COT 6405 ANLYSIS OF ALGORITHMS

Brute Force

Computer & Electrical Engineering and Computer Science Dept. Florida Atlantic University

Spring 2017

Brute Force

Reading assignment:

- Anany Levitin, Introduction to The Design & Analysis of Algorithms, 2nd edition, Addison Wesley, 2007.
 - Chapter 3: Brute Force
 - Chapter 5.4: Algorithms for generating combinatorial objects

Brute Force

- Straight forward approach to solving a problem, usually directly based on the problem statement and definitions of the concepts involved
- Proceeds in a simple and obvious way, but will require a huge number of steps to complete

Brute Force

- Applicable to a large variety of problems
- For some problems, brute-force approach yields reasonable algorithms
- Can be used if only few instances of the problem need to be solved
 - Avoids the expense of designing a more efficient algorithm
- Can be useful for solving small-size instances of a problem
- Can be used as a yardstick to compare more efficient alternatives for solving a problem

Brute-force algorithms

- Selection Sort
- Bubble Sort (see lecture 1)
- String Matching
- Closest-Pair
- Exhaustive Search
 - Traveling Salesman Problem
 - Knapsack Problem
 - Assignment Problem
 - Independent Set Problem

Selection Sort

- Scan the array to find its smallest element and swap it with the first element.
- Then, starting with the second element, scan the elements to the right of it to find the smallest among them and swap it with the second element.
- Generally, on the pass i ($0 \le i \le n-2$), find the smallest element in A[i..n-1] and swap it with A[i]

$$A_0 \le A_1 \le ... \le A_{i-1} \mid A_i, ..., A_{\min}, ..., A_{n-1}$$
 in their final position the last n-i elements

After n-1 passes, the list is sorted

Selection Sort, example

89	45	68	90	29	34	17
				29		
				45		
				45		
				90		
				68		
				68		

Selection Sort

```
ALGORITHM SelectionSort(A[0..n-1])

//Sorts a given array by selection sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in ascending order

for i \leftarrow 0 to n-2 do

min \leftarrow i

for j \leftarrow i+1 to n-1 do

if A[j] < A[min] \quad min \leftarrow j

swap A[i] and A[min]
```

RT analysis:

$$T(n) = (n-1) + (n-2) + ... + 1 = (n-1)n/2 = \Theta(n^2)$$

Brute-Force String Matching

- pattern: a string of m characters to search for
- <u>text</u>: a (longer) string of n characters to search in
- problem: find a substring in the text that matches the pattern

$$\begin{array}{cccc} t_0...t_i...t_{i+j}...t_{i+m-1}...t_{n-1} & \text{text T} \\ & \updownarrow & \updownarrow & \updownarrow \\ & p_0...p_j...p_{m-1} & \text{pattern P} \end{array}$$

Brute-force algorithm

Step 1 Align pattern at beginning of text

Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until

- all characters are found to match (successful search); or
- · a mismatch is detected

Step 3 While pattern is not found and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2

Examples

1. **Pattern**: 001011

Text: 10010101101001100101111010

2. Pattern: algorithm

Text: The established framework for analyzing an algorithm's time efficiency is primarily grounded in the order of growth of the algorithm's running time as its input size goes to infinity.

String Matching

```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])

//Implements brute-force string matching

//Input: An array T[0..n-1] of n characters representing a text and

// an array P[0..m-1] of m characters representing a pattern

//Output: The index of the first character in the text that starts a

// matching substring or -1 if the search is unsuccessful

for i \leftarrow 0 to n-m do

j \leftarrow 0

while j < m and P[j] = T[i+j] do

j \leftarrow j+1

if j = m return i

return -1
```

• RT = O(nm)

Closest Pair

Find the two closest points in a set of *n* points (in the two-dimensional Cartesian plane).

Brute-force algorithm

- Compute the distance between every pair of distinct points
- Return the indexes of the points for which the distance is the smallest.

Closest-Pair Brute-Force Algorithm

```
ALGORITHM BruteForceClosestPoints(P)

//Input: A list P of n (n \ge 2) points P_1 = (x_1, y_1), \dots, P_n = (x_n, y_n)

//Output: Indices index1 and index2 of the closest pair of points

dmin \leftarrow \infty

for i \leftarrow 1 to n - 1 do

for j \leftarrow i + 1 to n do

d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt is the square root function

if d < dmin

dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j

return index1, index2
```

• RT=O(n²)

Brute-Force Strengths and Weaknesses

Strengths

- wide applicability
- simplicity
- yields reasonable algorithms for some important problems (e.g. sorting, searching, string matching)

Weaknesses

- rarely yields efficient algorithms
- some brute-force algorithms are unacceptably slow
- not as constructive as some other design techniques

Exhaustive Search

A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

Method:

- generate a list of all potential solutions to the problem in a systematic manner
- evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far
- when search ends, announce the solution(s) found

Example 1: Traveling Salesman Problem

- Given n cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city
- Alternatively: Find shortest Hamiltonian circuit in a weighted connected graph
- Example:

How do we represent a solution (Hamiltonian circuit)?

TSP by Exhaustive Search

Iour	
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	
$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	
$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$	
$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$	

Cost

$$2+3+7+5 = 17$$

 $2+4+7+8 = 21$
 $8+3+4+5 = 20$
 $8+7+4+2 = 21$
 $5+4+3+8 = 20$
 $5+7+3+2 = 17$

Efficiency:

so on...

 $a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$

- Assuming the start city is given, (n-1)! tours
- RT = $\Theta(n(n-1)!) = \Theta(n!)$

Example 2: Knapsack Problem

Given *n* items:

- a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16

<u>item</u>	weight	value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Example 2: Knapsack Problem

Subset	Total weight	<u>Total value</u>
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	not feasible
{1,2,4}	12	\$60
{1,3,4}	17	not feasible
{2,3,4}	20	not feasible
{1,2,3,4}	22	not feasible

Number of subsets is $2^n \Rightarrow T(n) = \Theta(n \cdot 2^n)$

Example 3: The Assignment Problem

There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *i* to job *j* is C[i,j]. Find an assignment that minimizes the total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

How many assignments are there?

Assignment Problem by Exhaustive Search

How many assignments are there?

- Each feasible assignment is an *n*-tuple $< j_1, j_2, ..., j_n >$ where j_i is the job number assigned to the ith person
- Example:

<2, 3, 4, 1> - person 1 gets job 2, person 2 gets job 3, so on

- The number of assignments is n!
- $T(n) = \Theta(n \cdot n!)$

Assignment Problem by Exhaustive Search

$$C = \begin{pmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{pmatrix}$$

<u>Total Cost</u>
9+4+1+4=18
9+4+8+9=30
9+3+8+4=24
9+3+8+6=26
9+7+8+9=33
9+7+1+6=23

(For this particular instance, the optimal assignment is: 2, 1, 3, 4)

Example 4: k-Independent Set Problem

 K-Independent Set problem: Given a graph G with n nodes, find whether G has an independent set of size k.

A set S of nodes in G, S \subseteq V, is <u>independent</u> if no two nodes in S are joined by an edge.

S = {a, g, j, d} is an independent set of size 4

k-Independent Set Problem

brute force algorithm:

for each subset S of k nodes check if S is an independent set if S is an independent set return TRUE return FALSE

- The number of subsets of k nodes is $\binom{n}{k} = \theta(n^k)$ To check if a subset of k vertices is independent takes

$$\binom{k}{2} = \theta(k^2)$$

• total RT = $\Theta(n^k k^2)$

 If k is constant, then RT = $\Theta(n^k)$

Example 5: Independent Set Problem

- Independent Set problem: Given a graph G with n nodes, find an independent set of maximum size
- brute force algorithm:

```
for each subset S of nodes
    check if S is an independent set
    if S is an independent set and |S| is larger than
        the max size so far
    then record |S| as the max-size set
return the max-size set
```

$$RT = \Theta(2^n n^2)$$

Remarks on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- Usually, there are much better alternatives!
- For some problems, exhaustive search or its variation is the only known way to get exact solution

Algorithms for Generating Combinatorial Objects

- Generating Permutations
- Generating Subsets

- Goal: generate n! permutations of {1, 2, ...n}
- Decrease-by-one technique:
 - Assume that we have solved the smaller-by-one problem: generate all (n-1)! permutations
 - Insert n in each of the n possible positions among elements of every permutation of n-1 elements
 - ⇒ n! permutations obtained

- Bottom-up minimal change algorithm
 - Minimal-change requirement: each permutation can be obtained from its immediate predecessor by exchanging just two elements in it
 - n can be inserted in previously generated permutations either left-to-right or right-to-left
 - one way: insert *n* into 12...(*n*-1) by moving right-to-left and then switch direction each time a new permutation {1, 2, ..., *n*-1} has to be processed

start	1		
insert 2 into 1 right to left	12	21	
insert 3 into 12 right to left	123	132	312
insert 3 into 21 left to right	321	231	213

- Johnson-Trotter algorithm
 - Same ordering of permutations of n elements without explicitly generating permutations for smaller n
 - Associate a direction with each element *k* in the permutation:

- The element *k* is **mobile** if its arrow points to a smaller number adjacent to it
 - 3 and 4 are mobile, 2 and 1 are not

```
//Implements Johnson-Trotter algorithm for generating permutations
//Input: A positive integer n
//Output: A list of all permutations of {1, ..., n}
initialize the first permutation with 1 2 ... n
while the last permutation has a mobile element do
find its largest mobile element k
swap k and the adjacent integer k's arrow points to
reverse the direction of all the elements that are larger than k
add the new permutation to the list
```

- RT = $\Theta(n!)$
- Example for n = 3 (largest mobile highlighted)

Generating Subsets

- Let A = $\{a_1, a_2, ..., a_n\}$
- There are 2ⁿ subsets of A
- Power set = the set of all subsets
- Decrease-by-one technique:
 - Find a list of all subsets of {a₁, a₂, ..., a_{n-1}}
 - Then add to the list all the elements with a_n in each of them
 - Example for {a₁, a₂, a₃}

n	subsets							
0	Ø	Jell s	si no	one red	e the	d o) eme	gall and	
1	Ø	{ <i>a</i> ₁ }						
2	Ø	$\{a_1\}$	$\{a_2\}$	$\{a_1, a_2\}$				
3	Ø	$\{a_1\}$	$\{a_2\}$	$\{a_1, a_2\}$	$\{a_3\}$	$\{a_1, a_3\}$	$\{a_2, a_3\}$	$\{a_1, a_2, a_3\}$

Generating Subsets

- Bit string approach:
 - One-to-one correspondence between all 2^n subsets of an n-element set $\{a_1, a_2, ..., a_n\}$ and all 2^n bit strings $b_1b_2...b_n$ of length n
 - Each binary string corresponds to a subset:
 - if b_i = 1, then a_i ∈ subset; if b_i = 0, then a_i ∉ subset
 - Generate all the bit strings of length n by generating successive binary numbers from 0 to 2ⁿ-1
 - Then map to the corresponding subsets
 - Example for n = 3:

bit strings 000 001 010 011 100 101 110 111 subsets
$$\emptyset$$
 { a_3 } { a_2 } { a_2 , a_3 } { a_1 } { a_1 , a_3 } { a_1 , a_2 } { a_1 , a_2 } { a_1 , a_2 , a_3 }