Important steps in the bioinformatics of metabarcoding data. The steps are listed in the order often used in, for instance, the dada2 package for R. The order of some of the steps might differ between pipelines. Common pipelines not mentioned in the table but still incorporate the same steps include qiime2 (https://qiime2.org/), mothur (https://github.com/mothur/mothur/), mjolnir3 (https://github.com/metabarpark/MJOLNIR3/), Obitools (https://git.metabarcoding.org/obitools/obitools4/) and Lotus2 (https://lotus2.earlham.ac.uk/), and more. The software and functions covered in the course are in bold italics. Functions in R are listed as package::function().

STEP	PURPOSE	SOFTWARE / FUNCTION
QC SEQUENCING RESULTS	Assess sequencing output quality	- fastQC, mulitQC
DEMULTIPLEXING	Assign reads to samples based on barcodes	cutadaptqiime demux, bcl2fastq, ++
QUALITY CONTROL, FILTERING, TRIMMING	Remove low-quality reads, trim adapters/primers	dada2::filterAndTrim()cutadapt,
DEREPLICATION	Collapse identical reads to reduce redundancy	 dada2::derepFastq() vsearchderep_fulllength
DENOISING / OTU CLUSTERING	Remove sequencing errors (called ASVs in DADA2), clustering into OTUs	 dada2::learnErrors(), dada2::dada() vsearchcluster_size swarm
CHIMERA REMOVAL	Remove chimeric sequences formed during PCR	dada2::removeBimeraDenovo()vsearchuchime_denovo
OTU TABLE CONSTRUCTION	Create count matrix assigning reads to OTUs/ASVs per sample	 dada2::makeSequenceTable() vsearchusearch_globalotutabout
OTU TABLE CURATION		- lulu::lulu() - mumu
TAXONOMIC ASSIGNMENT	Assign taxonomy to ASVs or OTUs	 dada2::assignTaxonomy() dada2::addSpecies(), vsearchusearch_global
REMOVAL OF NON-TARGETS	Exclude sequences from unwanted taxa (e.g., chloroplasts, host DNA, contaminants, mock data)	 Filter with bash scripts, python scripts or remove in excel © phyloseq::subset_taxa() phyloseq::prune_taxa()
NORMALIZATION OR RAREFACTION	Normalize read counts across samples or rarefy to even depth	vegan::rrarefeyphyloseq::rarefy_even_depth(),
DOWNSTREAM ANALYSIS AND PLOTTING	Alpha/beta diversity, ordination, visualizations	 Loads of R packages PCAtools, phyloseq, microbiome, vegan, ggplot2, metacoder