

Combustion Joining for Composite Fabrication

Paul McGinn , Ya-Cheng Lin, Alex Mukasyan Dept. of Chemical & Biomolecular Engr.

University of Notre Dame

UNCLAS: Dist A. Approved for public release

maintaining the data needed, a including suggestions for redu	and completing and reviewing the cing this burden, to Washington should be aware that notwithsta	e collection of information. Send Headquarters Services, Directo	d comments regarding this rate for Information Operat	burden estimate or ar ions and Reports, 12	ions, searching existing data sources, gathering and by other aspect of this collection of information, 15 Jefferson Davis Highway, Suite 1204, Arlington ing to comply with a collection of information if it	
1. REPORT DATE 2. REPORT TYPE			3. DATES COVERED			
25 OCT 2009		N/A		-		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Combustion Joining for Composite Fabrication				W56 HZV-08-C-0236 (SimBRS)		
				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Paul McGinn; Ya-Cheng Lin; Alex Mukasya				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dept. of Chemical & Biomolecular Engr. University of Notre Dame				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC/RDECOM		
48397-5000, USA				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 20288		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION				18.	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	NUMBER OF PAGES 22		

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgements:

Jeremiah White

Funding: Honeywell

Indiana 21st Century Fund

US Army -Tardec

Joining Using Heterogeneous Combustion Systems

- Thermite Reactions
 - Used mostly to produce steels and copper alloys
 - Common example: Joining railway tracks
- High-Temperature Synthesis Reactions (Combustion Synthesis)
 - Similar and dissimilar materials
 - Refractory alloys, intermetallics, ceramics, etc.

Motivation

- Refurbishing of components
 e.g., carbon brakes (Honeywell Aerospace)
 - Carbon-carbon (C-C) composites have low density, high strength-to-weight ratio, and withstand high temperatures

- Development of functionally graded materials
 - e.g., composite armor

- Honeywell Corp (South Bend, IN)
- Currently build aircraft brake disks from carbon fibers
- use a long (~ 100 day) CVD process to densify
- Brake wear/oxidation with every landing

C-C brakes

A380 -rejected take off test

UNCLASSIFIED

Joining C-Based Materials

- Difficult task
 - Carbon cannot be welded (T_{mp}~3800 K)
 - Little or no wetting with conventional braze or solder compositions
- Mechanical or adhesive means limited application
- Solid-state bonding takes a long time at high temperatures
- Chemical joining in liquid state –attainable with combustion reactions

Self-Sustained High-Temperature Reactions

Example: $Ti + C \rightarrow TiC + 230 \text{ kJ/mol}$ $T_{ad} = 3200 \text{ }^{\circ}C$

Characteristic Features:

- High temperatures (> 2000 K)
- High temperature gradients (10³-10⁶ K/s)
- Short reaction times (0.1-10 s)
- Low energy consumption
- Simple equipment

- Carbides, Borides, Nitrides
- Intermetallic Compounds
- Alloys
- Ceramics
- Functionally Graded Materials

Modes of Combustion Synthesis

Self-Propagating High-Temperature Synthesis (SHS)

Volume Combustion Synthesis (VCS)

Initiation Methods

- SHS Joining
 - Advantages: No additional energy to propagate reaction
 - Disadvantage: Finite rate of reaction
- VCS Joining
 - Advantages: Uniform combustion and distribution of temperature
 - Disadvantage: Relatively slow process

VCS Joining

- Relatively slow preheating (up to 10² K/min)
 - Solid state reactions could impact final composition/ gradients
 - Limiting case: reactive sintering
- Materials to be joined also heated to T_{ig} (not just the reactive media)
- For most systems, T_{ig} ~ T_{mp} of least refractory component (eutectic temperature)
 - Could be difficult to reach for refractory reagents

Reactive Resistance Joining

Place a thin layer of desired reaction composition between two disks of the material to be welded

Preheat to the ignition temperature.

After initiation, a rapid (up to 10^4 K/s) high temperature (up to 3000 K) reaction occurs in a thin layer in the vicinity of the joint \rightarrow leads to chemical interaction between the melt and disks to be joined.

A rapid press allows instant loading of the stack: enhancing the mechanical properties of the joint.

System for Rapid Joining of C-C Composites

• Max. Current: 950 A

• Max Voltage: 44 V

• Max Load: 35,000 N

• Press Response Time: 10 ms

Press Die Design and Construction

- 1 Reaction Layer; 2 C-C Disks; 3 Dielectric Layers;
- 4- High Current Power Supply; 5 Thermo Insulator: 6 Retainer Ring:

Reaction zone is observable: can measure temp.!

Frames of a Joining Process

Typical Temperature Profile of Joining Process

Joule preheating only up to T_{ig} UNCLASSIFIED

C-C composite highly reactive – don't need carbon in joining layer (Ti foil, Ti powder, Ti + 8wt% Ni, Ti + B, 3Ti + B + C)

Don't need highest current

 Final layer thickness independent of initial media thickness

TS of samples joined w/ Ti+8 wt% Ni

Final join structure

final product layer independent of initial layer

Ti powder: $h_i = 3000 \mu m$

Ti foil: $h_i = 25 \mu m$

characteristic squeezing rate is much higher than the characteristic diffusion time of C into Ti, the thickness of the final joining layer is essentially independent of h_o .

Al – SiC Composites

"The three-quarter-ton armor that gets plated onto the humvees, for example, limits its carrying ability and puts additional strain on the transmission, according to service officials..."

http://www.defensetech.org/archives/001349.html

Sample Configuration

Disks of SiC / reaction layer / Al 5083 alloy

Reaction layer = Ti; Ti+C, Ti-Al gradient

Thermo calcs: $Ti + SiC \rightarrow TiC$, $TiSi_x$, possible

reaction temperature $> Al_{mp}$, close to Ti_{mp} , $< SiC_{mp}$ (3100K).

Conductivity of stack too low; pass current through **graphite** to preheat

This design does not allow for compaction during reaction different die design now being used

- (i) Reaction starts at melting point of Al (~ 932K).
- (ii) Ti layer reacts with Al-alloy, elevating temperature (~2000K) in the boundary layer

2mm Ti+C rxn disk

Ti confined to region ~3 μm wide near interface

UNCLASSIFIED

Summary

- Combustion Joining of refractory materials has great potential for low cost, rapid fabrication of composites, esp. for some materials that are difficult or impossible to join using more conventional techniques:
- Rapid combustion reactions provide a unique set of conditions for synthesizing functionally graded layers:
 - short reaction times (~1–10 s) allow the desired functionally graded material structure to be maintained
- Demonstrated the concept for joining of SiC-Al-alloy using a combustionbased approach
- Need to determine optimum reaction layer composition and heat-treatment conditions to form various phases:
 - Ti₃SiC₂ (ductile), Si(AI)CO, TiC-SiC-AI
- New press set-up /die design implemented to produce optimized materials for sub-scale ballistic tests