Киниматика формулалары. Вертикал қозғалыстағы дененің еркін түсу формулалары.

№	Формулалар	Аталулары
1.	$\mathcal{G} = \frac{s}{t}$ $s = \mathcal{G} \cdot t$	Жылдамдық
2.	$s = \mathcal{G} \cdot t$	Жол
3.	$\vec{\mathcal{G}} = \vec{\mathcal{G}}_1 + \vec{\mathcal{G}}_2 + \vec{\mathcal{G}}_3 + \ldots + \vec{\mathcal{G}}_n$	Жылдамдықтарды қосуы
4.	$\mathcal{G}_{opm} = \frac{\mathcal{G}_1 + \mathcal{G}_2}{2}$	Орташа жылдамдық
5.	$\mathcal{G}_{opm} = \frac{2\mathcal{G}_1 \cdot \mathcal{G}_2}{\mathcal{G}_1 + \mathcal{G}_2}$	Орташа жылдамдық
6.	$\mathcal{G}_{nes} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$	Лездік жылдамдық
7.	$a = \frac{\mathcal{G}_t - \mathcal{G}_0}{t}$	У деу
8.	$\mathcal{G}_t = \mathcal{G}_0 + at$	Дененің лездік жылдамдығы
9.	$s = \theta_0 t + \frac{at^2}{2}$	Үдемелі қозғалыстағы жол
10.	$s = \theta_0 t - \frac{\alpha}{2}$	Кемімелі қозғалыстағы жол
11.	$\mathcal{G} = \mathcal{G}_0 - at$	Кемімелі қозғалыстағы жылдамдық
12.	$\theta = at$	Бастапқы жылдамдықсыз үдемелі қозғалыстың жылдамдығы
13.	$s = \frac{\alpha r}{2}$	Бастапқы жылдамдықсыз үдемелі жол
	$a = \frac{V - V_0}{\Delta t} = \frac{\Delta V}{\Delta t}$	Бірқалыпты үдемелі қозғалыстың үдеуі
15.	$\theta^2 - \theta_0^2 = 2as$	Үдемелі қозғалыстағыжылдамдық жолға баиланысты формуласы
	$\theta_0^2 - \theta^2 = 2as$	Кемімелі қозғалыстың жылдамдығының үдеуімен жолға баиланысты формуласы
17.	o v zeis	Бастапқы жылдамдықсыз үдемелі жылдамдық
18.	$\theta_0 = \sqrt{2as}$	Кемімелі жылдамдық
19.	$a = \frac{V_0^2}{2s}$	Кемімелі үдеу
20.	$a = \frac{V_0^2}{2s}$ $a = \frac{V^2}{2s}$	Бастапқы жылдамдықсыз үдемелі үдеу
21.	$s = \frac{V^2}{2a}$	Бастапқы жылдамдықсыз үдемелі жол
22.	$s = \frac{V_0^2}{2a}$	Кемімелі жол

No	Формулалар.	Атаулары.
1.	$h = \frac{gt^2}{2}$	Еркін түсу биіктігі.
2.	$h = \frac{gt^2}{2}$ $t = \sqrt{\frac{2h}{g}}$	Еркін түсу уақытты.
3.	$\mathcal{G}_0^2 - \mathcal{G}^2 = 2gh$	Уақытсыз көтерілу.
4.	$\mathcal{G}^2 - \mathcal{G}_0^2 = 2gt$	Уақытсыз түсу
5.	$\mathcal{G} = \mathcal{G}_0 - gt$	Көтерілу кезіндегі лездік жылдамдық.
6.	$\mathcal{G} = \mathcal{G}_0 + gt$	Түсу кезіндегі лездік жылдамдық
7.	$\mathcal{G} = gt$	Бастапқы жылдамдықсыз еркі түсу жылдамдығы.
8.	$h = \mathcal{S}_0 t + \frac{gt^2}{2}$	Еркін түсу биіктігі.
9.	$h = \mathcal{G}_0 t + \frac{gt^2}{2}$ $h = \mathcal{G}_0 t - \frac{gt^2}{2}$	Көтерілу биіктігі.
10.	$h = \frac{g^2}{2g}$ $h = \frac{g_0^2}{2g}$ $g = \sqrt{2gh}$	Еркін түсу биіктігі.
11.	$h = \frac{9_0^2}{2g}$	Көтерілу биіктігі.
12.	$\mathcal{G} = \sqrt{2gh}$	Еркін түсудегі лездік жылдамдық
13.	$\mathcal{G}_0 = \sqrt{2gh}$	Көтерілудегі бастапқы жылдамдық.

Шеңбер бойынша қозғалыстың формулалары.

No		Атаулары.
	Формулалар.	
1.	$\mathcal{G} = \frac{l}{t}$	Сызықты жылдамдық .
2.	$\omega = \frac{\varphi}{t}$	Бұрыштық жылдамдық .

3.	$\theta = \omega R$	Сызықты жылдамдықтың бұрыштық жылдамдықпен байланыс формуласы.
4	_	1 1 2
4.	$\omega = 2\pi \cdot v$	Бұрыштық жылдамдықтың жиілікке
		баиланысты формуласы.
5.	$v = \frac{1}{T}$	Жиілік пен период формуласы.
6.	$t = T; \varphi = 2\pi.\omega = \frac{2\pi}{T}$	Бұрыштық жылдамдықтың периодқа
	$t-T, \psi-2\pi.\omega-\frac{T}{T}$	баиланысты формуласы.
7.	$\mathcal{G} = \frac{2\pi R}{T}$	Сызықты жылдамдықтың периодқа
	$\mathcal{S} = \frac{T}{T}$	баиланысты формулачы.
8.	$\mathcal{G} = 2\pi Rv$	Сызықты жылдамдықтың жиілікке
		баиланысты формуласы.
9.	$4\pi^2 R$	Нормал үдеудің периодқа баиланысты
	$a_n = \frac{4\pi^2 R}{T^2}$ $a_n = \frac{V^2}{R}$	формуласы.
10.	V^2	Нормал үдеу.
	$a_n = \frac{R}{R}$	
11.	$a_n = 4\pi^2 v^2 R$	Нормал үдеудің жиілікке баиланысты
		формуласы.
12.	dV	Тонгенсиал үдеу.
	$a_{\tau} = \frac{dV}{dt}$	
13.	$a = \sqrt{{a_n}^2 + {a_\tau}^2}$	Толық үдеу.
L		

Гаризонтл лақтырылған дене қозғалысының формуласы.

1.	$s = \mathcal{G}_0 t$	Жол
2.	$h = \frac{gt^2}{2}$	Еркін түсу биіктігі
3.	$t = \sqrt{\frac{2h}{g}}$	Еркін түсу уақытты
4.	$s_{\text{max}} = V_0 \sqrt{\frac{2h}{g}}$	Максимал жол
5.	$\mathcal{G} = \sqrt{\mathcal{G}_0^2 + g^2 t^2}$	Қозғалыстың лездік жылдамдығы
6.	$\mathcal{G} = \sqrt{{\mathcal{G}_0}^2 + 2gh}$	Қозғалыстың соңғы жылдамдығы
7.	$tg\alpha = \frac{V_n}{V_0} = \frac{gt}{V_0}$	Жылдамдық бұрышы
8.	$V_n = gt$	Бастапқы жылдамдықсыз лездік жылдамдық

Гаризонтқа бұрышпен лақтырылған дененің қозғалысының жылдамдығы.

1.	$V_{0x} = V_0 \cos \alpha$	Горизантал қозғалыстағы жылдамдық
2.	$V_{0y} = V_0 \sin \alpha$	Вертикал қзғалыстағы жылдамдық
3.	$V_{t} = \sqrt{V_0^2 + (gt)^2 - 2\theta_0 gt \sin \alpha}$	Уақыттың кез-келген моментіндегіжылдамдық
4.	$h = V_0 t \sin \alpha - \frac{gt^2}{2}$	Көтерілу биіктігі
5.	$h_{\text{max}} = \frac{V_0^2 \sin^2 \alpha}{2g}$	Максимал көтерілу биіктігі
6.	$t_1 = \frac{\mathcal{G}_0 \sin \alpha}{g}$	Жарты қозғалыстың уақыты
7.	$t = t_1 + t_2$	
	$t = \frac{2\theta_0 \sin \alpha}{g}$	Толық уақыт
8.	$s_{\text{max}} = \frac{V_0 \sin 2\alpha}{g}$	Баксимал жол
	O	

Динамика заңдарының формуласы.

1.	F = 0	
	V = cjnst	
	a = 0	Ньютоның 1-ші заңы
	V = 0	
2.	F = ma	
	$a = \frac{F}{m}$	Ньютоның 2-ші заңы
	$u - \frac{m}{m}$	
3.	$F_1 = -F_2$	
	$m_1 a_1 = -m_2 a_2$	Ньютоның 3-ші заңы
4.	$F - C m_1 \cdot m_2$	Бүкіл әлемдік тартылыс заңы
	$F = G \frac{m_1 \cdot m_2}{r^2}$	
5.	P = mV	Дененің импульсі
6.	$m_1V_1 + m_2V_2 = m_1V_1^{\mathrm{I}} + m_2V_2^{\mathrm{I}}$	Серпімді импульс сақталу заңы
7.	$m_1V_1 + m_2V_2 = mV$	Сепімсіз импульс сақталу заңы
8.	$\sum_{i=1}^{n} m_{i} V_{i} = const$	Импульстің сақталу заңы
	$\sum_{i=1}^{m_i V_i} - const$	

9.	P = m(g+a)	Жоғары бағыталған дененің салмағы
1	P = m(g - a)	Төмен бағыталған дене салмағы
0.		
1	a = g	Салмақсыздық
1.	P = 0	
1	$F_{y\check{u}\kappa} = \mu P$	Үикеліс күші
2.	$F_{yar{u}\kappa} = \mu mg$	μ -үикеліс коифиценті
1	$F_{\partial} = kx$	Серпімді деформация
3.	$\sigma = E\varepsilon$	
1 4.	M = Fl	Күш моменті
1 5.	$A = Fs\cos\alpha$	Механикалық жұмыс
1 6.	$F_c = -k\Delta x$	Гук заңы
1	$F = \frac{m\mathcal{G}^2}{}$	Тепкіш күш
7.	$F = \frac{r}{r}$	
1	$F_{_{q}}=m\omega^{2}r=\frac{4\pi^{2}mV^{2}}{r}$	Центірге тартқыш күш
8.	$r_{u} = m\omega r = \frac{r}{r}$	
1	$W_k = \frac{mV^2}{2}$	Кинетикалық энергия
9.		
2	$W_p = mgh$	Потенциялдық энергия
0.		
2	$W = W_k + W_p$	Толық энергия
1.	W - W + W = const	Anonthan in controlly con i
$\frac{2}{2}$.	$W = W_k + W_p = const$	Энергияның сақталу заңы
2	$m_1 \cdot m_2 V^2$	Дененің экватордағы салмағы формуласы
3.	$P_{\mathfrak{g}K} = G \frac{1}{R^2} - m \frac{1}{R}$	To the state of th
2	$g = G \frac{M_{\infty ep}}{R}$	Дененің жер бетіндегі еркін түсу үдеуі
4.	$g = G {R_{mep}}$	
2	$M_{:th}$	Жердің бетіндегі һ биіктікке көтерген
5.	$g = G \frac{M_{;th}}{(R+h)^2}$	кездегі еркін түсу үдеуі
2	$\theta_{1\kappa} = \sqrt{gR_{MCED}} \approx 7.8\kappa M/c$	1-ші космостық жылдамдық
6.	In V S steep	
2	$\mathcal{G}_{2k} = \sqrt{2gR_{\kappa ep}} \approx 11.2\kappa b/c$	2-ші космостық жылдамдық
7.		
2	$\mathcal{G}_{3\kappa} = \sqrt{3gR_{\omega eep}} \approx 16.7\kappa e/c$	3-ші космостық жылдамдық
8.		- · · · · · ·
2	A = Ph	Дененің h биіктікке көтергенде
9.		орындалатын жұмыс

3 0.	$A = \frac{k(\Delta x)^2}{2}$	Днформация кезіндегі орындалатын жұмыс
3 1.	$W_p = \frac{k(\Delta x)^2}{2}$	Деформация кезіндегі потенциялдық энергия. Серіпенің потенциялдық энергиясы
3 2.	$N = \frac{A}{t}$	Жұмысқа баиланысты қуат
3 3.	$N = FV$ $F_g = -k\Delta x$	Күшке баиланысты қуат. Деформация күші.
3 4.	$k = \frac{F}{\Delta x}$	Юнг моделі

Статика бөлімінің форммуласы.

1.	$F = \frac{P(\sin \alpha - \mu \cos \alpha)}{1 + \mu \cos \alpha}$	Дененің тыныштық күиінде қиялықта
	$F = \frac{\mu}{\mu}$	тепсеуші күш
2.	$F_{y\ddot{u}\kappa} = \mu P(1 + \cos\alpha)$	Үикеліс күші
3.	$V = gt(\sin\alpha - \mu\cos\alpha)$	Түсу жылдамдығы
4.	$a = g(\sin \alpha - \mu \cos \alpha)$	
	a = 0	Түсу үдеуі
	$\mu = \frac{\sin \alpha}{} = tg \alpha$	Дене үдеусіз түсетін болса
	$\mu - \frac{1}{\cos \alpha} - ig \alpha$	
	$\mu = tg \alpha$	
5.	$a = g(\sin \alpha - \mu \cos \alpha)$	Дурерің көтерілу үдеуі
6.	$\mu = -\frac{\sin \alpha}{} = -tg\alpha$	Көлбеу бұрыш.
	$\mu - \frac{1}{\cos \alpha} = -ig\alpha$	Егер үикеліс күші қиялық бұрыш бодса
7.	$\eta = \frac{h}{h}$	Қиялықтық ПӘК формуласы
	$(\mu\cos\alpha + \sin\alpha)e$	
8.	$\sin \alpha = \frac{h}{r} = \frac{F_{cup}}{r}$	Қиялықтағы бұрышты табу формуласы.
	$\sin \alpha - \frac{1}{e} - \frac{1}{P}$	$F_{cыp}$ -сырғанау күші

Блокқа әсер ететін күштің, үдеудің формуласы.

1.	$F_k = \frac{2m_1 \cdot m_2}{m_1 + m_2} \cdot g$	Арқаның керілу күші.
2.	$a = \frac{m_1 - m_2}{m_1 + m_2} \cdot g$	Жүктің қозғалыс үдеуі.
3.	$F_k = m_1(g - a)$	Жүктің түсу күші.
4.	$F_k = m_2(g+a)$	Жүктің көтерілу күші.
5.	$a = \frac{m_1 - m_2(g+a)}{m_1 + m_2}$	Дене лифте блок арқылы көтеретін үдеуі.
6.	$F_k = \frac{2m_1 \cdot m_2 (g + a^1)}{m_1 + m_2}$	Блоктағы арқаның көтерілу күші.
7.	$a = \frac{(P_2 - \mu P_1)g}{P_1 + P_2}$	Жүктің көтерілу үдеуі
8.	$F_k = \frac{P_1 \cdot P_2}{P_1 - P_2} (1 + \mu)$	Жжжүктің керілу күші.

Сұиықтар механикасы.

1.	$P = \frac{F}{\delta}$	Сұиықтағы қысым
2.	F = Ps	Сұиықтағы күші
3.	$P = \rho_0 g h \cdot s$	Гидростатикалық қысым күші.
4.	$\vec{F} = \frac{\rho_0 g h \cdot s}{2}$	Орташа қысымның күші
5.	V = hs	Сұиықтың көлемі
6.	$P_B = P_A + \rho_y (h_A - h_{B)}$	Гидростатикалық қысым
7.	$F = \rho g V$	Беті ашық ыдыстағы сұиықтық ыдыс
	$P = \rho_0 + \rho_c gh$	түбіндегі қысым
8.	$F_A = \rho_c gV$	Архимет күші.
9.	$F_k = (\rho_g - \rho_c)V_g g$	Сұиықтағы көтергіш күші.
10.	$P \ge F_{_A}$	
	$ ho_{_{\mathit{dehe}}} \geq ho_{_{\mathit{c}}}$	Сұиықтың тығыздығы
	$P = \rho_0 + \rho_c gh$	

11.	$Q = \frac{m}{t} = const$ $Q = \rho \cdot s \theta$	Ағын үздіксіздік шарты
12	$\theta_1 s_1 = \theta_2 s_2$	Берін теңдеуі.
12.	$P_1 + \rho g h_1 + \frac{\rho V_1^2}{2} = P_2 + \rho g h_2 + \frac{\rho V_2^2}{2}$	верін теңдеут.
13.	$F_A \ge P$	Денесұиық бетінде қалқып жүретін
	$ ho_c \geq ho_g$	шарт Р-статикалық қысым,
	$\rho_{cy} = 10^3 \kappa \epsilon / M^3$	A
14.	$P = \frac{V^2}{2}$	Динамикалық қысым.
15.	$ \rho_c \le \rho_g $	Бұл шартта қаты дене сссұиықтың
	$ \rho_c \ge \rho_g $	көлемінің центірінде тепе-теңдік
	$\rho_{c \text{ынааn}} = 13 \cdot 10^3 \text{к2/M}^3$	күиінде болуы.
16.	$\mathcal{G} = \sqrt{2gh}$	Ашық кең ыдыстың, кішкентаи
	·	тесігінен сұиықтық ағып кету
		жылдамдығы.

молекуляр физика.

	$Mr = \frac{m_0}{\frac{1}{12}m_c}$	Моляр масса
2.	$N = \frac{m}{M} N_A$	т-массадағы молекулалар саны
3.	$P = \frac{1}{3}m_0n\vec{V}^2$	Молекуляр кинетикалық теорияның негізгі теңдеуі
4.	$P = \frac{2}{3}\vec{E}_n; P = \frac{1}{3}\rho\vec{V}^2$ $P = nkT$	Молекуляр кинетикалық теорияның негізгі теңдеуі
5.	$\vec{E} = \frac{m_0 \mathcal{G}^2}{2}$	Молекулярлық қозғалыстың орташа кинетикалық энергтясы
6.	$T = \frac{2}{3} \cdot \frac{\vec{E}_k}{k}$	Температураның формуласы
	$k = 1,38 \cdot 10^{-23}$ Джс / к	k-Болцман тұрақтысы

7.	\vec{o} $\sqrt{3kT}$	Молекуляның орташа квадраттық
	$\vec{\mathcal{G}} = \sqrt{\frac{3kT}{M}}$	жылдамдығы.
8.	$P_1V_1 = P_2V_2 = P_3V_3 = const$	Бойль-Мариот заңы
9.	PV=const	Бойль-Мариот заңы (изотермиялық процес
		үшін)
10.	$\frac{V}{T} = const$	Гей-Люссак заңы (изобаралық процес үшін)
11.	$\frac{P}{T} = const$	Шароль заңы (изохоралық процес үшін)
12.	$\frac{PV}{T} = const$	Кез-келген Клаипирон теңдеуі үшін
13.	$PV = \frac{m}{M}RT$	Менделейв-Клоипирон теңдеуі
14.	$U = \frac{i}{2} \cdot \frac{m}{M} RT$	Кез-келген газдың ішкі энергиясы еркіндік
	$C = \frac{1}{2} \cdot \frac{1}{M} \cdot \frac{1}{M}$	дәрежесімен берілген ішкі энергия.
	$U = \frac{i}{2}PV$	і – еркіндік дәрежесі
15.	$Q = cm(t_1 - t_2)$	
	$t_2 \ge t_1$ болса; $Q \ge 0$	Жылу мөлшері
16.	$C = \frac{Q}{m_{\Delta}t}$	Жылу сыиымдылығы
17.	$A = P_{\Delta}V$	Газ көлемінің жұмысы
18.	$U = \frac{i}{2}PV$	1-моль газдың ішкі энергиясы
19.	$\Delta U = A + Q$	Термодинамиканың 1-ші заңы.
20.	T = constt	P
	$\Delta T \ge 0; \Delta U = 0; Q = A^{\mathrm{I}}$	Изотермиялық процесс
21.	V = const	
	$\Delta V = 0; \Delta U = 0; Q = A^{\mathrm{I}}$	Изохоралық процесс
22.	$\Delta V = 0; \Delta U = 0; Q = A^{\mathrm{I}}$ $Q = 0; A^{\mathrm{I}} = -\Delta U$	Адиобаталық процесс
23.	$P_0 = \frac{\rho RT}{M}$	Қанықан бу
	M	
24	$\rho_0 = nkT$	W
24.	$Q_{\delta} = rm$	Жылу буц
25.	$r = \frac{Q_{\delta}}{m}$	Салыстырмалы булану жылуы
26.	$\rho = \frac{m}{V}$	Тығыздық
27.	$\varphi = \frac{\rho}{\rho_T} \cdot 100\%;$ $\varphi = \frac{P}{P_T} \cdot 100\%$	Қанықан бу тығыздығы
	$\varphi = \frac{P}{P_T} \cdot 100\%$	

28.	$F = \sigma \cdot l; \sigma = \frac{F}{l}$	Керілу күші
29.	$h = \frac{2\sigma}{\rho gr}$	Көтерілу биіктігі
30.	$\lambda = \frac{Q}{m}; Q = \lambda \cdot m$	Еру ыстығы

ЭЛЕКТРОСТАТИКА.

1.	$q_1 + q_2 + q_3 + \dots + q_n = const$	Зарятардың сақталу заңы
2.	$F = k \frac{ q_1 \cdot q_2 }{\varepsilon R^2}$	Кулон заңы
3.	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot m^2}{K\pi^2}$	Пропорционалдық коэфиценті
	$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{K\pi^2}{Hm^2}$	Диэлектірк өтімділік
4.	$\vec{E} = \frac{\vec{F}}{q}$	Электір өріс кернеулігі
5.	$\vec{E} = \vec{E}_1 + \vec{E}_2$	Толық энергия
6.	$\vec{E} = k \frac{q}{R^2}$	Нүктелік зарят өріс кернеулігі
7.	$\sigma = \frac{q}{s}$	Зарятың тығыздығы
8.	$E = \frac{\sigma}{2\varepsilon_0}$	Шексіз үлкен тегістіктегі электр өріс кернеулігі
9.	$E = \frac{\sigma}{\varepsilon_0}$	Шексіз үлкен қарама-қарсы екі тегістік арасындағы өріс кернеулігі
10.	A = FS = qES	Жұмыс
11.	$\varphi = \frac{W_p}{q}$	Потенциял
12.	$\varphi = k \frac{q}{\varepsilon r}$	Нүктелік зарят потенциялы
13.	$\Delta \varphi = U = \varphi_1 - \varphi_2 = \frac{A}{d}$ $U = E \cdot \Delta d$	Потенциялдар аиырмасы
14.	$c = \frac{q}{\varphi}$	Электр сыиымдылығы
15.	$c = 4\pi\varepsilon_0 \varepsilon R$	Шар сыиымдылығы
16.	$c = \frac{\mathcal{Z}_0 S}{d}$	Кондецатр сыиымдылығы

17.	$\frac{1}{-} = \frac{1}{-} + \frac{1}{-} + \frac{1}{-} + \cdots + \frac{1}{-}$	ЭТізбектеи қосу
	$\begin{bmatrix} c & c_1 & c_2 & c_3 & c \end{bmatrix}$	
18.	$c = c_1 + c_2 + c_3 + \dots + c_n$	Пораллель қосу
19.	$W_p = \frac{qU}{2} = \frac{q^2}{2c} = \frac{CU^2}{2}; W_p = \frac{qEd}{2}$	Заряталған кондецатр энергиясы
20.	$W_p = \frac{W_p}{V} = \frac{\mathcal{E}_0}{2} E^2$	Энергия тығыздығы

ЭЛЕКТРОДИНАМИКА.

1	A	Tr.
1.	$I = \frac{\Delta q}{1}$	Ток күші
	Δt	
2.	$I = \frac{\Delta q}{\Delta t}$ $j = \frac{I}{\delta} = q_0 n \theta$	Ток тығыздығы
	δ δ	
3.	$R = \rho \frac{l}{\delta}$	Электр кедергісі
	δ	
4.	$I = \frac{U}{R}; R = \frac{U}{I}$	Ом заңы
	$I = \frac{1}{R}, K = \frac{1}{I}$	
5.	$R = R_0 (1 + d\Delta t)$	
	$\rho = \rho_0 (1 + d\Delta t)$	Металдардағы электр кедергісі
6.	$I_1 = I_2 = I_3 = I = const$	
	$R = R_1 + R_2 + R_3 + \dots + R_n$	Кедергіні тізбектеи қосу
	$ U_1 + U_2 + U_3 = U $	
7.		Кедергілерді пороллель қосу
' '	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	тедергыерді поролысыв қосу
8.	$R_k = (n-1)R_V$	Қосымша қарсылық
9.	A = IUt	Жұмыс
10.		Tref. marc
10.	$A = I^2 R t = \frac{U^2}{R} t$	Лукоми Пони зони г
		Джоуль-Ленц заңы
	$Q = I^2 Rt$	
11.	$P = \frac{A}{t} = IU = I^2 R = \frac{U^2}{R}$	Тұрақты токтың қуаты
	t A	
12.	$\varepsilon = \frac{A}{C}$	Электр қозғаушы күші
13.	$I = \frac{\mathcal{E}}{\mathcal{R}}$	Толық тізбек үшін Ом заңы
	$I = \frac{1}{R+r}$	*
14.	$I_1 + I_2 + I_3 = 0$	Кирхгоф заңы (бірінші)
15.	$\sum_{i=1}^{n} \varepsilon_{i} = \sum_{i=1}^{n} I_{i} P_{i}$	Кирхгофтың 2-ші заңы
	$\sum_{\varepsilon=1}^{\varepsilon} \mathcal{E}_i = \sum_{i=1}^{\varepsilon} I_i P_i$	
16.	m = kq = kIt	Фарадеидің 1-ші заңы
17.	$k = \frac{m}{}$	Затың химиялық эквиваленті
	$k = \frac{-}{q}$	
	1	

18.	$k = \frac{1}{F} \cdot \frac{Mr}{n}$	Фарадеидің 2-ші заңы
	F n $F = eN_A = 96500 Kn / моль$	Фарадеидің саны
19.	$m = \frac{1}{F} \cdot \frac{M}{n} q$	Бірлескен заңы
20.	$\vec{B} = \frac{M}{IS_0}$	Магнит өрісі индукциясы
21.	$B = \frac{F}{Il}$	Магнит өрісіне орналасқан тура өткізгіш
22.	$F_A = BIl \sin \alpha$	Ампер күші
23.	$F = q_0 B \mathcal{G} \sin \alpha$	Лоренц күші
24.	$R = \frac{m\mathcal{S}}{ q_0 B}$	Аиналу радиусы
25.	$T = \frac{2\pi m}{ q_0 B}$	Аиналу периоды
26.	$F = \frac{\mu\mu_0}{4\pi} \cdot \frac{2I_1 \cdot I_2}{r_0} l$	Параллель токтардың өзара әсері
27.	$\mu = \frac{B}{B_0}$	Ортаның магнит өтімділігі
28.	$\Phi = BS \cos \alpha$	Магнит ағыны
29.	$L = \frac{\Phi}{I}$	Индуктивтілік
30.	$L = \frac{\Phi}{I}$ $L = \mu_0 \frac{N^2}{l} \delta$ $\delta = \frac{\pi d^2}{l}$	
	$\delta = \frac{\pi d^2}{4}$	Соленоид индуктивтілік
31.	$W_{M} = \frac{LI^{2}}{2}$	Магнит өрісі энергиясы
32.	$\varepsilon = -\frac{\Delta\Phi}{\Delta t}$	Электр қозғаушы күші
33.	$\varepsilon_{ind} = Bl \vartheta \sin \alpha$	ЭҚК индукциясы
34.	$\varepsilon_{ind} = \omega BS \sin \omega t$	Аиналу рамкасында паида болған ЭҚК
35.	$\delta = l_1 \cdot l_2$	Аиналу рамкасының ұзындығы
36.	$\omega = \frac{d}{t}; \varepsilon_{ind} = \varepsilon_{\text{max}} \cdot \sin \omega t$	Озиндукциясының индуктивтілігі
37.	$\varepsilon_{ind} = -L \frac{\Delta I}{\Delta t}$	Өздік индукция

Тербеліс және толқындар.

1.	$x = x_m \sin(\omega_0 t + \varphi_0)$	Гормониялық тербеліс
2.	$T = \frac{t}{n}$	Период
3.	$v = \frac{1}{T}$	Жиелік
4.	$\omega_0 = \frac{2\pi}{T}$	Цикілдік жиелік
5.	$F_2 = -mg\sin\alpha$	Системаның -ішкі күші
6.	$a = -g \sin \alpha$	Шар үдеуі
7.	$T = 2\pi \sqrt{\frac{l}{g}}$	Матиматикалық маятник периоды немесе Гьюгенц формуласы
8.	$T = 2\pi \sqrt{\frac{m}{k}}$	Серіппелі маятник тербеліс периоды
9.	$x = A\sin(\omega t + \varphi_0)$	Тербелістегі дененің сырғанауы
10.	$\mathcal{G} = x^{I} = A\omega\cos(\omega t + \varphi_0)$	Тербелістегі дененің жылдамдығы
11.	$a = \mathcal{G}^{\mathrm{I}} = -A\omega^2 \sin(\omega t + \varphi_0)$	Тербеліс үдеуі
12.	$W_k = \frac{m\mathcal{S}^2}{2}$	Кинетикалық энергия
13.	$W_p = mg\Delta h$	Потенциялдық энергия
14.	$W_T = \frac{mA^2\omega^2}{2}$	Толық энергия

МЕХАНИКАЛЫҚ ТОЛҚЫНДРА.

15.	$\lambda = \mathcal{G} \cdot T = \frac{\mathcal{G}}{v}$	Толқын Ұзындығы.
16.	$\omega = \frac{1}{2} \rho \omega^2 A^2$	Толқын энергия тығыздығы.
17.	$\vec{W} = \frac{1}{2}m\omega^2 A^2$	Тарқалып жатқан толқының орташа энергиясы.
18.	$I = \omega \cdot \vartheta = \frac{1}{2} \rho \vartheta \omega^2 A^2$	Толқын интенсивтілігі.
19.	$\vec{P} = IS$	Толқының орташа қуаты.
20.	$T = 2\pi\sqrt{LC}$	Электр тербеліс периоды.
21.	$\mathcal{G} = \frac{C}{\sqrt{\varepsilon \mu}}$	Электромагнитік толқын жылдамдығы.
22.	$\omega = \frac{E \cdot B}{9\mu_0 \mu}$	Энергия тығыздығы.
23.	$I = \vec{\omega} \cdot \mathcal{G} = \frac{\vec{E} \cdot \vec{B}}{\mu_0 \mu}$	Электромагнитік толқын интесивтілігі

24.	$I = I_m \sin(Wt + \varphi_0)$	Өзгеруші ток.
25.	$U = U_m \sin \omega t$ $I = \frac{U}{R} = I_m \sin \omega t$	Актив кедергі тізбегі.
26	11	
26.	$P = I_m U_m \sin^2 \omega t$	Қуат
27.	$I = I_m \sin \omega t$	Индуктив кедергі тізбегі
28.	$x_L = \omega L$	Индуктив кедергі
29.	$x_c = \frac{1}{\omega c}$	Сығылу кедергісі
	$Z = \sqrt{R^2 + (x_L - x_c)^2}$	Толық кедері
31.	$n = \frac{U_2}{U_1} = \frac{I_1}{I_2} = \frac{N_2}{N_1}$	Трансформатордың трансформация коэфиценті
	$P_1 \approx P_2; I_1 U_1 = I_2 U_2$	Қуат
33.	$R = \frac{e\Delta t}{2}$	Радиолакация(радар)

ОПТИКА.

4	0	G1
1.	$C = 3 \cdot 10^8 \text{m/c}$	Сфералық аина
2.	$\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$	Сыныу көрсеткіші
3.	$n_{2.1} = \frac{\sin \alpha}{\sin \beta}$	Тола ішке қаиту
4.	$n_{2.1} = \frac{1}{\sin \alpha}$	Призмадағы сәуленің жолы
5.	$Y = \alpha + \beta - \gamma$	Пароллель пластина сәуле жолы
6.	$x = \frac{d\sin(\alpha - \beta)}{\cos\beta}$	Х-сәуленің сырыуы
7.	$D = (n-1)(\frac{1}{R_1} + \frac{1}{R_2})$	Диоптрия
8.	$\frac{1}{F} = D$	Линза оптик күші
9.	$\pm \frac{1}{F} = \frac{1}{d} \pm \frac{1}{f}$	Линза формуласы
10.	$F = \frac{H}{h} = \frac{f}{d}$	Линзаның сызықты үлкендігі
11.	$k = \frac{D_0}{F}$	Лупаның үлкендігі

12.	1 1	25 см = L_0 (көз әинектері)
12.	$\frac{1}{L_0} + \frac{1}{f} = D_1 + D$	$23 \text{ cm} = L_0 \text{ (RO3 JUHCK1CPI)}$
	L_0 f	
	$\begin{bmatrix} 1 & 1 & D \end{bmatrix}$	
	$\frac{1}{d_1} + \frac{1}{f} = D_1$	Оқушы көз әинегінің оптик күші
	$D = \frac{1}{L_0} - \frac{1}{d_1}$	
	$oxed{L_0} oxed{d}_1$	
		Көз әинектің оптик күші
13.	$k = \frac{hD_0}{F_1 F_2}$	Микраскоп үлкендігі
	F_1F_2	
14.	$\Delta \varphi = 2$	
15.	$\Delta d = (2k-1)\frac{\lambda}{2}$	Тіп шарты
	2	
16.	$\Delta l = l_2 + l_1$	Толқын басып өтетін жолдар аиырмасы
17.	$\sqrt{1_{\lambda \lambda} p}$	Ньютон қалқалары
	$r_m = \sqrt{(m + \frac{1}{2})\lambda_0 R}$	Қараңғы қалқалар радиусы
	$r_m^* = \sqrt{m\lambda_0 R}$	1 0
18.	$d\sin\varphi = n \cdot \lambda$	Диференциялық сәулелер
19.	$g = \frac{c}{}$	
	0 - n	Толқын жылдамдығы мен ұзындығы
	$\lambda = n \cdot \lambda_0$	
	Түрі	Толқын ұзындығы (Н м)

Қызыл	- 800 - 620
Сарғыш	- 620 -585
Сары	- 585 -575
Жасыл – сары	-575 -550
Жасыл	-550 -510
Ауа көк	- 510 - 480
Көк	- 480 -450
Ашық көк	-450 - 390

Квант физика формулалары.

1.	$E = hv = \frac{hc}{\lambda}$	Киант энергиясы
2.	$hv = A + \frac{m\mathcal{G}^2}{2}$	Фотоэфект үшін Эйнштеин формуласы
3.	A = eU	Электроның металдан шығу
		жұмысы

$E = hv = \frac{h\omega}{2\pi}$	Фатон энергиясы
$n = \frac{h}{2\pi} = 1,05 \cdot 10^{-34} \text{Дж}/c$	
$h = 6.62 \cdot 10^{-34} \text{Джc/c}$	
$m = \frac{hv}{c^2} = \frac{h}{c\lambda}$	Фатон массасы
$P = m \cdot c = \frac{hv}{c} = \frac{h}{\lambda}$	Фатон импульсі
$l = l_0 \sqrt{1 - \frac{g^2}{c^2}}$	Дене ұзындығы
$t = t_0 \sqrt{1 - \frac{g^2}{c^2}}$	Уақыт
	Дененің массасы
$P = \frac{m_0 \overline{\mathcal{G}}}{\sqrt{1 - \frac{\mathcal{G}^2}{c^2}}}$	Дененің импульсі
$F - m \cdot c^2$	Дененің тыныштықтағы энергиясы
$E = mc^{2} = \frac{m_{0}c^{2}}{\sqrt{1 - \frac{g^{2}}{c^{2}}}}$	Дененің толық энергиясы
$E_k = E - m_0 c^2 = m_0 c^2 \left(\frac{1}{\sqrt{1 - \frac{g^2}{c^2}}} - 1 \right)$	Кинетикалық энергия
$\Delta m = \frac{C_0 m \Delta T}{c^2}$	ΔT температураға қыздырғанда массасы Δm -гн артады
$P = \frac{m_0 c^2}{c} = \frac{hv}{c}$	Фатон энергмиясы
	$h = 6,62 \cdot 10^{-34} \text{Дж/c}$ $m = \frac{hv}{c^2} = \frac{h}{c\lambda}$ $P = m \cdot c = \frac{hv}{c} = \frac{h}{\lambda}$ $l = l_0 \sqrt{1 - \frac{g^2}{c^2}}$ $t = t_0 \sqrt{1 - \frac{g^2}{c^2}}$ $m = \frac{m_0}{\sqrt{1 - \frac{g^2}{c^2}}}$ $P = \frac{m_0 \overline{g}}{\sqrt{1 - \frac{g^2}{c^2}}}$ $E_0 = m_0 \cdot c^2$ $E = mc^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{g^2}{c^2}}}$ $E_k = E - m_0 c^2 = m_0 c^2 (\frac{1}{\sqrt{1 - \frac{g^2}{c^2}}} - 1)$ $\Delta m = \frac{C_0 m \Delta T}{c^2}$ $P = \frac{m_0 c^2}{c^2} = \frac{hv}{c^2}$

АТОМ ТҮЗІЛУІ.

1.	$hv_{kn} = E_k - E_n$ $h = 6.64 \cdot 10^{-34} $	Толық энергия
	$h = 6.64 \cdot 10^{-34} \text{Дж} \cdot c$	
2.	$r_n = \frac{nh}{2\pi n \mathcal{G}}$	Nорбитадағы электроның аиналу радиусы
3.	$v_{kn} = R(\frac{1}{m} - \frac{1}{K^2})$	Сәулелену жиелігі

4.	$R = \frac{1}{(4\pi\varepsilon_0)} \cdot \frac{me^4}{4\pi h^3} = 3,27 \cdot 10^{15} \cdot y^{-1}$	Рудберг тұрақтысы		
5.	${}_{z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$	α ыдырау		
6.	$_{Z}^{A}X \rightarrow_{Z+1}^{A} +_{1}^{0}e$	β ыдырау		
7.	$N = N_0 2^{\frac{1}{T}}$	γ ыдырау		
8.	$_{1}^{1}H;_{1}^{2}H;_{1}^{3}H;$	Изотоптар		
9.	$E = \Delta Mc^2 = (Zm_p + (A - Z)m_n - M_a)c^2$	Атом ядросының баиланыс		
		энергиясы		
10.	$\Delta \mathbf{M} = Zm_p + Nm_n - M_a$	Масса диферектісі		
11.	$m_p \approx 1,00728$ амб	Пратон массасы		
12.	$m_n \approx 1,00867$ амб	Неитрон массасы		
13.	$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{1}_{0}n + 17,7Mee$	Термоядролық риякция		
14.	$N = \frac{D}{t}$	Жұтылған сәуле мөлшері		
	$[N] = \frac{Gr}{\delta}$			
15.	$^{14}_{7}N + ^{4}_{2}\alpha \rightarrow ^{17}_{8}O + ^{1}_{1}P$	Ядро өрісінде бақыланған 1-ші тәжрибе (Резерфорд)		
16.	$^{27}_{13}Al + ^{4}_{2}\alpha \rightarrow ^{30}_{15}P + ^{1}_{0}n$	Кюри		
	$^{30}_{15}P \rightarrow ^{30}_{14}Si + ^{0}_{14}e$	Жасанды радиоктивтің ж/е		
	15 14-1-1	позитровтің табылуы		
17.	${}^{9}_{4}Be + {}^{4}_{2}\alpha \rightarrow {}^{12}_{6}C + {}^{1}_{0}n$	Неитрон ашылуы(Шедвик)		
18.	${}_{3}^{7}Li+{}_{1}^{1}P \rightarrow {}_{2}^{4}He+{}_{2}^{4}He$	Пратоның 1-шірет қолданылуы		

ОНДЫҚТАР

Т-тера	10^{12}	м-милли	10^{-3}
Г-гига	10^{9}	мк-микро	10^{-6}
М-мега	10^{6}	н-ноно	10^{-9}
К-кило	10^{3}	п-пико	10^{-12}
Да-дена	10^1	ф-фемто	10^{-15}
Д-деци	10-1	а-атто	10^{-18}
с-санти	10 ⁻²	МэВ	10^6 \circ B
		мегоэлектрон	
		вольт	

ЗАТТАРДЫҢ ТЫҒЫЗДЫҒЫ.

Қатты	ρ , Γ /cm ³	Сұйықтар	ρ , Γ /cm ³	Газдар(қалыпты	ρ , Γ /cm ³
заттар				жағдаида)	
Алюминий	2,7	Бензол	0,88	Азот	1,25
Вольфрам	19,1	Су	1,00	Аммиак	0,77
Графит	1,6	Глицерин	1,26	Сутегі	0,09
Темір(болат)	7,8	Кастор маиы	0,90	Aya	1,293
Алтын	19,3	Керасин	0,80	Оттегі	1,43
Кадмий	8,65	Сынап	13,60	Метан	0,72
Кобальт	8,9	Спирт	0,79	Көмірқышқыл	1,98
				газы	
Мұз	0,916	Шикі сүт	1,03	Хлор	3,21
Мыс	8,9	Ауыр су	1,1	Табиғи газ	0,0008
Молбден	10,2	Эфир	0,72	Гелий	0,00018
Натрий	0,97	Бензин	0,71	Иіс газы	0,00125
Никель	8,9	Ацетат	0,79		
Қолаиы	7,4	Мұнай	0,80		
Платина	21,5	Теңіз суы	1,03		
Пробка	0,2	Бал	1,35		
Қорғасын	11,3	Күнбағыс майы	0,93		
Куміс	10,5	Сұиық ауа	0,86	7	
Мырыш	7,0	Сұиық	6,80		
тиррыш	7,0	қолаиы	0,00		