Introducing the BIOS² program an NSERC CREATE funded program

Andrew MacDonald, Tim Poisot, Dominique Gravel

2018-12-09

Two challenges for Canadian biodiversity science

Challenge #1

A lack of accessible, organized biodiversity data

- Difficult to assess current biodiversity

- Difficult to assess current biodiversity
- Difficult to make decisions about the future

- Difficult to assess current biodiversity
- Difficult to make decisions about the future
- Difficult for stakeholders to make decisions

Challenge #2

Adopting modern computational approaches in biodiversity science

- Academic biodiversity science is increasingly multidisciplinary

- Academic biodiversity science is increasingly multidisciplinary
- Students increasingly seek for computational & communication skills

- Academic biodiversity science is increasingly multidisciplinary
- Students increasingly seek for computational & communication skills
- Employers look for them too!

Can we respond to both of these challenges at once?

Introducing the BIOS² Fellows!

An NSERC CREATE program

The BIOS² program trains biodiversity scientists in modern computational methods

There are two main components to this training:

The BIOS² program trains biodiversity scientists in modern computational methods

There are two main components to this training:

1. Training modules from top Canadian biodiversity scientists

The BIOS² program trains biodiversity scientists in modern computational methods

There are two main components to this training:

- 1. Training modules from top Canadian biodiversity scientists
- 2. Paid internships within our Partner organizations

co-PIs

name	Expertise	Module
Dominique Gravel	Theory & Modelling	Tools for biodiversity monitoring
Philippe Archambault	Marine ecosystems	Environmental impact assessments
Marie-Josée Fortin	Landscape ecology	Quantitative methods in conservation biology
Sarah P. Otto	Evolution	Mathematics for applied biodiversity science
Erin Bayne	Cumulative impacts	Database management for collaborative research
Joel Bêty	Arctic ecosystems	Organization of expertise panels and network events

co-PIs

name	Expertise	Module
Anne Bruneau	Plant systematics	Open access databases in taxonomy and biodiversity
Andrew Gonzalez	Biodiversity science	Quantitative biodiversity science for global change
Steve Kembel	Microbial ecology	Novel technologies for biodiversity monitoring
Timothée Poisot	Computational ecology	Issues and opportunities in open science
Pedro Peres- Neto	Statistics	Advanced methods in biodiversity data analysis

Requirements for Fellows:

Requirements for Fellows:

current PhD student

Requirements for Fellows:

current PhD student

working with an associated Faculty member

Requirements for Fellows:

current PhD student

working with an associated Faculty member

From another university? Master's or Postdoctoral researcher? stay tuned!

Requirements for Pls:

Requirements for Pls:

create one 15 hour module in computational biodiversity science

Requirements for Pls:

create one 15 hour module in computational biodiversity science

provide (non-financial) support for student during internship

Applications are open!

PhD students from participating universities are invited to apply!

Deadline: Friday 14th December