Analysis of SARSA, Q-Learning and Monte-Carlo Techniques on Taxi Environment

Course Project - Introduction to Reinforcement Learning

Laiba Jamil Muhammad Zain Yousuf Hamad Abdul Razzaq

Problem Taxi Environment

- 2D Grid \rightarrow 5 \times 5
- Driver needs to pick and drop the passenger
- Passenger can be in 4 locations
- Destination can also be 4 locations
- We will model this problem as MDP

Modeling the Problem as MDP

State Space

- 4-tuple

$$s = (d_x, d_y, p_p, p_d)$$

- d_x : x-position of the driver
- d_y : y-position of the driver
- p_p : Current position of Passenger
- p_d : Drop Off Location

Modeling the Problem as MDP

Action Space

- Driver can move in 4 directions
- Driver can pick/drop the passenger

```
A = \{ Left, Right, Up, Down, Pick, Drop \}
```

Modeling the Problem as MDP

Reward Shaping

- Driver moves in either direction $\rightarrow r = -1$
- Driver drops passenger in wrong location $\rightarrow r = -10$
- Driver drops passenger in correct location $\rightarrow r = 20$

Hyper-Parameters

- N = 1000 Episodes
- Max Episode Length = 50000
- $\gamma = 0.7$ (Discount Factor)
- $\alpha = 0.1$ (Learning Rate)
- $\epsilon = 0.1$ (Exploration)

Applying Q-Learning Technique

Average Reward = 0.13

Applying SARSA Technique

Average Reward = -0.09

Applying Monte-Carlo Technique

Every Visit

Average Reward = -1.002

Analysis / Comparison

Q-Learning Outperforms!

Thank you!

References:

- [1] https://towardsdatascience.com/solving-the-taxi-environment-with-q-learning-a-tutorial-c76c22fc5d8f
- [2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA: The MIT Press, 2020.