Algorithms Spring 1996

Midterm

Exam Date and Time

Thursday, May 2, 1996. 2:20PM-4:50PM.

Note

This is a closed-book exam. However, you may consult the A4-sized sheet of notes that you prepared in advance. Each problem accounts for 10 points, unless otherwise marked.

Problems

- 1. Prove by induction that any tree can be colored with two colors such that each parent is in a different color from its children.
- 2. Construct a gray code of length $\lceil \log_2 18 \rceil$ (= 5) for 18 objects. Show how the gray code is constructed from gray codes of smaller lengths.
- 3. Consider the following program segment in the celebrity algorithm.

```
i := 1;
j := 2;
next := 3;
while next <= n+1 do
    if Know[i,j] then i:= next
    else j := next;
    next := next + 1;
    end;
if i = n+1 then candidate := j
else candidate := i;</pre>
```

- (a) Find a loop invariant for the while loop that is sufficient to show that candidate will be the only possible candidate for the celebrity after the execution of the segment.
- (b) Prove that the loop invariant found above is indeed a loop invariant.

- 4. (a) What is the result of merging the following two skylines: (1,8,4,11,9,0,12,6,18,15,22) and (3,7,13,4,16,10,24). (5 points)
 - (b) Give an algorithm for merging two skylines. (10 points)
- 5. In the towers of Hanoi puzzle, there are three pegs A, B, and C, with n (generalizing the original eight) disks of different sizes stacked in decreasing order on peg A. To objective is to transfer all the disks on peg A to peg B, moving one disk at a time (from one peg to one of the other two) and never having a larger disk stacked upon a smaller one.
 - (a) Give an algorithm to solve the puzzle.
 - (b) Compute the total number of moves in the algorithm.
- 6. (a) Apply the partition algorithm in quicksort to the following array (assuming that the first element is chosen as the pivot).

ı	Q	9	5	11	0	19	1	15	7	3	13	4	10	16	14	6
	O		J	11	9	1 4	1	10	1	J	10	4	10	10	14	U

Show the result after each exchange (swap) operation.

- (b) Apply the quicksort algorithm to the above array. Show the result after each partition operation.
- 7. (a) Rearrange the following array into a heap using the buttom-up approach.

														15
2	8	5	11	9	12	1	15	7	3	13	4	10	14	6

Show the result after each element is added to the part of array that already satisfies the heap property. (5 points)

- (b) Give the buttom-up heap-building algorithm (in pseudo code). (10 points)
- 8. (a) Compute the *next* table (as in the KMP algorithm) for the string *ababcababdab*.
 - (b) Modify the KMP algorithm to find the longest prefix of string B that matches a substring of A, assuming the next table for string B is given.
- 9. Given two strings baa and bcba, compute the minimal cost matrix C[0..3, 0..4] for changing the first string character by character to the second one.