TD1-Études de suites

Exercice 1.

1. On commence par étudier la fonction f sur [0,1]. C'est une fonction polynomiale donc dérivable sur son ensemble de définition. De plus,

$$\forall x \in \mathbb{R}, f'(x) = -3(1-x)^2 + 1.$$

Étudions le signe de la dérivée sur [0,1] : soit $x \in [0,1]$.

$$f'(x) \ge 0 \Longleftrightarrow \frac{1}{3} \ge (1-x)^2 \Longleftrightarrow -\sqrt{\frac{1}{3}} \le 1 - x \le \sqrt{\frac{1}{3}}$$
$$\iff x \in \left[1 - \sqrt{\frac{1}{3}}, 1 + \sqrt{\frac{1}{3}}\right]$$
$$\iff x \in \left[1 - \sqrt{\frac{1}{3}}, 1\right] \quad \text{car } x \in [0, 1]$$

avec égalité si et seulement si $x = 1 - \sqrt{\frac{1}{3}}$.

On en déduit :

x	$0 1 - \sqrt{\frac{1}{3}}$	1
Signe de $f'(x)$	- 0 +	
Variations de <i>f</i>	1	1

Enfin, en remarquant que

$$f\left(1-\sqrt{\frac{1}{3}}\right) = \frac{1}{3}\sqrt{\frac{1}{3}} + 1 - \sqrt{\frac{1}{3}} > 0,$$

le tableau de variation de f permet de conclure que :

$$\forall x \in]0,1[, f(x) \in]0,1[. (*)$$

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « $u_n \in]0,1[$ » et montrons par récurrence que : $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.

- *Initialisation* : comme $u_0 = 0.4$, $\mathcal{P}(0)$ est vraie.
- *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que $u_n \in]0,1[$. D'après (*), on a donc :

$$u_{n+1} = f(u_n) \in]0,1[.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, u_n \in]0,1[.$$

2. Soit $n \in \mathbb{N}$. On a

$$u_{n+1} - u_n = f(u_n) - u_n = (1 - u_n)^3 > 0$$

car u_n < 1 d'après la question précédente. Donc $u_{n+1} > u_n$.

Ainsi : $\forall n \in \mathbb{N}, u_{n+1} > u_n$.

La suite est donc croissante.

3. D'après la question 1, $(u_n)_{n\in\mathbb{N}}$ est majorée et d'après la question 2, $(u_n)_{n\in\mathbb{N}}$ est croissante. Ainsi, d'après le théorème de convergence monotone, la suite $(u_n)_{n\in\mathbb{N}}$ est convergente. On note ℓ sa limite.

On sait par ailleurs que f est continue sur $\mathbb R$ donc ℓ est un point fixe de f. Déterminons les points fixes de f. Soit $x \in \mathbb R$.

$$f(x) = x \Longleftrightarrow (1 - x)^3 = 0 \Longleftrightarrow x = 1.$$

L'unique point fixe de f est donc 1.

Par conséquent, $\ell = 1$.

Exercice 7.

- 1. La fonction f est la composée $h \circ g$ des fonctions
 - g définie sur $]-1,+\infty[$ par g(x)=x+1, dérivable sur $]-1,+\infty[$ et telle que $g(]-1,+\infty[)=]0,+\infty[$;
 - $h = \frac{3}{2} \ln \text{ définie et dérivable sur }]0, +\infty[.$

Par le théorème de composition des fonctions dérivables, f est dérivable sur $]-1,+\infty[$ et

$$\forall x \in]-1, +\infty[, f'(x) = \frac{3}{2} \frac{1}{x+1} > 0.$$

Ainsi f est strictement croissante sur $]-1,+\infty[$.

2. Soit *g* la fonction définie sur [1,2] par

$$\forall x \in [1,2], \quad g(x) = f(x) - x.$$

En tant que somme de fonctions dérivables sur [1,2], g est dérivable sur [1,2] et

$$\forall x \in [1,2], \quad g'(x) = f'(x) - 1 = \frac{1 - 2x}{2(x+1)} < 0.$$

Ainsi g est strictement décroissante sur [1,2]. Comme g est aussi continue sur [1,2], d'après le théorème de la bijection, g réalise une bijection de [1,2] sur g([1,2]) = [g(2),g(1)].

Or,

$$g(1) = \frac{3}{2}\ln(2) - 1 = \frac{1}{2}(\ln(8) - \ln(e^2)) = \frac{1}{2}\ln\left(\frac{8}{e^2}\right) > 0$$

et

$$g(2) = \frac{3}{2}\ln(3) - 2 = \frac{1}{2}(\ln(27) - \ln(e^4)) = \frac{1}{2}\ln\left(\frac{27}{e^4}\right) < 0.$$

Ainsi, $0 \in g([1,2]) = [g(2),g(1)]$ donc l'équation g(x) = 0 possède une unique solution dans [1,2].

Finalement, comme pour tout $x \in [1,2]$, $g(x) = 0 \iff f(x) = x$, l'équation f(x) = x possède une unique solution dans [1,2] que l'on note α .

- 3. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition « u_n est bien défini et $u_n \ge \alpha$ » et montrons par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
 - *Initialisation* : comme $u_0 = 3$, $\mathcal{P}(0)$ est vraie.
 - *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, on sait que u_n est bien défini et supérieur à α . En particulier u_n appartient à l'ensemble de définition de f. Par conséquent, $u_{n+1} = f(u_n)$ est bien défini. De plus, par croissance de f et hypothèse de récurrence, on a :

$$u_{n+1} = f(u_n) \ge f(\alpha) = \alpha.$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}$$
, u_n est bien défini et $u_n \ge \alpha$.

4. Soit $x \ge 1$. Alors $x + 1 \ge 2$ donc

$$0 \le f'(x) = \frac{3}{2} \frac{1}{x+1} \le \frac{3}{4}.$$

Ainsi

$$\forall x \in [1, +\infty[, \quad 0 \le f'(x) \le \frac{3}{4}.$$

5. La fonction f est continue sur $[1, +\infty[$, dérivable sur $]1, +\infty[$ et pour tout $x \in]1, +\infty[$ on a

$$0 \le f'(x) \le \frac{3}{4}.$$

D'après l'inégalité des accroissements finis, on a donc :

$$\forall (x,y) \in [1,+\infty[^2, \quad x \ge y \Rightarrow 0 \le f(x) - f(y) \le \frac{3}{4}(x-y).$$

Soit $n \in \mathbb{N}$. En appliquant l'inégalité avec $x = u_n$ et $y = \alpha$ on obtient

$$0 \le f(u_n) - f(\alpha) \le \frac{3}{4}(u_n - b).$$

Or, $u_{n+1} = f(u_n)$ et $f(\alpha) = \alpha$ donc

$$0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha).$$

Ainsi

$$\forall n \in \mathbb{N}, \quad 0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha).$$

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ la proposition $\ll 0 \le u_n - \alpha \le \left(\frac{3}{4}\right)^n (u_0 - \alpha) \gg \text{ et montrons}$ par récurrence que : $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

- *Initialisation* : $\mathcal{P}(0)$ est trivialement vraie.
- *Hérédité* : supposons $\mathcal{P}(n)$ vraie pour un certain entier naturel n et montrons que $\mathcal{P}(n+1)$ est vraie.

D'après la première partie de la question, on a

$$0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha)$$

et par hypothèse de récurrence, on a

$$0 \le u_n - \alpha \le \left(\frac{3}{4}\right)^n (u_0 - \alpha).$$

Par conséquent,

$$0 \le u_{n+1} - \alpha \le \frac{3}{4}(u_n - \alpha) \le \frac{3}{4} \times \left(\frac{3}{4}\right)^n (u_0 - \alpha) = \left(\frac{3}{4}\right)^{n+1} (u_0 - \alpha).$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

• Conclusion : par le principe de récurrence

$$\forall n \in \mathbb{N}, \quad 0 \le u_n - \alpha \le \left(\frac{3}{4}\right)^n (u_0 - \alpha).$$

6. Comme $0 \le \frac{3}{4} < 1$, $\lim_{n \to +\infty} \left(\frac{3}{4}\right)^{n+1} (u_0 - \alpha) = 0$.

Par encadrement, on a donc

$$\lim_{n\to+\infty}u_n-\alpha=0$$

c'est-à-dire

$$\lim_{n\to+\infty}u_n=\alpha.$$

Exercice 9.

- 1. La fonction f est strictement croissante sur $\mathbb R$ en tant que somme de fonctions strictement croissantes sur $\mathbb R^1$ et continue sur $\mathbb R$ en tant que somme de fonctions continues sur $\mathbb R$.
 - D'après le théorème de la bijection, f réalise donc une bijection de \mathbb{R} sur $f(\mathbb{R}) = \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x) = \mathbb{R}$.
- 2. Soit $n \in \mathbb{N}$. Comme f réalise une bijection de \mathbb{R} sur \mathbb{R} , n possède un unique antécédent par f. Ainsi, l'équation f(x) = n possède une unique solution, notée x_n .
- 3. Par définition, de la suite $(x_n)_{n\in\mathbb{N}}$ on a :

$$\forall n \in \mathbb{N}, \quad f(x_n) = n.$$

Soit $n \in \mathbb{N}$. On a donc

$$f(x_n) = n < f(x_{n+1}) = n + 1.$$

Deux rédactions sont possibles :

• $\underline{\text{méthode 1}}$: d'après le théorème de la bijection, on sait que f^{-1} est strictement croissante. On en déduit donc que

$$x_n = f^{-1}(f(x_n)) < x_{n+1} = f^{-1}(f(x_{n+1})).$$

• $\underline{\text{m\'ethode 2}}$: supposons par l'absurde que $x_n \ge x_{n+1}$. Par croissance de f, on aurait alors

$$n = f(x_n) \ge f(x_{n+1}) = n+1$$

ce qui est absurde. Ainsi $x_n < x_{n+1}$.

Peu importe la méthode, on en déduit : $\forall n \in \mathbb{N}$, $x_n < x_{n+1}$.

Par conséquent la suite $(x_n)_{n\in\mathbb{N}}$ est strictement croissante.

4. • <u>Méthode 1</u>: la suite $(x_n)_{n \in \mathbb{N}}$ est croissante. D'après le théorème de la limite monotone soit $(x_n)_{n \in \mathbb{N}}$ converge vers une limite $\ell \in \mathbb{R}$ soit $(x_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$.

Supposons par l'absurde que $(x_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in\mathbb{R}$. Par définition de $(x_n)_{n\in\mathbb{N}}$, on a :

$$\forall n \in \mathbb{N}, \quad f(x_n) = x_n + e^{x_n} = n.$$

Mais f est continue sur $\mathbb R$ donc le membre de gauche a pour limite $f(\ell) \in \mathbb R$ quand n tend vers $+\infty$ alors que le membre de droite a pour limite $+\infty$.

Ceci est une contradiction. Par conséquent $(x_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

• Méthode 2 : pour tout $x \in \mathbb{R}$ on a $f^{-1}(f(x)) = x$ donc f^{-1} n'est pas majorée. D'après le théorème de la limite monotone, comme f^{-1} est croissante et non majorée on a

$$\lim_{y \to +\infty} f^{-1}(y) = +\infty.$$

Par conséquent,

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} f^{-1}(n) = +\infty.$$

^{1.} On peut aussi remarquer que f et dérivable et que : $\forall x \in \mathbb{R}$, $f'(x) = e^x + 1 > 0$.