Exercice 1 -

Dans chaque cas, montrer que f est continue sur son ensemble de définition  $\mathcal{D}_f$  et déterminer si la fonction f est  $\mathcal{C}^1$  ou non sur  $\mathcal{D}_f$ .

a) 
$$f(x) = \begin{cases} x \ln x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$
,  $\mathcal{D}_f = [0, +\infty[$ 

c) 
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
,  $\mathcal{D}_f = \mathbb{R}$ 

b) 
$$f(x) = \begin{cases} e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ e^{1/x} & \text{si } x < 0 \end{cases}$$

d) 
$$f(x) = |x| \ln(1+x)$$
,  $\mathcal{D}_f = ]-1; +\infty[$ .

Exercice 2

Dans chaque cas déterminer la limite de f(x) lorsque x tend vers a à l'aide d'une dérivée connue :

a) 
$$f(x) = \frac{3 - \sqrt{9 - 4x}}{x}$$
,  $a = 0$ 

c) 
$$f(x) = \frac{2^x - 4}{x - 2}$$
,  $a = 2$ 

b) 
$$f(x) = \frac{\cos(x)}{x - \frac{\pi}{2}}, \quad a = \frac{\pi}{2}$$

d) 
$$f(x) = \frac{x-1}{8\arctan(x) - 2\pi}$$
,  $a = 1$ 

Exercice 3 — Voir correction —

Dans chaque cas déterminer la limite de f(x) lorsque x tend vers a à l'aide d'un développement limité :

a) 
$$f(x) = \frac{1 - e^{3x}}{2x}$$
,  $a = 0$ 

d) 
$$f(x) = \frac{\ln(x)}{3x - 3}$$
,  $a = 1$ 

b) 
$$f(x) = \frac{3 - \sqrt{9 - 4x}}{x}$$
,  $a = 0$ 

e) 
$$f(x) = \frac{e^{2x} - \cos(x)}{\sin(3x)}, a = 0$$

c) 
$$f(x) = \frac{\cos(x)}{x - \frac{\pi}{2}}, \quad a = \frac{\pi}{2}$$

f) 
$$f(x) = \left(\frac{\ln(1+x)}{\ln x}\right)^x$$
,  $a = +\infty$ 

Exercice 4

——— Voir correction —

On considère la fonction f définie sur  $[0; +\infty[$  par  $f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 - 1} - 2x$ . À l'aide d'un développement limité, montrer que  $\lim_{x \to +\infty} f(x) = 0$ .

Exercice 5

On considère la fonction f définie sur  $[0; +\infty[$  par

$$f(x) = 2\sqrt{x^2 + 3x} - 3\sqrt[3]{x^3 - 4x^2} + \sqrt[4]{x^4 + 5x^3}$$

Déterminer la limite de f(x) lorsque x tend vers  $+\infty$ .

Exercice 6 -

— Voir correction —

On considère la fonction f définie sur  $\mathbb{R}$  par :

$$f(x) = \begin{cases} e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$$

- 1) Montrer que f est de classe  $\mathcal{C}^{\infty}$  sur  $]0; +\infty[$  et que pour tout  $n \in \mathbb{N}$  et tout x > 0 on a  $f^{(n)}(x) = e^{-1/x} P_n(1/x)$  où  $P_n$  est un polynôme de degré 2n.
- 2) Montrer que f est de classe  $\mathcal{C}^{\infty}$  sur  $\mathbb{R}$ .

\* \* Exercice 7 ———— Voir correction —

Le but de cet exercice est de généraliser le théorème de Rolle : soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction dérivable sur  $\mathbb{R}$ . On suppose qu'il existe  $\ell \in \mathbb{R}$  tel que  $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = \ell$ . Montrer qu'il existe un réel c tel que f'(c) = 0.

Exercice 8 — Voir correction —

En utilisant le théorème de Rolle, montrer par récurrence sur  $n \in \mathbb{N}$  qu'un polynôme non nul de degré n admet au plus n racines distinctes.

Exercice 9 — Voir correction —

Déterminer dans chaque cas un équivalent simple de  $u_n$  lorsque n tend vers  $+\infty$ .

- 1)  $u_n = \sqrt{n^4 + 5n + 2} n^2$
- 2)  $u_n = \ln(n^2 + 1) 2\ln(n + 5)$
- 3)  $u_n = e^{1/n} \sqrt{1 + 1/3n}$

Soient f et g deux fonctions de classe  $\mathcal{C}^{\infty}$ .

- 1) Montrer que pour tout  $n \in \mathbb{N}$ ,  $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$  (Formule de Leibniz)
- 2) **Application :** soient a et b deux réels. On considère la fonction  $\varphi$  définie sur  $\mathbb{R}$  par  $\varphi(x) = (x-a)^n(x-b)^n$ .
  - a) Calculer  $\varphi^{(n)}(x)$
  - b) En considérant le cas a = b, en déduire  $\sum_{k=0}^{n} (C_n^k)^2$ .

Rappel: on note  $C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$ 

À l'aide du théorème des accroissements finis, démontrer les inégalités suivantes :

- a)  $\forall x \in \mathbb{R}, \quad e^x \ge 1 + x$
- b)  $\forall x \in ]-1; +\infty[, \ln(1+x) \le x$
- c)  $\forall x, y \in \mathbb{R}$ ,  $|\sin y \sin x| \le |y x|$

Exercice 12 — Voir correction —

Le but de cet exercice est d'étudier la suite  $(u_n)$  définie par  $u_0 = 1$  et  $u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n}$ .

On considère la fonction f définie sur l'intervalle [1;2] par  $f(x) = \frac{x}{2} + \frac{1}{x}$ .

- 1) Étudier les variations de f et montrer que pour tout  $x \in [1, 2]$  on a  $f(x) \in [1, 2]$ .
- 2) Montrer que la suite  $(u_n)$  est bien définie et à valeurs dans [1;2].
- 3) Montrer que f est de classe  $C^2$  et déterminer le maximum de |f'(x)| sur [1;2].
- 4) En déduire qu'il existe un réel  $r \in [0; 1[$  tel que  $\forall n \in \mathbb{N}, |u_{n+1} u_n| \le r^n |u_1 u_0|$ .
- 5) Montrer que la série de terme général  $u_{n+1} u_n$  converge puis en déduire que la suite  $(u_n)$  converge.
- 6) Déterminer la limite de  $(u_n)$ .

\* \*
Exercice 13

- Voir correction —

Le but de cet exercice est de généraliser le résultat de l'exercice précédent. Soit f une fonction définie et dérivable sur un intervalle [a;b] telle que

- $\forall x \in [a; b]$  on a  $f(x) \in [a; b]$ .
- Il existe un réel  $r \in [0; 1[$  tel que  $\forall x \in [a; b], |f'(x)| \le r$

Soit  $(u_n)$  une suite définie par  $u_0 \in [a;b]$  et  $\forall n \in \mathbb{N}$ ,  $u_{n+1} = f(u_n)$ .

- 1) Montrer que f admet un unique point fixe, c'est à dire un unique réel  $\ell \in [a;b]$  tel que  $f(\ell) = \ell$ .
- 2) Montrer par récurrence que  $(u_n)$  est bien définie et à valeurs dans [a;b].
- 3) Montrer que pour tout  $n \in \mathbb{N}$ ,  $|u_{n+1} \ell| \le r|u_n \ell|$
- 4) En déduire que pour tout  $n \in \mathbb{N}$ ,  $|u_n \ell| \le r^n |u_0 \ell|$ .
- 5) En déduire que  $(u_n)$  converge vers  $\ell$ .



#### Exercice 14

- Voir correction -

On considère la fonction f définie sur  $[0; +\infty[$  par  $f(x) = 1 + \frac{1}{2}xe^{-x}.$ 

- 1) Montrer que f est de classe  $C^2$  sur  $[0; +\infty[$ .
- 2) Montrer que l'intervalle  $I = [1; +\infty[$  est stable par f.
- 3) Montrer que pour tout  $x \in [0; +\infty[, |f'(x)| \le \frac{1}{2}]$
- 4) Prouver qu'il existe un unique réel  $\alpha \in [1; +\infty[$  tel que  $f(\alpha) = \alpha$ .
- 5) On considère la suite  $(u_n)$  définie par  $u_0 = 1$  et pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = f(u_n)$ . Montrer que pour tout  $n \in \mathbb{N}$ ,  $|u_n - \alpha| \le \frac{1}{2^n} |u_0 - \alpha|$ .
- 6) En déduire la limite de la suite  $(u_n)$ .

# Correction des exercice

# Correction de l'exercice 1 :

a) Sur  $[0; +\infty[$ ,  $f(x) = x \ln x$  donc f est continue sur cet intervalle comme produit de fonctions continues. En 0, on a f(0) = 0 d'une part et  $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{x \to 0} x \ln x = 0$  par croissance comparée. Ainsi f est continue en 0

On en conclut que f est continue sur  $[0; +\infty[$ .

Pour tout x>0, on a  $\frac{f(x)-f(0)}{x-0}=\frac{x\ln x}{x}=\ln x$ , donc  $\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\ln x=-\infty$ . On en déduit que f n'est pas dérivable en 0, donc  $f\notin \mathcal{C}^1$ .

b)  $x \mapsto -\frac{1}{x}$  est  $\mathcal{C}^1$  sur  $]0; +\infty[$  et à valeurs dans  $]-\infty; 0[$  et  $x \mapsto e^x$  est  $\mathcal{C}^1$  sur  $]-\infty; 0[$ , donc f est  $\mathcal{C}^1$  sur  $]0; +\infty[$  comme composée de fonctions  $\mathcal{C}^{\infty}$ .

De même, f est  $\mathcal{C}^1$  sur  $]-\infty;0[$  comme composée de la fonction  $x\mapsto \frac{1}{x}$  par la fonction  $x\mapsto \mathrm{e}^x$  qui sont toutes deux  $\mathcal{C}^1$ . Il reste à montrer que f est continue en 0 et si elle est  $C^1$  en 0.

• On a  $\lim_{x\to 0} \left(-\frac{1}{x}\right) = -\infty$  et  $\lim_{X\to -\infty} e^X = 0$  donc par composition de limites  $\lim_{\substack{x\to 0\\x>0}} e^{-\frac{1}{x}} = 0$ 

De même,  $\lim_{\substack{x\to 0\\x>0}} e^{\frac{1}{x}} = 0$ , donc f admet une limite à gauche et une limite à droite en 0 et  $\lim_{\substack{x\to 0\\x>0}} f(x) = \lim_{\substack{x\to 0\\x>0}} f(x) =$ 

0 = f(0) donc f est continue en 0.

Pour tout x > 0 on a

$$\frac{f(x) - f(0)}{x - 0} = \frac{e^{-\frac{1}{x}}}{x} = \frac{1}{x} \times e^{-\frac{1}{x}}$$

Or,  $\lim_{\substack{x\to 0\\x>0}}\frac{1}{x}=+\infty$  et  $\lim_{X\to +\infty}X\,\mathrm{e}^{-X}=0$  donc par composition de limites  $\lim_{x\to 0}\frac{1}{x}\,\mathrm{e}^{-\frac{1}{x}}=0$ .

De même, pour tout x < 0, on a

$$\frac{f(x) - f(0)}{x - 0} \frac{e^{\frac{1}{x}}}{x} = \frac{1}{x} \times e^{\frac{1}{x}}$$

 $\operatorname{Or} \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty \text{ et } \lim_{X \to -\infty} X \operatorname{e}^X = 0 \text{ donc par composition de limites } \lim_{\substack{x \to 0 \\ x > 0}} \frac{f(x) - f(0)}{x - 0} = 0.$ 

La limite à gauche et la limite à droite sont les mêmes, donc on a  $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}=0$ . Ainsi f est dérivable en 0et f'(0) = 0.

Pour que f soit  $\mathcal{C}^1$  sur  $\mathbb{R}$ , il faut que f' soit continue sur  $\mathbb{R}$ . f' est définie par

$$f(x) = \begin{cases} \frac{1}{x^2} e^{-1/x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ -\frac{1}{x^2} e^{1/x} & \text{si } x < 0 \end{cases}$$

En posant  $X = \frac{1}{x}$  on a  $\lim_{\substack{x \to 0 \\ x > 0}} X = +\infty$ , et comme  $\lim_{X \to +\infty} X^2 e^{-X}$  on en déduit par composition de limites que

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^2} e^{-1/x} = 0.$$

De même,  $\lim_{\substack{x\to 0\\x<0}} X = -\infty$  et  $\lim_{X\to -\infty} -X^2 \, \mathrm{e}^X = 0$  donc par composition  $\lim_{\substack{x\to 0\\x<0}} -\frac{1}{x^2} \, \mathrm{e}^{1/x} = 0$ La limite à droite et la limite à gauche sont les mêmes donc  $\lim_{x\to 0} f'(x) = f'(0) = 0$ , ainsi f' est continue sur  $\mathbb R$ 

c)  $x \mapsto \frac{1}{x} \operatorname{est} \mathcal{C}^1 \operatorname{sur} ]0; +\infty[\operatorname{et} \operatorname{sur}] -\infty; 0[\operatorname{donc} x \longmapsto \sin\left(\frac{1}{x}\right) \operatorname{est} \mathcal{C}^1 \operatorname{sur}] -\infty; 0[\operatorname{et} \operatorname{sur}]0; +\infty[\operatorname{par} \operatorname{compos\acute{e}e} \operatorname{de}]0$ functions  $\mathcal{C}^k$ .

De plus,  $x \mapsto x^2$  est  $\mathcal{C}^1$  sur  $\mathbb{R}$  donc f est  $\mathcal{C}^1$  sur  $]-\infty;0[$  et sur  $]0;+\infty[$  par produit de fonctions  $\mathcal{C}^1$ . Montrons que f est continue en 0:

On sait que pour tout  $x \neq 0$ ,  $-1 \leq \sin\left(\frac{1}{x}\right) \leq 1$  donc  $-x^2 \leq \sin\left(\frac{1}{x}\right) \leq x^2$ . Or  $\lim_{x\to 0} x^2 = \lim_{x\to 0} (-x^2) = 0$  donc

 $\lim_{x\to 0} \sin\left(\frac{1}{x}\right) = 0 = f(0)$ . On en déduit que f est continue en 0.

Étudions la dérivabilité de f en 0

On a

$$\forall x \in \mathbb{R}^*, \quad \frac{f(x) - f(0)}{x - 0} = \frac{x^2 \sin\left(\frac{1}{x}\right)}{x}$$

$$\forall x \in \mathbb{R}^*, \quad \frac{f(x) - f(0)}{x - 0} = x \sin\left(\frac{1}{x}\right)$$

Or  $\left|x\sin\left(\frac{1}{x}\right)\right| \le x$  donc par comparaison  $\lim_{x\to 0} \left|x\sin\left(\frac{1}{x}\right)\right| = 0$  On en déduit que  $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$  donc f est dérivable en 0 et f'(0) = 0.

Ainsi f est dérivable sur  $\mathbb{R}$ .

On vérifie si f est  $\mathcal{C}^1$ :

Pour tout 
$$x \neq 0$$
,  $f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \left(-\frac{1}{x^2}\right) \cos\left(\frac{1}{x}\right)$ 

Ainsi, 
$$f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

Comme vu précédemment,  $\lim_{x\to 0} 2x \sin\left(\frac{1}{x}\right) = 0$ , mais  $\cos\left(\frac{1}{x}\right)$  n'a pas de limite en 0.

En effet, si on pose  $x_k = \frac{1}{k\pi}$  pour tout  $k \in \mathbb{N}^*$ , on a  $\forall k \in \mathbb{N}^*$ ,  $\cos(x_k) = \cos(k\pi) = (-1)^k$ , donc  $\cos(x_k)$  ne converge pas alors que  $\lim_{k \to +\infty} x_k = 0$ 

On en conclut que f est continue et dérivable sur  $\mathbb{R}$  mais pas  $\mathcal{C}^1$  en 0.

d)  $x \mapsto 1 + x$  est  $\mathcal{C}^1$  sur  $]-1; +\infty[$  et ne s'annule pas, donc  $x \mapsto \ln(1+x)$  est  $\mathcal{C}^1$  par composition de fonction  $\mathcal{C}^1$ . De plus,  $x \mapsto |x|$  est continue sur  $]-1;+\infty[$  et  $\mathcal{C}^1$  sur ]-1;0[ et sur  $]0;+\infty[$  mais pas  $\mathcal{C}^1$  sur  $]-1;+\infty[$  puisque non dérivable en 0.

Ainsi, f est continue sur ]-1;+infty[ comme produit de fonctions continues.

Vérifion si f est dérivable en (

$$\overline{\text{Pour tout } x \neq 0, \frac{f(x) - f(0)}{x - 0}} = \frac{|x| \ln(1 + x)}{x} = \begin{cases} \ln(1 + x) & \text{si } x > 0 \\ -\ln(1 + x) & \text{si } x < 0 \end{cases}$$
En effet, 
$$\frac{|x|}{x} = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$

Or,  $\lim_{x\to 0} \ln(1+x) = \lim_{x\to 0} (-\ln(1+x)) = 0$  donc  $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$ . On en conclut que f est dérivable en 0 et que f'(0) = 0.

Vérifions si f est  $C^1$ :

Sur l'intervalle ] – 1;0[, f est  $\mathcal{C}^1$  et  $f(x) = -x \ln(1+x)$  donc  $f'(x) = -\ln(1+x) - \frac{x}{1+x}$ . Ainsi,  $\lim_{\substack{x \to 0 \\ x \to 0}} f'(x) = -\frac{x}{1+x}$ .

$$-\ln(1+0) - \frac{0}{1+0} = 0.$$

De même, f est  $\mathcal{C}^1$  sur  $]0; +\infty[$  et sur cet intervalle on a  $f(x) = x \ln(1+x)$ . Ainsi  $f'(x) = \ln(1+x) + \frac{x}{1+x}$ , donc  $\lim_{\substack{x \to 0 \\ x > 0}} f'(x) = 0$ 

On a donc  $\lim_{x\to 0} f'(x) = 0 = f'(0)$  donc f' est continue en 0. Ainsi f est  $\mathcal{C}^1$  sur  $]-1;+\infty[$ .

# Correction de l'exercice 2 :

1) En posant  $g(x) = \sqrt{9-4x}$  on a  $\frac{3-\sqrt{9-4x}}{x} = \frac{g(0)-g(x)}{x} = -\frac{g(x)-g(0)}{x}$ Or g est dérivable en 0 et  $g'(x) = \frac{-4}{2\sqrt{9-4x}} = \frac{-2}{\sqrt{9-4x}}$  donc  $g'(0) = \frac{-2}{\sqrt{9}} = -\frac{2}{3}$ 

On en déduit que  $\lim_{x\to 0} -\frac{3-\sqrt{9-4x}}{x} = -\left(-\frac{2}{3}\right) = \frac{2}{3}$ .



- 2) En posant  $g(x) = \cos x$  on a  $\frac{\cos x}{x \frac{\pi}{2}} = \frac{g(x) f\left(\frac{\pi}{2}\right)}{x \frac{\pi}{2}}$ . Or g est dérivable en  $\frac{\pi}{2}$  et  $g'\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$ . On en déduit que  $\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} = -1$
- 3) En posant  $g(x) = 2^x = e^{x \ln(2)}$  on a  $f(x) = \frac{g(x) g(2)}{x 2}$ . Or g est dérivable et  $\forall x \in ]0; +\infty[$ ,  $g'(x) = \ln(2) e^{x \ln(2)} = \ln(2)2^x$ . On en déduit que  $g'(2) = 4 \ln(2)$  donc  $\lim_{x \to 2} f(x) = 4 \ln(2)$ .
- 4) En posant  $g(x) = \arctan(x)$  on a  $f(x) = \frac{x-1}{8\arctan(x) 8\arctan(1)} = \frac{1}{8} \times \frac{1}{\frac{\arctan(x) \arctan(1)}{x-1}}$ . Or g est dérivable sur  $\mathbb{R}$  et  $g'(x) = \frac{1}{1+x^2}$  donc  $g'(1) = \frac{1}{2}$  d'où  $\lim_{x \to 1} f(x) = \frac{1}{8} \times \frac{1}{\frac{1}{2}} = \frac{1}{4}$ .

#### Correction de l'exercice 3:

- 1) Lorsque x tend vers 0, on a  $1 e^{3x} = 1 (1 + 3x + o(3x)) = -3x + o(3x)$ . Ainsi,  $\frac{1 - e^{3x}}{2x} = \frac{-3x + o(3x)}{2x} = -\frac{3}{2} + o\left(\frac{3}{2}\right)$ .
  - On en déduit que  $\lim_{x\to 0} \frac{1-e^{3x}}{2x} = -\frac{3}{2}$ .
- 2) Lorsque x tend vers 0, on a  $\sqrt{1+x} = 1 + \frac{x}{2} + o(x)$ . On a donc

$$\sqrt{9-4x} = \sqrt{9\left(1 - \frac{4x}{9}\right)}$$

$$= 3\sqrt{1 - \frac{4x}{9}}$$

$$= 3\left(1 - \frac{2x}{9} + o\left(\frac{4x}{9}\right)\right)$$

$$= 3 - \frac{2x}{3} + o\left(\frac{4x}{3}\right)$$

Ainsi,

$$\frac{3 - \sqrt{9 - 4x}}{x} = \frac{3 - \left(3 - \frac{2x}{3} + o\left(\frac{4x}{3}\right)\right)}{x}$$
$$= \frac{\frac{2x}{3} + o\left(\frac{4x}{3}\right)}{x}$$
$$= \frac{2}{3} + o\left(\frac{4}{3}\right)$$

donc 
$$\lim_{x \to 0} \frac{3 - \sqrt{9 - 4x}}{x} = \frac{2}{3}$$

3) Calculons le développement limité de  $\cos x$  au voisinage de  $\frac{\pi}{2}$ . D'après le cours, lorsque x tend vers  $\frac{\pi}{2}$  on a :

$$\cos(x) = \cos\left(\frac{\pi}{2}\right) + \cos'\left(\frac{\pi}{2}\right)\left(x - \frac{\pi}{2}\right) + o\left(x - \frac{\pi}{2}\right)$$

Or,  $\cos'\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$  donc au voisinage de  $\frac{\pi}{2}$  on a

$$\cos(x) = -\left(x - \frac{\pi}{2}\right) + o\left(x - \frac{\pi}{2}\right)$$

Finalement

$$\frac{\cos x}{x - \frac{\pi}{2}} = -1 + o(1)$$

$$\operatorname{donc} \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} = -1$$

4) Méthode 1:

Au voisinage de 1 on a

$$\ln(x) = \ln(1) + \ln'(1) \times (x - 1) + o(x - 1)$$
$$= x - 1 + o(x - 1)$$

ainsi 
$$\frac{\ln x}{3x-3} = \frac{x-1+o(x-1)}{3(x-1)} = \frac{1}{3}+o\left(\frac{1}{3}\right).$$
 Finalement, 
$$\lim_{x\to 1}\frac{\ln x}{3x-3} = \frac{1}{3}.$$

 $\underline{\text{M\'ethode 2}}: \text{on pose } h = x-1 \text{ pour avoir } x = 1+h. \text{ Lorsque } x \text{ tend vers 1}, h \text{ tend vers 0 et on sait que } \ln(1+h) = h+o(h),$ 

$$\frac{\ln(x)}{3x-3} = \frac{\ln(1+h)}{3(1+h)-3} = \frac{h+o(h)}{3h} = \frac{1}{3} + o\left(\frac{1}{3}\right)$$

d'où  $\lim_{x \to 1} \frac{\ln x}{3x - 3} = \frac{1}{3}$ .

Correction de l'exercice 4: On a  $\lim_{x\to +\infty} \frac{1}{x} = 0$  donc  $\sqrt{1+\frac{1}{x^2}} = 1+\frac{1}{2x^2}+o\left(\frac{1}{x^2}\right)$  lorsque x tend vers  $+\infty$ .

$$\forall x > 0, \quad f(x^2) = \sqrt{x^2 + 1} + \sqrt{x^2 - 1} - 2x$$

$$= \sqrt{x^2 (1 + \frac{1}{x^2})} + \sqrt{x^2 (1 - \frac{1}{x^2})} - 2x$$

$$= x\sqrt{1 + \frac{1}{x^2}} + x\sqrt{1 - \frac{1}{x^2}} - 2x$$

$$= x\left(1 + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)\right) + x\left(1 - \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right)\right) - 2x$$

$$= 2x - 2x + o\left(\frac{1}{x}\right)$$

$$= o\left(\frac{1}{x}\right)$$

donc  $\lim_{x \to +\infty} f(x) = 0$ .

Correction de l'exercice 5 :

$$\forall x \in [0; +\infty[, \quad f(x) = 2\sqrt{x^2 + 3x} - 3\sqrt[3]{x^3 - 4x^2} + \sqrt[4]{x^4 + 5x^3}$$

$$= 2\sqrt{x^2(1 + \frac{3}{x})} - 3\sqrt[3]{x^3(1 - \frac{4}{x})} + \sqrt[4]{x^4(1 + \frac{5}{x})}$$

$$= 2x\sqrt{1 + \frac{3}{x}} - 3x\sqrt[3]{1 - \frac{4}{x}} + x\sqrt[4]{1 + \frac{5}{x}}$$

$$= 2x(1 + \frac{3}{x})^{1/2} - 3x(1 - \frac{4}{x})^{1/3} + x(1 + \frac{5}{x})^{1/4}$$

$$= 2x\left(1 + \frac{3}{2x} + o\left(\frac{1}{x}\right)\right) - 3x\left(1 - \frac{4}{3x} + o\left(\frac{1}{x}\right)\right) + x\left(1 + \frac{5}{4x} + o\left(\frac{1}{x}\right)\right)$$

$$= 2x + 3 - 3x + 4 + x + \frac{5}{4} + o(1)$$

$$= \frac{33}{4} + o(1)$$

donc  $\lim_{x \to +\infty} f(x) = \frac{33}{4}$ 

Correction de l'exercice 6 :



- 1) Pour tout entier  $n \in \mathbb{N}$ , on pose  $\mathcal{P}(n)$  la propriété « f est de classe  $\mathcal{C}^n$  sur  $]0; +\infty[$  et il existe un polynôme de degré n  $P_n$  tel que  $\forall x > 0$ ,  $f^{(n)}(x) = e^{-1/x} P_n(1/x)$ . »et on raisonne par récurrence.
  - **Initialisation :** Pour n = 0 on a  $f^{(0)}(x) = f(x) = e^{-1/x}$  sur  $]0; +\infty[$ . De plus  $x \mapsto \frac{1}{x}$  est  $\mathcal{C}^1$  sur  $]0; +\infty[$  car x ne s'annule pas. Ainsi, par composition de fonctions  $\mathcal{C}^1$ , f est  $\mathcal{C}^1$  sur  $]0; +\infty[$ .

De plus, on a  $f'(x) = \frac{1}{x^2} e^{-1/x}$  sur  $]0; +\infty[$ , donc  $f'(x) = e^{-1/x} P_1(1/x)$  avec  $P_1(x) = x^2$  un polynôme de degré 2. Ainsi,  $\mathcal{P}(1)$  est vraie.

— **Hérédité**: Supposons que  $\mathcal{P}(n)$  soit vraie pour un certain rang  $n \in \mathbb{N}^*$ .

Alors il existe  $P_n$  un polynôme de degré n tel que  $\forall x \in ]0; +\infty[, f^{-n})(x) = e^{-1/x} P_n(1/x)$ .  $f^{(n)}$  est donc dérivable comme produit de fonctions dérivables, et

$$f^{(n+1)}(x) = (f^{(n)})'(x) = \frac{1}{x^2} e^{-1/x} P_n(1/x) - \frac{1}{x^2} e^{-1/x} P'_n(1/x)$$

où  $P_n'$  est la fonction dérivée de la fonction polynôme  $P_n$ . Ainsi,

$$f^{(n+1)}(x) = e^{-1/x} \left( \frac{1}{x^2} P_n(1/x) - \frac{1}{x^2} P'_n(1/x) \right)$$

En posant  $P_{n+1}(x) = x^2 P_n(x) - x^2 P_n'(x)$ , alors  $P_{n+1}$  est un polynôme de degré 2n + 2 car  $P_n(x)$  est de degré 2n donc  $x^2 P_n(x)$  est de degré 2n + 2 et  $P_n(x)$  est de degré 2n + 1.

De plus, on a  $f^{(n+1)}(x) = e^{-1/x} P_{n+1}(x)$  pour tout x > 0.

Aini,  $\mathcal{P}(n+1)$  est vraie.

- Conclusion: Par principe de récurrence, on en conclut que  $\mathcal{P}(n)$  est vraie pour tout  $n \in \mathbb{N}$ , donc f est  $\mathcal{C}^n$  sur  $]0; +\infty[$  pour tout  $n \in \mathbb{N}$  et ainsi f est  $\mathcal{C}^\infty$  sur  $]0; +\infty[$
- 2) Montrons par récurrence que pour tout  $n \in \mathbb{N}$ , f est n fois dérivable sur  $\mathbb{R}$  et que  $f^{(n)}(0) = 0$ 
  - Initialisation : f est  $\mathcal{C}^1$  sur  $]-\infty;0[$  et sur  $]0;+\infty[$  comme composée de fonctions dérivables. En x=0 on a

$$\frac{f(x) - f(0)}{x - 0} = \frac{e^{-1/x}}{x}$$
$$= \frac{1}{x} e^{-1/x}$$

or  $\lim_{X\to +\infty} X e^{-X} = 0$  donc par composition de limites  $\lim_{x\to 0} \frac{1}{x} e^{-1/x} = 0$ .

On en déduit que f est dérivable en 0 et que f'(0) = 0, ainsi la propriété est vraie au rang n = 1.

— **Hérédité**: Supposons que f soit n fois dérivable sur  $\mathbb{R}$  et que  $f^n(0) = 0$ .

Sur  $]-\infty;0[, f(x)=0 \text{ donc } f^{(n)}(x)=0, \text{ ainsi on a} ]$ 

$$f^{(n)}(x) = \begin{cases} e^{-1/x} P_n(1/x) & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

d'après la question précédente et l'hypothèse de récurrence. Ainsi,  $f^{(n)}$  est dérivable sur  $]-\infty;0[$  et sur  $]0;+\infty[$ . Étudions la dérivabilité en 0:

$$\forall x > 0, \quad \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \frac{e^{-1/x} P_n(1/x)}{x}$$
$$= \frac{1}{x} P_n(1/x) e^{-1/x} \qquad = X P_n(X) e^{-X} \text{ en posant } X = \frac{1}{x}$$

Or  $\lim_{x\to 0} \frac{1}{x} = +\infty$ , et pour tout polynôme P on a  $\lim_{X\to +\infty} P(X) e^{-X} = 0$ .

Ainsi, 
$$\lim_{x\to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = 0$$
, donc  $(f^{(n)})'_d(0) = 0$ 

A gauche de 0 on a :

$$\forall x < 0, \quad \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \frac{0}{x} = 0$$



donc  $(f^{(n)})'_{q}(0) = 0 = (f^{(n)})'_{d}(0)$ .

Finalement,  $f^{(n)}$  est dérivable en 0 et  $f^{(n+1)}(0) = 0$ . Ainsi la propriété est vraie au rang n+1

— Conclusion : Par principe de récurrence, on en conclut que pour tout  $n \in \mathbb{N}$ , f est n fois dérivable et  $f^{(n)}(0) = 0$ . Ainsi f est  $\mathcal{C}^{\infty}$  sur  $\mathbb{R}$ .

#### Correction de l'exercice 7:

- Si f est constante égale à  $\ell$ , alors  $\forall x \in \mathbb{R}, f'(x) = 0$
- Si f n'est pas constante, alors il existe  $x_0 \in \mathbb{R}$  tel que  $f(x_0) \neq \ell$ . Soit  $\varepsilon > 0$  tel que  $f(x_0) \notin ]\ell - \varepsilon$ ,  $\ell + \varepsilon[$ . Puisque  $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = \ell$ , il existe  $x_1 \in \mathbb{R}$  et  $x_2 \in \mathbb{R}$  tel que  $\forall x \leq x_1, \quad f(x) \in ]\ell - \varepsilon$ ,  $\ell + \varepsilon[$  et  $\forall x \geq x_2, \quad f(x) \in ]\ell - \varepsilon$ ,  $\ell + \varepsilon[$ . De plus, on a nécessairement  $x_1 < x_0 < x_2$ 
  - ▷ Supposons que  $f(x_0) > \ell + \varepsilon$ . Comme f est dérivable sur  $\mathbb{R}$  elle est continue sur  $\mathbb{R}$  donc d'après le théorème des valeurs intermédiaires, puisque  $f(x_1) < ell + \varepsilon$  et  $f(x_2) < \ell + \varepsilon$  il existe deux réels a et b avec  $a \in [x_1, x_0[$  et  $b \in ]x_0, x_2[$  tels que  $f(a) = f(b) = \ell + \varepsilon$ .

f est continue sur [a,b] et dérivable sur ]a,b[, et on a f(a)=f(b) donc d'après le théorème de Rolle il existe un réel  $c \in ]a,b[$  tel que f'(c)=0.

▷ Supposons que  $f(x_0) < \ell - \varepsilon$ . Comme f est dérivable sur  $\mathbb{R}$  elle est continue sur  $\mathbb{R}$  donc d'après le théorème des valeurs intermédiaires, puisque  $f(x_1) > ell - \varepsilon$  et  $f(x_2) > \ell - \varepsilon$  il existe deux réels a et b avec  $a \in [x_1, x_0[$  et  $b \in ]x_0, x_2[$  tels que  $f(a) = f(b) = \ell - \varepsilon$ .

f est continue sur [a, b] et dérivable sur ]a, b[, et on a f(a) = f(b) donc d'après le théorème de Rolle il existe un réel  $c \in ]a, b[$  tel que f'(c) = 0.

Dans tous les cas on a prouvé l'existence d'un réel  $c \in \mathbb{R}$  tel que f'(c) = 0.

Correction de l'exercice 8 : Pour tout  $n \in \mathbb{N}$  on note  $\mathcal{P}(n)$  : tout polynôme non nul de degré n admet au plus n racines distinctes, et on raisonne par récurrence.

— **Initialisation :** Pour n = 0, un polynôme non nul de degré 0 est un polynôme constant. Puisqu'il et non nul il ne s'annule jamais donc il possède 0 racines.

Pour n=1: un polynôme de degré 1 est une fonction affine de la forme  $f: x \longmapsto ax+b$  avec  $a \neq 0$ .

 $f(x) = 0 \iff ax + b = 0 \iff x = -\frac{b}{a}$  donc f admet une unique racine.

La propriété est vraie au rang n = 0 et n = 1.

— **Hérédité :** Supposons que la propriété  $\mathcal{P}(n)$  soit vraie pour un certain rang  $n \in \mathbb{N}$ , et soit P un polynôme de degré n+1.

On raisonne par l'absurde et on suppose que P admet n+2 racines distinctes. Cela signifie qu'il existe n+2 réels distincts  $x_1 < x_2 < \cdots < x_{n+1} < x_{n+2}$  tels que  $P(x_1) = P(x_2) = \cdots = P(x_{n+1}) = P(x_{n+2}) = 0$ .

Pour tout  $k \in [1, n+1]$ , la fonction P est continue sur  $[x_k, x_{k+1}]$  et dérivable sur  $]x_k, x_{k+1}[$  en tant que fonction polynômiale. De plus,  $P(x_k) = P(x_{k+1})$ . D'après le théorème de Rolle, il existe donc un réel  $y_k \in ]x_k, x_{k+1}[$  tel que  $P'(y_k) = 0$ .

La fonction P' admet donc n+1 racines distinctes  $y_1 < y_2 < \cdots < y_k < y_{k+1}$ . Or P' est un polynôme de degré n donc P admet au plus n racines distinctes, contradiction.

On en conclut que P admet au plus n+1 racines distinctes.

— Conclusion : La propriété est vraie au rang n=1 et elle est héréditaire, donc par principe de récurrence on en conclut que pour tout  $n \in \mathbb{N}$ ,  $\mathcal{P}(n)$  est vraie.

## Correction de l'exercice 9 :

1) Lorsque  $n \to +\infty$ , on a

$$u_n = \sqrt{n^4 + 5n + 2} - n^2$$

$$= \sqrt{n^4 (1 + \frac{5}{n^3} + \frac{2}{n^4})} - n^2$$

$$= n^2 \sqrt{1 + \frac{5}{n^3} + \frac{2}{n^4}} - n^2$$

$$= n^2 \left( 1 + \frac{5}{2n^3} + o\left(\frac{5}{2n^3}\right) \right) - n^2$$

$$= \frac{5}{2n} + o\left(\frac{5}{2n}\right)$$

$$= \frac{5}{2n} + o\left(\frac{5}{2n}\right)$$

donc  $u_n \underset{n\to\infty}{\sim} \frac{5}{2n}$ 



2) Lorsque n tend vers  $+\infty$  on a:

$$u_n = \ln(n^2 + 1) - 2\ln(n + 5)$$

$$= \ln(n^2) + \ln\left(1 + \frac{1}{n^2}\right) - 2\ln(n) - 2\ln\left(1 + \frac{5}{n}\right)$$

$$= 2\ln(n) + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) - 2\ln(n) - 2\left(\frac{5}{n} + o\left(\frac{5}{n}\right)\right)$$

$$= -\frac{10}{n} + o\left(\frac{10}{n}\right)$$

$$\operatorname{car} \frac{1}{n^2} = o\left(\frac{10}{n}\right)$$

donc  $u_n \underset{n \to \infty}{\sim} \frac{-10}{n}$ 

#### Correction de l'exercice 10:

- 1) On note  $\mathcal{P}(n)$ :  $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$ .
  - **Initialisation :** Pour n=0, on a  $(fg)^{(0)}(x)=(fg)(x)=f(x)g(x)$  d'une part, et  $\sum_{k=0}^{0}\binom{0}{0}f^{(0)}(x)g^{(0-0)}(x)=f(x)g(x)$  d'autre part, donc la propriété  $\mathcal{P}(n)$  est vérifiée au rang n=0

Pour n = 1, on a  $(fg)^{(1)}(x) = (fg)'(x) = f'(x)g(x) + f(x)g'(x)$ .

D'autre part, on a  $\sum_{k=0}^{1} {1 \choose k} f^{(k)}(x) g^{(n-k)}(x) = {1 \choose 0} f(x) g'(x) + {1 \choose 1} f'(x) g(x)$ .

Ainsi,  $\mathcal{P}(1)$  et  $\mathcal{P}(0)$  sont vraies (un seul de deux suffit).

— **Hérédité :** Supposons que  $\mathcal{P}(n)$  soit vraie pour un certain rang  $n \in \mathbb{N}$ .

Alors  $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$ . En dérivant de chaque côté on obtient

$$\begin{split} (fg)^{(n+1)}(x) &= \sum_{k=0}^{n} \binom{n}{k} \left( f^{(k+1)}(x) g^{(n-k)}(x) + f^{(k)}(x) g^{(n-k+1)}(x) \right) \\ &= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)}(x) g^{(n-k)}(x) + \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n+1-k)}(x) \\ &= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)}(x) g^{((n+1)-(k+1))} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n+1-k)}(x) \\ &= \sum_{k'=1}^{n+1} \binom{n}{k'-1} f^{(k')}(x) g^{(n+1-k')}(x) + \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n+1-k)}(x) \\ &= \binom{n}{n} f^{(n+1)}(x) g^{(0)}(x) + \binom{n}{0} f^{(0)}(x) g^{(n+1)}(x) + \sum_{k=1}^{n} \binom{n}{k-1} + \binom{n}{k} f^{(k)}(x) g^{(n+1-k)}(x) \\ &= \binom{n+1}{n+1} f^{(n+1)}(x) g^{(0)}(x) + \binom{n+1}{0} f^{(0)}(x) g^{(n+1)}(x) + \sum_{k=1}^{n} \binom{n+1}{k} f^{(k)}(x) g^{(n+1-k)}(x) \\ &= \sum_{k=0}^{n+1} f^{(k)}(x) g^{(n+1-k)}(x) \end{split}$$

 $\operatorname{car} \binom{n}{n} = \binom{n+1}{n+1} = \binom{n}{0} = \binom{n+1}{0} = 1 \text{ et } \operatorname{car} \binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}.$ 

On en conclut que  $\mathcal{P}(n+1)$  est vraie.

- Conclusion: Par principe de récurrence on en conclut que la propriété est vraie quel que soit  $n \in \mathbb{N}$ .
- 2) a) Si  $f(x) = (x a)^n$ , alors  $f'(x) = n(x a)^{n-1}$ ,  $f^{(2)}(x) = n(n-1)(x-a)^{n-2}$ , par récurrence immédiate on a pour tout  $k \in [0, n]$ ,  $f^{(k)}(x) = \frac{n!}{(n-k)!}(x-a)^{(n-k)}$ .

En appliquant la formule de Leibniz à la fonction  $\varphi,$  on en déduit que

$$\varphi^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!} (x-a)^{n-k} \times \frac{n!}{(n-(n-k))!} (x-b)^{n-(n-k)}$$



$$= \sum_{k=0}^{n} {n \choose k} \frac{n!}{(n-k)!} \times \frac{n!}{k!} (x-a)^{n-k} (x-b)^{k}$$

b) Avec a = b, on a  $\varphi(x) = (x - a)^{2n}$  donc  $\varphi^{(n)}(x) = 2n \times (2n - 1) \times (2n - n + 1)(x - a)^{2n - n} = \frac{(2n)!}{n!}(x - a)^n$  d'une part, et d'autre part en appliquant le résultat de la question précédente on a

$$\varphi^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!k!} \times n! \times (x-a)^{n-k} (x-a)^k$$
$$= \sum_{k=0}^{n} (C_n^k)^2 \times n! (x-a)^n$$
$$= (x-a)^n \times n! \times \sum_{k=0}^{n} (C_n^k)^2$$

Par identification, on a  $\frac{(2n)!}{n!} = n! \sum_{k=0}^{n} (C_n^k)^2$  donc  $\sum_{k=0}^{n} (C_n^k)^2 = \frac{(2n)!}{(n!)^2} = \frac{(2n)!}{n!(2n-n)!} = C_{2n}^n$ 

### Correction de l'exercice 11:

- 1) On distingue les cas selon que x > 0, x = 0 ou x < 0.
  - Si  $x \in ]0, +\infty[$ . La fonction exponentielle est continue et dérivable sur [0, x] et sa dérivée est  $x \mapsto e^x$  donc d'après le théorème des accroissements finis il existe un réel  $c \in ]0, x[$  tel que  $e^x - e^0 = e^c(x - 0)$ . Or  $e^c \ge e^0 = 1$  donc  $e^x - e^0 \ge x$ , et finalement  $e^x \ge x + 1$ .
  - Si x = 0, alors  $e^x = 1$  et x + 1 = 1 donc  $e^x \ge x + 1$
  - Si x < 0, d'après le théorème des accroissements finis il existe  $c \in ]x,0[$  tel que  $e^0 e^x = e^c(0-x)$ . On a donc  $1 - e^x = -e^c x$  c'est à dire  $e^x = 1 + e^c x$ .

Or  $e^c < 1$  donc  $e^c x > x$  car x < 0. Finalement,  $1 + e^c x \ge 1 + x$  donc  $e^c \ge 1 + x$ .

ainsi dans tous les cas on a  $e^x \ge 1 + x$ .

2) On pose  $f(x) = \ln(1+x)$ . f est dérivable sur  $]-1,+\infty[$  comme composée de la fonction  $x\mapsto 1+x$  qui est dérivable et strictement positive par la fonction  $x \mapsto \ln(x)$  qui est dérivable.

$$\forall x \in ]-1, +\infty[, f'(x) = \frac{1}{1+x}.$$

Soit  $x \in ]-1, +\infty[$ . On distingue les cas selon que  $x \in ]-1, 0[$ , x = 0 ou x > 0.

• Si x > 0, d'après le théorème des accroissements finis il existe un réel  $c \in ]0,x[$  tel que f(x) - f(0) = f'(c)(x-0)donc  $\ln(1+x) = \frac{x}{1+c}$ 

Or c > 0 donc  $\frac{1}{1+c} < 1$  et  $\frac{x}{1+c} < x$  car x > 0. Ainsi,  $\ln(1+x) \le x$ .

- Si x = 0,  $\ln(1+x) = \ln(1) = 0$  et x = 0 donc  $\ln(1+x) \le x$ .
- Si -1 < x < 0, d'après le théorème des accroissements finis il existe un réel  $c \in ]x, 0[$  tel que f(0) f(x) = f'(c)(0 x)

 $\operatorname{donc} - \ln(1+x) = \frac{-x}{1+c} \text{ c'est à dire } \ln(1+x) = \frac{x}{1+c}$   $\operatorname{Comme} -1 < c < 0, \text{ on a } 0 < 1+c < 1 \text{ donc } \frac{1}{1+c} > 1. \text{ Puisque } x < 0 \text{ on a } \frac{x}{1+c} < x \text{ donc finalement}$  $\ln(1+x) < x.$ 

ainsi dans tous les cas on a  $ln(1+x) \le x$ .

3) On pose  $f(x) = \sin x$ . f est dérivable et  $f'(x) = \cos(x)$  et on sait que  $\forall x \in \mathbb{R}, |\cos x| \le 1$ . D'après le théorème des accroissements finis, on en déduit que pour tout  $x, y \in \mathbb{R}, |f(x) - f(y)| \le 1 \times |x - y|$ . Autrement dit  $\forall x, y \in \mathbb{R}$ ,  $|\sin x - \sin y| \le |x - y|$ .

## Correction de l'exercice 12:

1) f est dérivable sur [1;2] comme somme de fonctions dérivables sur cet intervalle et  $f'(x) = \frac{1}{2} - \frac{1}{x^2}$ On a

$$f'(x) \ge 0 \Longleftrightarrow \frac{1}{2} - \frac{1}{x^2} \ge 0$$



$$\iff \frac{1}{x^2} \le \frac{1}{2}$$

$$\iff x^2 \ge 2$$

$$\iff x < -\sqrt{2} \quad \text{ou} \quad x > \sqrt{2}$$

Comme  $x \in [1; 2]$  on a  $f'(x) \ge 0 \iff x \ge \sqrt{2}$ .

On en déduit que f est décroissante sur  $[1; \sqrt{2}]$  et croissante sur  $[\sqrt{2}; 2]$ .

De plus,  $f(1) = \frac{1}{2} + 1 = \frac{3}{2}$ ,  $f(\sqrt{2}) = \frac{\sqrt{2}}{2} + \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}$ , et enfin  $f(2) = \frac{2}{2} + \frac{1}{2} = \frac{3}{2}$ .

| x     | $1 \qquad \sqrt{2}$      | 2                         |
|-------|--------------------------|---------------------------|
| f'(x) | - 0 +                    |                           |
| f     | $\frac{3}{2}$ $\sqrt{2}$ | $\rightarrow \frac{3}{2}$ |

D'après ce tableau de variation, on a  $\forall x \in [1;2], \sqrt{2} \le f(x) \le \frac{3}{2}$ 

Or  $1 \le 2$  donc  $1 \le \sqrt{2}$ , et  $\frac{3}{2} \le 2$ , donc finalement pour tout  $x \in [1; 2]$ ,  $1 \le \sqrt{2} \le f(x) \le \frac{3}{2} \le 2$ .

2)  $u_0 = 1 \text{ donc } u_0 \in [1; 2].$ 

Pour tout  $n \in \mathbb{N}$ , si  $u_n \in [1;2]$  est bien définie alors  $u_{n+1} = f(u_n)$  est bien défini et  $f(u_n) \in [1;2]$  d'après la question précédente donc  $u_{n+1} \in [1;2]$ . Par une récurrence immédiate, on en déduit donc que pour tout  $n \in \mathbb{N}$ ,  $u_n$  est bien défini et  $u_n \in [1;2]$ .

3) On a déjà montré à la question 1 que f était dérivable sur [1;2] et que sa dérivée était donnée par  $f'(x) = \frac{1}{2} - \frac{1}{x^2}$ .

Ainsi, f' est dérivable comme somme de fonctions dérivables et  $f''(x) = \frac{2}{x^3}$ . Pour tout  $x \in [1; 2]$ ,  $x^3 \ge 1 \ge 0$  donc  $\frac{2}{x^3} \ge 0$ . On en déduit que f' est croissante sur [1; 2], donc que  $\forall x \in [1; 2]$ ,  $f'(1) \le f'(x) \le f'(2)$ .

Or 
$$f'(1) = -\frac{1}{2}$$
 et  $f'(2) = \frac{1}{4}$ , donc  $\forall x \in [1; 2], -\frac{1}{2} \le f'(x) \le \frac{1}{4}$ .

On en déduit que  $\forall x \in [1, 2], |f'(x)| \le \frac{1}{2}$ .

4) D'après les précédentes questions, f est dérivable sur [1;2] et  $\forall x \in [1;2]$   $|f'(x)| \leq \frac{1}{2}$  donc d'après l'inégalité des accroissements finis,  $\forall x, y \in [1;2], |f(x) - f(y)| \leq \frac{1}{2}|x - y|$ .

On en déduit que  $\forall n \in \mathbb{N}^*, |u_{n+1} - u_n| = |f(u_n) - f(u_{n-1})| \le \frac{1}{2} \times |u_n - u_{n-1}|$ 

Par une récurrence immédiate, on en déduit que  $\forall n \in \mathbb{N}, |u_{n+1} - u_n| \leq \frac{1}{2^n} \times |u_1 - u_0|$ .

5) Comme  $\frac{1}{2} < 1$ , la série de terme général  $\frac{1}{2^n} \times |u_1 - u_0|$  est une série géométrique convergente.

Par comparaison, on en déduit que la série de terme général  $|u_{n+1} - u_n|$  converge donc que la série de terme général  $u_{n+1} - u_n$  converge.

Or,  $\sum_{n=0}^{N} (u_{n+1} - u_n) = u_{N+1} - u_0$  par sommes téléscopiques, donc la série  $\sum (u_{n+1} - u_n)$  converge si et seulement si la suite  $(u_n)$  converge. On en déduit que la suite  $(u_n)$  converge.

6) Puisque f est une fonction continue sur [1;2] et que  $(u_n)$  converge vers une limite  $\ell$ , on a  $\lim_{n\to+\infty} f(u_n)=f(\ell)$  et  $\lim_{n\to+\infty} u_{n+1}=\ell$  donc finalement  $\ell=f(\ell)$ .

Ainsi,  $\ell$  est solution de l'équation  $\ell = \frac{\ell}{2} + \frac{1}{\ell}$ .

$$\ell = \frac{\ell}{2} + \frac{1}{\ell} \iff \frac{\ell}{2} - \frac{1}{\ell} = 0$$
$$\iff \frac{\ell^2 - 2}{\ell} = 0$$



$$\iff \ell^2 - 2 = 0 \quad \text{et} \quad \ell \neq 0$$

$$\iff \ell = \sqrt{2} \text{ car } \ell \in [1; 2]$$

on en déduit que  $\lim_{n\to+\infty} u_n = \sqrt{2}$ .

# Correction de l'exercice 13:

1) On pose g(x) = f(x) - x sur l'intervalle [a; b]. f est dérivable donc continue, ainsi g est continue comme différence de fonctions continues et de plus g(a) = f(a) - a et g(b) = f(b) - b.

Puisque pour tout  $x \in [a; b]$  on a  $f(x) \in [a; b]$ , alors en particulier  $f(a) \ge a$  et  $f(b) \le b$ , ainsi  $g(a) \ge 0$  et  $g(b) \le 0$ .

D'après le théroème des valeurs intermédiaires il existe donc un réel  $\ell \in [a;b]$  tel que  $g(\ell)=0$ , c'est à dire tel que  $f(\ell)=\ell$ .

Montrons que ce réel est unique : on suppose qu'il existe un autre réel  $\ell' \in [a;b]$  tel que  $f(\ell') = \ell'$ .

Comme f est dérivable sur [a;b] et que  $\forall x \in [a;b], |f'(x)| \leq r$ , on a d'après l'ingalité des accroissements finis :

$$|\ell' - \ell| = |f(\ell') - f(\ell)| \le r|\ell' - \ell|$$

donc  $|\ell' - \ell| \le r|\ell' - \ell|$ . Si  $\ell' \ne \ell$ , alors  $|\ell' - \ell| > 0$  donc en divisant de chaque côté par  $|\ell' - \ell|$  on obtient  $1 \le r$ , ce qui contredit l'hypothèse  $r \in [0, 1[$ .

Finalement,  $\ell' = \ell$ , le point fixe de f est unique.

- 2) Pour tout  $n \in \mathbb{N}$  on pose  $\mathcal{P}(n)$ : «  $u_n$  est bien définie et  $u_n \in [a;b]$  ».
  - Initialisation :  $u_0 \in [a; b]$  d'après l'énoncé donc  $\mathcal{P}(0)$  est vraie.
  - **Hérédité**: Supposons qu'il existe un entier  $n \in \mathbb{N}$  tel que  $\mathcal{P}(n)$  soit vraie.

On a  $u_n \in [a;b]$  donc  $u_{n+1} = f(u_n)$  est bien définie et par hypothèse  $f(x) \in [a;b]$  pour tout  $x \in [a;b]$  donc  $u_{n+1} \in [a;b]$ . Ainsi  $\mathcal{P}(n+1)$  est vraie.

- Conclusion : Par principe de récurrence on en conclut que  $\mathcal{P}(n)$  est vraie quel que soit  $n \in \mathbb{N}$ .
- 3) Pour tout  $n \in \mathbb{N}$ , d'après l'inégalité des accroissements finis on a  $|u_{n+1} \ell| = |f(u_n) f(\ell)| \le r|u_n \ell|$ .
- 4) Pour tout  $n \in \mathbb{N}$  on pose  $\mathcal{P}(n)$ : «  $|u_n \ell| \le r^n |u_0 \ell|$  et on raisonne par récurrence.
  - **Initialisation**:  $r^0 = 1 \text{ donc } |u_0 \ell| = r^0 |u_0 \ell|$ .
  - Hérédité : Supposons qu'il existe  $n \in \mathbb{N}$  tel que  $\mathcal{P}(n)$  soit vraie. Alors

 $|u_{n+1}-\ell| \le r|u_n-\ell| \le r \times r^n|u_0-\ell|$  par hypothèse de récurrence

- D'où  $|u_{n+1} \ell| \le r^{n+1} |u_0 \ell|$ .
- Conclusion : par principe de récurrence on en conclut que  $\forall n \in \mathbb{N}, |u_{n+1} \ell| \leq r^n |u_0 \ell|$ .
- 5) Puisque  $r \in [0,1[$ , on a  $\lim_{n \to +\infty} r^n = 0$  ainsi  $\lim_{n \to +\infty} r^n |u_0 \ell| = 0$  donc par comparaion  $\lim_{n \to +\infty} |u_n \ell| = 0$ . On en déduit que  $\lim_{n \to +\infty} u_n = \ell$ .

#### Correction de l'exercice 14:

1) La fonction  $x \mapsto -x$  est  $\mathcal{C}^2$  et la fonction  $x \mapsto \mathrm{e}^x$  aussi donc  $x \mapsto \mathrm{e}^{-x}$  est  $\mathcal{C}^2$  par composition de fonctions. Les fonctions  $x \mapsto 1$  et  $x \mapsto \frac{1}{2}x$  sont  $\mathcal{C}^2$ , donc f est  $\mathcal{C}^2$  sur  $[0; +\infty[$  comme produit et somme de fonctions  $\mathcal{C}^2$ .

De plus, 
$$f'(x) = \frac{1}{2} e^{-x} - \frac{1}{2} x e^{-x} = \frac{e^{-x}}{2} (1 - x)$$
 et  $f''(x) = \frac{e^{-x}}{2} (-1 + x - 1) = \frac{e^{-x}}{2} (x - 2)$ 

2) Pour tout  $x \in [1; +\infty[$ ,  $1-x \le 0$  donc  $\frac{e^{-x}}{2}(1-x) \le 0$ . On en déduit que f est décroissante sur  $[1; +\infty[$ .

Or  $f(1) = 1 + \frac{1}{2}e^{-1} > 1$  et  $\lim_{x \to +\infty} f(x) = 1$  par croissance comparée et par somme.

On en déduit donc que pour tout  $x \in [1; +\infty[$ ,  $f(x) \in [1; +\infty[$ , autrement dit l'intervalle  $[1; +\infty[$  est stable par f.

3) On sait que  $f''(x) = \frac{e^{-x}}{2}(x-2)$ , donc f' est croissante sur [0;2] et décroissante sur  $[2;+\infty[$ .

Or,  $f'(0) = \frac{1}{2}$ ,  $f'(2) = -\frac{e^{-2}}{2}$ , et  $\lim_{x \to +\infty} f'(x) = -\frac{1}{2}$  par croissance comparée et par somme.

On en déduit que  $\forall x \in [0; +\infty[, -\frac{1}{2} \le f'(x) \le \frac{1}{2}, \text{ autrement dit } \forall x \in [0; +\infty[, |f'(x)| \le \frac{1}{2}.$ 

4) On pose g(x) = f(x) - x. Alors g est dérivable sur  $[1; +\infty[$  comme somme de fonctions dérivables et  $g'(x) = f'(x) - 1 = \frac{e^{-x}}{2}(1-x) - 1$ .

Pour tout  $x \ge 1$ ,  $\frac{e^{-x}}{2} > 0$  et  $(1-x) \le 0$  donc  $\frac{e^{-x}}{2}(1-x) \le 0$  et ainsi  $g'(x) \le -1 < 0$  donc g'(x) < 0



On en déduit que g est strictement décroissante sur  $[0; +\infty[$ . g est continue comme somme de fonctions continues, et  $g(1) = f(1) - 1 = \frac{1}{2} e^{-1} > 0$  et  $\lim_{x \to +\infty} g(x) = -\infty$  par somme de limites.

D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique réel  $\alpha \in [1; +\infty[$  tel que  $g(\alpha) = 0$ , c'est à dire il existe un unique réel  $\alpha \in [1; +\infty[$  tel que  $f(\alpha) = \alpha$ .

5) f est dérivable sur  $[0; +\infty[$  et on sait que pour tout  $x \in [0; +\infty[$ ,  $|f'(x)| \le \frac{1}{2}$  donc on peut appliquer l'inégalité des accroissements finis :

$$\forall x, y \in [0; +\infty, \quad |f(x) - f(y)| \le \frac{1}{2}|x - y|$$

Ainsi

$$\forall n \in \mathbb{N}, \quad |f(u_n) - f(\alpha)| \le \frac{1}{2}|u_n - \alpha|$$

et donc

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - \alpha| \le \frac{1}{2}|u_n - \alpha|$$

Par une récurrence immédiate on en déduit que pour tout  $n \in \mathbb{N}$ ,  $|u_n - \alpha| \leq \frac{1}{2^n} |u_0 - \alpha|$ .

6) On a  $\lim_{n \to +\infty} \frac{1}{2^n} |u_0 - \alpha| = 0$  donc par comparaison  $\lim_{n \to +\infty} |u_n - \alpha| = 0$ , et ainsi  $\lim_{n \to +\infty} u_n = \alpha$ .

