Systems with Intermittent Chaos

Amber Thrall

December 12, 2019

Advised by Kevin Lin and Shankar Venkataramani

Chaotic Systems

Definition

A dynamical system is **chaotic** if it has a sensitive dependence to initial conditions, i.e., an arbitrarily small change may result in a large change in the future.

Figure 1: Double pendulum with slightly different starting positions.

Simple One-Dimensional Model of a Chaotic System

(a) Cobweb Plot after 4 iterations

(b) Distance over time

Figure 2: $x_{n+1} = 2x_n \mod 1$

Predicting Behavior

Question

Given an initial condition, what is the distribution of orbits?

Predicting Behavior

Question

Given an initial condition, what is the distribution of orbits?

We start by finding the cumulative distribution function (CDF).

$$\mathbb{P}(x_n \in [0, y)) = \mathbb{P}\left(x_{n-1} \in (2x \mod 1)^{-1}([0, y))\right)
= \mathbb{P}\left(x_{n-1} \in [0, \frac{y}{2}) \text{ or } x_{n-1} \in [\frac{1}{2}, \frac{y+1}{2})\right)
= \mathbb{P}\left(x_{n-1} \in [0, \frac{y}{2})\right) + \mathbb{P}\left(x_{n-1} \in [\frac{1}{2}, \frac{y+1}{2})\right).$$

3

Predicting Behavior: PDF

So

$$\int_0^y \rho_n(x) dx = \int_0^{\frac{y}{2}} \rho_{n-1}(x) dx + \int_{\frac{1}{2}}^{\frac{y+1}{2}} \rho_{n-1}(x) dx.$$

Differentiating to determine the probability density function (PDF),

$$\rho_n(y) = \frac{1}{2}\rho_{n-1}(\frac{y}{2}) + \frac{1}{2}\rho_{n-1}(\frac{y+1}{2}).$$

This forms a Markov operator ${\cal P}$ acting on the space of PDFs.

Density Over Time

Similar to Markov chains, under suitable conditions $\rho_{\infty} = \lim_{n \to \infty} \mathcal{P}^n \rho_0, \text{ for any non-zero PDF } \rho_0, \text{ is an eigenvector of } \mathcal{P}. \text{ In such a case, } \mathcal{P}\rho_{\infty} = \rho_{\infty}.$

Let ρ^* be such that $\mathcal{P}\rho^*=k\rho^*$. Since $\mathcal{P}\rho^*$ is a PDF over [0,1],

$$1 = \int_0^1 k \rho^*(x) dx = k \int_0^1 \rho^*(x) dx = k.$$

So 1 is the only eigenvalue of \mathcal{P} . Therefore $\mathcal{P}\rho_{\infty}=\rho_{\infty}$.

Stationary Distribution

Figure 3: Change in distribution over time.

Thus for our $2x \mod 1$ map we have that $\rho_{\infty}(x) = 1$.

Intermittency

Definition

In a dynamical system, **intermittency** is the alternation between phases of nearly periodic and chaotic dynamics.

Figure 4: Spatial Intermittency in airflow¹

 $^{^{1} {\}sf Aerographers\ Mate,\ http://meteorologytraining.tpub.com/14312/css/14312_84.htm}$

New Model: Adding Intermittency

$$x_{n+1} = \begin{cases} x_n + 2^{\alpha} x_n^{1+\alpha} & \text{if } 0 \leq x_n < \frac{1}{2} \\ 2x_n - 1 & \text{if } \frac{1}{2} \leq x_n \leq 1 \end{cases} \qquad 0 < \alpha < 1$$

$$\text{Very Sensitive (2x mod 1)} \qquad \text{Parameter}$$

New Model: Orbit

(b) Distance over time

Figure 5: Orbits starting at $x_0 = 0.005$ and $x_0 = 0.006$ with $\alpha = 0.6$.

New Model: Stationary Distribution

(a) Initial Distribution

(b) Distribution after 50 applications

Figure 6: Change in distribution over time with $\alpha = 0.6$.

The intermittency of the system introduces a singularity at zero. Suggesting $\rho_{\infty}(x) \approx x^{-\beta}$ for some $\beta > 0$.

Future Questions

- What exactly is ho_{∞} for our model? (Near 0, $ho_{\infty}(x) pprox x^{-lpha}$)
- How does noise affect our model?
- How well does the model reflect real-world systems?

