"Ce n'est pas que je suis si intelligent, c'est que je reste plus longtemps avec les problèmes." Albert Einstein

Exercice 1 Soit $E = \{P \in \mathbb{R}_n[X], P(0) = P(1) = 0\}$

- 1. Montrer que E est un \mathbb{R} -ev, en donner une base et la dimension.
- 2. Montrer ensuite que $(P,Q) \mapsto -\int_0^1 (P''Q + PQ'')$ définit un produit scalaire sur E.

Exercice 2 Montrer que $\langle f,g\rangle=f(1)g(1)+\int_0^1f'(t)g'(t)dt$ définit un produit scalaire sur $E=\mathscr{C}^1([0,1],\mathbb{R})$. En déduire pour toute f de $\mathscr{C}^1([0,1],\mathbb{R})$ on a :

$$\left(f(1) + \int_0^1 f'(t)dt\right)^2 \le 2\left(f(1)^2 + \int_0^1 f'(t)^2 dt\right)$$

Exercice 3 Dans \mathbb{R}^3 une famille (a, b, c, d) de 4 vecteurs non nuls peut-elle être orthogonale?

Exercice 4 Trouver trois vecteurs u, v, w de \mathbb{R}^2 tels que $||u + v + w||^2 = ||u||^2 + ||v||^2 + ||w||^2$ sans que (u, v, w) soit une famille orthogonale.

Exercice 5 Déterminer dans $\mathbb{R}_2[X]$ muni de $\langle P,Q \rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1)$ l'orthogonal de $\mathbb{R}_1[X]$.

Exercice 6 (CCP)

- 1. Montrer que l'application $(A, B) \mapsto \operatorname{Tr}({}^{t}\!AB)$ définit un produit scalaire sur $\mathcal{M}_{2}(\mathbb{R})$.
- 2. Montrer que $E = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, (a, b) \in \mathbb{R}^2 \right\}$ est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 3. Trouver une base orthonormale de E^{\perp} .
- 4. Calculer la distance de $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ à E^{\perp} .

Exercice 7 On note pour $n \in \mathbb{N}$: $P_n(X) = ((X^2 - 1)^n)^{(n)}$.

- 1. Calculer P_n pour $0 \le n \le 3$.
- 2. Montrer que P_n est un polynôme dont on précisera le degré et le coefficient dominant.
- 3. Justifier que P_n admet n racines distinctes dans]-1,1[.
- 4. Préciser la parité de P_n , sa valeur en 1 puis en -1.
- 5. On munit $\mathbb{R}_n[X]$ du produit scalaire : $\langle P,Q\rangle = \int_{-1}^1 PQ$, montrer que $(P_0,P_1,...,P_n)$ en est une base orthogonale et préciser la norme de P_n .

Exercice 8 Soit E un espace euclidien et a un vecteur unitaire de E. On note pour tout réel α :

$$\phi_{\alpha}: x \in E \mapsto x + \alpha \langle a, x \rangle a$$

- 1. Montrer que ϕ_{α} est un endomorphisme.
- 2. Montrer que $\mathcal{A} = \{\phi_{\alpha}, \alpha \in \mathbb{R}\}$ est stable par composition, commutatif et contient id_E .
- 3. Déterminer $\ker \phi_{\alpha}$.
- 4. Montrer que si $\alpha \neq -1$ alors ϕ_{α} est inversible **dans** \mathscr{A} .

Exercice 9 Soit x, y dans E préhilbertien. Montrer qu'ils sont même norme ssi $x - y \perp x + y$.

Exercice 10 Soient *F* et *G* deux sous-espaces vectoriels d'un espace préhilbertien *E*. Montrer que :

$$F \subset (F^{\perp})^{\perp}, (F+G)^{\perp} = F^{\perp} \cap G^{\perp} \text{ et } F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}.$$

Que se passe-t-il en dimension finie?

Exercice 11 Si F (donc E...) est de dimension infinie on n'a plus nécessairement $E = F \oplus F^{\perp}$. Considérer par exemple l'hyperplan des fonctions nulles en 0 dans $\mathscr{C}([0,1],\mathbb{R})$ muni de son produit scalaire usuel.

Exercice 12 Soit x, y non nuls dans (E, \langle, \rangle) préhilbertien, redémontrer l'inégalité de Cauchy-Schwarz et le cas d'égalité en développant $\left\|\frac{x}{\|x\|} - \frac{y}{\|y\|}\right\|^2$ et $\left\|\frac{x}{\|x\|} + \frac{y}{\|y\|}\right\|^2$.

Exercice 13 A l'aide de l'inégalité de Cauchy-Schwarz dans \mathbb{R}^n usuel, montrer que :

$$\forall n \ge 1, \sum_{k=1}^{n} k \sqrt{k} \le \frac{n(n+1)\sqrt{2n+1}}{2\sqrt{3}}$$

Exercice 14 On suppose $x_1, ..., x_n$ dans \mathbb{R}_+^* vérifiant $x_1 + ... + x_n = 1$. Montrer que $\sum_{i=1}^n \frac{1}{x_i} \ge n^2$ et préciser le(s) cas d'égalité.

Exercice 15 Rappeler l'énoncé de l'inégalité de Cauchy-Schwarz. Montrer que pour toute fonction continue d'un segment [a,b] dans \mathbb{R} , on a

$$\left(\int_{a}^{b} f(t)dt\right)^{2} \le (b-a)\int_{a}^{b} \left(f(t)\right)^{2} dt$$

Pour quelle(s) fonction(s) a-t-on l'égalité?

Exercice 16 Soit (E, \langle, \rangle) euclidien de BON $(e_1, ..., e_n)$ et $f \in L(E)$. Montrer que la trace de f est égale à $\sum_{i=1}^n \langle f(e_i), e_i \rangle$.

Exercice 17 Soit (E, \langle, \rangle) euclidien et $u \in L(E)$ tel que pour tout x de E u(x) soit orthogonal à x.

- 1. Montrer que pour tout x, y de E on a $\langle u(x), y \rangle = -\langle x, u(y) \rangle$
- 2. En déduire que ker *u* et Im*u* sont orthogonaux puis supplémentaires.

Exercice 18 Soit *E* un espace préhilbertien, et $(e_1, ..., e_n)$ des vecteurs unitaires vérifiant : $\forall x \in E, ||x||^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$. Montrer que $(e_1, ..., e_n)$ est une base orthonormale de *E*.

Exercice 19 Soit E euclidien de BON $(e_1, ..., e_n)$ et $f: E \to E$ vérifiant f(0) = 0 et $\forall (x, y) \in E^2, ||f(x) - f(y)|| = ||x - y||$.

- 1. Montrer que f conserve la norme puis le produit scalaire. En déduire que $(f(e_1),...,f(e_n))$ est une BON.
- 2. Montrer que $\forall x \in E, f(x) = \sum_{i=1}^{n} \langle x, e_i \rangle f(e_i)$, en déduire que f est linéaire. Que se passe t-il si on ne suppose plus f(0) = 0?

Exercice 20 Soit H un hyperplan de E euclidien et $u \in H^{\perp}$. On note p la projection orthogonale sur H et s la symétrie orthogonale par rapport à H. Vérifier que :

$$\forall x \in E : p(x) = x - \frac{\langle x, u \rangle}{||u||^2} u \text{ et } s(x) = x - 2 \frac{\langle x, u \rangle}{||u||^2} u$$

Exercice 21 Soit (E, \langle, \rangle) préhilbertien, montrer qu'un projecteur p est un projecteur orthogonal ssi

$$\forall x \in E, ||p(x)|| \le ||x||$$

Exercice 22 (un projecteur est symétrique ssi il est orthogonal) Soit (E, \langle, \rangle) préhilbertien, montrer qu'un projecteur p est un projecteur orthogonal ssi

$$\forall (x, y) \in E^2, \langle p(x), y \rangle = \langle x, p(y) \rangle$$

Exercice 23 Dans \mathbb{R}^3 muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt la base suivante :

$$u = (1, 0, 1), v = (1, 1, 1), w = (-1, -1, 0)$$

Exercice 24 Construire une BON de $\mathbb{R}_3[X]$ muni de $\langle P,Q\rangle = \int_0^1 P(t)Q(t)dt$.

Exercice 25 Soit E un espace euclidien de dimension 4, $\mathcal{B} = (\vec{e}_1, \dots, \vec{e}_4)$ une base orthonormée de E, et F le sous-espace vectoriel d'équations dans \mathcal{B} :

$$\begin{cases} x+y+z+t=0\\ x+2y+3z+4t=0 \end{cases}$$

- 1. Trouver une base orthonormée de F.
- 2. Donner la matrice dans \mathcal{B} de la projection orthogonale sur F.
- 3. Calculer $d(\vec{e}_1, F)$.

Exercice 26 On munit \mathbb{R}^n du produit scalaire usuel. Soit $H = \{(x_1, \dots, x_n) \in \mathbb{R}^n \text{ tq } a_1x_1 + \dots + a_nx_n = 0\}$ où a_1, \dots, a_n sont des réels donnés non tous nuls. Chercher la matrice dans la base canonique de la projection orthogonale sur H.

Exercice 27 Soit $E = \mathbb{R}_n[X]$ et $\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt$.

- 1. Montrer que (E, \langle, \rangle) , est un espace euclidien.
- 2. Soit $K = \mathbb{R}_{n-1}[X]^{\perp}$ et $P \in K \setminus \{0\}$. Quel est le degré de P?
- 3. Soit $\Phi: x \mapsto \int_{t=0}^{1} P(t)t^{x} dt$. Montrer que Φ est une fonction rationnelle.
- 4. Trouver Φ à une constante multiplicative près.
- 5. En déduire les coefficients de *P* puis une base orthogonale de *E*.

Exercice 28 (Représentation de Riesz)

- 1. Montrer que pour toute forme linéaire ϕ sur E euclidien il existe un unique vecteur a de E tel que $\phi: x \in E \mapsto \langle x, a \rangle$ Préciser son noyau.
- 2. Montrer qu'il existe un unique polynôme A dans $R_n[X]$ tel que pour tout P de $R_n[X]$ $P(0) = \int_0^1 A(t)M(t) dt$. Montrer aussi que A est de degré n. Que se passe-t-il si on remplace $\mathbb{R}_n[X]$ par R[X]?

Exercice 29 (Polynômes de Laguerre)

- 1. Montrer que $\langle P, Q \rangle = \int_0^{+\infty} e^{-t} P(t) Q(t) dt$ définit un produit scalaire sur $\mathbb{R}[X]$.
- 2. Calculer $\langle X^p, X^q \rangle$ avec p, q dans \mathbb{N} .
- 3. Construire une BON du sev $\mathbb{R}_2[X]$, en déduire $\inf_{(a,b)\in\mathbb{R}^3}\int_0^{+\infty} \mathrm{e}^{-t}(t^3-at-b)\,\mathrm{d}t$.

Exercice 30 (Polynômes de Tchebychev)

- 1. Montrer que $\langle f, g \rangle = \int_0^{\pi} f(\cos \theta) g(\cos \theta) d\theta$ définit un ps sur $E = C([-1, 1], \mathbb{R})$.
- 2. Montrer qu'il existe une unique suite de polynômes $(T_n)_{n\in\mathbb{N}}$ vérifiant : $\forall \theta \in \mathbb{R}, \cos(n\theta) = T_n(\cos\theta)$. On pourra commencer par déterminer les 3 premiers termes puis exploiter les formules trigonométriques développant $\cos((n+1)\theta)$ et $\cos((n-1)\theta)$... Préciser le degré et le coefficient dominant de T_n , dit n^e polynôme de Tchebychev.
- 3. Montrer que $(T_n)_{n\in\mathbb{N}}$ est une famille orthogonale et calculer $||T_n||$.
- 4. En déduire $\inf_{(a_0,a_1,\dots,a_{n-1})\in\mathbb{R}^n}\int_0^\pi \left(\cos^n\theta+a_{n-1}\cos^{n-1}\theta+\dots+a_1\cos\theta+a_0\right)^2d\theta$ ()On pourra exprimer : $\cos^n\theta+a_{n-1}\cos^{n-1}\theta+\dots+a_1\cos\theta+a_0$ avec les polynômes de Tchebychev et utiliser le théorème de Pythagore.)

Exercice 31 (CCP PSI) Soit a_0, \ldots, a_n des réels deux à deux distincts. On pose : $\forall (P,Q) \in \mathbb{R}_n[X]^2$, $(P|Q) = \sum_{k=0}^n P(a_k)Q(a_k)$.

- 1. Montrer qu'il s'agit d'un produit scalaire.
- 2. On pose : $F = \left\{ P \in \mathbb{R}_n[X] / \sum_{k=0}^n P(a_k) = 0 \right\}$. Justifier rapidement que F est un sous-espace vectoriel de $\mathbb{R}_n[X]$, calculer sa dimension ainsi que son orthogonal puis calculer la distance de X^n à F.

Exercice 32 (CCP PSI) L'espace euclidien $E = \mathcal{M}_n(\mathbb{R})$ est muni du produit scalaire canonique défini par $\forall (A,B) \in E \times E$, $(A|B) = \operatorname{tr}^t(AB)$. $\mathcal{S}_n(\mathbb{R})$ est l'ensemble des matrices symétriques réelles et $\mathcal{A}_n(\mathbb{R})$ celui des matrices antisymétriques réelles de E.

- 1. Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont des sous-espaces supplémentaires orthogonaux dans E.
- 2. Exprimer en fonction de $M \in E$ la distance de M à $\mathcal{S}_n(\mathbb{R})$.
- 3. Faire le calcul pour $M = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 2 & 2 & \dots & 2 \\ \vdots & \vdots & & \vdots \\ n & n & \dots & n \end{pmatrix}$.

Exercice 33 (CCP PC) Soit E un espace euclidien de dimension n.

Soit f un endomorphisme de E tel que : $\forall (x,y) \in E^2$, $(x|y) = 0 \Rightarrow (f(x)|f(y)) = 0$. Soit (e_1,\ldots,e_n) une base orthonormée de E.

- 1. $\forall (i, j) \in \{1, ..., n\}$, calculer $(f(e_i + e_j)|f(e_i e_j))$.
- 2. Montrer qu'il existe $\alpha \in \mathbb{R}_+$ tel que $\forall i \in \{1, ..., n\}, ||f(e_i)|| = \alpha$.

Exercice 34 Soit $P \in \mathbb{R}[X]$ de degré inférieur ou égal à 3 tel que $\int_{-1}^{1} P^2(t) dt = 1$.

Montrer que $\sup\{|P(x)|, x \in [-1, 1]\} \le 2\sqrt{2}$.

Indications : Pour $a \in \mathbb{R}$ montrer qu'il existe $P_a \in \mathbb{R}_3[X]$ tel que : $\forall P \in \mathbb{R}_3[X]$, $P(a) = \int_{-1}^1 P(t)P_a(t) dt$. Calculer explicitement P_a , et appliquer l'inégalité de Cauchy-Schwarz.

Exercice 35 Résoudre pour $n \in \mathbb{N}^*$ et $x_1, ..., x_n$ dans \mathbb{R} : $\begin{cases} x_1 + ... + x_n = n \\ x_1^2 + ... + x_n^2 = n \end{cases}$.

Exercice 36 (famille obtusangle) Soit *E* de dimension *n* et $(e_1, ..., e_p)$ tels que $\langle e_i, e_j \rangle < 0$ pour tout $i \neq j$.

- 1. Représenter une telle famille dans \mathbb{R}^2 usuel.
- 2. On suppose que $\sum_{i=1}^p \lambda_i e_i = 0$ avec les λ_i réels, montrer que $\sum_{i=1}^p |\lambda_i| e_i = 0$ (notant $u = \sum_{i=1}^p \lambda_i e_i$ et $v = \sum_{i=1}^p |\lambda_i| e_i = 0$, calculer $\langle u v, u + v \rangle$.)
- 3. Montrer alors que $(e_1, ..., e_{p-1})$ est libre. Quel est le cardinal maximal d'une telle famille?

Exercice 37 Soit a, b deux vecteurs unitaires de E euclidien et $f: x \in E \mapsto x - \langle a, x \rangle b$.

- 1. Montrer que f est un endomorphisme de E.
- 2. Donner une condition nécessaire et suffisante sur $\langle a, b \rangle$ pour que f soit inversible.
- 3. Déterminer $\ker(f id_E)$ et f(b) puis donner une condition nécessaire et suffisante sur $\langle a, b \rangle$ pour que f soit diagonalisable.

Exercice 38 Soit E un espace euclidien de dimension n, et $(e_1, ..., e_n)$ des vecteurs vérifiant : $\forall x \in E, ||x||^2 = \sum_{i=1}^n \langle x, e_i \rangle^2$. Montrer que $(e_1, ..., e_n)$ est une base de E. Notant $A = (\langle e_i, e_j \rangle)_{1 \le i,j \le n}$, montrer que A est inversible égale à son carré, en déduire que $(e_1, ..., e_n)$ est une base orthonormale de E.