Problem Set 2

Problems marked (T) are for discussions in Tutorial sessions.

1. **(T)** Are the matrices $\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ row-equivalent?

Solution: $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$. So, $\begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$. The third matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is NOT row equivalent to either as column transformation is not allowed (or RREF are not the same).

- 2. Supply two examples each and explain their geometrical meaning.
 - (a) Two linear equations in two variables with exactly one solution.

Solution:

 $\left. \begin{array}{l} x+y=2 \\ x-y=0 \end{array} \right\}$. They represent two lines in \mathbb{R}^2 intersecting at a point.

(b) Two linear equations in two variables with infinitely many solutions.

Solution

 $\begin{cases} x+y=2\\ 2x+2y=4 \end{cases}$. They represent the same line in \mathbb{R}^2 .

(c) Two linear equations in two variables with no solutions.

Solution

 $\begin{cases} x+y=2\\ 2x+2y=1 \end{cases}$. They represent two parallel lines in \mathbb{R}^2 , no intersection.

(d) Three linear equations in two variables with exactly one solution.

Solution:

x+y=2 x-y=02x-y=1 \right\{ \}. They represent three lines in \mathbb{R}^2 with a single point in common.

(e) Three linear equations in two variables with no solutions.

Solution:

 $x+y=2 \\ x-y=0 \\ 2x+2y=1$ }. They represent three lines in \mathbb{R}^2 with no point in common.

3. Suppose that \mathbf{x} and \mathbf{y} are two distinct solutions of the system $A\mathbf{x} = \mathbf{b}$. Prove that there are infinitely many solutions to this system, by showing that $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ is also a solution, for each $\lambda \in \mathbb{R}$. Do you have a geometric interpretation?

Solution: If A is $m \times n$ matrix then the line segment joining the two points in \mathbb{R}^n is also a solution. So, the system $A\mathbf{x} = \mathbf{b}$ cannot have finite number of solutions over \mathbb{R} .

4. Let B be a square invertible matrix. Then, prove that the system $A\mathbf{x} = \mathbf{b}$ and $BA\mathbf{x} = B\mathbf{b}$ are row-equivalent.

Solution:

As B is invertible, there exists elementary matrices E_i 's such that $B = E_1 E_2 \cdots E_k$. Thus, the system $BA\mathbf{x} = B\mathbf{b}$ is obtained from $A\mathbf{x} = \mathbf{b}$ by k elementary row operations.

Conversely, as $B^{-1} = E_k^{-1} E_{k-1}^{-1} \cdots E_1^{-1}$ and inverse of elementary matrices are also elementary matrices, we do obtain $A\mathbf{x} = \mathbf{b}$ from $BA\mathbf{x} = B\mathbf{b}$ by k elementary row operations. Thus, the above two systems are row equivalent.

5. [T] Suppose $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{b}$ have same solutions for every \mathbf{b} . Is it true that A = C?

Solution: First, as $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{b}$ have same solutions, A and C have same shapes, that is, same number of rows and columns, as well as same null space, $\text{Null}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}$ (follows from taking $\mathbf{b} = \mathbf{0}$).

Now, if we take **b** to be the first column of A then $\mathbf{x} = [1 \ 0 \ \dots \ 0]^T$ solves $A\mathbf{x} = \mathbf{b}$ and therefore also solves $C\mathbf{x} = \mathbf{b}$ which in turn implies that the first columns of A and C are same. Same argument holds for other columns as well. Thus A = C.

6. [T] Find matrices A and B with the given property or explain why you can not find them?

(a) The only solution to
$$A\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 is $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Solution: Any A satisfying the given equation has to be a 3×2 matrix. The linear system has a unique solution when rank of A is 2 and $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T \in \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^2\}$. Among many possibilities, one such A is

$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 3 \end{bmatrix}.$$

(b) The only solution to
$$B\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 is $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Solution: Any B satisfying the given equation has to be a 2×3 matrix which implies that the null space of B, N(B), can not be trivial and hence we either have an infinitely many solutions (when $[0\ 1]^T$ lies in the column space of B) or no solution. Thus, finding a B that exhibits a unique solution is not possible.

7. Using Gauss Jordan method, find the inverse of $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 \leftarrow R_3 - (2/3)R_2} \xrightarrow{R_3 \leftarrow R_3 - (2/3)R_2}$$

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & 0 & -5/3 & -2/3 & -2/3 & 1 \end{bmatrix} \xrightarrow{R_3 \leftarrow (-3/5)R_3} \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{bmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_2 + 2R_3} \begin{bmatrix} 1 & 2 & 0 & 1/5 & -4/5 & 6/5 \\ 0 & -3 & 0 & -6/5 & 9/5 & -6/5 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{bmatrix} \xrightarrow{R_2 \leftarrow (-1/3)R_2}$$

$$\begin{bmatrix} 1 & 2 & 0 & 1/5 & -4/5 & 6/5 \\ 0 & 1 & 0 & 2/5 & -3/5 & 2/5 \end{bmatrix} \xrightarrow{R_1 \leftarrow R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & -3/5 & 2/5 & 2/5 \\ 0 & 1 & 0 & 2/5 & -3/5 & 2/5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 1/5 & -4/5 & 6/5 \\ 0 & 1 & 0 & 2/5 & -3/5 & 2/5 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{bmatrix} \xrightarrow{R_1 \leftarrow R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & -3/5 & 2/5 & 2/5 \\ 0 & 1 & 0 & 2/5 & -3/5 & 2/5 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{bmatrix}$$

Thus, the inverse is $\begin{bmatrix} -3/5 & 2/5 & 2/5 \\ 2/5 & -3/5 & 2/5 \\ 2/5 & 2/5 & -3/5 \end{bmatrix}.$

8. (T) Let $B \in \mathbb{M}_n(\mathbb{R})$ be a real skew-symmetric matrix. Show that I - B is non singular.

Solution:

Let if possible I-B be singular. Then, the system $(I-B)\mathbf{x} = \mathbf{0}$ has a non-trivial solution, say $\mathbf{x}_0 \neq \mathbf{0}$. Hence, $B\mathbf{x}_0 = \mathbf{x}_0$. Also, $\mathbf{x}_0^T B\mathbf{x}_0 \in \mathbb{R}$ and hence

$$\mathbf{x}_0^T B \mathbf{x}_0 = (\mathbf{x}_0^T B \mathbf{x}_0)^T = \mathbf{x}_0^T B^T \mathbf{x}_0 = -\mathbf{x}_0^T B \mathbf{x}_0.$$

Thus, $\mathbf{x}_0^T B \mathbf{x}_0 = 0$. But, $0 = \mathbf{x}_0^T B \mathbf{x}_0 = \mathbf{x}_0^T (B \mathbf{x}_0) = \mathbf{x}_0^T \mathbf{x}_0$ and hence $\mathbf{x}_0 = \mathbf{0}$.

9. For two $n \times n$ matrices A and B, show that $\det(AB) = \det(A)\det(B)$.

Solution: First, suppose that A is singular. Then, AB is singular as well. We therefore have, det(A) = 0 and det(AB) = 0 which leads to det(AB) = 0 = det(A)det(B).

Now we assume that A is non-singular. Recall that, for a non-singular square matrix, the reduced row echelon form is the identity matrix, I. In other words, there exist elementary matrices $E_s, E_{s-1}, \ldots, E_2, E_1$ such that

$$A = E_s E_{s-1} \dots E_2 E_1 I$$
.

We therefore have

$$AB = E_s E_{s-1} \dots E_2 E_1 B.$$

Thus the problem of showing det(AB) = det(A)det(B) reduces to showing

- (a) $det(E_{ij}B) = det(E_{ij})det(B)$.
- (b) $det(E_i(c)B) = det(E_{ij}(c))det(B)$.
- (c) $det(E_{ij}(c)B) = det(E_{ij}(c))det(B)$.

Now, for the proof, we use the defining properties 1, 2 and 3 discussed in class. We have

(a) $det(E_{ij}B) = -det(B)$ (property 2) = $det(E_{ij})detB$ (using $det(E_{ij}) = -det(I) = -1$, follows from properties 2 and 1).

- (b) $det(E_i(c)B) = c \ det(B)$ (property 3a) = $det(E_i(c))det(B)$ (using $det(E_i(c)) = c \ det(I) = c$, follows from properties 3a and 1).
- (c) $det(E_{ij}(c)B) = det(B)$ (property 6) = $det(E_{ij}(c))det(B)$ (using $det(E_{ij}(c)) = 1$, follows from property 6 on the identity matrix).

The result now follows

$$det(AB) = det(E_s E_{s-1} \dots E_2 E_1 B) = det(E_s) det(E_{s-1} \dots E_2 E_1 B) = \cdots$$

$$= det(E_s) det(E_{s-1}) \dots det(E_2) det(E_1 B)$$

$$= det(E_s) det(E_{s-1}) \dots det(E_2) det(E_1) det(B)$$

$$= det(E_s) det(E_{s-1}) \dots det(E_2 E_1) det(B) = \cdots$$

$$= det(E_s E_{s-1} \dots E_2 E_1) det(B) = det(A) det(B).$$

10. Let $A \in \mathbb{M}_n(\mathbb{R})$. Then prove that $\det(A) = \det(A^T)$. If $A \in \mathbb{M}_n(\mathbb{C})$ then $\overline{\det(A)} = \det(A^*)$.

Solution:

Recall that, a square matrix can be reduced to an upper form using elementary row operations. In other words, there exist elementary matrices $E_s, E_{s-1}, \ldots, E_2, E_1$ such that

$$E_s E_{s-1} \dots E_2 E_1 A = U.$$

where U is an upper triangular matrix and each E_k , $1 \le k \le s$, is either an elementary matrix E_{ij} or $E_{ij}(c)$ for some i, j and c. We therefore have

$$EA = U$$

with $det(E) = det(E^T) = \pm 1$. We also have $det(U) = det(U^T)$ for the upper triangular matrix U. Thus

$$\det(A) = \frac{\det(U)}{\det(E)},$$

and

$$A^T E^T = U^T$$

yields

$$\det(A^T) = \frac{\det(U^T)}{\det(E^T)} = \frac{\det(U)}{\det(E)} = \det(A).$$

Thus, $\det(\bar{A}) = \det\left((\bar{A})^T\right) = \det(A^*)$. The equality $\det(\bar{A}) = \overline{\det A}$ follows from the determinant formula:

$$\det(\bar{A}) = \sum_{\sigma \in S_n} (sgn \ \sigma) \ \overline{a_{1\sigma(1)}} \ \overline{a_{2\sigma(2)}} \cdots \overline{a_{n\sigma(n)}} = \overline{\sum_{\sigma \in S_n} (sgn \ \sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}} = \overline{\det(A)}.$$

11. Let A be an $n \times n$ matrix. Prove that

(a) If $A^2 = \mathbf{0}$ then A is not invertible (singular).

Solution: Let A be invertible. Then there exists B such that AB = I. Multiplying on the left by A gives $A(AB) = A \cdot I = A$. Thus, $A = A^2B = \mathbf{0}B = \mathbf{0}$, a contradiction, as the zero-matrix is not invertible.

Alternate Solution: $0 = \det(A^2) = (\det A)^2 \Rightarrow \det A = 0$.

(b) If $A^2 = A$, $A \neq I$ then A is singular.

Solution: If A is nonsingular, then it is invertible. Then $A = A^{-1}A^2 = A^{-1}A = I$.

12. Can
$$RREF([A|\mathbf{b}]) = \begin{bmatrix} 1 & * & * & | & 0 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & * & | & 0 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
or $\begin{bmatrix} 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$? Explain.

Now, recall the matrices A_j 's, for $1 \le j \le 3$ (defined to state the Cramer's rule for solving the linear system $A\mathbf{x} = \mathbf{b}$), that are obtained by replacing the j-th column of A by **b**. Then, we see that the above system has **NO solution** even though $\det(A) = 0 = \det(A_j)$, for $1 \le j \le 3$.

- 13. Let A be an $n \times n$ matrix. Prove that the following statements are equivalent:
 - (a) $det(A) \neq 0$.
 - (b) A is invertible.
 - (c) The homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - (d) The row-reduced echelon form of A is I_n .
 - (e) A is a product of elementary matrices.
 - (f) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every.
 - (g) The system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} .

Solution:

 $13a \Longrightarrow 13b$

By, definition, whenever $\det(A) \neq 0$, $A^{-1} = \frac{C^T}{\det(A)}$, where C is the co-factor matrix.

 $13b \Longrightarrow 13a$

As A is invertible, $AA^{-1} = I_n$ and hence $\det(A)\det(A^{-1}) = \det(I_n) = 1$. Hence, $\det(A) \neq 0$.

 $13b \Longrightarrow 13c$

As A is invertible, $A^{-1}A = I_n$. Let \mathbf{x}_0 be a solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$. Then,

$$\mathbf{x}_0 = I_n \mathbf{x}_0 = (A^{-1}A)\mathbf{x}_0 = A^{-1}(A\mathbf{x}_0) = A^{-1}\mathbf{0} = \mathbf{0}.$$

Thus, **0** is the only solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$.

$$13c \Longrightarrow 13d$$

Let $\mathbf{x}^T = [x_1, x_2, \dots, x_n]$. As $\mathbf{0}$ is the only solution of the linear system $A\mathbf{x} = \mathbf{0}$, the final equations are $x_1 = 0, x_2 = 0, \dots, x_n = 0$. These equations can be rewritten as

$$1 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \dots + 0 \cdot x_n = 0$$

$$0 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 + \dots + 0 \cdot x_n = 0$$

$$0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \dots + 0 \cdot x_n = 0$$

$$\vdots = \vdots$$

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \dots + 1 \cdot x_n = 0$$

That is, the final system of homogeneous system is given by $I_n \cdot \mathbf{x} = \mathbf{0}$. Or equivalently, the row-reduced echelon form of the augmented matrix $[A \ \mathbf{0}]$ is $[I_n \ \mathbf{0}]$. That is, the row-reduced echelon form of A is I_n .

 $13d \Longrightarrow 13e$

Suppose that the row-reduced echelon form of A is I_n . Then there exist elementary matrices E_1, E_2, \ldots, E_k such that

$$E_1 E_2 \cdots E_k A = I_n. \tag{1}$$

Now, the matrix E_j^{-1} is an elementary matrix and is the inverse of E_j for $1 \le j \le k$. Therefore, successively multiplying Equation (1) on the left by $E_1^{-1}, E_2^{-1}, \ldots, E_k^{-1}$, we get

$$A = E_k^{-1} E_{k-1}^{-1} \cdots E_2^{-1} E_1^{-1}$$

and thus A is a product of elementary matrices.

 $13e \Longrightarrow 13b$

Suppose $A = E_1 E_2 \cdots E_k$; where the E_i 's are elementary matrices. As the elementary matrices are invertible and the product of invertible matrices is also invertible, we get the required result.

 $13b \Longrightarrow 13f$

Observe that $\mathbf{x}_0 = A^{-1}\mathbf{b}$ is the unique solution of the system $A\mathbf{x} = \mathbf{b}$.

 $13f \Longrightarrow 13g$

The system $A\mathbf{x} = \mathbf{b}$ has a solution and hence by definition, the system is consistent.

 $13g \Longrightarrow 13b$

For $1 \leq i \leq n$, define $\mathbf{e}_i = (0, \dots, 0, \underbrace{1}_{i, \text{th position}}, 0, \dots, 0)^T$, and consider the linear system

 $A\mathbf{x} = \mathbf{e}_i$. By assumption, this system has a solution, say \mathbf{x}_i , for each $i, 1 \leq i \leq n$. Define a matrix $B = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$. That is, the i^{th} column of B is the solution of the system $A\mathbf{x} = \mathbf{e}_i$. Then

$$AB = A[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] = [A\mathbf{x}_1, A\mathbf{x}_2, \dots, A\mathbf{x}_n] = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n] = I_n.$$

Therefore, the matrix A is invertible.

- 14. $A \in \mathbb{M}_n(\mathbb{C})$. Then $\det(A) = 0$ if and only if the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
- 15. (T) Let A be an $n \times n$ matrix. Then, the two statements given below cannot hold together.

- (a) The system $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} .
- (b) The system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
- 16. Suppose the 4×4 matrix M has 4 equal rows all containing a, b, c, d. We know that det(M) = 0. The problem is to find by any method

$$det(I+M) = \begin{vmatrix} 1+a & b & c & d \\ a & 1+b & c & d \\ a & b & 1+c & d \\ a & b & c & 1+d \end{vmatrix}.$$

Solution: Subtracting row 1 from rows 2, 3 and 4, we get

$$det(I+M) = \begin{vmatrix} 1+a & b & c & d \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{vmatrix}.$$

Now, adding columns 2, 3 and 4 to column 1, we get

$$det(I+M) = \begin{vmatrix} 1+a+c+d & a & b & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}.$$

Thus, det(I + M) = 1 + a + b + c + d.

17. The numbers 1375, 1287, 4191 and 5731 are all divisible by 11. Prove that 11 also divides the determinant of the matrix

$$\left[\begin{array}{cccc} 1 & 1 & 4 & 5 \\ 3 & 2 & 1 & 7 \\ 7 & 8 & 9 & 3 \\ 5 & 7 & 1 & 1 \end{array}\right].$$

Solution: Adding $1000 \times Row_1$, $100 \times Row_2$, $10 \times Row_3$ to Row_4 , we have

$$\begin{vmatrix} 1 & 1 & 4 & 5 \\ 3 & 2 & 1 & 7 \\ 7 & 8 & 9 & 3 \\ 5 & 7 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 4 & 5 \\ 3 & 2 & 1 & 7 \\ 7 & 8 & 9 & 3 \\ 1375 & 1287 & 4191 & 5731 \end{vmatrix}.$$

Since Row_4 is divisible by 11, the determinant is divisible by 11.

18. Compute determinant of
$$\begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 & x_1^4 \\ 1 & x_2 & x_2^2 & x_2^3 & x_2^4 \\ 1 & x_3 & x_3^2 & x_3^3 & x_3^4 \\ 1 & x_4 & x_4^2 & x_4^3 & x_4^4 \\ 1 & x_5 & x_5^2 & x_5^3 & x_5^4 \end{bmatrix}.$$

Solution: We give the solution for the general case. Let

$$A_n = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}.$$

If n = 2, $det(A_2) = x_2 - x_1$. We will prove that

$$\det(A_n) = \prod_{i < j} (x_j - x_i).$$

Assume the result for n-1 and define

$$F(x) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x & x^2 & \cdots & x^{n-1} \end{vmatrix}.$$

Then F is a polynomial of degree n-1 with roots $x_1, x_2, \ldots, x_{n-1}$. So, $F(x) = c \prod_{i=1}^{n-1} (x - x_i)$ where c is coefficient of x^{n-1} which is clearly $\det(A_{n-1})$. Therefore,

$$F(x) = \det(A_{n-1}) \prod_{i=1}^{n-1} (x - x_i).$$

The result follows for n as

$$\det(A_n) = F(x_n) = \det(A_{n-1}) \prod_{i=1}^{n-1} (x_n - x_i).$$