$1^{\rm o}$ de Grado en Matemáticas y Doble Grado Informática-Matemáticas. Departamento de Matemáticas

Curso 2022/23

Hoja 1

Introducción al espacio euclídeo \mathbb{R}^n

- 1.- Demostrar que para cualesquiera $x, y \in \mathbb{R}^n$ se cumple
 - (a) $||x + y||^2 + ||x y||^2 = 2 ||x||^2 + 2 ||y||^2$.
 - (b) $||x y|| \cdot ||x + y|| \le ||x||^2 + ||y||^2$.
 - (c) $\langle x, y \rangle = 0$ si y sólo si ||x + y|| = ||x y||.
 - (d) $\langle x, y \rangle = 0$ si y sólo si $||x + \lambda y|| \ge ||x||$ para todo $\lambda \in \mathbb{R}$.
 - (e) $| \|x\| \|y\| | \le \|x y\|.$
- 2.- (a) Determinar todos los valores posibles del parámetro real λ para que los vectores $\lambda \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ y $\lambda \mathbf{i} + \mathbf{j} \lambda \mathbf{k}$ (en \mathbb{R}^3) sean ortogonales.
 - (b) Hallar todos los valores de a y b para los que los vectores $\mathbf{x} = (4, b, 1)$ e $\mathbf{y} = (a, b, 0)$ sean ortogonales en \mathbb{R}^3 . ¿Cuál es el lugar geométrico, en el plano ab, determinado por tales a y b?
 - (c) Hallar dos vectores ortogonales a (1,1,1) que no sean paralelos entre sí. ¿Se pueden elegir dos que sean también mutuamente ortogonales?
- 3.- (a) Sean $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1) \in \mathbb{R}^3$. Determinar el ángulo entre los vectores $u = \mathbf{i} + 2\mathbf{j}$ y $v = \sqrt{5/3}\mathbf{j} + \mathbf{k}$.
 - (b) Lo mismo para el ángulo entre los vectores (1, -1, 0) y (0, 1, -1).
 - (c) Explicar la diferencia entre los valores $\|3\mathbf{i} 4\mathbf{k}\| \cdot \|2\mathbf{j} + \mathbf{k}\| \ y \ |(3\mathbf{i} 4\mathbf{k}) \cdot (2\mathbf{j} + \mathbf{k})|$. ¿Puede decidirse que ambos valores son diferentes, sin necesidad de calcularlos explícitamente?
- 4.- Calcúlese el coseno del ángulo entre una diagonal de un cubo y una diagonal de una de sus caras.
- 5.- Halle el área (positiva) del paralelogramo que tiene por lados los vectores $\mathbf{x} = \mathbf{i} 2\mathbf{j} + \mathbf{k}$ e $\mathbf{y} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$.
- 6.- Halle el volumen (positivo) del parelelepípedo con lados \mathbf{i} , $3\mathbf{j} \mathbf{k}$ y $4\mathbf{i} + 2\mathbf{j} \mathbf{k}$.
- 7.- Halle una ecuación para el plano que es perpendicular al vector (1,2,3) y pasa por el punto (1,1,1).
- 8.- Demuestre que los siguientes conjuntos son abiertos:

$$A = \{ (x, y) \in \mathbb{R}^2 : 2 < x^2 + y^2 < 4 \}$$
 $B = \{ (x, y) \in \mathbb{R}^2 : xy \neq 0 \}$

9.- Halle, si existe, el límite de la sucesión $\{x_k\}_{k=1}^{\infty}$ en \mathbb{R}^2 cuando

$$x_k = \left(\frac{\ln k}{k}, k^{1/k}\right), \quad x_k = \left(\sqrt{k^2 + 2} - k, \frac{(-1)^k}{k}\right), \quad x_k = \left(\frac{\operatorname{sen} k}{k}, k(e^{1/k} - 1)\right).$$

10.- Para cada uno de los siguientes subconjuntos de \mathbb{R}^2 , decida si es abierto o cerrado, y halle su frontera.

$$A = \left\{ (x,y) \in \mathbb{R}^2 : x^2 - y^2 = 1 \right\}, \quad B = \left\{ (x,y) \in \mathbb{R}^2 : |x| < 1, |y| < 1 \right\}.$$

11.- Determinar el cierre, el interior y la frontera de los siguientes conjuntos:

$$A = \{(x, y) \in \mathbb{R}^2 : |x - y| < 1\}, \qquad B = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1, x^2 + y^2 + z^2 \le 1\}.$$

12.- Demuestre que la unión arbitraria de abiertos es abierta. Mediante un ejemplo, compruebe que aunque sea abierto cada A_i de una familia infinita $\{A_i\}_i$, la intersección $\bigcap_{i=1}^{\infty} A_i$ no es necesariamente un conjunto abierto. ¿Qué ocurre con las familias de conjuntos cerrados?

13.- Sea $A \subset \mathbb{R}^2$ un conjunto arbitrario. Si r>0, definimos su entorno de radio r al conjunto de puntos

$$D_r(A) := \{ p \in \mathbb{R}^2 : \text{ existe algún } a \in A \text{ tal que } ||p - a|| < r \}.$$

Use el problema anterior para demostrar que $D_r(A)$ es un conjunto abierto de \mathbb{R}^2 .

14.- Un conjunto A se dice compacto si es simultáneamente cerrado y acotado. ¿Cuáles de los siguientes conjuntos son compactos? Razonar la respuesta.

$$A = \left\{ x \in \mathbb{R} : |x| \le 1, \ x \in \mathbb{R} \setminus \mathbb{Q} \right\}, \qquad B = \left\{ (x,y) \in \mathbb{R}^2 : |x| \le 1 \right\}, \qquad C = \left\{ (x,y) \in \mathbb{R}^2 : |x| + |y| = 1 \right\}.$$