[결과] 2주차 실습 결과 정리

- 2017년도와 2020년도 인구 데이터 시각화
 - 1. 데이터

지역	2017년도	2020년도		
서울	9,766	9,602		
부산	3,424	3,344		
대구	2,458	2,419		
인천	2,924	2,951		
광주	1,495	1,488		
대전	1,528	1,500		
울산	1,159	1,140		
세종	266	349		
경기	12,786	13,405		
강원	1,521	1,515		
충북	1,609	1,632		
충남	2,153	2,204		
전북	1,829	1,792		
전남	1,795	1,764		
경북	2,675	2,655		
경남	3,339	3,350		
제주	635	670		

2. 코드

```
# 데이터프레임을 생성한다.
census_df = data.frame('2017'= data_2017, '2020' = data_2020, '지역' = labels_data)
# 데이터프레임을 CSV파일로 저장한다.
write.csv(census_df, "./census_data.csv")
# 데이터프레임에서 각 열을 가져온다.
data_2017 = census_df$X2017
data_2020 = census_df$X2020
labels_data = census_df$X104
# 데이터프레임의 열의 이름을 출력한다.
colnames(census_df)
```

```
# 데이터프레임의 행의 이름을 출력한다.
rownames(census_df)

# 그래프를 출력한다.
par(mfrow=c(3,3))
barplot(census_df$X2017, names.arg=labels_data)
barplot(census_df$X2020, col='Red', names.arg=labels_data)
barplot(census_df$X2017, names.arg=labels_data, axes=False)
barplot(census_df$X2020, col=rainbow(10), ann=False)
pie(census_df$X2017, col=rainbow(8), labels=labels_data)
pie(census_df$X2020, labels=labels_data)
```

3. plot

• 2019-2021 춘천시 자동차 등록수와 버스 이용객 데이터 시각화

1. 데이터

종류	2019년	2020년	2021년
자동차	108568	112984	116836
버스이용객	12503205	8638146	7232545

2. 코드

```
# 데이터프레임을 생성한다.

car_bus_df = data.frame('car'= car, 'bus' = bus_custmer, 'year' = year)

# 데이터프레임을 CSV파일로 저장한다.

write.csv(car_bus_df, "./car_bus_data.csv")

# CSV파일로부터 데이터를 불러온다.

car_bus_df = read.csv('./car_bus_data.csv')

# 데이터프레임에서 각 열을 가져온다.

car = car_bus_df$car

bus_custmer = car_bus_df$bus_custmer

year = car_bus_df$year
```

```
# 데이터프레임의 열의 이름을 출력한다.
colnames(car_bus_df)

# 데이터프레임의 행의 이름을 출력한다.
rownames(car_bus_df)

# 그래프 시각화
par(mfrow=c(3,1))
plot(year, car, type='h')
plot(year, bus_custmer, type='S', col=rainbow(1))
barplot(car, names.arg = year)
```

3. plot

• 해킹사고 데이터 시각화

1. 데이터

사고 유형	2010년 도	2012년 도	2014년 도	2016년 도	2018년 도	2020년 도
홈페이지 변조	3,043	3,157	1,115	1,056	567	764
침해사고 신고접수	53	91	175	247	500	603
악성코드 은닉사이트 탐 지	0	13,018	47,703	11,044	14,754	6,034

2. 코드

```
# 데이터프레임을 생성한다.
hacking_data_df = data.frame(
  '홈페이지 변조'= homepage,
  '침해사고 신고접수' = intrusion,
  '악성코드 은닉사이트 탐지' = malware_site,
  '년도' = year
)
# 데이터프레임을 CSV파일로 저장한다.
write.csv(hacking_data_df, "./hacking_data.csv")
# CSV파일로부터 데이터를 불러온다.
hacking_data_df = read.csv('./hacking_data.csv')
# 데이터프레임의 열의 이름을 출력한다.
colnames(hacking_data_df)
# 데이터프레임의 행의 이름을 출력한다.
rownames(hacking_data_df)
# 그래프 시각화
par(mfrow=c(3,2))
plot(year, homepage, type='s')
barplot(homepage, names.arg = year, col = rainbow(5))
plot(year, intrusion, type='b')
barplot(intrusion, names.arg = year, col = rainbow(3))
plot(year, malware_site, type='h')
barplot(malware_site, names.arg = year, col = rainbow(1))
```

3. plot

[결과] 2주차 실습 결과 정리 4

[결과] 2주차 실습 결과 정리