

<u>Title</u>

scest — Estimation for Synthetic Control Methods.

Syntax

scest , dfname(string) [p(#) direc(string) Q(#) lb(#) name(string) opt(string)]

Description

Companion R and $\underline{\text{Python}}$ packages are described in $\underline{\text{Cattaneo, Feng, Palomba and Titiunik (2022)}}$.

Companion commands are: \underline{scdata} for data preparation, \underline{scpi} for inference procedures, and \underline{scplot} for SC plots.

Related Stata, R, and Python packages useful for inference in SC designs are described in the following website:

https://nppackages.github.io/scpi/

For an introduction to synthetic control methods, see <u>Abadie (2021)</u> and references therein.

Options

dfname(string) specifies the name of the Python object containing the processed
 data created with <u>scdata</u>.

____ Constraint

These options let the user specify the type of constraint to be imposed to estimate the SC weights. The user controls the lower bound on the weights (option \mathbf{lb}), the norm of the weights to be constrained (option \mathbf{p}), the direction of the constraint on the norm (option \mathbf{dir}), and the size of the constraint on the norm (option \mathbf{q}). Alternatively, some popular constraints can be selected through the option \mathbf{name} . A detailed description of the popular constraints implemented can be found in Cattaneo, Feng, Palomba and Titiunik (2022).

- 1b(#) specifies the lower bound on the weights. The default is 1b(0).
- p(#) sets the type of norm to be constrained. Options are:
 - ${f 0}$ no constraint on the norm of the weights is imposed. ${f 1}$ a constraint is imposed on the L1 norm of the weights (the default).
 - 2 a constraint is imposed on the L2 norm of the weights.
- direc(string) specifies the direction of the constraint on the norm of the
 weights. Options are:
 - <= the constraint on the norm of the weights is an inequality constraint.
 - == the constraint on the norm of the weights is an equality constraint (the default).
- \mathbf{Q} (#) specifies the size of the constraint on the norm of the weights.
- name(string) specifies the name of the constraint to be used. Options are:
 simplex classic synthetic control estimator where the weights are constrained
 to be non-negative and their L1 norm must be equal to 1.
 - lasso weights are estimated using a Lasso-type penalization
 - ridge weights are estimated using a Ridge-type penalization.
 - ols weights are estimated without constraints using least squares

☐ Others

```
\begin{array}{c} \textbf{opt}\,(string) \text{ a string specifying the stopping criteria used by the underling} \\ \text{optimizer } (\underline{nlopt}) \text{ for point estimation. The default is a sequential quadratic} \\ \text{programming } (SQP) \text{ algorithm for nonlinearly constrained gradient-based} \end{array}
         optimization ('SLSQP'). The default value is opt("'maxeval' = 5000, 'xtol_rel' = 1e-8, 'xtol_abs' = 1e-8, 'ftol_rel' = 1e-12, 'ftol_abs' = 1e-12, 'tol_eq' = 1e-8, 'tol_ineq' = 1e-8"). In case a lasso-type constraint is
          implemented, a different optimizer (\underline{\text{cvxpy}}) is used and stopping criteria
          cannot be changed.
Example: Germany Data
     Setup
          . use scpi_germany.dta
     Prepare data
           . scdata gdp, dfname("python_scdata") id(country) outcome(gdp) time(year)
          treatment(status) cointegrated
     Estimate Synthetic Control with a simplex constraint
          . scest, dfname("python_scdata") name(simplex)
Stored results
     scest stores the following in e():
     Scalars
       e (M)
                                       number of features
                                       number of covariates used for adjustment
       e (KM)
                                       number of donors
       e (J)
       e(T1)
                                       number of post-treatment periods
       e (q)
                                       size of the constraint on the norm
     Macros
       e(features)
                                      name of features
       e(outcomevar)
                                       \hbox{\tt name of outcome variable}
       e(constant)
                                       logical indicating the presence of a common constant
                                         across features
       e(cointegrated_data)
                                       logical indicating cointegration
                                       type of norm of the weights used in constrained
       e(p)
                                          estimation
       e(dir)
                                       direction of the constraint on the norm of the
                                         weights
       e (name)
                                       name of constraint used in estimation
     Matrices
       e(T0)
                                       number of pre-treatment periods per feature
       e (A)
                                       pre-treatment features of the treated unit
       e (B)
                                       pre-treatment features of the control units
                                       covariates used for adjustment
       e (C)
                                       predicted values of the features of the treated unit
       e (pred)
       e(res)
                                       residuals e(A) - e(pred)
       e (w)
                                       weights of the controls
                                       coefficients of the covariates used for adjustment
       e(r)
       e (beta)
                                      stacked version of e(w) and e(r)
       e(Y_post)
                                      post-treatment outcome of the treated unit
       e(Y_post_fit)
                                       estimated post-treatment outcome of the treated unit
       e(Y_pre)
                                      pre-treatment outcome of the treated unit
```

estimate pre-treatment outcome of the treated unit

e(Y_pre_fit)

- Abadie, A. 2021. <u>Using synthetic controls: Feasibility, data requirements, and methodological aspects.</u> Journal of Economic Literature, 59(2), 391-425.
- Cattaneo, M. D., Feng, Y., and Titiunik, R. 2021. <u>Prediction Intervals for Synthetic Sontrol Methods.</u> Journal of the American Statistical Association, 116(536), 1865-1880.
- Cattaneo, M. D., Feng, Y., Palomba F., and Titiunik, R. 2022. scpi: Uncertainty Quantification for Synthetic Control Estimators, arXiv:2202.05984.

<u>Authors</u>

Matias D. Cattaneo, Princeton University, Princeton, NJ. cattaneo@princeton.edu. Yingjie Feng, Tsinghua University, Beijing, China. fengyj@sem.tsinghua.edu.cn. Filippo Palomba, Princeton University, Princeton, NJ. fpalomba@princeton.edu. Rocio Titiunik, Princeton University, Princeton, NJ. titiunik@princeton.edu.