בשאלות 1,2 סמן לכל אחת מהטענות הבאות רק את הסעיפים הנכונים בטבלה בסוף העמוד

בשאלות הנ"ל יתכן ויש כמה טענות נכונות או אין בכלל טענות נכונות או כל הטענות נכונות.

שאלה 1:

$$\{x,y\}\cap (B\oplus A)\neq\emptyset$$
 אז $y\notin A$ וכן $x\in B$ אם (3%) א.

$$(B \oplus A) \setminus \{x\} = \{y\}$$
 אז $\{x, y\} = (B \oplus A)$ ב. (3%) ב.

$$(C \cap B) \neq \emptyset$$
 אז $(C \cap A) \neq C$ וכן $C \in P(B \oplus A)$ אז $C \in P(B \oplus A)$ ג. (3%)

C - חלק מאיברי $(B \oplus A)$ המשמעות האמירה הראשונה היא ש-C תת קבוצה של $(C \cap A) \neq C$ המשמעות האחר רק ב-B וחלקם האחר רק ב-B מתוך C אפשר להסיק כי לא כל האיברים שנאספו ל-C הגיעו מ-C לכן חלקם הגיעו מ-D כך שחיתוך C והטענה נכונה.

 $(A \cup B) \neq \emptyset$ אם $(B \oplus A) \neq \emptyset$ אם (3%) ד.

:2 שאלה

$$R = \begin{pmatrix} (1,2,1) & (2,2,2) \\ (1,2,2) & (2,1,2) \end{pmatrix}$$
 : באופן הבא A^3 המוגדר מעל $A = \{1,2\}$ תהינה $A = \{1,2\}$

:2.1 שאלה

- א. R (3%) א.
 - ב. (3%) R סימטרית.
- אנטיסימטרית. R (3%) ...
 - ד. R (3%) ערנזיטיבית

 $T=R\cup R^{-1}:$ באה. באמשך לנתוני ההתחלה בשאלה, נגדיר רלציה T מעל A^3 בצורה הבאה:

$$|T| = 8$$
 (3%) .א

ב. (3%) T רלצית שקילות, עם 4 מחלקות שקילות.

$$\left| \left(A^3 \times A^3 \right) \backslash T \right| = 60 \quad (3\%) \quad .\lambda$$

הסבר : ב- $\left(A^3 \times A^3\right)$ יש 44 איברים (מכפלה קרטזית של 2 קבוצות פנות 8 איברים). ב-Tיש 4 איברים ולכן בחיסור 60 איברים.

ד. $(T \setminus R) \cup I_{A imes A imes A}$ סדר חלקי (3%) ד.

שאלה 3:

 $(A \cup B) \setminus ((A \cup C) \cap B) \subseteq A \oplus B$: הוכח או הפרך את הטענה (14%)

אם הטענה נכונה, הוכח אותה ע"י שימוש במושג השייכות של איברים (לא ע"י אלגברה של קבוצות ולא בדיאגראמות ון) . אם הטענה לא נכונה, הבא דוגמא נגדית.

, $x\in (A\cup B)$ and $x\not\in ((A\cup C)\cap B)$ אז מתקיים $x\in (A\cup B)\setminus ((A\cup C)\cap B)$ ואם , $x\in (A\cup B)\setminus ((A\cup C)\cap B)$ אז יתכן אחד מהשלושה:

 $x \in A \cup C$ $x \notin B$.1

 $x \notin A \cup C$ $x \in B$.2

$$x \notin A \cup C$$
 $x \notin B$.3

. מאפשרות 1, יחד עם $(A \cup B)$, גסיק כי $x \in A$ וכן $x \in A$, לכן שייך לצד ימין, $x \in (A \cup B)$

. מאפשרות 2, יחד עם $(A \cup B)$, נסיק כי $x \notin A$ וכן $x \notin A$ לכן שייך לצד ימין, $x \in (A \cup B)$

אפשרות 3 לא יכולה להתקיים עבור איבר ששייך לאגף ימין, כך שאינה מהווה אילוץ.

קיבלנו כי בכל מקרה בו איבר שייך לאגף השמאלי, הוא שייך גם לימני, לכן מתקיימת ההכלה.

:4 שאלה

סמן לכל אחת מהטענות הבאות רק את הסעיפים הנכונים בטבלה בסוף השאלה

- א. (5%) נתונות 7 נקודות במישור שאף 3 מהן אינן על אותו ישר. כל נקודה נצבעת באחד מ-3 צבעים.
 לאחר מכן מעבירים ישר דרך כל זוג נקודות. בהכרח יווצר משולש עם קודקודים בצבע זהה.
 הסבר: אם צובעים 7 נקודות ב-3 צבעים אפשריים, בהכרח (לפי שובך יונים) לפחות 3 נקודות יצבעו בצבע אחד. אותם חיבורים בין 3 נקודות אלה יצרו משולש כרומטי.
 - .43 הינו (5%). סכום המספרים הרציונליים בפיתוח של (5 $\sqrt{2}+1$) הינו

הסבר: מספר רציונלי בפיתוח זה יווצר אם הביטוי השמאלי יועלה בחזקת 5, וכך יווצר המספר

.43 בחירת בחירת 1 מכל הסוגריים ובדרך או עיי
$$H$$
 בחירת H או עיי H בחירת H או עיי H בחירת H או עיי H בחירת 1 מכל הסוגריים ובדרך או יווצר H

- $(4+X)^5$ מקדם X^3 בפיתוח $\left(\frac{X}{2}+2X^3+\frac{2}{X^2}\right)^5$ שווה למקדם (5%) ג.
- ד. (5%) מספר השלמים החיוביים הקטנים וזרים ל-151 שווה למספר השלמים החיוביים הקטנים וזרים ל-453.

שאלה 5:

: המקיימים $x_1+x_2+x_3+x_4=18$ - המשוואה - של המשוות בשלמים של המקיימים את מספר הפתרונות מספר הפתרונות התשובה כביטוי קומבינטורי). $\left[-i \leq x_i \leq 27\right]$ (ניתן להשאיר את התשובה כביטוי קומבינטורי).

D(4,28) :תשובה

: ב. (7%) מצא את מספר הפתרונות בשלמים של המשוואה - ב. המקיימים: $[-i \le x_i \le 6 \quad , i = 1,2,3,4]$

 $x_1+x_2+x_3+x_4=28$: מספר הפתרונות של הבעיה הנ"ל שווה למספר הפתרונות הבעיה הבאה הפתרונות של הבעיה הנ"ל שווה למספר הפתרונות של הבעיה הנ"ל המספר ה

:נגדיר

 $x_i \geq 6 + i + 1$ קבוצת כל הפתרונות בהם - A_i

בחיתוכי 2 קבוצות – כולן לא ריקות.

. בחיתוכי 3 קבוצות – רק $A_{\rm l} \cap A_{\rm 2} \cap A_{\rm 4}$ ו- $A_{\rm l} \cap A_{\rm 2} \cap A_{\rm 3}$ לא ריקות בחיתוכי 3

$$\left|\overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3 \cap \overline{A}_4
ight| = \left|U \left| -S_1 + S_2 - S_3 + S_4
ight| = \left|U \left| -S_1 + S_2 - S_3 - S_3 - S_4
ight|$$
בסהייכ רצוננו ב-

$$|U| = D(4,28)$$

$$S_1 = |A_1| + |A_2| + |A_3| + |A_4| = D(4,20) + D(4,19) + D(4,18) + D(4,17)$$

$$S_2 = |A_1 \cap A_2| + |A_1 \cap A_3| + |A_1 \cap A_4| + |A_3 \cap A_2| + |A_4 \cap A_2| + |A_3 \cap A_4| =$$

$$= D(4,11) + D(4,10) + D(4,9) + D(4,9) + D(4,8) + D(4,7)$$

$$S_3 = |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| = D(4,1) + D(4,0) = 5$$

ונקבל

$$|\overline{A}_{1} \cap \overline{A}_{2} \cap \overline{A}_{3} \cap \overline{A}_{4}| = D(4,28) - [D(4,20) + D(4,19) + D(4,18) + D(4,17)] + [D(4,11) + D(4,10) + D(4,9) + D(4,9) + D(4,8) + D(4,7)] - 5$$

:6 שאלה

א. (8%) נתונים 2 הצורות הבאות (שאינן ניתנות לסיבוב)

בנה יחס רקורסיה שבעזרתו תוכל לחשב את מספר האפשרויות השונות לבנות מלבן בגובה 2 ובאורך n בהנחה שמידות הריבועים המרכיבים את הצורות הנ״ל הן lxl. מצא תנאי התחלה הנחוצים לחישוב הנוסחא.

תשובה: נסתכל על סוף הסדרה – אם אלו הצורות השוכבות (אחת על השניה), לפניהן יש f(n-2) אפשרויות סידור שונות. אם זו הצורה העומדת, לפניה יש f(n-1) אפשרויות סידור שונות.

.
$$f(1) = 1$$
 $f(0) = 1$ כאשר , $f(n) = f(n-1) + f(n-2)$ בסהייכ

 $f(n)=-5f(n-1)-6f(n-2), \quad f(0)=0, \quad f(1)=-2$: ב. (8%) פתור יחס רקורסיבי $\alpha_1=-2$: מכאן נקבל $\alpha_2=-3$: מכאן נקבל $\alpha_1=-3$: מכאן נקבל $\alpha_1=-3$: מכאן נקבל $\alpha_2=-3$: מכאן נקבל $\alpha_1=-3$: מכאן נקב