NAME_SOLUTION

1) Refer to the following circuit:

Compute V_B , V_C , V_E , V_{BE} , V_{CE} , I_B , I_C , I_E , and P_{diss} if β = 250. Compute V_B assuming base current is small compared to the current in the biasing resistors. Also verify that the transistor is operating in the active region.

2) What amplifier configuration is this?

Draw the mid-frequency small-signal model. Calculate the dynamic parameters g_m , r_b , and r_o if l_c = 8 mA and $|V_A|$ = 80 V. Include a <u>unit</u> with each answer.

Draw the high-frequency small-signal model. Determine the input and output capacitances using Miller's Theorem If $C_{BC} = 6$ pF and $C_{BE} = 22$ pF.

$$V_{007} = -215.32.432V_{5}$$
 $V_{00} = -215.32.432V_{5}$
 $V_{00} = -93.1$
 V_{00

Compute the input and output HF cutoff frequencies and the approximate overall high-frequency cutoff, fir.

Draw the high-frequency small-signal model. Determine the input and output capacitances using Miller's Theorem if

$$C_{BC(IN)} = C_{BC}(I-AN) = 6 \cdot (I-93) = 564 PF + 1$$

$$C_{BC}(IN) = C_{BC}(IN) + C_{BE} = 564 + 22 = 586 PF + 1$$

$$C_{OUT} = C_{BC}(OUT) = C_{BC}(I-AU) \approx 6 PF + 1$$

Compute the input and output HF cutoff frequencies and the approximate overall high-frequency cutoff, f_H .

$$f_{H(IN)} = \frac{1}{2\pi \cdot C_{IJ} (B_{S} / |B_{I} / |R_{Z} / |r_{b})}$$

$$= \frac{1}{2\pi \cdot 586 \times 10^{-12} \cdot 432}$$

$$f_{H(IN)} = \frac{1}{2\pi \cdot 628.7 \text{ kHz}}$$

$$f_{H(OUT)} = \frac{1}{2\pi \cdot 628.7 \text{ kHz}}$$

$$f_{H(IN)} = \frac{1}{2\pi \cdot 628.7 \text{ kHz}}$$