

ARJUNA NEET BATCH

Classification of Elements & Periodicity in Properties

LECTURE-07

By:- Ashima Gupta

Quick Revision:

Objective of today's class

Periodic Trends: Electronegativity

Electronegativity

4.0 4.0 hon-polar Covalent bond

Factors affecting the Electronegativity:

(ii) Effective Nuclear charge:

(iii) Hybridisation:

mixing of orbitals with slightly diff energies to give a new set of orbitals with equal energies.

Pauling Scale:

2.1	Be	B	C	7/	0	F
<u> </u>	1.5 Ma	2.0 A	2,5 Si	3.0	3.5	4.0
0.9	1.2	1.5		2.1	2.5	3.0

F > 0 > N = 0

Important Points:

Down the group,

Across the period,

Electronegativity of Ga > Al (Due to Transition contraction)

Na

(for school) Q. Differentiate between electron gain enthalpy and electronegativity. Electron Gain Enthalpy Electronegativity Amount of enthalpy change when an e-io 1) Tendoncy of an atom to added to an Esslated neutral Atteact affe shared paid fes towards itself 1 Energetic term 2) Not an energetie tem KJ mot or Kcal mal or eVator (3) Unit: No unit Non-bonded atom (4) Banded atoms Irregular trend due to stability of Electronic configh (5) Group: Electro-vity),
Period: Electro-vity)

Electronegativity Scales:

Both I.P (Jonisation Potential) & E.A (Electrony Affinity) Should be in

2. Pauling Scale: Linus Pauling developsed a method to calculate the relative electro-vity of an element.

7/A -> electro-vity of element A 7/B -> " B DE: Change om bondenthalpy (KJ/mol) $\Delta E = \left| Bondenergy of A - B - V B \cdot E \cdot A - A \times B \cdot E \cdot of B - B \right|$

3. Allred Rochow's Electronegativity:

7 effective nuclear charge Electronegativity = 0.359 x Zeff + 0.744

Aå

Questions

Q2. Electronegativity scale of Pauling is based on
(ii) Bond length x (iii) Atomic X
Yadius

(IV) Covalent X radius

Ordernort electronic Configuration of the most electro-re element is

(i) ms2mp3 (ii) ns2mp4 (iii) ns2 (iii) ns2mp5 Dy Arrange the following elements in 1 sing order of electro-vity: i) F, a, Br, I o I < Br < a < F (ii) a, o, f, I, b : Cg < I < a < 0 < f (III) Mg, P, S, AR & P < S

Applications of Electronegativity:

1. Metallic & Non-Metallic character

1 Non-metallic char & Electro-vity1

2. Bond energy

Bond Energy X Electro-vity difference 1 44

3. Bond polarity

eg HF>HU) HB>> HI Bond Polarity & Electro-vity difference

HU HBY HI

4. Stevenson-Schomaker equation

$$d_{A-B} = \lambda_A + \lambda_B - 0.09(\lambda_A - \lambda_B)$$

Electronity E. J.

Electon-vity AA

Valency: -, It is the combining capacity of an element. W. r.t. Hydrogen W. St. XX2 -2X7 MgO

ARJUN

■ Anomalous properties of second period elements:

The first element of each of the groups 1 (lithium) and 2 (beryllium) and group 13–17 (boron to fluorine) differs in many respect from the other members of their respective groups.

ARJUN

grd period

3 diagonal roclationshiply

due to similar

Imic
Potential = Charge
Size

- 1) Most Electrothe -> Caesium element (non-radioactive) (Cs)
- 2) Most electro-ve -> Fluorine element (F)
 - (3) Max. Electron Affinity -> Cl
 - (4) Dense metals -> Os, Ix
 - 5) Smallest non-metal > Hydrogen

- 6 Li is stored in parassin wax
- (7) Na & K stored in Kerosene oil.
- Phosphorous is stored in Mater (nont metal)

 (a) Ga & (s) melt when kept m palm
 - & Bo -> Liquid elements at room temp. (25%)

Thank You