Usi non lineari dell'OpAmp

Francesco Sacco, Lorenzo Cavuoti

Novembre 2015

1)

a. Abbiamo collegato il circuito e alimentato a $\pm 15V$, i componenti misurati con il multimetro digitale, risultano:

- $C_T = 0.95 \pm 0.04 nF$
- $C_F = 1.02 \pm 0.04 nF$
- $R_1 = 99.7 \pm 0.8k\Omega$
- $R_2 = 99.3 \pm 0.8\Omega$
- $C_1 = 21.0 \pm 0.9 nF$

Il potenziomentro è stato regolato in modo da produrre una tensione $V_P=184.3\pm0.9mV$ misurata con il multimetro digitale

b. Per spiegare il circuito dell'amplificatore di carica è meglio analizzarlo con i suoi due sotto-circuiti separatamente, e poi vedere come si incastrano assieme.

Il primo sottocircuito è quello che è collegato al voltaggio in ingresso V_S , esso si può vedere nella figura 1, risolvere il circuito equivale a risolvere questo sistema di 3 equazioni

$$\begin{cases} V_S - V_- = \frac{Q_T}{C_T} \\ V_- - V_{sh} = I_1 R_1 \\ V_- - V_{sh} = \frac{Q_F}{C_F} \end{cases}$$
 (1)

Derivando rispetto al tempo la prima e la terza equazione, supponendo che $\frac{dV_s}{dt} = 0^1$, e imponendo che $V_{sh} = AV_-$ si ottiene

$$\begin{cases} \frac{dV_{-}}{dt} = -\frac{I_{T}}{C_{T}} \\ (1+A)V_{-} = I_{1}R_{1} \\ (1+A)\frac{dV_{-}}{dt} = \frac{I_{F}}{C_{F}} \end{cases} \begin{cases} \frac{dV_{-}}{dt} = -\frac{I_{1}+I_{F}}{C_{T}} \\ I_{F} = C_{F}(1+A)\frac{dV_{-}}{dt} \\ I_{1} = \frac{1+A}{R_{1}}V_{-} \end{cases}$$

 $^{^1 {\}rm visto}$ che è un'onda quadra possiamo supporre di interessarci al circuito nei punti in cui l'onda quadra è costante

Figura 1: sotto-circuito 1

Passando dal primo sistema all'altro ho usato che $I_T = I_1 + I_F$, sostituendo I_1 e I_F nella prima equazione si ottiene che

$$\frac{dV_{-}}{dt} = \frac{1}{C_{T}} \left[C_{F} (1+A) \frac{dV_{-}}{dt} + \frac{1+A}{R_{1}} V_{-} \right]$$

$$\frac{dV_{-}}{dt} \left[\frac{C_{T}}{1+A} + C_{F} \right] = -\frac{V_{-}}{R_{1}}$$

Nel limite in cui A è molto grande possiamo considerare $\frac{C_T}{1+A}\approx 0$, quindi l'equazione di prima diventa

$$\frac{dV_{-}}{dt} \approx -\frac{V_{-}}{C_{F}R_{1}} \qquad A\frac{dV_{-}}{dt} \approx -A\frac{V_{-}}{C_{F}R_{1}} \qquad \frac{dV_{sh}}{dt} \approx -\frac{V_{sh}}{C_{F}R_{1}}$$

Quindi si ottiene dal primo sottocircuito che

$$V_{sh}(t) = V_{sh}(0)e^{-t/C_F R_1}$$

Per determinare quanto vale il parametro $V_{sh}(0)$ basta immaginare il generatore del gradino di potenziale V_S e il capacitore C_T come un iniettore di carica. La carica che arriva al circuito non appena V_S passa dal voltaggio negativo a quello positivo è V_SC_T , essa sarà la stessa quantità di carica presente ai capi del capacitore C_F , quindi il voltaggio $V_{sh}(t=0) = V_S\frac{C_T}{C_F}$

$$V_{sh}(t) = V_S \frac{C_T}{C_F} e^{-t/C_F R_1} \tag{2}$$

E questo è come funziona il primo sottocircuito.

Figura 2: Un OpAmp

Prima di spiegare direttamente il secondo sottocircuito è meglio dare un paio di informazioni approssimative sull'OpAmp.

L'OpAmp è un dispositivo a 5 terminali, per indicare il voltaggio in ciascun terminale useremo la convenzione dell'immagine 2

L'OpAmp è in grado di amplificare il segnale per bene solo se $V_{S-} < A(V_+ - V_-) < V_{S+}$, se per caso $A(V_+ - V_-) > V_{S+}$, l'amplificatore porta V_{out} al massimo voltaggio che può dare, cioè V_{S+} , e se $A(V_+ - V_-) < V_{S-}$ $V_{out} = V_{S-}$.

Essendo A molto grande basta una differenza di potenziale molto piccola ai capi dei terminali + e - per mandare l'OpAmp a V_{S+} e V_{S-} , questo viene usato per dire in modo binario se un voltaggio è maggiore di un'altro voltaggio, infatti se $A|V_+-V_-|>>1$ si ha che $V_{out}=V_{S+}$ se $V_+>V_-$ e $V_{out}=V_{S-}$ se $V_+<V_-$.

Adesso che sappiamo ciò possiamo spiegare il secondo sottocircuito: Il secondo sotto circuito si può vedere nella figura 3, il terminale positivo è collegato a V_{sh} attraverso una resistenza di 100Ω , quindi visto che la corrente che passa per il terminale positivo è circa zero possiamo assumere che la differenza di potenziale ai capi sia trascurabile.

Chiamerò V_P^2 il potenziale che entra nel terminale negativo dell'OpAmp, esso è possibile regolarlo grazie al potenziometro che funge da partitore di tensione. Essendo (quasi sempre) $A|V_{sh}-V_P|>>1$ si ha che

$$\begin{cases} V_{discr} = V_C \text{ se } V_{sh} > V_P \\ V_{discr} = V_E \text{ se } V_{sh} < V_E \end{cases}$$
 (3)

Unendo i due sottocircuiti come in figura 4si uniscono i risultati dei paragrafi precedenti:

$$V_{sh} = V_{sh}(0)e^{-t/C_F R_1} \qquad e \qquad \begin{cases} V_{discr} = V_C \text{ se } V_{sh} > V_P \\ V_{discr} = V_E \text{ se } V_{sh} < V_E \end{cases}$$

$$(4)$$

²P sta per potenziometro

Figura 3: secondo sotto-circuito

Figura 4: Circuito

Se si vuole ricavare per quanto tempo $V_{discr}=V_C$ basta risolvere rispetto al tempo $V_{sh}>V_P$, quindi

$$V_{sh}(0)e^{-t/C_FR_1} > V_P \qquad -\frac{t}{C_FR_1} > \ln\left(\frac{V_P}{V_{sh}(0)}\right) \qquad t < C_FR_1 \ln\left(\frac{V_SC_T}{V_PC_F}\right)$$
(5)

c. Per vedere la relazione tra durata del segnale in uscita e ampiezza del segnale in ingresso abbiamo tenuto $V_P=184.3\pm0.9mV$ costante e abbiamo fatto variare l'ampiezza V_S , i dati raccolti sono mostrati in tabella 1. E' stato fatto anche un fit dei dati con la funzione $t=a\log(bx)$ lasciando a e b come parametri di fit (figura 5), per il fit non si sono considerati i punti in cui la durata del segnale in uscita è nulla, ovvero non è presente un segnale, in quanto questi punti vanno a formare una retta t=0 e non ha neanche senso parlare di durata del segnale di uscita.

Figura 5: Fit della durata del segnale in uscita in funzione dell'ampiezza V_S

Il fit è stato fatto con absolute-sigma=False in quanto gli errori non sono statistici, i parametri risultano $a=(105\pm2)\mu s$ $b=4.9\pm0.2V^{-1}$ con un $\chi^2_{ridotto}=0.79$. Confrontando i parametri ottenuti con la teoria si ottiene che $a=(101.6\pm4.2)\mu s$ e $(b=5.1\pm0.3)V^{-1}$. Entrambi i parametri sono compatibili con il modello teorico

$V_S[{ m V}]$	$t[\mu s]$
71.0 ± 0.4	0.41 ± 0.02
$(2.03 \pm 0.01) \times 10^2$	1.34 ± 0.06
$(2.92 \pm 0.02) \times 10^2$	3.3 ± 0.1
$(4.04 \pm 0.02) \times 10^2$	9.5 ± 0.4

Tabella 1: Durata del segnale in uscita in funzione dell'ampiezza di V_S

Facendo variare la tensione fornita dal potenziometro V_P abbiamo misurato la minima tensione V_S richiesta per avere un segnale V_{discr} , le misure sono riportate in 2. Abbiamo anche eseguito un fit dei dati ottenuti con la funzione f=a*x+b usando absolute-sigma=False, i parametri ottimali risultano $a=1.06\pm0.01$ $b=0.012\pm0.004V$ con un $\chi^2_{ridotto}=0.09$, il chi quadro risulta basso probabilmente a causa della sovrastima degli errori di misura del voltaggio con

$V_P[V]$	$V_{Smin}[V]$
(184.3 ± 0.9) m	(208 ± 1) m
0.308 ± 0.002	0.338 ± 0.002
0.49 ± 0.003	0.54 ± 0.003
0.937 ± 0.005	1.02 ± 0.005
1.823 ± 0.009	1.92 ± 0.01

Tabella 2: Tensione minima per avere un segnale V_{Smin} in funzione di V_P

l'oscilloscopio.

Figura 6: Fit della tensione minima per avere un segnale ${\cal V}_{Smin}$ in funzione di ${\cal V}_P$

Figura 7: Trigger di Schmitt

2)

a. Partiamo dalle seguenti informazioni riguardanti il trigger di Schmitt (immagine 7): esso è uno squadratore d'onda, che funziona nel seguente modo:

$$\begin{cases} V_{out} = V_{CE} \text{ se } V_{-} > \frac{V_{CC}}{1 + R_{1}/R_{2}} \\ V_{out} = V_{CC} \text{ se } V_{-} < \frac{V_{CE}}{1 + R_{1}/R_{2}} \\ \text{se } \frac{V_{CE}}{1 + R_{1}/R_{2}} < V_{-} < \frac{V_{CC}}{1 + R_{1}/R_{2}} \text{ allora } V_{out} \text{ assume l'ultimo valore assunto} \end{cases}$$
(6

Il multivibratore astabile è mostrato in figura 8, esso è un trigger di Schmitt con due diodi zener che limitano $-V_{br} < V_{out} < V_{br}$, dove V_{br} è il voltaggio di breakdown degli zener. Inoltre grazie al passa-basso V_{-} si carica dello stesso segno di V_{out} , questo porta V_{-} a raggiungere V_{+} .

Una volta che ciò succede, V_+ cambia di segno, e V_- insegue V_+ , tutto ciò crea un fenomeno oscillatorio.

Il sistema che descrive il circuito è questo

$$\begin{cases} V_{out} - V_{-} = IR \\ V_{out} - V_{+} = I_{1}R_{1} \\ V_{+} = I_{1}R_{2} \\ Q/C = V_{-} \end{cases} \begin{cases} V_{out} - V_{-} = IR \\ \frac{V_{out}}{V_{+}} = \frac{R_{1}}{R_{2}} + 1 \equiv \alpha \\ V_{+} = I_{1}R_{2} \\ \frac{dV_{-}}{dt} = \frac{V_{out} - V_{-}}{RC} \end{cases}$$
(7)

Supponiamo che a t=0 $V_{out}=V_{th}$ e $V_-=-\frac{V_{th}}{\alpha}$, risolvendo l'ultima equazione del secondo sistema si ottiene che³

$$V_{-} = V_{th} \left[1 - \left(\frac{1}{\alpha} + 1 \right) e^{-t/RC} \right]$$

Per trovare il periodo dell'oscillazione basta imporre che

$$V_{-} = V_{th} \left[1 - \left(\frac{1}{\alpha} + 1 \right) e^{-t/RC} \right] = \frac{V_{th}}{\alpha}$$

 $^{^3}$ Viceversa se a t=0 $V_{out}=-V_{th}$ e $V_-=rac{V_{th}}{lpha}$ si ottiene $V_-=-V_{th}\left[1-\left(rac{1}{lpha}+1
ight)e^{-t/RC}
ight]$

Figura 8: Multivibratore astabile

risolvendo per t, e moltiplicanto per due equivale a trovare il periodo

$$-(1+\alpha)e^{-t/RC} = 1 - \alpha \qquad -\frac{t}{RC} = \ln\frac{1-\alpha}{1+\alpha} \qquad t = RC\ln\left(1+2\frac{R_2}{R_1}\right)$$

$$T = 2RC\ln\left(1+2\frac{R_2}{R_1}\right) \tag{8}$$

- b. Grazie all'equazione 8 è stato possibile scegliere una resistenza $R=(120.3\pm0.9)k\Omega$ e una capacità $C=(10.8\pm0.4)nF$ da cui otteniamo un periodo di $T=(2.88\pm0.02)ms$
- c. V_{out} presenta un'onda quadra con ampiezza data dalla tensione di breakdown dei diodi zener, e periodo dato dall'equazione 8, il segnale V_+ presenta la stessa forma di V_{out} in quanto i due segnali differiscono solamente per il partitore R_1 , R_2 e in particolare $V_+ \approx 1/2V_{out}$ figura 9. V_- presenta un segnale a pinna di squalo (figura 10) che è dato dalla carica e scarica del condensatore.
- **d.** Come già accennato nel punto a. la funzione dei diodi è quella di fare oscillare V_{out} intorno a V_{th} .

La funzione della resistenza R_3 invece è quella di non far esplodere niente, infatti, se si considera quando il voltaggio d'uscita dell'OpAmp è V_{CC} l'intensità di corrente attraverso R_3 sarà uguale a $I_3 = (V_{CC} - V_{th})/R_3$, quindi levare la resistenza R_3 equivale a far divergere I_3

Figura 9: Screenshot dell'oscilloscopio con V_+ (in alto) e V_{out} (in basso)

Figura 10: Screenshot dell'oscilloscopio con V_- (in alto) e V_{out} (in basso)

Figura 11: Screenshot dell'oscilloscopio con V_{-} (in alto) e V_{out} (in basso), come si vede il segnale in uscita non rappresenta più fedelmente un'onda quadra

e. se V_{CC} e V_{CE} sono un pò maggiori in modulo di V_{th} il voltaggio in uscita non dipende dalle tensioni di alimentazione, se invece sono minori, allora si notano delle differenze.

Purtroppo a causa della complessità del sistema di equazioni⁴ non ci è stato possibile determinare esattamente come variano i parametri, tuttavia è possibile dare delle stime qualitative.

A causa di R_3 il V_{out} è circa il 0.95 volte il voltaggio in uscita del OpAmp, quindi se il voltaggio dell'uscita scende anche V_{out} scende (quasi) allo stesso modo, l'abbassamento di V_{out} causa un rallentamento nella carica o scarica del condensatore modificando il duty cicle.

in particolare se V_{CC} scende, il duty cicle aumenta e il massimo di V_{out} scende, se V_{CE} sale⁵, il duty cicle scende e il minimo di V_{out} sale.

f. La massima frequenza dell'oscillatore è dato dallo stew-rate dell'operazionale, essendo lo stew-rate $\approx 10V/\mu s$ la massima frequenza che si può ottenere prima che l'onda diventi triangolare a 5V è 500kHz, quindi in generale l'onda è abbastanza quadra a frequenze inferiori ai 50kHz, in figura 11 si vede che già a 120kHz il segnale in uscita differisce da un'onda quadra

 $^{^4}$ in particolare R_3 aggiunge 2 equazioni al sistema

⁵ricodati che è negativo, quindi in modulo scende