Algèbre 2

Dimension finie

Question 1/18

Matrice de passage

Réponse 1/18

$$P_{\mathcal{B}_1}^{\mathcal{B}_2} = \operatorname{Mat}_{\mathcal{B}_2,\mathcal{B}_1}(\operatorname{id}) = [\mathcal{B}_2]_{\mathcal{B}_1}$$

Question 2/18

Matrice associée à une composition

Réponse 2/18

$$\operatorname{Mat}_{\mathcal{B},\mathcal{D}}(g \circ f) = \operatorname{Mat}_{\mathcal{C},\mathcal{D}}(g) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$$

Question 3/18

Dimension d'une somme directe

Réponse 3/18

$$\dim\left(\bigoplus_{i=1}^{n}(E_i)\right) = \sum_{i=1}^{n}(\dim(E_i))$$

Question 4/18

 $Mat_{\mathcal{B}}(u)$ est inversible

Réponse 4/18

 $u \in \mathrm{GL}(E)$

La réciproque est vraie

Question 5/18

Rang d'une famille

Réponse 5/18

$$\operatorname{rg}(x_1, \dots, x_n) = \dim(\operatorname{Vect}(x_1, \dots, x_n))$$

Question 6/18

Produit matriciel avec l'évaluation

Réponse 6/18

$$[f(X)]_{\mathcal{C}} = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)[X]_{\mathcal{B}}$$

Question 7/18

Formule de Grassmann

Réponse 7/18

$$\dim(E+F) = \dim(E) + \dim(F) - \dim(E \cap F)$$

Question 8/18

Dimension d'un supplémentaire S de F dans E

Réponse 8/18

$$\dim(S) = \dim(E) - \dim(F)$$

Question 9/18

Formule de changement de base

Réponse 9/18

$$\mathcal{B}_1$$
, \mathcal{B}_2 des bases de E , \mathcal{C}_1 , \mathcal{C}_2 des bases de F

$$\operatorname{Mat}_{\mathcal{B}_2,\mathcal{C}_2}(f) = P_{\mathcal{C}_2}^{\mathcal{C}_1} \operatorname{Mat}_{\mathcal{C}_1,\mathcal{B}_1}(f) P_{\mathcal{B}_1}^{\mathcal{B}_2}$$

$$= \left(P_{\mathcal{C}_1}^{\mathcal{C}_2}\right)^{-1} \operatorname{Mat}_{\mathcal{C}_1,\mathcal{B}_1}(f) P_{\mathcal{B}_1}^{\mathcal{B}_2}$$

Question 10/18

Théorème du rang

Réponse 10/18

$$\dim(\ker(f)) + \operatorname{rg}(f) = \dim(E)$$

Question 11/18

Majoration du rang d'une application linéaire $u \in \mathcal{L}(E, F)$

Réponse 11/18

$$rg(u) \leq min(dim(E), dim(F))$$

Question 12/18

Effet d'une composition sur le rang

Réponse 12/18

$$rg(v \circ u) \leq min(rg(u), rg(v))$$

Si v est injective, $rg(v \circ u) = rg(u)$
Si u est surjective, $rg(v \circ u) = rg(v)$

Question 13/18

Rang d'une application linéaire

Réponse 13/18

$$rg(u) = dim(Im(u))$$

Question 14/18

Dimension de $\mathcal{L}(E, F)$

Réponse 14/18

$$\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$$

Question 15/18

Conservation de l'image et du noyau pour les matrices

Réponse 15/18

$$M \in \mathcal{M}_{n,p}(K), P \in \operatorname{GL}_n(K), Q \in \operatorname{GL}_n(K)$$

$$\ker(PM) = \ker(M)$$

$$\operatorname{Im}(MQ) = \operatorname{Im}(M)$$

Question 16/18

Dimension d'un produit cartésien

Réponse 16/18

$$\dim(E \times F) = \dim(E) + \dim(F)$$

Question 17/18

Conservation du rang pour les matrices

Réponse 17/18

$$M \in \mathcal{M}_{n,p}(K), P \in \mathrm{GL}_n(K), Q \in \mathrm{GL}_n(K)$$

 $\mathrm{rg}(PMQ) = \mathrm{rg}(M)$

Question 18/18

Image d'une matrice

Réponse 18/18

$$\operatorname{Im}(M) = \operatorname{Vect}(C_1(M), \cdots, C_n(M))$$