Review of Complex numbers

- 1. The purpose of this exercise is to review the historical main motivation for introducing complex numbers: to solve $x^2 = -1$. This led to the number i, which is defined by $i^2 = -1$. With this number on our hands, solve the following quadratic equations.
 - (a) $x^2 + 9 = 0$
 - (b) $x^2 2x + 1 = 0$
 - (c) $5x^2 2x + 1 = 0$
 - (d) $x^3 + 2x^2 + x = 0$
- 2. The purpose of this exercise is to revise some basic concepts and basic operations on complex numbers. When in this exercise we ask you to compute a complex number, we are asking to express the result in cartesian form that is in the form x + yi where x, y are real numbers.
 - (a) Compute the real and imaginary parts of 1 + i, 3 2i.
 - (b) Compute the sum, difference and product of the two complex numbers 1+i and 3-2i.
 - (c) Compute the sum, difference and product of the two complex numbers -i and 4i.
 - (d) Compute $\frac{1+i}{3-2i}$. Solve the equation (3-2i)z = 1+i.
 - (e) Compute $(1+i)^3$. Compute $(x+iy)^3$ where x, y are real numbers.
 - (f) Compute i^n for any natural number n. What is the value of i^{2001} ?
 - (g) -2i(3+i)(2+4i)(1+i)
 - (h) Compute the complex conjugate of the numbers $1+i, i, 2, \sqrt{3}+2i$.
 - (i) We denote by \overline{z} the complex conjugate of the complex number z=x+yi (x,y) are real). Compute $z\overline{z}$.
 - (j) Compute $\frac{1}{2}(z+\bar{z}), \frac{1}{2i}(z-\bar{z}).$
 - (k) Verify that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$, $\overline{1/z} = 1/\overline{z}$.
 - (l) Compute $\frac{(3+4i)(-1+2i)}{(-1-i)(3-i)}$.
- 3. Compute the modulus r and phase θ of the following complex numbers and then write them in polar form $re^{i\theta}$. Represent them graphically in the complex plane.
 - (a) 1+i, 3-2i.
 - (b) $1 + \sqrt{3}i$
 - (c) $\cos \phi + i \sin \phi$ where ϕ is a real number.
 - (d) $\frac{1+i}{1-i}$.

- 4. Compute the modulus of z + 7i where z = x + iy, where x, y are real numbers. Idem with $\left|\frac{z-2}{-z+5-i}\right|$ (recall that |z| denotes the modulus of z).
- 5. Recall Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ for any real number θ . Let us explain how to derive this formula. Follow the steps:
 - (a) Go to your favorite notes on Taylor series and write the Taylor series of $\cos \theta$ and $\sin \theta$.
 - (b) Using them, compute $\cos \theta + i \sin \theta$.
 - (c) Write the Taylor series for e^x where x is a real number. Accept that the series also holds for e^z where z is a complex number (the series can be used as a definition of e^z). Compute $e^{i\theta}$.
 - (d) Conclude $e^{i\theta} = \cos \theta + i \sin \theta$.
- 6. Another view on Euler's formula. Assume that a particle moves in the plane following the trajectory $F(t) = e^{it}$, t being a real number.
 - (a) What is the trajectory followed by the particle.
 - (b) Compute its velocity vector F'(t) and its speed |F'(t)|. For that recall that $\frac{d}{dt}e^{at} = ae^{at}$ where a and t are real numbers. Accept that the result is true when a is a complex number. Show that F'(t) = iF(t).
 - (c) Suppose that another particle follows the trajectory $G(t) = \cos t + i \sin t$. Show that G'(t) = iG(t).
 - (d) Observe that both particles are at the same place at time t = 0 and have the same velocity vector. Conclude that G(t) = F(t).
- 7. Using Euler's formula show that
 - (a) $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$.
 - (b) $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$.
- 8. Derive De Moivre's formula

$$[\cos \theta + i \sin \theta]^n = \cos (n\theta) + i \sin (n\theta),$$

for any natural number n and any angle θ .

- 9. Check that if z_1 and z_2 are two complex numbers, then $|z_1z_2| = |z_1||z_2|$. That is, the length of z_1z_2 is the product of the lengths of z_1 and z_2 . Check also that the phase of z_1z_2 is the sum of the phase of z_1 plus the phase of z_2 .
- 10. Check that if z_1 and z_2 are two complex numbers, then $|z_1 + z_2| \leq |z_1| + |z_2|$.
- 11. Let w and z be two complex numbers, both not zero. Show that the cosinus of the angle formed by the two vectors associated to w and z is $\frac{Re(w\overline{z})}{|w||z|}$. Recall that Re(z) denotes the real part of a complex number z.
- 12. Express in cartesian form, that is, in form x + iy, the numbers
 - (a) $(1+i)^n + (1-i)^n$ where n is a natural number.

- (b) $\left(\frac{-1-i\sqrt{3}}{2}\right)^6$.
- (c) $\frac{(1+i\sqrt{3})^3}{(1-i)^2}$.
- (d) $e^{i\pi/6}$.
- (e) $5e^{i\pi/2}$.
- (f) $\sin i$, $\cos i$.
- (g) For any complex number z, define tan $z = \frac{\sin z}{\cos z}$. Express tan i in cartesian form.
- (h) $\tan \frac{1+i}{1-i}$.
- 13. Compute the inverse of $z = e^{i\pi/6}$, that is, compute 1/z. Compute the inverses of $5e^{i\pi/2}$, $re^{i\theta}$ (θ is real).
- 14. Write $(1+i)^{100}$ in polar and in cartesian form.
- 15. Draw in the plane the points $e^{2k\pi i/8}$, $k=0,\ldots,7$. Draw the points when $k=8,\ldots,15$. What do you conclude?
- 16. Let a+ib, c+id be complex numbers, a,b,c,d being real. Represent in matrix form the operation $(x+iy) \to (a+ib)(x+iy)$ (representing complex numbers as column vectors $(x,y)^t$). Represent also using matrix notation the operation $(x+iy) \to (a+ib)(x+iy) + (c+id)$.
- 17. Consider a complex number in its polar form $re^{i\theta}$. Interpret geometrically the multiplication of another complex number, z, by $re^{i\theta}$. What happens to the plane when r < 1? What happens when r > 1?
- 18. Represent with a complex number the rotation of the plane of angle $\frac{\pi}{2}$. Represent the rotations of $\frac{\pi}{4}$, of 60 degrees, and of 30 degrees.
- 19. Represent with a complex number the transformation of the plane consisting in a rotation of 45 degrees and a change of scale of factor 2.