Department of Computer Science

.

CPSC 304 Project Cover Page

Milestone #:4	
Date:Aug 5, 2024	

Group Number: 35

Name	Student Number	CS Alias (Userid)	Preferred E-mail Address
Muzhi Li	95581567	f0q8k	muzhilidavid@163.com
Sky Huang	38929873	q1p2n	qaqawesome@gmail.com
Haocheng Fan	89933758	g6d6m	1353629009@qq.com

By typing our names and student numbers in the above table, we certify that the work in the attached assignment was performed solely by those whose names and student IDs are included above. (In the case of Project Milestone 0, the main purpose of this page is for you to let us know your e-mail address, and then let us assign you to a TA for your project supervisor.)

In addition, we indicate that we are fully aware of the rules and consequences of plagiarism, as set forth by the Department of Computer Science and the University of British Columbia

Department of Computer Science

•

Repository Link

https://github.students.cs.ubc.ca/CPSC304-2024S-T2/project f0q8k g6d6m q1p2n

Project Description

Our project focuses on astronomy, tracking data of celestial bodies like stars, planets, and moons, storing parameters such as mass and diameter. It models star and planetary systems with real-world statistics and simple visualizations. This tool can be used by educational institutions to teach about star systems and modern astronomical research methods. We can add stars and planets, delete stars, update stars, search for entries and display its attributes using the provided criteria. Given a star name, we can display all its planets, and given a minimum planet count, we can display all stars which have more than that number of planets. Given a minimum mass, we can display the average diameters of blackholes above that mass, grouped by mass. We can display stars which have all asteroids.

Final schema is the same as in milestone #2:

Planet_Densities(<u>equatorial_diameter</u>: FLOAT, <u>mass</u>: FLOAT, density: FLOAT) PK: (equatorial_diameter, mass)

Planet(<u>planet_name</u>: VARCHAR(100), **equatorial_diameter**: FLOAT, **mass**: FLOAT, ESI: FLOAT, discovery_method: VARCHAR(100), rotation_period: FLOAT)
PK: planet_name, FK: (equatorial_diameter, mass) referencing Planet_Densities(equatorial_diameter, mass)

NeutronStar_Density_EscapeVelocity(<u>mass</u>: FLOAT, <u>diameter</u>: FLOAT, density: FLOAT, escape_velocity: FLOAT)
PK: (mass, diameter)

NeutronStar(<u>neutron_star_name</u>: VARCHAR(100), luminosity: FLOAT, rotation_period: FLOAT, **mass**: FLOAT, **diameter**: FLOAT,**star_name**: VARCHAR(100))_

PK: neutron_star_name, FK: (mass, diameter) referencing NeutronStar_Density_EscapeVelocity(mass, diameter), star_name referencing Star(star_name)

BlackHole_Diameter(<u>mass</u>: FLOAT, <u>rotation_period</u>: FLOAT, diameter: FLOAT) PK: (mass, rotation_period)

BlackHole(black hole name: VARCHAR(100), mass: FLOAT, rotation period: FLOAT)

Department of Computer Science

PK: black_hole_name, FK: (mass, rotation_period) referencing BlackHole_Diameter
Moon(moon_name: VARCHAR(100), planet_name: VARCHAR(100) NOT NULL, distance_to_planet:
FLOAT NOT NULL, ESI: FLOAT, mass: FLOAT, PM_eccentricity: FLOAT, rotation_period: FLOAT)
PK: moon_name, FK: planet_name referencing Planet(planet_name), planet_name can't be null

OrbitingPlanet(<u>planet_name</u>: VARCHAR(100), orbital_period: FLOAT, distance_to_centre: FLOAT, white_dwarf_name: VARCHAR(100), WDP_eccentricity: FLOAT, star_name: VARCHAR(100), SP_eccentricity: FLOAT, neutron_star_name: VARCHAR(100), NSP_eccentricity: FLOAT)
PK: planet_name, FK: planet_name referencing Planet(planet_name), white_dwarf-name referencing WhileDwarf(while_dwarf_name), star_name referencing Star(star_name), neutron_star_name referencing NeutronStar(neutron_star_name)

Star(R1-<u>star_name</u>: VARCHAR(100), **R2-star_name**: VARCHAR(100) UNIQUE,luminosity: FLOAT, rotation_period: FLOAT, diameter: FLOAT, mass: FLOAT, oribital_eccentricity: FLOAT, orbital_period: FLOAT, distance_to_companian: FLOAT, **black_hole_name**: VARCHAR(100))
PK: star_name, FK: black_hole_name referencing BlackHole(black_hole_name), R2-star_name referencing Star(star_name), R2-star_name need to be unique

FreeFloatingPlanet(<u>planet name</u>: VARCHAR(100), proper_motion: FLOAT) PK: planet_name, FK: planet_name referencing Planet(planet_name)

MainSequenceStar(<u>star_name</u>: VARCHAR(100), class: VARCHAR(100)) PK:star_name, FK: star_name referencing Star(star_name)

RedGiant(<u>star_name</u>: VARCHAR(100), pulsation_period: FLOAT) PK:star_name, FK: star_name referencing Star(star_name)

Asteroid(<u>asteroid_name</u>: VARCHAR(100), orbital_period: FLOAT, diameter: FLOAT, mass: FLOAT, **star_name**: VARCHAR(100), AS_eccentricity: FLOAT, **planet_name**: VARCHAR(100))
PK: asteroid_name, FK: star_name referencing Star(star_name), planet_name referencing OrbitingPlanet(planet_name)

WhiteDwarf(<u>white_dwarf_name</u>: VARCHAR(100), rotation_period: FLOAT, luminosity: FLOAT, mass: FLOAT, diameter: FLOAT, density: FLOAT, metallicity: FLOAT, **star_name**: VARCHAR(100) UNIQUE) PK: WDName, FK: companian_star referencing Star(star_name), star_name need to be unique

In project.sql

Screenshots:

Department of Computer Science

.

INSERT

Line 125 in appController, line 264 in appService added a star called new_star to stars, orbiting the blackhole M87*

DELETE

Department of Computer Science

Line 140 in appController, line 264 in appService Deleted new_star.

UPDATE

Department of Computer Science

Line 329 in appController, line 499 in appService

Updated Sirius A, changing attributes such as companion star (went from Sun to Gamma Cassiopeiae). See star details on the left side.

Department of Computer Science

Selection

line 423 in appService, line 270 in appController

Select Attribute name "mass", where mass = 1.76e+31

Show all attributes in the left information board.(if you click columns, you can select what columns to be returned).

Projection

Department of Computer Science

line 423 in appService, line 270 in appController.

Select BlackHole table, and select black_hole_name and mass columns. Show the all content in the table of these two columns.

Join

Department of Computer Science

Joins star and orbiting planet table. line 165 in appController, 349 in appController

Aggregation with Group By

Department of Computer Science

line 151 in appController, line 317 in appService

Line 234 in appController

Nested Aggregation with Group By

Department of Computer Science

Line 302 in appController

Division

Department of Computer Science

Line 258 in appController.js, Line 451 in appService.js The bottom button, "Find", will find the star that has all asteroids, since all asteroids orbits from "Sun", then it shows the name of "Sun".

Data in each relation:

asteroid_na	orbital_per	diameter	mass	star_name	AS_eccentr	planet_name
Ceres	1680	946	9.38349999	Sun	7.49999999	99999997E-2
Eros	1.76	16.8000000	6.69E+18	Sun	0.22	Mars
Euphrosyne	1735	282	6.6E+19	Sun	0.20999999	999999999
Hebe	5.13999999	0.4000000	8.2E+18	Sun	8.00000000	Saturn
Hygiea	2035	431	8.67E+19	Sun	0.11700000	Saturn
Juno	1730	258	5.59E+19	Sun	9.7000000	Earth
Pallas	1685	512	2.04E+20	Sun	0.23000000	Mars
Psyche	1500	226	4.1E+19	Sun	0.11	Saturn
Vesta	1325	525	2.59E+20	Sun	8.89999999	Saturn

black_hole _. mass	rotation_period
A0620-00 8	0.699999999999996
Cygnus X-1 10	0.5
GRO J1655-25	0.2000000000000001
GRS 1915+ 18	0.40000000000000002
GS 1124-6830	0.8000000000000004
LMC X-1 22	0.5
M87* 20	0.299999999999999
Sagittarius 15	0.40000000000000002
V404 Cygni 12	0.599999999999998
XTE J1118+11	0.599999999999998

mass	rotation_pcdiameter
8	0.6999999!70
10	0.5 60
11	0.5999999!52
12	0.5999999!50
15	0.4000000(45
18	0.4000000(48
20	0.2999999!40
22	0.5 55
25	0.2000000(35
30	0.8000000165

planet_nanproper_motion

Aether 0.0038

star_name class

Alpha Cent G2V

Altair A7V

Procyon A F5IV-V

Sirius A A1V

Vega A0V

moon_nar	က planet_na	n distance_f	tc ESI	mass	PM_eccent	rotation_period	k
Callisto	Jupiter	1882700	0.5500000	(1.0799999	7.4000000	16.6900000000	00001
Deimos	Mars	23460	2.9999999	148000000	5.0000000	1.26	
Europa	Jupiter	670900	0.6700000	(4.8E+22	9.4000000	3.54999999999	99998
Ganymed	e Jupiter	1070400	0.62	1.4799999	1.29999999	7.15000000000	00004
lapetus	Saturn	3560820	0.2999999	1.81E+21	2.8000000	79.2999999999	99997
lo	Jupiter	421800	0.5799999	4.1500000	4.1000000	1.77	
Moon	Earth	384400	0.5600000	7.3500000	5.48999999	27.3000000000	00001
Phobos	Mars	9377	0.1000000	(1.08E+16	1.49999999	0.32000000000	000001
Rhea	Saturn	527580	0.2999999	£2.31E+21	0.027	4.5	
Titan	Saturn	1221870	0.62	1.3499999	2.8000000	15.9	

planet_nanorbital_per distance_tc white_dwa WDP_ecce star_name SP_eccentr neutron_st NSP_eccentricity

 Mars
 687
 227900000 Procyon B
 0.02
 Alpha Cent 0.014

 Neptune
 60190.029! 449500000 Alpha Cent 0.01
 Polaris
 0.014

Saturn 10759.219! 142900000 Vega B 2.99999999! Vega 1.299999999999999-2

Uranus 30687.150(287100000 Epsilon Eric 0.02 Altair 0.016

planet_na	n equatorial	mass	ESI	discovery_	rotation_period
Aether	88000	1.1E+26	0.7800000	Astrometry	15.4
Earth	12742	5.9720000	0.9300000	Radial Velo	24
Europa	4900	4.8E+22	0.9000000	Flyby	3.549999999999998
Ganymede	139822	1.8979999	0.9200000	Flyby	7.15000000000000004
Gorgona	10500	6.2000000	0.8000000	Transit	28.5
Jupiter	142984	1.8979999	0.8100000	Direct Imag	9.9000000000000004
Mars	6792	6.3899999	0.6400000	Transit	24.600000000000001
Moon	3475	7.3500000	0.9100000	Radar	27.300000000000001
Neptune	49528	1.0239999	0.6500000	Astrometry	16.100000000000001
Novae	62000	8.5000000	0.7600000	Occultation	20.89999999999999
Orionis	150000	2.4999999	0.8499999	Microlensir	12.300000000000001
Pluto	2370	1.3E+22	0.5699999	Occultation	153.30000000000001
Poltergeis	t 4800	1.0799999	0.8900000	Flyby	16.690000000000001
Saturn	120536	5.6830000	0.7299999	Microlensir	10.69999999999999
Uranus	51118	8.6810000	0.6099999	Transit	17.19999999999999
Zircon	9200	3.9999999	0.7199999	Direct Imag	30.100000000000001

equatorial_	mass	density
2370	1.3E+22	2100
3475	7.35000000	3340
4800	1.07999999	2900
4900	4.8E+22	3010
6792	6.38999999	3933
9200	3.99999999	4300
10500	6.2000000	5700
12742	5.97200000	5514
49528	1.02399999	1638
51118	8.68100000	1271
62000	8.50000000	1400
88000	1.1E+26	1250
120536	5.68300000	687
139822	1.89799999	1326
142984	1.89799999	1326
150000	2.49999999	1350

star_name pulsation_period

Aldebaran 645

Antares 1730

Arcturus 271

Betelgeuse 400

Delta Scorp 560

Gamma Ca: 350

Mu Cephei 850

Nu Scorpii 400

Pollux 590

Rho Cassio 600

star_name R2_star_n	aluminosity rotation_	p، diameter mass orbital_ec	c orbital_per distance_	tc black_hole_name
Aldebaran	643 4420000	0 1.1599999! 0.26700000000000000	2	Sagittarius A*
Alpha Cent Alpha Cen	t 1.519E+26 22	122700000 2.1870000(0	79.909999! 23500000	Cygnus X-1
Alpha Cent Alpha Cen	t 1.519E+26 22	122700000 2.18700000 0	79.909999! 23500000	Sagittarius A*
Altair Vega	1.47E+27 9.900000	00(188000000 2.1349999!0	150 93000000	00 GRS 1915+105
Antares	643 4420000	0 1.1599999! 0.26700000000000000	2	Sagittarius A*
Arcturus	170 3530000	0 1.1E+30	2	Sagittarius A*
Betelgeuse Rigel	1.26E+31 8.400000	00(86000000C1.76E+31 0	233.75 54870000	00 V404 Cygni
Delta Scorpii	560 8000000	1.4999999! 0.26700000000000000	2	Sagittarius A*
Deneb Polaris	5.1000000(18	230000000 5.026000010	365 18000000	00 XTE J1118+480
Gamma Cassiopeiae	20000 7890000	0.26700000000000000000000000000000000000	2	Sagittarius A*
Mu Cephei	850 1420000	00 1.90000001 0.26700000000000000	2	Sagittarius A*
Nu Scorpii	400 6600000	1.400000010.26700000000000000	2	Sagittarius A*
Polaris Deneb	4.1999999!30	380000000 4.0259999! 0	400 36000000	00 LMC X-1
Pollux	590 8800000	1.90000000000000110.2670000	00000000002	Sagittarius A*
Procyon A	6.92999999923.10000	00(204800000 3.5000000(0	365.25 11400000	A0620-00
Rho Cassiopeiae	600 1370000	003.9999999990.26700000000000000	2	Sagittarius A*
Rigel Betelgeus	e 2.6449999! 10	780000000 3.9779999! 0	360 47000000	00 GRO J1655-40
Sirius A	2.3639999!5.5	206200000 3.9779999! 0	365.25 8600000	M87*
Sun	3.8459999!25.05000	00(1391400001.9889999999999999	E+30	
Vega Altair	5.4500000(12.5	236200000 2.1349999! 0	200 77000000	GS 1124-683

white_dwa rotation_p(luminosity mass diameter	density metallicity star_name
Alpha Cent 0.5999999! 3.0000000(6.9999999! 15000	300000000 0.001 Alpha Centauri A
Altair B 0.9000000(0.001 1.3999999!17000	130000000 3.00000000 Altair
Beta Cancri 1.1000000(0.002 1.2E+30 14000	3000000000.002
Epsilon Eric 0.8000000(4.0000000(1E+30 16000	250000000 3.0000000000000001E-3
Procyon B 0.4000000(5.0000000(5.99999999918000	8000000 0.002 Procyon A
Sirius B 1.3999999! 5.6000000(1.02E+30 12200	290000000 0.001 Sirius A
Tau Ceti B 1.2 5.0000000(1.29999999!17000	320000000 3.0000000000000001E-3
Vega B 0.6999999! 0.002 9.0000000 16000	310000000 0.002 Vega
Zeta Reticu 0.6999999! 3.0000000 (7.9999999! 13000	2800000000.002

neutron_s	t luminosity	rotation_pcmass	diameter	star_name
Pulsar A	1E+27	3.3000000(1.39999	99! 20	Alpha Centauri A
Pulsar B	5.0000000	0 4.3999999! 2	15	Alpha Centauri B
Pulsar C	2.9999999	9! 2.5000000(1.7	18	Betelgeuse
Pulsar D	2.5E+26	4.8000000(1.89999	99!16	Procyon A
Pulsar E	4.0000000	0(2.999999991.5	19	Sirius A
Pulsar F	2.7999999	9:3.5999999:1.8	17	Rigel
Pulsar G	1.9000000	0 4.2000000 2.20000	00(14	Vega
Pulsar H	3.5000000	0 3.7999999! 1.60000	00(19	Altair
Pulsar I	2.6999999	9:3.4000000(2.10000	00(13	Polaris
Pulsar J	1.2E+27	4.0000000(1.3	21	Deneb

mass		diameter		density (kg	esc	ape velocity	(m/s)
	1.4	20)	4.50E+17		100000	
	2	15	5	6.00E+17	:	150000	
	1.7	18	3	5.00E+17	:	120000	
	1.9	16	õ	5.80E+17		140000	
	1.5	19	9	4.70E+17		110000	
	1.8	17	7	5.60E+17		130000	
	2.2	14	1	6.20E+17	:	160000	
	1.6	19	9	4.90E+17		115000	
	2.1	13	3	6.10E+17		155000	
	1.3	21	L	4.40E+17		95000	