Partial fractions. Goal: Integrate national functions.

Definition: A function fox) is called a sational function if and only if it can be

written in the form.

P(x) - polynomial $f(z) = \frac{P(z)}{g(z)}$

B(x) - polynomial.

Rational functions. (Why is it easy to integrate).

Rational function = sum of simpler functions.

Easier to integrate:
$$\frac{A}{x+a}$$
, $\frac{A}{x^2+ax+b}$, $\frac{Ax}{x^2+ax+b}$

$$\frac{A}{x-a} + \frac{B}{x-b} = \frac{A(x-b) + B(x-a)}{(x-a)(x-b)} = \frac{x(A+B) - (Ab+Ba)}{(x-a)(x-b)}$$

Steps of partial fraction.

1

ፈ ՝

Steps of partial fraction.

3.

4.

5.

Polynomial division.

Practice polynomial d'isson.

 $x^2 + x + 2$

Practice polynomial ochson.

eg:
$$2^3 + 2$$
 ($2^3 - 2^3 + 2$)

$$(x^3+x) = (x-1)(ax^2+bx+c)+d$$

= $ax^3+x^2(b-a)+x(c-b)$

$$= \alpha x^2 + x^2 (b^{-\alpha})$$

$$+ a - c$$

$$+ a - c$$

so, $a = 1$, $b = 1$, $c = 2$, $d = 2$

$$\frac{x-1)x^3+x}{-x^3+x^2}$$
 so,
$$\frac{x^3+x^2}{x^2+x}$$

$$\frac{-x^{2}+x}{2x}$$
 $\frac{-2x+2}{2}$

So, ans =
$$x^2 + x + 2 + \frac{2}{x^2}$$

Step3: How to split up the fraction?

denominator factor
$$(x-a)$$
 partial fraction expansion $(x-a)^r$ $(x-a)^r$ $\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \cdots + \frac{A_r}{(x-a)^r}$ \checkmark (x^2+bx+c) $\frac{B_1x+C_1}{x^2+bx+c} + \frac{B_2x+C_2}{(x^2+bx+c)^2} + \frac{B_3x+C_3}{(x^2+bx+c)^3} + \cdots$ \times (phew)

Example 1

Solve
$$\int \frac{3z+1}{z^2+2z-3} dz$$
.

Example 1 (contd.)

Example 1 (contd.)

Example 2.

$$\int \frac{z^2 - 9x + 17}{(x-2)^2 (x+1)} dx.$$

Example 2 (contd)

Example 3 (contd.)

Example 3.

$$\int \frac{x+1}{x^2-2x+5} dz$$