Segurança da Informação – GBC083

Prof. Rodrigo Sanches Miani – FACOM/UFU

Segurança na camada de transporte

Segurança da Informação – GBC083

Objetivo

Estudar o protocolo SSL/TLS, utilizado para prover segurança no nível de transporte.

Um dos recursos mais utilizados nas transações da Web.

Tópicos

I. Introdução

2. SSL

- Breve histórico
- Camadas
- Sessão SSL
- Protocolos (handshake, change cypher, alert e record)

Introdução

Segurança da Informação- GBC083

Introdução

- Praticamente todas as empresas, a maioria das agências do governo, e muitos indivíduos, agora possuem Websites;
- O número de indivíduos e empresas com acesso à Internet não para de crescer e praticamente todos usam navegadores Web;
- Comércio eletrônico é um dos inúmeros exemplos de aplicação desse cenário;
- Internet e a Web são extremamente vulneráveis a comprometimentos de vários tipos.

Introdução

Desafios da segurança na Web:

- A Web é uma grande plataforma de negócios.
- Navegadores Web são fáceis de usar, portais Web são fáceis de desenvolver, servidores Web são fáceis de instalar... garantir segurança é complexo.
- Um servidor Web, caso explorado, pode ser a porta de entrada para o restante da rede.
- Usuários de sistemas Web são, em geral, leigos ou pouco capacitados para uso de informática.

Ameaças na Web

	Ameaças	Consequências	Contramedidas
Integridade	 Modificação de dados do usuário Navegador cavalo de Tróia Modificação de memória Modificação de tráfego de mensagem em trânsito 	 Perda de informações Comprometimento da máquina Vulnerabilidade a todas as outras ameaças 	Checksums criptográficos
Confidencialidade	 Espionagem na rede Roubo de informações do servidor Roubo de dados do cliente Informações sobre configuração de rede Informações sobre qual cliente fala com o servidor 	■ Perda de informações ■ Perda de privacidade	Criptografia, proxies Web
Negação de serviço	 Encerramento de threads do usuário Inundação da máquina com solicitações falsas Preenchimento do disco ou da memória Isolamento da máquina por ataques de DNS 	 Interrupção Incômodo Impede que usuário realize o trabalho 	Difícil de impedir
Autenticação	Personificação de usuários legítimosFalsificação de dados	Má representação do usuárioCrença de que informações falsas são válidas	Técnicas criptográficas

Soluções para Segurança na Web

- ▶ IPsec segurança no nível de rede:
 - Pode ser transparente para usuários finais.
 - Filtra o tráfego que necessita de segurança.
- ▶ SSL/TLS segurança na camada de transporte:

(b) Transport level

Breve histórico

Segurança da Informação – GBC083

SSL/TLS

- SSL (Secure Socket Layer) foi criado pela Netscape;
- A versão 3 foi publicada como um Internet draft;
- ► IETF formou grupo de trabalho denominado TLS (Transport Layer Security), que publicou a primeira versão do TLS;
- ▶ TLSvI é praticamente um SSLv3.1.

TLS (Transport Layer Security)

- Trabalho da IETF para padronizar o SSL.
- ▶ TLS vs 1: especificado no RFC 2246 (1999).
- ▶ TLS vs 1.2 especificado no RFC 5246 (2008).
- TLS vs 1.3: finalizado! RFC 8446
 - https://tools.ietf.org/html/rfc8446
 - Diversas modificações:
 - https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
 - https://kinsta.com/blog/tls-1-3/

TLS 1.2 x TLS 1.3

- Desempenho do handshake é bem melhor...
 - Número de passos diminuiu e agora parâmetros enviados pelo servidor podem estar cifrados.
- Remoção de funções inseguras.
 - ▶ MD5, SHA-I, DES, 3DES...
 - RSA Key Transport!!
 - https://www.theinquirer.net/inquirer/news/2343117/ietf-drops-rsa-key-transport-from-ssl
 - https://blog.trailofbits.com/2019/07/08/fuck-rsa/

HTTPS

- HTTPS = HTTP over SSL.
- Combinação de HTTP e SSL para prover comunicação segura entre navegadores e servidores.
- ▶ URL iniciada por "HTTPS" ao invés de "HTTP".
- Normalmente, usa porta 443, ao invés da porta 80.

Camadas

Segurança da Informação – GBC083

SSL/TLS

- SSL/TLS provê, de modo geral, as seguintes soluções de segurança para uma conexão entre duas aplicações (camada de transporte – TCP):
 - Confidencialidade.
 - Integridade.
 - Autenticação.

SSL não é um protocolo isolado, mas duas camadas de protocolo.

SSL

▶ SSL tem duas camadas de protocolos;

Sessão SSL

Segurança da Informação- GBC083

SSL

Dois conceitos importantes:

- Conexão: relações ponto-a-ponto estabelecidas na camada de transporte. Dentro do escopo do SSL/TLS, toda conexão tem uma sessão.
- Sessão: associação entre cliente e servidor criada a partir de um processo de *handshaking SSL/TLS*. Vários parâmetros de criptografia são definidos em uma sessão, podendo ser usados em várias conexões.

Sessão SSL

 Conexões futuras podem utilizar os mesmos dados de uma sessão já estabelecida;

Parâmetros:

- Identificador da sessão.
- Certificado do par: o certificado X.509 do peer. Pode ser null.
- Método de compressão.
- Algoritmo de criptografia (ex.:AES).
- ▶ Algoritmo de hash (ex.: SHA-I).
- Senha de 48 bytes compartilhada entre cliente e servidor (segredo mestre).

Funcionamento do SSL/TLS

Segurança da Informação – GBC083

Ideia sobre o funcionamento do SSL/TLS

- A seguir veremos o funcionamento do SSLv3;
- ▶ Ele se assemelha bastante a padronização TLS;
- Contudo, a recomendação atual é não usar o SSLv3 e seguir as recomendações propostas no TLSv1.0 e superiores.
 - Sempre que possível, usar o TLS v I.3.

SSL

SSL: Handshake protocol

- É a parte mais complexa do SSL;
- Envolve uma série de mensagens trocadas entre servidor e cliente para autenticação de ambos e troca de parâmetros de criptografia e verificação de integridade;
- Ocorre antes que qualquer dado da aplicação seja trocado entre cliente e servidor;

Podemos dividir o handshake em 4 fases.

Client_hello:

- Versão do protocolo SSL.
- Random (número aleatório junto de um carimbo de tempo).
- Id da sessão.
- Parâmetros de cifragem (troca de chaves, algoritmos de criptografia, hash, tamanho das chaves, tamanho do IV...).
- Método de compressão.

Server_hello:

- Responde a requisição do cliente, escolhendo uma opção entre as propostas;
- Tem os mesmos parâmetros do client_hello.

- Autenticação do servidor e troca de chaves.
 - Servidor envia seu certificado no formato X.509.
 - 2. Servidor envia mensagem server_key_exchange (não é exigida caso a troca de chaves seja feita usando o RSA).
 - 3. Servidor pode requerer um certificado do cliente (certificate_request).
 - 4. Mensagem server_done indica que servidor terminou seu trabalho.

- Autenticação do cliente e troca de chaves.
 - Cliente verifica se as mensagens enviadas pelo servidor na fase 2 são satisfatórias.
 - Em caso positivo, prossegue com a fase 3.
 - Se o servidor requisitou um certificado, ele é enviado.
 - Cliente envia o seu segredo (client_key_exchange).
 - Cliente pode oferecer verificação explícita de seu certificado (certificate_verify).

client_key_exchange

o cliente gera um segredo (pre_master_secret) de 48 bytes e o cifra com a chave pública do servidor (no caso do RSA)

certificate_verify

 Envia um código de hash das mensagens trocadas durante o handshake cifrado com a chave privada do cliente

```
CertificateVerify.signature.sha_hash =
   SHA(master_secret || pad_2 || SHA(handshake_messages ||
        master_secret || pad_1));
```


- Cliente e servidor confirmam as especificações de criptografia que serão utilizadas e encerram o handshake;
- O conteúdo da mensagem "finished" é o seguinte valor de hash:

A partir daí, dados de aplicação podem ser trocados de maneira cifrada.

- Importante: a fase 4 é a primeira onde as mensagens são trafegadas cifradas;
- Ou seja, após o envio de change_cipher_spec a mensagem finished será enviada cifrada e autenticada (uso da função de hash) com os parâmetros recém criados;
- Caso ambos os lados verifiquem que está tudo certo, a comunicação começa.

Handshake protocol: 1.2 x 1.3

Handshake protocol: chave mestre (segredo compartilhado)

 O segredo mestre compartilhado é um valor de 48 bytes (384 bits) de uso único gerado para esta sessão por meio da troca de chave segura;

- A criação é feita em dois estágios:
 - Primeiro, um pre_master_secret é trocado isso aconteceu na fase 3 (client_key_exchange);
 - 2. Segundo, o master_secret é calculado pelas duas partes.

Handshake protocol: chave mestre (segredo compartilhado)

Handshake protocol: criação dos valores aleatórios

Ao longo do handshake, cliente e servidor usarão os parâmetros trocados para criar os números aleatórios que serão usados como chave dos algoritmos simétricos. Isso é feito da seguinte forma:

Handshake protocol: criação dos valores aleatórios

- Seis chaves em sequência são geradas:
 - 2 chaves para cifrar/decifrar;
 - 2. 2 valores de MAC (verificação de integridade serão usados a seguir)
 - 3. 2 valores para vetores de inicialização
- A função anterior (key_block) é executada em loop até atingir o tamanho necessário para as seis chaves.

SSL

Change cipher spec protocol

- Usado para mudar/confirmar parâmetros de criptografia utilizados (fase 4 do handshake);
- Consiste em uma única mensagem;
 - Somente um byte com valor 1.
- Ao receber a mensagem com valor I, o receptor dela recolhe os parâmetros que estão no estado pending e atribui para o estado current.

SSL

Alert protocol

- Utilizado para avisar o host de situações importantes (advertência ou fatal). Exemplos:
 - Mensagem não esperada.
 - MAC incorreto recebido.
 - Falha no handshake.
 - ▶ Etc...

Dois bytes:

- Primeiro advertência (certificado revogado, certificado expirado, notificação de que o emissor não enviará mais mensagens...)
- Segundo fatal (problema com o handshake, MAC incorreto..)

SSL

Record protocol

- Provê os seguintes serviços:
 - Confidencialidade.
 - Autenticidade/Integridade das mensagens.
- Utiliza informações definidas no processo de handshake;

Record protocol

Record protocol – MAC (message authentication code – integridade)

```
hash(MAC_write_secret || pad_2 ||
   hash(MAC_write_secret || pad_1 || seq_num ||
   SSLCompressed.type || SSLCompressed.length ||
   SSLCompressed.fragment))
```

onde

```
= concatenação
MAC write secret
                                = chave secreta compartilhada
                                = algoritmo de hash criptográfico; ou MD5 ou SHA-1
hash
                                = o byte 0x36 (0011 0110) repetido 48 vezes (384 bits) para MD5 e 40
pad 1
                                  vezes (320 bits) para SHA-1
                                = o byte 0x5C (0101 1100) repetido 48 vezes para MD5 e 40 vezes para
pad 2
                                  SHA-1
                                = o número de sequência para essa mensagem
seq num
                                = o protocolo de nível mais alto usado para processar esse fragmento
SSLCompressed.type
                                 = o tamanho do fragmento compactado
SSLCompressed.length
SSLCompressed.fragment
                                = o fragmento compactado (se a compactação não for usada, o frag-
                                  mento de texto claro)
```

Record protocol

- A última etapa do protocolo de registro envolve anexar um cabeçalho com diversos campos como: tipo de conteúdo (HTTP, SMTP, FTP, por exemplo), versão do TLS/SSL e tamanho em bytes do fragmento do texto claro;
- Isso, junto com o MAC_write_secret que foi gerado no handshake com o auxílio do cliente e do servidor é o suficiente para o destino checar o MAC.

Conclusões

Segurança da Informação- GBC083

Conclusões

- O protocolo SSL/TLS nada mais é do que uma materialização dos algoritmos criptográficos vistos durante o curso (AES, RSA, funções de hash, MAC, assinaturas e certificados digitais);
- Grande parte do acesso aos sistemas Web são feitos usando o SSL/TLS como uma forma de garantir a confidencialidade, integridade, autenticidade e não-repúdio;
- Órgãos de padronização, empresas e a comunidade acadêmica estão alinhados para o desenvolvimento do SSL/TLS.

Roteiro de estudos

- Leitura das seções 17.1, 17.2 e 17.3. do livro "Criptografia e segurança de redes. Princípios e práticas". William Stallings;
- 2. Estudo da vídeo-aula referente ao tópico 14;
- 3. https://cabulous.medium.com/tls-I-2-andtls-I-3-handshake-walkthrough-4cfd0a798I64
- 4. Resolução do TP-6.

