Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

August 28, 2025 601.433/633 Introduction to Algorithms

Today

Should be review, some might be new. See math background in CLRS

Asymptotics: $O(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$ notation.

- ▶ Should know from Data Structures / MFCS. We'll be a bit more formal.
- Intuitively: hide constants and lower order terms, since we only care what happen "at scale" (asymptotically)

Recurrences: How to solve recurrence relations.

Should know from MFCS / Discrete Math.

Asymptotic Notation

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Technically O(f(n)) is a set.

Abuse notation: "g(n) is O(f(n))" or g(n) = O(f(n)).

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Technically O(f(n)) is a set.

Abuse notation: "g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:

- ▶ $2n^2 + 27 = O(n^2)$: set $n_0 = 6$ and c = 3
- ▶ $2n^2 + 27 = O(n^3)$: same values, or $n_0 = 4$ and c = 1
- $n^3 + 2000n^2 + 2000n = O(n^3)$: set $n_0 = 10000$ and c = 2

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Technically O(f(n)) is a set.

Abuse notation: "g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:

- ▶ $2n^2 + 27 = O(n^2)$: set $n_0 = 6$ and c = 3
- ▶ $2n^2 + 27 = O(n^3)$: same values, or $n_0 = 4$ and c = 1
- $n^3 + 2000n^2 + 2000n = O(n^3)$: set $n_0 = 10000$ and c = 2

About functions not algorithms!

Expresses an upper bound

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

$$2n^2+27=O(n^2)$$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

$$2n^2 + 27 = O(n^2)$$

Proof.

Set c = 3. Suppose $2n^2 + 27 > cn^2 = 3n^2$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

$$2n^2 + 27 = O(n^2)$$

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
 $\implies n^2 < 27$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

$$2n^2 + 27 = O(n^2)$$

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
 $\implies n^2 < 27 \implies n < 6$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

$$2n^2 + 27 = O(n^2)$$

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$

$$\implies n^2 < 27 \implies n < 6$$

$$\implies 2n^2 + 27 \le 3n^2 \text{ for all } n \ge 6.$$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

$$2n^2 + 27 = O(n^2)$$

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$

$$\implies n^2 < 27 \implies n < 6$$

$$\implies 2n^2 + 27 \le 3n^2$$
 for all $n \ge 6$.

Set
$$n_0 = 6$$
. Then $2n^2 + 27 \le cn^2$ for all $n > n_0$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

$$2n^2 + 27 = O(n^2)$$

Proof.

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$

$$\implies n^2 < 27 \implies n < 6$$

$$\implies 2n^2 + 27 \le 3n^2$$
 for all $n \ge 6$.

Set
$$n_0 = 6$$
. Then $2n^2 + 27 \le cn^2$ for all $n > n_0$.

Many other ways to prove this!

$$\Omega(\cdot)$$

Counterpart to $O(\cdot)$: *lower* bound rather than upper bound.

Definition

 $g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \ge c \cdot f(n)$ for all $n > n_0$.

$$\Omega(\cdot)$$

Counterpart to $O(\cdot)$: *lower* bound rather than upper bound.

Definition

 $g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \ge c \cdot f(n)$ for all $n > n_0$.

Examples:

- $2n^2 + 27 = \Omega(n^2)$: set $n_0 = 1$ and c = 1
- ▶ $2n^2 + 27 = \Omega(n)$: set $n_0 = 1$ and c = 1
- $\frac{1}{100}n^3 1000n^2 = \Omega(n^3)$: set $n_0 = 1000000$ and c = 1/1000

$$\Theta(\cdot)$$

Combination of $O(\cdot)$ and $\Omega(\cdot)$.

Definition

$$g(n) \in \Theta(f(n))$$
 if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0 , c can be different in the proofs for O(f(n)) and $\Omega(f(n))$

$$\Theta(\cdot)$$

Combination of $O(\cdot)$ and $\Omega(\cdot)$.

Definition

$$g(n) \in \Theta(f(n))$$
 if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0, c can be different in the proofs for O(f(n)) and $\Omega(f(n))$

Equivalent:

Definition

 $g(n) \in \Theta(f(n))$ if there are constants $c_1, c_2, n_0 > 0$ such that $c_1 f(n) \le g(n) \le c_2 f(n)$ for all $n > n_0$.

Both lower bound and upper bound, so asymptotic equality.

Michael Dinitz

Little notation

Strict versions of O and Ω :

Definition

 $g(n) \in o(f(n))$ if for every constant c > 0 there exists a constant $n_0 > 0$ such that $g(n) < c \cdot f(n)$ for all $n > n_0$.

Definition

 $g(n) \in \omega(f(n))$ if for every constant c > 0 there exists a constant $n_0 > 0$ such that $g(n) > c \cdot f(n)$ for all $n > n_0$.

Examples:

- $2n^2 + 27 = o(n^2 \log n)$
- $2n^2 + 27 = \omega(n)$

Recurrence Relations

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

Selection Sort

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

Mergesort

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.
 - **Proof** Running time: Merging takes O(n) time. Two recursive calls on half the size.

$$\implies T(n) = T(n/2) + T(n/2) + cn = 2T(n/2) + cn$$

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes O(n) time. Two recursive calls on half the size.

$$\implies T(n) = T(n/2) + T(n/2) + cn = 2T(n/2) + cn$$

Also need base case. For algorithms, constant size input takes constant time.

$$\implies$$
 $T(n) \le c$ for all $n \le n_0$, for some constants $n_0, c > 0$.

$$T(n) = 3T(n/3) + n$$

$$T(1) = 1$$

$$T(n) = 3T(n/3) + n$$

$$T(1) = 1$$

Guess: $T(n) \le cn$.

$$T(n) = 3T(n/3) + n$$

$$T(1) = 1$$

Guess: $T(n) \le cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n$$

$$T(1) = 1$$

Guess: $T(n) \le cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

$$T(n) = 3T(n/3) + n$$

$$T(1) = 1$$

Guess: $T(n) \le cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \le cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3?

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \le cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$

Guess and Check

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \le cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$

Guess: $T(n) \le n \log_3(3n)$

Guess and Check

$$T(n) = 3T(n/3) + n$$

$$T(1) = 1$$

Guess: $T(n) \le cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$

Guess: $T(n) \le n \log_3(3n)$

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3(n/3)\log_3(3n/3) + n = n\log_3(n) + n$$
$$= n(\log_3(n) + \log_3(3) = n\log_3(3n).$$

Example: selection sort. T(n) = T(n-1) + cn

Example: selection sort. T(n) = T(n-1) + cn

$$T(n) = cn + T(n-1)$$

Example: selection sort. T(n) = T(n-1) + cn

$$T(n) = cn + T(n-1)$$

= $cn + c(n-1) + T(n-2)$

Example: selection sort. T(n) = T(n-1) + cn

$$T(n) = cn + T(n-1)$$

$$= cn + c(n-1) + T(n-2)$$

$$= cn + c(n-1) + c(n-2) + T(n-3)$$

Example: selection sort. T(n) = T(n-1) + cn

$$T(n) = cn + T(n-1)$$

$$= cn + c(n-1) + T(n-2)$$

$$= cn + c(n-1) + c(n-2) + T(n-3)$$

$$\vdots$$

Example: selection sort. T(n) = T(n-1) + cn

$$T(n) = cn + T(n-1)$$

$$= cn + c(n-1) + T(n-2)$$

$$= cn + c(n-1) + c(n-2) + T(n-3)$$

$$\vdots$$

$$= cn + c(n-1) + c(n-2) + \cdots + c$$

Example: selection sort. T(n) = T(n-1) + cn

Idea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

$$= cn + c(n-1) + T(n-2)$$

$$= cn + c(n-1) + c(n-2) + T(n-3)$$

$$\vdots$$

$$= cn + c(n-1) + c(n-2) + \dots + c$$

n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$

Example: selection sort. T(n) = T(n-1) + cn

Idea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

$$= cn + c(n-1) + T(n-2)$$

$$= cn + c(n-1) + c(n-2) + T(n-3)$$

$$\vdots$$

$$= cn + c(n-1) + c(n-2) + \dots + c$$

n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$

At least n/2 terms which are at least $cn/2 \implies T(n) \ge c \frac{n^2}{4} = \Omega(n^2)$

Example: selection sort. T(n) = T(n-1) + cn

Idea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

$$= cn + c(n-1) + T(n-2)$$

$$= cn + c(n-1) + c(n-2) + T(n-3)$$

$$\vdots$$

$$= cn + c(n-1) + c(n-2) + \cdots + c$$

n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$

At least n/2 terms which are at least $cn/2 \implies T(n) \ge c \frac{n^2}{4} = \Omega(n^2)$

$$\implies T(n) = \Theta(n^2).$$

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

levels:

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

levels: $\log_2 n$

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

levels: $\log_2 n$

Contribution of level i:

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

levels: $\log_2 n$

Contribution of level $i: 2^{i-1}cn/2^{i-1} = cn$

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

levels: $\log_2 n$

Contribution of level $i: 2^{i-1}cn/2^{i-1} = cn$

$$\implies T(n) = \Theta(n \log n)$$

13 / 17

$$T(n) = 7T(n/2) + cn^2$$

$$T(n) = 7T(n/2) + cn^2$$

$$T(n) = 7T(n/2) + cn^2$$

Level i: $7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2$

$$T(n) = 7T(n/2) + cn^2$$

Level i:
$$7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2$$

$$T(n) = \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1} cn^2 = cn^2 \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1}$$

Total:

$$T(n) = 7T(n/2) + cn^2$$

Level i:
$$7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2$$

$$T(n) = \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1} cn^2 = cn^2 \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1}$$

$$\implies T(n) = O(n^2(7/4)^{\log n}) = O(n^2 n^{\log(7/4)}) = O(n^2 n^{\log 7 - 2})$$
$$= O(n^{\log 7})$$

$$T(n) = aT(n/b) + cn^k$$
 $T(1) = c$

a, b, c, k constants with $a \ge 1$, b > 1, c > 0, and $k \ge 0$

$$T(n) = aT(n/b) + cn^k$$
 $T(1) = c$

a, b, c, k constants with $a \ge 1$, b > 1, c > 0, and $k \ge 0$

$$T(n) = aT(n/b) + cn^k$$
 $T(1) = c$

a, b, c, k constants with $a \ge 1$, b > 1, c > 0, and $k \ge 0$

levels: $\log_b n + 1$

$$T(n) = aT(n/b) + cn^k$$
 $T(1) = c$

a, b, c, k constants with $a \ge 1$, b > 1, c > 0, and $k \ge 0$

levels: $\log_b n + 1$

Level i: $a^{i-1}c(n/b^{i-1})^k = cn^k(a/b^k)^{i-1}$

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

► Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- ► Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$

$$\implies T(n) = O(n^k)$$

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$\implies \textstyle \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$

$$\implies T(n) = O(n^k)$$

$$T(n) \ge cn^k \implies T(n) = \Omega(n^k)$$

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$

$$\implies T(n) = O(n^k)$$

$$T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$$

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- ► Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$\implies \textstyle \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$

$$\implies T(n) = O(n^k)$$

$$T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$$

• Case 3: $\alpha > 1$. Dominated by bottom level

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- ► Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$\implies \textstyle \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$

$$\implies T(n) = O(n^k)$$

$$T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$$

• Case 3: $\alpha > 1$. Dominated by bottom level

$$\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \le \alpha^{\log_b n} \frac{1}{1 - (1/\alpha)}$$
$$= O(\alpha^{\log_b n})$$

Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- ► Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$\implies \textstyle \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$

$$\implies T(n) = O(n^k)$$

$$T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$$

• Case 3: $\alpha > 1$. Dominated by bottom level

$$\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \le \alpha^{\log_b n} \frac{1}{1 - (1/\alpha)}$$

$$= O(\alpha^{\log_b n})$$

$$\implies T(n) = \Theta(n^k \alpha^{\log_b n}) = \Theta(n^k (a/b^k)^{\log_b n}) = \Theta(a^{\log_b n})$$

$$= \Theta(n^{\log_b a})$$

Theorem ("Master Theorem")

Michael Dinitz

The recurrence

$$T(n) = aT(n/b) + cn^k$$
 $T(1) = c$

where a, b, c, and k are constants with $a \ge 1$, b > 1, c > 0, and $k \ge 0$, is equal to

$$T(n) = \Theta(n^k) \text{ if } a < b^k,$$

$$T(n) = \Theta(n^k \log n) \text{ if } a = b^k,$$

$$T(n) = \Theta(n^{\log_b a}) \text{ if } a > b^k.$$

17 / 17

Lecture 2: Asymptotic Analysis, Recurrences August 28, 2025