



# Spaceflight Reliability: An Objectives-Based Strategy

John Evans, Frank Groen – NASA OSMA

TRISMAC 2015

ESRIN, Frascati, Italy

# NASA Challenges



Small  
Sats



Commercial  
Crew



Mars



Europa and Beyond



NASA OCE direction will enable model centric capability

Safety Requirements and Quality Demands

*Our products may need to be different in a model based environment*

## 4 Pillars of SysML – ABS Example

### 1. Structure



definition

req [Package]

Vehicle System

<<Requirement>>

Stopping Distance

Id = "10.2"

Text = "The vehicle shall stop from 60 miles per hour within 150 ft on a clean dry surface."

<<deriveReq>>

Anti-Lock Performance

Id = "33.7"

Text = "The braking system shall prevent wheel lockup under all braking conditions."

<<deriveReq>>

3. Requirements

*Decisions should not be made without our insight and oversight*

### 2. Behavior

FMEA  
Hazard  
Analysis



•4. Pa

Reliability  
Models

# MBSE FMEA

Courtesy Lui Wang  
Johnson Space Center

## Magic Draw Plug-Ins



## FMEA Output



## SysML Models



| System   | Subsystem       | LRU/ Assembly Type | LRU/ Assembly Name | Item Function         | Potential Failure Mode | Effect                                |                               |                       |                            | CRIT LEVEL | SEV | Potential Causes    |
|----------|-----------------|--------------------|--------------------|-----------------------|------------------------|---------------------------------------|-------------------------------|-----------------------|----------------------------|------------|-----|---------------------|
|          |                 |                    |                    |                       |                        | Immediate Failure Effect              | End Effect                    | Number of Independent | Other Independent Failures |            |     |                     |
| FaninCan | ECLSS           | CCAA               | CCAA1              | CCAA1_Circulates_Air  | Failed Off             | Loss_of_CCAA1_air_Circulation         | Loss_of_CCAA1_air_Circulation | 1                     |                            | 1          |     | Internal Malf       |
| FaninCan | Power Subsystem | MBSU               | MBSU1              | MBSU_Distribute_Power | Failed Off             | Loss_of_Mbsu1_output_power            | Loss_of_CCAA1_air_Circulation | 2                     | MBSU2 Failed Off           | 1          |     | insertInternalMalf  |
| FaninCan | Power Subsystem | MBSU               | MBSU1              | MBSU_Distribute_Power | Failed On              | MBSU1_Ouput_Power_On                  |                               |                       |                            |            |     | insertInternal2Malf |
| FaninCan | Power Subsystem | MBSU               | MBSU1              | MBSU_Distribute_Power | Failed On              | Loss_of_ability_to_manage_MBSU1_loads |                               |                       |                            |            |     | insertInternal2Malf |
| FaninCan | Power Subsystem | MBSU               | MBSU2              | MBSU_Distribute_Power | Failed Off             | Loss_of_Mbsu2_output_power            | Loss_of_CCAA1_air_Circulation | 2                     | MBSU1 Failed Off           | 1          |     | insertInternalMalf  |
| FaninCan | Power Subsystem | MBSU               | MBSU2              | MBSU_Distribute_Power | Failed On              | MBSU2_Ouput_Power_On                  |                               |                       |                            |            |     | insertInternal2Malf |
| FaninCan | Power Subsystem | MBSU               | MBSU2              | MBSU_Distribute_Power | Failed On              | Loss_of_ability_to_manage_MBSU2_loads |                               |                       |                            |            |     | insertInternal2Malf |
| FaninCan | Power Subsystem | PDU                | PDU1               | PDU_Distribute_Power  | Failed Off             | Loss_of_PDU_output_power              | Loss_of_CCAA1_air_Circulation | 1                     |                            | 1          |     | insertInternalMalf  |
| FaninCan | Power Subsystem | PDU                | PDU1               | PDU_Distribute_Power  | Failed On              | PDU_Output_Power_On                   |                               |                       |                            |            |     | insertInternal2Malf |

# Mission Assurance Challenges



- NASA's Mission Assurance faces challenges
  - Changing missions
  - Changing acquisition models
  - Changing engineering practices
  - Changing technology
- We must reconsider our practices to stay relevant
  - Don't necessarily hang on to 'proven' practices
  - Consider the intent behind R&M methods and techniques

# “Subset of Considerations”



- Focus on the *what*:
  - Emphasize R&M objectives and related strategies
  - Provide greater flexibility to select methods and techniques
  - Allow for innovation and adaptation to new engineering practices
  - Facilitate self-assessment and independent review



# Decomposition of R&M Objectives

## R&M Objectives Structure – Top-Level





## R&M Hierarchy

Sub – Obj.

**2**





# Laying the Foundation

- Logically decompose top-level R&M objective
  - Use elements of the Goal Structuring Notation
  - Structure shows why strategies are to be applied
- Structure forms basis for a proposed R&M standard
  - Specifies the technical considerations to be addressed by projects
  - Forms basis for evaluation of plans, design, and assurance products

# Summary



- Changes in missions, acquisition/engineering practices, and technology challenge proven R&M practices
- Define R&M objectives and strategies to enable adaptation and innovation
- Logically decompose the top-level R&M objective to identify the elements of an R&M argument