Package 'hierNet'

October 13, 2022

Title A Lasso for Hierarchical Interactions

Author Jacob Bien and Rob Tibshirani

Version 1.9

ables only be included if both (or at least one of) the variables is included as a main effect. For more details, see Bien, J., Taylor, J., Tibshirani, R., (2013) ``A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.	
Maintainer Jacob Bien <jbien@usc.edu></jbien@usc.edu>	
License GPL-2	
NeedsCompilation yes	
Repository CRAN	
Date/Publication 2020-02-05 13:10:20 UTC	
R topics documented:	
hierNet	
hierNet	
	2
hierNet.cv	4
hierNet.cv	4
hierNet.cv	4
hierNet.cv hierNet.logistic hierNet.logistic.path hierNet.path	111
hierNet.cv hierNet.logistic hierNet.logistic.path hierNet.path hierNet.varimp	11. 12.
hierNet.cv hierNet.logistic hierNet.logistic.path hierNet.path hierNet.varimp predict.hierNet	12 12 13

2 hierNet

hierNet A Lasso for interactions	hierNet	A Lasso for interactions	
----------------------------------	---------	--------------------------	--

Description

One of the main functions in the hierNet package. Builds a regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on an alternate algorithm for large scale problems.

Usage

Arguments

Х	A matrix of predictors, where the rows are the samples and the columns are the predictors
У	A vector of observations, where length(y) equals nrow(x)
lam	Regularization parameter (>0). L1 penalty param is lam * (1-delta).
delta	Elastic Net parameter. Squared L2 penalty param is lam * delta. Not a tuning parameter: Think of as fixed and small. Default 1e-8.
strong	Flag specifying strong hierarchy (TRUE) or weak hierarchy (FALSE). Default FALSE.
diagonal	Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the model. Default TRUE.
aa	An *optional* argument, a list with results from a previous call
ZZ	An *optional* argument, a matrix whose columns are products of features, computed by the function compute.interactions.c
center	Should features be centered? Default TRUE; FALSE should rarely be used. This option is available for special uses only
stand.main	Should main effects be standardized? Default TRUE.
stand.int	Should interactions be standardized? Default FALSE.
rho	ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence problems, try decreasing rho. Default n.
niter	ADMM parameter: number of iterations
sym.eps	ADMM parameter: threshold for symmetrizing with strong=TRUE
step	Stepsize for generalized gradient descent
maxiter	Maximum number of iterations for generalized gradient descent
backtrack	Backtrack parameter for generalized gradient descent
tol	Error tolerance parameter for generalized gradient descent
trace	Output option; trace=1 gives verbose output

hierNet 3

Value

bp	p-vector of estimated "positive part" main effect (p=# features)
bn	p-vector of estimated "negative part" main effect; overall main effect estimated coefficients are bp-bn
th	Matrix of estimated interaction coefficients, of dimension p by p. Note: when output from hierNet is printed, th is symmetrized (set to $(th+t(th))/2$) for simplicity.
obj	Value of objective function at minimum.
lam	Value of lambda used
type	Type of model fit- "gaussian" or "logistic" (binomial)
mx	p-vector of column means of x
sx	p-vector of column standard deviations of x
my	mean of y
mzz	column means of feature product matrix
SZZ	column standard deviations of feature product matrix
call	The call to hierNet

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

predict.hierNet, hierNet.cv, hierNet.path

Examples

```
set.seed(12)
# fit a single hierNet model
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
fit=hierNet(x,y,lam=50)
print(fit)
# try strong (rather than weak) hierarchy
fit=hierNet(x,y,lam=50, strong=TRUE)
print(fit)
# a typical analysis including cross-validation
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
```

4 hierNet.cv

```
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
fit=hierNet.path(x,y)
fitcv=hierNet.cv(fit,x,y)
print(fitcv)

lamhat=fitcv$lamhat.1se
fit2=hierNet(x,y,lam=lamhat)
yhat=predict(fit2,x)
```

hierNet.cv

Cross-validation function for hierNet

Description

Uses cross-validation to estimate the regularization parameter for hierNet

Usage

```
hierNet.cv(fit, x, y, nfolds=10,folds=NULL,trace=0)
```

Arguments

fit	Object returned from call to hierNet.path or hierNet.logistic.path. All parameter settings will be taken from this object.
х	A matrix of predictors, where the rows are the samples and the columns are the predictors
у	A vector of observations, where length(y) equals nrow(x)
nfolds	Number of cross-validation folds
folds	(Optional) user-supplied cross-validation folds. If provided, nfolds is ignored.
trace	Verbose output? 0=no, 1=yes

Value

lamlist	Vector of lambda values tried
cv.err	Estimate of cross-validation error
cv.se	Estimated standard error of cross-validation estimate
lamhat	lambda value minimizing cv.err
lamhat.1se	largest lambda value with cv.err less than or equal to min(cv.err)+ SE
folds	Indices of folds used in cross-validation
yhat	n by nlam matrix of predicted values. Here, ith prediction is based on training on all folds that do not include the ith data point.
nonzero	Vector giving number of non-zero coefficients for each lambda value
call	The call to hierNet.cv

hierNet.logistic 5

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

hierNet.hierNet.path, hierNet.logistic,hierNet.logistic.path

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+x[,1]*x[,2]+3*rnorm(100)
fit=hierNet.path(x,y)
fitcv=hierNet.cv(fit,x,y)
print(fitcv)
plot(fitcv)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+x[,1]*x[,2]+3*rnorm(100)
y=1*(y>0)
fit=hierNet.logistic.path(x,y)
fitcv=hierNet.cv(fit,x,y)
print(fitcv)
plot(fitcv)
```

hierNet.logistic

A logistic regression Lasso for interactions

Description

One of the main functions in the hierNet package. Builds a logistic regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on a alternate algorithm for large scale problems.

6 hierNet.logistic

Argumer	ıts
---------	-----

A matrix of predictors, where the rows are the samples and the columns are the Х predictors A vector of observations, with values 0 or 1, where length(y) equals nrow(x)y lam Regularization parameter (>0). L1 penalty param is lam * (1-delta). delta Elastic Net parameter. Squared L2 penalty param is lam * delta. Not a tuning parameter: Think of as fixed and small. Default 1e-8. Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the diagonal model. Default TRUE. Flag specifying strong hierarchy (TRUE) or weak hierarchy (FALSE). Default strong **FALSE** An *optional* argument, a list with results from a previous call aa An *optional* argument, a matrix whose columns are products of features, com-ΖZ puted by the function compute.interactions.c Should features be centered? Default TRUE; FALSE should rarely be used. This center option is available for special uses only Should main effects be standardized? Default TRUE stand.main stand.int Should interactions be standardized? Default FALSE rho ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence problems, try decreasing rho. Default n. niter ADMM parameter: number of iterations sym.eps ADMM parameter Thresholding for symmetrizing with strong=TRUE step

Stepsize for generalized gradient descent

Maximum number of iterations for generalized gradient descent maxiter

backtrack Backtrack parameter for generalized gradient descent tol Error tolerance parameter for generalized gradient descent

trace Output option; trace=1 gives verbose output

Value

b0	Intercept
bp	p-vector of estimated "positive part" main effect (p=#features)
bn	p-vector of estimated "negative part" main effect; overall main effect estimated coefficients are bp-bn
th	Matrix of estimated interaction coefficients, of dimension p by p
obj	Value of objective function at minimum.
lam	Value of lambda used
type	Type of model fit- "gaussian" or "logistic" (binomial)
mx	p-vector of column means of x
my	Mean of y
sx	p-vector of column standard deviations of x
mzz	column means of feature product matrix

call The call to hierNet hierNet.logistic.path 7

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

predict.hierNet.logistic,linkhierNet.logistic.path

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
y=1*(y>0)
fit=hierNet.logistic(x,y,lam=5)
print(fit)
```

hierNet.logistic.path Fit a path of logistic hierNet models- lasso models with interactions

Description

One of the main functions in the hierNet package. Fits a logistic path of hierNet models over different values of the regularization parameter. Calls hierNet.logistic, which builds a regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on a alternate algorithm for large scale problems.

```
hierNet.logistic.path(x, y,
    lamlist = NULL, delta=1e-8, minlam = NULL, maxlam = NULL, flmin=.01, nlam = 20,
    diagonal = TRUE, strong = FALSE, aa = NULL, zz = NULL,
    stand.main = TRUE, stand.int = FALSE,
    rho = nrow(x), niter = 100, sym.eps = 0.001,
    step = 1, maxiter = 2000, backtrack = 0.2, tol = 1e-05, trace = 0)
```

8 hierNet.logistic.path

Arg	Arguments			
	x	A matrix of predictors, where the rows are the samples and the columns are the predictors		
	У	A vector of observations equal to 0 or 1 , where length(y) equals $nrow(x)$		
	lamlist	Optional vector of values of lambda (the regularization parameter). L1 penalty param is lambda \star (1-delta).		
	delta	Elastic Net parameter. Squared L2 penalty param is lambda \star delta. Not a tuning parameter: Think of as fixed and small. Default 1e-8.		
	minlam	Optional minimum value for lambda		
	maxlam	Optional maximum value for lambda		
	flmin	Fraction of maxlam; minlam= flmin*maxlam. If computation is slow, try increasing flmin to focus on the sparser part of the path		
	nlam	Number of values of lambda to be tried		
	diagonal	Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the model. Default TRUE.		
	stand.main	Should main effects be standardized? Default TRUE		
	stand.int	Should interactions be standardized? Default FALSE		
	strong	Flag specifying strong hierarchy (TRUE) or weak hierarchy (FALSE). Default FALSE		
	aa	An *optional* argument, a list with results from a previous call		
	ZZ	An *optional* argument, a matrix whose columns are products of features, computed by the function compute.interactions.c		
	rho	ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence problems, try decreasing rho. Default n.		
	niter	ADMM parameter: number of iterations		
	sym.eps	ADMM parameter Thresholding for symmetrizing with strong=TRUE		
	step	Stepsize for generalized gradient descent		
	maxiter	Maximum number of iterations for generalized gradient descent		
	backtrack	Backtrack parameter for generalized gradient descent		
	tol	Error tolerance parameter for generalized gradient descent		

Value

trace

bp	p by nlam matrix of estimated "positive part" main effects (p=#features)
bn	p by nlam matrix of estimated "negative part" main effects
th	p by p by nlam array of estimated interaction coefficients
obj	nlam values of objective function, one per lambda value
lamlist	Vector of values of lambda used
mx	p-vector of column means of x

Output option; trace=1 gives verbose output

hierNet.path 9

SX	p-vector of column standard deviations of x
my	mean of y
mzz	column means of feature product matrix
SZZ	column standard deviations of feature product matrix

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3), 1111-1141.

See Also

hierNet,predict.hierNet, hierNet.cv

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
y=1*(y>0)
fit=hierNet.logistic.path(x,y)
print(fit)
```

hierNet.path

Fit a path of hierNet models- lasso models with interactions

Description

One of the main functions in the hierNet package. Fits a path of hierNet models over different values of the regularization parameter. Calls hierNet, which builds a regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on an alternate algorithm for large scale problems.

```
hierNet.path(x, y,
    lamlist = NULL, delta=1e-8, minlam = NULL, maxlam = NULL, nlam=20, flmin=.01,
    diagonal = TRUE, strong = FALSE, aa = NULL, zz = NULL,
    stand.main = TRUE, stand.int = FALSE,
    rho = nrow(x), niter = 100, sym.eps = 0.001,
    step = 1, maxiter = 2000, backtrack = 0.2, tol = 1e-05, trace = 0)
```

10 hierNet.path

Arguments

x A matrix of predictors, where the rows are the samples and the columns are the

predictors

y A vector of observations, where length(y) equals nrow(x)

lamlist Optional vector of values of lambda (the regularization parameter). L1 penalty

param is lamdbda * (1-delta).

delta Elastic Net parameter. Squared L2 penalty param is lambda * delta. Not a

tuning parameter: Think of as fixed and small. Default 1e-8.

minlam Optional minimum value for lambda
maxlam Optional maximum value for lambda
nlam Number of values of lambda to be tried

flmin Fraction of maxlam; minlam= flmin*maxlam. If computation is slow, try in-

creasing flmin to focus on the sparser part of the path

diagonal Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the

model. Default TRUE.

strong Flag specifying strong hierarchy (true) or weak hierarchy (false). Default false

aa An *optional* argument, a list with results from a previous call

zz An *optional* argument, a matrix whose columns are products of features, com-

puted by the function compute.interactions.c

stand.main Should main effects be standardized? Default TRUE stand.int Should interactions be standardized? Default FALSE

rho ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence

problems, try decreasing rho. Default n.

niter ADMM parameter: number of iterations

sym.eps ADMM parameter Thresholding for symmetrizing with strong=TRUE

step Stepsize for generalized gradient descent

maxiter Maximum number of iterations for generalized gradient descent

backtrack Backtrack parameter for generalized gradient descent tol Error tolerance parameter for generalized gradient descent

trace Output option; trace=1 gives verbose output

Value

bp p by nlam matrix of estimated "positive part" main effects (p=#variables)

bn p by nlam matrix of estimated "negative part" main effects
th p by p by nlam array of estimated interaction coefficients
obj nlam values of objective function, one per lambda value

lamlist Vector of values of lambda used mx p-vector of column means of x

sx p-vector of column standard deviations of x

my mean of y

mzz column means of feature product matrix

szz column standard deviations of feature product matrix

hierNet.varimp 11

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

hierNet,predict.hierNet, hierNet.cv

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
fit=hierNet.path(x,y)
print(fit)
```

hierNet.varimp

Variable importance for hierNet.

Description

(This is an experimental function.) Calculates a measure of the importance of each variable.

Usage

```
hierNet.varimp(fit, x, y, ...)
```

Arguments

fit	The results of a call to the "hierNet"
Х	The training set feature matrix used in call produced "fit"
У	The training set response vector used in call produced "fit"
	additional arguments (not currently used)

Value

Table of variable importance.

Author(s)

Jacob Bien and Robert Tibshirani

12 predict.hierNet

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

hierNet, hierNet.path

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet(x,y,lam=50)
yhat=predict(fit,newx)

fit=hierNet.path(x,y)
yhat=predict(fit,newx)
```

predict.hierNet

Prediction function for hierNet and hierNet.logistic.

Description

A function to perform prediction, using an x matrix and the output of the "hierNet" or "hiernet.logistic" function.

Usage

```
## S3 method for class 'hierNet'
predict(object, newx, newzz=NULL, ...)
```

Arguments

newx

object The results of a call to the "hierNet" or "hierNet.path" or function. The coeffi-

cients that are part of this object will be used for making predictions.

The new x at which predictions should be made. Can be a vector or a matrix

(one obseration per row).

newzz Optional matrix of products of columns of newx, computed by compute.interactions.c

... additional arguments (not currently used)

Value

yhat Vector of predictions for each observation. For logistic model, these are the

estimated probabilities.

predict.hierNet.logistic

13

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

hierNet, hierNet.path

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet(x,y,lam=50)
yhat=predict(fit,newx)
fit=hierNet.path(x,y)
yhat=predict(fit,newx)
```

predict.hierNet.logistic

 $Prediction\ function\ for\ hier Net. logistic.$

Description

A function to perform prediction, using an x matrix and the output of the "hierNet.logistic" function or "hierNet.logistic.path".

Usage

```
## S3 method for class 'hierNet.logistic'
predict(object, newx, newzz=NULL,...)
```

Arguments

object	The results of a call to the "hierNet.logistic" or "hierNet.logistic.path" or function. The coefficients that are part of this object will be used for making predictions.
newx	The new x at which predictions should be made. Can be a vector or a matrix (one observation per row).
newzz	Optional matrix of products of columns of newx, computed by compute.interactions.c
	additional arguments (not currently used)

14 predict.hierNet.path

Value

yhat

Matrix of predictions (probabilities), one row per observation

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

hierNet.logistic, hierNet.logistic.path

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
y=1*(y>0)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet.logistic(x,y,lam=5)
yhat=predict(fit,newx)
fit=hierNet.logistic.path(x,y)
yhat=predict(fit,newx)
```

predict.hierNet.path Prediction function for hierNet.path and hierNet.logistic.path.

Description

A function to perform prediction, using an x matrix and the output of the "hierNet.path" or "hiernet.logistic.path" functions.

```
## S3 method for class 'hierNet.path'
predict(object, newx, newzz=NULL, ...)
```

predict.hierNet.path 15

Arguments

object The results of a call to the "hierNet" or "hierNet.path" or function. The coeffi-

cients that are part of this object will be used for making predictions.

newx The new x at which predictions should be made. Can be a vector or a matrix

(one obseration per row).

newzz Optional matrix of products of columns of newx, computed by compute.interactions.c

... additional arguments (not currently used)

Value

yhat Matrix of predictions, one row per observation. For logistic model, these are the

estimated probabilities.

Author(s)

Jacob Bien and Robert Tibshirani

References

Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.

See Also

hierNet, hierNet.path

Examples

```
set.seed(12)
x=matrix(rnorm(100*10),ncol=10)
x=scale(x,TRUE,TRUE)
y=x[,1]+2*x[,2]+ x[,1]*x[,2]+3*rnorm(100)
newx=matrix(rnorm(100*10),ncol=10)
fit=hierNet(x,y,lam=50)
yhat=predict(fit,newx)

fit=hierNet.path(x,y)
yhat=predict(fit,newx)
```

Index

```
hierNet, 2, 5, 9, 11–13, 15
hierNet.cv, 3, 4, 9, 11
hierNet.logistic, 5, 5, 14
hierNet.logistic.path, 5, 7, 14
hierNet.path, 3, 5, 9, 12, 13, 15
hierNet.varimp, 11
predict.hierNet, 3, 9, 11, 12
predict.hierNet.logistic, 7, 13
predict.hierNet.path, 14
```