxy)35 6-nitro-chinazolin
Schmelzpunkt: 208°C
Massenspektrum (ESI*): m/z = 393, 395 [M+H]*

WO 02/18373 PCT/EP01/09537

- 28 -

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclobutyloxy-6-nitrochinazolin

Schmelzpunkt: 235°C

- Massenspektrum (ESI*): m/z = 389, 391 [M+H]*
 - (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-cyclopentyloxy-6-nitro-chinazolin Schmelzpunkt: 230°C
- Massenspektrum (ESI*): m/z = 403, 405 [M+H]*. 10
 - (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7-[(R)-(tetrahydrofuran-3-yl)oxy]-chinazolin Schmelzpunkt: 244°C
- Massenspektrum (ESI*): m/z = 405, 407 [M+H]* - 15
 - (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7-[(S)-(tetrahydrofuran-3-yl)oxy]-chinazolin R_r -Wert: 0.45 (Kieselgel, Essigester)
- Massenspektrum (ESI*): m/z = 405, 407 [M+H]* 20
 - (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7-[(tetrahydropyran-4-yl)oxy]-chinazolin

 R_t -Wert: 0.41 (Kieselgel, Essigester)

- Massenspektrum (ESI⁻): m/z = 417, 419 [M-H] 25
 - (7) $4-[(\dot{R})-(1-Phenyl-ethyl)]$ amino] -7-cyclopropylmethoxy-6-nitro-chinazolin

 R_{r} -Wert: 0.24 (Kieselgel, Cyclohexan/Essigester = 1:1)

- Massenspektrum (ESI⁻): m/z = 363 [M-H]⁻ 30
 - (8) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7-[(tetrahydrofuran-2-yl) methoxy]-chinazolin R_{r} -Wert: 0.47 (Kieselgel, Essigester)
- Massenspektrum (ESI⁻): m/z = 417, 419 [M-H]⁻ 35

WO 02/18373 PCT/EP01/09537

- 29 -

(9) 4-[(R)-(1-Phenyl-ethyl)amino]-7-methoxy-6-nitro-chinazolin (Die Reaktion wird mit Natriummethylat in Tetrahydrofuran durchgeführt)

 R_f -Wert: 0.17 (Kieselgel, Cyclohexan/Essigester= 1:1) 5 Massenspektrum (ESI'): $m/z = 323 \ [M-H]^-$

(10) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7[(tetrahydrofuran-3-yl)methoxy]-chinazolin
R_f-Wert: 0.41 (Kieselgel, Essigester)

10 Massenspektrum (ESI'): m/z = 417, 419 [M-H]

(11) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7-[(tetrahydropyran-4-yl)methoxy]-chinazolin (Die Reaktion wird mit Natriumhydrid in Tetrahydrofuran durchgeführt.)

 R_t -Wert: 0.78 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI'): m/z = 431, 433 [M-H]

Beispiel III

20

- (S)-(2-Hydroxy-propylamino)-essigsaure-tert.butylester
- 5.91 ml Bromessigsäure-tert.butylester werden unter Eisbad-Kühlung innerhalb von 30 Minuten zu einem Gemisch aus 15.00 g (S)-(+)-1-Amino-2-propanol und 6.97 ml Diisopropylethylamin in
- 25 100 ml N,N-Dimethylformamid getropft. Anschließend wird das Kühlbad entfernt und das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum abdestilliert, der Kolbenrückstand in 50 ml Wasser gelöst und mit 15 g Natriumchlorid gesättigt. Die wäßrige Phase
- wird mehrmals mit Essigester extrahiert. Die Extrakte werden vereinigt, mit 20 ml gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das gelblich-ölige Rohprodukt wird ohne weitere Reinigung weiter umgesetzt.
- Ausbeute: 7.80 g (103 % der Theorie),

 R_f-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol = 9:1)

 Massenspektrum (ESI*): m/z = 190 [M+H]*

Analog Beispiel III werden folgende Verbindungen erhalten:

- (1) (R)-(2-Hydroxy-propylamino)-essigsaure-tert.butylester
- 5 R_t-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 Massenspektrum (ESI*): m/z = 190 [M+H]*
 - (2) (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsaure-tert.butyl-ester
- 10 R_t -Wert: 0.67 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI⁺): m/z = 204 [M+H]⁺

Beispiel IV

- 4-[(R)-(1-Phenyl-ethyl)aminol-6-nitro-chinazolin 15 Zu 9.00 g 4-Chlor-6-nitro-chinazolin in 70 ml Methylenchlorid wird unter Eisbad-Kühlung ein Gemisch aus 6.40 ml (R)-(1-Phenyl-ethyl)amin und 8.70 ml Diisopropylethylamin in 30 ml Methylenchlorid getropft. Man läßt das Gemisch auf Raumtempera-20 tur erwärmen, anschließend wird es noch etwa 48 Stunden gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit Wasser, 10% iger Zitronensäure und nochmals mit Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und eingeengt. Der feste Eindampfrückstand wird mit ca. 100 ml Methanol verrührt, abgesaugt und mit wenig Methanol nachgewaschen. 25 Ausbeute: 8.44 g (67 % der Theorie), R_{t} -Wert: 0.33 (Kieselgel, Cyclohexan/Essigester = 1:1) Massenspektrum (ESI'): m/z = 293 [M-H]
- 30 Analog Beispiel IV wird folgende Verbindung erhalten:
 - (1) 4-[(R)-(1-Phenyl-ethyl)amino]-7-fluor-6-nitro-chinazolin R_f -Wert: 0.52 (Kieselgel, Cyclohexan/Essigester = 1:1) Massenspektrum (ESI'): $m/z = 311 \ [M-H]$

(2-Hydroxy-2-methyl-propylamino)-essigsaure-ethylester Zu 50.00 g Glycinethylester-hydrochlorid in 100 ml gesättigter Kaliumcarbonat-Lösung werden unter Kühlung 100.00 g Natriumcarbonat gegeben. Die entstandene Masse wird mehrmals mit insgesamt ca. 600 ml Diethylether extrahiert. Die vereinigten Etherextrakte werden über Natriumsulfat getrocknet und zur Trockne eingeengt. Es bleiben 28.60 g Glycinethylester zurück. Dieser wird mit 26.00 ml Isobutylenoxid und 40 ml absolutem Ethanol versetzt und in einer Roth-Bombe 6 Stunden auf 90°C . 10 erhitzt. Nach Abkühlung auf Raumtemperatur wird das Reaktionsgemisch zur Trockne eingeengt, wobei ein dünnflüssiges Öl zurückbleibt.

Ausbeute: 45.80 g (73 % der Theorie),

Massenspektrum (ESI $^{+}$): m/z = 176 [M+H] $^{+}$ 15

Analog Beispiel V wird folgende Verbindung erhalten:

(1) [N-Benzyl-N-(2-hydroxy-butyl)-amino]-essigsaure (Durch Umsetzung von Benzylglycin mit 1,2-Epoxybutan in 1N Natron-20 lauge)

Massenspektrum (ESI): m/z = 236 [M-H]

Beispiel VI

25

(2-Hydroxy-butyl-amino)-essigsaure-methylester-hydrochlorid 2.85 g (2-Hydroxy-butyl-amino)-essigsaure in 100 ml Methanol werden in einem Eis-Aceton-Kühlbad abgekühlt, dann werden innerhalb von 20 Minuten 7.27 ml Thionylchlorid zugetropft.

- Man läßt das Reaktionsgemisch über Nacht auf Raumtemperatur 30 erwärmen und engt dann zur Trockne ein. Der Rückstand wird mehrmals mit Methanol versetzt und eingeengt. Das Rohprodukt wird ohne weitere Reinigung weiter umgesetzt.
 - Ausbeute: 3.83 g (100 % der Theorie),
- $R_{\text{f}}\text{-Wert}$: 0.85 (Reversed Phase DC-Fertigplatte (E. Merck), Me-35 thanol/5%ige Natriumchlorid-Lösung = 6:4) Massenspektrum (ESI*): m/z = 162 [M+H]*

- 32 -

Beispiel VII

(2-Hydroxy-butyl-amino)-essigsaure

- 4.60 g [N-Benzyl-N-(2-hydroxy-butyl)-amino]-essigsāure werden in einem Gemisch aus Methanol und Wasser (7:1) gelöst und in Gegenwart von Palladium (10% auf Aktivkohle) als Katalysator ca. 2.5 Stunden bei Raumtemperatur hydriert, bis die berechnete Menge Wasserstoff aufgenommen ist. Zur Aufarbeitung wird
- der Katalysator abfiltriert und das Filtrat im Vakuum eingeengt, wobei ein weißer Feststoff zurückbleibt.

Ausbeute: 2.77 g (97 % der Theorie),

 R_f -Wert: 0.86 (Reversed Phase DC-Fertigplatte (E. Merck), Acetonitril/Wasser/Trifluoressigsaure = 50:50:1)

15 Massenspektrum (ESI'): m/z = 146 [M-H]

Beispiel VIII

(2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-

20 hydrochlorid

63.00 g (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäuretert.butylester werden in 500 ml Ethanol vorgelegt. Dann werden unter Eisbad-Kühlung ca. 200 g Chlorwasserstoff über einen Zeitraum von etwa vier Stunden eingeleitet. Das Reak-

- tionsgemisch wird über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird es eingeengt und mit Toluol verrührt. Anschließend wird das Toluol abdestilliert. Es bleibt ein zähes Öl zurück, welches ohne weitere Reinigung weiter umgesetzt wird.
- 30 R_r -Wert: 0.16 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI⁺): $m/z = 176 [M+H]^+$

Herstellung der Endverbindungen:

35

Beispiel 1

35

4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.butyloxycarbonyl) methyl] -N-((S) -2-hydroxy-prop-1-yl) -amino $}$ -1-oxo-2-buten-1-yl)aminol-7-cyclopropylmethoxy-chinazolin Zu 644 mg Bromcrotonsäure in 15 ml Methylenchlorid werden 0.67 ml Oxalylchlorid pipettiert, anschließend wird noch ein Tropfen N, N-Dimethylformamid zugegeben. Das Reaktionsgemisch wird ca. eine Stunde bei Raumtemperatur gerührt, bis die Gasentwicklung beendet ist und anschließend zur Trockne eingeengt. Das rohe Bromcrotonsäurechlorid wird in 10 ml Methylenchlorid aufgenommen und unter Eisbad-Kühlung innerhalb von 10 fünf Minuten zu einer Lösung aus 1.00 g 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-cyclopropylmethoxy-chinazolin und 2.5 ml Diisopropylethylamin in 30 ml Tetrahydrofuran getropft. Das Reaktionsgemisch wird eine Stunde unter Eisbadkühlung, dann zwei Stunden bei Raumtemperatur gerührt. Nun werden 🐇 15 2.64 g (S) - (2-Hydroxy-propylamino) -essigsaure-tert.butylester, gelöst in 5 ml Methylenchlorid, zugegeben. Das Reaktionsgemisch wird über Nacht bei Raumtemperatur und anschließend noch fünf Stunden bei 60°C gerührt. Zur Aufarbeitung wird es zur Trockne eingeengt. Der Kolbenrückstand wird in Essigester auf-20 genommen, mit 5%iger Zitronensäure, Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird chromatographisch über eine Kieselgelsäule mit Essigester als Laufmittel gereinigt. Ausbeute: 1.10 g (64 % der Theorie), 25 R_t -Wert: 0.54 (Kieselgel, Methylenchlorid/Methanol = 9:1) Massenspektrum (ESI $^-$): m/z = 612, 614 [M-H] $^-$

Analog Beispiel 1 werden die folgenden Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.butyl-oxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-chinazolin R_f -Wert: 0.54 (Kieselgel, Methylenchlorid/Methanol = 9:1) Massenspektrum (ESI): m/z = 612, 614 [M-H]

```
(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(1,3-dioxolan-2-yl)methyl]-N-methyl-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-chinazolin
Schmelzpunkt: 121°C
```

- 5 Massenspektrum (EI): m/z = 541, 543 [M]*
 - (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(S)-1-(ethoxy-carbonyl)-ethyl]-N-(2-hydroxy-ethyl)-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-chinazolin
- (Das Ausgangsmaterial (S)-2-(2-Hydroxy-ethylamino)-propionsäure-ethylester wird durch Umsetzung von (R)-2-(Trifluormethylsulfonyloxy)-propionsäure-ethylester mit 2-Amino-ethanol
 in Methylenchlorid erhalten)
 Massenspektrum (EI): m/z = 585, 587 [M]*

- (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-(2-methoxyethoxy)-chinazolin
 (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es ent-
- steht das cyclisierte Produkt) R_t -Wert: 0.40 (Kieselgel, Essigester/Methanol = 9:1)

 Massenspektrum (ESI*): m/z = 558, 560 [M+H]*
- 25 (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.butyl-oxycarbonyl)methyl]-N-((S)-2-hydroxy-prop-1-yl)-amino}-1-oxo2-buten-1-yl)amino]-7-cyclobutyloxy-chinazolin
 R_f-Wert: 0.52 (Kieselgel, Methylenchlorid/Methanol = 95:5)
 Massenspektrum (ESI'): m/z = 612, 614 [M-H]

- (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-((tert.butyl-oxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclobutyloxy-chinazolin

 R_t-Wert: 0.52 (Kieselgel, Methylenchlorid/Methanol = 95:5)
- 35 Massenspektrum (ESI): m/z = 612, 614 [M-H]

PCT/EP01/09537

(7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclobutyloxy-chinazolin
(Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
R_f-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol = 9:1)
Massenspektrum (ESI*): m/z = 554, 556 [M+H]*

- (8) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopentyloxy-chinazolin
 (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
 R_t-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 Massenspektrum (ESI*): m/z = 568, 570 [M+H]*
 - (9) 4-[(R)-(1-Phenyl-ethyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-
- morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
 (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethyl-amino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)

 R_f-Wert: 0.48 (Kieselgel, Essigester/Methanol = 9:1)
- 25 Massenspektrum (ESI): m/z = 485 [M-H]

- (10) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(te-trahydrofuran-3-yl)oxy]-chinazolin
- (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
 R_t-Wert: 0.36 (Kieselgel, Essigester/Methanol = 9:1)
 Massenspektrum (ESI⁻): m/z = 568, 570 [M-H]⁻
 - (11) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4- $\{N-[(tert.butyl-oxycarbonyl)methyl]-N-((S)-2-hydroxy-prop-1-yl)-amino\}-1-oxo-$

- 2-buten-1-yl)amino]-7-[(S)-(tetrahydrofuran-3-yl)oxy]-china-zolin
- R_f -Wert: 0.44 (Kieselgel, Methylenchlorid/Methanol = 95:5) Massenspektrum (ESI): m/z = 628, 630 [M-H]
- (12) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.butyl-oxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-[(S)-(tetrahydrofuran-3-yl)oxy]-china-zolin
- 10 R_f -Wert: 0.40 (Kieselgel, Methylenchlorid/Methanol = 95:5) Massenspektrum (ESI⁻): m/z = 628, 630 [M-H]⁻
 - (13) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4- $\{N-[(tert.butyl-oxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino\}-1-oxo-$
- 2-buten-1-yl)amino]-7-[(R)-(tetrahydrofuran-3-yl)oxy]-chinazolin
 - R_r -Wert: 0.40 (Kieselgel, Methylenchlorid/Methanol = 95:5) Massenspektrum (ESI): m/z = 628, $630 \cdot [M-H]^-$
- (14) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetrahydropyran-4-yl)oxy]-chinazolin
 (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
 R_f-Wert: 0.54 (Kieselgel, Essigester/Methanol = 9:1)
 Massenspektrum (ESI'): m/z = 582, 584 [M-H]'
- (15) 4-[(R)-(1-Phenyl-ethyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-vl)-1-oxo-2-buten-1-vl]amino}-7-cyclopropyl-
- 30 morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin
 (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsaure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
- 35 R_f-Wert: 0.31 (Kieselgel, Methylenchlorid/Methanol = 95:5)
 Massenspektrum (ESI⁻): m/z = 528 [M-H]⁻

- (16) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(ethoxycarbo-nyl)methyl]-N-(2-hydroxy-2-methyl-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-[(tetrahydropyran-4-yl)oxy]-chinazolin R_f-Wert: 0.28 (Kieselgel, Methylenchlorid/Methanol = 95:5)
- (17) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin
- (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
 R_t-Wert: 0.30 (Kieselgel, Methylenchlorid/Methanol = 15:1)
 Massenspektrum (ESI*): m/z = 514, 516 [M+H]*
- (18) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydrofuran-2-yl)methoxy]-chinazolin
 (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethyl-
- amino) essigsäure ethylester hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
 R_f Wert: 0.32 (Kieselgel, Methylenchlorid/Methanol = 15:1)
 Massenspektrum (EI): m/z = 583, 585 [M]*
- (19) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(tetrahydrofuran-3-yl)oxy]-chinazolin
 (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethylamino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
 R_t-Wert: 0.32 (Kieselgel, Methylenchlorid/Methanol = 15:1)
 Massenspektrum (ESI): m/z = 568, 570 [M-H]⁻
- (20) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(6-ethyl-2-oxo-35 morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin

(Es entsteht ein Gemisch aus cyclisiertem und ringoffenem Produkt, welches durch Nachbehandlung mit Methansulfonsäure in das cyclisierte Produkt überführt wird) $R_f\text{-Wert: 0.65 (Kieselgel, Methylenchlorid/Methanol = 15:1)}$ Massenspektrum (ESI'): m/z = 552, 554 [M-H]

- (21) $4-[(R)-(1-Phenyl-ethyl) amino]-6-[(4-{N-[(tert.butyloxy-carbonyl) methyl]-N-((S)-2-hydroxy-prop-1-yl)-amino}-1-oxo-$
- 2-buten-1-yl)amino]-7-methoxy-chinazolin 10 R_f-Wert: 0.54 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI): m/z = 548 [M-H]
 - (22) $4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.butyl-oxycarbonyl)methyl]-N-((S)-2-hydroxy-prop-1-yl)-amino}-1-oxo-$
- 2-buten-1-yl)amino]-7-[(R)-(tetrahydrofuran-3-yl)oxy]-chinazolin
 R_f-Wert: 0.44 (Kieselgel, Essigester/Methanol = 9:1)
 Massenspektrum (ESI): m/z = 628, 630 [M-H]
- 20 (23) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethyl-ethyl-amino)-essigsäure-ethylester-hydrochlorid eingesetzt. Es entsteht das cyclisierte Produkt)
- 25 R_f -Wert: 0.25 (Kieselgel, Methylenchlorid/Methanol = 15:1) Massenspektrum (ESI⁻): m/z = 482, 484 [M-H]⁻
 - (24) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4- $\{N-\{(tert.butyl-oxycarbonyl)methyl\}-N-((R)-2-hydroxy-prop-1-yl)-amino\}-1-oxo-$
- 2-buten-1-yl)amino]-chinazolin R_f -Wert: 0.29 (Kieselgel, Methylenchlorid/Methanol = 95:5)

 Massenspektrum (ESI): m/z = 542, 544 [M-H]
- (25) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.butyl-oxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-[(tetrahydropyran-4-yl)oxy]-chinazolin

```
R_f-Wert: 0.29 (Kieselgel, Methylenchlorid/Methanol = 95:5) Massenspektrum (ESI): m/z = 642, 644 [M-H]
```

- (26) 4-[(R)-(1-Phenyl-ethyl)amino]- 6-[(4-{N-[(tert.butyl5 oxycarbonyl)methyl]-N-((S)-2-hydroxy-prop-1-yl)-amino}-1-oxo2-buten-1-yl)amino]-chinazolin
 R_t-Wert: 0.61 (Kieselgel, Essigester/Methanol = 9:1)
 Massenspektrum (ESI⁻): m/z = 518 [M-H]⁻
- 10 (27) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.-butyloxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopentyloxy-chinazolin

 R_t-Wert: 0.53 (Kieselgel, Essigester)

 Massenspektrum (ESI'): m/z = 626 [M-H]-
- (28) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.butyloxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1oxo-2-buten-1-yl)amino]-7-methoxy-chinazolin
 R_t-Wert: 0.42 (Kieselgel, Essigester/Methanol = 9:1)
 20 Massenspektrum (ESI*): m/z = 574, 576 [M+H]*
 - (29) 4-[(R)-(1-Phenyl-ethyl)amino]-6-[(4-{N-[(tert.-butyloxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-chinazolin
- 25 R_f -Wert: 0.60 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI*): $m/z = 520 [M+H]^+$
- (30) 4-[(R)-(1-Phenyl-ethyl)amino]-6-[(4-{N-[(tert.-butyloxycarbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1
 30 oxo-2-buten-1-yl)aminol 2 ----
- oxo-2-buten-1-yl)amino]-7-methoxy-chinazolin
 R_f-Wert: 0.54 (Kieselgel, Essigester/Methanol = 9:1)
 Massenspektrum (ESI): m/z = 548 [M-H]
- (31) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.-
- 35 butyloxycarbonyl) methyl] -N-((R)-2-hydroxy-prop-1-yl)-amino}-1-

```
oxo-2-buten-1-yl)amino]-7-[(tetrahydrofuran-3-yl)methoxy]-
chinazolin
R_f-Wert: 0.41 (Kieselgel, Essigester/Methanol = 9:1)
Massenspektrum (ESI^{*}): m/z = 644, 646 [M+H]^{*}
```

10

- (32) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(2,2-dimethyl-6oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetrahydrofuran-3-yl)methoxy]-chinazolin (Als Ausgangsmaterial wird (2-Hydroxy-2-methyl-propylamino)essigsäure-ethylester eingesetzt. Bei der Umsetzung entsteht das bereits cyclisierte Produkt.) R_f -Wert: 0.28 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI $^{+}$): m/z = 584, 586 [M+H] $^{+}$
- (33) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-15 oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetrahydrofuran-3-yl)methoxy]-chinazolin (Als Ausgangsmaterial wird (2-Hydroxy-1,1-dimethylethylamino)-essigsäure-ethylester eingesetzt. Bei der Umsetzung entsteht das bereits cyclisierte Produkt.) 20 R_f -Wert: 0.26 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (EI): m/z = 583, 585 [M]
- (34) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(tert.-25 $\label{local_prop_local} butyloxycarbonyl) \, \texttt{methyll} - \texttt{N-((R)-2-hydroxy-prop-1-yl)-amino} - \texttt{1-}$ oxo-2-buten-1-yl)amino]-7-[(tetrahydropyran-4-yl)methoxy]chinazolin R_f -Wert: 0.52 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI⁻): m/z = 656, 658 [M-H]⁻

30

(35) 4-Benzylamino-6-[(4-{N-[(tert.-butyloxycarbonyl)methyl]- $N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-$ 7-cyclopropylmethoxy-chinazolin (Die Herstellung des Ausgangsmaterials wurde bereits anderweitig beschrieben: WO 0051991 Al) R_r-Wert: 0.50 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI*): m/z = 576 [M+H]*

(36) 4-[(3-Chlor-4-fluor-phenyl)amino]- 6-[(4-{N-[(tert.-butyloxycarbonyl)methyl]-N-((S)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-[(tetrahydropyran-4-yl)methoxy]-chinazolin

 R_t -Wert: 0.49 (Aluminiumoxid, Essigester) Massenspektrum (ESI*): m/z = 658, 660 [M+H]*

Beispiel 2

10

4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropyl- : methoxy-chinazolin

Eine Gemisch aus 700 mg 4-[(3-Chlor-4-fluor-phenyl)amino]6-[(4-{N-[(tert.butyloxycarbonyl)methyl]-N-((S)-2-hydroxyprop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-chinazolin und 228 mg p-Toluolsulfonsäure-hydrat in
20 ml Acetonitril wird fünf Stunden unter Rückfluß erhitzt.
Dann werden weitere 200 mg p-Toluolsulfonsäure-hydrat zugege-

- ben und es wird nochmals fünf Stunden unter Rückfluß erhitzt.

 Zur Aufarbeitung wird das Reaktionsgemisch zur Trockne eingeengt. Der Kolbenrückstand wird zwischen Essigester und gesättigter Natriumcarbonat-Lösung verteilt. Die organische
 Phase wird abgetrennt, mit gesättigter Natriumcarbonat-Lösung,
- Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der ölige Rückstand wird durch Verrühren mit 15 ml Diethylether zur Kristallisation gebracht.

Schmelzpunkt: 173-175°C

30 Massenspektrum (ESI*):.m/z = 540, 542 [M+H]*

Analog Beispiel 2 werden die folgenden Verbindungen erhalten:

- (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-
- 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-propylmethoxy-chinazolin

- 42 -

 R_t -Wert: 0.54 (Kieselgel, Methylenchlorid/Methanol = 9:1) Massenspektrum (ESI*): m/z = 540, 542 [M+H]*

- (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin
 (Die Reaktion wird mit Methansulfonsäure in Acetonitril durchgeführt)
 Schmelzpunkt: 182°C
- 10 Massenspektrum (ESI*): m/z = 540, 542 [M+H]*
 - (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-butyloxy-chinazolin
- (Die Reaktion wird mit Methansulfonsäure in Acetonitril durchgeführt)
 R_f-Wert: 0.54 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 Massenspektrum (ESI*): m/z = 540, 542 [M+H]*
- 20 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-butyloxy-chinazolin
 (Die Reaktion wird mit Methansulfonsäure in Acetonitril durchgeführt)
- 25 R_f -Wert: 0.54 (Kieselgel, Methylenchlorid/Methanol = 9:1) Massenspektrum (ESI*): m/z = 540, 542 [M+H]*
 - (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(te-
- trahydrofuran-3-yl)oxy]-chinazolin
 (Die Reaktion wird mit Methansulfonsäure in Acetonitril durchgeführt)
 R_f-Wert: 0.40 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 Massenspektrum (EI): m/z = 555, 557 [M]*

- (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(te-trahydrofuran-3-yl)oxy]-chinazolin
 (Die Reaktion wird mit Methansulfonsäure in Acetonitril durch-
- (Die Reaktion wird mit Methansulfonsäure in Acetonitril durch-5 geführt)

 R_t -Wert: 0.38 (Kieselgel, Methylenchlorid/Methanol = 9:1) Massenspektrum (ESI*): m/z = 556, 558 [M+H]*

- (7) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-
- 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(te-trahydrofuran-3-yl)oxy]-chinazolin
 (Die Reaktion wird mit Methansulfonsäure in Acetonitril durch-geführt)
 Schmelzpunkt: 230°C
- 15 Massenspektrum (EI): m/z = 555, 557 [M]*
 - (8) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydropyran-4-yl)oxy]-chinazolin
- 20 (Die Reaktion wird mit Methansulfonsäure in Acetonitril durchgeführt)
 R_f-Wert: 0.33 (Kieselgel, Methylenchlorid/Methanol = 95:5)
 Massenspektrum (ESI⁻): m/z = 582, 584 [M-H]⁻
- 25 (9) 4-[(R)-(1-Phenyl-ethyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin (Die Reaktion wird mit Methansulfonsäure in Acetonitril durchgeführt)

 R_t -Wert: 0.52 (Kieselgel, Essigester/Methanol = 9:1)

- 30 Massenspektrum (ESI): m/z = 474 [M-H]
 - (10) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(tetra-hydrofuran-3-yl)oxy]-chinazolin
- 35 (Die Reaktion wird mit Methansulfonsäure in Acetonitril durchgeführt)

```
R_f-Wert: 0.38 (Kieselgel, Methylenchlorid/Methanol = 9:1)
Massenspektrum (ESI): m/z = 554, 556 [M-H]
```

- (11) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-
- 5 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin (Die Reaktion wird mit Trifluoressigsäure in Acetonitril durchgeführt).

 R_t -Wert: 0.34 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI*): m/z = 470, 472 [M+H]*

10

- (12) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydropyran-4-yl)oxy]-chinazolin
- (Die Reaktion wird mit Trifluoressigsäure in Acetonitril durchgeführt)

 R_f -Wert: 0.38 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI⁺): m/z = 570, 572 [M+H]⁺

- (13) 4-[(R)-(1-Phenyl-ethyl) amino]-6-[(4-((S)-6-methyl-2-oxo-
- 20 morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
 (Die Reaktion wird mit Trifluoressigsäure in Acetonitril durchgeführt)

 R_t -Wert: 0.50 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI'): $m/z = 444 [M-H]^{-}$

25

chinazolin

- (14) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopentyloxy-chinazolin
- R_r -Wert: 0.38 (Kieselgel, Essigester) 30 Massenspektrum (ESI⁺): m/z = 554, 556 [M+H]⁺
- (15) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-
- 35 R_f-Wert: 0.13 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI $^+$): m/z = 500, 502 [M+H] $^+$

- (16) $4-[(R)-(1-Phenyl-ethyl)amino]-6-\{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino\}-chinazolin R_r-Wert: 0.34 (Kieselgel, Essigester/Methanol = 9:1) Massenspektrum (ESI⁺): <math>m/z = 446$ [M+H]⁺
- (17) $4-[(R)-(1-Phenyl-ethyl) amino]-6-\{[4-((R)-6-methyl-2-oxomorpholin-4-yl)-1-oxo-2-buten-1-yl] amino}-7-methoxy-chinazolin <math>R_f$ -Wert: 0.48 (Kieselgel, Essigester/Methanol = 4:1)
- 10 Massenspektrum (ESI*): m/z = 476 [M+H]*
 - (18) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7[(tetrahydrofuran-3-yl)methoxy]-chinazolin
- 15 R_f-Wert: 0.48 (Kieselgel, Essigester/Methanol = 4:1)
 Massenspektrum (ESI): m/z = 568, 570 [M-H]
 - (19) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7[(tetrahydropyran-4-yl)methogal abin-1-yl
- [(tetrahydropyran-4-yl)methoxy]-chinazolin Schmelzpunkt: 196°C Massenspektrum (ESI*): m/z = 584, 586 [M+H]*
 - (20) 4-Benzylamino-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-
- 1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin R_f -Wert: 0.41 (Kieselgel, Essigester/Methanol = 9:1)

 Massenspektrum (ESI⁺): $m/z = 502 [M+H]^+$
- (21) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-230 oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7[(tetrahydropyran-4-yl)methoxy]-chinazolin
 Schmelzpunkt: 196-199°C
 Massenspektrum (ESI*): m/z = 584, 586 [M+H]*
- 35 Beispiel 3

```
4-[(3-Chlor-4-fluor-phenyl)amino]-6-({4-[N-(carboxymethyl)-
      N-((R)-2-hydroxy-prop-1-yl)-amino]-1-oxo-2-buten-1-yl}amino)-
      7-cyclopropylmethoxy-chinazolin
      100 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{-[4-((R)-6-methyl-
     2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropyl-
     methoxy-chinazolin werden mit 1.63 ml Wasser und 0.37 ml .
     1N Salzsäure versetzt. Das Reaktionsgemisch wird drei Stunden
     bei 60°C gerührt und anschließend über Nacht bei Raumtempera-
     tur stehengelassen. Zur Aufarbeitung werden 0.37 ml 1N Natron-
     lauge zugegeben und das Gemisch wird im Eisbad abgekühlt, ...
     wobei ein heller Niederschlag ausfällt. Dieser wird abgesaugt,
     mit kaltem Wasser nachgewaschen und getrocknet.
     Ausbeute: 60 mg (58 % der Theorie),
     Massenspektrum (ESI'): m/z = 556, 558 [M-H]
15
     Analog Beispiel 3 werden folgende Verbindungen erhalten:
     (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-({4-[N-
     (carboxymethyl) -N-(2-hydroxy-2-methyl-prop-1-yl)-amino]-1-oxo-
     2-buten-1-yl}amino)-7-cyclopropylmethoxy-chinazolin
20
     (Die Herstellung des Ausgangsmaterials wurde bereits
     anderweitig beschrieben: WO 0051991 A1)
     R<sub>f</sub>-Wert: 0.62 (Reversed Phase DC-Fertigplatte (E. Merck),
    Acetonitril/Wasser/Trifluoressigsaure = 50:50:1)
25
    Massenspektrum (ESI^-): m/z = 570, 572 [M-H]^-
     (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-({4-[N-
     (carboxymethyl) -N-(1,1-dimethyl-2-hydroxy-ethyl) -amino] -1-oxo-
    2-buten-1-yl}amino)-7-cyclopropylmethoxy-chinazolin
    (Die Herstellung des Ausgangsmaterials wurde bereits
30
    anderweitig beschrieben: WO 0051991 A1)
    Schmelzpunkt: 163-166°C
    Massenspektrum (ESI<sup>-</sup>): m/z = 570, 572 [M-H]<sup>-</sup>
```

4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(methoxy-carbonyl)methyl]-N-((R)-2-hydroxy-prop-1-yl)-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-chinazolin

Die Substanz wird durch Behandeln einer methanolischen Lösung von 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin mit etherischer Salzsäure bei Raumtemperatur erhalten.

 R_f -Wert: 0.37 (Kieselgel, Methylenchlorid/Methanol = 20:1) Massenspektrum (ESI): m/z = 570, 572 [M-H]

Analog den vorstehenden Beispielen und anderen literaturbekannten Verfahren können auch die folgenden Verbindungen erhalten werden:

15

30

10

- (1) 4-[(3-Brom-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpho-lin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
- (2) 4-[(3-Brom-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpho-20 lin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
 - (3) 4-[(3-Brom-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
- 25 (4) 4-[(3-Methyl-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
 - (5) 4-[(3-Methyl-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin

(6) 4-[(3-Methyl-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin

(7) 4-[(3-Ethinyl-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin

25

- (8) 4-[(3-Ethinyl-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
- (9) 4-[(3-Ethinyl-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
 - (10) $4-[(3-\text{Chlor}-4-\text{fluor-phenyl}) \text{ amino}]-6-\{[4-((S)-3-\text{methyl-2-oxo-morpholin-4-yl})-1-\text{oxo-2-buten-1-yl}] \text{ amino}\}-\text{chinazolin}$
- 10 (11) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin
- (12) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-(2-methoxy-ethoxy)-chinazolin
 - (13) $4-[(3-\text{Chlor}-4-\text{fluor-phenyl}) \text{ amino}] -6-\{[4-((S)-3-\text{methyl}-2-\text{oxo-morpholin}-4-yl)-1-\text{oxo-}2-\text{buten}-1-yl] \text{ amino}\} -7-[(R)-(te-trahydrofuran-3-yl) \text{ oxy}]-chinazolin$
 - (14) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(tetrahydrofuran-3-yl)oxy]-chinazolin
- (15) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(tetrahydrofuran-2-yl)methoxy]-chinazolin
- 30 (16) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(te-trahydrofuran-2-yl)methoxy]-chinazolin

. 15

30

- (17) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(te-trahydrofuran-3-yl)methoxy]-chinazolin
- 5 (18) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydropyran-4-yl)methoxy]-chinazolin
- (19) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl10 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetrahydropyran-2-yl)methoxy]-chinazolin
 - (20) 4-[(3-Trifluormethyl-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin
 - (21) 4-[(3-Cyano-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin
- 20 (22) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
- (23) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin
 - (24) $4-[(3-\text{Chlor}-4-\text{fluor}-\text{phenyl}) \text{ amino}]-6-\{[4-((R)-6-\text{methyl}-2-\text{oxo-morpholin}-4-\text{yl})-1-\text{oxo-}2-\text{buten}-1-\text{yl}] \text{ amino}\}-7-(2-\text{methoxy-ethoxy})-\text{chinazolin}$
 - (25) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydropyran-4-yl)oxy]-chinazolin

WO 02/18373

- (26) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(tetra-hydrofuran-2-yl)methoxy]-chinazolin
- 5 (27) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(te-trahydrofuran-2-yl)methoxy]-chinazolin
- (28) 4-[(R)-(1-Phenyl-ethyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin
 - (29) $4-[(R)-(1-Phenyl-ethyl)amino]-6-\{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin$
- 15 (30) 4-[(R)-(1-Phenyl-ethyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin
 - (31) $4-[(R)-(1-Phenyl-ethyl)amino]-6-\{[4-((R)-6-methyl-2-oxomorpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin$
 - (32) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-ethoxy-chinazolin
- 25 (33) 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-ethoxy-chinazolin

Beispiel 5

30

20

Dragées mit 75 mg Wirksubstanz

1 Dragéekern enthält: Wirksubstanz

75,0 mg

93,0 mg

35 Calciumphosphat

- 51 -

Maisstärke	35,5 mg
Polyvinylpyrrolidon	10,0 mg
Hydroxypropylmethylcellulose	15,0 mg
Magnesiumstearat	1.5 mg
	230,0 mg

Herstellung:

5

Die Wirksubstanz wird mit Calciumphosphat, Maisstärke, Polyvinylpyrrolidon, Hydroxypropylmethylcellulose und der Hälfte der
angegebenen Menge Magnesiumstearat gemischt. Auf einer Tablettiermaschine werden Preßlinge mit einem Durchmesser von ca.
13 mm hergestellt, diese werden auf einer geeigneten Maschine
durch ein Sieb mit 1,5 mm-Maschenweite gerieben und mit der
restlichen Menge Magnesiumstearat vermischt. Dieses Granulat
wird auf einer Tablettiermaschine zu Tabletten mit der gewünschten Form gepreßt.

Kerngewicht: 230 mg

20 Stempel: 9 mm, gewölbt

Die so hergestellten Dragéekerne werden mit einem Film überzogen, der im wesentlichen aus Hydroxypropylmethylcellulose besteht. Die fertigen Filmdragées werden mit Bienenwachs geglänzt.

Dragéegewicht: 245 mg.

Beispiel 6

25

30 Tabletten mit 100 mg Wirksubstanz

Zusammensetzung:

1 Tablette enthält:

	Wirksubstanz	. 100,0 mg
35	Milchzucker	80,0 mg
	Maisstärke	34,0 mg
	Polyvinylpyrrolidon	4,0 mg

- 52 -

Magnesiumstearat

2.0 mg

220,0 mg

Herstellungverfahren:

5

Wirkstoff, Milchzucker und Stärke werden gemischt und mit einer wäßrigen Lösung des Polyvinylpyrrolidons gleichmäßig befeuchtet. Nach Siebung der feuchten Masse (2,0 mm-Maschenweite) und Trocknen im Hordentrockenschrank bei 50°C wird erneut gesiebt (1,5 mm-Maschenweite) und das Schmiermittel zugemischt. Die preßfertige Mischung wird zu Tabletten verarbeitet.

Tablettengewicht: 220 mg

Durchmesser: 10 mm, biplan mit beidseitiger Facette und

15 einseitiger Teilkerbe.

Beispiel 7

Tabletten mit 150 mg Wirksubstanz

20

25

Zusammensetzung:

1 Tablette enthält:

Wirksubstanz	150	, 0	mg
Milchzucker	oulv. 89	, 0	mg
Maisstärke			mg
Kolloide Kies	7 7 9 .		mq
Polyvinylpyr	1-1-1	, 0	_
Magnesiumstea	mat	. 0	
	300		-

30

Herstellung:

Die mit Milchzucker, Maisstärke und Kieselsäure gemischte Wirksubstanz wird mit einer 20%igen wäßrigen Polyvinylpyrrolidonlösung befeuchtet und durch ein Sieb mit 1,5 mm-Maschenweite geschlagen. Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesiumstearat gemischt. Aus der Mischung werden Tabletten gepreßt.

Tablettengewicht: 300 mg

5 Stempel:

10 mm, flach

Beispiel 8

Hartgelatine-Kapseln mit 150 mg Wirksubstanz

10

1 Kapsel enthält:

	Wirkstoff		150,0 mg
	Maisstärke getr.	ca.	180,0 mg
	Milchzucker pulv.	ca.	87,0 mg
15	Magnesiumstearat	•.	3,0 mg
		ca.	420.0 mg

Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen vermengt, durch ein Sieb von 0,75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt.

Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt.

25 Kapselfüllung: ca. 320 mg

Kapselhülle: Hartgelatine-Kapsel Größe 1.

Beispiel 9

30 Suppositorien mit 150 mg Wirksubstanz

1 Zäpfchen enthält:

	Wirkstoff	150 0
		150,0 mg
	Polyäthylenglykol 1500	550,0 mg
35	Polyäthylenglykol 6000	460,0 mg
	Polyoxyāthylensorbitanmonostearat	_840.0 mg
	• • ••	2 000,0 mg

- 54 -

Herstellung:

Nach dem Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Formen gegossen.

Beispiel 10

10 Suspension mit 50 mg Wirksubstanz

100 ml Suspension enthalten:

	Wirkstoff		1,0	0 g
	Carboxymethylcellulose-Na-Sa	alz	0,1	.0 g
15	p-Hydroxybenzoesäuremethyles	ster	0,0	5 g
•	p-Hydroxybenzoesäurepropyles	ster	0,0	1 g
	Rohrzucker		10,0	0 g
	Glycerin		5,0	0 g
	Sorbitlösung 70%ig		20,0	0 g
20.	Aroma		0,3	0 g
	Wasser dest.	ad	100	ml

Herstellung:

- Dest. Wasser wird auf 70°C erhitzt. Hierin wird unter Rühren p-Hydroxybenzoesäuremethylester und -propylester sowie Glycerin und Carboxymethylcellulose-Natriumsalz gelöst. Es wird auf Raumtemperatur abgekühlt und unter Rühren der Wirkstoff zugegeben und homogen dispergiert. Nach Zugabe und Lösen des Zuckers, der Sorbitlösung und des Aromas wird die Suspension zur Entlüftung unter Rühren evakuiert.
 5 ml Suspension enthalten 50 mg Wirkstoff.
 - Beispiel 11

35

Ampullen mit 10 mg Wirksubstanz

- 55 -

Zusammensetzung:

Wirkstoff

10,0 mg

0,01N Salzsāure s.q.

Aqua bidest

ad

2,0 ml

5

Herstellung:

Die Wirksubstanz wird in der erforderlichen Menge 0,01N HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 2 ml Ampullen abgefüllt.

Beispiel 12

Ampullen mit 50 mg Wirksubstanz

15

Zusammensetzung:

Wirkstoff

50,0 mg

0,01N Salzsaure s.q.

Aqua bidest

ad

10,0 ml

20

Herstellung:

Die Wirksubstanz wird in der erforderlichen Menge 0,01N HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 10 ml Ampullen abgefüllt.

Beispiel 13

Kapseln zur Pulverinhalation mit 5 mg Wirksubstanz

30

1 Kapsel enthält:

Wirksubstanz

5,0 mg

· Lactose für Inhalationszwecke

__15.0 mg

35

20,0 mg

Herstellung:

- 56 -

Die Wirksubstanz wird mit Lactose für Inhalationszwecke gemischt. Die Mischung wird auf einer Kapselmaschine in Kapseln (Gewicht der Leerkapsel ca. 50 mg) abgefüllt.

5 Kapselgewicht: 70,0 mg

Kapselgröße: 3

Beispiel 14

10 Inhalationslösung für Handvernebler mit 2.5 mg Wirksubstanz

1 Hub enthält:

Wirksubstanz 2,500 mg
15 Benzalkoniumchlorid 0,001 mg
1N-Salzsäure q.s.
Ethanol/Wasser (50/50) ad 15,000 mg

Herstellung:

20

Die Wirksubstanz und Benzalkoniumchlorid werden in Ethanol/-Wasser (50/50) gelöst. Der pH-Wert der Lösung wird mit 1N-Salzsäure eingestellt. Die eingestellte Lösung wird filtriert und in für den Handvernebler geeignete Behälter (Kar-25 tuschen) abgefüllt.

Füllmasse des Behälters: 4,5 g

Patentansprüche

1. Bicyclische Heterocyclen der allgemeinen Formel

 R_a H $NH - CO - CH = CH - <math>(CH_2)_n - R_b$ R_c (I)

in der

5

10 R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R_1 und R_2 substituierte Phenylgruppe, wobei

 R_1 ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Trifluormethyl-, Cyan- oder Ethinylgruppe und R_2 ein Wasserstoff- oder Fluoratom darstellen,

 $R_{\rm b}$ eine gegebenenfalls an den Methylengruppen durch 1 oder 2 Methyl- oder Ethylgruppen substituierte $R_{\rm 3}O-CO-CH_{\rm 2}-N-CH_{\rm 2}-CH_{\rm 2}-OH$ Gruppe, wobei

20

15

 R_3 ein Wasserstoffatom oder eine C_{1-4} -Alkylgruppe darstellt,

eine 2-0xo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert sein kann, oder

25

eine N-[(1,3-Dioxolan-2-yl)-methyl]-methylamino-Gruppe,

R_c ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxyethoxy-, 2-Ethoxyethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclohexyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-, Cyclopentylmethoxy-, Cyclohexylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy,

Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe und

- n eine ganze Zahl aus dem Bereich von 1 bis 3 mit der Maßgabe 5 bedeuten, daß folgende Verbindungen
 - $4-[(3-Bromphenyl) amino]-6-(\{4-[N-(1,3-dioxolan-2-yl-me-thyl)-N-methylamino]-1-oxo-2-buten-1-yl\}amino)-7-methoxy-chinazolin,$
- 4-[(3-Bromphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxychinazolin,
 - 4-[(3-Bromphenyl)amino]-6-[(4-{N-[(tert.butyloxycarbonyl)me-thyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-methoxychinazolin,
- 4-[(3-Bromphenyl)amino]-6-({4-[N-(carboxymethyl)-N-(2-hydroxyethyl)amino]-1-oxo-2-buten-1-yl}amino)-7-methoxychina-zolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxy-2-methyl-propyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxomor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[1-(ethoxy-carbonyl)-ethyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)-amino]-7-cyclopropylmethoxychinazolin und
 - (R) -4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin

ausgeschlossen sind,

10

20

deren Tautomere, deren Stereoisomere und deren Salze.

- 15 2. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in der
 - R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R_1 und R_2 substituierte Phenylgruppe, wobei

R₁ ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Trifluormethyl-, Cyan- oder Ethinylgruppe und R₂ ein Wasserstoff- oder Fluoratom darstellen,

- 25 R_b eine gegebenenfalls an den Methylengruppen durch 1 oder 2 Methyl- oder Ethylgruppen substituierte R₃O-CO-CH₂-N-CH₂-OH Gruppe, wobei
- R₃ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe darstellt,

 30
 eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert sein kann, oder
 - eine N-[(1,3-Dioxolan-2-yl)-methyl]-methylamino-Gruppe,

R_c ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxy-ethoxy-, 2-Ethoxyethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclohexyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-, Cyclopentylmethoxy-, Cyclohexylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe und

n eine ganze Zahl aus dem Bereich von 1 bis 3 mit der Maßgabe 10 bedeuten, daß folgende Verbindungen

- $4-[(3-Bromphenyl)amino]-6-(\{4-[N-(1,3-dioxolan-2-yl-me-thyl)-N-methylamino]-1-oxo-2-buten-1-yl\}amino)-7-methoxy-chinazolin,$
- 4-[(3-Bromphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxychinazolin,
 - 4-[(3-Bromphenyl)amino]-6-[(4-{N-[(tert.butyloxycarbonyl)me-thyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-meth-oxychinazolin,
- 4-[(3-Bromphenyl)amino]-6-({4-[N-(carboxymethyl)-N-(2-hydroxyethyl)amino]-1-oxo-2-buten-1-yl}amino)-7-methoxychinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxy-2-methyl-propyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,

- 61 -

4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxomor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - (R) -4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[1-(ethoxy-carbonyl)-ethyl]-N-(2-hydroxyethyl)amino}-1-oxo-2-buten-1-yl)-amino]-7-cyclopropylmethoxychinazolin,
- 10 (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
 - 4-[(3-Bromphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-[N-(1,3-dioxolan-2-ylmethyl)-N-methylamino]-1-oxo-2-buten-1-yl)amino]-7-cyclo-propylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmeth-oxy-chinazolin und
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmeth-oxy-chinazolin

ausgeschlossen sind,

20

- 30 deren Tautomere, deren Stereoisomere und deren Salze.
 - 3. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in denen

10

15

30

 R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R_1 und R_2 substituierte Phenylgruppe, wobei

 R_1 ein Fluor-, Chlor- oder Bromatom, eine Methyl- oder Ethinylgruppe und

R₂ ein Wasserstoff- oder Fluoratom darstellen,

 $R_{\rm b}$ eine an den Methylengruppen durch 1 oder 2 Methyl- oder Ethylgruppen substituierte $R_3{\rm O-CO-CH_2-N-CH_2-CH_2-OH}$ Gruppe, wobei

R₃ eine C₁₋₄-Alkylgruppe darstellt,

eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert ist,

 R_c ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxy- ethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydrofuran-4-yloxy-, Tetrahydrofuranylmethoxy- oder

20 Tetrahydropyranylmethoxygruppe und

n die Zahl 1 oder 2 mit der Maßgabe bedeuten, daß folgende Verbindungen

4-[(3-Chlor-4-fluorphenyl)amino]-6-[(4-{N-[(ethoxy-carbo-nyl)methyl]-N-(2-hydroxy-2-methyl-propyl)amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxychinazolin,

4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,

4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxomor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- (R) -4-[(3-Chlor-4-fluorphenyl) amino]-6-[(4-{N-[1-(ethoxy-carbonyl)-ethyl]-N-(2-hydroxyethyl) amino}-1-oxo-2-buten-1-yl)-amino]-7-cyclopropylmethoxychinazolin,
 - (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxychinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin und
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin

ausgeschlossen sind,

15

20

deren Tautomere, deren Stereoisomere und deren Salze.

4. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in denen

Ra eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die 25 Reste R1 und R2 substituierte Phenylgruppe, wobei

- $R_{\scriptscriptstyle 1}$ ein Fluor-, Chlor- oder Bromatom und $R_{\scriptscriptstyle 2}$ ein Wasserstoff- oder Fluoratom darstellen,
- 30 R_b eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methyloder Ethylgruppen substituiert ist,
 - $R_{\rm c}$ ein Wasserstoffatom, eine Methoxy-, Ethoxy-, 2-Methoxy- ethoxy-, Cyclopentyloxy-, Cyclopropylmethoxy-,

Tetrahydrofuran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder tetrahydropyranylmethoxygruppe und

n die Zahl 1 mit der Maßgabe bedeuten, daß folgende Verbindungen

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - (R) -4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin und
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin

ausgeschlossen sind,

15

25

deren Tautomere, deren Stereoisomere und deren Salze.

- 30 5. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in denen
 - Ra eine 1-Phenylethyl- oder eine 3-Chlor-4-fluorphenylgruppe,

20

- $R_{\rm b}$ eine 2-Oxo-morpholin-4-yl-Gruppe, die durch 1 oder 2 Methylgruppen substituiert ist, oder
- eine 2-Oxo-morpholin-4-yl-Gruppe, die durch eine Ethylgruppe 5 substituiert ist,

R_c ein Wasserstoffatom, eine Methoxy-, 2-Methoxyethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclopropylmethoxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahyropyranylmethoxygruppe und

n die Zahl 1 mit der Maßgabe bedeuten, daß folgende Verbindungen

- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(2,2-dimethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(5-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
- (R)-4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin und
- 4-[(3-Chlor-4-fluorphenyl)amino]-6-{[4-(6-methyl-2-oxo-mor-pholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-chinazolin

ausgeschlossen sind,

10

15

deren Tautomere, deren Stereoisomere und deren Salze.

- 6. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1:
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-[(4-{N-[(1,3-dioxolan-2-yl)methyl]-N-methyl-amino}-1-oxo-2-buten-1-yl)amino]-7-cyclopropylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-propylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-propylmethoxy-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-3-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-propylmethoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-20 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-(2-methoxy-ethoxy)-chinazolin,
 - $4-[(3-\text{Chlor-}4-\text{fluor-phenyl})\,\text{amino}]-6-\{[4-((S)-6-\text{methyl-}2-\text{oxo-morpholin-}4-\text{yl})-1-\text{oxo-}2-\text{buten-}1-\text{yl}]\,\text{amino}\}-7-\text{cyclobutyl-}\\ \text{oxy-chinazolin},$
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclobutyl-oxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclobutyl-oxy-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclo-pentyloxy-chinazolin,
- 4-[(R)-(1-Phenyl-ethyl)amino]-6-[[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin,

.15

30

- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(te-trahydrofuran-3-yl)oxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-
- 5 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(S)-(te-trahydrofuran-3-yl)oxy]-chinazolin,
 - $4-[(3-\text{Chlor}-4-\text{fluor-phenyl}) \text{ amino}]-6-\{[4-((R)-6-\text{methyl-}2-\text{oxo-morpholin}-4-yl)-1-\text{oxo-}2-\text{buten}-1-yl] \text{ amino}\}-7-[(S)-(te-trahydrofuran-3-yl) \text{ oxy}]-chinazolin,$
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(tetrahydrofuran-3-yl)oxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(te-trahydropyran-4-yl)oxy]-chinazolin,
 - $4-[(R)-(1-Phenyl-ethyl)amino]-6-\{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropyl-methoxy-chinazolin,$
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(2,2-dimethyl-20 6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetrahydropyran-4-yl)oxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-methoxy-chinazolin,
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetra-hydrofuran-2-yl)methoxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)] amino] -6- $\{[4-(5,5-\text{dimethyl}-2-\text{oxo-morpholin}-4-\text{yl})]$ -1-oxo-2-buten-1-yl] amino} -7-[(S)] -(tetra-hydrofuran-3-yl) oxy] -chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(6-ethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropyl-methoxy-chinazolin,

- $4-[(R)-(1-Phenyl-ethyl)amino]-6-\{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino\}-7-methoxy-chinazolin,$
- 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(R)-(tetra-hydrofuran-3-yl)oxy]-chinazolin,
 - 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-(5,5-dimethyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin,
 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl-
- 2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-chinazolin,
 4-[(3-Chlor-4-fluor-phenyl)amino]-6-{[4-((R)-6-methyl2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-[(tetrahydropyran-4-yl)oxy]-chinazolin und
- $4-[(R)-(1-Phenyl-ethyl)amino]-6-\{[4-((S)-6-methyl-2-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino\}-chinazolin,$

deren Tautomere, deren Stereoisomere und deren Salze.

- 7. Physiologisch verträgliche Salze der Verbindungen nach min-20 destens einem der Ansprüche 1 bis 6 mit anorganischen oder organischen Säuren oder Basen.
- 8. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein physiologisch verträgliches Salz gemäß Anspruch 7 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 9. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 7 zur Herstellung eines Arzneimittels, das zur Behandlung von benignen oder malignen Tumoren, zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge, zur Behandlung von Polypen, von Erkrankungen des Magen-Darm-Traktes, der Gallengänge und -blase sowie der Niere und der Haut geeignet ist.

- 10. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 8, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 7 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
- 11. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß

a) eine Verbindung der ällgemeinen Formel

15 in der

 $R_{\rm a}$ und $R_{\rm c}$ wie in den Ansprüchen 1 bis 6 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

$$Z_1$$
-CO-CH=CH-(CH₂)_n-R_b ,(III)

20

10

in der

 R_{b} und n wie in den Ansprüchen 1 bis 6 erwähnt definiert sind und

 \mathbf{Z}_{i} eine Austrittsgruppe darstellt, umgesetzt wird oder

25

b) eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

in der

 R_a , R_c und n wie in den Ansprüchen 1 bis 6 erwähnt definiert sind und

 \mathbf{Z}_2 eine Austrittsgruppe darstellt, mit einer Verbindung der allgemeinen Formel

$$H - R_b$$
 , (V)

10

in der

 $R_{\rm b}$ wie in den Ansprüchen 1 bis 6 erwähnt definiert ist, umgesetzt wird oder

c) eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

$$R_a$$
 H $NH - CO - CH = CH - (CH2)n - R_b , $(VI)$$

20 in der

 $R_{\text{a}},\ R_{\text{c}}$ und n wie in den Ansprüchen 1 bis 6 erwähnt definiert sind und

 $R_{\mathfrak{b}}$ ' eine durch Cyclisierung in eine gegebenenfalls substituierte 2-Oxo-morpholin-4-yl-Gruppe überführbare gegebenenfalls

substituierte N-(Carboxymethyl)-N-(2-hydroxyethyl)-amino- oder N-(C₁₋₄-Alkyloxycarbonylmethyl)-N-(2-hydroxyethyl)-aminogruppe bedeutet, cyclisiert wird und

- 71 -

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, die eine gegebenenfalls substituierte 2-Oxo-morpholin-4-yl-Gruppe enthält, mittels Hydrolyse in eine entsprechende Verbindung übergeführt wird, die eine gegebenfalls substituierte N-(Carboxymethyl)-N-(2-hydroxyethyl)-aminogruppe enthält, und/oder

erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder

gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträgliche Salze übergeführt wird.

10

INTERNATIONAL SEARCH REPORT

Internal Application No PCT/EP 01/09537

CLASSIFICATION OF SUBJECT MATTER CO7D405/12 CO7D413/12 C07D413/14 A61K31/517 CO7D239/94 According to international Patent Classification (tPC) or to both national classification and tPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) CHEM ABS Data, EPO-Internal, WPI Data, BEILSTEIN Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X WO OO 51991 A (METZ THOMAS ; SOLCA FLAVIO 1.8-11 (AT); BOEHRINGER INGELHEIM PHARMA (DE);) 8 September 2000 (2000-09-08) claims examples P,X TSOU, HWEI-RU ET AL: 1,8-11 "6-Substituted-4-(3-bromophenylamino)quina zolines as Putative Irreversible Inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor (HER-2) Tyrosine Kinases with Enhanced Antitumor Activity" J. MED. CHEM. (2001), 44(17), 2719-2734, XP002182646 examples Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: Th. later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the investigation. *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *L* document which may throw doubts on priority claim(s) or which is clied to establish the publication date of another cliation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *O* document referring to an oral disclosure, use, exhibition or document published prior to the international filling date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 16 November 2001 28/11/2001 Name and mailing address of the ISA Authorized officer European Palent Office, P.B. 5818 Palentiaan 2 NL - 2280 HV Riswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Stix-Malaun, E Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 01/09537

		PCT/EP 01/09537
	atton) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category •	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	DE 199 28 281 A (BOEHRINGER INGELHEIM PHARMA KG., GERMANY) 28 December 2000 (2000-12-28) page 12, line 37 - line 38; example 3 examples claims	1,8-11
P,X	& WO 00 78735 A (BÖHRINGER INGELHEIM PHARMA KG., GERMANY)) 28 December 2000 (2000-12-28) page 55, paragraph 3; example 3 examples claims	1,8-11
X	WO 99 09016 A (AMERICAN CYANAMID COMPANY, USA) 25 February 1999 (1999-02-25) claims examples 66,67	1,8-11
E	DE 100 17 539 A (BOEHRINGER INGELHEIM PHARMA KG., GERMANY) 11 October 2001 (2001-10-11) examples claims	1,8-11
P,A	DE 199 11 509 A (BOEHRINGER INGELHEIM PHARMA) 21 September 2000 (2000-09-21) claims	1,8-11
	* .	
		·
	·	·

INTERNATIONAL SEARCH REPORT

Imminformation on patent family members

Intermitional Application No
PCT/EP 01/09537

					761 01/0955/
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0051991	Α	08-09-2000	DE	19908567 A1	31-08-2000
			DE	19911366 A1	21-09-2000
			DE	19928306 A1	
			DE	19954816 A1	
			AU	3281600 A	21-09-2000
			WO	0051991 A1	08-09-2000
DE 19928281	Α	28-12-2000	DE	19928281 A1	28-12-2000
			ΑU	5221400 A	09-01-2001
			WO	0078735 A1	28-12-2000
WO 9909016	Α	25-02-1999	AU	8602398 A	08-03-1999
			BR	9811805 A	15-08-2000
			CN	1271349 T	25-10-2000
			EP .	1000039 A1	17-05-2000
			HU	0002893 A2	
			JP	2001515071 T	18-09-2001
			NO	20000487 A	31-03-2000
			TW	436485 B	28-05-2001
			WO	9909016 A1	25-02-1999
DE 10017539	Α	11-10-2001	DE	10017539 A1	11-10-2001
			MO	0177104 A1	18-10-2001
DE 19911509 ·	Α	21-09-2000	DE	19911509 A1	21-09-2000
			AU	3166700 A	04-10-2000
			WO	0055141 A1	21-09-2000

INTERNATIONALER RECHERCHENBERICHT

internationales Aktenzeichen

とて/より 01/09537 KLASSIFTZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 C070405/12 C070413/12 CO7D413/14 A61K31/517 CO7D239/94 Nach der Internationalen Patentiklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprütstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07D A61K Recherchierte aber nicht zum Mindestprütstoff gehörende Veröffentlichungen, soweil diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsuttlerte elektronische Datenbank (Name der Datenbank und evil. verwendete Suchbegriffe) CHEM ABS Data, EPO-Internal, WPI Data, BEILSTEIN Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. . P,X WO OO 51991 A (METZ THOMAS ; SOLCA FLAVIO 1,8-11 (AT); BOEHRINGER INGELHEIM PHARMA (DE):) 8. September 2000 (2000-09-08) Ansprüche Beispiele P,X TSOU, HWEI-RU ET AL: 1,8-11 "6-Substituted-4-(3-bromophenylamino)quina zolines as Putative Irreversible Inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor (HER-2) Tyrosine Kinases with Enhanced Antitumor Activity" J. MED. CHEM. (2001), 44(17), 2719-2734. XP002182646 Beispiele --/---Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X Siehe Anhang Patentfamille entnehmen Besondere Kategorien von angegebenen Veröffentlichungen T Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist 'E' älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer T\u00e4ligkeit beruhend betrachtet werden Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werde soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit eher oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung tür einen Fachmann nahellegend ist ausge(Ohrt) *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach *&* Veröffentlichung, die Mitglied derselben Patentlamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts 16. November 2001 28/11/2001 Name und Postanschrift der Internationalen Recherchenbehörde Bevolmächtigter Bediensteter Europäisches Palentamt, P.B. 5818 Palentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Stix-Malaun, E

INTERNATIONALER RECHERCHENBERICHT

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1892)

Internationales Aktenzeichen
PCT/EP 01/09537

-		PCT/EP 0	01/09537		
C.(Fortsetzi	LING) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kalegone	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommend	len Teile	Betr. Anspruch Nr.		
P,X	DE 199 28 281 A (BOEHRINGER INGELHEIM PHARMA KG., GERMANY) 28. Dezember 2000 (2000-12-28) Seite 12, Zeile 37 - Zeile 38; Beispiel 3 Beispiele		1,8-11		
P,X	Ansprüche & WO 00 78735 A (BÖHRINGER INGELHEIM PHARMA KG., GERMANY)) 28. Dezember 2000 (2000-12-28) Seite 55, Absatz 3; Beispiel 3 Beispiele Ansprüche		1,8-11		
X	WO 99 09016 A (AMERICAN CYANAMID COMPANY, USA) 25. Februar 1999 (1999-02-25) Ansprüche Beispiele 66,67		1,8-11		
E	DE 100 17 539 A (BOEHRINGER INGELHEIM PHARMA KG., GERMANY) 11. Oktober 2001 (2001-10-11) Beispiele Ansprüche		1,8-11		
P,A	DE 199 11 509 A (BOEHRINGER INGELHEIM PHARMA) 21. September 2000 (2000-09-21) Ansprüche		1,8-11		
•					
	•			ŀ	

INTERNATIONALER RECHERCHENBERICHT

Atrgaben zu Veröffentlichten, die zur seiben Patentlamilie gehören

Intermitonates Aktenzeichen
PCT/EP 01/09537

					01/ []	01/ 0333/
Im Recherchenbericht ngeführtes Patentdokum		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	-	Datum der Veröffentlichung
WO 0051991	Α	08-09-2000	DE	19908567	A1	31-08-2000
			DE	19911366	A1	21-09-2000
			DE	19928306	A1	28-12-2000
			DE	19954816		17-05-2001
			AU	3281600		21-09-2000
			WO	0051991	A1	08-09-2000
DE 19928281	A	28-12-2000	DE	19928281	A1	28-12-2000
			AU	5221400	A	09-01-2001
			WO	0078735		28-12-2000
WO 9909016	Α	25-02-1999	AU	8602398	A	08-03-1999
			BR	9811805		15-08-2000
			CN	1271349	T ·	25-10-2000
			EP	1000039		17-05-2000
			HU	0002893	A2	28-05-2001
			JP		T	18-09-2001
			NO	20000487		31-03-2000
			TW	436485		28-05-2001
			WO	9909016	A1	25-02-1999
DE 10017539	Α	11-10-2001	DE	10017539		11-10-2001
			WO .	0177104	A1	18-10-2001
DE 19911509	A	21-09-2000	DE	19911509		21-09-2000
			AU	3166700		04-10-2000
			WO	0055141	A1	21-09-2000