第五部分 代数系统简介

主要内容

- 二元运算及其性质
 - 二元运算和一元运算、二元运算性质、特异元素
- 代数系统的概念
- 几个典型的代数系统 半群、独异点、群 环与域 格与布尔代数
- 代数系统的同构与同态

第十四章 代数系统简介

主要内容

- 二元运算及其性质
- 一元和二元运算定义及其实例
- 二元运算的性质

代数系统

- 代数系统定义及其实例
- 子代数
- 积代数

代数系统的同态与同构

14.1 代数系统的基本概念

定义14.1 设S为集合,函数 $f: S \times S \to S$ 称为S上的二元运算,简称为二元运算。函数 $f: S \to S$ 称为S上的一元运算,简称一元运算。

- S 中任何元素都可以进行运算,且运算的结果惟一.
- 例1 (1) 自然数集合N上的加法和乘法是N上的二元运算,但减法和除法不是.
- (2) 整数集合Z上的加法、减法和乘法都是Z上的二元运算, 而除法不是. 求一个数的相反数是Z上的一元运算.
- (3) 非零实数集R*上的乘法和除法都是R*上的二元运算,而加法和减法不是. 求倒数是R*上的一元运算.

实例

(4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,即

$$M_{n}(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, i, j = 1, 2, ..., n \right\}$$

矩阵加法、乘法是 $M_n(\mathbf{R})$ 上的二元运算。转置是一元运算。

- (5) S为任意集合,则U、 \cap 、 \cap 、 \oplus 为P(S)上二元运算. ~运算 为一元运算.
- (6) *S^S*为*S*上的所有函数的集合,则合成运算°为*S^S*上二元运算. 求反函数不一定是一元运算.

离散数学

二元与一元运算的表示

1. 算符

可以用 \circ ,*,·, Θ , \otimes , Δ 等符号表示二元或一元运算,称为算符. 对二元运算 \circ ,如果 x 与 y 运算得到 z,记做 $x \circ y = z$ 对一元运算 Δ ,x的运算结果记作 Δx .

2. 表示二元或一元运算的方法:解析公式和运算表公式表示

例 设R为实数集合,如下定义R上的二元运算*: $\forall x, y \in \mathbb{R}, x * y = x$.

那么 3*4=3, 0.5*(-3)=0.5

运算表

运算表:表示有穷集上的一元和二元运算

O	a_1 a_2	a_n
a_1	$\begin{vmatrix} a_1 \circ a_1 & a_1 \circ a_2 & \dots \\ a_2 \circ a_1 & a_2 \circ a_2 & \dots \end{vmatrix}$	$a_1 \circ a_n$
a_2	$a_2 \circ a_1 \ a_2 \circ a_2 \ \dots$	a_2 o a_n
•	•••	
•	•••	
•		
a_n	$a_n \circ a_1 \ a_n \circ a_2 \ \dots$	$a_n \circ a_n$

	$\circ a_i$
a_1	o <i>a</i> ₁
$\begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$	$\circ a_2$
•	•
•	•
•	•
a_n	$\circ a_n$

二元运算的运算表

一元运算的运算表

运算表的实例

例2 设 $S=P(\{a,b\})$, S上的 \oplus 和 ~运算的运算表如下

⊕	Ø	<i>{a}</i>	{ <i>b</i> }	{a,b}
Ø	Ø	{ <i>a</i> }	{ <i>b</i> }	$\{a,b\}$
{ <i>a</i> }	{a}	$\{a\}$ \emptyset $\{a,b\}$	$\{a.b\}$	{ b }
{ b }	{ <i>b</i> }	$\{a,b\}$	Ø	{ <i>a</i> }
{a,b}	a,b	} {b}	{ <i>a</i> }	Ø

x	~x
Ø	{a,b}
{ <i>a</i> }	{a}
{ b }	{ b }
$\{a,b\}$	Ø

二元运算的性质

定义14.2-4 设。为S上的二元运算,

- (1) 若对任意 $x,y \in S$ 有 $x \circ y = y \circ x$, 则称运算在S上满足交换律.
- (2) 若对任意 $x,y,z \in S$ 有 $(x \circ y) \circ z = x \circ (y \circ z)$,则称运算在S上满足结合律.
- (3) 若对任意 $x \in S$ 有 $x \circ x = x$, 则称运算在S上满足幂等律.

定义14.5-6设。和*为S上两个不同的二元运算,

- (1) 若对任意 $x,y,z \in S$ 有 $(x*y) \circ z = (x \circ z) * (y \circ z)$, $z \circ (x*y) = (z \circ x) * (z \circ y)$,则称 \circ 运算对*运算满足分配律.
- (2) 若°和*都可交换,且对任意 $x,y \in S$ 有 $x \circ (x*y) = x$, $x*(x \circ y) = x$, 则称°和*运算满足吸收律.

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实 矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	交换律	结合律	幂等律
Z,Q,R	普通加法+	有	有	无
	普通乘法×	有	有	无
$M_n(R)$	矩阵加法+	有	有	无
	矩阵乘法×	无	有	无
P(B)	并し	有	有	有
	交∩	有	有	有
	相对补-	无	无	无
	对称差⊕	有	有	无
A^A	函数复合°	无	有	无

实例

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为n阶实 矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为从A到A的函数集, $|A| \ge 2$

集合	运算	分配律	吸收律
Z,Q,R	普通加法+与乘法×	×对+可分配 +对×不分配	无
$M_n(R)$	矩阵加法+与乘法×	×对+可分配 +对×不分配	无
P(B)	并∪与交∩	∪对∩可分配 ∩对∪可分配	有
	交∩与对称差⊕	○对⊕可分配	无

特异元素:单位元、零元

定义14.7-9 设。为S上的二元运算,

(1) 如果存在 $e_l(\vec{u}e_r) \in S$,使得对任意 $x \in S$ 都有

$$e_l \circ x = x \ (\mathfrak{R} x \circ e_r = x),$$

则称 $e_l(或e_r)$ 是S中关于。运算的左(或右)单位元.

若 $e \in S$ 关于。运算既是左单位元又是右单位元,则称 $e \to S$ 上关于。运算的单位元.单位元也叫做幺元.

(2) 如果存在 θ_l (或 θ_r) $\in S$,使得对任意 $x \in S$ 都有

$$\theta_l \circ x = \theta_l \ (\vec{\mathfrak{R}} \ x \circ \theta_r = \theta r),$$

则称 $\theta_l($ 或 $\theta_r)$ 是S 中关于。运算的左(或右)零元.

若 $\theta \in S$ 关于。运算既是左零元又是右零元,则称 $\theta \supset S$ 上关于运算。的零元.

可逆元素和逆元

(3) 设 $^{\circ}$ 为S上的二元运算, $^{\circ}$ e为S中关于运算 $^{\circ}$ 的单位元. 对于 $x \in S$,如果存在 y_l (或 y_r) $\in S$ 使得

$$y_l \circ x = e \quad (\overrightarrow{y}_r \circ y_r = e)$$

则称 y_t (或 y_r)是x的左逆元(或右逆元).

关于。运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称 $y \to x$ 的逆元. 如果 x 的逆元存在,就称 x 是可逆的.

可以证明:

- 对于给定二元运算,单位元或零元如果存在,则是唯一的.
- 对于可结合的二元运算,给定元素若存在逆元,则是唯一的逆元

实例

集合	运算	单位元	零元	逆元
Z,Q,R	普通加法+	0	无	<i>x</i> 逆元– <i>x</i>
	普通乘法×	1	0	<i>x</i> 逆元 <i>x</i> ^{−1}
				(x ⁻¹ ∈给定集合)
$M_n(R)$	矩阵加法+	n阶全0矩阵	无	<i>X</i> 逆元– <i>X</i>
	矩阵乘法×	n阶单位矩阵	n阶全 0	<i>X</i> 的逆元 <i>X</i> -1
			矩阵	(X可逆)
P(B)	并し	Ø	В	Ø的逆元为Ø
	交∩	\boldsymbol{B}	Ø	B的逆元为B
	对称差⊕	Ø	无	X的逆元为X

消去律

定义14.10 设。为S上的二元运算,如果对于任意的 $x, y, z \in S$ 满足以下条件:

- (1) 若 $x \circ y = x \circ z \perp x \neq \theta$,则y = z;
- (2) 若 $y \circ x = z \circ x$ 且 $x \neq \theta$,则y = z;

称。运算满足消去律,其中(1)为左消去律,(2)为右消去律.

•注意被消去的 x 不能是运算的零元 θ .

整数集合上的加法和乘法满足消去律.

P(S)上的并和交一般不满足消去律. 对称差运算⊕满足消去律, $\forall A,B,C \in P(S)$,都有

$$A \oplus B = A \oplus C \Rightarrow B = C$$

$$B \oplus A = C \oplus A \Rightarrow B = C$$

代数系统

定义14.11 非空集合S和S上k个一元或二元运算 $f_1,f_2,...,f_k$ 组成的系统称为代数系统,简称代数,记做<S, $f_1,f_2,...,f_k>$.

实例:

- (1) <N,+>,<Z,+,·>,<R,+,·>是代数系统,+和·分别表示普通加法和乘法.
- (2) $< M_n(R)$, +, $\cdot>$ 是代数系统,十和·分别表示 n 阶($n \ge 2$)实矩 阵的加法和乘法.
- (3) $\langle Z_n, \oplus, \otimes \rangle$ 是代数系统, $Z_n = \{0,1,...,n-1\}$, \oplus 和 \otimes 分别表示 模n 的加法和乘法,对于 $x,y \in Z_n$, $x \oplus y = (x+y) \bmod n$, $x \otimes y = (xy) \bmod n$
- $(4) < P(S), \cup, \cap, \sim >$ 是代数系统, \cup 和 \cap 为并和交, \sim 为绝对补

代数系统的成分与表示

构成代数系统的成分:

- 集合(也叫载体,规定了参与运算的元素)
- 运算(这里只讨论有限个二元和一元运算)
- 代数常数(通常是与运算相关的特异元素:如单位元等)

研究代数系统时,如果把运算具有它的特异元素也作为系统的性质之一,那么这些特异元素可以作为系统的成分,叫做代数常数.

例如:代数系统 $\langle Z,+,0\rangle$:集合Z,运算+,代数常数0代数系统 $\langle P(S),\cup,\cap\rangle$:集合P(S),运算U和 \cap ,无代数常数

代数系统的表示

- (1) 列出所有的成分:集合、运算、代数常数(如果存在)如<**Z**,+,**0**>,<*P*(*S*),U, \cap >
- (2) 列出集合和运算,在规定系统性质时不涉及具有单位元的性质(无代数常数)如<**Z**,+>,<*P*(*S*),U, \cap >
- (3) 用集合名称简单标记代数系统 在前面已经对代数系统作了说明的前提下使用 如代数系统Z, P(B)

同类型与同种代数系统

定义14.12

- (1) 如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.
- (2) 如果两个同类型的代数系统规定的运算性质也相同,则称为同种的代数系统.

例如 $V_1 = \langle \mathbf{R}, +, \cdot, 0, 1 \rangle$, $V_2 = \langle M_n(\mathbf{R}), +, \cdot, \theta, E \rangle$, $\theta > n$ 阶全0 矩阵,E > n 阶单位矩阵, $V_3 = \langle P(B), \cup, \cap, \emptyset, B \rangle$

- V_1, V_2, V_3 是同类型的代数系统,它们都含有2个二元运算,2个代数常数.
- V_1, V_2 是同种的代数系统, V_1, V_2 与 V_3 不是同种的代数系统

运算性质比较

V_1	$oldsymbol{V_2}$	V_3	
+ 可交换、可结合	+ 可交换、可结合	U可交换、可结合	
・可交換、可结合	・可交換、可结合	∩可交换、可结合	
+ 满足消去律	+ 满足消去律	U不满足消去律	
・满足消去律	・不满足消去律	∩不满足消去律	
・ 对 + 可分配	・对 + 可分配	∩对U可分配	
+ 对・不可分配	+ 对・不可分配	U对∩可分配	
+ 与・没有吸收律	+ 与・没有吸收律	U与∩满足吸收律	

14.2几个典型的代数系统

主要内容

- 半群、独异点与群
- 环与域
- 格与布尔代数

半群、独异点与群的定义

定义14.13

- (1) 设V=<S, \circ >是代数系统, \circ 为二元运算,如果 \circ 运算是可结合的,则称V为半群.
- (2) 设 $V=<S, \circ>$ 是半群,若 $e\in S$ 是关于 \circ 运算的单位元,则称V是含幺半群,也叫做独异点. 有时也将独异点V记作 $V=<S, \circ, e>$.
- (3) 设 $V=<S, \circ>$ 是独异点, $e \in S$ 关于•运算的单位元,若 $\forall a \in S, a^{-1} \in S,$ 则称V是<mark>群</mark>. 通常将群记作G.

实例

例1

- (1) <**Z**⁺,+>,<**N**,+>,<**Z**,+>,<**Q**,+>,<**R**,+>都是半群,+是普通加法. 这些半群中除<**Z**⁺,+>外都是独异点
- (2) 设n是大于1的正整数, $<M_n(\mathbf{R}),+>$ 和 $<M_n(\mathbf{R}),+>$ 都是半群,也都是独异点,其中+和·分别表示矩阵加法和矩阵乘法
- $(3) < P(B), \oplus >$ 为半群,也是独异点,其中 \oplus 为集合对称差运算
- (4) < Z_n , \oplus >为半群,也是独异点,其中 Z_n = $\{0,1,...,n-1\}$, \oplus 为模n 加法
- (5) $<A^A, >>$ 为半群,也是独异点,其中> 为函数的复合运算
- (6) $\langle R^*, \circ \rangle$ 为半群,其中 R^* 为非零实数集合,。运算定义如下: $\forall x, y \in R^*, x \circ y = y$

半群: Σ上的字代数和语言

例2 设 Σ 是有穷字母表, $\forall k \in \mathbb{N}$,定义下述集合:

$$\Sigma_k = \{a_1 a_2 \dots a_k \mid a_i \in \Sigma\}$$

是 Σ 上所有长度为k的串的集合. 当k=0时, Σ_0 ={ λ }, λ 表示空串. 令 表示 Σ 上所有有限长度的串的集合, Σ += Σ *-{ λ }则表示 Σ 上所有长度至少为1的有限串的集合. 在 Σ *上可以定义串的连接运算, $\forall \omega_1, \omega_2 \in \Sigma$ *, ω_1 = $a_1a_2...a_m$, ω_2 = $b_1b_2...b_n$ 有

$$\omega_1\omega_2=a_1a_2...a_mb_1b_2...b_n$$

显然 Σ 关于连接运算构成一个独异点,称为 Σ 上的字代数. Σ 上的语言L就是 Σ 的一个子集.

群码

例3 某二进制码的码字 $x=x_1x_2...x_7$ 由7位构成,

其中 x_1, x_2, x_3 和 x_4 为数据位, x_5, x_6 和 x_7 为校验位,且满足:

$$x_5 = x_1 \oplus x_2 \oplus x_3$$

$$x_6 = x_1 \oplus x_2 \oplus x_4$$

$$x_7 = x_1 \oplus x_3 \oplus x_4$$

这里的⊕是模2加法.

设G为所有码字构成的集合,在G上定义二元运算如下:

$$\forall x,y \in G, x \circ y = z_1 z_2 ... z_7, z_i = x_i \oplus y_i, i=1,2,...,7.$$

那么<G,o>构成群. 这样的码称为群码

群的相关概念及子群

有限群:若群G是有穷集,则称G是有限群,否则称为无限群

群 G的M: 群G含有的元素数,有限群G的阶记作|G|.

交换群或阿贝尔(Abel)群: 群中运算可交换

实例: $\langle Z, + \rangle$ 和 $\langle R, + \rangle$ 是无限群, $\langle Z_n, \oplus \rangle$ 是n阶群.

上述所有的群都是交换群,但n阶($n \ge 2$)实可逆矩阵的集合(是 $M_n(\mathbf{R})$ 的真子集)关于矩阵乘法构成的群是非交换群

子群: 群G的非空子集H关于群的运算构成群,称为G的子群.

实例: $H=nZ=\{nk \mid k \in Z\}$, n为给定自然数,是<Z,+>的子群.

当n=0和1时, 子群分别是{0}和Z, 称为平凡子群;

2Z由能被2整除的全体整数构成,也是子群.

群的直积

定义14.14 设 G_1 =<A,°>和 G_2 =<B,*>是群,°和*分别为它们的二元运算,在集合 $A \times B$ 上定义新的二元运算•, $\forall < a_1, b_1 > , < a_2, b_2 > \in A \times B$,有

$$< a_1, b_1 > \blacksquare < a_2, b_2 > \equiv < a_1 \circ a_2, b_1 * b_2 >$$

称 $G=\langle A\times B, \bullet \rangle$ 为 G_1 与 G_2 的直积,记作 $G_1\times G_2$.

例4 G_1 , G_2 分别为模2加和模3加群,它们的直积运算

\oplus	<0,0>	<0,1>	<1,0>	<1,1>	<2,0>	<2,1>
<0.0>	<0.0>	<0.1>	<1.0>	<1.1>	<2,0>	<2.1>
<0,1>	,	,	,	,	<2,1>	,
<1,0>	<1,0>	<1,1>	<2,0>	<2,1>	<0,0>	<0,1>
<1,1>	<1,1>	<1,0>	<2,1>	<2,0>	<0,1>	<0,0>
<2,0>	<2,0>	<2,1>	<0,0>	<0,1>	<1,0>	<1,1>
<2,1>	<2,1>	<2,0>	<0,1>	<0,0>	<1,1>	<1,0>
·						

环与域

定义10.15 设<R,+,·>是代数系统,+和·是二元运算. 如果满足以下条件:

- (1) < R, +>构成交换群
- (2) <R,·>构成半群
- (3)·运算关于+运算适合分配律则称 $< R, +, \cdot >$ 是一个环.

通常称+运算为环中的加法,·运算为环中的乘法.

定义14.16 设<R,+, >是环,若

- (1) 环中乘法 可交换;
- (2) R中至少含有两个元素. 且 $\forall a \in R \{0\}$,都有 $a^{-1} \in R$;则称R是域.

环与域的实例

例5

- (1) 整数集、有理数集、实数集和复数集关于普通的加法和 乘法构成环,分别称为整数环Z,有理数环Q,实数环R 和复数环C. Q、R和C也称为有理数域、实数域、复数 域.
- (2) $n(n \ge 2)$ 阶实矩阵的集合 $M_n(\mathbf{R})$ 关于矩阵的加法和乘法构成环,称为n 阶实矩阵环.
- (3) 集合的幂集P(B)关于集合的对称差运算和交运算构成环。
- (4) 设 $Z_n = \{0,1,...,n-1\}$, Θ 和 \otimes 分别表示模n的加法和乘法,则 $<Z_n,\Theta,\otimes>$ 构成环,称为模n的整数环. 当n为素数时 Z_n 构成域.

格的定义与性质

定义14.17 设<S,<>>是偏序集,如果 $\forall x,y \in$ S, $\{x,y\}$ 都有最小上界和最大下界,则称S关于偏序<作成一个格。求 $\{x,y\}$ 最小上界和最大下界看成x与y的二元运算V和 Λ ,

例6 设n是正整数, S_n 是n的正因子的集合.D为整除关系,则偏序集<Sn,D>构成格. $\forall x,y \in S_n$, $x \lor y$ 是lcm(x,y),即 $x \vdash y$ 的最小公倍数. $x \land y$ 是gcd(x,y),即 $x \vdash y$ 的最大公约数.

实例

例7 判断下列偏序集是否构成格,并说明理由.

- $(1) \langle P(B), \subseteq \rangle$,其中P(B)是集合B的幂集.
- (2) <Z,≤>,其中Z是整数集,≤为小于或等于关系.
- (3) 偏序集的哈斯图分别在下图给出.

- (1) 幂集格. $\forall x,y \in P(B)$, $x \lor y$ 就是 $x \cup y$, $x \land y$ 就是 $x \cap y$.
- (2) 是格. $\forall x,y \in \mathbb{Z}$, $x \lor y = \max(x,y)$, $x \land y = \min(x,y)$,
- (3) 都不是格. 可以找到两个结点缺少最大下界或最小上界30

格的性质: 算律

设 $\langle L, \leqslant \rangle$ 是格,则运算V和 Λ 适合交换律、结合律、幂等律和吸收律,即

(1) ∀*a*,*b*∈*L* 有

$$a \lor b = b \lor a$$
, $a \land b = b \land a$

- (2) $\forall a,b,c \in L$ 有 $(a \lor b) \lor c = a \lor (b \lor c), \ (a \land b) \land c = a \land (b \land c)$
- (3) ∀*a*∈*L* 有

$$a \lor a = a$$
, $a \land a = a$

(4) ∀*a*,*b*∈*L* 有

$$a \lor (a \land b) = a, \ a \land (a \lor b) = a$$

格作为代数系统的定义

设 $\langle S,*,\circ \rangle$ 是具有两个二元运算的代数系统,若对于*和°运算适合交换律、结合律、吸收律,则可以适当定义S中的偏序 \leqslant ,使得 $\langle S,\leqslant \rangle$ 构成格,且 $\forall a,b \in S$ 有 $a \land b = a * b,a \lor b = a \circ b$.

格的等价定义:设<S,*,°>是代数系统,*和°是二元运算,如果*和°满足交换律、结合律和吸收律,则<S,*,°>构成格.

分配格、有补格与布尔代数

定义14.18 设<L, Λ ,V>是格, 若 $\forall a,b,c \in L$,有 $a \land (b \lor c) = (a \land b) \lor (a \land c)$ $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

则称L为分配格.

• 注意: 可以证明以上两个条件互为充分必要条件

 L_1 和 L_2 是分配格, L_3 和 L_4 不是分配格. 称 L_3 为钻石格, L_4 为五角格.

分配格的判别

分配格的判别:设 L 是格,则 L 是分配格当且仅当 L 不含有与钻石格或五角格同构的子格.

- 小于五元的格都是分配格.
- 任何一条链都是分配格.

例6 说明图中的格是否为分配格,为什么?

解 都不是分配格.

 $\{a,b,c,d,e\}$ 是 L_1 的子格,同构于钻石格 $\{a,b,c,e,f\}$ 是 L_2 的子格,

同构于五角格;

 $\{a,c,b,e,f\}$ 是 L_3 的子格同构于钻石格.

有补格的定义

定义14.19 设L是格,

- (1) 若存在a∈L使得 $\forall x$ ∈L有 $a \leq x$, 则称a为L的全下界, 记为0; 若存在b∈L使得 $\forall x$ ∈L有 $x \leq b$, 则称b为L的全上界,记为1.
- (2) 若L存在全下界和全上界,则称L为有界格,一般将有界格L记为<L, Λ ,V,0,1>.

定义14.20 设<L, Λ ,V,0,1>是有界格,a \in L, 若存在b \in L 使得 $a \wedge b = 0$ 和 $a \vee b = 1$

成立,则称b是a的补元.

定义14.21 设<L, \land , \lor ,0,1>是有界格,若L中所有元素都有补元存在,则称L为有补格.

补元的性质

注意:

- 在任何有界格中,全下界0与全上界1互补.
- 对于一般元素, 可能存在补元, 也可能不存在补元.
- 如果存在补元,可能是惟一的,也可能是多个补元.
- 对于有界分配格,如果元素存在补元,一定是惟一的.

有界格中的补元及实例

例7

 L_1 : a 与 c 互补, a 为全下界, c为全上界, b 没有补元.

 L_2 : a与 d 互补, a 为全下界, d 为全上界, b与 c互补.

 L_3 : a 与 e 互补, a 为全下界, e 为全上界, b 的补元是 c 和 d; c 的补元是 b 和 d; d 的补元是 b 和 c.

 L_4 : a 与 e 互补, a 为全下界, e 为全上界, b 的补元是 c 和 d; c 的补元是 b; d 的补元是 b.

 L_2, L_3 和 L_4 是有补格, L_1 不是有补格.

布尔代数的定义与实例

定义14.22 如果一个格是有补分配格,则称它为布尔格或布尔代数.布尔代数标记为 $< B, \land, \lor, ', 0, 1>, '为求补运算.$

例8 设 S_{110} = {1, 2, 5, 10, 11, 22, 55, 110}是110的正因子集合,gcd表示求最大公约数的运算,lcm表示求最小公倍数的运算,问<S110, gcd, lcm>是否构成布尔代数?为什么?

- 解 (1) 不难验证 S_{110} 关于gcd 和 lcm 运算构成格.(8)
- (2) 验证分配律 $\forall x, y, z \in S_{110}$ 有 gcd(x, lcm(y, z)) = lcm(gcd(x, y), gcd(x, z))
- (3) 验证它是有补格, 1作为S110中的全下界, 110为全上界, 1和110互为补元, 2和55互为补元, 5和22互为补元, 10和11互为补元, 从而证明了<S110, gcd, lcm>为布尔代数.

实例

例9 设B为任意集合,证明B的幂集格<P(B), \cap , \cup , \sim , \varnothing , B>构成布尔代数, 称为集合代数.

证 (1) P(B)关于 \cap 和U构成格,因为 \cap 和U运算满足交换律,结合律和吸收律.

- (2) 由于∩和U互相可分配,因此P(B)是分配格.
- (3) 全下界是空集Ø,全上界是B.
- (4) 根据绝对补的定义, 取全集为B, $\forall x \in P(B)$, $\neg x \in x$ 的补元. 从而证明P(B)是有补分配格, 即布尔代数.
- 有限布尔代数含有2ⁿ个元素.

代数系统的同构与同态

定义14.23 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统,f: $A \rightarrow B$,且 $\forall x, y \in A$ 有 $f(x \circ y) = f(x) * f(y)$,则称 $f \in V_1$ 到 V_2 的同态映射,简称同态.

f若是单射,称为<mark>单同态</mark>;若是满射,称为<mark>满同态(V_2 是 V_1 的同态像,记作 $V_1\sim V_2$);若是双射,称为同构,记作 $V_1\simeq V_2$. V到V的同态f 称为自同态. 类似地可以定义单自同态、满自同态和自同构.</mark>

同态性质:设f是 $V_1=<A,\circ>到<math>V_2<B,*>$ 的同态映射,

- (1) 若•运算具有交换律、结合律、幂等律等,那么在 $f(V_1)$ 中*运算也具有相同的算律(注意,消去律可能有例外).
- (2) $f(e_1)=e_2$, $f(\theta_1)=\theta_2$, $f(x^{-1})=f(x)^{-1}$

实例

例10 (1) V_1 =<Z,+>, V_2 =< Z_n , Θ >. Z为整数集合,+为普通加法; Z_n ={0,1,...,n-1}, Θ 为模n加. \diamondsuit

$$f: \mathbb{Z} \to \mathbb{Z}_n$$
, $f(x) = (x) \mod n$

 $f = V_1$ 到 V_2 的满同态.

(2) 设 V_1 =< \mathbf{R} ,+>, V_2 =< \mathbf{R} *,·>, \mathbf{R} 和 \mathbf{R} *分别为实数集与非零实数集,+和·分别表示普通加法与乘法. 令

$$f: \mathbf{R} \rightarrow \mathbf{R}^*, f(x) = e^x$$

f是 V_1 到 V_2 的单同态.

(3) 设 $V=<\mathbb{Z},+>$, \mathbb{Z} 为整数集,+为普通加法. $\forall a\in\mathbb{Z}$,令

$$f_a: \mathbb{Z} \to \mathbb{Z}, f_a(x) = ax,$$

 f_a 是V的自同态. f_0 为零同态; 当 $a=\pm 1$ 时,称 f_a 为自同构; 除此之外其他的 f_a 都是单自同态.

第十四章 习题课

主要内容

- 代数系统的构成:非空集合、封闭的二元和一元运算、代数常数
- 二元运算性质和特异元素:交换律、结合律、幂等律、分配律、吸收律、单位元、零元、可逆元和逆元
- 同类型的与同种的代数系统、积代数
- 半群、独异点与群、环与域、格与布尔代数的定义
- 代数系统的同态与同构

基本要求

- 判断给定集合和运算能否构成代数系统
- 判断给定二元运算的性质
- 求二元运算的特异元素
- 计算积代数
- 判断或证明给定集合和运算是否构成半群、独异点、群、 环、域、格、布尔代数
- 判断函数是否为同态映射和同构映射

1. 设。运算为Q上的二元运算,

$$\forall x, y \in Q, \ x \circ y = x + y + 2xy,$$

- (1) 判断。运算是否满足交换律和结合律,并说明理由.
- (2) 求出。运算的单位元、零元和所有可逆元素的逆元.
- (1)。运算可交换,可结合.

任取 $x, y \in Q$,

$$x \circ y = x + y + 2xy = y + x + 2yx = y \circ x,$$

任取 $x, y, z \in Q$,

$$(x \circ y) \circ z = (x+y+2xy)+z+2(x+y+2xy)z$$

= $x+y+z+2xy+2xz+2yz+4xyz$
 $x \circ (y \circ z) = x+(y+z+2yz)+2x(y+z+2yz)$
= $x+y+z+2xy+2xz+2yz+4xyz$

(2) 设。运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 x o e = x 成立,即

$$x+e+2xe = x \Rightarrow e = 0$$

由于。运算可交换,所以0是幺元.

对于任意 x 有 $x \circ \theta = \theta$ 成立,即

$$x + \theta + 2x \theta = \theta \Rightarrow x + 2x \theta = 0 \Rightarrow \theta = -1/2$$

给定x,设x的逆元为y,则有 $x \circ y = 0$ 成立,即

$$x+y+2xy = 0 \implies y = -\frac{x}{1+2x} \quad (x \neq -1/2)$$

因此当 $x \neq -1/2$ 时, $-\frac{x}{1+2x}$ 是x的逆元.

- 2. 下面是三个运算表
- (1) 说明那些运算是可交换的、可结合的、幂等的.
- (2) 求出每个运算的单位元、零元、所有可逆元素的逆元

*	a	b	C
a	c	a	b
b	a	b	$\boldsymbol{\mathcal{C}}$
c	b	C	a

0	a	b	С
a b	a b	a b	a b
c	c	c	c

•	a	b	С
a	a	b	С
$\mid b \mid$	b	C	C
c	C	C	C

- (1)*满足交换律,满足结合律,不满足幂等律.
 - 。不满足交换律,满足结合律,满足幂等律.
 - 满足交换律,满足结合律,不满足幂等律.
- (2)* 的单位元为b,没有零元, $a^{-1}=c$, $b^{-1}=b$, $c^{-1}=a$
 - 。的单位元和零元都不存在,没有可逆元素.
 - 的单位元为a,零元为c, $a^{-1}=a$,b,c不是可逆元素.

说明:关于结合律的判断

需要针对运算元素的每种选择进行验证,若|A|=n,一般需要验证 n^3 个等式.

单位元和零元不必参与验证.

通过对具体运算性质的分析也可能简化验证的复杂性.

- 3. 判断下列集合和运算是否构成半群、独异点和群.
- (1) a 是正整数, $G = \{a^n \mid n \in \mathbb{Z}\}$,运算是普通乘法.
- (2) Q+是正有理数集,运算为普通加法.
- (3) 一元实系数多项式的集合关于多项式加法.

解

- (1) 是半群、独异点和群
- (2) 是半群但不是独异点和群
- (3) 是半群、独异点和群

方法: 根据定义验证,注意运算的封闭性

- 4. 判断下列集合和给定运算是否构成环和域, 如果不构成, 说明理由.
- (1) $A = \{a+bi \mid a,b \in Q\}$, 其中 $i^2 = -1$, 运算为复数加法和乘法.
- (2) $A = \{2z+1 \mid z \in Z\}$, 运算为实数加法和乘法
- (3) $A=\{2z \mid z \in \mathbb{Z}\}$,运算为实数加法和乘法
- (4) $A = \{x \mid x \ge 0 \land x \in \mathbb{Z}\}$, 运算为实数加法和乘法.
- (5) $A = \{a + b\sqrt[4]{5} \mid a,b \in Q\}$, 运算为实数加法和乘法
- 解 (1) 是环, 也是域.
- (2) 不是环, 因为关于加法不封闭.
- (3) 是环, 但不是域, 因为乘法没有么元.
- (4) 不是环, 因为正整数关于加法的负元不存在.
- (5) 不是环, 因为关于乘法不封闭.

5. 判别下述格L是否为分配格.

 L_1 不是分配格,因为它含有与钻石格同构的子格. L_2 和 L_3 不是分配格,因为它们含有与五角格同构的子格.

6. 针对下图,求出每个格的补元并说明它们是否为有补格

 L_1 中,a与h互为补元,其他元素没补元.

 L_2 中,a与g互为补元.b的补元为c,d,f;c的补元为b,d,e,f;d的补元为b,c,e;e的补元为c,d,f;f的补元为b,c,e.

 L_3 中,a与h互为补元,b的补元为d;c的补元为d;d的补元为b,c,g;g的补元为d. L_2 与 L_3 是有补格.

- 7. 对于以下各题给定的集合和运算判断它们是哪一类代数系统(半群、独异点、群、环、域、格、布尔代数),并说明理由.
- (1) $S_1 = \{1, 1/2, 2, 1/3, 3, 1/4, 4\}$, *为普通乘法.
- (2) $S_2 = \{a_1, a_2, ..., a_n\}, \forall a_i, a_j \in S_2, a_i \circ a_j = a_i, 这里的 <math>n$ 为给定正整数, n > 1.
- (3) $S_3 = \{0, 1\}$,*为普通乘法.
- (4) $S_4 = \{1, 2, 3, 6\}$, $\forall x,y \in S4$, $x \circ y = x * y \to y \to x * y$
- (5) $S_5 = \{0, 1\}$, *为模2加法, •为模2乘法.

- (1) 不是代数系统, 因为乘法不封闭, 例如4*4=16.
- (2) 是半群但不是独异点, 因为*运算满足结合律, 但是没有单位元.
- (3) 是独异点但不是群. 因为*运算满足结合律, 单位元是1, 可是0没有乘法逆元.
- (4) 是格, 也是布尔代数. 因为这两个运算满足交换律和分配律; 求最小公倍数运算的单位元是1, 求最大公约数运算的单位元是6, 满足同一律; 两个运算满足补元律.
- (5) 是域. 对于模 n 的环 Z_n , 当n为素数时构成域.

- 8. 设*G*为非0实数集*R**关于普通乘法构成的代数系统, 判断下述函数是否为*G*的自同态?如果不是,说明理由. 如果是,判别它们是否为单同态、满同态、同构.
- (1) f(x) = |x| + 1
- (2) f(x) = |x|
- (3) f(x) = 0
- (4) f(x) = 2

- 解 (1) 不是同态, 因为 $f(2\times2)=f(4)=5$, $f(2)\times f(2)=3\times3=9$
- (2) 是同态,不是单同态,也不是满同态,因为f(1)=f(-1),且 ran f 中没有负数.
- (3) 不是G 的自同态,因为f 不是G 到G 的函数
- (4) 不是G 的自同态,因为 $f(2\times2)=2$, $f(2)\times f(2)=2\times2=4$

说明: 判别或证明同态映射的方法

- (1) 先判断(或证明) $f \in G_1$ 到 G_2 的映射 $f: G_1 \rightarrow G_2$. 如果已 知 $f: G_1 \rightarrow G_2$,则这步判断可以省去.
- $(2) \forall x, y \in G_1, 验证 f(xy) = f(x) f(y)$
- (3) 判断同态性质只需判断函数的单射、满射、双射性即可.