ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

8. Punkt materialny porusza się po prostej z przyspieszeniem a określonym wzorem $a = -\alpha v$, gdzie α jest dodatnim współczynnikiem. Dla t=0 prędkość $v=v_0$. Jaką drogę przebędzie punkt do momentu zatrzymania się? W jakim czasie t_1 przebędzie on drogę s_1 ?

Dane masz ruch punktu materialnego, który porusza sie z opóźnieniem proporcjonalnym do jego predkości. Przy t=0 predkość wynosi v_0 . Predkość zmienia sie zgodnie z równaniem $a=-\alpha v$.

1. **Czas zatrzymania:**

Równanie ruchu: $\frac{dv}{dt} = -\alpha v$.

Rozwiazujemy równanie separowalne:

$$\frac{dv}{v} = -\alpha dt$$

Całkujemy po obu stronach:

$$\ln|v| = -\alpha t + C$$

Dla t = 0, $v = v_0$, wiec:

$$ln |v_0| = C$$

Podstawiajac z powrotem:

$$\ln|v| = -\alpha t + \ln|v_0|$$

$$\ln\left(\frac{|v|}{|v_0|}\right) = -\alpha t$$

$$\frac{|v|}{|v_0|} = e^{-\alpha t}$$

$$v = v_0 e^{-\alpha t}$$

Dla zatrzymania v = 0:

$$0 = v_0 e^{-\alpha t_1}$$

 $t_1 = \infty$ (co jest nielogiczne — zatrzymywanie trwa nieskończoność). Musimy spojrzeć na równość nielimitowana.

2. **Droga do zatrzymania:**

Droga s to całka predkości:

$$s = \int_0^{t_1} v \, dt = \int_0^\infty v_0 e^{-\alpha t} \, dt$$
$$s = v_0 \int_0^\infty e^{-\alpha t} \, dt$$
$$s = v_0 \left[-\frac{1}{\alpha} e^{-\alpha t} \right]_0^\infty$$
$$s = v_0 \left(0 - \left(-\frac{1}{\alpha} \right) \right)$$
$$s = \frac{v_0}{\alpha}$$

3. **Droga w czasie t_1 :**

Z definicji $t_1 \to \infty$, wartość konkretna wymaga innego podejścia lub konkretnego końca czasu.

Podsumowujac, punkt zatrzymuje sie teoretycznie w nieskończonym czasie, ale droga do momentu teoretycznego zatrzymania wynosi $\frac{v_0}{\alpha}$.