ÉPREUVE DE MISE EN PERSPECTIVE DIDACTIQUE D'UN DOSSIER DE RECHERCHE

Lydia Chabane

PLAN

I. Mon parcours

Scolaire et professionnel

II. Mes travaux de recherche

- Présentation
- Mise en perspective didactique

III. Ma mission doctorale

- Présentation
- Mise en perspective didactique

I. Mon parcours

I. Mon parcours

MON PARCOURS SCOLAIRE ET PROFESSIONNEL

2013 – 2015	CPGE (MPSI/MP*) au lycée Chaptal (Paris)
2015 – 2017	L3/M1 Magistère de physique fondamentale d'Orsay
2017 – 2018	M2 ICFP – Parcours Physique Quantique à l'ENS (Paris)
2018 – 2021	- Thèse en physique statistique à IJCLab (Orsay) sous la direction de Gatien Verley et Raphaël Chétrite
	- Mission doctorale de médiation scientifique à la MISS (Orsay)
Fév - Mai 2022	Consultante scientifique à Auditex (Paris)
2022 - 2023	Préparation de l'agrégation au centre de Montrouge

II.

1. Mes travaux de recherche

Mon sujet de thèse

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

Superviseurs: - Gatien Verley (IJCLab)

- Raphaël Chétrite (Laboratoire J.A. Dieudonné, Nice)

Soutenue le 26 novembre 2021 à IJCLab.

MON SUJET DE THÈSE

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

Superviseurs: - Gatien Verley (IJCLab)

- Raphaël Chétrite (Laboratoire J.A. Dieudonné, Nice)

Soutenue le 26 novembre 2021 à IJCLab.

CONTEXTE

CONTEXTE

CONTEXTE

CONTEXTE

Physique statistique classique	Thermodynamique stochastique
Équilibre	Hors équilibre

Physique statistique classique	Thermodynamique stochastique
Équilibre	Hors équilibre
Grand nombre de particules	Nombre arbitraire de particules

Physique statistique classique	Thermodynamique stochastique
Équilibre	Hors équilibre
Grand nombre de particules	Nombre arbitraire de particules
Observables thermodynamiques données par leur valeurs moyennes	Observables thermodynamiques fluctuantes

Physique statistique classique	Thermodynamique stochastique
Équilibre	Hors équilibre
Grand nombre de particules	Nombre arbitraire de particules
Observables thermodynamiques données par leur valeurs moyennes	Observables thermodynamiques fluctuantes

THERMODYNAMIQUE STOCHASTIQUE: MOTIVATION

Physique statistique classique	Thermodynamique stochastique
Équilibre	Hors équilibre
Grand nombre de particules	Nombre arbitraire de particules
Observables thermodynamiques données par leur valeurs moyennes	Observables thermodynamiques fluctuantes

Grand nombre de systèmes réels avec d'importantes fluctuations thermiques

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

1. Cadre mathématique

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

1. Cadre mathématique

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

1. Cadre mathématique

Aléatoirement

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

1. Cadre mathématique

L'état du chat est une variable aléatoire.

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

1. Cadre mathématique

L'état du chat est une variable aléatoire.

L'évolution temporelle de l'état du chat z(t) est un processus aléatoire.

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

2. Modélisation par un processus de Markov

z(t) processus de Markov: l'évolution future de l'état ne dépend que du présent et non du passé.

Le taux de transition $k_{+-}(t)$ est la probabilité par unité de temps de sauter de l'état - vers l'état + au temps t.

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

3. Notion de trajectoire

Au cours d'une journée (T = 24 h), le chat peut se réveiller et s'endormir plusieurs fois. Voici un exemple de trajectoire sur n jours:

En rouge: un exemple de trajectoire [z]

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

3. Notion de trajectoire

Au cours d'une journée (T = 24 h), le chat peut se réveiller et s'endormir plusieurs fois. Voici un exemple de trajectoire sur n jours:

En rouge: un exemple de trajectoire [z]

Observable A[z]: variable aléatoire

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

4. Exemple de grandeur fluctuante

Nous voulons savoir si le chat :

- s'endort plus qu'il ne se réveille le jour
- se réveille plus qu'il ne s'endort la nuit

COMMENT DÉFINIR CES GRANDEURS FLUCTUANTES ?

4. Exemple de grandeur fluctuante

Nous voulons savoir si le chat :

- s'endort plus qu'il ne se réveille le jour
- se réveille plus qu'il ne s'endort la nuit

$$A[z] = \frac{1}{nT} \sum_{t \in [0, nT] \mid z(t^+) \neq z(t^-)} g_{z(t^+), z(t^-)}(t)$$

ET EN PHYSIQUE?

ET EN PHYSIQUE?

ET EN PHYSIQUE?

$$g_{ij}(t) = U_i(t) - U_j(t) \longrightarrow \text{Chaleur}: Q[z] = \sum_{\ell=0}^{M-1} \left[U_{z_{\ell+1}}(t_{\ell+1}) - U_{z_{\ell}}(t_{\ell+1}) \right]$$

ET EN PHYSIQUE?

$$g_{ij}(t) = U_i(t) - U_j(t) \longrightarrow \text{Chaleur: } Q[z] = \sum_{\ell=0}^{M-1} \left[U_{z_{\ell+1}}(t_{\ell+1}) - U_{z_{\ell}}(t_{\ell+1}) \right]$$

$$\textbf{Observable à deux composantes} \quad \boldsymbol{A}[z] = \left(\begin{array}{c} \frac{1}{nT} \sum_{\tau \in [0, nT] \mid z(\tau^+) \neq z(\tau^-)} g_{z(\tau^+), z(\tau^-)}(\tau) \\ \frac{1}{nT} \int_0^{nT} \mathrm{d}\tau h_{z(\tau)}(\tau) \end{array} \right)$$

ET EN PHYSIQUE?

$$g_{ij}(t) = U_i(t) - U_j(t) \longrightarrow \text{Chaleur: } Q[z] = \sum_{\ell=0}^{M-1} \left[U_{z_{\ell+1}}(t_{\ell+1}) - U_{z_{\ell}}(t_{\ell+1}) \right]$$

$$\textbf{Observable à deux composantes} \quad \boldsymbol{A}[z] = \left(\begin{array}{c} \frac{1}{nT} \sum_{\tau \in [0, nT] \mid z(\tau^+) \neq z(\tau^-)} g_{z(\tau^+), z(\tau^-)}(\tau) \\ \frac{1}{nT} \int_0^{nT} \mathrm{d}\tau h_{z(\tau)}(\tau) \end{array} \right)$$

ET EN PHYSIQUE?

$$g_{ij}(t) = U_i(t) - U_j(t) \longrightarrow \text{Chaleur}: Q[z] = \sum_{\ell=0}^{M-1} \left[U_{z_{\ell+1}}(t_{\ell+1}) - U_{z_{\ell}}(t_{\ell+1}) \right]$$

$$\textbf{Observable à deux composantes} \quad \boldsymbol{A}[z] = \left(\begin{array}{c} \frac{1}{nT} \sum_{\tau \in [0, nT] \mid z(\tau^+) \neq z(\tau^-)} g_{z(\tau^+), z(\tau^-)}(\tau) \\ \frac{1}{nT} \int_0^{nT} \mathrm{d}\tau h_{z(\tau)}(\tau) \end{array} \right)$$

$$h_i(t) = \partial_t U_i(t) \longrightarrow \mathbf{Travail} : W[z] = \int_0^t \mathrm{d}\tau \partial_t U_{z(\tau)}(\tau)$$

$$A[z] = \frac{1}{nT} \sum_{t \in [0, nT] \mid z(t^+) \neq z(t^-)} g_{z(t^+), z(t^-)}(t) \longrightarrow \text{Th\'eorie des grandes d\'eviations}$$

$$A[z] = \frac{1}{nT} \sum_{t \in [0, nT] \mid z(t^+) \neq z(t^-)} g_{z(t^+), z(t^-)}(t) \longrightarrow \text{Th\'eorie des grandes d\'eviations}$$

•
$$A_t[z] \xrightarrow[t\to\infty]{} a_{\text{typ}}$$

$$A[z] = \frac{1}{nT} \sum_{t \in [0, nT] \mid z(t^+) \neq z(t^-)} g_{z(t^+), z(t^-)}(t) \longrightarrow \text{Th\'eorie des grandes d\'eviations}$$

- $A_t[z] \xrightarrow[t\to\infty]{} a_{\text{typ}}$
- Ici : $a_{\text{typ}} = 0 \text{ (sous } k)$

$$A[z] = \frac{1}{nT} \sum_{t \in [0, nT] \mid z(t^+) \neq z(t^-)} g_{z(t^+), z(t^-)}(t) \longrightarrow \text{Th\'eorie des grandes d\'eviations}$$

- $A_t[z] \xrightarrow[t\to\infty]{} a_{\text{typ}}$
- Ici : $a_{\text{typ}} = 0 \text{ (sous } k)$
- Les valeurs éloignées des valeurs typiques sont appelées "grandes déviations". Ce sont des fluctuations rares de l'observable.

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

Conditionnement de l'observable sur une grande déviation (fluctuation rare)

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

Conditionnement de l'observable sur une grande déviation (fluctuation rare)

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

Conditionnement de l'observable sur une grande déviation (fluctuation rare)

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

Conditionnement de l'observable sur une grande déviation (fluctuation rare)

Objectif: Trouver un **processus de Markov effectif** équivalent au processus conditionné dans la limite des temps longs, i.e. pour lequel la valeur typique de l'observable sous ce nouveau processus vaut la valeur imposée.

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

$$\left. egin{array}{c} k_{+-} \\ k_{-+} \end{array} \right\}$$

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

PROBLÉMATIQUE : PROBLÈME DE CONDITIONNEMENT

PROBLÉMATIQUE: PROBLÈME DE CONDITIONNEMENT

RÉSOLUTION

Ce problème a été résolu pour :

- Des processus de Markov impliquant des taux de transition indépendants du temps.
- Des observables mettant en jeu des fonctions indépendantes du temps.

CONTRIBUTION PERSONNELLE

Résolution pour :

- Des processus de Markov impliquant des taux de transition périodiques.
- Des observables mettant en jeu des fonctions périodiques.

APPLICATION AU CHAT

Taux de transition périodique

Observable

$$A[z] = \frac{1}{nT} \sum_{t \in [0, nT] \mid z(t^+) \neq z(t^-)} g_{z(t^+), z(t^-)}(t)$$

- Sous k: $a_{\text{typ}} = 0$.
- On conditionne A sur $a_{\star} = 0.4$.

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

Microcanonique: contrainte sur l'énergie

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

Microcanonique: contrainte sur l'énergie

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

Microcanonique: contrainte sur l'énergie

Canonique: on fixe la valeur moyenne de l'énergie

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

Microcanonique: contrainte sur l'énergie

Canonique: on fixe la valeur moyenne de l'énergie

Équivalence des ensembles canonique et microcanonique dans la limite thermodynamique

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

Microcanonique: contrainte sur l'énergie

Processus conditionné: contrainte sur l'observable

Canonique: on fixe la valeur moyenne de l'énergie

Équivalence des ensembles canonique et microcanonique dans la limite thermodynamique

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

Microcanonique: contrainte sur l'énergie

Canonique: on fixe la valeur moyenne de l'énergie

Équivalence des ensembles canonique et microcanonique dans la limite thermodynamique

Processus conditionné: contrainte sur l'observable

Processus effectif : on fixe la valeur typique de l'observable

CONCLUSION

« De la rareté à la typicité : le parcours improbable d'une grande déviation »

- La grande déviation d'un processus est la valeur typique d'un autre processus.
- Aspect fondamental: généralisation de concepts d'équilibre : ensembles canonique et microcanonique, équivalence d'ensemble.

Microcanonique: contrainte sur
l'énergie

Canonique: on fixe la valeur moyenne de l'énergie

Équivalence des ensembles canonique et microcanonique dans la limite thermodynamique

Processus conditionné: contrainte sur l'observable

Processus effectif : on fixe la valeur typique de l'observable

Equivalence des processus conditionné et effectif dans la limite de temps long

II.

2. Mise en perspective didactique de mes travaux de recherche

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

- Exemple d'activité : la réaction chimique: du microscopique au macroscopique
 - Niveau : Tle générale Spécialité de physique-chimie
 - Format : séance interactive en groupe en fin de chapitre

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

- Exemple d'activité : la réaction chimique: du microscopique au macroscopique
 - Niveau : Tle générale Spécialité de physique-chimie
 - Format : séance interactive en groupe en fin de chapitre
 - Chapitre : Modéliser l'évolution temporelle d'un système, siège d'une transformation chimique

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

- Exemple d'activité : la réaction chimique: du microscopique au macroscopique
 - Niveau : Tle générale Spécialité de physique-chimie
 - Format : séance interactive en groupe en fin de chapitre
 - Chapitre : Modéliser l'évolution temporelle d'un système, siège d'une transformation chimique

Cours précédent

Modélisation macroscopique

- Vitesse de disparition d'un réactif
- Loi d'ordre 1
- Equation d'évolution de la concentration

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

- Exemple d'activité : la réaction chimique: du microscopique au macroscopique
 - Niveau : Tle générale Spécialité de physique-chimie
 - Format : séance interactive en groupe en fin de chapitre
 - Chapitre : Modéliser l'évolution temporelle d'un système, siège d'une transformation chimique

Cours précédent

Modélisation macroscopique

- Vitesse de disparition d'un réactif
- Loi d'ordre 1
- Equation d'évolution de la concentration

Cours actuel

Modélisation microscopique

- Acte élémentaire
- Notion de choc efficace et son caractère aléatoire

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

- Exemple d'activité : la réaction chimique: du microscopique au macroscopique
 - Niveau : Tle générale Spécialité de physique-chimie
 - Format : séance interactive en groupe en fin de chapitre
 - Chapitre : Modéliser l'évolution temporelle d'un système, siège d'une transformation chimique

Cours précédent Modélisation macroscopique - Vitesse de disparition d'un réactif - Loi d'ordre 1 - Equation d'évolution de la concentration Cours actuel Modélisation microscopique - Acte élémentaire - Notion de choc efficace et son caractère aléatoire

Partie 1 : Modélisation probabiliste

• Format : Discussion en classe entière

Document introductif:

• Notions introduites : état, transition, probabilité d'occupation, taux de transition.

Évolution de la probabilité :
$$\frac{dp_+}{dt} = (k_{-\to+})p_- - (k_{+\to-})p_+$$

Partie 2 : Application à une réaction chimique

• **Format:** Travail en autonomie intragroupe.

$$A + B \rightarrow AB$$

- Hypothèses: B en excès. Réaction d'ordre 1.
- Questions de cours : Rappeler l'équation d'évolution de la concentration du réactif A.

Partie 2 : Application à une réaction chimique

• Format: Travail en autonomie intragroupe.

$$A + B \rightarrow AB$$

- Hypothèses: B en excès. Réaction d'ordre 1.
- Questions de cours : Rappeler l'équation d'évolution de la concentration du réactif A.
- Objectif: Modéliser cette réaction en utilisant des probabilités.

Système Molécule A

Etats Libre (1) ou Lié (2) **Transition** 1 vers 2

Taux de transition $k_{1\rightarrow 2}=k$ $k_{2\rightarrow 1}=0$

Partie 2 : Application à une réaction chimique

• Format: Travail en autonomie intragroupe.

$$A + B \rightarrow AB$$

- Hypothèses: B en excès. Réaction d'ordre 1.
- Questions de cours : Rappeler l'équation d'évolution de la concentration du réactif A.
- Objectif: Modéliser cette réaction en utilisant des probabilités.

Système Molécule A

Etats Libre (1) ou Lié (2) **Transition** 1 vers 2

Taux de transition $k_{1\rightarrow 2}=k$ $k_{2\rightarrow 1}=0$

Partie 2 : Application à une réaction chimique

• **Format:** Travail en autonomie intragroupe.

$$A + B \rightarrow AB$$

- Hypothèses: B en excès. Réaction d'ordre 1.
- Questions de cours : Rappeler l'équation d'évolution de la concentration du réactif A.
- Objectif: Modéliser cette réaction en utilisant des probabilités.

Système Molécule A

EtatsLibre (1) ou Lié (2)

Transition 1 vers 2

Taux de transition $k_{1\rightarrow 2}=k$ $k_{2\rightarrow 1}=0$

Évolution de la probabilité :
$$\frac{dp_1}{dt}=k_{2\to 1}p_2-k_{1\to 2}p_1$$

$$\frac{dp_1}{dt}=-kp_1$$

Partie 3 : Lien avec la chimie

• Objectif: Faire le lien entre les descriptions microscopique et macroscopique.

• Format: Analyse documentaire. Travail guidé intra-groupe.

Restitution: discussion/débat intergroupe.

Document : Loi des grands nombres

On note p la probabilité d'obtenir pile. On effectue N lancers.

On note n_{pile} le nombre d'apparition de pile.

La fréquence d'apparition de pile est $f_{pile} = \frac{n_{pile}}{N}$.

Lorsque N est grand, la fréquence f_{pile} est proche de la probabilité p.

Conséquence Lorsque N devient grand, on peut prédire le résultat de l'expérience : on perd son caractère aléatoire.

Partie 3 : Lien avec la chimie

Application à la réaction chimique

- La probabilité qu'une molécule A soit dans l'état 1 (libre) est p_1 .
- Le nombre total de molécules A est N.
- On note n_1 le nombre de molécules A dans l'état 1.
- La fraction de molécules A dans l'état 1 est $f_1 = \frac{n_1}{N}$.
- Lorsque N est grand, $f_1 \simeq p_1$.
- L'équation différentielle sur p_1 implique alors $\frac{dn_1}{dt} = -kn_1$.

Conclusion: Restitution générale, discussion physique

III. Ma mission doctorale

III. Présentation de ma mission doctorale

LA MISS

Maison d'Initiation et de Sensibilisation aux Sciences

- Du CE2 à la 3^{ème}.
- Divers ateliers: maths, physique, SVT, histoire, etc.

III. Présentation de ma mission doctorale

(CE2 à la 6^e)

EXEMPLE D'ATELIER: COULEURS DU NANO-MONDE

Vision des couleurs

Couleur des objets

Couleur pigmentaire

Couleur structurelle

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

• En pratique :

- → Mettre en place une séance de TP
- → Gestion d'une classe, gestion du temps

Vis-à-vis de l'équipe pédagogique

→ Travail d'équipe et coordination

Compétence de pédagogie

- → Utilisation de nouveaux outils d'apprentissage
- → Méthodologie d'enseignement basée sur la démarche scientifique

Merci pour votre attention!

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

Activité 3 : Et pour plusieurs molécules ?

- Hypothèses: B en excès. Réaction d'ordre 1. N molécules A.
- Problématique: Lorsque N est grand, l'étude devient difficile
- Analogie avec des LEDs de couleur :

- Solution : Etudier le nombre de LED dans chaque couleur
- Objectif: Modéliser la réaction dans ce nouveau cadre.
- Format: Travail guidé intra-groupe.

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

Activité 3 : Et pour plusieurs molécules ?

- •Objectif: Modéliser la réaction dans ce nouveau cadre.
- Format: Alternance entre discussion en classe entière et travail par groupe.

Etat n

Nombre de molécules A libres (dans l'état 1)

Transition

n vers n-1

Taux de transition

$$k(n \to n-1)$$

Évolution de la probabilité:

$$\frac{dp_n}{dt} = k(n+1 \to n)p_{n+1} - k(n \to n-1)p_n$$

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

Introduction: Animation https://phet.colorado.edu/sims/html/energy-forms-and-changes/latest/energy-forms-and-changes_en.html	Amener les élèves à identifier les différentes formes d'énergie ainsi que les conversions d'énergie en jeu.
Question: Quels sont les deux modes de transfert d'énergie?	Discussion entre les élèves pour arriver à une réponse.
Manipulation qualitative: Glaçon que l'on fait tomber, puis que l'on pose sur une table immobile. Questions: - Quelles sont les énergies mises en jeu (cinétique, potentielle de pesanteur)? - Y-a-t-il une énergie lorsque le glaçon est immobile?	 Montrer des images/vidéos de différentes situations et demander de classer les énergies en jeu (cinétique/potentielle, microscopique/macroscopique). Amener les élèves à la notion d'énergie interne.

PLAN

I. Mon parcours

- Scolaire et professionnel
- Activités diverses : mise en perspective didactique

II. Mes travaux de recherche

- Présentation
- Mise en perspective didactique

III. Ma mission doctorale

- Présentation
- Mise en perspective didactique

ACTIVITÉS DIVERSES

• Projet de vulgarisation scientifique (L3)

Pourquoi le métal semble plus froid que le plastique ?

ACTIVITÉS DIVERSES

• Participation au french physicists' tournament

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

- Mise en œuvre de méthodes pédagogiques innovantes
 - → Utilisation de nouveaux outils
 - → Apprentissage à travers des projets de groupe originaux
- Tournois intra/inter établissements/Olympiades de Physique

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

- Exemple d'activité : premier principe de la thermodynamique
 - Niveau : Tle générale Spécialité de physique-chimie
 - Chapitre : L'énergie : conversions et transferts
 - Partie : Effectuer des bilans d'énergie sur un système : le premier principe de la thermodynamique
 - Format : Activité interactive en groupe en amont du cours sur le premier principe.

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

Activité 1 : Énergie: forme, conversion et transfert

- **1. Jeu de questions/réponses.** Objectif : comprendre la différence entre les trois notions.
- **2. Animation**: https://phet.colorado.edu/sims/html/energy-forms-and-changes_en.html
- Identifier des formes d'énergie
- Identifier des conversions d'énergie.
- Identifier des transfert d'énergie.

Transition: deux modes de transfert d'énergie.

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

Activité 2 : Transfert d'énergie : étude documentaire

Doc 1 : Définition du travail

Doc 2 : Vidéo sur l'agitation thermique

Doc 3 : Définition du transfert thermique

- Donner des exemples de travail et de transfert thermique dans la vie de tous les jours.

RÉINVESTISSEMENTENT EN TANT QU'ENSEIGNANTE

Activité 3 : Énergie interne

- 1. Temps de réflexion par groupe : Y-a-t-il une énergie mise en jeu ?
- 2. Discussion/débat intergroupe :
 - Définir l'énergie interne.
 - Montrer des images/vidéos de différentes situations et demander de classer les énergies en jeu (cinétique/potentielle, microscopique/macroscopique).
- 3. Restitution: Document-réponse.

III. Présentation de ma mission doctorale

LA MISS

Maison d'Initiation et de Sensibilisation aux Sciences

