Métodos Probabilísticos para Engenharia Informática

Informações sobre a Unidade Curricular

Objetivos da UC

- Desenvolver a capacidade de aplicar métodos probabilísticos em engenharia informática
 - Suportada no conhecimento de conceitos essenciais

- Complementar a formação em métodos determinísticos
 - da generalidade das outras UCs do MIECT, LEI e LECI

Funcionamento da UC

TPs (2x1 h) + PL (2 h) por semana

Teórico-Práticas:

- Noções básicas de probabilidade
- Variáveis aleatórias e distribuições
- Cadeias de Markov
- Algoritmos probabilísticos

Aulas Práticas

- Guiões para as aulas práticas, relativos a:
 - Probabilidades (e simulação)
 - Variáveis aleatórias
 - Algoritmos probabilísticos
 - Filtros de Bloom
 - MinHash
 - Cadeias de Markov e PageRank

OT

- Horário:
 - Quinta-feira, 18:00-19:00, sala 04.02.15
 - (comunicar pessoalmente ao regente ou enviar e-mail para <u>ajst@ua.pt</u> até 12:00 do dia da OT)

Faltas

 Haverá lugar à marcação de faltas nas aulas práticas.

- Nas aulas TP poderão ser registadas as presenças, mas não contarão para reprovação por faltas.
 - Serão tidas em conta na avaliação.

Equipa docente

- António Teixeira (ajst@ua.pt) Regente
 - TP2
 - Práticas
- Carlos Bastos (<u>cbastos@ua.pt</u>)
 - TP1
 - Práticas
- Amaro Sousa (<u>asou@ua.pt</u>)
 - Práticas
- Jean Araújo (jean.araujo@ua.pt)
 - Práticas

Avaliação

- Avaliação discreta ** Pré-definida **:
 - Componente TP

25% TP Teste TP 10% TP Presenças e Quizzes

Componente Prática

30% P Trabalho prático 25% P Teste Prático em computador 10% P Participação e desempenho nas aulas práticas

- Avaliação Final:
 - 35% TP Teste TP
 - 30% P Teste Prático
 - 35% P Trabalho prático

Bibliografia

Livro referência de base:

Métodos Probabilísticos para Engenharia Informática

Autores: Francisco Vaz e António

Teixeira

Editora: Edições Sílabo

setembro de 2021

ISBN: 9789895611751

Métodos Probabilísticos para Engenharia Informática

Métodos probabilísticos para cursos de Engª. de Computadores e de Engª Informática?

Probabilidades para Informática?

Muitos problemas na área da Informática,
 Ciências da Computação e afins contêm algum
 grau de aleatoriedade

O que é?

Aleatório

- que ocorre ao acaso; imprevisibilidade.
- que não se estabelece por regras fixas e determinadas.

Probabilidades para Informática?

• Exemplos:

- Quantos computadores estarão ligados ao longo do dia a uma determinada rede wireless?
- Qual a palavra mais provável que um utilizador irá escrever ao escrever um SMS?
- Quais as páginas da web que têm mais relevância para uma procura ?

Probabilidades para Informática?

 Também se podem resolver muitos problemas usando abordagens não determinísticas ...

 Muitas vezes com vantagens em termos de, por exemplo, velocidade

Exemplos de Aplicação

- Algoritmos probabilísticos
 - Ordenação, Métodos de Monte Carlo e Las Vegas
- Simulação
 - Redes de dados, ataques informáticos ...
- Teste de Software
- Poupança de memória
 - Ex: Bloom filters, contadores aleatórios
- Análise probabilística de algoritmos

Mais exemplos de aplicação ...

- Filtrar emails com SPAM
- Máquinas de estados probabilísticas
- Parsers probabilísticos para análise sintática
- Reconhecimento de padrões
- Reconhecimento de fala
- Inteligência Artificial
 - Ex: planeamento nos robôs de Futebol robótico

Algoritmos probabilísticos

 Algoritmos que efetuam decisões aleatórias durante a sua execução

Vantagens:

 Para muitos problemas um algoritmo probabilístico é o mais simples, o mais rápido, ou ambos

Exemplo

 Quicksort com pivot decidido de forma aleatória

Partição com pivot aleatório

```
int partitionRandomPivot(int[] a, int start, int end) {
// pivot part
 int randPosition= ((int) Math.floor(Math.random()*(end-start)))+start;
System.out.printf("Pivot will be %d\n",a[randPosition]);
swap(a,randPosition, end-1); // new : save pivot at last position
// code below is the same
int pivot=a[end-1];
int i1 = start-1;
int i2 = end-1;
while(i1 < i2) {
          // enquanto menor que pivot
          do
          i1++;
          while(a[i1] < pivot);</pre>
          // enquanto maior que pivot e ...
          if (i1 < i2) {
            swap(a, i1, i2);
swap(a, i1, end-1); // restore pivot
return i1; // <---
```

Algoritmos probabilísticos - áreas de aplicação

- Teoria de números
 - Teste de números primos
- Estruturas de dados
 - Procura, ordenação, ...
- Grafos
 - Caminho mais curto...
- Computação paralela e distribuída
 - Evitar deadlock, consenso distribuído

• ...

Exemplo Método Monte Carlo

Aplicação: estimativa do valor de um integral

Exemplo Método Monte Carlo

Aplicação: estimativa do valor de pi

Análise probabilística de algoritmos

 Usa teoria de probabilidades para analisar o comportamento / desempenho de algoritmos (probabilísticos e determinísticos)

Porquê?

- Naturalmente, algoritmos probabilísticos terão desempenho não determinístico
- Também, o comportamento dos alg. determinísticos varia com as entradas
- A análise probabilística permite estimar limites para o comportamento dos algoritmos.

Exemplo:

 Determinar a probabilidade de colisão de uma função de hash (utilizada, por exemplo, em HashMaps)

MATLAB

Instalação MATLAB:

https://www.mathworks.com/academia/tahportal/universidade-de-aveiro-40766421.html Use as suas credenciais de Utilizador Universal

- Ajuda: <u>https://www.mathworks.com/support/contact_us.html?s_t</u> id=tah_po_helpbutton_ua.pt
- Aprenda MATLAB em duas horas: Curso online <u>MATLAB Onramp</u>

Mais informações sobre este e outro software disponível:

http://www.ua.pt/stic/page/16014

