

ARNIQA: Learning Distortion Manifold for Image Quality Assessment

Lorenzo Agnolucci¹, Leonardo Galteri², Marco Bertini¹, Alberto Del Bimbo¹

¹University of Florence – MICC ¹[name].[surname]@unifi.it

²Pegaso Telematic University ²[name].[surname]@unipegaso.it

Introduction

No-Reference Image Quality Assessment (NR-IQA) focuses on designing methods to measure image quality in alignment with human perception when a high-quality reference image is unavailable

Supervised methods for NR-IQA require labeled datasets, which are expensive and time-consuming to obtain

We propose **ARNIQA**, a self-supervised approach for NR-IQA that aims to learn the **image distortion manifold** by maximizing the similarity between the embeddings of different images degraded equally

We introduce an **image degradation model** that randomly assembles ordered sequences of distortions

SSL for NR-IQA

MOS-labeled images

Image Degradation Model

Self-supervised methods [1, 2] for NR-IQA involve 2 steps:

- 1. Encoder pre-training using synthetically degraded unlabeled images
- 2. Dataset-specific linear regressor training using the MOS

_ Image Distortion Manifold

The **image distortion manifold** [3] is the continuous space of all the possible degradations to which an image can be subjected

State of the Art Encoder Maximize similarity ARNIQA Encoder Maximize similarity

Maximize the similarity of the embeddings of two patches with:

- State of the Art: similar content / same distortion
- ARNIQA: different content / same distortion

C₁ C₂ C₃ C₄ We can generate 100 times more degradations than Sightness change Color distortions Noise Blur

Sharpness & contrast Spatial distortions Compression

existing works [4]

		Method			
Training	Testing	Su et al.	CONTRIQUE	Re-IQA	ARNIQA
LIVE	CSIQ	0.777	0.803	0.795	0.904
LIVE	TID2013	0.561	0.640	0.588	$\boldsymbol{0.697}$
LIVE	KADID	0.506	0.699	0.557	0.764
CSIQ	LIVE	0.930	0.912	0.919	0.921
CSIQ	TID2013	0.550	0.570	0.575	0.721
CSIQ	KADID	0.515	0.696	0.521	0.735
TID2013	LIVE	0.892	0.904	0.900	0.869
TID2013	CSIQ	0.754	0.811	0.850	0.866
TID2013	KADID	0.554	0.640	0.636	0.726
KADID	LIVE	0.896	0.900	0.892	0.898
KADID	CSIQ	0.828	0.773	0.855	$\boldsymbol{0.882}$
KADID	TID2013	0.687	0.612	0.777	0.760

Conclusions

- Supervised methods are limited by their reliance on challenging and expensive manual data labeling
- We model the image distortion manifold in a selfsupervised way by maximizing the representations of different images degraded equally
- ARNIQA achieves SotA results while showing improved data efficiency, generalization capabilities, and robustness *w.r.t.* competing methods
- In future work, we will investigate how our learned distortion manifold can be used for blind image restoration

References

[1] Saha et al., "Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild", CVPR 2023

- [2] Madhusudana et al., "Image Quality Assessment Using Contrastive Learning", TIP 2022
- [3] Su et al., "From Distortion Manifold to Perceptual Quality: a Data Efficient Blind Image Quality Assessment Approach", 2023
- [4] Zhao et al., "Quality-aware Pre-trained Models for Blind Image Quality Assessment", CVPR 2023