Multilayer Perceptrons (MLPs) Chapter 5

Kiran Bagale

St. Xavier's College

July, 2025

5.1 Introduction

What is a Multilayer Perceptron (MLP)?

- Extension of Rosenblatt's perceptron using multiple layers.
- Overcomes limitations of single-layer networks (linear separability).
- Core elements:
 - Nonlinear differentiable activation functions
 - One or more hidden layers
 - Fully connected neurons
- Enables learning complex decision boundaries.

MLP Architecture Signal Flow

Figure a: Architectural graph of a multilayer perceptron with two hidden layers

Figure b: Illustration of the directions of two basic signal flows in a multilayer perceptron: forward propagation of function signals and back propagation of error signals.

MLP Architecture Signal Flow Cont...

- Each neuron connects to all neurons in the previous layer.
- Function signal:
 - Propagates input forward through the network
 - Performs useful computations via activations
- Error signal:
 - Propagates backward from output
 - Used to adjust weights
- ullet Signal flow is layer-by-layer: input o hidden o output

Role of Hidden Neurons

- Hidden layers are not visible from input/output.
- Act as feature detectors.
- Perform nonlinear transformation to a **feature space**.
- Enable better class separation in pattern classification.
- Compute:
 - Nonlinear output based on inputs and weights
 - @ Gradient estimates for learning (used in backprop)

Learning Process in MLPs

Forward Phase

- Input signal is propagated forward.
- Outputs are computed layer by layer.

Backward Phase (Backpropagation)

- Error is computed at the output.
- Error signal propagates backward.
- Synaptic weights are adjusted using gradients.

Credit-Assignment Problem & Backpropagation

- How to assign responsibility to hidden neurons?
- Output errors are visible, but internal decisions are not.
- This is the credit-assignment problem.
- Backpropagation solves it:
 - Uses chain rule to distribute error to all weights.
 - Enables hidden neurons to learn indirectly from total error.
- Result: Effective supervised learning in deep networks.

5.2 BATCH LEARNING AND ON-LINE LEARNING

We train an MLP using labeled examples:

$$\mathcal{T} = \{x(n), d(n)\}_{n=1}^{N}$$

- For each training input x(n), the network produces output $y_j(n)$.
- The error signal at output neuron j is:

$$e_j(n) = d_j(n) - y_j(n)$$
 (1)

The total instantaneous error energy is:

$$e(n) = \sum_{j \in C} \frac{1}{2} e_j^2(n) \tag{2}$$

 Learning goal: minimize the error energy by adjusting synaptic weights.

Batch Learning

Definition

Adjustments to weights are made **after all training examples** have been presented (one full epoch).

Uses average error energy:

$$e_{av}(N) = \frac{1}{N} \sum_{n=1}^{N} e(n) = \frac{1}{2N} \sum_{n=1}^{N} \sum_{j \in C} \frac{1}{2} e_j^2(n)$$
 (3)

- Suitable for parallel computation.
- Provides accurate gradient estimation.
- Demands high memory/storage.
- Effective in **nonlinear regression** tasks.

Online (Stochastic) Learning

Definition

Adjustments are made **after each training example**, one-by-one within the epoch.

- Minimizes instantaneous error e(n).
- Updates are fast and memory-efficient.
- Introduces randomness (stochastic gradient descent).
- Reduces risk of local minima.
- Adapts well to redundant or nonstationary data.

Batch vs. Online Learning

Batch Learning

- Slower updates
- High memory usage
- Accurate gradients
- Parallelizable

Online Learning

- Fast, one-by-one updates
- Low memory
- Stochastic behavior
- Better for large datasets

Conclusion

Online learning is **simple**, **efficient**, **and scalable** — ideal for large pattern classification tasks.

Key Takeaways

- Both methods use gradient descent but differ in update frequency.
- Batch learning is more accurate but resource-heavy.
- Online learning is lighter, more adaptive, and widely used.
- Most practical MLP implementations prefer online/stochastic learning.

Online Learning = Real-time Learning

5.3 THE BACK-PROPAGATION ALGORITHM

- A supervised learning algorithm for training multilayer perceptrons.
- Adjusts weights by propagating the output error backward through the network.
- Based on gradient descent to minimize error.

Figure: Signal-flow graph highlighting the details of output neuron j.

Weight Update Mechanism

• Induced Local field $v_j(n)$ at input of the activation function with neuron j:

$$v_{j}(n) = \sum_{i=0}^{m} w_{ji}(n) y_{i}(n)$$
 (4)

m - total number of inputs (excluding bias)

Output:

$$y_j(n) = \varphi(v_j(n)) \tag{5}$$

Error:

$$e_j(n) = d_j(n) - y_j(n)$$
 (6)

Weight correction (Delta rule):

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_i(n) \tag{7}$$

Gradient Derivation via Chain Rule

• The back- propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight $w_{ji}(n)$, which is proportional to the partial derivative $\frac{\partial e(n)}{\partial w_{ii}(n)}$.

$$\frac{\partial e(n)}{\partial w_{ji}(n)} = \frac{\partial e(n)}{\partial e_j(n)} \cdot \frac{\partial e_j(n)}{\partial y_j(n)} \cdot \frac{\partial y_j(n)}{\partial v_j(n)} \cdot \frac{\partial v_j(n)}{\partial w_{ji}(n)}$$
(8)

$$\Rightarrow \Delta w_{ji}(n) = -\eta e_j(n) \varphi'(v_j(n)) y_i(n)$$
 (9)

 Shows dependency of weight updates on error and activation derivatives.

Sensitivity factor

- The partial derivative $\frac{\partial e(n)}{\partial w_{ji}(n)}$ represents a sensitivity factor, determining the direction of search in weight space for the synaptic weight wji.
- From equation (2)

$$\frac{\partial e(n)}{\partial e_j(n)} = e_j(n) \tag{i}$$

• From equation (1 or 6)

$$\frac{\partial e_j(n)}{\partial y_j(n)} = -1 \tag{ii}$$

• From equation (5)

$$\frac{\partial y_j(n)}{\partial v_j(n)} = \varphi'(v_j(n)) \tag{iii}$$

• From equation (4)

$$\frac{\partial v_j(n)}{\partial w_{ij}(n)} = y_i(n) \tag{iv}$$

Computing Local Gradient $\delta_j(n)$

Case 1: Output Neuron

• When neuron j is located in the output layer of the network, it is supplied with a desired response of its own.

$$\delta_j(n) = e_j(n)\varphi'(v_j(n)) \tag{10}$$

Case 2: Hidden Neuron

• For a hidden neuron, the error signal is calculated by recursively using the error signals of the neurons it connects to in the next layer.

$$\delta_j(n) = \varphi'(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$
 (11)

- $\delta_k(n)$: Local gradients of next layer
- $w_{kj}(n)$: Weights from neuron j to k

Backpropagation: Hidden Neuron Case

Consider the situation where neuron j is a hidden node. According to Eq. (10), we redefine the local gradient $\delta_j(n)$ as:

$$\delta_{j}(n) = -\frac{\partial \mathcal{E}(n)}{\partial y_{j}(n)} \cdot \frac{\partial y_{j}(n)}{\partial v_{j}(n)}$$
(12)

$$=-rac{\partial \mathcal{E}(n)}{\partial y_j(n)}\cdot \varphi_j'(v_j(n)),$$
 neuron j is hidden

To calculate the partial derivative $\partial \mathcal{E}(n)/\partial y_j(n)$, consider:

$$\mathcal{E}(n) = \frac{1}{2} \sum_{k \in C} e_k^2(n), \quad \text{neuron } k \text{ is an output node}$$
 (13)

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k} e_k(n) \cdot \frac{\partial e_k(n)}{\partial y_j(n)} \tag{14}$$

FIGURE: Signal-flow graph highlighting the details of output neuron k connected to hidden neuron j.

Partial Derivative Using Chain Rule

Using the chain rule for $\frac{\partial e_k(n)}{\partial y_j(n)}$, we rewrite Eq. (14) as:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = \sum_{k} e_k(n) \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)}$$
(15)

From above figure, for output neuron k, the error is:

$$e_k(n) = d_k(n) - y_k(n) \tag{1}$$

$$=d_k(n)-\varphi_k(v_k(n)) \tag{16}$$

Partial Derivatives of Output Node

• The derivative of the error w.r.t. local field $v_k(n)$ is:

$$\frac{\partial e_k(n)}{\partial v_k(n)} = -\varphi'_k(v_k(n)) \tag{17}$$

• The induced local field of neuron k:

$$v_k(n) = \sum_{j=0}^{m} w_{kj}(n) y_j(n)$$
 (18)

• Differentiating w.r.t. $y_j(n)$:

$$\frac{\partial v_k(n)}{\partial y_i(n)} = w_{kj}(n) \tag{19}$$

Combining the Derivatives

Using Eqs. (17) and (19) in Eq. (15), we get:

$$\frac{\partial \mathcal{E}(n)}{\partial y_j(n)} = -\sum_k e_k(n) \varphi_k'(v_k(n)) w_{kj}(n)
= -\sum_k \delta_k(n) w_{kj}(n)$$
(20)

where $\delta_k(n) = e_k(n)\varphi'_k(v_k(n))$ is the local gradient for output neuron k.

Figure: Signal-flow graph of a part of the adjoint system pertaining to back-propagation of error signals

Final Backpropagation Formula (Hidden Neuron)

Substituting Eq. (20) into Eq. (12), we get the backpropagation formula for hidden neuron j:

$$\delta_j(n) = \varphi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n),$$
 neuron j is hidden (21)

Interpretation:

- The local gradient $\delta_j(n)$ is influenced by:
 - Activation derivative $\varphi'_i(v_j(n))$
 - Weighted sum of gradients from next layer

Delta Rule: Weight Correction The correction $\Delta w_{ji}(n)$ applied to the synaptic weight from neuron i to neuron j is defined by the delta rule:

$$\Delta w_{ji}(n) = \eta \cdot \delta_j(n) \cdot y_i(n)$$
 (22)

- η : learning-rate parameter
- $\delta_j(n)$: local gradient of neuron j
- $y_i(n)$: input signal from neuron i

How to Compute the Local Gradient $\delta_j(n)$

The value of the local gradient $\delta_j(n)$ depends on the location of neuron j:

1 If neuron j is an output node:

$$\delta_j(n) = \varphi'_j(v_j(n)) \cdot e_j(n)$$

where $e_j(n)$ is the error signal for output neuron j; see Eq. (10).

② If neuron *j* is a hidden node:

$$\delta_j(n) = \varphi'_j(v_j(n)) \cdot \sum_k \delta_k(n) w_{kj}(n)$$

This involves the sum of gradients from the next layer; see Eq. (21).

A. Activation Functions

- The computation of δ for each neuron in multilayer perceptron requires knowledge of the derivative of the activation function $\varphi(\cdot)$
- ullet For the derivative to exist, the function $\varphi(\cdot)$ must be continuous
- Differentiability is the only requirement that an activation function has to satisfy
- Common example: sigmoidal nonlinearity

Logistic Function: Definition

Logistic Function (General Form)

$$\varphi_j(v_j(n)) = \frac{1}{1 + \exp(-av_j(n))}, \quad a > 0$$

- $v_i(n)$ is the induced local field of neuron j
- a is an adjustable positive parameter
- Output amplitude lies inside the range $0 \le y_i \le 1$

Logistic Function: Derivative

Derivative of Logistic Function

$$\varphi_j'(v_j(n)) = \frac{a \exp(-av_j(n))}{[1 + \exp(-av_j(n))]^2}$$

Simplified Form

With
$$y_j(n) = \varphi_j(v_j(n))$$
:

$$\varphi_j'(v_j(n)) = ay_j(n)[1 - y_j(n)]$$

Local Gradient: Output Layer

For Output Neuron *j*

$$\delta_j(n) = e_j(n)\varphi'_j(v_j(n))$$

$$= a[d_j(n) - o_j(n)]o_j(n)[1 - o_j(n)]$$

Where:

- $o_i(n)$ is the function signal at the output of neuron j
- $d_i(n)$ is the desired response

Local Gradient: Hidden Layer

For Hidden Neuron j

$$\delta_j(n) = \varphi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$

$$= ay_j(n)[1 - y_j(n)] \sum_k \delta_k(n) w_{kj}(n)$$

- The summation is over all neurons k in the next layer
- $w_{kj}(n)$ represents the weight from neuron j to neuron k

Hyperbolic Tangent Function: Definition

Hyperbolic Tangent Function (General Form)

$$\varphi_j(v_j(n)) = a \tanh(bv_j(n))$$

- a and b are positive constants
- The hyperbolic tangent function is just the logistic function rescaled and biased

Hyperbolic Tangent: Derivative

Derivative Forms

$$arphi_j'(v_j(n)) = ab \mathrm{sech}^2(bv_j(n))$$

$$= ab(1 - \tanh^2(bv_j(n)))$$

$$= \frac{b}{a}[a - y_j(n)][a + y_j(n)]$$

Local Gradient: Hyperbolic Tangent (Output)

For Output Neuron *j*

$$\delta_j(n) = e_j(n)\varphi'_j(v_j(n))$$

$$= \frac{b}{a}[d_j(n) - o_j(n)][a - o_j(n)][a + o_j(n)]$$

Local Gradient: Hyperbolic Tangent (Hidden)

For Hidden Neuron j

$$\delta_j(n) = \varphi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$

$$= \frac{b}{a}[a - y_j(n)][a + y_j(n)] \sum_k \delta_k(n) w_{kj}(n)$$

Important Properties of Sigmoid Functions

- The derivative $\varphi_j'(v_j(n))$ attains its maximum value at $y_j(n)=0.5$ for logistic function
- Minimum value (zero) occurs at $y_i(n) = 0$ or $y_i(n) = 1.0$
- ullet Weight changes are proportional to the derivative $arphi_i'(v_j(n))$
- Synaptic weights change most for neurons where function signals are in their midrange
- This feature contributes to the stability of backpropagation learning algorithm

Computational Advantage

Key Benefit

Using equations for logistic function and hyperbolic tangent function, we may calculate the local gradient δ_j without requiring explicit knowledge of the activation function.

- Simplifies implementation
- Reduces computational complexity
- Enables efficient backpropagation

B. Learning Rate Trade-offs

- Small learning rate η :
 - Smaller changes to synaptic weights
 - Smoother trajectory in weight space
 - Slower rate of learning
- Large learning rate η :
 - Faster learning convergence
 - Risk of network instability (oscillatory behavior)
 - Large weight changes may cause instability

Solution: Incorporate momentum to balance speed and stability

The Generalized Delta Rule with Momentum

The momentum-enhanced weight update rule:

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \eta \delta_j(n) y_i(n)$$
 (2)

where:

- ullet α is the **momentum constant** (usually positive)
- ullet η is the learning rate
- $\delta_j(n)$ is the local gradient
- $y_i(n)$ is the input signal

Note: This includes the standard delta rule as a special case when lpha=0

Momentum Feedback Loop

The momentum constant α controls the feedback loop around $\Delta w_{ji}(n)$

Momentum as Exponentially Weighted Sum

Solving the difference equation yields:

$$\Delta w_{ji}(n) = \eta \sum_{t=0}^{n} \alpha^{n-t} \delta_j(t) y_i(t)$$
 (3)

Equivalently:

$$\Delta w_{ji}(n) = -\eta \sum_{t=0}^{n} \alpha^{n-t} \frac{\partial \mathcal{E}(t)}{\partial w_{ji}(t)}$$
 (4)

Key insight: Current weight adjustment is an exponentially weighted sum of all past gradient information

Convergence Requirements

For the exponentially weighted time series to be **convergent**:

Momentum Constraint

The momentum constant must satisfy: $0 \le |\alpha| < 1$

- When $\alpha = 0$: Standard backpropagation (no momentum)
- $\alpha > 0$: Positive momentum (typical case)
- α < 0: Negative momentum (rarely used in practice)

How Momentum Affects Learning

Acceleration Effect

When $\frac{\partial \mathcal{E}(t)}{\partial w_{ji}(t)}$ has the **same sign** on consecutive iterations:

- Exponentially weighted sum grows in magnitude
- Weight is adjusted by a large amount
- Accelerates descent in steady downhill directions

Stabilization Effect

When $\frac{\partial \mathcal{E}(t)}{\partial w_{ji}(t)}$ has **opposite signs** on consecutive iterations:

- Exponentially weighted sum shrinks in magnitude
- Weight is adjusted by a small amount
- Stabilizes oscillating directions

Advantages of Momentum in Learning

- Speed vs. Stability Balance
 - Enables use of larger learning rates
 - Maintains stability through momentum damping
- 2 Escape Local Minima
 - Prevents termination in shallow local minima
 - Momentum carries optimization past small barriers
- Adaptive Behavior
 - Accelerates in consistent gradient directions
 - Dampens oscillations in inconsistent directions

Practical Aspects

Connection-Dependent Learning Rates

In practice, learning rate should be connection-dependent: η_{ji}

Selective Weight Updates

- Can choose to make all synaptic weights adjustable
- Or constrain some weights to remain fixed during adaptation
- Fixed weights: set $\eta_{ji} = 0$ for specific connections

Error Propagation

Error signals back-propagate through the network normally, but fixed weights remain unaltered

C. Stopping Criteria

Fundamental Challenge

The backpropagation algorithm cannot be shown to converge in general, and there are no well-defined criteria for stopping its operation.

- No guaranteed convergence to global minimum
- Need practical termination conditions
- Each criterion has its own merits and drawbacks
- Must balance training time vs. performance

Goal: Develop reasonable criteria to terminate weight adjustments based on properties of local/global minima

Minimum Conditions

For a weight vector \mathbf{w}^* to be a minimum (local or global):

Necessary Condition

The gradient vector $\mathbf{g}(\mathbf{w})$ (first-order partial derivatives) of the error surface must be zero:

$$\mathbf{g}(\mathbf{w}) = \mathbf{0} \quad \text{at} \quad \mathbf{w} = \mathbf{w}^* \tag{5}$$

Stationarity Property

The cost function $\mathcal{E}_{av}(\mathbf{w})$ is stationary at $\mathbf{w} = \mathbf{w}^*$

These mathematical properties form the basis for practical stopping criteria.

Euclidean Norm of Gradient Vector

Gradient-Based Convergence Criterion

The backpropagation algorithm is considered to have converged when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold.

Mathematical formulation:

$$\|\mathbf{g}(\mathbf{w})\| \le \epsilon_{\mathbf{g}} \tag{6}$$

where ϵ_g is a small positive threshold.

Drawbacks

- Learning times may be long for successful trials
- Requires computation of the gradient vector $\mathbf{g}(\mathbf{w})$
- Additional computational overhead

Average Squared Error Monitoring

Error-Based Convergence Criterion

The backpropagation algorithm is considered to have converged when the absolute rate of change in the average squared error per epoch is sufficiently small.

Mathematical formulation:

$$\left| \frac{\Delta \mathcal{E}_{\mathsf{av}}}{\Delta \mathsf{epoch}} \right| \le \epsilon_{\mathsf{e}} \tag{7}$$

Typical Threshold Values

- Range: 0.1 to 1 percent per epoch
- Sometimes as small as 0.01 percent per epoch

Risk

May result in **premature termination** of the learning process

The Most Practical Approach

Generalization-Based Criterion

After each learning iteration, test the network's **generalization performance**. Stop learning when:

- Generalization performance is adequate, OR
- Generalization performance has peaked

Advantages

- Theoretically supported
- Directly addresses the ultimate goal of learning
- Prevents overfitting
- Most practical for real applications

Implementation: Use a separate validation/test dataset to monitor performance during training

Summary of Approaches

Criterion	Advantages	Disadvantages
Gradient Magnitude	Theoretically soundDirect measure of optimality	Computational overheadLong training times
Error Change Rate	Simple to implement Low computational cost	Risk of premature stoppingArbitrary thresholds
Generalization	 Most practical Prevents overfitting Goal-oriented	Requires validation data More complex setup

Recommended Approach

Best Practice Strategy

Combine multiple criteria for robust stopping:

- Primary: Monitor generalization performance
 - Use validation set after each epoch
 - Track validation error trend
- Secondary: Set maximum training epochs
 - Prevents infinite training
 - Computational budget control
- **Optional:** Monitor training error change rate
 - Additional safety check
 - Early detection of convergence issues

Stop when: Validation error increases consistently OR maximum epochs reached OR training error change becomes negligible

Implementation Details

Validation-Based Early Stopping

- Split data: Training / Validation / Test
- Train on training set
- Second Second
- Track best validation performance
- \odot Stop if validation error increases for k consecutive epochs

Key Parameters

- **Patience:** Number of epochs to wait (k = 5 20)
- Validation frequency: Every epoch vs. every *n* epochs
- Improvement threshold: Minimum improvement to reset patience

This approach provides the best balance between training effectiveness and generalization performance.

July, 2025

Summary of Back-Propagation

- Weight updates aim to minimize error via gradient descent.
- Key components: local field, activation function, local gradient, error signal.
- Different formulas for hidden vs. output neurons.
- Credit assignment for hidden layers via recursive error propagation.

5.4 The XOR Problem

- XOR = Exclusive-OR logic gate
- Output is 1 when inputs differ; otherwise, output is 0.
- Input-output pairs:

$$0 \oplus 0 = 0$$

$$0 \oplus 1 = 1$$

$$1 \oplus 0 = 1$$

$$1 \oplus 1 = 0$$

• These input pairs form the four corners of a unit square.

Why a Single-Layer Perceptron Fails?

A perceptron creates a linear decision boundary:

$$y = sign(w^T x + b)$$

- XOR classes are not linearly separable.
- No single straight line can separate classes 0 and 1.

July, 2025

Solving XOR with a Hidden Layer

- Use a multilayer perceptron with one hidden layer.
- Hidden layer has 2 neurons; output layer has 1 neuron.
- Each neuron is a McCulloch–Pitts model (threshold activation).
- ullet Inputs: 0 and 1 are represented by logic levels 0 and +1.

Neuron Weights and Biases

Hidden Neuron 1: $w_{11}=w_{12}=+1, \quad b_1=-\frac{3}{2}$ Hidden Neuron 2: $w_{21}=w_{22}=+1, \quad b_2=-\frac{1}{2}$ Output Neuron: $w_{31}=-2, \quad w_{32}=+1, \quad b_3=-\frac{1}{2}$

FIGURE 5.4 (b) Signal-flow graph of the network.

How the Network Solves XOR

- ullet (0,0): Both hidden neurons off o output off (0)
- (1,1): Both hidden neurons on \rightarrow output off (0)
- ullet (0,1) or (1,0): Only bottom hidden neuron on o output on (1)
- Top hidden neuron is inhibitory ($w_{31} = -2$), bottom is excitatory ($w_{32} = +1$)

FIGURE 5.5 (a) Decision boundary constructed by hidden neuron 1 of the network in Fig. 5.4.

FIGURE 5.5(b) Decision boundary constructed by hidden neuron 2 of the network.

Frame Title

FIGURE 5.5(c) (c) Decision boundaries constructed by the complete network.

Conclusion: XOR is solved using a non-linear mapping via hidden neurons.

Thank You!