Neural Network Basics

1.

Question 1

In logistic regression given the input \mathbb{R}^x , and parameters $w \in \mathbb{R}^x$, $w \in \mathbb{$

1/1 point

Expand

Correct

Right, in logistic regression we use a linear function $W\setminus mathbf\{x\} + bWx + b$ followed by the sigmoid function σ , to get an output yy, referred to as \hat{y} , such that $0 < \hat{y} < 10 < y^{\wedge} < 1$.

2.

Question 2

Suppose that $hat{y} = 0.9y^=0.9$ and y = 1y=1. What is the value of the "Logistic Loss"? Choose the best option.

0 / 1 point

Expand

Incorrect

No. The "Logistic Loss" function is defined by $\mathcal{L}(\hat{y}, y) = -\left(\frac{y}{y}\right) + (1-y)\left(\frac{1-\hat{y}}{1-y}\right) + (1-y)\left(\frac{1-y}{y}\right) + (1-y)\left(\frac{1-y}{y}\right)$, to evaluate we must use $\hat{y} = 0.9y^{-1} = 0.9$ and y = 1y = 1.

3.

Question 3

Suppose x is a (8, 1) array. Which of the following is a valid reshape?

1/1 point

Expand

Correct

Yes. This generates uses 2*2*2 = 8 entries.

4.

Question 4

Consider the following random arrays aa and bb, and cc:

a=np.random.randn(3,3)a=np.random.randn(3,3) # a.shape = (3,3)a.shape=(3,3)

b=np.random.randn(2,1)b=np.random.randn(2,1) # b.shape = (2, 1)b.shape=(2,1)

$$c = a + bc = a + b$$

What will be the shape of cc?

1/1 point

Expand

Correct

Yes. It is not possible to broadcast together a and b. In this case there is no way to generate copies of one of the arrays to match the size of the other.

5.

Question 5

Consider the two following random arrays aa and bb:

a = np.random.randn(4, 3)a = np.random.randn(4, 3) # a.shape = (4, 3)a.shape = (4, 3)

b = np.random.randn(3, 2)b = np.random.randn(3, 2) # b.shape = (3, 2)b.shape = (3, 2)

c = a*bc=a*b

What will be the shape of cc?

1/1 point

Expand

Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

6.

Question 6

Suppose you have $n_x n_x$ input features per example. Recall that $X = [x^{(1)} x^{(2)} ... x^{(m)}]X = [x(1)x(2)...x(m)]$. What is the dimension of X?

1/1 point

Expand

Correct

7.

Question 7

Recall that np.dot(a,b)np.dot(a,b) performs a matrix multiplication on aa and bb, whereas a*ba*b performs an element-wise multiplication.

Consider the two following random arrays aa and bb:

a = np.random.randn(12288, 150)a = np.random.randn(12288, 150)

a.shape = (12288, 150)a.shape = (12288, 150)

b = np.random.randn(150, 45)b = np.random.randn(150, 45)

b.shape = (150, 45)b.shape = (150, 45)

c = np.dot(a,b)c = np.dot(a,b)

What is the shape of cc?

1/1 point

Expand

Correct

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because: "number of columns of a = 150 = number of rows of b"

8.

Question 8

Consider the following code snippet:

a.shape = (4, 3)a.shape = (4, 3)

b.shape = (4, 1)b.shape = (4, 1)

for i in range(3):

for j in range(4):

c[i][j] = a[j][i] + b[j]

How do you vectorize this?

0 / 1 point

Expand

Incorrect

No. Notice that b is a column vector; but we are using it to fill the row i of c.

9.

Question 9

Consider the following arrays:

a = np.array([[1, 1], [1, -1]])a = np.array([[1, 1], [1, -1]])

b = np.array([[2], [3]])b = np.array([[2], [3]])

c = a + bc = a + b

Which of the following arrays is stored in CC?

1/1 point

Expand

Correct

Yes. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

10.

Question 10

Consider the following computational graph.

What is the output of J?

1/1 point

Expand

Correct

Yes.
$$J = u - v + w = ab - (a+c) + bc = ab - a + bc - c = a \setminus (b-1) + c \setminus (b-1) = (a+c) \setminus (b-1) = (a+c) + bc = ab - a + bc - c = a(b-1) + c(b-1) = (a+c)(b-1)$$

1.

Question 1

What does a neuron compute?

1/1 point

Expand

Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

2.

Question 2

Suppose that $hat\{y\} = 0.9y^=0.9$ and y = 1y=1. What is the value of the "Logistic Loss"? Choose the best option.

0 / 1 point

Expand

Incorrect

No. This is not the definition of the Logistic Loss function.

3.

Question 3

Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector \mathbf{XX} ?

1/1 point

Expand

Correct

4.

Question 4

Consider the following random arrays aa and bb, and cc:

a = np.random.randn(2, 3)a = np.random.randn(2, 3) # a.shape = (2, 3)a.shape = (2, 3)

b = np.random.randn(2, 1)b = np.random.randn(2, 1) # b.shape = (2, 1)b.shape = (2, 1)

$$c = a + b c = a + b$$

What will be the shape of cc?

1/1 point

Expand

Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

5.

Question 5

Consider the two following random arrays aa and bb:

a = np.random.randn(4, 3)a = np.random.randn(4, 3) # a.shape = (4, 3)a.shape = (4, 3)

b = np.random.randn(3, 2)b = np.random.randn(3, 2) # b.shape = (3, 2)b.shape = (3, 2)

$$c = a*bc=a*b$$

What will be the shape of cc?

1/1 point

Expand

Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

6.

Question 6

Suppose you have $n_X n_X$ input features per example. Recall that $X = [x^{(1)} x^{(2)} ... x^{(m)}]X = [x(1)x(2)...x(m)]$. What is the dimension of X?

1/1 point

Expand

Correct

7.

Question 7

Consider the following array:

$$a = np.array([[2, 1], [1, 3]])a = np.array([[2,1], [1,3]])$$

What is the result of a^*aa*a ?

1/1 point

Expand

Correct

Yes, recall that * indicates element-wise multiplication.

8.

Question 8

Consider the following code snippet:

a.shape =
$$(3, 4)a.shape = (3, 4)$$

b.shape =
$$(4, 1)b.shape = (4, 1)$$

for i in range(3):

for j in range(4):

c[i][j] = a[i][j]*b[j]

How do you vectorize this?

0 / 1 point

Expand

Incorrect

No. The result c is a (3,4) array; the matrix multiplication gives a (3, 1) array as result.

9.

Question 9

Consider the following arrays:

$$a = \text{np.array}([[1,1],[1,-1]]) \\ a = \text{np.array}([[1,1],[1,-1]])$$

$$b = np.array([[2], [3]])b = np.array([[2], [3]])$$

$$c = a + bc = a + b$$

Which of the following arrays is stored in CC?

1/1 point

Expand

Correct

Yes. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

10.

Question 10

Consider the following computation graph.

What is the output J?

0 / 1 point

Expand

Incorrect

No.
$$J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c)$$

 $J = u + v - w = a*b + a*c - (b+c) = a*(b+c) - (b+c) = (a-1)*(b+c)$

1.

Question 1

In logistic regression given \mathbb{R}^{x} and parameters $w \in \mathbb{R}^{n_x}$ we \mathbb{R}^{n_x} by \mathbb{R}^{b} in \mathbb{R}^{b} . Which of the following best expresses what we want \mathbb{R}^{y} to tell us?

0 / 1 point

Expand

Incorrect

No. We want the output $\hat{y}y^{\wedge}$ to tell us the probability that y = 1y = 1 given xx.

2.

Ouestion 2

Suppose that $hat\{y\} = 0.9y^=0.9$ and y = 1y=1. What is the value of the "Logistic Loss"? Choose the best option.

1/1 point

Expand

Correct

Yes. Since \mathcal{L}(\hat{y}, y) = - \left(y \, \log \hat{y} + (1-y) \ \log (1 - \hat{y}) \ \right) \ L(y^ ,y) = - (y\log y^+ + (1-y)\ \log (1-y^)), for the given values we get \mathcal{L}(\hat{y}, y) = - \left(1 \, \log 0.9 + 0 \, \log 0.1 \right) \ L(y^*,y) = - (1\log 0.9 + 0\log 0.1)

3.

Question 3

Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector XX?

1/1 point

Expand

Correct

4.

Question 4

Consider the following random arrays aa and bb, and cc:

a = np.random.randn(3, 4)a = np.random.randn(3, 4) # a.shape = (3, 4)a.shape = (3, 4)

b = np.random.randn(1, 4)b = np.random.randn(1, 4) # b.shape = (1, 4)b.shape = (1, 4)

$$c = a + bc = a + b$$

What will be the shape of CC?

1/1 point

Expand

Correct

Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.

5.

Question 5

Consider the two following random arrays aa and bb:

a = np.random.randn(4, 3)a = np.random.randn(4, 3) # a.shape = (4, 3)a.shape = (4, 3)

b = np.random.randn(1, 3)b = np.random.randn(1, 3) # b.shape = (1, 3)b.shape = (1, 3)

$$c = a*bc=a*b$$

What will be the shape of cc?

1/1 point

Expand

Correct

Yes. Broadcasting is invoked, so row b is multiplied element-wise with each row of a to create c.

6.

Ouestion 6

Suppose our input batch consists of 8 grayscale images, each of dimension 8x8. We reshape these images into feature column vectors $\mathbb{X}^{j}x_{j}$. Remember that $X = \operatorname{begin}\{bmatrix} \mathbb{X}^{(1)} \mathbb{X}^{(2)} \cdot \mathbb{X}^{(2)} \cdot \mathbb{X}^{(8)} \cdot \mathbb{X}^{(1)} \mathbb{X}^{(2)} \cdot \mathbb{X}^{(8)} \cdot \mathbb{X}^$

0 / 1 point

Expand

Incorrect

No. After converting the 8x8 gray scale images to a column vector we get a vector of size 6464, thus XX has dimension (64,8)(64,8).

7.

Question 7

Consider the following array:

$$a = np.array([[2, 1], [1, 3]])a = np.array([[2, 1], [1, 3]])$$

What is the result of a*aa*a?

1/1 point

Expand

Correct

Yes, recall that * indicates element-wise multiplication.

8.

Question 8

Consider the following code snippet:

a.shape =
$$(4, 3)a.shape = (4, 3)$$

b.shape =
$$(4, 1)b.shape = (4, 1)$$

for i in range(3):

for j in range(4):

$$c[i][j] = a[j][i] + b[j]$$

How do you vectorize this?

0 / 1 point

Expand

Incorrect

No. The a[j][i] being assigned to a[i][j] indicates that we are using a.T.

9.

Question 9

Consider the code snippet:

a.shape =
$$(3, 3)a.shape = (3, 3)$$

b.shape =
$$(3, 3)b.shape = (3, 3)$$

$$c = a^{**}2 + b.T^{**}2c = a^{**}2 + b.T^{**}2$$

Which of the following gives an equivalent output for CC?

0 / 1 point

Expand

Incorrect

No. Notice that to operate with b.T we need to use b[j][i].

10.

Question 10

Consider the following computation graph.

What is the output J?

1/1 point

Expand

Correct

Yes.
$$J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c)$$

 $J = u + v - w = a*b + a*c - (b+c) = a*(b+c) - (b+c) = (a-1)*(b+c)$.