

Deux challenges

Taille des données

Les moteurs de recherche ont de plus en plus de données à trier.

Précision

L'utilisateur du moteur de recherche attend un résultat précis.

En recevant une requête

Filtration de documents intéressants

Calcul de scores

Tri et envoi des résultats

Dans les modèles classiques,

Intersection booléenne

Calcul de scores

 $\bigcap_{i \in I} C_i$

Ranked union (en utilisant les scores)

Cet article propose

- Une méthode de calcul direct de ranked intersection
 - Un index inversé plus condensé Une recherche plus rapide

À l'aide d'une structure de données non exploitées jusque là: les treaps

Rappels

Binary search tree

La valeur de chaque noeud est plus grande que celle de l'enfant de gauche, plus petite que celle de l'enfant de droite.

Traversée de gauche à droite

Min Heap

La valeur de chaque noeud est plus grande que celles de ses enfants.

Traversée de haut en bas

Treaps

Et leur représentation

Une nouvelle structure

Un tréap combine les deux approches précédentes. C'est un arbre qui, à chaque noeud, stocke:

- docid, la **cié**
- Fréquence, la **priorité**

C'est un arbre binaire selon la clé, un min-heap selon la priorité

Réduction de l'arbre par loi de Zipf. Les zones rouges ont des fréquences inférieures à une fréquence bien choisie et sont stockées à part.

Parcours de treaps

Un treap par terme

Pour chaque treap, on maintient une pile de noeuds, et un curseur.

Globalement

On maintient un curseur **vt** et un doc **d** vers lequel on va, Une borne inférieure de score **L** pour la pile de **k** documents,

Une borne supérieure **U** au score du document **d** grâce calculée avec le curseur **vt**

Gains

Espace disque
18% par rapport à
l'approche Block Max
sur laquelle est basée
cet article
Temps de requête
Entre 5 et 15%

Sur une collection de 25,2 millions de documents Sur des requêtes de – de 5 termes, demandant les 20 meilleurs résultats

