Systems and Networking I

Applied Computer Science and Artificial Intelligence 2023–2024

Computer Science Department
Sapienza University of Rome

tolomei@di.uniroma1.it

File System API

OS Implementation

Physical Implementation

File System API

File creation, manipulation, protection, etc.

OS Implementation

Physical Implementation

File System API

OS Implementation

Physical Implementation

File creation, manipulation, protection, etc.

OS internal data structures and algorithms

File System API

OS Implementation

Physical Implementation

File creation, manipulation, protection, etc.

OS internal data structures and algorithms

Second storage structure, disk scheduling algorithms

File System API

OS Implementation

Second storage structure, disk scheduling algorithms

File creation, manipulation, protection, etc.

OS internal data structures and algorithms

Part V: Storage Management

3 categories of mass-storage devices

3 categories of mass-storage devices

13

One or more platters covered with magnetic media

One or more platters covered with magnetic media

Hard disk rigid metal

One or more platters covered with magnetic media

Hard disk rigid metal

Floppy disk flexible plastic

One or more platters covered with magnetic media

Hard disk rigid metal

Floppy disk flexible plastic

Each platter has 2 working surfaces

Magnetic Disks: Tracks and Cylinders

Each surface is divided into a number of concentric rings, called tracks

Magnetic Disks: Tracks and Cylinders

Each surface is divided into a number of concentric rings, called tracks

The set of all tracks that are the same distance from the edge of the platter is called a cylinder

Each track is further divided into sectors

Each track is further divided into sectors

Each sector usually contains 512 bytes

Each track is further divided into sectors

Each sector usually contains 512 bytes

Sectors also include a header and a trailer, and checksum information

Each track is further divided into sectors

Each sector usually contains 512 bytes

Sectors also include a header and a trailer, and checksum information

Larger sector sizes reduce the space wasted by headers and trailers, but increase internal fragmentation

Data on hard drive is read by read-write heads

Data on hard drive is read by read-write heads

Standard configuration uses one head per surface

Data on hard drive is read by read-write heads

Standard configuration uses one head per surface

Each head is placed on a separate arm

Data on hard drive is read by read-write heads

Standard configuration uses one head per surface

Each head is placed on a separate arm

Arms are controlled by a common arm assembly moving simultaneously from one cylinder to another

T = number of tracks per surface

T = number of tracks per surface

S = number of sectors per track

T = number of tracks per surface

S = number of sectors per track

B = number of bytes per sector

T = number of tracks per surface

S = number of sectors per track

B = number of bytes per sector

C = H * T * S * B

OVERALL CAPACITY

Until the end of 1980s, every track had the same number of sectors with the same number of bits

Until the end of 1980s, every track had the same number of sectors with the same number of bits

Therefore, the bit density in the inner sectors was much higher than in the outer sectors

Until the end of 1980s, every track had the same number of sectors with the same number of bits

Therefore, the bit density in the inner sectors was much higher than in the outer sectors

Disk controllers have no "intelligence"

Until the end of 1980s, every track had the same number of sectors with the same number of bits

Therefore, the bit density in the inner sectors was much higher than in the outer sectors

Disk controllers have no "intelligence"

Drawbacks:

- The capacity of the disk was determined by the maximum bit density a controller could handle

Until the end of 1980s, every track had the same number of sectors with the same number of bits

Therefore, the bit density in the inner sectors was much higher than in the outer sectors

Disk controllers have no "intelligence"

Drawbacks:

- The capacity of the disk was determined by the maximum bit density a controller could handle
- Different frequencies and timing from innermost to outermost tracks

In practice, the number of sectors per track (S) varies with the radius of the track on the platter

In practice, the number of sectors per track (S) varies with the radius of the track on the platter

The outermost track is larger and can hold more sectors than the inner ones

In practice, the number of sectors per track (S) varies with the radius of the track on the platter

The outermost track is larger and can hold more sectors than the inner ones

The bit density is kept almost constant

In practice, the number of sectors per track (S) varies with the radius of the track on the platter

The outermost track is larger and can hold more sectors than the inner ones

The bit density is kept almost constant

Smarter disk controllers allow for logical addressing of sectors rather than physical

In practice, the number of sectors per track (S) varies with the radius of the track on the platter

The outermost track is larger and can hold more sectors than the inner ones

The bit density is kept almost constant

Smarter disk controllers allow for logical addressing of sectors rather than physical

Zone Bit Recording (ZBR)

Magnetic Disks: (Logical) Referencing

A physical block of data is specified by the (head, cylinder, sector) number

Disk blocks are numbered starting at the outermost cylinder, identified by O

Note that cylinder coincides with track

The disk rotates at constant angular speed (e.g.,
 7200 rpm = 120 rps)

- The disk rotates at constant angular speed (e.g.,
 7200 rpm = 120 rps)
- Outer tracks spin faster than inner tracks (more sectors traversed in the same amount of time due to larger radius → more sectors per zone in ZBR)

- Data transfer from the disk to memory is made of 3 steps:
 - positioning time (seek time or random access time)
 - rotational delay
 - transfer time

 Data transfer from the disk to memory is made of 3 steps:

mechanical

- positioning time (seek time or random access time)
- rotational delay
- transfer time

 Data transfer from the disk to memory is made of 3 steps:

positioning time (seek time or random access time)

rotational delay

transfer time

mechanical electronic

 The time required to move the heads to a specific track/cylinder

- The time required to move the heads to a specific track/cylinder
- Includes the time needed for the heads to settle

- The time required to move the heads to a specific track/cylinder
- Includes the time needed for the heads to settle
- Depends on how fast the hardware moves the arm

- The time required to move the heads to a specific track/cylinder
- Includes the time needed for the heads to settle
- Depends on how fast the hardware moves the arm
- Typically, the slowest step in the entire process

Bottleneck of overall disk data transfer

Magnetic Disks: Rotational Delay

 The time required for the desired sector to rotate and come under the read-write head

Magnetic Disks: Rotational Delay

- The time required for the desired sector to rotate and come under the read-write head
- Can range from O up to one full revolution
 - O → the sector is already underneath the head
 - full revolution → the sector is the one before but in the opposite direction

Magnetic Disks: Rotational Delay

- The time required for the desired sector to rotate and come under the read-write head
- Can range from O up to one full revolution
 - O → the sector is already underneath the head
 - full revolution → the sector is the one before but in the opposite direction
- On average, O.5 revolutions (r)
 - E.g., for a 7200 rpm (120 rps) disk this equals to 0.5 r/120 rps ~4 msec

Magnetic Disks: Transfer Time

• The time required to move data (i.e., bytes) electronically from disk to memory

Magnetic Disks: Transfer Time

- The time required to move data (i.e., bytes) electronically from disk to memory
- This is sometimes expressed as **transfer rate** (bandwidth) in bytes per second

Magnetic Disks: Transfer Time

- The time required to move data (i.e., bytes) electronically from disk to memory
- This is sometimes expressed as transfer rate (bandwidth) in bytes per second

Data Transfer Time = Seek Time + Rotational Delay + Transfer Time

Sometimes the term transfer rate is used to refer to the overall data transfer time

 Addressed as large one-dimensional arrays of logical blocks

- Addressed as large one-dimensional arrays of logical blocks
- Each logical block is the smallest unit of transfer (e.g., 512 bytes)

- Addressed as large one-dimensional arrays of logical blocks
- Each logical block is the smallest unit of transfer (e.g., 512 bytes)
- The array of blocks is mapped onto disk sectors sequentially

 Sector O is the first sector of the first track of the outermost cylinder

- Sector O is the first sector of the first track of the outermost cylinder
- The mapping proceeds in order through that track

- Sector O is the first sector of the first track of the outermost cylinder
- The mapping proceeds in order through that track
- Then through the rest of tracks in the same cylinder

- Sector O is the first sector of the first track of the outermost cylinder
- The mapping proceeds in order through that track
- Then through the rest of tracks in the same cylinder
- Then through other cylinders (from the outermost to innermost)

• Disk heads "fly" over the surface on a very thin cushion of air

- Disk heads "fly" over the surface on a very thin cushion of air
- If they accidentally contact the disk then a head crash occurs

- Disk heads "fly" over the surface on a very thin cushion of air
- If they accidentally contact the disk then a head crash occurs
- Head crash may permanently damage the disk or even destroy it

- Disk heads "fly" over the surface on a very thin cushion of air
- If they accidentally contact the disk then a head crash occurs
- Head crash may permanently damage the disk or even destroy it
- To avoid such a risk, disk heads are "parked" when the computer is turned off

Magnetic Disks: Interfaces

- Hard drives may be removable as floppy disks, and some are even hot-swappable
 - they can be removed while the computer is running

Magnetic Disks: Interfaces

- Hard drives may be removable as floppy disks, and some are even hot-swappable
 - they can be removed while the computer is running
- Disk drives are connected to the computer via the I/O bus

Magnetic Disks: Interfaces

- Hard drives may be removable as floppy disks, and some are even hot-swappable
 - they can be removed while the computer is running
- Disk drives are connected to the computer via the I/O bus
- Some of the common interface formats include:
 - Enhanced Integrated Drive Electronics (EIDE);
 - Advanced Technology Attachment (ATA) and Serial ATA (SATA);
 - Universal Serial Bus (USB);
 - Fiber Channel (FC);
 - Small Computer Systems Interface (SCSI)

• The host controller is at the computer's end of the I/O bus

- The host controller is at the computer's end of the I/O bus
- The disk controller is built into the disk itself

12/20/23 75

- The host controller is at the computer's end of the I/O bus
- The disk controller is built into the disk itself
- The CPU issues commands to the host controller (typically via memory-mapped I/O ports)

12/20/23 76

- The host controller is at the computer's end of the I/O bus
- The disk controller is built into the disk itself
- The CPU issues commands to the host controller (typically via memory-mapped I/O ports)
- Data is transferred between the magnetic surface and onboard cache by the disk controller

- The host controller is at the computer's end of the I/O bus
- The disk controller is built into the disk itself
- The CPU issues commands to the host controller (typically via memory-mapped I/O ports)
- Data is transferred between the magnetic surface and onboard cache by the disk controller
- Finally, data is transferred from that cache to the host controller and the motherboard memory at electronic speeds

- Mechanical components of magnetic disks cause bottleneck
 - Seek Time
 - Rotational Delay

12/20/23 79

- Mechanical components of magnetic disks cause bottleneck
 - Seek Time
 - Rotational Delay
- To minimize data transfer time from disk we need to minimize those

 Smaller disks → lower seek time, since arms have to travel smaller distance

- Smaller disks → lower seek time, since arms have to travel smaller distance
- Fast-spinning disks → lower rotational delay

Hardware Optimization

- How can the OS help minimize data transfer time?
- Schedule disk operations so as to minimize head movement
- Lay out data on disk so that related data are located on close tracks
- Place commonly-used data on a specific portion of the disk
- Pick carefully the block size contained on each sector:
 - Too small → more seeks are needed to transfer the same amount of data
 - Too large → more internal fragmentation and space wasted

Summary

- Disks are slow devices compared to CPUs (and main memory)
- Manage those device efficiently is crucial
- Minimize seek and rotational delay on magnetic disks
- HW optimizations are limited → OS needs to take the lead here!