Композиции классификаторов (часть 1)

K.B.Воронцов, A.B.Зухба vokov@forecsys.ru a__l@mail.ru

сентябрь 2016

Содержание

- Папоминание
 - Задачи обучения композиций
 - Бэггинг и метод случайных подпространств
 - Простое и взвешенное голосование
- 2 Разложения ошибки на смещение и разброс
 - Основные понятия и определения
 - Частные случаи
 - Композиции

Определение композиции

$$X^\ell = (x_i, y_i)_{i=1}^\ell \subset X \times Y$$
 — обучающая выборка, $y_i = y^*(x_i)$;

$$a(x) = C(b(x))$$
 — алгоритм, где

 $b: X \to R$ — базовый алгоритм (алгоритмический оператор),

 $C \colon R \to Y$ — решающее правило,

R — пространство оценок;

Определение

Композиция базовых алгоритмов b_1, \ldots, b_T

$$a(x) = C(F(b_1(x), \ldots, b_T(x))),$$

где $F: R^T \to R$ — корректирующая операция.

Зачем вводится R?

В задачах классификации множество отображений $\{F\colon R^T\to R\}$ существенно шире, чем $\{F\colon Y^T\to Y\}$.

Примеры пространств оценок и решающих правил

• Пример 1: классификация на 2 класса, $Y = \{-1, +1\}$:

$$a(x) = \operatorname{sign}(b(x)),$$

где
$$R=\mathbb{R},\;\;b\colon X o\mathbb{R},\;\;\mathcal{C}(b)\equiv \mathsf{sign}(b).$$

ullet Пример 2: классификация на M классов $Y = \{1, \dots, M\}$:

$$a(x) = \arg \max_{y \in Y} b_y(x),$$

где
$$R=\mathbb{R}^M$$
, $b\colon X o \mathbb{R}^M$, $C(b_1,\ldots,b_M)\equiv rg\max_{y\in Y}b_y.$

● Пример 3: регрессия, $Y = R = \mathbb{R}$: $C(b) \equiv b$ — решающее правило не нужно.

Примеры корректирующих операций

Пример 1: Простое голосование (Simple Voting):

$$F(b_1(x),\ldots,b_T(x))=\frac{1}{T}\sum_{t=1}^T b_t(x), \quad x\in X.$$

• Пример 2: Взвешенное голосование (Weighted Voting):

$$F(b_1(x),\ldots,b_T(x)) = \sum_{t=1}^T \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in \mathbb{R}.$$

• Пример 3: Смесь алгоритмов (Mixture of Experts)

$$F(b_1(x),\ldots,b_T(x)) = \sum_{t=1}^T g_t(x)b_t(x), \quad x \in X, \quad g_t \colon X \to \mathbb{R}.$$

Определение бинарного решающего дерева

Бинарное решающее дерево — алгоритм классификации a(x), задающийся бинарным деревом:

- 1) $\forall v \in V_{ exttt{внутр}}
 ightarrow \;$ предикат $eta_v : X
 ightarrow \{0,1\}$, $eta_v \in \mathscr{B}$
- 2) $\forall v \in V_{\mathsf{лист}} \to \mathsf{\,umg\,\, класса\,\,} c_v \in Y.$

```
1: v := v_0;
```

2: пока
$$v \in V_{\mathsf{внутр}}$$

3: если
$$\beta_{v}(x) = 1$$
 то

4: переход вправо:

$$v := R_v$$
;

- 5: иначе
- 6: переход влево:

$$v := L_v$$
;

7: **вернуть** *c_v*.

Линейные алгоритмы

- Задача классификации с двумя классами, $Y = \{-1, +1\};$ обучающая выборка $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$; алгоритм классификации a(x, w) = sign f(x, w), f(x, w) — дискриминантная функция, w — вектор параметров.
- f(x, w) = 0 разделяющая поверхность; $M_i(w) = y_i f(x_i, w) - oтcтyп \text{ (margin) объекта } x_i;$ $M_i(w) < 0 \iff$ алгоритм a(x, w) ошибается на x_i .
- Минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \quad \leqslant \quad \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

функция потерь $\mathscr{L}(M)$ невозрастающая, неотрицательная.

Непрерывные аппроксимации пороговой функции потерь

Пример решающего дерева

Задача Фишера о классификации цветков ириса на 3 класса, в выборке по 50 объектов каждого класса, 4 признака.

На графике: в осях двух самых информативных признаков (из 4) два класса разделились без ошибок, на третьем 3 ошибки.

Стохастические методы построения композиций

Чтобы алгоритмы в композиции были различными

- их обучают по (случайным) подвыборкам,
- либо по (случайным) подмножествам признаков.

Первую идею реализует bagging (bootstrap aggregation) [Breiman, 1996], причём подвыборки берутся длины ℓ с возвращениями, как в методе bootstrap.

Вторую идею реализует RSM (random subspace method) [Duin, 2002].

Совместим обе идеи в одном алгоритме.

 $\mathscr{F}=\{f_1,\ldots,f_n\}$ — признаки, $\mu(\mathscr{G},U)$ — метод обучения алгоритма по подвыборке $U\subseteq X^\ell$, использующий только признаки из $\mathscr{G}\subseteq \mathscr{F}$.

Бэггинг и метод случайных подпространств

```
Вход: обучающая выборка X^{\ell}; параметры: T
    \ell' — длина обучающих подвыборок;
     n' — длина признакового подописания;
    \varepsilon_1 — порог качества базовых алгоритмов на обучении;
    \varepsilon_2 — порог качества базовых алгоритмов на контроле;
Выход: базовые алгоритмы b_t, t = 1, ..., T;
 1: для всех t = 1, ..., T
       U := \mathsf{случайноe}\ \mathsf{подмножество}\ X^\ell\ \mathsf{длины}\ \ell';
     \mathscr{G} := \mathsf{случайное} \ \mathsf{подмножество} \ \mathscr{F} \ \mathsf{длины} \ \mathsf{n'};
 3:
 4:
      b_t := \mu(\mathscr{G}, U);
       если Q(b_t,U)>arepsilon_1 или Q(b_t,X^\ell\setminus U)>arepsilon_2 то
 5:
          не включать b_t в композицию;
 6:
Композиция — простое голосование: a(x) = C\left(\sum_{t=1}^{T} b_t(x)\right).
```

Сравнение: boosting — bagging — RSM

- Бустинг лучше для больших обучающих выборок и для классов с границами сложной формы.
- Бэггинг и RSM лучше для коротких обучающих выборок.
- RSM лучше в тех случаях, когда признаков больше, чем объектов, или когда много неинформативных признаков.
- Бэггинг и RSM эффективно распараллеливаются, бустинг выполняется строго последовательно.

И ещё несколько эмпирических наблюдений:

- Веса алгоритмов не столь важны для выравнивания отступов.
- Веса объектов не столь важны для обеспечения различности.
- Не удаётся строить короткие композиции из «сильных» алгоритмов типа SVM (только длинные из слабых).

Возможно ли строить композиции проще и аккуратнее?

Простое голосование в задаче классификации

Возьмём
$$Y = \{\pm 1\}$$
, $F(b_1, \ldots, b_T) = \frac{1}{T} \sum_{t=1}^T b_t$, $C(b) = \operatorname{sign}(b)$.

Функционал качества композиции — число ошибок на обучении:

$$Q(a,X^{\ell}) = \sum_{i=1}^{\ell} [y_i a(x_i) < 0] = \sum_{i=1}^{\ell} [\underbrace{y_i b_1(x_i) + \dots + y_i b_T(x_i)}_{M_{iT}} < 0],$$

$$M_{it} = y_i b_1(x_i) + \cdots + y_i b_t(x_i) - \mathit{отступ} \ (\mathsf{margin}) \ \mathsf{объекта} \ x_i.$$

Эвристика: чтобы b_{t+1} компенсировал ошибки композиции,

$$Q(b, U) = \sum_{x_i \in U} [y_i b(x_i) < 0] \rightarrow \min_b,$$

где
$$U = \{x_i \colon M_0 < M_{it} \leqslant M_1\},$$
 $M_0, \ M_1$ — параметры метода обучения.

Подбор параметров M_0 и M_1

Упорядочим объекты по возрастанию отступов M_{it} :

Принцип максимизации и выравнивания отступов.

Два случая, когда b_{t+1} на объекте x_i обучать не надо:

 $M_{it} < M_0$, $i < \ell_0$ — объект x_i шумовой;

 $M_{it} > M_1$, $i > \ell_1$ — объект x_i уже надёжно классифицируется.

Основные понятия и определения

Задача регрессии: $Y = \mathbb{R}$

Квадратичная функция потерь: $L(y, a) = (a(x) - y)^2$ Вероятностная постановка: $X^{\ell} = (x_i, y_i)_{i=1}^{\ell} \sim p(x, y)$

Метод обучения: μ : $2^X o A$, т.е. выборка o алгоритм

Среднеквадратичный риск:

$$R(a) = E_{x,y}(a(x) - y)^{2} = \int_{X} \int_{Y} (a(x) - y)^{2} p(x, y) dx dy$$

Минимум среднеквадратичного риска, «недостижимый идеал»:

$$a^*(x) = \mathsf{E}(y|x) = \int_Y y \, p(y|x) \, dx$$

Основная мера качества метода обучения μ :

$$Q(\mu) = \mathsf{E}_{X^{\ell}} \mathsf{E}_{x,y} (\mu(X^{\ell})(x) - y)^{2}$$

Разложение ошибки на шум, вариацию и смещение

Теорема

В случае квадратичной функции потерь для любого μ

$$Q(\mu) = \underbrace{\mathsf{E}_{\mathsf{x},y} \big(a^*(x) - y \big)^2}_{\text{шум (noise)}} + \underbrace{\mathsf{E}_{\mathsf{x},y} \big(\bar{a}(x) - a^*(x) \big)^2}_{\text{смещение (bias)}} + \underbrace{\mathsf{E}_{\mathsf{x},y} \mathsf{E}_{X^\ell} \big(\mu(X^\ell)(x) - \bar{a}(x) \big)^2}_{\text{разброс (variance)}},$$

$$ar{a}(x) = \mathsf{E}_{X^\ell}ig(\mu(X^\ell)(x)ig)$$
 — средний ответ обученного алгоритма

Mетод k ближайших соседей

Вероятностная модель данных: $p(y|x) = f(x) + \mathcal{N}(0, \sigma^2)$ Метод k ближайших соседей:

$$a(x) = \frac{1}{k} \sum_{j=1}^{k} y(x^{(j)}),$$

где
$$x^{(j)} - j$$
-й сосед объекта x $a^*(x) = f(x)$ — истинная зависимость $\bar{a}(x) = \frac{1}{k} \sum_{i=1}^k f(x^{(j)})$ — средний ответ

Разложение bias-variance:

$$Q(\mu) = \underbrace{\sigma^2}_{\text{шум}} + \underbrace{\mathsf{E}_{\mathsf{x},y} \Big(\bar{a}(\mathsf{x}) - f(\mathsf{x}) \Big)^2}_{\mathsf{смещение}} + \underbrace{\frac{1}{k} \sigma^2}_{\mathsf{разброс}}$$

Простое голосование

Обучение базовых алгоритмов по случайным подвыборкам:

$$b_t = \mu(X_t^k), \ X_t^k \sim X^\ell, \ t = 1, \dots, T$$

Композиция — простое голосование:
$$a_T(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

Смещение композиции совпадает со смещением отдельного базового алгоритма:

bias =
$$\mathsf{E}_{x,y} \Big(a^*(x) - \mathsf{E}_{X^\ell} b_t(x) \Big)^2$$

Разброс состоит из дисперсии и ковариации:

$$\begin{split} \text{variance} &= \frac{1}{T} \mathsf{E}_{\mathsf{x}, \mathsf{y}} \mathsf{E}_{X^\ell} \Big(b_t(\mathsf{x}) - \mathsf{E}_{X^\ell} b_t(\mathsf{x}) \Big)^2 + \\ &+ \frac{T-1}{T} \mathsf{E}_{\mathsf{x}, \mathsf{y}} \mathsf{E}_{X^\ell} \Big(b_t(\mathsf{x}) - \mathsf{E}_{X^\ell} b_t(\mathsf{x}) \Big) \Big(b_s(\mathsf{x}) - \mathsf{E}_{X^\ell} b_s(\mathsf{x}) \Big) \end{split}$$