Apellido y Nombre:

Calificación:

Algoritmos y Estructuras de Datos I

Primer Parcial -26/9/2022

- 1. El parcial debe ser legible.
- 2. Cada ejercicio debe comenzarse en una hoja nueva (para facilitar la corrección).
- 3. Las páginas deben estar numeradas e indicar la cantidad total de páginas.
- 4. En cada página debe constar tu apellido.
- 5. Revisá antes de entregar.
- 6. Sólo podés consultar los digestos oficiales.
- 1. Considerá la expresión $\langle \sum \ i,j \ : (i < j < 2) \land (-3 < i < 2) : \ (2+i) * j \, \rangle$
 - a. Explicá si se puede aplicar el axioma de **Anidado**. Si se puede, además expresá el resultado. Si no se puede en esa expresión, se puede después de manipular el rango?
 - b. Expresá el conjunto de valores que satisfacen el rango de la expresión original.
- **2.** Considerá la siguiente especificación informal: La función f.xs debe devolver la cantidad de elementos impares en posiciones pares de la lista xs.
 - **a.** Indicá el tipo de la función f.
 - **b.** Proponé una especificación formal para f.
 - **c.** Proponé una lista xs de cuatro elementos tal que f.xs = 2.
- **3.** Considerá la siguiente especificación formal: $q.xs.ys = \langle \exists as, cs :: xs = as + ys + ys + cs \rangle$
 - \mathbf{a} . Antes de derivar, indicá la hipótesis inductiva si la derivación se hace por inducción en xs.
 - **b.** Derivá el caso inductivo hasta llegar a la modularización. No derives el caso base. Tampoco es necesario que completes la derivación.
 - c. Indicá claramente la función modularizada dando su especificación y su tipo.
- **4.** Considerá la siguiente especificación formal: $h.xs = \langle \text{Max } as, bs : xs = as + +bs \wedge pares.as : sum.as \rangle$ donde $pares.us = \langle \forall i : 0 \leqslant i < \#us : par.(us!i) \rangle$ y pueden usar la propiedad $pares.(a \triangleright as) \equiv par.a \wedge pares.as$.
 - a. Derivá el caso inductivo indicando claramente la HI antes de comenzar la derivación.
 - **b.** Indicá cuál es la función generalizada $(h_{-}qen)$ indicando su tipo y su especificación.
 - **c.** Definí h usando h_gen.
 - d. Derivá el caso inductivo de la función generalizada.