Formalização do Teorema de Normalização Forte Modular

Trabalho de Iniciação Científica

Orientador: Prof. Dr. Flávio L. C. de Moura Departamento de Ciência da Computação Universidade de Brasília - UnB e-mail: contato@flaviomoura.mat.br Aluno: Raphael Soares Ramos
Departamento de Ciência da Computação
Universidade de Brasília - UnB
e-mail: raphael.soares.1996@gmail.com

Introdução

Modularidade é uma propriedade desejável de sistemas de reescrita porque permite que um sistema combinado herde as propriedades dos seus componentes. Terminação não é modular, mesmo assim sobre certas restrições modularidade pode ser recuperada. Nesse trabalho, é apresentado uma formalização do Teorema de Normalização Forte Modular no assistente de provas Coq. A prova segue as ideias da tese de PhD do Lengrand [2], mas acredita-se que essa é a primeira formalização deste teorema.

As contribuições deste trabalho podem ser resumidas em:

- Foi construída uma prova construtiva do Teorema de Normalização Forte Modular, e
- foi provado a equivalência entre a definição do Lengrand de normalização forte e a definição indutiva padrão de normalização forte.

O Teorema de Normalização Forte Modular

Uma relação de um conjunto A para si mesmo é uma relação de redução sobre um conjunto, i.e. uma relação de redução sobre A é um subconjunto de $A \times A$. Uma relação de um conjunto para si mesmo é um relação de redução sobre um conjunto, i.e. uma relação de redução sobre A é um subconjunto $A \times A$. Se \rightarrow_A é uma relação de redução sobre A, então uma sequência de redução é uma sequência da forma $a_0 \rightarrow_A a_1 \rightarrow_A a_2 \rightarrow_A \ldots$ Uma sequência de redução de a_0 . Uma sequência de redução é finita se ela é uma redução em n-passos para algum $n \in \mathbb{N}$, e infinita caso contrário. Nós escrevemos \rightarrow_A^+ (resp. \rightarrow_A^*) para o fecho transitivo (resp. reflexivo e transitivo) de \rightarrow_A . Um elemento $a \in A$ é fortemente normalizado w.r.t. \rightarrow_A se toda sequência de redução começando de a é finita, e neste caso nós escrevemos $a \in SN^{\rightarrow A}$. Normalmente, essa ideia é expressada indutivamente como se segue:

$$a \in SN^{\to_A}$$
 sse $\forall b, (a \to_A b \text{ implica b } \in SN^{\to_A})$

Para apresentar o teorema, nós precisamos definir as noções de simulação forte e fraca. Nas seguintes definições A e B são conjuntos arbitrários.

Seja \rightarrow uma relação de A para B, \rightarrow_A uma relação de redução sobre A e \rightarrow_B uma relação de redução sobre B. A relação de redução \rightarrow_B fortemente (resp. fracamente) simula \rightarrow_A através de \rightarrow se ($\leftarrow \# \rightarrow_A$) $\subseteq (\rightarrow_B^+ \# \leftarrow)$ (resp. ($\leftarrow \# \rightarrow_A$) $\subseteq (\rightarrow_B^* \# \leftarrow)$).

Seja \to uma relação de A para B, \to_1 e \to_2 duas relações de redução em A, e \to_B uma relação de redução em B. Suponha que:

- $1. \rightarrow_B \text{ simula fortemente } \rightarrow_1 \text{ atrav\'es de } \rightarrow;$
- $2. \rightarrow_B \text{ simula fracamente } \rightarrow_2 \text{ através de } \rightarrow;$
- $3. A \subseteq SN^{\rightarrow_2}.$

Então $\leftarrow (SN^{\rightarrow_B}) \subseteq SN^{\rightarrow_1 \cup \rightarrow_2}$. Em outras palavras,

 $\forall a: A, a \in \leftarrow (SN^{\rightarrow_B}) \text{ implies } a \in SN^{\rightarrow_1 \cup \rightarrow_2}.$

Metodologia

Para verificar formalmente o teorema em questão, optou-se por utilizar o assistente de provas Coq [3], que provê uma linguagem formal com o intuito de facilitar a escrita de definições matemáticas, teoremas e especificações em geral, checando sua validade via *software*. Em relação à prova do teorema de normalização forte modular e da equivalência, a prova foi quebrada em diversos resultados intermediários. O projeto com os códigos está disponível no link: https://github.com/flaviodemoura/MSNorm.

Resultados

Lengrand usa a seguinte definição para normalização forte: $DefinitionSN\{A:Type\}\{red:RedA\}(a:A):Prop:=\ \forall P,\ patriarchal\ red\ P\to P\ a.$

Neste trabalho foi usada a definição indutiva e foi provado a equivalência entre as duas definições:

Definition SN' {A : Type} {red : Red A} (a : A) : Prop := $sn_acc : (\forall b, red \ a \ b \rightarrow SN' \ red \ b) \rightarrow SN' \ red \ a$.

O teorema seguinte SNbySimul é conhecido como normalização forte por simulação. O teorema afirma que se uma relação de redução sobre A, digamos redA, é fortemente simulada por uma relação de redução sobre B, digamos redB, através de R então a pré-imagem de qualquer elemento que satisfaz o predicado (SN'redB) também satisfaz (SN'redA).

Theorem SNbySimul {A B} {redA : Red A} {redB: Red B} {R: Rel A B} : $StrongSimul\ redA\ redB\ R \to \forall a,\ Imagem(inverseR)(SN'redB)\ a \to SN'redA\ a.$

O lema SNunion, que é um resultado também utilizado na prova do teorema principal, dá uma caracterização do predicado $SN'(redA!_!red'A)$. Uma propriedade importante usada é a chamada estabilidade. Nós dizemos que um predicado P é estável w.r.t. a relação de redução R quando, para todo a e b tal que Rab, Pa implica Pb.

O Teorema de Normalização Forte Modular é specificado na sintaxe de Coq como abaixo:

Theorem ModStrNorm {A B: Type} {redA red'A: Red A} {redB: Red B} {R: Rel A B} : $(StrongSimul\ red'A\ redB\ R) \rightarrow (WeakSimul\ redA\ redB\ R) \rightarrow (\forall b: A,\ SN'\ redA\ b) \rightarrow \forall a: A,\ Imagem(inverseR)(SN'redB)\ a \rightarrow$

 $SN'(redA!_!red'A) a.$

Conclusão

A prova formalizada é construtiva, no sentido que não depende da lógica clássica, o que é interessante do ponto de vista computacional devido ao conteúdo algorítmico correspondente das provas. Provas construtivas são normalmente mais difíceis e elaboradas do que as clássicas, mas são mais preferíveis no contexto da ciência da computação.

O teorema da normalização forte modular é um resultado abstrato que diz as condições para a união de duas relações de redução que preservam a normalização forte. Esse teorema é, por exemplo, aplicado em [1] para estabelecer a propriedade PSN de um cálculo com substituições explícitas.

Referências

- [1] KESNER, D. A Theory of Explicit Substituitions with Safe and Full Composition. Logical Methods in Computer Science 5.3:1 (2009), pp. 1-29.
- [2] LENGRAND, S. Normalisation & Equivalence in Proof Theory & Type Theory. PhD Thesis. Université Paris 7 & University of St Andrews, 2006.
- [3] The Coq Development Team, (2008). The Coq Proof Assistant Reference Manual V8.2. INRIA. Disponível em: http://coq.inria.fr/coq/distrib/current/refman/

Instituição de Fomento: CNPq