Let us consider a sample dataset have one input (xia) and one output (yia) and number of samples 4.

Develop, a simple linear argumon model using

ρ.		1 11 1 1	V	
14	Sample (i)	/ x;a	yia yi	
	1	0.2	3.4	4
	2	0·4	3.8	
	3	0.6	4.2	` + ÷
	y	0.6	4.6	_
	•	1		_

· Do manual calculations for two iterators with

· Write the python code to build simple linear oregusion model using MBGD optimizer.

Batch 2
$$\frac{x}{0.2}$$
 $\frac{y}{3.4}$ $\frac{y}{0.4}$ $\frac{3}{3}$

Batch 2

Step 1: [x, y], m=1, c--1, \(1=0-1\), epolice = 2, bs=2

step3: It =1

Step-4: Batch=1

Steps:
$$\frac{\partial E}{\partial m} = \frac{1}{bs} = \frac{1}{bs} (y_1 - m + m - c) \times i$$
 $\frac{\partial E}{\partial s} = \frac{1}{bs} = \frac{1}{bs} (y_1 - m + m - c) \times i$
 $\frac{\partial E}{\partial s} = \frac{1}{bs} [(34 - (1)(02) + 1)0.2] + \frac{1}{34}$
 $\frac{\partial E}{\partial s} = \frac{1}{2} [(3.4 - 0.2 + 1) + (3.8 - 0.4 + 1)]$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(3.4 - 0.2 + 1) + (3.8 - 0.4 + 1)]$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(3.4 - 0.2 + 1) + (3.4 - 0.4 + 1)]$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(3.4 - 0.2 + 1) + (3.4 - 0.4 + 1)]$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) + (4.6 - (1.34) (0.6) + 0.57) + (4.6 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Steps: $\frac{\partial E}{\partial s} = \frac{1}{2} [(4.2 - (1.34) (0.6) + 0.57) = -4.1762$

Step?: Batch +=1

2+1=3

Step?:
$$ij(batch) + ib$$

90to Hep-10

372

eln

goto Steps

Steps: $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itl = 2$
 $itr = ilr + i$
 $itl = 2$

Steps: $itr = ilr + i$
 $itr = ilr +$

Step 9:
$$y(8a+ch 7nb)$$
 $yoto step 10$
 $yoto step 20$
 $yoto step 30$
 $yoto step 40$
 $yoto step 40$