

Applied Generalized Linear Models (FS 20)

Nominal outcomes: multinomial logistic regression

Viviana Amati

Course structure - schedule

Date	Topic	Assignment	
18.02	Introduction to the course	Ass. 1 released on 25.02 due to 19.03	
25.02	Introduction to R and review of the linear regression mode		
03.03	The general linear model: ANOVA and ANCOVA		
10.03	Practical: ANOVA and ANCOVA		
17.03	Binary outcomes: logistic regression and probit models	Ass. 2 released on 18.03 due to 23.04	
24.03	Practical: logistic regression and probit models		
31.03	Nominal outcomes: multinomial logistic regression		
07.04	Practical: multinomial logistic regression		
21.04	Ordinal outcomes: ordered logistic regression and probit models	Ass. 3 released on 25.04 due to 21.05	
28.04	Practical: ordered logistic regression and probit models		
05.05	Count outcomes: Poisson and negative binomial models		
12.05	Practical: Poisson and negative binomial models		
19.05	Survival models	L+P	
26.05	Panel data model	L+P	

ETH zürich

Exam

- 1. Assignment 4
 - 4 exercises for each student, to be returned in one week

2. Analyse an assigned data set Results should be presented in a report (max. 3000 words)

3. Deepen a topic that we have not treated (extension of what we learned) Report (max. 6 pages) including a short example

ETH zürich

Today's agenda

▶ Logistic regression analysis practical

▶ Introduction to multinomial logistic regression

▶ Lecture and slides

Logistic regression: Data

The data set admission.csv contains information on the admission of 400 students into a business school. The variables in the data set are:

- ▶ admit: binary variable taking value 1 if the student was admitted into the business school and 0 otherwise
- \triangleright gpa: grade point average in the undergraduate institution (range 1-6)
- ▶ gre: graduate record examination score obtained in the undergraduate institution (range 0-1000)
- ▶ rank: prestige of the undergraduate institution. The variable takes on the values 1 (highest prestige) through 4 (lowest prestige).

Test the association between admit and all the other variables

Logistic regression model

$$\log \left[\frac{\pi(x)}{1 - \pi(x)} \right] = \beta_0 + \beta_{\text{gre}} X_{\text{gre}} + \beta_{\text{gpa}} X_{\text{gpa}} + \beta_{\text{r2}} D_{\text{r2}} + \beta_{\text{r3}} D_{\text{r3}} + \beta_{\text{r4}} D_{\text{r4}}$$

with D_r the dummy variables for rank with reference category highest prestige (1).

Logistic regression model

Odds ratio

$$OR = \frac{\pi(\mathbf{x}+1)/[1-\pi(\mathbf{x}+1)]}{\pi(\mathbf{x})/[1-\pi(\mathbf{x})]} = e^{\beta_j} \quad .$$

OR=1 no association between Y and X_j .

▶ Wald-type confidence interval (CI) at level $\alpha = 0.05$

$$\left[e^{\beta_j - 1.96 \times s.e.(\beta_j)}, e^{\beta_j + 1.96 \times s.e.(\beta_j)}\right]$$

If the confidence interval includes 1, the OR is not significantly different from 1

▶ Profile CI: robust wr.t. small sample size and asymmetries

Grouped data

The titanic.csv data set

Economic status	Age group	Gender	Survived	Died	Total
Crew	A	W	20	3	23
Crew	A	\mathbf{M}	192	670	862
1st	A	W	140	4	144
1st	A	\mathbf{M}	57	118	175
2nd	A	W	80	13	93
2nd	A	\mathbf{M}	14	154	168
3rd	A	W	76	89	165
3rd	A	\mathbf{M}	75	387	462
1st	$^{\mathrm{C}}$	W	1	0	1
1st	C	\mathbf{M}	5	0	5
2nd	$^{\mathrm{C}}$	W	13	0	13
2nd	$^{\mathrm{C}}$	\mathbf{M}	11	0	11
3rd	$^{\mathrm{C}}$	W	14	17	31
3rd	$^{\mathrm{C}}$	M	13	35	48
Total			711	1490	2201

An example

- ▶ Data from the 1996 American National Election Study (Rosenstone, Kinder, and Miller (1997))
- ▶ Information on
 - Party identification of the respondent (Democrat, Independent or Republican)
 - age
 - income (thousand of dollars)
- ▶ Is there an association between the party identification and the other variables?

An example

Multinomial logistic regression model

- Nominal dependent variable with M>2 categories (categories do not have a natural order)
- ▶ Simultaneously use all pairs of categories by specifying the odds of success in one category instead of another

$$\log \left[\frac{\pi_a(\mathbf{x})}{\pi_b(\mathbf{x})} \right], \quad a, b \in \{0, 1, \dots, M\}, a \neq b$$
$$\pi_a(\mathbf{x}) = P(Y = a | \mathbf{X}) \quad \pi_b(\mathbf{x}) = P(Y = b | \mathbf{X})$$

 \blacktriangleright Pairing each category with the reference category M is enough to describe all the log-odds

$$\operatorname{logit}[\pi_m(\mathbf{x})] = \log \left[\frac{\pi_m(\mathbf{x})}{\pi_M(\mathbf{x})} \right] = \beta_{0m} + \beta_{1m} X_1 + \ldots + \beta_{pm} X_p$$

(baseline-category logits)

Multinomial logistic regression model (MNRM)

$$\operatorname{logit}[\pi_m(\mathbf{x})] = \log \left[\frac{\pi_m(\mathbf{x})}{\pi_M(\mathbf{x})} \right] = \beta_{0m} + \beta_{1m} X_1 + \ldots + \beta_{pm} X_p$$

Multinomial logistic regression model (MNRM)

$$\operatorname{logit}[\pi_m(\mathbf{x})] = \log \left[\frac{\pi_m(\mathbf{x})}{\pi_M(\mathbf{x})} \right] = \beta_{0m} + \beta_{1m} X_1 + \ldots + \beta_{pm} X_p$$

▶ Each of the M-1 logits has its own parameter The model can have a large number of parameters

Multinomial logistic regression model (MNRM)

$$\operatorname{logit}[\pi_m(\mathbf{x})] = \log \left[\frac{\pi_m(\mathbf{x})}{\pi_M(\mathbf{x})} \right] = \beta_{0m} + \beta_{1m} X_1 + \ldots + \beta_{pm} X_p$$

- ▶ Each of the M-1 logits has its own parameter The model can have a large number of parameters
- ▶ The M-1 log-odds are enough to describe all the $\binom{M}{2}$ pairs of categories

$$\log \left[\frac{\pi_a(\mathbf{x})}{\pi_b(\mathbf{x})} \right] = \log \left[\frac{\pi_a(\mathbf{x})/\pi_M(\mathbf{x})}{\pi_b(\mathbf{x})/\pi_M(\mathbf{x})} \right] = \log \left[\frac{\pi_a(\mathbf{x})}{\pi_M(\mathbf{x})} \right] - \log \left[\frac{\pi_b(\mathbf{x})}{\pi_M(\mathbf{x})} \right]$$
$$= (\beta_{0a} - \beta_{0b}) + (\beta_{1a} - \beta_{1b})X_1 + \dots + (\beta_{pa} - \beta_{pb})X_p$$

Probabilities

▶ For m = 1, ..., M - 1

$$\pi_m(\mathbf{x}) = \frac{\exp(\beta_{0m} + \beta_{1m}X_1 + \dots + \beta_{pm}X_p)}{1 + \sum_{h=1}^{M-1} \exp(\beta_{0h} + \beta_{1h}X_1 + \dots + \beta_{ph}X_p)}$$

► For the reference category

$$\pi_M(\mathbf{x}) = 1 - \sum_{m=1}^{M-1} \pi_m(\mathbf{x})$$

MNRM as a multivariate GLM

The MNRM is a multivariate GLM where:

 \triangleright the random component $Y|\mathbf{X}$ has a multinomial distribution with

$$\pi_m(\mathbf{x}_i) = \mathrm{E}[Y_i = m|\mathbf{X}]$$

 \blacktriangleright the link function g_m for each category is the logit

$$g_m(E[Y = m|\mathbf{X}]) = \log \left[\frac{\pi_m(\mathbf{x})}{\pi_M(\mathbf{x})}\right]$$

▶ the systematic component for each category is

$$\eta_m = \sum_{j=1}^p \beta_{jm} X_j$$

Estimation

▶ Based on MLE

► No close form for the solution Newton-Raphson algorithm or its variants

▶ The ML estimator is MVUE and has asymptotic distribution

$$\mathbf{B} \sim N(\boldsymbol{\beta}, \mathbf{I}^{-1}(\boldsymbol{\beta}))$$