Physics Presentation

by: Anirban Mukherjee (20211012)

Problem Statement:

Charged Ring as an Electrostatic Lens

One wants to build a device to focus electrons—an electrostatic lens. Let us consider the following construction. The ring is situated perpendicularly to the z-axis, as shown in Figure. We have a source that produces on-demand packets of non-relativistic

electrons. Kinetic energy of these electrons is $E = mv^2/2$ (v is velocity) and they leave the source at precisely controlled moments. The system is programmed so that the ring is charge-neutral most of the time, but its charge becomes q when electrons are closer than a distance d/2 ($d \ll R$) from the plane of the ring (shaded region in Figure, called "active region"). Assume that charging and de-charging processes are instantaneous and the electric field "fills the space" instantaneously as well. One can neglect magnetic fields and assume that the velocity of electrons in the z-direction is constant. Moving electrons do not perturb the charge distribution on the ring

Determine the focal length f of this lens. Assume that $f \gg d$. Assume that before reaching the "active region" the electron packet is parallel to the z-axis and $r \ll R$. The sign of q is such so that the lens is focusing.

(Source: IPho 2021 Physics Question Paper)

Solution:

We know, the electric field due to a charged ring
$F_{z} = \frac{K_{9}z}{(z^{2} + g^{2})^{3/2}} = \frac{K_{9}z}{(z^{3} + g^{2})^{3/2}} = K_{9$
As Z << R, we say
P3 7

Considu the pill-box.	(Considering charge on hing to be + ve)
	For this surface, Quet = D } as no charge is inclosed }
: \Qz = \Qx	Qn = Flor du to Radial j
$2(E_Z)(\pi \kappa^1) = (E_A)(2\pi \kappa)(2z)$ $=) E_A = (E_Z) \kappa = \frac{\kappa_0 \kappa}{2z}$ $= \frac{\kappa_0 \kappa}{2z}$	Puccent Jugar
$F_{\Lambda} = \frac{K_{9}\Lambda}{2R^{3}}$	

As the lens is converging nature, so the hadial force on electron must be funded i.e. Ex must be radially outwood
LANDS CONDUCTOR WITH CONTROL OF THE STATE OF
For Quet = 0, the charge on King must be -ve.
A PRINCIPAL OF THE PRIN
ax = Kyse Active Region
ak3m VV
Vn = (an) (t) = (an) (d) n]
The deflection O is very small.
ton0 = 0 = V4 - (i)

Also, from the original set-up	
tand = 1 - W	1 1 20
Equating both of them, (ii) & (i)	- f - ·
1 = (Vx)	1-5

) f=	(V)(L) - (VA) -	(uh) $(au)(\frac{d}{v})$	- (K9Al (d) (283m)	= 2R mv² Kged
9 t=	4R (2) (9 cd)	nv') =	16 x & R & E 9 cd (Aus)	$ \left[F = \lim_{n \to \infty} \frac{1}{2} \right] $ given