נננננננננ

Equilibrium

CHAPTER

7

- 1. 1 M NaCl and 1 M HCl are present in an aqueous solution. The solution is [2002]
 - (a) not a buffer solution with pH < 7
 - (b) not a buffer solution with pH > 7
 - (c) a buffer solution with pH < 7
 - (d) a buffer solution with pH > 7.
- Species acting as both Bronsted acid and base is [2002]
 - (a) $(HSO_4)^{-1}$
- (b) Na₂CO₃
- (c) NH₃
- (d) OH^{-1} .
- 3. Let the solubility of an aqueous solution of $Mg(OH)_2$ be x then its K_{SD} is [2002]
 - (a) $4x^3$
- (b) $108x^5$
- (c) $27x^4$
- (d) 9x.
- 4. Change in volume of the system does not alter which of the following equilibria? [2002]
 - (a) $N_2(g) + O_2(g) = 2NO(g)$
 - (b) $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$
 - (c) $N_2(g) + 3H_2(g) \implies 2NH_3(g)$
 - (d) $SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$.
- 5. For the reactionCO (g) + (1/2) O₂ (g) = CO₂ (g), K_p/K_c is [2002]
 - (a) RT
- (b) $(RT)^{-1}$
- (c) $(RT)^{-1/2}$
- (d) $(RT)^{1/2}$
- **6.** Which one of the following statements is not true? [2003]
 - (a) pH + pOH = 14 for all aqueous solutions
 - (b) The pH of 1×10^{-8} M HCl is 8
 - (c) 96,500 coulombs of electricity when passed through a CuSO₄ solution deposits 1 gram equivalent of copper at the cathode
 - (d) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
- 7. The solubility in water of a sparingly soluble salt AB_2 is 1.0×10^{-5} mol L^{-1} . Its solubility product number will be [2003]
 - (a) 4×10^{-10}
- (b) 1×10^{-15}
- (c) 1×10^{-10}
- (d) 4×10^{-15}

8. For the reaction equilibrium

[2003]

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

the concentrations of N₂O₄ and NO₂ at equilibrium are 4.8×10^{-2} and 1.2×10^{-2} mol L⁻¹ respectively. The value of $K_{\rm c}$ for the reaction is

- (a) $3 \times 10^{-1} \text{ mol L}^{-1}$
- (b) $3 \times 10^{-3} \text{ mol L}^{-1}$
- (c) $3 \times 10^3 \,\text{mol L}^{-1}$
- (d) $3.3 \times 10^2 \,\mathrm{mol}\,\mathrm{L}^{-1}$
- Consider the reaction equilibrium [2003]
 2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g); ΔH°=−198 kJ
 On the basis of Le Chatelier's principle, the
 - On the basis of Le Chatelier's principle, the condition favourable for the forward reaction is
 - (a) increasing temperature as well as pressure
 - (b) lowering the temperature and increasing the pressure
 - (c) any value of temperature and pressure
 - (d) lowering of temperature as well as pressure
- **10.** When rain is accompanied by a thunderstorm, the collected rain water will have a pH value

[2003]

- (a) slightly higher than that when the thunderstorm is not there
- (b) uninfluenced by occurrence of thunderstorm
- (c) which depends on the amount of dust in air
- (d) slightly lower than that of rain water without thunderstorm.
- 11. The conjugate base of $H_2PO_4^-$ is [2004]
 - (a) H_3PO_4
- (b) P_2O_5
- (c) PO_4^{3-}
- (d) HPO_4^{2-}
- 12. What is the equilibrium expression for the reaction $P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$? [2004]
 - (a) $K_c = [O_2]^5$

Equilibrium

(b) $K_c = [P_4O_{10}]/5[P_4][O_2]$

- (c) $K_c = [P_4O_{10}]/[P_4][O_2]^5$
- (d) $K_c = 1/[O_2]^5$
- 13. For the reaction,

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$
 the $\binom{K_p}{K_c}$

is equal to

[2004]

- (a) \sqrt{RT}
- (b) *RT*
- (c) $\frac{1}{RT}$
- (d) 1.0
- 14. The equilibrium constant for the reaction $N_2(g) + O_2(g) \Longrightarrow 2NO_2(g)$ at temperature T is 4×10^{-4} . The value of K_c for the reaction

 $NO_2(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same

temperature is

[2004]

- (a) 4×10^{-4}
- (b) 50
- (c) 2.5×10^2
- (d) 0.02
- 15. The molar solubility (in mol L^{-1}) of a sparingly soluble salt MX₄ is 's'. The corresponding solubility product is K_{sp} . 's' is given in term of K_{sp} by the relation:
 - (a) $s = (256 K_{sp})^{1/5}$ (b) $s = (128 K_{sp})^{1/4}$
 - (c) $s = (K_{sp}/128)^{1/4}$ (d) $s = (K_{sp}/256)^{1/5}$
- **16.** If α is the degree of dissociation of Na₂SO₄, the Vant Hoff's factor (i) used for calculating the molecular mass is
 - (a) $1-2\alpha$
- [2005] (b) $1+2\alpha$
- (c) $1-\alpha$
- (d) $1+\alpha$
- 17. The solubility product of a salt having general formula MX_2 , in water is : 4×10^{-12} . The concentration of M2+ ions in the aqueous solution of the salt is
 - (a) $4.0 \times 10^{-10} \text{ M}$ (b) $1.6 \times 10^{-4} \text{ M}$
 - (c) $1.0 \times 10^{-4} \,\mathrm{M}$ (d) $2.0 \times 10^{-6} \,\mathrm{M}$

The exothermic formation of CIF₃ is represented by the equation:

$$Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g)$$
;

 $\Delta H = -329 \text{ kJ}$

Which of the following will increase the quantity of CIF3 in an equilibrium mixture of Cl₂, F₂ and ClF₃? [2005]

- (a) Adding F₂
- (b) Increasing the volume of the container
- (c) Removing Cl₂
- (d) Increasing the temperature
- **19.** For the reaction: [2005]

$$2NO_{2(g)} \rightleftharpoons 2NO_{(g)} + O_{2(g)},$$

 $(K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C}) \text{ } (R = 0.0831 \text{ kJ/}$ (mol. K))

When K_p and K_c are compared at 184°C, it is

- (a) Whether K_n is greater than, less than or equal to K_c depends upon the total gas
- (b) $K_n = K_c$
- (c) K_p^r is less than K_c
- (d) K_p is greater than K_c
- Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be:
 - (a) 3.98×10^{-6}
- (b) 3.68×10^{-6}
- (c) 3.88×10^6
- (d) 3.98×10^8
- What is the conjugate base of OH⁻? [2005]
 - (a) O^{2-}
- (b) O⁻
- (c) H₂O
- (d) O_2
- 22. An amount of solid NH₄HS is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH₃ and H₂S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm? The equilibrium constant for NH4HS decomposition at this temperature is [2005]

c-34

- (a) 0.11
- (b) 0.17
- (c) 0.18
- (d) 0.30
- 23. Phosphorus pentachloride dissociates as follows, in a closed reaction vessel [2006]

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$

If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCl₅ is x, the partial pressure of PCl₂ will be

- (a) $\left(\frac{x}{x-1}\right)P$ (b) $\left(\frac{x}{1-x}\right)P$
- (c) $\left(\frac{x}{x+1}\right)P$ (d) $\left(\frac{2x}{1-x}\right)P$
- **24.** The equilibrium constant for the reaction

$$SO_3(g) \Longrightarrow SO_2(g) + \frac{1}{2}O_2(g)$$

is $K_c = 4.9 \times 10^{-2}$. The value of K_c for the reaction

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

[2006]

- (a) 9.8×10^{-2}
- (b) 4.9×10^{-2}
- (c) 416
- (c) 2.40×10^{-3}
- 25. Given the data at 25°C

$$Ag + I^{-} \longrightarrow AgI + e^{-} \quad E^{\circ} = 0.152 \text{ V}$$

 $Ag \longrightarrow Ag^+ + e^ E^{\circ} = -0.800 \text{ V}$

What is the value of log $K_{\rm sp}$ for AgI? (2.303 RT/ F = 0.059 V[2006]

- (a) -37.83
- (b) -16.13
- (c) -8.12
- (d) +8.612
- 26. The first and second dissociation constants of an acid H₂A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be [2007]
 - (a) 0.2×10^5
- (b) 5.0×10^{-5}
- (c) 5.0×10^{15}
- (d) 5.0×10^{-15} .
- 27. The pK_a of a weak acid (HA) is 4.5. The pOH of an aqueous buffer solution of HA in which 50% of the acid is ionized is [2007]
 - (a) 7.0
- (b) 4.5
- (c) 2.5
- (d) 9.5
- In a saturated solution of the sparingly soluble strong electrolyte $AgIO_3$ (molecular mass = 283) the equilibrium which sets in is $AgIO_{3(s)} \rightleftharpoons$ $Ag^{+}_{(aq)} + IO^{-}_{3(aq)}$. If the solubility product con-

Chemistry

stant K_{sp} of $AgIO_3$ at a given temperature is 1.0×10^{-8} , what is the mass of $AgIO_3$ contained in 100 ml of its saturated saolution?

- (a) 1.0×10^{-4} g
- (b) $28.3 \times 10^{-2} \,\mathrm{g}$
- (c) 2.83×10^{-3} g
- (d) 1.0×10^{-7} g
- The equilibrium constants K_{p_1} and K_{p_2} for the $X\rightleftharpoons 2Y$ and $Z\rightleftharpoons P+Q$, reactions respectively are in the ratio of 1:9. If the degree of dissociation of X and Z be equal then the ratio of total pressures at these equilibria is

[2008]

- (a) 1:36
- (b) 1:1
- (c) 1:3
- (d) 1:9
- For the following three reactions a, b and c, **30.** equilibrium constants are given:
 - (i) $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g); K_1$
 - (ii) $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g); K_2$
 - (iii) $CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g); K_3$
 - (a) $K_1 \sqrt{K_2} = K_3$ (b) $K_2 K_3 = K_1$

 - (c) $K_3 = K_1 K_2$ (d) $K_3 \cdot K_2^3 = K_1^2$
- Four species are listed below: 31. [2008]
 - HCO_3^-
- ii. H_3O^+
- iii. HSO₄-
- iv. HSO₃F

Which one of the following is the correct sequence of their acid strength?

- (a) iv < ii < iii < i
- (b) ii < iii < i < iv
- (c) i < iii < ii < iv
- (d) iii < i < iv < ii
- The pK_a of a weak acid, HA, is 4.80. The pK_b of a weak base, BOH, is 4.78. The pH of an aqueous solution of the corresponding salt, BA, will be

[2008]

- (a) 9.58
- (b) 4.79
- (c) 7.01
- (d) 9.22
- Solid Ba(NO₃)₂ is gradually dissolved in a $1.0 \times$ 33. 10⁻⁴ M Na₂CO₃ solution. At what concentration of Ba²⁺ will a precipitate begin to form? (K_{SP} for for BaCO₃ = 5.1×10^{-9}) [2009]
 - (a) $5.1 \times 10^{-5} \,\mathrm{M}$
- (b) $8.1 \times 10^{-8} \,\mathrm{M}$
- (c) $8.1 \times 10^{-7} \,\mathrm{M}$
- (d) $4.1 \times 10^{-5} \,\mathrm{M}$
- **34.** Three reactions involving $H_2PO_4^-$ are given [2010]
 - (i) $H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$

Equilibrium

(ii) $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$

(iii) $H_2PO_4^- + OH^- \to H_3PO_4^- + O^{2-}$

In which of the above does $H_2PO_4^-$ act as an acid?

- (a) (ii) only
- (b) (i) and (ii)
- (c) (iii) only
- (d) (i) only
- **35.** In aqueous solution the ionization constants for carbonic acid are

$$K_1 = 4.2 \times 10^{-7}$$
 and $K_2 = 4.8 \times 10^{-11}$.

Select the correct statement for a saturated 0.034 M solution of the carbonic acid. [2010]

- (a) The concentration of CO_3^{2-} is 0.034 M.
- (b) The concentration of CO_3^{2-} is greater than that of HCO_3^- .
- (c) The concentrations of H⁺ and HCO₃⁻ are approximately equal.
- (d) The concentration of H^+ is double that of CO_3^{2-} .
- 36. Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120 g mol⁻¹) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is [2010]
 - (a) $1.2 \times 10^{-10} \,\mathrm{g}$
- (b) 1.2×10^{-9} g
- (c) 6.2×10^{-5} g
- (d) 5.0×10^{-8} g
- 37. At 25°C, the solubility product of $Mg(OH)_2$ is 1.0×10^{-11} . At which pH, will Mg^{2+} ions start precipitating in the form of $Mg(OH)_2$ from a solution of 0.001 M Mg^{2+} ions? [2010]
 - (a) 9
- (b) 10
- (c) 11
- (d) 8
- **38.** An acid HA ionises as

$$HA \Longrightarrow H^+ + A^{-1}$$

The pH of 1.0 M solution is 5. Its dissociation constant would be: [2011RS]

- (a) 5
- (b) 5×10^{-8}
- (c) 1×10^{-5}
- (d) 1×10^{-10}
- 39. The K_{sp} for $Cr(OH)_3$ is 1.6×10^{-30} . The solubility of this compound in water is : [2011RS]
 - (a) $4\sqrt{1.6} \times 10^{-30}$
 - (b) $4\sqrt{1.6\times10^{-30}/27}$
 - (c) $1.6 \times 10^{-30/27}$
 - (d) $2\sqrt{1.6 \times 10^{-30}}$
- **40.** The equilibrium constant (K_c) for the reaction $N_2(g) + O_2(g) \rightarrow 2NO(g)$ at temperature T is 4×10^{-4} . The value of K_c for the reaction **[2012]**

 $NO(g) \rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same

temperature is:

- (a) 0.02
- (b) 2.5×10^2
- (c) 4×10^{-4}
- (d) 50.0
- **41.** The pH of a 0.1 molar solution of the acid HQ is 3. The value of the ionization constant, K_a of the acid is: [2012]
 - (a) 3×10^{-1}
- (b) 1×10^{-3}
- (c) 1×10^{-5}
- (d) 1×10^{-7}
- **42.** How many litres of water must be added to 1 litre an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2?

[2013]

- c-35

- (a) 0.1 L
- (b) 0.9 L
- (c) 2.0 L
- (d) 9.0L
- **43.** For the reaction $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons \dot{S}O_{3(g)}$, if

 $K_P = K_C (RT)^x$ where the symbols have usual meaning then the value of x is (assuming ideality): [2014]

- (a) -1
- (b) $-\frac{1}{2}$
- (c) $\frac{1}{2}$
- (d) 1
- **44.** The standard Gibbs energy change at 300 K for the reaction 2A B+C is 2494.2 J. At a given time, the composition of the reaction mixture is [A] =, [B] = 2 and [C] =. The reaction proceeds in the : [R = 8.314 J/K/mol, e = 2.718] **[JEE M 2015]**
 - (a) forward direction because $Q < K_c$
 - (b) reverse direction because $Q < K_c$
 - (c) forward direction because $Q > K_c$
 - (d) reverse direction because $Q > K_c$
- **45.** The equilibrium constant at 298 K for a reaction A + B C + D is 100. If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in mol L⁻¹) will be:

[JEE M 2016]

- (a) 1.818
- (b) 1.182
- (c) 0.182
- (d) 0.818
- **46.** pK_a of a weak acid (HA) and pK_b of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution is [JEE M 2017]
 - (a) 7.2

(b) 6.9

(c) 7.0

(d) 1.0

													Circums	
Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(a)	(a)	(a)	(a)	(c)	(b)	(d)	(b)	(b)	(d)	(d)	(d)	(c)	(b)	(d)
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
(b)	(c)	(a)	(d)	(a)	(a)	(a)	(c)	(c)	(b)	(d)	(d)	(c)	(a)	(c)
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
(c)	(c)	(a)	(a) (i)	(c)	(b)	(b)	(d)	(b)	(d)	(c)	(d)	(b)	(d)	(a)
46														
(b)														

SOLUTIONS

- 1. (a) NOTE A buffer is a solution of weak acid and its salt with strong base and vice versa.
 - HCl is strong acid and NaCl is its salt with strong base. pH is less than 7 due to HCl.
- 2. (a) $(HSO_4)^-$ can accept and donate a proton $(HSO_4)^- + H^+ \rightarrow H_2SO_4$ (acting as base) $(HSO_4)^- H^+ \rightarrow SO_4^{\ 2-}$. (acting as acid)
- 3. (a) $Mg(OH)_2 \rightarrow [Mg^{2+}] + 2[OH^-]$ x 2x $K_{sp} = [Mg] [OH]^2 = [x][2x]^2 = x.4x^2 = 4x^3.$
- 4. (a) In this reaction the ratio of number of moles of reactants to products is same i.e. 2 : 2, hence change in volume will not alter the number of moles.
- 5. (c) $K_p = K_c (RT)^{\Delta n}$; $\Delta n = 1 - \left(1 + \frac{1}{2}\right) = 1 - \frac{3}{2} = -\frac{1}{2}$. $\therefore \frac{K_p}{K_c} = (RT)^{-1/2}$
- 6. (b) pH of an acidic solution should be less than 7. The reason is that from H₂O. [H⁺] = 10⁻ M which cannot be neglected in comparison to 10⁻⁸M. The pH can be calculated as.

from acid,
$$[H^+] = 10^{-8}M$$
.
from H_2O , $[H^+] = 10^{-7}M$
 \therefore Total $[H^+] = 10^{-8} + 10^{-7}$
 $= 10^{-8} (1 + 10) = 11 \times 10^{-8}$

- $\therefore pH = -\log [H^+] = -\log 11 \times 10^{-8}$ $= -[\log 11 + 8 \log 10]$ = -[1.0414 8] = 6.9586
- 7. **(d)** $AB_2 \rightleftharpoons A^{+2} + 2B^ [A] = 1.0 \times 10^{-5}, [B] = [2.0 \times 10^{-5}],$ $K_{sp} = [B]^2 [A] = [2 \times 10^{-5}]^2 [1.0 \times 10^{-5}] = 4 \times 10^{-15}$
- 8. **(b)** $K_c = \frac{[NO_2]^2}{[N_2O_4]} = \frac{[1.2 \times 10^{-2}]^2}{[4.8 \times 10^{-2}]}$ = 3×10^{-3} mol/L
- 9. (b) Due to exothermicity of reaction low or optimum temperature will be required. Since 3 moles are changing to 2 moles.
 ∴ High pressure will be required.
- **10. (d)** The rain water after thunderstorm contains dissolved acid and therefore the pH is less than rain water without thunderstorm.
- 11. (d) NOTE Conjugate acid-base differ by H^+

$$\begin{array}{ccc} \text{H}_2\text{PO}_{4}^{-} & \xrightarrow{-\text{H}^+} & \text{HPO}_{4}^{-} \\ \text{Acid} & & \text{conjugate base} \end{array}$$

12. (d) For $P_4(s) + 5O_2(g) \xrightarrow{} P_4O_{10}(s)$ $K_c = \frac{1}{(O_2)^5} . \quad \text{The solids have}$

concentration unity

13. (c) $K_p = K_c (RT)^{\Delta n}$; Here $\Delta n = 1 - 2 = -1$ $\therefore \frac{K_p}{K_c} = \frac{1}{RT}$

Equilibrium _____ c-37

14. (b)
$$K_c = \frac{[NO]^2}{[N_2][O_2]} = 4 \times 10^{-4}$$

$$K'_{c} = \frac{[N_{2}]^{1/2}[O_{2}]^{1/2}}{[NO]} = \frac{1}{\sqrt{K_{c}}}$$

$$=\frac{1}{\sqrt{4\times10^{-4}}}=50$$

15. (d)
$$MX_4 \xrightarrow{K} M_S^{4+} + 4X_5^{-}$$

$$K_{sp} = [s] [4s]^4 = 256 s^5$$

$$\therefore s = \left(\frac{K_{sp}}{256}\right)^{1/5}$$

16. (b)
$$Na_2SO_4 \implies 2N_a^+ + SO_4^{--}$$

Vant. Hoff's factor
$$i = \frac{1 - \alpha + 2\alpha + \alpha}{1} = 1 + 2\alpha$$

- 17. (c) $MX_2 \rightleftharpoons M^{++} + 2X^{-}$ Where s is the solubility of MX_2 then $K_{sp} = 4s^3$; $s \times (2s)^2 = 4 \times 10^{-12}$ $= 4s^3$; $s = 1 \times 10^{-4}$ $\therefore [M^{++}] = s = 1[M^{++}] = 1.0 \times 10^{-4}$
- 18. (a) The reaction given is an exothermic reaction thus accordingly to Lechatalier's principle lowering of temperature, addition of F₂ and or Cl₂ favour the for ward direction and hence the production of ClF₃.
- 19. (d) For the reaction:

$$2NO_2(g) \Longrightarrow 2NO(g) + O_2(g)$$

Given $K_c = 1.8 \times 10^{-6}$ at 184 °C R = 0.0831 kj/mol. k

$$K_p = 1.8 \times 10^{-6} \times 0.0831 \times 457 = 6.836 \times 10^{-6}$$

$$[::184^{\circ}C = (273 + 184) = 457 \text{ k},$$

$$\Delta n = (2+1,-1)=1$$

Hence it is clear that $K_p > K_c$

20. (a)
$$pH = -\log[H^+] = \log \frac{1}{[H^+]}$$

$$5.4 = \log \frac{1}{[H^+]}$$

On solving, $[H^+] = 3.98 \times 10^{-6}$

21. (a) Conjugate acid-base pair differ by only one proton.

$$OH^- \longrightarrow H^+ + O^{2-}$$
 Conjugate base of OH^- is O^{2-}

Then
$$0.5 + x + x = 2x + 0.5 = 0.84$$
 (given)
 $\Rightarrow x = 0.17$ atm.

$$p_{NH_3} = 0.5 + 0.17 = 0.67$$
 atm

$$p_{H_2S} = 0.17 \text{ atm}$$

$$K = p_{NH_3} \times p_{H_2S} = 0.67 \times 0.17 \text{ atm}^2$$
$$= 0.1139 = 0.11$$

23. (c)
$$PCl_5(g) = PCl_3(g) + Cl_2(g)$$

Total moles after dissociation

$$1 - x + x + x = 1 + x$$

 p_{PCl_2} = mole fraction of

$$PCl_3 \times Total \text{ pressure } = \left(\frac{x}{1+x}\right)P$$

24. (c)
$$SO_3(g) \Longrightarrow SO_2(g) + \frac{1}{2}O_2(g)$$

$$K_c = \frac{[SO_2][O_2]^{1/2}}{[SO_3]} = 4.9 \times 10^{-2};$$

On taking the square of the above reaction

$$\frac{[SO_2]^2[O_2]}{[SO_3]^2} = 24.01 \times 10^{-4}$$

now K'_C for
$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3$$

$$= \frac{[SO_3]^2}{[SO_2]^2 [O_2]} = \frac{1}{24.01 \times 10^{-4}} = 416$$

w w w . c r a c

c-38

Chemistry

25. (b) (i)
$$Ag \longrightarrow Ag^+ + e^- \quad E^\circ = -0.800 \text{ V}$$

(ii)
$$Ag + I^- \longrightarrow AgI + e^- E^\circ = 0.152 V$$

From (i) and (ii) we have,

$$AgI \longrightarrow Ag^+ + I^- \quad E^\circ = -0.952 \text{ V}$$

$$E_{\text{cell}}^{0} = \frac{0.059}{\text{n}} \log K$$

$$\therefore -0.952 = \frac{0.059}{1} \log [\text{Ag}^{+}][\text{I}^{-}]$$

$$[\because k = [\text{Ag}^{+}][\text{I}^{-}]]$$
or $-\frac{0.952}{0.059} = \log K_{\text{sp}}$ or $-16.13 = \log K_{\text{sp}}$

26. (d)
$$H_2A \Longrightarrow H^+ + HA^-$$

$$K_1 = 1.0 \times 10^{-5} = \frac{[H^+][HA^-]}{[H_2A]} (Given)$$

$$HA^- \longrightarrow H^+ + A^-$$

$$K_2 = 5.0 \times 10^{-10} = \frac{[H^+][A^-]}{[HA^-]}$$
 (Given)

$$K = \frac{[H^+]^2[A^{2-}]}{[H_2A]} = K_1 \times K_2$$
$$= (1.0 \times 10^{-5}) \times (5 \times 10^{-10}) = 5 \times 10^{-15}$$

27. (d) For acidic buffer
$$pH = pK_a + log \left[\frac{salt}{acid} \right]$$

or
$$pH = pK_a + log \frac{A^-}{HA}$$

Given pK_a = 4.5 and acid is 50% ionised. [HA] = [A⁻] (when acid is 50% ionised) \therefore pH = pK_a + log 1 \therefore pH = pK_a = 4.5

$$pOH = 14 - pH = 14 - 4.5 = 9.5$$

28. (c) Let s = solubility

AgIO₃
$$\longrightarrow$$
 Ag⁺ + IO₃⁻
s
$$K_{sp} = [Ag^+][IO_3^-] = s \times s = s^2$$
Given $K_{sp} = 1 \times 10^{-8}$

$$\therefore \quad s = \sqrt{K_{sp}} = \sqrt{1 \times 10^{-8}}$$

=
$$1.0 \times 10^{-4}$$
 mol/lit = $1.0 \times 10^{-4} \times 283$ g/lit

(: Molecular mass of Ag
$$IO_3 = 283$$
)

$$=\frac{1.0\times10^{-4}\times283\times100}{1000}\,gm/100ml$$

$$= 2.83 \times 10^{-3} \text{ gm}/100 \text{ ml}$$

29. (a) Let the initial moles of X be 'a' and that of Z be 'b' then for the given reactions, we

have
$$X \rightleftharpoons 2Y$$

Initial a moles 0
At equi.
$$a(1-\alpha)$$
 $2a\alpha$ (moles)

Total no. of moles = $a(1-\alpha) + 2a\alpha$

$$= a - a\alpha + 2a\alpha$$
$$= a(1 + \alpha)$$

Now,
$$K_{P_1} = \frac{(n_y)^2}{n_x} \times \left(\frac{P_{T_1}}{\sum n}\right)^{\Delta n}$$

or,
$$K_{P_l} = \frac{(2a\alpha)^2 . P_{T_l}}{[a(1-\alpha)][a(1+\alpha)]}$$

$$Z \rightleftharpoons P + Q$$

Initial b moles 0 0 At equi. $b(1-\alpha)$ $b\alpha$ $b\alpha$ (moles)

Total no . of moles $= b(1 - \alpha) + b\alpha + b\alpha$ $= b - b\alpha + b\alpha + b\alpha$ $= b(1 + \alpha)$

Now
$$K_{P_2} = \frac{n_Q \times n_P}{n_z} \times \left[\frac{P_{T_2}}{\Sigma_n} \right]^{\Delta_n}$$

or
$$K_{P_2} = \frac{(b\alpha)(b\alpha).P_{T_2}}{[b(1-\alpha)][b(1+\alpha)]}$$

or
$$\frac{K_{P_1}}{K_{P_2}} = \frac{4\alpha^2 \cdot P_{T_1}}{(1-\alpha^2)} \times \frac{(1-\alpha)^2}{P_{T_2} \cdot \alpha^2} = \frac{4P_{T_1}}{P_{T_2}}$$

Equilibrium

c-39

or
$$\frac{P_{T_1}}{P_{T_2}} = \frac{1}{9} \left[\because \frac{K_{P_1}}{K_{P_2}} = \frac{1}{9} \text{ given} \right]$$

or $\frac{P_{T_1}}{P_{T_2}} = \frac{1}{36}$ or 1:36

i.e., (a) is the correct answer.

- **30.** (c) Reaction (c) can be obtained by adding reactions (a) and (b) therefore $K_3 = K_1$. K_2 Hence (c) is the correct answer.
- **31. (c)** The correct order of acidic strength of the given species in

$$HSO_3F > H_3O^+ > HSO_4^- > HCO_3^-$$
(iv) (ii) (iii) (i)
or (i) < (iii) < (iv)

It corresponds to choice (c) which is correct answer.

32. (c) In aqueous solution BA(salt) hydrolyses to give

$$\begin{array}{c} \operatorname{BA} + \operatorname{H}_2\operatorname{O} & \longrightarrow \operatorname{BOH} + \operatorname{HA} \\ \operatorname{Base} & \operatorname{acid} \end{array}$$

Now pH is given by

$$pH = \frac{1}{2}pK_w + \frac{1}{2}pKa - \frac{1}{2}pK_b$$

substituting given values, we get

$$pH = \frac{1}{2}(14 + 4.80 - 4.78) = 7.01$$

33. (a)
$$Na_2CO_3 \longrightarrow 2Na^+ + CO_3^{2-}$$

 $1 \times 10^{-4}M$ $1 \times 10^{-4}M$ $1 \times 10^{-4}M$

$$K_{SP(BaCO_3)} = [Ba^{2+}][CO_3^{2-}]$$

 $[Ba^{2+}] = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}} = 5.1 \times 10^{-5} M$

34. (a) (i)
$$H_3PO_4 + H_2O_4 \longrightarrow H_3O^+ + H_2PO_4^-$$
 acid₁ base₂ acid₂ base₁

(ii)
$$H_2PO_4^- + H_2O \longrightarrow HPO_4^{--} + H_3O^+$$

 $acid_1$ $base_2$ $base_1$ $acid_2$

(iii)
$$H_2PO_4^- + OH_3PO_4^- + O_{acid_1}^- \longrightarrow H_3PO_4^- + O_{base_2}^-$$

Hence only in (ii) reaction $H_2PO_4^-$ is acting as an acid.

35. (c)
$$H_2CO_3(aq) + H_2O(l) = HCO_3^-(aq) + H_3O^+(aq)$$

$$K_1 = \frac{[\text{HCO}_3^-][\text{H}_3\text{O}^+]}{[\text{H}_2\text{CO}_3]} = \frac{x \times x}{0.034 - x}$$

$$\Rightarrow 4.2 \times 10^{-7} \simeq \frac{x^2}{0.034} \Rightarrow x = 1.195 \times 10^{-4}$$

As H₂CO₃ is a weak acid so the concentration of

 H_2CO_3 will remain 0.034 as 0.034 >> x.

$$x = [H^+] = [HCO_3^-] = 1.195 \times 10^{-4}$$

Now,
$$\text{HCO}_{3}^{-}(aq) + \text{H}_{2}\text{O}(l) \rightleftharpoons \text{CO}_{3}^{2-}(aq) + \text{H}_{3}\text{O}^{+}(aq)$$

As HCO_3^- is again a weak acid (weaker than H_2CO_3) with x >> y.

$$K_2 = \frac{[\text{CO}_3^{2-}][\text{H}_3\text{O}^+]}{[\text{HCO}_3^-]} = \frac{y \times (x+y)}{(x-y)}$$

Note: $[H_3O^+] = H^+$ from first step (x) and from second step (y) = (x + y)

[As
$$x >> y$$
 so $x + y \simeq x$ and $x - y \simeq x$]

So,
$$K_2 \simeq \frac{y \times x}{x} = y$$

$$\Rightarrow K_2 = 4.8 \times 10^{-11} = y = [\text{CO}_3^{2-}]$$

So the concentration of $[H^+] \simeq [HCO_3^-] =$ concentrations obtained from the first step. As the dissociation will be very low in second step so there will be no change in these concentrations.

Thus the final concentrations are

$$[H^+] = [HCO_3^-] = 1.195 \times 10^{-4} \& [CO_3^{2-}] = 4.8 \times 10^{-11}$$

36. **(b)**
$$AgBr \rightleftharpoons Ag^{+} + Br^{-}$$

$$K_{sp} = [Ag^{+}] [Br^{-}]$$
For precipitation to occur

Ionic product > Solubility product

[Br⁻] =
$$\frac{K_{sp}}{[Ag^+]} = \frac{5 \times 10^{-13}}{0.05} = 10^{-11}$$

i.e., precipitation just starts when 10^{-11} moles of KBr is added to 1ℓ AgNO $_3$ solution

.. Number of moles of Br- needed from

c-40

Chemistry

KBr =
$$10^{-11}$$

∴ Mass of KBr = $10^{-11} \times 120 = 1.2 \times 10^{-9}$ g

37. **(b)**
$$Mg(OH)_2 \longrightarrow Mg^{++} + 2OH^{-}$$

 $K_{sp} = [Mg^{++}][OH^{-}]^2$
 $1.0 \times 10^{-11} = 10^{-3} \times [OH^{-}]^2$

$$[OH^-] = \sqrt{\frac{10^{-11}}{10^{-3}}} = 10^{-4}$$

$$\therefore pH + pOH = 14$$
$$\therefore pH = 10$$

38. (d) pH = 5 means
$$[H^+] = 10^{-5}$$

$$HA \rightleftharpoons H^{+} + A^{-1}$$

$$0 \quad c \quad 0 \quad 0$$

$$t=0$$
 c 0 0
teq c $(1-\alpha)$ c α c α

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{(c\alpha)^2}{c(1-\alpha)} = \frac{[H^+]^2}{c-[H^+]}$$

But,
$$[H^+] << C$$

 $\therefore K_a = (10^{-5})^2 = 10^{-10}$

39. (b)
$$Cr(OH)_3(s) \Longrightarrow Cr^{3+}(aq.) + 3OH^-(aq.)$$

 $27S^4 = K_{sp}$

$$S = \left(\frac{K_{sp}}{27}\right)^{1/4} = \left(\frac{1.6 \times 10^{-30}}{27}\right)^{1/4}$$

40. (d) For the reaction $N_2 + O_2 \longrightarrow 2NO \qquad K = 4 \times 10^{-4}$ Hence for the reaction $NO \longrightarrow \frac{1}{2}N_2 + \frac{1}{2}O_2$

$$K' = \frac{1}{\sqrt{K}} = \frac{1}{\sqrt{4 \times 10^{-4}}} = 50$$

41. (c)
$$H^+ = C \alpha; \alpha = \frac{[H^+]}{C}$$

or $\alpha = \frac{10^{-3}}{0.1} = 10^{-2}$

$$Ka = C\alpha^2 = 0.1 \times 10^{-2} \times 10^{-2} = 10^{-5}$$

42. (d) :
$$pH = 1$$
; $H^{+} = 10^{-1} = 0.1 \text{ M}$
 $pH = 2$; $H^{+} = 10^{-2} = 0.01 \text{ M}$
: $M_{1} = 0.1 \text{ V}_{1} = 1$

$$M_2 = 0.01 \quad V_2 = ?$$

From $M_1V_1 = M_2V_2$
 $0.1 \times 1 = 0.01 \times V_2$
 $V_2 = 10$ litres

 \therefore Volume of water added = 10 - 1 = 9 litres

43. (b)
$$SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$$

$$K_P = K_C (RT)^x$$

where $x = \Delta n_g$ = number of gaseous moles in product

- number of gaseous moles in reactant

$$=1-\left(1+\frac{1}{2}\right)=1-\frac{3}{2}=-\frac{1}{2}$$

44. (d) $\Delta G^{\circ} = 2494.2J$ 2A B + C. R = 8.314 J/K/mol. e = 2.718 [A] = , [B] = 2, [C] = Q = = 4 $\Delta G^{\circ} = -2.303 \text{ RT log } K_c.$ $2494.2 \text{ J} = -2.303 \times (8.314 \text{ J/K/mol}) \times (300\text{K})$ $\log K_c$ $\Rightarrow \log K_c = \Rightarrow \log K_c = -0.4341$ $K_c = 0.37$ $O > K_c.$

45. (a) Given,

No. of moles initially 1 1 1 1 1 1 At equilibrium 1-a 1-a 1+a 1+a $\therefore \ K_c = = 100 \\ \therefore = 10 \\ \text{On solving} \\ a = 0.81 \\ [D]_{\text{At eq}} = 1 + a = 1 + 0.81 = 1.81$

46. **(b)** Given
$$pK_a(HA) = 3.2$$

 $pK_b(BOH) = 3.4$

The salt (AB) given is a salt is of weak acid and weak base. Hence the pH can be calculated by the formula

$$\therefore pH = 7 + \frac{1}{2}pK_a - \frac{1}{2}pK_b$$

$$= 7 + \frac{1}{2}(3.2) - \frac{1}{2}(3.4)$$

$$= 6.9$$