Coursera Dong-Bang Tsai About Feedback



# Probabilistic Graphical Models

Daphne Koller, Kevin Murphy Winter 2011-2012

Home

Quizzes

Theory Problems

**Assignments** 

**Assignment Questions** 

Video Lectures

**Discussion Forums** 

Course Wiki

Lecture Slides

Course Schedule

**Course Logistics** 

**Course Information** 

Course Staff

Octave Installation

# Feedback — Inference: Variable Elimination

You achieved a score of 10.00 out of 10.00

#### **Question 1**

**Intermediate Factors.** Consider running variable elimination on the following Bayesian network over binary variables. Which of the nodes, if eliminated first, results in the largest intermediate factor? By largest factor we mean the factor with the largest number of entries.



| _ | our<br>nswer |          | Score | Explanation                                                                                                                |
|---|--------------|----------|-------|----------------------------------------------------------------------------------------------------------------------------|
| • | $X_5$        | <b>~</b> | 1.00  | Eliminating $X_5$ results in the intermediate factor $\tau(X_2,X_4,X_6)$ , whice larger than for any of the other options. |
| T | otal         |          | 1.00  |                                                                                                                            |

#### Question 2

**Elimination Orderings.** Which of the following characteristics of the variable elimination algorithm a affected by the choice of elimination ordering? You may select 1 or more options (or none of them, if think none apply).

| Your Answer                                                       |          | Score | Explanation                                                                      |
|-------------------------------------------------------------------|----------|-------|----------------------------------------------------------------------------------|
| <ul><li>Correctness of the<br/>algorithm</li></ul>                | <b>✓</b> | 0.25  | The correctness of variable elimination is independent the elimination ordering. |
| <ul> <li>Which marginals can<br/>be computed correctly</li> </ul> | <b>~</b> | 0.25  | The correctness of the algorithm is independent of the elimination ordering.     |

| Quiz Feedba                             | ack      |      |                                                                                                                         |
|-----------------------------------------|----------|------|-------------------------------------------------------------------------------------------------------------------------|
| ✓ Runtime of the algorithm              | ✓        | 0.25 | The elimination ordering affects the size of the largest factor created, which determines the runtime of the algorithm. |
| Size of the largest intermediate factor | <b>✓</b> | 0.25 | The elimination ordering can affect the size of the large intermediate factor.                                          |
| Total                                   |          | 1.00 |                                                                                                                         |

### **Question 3**

Uses of Variable Elimination. Which of the following quantities can be computed using the sum-provariable elimination algorithm? (In the options, let X be a set of query variables, and E be a set of evidence variables in the respective networks.) You may select 1 or more options (or none of them, it hink none apply).

| Your Answer                                                      |          | Score | Explanation                                                                                                                                                                                                                   |
|------------------------------------------------------------------|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ P(X \mid E = e) $ in a Markov network                          | <b>✓</b> | 0.25  | This is a standard use of the variable elimination algorithm.                                                                                                                                                                 |
| The most likely assignment to the variables in a Markov network. | ₩        | 0.25  | We cannot do this with sum-product variable elimination, whis what was discussed. However, we can do this with max-product variable elimination, a modification to the algorithm which will be discussed later in the course. |
| ▼ The partition function for a Markov network                    | ₩        | 0.25  | We can do this by eliminating all of the variables.                                                                                                                                                                           |
| $\ensuremath{\mathscr{C}} P(X)$ in a Bayesian network            | <b>✓</b> | 0.25  | This is a standard use of the variable elimination algorithm.                                                                                                                                                                 |
| Total                                                            |          | 1.00  |                                                                                                                                                                                                                               |

# **Question 4**

**Marginalization.** Suppose we run variable elimination on a Bayesian network where we eliminate all variables in the network. What number will the algorithm produce?



| Your<br>Answer |          | Score | Explanation                                                                                                              |
|----------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------|
| 1              | <b>*</b> | 1.00  | Bayesian networks represent valid probability distributions, and so summup all the possible states will always return 1. |
| Total          |          | 1.00  |                                                                                                                          |

# **Question 5**

**Marginalization.** Suppose we run variable elimination on a Markov network where we eliminate all tl variables in the network. What number will the algorithm produce?

| Your Answer                                               |   | Score | Explanation                                                                  |
|-----------------------------------------------------------|---|-------|------------------------------------------------------------------------------|
| $\bullet \ \ Z$ , the partition function for the network. | ✓ | 1.00  | Eliminating all the variables yields the partition function for the network. |
| Total                                                     |   | 1.00  |                                                                              |

# **Question 6**

Intermediate Factors. If we perform variable elimination on the graph shown below with the variable ordering B,A,C,F,E,D, what is the intermediate factor produced by the third step (just before summing out C)?



| Your<br>Answer |   | Score | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|---|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\psi(C,D,F)$  | ✓ | 1.00  | After eliminating $B$ we have a new factor $\tau_1(A,D,C)$ , and after eliminating $A$ , the factor becomes $\tau_2(D,C)$ , then when eliminating the intermediate factor is $\psi(C,D,F)=\tau_2(D,C)P(F C)$ . This because the only factors involving $C$ at this point are $\tau_2(D,C)$ an $P(F C)$ . The only other factor involving $C$ , $P(C A)$ was already to compute $\tau_2(D,C)$ when eliminating $A$ , so including it again we be incorporating information from this factor twice. |
| Total          |   | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# Question 7

Induced Graphs. If we perform variable elimination on the graph shown below with the variable orde B,A,C,F,E,D, what is the induced graph for the run?



| Your Answer | Score | Explanation                                                                                                                                                   |
|-------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B C F       | 1.00  | This is correct. There is an edge in the induced graph between every pair of variables that is prestogether in a factor during a run of variable elimination. |

Total 1.00

### **Question 8**

\*Time Complexity of Variable Elimination. Consider a Bayesian network taking the form of a chair variables,  $X_1 \to X_2 \to \cdots \to X_n$ , where each of the  $X_i$  can take on k values. What is the computational cost of running variable elimination on this network if we eliminate the  $X_i$  in order (i.e first  $X_1$ , then  $X_2$  and so on)?

| Your<br>Answer                                      |   | Score | Explanation                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\stackrel{	ext{\scriptsize $\emptyset$}}{O}(nk^2)$ | ✓ | 1.00  | When eliminating $X_1$ , we sum out $X_1$ from $P(X_1)P(X_2 X_1)$ to obe $\phi_1(X_2)$ . For each value of $X_2$ , we have to do $k$ multiplications and $k-1$ summations, which is $O(k)$ . Since $X_2$ can take $k$ different value to compute $\phi_1(X_2)$ , the computational cost is $O(k^2)$ operations. The process continues for each $X_i$ , so in total the cost is $O(nk^2)$ . |
| Total                                               |   | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                            |

### **Question 9**

\*Time Complexity of Variable Elimination. Now take the same chain as in the previous question, the eliminate the  $X_i$  starting from  $X_2$ , going to  $X_3, \ldots, X_n$  and then back to  $X_1$ . What is the computational cost of running variable elimination with this ordering?

| Your<br>Answer |   | Score | Explanation                                                                                                                                                                                                                                                                                             |
|----------------|---|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $O(nk^3)$      | • | 1.00  | If we start by eliminating $X_2$ , we create an intermediate factor over $X_1, X_2, X_3$ , and continue from $X_3$ to the end and then $X_1$ . Since the scope of the intermediate factor involves three variables, the complexity would be $O(nk^3)$ instead of $O(nk^2)$ as in the previous question. |
| Total          |   | 1.00  |                                                                                                                                                                                                                                                                                                         |

# **Question 10**

Time Complexity of Variable Elimination. Suppose we eliminate all the variables in a Markov netw using the variable elimination algorithm. Which of the following could affect the runtime of the algorith You may select 1 or more options (or none of them, if you think none apply).

| Your Answer                                         |   | Score | Explanation                                                                                                                  |
|-----------------------------------------------------|---|-------|------------------------------------------------------------------------------------------------------------------------------|
| ▼ Number of variables in the network                | ₩ | 0.33  | The runtime is affected by the number of variables in the netw as discussed in the textbook.                                 |
| <ul><li>The variable elimination ordering</li></ul> | ✓ | 0.33  | This potentially affects the size of the largest factor in the network, which is a key component of the algorithm's runtime. |

| ✓ Whether there is evidence | ✓ | 0.33 | If there is evidence, the number of variables in the network is effectively reduced, since factors involving the evidence varia are reduced. |
|-----------------------------|---|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Total                       |   | 1.00 |                                                                                                                                              |