Gradient and Hessian of the SPARROW Function

Christian Steffens

Consider the objective function

$$f(s) = \text{Tr}(\mathbf{Q}^{-1}\hat{\mathbf{R}}) + \mathbf{1}^{\mathsf{T}}s, \tag{1}$$

where $Q = A \operatorname{diag}(s)A^{\mathsf{H}} + \lambda I \in \mathbb{C}^{M \times M}$, with $s = [s_1, \dots, s_K]^{\mathsf{T}} \in \mathbb{R}_+^K$, $A = [a_1, \dots, a_K] \in \mathbb{C}^{M \times K}$ and $\mathbf{1}$ is a vector of ones. Using the elementwise derivatives

$$\frac{\partial \mathbf{Q}}{\partial s_k} = \frac{\partial}{\partial s_k} \sum_{i=1}^K s_i \mathbf{a}_i \mathbf{a}_i^{\mathsf{H}} + \lambda \mathbf{I} = \mathbf{a}_k \mathbf{a}_k^{\mathsf{H}}$$
(2)

$$\frac{\partial \boldsymbol{Q}^{-1}}{\partial s_k} = -\boldsymbol{Q}^{-1} \frac{\partial \boldsymbol{Q}}{\partial s_k} \boldsymbol{Q}^{-1} = -\boldsymbol{Q}^{-1} \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{H}} \boldsymbol{Q}^{-1}$$
(3)

on the function (1), we obtain the elementwise derivatives

$$\frac{\partial f(\mathbf{s})}{\partial s_k} = 1 - \text{Tr}(\mathbf{Q}^{-1} \mathbf{a}_k \mathbf{a}_k^{\mathsf{H}} \mathbf{Q}^{-1} \hat{\mathbf{R}}) = 1 - \mathbf{a}_k^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{R} \mathbf{Q}^{-1} \mathbf{a}_k, \tag{4}$$

which are summarized as the gradient

$$\frac{\partial f(s)}{\partial s} = 1 - \text{vecd}(A^{\mathsf{H}} Q^{-1} R Q^{-1} A), \tag{5}$$

where $\operatorname{vecd}(X)$ denotes the vector containing the elements on the main diagonal of matrix X. Using the product rule and (3), the elementwise second order derivative of (4) is given as

$$\frac{\partial^{2} f(\mathbf{s})}{\partial s_{k} \partial s_{l}} = \mathbf{a}_{k}^{\mathsf{H}} \frac{\partial \mathbf{Q}^{-1}}{\partial s_{l}} \mathbf{R} \mathbf{Q}^{-1} \mathbf{a}_{k} + \mathbf{a}_{k}^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{R} \frac{\partial \mathbf{Q}^{-1}}{\partial s_{l}} \mathbf{a}_{k}$$

$$= \mathbf{a}_{k}^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{a}_{l} \mathbf{a}_{l}^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{R} \mathbf{Q}^{-1} \mathbf{a}_{k} + \mathbf{a}_{k}^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{R} \mathbf{Q}^{-1} \mathbf{a}_{l} \mathbf{a}_{l}^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{a}_{k}$$

$$= 2 \operatorname{Re} \left\{ (\mathbf{a}_{k}^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{a}_{l}) \cdot (\mathbf{a}_{l}^{\mathsf{H}} \mathbf{Q}^{-1} \mathbf{R} \mathbf{Q}^{-1} \mathbf{a}_{k}) \right\} \tag{6}$$

which can be written in compact matrix notation as

$$\frac{\partial^2 f(s)}{\partial s \partial s^{\mathsf{T}}} = 2 \operatorname{Re} \left\{ (\boldsymbol{A}^{\mathsf{H}} \boldsymbol{Q}^{-1} \boldsymbol{A})^{\mathsf{T}} \odot (\boldsymbol{A}^{\mathsf{H}} \boldsymbol{Q}^{-1} \boldsymbol{A}) \right\}, \tag{7}$$

forming the Hessian matrix of (1), with \odot denoting the Hadamard product, i.e., elementwise multiplication. From the Schur product theorem it can be concluded that the Hessian matrix in (7) is positive semidefinite, since for $s_1, \ldots, s_K \geq 0$ it holds that $\mathbf{Q} \succeq \mathbf{0}$. In other words, the SPARROW formulation in (1) is convex for nonnegative $s_1, \ldots, s_K \geq 0$.