Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Отчёт по лабораторной работе №3 по дисциплине "Математическая статистика"

Боксплот Тьюки

Выполнил студент:

Мишутин Д. В.

Группа:

3630102/70301

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

2020 г.

Оглавление

1 Постановка задачи	3
2 Теория	3
3 Реализация	1
4 Результаты	1
5 Выводы	7
6 Литература	7
7 Приложения	7
Список иллюстраций и таблиц	
Стандартное нормальное распределение	
Стандартное распределение Коши5	,
Распределение Лапласа5	
Распределение Пуассона	,
Равномерное распределение	ý
Таблица. Средние проценты выбросов	,

1 Постановка задачи

Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки. Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выбросов) и сравнить с результатами, полученными теоретически.

Распределения:

• Стандартное нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$
(1.1)

• Стандартное распределение Коши:

$$C(x,0,1) = \frac{1}{\pi(1+x^2)}$$
 (1.2)

• Распределение Лапласа:

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{1.3}$$

• Распределение Пуассона:

$$P(k,10) = \frac{10^k}{k!} e^{-10} \tag{1.4}$$

• Равномерное распределение:

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, npu|x| \le \sqrt{3} \\ 0, npu|x| > \sqrt{3} \end{cases}$$
 (1.5)

2 Теория

Боксплот Тьюки – график, использующийся в описательной статистике, изображающий одномерное распределение вероятностей.

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы.

Выброс – результат, сильно выделяющийся из общей выборки.

Характеристики положения:

• Выборочное среднее:

$$avrg = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2.1}$$

• Выборочная медиана:

$$med x = \begin{cases} x_{k+1}, n=2k+1 \\ \frac{1}{2}(x_k + x_{k+1}), n=2k \end{cases}$$
 (2.2)

• Квартиль:

$$Z_{[p]} = \begin{cases} x_{[np]}, np \in \mathbb{Z} \\ x_{[np]+1}, np \notin \mathbb{Z} \end{cases}$$

$$(2.3)$$

3 Реализация

Был использован язык *Python 3.8.2*: модуль *питру* для генерации выборок с различными распределениями и математических расчётов, модуль *matplotlib* для построения и отображения боксплотов, модуль *pandas* для оптимального хранения статистических данных и функция *display* из модуля *IPython.display* для их корректного отображения в таблицах.

4 Результаты

Рис. 1 Стандартное нормальное распределение

Рис. 3 Распределение Лапласа

Рис. 5 Равномерное распределение

Таблица 1 Средние проценты выбросов

Выборка	Средний процент выбросов
Стандартное нормальное распределение (1.1)	
N = 20	2.67
N = 100	1.02
Стандартное распределение Коши (1.2)	
N = 20	15.19
N = 100	16.38
Распределение Лапласа (1.3)	
N = 20	8.76
N = 100	6.26
Распределение Пуассона (1.4)	
N = 20	1.62
N = 100	0.81
Равномерное распределение (1.5)	
N = 20	0.05
N = 100	0

5 Выводы

Экспериментально полученные проценты выбросов, близки к теоретическим. Можно вывести соотношение между процентами выбросов у конкретных распределений:

По полученным данным видно, что наименьший процент выбросов у равномерного распределения, а наибольший у стандартного распределения Коши.

6 Литература

Основы работы с питру (отдельная глава курса)

Pandas обзор

7 Приложения

Код лабораторной