TD12-Intégration

Exercice 1. Toutes les fonctions considérées sont continues sur le segment d'intégration donc les intégrales sont bien définies (il n'y a pas d'impropreté).

1. Les fonctions $u: t \mapsto t$ et $v: t \mapsto \frac{e^{2t}}{2}$ sont de classe C^1 sur [0,2]. Par intégration par parties, on a donc:

$$\int_0^2 t e^{2t} dt = \int_0^2 u(t) v'(t) dt = [u(t) v(t)]_0^2 - \int_0^2 u'(t) v(t) dt$$
$$= \left[\frac{t e^{2t}}{2} \right]_0^2 - \int_0^2 \frac{e^{2t}}{2} dt$$
$$= e^4 - \frac{e^4}{4} + \frac{1}{4}$$
$$= \frac{3e^4 + 1}{4}.$$

- 2. Voir le test 3 et sa correction.
- 3. Pour tout $x \in [2, 4]$, on a:

$$\frac{1}{1-x^2} = \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1+x} \right).$$

Ainsi:

$$\int_{2}^{4} \frac{1}{1-x^{2}} dx = \frac{1}{2} \int_{2}^{4} \frac{1}{1+x} dx + \frac{1}{2} \int_{2}^{4} \frac{1}{1-x} dx$$

$$= \frac{1}{2} \left[\ln\left(|1+x|\right) \right]_{2}^{4} + \frac{1}{2} \left[-\ln\left(|1-x|\right) \right]_{2}^{4}$$

$$= \frac{\ln\left(5\right) - 2\ln\left(3\right)}{2}.$$

4. Les fonctions $u: y \mapsto \ln(y)$ et $v: y \mapsto \frac{y^{3/2}}{3/2}$ sont de classe C^1 sur [1,5]. Par intégration par

parties, on a donc:

$$\int_{1}^{5} \sqrt{y} \ln(y) dy = \int_{1}^{5} u(y) v'(y) dy = \left[u(y) v(y) \right]_{1}^{5} - \int_{1}^{5} u'(y) v(y) dy$$

$$= \left[\frac{y^{3/2} \ln(y)}{3/2} \right]_{1}^{5} - \int_{1}^{5} \frac{y^{3/2}}{3/2} \times \frac{1}{y} dy$$

$$= \frac{10\sqrt{5}}{3} \ln(5) - \frac{2}{3} \int_{1}^{5} \sqrt{y} dy$$

$$= \frac{10\sqrt{5}}{3} \ln(5) - \frac{2}{3} \left[\frac{y^{3/2}}{3/2} \right]_{1}^{5}$$

$$= \frac{10\sqrt{5}}{3} \ln(5) - \frac{20\sqrt{5}}{9} + \frac{4}{9}.$$

5. Les fonctions $u: r \mapsto r$ et $v: r \mapsto \sqrt{2r+1}$ sont de classe C^1 sur [0,1]. Par intégration par parties, on a donc:

$$\int_{0}^{1} \frac{r}{\sqrt{2r+1}} dr = \int_{0}^{1} u(r)v'(r)dr = [u(r)v(r)]_{0}^{1} - \int_{0}^{1} u'(r)v(r)dr$$

$$= \left[r\sqrt{2r+1}\right]_{0}^{1} - \int_{0}^{1} \sqrt{2r+1}dr$$

$$= \sqrt{3} - \frac{1}{2} \left[\frac{(2r+1)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}$$

$$= \sqrt{3} - \frac{1}{3} \left(3^{\frac{3}{2}} - 1\right)$$

$$= \frac{1}{3}.$$

parties, on a donc:

$$\int_{0}^{2} x\sqrt{3x+1} dx = \int_{0}^{2} u(x)v'(x)dx = [u(x)v(x)]_{0}^{2} - \int_{0}^{x} u'(x)v(x)dx$$

$$= \left[\frac{2}{9}x(3x+1)^{\frac{3}{2}}\right]_{0}^{2} - \int_{0}^{2} \frac{2}{9}(3x+1)^{\frac{3}{2}} dx$$

$$= \frac{21\sqrt{7}}{9} - \frac{2}{27} \left[\frac{(3x+1)^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{2}$$

$$= \frac{224\sqrt{7}+4}{135}.$$

Exercice 2.

1. Soit $n \in \mathbb{N}$. La fonction f_n est continue sur [0,1] donc l'intégrale I_n est bien définie. De plus, si on note $u: x \mapsto x^2 + 1$, on a :

$$I_{1} = \int_{0}^{1} \frac{x}{1+x^{2}} dx = \frac{1}{2} \int_{0}^{1} \frac{u'(x)}{u(x)} dx = \frac{1}{2} \left[\ln \left(|u(x)| \right) \right]_{0}^{1}$$
$$= \frac{\ln (2)}{2}.$$

2. Par décroissance de la fonction inverse sur \mathbb{R}_+^* on a, pour tout $x \in [0,1]$:

$$\frac{1}{1+x^2} \le 1.$$

Par croissance de l'intégrale (les bornes étant dans l'ordre croissant), on en déduit que pour tout $n \in \mathbb{N}$:

$$I_n \le \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1}.$$

D'autre part, par positivité de l'intégrale, I_n est positive pour tout $n \in \mathbb{N}$. Ainsi :

$$\forall n \in \mathbb{N}, \quad 0 \le I_n \le \frac{1}{n+1}.$$

Par encadrement, on en déduit : $\lim_{n\to+\infty} I_n = 0$.

Exercice 3.

1. La fonction $t \mapsto \frac{\ln(t)}{1+t^2}$ est continue sur $]0, +\infty[$ donc possède une primitive F sur cet intervalle. En particulier, f est bien définie et :

$$\forall x > 0, \quad f(x) = F(x) - F\left(\frac{1}{x}\right).$$

En tant que primitive d'une fonction continue, F est dérivable sur $]0, +\infty[$. La fonction inverse est dérivable sur $]0, +\infty[$ et à valeurs dans $]0, +\infty[$ sur $]0, +\infty[$. Ainsi par composition, $x \mapsto F(\frac{1}{x})$ est dérivable sur $]0, +\infty[$ puis par somme f l'est. De plus :

$$\forall x > 0, \quad f'(x) = F'(x) + \frac{1}{x^2} F'\left(\frac{1}{x}\right) = \frac{\ln(x)}{1 + x^2} + \frac{1}{x^2} \times \frac{\ln\left(\frac{1}{x}\right)}{1 + \left(\frac{1}{x}\right)^2} = 0.$$

2. La fonction f est dérivable sur $]0, +\infty[$ de dérivée nulle. Donc f est constante sur $]0, +\infty[$. En particulier :

$$\forall x > 0, \quad f(x) = f(1) = 0.$$

3. Soit $x \in]0, +\infty[$. On effectue le changement de variables $y = \frac{1}{t}$: soit $y : t \mapsto \frac{1}{t}$ de classe C^1 sur $[x, \frac{1}{x}]$. Alors

$$f(x) = \int_{\frac{1}{x}}^{x} \frac{\ln(t)}{1+t^2} dt = \int_{\frac{1}{x}}^{x} -\frac{\ln(\frac{1}{t})}{t^2 \left(1+\left(\frac{1}{t}\right)^2\right)} dt = \int_{\frac{1}{x}}^{x} \frac{\ln(y(t))}{1+y(t)^2} y'(t) dt$$
$$= \int_{x}^{\frac{1}{x}} \frac{\ln(y)}{1+y^2} dy$$
$$= -\int_{\frac{1}{x}}^{x} \frac{\ln(y)}{1+y^2} dy$$
$$= -f(x).$$

Donc, f(x) = -f(x) donc f(x) = 0. Ainsi: $\forall x > 0$, f(x) = 0.

Exercice 4.

1. La fonction $f: t \mapsto \frac{1}{\sqrt{t-1}}$ est définie et continue sur $[2, +\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $A \in [2, +\infty[$. On a :

$$\int_{2}^{A} \frac{1}{\sqrt{t-1}} dt = \left[2\sqrt{t-1} \right]_{2}^{A} = 2\sqrt{A-1} - 2.$$

Donc: $\lim_{A \to +\infty} \int_2^A \frac{1}{\sqrt{t-1}} dt = +\infty$. Ainsi l'intégrale $\int_2^{+\infty} \frac{1}{\sqrt{t-1}} dt$ est divergente.

2. La fonction $f: x \mapsto xe^{-x^2}$ est continue sur $[0, +\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $A \in [0, +\infty[$. Alors on a :

$$\int_0^A x e^{-x^2} dx = \left[-\frac{1}{2} e^{-x^2} \right]_0^A = \frac{1}{2} (1 - e^{-A^2}).$$

Donc: $\lim_{A \to +\infty} \int_0^A x e^{-x^2} dx = \frac{1}{2}$. Ainsi l'intégrale $\int_0^{+\infty} x e^{-x^2} dx$ est convergente et vaut $\frac{1}{2}$.

3. La fonction $f: t \mapsto \frac{t}{(1+t^2)^2}$ est continue sur $]-\infty,0]$ donc l'intégrale est impropre en $-\infty$. Soit $A \in]-\infty,0]$. Alors on a :

$$\int_A^0 \frac{t}{(1+t^2)^2} dt = \left[-\frac{1}{2} \frac{1}{1+t^2} \right]_A^0 = \frac{1}{2} (\frac{1}{1+A^2} - 1).$$

Donc:
$$\lim_{A \to -\infty} \int_A^0 \frac{t}{(1+t^2)^2} = -\frac{1}{2}$$
.
Ainsi l'intégrale $\int_{-\infty}^0 \frac{t}{(1+t^2)^2} dt$ est convergente et vaut $-\frac{1}{2}$.

- 4. La fonction $f: t \mapsto \frac{1}{1+t^2}$ est continue sur $[0, +\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $A \in [0, +\infty[$.
 - **Méthode 1**: la fonction $u: t \mapsto e^t$ est de classe C^1 sur [0, A], en effectuant le changement de variable $u = e^t$ on obtient :

$$\int_0^A \frac{1}{1+e^t} dt = \int_0^A \frac{1}{e^t(1+e^t)} e^t dt = \int_0^A \frac{1}{u(t)(1+u(t))} u'(t) dt = \int_1^{e^A} \frac{1}{u(1+u)} du.$$

Or, pour tout $u \ge 1$: $\frac{1}{u(u+1)} = \frac{1}{u} - \frac{1}{u+1}$. Donc:

$$\int_0^A \frac{1}{1+e^t} dt = \int_1^{e^A} \frac{1}{u(1+u)} du$$

$$= \int_1^{e^A} \left(\frac{1}{u} - \frac{1}{u+1}\right) du$$

$$= [\ln(u) - \ln(u+1)]_1^{e^A}$$

$$= A - \ln(1+e^A) + \ln(2)$$

$$= \ln(2) - \ln(1+e^{-A}).$$

• **Méthode 2:** on a : $\forall t \ge 0$, $\frac{1}{1+e^t} = \frac{e^{-t}}{1+e^{-t}}$. Donc :

$$\int_0^A \frac{1}{1+e^t} dt = \int_0^A \frac{e^{-t}}{1+e^{-t}} dt = \left[-\ln\left(1+e^{-t}\right) \right]_0^A = \ln\left(2\right) - \ln\left(1+e^{-A}\right).$$

• Conclusion: $\lim_{A \to -\infty} \int_0^A \frac{1}{1+e^t} dt = \ln(2)$. Ainsi l'intégrale $\int_{0}^{+\infty} \frac{1}{1+e^{t}} dt$ est convergente et vaut $\ln(2)$.

Exercice 5.

1. La fonction $t \mapsto \frac{1}{\sqrt{1-t}}$ est continue sur [0,1[donc l'intégrale est impropre en 1. Soit $A \in [0,1]$. On a:

$$\int_0^A \frac{1}{\sqrt{1-t}} dt = \left[-2\sqrt{1-t} \right]_0^A = -2\sqrt{1-A} + 2.$$

Donc:
$$\lim_{A \to 1} \int_0^A \frac{1}{\sqrt{1-t}} dt = 2.$$

Ainsi l'intégrale converge et vaut 2.

2. La fonction $x \mapsto \frac{1}{x \ln(x)}$ est continue sur]1,2] donc l'intégrale est impropre en 1.

$$\int_{A}^{2} \frac{1}{x \ln(x)} dx = \int_{A}^{2} \frac{\frac{1}{x}}{\ln(x)} dx = \left[\ln\left(|\ln(x)|\right)\right]_{A}^{2} = \ln\left(\ln(2)\right) - \ln\left(\ln(A)\right).$$

Donc: $\lim_{A \to 1} \int_A^2 \frac{1}{x \ln(x)} dx = +\infty.$

3. La fonction $f: t \mapsto t \ln(t)$ est continue sur [0,1] donc l'intégrale est impropre en 0. Soit $A \in]0,1]$. Les fonctions $u: t \mapsto \ln(t)$ et $v: t \mapsto \frac{t^2}{2}$ sont de classe C^1 sur [A,1]. Par intégration par parties, on a donc:

$$\int_{A}^{1} t \ln(t) dt = \int_{A}^{1} u(t) v'(t) dt = [u(t)v(t)]_{A}^{1} - \int_{A}^{1} u'(1)v(1) dt$$

$$= \frac{1}{2} [t^{2} \ln(t)]_{A}^{1} - \int_{A}^{1} \frac{t}{2} dt$$

$$= -\frac{1}{2} A^{2} \ln(A) - \left[\frac{t^{2}}{4}\right]_{A}^{1}$$

$$= -\frac{1}{2} A^{2} \ln(A) - \frac{1}{4} + \frac{A^{2}}{4}.$$

Ainsi, par croissance comparée : $\lim_{A \to 0} \int_{A}^{1} t \ln(t) dt = -\frac{1}{4}$. Donc l'intégrale converge 1 et vaut $-\frac{1}{4}$

4. La fonction $t\mapsto \frac{1}{3t+1}$ est continue sur] $-\frac{1}{3}$,0] donc l'intégrale est impropre en $-\frac{1}{3}$. Soit $A \in]-\frac{1}{3},0]$. On a:

$$\int_{A}^{0} \frac{1}{3t+1} dt = \left[\frac{\ln(|3t+1|)}{3} \right]_{A}^{0} = -\frac{\ln(1+3A)}{3}.$$

Donc: $\lim_{A \to -\frac{1}{2}} \int_{A}^{0} \frac{1}{3t+1} dt = +\infty.$

Ainsi l'intégrale diverge.

5. La fonction $t\mapsto \frac{1}{t\ln(t)^2}$ est continue sur $[2,+\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $A\in[2,+\infty[$. On a :

$$\int_{2}^{A} \frac{1}{t \ln(t)^{2}} dt = \int_{2}^{A} \frac{\frac{1}{t}}{\ln(t)^{2}} dt = \left[-\frac{1}{\ln(t)} \right]_{2}^{A} = \frac{1}{\ln(2)} - \frac{1}{\ln(A)}.$$

Donc: $\lim_{A \to +\infty} \int_{2}^{A} \frac{1}{t \ln(t)^{2}} dt = \frac{1}{\ln(2)}$. Ainsi l'intégrale converge et vaut $\frac{1}{\ln(2)}$.

 $1. \;$ On pouvait aussi remarquer que, par croissance comparée, la fonction f est prolongeable par continuité en $0 \;$ pour conclure à la convergence.

Exercice 6.

- 1. La fonction $x \mapsto \frac{1}{2(1+|x|)^2}$ est continue sur \mathbb{R} donc l'intégrale est impropre en $-\infty$ et en $+\infty$.
 - Étude de l'intégrale $\int_{-\infty}^{0} \frac{1}{2(1+|x|)^2} dx$ impropre en $-\infty$.

$$\int_{A}^{0} \frac{1}{2(1+|x|)^{2}} dx = \int_{A}^{0} \frac{1}{2(1-x)^{2}} = \frac{1}{2} \left[\frac{1}{1-x} \right]_{A}^{0} = \frac{1}{2} - \frac{1}{2(1-A)}.$$

Ainsi: $\lim_{A \to -\infty} \int_A^0 \frac{1}{2(1+|x|)^2} dx = \frac{1}{2}$.

L'intégrale converge donc et vaut $\frac{1}{2}$.

• Étude de l'intégrale $\int_0^{+\infty} \frac{1}{2(1+|x|)^2} dx$ impropre en $+\infty$. Soit $A \in [0, +\infty[$. On a :

$$\int_0^A \frac{1}{2(1+|x|)^2} dx = \int_0^A \frac{1}{2(1+x)^2} = \frac{1}{2} \left[-\frac{1}{1+x} \right]_0^A = \frac{1}{2} - \frac{1}{2(1+A)}.$$

Ainsi: $\lim_{A \to +\infty} \int_0^A \frac{1}{2(1+|x|)^2} dx = \frac{1}{2}$.

L'intégrale converge donc et vaut $\frac{1}{2}$.

• Conclusion: comme les intégrales $\int_{-\infty}^{0} \frac{1}{2(1+|x|)^2} dx$ et $\int_{0}^{+\infty} \frac{1}{2(1+|x|)^2} dx$ convergent alors $\int_{-\infty}^{+\infty} \frac{1}{2(1+|x|)^2} dx$ converge et:

$$\int_{-\infty}^{+\infty} \frac{1}{2(1+|x|)^2} dx = \int_{-\infty}^{0} \frac{1}{2(1+|x|)^2} dx + \int_{0}^{+\infty} \frac{1}{2(1+|x|)^2} dx = 1.$$

- 2. Voir l'exemple 9.2 du cours.
- 3. La fonction $x \mapsto xe^{-x^2}$ est continue sur \mathbb{R} donc l'intégrale est impropre en $-\infty$ et en $+\infty$.
 - Étude de l'intégrale $\int_{-\infty}^{0} xe^{-x^2} dx$ impropre en $-\infty$. Soit $A \in]-\infty$. 0]. On a:

$$\int_{A}^{0} x e^{-x^{2}} dx = \left[-\frac{1}{2} e^{-x^{2}} \right]_{A}^{0} = -\frac{1}{2} (1 - e^{-A^{2}}).$$

Ainsi: $\lim_{A \to -\infty} \int_{A}^{0} x e^{-x^{2}} dx = -\frac{1}{2}$.

L'intégrale converge donc et vaut $-\frac{1}{2}$.

• Étude de l'intégrale $\int_0^{+\infty} xe^{-x^2} dx$ impropre en $+\infty$. Soit $A \in [0, +\infty[$. On a :

$$\int_0^A x e^{-x^2} dx = \left[-\frac{1}{2} e^{-x^2} \right]_0^A = -\frac{1}{2} (e^{-A^2} - 1).$$

Ainsi : $\lim_{A\to +\infty} \int_0^A x e^{-x^2} dx = \frac{1}{2}$. L'intégrale converge donc et vaut $\frac{1}{2}$. • Conclusion : comme les intégrales $\int_{-\infty}^{0} xe^{-x^2} dx$ et $\int_{0}^{+\infty} xe^{-x^2} dx$ convergent alors $\int_{-\infty}^{+\infty} xe^{-x^2} dx$ converge et :

$$\int_{-\infty}^{+\infty} x e^{-x^2} dx = \int_{-\infty}^{0} x e^{-x^2} dx + \int_{0}^{+\infty} x e^{-x^2} dx = 0.$$

Exercice 7.

- 1. La fonction $t\mapsto \frac{1}{1+t+t^n}$ est continue sur $[1,+\infty[$. L'intégrale est donc impropre en $+\infty$.
 - Si $n \ge 2$. Pour tout $t \in [1, +\infty[$ on a

$$1+t+t^n \ge t^n$$
 donc $\frac{1}{1+t+t^n} \le \frac{1}{t^n}$.

Les fonctions $t\mapsto \frac{1}{1+t+t^n}$ et $t\mapsto \frac{1}{t^n}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^n}dt$ est une intégrale de Riemann convergente car n>1. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}\frac{1}{1+t+t^n}dt$ converge aussi.

• Si n = 1. Pour tout $t \in [1, +\infty[$ on a

$$1+t+t^n = 1+2t \le 3t$$
 donc $\frac{1}{1+t+t^n} \ge \frac{1}{3t}$.

Les fonctions $t \mapsto \frac{1}{1+t+t^n}$ et $t \mapsto \frac{1}{3t}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty} \frac{1}{3t} dt$ est, à un facteur non nul près, une intégrale de Riemann divergente donc divergence elle-même. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} \frac{1}{1+t+t^n} dt$ diverge aussi.

• Si n = 0. Pour tout $t \in [1, +\infty[$ on a

$$1 + t + t^n = 2 + t \le 3t$$
 donc $\frac{1}{1 + t + t^n} \ge \frac{1}{3t}$.

Et on conclut comme précédemment que l'intégrale $\int_1^{+\infty} \frac{1}{1+t+t^n} dt$ diverge.

2. La fonction $t\mapsto \frac{\ln(t)}{\sqrt{t}}$ est continue sur $[1,+\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, pour tout $t\geq e$ on a

$$\frac{\ln(t)}{\sqrt{t}} \ge \frac{1}{\sqrt{t}}.$$

Les fonctions $t\mapsto \frac{\ln(t)}{\sqrt{t}}$ et $t\mapsto \frac{1}{\sqrt{t}}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{\sqrt{t}}dt$ est une intégrale de Riemann divergente. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}\frac{\ln(t)}{\sqrt{t}}dt$ diverge.

3. La fonction $t \mapsto \frac{1}{t^3 \ln(t)}$ est continue sur $[2, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, pour tout $t \ge 2$ on a

$$\frac{1}{t^3 \ln(t)} \le \frac{1}{\ln(2)t^3}.$$

Les fonctions $t\mapsto \frac{1}{t^3\ln(t)}$ et $t\mapsto \frac{1}{t^3\ln(2)}$ sont continues, positives sur $[2,+\infty[$ et $\int_2^{+\infty}\frac{1}{t^3\ln(2)}dt$ est, à un facteur près, une intégrale de Riemann convergente donc converge elle-même. D'après le critère de comparaison pour les intégrales de fonctions continues positives, on en déduit que $\int_2^{+\infty}\frac{1}{t^3\ln(t)}dt$ converge aussi.

Exercice 8.

1. La fonction $x \mapsto e^{-\sqrt{x^2 + x}}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, par croissance comparée, $\lim_{x \to +\infty} x^2 e^{-\sqrt{x^2 + x}} = 0$.

Donc
$$e^{-\sqrt{x^2+x}} = o_{x \to +\infty} \left(\frac{1}{x^2}\right)$$
.

Les fonctions $x \mapsto e^{-\sqrt{x^2+x}}$ et $x \mapsto \frac{1}{x^2}$ sont continues, positives sur $[1, +\infty[$ et $\int_1^{+\infty} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} e^{-\sqrt{x^2+x}} dx$ converge aussi.

Enfin, $\int_0^1 e^{-\sqrt{x^2+x}} dx$ est bien définie car $x \mapsto e^{-\sqrt{x^2+x}}$ est continue sur [0,1]. Donc finalement, $\int_0^{+\infty} e^{-\sqrt{x^2+x}} dx$ converge.

 $\underline{\wedge}$ On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $x \mapsto \frac{1}{x^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).

2. La fonction $x \mapsto \frac{\ln(x)}{\sqrt{x}}$ est continue sur]0,1] (et négative!). L'intégrale est donc impropre en 0.

De plus, par croissance comparée, $\lim_{x \to +\infty} x^{\frac{3}{4}} \frac{\ln(x)}{\sqrt{x}} = 0$.

Donc
$$\frac{\ln(x)}{\sqrt{x}} = o_{x \to +\infty} \left(\frac{1}{x^{\frac{3}{4}}}\right)$$
 et aussi $-\frac{\ln(x)}{\sqrt{x}} = o_{x \to +\infty} \left(\frac{1}{x^{\frac{3}{4}}}\right)$.

Les fonctions $x \mapsto -\frac{\ln(x)}{\sqrt{x}}$ et $x \mapsto \frac{1}{x^{\frac{3}{4}}}$ sont continues, positives sur]0,1] et $\int_0^1 \frac{1}{x^{\frac{3}{4}}} dx$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_0^1 -\frac{\ln(x)}{\sqrt{x}} dx$ converge puis $\int_0^1 \frac{\ln(x)}{\sqrt{x}} dx$ converge aussi.

- 3. La fonction $t \mapsto \frac{t}{e^t 1}$ est continue sur $]0, +\infty[$. L'intégrale est donc impropre en 0 et en $+\infty$.
 - Étude au voisinage de 0. Par limite usuelle on sait que

$$\lim_{t \to 0} \frac{t}{e^t - 1} = 1.$$

La fonction $t\mapsto \frac{t}{e^t-1}$ est donc prolongeable par continuité en 0. D'après le cours, $\int_0^1 \frac{t}{e^t-1} dt$ est donc convergente.

• Étude au voisinage de $+\infty$. Par croissance comparée :

$$\lim_{t \to +\infty} \frac{t^3}{e^t - 1} = 0$$

donc $\frac{t}{e^t-1} = o_{t \to +\infty} \left(\frac{1}{t^2}\right)$.

Les fonctions $t\mapsto \frac{t}{e^t-1}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^2}dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}\frac{t}{e^t-1}dt$ converge aussi.

- Conclusion : les intégrales $\int_0^1 \frac{t}{e^t 1} dt$ et $\int_1^{+\infty} \frac{t}{e^t 1} dt$ sont convergentes donc $\int_0^{+\infty} \frac{t}{e^t 1} dt$ converge.
- 4. Soit $k \in \mathbb{N}$. La fonction $t \mapsto t^k e^{-t^2}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, par croissance comparée, $\lim_{t\to +\infty} t^2 t^k e^{-t^2} = 0$.

Donc
$$t^k e^{-t^2} = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$$
.

Les fonctions $t\mapsto t^k e^{-t^2}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^2}dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}t^k e^{-t^2}dt$ converge aussi.

Comme de plus, $t \mapsto t^k e^{-t^2}$ est continue sur [0,1] l'intégrale $\int_0^1 t^k e^{-t^2} dt$ existe.

Finalement $\int_0^{+\infty} t^k e^{-t^2} dt$ converge donc.

 $\underline{\wedge}$ On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $t \mapsto \frac{1}{t^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).

5. La fonction $t \mapsto \frac{1+\ln(t)}{t+t^2+3t^4}$ est continue sur $[1,+\infty[$. L'intégrale est donc impropre en $+\infty$.

De plus, par croissance comparée, $\lim_{t \to +\infty} t^2 \frac{1 + \ln(t)}{t + t^2 + 3t^4} = 0$.

Donc
$$\frac{1+\ln(t)}{t+t^2+3t^4} = o_{t\to+\infty} \left(\frac{1}{t^2}\right)$$
.

Les fonctions $t\mapsto \frac{1+\ln(t)}{t+t^2+3t^4}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$ et $\int_1^{+\infty}\frac{1}{t^2}dt$ est une intégrale de Riemann convergente. D'après le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty}\frac{1+\ln(t)}{t+t^2+3t^4}dt$ converge aussi.

6. Exactement comme la question 4.

Exercice 9.

1. La fonction $t \mapsto \frac{t^2 + 2t}{t^4 + 1}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, par équivalent usuel et compatibilité des équivalents avec le quotient on a :

$$\frac{t^2 + 2t}{t^4 + 1} \underset{t \to +\infty}{\sim} \frac{1}{t^2}.$$

Les fonctions $t\mapsto \frac{t^2+2t}{t^4+1}$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que et $\int_1^{+\infty} \frac{1}{t^2} dt$ et $\int_1^{+\infty} \frac{t^2+2t}{t^4+1} dt$ sont de même nature. Comme $\int_1^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente., $\int_1^{+\infty} \frac{t^2+2t}{t^4+1} dt$ converge aussi.

Comme de plus, $t\mapsto \frac{t^2+2t}{t^4+1}$ est continue sur [0,1] l'intégrale $\int_0^1 \frac{t^2+2t}{t^4+1}dt$ existe.

Finalement $\int_0^{+\infty} \frac{t^2 + 2t}{t^4 + 1}$ converge donc.

- 2. La fonction $x \mapsto \frac{1}{x^2 x + 1}$ est continue sur \mathbb{R} car pour tout réel x, $x^2 x + 1 > 0$. L'intégrale est donc impropre en $-\infty$ et en $+\infty$.
 - Étude de $\int_{-\infty}^{0} \frac{1}{x^2 x + 1} dx.$

Par équivalent usuel et compatibilité des équivalents avec le quotient on a :

$$\frac{1}{x^2 - x + 1} \underset{x \to -\infty}{\sim} \frac{1}{x^2}.$$

Les fonctions $x\mapsto \frac{1}{x^2-x+1}$ et $x\mapsto \frac{1}{x^2}$ sont continues, positives sur $]-\infty,-1]$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_{-\infty}^{-1} \frac{1}{x^2} dx$ et $\int_{-\infty}^{-1} \frac{1}{x^2-x+1} dx$ sont de même nature. Comme $\int_{-\infty}^{-1} \frac{1}{x^2} dx$ est une intégrale de Riemann convergente., $\int_{-\infty}^{-1} \frac{1}{x^2-x+1} dx$ converge aussi.

Comme de plus, $x \mapsto \frac{1}{x^2 - x + 1}$ est continue sur [-1, 0] l'intégrale $\int_{-1}^{0} \frac{1}{x^2 - x + 1} dx$ existe. Finalement $\int_{-\infty}^{0} \frac{1}{x^2 - x + 1} dx$ converge donc.

- On montre de la même façon que $\int_0^{+\infty} \frac{1}{x^2 x + 1} dx$ converge.
- Comme $\int_{-\infty}^{0} \frac{1}{x^2 x + 1} dx$ et $\int_{0}^{+\infty} \frac{1}{x^2 x + 1} dx$ convergent alors $\int_{-\infty}^{+\infty} \frac{1}{x^2 x + 1} dx$

- 3. La fonction $t \mapsto \frac{1}{(1+t^2)\sqrt{1-t^2}}$ est continue sur] 1,1[. L'intégrale est impropre en –1 et en 1.
 - Étude de $\int_{-1}^{0} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$. On a :

$$\frac{1}{(1+t^2)\sqrt{1-t^2}} = \frac{1}{(1+t^2)\sqrt{(1-t)(1+t)}} \sim \frac{1}{t \to -1^+} \frac{1}{2\sqrt{2}\sqrt{t+1}}.$$

Les fonctions $t\mapsto \frac{1}{(1+t^2)\sqrt{1-t^2}}$ et $t\mapsto \frac{1}{2\sqrt{2}\sqrt{t+1}}$ sont continues et positives sur]-1,0]. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_{-1}^{0} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ et $\int_{-1}^{0} \frac{1}{2\sqrt{2}\sqrt{1+t}} dt$ sont de même nature. Soit $A \in]-1,0]$. On a

$$\int_{A}^{0} \frac{1}{2\sqrt{2}\sqrt{1+t}} dt = \frac{1}{\sqrt{2}} \left[\sqrt{1+t} \right]_{A}^{0} = \frac{1}{\sqrt{2}} - \frac{\sqrt{1+A}}{\sqrt{2}}.$$

Ainsi $\lim_{A \to -1^+} \int_A^0 \frac{1}{2\sqrt{2}\sqrt{1+t}} dt = \frac{1}{\sqrt{2}}$. En particulier, $\int_{-1}^0 \frac{1}{2\sqrt{2}\sqrt{1+t}} dt$ converge et donc $\int_{-1}^0 \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ converge aussi.

- On montre de même que $\int_0^1 \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ converge.
- Comme $\int_{-1}^{0} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ et $\int_{0}^{1} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ convergent, $\int_{-1}^{1} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$ converge.
- 4. La fonction $t \mapsto e^{\frac{1}{t}}$ est continue sur $]0, +\infty[$. L'intégrale est donc impropre en 0 et $+\infty$.
 - Soit $c \in]0, +\infty[$. On a $e^{\frac{1}{t}} \sim_{t \to +\infty} 1$.

6

Les fonctions $t\mapsto e^{\frac{1}{t}}$ et $t\mapsto 1$ sont continues, positives sur $[c,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_c^{+\infty} e^{\frac{1}{t}} dt$ et $\int_c^{+\infty} 1 dt$ sont de même nature. Comme cette dernière est une intégrale divergente, $\int_c^{+\infty} e^{\frac{1}{t}} dt$ diverge aussi.

- Ainsi, pour tout $c \in]0, +\infty[$, $\int_{c}^{+\infty} e^{\frac{1}{t}} dt$ diverge. Donc $\int_{0}^{+\infty} e^{\frac{1}{t}} dt$ diverge.
- 5. La fonction $t \mapsto \sqrt{\frac{t}{2t^2+1}}$ est continue sur $[0, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus, on vérifie à l'aide de la caractérisation que l'on a :

$$\sqrt{\frac{t}{2t^2+1}} \sim_{t\to+\infty} \frac{1}{\sqrt{2t}}.$$

Les fonctions $t\mapsto \sqrt{\frac{t}{2t^2+1}}$ et $t\mapsto \frac{1}{\sqrt{2t}}$ sont continues, positives sur $[c,+\infty[$ pour tout c>0. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que et $\int_c^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ et $\int_c^{+\infty} \frac{1}{\sqrt{2t}} dt$ sont de même nature. Comme cette dernière est une intégrale divergente, $\int_c^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ diverge aussi pour tout c>0. Donc $\int_c^{+\infty} \sqrt{\frac{t}{2t^2+1}} dt$ diverge.

6. La fonction $t \mapsto \ln\left(1 + \frac{1}{t^2}\right)$ est continue sur $[1, +\infty[$. L'intégrale est donc impropre en $+\infty$. De plus par équivalent usuel, on a :

$$\ln\left(1+\frac{1}{t^2}\right) \underset{t\to+\infty}{\sim} \frac{1}{t^2}.$$

Les fonctions $t\mapsto \ln\left(1+\frac{1}{t^2}\right)$ et $t\mapsto \frac{1}{t^2}$ sont continues, positives sur $[1,+\infty[$. D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que et $\int_1^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ sont de même nature. Comme cette dernière est une intégrale convergente, $\int_1^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$ converge aussi.

Exercice 10.

1. La fonction h est le quotient de deux fonctions dont le dénominateur est strictement positif. Ainsi h(x) est du signe de $\ln(x)$:

x	0	1		+∞
Signe de $h(x)$		- 0	+	

2. La fonction $x \mapsto \frac{\ln(x)}{x^2}$ est continue sur $[1, +\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $A \in [1, +\infty[$.

Les fonctions $x \mapsto \ln(x)$ et $x \mapsto -\frac{1}{x}$ sont de classe C^1 sur \mathbb{R}_+^* donc par intégration par parties on a :

$$\int_{1}^{A} \frac{\ln(x)}{x^{2}} dx = \left[-\frac{\ln(x)}{x} \right]_{1}^{A} - \int_{1}^{A} \frac{-1}{x} \times \frac{1}{x} dx$$
$$= -\frac{\ln(A)}{A} + \left[-\frac{1}{x} \right]_{1}^{A}$$
$$= -\frac{\ln(A)}{A} + \frac{-1}{A} + 1.$$

Ainsi: $\lim_{A \to +\infty} \int_{1}^{A} \frac{\ln(x)}{x^{2}} dx = 1.$

Donc l'intégrale converge et vaut 1

3. Par équivalent usuel et compatibilité avec le quotient on a :

$$h(x) \underset{x \to +\infty}{\sim} \frac{\ln(x)}{x^2}.$$

Comme de plus les fonctions h et $x\mapsto \frac{\ln(x)}{x^2}$ sont continues et positives sur $[1,+\infty[$ alors d'après le critère de comparaison pour les intégrales de fonctions continues positives les intégrales $\int_1^{+\infty} h(x)dx$ et $\int_1^{+\infty} \frac{\ln(x)}{x^2}dx$ sont de même nature. D'après la question précédente, on conclut donc que $\int_1^{+\infty} h(x)dx$ converge.

4. La fonction h est continue sur]0,1]. Soit $A \in]0,1]$. On effectue le changement de variables $u = \frac{1}{x}$: soit $u : x \mapsto \frac{1}{x}$ de classe C^1 sur [A,1]. Alors:

$$\int_{A}^{1} \frac{\ln(x)}{1+x^{2}} dx = \int_{A}^{1} -\frac{\ln(\frac{1}{x})}{x^{2} \left(1+\left(\frac{1}{x}\right)^{2}\right)} dx = \int_{A}^{1} \frac{\ln(u(x))}{1+u(x)^{2}} u'(x) dx$$

$$= \int_{\frac{1}{A}}^{1} \frac{\ln(u)}{1+u^{2}} du$$

$$= -\int_{1}^{\frac{1}{A}} \frac{\ln(u)}{1+u^{2}} du.$$

Donc: $\lim_{A \to 0^+} \int_A^1 \frac{\ln(x)}{1 + x^2} dx = \lim_{A \to 0^+} - \int_1^{\frac{1}{A}} \frac{\ln(u)}{1 + u^2} du = - \int_1^{+\infty} \frac{\ln(u)}{1 + u^2} du = -K.$ Ainsi, $\int_0^1 h(u) du$ converge et vaut -K.

5. Comme les intégrales $\int_0^1 h(x)dx$ et $\int_1^{+\infty} h(x)dx$ convergent alors $\int_0^{+\infty} h(x)dx$ converge et :

$$\int_0^{+\infty} h(x) dx = \int_0^1 h(x) dx + \int_1^{+\infty} h(x) dx = K - K = 0.$$

De même, d'après la question 1, on a :

$$\forall x > 0, \quad h(x) = \left\{ \begin{array}{ll} -h(x) & \text{si } x \in]0, 1] \\ h(x) & \text{si } x > 1. \end{array} \right.$$

Donc les intégrales $\int_0^1 |h(x)| dx$ et $\int_1^{+\infty} |h(x)| dx$ convergent. Par conséquent, $\int_0^{+\infty} h(x) dx$ converge et : $\int_0^{+\infty} |h(x)| dx = \int_0^1 |h(x)| dx + \int_1^{+\infty} |h(x)| dx = 2K.$

Exercice 11. Dans les questions 1.(b) et 2.(b), il faut ajouter l'hypothèse « f est continue » pour que les intégrales est un sens.

- 1. (a) La fonction $x \mapsto x^2 e^{-|x|}$ est continue sur \mathbb{R} donc l'intégrale est impropre en $-\infty$ et $+\infty$.
 - Étude de $\int_0^{+\infty} x^2 e^{-|x|} dx$, impropre en $+\infty$.

Par croissance comparée, on sait que :

$$\lim_{x \to +\infty} x^2 \times x^2 e^{-|x|} = \lim_{x \to +\infty} x^4 e^{-x} = 0.$$

Ainsi:
$$x^2 e^{-|x|} = o_{x \to +\infty} \left(\frac{1}{x^2}\right)$$
.

De plus, les fonctions $x \mapsto \frac{1}{x^2}$ et $x \mapsto x^2 e^{-|x|}$ sont continues et positives sur $[1, +\infty[$. D'après le théorème de comparaison pour les intégrales de fonctions continues positives, comme l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^2} dx$ converge alors

$$\int_{1}^{+\infty} x^{2} e^{-|x|} dx$$
 converge aussi.

De plus, $\int_0^1 x^2 e^{-|x|} dx$ converge (elle n'a pas d'impropreté) donc l'intégrale $\int_0^{+\infty} x^2 e^{-|x|} dx$ converge.

• Étude de $\int_{-\infty}^{0} x^2 e^{-|x|} dx$, impropre en $-\infty$.

On pourrait procéder de la même façon que pour $\int_0^{+\infty} x^2 e^{-|x|} dx$ mais on va plutôt exploiter la parité de $x\mapsto x^2 e^{-|x|}$.

Soit $A \in]-\infty,0]$. Alors, en effectuant le changement de variable y=-x on obtient :

$$\int_{A}^{0} x^{2} e^{-|x|} dx = \int_{-A}^{0} -y^{2} e^{-|y|} dy = \int_{0}^{-A} y^{2} e^{-|y|} dy.$$

D'après ce qui précède on en déduit donc :

$$\lim_{A \to -\infty} \int_{A}^{0} x^{2} e^{-|x|} dx = \int_{0}^{+\infty} y^{2} e^{-|y|} dy.$$

Ainsi, $\int_{-\infty}^0 x^2 e^{-|x|} dx$ converge et est égale à $\int_0^{+\infty} x^2 e^{-|x|} dx$.

- Conclusion : $\int_{-\infty}^{+\infty} x^2 e^{-|x|} dx$ converge et vaut $2 \int_{0}^{+\infty} x^2 e^{-|x|} dx$.
- (b) On suppose que $\int_0^{+\infty} f(x) dx$ converge. Soit $A \in]-\infty, 0]$. Alors, en effectuant le changement de variable y = -x on obtient par parité :

$$\int_{A}^{0} f(x)dx = \int_{-A}^{0} -f(-y)dy = \int_{0}^{-A} f(y)dy.$$

On en déduit donc :

$$\lim_{A \to -\infty} \int_{A}^{0} f(x) dx = \int_{0}^{+\infty} f(y) dy.$$

Ainsi, $\int_{-\infty}^{0} f(x)dx$ converge et est égale à $\int_{0}^{+\infty} f(x)dx$. Donc $\int_{-\infty}^{+\infty} f(x)dx$ converge et est égale à $2\int_{0}^{+\infty} f(x)dx$.

- 2. (a) La fonction $x \mapsto x^3 e^{-x^2}$ est continue sur \mathbb{R} donc l'intégrale est impropre en $-\infty$ et $+\infty$.
 - Étude de $\int_0^{+\infty} x^3 e^{-x^2} dx$, impropre en $+\infty$. Par croissance comparée, on sait que :

$$\lim_{x \to +\infty} x^2 \times x^3 e^{-x^2} = \lim_{x \to +\infty} x^5 e^{-x^2} = 0.$$

Ainsi:
$$x^3 e^{-x^2} = o_{x \to +\infty} \left(\frac{1}{x^2} \right)$$
.

De plus, les fonctions $x\mapsto \frac{1}{x^2}$ et $x\mapsto x^3e^{-x^2}$ sont continues et positives sur $[1,+\infty[$. D'après le théorème de comparaison pour les intégrales de fonctions continues positives, comme l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^2} dx$ converge alors $\int_1^{+\infty} x^3e^{-x^2} dx$ converge aussi.

De plus, $\int_0^1 x^3 e^{-x^2} dx$ converge (elle n'a pas d'impropreté) donc l'intégrale $\int_0^{+\infty} x^3 e^{-x^2} dx$ converge.

• Étude de $\int_{-\infty}^{0} x^3 e^{-x^2} dx$, impropre en $-\infty$.

On pourrait procéder de la même façon que pour $\int_0^{+\infty} x^3 e^{-x^3} dx$ mais on va plutôt exploiter l'imparité de $x \mapsto x^3 e^{-x^2}$.

Soit $A \in]-\infty,0]$. Alors, en effectuant le changement de variable y=-x on obtient :

$$\int_{A}^{0} x^{3} e^{-x^{2}} dx = \int_{-A}^{0} y^{3} e^{-y^{2}} dy = -\int_{0}^{-A} y^{3} e^{-y^{2}} dy.$$

D'après ce qui précède on en déduit donc :

$$\lim_{A \to -\infty} \int_{4}^{0} x^{3} e^{-x^{2}} dx = -\int_{0}^{+\infty} y^{3} e^{-y^{2}} dy.$$

Ainsi, $\int_{-\infty}^{0} x^3 e^{-x^2} dx$ converge et est égale à $-\int_{0}^{+\infty} x^3 e^{-x^2} dx$.

• Conclusion: $\int_{-\infty}^{+\infty} x^3 e^{-x^2} dx$ converge et vaut 0.

8

(b) On suppose que $\int_0^{+\infty} f(x) dx$ converge. Soit $A \in]-\infty, 0]$. Alors, en effectuant le changement de variable y = -x on obtient par imparité :

$$\int_{A}^{0} f(x)dx = \int_{-A}^{0} -f(-y)(-1)dy = -\int_{0}^{-A} f(y)dy.$$

On en déduit donc :

$$\lim_{A \to -\infty} \int_{A}^{0} f(x) dx = -\int_{0}^{+\infty} f(y) dy.$$

Ainsi, $\int_{-\infty}^{0} f(x)dx$ converge et est égale à $-\int_{0}^{+\infty} f(x)dx$. Donc $\int_{-\infty}^{+\infty} f(x)dx$ converge et est égale à 0.

Exercice 12.

1. Soit $n \in \mathbb{N}$. La fonction $x \mapsto x^n e^{-\frac{x^2}{2a^2}}$ est continue sur $[0, +\infty[$ donc l'intégrale I_n est impropre en $+\infty$. Par croissance comparée, on sait que :

$$\lim_{x \to +\infty} x^2 \times x^n e^{-\frac{x^2}{2a^2}} = \lim_{x \to +\infty} x^{n+2} e^{-\frac{x^2}{2a^2}} = 0.$$

Ainsi: $x^n e^{-\frac{x^2}{2a^2}} = o_{x \to +\infty} \left(\frac{1}{x^2}\right)$.

De plus, les fonctions $x \mapsto \frac{1}{x^2}$ et $x \mapsto x^n e^{-\frac{x^2}{2a^2}}$ sont continues et positives sur $[1, +\infty[$. D'après le théorème de comparaison pour les intégrales de fonctions continues positives, comme l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^2} dx$ converge alors $\int_1^{+\infty} x^n e^{-\frac{x^2}{2a^2}} dx$ converge aussi.

De plus, $\int_0^1 x^n e^{-\frac{x^2}{2a^2}} dx$ converge (elle n'a pas d'impropreté) donc l'intégrale I_n converge.

2. (a) D'après le cours une densité est donnée par la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{a\sqrt{2\pi}}e^{-\frac{x^2}{2a^2}}.$$

(b) En particulier, si X est une variable aléatoire suivant la loi $\mathcal{N}(0, a^2)$ on a par parité de f:

$$\frac{1}{2} = 1 - F_X(0) = \int_0^{+\infty} \frac{1}{a\sqrt{2\pi}} e^{-\frac{x^2}{2a^2}} dx = \frac{1}{a\sqrt{2\pi}} I_0.$$

Ainsi on obtient:

$$I_0 = a\sqrt{\frac{\pi}{2}}.$$

(c) La fonction φ est une composée de fonctions dérivables sur $\mathbb R$ donc est bien dérivable sur $\mathbb R$. De plus, pour tout $x \in \mathbb R$ on a :

$$\varphi'(x) = -\frac{2x}{2a^2}e^{-\frac{x^2}{2a^2}} = -\frac{x}{a^2}e^{-\frac{x^2}{2a^2}}.$$

Soit A > 0. On déduit de ce qui précède :

$$\int_0^A x e^{-\frac{x^2}{2a^2}} dx = \left[-a^2 e^{-\frac{x^2}{2a^2}} \right]_0^A = -a^2 e^{-\frac{A^2}{2a^2}} + a^2.$$

On en déduit donc :

$$I_1 = \lim_{A \to +\infty} \int_0^A x e^{-\frac{x^2}{2a^2}} dx = a^2.$$

3. (a) Soient $n \ge 2$ et $t \in [0, +\infty[$. Les fonctions $u : x \mapsto x^{n-1}$ et φ sont de classe C^1 sur [0, t]. Donc par intégration par parties, on a :

$$\int_0^t x^n e^{-\frac{x^2}{2a^2}} dx = -a^2 \int_0^t u(x) \varphi'(x) dx$$

$$= -a^2 \left(\left[u(x) \varphi(x) \right]_0^t - \int_0^t u'(x) \varphi(x) dx \right)$$

$$= -a^2 \left(t^{n-1} e^{-\frac{t^2}{2a^2}} - \int_0^t (n-1) x^{n-2} e^{-\frac{x^2}{2a^2}} dx \right)$$

$$= -a^2 t^{n-1} e^{-\frac{t^2}{2a^2}} + (n-1) a^2 \int_0^t x^{n-2} e^{-\frac{x^2}{2a^2}} dx.$$

(b) Soit $n \ge 2$. D'après la première question et comme $\lim_{t \to +\infty} t^{n-1} e^{-\frac{t^2}{2a^2}} = 0$, en passant à la limite quand t tend vers $+\infty$ dans l'égalité précédente on obtient :

$$I_n = (n-1)a^2 I_{n-2}.$$

(c) D'après la question précédente, on a :

$$I_2 = a^2 I_0 = a^3 \sqrt{\frac{\pi}{2}}$$
 et $I_3 = 2a^2 I_1 = 2a^4$.

Exercice 13.

9

1. Soit x > 0. la fonction $t \mapsto \frac{e^{-t}}{t}$ est continue sur $[x, +\infty[$ donc l'intégrale est impropre en $+\infty$. Par croissance comparée, on sait que :

$$\lim_{t \to +\infty} t^2 \times \frac{e^{-t}}{t} = \lim_{t \to +\infty} t e^{-t} = 0.$$

Ainsi: $\frac{e^{-t}}{t} = o_{t \to +\infty} \left(\frac{1}{t^2}\right)$

De plus, les fonctions $x \mapsto \frac{1}{t^2}$ et $t \mapsto \frac{e^{-t}}{t}$ sont continues et positives sur $[x, +\infty[$. D'après le théorème de comparaison pour les intégrales de fonctions continues positives, comme l'intégrale de Riemann $\int_{x}^{+\infty} \frac{1}{t^2} dt$ converge alors J(x) converge aussi.

2. (a) Soit $A \in [x, +\infty[$. On a:

$$\forall t \in [x, +\infty[, \frac{e^{-t}}{t^2} \le e^{-t} \times \frac{1}{x^2}]$$

Donc:

$$\int_{x}^{A} \frac{e^{-t}}{t^{2}} dt \le \frac{1}{x^{2}} \int_{x}^{A} e^{-t} dt$$

$$\le \frac{1}{x^{2}} (e^{-x} - e^{-A})$$

$$\le \frac{1}{x^{2}} e^{-x}.$$

En particulier, la fonction $A \mapsto \int_x^A \frac{e^{-t}}{t^2} dt$ est croissante et majorée donc possède une limite en $+\infty$. On en déduit donc que l'intégrale $\int_x^{+\infty} \frac{e^{-t}}{t^2} dt$ converge et vérifie :

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^2} dt \le \frac{1}{x^2} e^{-x}.$$

On en déduit l'encadrement :

$$0 \le \frac{\int_x^{+\infty} \frac{e^{-t}}{t^2} dt}{\frac{e^{-x}}{x}} \le \frac{1}{x}.$$

Ainsi:

$$\lim_{x \to +\infty} \frac{\int_x^{+\infty} \frac{e^{-t}}{t^2} dt}{\frac{e^{-x}}{x}} = 0.$$

Cela signifie:
$$\int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = o_{x \to +\infty} \left(\frac{e^{-x}}{x} \right).$$

(b) Soient x > 0 et A > x. Les fonctions $u: t \mapsto \frac{1}{t}$ et $v: t \mapsto -e^{-t}$ sont de classe C^1 sur [x, A]. Par intégration par parties, on a donc :

$$\int_{x}^{A} \frac{e^{-t}}{t} dt = \int_{x}^{A} u(t)v'(t)dt$$

$$= [u(t)v(t)]_{x}^{A} - \int_{x}^{A} u'(t)v(t)dt$$

$$= -\frac{e^{-A}}{A} + \frac{e^{-x}}{x} - \int_{x}^{A} \frac{e^{-t}}{t^{2}} dt.$$

En faisant tendre A vers $+\infty$ et avec la question précédente on obtient donc :

$$J(x) = \frac{e^{-x}}{x} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = \frac{e^{-x}}{x} + o_{x \to +\infty} \left(\frac{e^{-x}}{x}\right).$$

D'après la caractérisation de la relation d'équivalence, on a bien :

$$J(x) \underset{x \to +\infty}{\sim} \frac{e^{-x}}{x}.$$