

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Nar	M		J			18	toc	
UB	Pe	rsor	NI	umb	er:			Instructions:
5	0	2	5	2	7	7	2	 Textbooks, calculators and any other electronic devices are not permitted
○ 1② 3④ 6⑦ 8⑨	① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	0 1 3 4 5 6 7 8 9	○ 1② 3④ 6⑦ 8⑨	0 1 0 3 4 5 6 7 8 9	0 1 2 3 4 5 6 8 9	0 1 2 3 4 5 6 8 9		You may use one sheet of notes. • For full credit solve each probler fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
****			ir.					

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix} V_{1} & V_{2} & V_{3} \\ V_{1} & V_{2} & V_{3} \end{bmatrix} \begin{bmatrix} V_{1} \\ X_{2} \\ X_{3} \end{bmatrix} = W = \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & 6 \end{bmatrix} - 2$$

$$\begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & -1 & -2 & 2 \\ 0 & -1 & -2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 26 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 &$$

6) Linearly dependents because Xz is a free variable in the matrix [iv, xvzsvz] resulting in a null space with infinite solutions

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix}
1 - 1 & 2 & 1 & 0 & 0 \\
0 & 1 - 1 & -1 & 1 & 0 \\
0 & 2 - 1 & 0 & 0 & 1
\end{bmatrix}
2 - 2
\begin{bmatrix}
1 - 1 & 2 & | 1 & 0 & 0 \\
0 & 1 - 1 & -1 & | 0 & 0 \\
0 & 0 & 1 & 2 - 2
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 & 0 & | 0 & 1 \\
0 & 1 & -1 & | 0 & | 0
\end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

Find a matrix C such that
$$A'C = B$$
 (where A' is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$C_{1} = \begin{bmatrix} 0, S \\ 4 \\ 1, S \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 110 \\ -102 \\ 21-7 \end{bmatrix} \begin{bmatrix} C_{21} \\ C_{22} \\ C_{23} \end{bmatrix} = 2 = 2C_{21} C_{21} = 1$$

$$C_{2} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} - \begin{bmatrix} 110 \\ 107 \end{bmatrix} \begin{bmatrix} C_{21} \\ C_{23} \end{bmatrix} = 2 = 2C_{23} C_{23} = 1$$

$$\begin{bmatrix} C_{21} \\ C_{33} \end{bmatrix}$$

$$\begin{bmatrix}
3 \\
4 \\
-1 & 02 \\
2 & 1-1
\end{bmatrix}
\begin{bmatrix}
0_{21} \\
0_{22} \\
0_{33}
\end{bmatrix}
3 = 2C_{31} C_{21} = 1.5$$

$$C_{32} V_{4} = 1C_{32} C_{32} C_{32} = V$$

$$1 = 2C_{33} C_{32} = 0.5$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors **u** satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

Standard Matrix of
$$T = \left[T(e_1) T(e_2) T(e_3)\right]$$

$$\left[T\left[\frac{1}{6}\right] = \left[\frac{1-260}{1+360}\right] = \left[\frac{1}{1}\right] T\left[\frac{1}{6}\right] = \left[\frac{1-260}{1-360}\right] = \left[\frac{1}{3}\right]$$

$$a) \begin{bmatrix} 1 - 2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

vectors
$$v_1$$
 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 12 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 12 \\ 0 & 0$$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True, edelared a span are linear combinations of the vectors in that Span, so the linear Combinations Combination of some vector and a vector in some span can only be encompassed by that span if the other vector is also a linear combination of the vector in the span.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True, because if {U,V} is not linearly dependent then {U,V,W} cannot be linearly independent as multiplying w by a constant of zero would yield all solutions of {U,V}

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.
True, Au and Av can be seen as lineary
discontinuos where The self has
Town and The started the started
Both multiplying by the same matrix causes a linear transformation
matrix causes a linear transformation
or the solutions but will not modify the
b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span (v, w) then $T(u)$ must be in Span $(T(v), T(w))$.
True, because Minseon toas Connativas
essure that the transformation of the
SUR OB DIVERSON
Span(V,W)= C,V+Czw /Spancy
: U = CIV+ CZW & SPANCTANZY K
$T(U) = T(C_1V + C_2W) = (57C_1V) \times (57C_1V$
T(U)=T(C,V)+T(C,W)