数据挖掘互评作业 3: 分类、预测与聚类

2021年6月1日

- 所选任务: Video Game Sales 电子游戏销售分析
- 数据集地址: https://www.kaggle.com/gregorut/videogamesales
- Github 地址:https://github.com/Xiemixue/DataMining_MutualEvaluationAssignment_3

1 数据预处理

1.1 数据集属性及含义

Rank: 总销售量的排名

Name: 游戏名称

Platform:游戏发行平台 Year:游戏发行时间 Genre:游戏类别

Publisher: 发行商

NA_Sales: 北美的销售量,单位为百万 EU_Sales: 欧洲的销售量,单位为百万 JP_Sales: 日本的销售量,单位为百万

Other_Sales: 其它地区的销售量,单位为百万

Global_Sales: 全球的销售量

1.2 数据读取

```
[1]: import numpy as np
import pandas as pd
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
import warnings
import matplotlib.pyplot as plt
```

```
%matplotlib inline
warnings.filterwarnings("ignore")

filename = 'vgsales.csv'
vgs = pd.read_csv(filename, index_col='Rank')

print("shape={}".format(vgs.shape))
vgs.head(5) # 打印前 5 行
```

shape=(16598, 10)

[1]:				Name Plat	form	Year	Genre	Publisher	\
	Rank								
	1		Wii S	ports	Wii	2006.0	Sports	Nintendo	
	2	Su	per Mario	Bros.	NES	1985.0	${\tt Platform}$	Nintendo	
	3		Mario Kar	t Wii	Wii	2008.0	Racing	Nintendo	
	4	Wi	i Sports R	esort	Wii	2009.0	Sports	Nintendo	
	5	Pokemon R	ed/Pokemon	Blue	GB	1996.0	Role-Playing	Nintendo	
		NA_Sales	EU_Sales	JP_Sales	Othe	r_Sales	Global_Sales		
	Rank								
	1	41.49	29.02	3.77		8.46	82.74		
	2	29.08	3.58	6.81		0.77	40.24		
	3	15.85	12.88	3.79		3.31	35.82		
	4	15.75	11.01	3.28		2.96	33.00		
	5	11.27	8.89	10.22		1.00	31.37		

1.3 缺失值统计及处理

```
[2]: vgs.isnull().sum()
                         # 统计缺失值
[2]: Name
                      0
    Platform
                      0
    Year
                    271
    Genre
                      0
    Publisher
                     58
    NA_Sales
                      0
    EU_Sales
                      0
```

JP_Sales 0
Other_Sales 0
Global_Sales 0

dtype: int64

可以发现,只有 Year 和 Publisher 这两个特征存在缺失值,且缺失值个数分别为 271 和 58。考虑到这两个特征不好填充,且相对总体而言,缺失规模很小,所以选择将缺失值全部删除。

[3]: vgs = vgs.dropna() # 丢弃含有缺失值的行 vgs.isnull().sum() # 重新统计缺失值

[3]: Name 0 Platform 0 Year 0 Genre 0 Publisher NA_Sales 0 EU_Sales 0 JP_Sales 0 Other_Sales 0 Global_Sales 0 dtype: int64

1.4 数据类型查看及转换

[4]: vgs.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 16291 entries, 1 to 16600

Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Name	16291 non-null	object
1	Platform	16291 non-null	object
2	Year	16291 non-null	float64
3	Genre	16291 non-null	object
4	Publisher	16291 non-null	object
5	NA_Sales	16291 non-null	float64

```
EU_Sales
                  16291 non-null float64
    JP_Sales
                  16291 non-null float64
 7
                  16291 non-null float64
    Other_Sales
    Global Sales 16291 non-null float64
dtypes: float64(6), object(4)
memory usage: 1.4+ MB
```

为了方便后续的分析、预测,现将 Year 转为数值型:

```
[5]: vgs.Year = vgs.Year.astype(int)
```

电子游戏市场分析

——每年最受欢迎的游戏类型、发布平台、发行商及其全球销售额

2.1 最受欢迎的游戏类型

```
[13]: # 获取游戏类型的排序
     Genre_data = vgs.groupby(['Genre']).sum().loc[:, 'Global_Sales'].
      →sort_values(ascending = False)
     # 进行画图
     sns.barplot(y = Genre_data.index, x = Genre_data.values, orient='h',__
     plt.ylabel("Genre")
     plt.xlabel("Global_Sales (In Millions)")
     plt.show()
```


从图中可以看到: 动作类和运动类游戏最受欢迎

2.2 最受欢迎的游戏平台

```
[7]: # 获取游戏平台的排序
Platform_data = vgs.groupby(['Platform']).count().loc[:,"Name"].

sort_values(ascending = False)

# 进行画图
plt.figure(figsize=(10,10))
sns.barplot(y = Platform_data.index, x = Platform_data.values, orient='h',
color="seagreen")
plt.ylabel("Platform")
plt.xlabel("The amount of games")
plt.show()
```


从图中可以看到: DS 和 PS2 是最受欢迎的发行平台; 而 3DO、TG16、PCFX、GG 等, 已经在没落

2.3 最受欢迎的游戏发行商

```
[12]: # 获取游戏发行商的排序
Publisher_data = vgs.groupby(['Publisher']).sum().loc[:,"Global_Sales"].

→sort_values(ascending = False)
print("游戏发行商个数 ={}".format(len(Publisher_data)))

# 只保留 Publisher_data.values>50 的数据
Publisher_data = Publisher_data[Publisher_data.values > 100]
```

游戏发行商个数 =576

由于游戏发行商的数量太多,无法在一张图片中显示出。因此只考虑 Publisher_data.values>50, 即销售量超过 5000 万份游戏发行商。

从图中可以看到: Nintendo 最受欢迎的发行商,其销量远远超出了第二名 Electronic Arts.

2.4 各地区及全球销售额分析

• 每年销售总额变化趋势

```
[18]: def lineplot(df, ylabel, title='Sales by Year', legendsize = 10, legendloc =

→'upper left'):

year = df.index.values

na = df.NA_Sales
```

```
eu = df.EU_Sales
   jp = df.JP_Sales
   other = df.Other_Sales
   global_ = df.Global_Sales
   if df is count_sales_group:
        region_list = [na, eu, jp, other, global_]
       columns = ['NA', 'EU', 'JP', 'OTHER', 'WORLD WIDE']
   else:
       region_list = [na, eu, jp, other, global_]
       columns = ['NA', 'EU', 'JP', 'OTHER', 'WORLD WIDE']
   for i, region in enumerate(region_list):
       plt.plot(year, region, label = columns[i])
   plt.ylabel(ylabel)
   plt.xlabel('Year')
   plt.title(title)
   plt.legend(loc=legendloc, prop = {'size':legendsize})
   plt.show()
   plt.clf()
years = [2017, 2020]
total_sales_group = vgs.groupby(['Year']).sum().drop(years)
average_sales_group = vgs.groupby(['Year']).mean().drop(years)
count_sales_group = vgs.groupby(['Year']).count().drop(years)
lineplot(total_sales_group, title = 'Sales by Year', ylabel="Sales (In_

→Millions)", legendsize = 8)
```


<Figure size 432x288 with 0 Axes>

从图中可以看到,全球游戏销售额一直在持续增长,在 2008 年有一个高峰期。众所周知, 2008 年 全球金融危机, 经济衰退对电子游戏行业也造成了一定的影响。

• 每年销售额平均值变化趋势

```
[14]: lineplot(average_sales_group, title = 'Average Sales per Game per Year', ylabel

--'Sales (In Millions)',

legendsize = 8, legendloc = 'upper right')
```


<Figure size 432x288 with 0 Axes>

[]:从图中可以看出,1988年左右开始,游戏的平均销售额大幅下降。

• 每年发行游戏数量的变换趋势

<Figure size 432x288 with 0 Axes>

综合这三个折线图,可以看出,在 90 年代后期及以后,电子游戏行业的发展是非常繁荣的。虽然游戏平均销售额减少了,但是发布的游戏数量大幅提高,所以总的销售额也在增长。但到了 2008 年,全球金融危机,对电子游戏市场造成了严重的影响,游戏发布数量减少,总销售额大幅下降。

2.5 词云

plt.title(x)
plt.axis("off")
plt.show()

Racing

Role-Playing

Puzzle

Misc

Shooter

Action

Action

Fighting

Adventure

Warsan Sid Meier D Card I I Super Vabour Gendam D Card Worms Angry Birds I Three Kingdoms Christian Robot Super Su

Strategy

看看在各个类型的游戏的命名中,哪些词语出现频率较高。以 Sports 类游戏为例子,命名中出现较多的词有: NBA、FIFA、Soccer 等与运动有关的词语。

Total"War

3 预测销售额

数据集中每年的销售额如下:

Command Conquer

```
[42]: # 获取销售额数据
sales = vgs[['Year', 'Global_Sales']].dropna()
```

```
sales = sales.groupby(by = ['Year']).sum().reset_index()
print(sales)
```

	Year	Global_Sales
0	1980	11.38
1	1981	35.77
2	1982	28.86
3	1983	16.79
4	1984	50.36
5	1985	53.94
6	1986	37.07
7	1987	21.74
8	1988	47.22
9	1989	73.45
10	1990	49.39
11	1991	32.23
12	1992	76.16
13	1993	45.98
14	1994	79.17
15	1995	88.11
16	1996	199.15
17	1997	200.98
18	1998	256.47
19	1999	251.27
20	2000	201.56
21	2001	331.47
22	2002	395.52
23	2003	357.85
24	2004	414.01
25	2005	458.51
26	2006	521.04
27	2007	609.92
28	2008	678.90
29	2009	667.30
30	2010	600.29
31	2011	515.80
32	2012	363.49

```
      33
      2013
      368.11

      34
      2014
      337.03

      35
      2015
      264.44

      36
      2016
      70.90

      37
      2017
      0.05

      38
      2020
      0.29
```

3.1 划分数据集

```
Platform Genre Publisher Global_Sales
                                        82.74
0
         26
                 10
                           359
                                        40.24
1
         11
                           359
2
         26
                  6
                           359
                                        35.82
3
         26
                 10
                           359
                                        33.00
                                        31.37
                           359
```

```
[52]: from sklearn.model_selection import train_test_split train, test = train_test_split(encoded_df, test_size=0.1, random_state=1)
```

```
def data_splitting(df):
    x=df.drop(['Global_Sales'], axis=1)
    y=df['Global_Sales']
    return x, y

x_train, y_train = data_splitting(train)
x_test, y_test = data_splitting(test)
```

3.2 Linear Regression

使用 Linear Regression 预测模型:

```
[51]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score,mean_squared_error
    log = LinearRegression()
    log.fit(x_train , y_train)
    y_pred = log.predict(x_test)
    n = len(x_test)
    p = x_test.shape[1]
    r2_value = r2_score(y_test, y_pred)
    adjusted_r2_score = 1 - (((1-r2_value)*(n-1)) /(n-p-1))
    print("r2_score for Linear Reg model : ",r2_score(y_test,y_pred))
    print("adjusted_r2_score Value : ",adjusted_r2_score)
    print("MSE for Linear Regression : ",mean_squared_error(y_test,y_pred))
```

r2_score for Linear Reg model : -0.0006404221007900723 adjusted_r2_score Value : -0.0024866221415664747 MSE for Linear Regression : 2.895277971549873

3.3 Random Forest

使用 Random Forest 预测模型:

```
[53]: from sklearn.ensemble import RandomForestRegressor

rf_model = □

→RandomForestRegressor(n_estimators=200,min_samples_split=20,random_state=43)

rf_model.fit(x_train,y_train)
```

和线性回归对比, 随机森林效果更好。