

ECE380 Digital Logic

Introduction to Logic Circuits: CAD Tools and VHDL

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 6-1

Introduction to CAD tools

- A CAD system usually includes the following tools
 - Design entry
 - Synthesis and optimization
 - Simulation
 - Physical design

Electrical & Computer Engineering

Design entry

- The process of entering into the CAD system a description of a circuit being designed is called *design entry*
- Three common design entry methods
 - Using truth tables
 - User enters a truth table in plain text format or draws a waveform that represents the desired functional behavior
 - Schematic capture
 - · User graphically enters a desired logic circuit
 - Hardware description languages
 - User enters a programming language-like description of a desired logic circuit

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 6-3

Design entry with truth tables

- Commonly use a waveform editor to enter a timing diagram that describes a desired functionality for a logic circuit
 - CAD system transforms this into equivalent logic gates
 - Not appropriate for large circuits, but can be used for a small logic function that is to be part of a larger circuit

Electrical & Computer Engineering

Schematic capture

- · A common type of CAD tool
- **Schematic**: refers to a diagram of a circuit in which circuit elements (logic gates) are shown as graphical symbols and connections between them are drawn as lines
- Tool provides a collection of symbols that represent gates of various types with different inputs and outputs. A library.
- Previously designed circuits can be represented with a graphical symbol and used in larger circuits. Known as *hierarchical design* and provides a way of dealing with complexities of large circuits

Electrical & Computer Engineering

Hardware description languages

- A hardware description language (HDL) is similar to a computer program except that it is used to describe hardware
- Common HDLs
 - VHDL (VHSIC Hardware Description Language)
 - Verilog
 - Many others (vendor specific)
- VHDL and Verilog are standards
 - Offer portability across different CAD tools and different types of programmable chips

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 6-7

Synthesis

- Synthesis CAD tools perform the process of generating a logic circuit from some stated functional behavior
- *Translating* (*compiling*) VHDL code into a network of logic gates is a part of synthesis
- Not only will the CAD tool produce a logic circuit, but it can also optimize that circuit
 - In terms of speed and/or size (logic optimization)
 - Called *logic synthesis* or *logic optimization*
- Finally, technology mapping and layout synthesis (physical design) complete the synthesis process

Electrical & Computer Engineering

Simulation

- · Once designed, it is necessary to verify that the design circuit functions as expected
- In a *functional simulation* the user specifies valuations of the circuits inputs and the CAD tool generates the outputs (commonly in the form of a timing diagram)
 - User verifies generated outputs against expected outputs
- · Functional simulators assume the time needed for signals to propagate through the logic gates is negligible
 - For a real implementation this is not sufficient
 - Use a timing simulator to obtain accurate (complete) simulation

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 6-9

Introduction to VHDL

- Designer writes a logic circuit description in VHDL source code
- VHDL compiler translates this code into a logic circuit
- Representation of digital signals in VHDL
 - Logic signals in VHDL are represented as a data object
 - VHDL includes a data type called BIT
 - BIT objects can assume only two values: 0 and 1

Electrical & Computer Engineering

Writing simple VHDL code

- First step in writing VHDL code is to declare the input and output signals
- Done using a construct called an entity

```
Name of the entity—
                            Input and output signals (ports) defined
        ENTITY example 1 IS
           PORT (x1,x2,x3←
                                                    BIT;
                                     : IN
                                     : OUT
                                                    BIT);
        END example1;
                              Mode of the port
                                                    Type of the port
                              IN (input)
                              OUT (output)
Electrical & Computer Engineering
                                                    Dr. D. J. Jackson Lecture 6-11
```


Writing simple VHDL code

- The entity specifies the inputs and outputs for a circuit, but does not describe the circuit function
- Circuit functionality is specified using a VHDL construct called an architecture

```
Entity used by LogicFunc
Architecture name—
         ARCHITECTURE LogicFunc OF example1 IS
         BEGIN
             f \le (x1 \text{ AND } x2) \text{ OR (NOT } x2 \text{ AND } x3);
         END LogicFunc;
                                    VHDL statement that describes
                                    the circuit functionality
Electrical & Computer Engineering
                                                       Dr. D. J. Jackson Lecture 6-13
```


Complete VHDL code example

ENTITY example 1 IS

PORT (x1,x2,x3: IN BIT; f

: OUT BIT);

END example1;

ARCHITECTURE LogicFunc OF example1 IS **BEGIN**

 $f \le (x1 \text{ AND } x2) \text{ OR (NOT } x2 \text{ AND } x3);$

END LogicFunc;

Electrical & Computer Engineering

Boolean operators in VHDL

- VHDL has built-in support for the following operators
 - AND logical AND
 - OR logical OR
 - NOT logical NOT
 - NAND, NOR, XOR, XNOR (covered later)
- Assignment operator <=
 - A variable (usually an output) should be assigned the result of the logic expression on the right hand side of the operator
- VHDL does not assume any precedence of logic operators. Use parentheses in expressions to determine precedence
- In VHDL, a logic expression is called a simple assignment statement. There are other types that will be introduced that are useful for more complex circuits.

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 6-15

Example VHDL code

- Write the VHDL code (entity and architecture constructs) for the adder circuit
 - Name the entity **Add** and name the architecture **AddFunc**
- Write the VHDL code for the majority circuit
 - Name the entity *Majority* and name the architecture *MajorityFunc*

Electrical & Computer Engineering