Matematiska Institutionen KTH

Tentamensskrivning på kursen Linjär algebra, SF1604, den 14 mars 2011 kl 08.00-13.00.

Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Betygsgränser: (Totalsumma poäng är 40p.)

- 13 poäng totalt eller mer ger minst omdömet Fx
- 15 poäng totalt eller mer ger minst betyget E
- 20 poäng totalt eller mer ger minst betyget D
- 25 poäng totalt eller mer ger minst betyget C
- 30 poäng totalt eller mer ger minst betyget B
- 35 poäng totalt eller mer ger minst betyget A

Bonuspoäng: Bonuspoäng erhållna från lappskrivningar till kursen för D under vt11 adderas till skrivningspoängen. Generellt gäller att bonuspoäng får användas vid ordinarie tentamen och vid första ordinarie omtentamenstillfälle för respektive sektion, vilket för sektion F liksom för sektion D är den 9 juni i år.

För full poäng krävs korrekta och väl presenterade resonemang.

DEL I

1. (5p) För ett eller flera värden på talet a kommer ekvationssystemet nedan att ha oändligt många lösningar. Bestäm dessa värden på a samt bestäm samtliga lösningar till systemet för dessa a-värden.

$$\begin{cases} x + y + z = 1 \\ x - y + az = 3 \\ ax + y + z = 1 \end{cases}$$

- 2. (5p) För den linjära avbildningen A på R^3 gäller att A(1,1,1)=(1,2,3), A(0,1,1)=(4,5,6) och A(0,0,1)=(7,8,9). Bestäm avbildningens matris relativt standardbasen, bestäm A(3,2,1) samt bestäm avbildningens kärna.
- 3. (5p) Kolonnvektorn (1 3 2) T är en egenvektor till matrisen ${\bf A}$ nedan,

$$\mathbf{A} = \left(\begin{array}{rrr} -1 & 2 & -2 \\ 0 & -1 & 3 \\ 0 & -2 & 4 \end{array} \right) \ .$$

Bestäm matrisens samtliga egenvärden och egenvektorer samt en matris \mathbf{P} sådan att $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ är en diagonalmatris.

DEL II

- 4. (5p) I den vanliga 3-dimensionella rymden, och med koordinater givna i ett ONsystem, står vi i punkten P = (1, 2, 3) och betraktar planet π med ekvationen 2x + 3y z = 13. Vi skickar två ljusstrålar från P mot π , en som går vinkelrätt mot planet π och en som går parallellt med vektorn (0, -1, 1). Dessa strålar träffar planet π i punkterna Q respektive R. Bestäm arean av triangeln med hörn i punkterna P, Q och R.
- 5. (5p) Visa, t ex med hjälp av ett induktionsbevis, att talen

$$a_n = 4^n + (-3)^n$$
,

satisfierar rekursionen

$$a_n = a_{n-1} + 12a_{n-2}, \quad a_0 = 2, \ a_1 = 1$$

för samtliga naturliga tal $n = 0, 1, 2, \ldots$

6. (5p) (ON-system) Låt L beteckna det delrum till R^5 som spänns upp av vektorerna (1, 2, -1, 2, 1), (1, 3, -2, 4, 5) och (1, 0, 1, -2, -7), dvs

$$L = \text{Span}\{(1, 2, -1, 2, 1), (1, 3, -2, 4, 5), (1, 0, 1, -2, -7)\}$$
.

Bestäm projektionen av vektorn (1, 1, 1, 1, 1) på delrummet L.

DEL III

Om du i denna del använder eller hänvisar till satser från läroboken skall dessa citeras, ej nödvändigvis ordagrant, där de används i lösningen.

- 7. Låt **A** vara en $n \times n$ -matris.
 - (a) (1p) Visa att om $\mathbf{A}^2 = \mathbf{I}$, där \mathbf{I} betecknar identitetsmatrisen, så har \mathbf{A} full rang.
 - (b) (2p) Visa att om $\mathbf{A}^2 = \mathbf{0}$, där $\mathbf{0}$ betecknar nollmatrisen, så är \mathbf{A} :s rang högst lika med n/2.
 - (c) (2p) Om $\mathbf{A}^3 = 0$, vad kan då sägas om \mathbf{A} :s rang? Motivera ditt svar!
- 8. Det finns en inre produkt i \mathbb{R}^3 sådan att (1,2,-1), (2,0,1) och (1,-1,1) kommer att bilda en ON-bas i det inreproduktrum V som den inre produkten definierar.
 - (a) (1p) Betrakta nu R^3 med denna nya inre produkt och låt $\bar{f}_1 = (2, -2, 2)$. Bestäm vektorer \bar{f}_2 och \bar{f}_3 sådana att \bar{f}_1 , \bar{f}_2 och \bar{f}_3 bildar en ortogonalbas i V.
 - (b) (2p) Betrakta R^3 med denna nya inre produkt och låt $\bar{g}_1 = (1, 2, 3)$. Bestäm vektorer \bar{g}_2 och \bar{g}_3 sådana att \bar{g}_1 , \bar{g}_2 och \bar{g}_3 bildar en ortogonalbas i V.
 - (c) (2p) Betrakta nu R^3 samt fyra godtyckliga vektorer \bar{u} , \bar{v} , \bar{w} och \bar{z} av vilka inga två är parallella med varandra. Kommer det då alltid att finnas en inre produkt i R^3 sådan att $\bar{u} \perp \bar{v}$ och $\bar{w} \perp \bar{z}$? Motivera ditt svar!