Learning from evolving data streams

Jacob Montiel

University of Waikato

Standard machine learning

- Based on data batches (batch learning)
- State-of-the-art performance on multiple applications
- Batch learning pipeline:

Standard machine learning

- Based on data batches (batch learning)
- What if data...
 - a. is continuously generated (not available at once)
 - b. changes over time

 ! Keep pace with data!

 data training model

Example: Supply chain

"It took less than a week at the end of February for the top 10 Amazon search terms in multiple countries to fill up with products related to covid-19."

"Our weird behavior during the pandemic is messing with AI models". Will Douglas Heaven. MIT Technology Review. May 11, 2020

Stream learning

- Data is assumed infinite
- Maintain models in an online fashion

- Unbounded training sets
- Incorporate data on the fly
- Resource-wise efficient
- Detect changes and adapt

Requirements

Process one sample at a time, and inspect it only once

Use a limited amount of memory

Work in a limited amount of time

Always ready to predict

Learning from data streams

Decision Tree Classifier

- Popular batch method
 - Good performance + interpretability
- Greedy recursive induction
 - Sort all instances through tree
 - \circ x_i = most discriminative attribute
 - New split node for x_i new branch for each value leaf node assigns class
 - Stop if no error or limit on #instances

Example: Buying an used car

Very Fast Decision Tree

a.k.a. Hoeffding Tree

- Incrementally expand (split) nodes
 - A small sample can often be enough to choose a near optimal decision
 - Collect (sufficient) statistics
 - Estimate the merit of each attribute
 - Choose the sample size that allows to differentiate between the alternatives

Hoeffding bound

 t_0

$$t_1 = t_0 + \delta_1$$

Very Fast Decision Tree

a.k.a. Hoeffding Tree

- The number of examples to expand a node depends only on the Hoeffding bound
 - error decreases as more data is observed
- Popular **stream** method
 - Low variance
 - Low overfitting
 - Asymptotically close to the batch model

 t_0

$$t_1 = t_0 + \delta_1$$

Concept drift

In dynamic and non-stationary environments, the data distribution can change over time

- Change detection: Given an input sequence $\langle x_1, x_2, ..., x_t, ... \rangle$ raise an alarm signal at instant t if there is a distribution change
- Application: Detect changes in model performance

ADWIN change detector

ADaptive WINdowing

- Adaptive window with two subwindows
 - Rise an alarm if subwindows exhibit
 "distinct enough" averages
 - Subwindows are recomputed online according to the rate of change
- Theoretical guarantees
 - Logarithmic memory and update time

adaptive window with two subwindows

Iterations of the cut check procedure

Learning from evolving data

Evaluation

Holdout an independent test set

- Apply the current model to the test set, at regular time intervals
- Unbiased performance estimation
- Popular in batch and stream learning

Prequential

- Test then train each new instance
 - Order matters!
 - All data is used for training
- Performance is estimated on the sequence
- Popular in the stream setting

A machine learning package for data streams in Python

- Easy to design and run experiments
- Easy to extend existing methods
- For users with any experience level
 - Low learning curve
 - Works in Jupyter Notebooks

Contains

- data generators
- stream learning methods
- change detectors
- evaluators
- and more

Demo

Get scikit-multiflow

Multiple sources available

- scikit-multiflow works on Linux, macOS and Windows
- Recommended:
 - o conda-forge
 - \$ conda install -c conda-forge scikit-multiflow
 - o PYPI
 - \$ pip install scikit-multiflow
 - GitHub (latest development version)
 <a href="https://github.com/scikit-multiflow/s

How can I contribute?

- We welcome contributions from the community
 - scikit-multiflow
 - gitter.im/scikit-multiflow/community
- We have a pool of projects in the following areas:
 - Classification
 - Regression
 - Clustering
 - Anomaly Detection
 - O ...
- Or bring your own project/idea

Takeaways from this talk

- Stream learning is an alternative to standard (batch) learning
 - data is continuously generated
 - data is non-stationary, it evolves! (concept drift)
- scikit-multiflow
 - machine learning for data streams in Python
 - easy to design and run experiments
 - easy to extend

Thank you

jacob.montiel [at] waikato.ac.nz

