ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Αν μια ουσία υπακούει στο Νόμο του Beer, τότε η απορρόφηση D^{λ} σε ένα συγκεκριμένο μήκος κύματος λ σχετίζεται με την συγκέντρωση c μέσω της σχέσης

$$D^{\lambda} = e^{\lambda} \cdot \ell \cdot c$$

όπου e^λ είναι η μοριακή απορροφητικότητα της ουσίας και ℓ είναι το πάχος του δείγματος μέσω του οποίου περνά η ακτινοβολία, συνήθως το μήκος του δοχείου. Η τιμή του e^λ είναι χαρακτηριστική της ουσίας και επίσης του μήκους κυματος, έτσι ώστε το D^λ να ποικίλει σε σχέση με το μήκος κύματος. Μετρήσεις της D^λ μπορούν να χρησιμοποιηθούν για την πρόβλεψη της συγκένρωσης από τις μετρήσεις απορρόφησης. Ο νόμος του Beer μπορεί να επεκταθεί σε μείγματα πολλών συστατικών έτσι ώστε, υπό την προϋπόθεση ότι η απορρόφηση κάθε ουσίας είναι ανεξάρτητη από τα άλλα συστατικά

$$D^{\lambda} = e_1^{\lambda} \ell c_1 + e_2^{\lambda} \ell c_2 + \ldots + e_n^{\lambda} \ell c_n = \sum_{j=1}^n e_j^{\lambda} \ell c_j$$

Υποθέτουμε τώρα ότι έχουμε n συστατικά και γνωρίζουμε τις τιμές των $e_j^{\lambda_i},\ j=1,2,\ldots,n$ για τα συστατικά σε n διαφορετικά μήκη κύματος $\lambda_i,\ i=1,2,\ldots,n$. Μπορούμε να μετρήσουμε τις απορροφήσεις $D^{\lambda_i},\ i=1,2,\ldots,n$ για ένα μείγμα συστατικών σε κάποια μήκη κύματος και να υπολογίσουμε την άγνωστη συγκέντρωση κάθε είδους στο μείγμα. Για παράδειγμα, αν υπάρχουν τρία συστατικά, έχουμε

$$D^{\lambda_1} = m_{11}c_1 + m_{12}c_2 + m_{13}c_3$$

$$D^{\lambda_2} = m_{21}c_1 + m_{22}c_2 + m_{23}c_3$$

$$D^{\lambda_3} = m_{31}c_1 + m_{32}c_2 + m_{33}c_3$$

όπου m_{ij} είναι το γινόμενο $e_j^{\lambda_i}\ell$ για μήκη κύματος λ_i και συνιστωσών $j,\ i,j=1,2,3.$ Σε μορφή πίνακα αυτές οι εξισώσεις γράφονται:

$$Mc = d$$

όπου ο πίνακας συντελεστών Μ περιέχει τα στοιχεία m_{ij} και με d συμβολίζουμε τις απορροφήσεις D^{λ_i} .

- (a) Η σπεκτροφωτομετρική ανάλυση των τριών συστατικών του συστήματος δίνεται στα δεδομένα του Πίνακα 1.
 - Να προσδιοριστούν οι συγκεντρώσεις c_1, c_2, c_3 των A, B, C χρησιμοποιώντας την προς τα πίσω SOR.
 - Επαναλάβετε τη λύση χρησιμοποιώντας την προς τα πίσω Gauss-Seidel μέθοδο.
 - Επαναλάβετε τη λύση χρησιμοποιώντας την Jacobi μέθοδο.
 - * Να χρησιμοποιηθεί σαν κριτήριο διακοπής το $||x^{(k+1)}-x^{(k)}||<5\cdot 10^{-6}$ και να ορίσετε μέγιστο αριθμό επαναλήψεων 500.
 - * Να υπολογίσετε με τη βοήθεια του Matlab τις ιδιοτιμές του επαναληπτικού πίνακα των SOR, Gauss-Seidel, Jacobi μεθόδων και να βρείτε τη φασματική ακτίνα. Ποια είναι η βέλτιστη τιμή του ω για την προς τα πίσω SOR;
 - * Πόσες επαναλήψεις χρειάστηκαν για να επιτευχθεί σύγκλιση στις 3 μεθόδους;
 - * Γιατί η SOR μέθοδος είναι πιο κατάλληλη;

Σαν αρχικό διάνυσμα να χρησιμοποιηθεί το $x_0 = [1 \ 0 \ 1]^T.$

λ/nm	$e_A^{\lambda}l \ (dm^3mol^{-1})$	$e_B^{\lambda} l \ (dm^3 mol^{-1})$	$e_C^{\lambda} l \ (dm^3 mol^{-1})$	D^{λ}
420	0.04	0.01	0.02	0.07
540	0.01	0.03	0	0.04
600	0	0.01	0.03	0.04

• (β) Το μεθυλένιο της τολουόλης όταν αντιδρά με χλωρομεθάνιο (CH_3Cl) παράγει ένα μείγμα τριών ισομερών του ξυλενίου καθώς και αιθυλοβενζόλιο. Η σύσταση του τελικού μείγματος εξαρτάται από τη θερμοκρασία. Σε χαμηλή θερμοκρασία (0^oC) ευνοείται η παραγωγή m-ξυλενίου ενώ σε υψηλή θερμοκρασία (100^oC) ευνοείται η παραγωγή ο-ξυλενίου και p-ξυλενίου. Σαν αρχικό διάνυσμα να χρησιμοποιηθεί το $x_0 = [1\ 0\ 1\ 0]^T$

- Επαναλάβετε τα ερωτήματα του (α) και να αποφασίσετε αν η αντίδραση ολοκληρώνεται σε χαμηλή ή σε ψηλή θερμοκρασία.

$\lambda/\mu m$	ο-ξυλένιο	<i>m</i> -ξυλένιο	<i>p</i> -ξυλένιο	αιθυλοβενζόλιο	D^{λ}
	$(e^{\lambda}l\ (dm^3mol^{-1}))$	$(e^{\lambda}l\ (dm^3mol^{-1}))$	$e^{\lambda}l \ (dm^3mol^{-1})$	$(e^{\lambda}l\ (dm^3mol^{-1}))$	
12.5	0.04	0.01	0.01	0.01	0.07
13.0	0.01	0.08	0.02	0.03	0.14
13.4	0.01	0.02	0.05	0	0.08
14.3	0.01	0	0.02	0.04	0.07

Πίνακας 2: