STATS 206 Applied Multivariate Analysis Lecture 4: Comparisons of Several Multivariate Means

Prathapasinghe Dharmawansa

Department of Statistics
Stanford University
Autumn 2013

Agenda

- Paired comparisons and repeated measures
- Comparing mean vectors from two populations
- Comparing several multivariate population means
 - One-way multivariate analysis of variance (MANOVA)
- Testing for equality of covariance matrices
- Two-way multivariate analysis of variance

Paired Comparisons

- Treatments applied to the same/identical units
- Aiming to eliminate the influence of extraneous unit-to-unit variations
- The univariate case:
 - X_{jk} : measurements on unit $j, j = 1, \ldots, n$, for treatment k, k = 1, 2
 - Analysis based on $D_j = X_{j1} X_{j2}$ using summary statistics:

$$\overline{D} = \frac{1}{n} \sum_{j=1}^{n} D_j, \quad s_d^2 = \frac{1}{n-1} \sum_{j=1}^{n} (D_j - \overline{D})^2$$

- Given D_i : i.i.d. normal, the hypothesis $H_0: \mathsf{E}(D) = \delta$ is tested using

$$t=rac{\overline{D}-\delta}{s_d/\sqrt{n}}\sim t ext{-dist.}$$
 with $(n-1)$ deg. of freedom

A $100(1-\alpha)\%$ confidence interval is given by

$$\overline{D} - t_{n-1}(\alpha/2) \frac{s_d}{\sqrt{n}} \le \delta \le \overline{D} + t_{n-1}(\alpha/2) \frac{s_d}{\sqrt{n}}$$

Paired Comparisons: The Multivariate Case (i)

- p variables, 2 treatments, n experimental units $X_{1jk}(X_{2jk})$: variable k under treatment 1 (2) within the j-th unit $k=1,\ldots,p;\ j=1,\ldots,n$
- Then

$$D_{jk} = X_{1jk} - X_{2jk}, k = 1, \dots, p;$$

 $\mathbf{D}_j = [D_{j1}, D_{j2}, \dots, D_{jp}]'$

Assume that

$$\mathsf{E}(\mathbf{D}_j) = \boldsymbol{\delta} = [\delta_1, \ \delta_2, \ \dots, \ \delta_p]'$$
 $\mathsf{Cov}(\mathbf{D}_i) = \boldsymbol{\Sigma}_d, \ \ \forall j = 1, \dots, n$

Paired Comparisons: The Multivariate Case (ii)

(cont'd)

• If $\mathbf{D}_1,\dots,\mathbf{D}_n$: i.i.d. $N_p(\boldsymbol{\delta},\boldsymbol{\Sigma}_d)$, then: derive inferences on $\boldsymbol{\delta}$ using $(\mathsf{Hotelling's})\ T^2 =\ n(\overline{\mathbf{D}}-\boldsymbol{\delta})'\mathbf{S}_d^{-1}(\overline{\mathbf{D}}-\boldsymbol{\delta})$

where
$$\overline{\mathbf{D}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{D}_{j}, \ \mathbf{S}_{d} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{D}_{j} - \overline{\mathbf{D}})(\mathbf{D}_{j} - \overline{\mathbf{D}})'$$

For all values of δ, Σ_d :

$$T^2 \sim \frac{p(n-1)}{n-p} F_{p,n-p}$$

Remark: n, (n-p) large $\Longrightarrow T^2 \approx \chi_p^2$!

Paired Comparisons: The Multivariate Case (iii) Inferences about δ

(cont'd) $\mathbf{D}_1, \dots, \mathbf{D}_n$: i.i.d. $N_p(\boldsymbol{\delta}, \boldsymbol{\Sigma}_d)$; Observing $\mathbf{d}_1, \dots, \mathbf{d}_n$

• Testing $H_0: \delta = \mathbf{0}$ vs. $H_1: \delta \neq \mathbf{0}$ The α -level test: Rejecting H_0 in favor of H_1 if

$$T^2 = n\overline{\mathbf{d}}'\mathbf{S}_d^{-1}\overline{\mathbf{d}} > \frac{p(n-1)}{n-p}F_{p,n-p}(\alpha)$$

• A $100(1-\alpha)\%$ confidence region for δ is

$$(\overline{\mathbf{d}} - \boldsymbol{\delta})' \mathbf{S}_d^{-1} (\overline{\mathbf{d}} - \boldsymbol{\delta}) \le \frac{p(n-1)}{n(n-p)} F_{p,n-p}(\alpha)$$

Paired Comparisons: The Multivariate Case (iv)

Inferences about δ

(cont'd) $\mathbf{D}_1, \dots, \mathbf{D}_n$: i.i.d. $N_p(\boldsymbol{\delta}, \boldsymbol{\Sigma}_d)$; Observing $\mathbf{d}_1, \dots, \mathbf{d}_n$

• A $100(1-\alpha)\%$ simultaneous confidence intervals for individual mean differences (δ_i 's) are

$$\delta_i: \overline{d}_i \pm \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{d_i}^2}{n}}$$

 \overline{d}_i : the *i*-th element of $\overline{\mathbf{d}}$; $s_{d_i}^2$: the (i,i)-th element of \mathbf{S}_d

 \bullet The Bonferroni $100(1-\alpha)\%$ simultaneous confidence intervals for individual mean differences are

$$\delta_i: \overline{d}_i \pm t_{n-1} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{s_{d_i}^2}{n}}$$

Example 1: i) Wastewater Treatment Plant Effluent Checking for a Mean Difference with Paired Observations

- Wastewater samples for inspection in 2 labs
 - a commercial lab and a state lab
- n = 11 samples of wastewater
- p = 2 variables
- (1) Biochemical oxygen demand (BOD)
- (2) Suspended solids (SS)

Example 1: ii) The Data Checking for a Mean Difference with Paired Observations

Sample	Commerc	cial Lab	State Lab of Hygiene		
j	x_{1j1} (BOD)	x_{1j2} (SS)	x_{2j1} (BOD)	x_{2j2} (SS)	
1	6	27	25	15	
2	6	23	28	13	
3	18	64	36	22	
4	8	44	35	29	
5	11	30	15	31	
6	34	75	44	64	
7	28	26	42	30	
8	71	124	54	64	
9	43	54	34	56	
10	33	30	29	20	
11	20	14	39	21	

Table 6.1 in the textbook

Example 1: iii) Analyzing the Data Checking for a Mean Difference with Paired Observations

Assuming differences from paired observations are <u>normal</u> !!!

• Differences from paired observations: $d_{jk} = x_{1jk} - x_{2jk}, k = 1, 2$

\overline{j}	1	2	3	4	5	6	7	8	9	10	11
d_{j1}	-19	-22	-18	-27	-4	-10	-14	17	9	4	-19
$\overline{d_{j2}}$											

• T^2 statistic for testing $H_0: \boldsymbol{\delta} = [\delta_1, \delta_2]' = [0, 0]'$ vs. $H_1: \boldsymbol{\delta} \neq [0, 0]'$

$$\overline{\mathbf{d}} = \begin{pmatrix} -9.3636 \\ 13.2727 \end{pmatrix}, \ \mathbf{S}_d = \begin{pmatrix} 199.2545 & 88.3091 \\ 88.3091 & 418.6182 \end{pmatrix}$$

$$T^2 = n\overline{\mathbf{d}}'\mathbf{S}_d^{-1}\overline{\mathbf{d}}\Big|_{n=11} = 13.6393$$

$$T^2 = n\overline{\mathbf{d}}' \mathbf{S}_d^{-1} \overline{\mathbf{d}} \bigg|_{\substack{n=11 \\ n=11}} = 13.6393$$
 α -level test: $\alpha = 0.05 \Rightarrow T^2 > \frac{p(n-1)}{(n-p)} F_{p,n-p}(0.05) \bigg|_{\substack{n=11 \\ p=2}} = 9.4589$

 \Longrightarrow Reject H_0

Example 1: iv) Analyzing the Data (Cont'd) Checking for a Mean Difference with Paired Observations

Assuming differences from paired observations are normal !!!

• The 95% simultaneous confidence intervals for δ_1 and δ_2 are:

$$\delta_1: \overline{d}_1 \pm \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{d_1}^2}{n}} = -9.3636 \pm \sqrt{9.4589} \sqrt{\frac{199.2545}{11}}$$

or simply: (-22.4533, 3.7260)

$$\delta_2: \overline{d}_2 \pm \sqrt{\frac{p(n-1)}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{d_2}^2}{n}} = 13.2727 \pm \sqrt{9.4589} \sqrt{\frac{418.6182}{11}}$$

or simply: (-5.7001, 32.2456)

 $\boldsymbol{\delta} = [\delta_1, \delta_2]' = [0, 0]'$ is contained in the above intervals!

• What to conclude based on T^2 and the above? Check the fundamental definitions again! (Illustration next)

Example 1: v) Analyzing the Data (Cont'd) Checking for a Mean Difference with Paired Observations

Paired Comparisons: The Multivariate Case (v) Contrast Vectors and Contrast Matrices

• A p-dim. vector is called a contrast vector if its elements sum to 0. \Longrightarrow Orthogonal to the p-dim. all-one vector

e.g.
$$(p = 4)$$
: $\mathbf{c} = [1, 0, -1, 0]'$
Let $\mathbf{1} = [1, 1, 1, 1]' \Longrightarrow \mathbf{c}' \mathbf{1} = 0$

- \bullet A $k \times l$ matrix is called a contrast matrix if
 - i) each of its rows is a contrast vector, and
 - ii) the rows are linearly independent $(k \le l)$.

e.g.,
$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \end{bmatrix}$$

$$\mathbf{C}_{p imes 2p} = [\mathbf{I}_{p imes p} \quad -\mathbf{I}_{p imes p}] = egin{bmatrix} 1 & 0 & \dots & 0 & | & -1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 & | & 0 & -1 & \dots & 0 \ dots & dots & \ddots & dots & | & dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 & | & 0 & 0 & \dots & -1 \end{bmatrix}$$

Used in next page

Paired Comparisons: The Multivariate Case (vi) Representation Using a Contrast Matrix

• Concatenate the results from two treatments:

$$\overline{\mathbf{x}}_{2p\times 1} = [\overline{x}_{11}, \dots, \overline{x}_{1p}, \overline{x}_{21}, \dots, \overline{x}_{2p}]', \quad \mathbf{S}_{2p\times 2p} = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ (p\times p) & (p\times p) \\ \vdots & \vdots & \vdots \\ (p\times p) & (p\times p) \end{bmatrix}$$

• Use the contrast matrix $C_{p\times 2p}$ introduced in the previous page:

$$\implies \mathbf{d}_{j} = \mathbf{C}\mathbf{x}_{j}, j = 1, \dots, n$$

$$\overline{\mathbf{d}} = \mathbf{C}\overline{\mathbf{x}}$$

$$\mathbf{S}_{d} = \mathbf{C}\mathbf{S}\mathbf{C}'$$

$$T^{2} = n\overline{\mathbf{x}}\mathbf{C}'(\mathbf{C}\mathbf{S}\mathbf{C}')^{-1}\mathbf{C}\overline{\mathbf{x}}$$

Directly working on x_j 's (no need to calculate d_j 's)

Repeated Measures (i)

ullet (Measurements of a single response variable) q treatments, n units

the *j*-th observation :
$$X_j = [X_{j1}, X_{j2}, ..., X_{jq}]', \ j = 1, 2, ..., n$$

 X_{ji} : response to the *i*-th treatment on the *j*-th unit

- Let $\mu = E(\mathbf{X}_i), \forall j$
- ullet For comparative purposes, consider two contrasts of components of μ :

(1).
$$\begin{bmatrix} \mu_1 - \mu_2 \\ \mu_1 - \mu_3 \\ \vdots \\ \mu_1 - \mu_q \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & -1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_q \end{bmatrix} = \mathbf{C}_1 \boldsymbol{\mu}$$

(2).
$$\begin{bmatrix} \mu_2 - \mu_1 \\ \mu_3 - \mu_2 \\ \vdots \\ \mu_q - \mu_{q-1} \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_q \end{bmatrix} = \mathbf{C}_2 \boldsymbol{\mu}$$

Repeated Measures (ii)

• Here C_1 and C_2 : $(q-1) \times q$ contrast matrices

$$\mathbf{C}_1 = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & -1 \end{bmatrix}, \mathbf{C}_2 = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix}$$

- Equal treatment means \iff $\mathbf{C}\mu = \mathbf{0}$; \mathbf{C} : any $(q-1) \times q$ contrast matrix
- ullet For a normal population: to test ${f C} \mu = 0$
 - Consider contrasts $\mathbf{C}\mathbf{x}_j$ in the observations
 - Use summary statistics $C\overline{\mathbf{x}}$, CSC'
 - The T^2 -statistic: $T^2 = n(\mathbf{C}\overline{\mathbf{x}})'(\mathbf{CSC})^{-1}(\mathbf{C}\overline{\mathbf{x}})$ Remark:

 $\int T^2$ does not depend on the particular choice of the $(q-1) \times q$ contrast matrix ${\bf C}$.

Repeated Measures (iii)

Test for Equality of Treatments in a Repeated Measures Design

Consider a normal (q-dim., with mean μ) population; C: contrast matrix

- ullet Testing $H_0: {f C} {m \mu} = {f 0}$ (equal treatment means) vs. $H_1: {f C} {m \mu}
 eq {f 0}$
 - An α -level test rejects H_0 if

$$T^{2} = n(\mathbf{C}\overline{\mathbf{x}})'(\mathbf{CSC})^{-1}(\mathbf{C}\overline{\mathbf{x}}) > \frac{(q-1)(n-1)}{(n-q+1)}F_{q-1,n-q+1}(\alpha)$$

• A confidence region for the contrast $C\mu$:

$$n(\mathbf{C}\overline{\mathbf{x}} - \mathbf{C}\boldsymbol{\mu})'(\mathbf{C}\mathbf{S}\mathbf{C})^{-1}(\mathbf{C}\overline{\mathbf{x}} - \mathbf{C}\boldsymbol{\mu}) \le \frac{(q-1)(n-1)}{(n-q+1)}F_{q-1,n-q+1}(\alpha)$$

• Simultaneous $100(1-\alpha)\%$ confidence intervals for single contrasts $\mathbf{c}'\boldsymbol{\mu}$ (for any contrast vector \mathbf{c} of interests):

$$\mathbf{c}'\boldsymbol{\mu}: \ \mathbf{c}'\overline{\mathbf{x}} \pm \sqrt{\frac{(q-1)(n-1)}{(n-q+1)}} F_{q-1,n-q+1}(\alpha) \sqrt{\frac{\mathbf{c}'\mathbf{S}\mathbf{c}}{n}}$$

Example 2: Anesthetic test with dogs (i)

- n = 19 dogs were studied
- q=4 treatments

```
Treatment 1 = \text{high CO}_2 pressure without Halothane (H) Treatment 2 = \text{low CO}_2 pressure without H Treatment 3 = \text{high CO}_2 pressure with H Treatment 4 = \text{low CO}_2 pressure with H
```

• The same single response: milliseconds between heartbeats

This is a **repeated measures** design

Example 2: Anesthetic test with dogs – The Data (ii)

Dog		Treat	ment		Dog	Treatment			
	1	2	3	4	Dog	1	2	3	4
1	426	609	556	600	11	349	382	473	497
2	253	236	392	395	12	429	410	488	547
3	359	433	349	357	13	348	377	447	514
4	432	431	522	600	14	412	473	472	446
5	405	426	513	513	15	347	326	455	468
6	324	438	507	539	16	434	458	637	524
7	310	312	410	456	17	364	367	432	469
8	326	326	350	504	18	420	395	508	531
9	375	447	547	548	19	397	556	645	625
10	286	286	403	422					

Table 6.2 in the textbook

Example 2: Anesthetic test with dogs - The Analysis (iii)

- Let $\mu = [\mu_1, \mu_2, \mu_3, \mu_4]'$ be the mean responses corresponding to treatments 1, 2, 3 and 4, respectively.
- Assuming normal population and testing different hypotheses:
 - For example, the hypothesis $\mu_1 = \mu_2 = \mu_3 = \mu_4$ can be written as:

Another example: testing specific effects of CO₂ pressure and H

$$(\mu_3 + \mu_4) - (\mu_1 + \mu_2) = (\mathsf{H} \; \mathsf{influence})$$

$$(\mu_1 + \mu_3) - (\mu_2 + \mu_4) = (\mathsf{CO}_2 \; \mathsf{pressure} \; \mathsf{influence})$$

$$(\mu_1 + \mu_4) - (\mu_2 + \mu_3) = (\mathsf{H-CO}_2 \; \mathsf{pressure} \; \mathsf{``interaction''})$$

(to be continued on next page)

Example 2: Anesthetic test with dogs – The Analysis (iv) Testing specific effects of CO₂ pressure and H

• Contrast matrix $C_{3\times4}$

From the data:

$$\mathbf{C}\overline{\mathbf{x}} = [209.32, -60.05, -12.79]', \ \mathbf{CSC}' = \begin{bmatrix} 9432.2 & 1098.9 & 927.6 \\ 1098.9 & 5195.8 & 914.6 \\ 927.6 & 914.6 & 7557.4 \end{bmatrix}$$

$$T^{2} = n(\mathbf{C}\overline{\mathbf{x}})'(\mathbf{CSC})^{-1}(\mathbf{C}\overline{\mathbf{x}}) = 19 \times 6.1061 = 116.0163$$

$$> \frac{(q-1)(n-1)}{(n-q+1)} F_{q-1,n-q+1}(\alpha) \Big|_{\alpha=0.05,n=19,q=4} = 10.9312$$

 \Longrightarrow Rejecting H_0

Example 2: Anesthetic test with dogs – The Analysis (v) Testing specific effects of CO₂ pressure and H

• Which ones are responsible for rejecting H_0 ?

Construct 95% simultaneous confidence intervals for each contrast:

$$\mathbf{c}_{1}'\boldsymbol{\mu} = (\mu_{3} + \mu_{4}) - (\mu_{1} + \mu_{2}) = \text{H influence}$$

$$\Rightarrow \mathbf{c}_{1}'\boldsymbol{\mu} : \quad \mathbf{c}_{1}'\overline{\mathbf{x}} \quad \pm \sqrt{\frac{18 \times 3}{16}} F_{3,16}(0.05) \sqrt{\frac{\mathbf{c}_{1}'\mathbf{S}\mathbf{c}_{1}}{19}}$$

$$= 209.32 \pm \sqrt{10.93} \sqrt{\frac{9432.2}{19}} = 209.32 \pm 73.67$$

Zero not included \Longrightarrow there is a halothane (H) influence!

Example 2: Anesthetic test with dogs – The Analysis (vi) Testing specific effects of CO₂ pressure and H

Similarly:

$$\mathbf{c}_2' \boldsymbol{\mu} = (\mu_1 + \mu_3) - (\mu_2 + \mu_4) = \mathsf{CO}_2 \text{ pressure influence}$$

$$\Longrightarrow \mathbf{c}_2' \boldsymbol{\mu} : -60.05 \pm \sqrt{10.93} \sqrt{\frac{5195.8}{19}} = -60.05 \pm 54.67$$

$$\mathbf{c}_3' \boldsymbol{\mu} = (\mu_1 + \mu_4) - (\mu_2 + \mu_3) = \text{H-CO}_2 \text{ pressure "interaction"}$$

$$\implies \mathbf{c}_3' \boldsymbol{\mu} : -12.79 \pm \sqrt{10.93} \sqrt{\frac{7557.4}{19}} = -12.79 \pm 65.94$$

 \Longrightarrow there is also a CO_2 pressure influence

Comparing Mean Vectors from Two Populations Basic Setup and Problem of Interest

Assumptions:

- 1. $\mathbf{X}_{11}, \mathbf{X}_{12}, \dots, \mathbf{X}_{1n_1}$: random sample from p-variate Population 1 Mean: μ_1 , covariance matrix: Σ_1
- 2. $\mathbf{X}_{21}, \mathbf{X}_{22}, \dots, \mathbf{X}_{2n_2}$: random sample from p-variate Population 2 Mean: μ_2 , covariance matrix: Σ_2
- 3. The above two random samples are independent.

• The problem here:

- Is $\mu_1 = \mu_2$ (or, is $\mu_1 \mu_2 = 0$)?
- If $\mu_1 \mu_2
 eq 0$, which component means are different?
- Summary statistics to be used later

sample	summary statistics
$\mathbf{x}_{11} \dots \mathbf{x}_{1n_1}$	$\overline{\mathbf{x}}_1 = \frac{1}{n_1} \sum_{j=1}^{n_1} \mathbf{x}_{1j}, \ \mathbf{S}_1 = \frac{1}{n_1 - 1} \sum_{j=1}^{n_1} (\mathbf{x}_{1j} - \overline{\mathbf{x}}_1) (\mathbf{x}_{1j} - \overline{\mathbf{x}}_1)'$
$\mathbf{x}_{21} \dots \mathbf{x}_{2n_2}$	$ig \ \overline{\mathbf{x}}_2 = rac{1}{n_2} \sum_{j=1}^{n_2} \mathbf{x}_{2j}$, $\mathbf{S}_2 = rac{1}{n_2-1} \sum_{j=1}^{n_2} (\mathbf{x}_{2j} - \overline{\mathbf{x}}_2) (\mathbf{x}_{2j} - \overline{\mathbf{x}}_2)'$

Comparing Mean Vectors from Two Populations Small n_1 and n_2 , $\Sigma_1 = \Sigma_2$ (i)

Further assumptions: 1). normal populations; 2). $\Sigma_1 = \Sigma_2$ (Strong!)

ullet Since $oldsymbol{\Sigma}_1 = oldsymbol{\Sigma}_2 = oldsymbol{\Sigma}$

$$\sum_{j=1}^{n_1} (\mathbf{x}_{1j} - \overline{\mathbf{x}}_1)(\mathbf{x}_{1j} - \overline{\mathbf{x}}_1)' : \text{ estimate of } (n_1 - 1)\Sigma$$

$$\sum_{j=1}^{n_2} (\mathbf{x}_{2j} - \overline{\mathbf{x}}_2)(\mathbf{x}_{2j} - \overline{\mathbf{x}}_2)' : \text{ estimate of } (n_2 - 1)\Sigma$$

pool info. to get a pooled estimate of Σ

$$\mathbf{S}_{\text{pooled}} = \frac{\sum_{j=1}^{n_1} (\mathbf{x}_{1j} - \overline{\mathbf{x}}_1) (\mathbf{x}_{1j} - \overline{\mathbf{x}}_1)' + \sum_{j=1}^{n_2} (\mathbf{x}_{2j} - \overline{\mathbf{x}}_2) (\mathbf{x}_{2j} - \overline{\mathbf{x}}_2)'}{n_1 + n_2 - 2}$$
$$= \frac{n_1 - 1}{n_1 + n_2 - 2} \mathbf{S}_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} \mathbf{S}_2$$

Comparing Mean Vectors from Two Populations Small n_1 and n_2 , $\Sigma_1 = \Sigma_2$ (ii)

Further assumptions: 1). normal populations; 2). $\Sigma_1 = \Sigma_2$

• Problem: testing $H_0: \mu_1 - \mu_2 = \pmb{\delta}_0$ vs. $H_1: \mu_1 - \mu_2 \neq \pmb{\delta}_0$ $(\pmb{\delta}_0:$ a specified vector)

Consider the squared distance from $\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$ to $\boldsymbol{\delta}_0$:

$$\begin{split} \mathsf{E}(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) &= \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 \\ \mathsf{Cov}(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) &= \mathsf{Cov}(\overline{\mathbf{X}}_1) + \mathsf{Cov}(\overline{\mathbf{X}}_2) = (1/n_1 + 1/n_2) \, \boldsymbol{\Sigma} \\ (1/n_1 + 1/n_2) \, \mathbf{S}_{\mathsf{pooled}} : \text{ estimate of } \mathsf{Cov}(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) \end{split}$$

 \Longrightarrow Reject H_0 if

$$T^{2} = (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - \boldsymbol{\delta}_{0})' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{\text{pooled}} \right]^{-1} (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - \boldsymbol{\delta}_{0}) > c^{2}$$

Small n_1 and n_2 , $\Sigma_1 = \Sigma_2$ (iii)

• If two independent random samples: $\mathbf{X}_{11}, \mathbf{X}_{12}, \dots, \mathbf{X}_{1n_1} \sim N_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$, and $\mathbf{X}_{21}, \mathbf{X}_{22}, \dots, \mathbf{X}_{2n_2} \sim N_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$, then

$$\left(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right)' \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \mathbf{S}_{\mathsf{pooled}} \right]^{-1} \left(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \right)$$

$$= T^{2} \sim \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p,n_{1} + n_{2} - p - 1}$$

$$\implies P[T^2 \le c^2] = 1 - \alpha, \qquad c^2 \triangleq \frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)} F_{p, n_1 + n_2 - p - 1}(\alpha)$$

Proof:

$$-\overline{\mathbf{X}}_1-\overline{\mathbf{X}}_2 \sim N_p(\boldsymbol{\mu}_1-\boldsymbol{\mu}_2,[1/n_1+1/n_2]\boldsymbol{\Sigma});$$

-
$$(n_1 - 1)\mathbf{S}_1 \sim \mathbf{W}_{p,n_1-1}(\Sigma)$$
, $(n_2 - 1)\mathbf{S}_2 \sim \mathbf{W}_{p,n_2-1}(\Sigma)$

-
$$\mathbf{S}_1, \mathbf{S}_2$$
 independent $\Longrightarrow (n_1 - 1)\mathbf{S}_1 + (n_2 - 1)\mathbf{S}_2 \sim \mathbf{W}_{p, n_1 + n_2 - 2}(\mathbf{\Sigma})$

Comparing Mean Vectors from Two Populations Small n_1 and n_2 , $\Sigma_1 = \Sigma_2$, Normal Populations (iv)

• Confidence regions for $\mu_1 - \mu_2$:

$$\{ \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 : T^2 \le c^2 \}$$

An ellipsoid centered at $\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$ with axes determined by eigenvectors and eigenvalues of \mathbf{S}_{pooled} (T^2, c^2 : see previous page)

• Let $c^2 \triangleq \frac{(n_1+n_2-2)p}{(n_1+n_2-p-1)} F_{p,n_1+n_2-p-1}(\alpha)$. With prob. $1-\alpha$

$$\mathbf{a}'(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) \pm c\sqrt{\mathbf{a}'\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\mathbf{S}_{\mathsf{pooled}}\mathbf{a}}$$

will cover $\mathbf{a}'(\mu_1 - \mu_2)$ for all \mathbf{a} . (Proof: similar to previous analysis)

Comparing Mean Vectors from Two Populations Small n_1 and n_2 , $\Sigma_1 = \Sigma_2$, Normal Populations (v)

(Cont'd from previous page)

• Simultaneous confidence intervals for $\mu_{1i} - \mu_{2i}$:

$$(\overline{X}_{1i} - \overline{X}_{i2}) \pm c\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} s_{ii,pooled}, \quad i = 1, 2, \dots, p$$

• Bonferroni $100(1-\alpha)\%$ simultaneous confidence intervals for $\mu_{1i} - \mu_{2i}$:

$$(\overline{X}_{1i} - \overline{X}_{i2}) \pm t_{n_1+n_2-2} \left(\frac{\alpha}{2p}\right) \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) s_{ii,pooled}}, \quad i = 1, 2, \dots, p$$

Example 3 (i)

Confidence Region for Difference of Two Mean Vectors

• Two kinds of soaps manufactured, each 50 bars $(\underline{n_1 = n_2 = 50})$ Two characteristics measured: X_1 =lather, X_2 =mildness $(\underline{p = 2})$ Given summary statistics of two kinds of soaps:

$$\overline{\mathbf{x}}_1 = \begin{bmatrix} 8.3 \\ 4.1 \end{bmatrix}, \mathbf{S}_1 = \begin{bmatrix} 2 & 1 \\ 1 & 6 \end{bmatrix}, \overline{\mathbf{x}}_2 = \begin{bmatrix} 10.2 \\ 3.9 \end{bmatrix}, \mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix},$$

Normal populations: obtain a 95% confidence region for $\mu_1 - \mu_2$

• $\mathbf{S}_1, \mathbf{S}_2$: approx. equal $\Longrightarrow \mathbf{S}_{\mathsf{pooled}} = \frac{49}{98} \mathbf{S}_1 + \frac{49}{98} \mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}$ $\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 = [-1.9, 0.2]'$

The confidence ellipse (p=2) is

$$\left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right)' \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \mathbf{S}_{\mathsf{pooled}} \right]^{-1} \left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \right) \le c^2$$

Example 3 (ii)

Confidence Region for Difference of Two Mean Vectors

Alternatively, the ellipse is given by

$$\left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right)' \mathbf{S}_{\mathsf{pooled}}^{-1} \left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right) \leq \left(\frac{1}{n_1} + \frac{1}{n_2}\right) c^2$$

Eigenvalue decomposition of S_{pooled}

$$\left\{ \left(\lambda_1 = 5.303, \mathbf{e}_1 = \begin{bmatrix} 0.290 \\ 0.957 \end{bmatrix} \right), \left(\lambda_1 = 1.697, \mathbf{e}_1 = \begin{bmatrix} 0.957 \\ -0.290 \end{bmatrix} \right) \right\}$$

In addition:

$$\left(\frac{1}{n_1} + \frac{1}{n_2}\right)c^2 = \left(\frac{1}{50} + \frac{1}{50}\right)\frac{98 \times 2}{97}F_{2,97}(0.05) = 0.25$$

Confidence ellipse extends $\sqrt{\lambda_i}\sqrt{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)c^2}=\sqrt{\lambda_i}\sqrt{0.25}$ along \mathbf{e}_i

Example 3 (iii) 95% Confidence Ellipse for $\mu_1-\mu_2$

 $\Sigma_1 \neq \Sigma_2$, Large n_1 and n_2 (i)

- In general $(n_1 \neq n_2)$:
 - No pooling for covariance matrix
 - Consider large n_1 and n_2 (p fixed)
 - i) Replace $\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$ \mathbf{S}_{pooled} by $\frac{1}{n_1}$ $\mathbf{S}_1 + \frac{1}{n_2}$ \mathbf{S}_2

$$T^{2} = (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))' \left[\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2} \right]^{-1} (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))$$

ii) Replace F-distribution by χ_p^2

 $\Sigma_1 \neq \Sigma_2$, Large n_1 and n_2 (ii)

(Cont'd from previous page)

For example: an approximate $100\%(1-\alpha)$ confidence ellipsoid satisfies

$$\left[\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})\right]' \times \left(\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2}\right)^{-1}\left[\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})\right] \leq \chi_{p}^{2}(\alpha)$$

Another example: the $100(1-\alpha)\%$ simultaneous confidence intervals for all linear combinations $\mathbf{a}'(\boldsymbol{\mu}_1-\boldsymbol{\mu}_2)$ are provided by

$$\left\{\mathbf{a}'(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2): \ \mathbf{a}'(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2) \pm \sqrt{\chi_p^2(\alpha)} \sqrt{\mathbf{a}'\left(\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2\right)\mathbf{a}}\right\}$$

 $\Sigma_1 \neq \Sigma_2$, Large n_1 and n_2 , $n_1 = n_2$ (iii)

• When $n_1 = n_2 = n$

$$\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2 = \frac{1}{n}(\mathbf{S}_1 + \mathbf{S}_2) = \frac{(n-1)\mathbf{S}_1 + (n-1)\mathbf{S}_2}{n+n-2} \left(\frac{1}{n} + \frac{1}{n}\right)$$
$$= \mathbf{S}_{\text{pooled}}\left(\frac{1}{n} + \frac{1}{n}\right)$$

 $n_1 = n_2 = n$ further with large sample size: here the procedure is essentially the same as the one with pooled covariance matrix.

Example 4 (i): Electrical Usage Data Large Sample Procedures for Inferences about Mean Difference

- 2 types of homes, with/without air conditioning: $(n_1 = 45, n_2 = 55)$
- p=2 measurements of electrical usage:
 - X_1 =on-peak consumption
 - X_2 =off-peak consumption
- Given the following summary statistics:

$$\overline{\mathbf{x}}_1 = \begin{bmatrix} 204.4 \\ 556.6 \end{bmatrix}$$
 $\mathbf{S}_1 = \begin{bmatrix} 13825.3 & 23823.4 \\ 23823.4 & 73107.4 \end{bmatrix}$
 $\overline{\mathbf{x}}_2 = \begin{bmatrix} 130.0 \\ 355.0 \end{bmatrix}$ $\mathbf{S}_2 = \begin{bmatrix} 8632.0 & 19616.7 \\ 19616.7 & 55964.5 \end{bmatrix}$

obtain 95% simultaneous confidence intervals for components of mean differences using the large sample procedure.

Example 4 (ii): Electrical Usage Data Analysis Large Sample Procedures for Inferences about Mean Difference

• First: $\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 = [\underline{74.4}, \underline{201.6}]'$

$$\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2 = \frac{1}{45} \begin{bmatrix} 13825.3 & 23823.4 \\ 23823.4 & 73107.4 \end{bmatrix} + \frac{1}{55} \begin{bmatrix} 8632.0 & 19616.7 \\ 19616.7 & 55964.5 \end{bmatrix} \\
= \begin{bmatrix} \frac{464.17}{886.08} & 886.08 \\ \frac{2642.15}{886.08} \end{bmatrix}$$

• Take $\mathbf{a} = [1 \ 0]'$, $\mathbf{a} = [0 \ 1]'$ to obtain: $(\chi_2^2(0.05) = 5.99)$

$$\mu_{11} - \mu_{21} : 74.4 \pm \sqrt{5.99} \sqrt{464.17}$$
 or $(21.7, 127.1)$

$$\mu_{12} - \mu_{22} : 201.6 \pm \sqrt{5.99} \sqrt{2642.15}$$
 or $(75.8, 327.4)$

ullet In addition: testing $H_0: \mu_1 - \mu_2 = 0 \Longrightarrow \mathsf{Reject}\ H_0$, since

$$T^{2} = (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2})' \left[\frac{1}{n_{1}} \mathbf{S}_{1} + \frac{1}{n_{2}} \mathbf{S}_{2} \right]^{-1} (\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}) = 15.66 > \chi_{2}^{2}(0.05) = 5.99$$

Comparing Mean Vectors from Two Populations

 $\Sigma_1 \neq \Sigma_2$, Small/Medium n_1 and n_2 (p Fixed)

Further assumption: normal populations

• Approach: Approximating the dist. of the statistic

$$T^{2} = \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})\right]' \left(\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2}\right)^{-1} \left[\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})\right]$$

$$\sim$$
 $\frac{vp}{v-p+1}F_{p,v-p+1},$ where v is estimated as

$$v = \frac{p + p^2}{\sum_{i=1}^{2} \frac{1}{n_i} \left\{ \text{tr} \left[\mathbf{A}_i^2 \right] + \left(\text{tr} \left[\mathbf{A}_i \right] \right)^2 \right\}} \qquad (\min(n_1, n_2) \le v \le n_1 + n_2)$$

$$\mathbf{A}_i \triangleq \frac{1}{n_i} \mathbf{S}_i \left(\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right)^{-1} \quad i = 1, 2$$

- The procedure:
 - Use the above T^2 and the corresponding $\frac{vp}{v-p+1}F_{p,v-p+1}(\alpha)$

Example 5 (i): Electrical Usage Data (Again)

Approximating T^2 When $\Sigma_1 \neq \Sigma_2$

- 2 types of homes, with/without air conditioning: $(n_1 = 45, n_2 = 55)$
- p=2 measurements of electrical usage:
 - X_1 =on-peak consumption
 - X_2 =off-peak consumption
- (Normal Populations) Given the following summary statistics:

$$\overline{\mathbf{x}}_1 = \begin{bmatrix} 204.4 \\ 556.6 \end{bmatrix}$$
 $\mathbf{S}_1 = \begin{bmatrix} 13825.3 & 23823.4 \\ 23823.4 & 73107.4 \end{bmatrix}$
 $\overline{\mathbf{x}}_2 = \begin{bmatrix} 130.0 \\ 355.0 \end{bmatrix}$ $\mathbf{S}_2 = \begin{bmatrix} 8632.0 & 19616.7 \\ 19616.7 & 55964.5 \end{bmatrix}$

test $H_0: \mu_1 - \mu_2 = 0$ (significance level $\alpha = 0.05$)

Example 5 (ii): Electrical Usage Data Analysis

Approximating T^2 When $\Sigma_1 \neq \Sigma_2$

• First:

$$\mathbf{B} \triangleq \left[\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2 \right]^{-1} = 10^{-4} \begin{bmatrix} 59.874 & -20.080 \\ -20.080 & 10.519 \end{bmatrix}$$

$$\mathbf{A}_1 = \frac{1}{n_1} \mathbf{S}_1 \mathbf{B} = \begin{bmatrix} 0.776 & -0.060 \\ -0.092 & 0.646 \end{bmatrix}, \mathbf{A}_1^2 = \begin{bmatrix} 0.608 & -0.085 \\ -0.131 & 0.423 \end{bmatrix}$$

$$\mathbf{A}_2 = \frac{1}{n_2} \mathbf{S}_2 \mathbf{B} = \begin{bmatrix} 0.224 & -0.060 \\ 0.092 & 0.354 \end{bmatrix}, \mathbf{A}_2^2 = \begin{bmatrix} 0.055 & 0.035 \\ 0.053 & 0.131 \end{bmatrix}$$

$$\frac{1}{n_i} \left\{ \operatorname{tr} \left[\mathbf{A}_i^2 \right] + \left(\operatorname{tr} \left[\mathbf{A}_i \right] \right)^2 \right\} = \begin{cases} 0.0678 & i = 1 \\ 0.0095 & i = 2 \end{cases}$$

Example 5 (iii): Electrical Usage Data Analysis

Approximating T^2 When $\Sigma_1 eq \Sigma_2$

Estimated degrees of freedom

$$v = \frac{2 + 2^2}{0.0678 + 0.0095} = 77.6$$

Testing $H_0: \mu_1 - \mu_2 = 0$ (significance level $\alpha = 0.05$)

$$\left. \frac{T^2 = 15.66}{\text{calculated before}} > \frac{vp}{v - p + 1} F_{p,v-p+1}(0.05) \right|_{v = 77.6, p = 2} = 6.32$$

 \Longrightarrow Reject H_0 [same conclusion as in Example 4 (large sample procedure)]

Comparing Several Multivariate Population Means One-way MANOVA Setup: Structure and Assumptions

- Setup: g populations; n_l observations for population $l, l = 1, \ldots, g$
- Assumptions:
 - 1. $\mathbf{X}_{l1}, \mathbf{X}_{l2}, \dots, \mathbf{X}_{ln_l}$:
 - random sample of size n_l
 - from a population with mean μ_l $(l=1,2,\ldots,g)$ Random samples from different populations: independent
 - 2. All populations: common covariance matrix Σ (positive definite)
 - 3. Each population: multivariate normal (p-dimensional)
- <u>Problem of interest</u>:

One-way multivariate analysis of variance (MANOVA)

* Testing

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_q \text{ vs. } H_1: \mu_i \neq \mu_j, \ i \neq j, 1 \leq i, j \leq g$$

* If rejecting H_0 , find out which mean components differ significantly

Univariate ANOVA (p=1) (i) Normal Samples with Common Variance σ^2

- Assumptions in univariate analysis of variance (ANOVA)
 - X_{l1},\ldots,X_{ln_l} : random sample $\sim N(\mu_l,\sigma^2)$, $l=1,\ldots,g$
 - Random samples from g different populations: independent
- Null hypothesis $H_0: \mu_1 = \mu_2 = \ldots = \mu_g$ Alternatively, let

$$\underbrace{\mu_l}_{l\text{-th population mean}} = \underbrace{\mu}_{\text{overall mean}} + \underbrace{\tau_l}_{l\text{-th population}}, \quad l=1,2,\ldots,g$$

then

$$H_0: \tau_1 = \tau_2 = \ldots = \tau_g = 0$$

Univariate ANOVA (ii)

Normal Samples with Common Variance σ^2

• The response $X_{lj} \sim N(\mu + \tau_l, \sigma^2)$ $(j = 1, \dots, n_l; l = 1, \dots, g)$

$$X_{lj} = \underbrace{\mu}_{\text{overall mean}} + \underbrace{\tau_l}_{l\text{-th population}} + \underbrace{e_{lj}}_{\text{random error}}$$
 $\underbrace{\epsilon_{lj}}_{\text{random error}} + \underbrace{\epsilon_{lj}}_{\text{random error}}$

(Assuming $\sum_{l=1}^{g} n_l \tau_l = 0$ for unique identification of parameters)

• The observation x_{lj}

$$\underbrace{x_{lj}}_{\text{observation}} = \underbrace{\overline{x}}_{\text{overall sample mean}} + \underbrace{\left(\overline{x}_l - \overline{x}\right)}_{\substack{l\text{-th estimated} \\ \text{(treatment) effect}}} + \underbrace{\left(x_{lj} - \overline{x}_l\right)}_{\text{residual}}$$

- \overline{x} : estimate of μ $\overline{x} = \frac{1}{n} \sum_{l=1}^{g} \sum_{j=1}^{n_l} x_{lj}, \quad n = \sum_{l=1}^{g} n_l$
- $-\widehat{\tau}_l = (\overline{x}_l \overline{x})$: estimate of τ_l $\overline{x}_l = \frac{1}{n_l} \sum_{j=1}^{n_l} x_{lj}$, $\sum_{l=1}^g n_l \widehat{\tau}_l = 0$
- $(x_{lj} \overline{x}_l)$: estimate of e_{lj}

Univariate ANOVA (iii)

It can be shown that

$$\sum_{l=1}^{g} \sum_{j=1}^{n_l} (\overline{x}_l - \overline{x})(x_{lj} - \overline{x}_l) = 0$$

$$\sum_{l=1}^{g} \sum_{j=1}^{n_l} \overline{x}(x_{lj} - \overline{x}_l) = 0, \quad \sum_{l=1}^{g} \sum_{j=1}^{n_l} \overline{x}(\overline{x}_l - \overline{x}) = 0$$

 \Longrightarrow mean \overline{x} , treatment effect $\overline{x}_l - \overline{x}$, and residual $x_{lj} - \overline{x}_l$: orthogonal

In addition

$$\sum_{l=1}^g \sum_{j=1}^{n_l} (x_{lj} - \overline{x})^2 = \sum_{l=1}^g n_l (\overline{x}_l - \overline{x})^2 + \sum_{l=1}^g \sum_{j=1}^{n_l} (x_{lj} - \overline{x}_l)^2$$
Sum of Squares of Total Sum of Squares of Treatments of Residual

Univariate ANOVA (iv)

- Let y collect all the observations: \Longrightarrow y: in the $n = \sum_{l=1}^g n_l$ dimensions $\mathbf{y} = [x_{11}, \dots, x_{1n_1}, x_{21}, \dots, x_{2n_2}, \dots, x_{g1}, \dots, x_{gn_q}]'$
- Mean vector: $\overline{x}\mathbf{1}_{n\times 1}$: a vector
- Treatment effect vector: $(\overline{x}_1 \overline{x})\mathbf{u}_1 + (\overline{x}_2 \overline{x})\mathbf{u}_2 + \ldots + (\overline{x}_g \overline{x})\mathbf{u}_g$ where the $n \times 1$ vectors $\mathbf{u}_1, \ldots, \mathbf{u}_g$ are given by:

$$\mathbf{u}_1 = [\underbrace{1, \dots, 1}_{n_1}, 0, \dots, 0, 0, \dots, 0]', \quad \mathbf{u}_2 = [0, \dots, 0, \underbrace{1, \dots, 1}_{n_2}, 0, \dots, 0]', \dots$$

$$\mathbf{u}_g = [0, \dots, 0, 0, \dots, 0, \underbrace{1, \dots, 1}]', \quad \mathbf{u}_1 + \mathbf{u}_2 + \dots + \mathbf{u}_g = \mathbf{1}$$

Treatment effect vector: perpendicular to \overline{x} 1, in the (g-1)-D subspace

• Residual vector: $\hat{\mathbf{e}} = \mathbf{y} - \overline{x}\mathbf{1} - \sum_{l=1}^{g} (\overline{x}_l - \overline{x})\mathbf{u}_l$

Perpendicular to mean and treatment vectors

Lying in the [n-(g-1)-1]=(n-g)-dim. subspace

Summary

Source		Degrees of
of variations	Sum of squares (SS)	freedom (d.f.)
Treatments	$SS_{tr} = \sum_{l=1}^g n_l (\overline{x}_l - \overline{x})^2$	g-1
Residual	$SS_{res} = \sum_{l=1}^g \sum_{j=1}^{n_l} (x_{lj} - \overline{x}_l)^2$	$\sum_{l=1}^{g} n_l - g$
Total (corrected		
for the mean)	$SS_{total} = \sum_{l=1}^{g} \sum_{j=1}^{n_l} (x_{lj} - \overline{x})^2$	$\sum_{l=1}^{g} n_l - 1$

• Equality of means? Check if treatments are large relative to residuals The usual F-test rejects $H_0: \tau_1 = \tau_2 = \ldots = \tau_g = 0$ at the α level if

$$F = \frac{\mathsf{SS}_{\mathsf{tr}}/(g-1)}{\mathsf{SS}_{\mathsf{res}}/(\sum_{l=1}^{g} n_l - g)} > F_{g-1,\sum n_l - g}(\alpha)$$

One-way MANOVA (p > 1) (i) Normal Samples with Common Covariance Σ

MANOVA model for comparing g population mean vectors

$$\mathbf{X}_{lj} = \underbrace{\boldsymbol{\mu}}_{\substack{\text{overall} \\ \text{mean vector}}} + \underbrace{\boldsymbol{\tau}_l}_{\substack{l\text{-th population} \\ \text{(treatment) effect}}} + \underbrace{\mathbf{e}_{lj}}_{\sim N_p(\mathbf{0}, \mathbf{\Sigma})}$$
 $l = 1, 2, \dots, g; \quad j = 1, 2, \dots, n_l; \quad \sum_{l=1}^g n_l \boldsymbol{\tau}_l = \mathbf{0}$

The vector of observations

$$\mathbf{x}_{lj} = \mathbf{\overline{x}} + \mathbf{(\overline{x}_l - \overline{x})} + \mathbf{(x_{lj} - \overline{x}_l)}$$
 observation sample mean estimated treatment effect
$$\mathbf{\widehat{\mu}}$$
 residual
$$\mathbf{\widehat{e}_{lj}}$$

One-way MANOVA (ii)

Normal Samples with Common Covariance Σ

• Similar to the univariate case, we have: (cross-product terms sum to $\mathbf{0}$)

$$\sum_{l=1}^{g} \sum_{j=1}^{n_l} (\mathbf{x}_{lj} - \overline{\mathbf{x}}) (\mathbf{x}_{lj} - \overline{\mathbf{x}})' = \sum_{l=1}^{g} n_l (\overline{\mathbf{x}}_l - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_l - \overline{\mathbf{x}})'$$

total sum of squares and cross products matrix (B+W) (Corrected for the Mean)

between-population sum of squares and cross products matrix **B** (Treatment)

$$+\sum_{l=1}^{g}\sum_{j=1}^{n_l}(\mathbf{x}_{lj}-\overline{\mathbf{x}}_l)(\mathbf{x}_{lj}-\overline{\mathbf{x}}_l)'$$

Note that

within-population sum of squares and cross products matrix **W** (Residual)

$$\mathbf{W} = \sum_{l=1}^{g} \sum_{j=1}^{n_l} (\mathbf{x}_{lj} - \overline{\mathbf{x}}_l) (\mathbf{x}_{lj} - \overline{\mathbf{x}}_l)' : \text{ Generalizing } \underbrace{(n_1 + n_2 - 2)\mathbf{S}_{\text{pooled}}}_{\text{in the two-sample case}}$$

 S_l : Sample covariance matrix for the l-th sample

One-way MANOVA (iii)

• MANOVA Table

Source	Matrix of sum of squares	Degrees of
of variations	and cross products (SSP)	freedom (d.f.)
Treatments	$\mathbf{B} = \sum_{l=1}^{g} n_l (\overline{\mathbf{x}}_l - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_l - \overline{\mathbf{x}})'$	g-1
Residual	$\mathbf{W} = \sum_{l=1}^{g} \sum_{i=1}^{n_l}$	
(Error)	$(\mathbf{x}_{lj} - \overline{\mathbf{x}}_l)(\mathbf{x}_{lj} - \overline{\mathbf{x}}_l)'$	$\sum_{l=1}^{g} n_l - g$
Total		
(corrected	$\mathbf{B} + \mathbf{W} = \sum_{l=1}^{g} \sum_{j=1}^{n_l}$	
for the mean)	$(\mathbf{x}_{lj} - \overline{\overline{\mathbf{x}}})(\mathbf{x}_{lj} - \overline{\overline{\mathbf{x}}})'$	$\sum_{l=1}^{g} n_l - 1$

One-way MANOVA (iv) Normal Samples with Common Covariance Σ

- ullet No treatment effects? Null hypothesis: $H_0: oldsymbol{ au}_1 = oldsymbol{ au}_2 = \ldots = oldsymbol{ au}_g = oldsymbol{0}$
- Test based on generalized variances: determinant of covariance matrix Reject H_0 if Λ^* is too small, where the test statistic Λ^* is given by

$$\Lambda^* = \frac{|\mathbf{W}|}{|\mathbf{B} + \mathbf{W}|} = \frac{\left|\sum_{l=1}^g \sum_{j=1}^{n_l} (\mathbf{x}_{lj} - \overline{\mathbf{x}}_l) (\mathbf{x}_{lj} - \overline{\mathbf{x}}_l)'\right|}{\left|\sum_{l=1}^g \sum_{j=1}^{n_l} (\mathbf{x}_{lj} - \overline{\mathbf{x}}) (\mathbf{x}_{lj} - \overline{\mathbf{x}})'\right|} = \frac{1}{|\mathbf{W}^{-1}\mathbf{B} + \mathbf{I}|}$$

 Λ^* : Wilk's lambda: related to the likelihood ratio criterion

- Other statistics for checking equality of several means:
 - Lawley-Hotelling trace = $tr[\mathbf{B}\mathbf{W}^{-1}]$
 - Pillai's trace = $tr[\mathbf{B}(\mathbf{B} + \mathbf{W})^{-1}]$
 - Roy's largest root = maximum eigenvalue of $\mathbf{W}(\mathbf{B} + \mathbf{W})^{-1}$

One-way MANOVA (v) Normal Samples with Common Covariance Σ

• For some special cases: exact distributions

# of	# of	
variables	groups	Distribution
p = 1	$g \ge 2$	$\left(\frac{\sum n_l - g}{g - 1}\right) \left(\frac{1 - \Lambda^*}{\Lambda^*}\right) \sim F_{g - 1, \sum n_l - g}$
p = 2	$g \ge 2$	$\left(\frac{\sum n_l - g - 1}{g - 1}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2(g - 1), 2(\sum n_l - g - 1)}$
$p \ge 1$	g=2	$\left(\frac{\sum n_l - p - 1}{p}\right) \left(\frac{1 - \Lambda^*}{\Lambda^*}\right) \sim F_{p, \sum n_l - p - 1}$
$p \ge 1$	g = 3	$\left(\frac{\sum n_l - p - 2}{p}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2p, 2(\sum n_l - p - 2)}$

One-way MANOVA (vi)

- For other cases and large sample sizes:
 - a modification of Λ^* due to Bartlett If H_0 is true and $\sum n_l = n$ is large, then

$$-\left(n-1-\frac{(p+g)}{2}\right)\ln\Lambda^* = -\left(n-1-\frac{(p+g)}{2}\right)\ln\left(\frac{|\mathbf{W}|}{|\mathbf{B}+\mathbf{W}|}\right)$$
 approx. dist. as
$$\underset{\approx}{\text{approx. dist. as}} \chi^2_{p(g-1)}$$

ullet Therefore, for large $\sum n_l = n$, reject H_0 at significance level lpha if

$$-\left(n-1-\frac{(p+g)}{2}\right)\ln\left(\frac{|\mathbf{W}|}{|\mathbf{B}+\mathbf{W}|}\right) > \chi_{p(g-1)}^2(\alpha)$$

Example 6: MANOVA (i) Multivariate Analysis of Wisconsin Nursing Home Data

- Investigating the effects of ownership/certification/both on p=4 costs
 - $-X_1$: nursing labor
 - $-X_2$: dietary labor
 - X_3 : plant operation and maintenance labor
 - $-X_4$: housekeeping and laundry labor
- A total of n = 516 observations for g = 3 groups
- Summary statistics: (next page)

Example 6.10 in the textbook

ANOVA and MANOVA packages available in many computing softwares

Ownership including private party, nonprofit organization, government; Certification including Skilled nursing facilities, intermediate care facilities, etc

Example 6: MANOVA (ii)

Multivariate Analysis of Wisconsin Nursing Home Data

• Summary statistics: $g = 3, p = 4, n = \sum_{l=1}^{3} n_l = 516$ (Group 1: Private; Group 2: Nonprofit; Group 3: Government)

Group	# of observ.		Samp	le mear	vectors	5
l = 1	$n_1 = 271$	$\overline{\mathbf{x}}_1 =$	[2.066]	0.480	0.082	0.360]'
l=2	$n_2 = 138$	$\overline{\mathbf{x}}_2 =$	$\boxed{2.167}$	0.596	0.124	0.418]
$\overline{l} = 3$	$n_3 = 107$	$\overline{\mathbf{x}}_3 =$	$\boxed{2.273}$	0.521	0.125	0.383] $'$

Sample covariance matrices:
$$\mathbf{S}_1 = \begin{bmatrix} 0.291 \\ -0.001 & 0.011 \\ 0.002 & 0.000 & 0.001 \\ 0.010 & 0.003 & 0.000 & 0.010 \end{bmatrix}$$

Sample covariance matrices:
$$\mathbf{S}_1 = \begin{bmatrix} 0.291 \\ -0.001 & 0.011 \\ 0.002 & 0.000 & 0.001 \\ 0.010 & 0.003 & 0.000 & 0.010 \end{bmatrix}$$

$$\mathbf{S}_2 = \begin{bmatrix} 0.561 \\ 0.011 & 0.025 \\ 0.001 & 0.004 & 0.005 \\ 0.037 & 0.007 & 0.002 & 0.019 \end{bmatrix} \mathbf{S}_3 = \begin{bmatrix} 0.261 \\ 0.030 & 0.017 \\ 0.003 & -0.000 & 0.004 \\ 0.018 & 0.006 & 0.001 & 0.013 \end{bmatrix}$$

Example 6: MANOVA (iii)

Multivariate Analysis of Wisconsin Nursing Home Data

• We can obtain: (assuming all S_l 's compatible for now)

$$\mathbf{W} = \sum_{l=1}^{3} (n_l - 1)\mathbf{S}_l = \begin{bmatrix} 182.962 \\ 4.408 & 8.200 \\ 1.695 & 0.633 & 1.484 \\ 9.581 & 2.428 & 0.394 & 6.538 \end{bmatrix}$$

$$\overline{\mathbf{x}} = \frac{n_1 \overline{\mathbf{x}}_1 + n_2 \overline{\mathbf{x}}_2 + n_3 \overline{\mathbf{x}}_3}{n_1 + n_2 + n_3} = [2.136 \ 0.519 \ 0.102 \ 0.380]'$$

$$\mathbf{B} = \sum_{l=1}^{3} n_l (\overline{\mathbf{x}}_l - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_l - \overline{\mathbf{x}})' = \begin{bmatrix} 3.475 \\ 1.111 & 1.225 \\ 0.821 & 0.453 & 0.235 \\ 0.584 & 0.610 & 0.230 & 0.304 \end{bmatrix}$$

$$\Lambda^* = |\mathbf{W}|/|\mathbf{B} + \mathbf{W}| = 0.7714$$

Example 6: MANOVA (iv)

Multivariate Analysis of Wisconsin Nursing Home Data

- Testing $H_0: \boldsymbol{\tau}_1 = \boldsymbol{\tau}_2 = \boldsymbol{\tau}_3$ (no effect of ownership on costs) ($\alpha = 0.01$)
 - 1. Since p = 4, g = 3, we can use the exact distribution table (last row):

$$\frac{\left(\sum n_l - p - 2\right)}{p} \cdot \frac{\left(1 - \sqrt{\Lambda^*}\right)}{\sqrt{\Lambda^*}} = \frac{\left(516 - 4 - 2\right)}{4} \cdot \frac{\left(1 - \sqrt{0.7714}\right)}{\sqrt{0.7714}} = 17.67$$

$$> F_{2p,2(\sum n_l - p - 2)}(0.01) = F_{8,1020}(0.01) = 2.5287$$

- \Longrightarrow Reject H_0 at $\alpha = 0.01$ (Conclusion: average costs differ)
- 2. Since n = 516 is large here, we may also use Bartlett's method:

$$-(n-1-(p+g)/2)\ln \Lambda^* = -(511.5)\ln 0.7714 = 132.76$$

$$> \chi^2_{p(g-1)}(0.01) = \chi^2_8(0.01) = 20.0902$$

$$\Longrightarrow \text{Reject } H_0 \text{ at } \alpha = 0.01$$

(Two results are consistent here.)

Simultaneous Confidence Intervals for Treatment Effects

- Investigating mean differences when the equal mean hypothesis is rejected
- ullet Bonferroni approach for pairwise comparisons $(oldsymbol{ au}_k oldsymbol{ au}_l)$ or $oldsymbol{\mu}_k oldsymbol{\mu}_l)$
 - Let au_{ki} be the i-th element of $\underline{m{ au}}_k$ (estimated by $\widehat{m{ au}}_k = \overline{\mathbf{x}}_k \overline{\mathbf{x}}$)
 - Independent random samples between populations

$$\Longrightarrow \operatorname{Var}(\widehat{\tau}_{ki} - \widehat{\tau}_{li}) = \operatorname{Var}(\overline{X}_{ki} - \overline{X}_{li}) = (1/n_k + 1/n_l)\sigma_{ii}$$

 σ_{ii} : the *i*-th diagonal element of Σ

- Furthermore, let w_{ii} be the *i*-th diagonal element of **W**

$$\widehat{\sigma}_{ii} = \frac{w_{ii}}{n-g}, n = \sum_{l=1}^g n_l \implies \widehat{\mathsf{Var}}(\overline{X}_{ki} - \overline{X}_{li}) = \left(\frac{1}{n_k} + \frac{1}{n_l}\right) \frac{w_{ii}}{n-g}$$

- g groups with p-dim. data $\Longrightarrow p$ variables and g(g-1)/2 pairwise differences; so each two-sample t-interval in the Bonferroni approach will use the critical value $t_{n-g}(\alpha/2m)$ where m=pg(g-1)/2.

Simultaneous Confidence Intervals for Treatment Effects

(Cont'd from previous page)

Bonferroni simultaneous confidence intervals

Let $n = \sum_{l=1}^{g} n_l$. For the one-way MANOVA model, with probability at least $(1 - \alpha)$, $\tau_{ki} - \tau_{li}$ belongs to

$$\overline{x}_{ki} - \overline{x}_{li} \pm t_{n-g} \left(\frac{\alpha}{pg(g-1)} \right) \sqrt{\frac{w_{ii}}{n-g} \left(\frac{1}{n_k} + \frac{1}{n_l} \right)}$$

for all components $i=1,2,\ldots,p$ and all differences $l\leq k=1,2,\ldots,g$. Here w_{ii} is the *i*-th diagonal element of **W**.

• To see an example, check p. 309 (Example 6.11 there) in the textbook (based on nursing homes data).

Testing for Equality of Covariance Matrices (i)

- Previous assumption: equal covariance matrix; this needs to be tested.
- Setup: g populations; p variables; Σ_l : positive definite, $l=1,\ldots,g$ Testing the null hypothesis: $H_0:\Sigma_1=\Sigma_2=\ldots=\Sigma_g=\Sigma$ against the alternative: $H_1:\Sigma_k\neq\Sigma_j$ for some $1\leq k\neq j\leq g$
- (Normal populations) Likelihood ratio statistic for testing H_0 vs. H_1 :

$$\begin{split} & \Lambda = \prod_{l=1}^g \left(\frac{|\mathbf{S}_l|}{|\mathbf{S}_{\mathsf{pooled}}|}\right)^{\frac{n_l-1}{2}} \\ & \mathbf{S}_{\mathsf{pooled}} = \frac{(n_1-1)\mathbf{S}_1 + (n_2-1)\mathbf{S}_2 + \ldots + (n_g-1)\mathbf{S}_g}{\sum_{l=1}^g (n_l-1)} \end{split}$$

- n_l : sample size for the l-th population
- S_l : sample cov. matrix for the l-th population
- \mathbf{S}_{pooled} : pooled sample cov. matrix

Testing for Equality of Covariance Matrices (ii)

Box's M-Test

• Box's M statistic:

$$M \triangleq -2\ln\Lambda = \left[\sum_{l=1}^{g} (n_l - 1)\right] \ln|\mathbf{S}_{pooled}| - \sum_{l=1}^{g} \left[(n_l - 1)\ln|\mathbf{S}_l| \right]$$

Under H_0 : \mathbf{S}_l close to $\mathbf{S}_{\mathsf{pooled}}$, Λ close to $1 \Longrightarrow \stackrel{\iota-1}{M}$ -statistic: small

• Box's M-test: based on a χ^2 approx. to sampling dist. of $M=-2\ln\Lambda$ Set (p): number of variables; g: number of populations)

$$u \triangleq \left[\sum_{l} \frac{1}{(n_l - 1)} - \frac{1}{\sum_{l} (n_l - 1)} \right] \left[\frac{2p^2 + 3p - 1}{6(p+1)(g-1)} \right]$$

Then

$$C = (1-u)M \overset{\text{approx. dist. as}}{\approx} \chi_v^2, \quad \text{where} \quad v = \frac{1}{2}p(p+1)(g-1)$$

 \Longrightarrow Reject H_0 if $C > \chi^2_{p(p+1)(g-1)/2}(\alpha)$ at significance level α (The above χ^2 approx. works well if $p,g \leq 5$ and $n_l \geq 20, \forall l$)

Example 7: Box's M-Test (i) Nursing Home Data in Example 6

- ullet Use the nursing home data and test $H_0: oldsymbol{\Sigma}_1 = oldsymbol{\Sigma}_2 = oldsymbol{\Sigma}_3 = oldsymbol{\Sigma}$
- Recall:

$$(p = 4, g = 3, n_1 = 271, n_2 = 138, n_3 = 107, n = \sum_{l=1}^{3} n_l = 516)$$

Sample covariance matrices:

$$\mathbf{S}_1 = \begin{bmatrix} 0.291 & & & & \\ -0.001 & 0.011 & & & \\ 0.002 & 0.000 & 0.001 & \\ 0.010 & 0.003 & 0.000 & 0.010 \end{bmatrix}$$

$$\mathbf{S}_2 = \begin{bmatrix} 0.561 \\ 0.011 & 0.025 \\ 0.001 & 0.004 & 0.005 \\ 0.037 & 0.007 & 0.002 & 0.019 \end{bmatrix} \mathbf{S}_3 = \begin{bmatrix} 0.261 \\ 0.030 & 0.017 \\ 0.003 & -0.000 & 0.004 \\ 0.018 & 0.006 & 0.001 & 0.013 \end{bmatrix}$$

Example 7: Box's M-Test (ii)

• We can calculate the following:

$$\ln |\mathbf{S}_1| = -17.397, \quad \ln |\mathbf{S}_2| = -13.926$$

$$\ln |\mathbf{S}_3| = -15.741, \quad \ln |\mathbf{S}_{pooled}| = -15.564$$

$$u = \left(\frac{1}{270} + \frac{1}{137} + \frac{1}{106} + \frac{1}{516 - 3}\right) \frac{2(4^2) + 3(4) - 1}{6(4 + 1)(3 - 1)} = 0.0132$$

$$M = 513(-15.564) - [270(-17.397) + 137(-13.926) + 106(-15.741)]$$

$$= 289.266$$

$$C = (1 - u)M = (1 - 0.0132)289.266 = 285.4$$

$$v = p(p + 1)(g - 1)/2 = 4(5)(2)/2 = 20$$

Set α at any reasonable level $\Longrightarrow C > \chi^2_{20}(\alpha) \Longrightarrow$ Reject H_0 Conclusion: the three covariance matrices in nursing home data are not equal.

Two-way Univariate/Multivariate Analysis of Variance

- Starting with the univariate case (Two-way ANOVA)
- Then proceeding with the multivariate case (Two-way MANOVA)

Two-way ANOVA (i)

The model

$$X_{lkr} = \mu + \tau_l + \beta_k + \gamma_{lk} + \underbrace{e_{lkr}}_{\text{i.i.d. } N(0,\sigma^2)}$$

$$(l = 1, \dots, g; \quad k = 1, \dots, b; \quad r = 1, \dots, n)$$

$$\left(\sum_{l=1}^{g} \tau_l = \sum_{k=1}^{b} \beta_k = \sum_{l=1}^{g} \gamma_{lk} = \sum_{k=1}^{b} \gamma_{lk} = 0\right)$$

- 2 factors: factor 1 and factor 2
- -g levels of factor 1 and b levels of factor 2
- -n independent observations of gb combinations of levels
- X_{lkr} : the r-th observ. at level l of factor 1 and level k of factor 2
- $-\mu$: overall mean (general level of response)
- τ_l : fixed effect of factor 1; β_k : fixed effect of factor 2
- γ_{lk} : interaction between factor 1 and factor 2

Two-way ANOVA (ii)

• The expected response at level l of factor 1 and level k of factor 2:

$$\mathsf{E}(X_{lkr}) = \mu + \tau_l + \beta_k + \gamma_{lk} \ (l = 1, \dots, g; \ k = 1, \dots, b)$$

• The data:

$$x_{lkr} = \overline{x} + (\overline{x}_{l\bullet} - \overline{x}) + (\overline{x}_{\bullet k} - \overline{x}) + (\overline{x}_{lk} - \overline{x}_{l\bullet} - \overline{x}_{\bullet k} + \overline{x}) + (x_{lkr} - \overline{x}_{lk})$$

- $-\overline{x}$: overall average (overall sample mean)
- $\overline{x}_{l \bullet}$: average for level l of factor 1;
- $-\overline{x}_{\bullet k}$: average for level k of factor 2;
- \overline{x}_{lk} : average for level l of factor 1 and level k of factor 2

$$\overline{x}_{l\bullet} = \frac{1}{bn} \sum_{k=1}^{b} \sum_{r=1}^{n} x_{lkr}, \ \overline{x}_{\bullet k} = \frac{1}{gn} \sum_{l=1}^{g} \sum_{r=1}^{n} x_{lkr}, \ \overline{x}_{lk} = \frac{1}{n} \sum_{r=1}^{n} x_{lkr}$$

Two-way ANOVA (iii)

It can be shown that

$$\sum_{l=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (x_{lkr} - \overline{x})^{2} = \sum_{l=1}^{g} bn(\overline{x}_{l\bullet} - \overline{x})^{2} + \sum_{k=1}^{b} gn(\overline{x}_{\bullet k} - \overline{x})^{2}$$

$$+ \sum_{l=1}^{g} \sum_{k=1}^{b} n(\overline{x}_{lk} - \overline{x}_{l\bullet} - \overline{x}_{\bullet k} + \overline{x})^{2} + \sum_{l=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (x_{lkr} - \overline{x}_{lk})^{2}$$

$$+ \sum_{l=1}^{g} \sum_{k=1}^{b} n(\overline{x}_{lk} - \overline{x}_{l\bullet} - \overline{x}_{\bullet k} + \overline{x})^{2} + \sum_{l=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (x_{lkr} - \overline{x}_{lk})^{2}$$

$$+ \sum_{l=1}^{g} \sum_{k=1}^{b} n(\overline{x}_{lk} - \overline{x}_{l\bullet} - \overline{x}_{\bullet k} + \overline{x})^{2} + \sum_{l=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (x_{lkr} - \overline{x}_{lk})^{2}$$

$$+ \sum_{l=1}^{g} \sum_{k=1}^{b} n(\overline{x}_{lk} - \overline{x}_{l\bullet} - \overline{x}_{\bullet k} + \overline{x})^{2} + \sum_{l=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (x_{lkr} - \overline{x}_{lk})^{2}$$

Corresponding degrees of freedom:

$$\underbrace{\mathsf{SS}_{\mathsf{total}}}_{gbn-1} = \underbrace{\mathsf{SS}_{\mathsf{fac1}}}_{g-1} + \underbrace{\mathsf{SS}_{\mathsf{fac2}}}_{b-1} + \underbrace{\mathsf{SS}_{\mathsf{int}}}_{(g-1)(b-1)} + \underbrace{\mathsf{SS}_{\mathsf{res}}}_{gb(n-1)}$$

Two-way ANOVA (iv)

 Two-way ANOVA table (SS: sum of squares, d.f.: degree of freedom, MS: mean squares, SoVAR: source of variation)

SoVAR	SS	d.f.	MS	F-ratio
Factor 1	SS_{fac1}	g-1	$MS_{fac1} = \frac{SS_{fac1}}{g-1}$	$\frac{MS_{fac1}}{MS_{res}}$
Factor 2	SS_{fac2}	b-1	$MS_{fac2} = rac{SS_{fac2}}{b-1}$	$\frac{MS_{fac2}}{MS_{res}}$
Interaction	SS_{int}	(g-1)(b-1)	$MS_{int} = \frac{SS_{int}}{(g-1)(b-1)}$	$\frac{MS_{int}}{MS_{res}}$
Residual	SS_res	gb(n-1)	$MS_{res} = rac{SS_{res}}{gb(n-1)}$	
Total	SS_{total}	gbn-1		

• To test the hypothesis of no interaction $H_0: \gamma_{11}=\gamma_{12}=\ldots=\gamma_{gb}=0$ vs. $H_1:$ at least one $\gamma_{lk}\neq 0$ (for some l,k), we can use the F-ratio $\frac{\mathsf{MS}_{\mathsf{int}}}{\mathsf{MS}_{\mathsf{res}}}$. (Similar tests for the factor effects)

Two-way MANOVA (i)

• Parallel to the univariate case, here the model is: (vectors are $p \times 1$)

$$\mathbf{X}_{lkr} = oldsymbol{\mu} + oldsymbol{ au}_l + oldsymbol{eta}_k + oldsymbol{\gamma}_{lk} + \underbrace{\mathbf{e}_{lkr}}_{ ext{i.i.d. }N_p(\mathbf{0},\mathbf{\Sigma})}$$
 $(l=1,\ldots,g; \ k=1,\ldots,b; \ r=1,\ldots,n)$ $\left(\sum_{l=1}^g oldsymbol{ au}_l = \sum_{k=1}^b oldsymbol{eta}_k = \sum_{l=1}^g oldsymbol{\gamma}_{lk} = \sum_{k=1}^b oldsymbol{\gamma}_{lk} = \mathbf{0}
ight)$

Two-way MANOVA (ii)

• The data can be written as:

$$\mathbf{x}_{lkr} = \overline{\mathbf{x}} + (\overline{\mathbf{x}}_{l\bullet} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}_{lk} - \overline{\mathbf{x}}_{l\bullet} - \overline{\mathbf{x}}_{\bullet k} + \overline{\mathbf{x}}) + (\mathbf{x}_{lkr} - \overline{\mathbf{x}}_{lk})$$

- $-\overline{\mathbf{x}}$: overall average of observ. vectors (overall sample mean)
- $-\overline{\mathbf{x}}_{l\bullet}$: average of observ. vectors for level l of factor 1;
- $-\overline{\mathbf{x}}_{\bullet k}$: average of observ. vectors for level k of factor 2;
- $\overline{\mathbf{x}}_{lk}$: average of observ. vectors at the l-th level of factor 1 and the k-th level of factor 2

Two-way MANOVA (iii)

• It can be shown that

$$\sum_{l=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{lkr} - \overline{\mathbf{x}}) (\mathbf{x}_{lkr} - \overline{\mathbf{x}})'$$

$$= \sum_{l=1}^{g} bn(\overline{\mathbf{x}}_{l\bullet} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{l\bullet} - \overline{\mathbf{x}})' + \sum_{k=1}^{b} gn(\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{\bullet k} - \overline{\mathbf{x}})'$$

$$+ \sum_{l=1}^{g} \sum_{k=1}^{b} n(\overline{\mathbf{x}}_{lk} - \overline{\mathbf{x}}_{l\bullet} - \overline{\mathbf{x}}_{\bullet k} + \overline{\mathbf{x}}) (\overline{\mathbf{x}}_{lk} - \overline{\mathbf{x}}_{l\bullet} - \overline{\mathbf{x}}_{\bullet k} + \overline{\mathbf{x}})'$$

$$+ \sum_{l=1}^{g} \sum_{k=1}^{b} \sum_{r=1}^{n} (\mathbf{x}_{lkr} - \overline{\mathbf{x}}_{l\bullet}) (\mathbf{x}_{lkr} - \overline{\mathbf{x}}_{lk})'$$

$$+\sum_{l=1}^{g}\sum_{k=1}^{b}\sum_{r=1}^{n}(\mathbf{x}_{lkr}-\overline{\mathbf{x}}_{lk})(\mathbf{x}_{lkr}-\overline{\mathbf{x}}_{lk})'$$

or

$$SSP_{total} = SSP_{fac1} + SSP_{fac2} + SSP_{int} + SSP_{res}$$

Two-way MANOVA (iv)

Corresponding degrees of freedom:

$$\underbrace{\mathsf{SSP}_{\mathsf{total}}}_{gbn-1} = \underbrace{\mathsf{SSP}_{\mathsf{fac1}}}_{g-1} + \underbrace{\mathsf{SSP}_{\mathsf{fac2}}}_{b-1} + \underbrace{\mathsf{SSP}_{\mathsf{int}}}_{(g-1)(b-1)} + \underbrace{\mathsf{SSP}_{\mathsf{res}}}_{gb(n-1)}$$

or in a table form: (SSP: matrix of sum of squares and cross products)

Source of variation	SSP	d.f.
Factor 1	SSP_{fac1}	g-1
Factor 2	SSP_{fac2}	b-1
Interaction	SSP_int	(g-1)(b-1)
Residual (Error)	SSP_res	gb(n-1)
Total	SSP_{total}	gbn-1

• Tests: based on generalized variances (see next page)

Two-way MANOVA (v)

• Effects of interaction:

Testing $H_0: \gamma_{11} = \gamma_{12} = \ldots = \gamma_{gb} = \mathbf{0}$ vs. H_1 : at least one $\gamma_{lk} \neq \mathbf{0}$ (Likelihood ratio test; H_0 : No interaction effects)

Reject H_0 if the following likelihood ratio statistic is too small:

$$\Lambda_{\mathsf{int}}^* \triangleq \frac{|\mathsf{SSP}_{\mathsf{res}}|}{|\mathsf{SSP}_{\mathsf{int}} + \mathsf{SSP}_{\mathsf{res}}|}$$

For large samples, use Bartlett's correction:

 \Longrightarrow Reject H_0 at level α if

$$-\left[gb(n-1) - \frac{p+1 - (g-1)(b-1)}{2}\right] \ln \Lambda_{\text{int}}^* > \chi_{(g-1)(b-1)p}^2(\alpha)$$

Two-way MANOVA (vi)

• Effects of factor 1:

Testing $H_0: {m au}_1={m au}_2=\ldots={m au}_g={m 0}$ vs. $H_1:$ at least one ${m au}_l\neq {m 0}$ $(H_0:$ No factor 1 effects)

$$\Lambda_{\mathsf{fac1}}^* \triangleq \frac{|\mathsf{SSP}_{\mathsf{res}}|}{|\mathsf{SSP}_{\mathsf{fac1}} + \mathsf{SSP}_{\mathsf{res}}|}$$

For large samples, use Bartlett's correction again:

 \Longrightarrow Reject H_0 at level α if

$$-\left[gb(n-1) - \frac{p+1-(g-1)}{2}\right] \ln \Lambda_{\mathsf{fac}1}^* > \chi_{(g-1)p}^2(\alpha)$$

Two-way MANOVA (vii)

• Effects of factor 2:

Testing $H_0: \beta_1=\beta_2=\ldots=\beta_b=\mathbf{0}$ vs. $H_1:$ at least one $\beta_k\neq\mathbf{0}$ $(H_0:$ No factor 2 effects) Similarly, let

$$\Lambda_{\mathsf{fac2}}^* \triangleq \frac{|\mathsf{SSP}_{\mathsf{res}}|}{|\mathsf{SSP}_{\mathsf{fac2}} + \mathsf{SSP}_{\mathsf{res}}|}$$

For large samples, use Bartlett's correction:

 \Longrightarrow Reject H_0 at level α if

$$- \left[gb(n-1) - \frac{p+1-(b-1)}{2} \right] \ln \Lambda_{\mathsf{fac2}}^* > \chi_{(b-1)p}^2(\alpha)$$

• When a null hypothesis is rejected, we may use Bonferroni method to obtain simultaneous confidence intervals for further analysis.