Modelado y Simulación Numérica Daniel Pérez Palau

Tema 9. Conceptos y elementos de simulación en eventos discretos

Calendario

Carona	Oli 10				
	Semana	Tema	Refuerzo	Laboratorio	Actividad
09/11/2020					
16/11/2020	1	S0 + T1			
23/11/2020	2	T2			
30/11/2020	3	T3		L1	
07/12/2020	4	T4			
14/12/2020	5	T5			L1
21/12/2020		Semana de repaso	R-L1		
28/12/2020			Semana	de repaso	
04/01/2021	6	T6 + repaso			
11/01/2021	7	T6			
18/01/2021	8	T7			
25/01/2021	9	T7			AG
01/02/2021	10	T8			
08/02/2021	11	T9		L2	
15/02/2021	12	T10	R-AG1		
22/02/2021	13	T11			L2
01/03/2021	14	Sesión examen	R-L2		
08/03/2021	15	Repaso (sesión doble)			
15/03/2021	16		Semana F	Próximas sesio	nes
			_	FO /00/00 40	000ET\

Proximas sesiones T9-> (08/02 19:00CET) Lab-> (11/02 17-19 CET) T10 + S-G (16/02 17-18:30 CET)

Contenidos

- Tema 1. Conceptos generales de modelado matemático y simulación
- Tema 2. Modelado matemático de sistemas físicos
- Tema 3. Sistemas físicos y sus modelos
- Tema 4.Simulación
- Tema 5. Generación de números aleatorios
- Tema 6. Generación de variables aleatorias
- Tema 7. Medidas estadísticas
- Tema 8. Simulación de Monte Carlo
- Tema 9. Conceptos y elementos de simulación con eventos
- Tema 10. Modelado y simulación de sistemas de eventos discretos
- Tema 11. Software para modelado matemático y simulación

Conceptos básicos

- Sistema: es un conjunto de entidades que interactúan entre sí a lo largo del tiempo con el propósito de alcanzar objetivos.
- Modelo: es la representación abstracta del sistema.
- Estado: del sistema, variables que contienen toda la información necesaria para describir el sistema.
- Entidades: cualquier objeto o componente que requiere una representación explícita.
- Atributos: son las propiedades de una determinada entidad.

Conceptos básicos

- Lista: colección de entidades que están ordenadas de alguna manera lógica (ej: colas, pilas, etc).
- Evento: es un suceso instantáneo que cambia el estado del sistema (ej: llegada de un nuevo cliente).
- Notificación de un evento: es el registro de un evento que ocurre en el momento actual o en el futuro, incluye:
 - tipo de evento
 - tiempo en que se produce dicho evento.
- Lista de eventos: lista de notificaciones de eventos para eventos futuros ordenados por momento de ocurrencia.

Conceptos básicos: Actividad

- Actividad (o espera incondicional) intervalo de tiempo de una longitud determinada que se conoce cuando comienza la actividad.
 - Distribución:
 - ser determinista
 - ser función de otras variables o atributos del sistema.

Puede cambiar en cada caso.

Se conoce como evento primario.

Conceptos básicos: Retraso

- Retraso (o espera condicional) intervalo de tiempo de longitud indefinida, que no se conoce hasta que termina dicho retraso.
 - Se colocan en la cola de espera

No se representan mediante notificaciones de eventos y no aparecerán en la LEF.

Se conoce como evento condicional o secundario.

Conceptos básicos: elementos

- Un generador de de números aleatorios uniformemente U(0,1).
- Un generador de v.a. con distribuciones específicas.
- Mecanismos de control y flujo del tiempo que tendrán lugar durante la simulación.
- Algoritmo de planificación de eventos/avance de tiempo que :
 - Determine el suceso que ocurrirá a continuación del actual.
 - Almacenamiento, eliminación o actualización de las notificaciones de eventos en la lista de eventos futuros.

Conceptos básicos: elementos

- Recolección y análisis de los datos que se han generado a raíz de la simulación.
- Creación de informes y análisis de los resultados obtenidos.
- Detección de las posibles condiciones de error.

Mecanismos de avance

- La lista de eventos futuros es un elemento esencial del modelo de simulación.
- Se puede implantar el mecanismo que permite avanzar el tiempo de simulación y garantizar que todos los eventos se producen en un orden cronológico correcto.
- Esta lista contiene todas las notificaciones de los eventos que están programadas.

Mecanismos de avance

- La programación de un evento futuro consiste en
 - el instante que comienza una actividad
 - se calcula su duración o bien se establece como una muestra de una distribución estadística.
 - Luego, se almacena el evento de final de actividad junto con su tiempo.

Mecanismos de avance

- El algoritmo de planificación de eventos/ avance de tiempo determina la secuencia de acciones que debe realizar un simulador. Permite:
 - avanzar el reloj
 - construir una nueva instantánea del sistema en la que se muestra:
 - estado
 - entidades atributos
 - lista de eventos futuros.

Mecanismos de avance: inicio

- Al comenzar la simulación, debemos
 - establecer primera instantánea del sistema
 - inicializar el reloj a 0
 - establecer las condiciones iniciales del sistema.
 - determinar los instantes de ocurrencia de los eventos futuros más cercanos en el tiempo.

Mecanismos de avance: progreso

En cada nuevo paso:

- 1. Eliminar la notificación del evento más próximo.
- 2. Avanzar el reloj.
- 3. Ejecutar el evento correspondiente y actualizar las variables de estado del sistema.
- 4. Si es necesario, generar nuevos eventos futuros y almacenar su notificación.
- 5. Actualizar contadores y estimadores estadísticos muestrales.

Estos pasos se repiten hasta que

- se alcance una condición determinada
- se llegue al tiempo de simulación prefijado.

Medidas de rendimiento

La **simulación** permite **recoger datos** sobre el estado del sistema.

A partir de la información recogida se pueden

- estimar los parámetros de rendimiento del sistema.
 - la longitud media de la cola de espera,
 - el tiempo medio de espera en la cola,
 - el tiempo de servicio,
 - el número de clientes rechazados si la cola es finita,
 - etc.

Distribuciones habituales

La distribución del tiempo entre llegadas y la de los tiempos de servicio, suelen ser exponenciales.

 \parallel

La distribución del número de llegadas por unidad de tiempo suele ser una distribución de Poisson.

También pueden considerarse otras distribuciones (normal, Erlang,...)

Recomendación: realizar un **análisis de la robustez** para verificar la **sensibilidad de las medidas del rendimiento** respecto a la forma de las distribuciones de entrada.

Aplicaciones

La simulación se aplica al estudio de sistemas de naturaleza muy diversa.

- resolver problemas operativos en sistemas que ya existen
- Mejorar el comportamiento del sistema.

Ejemplos

Simulación de:

- procesos financieros y análisis de inversiones.
- procesos hospitalarios y médicos.
- del rendimiento de sistemas de espera

Aplicaciones

Ejemplos

Análisis de:

- sistemas de producción y cadenas de montaje.
- redes y sistemas de comunicación.
- sistemas de transporte.
- sistemas de computación y cálculo intensivo.
- de inventarios.

¿Una cola o varias colas?

Queremos estudiar las colas en un supermercado.

Datos de los que disponemos:

Afluencia de clientes:

- Valle $\sim \exp\left(\frac{1}{7}\right)$
- Punta $\sim \exp(1)$

¿Una cola o varias colas?

Queremos estudiar las colas en un supermercado.

Datos de los que disponemos:

Eficiencia personal

Tiempo	Operario 1	Operario 2
2	30%	15%
2,5	20%	15%
3	25%	40%
3,5	0%	20%
4	resto	resto

Con estos datos el dueño quiere saber qué estrategia utilizar. Para ello se pregunta:

- En hora valle:
 - ¿Son necesarios 2 cajeros?
 - Si con uno es suficiente, ¿debo poner el cajero A o el cajero B?
- En hora punta:
 - ¿Merece la pena instaurar un sistema de cola única o, por el contrario, es mejor tener dos colas una para cada caja?

El sistema tendrá los siguientes componentes:

- 1. Estado del sistema:
 - $-L_0(t)$: número de clientes en espera
 - $-L_A(t)$: 0 si operario A ocupado, 1 si libre
 - $-L_B(t)$: 0 si operario B ocupado, 1 si libre
- 2. Entidades: no se requieren entidades (salvo si queremos estadísticas).
- 3. Eventos:
 - Entrada de un cliente (tipo E),
 - fin de atención operario A (tipo SA)
 - Fin de atención operario B (tipo SB)

El sistema tendrá los siguientes componentes:

Actividades:

- Tiempo entre entradas
- Tiempo de servicio operario A
- Tiempo de servicio operario B

5. Retrasos:

Si los dos operarios ocupados → espero

Algunas pregutnas para realizar correctamente el modelo:

- 1. ¿Cómo afecta cada evento al estado del sistema? ¿Y a los atributos de las entidades?
- 2. ¿Las actividades son deterministas, aleatorias o siguen un patrón?
- 3. ¿Qué evento marca el inicio y el final de cada actividad?
- 4. ¿Puede una actividad empezar independientemente del estado del sistema o está condicionado al estado?
- 5. ¿Qué evento determina el comienzo de un retraso? ¿Y su fin?
- 6. ¿Cuál es el estado del sistema en t = 0?
- 7. ¿Qué eventos deben generarse cuando se inicie el sistema?

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$

LEF
$E\;t=1$
E, $t = 2$
E, $t = 4$
E, $t = 7.5$

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	

LEF
$E\;t=1$
E, $t = 2$
E, $t = 4$
SA, $t = 5$
E, $t = 7.5$

Generamos nuevo evento: SA, t=5

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	E, $t = 3$

LEF
$E\;t=1$
E, $t = 3$
E, $t = 4$
SA, $t = 5$
E, $t = 7.5$

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	E, $t = 3$
3	(0,1,1)	

LEF
$E\;t=1$
E, $t = 3$
E, $t = 4$
SA, $t = 5$
E, $t = 7.5$
SB, $t = 8$

Evento tipo E A ocupado \rightarrow modificamos L_B Generamos nuevo evento: SB, t=8

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	E, $t = 3$
3	(0,1,1)	E, t=4

LEF
$E\;t=1$
E, $t = 3$
E, $t = 4$
SA, $t = 5$
E, $t = 7.5$
SB, $t = 8$

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	E, $t = 3$
3	(0,1,1)	E, t=4
4	(1,1,1)	

LEF
$E\;t=1$
E, $t = 3$
E, $t = 4$
SA, $t = 5$
E, $t = 7.5$
SB, $t = 8$

Evento tipo E A ocupado \rightarrow modificamos L_Q inicio de un retraso

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	E, $t = 3$
3	(0,1,1)	E, t=4
4	(1,1,1)	SA, $t = 5$

LEF
$E\;t=1$
E, $t = 3$
E, $t = 4$
SA, $t = 5$
E, $t = 7.5$
SB, $t = 8$

Reloj	Estado del sistema $\left(L_Q, L_A, L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	E, $t = 3$
3	(0,1,1)	E, $t = 4$
4	(1,1,1)	SA, $t = 5$
5	(0,1,1)	

LEF
$E\;t=1$
E, $t = 3$
E, $t = 4$
SA, $t = 5$
E, $t = 7.5$
SB, $t = 8$
SA, $t = 10.5$

Evento tipo SA Se libera A

comprobamos si hay cola ($L_Q = 1 > 0$)

A sigue ocupado per se reduce la cola fin de un retraso

Generamos siguiente evento tipo SA

Reloj	Estado del sistema $\left(L_Q,L_A,L_B ight)$	Siguiente LEF
0	(0,0,0)	E, $t = 1$
1	(0,1,0)	E, $t = 3$
3	(0,1,1)	E, $t = 4$
4	(1,1,1)	SA, $t = 5$
5	(0,1,1)	E, $t = 7,5$

LEF
$E\;t=1$
E, $t = 3$
E, $t = 4$
SA, $t = 5$
E, $t = 7,5$
SB, $t = 8$
SA, $t = 10.5$

Evento tipo SA Se libera A comprobar

comprobamos si hay cola ($L_Q = 1 > 0$)

A sigue ocupado per se reduce la cola fin de un retraso

Generamos siguiente evento tipo SA

En el laboratorio se solicita:

- 1. Simulación en hora valle
 - a. Función de generación de afluencia de clientes
 - b. Función de cálculo de tiempo de atención
 - c. Función de avance del tiempo
- 2. Simulación en hora punta 1
 - a. Generación de afluencia de clientes
 - b. Tiempo de atención para cada operario
 - c. Simulaciones
 - i. Cola única
 - ii. Dos colas

Formato de entrega:

- Memoria de trabajo con
 - Las fórmulas/funciones empleadas y su justificación.
 - Los resultados obtenidos para cada simulación.
 - Las conclusiones de cada modelo.
 - Las respuestas al propietario de ModySim.

¿Dudas?

www.unir.net