UED Supagro: introduction à la modélisation

Modélisation de l'interception de la lumière

C. Fournier

Electromagnetic Spectrum

Lumière et son utilisation par les plantes

Domaine d'intérêt pour les plantes

Longueur d'onde	Domaine
>10cm	Radio (150 kHz - 3 GHz)
3mm - 10cm	Micro-onde et radar (10cm±1cm, 3-100GHz)
300μm - 3mm	Terahertz (100GHz-10THz)
1μm - 300μm	Intrarouge
400nm - 700nm	Lumière visible: Rouge/Orange/Jaune/Vert/Bleu/Violet
10nm - 400nm	Ultraviolet
10 ⁻¹¹ m - 10 ⁻⁸ m	Rayon X
10 ⁻¹⁴ m - 10 ⁻¹¹ m	Rayon γ

Interaction of light and matter

 Some or all of the light may be absorbed depending on the pigmentation of the object.

Examples of Light/Matter Interaction

- Something that is white (to human eyes) means it reflect all the visible light...
- Something that is black (to human eyes) means that it absorbs all the visible light.

Interactions à l'echelle du peuplement

•Changements quantitatif et qualitatif (composition spectrale) de la lumière dus à l'interaction avec la végétation

Modelisation sur structures 3D

Simulation de la luminance du ciel

Raycasting

Ray Tracing from Eye

Tracing from light source

Traditional ray-tracing

Starting at the light position traces many rays that never reach the eye. Thus the traditional ray-tracing method is to start at the eye and trace rays back-wards to the source.

Radiosity

Precision / computing time

Triangulation level

0,44

0,43

Input: Global horizontal irradiance

Kipp & Zonnen

Cimel

Eppley Linke

DeltaT SPN1 Mesure du Global et du Diffus

Photorécepteurs utilisés :
Une ou plusieurs thermopiles avec ou sans cache pour la mesure du diffus
Dôme en verre servant de filtre passe-haut
Echanges thermiques verticaux ou horizontaux

Grandeurs énergétiques

Flux énergétique

Noté $m{F}$, puissance rayonnée par une source ponctuelle dans toutes les directions L'unité SI du flux énergétique est le Watt (W ou J/s)

Intensité énergétique

Notée $I(\theta,\phi)$, puissance rayonnée par une source ponctuelle par unité d'angle solide d Ω

$$I(\theta, \phi) = \frac{dF(\theta, \phi)}{d\Omega}$$

Elle est exprimée en W/sr

Luminance

Notée $L(\theta,\phi)$, puissance rayonnée par une source étendue dans une direction $u(\theta,\phi)$ par unité d'angle solide et par unité de surface

$$L(\theta, \phi) = \frac{dI(\theta, \phi)}{dS \cos \theta}$$

Elle est exprimée en W.m⁻².sr⁻¹

Exitance

Notée $m{M}$, puissance rayonnée dans l'hémisphère par unité de surface de la source.

$$M = \int_{2\Pi} L(\theta, \phi) d\Omega \cos \theta$$

Elle est exprimée en W/m²

Irradiance ou Eclairement

Noté E, puissance reçue par unité de surface du récepteur exprimé en $\mathrm{W/m^2}$

$$E = \frac{dF}{dS}$$

Quantification du phylloclimat

Plant irradiance simulation

Analyse de réponses

Figure 4.5 Représentation plante à plante des largeurs, en cm, pour les feuilles de rang 4, 6, 8, 10, 12 et 14 en fonction de la densité de plantes; essai réalisé en 1994. Les gros points noirs sont les valeurs moyennes par traitement.

Fournier et al, 2001

Analyse de la competition

Analyse de traits

Leaf inclination angle affects light distribution in sorghum canopies.

