Introduction to Artificial Intelligence Lab

Lab 1: PEAS, environment type, solving a simple problem.

1. Define PEAS for following agents.

Automated taxi?

- Performance measure: Safe, fast, comfortable trip, legal, maximize profits
- Environment: Roads, other cars, pedestrians, customers
- Actuators: Wheel, accelerator, brake, signal, horn
- Sensors: Cameras, sonar, speedomoter, GPS, odometer, engine sensor, keybord

Medical diagnosis system?

- Performance measure: Healthy patient, minimize cost,
- Environment: patient, stretcher, operating room, staff
- Actuators: Screen for testes, patient condition and machine condition
- Sensors: Cameras, situational patient control tools(fever, hearth rhythm)

Internet shopping agent?

- Performance measure: price, quality, efficiency
- Environment: vendors, shippers, sites
- Actuators: screen for displays and fillers
- Sensors: page elements (text, graphics)
- 2. Define type of environment for the following examples.

Crossword puzzle	Taxi driving
Observable: Yes	Observable: No
Agents: Single	Agents: Multi
Deterministic: Yes	Deterministic:No
Episodic: No	Episodic: No
Static: Yes	Static: No
Discrete: Yes	Discrete: No
English tutor	Image analysis
Observable: No	Observable: Yes
Agents: Multi	Agents: Single
Deterministic: No	Deterministic: Yes
Episodic: No	Episodic: Yes
Static: No	Static: Yes
Discrete: Yes	Discrete: No

3. Consider the following problem:

A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one, a pump which has unlimited water which you can use to fill the jug, and the ground on which water may be poured. Neither jug has any measuring markings on it. How can you get exactly 2 gallons of water in the 4-gallon jug?

• State Representation and Initial State:

```
x: 4-gallon jug where 0=<x=<4
y: 3 gallon jug. Whre 0=<y=<3
Initial state: (x,y)= (0,0)
```

• Goal Predicate:

```
(x,y) = (2,0)
```

• Operators:

```
1. Fill 4-gal jug (x,y) \to (4,y) x < 4
```

- 2. Fill 3-gal jug $(x,y) \to (x,3) y < 3$
- 3. Empty 4-gal jug on ground $(x,y) \rightarrow (0,y) x > 0$
- 4. Empty 3-gal jug on ground $(x,y) \rightarrow (x,0) y > 0$
- 5. Pour water from 3-gal jug $(x,y) \rightarrow (4, y (4 x))$ to fill 4-gal jug $0 < x+y \ge 4$ and y > 0
- 6. Pour water from 4-gal jug $(x,y) \rightarrow (x (3-y), 3)$ to fill 3-gal-jug $0 < x+y \ge 3$ and x > 0
- 7. Pour all of water from 3-gal jug $(x,y) \rightarrow (x+y,0)$ into 4-gal jug $0 < x+y \le 4$ and $y \ge 0$
- 8. Pour all of water from 4-gal jug $(x,y) \rightarrow (0, x+y)$ into 3-gal jug $0 < x+y \le 3$ and $x \ge 0$
 - Solution:

Fill x
$$\Rightarrow (4,0)$$

Pour x to y till y is full $\Rightarrow (1,3)$
Pour y to floor till y is empyt $\Rightarrow (1,0)$
Pour x to y till x is empty $\Rightarrow (0,1)$
Fill x $\Rightarrow (4,1)$
Pour x to y till y is full $\Rightarrow (2,3)$

• Write a program to implement the water jug problem.