XI. Nemzetközi Magyar Matematika Verseny

Sepsiszentgyörgy, 2002. márc. 16-20.

9. osztály

1. feladat: Határozzuk meg a

 2001^{2002}

szám tízes számrendszerbeli alakjának utolsó hat számjegyét.

Kacsó Ferenc (Marosvásárhely)

2. feladat: Az ABC egyenlő szárú derékszögű háromszög AC és BC befogóján úgy vesszük fel a D és E pontokat, hogy DE párhuzamos AB-vel és

$$DE + EA = AB$$
.

Határozzuk meg az EAB szög nagyságát.

dr. Katz Sándor (Bonyhád)

3. feladat: Az ábrán látható táblázatban az 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegyeket úgy írtuk be, hogy mindegyiket pontosan egyszer használtuk fel, továbbá az \overline{abc} , \overline{adg} , \overline{beh} , \overline{cfi} , \overline{def} , \overline{ghi} , \overline{aei} számok mindegyike osztható 11-gyel. Mekkora a \overline{ceg} szám lehetséges legnagyobb értéke?

a	b	c
d	e	f
g	h	i

Kiss Sándor (Nyíregyháza)

4. feladat: Az ABC, C-ben derékszögű háromszögben BC=p, ahol p prímszám, az AC befogó hosszának számértéke a $k\cdot p$ ($k\in\mathbb{N}, k\geq 2$), továbbá egész szám annak a négyzetnek az oldalhossza is, amelynek egyik csúcsa a C pont, a többi csúcsa az ABC háromszög oldalain van. Bizonyítsuk be, hogy a négyzet területe k^2 -tel egyenlő!

Bíró Bálint (Eger)

- 5. feladat: Az ABC egyenlő szárú háromszög (AB=AC) síkjában adottak az M és N pontok úgy, hogy a BN és CM szakaszok a háromszög belsejében metszik egymást, NBC <= MCA < és az MBN valamint NCM szögek derékszögek. Igazoljuk, hogy az M, N és A pontok egy egyenesen vannak! $András \ Szilárd, \ Lukács \ Andor \ (Kolozsvár)$
- 6. feladat: Mutassuk ki, hogy bárhogyan is választunk 17 darab természetes számot az $\{1, 2, \dots, 2002\}$ halmazból, létezik ezek között három különböző szám, amelyekkel mint oldalhosszakkal egy háromszög szerkeszthető. Igaz marad-e az állítás 16 szám esetén?

Jakab Tibor (Sepsiszentgyörgy)