Weak instruments

Jörn-Steffen Pischke

LSE

October 14, 2016

Pischke (LSE) Weak instruments

1 / 25

IV regression with weak instruments

Bound, Jaeger, and Baker (1995) pointed out that the quarter of birth instruments explain only a tiny proportion of the variation in schooling. This leads to two distinct problems:

- The 2SLS estimator with weak instruments is biased in small samples.
- Any inconsisency from a small violation of the exclusion restriction gets magnified by weak instruments.

The 2SLS bias

Start with the 2SLS small sample bias. To get an intuition for this situation, look at the simplest formulation of the IV problem:

$$y_i = \beta x_i + \eta_i$$
 (structural equation)
 $x_i = \pi_1 z_i + \xi_i$ (first stage)

Pischke (LSE)

3 / 25

The small sample behavior with one instrument

ullet If an instrument is basically irrelevant then $\pi_1 pprox 0$. Recall

$$\beta_{IV} = \frac{cov(y_i, z_i)}{cov(x_i, z_i)}$$

but

$$cov(x_i, z_i) = cov(\pi_1 z_i + \xi_i, z_i) = \pi_1 \sigma_Z^2$$

So if $\pi_1 = 0$,

$$cov(x_i, z_i) = 0$$

and the IV estimator doesn't exist.

• Even when π_1 is truely zero, in any finite sample the sample analogue to $cov(x_i, z_i)$ will not be exactly zero. But this is of little comfort as the sampling variation in $cov(x_i, z_i)$ is not helpful to estimate β .

With multiple instruments the first stage is:

$$x = Z\pi + \xi$$
.

OLS estimates are biased because η_i is correlated with ξ_i . The instruments Z_i are uncorrelated with ξ_i by construction and uncorrelated with η_i by assumption.

The 2SLS estimator is

$$\hat{\beta}_{2SLS} = (x'P_Zx)^{-1} x'P_Zy = \beta + (x'P_Zx)^{-1} x'P_Z\eta$$

where $P_Z = Z(Z'Z)^{-1}Z'$ is the projection matrix that produces fitted values from a regression of x on Z. Substitute the first stage for x in $x'P_Z\eta$ to get

$$\widehat{\beta}_{2SLS} - \beta = (x'P_{Z}x)^{-1} (\pi'Z' + \xi') P_{Z}\eta$$

$$= (x'P_{Z}x)^{-1} \pi'Z'\eta + (x'P_{Z}x)^{-1} \xi'P_{Z}\eta$$

Pischke (LSE) Weak instruments October 14, 2016 5 / 25

Group asymptotics

The expectation of this expression is hard to evaluate because the expectation operator does not pass through the inverse $(x'P_Zx)^{-1}$, a nonlinear function.

- Trick: group asymptotics. Still use an asymptotic argument but let the number of instruments grow at the same rate as the sample size. This "keeps the instruments weak."
- Group asymptotics gives us something like an expectation, it essentially says that we can take these expectations through non-linear functions anyway:

$$E[\widehat{\beta}_{2SLS} - \beta] \approx \left(E[x'P_Z x] \right)^{-1} E[\pi' Z' \eta] + \left(E[x'P_Z x] \right)^{-1} E[\xi' P_Z \eta].$$

This approximation is much better than the usual first-order asymptotic approximation invoked in large-sample theory, so it gives us a good measure of the finite-sample behavior of the 2SLS estimator.

Pischke (LSE) Weak instruments October 14, 2016 6 / 25

Remember the instruments Z_i are uncorrelated with ξ_i and η_i . Therefore $E[\pi'Z'\eta]=0$, and we have

$$E[\widehat{\beta}_{2SLS} - \beta] \approx (E[x'P_Zx])^{-1} E[\pi'Z'\eta] + (E[x'P_Zx])^{-1} E[\xi'P_Z\eta]$$

= $(E[x'P_Zx])^{-1} E[\xi'P_Z\eta].$

Substitute in the first stage again.

$$E[\widehat{\beta}_{2SLS} - \beta] \approx (E[(\pi'Z' + \xi') P_Z (Z\pi + \xi)])^{-1} E[\xi' P_Z \eta].$$

Note that $E[\pi'Z'\xi]=0$, so we get no cross-terms:

$$E[\widehat{\beta}_{2SLS} - \beta] \approx [E(\pi'Z'Z\pi) + E(\xi'P_Z\xi)]^{-1} E(\xi'P_Z\eta).$$

7 / 25

Pischke (LSE) Weak instruments October 14, 2016

Matrix algebra trick: $\xi' P_Z \xi$ is a scalar, therefore equal to its trace; the trace is a linear operator which passes through expectations and is invariant to cyclic permutations; finally, the trace of P_Z , an idempotent matrix, is equal to it's rank, Q. Using these facts

$$E(\xi' P_Z \xi) = E[\operatorname{tr}(\xi' P_Z \xi)]$$

$$= E[\operatorname{tr}(P_Z \xi \xi')]$$

$$= \operatorname{tr}(P_Z E[\xi \xi'])$$

$$= \operatorname{tr}(P_Z \sigma_{\xi}^2 I)$$

$$= \sigma_{\xi}^2 \operatorname{tr}(P_Z)$$

$$= \sigma_{\xi}^2 Q,$$

where we have assumed that ξ_i is homoskedastic. Similarly, applying the trace trick to $\xi' P_Z \eta$ shows that this term is equal to $\sigma_{\eta \xi} Q$.

Pischke (LSE) Weak instruments October 14, 2016 8 / 25

Now we have

$$E[\widehat{\beta}_{2SLS} - \beta] \approx \sigma_{\eta\xi} Q \left[E \left(\pi' Z' Z \pi \right) + \sigma_{\xi}^{2} Q \right]^{-1}$$

$$= \frac{\sigma_{\eta\xi}}{\sigma_{\xi}^{2}} \left[\frac{E \left(\pi' Z' Z \pi \right) / Q}{\sigma_{\xi}^{2}} + 1 \right]^{-1}.$$

Note that

$$F = \frac{E\left(\pi'Z'Z\pi\right)/Q}{\sigma_{\xi}^2}$$

is the population F-statistic for the joint significance of all regressors in the first stage regression and hence

$$E[\widehat{\beta}_{2SLS} - \beta] \approx \frac{\sigma_{\eta\xi}}{\sigma_{\xi}^2} \frac{1}{F+1}.$$

October 14, 2016

9 / 25

The 2SLS bias with a zero first stage

Suppose the first stage coefficients π are truely zero. Then F=0. **Furthermore**

$$\sigma_x^2 = \sigma_\xi^2$$
.

Hence

$$E[\widehat{\beta}_{2SLS} - \beta] \approx \frac{\sigma_{\eta\xi}}{\sigma_x^2}$$

but this is just the bias in the OLS estimator, since

$$\beta_{OLS} = \frac{cov(y_i, x_i)}{var(x_i)} = \frac{cov(\beta x_i + \eta_i, x_i)}{var(x_i)}$$
$$= \beta + \frac{cov(\eta_i, x_i)}{var(x_i)} = \frac{\sigma_{\eta\xi}}{\sigma_x^2}$$

since $cov(\eta_i, x_i) = \sigma_{\eta \xi}$ if $\pi = 0$.

2SLS is biased towards OLS with weak instruments

Where does this come from?

- If π is truely zero, then any variation in $\widehat{x_i}$ in the sample just comes from ξ_i . So, the variation in $\widehat{x_i}$ is no different from the variation in x_i , and hence OLS and 2SLS have to estimate the same quantity on average.
- If π is not truely zero but F is small, then 2SLS will be biased towards OLS.

11 / 25

What does the weak instrument bias depend on?

The weak instrument bias tends to get worse as we add more (weak) instruments. To see this consider

$$F = \frac{E\left(\pi'Z'Z\pi\right)/Q}{\sigma_{\xi}^2}$$

Suppose you have some existing instruments, and you add new ones with no additional exploratory power. I.e. the π coefficients on the additional instruments will be zero.

- $\pi'Z'Z\pi$ will remain the same as before adding more instruments.
- Since the first stage regression is unchanged by the additional instruments, $\sigma_{\tilde{c}}^2$ will also remain the same.
- Q will go up.

As a result, F will go down, and the 2SLS bias will get worse.

Pischke (LSE) Weak instruments October 14, 2016 12 / 25

Summing up on the bias

With weak instruments

- 2SLS is biased towards OLS.
- The bias will tend to be worse when there are many overidentifying restrictions (many instruments compared to endogenous regressors).
- Just identified IV is approximately unbiased (or less biased) even with weak instruments (although it is not possible to see this from the bias formula).
- Estimated standard errors of 2SLS and IV estimators may be too small.

LIML

- There are alternative estimators, which have better small sample properties than 2SLS with weak instruments. One such estimator is LIML (limited information maximum likelihood).
- LIML is a linear combination of the OLS and 2SLS estimate (with the weights depending on the data), and the weights happen to be such that they (approximately) eliminate the 2SLS bias.

A Monte Carlo Experiment

Simulate data from the following model

$$y_i = \beta x_i + \eta_i$$

$$x_i = \sum_{j=1}^{Q} \pi_j z_{ij} + \xi_i$$

with $\beta=1$, $\pi_1=0.1$, $\pi_j=0$ for j=2,...,Q,

$$\left(\begin{array}{c} \eta_i \\ \xi_i \end{array}\right) \middle| \ Z \sim N\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0.8 \\ 0.8 & 1 \end{array}\right)\right),$$

where the z_{ij} are independent, normally distributed random variables with mean zero and unit variance. The sample size is 1000.

4□▶<</p>
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶</p

Monte Carlo Results

2SLS, LIML: 2 instruments, IV: one instrument

Monte Carlo Results

20 instruments

Monte Carlo Results

20 garbage instruments

What should you do in practice?

- Report the first stage and think about whether it makes sense. Are the magnitude and sign as you would expect?
- Report the F-statistic on the excluded instruments. The bigger this
 is, the better. Fs above 10 to 20 are considered relatively safe, lower
 Fs put you in the danger zone.
- Pick your best single instrument and report just-identified estimates using this one only. Just-identified IV is approximately median-unbiased.
- Check over-identified 2SLS estimates with LIML. If the LIML estimates are very different, or standard errors are much bigger, worry.
- Look at the coefficients, t-statistics, and F-statistics for excluded instruments in the reduced-form regression of dependent variables on instruments. The reduced-form estimates are just OLS, so they are unbiased. If the relationship you expect is not in the reduced form, it's probably not there.

Some alternative AK91 estimates

Table 4.6.2 Alternative IV estimates of the economic returns to schooling

	(1)	(2)	(3)	(4)	(5)	(6)
2SLS	.105	.435	.089	.076	.093	.091
LIML	(.020) .106 (.020)	(.450) .539 (.627)	(.016) .093 (.018)	(.029) .081 (.041)	(.009) .106 (.012)	(.011) .110 (.015)
<i>F</i> -statistic (excluded instruments)	32.27	.42	4.91	1.61	2.58	1.97
Controls Year of birth State of birth	✓	✓	✓	✓	√	√
Age, age squared		\checkmark		\checkmark	•	√
Excluded instruments						
Quarter-of-birth dummies Quarter of birth*year of birth	\checkmark	\checkmark	<u> </u>	<u> </u>	1	<i>(</i>
Quarter of birth *state of birth			•	•	√	√
Number of excluded instruments	3	2	30	28	180	178

Violations of the exclusion restriction

- In general, we do not believe that any of the assumptions we are making in statistics are literally true. But we typically proceed if we think our assumptions are "pretty good."
- Is "pretty good" enough for the exclusion restriction? Suppose we have a candidate instrument Z_i for a regressor D_i . Write

$$y_i = \alpha + \rho D_i + \gamma Z_i + e_i$$

$$D_i = \pi_0 + \pi_1 Z_i + \xi_i.$$

The exclusion restriction amounts to the assumption $\gamma = 0$.

Weak instruments and the exclusion restriction

What happens if $\gamma = \gamma_0 \neq 0$?

$$\rho_{IV} = \frac{cov (\alpha + \rho D_i + \gamma_0 Z_i + e_i, Z_i)}{cov (D_i, Z_i)}$$

$$= \frac{\rho cov (D_i, Z_i) + \gamma_0 var (Z_i)}{cov (D_i, Z_i)}$$

$$= \rho + \gamma_0 \frac{var (Z_i)}{cov (D_i, Z_i)} = \rho + \frac{\gamma_0}{\pi_1}$$

- The IV estimate of ρ is biased, the bias is γ_0/π_1 .
- The bias is larger in absolute value the closer π_1 is to zero. I.e. the bias is worse with weak instruments.
- With π_1 very close to zero, a very small violation of the exclusion restriction can lead to a large (asymptotic) bias.

Pischke (LSE) Weak instruments October 14, 2016 22 / 25

Can violation of the exclusion restriction explain AK91?

- School starting age (SSA) is a candidate violation of the exclusion restriction. Individuals born in quarter 4 start school younger.
- The best paper on school starting age is Black, Devereux, and Salvanes, "Too Young to Leave the Nest?" *REStat* 2011 for Norway. They find an effect on log earnings of -0.1 at age 25, -0.01 (not significant) at age 30, 0.0 at age 35, suggesting SSA works through lost labor market experience. (AK91 sample is in their 40s.)
- To play with the numbers:
 - $\pi_1 =$ 0.09, this is the difference in schooling between quarter 4 and other quarters
 - Those born in quarter 4 start school about 6 months younger, or -0.5 of a year.
 - γ_0 is the effect of school starting age on earnings. Using the age 30 γ_0 of -0.01

$$\frac{\gamma_0}{\pi_1} = \frac{-0.01*-0.5}{0.09} = 0.055$$

Violations of random assignment

Suppose control X_i is necessary for random assignment of instrument Z_i .

$$y_i = \alpha + \rho D_i + \gamma X_i + e_i$$

$$D_i = \pi_0 + \pi_1 Z_i + \pi_2 X_i + \xi_i.$$

What happens if $\gamma \neq 0$ but we omit X_i ?

$$\rho_{IV} = \frac{cov (\alpha + \rho D_i + \gamma X_i + e_i, Z_i)}{cov (D_i, Z_i)}$$

$$= \frac{\rho cov (D_i, Z_i) + \gamma cov (X_i, Z_i)}{cov (D_i, Z_i)}$$

$$= \rho + \gamma \frac{cov (X_i, Z_i)}{cov (D_i, Z_i)}$$

This looks like and is an omitted variables bias formula. The standard OLS coefficient $cov(X_i, D_i) / var(D_i)$ is being replaced by it's IV analogue: for the auxiliary regression run X_i on D_i and instrument by Z_i .

Pischke (LSE) Weak instruments October 14, 2016 24 / 25

Can violation of random assignment explain AK91?

Magnitude: The bias is equal to

$$\gamma \frac{cov\left(X_{i},Z_{i}\right)}{cov\left(D_{i},Z_{i}\right)} = \gamma \frac{E\left[SES_{i}|Q4_{i}=1\right] - E\left[SES_{i}|Q4_{i}=0\right]}{E\left[S_{i}|Q4_{i}=1\right] - E\left[S_{i}|Q4_{i}=0\right]}.$$

- γ is the effect of SES_i on child's earnings. Intergenerational correlations are about 0.4.
- The top is the difference in SES_i ; BJB report family income between first and other quarter births differs by about 2%, so this is 0.02.
- The bottom is 1st stage with one instrument, 0.09.

$$\gamma \frac{E\left[SES_{i}|Q4_{i}=1\right] - E\left[SES_{i}|Q4_{i}=0\right]}{E\left[S_{i}|Q4_{i}=1\right] - E\left[S_{i}|Q4_{i}=0\right]} = 0.4 \frac{0.02}{0.09} = 0.088$$

- Pattern: Buckles and Hungerman (2008): Data on mother's education and month of birth.
 - Patterns don't line up: kid's schooling peaks in quarter 4 (Oct Dec), mother's schooling peaks in May.