The Theoretical Minimum Quantum Mechanics - Solutions

L03E02

M. Bivert

April 8, 2023

Exercise 1. Prove that Eq. 3.16 is the unique solution to Eqs. 3.14 and 3.15.

Let's recall all the equations, 3.14, 3.15 and 3.16

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{1}$$

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (2)

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (3)

By developing the matrix product and identifying the vectors components, the first two equations make a system of four equations involving four unknowns $(\sigma_z)_{11}$, $(\sigma_z)_{12}$, $(\sigma_z)_{21}$ and $(\sigma_z)_{22}$:

$$\begin{cases}
1(\sigma_z)_{11} + 0(\sigma_z)_{12} &= 1 \\
1(\sigma_z)_{21} + 0(\sigma_z)_{22} &= 0 \\
0(\sigma_z)_{11} + 1(\sigma_z)_{12} &= 0 \\
0(\sigma_z)_{21} + 1(\sigma_z)_{22} &= -1
\end{cases}
\Leftrightarrow
\begin{cases}
(\sigma_z)_{11} &= 1 \\
(\sigma_z)_{21} &= 0 \\
(\sigma_z)_{12} &= 0 \\
(\sigma_z)_{22} &= -1
\end{cases}$$

$$(4)$$

Remark 1. Observe that we are (were) trying to build a Hermitian operator with eigenvalues +1 and -1. The fundamental theorem / real spectral theorem, assures us that Hermitian operators are diagonalizable, hence there exists a basis in which the operator can be represented by a 2×2 matrix containing the eigenvalues on its diagonal:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Which is exactly the matrix we've found.

But now of course, you'd be wondering: wait a minute, right after this exercise, we're trying to build σ_x , which also has those same eigenvalues +1 and -1, what's the catch?

Well, remember the diagonalization process: M diagonalizable means that there's a basis where it's diagonal. That is, there's a change of basis, which is an invertible linear function, which has a matrix representation P, such that the linear operation represented by M in a starting basis is now represented by a diagonal matrix D:

$$M = PDP^{-1}$$

Furthermore:

- The elements on the diagonal of D are the eigenvalues;
- The columns of P are the corresponding eigenvectors

So regarding σ_x , we still have a

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

But the catch is that before for σ_z , P was the identity matrix I_2 (because of our choice for $|u\rangle$ and $|d\rangle$). But now, given our values for $|r\rangle$ and $|l\rangle$, we have:

$$|r\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
 and $|l\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ \Rightarrow $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Note that the column order matters: the first column of P must be $|r\rangle$, and the first column of D must contain the eigenvalue associated to $|r\rangle$. But:

$$\sigma_x = PDP^{-1} \Leftrightarrow \sigma_x P = PD(\underbrace{P^{-1}P}_{:=I_2}) = PD = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Hence,

$$\sigma_x P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Leftrightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} (\sigma_x)_{11} & (\sigma_x)_{12} \\ (\sigma_x)_{21} & (\sigma_x)_{22} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Solving for the components of σ_x :

$$\Leftrightarrow \begin{cases} (\sigma_x)_{11} + (\sigma_x)_{12} = 1\\ (\sigma_x)_{11} - (\sigma_x)_{12} = -1\\ (\sigma_x)_{21} + (\sigma_x)_{22} = 1\\ (\sigma_x)_{21} - (\sigma_x)_{22} = 1 \end{cases}$$

Which indeed yields the expected Pauli matrix, as described in the book, and computed by the authors using a different approach:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

And obviously, the same can be done for σ_y : that's to say that, reassuringly, we reach the same results using pure linear algebra.