PRINTABLE VERSION

Quiz 3

You scored 70 out of 100

Question 1

Your answer is CORRECT.

Suppose we are told that set A satisfies $\{1, \pi, *\} \cap A = \emptyset$. Of the following options which can be used for the set A?

- $a) \cap \{-1, \clubsuit, \heartsuit\}$
- **b**) \bigcirc {1, π , ♣}
- c) $(\pi, 2)$
- d) \bigcirc Z
- e) On set A will make this true.

Ouestion 2

Your answer is INCORRECT.

The statement $A \cup B = A$ implies which of the following?

- $a) \cap A = \emptyset \wedge B = \emptyset$
- **b)** $\bigcirc \forall x \in B, x \in A.$
- c) \bigcirc \forall $x \in A, x \in B$.
- d) $\bigcirc \exists x, x \in A \land x \in B$.

Ouestion 3

Your answer is CORRECT.

Suppose |S| = 7 and $|S \times T| = 28$. What is the cardinality of T?

a)
$$|T| = 3$$

b)
$$\bigcirc |T| = 28$$

d)
$$|T| = 196$$

e)
$$|T| = 11$$

Ouestion 4

Your answer is CORRECT.

Suppose |T| = 4 and $|P(S) \times T| = 64$. What is the cardinality of S?

a)
$$|T| = 4$$

b)
$$|S| = 2^4$$

$$|S| = 16$$

d)
$$|S| = 64$$

$$|S| = 4$$

Question 5

Your answer is CORRECT.

Is it possible for |S| = 0?

- a) O This is impossible! It never happens!
- b) This is true. It always happens!
- c) This can happen, but it doesn't always happen.

Question 6

Your answer is INCORRECT.

Consider the set S defined below:

$$S = \{n \in N : n - 1 \text{ is even } \}$$

Which of the following is true?

$$a) \odot S = \emptyset$$

b)
$$\odot$$
 S = {2m : m \in N}

$$c) \cap S = \{2i + 1 : i \in N\}$$

$$\mathbf{d}$$
) \circ S = N

$$e) \cap S = \{2^b : b \in N\}$$

Question 7

Your answer is CORRECT.

Suppose we have two sets S and T, each described in terms of a condition: $S = \{x \in U : P(x)\}$ and $T = \{x \in U : Q(x)\}$. (Here U is a Universal set.) If it is also true that

then which of the following statements must be true?

$$a) \bigcirc \forall x \in U, P(x) \Rightarrow Q(x)$$

b)
$$\bigcirc$$
 \forall $x \in U$, $Q(x) \Rightarrow P(x)$

$$c) \bigcirc \forall x \in U, \ Q(x) \Rightarrow P(x)$$

$$\mathbf{d}$$
) $\bigcirc \forall \mathbf{x} \in \mathbf{U}, \ \mathbf{P}(\mathbf{x}) \Rightarrow \mathbf{Q}(\mathbf{x})$

$$e) \bigcirc \exists t \in U, P(t) \land Q(t)$$

Ouestion 8

Your answer is CORRECT.

A Venn Diagram or De Morgan's Laws should help you complete this sentence:

$$A \cup B =$$

$$a) \circ \overline{A} \cap \overline{B}$$

$$c) \bigcirc A \cup \overline{B}$$

Question 9

Your answer is CORRECT.

Consider the image shown:

Which set of points is depicted in the image above?

a)
$$\bigcirc \{(x,2) : x \in Z \land -3 \le x \le 3\}$$

b)
$$\bigcirc \{(x, 2x) : x \in Z \land -3 \le x \le 3\}$$

$$e_{0} = \{(x, \sin(\pi x)) : x \in Z \land -3 \le x \le 3\}$$

d)
$$\bigcirc \{(x, \sqrt{9-x^2}) : x \in Z \land -3 \le x \le 3\}$$

e)
$$(2, x) : x \in Z \land -3 \le x \le 3$$

$$f_0 \cap \{(x, x^2) : x \in Z \land -3 \le x \le 3\}$$

Question 10

Your answer is INCORRECT.

$$P({2,4}) \cap P({2,-3,4}) =$$

- $a) \cap \{ \{4\}, \{2,4\} \}$
- **b)** 0 { {-3} }
- c) $\bigcirc \{2, 4, -3\}$
- **d)** \bigcirc { {4} }
- e) $\bigcirc \{\emptyset, \{2\}, \{4\}, \{2,4\}\}$
- \mathbf{f}) \bigcirc {2, 4}