Лабораторная работа №1. Линейные алгоритмы

Написать программу для вычисления арифметического выражения.

Содержание отчета:

- 1. Задание
- 2. Блок-схема
- 3. Текст программы
- 4. Ручной расчет контрольного примера
- 5. Машинный расчет контрольного примера

No	Арифметическое выражение	Контрольный пример
1	$\frac{\sqrt[7]{\cos(2c-b)+ a }}{2 a+c } + \sqrt[b]{\frac{2(b^2-ac)}{1+\ln c-1 }} + 6c+1$ $\frac{\cos(a+2c)}{0.5 c } + \sqrt{a-c} \cdot tg \frac{b}{3a} + \log_2 a - \sqrt[3]{4a} $	a = -3 $b = 4$ $c = 2$
2	$\frac{\cos(a+2c)}{0.5 c } + \sqrt{a-c} \cdot tg \frac{b}{3a} + \log_2 a - \sqrt[3]{4a} $	$a = 2$ $b = \pi$ $c = -1$
3	$\frac{3\log_a 8}{\sin\frac{b}{3a}} - \sqrt[3]{5a^2 + 7} + \frac{4 c - 2a + 1 }{\sqrt{8a}}$	$a = 2$ $b = \pi$ $c = 0$
4	$\frac{2\cos\left(a-\frac{\pi}{6}\right)}{0.5+\sin^2 b}\left(1+\frac{c^2}{2-\frac{c^2}{5}}\right)$	$a = \pi/6$ $b = \pi$ $c = 1$
5	$\frac{1+\sin^2(a+b)}{\left a-\frac{2b}{1+a^2b^2}\right } \cdot a^{ b } + \cos^2(arctg\frac{1}{c})$	a = 1 b = -1 c = 1
6	$\ln\left(b^{-\sqrt{ a }}\right)\left(a-\frac{b}{2}\right) + \sin^2 arctg(c)$	a = 4 b = 10 c = 0
7	$\frac{\sin(ab^2 - c)}{0.25(2c)^2 b} - \left \sqrt[3]{b^2 + \ln c} - \cos 5b \right + 10^4 b^5 c$	a = 10 b = 1 c = 1
8	$\left a^{\frac{b}{a}} - \sqrt[3]{\frac{b}{a}} \right + (b-a) \frac{\cos b - \frac{c}{b-a}}{1 + (b-a)^2}$	a = 1 $b = 8$ $c = 7$

9	$ a-b \left(1+\frac{\sin^2 c}{\sqrt{a+b}}\right)$	a = 4 $b = 0$
	$b^{\sqrt{ \mathbf{a} }} + \cos^3(b) \frac{ a-b \left(1 + \frac{\sin^2 c}{\sqrt{a+b}}\right)}{e^{ a-b } + \frac{a}{-b}}$	$c = \pi/2$
	2	
10	$\frac{\sqrt[4]{b+\sqrt[3]{a-1}}}{\sqrt[3]{a-1}}$	a = 8 $b = 14$
	$ a-b (\sin^2 c + tg c)$	$c = \pi/4$
11	- b+1 +b-1	a=3
	$\frac{a^{b+1} + e^{b-1}}{1 + a b - tgc } \cdot (1 + b - a) + \frac{ b - a ^2}{2} - \frac{ b - a ^3}{3}$	b = 1
	1+a b-tgc 2	c = 0
12	(2 - 2)(2 + 12) = 22	a = 0
	$10^{-3}\operatorname{tg}(-8) - \frac{(a-c)(a^2+b^2)}{\sqrt[3]{a^2+b^2+2.2c}} - \frac{\cos 2a}{\sin 5}$	b = 1
	$\sqrt[3]{a^2+b^2+2,2c} = \sin 5$	c = 4
13	$2\sqrt{1-251+(5+5)^2}$	a = 1
	$\frac{\sqrt[2]{ c-2,5 +(a+c)^2}}{\sin 10} + 10^{-3}e^{5b} - \frac{ c-2,5 +a^2}{\sqrt[3]{(a+c)^2}}$	b = 0
	$\sin 10 \qquad \qquad \sqrt[3]{(a+c)^2}$	c = 5
14	10 ³ · · ·	a = 0
	$\frac{\ln 5}{\text{sinc}} - \sqrt{ -2,5-a^2 } - \frac{10^3 a - b}{\cos b} + \sqrt[3]{ -5-a^2 } - 2.5c$	b = 1
	sinc $cosb$	$c = \pi/2$
15	$ a-b = \ln 3$	a = 0
	$10^4 \frac{\text{ac}}{\text{b}^2} - \left \frac{a-b}{-2c} \right + \frac{\ln 3}{\sqrt[3]{-2a+b^2}} - e^{2c}$	b = 1
	b $\sqrt{-2a+b^2}$	c = 2
16	abc = 0.7abc $c = b-a $	a = 1
	$\sqrt{\frac{abc}{2,4} - \frac{0.7abc}{\sin b} + \sqrt[5]{\cos b} - \frac{ b-a }{7.5}}$	$b = \pi/2$
		c = 2
17	$ a^2-b^2 $ 4-toa	a = 0
	$\frac{ a^2 - b^2 }{\sin b} - 10^4 \cdot \sqrt[5]{ \sin(a+b) - bc } - \frac{4 - tga}{e^3}$	$b=\pi/2$
	e^{3}	c = 1
18	$\sqrt[3]{\ln h + a^2}$	a = 1
	$\frac{\sqrt[3]{\ln b + a^2}}{0.47b^2} - \left 0.47b^2 - \frac{10^4}{7}\cos^2 a \right - \frac{c}{b}$	b = 1
		c = 10
19	$\frac{1,5(a-b)^2}{ a-b c} + 10^3 \cdot \sqrt{ a-b } - \frac{2,5(a^2+2,75)\sin(-2a)}{3+a^2bc}$	a = 0
	$\frac{1}{10} + 10^{3} \cdot \sqrt{ a-b } - \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$	b = 4
	$3+a^2bc$	c = 1
20	$0.32c^3 + 4c + b = 6$	a = 0
	$10^4 \sin^2(2,5c) - \frac{0,32c^3 + 4c + b}{\cos(2a)} \cdot \sqrt[6]{0,32c^3 - b} + b $	b = 0,1
	COS(Zu)	c = 1
21	a = a = a	a = 0
	$ac^2 + b $ $ac^4 = 3c$ $cos(\frac{\pi}{2})$	b = 4
	$\frac{ac^{2} + b }{(a+b)^{2}} - 10^{4} \cdot \sqrt[5]{\frac{3c}{(a+b)^{2}}} - \frac{\cos\left(\frac{a}{2}\right)}{\sin(3c)}$	c = 1
	$(u+v)$ $\forall (u+v)$ $\forall (u+v)$	

22	$\cos\left(\frac{c}{2}\right) \cdot (c-a) + \frac{\sqrt[5]{ c+a }}{2,4b}e^3 + 10^{-4} \cdot \frac{(c+a)^3 + 0,95c^4}{4(c-a)^3}$	a = -4 b = 2 c = 0
23	$\sqrt[5]{ ac^2 - b^3 } + \ln 3c - \frac{e^{3c} + c^2}{\sin 2c} - 10^{-3}\sqrt{2157a}$	$a = 1$ $b = \pi/4$ $c = 1$
24	$\frac{1}{9} + \sqrt{\frac{a^2 + b}{0,4a}} - 10^4 e^{ac} + \cos\sqrt{a^2 + b} + \frac{\sin 3}{5(a^2 + b)}$	a = 1 b = 0 c = 1
25	5arctg(a) $-\frac{1}{4}$ cos(a) $\frac{a+3 a-b +a^2}{ a-b c+a^2}$	a = 0 $b = 6$ $c = 2$
26	$\sqrt[3]{7 + \lg(2b + c^2)} + \frac{\log_2(a+b) + \sqrt{b^3 + 4c + 1}}{ a - 2b - \cos(a - 1) - 2}$	a = 1 b = 3 c = 2
27	$\frac{8\sin\frac{b}{ac} + \cos b}{1 + \log_c(a+1)} + \frac{a+c^2+1}{\sqrt{4(a+1)}} + 5\lg(3a+1)$	$a = 3$ $b = \pi$ $c = 2$
28	$8\lg(b+c) + \frac{2\cos^{2}a + \sqrt{b + \log_{2}(c-1)}}{1 + \sqrt{c} \cdot tg\frac{a}{b-1}}$	$a = \pi$ $b = 7$ $c = 3$