AAA616: Program Analysis

Lecture 3 — Introduction to Program Analysis

Hakjoo Oh 2016 Fall

Static Program Analysis

A general method for automatic and sound approximation of sw run-time behaviors before the execution

- "before": statically, without running sw
- "automatic": sw analyzes sw
- "sound": all possibilities into account
- "approximation": cannot be exact
- "general": for any source language and property
 - ► C, C++, C#, F#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik, x86, Excel, etc
 - buffer-overrun?", "memory leak?", "type errors?", " $\mathbf{x}=\mathbf{y}$ at line 2?", "memory use $\leq 2K$?", etc

Program Analysis is Undecidable

Reasoning about program behavior involves the Halting Problem: e.g.,

if
$$\cdots$$
 then $x := 1$ else $(S; x := 2); y := x$

What are the possible values of x at the last statement?

Alan Turing (1912-1954)

Side-Stepping Undecidability

Key Challenge in Static Analysis

The While Language

$$egin{array}{lll} a &
ightarrow & n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2 \ b &
ightarrow & {
m true} \mid {
m false} \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \lnot b \mid b_1 \land b_2 \ c &
ightarrow & x := a \mid {
m skip} \mid c_1; c_2 \mid {
m if} \; b \; c_1 \; c_2 \mid {
m while} \; b \; c \end{array}$$

Example 1: Sign Analysis

if
$$\cdots$$
 then $x := 1$ else $(S; x := 2); y := x$

Sign Domain

The complete lattice (**Sign**, \sqsubseteq):

The lattice is an abstraction of integers:

$$\alpha_{\mathsf{Z}}:\wp(\mathsf{Z}) \to \mathsf{Sign}, \qquad \gamma_{\mathsf{Z}}: \mathsf{Sign} \to \wp(\mathsf{Z})$$

Abstract States

The complete lattice of abstract states ($\widehat{\mathbf{State}}, \sqsubseteq$):

$$\widehat{\mathsf{State}} = \mathsf{Var} \to \mathsf{Sign}$$

with the pointwise ordering:

$$\hat{s}_1 \sqsubseteq \hat{s}_2 \iff \forall x \in \mathsf{Var.} \ \hat{s}_1(x) \sqsubseteq \hat{s}_2(x).$$

The least upper bound of $Y \subseteq \widehat{\mathsf{State}}$,

$$\bigsqcup Y = \lambda x. \bigsqcup_{\hat{s} \in Y} \hat{s}(x).$$

Lemma

Let S be a non-empty set and (D,\sqsubseteq) be a poset. Then, the poset $(S \to D,\sqsubseteq)$ with the ordering

$$f_1 \sqsubseteq f_2 \iff \forall s \in S. \ f_1(s) \sqsubseteq f_2(s)$$

is a complete lattice (resp., CPO) if D is a complete lattice (resp., CPO).

Abstract States

The complete lattice of abstract states ($\widehat{\mathbf{State}}, \sqsubseteq$):

$$\widehat{\mathsf{State}} = \mathsf{Var} \to \mathsf{Sign}$$

with the pointwise ordering:

$$\hat{s}_1 \sqsubseteq \hat{s}_2 \iff \forall x \in \mathsf{Var.} \ \hat{s}_1(x) \sqsubseteq \hat{s}_2(x).$$

The least upper bound of $Y\subseteq\widehat{\mathsf{State}}$,

$$\bigsqcup Y = \lambda x. \bigsqcup_{\hat{s} \in Y} \hat{s}(x).$$

$$\alpha:\wp(\mathsf{State}) \to \widehat{\mathsf{State}}$$

$$\alpha(S) = \lambda x. \bigsqcup_{s \in S} \alpha_{\mathsf{Z}}(\{s(x)\})$$

$$\gamma:\widehat{\mathsf{State}} o \wp(\mathsf{State})$$

$$\gamma(\hat{s}) = \{ s \in \mathsf{State} \mid \forall x \in \mathsf{Var.} \ s(x) \in \gamma_{\mathsf{Z}}(\hat{s}(x)) \}$$

Abstract Booleans

The truth values $\mathbf{T} = \{true, false\}$ are abstracted by the complete lattice $(\widehat{\mathbf{T}}, \sqsubseteq)$:

The abstraction and concretization functions for the lattice:

$$\alpha_{\mathsf{T}}:\wp(\mathsf{T}) o \widehat{\mathsf{T}}, \qquad \gamma_{\mathsf{T}}:\widehat{\mathsf{T}} o \wp(\mathsf{T})$$

$$\begin{split} \widehat{\mathcal{A}}\llbracket a \rrbracket & : \quad \widehat{\mathsf{State}} \to \mathsf{Sign} \\ \widehat{\mathcal{A}}\llbracket n \rrbracket(\hat{s}) & = \quad \alpha_{\mathsf{Z}}(\{n\}) \\ \widehat{\mathcal{A}}\llbracket x \rrbracket(\hat{s}) & = \quad \hat{s}(x) \\ \widehat{\mathcal{A}}\llbracket a_1 + a_2 \rrbracket(\hat{s}) & = \quad \widehat{\mathcal{A}}\llbracket a_1 \rrbracket(\hat{s}) +_S \widehat{\mathcal{A}}\llbracket a_2 \rrbracket(\hat{s}) \\ \widehat{\mathcal{A}}\llbracket a_1 \star a_2 \rrbracket(\hat{s}) & = \quad \widehat{\mathcal{A}}\llbracket a_1 \rrbracket(\hat{s}) \star_S \widehat{\mathcal{A}}\llbracket a_2 \rrbracket(\hat{s}) \\ \widehat{\mathcal{A}}\llbracket a_1 - a_2 \rrbracket(\hat{s}) & = \quad \widehat{\mathcal{A}}\llbracket a_1 \rrbracket(\hat{s}) -_S \widehat{\mathcal{A}}\llbracket a_2 \rrbracket(\hat{s}) \end{split}$$

$+_S$	NONE	NEG	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
NEG	NONE	NEG	NEG	ANY	NEG	ANY	ANY	ANY
ZERO	NONE	POS	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
POS	NONE	ANY	POS	POS	ANY	ANY	POS	ANY
NON- POS	NONE	NEG	NON- POS	ANY	NON- POS	ANY	ANY	ANY
NON- ZERO	NONE	ANY	NON- ZERO	ANY	ANY	ANY	ANY	ANY
NON- NEG	NONE	ANY	NON- NEG	POS	ANY	ANY	NON- NEG	ANY
ANY	NONE	ANY	ANY	ANY	ANY	ANY	ANY	ANY

\star_S	NEG	ZERO	POS
NEG	POS	ZERO	NEG
ZERO	ZERO	ZERO	ZERO
POS	NEG	ZERO	POS

S	NEG	ZERO	POS
NEG	ANY	NEG	NEG
ZERO	POS	ZERO	NEG
POS	POS	POS	ANY

$$\begin{split} \widehat{\mathcal{B}}\llbracket b \rrbracket &: \widehat{\mathsf{State}} \to \widehat{\mathsf{T}} \\ \widehat{\mathcal{B}}\llbracket \mathsf{true} \rrbracket (\hat{s}) &= \mathsf{TT} \\ \widehat{\mathcal{B}}\llbracket \mathsf{false} \rrbracket (\hat{s}) &= \mathsf{FF} \\ \widehat{\mathcal{B}}\llbracket a_1 = a_2 \rrbracket (\hat{s}) &= \widehat{\mathcal{B}}\llbracket a_1 \rrbracket (\hat{s}) =_S \widehat{\mathcal{B}}\llbracket a_2 \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}}\llbracket a_1 \leq a_2 \rrbracket (\hat{s}) &= \widehat{\mathcal{B}}\llbracket a_1 \rrbracket (\hat{s}) \leq_S \widehat{\mathcal{B}}\llbracket a_2 \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}}\llbracket \neg b \rrbracket (\hat{s}) &= \neg_S \widehat{\mathcal{B}}\llbracket b \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}}\llbracket b_1 \wedge b_2 \rrbracket (\hat{s}) &= \widehat{\mathcal{B}}\llbracket b_1 \rrbracket (\hat{s}) \wedge_S \widehat{\mathcal{B}}\llbracket b_2 \rrbracket (\hat{s}) \end{split}$$

$=_S$	NEG	ZERO	POS
NEG	ANY	FF	$\mathbf{F}\mathbf{F}$
ZERO	FF	TT	$\mathbf{F}\mathbf{F}$
POS	FF	FF	ANY

\leq_S	NEG	ZERO	POS
NEG	ANY	TT	TT
ZERO	FF	TT	TT
POS	FF	$\mathbf{F}\mathbf{F}$	ANY

\neg_T	
NONE	NONE
TT	FF
$\mathbf{F}\mathbf{F}$	TT
ANY	ANY

\wedge_T	NONE	TT	FF	ANY
NONE	NONE	NONE	NONE	NONE
TT	NONE	TT	FF	ANY
FF	NONE	FF	FF	FF
ANY	NONE	ANY	FF	ANY

Example

$$y := 1; \text{ while } x \neq 0 \ (y := y \star x; x := x - 1)$$

Example 2: Taint Analysis (Information Flow Analysis)

Can the information from the untrustworthy source be transferred to the sink?

```
x:=source(); ...; sink(y)
```

Applications to sw security:

- privacy leak
- SQL injection
- buffer overflow
- integer overflow
- XSS
- ...

Abstract Domain

• The complete lattice of the abstract values $(\widehat{\mathbf{T}}, \sqsubseteq)$:

$$\hat{T} = \{LOW, HIGH\}$$

with the ordering LOW \sqsubseteq HIGH, LOW \sqsubseteq LOW, and HIGH \sqsubseteq HIGH.

• The lattice of states:

$$\widehat{\mathsf{State}} = \mathsf{Var} o \widehat{\mathsf{T}}$$

$$\widehat{\mathcal{A}}\llbracket a \rrbracket : \widehat{\mathsf{State}} \to \widehat{\mathsf{T}}$$

$$\widehat{\mathcal{A}}\llbracket n \rrbracket (\hat{s}) = \begin{cases} \text{LOW} & \cdots n \text{ is public} \\ \text{HIGH} & \cdots n \text{ is private} \end{cases}$$

$$\widehat{\mathcal{A}}\llbracket x \rrbracket (\hat{s}) = \hat{s}(x)$$

$$\widehat{\mathcal{A}}\llbracket a_1 + a_2 \rrbracket (\hat{s}) = \widehat{\mathcal{A}}\llbracket a_1 \rrbracket (\hat{s}) \sqcup \widehat{\mathcal{A}}\llbracket a_2 \rrbracket (\hat{s})$$

$$\widehat{\mathcal{A}}\llbracket a_1 \star a_2 \rrbracket (\hat{s}) = \widehat{\mathcal{A}}\llbracket a_1 \rrbracket (\hat{s}) \sqcup \widehat{\mathcal{A}}\llbracket a_2 \rrbracket (\hat{s})$$

$$\widehat{\mathcal{A}}\llbracket a_1 - a_2 \rrbracket (\hat{s}) = \widehat{\mathcal{A}}\llbracket a_1 \rrbracket (\hat{s}) \sqcup \widehat{\mathcal{A}}\llbracket a_2 \rrbracket (\hat{s})$$

$$\widehat{\mathcal{B}}\llbracket b
Vert : \widehat{\mathsf{State}} o \widehat{\mathsf{T}}$$
 $\widehat{\mathcal{B}}\llbracket \mathsf{true}
Vert (\hat{s}) = \mathsf{LOW}$
 $\widehat{\mathcal{B}}\llbracket \mathsf{false}
Vert (\hat{s}) = \mathsf{LOW}$
 $\widehat{\mathcal{B}}\llbracket a_1 = a_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket a_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket a_2
Vert (\hat{s})$
 $\widehat{\mathcal{B}}\llbracket a_1 \leq a_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket a_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket a_2
Vert (\hat{s})$
 $\widehat{\mathcal{B}}\llbracket a_1 \leq a_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket a_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket a_2
Vert (\hat{s})$
 $\widehat{\mathcal{B}}\llbracket b
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket b
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket b_2
Vert (\hat{s})$
 $\widehat{\mathcal{B}}\llbracket b_1 \wedge b_2
Vert (\hat{s}) = \widehat{\mathcal{B}}\llbracket b_1
Vert (\hat{s}) \sqcup \widehat{\mathcal{B}}\llbracket b_2
Vert (\hat{s})$

$$\begin{split} \widehat{\mathcal{C}}\llbracket c \rrbracket &: \widehat{\mathsf{State}} \to \widehat{\mathsf{State}} \\ \widehat{\mathcal{C}}\llbracket x := a \rrbracket &= \lambda \hat{s}. \hat{s}[x \mapsto \widehat{\mathcal{A}}\llbracket a \rrbracket(\hat{s})] \\ \widehat{\mathcal{C}}\llbracket \mathsf{skip} \rrbracket &= \mathsf{id} \\ \widehat{\mathcal{C}}\llbracket c_1; c_2 \rrbracket &= \widehat{\mathcal{C}}\llbracket c_2 \rrbracket \circ \widehat{\mathcal{C}}\llbracket c_1 \rrbracket \\ \widehat{\mathcal{C}}\llbracket \mathsf{if} \ b \ c_1 \ c_2 \rrbracket &= \lambda \hat{s}. \widehat{\mathcal{C}}\llbracket c_1 \rrbracket(\hat{s}) \sqcup \widehat{\mathcal{C}}\llbracket c_2 \rrbracket(\hat{s}) \\ \widehat{\mathcal{C}}\llbracket \mathsf{while} \ b \ c \rrbracket &= \mathit{fix} \widehat{F} \\ &\quad \mathsf{where} \ \widehat{F}(g) = \lambda \hat{s}. \hat{s} \sqcup (g \circ \widehat{\mathcal{C}}\llbracket c \rrbracket)(\hat{s}) \end{split}$$

Example 3: Interval Analysis

```
• x = 0;
 while (x < 10) {
   assert (x < 10);
   x++;
 assert (x == 10);
• x = 0;
 y = 0;
 while (x < 10) {
   assert (y < 10);
   x++; y++;
 assert (y == 10);
```

cf) Numerical Abstractions

(image from The Octagon Abstract Domain by Antonine Mine)

Example 3: Interval Analysis

Node	Result
1	$x\mapsto \bot$
1	$y\mapsto ot$
2	$x\mapsto [0,0]$
4	$y\mapsto [0,0]$
3	$x\mapsto [0,9]$
3	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$
4	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$
3	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,10]$
U	$y\mapsto [0,+\infty]$

Fixed Point Computation Does Not Terminate

Node	initial	1	2	3	10	11	k	∞
1	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$
	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y\mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$
2	$x \mapsto \bot$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$
3	$x \mapsto \bot$	$x \mapsto [0,0]$	$x \mapsto [0,1]$	$x \mapsto [0, 2]$	$x \mapsto [0, 9]$			
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
4	$x \mapsto \bot$	$x \mapsto [1,1]$	$x \mapsto [1, 2]$	$x \mapsto [1,3]$	$x \mapsto [1, 10]$			
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
5	$x \mapsto \bot$				$x \mapsto [1, 10]$			
L	$y \mapsto \bot$	$y \mapsto [1, 1]$	$y \mapsto [1, 2]$	$y \mapsto [1, 3]$	$y \mapsto [1, 10]$	$y \mapsto [1, 11]$	$y \mapsto [1, k]$	$y \mapsto [1, +\infty]$
6			$x \mapsto \bot$		$x \mapsto [10, 10]$			
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$

Fixed Point Computation with Widening and Narrowing

Node	initial	1	2	3
1	$x\mapsto \bot$	$x\mapsto \bot$	$x \mapsto \bot$	$x\mapsto \bot$
1	$y\mapsto ot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$
2	$x \mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
3	$x \mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
3	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x \mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
-1	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
5	$x \mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
9	$y\mapsto ot$	$y\mapsto [1,1]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x \mapsto \bot$	$x \mapsto \bot$	$x\mapsto [10,+\infty]$	$x\mapsto [10,+\infty]$
0	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

Fixed Point Computation with Widening and Narrowing

Node	initial	1	2
1	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$
1	$y\mapsto ot$	$y\mapsto ot$	$y\mapsto ot$
2	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
3	$x\mapsto [0,9]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
J 3	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
-1	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
J 3	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,+\infty]$	$x\mapsto [10,10]$	$x\mapsto [10,10]$
6	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

Programs

A program is represented by a control-flow graph:

$$(\mathbb{C}, \to)$$

- ullet C: the set of program points (i.e., nodes) in the program
- \bullet $(\rightarrow) \subseteq \mathbb{C} \times \mathbb{C}$: the control-flow relation
 - ightharpoonup c
 ightharpoonup c': c is a predecessor of c'
- ullet Each program point c is associated with a command, denoted ${f cmd}(c)$

$$cmd \rightarrow skip \mid x := e \mid x < n$$
 $e \rightarrow n \mid x \mid e + e \mid e - e \mid e * e \mid e/e$

Interval Domain

Definition:

$$\mathbb{I} = \{\bot\} \cup \{[l,u] \mid l,u \in \mathbb{Z} \cup \{-\infty,+\infty\} \ \land \ l \leq u\}$$

- An interval is an abstraction of a set of integers:
 - $\gamma([1,5]) =$
 - $\gamma([3,3]) =$
 - $\quad \boldsymbol{\wedge} \quad \gamma([0,+\infty]) =$
 - $ightharpoonup \gamma([-\infty,7]) =$
 - $ightharpoonup \gamma(\bot) =$

Concretization/Abstraction Functions

• $\gamma: \mathbb{I} \to \wp(\mathbb{Z})$ is called *concretization function*:

$$egin{array}{lll} \gamma(ot) &=& \emptyset \ \gamma([a,b]) &=& \{z\in \mathbb{Z} \mid a\leq z \leq b\} \end{array}$$

- $\alpha: \wp(\mathbb{Z}) \to \mathbb{I}$ is abstraction function:

 - $\alpha(\{-1,0,1,2,3\}) =$
 - $\alpha(\{-1,3\}) =$
 - $\alpha(\{1,2,\ldots\}) =$
 - $\alpha(\hat{\emptyset}) =$
 - $ightharpoonup \alpha(\mathbb{Z}) =$

$$\alpha(\emptyset) = \bot
\alpha(S) = [\min(S), \max(S)]$$

Partial Order $(\sqsubseteq) \subseteq \mathbb{I} \times \mathbb{I}$

- ullet $\perp \sqsubseteq i$ for all $i \in \mathbb{I}$
- ullet $i \sqsubseteq [-\infty, +\infty]$ for all $i \in \mathbb{I}$.
- $[1,3] \sqsubseteq [0,4]$
- $[1,3] \not\sqsubseteq [0,2]$

Definition:

• Mathematical:

$$i_1 \sqsubseteq i_2$$
 iff $\gamma(i_1) \subseteq \gamma(i_2)$

Implementable:

$$i_1 \sqsubseteq i_2 ext{ iff } \left\{ egin{array}{l} i_1 = ot \lor \ i_2 = [-\infty, +\infty] \lor \ (i_1 = [l_1, u_1] \ \land \ i_2 = [l_2, u_2] \ \land \ l_1 \ge l_2 \ \land \ u_1 \le u_2) \end{array}
ight.$$

Partial Order

Join □ and Meet □ Operators

- The join operator computes the *least upper bound*:
 - $\blacktriangleright \ [1,3] \sqcup [2,4] = [1,4]$
 - $\blacktriangleright \ [1,3] \sqcup [7,9] = [1,9]$
- The conditions of $i_1 \sqcup i_2$:

 - $② \ \forall i. \ i_1 \sqsubseteq i \ \land \ i_2 \sqsubseteq i \implies i_1 \sqcup i_2 \sqsubseteq i$
- Definition:

$$egin{aligned} i_1 \sqcup i_2 &= lpha(\gamma(i_1) \cup \gamma(i_2)) \ &\perp \sqcup i &= i \ &i \sqcup \perp &= i \ [l_1, u_1] \sqcup [l_2, u_2] &= [\min(l_1, l_2), \max(l_1, l_2)] \end{aligned}$$

Join □ and Meet □ Operators

- The meet operator computes the *greatest lower bound*:
 - $[1,3] \sqcap [2,4] = [2,3]$
 - ▶ $[1,3] \sqcap [7,9] = \bot$
- The conditions of $i_1 \sqcap i_2$:
- Definition:

Widening and Narrowing

A simple widening operator for the Interval domain:

$$\begin{array}{lll} [a,b] & \bigtriangledown & \bot & = [a,b] \\ & \bot & \bigtriangledown & [c,d] & = [c,d] \\ [a,b] & \bigtriangledown & [c,d] & = [(c < a? - \infty:a), (b < d? + \infty:b)] \end{array}$$

A simple narrowing operator:

$$\begin{array}{cccc} [a,b] & \triangle & \bot & = \bot \\ & \bot & \triangle & [c,d] & = \bot \\ [a,b] & \triangle & [c,d] & = [(a=-\infty?c:a), (b=+\infty?d:b)] \end{array}$$

Abstract States

$$\mathbb{S} = \mathsf{Var} \to \mathbb{I}$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$s_1 \sqsubseteq s_2 ext{ iff } orall x \in \mathsf{Var.} \ s_1(x) \sqsubseteq s_2(x)$$
 $s_1 \sqcup s_2 = \lambda x. \ s_1(x) \sqcup s_2(x)$ $s_1 \sqcap s_2 = \lambda x. \ s_1(x) \sqcap s_2(x)$ $s_1 \bigtriangledown s_2 = \lambda x. \ s_1(x) \bigtriangledown s_2(x)$ $s_1 \bigtriangleup s_2 = \lambda x. \ s_1(x) \bigtriangleup s_2(x)$

The Abstract Domain

$$\mathbb{D}=\mathbb{C}\to\mathbb{S}$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$d_1 \sqsubseteq d_2 \text{ iff } \forall c \in \mathbb{C}. \ d_1(x) \sqsubseteq d_2(x)$$
 $d_1 \sqcup d_2 = \lambda c. \ d_1(c) \sqcup d_2(c)$ $d_1 \sqcap d_2 = \lambda c. \ d_1(c) \sqcap d_2(c)$ $d_1 \bigtriangledown d_2 = \lambda c. \ d_1(c) \bigtriangledown d_2(c)$ $d_1 \bigtriangleup d_2 = \lambda c. \ d_1(c) \bigtriangleup d_2(c)$

Abstract Semantics of Expressions

$$e o n \mid x \mid e + e \mid e - e \mid e * e \mid e / e$$

$$eval : e \times \mathbb{S} \to \mathbb{I}$$

$$eval(n,s) = [n,n]$$

$$eval(x,s) = s(x)$$

$$eval(e_1 + e_2,s) = eval(e_1,s) + eval(e_2,s)$$

$$eval(e_1 - e_2,s) = eval(e_1,s) - eval(e_2,s)$$

$$eval(e_1 * e_2,s) = eval(e_1,s) + eval(e_2,s)$$

$$eval(e_1/e_2,s) = eval(e_1,s) + eval(e_2,s)$$

$$eval(e_1/e_2,s) = eval(e_1,s) + eval(e_2,s)$$

Abstract Binary Operators

$$\begin{array}{lll} i_1 \; \hat{+} \; i_2 & = & \alpha(\{z_1 + z_2 \mid z_1 \in \gamma(i_1) \; \wedge \; z_2 \in \gamma(i_2)\}) \\ i_1 \; \hat{-} \; i_2 & = & \alpha(\{z_1 - z_2 \mid z_1 \in \gamma(i_1) \; \wedge \; z_2 \in \gamma(i_2)\}) \\ i_1 \; \hat{*} \; i_2 & = & \alpha(\{z_1 * z_2 \mid z_1 \in \gamma(i_1) \; \wedge \; z_2 \in \gamma(i_2)\}) \\ i_1 \; \hat{/} \; i_2 & = & \alpha(\{z_1/z_2 \mid z_1 \in \gamma(i_1) \; \wedge \; z_2 \in \gamma(i_2)\}) \end{array}$$

Implementable version:

Abstract Execution of Commands

$$f_c: \mathbb{S} \to \mathbb{S}$$

$$f_c(s) = \left\{ \begin{array}{ll} s & \operatorname{cmd}(c) = skip \\ [x \mapsto eval(e,s)]s & \operatorname{cmd}(c) = x := e \\ [x \mapsto s(x) \sqcap [-\infty,n-1]]s & \operatorname{cmd}(c) = x < n \end{array} \right.$$

Fixed Point Equation

We aim to compute

$$X:\mathbb{C} o\mathbb{S}$$

such that

$$X = \lambda c. \ f_c(\bigsqcup_{c' o c} X(c'))$$

In fixed point form:

$$X = F(X)$$

where

$$F(X) = \lambda c. \ f_c(\bigsqcup_{c' o c} X(c'))$$

The solution of the equation is a fixed point of

$$F:(\mathbb{C} o \mathbb{S}) o (\mathbb{C} o \mathbb{S})$$

Fixed Point Computation

The least fixed point computation may not converge:

$$\mathit{fix} F = igsqcup_{i \in \mathbb{N}} F^i(ot) = F^0(ot) \sqcup F^1(ot) F^2(ot) \sqcup \cdots$$

Instead, we aim to find a (not necessarily least) fixed point with widening and narrowing:

widening iteration:

$$egin{array}{lll} X_0 &=& ot \ X_i &=& X_{i-1} & ext{if } F(X_{i-1}) \sqsubseteq X_{i-1} \ &=& X_{i-1} igtriangledown F(X_{i-1}) & ext{otherwise} \end{array}$$

narrowing iteration:

$$Y_i = \begin{cases} \hat{A} & \text{if } i = 0 \\ Y_{i-1} \triangle F(Y_{i-1}) & \text{if } i > 0 \end{cases}$$
 (1)

 $(\hat{A} \text{ is the result from the widening iteration, i.e., } \lim_{i \to \infty} X_i)$

Need for Static Analysis Theory

Static analyses so far are based on our intuition. Questions remain:

- How to ensure that the abstract semantics is sound?
- How to ensure the soundness of widening and narrowing?
- How to ensure the termination of widening and narrowing?

Next: Abstract Interpretation Theory