Keywords

higher category theory, concurrency, message-passing, types, Curry-Howard

ABSTRACT

We present an approach to modeling computational calculi using higher category theory. While the paper focuses on applications to the mobile process calculi, and more specifically, the π -calculus, because they provide unique challenges for categorical models, the approach extends smoothly to a variety of other computational calculi, including important milestones such as the λ -calculus. One of the key contributions is a method of restricting rewrites to specific contexts inspired by catalysis in chemical reactions.

Submission to arXiv

Higher category models of mobile process calculi

Mike Stay Google

metaweta@gmail.com

L.G. Meredith Biosimilarity, LLC

lgreg.meredith@biosimilarity.com

1. INTRODUCTION

TBD

1.0.1 Organization of the rest of the paper TBD

2. THE CALCULUS

Some examples of process expressions.

2.1 Our running process calculus

2.1.1 Syntax

$$\begin{array}{lll} M,N ::= 0 & \text{stopped process} \\ \mid x?(y_1,\ldots,y_N) \Rightarrow P & \text{input} \\ \mid x!(y_1,\ldots,y_N) & \text{output} \\ \mid M+N & \text{choice} \\ P,Q ::= M & \text{include IO processes} \\ \mid P \mid Q & \text{parallel} \end{array}$$

2.1.2 Free and bound names

$$\mathcal{FN}(0) := \emptyset$$

$$\mathcal{FN}(x?(y_1, \dots, y_N) \Rightarrow P) :=$$

$$\{x\} \cup (\mathcal{FN}(P) \setminus \{y_1, \dots, y_N\})$$

$$\mathcal{FN}(x!(y_1, \dots, y_N)) := \{x, y_1, \dots, y_N\}$$

$$\mathcal{FN}(P \mid Q) := \mathcal{FN}(P) \cup \mathcal{FN}(Q)$$

An occurrence of x in a process P is bound if it is not free. The set of names occurring in a process (bound or free) is denoted by $\mathcal{N}(P)$.

2.1.3 Structural congruence

The structural congruence of processes, noted \equiv , is the least congruence containing α -equivalence, \equiv_{α} , making (P,|,0) and (P,+0) commutative monoids.

2.1.4 Operational Semantics

$$\frac{|\vec{y}| = |\vec{z}|}{P_1 + x_0?(\vec{y}) \Rightarrow P \mid x_1!(\vec{z}) + P_2 \rightarrow P\{@\vec{z}/\vec{y}\}}$$
(COMM)

In addition, we have the following context rules:

$$\frac{P \to P'}{P \mid Q \to P' \mid Q} \tag{Par}$$

$$\frac{P \equiv P' \qquad P' \to Q' \qquad Q' \equiv Q}{P \to Q} \quad \text{(EQUIV)}$$

2.1.5 Bisimulation

DEFINITION 2.1.1. An observation relation, $\downarrow_{\mathcal{N}}$, over a set of names, \mathcal{N} , is the smallest relation satisfying the rules below.

$$\frac{x \in \mathcal{N}}{x!(\vec{y}) \downarrow_{\mathcal{N}} x}$$
 (Out-barb)

$$\frac{P \downarrow_{\mathcal{N}} x \text{ or } Q \downarrow_{\mathcal{N}} x}{P \mid Q \downarrow_{\mathcal{N}} x} \qquad \text{(Par-barb)}$$

We write $P \downarrow_{\mathcal{N}} x$ if there is Q such that $P \Rightarrow Q$ and $Q \downarrow_{\mathcal{N}} x$.

Notice that $x?(y) \Rightarrow P$ has no barb. Indeed, in RHO-calculus as well as other asynchronous calculi, an observer has no direct means to detect if a sent message has been received or not.

DEFINITION 2.1.2. An \mathcal{N} -barbed bisimulation over a set of names, \mathcal{N} , is a symmetric binary relation $\mathcal{S}_{\mathcal{N}}$ between agents such that $P \mathcal{S}_{\mathcal{N}} Q$ implies:

- 1. If $P \to P'$ then $Q \Rightarrow Q'$ and $P' \mathcal{S}_{\mathcal{N}}Q'$.
- 2. If $P \downarrow_{\mathcal{N}} x$, then $Q \Downarrow_{\mathcal{N}} x$.

P is \mathcal{N} -barbed bisimilar to Q, written $P \approx_{\mathcal{N}} Q$, if $P \mathrel{\mathcal{S}}_{\mathcal{N}} Q$ for some \mathcal{N} -barbed bisimulation $\mathrel{\mathcal{S}}_{\mathcal{N}}$.

3. CATEGORICAL MACHINERY TBD

4. THE INTERPRETATION TBD

Interpreting names a morphisms, $x: J \to D^* \boxtimes C$ Figure 1: Interpretation of output

That means we can interpret output, x!(y), as connecting a source to the input of the morphism. Figure 2: Interpretation of output - again

And the adjoint morphism, $x:D^*\boxtimes C\to J$, corresponds to input $\label{eq:Figure 3: Interpretation of input}$

This provides the interpretation of x?(y)P. Figure 4: Interpretation of input guarded process

5. CONCLUSIONS AND FUTURE WORK $_{\mathrm{TBD}}$

This provides the interpretation of $x?(z)P \mid x!(y)$. Figure 5: Interpretation of basic $\pi\text{-calculus}$ redex

Acknowledgments.. TBD

6. REFERENCES

