Química General

Petrucci • Harwood • Herring 8^a Edición

Capítulo 13: Líquidos y sólidos.

© Prentice-Hall

13.1 Fuerzas intermoleculares y algunas propiedades de los líquidos

- Fuerzas de cohesión:
 - Fuerzas intermoleculares entre moléculas semejantes.
- Fuerzas de adhesión:
 - Fuerzas intermoleculares entre moléculas diferentes.
- Tensión superficial:
 - Energía o trabajo necesario para aumentar el área de la superficie de un líquido.
- Viscosidad:
 - Resistencia del líquido a fluir.

Fuerzas intermoleculares

Fuerzas intermoleculares

13.2 Vaporización de los líquidos. Presión de vapor

Entalpía de vaporización

$$\Delta H_{\text{vap}} = H_{\text{vapor}} - H_{\text{líquido}} = -\Delta H_{\text{condensación}}$$

TABLA 13.1 Algunas entalpías de vaporización a 298 Ka

Líquido	ΔH_{vap} , kJ/mol	
Éter dietílico, $(C_2H_5)_2O$	29,1	
Alcohol metílico, CH ₃ OH	38,0	
Alcohol etílico, CH ₃ CH ₂ OH	42,6	
Agua, H ₂ O	44, 0	

^aLos valores de ΔH_{vap} varían poco con la temperatura (*véase* el Ejercicio 96).

Presión de vapor y punto de ebullición

13.3 Algunas propiedades de los sólidos

Punto de congelación

Punto de fusión

$$\Delta H_{\text{fus}}(H_2O) = +6.01 \text{ kJ/mol}$$

13.4 Diagramas de fase

Diagramas de fase

El punto crítico

- La densidad del líquido disminuye; la del vapor aumenta; y finalmente las dos densidades se hacen iguales.
- La tensión superficial del líquido se aproxima a cero. La interfase entre el líquido y
 el vapor se hace menos evidente y finalmente desaparece.

Aprox. 10 °C por debajo de T_c

Aprox. 1 $^{\circ}$ C por debajo de T_{-}

Temperatura critica T_c

Química General: Capítulo 13

© Pearson Educación, S. A.

Estructura de los sólidos

13.8 Estructuras cristalinas

Celdas unidad en el sistema cristalino cúbico

Química General: Capítulo 13

Compartición

Estructura cristalina hexagonal compacta (hcp)

Huecos en las estructuras cristalinas

Número de coordinación

Radios atómicos de las estructuras cristalinas

1º) Red cúbica simple (scc)

2º) Red cúbica centrada en el cuerpo (bcc)

3º) Red cúbica centrada en las caras (fcc)

$$a = \frac{4 \cdot r}{\sqrt{2}}$$

$$a=\frac{4r}{\sqrt{3}}$$

Redes de Bravais

Existen 14 tipos posibles de redes de tipo A, formuladas en 1850 por M. A. Bravais

Química General: Capítulo 13

Sistemas cristalinos

$$a = b = c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

 $\frac{\text{Rhombohedral}}{\alpha = \beta = \gamma \neq 9}$

<u>Tetragonal</u>

$$a = b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic

Difracción de rayos X

Difracción de rayos X

$$BC + CD = 2d \sin \theta = n\lambda$$

Ley de Bragg.

Relación entre parámetros de celda y distancia interplanar

Gral ortorrómbica

$$\frac{1}{d^2} = \left(\frac{h}{a}\right)^2 + \left(\frac{k}{b}\right)^2 + \left(\frac{l}{c}\right)^2$$

Cúbica

$$d_{h,k,l} = \underline{a}$$

$$(h^2 + k^2 + l^2)^{1/2}$$

Cristales iónicos

Cloruro de cesio

Cloruro de sodio

Una medida de la estabilidad de los cristales iónicos es la energía reticular; a mayor energía reticular, el compuesto es más estable.

$$U_r = -N_A \cdot A \cdot z^+ \cdot z^- \cdot e^2 \cdot 1 - 1 \qquad n = \text{coef. Born}$$

$$4 \cdot \P \cdot E_0 \cdot d_{\text{ion}} \qquad n$$
Química General: Capítulo 13

© Pearson Educación, S. A.

Ciclo de Born-Haber

$$\Delta H_{\text{neta}} = -411 \text{ kJ} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5$$

$$-411 \text{ kJ} = 107 \text{ kJ} + 122 \text{ kJ} + 496 \text{ kJ} - 349 \text{ kJ} + \Delta H_5$$

$$\Delta H_5$$
 = energía de red = $(-411 - 107 - 122 - 496 + 349) kJ = -787 kJ$

Algunas celdas unidad más complejas

la estructura del rutilo

Cristales covalentes

16.1. a) Estructura del grafito, b) estructura del diamante.

Química General: Capítulo 13

Cristales moleculares

Cristales metálicos

Tipo	Partículas estructurales	Fuerzas intermoleculares	Propledades	Ejemplos	
Mctálico	Cationes y electrones deslocalizados	Enlaces metálicos	La dureza varía de blando a muy duro; el punto de fusión varía de bajo a muy alto; lustrosos; dúctiles; maleables; muy buenos conductores del calor y la electricidad	Na, Mg, Al. Fe, Sn, Cu, Ag, W	
Iónico	Cationes y aniones	Atracciones electrostáticas	Duro: puntos de fusión de moderados a muy altos; no conductores en estado sólido, pero buenos conductores de la electricidad en estado líquido; muchos son solubles en disolventes polares como el agua.	NaCl, MgO, NaNO ₃	
Red covalente	Átomos	Enlaces covalentes	La mayor parte son muy duros y subliman o funden a temperaturas muy altas; la mayoría no son conductores de la electricidad	C (diamante), C (grafito), SiC, AlN, SiO ₂	
Molecular <i>No polar</i>	Átomos o moléculas no polares	Fuerzas de dispersión	Blandos; puntos de fusión extremadamente bajos o moderados (dependiendo de la masa molar); subliman en algunos casos; soluble en algunos disolventes no polares	не, Аг, Н ₂ , СО ₂ , ССІ ₄ , СН ₄ , І ₂	
Polar	Moléculas polares	Fuerzas de dispersión y atracciones dipolo-dipolo	Puntos de fusión de bajos a moderados; solubles en algunos disolventes polares y no polares	(CH ₃) ₂ O, CHCl ₃ , HCl	
Con enlace de hidrógeno	Moléculas con H unido a N. O o F	Enlaces de hidrógeno	Puntos de fusión de bajos a moderados; solubles en algunos disolventes por enlace de hidrógeno y algunos disolventes polares	H ₂ O, NH ₃	

Defectos cristalinos

No estequiométricos

Química General: Capítulo 13

Figura 7.25. Estructuras de estado sólido con defectos, incluyendo (a) defecto Schottky, (b) defecto Frenkel, (c) Fe_{0.95}O no estequiométrico, y (d) dislocación de arista. [(a).(b), Ref. 2, páginas 230, 231; (d), Ref. 18.]