American Express - Default Prediction MIDS - W207 Spring 2023

Jim Zhu

Rick Chen

Julian Rippert

Agenda

- 1. Problem Motivation
- 2. Dataset Description
- 3. EDA
- 4. Models
 - a. Clustering
 - b. Random Forestc. Transformer
- 5. Results
- 6. Takeaways

Problem Motivation

- Goal of a credit issuer is to ensure credit is repaid back with interest to compensate risk
- Default events are unfavorable for a lender

AMERICAN EXPRESS

Dataset Description

- Dataset dimensions
 - o (5531451,191)
- Time Series Data
- Default is when a customer does not pay due amount in 120 days after their latest statement date.
- Features are anonymized and normalized

Feature Categories:

D_* = Delinquency variables

S_* = Spend variables

P_* = Payment variables

B_* = Balance variables

R_* = Risk variables

EDA

- Validated the data was standardized
- Categoricals Columns
 - Reindexed to 0
 - One-Hot Encoded
 - Dropped due to interpretability

	count	mean	std	min	25%	50%	75%	max
D_42	283,952.000000	0.000000	0.000000	-0.000372	0.040314	0.123779	0.258057	4.187500
D_49	171,995.000000	0.000000	0.000000	0.000007	0.062439	0.131104	0.245972	19.953125
D_53	477,308.000000	0.000000	0.000000	0.000000	0.005875	0.011810	0.039185	7.902344
R_4	1,936,007.000000	0.000000	0.000000	0.000000	0.002539	0.005081	0.007626	1.009766
R_5	1,936,007.000000	0.000000	0.000000	0.000000	0.002550	0.005096	0.007645	17.515625

```
2.0 726993

3.0 442452

1.0 390498

5.0 147417

4.0 94695

7.0 81702

6.0 51298

Name: B 38, dtype: int64
```

CO	1428972
CR	336769
CL	154494
XZ	9405
XM	3672
XL	2695
Name:	D_63, dtype: int64

0		10226	26		
U		5141	753		
R		2941	46		
		694	95		
-1	L	355	95		
Na	ame:	D_64,	dtype:	int64	

EDA - NaNs

- Set max 40% threshold of NaNs per feature
 - Length before filtering out high NaN count cols: 191
 - Number of columns to drop: 62
- Imputed -1 for all NaNs

Train/Val/Test Split

```
Training Features dimensions: (3318870, 190)
Training Labels dimensions: (3318870,)
Validation Features dimensions: (1106290, 190)
Validation Labels dimensions: (1106290,)
Test Features dimensions: (1106291, 190)
Test Labels dimensions: (1106291,)
Training Percent of Positive Labels: 0.2440
Validation Percent of Positive Labels: 0.2553
```

- Implemented a 60/20/20 split
- To maintain integrity of the time series no shuffling was used
- Yet, similar target label distribution

Models & Experiments

- Baseline Model always predict no default event
 - Accuracy Score = 75.60%

Model - KNN

KNN models are relatively simple models great for both classification and regression problems

- Known as a lazy learner, and makes a great baseline model
- Calculates the distance between similar data points, and makes predictions based on the frequency of different classes

KNN Baseline Model

- Build a baseline KNN model with hyperparameters
 - o n_neighbors = 5, p = 2, leaf_size = 30
- Resulted in an initial accuracy of 61% on the training data

	precision	recall	f1-score	support
0.0	0.74	0.74	0.74	82208
1.0	0.24	0.24	0.24	28421
accuracy			0.61	110629
macro avg	0.49	0.49	0.49	110629
weighted avg	0.61	0.61	0.61	110629

KNN Hyperparameter Tuning

- Use Grid Search CV to tune the hyperparameters
- Find the hyperparameters for the highest accuracy model

```
# Build a dictionary for the hyperparameters we are looking to tune
# ignore p value and leaf_size as gridsearchcv takes too long, so just tune n_neighbors
# p = [1, 2]
#leaf_size = list(range(1, 50))
n_neighbors = list(range(1, 50))
hyperparameters = dict(n_neighbors = n_neighbors)
```

```
# initiate another KNN model class
knn_2 = KNeighborsClassifier()

#run gridsearchcv on the hyperparameters for a KNN model with 10 folds
clf = GridSearchCV(knn_2, hyperparameters, cv = 10, n_jobs = -1)

# fit the model
best_model = clf.fit(X_train_pca, Y_train)
```

```
print('Best leafsize:' , best_model.best_estimator_.get_params()['leaf_size'])
print('Best n_neighbors:' , best_model.best_estimator_.get_params()['n_neighbors'])
#print('Best p:' , best_model.best_estimator_.get_params()['p'])
```

Best leafsize: 30 Best n_neighbors: 27

KNN Model Results

- Using the tuned hyperparameters, a KNN model fit on training data results in an accuracy on the test data of 67%
- Precision, recall, and F1-scores are 74%, 84%, and 79% respectively

	precision	recall	f1-score	support
0.0	0.74	0.84	0.79	82208
1.0	0.27	0.17	0.21	28421
accuracy	′		0.67	110629
macro av	0.51	0.50	0.50	110629
weighted av	0.62	0.67	0.64	110629

Model - Random Forest

Building a random forest

Accuracy on Training Data: 0.9724
Accuracy on Validation Data: 0.8727
Validation Precision score: 0.8360
Validation Recall score: 0.8239
Validation F1 score 0.8296

Random Forest - Hyperparameter Tuning

- Establish random forest parameter distribution
 - SKlearn's RandomizedSearchCV will randomly sample from these

```
criterion = ['entropy'] #what will be used to choose features at node splits
   n estimators = [i for i in range(10,18,2)] # number of trees in the random forest
3 bootstrap = [True] # drawing samples from our source data with replacement
   max samples = (i/10 for i in range(2,10,2)) #percentage of training samples to train each tree with
5 n jobs=[-1]
6 max features = ['sgrt'] #could add in 'log2' but took too long
   max depth = [i for i in range(110,160,10)] #max amount of layers in a tree
   max depth.append(None) #if None, then nodes are expanded until all leaves are pure
   min samples split = [2, 6, 10] # minimum sample number to split a node, need at least two to split
   min samples leaf = [1.2, 3] # A split point at any depth will only be considered if it leaves at least
                                #min samples leaf training samples in each of the left and right branches.
11
                                 #This may have the effect of smoothing the model, especially in regression
12
13
   random grid = { 'criterion' : criterion,
14
                   'n estimators' : n estimators,
15
                  'bootstrap' : bootstrap,
16
17
                  'max samples' : max samples,
                  'n jobs' : n jobs,
18
19
                  'max features' : max features,
                  'max depth' : max depth,
20
                   'min samples split': min samples split,
21
                   'min samples leaf' : min samples leaf
22
23
```

Random Forest - Hyperparameter Tuning

Initiate the tuning

```
#first we need to initiate a new base tree estimator

base_tree = RandomForestClassifier()

#initialize the random search CV hyperparameter tuner

Random_Forest_HyperTuned = RandomizedSearchCV(estimator = base_tree,

param_distributions = random_grid, #params defines above

n_iter = 8, #Number of parameter settings that are sampled from distr

cv = 3, #default is5-fold cross validation, so we will have 30 trees

verbose = 1, #the higher, the more messages

return_train_score = True # attribute will include training scores

// how we need to train the model using our training data and labels

Random_Forest_HyperTuned.fit(X_train,Y_train)
```

Fitting 3 folds for each of 8 candidates, totalling 24 fits CPU times: user 21min 23s, sys: 2min 17s, total: 23min 40s Wall time: 12h 50min 54s

Best parameters

```
{'n_jobs': -1,
  'n_estimators': 16,
  'min_samples_split': 2,
  'min_samples_leaf': 3,
  'max_samples': 0.8,
  'max_features': 'sqrt',
  'max_depth': 150,
  'criterion': 'entropy',
  'bootstrap': True}
```

Feature Importances

	Feature	importance
0	P_2	0.076980
1	D_44	0.038740
2	D_48	0.032910
3	D_45	0.029680
4	D_61	0.027010
5	B_20	0.025950
6	B_3	0.021830
7	B_2	0.020580
8	B_10	0.019860
9	B 18	0.018480

Random Forest - Test Set Evaluation

Accuracy on Test Data: 0.8829 Test Precision score: 0.8422 Test Recall score: 0.8641 Test F1 score 0.8520

Model Transformer

Time series data:

- Most of customers have 13 months credit history
- Transform data from 2d to 3d
- Implement transformer encoder and connect its output to a classification head using binary cross-entropy

Model Transformer Pre-Processing and Feature Engineering

- Load and split training data:
 - o 10 files
 - 45891 customers
 - 13 credit card statements
- Add padding
 - For customers has less than 13 credit card history, pad with -1
- Feature Engineer
 - Output shape (45891, 13, 188)

Transformer Block

Hyper-parameters

```
feat_dim = 188
embed_dim = 64  # Embedding size for attention
num_heads = 4  # Number of attention heads

ff_dim = 128  # Hidden layer size in feed forward network inside transformer
dropout_rate = 0.3
num_blocks = 2
```

```
class TransformerBlock (layers. Layer):
    def __init__(self, embed_dim, feat_dim, num_heads, ff_dim, rate=0.1):
       super (TransformerBlock, self). init ()
       self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
       self.ffn = keras.Sequential(
           [layers.Dense(ff dim, activation="gelu"), layers.Dense(feat dim),]
       self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
       self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
       self.dropout1 = layers.Dropout(rate)
       self.dropout2 = layers.Dropout(rate)
    def call(self, inputs, training):
       attn output = self.att(inputs, inputs)
       attn_output = self.dropout1(attn_output, training=training)
       out1 = self.layernorm1(inputs + attn_output)
       ffn_output = self.ffn(out1)
       ffn_output = self.dropout2(ffn_output, training=training)
       return self.layernorm2(out1 + ffn output)
```


Transformer (cont.)

Learning schedule

Learning rate schedule: 0.001 to 0.001 to 1e-06

Transformer - Training

- We train 5 folds of model using cross validation
 - Use 8 files to trian, 2 files for validation
- 8 epochs for each fold

Save 5 output transformer model into files

Model Transformer - Performance

- Kaggle Evaluation Metrics
 - The metics M is defined as the the mean of two measures
 - G: Normalized Gini Coefficient
 - D: Default rate captured at 4%

$$M = 0.5 \cdot (G+D)$$

Cross Validation Score

Fold 1 CV= 0.7843216315379575

Fold 2 CV= 0.7821227060205045

Fold 3 CV= 0.7852668054694807

Fold 4 CV= 0.7878325830028957

Fold 5 CV= 0.7903108125684797

Overall CV = 0.7859054438364497

Model Transformer - Test Inference

- Process test data the same way as train data, the output will be 20 files with each file having shape (46231, 13, 188) as (customer x statement x feature)
- Ensemble 5 models from training and create predictions by averaging each model outputs
- Graph the predictions

Model Transformer - Kaggle submission

• Private score: 0.798, Public Score: 0.789

Takeaways

- No PII data in features
 - No insight into categorical features
- Models may be learning abstract biases about certain demographics
- Last 13 bank statements may introduce recency bias

Contributions:

- -EDA (**All**)
- -Data Pre Processing (All)
- -KNN (Jim)
- -Random Forest (**Julian**)
- -Transformer (**Rick**)