When Is Pure Bundling Optimal?

Nima Haghpanah (Penn State)

Joint work with Jason Hartline (Northwestern)

September 26, 2019

▶ **Sell Separately:** Offer each product for a price

- ▶ **Sell Separately:** Offer each product for a price
- ▶ Pure Bundling: Offer only the grand bundle of all products

Sell Separately

Pure Bundling

- ▶ **Sell Separately:** Offer each product for a price
- ▶ Pure Bundling: Offer only the grand bundle of all products

Mixed Bundling: Offer a menu of bundles and prices

- ▶ **Sell Separately:** Offer each product for a price
- ▶ Pure Bundling: Offer only the grand bundle of all products

Mixed Bundling: Offer a menu of bundles and prices

This paper: When is Pure Bundling Optimal?

- ▶ Bundle $b \subseteq \{1, ..., k\}$
- v_b value for bundle b
- ► Type $v = (v_b)_{b \subseteq \{1,...,k\}}$

- ▶ Bundle $b \subseteq \{1, ..., k\}$
- v_b value for bundle b
- ► Type $v = (v_b)_{b \subseteq \{1,...,k\}}$
 - Assume $v_{\{1,\ldots,k\}} \geq v_b, \forall b$

- ▶ Bundle $b \subseteq \{1, ..., k\}$
- v_b value for bundle b
- ► Type $v = (v_b)_{b \subset \{1,...,k\}} \sim \mu$
 - Assume $v_{\{1,...,k\}} \ge v_b, \forall b$

Single seller, products 1 to k, single buyer

- ▶ Bundle $b \subseteq \{1, ..., k\}$
- v_b value for bundle b
- ► Type $v = (v_b)_{b \subset \{1,...,k\}} \sim \mu$
 - Assume $v_{\{1,\ldots,k\}} \ge v_b, \forall b$

Mechanism:

menu of (price, bundle)

Price	Bundle
\$4 \$5	ь ь′
:	:

Single seller, products 1 to k, single buyer

- ▶ Bundle $b \subseteq \{1, ..., k\}$
- v_b value for bundle b
- ► Type $v = (v_b)_{b \subset \{1,...,k\}} \sim \mu$
 - Assume $v_{\{1,\ldots,k\}} \ge v_b, \forall b$

Mechanism:

menu of (price, bundle)

Price	Bundle
\$4 \$5 \$4.5 :	<i>b b'</i> lottery over <i>b</i> , <i>b'</i> :

Single seller, products 1 to k, single buyer

- ▶ Bundle $b \subseteq \{1, ..., k\}$
- v_b value for bundle b
- ► Type $v = (v_b)_{b \subset \{1,...,k\}} \sim \mu$
 - Assume $v_{\{1,\ldots,k\}} \ge v_b, \forall b$

Mechanism:

► menu of (price, bundle)

Pure	Bundling	Mechani	sm.
i uic	Dunuming	IVICCIIAIII	3111.

Price	Bundle
\$4 \$5 \$4.5 :	b b' lottery over b, b' :

Price Bundle
$$\{1,\ldots,k\}$$

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

► Pure bundling optimal

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

Pure bundling optimal

Stigler '63, Adams & Yellen '76: Bundle if values negatively correlated

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

► Pure bundling optimal

Example 2: $v_{\{1\}}, v_{\{2\}}$ i.i.d U[0,1]

Stigler '63, Adams & Yellen '76: Bundle if values negatively correlated

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

► Pure bundling optimal

Example 2: $v_{\{1\}}, v_{\{2\}}$ i.i.d U[0,1]

Stigler '63, Adams & Yellen '76: Bundle if values negatively correlated

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

▶ Pure bundling optimal

Example 2: $v_{\{1\}}, v_{\{2\}}$ i.i.d U[0,1]

Pure Bundling:

Stigler '63, Adams & Yellen '76: Bundle if values negatively correlated

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

► Pure bundling optimal

Stigler '63, Adams & Yellen '76: Bundle if values negatively correlated

Example 1:
$$(v_{\{1\}}, v_{\{2\}}) = \{ (.8, .2) \text{ probability } 0.5, (.2, .8) \text{ probability } 0.5. \}$$

Pure bundling optimal

Stigler '63, Adams & Yellen '76: Bundle if values negatively correlated McAfee et al. '89: Pure bundling generically not optimal

Values $(v_1, v_{gb}) \sim \mu$

• $(v_{gb} \text{ need not} = 2v_1)$

Values $(v_1, v_{gb}) \sim \mu$

• $(v_{gb} \text{ need not} = 2v_1)$

Mechanism:

Values $(v_1, v_{gb}) \sim \mu$

• $(v_{gb} \text{ need not} = 2v_1)$

Mechanism:

Values $(v_1, v_{gb}) \sim \mu$

 $(v_{gb} \text{ need not} = 2v_1)$

Mechanism:

Pure Bundling (PB) Mechanism:

Values $(v_1, v_{gb}) \sim \mu$

• $(v_{gb} \text{ need not} = 2v_1)$

V_{gt}

Mechanism:

Two Units
One Unit

.

\$4 Two Units

Pure Bundling (PB) Mechanism: Main Result:

Values
$$(v_1, v_{gb}) \sim \mu$$

 \triangleright $(v_{gb} \text{ need not} = 2v_1)$

Mechanism:

Pure Bundling (PB) Mechanism:

Main Result:

- ▶ PB optimal if v_1/v_{gb} "stochastically nondecreasing" in v_{gb}
- ▶ PB not optimal if v_1/v_{gb} "stochastically decreasing" in v_{gb}

Values
$$(v_1, v_{gb}) \sim \mu$$

• $(v_{gb} \text{ need not} = 2v_1)$

Mechanism:

Pure Bundling (PB) Mechanism:

Main Result:

- ▶ PB optimal if v_1/v_{gb} "stochastically nondecreasing" in v_{gb}
 - ► High *v_{gb}* implies high "relative utility"
- ▶ PB not optimal if v_1/v_{gb} "stochastically decreasing" in v_{gb}

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$; e.g., $r(v_{gb}) = \hat{r}$

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

PB is optimal $\forall \mu$ over "Path" V_1 iff r monotone nondecreasing.

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

PB is optimal $\forall \mu$ over "Path" V_1 iff r monotone nondecreasing.

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

PB is optimal $\forall \mu$ over "Path" V_1 iff r monotone nondecreasing.

Two types:

• $r' \ge r$: PB optimal $(\forall \mu)$

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

PB is optimal $\forall \mu$ over "Path" V_1 iff r monotone nondecreasing.

Two types:

- $r' \ge r$: PB optimal $(\forall \mu)$
- ② r' < r: PB not optimal $(\exists \mu)$

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

PB is optimal $\forall \mu$ over "Path" V_1 iff r monotone nondecreasing.

Two types:

- $r' \ge r$: PB optimal $(\forall \mu)$
- ② r' < r: PB not optimal $(\exists \mu)$
 - $ightharpoonup v_{gb} = Pr[v']v'_{gb}$

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

PB is optimal $\forall \mu$ over "Path" V_1 iff r monotone nondecreasing.

Ratio (relative utility) $r(v_{gb}) := v_1/v_{gb}$

Proposition

PB is optimal $\forall \mu$ over "Path" V_1 iff r monotone nondecreasing.

Stokey'79, Acquisti and Varian'05:

▶ PB optimal if *r* constant

Ratio (relative utility) $r := v_1/v_{gb}$

Ratio (relative utility) $r := v_1/v_{gb}$

lacksquare $(r, v_{gb}) \sim \hat{\mu}$ instead of $(v_1, v_{gb}) \sim \mu$

Ratio (relative utility) $r := v_1/v_{gb}$

• $(r, v_{gb}) \sim \hat{\mu}$ instead of $(v_1, v_{gb}) \sim \mu$

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

Ratio (relative utility) $r := v_1/v_{gb}$

• $(r, v_{gb}) \sim \hat{\mu}$ instead of $(v_1, v_{gb}) \sim \mu$

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

► $Pr(r \ge \hat{r} \mid v_{gb})$ nondecreasing in v_{gb} (stochastic dominance)

Ratio (relative utility) $r := v_1/v_{gb}$

• $(r, v_{gb}) \sim \hat{\mu}$ instead of $(v_1, v_{gb}) \sim \mu$

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

▶ $Pr(r \ge \hat{r} \mid v_{gb})$ nondecreasing in v_{gb} (stochastic dominance)

Ratio (relative utility) $r := v_1/v_{gb}$

• $(r, v_{gb}) \sim \hat{\mu}$ instead of $(v_1, v_{gb}) \sim \mu$

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

► $Pr(r \ge \hat{r} \mid v_{gb})$ nondecreasing in v_{gb} (stochastic dominance)

Curve:

Ratio (relative utility) $r := v_1/v_{gb}$

• $(r, v_{gb}) \sim \hat{\mu}$ instead of $(v_1, v_{gb}) \sim \mu$

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

► $Pr(r \ge \hat{r} \mid v_{gb})$ nondecreasing in v_{gb} (stochastic dominance)

Curve:

Products 1 to k, $(v_b)_{b \subset \{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Products 1 to k, $(v_b)_{b\subseteq\{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- ightharpoonup optimal if r stochastically nondecreasing in v_{gb} .
- not optimal if r stochastically decreasing in v_{gb}.

Products 1 to k, $(v_b)_{b\subseteq\{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- ightharpoonup optimal if r stochastically nondecreasing in v_{gb} .
- not optimal if r stochastically decreasing in v_{gb}.

Products 1 to k, $(v_b)_{b\subseteq\{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

Products 1 to k, $(v_b)_{b\subseteq\{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- ightharpoonup optimal if r stochastically nondecreasing in v_{gb} .
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

Products 1 to k, $(v_b)_{b\subseteq\{1,\dots,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

Products 1 to k, $(v_b)_{b\subseteq\{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

Products 1 to k, $(v_b)_{b\subseteq\{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- \triangleright optimal if r stochastically nondecreasing in v_{gb} .
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

Products 1 to k, $(v_b)_{b\subseteq\{1,...,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

Products 1 to k, $(v_b)_{b\subseteq\{1,\dots,k\}}$

▶ $\forall b$, define ratio $r_b = v_b/v_{gb} \in [0,1]$. Let $r = (r_b)_{b \subseteq \{1,...,k\}}$.

Theorem

PB is

- optimal if r stochastically nondecreasing in v_{gb}.
- not optimal if r stochastically decreasing in v_{gb}.

r stochastically nondecreasing in v_{gb} :

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 \mathbb{1}_{1 \in b} + y_2 \mathbb{1}_{2 \in b} + (1 - y_1 - y_2) \mathbb{1}_{1,2 \in b})$$

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 \mathbb{1}_{1 \in b} + y_2 \mathbb{1}_{2 \in b} + (1 - y_1 - y_2) \mathbb{1}_{1, 2 \in b})$$

- ▶ x: wealth
- ▶ y_1 : values for product 1 only (y_2 for product 2)
- ▶ $y_1 + y_2 > 1 \Rightarrow$ substitutes: $v_{\{1\}} + v_{\{2\}} > v_{\{1,2\}}$.

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 \mathbb{1}_{1 \in b} + y_2 \mathbb{1}_{2 \in b} + (1 - y_1 - y_2) \mathbb{1}_{1, 2 \in b})$$

- x: wealth
- ▶ y_1 : values for product 1 only (y_2 for product 2)
- $y_1+y_2>1\Rightarrow$ substitutes: $v_{\{1\}}+v_{\{2\}}>v_{\{1,2\}}.$ $(y_1+y_2<1\Rightarrow$ complements; $y_1+y_2=1\Rightarrow$ additive)

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 \mathbb{1}_{1 \in b} + y_2 \mathbb{1}_{2 \in b} + (1 - y_1 - y_2) \mathbb{1}_{1, 2 \in b})$$

- ▶ x: wealth
- ▶ y_1 : values for product 1 only (y_2 for product 2)
- $y_1+y_2>1\Rightarrow$ substitutes: $v_{\{1\}}+v_{\{2\}}>v_{\{1,2\}}.$ $(y_1+y_2<1\Rightarrow$ complements; $y_1+y_2=1\Rightarrow$ additive)

Corollary

PB is

- optimal if (y_1, y_2) stochastically nondecreasing in x.
- ▶ not optimal if (y_1, y_2) stochastically decreasing in x.

Two products, values $v_{\{1\}}, v_{\{2\}}, v_{\{1,2\}}$ described by x, y_1, y_2

$$v_b = x \cdot (y_1 \mathbb{1}_{1 \in b} + y_2 \mathbb{1}_{2 \in b} + (1 - y_1 - y_2) \mathbb{1}_{1, 2 \in b})$$

- ▶ x: wealth
- ▶ y_1 : values for product 1 only (y_2 for product 2)
- $y_1+y_2>1\Rightarrow$ substitutes: $v_{\{1\}}+v_{\{2\}}>v_{\{1,2\}}.$ $(y_1+y_2<1\Rightarrow$ complements; $y_1+y_2=1\Rightarrow$ additive)

Corollary

PB is

- optimal if (y_1, y_2) stochastically nondecreasing in x.
- ▶ not optimal if (y_1, y_2) stochastically decreasing in x.

PB optimal if wealthier consumers consider products more substitutable

Recall Additive Example

Recall Additive Example

Additivity & perfect negative correlation $\Rightarrow v_{gb}$ constant $\Rightarrow r$ trivially stochastically nondecreasing in $v_{gb} \Rightarrow PB$ optimal

Recall Additive Example

Additivity & perfect negative correlation $\Rightarrow v_{gb}$ constant

 \Rightarrow r trivially stochastically nondecreasing in $v_{gb} \Rightarrow PB$ optimal

Folklore: Bundle if $v_{\{1\}}, v_{\{2\}}$ negatively correlated

- \triangleright $v_{\{1\}}, v_{\{2\}}$: disutility from getting smaller bundle (compared to $\{1,2\}$)
- ▶ **Reinterpretation:** Bundle if disutilities negatively correlated

Our result: Bundle if v_1/v_{gb} and v_{gb} positively correlated

- ▶ $1 v_1/v_{gb}$: relative disutility from getting smaller bundle
- ▶ Bundle if relative disutility and v_{gb} negatively correlated

Single dimension: \longrightarrow

"virtual value" $\phi(v) = v$ - revenue loss

Single dimension:
$$\longrightarrow$$

"virtual value" $\phi(v) = v$ - revenue loss

Lemma (Myerson'81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

"virtual value"
$$\phi(v) = v$$
 - revenue loss $= v - \frac{1 - F(v)}{f(v)}$

Lemma (Myerson'81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

$$\longmapsto_{V}$$

"virtual value" $\phi(v) = v$ - revenue loss

$$= v - \frac{1-F(v)}{f(v)}$$

Lemma (Myerson'81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

$$\max_{\text{mechanism }(x,p)} E_{\nu}[x(\nu) \cdot \phi(\nu)]$$

s.t.
$$0 \le x(v) \le 1, \forall v$$
,

incentive compatibility

Single dimension:

$$\longmapsto_{V}$$

"virtual value" $\phi(v) = v$ - revenue loss

$$= v - \frac{1 - F(v)}{f(v)}$$

Lemma (Myerson'81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

$$\max_{\text{mechanism }(x,p)} E_{\nu}[x(\nu) \cdot \phi(\nu)]$$

s.t. $0 \le x(\nu) \le 1, \forall \nu,$

incentive compatibility

Single dimension:

$$\longmapsto_{V}$$

"virtual value" $\phi(v) = v$ - revenue loss

$$= v - \frac{1 - F(v)}{f(v)}$$

Lemma (Myerson'81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

$$\max_{\text{mechanism }(x,p)} E_v[x(v) \cdot \phi(v)]$$

s.t.
$$0 \le x(v) \le 1, \forall v$$
,

incentive compatibility

Single dimension:

$$\longmapsto_{V}$$

"virtual value" $\phi(v) = v$ - revenue loss

$$= v - \frac{1 - F(v)}{f(v)}$$

Lemma (Myerson'81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

$$\max_{\substack{\text{mechanism }(x,p)}} E_v[x(v) \cdot \phi(v)]$$
 s.t. $0 \leq x(v) \leq 1, \forall v,$ incentive compatibility

$$\longmapsto_V$$

"virtual value"
$$\phi(v) = v$$
 - revenue loss

$$= v - \frac{1 - F(v)}{f(v)}$$

Lemma (Myerson'81)

Revenue of any IC mechanism is $E_v[x(v) \cdot \phi(v)]$

Theorem (Myerson'81; Riley and Zeckhauser'83)

Posting a price for the item is the optimal mechanism

$$\max_{\substack{\text{mechanism } (x,p)}} E_v[x(v) \cdot \phi(v)]$$
 s.t. $0 \le x(v) \le 1, \forall v,$ incentive compatibility

Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

$$\phi_{gb}(v) = v_{gb} - \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

$$\phi_1(v) = V_1(v_{gb}) - V_1'(v_{gb}) \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

where F_{gb} , f_{gb} are c.d.f and p.d.f of v_{gb}

Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

$$\phi_{gb}(v) = v_{gb} - \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

$$\phi_{1}(v) = V_{1}(v_{gb}) - V'_{1}(v_{gb}) \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

where F_{gb} , f_{gb} are c.d.f and p.d.f of v_{gb}

Property:

▶ If $r(v_{gb})$ nondecreasing then $r(v_{gb})\phi_{gb}(v_{gb}) \ge \phi_1(v_{gb})$

Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

$$\phi_{gb}(v) = v_{gb} - \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

$$\phi_{1}(v) = V_{1}(v_{gb}) - V'_{1}(v_{gb}) \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

where F_{gb} , f_{gb} are c.d.f and p.d.f of v_{gb}

Property:

If $r(v_{gb})$ nondecreasing then $r(v_{gb})\phi_{gb}(v_{gb}) \ge \phi_1(v_{gb})$

Lemma

Revenue of any IC mechanism is $E_v[x_1(v) \cdot \phi_1(v) + x_{gb}(v) \cdot \phi_{gb}(v)]$

$$\phi_{gb}(v) = v_{gb} - \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

$$\phi_{1}(v) = V_{1}(v_{gb}) - V'_{1}(v_{gb}) \frac{1 - F_{gb}(v_{gb})}{f_{gb}(v_{gb})}$$

where F_{gb} , f_{gb} are c.d.f and p.d.f of v_{gb}

Property:

- If $r(v_{gb})$ nondecreasing then $r(v_{gb})\phi_{gb}(v_{gb}) \geq \phi_1(v_{gb})$
- ▶ If further ϕ_{gb} is increasing then x^* is optimal

Beyond Regularity

If ratio r increasing, then only "downward" IC constraints bind

Beyond Regularity

If ratio r increasing, then only "downward" IC constraints bind Generalized virtual value:

$$\hat{\phi}(v) = v - \sum_{v': \text{ IC from } v' \text{ to } v \text{ binds}} \lambda(v')(v' - v).$$

Beyond Regularity

If ratio *r* increasing, then only "downward" IC constraints bind Generalized virtual value:

$$\hat{\phi}(v) = v - \sum_{v': \ \mathsf{IC} \ \mathsf{from} \ v' \ \mathsf{to} \ v \ \mathsf{binds}} \lambda(v')(v'-v),$$

Thus $r\hat{\phi}_{gb} \geq \hat{\phi}_1$, and $x_1^* = 0$.

Two paths V_1 , \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

▶ Let $\pi^* = \max_p p(1 - F_{gb}(p))$, and p^* the price

- ▶ Let $\pi^* = \max_p p(1 F_{gb}(p))$, and p^* the price
- ▶ PB with price p^* is opt for each instance

- ▶ Let $\pi^* = \max_p p(1 F_{gb}(p))$, and p^* the price
- ▶ PB with price p^* is opt for each instance
- Consider their mixture:

- Let $\pi^* = \max_p p(1 F_{gb}(p))$, and p^* the price
- ▶ PB with price p^* is opt for each instance
- ► Consider their mixture:
 - ▶ Profit ≤ profit if seller "knows" the curve = π^*
 - ▶ So optimal to PB with price p*

Two paths V_1 , \hat{V}_1 (both with monotone ratio), same marginal F_{gb}

- Let $\pi^* = \max_p p(1 F_{gb}(p))$, and p^* the price
- ▶ PB with price p^* is opt for each instance
- ► Consider their mixture:
 - ▶ Profit ≤ profit if seller "knows" the curve = π^*
 - ► So optimal to PB with price *p**

Question: When can a distribution be decomposed?

- 1 to ratio-monotone paths
- $oldsymbol{o}$ with same marginal F_{gb}

r stochastically nondecreasing in v_{gb} $(Pr(r \geq \hat{r} \mid v_{gb}) \uparrow \text{in } v_{gb})$

r stochastically nondecreasing in v_{gb} ($Pr(r \ge \hat{r} \mid v_{gb}) \uparrow$ in v_{gb}) \Leftrightarrow "contour lines" nondecreasing

r stochastically nondecreasing in v_{gb} ($Pr(r \ge \hat{r} \mid v_{gb}) \uparrow$ in v_{gb}) \Leftrightarrow "contour lines" nondecreasing

r stochastically nondecreasing in v_{gb} $(Pr(r \geq \hat{r} \mid v_{gb}) \uparrow \text{ in } v_{gb}) \Leftrightarrow$ "contour lines" nondecreasing Decompose distribution μ into $\{\mu \mid q\}_{q \in [0,1]}$

r stochastically nondecreasing in v_{gb} $(Pr(r \geq \hat{r} \mid v_{gb}) \uparrow \text{in } v_{gb})$

- ⇔ "contour lines" nondecreasing
- Decompose distribution μ into $\{\mu \mid q\}_{q \in [0,1]}$
 - $\textbf{ § Support of each } \mu \mid \textit{q ratio-monotone}$

r stochastically nondecreasing in v_{gb} $(Pr(r \geq \hat{r} \mid v_{gb}) \uparrow \text{in } v_{gb})$

⇔ "contour lines" nondecreasing

Decompose distribution μ into $\{\mu \mid q\}_{q \in [0,1]}$

- **1** Support of each $\mu \mid q$ ratio-monotone
- Q q independent from V_{gb}

r stochastically nondecreasing in v_{gb} $(Pr(r \geq \hat{r} \mid v_{gb}) \uparrow \text{in } v_{gb})$

⇔ "contour lines" nondecreasing

Decompose distribution μ into $\{\mu \mid q\}_{q \in [0,1]}$

- **1** Support of each $\mu \mid q$ ratio-monotone
- Q q independent from V_{gb}

Strassen '65, Kamae et al. '77: generalization to higher dimensions

Proposition

PB optimal for all distributions over additive types if

either

- All types have the same value for the grand bundle
- 2 All types have the same ratio of values

Proposition

PB optimal for all distributions over additive types if and only if either

- All types have the same value for the grand bundle
- 2 All types have the same ratio of values

Proposition

PB optimal for all distributions over additive types if and only if either

- All types have the same value for the grand bundle
- 2 All types have the same ratio of values

Consider a subset of types on a "path".

$$\frac{v_i}{v_1+v_2}$$

must be non-decreasing for all *i*. Thus must be constant.

Related Work

Technically:

- ▶ Wilson '93, Armstrong '96: fixed paths
- ▶ Eso, Szentes '07; Pavan et al. '14
- ► Carroll '16: virtual values, fixed paths

Related Work

Technically:

- ▶ Wilson '93, Armstrong '96: fixed paths
- ▶ Eso, Szentes '07; Pavan et al. '14
- Carroll '16: virtual values, fixed paths

Bundling: Mostly additive values

- ► Fang and Norman '06: Pure bundling vs. selling separately
- ▶ Daskalakis et al. '17: PB optimal if values i.i.d [c, c+1] for large c
 - ▶ Pavlov '11, Menicucci et al. '15: Other i.i.d distributions
- McAfee and McMillan '88, Manelli and Vincent '06: optimality of deterministic mechanisms

Main Result

PB optimal if high value consumers have high relative utility

Main Result

PB optimal if high value consumers have high relative utility

Thanks!