

# Factory Scorpius Char Test Plan for J307

Module: Scorpius

Station: Scorpius Char (DEV40)

**Build:DVT** 

Release Date: 13 August 2020

This Document Covers the Following Products: J307

Revision: DVT\_V3.0

<a href="mailto:</a><a href="mailto:roblem/51782237">roblem/51782237</a>> J307 Scorpius factory ERS

<rdar://problem/60027625> J3xx&J5xx Scorpius ERS - Foxconn

[Note: Anything in brackets is expected to be updated / deleted for the official document]

### **Table of Contents**

| 1. | Revision                                                                 | 3  |
|----|--------------------------------------------------------------------------|----|
| 2. | Purpose                                                                  | 4  |
| 3. | Scope                                                                    | 4  |
| 4. | References                                                               | 4  |
| 5. | Glossary & Definitions                                                   | 4  |
| 6. | Overview                                                                 | 5  |
|    | 6.1. Summary of Test Coverage                                            | 5  |
|    | 6.2. Fixture Coupling specs                                              | 5  |
| 7. | Critical and Frequently Used Commands                                    | 6  |
|    | 7.1. Quiesce Test Mode                                                   | 6  |
|    | 7.2. Nominal Mode                                                        | 6  |
|    | 7.3. B332 Dev Board UART Baud rate                                       | 7  |
| 8. | Test Coverage @ Scorpius Char Station                                    | 8  |
|    | 8.1. Read Tx FW Version                                                  | 8  |
|    | 8.2. Rx FW Version                                                       | 8  |
|    | 8.3. Initial MTP Sector Check Before Tests.                              | 9  |
|    | 8.4. Pre Data Streaming Setup and Open Loop Tests                        | 10 |
|    | 8.5. Normal Test Mode (Data Streaming) :-LLP -> DP -> Power Flow & Comms | 11 |
|    | 8.6. Final MTP Sector Check After Tests.                                 | 15 |
| A. | Appendix - Testing using hidreport :-LPP & Digital Ping                  | 17 |
|    | 1. Quiesce Mode - Low Power Ping (LPP)                                   | 17 |
|    | 2. Quiesce Mode - Digital Ping Level Tests                               | 18 |
|    | 3. Normal Test Mode (hidreport) :- Power + Comms                         | 19 |
| В. | Test Procedure in EFI Diags Mode                                         | 24 |
| 7. | Critical and Frequently Used Commands                                    | 24 |
|    | 7.1. Quiesce Test Mode                                                   |    |
|    | 7.2. Nominal Mode                                                        | 24 |
| 8. | Test Coverage @ Scorpius Char Station                                    | 25 |
|    | 8.1. Load Tx FW & Read Version                                           |    |
|    | 8.2. Rx FW Version                                                       | 25 |
|    | 8.3. Initial MTP Sector Check Before all tests.                          | 26 |
|    | 8.4. Low Power Ping (LPP)                                                | 27 |
|    | 8.5. Digital Ping Level Tests                                            | 29 |
|    | 8.6. Power, Efficiency & Ping Pong Tests                                 | 30 |
|    | 8.7. Final MTP Sector Check after all tests                              |    |
| C. | Feature DRI Comments for Changes to this Document                        | 35 |



# 1. Revision

| Build<br>Type | Vargion Data Notac                                                                            |                   | Author                                                                                                                                                                     |                                       |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
|               | Please refer to last section of this document for Details/Comments on change to this document |                   |                                                                                                                                                                            |                                       |  |  |  |  |
|               | 1.0                                                                                           | 2 September 2019  | Initial release for J307 P0 Build.                                                                                                                                         | Bhushan Koli                          |  |  |  |  |
|               | 1.1                                                                                           | 14 September 2019 | Updated coil fixture specifications and Power flow Efficiency test for setup and Rx commands                                                                               | Bhushan Koli                          |  |  |  |  |
| PO            | 1.2                                                                                           | 17 September 2019 | Updated Power Efficiency section to swap the sequence of Enable sense and Full Bridge Enable.                                                                              | Bhushan Koli                          |  |  |  |  |
|               | 1.3                                                                                           | 20 September 2019 | Updated the test limits for all parameters.                                                                                                                                | Bhushan Koli                          |  |  |  |  |
|               | 1.4                                                                                           | 26 September 2019 | Correted LPP & Power efficiency Limits                                                                                                                                     | Bhushan Koli                          |  |  |  |  |
|               | 1.5                                                                                           | 26 November 2019  | Updated Location of words in MTP and few commands                                                                                                                          | Bhushan Koli                          |  |  |  |  |
|               | 1.6                                                                                           | 5 December 2019   | Added Digital Ping test at 0.1C loading condition                                                                                                                          | Bhushan Koli/Mikhal                   |  |  |  |  |
| P1            | 1.7                                                                                           | 16 December 2019  | Updated MTP Read Section and limits                                                                                                                                        | Bhushan Koli/Selestino                |  |  |  |  |
|               | 1.8                                                                                           | 18 December 2019  | Updated Calculation in LLP section                                                                                                                                         | Bhushan Koli                          |  |  |  |  |
|               | 1.9                                                                                           | 14 January 2020   | Updated limits based on Factory data                                                                                                                                       | Bhushan Koli                          |  |  |  |  |
|               | 2.0                                                                                           | 21 February 2020  | Updated Minimum Vboost requirement from 6V to 6.1V                                                                                                                         | Bhushan Koli/Mikhal                   |  |  |  |  |
| P1B           | 2.1                                                                                           | 3 April 2020      | Added Dotara Temperature measurement Updated command and response format of LPP and VCTx respectively Updated procedure to disable LFOD during Vsense & Isense measurement | Bhushan Koli/Jin                      |  |  |  |  |
| Pre-EVT       | 2.2                                                                                           | 11 May 2020       | Updated limits for Digital Ping Vrect                                                                                                                                      | Bhushan Koli/Mikhal                   |  |  |  |  |
|               |                                                                                               |                   | Switch entire Scorpius testing from EFI Diags to iOS Non UI mode.  • Switched to CloseLoop from Open loop                                                                  |                                       |  |  |  |  |
| EVT           | 2.3                                                                                           | 19 June 2020      | EFI Diags mode     Added ASK_CR register disable before Vsense/Isense     Added Vsense measurement before LPP                                                              | Bhushan Koli/ Rex/Scorpius FW<br>team |  |  |  |  |
| <b>-14</b> -  | 2.4                                                                                           | 22 July 2020      | Updated the ERS to start using data streaming tool. Updated limits based on iOS test procedures.                                                                           | Bhushan Koli/FW Team/Rex              |  |  |  |  |
| EVT           | 2.5                                                                                           | 31 July 2020      | Updated for Vsense measurements during LPP Updated data streaming procedure and limits in it.                                                                              | Bhushan Koli/Aijun                    |  |  |  |  |
| DVT           | 3.0                                                                                           | 13 August 2020    | 0 Updated for limits for Power transfer.                                                                                                                                   |                                       |  |  |  |  |



## 2. Purpose

This document describes the FATP Scorpius Char test plan for the J307 inductive charging Tx module for P0.

## 3. Scope

The scope of this document is the Scorpius only module of the J307 products. It covers FATP tests of the following high level features:

| Test                           | Scorpius Test |
|--------------------------------|---------------|
| LPP ping and delta calculation | ~             |
| Power Flow & Efficiency        | ~             |
| Comms - PingPong               | ~             |

## 4. References

< rdar://problem/47434171 > J4xx Scorpius factory ERS

< rdar://problem/48910417 > Dotara Data-sheet

< rdar://problem/48964978 > Dotara Block initializations

< rdar://problem/49391712 > J307 FW specifications

<rdar://problem/54853341> Radar for Scorpius Factory FW releases

J307 Schematic

## 5. Glossary & Definitions

| Acronym | Term                         | Description                                                                      |
|---------|------------------------------|----------------------------------------------------------------------------------|
| AMPL    | Amplitude                    | -                                                                                |
| ASK     | Amplitude shift keying       | -                                                                                |
| Ballast | Ballast Load                 | Internal load within Aculeus/Iktara that maintains a constant current load.      |
| CAL     | Calibratied                  | These are after calibration values.                                              |
| COMM's  | Communications               | Referring to ASK and FSK communications                                          |
| CPLG    | Coupling                     | -                                                                                |
| СТХ     | -                            | Series resonant capacitance.                                                     |
| DC      | Duty Cycle                   | -                                                                                |
| DSBL    | Disable                      | -                                                                                |
| ENBL    | Enable                       | -                                                                                |
| FOD     | Foreign Object Detection     | Detection mechanism for metallic objects near the inductive power link           |
| FREQ    | Frequency                    | -                                                                                |
| FSK     | Frequency shift keying       | -                                                                                |
| FXST    | Fixture Setup                | -                                                                                |
| Kmax    | -                            | Maximum Coupling Coefficient                                                     |
| Kmin    | -                            | Minimum Coupling Coefficient                                                     |
| LPP     | Low Power Ping               | Object/Rx detection system                                                       |
| MPE     | Maximum Permissible Exposure | Protection scheme to limit the maximum leakage H-field when Scorpius is charging |
| Rx      | Receiver                     | Wireless Power Receiver. Also referred to as PRx                                 |
| SCRP    | Scorpius                     | Reference for searching Scorpius Module related Data in Insight.                 |
| Tx      | Transmitter                  | Wireless Power Transmitter. Also referred to as PTx(J307 MLB)                    |
| VCTX    | -                            | Voltage across Tx coil                                                           |
| Vsense  | -                            | Voltage across sense output                                                      |
| VRect   | -                            | Voltage across Rx Rectifier                                                      |



### 6. Overview

The block diagram below shows the overall end-end test coverage for the inductive Scorpius module. This document covers Scorpius Char Station.



### 6.1. Summary of Test Coverage

|                       | Kmax          | Knom          | Kmin          |
|-----------------------|---------------|---------------|---------------|
| LPP                   | no load       | no load       | no load       |
| Open Loop + Ping Pong | 0.1C, 3C, 10C | 0.1C, 3C, 10C | 0.1C, 3C, 10C |

### 6.2. Fixture Coupling specs

Throughout this document various tests will have different limits depending on the offset position i.e. coupling. Ensure close attention is paid to the tables shown for the different coupling positions, loads and limits.

#### **All** = all possible positions (MaxK, NomK,MinK)

| InSight Keys Recorded | Position (mm)    | K Spec                      | Measured Results (averaged after 5 readings)                                                                          |
|-----------------------|------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| KMax                  | 0, 0.83, 0       | 0.656 - 0.672 (0.664±0.008) |                                                                                                                       |
| KNom                  | D1.1, 0.88, L1.1 | 0.644                       | Limits investigation on going, limits to be used need to be<br>same as IQC_coupling station. FYI only. To be updated. |
| KMin                  | D1.5, 0.93, L1.5 | 0.49 - 0.531 (0.516±0.015)  |                                                                                                                       |

J307 Scorpius Char FATP ERS Revision: DVT\_V3.0

## 7. Critical and Frequently Used Commands

#### 7.1. Quiesce Test Mode

After programming the Tx defaults to NominalMode (LPP > Digital Ping > Power negotiation > Closed loop).

The following command needs to be sent to the Tx to enable QuiesceMode whereby certain test commands are then enabled.

A power cycle will mean the unit needs to be re-programmed as the firmware application is run from SRAM.

This is the test mode whereby additional commands for test/validation are active. This command will disable everything except the MCU i.e. Boost, Bridge, LPP switch will be disabled.

Resets into the guiesce mode with the bridge disabled.

hidreport --noplugin -u 0xFF00,0x0036 set 0x09 09 01

**Note:** This command i.e. Quiesce Mode needs to be set once at beginning of testing or unless unit is reset or power cycled or Nominal Mode has been set for testing MTP sector, LPP & Digital Ping test.

#### 7.2. Nominal Mode

This is the normal runtime mode. Here, a subset of commands used for test/validation are deactivated.

hidreport --noplugin -u 0xFF00,0x0036 set 0x09 09 00

Resets into the nominal mode where it will start the LPP-> Digital Ping-> Power Negotiation-> Closed loop sequence.

♠ Apple, Inc. Privileged and Confidential

#### 7.3. B332 Dev Board UART Baud rate

The B332 Dev Board is used to send commands to I2C of Aculeus using UART cable. Follow the steps below to open the B332 Dev Board UART.

- 1. Connect UART (1MBite baudrate, 1.8V) to J89 (Pin9 & Pin 10)
- 2. Open Terminal
- 3. nanocom -w 0 -c 1000000,n,8,1
- 4. Select your Connected UART option.



Note:-Testing with Ginger Rx board is a backup incase factory is not able to get B332 set up and running on time or has issue with B332

J307 Scorpius Char FATP ERS Revision: DVT V3.0



### 8.1. Read Tx FW Version

**Description**:- Read Tx FW. Dotara has no NVRAM and therefore will lose all the memory/setting after power cycling or load fw. Dotara will need to load the fw after each power cycling, this will be done by AOP if in iOS mode.

**Failure Mode(s) Captured**:TBD **Test Setup and Procedure**:

| Step | Description                   | Interface | Command / Notes                                   |  |
|------|-------------------------------|-----------|---------------------------------------------------|--|
| 1    | Tell Tx to enter Quiesce Mode | TX HID    | hidreportnoplugin -u 0xFF00,0x0036 set 0x09 09 01 |  |
| 2    | Read Status (Version)         | Tx HID    | hidreportnoplugin -u 0xFF00,0x0036 get 0xbb       |  |

Example:-This reads back 4 bytes: 0x01 0x00 0x02 0x05

Main FW Type (byte1&2): 0x0001 Main FW Version (byte3&4): 0x0502

| Test Parameter | Insight Keys Recorded | Notes |
|----------------|-----------------------|-------|
| Tx Fw Version  | SCRP_Tx_Version       |       |

#### 8.2. Rx FW Version

Ginger SN: diags get mlbsn Eload SN: diags get eloadsn

Versions: get versions ——> application: 2.6.19, this line is the Ginger FW version

B332 Dev Board Command to read Rx FW version: sys version

- Image Versions -----Nanoboot [b0]: v0003 - 1284 [508 free] bytes -None [0] Application [01]: v0154 - 488424 [33816 free] bytes - None [0] BT FW [30]: v0093 - 253632 [270656 free] bytes - None [0] Touch FW [20]: v0444 - 62592 [2944 free] bytes -None [0] Touch Cal [c1]: v0000 - 0 [8192 free] bytes Accel Algs [60]: v0010 - 6272 [1920 free] bytes -None [0] Charger FW [50]: v0060 - 51840 [46464 free] bytes - None [0] v0261 - 21088 [11680 free] bytes - None [0] Power FW [58]: Power FW OTP [59]: v2020 - 10240 [2048 free] bytes -None [0]

Apple, Inc. Privileged and Confidential



#### 8.3. Initial MTP Sector Check Before Tests.

**Description**: Make sure FW is in a good state at the Before of the test. [TBD]

Failure Mode(s) Captured: TBD

Test Setup and Procedure: Refer below



Figure 1: MTP Word Locations

| Step | Description                                                                        | Interface        | Command / Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | nis command i.e. Quiesce Mode needs to be set once<br>r Nominal Mode has been set. | at beginning     | g of testing i.e. from <u>Section 8.3 MTP Sector Check</u> or unless unit is reset/powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1    | Tell Tx to enter Quiesce Mode                                                      | TX HID           | hidreportnoplugin -u 0xFF00,0x0036 set 0x09 09 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | Skip the a                                                                         | bove steps if th | e unit is already in Quiesce Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2    | Read MTP Sector 127                                                                | Tx HID           | hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 80 3F 00 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4    | Read MTP Sector 126                                                                | Tx HID           | hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 00 3F 00 50 hidreportnoplugin -u 0xFF00,0x0036 get 0x40 hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 04 3F 00 50 hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 08 3F 00 50 hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 08 3F 00 50 hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 08 3F 00 50 hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 0C 3F 00 50 hidreportnoplugin -u 0xFF00,0x0036 get 0x40 hidreportnoplugin -u 0xFF00,0x0036 get 0x40 hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 0C 3F 00 50 hidreportnoplugin -u 0xFF00,0x0036 get 0x40 hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 60 3F 00 50 > Fixture wait 5mS < |





| Test Parameter                                                | Insight Keys Recorded         | Comments/Notes                                                                    |
|---------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------|
| Sector 127 - Check Sum (Word 31)                              | SCRP_Check Sum_127_MTP_BEFORE |                                                                                   |
| Sector 127 - Version (Word 1)                                 | SCRP_Version_127_MTP_BEFORE   |                                                                                   |
| Sector 127 - Signature (Word 0)                               | SCRP_Signature_127_MTP_BEFORE |                                                                                   |
| Sector 127 - CTx MTP (Word 2)                                 | SCRP_CTx_127_MTP_BEFORE       |                                                                                   |
| Sector 127 - Vsense_Control MTP (Word 6)                      | SCRP_Vsense_127_MTP_BEFORE    | Will need this Values to be compared against MTP Check after test                 |
| Sector 127 - Vsense MTP (Word 7)                              | SCRP_Vsense_127_MTP_BEFORE    | Section 8.7.                                                                      |
| Sector 127 - Isense MTP (Word 8)                              | SCRP_Isense_127_MTP_BEFORE    |                                                                                   |
| Sector 127 - LFOD MTP (Word 9)                                | SCRP_LFOD_127_MTP_BEFORE      |                                                                                   |
| Sector 127 - Tx HWID_MTP (Word 10)                            | SCRP_TX_HWID_127_MTP_BEFORE   |                                                                                   |
| Sector 127 - MLB Serial No. (Word 11 to Word 15 - Bits<1:17>) | SCRP_MLB_SN_127_MTP_BEFORE    |                                                                                   |
| Sector 126 - Check Sum (Word 31)                              | SCRP_Check Sum_126_MTP_BEFORE |                                                                                   |
| Sector 126 - Version (Word 1)                                 | SCRP_Version_126_MTP_BEFORE   |                                                                                   |
| Sector 126 - Signature (Word 0)                               | SCRP_Signature_126_MTP_BEFORE | Will need this Values to be compared against MTP Check after test<br>Section 8.7. |
| Sector 126 - LPP Inductance_MTP (Word 2)                      | SCRP_LPP_L_126_MTP_BEFORE     |                                                                                   |
| Sector 126 - LPP Frequency_MTP (Word 3)                       | SCRP_LPP_FREQ_126_MTP_BEFORE  |                                                                                   |

### 8.4. Pre Data Streaming Setup and Open Loop Tests.

**Description**: Set the unit for Data streaming in Normal mode and preform some test in Test mode(open Loop).

Failure Mode(s) Captured: TBD Test Setup and Procedure:

| Step | Description                                                    | Interface | Command / Notes                                                                                                                                |
|------|----------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Save the co-ordinate of Kmax after doing<br>Active referencing | Overly    | Assuming active referencing is done at very beginning of the test and the current coupling position is Kmax and unit is in <b>Quiesce</b> mode |
| 2    | Move Rx to Kmax position                                       | Overlay   |                                                                                                                                                |
| 3    | Disable LPP Switch "LPP_5V_EN"                                 | TX Diags  | hidreportnoplugin -u 0xFF00,0x0036 set 0x01 0x01 0x00 Payload: (LSB-MSB) ——> Byte0: 0 - turn off, 1 - turn on                                  |
| 4    | Wait 2s                                                        | Fixture   |                                                                                                                                                |
| 5    | Measure Vsense                                                 |           | hidreportnoplugin -u 0xFF00,0x0036 set 0x41 0x41 0x98 0x36 0x00 0x40 0x80 0x01 0x00 0x00                                                       |
| 6    | Enable LPP Switch "LPP_5V_EN"                                  | TX Diags  | hidreportnoplugin -u 0xFF00,0x0036 set 0x01 0x01 0x01 Payload: (LSB-MSB) ——> Byte0: 0 - turn off, 1 - turn on                                  |
| 7    | Wait 1s                                                        | Fixture   |                                                                                                                                                |
| 8    | Repeat Step 5                                                  |           |                                                                                                                                                |
| 9    | Send 1.4uS LPP pulse                                           | Tx HID    | hidreportnoplugin -u 0xFF00,0x0036 set 0x05 0x05 0x00 0x46                                                                                     |
| 10   | Delay 15mS before proceeding                                   | Fixture   |                                                                                                                                                |

Revision: DVT\_V3.0

|   | 0    |
|---|------|
| 1 | MP . |
| ч |      |

| Step | Description                                                                               | Interface           | Command / Notes                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------|-------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 11   | Read output parameters of F and L and raw ADC data                                        | Tx HID              | hidreportnoplugin -u 0xFF00,0x0036 get 0x05  Response —> (Received LSB First, Length should be 23bytes)  Byte0: Reportid (should equal 0x05)  Byte1: Error code (0x00-> no error)  Byte2: Sub-cmd (should be 0x00)  byte3-6: Floating point value of frequency  Bytes7-10: Floating point value of Inductance  Bytes17-22: Buffer address of raw ADC data  Bytes23-26: Number of raw ADC data elements (of size uint16_t) |  |  |
| 12   | Collect raw ADC samples and upload to Insight                                             | Tx HID &<br>Fixture | Collect Pointer to raw LPP data by sending the following command from bytes19-22 in the above response. Use the above info to read the Address and use the command Below to read the raw ADC buffered data and upload to insight.  hidreportnoplugin -u 0xFF00,0x0036 set 0x40 0x40 0xxx 0xxx 0xxx 0xxx (Sent LSB First)  Byte1-4: [u32] Address to read                                                                  |  |  |
| 13   | Repeat Steps 3 to 12 at all coupling position                                             | Fixture & Tx<br>HID | Coupling Position :- KMax, KNom & KMin                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 14   | Move away to Free Air Position i.e make use Rx coil is away from Tx even further to Kmin. | Overlay             | To ensure that Rx is away from the coupling position and is in Free Air the Vrect across B332 Dev board should be 0V.                                                                                                                                                                                                                                                                                                     |  |  |

#### Acceptance Criteria:

| Physical Parameter  | InSight Keys Recorded             | LL    | UL    | Unit | Offset Positions |
|---------------------|-----------------------------------|-------|-------|------|------------------|
|                     | KMax_OL_LPP_Frequency             | 53.89 | 57.97 |      | Kmax             |
| LPP Frequency       | KNom_OL_LPP_Frequency             | 55.95 | 60.19 | kHz  | Knom             |
|                     | KMin_OL_LPP_Frequency             | 57.5  | 61.88 |      | Kmin             |
|                     | KMax_OL_LPP_Inductance            | 21.17 | 23.66 |      | Kmax             |
| LPP Inductance      | KNom_OL_LPP_Inductance            | 19.64 | 21.94 | μΗ   | Knom             |
|                     | KMin_OL_LPP_Inductance            | 18.56 | 20.80 |      | Kmin             |
| LPP Vsense_Disabled | abled Kxxx_OL_LPP_Vsense_Disabled |       | 200   | mV   | All              |
| LPP Vsense_Enabled  | Kxxx_OL_LPP_Vsense_Enabled        | 5030  | 5260  | mV   | All              |

## 8.5. Normal Test Mode (Data Streaming) :-LLP --> DP --> Power Flow & Comms

**Description**: Check the actual end to end control & functionally of Scorpius module.

Failure Mode(s) Captured: If the unit does not follow the POR sequence and failing some parameters.

#### **Test Setup and Procedure:**

|      | t Setup and Procedure.                                                                              |           |                                                                                                                                                                                                                                                                |
|------|-----------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step | Description                                                                                         | Interface | Command / Notes                                                                                                                                                                                                                                                |
| 1    | Set Battery VOC =3.47V                                                                              | Overlay   | VoC=3.47V> 10C                                                                                                                                                                                                                                                 |
| 2    | Airplane Mode/BT Enable                                                                             | Tx HID    | hidreportnoplugin -u 0xFF00,0x0036 set 0x92 92 02 00 00 00  byte0: ID (ContextStateID = 0x92)  byte 1-4: [u32] Context State (32bit bimap)(ContextState = 0x00000001)  Bluetooth On/Off- bit 0 (set if on)  AirplaneMode On/Off- bit 1(set if on)              |
| 3    | Setup Register for reading data                                                                     |           | hidreport set 0x55 0x55 0x0E                                                                                                                                                                                                                                   |
| 4    | Enable data streaming                                                                               |           | hidreport inputs Note: Make sure there is no Rx present to get Free Air LPP                                                                                                                                                                                    |
| 5    | Record 100x LPP data streams @ free air                                                             |           |                                                                                                                                                                                                                                                                |
| 6    | Get LPP data from above count                                                                       |           |                                                                                                                                                                                                                                                                |
| 7    | Get LPP data from above count                                                                       |           |                                                                                                                                                                                                                                                                |
| 8    | Move the Rx from Free Air Position to<br>Kmax coupling position                                     |           | Kmax = 0, 0.83, 0 (These will be co-ordinates from Active referencing )                                                                                                                                                                                        |
| 9    | Record the data from Digital Ping<br>Note :- In Data Streaming there will be<br>on one Digital Ping |           | Example:- [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E0; [Digital Ping]; Raw: 9F 02 [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E0; [Rx Digital Ping Response] RxType:0x80 VRECT:8600mV; Raw: 78 00 80 56 5F 9B 92 DC |

Revision: DVT\_V3.0

J307 Scorpius Char FATP ERS Revision: DVT V3.0 Interface Step **Description Command / Notes** Start Recording Comms FSK/ASK Packets for 10C. Exapmle:-Note:-1st [Regular Sync] in [0x21] IBC: is your This is 1st FSK for 10C [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Reg Num -> 0x7E1; [Regular Sync]; Raw: 80 1st FSK for 10C and subsequent ASK is your [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E1; [Rx Power Req Level 3.000000W]; Raw: 28 12 1E This is 1st ASK for 10C ASK for 10C This 2nd FSK for 10C [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E2; [Tx Guaranteed Power] GuaranteedPower:3000mW; 10 Raw: 2E 03 1E T1 --> CL\_time to 10C \_start The is 3rd FSK for 10C [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E3; [Regular Sync]; Raw: 80 Note: Keyword [CEP] is always used for getting T1 = 615766405.832418 [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E3; [CEP] Offset: 0; Raw: 03 00 the start time Ignore all FSK with [C26] [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E9; [C26 Packet] Raw: 8F 03 04 00 04 AA AA AA AA AA 1st [CEP] after [Digital Ping] in [0x21] IBC: is start time for Time to 10C Ramp Data monitoring & collection Exapmle:-Note:-[0x0A] PCP: is Power count packet. Use [OxOA] PCP: itx  $\rightarrow$  521 mA, phase  $\rightarrow$  100.0°, vBoost  $\rightarrow$  6127 mV, iBoost  $\rightarrow$  87 mA, vRect  $\rightarrow$  8604 mV, iRect  $\rightarrow$  39 mA, eff  $\rightarrow$  62.3%, mpeViolation  $\rightarrow$  0, this to get power flow data and to monitor Vrect mpePowerLimit → NO, chargeRate → 1, mpeTriggerCount → 0 11 to check charge rate status 10C Charge Rate Condition Vrect = 14V±2%, [OxOA] PCP: itx  $\rightarrow$  870 mA, phase  $\rightarrow$  180.0°, vBoost  $\rightarrow$  9048 mV, iBoost  $\rightarrow$  430 mA, vRect  $\rightarrow$  13944 mV, iRect  $\rightarrow$  190 mA. eff  $\rightarrow$  68.0%, mpeViolation  $\rightarrow$ Irect = 200mA±15mA 0, mpePowerLimit  $\rightarrow$  NO, chargeRate  $\rightarrow$  1, mpeTriggerCount  $\rightarrow$  0 Exapmle:-T2--> CL time @ 10C start [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7FF; [Regular Sync]; Raw: 80 Note: When the data streams first meets 10C T2 = 615766408.058415 [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x7FF; [CEP] Offset: -5; Raw: 03 FB charge rate condition, the [CEP] just before [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x800; [Power Count Sync]; Raw: C0 12 [PCP] is the T2--> CL time @ 10C start. [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Reg Num -> 0x800; [Power Count Response] Offset: 2; Keyword [CEP] is always used for getting the VRECT:13944 mV IRECT:190 mA; Raw: 48 02 91 14 7C start time [0x0A] PCP: itx  $\rightarrow$  870 mA, phase  $\rightarrow$  180.0°, vBoost  $\rightarrow$  9048 mV, iBoost  $\rightarrow$  430 mA, vRect  $\rightarrow$  13944 mV, iRect  $\rightarrow$  190 mA, eff  $\rightarrow$  68.0%, mpeViolation  $\rightarrow$  0, mpePowerLimit  $\rightarrow$  NO, chargeRate  $\rightarrow$  1, mpeTriggerCount  $\rightarrow$  0 Exapmle:-T3 = 615766420.485967 [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x8A8; [CEP] Offset: 1; Raw: 03 01 Data monitoring & collection at 10c and [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x8A9; [Power Count Sync]; Raw: C0 This is the last FSK for 10C This is the last ASK for 10C [0x21] IBC: ASK  $\leftarrow$  Requester -> 0x4 [Debug Comms]; Req Num -> 0x8A9; [Power Count Response] Offset: 1; VRECT:13962 transitioning to 3C mV IRECT:195 mA: Raw: 48 01 91 17 86 T4 --> CL time to 3C start 10C Data — [0x0A] PCP: itx → 874 mA, phase → 180.0°, vBoost → 9099 mV, iBoost → 440 mA, vRect → 13962 mV, iRect → 195 mA, Note:-When Irect first drop below 10C eff → 67.9%, mpeViolation → 0, mpePowerLimit → NO, chargeRate → 1, mpeTriggerCount  $\rightarrow$  0 condition, then the [CEP] just before [PCP] is [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x8AA; [Regular Sync]; Raw: 80 [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x8AA; [CEP] Offset: -27; Raw: 03 E5 13 This is the first FSK for 3C start time for 3C ramp down. T4 = 615766420.631070 T3--> CL time @10C End [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x8AB; [Power Count Sync]; Raw: C0 Note:-You can only find T3 when you have T4. Overlay & Data [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x8AB; [Power Count Response] Offset: -10; T3 will be [CEP] before T4. And Data for 10C Streaming VRECT:14208 mV IRECT:138 mA; Raw: 48 F6 94 10 14 will be [PCP] before T4. [0x0A] PCP: itx  $\rightarrow$  819 mA, phase  $\rightarrow$  180.0°, vBoost  $\rightarrow$  8672 mV, iBoost  $\rightarrow$  326 mA, vRect  $\rightarrow$  14208 mV, iRect  $\rightarrow$  138 mA, eff  $\rightarrow$ 3C ramp down Condition -69.2%, mpeViolation  $\rightarrow$  0, mpePowerLimit  $\rightarrow$  NO, chargeRate  $\rightarrow$  1, mpeTriggerCount  $\rightarrow$  0 Ignore all FSK with [C26] [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E9; [C26 Packet] Raw: 8F 03 04 00 04 AA AA AA AA AA AA Exapmle:-Data monitoring & collection [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x8B6; [Regular Sync]; Raw: 80 3C Charge Rate Condition Vrect = 8V±2%, T5 = 615766421.499533 [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Reg Num -> 0x8B6; [CEP] Offset: -5; Raw: 03 FB Irect = 113mA±15mA [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x8B7; [Power Count Sync]; Raw: C0 T5 --> CL \_time to 3C End [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x8B7; [Power Count Response] Offset: -5; VRECT:8082 Note:-You can only find T5 if 3C condition are mV IRECT:107 mA; Raw: 48 FB 54 03 D6 [0x0A] PCP: itx  $\rightarrow$  561 mA, phase  $\rightarrow$  114.0°, vBoost  $\rightarrow$  6117 mV, iBoost  $\rightarrow$  205 mA, vRect  $\rightarrow$  8082 mV, iRect  $\rightarrow$  107 mA, eff  $\rightarrow$ met 68.7%, mpeViolation  $\rightarrow$  0, mpePowerLimit  $\rightarrow$  NO, chargeRate  $\rightarrow$  1, mpeTriggerCount  $\rightarrow$  0 15 Let the unit run at 3C for 5sec Get 3C Data when stable within 15Sec. Exapmle:wait time. [0x21] IBC: FSK  $\rightarrow$  Requester -> 0x4 [Debug Comms]; Req Num -> 0xD85; [Regular Sync]; Raw: 80 Note:- Data could be stable at beginning of [0x21] IBC: ASK  $\leftarrow$  Requester -> 0x4 [Debug Comms]; Req Num -> 0xD85; [CEP] Offset: 0; Raw: 03 00 15sec wait time or in between. It could possibly This is the last FSK for 3C [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0xD86; [Power Count Sync]; Raw: C0 be lower than the limits towards the end of 16 This is the last ASK for 3C [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0xD86; [Power Count Response] Offset: -1; VRECT:8034 15sec due to battery charing. Take the reading mV IRECT:106 mA; Raw: 48 FF 53 0B D4 which are more stable. If the the stable readings 3C Data ----> [0x0A] PCP: itx → 556 mA, phase → 111.50°, vB oost → 6127 mV, iBoost → 200 mA, vRect → 8034 mV, are consistently below the limits then it could be [Rect → 106 mA, eff → 69.4%, mpeViolation → 0, mpePowerLimit → NO, chargeRate → 1, mpeTriggerCount → 0
[0x211 IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E9; [C26 Packet] Raw: 8F 03 04 00 04 AA AA AA AA AA a failing unit and might need to reset and resets Ignore all FSK with [C26] if required VoC=4.15V ->0.1C Set Battery VOC =4.15V 17 Exapmle:-This is the first FSK for 0.1C [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0xD87; [Regular Sync]; Raw: 80 This is the first ASK for 0.1C [0x21] IBC: ASK  $\leftarrow$  Requester -> 0x4 [Debug Comms]; Req Num -> 0xD87; [CEP] Offset: 0; Raw: 03 00 Data monitoring & collection [0x21] IBC: FSK  $\rightarrow$  Requester -> 0x4 [Debug Comms]; Req Num -> 0xD88; [Power Count Sync]; Raw: C0 0.1C Charge Rate Condition Vrect = 18 [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0xD88; [Power Count Response] Offset: -32; VRECT:9132 mV 6.5V±2%. Irect = ~40mA IRECT:52 mA; Raw: 48 E0 5F 02 68 [0x0A] PCP: itx  $\rightarrow$  539 mA, phase  $\rightarrow$  111.0°, vBoost  $\rightarrow$  6127 mV, iBoost  $\rightarrow$  108 mA, vRect  $\rightarrow$  9132 mV, iRect  $\rightarrow$  52 mA, eff  $\rightarrow$  71.1%, mpeViolation → 0, mpePowerLimit → NO, chargeRate → 1, mpeTriggerCount → 0

[0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x7E9; [C26 Packet] Raw: 8F 03 04 00 04 AA AA AA AA AA AA Ignore all FSK with [C26] 19 Let the unit run at 0.1C for 5sec Get 0.1C Data when stable within 15Sec Exapmle:wait time. [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Req Num -> 0x113E; [Regular Sync]; Raw: 80 Note:- Data could be stable at beginning of [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Req Num -> 0x113E; [CEP] Offset: 5; Raw: 03 05 15sec wait time or in between. It could possibly This is the Last FSK for 0.1C [0x21] IBC: FSK  $\rightarrow$  Requester -> 0x4 [Debug Comms]; Req Num -> 0x113F; [Power Count Sync]; Raw: C0 be lower than the limits towards the end of This is the Last ASK for 0.1C [0x21] IBC: ASK ← Requester -> 0x4 [Debug Comms]; Reg Num -> 0x113F; [Power Count Response] Offset: 5; VRECT:6354 mV 15sec due to battery charing. Take the reading IRECT:39 mA: Raw: 48 05 42 03 4E which are more stable. If the the stable readings [0x0A] PCP: itx → 440 mA, phase → 70.0°, vBoost → 6127 mV, iBoost → 62 mA, vRect → 6354 mV, iRect → 39 mA, eff → 64.9%, mpeViolation → 0, mpePowerLimit → NO, chargeRate → 1, mpeTriggerCount → 0 0.1C Data are consistently below the limits then it could be a failing unit and might need to reset and resets [0x21] IBC: FSK → Requester -> 0x4 [Debug Comms]; Reg Num -> 0x7E9; [C26 Packet] Raw: 8F 03 04 00 04 AA AA AA AA AA AA lanore all FSK with [C26]

Move the Rx to Free Air Position from

KMax coupling position

21



| Step | Description                                                  | Interface | Command / Notes         |
|------|--------------------------------------------------------------|-----------|-------------------------|
| 22   | Set Battery VOC =3.47V                                       | Overlay   | VoC=3.47V> 10C          |
| 23   | Move the Rx from Free Air Position to KNom coupling position |           | KNom = D1.1, 0.88, L1.1 |
| 24   | Repeat Step 9 to 19                                          |           |                         |
| 25   | Move the Rx to Free Air Position from KNom coupling position |           |                         |
| 26   | Set Battery VOC =3.47V                                       | Overlay   | VoC=3.47V> 10C          |
| 27   | Move the Rx from Free Air Position to KMin coupling position |           | KMin = D1.5, 0.93, L1.5 |
| 28   | Repeat Step 9 to 19                                          |           |                         |

#### Acceptance Criteria:

| Physical Parameter          | InSight Keys Recorded           | LL       | UL    | Unit | Offset Positions                                                                   |  |
|-----------------------------|---------------------------------|----------|-------|------|------------------------------------------------------------------------------------|--|
| LPP counts                  | Free_Air_LPP_Count              | 98       | 102   | -    |                                                                                    |  |
| 1005                        | Free_Air_LPP_Frequency_avg      | 68.6     | 72.4  | kHz  |                                                                                    |  |
| LPP Frequency Free Air      | Free_Air_LPP_Frequency_STD-DEV  | -        | 0.4   | -    |                                                                                    |  |
| I DD Indicators of Free Air | Free_Air_LPP_Inductance_avg     | 12.8     | 15.4  | μН   |                                                                                    |  |
| LPP Inductance Free Air     | Free_Air_LPP_Inductance_STD-DEV | -        | 0.4   | -    | Free Air                                                                           |  |
| LDD O Face Air              | Free_Air_LPP_Q_avg              | TBD      | TBD   | -    |                                                                                    |  |
| LPP Q Free Air              | Free_Air_LPP_Q_STD-DEV          | -        | 0.4   | -    |                                                                                    |  |
| LDD D France Air            | Free_Air_LPP_R_avg              | TBD      | TBD   | Ω    |                                                                                    |  |
| LPP R Free Air              | Free_Air_LPP_R_STD-DEV          | -        | 0.4   | -    |                                                                                    |  |
|                             | CL_KMax_Vrect@DP0.1C            | 7500     | 9000  | mV   |                                                                                    |  |
| Vrect @ Digital Ping        | CL_KNom_Vrect@DP0.1C            | 6500     | 8500  | mV   |                                                                                    |  |
|                             | CL_KMin_Vrect@DP0.1C            | 6000     | 7500  | mV   |                                                                                    |  |
| Time to 10C                 | CL_Kxxx_Time_to_10C             | 0.5      | 2.5   |      |                                                                                    |  |
| Time at 10C                 | CL_Kxxx_Time_@_10C              | 11       | 14    | Sec  | At all Coupling positions                                                          |  |
| Time to 3C                  | CL_Kxxx_Time_to_3C              | 0.1      | 1     |      |                                                                                    |  |
|                             |                                 | Load 10C |       |      |                                                                                    |  |
|                             | CL_KMax_Vsense@10C              | 8850     | 9550  |      |                                                                                    |  |
| CL_Vsense @ 10C             | CL_KNom_Vsense@10C              | 9220     | 10275 | mV   |                                                                                    |  |
|                             | CL_KMin_Vsense@10C              | 9850     | 10980 |      |                                                                                    |  |
|                             | CL_KMax_lsense@10C              | 405      | 455   |      | Tx Observable command for IBC data                                                 |  |
| CL_Isense @ 10C             | CL_KNom_Isense@10C              | 390      | 445   | mA   |                                                                                    |  |
|                             | CL_KMin_lsense@10C              | 390      | 460   |      |                                                                                    |  |
|                             | CL_KMax_lctx@10C                | 728      | 874   |      |                                                                                    |  |
| CL_lctx @ 10C               | CL_KNom_lctx@10C                | 808      | 1040  | mA   |                                                                                    |  |
|                             | CL_KMin_lctx@10C                | 945      | 1237  |      |                                                                                    |  |
|                             | CL_KMax_Vrect_Tx_IBC@10C        |          |       |      |                                                                                    |  |
| CL_Vrect_Tx_IBC@10C         | CL_KNom_Vrect_Tx_IBC@10C        | 13720    | 14280 | mV   | Tx Observable command for IBC data  Vrect Target = 14±2%v                          |  |
|                             | CL_KMin_Vrect_Tx_IBC@10C        |          |       |      |                                                                                    |  |
|                             | CL_KMax_CL_Irect_Tx_IBC@10C     |          |       |      |                                                                                    |  |
| CL_Irect_Tx_IBC@10C         | CL_KNom_CL_Irect_Tx_IBC@10C     | 185      | 215   | mA   | Tx Observable command for IBC data  Irect Target = 200mA± +iktara load(~0 to 15mA) |  |
|                             | CL_KMin_CL_Irect_Tx_IBC@10C     |          |       |      |                                                                                    |  |
|                             | CL_KMax_Efficiency_Tx_IBC@10C   | 66.55    | 73.00 |      |                                                                                    |  |
| CL_Efficiency_Tx_IBC @10C   | CL_KNom_Efficiency_Tx_IBC@10C   | 62.37    | 69.72 | %    |                                                                                    |  |
|                             | CL_KMin_Efficiency_Tx_IBC@10C   | 58.23    | 66.23 |      | Tx Observable command for IBC data                                                 |  |



| InSight Keys Recorded                                                                                                                                                                                                                   | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                     | Offset Positions                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| CL_Kxxx_FSK_sent @10C                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                        |                                                                                                                   |  |
| CL_Kxxx_ASK_received@10C                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                        |                                                                                                                   |  |
| CL_Kxxx_Overall_Packet Error @10C                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                        | CL_Overall_Packet Error = FSK-ASK                                                                                 |  |
| Loa                                                                                                                                                                                                                                     | nd 3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                   |  |
| CL_KMax_Vsense@3C                                                                                                                                                                                                                       | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                   |  |
| CL_KNom_Vsense@3C                                                                                                                                                                                                                       | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mV                       |                                                                                                                   |  |
| CL_KMin_Vsense@3C                                                                                                                                                                                                                       | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                   |  |
| CL_KNom_Isense@3C                                                                                                                                                                                                                       | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mA                       | Tx Observable command for IBC data                                                                                |  |
| CL_KMin_lsense@3C                                                                                                                                                                                                                       | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                   |  |
| CL_KMax_lctx@3C                                                                                                                                                                                                                         | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                   |  |
| CL_KNom_lctx@3C                                                                                                                                                                                                                         | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mA                       |                                                                                                                   |  |
| CL_KMin_lctx@3C                                                                                                                                                                                                                         | 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         | 7840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mV                       | Tx Observable command for IBC data                                                                                |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | Vrect Target = 8V ±2%                                                                                             |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         | 98 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 mA                    | Tx Observable command for IBC data                                                                                |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | Irect Target = 113mA +iktara load(~0 to 15mA)                                                                     |  |
|                                                                                                                                                                                                                                         | 66.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                        | Tx Observable command for IBC data                                                                                |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , ,,                     |                                                                                                                   |  |
|                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                        |                                                                                                                   |  |
|                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                        |                                                                                                                   |  |
| CL_Kxxx_Overall_Packet Error @3C                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                        | CL_Overall_Packet Error = FSK-ASK                                                                                 |  |
| Load                                                                                                                                                                                                                                    | 101C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m\/                      |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mΔ                       | Tx Observable command for IBC data                                                                                |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1100                     |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                   |  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mΔ                       |                                                                                                                   |  |
| 02_1110111_011160110                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ША                       |                                                                                                                   |  |
| CL KMin lctx@0.1C                                                                                                                                                                                                                       | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                   |  |
| CL_KMin_lctx@0.1C                                                                                                                                                                                                                       | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                   |  |
| CL_KMax_Vrect_Tx_IBC@0.1C                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m\/                      | Tx Observable command for IBC data                                                                                |  |
| CL_KMax_Vrect_Tx_IBC@0.1C CL_KNom_Vrect_Tx_IBC@0.1C                                                                                                                                                                                     | 410<br>6370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mV                       | Tx Observable command for IBC data Vrect Target = 6.5V ±2%                                                        |  |
| CL_KMax_Vrect_Tx_IBC@0.1C  CL_KNom_Vrect_Tx_IBC@0.1C  CL_KMin_Vrect_Tx_IBC@0.1C                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mV                       |                                                                                                                   |  |
| CL_KMax_Vrect_Tx_IBC@0.1C  CL_KNom_Vrect_Tx_IBC@0.1C  CL_KMin_Vrect_Tx_IBC@0.1C  CL_KMax_CL_Irect_Tx_IBC@0.1C                                                                                                                           | 6370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Vrect Target = $6.5V \pm 2\%$ Tx Observable command for IBC data                                                  |  |
| CL_KMax_Vrect_Tx_IBC@0.1C  CL_KNom_Vrect_Tx_IBC@0.1C  CL_KMin_Vrect_Tx_IBC@0.1C  CL_KMax_CL_Irect_Tx_IBC@0.1C  CL_KNom_CL_Irect_Tx_IBC@0.1C                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mV<br>mA                 | Vrect Target = 6.5V ±2%                                                                                           |  |
| CL_KMax_Vrect_Tx_IBC@0.1C  CL_KNom_Vrect_Tx_IBC@0.1C  CL_KMin_Vrect_Tx_IBC@0.1C  CL_KMax_CL_Irect_Tx_IBC@0.1C  CL_KNom_CL_Irect_Tx_IBC@0.1C  CL_KMin_CL_Irect_Tx_IBC@0.1C                                                               | 6370<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Vrect Target = 6.5V ±2%  Tx Observable command for IBC data Iktara ballast load ~ 40mA. No fixture load           |  |
| CL_KMax_Vrect_Tx_IBC@0.1C  CL_KNom_Vrect_Tx_IBC@0.1C  CL_KMin_Vrect_Tx_IBC@0.1C  CL_KMax_CL_Irect_Tx_IBC@0.1C  CL_KNom_CL_Irect_Tx_IBC@0.1C  CL_KMin_CL_Irect_Tx_IBC@0.1C  CL_KMin_CL_Irect_Tx_IBC@0.1C                                 | 6370<br>35<br>56.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6630<br>42<br>77.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mA                       | Vrect Target = 6.5V ±2%  Tx Observable command for IBC data lktara ballast load ~ 40mA. No fixture load required. |  |
| CL_KMax_Vrect_Tx_IBC@0.1C  CL_KNom_Vrect_Tx_IBC@0.1C  CL_KMin_Vrect_Tx_IBC@0.1C  CL_KMax_CL_Irect_Tx_IBC@0.1C  CL_KNom_CL_Irect_Tx_IBC@0.1C  CL_KMin_CL_Irect_Tx_IBC@0.1C  CL_KMin_CL_Irect_Tx_IBC@0.1C  CL_KMax_Efficiency_Tx_IBC@0.1C | 6370<br>35<br>56.70<br>52.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6630<br>42<br>77.75<br>70.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Vrect Target = 6.5V ±2%  Tx Observable command for IBC data Iktara ballast load ~ 40mA. No fixture load           |  |
| CL_KMax_Vrect_Tx_IBC@0.1C  CL_KNom_Vrect_Tx_IBC@0.1C  CL_KMin_Vrect_Tx_IBC@0.1C  CL_KMax_CL_Irect_Tx_IBC@0.1C  CL_KNom_CL_Irect_Tx_IBC@0.1C  CL_KMin_CL_Irect_Tx_IBC@0.1C  CL_KMin_CL_Irect_Tx_IBC@0.1C                                 | 6370<br>35<br>56.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6630<br>42<br>77.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mA                       | Vrect Target = 6.5V ±2%  Tx Observable command for IBC data lktara ballast load ~ 40mA. No fixture load required. |  |
|                                                                                                                                                                                                                                         | CL_Kxxx_FSK_sent @10C  CL_Kxxx_ASK_received@10C  CL_Kxxx_Overall_Packet Error @10C  CL_Kxxx_Overall_Packet Error @10C  CL_KMax_Vsense@3C  CL_KMom_Vsense@3C  CL_KMin_Vsense@3C  CL_KMin_Isense@3C  CL_KMom_Isense@3C  CL_KMin_Isense@3C  CL_KMin_Isense@3C  CL_KMin_Isense@3C  CL_KMom_Ictx@3C  CL_KMom_Ictx@3C  CL_KMin_Ictx@3C  CL_KMin_Ictx@3C  CL_KMin_Vrect_Tx_IBC@3C  CL_KNom_Vrect_Tx_IBC@3C  CL_KMin_Vrect_Tx_IBC@3C  CL_KMin_CL_Irect_Tx_IBC@3C  CL_KMin_CL_Irect_Tx_IBC@3C  CL_KMin_CL_Irect_Tx_IBC@3C  CL_KMin_CL_Irect_Tx_IBC@3C  CL_KMin_Efficiency_Tx_IBC@3C  CL_KMin_Efficiency_Tx_IBC@3C  CL_KMin_Efficiency_Tx_IBC@3C  CL_KXxx_FSK_sent @3C  CL_Kxxx_ASK_received@3C  CL_Kxxx_Overall_Packet Error @3C | CL_Kxxx_FSK_sent @10C         -           CL_Kxxx_ASK_received@10C         -           CL_Kxxx_Overall_Packet Error @10C         0           Load 3C           CL_KXxx_Overall_Packet Error @10C           Load 3C           CL_KMax_Vsense@3C         6000           CL_KMin_Vsense@3C         6000           CL_KMax_Isense@3C         174           CL_KMin_Isense@3C         184           CL_KMin_Isense@3C         194           CL_KMax_Isense@3C         440           CL_KMax_Isense@3C         440           CL_KMin_Isense@3C         490           CL_KMin_Isense@3C         7840           CL_KMin_Vrect_Tx_IBC@3C         7840           CL_KMin_Vrect_Tx_IBC@3C         7840           CL_KMin_CL_Irect_Tx_IBC@3C         98           CL_KMin_CL_Irect_Tx_IBC@3C         66.00           CL_KMin_Efficiency_Tx_IBC@3C         66.00           CL_KXXX_FSK_sent @3C         -           CL_KXXX_ASK_received@3C         -           CL_KXXX_ASK_received@3C         -           CL_KXXX_Sense@0.1C <t< td=""><td>  CL_Kxxx_ASK_received@10C</td><td>  CL_KXXX_ASK_received@10C</td></t<> | CL_Kxxx_ASK_received@10C | CL_KXXX_ASK_received@10C                                                                                          |  |





| Physical Parameter            | InSight Keys Recorded              | LL | UL | Unit | Offset Positions                  |
|-------------------------------|------------------------------------|----|----|------|-----------------------------------|
| CL_Overall_Packet Error @0.1C | CL_Kxxx_Overall_Packet Error @0.1C | 0  | 2  | _    | CL_Overall_Packet Error = FSK-ASK |

## 8.6. Final MTP Sector Check After Tests.

**Description**: Make sure FW is in a good state at the end of the test.

Failure Mode(s) Captured: TBD
Test Setup and Procedure: Refer below

| Step | Description                                                                                                                                                                               | Interface    | Command / Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Exit Data Streaming                                                                                                                                                                       | Overlay      | ctrl+c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2    | Reset Tx                                                                                                                                                                                  | Tx HID       | hidreportnoplugin -u 0xFF00,0x0036 set 0x91 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3    | Wait 1s                                                                                                                                                                                   | Fixture      | Scorpius FW will take less than 1 second to boot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4    | Tell Tx to enter Quiesce Mode                                                                                                                                                             | Tx Diags     | hidreportnoplugin -u 0xFF00,0x0036 set 0x09 09 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5    | Read MTP Sector 127                                                                                                                                                                       | Tx HID       | hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 80 3F 00 50   hidreportnoplugin -u 0xFF00,0x0036 get 0x40   hidreportnoplugin -u 0xF00,0x0036 get 0x40   hidreportnoplugin |
| 6    | Read MTP Sector 126                                                                                                                                                                       | Tx HID       | hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 00 3F 00 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7    | Location of Calibrated values of Vsense, Vsense, Isense, LFOD & CTx into MTP and other values into MTP :- Signature, Version,HWID, MLB SN, Checksum  Follow Figure 1 Bellow for Reference | Test Overlay | Sector 127 :-Word 0(Signature = 0x01); Word 1(Version = 0x02); Word 2(CTx); Word 6(Vsense); Word 7(Vsense); Word 8(Isense); Word 9(LFOD); Word 10(HWID); Word 11 - 15(MLB SN - 17 byte), Word 31(Checksum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8    | Location to store Calibrated values of Inductance (Ltx_nH) & frequency_Hz into MTP and also Signature and version.                                                                        | Test Overlay | Sector 126 :- Word 0(Signature = 0x01); Word 1(Version = 0x02); Word 2(Ltx_nH); Word 3(frequency_Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9    | Reset Tx                                                                                                                                                                                  | Tx HID       | hidreportnoplugin -u 0xFF00,0x0036 set 0x91 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



### Acceptance:

| Test Parameter                                                | Insight Keys Recorded         | Comments/Notes                                                               |  |
|---------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------|--|
| Sector 127 - Check Sum (Word 31)                              | SCRP_Check Sum_127_MTP_BEFORE |                                                                              |  |
| Sector 127 - Version (Word 1)                                 | SCRP_Version_127_MTP_BEFORE   |                                                                              |  |
| Sector 127 - Signature (Word 0)                               | SCRP_Signature_127_MTP_BEFORE |                                                                              |  |
| Sector 127 - Tx HWID_MTP (Word 10)                            | SCRP_TX_HWID_127_MTP_BEFORE   |                                                                              |  |
| Sector 127 - CTx MTP (Word 2)                                 | SCRP_CTx_127_MTP_BEFORE       | Pass if this values match with MTP check before test i.e. <b>Section 8.3</b> |  |
| Sector 127 - Vsense_Control MTP (Word 6)                      | SCRP_Vsense_127_MTP_BEFORE    | Pass II this values match with MTP check before test i.e. <b>Section 6.3</b> |  |
| Sector 127 - Vsense MTP (Word 7)                              | SCRP_Vsense_127_MTP_BEFORE    |                                                                              |  |
| Sector 127 - Isense MTP (Word 8)                              | SCRP_Isense_127_MTP_BEFORE    |                                                                              |  |
| Sector 127 - LFOD MTP (Word 9)                                | SCRP_LFOD_127_MTP_BEFORE      |                                                                              |  |
| Sector 127 - MLB Serial No. (Word 11 to Word 15 - Bits<1:17>) | SCRP_MLB_SN_127_MTP_BEFORE    |                                                                              |  |
| Sector 126 - Check Sum (Word 31)                              | SCRP_Check Sum_126_MTP_BEFORE |                                                                              |  |
| Sector 126 - Version (Word 1)                                 | SCRP_Version_126_MTP_BEFORE   |                                                                              |  |
| Sector 126 - Signature (Word 0)                               | SCRP_Signature_126_MTP_BEFORE | Pass if this values match with MTP check before test i.e. <b>Section 8</b>   |  |
| Sector 126 - LPP Inductance_MTP (Word 2)                      | SCRP_LPP_L_126_MTP_BEFORE     |                                                                              |  |
| Sector 126 - LPP Frequency_MTP (Word 3)                       | SCRP_LPP_FREQ_126_MTP_BEFORE  |                                                                              |  |



## A. Appendix - Testing using hidreport :- LPP & Digital Ping

### 1. Quiesce Mode - Low Power Ping (LPP)

**Description**: Check the frequency and inductance for LPP at free air vs nominal position coupling.

Failure Mode(s) Captured: Poorly assembled / manufactured coils

**Test Setup and Procedure**:

| Step | Description                                                                                       | Interface        | Command / Notes                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|---------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Connect coils at nominal position                                                                 | Fixture          |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2    | Tell Tx to enter Quiesce Mode                                                                     | Tx Diags         | hidreportnoplugin -u 0xFF00,0x0036 set 0x09 09 01                                                                                                                                                                                                                                                                                                                                                                       |
| 3    | Enable LPP Switch "LPP_5V_EN"                                                                     | TX Diags         | hidreportnoplugin -u 0xFF00,0x0036 set 0x01 01 01  Payload: (LSB-MSB) —> Byte0: 0 - turn off, 1 - turn on                                                                                                                                                                                                                                                                                                               |
| 4    | Wait 1s                                                                                           | Fixture          |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5    | Measure Vsense                                                                                    |                  | hidreportnoplugin -u 0xFF00,0x0036 set 0x41 0x41 0x98 0x36 0x00 0x40 0x80 0x01 0x00 0x00                                                                                                                                                                                                                                                                                                                                |
| 6    | Disable LPP Switch "LPP_5V_EN"                                                                    | TX Diags         | hidreportnoplugin -u 0xFF00,0x0036 set 0x01 01 00  Payload: (LSB-MSB) —> Byte0: 0 - turn off, 1 - turn on                                                                                                                                                                                                                                                                                                               |
| 7    | Wait 1s                                                                                           | Fixture          |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8    | Repeat Step 5                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9    | Send 1.4uS LPP pulse                                                                              | Tx HID           | hidreportnoplugin -u 0xFF00,0x0036 set 0x05 05 00 46                                                                                                                                                                                                                                                                                                                                                                    |
| 10   | Delay 15mS before proceeding                                                                      | Fixture          |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11   | Read output parameters of F and L and raw ADC data                                                | Tx HID           | hidreportnoplugin -u 0XFF00,0x0036 get 0x05  Response: (Received LSB First, Length should be 23bytes)  Byte0: Reportld (should equal 0x05)  Byte1: Error code (0x00-> no error)  Byte2: Sub-cmd (should be 0x00)  byte3-6: Floating point value of frequency  Bytes7-10: Floating point value of inductance  Bytes19-22: Buffer address of raw ADC data  Bytes29-26: Number of raw ADC data elements (of size uint16_t) |
| 12   | Collect raw ADC samples and upload to Insight                                                     | Tx HID & Fixture | Collect Pointer to raw LPP data by sending the following command from bytes19-22 in the above response. Use the above info to read the Address and use the command Below to read the raw ADC buffered data and upload to insight.  hidreportnoplugin -u 0xFF00,0x0036 set 0x40 40 xx xx xx xx (Sent LSB First) byte1-4: [u32] Address to read                                                                           |
| 13   | Repeat steps 9 - 12 x 100 times                                                                   | Fixture & Tx HID | Save all of the data as a single log file for each unit and upload to InSight.                                                                                                                                                                                                                                                                                                                                          |
| 14   | Calculate Free Air Δ Tx Frequency & Δ Tx Inductance Averaged over 100 repeats vs MTP sector Value | Tx HID & Fixture | Δ Tx Frequency = SCRP_LPP_FREQ_MTP_BEFORE (From Section 8.3) - <b>Kxx_LPP_Frequency_100_avg</b> Δ Tx Inductance = <b>Kxx_LPP_Inductance_100_avg</b> - SCRP_LPP_L_MTP_BEFORE (From Section 8.3)                                                                                                                                                                                                                          |
| 15   | Record parameters as per the table below                                                          | Fixture          | Apply limits accordingly                                                                                                                                                                                                                                                                                                                                                                                                |
| 16   | Repeat steps 2 - 8 at all coupling position                                                       | Fixture & Tx HID | Coupling Position :- KMax, KNom & KMin                                                                                                                                                                                                                                                                                                                                                                                  |



#### Acceptance Criteria:

| Physical Parameter | InSight Keys Recorded        | LL    | UL    | Unit | Offset Positions |
|--------------------|------------------------------|-------|-------|------|------------------|
|                    | KMax_LPP_Frequency           | 53.89 | 57.97 |      | Kmax             |
|                    | KNom_LPP_Frequency           | 55.95 | 60.19 |      | Knom             |
| DD 5               | KMin_LPP_Frequency           | 57.5  | 61.88 | kHz  | Kmin             |
| PP Frequency       | KMax_LPP_Frequency_avg       | 53.89 | 57.97 | KHZ  | Kmax             |
|                    | KNom_LPP_Frequency_avg       | 55.95 | 60.19 |      | Knom             |
|                    | KMin_LPP_Frequency_avg       | 57.5  | 61.88 |      | Kmin             |
|                    | KMax_LPP_Inductance          | 21.17 | 23.66 |      | Kmax             |
|                    | KNom_LPP_Inductance          | 19.64 | 21.94 |      | Knom             |
| PP Inductance      | KMin_LPP_Inductance          | 18.56 | 20.80 | μН   | Kmin             |
| PP Inductance      | KMax_LPP_Inductance_avg      | 21.17 | 23.66 | μн   | Kmax             |
|                    | KNom_LPP_Inductance_avg      | 19.64 | 21.94 |      | Knom             |
|                    | KMin_LPP_Inductance_avg      | 18.56 | 20.80 |      | Kmin             |
|                    | KMax_LPP_Frequency_FA_delta  | 13.26 | 15.34 |      |                  |
| Tx Frequency       | KNom_LPP_Frequency_FA_delta  | 10.81 | 13.23 | kHz  |                  |
|                    | KMin_LPP_Frequency_FA_delta  | 9.13  | 11.55 |      | All              |
|                    | KMax_LPP_Inductance_FA_delta | 7.07  | 9.12  |      | All              |
| Tx Inductance      | KNom_LPP_Inductance_FA_delta | 5.46  | 7.32  | μН   |                  |
|                    | KMin_LPP_Inductance_FA_delta | 4.44  | 6.09  |      |                  |
| PP Frequency STD   | LPP_Frequency_STDEV          | -     | 0.4   | -    | All              |
| PP Inductance STD  | LPP_Inductance_STDEV         | -     | 0.4   | -    | All              |
| PP_repeatability   |                              | 100   | 100   | -    | All              |
| PP Vsense_Disabled | Kxxx_LPP_Vsense_Disabled     | 0     | 200   | mV   | All              |
| .PP Vsense_Enabled | Kxxx_LPP_Vsense_Enabled      | 5030  | 5260  | mV   | All              |

## 2. Quiesce Mode - Digital Ping Level Tests

**Description:** This test required ginger/B332 dev board, both Tx and Rx coil. Test digital ping level (6Vboost and 100deg bridge phase) at 0.1C charge rate at various positions and Vrect and Ping Pong Tests. Ping Pong test is performed to check Inband comms by sending a train of bits as ASK (ginger board/B332 Dev Board).

#### Failure Mode(s) Captured:

- 1. Vrect: Ginger/B332 reach UVP or OVP at the digital ping level
- 2. Ping Pong:-Test Dotara's Internal ASK/FSK Communication.

#### **Test Setup and Procedure:**

Order of load ramping as follows:

- Set VBOOST to 6.1V
- Adjust bridge phase from 100 degrees
- Set loading to 40mA ballast (No Eload i.e. turn Eload off/Set Eload to 0A)

|                               | i.e. turi Libaa on joet Libaa to on j                                                             |                                                                                                                          |                                                                                                                                |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
|                               | Description                                                                                       | Interface                                                                                                                | Command                                                                                                                        |  |  |
| Set coupling position Fixture |                                                                                                   | Fixture                                                                                                                  | Loads @ all Couplings                                                                                                          |  |  |
| Step                          | Description                                                                                       | Interface                                                                                                                | Command                                                                                                                        |  |  |
|                               |                                                                                                   |                                                                                                                          | For DP @ 0.1C                                                                                                                  |  |  |
| 1                             | Set boost to meet the load conditions.  Note: Minimum Vboost is 6100mV, Don't set Vboost < 6100mV | TX Diags                                                                                                                 | hidreportnoplugin -u 0xFF00,0x0036 set 0x03 03 D4 17 88 13 <b>Payload: ——&gt;</b> Byte0-1: sense voltage (eg. 0x17D4 = 6100mV) |  |  |
| 2                             | Set the Bridge phase <b>100deg</b>                                                                | Tx HID hidreportnoplugin -u 0xFF00,0x0036 set 0x04 04 1C F3 01 00 10 27 50 46 <b>Eg 0x2710:</b> 10000cdeg = 100deg phase |                                                                                                                                |  |  |
| 3                             | Measure Vrect on Rx                                                                               | Rx I2C                                                                                                                   | Vrect:- scorpius get vrect                                                                                                     |  |  |

Revision: DVT\_V3.0



|   | Description                                                                   | Interface | Command                                                                                                                                                                                                                                                                                              |
|---|-------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Tell Rx to go into static mode                                                | Rx I2C    | Write I2C packet: (39) c0 ae 80 80 1e 09 02 01 AE Ginger command: set mode none Ginger command: set mode rx Ginger command: ikt write 0xF0000B80 0xAE010209 Read one byte: Should be 0x60 B332 DevBoard: i2c rawwrite charger 0x0f 0x00 0x2E 0x09 0x01 0x01 //set Aculeus to static closed loop mode |
| 5 | Choose Comm1                                                                  | Rx I2C    | Write I2C packet:       (39) c0 ae 80 80 1e 01 00 05 AD         Ginger command:       ikt write 0x0xF0000B80 0xAD050001         B332 DevBoard:       i2c rawwrite charger 0x0F 0x00 0x2d 0x01 0x00 0x05 //Select Comm cap1 - For lpadTx                                                              |
| 6 | Tell Tx to initiate ping pong with the Rx i.e. 10 packets, 100ms packet delay | Tx HID    | hidreportnoplugin -u 0xFF00,0x0036 set 0x02 02 0a 00 64 00  Payload:——> byte0-1: Number of packets to send: 10  byte2-3: Delay between packets: 100ms                                                                                                                                                |
| 7 | Wait 3 second for RX to send packets before reading buffer                    | Fixture   | Wait 3 second                                                                                                                                                                                                                                                                                        |
| 8 | Read back data that was captured from the Tx.                                 | Tx HID    | hidreportnoplugin -u 0xFF00,0x0036 get 0x02  Response:  byte0: ID                                                                                                                                                                                                                                    |
| 9 | Repeat step 2 to 8 with All coupling positions                                |           |                                                                                                                                                                                                                                                                                                      |

#### Acceptance criteria:

| Test Parameter                | Insight Keys Recorded  | LL   | UL   | Units | Comments/Notes |
|-------------------------------|------------------------|------|------|-------|----------------|
| Wreat D222 @ DD010            | Kmax_SCRP_Vrect@DP0.1C | 7500 | 9000 | mV    |                |
| Vrect_B332 @ DP0.1C           | Kmin_SCRP_Vrect@DP0.1C | 6000 | 7500 | mV    |                |
| Number of Pings Sent @ DP     | SCRP_Pings_Sent@DP     | 10   | 10   | -     |                |
| Number of Pongs Received @ DP | SCRP_Pongs_Recieved@DP | 10   | 10   | -     |                |

### 3. Normal Test Mode (hidreport) :- Power + Comms

Description: Transferring power at various loads / charge rates using full closed loop control and measuring power and efficiency. Time to reach fast charge should be minimise to maximise time spent at 10C.

Failure Mode(s) Captured: Time to 10C > then the budget. Closed loop comms not working as intended due to high ASK and FSK packet error rate.

Test Setup and Procedure: DUT needs to be taken to separate discharge station before this test can be run.

Rx battery (Simulator)SOC: 0% (3.4 V)

| Steps | Description                                       | Interface   | Command                                                                                                                                                                                                                                           | Insight Key Recorder |  |  |  |
|-------|---------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
|       |                                                   | Only to i   | initiate Close loop testing                                                                                                                                                                                                                       |                      |  |  |  |
| 1     | Move to Kmax position, and after active reference |             |                                                                                                                                                                                                                                                   |                      |  |  |  |
| 2     | Set battery to 4.1V                               | Battery Sim |                                                                                                                                                                                                                                                   |                      |  |  |  |
| 3     | Reset Tx                                          | Tx HID      | hidreportnoplugin -u 0xFF00,0x0036 set 0x91 91                                                                                                                                                                                                    |                      |  |  |  |
| 4     | Clear ASK and FSK counter                         |             | hidreportnoplugin -u 0xFF00,0x0036 set 0x20 20                                                                                                                                                                                                    |                      |  |  |  |
| 5     | Airplane Mode/BT Enable                           |             | hidreportnoplugin -u 0xFF00,0x0036 set 0x92 92 02 00 00 00  byte0: ID (ContextStateID = 0x92)  byte 1-4: [u32] Context State (32bit bimap)(ContextState = 0x00000001)  Bluetooth On/Off- bit 0 (set if on)  AirplaneMode On/Off- bit 1(set if on) |                      |  |  |  |
| 6     | Enable Highest Tx Power                           |             | hidreportnoplugin -u 0xFF00,0x0036 set 0x84 84 03 byte0: [u8] ID (ChargeRate = 0x84) byte1: [u8] Level 0 - Off 1 - Low 2 - Medium 3 - High                                                                                                        |                      |  |  |  |
| 7     | Driver Ready Mode                                 |             | hidreportnoplugin -u 0xFF00,0x0036 set 0x93 93 00 00 00 00                                                                                                                                                                                        |                      |  |  |  |



| Steps | Description                                                                                                      | Interface   | Command                                                                                                                                                                                                                                                                                                                                                                    | Insight Key Recorder                                                                                     |
|-------|------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 8     | Check if TX is in CloseLoop                                                                                      |             | hidreportnoplugin -u 0xFF00,0x0036 get 0x0a rsp: 0x0A xx xx xx xx (Received LSB First) eg. 0x0A 04 00 00 00 [u8] byte0: ID (PowerStateID = 0x0A) [32] byte1-4: State (0x00000004 = Closed Loop state) 0 - Reset 1 - LppStandby 2 - Lpp 3 - DigitalPing 4 - Closed Loop 5 - CloakStandby 6 - Cloak 7 - ProtectionPwrOff 8 - WaitVddPwrGood 9 - TxError 10 - WaitDriverReady | Close_Loop_respond                                                                                       |
|       |                                                                                                                  | Initialise  | e complete, 10C test start                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |
| 9     | Set battery to 3.47V                                                                                             | Battery Sim |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |
| 10    | Repeat step 3-8                                                                                                  | Tx HID      | Reset and start                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |
| 11    | Monitor "InputVoltage" until it is >5V. This is done by continuously sending pmu sensor command                  | Rx I2C      | pmu sensor<br>Note: pmu sensor cycle is around 50mS                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| 12    | Record time (T1)                                                                                                 | Overlay     |                                                                                                                                                                                                                                                                                                                                                                            | CL_To_10C_start                                                                                          |
| 13    | Monitor "actualChargeCurrent" until it reaches >520mA. This is done by continuously sending pmu sensor command   | Rx I2C      | pmu sensor<br>Note: pmu sensor cycle is around 50mS                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| 14    | Record time (T2)                                                                                                 | Overlay     |                                                                                                                                                                                                                                                                                                                                                                            | CL_At_10C_start                                                                                          |
| 15    | Calculate Time_to_10C                                                                                            |             | T2-T1=Time_to_10C                                                                                                                                                                                                                                                                                                                                                          | CL_Time_to_10C                                                                                           |
| 16    | wait 1 seconds for V <sub>Rect</sub> to stabilise                                                                | N/A         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |
| 17    | Read back comms info from Tx side                                                                                | Tx HID      | hidreportnoplugin -u 0xFF00,0x0036 get 0x20 (Sent LSB First)   rsp: 0x20 xx                                                                                                                                                                                                                                                            | CL_FSK_sent@10C<br>CL_ASK_received@10C<br>CL_Valid_ASK_received@10C                                      |
| 18    | Clear ASK and FSK counter                                                                                        | Tx HID      | hidreportnoplugin -u 0xFF00,0x0036 set 0x20 20                                                                                                                                                                                                                                                                                                                             |                                                                                                          |
| 19    | Calculate the overall Packet Error Rate                                                                          |             | Packet Error = {(Total FSK Packets) - (Total valid ASK Packets)}/Total FSK Packets                                                                                                                                                                                                                                                                                         | CL_Overall_Packet Error @10C                                                                             |
| 20    | Tx Observable command:  Ictx,Vsense, Isense,Vrect,Irect,efficiency  Note:VSNS ISNS ICTX are updated every ~150ms | Tx HID      | hidreportnoplugin -u 0xFF00,0x0036 get 0x30 (Sent LSB First)  rsp: xx                                                                                                                                                                                                                                                                  | CL_Vsense@10C CL_lsense@10C CL_lctx@10C CL_Vrect_Tx_IBC@10C CL_lrect_Tx_IBC@10C CL_Efficiency_Tx_IBC@10C |
| 21    | Rx PMU sensor command:<br>InputVoltage (Vrect), InputCurrent (Irect),<br>ActualChargeCurrent                     | Rx I2C      | pmu sensor  10x average of below  Command for Irect: scorpius get irect  Command for Vrect: scorpius get vrect                                                                                                                                                                                                                                                             | CL_Vrect_B332@10C<br>CL_Irect_B332@10C<br>CL_ICharge_B332@10C                                            |
| 22    | Calculate power and efficiency                                                                                   | Overlay     | Rx_Output_Power_B332 =Vrect_B332 * Irect_B332 Tx_Input_Power=Vsense * Isense Efficiency =(Rx_Output_Power_B332 / Tx_Input_Power)%                                                                                                                                                                                                                                          | CL_Rx_Output_Power_B332@10C<br>CL_Tx_Input_Power@10C<br>CL_Efficiency_Calculated@10C                     |
| 23    | Monitor charger Irect until it reaches <520mA. This is done by continuously sending pmu sensor command           | Rx I2C      | pmu sensor<br>Note: pmu sensor cycle is around 50mS                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| 24    | Record time (T3)                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                            | CL_At_10C_end                                                                                            |
|       |                                                                                                                  | 10C tes     | st finished, 3C test start                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |
| 25    | Monitor "actualChargeCurrent" until it reaches <180mA. This is done by continuously sending pmu sensor command   | Rx I2C      | pmu sensor<br>Note: pmu sensor cycle is around 50mS                                                                                                                                                                                                                                                                                                                        | Adding on the 20~30mA error margin during charge current change.                                         |
| 26    | Record time (T4)                                                                                                 | Overlay     |                                                                                                                                                                                                                                                                                                                                                                            | CL_At_3C_start                                                                                           |
| 27    | Calculate Time_at_10C<br>and Time_to_3C                                                                          | Overlay     | Time_at_10C = T3-T2 and Time_from_10C_to_3C=T4-T3                                                                                                                                                                                                                                                                                                                          | CL_Time_at_10C<br>CL_Time_from_10C_to_3C                                                                 |
| 28    | wait 5 seconds for V <sub>Rect</sub> to stabilise                                                                | N/A         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |



| Steps | Description                                       | Interface        | Command                         | Insight Key Recorder                                                                                                                                                                                                                                        |
|-------|---------------------------------------------------|------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29    | Repeat step 17 to 19                              |                  |                                 | CL_FSK_sent @3C<br>CL_ASK_received @3C<br>CL_Valid_ASK_received@3C<br>CL_Overall_Packet Error@3C                                                                                                                                                            |
| 30    | Repeat step 20 to 22                              |                  |                                 | CL_Vsense@3C CL_Jsense@3C CL_Jctx@3C CL_Vrect_Tx_IBC@3C CL_Jrect_Tx_IBC@3C CL_Efficiency_Tx_IBC@3C CL_Vrect_B332@3C CL_Icet_B332@3C CL_ICharge_B332@3C CL_ICharge_B332@3C CL_Tx_Input_Power_B332@3C CL_Tx_Input_Power@3C CL_Efficiency_Calculated@3C        |
|       |                                                   | 3C test          | finished, 0.1C test start       |                                                                                                                                                                                                                                                             |
| 31    | Set battery voltage VoC to 4.15V                  | Battery Sim      |                                 |                                                                                                                                                                                                                                                             |
| 32    | Repeat step 3-8                                   | Tx HID           | Reset and start                 |                                                                                                                                                                                                                                                             |
| 33    | wait 5 seconds for V <sub>Rect</sub> to stabilise | N/A              |                                 |                                                                                                                                                                                                                                                             |
| 34    | Repeat step 17 to 19                              |                  |                                 | CL_FSK_sent @0.1C<br>CL_ASK_received @0.1C<br>CL_Valid_ASK_received@0.1C<br>CL_Overall_Packet Error @0.1C                                                                                                                                                   |
| 35    | Repeat step 20 to 22                              |                  |                                 | CL_Vsense@0.1C CL_Jsense@0.1C CL_Jctx@0.1C CL_Vrect_Tx_IBC@0.1C CL_Jrect_Tx_IBC@0.1C CL_Efficiency_Tx_IBC@0.1C CL_Vrect_B332@0.1C CL_Jrect_B332@0.1C CL_Jcharge_B332@0.1C CL_Rx_Output_Power_B332@0.1C CL_Tx_Input_Power@0.1C CL_Efficiency_Calculated@0.1C |
|       |                                                   | 0.1 C test finis | hed, move to different position |                                                                                                                                                                                                                                                             |
| 36    | Move to KNom position and repeat step 2 to 35     |                  |                                 |                                                                                                                                                                                                                                                             |
| 37    | Move to KMin position and repeat step 2 to 35     |                  |                                 |                                                                                                                                                                                                                                                             |

### **Acceptance criteria:**

| Test Parameter                               | Insight Keys Recorded                                                               | LL   | UL   | Units | Comments/Notes                                                                  |  |
|----------------------------------------------|-------------------------------------------------------------------------------------|------|------|-------|---------------------------------------------------------------------------------|--|
| Load 0.1C                                    |                                                                                     |      |      |       |                                                                                 |  |
|                                              | CL KMax Vsense@0.1C                                                                 | 5897 | 6200 |       |                                                                                 |  |
|                                              |                                                                                     |      |      |       |                                                                                 |  |
| CL_Vsense @ 0.1C                             | CL_KNom_Vsense@0.1C                                                                 | 5889 | 6200 | mV    |                                                                                 |  |
|                                              | CL_KMin_Vsense@0.1C                                                                 | 5889 | 6200 |       |                                                                                 |  |
|                                              | CL_KMax_Isense@0.1C                                                                 | 48   | 69   |       |                                                                                 |  |
| CL_Isense @ 0.1C                             | CL_KNom_Isense@0.1C                                                                 | 59   | 69   | mA    | Tx Observable command                                                           |  |
|                                              | CL_KMin_Isense@0.1C                                                                 | 66   | 76   |       |                                                                                 |  |
|                                              | CL_KMax_lctx@0.1C                                                                   | 181  | 728  |       |                                                                                 |  |
| CL_Vctx_IPeak @ 0.1C                         | CL_KNom_lctx@0.1C                                                                   | 194  | 785  | mA    |                                                                                 |  |
|                                              | CL_KMin_lctx@0.1C                                                                   | 224  | 839  |       |                                                                                 |  |
| CL_ICharge_B332@0.1C                         | CL_KMax_lcharge_B332@0.1C<br>CL_KNom_lcharge_B332@0.1C<br>CL_KMin_lcharge_B332@0.1C | 0    | 20   | mA    | Rx PMU Sensor command<br>Advised from pencil factory                            |  |
|                                              | CL_KMax_Vrect_Tx_IBC@0.1C<br>CL_KMax_Vrect_B332@0.1C                                |      |      |       |                                                                                 |  |
| CL_Vrect_Tx_IBC@0.1C<br>CL_Vrect_B332 @ 0.1C | CL_KNom_Vrect_Tx_IBC@0.1C<br>CL_KNom_Vrect_B332@0.1C                                | 6370 | 6630 | mV    | Tx Observable command for IBC data Rx PMU Sensor command Vrect target = 6.5V±2% |  |



| CLAMAR_CALLERS   CLAM   | Test Parameter                  | Insight Keys Recorded              | LL     | UL     | Units | Comments/Notes                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|--------|--------|-------|------------------------------------------------------------|--|
| CL_MAR_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL_MED_CL |                                 |                                    |        |        |       |                                                            |  |
| CL_PER_LIP_EXCENSION   |                                 |                                    |        |        |       |                                                            |  |
| Company   Comp   |                                 |                                    |        |        | mA    | Tx Observable command for IRC data                         |  |
| C., Distr. D., Distr.  |                                 |                                    | 35     | 45     |       | Rx PMU Sensor command                                      |  |
| CL. Pk. Output. Prosest. RSSS @ 0.11   CL. When IR. Output. Provest. RSSS@0.11   Pk. Output. Prov   |                                 |                                    |        |        |       | 1                                                          |  |
| CL_KMM_RC_Odput_Power_BEEZE(01C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | CL_KMax_Rx_Output_Power_B332@0.1C  |        |        |       |                                                            |  |
| CL_Manuscrip   CL_M   | CL_Rx_Output_Power_B332 @ 0.1C  | CL_KNom_Rx_Output_Power_B332@0.1C  | 222.95 | 298.35 | mW    | Vrect_B332 * Irect_B332                                    |  |
| Cl.   Mate   Pricency   Cl.    |                                 | CL_KMin_Rx_Output_Power_B332@0.1C  |        |        |       |                                                            |  |
| CL_KNow_Energy   CL_K   |                                 |                                    | 52.65  | 70.75  |       |                                                            |  |
| CL_FSK_zemi@01C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                    | 50.11  | 66.35  | %     |                                                            |  |
| CL_NSK_received@0.1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | -                                  | 45.75  | 61.60  |       |                                                            |  |
| CL_Valid_ASK_received@0.1C   CL_Kxxx_Valid_ASK_received@0.1C   -1   0   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CL_FSK_sent @0.1C               | CL_Kxxx_FSK_sent @0.1C             | -      | -      | -     |                                                            |  |
| CL_Overall_Packet Error @0.1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CL_ASK_received@0.1C            | CL_Kxxx_ASK_received@0.1C          | -      | -      | -     |                                                            |  |
| CL_KMax_Vsersse@3C   5900   6200   mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CL_Valid_ASK_received@0.1C      | CL_Kxxx_Valid_ASK_received@0.1C    | -      | -      | -     |                                                            |  |
| CL_KMax_Vserse@3C   5900   6200   mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL_Overall_Packet Error @0.1C   | CL_Kxxx_Overall_Packet Error @0.1C | -1     | 0      | -     |                                                            |  |
| CL_Vennee @ 3C  CL_KNam_Vennee@3C  CL_KNam_Vennee@3C  CL_KNam_Sennee@3C  RNam_Sennee@3C  RNam_Sennee Rna |                                 |                                    | Loa    | d 3C   |       |                                                            |  |
| CL_KMm_Vsense@3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | CL_KMax_Vsense@3C                  | 5900   | 6200   | mV    |                                                            |  |
| CL_KMax_lsense@3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CL_Vsense @ 3C                  | CL_KNom_Vsense@3C                  | 5900   | 6200   |       |                                                            |  |
| CL_Isense @ 3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | CL_KMin_Vsense@3C                  | 5900   | 6411   |       |                                                            |  |
| CL_KMax_lctx@3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | CL_KMax_Isense@3C                  | 182    | 192    | mA    |                                                            |  |
| CL_Ickx @ 3C   CL_KNan_letx@3C   427   710   mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL_Isense @ 3C                  | CL_KNom_Isense@3C                  | 190 2  | 205    |       |                                                            |  |
| CL_Icht @ 3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | CL_KMin_Isense@3C                  | 205    | 220    |       |                                                            |  |
| CL_KMin_lctx@3C   528   877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | CL_KMax_lctx@3C                    | 417    | 618    |       |                                                            |  |
| KMax_Vrect_B332@3C   KNom_Vrect_B332@3C   7840   8160   mV   Fixture Cmd: Vrect Target = 8V ±2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL_lctx @ 3C                    | CL_KNom_lctx@3C                    | 427    | 710    | mA    |                                                            |  |
| Vrect_B332@3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | CL_KMin_lctx@3C                    | 528    | 877    |       |                                                            |  |
| KMin_Vrect_B332@3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | KMax_Vrect_B332@3C                 |        |        |       |                                                            |  |
| KMax_Irect_B332@3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vrect_B332 @ 3C                 | KNom_Vrect_B332@3C                 | 7840   | 8160   | mV    | Fixture Cmd: Vrect Target = 8V ±2%                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | KMin_Vrect_B332@3C                 |        |        |       |                                                            |  |
| KMin_Irect_B332@3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | KMax_Irect_B332@3C                 |        |        |       |                                                            |  |
| KMax_Rx_Output_Power_B332@3C   914.00   984.50   mW   Vrect * Irect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Irect_B332 @ 3C                 | KNom_Irect_B332@3C                 | 98     | 128    | mA    | Fixture Cmd: Irect Target = 113mA +iktara load(~0 to 15mA) |  |
| Rx_Output_Power_B332 @ 3C   KNom_Rx_Output_Power_B332@3C   919.65   976.40   mW   Vrect * Irect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | KMin_Irect_B332@3C                 |        |        |       |                                                            |  |
| KMin_Rx_Output_Power_B332@3C       905.50       982.60         KMax_Efficiency@3C       69.06       75.07         Efficiency@3C       65.10       72.00       %       Rx_Power / (Vsense * Isense)         KMin_Efficiency@3C       59.70       68.20         Number of Packets Sent @ 3C       SCRP_Packets_Sent@3C       10       10       -         Number of Packets Received @ 3C       SCRP_Packets_Recieved@3C       10       10       -         Load 10C         CL_KMax_Vsense@10C       9000       9400         CL_Vsense @ 10C       09400       10500       mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | KMax_Rx_Output_Power_B332@3C       | 914.00 | 984.50 |       |                                                            |  |
| KMax_Efficiency@3C   69.06   75.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rx_Output_Power_B332 @ 3C       | KNom_Rx_Output_Power_B332@3C       | 919.65 | 976.40 | mW    | Vrect * Irect                                              |  |
| Efficiency @ 3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | KMin_Rx_Output_Power_B332@3C       | 905.50 | 982.60 |       |                                                            |  |
| KMin_Efficiency@3C       59.70       68.20         Number of Packets Sent @ 3C       SCRP_Packets_Sent@3C       10       10       -         Number of Packets Received @ 3C       SCRP_Packets_Recieved@3C       10       10       -         Load 10C         CL_KMax_Vsense@10C       9000       9400         CL_KNom_Vsense@10C       9400       10500       mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | KMax_Efficiency@3C                 | 69.06  | 75.07  |       |                                                            |  |
| Number of Packets Sent @ 3C         SCRP_Packets_Sent@3C         10         10         -           Number of Packets Received @ 3C         SCRP_Packets_Recieved@3C         10         10         -           Load 10C           CL_KMax_Vsense@10C         9000         9400           CL_Vsense @ 10C         CL_KNom_Vsense@10C         9400         10500         mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Efficiency @ 3C                 | KNom_Efficiency@3C                 | 65.10  | 72.00  | %     | Rx_Power / (Vsense * Isense)                               |  |
| Number of Packets Received @ 3C         SCRP_Packets_Recieved@3C         10         10         -           Load 10C           CL_KMax_Vsense@10C         9000         9400           CL_Vsense @ 10C         CL_KNom_Vsense@10C         9400         10500         mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | KMin_Efficiency@3C 59.70 68.20     |        |        |       |                                                            |  |
| Load 10C           CL_KMax_Vsense@10C         9000         9400           CL_Vsense @ 10C         CL_KNom_Vsense@10C         9400         10500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Packets Sent @ 3C     | SCRP_Packets_Sent@3C               | 10     | 10     | -     |                                                            |  |
| CL_KMax_Vsense@10C 9000 9400  CL_Vsense @ 10C CL_KNom_Vsense@10C 9400 10500 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of Packets Received @ 3C | SCRP_Packets_Recieved@3C           | 10     | 10     | -     |                                                            |  |
| CL_Vsense @ 10C         CL_KNom_Vsense@10C         9400         10500         mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                    | Load   | d 10C  |       |                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | CL_KMax_Vsense@10C                 | 9000   | 9400   |       |                                                            |  |
| CL_KMin_Vsense@10C 10100 10600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CL_Vsense @ 10C                 | CL_KNom_Vsense@10C                 | 9400   | 10500  | mV    |                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | CL_KMin_Vsense@10C                 | 10100  | 10600  |       |                                                            |  |



| Test Parameter                   | Insight Keys Recorded         | LL      | UL      | Units | Comments/Notes                                              |
|----------------------------------|-------------------------------|---------|---------|-------|-------------------------------------------------------------|
|                                  | CL_KMax_Isense@10C            | 410     | 450     |       |                                                             |
| CL_Isense @ 10C                  | CL_KNom_Isense@10C            | 400     | 430     | mA    |                                                             |
|                                  | CL_KMin_Isense@10C            | 400     | 430     |       |                                                             |
|                                  | CL_KMax_lctx@10C              | 657     | 1041    |       |                                                             |
| CL_lctx @ 10C                    | CL_KNom_lctx@10C              | 732     | 1345    | mA    |                                                             |
|                                  | CL_KMin_lctx@10C              | 887     | 1575    |       |                                                             |
|                                  | KMax_Vrect_B332@10C           |         |         |       |                                                             |
| Vrect_B332 @ 10C                 | KNom_Vrect_B332@10C           | 13720   | 14280   | mV    | Fixture Cmd: Vrect Target = 14±2%v                          |
|                                  | KMin_Vrect_B332@10C           |         |         |       |                                                             |
|                                  | KMax_Irect_B332@10C           |         |         | mA    | Fixture Cmd: Irect Target = 200mA± +iktara load(~0 to 15mA) |
| Irect_B332 @ 10C                 | KNom_Irect_B332@10C           | 185     | 215     |       |                                                             |
|                                  | KMin_Irect_B332@10C           |         |         |       |                                                             |
|                                  | KMax_Rx_Output_Power_B332@10C |         |         |       |                                                             |
| Rx_Output_Power_B332 @ 10C       | KNom_Rx_Output_Power_B332@10C | 2538.20 | 3070.20 | mW    | Vrect * Irect                                               |
|                                  | KMin_Rx_Output_Power_B332@10C |         |         |       |                                                             |
|                                  | KMax_Efficiency@10C           | 69.25   | 72.53   |       |                                                             |
| Efficiency @ 10C                 | KNom_Efficiency@10C           | 65.13   | 69.72   | %     | Rx_Power / (Vsense * Isense)                                |
|                                  | KMin_Efficiency@10C           | 60.69   | 66.76   |       |                                                             |
| Number of Packets Sent @ 10C     | SCRP_Packets_Sent@10C         | 10      | 10      | -     |                                                             |
| Number of Packets Received @ 10C | SCRP_Packets_Recieved@10C     | 10      | 10      | -     |                                                             |

J307 Scorpius Char FATP ERS Revision: DVT V3.0

## **B.** Test Procedure in EFI Diags Mode

## 7. Critical and Frequently Used Commands

#### 7.1. Quiesce Test Mode

After programming the Tx defaults to NominalMode (LPP > Digital Ping > Power negotiation > Closed loop).

The following command needs to be sent to the Tx to enable QuiesceMode whereby certain test commands are then enabled.

A power cycle will mean the unit needs to be re-programmed as the firmware application is run from SRAM.

This is the test mode whereby additional commands for test/validation are active. This command will disable everything except the MCU i.e. Boost, Bridge, LPP switch will be disabled.

Resets into the quiesce mode with the bridge disabled.

smokey ScorpiusHid --run --test "Set" --args "ReportID=0x09, ReportPayload={0x01}"

Note: This command i.e. Quiesce Mode needs to be set once at beginning of testing i.e. from <u>Section 8.1. Load FW</u> or unless unit is reset or power cycled or Nominal Mode has been set. If the unit is power cycled you will need to load fw again. Nominal Mode

#### 7.2. Nominal Mode

This is the normal runtime mode. Here, a subset of commands used for test/validation are deactivated.

smokey ScorpiusHid --run --test "Set" --args "ReportID=0x09, ReportPayload={0x00}"

Resets into the nominal mode where it will start the LPP-> Digital Ping-> Power Negotiation-> Closed loop sequence.

J307 Scorpius Char FATP ERS Revision: DVT\_V3.0

## 8. Test Coverage @ Scorpius Char Station

#### 8.1. Load Tx FW & Read Version

**Description**:-Load Tx FW. Dotara has no NVRAM and therefore will lose all the memory/setting after power cycling or load fw. Dotara will need to load the fw after each power cycling.

**Failure Mode(s) Captured**:TBD **Test Setup and Procedure**:

| Step | Description                                                                     | Interface | Command / Notes                                                                                                                                                                                                                                                                                    |
|------|---------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | his command i.e. Quiesce Mode ne<br>nal Mode has been set. <b>If the unit</b> l |           | e at beginning of testing i.e. from <u>Section 8.1. Load FW</u> or unless unit is reset or power cycled out to load fw again.                                                                                                                                                                      |
| A    | Tell Tx to get out of standalone mode.                                          | TX Diags  | i2c -w 5 0x39 6 Note:-Send this command 2x times with 1s delay. There may be I2C error reported with this command, but can be ignored.                                                                                                                                                             |
| В    | Tell Tx to enter Quiesce Mode                                                   | TX Diags  | Note: Need to send the below command after every 2nd time of the above command within 3sec or with minimum or no delay as possible of above command. You cannot enter Quiesce mode without exiting the standalone mode.  smokey ScorpiusHidruntest "Set"args "ReportID=0x09, ReportPayload={0x01}" |
| 1    | Set Vin 3.6V. Or Preparation to pull high: PMU_TO_DOTARA_EN_EXT                 | Fixture   | socgpioport 1pin 46output 1  Note: 3.6V ±1% must be met.                                                                                                                                                                                                                                           |
| 2    | Tell Tx to get out of standalone mode.                                          | TX Diags  | i2c - w 50x396<br>Note:-Send this command 2x times with 1s delay. There may be I2C error reported with this command, but can be ignored.                                                                                                                                                           |
| 3    | Load Tx FW                                                                      | TX Diags  | Note: Need to send this command every time within 3sec of above command. You cannot enter Load FW without exiting the standalone mode. Path for FW might change.  smokey ScorpiusHidruntest "FwLoad"args "PathToFwLoad='nandfs:\\AppleInternal\\Diags\\Scorpius\\J307\\ScorpiusTx-dotara.bin'"     |
| 4    | Tell Tx to get out of standalone mode.                                          | TX Diags  | i2c-w50x396<br>Note:-Send this command 2x times with 1s delay. There may be I2C error reported with this command, but can be ignored.                                                                                                                                                              |
| 5    | Tell Tx to enter Quiesce Mode                                                   | TX Diags  | Note: Need to send the below command after every 2nd time of the above command within 3sec or with minimum or no delay as possible of above command. You cannot enter Quiesce mode without exiting the standalone mode.  smokey ScorpiusHidruntest "Set"args "ReportID=0x09, ReportPayload={0x01}" |
| 6    | Read Status (Version)                                                           | TX Diags  | smokey ScorpiusHidruntest "Get"args "ReportID=0xBB"                                                                                                                                                                                                                                                |

#### Command to read Tx FW version:

smokey ScorpiusHid --run --test "Get" --args "ReportID=0xBB" Example:-This reads back 4 bytes: 0x01 0x00 0x02 0x05

Main FW Type (byte1&2): 0x0001 Main FW Version (byte3&4): 0x0502

| Test Parameter                | Insight Keys Recorded | Notes |
|-------------------------------|-----------------------|-------|
| Tx Fw Version SCRP_Tx_Version |                       |       |

#### 8.2. Rx FW Version

Ginger SN: diags get mlbsn Eload SN: diags get eloadsn

Versions: get versions ——> application: 2.6.19, this line is the Ginger FW version

B332 Dev Board Command to read Rx FW version:

i2c lock charger

i2c rawwrite charger 0x10 0x00 0x02 0x00 0x00 0x00

i2c rawread charger 04

i2c unlock charger

Read 4 byte packet: x x x x

Revision: DVT V3.0



Last 3 bytes will determine Rx version:

#### 8.3. Initial MTP Sector Check Before all tests.

**Description**: Make sure FW is in a good state at the Before of the test.

Failure Mode(s) Captured: TBD

Test Setup and Procedure: Refer below



Figure 1: MTP Word Locations

| Step | Description                                                                                                                                                                                       | Interface          | Command / Notes                                                                                                                                                                                                                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                   |                    | e at beginning of testing i.e. from <u>Section 8.3 MTP Sector Check</u> or unless unit t is power cycled you will need to load fw again.                                                                                                                                                           |
| 1    | Tell Tx to get out of standalone mode.                                                                                                                                                            | TX Diags           | i2c -w 5 0x39 6  Note:-Send this command 2x times. There may be I2C error reported with this command, but can be ignored.                                                                                                                                                                          |
| 2    | Tell Tx to enter Quiesce Mode                                                                                                                                                                     | TX Diags           | Note: Need to send the below command after every 2nd time of the above command within 3sec or with minimum or no delay as possible of above command. You cannot enter Quiesce mode without exiting the standalone mode.  smokey ScorpiusHidruntest "Set"args "ReportID=0x09, ReportPayload={0x01}" |
|      |                                                                                                                                                                                                   | Skip the above 2 s | teps if the unit is already in Quiesce Mode                                                                                                                                                                                                                                                        |
| 3    | Read MTP Sector 127                                                                                                                                                                               | TX Diags           | Smokey ScorpiusHidruntest "Print_Sector"args "MTP_sector=127"                                                                                                                                                                                                                                      |
| 4    | Read MTP Sector 126                                                                                                                                                                               | TX Diags           | smokey ScorpiusHidruntest "Print_Sector"args "MTP_sector=126"                                                                                                                                                                                                                                      |
| 5    | Location of Calibrated values of VBoost, Vsense, Isense,<br>LFOD & CTx into MTP and other values into MTP :-<br>Signature, Version,HWID, MLB SN, Checksum<br>Follow Figure 1 Bellow for Reference | Test Overlay       | Sector 127:-Word 0(Signature = 0x01); Word 1(Version = 0x02); Word 2(CTx); Word 6(VBoost); Word 7(Vsense); Word 8(Isense); Word 9(LFOD); Word 10(HWID); Word 11 - 15(MLB SN - 17 byte), Word 31(Checksum)                                                                                          |
| 6    | Location to store Calibrated values of Inductance (Ltx_nH) & frequency_Hz into MTP and also Signature and version.                                                                                | Test Overlay       | Sector 126 :- Word 0(Signature = 0x01); Word 1(Version = 0x02); Word 2(Ltx_nH); Word 3(frequency_Hz)                                                                                                                                                                                               |



| Test Parameter                                   | Insight Keys Recorded         | Comments/Notes                                                                        |  |  |
|--------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------|--|--|
|                                                  | Sector                        | 127                                                                                   |  |  |
| Check Sum - Sector 127 (Word 31)                 | SCRP_Check Sum_127_MTP_BEFORE |                                                                                       |  |  |
| Version (Word 1)                                 | SCRP_Version_127_MTP_BEFORE   |                                                                                       |  |  |
| Signature (Word 0)                               | SCRP_Signature_127_MTP_BEFORE |                                                                                       |  |  |
| Tx HWID_MTP (Word 10)                            | SCRP_TX_HWID_127_MTP_BEFORE   |                                                                                       |  |  |
| CTx MTP (Word 2)                                 | SCRP_CTx_127_MTP_BEFORE       | Will need this Values to be compared against MTP Check after test <b>Section 8.7.</b> |  |  |
| VBoost_Control MTP (Word 6)                      | SCRP_VBoost_127_MTP_BEFORE    |                                                                                       |  |  |
| Vsense MTP (Word 7)                              | SCRP_VSense_127_MTP_BEFORE    |                                                                                       |  |  |
| Isense MTP (Word 8)                              | SCRP_Isense_127_MTP_BEFORE    |                                                                                       |  |  |
| LFOD MTP (Word 9)                                | SCRP_LFOD_127_MTP_BEFORE      |                                                                                       |  |  |
| MLB Serial No. (Word 11 to Word 15 - Bits<1:17>) | SCRP_MLB_SN_127_MTP_BEFORE    |                                                                                       |  |  |
|                                                  | Sector                        | 126                                                                                   |  |  |
| Check Sum - Sector 126 (Word 31)                 | SCRP_Check Sum_126_MTP_BEFORE |                                                                                       |  |  |
| Version (Word 1)                                 | SCRP_Version_126_MTP_BEFORE   |                                                                                       |  |  |
| Signature (Word 0)                               | SCRP_Signature_126_MTP_BEFORE | Will need this Values to be compared against MTP Check after test <b>Section 8.7.</b> |  |  |
| LPP Inductance_MTP (Word 2)                      | SCRP_LPP_L_126_MTP_BEFORE     |                                                                                       |  |  |
| LPP Frequency_MTP (Word 3)                       | SCRP_LPP_FREQ_126_MTP_BEFORE  |                                                                                       |  |  |

## 8.4. Low Power Ping (LPP)

**Description**: Check the frequency and inductance for LPP at free air vs nominal position coupling.

Failure Mode(s) Captured: Poorly assembled / manufactured coils

**Test Setup and Procedure**:

| Step | Description                       | Interface | Command / Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-----------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Connect coils at nominal position | Fixture   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2    | Tell Tx to enter Quiesce Mode     | Tx Diags  | <b>Note:</b> Need to send the below command after every 2nd time of the above command within 3sec or with minimum or no delay as possible of above command. You cannot enter Quiesce mode without exiting the standalone mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3    | Disable LPP Switch "LPP_5V_EN"    | TX Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x01, ReportPayload={0x00}"  Payload: (LSB-MSB) —> Byte0: 0 - turn off, 1 - turn on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4    | Wait 2s                           | Fixture   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5    | Measure VSNS                      |           | Disable LFOD before reading Isense:  smokey ScorpiusHidruntest "Set"args "ReportID=0x41, ReportPayload={0x98; 0x36; 0x00; 0x40; 0x80; 0x01; 0x00; 0x00)"  Check status of LFOD  smokey ScorpiusHidruntest "Set"args "ReportID=0x40, ReportPayload={0x98; 0x34; 0x00; 0x40}"  ——> Fixture wait 0.5 sec <——  smokey ScorpiusHidruntest "Get"args "ReportID=0x40"  Response —> bits 7 & bit 8 = 0 if Disabled, 1 if enabled  Disable ASK_CR before reading Isense:  smokey ScorpiusHidruntest "Set"args "ReportID=0x41, ReportPayload={0x58; 0x34; 0x00; 0x00; 0x00; 0x00; 0x00]"  Note: Here, a "set" report command is first sent followed by a "get" report to return the requested data.  VSense:  smokey ScorpiusHidruntest "Set"args "ReportID=0x31, ReportPayload={0x00; 0x00; 0x8C}"  ——> Fixture wait 0.5 sec <——  smokey ScorpiusHidruntest "Get"args "ReportID=0x31"  Response —> bytes1-4 = Floating point value from ADC —> VSense_kmxx_MCU  Enabled LFOD after Isense reading:  smokey ScorpiusHidruntest "Set"args "ReportID=0x41, ReportPayload={0x98; 0x35; 0x00; 0x40; 0x80; 0x01; 0x00; 0x00}"  Wait 1 sec after setting back LFOD before doing next test. |
| 6    | Enable LPP Switch "LPP_5V_EN"     | TX Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x01, ReportPayload={0x01}"  Payload: (LSB-MSB) —> Byte0: 0 - turn off, 1 - turn on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7    | Wait 1s                           | Fixture   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8    | Repeat Step 5                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Step | Description                                                                                       | Interface          | Command / Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|---------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9    | Send 1.4uS LPP pulse                                                                              | TX Diags           | smokey ScorpiusHidruntest "Set"args "ReportID=0x05, ReportPayload={0x00; 0x46}"  Note: 0x46 gives 70 * 20ns = 1.4uS is the duration of the pulse.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10   | Delay 15mS before proceeding                                                                      | Fixture            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11   | Read output parameters of F and L and raw ADC data                                                | TX Diags           | To read Frequency, Inductance and Raw ADC data: smokey ScorpiusHidrun —test "Get"args"ReportID=0x05" Response: (Received LSB First, Length should be 23bytes) Byte0: ReportId (should equal 0x05) Byte1: Error code (0x00-> no error) Byte2: Sub-cmd (should be 0x00) bytes3-6: Floating point value of frequency Bytes7-10: Floating point value of inductance Bytes19-22: Buffer address of raw ADC data Bytes23-26: Number of raw ADC data elements (of size uint16_t)                                                                             |
| 12   | Collect raw ADC samples and upload to Insight                                                     | Tx Diags & Fixture | Collect Pointer to raw LPP data by sending the following command from bytes19-22 in the above response. Use the above info to read the raw data and upload to insight.  Use the command Below to read the raw ADC buffered data  smokey ScorpiusHidruntest "Mem16"args "Address= <address>, Length=<number bytes="" of="" read="" to="">" smokey ScorpiusHidruntest "Mem16"args "Address=<buffer address="">, Length=220"  The LPP data is 660 bytes. Therefore 3 loops of above should finished reading all the LPP data</buffer></number></address> |
| 13   | Repeat steps 2 - 5 x 100 times                                                                    | Tx Diags & Fixture | Save all of the data as a single log file for each unit and upload to InSight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14   | Calculate Free Air Δ Tx Frequency & Δ Tx Inductance Averaged over 100 repeats vs MTP sector Value | Tx HID & Fixture   | Δ Tx Frequency = SCRP_LPP_FREQ_MTP_BEFORE (From Section 8.3) - Kxx_LPP_Frequency_100_avg Δ Tx Inductance = Kxx_LPP_Inductance_100_avg - SCRP_LPP_L_MTP_BEFORE (From Section 8.3)                                                                                                                                                                                                                                                                                                                                                                      |
| 15   | Record parameters as per the table below                                                          | Fixture            | Apply limits accordingly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16   | Repeat steps 2 - 8 at all coupling position                                                       | Tx Diags & Fixture | Coupling Position :- KMax, KNom & KMin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Acceptance Criteria:

| Physical Parameter | InSight Keys Recorded                  | LL    | UL              | Unit | Offset Positions |
|--------------------|----------------------------------------|-------|-----------------|------|------------------|
|                    | SCRP_KMax_LPP_Frequency                | 53.89 | 57.97           |      | Kmax             |
|                    | KNom_LPP_Frequency                     | 55.95 | 60.19           |      | Knom             |
| _PP Frequency      | SCRP_KMin_LPP_Frequency                | 57.5  | 61.88           | kHz  | Kmin             |
| PP Flequency       | KMax_LPP_Frequency_avg                 | 53.89 | 57.97           | KHZ  | Kmax             |
|                    | KNom_LPP_Frequency_avg                 | 55.95 | 60.19           |      | Knom             |
|                    | SCRP_SCRP_KMin_LPP_Frequency_avg       | 57.5  | 61.88           |      | Kmin             |
|                    | KMax_LPP_Inductance                    | 21.17 | 23.66           |      | Kmax             |
|                    | KNom_LPP_Inductance                    | 19.64 | 21.94           |      | Knom             |
| PP Inductance      | SCRP_KMin_LPP_Inductance               | 18.56 | 20.80           | μН   | Kmin             |
| PP Inductance      | KMax_LPP_Inductance_avg                | 21.17 | 23.66           |      | Kmax             |
|                    | SCRP_KNom_LPP_Inductance_avg           | 19.64 | 21.94           |      | Knom             |
|                    | SCRP_KMin_LPP_Inductance_avg           | 18.56 | 20.80           |      | Kmin             |
|                    | KMax_LPP_Frequency_FA_delta            | 13.26 | 15.34           |      |                  |
| Tx Frequency       | SCRP_KNom_LPP_Frequency_FA_delta       | 10.81 | 10.81 13.23 kHz |      |                  |
|                    | SCRP_KMin_LPP_Frequency_FA_delta       | 9.13  | 11.55           |      | All              |
|                    | KMax_LPP_Inductance_FA_delta           | 7.07  | 9.12            |      |                  |
| Tx Inductance      | KNom_LPP_Inductance_FA_delta           | 5.46  | 7.32            | μН   |                  |
|                    | SCRP_SCRP_KMin_LPP_Inductance_FA_delta | 4.44  | 6.09            |      |                  |
| PP Frequency STD   | Kxxx_LPP_Frequency_STDEV               | -     | 0.4             | -    | All              |
| PP Inductance STD  | Kxxx_LPP_inductance_STDEV              | -     | 0.4             | -    | All              |
| PP_repeatability   |                                        | 100   | 100             | -    | All              |



### 8.5. Digital Ping Level Tests

**Description:** This test required ginger/B332 dev board, both Tx and Rx coil. Test digital ping level (6V1boost and 100deg bridge phase) at 0.1C charge rate at various positions and Vrect and Ping Pong Tests. Ping Pong test is performed to check Inband comms by sending a train of bits as ASK (ginger board/B332 Dev Board).

#### Failure Mode(s) Captured:

- 1. Vrect: Ginger/B332 reach UVP or OVP at the digital ping level
- 2. Ping Pong:-Test Dotara's Internal ASK/FSK Communication.

#### **Test Setup and Procedure:**

Order of load ramping as follows:

- Set VBOOST to 6.1V
- Adjust bridge phase from 100 degrees
- Set loading to 40mA ballast (No Eload i.e. turn Eload off/Set Eload to 0A)

| Step | Description                                                                                         | Interface | Command                                                                                                                                                                                                                                                                                             |  |  |
|------|-----------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|      | 1                                                                                                   |           | For DP @ 0.1C                                                                                                                                                                                                                                                                                       |  |  |
| 1    | Set boost to meet the load conditions.  Note: Minimum Vboost is 6100mV, Don't set  Vboost < 6100mV. | TX Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x03, ReportPayload={0xD4; 0x17; 0xF4; 0x01}"  Payload: ——> Byte0-1: Boost voltage (eg. 0x17D4 = 6100mV)                                                                                                                                              |  |  |
| 2    | Set the Bridge phase <b>100deg</b>                                                                  | TX Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x04, ReportPayload={0x1C; 0xF3; 0x01; 0x00; 0x10; 0x27; 0x50; 0x46}" <b>Eg 0x2710:</b> 10000cdeg = 100deg phase                                                                                                                                      |  |  |
| 3    | Command for following variables:<br>Rx:- Vrect                                                      | Rx I2C    | Vrect:- scorpius get vrect                                                                                                                                                                                                                                                                          |  |  |
| 4    | Tell Rx to go into static mode                                                                      | Rx I2C    | Write I2C packet: (39) c0 ae 80 80 1e 09 02 01 AE Ginger command: set mode none Ginger command: set mode rx Ginger command: ikt write 0xF0000B80 0xAE010209 Read one byte: Should be 0x60 B332 DevBoard: i2c rawwrite charger 0x0f 0x00 0x2E 0x09 0x01 0x01//set Aculeus to static closed loop mode |  |  |
| 5    | Choose Comm1                                                                                        | Rx I2C    | Write I2C packet:         (39) c0 ae 80 80 1e 01 00 05 AD           Ginger command:         ikt write 0x0xF0000B80 0xAD050001           B332 DevBoard:         i2c rawwrite charger 0x0F 0x00 0x2d 0x01 0x00 0x05         //Select Comm cap1 - For IpadTx                                           |  |  |
| 6    | Tell Tx to initiate ping pong with the Rx i.e. 10 packets, 100ms packet delay                       | Tx Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x02, ReportPayload={0x0A; 0x00; 0x64; 0x00}"  Payload:——> byte0-1: Number of packets to send: 10                                                                                                                                                     |  |  |
| 7    | Wait 3 second for RX to send packets before reading buffer                                          | Fixture   | Wait 3 second                                                                                                                                                                                                                                                                                       |  |  |
| 8    | Read back data that was captured from the Tx.                                                       | Tx Diags  | smokey ScorpiusHidruntest "Get"args "ReportID=0x02"  Response:  byte0: ID                                                                                                                                                                                                                           |  |  |
| 9    | Repeat step 2 to 8 with All coupling positions                                                      |           |                                                                                                                                                                                                                                                                                                     |  |  |

#### Acceptance criteria:

| Test Parameter                | Insight Keys Recorded  | LL   | UL   | Units | Comments/Notes |
|-------------------------------|------------------------|------|------|-------|----------------|
| March EVOT O DD040            | Kmax_SCRP_Vrect@DP0.1C | 7500 | 8500 | mV    |                |
| Vrect_FXST @ DP0.1C           | Kmin_SCRP_Vrect@DP0.1C | 6500 | 7400 | mV    |                |
| Number of Pings Sent @ DP     | SCRP_Pings_Sent@DP     | 10   | 10   | -     |                |
| Number of Pongs Received @ DP | SCRP_Pongs_Recieved@DP | 10   | 10   | -     |                |



### 8.6. Power, Efficiency & Ping Pong Tests

**Description:** This test required ginger/B332 dev board, both Tx and Rx coil. Transferring power at various loads / charge rates (0.1C, 3C, 10C) at various positions and measuring power and efficiency and Ping Pong Tests. Ping Pong test is performed to check In-band comms by sending a train of bits as ASK (ginger board/B332 Dev Board).

#### Failure Mode(s) Captured:

- 1. Power & efficiency:-Unit is not able to transfer required power at different load conditions at required efficiency
- 2. Ping Pong:-Test Dotara's Internal ASK/FSK Communication.

#### **Test Setup and Procedure:**

Order of load ramping as follows:

- Adjust bridge phase from 0 180 degrees to reach target Vrect at desired load.
- If target Vrect still cannot be achieved with a phase shift of 180 degrees?
- Start increasing VBoost.
- VBoost should only be adjusted when phase = 180 degrees.
- To reach the desired Vrect start ramping the boost voltage.
- To reach the 10C load step the load with 50mA to avoid OVP. (ramp speed <=500mV/mS)

| Charge Rate | 0.1C @ 6.5V Vrect                            | 3C @ 8V Vrect        | 10C @ 14V Vrect     |
|-------------|----------------------------------------------|----------------------|---------------------|
| Loading     | 40mA ballast                                 | ~0.9W                | 3W                  |
|             | No Eload i.e. turn Eload off/Set Eload to 0A | Set Eload to~112.5mA | Set Eload to ~214mA |

| Step       | Description                                                                                                                                                                   | Interface | Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Set load a | nd coupling position                                                                                                                                                          | Fixture   | Repeat all below tests for the following conditions Loads @ all Couplings: 0.1C; 3C & 10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                               |           | Power & Efficiency Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                               |           | For 0.1C & 3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1          | Set boost to meet the load conditions.  Note: Minimum Vboost is 6100mV, Don't set Vboost < 6100mV.                                                                            | TX Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x03, ReportPayload={0xD4; 0x17; 0xF4; 0x01}"  Payload:> Byte0-1: Boost voltage (eg. 0x17D4 = 6100mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2          | Set the Bridge phase to meet the load condition (Set Bridge phase to 0-180)                                                                                                   | Tx Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x04, ReportPayload={0x1C; 0xF3; 0x01; 0x00; 0x50; 0x46; 0x50; 0x46}" <b>Eg 0x4650</b> : 18000cdeg = 180deg phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | <u> </u>                                                                                                                                                                      |           | For 10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1          | Set the Full phase to meet the load condition (Set Bridge phase to 180)                                                                                                       | Tx Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x04, ReportPayload={0x1C; 0xF3; 0x01; 0x00; 0x50; 0x46; 0x50; 0x46}" <b>Eg 0x4650:</b> 18000cdeg = 180deg phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2          | Set boost to meet the load conditions.  Note: Minimum Vboost is 6100mV, Don't set Vboost < 6100mV.                                                                            | TX Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x03, ReportPayload={0xD4; 0x17; 0xF4; 0x01}"  Payload: ——> Byte0-1: Boost voltage (eg. 0x17D4 = 6100mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3          | Command for following variables: Vsense, Isense, LFOD (VCTx)  Note: Disable LFOD before taking Vsense & Isense Reading and Enable LFOD back before taking LFOD(VCTx) reading. | TX Diags  | Disable LFOD before reading Isense:  smokey ScorpiusHidruntest "Set"args "ReportID=0x41, ReportPayload={0x98; 0x36; 0x00; 0x40; 0x80; 0x01; 0x00; 0 |



| Step | Description                                                                   | Interface | Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|------|-------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 4    | Measure Dotara (U6200) Temp at all Load conditions                            | Tx Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x31, ReportPayload={0x08; 0x00; 0x8C}"  < Trigger reading of Temp1 (channel 8)  smokey ScorpiusHidruntest "Set"args "ReportID=0x31, ReportPayload={0x09; 0x00; 0x8C}" <trigger "get"args="" "reportid='0x31"&lt;/td' (channel="" 9)="" of="" reading="" scorpiushidruntest="" smokey="" temp2=""></trigger>                                                                                                                                                                        |  |  |  |  |  |
|      |                                                                               |           | Ping Pong Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 5    | Tell Rx to go into static mode                                                | Rx I2C    | Write I2C packet: (39) c0 ae 80 80 1e 09 02 01 AE  Ginger command: set mode none  Ginger command: set mode rx  Ginger command: ikt write 0xF0000B80 0xAE010209  Read one byte: Should be 0x60  B332 DevBoard: i2c rawwrite charger 0x0f 0x00 0x2E 0x09 0x01 0x01 //set Aculeus to static closed loop mode                                                                                                                                                                                                                         |  |  |  |  |  |
| 6    | Choose Comm1                                                                  | Rx I2C    | Write I2C packet:       (39) c0 ae 80 80 1e 01 00 05 AD         Ginger command:       ikt write 0x0xF0000B80 0xAD050001         B332 DevBoard:       i2c rawwrite charger 0x0F 0x00 0x2d 0x01 0x00 0x05 //Select Comm cap1 - For IpadTx                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 7    | Tell Tx to initiate ping pong with the Rx i.e. 10 packets, 100ms packet delay | Tx Diags  | smokey ScorpiusHidruntest "Set"args "ReportID=0x02, ReportPayload={0x0A; 0x00; 0x64; 0x00}"  Payload:—> byte0-1: Number of packets to send: 10     byte2-3: Delay between packets: 100ms                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 8    | Wait 1 second for RX to send packets before reading buffer                    | Fixture   | Wait 1 second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 9    | Read back data that was captured from the Tx.                                 | Tx Diags  | smokey ScorpiusHidruntest "Get"args "ReportID=0x02"           Response:         byte0:         ID         (PingPongID = 0x02)           byte1:         Status         (eg. 0x00 = complete) [0 = Complete; 1 = In-Progress]           byte2-3:         Pings Sent         (eg. 0x000A = 10 pings sent)           byte4-5:         Pongs Received         (eg. 0x000A = 10 pongs received)           byte6:         Last error         (e.g. 0x00 = no errors)           Note:- If byte1:Status is in process then repeat the step |  |  |  |  |  |
| 10   | Repeat step 1 to 9 with All loading and coupling positions                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |

#### Acceptance criteria:

| Test Parameter              | Insight Keys Recorded          | LL     | UL     | Units | Comments/Notes                                                                        |
|-----------------------------|--------------------------------|--------|--------|-------|---------------------------------------------------------------------------------------|
|                             |                                | Load 0 | .1C    |       |                                                                                       |
|                             | KMax_Vsense@0.1C               | 5897   | 6200   |       |                                                                                       |
| /sense @ 0.1C               | KNom_Vsense@0.1C               | 5889   | 6200   | mV    |                                                                                       |
|                             | KMin_Vsense@0.1C               | 5889   | 6200   |       |                                                                                       |
|                             | KMax_Isense@0.1C               | 70.46  | 80.56  |       |                                                                                       |
| sense @ 0.1C                | KNom_Isense@0.1C               | 75.38  | 85.98  | mA    |                                                                                       |
|                             | KMin_Isense@0.1C               | 80.66  | 93.19  |       |                                                                                       |
|                             | KMax_VCtx_lctxPeakFactory@0.1C | 181    | 728    |       |                                                                                       |
| Vctx_IPeak @ 0.1C           | KNom_VCtx_lctxPeakFactory@0.1C | 194    | 785    | mA    |                                                                                       |
|                             | KMin_VCtx_lctxPeakFactory@0.1C | 224    | 839    |       |                                                                                       |
|                             | KMax_Vrect_FXST@0.1C           | 6346   | 6670   | mV    |                                                                                       |
| /rect_FXST @ 0.1C           | KNom_Vrect_FXST@0.1C           | 6367   | 6661   |       | Fixture Cmd: Vrect Target = 6.5V ±2%  Use Filtered Vrect Value from 'lkt Adc' command |
|                             | KMin_Vrect_FXST@0.1C           | 6391   | 6638   |       |                                                                                       |
|                             | KMax_Irect_FXST@0.1C           |        |        |       |                                                                                       |
| rect_FXST @ 0.1C            | KNom_Irect_FXST@0.1C           | 40     | 46     | mA    | Iktara ballast load = 40mA. <b>No fixture load required.</b>                          |
|                             | KMin_Irect_FXST@0.1C           |        |        |       |                                                                                       |
|                             | KMax_Rx_Loading_Power@0.1C     | 241.00 | 318.20 |       |                                                                                       |
| Rx_Loading_Power @ 0.1C     | KNom_Rx_Loading_Power@0.1C     | 247.20 | 317.20 | mW    | Vrect * Irect                                                                         |
|                             | KMin_Rx_Loading_Power@0.1C     | 240.00 | 320.50 |       |                                                                                       |
|                             | KMax_Efficiency@0.1C           | 52.65  | 70.75  |       |                                                                                       |
| Efficiency @ 0.1C           | KNom_Efficiency@0.1C           | 50.11  | 66.35  | %     | Rx_Power / (Vsense * Isense)                                                          |
|                             | KMin_Efficiency@0.1C           | 45.75  | 61.60  |       |                                                                                       |
| Number of Pings Sent @ 0.1C | SCRP_Pings_Sent@0.1C           | 10     | 10     | -     |                                                                                       |



| Test Parameter                    | Insight Keys Recorded                      | LL      | UL      | Units | Comments/Notes                                             |
|-----------------------------------|--------------------------------------------|---------|---------|-------|------------------------------------------------------------|
| Number of Pongs Received @ 0.1C   | SCRP_Pongs_Recieved@0.1C                   | 10      | 10      | -     |                                                            |
| Dotara Surface Temperature @ 0.1C | Kxxx_Temp1_MCU@0.1C<br>Kxxx_Temp2_MCU@0.1C | 20      | 61      | ℃     | Based on J307 P1 data                                      |
|                                   | '                                          | Load 3  | 3C      |       |                                                            |
|                                   | KMax_Vsense@3C                             | 5900    | 6200    |       |                                                            |
| Vsense @ 3C                       | KNom_Vsense@3C                             | 5900    | 6200    | mV    |                                                            |
|                                   | KMin_Vsense@3C                             | 5900    | 6411    |       |                                                            |
|                                   | KMax_Isense@3C                             | 212     | 225.4   |       |                                                            |
| Isense @ 3C                       | KNom_Isense@3C                             | 212     | 241.42  | mA    |                                                            |
|                                   | KMin_Isense@3C                             | 212     | 250.28  |       |                                                            |
|                                   | KMax_VCtx_lctxPeakFactory@3C               | 417     | 618     |       |                                                            |
| Vctx_IPeak_ @ 3C                  | KNom_VCtx_IctxPeakFactory@3C               | 427     | 710     | mA    |                                                            |
|                                   | KMin_VCtx_lctxPeakFactory@3C               | 528     | 877     |       |                                                            |
|                                   | KMax_Vrect_FXST@3C                         | 7957    | 8105    |       |                                                            |
| Vrect_FXST @ 3C                   | KNom_Vrect_FXST@3C                         | 7879    | 8200    | mV    | Fixture Cmd: Vrect Target = 8V ±2%                         |
|                                   | KMin_Vrect_FXST@3C                         | 7770    | 8232    |       |                                                            |
|                                   | KMax_Irect_FXST@3C                         | 114     | 122.25  |       | Fixture Cmd: Irect Target = 113mA +iktara load(~0 to 15mA) |
| lrect_FXST @ 3C                   | KNom_Irect_FXST@3C                         | 114.8   | 121.2   | mA    |                                                            |
|                                   | KMin_Irect_FXST@3C                         | 114.8   | 121.2   |       |                                                            |
| Rx_Loading_Power @ 3C             | KMax_Rx_Loading_Power@3C                   | 914.00  | 984.50  |       |                                                            |
|                                   | KNom_Rx_Loading_Power@3C                   | 919.65  | 976.40  | mW    | Vrect * Irect                                              |
|                                   | KMin_Rx_Loading_Power@3C                   | 905.50  | 982.60  |       |                                                            |
|                                   | KMax_Efficiency@3C                         | 69.06   | 75.07   |       |                                                            |
| Efficiency @ 3C                   | KNom_Efficiency@3C                         | 65.10   | 72.00   | %     | Rx_Power / (Vsense * Isense)                               |
|                                   | KMin_Efficiency@3C                         | 59.70   | 68.20   |       |                                                            |
| Number of Packets Sent @ 3C       | SCRP_Packets_Sent@3C                       | 10      | 10      | -     |                                                            |
| Number of Packets Received @ 3C   | SCRP_Packets_Recieved@3C                   | 10      | 10      | -     |                                                            |
| Dotara Surface Temperature @ 3C   | Kxxx_Temp1_MCU@3C<br>Kxxx_Temp2_MCU@3C     | 20      | 61      | ℃     | Based on J307 P1 data                                      |
|                                   |                                            | Load 1  | 0C      | •     |                                                            |
|                                   | KMax_Vsense@10C                            | 9217    | 9903    |       |                                                            |
| Vsense @ 10C                      | KNom_Vsense@10C                            | 9685    | 10542   | mV    |                                                            |
|                                   | KMin_Vsense@10C                            | 10165   | 11295   |       |                                                            |
|                                   | KMax_Isense@10C                            | 447.29  | 462.45  |       |                                                            |
| Isense @ 10C                      | KNom_Isense@10C                            | 443.2   | 460.02  | mA    |                                                            |
|                                   | KMin_Isense@10C                            | 439.9   | 461.55  |       |                                                            |
|                                   | KMax_VCtx_lctxPeakFactory@10C              | 657     | 1041    |       |                                                            |
| Vctx_IPeak_ @ 10C                 | KNom_VCtx_lctxPeakFactory@10C              | 732     | 1345    | mA    |                                                            |
|                                   | KMin_VCtx_lctxPeakFactory@10C              | 887     | 1575    |       |                                                            |
|                                   | KMax_Vrect_FXST@10C                        | 13436   | 14587   |       |                                                            |
| Vrect_FXST @ 10C                  | KNom_Vrect_FXST@10C                        | 13503   | 14471   | mV    | Fixture Cmd: Vrect Target = 14v                            |
|                                   | KMin_Vrect_FXST@10C                        | 13619   | 14380   |       |                                                            |
|                                   | KMax_Irect_FXST@10C                        | 218.48  | 221.62  |       | Fixture Cmd: Irect Target = 214mA                          |
| lrect_FXST @ 10C                  | KNom_Irect_FXST@10C                        | 217.56  | 222.72  | mA    |                                                            |
|                                   | KMin_Irect_FXST@10C                        | 217.28  | 223.08  |       |                                                            |
|                                   | KMax_Rx_Loading_Power@10C                  | 2935.50 | 3232.77 |       | Vrect * Irect                                              |



| Test Parameter                   | Insight Keys Recorded                    | LL      | UL      | Units | Comments/Notes               |
|----------------------------------|------------------------------------------|---------|---------|-------|------------------------------|
| Rx_Loading_Power @ 10C           | KNom_Rx_Loading_Power@10C                | 2969.00 | 3190.00 | mW    |                              |
|                                  | KMin_Rx_Loading_Power@10C                | 2986.00 | 3178.00 |       |                              |
|                                  | KMax_Efficiency@10C                      | 69.25   | 72.53   |       |                              |
| Efficiency @ 10C                 | KNom_Efficiency@10C                      | 65.13   | 69.72   | %     | Rx_Power / (Vsense * Isense) |
|                                  | KMin_Efficiency@10C                      | 60.69   | 66.76   |       |                              |
| Number of Packets Sent @ 10C     | SCRP_Packets_Sent@10C                    | 10      | 10      | -     |                              |
| Number of Packets Received @ 10C | SCRP_Packets_Recieved@10C                | 10      | 10      | -     |                              |
| Dotara Surface Temperature @ 10C | Kxxx_Temp1_MCU@10C<br>Kxxx_Temp2_MCU@10C | 20      | 61      | °C    | Based on J307 P1 data        |

### 8.7. Final MTP Sector Check after all tests.

**Description**: Make sure FW is in a good state at the end of the test.

Failure Mode(s) Captured: TBD

Test Setup and Procedure: Refer below

| Step | Description                                                                           | Interface | Command / Notes                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|      | Pull Low test pin <b>TP93EF</b> i.e. <b>"AOP_TO_DOTARA_RESET_L"</b> to reset Scorpius | Tx Diags  | socgpioport 1pin 46output 0                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 1    | Wait 500ms                                                                            | Fixture   |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|      | Pull High test pin TP93EF i.e. "AOP_TO_DOTARA_RESET_L "                               | Tx Diags  | socgpioport 1pin 46output 1                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 2    | Wait 1s                                                                               | Fixture   |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 3    | Preparation                                                                           | Tx Diags  | socgpioport 1pin 46output 1                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 4    | Tell Tx to get out of standalone mode.                                                | Tx Diags  | i2c -w 5 0x39 6  Note:-Send this command 2x times. There may be I2C error reported with this command, but can be ignored.                                                                                                                                                                          |  |  |  |  |  |  |
| 5    | Load Tx FW                                                                            | Tx Diags  | Note: Need to send this command every time within 3sec of above command. You cannot enter Load FW without exiting the standalone mode.  smokey ScorpiusHidruntest "FwLoad"args "PathToFwLoad='nandfs:\\AppleInternal\\Diags\\Scorpius\\J307\\ScorpiusTx-dotara.bin'"                               |  |  |  |  |  |  |
| 6    | Wait 1s                                                                               | Fixture   | Scorpius FW will take less than 1 second to boot                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 7    | Tell Tx to get out of standalone mode.                                                | Tx Diags  | i2c -w 5 0x39 6  Note:-Send this command 2x times. There may be I2C error reported with this command, but can be ignored.                                                                                                                                                                          |  |  |  |  |  |  |
| 8    | Tell Tx to enter Quiesce Mode                                                         | Tx Diags  | Note: Need to send the below command after every 2nd time of the above command within 3sec or with minimum or no delay as possible of above command. You cannot enter Quiesce mode without exiting the standalone mode.  smokey ScorpiusHidruntest "Set"args "ReportID=0x09, ReportPayload={0x01}" |  |  |  |  |  |  |
| 8    | Read MTP Sector 127                                                                   | Tx Diags  | Smokey ScorpiusHidruntest "Print_Sector"args "MTP_sector=127"                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 9    | Read MTP Sector 126                                                                   | Tx Diags  | Smokey ScorpiusHidruntest "Print_Sector"args "MTP_sector=126"                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|      | Pull Low test pin <b>TP93EF</b> i.e. <b>"AOP_TO_DOTARA_RESET_L"</b> to reset Scorpius | Tx Diags  | socgpioport 1pin 46output 0                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 10   | Wait 500ms                                                                            | Fixture   |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|      | Pull High test pin TP93EF i.e. "AOP_TO_DOTARA_RESET_L "                               | Tx Diags  | socgpioport 1pin 46output 1                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |



### Acceptance:

| Test Parameter                                   | Insight Keys Recorded         | Comments/Notes                                                               |  |  |  |  |
|--------------------------------------------------|-------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| Sector 127                                       |                               |                                                                              |  |  |  |  |
| Check Sum - Sector 127 (Word 31)                 | SCRP_Check Sum_127_MTP_AFTER  |                                                                              |  |  |  |  |
| Version (Word 1)                                 | SCRP_Version_127_MTP_AFTER    | Pass if this values match with MTP check before test i.e. <b>Section 8.3</b> |  |  |  |  |
| Signature (Word 0)                               | SCRP_Signature_127_MTP_AFTER  |                                                                              |  |  |  |  |
| Tx HWID_MTP (Word 10)                            | SCRP_TX_HWID_127_MTP_AFTER    |                                                                              |  |  |  |  |
| CTx MTP (Word 2)                                 | SCRP_CTx_127_MTP_AFTER        |                                                                              |  |  |  |  |
| VBoost_Control MTP (Word 6)                      | SCRP_VBoost_127_MTP_AFTER     |                                                                              |  |  |  |  |
| Vsense MTP (Word 7)                              | SCRP_VSense_127_MTP_AFTER     |                                                                              |  |  |  |  |
| Isense MTP (Word 8)                              | SCRP_Isense_127_MTP_AFTER     |                                                                              |  |  |  |  |
| LFOD MTP (Word 9)                                | SCRP_LFOD_127_MTP_AFTER       |                                                                              |  |  |  |  |
| MLB Serial No. (Word 11 to Word 15 - Bits<1:17>) | SCRP_MLB_SN_127_MTP_AFTER     |                                                                              |  |  |  |  |
| Sector 126                                       |                               |                                                                              |  |  |  |  |
| Check Sum - Sector 126 (Word 31)                 | SCRP_Check Sum_126_MTP_BEFORE |                                                                              |  |  |  |  |
| Version (Word 1)                                 | SCRP_Version_126_MTP_BEFORE   |                                                                              |  |  |  |  |
| Signature (Word 0)                               | SCRP_Signature_126_MTP_BEFORE | Pass if this values match with MTP check before test i.e. <b>Section 8.3</b> |  |  |  |  |
| LPP Inductance_MTP (Word 2)                      | SCRP_LPP_L_126_MTP_BEFORE     |                                                                              |  |  |  |  |
| LPP Frequency_MTP (Word 3)                       | SCRP_LPP_FREQ_126_MTP_BEFORE  |                                                                              |  |  |  |  |



# **C.** Feature DRI Comments for Changes to this Document

| Feature                       | DRI                                  | Description/Comments/Reason for Change                                                                                                                                                                                  | Date              | Approved and released in Version:   |
|-------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|
| Power, Efficiency &<br>Comms  | Bhushan                              | Replaced Close Loop with Open Loop and Comms with Pingpong as P0 does not support Close Loop.                                                                                                                           | 2 September 2019  |                                     |
| Magnetic - Coil fixture specs | Bhushan/Jin                          | Updated Coil fixture specification for coupling measurements value to include nominal values + Tolerance limits                                                                                                         | 14 September 2019 |                                     |
| Power Transfer                | Bhushan                              | Swaped the Sequence of sense enable & Full Bridge to avoid loading from LPP sense.                                                                                                                                      | 17 September 2019 |                                     |
| General                       | Bhushan/Mikhal/Jin/<br>Bernard/Frank | Updated the test limits for all the test parameters based on GBD and Factory data distribution.                                                                                                                         | 20 September 2019 |                                     |
| LPP/Power Transfer            | Bhushan                              | Corrected the LPP and Power Transfer Limits                                                                                                                                                                             | 25 September 2019 |                                     |
|                               |                                      | 11/5 KBha: Ensure all limits Vctx, Vboost, Isense, Vrect and Irect are tailored based on actual Rx QLC for station. Current limits are based on many Rx QLC corners which will result in missed learnings and CPx >> 2. |                   |                                     |
| MTP                           | Bhushan/Samira                       | Update locations of all the word calibrated/Used from MTP.                                                                                                                                                              | 26 November 2019  | Samira/P1_V1.5                      |
| Comms                         | Bhushan/Mikhal                       | Added Digital ping test at 0.1C                                                                                                                                                                                         | 5 December 2019   | Mikhal/P1_V1.6                      |
| LPP                           | Bhushan                              | Corrected calculation for LLP delta values                                                                                                                                                                              | 18 December 2019  | Bhushan/P1_V1.8                     |
| Power Transfer                | Mikhal                               | Minimum boost requirement has changed from 6000mV to 6100mV.                                                                                                                                                            | 21 February 2020  | Mikhal/Bhushan/<br>P1_V2.0          |
| Dotara                        | Bhushan                              | Added Dotara Temperature measurement                                                                                                                                                                                    |                   | Bhushan/Rex/Nan/<br>P1_V2.1         |
| LPP & VCTX                    | Bhushan                              | Updated command and response format of LPP and VCTx respectively                                                                                                                                                        | 3 April 2020      |                                     |
| Power Transfer                | Bhushan/Jin                          | Updated procedure to disable LFOD during Vsense & Isense measurement                                                                                                                                                    |                   |                                     |
| Digital Ping                  | Bhushan/Mikhal                       | Updated Vrect Limit for digital ping                                                                                                                                                                                    | 11 May 2020       | Bhushan/Mikhal/<br>EVT_V2.2         |
| Power Transfer                | Bhushan                              | Limits update for Vsense/Isense @ 01.C &3C and Lowerd temp LL to 17°C                                                                                                                                                   |                   | Bhushan/Daniel/<br>Samira/EVT_V2.3  |
| iOS                           | Bhushan/ Scorpius<br>FW team         | Switch form EFI Diags to iOS Non UI mode testing using B332 dev Board.  Moving fro Open Loop to CloseLoop for Power flow only  LPP & Digital Ping are still in Open Loop Mode.                                          | 3 June 2020       |                                     |
| iOS                           | Bhushan/Fw Team/<br>Rex              | Updated procedure to use data streaming tool. And some data limits.                                                                                                                                                     | 22 July 2020      | Bhushan/Fw team/<br>Mikhal/EVT_V2.4 |
| iOS - Power Transfer          | Bhushan/Aijun                        | Added Airplane mode command before data streaming to avoid unit doing LPP after DP and not able to go into Power Transfer Updated Isense limit @ 0.1C Updated Battery VoC setting for 10C & 0.1C                        | 31 July 2020      | Bhushan/Aijun/<br>EVT_V2.5          |
| iOS - LPP                     | Bhushan                              | Updated procedure for Vsense measurement before LPP                                                                                                                                                                     |                   |                                     |
| iOS - Power Transfer          | Bhushan/Jin                          | Updated limit for power flow                                                                                                                                                                                            | 13 August 2020    | Bhushan/Jin/<br>DVT_V3.0            |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |
|                               |                                      |                                                                                                                                                                                                                         |                   |                                     |