

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

GODFREY LOWELL CABOT SCIENCE LIBRARY

HARVARD COLLEGE LIBRARY

•

N. Tillinghash.

0.

0

GEOMETRY,

PLANE AND SPHERICAL TRIGONOMETRY,

AND

CONIC SECTIONS.

BY

Horation ROBINSON, A. M.,

AUTHOR OF A TREATISE ON ARITHMETIC, AN ELEMENTARY AND A UNIVERSITY
EDITION OF ALGEBRA, A WORK ON NATURAL PHILOSOPHY, AND TWO SEPARATE
WORKS ON ASTRONOMY.

CINCINNATI:

JACOB ERNST, NO. 183, MAIN STREET.

ALBANY:

ERASTUS H. PEASE & CO.

1850.

CIT 30 TIL

of tan Hige.

Entered according to act of Congress in the year 1850, by

H. N. ROBINSON,

In the Clerk's Office of the District Court of the United States, for the District of Ohio.

CINCINNATI.

PREFACE.

An attempt is made in this volume, to bring the science of geometry, directly to the comprehension of the learner; and to accomplish this end, it is necessary to sweep away some of the rubbish and some of the redundancies which have seemed only to obstruct our progress and becloud our vision.

All attempts to prove what is perfectly obvious to every one without proof, only weakens the mind rather than strengthens it, and hence, we have discarded all such propositions as the following: "All right angles are equal." "Any two sides of a triangle are greater than the third side." "Parallel lines can never meet, however far they may be produced"—and some few others of like character. In almost every treatise on Geometry, the first, or one of the first propositions for demonstration is, "That all right angles are equal." This proposition at once excites in the mind of the intelligent pupil, a mingled sensation of disappointment and indignation,—disappointment, because he expected to learn new truths; indignation, because he feels as if his time and common sense are trifled with.

When he attempts the demonstration, he either has, or has not, a correct idea of a right angle; if he has a correct idea, he cannot demonstrate, or say anything that can be called a demonstration—because the proposition is all embraced in the definition of a right angle.

If he has not the correct idea of the term right angle, he must obtain it before he can commence any demonstration; so, in either case, the proposition is worse than useless.

When he comes to the proposition, that "Any two sides of a triangle, are together, greater than a third side," and is carried through a useless demonstration, he looks about in wonder and perplexity, to discover why it is that he should be dragged through formal techicalities to arrive at the perfectly axiomatic truth, that a straight line is the shortest distance between two points.

Where is the logic of proving that parallel lines will never meet, however far they may be produced, when the very meaning of the term parallel is, that they cannot meet; hence, we say that all attempts to prove what is perfectly obvious, tend more to confuse and weaken, than to strengthen and enlighten.

Notwithstanding we have discarded such like propositions, we have omitted none of the truths therein expressed; for we have put them either in the axioms or definitions, and have made as complete a chain of geometrical truths as are to be found in any other work.

At the same time, no attempt has been made to present all the known propositions in geometry; we have taken such only as, united and combined, will give the pupil complete power over the science, and make his geometrical knowledge efficient, useful, and practical.

In the mathematical sciences, it is necessary to be more or less technical, formal, and exact; but we have made efforts not to be unpleasantly so. We have presumed that the reader will exercise his own judgment in construing our language; and in place of the preciseness of the professor, we have aimed to take the more wholesome and elevated tone of the practical common-sense man of the world. For the sake of perspicuity and brevity, we have freely used the algebraic language; and the whole work supposes that the reader clearly comprehends simple equations, and is able to perform all ordinary operations with them; but this should be no objection to the use of this book—for no treatise on Geometry should be studied prior to Algebra, whatever be the tone and style of the Geometry.

To most persons, Geometry is a very dry and uninteresting study; and from the nature of the human mind it must be so, until the pupil catches the *spirit of the science*; but as a general thing that spirit cannot be infused until some essential advancements have been made; hence, the ill success of many who undertake this study.

It is essential that the teacher should have a clear view of all these particulars; that he should possess the true spirit himself; and then he will be able to animate, encourage, and assist the new beginner, until the daylight of the science breaks in upon his mind.

It is of little use to commence Geometry unless the learner is determined to go through, at least, so far, as to understand Plane Trigonometry. The first propositions are only so many letters in the great alphabet of science, and we must be able to put them together, before we can really perceive their utility and power. These considerations induced us to be very full and practical in the application of Geometry, and if a student can go through this book understandingly, we are sure that his geometrical knowledge will be at once ample and efficient.

With proper encouragement and proper instruction, the learner will begin to discover the beauties of geometrical demonstrations, after passing through the first three books, and when that discovery is made, all serious difficulties will be over. Yet the pupil should not stop there; for, to receive the benefits of any science, we must have command over that science. To receive the benefits of any enterprise, we must carry it through to completion, or be content to lose a part, if not the whole of our labors; it is emphatically so with this science.

The infinitesimal system has been used in demonstrations to a greater extent in this, than in most other works of like kind, and although the method has been objected to, the objections are neither far-sighted nor philosophical; a rejection of this method necessarily rejects the differential and integral calculus, and all works based upon them as unscientific and unsound.

In plane and spherical trigonometry, great pains have been taken to show the theoretical beauties of those sciences, as well as their practical application, and for this end, many of the demonstrations have been given both analytically and geometrically. In applying these sciences, more examples are given in this work than any other that I have seen, and such questions and such problems have been chosen, as to show the great power and utility of geometrical science. In confirmation of this, we refer the reader to the various astronomical problems, and in particular to the one, giving general directions for computing the beginning or end of a local solar eclipse.

Those only who pay particular attention to Geometry, will be able to demonstrate the propositions proposed for exercises on pages 100-104; they are designed for amateurs in particular; they are marks of attainment to which all may aspire, but as a general thing they will require more time and attention than can be devoted to them in schools; therefore, no attempt should be made to solve all of them, before passing on.

In conic sections we have not been as full as some other treatises, especially in respect to the hyperbola, and the reason for our brevity on that curve is, that it is of little or no practical utility; it is merely a curve of mathematical curiosity. The ellipse and parabola have important relations to astronomy, and projectile motions, and we have taken particular care to demonstrate those properties essential to their application, and further than this would exceed our design; but we have given this amply and fully; yet this treatise is not designed to supersede the study of these curves again in Analytical Geometry, and if the student understands the demonstrations here given, he will be able to pursue analysis with great power and facility.

. .. . •

CONTENTS.

PLANE GEOMETRY.

BOOK I.	_
General Principles,	Page. O
Theorems in reference to right lines and angles,	
BOOK II.	
Proportion,	43
The definition of the term ratio,	43
BOOK III.	
BOOK III.	
Theorems mostly in relation to the circle and to the measure of angles,	61
BOOK IV.	
Problems—geometrical constructions,	78
•	
BOOK V.	
The measurement of polygons and circles,	90
Exercises in geometrical investigation,	
Problems requiring the aid of algebra for their solution,	
BOOK VI.	
BOOK VI.	
On the intersection of planes,	109
•	
- BOOK VII.	
Solid Geometry,	118

PLANE TRIGONOMETRY.

Elementary principles,	144 156 157
SPHERICAL TRIGONOMETRY.	
Elementary principles, Napier's circular parts, Oblique angled Spherical Trigonometry, Application—solution of right angled spherical triangles, Solution of oblique angled spherical triangles, Application of Spherical Trigonometry to Astronomical Problems, How to manage a local Solar Eclipse, Miscellaneous Astronomical Examples, Lunar Observations, Appendix to Trigonometry,	186 187 196 203 207 212 215 216
CONIC SECTIONS.	
The Ellipse,	947

GEOMETRY.

DEFINITIONS.

- GEOMETRY is the science that estimates and compares distances, positions, and magnitudes.
- 2. A Point is position, not magnitude, and on paper it is represented by a visible dot, thus .
 - 3. A Line is length, only. The extremities of a line are points.
 - 4. A Right Line has the same direction in every part.
 - 5. A Curved Line is continually changing its direction.
 - 6. A Broken or Crooked Line changes its direction at intervals.
 - 7. An Angle is the difference in the direction of two lines.

Two lines drawn from the same point, and in the same direction, are one and the same line.

To make an angle apparent, the two lines must meet in a point, as AB, and AC, which meet at the point A.

Two lines, not having the same direction, and not meeting in a point as AB, and CD, still have an angle existing between them equal to the difference in their direction; and to make the angle apparent, take any point in one of the lines, as C, and conceive CH to lie in the same direction as AB. Then the difference in the directions of CD and CH measures the angle; or measures the difference in the directions of AB and CD.

8. Angles are measured by the number of degrees of a circle

included between the two lines which form the angle at the center of the circle. Thus, the portion of the circle between the lines CA and CB measures the angle at the center of the circle. Every circle is divided into 360°, and the greater the number of degrees between any two lines running from the center, the greater the angle.

Angles are more indefinitely distinguished by Acute, Obtuse, and right angles.

9. A Right Angle is formed by one line standing on another so as not to incline on either side.

One line so inclined to another is said to be perpendicular to another.

10. An Acute Angle is less than a right angle.

11. An Obtuse Angle is greater than a right angle.

12. An angle is named by a letter at its vertex, as A. When two or more angles have their vertices at the same point, this method will not be sufficiently definite.

s as AB, AC, AD, several angles are ne formed by the two say the angle CAB, angle requires three nust be at the vertex AD

Thus, when several lines as AB, AC, AD, all meet at the point A, several angles are formed; and to define the one formed by the two lines AB and AC, we must say the angle CAB, or BAC. To express the angle requires three letters, and the middle one must be at the vertex

of the angle. The angle DAC is the angle made by the two lines DA and AC. The angle DAB is the angle made by the two lines DA and AB.

13. Two lines that make equal angles with a third line, all being in the same plane, are parallel.

Parallel lines may be either right lines, as AB, or curved AB lines, as CD; but at present we are only considering right lines.

Rectilines parallels have the same absolute direction.

Rectilinear parallels have the same absolute direction; and, conversely, lines having the same absolute direction, are parallel.

Two parallel lines cannot be drawn from the same point; for to fulfill the condition of parallelism, any attempt to draw them would run them into the same direction, and thus make one line. Conversely, then, two parallel lines cannot meet in a point, however far they may be produced.

14. Superficies are either Plane or Curved.

A Plane Superficies, or a Plane, is that with which a right line may every way coincide. Or, if the line touch the plane in two points, it will touch it in every point; but, if not, it is curved.

- 15. Plane figures are bounded either by right lines or curves.
- 16. Plane figures that are bounded by right lines have names according to the number of their sides, or of their angles; for they have as many sides as angles; the least number being three.
- 17. A figure of three sides and angles is called a triangle; and it receives particular denominations from the relations of its sides and angles.
- 18. An Equilateral Triangle has three equal sides.
- An Equiangular Triangle has three equal angles.

Every Equilateral Triangle is also Equiangular.

- 20. An Isosceles Triangle has two equal sides.
- 21. A Right Angled Triangle has one right angle.
- 22. An Obtuse Angled Triangle has one obtuse angle.
- 23. An Acute Angled Triangle has all its three angles acute.
- 24. A Quadrilateral figure has four sides and four angles.
- 25. A Parallelogram is a quadrilateral which has its opposite sides parallel, and it may take the name of rectangle, square, rhomboid, or rhombus, according to the relation of its sides and angles.
- 26. A Rectangle is a parallelogram, having its angles right angles.

27. A Square has all its sides equal, and all its angles right angles.	
, •	
28. A Rhomboid is an oblique angled parallelogram.	
29. A Rhombus is an equilateral rhomboid.	
30. A Trapezium is any irregular quadrilateral.	

- 31. A Trapezoid is a quadrilateral which has two opposite sides parallel.
- 32. A figure of five sides is called a Pentagon; of six, a Hexagon; of eight, an Octagon, &c.; but all these figures are in general called *Polygons*.
- 33. Diagonals are lines joining any two angles of a polygon not adjacent.
- 34. Polygons may be similar without being equal; that is, the angles and the number of sides equal, and the length of the sides and the size of the figures unequal.
 - 35. A Perimeter of any figure is the sum of all its sides.
- 36. The Altitude of any figure is the perpendicular distance from any side, or any angle, to the opposite side or angle.
- 37. A Circle is a figure bounded by one uniform curved line, and a certain point within it, from which all straight lines drawn to the curve are equal, and this point is called the center.

EXPLANATION OF TERMS.

- 1. A Postule is a position taken, or a fact that must be admitted.
- 2. An Axiom is a self-evident truth; not only too simple to require, but too simple to admit, of demonstration.
- 3. A Proposition is something which is either proposed to be done, or to be demonstrated, and is either a problem or a theorem.
 - 4. A Problem is something proposed to be done.
 - 5. A Theorem is something proposed to be demonstrated.
- A Lemma is something which is premised, or demonstrated, in order to render what follows more easy.
- 7. A Corollary is a consequent truth gained immediately from some preceding truth or demonstration.
- 8. A Scholium is a remark or observation made upon something going before it.

POSTULATES.

- 1. Let it be granted that a straight line can be drawn from any one point to any other point.
- 2. That a straight line can be produced to any distance, or terminated at any point.
- 3. That a circle can be drawn from any center, at any distance from that center.

AXIOMS.

- 1. Things which are equal to the same thing are equal to each other.
- 2. When equals are added to equals the wholes are equal.
- 3. When equals are taken from equals the remainders are equal.
- 4. When equals are added to unequals the wholes are unequal.
- 5. When equals are taken from unequals the remainders are unequal.
- Things which are double of the same thing, or equal things, are equal to each other.
 - 7. Things which are halves of the same thing are equal.
 - 8. Every whole is equal to all its parts taken together.
- Things which coincide, or fill the same space, are identical, or mutually equal in all their parts.
 - 10. All right angles are equal to one another.
 - 11. Two straight lines cannot inclose a space.
 - 12. A straight line is the shortest distance between two points.
 - 13. The whole is greater than its part.

ABBREVIATIONS.

The common algebraical signs will be used in this work, and demonstrations will sometimes be made through the medium of equations; and it is so necessary that the student in Geometry should understand some of the more simple operations of Algebra, that we suppose he is acquainted with the use of the signs. As the words circle, angle, triangle, hypothesis, axiom, are constantly occurring in a course of Geometry, we shall abbreviate them as follows:

Addition is ex	presse	d by									• ·	+.
Subtraction	"	"						•.				
Multiplication	"	"										х.
Equality	"	"										=.
Greater than	"	"										>.
Less than	"	"										<.
Thus: B is gr	eater	than	A,	is	w	ritt	en				B >	> À.
B is le				"		"					B <	< A.
Let a circle b	e expr	essec	l b	y								· 0.
An angle by	"		"									٦.
A triangle by	"		"									Δ.
The word hyp	othesi	8	"					•			(hy.)
Axiom is exp	ressed		**								Ì	(ax.)
Theorem	"		"								(th.)
Corollary	"		**								(Cor.)
Perpendicular	**	٠.	"								•	Ĺ.

B O O K I.

THEOREM 1.

When one line meets another, the sum of the two angles which it makes on the same side of the other line, is equal to two right angles.

Let AB meet CD; then we are to demonstrate that the two angles ABD+ABC= two right angles.

If AB does not incline on either side of CD and the angle ABD = ABC, then these angles are right angles by definition 9.

But if these angles are unequal, conceive the dotted line, BE, drawn from the point B, so as not to incline on either side; then by the definition, the angles CBE and EBD are right angles; but the angles CBA+ABD make the same sum, or fill the same angular space, as the two angles CBE and EBD; therefore, CBA+ABD=two right angles. Q.E.D.*

- Cor. 1. Hence, all the angles which can be made at any point B, by any number of lines on the same side of the right line CD, are, when taken all together, equal to two right angles.
- Cor. 2. And, as all the angles that can be made on the other side of the line CD are also equal to two right angles, therefore all the angles that can be made quite round a point B, by any number of lines, are equal to four right angles.
- Cor. 3. Hence, also, the whole circumference of a circle, being the sum of the measures of all the angles that can be made about the center F, (def. 8), is the measure of four right angles; consequently, a semicircle, or 180 degrees, is

the measure of two right angles; and a quadrant, or 90 degrees, the measure of one right angle.

The initials of a Latin phrase, meaning "which was to be demonstrated."

THEOREM 2.

If one straight line meets two other straight lines at a common point, forming two angles, which together make two right angles, the two straight lines are one and the same line.

If AB meets the two lines DBand BC at the common point B. and the two angles DBA+ABC =two right angles, then we are to demonstrate that DB and BC form one and the same straight line.

If DB and BC are not in the

same line, produce DB to E, making a continued line DE: then by (th. 1) the angles

$$ABD+ABE=2R$$
 (2 R indicates two right angles.)

But by (hy.) By subtraction

$$ABE - ABC = 0$$

That is, the angle CBE is zero; and DBC is a continued line; or BC falls on BE. Q. E. D.

THEOREM 3.

If two straight lines intersect each other, the opposite vertical angles are equal.

If AB and CD intersect each other at E, we are to demonstrate that the angle AEC equals its opposite angle DEB, and AED = CEB.

As AEB is a right line, EA is exactly in the opposite direction from EB; and for the same reason EC is opposite in direction from ED; therefore, the difference in direction between EA and EC is equal to the difference in direction between EB and ED; or by (def. 7), the angle AEC=DEB. the same manner we can show that the angle AED = CEB. Q. E. D.

Otherwise: Let AEC=z, AED=y, and DEB=x; then we are to show that x=z. As AB is a right line, and DE falls upon it, we have, by (th. 1), x+y=2R

Also, z+y=2R

By subtraction,

Q. E. D. By transposition,

THEOREM 4.

If a straight line falls across two parallel straight lines, the sum of the two interior angles on the same side of the crossing line is equal to two right angles.

Let AB and CD be two parallel lines, and EF running across them; then we are to demonstrate that the angle BGH+GHD=2R.

Because GB and HD are parallel, they are equally inclined to the line EF, or have the same difference of

Then FGB+BGH=GHD+BGH.

But by (th. 1) the first member of this equation is equal to two right angles: that is, the two interior angles GHD and BGH are together equal to two right angles. $Q.\ E.\ D.$

THEOREM 5.

If a straight line falls across two parallel straight lines, the interior alternate angles are equal; and also the opposite exterior angles.

On the supposition that AB and CD are parallel, (see last figure), and EF falls across them, we are to demonstrate

2d. That AGF = EHD; or FGB = CHE.

By the definition of parallel lines we have

FGB = GHD

But FGB = AGH (th. 3)

Hence AGH = GHD (ax. 1) Q. E. D.

2d. The \square FGB=GHD. But GHD=CHE (th. 3); therefore, FGB=CHE. In the same manner we prove that AGF is equal to EHD. Q. E. D.

THEOREM 6.

If a straight line falls across two parallel straight lines, the exterior angles are equal to the interior opposite angles on the same side of the crossing line.

2

If AB and CD are parallel, (see last figure), and EF crosses them, then we are to prove that the exterior \Box FGB = GHD

			He	nce	FGB = GHD (ax. 1)
Also	•			•	AGH = GHD (th. 5)
For	•	•	•		AGH = FGB (th. 3)
And		•		•	AGF = CHG

In the same manner we prove that AGF = CHG. Q. E. D.

THEOREM 7.

If a straight line falls across two other straight lines, and makes the sum of the two interior angles on the same side equal to two right angles, the two straight lines must be parallel.

Let EF be the line falling across the lines AB and CD, making the two angles BGH+GHD=to two right angles; then we are to demonstrate that AB and CD must be parallel.

As EF is a right line, and BA meets it, the two angles (th. 1)

$$FGB+BGH=2R$$
By (hy.) $GHD+BGH=2R$

By subtraction, FGB-GHD=0. That is, there is no difference in the direction of GB and HD from the same line EF; but when there is no difference in the direction of lines (def. 13) the lines are parallel; therefore, AB and CD are parallel. Q. E. D.

THEOREM 8.

Parallel lines can never meet, however far they may be produced.

If the lines AB and CD (see last figure) should meet at any distance on either side of EF, they would there form an angle; and if they formed an angle they would not run in the same direction; and not running in the same direction, they would not be parallel; but by (hy.) they are parallel; therefore they cannot meet. Q, E, D.

THEOREM 9.

If two straight lines are parallel to a third, they are parallel to each other.

If AB is parallel to EF, and CD also parallel to EF, then we are to show that AB is parallel to CD.

Because AB and EF are parallel, they make equal angles with the line HG (def. 13, 2); and because

CD and EF are parallel, those two lines make equal angles with the line HG.

Hence AB and CD, making equal angles with another line that falls across them, they are therefore parallel (def. 7). Q. E. D.

THEOREM 10.

If two angles have their sides parallel, the two angles will be equal.

Let the two angles be A and DBF; AC parallel to DB, and AH parallel to BF.

On that hypothesis we are to prove that the angle A=DBF.

Produce DB, if necessary, to meet AH in G,

Scholium. When AH extends in the opposite direction, it is still parallel to BF; but the angle then is the supplemental angle to DBF; that is, equal to FBG.

THEOREM 11.

If any side of a triangle be produced, the exterior angle is equal to the sum of the two interior opposite angles; and the sum of the three angles is equal to two right angles.

Let ABC be any triangle. Produce AB to D. Then we are to thow that the angle $CBD = \bigcup A$ +the angle C; also, that the angles A+C+CBA=2R.

From B conceive BE drawn parallel to AC;

To each of these equals add the angle CBA, and we have CBD + CBA = A + C + CBA

But .
$$CBD+CBA=2R$$
 (th. 1)
Therefore $A+C+CBA=2R$ (ax. 1)

That is, the three angles of the triangle are, together, equal to two right angles; and this triangle represents any triangle; therefore, the sum of the three angles of any triangle is equal to two right angles. Q. E. D.

- Cor. 1. As the exterior angle of any triangle is equal to the sum of the two interior and opposite angles, therefore it is greater than either one of them.
- Cor. 2. If two angles in one triangle be equal to two angles in another triangle, the third angles will also be equal, (ax. 3), and the two triangles equiangular.
- Cor. 3. If one angle in one triangle be equal to one angle in another, the sums of the remaining angles will also be equal (ax. 3).
- Cor. 4. If one angle of a triangle be right, the sum of the other two will also be equal to a right angle, and each of them singly will be acute, or less than a right angle.
- Cor. 5. The two least angles of every triangle are scute, or each less than a right angle.

THEOREM 12.

In any quadrangle the sum of all the four inward angles is equal to four right angles.

Let ABCD be a quadrangle; then the sum of the four inward angles A+B+C+D is equal to four right angles.

Let the diagonal AC be drawn, dividing the quadrangle into two triangles, ABC, ADC;

then, because the sum of the three angles of each of these triangles is equal to two right angles (th. 11), it follows that the sum of all the angles of both triangles which make up the four angles of the quadrangle, must be equal to four right angles (ax. 2). Q. E. D.

- Cor. 1. Hence if three of the angles be right angles, the fourth will also be a right angle.
- Cor. 2. And if the sum of two of the four angles be equal to two right angles, the sum of the remaining two will also be equal to two right angles.

SCHOLIUM.

In any figure bounded by right lines and angles, the sum of all the interior angles is equal to twice as many right angles as the figure has sides, less four right angles.

Let ABCDE be any figure; then the sum of all its inward angles, A+B+C+D+E, is equal to twice as many right angles, wanting four, as the figure has sides.

For, from any point P, within it, draw lines PA, PB, PC, &c., to all the angles, dividing the polygon into as many triangles as it has sides. Now the sum of the three angles of each of these triangles, is equal to two right angles (th. 11); therefore the sum of the angles of all the triangles is equal to twice as many right angles as the figure has sides. But the sum of these angles contains the sum of four right angles about

the point P: take these away, and the sum of the interior angles of the figure is equal to twice as many right angles as the figure has sides less four right angles. Q. E. D.

From this principle we can deduce the following rule to find the sum of the interior angles of any right-lined figure:

Rule. Subtract 2 from the number of sides, and multiply the remainder by 2, and the product will be the number of right angles.

Thus, if the sides be represented by s, then the rule gives (2s-4); nor is the rule varied in case of a re-- entrant angle, as represented at d in the figure a b c d e f. Draw the dotted lines from the angle d to the several opposite angles, making as many triangles as the figure has sides, less two, and each triangle has two right angles: hence the rule.

THEOREM 13.

Two triangles which have two sides, and the included angle in the one, equal to the two sides and included angle in the other, are identical, or equal in all respects.

In two $\triangle s$, ABC and DEF, on the supposition that AB=DE, and AC=DF, and the A=D, we are to prove that BC must=EF, the \square B= \square E, and the \square C= \square F.

Conceive the $\triangle ABC$ cut out of the the paper, taken up, and placed on

the \triangle DEF in such a manner that the point A shall fall on the point D, and the line AB on the line DE; then the point B will fall on the point E, because the lines are equal. Now, as the A = D, the line AC must take the same direction as DF, and fall on DF; and as the line AC=DF, the point C will fall on F. B being on E and C on F, BC must be exactly on EF, (otherwise, two straight lines would enclose a space ax. 12), and BC=EF, and the two magnitudes exactly fill the same space; therefore, the two \triangle s are identical, (ax. 9), and the angle B=E, and C=F. Q. E. D.

THEOREM 14.

When two triangles have a side and two adjacent angles in the one, equal to a side and two adjacent angles in the other, the two triangles are equal in all respects.

In two \triangle s, as ABC and DEF, on the supposition that BC=EF, the angle B=E, and C=F, we are to prove that AB=DE, AC=DF, and the angle A=D.

Conceive the \triangle ABC taken up and placed on the \triangle DEF so that the side BC shall exactly coincide with its equal side EF; then because the angle B is equal to the angle E, the line BC will take the direction of CD, and fall exactly upon it; and because the angle C is equal to the angle F, the line CA will take the direction of FD, and exactly fall upon it; and the two lines BA and CA exactly coinciding with the two lines ED and FD, the point A will fall on D, and the two magnitudes exactly fill the same space; therefore, by (ax. 9) they are identical, and AB = ED, AC = DF, and the A = AB = DD. AC = DF, and the AB = DD. AC = DD.

THEOREM 15.

If two sides of a triangle are equal, the angles opposite to these sides will be equal.

Let ABC be the triangle; and on the supposition that AC=CB, we are to prove that the angle A=B.

Conceive the angle C divided into two equal angles by the line CD; then we have two $\triangle s$, ADC and CBD, which have the two sides, AC and CD of the one, equal to the two sides, CB

and CD of the other; and the included angle ACD, of the one, equal to BCD of the other: therefore (th. 13), AD=BD, and the angle A, opposite to CD of the one triangle, is equal to the angle B, opposite to CD of the other triangle: that is, $A = B \cdot B \cdot C \cdot D$.

Cor. 1. As the two triangles ACD and BCD are in all respects equal, the line which bisects the vertical angle of an isosceles \triangle also bisects the base, and falls perpendicular on the base.

Scholium. Any other point as well as C may be taken in the perpendicular DC, and lines drawn to the extremities A and B; such lines will be equal, as we can prove by theorem 13; hence we may announce this truth: That if a perpendicular be drawn from the middle of a line, any point in the perpendicular is at equal distance from the two extremities.

THEOREM 16.

The greater side of every triangle has the greater angle opposite to it.

Let ABC be the \triangle ; and on the supposition that AC is greater than AB, we are to prove that the angle ABC is greater than the \bot C.

From the greater of the two sides AC, take AD, equal to AB the less, and join BD; thus making two triangles of the original triangle.

As AB=AD, the ADB=the ABD (th. 15).

But the \square ADB is the exterior angle of the \triangle BDC, and therefore greater than the \square C: that is, the $\square ABD$ is greater than the angle C. Much more, then, is the angle ABC greater than the angle C. Q. E. D.

THEOREM 17.

If two angles of a triangle be equal, the sides opposite to them will be equal.

Let ABC be the \triangle , having the angle B=C; then we are to prove that AB=AC.

If AB is not equal to AC, one of them must be greater than the other. Suppose AC greater than AB, then the $\bot B$ is greater than the \bot

C (th. 16). But this is contrary to the hypothesis; therefore AC is not greater than AB. In the same manner we determine that AB cannot be greater than AC; therefore, if neither is greater than the other, they must be equal. Q. E. D.

N. B. This is the converse of theorem 15.

THEOREM 18.

The difference of any two sides of a triangle is less than the third side.

Let ABC be the \triangle , and let AC be greater than AB; then we are to prove that AC - AB is less than BC.

As a straight line is the shortest distance between two points,

Therefore, AB+BC > AC.

From these unequals subtract the equals

AB=AB, and we have BC > AC-AB. (ax. 5). Q. E. D.

When two triangles have all three of the sides in one triangle equal to all three in the other, each to each, the two triangles will be identical, and have equal angles opposite equal sides.

In two triangles, as ABC and ABD, on the supposition that the side AB of the one=AB of the other, AC=AD, and BC=BD, we are to demonstrate that the angle ACB=the angle ADB, BAC=BAD, and ABC=ABD.

Conceive the two triangles to be joined together by their longest equal sides, and draw the line CD.

Then, in the triangle ACD, because the side AC is equal to AD by (hy.), the angle ACD is equal to the angle ADC (th. 15). In like manner, in the triangle BCD, the angle BCD is equal to the angle BDC, because the side BC is equal to BD. Hence, then, the angle ACD being equal to the angle ADC, and the angle BCD to the angle BDC, by equal additions the sum of the two angles ACD, BCD, is equal to the sum of the two ADC, BDC (ax. 2); that is, the whole angle ACB is equal to the whole angle BAD.

Since then the two sides, AC, CB, are equal to the two sides AD, DB, each to each, by (hy.), and their contained angles ACB, ABD, also equal, the two triangles ABC, ABD, are identical (th. 13), and have their other angles equal, the angle BAC to the angle BAD, and the angle ABC to the angle ABD. Q.E.D.

THEOREM A.

If there be two triangles which have the two sides of the one equal to the two sides of the other, each to each, and the included angles unequal, the third sides will be unequal, and the greater side will belong to the triangle which has the greater included angle.

Let ABC be one \triangle , and ACD the other \triangle . Let AB and AC of the one \triangle be equal to AD and AC of the other \triangle . But the angle BAC greater than the angle DAC; then we are to prove that the base BC is greater than the base CD.

Conceive the two \triangle s joined together so that the shorter sides will be common to them. As AB=AD, ABD is an isosceles \triangle , from the vertex A draw a line bisecting the angle BAD. This line must meet BC, and will not meet CD, because the \square BAC is greater than the \square DAC, and be perpendicular to BD (th. 15). From E, where the perpendicular meets BC, draw ED.

Now BE=ED (th. 15, scholium). Add to each EC, then BC=ED+EC But DE+EC is greater than DC; Therefore . . BC>DC. Q. E. D.

THEOREM 20.

A perpendicular is the shortest line that can be drawn from any point to a straight line; and if other lines be drawn from the same point to the same straight line, the greater will be at the greater distance from the perpendicular; and lines at equal distances from the perpendicular, on opposite sides, are equal.

Let A be any point without the line DE; and let AB be the perpendicular; AC, AD, and AE oblique lines: then, if BC is less than BD, and BC=BE, we are to show,

1st. That AB is less than AC. 2d. AC less than AD. 3d. AC=AE.

In the triangle ABC, as AB is perpendicular by (hy.), the angle ABC is a right angle; then, as it requires the other two angles of the triangle (th. 11) to make another right angle, the angle ACB, is less than a right angle; and as the greater side is always opposite the greater angle, AB is less than AC; and as AC is any line differing from AB, therefore AB is the least of any line drawn from A.

2d. As the two angles ACB and ACD (th. 11) make two right angles, and ACB less than a right angle, therefore ACD is greater than a right angle; consequently, the $\Box D$ is less than a right angle; and, therefore, in the $\triangle ACD$, AD is greater than AC, or AC is less than AD.

3d. In the $\triangle s \ ABC$ and ABD, AB is common, and CB=BE, and the angles at B, right angles; therefore, by (th. 15) AC=AE.

Q. E. D.

THEOREM 21.

The opposite sides, and the opposite angles of any parallelogram, are equal to each other.

Let ABDC be a parallelogram. Then we are to show that AB=CD, AC=BD, the angle A=D, and the angle ACD=ABD.

and

Draw a diagonal, as CB; then, because

AB and CD are parallel, the alternate angles ABC and BCD (th. 5) are equal. For the same reason, as AC and BD are parallel, the angles ACB and CBD are equal. Now, in the two triangles ABC and BCD, the side CB is common,

Therefore, the third angle A— the third angle D (th. 11), and by (th. 13) the two \triangle s are equal in all respects; that is, the sides opposite the equal angles are equal; or, AB = CD, and AC = BD. By adding equations (1) and (2), (ax. 2), we have the angle ACD = the angle ABD; therefore, the opposite sides, &c. Q.E.D.

- Cor. 1. As the sum of all the angles of the quadrilateral is equal to four right angles, and the angle A is always = to the opposite angle D; if, therefore, A is a right angle, D is also a right angle, and all the angles are right angles.
- Cor. 2. As the angle ABD, added to the angle A, gives the same sum as the angles of the $\triangle ACB$; therefore, the two adjacent angles of a parallelogram make two right angles; and this corresponds with the 4th point of theorem 12.

THEOREM 22.

If the opposite sides of a quadrilateral are equal, they are also parallel, and the figure is a parallelogram.

Let ABDC represent any quadrilateral, and on the supposition that AC=BD, and AB=CD, we are to prove that AC is parallel to BD, and AB parallel to CD.

Draw the diagonal CB; then we have two

Q. E. D.

triangles ABC, and CDB, which have the common side CB; and AC of the one=BD of the other, and AB of the one=CD of the other; therefore by (th. 19) the two \triangle s are equal, and the angles equal, to which the equal sides are opposite; that is, the angle ACB = the angle CBD, and these are alternate angles; and, therefore, by (th. 5), AC is parallel to BD; and because the angle ABC=BCD, AB is parallel to CD, and the figure is a parallelogram.

Cor. In this, and also in (th. 21), we proved that the two \triangle s which make up the parallelogram are equal; and the same would be true if we drew the diagonal from A to D; and in general we may say, that the diagonal of any parallelogram bisects the parallelogram.

THEOREM 23.

The lines which join the corresponding extremities of two equal and parallel straight lines, are themselves equal and parallel; and the figure thus formed is a parallelogram.

On the supposition that AB is equal and parallel to CD (see last figure), we are to show that AC will be equal and parallel to BD; and that will make the figure a parallelogram.

Join CB; then because AB and CD are parallel, and CB joins them, the alternate angles ABC and BCD are equal, and the side AB=CD, and CB common to the two \triangle s ABC and CDB; therefore by (th. 13) the two triangles are equal; that is, AC=BD, the angle A=D, and ACB=CBD; hence, AC is also parallel to BD; and the figure is a parallelogram. Q.E.D.

THEOREM 24.

Parallelograms on the same base, and between the same parallels, are equal in surface.

Let ABEC and ABFD be two parallelograms on the same base AB, and between the same parallel lines AB and CD; then we are to show that these two parallelograms are equal.

Now CE and FD are equal, because they are each equal to AB (th. 21); and

if from the whole line CD we take, in succession, CE and FD, there will remain (ax. 3) ED = CF; but EB = CA, and AF = BD (th. 21); hence we have two \triangle s, CAF and EBD, which have the three sides of the one equal to the three corresponding sides of the other, each to each; and therefore by (th. 19) the two \triangle s CAF and EBD are equal. If from the whole figure we take away the \triangle CAF, the parallelogram ABDF remains; and if from the whole figure the other triangle EBD be taken away, the parallelogram ABEC will remain; that is, from the same quantity, if equals are taken (ax. 3), equals will be left; or the parallelogram ABDF = ABEC. Q. E. D.

THEOREM 25.

Triangles on the same base, and between the same parallels, are equal (in respect to area or surface).

Let the two \triangle s ABE and ABF have the same base AB, and between the same parallels AB and CD; then we are to show that they are equal in surface.

From B draw a dotted line, BD,

parallel to AF; and from A draw a dotted line AC, parallel to BE; and produce EF both ways, if necessary, to C and D; then the parallelogram ABFD=the parallelogram ABCE (th. 24). But the \triangle ABE is half the parallelogram ABCE, and the \triangle ABF is half the parallelogram ABDF; but halves of equals are equal (ax. 7); therefore the \triangle ABE=the \triangle ABF. Q. E. D.

THEOREM 26.

Parallelograms on equal bases, and between the same parallels, are equal in area.

Let ABCD, and EFGH, be two parallelograms on equal bases, AB and EF, and between the same parallels; then we are to show that they are equal in area.

As AB=EF=HG; but lines which join equal and parallel lines, are themselves equal and parallel (th. 23); therefore, if AH and BG be joined, the figure ABGH is a parallelogram=to ABCD (th. 24); and if we turn the whole figure over, the two parallelograms HEFG and HGBA, will stand on the same base, HG, and between the same parallels; therefore, HGEF=HGBA; and consequently (ax. 1) ABCD=EFGH. Q. E. D.

Cor. Triangles on equal bases, and between the same parallels, are equal; for, join BD and EG, the $\triangle ABD$ is half of the parallelogram AC; and the $\triangle EFG$ is half of the equal parallelogram FH; therefore, the $\triangle ABD$ =the $\triangle EFG$ (ax. 7).

THEOREM 27.

If a triangle and a parallelogram be upon the same or equal bases, and between the same parallels, the triangle will be half the parallelogram.

Let ABC be a \triangle , and ABDE a parallelogram, on the same base AB, and between the same parallels; then we are to show that the \triangle ABC is half of ABDE.

Draw the diagonal EB to the parallelogram; then, because the two \triangle s ABC and ABE are on the same base, and between the same parallels, they are equal (th. 25); but the \triangle ABE is half the parallelogram ABDE (cor. to the 22); therefore the \triangle ABC is half of the same parallelogram (ax. 7). Q. E. D.

THEOREM 28.

The complementary parallelograms of any parallelogram which are about its diameter, are equal to each other.

Let AC be a parallelogram, and BD its diagonal; take any point, as E, in the diagonal, and from it draw lines parallel to its sides; thus forming four parallelograms.

We are now to show that the complementary parallelograms AE and EC, are equal.

By corollary to theorem 22 we learn that the $\triangle ADB = \triangle DBC$. Also by the same (cor.) a=b, and c=d; therefore by addition . . . a+c=b+d.

Now from the whole $\triangle ADB$ take the sum of the two $\triangle s$ (a+c), and from the whole $\triangle DBC$ take the equal sum (b+d), and the remainders AE and EC are equal (ax. 3). Q. E. D.

THEOREM 29.

The sides of a parallelogram will inclose the greatest space when the angles are right angles.

Let ABDC be a right angled parallelogram, and ABba an oblique angled parallelogram of equal sides to the other; then we are to show that the right angled parallelog

show that the right angled parallelogram ABDC is greater than the other, ABba.

We take Aa=AC. Then Aa is less than AE, because the perpendicular AC, or its equal Aa, is less than any oblique line AE (th. 20); therefore the line ab is between the two parallels AB and CF. The parallelogram ABDC=ABFE; because they are on the same base AB, and between the same parallels (th. 24); but the parallelogram ABba is but part of the parallelogram ABFE; therefore, ABFE, or its equal ABDC, is greater than ABba; but the parallelogram ABba has the same length of sides, respectively, as the parallelogram ABDC; therefore the side, &c. Q.E.D.

Cor. It is evident, then, that the area of the parallelogram ABba will become less and less as its angles become more and more oblique; and greater and greater as its angles become nearer and nearer to right angles.

Scholium. All parallelograms (indeed all figures) are referred to square units for their measurement, and the unit may be taken at pleasure; it may be an inch, a foot, a yard, a rod, a mile, &c., according as convenience and propriety may dictate. For example, the parallelogram ABDC is measured by the number of linear units in CD, multiplied into the number of linear units in AC; the product will be the square units in ABDC; for conceive CD composed of any number of equal parts—say five—and each part some unit of linear measure, and AC composed of three such units,

and from each point of division on CD draw lines parallel to AC; and from each point of division on AC draw lines parallel to CD or AB; then it is as obvious as an axiom that the parallelogram will contain $5 \times 3 = 15$ square

units; and in general the areas of right angled parallelograms are found by multiplying the base by the altitude.

Right angled parallelograms are called rectangles (def. 26), and the altitude of any parallelogram, whether right angled or not, is the perpendicular distance between its opposite sides.

THEOREM 30.

The area of any plane triangle is measured by the product of its base into half its altitude; or half the base into the altitude.

Let ABC represent any triangle, AB its base, and AD at right angles to AB its altitude; then we are to show that the area of ABC is equal to the product of AB into one half of AD; or the half of AB into AD.

On AB construct the rectangle ABED; and the area of this rectangle is measured by AB into AD (scholium to th. 29); but the area of the \triangle ABC is one half this rectangle (th. 27); therefore, &c. Q.E.D.

THEOREM 81.

The area of a trapezoid is measured by the half sum of its parallel sides, multiplied into the perpendicular distance between them.

Let ABDC represent any trapezoid, and draw the diagonal BC, which divides it into two triangles, ABC and BCD: CD is the base of one triangle, and AB may be considered as

the base of the other; and EF is the common altitude of the two triangles,

Now by the last theorem the area of the triangle CDB is= $\frac{1}{2}$ $CD \times EF$; and the area of the $\triangle ABC = \frac{1}{2}AB \times EF$; therefore, by addition, the area of the two \triangle s, or of the trapezoid, is equal to $\frac{1}{2}(AB + CD) \times EF$. Q. E. D.

THEOREM 32.

If there be two lines, one of which is divided into any number of parts, the rectangle contained by the two lines is equal to the several rectangles contained by the undivided line, and the several parts of the divided line.

Let AB be one line, and AD the other; and suppose AB divided into any number of parts at the points E, F, G, &c.; then the whole rectangle of the two lines is AH, which is measured by AB into AD; and the rectangle AL is measured by AE into

AD; and the rectangle EK is measured by EF into EL, which is equal to EF into AD; and so of all the other partial rectangles; and the truth of the proposition is as obvious as that a whole is equal to the sum of all its parts; and requires no other demonstration than an explanation of exactly what is meant by the words of the text.

THEOREM 33.

If a straight line be divided into any two parts, the square of the whole line is equal to the sum of the squares of the two parts, and twice the rectangle contained by the parts.

Let AB be any line divided into any two parts at the point C; then we are to show that the square on AB is equal to the sum of the squares on AC and CB, and twice the rectangle of AC into CB.

On AB describe the square (or conceive it described) AD. Through the point C conceive CM drawn parallel to

BD; and take BH=BC; and through H draw HKN parallel to AB, and CH is the square on CB, by direct construction.

As AB=BD, and CB=BH, therefore, by subtraction, AB-CB=BD-BH; or AC=HD. But NK=AC, being opposite sides of a parallelogram; and for the same reason KM=HD; therefore (ax. 1), NK=KM; and the figure NM is a square on NK equal to a square on NK. But the whole square on NK is composed of the two squares NK, and the two complements or rectangles NK and NK, and each of these is NK in length, and NK in width; and each has for its measure NK into NK in therefore the whole square on NK is equal to NK0. NK1 is equal to NK2 in NK3. NK4 is equal to NK5 is equal to NK6. NK6 in NK9 is equal to NK9 in NK9 is equal to NK9 in NK9 in NK9 is equal to NK9 in NK9 in NK9 is equal to NK9 in NK9 in NK9 in NK9 in NK9 is equal to NK9 in NK9 in

This may be proved algebraically, thus:

Let w represent any whole right line divided into any two parts a and b; then we shall have the equation

$$w=a+b$$

By squaring $w^2=a^2+b^2+2ab$. Q. E. D.

Scholium. If a=b, then $w^2=4a^2$, which shows that the square of any whole line is four times the square of half of it.

THEOREM 84.

The square on the difference of two lines is equal to the sum of the squares of the two lines, diminished by twice the rectangles contained by the lines.

Let AB represent the greater line, BC a lesser line, and AC their difference.

We are now to show that the square on AC is equal to the sum of the squares on AB and BC, diminished by twice the rectangle contained by AB into BC.

On AB conceive the square AF to be described; and on CB conceive the square

BL described; and on AC describe the square ACGM; and produce MG to K.

As GC=AC, and GL=CB; therefore, by addition, (GC+CL), or GL, is equal (AC+CB), or AB. Therefore the rectangle GE is AB in length, and CB in width; and is measured by AB into BC.

Also AH=AB, and AM=AC; therefore by subtraction MH=CB; and as MK=AB, the rectangle HK is AB in length, and CB in width, and it is measured by AB into CB; and the two rectangles GE and HK, are together equal to $2AB \times BC$.

Now the squares on AB and BC make the whole figure AHFELC; and from this whole figure, or these two squares, take away the two rectangles HK and GE, and the square on AC only will remain; that is,

$$AC^2=AB^2+BC^2-2AB\times BC$$
. Q. E. D.

This may be proved algebraically, thus:

Let α represent one line, b another and lesser line, and d their difference; then we must have this equation:

$$d=a-b$$

By squaring . $d^2 = a^2 + b^2 - 2ab.$

THEOREM 35.

The difference of the squares of any two lines is equal to the rectangle contained by the sum and difference of the lines.

Let AB be one line, and AC the other, and on them describe the squares AD, AM; then the difference of the squares on AB and on AC is the two rectangles EF and FC. We are now to show that the measure of these rectangles may be expressed by (AB+AC) into (AB-AC).

The rectangle EF has ED, or its equal AB, for its length; the other has MC, or its equal AC, for its length; therefore, the two together (if we conceive them put between the same parallel lines) will have (AB+AC) for the length; and the common width is CB, which is equal to (AB-AC); therefore, $AB^2-AC^2=(AB+AC)\times(AB-AC)$. Q. E. D.

This is proved algebraically thus:

Put a to represent one line, and b another;

Then a+b is their sum, and a-b their difference; and . . $(a+b)\times(a-b)=a^2-b^2$. Q. E. D.

THEOREM 36.

The square described on the hypotenuse of any right angled triangle is equal to the sum of the squares on the other two sides.

Let ABC represent any right angled triangle, the right angle at B.

We are to show that the square on AC is equal to the sum of two squares; one on AB, the other on BC.

Conceive the three squares, AD, AI, and BM, described on the three sides. Through the point B, draw BNE perpendicular to AC, and produce it to meet the line GI in K.

Produce AF to meet GI in H. If ML be

produced, it will meet the point K, and IBLK will be a right angled parallelogram; for its opposite sides are parallel, and all its angles right angles.

The angle BAG is a right angle, and the angle NAH is also a right angle; and from these equals if we subtract the common angle BAH, the remaining angle, BAC, must be equal to the remaining angle GAH. The angle G is a right angle, equal to the angle ABC; and AB=AG; therefore, the two \triangle s ABC and AGH are equal, and AH=AC. But AC=AF; therefore AH $\implies AF$. Now the two parallelograms, AE and AK are equal, because they are upon equal bases, and between the same parallels, FH and EK (th. 26).

But the square AI, and the parallelogram AK are equal, because they are on the same base, AB, and between the same parallels, AB and GK; therefore the square AI, and the parallelogram AE, being both equal to the same parallelogram AK, are equal to each other (ax. 1). In the same manner we may prove the square BM equal to the rectangle ND; therefore, by addition, the two squares AI and BM, are equal to the two parallelograms AE and ND, or to the square AD. Q. E. D.

Scholium. The two sides AB and BC may vary, while AC remains constant. AB may be equal to BC; then the point N would be in the middle of AC. When AB is very near the length of AC, and BC very small, then the point N falls very near to C.

Now, as the parallelograms AE and ND (while AC remains unchanged) depend for their relative magnitudes on the position of the point N, on the line AC, the area AE must be to the area ND as the line AN to NC; that is, the square on AB, must be to the square on BC, as the line AN to the line NC.

ANOTHER DEMONSTRATION OF THEOREM 36.

Let ABC be a right angled triangle, right angled at A. Call AB, a, AC, b, and BC, h: then we are to show that $a^2+b^2=k^2$.

Produce AB to D, making BD = AC; and produce AC to E, making GE = AB: then AD = AE; and each of these lines is (a + b), and the whole square AH is the square of (a+b), and by (th. 33) is a^2+b^2+2ab .

From B draw BG at right angles to CB; and from C draw CFat right angles, the same line CB; then BG and CF must be parallel, and join FG. We must now prove that the four triangles in the square AH are all equal, and that CGBF is the square on CB. As the two angles CBA and CBD make two right angles, (th. 11), and CBG is a right angle by construction, therefore the two angles CBA and GBD make one right angle. But CBA and ACB (cor. 4, th. 11) are also equal to a right angle; and from these equals take the angle CBA, and the angle GBD = the angle ACB. But the angle A = the angle D; both right angles, and BD was made equal to AC; therefore, the two triangles, ABC and GBD. having a side and two angles equal, are in all respects equal, and CB=BG. In the same manner we prove BG=GF; and therefore CG is a square on CB, and the four triangles are each equal to ABC, and each triangle has for its measure 1 ab. The measure of two of these is ab, and the four is 2ab.

Now . . . $AD^2=a^2+b^2+2ab$ Also . . $AD^2=h^2+2ab$ By subtraction . $0 = a^2+b^2-h^2$ By transposition . $h^2 = a^2+b^2$. Q. E. D.

Cor. From this equation we may have

$$h^2-a^2=b$$
; or, $(h+a)(h-a)=b^2$.

THEOREM 37.

In any obtuse angled triangle the square of the side opposite the obtuse angle is greater than the sum of squares on the other two sides, by twice the rectangle of the base, and the distance of the perpendicular from the obtuse angle.

Let ABC be any obtuse angled \triangle , obtuse angled at B. Represent the side opposite B by b; opposite A by a; and opposite C by c (and let this be a general form of notation): also represent the perpendicular by p, and DB by x. Now we are to show that $b^2=a^2+c^2+2ax$.

By expanding equation (1), and subtracting (2), we have $a^2 + 2ax = b^2 - c^2$

By transposition $b^2=a^2+c^2+2ax$. Q. E. D.

This equation is true, whatever be the value of x, and x may be of any value less than CD. When x is very small. B is very near D, and the line c is very near in position and value to p. When x=0, c becomes p, and the angle ABC becomes a right angle, and the equation becomes $b^2 = a^2 + c^2$, corresponding to (th. 36).

THEOREM 38.

In any triangle, the square of a side opposite an acute angle is less than the square of the base, and the other side, by twice the rectangle of the base, and the distance of the perpendicular from the acute angle,

Let ABC, either figure, represent any triangle; C the acute angle. CB the base, and AD the perpendicular, which falls

Then we are to prove that AB^2 either without or on the base. $=CB^2+AC^2-2CB\times CD$.

As in (th. 37), put AB=c, AC=b, CB=a, BD=x, AD=p; and when the perpendicular falls without the base, as in the first figure, CD=a+x; when it falls on the base, CD=a-x.

Considering the first figure, and by the aid of (th. 36), we have the following equations:

$$p^2+(a+x)^2=b^2$$
 (1)
 $p^2+x^2=c^2$ (2)

$$p^2 + x^2 = c^2 (2)$$

By expanding (1), and subtracting (2), we have $a^2 + 2ax = b^2 - c^2$

By adding a^2 to both members, and transposing c^2 , we have $c^2+(2a^2+2ax)=b^2+a^2$

By transposing the vinculum, and resolving it into factors, we have

$$c^2 = a^2 + b^2 - 2a(a+x)$$
. Q. E. D.

Considering the other figure, we have

By subtraction

$$b^2-2ax = b^2-c^2$$

By adding a^2 to both members, and transposing c^2 , we have $e^2 + 2a^2 - 2ax = b^2 + a^2$

$$c^2=b^2+a^2-2a(a-x)$$
. Q. E. D.

THEOREM 39.

If in any triangle a line be drawn from any angle to the middle of the opposite side, twice the square of this line, together with twice the square of half the side bisected, will be equal to the sum of the squares of the other two sides.

Let ABC be a triangle, its base bisected in M. Then we are to prove that $2AM^2+2CM^2=AC^2+CB^2$.

Draw AD perpendicular to the base, and call it p. Put AC=b, AB=c, CB=2a; then CM=a, and MB=a. Make MD=x; then CD=a+x, and DB=a-x. Put AM=m.

Now by (th. 36) we have the two following equations:

$$p^{2}+(a-x)^{2}=c^{2}$$
 (1)
$$p^{2}+(a+x)^{2}=b^{2}$$
 (2)

 $2p^2+2x^2+2a^2=b^2+c^2$. But $p^2+x^2=m^2$ By addition

Therefore $2m^2+2a^2=b^2+c^2$.

Q. E. D.

THEOREM 40.

The two diagonals of any parallelogram bisect each other; and the sum of their squares is equal to the sum of the squares of all the four sides of the parallelogram.

Let ABCD be any parallelogram, and draw its diagonals AC and BD.

We are now to show, 1st. That AE =EC, DE=EB. 2d. That AC2+BD2 $=AB^2+BC^2+DC^2+AD^2$.

- 1. The two triangles ABE and DEC are equal, because AB = DC, the angle ABE = the alternate angle EDC, and the vertical angles at E are equal; therefore, AE, the side opposite the angle ABE, is equal to EC, the side opposite the equal angle EDC: also EB, the remaining side of the one \triangle is equal to ED, the remaining side of the other triangle.
- 2. As ADC is a triangle whose base AC is bisected in E, we have, by (th. 39),

$$2AE^2 + 2ED^2 = AD^2 + DC^2 \qquad (1)$$

As ABC is a triangle whose base, AC, is bisected in E, we have $2AE^2+2EB^2=AB^2+BC^2$ (2)

By adding equations (1) and (2), and observing that $EB^2 = ED^2$, we have

$$4AE^2+4ED^2=AD^2+DC^2+AB^2+BC^2$$

But four times the square of the half of a line is equal to the square of the whole (scholium to th. 33); therefore $4AE^2 = AC^2$, and $4ED^2 = DB^2$; and by making the substitutions we have

 $AC^{2}+DB^{2}=AD^{2}+DC^{2}+AB^{2}+BC^{2}$. Q. E. D.

B O O K II.

PROPORTION.

THE word Proportion has different shades of meaning, according to the subject to which it is applied: thus, when we say that a person, a building, or a vessel is well *proportioned*, we mean nothing more than that the different parts of the person or thing bear that *general relation* to each other which corresponds to our taste and ideas of beauty or utility, but in a more concise and geometrical sense,

Proportion is the numerical relation which one quantity bears to another of the same kind.

DEFINITIONS AND EXPLANATIONS.

In Geometry, the quantitities between which proportion can exist, are of three kinds, only. 1st. A line to a line. 2d. A surface to a surface. 3d. A solid to a solid.

To find the numerical relation which one quantity bears to another, we must refer them both to the same standard of measure.

If a quantity, as A, be contained exactly a certain number of times in another quantity, B, the quantity A is said to measure the quantity B; and if the same quantity, A, be contained exactly a certain number of times in another quantity, C, A is also said to be a measure of the quantity C, and it is called a common measure of the quantities B and C; and the quantities B and C will evidently hear the same relation of

C will, evidently, bear the same relation to each other that the numbers do which represent the multiple that each quantity is of the common measure A.

Thus, if B contain A three times, and C contain A also three times, B and C being equimultiples of the quantity A, will be

equal to each other; and if B contain A three times, and C contain A four times, the proportion between B and C will be the same as the proportion between the numbers 3 and 4.

Again, if a quantity, D, be contained as often in another quantity, E, as A is contained in B, and as often in another quantity, F, as A is contained in C, the ratio of E to F, or the proportion between them, will be the same as the proportion between B and C; and in that case, the quantities B, C, E, and F, are said to be proportional quantities; a relation which is commonly expressed thus, B:C:E:F.

To find the numerical relation that any quantity, as A, has to any other quantity of the same kind as B, we simply divide B by A, and the quotient may appear in the form of a fraction, thus: $\frac{A}{B}$ Now this fraction, or the value of this quotient, is always a numeral, whatever quantities may be expressed by A and B.

To find the numerical relation between D and E, we simply divide E by D, or write $\frac{D}{E}$, which denotes the division; and if we find the same quotient as when we divided B by A, then we may write

$$\frac{B}{A} = \frac{D}{E} \qquad (1)$$

If B contains A three times, and D contains E three times, as we have just supposed, equation (1) is nothing more than saying that

$$3 = 3$$

When we divide one quantity by another to find their numerical relation, the quotient thus obtained is called the ratio.

When the ratio between two quantities is the same as the ratio between two other quantities, the four quantities constitute a proportion.

N. B. On this single definition rests the whole subject of geometrical proportion.

On this definition, if we suppose that B is any number of times A, and D the same number of times E, then

$$A$$
 is to B as E is to D ;

Or more concisely:

A: B=E: D. The signs :=: meaning equal ratio.

Now it is manifest, that if E is greater than A, D will be greater than B. If A=E, then B=D, &c., &c.; and whatever relation or ratio A is of E, the same ratio B will be of D; and whatever relation B is of A, the same relation D will be of E. This shows that the means may be changed, or made to change places.

Or, . . . A: E=B:D, which is the former proportion with the middle terms or means changed.

The first and third of four magnitudes are called the antecedents; the second and fourth, the consequents.

A simple relation or ratio exists between any two magnitudes of the same kind; but a proportion, in the full sense of the term, must consist of four quantities.

When the two middle quantities are equal, as,

$$A: B=B: C$$

then the three quantities, A, B, and C, are said to be continued proportionals; and B is said to be the mean proportional between A and C; and C is said to be the third proportional to A and B.

In the proportion A:B=C:D, the last D is said to be the fourth proportional to A, B, and C.

By the same rule of expression, A may be called the first proportional, B the second, and C the third; for either one can be found when the other three are given, as we shall subsequently explain.

When quantities have the same constant ratio from one to the other, they are said to be in continued proportion,

Thus: the numbers 1, 2, 4, 8, 16, &c., are in continued proportion; the constant ratio from term to term being 2.

THEOREM 1.

If there be two magnitudes which have a common measure, x, so that the first magnitude may be expressed by mx, the second by nx; and two other magnitudes which have a common measure, y, so that the first may be expressed by my, the second by ny; that is, the two common measures x and y having the same equimultiples, m and n, to make up the magnitudes; then the four magnitudes will be in geometrical proportion.

Or . . . mx:nx=my:ny

For the ratio between mx and nx is $\frac{nx}{mx} = \frac{n}{m}$, and the ratio between

my and ny is $\frac{ny}{my} = \frac{n}{m}$, the same ratio; therefore, by the definition of proportion, these magnitudes are proportional. Q. E. D.

Scholium. If we change the means, the magnitudes are still

proportional; but the ratio between the terms of comparison is different.

Thus: . . mx:my=nx:ny.

The ratio between the 1st and 2d, is, $\frac{my}{mx} = \frac{y}{x}$; the ratio between

the 3d and 4th is $\frac{ny}{nx} = \frac{y}{x}$, the same ratio as between the other two magnitudes; but as in this latter case we compare different magnitudes, the numeral value of the ratio is different.

But we cannot change the means, unless we then consider the magnitudes existing only in their numeral relations. To whatever the magnitudes may refer, whether to lines, surfaces, or solids, the ratio is always a mere numeral; therefore, when two ratios stand equal, we may increase or decrease them at pleasure, as will be shown hereafter.

N. B. The first two terms of a proportion are called the first couplet, and the last two are called the second couplet.

THEOREM 2.

When four magnitudes are in geometrical proportion, the product of the extremes is equal to the product of the means.

Let the four magnitudes be represented by A, B, C, and D. Then A:B=C:D.

Some numeral relation, or ratio, must exist between A and B. Let that ratio be represented by r; that is, B must equal rA.

But, by the definition of proportion, the same relation must exist between C and D as between A and B; or D=rC.

Then by substitution we have

$$A: rA = C: rC.$$

The product of the extremes is rCA, and that of the means is ArC; obviously the same. Q. E. D.

THEOREM 3.

If three magnitudes be continued proportionals, the product of the extremes is equal to the square of the means.

Let A, B, and C represent the three magnitudes:

Then . A: B=B: C, by the definition of proportion.

But by theorem 2 (book 2), the product of the extremes is equal to the product of the means; that is, $A \times C = B^2$. Q. E. D.

THEOREM 4.

Equimultiples of any two magnitudes have the same ratio as the magnitudes themselves; and the magnitudes and their equimultiples may therefore form a proportion.

Let A and B represent the magnitudes, and mA and mB their equimultiples.

Then . .
$$A:B=mA:mB$$

For the ratio of A to B is $\frac{B}{A}$, and of mA to mB is $\frac{mB}{mA} = \frac{B}{A}$, the same ratio; therefore, &c. Q. E. D.

THEOREM 5.

If four quantities be proportional, they will be proportional when taken inversely.

If A:B=mA:mB, then B:A=mB:mA;

For in either case, the product of the extremes and means are manifestly equal; or the ratio between the couplets is the same; therefore, &c. Q. E. D.

THEOREM 6.

Magnitudes which are proportional to the same proportionals, are proportional to each other.

If
$$A:B=P:Q$$
 Then we are to prove that and $a:b=P:Q$ $A:B=a:b$.

By the law of proportion $\frac{B}{A} = \frac{Q}{P}$

Also $\frac{b}{a} = \frac{Q}{P}$

Therefore, by (ax. 1)
$$\frac{B}{A} = \frac{b}{a}$$
, or $A : B = a : b$ Q. E. D.

Cor. This principle may be extended through any number of proportionals.

THEOREM 7.

ing

If any number of quantities be proportional, then any one of the antecedents will be to its consequent as the sum of all the antecedents is to the sum of all the consequents.

Let . . .
$$A:B=C:D$$

And . . . $C:D=E:F$
And . . . $E:F=G:H$
&c.=&c.

Then we are to show that

$$A: B = C + E + G \&c.: D + F + H, \&c.$$

If A:B as C:D, then some factor, whole or fractional, multiplied by A, will produce C; and the same factor multiplied by B, will produce D; that is, the proportions (1) become

$$A: B=mA: mB$$

$$= nA: nB$$

$$= pA: pB$$

$$\&c., \&c.$$

But, A: B=mA+nA+pA, &c: mB+nB+pB, &c.

For the ratio . .
$$\frac{B}{A} = \frac{(m+n+p)B}{(m+n+p)A}$$

Now as . . mA=C, nA=E, pA=G, &c.

Therefore, A:B=C+E+G:D+F+H. Q. E. D.

THEOREM 8.

If four magnitudes constitute a proportion, the first will be to the sum of the first and second, as the third is to the sum of the third and fourth.

By hypothesis, A:B::C:D; then we are to prove that A:A+B::C:C+D.

By the given proportion, $\frac{B}{A} = \frac{C}{D}$.

Add unity to both members, and reducing them to the form of a fraction, we have $\frac{B+A}{A} = \frac{D+C}{C}$. Throwing this equation into its equivalent proportional form, we have

$$A:A+B::C:C+D.$$

N. B. (place of adding unity, subtract it, and we shall find that

$$A:A \longrightarrow B::C:C \longrightarrow D$$

Or . A: B - A:: C: D - C.

THEOREM 9.

If four magnitudes be proportional, the sum of the first and second is to their difference, as the sum of the third and fourth is to their difference.

Admitting that A:B::C:D, we are to prove that

$$A+B:A-B::C+D:C-D$$

From the same hypothesis, th. 3 gives

$$A:A+B::C:C+D$$

And .
$$A:A-B::C:C-D$$

Changing the means (which will not affect the product of the extremes and means, and of course will not destroy proportionality), and we have

$$A:C::A+B:C+D$$

$$A:C::A-B:C-D$$

Now, by (th. 2), A+B:C+D::A-B:C-D

Changing the means, A+B:A-B::C+D:C-D

THEOREM 10.

If four magnitudes be proportional, like powers or roots of the same will be proportional.

Admitting A:B::C:D, we are to show that

$$A^n: B^n:: C^n: D^n$$
, and $A^{\frac{1}{n}}: B^{\frac{1}{n}}:: C^{\frac{1}{n}}: D^{\frac{1}{n}}$

By the hypothesis, $\frac{A}{B} = \frac{C}{D}$. Raising both members of this equation to the *n*th power, and

$$\frac{A^n}{D^n} = \frac{C^n}{D^n}$$

Changing this to the proportion $A^n:B^n::C^n:D^n$

Resuming again the equation $\frac{A}{B} = \frac{C}{D}$, and taking the ath root

of each member, we have $\frac{A^{\frac{1}{n}}}{B^{\frac{1}{n}}} = \frac{C^{\frac{1}{n}}}{D^{\frac{1}{n}}}$. Converting this equa-

tion into its equivalent proportion, we have

$$A \stackrel{\stackrel{1}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}}}}}{:D} \stackrel{\stackrel{1}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}}}}{:D} \stackrel{\stackrel{1}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}}}}{:D} \stackrel{\stackrel{1}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}$$

Now by the first part of this theorem, we have

A = B = C = C = D = M m representing any power whatever, and n representing any root.

THEOREM 11.

If four magnitudes be proportional, also four others, their compound, or product of term by term, will form a proportion.

Admitting that . A:B::C:DAnd . . . X:Y::M:N

We are to show that AX:BY::MC:ND

From the first proportion, $\frac{A}{B} = \frac{C}{D}$

From the second, $\frac{X}{Y} = \frac{M}{N}$

Multiply these equations, member by member, and

 $\frac{AX}{BY} = \frac{MC}{ND}$

Or . AX:BY::MC:ND

The same would be true in any number of proportions.

THEOREM 12.

Taking the same hypothesis as in (th. 6), we propose to show, that a proportion may be formed by dividing one proportion by the other, term by term.

By hypothesis, A:B::C:DAnd X:Y:M:N

Multiply extremes and means,
$$AD=BC$$
 (1)
And $NX=MY$ (2)
Divide (1) by (2), and . $\frac{A}{X} \times \frac{D}{N} = \frac{C}{M} \times \frac{B}{Y}$

Convert these four terms, which make two equal products, into a proportion, and we shall have

$$\frac{A}{X}: \frac{B}{Y}:: \frac{C}{M}: \frac{D}{N}$$

By comparing this with the given proportions, we find it composed of the quotients of the several terms of the first proportion, divided by the corresponding term of the second.

THEOREM 13.

If four magnitudes be proportional, we may multiply the first couplet or the second couplet, the antecedents or the consequents, or divide them by the same factor, and the results will be proportional in every case.

Now, in this last equation, MA may be considered as a single term or factor, or MD may be so considered. So, in the second member, we may take MB as one factor, or MC. Hence, we may convert this equation into a proportion in four different ways.

Thus, as . . MA:MB::C:DOr as . . A:B::MC:MDOr as . . MA:B::MC:DOr as . . A:MB::C:MD

If we resume the original equation (1), and divide it by any number, M, in place of multiplying it, we can have, by the same course of reasoning,

$$\frac{A}{M}: \frac{B}{M}:: C: D$$

$$A: B:: \frac{C}{M}: \frac{D}{M}$$

$$\frac{A}{M}: B:: \frac{C}{M}: D$$

$$A: \frac{B}{M}:: C: \frac{D}{M}$$

THEOREM 14.

If three magnitudes are in continued proportion, the first is to the third, as the square of the first is to the square of the second.

Let A, B, and C, represent three proportionals.

Then we are to show that $A: C=A^2: B^2$

By (th. 3)

 $AC \stackrel{\cdot}{=} B^2$

Multiply this equation by the numeral value of A, then we have $A^{2}C = AB^{2}$

This equation gives the following proportion:

 $A: C=A^2: B^2.$

O. E. D.

THEOREM 15.

If any one of the four magnitudes which form a proportion, be effaced or unknown, it can be restored by means of the other three.

Let A: B=C: D represent a proportion, and suppose D unknown; then represent it by x

That is

$$A: B=C: x$$

The ratio between A and B is the same as between C and x.

Represent the ratio between A and B by r; and as r is always a numeral, whatever quantitities are represented by A and B, therefore, $\frac{x}{C} = r$; or x = rC; which shows that x or D must be of the same name as C.

When A and B are not commensurable, the ratio is expressed by $\frac{B}{A}$ and $x = \frac{CB}{A}$; or, in numbers, the product of the second and third terms divided by the first, will give the fourth, which is the rule of three in arithmetic.

In short, as

$$AD=BC$$
, $A=\frac{BC}{D}$, $B=\frac{AD}{C}$, $C=\frac{AD}{B}$, and $D=\frac{CB}{A}$.

THEOREM 16.

Parallelograms, and also triangles, having the same or equal altitudes, are to one another as their bases.

Let a represent the number of units, and part of a unit in BC, and b the number of units and part of a unit in BD.

Also let p represent the units and parts of a unit in the perpendicular, AB. Now by (scholium to th. 29 book 1), the parallelogram ABCE=pa, and the parallelogram ABDF=pb; and as magnitudes must be proportional to themselves,

$$ABCE: ABDF = pa: pb$$

But . . a:b=pa:pb (th. 4 book 2)

Therefore (th. 6 book 2), we have

$$ABCE: ABDF = a:b.$$

Q. E. D.

Cor 1. As triangles on the same base and altitude as parallelograms are halves of parallelograms; and as the halves of quantities are in the same proportion as their wholes; therefore

The . . $\triangle BPC : \triangle BQD = a : b$.

Cor. 2. When parallelograms and triangles have the same or equal basis, they will be to each other as their altitudes; for the proportion ABCE:ABDF=pa:pb, as above, is always true; and when a becomes equal to b and p, and p different,

Then . ABCE: ABDF = Pa: pa

Or . ABCE: ABDF = P: p, that is, as their perpendicular altitudes.

THEOREM 17.

Lines drawn parallel to the base of a triangle, cut the sides of the triangle proportionally.

Let ABC be any triangle, and draw DE parallel to the base BC; then we are to show that

$$AD: DB = AE: EC.$$

Join DC and BE. The triangle DEB = the \triangle DEC, because they are on the same base, DE, and between the same parallels. DE and B

tween the same parallels, DE and BC (th. 25 book 1).

Represent the triangle ADE by T, DEB by x, DEC by y; then x=y. Now, as the triangles T and x may be considered as having AD and DB for bases, and the perpendicular distance of the point E from AB for altitudes, therefore, by (th. 16, book 2).

$$AD:DB=T:x$$

By reasoning in the same manner in reference to the triangles T and y, they having their common vertex in D, we have the proportion

AE: EC=T: y. But x=y

Therefore AE : EC = T : x Therefore, (th. 6, book 2)

But . AD:DB=T:x AE:EC=AD:DB Or AD:DB=AE:EC.

Q. E. D.

Cor. Considering AEB as one triangle, and AED another, having their common vertex in E; and in the same manner, ADC as one, and ADE another, whose vertex is D, then we may have

AB:AD=AC:AE

For, by taking the proportion

AD: DB = AE: EC

And by composition, (th. 8 book 2), we have

AB : AD = AC : AE.

THEOREM 18.

Equiangular triangles have their sides, about the equal angles, proportional.

Let ABC and DEF be two equiangular triangles, having the angle A=D, B=E, and C=F; and for the sake of perspicuity, we will suppose AB greater than ED.

Now we are to show that AB:AC=DE:DF; or that

AB: DE=AC: DF.

Conceive the triangle DEF taken up and placed on the triangle ABC, in such a manner that the point D shall fall on A, and the

line DE on AB, the point E falling on H. Now, as the angle E=B, the line EF, or its representative, HI, will take the direction of BC, and be parallel to BC (def. of parallel lines).

Now the two triangles DEF and AHI are identical; for AH=DE, and A=D, and AHI=E; then AIH=F; therefore AI=DF, and HI=EF. But as HI is parallel to BC, by the last theorem we have

AB : AC = AH : AI

That is, AB:AC=DE:DF Q. E. D.

Scholium. If perpendiculars be let fall from like angles in the triangles, to the opposite sides, as CL and FM, such perpendiculars will divide the two triangles into similar partial triangles, and

As . . AB: DE=AC: DFAnd . . CL: MF=AC: DF

Therefore (th. 6 b. 2) AB: DE=CL: MF

THEOREM 19.

If any triangle have its sides respectively proportional to the like sides of another triangle, each to each, then the two triangles will be equiangular.

Let the triangle abc have its sides proportional to the triangle ABC; that is, ac to AC, as cb to CB, and ac to AC, as ab to AB; then we are to

prove that the \triangle abc is equiangular to the \triangle ABC.

On the other side of the base, AB, and from A, conceive the angle BAD to be drawn = to the angle a; and from the point B, conceive the angle ABD drawn = to the ABD drawn = to the ABD drawn

= to the third angle C (th. 11, cor. 2, b. 1); and the \triangle ABD will be equiangular to the \triangle abc by construction.

Therefore, . . ac: ab = AD: AB

By hypothesis, ac: ab = AC: AB

. AD:AB=AC:AB (th. 6, b. 2).

In this last proportion the consequents are equal; therefore, the antecedents are equal: that is, AD=AC

In the same manner we prove that BD = CB

But AB is common to the two triangles; therefore, all three of the sides of the \triangle ABD are respectively equal to all three of the sides of the \triangle ABC (th. 19, b. 1).

But the \triangle ABD is equiangular to the \triangle abc by construction; therefore, the \triangle ABC is also equiangular to the \triangle abc. Q.E.D.

THEOREM 20.

If two triangles have one angle in the one equal to one angle in the other, and the sides about these equal angles, directly, or reciprocally proportional, the two triangles will be equiangular.

Let ABC and abc be two \triangle s, and the angle A=a, and AC of the one to ac of the other, as AB to ab. Then we are to show that the angle B=b, and the angle c=C.

If we take the \triangle abc, turn it over and place the point a on A, ac on AC, and ab on AB, and join cb, then cb will be parallel to CB; for if cb be not parallel to CB, draw cn parallel to CB.

Then AC:AB::An:Ac (th. 17, b. 2) Also AC:AB::Ab:Ac (hy.)

Now as three terms in each of these proportions are the same, the other terms must be equal: that is, Ab=An, and cb

and cn is the same line. But cn was drawn parallel to CB; that is, cb is parallel to CB; therefore, the angle C=c by the definition of parallel lines. Therefore, &c. Q. E. D.

THEOREM 21.

When four straight lines are in proportion, the product of the extremes is equal to the product of the means.*

Let A, B, C, D, represent the four lines	\boldsymbol{A}	11
	\boldsymbol{B}	l
Then we are to show, geometrically, that	\boldsymbol{c}	l
$\mathbf{I} \cdot \mathbf{B} = \mathbf{C} \cdot \mathbf{D}.$	D	l

^{*} This proposition has had a symbolical proof, in theorem 2 book 2, but we deem it important to give this geometrical demonstration.

Place A and B at right angles with each other, and draw the hypotenuse. Also place C and D at right angles to each other, and draw its hypotenuse. Then bring the two triangles together, so that C shall be at right angles with B, as represented in the figure.

Now, these two \triangle s have each a right \square , and the sides about the equal angles, proportional; that is, A: B=C: D; therefore, (th. 20, b. 2), the two \triangle s are equiangular, and the acute angles

which meet at the extremities of B and C, are—to a right angle, and the lines B and C make another right angle, by construction; therefore, the extremities of A, B, C, and D, are in one right line (th. 2 b. 1), and that line is the diagonal of the parallelogram cb. Hence, the complementary parallelograms about this parallelogram are equal (th. 28, b. 1); but one of these is B long, and and C wide, and the other D long, and A wide; therefore,

$$B \times C = A \times D$$
. Q. E. D.

Cor. When B=C then $A \cdot D=B^2$, and B is the mean proportional between A and D.

THEOREM 22.

Similar triangles are to one another as the squares of their like sides.

Let ABC, and DEF, be two similar or equiangular triangles. Then we are to prove that

 $ABC:DEF=AB^2:DE^2$

By the similarity of the triangles, we have,

But.

AB : DE = LC : MFAB : DE = AB : DE

Hence, . $AB^2: DE^2 = AB \cdot LC: DE \cdot MF$

But, by (th. 16, b. 2), $AB \cdot LC$ is double the area of the $\triangle ABC$, $DE \cdot MF$ is double of the $\triangle DEF$.

Therefore, $\triangle ABC : \triangle DEF : :AB \cdot LC : DE \cdot MF$ (Th. 6, b. 2). " = $AB^2 : DE^2$. Q. E. D.

THEOREM 23.

The perimeters of similar figures are to one another as their like sides; and their areas are to one another as the squares of their like sides.

Let ABCDE, and abcde, be two similar figures; then we are to show that EA is to ea as the sum of all the sides EA+AB, &c., is to ea+ab, &c., and that the area of one

is to that of the other, as EA2 to ea2, or AB2 to ab2.

As the figures are exactly similar by hypothesis, whatever relation AB is to EA, the same relation ab will be to ea; and if we take

$$\begin{array}{c} AB = mEA \\ BC = nEA \\ CD = pEA \\ DE = qEA \end{array}$$
 Then we must take
$$\begin{cases} ab = m(ea) \\ bc = n(ea) \\ cd = p(ea) \\ de = q(ea) \end{cases}$$

Now, by (th. 7, b. 2),

AE: ea = EA + mEA, &c. :: ea + mea, &c.

That is,

EA: ea=P: p. P and p representing the perimeters of the figures.

As the two figures are exactly similar, whatever part the triangle *EAB* is of one whole, the same part the triangle *eab* is of the other whole; therefore,

EAB: eab = EABCDE: eabcde.

But by (th. 22, b. 2) $EAB : eab = AB^2 : ab^2$

Therefore, by (th. 6, b. 2),

 $EABCDE : eabcde = AB^2 : ab^2$. Q. E. D.

THEOREM 24.

Two triangles which have an angle in the one, equal to an angle in the other, are to each other as the rectangle of the sides about the equal angles.

Let ABC be one triangle, and CDE the other, and so placed that BC and CD shall be one and the same line.

Then if the angle BCA=ECD, AC and CE will be in the same line (converse of th. 3, b. 1). Draw the dotted line, AD, and call the triangle ACD=T.

We have now to show that the

$$\triangle ABC : \triangle CDE = BC \cdot CA : CE \cdot CD$$

By (th. 16, b. 2),
$$\triangle ABC : T=BC : CD$$

Also,
$$T: \triangle CDE = AC: CE$$

By multiplying term by term, and neglecting the common factor in the first couplet, we have,

$$\triangle ABC : \triangle CDE = AC \cdot BC : CE \cdot CD. Q. E. D.$$

Scholium. When the sides about the equal angles are proportional, the two \triangle s will be similar, and this theorem becomes essentially that of 82; for in that case we shall have,

$$BC: CA = CD: CE$$
.

Multiply the first couplet by CA, the last couplet by CE, and changing the means,

$$BC \cdot CA : CE \cdot CD = CA^2 : CE^2$$

Comparing this proportion with the concluding one, we have,

$$\triangle ABC : \triangle CDE = CA^2 : CE^2$$

Which is theorem 22 of this book.

THEOREM 25.

If the vertical angle of a triangle be bisected, the bisecting line will cut the base into segments, proportional to the adjacent sides of the triangle.

Let ABC be any triangle, and bisect the vertical angle, C, by the straight line CD. Then we are to show that

$$AD: DB = AC: CB.$$

Produce AC to E, making

CE = CB, and join EB. The exterior angle ACB, of the $\triangle CEB$, is equal to the two angles E, and CBE (th. 15, b. 1); but the angle E = CBE, because CB = CE; therefore the angle ACD, the

half of the angle ACB, equals the angle E; hence, DC and BE are parallel (th. 12, b. 1).

Now, as ABE is a triangle, and CD is parallel to BC, therefore, by (th. 17, b. 2), AD:DB=AE:CE or CB. Q. E. D.

THEOREM 26.

If from the right angle of a right angled triangle, a perpendicular be drawn to the hypotenuse,

- 1. The perpendicular divides the triangle into two similar triangles, and each is similar to the whole triangle.
- 2. The perpendicular is a mean proportional between the segments of the hypotenuse.
- 3. The segments of the hypotenuse will be in proportion to the squares of the adjacent sides of the triangle.
- 4. The sum of the squares of the two sides, is equal to the square of the hypotenuse.

Let BAC be a right angled triangle, right angled at A, and draw AD perpendicular to BC. Put AB=c, AC=b, and BC=a. Put, also, BD=m, DC=n; then m+n=a.

- 1. The two \triangle s, ABC, and ABD, have the common angle, B, and the right angle BAC=BDA; therefore, the third angle C=BAD, and the two \triangle s are equiangular, and therefore similar. In the same manner we prove the $\triangle ADC$ similar to the $\triangle ABC$, and the two triangles, ABD, ADC, being similar to the same \triangle , are similar to each other.
- 2. As similar triangles have the sides about the equal angles proportional (th. 18, b. 2), therefore,

$$m:AD=AD:n$$
; or, $m \cdot n = AD^2$

3. Comparing the triangles ABD, and ABC, the sides about the common angle, B, gives

$$m: c=c:a$$
 (1)
Comparing ADC with ABC , we have,
 $n: b=b:a$ (2)
From proportion (1) we have, $am=c^2$ (3)

From " (2) "
$$an=b^2$$
 (4)

Divide equation (8) by (4), and $\frac{m}{n} = \frac{c^2}{b^2}$, which shows that the ratio between n and m is the same as the ratio between b^2 and c^2 ; or,

$$n: m=b^2: c^2$$

$$m: n=c^2: b^2$$

Or, . . . $m: n=c^2:b^2$

4. Add equations (3) and (4), and we have, $c^2+b^2=a(n+m)=a^2$. Q. E. D.

This last equation is theorem 36, book 1.

Scholium. If we take the last equation, $c^2 + b^2 = a^2$, and transpose b^2 , and then separate the second member into factors, we shall have,

$$c^2 = a^2 - b^2$$

= $(a+b)(a-b)$

From this we learn that in any right angled triangle, the hypotenuse, increased by one side, multiplied by the hypotenuse diminished by the same side, is equal to the square of the other side.

BOOK III.

ON THE INVESTIGATION OF THE CIRCLE, THE MEASURE OF ANGLES,

AND OTHER THEOREMS IN WHICH THE CIRCLE IS

AN IMPORTANT ELEMENT.

DEFINITIONS.

- 1. A Curve Line is one that is continually changing its direction.
- 2. A Circle is a figure bounded by one uniform curved line, and all straight lines drawn from a certain point within it to the curve, are equal; and this point is called the center.
- 3. The entire curve is called the circumference of the circle: any portion of it is called an arch, or arc of the circle.
- 4. Any single straight line from the center to the circumference, is called the *radius* of the circle.
- 5. A straight line drawn between any two points on the circumference, is called a chord.
- 6. The space on either side of a chord, inclosed by the chord and arc, is called a segment of a circle.
- 7. Any chord which passes through the center, is called a diameter, and such a chord divides the circle into two equal segments, called semicircles.
- 8. A straight line touching the circumference of a circle, at any one point, is called a tangent to the circle.
- 9. The arc, and area between two radii, is called the sector of a circle.

Thus: the marginal figure represents a circle; C is the center, CB, or CD, or CA, or any line from C to the circumference, is a radius. EGF is an arc; EF is a chord; the areas on each side of EF are called segments. AB is a diameter; CBD is a sector; and HD is a tangent.

THEOREM 1.

The radius perpendicular to a chord, bisects the chord, and also the arc of the chord.

Let AB be a chord, C the center of the circle, and CD perpendicular to AB; then we are to prove that AD=BD, and AE=EB.

As C is the center of the circle, AC=CB, and CD is common to the two \triangle s ACD and BCD, and the angles at D being right angles, therefore the two \triangle s

ADC and BDC are identical, and AD=DB, which proves the first part of the theorem.

Now as AD=DB, and DE common to the two spaces, ADE and DEB, and the angles at D, right angles, if we conceive the sector CBE turned over and placed on CAE, CE retaining its position, the point B will fall on the point A, because AD=DB; then the arc BE will fall on the arc AE; otherwise, there would be points in one or the other arc unequally distant from the center, which is impossible; therefore, the arc AE = the arc EB. Q. E. D.

THEOREM 2.

Equal angles, at the center are subtended by equal chords.
(See figure to last theorem).

Let the angle ACE = ECB, then the two isosceles triangles, ACE, and ECB, are equal in all respects, and AE = EB.

Q. E. D.

THEOREM 3.

In the same circle, or in equal circles, equal chords are equally distant from the center.

Let AB and EF be equal chords, and C the center of the circle. From C, draw CG and CH perpendicular to the respective chords. These perpendiculars will bisect the chords (th. 1, b. 3), and we shall have AG=EH. We are now to show that CG=CH.

In the two \triangle s, ACG and ECH, we have EC=CA, AG=EH, and the angle H= the angle G, both being right angles; therefore, the two triangles ACG, and ECH, are identical, and CG=CH. Q. E. D.

We may demonstrate this theorem analytically, and more generally, as follows:

Let EH represent the half of any chord, and put it equal to C. Put HC=P, and CE=R; R representing the radius of the circle. Then, by (th. 36, b. 1), we have

$$C^2 + P^2 = R^2 \tag{1}$$

Also let AG represent the half of any other chord, and put it equal to c; and put its distance from the center equal to p; then,

$$c^2 + p^2 = R^2 \tag{2}$$

By equating the first members of (1) and (2), we have this general equation: $C^2+P^2=c^2+p^2$ (3)

Now, if C=c, that is, the chords equal, then $P^2=p^2$, or P=p, the perpendiculars will be equal; and if P=p, then C=c; that is, chords equally distant from the center, are equal.

Equation (3) is true, under all circumstances, and if we suppose C greater than c, then P will be less than p; that is, the greater the chord, the nearer it will be to the center.

For if C is greater than c, let d be their difference;

Then, . C=c+d, and $C^2=c^2+2cd+d^2$

And substitute this value of C^2 in equation (3), and we have,

$$c^2+2cd+d^2+P^2=c^2+p^2$$

By canceling c^2 , we have, $2cd+d^2+P^2=p^2$

That is P^2 is less than p^2 , because it requires $2cd+d^2$ to make equality; and if P^2 is less than p^2 , P is less than p; that is, the greater chord is at a less distance from the center.

Cor. If the chord C runs through the center, then P, in equation (3), equals 0, and $C^2=c^2+p^2$. But $R^2=c^2+p^2$, by equation (2), or $C^2=R^2$, or C=R, or the semichord becomes the radius, as it manifestly should, in that case.

THEOREM 4.

If any line be drawn tangent to a circle, and from the point of contact a line be drawn to the center of the circle, the tangent and this radius will form a right angle.

A tangent line can meet the circle only at one point, for if the

line meets the circles in two points, and is still a tangent, it follows that the portion of the circumference between the two points, is a right line; but no part of a circumference is a right line, but a continued curve line; and whenever a right line meets a circle in two points, it must cut the circle, and therefore cannot be a tangent.

Now let ABC be a tangent line, touching the circle at the point B, and draw the radius, EB, and the line EC, and EA.

Now we are to show that EB is perpendicular to ABC. Because B is the only point in the line ABC which touches the circle, any other line, as EC, or EA, must be greater than EB;

therefore, EB is the shortest line that can be drawn from the point E to the line AC; therefore, EB is the perpendicular to AC (th. 20, b. 1). Q. E. D.

THEOREM 5.

In the same circle, or in equal circles, equal chords subtend or stand on equal portions of the circumference.

Conceive two equal circles, and two equal chords drawn within them. Then conceive one circle taken up and placed upon the other, in such a position that the two equal chords will fall on, and exactly coincide with each other; and then the circles must coincide, because they are equal; and the two segments of the two circles on each side of the equal chords, must also coincide, or the circles could not coincide; and magnitudes which coincide, or exactly fill the same space, are in all respects equal (ax. 9). Therefore

Q. E. D.

THEOREM 6.

Through three given points, not in the same straight line, one circumference can be made to pass, and but one.

Join AB and BC. If a circle is made to pass through the two points A and B, the line AB will be a chord to such a circle; and if a chord is bisected by a line at right angles, the bisecting line will pass through the center of the circle (th. 1, b. 3); therefore, if we bisect the line AB,

and draw DF at right angles from the point of bisection, any circle that can pass through the points A and B, must have its center somewhere in the line DF. And, by reasoning in the same way (after we draw EG at right angles from the middle point of BC), any circle that can pass through the points B and C, must have its center somewhere in the line EG. Now, if the two lines, DF, and EG, meet in a common point, that point will be a center, from whence a circle can be drawn to pass through the three points, A, B, and C, and DF and EG will always meet, unless they are parallel, and if they are parallel, it follows that AB and BC must be parallel (scholium to th. 15, b. 1), or be in one and the same straight line; but this can never be the case while the three given points, A, B, and C, are not in the same straight line; therefore, the two lines will meet, and from the point H, at which they meet, a circle, and only one circle, can be drawn, passing through the three given points. Q. E. D.

THEOREM 7.

If two circles touch each other internally, or externally, the two centers and point of contact shall be in one right line.

Let two circles touch each other internally, as represented at A, and through the point A, conceive AB to be a tangent, at the common point. Now, if a line, perpendicular to AB, be drawn from the point A, it must pass through the

center of either circle (th. 4, b. 3); and as there can be but one perpendicular from the same point, (th. 20, b. 1), therefore, A, C, and D, the point of contact, and the two centers, must be in one and the same line. Q. E. D.

Next, let the circles touch each other externally, and from the point of contact conceive the common tangent, AB, to be drawn.

Then a line, AC, perpendicular to AB, will pass through the center of the external circle, (th. 4, b. 3), and a perpendicular, AD, from the same point, A, will pass through the center of the

. . . , ,

other circle; hence, BAC and BAD are together equal to two right angles; therefore C, A, D, is one continued line (th. 2, b. 1). Q. E. D.

Cor. When two circles touch each other internally, the distance between their centers is equal to the difference of their radii; and when they touch each other externally, the distances of their centers are equal to the sum of their radii.

THEOREM 8.

An angle at the circumference of any circle is measured by half the arc on which it stands.

In this work it is taken as an axiom that any angle standing at the center of a circle is measured by the arc on which it stands; and we now proceed to show that the angle at the circumference, is half the angle at the center.

Let ACB be an angle at the center, and D an angle at the circumference, and at first suppose D in a line with AC. We are now to show that the angle ACB is double the angle D.

Join DB, and the $\triangle DCB$ is an isosceles triangle; for CD=CB; and as its exterior angle, ACB, is equal to the two inte-

rior angles, D, and CBD, (th. 11, b. 1), and these two angles equal to each other; therefore, ACB is double the angle at D; but ACB is measured by the arc AB; therefore the angle D is measured by half the arc AB.

Now let D be not in a line with AC, but at any point on the circumference (except on AB), and join DC, and produce it to E.

Now by the first part of this theorem,

The angle . ECB=2EDBAlso, . . ECA=2EDA

By subtraction, $\overline{ACB=2ADB}$

But ACB is measured by the arc AB; therefore ADB, or D, is measured by one half of the same arc. Q.E.D.

THEOREM 9.

An angle in a semicircle, is a right angle; an angle in a segment, greater than a semicircle, is less than a right angle; and an angle in a segment, less than a semicircle, is greater than a right angle.

If the angle ACB is in a semicircle, the opposite segment, ADB, on which it stands, is also a semicircle, and the angle ACB is measured by half the arc ADB (th. 8, b. 2); that is, half of 180 degrees, or 90 degrees, which is the measure of a right angle.

If the angle ACB is in a segment greater than a semicircle, then the opposite segment is less than a semicircle, and the measure of the angle is less than half of 180 degrees, or less than a right angle. If the angle ACB is in a segment less than a semicircle, then the opposite segment, ADB, on which the angle stands, is greater than a semicircle, and its half, greater than 90 degrees; and, consequently, the angle greater

Scholium. Angles at the circumference, which stand on the same arc of a circle, are equal to one another; for all angles, as CAD, CED, are measured by half the same arc, CD; and having the same measure, they must be equal.

Q. E. D.

than a right angle.

Also, equal angles at the circumference must stand on equal arcs; for the arc, as

BC, and CD, being measures of the angles BAC, and CAD, therefore, if the angles are equal, the magnitudes, which measure them, must be equal also.

THEOREM 10.

The sum of two opposite angles of any quadrilateral inscribed in a circle, is equal to two right angles.

(See figure to the last theorem.)

Let ACBD represent any quadrilateral inscribed in a circle. The angle ACB has for its measure, half of the arc ADB, and

the angle ADB has for its measure, half of the arc ACB; therefore, by addition, the sum of the two opposite angles at C and D, are together measured by half of the whole circumference, or by 180 degrees, or by two right angles. Q.E.D.

THEOREM 11.

An angle formed by a tangent and a chord, is measured by one half of the intercepted arc.

Let AB be a tangent, and AD a chord, and A the point of contact; then we are to show that the angle BAD is measured by half the arc AED.

From A, draw the radius AC; and from the center, C, draw CE perpendicular to AD.

The angle $BAD+DAC=90^{\circ}$ (th. 4, b. 3)

Also, $C+DAC=90^{\circ}$ (cor. 4, th. 11, b. 1)

Therefore, by subtraction, BAD-C=0

By transposition, the angle BAD = C.

But the angle C, at the center of the circle, is measured by the arc AE, the half of AED; therefore, the equal angle, BAD, is also measured by the arc AE, the half of AED. Q. E. D.

THEOREM 12.

An angle formed by a tangent and a chord, is equal to an angle in the opposite segment of the circle.

Let AB be a tangent, and AD a chord, and from the point of contact, A, draw any angles, as ACD, and AED, in the segments. Then we are to show that the angle BAD=ACD, and GAD=AED.

By the last theorem, the angle BAD is measured by half the arc AED; and as the angle ACD (th. 8, b. 3) is measured by half of the same arc, therefore the angle BAD = ACD.

Again, as AEDC is a quadrilateral, inscribed in a circle, the sum of the opposite angles,

$$ACD+AED=2$$
 right angles. (th. 10, b. 3)

Also, the angles BAD+DAG=2 right angles. (th. 1, b. 1)

By subtraction (and observing that BAD has just been proved equal to ACD), we have,

$$AED-DAG=0$$

Or, . . AED=DAG, by transposition.

Q. E. D.

THEOREM 13.

Parallel chords, or a tangent and a parallel chord, intercept equal arcs on the circumference.

Let AB and CD be two parallel chords, and draw the diagonal, AD; and because AB and CD are parallel, the angle DAB = the angle ADC (th. 5, b. 1); but the angle DAB has for its measure, half of the arc BD; and the angle ADC has

for its measure, half of the arc AC (th. 8, b. 3); and because the angles are equal, the arcs are equal; that is, the arc BD= the arc AC. Q. E. D.

Next, let EF be a tangent, parallel to a chord, CD, and from the point of contact, G, draw GD.

By reason of the parallels, the angle CDG = the angle DGF. But the angle CDG has for its measure, half of the arc CG (th. 9, b. 3); and the angle DGF has for its measure, half of the arc GD (th. 11, b. 3); therefore, these equal measures of equals must be equal; that is, the arc CG = the arc GD. Q. E. D.

THEOREM 14.

When two chords intersect each other WITHIR a circle, the engle three formed is measured by half the sum of the two intercepted ares.

Let AB and CD intersect each other within the circle forming the two angles, E, and E^1 , with their opposite vertical and equal angles.

Then we are to show, that the angle E is measured by the half sum of the arcs AC+BD; and the angle E is measured by the half sum of the arcs AD+CB.

y the half sum of the arcs AD+CB. First, draw AF parallel to CD; then,

by reason of the parallels, the angle BAF=E. But the angle BAF is measured by half of the arc EDB; that is, half of the arc EDB, plus half of the arc EDB, because EDB.

Now, as the sum of the angles, $E+E^1$, make two right angles, that sum is measured by half the whole circumference.

But the angle E, alone, as we have just determined, is measured by half the sum of the arcs BD+AC; therefore, the other angle, E^1 , is measured by half of the other parts of the circumference, AD+CB. Q. E. D.

THEOREM 15.

When two chords intersect, or meet each other WITHOUT a circle, the angle thus formed is measured by half the difference of the intercepted arcs.

Draw AF' parallel to CD; then, by reason of the parallels, the angle E, made by the intersection of the two chords, is equal to the angle BAF. But the angle BAF is measured by half the arc BF; that is, by half the difference between the arcs BD and AC. Q. E. D.

N. B. Prolonged chords, to meet without the circle, as ED, and EB, are called secants. They are geometrical, and not trigonometrical secants.

THEOREM 16.

The angle formed by a secant and a tangent, is measured by half the difference of the intercepted arcs.

Let CB be a secant, and CD a tangent. We are now to show that the angle formed at C, is measured by half of the difference of the arcs BD and DA.

From A, draw AE parallel to CD; then the angle BAE=C. But the angle BAE is measured by half of the arc BE (th. 8, b. 3); that is, by half of the difference between the arcs BD and AD; for the arc

AD=DE, and BD-DE=BE; therefore the equal angle, C, is measured by half the arc BE. Q. E. D.

THEOREM 17.

When two chords intersect each other in a circle, the rectangle of the segments of the one, will be equal to the rectangle of the segments of the other.

Let AB and CD be two chords intersecting each other in E. Then we are to show that the rectangle $AE \times EB = CE \times ED$.

Join AD and CB, forming the two triangles AED and CEB, which are equiangular, and therefore similar; for the angles B and D are equal, because they are

both measured by half the arc AC. Also the angles A and C are equal, because each is measured by half the same arc, DB; and the angle AED=CEB, because they are vertical angles; hence, the triangles, AED and CEB are equiangular. But equiangular triangles have their sides, about the equal angles, proportional (th. 18, b. 2); therefore, AE and ED, about the angle E, are proportional to CE and ED, about the same angle.

That is, . AE : ED : CE : EBOr (th. 21, b. 2), $AE \times EB = ED \times EC$. Q. E. D. Scholium. When one chord is a diameter, and the other at right angles to it, the rectangle of the segments of the diameter is equal to the square of half the other chord; or half of the bisected chord is a mean proportional between the segments of the diameter.

For $AD \times DB = FD \times DE$. But if AB passes through the center, C, at right angles to FE, then FD = DE (th. 1, b. 3), and in the place of FD, write its equal, DE, in the last equation, and we have,

$$A'D \times DB = DE^2$$

Or. AD:DE:DE:DE:DB

Put, DE=x, CD=y, and CE=R, the radius of the circle. Then AD=R-y, and DB=R+y. With this notation, $AD\times DB$,

Becomes, . .
$$(R-y)(R+y)=x^2$$

Or, . . . $R^2-y^2=x^3$
Or. . . $R^2=x^2+y^2$

That is, the square of the hypotenuse of the right angled triangle, DCE, is equal to the sum of the equares of the other two sides.

THEOREM 18.

If from any point without a circle, any number of secants be drawn, the rectangle formed by any one secant and its external segment, will be equal to the rectangle of any other secant, and its external segment.

Let AB, AC, AD, &c., be secants, and AE, AF, AG, &c., their external segments. Then we are to show that

$$AB \times AE = AC \times AF$$

And, $AB \times AE = AD \times AG$, &c.

Join BF and EC; then the two \triangle s, AFB and AEC are equiangular; for the angle B=C, as each of them is measured by half the same arc, EF; and the angle BAC is common to the two triangles; therefore, the third angles are equal (th. 11, cor. 1, b. 1).

Therefore (th. 18, b. 2),
$$AB:AF::AC:AE$$

Hence. $AB \times AE = AC \times AF$

In the same manner we may prove that

$$AB \times AE = AG \times AD$$

And, . . .
$$AC \times AF = AG \times AD$$

Q. E. D.

Scholium 1. If we conceive AD to revolve outward, on A, as a fixed point, G and D will come nearer together, and will be exactly together in the tangent AH.

But however far or near G may be to D, we always have,

$$AB \times AE = AD \times AG$$

And, when both AD and AG become AH, we shall have,

$$AB \times AE = \overline{AH^2}$$

Scholium 2. If AH and AP be tangents to the same circle, from the same point on each side of A, they will be equal to each other:

For,
$$BA \times AE = AP^2$$

Also,
$$BA \times AE = AH^2$$

Hence (ax. 1),
$$(AP^2)=(AH^2)$$
, or $AP=AH$.

This property will enable us to compute the diameter of the earth, whenever we know the visible distance of its regular surface, as seen from any known hight above the surface.

For example, suppose FC to be the diameter of the earth, AF, the hight of a mountain, and AH the distance on sea to the visible horizon. If AF and AH were both known, FC could be computed therefrom. For, let FC = x, AF = h, and AH = d.

Then, . . .
$$(h+x)h=d^2$$
, or $x=\frac{d^2}{h}-h$

On this principle, rough estimates of the diameter of the earth have been made; and on this principle the dip of the horizon has been computed.

THEOREM 19.

If a circle be described about a triangle, the rectangle of two sides is equal to the rectangle of the perpendicular let fall on to the third side, and the diameter of the circumscribing circle.

Let ABC be the triangle, AC and CB, the sides, CD the perpendicular on the base, and CE the diameter of the circle. Then we are to show that

$$AC \times CB = CE \times CD$$
.

The two \triangle s, ACD and CEB, are equiangular, because A=E, both measured by the

half of the arc CB. Also, ADC is a right angle, equal to CBE, an angle in a semicircle, and therefore a right angle; hence, the third angle, ACD=BCE (th. 11, cor. 1, b. 1). Therefore (th. 18, b. 2),

Hence, . .
$$AC \times CB = CE \times CD$$
. Q. E. D.

Scholium. The continued product of three sides of a triangle, is equal to the double area of the triangle into the diameter of its circumscribing circle.

Multiply both members of the last equation by AB, and we have, $AC \times CB \times AB = CE \times (AB \times CD)$

But CE is the diameter of the circle, and $(AB \times CD) =$ twice the area of the triangle;

Therefore, $AC \times CB \times AB = diameter \times 2 \triangle s$.

THEOREM 20.

The square of a line bisecting any angle of a triangle, together with the rectangle of the segments it makes with the opposite side, are equal to the rectangle of the two sides, including the bisected angle.

Let ABC be the triangle, CD the line bisecting the angle C. Then we are to show that $CD^2 + AD \times DB = AC \times CB$.

The two \triangle s, ACE and CDB, are equiangular, because the angles E and B are equal, both being in the same segment, and the ACE=BCD, by hypothesis. Therefore, (th. 18, b. 2),

AC:CE::CD:CB

But it is obvious that CE = CD + DE, and by substituting this value of CE, in the proportion, we have,

$$AC:(CD+DE)::CD:CB$$

By multiplying extremes and means,

$$CD^2 + DE \times CD = AC \times CB$$

But $DE \times CD = AD \times DB$, by (th. 17, b. 3), which, being substituted, we have,

$$CD^2+AD\times DB=AC\times CB$$
. Q. E. D.

THEOREM 21.

The rectangle of the two diagonals of any quadrilateral inscribed in a circle, is equal to the sum of the two rectangles of the opposite sides.

Let ABCD be a quadrilateral in a circle; then we are to show that

$$AC \times BD = AB \times DC + AD \times BC$$
.

From C, let CE be drawn so that the angle DCE shall be equal to angle ACB; and as the angle BAC is equal to the angle CDE, both being in the same seg-

-ment, therefore, the two triangles, DEC and ABC are equiangular, and we have (th. 18, b. 2),

$$AB:AC::DE:DC$$
 (1)

The two \triangle s, ADC and BEC are equiangular; for the angle DAC=EBC, both being in the same segment, are measured by half the same arc, DC; and the angle DCA=ECB; for DCE=ECA; and to each of these add the angle ECA, and DCA=ECB; therefore (th. 18, b. 2),

$$AD:AC::BE:BC$$
 (2)

By multiplying the extremes and means in these two proportions, and adding the equations together, we have,

$$(AB \times DC) + (AD \times BC) = (DE + BE) \times AC$$
But,
$$DE + BE = BD$$
; therefore,
$$(AB \times DC) + (AD \times BC) = BD \times AC$$
. Q. E. D.

Scholium. When two of the adjacent sides of the quadrilateral are equal, as AB=BC, then the resulting equation is,

$$(AB \times DC) + (AB \times AD) = BD \times AC$$

Or, $AB \times (DC + AD) = BD \times AC$
Or, $AB : AC : BD : (CD + AD)$

That is, as one of the equal sides of the quadrilateral, is to the adjoining diagonal, so is the transverse diagonal to the sum of the suo unequal sides.

THEOREM 22.

If two chords intersect each other in a circle, at right angles, the sum of the squares of the four segments thus formed, is equal to the square of the diameter of the circle.

Let AB and CD be two chords, intersecting each other at right angles. Draw BF parallel to ED, and join DF and AF. Now we are to show that

$$AE^{2}+EB^{2}+EC^{2}+ED^{2}=AF^{2}$$
.

As BF is parallel to ED, ABF is a right angle, and therefore AF is a diameter (th. 2, b. 3). Also, because BF is parallel

(th. 2, b. 3). Also, because BF is parallel to CD, CB=DF (th. 13, b. 3).

Because CEB is a right angle, $CE^2 + EB^2 = CB^2 = DF^2$ Because AED is a right angle, $AE^2 + ED^2 = AD^2$

Adding these two equations, we have,

$$CE^2 + EB^2 + AE^2 + ED^2 = DF^2 + AD^2$$

But, as AF is a diameter, and ADF a right angle (th. 9, b. 3),

Therefore $DF^2 + AD^2 = AF^2$

Hence, .
$$CE^2+EB^2+AE^2+ED=AF^2$$
. Q. E. D.

Scholium. If two chords intersect each other at right angles, in a circle, and their opposite extremities be joined, the two chords thus formed may make two sides of a right angled triangle, of which the diameter of the circle is the hypotenuse.

For AD is one of these chords, and CB is the other; and we have shown that CB=DF; and AD and DF are two sides of a

right angled triangle, of which AF is the hypotenuse; therefore, AD and CB may be considered the two sides of a right angle, and AF its hypotenuse.

THEOREM 23.

If two secants intersect each other at right angles, the sum of their squares, increased by the sum of the squares of the two parts without the circle, will be equal to the square of the diameter of the circle.

Let AE and ED be two secants intersecting at right angles at the point E. From B, draw BF parallel to CD, and join AF and AD. Now we are to show that

$$EA^2+ED^2+EB^2+EC^2=AF^2$$

Because BF is parallel to CD, ABF is a right angle, and consequently AF is a diameter, and BC=DF; and because AF is a diameter, ADF is a right angle. As AED is a right angle,

BOOKIV.

PROBLEMS.

In this section, we shall, in most instances, merely show the construction of the problem, and refer to the theorem or theorems that the student may use, to prove that the object is attained by the construction.

In obscure and difficult problems, however, we shall go through the demonstration as though it were a theorem.

PROBLEM 1.

To bisect a given finite straight line.

Let AB be the given line, and from its extremities, A and B, with any radius greater than the half of AB (Post. 3), describe arcs, cutting each other in n and m. Join n and m; and C, where it cuts AB, will be the middle of the line required.

Proof, (th. 15, b, 1, cor. 1).

PROBLEM 2.

To bisect a given angle.

Let ABC be the given angle. With any radius, from the center B, describe the arc AC. From A and C, as centers, with a radius greater than the half of AC, describe arcs, intersecting in n; and join Bn, it will bisect the given angle.

Proof, (th. 19, b. 1).

PROBLEM 3.

From a given point, in a given line, to draw a perpendicular to that line.

Let AB be the given line, and C the given point. Take n and m equal distances on opposite sides of C; and from the points m and n, as centers, with any radius greater than nC or or mC, describe arcs cutting each other in S. Join SC, and it will be the perpendicular required. Proof, (th. 15, b. 1, cor.

pomilionium roquirous. I roos, (till 20, 20 2, 002.)

The following is another method, which is preferable, when the given point, C, is at or near the end of the line.

Take any point, O, which is manifestly one side of the perpendicular, and join OC; and with OC, as a radius, describe an arc,

cutting AB in m and C. Join mO, and produce it to meet the arc, again, in n; mn is then a diameter to the circle. Join Cn, and it will be the perpendicular required. Proof, (th. 9, b. 3).

PROBLEM 4.

From a given point without a line, to draw a perpendicular to that line.

Let AB be the given line, and C the given point. From C, draw any oblique line, as Cn. Find the middle point of Cn by (problem 1), and from that point, as a center, describe a semicircle, having Cn as a diameter. From the point m, where this semicircle cuts AB, draw Cm, and it will be the perpendicular required.

Proof, (th. 9, b. 3).

PROBLEM 5.

At a given point in a line, to make an angle equal to another given angle.

Let A be the given point in the line AB, and DCE the given angle.

From C as a center, with any radius, CE, draw the arc ED.

From A, as a center, with the radius AF = CE, describe an indefinite arc; and from F, as a center, with FG as a radius,

equal to ED, describe an arc, cutting the other arc in G, and join AG; GAF will be the angle required. Proof, (th. 5, b. 3).

PROBLEM 6.

From a given point, to draw a line parallel to a given line.

Let A be the given point, and CB the given line. Draw AB, making an angle, ABC; and from the given point, A, in the line AB, draw the angle BAD = ABC, by the last problem.

AD and CB make the same angle with AB; they are, therefore, parallel. (Definition of parallel lines).

PROBLEM 7. -

To divide a given line into any number of equal parts.

Let AB represent the given line, and let it be required to divide it into any number of equal parts, say five. From one end of the line A, draw AD, indefinite in both length and position. Take any convenient distance in the dividers, as Aa, and set it off on the line AD;

thus making the parts Aa, ab, bc, &c., equal. Through the last point, e, draw EB, and through the points a, b, c, and d, draw parallels to eB (problem 6.); these parallels will divide the line as required Proof (th. 17, b. 2).

Ĉ

PROBLEM 8.

To find a third proportional to two given lines.

Let AB and AC be any two lines. Place them at any angle, and join CB. On the greater line, AB, take AD = AC, and through D, draw DE parallel to BC; AE is the third proportional required.

Proof, (th. 17, b. 2).

D=AC, and through BC; AE is the third

 \boldsymbol{A}

PROBLEM 9.

To find a fourth proportional to three given lines.

Let AB, AC, AD, represent the three given lines. Place the first two together, at a point forming any angle, as BAC, and join BC. On AB place AD, and from the point D, draw (problem 6) DE parallel to BC; AE will be the fourth proportional required. Proof, (th. 17, b. 2).

PROBLEM 10

To find the middle, or mean proportional, between two given lines.

Place AB and BC in one right line, and, on AC, as a diameter, describe a semicircle (postulate 3), and from the point B, draw BD at right angles to AC (problem 3); BD is the mean proportional required.

Proof, (scholium to th. 17, b. 3).

PROBLEM 11.

To find the center of a given circle.

Draw any two chords in the given circle, as AB and CD; and from the middle point, n, of AB, draw a perpendicular to AB; and from the middle point, m, draw a perpendicular to CD; and where these two perpendiculars intersect will be the center of the circle. Proof, (th. 1, b. 3).

PROBLEM 12.

To draw a tangent to a given circle, from a given point, either in or without the circumference of the circle.

When the given point is in the circumference, as A, draw AC the radius, and from the point A, draw AB perpendicular to AC; AB is the tangent required.

Proof, (th. 4, b. 3).

When A is without the circle, draw AC to the center of the circle; and on AC, as a diameter, describe a semicircle; and from the point B, where this semicircle intersects the given circle, draw AB, and it will be tangent to the circle.

Proof, (th. 9, b. 3), and (th. 4, b. 3).

PROBLEM 13.

On a given line, to describe a segment of a circle, that shall contain an angle equal to a given angle.

Let AB be the given line, and C the given angle. At the ends of the given line, make angles DAB, DBA, each equal to the given angle, C. Then draw AE, BE, perpendiculars to AD, BD; and with the center, E, and radius, EA or EB, describe a circle;

then AFB will be the segment required, as any angle F, made in it, will be equal to the given angle, C.

Proof, (th 11. b. 3), and (th. 8, b. 3).

PROBLEM 14.

To cut a segment from any given circle, that shall contain a given angle.

Let C be the given angle. Take any point, as A, in the circumference, and from that point draw the tangent AB; and from the point A, in the line AB, make the angle BAD = C (problem 5), and AED is the segment required.

Proof, (th. 11, b. 3), and (th. 8, b. 3).

PROBLEM 15.

To construct an equilateral triangle on a given finite straight line.

Let AB be the given line, and from one extremity, A, as a center, with a radius equal to AB, describe an arc. At the other extremity, B, with the same radius, describe another arc. From C, where these two arcs intersect, draw CA and CB; ABC will be the triangle required.

The construction is a sufficient demonstration.

Or, (ax. 1).

PROBLEM 16.

To construct a triangle, having its three sides equal to three given lines, any two of which shall be greater than the third.

Let AB, CD, and EF represent the three lines. Take any one of them, as AB, to be one side of the triangle. From A, as a center, with a radius equal to CD, describe an arc; and from B, as a center, with a radius equal to EF, describe another arc, cutting the former in n. Join An and Bn, and AnB will be the \triangle required. Proof, (ax. 1).

PROBLEM 17.

To describe a square on a given line.

Let AB be the given line, and from the extremities, A and B, draw AC and BD perpendicular to AB. (Problem 3.)

From A, as a center, with AB as radius, strike an arc across the perpendicular at C; and from C, draw CD parallel to AB; ACDB is the square required. Proof, (th. 21, b. 1.)

PROBLEM 18.

To construct a rectangle, or a parallelogram, whose adjacent sides are equal to two given lines.

Let AB and AC be the two given lines. A ______C From the extremities of one line, draw per- A _____B pendiculars to that line, as in the last problem; and from these perpendiculars, cut off portions equal to the other line; and by a parallel, complete the figure.

When the figure is to be a parallelogram, with oblique angles, describe the angles by problem 5. Proof, (th. 21, b. 1).

PROBLEM 19.

To describe a rectangle that shall be equal to a given square, and have a side equal to a given line.

Let AB be a side of the given square, and C_____D

CD one side of the required rectangle.

A____B

Find the third proportional, EF, to CD

A____B

AB (problem 8). Then we shall have,

CD: AB: : AB: EF

Construct a rectangle with the two given lines, CD and EF (problem 18), and it will be equal to the given square, (th. 13, b. 2).

PROBLEM 20.

To construct a square that shall be equal to the difference of two given squares.

Let A represent a side of the greater of two given squares, and B a side of the lesser square.

On A, as a diameter, describe a semicircle, and from one extremity, m, as a center, with a radius equal to B, describe an arc, n, and, from the point where it cuts the circumference, draw mn and np; np is the side of a square, which, when constructed, (problem 17), will be equal to the difference

of the two given squares. Proof, (th. 9, h. 3, and 36, b. 1.)

PROBLEM 21.

To construct a square, that shall be to a given square, as a line, M, to a line, N.

Place M and N in a line, and on the sum describe a semicircle. From the point where they join, draw a perpendicular to meet the

circumference in A. Join Am and An, and produce them indefinitely. On Am or An, produced, take AB= to the side of the given square; and from B, draw BC parallel to mn; AC is a side of the required square.

For, $Am^2:An^2::AB^2:AC^2$ (th. 17, b. 2.)

Also, $Am^2: An^2:: M : N$ (scholium to th. 36, b. 1.)

Therefore, $AB^2: AC^2: M: N$ (th. 6, b. 2.) Q. E. D.

PROBLEM 22.

To cut a line into extreme and mean ratio; that is, so that the whole shall be to the greater part, as that greater is to the less.

Let AB be the line, and from one extremity, B, draw BC at right angles, and equal to half AB.

From C, as a center, and radius CB, describe a circle. Join AC and produce it to F. From A, as a center, and AD radius, describe the arc DE; this arc will divide the line AB, as required.

AB:AE::AE:EB

By (scholium to th. 18, b. 3), we have,

$$AF \times AD = AB^2$$

Or, . AF:AB::AB:AD

Then, by (th. 8, b. 2), we may have,

$$(AF-AB):AB::(AB-AD):AD$$

As . .
$$CB = \frac{1}{4}AR = \frac{1}{4}DF$$
; therefore, $AB = DF$

Hence, . .
$$AF-AB=AF-DF=AD=AE$$

Therefore, AE:AB::EB:AE

By taking the extremes for the means, we have,

$$AB:AE::AE:EB$$
 Q. E. D.

PROBLEM 23.

To describe an isosceles triangle, having its two equal angles double of the third angle, and the equal sides of any given length.

Let AB be one of the equal sides of the required triangle; and from the point A, with AB radius, strike an arc, BD.

Divide the line AB into extreme and mean ratio by the last problem, and suppose C the point of division, and AC the greater segment.

From the point B, with AC, the greater segment, as radius, strike another arc, cutting the arc BD in D. Join BD, DC, and DA. The triangle ABD is the triangle required.

DEMONSTRATION.

As AC=BD, by construction; and as AB is to AC, as AC is to BC, by the division of AB; therefore,

AB:BD::BD:BC

Now, as the terms of this proportion are the sides of the two triangles about the common angle, B, it follows, from (th. 20, b. 2), that the two angles, ABD and BDC, are equiangular; but the triangle ABD is isosceles; therefore, BDC is isosceles also, and BD=DC; but BD=AC: hence, DC=AC (ax. 1), and the triangle ACD is isosceles, which gives the angle CDA=A. But the exterior angle, BCD=CDA+A, (th. 15, b. 1). Therefore, BCD, or its equal B=CDA+A; or the angle B=2A. Hence, the triangle ABD has each of its angles, at the base, double of the third angle. Q. E. D.

Scholium. As the two angles, at the base of the triangle ABD, are equal, and each double of the angle A, it follows that the sum of the three angles is *five times* the angle A. But as the three angles of every triangle always make two right angles, or 180 degrees, therefore, the angle A must be one-fifth of two right angles, or 36 degrees; and BD is a chord of 36 degrees, when AB is a radius to the circle; and ten such chords would extend exactly round the circle.

PROBLEM 24.

Within a given circle to inscribe a triangle, equiangular to a given triangle.

Let ABC be the circle, and abc the given triangle. From any point, as A, draw the tangent EAD to the given circle (problem 12).

From the point A, in the line AD, make the angle DAC= the angle b, (problem 5), and the angle EAB= the angle c, and join BC.

The triangle ABC is inscribed in the circle; it is equiangular to the triangle abc, and is the triangle required.

Proof, (th. 12, b. 3).

PROBLEM 25.

To describe an equilateral and equiangular pentagon in a given circle.

1st. Describe an isosceles triangle, abc, having each of the equal angles, b and c, double of the third angle, a, by problem 23.

2d. Inscribe the triangle ABC, in the given circle, equiangular to the triangle abc, by problem 24; then each of the angles, B and C, is double of the angle A.

3d. Bisect the angles B and C by the lines BD and CE, (problem 3), and join AE, EB, CD, DA, and the figure AEBCD is the pentagon required.

DEMONSTRATION.

By construction, the angles BAC, ABD, DBC, BCE, ECA, are all equal; therefore, by scholium to th. 9, b. 3, the arc BC, AD, DC, AE, and EB, are all equal; and if the arcs are equal, the chords AE, EB, &c., are equal. Q. E. D.

PROBLEM 26.

To describe an equiangular and equilateral polygon, of six sides, in a circle.

Draw any diameter of the circle, as AB, and from one extremity, B, draw BD equal to BC, the radius of the circle. The arc, BD will be one-sixth part of the whole circumference, and the chord BD will be a side of the regular polygon of six sides.

In the \triangle CBD, as CB=CD, and BD = CB, by construction the \triangle is equilateral, and of course equiangular.

But the sum of the three angles of every \triangle , is equal to two right angles, or to 180 degrees; and when the three angles are equal to each other, each one of them must be 60 degrees; but 80 degrees is a sixth parth of 360 degrees, the whole number of degrees in a circle; therefore, the arc whose chord is equal to the radius, is a sixth part of the circumference; and a polygon of six equal sides may be inscribed in a circle, with each side equal to the radius.

Cor. Hence, as BD, is the chord of 60 degrees, and equal to BC or CD, we say generally, that the chord of 60 is equal to radius.

PROBLEM 27.

To find the side of a regular polygon of fifteen sides, which may be inscribed in any given circle.

Let CB be the radius of the given circle, and divide it into extreme and mean ratio (problem 22), and make BD equal to CE, the greater part; then BD will be a side of a regular polygon of ten sides (scholium to problem 23). Draw BA to CB, and it will be a side of a polygon of six sides.

Join DA, and that line must be the side of a polygon, which corresponds to the arc of the circle expressed by $\frac{1}{6}$, less $\frac{1}{16}$, of the whole circumference; or $\frac{1}{6} - \frac{1}{16} = \frac{4}{6} = \frac{1}{12}$; that is, one-fifteenth of the whole circumference; or, DA is a side of a regular polygon of 15 sides.

BOOK V.

ON THE PROPORTIONALITIES AND MEASUREMENT OF POLYGONS
AND CIRCLES.

THEOREM 1.

The area of any circle is equal to the product of its radius into half of its circumference.

Let CA be the radius of the circle, and AB a very small portion of its circumference, and CAB will be a sector; and we may conceive the whole circle made up of a great number of such sectors; and each sector may be as small as we please; and when very small, AB, BD, &c., each one taken

separately, may be considered a right line; and the sectors CAB, CBD, &c., will be triangles. The triangle CAB, is measured by the base, CA, multiplied into half the altitude, (th. 30, b. 1) AB; and the triangle CBD is measured by CB, or its equal, CA, into half BD: then the area, or measure of the two triangles, or sectors, is CA, multiplied by the half of AB, plus the half of BD, and so on for all the sectors that compose the circle; therefore, the area of the circle is measured by the product of the radius into half the circumference. Q.E.D.

THEOREM 2.

Circumferences of circles are to one another as their radii, and their areas are to one another as the squares of their radii.

Let CA be the radius of a circle (see last figure), and Ca the radius of another circle. Conceive them to be placed upon each other so as to have the same center.

Let AB be a certain definite portion of the circumference of the larger circle, so that m times AB will represent that circumference.

But whatever part AB is of the greater circumference, the same part ab is of the smaller; for the two circles have the same number of degrees, and of course susceptible of division into the same number of sectors. But by proportional triangles we have,

CA:Ca::AB:ab

Multiply the last couplet by m (th. 4, b. 2), and we have,

CA: Ca:: mAB: mab

That is, as the radius of one circle is to the radius of the other, so is the circumference of the one to the circumference of the other.

Q. E. D.

To prove the second part of the theorem, represent the larger circle by C, and the smaller by c; and whatever part the sector CAB is of the circle C, the sector Cab is the same part of the circle c.

That is, C: c:: CAB : Cab

But, . $CAB : Cab : (CA)^2 : (Ca)^2$ (th. 22, b. 2)

Therefore, $C: c :: (CA)^2 : (Ca)^2$ (th. 6, b. 2)

Q. E. D

Scholium. 1. Circles are to one another as the squares of their diameters; for if squares be described about any two circles, such squares will be squares on the diameters of the circles. But each circle is the same proportional part of its circumscribed square; and as like parts of things have the same proportion to each other as the wholes (th. 4, b. 2); therefore, circles are to one another as the squares of their diameters.

Scholium 2. As the circumference of every circle, great or small, is assumed to contain 360 degrees, if we conceive the circumference to be divided into 360 equal parts, and one such part represented by AB, on one circle, or ab on the other, AB and ab will be very near straight lines, and the length of such a line as AB will be greater or less according to the radius of the circle; but its absolute length cannot be determined until we know the absolute relation between the diameter of a circle and its circumference.

To measure the circumference of a circle, or, to discover exactly how many times, and part of a time, it is greater than its diameter, is a problem of some difficulty, and requires patience and care; and it can only be done approximately; for as far as investigations have extended, the circumference of a circle is incommensurable with its diameter.

To acquire a very clear and distinct idea of the ratio between the diameter and circumference of a circle, the pupil must commence with first approximations, and proceed with great deliberation.

Conceive a circle described on the

radius CA, and in it describe a regular polygon of six sides (problem 26), and each side will be equal to the radius CA; hence the whole perimeter of this polygon must be six times the radius, or three times the diameter. Let CA bisect bd in a. Produce cb and cd, and through the point A, draw DB parallel to db; DB will then be a side of a regular polygon of six sides, described about the circle, and we can compute the length of this line, DB, as follows: The two triangles, Cbd, and CBD, are equiangular, by construction; therefore,

Now, let us assume CA, or cd, or the radius of the circle, equal unity; then db=1, and the preceding proportion becomes

In the right angle triangle Cad, we have,

$$Ca^2+ad^2=Cd^2$$
 (th. 36, b. 1)

That is, . . $Ca^2+\frac{1}{4}=1$, because Cd=1, and $ad=\frac{1}{2}$

By reduction, . . $Ca = \frac{1}{2}\sqrt{3}$, which value of Ca, put in the proportion, we have,

$$\frac{1}{2}\sqrt{3}:1::1:DB$$
, or $DB=\frac{2}{\sqrt{3}}$

But the whole perimeter of the circumscribing polygon is six times DB; that is, six times $\frac{2}{\sqrt{3}}$, or, $\frac{12}{\sqrt{3}} = 4\sqrt{3} = 6.9282032$.

Thus we have shown, that when the radius of a	circle is 1, the
perimeter of an inscribed polygon of six sides, is	. 6.000000
And of a similar circumscribed polygon, is .	. 6.9282032
But, if we call the diameter 1, the perimeter	
of the inscribed polygon of six equal sides	
will be,	. 3.0000000
And of the circumscribed, will be	. 3.4641016

As we would avoid all metaphysical verbiage in science, and come to the point at once, we lay it down as an axiom, that when the radius of a circle is 1, and of course the diameter 2, the circumference is greater than 6, and less than 6.9282032; and if the diameter is 1, the circumference must be greater than 3, and less than 3.4641016; and this we may call the first approximation to the ratio between the diameter and circumference of a circle.

Scholium 2. As the area of a circle is numerically equal to the radius multiplied by half the circumference (th. 2, b. 5), therefore, if we represent the radius by R, and half the circumference by π , and the area of the circle by α , then we shall have this equation:

$R_{n} = a$

If we now make R=1, this equation gives n=a; that is, when the radius of a circle is 1, the half circumference is numerically equal to the area. We will, therefore, seek the area of a circle whose radius is unity; and that area, if found, will be numerically the half circumference, and by inspecting the last figure, we perceive that it is perfectly axiomatic (the whole is greater than a part), that the area of the sector CbAd, is greater than the triangle Cbd, and less than the triangle CBD; and the area of the whole circle is greater than one polygon, and less than the other. Finding the AREA of a circle, or finding a square which shall be equal to a circle of given diameter, is known as the celebrated problem of squaring the circle.

THEOREM 3.

Given, the area of a regular inscribed polygon, and the area of a similar circumscribed polygon, to find the areas of a regular inscribed and circumscribed polygon of double the number of sides.

Let C be the center of the circle; AB a side of the given inscribed polygon; EF parallel to AB, a side of the circumscribed polygon.

If AM be joined, and AR and BQ be drawn as tangents, at A and B, AM will be a side of an inscribed polygon of double the

number of sides; and AR=RM (scholium 2, th. 18, b. 3), BQ=QM, and AR+RM=RQ= the side of the circumscribed polygon of double the number of sides.

The \triangle s ARC and RMC, are equal, for AC=CM. CR is common to both triangles, and AR=RM, tangents from the same point, R, therefore, CR bisects the angle ECM.

Now, as the same construction, and the same reasoning would take place at every one of the equal sectors of the circle, it is sufficient to consider one of them, and whatever is true of that arc, would be true of every one, and true for the whole circle, and its polygons.

To avoid confusion, let p represent the area of the given inscribed polygon, and P the area of the similar circumscribed polygon. Also let p' represent the area of an inscribed polygon of double the number of sides, and P' the circumscribed polygon of double the number of sides.

As the \triangle s ACD and ACM have the common vertex A, they are to each other as their bases, CD to CM; they are also to each other as the polygons of which they form part.

Hence,
$$p:p'::CD:CM$$
 (1)

As AD and EM are parallel, we have,

$$CA:CE::CD:CM$$
 (2)

But, because of the common vertex, M, the two $\triangle s$, CAM and CEM, are to each other as CA to CE. But the $\triangle s$ are like parts of the polygons p', and P we have,

Therefore,
$$p':P::CA:CE$$
 (3)

That is, . .
$$p':P::CD:CM$$
 (4) (th. 17, b. 2)

By comparing (1) and (4), we have,

$$p':P::p:p'$$
, or $p'=\sqrt{P\times p}$

That is, the area of p' is a mean proportional between P and p. The two \triangle s, RMC and ERC, having the same vertex, C, are to each other as their bases, MR to ME.

But, because CR bisects the angle ECM, (th. 23, b. 2)

MR: RE:: CM: CE

But, . CM: CE::CD:CA or CM

That is, . RMC: ERC:: CD: CM

Or, RMC:ERC::p:p'

By composition, (th. 8, b. 2),

2(RMC): (RMC+ERC):: 2p: p+p'

But 2 times RMC is P', and (RMC+ERC) is P

Therefore, . . P':P::2p:p+p'

Or, . . .
$$P' = \frac{2pP}{p+p'}$$

Now, P' is known, because 2pP is known; and p+p' is also known, as p' has been previously determined. Hence, by means of P and p, we can determine P' and p'. Q. E. D.

Scholium. By inspecting the figure in the scholium to theorem 2, we perceive, that if we double the number of sides of the inscribed polygon, we shall more nearly fill up the circle; and if we double the number of sides of the circumscribed polygons, we shall more nearly pare them down to the surface of the circle.

Hence, by continually increasing the sides of the polygons, as indicated by the last theorem, we can find two polygons which shall differ from each other by the smallest conceivable quantity; but the surface of the circle is always between the two polygons; and thus the surface of the circle can be determined to any assignable degree of exactness.

By taking the figure in the scholium to theorem 2, b. 5, we perceive that the area of an inscribed polygon of six sides, to radius unity, must be $Ca \times da \times 6$

Which is . . $\frac{3}{2}\sqrt{3}$, because $da=\frac{1}{2}$

And, . . . $Ca^2 + da^2 = Cd^2 = 1$

Hence, . $\frac{1}{2}\sqrt{3}\times\frac{1}{2}\times6=\frac{3}{2}\sqrt{3}=p$, which corresponds with p, in the last theorem.

The area of the circumscribing polygon is measured by

$$CA \times DA \times 6 = 6DA = 3DB$$
.

That is, . .
$$\frac{1}{4}\sqrt{3}:1::1:DB$$
, or $BD=\frac{2}{\sqrt{3}}$

Therefore, . $3DB = \frac{6}{\sqrt{3}} = 2\sqrt{3}$, which corresponds with the last theorem.

Having, now, the area of an inscribed and circumscribed polygon of six sides, by applying the last theorem we can readily determine the area of an inscribed and a circumscribed polygon of 12 sides.

Thus,
$$p' = \sqrt{pP} = \sqrt{\frac{3}{2}\sqrt{3}} \times 2\sqrt{3} = 3$$

$$P' = \frac{2pP}{p' + p} = \frac{2 \times \frac{3}{2}\sqrt{3} \times 2\sqrt{3}}{3 + \frac{3}{2}\sqrt{3}} = \frac{18}{3 + \frac{3}{2}\sqrt{3}} = \frac{12}{2 + \sqrt{3}} = 24 - 12\sqrt{3}$$

Now let p' and P' be the given polygons, and find others of double the number of sides, and thus continue until the inscribed and circumscribed so nearly coincide, as to determine a very approximate area of the circle.

In this manner we formed the following table:

Number of sides.	Inscribed polygons.	Circumscribed polygons.
6	$\frac{3}{2}\sqrt{3} = 2.59807621$	$2\sqrt{3}$ =3.46410161
12	3= 3.0000000	$\frac{12}{2+\sqrt{3}}=3.2158904$
24	$\frac{6}{\sqrt{2+\sqrt{3}}}$ = 3.1058286	3.1596602
48	3.1326287	3.1460868
96	3.1393554	3.1427106
192	3.1410328	3.1418712
384 .	3.1414519	3.1416616
768	3.1415568	3.1416092
1536	3.1415829	3.1415963
3072	3.1415895	3.1415929
6144	3.1415912	3.1415927

Thus we have found, that when the radius of a circle is 1, the semicircumference must be more than 3.1415912, and less than 3.1415927; and this is as accurate as can be determined with the small number of decimals here used. To be more accurate we must have more decimal places, and go through a very tedius mechanical operation; but this is not necessary, for the result is well known, and is 3.141592653535897 plus other decimal places to the 100th, without termination. This was discovered through the aid of an infinite series in the differential and integral calculus.

The number 3.1416 is the one generally used in practice, as it is much more convenient than a greater number of decimals, and it is sufficiently accurate for all ordinary purposes.

In analytical expressions it has become a general custom with mathematicians to represent this number by the Greek letter π , and, therefore, when any diameter of a circle is represented by D, the circumference of the same circle must be πD . If the radius of a circle is represented by R, the circumference must be represented by $2\pi R$.

As a farther discipline of mind, and for more practical utility, as applicable to trigonometry, we give another method of determining the circumference of a circle, when the diameter is given. It is evident that when we take a small arc, the chord and the arc are nearly of the same length; but the arc is greater than the chord, for the chord is a straight line, and the arc is curved. But if we take the half of any small arc, and draw two chords in place of one, such chords taken together, will be much nearer to, and more nearly equal in length to the arc than the one chord of the undivided arc would be.

Now, if we can divide the circumference into several thousand equal parts, and can find the length of a chord corresponding to one of these parts, the sum of all these equal chords will be infinitely near the circumference of the circle; and the length of such a small chord we can find, provided we can first know the chord of any definite arc, and from that deduce the chord of any definite portion of that arc; and this is shown in the following theorem.

THEOREM 4.

Given, the chord of any arc, to determine the chord of half that arc.

Let AB represent a given chord. Bisect the arc AB in D, and join AD. From C, the center of the circle, draw CG perpendicular to AD; and from D, draw DF perpendicular to AB.

From AB we are to determine AD. The two As, CAn and AFD, are equi-

angular; for the angle FAD, at the circumference, is measured by

half the arc BD; and nCA, at the center, is measured by half of an equal arc, AD. The right angle, F= the right angle CnA; therefore,

In the triangle CnA, let cn=y, nA=x, and CA=1.

Then AD=2x; and put AB=C; then $AF=\frac{1}{2}C$.

By this notation the preceding proportion becomes

$$2x : \frac{1}{2}C : : 1 : y$$
. Hence, $y = \frac{C}{4x}$

But in the right angled triangle CnA, we have

$$y^2 + x^2 = 1$$

By taking the value of y^2 , from the proportion, and reducing, we have the quadratic

$$16x^4 - 16x^2 = -C^2$$

By adding 4 to both members (see Alg. Art. 99), and extracting square root, we have

$$4x^{2}-2=\pm\sqrt{4-C^{2}}$$

$$2x=\sqrt{2-\sqrt{4-C^{2}}}$$

Therefore,

As 2x is the value of AD, the expression $(2-\sqrt{4-C^2})^{\frac{1}{8}}$ is the value of the chord of the half of any arc, when C represents the value of the chord of the whole arc. We must take the *minus* sign to the part represented by $\sqrt{4-C^2}$, as the plus sign would give increasing, and not decreasing values.

If we represent the chord of a given arc by C_1 , and the chord of half that arc by C_1 , and the chord of half that arc by C_2 , and the chord of half that arc again by C_3 , &c., &c., we shall have the following series of equations:

C= the first chord

$$(2-\sqrt{4-C^2})^{\frac{1}{2}}=C_1$$

$$(2-\sqrt{4-C_1^2})^{\frac{1}{2}}=C_2$$

$$(2-\sqrt{4-C_{2}^{2}})_{2}^{1}=C_{3}$$

To apply these equations, we observe that in any circle the chord of 60° is equal to the radius (cor. to prob. 26), and if the radius is assumed as unity, we have,

$$C = \text{chord of } 60^{\circ}$$

=1.000000000 sid.

ins. pol. of 6 sides.

$$(2-\sqrt{4-C^2})^{\frac{1}{2}}=C_1=$$
 chord of 30°

= .5176380902 sid.

ins. pol. of 12 sides.

$$(2-\sqrt{4-C_1^2})^{\frac{1}{2}} = C_2 = \text{chord of } 15^{\circ}$$
 = .2610523842 sid. ins. pol. of 24 sides.

$$(2-\sqrt{4-C_3^2})^{\frac{1}{2}}=C_3=$$
 chord of 7° 30′ = .1308062583 sid. ins. pol. of 48 sides.

$$(2-\sqrt{4-C_3^2})^{\frac{1}{2}} = C_4 = \text{chord of } 3^{\circ} 45'$$
 = .0654381655 sid. ins. pol. of 96 sides.

$$(2-\sqrt{4-C_4^2})^{\frac{1}{2}} = C_s = \text{chord of } 1^{\circ} 52' 30'' = .0327234632 \text{ sid.}$$
 ins. pol. of 192 sides.

$$(2-\sqrt{4-C_s^2})^{\frac{1}{2}} = C_s = \text{chord of}$$
 56' 15" = .0163622792 sid. ins. pol. of 384 sides.

$$(2-\sqrt{4-C_6^2})^{\frac{1}{2}}=C_7=$$
 chord of 28' 7" 22"'= .0081812080 sid. ins. pol. of 768 sides.

$$(2-\sqrt{4-C_7^2})^{\frac{1}{2}}=C_8=$$
 chord of 14' 3" 45 $\frac{1}{2}$ "= .0040906112 sid. ins. pol. of 1536 sides.

$$(2-\sqrt{4-C_8^2})^{\frac{1}{2}}=C_9=$$
 chord of 7' &c. = .0020453068 sid. ins. pol. of 3072 sides.

Hence, .0020453068×3072=6.2831814896, is the perimeter of an inscribed polygon of 3072 sides when the radius is 1, or diameter 2. When the diameter is 1, the perimeter is 3.1415907498, which is a a little, and but a little, less than the circumference, as determined by more extended computations.

Although not necessary for practical application, the following beautiful theorem for the analytical tri-section of an arc will not be unacceptable.

THEOREM 5.

Given, the chord of any arc, to determine the chord of one third of such arc.

Let AE be the given chord, and conceive its arc divided into three equal parts, as represented by AB, BD, and DE.

Through the center draw BCG, and join AB. The two \triangle s, CAB and ABF, are equiangular; for the angle FAB, being at the circumference, is measured by half the arc BE, which is equal to AB, and the angle BCA, at the center, is

measured by the arc AB; therefore, the angle FAB=BCA; but the angle CBA or FBA, is common to both triangles; therefore, the third angle, CAB, of the one triangle, is equal to the third angle, AFB, of the other (th. 11, b. 1, cor. 2), and the two triangles are equiangular and similar.

But the \triangle CBA is isosceles; therefore, the \triangle AFB is also isosceles, and AB=AF, and we have the following proportions:

Now let AE=c, AB=a, CA=1. Then AF=a, and EF=c-a, and the proportion becomes,

$$1:x::x:BF$$
. Hence $BF=x^2$

Also, . . .
$$FG=2-x^2$$

As AE and GB are two chords that intersect each other at the point F, we have,

$$GF \times FB = AF \times FE$$
 (th. 17, b. 3)

That is, . .
$$(2-x^2)x^2=x(c-x)$$

Or, . . .
$$x^3-3x=-c$$

If we suppose the arc AF to be 60 degrees, then c=1, and the equation becomes $x^3-3x=-1$; a cubic equation, easily resolved by Horner's method (Robinson's Algebra, University Edition, Art. 193), giving x=.347296+, the chord of 20° . This again may be taken for the value of c, and a second solution will give the chord of 6° 40', and so on, trisecting as many times as we please.

If the pupil has carefully studied the foregoing principles, he has the foundation of all geometrical knowledge; but to acquire independence and confidence, it is necessary to receive such discipline of mind as the following exercises furnish.

Some of the examples are mere problems, some are theorems, and some a combination of both. Care has been taken in their selection, that they should be appropriate; not very severe, not such as to try the powers of a professed geometrician, nor such as would be too trifling to engage serious attention.

EXERCISES IN GEOMETRICAL INVESTIGATION.

- 1. From two given points, to draw two equal straight lines, which shall meet in the same point, in a line given in position.
- 2. From two given points on the same side of a line, given in position to draw two lines which shall meet in that line, and make equal angles with it.
 - 3. If from a point without a circle, two straight lines be drawn to

the concave part of the circumference, making equal angles with the line joining the same point and the center, the parts of these lines which are intercepted within the circle, are equal.

- 4. If a circle be described on the radius of another circle, any straight line drawn from the point where they meet, to the outer circumference, is bisected by the interfor one.
- 5. From two given points on the same side of a line given in position, to draw two straight lines which shall contain a given angle, and be terminated in that line.
- 6. If, from any point without a circle, lines be drawn touching it, the angle contained by the tangents is double the angle contained by the line joining the points of contact, and the diameter drawn through one of them.
- 7. If, from any two points in the circumference of a circle, there be drawn two straight lines to a point, in a tangent, to that circle, they will make the greatest angle when drawn to the point of contact.
- 8. From a given point within a given circle, to draw a straight line which shall make, with the circumference, an angle, less than any angle made by any other line drawn from that point.
- 9. If two circles cut each other, the greatest line that can be drawn through the point of intersection, is that which is parallel to the line joining their centers.
- 10. If, from any point within an equilateral triangle, perpendiculars be drawn to the sides, they are, together, equal to a perpendicular drawn from any of the angles to the opposite side.
- 11. If the points of bisection of the sides of a given triangle be joined, the triangle, so formed, will be one-fourth of the given triangle.
- 12. The difference of the angles at the base of any triangle, is double the angle contained by a line drawn from the vertex perpendicular to the base, and another bisecting the angle at the vertex.
- 13. If, from the three angles of a triangle, lines be drawn to the points of bisection of the opposite sides, these lines intersect each other in the same point.
- 14. The three straight lines which bisect the three angles of a triangle, meet in the same point.
- 15. The two triangles, formed by drawing straight lines from any point within a parallelogram to the extremities of two opposite sides, are, together, half the parallelogram.
- 16. The figure formed by joining the points of bisection of the sides of a trapezium, is a parallelogram.
 - 17. If squares be described on three sides of a right angled triangle,

and the extremities of the adjacent sides be joined, the triangles so formed, are equal to the given triangle, and to each other.

- 18. If squares be described on the hypotenuse and sides of a right angled triangle, and the extremities of the sides of the former, and the adjacent sides of the others, be joined, the sum of the squares of the lines joining them, will be equal to five times the square of the hypotenuse.
- 19. The vertical angle of an oblique-angled triangle, inscribed in a circle, is greater or less than a right angle, by the angle contained between the base, and the diameter drawn from the extremity of the base.
- 20. If the base of any triangle be bisected by the diameter of its circumscribing circle, and, from the extremity of that diameter, a perpendicular be let fall upon the longer side, it will divide that side into segments, one of which will be equal to half the sum, and the other to half the difference of the sides.
- 21. A straight line drawn from the vertex of an equilateral triangle, inscribed in a circle, to any point in the opposite circumference, is equal to the two lines together, which are drawn from the extremities of the base to the same point.
- 22. The straight line bisecting any angle of a triangle inscribed in a given circle, cuts the circumference in a point, which is equidistant from the extremities of the sides opposite to the bisected angle, and from the center of a circle inscribed in the triangle.
- 23. If, from the center of a circle, a line be drawn to any point in the chord of an arc, the square of that line, together with the rectangle contained by the segments of the chord, will be equal to the square described on the radius.
- 24. If two points be taken in the diameter of a circle, equidistant from the center, the sum of the squares of the two lines drawn from these points to any point in the circumference, will be always the same.
- 25. If, on the diameter of a semicircle, two equal circles be described, and in the space included by the three circumferences, a circle be inscribed, its diameter will be half the diameter of either of the equal circles.
- 26. If a perpendicular be drawn from the vertical angle of any triangle to the base, the difference of the squares of the sides is equal to the difference of the squares of the segments of the base.
- 27. The square described on the side of an equilateral triangle, is equal to three times the square of the radius of the circumscribing circle.

- 28. The sum of the sides of an isosceles triangle, is less than the sum of any other triangle on the same base and between the same parallels.
- 29. In any triangle, given one angle, a side adjacent to the given angle, and the difference of the other two sides, to construct the triangle.
- 30. In any triangle, given the base, the sum of the other two sides, and the angle opposite the base, to construct the triangle.
- 31. In any triangle, given the base, the angle opposite to the base, and the difference of the other two sides, to construct the triangle.

PROBLEMS REQUIRING THE AID OF ALGEBRA FOR THEIR SOLUTION.

No definite rules can be given for the solution or construction of the following problems; and the pupil can have no other resources than his own natural tact, and the application of his analytical and geometrical knowledge thus far obtained; and if that knowledge is sound and practical, the pupil will have but little difficulty; but if his geometrical acquirements are superficial and fragmentary, the difficulties may be insurmountable: hence, the ease or the difficulty which we experience in resolving such problems, is the test of an efficient or inefficient knowledge of theoretical geometry.

When a problem is proposed requiring the aid of Algebra, draw the figure representing the several parts, both known and unknown. Represent the known parts by the first letters of the alphabet, and the unknown and required parts by the final letters, &c.; and use whatever truths or conditions are available to obtain a sufficient number of equations, and the solution of such equations will give the unknown and required parts the same as in common Algebra.

But as we are unable to teach by more general precept, we give the solutions of a few examples, as a guide to the student.

The first two are specimens of the most simple and easy; the last two or three are specimens of the most difficult and complex, or such as might not be readily resolved, in case solutions were not given.

It might be proper to observe that different persons might draw different figures to the more complex problems, and make different equations and give different solutions; but the best solutions are always the most simple.

PROBLEM 1.

. Given, the hypotenuse, and the sum of the other two sides of a right angled triangle, to determine the triangle.

Let ABC be the \triangle . Put CB=h, AD=x, AC=y, and CA+AB=s. Then, by a given condition we we have,

$$x+y=s$$

And, .
$$x^2+y^2=h^2$$
 (th. 36, b. 1)

From these two equations a solution is easily obtained, giving,

$$x=\frac{1}{2}s\pm\frac{1}{2}\sqrt{2h^2-s^2}$$
 $y=\frac{1}{2}s\pm\frac{1}{2}\sqrt{2h^2-s^2}$
If $h=5$, and $s=7$, $x=4$ or 3, and $y=3$ or 4.

PROBLEM 2.

Given, the base and perpendicular of a triangle, to find the side of its inscribed square.

Let ABC be the \triangle . AB=b, the base, CD=p, the perpendicular.

Draw EF parallel to AB, and suppose it equal to EG, a side of the required square; and put EF = x.

Then, by proportional As we have,

That is, p-x: x :: p : b

Hence,
$$bp-bx=px$$
; or, $x=\frac{bp}{b+p}$

That is, the side of the inscribed square is equal to the product of the base and altitude, divided by their sum.

PROBLEM 3.

In a triangle, having given the sides about the vertical angle, and the line bisecting that angle and terminating in the base, to find the base.

Let ABC be the \triangle , and let a circle be circumscribed about it. Divide the arc AEB into two equal parts at the point E, and join EC. This line bisects the vertical angle (th. 9, b. 3, scholium). Join BE.

Put AD=x, DB=y, AC=a, CB=b, CD=c, and DE=w. The two $\triangle s$, ADC and EBC, are equiangular; from which we have,

$$w+c:b::a:c; or, cw+c^2=ab$$

Now, as x and y are determined, the base is determined.

N. B. Observe that equation (2) is theorem 20, book 3.

PROBLEM 4.

To determine a triangle, from the base, the line bisecting the vertical angle, and the diameter of the circumscribing circle.

Describe the circle on the given diameter, AB, and divide it in two parts, in the point D, so that $AD \times DB$ shall be equal to the square of one half the given base.

Through D draw EDG at right angles to AB, and EG will be the given base of the triangle.

Put .
$$AD=n$$
, $DB=m$, $AB=d$, $DG=b$.

Then, n+m=d, and $nm=b^2$; and these two equations will determine n and m; and therefore, n and m we shall consider as known.

Now, suppose EHG to be the required \triangle , and join HIB and HA. The two \triangle s, AHB, DBI, are equiangular, and therefore, we have,

But HI is a given line, that we will represent by c; and if we put IB=w, we shall have HB=c+w; then the above proportion becomes,

$$d:c+w::w:m$$

Now, w can be determined by a quadratic equation; and therefore, IB is a known line.

In the right angled $\triangle DBI$, the hypotenuse IB, and base DB, are known; therefore, DI is known (th. 36, b. 1); and if DI is known, EI and IG are known.

Lastly, let EH=x, HG=y, and put EI=p, and IG=q.

Then, by theorem 20, book 3, $pq+c^2=xy$ (1)

But, x:y::p:q (th. 25, b. 2)

Or, $x=\frac{py}{q}$ (2)

And, from equations (1) and (2) we can determine x and y, the sides of the \triangle ; and thus the determination has been attained, carefully and easily, step by step.

PROBLÉM 5.

Three equal circles touch each other externally, and thus inclose one acre of ground; what is the diameter in rods of each of these circles?

Draw three equal circles to touch each other externally, and join the three centers, thus forming a triangle. The lines joining the centers will pass through the points of contact (th. 7, b. 3).

Let R represent the radius of these equal circles; then it is obvious that each side of this \triangle is equal to 2R. The triangle is therefore equilateral, and it incloses the given area, and three equal sectors.

As each sector is a third of two right angles, the three sectors are, together, equal to a semicircle; but the area of a semicircle, whose radius is R, is expressed by $\frac{\pi R^2}{2}$ (th. 3, b. 5, and th. 1, b. 5); and the area of the whole triangle must be $\frac{\pi R^2}{2}$ +160; but the area of the \triangle is also equal to R multiplied by the perpendicular altitude, which is $R\sqrt{3}$.

Therefore,
$$R^2\sqrt{3} = \frac{\pi R^2}{2} + 160$$

Or, $R^2(2\sqrt{3} - \pi) = 320$

$$R^2 = \frac{320}{2\sqrt{3} - 3.1415926} = 0.3225$$
Hence, $R = 31.48 + \text{rods for the result.}$

PROBLEM 6.

In a right angled triangle, having given the base and the sum of the perpendicular and hypotenuse, to find these two sides.

PROBLEM 7.

Given, the base and altitude of a triangle, to divide it into three equal parts, by lines parallel to the base.

PROBLEM 8.

In any equilateral \triangle , given the length of the three perpendiculars drawn from any point within, to the three sides, to determine the sides.

PROBLEM 9.

In a right angled triangle, having given the base (3), and the difference between the hypotenuse and perpendicular (1), to find both these two sides.

PROBLEM 10.

In a right angled triangle, having given the hypotenuse (5), and the difference between the base and perpendicular (1), to determine both these two sides.

PROBLEM 11.

Having given, the area or measure of the space of a rectangle inscribed in a given triangle, to determine the sides of the rectangle.

PROBLEM 12.

In a triangle, having given the ratio of the two sides, together with both the segments of the base, made by a perpendicular from the vertical angle, to determine the sides of the triangle.

PROBLEM 13.

In a triangle, having given the base, the sum of the other two sides, and the length of a line drawn from the vertical angle to the middle of the base, to find the sides of the triangle.

PROBLEM 14.

To determine a right angled triangle; having given the lengths of two lines drawn from the acute angles to the middle of the opposite sides.

PROBLEM 15.

To determine a right angled triangle; having given the perimeter, and the radius of its inscribed circle.

PROBLEM 16.

To determine a triangle; having given the base, the perpendicular, and the ratio of the two sides.

PROBLEM 17.

To determine a right angled triangle; having given the hypotenuse, and the side of the inscribed square.

PROBLEM 18.

To determine the radii of three equal circles, inscribed in a given circle, to touch each other, and also the circumference of the given circle.

PROBLEM 19.

In a right angled triangle, having given the perimeter, or sum of all the sides, and the perpendicular let fall from the right angle on the hypotenuse, to determine the triangle; that is, its sides.

PROBLEM 20.

To determine a right angled triangle; having given the hypotenuse and the difference of two lines, drawn from the two soute angles to the center of the inscribed circle.

PROBLEM 21.

To determine a triangle; having given the base, the perpendicular, and the difference of the two other sides.

PROBLEM 22.

To determine a triangle; having given the base, the perpendicular, and the rectangle, or product of the two sides.

PROBLEM 23.

To determine a triangle; having given the lengths of three lines drawn from the three angles to the middle of the opposite sides.

PROBLEM 24.

In a triangle, having given all the three sides, to find the radius of the inscribed circle.

PROBLEM 25.

To determine a right angled triangle; having given the side of the inscribed square, and the radius of the inscribed circle.

PROBLEM 26.

To determine a triangle, and the radius of the inscribed circle; having given the lengths of three lines drawn from the three angles to the center of that circle.

PROBLEM 27.

To determine a right angled triangle; having given the hypotenuse, and the radius of the inscribed circle.

BOOK VI.

OF THE INTERSECTION OF PLANES.

DEFINITIONS.

THE 14th definition of book 1, defines a plane. It is a superfices, it has length and breadth, but no thickness.

The surface of still water, the side of a sheet of paper, may give a person some idea of a plane.

A curved surface is not a plane; although we sometimes say, "the plane of the earth's surface."

- 1. If any two points be taken in a plane, and a straight line join the points, every point in that line is in the plane.
- 2. If any point in such a line should be either above or below the surface, such a surface would not be a plane.
- 3. A straight line is perpendicular to a plane, when it makes right angles with every straight line which it meets in that plane.
- 4. Two planes are perpendicular to each other when any straight line drawn in one of the planes, perpendicular to their common section, is perpendicular to the other plane.
- 5. If two planes cut each other, and from any point in the line of their common section, two straight lines be drawn, at right angles to that line, one in the one plane, and the other in the other plane, the angle contained by these two lines is the angle made by the planes.
- 6. A straight line is parallel to a plane when it does not meet the plane, though produced ever so far.
- 7. Planes are parallel to each other when they do not meet, though produced ever so far.
- 8. A solid angle is one which is formed by the meeting, in one point, of more than two plane angles, which are not in the same plane with each other.

THEOREM 1

If any three straight lines meet one another, they are in one plane.

For conceive a plane passing through BC to revolve about that line till it pass through the point E. Then because the points E and C are in that plane, the line EC is in it; and for the same reason, the line EB is in it; and BC is in it, by hypothesis. Hence the lines AB, CD, and BC are all in one plane.

Cor. Any two straight lines which meet each other, are in one plane; and any three points whatever, are in one plane.

THEOREM 2.

If two planes cut one another, the line of their common section is a straight line.

For let B and D, any two points in the line of their common section, be joined by the straight line BD; then because the points B and D are both in the plane AE, the whole line BD is in that plane; and for the same

reason BD is in the plane CF. The straight line BD is therefore common to both planes; and it is therefore the line of their common section.

PROPOSITION 3. THEOREM.

If a straight line stand at right angles to each of two other straight lines at their point of intersection, it will be at right angles to the plane of those lines.

Let AB stand at right angles to EF and CD, at their point of intersection A. Then AB will be at right angles to any other line drawn through A in the plane, passing through EF, CD, and, of course, at right angles to the plane itself. (Def. 3.)

Through A, draw any line, AG, in the plane

EF CD, and from any point G, draw GH parallel to AD. Take HF = AH, and join FG and produce it to D. Because HG is parallel to AD, we have

But, in this proportion, the first couplet is a ratio of equality; therefore the last couplet is also a ratio of equality,

That is, FG = GD, or the line FD is bisected in G. Join BD, BG, and BF.

Now, in the triangle AFD, as the base FD is bisected in G, we have, $AF^2+AD^2=2AG^2+2GF^2$ (1) (th. 39 b. 1.)

Also, as DF is the base of the $\triangle BDF$, we have by the same theorem, $BF^2+BD^2=2BG^2+2GF^2$ (2)

By subtracting (1) from (2) and observing that $BF^2 - AF^2 = AB^2$, because BAF is a right angle; and $BD^2 - AD^2 = AB^2$, because BAD is a right angle, and we shall then have,

$$AB^2 + AB^2 = 2BG^2 - 2AG^2$$

Dividing by 2, and transposing AG^2 , and we have,

$$AB^2+AG^2=BG^2$$

This last equation shows that BAG is a right angle. But AG is any line drawn through A, in the plane EF, CD, therefore AD is at right angles to any line in the plane, and, of course, at right angles to the plane itself. Q. E. D.

PROPOSITION 4. PROBLEM AND THEOREM.

To draw a straight line perpendicular to a plane, from a given point above it.

Let MN be the plane, and A the point above it. Take, DC, any line on the plane, and draw AC at right angles to it.

From the point C, draw CB on the plane, at right angles to the line DC.

Lastly, from A, draw AB at right angles to the line BC, and join BD. ABC

is a right angle by construction, and now if we can prove that ABD is also a right angle, then AB is at right angles to the plane, by the last proposition.

Because ABC is a right angle, we have,

$$AB^2+BC^2=AC^2$$

To both members of this equation, add DC^2 and we have,

$$AB^2+(BC^2+DC^2)=AC^2+DC^2$$

Because BCD is a right angle, $BC^2+DC^2=BD^2$, and because ACD is a right angle, $AC^2+DC^2=AD^2$, and taking these latter values in the last equation, we have,

 $AB^2+BD^2=AD^2$; which shows that ABD is a right angle, and proves our proposition. Q. E. D.

PROPOSITION 5. THEOREM.

Two straight lines, having the same inclination to a plane, whether perpendicular or oblique, are parallel to one another.

This proposition is axiomatic from our definition of parallel lines; for a stationary plane can have but one position, and the same inclination from any fixed position, must, of course, give parallel lines; but, for the sake of perspicuity, we will give the following as a demonstration.

Let MN be a plane, and AB and CD lines having the same inclination to it.

Then AB and CD are parallel.

If the lines do not meet the plane, produce them until they do meet it in B and D.

Join the points B and D, by the line BD, and produce it to E.

The angle CDE=ABD, otherwise the two lines would not have the same inclination to the plane. But when one line, as BE, cuts two others, as AB CD, making the exterior angle, CDE, equal to the interior and opposite angle on the same side, ABE, then the two lines, AB and CD, are parallel. (Converse of th. 6, b. 1).

Q. E. D.

k

PROPOSITION 6. THEOREM.

If two straight lines be drawn in any position through parallel planes, they will be cut proportionally by the planes.

Conceive three planes to be parallel, as represented in the figure, and take any points, A and B, in the first and third planes, and join AB, which passes through the second plane at E.

Also, take any other two points, as C and D, in the first and third planes, and join CD, the line passing through the second plane at F.

Join the two lines by the diagonal AD, which passes through the second plane at G. Join BD, EG, GF, and AC. We are now to show that, AE:EB::CF:FD

For the sake of perspicuity, put AG=X, and GD=Y.

As the planes are parallel, BD is parallel EG; then, in the two triangles ABD and AEG, we have, (th. 17 b. 2).

Also, as the planes are parallel, GF is parallel to AC, and we have, CF: FD: X: Y

By comparing the proportions, and applying theorem 6, book 2, we have, AE:EB::CF:FD. Q. E. D.

PROPOSITION 7. THEOREM.

If a straight line be perpendicular to a plane, all planes passing through that line will be perpendicular to the first-mentioned plane.

Let MN be a plane, and AB perpendicular to it. Let BC be any other plane, passing through AB; this plane will be perpendicular to MN.

Let BD be the common intersection of the two planes, and from the point B, draw BE at right angles to DB.

Then, as AB is perpendicular to the plane MN, it is perpendicular to every line in that plane, passing through B (def. 1, b. 6); therefore, ABE is a right angle. But the angle ABE (def. 5, b. 6), measures the inclination of the two planes; therefore, the plane CB is perpendicular to the plane MN, and thus we can show

that any other plane, passing through AB, will be perpendicular to MN; therefore, &c. Q. E. D.

PROPOSITION 8. THEOREM.

From the same point in a plane, but one perpendicular can be erected from the plane.

Let MN be a plane, and B a point in it, and, if possible, let two perpendiculars, BA and BC, be erected.

Let BD be drawn on the plane MN, coinciding in direction with the plane passing through these two perpendiculars.

Now, as a perpendicular to a plane is at right angles to every line that can be drawn on the plane, through the foot of the perpendicular, therefore, *ABD* is a right angle, also *CBD* is a right angle.

Hence, ABD = CBD; the greater equal to the less, which is absurd; therefore, BC must coincide with BA, and be one and the same line; therefore, from the same point, &c. Q. E. D.

PROPOSITION 9. THEOREM.

If two planes are perpendicular to a third plane, the common intersection of the two planes will be perpendicular to the third plane.

Let CB and BD be two planes, both perpendicular to the third plane, MN, and let B be the common point to all three of the planes. From B, draw BA at right angles to FB;

BA will be in the plane BD. From B, draw also a perpendicular to GB, this will be BA; or, there may be two perpendiculars erected from the same point, which is impossible; therefore, BA is a common section to the two planes BC and CD, and it is at right angles to the two lines BF and BG, on the plane MN. AB is therefore perpendicular to that plane. (Prop. 3, b. 6). Q.E.D.

PROPOSITION 10. THEOREM.

If a solid angle be formed by three plane angles, the sum of any two of them is greater than the third.

Let the three angles, BAD, DAC, BAC, form the solid angle A. The sum of any two of these is greater than the third. When these angles are all equal, it is evident that the

sum of any two is greater than the third, and the proposition needs demonstration only when one of them, as BAC, is greater than either of the others; we are then to prove that it is less than their sum.

On the line AB, take any point, B, and draw any line, as BD. From the same point, B, make the angle ABC=ABD, and join DC. From the point A, and on the plane BAC, draw the angle BAE=BAD. Now the two plane triangles BAD and BAE, have a common side, AB, and the angles adjacent equal (th. 14, b. 1); therefore, the two \triangle s are, in all respects, equal; and AD=AE, and BD=BC.

In the triangle BDC, BC < BD + DCBut, BE = BDBy subtraction, BE = BD

In the two triangles, DAC and EAC, DA=AE, and AC is common, but EC is less than CD; therefore, the angle DAC, opposite DC, is greater than the angle EAC, opposite EC. (Converse of th. A, b. 1).

That is, . . . DAC > EACBut, . . . DAB = BAEBy addition, DAC + DAB > BAC. (Ax. 2). Q. E. D.

PROPOSITION 11. THEOREM.

The sum of any plane angles forming any solid angle, is always less than four right angles.

Let the planes which form the solid angle at A, be cut by another plane, which we may call the plane of the base, BCDE. Take any point, a, in this plane, and join aB, aC, aD, aE, &c., thus making as many triangles on the plane of the base, as there are triangular planes forming the solid angle A. But as the sum of the angles of every \triangle is two

right angles, the sum of all the angles of the \triangle s which have their vertex in A, is equal to the sum of all angles of the \triangle s which have their vertex in a. But the angles BCA+ACD, are, together, greater than the angles BCa+aCD, or BCD, by the last proposition. That is, the sum of all the angles at the bases of the \triangle s which have their vertex in A, is greater than the sum of all the angles at the bases of the \triangle s which have their vertex in a. Therefore, the sum of all the angles at a, is greater than the sum of all the angles at a, but the sum of all the angles at a, is equal to four right angles; therefore, the sum of all the angles at A, is less than four right angles. Q, E. D.

PROPOSITION 12. THEOREM.

If two solid angles are formed by three plane angles respectively equal to each other, the planes which contain the equal angles will be equally inclined to each other.

Let the angle ASC=DTF, the angle ASB=DTE, and the and the angle BSC=ETF; then will the inclination of the planes, ASC, ASB, be equal to that of the planes DTF, DTE.

Having taken SB at pleasure, draw BO perpendicular to the plane ASC; from the point O, at which that perpendicular meets the plane, draw OA, OC, perpendicular to SA, SC; join AB, BC; next take TE = SB; draw EP perpendicular to the plane DTF; from the point P, draw PD, PF, perpendicular to TD, TF; lastly, join DE, EF.

The triangle SAB, is right angled at A, and the triangle TDE, at D; and since the angle ASB=DTE, we have SBA=TED. Likewise, SB=TE; therefore, the triangle SAB is equal to the triangle TDE; hence, SA=TD, and AB=DE. In like manner it may be shown that, SC=TF, and BC=EF. That granted, the quadrilateral SAOC, is equal to the quadrilateral TDPF; for, place the angle ASC, upon its equal DTF; because SA=TD, and SC=TF, the point A will fall on D, and the point C on F;

and, at the same time, AO, which is perpendicular to SA, will fall on PD, which is perpendicular to TD, and, in like manner, OC on PF; wherefore, the point O will fall on the point P, and AO will be equal to DP. But the triangles AOB, DPE, are right angled at O and P; the hypotenuse AB=DE, and the side AO=DP; hence, those triangles are equal; hence, the angle OAB=PDE. The angle OAB is the inclination of the two planes ASB, ASC; the angle PDE, is that of the two planes DTE, DTF; consequently, those two inclinations are equal to each other. Hence, If two solid angles are formed, &c.

Scholium. The angles which form the solid angles at S and T, may be of such relative magnitudes, that the perpendiculars, BO and EP, may not fall within the bases, ASC and DTF; but they will always either fall on the bases or on the planes of the bases produced, and O will have the same relative situation to A, S, and C, as P has to D, T, and F. But, in case that O and P fall on the planes of the bases produced, the angles BCO and EFP, would be obtuse angles; but the demonstration of the problem would not be varied in the least.

BOOK VII.

SOLID GEOMETRY.

THE object of Solid Geometry is to estimate and compare the surfaces and magnitudes of solid bodies; and, like Plane Geometry, it must rest on definitions and axioms.

To the definitions already given, we add the following, as being exclusively applicable to Solid Geometry.

Surfaces are measured by square units; so solids are measured by cube units.

1. A Cube is a solid, bounded by six equal square surfaces, forming eight equal solid angles.

All other solids are referred to a unit of this figure for measurement.

- 2. A Prism is a solid, whose ends are parallel, equal, and form equiangular plane figures; and its sides, connecting these ends, are parallelograms.
- 3. A prism takes particular names according to the figure of its base or ends, whether triangular, square, rectangular, pentagonal, hexagonal, &c.
- 4. A right or upright prism, is that which has the planes of the sides perpendicular to the planes of the ends or base.
- 5. A Parallelopipedon is a prism bounded by six parallelograms, every opposite two of which are equal, alike, and parallel.

6. A rectangular parallelopipedon, is that whose bounding planes are all rectangles, which are perpendicular to each other.

A rectangular parallelopipedon becomes a *cube* when all its planes are equal.

- 7. A Cylinder is a round prism, having circles for its ends; and is conceived to be formed by the rotation of a right line about the circumferences of two equal and parallel circles, always parallel to the axis.
 - 2. The axis of a cylinder, is the right line joining the

centers of the two parallel circles, about which the figure is described.

9. A Pyramid is a solid, whose base is any right lined plane figure, and its sides triangles, having all their vertices meeting together in a point above the base, called the vertex of the pyramid.

- 10. A pyramid, like the prism, takes particular names from the figure of the base.
- 11. A Cone is a convex pyramid, having a circular base, and is conceived to be generated by the rotation of a right line about the circumference of a circle, one end of which is fixed at a point above the plane of that circle.

- 12. The axis of a cone is the right line joining the vertex, or fixed point, and the center of the circle about which the figure is described.
- 13. Similar cones and cylinders, are such as have their altitudes and the diameters of their bases proportional.
- 14. A Sphere is a solid, having but one surface, which is in every part equally convex; and every point on such a surface is equally distant from a certain point within, called the center.
- 15. A sphere may be conceived as having been generated by the revolution of a semicircle about its axis.

The diameter of such a semicircle is the diameter of the sphere; and the center of the semicircle is the center of the sphere.

- 16. The altitude of any solid is the perpendicular distance between the parallel planes, one of which is the base of the solid, and the other is a plane, parallel with the plane of the base, passing through the vertex of the solid.
- 17. The area of the surface is measured by the product of its *length* and *breadth* (as explained by scholium on page 32); and these dimensions are always conceived to be exactly at right angles with each other.
- 18. In a similar manner, solids are measured by the product of their *length*, *breadth*, and *hight*, when all their dimensions are at right angles with each other.

The product of the length and breadth of a solid, is the measure of the surface of its base.

Let P, in the annexed figure, represent the measuring unit, and AF the rectangular solid to be measured.

A side of P, is one unit in length, one in breadth, and one in hight; one inch, one foot, one yard, or any other unit that may be taken.

Then, $1 \times 1 \times 1 = 1$, the unit cube.

Now, if the base of the solid, AC, is, as here represented, 5 units in length and 2 in breadth, then it is obvious that (5)(2=10). 10 units, equal to P, can be placed on the base of AC, and no more; and as each of them will occupy a unit of altitude, therefore, 2 units of altitude will contain 20 solid units, 3 units of altitude, 30 solid units, and so on; or, in general terms, the number of square units in the base, multiplied by the linear units in perpendicular altitude, will give the solid units in any rectangular solid.*

THEOREM 1.

Two parallelopipedons on the same base, and of the same altitude, the one rectangular, the other oblique, the opposite sides of which lie in the same planes, will be equal in solidity.

Let AG be the rectangular parallelopipedon on the base AC, and AL the the oblique parallelopipedon, on the same base, AC, and of the same altitude, namely, the perpendicular distance between the parallel planes AC and EL, and the

side AF, in the same plane with AK, and the side DG, in the same plane with DL. Then we are to show, that the oblique parallelopiped on ABCDMIKL, is equivalent to the rectangular parallelopiped on, AG.

^{*} This is one of those simple and primary truths that admit of no demonstration; for no other truths more simple and elementary than itself can be brought to bear upon it; hence we enunciate it as a definition.

All efforts to prove a proposition which is perfectly obvious, are very unsatinfactory to the mind, and always tend more to confuse than to elucidate.

As the sides of the two solids are in the same plane, EFK is one right line; EF=IK, because each is equal to AB. From the whole line EK, subtract, successively, EF and IK; thus showing that EI=FK. But BF=AE, and the angle BFK= the angle AEI; therefore, the $\triangle BFK=\triangle AEI$. The parallelogram DE=EF, and the parallelogram EM=FL; and all the angles at EF forming the solid angles at that point, are respectively equal to the like angles at EF.

Hence, the two prisms, CBFGLK and DAEHMI are equal; for they are bounded by equal planes equally inclined to each other; or, one prism can be conceived to be taken up and placed into the same space occupied by the other; and magnitudes that fill the same space, are equal.

Now, from the whole solid, take the prism GB—K, and the upright solid, AG, is left; and from the whole solid take the prism DE—I, and the oblique solid, AL, is left. Hence, by (ax. 3) the rectangular parallelopiped on AG, is equivalent to the oblique parallelopiped on AL, on the same base and altitude. Q.E.D.

Cor. The measure of the solid AG, is the base, ABCD, into the perpendicular, AE (def. 18, solid ge.); consequently, the measure of the solid, AL, is also the same base, multiplied by the same perpendicular.

Scholium. If EF and IK are in the same line; that is, the sides AF and AK in the same plane; but the angles AEH and BFG not right angles, then neither parallelopipedon is rectangular; but they are proved equal in exactly the same manner; that is, by proving the two prisms equal, and subtracting each in succession from the whole solid.

Hence, two oblique parallelopipedons, on the same base, and of the same altitude, whose opposite sides are between the same planes, are equal in solidity.

PROBLEM 2.

Any oblique parallelopipedon is equivalent to a rectangular parallelopipedon on the same base and altitude. Let AG, be any oblique parallelopipedon, and AL a rectangular parallelopipedon, on the same base, DB, and between the same parallel planes, BD and HF. Then we are to show, that they are equivalent.

Produce HG and IM; and because

they are in the same horizontal plane, and not parallel, they will meet in some point, Q. Also produce FE and KL, and thus form the parallelogram NP. Now conceive another parallelopipedon to stand on the base DB, and its upper base occupying the parallelogram NP=DB. Now, by scholium to theorem 1, book 7, the solid, AG, is equal to this *imaginary* solid, AP. But (th. 1, b. 7), the rectangular solid, AL, is also equal to this *imaginary* solid, AP. Therefore, the solid AG is = to the rectangular solid, AL. (Ax). Q. E. D.

Cor. Hence, every parallelopipedon, in whatever direction or degree it is inclined, is measured by the product of its base into its perpendicular altitude.

THEOREM 3.

Parallelopipedons on the same, or on equal bases, are to one another as their perpendicular altitudes; and parallelopipedons having equal altitudes, are to one another as their bases.

Let P and p represent two parallelopipedons, whose bases are B and b, and altitudes A and a.

Then, by the last theorem, the measure of P is BA, and the measure of p is ba. But, all magnitudes are proportional to their numerical measures; that is, . . . P: p=BA: ba

Now, in case A=a, we have (th. 4, b. 2), P:p=B:aIn case B=b, then we have, . . . P:p=A:a

Q. E. D.

THEOREM 4.

Similar parallelopipedons are to one another as the cubes of their like dimensions.*

^{*} This theorem is true for all similar solids.

Let P and p represent two parallelopipedons, as in theorom 3; and let l and n represent the length and breadth of the base of P, and h its altitude.

Also, let l' and n' represent the length and breadth of p, and h' its altitude.

Hence, by cor. to th. 2, b. 7, P=lnh, and p=l'n'h'.

That is, . P: p=lnh: l'n'h'*

But, by reason of the similarity of the solids,

l:l'=n:n'

n:n'=n:n'

And, . h:h'=n:n'

Multiplying these proportions together, term by term, (th. b. 2),

we have, . . $lnh : l'n'h' = n^3 : n'^2$

That is, . . $P: p=n^3: n^{3}$ (th. 6, b. 2)

By a little different arrangement of the proportions,

we have, $P:p=l^2:l'^2$

Or, . . $P: p=h^3: h'^3$ Q. E. D.

THEOREM 5.

Any parallelopipedon may be divided into two equal prisms, by a diagonal plane passing through its opposite edges.

The parallelopipedon may be conceived to be composed of a great multitude of extremely thin parallelograms, all equal to one another; and the diagonal HF divides the parallelogram EG into two equal parts (th. 22, cor. b. 1); and the line HF, passing down through all the parallelograms, from EG to

AC, divides each and all of them into two equal parts; that is, the diagonal plane, HFBD, divides the parallelopipedon into two equal parts, each of which is a prism. Q.E.D.

Otherwise, the two prisms may be proved to be bounded by equal planes and equal angles; therefore, they are magnitudes that exactly fill equal spaces, and are therefore equal. Q. E. D.

^{*} When the three factors are all equal; that is, l=n=h, $P: p=l^3: l^3$; but in this case, the solids are actual cubes.

Cor. The solidity of a prism is therefore the triangular base, DBC, multiplied by its altitude, the perpendicular distance between the planes AC and EG; or, it may be found by the product of the base, HGCD, and half the perpendicular distance between the planes GD and EB.

THEOREM 6.

All prisms of equal bases and altitudes are equal in solidity, whatever be the figures of the bases.

It is of no consequence what shape a base may be, for it is greater or less, according to the number of square units that may be contained in it; hence, the base of a triangular prism may be considered a square, or rectangular prism, containing the same number of square units as the triangular base; that is, any prism may be considered a rectangular parallelopipedon, whose base is the same in area as the base of the prism; but the solidity of a parallelopipedon is measured by the area of its base by its altitude (def. 18); and therefore, a prism of the same area of base and altitude, has the same measure. Q. E. D.

THEOREM 7.

All similar solids are to one another as the cubes of their like dimensions.

By theorem 4, of this book, this proposition is proved true for all similar parallelopipedons; and by theorem 5, all similar parallelopipedons may be divided into two equal parts, thus orming similar prisms. But the halves of things are in the same proportion as their wholes; therefore, all similar prisms are to one another as the cubes of their like dimensions.

Similar pyramids and similar cones are but the same like parts of similar prisms; and, like parts of wholes, are in the same proportion as the wholes themselves; therefore, our theorem is true for pyramids and cones.

Spheres are like proportional parts of their circumscribing cylinders; and our theorem is true for similar cylinders; it is, therefore, true for spheres. In short, all similar solids, however irregular the shape, are but like parts of some mathematical figure that may inclose them; and as the theorem is true for the mathematical figures, it is true for any of their like parts; it is, therefore, true for all similar solids whatever. Q. E. D.

THEOREM 8.

If a pyramid be cut by a plane which is parallel with its base, the section thus formed will be similar to the base, and its area will be to the area of the base as the square of its perpendicular distance from the vertex, is to the square of the perpendicular altitude of the pyramid.

Let MN and mn be two parallel planes, between which stands any pyramid whose base is P, and vertex G, and perpendicular altitude EF.

On any one of the edges, as GA, take any point a, and draw ab parallel to AB; and

from b draw bc parallel to BC. Then, by reason of the parallels (th. 10, b. 1), the angle abc = ABC. In this manner we may go round the whole section, whatever be the number of sides: and every angle in the section will be equal to its corresponding angle of the base; that is, the two figures are equiangular, and similar; and as every line of the section is parallel to its corresponding line in the base, therefore, if the base is a plane, the section will be a parallel plane. Produce a line from this plane to the perpendicular at H.

But equiangular plane figures are to one another as the squares of their like sides (th. 23, b. 2); that is,

$$P:p{=}AB^2:ab^2$$

But, $AB^2:(ab)^2=GA^2:Ga^2$ (th's. 17 and 10, b. 2)

And, GA^2 : $Ga^2 = GE^2$: Ge^2

And, GE^2 : $Ge^2 = FE^2 : FH^2$

Multiplying all these proportions together, and at the same time rejecting all the common factors that would otherwise appear in the antecedents and consequents, we have,

$$P:p=FE^2:FH^2$$

By changing means for extremes, we have,

 $p: P = FH^2: FE^2$

Q. E. D.

Cor. As the section made by the cutting plane is always similar to the base, it follows that when the base is a polygon of a great number of sides, the section will be a polygon of the same number of sides; and when the base is a circle, the section will be a circle, and so on.

THEOREM 9.

If two pyramids, standing between two parallel planes, be cut by a third parallel plane, the respective sections will be to each other as their bases.

Let two pyramids stand as represented in the figure, and from any point, H, in the perpendicular, pass a plane parallel to the plane MN. By the last theorem, each section of these pyramids is a similar figure to its base.

By theorem 6, book 6, the parallel plane that forms these sections, cuts all lines between the planes MN and mn, proportionally,

Therefore, gr: gR = Ge: GE

And, . Ge: GE=FH: FE

Hence, . gr: gR = FH: FE

By squaring this last proportion, we have,

 $gr^2:gR^2{=}FH^2:FE^2$ But, . . $gr^2:gR^2{=}rs^2:RS^2$

By the application of theorem 6, book 2, to these last two proportions, we have, $FH^2: FE^2 = rs^2: RS^2$

But, . . . $p: P=FH^2: FE^2$ (th. 8, b. 7)

And, . $rs^2: RS^2=q: Q$ (th. b. 8)

Multiplying these three proportions together, term by term, rejecting common factors in antecedents and consequents, we have,

p: P=q: Q Q. E. D.

Cor. On the supposition that P=Q, there results p=q.

THEOREM 10.

Any two pyramids having equal bases, and situated between the same two parallel planes, or having equal altitudes, are equal. Take the same figure as for the last theorem, supposing the bases, P and Q, equal, and conceive the perpendicular EF, to be divided by a great multitude of parallel planes, equidistant from each other, and all parallel to the plane MN. By the last theorem, these planes will divide each pyramid into the same number of equal parallel sections, of which the two pyramids may be considered as composed; and, as the sums of equals are equal, therefore, the two pyramids are equal. Q. E. D.

THEOREM 11.

Every triangular pyramid is a third part of the triangular prism, having the same base and the same altitude.

Let FABC be a triangular pyramid; ABCDEF a triangular prism of the same base and the same altitude: the pyramid will be equal to a third of the prism.

Cut off the pyramid FABC from the prism, by a section made along the plane FAC; there will remain the solid FACDE, which may be considered as a quadrangular

pyramid, whose vertex is F, and whose base is the parallelogram ACDE. Draw the diagonal CE; and extend the plane FCE, which will cut the quadrangular pyramid into two triangular ones, FACE, FCDE. These two triangular pyramids have for their common altitude, the perpendicular let fall from F on the plane They have equal bases, the triangles ACE, CDE, being halves of the same parallelogram; hence, the two pyramids, FACE, FCDE, are equivalent (th. 10, b. 7). But the pyramid 'FCDE, and the pyramid FABC, have equal bases, ABC, DEF; they have, also, the same altitude, namely, the distance of the parallel planes ABC, DEF; hence these two pyramids are equivalent. Now, the pyramid FCDE has already been proved equivalent to FACE; consequently, the three pyramids, FABC, FCDE, FACE, which compose the prism ABD, are all equivalent. Hence, the pyramid, FABC is the third part of the prism ABD, which has the same base, and the same altitude.

Cor. The solidity of a triangular pyramid is equal to a third part of the product of its base by its altitude.

The preceding demonstration is brief, direct, and all that could be desired, provided the learner has a clear conception of the figure as represented on paper; but as we know that this is not generally the case, we give the following method.

Let ABCDEF be any rectangular parallelopipedon, and put AD=a, AB=b, and AF=k. Produce AF to G, making FG=AF. Draw GO to meet AB, produced in M. As FO is parallel to AB, and AG double of AF, therefore, AM is double of AB. Join GE, and produce it to meet AD,

in I; then, by like reasoning, we shall find AI the double of AD. Join GH, and produce it to meet the plane of BD, in Q.

The whole figure now comprises two pyramids; one, whose base is AQ; the other similar one has FH for its base, and the vertex of both, is G.

The whole figure also comprises the parallelopiped n AH, which is measured by (abh), two prisms, and two equal and similar pyramids. One prism has DCKI for its base, and DE, for its altitude; the other has BMLC for its base, and BO=DE, for its altitude.

As each of these bases, DK and BL, is equal to AC, hence, the solidity of these two prisms is expressed by (abh); and the parallelopipedon, and two prisms together, are measured by 2abh; and, in addition to these, we have two equal pyramids of unknown solidity; therefore, let each one be represented by x.

Now, the whole pyramid, whose base is AQ, and vertex G, is expressed by (2abh+2x).

But the pyramid, whose base is FH, and vertex G, is expressed by (x).

As these two pyramids are similar, they are to each other as the cubes of their like dimensions; that is, they are to each other as the cube of GA to the cube of GF. But GA is the double of GF, by construction. Therefore, $GA^3: GF^3=8:1$

Hence, (2abh+2x): x=8:1Product of extremes and means gives, 8x=2abh+2xTherefore, $x=\frac{1}{2}(abh)$

This last equation shows that the solidity of any pyramid is onethird of any rectangular solid of the same base and altitude. Cor. This measure of the pyramid is true, whatever be the figure of its base; and when the base is a circle, the pyramid is called a cone; hence, the solidity of a cone is one third of its circumscribing cylinder.

THEOREM 12.

If a pyramid be cut by a plane parallel to its base, the solidity of the frustum that remains after the small pyramid is taken away, is equal to three pyramids of the same altitude as the frustum; one having for its base, the base of the frustum; another, the upper base; and the third, a base which is the mean proportional between the upper and lower bases of the frustum.

(The figure has been previously described in theorem 8.)

Now, by the last theorem, the solidity of the whole pyramid is expressed by $\frac{P(FE)}{3}$, and that of the small pyramid is $\frac{p(FH)}{3}$. The difference of these magnitudes measures the frustum:

That is,
$$\frac{P(FE)-p(FH)}{3}$$
 = the frustum.

To make this expression correspond with the enumeration of this theorem, we must banish *FE* and *FH*, and obtain their difference.

By th. 8, book 7, we have, $FE: FH = \sqrt{P}: \sqrt{p}$ (1) From this proportion we

have, $FE = \frac{(FH)\sqrt{P}}{\sqrt{p}}$, which, substituted in the above expression,

gives,
$$\frac{(FH)\overline{P}\sqrt{p}}{3\sqrt{p}}\frac{p(FH)}{3}$$
 = the frustrum;

Or,
$$(FH)^{\frac{1}{2}} \frac{(P\sqrt{P}-p\sqrt{p})}{3\sqrt{p}} = \text{the frustrum.}$$

From proportion (1), $FE-FH:FH=\sqrt{P}+\sqrt{p}:\sqrt{p}$ (2) But (FE-FH) is the altitude of the frustum, which we will designate by a.

Then, from proportion (2),
$$FH = \frac{a\sqrt{p}}{\sqrt{P} + \sqrt{p}}$$

This value of FH, substituted in the last expression for the frustrum, gives,

 $\frac{a}{3} \left(\frac{P\sqrt{P} - p\sqrt{p}}{\sqrt{P} + \sqrt{P}} \right) = \text{the frustum.}$

By actual division, we have,

$$\frac{a}{3}(P+\sqrt{JPp}+p)=$$
 the frustrum;

Or, . $\frac{1}{8}aP + \frac{1}{8}a\sqrt{P}p + \frac{1}{8}ap =$ the frustrum.

Here we find expressions for three different pyramids, which, together, are equal to the frustum; one has P for its base, another p, and the third \sqrt{Pp} , which is the mean proportional between the two bases, P and p; therefore, a frustrum is equal, &c. Q. E. D.

Cor. In case P = p, the frustum becomes a prism, and the above expression for the three pyramids becomes aP, which is the proper expression for the solidity of a prism.

THEOREM 13.

The convex surface of any regular pyramid is equal to the perimeter of its base, multipled by half its slant hight.

Bisect the side AB in H, and join SH. Since the pyramid is regular, the side SAB is an isosceles triangle; consequently, SH is perpendicular to AB, hence, SH is the altitude of the triangle, and also the slant hight of the pyramid. For the same reason, each side of the pyramid is an isosceles triangle, whose altitude is the slant hight of the pyramid.

Now, the area of the triangle SAB, is equal to $AB \times \frac{1}{2}SH$; and the area of all the triangles which compose the convex surface of the pyramid, is equal to the sum of their bases. $(AB+BC+CD+DE+EF+AF)\times \frac{1}{2}SH$.

But the sum of these bases, AB, BC, &c., forms the perimeter of the pyramid's base; and the common altitude, SH, is the slant hight of the pyramid. Therefore, the convex surface of any regular pyramid, is equal to the perimeter of its base multiplied by half its slant hight.

THEOREM 14.

The convex surface of a frustum of a regular pyramid, is equal to the sum of the perimeter of the two bases multiplied by half the slant hight.

Conceive a regular frustum of a pyramid to exist, as represented in the figure; then each face will be a regular trapezoid, whose surface is measured by the half sum of its parallel sides (th. 31, b. 1), multiplied by the perpendicular distance between them, which is the slant hight of the frustum.

Let S represent a side of the lower base, and s a side of the upper base, and a the slant hight; then the surface of one face is measured by $\frac{1}{2}a$ (S+s).

There are just as many of these surfaces as the frustum has sides. Let m represent the number of sides; then the whole surface must be $\frac{1}{2}a(mS+ms)$. But (mS+ms), is the perimeter of the two bases; and $\frac{1}{2}a$ is one-half of the slant hight. Therefore, &c. Q. E. D.

Scholium. Let circles be described round the bases of the frustum, as represented in the last figure; and conceive the number of sides to be indefinitely increased; then S and s will be indefinitely small, and m indefinitely great; but however small S and s may be (the corresponding number to m being as much increased), the expression (mS+ms) will still represent the perimeters of the two bases. But, when S and s are indefinitely small, while OA, and DH, that is, the distances from the axis of the frustum from its edges being constant, the perimeter, mS, will become the perimeter of the circle of which OA is the radius; and ms will be the perimeter of the circle of which DH is the radius; that is, mS=2n(AO), and ms=2n(DH); and by addition,

$$mS+ms=2\pi(AO+DH)$$

But, in this case, $\frac{1}{2}a$ becomes $\frac{1}{2}AD$, one-half the edge of the frustum; and the frustum of the pyramid becomes the frustum of a cone, and its surface is measured by

 $\frac{1}{2}AD \times 2\pi (AO+DH)$; hence,

The convex surface of a frustum of a cone, is equal to half its sides, multipled by the sum of the circumferences of its two bases.

The above expression is the same as

$$AD \times 2\pi \left(\frac{AO+DH}{2}\right)$$

If we take the middle point, P, between O and H, and draw PM parallel to OA and HD,

Then, . . .
$$\frac{DO+DH}{2} = PM$$
, which, substituted, gives . . . $AD \times 2\pi PM$

That is, the convex surface of the frustum of a cone, is equal to its side, multiplied by the circumference of a circle which is exactly midway between its two bases.

THEOREM 15.

If any regular semi-polygon be revolved about its axis, the surface thus described, will be measured by the product of its axis into the circumference of its inscribed circle.

If the semi-polygon, DABK, &c., revolve on its axis, DE, the sides AB, BK, &c., will each describe frustums of cones; and, for investigation, let us take the side AB.

From the middle point, G, draw GI perpendicular to DE. Join GC, and draw AT parallel to DE.

By the scholium to the preceding theorem, the surface described by AB is measured by $AB \times \text{cir. } GI$, which is equal to AT, or HL cir. GC.

That is,
$$HL \times 2\pi GC = AB \times 2\pi GI$$

The two triangles, ABT and CGI, are similar. As CG is perdendicular to AB, the two angles CGI and IGA, are equal to a right angle. The acute angles of the $\triangle ABT$ are also equal to a right angle.

That is,
$$\Box CGI + \Box IGA = \Box BAT + \Box ABT$$

But, $\Box IGA = \Box ABT$ (th. 5, b.1)
By subtraction, $\Box CGI = \Box BAT$

Now, as these two triangles have each a right angle, they are equiangular and similar;

Therefore, . CG: GI=AB: AT=HL

Hence, . $HL \cdot CG = AB \cdot GI$

Multiplying both members of this equation by 2n, we have,

$HL \cdot 2\pi CG = AB \cdot 2\pi GI$

Thus we find that the surface described by the side AB, is measured by the product of HL into the circumference of the inscribed circle; and in the same manner we may prove that the surface described by the side AD, is measured by DH into the circumference of the same circle, and so on of every other side; and the surface described by all the sides taken together, is equal to (DH+HL+LC, &c.), multiplied into the circumference of the inscribed circle; that is, the surface described by the whole polygon, is equal to DE, the axis of the polygon, into the circumference of its inscribed circle. Q.E.D.

THEOREM 16.

The convex surface of a sphere is equal to the product of its diameter into its circumference.

The last theorem is true, whatever be the number of sides of the polygon; and now suppose the number to be indefinitely great; then the sides of the polygon will coincide with the circumference of the circle, and CG becomes CA, and the surface described by the sides of the polygon, is now the surface of the sphere, which is measured by the diameter DE, multiplied into the circumference of the circle $2\pi CA$. Q. E. D.

- Cor. 1. If we represent the radius of a sphere by R, its circumference is $2\pi R$, and its diameter 2R; therefore, its convex surface is $4\pi R^2$. The surface of a plane circle, whose radius is R, is πR^2 ; therefore, the surface of a sphere is 4 times a plane circle of the same diameter.
- Cor. 2. The surface of a segment is equal to the circumference of the sphere, multiplied by the thickness of the segment.
- Cor. 3. In the same sphere, or in equal spheres, the surfaces of different segments are to each other as their altitudes.

THEOREM 17.

The solidity of a sphere is equal to the product of its surface into a third of its radius.

Let us suppose a sphere to be composed of a great multitude of regular pyramids, whose bases are portions of the surface of the sphere, and their common vertex the center of the sphere; then the altitudes of all such pyramids is the radius of the sphere.

The solidity of one of these pyramids is its base multiplied by $\frac{1}{3}$ of its altitude (th. 10, b. 7); and the solidity of all of these together, will be the sum of all the bases multiplied into $\frac{1}{3}$ of the common altitude. But the sum of all the bases, is the surface of the sphere; and the common altitude is the radius of the sphere; therefore, the solidity of a sphere is equal to its surface multiplied by one third of its radius. Q. E. D.

Let R = the radius of the sphere; then (cor. 1, th. 15, b. 7), $4\pi R^2$ is its surface; hence, its solidity must be

$$4\pi R^2 \times \frac{1}{3} R = \frac{4}{3} \pi R^3$$
.

Cor. If r represent the radius of any other sphere, its solidity will be $\frac{4}{3}\pi r^2$; and, by dividing by the constant factors, $\frac{4}{3}\pi$, these two solids are to each other as R^2 to r^2 , a result corresponding to theorem 7, book 7.

THEOREM 18.

The solidity of a sphere is two-thirds the solidity of its circumscribing cylinder.

Let R be the radius of the base of an upright cylinder; then, πR^2 will be the area of the base (th. 1, b. 5); but the altitude of a cylinder which will just inclose a cube, must be 2R; and the solidity of such a cylinder must be $2\pi R^3$ (def. 18, b. 7). By the last theorem, the solidity of a sphere, whose radius is R, is $4\pi R^2$.

Therefore	e, the	cylin	der is	to th	e sph	ere as	$2\pi I$	$R^{f e}$ to $rac{4}{\pi}R^{f e}$
Or, as	•	•	•	•	•	•	2	to 4
Or, as	•	• `	•	•	•	•	1	to 🖁
					•			Q. E. D.

We give another method of demonstrating this truth, merely for the beauty of the demonstration.

Let AK be the diameter of a semicircle, and also the side of a parallelogram whose width is the radius of the semicircle.

Join the center of the semicircle to either extremity of the parallelogram, as CB, CL. Now conceive the parallelogram to revolve on AK, and it will describe a cylinder; the semicircle will describe a sphere, and the triangle ABC will describe a cone.

In AC, take any point, D, and draw DH parallel to AB, and join CO. Then, as CA=AB, CD=DE. In the right angled triangle CDO, we have,

$$CD^2 + DO^2 = CO^2$$
 (1)

But, . . . $BD^2=DE^2$, and $CO^2=DH^2$

Substituting these values in equation (1), and we have,

$$DE^2 + DO^2 = DH^2$$
 (2)

Multiply every term of this equation by π ,

Then,
$$. \pi DE^2 + \pi DO^2 = \pi DH^2$$

Now, the first term of this equation, is the measure of the surface of a plane circle, whose radius is DE; the second term is the measure of a plane circle, whose radius is DO; and the second member is the measure of the surface of a plane circle, whose radius is DH. Let each of these surfaces be conceived to be of the same extremely minute thickness; then the first term is a section of a cone, the second term is a corresponding section of a sphere, and these two sections are, together, equal to the corresponding section of the cylinder; and this is true for all sections parallel to CR, which compose the cone, the sphere, and the cylinder; but the core described by the triangle ABC, is $\frac{1}{3}$ of the cylinder described by AR (th. 10, b. 7); therefore, the corresponding section of the sphere, is the remaining two-thirds, and the whole sphere is two-thirds of the whole cylinder described by the parallelogram AL.

ELEMENTARY PRINCIPLES OF PLANE TRIGONOMETRY.

TRIGOROMETRY in its literal and restricted sense, has for its object, the measure of triangles. When the triangles are on planes, it is plane trigonometry, and when the triangles are on, or conceived to be portions of a sphere, it is spherical trigonometry. In a more enlarged sense, however, this science is the application of the principles of geometry, and numerically connects one part of a magnitude with another, or numerically compares different magnitudes.

As the sides and angles of triangles are quantities of different kinds, they cannot be compared with each other; but the relation may be discovered by means of other complete triangles, to which the triangle under investigation can be compared.

Such other triangles are numerically expressed in Table II, and all of them are conceived to have one common point, the center of a circle, and as all possible angles can be formed by two straight lines drawn from the center of a circle, no angle of a triangle can exist whose measure cannot be found in the table of trigonometrical lines.

The measure of an angle is the arc of a circle, intercepted between the two lines which form the angle—the center of the arc always being at the point where the two lines meet.

The are is measured by degrees, minutes, and seconds, there being 360 degrees to the whole circle, 60 minutes in one degree, and 60 seconds in one minute. Degrees, minutes, and seconds, are designated by °, ', ''. Thus 27° 14' 21", is read 27 degrees, 14 minutes, and 21 seconds.

All circles contain the same number of degrees, but the greater the radii the greater is the absolute length of a degree; the circumference of a carriage wheel, the circumference of the earth, or the still greater and indefinite circumference of the heavens, have the same number of degrees; yet the same number of degrees in each and every circle is precisely the same angle in amount or measure.

As triangles do not contain circles, we can not measure triangles by circular arcs; we must measure them by other triangles, that is, by straight lines, drawn in and about a circle.

Such straight lines are called trigonometrical lines, and take particular names, as described by the following

DEFINITIONS.

- 1. The sine of an angle, or an arc, is a line drawn from one end of an arc, perpendicular to a diameter drawn through the other end. Thus, BF is the sine of the arc AB, and also of the arc BDE. BK is the sine of the arc BD, it is also the cosine of the arc AB, and BF, is the cosine of the arc BD.
- N. B. The complement of an arc is what it wants of 90°; the supplement of an arc is what it what it wants of 180°.
- 2. The cosine of an arc is the perpendicular distance from the center of the circle to the sine of the arc, or it is the same in magnitude as the sine of the complement of the

- arc. Thus, CF, is the cosine of the arc AB; but CF = KB, the sine of BD.
- 3. The tangent of an arc is a line touching the circle in one extremity of the arc, continued from thence, to meet a line drawn through the other extremity.

Thus, AH is the tangent to the arc AB, and DL is the tangent of the arc DB, or the cotangent of the arc AB.

- N. B. The co, is but a contraction of the word complement.
- 4. The secant of an arc, is a line drawn from the center of the circle to the extremity of its tangent. Thus, CH is the secant of the arc AB, or of its supplement BDE.
- 5. The cosecant of an arc, is the secant of the complement. Thus, CL, the secant of BD, is the cosecant of AB.
- 6. The versed sine of an arc is the difference between the cosine and the radius; that is, AF is the versed sine of the arc AB, and DK is the versed sine of the arc BD.

For the sake of brevity these technical terms are contracted thus; for sine AB, we write sin.AB, for cosine AB, we write cos.AB, for tangent AB, we write tan.AB, &c.

12

From the preceding definitions we deduce the following obvious consequences:

1st, That when the arc AB, becomes so small as to call it nothing, its sine tangent and versed sine are also nothing, and its secant and cosine are each equal to radius.

2d, The sine and versed sine of a quadrant are each equal to the radius: its cosine is zero, and its secant and tangent are infinite.

3d, The chord of an arc is twice the sine of half the arc. Thus, the chord BG, is double of the sine BF.

4th, The sine and cosine of any arc form the two sides of a right angled triangle, which has a radius for its hypotenuse. Thus, CF, and FB, are the two sides of the right angled triangle CFB.

Also, the radius and the tangent always form the two sides of a right angled triangle which has the secant of the arc for its hypotenuse. This we observe from the right angled triangle CAH.

To express these relations analytically, we write

$$\sin^2 + \cos^2 = R^2$$
 (1)
 $R^2 + \tan^2 = \sec^2$ (2)

From the two equiangular triangles CFB, CAH, we have CF: FB = CA : AH

That is,
$$\cos : \sin = R : \tan : \frac{R \sin \cdot}{\cos \cdot}$$
 (3)

Also, CF: CB = CA: CH

That is,
$$\cos : R = R : \sec \cos \sec = R^2$$
 (4)

The two equiangular triangles CAH, CDL. give

$$CA:AH=DL:DC$$

That is,
$$R: \tan = \cot : R \quad \tan \cdot \cot = R^2$$
 (5)

Also, CF: FB = DL: DC

That is,
$$\cos : \sin = \cot : R \quad \cos : R = \sin \cdot \cot$$
 (6)

By observing (4) and (5), we find that

Or, $\cos : \tan = \cot : \sec .$

The ratios between the various trigonometrical lines are always the same for the same arc, whatever be the length of the radius; and therefore, we may assume radius of any length to suit our convenience; and the preceding equations will be more concise, and more

readily applied, by making radius equal unity. This supposition being made, the preceding becomes

$$\sin^2 + \cos^2 = 1$$
 (1)

$$1+\tan^2=\sec^2 \qquad (2)$$

$$\tan = \frac{\sin}{\cos}. \quad (3) \qquad \cos = \frac{1}{\sec}. \quad (4)$$

$$\tan = \frac{1}{\cot}$$
 (5) $\cos = \sin \cdot \cot$ (6)

The center of the circle is considered the absolute zero point, and the different directions from this point are designated by the different signs + and -. On the right of C, toward A, is commonly marked plus (+), then the other direction, toward E, is necessarily minus (-). Above AE is called (+), below that line (-).

If we conceive an arc to commence at A, and increase continuously around the whole circle in the direction of ABD, then the following table will show the mutations of the signs.

		sin.	cos.	tan.	cot.	sec.	cosec.	vers.
1st	quadrant.	+	+	+	+	+	+	+
2d	- "	+	_		_		+	+
3d	46			+	+			+
4th	66		+	_		4		+

PROPOSITION 1.

The chord of 60° and the tangent 45° are each equal to radius; the sine of 30° the versed sine of 60° and the cosine of 60° are each equal to half the radius.

(The first truth is proved in problem 15, book 1).

On C=, as radius, describe a quadrant; take $AD=45^{\circ}$, $AB=60^{\circ}$, and $AE=90^{\circ}$, then $BE=30^{\circ}$.

Join AB, CB, and draw Bn, perpendicular to CA. Draw Bm, parallel to AC. Make the angle CAH=90°, and draw CDH.

In the \triangle ABC, the angle ACB=60° by hypothesis; therefore, the sum of the other two angles is $(180-60)=120^\circ$. But CB=CA, hence the angle CBA= the angle CAB, (th. 15 b. 1), and as the sum of the two is 120°, each one must be 60°; therefore, each of the angles of triangle ABC, is 60°

and the sides opposite to equal angles are equal; that is, AB, the chord of 60° , is equal to CA, the radius.

In the \triangle CAH, the angle CAH is a right angle; and by hypothesis, ACH, is half a right angle; therefore, AHC, is also half a right angle; consequently, AH=AC, the tangent of $45^{\circ}=$ the radius.

By th. 15, book 1, cor. Cn=nA; that is, the cosine and versed sine of 60° are each equal to the half of the radius. As Bn and EC are perpendicular to AC, they are parallel, and Bm is made parallel to Cn; therefore, Bm=Cn, or the sine 30°, is the half of radius.

PROPOSITION 2.

Given the sine and cosine of two arcs to find the sine and cosine of the sum, and difference of the same arcs expressed by the sines and cosines of the separate arcs.

Let G be the center of the circle, CD, the greater are which we shall designate by a, and DF, a less are, that we designate by b.

Then by the definitions of sines and cosines, $DO = \sin a$; $GO = \cos a$; $FI = \sin b$; $GI = \cos b$. We are to find FM, which is

$$=\sin.(a+b); GM = \cos.(a+b);$$

$$EP = \sin.(a-b); GP = \cos.(a-b).$$

Because IN is parallel to D.O, the two \triangle s GD.O, GIN, are equiangular and similar. Also, the \triangle FHI, is similar to GIN; for the angle FIG, is a right angle; so is HIN; and, from these two equals take away the common angle HIL, leaving the angle FIH=GIN. The angles at H and N, are right angles; therefore, the \triangle FHI, is equiangular, and similar to the \triangle GIN, and, of course, to the \triangle GDO; and the side HI, is homologous to IN, and DO.

Again, as FI=IE, and IK, parallel to FM, FH=IK, and HI=KE.

By similar triangles we have

GD:DO=GI:IN.

That is, $R: \sin a = \cos b : IN$, or $IN = \frac{\sin a \cos b}{R}$

Also, GD:GO=FI:FH

That is,
$$R: \cos a = \sin b : FH$$
, or $FH = \frac{\cos a \sin b}{R}$
Also, $GD: GO = GI: GN$

Also,
$$GD: GO = GI: GN$$

That is,
$$R: \cos a = \cos b : GN$$
, or $GN = \frac{\cos a \cos b}{R}$

Also,
$$GD:DO=FI:IH$$

That is,
$$R: \sin a = \sin b: HH$$
, or $HH = \frac{\sin a \sin b}{R}$

By adding the first and second of these equations, we have $IN+FH=FM=\sin(a+b)$

That is,
$$\sin (a+b) = \frac{\sin a \cos b + \cos a \sin b}{R}$$

By subtracting the second from the first, we have

$$\sin. (a-b) = \frac{\sin.a \cos.b - \cos.a \sin.b}{R}$$

By subtracting the fourth from the third, we have

$$GN-IH=GM=\cos(a+b)$$
 for the first member.

Hence,
$$\cos(a+b) = \frac{\cos a \cos b - \sin a \sin b}{R}$$

By adding the third and fourth, we have

$$GN+IH=GN+NP=GP=\cos(a-b)$$

Hence,
$$\cos (a-b) = \frac{\cos a \cos b + \sin a \sin b}{R}$$

Collecting these four expressions, and considering the radius unity, we have

(A)
$$\begin{cases} \sin.(a+b) = \sin.a \cos.b + \cos.a \sin.b & (7) \\ \sin.(a-b) = \sin.a \cos.b - \cos.a \sin.b & (8) \\ \cos.(a+b) = \cos.a \cos.b - \sin.a \sin.b & (9) \\ \cos.(a-b) = \cos.a \cos.b + \sin.a \sin.b & (10) \end{cases}$$

Formula (A), accomplishes the objects of the proposition, and from these equations many useful and important deductions can be The following, are the most essential: made.

By adding (7) to (8), we have (11); subtracting (8) from (7), gives (12). Also, (9)+(10) gives (13); (9) taken from (10)gives (14).

$$(B) \begin{cases} \sin(a+b) + \sin(a-b) = 2\sin a \cos b & (11) \\ \sin(a+b) - \sin(a-b) = 2\cos a \sin b & (12) \\ \cos(a+b) + \cos(a-b) = 2\cos a \cos b & (13) \\ \cos(a-b) - \cos(a+b) = 2\sin a \sin b & (14) \end{cases}$$

If we put a+b=A, and a-b=B, then (11) becomes (15), (12) becomes (16), 13 becomes (17), and (14) becomes (18).

$$(C) \begin{cases} \sin A + \sin B = 2\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) & (15) \\ \sin A - \sin B = 2\cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) & (16) \\ \cos A + \cos B = 2\cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) & (17) \\ \cos B - \cos A = 2\sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right) & (18) \end{cases}$$

If we divide (15) by (16), (observing that $\frac{\sin}{\cos}$ =tan. and $\frac{\cos}{\sin}$ =cot. = $\frac{1}{\tan}$ as we learn by equations (6) and (5) trigonometry), we shall have

$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\sin \left(\frac{A+B}{2}\right)}{\cos \left(\frac{A+B}{2}\right)} \times \frac{\cos \left(\frac{A-B}{2}\right)}{\sin \left(\frac{A-B}{2}\right)} = \frac{\tan \left(\frac{A+B}{2}\right)}{\tan \left(\frac{A-B}{2}\right)}$$
Whence,
$$\frac{\sin A + \sin B}{\sin A + \sin B} : \frac{\sin A - \sin B}{\sin A - \sin B} = \tan \left(\frac{A+B}{2}\right) : \tan \left(\frac{A-B}{2}\right)$$

or in words. The sum of the sines of any two arcs is to the difference of the same sines, as the tangent of the half sum of the same arcs is to the tangent of half their difference.

By operating in the same way with the different equations in formula (C), we find,

$$(D) \begin{cases} \frac{\sin A + \sin B}{\cos A + \cos B} = \tan \left(\frac{A+B}{2}\right) & (20) \\ \frac{\sin A + \sin B}{\cos B - \cos A} = \cot \left(\frac{A-B}{2}\right) & (21) \\ \frac{\sin A - \sin B}{\cos A + \cos B} = \tan \left(\frac{A-B}{2}\right) & (22) \\ \frac{\sin A - \sin B}{\cos B - \cos A} = \cot \left(\frac{A+B}{2}\right) & (23) \\ \frac{\cos A + \cos B}{\cos B - \cos A} = \frac{\cot \left(\frac{A+B}{2}\right)}{\tan \left(\frac{A-B}{2}\right)} & (24) \end{cases}$$

These equations are all true, whatever be the value of the arcs designated by A and B; we may therefore, assign any possible value to either of them, and if in equations (20), (21) and (24), we make B=0, we shall have,

$$\frac{\sin A}{1 + \cos A} = \tan \frac{A}{2} = \frac{1}{\cot \frac{1}{2}A}$$

$$\frac{\sin A}{1 - \cos A} = \cot \frac{A}{2} = \frac{1}{\tan \frac{1}{2}A}$$

$$\frac{1 + \cos A}{1 - \cos A} = \frac{\cot \frac{1}{2}A}{\tan \frac{1}{2}A} = \frac{1}{\tan \frac{2}{1}A}$$
(25)

If we now turn back to formula (A), and divide equation (7) by (9), and (8) by (10), observing at the same time, that $\frac{\sin}{\cos}$ =tan. we shall have,

$$\tan (a+b) = \frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}$$

$$\tan (a-b) = \frac{\sin a \cos b - \cos a \sin b}{\cos a \cos b + \sin a \sin b}$$

By dividing the numerators and denominators of the second members of these equations by $(\cos a \cos b)$, we find,

$$\tan(a+b) = \frac{\frac{\sin a \cos b}{\cos a \cos b} + \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b}} = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$
(28)

$$\tan(a-b) = \frac{\frac{\sin a \cos b}{\cos a \cos b} \frac{\cos a \sin b}{\cos a \cos b}}{\frac{\cos a \cos b}{\cos a \cos b} + \frac{\sin a \sin b}{\cos a \cos b}} = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$
(29)

If in equation (11), formula (B), we make a=b, we shall have, $\sin 2a=2\sin a \cos a$ (30)

Making the same hypothesis in equation (13), gives,

$$\cos .2a + 1 = 2\cos^2 .a$$
 (31)

The same hypothesis reduces equation (14), to

$$1 - \cos 2a = 2\sin^2 a$$
 (32)

The same hypothesis reduces equation (28), to

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a} \tag{33}$$

Recurring again to formula (B), we have, by transposing $\sin(a+b)=2\sin a \cos b - \sin(a-b)$ $\sin(a+b)=2\cos a \sin b + \sin(a-b)$

If in the first of these expressions we make $a=30^{\circ}$, $2\sin a$ will equal radius, or, unity; and $2\cos a$ will also equal unity; these expressions then become, $\sin(30^{\circ}+b)=\cos b-\sin(30^{\circ}-b)$ (36)

And .
$$\sin(60^{\circ}+b) = \sin b + \sin(60^{\circ}-b)$$
 (37)

The sines may be easily continued to 60°, by equation (36), when the sines and cosines of all arcs below 30° have been computed; then, by equation (37), the sines can be readily run up to 90°.

The foregoing equations might have been obtained geometrically, but not so easily and concisely. However, we shall take occasion to show, how a few of them can be deduced directly from geometrical principles; thereby, giving hints to the ingenious student who may wish to carry the like investigation to a greater length.

ON THE CONSTRUCTION OF TABLES OF SINES, TANGENTS, &c.

To explain this, we refer at once to Table II, which contains logarithmic sines, and tangents, and also natural sines and cosines. The natural sines are made to the radius of unity; and, of course, any particular sine is a decimal fraction, expressed by natural numbers. 'The logarithm of any natural sine, with its index increased by 10, will give the logarithmic sine. Thus, the natural sine of 3° is .052336

The logarithm	of	this	decim	al is	•		•	-2.718800
To which add	•	•	•	•	•	•		10
The locarithm	ic s	ine (of 30 is	s. the	refore			8 718800

In this manner we may find the logarithmic sine of any other arc, when we have the natural sine of the same arc.

If the natural sines and logarithmic sines were on the same radius, the logarithm of the natural sine would be the logarithmic sine, at once, without any increase of the index.

The radius for the logarithmic sines, is arbitrarily taken so large that the index of its logarithm is 10. It might have been more or less; but, by common consent, it is settled at this value; so that the sines of the smallest arcs ever used shall not have a negative index.

In our preceding equations, sin.a, cos.a, &c., referred to natural sines; and by such equations we determine their values in natural numbers; and these numbers are put in the table, as seen in table 2, under the heads of nat. sine, and nat. cosine.

To commence computation, we must knew the sine or cosine of some known arc; and we do know the sine and cosine of 30°. The sine of 30° is $\frac{1}{2}$ (prop. 1, trig.), and, hence, $\cos^2 30^\circ = 1 - \frac{1}{4}$ (eq. (1) trig.); or, $\cos^2 30^\circ = \frac{1}{2}\sqrt{3}$. Now put $A = 30^\circ$, and equation (35) gives

sine
$$15^{\circ} = \frac{\sqrt{1 - \frac{1}{2}\sqrt{3}}}{2} = \frac{1}{2}\sqrt{2 - \sqrt{3}} = .258819$$

Again, put $A=15^{\circ}$. Its sine is found; and its cosine, from thence, can be computed as above; and then equation (35) will give us the sine of 7° 30'; and in this manner, after twelve successive bisections, the sine of 52'' 44''' 3'' 45' will be obtained.

But all sines under 1' may be considered as coinciding with the arc, and varying with it; hence, the arc or sine of one minute can be found from this by proportion; and this sine, multiplied by the number of minutes in a whole circle, will give the circumference of the circle to great exactness.

But, by theorems 3 and 4, book 5, the semicircumference of a circle whose radius is unity, is 3.14159265; this, divided by 10800, the number of minutes in 180°, will give .0002908882 for the length of the sine or arc of one minute. The logarithm of this number, with its index increased by 10, gives 6.463726, the log. sign of 1', which is found in the table.

Having the sine and cosine of 1', we can find the sine and cosine of 2' by equation (30);

That is, . . sin.2a=2 sin.a cos.a

Or, . . . sin.2'=2 sin.1'cos.1'

For the sine of 3', and every succeeding minute, we apply equation (11), making a=2', and b=1';

That is, $\sin 3' = 2 \sin 2' \cos 1 - \sin 1'$

Having the sine of 3', we obtain the sine of 4' by the application of the same equation; that is, by making a=3', and b=1;

When the sine of any arc is known, its cosine is readily determined by the following formula, which is, in substance, equation (1), trigonometry. . $\cos = \sqrt{(1+\sin .)(1-\sin .)}$

When the sine and cosine of any arc are known, the sine and cosine of its double, is found from equation (30); and thus, from equations (30), (11), and (1), the sines and cosines of all arcs can be determined.

When the sine and cosine of an arc has been determined through a series of operations, the accuracy of the results should be tested by

equation (12) or (14), or by some other equation independent of former operations; and if the two results agree, they may be regarded as accurate.

One independent method will be found by applying theorem 5, book 5. In that theorem we find the chord of 20° is .347296; the natural sine, then, of 10°, is .173648. Taken, the chord of 20°, and trisecting the arc by the same problem, we find the chord of 6° 40′ to be .11628; and, of course, the natural sine of 3° 20′ is .05814; and thus, by successive trisections we can obtain the sines, and of course the cosines of certain arcs; and when we arrive at very small arcs, we can compute their increase or decrease by direct proportion.*

Now, if the sine of an arc computed through successive trisections, agrees with the sine of the same arc computed through successive bisections, we must, of course, regard the result as accurate.

When we have the sines and cosines of an arc, the tangent and cotangent are found by (3) $\tan \frac{R \sin}{\cos}$ (6) $\cot \frac{R \cos}{\sin}$; and the secant is found by equation (4); that is, $\sec \frac{R^2}{\cos}$

For example, the logarithmic sine of 6°, is 9.019235, and its cosine 9.997614. From these it is required to find the tangent, cotangent, and secant.

$R \sin$.		19.019235
Cos.	. subtract	9.997614
Tan. is		9.021621
$R\cos$.		19.997614
Sin	. subtract	9.019235
Cotan. is		10.978379
R^2 is		20.000000
Cos	. subtract	9.997674
Secant is		10.002326

^{*} Thus, from theorem 4, book 5, we find the chord of 28°7" 30" to be .008181208; and wishing to take away 7" 30", we do it by proportion, as follows. The sine of 1' or 60" is .0002908882.

Therefore, 60:7½=.0002908882
Or, 8:1=.0902908882: .090036461
The chord of 28' 7" 30" is . .008181208
of 7" 30" is . .00036461
of 28' is . .908144747
The natural sine of 14' is . .904972373
Now we may halve or double this sine by equation (30).

The secants and cosecants of arcs are not given in our table, because they are very little used in practice; and if any particular secant is required, it can be determined by subtracting the cosine from 20; and the cosecant can be found by subtracting the sine from 20.

PROPOSITION 3.

In any right angled plane triangle, we may have the following proportions:

1st. As the hypotenuse is to either side, so is the radius to the sine of the angle opposite to that side.

2d. As one side is to the other side, so is the radius to the tangent of the angle adjacent to the first-mentioned side.

3d. As one side is to the hypotenuse, so is radius to the secant of the angle adjacent to that side.

Let CAB represent any right angled triangle, right angled at A. AB and AC are called the sides of the \triangle , and CB is called the hypotenuse.

(Here, and in all cases hereafter, we shall represent the angles of a triangle by the large letters A, B, C, and the sides exposite to them, by the small letters a, b, c.)

From either acute angle, as C, take any distance, as CD, greater or less than CB, and describe the arc DE. This arc measures the angle C. From D, draw DF parallel to BA; and from E, draw EG, also parallel to BA or DF.

By the definitions of sines, tangents, and secants, DF is the sine of the angle C; EG is the tangent, CG the secant, and CF the cosine.

Now, by proportional triangles we have,

CB: BA = CD: DF or, a: c = R: sin. C CA: AB = CE: EG or, b: c = R: tan. CCA: CB = CE: CG or, b: a = R: sec. C

Scholium. If the hypotenuse of a triangle is made radius, one saide is the sine of the angle opposite to it, and the other side is the cosine of the same angle. This is obvious from the triangle CDF.

PROPOSITION 4.

In any triangle, the sines of the angles are to one another as the sides opposite to them.

Let ABC be any triangle. From the points A and B, as centers, with any radius, describe the arcs measuring these angles, and draw pa, CD, and mn, perpendicular to AB.

Then, . . $pa=\sin A$, $mn=\sin B$

By the similar \triangle s, Apa and ACD, we have,

$$R : \sin A = b : CD; \text{ or, } R(CD) = b \sin A$$
 (1)

By the similar \triangle s Bmn and BCD, we have,

$$R: \sin B = a: CD; \text{ or, } R(CD) = a \sin B$$
 (2)

By equating the second members of equations (1) and (2).

 $b \sin A = a \sin B$.

Hence, $. \sin A : \sin B = a : b$ Or, $. a : b = \sin A : \sin B$ Q. E. D.

Scholium 1. When either angle is 90°, its sine is radius.

Scholium 2. When CB is less than AC, and the angle B, acute, the triangle is represented by ACB. When the angle B becomes B', it is obtuse, and the triangle is ACB'; but the proportion is equally true with either triangle; for the angle CB'D = CBA, and the sine of CB'D is the same as the sine of AB'C. In practice we can determine which of these triangles is proposed by the side AB, being greater or less than AC; or, by the angle at the vertex C, being large as ACB, or small as ACB'.

In the solitary case in which AC, CB, and the angle A, are given, and CB less than AC, we can determine both of the $\triangle s$ ACB and ACB'; and then we surely have the right one.

PROPOSITION 5.

If from any angle of a triangle, a perpendicular be let fall on the opposite side, or base, the tangents of the segments of the angle are to one another as the segments of the base.

Let ABC be the triangle. Let fall the perpendicular CD, on the side AB.

Take any radius, as Cn, and describe the arc which measures the angle C. From n, draw qnp parallel to AB. Then it is obvious that np is the tangent of the

angle DCB, and nq is the tangent of the angle ACD.

Now, by reason of the parallels AB and qp, we have,

qn: np = AD: DB

That is, tan.ACD : tan.DCB = AD : DB Q. E. D.

PROPOSITION 6

If a perpendicular be let fall from any angle of a triangle to its opposite side or base, this base is to the sum of the other two sides, as the difference of the sides is to the difference of the segments of the base.

(See figure to proposition 5.)

Let AB be the base, and from C, as a center, with the shorter side as radius, describe the circle, cutting AB in G, AC in F, and produce AC to E.

It is obvious that AE is the sum of the sides AC and CB, and AF is their difference.

Also, AD is one segment of the base made by the perpendicular, and BD=DG is the other; therefore, the difference of the segments is AG.

As A is a point without a circle, by theorem 18, book 3, we have,

 $AE \times AF = AB \times AG$

Hence, . . AB: AE=AF: AG Q. E. D.

PROPOSITION 7

The sum of any two sides of a triangle, is to their difference, as the tangent of the half sum of the angles opposite to these sides, to the tangent of half their difference.

Let ABC be any plane triangle. Then, by proposition 4, trigonometry, we have,

 $CB : AC = \sin A : \sin B$

Hence,

 $CB + AC : CB - AC = \sin A + \sin B : \sin A - \sin B$ (th. 9 b. 2)

But, tan. $\left(\frac{A+B}{a}\right)$: tan. $\left(\frac{A-B}{a}\right) = \sin A + \sin B$: $\sin A - \sin B$ (eq. (1), trig.)

Comparing the two latter proportions (th. 6, b. 2), we have, $CB+AC:CB-AC=\tan\left(\frac{A+B}{a}\right):\tan\left(\frac{A-B}{a}\right)Q. E. D.$

PROPOSITION 8.

Given the three sides of any plane triangle, to find some relation which they must bear to the sines and cosines of the respective angles.

Let ABC be the triangle, and let the perpendicular fall either upon, without the base, as shown in the figures: and by

recurring to theorem 38, book 1, we shall find

$$CD = \frac{a^2 + b^2 - c^2}{2a}$$
 (1)

Now, by proposition 3, trigonometry, we have.

$$R:\cos C=b:CD$$

Therefore,

$$CD = \frac{b \cos C}{R} \tag{2}$$

Equating these two values of CD, and reducing, we have, $\cos C = \frac{R(a^2 + b^2 - c^2)}{2ab} \qquad (m)$

$$\cos C = \frac{R(a^2 + b^2 - c^2)}{2ab} \qquad (m)$$

In this expression we observe that the part of the numerator which has the minus sign, is the side opposite to the angle; and that the denominator is twice the rectangle of the sides adjacent to the angle. From these observations we at once draw the following expressions for the cosine A, and cosine B.

Thus,
$$\cos A = \frac{R(\delta^2 + c^2 - a^2)}{2bc}$$
 (n)

$$\cos B = \frac{R(a^2+c^2-b^2)}{2ac} \qquad (p)$$

As these expressions are not convenient for logarithmic computation, we modify them as follows:

If we put 2a=A, in equation (31), we have, $\cos A + 1 = 2 \cos^2 A$

In the preceding expression (n), if we consider radius, unity, and add 1 to both members, we shall have,

$$\cos A + 1 = 1 + \frac{b^2 + c^2 - a^2}{2bc}$$

Therefore,

$$2 \cos^{2} \frac{1}{2} A = \frac{2bc + b^{2} + c^{2} - a^{2}}{2bc}$$

$$= \frac{(b+c)^{2} - a^{2}}{ab}$$

Considering (b+c) as one quantity, and observing that we have the difference of two squares, therefore

$$(b+c)^2-a^2=(b+c+a)(b+c-a)$$
; but $(b+c-a)=b+c+a-2a$
Hence $2\cos^2 1A=(b+c+a)(b+c+a-2a)$

Hence,
$$2\cos^2\frac{1}{2}A = \frac{(b+c+a)(b+c+a-2a)}{2\delta c}$$

Or, $\cos^2\frac{1}{2}A = \frac{(b+c+a)(b+c+a-2a)}{2\delta c}$

By putting $\frac{a+b+c}{2}$ = s, and extracting square root, the final result for radius unity, is

$$\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}$$

For any other radius we must write

$$\cos \frac{1}{2}A = \sqrt{\frac{R^2s(s-a)}{bc}}$$

By inference,

$$\cos \frac{1}{2}B = \sqrt{\frac{R^2s(s-b)}{ac}}$$

Also,
$$\cos \frac{1}{2}C = \sqrt{\frac{R^2s(s-c)}{ab}}$$

In every triangle, the sum of the three angles must equal 180°; and if one of the angles is small, the other two must be comparatively large; if two of them are small, the third one must be large. The greater angle is always opposite the greater side; hence, by merely inspecting the given sides, any person can decide at once which is the greater angle; and of the three preceding equations, that one should be taken which applies to the greater angle, whether that be the particular angle required or not; because the equations bring out the cosines to the angles; and the cosines, to very small arcs vary so slowly, that it may be impossible to decide, with sufficient numerical accuracy, to what particular arc the cosine belongs. For instance, the cosine 9.999999, carried to the table, applies to several arcs; and, of course, we should not know which one to take; but this difficulty does not exist when the angle is large; therefore, compute the largest angle first, and then compute the other angles by proposition 4.

But we can deduce an expression for the sine of any of the angles, as well as the cosine. It is done as follows:

EQUATIONS FOR THE SINES OF THE ANGLES.

Resuming equation (m), and considering radius, unity, we have,

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Subtracting each member of this equation from 1, gives

1—cos.
$$C=1-\left(\frac{a^2+b^2-c^3}{2ab}\right)$$
 (1)

Making 2a = C, in equation (32), then $a = \frac{1}{2}C$,

And . .
$$1-\cos C = 2 \sin^{2} C$$
 (2)

Equating the right hand members of (1) and (2),

$$2 \sin^{2} \frac{1}{2}C = \frac{2ab - a^{3} - b^{2} + c^{2}}{2ab}$$

$$= \frac{c^{2} - (a - b)^{2}}{2ab}$$

$$= \frac{(c + b - a)(c + a - b)}{2ab}$$
Or, . . . $\sin^{2} \frac{1}{2}C = \frac{\left(\frac{c + b - a}{2}\right) \cdot \left(\frac{c + a - b}{2}\right)}{ab}$
But, . $\frac{c + b - a}{2} = \frac{c + b + a}{2} - a$ and $\frac{c + a - b}{2} = \frac{c + a + b}{2} - b$
Put . $\frac{a + b + c}{2} = s$, as before; then,
$$\sin^{\frac{1}{2}}C = \sqrt{\frac{(s - a)(s - b)}{c^{\frac{1}{2}}}}$$

By taking equation (p), and operating in the same manner, we

have . .
$$\sin \frac{1}{2}B = \sqrt{\frac{(s-a)(s-c)}{ac}}$$

From (n) . $\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{cb}}$

The preceding results are for radius unity; for any other radius, we must multiply by the number of units in such radius. For the radius of the tables, we write R; and if we put it under the radical sign, we must write R^2 ; hence, for the sines corresponding with our logarithmic table, we must write the equations

thus,
$$\sin \frac{1}{2}A = \sqrt{\frac{R^2(s-b)(s-c)}{bc}}$$

$$\sin \frac{1}{2}B = \sqrt{\frac{R^2(s-a)(s-c)}{ac}}$$

$$\sin \frac{1}{2}C = \sqrt{\frac{R^2(s-a)(s-b)}{ab}}$$

A large angle should not be determined by these equations, for the same reason that a small angle should not be determined from an equation expressing the cosine.

In practice, the equations for cosine are more generally used, because more easily applied.

In the preceding pages we have gone over the whole ground of theoretical plane trigonometry, although several particulars might have been enlarged upon, and more equations in relation to the combinations of the trigonometrical lines, might have been given; but enough has been given to solve every possible case that can arise in the practical application of the science; but to show more clearly the beauty and spirit of this science, and to redeem a promise, we give the following geometrical demonstrations of the truths expressed in some of the preceding equations.

From C as the center, with CA as the radius, describe a circle. Take any arc, AB, and call it A; AD a less arc, and call it B; then BD is the difference of the two arcs, and must be designated by (A-B); AG=AB; therefore, DG=A+B; $EG=\sin A$;

(See fig. p. 154.)
$$En=\sin B$$
; $Gn=\sin A+\sin B$; $Bn=\sin A-\sin B$. $Fm=mD=CH=\cos B$; $mn=\cos A$;

Therefore,
$$Fm+mn=\cos A+\cos B=Fn;$$

 $mD-mn=\cos B-\cos A=nD;$
 $DG=2\sin \left(\frac{A+B}{2}\right)$

Because
$$NF=AD$$
; $AB+NF=A+B$;
Therefore, $180^{\circ}-(A+B)=\text{arc }FB$;

Or, . . .
$$90^{\circ} - \left(\frac{A+B}{2}\right) = \frac{1}{2} \text{arc } FB;$$

But the chord FB, is twice the sine of 1 arc FB.

That is,
$$FB=2\sin\left(90^{\circ}-\frac{A+B}{2}\right)=2\cos\left(\frac{A+B}{2}\right)$$

The angle nGD = BFD, because both are measured by one half of the arc BD; that is, by $\left(\frac{A-B}{2}\right)$ and the two triangles GnD, and FnB are similar.

The angle GFn, is measured by A+B

$$\left(\frac{A+B}{2}\right)$$

In the triangle FBG, Fn is drawn from an angle perpendicular to the opposite side; therefore, by Proposition 5, we have,

 $Gn: nB = \tan QFn : \tan BFn$

That is,
$$\sin A + \sin B : \sin A - \sin B = \tan \left(\frac{A+B}{2}\right) : \tan \left(\frac{A-B}{2}\right)$$

This is equation (19).

In the triangle GnD, we have

$$\sin .90^{\circ}: DG = \sin .nDG: Gn; \sin .nDG = \cos .nGD$$

That is, 1: 2sin.
$$\left(\frac{A+B}{2}\right) = \cos\left(\frac{A-B}{2}\right)$$
: sin. $A + \sin B$

Or,
$$\sin A + \sin B = 2\sin \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right)$$

same as equation (15).

In the triangle FnB, we have,

$$\sin .90: FB = \sin .BFn: Bn$$

That is,
$$1:2\cos\left(\frac{A+B}{2}\right)=\sin\left(\frac{A-B}{2}\right):\sin A-\sin B$$

Or,
$$\sin A = \sin B = 2\cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$$

same as equation (16).

In the triangle FBn, we have,

$$\sin.90: FB = \cos.BFn: Fn$$

That is,
$$1:2\cos\left(\frac{A+B}{2}\right)=\cos\left(\frac{A-B}{2}\right)\cos A+\cos B$$

Or, $\cos A + \cos B = 2\cos \left(\frac{A+B}{2}\right)\cos \left(\frac{A-B}{2}\right)$ same as equation (17).

In the triangle GnD, we have,

$$\sin .90^{\circ}: GD = \sin .n GD: nD$$

That is,
$$1:2\sin\left(\frac{A+B}{2}\right)=\sin\left(\frac{A-B}{2}\right):\cos B-\cos A$$
, same as equation (18).

In the triangle FGn, we have,

$$\sin . GFn : Gn = \cos . GFn : Fn$$

That is,
$$\sin \frac{A+B}{2} : \sin A + \sin B = \cos \frac{A+B}{2} : \cos A + \cos B$$

Or,
$$(\sin A + \sin B)\cos \left(\frac{A+B}{2}\right) = (\cos A + \cos B)\sin \left(\frac{A+B}{2}\right)$$

Or,
$$\frac{\sin A + \sin B}{\cos A + \cos B} = \frac{\sin \frac{A+B}{2}}{\cos \frac{A+B}{2}} = \tan \left(\frac{A+B}{2}\right)$$

same as equation (20).

We give a few more geometrical demonstrations from the following figure:

Let the arc
$$AD=A$$
; then $DG=\sin A$; $CG=\cos A$; $DI=\sin \frac{1}{2}A$; $AD=2\sin \frac{1}{2}A$; $CI=\cos \frac{1}{2}A$; $CI=D O$; $DB=2D O=2\cos \frac{1}{2}A$.

The angle DBA, is measured by half AD; that is, by $\frac{1}{2}A$.

Also, $ADG=DBA=\frac{1}{2}A$.

Now in the triangle BDG, we have,

 $\sin DBG: DG = \sin .90^{\circ}: BD$

That is, $\sin \frac{1}{4}A : \sin A = 1 : 2\cos \frac{1}{2}A$

Or, $\sin A = 2\sin \frac{1}{4}A\cos \frac{1}{4}A$ same as equation (30).

In the same triangle

$$\sin.90^{\circ}: BD = \sin.BDG: BG; \sin.BDG = \cos.DBG;$$

That is,
$$1:2\cos \frac{1}{2}A = \cos \frac{1}{2}A: 1 + \cos A$$

Or,
$$2\cos^2 \frac{1}{2}A = 1 + \cos A$$
, same as equation (34).

In the triangle DGA, we have,

 $\sin.90^{\circ}:AD=\sin.GDA:GA$

That is, $1: 2\sin \frac{1}{4}A = \sin \frac{1}{4}A: 1 - \cos A$

Or, $2\sin^2 A = 1 - \cos A$, same as equation (35).

By similar triangles, we have,

BA:AD=AD:AG

That is, $2:2\sin \frac{1}{2}A=2\sin \frac{1}{2}A:$ versed $\sin A$

Or, versed $\sin A = 2\sin^2 A$.

APPLICATION OF THE PRINCIPLES OF TRIGONOMETRY.

Every triangle consists of six parts; three sides, and three angles; and to determine all the parts, three of them must be given, and at least one of these parts must be a side, because two triangles may have equal angles, and their sides be very different in respect to magnitude

In right angled plane triangles, the right angle is always given; and if two other parts, and one a side, be given, it will be sufficient for the complete determination of all the other parts.

Before the invention of logarithms, the numerical computations for the parts of a triangle were all made by arithmetical proportion, as in the rule of three, through the help of natural sines and cosines; but the operations, in many cases, were extremely laborious. For mere curiosity, we will use natural sines to solve the following triangle.

Given, the hypotenuse of a right angled triangle, 840.4 feet, and one of the oblique angles, 38° 16', to find the other parts.

The two oblique angles, together, make 90° (th. 11, b. 1, cor. 4); therefore, the other angle is 51° 44'.

As 1:38° 16'=AC: CB

But the natural sine of 38° , 16' is .61932 and AC=840.4.

Therefore, 1:.61932=840.4: CB

840.4 247728

247728

495456

CB=520.476528

For the side AB, we have the following proportion:

 $1:\cos.38^{\circ}\ 16'=AC:AB$

That is.

1:.78513=840.4:AB

8404 314052 314052

 $\begin{array}{r}
 \underline{628104} \\
 AB = 659.823252
\end{array}$

Before we go into logarithmic computation, it is important to say a word or two in relation to the nature of logarithms.

Logarithms are exponential numbers; and Algebra teaches us, that the addition of the exponents of like quantities multiplies the quantities, and the subtraction of the exponents divides the quantities.

Hence, by logarithms, we perform multiplication by addition, and division by subtraction.

EXPLANATION OF THE TABLES.

For the computation of logarithms, we refer at once to Algebra; here we shall point out the manner of finding them in the tables, and some of their uses. The logarithm of 1, is 0; of 10, is 1.00000; of 100, is 2.00000, &c. Hence, the logarithm of any number between 1 and 10, must be a decimal; between 10 and 100, must be 1 and a decimal; between 100 and 1000, must be 2 and a decimal. The whole number belonging to a logarithm, is called its index. The index is never put in the tables (except from 1 to 100, and need not be put there), because we always know what it is. It is always one less than the number of digits in the whole number. Thus, the number 3754 has 3 for the index to its logarithm, because the number consists of 4 digits; that is, the logarithm is 3, and some decimal.

The number 347.921 has 2 for the index of its logarithm, because the number is between 347 and 348, and 2 is the index for the logarithms of all numbers over 100, and less than 1000.

All numbers consisting of the same figures, whether integral, fractional, or mixed, have logarithms consisting of the same *decimal* part. The logarithms would differ only in their indices.

Thus,	•	the number	7956.	has	3.900695	for its log.
		the number	795.6	has	2.900695	_"
		the number	79.56	has	1.900695	66
		the number	7.956	has	0.900695	66
		the number	.7956	has -	-1.900695	46
		the number	OTOKE	hoa -	- 0 000605	"

From this we perceive that we must take the logarithm out of the table for a mixed number or a decimal, the same as if the figures expressed an entire number; and then, to prefix the index, we must consider the value of the number.

The decimal part of a logarithm is always positive; but the index becomes negative when the number is a decimal; and the smaller the decimal, the greater the negative index.

To prefix the index to a decimal, count the decimal point as 1, and every cipher as 1, up to the first significant figure, and this is the negative index.

For example, find the logarithm of the decimal .0000831.

The point is counted one, and each of the ciphers is counted one; therefore the index is minus five.

The smaller the decimal, the greater the negative index; and when the decimal becomes 0, the logarithm is negatively infinite.

Hence, the logarithmic sine of 0° is negatively infinite, however great the radius.

The logarithm of any number consisting of four figures, or less, is taken out of the table directly, and without the least difficulty.

Thus, to find the logarithm of the number 3725, we find 372, at the side of the table, and run down the column marked 5 at the top, and we find opposite the former, and under the latter, .571126, for the decimal part of the logarithm.

Hence, the logarithm of 3725 is 3.571126 the logarithm of 37250 is 4.571126 the logarithm of 37.25 is 1.571126, &c.

Find the logarithm of the number 834785.

This number is so large that we cannot find it in the table, but we can find the numbers 8347 and 8348. The logarithms of these numbers are the same as the logarithms of the numbers 834700 and 834800, except the indices.

•	88	34700	log.	5.921530
	84	34800	log.	5.921582
Difference.		100		52

Now, our proposed number, 834785, is between the two preceding numbers; and, of course, its logarithm lies between the two preceding logarithms; and, without further comment, we may proportion to it thus.

100: 85=52:44.2

bus, . . . 100 : 85—52 : 44.2 Or, . . . 1. : .85—52 : 44.2

To the logarithm			,	5.921580
Add				. '44
Hence, the logarithm	of	834785	is	5.921574
the logarithm	of	8.34785	ia	0.991574

From this we draw the following rule to find the leg. of any number consisting of more than four places of figures.

RULE.—Take out the logarithm of the four superior places, directly from the table, and take the difference between this logarithm and the next greater logarithm in the table. Multiply this difference by the inferior places of figures in the number, as a decimal.

Example. Find the logarithm of 357.32514.

the logarithm of 3573. decimal part is .553033

The difference between this and the next greater in the table, is 122. The figures not included in the above logarithm, are

				.251
Multiply by	•	•	•	122
				5028
		•		5028
			:	2514
			2/	6709

This result shows that 31 should be added to the decimal part of the logarithm already found; that is, the logarithm of the proposed number, 357.12514 is 2.553064

The logarithm of 357325.14 is 5.553064

We will now give the converse of this problem; that is, we give the decimal part of a logarithm, .553064, to find the figures corresponding.

The next less logarithm in the table, is .553033, corresponding to the figure 3573. The difference between our given logarithm and the one next less in the table, is 31; and the difference between two consecutive logarithms in this part of the table, is 122. Now divide 31 by 122, and write the quotient after the number 3573.

The figures, then, are 3573254, which corresponds to the decimal logarithm .553064; and the value of these figures will, of course, depend on the index to the logarithm.

From this, we draw the following rule to find the number corresponding to a given logarithm.

RULE.—If the given logarithm is not in the table, find the one next less, and take out the four figures corresponding; and if more than four figures are required, take the difference between the given logarithm and the next less in the table, and divide that difference by the difference of the two consecutive logarithms in the table, the one less, the other greater than the given logarithm; and the figures arising in the quotient, as many as may be required, must be annexed to the former figures taken from the table.

EXAMPLES.

- 1. Given, the logarithm 3.743210, to find its corresponding number true to three places of decimals.

 Ans. 5536.182
- 2. Given, the logarithm 2.633356, to find its corresponding number true to two places of decimals.

 Ans. 429.89
- 3. Given, the logarithm —3.291742, to find its corresponding number.

 Ans. .0019577

TABLE II.

This table contains logarithmic sines and tangents, and natural sines and cosines. We shall confine our explanations to the logarithmic sines and cosines.

The sine of every degree and minute of the quadrant is given, directly, in the table, commencing at 0°, and extending to 45°, at the head of the table; and from 45° to 90°, at the foot of the table, increasing backward.

The same column that is marked sine, at the top, is marked cosine at the bottom; and the reason for this is apparent to any one who has examined the definitions of sines.

The difference of two consecutive logarithms is given, corresponding to ten seconds. Removing the decimal point one figure, will give the difference for one second; and if we multiply this difference by any proposed number of seconds, we shall have a difference corresponding to that number of seconds, above the logarithm, corresponding to the preceding degree and minute.

For example, find the sine of 19° 17' 22".

From this it will be perceived that there is no difficulty in obtaining the sine or tangent, cosine or cotangent, of any angle greater than 30'. Conversely. Given the logarithmic sine 9.962412, to find its corresponding arc. The sine next less in the table, is 9.962404, and gives the arc 73° 48'. The difference between this and the given sine, is 8, and the difference for 1", is .61; therefore, the number of seconds corresponding to 8, must be discovered by dividing 8 by the decimal .61, which gives 13. Hence, the arc sought is 73° 48' 13".

These operations are too obvious to require a rule. When the arc is very small, such arcs as are sometimes required in astronomy, it is necessary to be very accurate; and for that reason we omitted the difference for seconds for all arcs under 30'. Assuming that the sines and tangents of arcs under 30' vary in the same proportion as the arcs themselves, we can find the sine or tangent of any very small arc to great accuracy, as follows:

The sine of 1', as expressed in the table, is Divide this by 60; that is, subtract legarithm	6.4637261.778151
The logarithmic sine of 1", therefore, is Now, for the sine of 17", add the logarithm of 17	4.685575 1.230449
Logarithmic sine of 17", is	5.916024
In the same manner we may find the sine of any oth	er small arc.
For example, find the sine of 14' 211"; that is, 861"	5
To logarithmic sine of 1", is,	4.685575
Add logarithm of 861.5	. 2.935255
Logarithmic sine of 14' 21½"	7.620830
Without further preliminaries, we may now preceed	to practical

EXAMPLES.

2. In a right angled triangle, ABC, given the base, AB, 1214, and the angle A, 51° 40′ 30″, to find the other parts.

To find BC.

As radius . . . 16.000600 : tan.A 51° 40′ 30″ 10.102119 :: AB 1214 . 8.064219 : BC 1535.8 . 8.186338

N. B. When the first term of a logarithmic proportion is radius, the resulting logarithm is found by adding the second and third logarithms, rejecting 10 in the index, which is dividing by the first term.

In all cases we add the second and third logarithms together; which, in logarithms, is multiplying these terms together; and from that sum 14 L

we subtract the first logarithm, whatever it may be, which is dividing by the first term.

To find AC.

As sin. C, or cos. A 51° 30′ 40″ . 9.792477 : AB 1214 . 3.084219 :: Radius . 10.000000 : AC 1957.7 . 3.291742

To find this resulting logarithm, we subtracted the first logarithm from the second, conceiving its index to be 13.

Let ABC represent any plane triangle, right angled at B.

- 1. Given A C 73.26, and the angle A 49° 12' 20"; required the other parts?

 Ans. The angle C 40° 47' 40", BC 54.46, and AB 47.87.
- Given AB 469.34, and the angle A 51° 26′ 17″, to find the other parts?
 Ans. The angle C 38° 33′ 43″, BC 588.5, and AC 752.9.
- 3. Given AB 493, and the angle C 20° 14'; required the remaining parts?

 Ans. The angle A 69° 46', BC 1338, and AC 1425.
 - 4. Let AB=331, the angle A=49° 14'; what are the other parts?

 Ans. AC 506.9, BC 383.9, and the angle C 40° 46'.
- 5. If AC=45, and the angle $C=37^{\circ}$ 22', what are the remaining parts? Ans. AB 27.31, BC 35.76, and the angle A 52° 38'.
- Given AC 4264.3, and the angle A 56° 29' 13", to find the remaining parts. Ans. AB 2354.4, BC 3555.4, and the angle C 33° 30' 47".
- 7. If AB=42.2, and the angle A=31° 12′ 49″, what are the other parts?

 Ans. AC 51.68, BC 26.78, and the angle C 58° 47′ 11″.
 - 8. If AB=8372.1, and BC=694.73, what are the other parts?

 Ans. AC 8400.9, the angle C 85° 15', and the angle A 4° 45'.
 - If AB be 63.4, and AC be 85.72, what are the other parts?
 Ans. BC 57.7, the angle C 47° 42′, and the angle A 42° 18′.
- Given AC 7269, and AB 3162, to find the other parts.
 Ans. BC 6546, the angle C 25° 47′ 7″, and the angle A 64° 12′ 53″.
 - 11. Given AC 4824, and BC 2412, to find the other parts.

 Ans. The angle A 30° 00′, the angle B 60° 00′, and AB 4178.

OBLIQUE ANGLED TRIGONOMETRY.

EXAMPLE 1.

In the triangle ABC, given AB=376, the angle $A=48^{\circ}$ 3', and the angle $B=40^{\circ}$ 14', to find the other parts.

As the sum of the three angles of every triangle is always 180°, the third angle, C, must be 180°—88° 17′=91° 43′.

To find AC.

As	sin.91° 43′		9.999805
:	AB 376 .		2.575188
::	sin. AB 40° 14	' •	9.810167
			12.385355
:	AC 243 .		2.385550

Observe, that the sine of 91° 43' is the same as the cosine of 1° 43'.

To find BC.

As sin.91° 43'		9.999805
: AB 376		2.575188
:: sin.A48° 3'	٠,	9.871414
		12.446602
: BC 279.8 .		2.446797

EXAMPLE 2.

In a plane triangle, given two sides, and an angle opposite one of them, to determine the other parts.

Let AD=1751. feet, one of the given sides. The angle $D=31^{\circ}$ 17' 19", and the side opposite, 1257.5. From these data, we are required to find the other side, and the other two angles.

In this case we do not know whether AC or AE represents 1257.5, because

AC=AE. If we take AC for the other given side, then DC is the other required side, and DAC is the vertical angle. If we take AE for the other given side, then DE is the required side, and DAE is the vertical angle; but in such cases we determine both triangles.

To find the angle E = C.

(Prop. 4.) As A C=AE=1257.5 log. 3.099508 : D 31° 17′ 19″ sin. 9.715460 :: AD 1751 . log. 3.243286

E==C; 46° 18' . . min. 9.859238

From 180° take 46° 18', and the remainder is the angle DCA ==133° 42'.

The angle DAC=ACE—D (th. 11, b. 1); that is, DAC=46° 18'-31° 17' 19"=15° 0' 41"

The angles D and E, taken from 180°, give $DAE=102^{\circ}$ 24′ 41″.

To find DC.

As sin.D 31° 17′ 19′ log. 9.715460 : AC 1257.5 . log. 3.099508 :: sin.DAC 15° 0′ 41″ log. 9.413317 12.512885 : DC 626.86 . , 2.797165

To find DE.

As sin.D \$1° 17′ 17″ . 9.715460 : AC 1257.5 . 3,099508 :: sin.102° 24′ 41′ . 9.989730 13.089238 : DE 2364.5 . 3,873778

N. B. To make the triangle possible, AC must not be less than AB, the sine of the angle D, when DA is made radius.

EXAMPLE 3.

In any plane triangle, given two sides and the included angle, to find the other parts.

Let AD=1751 (see last figure), DE=2364.5, and the included angle $D=41^{\circ}$ 17' 19". We are required to find DE, the angle DAE, and angle E. Observe that the angle E must be less than the angle DAE, because it is opposite a less side.

 $DE + DA : DE - DA = \tan 74^{\circ} 21' 20'' : \tan \frac{1}{2}(DAE - E)$

That is.

$$4115.5:618.5 = \tan.74^{\circ} 21' 20'': \frac{1}{2}(DAE-E)$$

But the half sum and half difference of any two quantities are equal to the greater of the two; and the half sum, less the half difference, is equal the less.

To find AE.

As sin.E 46° 19' 44"	9.859323
; DA 1751 . ,	3.243286
:: sin.D 31° 17′ 19″	9.715460
	12.958746
: AE 1257.2	3.099428

EXAMPLE 4.

Given the three sides of a plane triangle to find the angles.

Given AC=1751, CB=1257.5, AB=2364.5

If we take the formula for cosines, we will compute the greatest angle, which is C. To correspond with the formula,

take a=1257, b=1751, and c=2364.5

 R^2 . . 20.000000 s=2686.5 . 3.429187

s=2686.5 . 3.429187 s=c=322 . 2.507856

Numerator, log. 25.937043

a 1257.5 3.099508

b 1751. 3.243286

Denominator, log. 6.342794 6.342694

2)19.594249

 $\frac{1}{2}C = 51^{\circ} 11' 10'' \cos 9.797124$ C = 102 22 20

The remaining angles may now be found by problem 4.

We give the following examples for practical exercises:

Let ABC represent any oblique angled triangle.

1. Given AB 697, the angle A 81° 30′ 10″, and the angle B 40° 30′ 44″, to find the other parts.

Ans. AC 534, BC 813, and the angle C 57° 59' 4".

2. If AC=720.8, the angle $A=70^{\circ}$ 5' 22", and the angle $B=59^{\circ}$ 35' 36", required the other parts.

Ans. AB 643.2, BC 785.8, and the angle C 50° 19' 6".

3. Given BC 980.1, the angle A 7° 26′ 26″, and the angle B 106° 2′ 23″, to find the other parts.

Ans. AB 7284, AC 7613.3, and the angle C 66° 51' 11".

4. Given AB 896.2, BC 328.4, and the angle C 113° 45′ 20″, to find the other parts.

Ans. AC 712, the angle A 19° 35′ 48″, and the angle B 46° 38′ 52″.

. 5. Given AC 4627, BC 5169, and the angle A 70° 25′ 12″, to find the other parts.

Ans. AB 4328, the angle B 57° 29′ 58″, and the angle C 52° 4′ 52″.

- 6. Given AB 793.8, BC 481.6, and AC 500.0, to find the angles. Ans. The angle A 35° 15′ 32″, the angle B 36° 49′ 18″, and the angle C 107° 55′ 10″.
 - 7. Given AB 100.3, BC 100.3, and AC 100.3, to find the angles.

 Ans. The angle A 60°, the angle B 60°, and the angle C 60°.
- Given AB 92.6, BC 46.3, and AC 71.2, to find the angles.
 Ans. The angle A 29° 17′ 22″, the angle B 48° 47′ 31″, and the angle C 101° 55′ 8″.

- Given AB 4963, BC 5124, and AC 5621, to find the angles.
 Ans. The angle A 57° 30′ 28″, the angle B 67° 42′ 36″, and the angle C 54° 46′ 56″.
- 10. Given AB 728.1, BC 614.7, and AC 583.8, to find the angles. Ans. The angle A 54° 32′ 52″, the angle B 50° 40′ 58″, and the angle C 74° 46′ 10″.
- Given AB 96.74, BC 83.29, and AC 111.42, to find the angles.
 Ans. The angle A 46° 30′ 45″, the angle B 76° 3′ 45″, and the angle C 57° 25′ 30″.
- 12. Given AB 363.4, BC 148.4, and the angle B 102° 18′ 27″, to find the other parts.
- Ans. The angle A 20° 9′ 17", the angle B 102° 18′ 27", and the angle C 57° 32′ 16".
- 13. Given AB 632, BC 494, and the angle A 20° 16', to find the other parts, C being acute.
- Ans. The angle C 26° 18′ 19″, the angle B 133° 25′ 41″, and AC 1035.86.
- 14. Given AB 53.9, AC 46° 21', and the angle B 58.16, to find the other parts.
 - Ans. The angle A 38° 58', the angle C 82° 46, and BC 34,16.
- 15. Given AB 2163, BC 1672, and the angle C 112° 18′ 22″, to find the other parts.
 - Ans. A C 877.2, the angle B 22° 2′ 16", and the angle A 45° 39′ 22".
- 16. Given AB 496, BC 496, and the angle B 38° 16', to find the other parts.
 - Ans. AC 325.1, the angle A 70° 52' and the angle $C70^{\circ}$ 52'.
- 17. Given AB 428, the angle C 49° 16', and (AC+BC) 918, to find the other parts, the angle B being obtuse.
- Ans. The angle A 38° 44′ 48″, the angle B 91° 59′ 12″, A C 564.49, and B C 353.5.
- 18. Given AC 126, the angle A 29° 46', and (AB-BC) 43, to find the other parts.
- Ans. The angle A 55° 51′ 32″, the angle C 94° 22′ 28″, AB 253.54, and BC 210.54.
- 19. Given AB 1269, AC 1837, and the angle A 53° 16′ 20″, to find the other parts.
- Ans. The angle B 83° 23′ 47″, the angle C '43° 19′ 53″, and BC 1482.16.

APPLICATION OF TRIGONOMETRY TO MEA-SURING THE HIGHT AND DISTANCES OF VISIBLE OBJECTS.

In this useful application of trigonometry, a base line is always supposed to be measured, or given in length; and by means of a quadrant, sextant, circle, theodolite, or some other instrument for measuring angles, such angles are measured as connected with the base line, and the objects whose hights or distances it is proposed to determine, enable us to compute, from the principles of trigonometry, what those hights or distances are.

Sometimes, particularly in marine surveying, horizontal angles are determined by the compass; but the varying effect of surrounding bodies on the needle, even in situations little removed from each other, and the general construction of the instrument itself, render it unfit to be applied in the determination of angles where anything like precision is required.

The following examples present sufficient variety to guide the atudant in determining what will be the most eligible mode of proceeding in any case that is likely to occur in practice.

EXAMPLE 1.

Being desirous of finding the distance between two distant objects, C and D, I measured a base AB, of 384 yards, on the same horizontal plane with the objects C and D. At A, I found the angle DAB=480 12', and CAB=89° 18'; at B the angle ABC was 46° 14', and ABD 87° 4'. It is required from these data to compute the distance between C and D.

From the angle CAB, take the angle DAB; the remainder, 41° 6', is the angle CAD. To the angle DBA, add the angle DAB, and 44° 44', the supplement of the sum, is the angle ADB. In the same way the angle ACB, which is the supplement of the sum of CAB and CBA, is found to be 44° 28'.

Hence, in the triangles ABC and ABD, we have

Aв	sin. ACB 44° 28'	9.845405
:	AB 384 yards .	2.584331
::	sin. ABC 46° 14'	9.858635
		12.442996
:	AC 395.9 yards .	2.597561

PLANE TRIGONOMETRY.

As sin. ADB 44° 44′ . 9.847454 : AB 384 yards . 2.564331 :: sin. ABD 87° 4′ . 9.999431 12.583762 : AD 544.9 yards . 2.736308

Then, in the triangle CAD, we have given the sides CA and AD, and the included angle CAD, to find CD; to compute which we proceed thus:

The supplement of the angle CAD is the sum of the angles ACD, and ADC:

. $\frac{ACD+ADC}{2}$ =69° 27', and, by proportion we have, As AD+AC940.8 2.937497 : AD - AC149 2.173186 :: tan. ACD+ADC 69° 27' : tan. ACD—ADC 22 54 9.625797 the angle ACD sum 92 21 the angle ADC diff. 46 33 As sin. ADC 46° 38' 9.860922 : AC 395.9 yards . 2.597585 :: gin. CAD 41° 6' 9.817813

12.415898

2.554476

EXAMPLE 2

To determine the altitude of a lighthouse, I observed the elevation of its tep shows the level send on the seashore, to be 15° 32′ 18″, and measuring directly from it, along the sand 638 yards, I then found its elevation to be 9° 56′ 26″; required the hight of the lighthouse.

Let *CD* represent the hight of the lighthouse above the level of the sand, and let *B* be the first station, and *A* the second; then the angle *CBD* is 15° 32′ 18″, and the angle *CAB* is 9° 56′ 26″; therefore, the angle *ACB*, which is the difference of the angles *CBD* and *CAB*, is 5° 35′ 52″.

: CD 358.5 vards .

Hence.

Hence, .	As sin. ACB 5° 35' 52" .	8.989201
,	: AB 638	2.804821
	:: sin. angle A 9° 56′ 26″	9.237107
		12.041928
•	: BC 1129.06 yards .	3.052727
	As radius	10.000000
	: BC 1129.06	3.052727
	:: sin. CBD 15° 32′ 18″ .	9.427945
	1	12.480672
	: DA 302.46 vards .	2,480672

EXAMPLE 3.

Coming from sea, at the point D, I observed two headlands, A and B, and inland, at C, a steeple, which appeared between the headlands. I found, from a map, that the headlands were 5.35 from each other; that the distance from A to the steeple was 2.8 miles, and from B to the steeple 3.47 miles; and I found with a sextant, that the angle ADC was 12° 15′, and the angle BDC 15° 30′. Required my distance from each of the headlands, and from the steeple.

CONSTRUCTION.

The angle between the two headlands is the sum of 15° 30' and 12° 15', or 27° 45'. Take the double, 55° 30'. Conceive AB to be the chord of a circle, and the segment on one side of it to be 55° 30; and, of course, the other will be 304° 30'. The point D will be somewhere in the circumference of this circle. Consider that point as determined, and join CD.

In the triangle ABC we have all the sides, and, of course, we can find all the angles; and if the angle ACB is less than (180°—(27° 45'))=152° 15', then the circle cuts the line CD, in a point E, and C is without the circle.

Join AE, BE, AD, and DB. AEBD is a quadrilateral in a circle, and $AEB+ADB=180^{\circ}$.

The angle ADE the angle ABE, because both are measured by half the arc AE. Also, EDB EAB, for a similar reason.

Now, in the triangle AEB, its side AB, and all its angles, are known; and from thence AE can be computed. Then, having the

two sides AC and AE of the triangle AEC, and the included angle CAE, we can find the angle AEC, and, of course, its supplement, AED. Then, in the triangle AED we have the side AE, and the two angles AED and ADE, from which we can find AD.

The computation, at length, is as follows:

To find AE.

angle EAB	15°	30'	As	sin.AEB	152°	15'		9.668027
angle EBA	12	15	:	AB 5.35	•			.728354
	27	45	::	$\sin ABE$	120	15'	•	9.326700
	180	0						10.855054
angle AEB	152	15	:	AE 2.438	•		•	.387027
		7	o find th	e angle BA	. C .			
		Be	3.47	_				

To find the angles AEC and ACE.

angle AEC

101° 33' 14" sum

angle ACE or ACD 58 32 50 diff. angle

CDA 12 15

70 47 50 supplement 109° 12' 10" angle CAD

23 56 angle CAB 48 14 angle **BAD**

To find AD.

As sin. ADC 12º 15' 9.326700 : AC 2.8 .447158 :: sin.A CD 58° 82' 50" 9.930985 10.378143

AD 11.26 miles 1.051443

EXAMPLE

The elevation of a spire at one station was 23° 50′ 17", and the horizontal angle at this station, between the spire and another station, was 93° 4' 20". The horizontal angle at the latter station, between the spire and the first station, was 54° 28' 36", and the distance between the two stations, 416 feet. Required the hight of the spire.

Let CD be the spire, A the first station, and Bthe second; then the vertical angle CAD is 23° 50' 17"; and as the horizontal angles CAB and CBA are 93° 4' 20", and 54° 28' 36" respectively, the angle ACB, the supplement of their sum, is 32° 27′ 4″.

: DC 278.8

To find AC.

As sin. BCA 32° 27'	3″		9.729634
: side <i>AB</i> 416			2.619093
:: sin.ABC 54° 28'	3 6"		9.910560
			12.529653
; side A C 631	•	• _	2.800019
To find	DC.	Ī	
As radius			10.000000
: side A C 631			2.800019
:: tan.DAC 23° 50'	17"		9.645270

2,445289

By the application of the fourth example we can compute the different elevations of different planes, provided the same object is visible from them.

For example, let M be a prominent tree or rock near the top of a mountain, and by observations taken

at A, we can determine the perpendicular Mn. By like observations we can determine the perpendicular Mm. The difference between these two perpendiculars, is nm, or the difference in the elevation between the two points A and B. But if the distances between A and n, or B and n, are considerable, or more than two or three miles, corrections must be made for the convexity of the earth; but for less distances such corrections are not necessary.

EXAMPLES FOR EXERCISE.

Required the hight of a wall whose angle of elevation is observed, at the distance of 463 feet, to be 16° 21'?

Ans. 135.8 feet,

2. The angle of elevation of a hill is, near its bottom, 31° 18′, and 214 yards further off, 26° 18′. Required the perpendicular hight of the hill, and the distance of the perpendicular from the first station.

Ans. The hight of the hill is 565.2, and the distance of the perpendicular from the first station, is 929.6.

- 3. The wall of a tower which is 149.5 feet in hight, makes, with a line drawn from the top of it to a distant object on the horizontal plane, an angle of 57° 21'. What is the distance of the object from the bottom of the tower?

 Ans. 233.3 feet.
- 4. From the top of a tower, whose hight was 138 feet, I took the angles of depression of two objects which stood in a direct line from the bottom of the tower, and upon the same horizontal plane with it. The depression of the nearer object was found to be 48° 10′, and that of the further, 18° 52′. What was the distance of each from the bottom of the tower?

Ans. Distance of the nearer 123.5, and of the farther 403.8 feet.

5. Being on the side of a river, and wishing to know the distance of a house on the other side, I measured 312 yards in a right line by the side of the river, and then found that the two angles, one at each end of this line, subtended by the other end and the house, were 31° 15' and 86° 27'. What was the distance between each end of the line and the house?

Ans. 351.7, and 182.8 yards.

6. Having measured a base of 260 yards in a straight line, close by one side of a river, I found that the two angles, one at each end of the line, subtended by the other end and a tree close to the opposite bank, were 40° and 80°. What was the breadth of the river?

Ans. 190.1 yards.

- 7. From an eminence of 268 feet in perpendicular hight, the angle of depression of the top of a steeple which stood on the same horizontal plane, was found to be 40° 3′, and of the bottom 56° 18′. What was the hight of the steeple?

 Ans. 117.8 feet.
- 8. Wanting to know the distance between two objects which were separated by a morass, I measured the distance from each to a point where I could see them both; the distances were 1840 and 1428 yards, and the angle which, at that point, the objects subtended, was 36° 18′ 24″. Required their distance.

 Ans. 1090.85 yards.
- 9. From the top of a mountain, three miles in hight, the visible horizon appeared depressed 2° 13' 27". Required the diameter of the earth, and the distance of the boundary of the visible horizon.
- Ans. Diameter of the earth 7958 miles, distance of the horizon 154.54 miles.
- 10. A ship, from a headland, was seen bearing north, 39° 23' east. After sailing 20 miles north, 47° 49' west, the same headland was observed to bear north, 87° 11' east. Required the distance of the headland from the ship at each station?
- Ans. The distance at the first station was 19.09, and at the second 26.96 miles.
- 11. The top of a tower, 100 feet above the level of the sea, was seen as on the surface of the sea, from the masthead of a ship, 90 feet above the water. The diameter of the earth being 7960 miles, what was the distance between the observer and the object?

Ans. 25.7 miles.

- 12. From the top of a tower, by the seaside, of 143 feet high, it was observed that the angle of depression of a ship's bottom, then at anchor, measured 35° ; what, then, was the ship's distance from the bottom of the wall?

 Ans. 204.22 feet.
- 13. Wanting to know the breadth of a river, I measured a base of 500 yards in a straight line close by one side of it; and at each end of this line I found the angles subtended by the other end and a tree close to the bank on the other side of the river, to be 53° and 79° 12′. What, then, was the perpendicular breadth of the river? Ans. 529.48 yards.
- 14. What is the perpendicular hight of a hill, its angle of elevation, taken at the bottom of it, being 46°, and 200 yards further off, on a level with the bottom, the angle was 31°?

 Ans. 286.28 yards.

- 15. Wanting to know the hight of an inaccessible tower; at the least distance from it, on the same horizontal plane, I took its angle of elevation equal to 58° ; then going 300 feet directly from it, found the angle there to be only 32° ; required its hight, and my distance from it at the first station.

 Ans. Hight 307.53. Distance 192.15.
- 16. Two ships of war, intending to cannonade a fort, are, by the shallowness of the water, kept so far from it, that they suspect their guns cannot reach it with effect. In order, therefore, to measure the distance, they separate from each other a quarter of a mile, or 440 yards; then each ship observes and measures the angle which the other ship and fort subtends, which angles are 83° 45′ and 85° 15′. What, then, is the distance between each ship and the fort?

 Ans.

 \$ 2292.26 \text{ 2298.05 yards.}
- 17. A point of land was observed by a ship, at sea, to bear east-by-south;* and after sailing north-east 12 miles, it was found to bear south-east-by-east. It is required to determine the place of that headland, and the ship's distance from it at the last observation?

Ans. 26.0728 miles.

- 18. Wanting to know my distance from an inaccessible object, 0, on the other side of a river; and having no instrument for taking angles, but only a chain or chord for measuring distances; from each of two stations, A and B, which were taken at 500 yards asunder, I measured in a direct line from the object 0, 100 yards, viz., AC and BD, each equal to 160 yards; also the diagonal AD measured 550 yards, and the diagonal BC 560. What, then, was the distance of the object 0 from each station A and B? $Ans. \begin{cases} A0 & 536.25. \\ B0 & 500.09. \end{cases}$
- 19. A navigator found, by observation, that the vertex of a certain mountain, which he supposed to be 45 minutes of a degree distant, had an altitude above the sea horison of 31'20". Now, on the supposition that the earth's radius is 3956 miles, and the observer's dip was 4'15", what was the hight of the mountain?

 Ans. 3960 feet.
- N. B. This should be diminished by about its one-eleventh part for the influence of horizontal refraction.

^{*} That is, one point south of east. A point of the compass is 110 15.

SPHERICAL TRIGONOMETRY.

SPHERICAL GROMETRY is nothing more than the general principles of geometry applied to the various sections of a sphere; and spherical trigonometry, is but the general principles of plane trigonometry applied to triangles resting on a surface of a sphere, and the planes of the sides of the triangles passing through the center of the sphere.

DEFINITIONS.

1. A sphere is a solid whose surface is equally convex in every part, and every point of the surface is equally distant from one point within, and this point is called the center. A sphere may be conceived to be generated by the revolution of a semicircle about its diameter.

If the center of the semicircle rests at the same point, the position of the diameter may be in any direction or position, and the revolution of the semicircle will describe the same sphere.

- 2. Any plane that passes through the center of the sphere, divides the solid and the surface into two equal parts.
- 3. Any two planes that pass through the center of a sphere, intersect each other on the opposite points of the sphere, because the section of any two planes is a right line (th. 2, b. 6).
- 4. A great circle on a sphere, is one whose plane passes through the center of the sphere.
- 5. Every great circle has poles, two points on the sphere directly opposite to each other and equally distant from every point on the great circle.

The distance from any pole to its equator in any direction, is one fourth of the whole distance round the sphere.

- 6. Any point on a sphere may be a pole to some great circle.
- 7. A spherical triangle is formed by the intersection of three great circles on a sphere. Conceive three radii drawn from the three angular points to the center of the sphere, thence forming a solid angle. The angles of the three planes which form this solid angle at the center, are the three angles which measure the sides of the triangle, and the inclination of these planes to each other form the angles of the triangle.

- 8. The complete measure of a spherical triangle, is but the complete measure of a solid angle at the center of a sphere; and this solid angle is the same, whatever be the radius of the sphere.
- 9. Every great circle, or portion of a great circle on the surface of a sphere, has its poles; conversely, every pole, or the point where two circles intersect, has its equator 90° distant, and the portion of this equator between the two sides, or the two sides produced, measures the spherical angle at the pole.

The inclination of two tangents of two arcs formed at their point of intersection, also measures the spherical angle. (Def. 5, to b. 6).

10. We can always draw one, and only one great circle through any two points on the surface of a sphere; for the two given points and the center of the sphere, give three points, and through three points only one plane can be made to pass (cor. th. 1, b. 6).

PROPOSITION 1.

Every section of a sphere by a plane is a circle.

If the plane passes through the center of the sphere, the section is evidently a circle, for every point on the surface of the sphere is equally distant from the center. These sections are great circles, and all great circles on the same sphere are equal to each other.

Now let the cutting plane not pass through the center. From

the center C, let fall Cn perpendicular to the plane; and when a line is perpendicular to a plane, it is perpendicular to all lines that can be drawn in that plane (th. 3, b. 6); therefore, any line as nm in the plane, is at right angles to Cn. Hence $nm = \sqrt{Cm^2 - Cn^2}$.

But nm is any line in the plane, from the point n to the surface of the sphere, and this value for nm is invariable, and it is the radius of a circle whose center is n.

N. B. These circles are called small circles, and are greater or less, as they are nearer or more remote from the center C.

Small circles on a sphere, are never considered as sides of spherical triangles. We again repeat, that sides of spherical triangles must be portions of *great* circles, and each side must be less than 180°.

PROPOSITION 2.

Any two sides of a spherical triangle are together greater than the third.

Let AB, AC, and BC, be the three sides of the triangle, and D the center of the sphere.

The arcs AB, AC, and BC, are measured by the angles of the planes that form the solid angle at D. But any two of these angles are together greater than the third (th. 10, b. 6).

Therefore, any two sides of the triangle are together, greater than the third. Q. E. D.

PROPOSITION 3.

The sum of the three sides of any spherical triangle is less than the circumference of a great circle.

Let ABC be a triangle; the two sides AB, AC, produced, will meet at the point on the sphere which is directly opposite to A; and the arcs ABD, and ACD, are together equal to a great circle. But by the last proposition, BC is less than the

two arcs BD and DC. Therefore, AB, BC, and AC, are together less than ABD+ACD; that is, less than a great circle. Q.E.D.

PROPOSITION 4

Every right angled spherical triangle must have a complemental, supplemental, and four quadrantal triangles in the same hemisphere.

Let ABC, be a right angled spherical triangle, right angled at B.

Produce the sides AB and AC, and they will meet at A', the opposite point on the sphere. Produce BC, both ways, 90° from the point B, to P and P', which are therefore, poles to the arc AB (def. 9,

spherics). Through A, P, and the center of the sphere, pass a plane cutting the sphere into two equal parts, forming a great circle on the sphere, which great circle will be represented by the plane

circle PAP'A on the paper. At right angles to this plane, pass another plane, cutting the sphere into two equal parts; this great circle is represented on the paper, by the straight line POP'. A and A', are the poles to the great circle POP'. P and P', are the poles to the great circle ABA'.

As PC, PD and CD, are portions of great circles on a sphere, CPD is a spherical triangle, and it is complemental to the given triangle ABC; because CD is the complement of AC, CP the complement of BC, and PD is the complement of DO, or of the angle A. Again, the triangle A'BC, is supplemental to ABC, because A'=A; A'C is the supplement of AC, and A'B is the supplement of AB. ACP is a spherical triangle, and one of its sides, AP, is a quadrant, and it is therefore called a quadrantal triangle. So also, are the triangles A'CP, ACP', and P'CA', quadrantal triangles.

Cor. In every triangle there are six elements; three sides and three angles, which are sometimes called parts.

Now, if all the parts of the triangle ABC are known, the parts of the complemental triangle PCD, are also known, and the supplemental triangle A'BC, must be as completely known.

When the triangle PCD is known, the triangles ACP and A'PC are also known, for the side PD, measures the angles PAC and PA'C, and the angle CPD, added to the right angle A'PD, gives the angle A'PC, and CPA, is supplemental to this. Hence a solution of any right angled spherical triangle, is a solution to its complemental, supplemental, and all its quadrantal triangles.

Definition. Every triangle, together with its supplemental triangle, form what is called a *Lune*. Thus, the triangles ABC, and A'BC, form a lune; PCD and P'CD, form a lune; PAC and P'AC, also form a lune.

It is obvious, that the surface of the lune PAP'B, is to the surface of the sphere, as the arc AB, is to the whole circumference.

PROPOSITION 5.

If there be three arcs of great circles whose poles are the angular points of a spherical triangle, such arcs, if produced, will form another triangle, whose sides will be supplemental to the angles of the first triangle will be supplemental to the angles of the second.

Let the arcs of the three great circles be GH, PQ, KL, whose poles are respectively A, B, and C. Produce the three arcs until they meet in E, D, and F. We are now to show, that E is the pole to the great circle AC; D the pole of the great circle BC; F the pole to the great circle AB. Also, that the side EF, is supplemental to the angle A; ED to the angle C; and DF to the angle B; and also,

that, the side AC, is supplemental to the angle E, &c.

Any pole is 90° from any point on its great circle, and therefore, as A is the pole to the great circle GH, the point A, is 90° from the point E. As C is the pole of the great circle LK, C is 90° from any point in that great circle; therefore, C is 90° from the point E, and E, being 90° from both A and C, it is the pole of the arc AC. In the same manner, we may prove that D is the pole of BC, and E the pole of AB.

Because A is the pole of the arc GH, the arc GH measures the angle A (def. 9 spherics); for the same reason, PQ measures the angle B, and LK measures the angle C.

Because E is the pole of the arc AC, $EH=90^{\circ}$ Or, . . . $EG+GH=90^{\circ}$ For a like reason, . . $FH+GH=90^{\circ}$

Adding these two equations, and observing that GH=A, and afterward transposing one A, we have,

But the arc (180°—A), is a supplemental arc to A, by the definition of arcs; therefore, the three sides of the triangle EDF, are supplements of the angles A, B, C, of the triangle ABC.

Again, as E, is the pole of the arc AC, the whole angle E, is measured by the whole arc LH.

By addition, .			. AC+AC+CH+AL=180°			
Also,	•	٠	•		AC+AL=90°	
But,	•	•			<i>AC</i> + <i>CH</i> =90°	

By transposition,
$$AC+CH+AL=180^{\circ}-AC$$

That is, LH , or $E=180^{\circ}-AC$
In the same manner, $F=180^{\circ}-AB$
And, $D=180^{\circ}-BC$ b

That is, the sides of the first triangle, are supplemental to the angles of the second triangle. Q. E. D.

PROPOSITION 6.

The sum of the three angles of any spherical triangle, is greater than two right angles, and less than six right angles.

Turn to equations (a), of the last proposition, and add them together. The first member of the equation so formed will be the sum of three sides of a spherical triangle, which sum we may designate by S. The other member will be 6 right angles (there being 2 right angles in each 180°) less the three angles A, B, and C.

That is, . .
$$S=6$$
 right angles— $(A+B+C)$

By proposition 3, the sum S, is less than 4 right angles; therefore, to it add s, a sufficient quantity to make 4 right angles.

Then, 4 right angles=6 right angles—(A+B+C)+sDrop 4 right angles from both members, and transpose (A+B+C)Then, A+B+C=2 right angles+s

That is, the three angles of a spherical triangle, make a greater sum than two right angles by the indefinite quantity s, which quantity is called the spherical excess, and is greater or less according to the size of the triangle.

Again the sum of the angles is less than 6 right angles. There are but three angles to any triangle, and no one of them can come up to 180°, or 2 right angles. For an angle is the inclination of two lines or two planes; and when two planes incline by 180°, the planes are parallel, or are in one and the same plane; therefore, as neither angle can equal 2 right angles, the three can never equal 6 right angles. Q. E. D.

Scholium. By merely inspecting the figure to proposition 4, we perceive that the triangle PAB, has two right angles; one at A, the other at B, besides the third angle APB.

The triangle P'A'O, has 3 right angles. The triangle A'P'C, has two of its angles, each greater than a right angle.

PROPOSITION. 7.

With the sines of the sides, and the tangent of ONE SIDE of any right angled spherical triangle, two plane triangles can be formed that will be similar, and similarly situated.

Let ABC, be a spherical triangle, right angled at B; and let D be the center of the sphere. Because the angle CBA, is a right angle, the plane CDB, is perpendicular to the plane DBA. From C, let fall CH, perpendicular to the plane DBA, and as the plane CBD is perpendicular to the plane DBA, CH will lie in the plane CBD, and be perpendicular

to the line DB, and perpendicular to all lines that can be drawn in the plane DBA, from the point H (th. 3, b. 6).

Draw HG perpendicular to DA, and join GC; GC will lie wholly in the plane CDA (def. of planes), and CHG is a right angled triangle, right angled at H.

We will now demonstrate that the angle DGC, is a right angle.

The right angled \triangle CHG, gives $CH^2 + HG^2 = CG^2$ (1)

The right angled $\triangle DGH$, gives $DG^2 + HG^2 = DH^2$ (2)

By subtraction, . . . $CH^2-DG^2=CG^2-DH^2$ (3)

By transposition, . . . $CH^2+DH^2=CG^2+DG^2$ (4)

But the first member of the equation (4), is equal to CD^2 ; because CDH, is a right angled triangle;

Therefore, $CD^2 = GC^2 + DG^2$

Hence, CD, is the hypotenuse to the right angled triangle DGC (th. 36, b. 1).

From the point B, draw BE at right angles to DA, and DF at right angles to DB, in the plane CDB extended; the point F being in the line DC. Join EF, and as F is in the plane CDA, and E is in the same plane, the line EF, is in the plane CDA. Now we are to show, that the triangle CHG is similar, and similarly situated to the triangle BEF.

As HG and BE are both at right angles to DA, they are parallel; and as CH and BH are both at right angles to DB, they are parallel; and by reason of the parallels, the angles GHC and EBF, are equal; but GHC is a right angle; therefore, EBF is also a right angle.

Now as GH and BE are parallel, and CH and BF parallel, we have. DH:DB=HG:BE

And, . . . DH:DB=HC:BF

Therefore, . . HG:BE=HC:BF (th. 6, b. 2)

Or, . . HG:HC=BE:BF

Here, then, are two triangles, having an angle in the one equal to an angle in the other, and the sides about the equal angles proportional; the two triangles are therefore equiangular (th. 20, b. 2); and they are similarly situated, for their sides make equal angles at H and B with the same line, DB. Q. E. D.

Scholium. By the definition of sines, cosines, and tangents, we perceive, that CH is the sine of the arc BC, DH is its cosine, and BF its tangent; CG is the sine of the arc AC, and DH is cosine. Also, BE is the sine of the arc AB, and DE is the cosine of the same arc. With this figure we are prepared to demonstrate the following theorems.

PROPOSITION 7. THEOREM 1.

In any right angled spherical triangle, the sine of one side is to the tangent of the other side, as radius is to the tangent of the angle adjacent to the first-mentioned side.

Or, as the sine of one side is to the tangent of the other side, so is the cotangent of the angle, adjacent to the first-mentioned side, to the radius.

In the right angled plane triangle EBF, we have,

 $EB: BF = R: \tan BEF$

That is, $\sin c : \tan a = R : \tan A$ Q. E. D.

A modification of this proposition demonstrates the latter part of the theorem. By reference to equation (5), plane trigonometry, we shall find that, $\tan A$. $\cot A = R^2$; therefore, $\tan A = \frac{R^2}{\cot A}$

Substituting this value for tangent A, in the preceding proposition, and dividing the last couplet by R, we shall have.

$$\sin c : \tan a = 1 : \frac{R}{\cot A}$$
Or,
$$\sin c : \tan a = \cot A : R$$
Or,
$$R \sin c = \tan a \cot A$$
(1)

Cor. By changing the construction, drawing the tangent to AB, in place of the tangent to BC, and proceeding in a similar manner, we have, $R \sin a = \tan c \cot C$ (2)

PROPOSITION 8. THEOREM. 2

In any right angled spherical triangle, the sine of the right angle is to the sine of the hypotenuse, as the sine of either of the other angles to the sine of the side opposite to that angle.

N. B. For the sake of perspicuity, if not of brevity, we will represent the angles of the triangle, by A, B, C, and of the sides or arcs opposite to these angles by a, b, c; that is, a opposite A, &c.

The sine of 90°, or radius, is designated by R.

In the plane triangle CHG, we have,

sin. CHG; CG=sin. CGH: CH

That is, . . $R: \sin b = \sin A : \sin a$ Q. E. D.

Or, . . $R\sin a = \sin b \sin A$ (3)

Cor. By a change in the construction of the figure, drawing a tangent to AB, &c., we shall have,

 $R: \sin b = \sin C; \sin c$ Q. E. D.

Or, . . . $R\sin c = \sin b \sin C$ (4)

Scholium. Collecting the four preceding equations drawn from theorems 1 and 2, we have,

- (1) $R \sin c = \tan a \cot A$
- (2) $R \sin a = \tan c \cot C$
- (3) $R \sin a = \sin b \sin A$
- (4) $R \sin c = \sin b \sin C$

These equations refer to the right angled triangle ABC; but the principles are true for any right angled spherical triangle. Let us apply them to the right angled triangle PDC, the complemental triangle to ABC.

Making this application, equation (1) becomes,

 $R \sin . CD = \tan . PD \cot . C$ (n)

- (2) becomes $R \sin PD = \tan CD \cot P$ (m)
- (3) becomes $R \sin PD = \sin PC \sin C$ (0)
- (4) becomes $R \sin CD = \sin PC \sin P$ (p)

By observing that $\sin CD = \cos AC = \cos b$,

And that . . tan $PD = \cot DO = \cot A$, dc; and by running equations (n), (m), (o), and (p), back into the triangle ABC, and we shall have,

- (5) $R \cos b = \cot A \cot C$
- (6) $R \cos A = \cot b \tan c$
- (7) $R \cos A = \cos a \sin C$
- (8) R cos.b=cos.a cos.c

By observing equation (6), we find that the second member refers to sides adjacent to the angle A. The same relation holds in respect to the angle C, and gives,

(9) $R \cos C = \cot b \tan a$

Making the same observations on (7), we infer,

(10)
$$R \cos C = \cos c \sin A$$

OBSERVATION 1. Several of these equations can be deduced geometrically without the least difficulty. For example, take the figure to proposition 6. Observe the parallels in the plane DBA, which give, DB:DH=DE:DG

That is, . . $R: \cos a = \cos c : \cos b$

A result identical with equation (8), and in words is expressed thus: As radius is to cosine of one side, so is the cosine of the other side, to the cosine of the hypotenuse.

OBSERVATION 2. Equations numbered from (1) to (10), cover every possible case that can occur in right angled spherical trigonometry, but the combinations are too various to be remembered, and readily applied to practical use.

We can remedy this inconvenience, by taking the complement of the hypotenuse, and the complements of the two oblique angles, in place of the arcs themselves.

Thus b is the hypotenuse, and let b' be its complement.

Then, $b+b'=90^{\circ}$; or, $b=90^{\circ}-b'$; and, $\sin b=\cos b'$, $\cos b=\sin b'$; $\tan b=\cot b'$. In the same manner if A'

is the complement to A,

Then, . $\sin A = \cos A'$; $\cos A = \sin A'$; and, $\tan A = \cot A'$; and similarly, $\sin C = \cos C$; $\cos C = \sin C$, and $\tan C = \cot C$.

Substituting these values for b, A, and C, in the foregoing ten equations (a and c remaining the same), we have,

CIRCULAR PARTS.

- (11) $R \sin c = \tan a \tan A'$
- (12) R sin.a=tan.c tan.C
- (13) $R \sin a = \cos b' \cos A'$
- (14) $R \sin c = \cos b' \cos C'$
- (15) $R \sin b' = \tan A' \tan C'$
- (16) $R \sin A' = \tan b' \tan c$
- (17) $R \sin A' = \cos a \cos C'$
- (18) $R \sin b' = \cos a \cos c$
- (19) $R \sin C' = \tan b' \tan a$

(20) $R \sin C = \cos c \cos A'$

Omitting the consideration of the right angle there are five parts.-Each part taken as a middle part, is connected to its adjacent parts by one equation, and to its extreme parts by another equation: and therefore, ten equations are required for the combinations of all the parts.

These equations are very remarkable, because the first members are all composed of radius into some sine, and the second members are all composed of the product of two tangents, or two cosines.

To condense these equations into words, for the purpose of assisting the memory, we will refer them, any one of them, directly to the right angled triangle ABC, in the last figure.

When the right angle is left out of the question, a right angled triangle consists of five parts—three sides, and two angles. Let any one of these parts be called a middle part, then two other parts will lie adjacent to this part, and two opposite to it, that is, separated from it by two other parts.

For instance, take equation (11), and call c the middle part, then A' and a will be adjacent parts, and C' and b' opposite parts. Again, take a as a middle part, then c and C will be adjacent parts, and A' and b' will be opposite parts; and thus we may go round the triangle.

Take any equation from (11) to (20), and consider the middle part in the first member of the equation, and we shall find that they correspond to these two invariable and comprehensive rules.

- 1. The radius into the sine of the middle part equals the product of the tangents of the adjacent parts.
- 2. The radius into the sine of the middle part equals the product of the cosines of the opposite parts.

These rules are known as Napier's Rules, because they were first brought forth by that distinguished mathematician, who was also the inventor of logarithms.

We caution the pupil to be very particular to take the complements of the hypotenuse, and the complements of the oblique angles.

OBLIQUE ANGLED SPHERICAL TRIGONOMETRY.

THE preceding investigations have had reference to right angled spherical trigonometry only; but the application of these principles cover oblique angled trigonometry also, for every oblique angled spherical triangle may be considered as made up of the sum or difference of two right angled spherical triangles. With this explanatory remark, we give,

PROPOSITION 9. THEOREM. 3.

In all spherical triangles, the sines of the sides are to each other, as the sines of the sides opposite to them.

This was proved in relation to right angled triangles in theorem 2, and we now apply the principle to oblique angled triangles.

Let ABC, be the triangle, and let CD be perpendicular to AB, or to AB produced as represented in the margin.

Then by theorem 2, we have,

 $R: \sin A C = \sin A : \sin A D$ Also, $\sin CB: R = \sin AD: \sin B$.

By multiplying these two proportions term by term, and leaving out the common factor R, in the first couplet, and the common factor $\sin AD$, in the second, we

have, $\sin .CB : \sin .AC = \sin .A : \sin .B$. Q. E. D.

Cor. From the truth of this theorum, it follows, that the angles at the base of an isosceles triangle are equal, and that in every spherical triangle the greater angle is opposite the greater side.

PROPOSITION 10. THEOREM 4.

In any spherical triangle, if an arc be let fall from any angle to the opposite side as a base, or to the base produced, the cosines of the other two sides will be to each other as the cosines of the segments of the base.

By the application of equation (8) to the last figure, we have,

 $R \cos AC = \cos AD \cos DC$

Similarly, $R \cos BC = \cos DC \cos BD$

Dividing one of these equations by the others, omitting common factors in numerators and denominators, we have,

 $\frac{\cos AC}{\cos BC} = \frac{\cos AD}{\cos BD}$

Or, $\cos AC : \cos BC = \cos AD : \cos BD$. Q. E. D.

PROPOSITION 11. THEOREM 5.

If from any angle of a spherical triangle, a perpendicular be let fall on the base, or on the base produced, the tangents of the segments of the base will be to each other reciprocally proportional to the cotangents of the segments of the angles.

By the application of equation (2) to the last figure, we have,

 $R \cos .CD = \tan .AD \cot .ACD$

Similarly, $R \cos CD = \tan BD \cot BCD$

Therefore, by equality,

 $tan.AD \cot ACD = tan.BD \cot BCD$

Or, tan.AD: tan.BD = cot.BCD: cot.ACD. Q. E. D.

PROPOSITION 12. THEOREM 6.

The same construction remaining, the cosines of the angles at the extremities of the segments of the base, are to each other as the sines of the segments of the opposite angle.

Equation (7) applied to the triangle ACD, gives

 $R \cos A = \cos CD \sin A CD$ (s)

Also, . . $R \cos B = \cos CD \sin BCD$ (t)

Dividing equation (s) by (t), gives

$$\frac{\cos A}{\cos B} = \frac{\sin A CD}{\sin BCD}$$

Or, . . $\cos B : \cos A = \sin B CD : \sin A CD$. Q. E. D.

PROPOSITION 13. THEOREM 7.

The same construction remaining, the sines of the segments of the base, are to each other as the cotangents of the adjacent angles.

Equation (1), applied to the triangle ACD, gives

$$R \sin AD = \tan CD \cot A$$
 (3)

Similarly,
$$R \sin BD = \tan CD \cot B$$
 (t)

Dividing (a) by (t), gives

$$\frac{\sin AD}{\sin BD} = \frac{\cot A}{\cot B}$$

Or, $\sin BD : \sin AD = \cot B : \cot A$. Q. E. D.

PROPOSITION 14. THEOREM 8.

The same construction remaining, the cotangents of the two sides are to each other as the cosines of the segments of the angle.

Equation (9), applied to the triangle ACD, gives

$$R \cos A CD = \cot A C \tan CD$$
 (s)

Similarly,
$$R \cos BCD = \cot BC \tan CD$$
 (t)

Dividing (s) by (t), gives

$$\frac{\cos ACD}{\cos BCD} = \frac{\cot AC}{\cot BC}$$

Or, $\cot AC : \cot BC = \cos ACD : \cos BCD$. Q. E. D.

REMARK. The preceding theorems enable us to solve any spherical triangle, right angled or oblique, when any three of the six parts are given. But oblique angled spherical triangles we have thus far considered as composed of two right angled triangles; and it is sometimes a little troublesome to select the theorems or equations which apply to the case in question. To remedy this

inconvenience, we will at once seek a relation between the cosines and sines of an angle of any spherical triangle, and the sines and cosines of its sides. Therefore, we investigate the following propositions.

PROPOSITION 15. PROBLEM.

Investigate, and show the relation between the cosine of an angle of a spherical triangle, and the sines and cosines of its sides.

n

Let ABC be a spherical triangle, and CD a perpendicular from the angle C on to the side AB, or on to the side AB produced. Then, by proposition 10, th. 4, $\cos AC$: $\cos CB = \cos AD$: $\cos BD$ (1)

When CD falls within the triangle,

$$BD = (AB - AD)$$

When CD falls without the triangle,

$$BD = (AD - AB)$$

Hence, $\cos BD = \cos (AD - AB)$

Now, $\cos(AB-AD)=\cos(AD-AB)$, because each of them is equal to $\cos AB \cos AD+\sin AB \sin AD$. (Plane trig. eq. 10.)

This value of cos. BD, put in proportion (1), gives

 $\cos AC : \cos CB = \cos AD : \cos AB \cos AD + \sin AB \sin AD$ (2)

Dividing the last couplet of proportion (2) by cos. AD, observing

that . . .
$$\frac{\sin AD}{\cos AD}$$
 = tan. AD, and we have

$$\cos AC : \cos CB = 1 : \cos AB + \sin AB \tan AD$$
 (3)

By applying equation (6) to the triangle ACD, taking the radius as unity, we have $\cos A = \cot AC \tan AD$ (k)

But,
$$\tan AC \cot AC = 1$$
 (eq. 5, plane trig.) (1)

Multiply equation (k) by $\tan AC$, observing equation (l), and we have $\tan AC \cos A = \tan AD$

Substituting this value of tan. AD, in proportion (3), we have

$$\cos AC : \cos CB = 1 : \cos AB + \sin AB \tan AC \cos A \qquad (4)$$

Multiplying extremes and means, gives

 $\cos .CB = \cos .AC \cos .AB + \sin .AB(\cos .AC \tan .AC)\cos .A$

But, . .
$$\tan AC = \frac{\sin AC}{\cos AC}$$
, or, $\cos AC \tan AC = \sin AC$

Therefore, $\cos CB = \cos AC \cos AB + \sin AB \sin AC \cos A$

Hence,
$$\cos A = \frac{\cos CB - \cos AC \cos AB}{\sin AB \sin AC}$$
 (F) final result.*

By processes perfectly similar, like theorems may be deduced for the angles B and C.

If the sides opposite the angles A, B, and C, be respectively represented by a, b, and c, the formula will be expressed thus:

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

$$\cos B = \frac{\cos b - \cos a \cos c}{\sin a \sin c}$$

$$\cos C = \frac{\cos c - \cos a \cos b}{\sin a \sin b}$$
(S)

* As this equation has been denominated "The fundamental formula of Spherical Trigonometry," and as it is susceptible of a more geometrical demonstration, we give the following, which we believe will be very acceptable to every lover of mathematical science.

Let ABC be a spherical triangle, and O the center of the sphere.

From the angle A, draw AD tangent to the arc AB, and AE tangent to the arc AC. OD and OE, drawn from the center of the sphere to the extremities of the tangents, are, of course, secants. OD

is the secant of AB, and OE the secant of the arc AC.

Because AD is a tangent, it is perpendicular to the radius OA. For the same reason AE is perpendicular to the same radius OA. But OA is the common intersection of the two planes AOB and AOC, and hence, by definition 5, book 6, the angle DAE is the inclination of the two planes AOB and AOC, and is, therefore, equal to the spherical angle A. As is customary, let the side opposite to A be designated by a, opposite B by b, opposite C by c.

These formulas are not adapted to the use of logarithms; and the use of natural sines and cosines would lead to tedious operations; we must, therefore, make some advantageous mutations, or the equations will be useless; hence the following investigations:

In equation (35), plane trigonometry, we find

$$1 + \cos A = 2\cos^2 A$$

Therefore, $2 \cos^2 \frac{1}{2}A = 1 + \frac{\cos a - \cos b \cos c}{\sin b \sin c}$

$$=\frac{(\sin b \sin c - \cos b \cos c) + \cos a}{\sin b \sin c} (m)$$

But, . $\cos(b+c)=\cos b \cos c - \sin a \sin b$ (9), plane trigonometry. By comparing this last equation with the second member of equation (m), we perceive that equation (m) is readily reduced to

$$2 \cos^{2} A = \frac{\cos a - \cos(b+c)}{\sin b \sin c}$$

Then, $AD = \tan c$, $AE = \tan b$, $OD = \sec c$, $OE = \sec b$.

Designate DE by x, and observe that the angle BOC is measured by the arc BC = s.

Now, to the two plane triangles *ODE* and *ADE*, if we apply equation (m), proposition 8, plane trigonometry, we shall have

$$\cos a = \frac{\sec^2 a + \sec^2 b - x^2}{2 \sec c \sec b}$$

$$\cos A = \frac{\tan^2 a + \tan^2 b - x^2}{2 \tan c \tan b}$$

Clearing these two equations of fractions, and subtracting the latter from the former, and observing, that for any arc, $\sec^2 - \tan^2 = R^2$; and if R is unity, as it is in this case, we shall have,

2 sec.o sec.b cos.a-2 tan.o tan.b cos.A=2

Dividing by 2, and substituting the values of the secants and tangents from equations (4) and (5), plane trigonometry,

Namely, . sec.
$$=\frac{1}{\cos}$$
, $\tan \frac{\sin}{\cos}$, we shall then have, $\cos a$ sin.e $\sin b \cos A$.

Considering (b+c) as one arc, and then making application of equation (18), plane trigonometry, we have,

$$2 \cos^2 \frac{1}{2} A = \frac{2 \sin \left(\frac{a+b+c}{2}\right) \sin \left(\frac{b+c-a}{2}\right)}{\sin b \sin c}$$

But,
$$\frac{b+c-a}{2} = \frac{b+c+a}{2} - a$$
; and if we put S to rep-

resent $\frac{b+c+a}{2}$, we shall have

$$\cos^2\frac{A}{2} = \frac{\sin S \sin (S-a)}{\sin b \sin c}$$

Or,
$$\cos \frac{A}{2} = \sqrt{\frac{\sin S \sin (S-a)}{\sin b \sin c}}$$

The right hand member of this equation gives the value of the

Clearing of fractions, transposing, and changing signs, will give sin.o sin.b cos.A=cos.a-cos.c cos.b

Therefore,
$$\cos A = \frac{\cos a - \cos c \cos b}{\sin c \sin b}$$

For the sake of the mathematical exercise, I will suppose we have the three sides of a spherical triangle, as follows:

a=70° 4' 18", b=59° 16' 23", and c=63° 21' 27", from which we require the angle A, and we have no other formula except the above equation, and logarithms are not yet invented.

From the table of natural sines and cosines, we find

By the multiplication of decimals, retaining only five places, we find,

cos.b cos.c=0.22953, and sin.b sin.c=0.76786

From cos.a . 0.34890
Take cos.b cos.c . 0.22953
0.76786)0.11137(0.14505=cos.A

By comparing this decimal with the table, we find it very nearly corresponds to 81° 40′. The true value of A is 81° 38′ 20″

cosine when the radius is unity. To a greater radius, the cosine would be greater; and in just the same proportion as the radius increases, all the trigonometrical lines increase; therefore, to adapt the above equation to our tables where the radius is R, we must write R in the second member, as a factor; and if we put it under the radical sign, we must write R^2 .

For the other angles we shall have precisely similar equations;

That is
$$\cos \frac{A}{2} = \sqrt{\frac{R^2 \sin . S \sin . (S-a)}{\sin . b \sin . c}}$$

$$\cos \frac{B}{2} = \sqrt{\frac{R^2 \sin . S \sin . (S-b)}{\sin . a \sin . c}}$$

$$\cos \frac{C}{2} = \sqrt{\frac{R^2 \sin . S \sin . (S-c)}{\sin . a \sin . b}}$$
(T)

Formulas, for the sines of the angles, are obtained as follows: From equation (32), plane trigonometry, we obtain

$$2 \sin^2 A = 1 - \cos A$$
.

Substituting the value of cos. A, taken from equation (S), and

we have
$$2 \sin^2 \frac{1}{4}A = 1 - \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$
$$= \frac{(\sin b \sin c + \cos b \cos c) - \cos a}{\sin b \sin c}$$

But, $\cos(b \, c) = \sin b \cdot \sin c + \cos b \cos c$ ((10) plane trig.) This equation reduces the preceding one to

$$2 \sin^2 \frac{1}{2} A = \frac{\cos(b \cdot c) - \cos a}{\sin b \sin c}$$

Considering $(b \circ c)$ as a single arc, and applying equation (18), plane trigonometry, we have

$$2 \sin^{2}\frac{1}{2}A = \frac{2 \sin^{2}\left(\frac{a+b-c}{2}\right) \sin^{2}\left(\frac{a+c-b}{2}\right)}{\sin^{2}b \sin^{2}c}$$
But,
$$\frac{a+b-c}{2} = \frac{a+b+c}{2} - c = S-c, \text{ if we put } S = \frac{a+b+c}{2}$$
Also,
$$\frac{a+c-b}{2} = \frac{a+b+c}{2} - b = S-b$$

Dividing the preceding equation by 2, and making these substitutions, we have,

 $\sin \frac{1}{2}A = \frac{\sin (S-c)\sin (S-b)}{\sin b \sin c}$, when radius is unity.

When radius is R, we have

$$\sin_{\frac{1}{2}}A = \sqrt{\frac{R^2 \sin_{\cdot}(S-c)\sin_{\cdot}(S-b)}{\sin_{\cdot}b \sin_{\cdot}c}}$$
Similarly,
$$\sin_{\frac{1}{2}}B = \sqrt{\frac{R^2 \sin_{\cdot}(S-a)\sin_{\cdot}(S-c)}{\sin_{\cdot}a \sin_{\cdot}c}}$$
And,
$$\sin_{\frac{1}{2}}C = \sqrt{\frac{R^2 \sin_{\cdot}(S-a)\sin_{\cdot}(S-b)}{\sin_{\cdot}a \sin_{\cdot}b}}$$

To apply to our tables, R^2 must be put under the radical sign. We shall show the application of these formulas, and those in equations (S), hereafter.

From (30), plane trigonometry, we have

$$\sin A = 2 \sin A \cos A$$

Squaring,
$$\sin^2 A = 4 \sin^2 A \cos^2 A$$
 (t)

Square the first equation in (T), and multiply it by the square of the first equation in (U), and four times their product is

4 sin.²
$$\frac{1}{2}A$$
 cos.² $\frac{1}{2}A = \frac{4R^4 \sin S \sin (S-a) \sin (S-b) \sin (S-c)}{\sin ^2 b \sin ^2 c}$

Comparing the first member with equation (t), we have

$$\sin^2 A = \frac{4 R^4 \sin S \sin (S-a) \sin (S-b) \sin (S-c)}{\sin^2 b \sin^2 c}$$
 (u)

By operating in the same manner with the several equations in (T) and (U), we have

$$\sin^2 B = \frac{4 R^4 \sin S \sin (S - a) \sin (S - b) \sin (S - c)}{\sin^2 a \sin^2 c}$$
 (v)

The numerators of the second members of (u) and (v), are the same; and if we divide (u) by (v), and extract the square root. we shall have $\frac{\sin A}{\sin B} = \frac{\sin a}{\sin b}$

Or, . . $\sin B : \sin A = \sin b : \sin a$, a truth that was demonstrated in proposition 9, spherical trigonometry.

We have again demonstrated it in this manner, to show that equation (F), from which all the preceding equations arose, is really the fundamental equation of spherical trigonometry.

A spherical triangle consists of six parts; three sides, and three angles; and there are certain relations existing between them; but the combinations of these relations have their limits; and when we have gone through these relations, if we continue to combine equations, we shall only fall on truths previously demonstrated, and this is exemplified by our last operations.

APPLICATION.

SOLUTION OF RIGHT ANGLED SPHERICAL TRIANGLES.

1. At a certain time the sun's longitude was 40° 29′ 30″, and the obliquity of the ecliptic 23° 27′ 32″. What was the declination?

Ans. 14° 58′ 52″.

This example presents a right angled spherical triangle, ABC. The

hypotenuse, $AC=40^{\circ}$ 29' 30", and the angle $A=23^{\circ}$ 27' 32", and the side, CB, is required. By our system of notation, AC=b, BC=a.

This can be solved by equation (3) or (13), which are essentially the same; that is.

$R \sin a = \sin b \sin A$

ns. sin.a=sin.14° 58′ 52″ \$		9.412455
sin.A=sin.23° 27′ 32′′	•	9.599985
sin.b=sin.40° 29′ 30″		9.812470

Rejecting 10 in the index, is the same as dividing by the radius, as the equation requires.

2. At a certain time, the difference between the longitude of the sun and moon, was 76° 10′ 20″, and the moon's latitude, at the same time, was 5° 9′ 12″ north. What was the true angular distance between the centers of the sun and moon?

Ans. 76° 13′ 45″.

This problem presents a right angled spherical triangle, whose base $AB=76^{\circ}$ 10' 20", and perpendicular $BC=5^{\circ}$ 9' 12". The hypotenuse, AC, is required. Equation (8) or (18) solves it.

 $c=76^{\circ}\ 10'\ 20''$ cos. . 9.378406 $a=5^{\circ}\ 9'\ 12''$ cos. . 9.998241 $b=76^{\circ}\ 13'\ 45''$ cos. . 9.376647 3. An astronomer observed the sun to pass his meridian on a certain day when his astronomical clock gave 2 h. 9 min. 33 sec. for the siderial time, and the altitude was such as to give the declination of 18° 5′ 6″ north. What was the sun's longitude, and what was the obliquity of the ecliptic?

Ans. Lon. 34° 39′ 46″. Obliq. eclip. 23° 27′ 26″.

This problem presents a right angled spherical triangle, giving its base and perpendicular, and demanding the hypotenuse, and the angle at the base.

2 h. 9 m. 33 s.=c=32° 23 15 cos. . 9.726571 a=13 5 6 cos. . 9.988575 b=34 39 46 cos. . 9.915146

To find A, we apply equation (3) or (13), as they are one and the same.

R sin.a . . . 19.354869 sin.b (subtract) . 9.754918 A=23° 27′ 26″ . . 9.599951

At a certain time the sun's longitude will be 150° 33′ 20″, and the obliquity of the ecliptic 23° 27′ 29″. Required its right ascension and declination.

Ans. R. A. 152° 37′ 28″; Dec. 11° 17′ 7″ N.

OBSERVATION. This problem presents a right angled spherical triangle, whose base and hypotenuse are each greater than 90°; and in cases of this kind, let the pupil observe, that the base is greater than the hypo-

tenuse, and the acute angle opposite the base, is greater than a right angle. In all cases, a triangle and its supplemental triangle, make a lune. It is 180° from one pole to its opposite, whatever great circle be traversed. It is 180° along the equator ABA', and also 180° along the ecliptic ACA'; and the lune always gives two triangles; and when the sides of one of them are greater than 90° , we take its supplemental triangle, as in this case we operate on the triangle A'CB.

But A'C is greater than A'B; therefore, AB is greater than AC. The angle A'CB is less than 90°; therefore, ACB is greater than 90°, because the two angles together make two right angles.

These facts are technically expressed, by saying, that the sides and opposite angles are of the same affection*; and if the two sides of a right angled spherical triangle are of the same affection, the hypotenuse

^{*} Same affection: that is, both greater, or both less than 90°. Different affection: the one greater, the other less than 90°.

will be less than 90°; and of different affection, the hypotenuse will be greater than 90°.

If, in every instance, we make a natural construction of the figure and use common judgment, it will be impossible to doubt whether an arc must be taken greater or less than 90°.

We now solve the triangle A'CB, A'C=29° 26' 40".

To find A'B, we use equation (1) or (11), thus:

We select the following examples to exercise the pupils in right angled spherical trigonometry:

1. In the right angled spherical triangle ABC, given AB 118° 21′ 4″, and the angle A 23° 40′ 12″, to find the other parts.

Ans. AC 116° 17' 55", the angle C 100° 59 26", and BC 21° 5' 42".

2. In the right angled spherical triangle ABC, given AB 53° 14' 20", and the angle A 91° 25' 53", to find the other parts.

Ans. AC 91° 4′ 9", the angle C 53° 15′ 8", and BC 91° 47′ 11".

3. In the right angled spherical triangle ABC, given AB 102° 50′ 25″, and the angle A 113° 14′ 37″, to find the other parts.

Ans. AC 84° 51′ 36″, the angle C 101° 46′ 57″, and BC 113° 46′ 27″.

4. In the right angled shpherical triangle ABC, given AB 48° 24′ 16″, and BC 59° 38′ 27″, to find the other parts.

Ans. A C 70° 23' 42", the angle A 66° 20' 40", and the angle C 52° 32' 55".

5. In the right angled spherical triangle ABC, given AB 151° 23' 9", and BC 16° 35' 14", to find the other parts.

Ans. AC 147° 16' 51", the angle C 117° 37' 21", and the angle A 31° 52' 50".

In the right angled spherical triangle ABC, given AB 73° 4′
 31", and AC 86° 12' 15", to find the other parts.

Ans. BC 76° 51′ 20″, the angle A 77° 24′ 23″, and the angle C 73° 29′ 40″.

7. In the right angled spherical triangle ABC, given AC 118° 32′ 12″, and AB 47° 26′ 35″, to find the other parts.

Ans. BC 134° 56′ 20″, the angle A 126° 19′ 2″, and the angle C 56° 58′ 44″.

8. In the right angled spherical triangle ABC, given AB 40° 18′ 23″, and AC 100° 3′ 7″, to find the other parts.

Ans. The angle A 98° 38′ 53″, the angle C 41° 4′ 6″, and BC 103° 13′ 52″.

9. In the right angled spherical triangle ABC, given AC 61° 3′ 22″, and the angle A 49° 28′ 12″, to find the other parts.

Ans. AB 49° 36′ 6″, the angle C 60° 29′ 19″, and BC 41° 41′ 32″.

10 In the right angled spherical triangle ABC, given AB 29° 12′ 50″, and the angle C 37° 26′ 21″, to find the other parts?

Ans. Ambiguous; the angle A 65° 27′ 58″ or its supplement, A C 53° 24′ 13″ or its supplement, B C 46° 55′ 2″ or its supplement.

11. In the right angled spherical triangle ABC, given AB 100° 10′ 3″, and the angle C 90° 14′ 20″, to find the other parts.

Ans. Ambiguous; AC 100° 9′ 55″ or its supplement, BC 1° 19′ 53″ or its supplement, and the angle A 1° 21′ 8″ or its supplement.

12. In the right angled spherical triangle ABC, given AB 54° 21′ 35″, and the angle C 61° 2′ 15″, to find the other parts.

Ans. Ambiguous; BC 129° 28′ 28″ or its supplement, AC 111° 44′ 34″ or its supplement, and the angle A 123° 47′ 44″ or its supplement.

13. In the right angled spherical triangle ABC, given AB 121° 26′ 25″, and the angle C 111° 14′ 37″, to find the other parts.

Ans. Ambiguous; the angle A 136° 0′ 3′ or its supplement, AC 66° 15′ 38″ or its supplement, and BC 140° 30′ 56″ or its supplement.

The solution of right angled spherical triangles includes, also, the solution of quadrantal triangles, as may be seen by inspecting the adjoining figure. When we have one quadrantal triangle, we have four, which fill up the whole hemisphere.

To effect the solution of either of the four quadrantal triangles APC, APC, A'PC, or

A'P'C, it is sufficient to solve the small right angled spherical triangle ABC.

To the half lune APB, we add the triangle ABC, and we have the quadrantal triangle APC; and by subtracting the same from the equal half lune APB, we have the quadrantal triangle PAC.

When we have the side, AC, of the same triangle, we have its supplement, A'C, which is a side of the triangle A'PC, and of A'P'C. When we have the side, CB, of the small triangle, by adding it to 90°, we have P'C, a side of the triangle A'P'C; and subtracting it from 90°, we have PC, a side of the triangle APC, and A'PC.

EXAMPLES.

1. In a quadrantal triangle, there are given the quadrantal side, 90°, a side adjacent, 42° 21', and the angle opposite this last side, equal to 36° 31'. Required the other parts.

By this enumeration we cannot decide whether the triangle APC or AP'C, is the one required, for $AC=42^{\circ}$ 21' belongs equally to both triangles. The angle $APC=AP'C=36^{\circ}$ 31'=AB.

We operate wholly on the triangle ABC.

To find the angle A, call it the middle part.

Then, $R \cos(CAB) = R \sin(PAC) = \cot(AC) \tan(AB)$

To find the angle C, call it the middle part.

 $R \cos A CB = \sin CAB \cos AB$

To find the side BC, call it the middle part.

 $R \sin .BC = \tan .AB \cot .ACB$.

We now have all the sides, and all the angles of the four triangles in question.

2. In a quadrantal spherical triangle, having given the quadrantal side, 90°, an adjacent side, 115°, 09′, and the included angle, 115° 55′, to find the other parts.

This enunciation clearly points out the particular triangle A'P'C. $A'P'=90^\circ$; and conceive $A'C=115^\circ$ 09'. Then the angle $PA'C=115^\circ$ 55'=PD.

From the angle P'A'C take 90° or P'A'B, and the remainder is the angle OA'D = BAC =25° 55'.

=25° 55'.

We here again operate on the triangle

ABC. A'C, taken from 180°, gives . . .

64° 51'=AC

To find BC, we call it the middle part.

 $R \sin BC = \sin AC \sin BAC$.

$$\sin A C = 64^{\circ} 51'$$
 . 9.956744
 $\sin B A C = 25 55'$. 9.640544
 $\sin B C = 23 18' 19''$ 8.597288
 90
 $P' C = 113 18' 19''$

To find AB we call it the middle part.

 $R \sin AB = \tan BC \cot BAC$.

A'B=117 33' 52"=the angle A'P'C

To find the angle C, we call it the middle part.

 $R \cos C = \cot A C \tan B C$

cot. A C = 64° 51' . . 9.671634 tan. B C = 23 18' 19" . 9.634251 cos. C = 78 9.305885 180 19' 53" P'CA' = 101 40' 7"

Thus we have found the side P'C=113° 18' 19"
The angle A'P'C=117° 33' 52"
P'CA'=101° 40' 7"

Ans.

3. In a quadrantal triangle, given the quadrantal side, 90°, a side adjacent, 67° 3°, and the included angle, 49° 18′, to find the other parts.

Ans. The remaining side is 53° 5′ 46″, the angle opposite the quadrantal side, 108° 32′ 27″, and the remaining angle, 60° 48′ 54″.

4. In a quadrantal triangle, given the quadrantal side, 90°, one angle adjacent, 118° 40′ 36″, and the side opposite this last mentioned angle, 113° 2′ 28″, to find the other parts.

Ans. The remaining side is 54° 38′ 57″, the angle opposite, 51° 2′ 35″, and the angle opposite the quadrantal side is 72° 26′ 21″.

5. In a quadrantal triangle, given the quadrantal side, 90, and the two adjacent angles, one 69° 13′ 46″, the other 72° 12′ 4″, to find the other parts.

Ans. One of the remaining sides is 70° 8′ 39″, the other is 73° 17′ 29″, and the angle opposite the quadrantal side is 96° 13′ 23″.

6. In a quadrantal triangle, given the quadrantal side, 90°, one adjacent side, 86° 14′ 40″, and the angle opposite to that side, 37° 12′ 20″, to find the other parts.

Ans. The remaining side is 4° 43' 2", the angle opposite, 2° 51' 23", and the angle opposite the quadrantal side, 142° 42' 2".

7. In a quadrantal triangle, given the quadrantal side, 90°, and the other two sides, one 118° 32′ 16″, the other 67° 48′ 40″, to find the other parts—the three angles.

Ans. The angles are 64° 32′ 21″, 121° 3′ 40″, and 77° 11′ 6″; the greater angle opposite the greater side, of course.

8. In a quadrantal triangle, given the quadrantal side, 90°, the angle opposite, 104° 41′ 17″, and one adjacent side, 73° 21′ 6″, to find the other parts.

Ans. The remaining side is 49° 42' 18", and the remaining angles are 47° 32' 39", and 67° 56' 13".

OBLIQUE ANGLED SPHERICAL TRIGONOMETRY.

ALL cases of oblique angled spherical trigonometry may be solved by right angled trigonometry, except two; because every oblique angled spherical triangle is composed of the sum or difference of two right angled spherical triangles.

When a side and two of the angles, or an angle and two of the sides are given, to find the other parts, conform to the following directions:

Let a perpendicular be drawn from an extremity of a given side, and opposite a given angle or its supplement; this will form two right angled spherical triangles; and one of them will have its hypotenuse and one of its adjacent angles given, from which all its other parts can be computed; and some of these parts will become as known parts to the other triangle, from which all its parts can be computed.

To facilitate these computations, we here give a summary of the practical truths demonstrated in the foregoing propositions.

- 1. The sines of the sides of spherical triangles are proportional to the sines of their opposite angles.
- 2. The sines of the segments of the base, made by a perpendicular from the opposite angle, are proportional to the cotangents of their adjacent angles.
- 3. The cosines of the segments of the base are proportional to the cosines of the adjacent sides of the triangle.
- 4. The tangents of the segments of the base are proportional to the the tangents of the opposite segments of the vertical angles.
- 5. The cosines of the angles at the base, are proportional to the sines of the corresponding segments of the vertical angles.
- 6. The cosines of the segments of the vertical angles are proportional to the cotangents of the adjoining sides of the triangle.

The two cases in which right angled triangles are not used, are, 1st. When the three sides are given to find the angles; and,

2d. When the three angles are given to find the sides.

The first of these cases is the most important of all, and for that reason great attention has been given to it, and two series of equations, (T) and (U), have been deduced to facilitate its solution.

We now apply the following equation to find the angle A, of the triangle ABC, whose sides are a, b, c. $a=70^{\circ} 4' 18''$. $b=63^{\circ} 21' 27''$. $c=59^{\circ} 16' 23''$. a is opposite A, b is opposite B. and c is opposite C.

$$\cos \frac{1}{2}A = \sqrt{\frac{R^2 \sin S \sin (S-a)}{\sin S \sin c}}$$

We write the second member of this equation thus:

$$\sqrt{\left(\frac{R}{\sin b}\right)\left(\frac{R}{\sin c}\right)\sin S \sin (S-a)}$$

showing four distinct logarithms.

The logarithm corresponding to $\frac{R}{\sin b}$ is the $\sin b$ subtracted from 10; and $\frac{R}{\sin c}$ is the $\sin c$ subtracted from 10, which we call sin.complement.

When we apply the equation to find the angle A, we write a first, at the top of the column; when we apply the equation to find the angle B, we write b at the top of the column. Thus,

To find the angle B

$$\cos \frac{1}{2}B = \sqrt{\frac{R^2 \sin S \sin (S - b)}{\sin a \sin c}}$$

$$= \sqrt{\left(\frac{R}{\sin a}\right) \left(\frac{R}{\sin c}\right) (\sin S) \sin (S - b)}$$

$$b = 63^{\circ} 21' 27''$$

$$c = 59 16 23 \sin com. . . .065697$$

$$a = 70 4 18 \sin com. . . .026857$$

$$2)192 42 8$$

$$S = 96 21 4 \sin 9.997326$$

$$S = 32 59 37 \sin 9.736034$$

$$2)19.825874$$

$$\frac{1}{2}B = 35 4 49 \cos . . . 9.912937$$

$$B = 70 9 38$$

By the other equation in formula (T), we can find the angle C; but, for the sake of variety, we will find the angle C by the application of the third equation in formula (U).

$$\sin \frac{1}{2}C = \sqrt{\frac{R^2 \sin .(8-b) \sin .(8-a)}{\sin .b \sin .a}}$$

$$= \sqrt{\left(\frac{R}{\sin .b}\right) \left(\frac{R}{\sin .a}\right) \sin .(8-b) \sin .(8-a)}$$

$$c = 59^{\circ} 16' 23'' ...$$

$$a = 70 \quad 4 \quad 18 \quad \sin .com ... 026817$$

$$b = 63 \quad 21 \quad 27 \quad \sin .com ... 048479$$

$$2)192 \quad 42 \quad 8$$

$$8 = 96 \quad 21 \quad 4$$

$$8 - a = 26 \quad 16 \quad 46 \quad \sin ... \quad 9.646158$$

$$8 - b = 32 \quad 59 \quad 37 \quad \sin ... \quad 9.736034$$

$$2)19.457758$$

$$\frac{1}{2}C = 32^{\circ} 23' 17'' \sin ... \quad 9.778879$$

$$C = \frac{2}{64 \quad 46 \quad 34}$$

To show the harmony and practical utility of these two sets of equations, we will find the angle A, from the equation

$$\begin{array}{c} \sin \frac{1}{2}A = \sqrt{\left(\frac{R}{\sin b}\right) \left(\frac{R}{\sin c}\right)} \sin \left(S - b\right) \sin \left(S - c\right)} \; . \\ a = 70 \quad 4' \quad 18'' \\ b = 63 \quad 21 \quad 27 \quad \sin \cos c . \quad .048749 \\ c = 59 \quad 16 \quad 23 \quad \sin \cos c . \quad .065697 \\ \hline 2)192 \quad 42 \quad 8 \\ S = 96 \quad 21 \quad 4 \\ S - b = 32 \quad 59 \quad 37 \quad \sin c . \quad . \quad .9.736034 \\ S - c = 37 \quad 4 \quad 41 \quad \sin c . \quad . \quad .9.780247 \\ \hline 2)19.630727 \\ \hline \frac{1}{2}A = 40^{\circ} 49' \quad 10'' \quad \sin c . \quad . \quad .9.815363 \\ \hline A = 81 \quad 38 \quad 20 \end{array}$$

2. In a spherical triangle ABC, given the angle A, 38° 19' 18", the angle B, 48° 0' 10", and the angle C, 121° 8' 6", to find the sides a, b, c. Apply proposition 6, spherics.

A= 38° 19′ 18″ supplement 141° 40′ 42° B= 48 0 10 supplement 131 59 50 C=121 8 6 supplement 58 51 54

We now find the angles to the spherical triangle, whose sides are these supplements.

angle =133 35 15

supp. = 46 24 45=a of the original triangle.

In the same manner we find $b=60^{\circ} 14' 25'' c=89^{\circ} 1' 14''$

EXAMPLES FOR EXERCISE.

1. In any triangle, ABC, whose sides are a, b, c, given $b=118^{\circ}2'$ 14", $c=120^{\circ}$ 18' 33", and the included angle $A=27^{\circ}$ 22' 34", to find the other parts.

Ans. $a=23^{\circ}$ 57' 13", angle $B=91^{\circ}$ 26' 44", and $C=102^{\circ}$ 5' 54".

2. Given $A=81^{\circ}$ 38' 17", $B=70^{\circ}$ 9' 38", and $C=64^{\circ}$ 46' 32", to find the sides a,b, and c.

. Ans. a=70° 4′ 18″, b=63° 21′ 27″, and c=59° 16′ 23″.

3. Given the three sides $a=93^{\circ}$ 27' 34", $b=100^{\circ}$ 4' 26", and $c=96^{\circ}$ 14' 50", to find the angles A, B, and C.

Ans. A=94° 39′ 4″, B=100° 32′ 19″, and C=96° 58′ 36″.

4. Given two sides, $b=84^{\circ}$ 16', $c=81^{\circ}$ 12', and the angle $C=80^{\circ}$ 28', to find the other parts.

Ans. The result is ambiguous, for we may consider the angle B as acute or obtuse. If the angle B is acute, then $A=97^{\circ}$ 13' 45", $B=83^{\circ}$ 11' 24", and $a=96^{\circ}$ 13' 33".

If B is obtuse, then $A=21^{\circ}$ 16' 44", $B=96^{\circ}$ 48' 36", and $a=21^{\circ}$ 19' 29"

^{*} The sine complement of 131° 59′ 50″, is the same as the sine complement of 48° 0′ 10″.

5. Given one side, $c=64^{\circ}$ 26', and the angles adjacent, $A=49^{\circ}$, and $B=52^{\circ}$, to find the other parts.

Ans. $b=45^{\circ}$ 56' 46", $a=43^{\circ}$ 29' 49", and $C=98^{\circ}$ 28' 5".

- 6 Given the three sides, $a=90^{\circ}$, $b=90^{\circ}$, $c=90^{\circ}$, to find the angles A, B, and C.

 Ans. $A=90^{\circ}$, $B=90^{\circ}$, and $C=90^{\circ}$.
- 7. Given the two sides, $a=77^{\circ}$ 25' 11", and $c=128^{\circ}$ 13' 47", and the angle C, to find the other parts.

Ans. b=84° 29' 24", A=69° 14', and B=72° 28' 46".

8. Given the three sides, a, b, c, $a=68^{\circ}$ 34' 13", $b=59^{\circ}$ 21' 18, and $c=112^{\circ}$ 16' 32", to find the angles A, B, and C.

Ans. A=45° 26′ 12″, B=41° 11′ 6″, C=134° 54′ 27″

APPLICATION.

Spherical trigononometry becomes a science of incalculable importance in its connection with geography, navigation, and astronomy; for neither of these subjects can be understood without it; and to stimulate the student to a study of the science, we here attempt to give him a glimpse at some of its points of application.

Let the lines in the annexed figure represent circles in the heavens above and around us.

Let Z be the zenith, or the point just overhead, Hch the horizon, PZH the meridian in the heavens, P the pole of the earth's equator; then Ph is the latitude of the observer, and PZ is the co.latitude. Qcq is a portion

of the equator, and the dotted, curved line, mS'S, parallel to the equator, is the parallel of the sun's declination at some particular time; and in this figure the sun's declination is supposed to be north. By the revolution of the earth on its axis, the sun is apparently brought from the horizon, at S, to the meridian, at m; and from thence it is carried down on the same curve, on the other side of the meridian; and this apparent motion of the sun (or any other celestial body) makes angles at the pole P, which are in direct proportion to their times of description.

The apparent straight line, Zc, is what is denominated, in astronomy, the *prime vertical*; that is, the east and west line through the zenith, passing through the *east* and *west* points in the horizon.

When the latitude of the place is north, and the declination is also north, as is represented in this figure, the sun rises and sets on the horizon to the north of the east and west points, and the distance is measured by the arc cS, on the horizon.

This arc can be found by means of the right angled spherical triangle cqS, right angled at q. Sq is the sun's declination, and the angle Scq is equal to the co.latitude of the place; for the angle cPh is the latitude, and the angle Scq is its complement.

The side cq, a portion of the equator, measures the angle cPq, the time of the sun's rising or setting before or after six, apparent time. Thus we perceive that this little triangle cSq, is a very important one.

When the sun is exactly east or west, it can be determined by the triangle ZPS'; the side PZ is known, being the co.latitude; the angle PZS' is a right angle, and the side PS' is the sun's polar distance. Here, then, is the hypotenuse and side of a right angled spherical triangle given, from which the other parts can be computed. The angle ZPS' is the time from noon, and the side ZS' is the sun's zenith distance at that time.

FORMULA FOR TIME.

The most important problem in navigation is that of finding the time from the altitude of the sun, when the sun's declination and the latitude of the observer are given.

This problem will be understood by the triangle PZS. When the sun is on the meridian, it is then apparent noon. When not on the meridian, we can determine the interval from noon by means of the triangle PZS; for we can know all its sides; and the angle at P, changed into time at the rate of 15° to

can hour, will give the time from apparent noon, when any particular altitude, as TS, may have been observed. PS is known by the sun's declination at about the time; and PZ is known, if the observer knows his latitude.

Having these three sides, we can always find the sought angle at the pole, by the equations already given in formulas (T), or (U); but these formulas require the use of the colatitude and the colatitude, and the practical navigator is very averse to taking the trouble of finding the complements of arcs, when he is quite certain that formulas can be made, which comprise but the arcs themselves.

The practical man, also, very properly demands the most concise practical results. No matter how much labor is spent in theorizing, provided we arrive at practical brevity; and for the especial accommodation of seamen, the following formula for finding time has been deduced.

From the fundamental equation of spherical trigonometry, taken from page 191 we have,

$$\cos P = \frac{\cos ZS - \cos PZ \cos PS}{\sin PZ \sin PS}$$

Now, in place of $\cos ZS$, we take $\sin ST$, which is, in fact, the same thing, and in place of $\cos PZ$, we take $\sin \text{lat.}$, which is also the same.

In short, let A= the altitude of the sun, L= the latitude of the observer, and D= the sun's polar distance.

Then, . .
$$\cos P = \frac{\sin A - \sin L \cos D}{\cos L \sin D}$$

But, . $2 \sin^2 \frac{1}{2}P = 1 - \cos P$ (See eq. 32, page 143.)

Therefore, $2 \sin^2 \frac{1}{2}P = 1 - \frac{\sin A - \sin L \cos D}{\cos L \sin D}$

$$= \frac{(\cos L \sin D + \sin L \cos D) - \sin A}{\cos L \sin D}$$

$$= \frac{\sin (L + D) - \sin A}{\cos L \sin D}$$
18

Considering (L+D) as a single arc, and applying equation (18), plane trigonometry, we have, after dividing by 2,

$$\sin^{2}\frac{1}{2}P = \frac{\cos\left(\frac{L+D+A}{2}\right)\sin\left(\frac{L+D-A}{2}\right)}{\cos L\sin D}$$

But,
$$\frac{L+D-A}{2} = \frac{L+D+A}{2} - A$$
 and if we assume

$$S = \frac{L+D+A}{2}$$
, we shall have,

$$\sin^{2} \frac{1}{2}P = \frac{\cos S \sin (S - A)}{\cos L \sin D}$$

Or,
$$\sin \frac{1}{2}P = \sqrt{\frac{\cos S \sin (S - A)}{\cos L \sin D}}$$

This is the final result, when the radius is unity, and when the radius is greater by R, then the sin. $\frac{1}{2}P$, will be greater by R; and, therefore, the value of this sine, corresponding to our tables is,

$$\sin \frac{1}{2}P = \sqrt{\left(\frac{R}{\cos L}\right)\left(\frac{R}{\sin D}\right)\cos S \sin \left(S - A\right)}$$

This equation is known as the sailor's formula for time, and a very concise and beautiful formula it is; it is used by thousands who have little knowledge of how it is obtained, or who know little of the amount of science there is wrapt up in it.

When the observer has logarithmic tables that contain secants and cosecants, the above equation can be modified.

Because,
$$\sec L = \frac{R^2}{\cos L}$$
 and $\csc D = \frac{R^2}{\sin D}$

(See equations, plane trigonometry, page 138.)

Therefore,
$$\sin \frac{1}{2}P = \sqrt{\left(\frac{\sec L}{R}\right)\left(\frac{\csc D}{R}\right)\cos S \sin \left(S - A\right)}$$

Here, then, we have four distinct logarithms to be added together and divided by 2, which is extracting square root.

The first logarithm is the secant of the latitude, diminished by the index 10; the second is the cosecant of the polar distance, diminished by the index 10; the third is the cosine of the half sum of altitude, latitude, and polar distance; and the fourth is the sine of an arc, found by diminishing this half sum by the altitude.

Navigators retain this formula in memory by the following words:

Altitude—latitude—polar distance—half sum—remainder; secant —cosecant—cosine—sine.

EXAMPLE.

In latitude 39° 6′ 20" north, when the sun's declination was 12° 3′ 10", north, the true altitude* of the sun's center was observed to be 30° 10′ 40", rising. What was the apparent time?

Alt. 30° 10′ 30″

Lat. 39 6 20 cos.com. .110146

P.D. 77 56 50 sin.com. .009680

2)147 13 40

$$S = 73 36 50$$
 cos. . 9.450416

(S—A)= 43 26 20 sin. . 9.837299

2)19.407541

30 22 5 sin. 9.703770

2

P= 60 44 10

This angle, converted into time, at the rate of 15° to one hour, or 4 minutes to 1°, gives 4h. 2m. 56s. from apparent noon; and as the sun was rising, it was before noon, or

If to this the equation of time were given and applied, we should have the mean time; and if such time were compared to a clock or watch, we could determine its error. A good observer, with a good instrument, can, in this manner, determine the local time within 4 or 5 seconds.

[•] The instrument used, the manner of taking the altitude, its correction for refraction, semidiameter, and other practical or circumstantial details, do not belong to a work of this kind, but to a work on practical astronomy or navigation.

The great importance of determining the exact time, at sea, is to determine the longitude, which is but the difference of the local time between the observer's meridian and the assumed prime meridian.

A timepiece, of nice and delicate construction, called a chronometer, by its rate of motion and adjustment, will show the time at Greenwich, or at any other known meridian to which it refers; and this time, compared with an observation on the sun, will determine the amount of difference in local times, which is, in substance, longitude.

The same triangle, PZS, gives the bearing of the sun, which is is called its azimuth; that is, the angle PZS is the azimuth from the north, and its supplement, HZS, is its azimuth from the south. This is the true bearing; and if the bearing per compass is the same, then the compass has no variation; if different, the amount of difference gives the amount of the variation of the compass.

HOW TO MANAGE A LOCAL SOLAR ECLIPSE.

We shall touch this subject only so far as to show the application and utility of spherical trigonometry.

The angular semidiameter of the sun is about 15', and that of the moon, about the same; and, of course, when an eclipse of the sun commences or ends, the apparent distance between the sun and moon cannot be greater than about 32', or a little more than half a degree.

The nautical almanac, or the astronomical tables, will give us the time when the sun and moon fall into line on the same meridian of right ascension, and give us, also, their difference in declinations, at the same time, together with all the other necessary elements, such as semidiameters, horizontal parallax, hourly motions, &c.

Now let us take the time when the moon is in conjunction with the sun in *right ascension*, and demand the apparent distance between the centers of the sun and moon, as seen from any particular locality.

By the time as given in the nautical almanac, we know the sun's distance from the *local* meridian, either east or west. Look at the last figure. Let S represent the position of the stn's center, P the pole, and Z the zenith of the observer.

Then, in the triangle ZPS, we know the two sides, ZP and PS; and from the apparent time, we know their included angle, ZPS.

The declination of both sun and moon is also given in the nautical almanac, corresponding to this time; and their difference gives the space which we represent by Sm, on our figure. From the triangle PZm (two sides and angle included), compute Zm and the angle ZmP.

The effect of parallax is to depress the body in a vertical direction; and if m is its true place, as seen from the center of the earth, n may represent its apparent place, as seen by the observer, whose senith is Z.

The arc mn is computed from the horizontal parallax, by the following proportion, p representing the lunar horizontal parallax.

Rad.: cos. \supset app.altitude =p:mn.

The angle Smn=ZmP, and the angle ZmP is computed from the triangle PZm. Now, the triangle Smn is always very small; the sides are never more than a degree in length, and are generally much less; and it therefore may be regarded as a plane triangle, with two sides, Sm and mn, and the angle Smn, between them, given. From these data we can compute the distance between S and n; and if that distance is less than the sum of the semidiameters of the sun and moon, the sun must then be in an eclipse—otherwise it is not.

But whether the distance between S and n is less, equal, or greater than the semidiameters of the sun and moon, by it the computer can assume an approximate time for the beginning or end of the eclipse, as the case may be.

In case the computer wishes to compute the apparent distance between sun and moon, corresponding to any other time than that of conjunction in right ascension, he may assume any interval before or after that period; and by the moon's motion from the sun during that interval, he can put the moon in its true place, at m.

Now, by the help of the spherical triangle PZm, and the meon's horizontal parallax, the distance was can be computed as before;

and by means of the little triangle mna, we compute the distances na and am. The distance na is parallax in right ascension, and ma is parallax in declination. Parallax increases the moon's right ascension when the moon is east of the meridian, and diminishes it when west of the meridian.

Now, the difference between PS and Pa, is the apparent difference of declination of the sun and moon; and nc is the apparent difference of right ascension of the same bodies; ca is the real difference in right ascension. The distances Sc and cn,* expressed in seconds of arc as linear units, form two sides of a right angled plane triangle; and

the distance Sn, the hypotenuse, is the apparent distance between the center of the sun and the center of the moon; and just at the commencement or end of an eclipse, that distance will be equal to the semidiameter of the sun, added to the semidiameter of the moon.

But it would be only accident if an operator should assume the exact time of the beginning or end of an eclipse; but the distance Sn, computed, would indicate whether the eclipse had already commenced or ended, or would commence or end within some very short interval of time.

Astronomers, however, are in the habit of taking two intervals of time, about 10 or 15 minutes asunder, between which they know the eclipse will commence, and compute the apparent distance, Sn, for these two periods; one of them will be less, and the other greater than the sum of the two semidiameters; and thus they find data to proportion to the commencement or end in question.

By the same principles astronomers compute the beginning and end of occultations.

^{*} The number of seconds in cn must be multiplied by the cosine of the declination, because cn is an arc of a small circle.

MISCELLANEOUS ASTRONOMICAL EXAMPLES.

1. In latitude 40° 48' north, the sun bore south 79° 16' west, at 3h. 37m. 59s. P. M., apparent time. Required his altitude and declination.

Ans. The altitude 36° 46', and declination 15° 32' north.

- 2. In north latitude, when the sun's declination was 14° 20' north, his altitudes, at two different times on the same forenoon, were 43° 7'+,* and 67° 10'+; and the change of his azimuth, in the interval, 45° 2'. Required the latitude. Ans. 34° 20' north.
- 3. In latitude 16° 4' north, when the sun's declination is 23° 2' north. Required the time in the afternoon, and the sun's altitude and bearing when his azimuth neither increases nor decreases.

Ans. Time 3h. 9m. 26s. P. M., altitude 45° 1', and bearing south 73° 16' west.

- 4. The sun set south west $\frac{1}{2}$ south, when his declination was 16° 4' south. Required the latitude.

 Ans. 69° 1' north.
- 5. The altitude of the sun, when on the equator, was 14° 28'+, bearing east 22° 30' south. Required the latitude and time.

Ans. Latitude 56° 1', and time 7h. 46m. 12s. A. M.

- 6. The altitude of the sun was 20° 41' at 2h. 20m. P. M, when his declination was 10° 28' south. Required his azimuth and the latitude. Ans. Azimuth south 37° 5' west, latitude 51° 58' north.
- 7. If, on August 11, 1840, Spica set 2h. 26m. 14s. before Arcturus, hight of the eye 15 feet, required the north latitude.

Ans. 33° 46' north.

- 8. If, on November 14, 1829, Menkar rise 48m. 3s. before Aldebaran, hight of the eye 17 feet, required the north latitude.

 Ans. 30° 45' north.
- 9. In latitude 16° 40' north, when the sun's declination was 23° 18' north, I observed him twice, in the same forenoon, bearing north 68° 30' east. Required the times of observation, and his altitude at each time.

Ans. Times 6h. 15m. 40s. A. M., and 10h. 32m. 48s. A. M., altitudes 9° 59′ 36″, and 68° 29′ 42″.

^{*} Plus means rising; and, of course, forencon.

LUNAR OBSERVATIONS.

The moon revolves through a great circle of the celestial sphere in about 27 days and 8 hours; and astronomers are able to designate its exact position in respect to the stars, corresponding to any definite time.

But the observer is supposed to be at the center of the earth. The moon is never seen by an observer in exactly its true plane, unless the observer is in a line between the center of the earth and the center of the moon; that is, unless the moon is in the zenith of the observer; in all other positions the moon is depressed by

parallax, and appears nearer to those stars which are below her, and further from those that are above her, than would appear from the center of the earth.

The true distance between the sun and moon, or between a star and the moon, can be deduced from the apparent distance, by the application of spherical trigonometry.

The apparent altitudes of the two objects must be taken, and corrected for parallax and refraction.

Let Z be the zenith of the observer, S' the apparent place of the sun or star, and S its true place; also, let m' be the apparent place of the moon, and m its true place, as seen from the center of the earth.

With the observed sides of the spherical triangle ZS'm', we compute the angle at Z; then, in the triangle ZSm we have the two sides ZS and Zm, and the included angle at Z, from which we compute the side Sm, which is the *true distance*.

To the definite, true distance, there is a corresponding definite Greenwich time, which the practical navigator can find with the utmost facility. This time at the first meridian, compared with the local time deduced from the altitude of the sun, will of course give the longitude.

To deduce the true distance from the apparent, is called working a Array, and is a subject of considerable perplexity to the young navigator; but, by means of auxiliary tables, and rules for delicate

approximations, science and art have nearly overcome all difficulties, and a good operator can now work a lunar in about five minutes.

We here only give a view of the scientific principles involved. For complete practical knowledge we must consult books on navigation.

APPENDIX TO TRIGONOMETRY.

For the benefit of those who may desire to cultivate a taste for mathematical science, we give the following exercises, which are designed to strengthen the powers for geometrical investigations.

To demonstrate equations (7), (8), (9), and (10), geometrically, the pupil must be fully impressed with the following principles:

- 1. An angle in a semicircle is a right angle.
- 2. If one side of a right angled triangle is made the sine of its opposite angle, the other side will be the cosine of the same angle.

(See proposition 3, page 147.)

- 3. Any chord is double the sine of half the arc. (See observation 3. page 138.)
 - 4. Observe theorem 21, book 3.

Now from A, any point on a circle, take AB, the double of any arc designated by a, and AC, double of any arc designated by b.

Draw AD, the diameter, and consider its value equal 2, twice the radius of unity. Join BD and DC.

Then, by reason of the quadrilateral in a circle, we have,

But,
$$AD \cdot BC = AB \cdot DC + AC \cdot BD$$
 (1)
 $AB = 2 \sin a$ Also, $AC = 2 \sin b$ DC $BD = 2 \cos a$ Also, $DC = 2 \cos b$ BC $BC = 2 \sin (a+b)$, and $AD = 2$

Substituting these values in (1), we have

 $4 \sin(a+b) = 2 \sin a \ 2 \cos b + 2 \cos a \ 2 \sin b$

Dividing by 4, and

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

Now let the arc CAB=2a, and AB=2b; then AC=2a-2b

And,
$$CB=2\sin a$$
, $AC=2\sin (a-b)$, $BD=2\cos b$
 $AB=2\sin b$, $DC=2\cos (a-b)$

Substituting these values in equation (1), we have

$$4 \sin a = 2 \sin b 2 \cos (a - b) + 2 \sin (a - b) 2 \cos b$$

Dividing by 4,
$$\sin a = \sin b \cos(a - b) + \sin(a - b)\cos b$$

To demonstrate equation (8.) Let the ere AB=2a, AC=2b;

Then,
$$BC=2(a-b)$$

And, by reason of the quadrilateral,

$$AB \cdot DC = BC \cdot AD + AC \cdot BD \quad (2)$$

But,
$$AB=2 \sin a$$
 Also, $AC=2 \sin b$ BD=2 cos.a Also, $DC=2 \cos b$

$$AD=2$$
, and $BC=2 \sin(a-b)$

These values substituted above, and we have

$$2 \sin a 2 \cos b = 4 \sin (a - b) + 2 \sin b 2 \cos a$$

Dividing by 4, transposing, &c.,

And
$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

Again, let the arc AC=2a, the arc CR=2b; then the arc ACB=2(a+b),

And the chord
$$AB=2 \sin(a+b)$$
 $AC=2 \sin a$ $BD=2 \cos(a+b)$ $DC=2 \cos a$

$$A\dot{D}=2$$
, and $BC=2\sin 3$

Substituting these values in equation (2), we have,

$$2 \cos a \ 2 \sin (a+b) = 4 \sin b + 2 \sin a \ 2 \cos (a+b)$$

Dividing by 4,

$$\cos a \sin (a+b) = \sin b + \sin a \cos (a+b)$$

To demonstrate the truth of equation (10), we use the last figure, conceiving the arc AC to be 2a, the arc BD to be 2b.

Then the arc BC will be measured by $(180^{\circ}-2(a+b))$; its half will therefore be measured by $90^{\circ}-(a+b)$.

But,
$$2\sin(90^{\circ}-a+b)=2\cos(a+b)=BC$$

On this hypothesis,

The chord
$$AC=2 \sin a$$
 Also, $DB=2 \sin b$ $AB=2 \cos b$

$$AD=2$$
, and $BC=2\cos(a+b)$

Substituting these values in equation (2), we have

$$2\cos b \ 2\cos a = 4\cos(a+b) + 2\sin a \ 2\sin b$$

Dividing and transposing,

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

To demonstrate equation (10). Draw the diameter AD, and on one side of it take the arc AB=2a, and on the other side take the arc DE=2b. Join BD, AE, and BE. From B, draw BCF through the center of the circle; then the arc DEF = the arc AB, and EF is the difference

of the arcs AB and DE; it is therefore measured by 2(a-b).

Now, in the quadrilateral ABDE, we have

$$AD \cdot BE = AB \cdot DE + DB \cdot AE$$

$$AB = 2 \sin a \} Also, DE = 2 \sin b \}$$

$$AD = 2 \cos a \} Also, AE = 2 \cos b \}$$

$$AD = 2, and BE = 2 \cos (a - b)$$

These values, substituted in the last equation, will give

$$4\cos(a-b)=2\sin a \ 2\sin b+2\cos a \ 2\cos b$$

 $\cos(a-b)=\sin a \ \sin b+\cos a \cos b$

PROBLEMS FOR EXERCISE.

1. Show, geometrically, that rad. (rad. $+\cos A$) = $2\cos^2\frac{A}{2}$; that rad. (rad $-\cos A$) = $2\sin^2\frac{A}{2}$; that rad. $\sin 2A = 2\sin A \cdot \cos A$;

- 2. Prove that $\tan A + \tan B = \frac{\sin (A+B)}{\cos A \cdot \cos B}$, radius being unity.
- 3. Demonstrate, geometrically, that rad. sec.2A=tan.A tan.2A+rad².
- 4. Show that in any plane triangle, the base is to the sum of the other two sides, as the sine of half the vertical angle is to the cosine of half the difference of the angles at the base.
- 5. Show that the base of a plane triangle is to the difference of the other two sides, as the cosine of half the vertical angle is to the sine of half the difference of the angles at the base.
- 6. The difference of two sides of a triangle, is to the difference of the segments of a third side, made by a perpendicular from the opposite angle, as the sine of half the vertical angle is to the cosine of half the difference of the angles at the base; required the proof.

NOTE.

When we give our attention to the relations existing between the arc of a circle and its sine, cosine, and tangent, it becomes very desirable to find some law which will invariably and unconditionally numerically connect the arc with its trigonometrical lines; and the object has been accomplished, though not in as elementary a manner as is desirable for a work like this.

In the calculus the process is clear and simple; but simple as it may be, the reader must first understand the calculus before it can be even comprehensible to him.

We give the following investigation, independent of the calculus, taken from the French works of Legendre, with our own modifications and illustrations. By a little careful study, any one can thoroughly comprehend it, who is familiar with algebraic equations, and understands the binomial theorem.

LEMMA.

If there be an algebraic equation in which the members consist of quantities, part real and part imaginary, then the real quantities in the two members are equal, and the imaginary quantities are equal.

N. B. Imaginary quantities contain the factor $\sqrt{-1}$, and such quantities are, emphatically, *imaginary*; they have no real existence.

Suppose we have an equation in which the sum of the real quantities in the first member is represented by A; and the sum of the like quantities in the second member by B. Also, the sum of the imaginary quantities in the first member, suppose represented by $S\sqrt{-1}$, and the sum of the like quantities in the second member by $T\sqrt{-1}$; that is, suppose the following equation to exist.

$$A + 8\sqrt{-1} = B + T\sqrt{-1}$$

Then,
$$A=B$$
, and $S\sqrt{-1}=T\sqrt{-1}$

If A is not equal to B, one must be greater than the other; and as they are supposed to be real and definite quantities, their difference must be real and definite; and, therefore, we can represent it by the definite quantity D.

That is, suppose A greater than B by D; then the equation becomes

$$B+D+S\sqrt{-1}=B+T\sqrt{-1}$$

Strike out B from both members, and transpose $S\sqrt{-1}$

Then,
$$D=T\sqrt{-1}-S\sqrt{-1}=(T-S)\sqrt{-1}$$

That is, a real quantity equal to an imaginary one—a perfect absurdity; and this absurdity is in consequence of supposing A not equal to B; therefore, we must admit that A=B.

It necessarily follows that

$$S\sqrt{-1}=T\sqrt{-1}$$

Let a represent any arc, the radius unity; then,

$$\cos^2 a + \sin^2 a = 1$$

Conceive the first member as composed of the two factors,

The product of these two factors, is

 $\cos^2 a - h^2 \sin^2 a;$ and, by hypothesis, this product must equal the first member of the equation; that is,

$$\cos^2 a - h^2 \sin^2 a = \cos^2 a + \sin^2 a$$

Dropping cos.²a from both members, there remains

$$-h^2 \sin^2 a = \sin^2 a$$

Dividing by sin.2s, and changing signs, we have

 $h^2=-1$, or $h=+\sqrt{-1}$, which shows that the coefficient, h, is imaginary.*

The different powers of & are

$$h=+1\sqrt{-1}, h^2=-1, h^3=-1\sqrt{-1}, h^4=+1, h^5=+\sqrt{-1}, h^6=-1,$$

and so on. Observe that all the even powers of h are rational quantities; in short, units, with the signs plus and minus alternating.

Thus,
$$h^2=-1$$
, $h^4=+1$, $h^6=-1$, $h^6=+1$, and so on.

All the odd powers are *imaginary*, and the signs alternating. If we multiply the two similar factors,

$$\cos a + h \sin a$$

And, . . $\cos b + h \sin b$

Product will be, $\cos a \cos b + (\sin a \cos b + \cos a \sin b)h + h^2 \sin a \sin b$

Now let $h=\sqrt{-1}$, and $h^2=-1$; then this product is

(cos. a cos.b—sin.a sin.b)+(sin.a cos.b+cos.a sin.b)
$$\sqrt{-1}$$

Comparing this expression with equations (9) and (7), page 141, we perceive that it is the same as

$$\cos(a+b) + \sin(a+b)\sqrt{-1}$$
;

Hence, $(\cos a + h \sin a)(\cos b + h \sin a) = \cos(a + b) + h \sin(a + b)$

In case we give to h its particular imaginary value, $\sqrt{-1}$

It is very remarkable that the product of these factors can be found by simply adding the arcs, which is a property analogous to logarithms.

If we make a=b in the preceding equation, we have

$$(\cos a + h \sin a)(\cos a + h \sin a) = \cos 2a + h \sin 2a$$
 (1)

$$(\cos a + h \sin a)(\cos 2a + h \sin 2a) = \cos 3a + h \sin 3a$$
 (2)

$$(\cos a + h \sin a)(\cos 3a + h \sin 3a) = \cos 4a + h \sin 4a$$
 (3)

and so on.

The first member of equation (1), is

$$(\cos a + k \sin a)^2$$

Thus,
$$x^2 + y^2 = (x + y_1)^2 - 1(x - y_2)^2 - 1$$

^{*} This investigation shows, also, that the sum of any two squares may be regarded as the product of two binomial factors.

The first member of equation (2), is

 $(\cos a + h \sin a)^2$, and so on. Therefore, in general, if n is taken to represent any entire number, whatever, we shall have,

But,
$$(\cos a + h \sin a)^n = \cos^n a (1 + h \tan a)^n$$

Because,
$$\frac{\sin a}{\cos a} = \tan a$$

Hence,
$$\cos na + h \sin na = \cos a(1+h \tan a)$$
 (4)

Expanding the binomial in the second member, we have

$$(1+h\tan a)^2=1+nh\tan a+n\frac{n-1}{2}h^2\tan^2a+n\frac{n-1}{2}\frac{n-2}{3}h^3\tan^3a$$
, &c.

Substituting the expanded binomial in equation (4), it becomes

$$\cos^{a}a(1+nh\tan a+n\frac{n-1}{2}h^{2}\tan^{2}a+n\frac{n-1}{2}\frac{n-2}{3}h^{3}\tan^{3}a$$
, &c.)

Calling to mind the principles explained in the preceding lemma, and recollecting that all the terms containing the odd powers of h must be imaginary, and all the other terms real, therefore, we may put $\cos na$ equal to all the real quantities in the series, multiplied by the factor $\cos a$; and the imaginary quantity $h \sin na$, must be put equal to all the terms in the series containing the odd powers of h, and the whole multiplied by the factor $\cos a$.

But as every term of this equation will contain h, we can divide by h, and thus convert every odd power into an even power, and change the equation from imaginary terms to real terms.

Thus, by equating the parts of the preceding equation, we have

608.na==

$$\cos^3 a (1+n) \frac{n-1}{2} h^2 \tan^{-2} a + n \frac{n-1}{2} \frac{n-2}{3} \frac{n-3}{4} h^4 \tan^{-4} a + &c.$$

$$\sin na = \cos^2 a (n \tan a + n \frac{n-1}{2} \frac{n-2}{3} h^2 \tan^2 a + n \frac{n-1}{2} \frac{n-2}{3} \frac{n-3}{4} \frac{n-4}{5} h^4 \tan^5 a + &c.)$$

Put x=na. Then $n=\frac{x}{a}$. Also observe that $h^2=-1$, and $h^4=1$, and so on, alternately. Making these substitutions, the preceding equations become

$$\cos x = \cos^{3}a(1 - \frac{xx - a}{1 \cdot 2} \frac{\tan^{2}a}{a^{2}} + \frac{x(x - a)(x - 2a)(x - 3a)}{1 \cdot 2 \cdot 3 \cdot 4} \frac{\tan^{4}a}{a4} &c.)$$

$$\sin x = \cos^{3}a\left(\frac{x}{1} \frac{\tan a}{a} - \frac{x(x - a)(x - 2a)}{1 \cdot 2 \cdot 3} \frac{\tan^{3}a}{a^{3}} - \frac{x(x - a)(x - 2a)(x - 3a)(x - 4a)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \frac{\tan^{4}a}{a^{4}} &c.\right)$$

In these equations the arc a may be taken of any value whatever, and when a represents a very small arc, $\frac{\tan a}{a}$ is very near unity, and is exactly unity when a=0.

Also, when a=0, $\cos a=1$, and any power of 1 is 1; therefore, $\cos a=1$. Making these substitutions, the final results will be,

$$\cos x = 1 - \frac{x^2}{1 \cdot 2} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} - \frac{x^5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \&c.$$

$$\sin x = x - \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \frac{x^7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} + \&c.$$

To apply these equations, and show their practical utility in the primary computions for the natural sines and cosines, we require the natural sine and cosine of 3°.

When radius is unity, the arc of 180° is 3.14159265.

Therefore, the arc of 3° is .052359877.

Hence,
$$\frac{x^2}{2} = -0.001370733$$
And,
$$\frac{x^4}{24} = +0.000000313$$
Therefore, from . 1.000000313
Take . . . 0.001370733
$$\cos x = 0.052359877$$

$$\frac{x^3}{6} = 0.000023923$$

$$\frac{x^6}{120} = 0.000000003$$

$$\sin x = 0.052335957 \text{ the sin. of } 3^\circ.$$

In like manner we may compute the sine and cosine of any other arc. But the greater the arc, the slower the series will converge; and,

in case of large arcs, a greater number of terms must be taken to obtain a result of equal exactness; the series, however, is never used for large arcs, but the combinations of other formulas are then used. These formulas are more practical than any other hitherto given for the same object; but their theoretical investigation is supposed to require more power than a learner can at first possess.

CONIC SECTIONS.

DEFINITIONS.

- 1. Conic Sections are the figures made by a plane, cutting a cone.
- 2. There are five different figures that can be made by a plane cutting a cone, namely: a triangle, a circle, an ellipse, a parabola, and an hyperbola.

REMARK. The three last mentioned are commonly regarded as embracing the whole of conic sections; but with equal propriety the triangle and the circle might be admitted into the same family. On the other hand we may examine the properties of the ellipse, the parabola, and the hyperbola, in like manner as we do a triangle or a circle, without any reference to a cone, whatever.

It is important to study these curves on account of their extensive application to astronomy and other sciences.

- 3. If a plane cut a cone through its vertex, and terminate in any part of its base, the section will evidently be a triangle.
- 4. If a plane cut an upright cone parallel to its base, the section will be a circle.
- 5. If a plane cut a cone obliquely through both sides of the cone, the section will represent a curve, called an ellipse.
- 6. If a plane cut a cone parallel to one side of the cone, or what is the same thing, if the cutting plane and the side of the cone make equal angles with the base, then the section will represent a parabola.
- 7. If a plane cut a cone, making a greater angle with the base than the side of the cone makes, then the section is an hyperbola.
- 8. And if all the sides of a cone be continued through the vertex forming an opposite equal cone, and the plane be also continued to cut the opposite cone, this latter section will be the opposite hyperbola to the former.

9. The vertices of any section are the points where the cutting plane meets the opposite sides of the cone, or the sides of the vertical triangular section, as A and B.

Hence the ellipse, and the opposite hyperbolas, have each two vertices; but the parabola only one; unless we consider the other as at an infinite distance.

10. The axis, or transverse diameter of a conic section, is the line or distance AB between the vertices.

Hence, the axis of a parabola is infinite in length, AB being only a part of it.

THE ELLIPSE.

When we know how to describe a circle, we can give a definition of it; and without conceiving it to be a conic section, we can go on and investigate its properties. So with the ellipse. When we know how to describe it, we can give a definition of it, and go on and investigate its properties; and we shall do so without conceiving it to be a conic section.

PROBLEM.

To describe an Ellipse.

Take any two points, as F and F'. Take a thread, longer than the distance between F and F', and fasten one extremity at the point F, the other at F'. Then take a pencil and put it in the loop, and move the pencil entirely round the fixed points, keeping the

thread at equal tension in every part. The pencil thus passing round the points F and F', describes a curve, as is represented in the adjoining figure, and it is called an ellipse; hence an ellipse may be defined as on the following page:

DEFINITIONS.

- 1. An ellipse is a plane curve, confined by two fixed points; and the sum of the distances from any point in the curve to the fixed points, is constantly the same.
- 2. The two fixed points are called the foci.
 - 3. The center is the point C, the middle point between the foci.
- 4. A diameter is a straight line through the center, and terminated both ways by the curve.
 - 5. The extremities of a diameter are called its vertices.

Thus, DD' is a diameter, and D and D' are its vertices.

- 6. The major axis is the diameter which passes through the foci. Thus, AA' is the major axis.
- The minor axis is the diameter at right angles to the major axis. Thus CE is the semi minor axis.
- 8. The distance between the center and either focus is called the excentricity when the semi major axis is unity.

That is, the excentricity is the ratio between CA and CF; or it

- is $\frac{CF}{CA}$, and, of course, always less than unity. The less the excentricity, the nearer the ellipse approaches the circle.
- 9. A tangent is a straight line which meets the curve in one point, only; and, being produced, does not cut it.
- 10. An ordinate to a diameter is a straight line drawn from any point of the curve, parallel to a tangent, passing through one of the vertices of that diameter.
- N. B. A diameter and its ordinate are not at right angles, unless the diameter be either the major or minor axis.
- 11. The points into which a diameter is divided by an ordinate, are called abscissas.
- 12. The parameter of a diameter is the double ordinate which passes through one of the foci.
- 13. The parameter of the major axis is called the principal parameter, or *latus-rectum*. Thus, FG is one half of the principal parameter.
- 14. A subtangent is that part of the axis produced, which is included between a tangent and the ordinate drawn from the point of contact.

PROPOSITION 1. THEOREM.

The major axis is always equal to the sum of the two lines drawn from any point in the curve to the foci.

Suppose the pencil at D to revolve along in the loop, holding the threads F'D and FD at equal tension; and when D arrives at A, there will be two lines of threads between F and A. Hence, the entire length of the threads will be measured by F F+2FA.

Also, when D arrives at A', the length of the threads is measured by FF'+2F'A'.

Therefore,
$$FF'+2FA=FF'+2F'A$$

Hence, . . . FA=F'A'

From the expression FF'+2FA, take away FA, and add F'A', and the sum will not be changed, and we have

$$FF'+2FA=A'F'+FF'+FA=A'A$$

Hence, . .
$$F'D+FD=A'A$$
 Q. E. D.

PROPOSITION 2. THEOREM.

The distance from either focus to the extremity of the minor axis, is equal to half the major axis.

As F'C=CF (see last figure), and CD is at right angles to F'F, therefore, . . F'D=FD.

But, . .
$$F'D+FD=A'A$$

Or, . .
$$2FD=A'A$$

Or, . . .
$$FD$$
= half $A'A$, or CA . Q . E . D .

Scholium. Half the minor axis is a mean proportional between the distance from either focus to the principal vertices.

In the right angled triangled FCD we have

$$CD^2 = FD^2 - FC^2$$

Therefore,
$$CD^2 = AC^2 - FC^2$$

$$= (AC + FC)(AC - FC)$$

$$= AF' \times AF$$

Or. . . AF: CD = CD: FA'

PROPOSITION 3. THEOREM.

Every diameter is bisected in the center.

Let D be any point in the curve, and C the center. Join DC, and produce it. From F' draw D' parallel to FD; and from F draw FD' parallel to F'D. The figure DFD'F' is a parallelogram by construction; and therefore its opposite sides are equal.

Hence, the sum of the two sides F'D' and D'F is equal to F'D and DF; therefore, by definition 1, the point D' is in the ellipse. But the two diagonals of a parallelogram bisect each other; therefore, DC = CD', and the diameter DD' is bisected at the center, C, and DD' represents any diameter. Therefore, &c. Q. E. D.

PROPOSITION 4. THEOREM.

A tangent to the ellipse makes equal angles with the two straight lines drawn from the point of contact to the foci.

Let F and F' be the foci, and D any point in the curve. Join F'D and FD, and produce FD to H, making DH=DF, and join FH. Bisect FH in T. Join TD and produce it to t.

Now by theorem 15, book 1, the angle FDT= the angle HDT, and HDT= its opposite vertical angle, F'Dt.

Therefore, . . FDT = F'Dt

It now remains to be shown that Tt is a tangent, and only meets the curve at the point D.

If possible, let it meet the curve in some other point, as t, and join M, tH, and F't.

By theorem 15, book 1, Ft=tH

To each of these add F'4;

Then,
$$F't+tH=F't+Ft$$

But F't+tH are, together, greater than FH, because a straight line is the shortest distance between two points; that is, F't+Ft, the two lines from the foci, are, together, greater than FH, or greater than F'D+FD; therefore, the point t is without the ellipse, and t is any point in the line Tt, except D; therefore, Tt is a tangent, touching the ellipse at D, and it makes equal angles with the lines drawn from the point of contact to the foci.

Q. E. D.

Cor. The tangents at the vertices of either axis are perpendicular to that axis; and as the ordinates are parallel to the tangents, it follows that all ordinates to the major or minor axis must cut one axis at right angles, and be parallel to the other axis.

Scholium. Any point in the curve may be considered as a point in a tangent to the curve at that point.

It is found by experiment that light, heat, and sound, when they approach to, are reflected off, from any surface at equal angles; that is, any and every single ray makes the angle of reflection equal to the angle of incidence.

Therefore, if a light is placed at one focus of an ellipse, and the sides a reflecting surface, the reflections will concentrate at the other focus. If the sides of a room be elliptical, and a stove is placed at one focus, it will concentrate heat at the other.

Whispering galleries are made on this principle, and all theaters and large assembly rooms should more or less approximate to this figure. The concentration of the rays of heat from one of these points to the other, is the reason why they are called the foci, or burning points.

PROPOSITION 5. THEOREM.

Temperate to the ellipse, at the vertices of the diameter, are parallel to

Let DD' be the diameter, and F' and F the foci. Join F'D, F'D', FD, and FD'.

Draw the tangents, T_i and S_i , one through the point D_i , the other through the point D_i . These tangents will be parallel.

By proposition 3, F'D'FD is a parallelogram, and the angle F'D'F is equal to its opposite angle, F'DF.

But the sum of all the angles that can be made on one side of a line, is equal to two right angles.

Therefore, by leaving out the equal angles which form the opposite angles of the parallelogram, we have

$$sD'F'+SD'F'=tDF'+TDF.$$

But, by proposition 4, sD'F'=SD'F; therefore, their sum is double of either one of them, and the above equation may be changed to . 2SD'F=2tDF'

Or, . .
$$SD'F=tDF'$$

But DF' and D'F are parallel; therefore, SD'F and tDF' are, in effect, alternate angles, showing that Tt and Ss are parallel.

Q. E. D.

Cor. If tangents be drawn through the vertices of any two conjugate diameters, they will form a parallelogram circumscribing the ellipse.

PROPOSITION 6. THEOREM.

If, from the vertex of any diameter, straight lines are drawn through the foci, meeting the conjugate diameter, the part intercepted by the conjugate, is equal to half the major axis.

Let DD' be the diameter, and Tt the tangent. Draw EE' parallel to Tt. Join F'D and DF, and produce DF to K; and from F draw FG parallel to EE' or Tt.

Now, by reason of the parallels,

we have the following equations among the angles.

$$TDF=DFG$$
 Also, $TDF=DKH$

But, by proposition 4, tDG = TDF

Therefore, by equality, DGF=DFG

And. . . DHK=DKH

Hence, the triangle DGF is isosceles; also, the triangle DHK is isosceles. Whence, DG=DF, and DH=DK.

Because HC is parallel to FG, and F'C = CF,

Therefore, . . F'H=HG'Add . . DF=DG' F'H+DF=DH'

But the sum of the lines in both members of this equation is F'D+DF, which is equal to the major axis of the ellipse; therefore, either member is half the major axis; that is, DH, or its equal, DK, is each equal to half the major axis. Q. E. D.

PROPOSITION 7. THEOREM.

Perpendiculars from the foci of an ellipse upon a tangent, meet the tangent in the circumference of a circle, whose diameter is the major axis.

Let F'F be the foci, C the center, and D a point in the ellipse, through which passes the tangent Tt. Join F'D and FD, and produce F'D to H, making DH = FD, and produce FD to G, making DG = F'D. Then F'H and FG are each equal to the major axis, A'A.

Join FH, meeting the tangent in T, and join F'G, meeting it in t. Draw the dotted lines, CT and Ct.

By proposition 4, the angle FDT= the angle F'Dt; and observing that opposite vertical angles are equal, therefore, the four angles formed by lines crossing at D, are all equal.

The triangles DF'G and DHF are isosceles by construction, and as their vertical angles at D are bisected by the line Tt, therefore, F't=tG, and FT=TH.

Comparing the triangles F'GF and F'Ct, we find FC equals the half of F'F, and F't the half of FG; therefore, Ct is the half of FG. But A'A=FG; hence, $Ct=\frac{1}{2}A'A=CA$.

Comparing the triangles FF'H and FCT, we find the sides FH and FF' cut proportionally in T and C; therefore, they are equiangular and similar, and

CT is parallel to F'H, and equal to half of it. That is, CT is equal to CA; and CA, CT, and Ct, are all equal; and hence a circle described from the center, C, at the distance of CA, will pass through the points T and t. Therefore, perpendiculars, &c.

Q. E. D.

PROPOSITION 8. THEOREM.

The product of the perpendiculars from the foci upon a tangent, is equal to the square of half the minor axis.

Produce TC and GF' (see figure to the last proposition), and they will meet in the circle, at S; for FT and F't are both perpendicular to the same line, Tt; they are, therefore, parallel; and the two triangles CFT' and CF'S, having a side, FC, of the one, equal to CF', of the other, and their respective angles equal, therefore CS=CT, and S is in the circle, and SF'=FT.

Now, as A'A and St are two lines that intersect each other in a circle, therefore, (th.17, b.3)

$$SF' \times F't = A'F' \times F'A$$

 $FT \times F't = A'F' \times F'A$

But, by the scholium to proposition 2, it is shown that

 $A'F' \times F'A =$ the square of half the minor axis.

Hence, . $FT \times F't =$ the square of half the minor axis. Therefore, the product, &c. Q. E. D.

Cor. The two triangles, FTD and F'tD, are similar, and from them we have . TD: Dt = FD: DF'; that is, perpendiculars let fall from the foci upon a tangent, are to each other as the distances of the point of contact from the foci.

PROPOSITION 9. PROBLEM.

Given the major axis and the distance between the foci of any ellipse, to find the relation between an abscissa of the major axis and its corresponding ordinate.

Let F' and F be the foci, C the center, and put CF', or CF=c, and CA=A. Then F'D=A, and in the triangle F'DC or FDC, if the hypotenuse FD and FC are both known, then DC is known; therefore, we may put CD=B, and consider A, B, and c, known quantities.

Take any point on the major axis, as t, and draw tP at right angles to A'A.

Measuring from the point A', A't is the abscissa, and tP is the corresponding ordinate.

The problem requires us to find the mathematical relation between these two lines. We can find it by the aid of the two right angled triangles F'tP and FtP.

Put .
$$A't=x$$
, and $tP=y$

Then .
$$F't=A't-A'F'=x-(A-c)=x+c-A$$

And .
$$F_i = A't - A'F = x - (A+c) = x - c - A$$

Put .
$$F'P=r$$
, and $F'P=r'$

Then,
$$F'P+FP=r'+r=2A$$
 (1)

In the triangle F'Pt we have

$$(x+c-A)^2+y^2=r'^2$$
 (2)

In the triangle FPt we have

$$(x-c-A)^2+y^2=r^3$$
 (3)

By subtracting (3) from (2), expanding and reducing, we obtain

$$4cx-4cA=r'^2-r^2 \qquad \qquad (4)$$

Or, . .
$$4c(x-A)=(r'+r)(r'-r)$$
 (5)

But the first factor in the second member of equation (5) is equal to 2A; hence we have

$$r'-r=\frac{2c}{A}(x-A) \qquad (6)$$

But, . .
$$r'+r=2A$$
 (7)

By adding (6) and (7), then dividing by 2, and then subtracting (6) from (7), and dividing by 2, we have the two following equations:

$$r = A + \frac{c}{A}(x - A) \qquad (8)$$

$$r = A - \frac{c}{A}(x - A) \qquad (9)$$

It should be observed that equations (8) and (9) are expressions for lines, one of which is called rector in astronomy.

By squaring equation (9), and comparing it with equation (3), equating the two values of r^2 , we shall then have

$$x^{2}+c^{2}+A^{2}-2cx-2Ax+2cA+y^{2}=$$

$$A^{2}-2c(x-A)+\frac{c^{2}}{A^{2}}(x-A)^{2}$$
Or,
$$x^{2}+c^{2}-2Ax+y^{2}=\frac{c^{2}}{A^{2}}(x^{2}-2xA+A^{2})$$

Or,
$$A^2x^3+c^2A^2-2A^4x+A^2y^2=c^2x^2-2c^2xA+c^2A^2$$

Or,
$$A^2y^2+(A^2-c^2)x^2=(A^2-c^2)2Ax$$

Observing that $A^2-c^2=B^2$, the square of the semi minor axis, and substituting this value, the preceding equation becomes

$$A^2y^2+B^2x^2=2AB^2x$$

Hence, . . .
$$y^2 = \frac{B^4}{A^2} (2Ax - x^2)$$
 (10)

Or . . .
$$y=\pm \frac{B}{A} \sqrt{2Ax-x^2}$$
 (11)

We cannot reduce this equation to lower terms, or condense it to a more simple form; and, therefore, it must rest as the final result; and, in the language of analytical geometry, it is called the equation of the ellipse.

Any definite value may be assigned to x, not greater than 2A, and when any particular value is assigned, the equation will give the corresponding value of the *ordinate*, y, and as y has the double sign, it shows that y may be drawn both above and below A'A, or shows that the curve is symmetrical on both sides of A'A.

Now let us examine the result when particular values are given to x. At the point A' = 0; and this value of x put in the equation, gives y=0; obviously the proper result. Again, suppose x=2A, and this value of x put in the equation, gives

$$y=\pm \frac{B}{A}\sqrt{4A^2-4A^2}=\pm \frac{B}{A}\times 0$$

That is, y=0, for that point, also.

If we suppose x=3A, y will come out *imaginary*; showing that there is no *real* value to y beyond the point A; and in this way imaginary equations have real practical utility.

If we suppose x=A, then y will become CD=B.

If we make A'F'=x, then x=A-c; and this value put in the

equation, gives
$$y=\pm \frac{B}{A}\sqrt{(2A-x)(A-C)}$$

$$=\pm \frac{B}{A}\sqrt{(A+c)(A-c)}=\pm \frac{B^{o}}{A}$$

By the definition, the double ordinate from either focus, is called the parameter; and we perceive by this equation that the semi parameter is the third proportional to the major and minor axes;

For, . . A: B=B: y; a proportion that gives the preceding equation.

It is sometimes most convenient to take C, the center of the ellipse, for the zero point, in place of the point A', one extremity of the major axis.

If we make this change, it will cause no changes in the ordinate y, but x, in the equation for the ellipse, must be diminished by A; and x, a measure from that point, can never be greater than A, but it can have the double sign plus or minus. At the point A', x will be equal to minus A, and at the other extremity of the major axis, x will be equal to plus A.

To change the equation $y^2 = \frac{B^2}{A^2}(2Ax-x^2)$ into its equivalent

expression, when the origin of x is changed from A' to C, we must put x-A=x'. Hence, x and x' designate the same point on the axis; and if x is less than A, then x' is negative.

If
$$x-A=x'$$
, then $x=A+x'$
 $(2Ax-x^2)=(2A-x)x=(A-x')(A+x')=A^2-x'^2$
Hence, $y^2=\frac{B^2}{A^2}(A^2-x'^2)=B^2-\frac{B^2x'^2}{A^2}$
Or. $A^2v^2+B^2x'^2=A^2B^2$

We may omit the accent of x, for x, or x', is only a different symbol for any point on the major axis corresponding to the ordinate y. The accent was only taken to avoid confusion while changing the zero point; therefore, the following equation is the equation for the ellipse, the zero point being the center.

$$A^2y^2 + B^2x^2 = A^2B^2$$

In case A=B, the ellipse becomes a circle, and the equation

becomes .
$$A^2y^2 + A^3x^3 = A^4$$

Or, . . . $y^2 + x^2 = A^2$

This last equation is obviously the equation of the circle, y being the sine of any arc, x its cosine, and A the radius.

The change in the zero point from the vertex of the major axis to the center, changes equations (8) and (9) into

$$r' = A + \frac{cx'}{A} \tag{m}$$

$$r = A - \frac{cx'}{A}$$

Or, without the accent, $r'=A+\frac{cx}{A}$, and $r=A-\frac{cx}{A}$

PROPOSITION 10. THEOREM.

The squares of the ordinate of the major axis are to each other as the rectangles of their corresponding abscissas.

Let y be any ordinate, and x its corresponding abscissa. Then, by the last proposition, we shall have

$$y^2 = \frac{B^2}{A^2}(2A - x)2x$$

Let y' be any other ordinate, and x' its corresponding abscissa, and by the same proposition we must have

$$y'^2 = \frac{B^2}{A^2} (2A - x')x'$$

Dividing one of these equations by the other, omitting common factors in the numerator and denominator of the second member of the new equation, we have

$$\frac{y^{2}}{y'^{2}} = \frac{(2A - x)x}{(2A - x')x'}$$

Hence, $y^2: y'^2 = (2A-x)x: (2A-x')x'$

By simply inspecting the figure, we cannot fail to perceive that (2A-x), and x, are the abscissas corresponding to the ordinate y, and (2A-x') and x', are the two corresponding to y'. Therefore, the squares of the ordinates, &c. Q. E. D.

PROPOSITION 11. THEOREM.

If a circle be described on the major axis of an ellipse, and any ordinate be drawn common to both the circle and the ellipse, the ordinate corresponding to the circle is to the part corresponding to the ellipse as the major axis of the ellipse is to its minor axis.

On A'A (see figure to last proposition), as a diameter, describe a circle. Draw any ordinate, as GH. The part DH is y, of the last proposition.

The proportion in the last proposition is true, and y and y' may be any two ordinates, whatever. And now suppose y' represents the semi minor axis; then x' will equal A, and 2A-x'=A. Taking this hypothesis, the proportion referred to becomes

$$y^2: B^2 = (2A - x)x : A^2$$

240

Changing the means, and observing that

$$(2A-x)x=GH^2$$
 (th. 17, b. 3, scholium.)

We have, . $y^2: GH^2=B^2:A^2$

Taking extremes for means, and extracting the square root of every term, we have

GH: y=A:B Q. E. D.

PROPOSITION 12. THEOREM.

The area of an ellipse is a mean proportional between two circles—the one described on the minor, and the other on the major axis.

On the major axis describe a circle, as in the figure, and draw GH, any ordinate, and conceive it to be a broad line, covering portions of both the circle and the ellipse.

By the last proposition we have

That is, GH', y'; GH'', y'', &c., are other ordinates, all in the same proportion of A to B: and thus we can conceive the whole areas of both circle and ellipse, made up of ordinates, each and all of which are in the proportion of A to B. Now, by applying theorem 7, book 2, we have

$$A: B = GH + GH', &c.: y+y', &c.$$

That is.

A: B = area circle; area ellipse

But the area of the circle on the major axis, is πA^2 (th. 1, b. 5.) Substituting this, and the proportion becomes

$$A: B = \pi A^2$$
: area ellipse.

Or, . . area ellipse= πAB Which is the mean proportional between (πA^2) and (πB^2) , the expressions for the areas of the two circles, one on the major diameter, and the other on the minor diameter. Q. E. D.

Scholium. Hence the rule in mensuration to find the area of an ellipse.

RULE. Multiply together the semi major and semi minor axes, and multiply that product by 3.1416.

PROPOSITION 13. THEOREM.

If a cone be cut by a plane, making an angle with the base less than that made by the side of the cone, the section is an ellipse.

Let VGH, be a plane passing through the axis of a cone, Anmo, another plane perpendicular to the former, cutting both sides of the cone but not parallel with the base of the cone, then the figure AnmA'o, will be an ellipse, AA' being its major axis.

Take any point, t, and in the plane AnA' draw tn, at right angles to AA', and as the plane AnA' is perpendicular to the plane VGH,

th is at right angles to all lines that can be drawn in the plane VGH, from the point t; therefore, tn is at right angles to BD. Through the point t, conceive BD drawn parallel to the base of the cone, and it will be a diameter to a circular section of the cone passing through the point n.

In the same manner take any other point in AA' as l, and draw lm at right angles to A'A, &c; and GmH will be

a circular section passing through the point m.

Now by the similar triangles AtD, AlH, A'lG, A'tB, we have

At: Al = Dt: Hl

A't: A'l = Bt: Gl

By multiplying these proportions together (th. 11, b. 2), term, by term, we have

But by reason of the circle BnD, $Bt^*Dt=tn^2$ (th. 17, b. 2).

Hence, . $At^{\bullet}A't : Al^{\bullet}A'l = tn^2 : lm^2$

This last proportion shows the same property as demonstrated in Proposition 10; therefore, this section of the cone is an ellipse.

Q. E. D.

Scholium. Hence the propriety of calling an ellipse a conic section.

PROPOSITION 14. PROBLEM.

Given the major axis, the distance between the center and either focus of an ellipse, and the angle made between the major axis and a radii drawn from either focus to any point in the ellipse to find an expression for that radii.

Let F be a focus, and FP any radii, and put the angle PFD=v.

From proposition 9, equation (m) we find that

$$FP = r = A + \frac{cx}{A}$$

an equation in which A represents the semi major axis, c the distance FC, and x the distance CD.

Now by trigonometry we have

$$1:\cos v=r:c+x$$

Whence, $x=r\cos x-c$

Substituting this value of x in the equation for the radii, we have

$$r = A + \frac{cr \cos v - c^2}{A}$$

$$Ar = A^2 + cr \cos v - c^2$$

Hence,
$$(A-c \cos v)r = A^2-c^2$$

Or, . . .
$$r = \frac{A^2 - c^2}{A - c \cos x}$$

This equation shows the value of r in known quantities, and of course it is the expression required.

Scholium. The excentricity of an ellipse is the distance from the center to either focus, when the semi major axis is taken as unity. Designate the excentricity by e, then 1:e=A:c

Hence, . . .
$$c=eA$$

Substituting this value of c in the preceding equation, we have

$$r = \frac{A^2 - e^2 A^2}{A - e A \cos v} = \frac{A(1 - e^2)}{1 - e \cos v}$$

This equation gives an expression for FP, when the angle PFD is less than 90°; when greater than 90°, the expression is

$$\frac{A(1-e^2)}{1+e \cos v}$$

PROPOSITION 15. PROBLEM.

Given the relative values of three different radii, drawn from the focus of an ellipse, together with the angles between them, to find the relative major axis of the ellipse, the excentricity, and the position of the major axis, or its angle from one of the given radii.

Let r, r', and r'', represent the three given radii, the angle between r and r' equal m, and between r and r'' equal n. The angle between the radii r and the major axis is supposed to be unknown, and we therefore, call it x.

From the last proposition, we have

$$r = \frac{A\left(1 - e^2\right)}{1 - e\cos x} \tag{1}$$

$$r' = \frac{A(1-e^2)}{1-e\cos(x+m)}$$
 (2)

$$r'' = \frac{A(1-e^2)}{1-e\cos(x+n)}$$
 (3)

Equating $A(1-e^2)$ obtained from (1) and (2), and we have

$$r - re \cos x = r' - r'e \cos(x + m)$$

$$e = \frac{r - r'}{r \cos x - r' \cos(x + m)}$$
(4)

In like manner from (1) and (3),

$$r - re \cos x = r'' - r''e \cos(x+n)$$

$$e = \frac{r - r''}{r \cos x - r'' \cos(x+n)}$$
(5)

Equating (4) and (5), we have

$$\frac{r-r'}{r\cos x-r'\cos(x+m)} = \frac{r-r''}{r\cos x-r''\cos(x+n)}$$

$$\frac{r-r'}{r-r''} = \frac{r\cos x-r'\cos(x+m)}{r\cos x-r''\cos(x+n)}$$

$$= \frac{r\cos x-r'\cos x\cos m+r'\sin x\sin m}{r\cos x-r''\cos x\cos n+r'\sin x\sin n}$$

$$= \frac{r-r'\cos x-r''\cos x\cos n+r'\sin n}{r\cos x-r''\cos n+r\sin n}$$

For the sake of perspicuity and brevity, put r-r'=d, And r-r'=d'. The known quantity $r-r'\cos m=a$. And $r-r'\cos n=b$. Then the preceding equation becomes,

$$\frac{d}{d'} = \frac{a - r' \sin m \tan x}{b - r'' \sin n \tan x}$$

 $db-dr'\sin n \tan x = ad'-d'r'\sin m \tan x$

fd'r'sin.m-dr sin.n)tan.x=ad'-db

$$\tan x = \frac{\alpha d' - db}{dr' \sin m - dr'' \sin n}$$

The value of x found by this last equation, determines the position of the major axis.

Having x, equation (4) or (5), will give the excentricity e. Equations (1), (2), and (3), contain A, the semi major axis as a common factor, it does not therefore affect the relative values of r, r', and r'', and as A disappears in the subsequent part of the investi-

gation, it shows that the angle x and the eccentricity e, are entirely independent of the magnitude of the ellipse; they only determine its figure. To apply the preceding formulas, we propose the following

On the first day of August 1846, an astronomer observed the sun's longitude to be 128° 47′ 31″, and by comparing this observation with observations made on the previous and subsequent days, he found its motion in longitude was then at the rate of 57′ 24″ 9 per day. By like observations, made on the first of September, he determined the sun's longitude to be 158° 37′ 46″, and its mean daily motion for that time 58′ 6″ 6; and at a third time, on the 10th of October, the observed longitude was 196° 48′ 4″, and mean daily motion 59′ 22″ 9. From these data is required the longitude of the solar apogee, and the excentricity of the apparent solar orbit.

It is demonstrated in astronomy, that the relative distances to the sun, when the earth is in different parts of its orbit, must be to each other inversely as the *square root* of the sun's apparent angular motion at the several points; therefore, $(r)^2$, $(r')^2$, and $(r'')^2$, must be in proportion to

Or as the numbers.

$$\frac{1}{3444.9}$$
, $\frac{1}{3486.6}$, and $\frac{1}{3562.9}$.

Multiply by 3562.9 and the proportion will not be changed, and we may put

$$r = \left(\frac{3562.9}{3444.9}\right)^{\frac{1}{2}}, \quad r' = \left(\frac{3562.9}{3486.6}\right)^{\frac{1}{2}}, \text{ and } r'' = 1.$$

By the aid of logarithms, we soon find

$$r=1.016982$$
 $r'=1.010857$ and $r''=1$.

Hence, $r-r'=d=0.006125$, $r-r''=d'=0.016982$
 $158^{\circ} 37' 46''$ $196^{\circ} 48' 4''$
 $128 47 31$ $128 47 31$
 $29 50 15$ $n=66 0 33$

To correspond with the formulas, we must take the natural sine and cosine of m and n,

$$m=29^{\circ} \ 50' \ 15'' \ \sin. \ .497542 \ . \ \cos ine \ .867440$$
 $n=68 \ 0 \ 33 \ \sin. \ .927238 \ . \ \cos ine \ .374472$
 $r-r'\cos.m=a=0.140172$
 $r-r''\cos.n=b=0.642510$
 $ad'=(0.140172)(0.016982)=0.0023796$
 $bd=(0.64251)(0.006125)=0.0039358$
 $dr'\sin.m=0.0031432$
 $dr''\sin.n=0.0057962$
 $\tan x=\frac{ad'-bd}{dr'\sin.m-dr''\sin.n}=\frac{db-ad}{dr''\sin.n-dr'\sin.m}$
 $=\frac{.0015562}{.0026530}=\frac{155.62}{265.30}$

This numerical result corresponds to radius unity; to compare it with our tables and take out the arc, we must take out the logarithm of the numerator, increase its index by 10, and subtract the logarithm of the denominator,

Thus,	•	155.	62 lo	g.	•	1	2.19	2080
		265.30 log.			•		2.423737	
	x:	= 30	° 23′	40′′	tan.		9.76	8351
From,					1	28°	.47′	31"
Take, x		•	•	•		30	23	40
Longitud	e of t	the ap	ogee,		•	98	23	51
The true	longi	tude a	t that	time	was	99°	4'.	

The result of any one set of observations, are but first approximations, of course; but we did not adduce this example to teach astronomy, but to teach the properties of the ellipse.

To find the excentricity, we apply equation (5), observing that $r''\cos(x+n)$ must be subtracted, but when (x+n) is greater than

90° (as it is in this case) it becomes negative, and substracting a negative quantity gives an increase,-

Thus,
$$e = \frac{r - r''}{r \cos x - r'' \cos (x + n)} = \frac{.016982}{.887 + .146} = \frac{.016982}{1.023}$$

This gives $\epsilon = 0.0166$; its true value is, 0.01678.

Our value of x is a little too great, which is the principal cause of the difference.

THE PARABOLA.

DEFINITIONS.

- 1. A parabola is a plane curve, every point of which is equally distant from a fixed point and a given straight line.
- 2. The given point is called the focus, and the given line is called the directrix.

To describe a parabola.

Let CD be the given line, and F a given point. Take a square, as DBG, and to one side of it, GB, attach a thread, and let the thread be of the same length as the side GB of the square. Fasten one end of the thread at the point G, the other end at F.

Put the other side of the square against the given line, CD, and with a pencil, P, in the thread, bring the thread up to the side of the square. Slide one side of the square along the line CD, and at the same time keep the thread close against the other side, permitting the thread to slide round the pencil P. As the side of the square, BD, is moved along the line CD, the pencil will describe the curve represented as passing through the points V and P.

$$GP+PF$$
 the thread $GP+PB$ the thread

By subtraction PF-PB=0 or PF=PB

This result is true at any and every position of the point P; that is, it is true for every point on the curve corresponding to definition 1.

Hence,
$$FV = VH$$

If the square be turned over and moved in the opposite direction, the other part of the parabola, the other side of the line FH, may be described.

- 3. A diameter to a parabola is a straight line drawn through any point of the curve perpendicular to the directrix. Thus, the line HF is a diameter; also, BG is a diameter; and all diameters are parallel to one another.
- 4. The point in which the diameter cuts the curve, is called the vertex of that diameter.
- 5. The diameter which passes through the focus, is called the principal diameter, and sometimes it is called the axis of the parabola.

A tangent is a line touching the curve at a point, and if produced, does not cut the curve. Thus, AC is a tangent, at the point B.

7. An ordinate to a diameter is a straight line drawn from any point in the curve to meet the diameter, and is parallel to a tangent passing through the vertex of that diameter. Thus, BD is a diameter, and ED an ordinate from the point

E. ED is parallel to the tangent AB, drawn through the vertex B.

It will be proved in proposition 15, that ED = DG; and hence, EG is called a *double ordinate*.

- 8. An abscissa is the part of a diameter between the vertex and an ordinate. Thus, BD is an abscissa, and DE is its corresponding ordinate.
- 9. The parameter of any diameter is the double ordinate which passes through the focus. Thus, IH, which is parallel to AB, and passes through the focus F, is the parameter of the particular diameter BD.
- 10. The parameter to the principal diameter is called the principal parameter, or latus-rectum.

In a general sense, the parameter, or latus-rectum, means the constant quantity that enters into the equation of a curve. In a parabola it is a third proportional to any abscissa, and the square of its ordinate.

- 11. A normal is a line drawn perpendicular to a tangent from its point of contact, and is terminated by the axis.
- 12. A subnormal is the part of the axis intercepted between the normal and the corresponding ordinate.

Thus, PC is a normal, and DC is the corresponding subnormal, or line under the normal. Similarly, HD is a line under the tangent, and is called a subtangent.

PROPOSITION 1. THEOREM.

The latus-rectum is four times the distance from the focus to the vertex.

Let PVH be a parabola, F the focus, and V the principal vertex. PH, at right angles to DF, through the point F, is the *latus-rectum*.

We are to prove that PH=4FV.

Because PH is parallel to CG, and CP, GH, parallel to DF, the two figures, CF and FG, are parallelograms.

Therefore,
$$CP = DF$$
, and $GH = DF$

Or,
$$CP+GH=2DF$$
 (1)

But by the definition of the curve,

$$DF=2VF$$
, $CP=PF$, and $GH=HF$

Substitute these values in equation (1), and we have

$$PF+FH=PH=4FV.$$
 Q. E. D.

Cor. As CP = PF, and the angles at F, D, and C, right angles, PFDC is a square.

PROPOSITION 2. THEOREM.

Any point within a parabola is nearer to the focus than to the directrix; and any point without a parabola is at a greater distance from the focus than from the directrix.

Let A be any point within the curve, and from it draw AB perpendicular to the directrix.

As A is within the curve, AB must necessarily cut the curve in some point. Let P be that point, and join PF and AF.

By the definition of the curve, PB=PF. To each of these add PA, and AB=AP+PF.

But AP+PF are, together, greater than AF, because a straight line is the shortest distance between two points; therefore, AB is greater than AF.

Again, let A' be a point without the curve—it is nearer to the directrix than to the focus.

Draw A'F; and as A' is without the curve, this line must necessarily meet the curve in some point, as P. Draw PB and A'B' perpendicular to the directrix, and join A'B.

$$A'P+PB=A'F$$

But,
$$A'P+PB>A'B$$
; that is, $A'F>A'B$

But A'B, being the hypotenuse of the right angled triangle A'B'B, it is greater than A'B'. But A'F' is greater than A'B; much more then is A'F greater than A'B'; therefore, any point, &c. Q.E.D.

PROPOSITION 3. THEOREM.

The line which disects the angle which is formed by the two lines drawn from any point in the curve, one to the focus, the other perpendicular to the directrix, is a tangent to the curve at that point.

Let P be any point in the curve. Draw PF to the focus, and PB perpendicular to the directrix. Let PT be so drawn as to bisect the angle BPF. Then PT will touch the parabola at the point P, and be tangent to the curve.

Join BF, and PBF is an isosceles triangle; therefore, the angle PBI= the angle PFI. The angle BPI= the angle FPI, by hypothesis; hence, the two triangles BPI and PIF, being equi-

angular, and having PI common, are in all respects equal, and PI is perpendicular to BF, and BI = FI.

It now remains to be shown that any other point than P, in the line APT, is without the curve.

Take any other point in the line TP, as A, and draw the dotted lines AF and AB. They are equal. (Th. 15, b. 1, scholium.)

But AB being the hypotenuse of the right angled triangle AB'B it is greater than AB'; that is, AF' is greater than AB'; consequently A is without the curve, as proved by the last proposition.

In the same manner it may be proved that any other point in the line AT is without the curve, except the point P. AT is, therefore, a tangent to the curve at the point P. Q. E. D.

Cor. 1. A line of light, parallel to the axis, striking the point of the parabola at P, will be reflected to F; because the angle of incidence is equal to the angle of reflection; and the same will be true at every point of the curve; hence, if a reflecting mirror have a parabolis surface, all the rays of light that meet it parallel with the axis, will be reflected to the focus; and for this reason many attempts have been made to form perfect parabolic mirrors for reflecting telescopes.

If a light be placed at the focus of such a mirror, it will reflect all its rays in one direction; hence, in certain situations, parabolic mirrors have been made for lighthouses, for the purpose of throwing all the light seaward.

- Cor. 2. The angle BPF continually increases, as the pencil P moves toward V, and at V it becomes equal to two right angles; and the tangent at V is perpendicular to the axis, which is called the vertical tangent.
- Cor. 3. Since an ordinate to any diameter is parallel to the tangent at the vertex, an ordinate to the axis is perpendicular to the axis.

PROPOSITION 4. THEOREM.

If a tangent be drawn from any point in the curve to the axis produced, the extremities of the tangent are equally distant from the focus.

Let PT (see figure to the last proposition) be a tangent, meeting the curve at P, and the axis at T. Then we are to prove that

PB is parallel to FT; therefore, the angle BPT the angle PTF. But BPT = TPF. (Prop. 3.)

Hence, the angle PTF= the angle TPF; consequently, the triangle TFP is isosceles, and PF=TF. Q. E. D.

PROPOSITION 5. THEOREM.

The subtangent to the axis is bisected by the vertex.

From the point P (see last figure) draw PD, an ordinate to the axis. DT is a subtangent, and it is bisected at V. As PD is parallel to BC, and PB parallel to CD, PBCD is a parallelogram.

Therefore, . . PB = CD

But, . . . PB=PF, by the definition of the curve.

And, . . . PF=FT. (Prop. 5.)

Therefore, . . CD = FT

That is, . DV+VC=TV+VF

But, . . VC = VF

By subtraction, DV = TV Q. E. D.

Cor. Hence, to draw a tangent to any point P, draw the ordinate PD, and take VT = VD, and join TP; it will be a tangent at P.

PROPOSITION 6. THEOREM:

If, from any point in a parabola, a tangent and a normal be drawn, both terminated in the axis, these two lines will be chords of a circle, of which the focus is the center, and the distance to the point P, the radius.

Let P be the point, F the focus, and TVC the axis. Draw PD perpendicular to the axis, and take TV = VD (cor. to last prop.) and join TP, which is the tangent from P. From P draw PC, at right angles to TP; then PC, is the normal. (Def. 11.)

Draw PF. By proposition 4, PF = FT. Now, if FP be made radius, and a semicircle described, the points T, P, and C, will be in the circumference, and TC will be the diameter.

Hence TFPC is a right angle, and FP = FC, and TP; and PC, are chords to this circle; therefore, if from any point &c.

Q. E. D.

PROPOSITION 7. THEOREM.

The subnormal is equal to half the latus rectum.

Take the figure to the last proposition. By the definition of the FP=DV+VF=FD+2VFcurve.

Or,
$$2VF = FP - FD$$
 (1) $CD = FC - FD$ (2)

By subtracting (2) from (1), and observing that FP = FC, we 2VF-CD=0have.

Or, .
$$CD=2VF$$

But CD is the subnormal, and 2VF is half the latus rectum; therefore, the subnormal &c. Q. E. D.

PROPOSITION 8. THEOREM.

If a perpendicular be drawn from the focus to any tangent, the point of intersection will be in the vertical tangent.

From the focus F (see last figure), draw FB perpendicular to PT, and as the triangle PFT is isosceles (Prop. 4), and PF and FT the equal sides; the line from the vertex F, perpendicular to the base, bisects the base; therefore, FB=BP.

As VB and PD are both perpendicular to the axis, they are therefore parallel.

Hence, .
$$TV: VD = TB: BP$$
 (th. 17, b. 2).
But. . $TV = VD$

Therefore, . .
$$TB=BP$$

But.

That is, a line from F perpendicular, to PT, and a line from Vperpendicular to the axis, both cut the tangent PT into two equal parts, and therefore, meet in the same point, B.

Q. E. D. Hence: If a perpendicular, &c.

Cor. 1. The two triangles VBF and PBF, are similar, for they are both right angled triangles, and the angle PFB=the angle VFB.

Hence,
$$VF: FB = FB: PF$$

That is, the perpendicular from the focus to any tangent, is a mean proportional between the distances of the focus from the vertex, and from the point of contact.

Scholium. From the preceding proportion, we have

$$VF \cdot PF = FB^{*}$$

But VF, remains constant for the same parabola; therefore, the distance from the focus to the point of contact varies, as the square of the perpendicular drawn from the focus upon the tangent.

PROPOSITION 9. PROBLEM.

Find the equation of the curve, or the mathematical relation between any abscissa on the axis, and its corresponding ordinate.

Let V be taken as the zero point. Put VD=x, PD=y, and let 2p represent the parameter. As TPC, is a right angled triangle, right angled at P, PD is a mean proportional between TD and DC. (Scho. to th. 17, b. 3).

But,	•	•	•	. TD = 2x	(Prop. 5).
And,				. $DC = p$	(Prop. 7).

Therefore by multiplication, $TD \cdot DC = y^2 = 2px$

By taking the square root, $y=\pm\sqrt{2px}$, the double sign shows two equal values to y, the one above, the other below the axis; hence, the curve is symmetrical in respect to its focus and axis.

PROPOSITION 10. THEOREM.

The squares of ordinates to the axis are to one another, as their corresponding abscissas.

By the last proposition, any ordinate represented by y, and its

corresponding abscissa represented by x, are connected together by the following equation.

$$y^2 = 2px \qquad (1)$$

Any other ordinate represented by y', and its corresponding abscissa represented by x', have a like connection.

That is, . .
$$y'^2 = 2px'$$
 (2)

Dividing (2) by (1), omitting the common factor 2p, and we have

$$\frac{y'^2}{y^2} = \frac{x'}{x}$$
Or, . . $y'^2: y^2 = x': x$ Q. E. D.

PROPOSITION 11. THEOREM.

As the parameter of the axis is to the sum of any two ordinates, so is the difference of those ordinates to the difference of their abscissas.

Let CVE be a portion of a parabola, V the vertex, VD the axis, VB and VD abscissas, and PB and ED their corresponding ordinates.

Put
$$VB=x$$
, $VD=x'$, $PB=y$,

And ED=y'

Then, AR=x'-x, RE=y'+y, and CR=y'-y

From Proposition 10.

$$y'^2 = 2px'$$
 $y^2 = 2px$

By subtraction, $y'^2 - y^2 = 2p(x' - x)$

Or, . . $(y'+y)(y'-y) = 2p(x'-x)$

Or, . . . $2p: y'+y=y'-y: x'-x$

Or, . . . $2p: RE = CR: AR$
 $Q. E. D.$

Cor. Take the product of the extremes and means of this last proportion and we have

But, . . .
$$(2p)x'=y^2$$
 (Prop. 10).

By division, . . . $\frac{AR}{x'} = \frac{CR \cdot RE}{y'^2}$

Or, . . . $\frac{AR}{VD} = \frac{CR \cdot RE}{DE^2}$

Or, . . . $VD: AR = DE^2: CR \cdot RE$

That is, any abscissa of the axis, is to any other lesser axis, so is the square of the ordinate to the rectangle of the segments of the double ordinate.

PROPOSITION 12. THEOREM.

If a tangent be drawn from any point of a parabola, and from any point in the tangent a line be drawn parallel to the axis, and terminated in the double ordinate, this line will be cut by the curve in the same proportion as the curve cuts the double ordinate.

Let CT be a tangent for the point C, V the vertex, VD the axis, and CE the double ordinate CD=y VD=x

Take any point *I*, in the tangent, and draw *IR* parallel to *VD*, cutting the curve at *A*. Then we are to show

That .
$$IA:AR=CR:RE$$

Produce DV to T, and observe, that

$$DV = VT$$
,

DT=2DV (Prop. 5).

By similar $\triangle s$, . CR : RI = CD : DT

=y:2x

By eq. of the curve 2p:2y=y:2x

By equality, . . . CR: RI=2p:(2y)CE

Proposition 11, . . 2p : RE = CR : AR

Prod. term, by term, $2p \cdot CR : RI \cdot RE = 2p \cdot CR : CE \cdot AR$

Q. E. D.

In this last proportion the antecedents are equal; therefore, the consequents are equal.

Hence, $RI \cdot RE = CE \cdot AR$

Or, . RI:AR=CE:RE

By division, (RI - AR) : AR = (CE - RE) : RE

That is. IA:AR=CR:RE

Cor. The same is true, if a line be drawn from any other point of the tangent.

Therefore, HP:PG=CG:GE

PROPOSITION 13. THEOREM.

If any points be taken on a tangent, and from thence lines be drawn parallel to the axis to meet the curve, the length of such lines will be to each other as the squares of the distances of the points from the point of contact measured on the tangent.

Let CH be a tangent to a parabola, and I and H any points taken upon it. Let DV be the axis produced to T. Draw IR parallel to VD, meeting the curve at A; and also, draw HG parallel to VD, meeting the curve at P.

We are now to prove, that

 $IA: HP = CI^2: CH^2$

By the last proposition, we have

IA:AR=CR:RE

Multiplying the last couplet by CR, and substituting the value of $CR \cdot RE$ taken from corollary to Proposition 11, and

$$IA:AR=CR^2:\frac{AR^{\bullet}CD^2}{VD}$$

Dividing the second and fourth terms by AR, and afterward multiplying the same terms by VD, observing that VD = VT, then we have

$$IA: VT = CR^2: CD^2$$

But by similar triangles,

$$CI^2: CT^2 = CR^2: CD^2$$

Therefore, by equality,

$$IA: TV = CI^2: CT^2$$

In the same manner, we may prove that

$$HP: TV = CH^2: CT^2$$

Dividing one of these proportions by the other, term by term,

And, . .
$$\frac{IA}{\overline{HP}}: 1 = \frac{CI^2}{CH^2}: 1$$

Or, . . .
$$IA: HP = CI^2: CH^2$$
 Q. E. D.

Application. Conceive CH to be the direction of a projectile, and undisturbed by the resistance of the air, or the force of gravity, it would move along the line CH, passing over equal distances in equal times. Now let gravity act in the direction of IR, and as bodies fall in proportion to the squares of the times of descent, therefore, IA, TV, HP, &c., must be to each other, as the squares of CI^2 , CT^2 , CH^2 , &c; that is the real path of a projectile undisturbed by atmospheric resistance must have the same property, as just demonstrated in this proposition. In other words, the path of a projectile is some parabola, more or less curved according to the direction and intensity of the projectile force.

PROPOSITION 14. THEOREM.

The abscissas of any diameter are to each other as the squares of their corresponding ordinates.

By the definition of a diameter, it must be the axis, or parallel to the axis; and ordinates to any diameter must be parallel to the tangent drawn through the vertex of that diameter. Hence, if CS is a diameter, and CP a tangent, and I, T, and O, any points on the tan-

gent, and from thence lines drawn parallel to the axis to meet the curve, and from thence lines parallel to the tangent to meet the diameter, the figures so formed will be parallelograms, and their opposite sides equal.

By the last proposition, IE, TA, &c., are to each other as CI^2 , CT^2 , &c.; that is, CQ, CR, &c., are to each other as QE^2 , RA^2 , &c.; or the abscissas are as the squares of their corresponding ordinates. Q. E. D.

REMARK. This is the same property as was proved in relation to the axis and its ordinates in proposition 10.

PROPOSITION 15. THEOREM.

If a line be drawn parallel to any tangent, and cut the curve in two points, and from these points ordinates be drawn to the axis, and another from the point of contact of the tangent, then the three ordinates will be in arithmetical progression.

Let CT be a tangent, and HE parallel to it. Draw the ordinates EG, CD, and HI.

Then, EG+HI=2CD

From the similar triangles, HKE, CDT, we have

HK: KE = CD: DT = 2AD

By prop. 11, 2p: KL=HK: 2KE

Therefore, by (th. 6, b.) 2p: KL = CD: 2AD

By eq. of the curve, 2p: 2CD = CD: 2AD

By comparing the two preceding proportions, we find that KL must equal 2CD. But by inspecting the figure, we perceive that

$$KL=LI+IK=HI=EG$$

That is, . . HI+EG=2CD Q. E. D.

Scholium. As CD is the arithmetical mean between GE and HI, if we draw CM parallel to AI, and draw MN parallel to CD, it will equal CD; hence, MN being midway in value between EG and HI, and parallel to them, it must meet the lines HE and GI in their midway points. That is, the diameter CM cuts its ordinate E in two equal parts; and as E is any ordinate, therefore, the diameter cuts all its ordinates into two equal parts.

PROPOSITION 16. THEOREM.

A parabola is a conic section, the cone being cut by a plane parallel to its side.

Let the cone be cut, or conceived to be cut, by the plane VMN passing through its axis, and then conceive this plane cut by the plane DAI, perpendicular to the first plane, and so inclined that AH shall be parallel to VM.

Draw MN and KL perpendicular to the axis of the cone, and make them diameters of parallel circles, whose planes are at right angles to the plane VMN.

From the points F and H, where AH meets KL and MN, draw FG and HI at right angles to AH; and because the plane DAI is at right angles to the plane VMN, FG is at right angles to KL, and HI is at right angles to MN.

Now, from the similar triangles, AFL, AHN, we have

$$AF:AH=FL:HN$$

By reason of the parallels, KF=MH; therefore, by multiplying the last couplet we have

$$AF: AH = FL \cdot KF: HN \cdot MH$$

But, by reason of the semicircles MIN, KGL,

$$KF^{\bullet}FL=FG^{2}$$
, and $MH^{\bullet}HN=HI^{2}$ (th. 17, b. 3.)

Consequently,
$$AF: AH = FG^2: HI^2$$

This is the same property as was demonstrated in proposition 10; therefore, the nature of the curve is the same. Q. E. D.

Cor. Hence,
$$\frac{FG^2}{AF} = \frac{HI}{AH}$$
 and $\frac{FG^2}{AF}$, or $\frac{HI}{AH}$ is a third propor-

tional, and a constant quantity, which we have called 2p, the parameter by definition 10.

REMARK. We might have commenced the subject of the parabola by assuming it a conic section of this kind, and then sought out its other properties.

PROPOSITION 17. THEOREM.

Every segment of a parabola at right angles with its axis, is twothirds of its circumscribing rectangle.

Let P be any point in the curve, and PT a tangent. Draw the PD and DT. Take any very small portion of the tangent, as PI—so small as to consider it as coinciding with the curve, without sensible errors. Draw IG, Ig, making the two rectangles BR, HD.

Let us now investigate the relation between these two rectangles.

As customary, put PD=y, VD=x; then, PB=x, and DT=2x. (Prop. 5.) The rectangle BR=x(PR), and HD=y(RI)

By similar triangles

$$PR: RI = y: 2x$$

Multiply the first and third terms of this proportion by x, and the second and fourth by y. We then have

$$x(PR): y(RI) = xy: 2xy$$
$$= 1: 2$$

The whole rectangle BVDP is divided into two spaces by the curve—the one within the curve, the other external to it. And we perceive by the above proportion that the small rectangle, BR, external to the curve, is to its corresponding rectangle, HD, within the curve, as 1 to 2.

By taking any other small portion of the curve, as well as PI, and drawing its external and internal rectangle, we can prove in the same manner that they will be to each other as 1 to 2; and thus we can fill up the whole external and internal spaces, and they will be to each other as 1 to 2. Hence, the space within the curve is two-thirds of the whole rectangle BD, and the same is true of the spaces on the other side of the axis. Therefore, every segment, &c. Q. E. D.

PROPOSITION 18. THEOREM.

If a parabola revolve on its axis, the solid generated is equal to one half of its circumscribing cylinder.

Take the figure to the last proposition, and conceive the parabola to revolve on the axis VD, and find the relation between the two solids generated by the two parallelograms BR and HD. The parallelogram HD will generate a cylinder, whose diameter is 2y, and length RI.

The parallelogram BR will generate a circular band, whose length is x, and thickness PR.

The solidity of the cylinder $=\pi y^2(RI)$

The solidity of the band
$$=(\pi y^2 - \pi (y - PR)^2)x$$

These two quantities are in the proportion of

$$y^2(RI)$$

 $(2y(PR)+PR^2)x$

By rejecting the very small quantity $(PR)^2$ as being very inconsiderable in connection with the other term, we have

Sol. of cylinder: sol. of band $=y^2(RI): 2xy(PR)$

But, as in the preceding proposition,

$$PR : RI = y : 2x$$

Or, . . .
$$2x(PR)=y(RI)$$

Or, . .
$$2xy(PR)=y^2(RI)$$

This equation shows that the last terms in the preceding proportion are equal; therefore,

sol. of cylinder: sol. of band =1:1

Or the solidities of the cylinder and band are equal; and the same is true of every pair of corresponding solids; and the sum of the parabaloid is all the minute cylinders which make up the solid generated by the revolution of the parabala, (called a parabaloid); and the sum of all the minute bands makes up the solid exterior to the parabaloid. Hence, the parabaloid is equal to half its circumscribing cylinder. Q. E. D.

THE HYPERBOLA.

DEFINITIONS.

- 1. An hyperbola is a plane curve, confined by two fixed points called the foci, and the difference of the distances of each and every point in the curve from the two fixed points, is constantly equal to a given line.
- REMARK 1. The distance between the foci, is also supposed to be known; and the *given line* must be less than the distance between the fixed points; that is, less than the distance between the *foci*.
- REMARK 2. The ellipse is a curve, confined by two fixed points called the foci, and the sum of two lines drawn from any point in the curve, is constantly equal to a given line. In the hyperbola, the difference of two lines drawn from any point in the curve, to the fixed points, is equal to the given line. The ellipse is but a single curve, and the foci are within it; but it will be shown in the course of our investigation, that the hyperbola consists of two equal and opposite branches, and the least distance between them is the given line.
- 2. The line joining the foci, and produced, if necessary, is called the axis of the hyperbola.
- 3. The middle point of the straight line which joins the foci, is called the center of the hyperbola.
 - 4. The excentricity, is the distance from the center to either focus.
- 5. A diameter is any straight line passing through the center and terminated by two opposite hyperbolas.
 - 6. The extremities of a diameter are called its vertices.
- 7. A tangent is a straight line which meets the curve only in one point, and being produced, does not cut the curve.
- 8. An ordinate to a diameter, is a straight line drawn from any point of the curve to meet the diameter produced, and is parallel to the tangent at the vertex of the diameter.
- 9. An abscissa, is the distance between the tangent point and its corresponding ordinate, measured on the diameter produced.

10. The parameter is a double ordinate, passing through the focus. The principal parameter passes through the focus at right angles to the axis.

REMARK. Thus, let F'F be two fixed points. Draw a line between them, and bisect it in C. Take CA, CA', each equal to half the given line, and CA may be any distance less than CF; A'A is the given line, and is called the $major^*$ axis of the hyperbola. Now let us suppose the

curve already found and represented by ADP. Take any point, as P, and join PF and PF'; then by Definition 1, the difference between PF' and PF must be equal to the given line A'A, and conversely if PF' - PF = A'A, then P is a point in the curve.

By taking any point, P, in the curve, and joining PF and PF, a triangle PFF' is always formed, having F'F for its base and A'A for the difference of the sides; and these are all the *conditions* necessary to define the curve.

As a triangle can be formed directly opposite to PF'F, which shall be in all respects exactly equal to it, the two triangles having F'F for a common side; the difference of the other two sides of this opposite triangle will be equal to A'A, and correspond with the condition of the curve; hence, a curve can be formed about the focus F' exactly similar and equal to the curve about the focus F.

In short, F' and A' have the same situation in respect to C, as F and A have to C, and the line FF' is common to all the points; therefore if a curve can pass about the focus F, a like curve can pass about the focus F', and this is illustrated by the adjoining figure, representing a plane cutting vertical cones.

Any line drawn through C_i , and terminated by the opposite curves, is called a diameter; thus DD' is a diameter, and by a very simple

thus, DD' is a diameter, and by a very simple demonstration we can prove that it is bisected in C.

^{*}The term major axis implies that there is a minor axis, but where it is, we cannot at present determine; when we find such a line, we will give it its proper name.

PROPOSITION 1. PROBLEM.

To describe an hyperbola.

Take a ruler F'H, and fasten one end at the point F', on which the ruler may turn as a hinge. At the other end of the ruler attach a thread, and let it be less than the ruler by the given line A'A. Fasten the other end of the thread at F.

With a pencil, P, press the thread against the ruler and keep it at equal tension between the points H and F. Let the ruler turn on the point F', keeping the pencil close to the ruler and letting the thread slide round the pencil; the pencil will thus describe a curve on the paper.

If the ruler be changed and made to revolve about the other focus as a fixed point, the opposite branch of the curve can be described.

In all positions of P, except when at A or A', PF' and PF will be two sides of a triangle, and the difference of these two sides is constantly equal to the difference between the ruler and the thread; but that difference was made equal to the given line A'A; hence, by Definition 1, the curve thus described, must be an hyperbola.

PROPOSITION 2. THEOREM.

If two straight lines be drawn from a point without an hyperbola to the fooi, the excess of the one above the other will be less than the major axis; but if the two straight lines be drawn from a point within an hyperbola to the faci, the excess of one above the other will be greater than the major axis.

EXPLANATIONY NOTE. In this and all subsequent propositions, we shall consider but one branch of the curve; that about the focus F.

The distance between any point, P, on the curve, and the focus F, will be represented by r, and between P and the focus F' by r'.

29

Let I be a point without the curve; join IF, IF', and as F is within the curve, the line IF necessarily cuts the curve at some point P. Let the line without the curve be represented by h.

Put F'I=s', and corresponding to the nature of the curve, put r'-r=a, or r'=r+a.

Add h to both members of this last equation, and

$$r'+h=r+h+a$$

But the first member of this equation is the sum of two sides of a triangle, and of course greater than its third side s'; therefore, increase s' by t to make it equal to r'+h.

Then, . .
$$z'+t=(r+h)+a$$

Or, . . $z'-(r+h)=a-t$

That is, the difference between IF' and IF, is less than a, the major axis. In a similar manner, we may demonstrate that HF'—HF' is greater than a. Q. E. D.

PROPOSITION S. THEOREM.

A tangent to the hyperbola bisects the angle contained by lines drawn from the point of contact to the foci.

Let F', F be the foci and P any point on the curve, draw PF' PF and bisect the angle F'PF by the line TT'; this line will be a tangent at P.

If TT' be a tangent P, every other point on this line will be without the curve.

Take PG=PF and join GF, TT' bisects GF, and any point in the line TT' is at equal distances from F and G

(th. 15 b. 1). By the definition of the curve F'G=A'A the given line. Now take any other point than P in TT' as E, and join EF', EF and EG, EF=EG.

Therefore, EF'-EF=EF'-EG. But EF'-EG, is less than F'G, because the difference of any two sides of a triangle is less than the third side (th. 18b. 1). That is, EF'-EF is less than A'A; consequently the point E is without the curve (Prop. 2),

and as E is any point on the line TT' except P; therefore, the line, TT', which bisects the angle at P, is a tangent to the curve at that point.

Q. E. D.

Scholium. It should be observed, that the variable point in the curve, as P joined to the two invariable points F' and F form a triangle, and that the tangent of the curve at the point P, bisects the angle of that triangle at P.

But when any angle of a triangle is bisected, the bisecting line cuts the base into segments proportional to the other sides (th. 23 b. 2).

Therefore,
$$F'P: PF = F'T': T'F$$

Or, $r': r = F'T': T'F$

But as r' must be greater than r by a given quantity a.

Therefore,
$$r+a:r=F'T':T'F$$

Or, . .
$$1+\frac{a}{r}:1=FT':T'F$$

Let it be observed, that a is a constant quantity, and r a variable one, which can increase without limit, and when r is immensely great in respect to a, the fraction $\frac{a}{r}$ is extremely minute, and the first term of the above proportion, does not in any practical sense differ from the second; therefore, in that case, the third term does not essentially differ from the fourth; that is, FT' does not essentially differ from FT' when r, or the distance of P from F is immensely great. Hence, the tangent at any point P, of the hyperbola, can never cross the line FF' at its middle point, but it may approach within the least imaginable distance to that point.

THE ASYMPTOTES.

The direction of a line passing through the center of opposite hyperbolas to which a tangent may approach within the *least imaginable* distance is called an asymptote.

PROPOSITION 4. PROBLEM.

To draw an asymptote to an hyperbola and find its angle with the axis.

Let FF' be the foci of an hyperbola and A'A the major axis, and C the center. From F' as a center with a radius equal A'A, describe a circle. From the other focus F, draw FH a tangent to this circle, and from the center F' and through the point of contact H, draw the line F'H, and let

it be indefinitely produced. From C, draw CP parallel to FH, and from F, draw FI also parallel to F'H; then the three lines F'H, CP and FI, are all perpendicular to FH, and therefore, will never meet, however far they may be produced.

Now suppose F'H and FI to make the slightest possible inclination toward CP, and if they equally incline, it is evident that they would meet in the same point P, and the less the inclination from right angles, the greater the distance to P, and PHF would form an isosceles triangle, having FH for its base, and PH, PF for its equal sides, and if PH and PF are anything less than infinity, the point P will be in the hyperbola; for, by our supposition the infinitely slight inclination at H, does not prevent us from taking PF'F as a triangle, and the difference of the sides PF', PF, is FH=A'A.

Hence *CP* is a line to which the curve can constantly approach, but never meet, or can meet it only at an infinite distance, and this line is called an asymptote.

To obtain an expression for its angle with FF' we observe that the triangle F'HF is right angled at H, and FF' and A'A are always considered as known lines, but A'A=F'H.

Hence, $F'F: A'A = \sin .90^\circ : \sin .HFF'$, or $\cos .PCF$ In analytical geometry A'A = a, and AF = c; Therefore, . . . FF' = a + 2c, F'H = aAnd, . . . $FH = \sqrt{\frac{4ac + 4c^2}{2}} \sqrt{\frac{ac + c^2}{ac + c^2}}$ If from the point A, we draw Ah at right angles to FC, the two triangles F'HF, CAh, will be similar, and give the proportion

$$F'H:HF=CA:Ah$$

That is,

$$a:2\sqrt{ac+c^2}=\frac{1}{2}a:Ah=\sqrt{(a+c)c}$$

From the preceding equation, we perceive that Ah is a mean proportional between FA and AF'.

The double of the line Ah, drawn at right angles to FF' through the point C, is what mathematicians have arbitrarily termed the *minor axis*. Hence, they give this rule for drawing an *asymptote*.

RULE.—From either vertex of the major axis draw a line at right angles to that axis equal to half the minor axis, connect the center C to the other extremity, and the connecting line produced is the asymptote.

PROPOSITION 5. PROBLEM.

To describe an hyperbola by points.

Let F, F' be the foci and A'A the major axis, and C the center.

From F' as a center with A'A radius, describe a portion of a circle as represented in the figure. From F', draw any line as F'P, cutting the circle in H and join FH. From F, draw the line FP, making the angle

HFP=PHF

It is obvious, then, that P must be in the curve. In the same manner we find P, or any other point. By joining the points P and C, and producing it so that PC = Cp, we shall have p, a point in the opposite branch of the hyperbola, and in the same manner we can find other points in the opposite branch.

PROPOSITION 6. PROBLEM.

Find the equation of the curve in relation to the center and major axis.

Let F' F, be the foci, C the center, and A'A the major axis. Take any point, P, on the curve, and draw the perpendicular PH, join PF PF'.

Put CA=a, AF', AF=c, CF=d, CH=x, PH=y, PF=r, PF'=r'.

Then FH=x-d, or if H falls between A and F, then FH=d-x, but in either case the result will be the same, because $(x-d)^2=(d-x)^2$.

By the definition of the curve, we have

$$r'-r=2a \qquad (1)$$
The $\triangle PHF'$ gives $r'^2=(d+x)^2+y^2 \qquad (2)$
The $\triangle PHF'$ gives $r^2=(x-d)^2+y^2 \qquad (3)$
By subtraction, $r'^2-r^2=4dx \qquad (4)$
Divide (4) by (1) and $r'+r=\frac{2dx}{a} \qquad (5)$

Subtract (1) from (5) and
$$2r = \frac{2dx}{a} - 2a$$
 (6)

Or,
$$r = \frac{dx}{a} - a$$
 (7)
Combining (7) and (3) $\frac{d^2x^2}{a^2} - 2dx + a^2 = x^2 - 2dx + d^2 + y^2$

Or, . . .
$$(d^2-a^2)x^2=(d^2-a^2)a^2+a^2y^2$$
 (8)

But the quantity (d^2-a^2) is called the square of half the minor axis by common consent, and it is designated by b^2 ; a is half the major axis; therefore,

$$b^2x^2 = a^2b^2 + a^2y^2 \tag{9}$$

Or, . .
$$a^2y^2-b^2x^2=-a^2b^2$$
 the equation of the curve.

By giving different values to x, the corresponding values of y may be found. If we make x=a, y becomes o, which shows that the curve commences at the point A. If we make x=a, y again becomes o, showing the opposite point in the other branch of the curve. If we make x less than a, y becomes imaginary, showing that there is no curve in a perpendicular direction between A' and A.

If in equation (8) we make x=d, PH or y will be half the parameter by the definition of parameter. The equation then becomes

$$d^{4}-a^{2}d^{2}=a^{2}d^{2}-a^{4}+a^{2}y^{2}$$
Or, . . $d^{4}-2a^{2}d^{2}+a^{4}=a^{2}y^{2}$
Or, . . . $d^{2}-a^{2}=ay$
Or, . . . $\frac{b^{2}}{a}=y$
Hence, . . . $a:b=b:y$

That is, the parameter is a third proportional to the major and minor

There are many other properties of the hyperbola not here demonstrated, but being of little or no practical importance, we omit them.

·

.

LOGARITHMS OF NUMBERS

FROM

1 To 10000.

·							
N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0 000000	26	1 414978	51	1 707570	76	1 880814
2	0 801080	27	1 431864	59	1 716008	77	1 886491
8	0 477121	28	1 447158	53	1 724276	78	1 892006
4	0 602060	29	1 462398	54	1 782394	79	1 897627
5	0 698970	80	1 477121	55	1 740363	80	1 908090
6	0 778151	81	1 491363	56	1 748188	81	1 908485
7	0 845098	82	1 505150	57	1 755875	82	1 913814
8	0 903090	38	1 518514	58	1 763428	88	1 919078
9	0 954248	84	1 531479	59	1 770852	84	1 924279
10	1 000000	85	1 544068	60	1 778151	85	1 929419
11	1 041898	86	1 556308	61	1 785330	86	1 984498
12	1 079181	87	1 568202	62	1 792392	87	1 939519
18	1 118948	88	1 579784	63	1 799341	88	1 944488
14	1 146128	89	1 591065	64	1 806180	89	1 949390
15	1 176091	40	1 602060	65	1 812913	90	1 954248
16	1 204120	41	1 612784	66	1 819544	91	1 959041
17	1 280449	42	1 623249	67	1 826075	92	1 963788
18	1 255278	43	1 633468	68	1 832509	98	1 968483
19	1 278754	44	1 643453	69	1 838849	94	1 973128
20	1 301030	45	1 653213	70	1 845098	95	1 977794
21	1 822219	46	1 662578	71	1 851258	96	1 982271
22	1 842428	47	1 672098	72	1 85/7333	97	1 986779
23	1 361728	48	1 681241	78	1 868828	98	1 991226
24	1 380211	49	1 690196	74	1 869232	99	1 995685
25	1 .897940	50	1 698970	75	1 875061	100	2 000000
				`			

N.B. In the following table, in the last nine columns of each page, where the first or leading figures change from 9's to 0's, points r dots are new introduced instead of the 0's through the rest of the line, to catch the eye, and to indicate that from thence the corresponding natural numbers in the first column stands in the next lower line, and its annexed first two figures of the Logarithms in the second column.

	L	O G A	RIT	нм	s •0	FN	UMB	ERS	ð.	3
N.	0	1	2	8	4	5	6	7	8	9
100	000000	0434	0868	1301	1784	2166	2598	8029	8461	3891
101	4321	4750	5181	5609	6038	6466	6894	7821	7748	8174
102	8600	9026	9451	9876	.300	.724	1147	1570	1998	2415
103	012837	8259	3680	4100	4521	4940	5360	5779	6197	6616
104	7033	7451	7868	8284	8700	9116	9582	9947	.861	.775
105	021189	1603	2016	9428	2841	8959	8664	4075	4486	4896
106	5806	5715	6125	6533	6942	7350	7757	8164	8571	8978
107	9384	9789	.195	.600	1004	1408	1812	2216	2619	8021
108	083424	3826	4227	4628	5029	5430	5880	6280	6629	7028
109	7426	7825	8223	8620	9017	9414	9611	.207	.602	.998
110	041393	1787	2182	2576	2969	3362	8755	4148	4540	4982
111	5323	5714	6106	6495	6885	7275	7664	8053	8442	8880
112	9218	9606	9993	.880	.766	1153	1538	.1924	2309	2694
118	053078	3463	8846	4230	4613	4996	5378	5760	6142	6524
114	6905	7286	7666	8046	8426	8805	9185	9568	9942	.320
115	060698	1075	1452	1829	2206	9589	2958	3883	8709	4068
116	4458	4832	5206	5580	5953	6326	6699	7071	7448	7815
117	8186	8557	8928	9298	9668	`38	.407	.776	1145	1514
118	071882	2250	2617	2985	3852	8718	4085	4451	4816	5182
119	5547	5912	6276	6640	7004	7368	7781	8094	8457	8819
120	9181	9543	9904	.266	.626	.987	1347	1707	2067	2426
121	082785	3144	8503	8861	4219	4576	4984	5291	5647	6004
122	6360	6716	7071	7426	7781	8136	8490	8845	9198	9552
123	9905	.258	.611	.963	1315	1667	2018	2870	2721	3071
124	093422	3772	4122	4471	4820	5169	5518	5866	6215	6562
125	6910	7257	7604	7951	8298	8644	8990	9885	9681	1026
126	100371	0715	1059	1403	1747	2091	2434	2777	8119	3462
127	8804	4146	4487	4828	5169	5510	5851	6191	6531	6871
128	7210	7549	7888	8227	8565	8903	9241	9579	9916	.258
129	110590	0926	1263	1599	1934	2270	2605	2940	8275	3609
130	8943	4277	4611	4944	5278	5611	. 5943	6276	6608	6940
131	7271	7608	7984	8265	8595	8926	9256	9586	9915	0245
182	120574	0903	1281	1560	1888	2216	2544	2871	3198	3525
188	8852	4178	4504	4880	5156	5481	5806	6131	6456	6781
184	7105	7429	7753	8076	8899	8722	9045	9868	9690	12
185 186 187 188 189	180384	0655	0977	1298	1619	1939	2260	2580	2900	3919
186	8539	3858	4177	4496	4814	5133	5451	5769	6086	6408
187	6721	7037	7354	7671	7987	8303	8618	8934	9249	9564
138	9879	.194	.508	.822	1136	1450	1763	2076	2389	2702
189	143015	3327	3630	3951	4263	4574	4885	5196	5507	5818

4851

-449 3510

8497

.756

8792

.168

9086

.469

6430 9880

4728

.769

2603

5802

7817

8 952**7**

8664

4650 7618

2900

8965

4947 7908

.142 8205

9266

266 5244 8203

4060

144

146 147

149

4			L	O G A	RIT	нм	s			
N.	0	1	2	8	4	5	6	7	8	9
150	176091	6381	6670	6959	7248	7586	7825	8113	8401	8689
151	8977	9264	9552	9839	.126	.413	.699	.985	1272	1558
152	181844	2129	2415	2700	2985	3270	3555	8839	4123	4407
153	4691	4975	5259	5542	5825	6108	6391	6674	6956	7239
154	7521	7803	8084	8366	8647	8928	9209	9490	9771	51
155	190332	0612	0892	1171	1451	1730	2010	2289	2567	2846
156	3125	8403	3681	3969	4237	4514	4792	5069	5346	5623
157	5899	6176	6453	6729	7005	7281	7556	7832	8107	8382
158	8657	8932	9206	9481	9755	29	.303	.577	.850	1124
159	201897	1670	1948	2216	2488	2761	8033	8305	3577	3848
160	4120	4391	4663	4934	5204	5475	5746	6016	6286	6556
161	6896	7096	7365	7634	7904	8173	8441	8710	8979	9247
162	9515	9788	51	.319	.586	.853	1121	1388	1654	1921
163	212188 4844	2454	2720	2986	3252	3518	3788	4049	4314	4579 7221
164		5109	5873	5638	5902	6166	6430	6694	6957	
165	7484	7747	8010	8273	8586	8798	9060	9323	9585	9846
166	220108	0370	0631	0892	1158	1414	1675	1936	2196	2456
167	2716	2976	3236	8496	3755	4015	4274	4533	4792	5051
168	5309 7887	5568	5826	6084	6342	6600	6858 9426	7115	7372	7630 .198
1 6 9		8144	8400	8657	8918	9170			9938	
170	230449	0704	0960	1215	1470	1724	1979	2234	2488	2742
171	2996	3250	3504	3757	4011	4264	4517	4770	5023	5276
172	5528	5781	6033	6285	6537	6789	7041	7292	7544	7795
173	8046	8297	8548	8799	9049	9299	9550	9800	50	.800
174	240549	0799	1048	1297	1546	1795	2044	2293	2541	2790
175	3038	3286	3534	3782	4030	4277	4525	4772	5019	5266
176	5518	5759	6006	6252	6499	6745	6991	7237	7482	7728
177	7978	8219	8464	8709	8954	9198	9443	9687	9932	.176
178	250420	0664	0908	1151	1395	1638	1881	2125	2368	2610
179	2853	8096	3388	8580	3822	4064	4306	4548	4790	5031
180	5278	5514	5755	5996	6237	6477	6718	6958	7198	7489
181	7679	7918	8158	8398	8637	8877	9116	9355	9594	9888
182	260071	0310	0548	0787	1025	1263 3636	1501 3873	1739 4109	1976 4346	2214 4582
188 184	2451 4818	2688 5054	2925 5290	8162 5525	3399 5761	5996	6232	6467	6702	6987
								1		
185	7172	7406	7641	7875	8110	8344	8578	8812	9046	9279
186	9513	9746	9980	.213	.446	.679	.912	1144	1377	1609
187	271842	2074	2306	2538	2770	3001	3233	8464 5772	3696	3927 6232
188	4158	4389	4620	4850	5081	5311 7609	5542 7838	8067	6002 8296	8525
189	6462	6692	6921	7151	7380			1		
190	8754	8982	9211	9439	9667	9895	.123	.351	.578	.806
191	281033	1261	1488	1715	1942	2169	2396	2622	2849	3075
192	3301	8527	3753	8979	4205	4481	4656	4882 7130	5107	5332 7578
193	5557	5782	6007	6232 8473	6456	6681 8920	6905 9143	9366	7354 9589	9812
194	7802	8026	8249		8696		}			}
195	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034
196	2256	2478	2699	2920	3141	3363	3584	3804	4025	4246
197	4466	4687	4907	5127	5347 7542	5567	5787 7979	6007	6226 8416	6446 8685
198	6665	6884	7104 9289	7328 9507	9725	7761 9943	.161	8198 . 37 8	.595	.818
199	8858	9071	3209	8001	5120	0040	.101	.010	.080	.010

			0	F N	UMB	ERS	3.			5
N.	0	1	2	8	4	5	6	7	8	9
200	801030	1247	1464	1681	1898	2114	2331	2547	2764	2980
201	3196	8412	3628	3844	4059	4275	4491	4706	4921	5136
202	5351	5566	5781	5996	6211	6425	6639	6854	7068	7282
203 204	7496 9630	7710 9843	7924 56	8137 .268	8351 .481	8564 .693	.906	8991 1118	9204 1330	9417 1542
203	3000	30-20		.200	.401	.050	.500	1110	1000	1025
205	811754	1966	2177	2389	2600	2812	8023	3234	3445	3656
206	8867	4078	4289	4499	4710	4920	5130	5840	5551	5760
207	5970 8063	6180	6890	6599 8689	6809	7018	7227 9814	7436	7646	7854
208 209	320146	8272 0354	8481 0662	0769	8898 0977	9106 1184	1391	9522 1598	9730 1805	9938 2012
200	0.501.20	0002	0002	0.00	00	****	1001	1000	1000	2012
210	2219	2426	2633	2889	3046	3252	3458	8665	3871	4077
211	4282	4488	4694	4899	5105	5810	5516	5721	5926	6131
212 213	6336 8380	6541 8583	6745 8787	6950 8991	7155	7359 9398	7563 9601	7767 9805	7972	8176
213	330414	0617	0819	1022	9194 1225	1427	1680	1832	2034	.211 2236
~	555174	001.	0015	-022	1220	1.20	1000	1000	2002	2200
215	2438	2640	2842	3044	3246	3447	8649	3850	4051	4253
216	4454	4655	4856	5057	5257	5458	5658	5859	6059	6260
217	6460 8456	6660	6860	7060	7260	7459	7659	7858	8058	8257
218 219	340444	8656 0642	8855 0841	9054 1039	9258 1237	9451 1435	9650 1632	9849 1830	2028	.246 2225
213	0.0	0025		1000	120.	1400	1002	1000	2020	2220
220	2423	2620	2817	8014	8212	3409	3606	2028	3999	4196
221	4392	4589	4785	4981	5178	5374	5570	5766	5962	6157
222 228	6353 8305	6549 8500	6744 8694	6939 8889	7185	7330	7525	7720	7915	8110
228	350248 Y	0142	0636	0829	9083	9278 1216	9472 1410	9666 1603	9860 1796	54 1989
	350220	0111	0000	00.20	1020	1210	1410	1000	1130	1303
225	2183	2375	2568	2761	2954	3147	3339	3532	3724	3916
226	4108	4301	4493	4685	4876	5068	5260	5452	5643	5834
227	6026 7935	6217	6408	6599 8506	6790	6981	7172	7363	7554	7744
228 229	9885	8125	8316 .215	.404	8696 .593	8886	9076	9266 1161	9456 1350	9646 1539
	0000		.210		.000		.3.2	1101	1300	1009
230	361728	1917	2105	2294	2482	2671	2859	3048	3286	3424
231.	3612	.3800	3988	4176	4363	4551	4739	4926	5118	5801
232	5488 7356	5675	5862	6049	6236	6423	6610	6796	6983	7169
233 234	9216	7542 9401	7729 9587	7915 9772	8101 9958	8287 .143	8478	8659 .513	.698	9030
201	5210	0101	000.	0	3300	.140	.0.20	.013	.090	.888
235	371068	1253	1437	1622	1806	1991	2175	2860	2544	2728
236	2912	3096	3280	3464	8647	3831	4015	4198	4382	4565
237	4748 6577	4932	5115	5298	5481	5664	5846	6029	6212	6394
238 239	8398	6759 8580	6942 8761	7124 8943	7306 9124	7488 9306	7670 9487	7852 9668	8034	8216
	0000	3000	0.01	00-20	9124	9300	9401	9000	9849	30
240	380211	0392	0578	0754	0934	1115	1296	1476	1656	1837
241	2017	2197	2377	2557	2737	2917	3097	3277	3456	3636
242	8815 5606	3995	4174	4353 6142	4533	4712	4891	5070	5249	5428
243	7390	5785 7568	5964 7746	7923	6321 8101	6499 8279	6677 8456	6856 8634	7084 8811	7212 8989
~~					0101	0,018	0-200	0004	9011	0308
245	9166	9343	9520	9698	9875	51	.228	.405	.582	.759
246	390935	1112	1288	1464	1641	1817	1993	2169	2345	2521
247 248	2697 4452	2873	3048	8224	3400	3575	8751	3926	4101	4277
249	6199	4627 6374	4802 6548	4977 6722	5152 6896	5326 7071	5501 7245	5676 7419	5850 7592	6025 7766
	1	1 30.4		3.20	3030	1011	1220	1419	1092	, , , 00

N. 0	ъ		·.	,L	0 G A	RIT	HM	\$			
9874 9874 9874 7.90 1192 365 588 771 3882 1066 1292 263 3121 3292 3464 3635 8807 3878 4149 4820 4822 4668 264 4884 5005 5176 5846 5517 5688 5868 6029 6199 6370 256 8240 8410 8579 8749 8918 9087 9257 9426 9565 5956 7742 9426 9565 5764 257 9833 102 2.71 .440 .609 .777 .946 1114 1283 1451 2586 411620 1788 1966 2134 2293 2461 2689 2964 4132 1441 2893 2461 2689 4804 4804 4834 4834 4834 4834 4834 4834 4834 4834 4834 4834 4834 4834 4834 4834 4834	N.	0	1	2	3	.4	5	6	7	8	.9
951 9674 9647 .20 .192 .365 .588 .711 .882 1066 1228 263 3121 3292 3464 3635 8907 8978 4149 4290 4492 4663 264 4884 5006 6176 5846 5517 6688 5868 6029 6199 6370 256 840 6410 6861 7061 7896 7892 7962 9865 9866 9812 7863 8804 9129 2864 3424 3424 3426 4816 7418 7481 9461 9825	250	397940	8114	8287	8461	8684	8808	8961	9154	9328	9501
253 3191 3999 3444 3635 8907 8978 4149 4990 4492 4683 256 4884 5005 5176 5846 5517 5688 5868 6029 61199 6370 256 8240 6410 6861 7951 7881 7861 7781 790 5969 9767 946 1114 1983 1461 2571 440 609 777 946 1114 1983 1451 2589 1300 8467 8685 8903 8970 4187 9486 3429 4863 4862 8124 2823 2461 2689 2786 2964 3122 2839 8461 8623 8788 8804 9129 9265 9464 7970 8135 9265 9804 1127 14365 4110 1275 14383 4862 4872 4863 6899 7616 7811 9464 9472 4863 4894 1489		9674	9847		.192	.965	.588	.711		1056	1228
254 4884 5005 5176 5846 5517 5688 5858 6029 6199 6370 255 6640 6710 6881 7051 7321 7891 7661 7781 7901 8070 256 8240 8410 8579 8749 8918 9067 9267 9426 5696 9764 257 9933 1102 2711 440 609 777 946 1114 1283 1451 260 4973 5140 5807 5474 5641 8686 5674 4114 4308 4806 960 4973 5140 6973 7189 7364 4712 7688 7804 7970 8135 265 3301 8467 8632 8798 8964 9129 9259 9460 9625 9791 266 4892 5646 5206 5371 5534 6697 5860 6023 6186											
265 6840 6710 6881 7051 7291 7891 7861 7781 7901 8906 9665 9764 256 8240 8410 8579 8749 8918 9067 9267 9426 9660 9764 256 411620 1788 1966 2194 2293 2461 2689 2796 2964 3132 259 3200 8467 8683 8803 8970 4187 4306 4472 4639 4806 260 4973 5140 5307 5474 5641 6806 5974 6141 8308 4474 261 6641 6807 6973 7189 7306 7472 7638 7804 7970 8135 262 3810 8467 8638 8984 9199 2925 9460 9625 9791 3135 265 3846 3410 3674 8787 3901 4065 4298											
Section Sect	254	4884	5005	5176	5846	5517	5688	5858	6029	6199	6870
265 8240 8410 8579 8749 8918 9067 9257 9496 9595 9764 9933 102 271 440 609 777 946 114 1283 1451 259 3300 3467 3685 3803 3870 4137 4805 4472 4639 4806 4873 5140 5907 5784 5784 5784 5805 5764 5805 5803 5870 4137 4805 4473 4639 4806 4806 4806 4806 4807 6807 6973 7189 7306 7472 7638 7804 7970 8135 6823 9878 8864 9129 925 9460 9625 9761 5825 5830 8867 8633 8788 8864 9129 925 9460 9625 9761 5825 5830 8867 8868 9129 925 9460 9625 9761 5825 5826 4216 421604 1788 1933 2097 2261 2426 2590 2754 2918 3062 2664 421604 1788 1933 2097 2261 2426 2590 2754 2918 3062 267 6511 6674 6836 6999 7161 7324 7486 7643 7811 7973 268 8135 8227 8469 8621 8783 8944 9106 9268 9429 9561 2969 9752 9914 75 .236 3886 .559 .720 .881 1042 1203 272 4569 4739 4888 5048 5207 5367 5526 5686 5844 6004 272 4569 4739 4888 5048 5207 5367 5526 5686 5844 6004 272 4569 4739 4888 5048 5207 5367 5526 5686 5844 6004 272 4569 4739 4888 5048 5207 5367 5526 5686 5844 6004 272 4569 4739 4888 5048 5207 5367 5526 5686 5844 6004 272 4569 4739 4888 5048 5207 5367 5526 5686 5844 6004 272 4569 4739 4888 5048 5207 5367 5526 5686 5844 6004 5760 5760 5915 6071 6226 6382 4567 6392 6481 6640 6300 6367 7116 7275 7433 7569 2777 2480 2637 2773 2950 3106 3953 3419 3576 3732 3839 2778 4045 4291 4367 4513 4669 4625 4961 5137 5233 5449 279 5604 5760 5915 6071 6226 6382 5376 6392 6348 7003 2857 7783 2857 7883 8033 8184 8336 8487 8638 8789 8940 9091 9243 286 4868 3468 3471 3624	255	6540	6710	6881	7051	7921	7891	7561	7781	7901	8070
259 411620 1788 1966 2194 2993 2461 2629 2796 2964 3132 260 4978 5140 5907 7139 7306 7473 7638 7804 7970 8135 261 6641 6807 6973 7139 7306 7473 7638 7804 7970 8135 262 8301 8467 8633 8798 8964 9129 9296 9460 9625 9791 263 9966 .121 .286 .451 .616 .781 .945 1110 1275 1439 265 3246 3410 3674 3787 3901 44065 4928 4892 4565 4718 266 4882 5045 5206 5371 5634 5697 5660 6023 6168 6349 267 6511 6674 6898 6999 7161 7384 4968 7811 797		8240	8410	8579	8749	8918	9087	9257	9426	9595	9764
359 3300 8467 3685 3803 8970 4187 4806 4473 4639 4806 960 4973 5140 5907 5474 5641 6608 5674 6141 6308 6474 261 6641 6807 6938 8798 8644 9129 9295 940 9625 9791 263 9966 1311 .286 .461 .616 .781 .945 1110 1275 1439 264 421604 1788 1933 2097 2361 2496 2590 9754 2918 3062 265 3246 3410 3574 3787 3901 4065 4298 4392 4565 4718 266 4829 5045 5206 5271 5584 5697 560 6023 6186 6349 267 6511 6674 6836 6999 7161 7394 6488 7817 7391 </th <th></th> <th>9933</th> <th>.102</th> <th>.271</th> <th>.440</th> <th>.609</th> <th>.777</th> <th>.946</th> <th>1114</th> <th></th> <th></th>		9933	.102	.271	.440	.609	.777	.946	1114		
260 4973 5140 5907 5474 5641 5908 5974 6141 6308 6474 261 6641 6807 6973 7189 7306 7472 7638 7804 7970 8135 263 9366 1.21 286 .451 .616 781 .945 1110 1275 1439 264 421604 1788 1983 2097 2261 2426 2590 2764 2913 3062 265 3246 3410 3674 3787 3901 4065 4928 4392 4555 4718 266 4882 5045 5906 5371 5534 5697 5660 6023 6186 6349 267 6511 6674 6836 6999 7161 7324 7486 7643 7811 7973 268 8135 8927 8459 8621 8783 8944 9106 9248 9429 </th <th></th> <th></th> <th></th> <th>1956</th> <th></th> <th>2293</th> <th>2461</th> <th></th> <th></th> <th></th> <th>3132</th>				1956		2293	2461				3132
261 6641 6807 6978 7189 7306 7472 7638 7804 7970 8135 262 3301 8467 8633 8798 8964 9129 9295 9460 9625 9791 264 421604 1788 1988 2097 2261 2426 2500 2754 2918 3082 265 3246 3410 3674 8787 3901 4065 4928 4392 4565 4718 266 4382 5045 5208 5371 5584 5697 5660 6023 6186 6349 267 6511 6674 6836 6899 7161 7394 7486 7648 7811 7973 263 9752 9914 75 .236 .388 .559 .720 .881 1042 1203 271 2369 3130 390 3450 3610 3770 3930 4400 4409<	259	8300	8467	8685	3803	8970	4187	4805	4472	4639	4806
261 6841 6807 6978 7189 7306 7472 7638 7804 7970 8185 262 8301 8467 6833 8798 8964 9129 9295 9460 9625 9791 264 421604 1788 1938 2097 2261 2426 2500 2754 2918 3062 265 3246 3410 3674 8787 3901 4065 4298 4392 4565 4718 266 4892 5045 5206 5371 5534 5697 5660 6023 6186 6349 267 6511 6674 6836 6399 7161 3934 7468 7643 7811 7973 268 5135 5397 8459 8629 7838 8944 9106 9288 9489 99691 271 2969 9130 3290 3450 3610 3770 3938 9488 944	260	4978	5140	5207	5474	KR41	KANA	K074	6141	6308	6474
262 3301 8467 8683 8798 8964 9129 9295 9460 9625 9791 264 421604 1788 1983 2097 2261 2426 2560 2754 2918 3062 265 39246 3410 3674 3787 3901 4065 4928 4922 4565 4718 266 4882 5045 5908 5371 5684 5697 5860 6023 6186 6349 267 6511 6674 6836 6999 7161 7324 7486 7648 7811 7973 268 3135 8297 8459 8621 8783 8944 9106 9268 9429 9691 271 2969 3130 3290 3460 3610 3770 3980 4469 2498 2498 272 4569 4729 4888 5048 5207 5367 5526 5685 584	261										
263 9956 191 .286 451 .616 .781 .945 1110 1975 1439 264 421604 1788 1938 2097 2261 2426 2590 2754 2918 3082 265 3246 3410 3674 8787 3901 4065 4228 4392 4555 4718 266 4882 5045 5208 5371 5534 5667 5860 6023 6186 6311 7918 7918 7486 7648 7811 7973 288 8135 8297 8459 8691 8783 8944 9106 9268 9429 9591 1703 19390 4409 9489 9591 1703 3930 4409 9489 9691 1703 3930 4409 9449 9494 9494 9494 9494 9494 9494 9494 9494 9494 9494 9494 9494 9494 9494 9494	262	8301	8467					9295	9460		
265 3946 3410 3674 2787 3901 4065 4298 4392 4565 4718 266 4882 5045 5208 5371 5534 5697 5660 6023 6186 6349 268 8135 8297 8459 8691 8783 8944 9106 9268 9429 9591 269 9752 9914 75 .236 .388 .559 .720 .881 1042 1203 270 431364 1525 1685 1846 2007 2167 2328 2488 2649 2809 271 2969 3130 3290 3450 3610 3770 3930 4409 4409 4409 272 4569 4799 4888 8048 5507 5767 5567 5586 5685 5644 6004 273 6163 6322 6481 6640 6800 6957 7116 7275				.286	.451		.781	.945	1110	1275	
266 4882 5045 5208 5371 5534 5697 5860 6023 6186 6349 267 6611 6674 6836 6999 7161 7394 7486 7648 7811 7811 7811 7812	264	421604	1788	1988	2097	2261	2426	2590	2754	2918	3062
267 6511 6674 6886 6999 7161 7924 7486 7648 7811 7973 268 8135 8297 8459 8621 8783 8944 9106 9268 9429 9891 270 431364 1595 1685 1846 9007 9167 2938 9488 2649 9209 271 2969 3130 3290 3450 3610 3770 3930 4090 4249 4409 272 4569 4799 4888 5048 5007 5367 5526 5685 5644 6004 273 6163 6322 6481 6640 6800 6987 7116 7275 7433 7592 276 43333 9491 9648 9806 9964 122 279 437 594 .752 276 440990 1066 1224 1381 1638 1685 1862 2009 2166<											
268 8135 8297 8459 8621 8783 8944 9106 9268 9429 9591 269 9752 9914 76 .236 .388 .669 .720 .881 1042 1203 970 431364 1525 1685 1846 2007 9167 2938 2488 2649 2809 271 2969 3130 3290 3450 3610 3770 3930 4490 4449 4409 272 4569 4729 4888 5048 5207 5867 5526 5685 5844 6004 273 6163 6322 6481 6640 6800 6987 7116 7275 7433 7582 276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2323 277 2450 2637 2793 2950 3106 3363 3419 3576 37											
269 9759 9914 75 .236 .368 .569 .720 .881 1042 1203 370 431364 1595 1685 1846 2007 9167 2398 9488 2649 2809 271 2969 3130 3290 3450 3610 3770 3930 4090 4249 4409 272 4569 4799 4888 5048 5007 5367 5526 5685 5644 6004 274 7751 7909 8067 8226 8384 8542 8701 8859 9017 9175 276 43099 1066 1224 1381 1538 1695 1862 2009 2166 2323 277 2490 2637 2793 2950 3106 3363 3419 3576 3732 3889 278 4045 4201 4357 4513 4669 4825 4961 5137 529											
270 431364 1525 1685 1846 2007 3167 2328 2488 2649 4289 4409 271 2369 3130 3290 3450 3610 3770 3930 4490 4249 4409 272 4569 4729 4888 5048 5207 5367 5526 5685 5844 6004 273 6163 6322 6481 6640 6800 6987 7116 7275 7433 7592 274 7751 7909 8067 8226 8384 8542 8701 8859 9017 9175 276 43099 1066 1224 1381 1638 1695 1862 2009 2166 2327 2773 2460 2637 2793 2950 3106 3363 3419 3576 3732 3889 278 4045 4201 4357 4513 4669 4825 4961 5137 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
271 2969 3130 3290 3450 3610 3770 3930 4090 4249 4409 272 4669 4739 4888 5048 5007 5367 5266 5685 5844 6004 273 6163 6322 6481 6640 6890 6987 7116 7275 7433 7592 274 7751 7909 8067 8226 8384 8542 8701 8859 9017 9175 276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2323 277 2460 2637 2793 2950 3106 3363 3419 3576 3732 3889 278 4045 4201 4357 4513 4669 4825 4981 5137 5293 5449 279 5604 5760 5916 6071 6226 6382 6537 6684 8907			9914	75	.286	.898	.009	.720	.901	1049	1208
272 4569 4729 4888 5048 5207 5867 5526 5685 5844 6004 273 6163 6322 6481 6640 6900 6957 7116 7275 7433 7592 274 7751 7909 8067 8226 8384 8542 8701 8859 9017 9175 275 9333 9491 9648 9806 9964 122 279 427 594 .762 276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2323 277 2480 2637 2793 2950 3106 3953 3419 3576 3732 3889 279 5604 5760 5915 6071 6226 6382 6537 6692 6648 7003 281 8706 8861 9015 9170 9324 9478 9623 9787 9941 <th>970</th> <th>431364</th> <th>1525</th> <th>1685</th> <th>1846</th> <th>2007</th> <th>2167</th> <th>2328</th> <th>9488</th> <th>2649</th> <th>2809</th>	970	431364	1525	1685	1846	2007	2167	2328	9488	2649	2809
273 6163 6322 6481 6640 8800 6957 7116 7275 7433 7592 274 7751 7909 8067 8226 8384 8542 8701 8869 9017 9175 275 9333 9491 9648 9806 9964 .122 .279 .437 .594 .752 276 440909 1066 1224 1381 1538 1695 1852 2009 2166 2323 277 2480 2637 2793 2950 3106 3263 3419 3576 3732 2889 279 5604 5760 5915 6071 6226 6382 6537 6692 6848 7093 280 7158 7313 7468 7623 7778 7928 8088 8942 8997 8552 281 8706 8861 9015 9170 9324 9478 9633 9787 9941											
274 7751 7909 8067 8226 8384 8542 8701 8869 9017 9175 276 430909 1066 1224 1381 1538 1695 1852 2009 2166 2323 277 2460 2637 2793 2950 3106 3963 3419 3576 3732 3889 278 4045 4201 4357 4513 4669 4825 4981 5137 5293 5449 279 5604 5760 5915 6071 6326 6382 6587 6692 6648 7083 280 7158 7313 7468 7623 7778 7983 8068 8942 8967 8552 281 8706 8861 9016 9170 9324 9478 9623 9787 9941 95 282 450249 0403 0557 0711 0665 1018 1172 1326 1						5207		5526			
275 9333 9491 9648 9806 9964 .192 .279 .437 .594 .752 276 440909 1066 1224 1331 1538 1695 1852 2009 2166 2323 278 2450 2637 2793 2950 3106 3963 3419 3576 3732 3889 279 5604 5760 5915 6071 6226 6382 6537 6692 6848 7083 280 7158 7313 7468 7623 7778 7983 6068 8942 8967 8552 281 8706 8861 9015 9170 9324 9478 9623 9787 9941 .96 281 8706 8861 9015 9170 9324 9478 9623 9787 9941 .96 282 450249 0403 0557 0711 0665 1018 1172 1326 1479											
276 440909 1066 1224 1381 1638 1695 1852 2009 2166 2323 277 2480 2637 2793 2950 3106 3363 3419 3576 3732 3836 5449 279 5604 5760 5915 6071 6226 6382 6587 6692 6848 7093 280 7158 7218 7468 7622 7778 7928 6088 8942 8997 8552 281 8706 8861 9015 9170 9324 9478 9633 9787 9941 95 281 8706 8861 9015 9170 9324 9478 9633 9787 9941 95 282 450249 0403 0557 0711 0665 1018 1172 1326 1479 1638 283 1786 1940 2093 2247 2400 2553 2706 2859 3012	274	7751	7909	8067	8226	8384	8542	8701	8859	9017	9175
276 440909 1066 1224 1381 1638 1695 1852 2009 2166 2323 277 2480 2637 2793 2950 3106 3363 3419 3576 3732 3889 279 5604 5760 5915 6071 6226 6382 6587 6692 6848 7003 280 7158 7313 7468 7623 7778 7923 6088 8942 8997 8552 281 8706 8861 9015 9170 9324 9478 9633 9787 9941 95 282 450249 0403 0557 0711 0665 1018 1172 1326 1479 1633 283 1766 1940 2093 2247 2400 2553 2706 2859 3012 3165 284 4845 4997 5150 5302 5454 5666 5758 5910 6	275	9333	9491	9648	9806	9964	.122	.279	.437	.594	.752
278 4045 4201 4367 4513 4669 4825 4981 5137 5293 5449 279 5604 5760 5915 6071 6226 6382 6537 6692 6648 7003 280 7158 7313 7468 7623 7778 7983 6068 8942 8997 8552 281 8706 8861 9015 9170 9324 9478 9623 9787 9941 .96 283 1786 1940 2093 2247 2400 2553 2706 2859 3012 3165 284 3318 3471 3624 3777 3930 4082 4235 4387 4540 4693 285 4845 4997 5150 5302 5454 5606 5758 5910 6062 6214 286 6866 6518 6670 6821 6973 7125 7276 7428 7579 <th>276</th> <th>440909</th> <th>1066</th> <th>1224</th> <th>1381</th> <th>1538</th> <th></th> <th>1852</th> <th>2009</th> <th></th> <th>2323</th>	276	440909	1066	1224	1381	1538		1852	2009		2323
279 5604 5760 5915 6071 6226 6382 6537 6692 6848 7093 280 7158 7318 7468 7623 7778 7983 6088 8942 8997 8550 281 8706 8861 9015 9170 9324 9478 9633 9787 9941 95 282 450249 0403 0557 0711 0665 1018 1172 1326 1479 1638 283 1786 1940 2093 2247 2400 2553 2706 2859 3012 3165 284 3318 3471 3624 3777 3930 4062 4235 4387 4540 4692 285 4845 4997 1510 5302 5454 5606 5758 5910 6062 6214 286 6366 6518 6670 5891 6973 7125 7276 7428 757			2637	2793	2950	3106	3263	3419	8576	3732	3889
280 7158 7318 7468 7623 7778 7928 8088 8942 8397 8552 282 450249 0403 0557 0711 0865 1018 1172 1326 1479 1633 283 1786 1940 2093 2247 2400 2553 2706 2859 3012 3165 284 3318 3471 3524 3777 3930 4082 4235 4387 4540 4692 285 6366 6518 6670 6821 6973 7125 7276 7428 7579 7731 287 7882 8033 8184 8336 8487 8638 8789 8940 9991 9242 288 9399 9543 9594 9845 9995 146 296 447 567 748 289 460898 1048 1198 13348 1499 1649 1799 1948 2098 2248 290 2398 2548 2697 2847 2960 2598 5686 7016 7164 7312 7460 7608 7756 7904 8052 2900 294 8347 8495 8643 8790 8938 9968 923 9969 116 263 440 569 523 596 471292 1488 1585 1732 1878 2025 2171 2318 2464 2607 297 2776 4216 4362 4508 4653 4799 4944 5090 5235 5381 5526 6471 299											
281 8706 8861 9015 9170 9324 9478 9633 9787 9941 95 282 450249 0403 0567 0711 0665 1018 1172 1326 1479 1638 284 3818 3471 3624 3777 3930 4082 4235 4387 4540 4692 285 4845 4997 5150 5302 5454 5606 5758 5910 6062 6214 286 6866 6518 6670 6821 6973 7125 7276 7428 7579 7731 287 7889 8033 8184 8336 8487 8638 8789 8940 901 9243 288 9899 9543 9694 9845 9995 .146 .296 .447 .697 .748 289 460998 1048 1198 1348 1499 1649 1799 1948 20	279	5604	5760	5915	6071	6226	6382	6537	6692	6848	7093
281 8706 8861 9015 9170 9324 9478 9632 9787 9941 95 282 450249 0403 0567 0711 0665 1018 1172 1326 1479 1633 284 1786 1940 2093 2947 240 2553 3706 2859 3012 3165 284 3818 3471 3624 3777 3930 4082 4235 4387 4540 4692 285 4845 4997 5150 5302 5454 5606 5758 5910 6062 6214 286 6866 6518 6670 6831 6973 7125 7276 7428 7579 7731 287 7889 8033 8184 3336 8487 8638 8789 8940 9091 9243 288 9892 9543 9694 9845 9995 .146 .296 .447 .697	280	7158	7313	7468	7623	7778	7988	8088	8942	8397	8550
282 450249 0403 0557 0711 0865 1018 1172 1326 1479 1638 284 3818 3471 3624 2247 2400 2553 2706 2859 3012 3165 285 4845 4897 5150 5802 5454 5606 5758 5910 6062 6214 286 6866 6518 6670 6891 6973 7125 7276 7428 7579 7731 287 7882 8033 8184 8336 8487 8638 8789 8940 9091 9243 288 9892 9543 9694 9845 9905 .146 .296 .447 .697 .748 289 460698 1048 1198 1348 1499 1649 1799 1948 2008 2248 290 2396 2548 2697 2847 2997 3146 8296 3445 36	281	8706									
284 3818 3471 3624 3777 3930 4062 4235 4387 4540 4692 285 4845 4997 5150 5302 5454 5606 5758 5610 6062 6214 286 6366 6518 6670 6821 6973 7125 7276 7428 7579 7731 287 7882 8033 8184 8336 8487 8638 8789 8940 901 9243 288 9892 9543 9694 9845 9995 .146 .296 .447 .697 .748 289 460998 1048 1198 1348 1499 1649 1799 1948 2008 2248 290 2898 2548 2697 2847 2997 3146 8296 3445 3694 2248 290 2898 2548 2697 2847 2997 3146 8296 3445 3694<			0403		0711					1479	1633
285 4845 4997 5150 5892 5455 6606 5758 5910 6062 6214 286 6866 6518 6670 6821 6973 7125 7276 7428 7579 7731 287 7882 8033 8184 8336 8487 8638 8789 8940 9091 9242 283 9399 9543 9694 9845 9995 146 296 447 .697 .748 289 460698 1048 1198 1348 1499 1649 1799 1948 2068 2248 290 2398 2548 2697 2847 2997 3146 3296 3445 3694 3744 291 3893 4042 4191 4340 4490 4639 4788 4936 5085 5234 292 5883 5532 5680 5829 5977 6126 6274 6423 6571 6719 293 6868 7016 7164 7312 7460 7608 7756 7904 8052 8200 294 8847 8495 8648 8790 8938 9065 9238 9380 9527 9675 295 9822 9969 .116 .263 .410 .567 .704 .851 .998 1145 296 471292 1488 1585 1732 1678 2025 2171 2318 2464 2610 297 2756 2903 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4658 4799 4944 5090 5235 5381 5526	283	1786	1940	2093	2247	2400	2553	2706	2859	8012	3165
286 6866 6518 6670 6821 6973 7125 7276 7428 7579 7731 287 7882 8033 8184 8336 8487 8638 8789 8940 9091 9242 289 9399 9543 9694 9845 9995 146 296 447 567 7438 289 460898 1048 1198 1348 1499 1649 1799 1948 2098 2248 290 2398 2548 2697 2847 2997 3146 3296 3445 3594 3744 291 3893 4042 4191 4340 4490 4639 4788 4936 5065 5234 292 5833 5532 5680 5829 5977 6126 6274 6423 6571 6719 293 6868 7016 7164 7312 7460 7608 7766 7904 8052 <th>284</th> <th>8818</th> <th>3471</th> <th>3624</th> <th>8777</th> <th>3930</th> <th>4082</th> <th>4235</th> <th>4387</th> <th>4540</th> <th>4692</th>	284	8818	3471	3624	8777	3930	4082	4235	4387	4540	4692
286 6866 6518 6670 6821 6973 7125 7276 7428 7579 7731 287 7882 8033 8184 8336 8487 8638 8789 8940 9091 9242 289 9399 9543 9694 9845 9995 146 296 447 567 7438 289 460898 1048 1198 1348 1499 1649 1799 1948 2098 2248 290 2398 2548 2697 2847 2997 3146 3296 3445 3594 3744 291 3893 4042 4191 4340 4490 4639 4788 4936 5065 5234 292 5833 5532 5680 5829 5977 6126 6274 6423 6571 6719 293 6868 7016 7164 7312 7460 7608 7766 7904 8052 <th>285</th> <th>4845</th> <th>4007</th> <th>K150</th> <th>5202</th> <th>KAKA</th> <th>KANE</th> <th>5759</th> <th>KOIA</th> <th>6069</th> <th>6214</th>	285	4845	4007	K150	5202	KAKA	KANE	5759	KOIA	6069	6214
287 7882 8033 8184 8336 8487 8638 8789 8940 9091 9243 283 9392 9543 9694 9845 9995 .146 .296 .447 .697 .748 289 460698 1048 1198 1348 1499 1649 1799 1948 2008 2248 290 2396 2548 2697 2847 2997 3146 3296 3445 3594 3748 291 3893 4042 4191 4340 4490 4639 4788 4936 5085 55234 292 5853 5532 5680 5829 5977 6196 6748 4623 6671 6719 298 6686 7016 7164 7312 7460 7608 7756 7904 8052 3200 294 8347 8495 8643 8790 8938 9065 9238 9380 952											
288 9399 9543 9694 9845 9995 1.46 .296 .447 .597 .748 289 460698 1048 1198 1348 1499 1649 1799 1948 2068 2248 290 2898 2548 2697 2847 2997 3146 8296 3445 3694 3744 291 3893 4042 4191 4340 4490 4639 4788 4936 5085 5234 292 5833 5532 5680 5829 5977 6196 6274 6428 6571 6719 293 6968 7016 7164 7312 7460 7608 7756 7904 8052 8200 294 8347 8495 8643 8790 8938 9065 9233 9380 9627 9675 295 4922 9699 .116 .263 .410 .557 .704 .851 .998											
289 460698 1048 1198 1348 1499 1649 1799 1948 2068 2248 290 2898 2548 2697 2847 2997 3146 3296 3445 3594 3744 291 3893 4042 4191 4340 4639 4788 4936 5065 5234 292 5883 5532 5680 5829 5977 6126 6274 6428 6571 6719 293 6868 7016 7164 7312 7460 7608 7756 7904 8052 8200 294 8347 8496 8643 8790 8938 9065 9233 9380 9527 9675 296 9822 9969 .116 .263 .410 .557 .704 .851 .996 1145 296 471292 1488 1585 1732 1678 2025 2171 2318 2464 26		9892									
291 3893 4042 4191 4340 4490 4639 4788 4936 5085 5234 292 5833 5532 5680 5829 5977 6126 6274 6428 6671 6719 293 6968 7016 7164 7312 7460 7608 7756 7904 8052 8200 294 8347 8495 8643 8790 8938 9065 9233 9380 9627 9675 295 9822 9969 .116 .963 .410 .587 .704 .851 .998 1145 296 471292 1438 1585 1732 1878 2025 2171 2318 2464 2610 297 2756 2903 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4653 4799 4944 5090 5235 5381	289	460898	1048	1198	1348	1499	1649		1948	2098	2248
291 3893 4042 4191 4340 4490 4639 4788 4936 5085 5234 292 5833 5532 5680 5829 5977 6126 6274 6428 6671 6719 293 6968 7016 7164 7312 7460 7608 7756 7904 8052 8200 294 8347 8495 8643 8790 8938 9065 9233 9380 9627 9675 295 9822 9969 .116 .963 .410 .587 .704 .851 .998 1145 296 471292 1438 1585 1732 1878 2025 2171 2318 2464 2610 297 2756 2903 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4653 4799 4944 5090 5235 5381	900	2200	9840	9607	9847	0007	2140	9000	SAAR	2504	9744
292 5883 5532 5680 5829 5977 6126 6274 6428 6871 6719 293 6868 7016 7164 7312 7460 7608 7756 7904 8052 8200 294 8347 8496 8643 8790 8938 9065 9233 980 9627 9675 296 9822 9969 .116 .263 .410 .557 .704 .851 .598 1145 296 471292 1488 1585 1732 1878 2025 2171 2318 2464 2610 297 2756 2993 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4653 4799 4944 5090 5235 5381 5526											
293 6868 7016 7164 7312 7460 7608 7756 7904 8052 8200 294 8347 8495 8643 8790 8938 9965 9233 9380 9527 9675 295 9822 9969 .116 .263 .410 .557 .704 .851 .998 1145 296 471292 1438 1585 1732 1878 2025 2171 2318 2464 2610 297 2756 2903 3049 3195 3341 3487 3633 3779 3925 4071 298 4216 4362 4508 4653 4799 4944 5090 5235 5381 5526											
294 8847 8495 8643 8790 8938 9965 9238 9380 9527 9675 295 9822 9969 .116 .263 .410 .567 .704 .851 .998 1145 296 471292 1438 1585 1732 1878 2025 2171 2318 2464 2610 297 2756 2993 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4653 4799 4944 5090 5235 5381 5526											
296 471292 1488 1585 1732 1878 2025 2171 2318 2464 2610 297 2756 2903 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4658 4799 4944 5090 5285 5381 5526	294	8347									
296 471292 1438 1585 1732 1878 2025 2171 2318 2464 2610 297 2756 2903 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4658 4799 4944 5090 5285 5381 5526	294 295 296 297	9822	9969	.116	.263	.410	.557	.704	.851	.998	1145
297 2756 2903 3049 3195 3341 3487 3638 3779 3925 4071 298 4216 4362 4508 4658 4799 4944 5090 5235 5381 5526	296		1488	1585						2464	2610
298 4216 4362 4508 4658 4799 4944 5090 5285 5381 5526							3487		3779		
299 5671 5816 5962 6107 6252 6397 6542 6687 6822 6976					4653			5090	5285		
	299	5671	5816	5962	6107	6252	6897	6549	6687	6832	6976

			0		UMI	BER	8.			7
Nē.	9	1	2	8	4	5	6	7	8	9
800	477191	7266	7411	7555	7700	7844	7989	8133	8978	8422
801 802	8566	8711	8855 0994	8999	9143	9287	9481	9575	9719 1156	9868 1299
808	480007 1448	0151 1586	1729	0438 1872	0682 2016	0725 2159	2802	1012 2445	2588	2781
804	2874	3016	8159	3802	8445	8587	8780	8872	4015	4157
306	4300	4442	4885	4727	4869	5011 6430	5158	5395	5487 6855	5579
اتمما	5791 7186	5868 7280	6005 7421	6147 7563	7704	7845	7986	6714 8127	8269	6997 8410
808	8551	8692	8883	8974	9114	9265	9896	9587	9667	9818
308 309 319 311	9959	99	.239	.880	.520	.661	.801	.941	1081	1922
810	491862	1502	1642	1762	1922	2062	2201	2841	2481	2631
811 812	2760 4155	2900 4294	8040 4433	3179 4572	33 19 4 711	8458 4850	3597 4969	8787 5128	8876 5267	4015 5406
813	5544	5683	5822	5960	6099	6238	6376	6515	6653	6791
814	6930	7068	7206	7844	7483	7621	7759	7897	8035	8172
315	8311	8448	8696	8724	8862	8999	9137	9275	9412	9560
316 317	9687	9824	9962	99	.236	.874 1744	.511	.648	.785	.923 2291
818	501059 2427	1196 2564	1333 2700	1470 2887	1607 2978	3109	1880 3246	2017 8882	2154 8518	8655
819.	8791	3927	4068	4199	4835	4471	4607	4748	1878	5014
220	5150	5286	549 1	5557	5696	5628	5964	.0000	6984	6970
321 322	6505	6640	6776	6911.	7046	7181 8530	7816	7451	7586	7721
322	7856 9208	7991 9337	8126 9471	8260 9606	8395 9740	9874	8664	8799	8984	9008
324	510545	0679	0618	0947	1081	1215	1349	1482	1616	1750
325	1883	2017	2151	2284	2418	2661	2684	2818	2961	8064
326	8218	8351	8484	3617	8750	3883	4016	4149	4282	4414
327 328	4548 5874	4661 6006	4813 6139	4946 6271	5079 6408	5211 6585	5344 6668	5476 6800	5609 6982	5741 7064
829	7196	7328	7460	7592	7724	7855	7987	8119	8251	8389
830	9514	8646	8777	8909	9040	9171	9603	9434	9666	9697
831	9628	9959	90	.221	.858	.484	.615	.745	.876	1007
332 233	521138 2444	1269 2575	1400 2705	1580 2885	1661 2966	1792 3096	1922 3226	2058 8856	2183 3486	2814 3616
234	8746	3876	4006	4186	4266	4396	4526	4656	4786	4915
835	5045	5174	5804	5484	5568	5698	5822	5951	6081	6219
336	6889	6469	6598 7888	6727	6856	6985 8274	7114	7248	7879	7501
\$37 \$38	7630 8917	7759 9045	9174	8016 9802	8145 9430	9559	8402 9687	8581 9615	8660 9948	8788
239	590200	0898	0456	9584	0712	0840	0968	1096	1223	1851
840	1479	1607	1784	1862	1960	2117	2245	2872	2500	2697
841	2754	2882	8009	3186	3264	8391 4661	8518	8645	8772	8899 5167
349 343	4026 5294	4153 5421	4280 5547	4407 5674	4534 5800	5927	4787 6053	4914 6180	5041 6306	6482
344	6558	6685	6811	6937	7060	7189	7815	7441	7567	7693
845	7819	7945	8071	8197	8333	8448	8574	8699	8895	8951
846	9076	9202	9327	9459	9578	9703	9829	9954 1205	1380	.204 1454
847 848	540329 1579	0455 1704	0580 1829	0705 1953	0830 2078	2203	1080 2827	2452	2576	2701
849	2825	2950	8074	3199	8323	8447	2571	8696	8820	2944

.

8			L	0 G A	RIT	нм	8			
N.	0	1	2	8	4	5	6	7	8	0
850	544068	4192	4816	4440	4664	4688	4812	4936	5060	5183
851	5807	5431	5555	5678	5805	5925	6049	6172	6296 7529	6419 7652
852 853	6543 7775	6666 7898	6789 8021	6918 8144	7086 8267	7159 8389	7282 8512	7405 8635	8758	8881
854	9003	9126	9249	9371	9494	9616	9789	9861	9964	.196
			l			٠.	l	ì		
855	550228	0351	0478	0595	0717	0840	0962	1084	1206 2425	1328
356 857	1450 2668	1572 2790	1694 2911	1816 3033	1938 8155	2060 3276	2181 3893	2303 8519	8640	2547 8762
858	8883	4004	4126	4247	4368	4489	4610	4731	4852	4973
859	5094	5215	5346	5457	5578	5699	5820	5940	6061	6182
	0000									
360 361	6808 7507	6423 7627	6544 7748	6664 7868	6785 7988	6905 8108	7026 8228	7146 8849	7267 8469	7887 8589
362	8709	8829	8948	9068	9188	9308	9428	9548	9667	9787
363	9907	26	.146	.265	.385	.504	.624	.748	.863	.982
864	561101	1221	1340	1469	1578	1698	1817	1986	2055	2178
365	2293	2412	2531	2650	2769	2887	3006	8125	8244	8362
366	3481	3600	8718	8887	8955	4074	4192	4311	4429	4548
867	4666	4784	4903	5021	5189	5257	5376	5494	5612	5730
868	5848	5966	6084	6202	6320	6437	6555	6673	6791	6909
369	7026	7144	7262	7879	7497	7614	7782	7849	7967	8084
870	8202	8319	8486	8554	8671	8788	8905	9023	9140	9257
871	9874	9491	9608	9725	9882	9959	76	.193	.309	.426
872	570548	0660	0776	0893	1010	1126	1243	1359	1476	1592
378	1709 2872	1825	1942 8104	2058 3220	2174 3336	2291 3452	2407 3568	2523 8684	2639 8800	2755
874	2072	2988	9104	8320	3330	3402	2006	8004	8000	3915
875	4031	4147	4263	4879	4494	4610	4726	4841	4957	5072
876	5188	5803	5419	5534	5650	5765	5880	5996	6111	6226
377	6341	6457	6572	6687	6802	6917	7032	7147	7262	7877
378 379	7492 8639	7607 8754	7722 8868	7836 8983	7951 9097	8066 9212	8181 9326	8295 9441	8410 9555	8525 9669
0.5	0000	0.01	0000	0000	300.	0212	1 30.20	0111	0000	3003
880	9784	9898	12	.126	.241	.355	.469	.583	.697	.811
. 381	580925	1039	1153	1267	1381	1495	1608	1722	1836	1950
382 383	2068 3199	2177 3312	2291 3426	2404 8539	2518 3652	2631 3765	2745 3879	2858 3992	2972 4105	3085 4218
384	4331	4444	4557	4670	4783	4896	5009	5122	5235	5348
				1					1	
385	5461	5574	5686	5799	5912	6024	6137	6250	6362	6475
386	6587	6700 7823	6812 7935	6925 8047	7037	7149 8272	7262 8384	7374 8496	7486 8608	7599
387 - 388	7711 8832	7823 8944	9056	9167	8160 9279	9391	9503	9615	9726	8720 9834
889	9950	61	.178	.284	.396	.507	.619	.780	.842	.963
			١.			1	1			l
890	591065	1176	1287	1399	1510	1621	1732	1843	1955	2066
391 392	2177 8286	2288 3397	2899 8508	2510 3618	2621 3729	2732 3840	2843 3950	2954 4061	3064 4171	3175 4282
393	4393	4503	4614	4724	4834	4945	5055	5165	5276	5886
894	5496	5606	5717	5827	5987	6047	6157	6267	6877	6487
				000=						
895 396	6597 7695	6707 7805	6817 7914	6927 8024	7037	7146 8243	7256 8353	7366 8462	7476 8572	7586 8681
897	8791	8900	9009	9119	8134 9228	9837	9446	9556	9666	9774
398	9888	9992	.101	.210	.319	.428	.537	.646	.755	.864
899	600978	1082	1191	1299	1408	1517	1625	1784	1848	1951

			0	F N	UM B	ERS	١.			9
N.	0	1	2	8	4	5	6	7	8	9
400	602060	2169	2277	2386	2494	2603	2711	2819	2928	3036
401	8144	8253	3361	3469	3578	3686	3794	3902	4010	4118
402 403	4226 5305	4334 5413	4442 5521	4550 5628	4658 5736	4766 5844	4874 5951	4982 6059	5089 6166	5197 6274
404	6381	6489	6596	6704	6811	6919	7026	7188	7241	7348
405 406	7455 8526	7562 8683	7669 8740	7777 8847	7884 8954	7991 9061	8098 9167	8205 9274	8312 9381	8419 9488
407	9594	9701	9808	9914	21	.128	.284	.341	.447	.554
408	610660	0767	0878	0979	1086	1192	1298	1405	1511	1617
409	1723	1829	1986	2042	2148	2254	2360	2466	2572	2678
410	2784	2890	2996	3102	3207	3313	8419	3525	3630	3736
411	8842	3947	4053	4159	4264	4370	4475	4581	4686	4792
412	4897	5003	5108	5213	5319	5424	5529	5634	5740	5845
413 414	5950 7000	6055	6160 7210	6265 7315	6370 7420	6476 7525	6581 7629	6686 7734	6790 7839	6895 7943
	.000	7105		1010	1-200	1020	1029		1009	10-20
415	8048	8153	8257	8362	8466	8571	8676	8780	8884	8989
416	9293	9198	9302	9406	9511	9615	9719	9824	9928	32
417 418	620186 1176	0140 1280	0344 1384	0448 1488	0552 1592	0656 1695	0760 1799	0864 1903	0068 2007	1072 2110
419	2214	2818	2421	2525	2628	2782	2835	2939	8042	3146
							1			İ
420 421	8249	8358	8456	3559	8663	3766	3869	8978	4076	4179
421	4282 5312	4385 5415	4488 5518	4591 5621	4695 5724	4798 5827	4901 5929	5004 6032	5107 6135	5210 6238
423	6840	6443	6546	6648	6751	6853	6956	7058	7161	7268
424	7366	7468	7571	7673	7775	7878	7980	8082	8185	8287
425	0000	8404	STOO	8695	-	0000		0104	0000	
426	8389 . 9410	8491 9512	8593 9613	9715	8797 9817	8900 9919	9002	9104	9206	9308
427	630428	0530	0631	0783	0835	0936	1038	1139	1241	1342
428 429	1444 2457	1545 2559	1647	1748 2761	1849 2862	1951 2963	2052 3064	,2153 3165	2255	2356 3867
	201	2009	.2660	2/01	2002	2903	3004	9100	8266	3001
430	8468	3569	3670	3771	3872	3973	4074	4175	4276	4376
431	4477	4578	4679	4779	4880	4981	5081	5182	5283	5383
432 438	5484 6488	5584 6588	5685 6688	5785 6789	5886 6889	5986 6989	6087 7089	6187 7189	6287 7290	6388 7390
434	7490	7590	7690	7790	7890	7990	8090	8190	8290	8389
				1					[l
435 436	8489 9486	8589 9586	8689	8789	8888	8988	9088	9188	9287	9387
437	640481	0581	9686 0680	9785 0779	9885 0879	9984 0978	1077	.183 1177	.283 1276	.382 1375
438	1474	1573	1672	1771	1871	1970	2069	2168	2267	2366
439						LOOKO		DIFC	OOKE	3354
440	2465	2563	2662	2761	2860	2959	3058	8156	8255	000-1
441										
442	8453 4439	2563 3551 4537	2662 3650 4636	2761 8749 4734	3847 4832	3946 4981	4044	4143 5127	4242 5226	4340 5324
1 440	8453 4439 5422	3551 4537 5521	3650 4636 5619	8749 4784 5717	3847 4832 5815	3946 4981 5918	4044 5029 6011	4143 5127 6110	4242 5226 6208	4340 5324 6306
443	8453 4439 5422 6404	3551 4537 5521 6502	3650 4636 5619 6600	8749 4734 5717 6698	3847 4832 5815 6796	3946 4981 5913 6894	4044 5029 6011 6992	4143 5127 6110 7089	4242 5226 6208 7187	4340 5324 6306 7285
443 444	8453 4439 5422	3551 4537 5521	3650 4636 5619	8749 4784 5717	3847 4832 5815	3946 4981 5918	4044 5029 6011	4143 5127 6110	4242 5226 6208	4340 5324 6306
444	8453 4439 5422 6404 7883	3551 4537 5521 6502 7481 8458	3650 4636 5619 6600 7579	3749 4734 5717 6698 7676	3847 4832 5815 6796 7774	3946 4981 5913 6894 7872	4044 5029 6011 6992 7969	4143 5127 6110 7089 8067	4242 5226 6208 7187 8165	4340 5324 6306 7285 8262 9237
444 445 446	8453 4439 5422 6404 7883 8360 9335	3551 4537 5521 6502 7481 8458 9432	3650 4636 5619 6600 7579 8555 9530	3749 4734 5717 6698 7676 8653 9627	3847 4832 5815 6796 7774 8750 9724	3946 4981 5913 6894 7872 8848 9821	4044 5029 6011 6992 7969 8945 9919	4143 5127 6110 7089 8067 9043	4242 5226 6208 7187 8165 9140 .113	4340 5324 6306 7285 8262 9237 .210
444	8453 4439 5422 6404 7883	3551 4537 5521 6502 7481 8458	3650 4636 5619 6600 7579	3749 4734 5717 6698 7676	3847 4832 5815 6796 7774	3946 4981 5913 6894 7872	4044 5029 6011 6992 7969	4143 5127 6110 7089 8067	4242 5226 6208 7187 8165	4340 5324 6306 7285 8262 9237

10			L	0 G A	RIT	HM	8			
N.	0	1	2	8	4	5	6	7	8	9
450	658918	8309	8405	8502	8598	3695	8791	8888	8964	4060
451	4177	4273	4869	4465	4562	4658	4754	4850	4946	5049
452	5188 6098	5285 6194	6381 6290	5427 6386	5526 6482	5619 6577	6673	5810 6769	5906 6864	6002 6960
458 454	7056	7152	7247	7843	7488	7584	7629	7725	7820	7916
-	7000	,102		1040	1.500		1020		1000	
455	8011	8197	8902	8998	8898	8488	8584	8679	8774	8870
456	8965	9060	9155	9250	9846	9441	9586	9631	9726	9821
457	9916	11	.106	.201	.296	.891	.486	.581	.676	.771
458	660865	0960	1055	1150	1245	1339	1484	1529	1623	1716
459	1818	1907	2002	2096	2191	2986	2380	2475	2569	2668
460	9758	2852	2947	8941	3185	8980	8894	3418	8512	3697
461	8701	3795	3889	3983	4078	4172	4266	4360	4454	4548
462	4642	4786	4830	4924	5018	5112	5206	5299	6898	5487
463	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424
464	6518	6612	6705	6799	6892	6986	7079	7173	7266	7860
l l					l			0100	0.00	
465	7458	7546	7640	7788	7896	7990	8013	8196 9038	8199	8 998 9824
466 467	8886 9317	8479 9410	8572 9508	8665 9596	8759 9689	8852 9782	8945 9875	9967	9131 60	.158
468	670241	0339	0431	0524	0617	0710	0802	0895	0988	1080
469	1178	1265	1358	1451	1543	1686	1728	1821	1913	2006
								1		i
470	2098	2190	2283	9375	2467	2560	2652	2744	2826	2899
471	8021	3113	3205	8297	3390	3482	3574	3666	8758	8850
472	8942	4034	4126	4918	4310	4402	4494	4586 5503	4677	4769
478	4861 5778	4953 5870	5045 5962	5137 60 53	5228 6145	5320 6236	5412 6328	6419	5595 6511	5687 6602
2,2	9110	4010	0502	0000	0140	0200	0020	0110	W.1.	0004
475	6694	6785	6876	6968	7059	7151	7942	7333	7424	7516
476	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427
477	8518	8609	8700	8791	8882	8972	9064	9155	9246	9337
478	9428 680336	9519	9610	9700	9791	9882 0789	9973	68 0970	.154 1060	.245
479	080386	0,426	0517	0607	0698	0/69	0879	0910	YOOU	1151
489	1241	1222	1499	1518	1603	1693	1784	1874	1964	2055
481	2145	2235	2326	2416	2506	2596	2686	2777	2867	2957
482	8047	3137	3227	8317	3407	8497	8587	8677	3767	8857
488	3947	4037	4127	4217	4307	4396	4486	4576	4666	4756
484	4854	4935	5025	5114	5204	5294	5383	5473	5563	5652
ا ــــــــــــــــــــــــــــــــــــ	EM 40	F0-1	E001	0010	0100	0100	-	6368	6458	6547
485 486	5742 6636	6726	6921 6815	6010 6904	6100 6994	6189 7083	6279 7172	7261	7851	7440
487	7529	7618	7707	7796	7886	7975	8064	8153	8242	8331
488	8420	8509	8598	8687	8776	8865	8953	9042	9131	9920
489	9309	9398	9486	9575	9664	9753	9841	9930	19	.107
ا ا	000									
490	690196 1081	0285	0373 1258	0362	0550	0639	0728	0816 1700	0905 1789	1877
491 492	1965	1170 2053	2142	1347 2230	1435 2318	1524 2406	1612 2494	2583	2671	2759
493	2887	2935	3023	3111	3199	3287	3375	3463	3551	8639
494	3727	3815	3903	8991	4078	4166	4254	4342	4430	4517
		ł		1	İ		1	l	[
495	4605	4693	4781	4868	4956	5044	5181	5210	5897	5894
496	5482	5569	5657	5744	5832	5919	6007	6094 6968	6182	6269 7142
497 498	635 6 722 9	5444 7317	6531 7404	6618 7491	6706 7578	6793 7665	6880 7752	7839	7055 7926	8014
499	8101	8188	8275	8362	8449	8585	8622	8709	8796	8883
			1			1	1	1		

THE RESIDENCE OF THE PROPERTY

....

				F N	UM	D F D	a			11
<u> </u>			,	F N	U MI.	<u> Бек</u>	,	·		
N.	.0	1	2	8 .	4	5	6	7	8	9
500 501	698970 9838	9057 9924	9144	9231	9317	9404	9491 .358	9578	9664 .531	9751
502	700704	0790	0877	0963	.184 1050	1136	1222	1809	1395	.617 1482
503	1568	1654	1741	1827	1913	1999	2086	2172	2258	2344
504	2431	2517	2603	2689	2775	2861	2947	3083	3119	3205
505	3291	3377	3463	3549	3635	8721	3807	3895	3979	4065
506	4151	4236	4822	4408	4494	4579	4665	4751	4837	4922
507	5008	5094	5179	5265	5350	5436	5522	5607	5693	5778
508	5864	5949	6035	6120	6206	6291	6376	6462	6547	6682
509	6718	6803	6888	6974	7059	7144	7229	7815	7400	7485
510	7570	7655	7740	7826	7910	7996	8081	8166	8251	8336
511	8421	8506	8591	8676	8761	8846	8981	9015	9100	9185
512 513	9270	9355 0202	9440	9524	9609	9694	9779	9863	9948	33
514	710117 0963	1048	0287 1132	0371 1217	0456 1301	0540 1385	0625 1470	0710 1554	0794 1639	0879
0.14	0903	1040	1102	1217	1001	1900	1470	1004	1009	1728
515	1807	1892	1976	2060	2144	2229	2313	2397	2481	2566
516	2650	2734	2818	2902	2986	3070	3154	3238	8326	3407
517	8491	3575	3659	8742	3826	3910	3994	4078	4162	4246
518	4330	4414	4497	4581	4665	4749	4833	4916	5000	5084
519	5167	5251	5885	5418	5502	5586	5669	5753	5836	5920
520	6003	6087	6170	6254	6337	6421	6504	6588	6671	6754
521	6838	6921	7004	7088	7171	7254	7338	7421	7504	7587
522 523	7671	7754	7837	7920	8003	8086	8169	8253	8336	8419
524	8502	8585 9414	8668	8751	8834 9663	8917	9000	9083	9165 9994	9248
024	9331	9414	9497	9580	8003	9745	9828	9911	9994	77
525	720159	0242	0325	0407	0490	0573	0655	0738	0821	0903
526	0986	1068	1151	1233	1316	1398	1481	1563	1646	1728
527	1811	1893	.975	2058	2140	2222	2305	2387	2469	2552
528	2634	2716	2798	2881	2963	3045	3127	3209	3291	8874
529	3456	8538	3620	3702	3784	8866	8948	4030	4112	4194
580	4276	4358	4440	4522	4604	4685	4767	4849	4981	5013
531	5095	5176	5258	5340	5422	5503	5585	5667	5748	5830
582	5912	5993	6075	6156	6238	6320	6401	6483	6564	6646
533	6727	6809	6890	6972	7053	7184	7216	7297	7879	7460
534	7541	7623	7704	7785	7866	7948	8029	8110	8191	8273
535	8354	8485	8516	8597	8618	8759	8841	8922	9008	9084
536	9165	9246	9327	9403	9489	9570	9651	9732	9813	9898
537 538	780782	0863	.136	.217 1024	.298	.378	.459	.440	.621 1428	.702
539	1589	1669	0944 1750	1830	1105 1911	1186 1991	1266 2072	1347 2152	2238	1508 2818
303	1009	1009	1.00	1000	1311	1031	~~~	2102	2200	~010
540	2894	2474	2555	2635	2715	2796	2876	2956	3037	8117
541	8197	8278	3358	3438	3518	8598	3679	3759	3839	3919
542 543	3999 4800	4079 4880	4160 4960	4240 5040	4320 5120	4400 5200	4480	4560	4640 5439	4720
544	5599	5679	5759	5888	5918	5998	5279 6078	5359 6157	6237	5519 6317
""	0000	0019	0.03	0000	0310	0330	\ \tag{\tag{\tag{\tag{\tag{\tag{\tag{	0101	0201	301,
545	6397	6476	6556	6636	6715	6795	6874	6954	7084	7118
546	7193	7272	7852	7481	7511	7590	7670	7749	7829	7908
547	7987	8057	8146	8225	8305	8384	8463	8543	8622	8701
548	8781	8860	8939	9018	9097	9177	9256	9335	9414	9498
549	9572	9651	9731	9810	9889	9968	47	.126	,205	.284

N.	0	1	2	8	4	5	6	7	8
550	740868	0442	0521	0660	0678	0757	0886	0915	0994
551	1152	1280	1309	1888	1467	1546	1624	1708	1782
552	1989	2018	2096	2175	2254	2332	2411	9489	2568
553	2725	2804	2882	2961	8069	8118	8196	8275	8358
554	3510	3558	3667	3745	8898	8902	8960	4058	4136
855	4298	4871	4449	4598	4606	4684	4762	4840	4919
5 56	5075	5153	5281	5309	5387	5465	5543	5621	5699
557	5855	5988	6011	6089	6167	6245	6323	6401	6479
558	6634 7412	6712 7489	6790	6868 7645	6945	7023	7101	7179 7965	7256 8088
6 59	1413	1409	7567	1040	7722	7800	7878	1400	3000
560	8188	8966	8843	8491	8496	8576	8653	8781	8808
561	8963	9040	9118	9196	9272	9850	9427	9504	9582
562	9786 750508	9814	9891	9968	45	.198	.200	.277 1048	.354 1125
563 564	1279	0586 1856	0663 1433	1510	0617 1587	1664	0971 1741	1818	1895
₩.	-419	1000	1-00	1940	1001		****		بعد
565	2048	2125	2902	2979	2356	2438	2509	2586	2663
566	2816	2893	2970	8047	3128	\$200	8277	8358	8430 4195
567	8582 4848	3660 4425	8786 4501	8818 4578	8889 4654	3966 4730	4042	4119 4883	4960
568 569	5112	5189	5965	5341	5417	5494	5570	5646	5722
	V	0.00			4.				
570	5875	5951	6627	6108	6180	695 6	6332	6406	6484
571	6636	6712	6788	6964	6940	7016	7092	7168	7944
572	7896	7472	7548	7694	7700	7775	7851	7927	8008
578 574	8155 89 12	8280 8988	8306 9068	8382 9189	8458 9214	8583 9290	9609 9366	8685 9441	8761 9517
***	—	4000		0,4	4.2.	-	••••		
575	966 8	9743	9819	9694	9970	45	.191	.196	.272
576	760422	0498	0573	0649	0724	0799	0875	0950	1095
677	1176	1251	1896 2078	1402	1477	1552	1 6 27 2378	1702 2458	1778 2529
578 579	19 2 8 2 679	2003 2754	2829	2153 2904	2228	2803 8053	3198	2203	2029
410	2000	2.42			2010	-	0120		
280	3428	8503	3578	3653	8727	3802	8877	8952	4097
581	4176 4923	4251 4998	4396 5072	4400	4475	4550	4694	4699 5445	4774 5520
569 583	5669	5743	5818	5147 5892	5221 5966	5296 6041	5370 6115	6190	6264
584	6418	6487	6562	6636	6710	6785	6859	6933	7007
585	7156	7280	7804	7879	-	7597	7601	7675	7749
586 588	7898	7972	8046	8120	7458 8194	8268	8342	8416	8490
587	8638	8712	8786	8860	8934	9008	9082	9156	9230
588	9377	9451	9525	9599	9678	9746	9620	9894	9968
589	770115	0189	0263	0336	0410	0484	0557	0631	0705
590	0652	0926	0999	1073	1146	1220	1298	1367	1440
591	1587	1661	1734	1808	1881	1955	2028	2102	2175
592	2322	2395	2468	3542	2615	2688	2762	2835	2908
598	3055	3128	8201	3274	3348	8421	8494	3567	3640
594	8786	3860	3983	4006	4079	4152	4225	4298	4371
595	4517	4590	4663	4786	4809	4882	4955	5098	5100
596	5246	5319	5392	5465	5538	5610	5683	5756	5829
597	5974	6047	6120	6193	6265	6888	6411	6488	6556
598	6701	6774	6846	6919	6992	7064	7137	7209	7282
599	7427	7499	7572	7644	7717	7789	7862	7934	8006

OF NUMBERS.										10
N.	0	1	2	8	4	5	6	7	8	9
600	778151	8224	8296	5868	8441	8518	8585	8658	8780	8800
601	8874	8947	9019	9091	9168	9236	9308	9880	9452	9524
602	9596	6669 0389	9741 0461	9813 0538	9885 0605	9957 0677	29 0749	.101 0821	.173 0893	.245 0965
603 604	780817 1037	1109	1181	1258	1324	1396	1468	1540	1612	1684
90.5	1001	1100	1101	1200	1024	1990	1-200	1020	1012	1000
605	1755	1897	1899	1971	2042	2114	2186	2258	2329	2401
607	2478	2544	2616	2688	2759	2831	2902	2974	3046	8117
607	3189	3260	3832	8403	8475	3546	8618	3689	3761	3839
608	8904	3975	4046	4118	4189	4261	4332	4403	4475	4546
609	4617	4689	4760	4831	4902	4974	5045	5116	5187	5259
	F000		-						F000	
610 611	5330 6041	5401 6112	5472 6183	6548 6254	5615 6825	5686 6396	5757 6467	5898 6538	5899 6609	5970 6680
612	6751	6822	6893	6964	7035	7106	7177	7248	7819	7890
618	7460	7531	7602	7673	7744	7815	7885	7956	8027	8098
614	8168	8239	8810	8381	8451	8592	8598	8663	8784	8804
	_	l	l	1	l	1				
615	8875	8946	9016	9087	9157	9228	9299	9869	9440	9510
616	9581	9651	9722	9792	9868	9988	0707	74	.144	.215
617 618	790285 0988	0356 1059	0426 1129	0496 1199	0567 1269	0637 1340	0707 1410	0778 1480	1550	0918 1620
619	1691	1761	1881	1901	1971	2041	2111	2181	2952	2329
				2002			~			
620	2892	2463	2582	2602	2672	2743	2812	9889	2952	8022
621	8092	8162	8231	8801	3371	8441	8511	3581	8651	8721
622	3790	3860	3930	4000	4070	4139	4900	4279	4349	4418
623	4488	4558	4627	4697	4767	4886	4906	4976	5045	5115
624	5186	5954	5894	5898	5468	5532	5602	5672	5741	5811
695	5880	5949	6019	6068	6158	6927	6997	6366	6436	6505
626	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198
627	7968	7387	7406	7475	7545	7614	7688	7752	7821	7890
628	7960	8029	8098	8167	8236	8305	8374	8448	8518	8582
629	8651	8720	8789	8858	8927	8996	9066	6134	9208	9272
639 631	9341 800026	9409	9478	9547	9610	9665	9754 0442	9823	9692 0580	9961
689	0717	0786	0167 0854	0928	0992	0878 1061	1129	0511 1198	1266	0648 1335
688	1404	1472	1541	1609	1678	1747	1815	1884	1982	2021
634	2089	2158	2926	9295	9868	2482	2500	2568	2687	2705
		l	ł	1						
685	2774	2842	2910	2979	8047	8116	8184	3252	3321	3389
636 637	8457 4189	3525	8594	8662	8780	8798	8867	3935	4008	4071
688	4891	4208 4889	4276 4957	4354 5025	4412 5098	4480 5161	4548 5229	4616 5297	4685 5365	4753 5433
689	5501	5669	5637	5705	5778	5841	5908	5976	6044	6119
1			٠	0.00	0,,0	00-21	0000	00.0	0011	0112
639 638 634 685 636 637 638 689 640 641	6180	6948	6316	6384	6451	6519	6587	6655	6728	6790
641	6858	6926	6994	7061	7129	7157	7264	7332	7400	7467
642	7535	7608	7670	7738	7806	7878	7941	8008	8076	8149
648 644	8211 8886	8279	8346	8414	8481	8549	8616	8684	8751	8818
ورجم	6000	8968	9021	9068	9156	9223	9290	9858	9425	9492
645	9560	9627	9694	9762	9629	9896	9964	81	98	.165
646	810233	0800	0367	0484	0501	0596	0636	0708	0770	0837
647	0904	0971	1039	1106	1178	1240	1807	1374	1441	1508
648	1575	1642	1709	1776	1848	1910	1977	2044	2111	2178
649	2245	2312	2379	2445	2512	2579	2646	2718	2780	2847
	1				! !	1				

14	LOGARITHMS									
N.	0	1	2	8	4	5	6	7	8	9
650	812913	2960	3047	3114	8181	8247	8814	8881	3448	8514
651	8581	8648	8714	3781	3848	3914	3981	4048	4114	4181
652	4248	4314	4381	4447	4514	4581 5246	4647 5812	4714 5378	4780 5445	4847 5511
653 654	4918 5578	4980 5644	5046 5711	5118 5777	5179 5843	5910	5976	6042	6109	6175
655	6941	6808	6874	6440	6506	6578	6689	6705	6771	6888
656	6904	6970	7036	7102	7169	7238	7301	7867	7433	7499
657	7565	7681	7698	7764	7830	7896	7962	8028	8094	8160
658	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820
659	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478
660	9544	9610	9676	9741	9807	9878	9939	4	70	.186
661	820201 0858	0267 0924	0833	0399 1055	0464	0530 1186	0595 1251	0661 1317	0727 1382	0792 1448
662 663	1514	1579	1645	1710	1120 1775	1841	1906	1972	2037	2108
664	2168	2238	2299	2364	2430	2495	2560	2626	2691	2756
665	2822	2887	2952	8018	3063	8148	8218	8279	8344	3409
666	8474	3539	3605	3670	3735	3800	3865	3930	3996	4061
667	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711
668	4776	4841	4906	4971	5036	5101	5166	5231	5296	5361
669	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010
670	6075	6140	6204	6269	6384	6399	6464	6528	6593	6658
671	6723	6787	6852	6917	6981	7046	7111	7175	7240	7805
672 673	7369 8015	7434 8080	7499 8144	7563 8209	7628	7692 8338	7757 8402	7821 8467	7886 8531	7951 8595
674	8660	8724	8789	8858	8273 8918	8982	9046	9111	9175	9239
		ŀ			0010			İ		0200
675	9304	9368	9432	9497	9561	9625	9690	9754	9818	9882
676 677	9947 830589	0653	75 0717	.139 0781	.204	.268 0909	.332	.396 1037	.460 1102	.525
678	1230	1294	1358	1422	0845 1486	1550	1614	1678	1742	1166 1806
679	1870	1934	1998	2062	2126	2189	2258	2317	2381	2445
4										
680	2509 8147	2578	2687	2700	2764	2828	2892	2956	8020	3088
681 682	3784	3211 3848	3275 3912	3338 3975	3402 4039	3466 4103	8530 4166	8593 4230	8657 4294	8721 4357
683	4421	4484	4548	4611	4675	4789	4802	4866	4929	4993
684	5056	5120	5183	5247	5310	5373	5437	5500	5564	5627
685	5691	5754	5817	5881	5944	6007	6071	6184	6197	6261
686	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894
687 688	6957 7588	7020	7083	7146	7210	7278	7836	7899	7462	7525
689	8219	7652 8282	7715 8345	7778 8408	7841 8471	8584	7967 8597	8030 8660	8093 8723	8156 8786
	9945			l						
690 691	8849 9478	8912 9541	8975 9604	9038	9109	9164	9227	9289	9852	9415
692	840106	0169	0232	9667	9729	9792	9855 0482	9918 0545	9981 0608	48 0671
693	0733		0859	0921	0984	1046	1109	1172	1284	1297
694	1359	1422	1485	1547	1610	1672	1785	1797	1860	1922
695	1985	2047	2110	2172	2235	2297	2360	2422	2484	2547
696	2609	2672	2784	2796	2859	2921	2983	3046	3108	3170
697	8238	3295	8857	3420	3482	8544	3606	8669	8731	3793·
698 699	8855 4477	8918	8980	4042	4104	4166	4229	4291	4353	4415
Casa	4411	4539	4601	4664	4726	4788	4850	4912	4974	5096

				r n	O IVI	DER	ο.			10
N.	0	1	2	8	4	5	6	7	8	9
700	845098	5160	5222	5284	5346	5408	5470	5532	5594	5656
701	5718	5780	5842	5904	5966	6028	6090	6151	6213	6275
702	6337	6399	6461	6523	6585	6646	6708	6770	6832	6894
703	6955	7017	7079	7141	7202	7264	7826	7888	7449	7511
704	7573	7634	7676	7758	7819	7881	7943	8004	8066	8128
705	8189	8251	8312	8374	8435	8497	8559	8620	8682	8743
706	8805	8866	8928	8989	9051	9112	9174	9235	9297	9358
707	9419	9481	9542	9604	9665	9726	9788	9849	9911	9972
708	850033	0095	0156	0217	0279	0340	0401	0462	0524	0585
709	0646	0707	0769	0830	0891	0952	1014	1075	1136	1197
710	1258	1320	1381	1442	1503	1564	1625	1686	1747	1809
711	1870	1931	1992	2053	2114	2175	2236	2297	2358	2419
712	2480	2541	2602	2663	2724	2785	2846	2907	2968	3029
713	8090	3150	3211	8272	3333	3394	8455	3516	8577	3637
714	369 8	3759	3820	3881	3941	4002	4063	4124	4185	4245
715	4306	4367	4428	4488	4549	4610	4670	4731	4792	4852
716	4913	4974	5034	5095	5156	5216	5277	5337	5398	5459
717	5519	5580	5640	5701	5761	5822	5882	5943	6003	6064
718	6124	6185	6245	6306	6366	6427	6487	6548	6608	6668
719	6729	6789	6850	6910	6970	7031	7091	7152	7212	7272
720	7332	7393	7453	7518	7574	7634	7694	7755	7815	7875
721	7935	7995	8056	8116	8176	8236	8297	8357	8417	8477
722	8537	8597	8657	8718	8778	8838	8898	8958	9018	9078
728	9188	9198	9258	9318	9379	9489	9499	9559	9619	9679
724	9789	9799	9859	9918	9978	38	98	,158	.218	.278
	0,00	0.00	1000							
725	860338	0398	0458	0518	0578	0687	0697	0757	0817	0877
726	0937	0996	1056	1116	1176	1236	1295	1355	1415	1475
727	1534	1594	1654	1714	1773	1833	1893	1952	2012	2072
728	2131	2191	2251	2310	2370	2430	2489	2549	2608	2668
729	2728	2787	2847	2906	2966	8025	8085	8144	8204	8263
730	8823	3382	3442	8501	3561	3620	3680	8739	8799	3858
781	8917	8977	4036	4096	4155	4214	4274	4338	4392	4452
732	4511	4570	4630	4689	4148	4808	4867	4926	4985	5045
783	5104	5163	5222	5282	5341	5400.	5459	5519	5578	5637
784	5696	5755	5814	5874	5983	5992	6051	6110	6169	6228
735	6287	6346	6405	6465	6524	6583	6642	6701	6760	6819
736	6878	6937	6996	7055	7114	7178	7232	7291	7850	7409
737	7467	7526	7585	7644	7703	7762	7821	7880	7939	7998
788	8056	8115	8174	8233	8292	8350	8409	8468	8527	8586
789	8644	8703	8762	8821	8879	8938	8997	9056	9114	9178
740	9232	9290	9349	9408	9466	9525	9584	9642	9701	9760
741	9818	9877	9935	9994	53	.111	.170	.228	.287	.845
742	870404	0462	0521	0579	0638	0696	0755	0813	0872	0930
743	0989	1047	1106	1164	1223	1281	1339	1398	1456	1515
744	1578	1681	1690	1748	1806	1865	1928	1981	2040	2098
745	2156	2215	2273	2331	2389	2448	2506	2564	2622	2681
746	2789	2797	2855	2913	2972	3030	8088	3146	8204	8262
747	8321	8379	3437	8495	8558	8611	8669	3727	8785	8844
748	8902	8960	4018	4076	4134	4192	4250	4808	4360	4424
749	4482	4540	4598	4656	4714	4772	4830	4888	4945	5008

LOGARITHMS

N.	0	1	2	3	4	5	6	7	8	9		
750	875061	5119	5177	5235	5293	5351	5409	5466	5524	5582		
751	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160		
752	6218	6276	6333	6391	6449	6507	6564	6622	6680	6787		
753	6795	6853	6910	6968	7026	7083	7141	7199	7256	7314		
754	7371	7429	7487	7544	7602	7659	7717	7774	7832	7889		
								00.40				
756	7947 8522	8004	8062	8119 8694	8177	8284 8809	8292 8866	8849 8924	8407 8981	8464 9089		
756	9096	8579	8637 9211	9268	8752 9325	9383	9440	9497	9555	9612		
757 758	9669	9153 9726	9784	9841	9898	9956	18	70	.127	.185		
759	880242	0299	0356	0413	0471	0528	0580	0642	0699	0756		
		3223				1	1			1		
760	0814	0671	0928	0985	1042	1099	1156	1218	1271	1328		
761	1385	1442	1499	1556	1613	1670	1727	1784	1841	.1898		
762	1955	2012	2069	2126	2183	2240	2297	2354	2411	2468		
763	2525	2581	2638	2695	2752	2809	2866	2928	2980	8037		
764	3093	3150	3207	3264	3321	3377	3434	3491	3548	3608		
765	8661	8718	3775	8832	2888	3945	4002	4059	4115	4172		
766	4229	4285	4342	4399	4455	4512	4569	4625	4682	4739		
767	4795	4852	4909	4965	5022	5078	5135	5192	5248	5305		
768	5361	5418	5474	5531	5587	5644		5757	5813	5870		
769	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434		
'''	·		332			}	1	1				
770	6491	6547	6604	6660	6716	6773	6829	6885	6942	6998		
771	7054	7111	7167	7233	7280	7336	7392	7449	7506	7561		
772	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123		
778	8179	8236	8292	8348	8404	8460	8516	8578	8629 9190	8655 9246		
774	8741	8797	8853	8909	8965	9021	9077	9134	9730	9240		
775	9302	9858	9414	9470	9526	9582	9638	9694	9750	9806		
776	9862	9918	0974	30	86	.141	.197	.253	.309	.865		
777	890421	0477	0533	0589	0645	0700	0756	0812	0868	0924		
778	0980	1035	1091	1147	1203	1259	1814	1370	1426	1482		
779	1537	1598	1649	1705	1760	1816	1872	1928	1983	2039		
	800E	0150	2000	2262	2317	2000	2429	0404	2540	2595		
780 781	2095 2651	2150 2707	2206 2762	2818	2878	2373 2929	2985	2484 8040	3096	3151		
782	8207	8262	8318	2373	8429	2929	3540	3595	8651	3708		
788	8762	2817	3878	3928	3984	4039	4094	4150	4205	4261		
784	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814		
}							Ì	`				
785	4970	4925	4960	5066	5001	5146	5201	5257	5312	5867		
786	5428	5478	5533	5588	5644	5699	5754	5809	5864	5920		
787	5975	6080	6085	6140	6195	6251	6306	6361	6416	6471		
788 789	6526 7077	6581	6636	6692 7242	6747	6802	6857 7407	6912	6967	7022 7572		
1,09	1017	7132	7187	1475	7297	7352	1301	7462	7517	.0.2		
790	7627	7688	7787	7792	7847	7902	7957	8012	8967	8122		
791	8176	8281	8286	8341	8396	8451	8506	8561	8615	8670		
792	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218		
798	9278	9328	.9383	9437	9492	9547	9602	9656	9711	9768		
794	9821	9875	9930	9985	39	94	,149	.203	,258	.812		
795	000000	0400	AATRO	0531	0586	0640	0695	0749	0604	0859		
796	900967 0913	0422 0968	0476 1022	1077	1131	1186	1240	1295	1349	1404		
797	1458	1513	1567	1622	1676	1736	1785	1840	1894	1948		
798	2003	2057	2112	2166	2221	2275	2329	2384	2438	2492		
799	2547	2601	2655	2710	2764	2818	2878	2927	2981	8036		

N. 0 1 2 3 4 5 6 7 8 9 800 903090 3144 3199 3253 3807 3361 3416 3470 3524 3578 801 3474 4293 4837 4391 4445 4499 4563 4607 4661 4120 803 4716 4770 4824 4878 4932 4986 5040 5094 4661 4507 4661 4509 4661 4120 4661 4120 4664 4120 4661 4619 4663 6707 4661 6606 6619 6732 6688 6742 8686 6712 6763 6604 6668 6712 6763 6688 6742 8636 8673 8686 8674 6885 8742 8636 8673 7868 7868 7860 7804 7302 7868 7809 7944 7303 8421 8241 8241 <				0	F N	UMB	ERS	١.			17
801 6833 8867 3741 8795 8849 9804 4984 4878 4931 4445 4994 4583 4677 4666 4120 804 6266 5310 5864 5418 5472 6526 5680 5684 5689 5686 5610 5686 5610 5686 5610 5686 5610 5686 5610 5686 5610 5686 5610 5686 5610 5686 5680 5688 5689 6838 6843 6497 6561 6604 6656 6712 6766 6830 8687 7713 7626 7680 7734 7787 7841 7888 8989 7949 8002 8066 8110 818 8589 8599 8646 8699 8753 8607 8860 8914 9861 811 9021 9074 9123 9181 9235 9289 9342 9386 9449 9603 813	N.	0	1	2	8	4	5	6	7	8	9
861 8633 8687 8741 8795 8349 8904 8968 4012 4066 4120 802 4714 4292 4878 4891 4986 5040 5084 5626 5630 5684 5686 5640 5684 5688 5742 805 5856 5810 5864 5418 5673 6526 5680 5084 5686 5680 5648 5688 5742 806 5874 6987 6981 7085 7089 7143 7196 7350 7804 7358 806 7411 7567 7691 7626 7680 7734 7781 7861 7387 7841 7886 810 8485 8539 8592 8646 8699 8753 8607 8660 9914 9873 8937 8939 9449 9503 981 913 91091 144 40197 0261 0304 0365 9411 <td< th=""><th>800</th><th>903090</th><th>8144</th><th>3199</th><th>8253</th><th>8307</th><th>8361</th><th>8416</th><th>8470</th><th>8524</th><th>8578</th></td<>	800	903090	8144	3199	8253	8307	8361	8416	8470	8524	8578
803 4716 4770 4894 4878 4892 4896 5040 5048 5683 5684 5683 5743 805 5956 5810 5864 5418 5472 5696 5680 5683 5683 5743 806 6335 6389 6449 6651 6604 6668 6712 6766 6830 807 6874 6927 6981 7085 7069 7143 7196 7250 7304 7368 808 7411 7465 7519 7573 7626 7680 7334 7787 7841 7368 811 9021 9074 9128 9181 9325 9289 9342 9369 9449 9603 811 9021 9074 9123 9181 9323 9389 9342 9386 9449 9603 812 9021 9074 9172 9180 9932 9978 9499 4439 </th <th>801</th> <th>8633</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	801	8633									
804 6286 5310 5864 6418 5472 6586 5680 5684 5688 5743 806 5356 6389 6448 6497 6651 6604 6668 6712 6766 6830 807 6874 6927 6981 7035 7089 7143 7189 7250 7384 7384 7381 7384 7381 7384 7381 7381 7381 7381 7381 7381 7381 7381 9391 9074 9128 9181 9385 9389 9343 9386 9449 963 813 91091 9074 9128 9181 9385 9389 9343 9386 9449 9603 813 91091 9074 9128 9181 9382 9887 9343 9860 8914 8967 812 9504 0663 9716 9770 9823 9877 9330 9944 9867											
805 5796 5850 5904 5958 6013 6066 6119 6173 6227 6281 6287 6987 6987 6987 6981 7085 7069 7148 7196 7250 7304 7368 808 7411 7465 7519 7573 7626 7680 7344 7787 7841 7365 7589 7344 7787 7841 7365 7368 7347 7841 7365 7580 7344 7368 7344 7368 7344 7368 7344 7368 7344 7368 8481 8378 8431 810 8465 8539 8592 8646 8699 8753 8607 8660 8914 9603 811 9021 9074 9128 9181 9235 9872 9877 9829 9873 9984 9603 9944 9960 99613 3613 1061 1104 1197 1186 1190 1444											
806 6836 6897 6849 6849 7085 7089 7143 7196 7204 7368 7307 7626 7800 7734 7787 7841 7896 7800 7734 7787 7841 7896 7800 7734 7787 7841 7896 8311 7827 7841 7896 8321 9860 8110 8163 8217 8270 8324 8378 8431 810 8485 8539 8592 8646 8699 8753 8807 8860 8914 9867 811 9021 9074 9189 9181 9385 9347 9386 9449 9603 812 9566 9610 9663 9716 9770 9823 98777 9390 9984 .337 814 0678 0731 0784 6838 0891 0944 9998 1061 1104 815 1586 1931 1744 1477 <	004	0.200	0020	1000	0320	04.2	0020	••••	0001	••••	0123
806 6836 6897 6849 6849 7085 7089 7143 7196 7204 7368 7307 7626 7800 7734 7787 7841 7896 7800 7734 7787 7841 7896 7800 7734 7787 7841 7896 8311 7827 7841 7896 8321 9860 8110 8163 8217 8270 8324 8378 8431 810 8485 8539 8592 8646 8699 8753 8807 8860 8914 9867 811 9021 9074 9189 9181 9385 9347 9386 9449 9603 812 9566 9610 9663 9716 9770 9823 98777 9390 9984 .337 814 0678 0731 0784 6838 0891 0944 9998 1061 1104 815 1586 1931 1744 1477 <	806	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	806	6335								6766	
Sugar Suga											
810 8485 8539 8592 8646 8699 8753 8607 8660 8914 8967 811 9021 9074 9128 9181 9285 9289 9342 9396 9449 9603 812 9556 9610 9663 9716 9770 9823 9877 9930 998437 813 910091 0144 0197 0251 0304 0358 0411 0464 0618 0671 814 0624 0678 0731 0784 0838 0891 0944 9998 1051 1104 1104 1105 1104 1105 1105 1105	808										
811 9921 9974 9128 9181 9285 9289 9342 9366 9449 9603 9716 9770 9823 9877 9930 9984 37 813 910091 0144 0197 0251 0304 0358 0411 0464 0618 0671 814 0624 0678 0731 0784 0838 0891 0944 998 1061 1104 815 1158 1211 1264 1817 1871 1424 1477 1539 1561 1060 1743 1797 1850 1903 1956 2009 2063 2115 2169 2455 2458 2541 2541 2544 2700 318 2752 2806 2859 3913 2966 3019 3072 3125 3178 3231 4184 4237 4290 4873 4294 4497 4502 4555 4668 4660 4713 4766 4819	009	13-23	0002	0000	0110	0103	0.517	0210	00.54	0010	0201
811 9921 9974 9128 9181 9285 9289 9342 9366 9449 9603 9716 9770 9823 9877 9930 9984 37 813 910091 0144 0197 0251 0304 0358 0411 0464 0618 0671 814 0624 0678 0731 0784 0838 0891 0944 998 1061 1104 815 1158 1211 1264 1817 1871 1424 1477 1539 1561 1060 1743 1797 1850 1903 1956 2009 2063 2115 2169 2455 2458 2541 2541 2544 2700 318 2752 2806 2859 3913 2966 3019 3072 3125 3178 3231 4184 4237 4290 4873 4294 4497 4502 4555 4668 4660 4713 4766 4819	810	8485	8539	8592	8646	8699	8753	8607	8860	8914	8967
812 9566 9610 9663 9716 9770 9823 9877 9930 9884 .37 813 910091 0144 0197 0251 0304 0358 0411 0464 0518 0571 814 0624 0678 0731 0784 0638 0891 0944 9998 1051 1104 815 1158 1211 1264 1317 1371 1424 1477 1530 1584 1687 816 1690 1743 1797 1850 1993 1956 2009 2063 2115 2169 817 2222 2275 2323 2381 2435 2488 2541 2594 2645 2700 818 2753 2806 2859 2913 2966 3019 3072 3125 3178 3231 819 3284 3337 3390 3443 3496 3649 3602 3655 3708 3761 820 3814 3867 3920 3973 4496 4079 4132 4184 4237 4290 821 4843 4996 4449 4502 4555 4608 4660 4713 4766 4819 822 4872 4925 4977 5030 5083 5136 5189 5241 5594 5347 823 5400 5453 5506 5558 5611 5664 5716 5769 5822 5675 824 5927 5980 6033 6085 6138 6191 6243 6296 6349 6401 825 6454 6507 6559 6132 6664 6717 6770 6892 6876 6401 826 6980 7033 7085 7138 7190 7243 7295 7348 7400 7453 827 7506 7558 7611 7663 7716 7768 7820 7873 7925 7978 828 9303 8083 8186 8188 8240 8299 8345 8397 8450 8562 839 8555 8607 8660 8712 8764 8816 8869 8921 8973 9026 830 9078 9130 9183 9235 9287 9840 9892 9444 9496 9549 831 9801 9653 9706 9758 9610 9862 9914 9967 .19 .71 832 920123 0176 0228 0289 0332 0384 0436 0489 0541 0593 833 9601 9663 9706 9758 9610 9862 9914 9967 .19 .71 839 920123 0176 0228 0289 0332 0384 0436 0489 0541 0593 831 166 1218 1270 1232 1234 1426 1478 1530 1582 1634 836 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 837 2725 2777 2629 2881 2332 2855 3037 3069 3140 3192 838 3244 3296 3348 3399 3451 3503 3555 3607 3658 3710 844 4796 4848 4899 4851 5003 5054 5106 5157 5022 2674 844 496 4848 4899 4851 5003 5054 5106 5157 5025 2967 845 6857 6908 6059 7011 7062 7114 7165 7316 7268 7319 846 6857 6908 6059 7011 7062 7114 7165 7316 7268 7319 847 7883 8394 6445 6497 6548 6600 6651 6702 6754 6805		9021				9235	9289	9342	9396		9503
814 0624 0678 0731 0784 8838 0891 0944 9998 1051 1104 815 1158 1211 1264 1317 1371 1424 1477 1530 1584 1687 816 1600 1743 1797 1850 1903 1956 2009 2063 2115 2169 817 2222 2275 2323 2381 2435 2438 2541 2594 2645 2700 818 2753 2806 2859 2913 2966 8019 3072 3125 3178 2321 819 3284 3337 3390 3443 3496 8449 3602 3865 3708 3761 820 3814 3867 3920 3973 4026 4079 4132 4184 4237 4290 821 4843 4396 4449 4502 4555 4606 4660 4713 4766 4819 822 4873 4925 4977 5030 5083 5136 5189 5241 5594 5347 823 5400 5453 5506 5558 5611 5664 5716 5769 5822 5875 824 5927 5680 6033 6085 6138 6191 6243 6296 6349 6401 825 6454 6507 6568 6612 6664 6716 6707 6832 6876 6997 826 6960 7033 7085 7138 7190 7243 7295 7248 7400 7453 827 7506 7558 7611 7663 7716 7768 7820 7873 7925 7978 828 8303 8083 8195 8186 8240 8299 8345 8397 8450 8502 829 8555 8607 8659 8712 8764 8816 8869 8921 8973 9026 830 9078 9130 9183 9235 9287 9840 9892 9444 4949 5026 831 90012 0176 0228 0280 0332 0384 0438 0439 0439 0438 832 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 833 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 834 166 1218 1270 1322 1374 1426 1478 1530 1582 1634 835 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 836 2206 2268 2310 2362 2414 2466 2518 2570 2622 2678 837 2725 2777 2829 2881 2933 2985 3097 3089 3140 3192 838 3244 3296 3348 3399 3451 3503 3555 3607 3658 3710 840 4279 4331 4383 4434 4486 4538 4589 4641 4693 4744 841 4796 4848 4899 4851 5003 5054 5106 5157 5209 5257 848 582 5312 5364 5415 5467 5518 5570 5621 5673 5725 5776 848 582 5312 5364 5415 5467 5518 5507 5621 5673 5725 5776 848 6857 6906 6969 7011 7062 7114 7165 7216 7268 7319 846 6857 6906 6969 7011 7062 7114 7165 7216 7268 7319 846 6857 6906 6969 7011 7062 7114 7165 7216 7268 7319 847 7883 7935 7966 8037 8088 3140 8191 8242 823 3345 848 8396 8447 8498 8549 8601 8652 8703 8764 8805	812										87
815 1158 1211 1264 1817 1871 1424 1477 1530 1584 1687 816 1690 1743 1797 1850 1903 1956 2009 2063 2115 2169 817 2922 2275 2323 2381 2435 2488 2541 2594 2645 2700 818 2753 2806 2959 2913 2966 3019 3072 3125 3178 3231 819 3284 3337 3390 3443 3496 4502 4555 4668 4660 4713 4766 4819 820 3814 3867 3920 8973 4026 4079 4132 4184 4237 4290 821 4343 4396 4449 4502 4655 4668 4660 4713 4766 4819 822 4579 4956 6963 5658 5611 5664 5716 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
816 1890 1743 1797 1850 1903 1956 2009 2063 2115 2169 817 2929 2275 2323 3881 2436 2488 2541 2594 2645 2700 818 2753 2806 2859 2913 2966 3019 3072 3125 3178 3231 819 3284 3837 3390 3443 3496 8449 3602 3655 3708 3761 820 3814 3867 3920 8973 4026 4079 4132 4184 4237 4290 821 4343 4396 4449 4502 4555 4606 4660 4713 4766 4819 822 4872 4925 4977 5030 5083 5136 5189 5241 5594 5347 823 5400 5453 5506 5558 5611 5664 5716 7769 5822 </th <th>814</th> <th>0024</th> <th>0010</th> <th>0/81</th> <th>U/84</th> <th>6999</th> <th>neat</th> <th>0944</th> <th>6990</th> <th>1091</th> <th>1104</th>	814	0024	0010	0/81	U/84	6999	neat	0944	6990	1091	1104
816 1890 1743 1797 1850 1903 1956 2009 2063 2115 2169 817 2929 2275 2323 3881 2436 2488 2541 2594 2645 2700 818 2753 2806 2859 2913 2966 3019 3072 3125 3178 3231 819 3284 3837 3390 3443 3496 8449 3602 3655 3708 3761 820 3814 3867 3920 8973 4026 4079 4132 4184 4237 4290 821 4343 4396 4449 4502 4555 4606 4660 4713 4766 4819 822 4872 4925 4977 5030 5083 5136 5189 5241 5594 5347 823 5400 5453 5506 5558 5611 5664 5716 7769 5822 </td <th>012</th> <td>1169</td> <td>1211</td> <td>1984</td> <td>1917</td> <td>1971</td> <td>1494</td> <td>1477</td> <td>1520</td> <td>1594</td> <td>1627</td>	012	1169	1211	1984	1917	1971	1494	1477	1520	1594	1627
817 2929 2275 2323 2381 2436 2438 2541 2594 2645 2700 818 2763 2869 2913 2966 8019 3072 3125 3178 3231 819 3284 3337 3390 3443 3496 8549 3602 3656 3708 3761 820 3814 3867 3920 8978 4026 4079 4132 4184 4237 4290 821 4343 4396 4449 4502 4656 4660 4713 4766 4819 822 5400 5453 5506 5558 5611 5664 5716 5769 6822 5875 826 6960 7033 7066 7138 7190 7243 7295 7348 7400 7453 826 6960 7033 7066 7138 7190 7243 7295 7373 7927 7978 828 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
818 275a 2806 2869 3913 2966 8019 3072 3125 3178 3261 820 3814 3867 3920 3973 4026 4079 4132 4184 4237 4290 821 4343 4396 4449 4502 4555 4608 4660 4713 4766 4519 923 4872 4925 4977 5080 5183 5189 5241 5543 5467 4549 824 5927 5680 6033 6085 6138 6191 6243 6296 6349 6401 826 6464 6507 6559 6612 6664 6717 6770 6892 6875 6997 826 6960 7033 7065 7138 7190 7243 7295 7348 7400 7453 827 7506 7558 5186 8186 8840 8298 8345 3897 8450 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
820 8814 - 3867 3920 38978 4026 4079 4132 4184 4227 4290 4237 4290 4237 4506 4449 4502 4555 4608 4660 4713 4766 4819 4237 4766 4819 4819 522 4879 4926 4977 5030 5083 5136 5189 5241 5594 5347 5594 5347 5596 5085 5568 5611 5664 5716 5769 5822 5675 824 5927 5980 6033 6085 6138 6191 6243 6296 6349 6401 825 6464 6507 6559 6612 6664 6717 6770 6829 6896 7033 7086 7138 7190 7243 7295 7348 7400 7453 827 7506 7558 7611 7663 7716 7768 7820 7873 7925 7978 828 8030 8083 8186 8188 8240 8299 8345 8397 8450 8502 839 8565 8607 8659 8712 8764 8816 8869 8921 8973 9026 830 9078 9130 9183 9285 9287 9840 9892 9444 9496 9549 831 9601 9653 9706 9758 9610 9862 9914 99671971 832 90123 0176 0228 0280 0332 0384 0436 0489 0541 0583 1634 1166 1218 1270 1322 1374 1426 1478 1530 1582 1634 835 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 836 2206 2258 2310 2369 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3037 3089 3140 3192 838 3244 3296 3348 3399 3451 3603 3555 3607 3658 3710 839 3762 3814 3865 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4434 4486 4538 4589 4641 4693 4744 8496 5312 5364 5467 5518 5570 5621 5673 5725 5776 843 5826 5874 5931 5982 6034 6085 6187 6188 6240 6291 844 5312 5364 5415 5467 5518 5570 5621 5673 5725 5776 576 5446 6305 6467 6548 6600 6651 6702 6754 6805 845 6857 6908 6969 7011 7062 7114 7165 7216 7268 7319 7483 7936 7936 8037 8088 8140 8191 8242 823 8345 838 8447 8498 8549 8041 8652 8703 8754 8305 8857 846 6857 8908 6869 8037 8088 8140 8191 8242 823 8345 8345 8389 83447 8838 8447 8498 8354 8038 8347 8838 8347 8838 8347 8838 8347 8838 8347 8838 8347 8838 8347 8838											
821 4343 4396 4449 4502 4656 4660 4713 4766 4819 823 4879 4926 4977 5030 5083 5136 5189 5241 5594 5347 824 5927 5680 6033 6085 6138 6191 6243 6296 6349 6401 825 6454 6507 6559 6612 6664 6717 6770 6893 6875 6927 826 6960 7033 7085 7138 7190 7243 7295 7348 7400 7453 827 7506 7558 7611 7663 7716 7788 7820 7878 7925 7978 828 8030 8083 8186 8188 8240 8298 8345 8397 8450 8502 8972 7978 830 9078 9180 9183 9863 9904 9892 9444 9967 </th <th>819</th> <th>3284</th> <th>3337</th> <th>3390</th> <th>8443</th> <th>3496</th> <th>8549</th> <th>3602</th> <th>8655</th> <th>3708</th> <th>3761</th>	819	3284	3337	3390	8443	3496	8549	3602	8655	3708	3761
821 4343 4396 4449 4502 4656 4660 4713 4766 4819 823 4879 4926 4977 5030 5083 5136 5189 5241 5594 5347 824 5927 5680 6033 6085 6138 6191 6243 6296 6349 6401 825 6454 6507 6559 6612 6664 6717 6770 6893 6875 6927 826 6960 7033 7085 7138 7190 7243 7295 7348 7400 7453 827 7506 7558 7611 7663 7716 7788 7820 7878 7925 7978 828 8030 8083 8186 8188 8240 8298 8345 8397 8450 8502 8972 7978 830 9078 9180 9183 9863 9904 9892 9444 9967 </th <th></th> <th>****</th> <th>90,017</th> <th></th> <th></th> <th></th> <th>4000</th> <th>4100</th> <th>4104</th> <th></th> <th>4000</th>		****	90,017				4000	4100	4104		4000
822 4879 4925 4977 5030 5083 5138 5189 5241 5594 5847 823 5400 5453 5505 5558 5611 5664 5716 5769 5822 5675 824 5927 5980 6033 6085 6138 6191 6243 6296 6349 6401 825 6349 6349 6349 6349 6349 6349 6349 6349											
823 5400 5453 5506 5558 5611 5664 5716 5769 5822 5876 824 5927 5980 6033 6086 6138 6191 6243 6296 6349 6401 825 6454 6507 6559 6612 6664 6717 6770 6822 6876 7407 7458 7295 7348 7400 7458 827 7506 7568 7611 7663 7716 7768 7820 7878 7907 7978 888 8930 8083 8186 8840 8298 8345 8397 8450 8509 8912 8973 9026 830 8061 9663 9706 9758 9810 9862 9914 9967 19 71 832 920123 0176 0298 9384 0384 0436 0449 0541 9662 9914 9967 19 71 3832 920123 0176											
824 5927 5980 6033 6085 6138 6191 6243 6296 6349 6401 825 6454 6507 6559 6612 6664 6717 6770 6829 6875 6997 826 6860 7033 7085 7138 7190 7243 7295 7348 7400 7453 827 7506 7558 7611 7663 7716 7768 7820 7873 7925 7978 828 8030 8083 8168 8188 8240 8299 8345 8397 8450 8502 830 9078 9180 9183 9286 8912 9840 8929 9444 9496 9549 831 9601 9653 9706 9758 9610 9662 9914 9967 19 71 832 920123 0176 0228 0280 0332 0384 0436 0489 0641											
826 6860 7083 7085 7138 7190 7243 7295 7248 7400 7453 827 7506 7566 7611 7663 7716 7768 7820 7873 7925 7978 828 8398 8368 8368 8368 8368 8368 8368 8368 8369 8659 8712 8764 8816 8869 8921 8973 9026 830 9801 9653 9706 9758 9810 9862 9914 9967 19 71 832 920123 0176 0228 0280 0332 0384 0436 0489 0641 0698 833 0645 0697 0749 0801 0653 0906 0958 1010 1062 1114 834 1166 1218 1270 1842 1894 1946 1998 2060 2102 3154 835 1686 1783 1791 1842 1894	824	5927	5980	6038	6085	6138	6191	6243	6296	6849	6401
826 6860 7083 7085 7138 7190 7243 7295 7248 7400 7453 827 7506 7566 7611 7663 7716 7768 7820 7873 7925 7978 828 8398 8368 8368 8368 8368 8368 8368 8368 8369 8659 8712 8764 8816 8869 8921 8973 9026 830 9801 9653 9706 9758 9810 9862 9914 9967 19 71 832 920123 0176 0228 0280 0332 0384 0436 0489 0641 0698 833 0645 0697 0749 0801 0653 0906 0958 1010 1062 1114 834 1166 1218 1270 1842 1894 1946 1998 2060 2102 3154 835 1686 1783 1791 1842 1894											
827 7506 7558 7611 7663 7716 7768 7820 7873 7925 7978 838 8030 8083 8186 8186 8240 8298 8345 8397 8450 8502 8298 8345 8397 8450 8502 8602 8829 8345 8397 8450 8502 8602 8821 8973 9026 830 9078 9180 9183 9285 9287 9840 9892 9444 9496 9549 831 9601 9662 9914 9967 19 71 832 920123 0176 0228 0832 0834 0484 0486 0481 0689 0641 0683 833 0645 0697 0749 0801 0853 0906 0968 1010 1062 1114 1426 1478 1530 1582 1634 835 1686 1738 1790 1842 1894 1946 1998 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
828 8030 8083 8186 8188 8240 8298 8345 8397 8450 8502 829 8565 8607 8669 8712 8764 8816 8869 8921 8973 9026 830 9078 9130 9183 9235 9287 9840 9892 9444 9496 9549 831 9601 9653 9706 9758 9810 9862 9914 9967 19 71 832 290123 0176 60228 0280 0332 0384 0436 0480 0541 0563 838 0645 0697 0749 801 0655 0960 0966 1010 1062 1114 835 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 836 2206 2258 2310 2362 2414 2466 2518 2570 2622											
829 8555 8607 8659 8712 8764 8816 8869 8921 8973 9026 830 9078 9130 9183 9285 9287 9840 9892 9444 9496 9549 831 9601 9653 9706 9758 9610 9862 9914 9967 19 71 832 920123 0176 0228 0280 0332 0384 0436 0489 0541 0593 833 0645 0697 0749 0801 0685 0906 0968 1010 1062 1114 834 1166 1218 1270 1822 1874 1426 1478 1530 1562 1634 835 1666 1738 1790 1842 1894 1946 1998 2050 2102 2154 836 2246 2258 2310 3362 2414 2466 2518 2570 2622											
830 9078 9180 9183 9285 9287 9840 9892 9444 9496 9549 831 9601 9663 9706 9758 9610 9662 9914 9967 19 71 832 920123 0176 0228 0280 0332 0384 0436 0489 0641 0593 838 0645 0697 0749 0801 0653 0906 0968 1010 1062 1114 834 1166 1218 1270 1842 1849 1946 1478 1530 1582 1634 835 1686 1738 1790 1842 1894 1946 1998 2060 2102 2154 836 2206 2258 2310 2362 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3037 3689 3140	829										
831 9601 9663 9706 9768 9810 9862 9914 9967 19 71 832 920123 0176 0228 0280 0332 0384 0486 0489 0541 0593 838 0645 0697 0749 0801 0655 0906 0968 1010 1062 1114 834 1166 1218 1270 1322 1374 1426 1478 1530 1582 1634 835 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 836 2206 2258 2310 2362 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3087 3089 3140 3192 838 3244 3296 3348 3399 3451 3503 3555 3607 3668						l	l	l .] -		
832 930123 0176 6228 0284 0332 0384 0438 0499 6541 6682 1166 1218 1270 1822 1874 1426 1478 1530 1562 1114 835 1666 1738 1790 1842 1894 1946 1998 2050 2102 2154 836 2206 2258 2310 2362 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3037 3089 3140 3192 838 3244 3296 3451 3603 3565 3607 3668 3710 849 3762 3814 3865 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4494 4466 4588 4689 4641 4693 4744 841 4796										9496	
838 0645 0697 0749 0801 0853 0906 0968 1010 1002 1114 834 1166 1218 1270 1329 1374 1426 1478 1530 1582 1634 835 1686 1788 1790 1842 1694 1946 1998 2050 2102 2154 836 2206 2258 2310 2362 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3037 3089 3140 3192 838 3244 3893 3451 3603 3565 3607 3658 3710 840 4279 4331 4383 4434 4496 4538 4589 4641 4693 4744 841 4796 4848 4899 4951 5003 5054 5106 5157 5209 5261										19	71
834 1166 1218 1270 1322 1374 1426 1478 1530 1582 1634 835 1686 1738 1790 1842 1894 1946 1998 2050 2102 2154 836 2206 2258 2310 2362 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3087 3089 3140 3192 838 3244 3296 3348 3399 3451 3603 3555 3607 3658 3710 849 3762 3814 3866 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4434 4486 4588 4689 4641 4693 4744 841 4796 4848 4899 4951 5003 5054 5106 5157 5209 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
835 1686 1788 1790 1842 1884 1946 1998 2060 2102 2154 836 2206 2258 2210 2362 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3037 3089 3140 3192 838 3244 3296 3348 3399 3451 3603 3555 3607 3658 3710 849 3814 3865 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4434 4486 4538 4589 4641 4603 4744 841 4796 4848 4899 4951 5003 5054 5106 5157 5209 5261 5673 5725 5776 843 5828 5874 5931 5962 6034 6085 6137 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
836 2206 2258 2310 2362 2414 2466 2518 2570 2622 2674 837 2725 2777 2829 2881 2933 2985 3087 3089 3140 3192 838 3244 3826 3343 3399 3451 3503 3555 3607 3658 3710 849 3762 3814 386 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4434 4496 4538 4589 4641 4683 4744 4228 840 4279 4331 4383 4434 4496 4538 4589 4641 4693 4744 4228 840 4312 5364 5415 5467 5518 5570 5621 5673 5725 5776 5209 5261 5673 5725 5776 543 5621 5673 5725	~							'			
887 2795 2777 2829 2881 2933 2985 3037 3089 3140 3192 888 3244 3296 3348 3399 3451 3603 3565 3607 3668 3710 889 3762 3814 3866 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4484 4486 4588 4689 4641 4693 4744 841 4796 4848 4899 4951 5003 5054 5106 5157 5209 5261 842 5312 5364 5415 5687 5518 5570 5621 5673 5725 5776 843 5828 5874 5931 5982 6034 6085 6187 6188 6240 6291 844 6342 6394 6446 6497 6648 6600 6651 6702 6754 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
838 3244 3296 3348 3399 3451 3503 3555 3607 3658 3710 889 3762 3814 3865 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4434 4486 4538 4589 4641 4693 4744 841 4796 4848 4899 4951 5003 5054 5106 5157 5209 5261 842 5312 5364 5415 5467 5518 5570 5621 5673 5725 5776 843 5828 5874 5931 5982 6034 6085 6137 6188 6240 6291 844 6342 6394 6445 6497 6548 6600 6651 6702 6754 6805 845 6857 6908 6959 7011 7062 7114 7165 7216 7268 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
889 3762 3814 3865 3917 3969 4021 4072 4124 4147 4228 840 4279 4331 4383 4434 4486 4538 4589 4641 4693 4744 841 4796 4848 4899 4951 5003 5054 5106 5157 5209 8261 842 5312 5364 5415 5467 5518 5570 5621 5673 5725 5776 843 5828 5874 5931 5982 6034 6085 6137 6188 6240 6291 844 6342 6394 6445 6497 6548 6600 6651 6702 6754 6805 845 6857 6908 6959 7011 7062 7114 7165 7216 7268 7319 846 7370 7422 7473 7554 7576 7627 7678 7730 7783 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
840 4279 4331 4383 4434 4486 4538 4641 4693 4744 841 4796 4848 4899 4951 5003 5054 5106 5157 5209 5261 842 5312 5364 5415 5467 5518 5570 5621 5673 5725 5776 843 5828 5874 5981 5982 6034 6065 6187 6188 6240 6291 844 6342 6394 6445 6497 6548 6600 6651 6702 6754 6805 845 6887 6908 6969 7011 7062 7114 7165 7216 7268 7319 846 7370 7422 7473 7554 7576 7627 7678 7730 7783 7832 847 7883 7935 7966 8037 8088 8140 8191 8242 8293 8345 </th <th>890</th> <th></th> <th></th> <th></th> <th></th> <th>2060</th> <th></th> <th></th> <th></th> <th></th> <th></th>	890					2060					
841 4796 4848 4899 4951 5003 5054 5106 5157 5209 8261 842 5312 5364 5416 5467 5518 5570 5621 5673 5725 5776 843 5828 5874 5981 5982 6034 6085 6137 6188 6240 6291 844 6342 6394 6445 6497 6548 6600 6651 6702 6754 6805 845 6857 6908 6959 7011 7062 7114 7165 7216 7268 7319 846 7370 7422 7473 7524 7576 7627 7678 7730 7783 7832 847 7883 7935 7966 8037 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8754 8805 </th <th>احت</th> <th>0,00</th> <th></th> <th> </th> <th>3011</th> <th>3303</th> <th>=0~1</th> <th> </th> <th></th> <th>-21-21</th> <th>2000</th>	احت	0,00			3011	3303	=0~1			-21-21	2000
841 4796 4848 4899 4951 5003 5054 5106 5157 5209 5261 842 5312 5364 5416 5467 5518 5570 5621 5673 5725 5776 878 843 5828 5874 5981 5982 6034 6085 6137 6188 6240 6291 6291 644 6342 6394 6445 6497 6548 6600 6651 6702 6754 6805 845 6857 6908 6959 7011 7062 7114 7165 7216 7268 7319 846 7370 7422 7473 7524 7576 7678 7730 7783 7832 847 7883 7995 7966 8037 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8754 8805 8	840	4279	4331	4383	4484	4486	4538	4589	4641	4693	4744
843 5828 5874 5981 5982 6034 6085 6187 6188 6240 6291 844 6342 6394 6445 6497 6648 6600 6651 6702 6754 6805 845 6857 6908 6959 7011 7062 7114 7165 7216 7268 7319 846 7370 7422 7473 7584 7576 7627 7678 7730 7783 7832 847 7883 7935 7968 8037 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8764 8805 8857	841				4961	5003	5054			5209	5261
844 6342 6394 6445 6497 6548 6600 6651 6702 6754 6805 845 6857 6908 6959 7011 7062 7114 7165 7216 7268 7319 846 7370 7422 7473 7524 7576 7627 7678 7730 7783 7832 832 847 883 8347 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8754 8805 8857											
845 6857 6908 6959 7011 7062 7114 7165 7216 7268 7319 846 7370 7422 7473 7524 7576 7627 7678 7730 7783 7832 847 7883 7935 7966 8037 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8754 8805 8857											
846 7370 7422 7473 7524 7576 7627 7678 7730 7783 7832 847 7883 7935 7986 8037 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8754 8805 8857	044	09%	0084	0440	0497	9045	3000	3001	3102	0104	9000
846 7370 7422 7473 7524 7576 7627 7678 7730 7783 7832 847 7883 7935 7986 8037 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8754 8805 8857	845	6857	6008	6959	7011	7069	7114	7165	7216	7268	7219
847 7883 7935 7986 8037 8088 8140 8191 8242 8293 8345 848 8396 8447 8498 8549 8601 8652 8703 8754 8805 8857											
	847	7883	7935	7986	8037	8088	8140		8242	8293	8345
849 8908 8959 9010 9061 9112 9163 9216 9266 9317 9368											
	849	8908	8969	9010	9061	9112	9163	9216	9266	9317	9368

18	LOGARITHMS												
N.	0	1	2	8	4	5	6	7	8	9			
850	929419	9478	9521	9572	9623	9674	9725	9776	9827	9879			
851	9930	9981	82	83	.184	.185	.236	.287	.838	.389			
852	980440	0491	0542	0592	0643	0694	0745	0796	0847	0898			
853	0949 1458	1000 1509	1051 1560	1102 1610	1158 1661	1204 1712	1254 1763	1305 1814	1356 1865	1407 1915			
854	1400	1005	1000	1010	1001	1112	1705	1014	1000	1910			
855	1966	2017	2068	2118	2160	2220	2271	2322	2372	2423			
856	2474	2524	2575	2626	2677	2727	2778	2829	2879	2930			
857	2981	8031	8082	3133	3183	3284	3285	8885	3386	8437			
858 859	3487 3993	3538 4044	8589 4094	8639 4145	3690 4195	8740 4246	8791 4269	8841 4347	3892 4397	8943 4448			
009	6550	2022	#03%	4140	4130	4340	2205	2021	4091	4440			
860	4498	4549	4599	4650	4700	4751	4801	4852	4902	4953			
861	5003	5054	5104	5154	5205	5255	5306	5356	5406	5457			
862	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960			
863	6011	6061 6564	6111	6162	6212 6715	6262	6313	6363 6865	6418	6463			
864	6514	0004	6614	6665	0,10	6765	6815	0000	6916	6966			
865	7016	7066	7117	7167	7217	7267	7817	7367	7418	7468			
866	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969			
867	8019	8069	8119	8169	8219	8269	8820	8370	8420	8470			
868	8520	8570	8620	8670	8720	8770	8820	8870	8919	8970			
869	9020	9070	9120	9170	9220	9270	9320	9369	9419	9469			
870	9519	9569	9616	9669	9719	9769	9819	9869	9918	9968			
871	940018	0068	0118	0168	0218	0267	0317	0367	0417	0467			
872	0516	0566	0616	0666	0716	0765	0815	0865	0915	0964			
873	1014 1511	1064 1561	1114	1168	1218	1268	1313 1809	1362 1859	1412	1462			
874	1011	1001	1611	1660	1710	1760	1000	1003	1909	1958			
875	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455			
876	2504	2554	2608	2658	2702	2752	2801	2851	2901	2950			
877	8000	8049	3099	8148	3198	3247	8297	8346	3396	8445			
878	8495 8989	8544 4038	9593 4088	3643 4137	3692 4186	8742 4286	8791 4285	8841 4335	8890 4384	8939 4433			
879	0303	2000	4000	4107	4100	4200	1200	4000	4004	4433			
880	4483	4532	4581	4631	4680	4729	4779	4828	4877	4927			
881	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419			
882	5469	5518	5567	5616	5665	5715	5764	5818	5862	5912			
883 884	5961 6452	6010 6501	6059 6551	6108 6600	6157 6649	6207 6698	6256 6747	6305 6796	6354 6845	6403 6894			
90-2	0.00	0001	0001	0000	00-25	0030	"-"	0.50	0030	005-2			
885	6943	6992	7041	7090	7140	7189	7238	7287	7336	7385			
886	7434	7483	7532	7581	7630	7679	7728	7777	7826	7875			
887	7924	7978	8022	8070	8119	8168	8217	8266	8315	8365			
888 889	8413 8902	8462 8951	8511 8999	8560	8609 9097	8657	8706 9195	8755 9244	8804 9292	8853 9341			
009	. 0302	0901	0999	9048	5057	9146	9190	JAPET.	3232	2041			
890	9390	9489	9488	9536	9585	9634	9683	9731	9780	9829			
891	9878	9926	9975	24	78	.121	.170	.219	.267	.316			
892	950365	0414	0462	0511	0560	0608	0657	0706	0754	0803			
893 894	0851 1338	0900 1386	0949 1435	0997 1483	1046 1532	1095 1580	1143 1629	1192 1677	1240 17 9 6	1989 1775			
		1		1-200		1000			2.20	****			
895	1823	1872	1920	1969	2017	2066	2114	2163	2211	2260			
896	2308	2356	2405	2453	2502	2550	2599	2647	5696	2744			
897	2792	2841	2889	2938	2986	3034	3083	8131	3180	3228			
898 899	3276 3760	3325 3808	3373 3856	3421 3905	3470 3953	3518 4001	3566 4049	3615 4098	8663 4146	8711 4194			
	3,00	1 200	} 5555	5505	1 3300	2001	1010		7170	4104			

.

.

	N				

OF NUMBERS.											
N.	0	1	2	3	4	5	6	7	8	9	
900	954243	4291	4339	4387	4435	4484	4532	4580	4628	4677	
901	4725	4773	4821	4869	4918	4966	5014	5062	5110	5158	
902	5207	5255	5303	5351	5399	5447	5495	5548	5592	5640	
903	5688	5736	5784	5832	5880	5928	5976	6024	6072	6120	
904	6168	6216	6265	6313	6361	6409	6457	6505	6553	6601	
905	6649	6697	6745	6793	6840	6888	6936	6984	7032	7080	
906	7128	7176	7224	7272	7320	7368	7416	7464	7512	7559	
907	7607	7655	7703	7751	7799	7847 8325	7894 8373	7942	7990	8038	
908	8086 8564	8134 8612	8181 8659	8229 8707	8277 8755	8803	8850	8421 8898	8468 8946	8516	
909	0004	9012	0009	0101	0100	0000	0000	0090	0940	8994	
910	9041	9089	9137	9185	9232	9280	9328	9375	9423	9471	
911	9518	9566	9614	9661	9709	9757	9804	9852	9900	9947	
912	9995	42	90	.138	.185	.233	.280	.328	.376	.423	
913	960471	0518	0566	0618	0661	0709	0756	0804	0851	0899	
914	0946	0994	1041	1089	1136	1184	1231	1279	1326	1374	
915	1421	1469	1516	1563	1611	1658	1706	1753	1801	1848	
916	1895	1943	1990	2038	2085	2132	2180	2227	2275	2322	
917	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795	
918	2843	2890	2937	2985	3032	3079	3126	3174	3221	3268	
919	8316	3363	3410	3457	3504	3552	3599	3646	3698	3741	
920	3788	3835	3882	3929	3977	4024	4071	4118	4165	4212	
921	4260	4307	4354	4401	4448	4495	4542	4590	4637	4684	
922	4731	4778	4825	4872	4919	4966	5013	5061	5108	5155	
923	5202	5249	5296	5343	5390	5437	5484	5531	5578	5625	
924	5672	5719	5766	58 <u>1</u> 3	5860	5907	5954	6001	6048	6095	
925	6142	6189	6236	6283	6329	6376	6423	6470	6517	6564	
926	6611	6658	6705	6752	6799	6845	6892	6939	6986	7033	
927	7080	7127	7173	7220	7267	7314	7361	7408	7454	7501	
928	7548	7595	7642	7688	7735	7782	7829	7875	7922	7969	
929	8016	8062	8109	8156	8203	8249	8296	8343	8390	8436	
930	8483	8530	8576	8623	8670	8716	8763	8810	8856	8903	
931	8950	8996	9043	9090	9136	9183	9229	9276	9323	9369	
932	9416	9463	9509	9556	9602	9649	9695	9742	9789	9835	
933	9882	9928	9975	21	68	.114	.161	.207	.254	.300	
934	970347	0393	0440	0486	0533	0579	0626	0672	0719	0765	
935	0812	0858	0904	0951	0997	1044	1090	1137	1183	1229	
936	1276	1322	1369	1415	1461	1508	1554	1601	1647	1693	
937	1740	1786	1882	1879	1925	1971	2018	2064	2110	2157	
938	2203	2249	2295	2342	2388	2434	2481	2527	2578	2619	
939	2666	2712	2758	2804	2851	2897	2943	2989	3035	3082	
940	3128	3174	3220	3266	3313	3359	3405	3451	3497	3543	
941	3590	3636	3682	3728	3774	3820	3866	3913	3959	4005	
942	4051	4097	4143	4189	4235	4281	4327	4374	4420	4466	
943	4512	4558	4604	4650	4696	4742	4788	4834	4880	4926	
944	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386	
945	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845	
946	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304	
947	6350	6896	6442	6488	6533	6579	6925	6671	6717	6763	
948	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	
949	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	

•	١.	n	
ч	i	и	

LOGARITHMS

					,	,	· · · · · ·			
N.	0	1	2	3	4	5	6	7	8	9
950	977724	7769	7815	7861	7906	7952	7998	8043	8089	8185
951	8181	8226	8272	8317	8363	8409	8454	8500	8546	8591
952	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047
953	9093	9138	9184	9230	9275	9321	9366	9412	9457	95 08 99 58
954	9548	9594	9639	9685	9730	9776	9821	9867	9912	9908
955	980003	0049	0094	0140	0185	0231	0276	0392	0367	0412
956	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867
957	0912	0957	1003	1048	1093	1139	1184	1229	1275	1820
958	1366	1411	1456	1501	1547	1592	1637	1683	1728	1778
959	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226
								ŀ	İ	
960	2271	2316	2362	2407	2452	2497	2543	2588	2633	2678
961	2723	2769	2814	2859	2904	2949	2994	3040	3085	3130
962	8175	3220	3265	3310	3356	3401	3446	3491	8536	3581
963	3626	8671	8716	3762	8807	8852	8897	3942	8987	4032
964	4077	4122	4167	4212	4257	4302	4347	4392	4437	4482
	4527	4572	4617	4662	4707	4752	4797	4842	4887	4982
965 966	4977	5022	5067	5112	5157	5202	5247	5292	5337	5383
967	5426	5471	5516	5561	5606	5651	5699	5741	5786	5880
968	5875	5920	5965	6010	6055	6100	6144	6189	6284	6279
969	6324	6369	6413	6458	6503	6548	6593	6687	6682	6727
333										
970	6772	6817	6861	6906	6951	6996	7040	7085	7130	7175
971	7219	7264	7309	7353	7398	7443	7488	7532	7577	7622
972	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068
978	8113	8157	8202	8247	8291	8336	8381	8425	8470	8514
974	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960
975	9005	9049	9093	9138	9188	9227	9272	9316	9861	9405
976	9450	9494	9539	9583	9628	9672	9717	9761	9806	9850
977	9895	9939	9983	28	72	.117	.161	.206	.250	.294
978	990339	0383	0428	0472	72 0516	0561	0605	0650	0694	0788
979	0783	0827	0871	0916	0960	1004	1049	1093	1137	1182
			٠							
980	1226	1270	1315	1359	1403	1448	1492	1586	1580	1625
981	1669	1713	1758	1802	1846 2288	1890	1935 2377	1979 2421	2023 2465	2067 2509
982	2111° 2554	2156 2598	2200 2642	2244 2686	2730	2333	2819	2863	2907	2951
983 984	2995	3039	3083	3127	3172	2774 3216	3260	8804	8348	8892
304	2330	1000	5000	0121	0212	0210	5200	5502	0020	
985	3436	3480	3524	3568	3618	8657	8701	8745	8789	8833
986	8877	3921	3965	4009	4053	4097	4141	4185	4229	4278
987	4317	4361	4405	4449	4493	4537	4581	4625	4669	4718
988	4757	4801	4845	4886	4933	4977	5021	5065	5108	5152
989	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591
600	FORF	5679	KNOO	K707	E011	EOF 4	E000	5942	5986	6080
990 991	5635 6074	6117	5723 6161	5767 6205	5811 6249	5854 6293	5898 6337	6380	6424	6468
992	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906
993	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343
994	7386	7430	7474	7517	7561	7605	7648	7692	7736	7779
	İ									
995	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216
996	8259	8303	8347	8390	8434	8477	8521	8564	8608	8652 9087
997	8695	8739	8792	8826	8869	8913	8956	9000	9048 9479	9522
998 999	9131 9565	9174	9218 9652	9261 9696	9305 9739	9348 9788	9392 9826	9435 9870	9918	9957
838	3000	1 3003	3002	3030	3.09	3100	3020	30.0	3310	1 300.

۱

,	TABLE II.	L	og. Sines	and T	ingents, (0°) N	atural Sines		2	1
	Sine.	D.10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine.	N. cos.	
0	0.000000		10.000000		0.000000		Infinite.	00000	100000	60
	6.463726		000000		6.463726		18.536274		100000	59 58
2	764756 940847		000000		764756 940847		235244 059153		100000 100000	155 1
8	7.065786		000000		7.065786		12.934214		100000	
5	162696		000000		162696	١. ا	837304	00145	100000	55
6	241877	1	9.999999		241878		758122		100000	54
7	308824		999999		308825		691175		100000	
8	366816 417968		999999 999999		366817 417970	ļ	633183 582030	00262	100000 100000	
10	463725		999998		463727		536273	00291	100000	1
11	7.505118		9.999998		7.505120		12.494880	00320	99 999	49
12	542906		999997		542909		457091	00349	99999	48
13	577668		999997	ľ	577672		422328	00378 00407	99999	47 46
14 15	609853 639816		999996 999996	1	609857 639820		890143 360180	00436	99999	45
16	667845		999995		667849	ł	332151	00465	99999	44
17	694173		999995	ł	694179	1	305821	00495	99999	43
18	718997		999994	ł	719003	1	280997	00524	99999	42 41
19	742477		999993	i	742484		257516	00553 00582	99998 99998	40
20 21	764754 7.785943		999993 9.999992	1	764761 7.785951		235239 12.214049	00611	99998	39
22	806146		999991	l	806155	1	193845	00640	99998	38
23	825451		999990]	825460		174540	00669	99998	37
24	843934		999989	l	843944		156056	00698		36 35
25	861663		999988		861674		138326 121292	00797	99997	34
26 27	878695 895085		999988 999987	1	878708 895099	į .	104901	00785	99997	83
28	910879		999986	ł	910894	1	089106	00814	99997	32
29	926119		999985		926134	l	073866	00844		31
30	940842		999983		940858		039142	00873		
31	7.955082 968870	2298	9.999982 999981	0.2	7.955100 968889	2298	12.044900 031111	00902 00931	99996 99996	28
32 33	982233	2227	888880	0.2	982253	2227	017747	00960		27
34	995198	2161	999979	0.2	995219	2161	004781	00989		26
85	8.007787	2098 2039	999977	0.2	8.007809	2098 2039	11.992191	01018	99995	
86	020021	1983	999976	0.2	020045	1983	979955	01047 01076	99995 99994	24 23
37 38	031919 043501	1930	999975 999973	0.2	031945 043527	1930	968055 956473	01105	99994	22
39	054781	1880	999972	0.5	054809	1880	945191	01134	99994	21
40	065776	1832	999971	0.5	065806	1833 1787	934194	01164	99993	20
41	8.076500	1787 1744	9.999969	0.5	8.076531	1744	11.923469	01193		
42	086965	1703	999968	0.5	086997	1703	913003	01222 01251	99993 99992	18 17
43 44	097188 107167	1664	999966 999964	0.5	097217 107202	1664	902783 892797	01280		16
45	116926	1626	999963	0.3	116963	1627	883037	01309	99991	15
46	126471	1591 1557	999961	0.3	126510	1591 1557	873490	01338	99991	14
47	135810	1524	999959	0.3	135851	1524	864149	01367	99991	13 12
48	144953	1492	999958	0.3	144996	1493	855004 846048	01396 01425	99990 99990	
49 50	153907 162681	1462	999956 999954	0.3	158952 162727	1463	837273	01454	99989	
51	8.171280	1433	9.999952	0.3	8.171328	1434	11.828672	01483	99989	9
52	179713	1405 1379	999950	0.3	179763	1406 1379	820237	01513		8
53	187985	1353	999948	0.8	188036	1353	811964	01542	99988	6
54 55	196102	1328	999946	100	196156	1328	803844 795874	01571 01600	99988	5
56	204070 211895	1304	999944 999942	0.8	204126 211953	1304	788047	01629		4
57	219581	1281	999940	0.4	219641	1281	780359	01658	99986	8
58	227134	1259 1237	999938	0.4	227195	1259 1238	772805	01687	99986	2
59	234557	1216	999936	104	234621	1217	765379	01716	99985	1 0
60	241855		999934		241921		758079	01745		_
 -	Cosine.	<u></u>	Sine.		Cotang.	'	Tang.	N. COS.	N. sine	<u> </u>
Z.				-	9 Degrees					

20						нм				
N.	0	1	2	3	4	5	6	7	8	9
950	977724		7815	7861	7906	7952	7998	8043	8089	81 35 8591
951	8181 8637	8226 8683	8272 8728	8317 8774	8819	8409 8865	· 8454 . 8911	8500 8956	8546 9002	9047
952 953	9093	9138	9184	9230	9275	9321	9366	9412	9457	9508
954	9548	9594	9639	9685	9730	9776	9821	9867	9912	9958
955	980003	0049	0094	0140	0185	0231	0276	0322	0367	0419
956	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867
957	0 312 1366	0957 1411	1003	1048	1093 1547	1139 1592	1184	1229 1683	1275 1728	1320 1778
958 959	1819	1864	1456 1909	1501 1954	2000	2045	2090	2135	2181	2226
303										
960	2271	2316	2362	2407	2452	2497	2543	2588	2633	2678
961	2723 3175	2769 3220	2814 3265	2859 3310	2904 3356	2949 3401	2994	3040 3491	3085 3536	3130 3581
962 963	3626	3671	3716	3762	3807		3897	3942	3987	4032
964	4077	4122	4167	4212	4257	4302	4347	4392	4437	4489
965	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932
966	4977	5022	5067	5112	5157		5247	5292	5337	5383
967	5426	5471	5516	5561	5606	5651	5699	5741	5786	5830
968	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279
969	6324	6369	6413	6458	6503	6548	6593	6637	6682	67 97
970	6772	6817	6861	6906	6951	6996	7040	7085	7130	7175
971	7219	7264	7309	7353	7398	7443	7488	7532	7577 8024	7622
972 973	7666 8113	7711 8157	7756 8202	7800 8247	7845 8291	7890 8336	7934 8381	7979 8425	8470	8068 8514
974	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960
975	9005 9450	9049 9494	9093 9539	9138 9583	9183 9628	9227 9672	9272 9717	9316 9761	9361 9806	9405 9850
976 977	9895	9939	9983	28	72	.117	.161	.206	.250	.294
978	990339	0383	0428	0472	0516	0561	0605	0650	0694	0738
979	0783	0827	0871	0916	0960	1004	1049	1093	1137	1182
980	1226	1270	1315	1359	1403	1448	1492	1536	1580	1625
981	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067
982	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509
983 984	2554 2995	2598 3039	2642 3083	2686 3127	2730 3172	2774 3216	2819 3260	2863 3304	2907 8348	2951 8892
904	2330	0000	3003	0121	0172	3210	0200	0002	002	0002
985	3436	3480	3524	3568	3613	3657	3701	8745	8789	8833
986	3877 4317	3921 4361	3965	4009 4449	4053 4493	4097 4537	4141 4581	4185 4625	4229 4669	4278 4718
987 988	4317	4801	4405 4845	4886	4933	4977	5021	5065	5108	5152
989	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591
990	5635	5679	5723	5767	5811	5854	5898	5942	5986	6880
990	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468
992	6512	6555	6599	6643	6687	6781	6774	6818	6862	6906
993	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343
994	7386	7430	7474	7517	7561	7605	7648	7692	7736	7779

8792

9652

8390 8826

9696

,	table II.	. L		and T	angents, ((0°) I	Natural Sines	s. ·	2	21
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D.10"	Cotang.	N.sine.	N. cos.	
0	0.000000		10.000000		0.000000		Infinite.		100000	
1	6.463726		000000		6.463726		18.536274	00029	100000	59
2	764756 940847	'	000000	1	764756	ĺ	285244	00058	100000	58
8 4	7.065786	'	000000	1	940847 7.065786	İ	059153 12.984214	00116	100000 100000	56
5	162696	1	000000		162696	į.	837304	00145	100000	55
6	241877	'	9.999999	 •	241878		758122	00175	100000	54
7	308824	} '	999999	ļ	308825	1	691175		100000	
8	366816 417968	'	999999	İ	366817 417970	1	633183 582030		100000 100000	
10	463725		999998	İ	463727	1	536273		100000	50
11	7.505118		9.999998		7.505120	1	12.494880	00320	99999	49
12	542906	'	999997	1	542909	1	457091	00349		48
13	577668 609853	1	999997	ł	600857	1	422328	00378		
14 15	639816	'	999996 999996	ŀ	609857 639820	l	390143 360180	00436		1
16	667845		999995	ŀ	667849	ŀ	882151	00465	99999	44
17	694173		999995	ł	694179	l	305821	0049ő	99999	43
18	718997	'	999994	1	719003	l	280997	00524		
19	742477 764754	1 !	999993	1	742484	ĺ	257516	00553 00582		
20 21	7.785943	1 1	999993 9.999992		764761 7.785951	l	235239 12.214049	00611	99998 99998	
22	806146	1 1	999991		806155	l	193845	00640		38
23	825451	1 1	999990	'	825460	1	174540	00669	99998	87
24	843934	1 1	999989	i '	843944	l	156056	00698		
25	861663 878695	1 1	999988 999988	1 1	861674	ĺ	138326	00797	99997 99997	
26 27	895085	1 1	999988	1 /	878708 895099	İ	121292 104901	00785	99997	
28	910879	1 1	999986	!	910894	l	089106	00814	99997	32
29	926119	1 1	999985		926134	ĺ	073866	00844	99996	31
30	940842	1 1	999983		940858	i	059142	00873		
	7.955082 968870	2298	9.999982	0.2	7.955100	2298	12.044900	00902	99996	29 28
32 33	968870	2227	999981 999980	0.2	968889 982253	2227	031111 017747	00960	99996 99995	27
34	995198	2161	999979	0.2	995219	2161	004781	00969	99995	26
35	8.007787	2098 2039	999977	0.2	8.007809	2098 2039	11.992191	01018	99995	25
36	020021	1983	999976	0.2	020045	1983	979965	01047	99995	
37 38	031919 043501	1930	999975	0.2	031945	1930		01076 01105	99994 99994	23 22
39	043501	1880	999973 999972	0.2	043527 054809	1880		01106		21
40	065776	1832	999971	0.3	065806	1833	934194	01164		20
41	8.076500	1787 1744	9.999969	0.5	8.076531	1787 1744	11.923469	01193	99993	19
42	086965	1703	999968	0.2	086997	1703	913003	01222	99993	18
43 44	097183 107167	1664	999966 999964	0.5	097217 107202	1664	902783	01251 01280	99992 99992	17 16
45	116926	1626	999964	0.3	116963	1627	892797 883037	01280	99992	15
46	126471	1591	999961	0.3	126510	1591	873490	01338	99991	14
47	135810	1557 1524	999959	0.8	135851	1557 1524	864149	01367	99991	13
48	144953	1492	999958	0.8	144996	1493	855004	01896		12
49 50	153907 162681	1462	999956	0.3	158952	1463	846048	01425 01454	99990 99989	11 10
	8.171280	1433	999954 9.999952	0.8	162727 8.171328	1434	837273 11.828672	01483	99989	9
52	179713	1400	999950	10.8	179763	1406	820237	01513	99989	8
53	187985	1379 1353	999948	0.8	188036	1379 1353	811964	01542	99988	7
54	196102	1328	999946	0.8	196156	1328	803844	01571	99988	6
55 56	204070 211895	1304	999944	0.3	204126 211953	1304	795874 788047	01600 01629	99987 99987	5
57	211695	1281	999942	0.4	211963	1281	780359	01658	99986	8
58	227134	1259	999938	0.4	227195	1259	772805	01687	99986	2
59	234557	1237 1216	999936	0.4	234621	1238 1217	765379	01716	99985	1
60	241855		999934	<u> </u>	241921	122.	758079	01745	99985	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N. sine	7
4.					Degrees					1

2	2	Lo	og. Sines a	nd Ta	ngents. (1	°) Na	tural Sines.	TABLE II	
	Sine.	D.10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
o	8.241855	1196	9.999934	0.4	8.241921	1197	11.758079	01742 99985	60
1	249033	1177	999932	0.4	249102	1177	750898	01774 99984	59
2	256094	1158	999929	0.4	256165	1158	743835	01803 99984	58
3 4	263042 269881	1140	999927 999925	0.4	263115 269956	1140	736885 730044	01832 99983 01862 99983	57 56
5	276614	1122	999922	0.4	276691	1122	723309	01891 99982	55
6	283243	1105	999920	0.4	283323	1105	716677	01920 99982	54
7	289773	1088	999918	0.4	289856	1089	710144	01949 99981	53
8	296207	1072 1056	999915	0.4	296292	1073 1057	703708	01978 99980	52
9	302546	1041	999913	0.4	302634	1042	697366	02007 99980	51
10	303794	1027	999910	0.4	308884	1027	691116	02036 99979	50
	8.314954	1012	9.999907	0.4	8.315046 321122	1013	11.684954	02065 99979 02094 99978	49 48
12 13	321027 327016	998	999905 999902	0.4	327114	999	678878 672886	02123 99977	47
14	332924	985	999899	0.4	333025	985	666975	02152 99977	46
15	338753	971	999897	0.5	333856	972 959	661144	02181 99976	45
16	344504	959 946	999894	0.5	344610	946	655390	02211 99976	44
17	350181	934	999891	0.5	·350289	934	649711	02240 99975	43
18	355783	922	999888	0.5	355895	922	644105	02269 99974	42
19	361315	910	999885	0.5	361430 366895	911	638570	02298 99974 02327 99973	41 40
20 21	366777 8.372171	899	999882 9.999879	0.5	8.372292	899	633105 11.627708	02356 99972	39
22	377499	888	999876	0.5	377622	888	622378	02385 99972	38
23	382762	877 867	999873	0.5	382889	879	617111	02414 99971	37
24	387962	856	999870	0.5	388092	857	611908	02443 99970	36
25	393101	846	999867	0.5	393234	847	606766	02472 99969	35
26	398179	837	999864	0.5	398315	837	601685	1	34
27	403199	827	999861	0.5	403338	828	596662	02530 99968	33 32
28 29	408161 413068	818	999858 999854	0.5	408304 413213	818	591696 586787		31
30	417919	809	999851	0.5	418068	809	581932		30
	8.422717	800	9.999848	0.6	8.422869	800 791	11.577131		29
32	427462	791 782	999844	0.6	427618	783	572382	92676 99964	28
33	432156	774	999841	0.6	432315	774	567685		27
34	436800	766	999838	0.6	436962	766	563038		26 25
35	441394 445941	758	999834 999831	0.6	441560 446110	758	558440 553890	02763 99962 02792 99961	24
36 37	450440	750	999827	0.6	450613	750	549387	02821 99960	23
38	454893	742	999823	0.6	455070	743	544930	02850 99959	22
39	459301	735 727	999820	0.6	459481	735 728	540519	02879 99959	21
40	463665	720	999816	0.6	463849	720	536151	02908 99958	
	8.467985	712	9.999812	0.6	8.468172	713	11.531828	02938 99957	19
42	472263	706	999809	0.6	472454	707	527546	02967 99956 02996 99955	18 17
43 44	476498 480693	699	999805 999801	0.6	476693 480892	700	523307 519108	03025 99954	16
45	484848	692	999797	0.6	485050	693	514950	03054 99953	15
46	488963	686	999793	0.7	489170	686 680	510830	03083 99952	14
47	493040	679 673	999790	0.7	493250	674	506750	03112 99952	13
48	497078	667	999786	0.7	497293	668	502707	03141 99951	
49	501080	661	999782	0.7	501298	661	498702	03170 99950	11
50 51	505045 8.508974	655	999778 9.999774	0.7	505267 8.509200	655	494733 11.490800	03199 99949 03228 99948	10 9
52	512867	649	999769	0.7	513098	650	486902	03257 99947	8
53	516726	643	999765	0.7	516961	644	483039	03286 99946	7
54	520551	637	999761	0.7	520790	638 633	479210	03316 99945	6
55	524343	632 626	999757	$\begin{vmatrix} 0.7 \\ 0.7 \end{vmatrix}$	524586	627	475414	03845 99944	5
56	528102	601	999753	0.7	528349	622	471651	03374 99943	4
57	531828	616	999748	0.7	532080	616	467920	03403 99942	3 2
58 59	535523	611	999744	0.7	535779	611	464221	03432 99941 03461 99940	1
60	539186 542819	605	999740 999735	0.7	539447 543084	606	460553 456916	03490 99939	ō
 "	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	÷
-	, Cosine.		i cille.	'			I allg.	: 11. COB. 11.BIEC.	-
<u> </u>					38 Degreee				

Т	ABLE II.	Lo	g. Sines a	nd Ts	ingents. (2	°) N	atural Sines.		2	23
7	Sine.	D. 10"	Cosine.	D. 10"	Taug.	D. 10"	Cotang.	N. sine.	N. cos.	<u> </u>
0	8.542819	600	9.999735	0.7	8.543084	662	11.456916	03490	99939	60
1	546422	595	999731	0.7	546691	596	453309	03519	99938	59
2	549995	591	999726	0.7	550268	591	449782	03548		58
8 4	553539	586	999722	0.8	553817	587	446183	03577		57 56
5	557054 560540	581	999717 999713	0.8	557336 560828	582	442664 439172	03606 03635		55
6	563999	576	999708	0.8	564291	577	435709	03664		54
7	567431	572	999704	0.8	567727	573	432273	03693		53
8	570836	567 563	999699	0.8	571137	568 564	428863	03723		52
9	574214	559	999694	0.8	574520	559	425480	03752		51
10 11	577566	554	999689	0.8	577877	555	422123	03781		50
12	8.580892 584193	550	9.999685 999680	0.8	8.581208 584514	551	11.418792 415486	03810 03839	00006	49 48
13	587469	546	999675	0.8	587795	547	412205	03868		47
14	590721	542	999670	0.8 0.8 0.8	591051	543	408949	03897		46
15	593948	538 534	999665	8.0	594283	589 535	405717	03926	99923	45
16	597152	530	999660	0.8	597492	531	402508	03955		44
17	600332	526	999655	0.8	600677	527	399323	03984		43
18 19	603489 606623	522	999650	0.8	603839	523	896161	04013		42 41
20	609734	519	999645 999640	0.8	606978 610094	519	393022 389906	04042 04071		40
	8.612823	515	9.999635	0.9	8.613189	516	11.386811	04100		39
22	615891	511	999629	0.9	616262	512	383738	03129		38
23	618937	508 504	999324	0.9	619313	508 505	380687	04159		37
24	621962	501	999619	0.9	622343	501	377657	04188		36
25 26	624965	497	999614	0.9	625352	498	374648	04217		35
27	627948 630911	494	999608	0.9	628340 631308	495	371660 368692	04246 04275	99910	34
28	633854	490	999603 999597	0.9	634256	491	365744	04304		32
29	636776	487	999592	0.9	637184	488	362816	04333		31
30	639680	484 481	999586	0.9	640093	485	.359907	04362	99905	30
31	8.642563	477	9.999581	0.9	8.642982	482 478	11.357018	04391		29
32	645428	474	999575	0.9	645853	475	354147	04420		28
33 34	648274 651102	471	999570	0.9	648704 651537	472	351296 348463	04449 04478	99901	27 26
35	653911	468	999564 999558	0.9	654352	469	345648	04507		25
36	656702	465	999553	1.0	657149	466	342851	04536		24
37	659475	462 459	999547	1.0 1.0	659928	463	340072	04565	99896	23
38	662930	456	999541	1.0	662689	460 457	337311	04594	99894	22
39	664968	453	999535	1.0	665433	454	334567	04623	99893	21
40 41	667689 8.670393	451	999529	1.0	668160	453	331840 11.329130	04653 04682	99692 99894	20 19
42	673080	448	9.999524 999518	1.0	8.670870 673563	449	326437	04052	99889	18
43	675751	445	999512	1.0	676239	446	823761	04740		17
44	678405	442 440	999506	1.0	678900	443	321100	04769	99886	16
45	681043	437	999500	1.0	681544	442 438	318456	04798	99885	15
46	683665	434	999493	1.0 1.0	684172	435	315828	04827	99883	14
47 48	686272	432	999487	1.0	6:6784	438	313216	04856	00821	13 12
49	688863 691438	429	999481 999475	1.0	689381 691963	430	310619 308037	04885 04914	99879	11
50	693998	427	999478	1.0	694529	428	305471	04943	99878	10
51	8.696543	424 422	9.999463	1.0	8.697081	425	11.302919	04972	99876	9
52	699073	419	999456	1.1	699617	423 420	800383	05001	99875	8
53	701589	417	999450	1.1	702139	418	297861	05030		7
54 55	704090 706577	414	999443	1.1	704246	415	295354	05059		6
56	709049	412	999437 999431	1 1	707140 709618	413	292860 290382	05088 05117	99860	4
57	711507	410	999424	1.1	702083	411	287917	05146	99867	3
58	713952	407 405	999418	1.1	714534	408	285465	05175	99866	2
59	716383	403	999411	1.1 1.1 1.1	716972	406 404	283028	05205	99864	1
60	718800	400	999404	1.1	719396	****	280604	05234		0
	Cosme.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	7
				. 8	37 Degrees.					

L

2	4	L	og. Sines a	nd Ta	ngents. (3	P) N	atural Sines.	. TABLE 1	i,
	Sine.	D. 10'	Cosine.	D. 10'	Tang.	D. 10'	Cotang.	N. sine. N. cos.	1
0	8.718800	401	9.999404		3.719396	400	11.280604	05234 99863	60
1	721204	401 398	999398	1.1	721806	402 399	278194	05263 99861	59
2	723595	396	999391	1.1	724204	397	275796	05292 99860	
3 4	725972	894	999384	1.1	726588	395	273412	05321 99858	
5	728337 730388	392	999378 999371	1.1	728959 731317	393	271041 268683	05350 99857 05379 99855	56 55
6	733027	390	999364	1.1	733663	391	266337	05408 99854	
7	735354	388	999357	1.2	735996	389	264004	05437 99852	
8	737667	386 384	999350	1.2	738317	387 385	261683	05466 99851	5₽
9	739969	382	999343	1.2	740626	383	259374	05495 99849	51
10	742259	380	999336	1.2	742922	381	257078	05524 99847	50
11 12	8.744536 746802	378	9.999329 999322	1.2	8.745207 747479	879	11.254793 252521	05553 99846 05582 99844	49 48
13	749055	376	999315	1.2	749740	377	250260	05611 99842	47
14	751297	374	999308	1.2	751989	375	248011	05640 99841	46
15	753528	372	999301	1.2	754227	373	245773	05669 99839	45
16	755747	370 368	999294	$1.2 \\ 1.2$	756453	371 369	243547	05698 99838	44
17	757935	366	999286	1.2	758668	367	241332	05727 99836	
18 19	760151	364	999279	1.2	760872	365	239128	05756 99834	42
20	762337 764511	362	999272	1.2	763065 765246	364	236935 234754	05785 99833 05814 99831	41 40
21	8.766675	361	999265 9.999257	1.2	8.767417	362	11.232583	05844 99829	39
22	768828	359	999250	1.2	769578	360	230422	05873 99827	38
23	770970	357	999242	1.3	771727	358	228273	05902 99826	37
24	773101	355	999235	1.3	773866	356	226134	05931 99824	36
25	775223	353 352	999227	1.3 1.3	775995	355 353	224005	05960 99822	35
26	777333	350	999220	1.3	778114	351	221886	05989 99821	84
27 28	779434	348	999212	1.3	780222	350	219778	06018 99819	33
29	781524	347	999205	1.3	782320	348	217680	06047 99817	32
80	783605 785675	845	999197 999189	1.3	784408 786486	346	215592 213514	06076 99815 06105 99813	31
31	8.787736	343	9.999181	1.3	8.788554	345	11.211446	06134 99812	29
32	789787	342	999174	1.3	790613	343	209387	06163 99810	28
33	791828	340 339	999166	1.3	792662	341 340	207338	06192 99808	27
34	793859	337	999158	1.3 1.8	794701	338	205299	06221 99806	26
35	795881	335	999150	1.3	796731	837	203269	06250 99804	25
36 37	797894	334	999142	1.3	798752	335	201248	06279 99803	24
38	799897 801892	832	999134 999126	1.3	800763 802765	334	199237 197235	06308 99801 06337 99799	23 22
39	803876	331	999118	1.3	804858	332	195242	06366 99797	21
40	805852	329	999110	1.3	806742	331	193258	06395 99795	20
	8.807819	328	9.999102	1.3	8.808717	829	11.191283	05424 99793	19
42	809777	326 325	999094	1.3 1.4	810683	328 326	189317	06453 99792	18
43	811726	323	999086	1.4	812641	325	187359	06482 99790	17
44 45	813667	322	999077	1.4	814589	323	185411	06511 99788	16
46	815599 817522	320	999069	1.4	816529	322	183471 181539	06540 99786 06569 99784	15
47	817022	319	999061 999053	1.4	818461 820384	320	179616	06598 99782	14
48	821343	318	999044	1.4	822298	319	177702	06627 99780	12
49	823240	316	999036	1.4	824205	318	175795	06656 99778	ii
50	825130	315	999027	1.4	826103	316	173897	06685 99776	10
51	8.827011	313 312	9.999019	1.4	8.827992	315 314	11.172008	06714 99774	9
52	828884	311	999010	1.4	829874	312	170126	06743 99772	8
53 54	830749	309	999002	1.4	831748	311	168252	06773 99770	7
55	832607 834456	308	998993	1.4	833613	310	166387 164529	06802 99768 06831 99766	6
56	834466	307	998984 998976	1.4	835471 837321	308	164529	06860 99764	4
57	838130	306	998967	1.4	839163	307	160837	06889 99762	3
58	839956	304	998958	1.5	840998	306	159002	06918 99760	2
59	841774	303	998950	1.5	842825	304	157175	06947 99758	1
60	843585	302	998941	1.5	844644	303	155356	06976 99756	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. V.sine.	7
			L	8	6 Degrees.				

86 Degrees.

7	ABLE II.	Lo	og, Bines ar	id Tai	ngents. (4°	n Na	tural Sines.		2	5
,,,,,	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	V. cos.	
0	8.843585	300	9.998941	1.5	8.844644	802	11.155356	06976	9756	60
1	845387	299	998932	1.5	846455	301	153545	07005		59
2	847183	298	998923	1.5	848260	299	151740	07034		58
8	848971 850751	297	998914 998905	1.5	850057 851846	298	149943 148154	07063		57
4 5	852525	295	998896	1.5	853628	297	146372	07092 9 07121 9	0746	56 55
6	854291	294	998887	1.5	855403	298	144597	07150	9744	54
7	856049	293 292	998878	1.5	857171	295	142829	07179		53
В	857801	291	998869	1.5	858932	293 292	141068	07208	9740	52
9	859546	290	998860	1.5	860686	291	139314	07237	99738	51
10 11	861283 8.863014	288	998851 9.998841	1.5	862438 8.864178	290	187567 11.135827	07266	19786	50 49
12	864738	287	998832	1.5	865906	28 9	184094	07295 07324	19781	48
13	866455	286	996823	1.5	867632	288	182368	07353	9729	47
14	868165	285 284	998813	1.6	869351	287 285	180649	07382	99727	46
15	869868	283	998804	1.6 1.6	871064	284	128936	07411	99725	45
16	871565	282	998795	1.6	872770	283	127230	07440	9728	44
17	873255 874938	281	998785 998776	1.6	874469 876162	282	125531 128838	07469	99721	43 42
18 19	876615	279	998766	1.6	877849	281	122151	07498 07527	99716	41
20	878285	279	998757	1.6	879529	280	120471	07556	99714	40
	8.879949	277 276	9.998747	1.6 1.6	8.881202	279 278	11.118798	07585	99712	39
22	881607	275	998738	1.6	882869	277	117131	07614	99710	38
23	883258	274	998728	1.6	884530	276	115470	07643	29708	37
24	884903	273	998718	1.6	886185	275	113815	07672	99700	36 35
25 26	886542 888174	272	998708 998699	1.6	887833 889476	274	112167 110524	07701 9 07730 9		34
27	889801	271	998689	1.6	891112	273	108888	07759	9699	83
28	891421	270 269	998679	1.6	892742	272 271	107258	07788		32
29	893035	268	998669	$1.6 \\ 1.7$	894366	270	105634	07817	9694	31
30	894643	267	998659	1.7	895984	269	104016	07846	99692	30
31	8.896246	266	9.998649	1.7	8.897596 899203	268	11.102404	07875	19689	29 28
82 33	897842 899432	265	998639 998629	1.7	900803	267	100797 099197	07904 9		27
34	901017	264	998619	1.7	902398	266	097602	07962	9683	26
35	902596	263 262	998609	1.7	903987	265 264	096013	07991	39680	25
36	904169	261	998599	1.7	905570	263	094430	08020		24
87	905736	260	998589	1.7	907147	262	092853	08049	99676	23
38 39	907297 908853	259	998578	1.7	908719 910285	261	091281 089715	08078		22 21
40	910404	258	998568 998558	1.7	911846	260	088154	08107 08136	99668	20
41	8.911949	257	9.998548	1.7	8.913401	259	11.086599	08165	99666	19
42	913488	257 256	998537	1.7 1.7 1.7	914951	258 257	085049	08194	99664	18
43	915022	255	998527	1.7	916495	256	083505	68223		17
44	916559	254	998516	1.8	918034	256	081966	08252		16 15
45 46	918073 919591	253	998506 998495	1.8	919568 921096	255	080432 078904	08281 08310		14
47	921103	252	998485	1.8	922619	254	077381	08339		13
48	922610	251	998474	1.8	924136	253	075864	08368	99649	12
49	924112	250 249	998464	1.8	925649	252 251	074351	08397	99647	11
50	925609	249	998453	1 2	927156	250	072844	08426	99644	10
	8.927100	248	9.998442	1.8	8.928658	249	11.071342	08455		8
52 53	928587 930038	247	998431 998421	1.8	930155 931647	249	069845 068353	08484 08513		7
54	931544	246	998410	1.8	933134	248	066866	08542		6
55	933015	245 044	998399	1.8	934616	247 246	065384	08571	9632	5
56	934481	244 243	£98388	1.8	936093	246	063907	08600	99630	4
57	935942	243	998377	1.8	937565	244	062435	08629	99 627	3
58	937398	242	998366	1.8	989032	244	060968	08658		2
69 60	938850 94v296	241	998355 998344	1.8	940494 941952	243	059506 058048	08687 08716		ō
-00	Cosine.		Sine.		Cotang.			-	N.sine.	
	CONTRO.		i ome.	-			Tang.	. 11, 608.[vibile,	
L	-		-	- 8	Degrees.			-		

2	6	L	og. Sines a	nd Ts	ingents. (5	P) N	atural Sines.	. TABLE I	1.
7	Sine.	D. 10'	Cosine.	D. 10'	Tang.	D. 10	Cotang.	N. sine. N. cos.	<u> </u>
0	8.940296	240	9.998344	1.9	8.941952	242	11.058048	08716 99619	60
1	941738	239	998333	1.9	943404	241	056596	08745 99617	59
2 8	943174 944606	289	998322 998311	1.9	944852 946295	240	055148 053705	08774 99614 08803 99612	58 57
4	946034	238	998300	1.9	940295	240	052266	08831 99609	56
5	947456	237 236	998289	1.9	949168	289 238	050832	08860 99607	55
6	948874	235	998277	1.9	950597	237	049403	08889 99604	54
7	950287	235	998266	1.9	952021	237	047979	08918 99602	53
8	951696 953100	234	998255 998243	1.9	953441 954856	236	046559 045144	08947 99599 08976 99596	52 51
10	954499	233	998232	1.9	956267	235	043733	09005 99594	50
îĭ	8.955894	232 232	9.998220	1.9	8.957674	234 234	11.042326	09034 99591	49
12	957284	231	998209	1.9	959075	233	040925	09063 99588	48
13	958670	230	998197	1.9	960473	232	039527	09092 99586	47
14 15	960052 961429	229	998186 998174	1.9	961866 963255	231	038134 036745	09121 99583 09150 99580	46
16	962801	229	998163	1.9	964639	231	035361	09179 99578	44
17	964170	228 227	998151	1.9 1.9	966019	230 229	033981	09208 99575	43
18	965534	227	998139	2.0	967394	229	032606	09237 99572	42
19	966893	226	998128	2.0	968766	228	031234	09266 99570	41 40
20 21	968249 8.969600	225	998116 9.998104	2.0	970133 8.971496	227	029867 11.028504	09295 99567 09324 99564	39
22	970947	224	998092	20.0	972855	226	027145	09353 99562	38
23	972289	224 223	998080	$\frac{2.0}{2.0}$	974209	226 225	025791	09382 99559	37
24	973628	222	998068	2.0	975560	224	024440	09411 99556	36
25	974962	222	998056	2.0	976906	224	023094	09440 99553	35
26 27	976293 977619	221	998044 998032	2.0	978248 979586	223	021752 020414	09469 99551 09498 99548	34 33
28	978941	220	998020	2.0	980921	222	019079	09527 99545	32
29	980259	220	998008	2.0	982251	222	017749	09556 99542	31
30	981573	219 218	997996	$\frac{2.0}{2.0}$	983577	221 220	016423		30
31	8.982883	218	9.997984	2.0	8.984899	220	11.015101	09614 99537	29
82 33	984189 985491	217	997972 997959	2.0	986217 987532	219	013783 012468		28 27
34	986789	216	997947	2.0	988842	218	011158		26
35	988083	216	997935	2.0	990149	218	009851		25
36	989374	215 214	997922	$\frac{2.1}{2.1}$	991451	217 216	008549		24
37	990660	214	997910	2.1	992750	216	007250		23 22
38 39	991943 993222	213	997897 997885	2.1	994045 995337	215	005955 004663	000100011	21
40	994497	212	997872	2.1	996624	215	003376		20
	8.995768	212	9.997860	2.1	8.997908	214	11.002092		19
42	997036	211 211	997847	$\frac{2.1}{2.1}$	999188	213 213	000812		18
43	998299	210	997835	2.1	9.000465	212	10.999535		17 16
44 45	999560 9.000816	209	997822 997809	2.1	001738 003007	211	998262 996993	09990 99500 10019 99497	15
46	002069	209	997797	2.1	004272	211	995728	10048 99494	14
47	003318	208 208	997784	$\frac{2.1}{2.1}$	005534	210 210	994466	10077 99491	13
48	004563	207	997771	$\frac{2.1}{2.1}$	006792	209	993208	10100 00 100	12
49 50	005805	206	997758	2.1	008047	208	991953		11 10
	007044 9.008278	206	997745 9.997732	2.1	009298 9.010546	208	990702 10.989454	10164 99482 10192 99479	9
52	009510	205	997719	٠.١	011790	207	988210	10221 99476	8
53	010737	205 204	997706	$\frac{2.1}{2.1}$	013031	207 206	686969	10250 99473	7
54	011962	203	997693	2.1	014268	206	985732	10279 99470	6
55	013182	203	997680	2.2	015502	205	984498	10308 99467	5 4
56 57	014400 015613	202	997667 997654	2.2	016732 017959	204	983268 983041	10337 99464 10366 99461	3
58	016824	202	997641	2.2	019183	204	980817	10395 99458	2
59	018031	201 201	997628	2.2	020403	203 203	979597	10424 99455	1
60	019235	201	997614	2.2	021620	200	978380	10453 99452	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	_
į .				8	4 Degrees.				- 11

7	PABLE II.	1	og. Sines s	nd Ta	ngents. (6	°) Na	tural Sines.		2	7
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	9.019235		9.997614		9.021620		10.978380	10453	99452	60
1	020435	200 199	997601	2.2	022834	202	977166	10482		59
2	021632	199	997588	2.2	024044	201	975956	10511		58
3	022825	198	997574	2.2	025251	201	974749	10540		57
4 5	024016 025203	198	997561	2.2	026455 027655	200	973545 972345	10569 10597		56 55
6	026386	197	997534	2.2	028852	199	971148	10626		54
7	027567	197	997520	$\frac{2.3}{2.3}$	030046	199	969954	10655		53
8	028744	196 196	997507	2.3	031237	198 198	968763	10684		52
9	029918	195	997493	2.3	032425	197	967575	10713		51
10	031089 9.032257	195	997480	2.3	033609	197	966891 10.965209	10742		50
11 12	033421	194	9.997466	2.3	9.034791 035969	196	964031	10771 10800		49 48
13	034582	194	997439	2.3	037144	196	962856	10829		47
14	035741	193 192	997425	2.3	038316	195 195	961684	10858		46
15	036896	192	997411	2.3	039485	194	960515	10887		45
16	038048	191	997397	2.3	040651	194	959349	10916		44
17	039197 040342	191	997383 997369	2.3	041813 042973	193	958187 957027	10945		43 42
18 19	040342	190	997355	2.3	042973	193	957027	10973 11002	99393 99390	41
20	042625	190	997341	2.3	045284	192	954716	11031	99390	40
21	9.043762	189 189	9.997327	2.3	9.046434	192 191	10.953566	11060	99386	39
22	044895	180	997313	2.4	047582	191	952418	11089	99383	38
23	046026	188	997299	2.4	048727	190	951273	11118	99380	37
24 25	047154 048279	187	997285 997271	2.4	049869 051008	190	950131 948992	11147 11176	99377	36 35
26	049400	187	997257	$2 \cdot 4$	052144	189	947856	11205		34
27	050519	186	997242	2.4	053277	189	946723	11234		33
28	051635	186 185	997228	2.4	054407	188 188	945593	11263		32
29	052749	185	997214	2.4	055535	187	944465	11291		31
30	053859	184	997199	2.4	056659	187	943341	11320		30
31 32	9.054966 056071	184	9.997185	2.4	9.057781 058900	186	10.942219 941100	11349 11378		29 28
33	057172	184	997156	2.4	060016	186	939984	11407		27
34	058271	183 183	997141	2.4	061130	185 185	938870	11436		26
35	059367	182	997127	$\frac{2.4}{2.4}$	062240	185	937760	11465	99341	25
36	060460	182	997112	2.4	063348	184	936652	11494		24
37 38	061551	181	997098 997083	2.4	064453 065556	184	935547 934444	11523		23
39	063724	181	997068	2.5	066655	183	933345	11552 11580	99327	21
40	064806	180 180	997053	2.5	067752	183 182	932248	11609		20
41	9.065885	179	9.997039	2.5	9.068846	182	10.931154	11638	99320	19
42	066962	179	997024	2.5	069038	181	930062	11667	99317	18
43	068036	179	997009	2.5	071027	181	928973	11696		17
44	069107 070176	178	996994	2.5	072113	181	927887 926803	11725 11754		16 15
46	071242	178	996964	2.5	074278	180	925722	11783		14
47	072306	177	996949	2·5 2·5	075356	180 179	924644	11812		13
48	073366	176	996934	2.5	076432	179	923568	11840	99297	12
49	074424	176	996919	2.5	077505	178	922495	11869		11
50 51	9.076533	175	996904	2.5	078576 9.079644	178	921424 10.920356	11898		10
52	077583	175	996874	2.5	080710	178	919290	11927 11956		8
53	078631	175	996868	2.5	081773	177 177	918227	11985		7
54	079676	174 174	996843	2.5	082833	176	917167	12014		6
55	080719	173	996828	2.5	083891	176	916109	12043	99272	5
56 57	081759	173	996812	2.6	084947	175	915053	12071		4
58	082797 083832	172	996797 996782	2.6	086000 087050	175	914000 912950	12100 12129		3 2
59	084864	172	996766	2.6	088098	175	911902	12129		1
60	085894	172	996751	2.6	089144	174	910856	12187		ô
-	Cosine.		Sine.		Cotang.		Tang.	N. cos.		7
		•	·		83 Degrees.		·			-
IL		_			2-5-5001					- 1

2	8	L	og. Sines a	nd Ta	ngents. (7º	o) Na	tural Sines.	TABLE I	t.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10'	Cotang.	N. sine. N. cos.	
0	9.085894	171	9.996751	2.6	9.089144	174	10.910856	12187 99255	60
1	086922	171	996735	2.6	090187	173	909813	12216 99251	59
2	087947	170 .	996720	2.6	091228	173	908772	12245 99248	58
8 4	088970 089990	170	996704 996688	2.6	092266 093302	173	907734 906698	12274 99244 12302 99240	57 56
5	091008	170	996673	2.6	094336	172	905664	12331 99237	55
6	092024	169 169	996657	2.6 2.6	095367	172	904633	12360 99283	54
7	093037	168	996641	2.6	096395	171	903605	12389 99230	53
8	094047	168	996625	2.6	097422	171	902578	12418 99226	52 51
9	095056 096062	168	996610 996594	2.6	098446 099468	170	901554 900532	12447 99222 12476 99219	50
10 11	9.097065	167	9.996578	2.6	9.100487	170	10.899513	12504 99215	49
12	098066	167 166	996562	2.7 2.7	101504	169	898496	12533 99211	48
13	099065	166	996546	2.7	102519	169	897481	12562 99208	47
14	100062	166	996530	2.7	103532	168	896468	12591 99204	46 45
15	101056 102048	165	996514 996498	2.7	104542 105550	168	895458 894450	12620 99200 12649 99197	44
16 17	103037	165	996482	2.7	106556	168	893444	12678 99193	43
18	104025	164	996465	2.7 2.7	107559	167 167	892441	12706 99189	42
19	105010	164 164	996449	2.7	108560	166	891440	12735 99186	41
20	105992	168	996433	2.7	109559	166	890441	12764 99182	40
21 22	9.106973 107951	163	9.996417 996400	2.7	9.110556 111551	166	10.889444 888449	12793 99178 12822 99175	39 38
23	108927	163	996384	2.7	112543	165	887457	12851 99171	37
24	109901	162	996368	2.7	113533	165 165	886467	12880 99167	36
25	110873	162 162	996351	2.7 2.7	114521	164	885479	12908 99163	35
26	111842	161	996335	2.7	115507	164	884493	12937 99160	34 33
27	112809	161	996318	2.7	116491 117472	164	883509 882528	12966 99156 12995 99152	32
28 29	113774 114787	160	996302 996285	2.8	118452	163	881548	13024 99148	31
80	115698	160	996269	2.8	119429	163 162	880571	13053 99144	30
81	9.116656	160 159	9.996252	2.8 2.8	9.120404	162	10.879596	13081 99141	29
82	117613	159	996235	2.8	121377	162	878623	13110 99137	28
33 34	118567	159	996219 996202	2.8	122348 123317	161	877652 876683	13139 99133 13168 99129	27 26
85	119519 120469	158	996185	2.8	124284	161	875716	13197 99125	25
36	121417	158	996168	2.8 2.8	125249	161 160	874751	13226 99122	24
37	122362	158 157	996151	2.8	126211	160	873789	13254 99118	23
38	123306	157	996134	2.8	127172	160	872828	13283 99114	22 21
39 40	124248 125187	157	996117	2.8	128130 129087	159	871870 870913	13312 99110 13341 99106	20
41	9.126125	156	9.996083	2.8	9.130041	159	10.869959	13370 99102	19
42	127060	156	996066	2.9	130994	159 158	869006	13399 99098	18
43	127993	156 155	996049	2.9	131944	158	868056	13427 99094	17
44	128925	155	996032	2.9	182893	158	867107	13456 99091 13485 99087	16 15
45 46	129854 130781	154	996015 995998	2.9	183839 134784	157	866161 865216	13514 99083	14
47	131706	154	995980	2.9	135726	157	864274	13543 99079	13
48	132630	154	995963	2.9	136667	157 156	863333	13572 99075	12
49	133551	153 153	995946	2.9	137605	156	862395	13600 99071	11
50	184470	153	995928	2.9	138542	156	861458	13629 99067	10
51 52	9.135387	152	9.995911 995894	2.9	9.139476 140409	155	10.860524 859591	13658 99063 13687 99059	9 8
53	136303 137216	152	995876	2.9	141340	155	858660	13716 99055	7
54	138128	152	995859	2.9	142269	155 154	857731	13744 99051	6
55	139037	152 151	995841	2.9	143196	-154	856804	13773 99047	5
56	139944	151	995823	2.9	144121	154	855879	13802 99043	4 3
57	140850	151	995806	2.9	145044 145966	153	854956 854034	13831 99039 13860 99035	2
58 59	141754 142655	150	995788 995771	2.9	146885	153	853115	13889 99031	ĩ
60	143555	150	995753	2.9	147803	153	852197	13917 99027	0
ستند	Cosine.		Sine.		Cotang.		Tang.	N. cos N.sine.	1
-			***************************************	5	2 Degrees.				_
L									نسب

		ABLE II.		og. Sines a	nd Ta	ngents. (8	°) Na	tural Sines.	· 2	9
1 144453 160 996797 3.0 149632 152 860368 13976 99016 58 3 140243 149 995691 3.0 140632 152 849456 14004 99016 57 44 147136 148 995668 3.0 152863 151 846731 14004 99016 56 148915 148 995668 3.0 152863 151 846731 14009 99002 54 54 54 54 54 54 54 5	7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
1 144463 109 9967376 3.0 149639 152 1536368 1397699019 58 146943 149 995699 3.0 150644 152 849456 1440499015 57 149639 144 152 849456 1440499015 57 149639 144 152 849456 144039011 56 147 995628 3.0 155263 151 846731 1409099002 54 148 150686 147 995691 3.0 155077 150 1648526 141198998 53 151686 147 995691 3.0 155077 150 1648526 141198998 53 119 155430 147 9956573 3.0 156877 150 164852 141198998 53 119 155430 146 995537 3.0 156877 150 164852 141198998 54 119 155957 146 995691 3.0 150645 149 844022 141798990 151 155957 146 995691 3.0 150645 149 844022 141798990 151 156869 145 995648 3.1 160457 148 838633 1432998929 47 151 156869 145 995487 3.1 163123 148 838631 1432998969 47 17 158569 144 995497 3.1 164092 147 835108 1446995497 3.1 16492 147 835108 1446995497 3.1 16492 147 835108 1446995497 3.1 16492 147 835108 1446995497 3.1 16492 147 835108 144699898 42 19 163001 144 995499 3.1 16492 147 835108 1446998983 43 12 12 12 12 12 12 12 1	6	9.143555	420	9.995753	0.0	9.147803		10.852197	13917 99027	60
140543 149 995699 3.0 160544 152 648546 14038]9901 56 56 148916 148 995664 3.0 161454 152 648546 14038]9901 56 66 148916 148 995664 3.0 165263 151 846731 14090]9902 54 64 7 995673 3.0 165677 150 844022 14171]98990 51 119 153330 147 995673 3.0 165677 150 844022 14171]98990 51 119 153330 146 995537 3.0 156677 150 156651 147 156651 147 156651 147 156651 147 156651 147 156651 147 156651 148 156641 147 156651 148 156641 149 14660 142 14660 146										
14										
1489026					3.0					
6 148915 148 5996468 3.0 151699 151 846731 140909002 54 7 148902 1447 9966103 3.0 1516771 150 844923 14119 98984 52 9 1516691 147 9965610 3.0 165077 150 844923 141419 98986 50 11 9.158330 146 995517 3.0 1586771 150 844923 141205 9896 51 3.1 18 155083 146 995517 3.0 159665 149 840435 14293 98934 42 14 155967 145 9965013 3.1 160467 149 840435 14293 98963 45 16 156880 145 996427 3.1 160293 148 838637 41349 98965 45 16 156891 144 995427 3.1 16203 148 836877 44407 98967 44 17 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Table Tabl										
S	7									
9										
11 9.15839 147 9.985555 3.0 9.157775 100 10.842925 1492498978 48 149298978 48 149298978 47 159567 146 995519 3.0 159665 149 840435 149298978 47 168569 145 995464 3.1 169236 148 838683 1432998965 45 169457 147 188569 144 995497 3.1 16408 18 169457 144 995497 3.1 16408 147 836108 144798985 49 149 160116 144 995497 3.1 164608 147 836108 1446489884 41 161164 144 995497 3.1 166665 147 147 1836108 148 995390 3.1 166762 146 146460 142 995297 3.1 166665 146			147		3.0					
15										
18									14263 98978	
14 100301 145 995464 3.1 161347 148 838663 14378 99966 46 17 185669 144 995464 3.1 162236 148 8386787 144798 99961 48 18 159436 144 995409 3.1 164008 147 83621 14446 998430 3.1 164008 147 835108 14446 998434 49 995307 3.1 164008 147 835108 14446 998434 40 19160301 144 995307 3.1 166892 147 834228 14449 998540 40 147 834228 14449 99844 40 20 16164 144 995373 3.1 1667522 146 832468 145599944 39 21 163600 143 995316 3.1 17057 145 832483 1467799833 36 22 168866 141 995207 3.1 171057 145 892843 1463799933										
16										
17					3.1					
18										
19										
10									14464 98948	
19.103206		161164								
163743					3.1					
24 164600 143 996316 3.1 169284 149 830716 1466(8)98973 35 26 166307 142 995278 3.1 170157 145 829843 14637 98923 35 27 167159 142 995260 3.1 171099 145 8288101 14666 98914 33 29 168856 141 995241 3.2 177677 144 826366 14752 98906 31 30 169702 141 995203 3.2 174493 144 825501 14781 98906 31 31 9.170547 140 995166 3.2 177634 144 825501 14781 98902 30 32 171389 140 995166 3.2 177034 143 822916 14867 98893 23 34 173908 139 995107 3.2 177942 143 822916 14867 98893 22 36 174744 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
26 166307 142 995278 3.1 171039 145 8289371 14666 98919 33 39 31 171039 145 828101 14666 98911 33 171039 145 828101 14666 98914 33 171039 145 828101 14666 98914 33 171672 144 825636 14723 98906 32 173634 144 825636 14723 98906 32 173634 144 825636 14759 98906 32 177624 144 825501 14679 98906 32 177634 144 825501 14781 98902 30 140 995166 32 1776224 143 822916 14867 98889 27 34 173070 140 995127 32 177942 143 822916 14867 98889 27 36 174744 3995089 32 178792 143 821201 1494892 98871 23 1477942 143 821201 149492 98860 24 14964 98876 24 14977942										
167159	25									
27 167169 142 995241 3.1 171679 145 821723 14732398910 32 29 168856 141 995224 3.2 173634 144 826366 14752398910 32 31 9.170547 140 995165 3.2 1775362 144 825601 14761398902 30 32 171389 140 995165 3.2 1776362 144 825601 14761398902 30 34 173070 140 995166 3.2 1777044 143 822916 1483698884 26 35 173908 139 995108 3.2 177624 143 822916 1486998884 26 36 173908 139 995039 3.2 178792 143 822101 1492598880 25 37 175578 139 995032 3.2 18360 142 819492 14946498871 23 39 177242 13										
168856										
169702										
31 9.170547 141 9.995184 3.2 9.175362 144 823776 14838 98893 28 32 177084 143 822916 14838 98893 28 32 177084 143 822916 14867 98896 25 32 1775578 139 995070 3.2 180508 3.2 177942 143 822916 14867 98880 25 27 27 28 28 27 28 28 28								825501		
32 171389 140 995146 3.2 170242 143 822916 14868 98884 26 26 27 27 28 27 28 27 28 28	31							10.824638		
33 172230 140 995127 3.2 177042 143 822058 14896/98884 25 34 173070 140 995127 3.2 1777942 143 8221201 14925/98880 25 36 1734744 139 995089 3.2 179655 142 80334 14945/98876 24 37 175578 139 995070 3.2 180608 142 818640 15011/98298871 23 39 177242 138 995032 3.2 182311 142 817899 15040/98886 26 40 178072 138 995032 3.2 182311 142 81789 15040/98868 21 42 179726 138 9.99493 3.2 182311 141 816041 1806998868 21 43 180551 137 994955 3.2 185597 140 814403 151598845 17 44 181374 1									14838 98893	
185									14807 90009	
36 174744 139 995089 3.2 179655 142 820345 14964 98876 24 37 175578 139 995079 3.2 180608 142 819492 14962 98876 24 38 176411 139 995031 3.2 182011 142 819492 14982 98871 23 39 177242 138 995032 3.2 182311 41 816401 15040 98863 21 41 9.178900 138 9.99493 3.2 183907 141 816941 1806998868 20 42 179726 137 994955 3.2 184762 141 815248 15097 98854 19 44 181374 137 994955 3.2 186439 140 815261 1518498841 16 1816998865 140 812720 1652198836 15 46 183016 136 994877 3.3 <										
37 176578 139 995070 3.2 180608 142 818464 18011 98867 22 23 38 176411 139 995032 3.2 182311 141 817789 15040 98863 21 40 178072 138 995032 3.2 182911 141 816941 15040 98863 21 41 9.178900 138 9.994974 3.2 183059 141 816941 15069 98856 20 42 179726 137 994955 3.2 184762 141 81693 15097 98854 19 43 180551 137 994955 3.2 186439 140 815248 15129 98846 17 45 182196 137 994956 3.3 188120 140 812720 15219 98836 15 46 183016 136 994877 3.3 188956 139 811042 15270 98827 13 48 184661 <						179655		820345	14954 98876	
38 176411 139 995051 3.2 181300 142 816540 15041 986863 21 179726 138 995051 3.2 183059 141 816941 15069 98858 20 179726 137 994955 3.2 185597 141 10.816093 15069 98854 19 181374 1										
39 17/242 138 995032 3.2 162311 141 816764 15049 98856 20 41 9.178900 138 994974 3.2 184762 141 815248 15126 98845 15 141 181374 137 994955 3.2 185597 140 814403 15155 98845 15 141 181374 137 994956 3.2 185597 140 814403 15155 98845 17 183934 136 994876 3.3 188702 140 812720 15212 98836 15 15184 98841 16 183934 136 994877 3.3 188958 140 811820 15212 98836 15 15184 98841 16 183934 136 994877 3.3 188958 139 140 811820 15212 98836 15 15184 98841 16 186466 136 994838 3.3 189794 139 810206 15299 98823 12 187902 135 994818 3.3 191462 139 13527 98818 11 150807706 15385 98809 9 15214 188120 15214 188120 15259 18814 10 186280 136 994818 3.3 191462 139 136807706 15385 98809 9 187902 135 994779 3.3 193124 138 806676 15414 98805 8 1556 98714 1556 98714 1566 191130 134 994700 8.3 194800 137 138 134 994600 3.3 198048 137 800570 15529 98787 2 158 1992734 138 994660 3.3 198084 136 137 800570 15529 98787 2 158 1992734 138 994660 3.3 198084 136 136 136 137 136 136 137 138					3.2					
1			138		3.2					
42 179726 137 994974 3.2 184752 141 815248 15126 98849 18 43 180551 137 994955 3.2 185597 140 814403 15155 98845 17 44 181374 137 994916 3.2 187280 140 812720 15212 98836 15 46 183016 137 994876 3.3 188120 140 811880 15212 98836 15 47 183834 136 994877 3.3 188958 139 81040 15212 98836 15 48 184651 136 994877 3.3 189794 39 81040 15270 98827 13 49 185466 136 994838 3.3 190629 139 809871 15327 98818 11 50 186280 135 994759 3.3 193124 138 806876 15414 98805 8 51 187993 135 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
43 180551 137 994955 3.2 185597 141 814403 15155]98845 17 44 181374 137 994935 3.2 186439 140 813561 15164]98841 16 45 182196 137 99486 3.3 188120 140 811800 15212]98836 15 46 183016 136 994857 3.3 188120 140 811800 15241]98832 14 48 184661 136 994857 3.3 188956 139 811042 15270]98827 13 49 185466 136 994838 3.3 190629 139 809371 15327]98818 11 50 186280 135 994789 3.3 191629 139 808578 15356]9814 10 51 1.87092 135 994779 3.3 193124 138 806576 1541498806 8 52 187903 135 <td></td> <td></td> <td></td> <td>994974</td> <td></td> <td>184752</td> <td></td> <td>815248</td> <td>15126 98849</td> <td>18</td>				994974		184752		815248	15126 98849	18
44 181374 137 994936 3.2 1884393 140 813061 181829,9836 15 46 183016 136 994896 3.3 188120 140 81180 15241 98832 14 811880 15241 98832 14 811880 15241 98832 14 811880 15241 98832 14 811942 15270 18521 98832 14 811942 15270 18521 98832 14 811942 15270 18527 132 1887181 15241 98832 14 811942 18920 18020 <	43									
46 183016 137 99480 3.3 18120 140 812120 16212 98320 10 47 183334 136 994877 3.3 188120 140 811042 15270 98827 13 48 184651 136 994877 3.3 188958 139 81020 15299 98823 12 49 185466 136 994818 3.3 190629 139 809871 15327 98818 11 50 186280 135 994818 3.3 191462 139 80858 15359 9814 10 52 187903 135 994779 3.3 193124 138 806576 15414 98805 8 53 188712 135 994779 3.3 193953 138 806047 15442 98800 7 54 189519 134 994719 3.3 194780 138 805220 15471 98796 6 55 190325 134					3.2		140			
47 18934 136 994877 3.3 188958 140 811042 15270 98827 13 48 184651 136 994837 3.3 189794 139 810206 15299 98823 12 49 185466 136 994818 3.3 191629 139 809371 15327 98818 11 50 186280 135 994789 3.3 191462 139 808538 15356 98814 10 51 187903 135 994779 3.3 193124 138 806770 15356 98819 1 52 187903 135 994779 3.3 193124 138 806976 15444 98805 9 53 188712 135 994759 3.3 193953 138 806047 15442 98800 7 54 189519 134 994719 3.3 195606 138 805220			137		3.3					
48 184651 136 994857 3.3 189794 139 810206 15299 98823 12 49 186466 136 994818 3.3 190629 139 809371 15327 98818 11 50 186280 135 994818 3.3 191462 139 808588 15356 98814 10 51 9.187902 135 9.994798 3.3 193124 138 806876 15385 98809 9 52 187903 135 994779 3.3 193124 138 806876 15414 98805 8 54 189519 134 994719 3.3 194780 138 806220 15471 98796 6 55 190325 134 994709 3.3 195606 137 804394 15500 98791 5 56 19130 134 994660 3.3 197253 187 802747 15559 98782 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
49 186480 136 594838 3.3 191062 139 808571 1527/95814 10 50 186280 135 994798 3.3 919162 139 808581 15356/98814 10 51 9.187902 135 994779 3.3 193124 138 806876 15414/98805 8 53 188712 135 994759 3.3 193953 138 806976 15442/98800 7 54 189519 134 994719 3.3 195606 138 805220 15471/98796 6 55 19130 134 994709 3.3 195606 137 803570 15509/98791 5 56 191130 134 994680 3.3 197253 137 803570 15529/98782 3 58 192734 133 994640 3.3 198074 137 801926 15566/98778 2 59 193534 133 994640 3.3 198894 136 801106 15615/98773 1				994857		189794		810206	15299 98823	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
51 187903 135 994779 3.3 193124 138 806876 1544 98800 7 53 188712 135 994759 3.3 193124 138 806976 1544 98800 7 54 189519 135 994739 3.3 194780 138 805220 15471 98796 6 55 199324 134 994719 3.3 195606 137 803570 15529 98787 4 56 191333 134 994660 3.3 196430 137 803570 15529 98787 4 58 192734 133 994640 3.3 19894 137 8092747 15566 98778 2 59 198534 133 994640 3.3 198894 136 801106 15615 98773 1					8.3		139			
63 186712 135 994759 8.3 193953 138 806047 15442 98800 7 54 189519 134 994719 3.3 194780 138 80520 15471 98796 6 56 191130 134 994709 8.3 196430 137 803570 15529 98787 4 57 191933 134 994680 3.3 196430 137 803570 15529 98787 4 58 192734 134 994660 3.3 198074 137 801926 15566 98778 2 59 198534 133 994640 3.3 198894 136 801106 15665 98773 1			135							
$ \begin{bmatrix} 54 & 189519 & 134 & 994739 & 3.3 & 194780 & 138 & 805220 & 15471 98796 & 6\\ 55 & 190325 & 134 & 994709 & 3.3 & 195606 & 137 & 804394 & 15500 98791 & 5\\ 56 & 191130 & 134 & 994680 & 3.3 & 196430 & 137 & 803570 & 15529 98787 & 4\\ 57 & 191933 & 134 & 994680 & 3.3 & 198274 & 137 & 802747 & 15529 98782 & 3\\ 58 & 192734 & 133 & 994640 & 3.3 & 198894 & 137 & 801926 & 15566 98778 & 2\\ 59 & 193534 & 133 & 994640 & 3.3 & 198894 & 136 & 801106 & 15615 98773 & 1\\ \end{bmatrix} $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	189519		994739		194780		805220	15471 98796	6
56 191130 134 994680 8.3 196430 137 803070 1552998787 4 57 191933 134 994680 3.3 197253 137 802747 15557998787 4 58 192734 133 994640 3.3 198074 137 801926 1556698778 2 59 198534 133 994640 3.3 198894 136 801106 1561598773 1										
58 192734 134 994660 3.3 198074 137 801926 15586 98778 2 59 198534 133 994640 3.3 198894 136 801106 15615 98773 1					8.3		137			
59 193534 133 994640 3.3 198894 136 801106 15615 98773 1										
1 00 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	60	194332	183	994620	8.3	199713	130	800287	15643 98769	Ō
Cosine. Sine. Cotang. Tang. N. cos. N. sine.		Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	二

81 Degrees.

30 Log. Sines and Tangents. (9°) Natural Sines. TABLE IL.										
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10'	Cotang.	N. sine. N. cos.		
0	9.194332		9.994620		9.199713		10.800287	15643 98769	60	
ĭ	195129	133 133	994600	8.3 3.3	200529	136 136	799471	15672 98764	59	
2	195925	132	994580	3.3	201345	136	798655	15701 98760	58	
3	196719	132	994560	3,4	202159	135	797841	15730 98755	57	
4	197511 198302	132	994540 994519	3.4	202971 203782	135	797029 796218	15758 98751 15787 98746	56 55	
5 6	199091	132	994499	3.4	204592	135	795408	15816 98741	54	
7	199879	131	994479	3.4	205400	135	794600	15845 98737	53	
8	200666	131 131	994459	3.4	206207	134 134	793793	15873 98732	52	
9	201451	131	994438	3.4	207013	134	792987	15902 98728	51	
10	202234	130	994418	3.4	207817	134	792183	15931 98723	50	
11	9.203017 203797	130	9.994397	3.4	9.208619 209420	133	10.791381 790580	15959 98718 15988 98714	49 48	
12 13	203797	130	994357	3.4	210220	133	789780	16017 98709	47	
14	205354	130	994336	3.4	211018	133 133	788982	16046 98704	46	
15	206131	129 129	994316	3.4	211815	133	788185	16074 98700	45	
16	206906	129	994295	3.4	212611	132	787389	16103 98695	44	
17	207679	129	994274	3.5	213405	132	786595	16132 98690	43	
18 19	208452 209222	128	994254 994233	3.5	214198 214989	132	785802 735011	16160 98686 16189 98681	42 41	
20	209992	128	994212	3.5	215780	132	784220	16218 98676	40	
21	9.210760	128 128	9.994191	3.5	9.216568	131 131	10.783432	16246 98671	39	
22	211526	128	994171	3.5	217356	131	782644	16275 98667	38	
23	212291	127	994150	3.5	218142	131	781858	16304 98662	37	
24	213055	127	994129	3.5	218926	130	781074	16333 98657	36	
25	213818	127	994108 994087	3.5	219710	130	780290 779508	16361 98652	35 34	
26 27	214579 215338	127	994066	3.5	220492 221272	130	778728	16390 98648 16419 98643	33	
28	216097	126	994045	3.5	222052	130	777948	16447 98638	32	
29	216854	126 126	994024	3.5	222830	130 129	777170	16476 98633	31	
30	217609	126	994003	3.5	223606	129	776394	16505 98629	30	
31	9.218363	125	9.993981	8.5	9.224382	129	10.775618	16533 98624	29	
32	219116	125	993960 993939	3.5	225156	129	774844 774071	16562 98619	28 27	
33 34	219868 220618	125	993918	3.5	225929 226700	129	773300	16591 98614 16620 98609	26	
35	221367	125	993896	3.5	227471	128	772529	16648 98604	25	
86	222115	125 124	993875	3.6 3.6	228239	128 128	771761	16677 98600	24	
37	222861	124	993854	3.6	229007	128	770993	16706 98595	23	
38	223606	124	993832	3.6	229773	127	770227	16734 98590	22	
39	224349	124	993811 993789	3.6	230539	127	769461	16763 98585	21	
40 41	225092 9,225833	123	9.993768	3.6	9.232065	127	768698 10.767935	16792 98580 16820 98575	20 19	
42	226573	128	993746	3.6	232826	127	767174	16849 98570	18	
43	227311	123 123	993725	3.6 3.6	233586	127 126	766414	16878 98565	17	
44	228048	123	993703	3.6	234345	126	765655	16906 98561	16	
45	228784	122	993681	3.6	235103	126	764897	16935 98556	15	
46	229518	122	993660 993638	3.6	235859 236614	126	764141 763386	16964 98551 16992 98546	14 13	
48	230252 230984	122	993616	3.6	237368	126	762632	17021 98541	12	
49	231714	122	993594	3.6	238120	125	761880	17050 98536	11	
50	232444	122	993572	3.7 3.7	238872	125 125	761128	17078 98531	10	
51	9.233172	121 121	9.993550	3.7	9.239622	125	10.760378	17107 98526	9	
52	233899	121	994528	3.7	240371	125	759629	17136 98521	8	
53 54	234625	121	993506 993484	3.7	241118	124	758882	17164 98516	7 6	
55	235349 236073	120	993462	3.7	241865 242610	124	758135 757390	17193 98511 17222 98506	5	
56	236795	120	993440	3.7	243354	124	756646	17250 98501	4	
57	237515	120 120	993418	3.7	244097	124 124	755903	17279 98496	3	
5 8	238235	120	993396	3.7	244839	123	755161	17308 98491	2	
59	238953	119	993374	3.7	245579	123	754421	17336 98486	1	
60	239670		993351		246319		753681	17365 98481	0	
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.		
ll .				8	O Degrees.				- 1	

7	ABLE II.	I	og. Sines s	and Ta	ngents. (1	0°) N	atural Sines		31
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
	9.239670	119	9.993351	3.7	9.246319	123	10.753681	17365 98481	60
1	240386	119	993329	3.7	247057	123	752943	17393 98476	59
3	241101	119	993307	3.7	247794	123	752206	17422 98471	58 57
4	241814 242526	119	993285 993262	3.7	248530 249264	122	751470 750736	17451 98466 17479 98461	56
5	243237	118	993240	3.7	249998	122	750002	17508 98455	55
16	243947	118 118	993217	3.7 3.8	250730	122 122	749270	17537 98450	54
7	244656	118	993195	3.8	251461	122	748539	17565 98445	53 52
8	245363 246069	118	993172 993149	3.8	252191 252920	121	747809 747080	17594 98440 17623 98435	51
10	246775	117	993127	3.8	253648	121	746352	17651 98430	50
11	9.247478	117	9.993104	3.8 3.8	9.254374	121 121	10.745626	17680 98425	49
12	248181	117	993081	3.8	255100	121	744900	17708 98420	48
13 14	248883 249583	117	993059 993036	3.8	255824 256547	120	744176 743453	17737 98414 17766 98409	47 46
15	250282	116	993013	8.8	257269	120	742781	17794 98404	45
16	250980	116	992990	3.8	257990	120	742010	17823 98399	44
17	251677	116 116	992967	3.8 3.8	258710	120 120	741290	17852 98394	43
18	252373	116	992944	3.8	259429	120	740571	17880 98389	42 41
19 20	253067 253761	116	992921 992898	3.8	260146 260868	119	739854 739137	17909 98388 17937 98378	40
21	9.254453	115	9.992875	3.8	9.261578	119	10.738422	17966 98373	39
22	255144	115 115	992852	3.8 3.8	262292	119 119	737708	17995 98368	38
23	255834	115	992829	3.9	263005	119	736995	18023 98362	37
24 25	256523 257211	115	992806 992783	3.9	263717 264428	118	736283 735572	18052 98357 18081 98352	36 35
26	257898	114	992759	3.9	265138	118	734862	18109 98347	34
27	258583	114	992736	3.9	265847	118	734153	18138 98341	33
28	259268	114	992713	3.9 3.9	266555	118 118	733445	18166 98336	32
29	259951	114	992690 992666	3.9	267261 267967	118	732739	18195 98331 18224 98325	31 30
30 31	260633 9.261314	113	9.992643	8,9	9.268671	117	732033 10.731329	18252 98320	29
32	261994	113	992619	3.9	269375	117	730625	18281 98315	28
33	262673	113 113	992596	3.9 3.9	270077	117 117	729923	18309 98310	27
34	263351	113	992572	3.9	270779	117	729221	18338 98304	26
35 36	264027 264703	113	992549 992525	3.9	271479 272178	116	728521 727822	18367 98299 18395 98294	25 24
37	265377	112	992501	3.9	272876	116	727124	18424 98288	23
38	266051	112	992478	3.9	273573	116	726427	18452 98283	22
39	266723	112	992454	4.0	274269	116 116	725731	18481 98277	21
40	267395	112	992430	4.0	274964	116	725036	18509 98272	20 19
41 42	9.268065 268734	111	9.992406 992382	4.0	9.275658 276351	115	10.724342 723649	18538 98267 18567 98261	18
43	269402	111	992359	4.0	277043	115	722957	18595 98256	17
44	270069	111 111	992335	4.0	277734	115 115	722266	18624 98250	16
45	270735	111	992311	4.0	278424	115	721576	18652 98245	15
46	271400 272064	iii	992287 992263	4.0	279118 279801	115	720887	18681 98240 18710 98234	
47 48	272726	110	992203	4.0	280488	114	720199 719512	18738 98229	12
49	273388	110	992214	4.0	281174	114	718826	18767 98223	11
50	274049	110 110	992190	4.0	281858	114 114	718142	18795 98218	10
51	9.274708	110	9.992166	4.0	9.282542	114	10.717458	18824 98212	9
52 53	275367 276024	110	992142 992117	4.0	283225 283907	114	716775 716093	18852 98207 18881 98201	8
54	276681	109	992093	4.1	284588	113	W1 P 410	18910 98196	6
55	277337	109 109	992069	4.1	285268	113° 113	714732	18938 98190	5
56	277991	109	992044	4.1	285947	113	714053	18967 98185	4
57	278644	109	992020	4.1	286624	113	713376	18995 98179	3 2
58 59	279297 279948	109	991996 991971	4.1	287301 287977	113	712699 712023	19024 98174 19052 98168	1
60	280599	108	991947	4.1	288652	112	711348	19081 98163	
-	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine	
		<u>'</u>	•	-	9 Degrees.		·		-
i									

3	0	L	og. Sines a	nd Ta	ngents. (9°) Na	tural Sines.	TABLE I	L.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10'	Cotang.	N. sine. N. cos.	
0	9.194332	133	9.994620	8.3	9.199713	136	10.800287	15643 98769	60
1	195129	133	994600	3.3	200529	136	799471	15672 98764	59
2	195925	132	994580	8.3	201345	136	798655	15701 98760	58 57
8 4	196719 197511	132	994560 994540	3.4	202159 202971	135	797841 797029	15730 98755 15758 98751	56
5	198302	182	994519	3.4	203782	135	796218	15787 98746	55
6	199091	132 131	994499	3.4 3.4	204592	135 135	795408	15816 98741	54
7	199879	131	994479	3.4	205400	134	794600	15845 98737	53
8	200666 201451	131	994459 994438	3.4	206207 207013	134	793793 792987	15873 98732 15902 98728	52 51
9 10	202234	131	994418	3.4	207817	134	792183	15931 98723	50
	9.203017	130 130	9.994397	3.4 3.4	9.208619	134 133	10.791381	15959 98718	49
12	203797	130	994377	3.4	209420	133	790580	15988 98714	48
13	204577	130	994357	3.4	210220	133	789780 788982	16017 98709	47 46
14 15	205354 206131	129	994336	3.4	211018 211815	133	788185	16046 98704 16074 98700	45
16	206906	129 129	994295	3.4	212611	133 132	787389	16103 98695	44
17	207679	129	994274	3.5	213405	132	786595	16132 98690	43
18	208452	128	994254	3.5	214198	132	785802	16160 98686	42
19 20	209222 209992	128	994233 994212	3.5	214989 215780	132	735011 784220	16189 98681 16218 98676	41 40
	9.210760	128	9.994191	3.5	9.216568	131	10.783432	16246 98671	39
22	211526	128 127	994171	3.5	217356	131 131	782644	16275 98667	38
23	212291	127	994150	3.5	218142	131	781858	16304 98662	37
24	213055	127	994129	3.5	218926	130	781074	16333 98657	36 35
25 26	213818 214579	127	994108 994087	3.5	219710 220492	130	780290 779508	16361 98652 16390 98648	34
27	215338	127	994066	3.5	221272	130	778728	16419 98643	33
2 8	216097	126 126	994045	3.5	222052	130 130	777948	16447 98638	32
29	216854	126	994024	3.5	222830	129	777170	16476 98633	31
30 31	217609 9.218363	126	994003 9.993981	3.5	223606 9.224382	129	776394 10.775618	16505 98629 16533 98624	30 29
32	219116	125	993960	3.5	225156	129	774844	16562 98619	28
33	219868	125 125	993939	3.5	225929	129 129	774071	16591 98614	27
84	220618	125	993918	3.5	226700	128	773300	16620 98609	26
35	221367	125	993896 993875	3.6	227471 228239	128	772529 771761	16648 98604 16677 98600	25 24
36 37	222115 222861	124	993854	3.6	229007	128	770993	16706 98595	23
38	223606	124 124	993832	3.6	229773	128 127	770227	16734 98590	22
39	224349	124	993811	3.6	230539	127	. 769461	16763 98585	21
40	225092	123	993789 9.993768	3.6	231302	127	768698 10.767935	16792 98580	20
41 42	9.225833 226573	123	993746	3.6	9.232065 232826	127	767174	16820 98575 16849 98570	19 18
43	227311	123	993725	3.6	233586	127	766414	16878 98565	17
44	228048	123 123	993703	3.6 3.6	234345	126 126	765655	16906 98561	16
45	228784	122	993681	3.6	235103	126	764897	16935 98556	15
46 47	229518 230252	122	993660 993638	3.6	235859 236614	126	764141 763386	16964 98551 16992 98546	14 13
48	230282	122	993616	3.6	237368	126	762632	17021 98541	12
49	231714	122 122	993594	3.6 3.7	238120	125 125	761880	17050 98536	11
50	232444	121	993572	3.7	238872	125	761128	17078 98531	10
51 52	9.233172 233899	121	9,993550 994528	3.7	9.239622 240371	125	10.760378 759629	17107 98526 17136 98521	9 8
53	233699	121	993506	3.7	241118	125	758882	17164 98516	7
54	235349	121	993484	3.7 3.7	241865	124 124	758135	17193 98511	6
55	236073	120 120	993462	3.7	242610	124	757390	17222 98506	5
56	236795	120	993440 993418	3.7	243354	124	756646 755903	17250 98501 17279 98496	3
57 58	237515 238235	120	993396	3.7	244097 244839	124	755903 755161	17308 98491	2
59	238953	120	993374	3.7	245579	123 123	754421	17336 98486	1
60	239670	119	993351	3.7	246319	123	753681	17365 98481	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	7
				8	0 Degrees.				

7	TABLE II.	1	og. Sines s	and Ta	ngents. (1	0°) N	atural Sines		31
4	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
0	9.239670	119	9.993351	3.7	9.246319	123	10.753681	17365 98481	60
1	240386	119	993329	3.7	247057	123	752943	17393 98476	59
3	241101	119	993307	8.7	247794	123	752206	17422 98471	58
4	241814 242526	119	993285	3.7	248530	122	751470	17451 98466	57 56
5	243237	118	998262 993240	8.7	249264 249998	122	750736 750002	17479 98461 17508 98455	55
6	243947	118	993217	3.7	250730	122	749270	17537 98450	54
7	244656	118	993195	3.8	251461	122	748539	17565 98445	53
8	245363	118 118	993172	3.8 3.8	252191	122 121	747809	17594 98440	52
9	246069	117	993149	3.8	252920	121	747080	17623 98435	51
10	246775	117	993127	3.8	253648	121	746352	17651 98430	50
11 12	9.247478	117	9.993104	3.8	9.254374	121	10,745626	17680 98425	49 48
13	248181 248883	117	993081 993059	3.8	255100 255824	121	744900 744176	17708 98420 17737 98414	47
14	249583	117	993036	3.8	256547	120	743453	17766 98409	46
15	250282	116	993013	3.8	257269	120	742731	17794 98404	45
16	250980	116 116	992990	3.8 3.8	257990	120 120	742010	17823 98399	44
17	251677	116	992967	3.8	258710	120	741290	17852 98394	43
18	252373	116	992944	3.8	259429	120	740571	17880 98389	42
19 20	253067	116	992921	3.8	260146	119	739854	17909 98383	41 40
20 21	253761 9.254453	115	992898 9.992875	3.8	260868 9.261578	119	739137 10.738422	17937 98378 17966 98373	39
22	255144	115	992852	3.8	262292	119	737708	17995 98368	38
23	255834	115	992829	3.8	263005	119	736995	18023 98362	37
24	256523	115	992806	3.9	263717	119	736283	18052 98357	36
25	257211	115 114	992783	3.9	264428	118 118	735572	18081 98352	35
26	257898	114	992759	8.9	265138	118	734862	18109 98347	34
27	258583	114	992736	3.9	265847	118	734153	18138 98341	33 32
28 29	259268 259951	114	992713 992690	3.9	266555 267261	118	733445 732739	18166 98336 18195 98331	31
30	260633	114	992666	8.9	267967	118	732033	18224 98325	30
31	9.261314	113	9.992643	3.9	9.268671	117	10.731329	18252 98320	29
32	261994	113 113	992619	3.9 3.9	269375	117 117	730625	18281 98315	
33	262673	113	992596	3.9	270077	117	729923	18309 98310	27
34	263351	113	992572	3.9	270779	117	729221	18338 98304	26 25
35 36	264027 264703	113	992549 992525	3.9	271479 272178	116	728521	18367 98299 18395 98294	24
37	265377	112	992501	3.9	272876	116	727822 727124	18424 98288	23
38	266051	112	992478	3.9	273573	116	726427	18452 98283	22
89	266723	112	992454	4.0	274269	116	725731	18481 98277	21
40	267395	112 112	992430	4.0	274964	116 116	725036	18509 98272	20
41	9.268065	111	9.992406	4.0	9.275658	115	10.724342	18538 98267	19
42	268734	iii	992382	4.0	276351	115	723649	18567 98261	18 17
43 44	269402 270069	111	992359 992335	4.0	277043 277734	115	722957 722266	18595 98256 18624 98250	
45	270735	111	992311	4.0	278424	115	721576	18652 98245	15
46	271400	111	992287	4.0	279113	115	720887	18681 98240	14
47	272064	111 110	992263	4.0	279801	115 114	720199	18710 98234	13
48	272726	110	992239	4.0	280488	114	719512	18738 98229	12
49	273388	110	992214	4.0	281174	114	718826	18767 98223	11
50	274049	110	992190	4.0	281858	114	718142	18795 98218	10
51 52	9.274708 275367	110	9.992166 992142	4.0	9.282542 283225	114	10.717458 716775	18824 98212 18852 98207	8
53	276024	110	992117	4.0	283907	114	716093	18881 98201	7
54	276681	109	992093	4.1	284588	113	715410	18910 98196	6
55	277337	109 109	992069	4.1 4.1	285268	113 * 113	714732	18938 98190	5
56	277991	109	992044	4.1	285947	113	714053	18967 98185	4
57	278644	109	992020	4.1	286624	113	713376	18995 98179	3 2
58 59	279297 279948	109	991996 991971	4.1	287301 287977	113	712699 712023	19024 98174	1
60	280599	108	991947	4.1	288652	112	711348	19052 98168 19081 98163	ô
J-50	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine	.1
	COBILE.	·					Tong.		
ـــــا					9 Degrees.				_

3:	2	Lo	g. Sines an	d Tan	gents. (11) Na	tural Sines.	TABLE I	ī.
7	Siné.	D. 10	Cosine.	D. 10"	Tang.	D. 10	Cotang.	N. sine. N. cos.	
0	9.280599	108	9.991947	4.	9.288652	112	10.711348	19081 98163	60
1	281248	108	991922	4.1	289326	112	710674	19109 98157	59
2	281897	108	991897	4.1	289999	112	710001	19138 98152	58
8	282544 283190	108	991873 991848	4.1	290671 291342	112	709329 708658	19167 98146 19195 98140	57 56
5	283836	108	991823	4.1	292013	112	707987	19224 98135	55
ě	284480	107	991799	4.1	292682	111	707318	19252 98129	54
7	285124	107	991774	4.1	293350	111	706650	19981 98124	53
8	285766	107	991749	4.2	294017	111	705983	19309 98118	52
9	286408 287048	107	991724 991699	4.2	294684 295349	111	705316 704651	19338 98112 19366 98107	51 50
10 11	9.287687	107	9.991674	4.2	9.296018	111	10.703987	19395 98101	49
12	288326	106	991649	4.2	296677	111	703323	19423 98096	48
18	288964	106 106	991624	4.2	297339	110	702661	19452 98090	47
14	289600	106	991599	4.2	298001	110	701999	19481 98084	46
15	290236	106	991574	4.2	298662	110	701338	19509 98079	45
16 17	290870 291504	106	991549 991524	4.2	299322 299980	110	700678 700020	19538 98073 19566 98067	44 43
18	292137	105	991498	4.2	300638	110	699362	19595 98061	42
19	292768	105	991473	4.2	301295	109	698705	19623 98066	41
20	293399	105 105	991448	4.2	801951	109	698049	19652 98050	40
21	9.294029	105	9.991422	4.2	9.302607	109	10.697398	19680 98044	89
22 23	294658 295286	105	991397 991372	4.2	303261 303914	109	696739 696086	19709 98039 19737 98033	38 37
23 24	295913	104	991346	4.3	304567	109	695433	19766 98027	36
25	296589	104	991321	4.3	305218	109	694782	19794 98021	35
26	297164	104	991295	4.3	305869	108 108	694131	19823 98016	34
27	297788	104	991270	4.3	306519	108	693481	19851 98010	33
28	298412	104	991244	4.3	807168	108	692832	19880 98004	32
29 30	299034 299655	104	991218 991193	4.8	307815 308463	108	692185 691537	19908 97998 19937 97992	81 30
81	9.300276	103	9.991167	4.8	9.309109	108	10.690891	19965 97987	29
32	300895	103	991141	4.8	309754	107	690246	19994 97981	28
83	801514	103 103	991115	4.8	810398	107 107	689602	20022 97975	27
84	302132	103	991090	4.3	811042	107	688958	20051 97969	26
85 86	302748 303364	103	991064 991038	4,8	311685 312327	107	688315 687673	20079 97963	25
87	303979	102	991012	4.3	312967	107	687083	20108 97958 20136 97952	24 23
88	304593	102	990986	4.3	313608	107	686392	20165 97946	22
89	305207	102 102	990960	4.8	314247	106 106	685753	20193 97940	21
40	305819	102	990934	4.4	314885	106	685115	20222 97934	20
41	9.306430	102	9.990908 990882	4.4	9.315523 316159	106	10.684477	20250 97928	19
42 43	307041 307650	102	990855	4.4	316795	106	683841 683205	20279 97922 20307 97916	18 17
44	308259	101	990829	4.4	317430	106	682570	20336 97910	16
45	308867	101 101	990803	4.4	318064	106 105	681936	20364 97905	15
46	309474	101	990777	4.4	318697	105	681303	20393 97899	14
47	310080	101	990750	4.4	319329	105	680671	20421 97898	18
48 49	310685 311289	101	990724 990697	4.4	319961 320592	105	680039 679408	20450 97887 20478 97881	12
50	311893	100	990671	4.4	321222	105	678778	20507 97875	11 10
51	9.312495	100	9.990644	4.4	9.321851	105	10.678149	20535 97869	9
52	313097	100	990618	4.4	322479	105 104	677521	20563 97863	8
58	813698	100	990591	4.4	323106	104	676894	20592 97857	7
54 55	314297 314897	100	990565	4.4	323733 324358	104	676267	20620 97851	6
56	314897	100	990535	4.4	324305	104	675642 675017	20649 97845 20677 97839	5
57	316092	100	990485	4.5	325607	104	674393	20706 97833	8
53	316689	99	990458	4.5	326231	104	673769	20734 97827	2
59	317284	99	990431	4.5	326853	104	673147	20763 97821	1
60	317879		990404		327475		672525	20791 97815	0
	Cosine.	<u> </u>	Sine.	L`	Cotang.		Tang.	N. cos. N.sine.	
L				7	8 Degrees.				

,	FABLE II.]	Log. Sines	and To	ingents. (1	1 3 9) N	atural Sines		83
7	Sine.	D. 10'	Cosine.	D. 10"	Tang.	D. IO	Cotang.	N. sine. N. cos	1
0	9.317879	99.0	9.990404	4.5	9.327474	103	10.672526	20791 97815	60
1	818473	98,8	990378	4.5	328095	103	671905	20820 97809	59
2	319066 319658	98.7	990351 990324	4.5	828715 329334	103	671285 670666	20848 97808 20877 97797	58 57
4	820249	98.6	990297	4.5	829953	103	670047	20905 97791	56
5	820840	98.4 98.3	990270	4.5	830570	103 108	669430	20933 97784	
6	321430	98.2	990243	4.5	831187	103	668813	20962 97778	54
7 8	822019 822607	98.0	990215 990188	4.5	331803 332418	102	668197 667582	20990 97772 21019 97766	53 52
9	823194	97.9	990161	4.5	833033	102	666967	21047 97760	51
10	323780	97.7 97.6	990134	4.5	333646	102 102	666354	21076 97754	50
11	9.324366	97.5	9.990107	4.6	9.334259	102	10.665741	21104 97748	49
12 18	324950 325534	97.3	990079 990052	4.6	334871 335482	102	665129 664518	21132 97742 21161 97735	48
14	326117	97.2	990025	4.6	336093	102	663907	21189 97729	46
15	826700	97.0 96.9	989997	4.6	336702	102 101	663298	21218 97723	45
16	327281	96.8	989970	4.6	837311	101	662689	21246 97717	44
17	327862 328442	96.6	989942 989915	4.6	337919 338527	101	662081 661473	21275 97711 21303 97705	43 42
18 19	329021	96.5	989887	4.6	839138	101	660867	21331 97698	41
20	329599	96.4	989860	4.6	339739	101	660261	21360 97692	40
21	9.330176	96.2 96.1	9.989832	4.6	9.340344	101 101	10.659656	21388 97686	39
22	330753	96.0	989804	4.6	340948	101	659052	21417 97680	38
23 24	331329 381903	95.8	989777 989749	4.6	341552 342155	100	658448 657845	21445 97673 21474 97667	37
25	332478	95.7	989721	4.7	342757	100	657243	21502 97661	35
26	333051	95.6 95.4	989693	4.7	343358	100 100	656642	21530 97655	84
27	833624	95.3	989665	4.7	343958	100	656042	21559 97648	
28 29	334195	95.2	989637 989609	4.7	344558 345157	100	655442 654843	21587 97642 21616 97686	32 31
30	334766 335337	95.0	989582	4.7	345755	100	654245	21644 97630	
	9.335906	94.9	9.989553	4.7	9.346353	100 99.4	10 659647	21672 97623	
82	836475	94.8 94.6	989525	4.7	346949	99.3	000001	21701 97617	28
88	337043	94.5	989497	4.7	347545	99.2	652455 651859	21729 97611 21758 97604	27 26
34 35	337610 338176	94.4	989469 989441	4.7	348141 348735	99.1	651965	21786 97598	
86	338742	94.3	989413	4.7	849329	99.0 98.8	650671	21814 97592	24
87	839306	94.1 94.0	989384	4.7	349922	98.7	650078	21843 97585	28
38	339871	93.9	989356	4.7	350514	98.6	649486 648894	21871 97579 21899 97573	22
89 40	840434 840996	93.7	989328 989300	4.7	351106 851697	98.5	640000	21928 97566	
	9.841558	93.6	9.989271	4.7	9.352287	98.3	10.647713	21956 97560	
42	342119	93.5 93.4	989243	4.7	352876	98.2 98.1	647124	21985 97553	18
43	342679	93.2	989214	4.7	353465	98.0	646535	22013 97547	17
44	343239 343797	93.1	989186 989157	4.7	354053 354640	97.9		22041 97541 22070 97534	16 15
46	844355	93.0	989128	4.7	355227	97.7	644772	22098 97528	14
47	844912	$92.9 \\ 92.7$	989100	4.8	355818	97.6	644187	22126 97521	18
48	845469	92.6	989071	4.8	856398	97.4	048002	22155 97515	12
49	346024	92.5	989042 989014	4.8	356982 357566	97.3	640494	22183 97508 22212 97502	11 10
50 51	846579 9.347184	92.4	9.988985	4.8	9.358149	97.1	10 641951	22240 97496	
52	347687	92.2 92.1	988956	4.8 4.8	358731	97.0	641269	22268 97489	8
53	348240	92.1	988927	4.8	359313	96.8	640687	22297 97483	6
54 55	348792	91.9	988898 988869	4.8	359893 360474	96.7	640107 639526	22325 97476 22353 97470	
56	349343 349893	91.7	988840	4.8	361053	96.6	638947	22382 97463	4
57	850443	91.6	988811	4.8	361632	96.5 96.3	638368	22410 97457	8
58	850992	91.5 91.4	988782	4.9	362210	96.2	00/190	22438 97450	
59 60	351540 352088	91.3	988753 988724	4.9	362787 363364	96.1	687213 686636	22467 97444 22495 97487	6
-00			Sine.		Cotang.		Tang.	N. cos. N.sine	
	Cosine.	<u> </u>	l orne.	<u> </u>			reng.		<u> </u>
ł				7	7 Degrees.				j

3	4	Lo	g. Sines an	d Tan	gents. (13) Nat	tural Sines.	TABLE I	L.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine N. cos.	
0	9.352088	91.1	9.988724	4.9	9.363364	96.0	10.636636	22495 97437	60
1	352635	91.0	988695	4.9	363940	95.9	636060	22523 97430	59
2	353181	90.9	988666	4.9	364515	95.8	635485	22552 97424 22580 97417	58
8 4	353726 354271	90.8	988636 988607	4.9	365090 365664	95.7	634910 634336	22608 97411	57 56
5	354815	90.7	988578	4.9	366237	95.5	633763	22637 97404	55
6	355358	90.5	988548	4.9	366810	95.4	633190	22665 97398	54
7	355901	90.4 90.3	988519	4.9	367382	95.3 95.2	632618	22693 97391	53
8	356443	90.2	988489	4.9	367953	95.1	632047	22722 97384	52
9	356984	90.1	988460 988430	4.9	368524 369094	95.0	631476 630906	22750 97378 22778 97371	51 50
10 11	357524 9.358064	89.9	9.988401	4.9	9.369663	94.9	10.630337	22807 97365	49
12	358603	89.8	988371	4.9	370232	94.8	629768	22835 97358	48
13	359141	89.7	988342	4.9 4.9	370799	94.6	629201	22863 97351	47
14	359678	89.6 89.5	988312	5.0	871367	94.5 94.4	628633	22892 97345	46
15	360215	89.3	988282	5.0	371933	94.3	628067 627501	22920 97338 22948 97331	45 44
16 17	360752 361287	89.2	988252 988223	5.0	372499 873064	94.2	626936	22977 97325	43
18	361822	89.1	988193	5.0	373629	94.1	626371	23005 97318	42
19	862356	89.0	988163	5.0 5.0	374193	94.0	625807	23033 97311	41
20	362889	88.9 88.8	988133	5.0	374756	93.9 93.8	625244	23062 97304	40
	9.363422	88.7	9.988103	5.0	9.375319	93.7	10.624681	23090 97298	39
22 23	363954 364485	88.5	988073 988043	5.0	375881 376442	93.5	624119 623558	23118 97291 23146 97284	38 37
24	365016	88.4	988013	5.0	377003	93.4	622997	23175 97278	36
25	365546	88.3	987983	5.0	377563	93.3	622437	23203 97271	35
26	866075	88.2 88.1	987953	5.0 5.0	378122	93.2	621878	23231 97264	34
27	366604	88.0	987922	5.0	378681	93.1 93.0	621319	23260 97257	33
28	367131	87.9	987892	5.0	379239	92.9	620761	23288 97251	32
29 30	367659 368185	87.7	987862 987832	5.0	379797 380354	92.8	620203 619646	23316 97244 23345 97237	31 30
31	9.368711	87.6	9.987801	5.1	9.380910	92.7	10.619090	23373 97230	29
82	369236	87.5	987771	5.1	381466	92.6	618534	23401 97223	28
83	369761	87.4 87.3	987740	5.1 5.1	382020	92.5 92.4	617980	23429 97217	27
34	370285	87.2	987710	5.1	382575	92.3	617425	23458 97210	26
35 36	370808 371330	87.1	987679	5.1	383129 383682	92.2	616871 616318	23486 97203 23514 97196	25 24
87	371852	87.0	987649 987618	5.1	384234	93.1	615766	23542 97189	23
38	372373	86.9	987588	5.1	384786	92.0	615214	23571 97182	22
89	372894	86.7 86.6	987557	5.1 5.1	385337	91.9 91.8	614663	23599 97176	21
40	373414	86.5	987526	5.1	385888	91.7	614112	23627 97169	20
41	9.373933 374452	86.4	9.987496	5.1	9.386438	91.5	10.613562	23656 97162	19
42 43	374970	86.3	987465 987434	5.1	386987 387536	91.4	613013 612464	23684 97155 23712 97148	18 17
44	375487	86.2	987403	5.1	388084	91.3	611916	23740 97141	16
45	876003	86.1 86.0	987372	5.2 5.2	388631	91.2	611369	23769 97134	15
46	376519	85.9	987341	5.2	389178	91.1 91.0	610822	23797 97127	14
47	377035	85.8	987310	5.2	389724	90.9	610276	23825 97120	13
48 49	377549 378063	85.7	987279 987248	5.2	390270 390815	90.8	609730 609185	23853 97113 23882 97106	12 11
50	878577	85.6	987217	5.2	391360	90.7	603640	23910 97100	10
51	9.379089	85.4	9.987186	5.2 5.2	9.391903	90.6	10.608097	23938 97093	9
52	379601	85.3 85.2	987155	5.2	392447	90.5 90.4	607553	23966 97086	8
53	380113	85.1	987124	5.2	392989	90.3	607011	23995 97079	7
54 55	380624 381134	85.0	987092 987061	5.2	393531 394073	90.2	606469 605927	24023 97072 24051 97065	5
56	381643	84.9	987030	5.2	394614	90.1	605386	24079 37053	4
57	382152	84.8	986998	5.2	395154	90.0	604846	24108 97051	3
58	382661	84.7 84.6	986967	5.2 5.2	395694	89.9 89.8	604306	24136 97044	2
59	883168	84.5	986936	5.2	396233	89.7	603767	24164 97037	1
60	383675		986904		396771		603229	24192 97030	0
ļ	Cosine.	<u> </u>	Sine.		Cotang.		Tang.	N. cos. N.sine.	1
				7	6 Degrees.				

	TABLE II.	1	og. Sines s	nd Ta	ngents. (1	4º) N	atural Sines		35
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos	:[_
0	9.383675	84.4	9.986904	5.2	9.396771	89,6	10.603229	24192 97030	
1	384182	84.3	986873	5.3	397309	89.6	602691	24220 97023	
2	384687	84.2	986841	5.3	397846	89.5	602154	24249 97015	
3 4	385192 385697	84.1	986809 986778	5.3	398383 398919	89.4	601617 601081	24277 97008 24305 97001	
5	386201	84.0	986746	5.3	399455	89.3	600545	24333 96994	
6	386704	83.9	986714	5.3	399990	89.2	600010	24362 96987	
7	387207	83.8	986683	5.3	400524	89.1	599476	24390 96980	58
8	387709	83.7 83.6	986651	5.3	401058	89.0 88.9	598942	24418 96973	
9	388210	83.5	986619	5.3	401591	88.8	598409	24446 96966	
10	388711	83.4	986587	K 9	402124	88.7	597876	24474 96959	
	9.389211	83.3	9.986555	5.3	9.402656	88.6	10.597344	24503 96952 24531 96945	
12	389711	83.2	986523 986491	5.3	403187 403718	88.5	596813 596282	24559 96937	
13 14	390210 390708	83.1	986459	5.3	404249	88.4	595751	24587 96930	
15	391206	83.0	986427	5.3	404778	88.3	595222	24615 96923	
16	391703	82.8	986395	5.3	405308	88.2	594692	24644 96916	
17	392199	82.7 82.6	986363	5.3	405836	88.1 88.0	594164	24672 96909	
18	392695	82.5	986331	5.4 5.4	406364	87.9	593636	24700 96902	
19	893191	82.4	986299	5.4	406892	87.8	593108	24728 96894	
20	393685	82.3	986266	E 1	407419	87.7	592581	24756 96887 24784 96880	
21 22	9.394179	82.2	9.986234 986202	5.4	9.407945 408471	87.7 87.6	10.592055 591529	24813 96873	
23	894673 895166	82.1	986169	5.4	408997	87.5	591003	24841 96866	
24	395658	82.0	986137	5.4	409521	87.4	590479	24869 96858	
25	396150	81.9	986104	5.4	410045	87.4	589955	24897 96851	35
26	396641	81.8	986072	5.4	410569	87.8	589431	24925 96844	
27	397132	81.7 81.7	986039	5.4 5.4	411092	87.2 87.1	588908	24954 96837	
28	397621	81.6	986007	5.4	411615	87.0	588385	24982 96829	
29	398111	81.5	985974	5.4	412137	86.9	587863	25010 96822 25038 96815	31
80	398600	81.4	985942	E 1	412658 9.413179	86.8	587342 10.586821	25066 96807	
31 32	9.399088 399575	81.3	9.985909 985876	0.0	413699	86.7	586301	25094 96800	
33	400062	81.2	985843	5.5	414219	86.6	585781	25122 96793	
34	400549	81.1	985811	5.5	414738	86.5	585262	25151 96786	
35	401035	81.0 80.9	985778	5.5 5.5	415257	86.4	584743	25179 96778	
36	401520	80.8	985745	5.5	415775	86.4 86.3	584225	25207 96771	
37	402005	80.7	985712	5.5	416293	86.2	583707	25235 96764	
88	402489	80.6	985679	5.5	416810 417326	86.1	583190 582674	25263 96756 25291 96749	
39 40	402972	80.5	985646 985613	5. 5	417842	86.0	582158	25320 96742	
41	403455 9.403938	80.4	9.985580	5.5	9.418358	85.9	10.581642	25348 96734	
42	404420	80.3	985547	5.5	418873	80.0	581127	25376 96727	
43	404901	80.2	985514	5.5	419387	85.7	580613	25404 96719	17
44	405382	80.1 80.0	985480	5.5 5.5	419901	85.6 85.5	580099	25432 96712	
45.	405862	79.9	985447	5.5	420415	85.5	579585	25460 96705	
46	406341	79.8	985414	5.6	420927 421440	85.4	579073	25488 96697 25516 96690	
47 48	406820	79.7	985380	5.6	421440 421952	85.3	578560 578048	25545 96682	
49	407299	79.6	985347 985314	5.6	422463	85.2	577537	25573 96675	
50	407777 408254	79.5	985280	5.6	422974	85.1	577026	25601 96667	
51	9.408731	79.4	9.985247	5.6	9.423484	85.0	10.576516	25629 96660	
52	409207	79.4	985213	0.0	423993	84.9	576007	25657 96653	8
53	409682	79.3 79.2	985180	5.6 5.6	424503	84.8 84.8	575497	25685 96645	
54	410157	79.1	985146	5.6	425011	84.7	574989	25713 96638	
55	410632	79.0	985113	5,6	425519	84.6	574481	25741 96630	
56	411106	78.9	985079	5.6	426027 426534	84.5	573973 573466	25766 96628 25798 96615	
58	411579	78.8	985045	5.6	420034	84.4	572959	25826 96608	
59	412052 412524	78.7	985011 984978	5.6	427547	84.3	572453	25854 96600	1 . 1
60	412996	78.6	984944	5.6	428052	84.3	571948	25882 96593	
	Cosine.		Sine.		Cotang.			N. cos. N.sine	. 7
II	· Costne.	<u>' </u>	Bille.	' ,		·		7	
<u> </u>				1	5 Degrees.				ليــــــ

3	6				• ,		tural Sines.	TABLE I	ī.
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
o	9.412996	78.5	9.984944	5.7	9.428052	84.2	10.571948	25882 96593	60
1	413467	78.4	984910	5.7	428557	84.1	571443	25910 96585	59
2	413938	78.3	984876	5.7	429062	84.0	570938	25938 96578	5 8
8	414408	78.3	984842	5.7	429566	83.9	570434	25966 96570	57
4	414878 415347	78.2	984808	5.7	430070 480573	83.8	569930 569427	25994 96562 26022 96555	56 55
6	415815	78.1	984774 984740	5.7	481075	83.8	568925	26050 96547	54
7	416283	78.0	984706	5.7	431577	83.7	568423	26079 96540	53
l ŝi	416751	77.9	984672	5.7	432079	83.6 83.5	567921	26107 96532	52
9	417217	77.8 77.7	984637	5.7 5.7	482580	83.4	567420	26185 96524	51
10	417684	777 6	984603	5.7	483080	83.3	566920	26163 96517	50
	9.418150	77.5	9.984569	5.7	9.433580	83.2	10.566420	26191 96509	49
12	418615 419079	77.4	984535 984500	5.7	434080 434579	83.2	565920 565421	26219 96502 26247 96494	48 47
13 14	419544	77.8	984466	5.7	435078	83.1	564922	26275 96486	46
15	420007	77.3	984432	5.7	435576	83.0	564424	26308 96479	45
16	420470	77.2	984397	5.8	436073	82.9 82.8	563927	26331 96471	44
17	420933	77.1 77.0	984363	5.8	436570	82.8	563430	26359 96463	43
18	421395	76.9	984328	5.8	487067	82.7	562983	26387 96456	42
19 20	421857 422318	76.8	984294 984259	5.8	437563 438059	82.6	562487 561941	26415 96448 26443 96440	41
21	9.422778	76.7	9.984224	5.8	9.438554	82.5	10.561446	26471 96433	39
22	423238	76.7	984190	D.8	439048	82.4	560952	26500 96425	38
23	428697	76.6 76.5	984155	5.8	439543	82.8 82.3	560457	26528 96417	37
24	424156	76.4	984120	5.8	440936	82.2	559964	26556 96410	36
25	424615	76.3	984085	5.8	440529	82.1	559471	26584 96402	35
26 27	425073 425530	76.2	984050 984015	5.8	441022 441514	82.0	558978 558486	26612 96394 26640 96386	34
28	425987	76.1	983981	5.8	442006	81.9	557994	26668 96379	32
29	426443	76.0	983946	5.8	442497	81.9	557503	26696 96371	31
80	426899	76.0	983911	5.8	442988	81.8 81.7	557012	26724 96363	30
	9.427854	75.9 75.8	9.983875	5.8	9.443479	81.6	10.556521	26752 96355	29
32	427809 428263	75.7	983840	5.9	443968	81.6	556032	26780 96347	28
83 84	428203	75.6	983805 983770	5.9	444458 444947	81.5	555542 555053	26806 96340 26836 96332	27 26
85	429170	75.5	983735	5.9	445435	81.4	554565	26864 96324	25
86	429623	75.4	983700	5.9	445923	81.8	554077	26892 96316	24
87	430075	75.3 75.2	983664	5.9 5.9	446411	$\begin{array}{c} 81.2 \\ 81.2 \end{array}$	553589	26920 96308	23
88	430527	75.2	983629	5.9	446898	81.1	553102	26948 96301	22
89	430978	75.1	983594	5.9	447384	81.0	552616	26976 96293	21
40 41	431429 9.431879	75.0	983558 9.983523	5.9	447870 9.448356	80.9	552130 10.551644	27004 96285 27032 96277	20 19
42	432329	74.9	983487	0.9	448841	80.9	551159	27060 96269	18
43	432778	74.9	983452	5.9	449326	80.8 80.7	550674	27088 96261	17
44	433226	74.8 74.7	983416	5.9 5.9	449810	80.6	550190	27116 96253	16
45	433675	74.6	983381	5.9	450294	80.6	549706	27144 96246	15
46 47	484122 434569	74.5	983345 983309	5.9	450777 451260	80.5	549223	27172 96238	14
48	435016	74.4	983273	5.9	451743	80.4	548740 548257	27200 96230 27228 96222	13 12
49	435462	74.4	983238	6.0	452225	80.8	547775	27256 96214	ii
50	435908	$74.3 \\ 74.2$	983202	6.0 6.0	452706	$\begin{array}{c} 80.2 \\ 80.2 \end{array}$	547294	27284 96206	10
	9.436353	74.1	9.983166	6.0	9.453187	80.1	10.546813	27312 96198	9
52	436798 437242	74.0	983130	6.0	453668	80.0	546332	27340 96190	8
53 54	437686	74.0	983094 983058	6.0	454148 454628	79.9	545852 545372	27368 96182 27896 96174	6
55	438129	73.9	983022	6.0	455107	79.9	544893	27424 96166	5
56	438572	73.8	982986	6.0	455586	79.8	544414	27452 96158	4
57	439014	73.7 73.6	982950	6.0 6.0	456064	79.7 79.6	543936	27480 96150	8
58	439456	73.6	982914	6.0	456542	79.6	543458	27508 96142	2
59	439897 440338	73.5	982878 982842	6.0	457019 457496	79.5	542981 542504	27536 96134	0
en!									
60	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	I

,

	TABLE II.		Log. Sines				atural Sines		37
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. co	B. T
0		73.4	9.982842	6.0	9.457496	79.4	10.542504	27564 9612	
1	440778	73.3	982805	6.0	457978	79.3	542027	27592 9611	
2 8	441218 441658	73.2	982769 982733	6.1	458449 458925	79.3	541 5 51 541075	27620 9611 27648 9610	
4	442096	73 · 1	982696	6.1	459400	79.2	540600	27676 9609	
5	442535	73.1	982660	6.1	459875	79.1	540125	27704 9608	
6	442978	73.0 72.9	982624	6.1	460349	79.0 79.0	539651	27731 9607	
7	443410	72.8	982587	6.1	460823	78.9	539177	27759 9607	
8 9	443847 444284	72.7	982551 982514	6.1	461297 461770	78.8	538703 538230	27787 9606 27815 9605	
10	444720	72.7	982477	6.1	462242	78.9	537758	27843 9604	6 50
11	9.445155	72.6 72.5	9.982441	6.1 6.1	9.462714	78.7 78.6	10.537286	27871 9603	7 49
12	445590	72.4	982404	6.1	463186	78.5	536814	27899 9602	
13 14	446025 446459	72.3	982367 982331	6.1	463658 464129	78.5	536342 535871	27927 9602 27955 9601	
15	446893	72.3	982294	6.1	464599	78.4	525401	27983 9600	
16	447326	72.2	982257	6.1	465069	78.3	694921	28011 9599	
17	447759	$72.1 \\ 72.0$	982220	6.1	465539	78.3 78.2	1 004401	28039 9598	
18	448191	72.0	982183	6.2	466008	78.1	533992	28067 9598	
19 20	448628 449054	71.9	982146 982109	6.2	466476 466945	78.0	583524 533055	28095 9597 28123 9596	
21	9.449485	71.8	9.982072	6.2	9.467418	78.0	10.532587	28150 9595	
22	449915	71.7	982035		467880	77.9	532120	28178 9594	
23	450345	71.6 71.6	981998	6.2	468347	77.8	531653	28206 9594	
24	450775	71.5	981961	6.2	468814	77.7	531186	28234 9593	
25	451204	71.4	981924 981886	6.2	469280 469746	77.6	530720 530254	28262 9592 28290 9591	
26 27	451632 452060	71.3	981849	6.2	470211	77.5	529789	28318 9590	
28	452488	71.3	981812	6.2	470676	77.5	529324	28346 9589	
29	452915	$\frac{71.2}{71.1}$	981774	6.2 6.2	471141	77.4	528859	28374 9589	0 31
80	453342	71 0	981737		471605	77.8 77.3	528395	28402 9588	
31	9.453768 454194	71.0	9.981699 981662	6.3	9.472068 472532	77.2	10.527932 527468	28429 9587 28457 9586	4 29 5 28
32 38	454619	70.9	981625	6.3	472995	77.1	527005	28485 9585	
34	455044	70.8	981587	6.3	473457	77.1	526543	28513 9584	
35	455469	70.7 70.7	981549	6.8	473919	77.0 76.9	526081	28541 9584	
36	455893	70.6	981512 981474	6.3	474881 474842	76.9	525619	28569 9583	
87	456316 456739	70.5	981436	6.3	475303	76.8	525158 524697	28597 9582 28625 9581	
38 39	457162	70.4	981399	6.8	475763	76.7	524237	28652 9580	
40	457584	70.4	981361	6.3	476223	76.7	523777	28680 9579	9 20
41	9.458006	70.3 70.2	9.981323	6.8	9.476683	76.6 76.5	10.523317	28708 9579	
42	458427	70.1	981285	6.3	477142	76.5	522858	28736 9578	
43 44	458848 459268	70.1	981247 981209	6.3	477601 478059	76.4	522399 521941	28764 9577 28792 9576	
45	459688	70.0	981171	6.3	478517	76.3	501483	28820 9575	
46	460108	69.9 69.8	981133	6.3	478975	76.8	521025	28847 9574	9 14
47	460527	69.8	981095	6.4	479432	76.2 76.1	520568	28875 9574	
48	460946	69.7	981057 981019	6.4	479889 480345	76.1	520111	28903 9573	
49 50	461364 461782	69.6	980981	6.4	480801	76.0	519655 519199	28931 9572 28959 9571	
51	9.462199	69.5	9.980942	6.4	9.481257	75.9	10 5187/19	28987 9570	
52	462616	69.5 69.4	980904	6.4 6.4	481712	75.9	518288	29015 9569	8 8
53	463032	69.3	980866	6.4	482167	75.8 75.7	517833	29042 9569	
54	463448	69.3	980827 980789	6.4	482621 483075	75.7	517379	29070 9568	
55 56	468864 464279	69.2	980750	6.4	483529	75.6	516925 516471	29098 9567 29126 9566	
57	464694	69.1	980712	6.4	483982	75.5	516018	29154 9565	
58	465108	69.0 69.0	980673	6.4	484435	75.5	515565	29182 9564	7 2
59	465522	68.9	980635	6.4	484887	75.4 75.8	010119	29209 9563	
60	465935	33.3	980596	J. 7	485339		014001	29247 9563	_ 1
 	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sin	9. 7
				7	3 Degrees.				

3	8	Lo	g. Sines an	d Tan	gents. (17°) Nat	tural Sines.	TABLE I	I.
7	Sine.	D. 10"	Cosine.	D. 10'	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9.465935	00.0	9.980596	6.4	9.485339	75.3	10.514661	29237 95630	60
1	466348	68.8 68.8	980558	6.4	485791	75.2	514209	29265 95622	59
2	466761	68.7	980519	6.5	486242	75.1	513758	29293 95613 29321 95605	58 57
8 4	467173 467585	68.6	980480 980442	6.5	486693 487143	75.1	513307 512857	29348 95596	56
5	467996	68.5	980403	6.5	487593	75.0	512407	29376 95588	55
6	468407	68.5	980364	6.5	488043	74.9 74.9	511957	29404 95579	54
7	468817	68.4 68.3	980325	6.5	488492	74.8	511508	29432 95571	53
8	469227	68.8	980286	6.5	488941	74.7	511059	29460 95562	52
9	469637	68.2	980247	6.5	489390 489838	74.7	510610 510162	29487 95554 29515 95545	51 50
10 11	470046 9.470455	68.1	980208 9.980169	6.5	9.490286	74.6	10.509714	29543 95536	49
12	470863	68.0	980130	6.5	490733	74.6	509267	29571 95528	48
13	471271	68.0	980091	6.5	491180	74.5 74.4	508820	29599 95519	47
14	471679	67.9 67.8	980052	6.5	491627	74.4	508373	29626 95511	46
15	472086	67.8	980012	6.5	492073 492519	74.3	507927 507481	29654 95502 29682 95493	45 44
16 17	472492 472898	67.7	979973 979934	6.5	492965	74.3	507035	29710 95485	43
18	473304	67.6	979895	6.6	493410	74.2	506590	29737 95476	42
19	473710	67.6	979855	6.6 6.6	493854	74.1 74.0	506146	29765 95467	41
20	474115	67.5	979816	6.6	494299	74.0	505701	29793 95459	40
21	9.474519	67.4 67.4	9.979776	6.6	9.494743	74.0	10.505257	29821 95450 29849 95441	39 38
22 23	474923	67.3	979737	6.6	495186 495630	73.9	504814 504370	29876 95433	37
23	475327 475730	67.2	979697 979658	6.6	496073	73.8	503927	29904 95424	36
25	476133	67.2	979618	6.6	496515	73.7	503485	29932 95415	35
26	476536	67.1	979579	6.6 6.6	496957	73.7 73.6	503043	29960 95407	34
27	476938	67.0 66.9	979539	6.6	497399	73.6	502601	29987 95398	38
28	477340	66.9	979499	6.6	497841	73.5	502159	30015 95389	32
29	477741	66.8	979459	6.6	468282 498722	73.4	501718 501278	30043 95380 30071 95372	31 30
30 31	478142 9.478542	ee #	979420 9.979380	6.6	9.499163	73.4	10.500837	30098 95363	29
32	478942	66.7	979340	6.6	499603	73.3	500397	30126 95354	28
33	479342	66.6	979300	6.6	500042	73.3 73.2	499958	30154 95345	27
34	479741	66.5 66.5	979260	6.7	500481	73.1	499519	30182 95337	26
35	480140	66.4	979220	6.7	500920 501359	73.1	499080 498641	30209 95328 30237 95319	25 24
36	480539	66.3	979180	6.7	501797	73.0	498203	30265 95310	23
37	480937 481334	66.3	979140 979100	6.7	502235	73.0	497765	30292 35301	22
39	481731	66.2	979059	6.7	502672	72.9	497328	30320 95293	21
40	482128	66.1	979019	6.7	503109	72.8 72.8	496891	30348 95284	20
41	9.482525	66.1 66.0	9.978979	6.7	9.503546	72.7	10.496454	30376 95275	19
42	482921	65.9	978939	6.7	503982 504418	72.7	496018 495582	30403 95266 30431 95257	18 17
43 44	483316	65.9	978898 978858	6.7	504854	72.6	495146	30459 95248	16
45	483712 484107	65.8	978817	6.7	505289	72.5	494711	30486 95240	15
46	484501	65.7	978777	6.7	505724	$72.5 \\ 72.4$	494276	30514 35231	14
47	484895	65.7 65.6	978736	6.7	506159	72.4	493841	30542 95222	13
48	485289	65.5	978696	6.8	506593 507027	72.3	493407 492973	30570 95213 30597 95204	12 11
49	485682	65.5	978655	6.8	507460	72.2	492540	30625 95195	10
50 51	486075 9.486467	65.4	978615. 9.978574	6.8	9.507893	72.2	10.492107	30653 95186	9
52	486860	66.3	978533	6.8	508326	72.1	491674	30680 95177	8
53	487251	65.3	978493	6.8	508759	72.1 72.0	491241	30708 95168	7
54	487643	65.2 65.1	978452	6.8	509191	71.9	490809	30736 95159	6
55	488034	65.1	978411	6.8	509622 510054	71.9	490378 489946	30763 95150 30791 95142	5 4
56 57	488424	65.0	978370	6.8	510485	71.8	489515	30819 35133	3
58	488814 489204	65.0	978329 978288	6.8	510916	71.8	489084	30846 95124	2
59	489593	64.9	978247	6.8	511346	71.7	488654	30874 95115	1
60	489982	64.8	978206	6.8	511776	71.6	488224	3090- 95106	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	工
1					72 Degrees,				
·								-	

7	TABLE II.	L	og. Sines a	nd Ta	ngents. (1	8°) N	atural Sines.		9
7	Sine.	D. 10'	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos	_
0	9.489982	64.8	9.978206	6.8	9.511776	71.6	10.488224	30902 95106	60
1	490371	64.8	978165	6.8	512206	71.6	487794	30929 95097	59
2	490759	64.7	978124	6.8	512635	71.5	487365	30957 95088	
3	491147	64.6	978083	6.9	513064	71.4	486936	30985 95079	
4 5	491535 491922	64.6	978042 978001	6.9	513493 513921	71.4	486507 486079	31012 95070 31040 95061	
6	492308	64.5	977959	6.9	514349	71.3	485651	31068 95052	
7	492695	64.4	977918	6.9	514777	71.8	485223	31095 95043	
8	498081	64.4	977877	6.9	515204	$71.2 \\ 71.2$	484796	31123 95033	52
9	498466	64.2	977835	6.9	515631	71.1	484369	31151 95024	
10	493851	64.2	977794	RO	516057	71.0	483943	31178 95015	
11 12	9.494236 494621	64.1	9.977752 977711	6.9	9.516484 516910	71.0	10.483516 483090	31206 95006 31233 94997	
13	495005	64.1	977669	6.9	517335	70.9	482665	31261 94988	
14	495388	64.0	977628	6.9	517761	70.9	482239	31289 94979	
15	495772	63.9 63.9	977586	6.9 6.9	518185	70.8 70.8	481815	31316 94970	45
16	496154	63.8	977544	7.0	518610	70.7	481390	31344 94961	44
17	496537	63.7	977503	7.0	519034	70.6	480966	31372 94952	
18 19	496919 497301	63.7	977461	7.0	519458 519882	70.6	480542 480118	31399 94943 31427 94933	
20	497682	63.6	977419 977377	7.0	520305	70.5	479695	31427 94933	
21	9.498064	63.6	9.977835	7.0	9.520728	70.5	10.479272	31482 94915	
22	498444	63.5	977293	7.0	521151	70.4	478849	31510 94906	
23	498825	63.4	977251	7.0	521573	70.8	478427	31537 94897	
24	499204	63.4 63.3	977209	7.0	521995	70.3 70.3	478005	31565 94888	
25	499584	63.2	977167	7.0	522417	70.2	477583	31593 94878	
26	499963	63.2	977125	7.0	522838	70.2	477162	31620 94869	
27 28	500342 500721	63.1	977083 977041	7.0	523259 523680	70.1	476741 476320	31648 94860 31675 94851	
29	501099	63.1	976999	7.0	524100	70.1	475900	31703 94842	
80	501476	63.0	976957	7.0	524520	70.0	475480	31730 94832	
31	9.501854	62.9	9.976914	7.0	9.524939	69.9	10.475061	31758 94823	
32	502231	62.9 62.8	976872	7.0	525359	69.9 69.8	474641	31786 94814	28
83	502607	62.8	976830	7.1	525778	69.8	474222	31813 94805	
34 85	502984 503360	62.7	976787	7.1	526197 526615	69.7	473803 473385	31841 94795 31868 94786	
86	503735	62.6	976745 976702	7.1	527033	69.7	472967	31896 94777	
37	504110	62.6	976660	7.1	527451	69.6	472549	31923 94768	
88	504485	62.5	976617	7.1	527868	69.6	472132	31951 94758	
89	504860	62.5 62.4	976574	7.1	528285	69.5 69.5	471715	31979 94749	
40	505234	62.3	976532	7 1	528702	69.4	471298	32006 94740	
41	9.505608	62.3	9.976489	7.1	9.529119	69.3	10.470881	32034 94730	
42 43	505981 506354	62.2	976446 976404	7.1	529535 529950	69.3	470465 470050	32061 94721 32089 94712	18 17
44	506727	62.2	976361	7.1	530366	69.3	469634	32116 94702	
45	507099	62.1	976318	7.1	530781	69.2	469219	32144 94693	
46	507471	62.0	976275	7.1	531196	69.1	468804	32171 94684	14
47	607843	62.0 61.9	976232	7.2	531611	69.1 69.0	468389	32199 94674	
48	508214	61.9	976189	7.2	532025	69.0	467975	32227 94665	
49 50	508585	61.8	976146	7.2	532439	68.9	467561	32250 94656	
51	508956 9.509326	61.8	976103 9.976060	7.2	532853 9.533266	68.9	467147 10.466734	32282 94646 32309 94637	10 9
52	509696	61.7	976017	7.2	535679	68.8	466321	32337 94627	8
53	510065	61.6	975974	7.2	534092	68.8	465908	32364 94618	
54	510434	61.6	975930	7.2	534504	68.7	465496	32392 94609	
55	510803	61.5	975887	7.2	534916	68.7 68.6	465084	32419 94599	5
56	511172	61.4	975844	7.2	535328	68.6	464672	32447 94590	
57 58	511540	61.3	975800	7.2	535739	68.5	464261	32474 94580	3 2
59	511907 512275	61.3	975757 975714	7.2	536150 536561	68.5	463850 463439	32502 94571 32529 94561	1
60	512642	61.2	975670	7.2	536972	68.4	463028	32557 94552	
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine	1
	, Conne.		i sine.	' 	1 Degrees.	<u>'</u>	1 20118.	11. 008. 11.81110	<u>'—</u>

71 Degrees.

4	0	Lo	g. Sines an	d Tan	gents. (19) Na	tural Sines.	TABLE I	
 	Sine.	D. 10"	Comne.	D. 10°	Tang.	D. 10'	Cotang.	N. sine. N. cos.	
0	9.512642	22.0	9.975670	7.8	9.536972	68.4	10.463028	32557 94552	60
ĭ	513009	61.2 61.1	975627	7.3	537382	68.3	462618	32584 94542	59
2	513375	61.1	975583	7.8	537792	68.3	462208	32612 94533	58
8	513741	61.0	975539	7.8	538202 538611	68.2	461798 461389	32689 94523 32667 94514	57 56
4	514107 514472	60.9	975496 975452	7.8	539020	68.2	460980	32694 94504	55
5 6	514837	60.9	975408	7.3	539429	68.1	460571	32722 94495	54
7	515202	60.8 60.8	975365	7.3 7.8	539837	68.1 68.0	460163	32749 94485	53
8	515566	60.7	975321	7.3	540245	68.0	459755	32777 94476	52
9	515930	60.7	975277	7.8	540653 541061	67.9	459347 458939	32804 94466 32832 94457	51 50
10	516294 9.516657	60.6	975233 9.975189	7.3	9.541468	67.9	10.458532	32859 94447	49
11 12	517020	60.5	975145	7.8	541875	67.8	458125	32887 94438	48
13	517382	60.5	975101	7.3 7.3	542281	67.8 67.7	457719	32914 94428	47
14	517745	60.4 60.4	975057	7.3	542688	67.7	457312	32942 94418	46
15	518107	60.3	975013	7.8	543094 543499	67.6	456906 456501	32969 94409 32997 94399	45 44
16	518468	60.3	974969 974925	7.4	543995	67.6	456095	33024 94390	43
17 18	518829 519190	60.2	974880	7.4	544310	67.5	455690	33051 94380	42
19	519551	60.1	974836	7.4	544715	67.5 67.4	455285	33079 94370	41
20	519911	60.1	974792	7.4	545119	67.4	454881	33106 94361	40
	9.520271	60.0 60.0	9.974748	7.4	9.545524	67.8	10.454476	33134 94351 33161 94342	39 38
22	520631	59.9	974703	7.4	545928 546831	67.8	454072 453669	33189 94332	37
23 24	520990 521349	59.9	974659 974614	7.4	546735	67.2	453265	33216 94822	36
25	521707	59.8	974570	7.4	547138	67.2	452862	33244 94813	35
26	522066	59.8	974525	7.4	547540	67.1 67.1	452460	33271 94303	34
27	522424	59.7 59.6	974481	7.4	547943	67.0	452057	33298 94293	33 32
28	522781	59.6	974436	7.4	548345	67.0	451655 451253	33326 94284 33353 94274	31
29	523138 523495	59.5	974391 974347	7.4	548747 549149	66.9	450851	33381 94264	30
30 31	9.523852	59.5	9.974302	7.5	9.549550	66.9	10.450450	33408 94254	29
32	524208	59.4	974257	7.5	549951	66.8 66.8	450049	33436 94245	28
33	524564	59.4 59.3	974212	7.5	550352	66.7	449648	33463 94235	27 26
34	524920	59.3	974167	7.5	550752	66.7	449248 448848	33490 94225 33518 94215	25
85	525275	59.2	974122 974077	7.5	551152 551552	66.6	448448	33545 94206	24
36 37	525680 525984	59.1	974032	7.5	551952	66.6	448048	33573 94196	23
38	526339	59.1	973987	7.5	552351	66.5 66.5	447649	33600 94186	22
89	526693	59.0 59.0	973942	7.5	552750	66.5	447250	33627 94176	21
40	527046	58.9	973897	7.5	553149	66.4	446851 10.446452	33655 94167 33682 94157	20 19
	9.527400	58.9	9.973852	7.5	9.553548 553946	66.4	446054	33710 94147	18
42 43	527753 528105	58.8	973807 973761	7.5	554344	66.8	445656	33737 94137	17
44	528458	58.8	973716	7.5	554741	66.8	445259	33764 94127	16
45	528810	58.7	973671	7.6 7.6	555139	66.2 66.2	444861	33792 94118	15
46	529161	58.7 58.6	973625	7.6	555536	66.1	444464	33819 94108	14 13
47	529513	58.6	973580	7.6	555933 556329	66.1	444067 443671	33846 94098 33874 94088	12
48 49	529864 580215	58.5	973535 973489	7.6	556725	66.0	443275	33901 94078	11
50	530565	58.5	973444	7.6	557121	66.0	442879	33929 94068	10
	9.530915	58.4	9.973398	7.6	9.557517	65.9 65.9	10.442483	33956 94058	9
52	531265	58·4 58·3	973352	7.6	557913	65.9	442087	33983 94049	8 7
53	531614	58.2	973307	7.6	558308	65.8	441692 441298	34011 94039 34038 94029	6
54 55	531963 532312	58.2	973261 973215	7.6	558702 559097	65.8	440903	34065 94019	5
56	532661	58 - 1	973169	7.6	559491	65.7	440509	34093 94009	4
57	533009	58.1	973124	7.6	559885	65.7 65.6	440115	34120 93999	8
58	583357	58.0 58.0	973078	7.6	560279	65.6	439721	34147 93989	2
59	533704	57.9	973032	7.7	560673	65.5	439327 438934	34175 93979 34202 93969	0
60	534052		972986		561066			N. cos. N.sine.	-
II—	Cosine.	<u> </u>	Sine.		Cotang.	<u>'</u>	Tang.	11. CUS. N.BIDE.	
H				7	0 Degrees.				

	TABLE II.		Log. Sines	and To	ingents. (2	00°) N	atural Sines		4	1
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	<u> </u>
0	9.584052		9.972986		9.561066		10.438934	34202	93969	60
ll ĭ	534399	57.8	972940	7.7	561459	65.5	438541	34229	93959	59
2	534745	57.7 57.7	972894	7.7	561851	65.4 65.4	438149	34257		58
8	535092	57.7	972848	7.7	562244	65.3	437756	34284		57
4	535438	57.6	972802	7.7	562636	65.3	437364	34311		56
5	535783 536129	57.6	972755 972709	7.7	563028 563419	65.3	436972 436581	34339 34366		55 54
6 7	536474	57.5	972663	7.7	563811	65.2	436189	34393		58
8	536818	57.4	972617	7.7	564202	65.2	435798	84421		52
9	537163	57.4	972570	7.7	564592	65.1	435408	34448		51
10	537507	57.3 57.3	972524	77	564983	65.1 65.0	435017	34475		50
11	9.537851	57.2	9.972478	7.7	9.565378	65.0	10.434627	34503		49
12	538194	57.2	972431	7.8	565763	64.9	434237	34530		48
18	538538	57.1	972385	7.8	566153	64.9	433847	34557		47 46
14 15	538880 539223	57.1	972338 972291	7.8	566542 566932	64.9	433458 433068	34584 34612		45
16	539565	57.0	972245	7.8	567320	64.8	432680	34639		44
17	539907	57.0	972198	7.8	567709	64.8	432291	34666		43
18	540249	56.9 56.9	972151	7.8	568098	64.7 64.7	431902	34694		42
19	540590	56.8	972105	7.8	568486	64.6	431514	34721		41
20	540931 9.541272	56.8	972058	7.8	568878	64.6	481127	34748 34775		40 39
21 22	541613	56.7	9.972011 971964	7.8	9.569261 569648	64.5	10.480789 430352	34803		38
28	541953	56.7	971917	7.8	570035	64.5	429965	34830		37
24	542293	56.6	971870	7.8	570422	64.5	429578	34857		36
25	542632	56.6 56.5	971823	7.8	570809	64.4 64.4	429191	34884		35
26	542971	56.5	971776	7.8	571195	64.3	428805	34912		34
27	543310	56.4	971729	7.9	571581	64.3	428419	34989		33
28 29	543649 543987	56.4	971682 971635	7.9	571967 572352	64.2	428033 427648	34966 34993		32 31
30	544325	56.3	971588	7.9	572738	64.2	427262	35021		30
81	9.544663	56.3	9.971540	7.9	9.573128	64.2	10.426877	35048		29
32	545000	56.2 56.2	971493	7.9	573507	64.1 64.1	426493	35075		28
83	545338	56.1	971446	7.9	573892	64.0	426108	35102		27
84	545674	56.1	971398	7.9	574276	64.0	425724	35130		26 25
85 36	546011 546347	56.0	971351 971308	7.9	574660 575044	63.9	425340 424956	35157 35184		24
37	546683	56.0	971256	7.9	575427	63.9	424573	35211		23
88	547019	55.9	971208	7.9	575810	63.9	424190	35239		22
89	547354	55.9 55.8	971161	7.9	576193	63.8 63.8	423807	35266		21
40	547689	55.8	971113	7.9	576576	63.7	423424	35293		20
41	9.548024	55.7	9.971066	8.0	9.576958	63.7	10.423041	35320		19
42 43	548359 548693	55.7	971018 970970	8.0	577341 577723	63.6	422659 422277	35347 35375		18 17
44	549027	55.6	970922	8.0	578104	63.6	421896	35402		16
45	549360	55.6	970874	8.0	578486	63.6	421514	35429		15
46	549693	55.5 55.5	970827	8.0	578867	63.5 63.5	421133	35456	93503	14
47	550026	55.4	970779	8.0	579248	63.4	. 420752	35484		13
48	550359	55.4	970731	8.0	579629	63.4	420371	35511		12
49	550692 551024	55.3	970683 970635	8.0	580009 580389	63.4	419991 419611	35538 35565		11 10
50 51	9.551356	55.3	9,970586	8.0	9.580769	63.3	10.419231	35592		9
52	551687	55.2	970538	8.0	581149	63.3	418851	35619		8
53	552018	55.2	970490	8.0	581528	63.2	418472	35647	93431	7
54	552349	55.2 55.1	970442	8.0	581907	63.2 63.2	418093	35674	93420	6
55	552680	55.1	970394	8.0	582286	63.1	417714	35701		5
56	553010	55.0	970345	8.1	582665	63.1	417835	35728		4 3
57 58	553341 553670	55.0	970297 970249	8.1	583043 583422	63.0	416957 416578	35755 35782		2
59	554000	54.9	970200	8.1	583800	68.0	416200	35810		1
60	554329	54.9	970152	8.1	584177	62.9	415823	35837		ō
	Cosine.		Sine.		Cotang.		Tang.		N.sine.	-
II			·		9 Degrees.					
ــــــــــــــــــــــــــــــــــــــ					- 2081000.					_

4	2	Lo	g. Sines an	d Tan	gents. (21	°) Na	tural Sines.	TABLE I	L.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
0	9.554329	54.8	9.970152	8.1	9.584177	62.9	10.415823	35837 93358	60
1	654658	54.8	970103	8.1	584555	62.9	415445	35864 93348	59
2	554987	54.7	970055	8.1	584932 585309	62.8	415068 414691	35891 93387 35918 93327	58 57
8	555315 556643	54.7	970006 969957	8.1	585686	62.8	414314	35945 93316	56
5	555971	54.6	969909	8.1	586062	62.7 62.7	413938	35978 93306	56
6	556299	54.6 54.5	969860	8.1 8.1	586439	62.7	413561	36000 93295	54
7	556626	54.5	969811	8.1	586815	62.6	413185 412810	36027 93285 36054 93274	53 52
8	556953 557280	54.4	969762 969714	8.1	587190 587566	62.6	412434	36081 93264	51
10	557606	54.4	969665	8.1	587941	62.5	412059	36108 93253	50
11	9.557932	54.3 54.3	9.969616	8.1 8.2	9.588316	62.5 62.5	10.411684	36135 93243	49
12	558258	54.8	969567	8.2	588691	62.4	411309	36162 93282	48 47
13	558583	54.2	969518 969469	8.2	589056 589440	62.4	410934 410560	36190 93222 36217 93211	46
14 15	558909 559234	54.2	969420	8.2	589814	62.3	410186	36244 93201	45
16	559558	54.1	969370	8.2 8.2	590188	62.3 62.3	409812	36271 93190	44
17	559883	54.1 54.0	969321	8.2	590562	62.2	409438	36298 93180	43
18	560207	54.0	969272	8.2	590935 591308	62.2	409065 408692	36325 93169 36352 93159	42
19 20	560531 560855	53,9	969223 969173	8.2	591681	62.2	408319	36379 93148	40
	9.561178	53.9	9.969124	8.2	9.592054	62.1 62.1	10.407946	36406 93137	39
22	561501	53.8 53.8	969075	$\begin{array}{c} 8.2 \\ 8.2 \end{array}$	592426	62.0	407574	36434 98127	38
28	561824	53.7	969025	8.2	592798	62.0	407202 406829	36461 33116 36488 93106	37 36
24 25	562146 562468	53.7	968976 968926	8.2	593170 593542	61.9	406458	36515 93095	35
26	562790	53.6	968877	8.8	593914	61.9	406086	36542 93084	84
27	563112	53.6 53.6	968827	8.3 8.3	594285	61.8 61.8	405715	36569 93074	33
28	563433	53.5	968777	8.3	594656	61.8	405344	36596 93063	32
29	563755	53.5	968728	8.3	595027 595398	61.7	404973 404602	36623 93052 36650 93042	31 30
30 31	564075 9.564396	53,4	968678 9.968628	8.3	9.595768	61.7	10.404232	36677 93031	29
82	564716	00.4	968578	8.8	596138	61.7	403862	36704 93020	28
33	565036	53.3 53.3	968528	8.3 8.3	596508	61.6	403492	36731 93010	27
34	565356	53.2	968479	8.3	596878	61.6	403122 402753	36758 92999 36785 92988	26 25
35 36	565676 565995	53.2	968429 968379	8.3	597247 597616	61.5	402384	36812 92978	24
37	566314	53.1	968329	8.8	597985	61.5	402015	36839 92967	23
38	566632	53.1 53.1	968278	8.3 8.3	598354	61.5 61.4	401646	36867 92956	22
39	566951	53.0	968228	8.4	598722	61.4	401278	36894 92945 36921 92935	21 20
40 41	567269 9.567587	53.0	968178 9.968128	8.4	599091 9.599459	61.3	400909 10.400541	36948 92926	19
42	567904	52.9	968078	8.4	599827	61.8	400173	36975 92913	18
43	568222	52.9 52.8	968027	8.4 8.4	600194	61.3	399806	37002 92902	17
44	568539	52.8	967977	8.4	600562	61.2	399438	37029 92892	16
45 46	568856 569172	52.8	967927 967876	8.4	600929 601296	61.1	399071 398704	37056 92881 37083 32870	15 14
47	569488	52.7	967826	8.4	601662	61.1	398338	37110 92859	13
48	569804	52.7 52.6	967775	8.4 8.4	602029	61.1 61.0	397971	37137 92849	12
49	570120	52.6	967725	8.4	602395	61.0	397605	37164 92838	11
50 51	570435	52.5	967674 9.967624	8.4	602761 9.603127	61.0	397239 10.396873	37191 92827 37218 92816	10 9
52	9.570751 571066	52.5	967573	8.4	603493	60.9	396507	37245 92805	8
53	571380	52.4	967522	8.4 8.5	603858	60.9 60.9	396142	37272 92794	7
54	571695	52.4 52.3	967471	8.5	604223	60.8	395777	37299 92784	6
55 56	572009	52.3	967421	8.5	604588 604953	60.8	395412 395047	37326 92773 37353 92762	5 4
57	572323 572636	52.3	967370 967319	8.5	605317	60.7	394683	37380 92751	8
58	572950	52.2	967268	8.5	605682	60.7 60.7	394318	37407 92740	2
59	573263	52.2 52.1	967217	8.5 8.5	606046	60.6	393954	37434 92729	1
60	573575	J. 1	967166		606410		393590	37461 92718	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	二
[]				-	68 Degrees.				- 1

.

7	ABLE II.	3	og. Sines s	and Te	ngents. (2	9°) N	atural Sines.		43
\Box	Sine.	D. 10	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9.573575	52.1	9.967166	8.5	9.696410	60.6	10.393590	37461 92718	60
1	573888 574200	52.0	967115 967064	8.5	606773 607137	60.6	398227 392863	37488 92707	59
2	574512	52.0	967013	8.5	607500	60.5	392500	37515 92697 37542 92686	58 57
4	574824	51.9	966961	8.5	607863	60.5	392137	37569 92675	56
5	575136	51.9 51.9	966910	8.5	608225	60.4	891775	37595 92664	55
6	575447 575758	51.8	966859 966808	8.5	608588 608950	60.4	891412 891050	37622 92653 37649 92642	54
8	5760 69	51.8	966756	8.5	609312	60.3	890688	37649 92642 37676 92631	53 52
9	576379	51.7	966705	8.6	609674	60.3	890326	37703 92620	51
10	576689	51.7 51.6	966653	8.6 8.6	610036	60.3 60.2	889964	37730 92609	50
11	9.576999	51.6	9.966602	8,6	9.619397	60.2	10.389603	37757 92598	49
12 13	5773 9 9 577618	51.6	966550 966499	8.6	610759 611120	60.2	389241 388880	37784 92587 37811 92576	48
14	577927	51.5	966447	8.6	611480	60.1	888520	37838 92565	46
15	578236	51.5 51.4	966395	8.6 8.6	611841	60.1 60.1	888159	37865 92554	45
16	578545	51.4	966344	8.6	612201	60.0	387799	37892 92543	44
17 18	578853 579162	51.3	966292 966240	8.6	612561 612921	60.0	387439 387079	37919 92532 37946 92521	43
19	579470	51.3	966188	8.6	613281	60.0	386719	37973 92510	41
20	579777	51.3 51.2	966136	8.6 8.6	613641	59.9 59.9	386359	37999 92499	40
21	9.580085	51.2	9.966085	8.7	9.614000	59.8	10.886000	38026 92488	
22 23	580392 580699	51.1	966033 965981	8.7	614359 614718	59.8	385641 885282	38053 92477 38 0 80 92466	38
24	581005	51.1	965928	8.7	615077	59.8	884923	38107 92455	
25	581312	51.1 51.0	965876	8.7 8.7	615435	59.7 59.7	384565	38134 92444	35
26	581618	51.0	965824	8.7	615793	59.7	384207	38161 92432	
27 28	581924 582229	50.9	965772	8.7	616151 616509	59.6	383849 383491	38188 92421 38215 92410	33
29	582535	50.9	965720 965668	8.7	616867	69.6	383133	38241 92399	
30	582840	50.9 50.8	965615	8.7 8.7	617224	59.6	882776	38268 92388	
	9.583145	50.8	9.965563	8.7	9.617582	59.5	10.382418	38295 92377	29
32 33	583449 583754	50.7	965511	8.7	617939 618295	59.5	382061 381705	38322 92366	28
34	584958	50.7	965458 965406	8.7	618652	59.4	381348	38349 92355 38376 92343	27 26
35	584361	50.6	965353	8.7	619008	59.4	880992	38403 92332	
86	584665	50.6 50.6	965301	8.8	619364	59.4 59.8	380 636	38430 92321	24
37	584968	50.5	965248	8.8	619721	69.3	380279	38456 92310	
38 39	585272 585574	50.5	965195 965143	8.8	620076 620432	59.8	379924 379568	38483 922 99 38510 92287	
40	585877	50.4	965090	8.8	620787	59.2	379213	38537 92276	
41	9.586179	50.4 50.3	9.965037	8.8	9.621142	59.2 59.2	10.378858	38564 92265	19
42	586482	50.3	964984	8.8	621497	59.1	878503	38591 92254	
43 44	586783 587085	50.3	964931 964879	8.8	621852 622207	59.1	378148 377793	38617 92243 38644 92231	17
45	587386	50.2	964826	8.8	622561	59.0	377439	38671 92220	16 15
46	587688	50.2 50.1	964773	8.8	622915	59.0 59.0	877085	38698 92209	14
47	587989	50.1	964719	8.8	623269	58.9	876731	38725 92198	13
48 49	588289 588590	50.1	964666	8.9	623623 623976	58.9	376377	38752 92186	12
50	588890	50.0	964613 964560	8.9	624330	58.9	876024 875670	38778 92175 38805 92164	11 10
51	9.589190	50.0	9.964507	8.9	9.624683	58.8	10.375317	38832 92152	9
52	589489	49.9 49.9	964454	8.9 8.9	625036	58.8 58.8	374964	38859 92141	8
53 54	589789 590088	49.9	964400 964347	8.9	625388 625741	58.7	874612	38886 92180	7
55	590387	49.8	964347	8.9	626093	58.7	374259 873907	38912 92119 38939 92107	6
56	590686	49.8	964240	8.9	626445	58.7	378555	38966 92096	4
57	590984	49.7 49.7	964187	8.9 8.9	626797	58.6 58.6	873203	38993 92085	8
58	591282	49.7	964133	8.9	627149	58.6	872851	39020 92078	2
59 60	591580 591878	49.6	964080 964026	8.9	627501 627852	58.5	872499 872148	39046 92062	0
	Cosine.		804020 Sine.		Cotang.			89073 92050	10
-	COSITIE.	L	, sine.				Tang.	N. cos. N.sine.	-
					7 Degrees.				

Column	0 60 9 59 8 58 6 57 5 56 4 55 2 54 1 58 9 52 8 51							
0 J.591878	0 60 9 59 8 58 6 57 5 56 4 55 2 54 1 58 9 52 8 51							
1 592176 49.5 963972 8.9 628203 85.5 371797 89100 320; 2 592470 49.5 963919 8.9 628564 58.5 371446 39127 320; 3 592770 49.5 963811 9.0 628905 58.4 371095 39153 3215 320; 4 593037 49.4 963767 9.0 629265 58.4 370394 39207 919 6 593659 49.4 963704 9.0 629666 58.3 370044 39220 919 7 593955 49.3 963560 9.0 630366 58.3 3698644 39260 919 8 594251 49.3 963569 9.0 630666 58.3 369844 39267 919 8 59457 49.3 963569 9.0 630666 58.3 369844 39267 919 8 59457 49.3 963569 9.0 630666 58.3 369844 39260 919 8 59457 49.3 963569 9.0 630666 58.3 369844 39287 919	9 59 8 58 6 57 5 56 4 55 2 54 1 58 9 52 8 51							
1 592473 49.5 963919 8.9 628245 58.5 371197 39100129205 2 592473 49.5 963865 8.9 628245 58.5 371095 39153 9201 4 593037 49.5 963811 9.0 629255 58.4 370745 39180 9204 5 5936363 49.4 963767 9.0 629606 58.3 370344 39207 919 6 593659 49.3 963650 9.0 630366 58.3 369694 39260 919 7 593955 49.3 963650 9.0 630366 58.3 369844 39287 919 8 594251 49.3 963569 9.0 630666 58.3 369844 39287 919 8 594251 49.3 963569 9.0 630666 58.3 369844 39287 919	8 58 6 57 5 56 4 55 2 54 1 58 9 52 8 51							
8 592770 49.5 963865 8.9 628905 68.4 371095 39153 9201 4 593067 49.4 963757 9.0 629255 68.4 370745 39180 9201 5 593659 49.4 963767 9.0 629906 58.3 370394 39207 9192 6 593659 49.3 963650 9.0 630306 58.3 369694 39260 9197 8 594251 49.3 963560 9.0 630666 58.3 369844 39287 9197 8 594251 49.3 963560 9.0 630666 58.3 369844 39287 9197 8 594251 49.3 963560 9.0 630666 58.3 369844 39287 9197 9 500567 9.0 630666 58.3 369846 39287 9198 9 650567 9.0 630666 58.3 369846 39287 9198 9 8 963650 9.0 630666 58.3 369846 39287 9198 9 8 963650 9.0 630666 58.3 369846 392	6 57 5 56 4 55 2 54 1 58 9 52 8 51							
4 593037 49-4 963811 9.0 629255 68.4 870745 39180 9206 65 593659 49.4 963767 9.0 629606 58.8 370394 39207 9198 67 593659 49.3 963650 9.0 630366 58.3 370044 89234 9198 67 593955 49.3 963650 9.0 630366 58.3 368694 39226 9197 88 594251 49.3 963546 9.0 630366 58.3 368694 39226 9197 88 594251 9198 9287 9198 9287 9198 9287 9198 93287 9188 93287 9198 93287 9188 93287 9198 93287 9198 93287 9198 93287 9198 93287 9198 93287	5 56 4 55 2 54 1 58 9 52 8 51							
5 593363 49.4 963767 9.0 629606 60.4 870394 89207 9195 6 593659 49.4 963767 9.0 629666 58.3 370044 39224 9195 7 593956 49.3 963650 9.0 630306 58.3 369804 3922619197 8 594251 49.3 963596 9.0 630666 58.3 369844 3922619197 8 59457 49.3 963596 9.0 630666 58.3 369844 3922619197 8 59457 49.3 963596 9.0 630466 58.3 369844 3922619197	2 54 1 58 9 52 8 51							
7 593955 49.8 963650 9.0 630306 58.8 369694 39260 9197 8 594251 49.8 963650 9.0 630306 58.8 369694 39260 9197 8 594251 49.8 963596 9.0 630666 58.8 369844 39287 9198	1 58 9 52 8 51							
8 594251 49.3 963596 9.0 630656 58.3 869844 39287 9196	9 52 8 51							
6 ED4E47 43.0 DESEAS 3.0 COLUME 30.0 GOODE 300014 0104	8 51							
9 594547 49.2 968542 9.0 631005 58.2 368995 39314 9194	6 50							
10 094542 49.2 905488 9.0 051800 58.2 808040 39341 9193								
11 9.595137 49.1 9.953434 9.0 9.551704 58.2 10.305290 39307 9197								
10 FORTOT 49.1 00000 9.0 00001 00.1 007500 00401 0100								
14 593021 49.1 963271 9.0 632750 58.1 867250 39448 9189	1 46							
15 590310 40 0 963217 9 0 633090 58 0 300902 89474 9187								
10 030003 48.9 903103 9.0 033441 58.0 300033 3000 913100								
10 507106 40.9 069064 9.1 694149 00.0 366867 90665 3194								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 41							
20 097700 40 0 902945 0 1 004500 E7 0 000102 00009182	2 40							
21 9.590075 48.7 9.902090 9.1 9.000100 57.8 10.004010 30000 9101								
00 800000 40.7 000001 9.1 00000 01.0 004101 00000 0100								
24 598952 48.6 962727 9.1 636226 57.7 863774 39715 9177								
20 099244 _{AR 6} 902072 _{0.1} 000072 _{67.7} 000425 39741 9170								
20 59900 48.5 902017 9.1 697065 57.7 969795 90705 0174								
00 600119 48.5 00000 9.1 001200 57.7 002100 00100 0114								
29 600109 48 4 962453 9 1 637956 57 6 362044 39848 9171	3 31							
30 600700 48 4 962398 9 2 638302 57 6 861698 89875 9170	3 30							
31 9.600990 48.4 9.962343 9.2 9.638647 57.5 10.361363 39902 9169								
32 001200 48.8 902208 9.9 000932 57.5 001000 33520 9100								
33 601670 48.8 962233 9.2 639337 57.5 360663 39955 9167 8 601860 48.2 962178 9.2 639682 57.4 360918 39982 9166 9167 9167 9167 9167 9167 9167 9167								
85 002100 48 9 902123 9 9 040027 57 4 000010 40000 9104								
36 002439 48.2 962067 9.2 640371 57.4 309029 40030 9163								
00 602017 48.1 061057 9.2 641060 57.8 959040 400990161								
39 603305 48.1 961902 9.2 641000 57.3 358596 40115 9160								
40 000034 40 U 301040 0 U 041141 K7 U 000509 40141 3108								
41 9.003002 48.0 9.901791 9.2 9.042091 57.2 10.007909 40108 9157	19							
42 00110 47.9 501700 9.2 02202 57.2 00000 40130 5130								
44 604745 47 9 961624 9.2 643120 57 1 356880 40248 9154	16							
45 605032 47.8 961569 0.3 643463 57.1 856537 40275 9153								
46 003019 47.8 901013 9.3 040000 57.1 050194 40301 9101								
40 605000 47.8 901400 9.8 644400 57.0 955510 40055 01400								
49 606179 47 7 961346 9 644832 57 0 855168 40381 9148	11							
00 003400 47 6 901290 0 2 040174 56 0 004020 40408 9147	10							
51 9.000701 47.6 9.901200 9.8 9.040010 56.9 10.304404 40464 9140								
EN COTORD 41.0 DELLOS 5.0 CARLON 00.5 SERRAL ANADERIA								
54 607607 47.5 961067 9.3 646540 56.8 353460 40514 9142	6							
05 60/892 47 4 961011 6 646881 26 6 358119 40641 9141								
00 003171 47.4 900900 9.8 047222 56.8 052770 4000791407								
EQ . 600745 41.4 060049 9.3 647009 00.7 950007 40601 0197	2							
59 609029 47.8 960786 9.4 648243 56.7 851757 40647 91366	1							
60 609818 930780 648583 881417 40674 9186	.							
Cosine. Sine. Cotang. Tang. N. cos. N.sin	1							
66 Degrees.								

2	TABLE II. Log. Sines and Tangents. (24°) Natural Sines. 45								
7	Sine.	D. 10"	Cosine.	D. 10'	Tang.	D. 10'	Cotang.	N. sine. N. cos.	
0	9.609313	47.3	9.960730	9.4	9.648583	56.6	10.351417	40674 91355	60
1	609597	47.2	960674	9.4	648923	56.6	351077	40700 91343	59 58
2	609880	47.2	960618	9.4	649263 649602	56.6	350737 350398	40727 91331 40753 91319	57
3 4	610164 610447	47.2	960561 960505	9.4	649942	56 6	350058	40780 91307	56
5	610729	47.1	960448	9.4	650281	56.5	349719	40806 91295	55
6	611012	47.1 47.0	960392	9.4	650620	56.5 59.5	349380	40833 91283	54
7	611294	47.0	960335	9.4	650959	56.4	349041	40860 91272 40886 91260	58 52
8	611576 611858	47.0	960279 960222	9.4	651297 651636	56.4	348703 348364	40913 91248	51
10	612140	46.9	960165	9.4	651974	56.4	848026	40939 91236	50
	9.612421	46.9 46.9	9.960109	9.4 9.5	9.652312	56.3 56.3	10.347688	40966 91224	49
12	612702	46.8	960052	9.5	652650	56.3	347350	40992 91212	48
13	612983	46.8	959995	9.5	652988 653326	56.3	847012 846674	41019 91200 41045 91188	46
14 15	613264 613545	46.7	959938 959882	9.5	653663	56.2	346337	41072 91176	45
16	613825	46.7	959825	9.5	654000	56.2	346000	41098 91164	44
17	614105	46.7 46.6	959768	9.5	654337	56.2 56.1	345663	41125 91152	43
18	614385	46.6	959711	9.5	654174	56.1	845326	41151 91140	42 41
19	614665	46.6	959654 959596	9.5	655011 655348	56.1	844989 344652	41178 91128 41204 91116	40
20 21	614944 9.615223	46.5	9.959539	9.5	9.655684	56.1	10.344316	41231 91104	39
22	615502	46.5	959482	9.5	656020	56.0	843980	41257 91092	38
23	615781	46.5 46.4	959425	9.5	656356	56.0 56.0	343644	41284 91080	37
24	616060	46.4	959368	9.5	656692	55.9	343308	41310 91068	36 35
25	616338	46.4	959310	9.6	657028	55.9	342972 342636	41337 91056 41363 91044	34
26 27	616616 616894	46.3	959253 959195	9.6	657364 657699	55.9	342301	41390 91032	33
28	617172	46.8	959138	9.6	658034	55.9	341966	41416 91020	82
29	617450	46.2	959081	9.6	658369	55.8	341631	41443 91008	31
30	617727	46.2 46.2	959023	9.6 9.6	658704	55.8 55.8	341296	41469 90996	80
81	9.618004	46.1	9.958965	9.6	9.659039	55.8	10.340961 340627	41496 90984 41522 90972	29 28
82 83	618281	46.1	958908 958850	9.6	659373 659708	55.7	340027	41549 90960	27
34	618558 618834	46.1	958792	9.6	660042	55.7	339958	41575 90948	26
35	619110	46.0	958784	9.6	660376	55.7	339624	41602 90936	25
36	619386	46.0 46.0	958577	9.6	660710	55.7 55.6	339290	41628 90924	24
87	619662	45.9	958619	9.6	661043	55.6	338957	41655 90911 41681 90899	23 22
38	619938	45.9	958561	9.6	661377 661710	55.6	338623 338290	41707 90887	21
39 40	620213 620488	45.9	958503 958445	9.7	662043	55.5	337957	41734 90875	20
	9.620763	45.8	9.958387	9.7	9.662376	55.5	10.337624	41760 90863	19
42	621038	45.8 45.7	958329	9.7	662709	55.5	887291	41787 90851	18
43	621313	45.7	958271	9.7	663042	55.4	336958	41813 90839	17 16
44	621587	45.7	958213	9.7	663375 663707	55.4	336625 336293	41840 90826 41866 90814	15
45 46	621861 622135	45.6	958154 958096	9.7	664039	55.4	835961	41892 90802	14
47	622409	45.6	958038	9.7	664371	55.3	835629	41919 90790	13
48	622682	45.6 45.5	957979	9.7	664703	55.3	835297	41945 90778	12
49	622956	45.5	957921	9.7	665035	55.3	334965	41972 90766	11 10
50	623229	45.5	957863	9.7	665366	55.2	334634 10.334303	41998 90753 42024 90741	9
51 52	9.623512 623774	45.4	9.957804 957746	9.7	9.665697 666029	55.2	333971	42051 90729	8
53	624047	45.4	957687	9.8	666360	55.2	833620	42077 90717	7
54	624319	45.4 45.3	957628	9.8	666691	55.1 55.1	333309	42104 90704	6
55	624591	45.3	957570	9.8	667021	55.1	332979	42130 90692	5
56 57	624863	46.3	957511 957452	9.8	667352 667682	55.1	332648 332318	42156 90680 42183 90668	3
58	625135 625406	45.2	957393	9.8	668013	55.0	331987	42209 90655	2
59	625677	45.2	957835	9.8	668343	55.0	331657	42285 90643	1
60	625948	45.2	957276	9.8	668672	55.0	331328	42262 90631	0
_	Cosine.	l	Sine.		Cotang.		Tang.	N. cos. N.sine.	二
	65 Degrees.								

.

	46 Log. Since and Tangents. (25°) Natural Since. TABLE II.									
1 692919 46.1 987158 9.8 669302 54.9 330398 4228819063 56 23 692670 45.1 987158 9.8 669361 54.9 330309 4234190594 57 6 567300 45.0 987040 9.8 669361 54.9 330309 4234190594 57 6 567300 45.0 987040 9.8 66931 54.9 330309 4234190595 56 6 673670 44.9 966921 9.9 670927 54.8 329351 42420190557 54 8 828109 44.9 966921 9.9 670927 54.8 329351 42440190557 54 8 828109 44.9 966930 9.9 670927 54.8 329604 42473190532 57 6 6 628647 44.8 966849 9.9 671634 64.7 328366 4243919053 51 10 628647 44.8 966864 9.9 671634 64.7 328366 4249919050 51 19 629155 44.7 966566 9.9 672947 54.6 327053 11 6 63247 44.9 966950 9.9 672947 54.6 327053 11 6 632959 44.9 966864 9.9 672947 54.6 327053 11 6 63024 44.6 966327 9.9 673294 54.6 326726 42631190458 46 15 63026 44.6 966327 9.9 673295 54.5 32071 4255190440 42 54 54 54 54 54 54 54 54 54 54 54 54 54	7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
1 0 20219 45.1 957158 9.8 669831 4.9 330368 42315 9906 58 8 3 8 026760 45.0 957040 9.8 669861 54.9 330369 42341 990542 56 66 27300 45.0 956921 9.8 669961 54.8 330968 42341 990542 57 627340 44.9 956892 9.9 670649 54.8 330968 42341 990542 57 627340 44.9 956892 9.9 671064 54.8 329060 42367 990552 56 8 28210 44.9 956892 9.9 671364 54.7 328067 44.8 95684 9.9 671364 54.7 328067 44.8 95684 9.9 671363 54.7 328067 44.6 956866 9.9 672947 54.6 32924 44.8 95686 9.9 9 672347 54.6 32925 90057 54 42429 90452 54 42439 90452 54 44 593453 54 4.7 956666 9.9 672947 54.6 32768 54 44.6 956327 9.9 673247 54.6 32672 54 42449 90452 54 44.1 956644 7.9 966327 9.9 673247 54.6 32672 54 44.6 956327 9.9 673247 54.6 32672 54 44.6 956327 9.9 673247 54.5 325416 424949 90458 54 54 59 56029 10.0 675237 54.5 54 54 54 54 54 54 54 54 54 54 54 54 54	0	9.625948	48 1	9.957276	0.0	9,668673	KK 0	10.831327	42262 90681	60
2 020499 45.1 957099 9.8 669661 54.9 330009 42367 90562 56 6 627570 45.0 956981 9.8 670849 54.8 329351 4242090557 54 6 627570 45.0 956981 9.8 670849 54.8 329351 4242090557 54 8 628109 44.9 956862 9.9 670849 54.8 329351 4242090557 54 6 628109 44.9 956862 9.9 671306 54.7 328366 4249990520 51 10 628647 44.8 956862 9.9 671306 54.7 328366 4249990520 51 10 628647 44.8 956666 9.9 673619 54.7 328366 4249990520 51 11 9.628916 44.7 956666 9.9 672391 54.7 10.327709 4255290507 50 11 628947 44.8 956666 9.9 672391 54.7 10.327709 4255290507 50 11 628947 44.6 956327 9.9 673947 54.6 327653 426090470 47 47 658054 44.6 956327 9.9 673902 54.6 32763 426090470 47 640004 44.6 956327 9.9 673902 54.6 326004 44.6 956327 9.9 673902 54.6 326004 44.6 956327 9.9 673902 54.6 326004 44.6 956327 9.9 673902 54.6 326004 44.6 956327 9.9 673902 54.6 326004 44.6 956327 9.9 673902 54.6 326001 44.6 956327 9.9 673902 54.6 326001 44.6 956327 9.9 673902 54.6 326001 44.6 956327 9.9 673902 54.6 326001 44.6 956327 9.9 673902 54.6 326001 44.6 956327 9.9 9 673902 54.6 326001 44.6 956327 9.9 673902 54.6 326001 44.6 956328 9.9 674257 54.5 325743 42709 90421 43 325004 44.6 956324 44.6 956328 9.9 674257 54.5 325743 42709 90421 43 325004 44.6 956324 44.6 956328 9.9 674525 54.5 325743 42709 90421 43 325004 44.5 956609 10.0 674504 54.4 324763 42763 90484 42 325604 44.1 956500 10.0 674504 54.4 324419 30583 44.2 956509 10.0 676504 54.4 324419 30583 34 32410 42841										
5 627300 45.0 956921 9.8 66991 54.8 329680 42394 90669 56 66 627570 44.9 956892 9.9 670977 64.8 329951 42449]90567 64 66 627570 44.9 956892 9.9 670977 64.8 329951 42449]90567 64 67 628378 44.9 956684 9.9 671804 54.7 328864 424973]9052 61 628378 44.9 956684 9.9 671804 54.7 328864 424973]9052 61 628378 44.9 956684 9.9 671804 54.7 328864 424973]9052 61 628378 44.7 956569 9.9 672901 54.7 327381 42578]90483 48 329968 44.7 956569 9.9 672901 54.7 327381 42578]90483 48 32968 44.6 956387 9.9 673907 54.6 326726 4963]90483 48 32968 44.6 956387 9.9 673907 54.6 326726 4963]90483 48 32968 44.6 956387 9.9 673907 54.6 326726 4963]90483 48 32968 44.6 956387 9.9 673907 54.6 326726 4963]90483 48 32968 44.6 956387 9.9 673907 54.6 326726 4963]90483 48 32968 44.6 956387 9.9 673907 54.6 326726 4963]90483 44 32968 44.6 956387 9.9 673907 54.6 326726 4963]90484 45 32668 9.9 674867 54.5 326071 42683]90483 44 329 956684 9.9 674867 54.5 326416 42736]90484 45 326686 9.9 674867 54.5 325416 42736]90484 45 32668 44.5 956908 10.0 675690 54.4 324763 42786]90484 42 32 631839 44.5 956969 10.0 675690 54.4 324763 42786]90484 42 32 631839 44.2 956569 10.0 675690 54.4 324763 42819]9071 32 32 631834 44.2 956569 10.0 676616 54.3 323764 42867]90384 41.9 956568 10.0 676616 54.3 323764 42867]90384 41.9 956686 10.1 676869 54.4 324763 42819]9071 32 32 633454 44.2 956569 10.0 676869 54.4 324110 42841]9038 38 32 633244 44.2 956569 10.0 676869 54.4 324110 42841]9038 38 34 32469 34.4 956969 10.0 676864 54.1 32446 44.1 956586 10.1 676976 54.1 3292806 444894990884 32 32 633454 44.2 956560 10.0 676869 54.4 324110 42841]9038 38 32469 34.4 956669 10.0 676869 54.4 324110 42841]9038 38 34 34 39 956664 10.1 680769 54.4 324110 42841]9038 38 34 34 39 956664 10.1 680769 54.4 324110 42841]9038 38 34 34 39 956664 10.1 680769 54.4 324110 42841]9038 38 38 64844 41.9 956569 10.0 676869 54.4 324110 42841]9038 38 38 64844 41.9 956569 10.0 676869 54.4 324110 42841]9038 38 38 64844 41.9 956569 10.0 676869 54.4 324110 42841]9038 38 34 34 34 34 34 34 34 34 34 34 34 34 34										
6 627300 45.0 956921 9.9 670827 54.8 329620 42446 90545 53 8 628109 44.9 956862 9.9 670877 54.8 329623 42446 90545 53 8 628109 44.9 956862 9.9 671306 54.7 328664 42473 905622 52 956624 9.9 671306 54.7 328664 42473 905622 52 956624 9.9 671803 54.7 328664 42473 905625 9.9 672874 54.6 629453 44.7 956566 9.9 672874 54.6 329453 44.7 9565606 9.9 672874 54.6 326726 44.6 956327 9.9 6732874 54.6 326726 44.6 956327 9.9 6732874 54.6 326726 42631 90458 44.6 956327 9.9 6732874 54.6 326726 42631 90458 45.1 630267 44.6 956327 9.9 6732874 54.6 326726 42631 90458 45.1 630267 44.6 956328 9.9 673267 54.5 4.5 326726 42631 90458 45.1 630267 44.6 956328 9.9 673267 54.5 4.5 326726 42631 90458 45.1 630267 44.6 956328 9.9 673267 54.5 4.5 326726 42631 90458 45.1 956326 9.9 673267 54.5 54.5 326743 42709 90421 43.2 54614 54736 90.0 67326 44.5 956328 9.9 67326 44.5 956328 9.0 67526 54.4 93240 94276 94284 94.1 9.956328 910.0 676526 54.4 932410 94284 94.1 9.956328 910.0 676526 54.4 932410 94284 94.1 9.956328 910.0 676526 54.4 932410 94284 94.1 9.956328 910.0 676526 54.3 932468 94.3 956528 910.0 676526 54.4 932410 94284 94.1 9.956328 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 676526 54.3 93246 94.3 956528 910.0 94526 94.3 94.3 94					9,8					
6 627870 44.9 956862 9.9 670977 54.8 329923 4244690645 53 8 628109 44.9 956862 9.9 671805 54.7 328366 424990620 51 10 628647 44.8 956684 9.9 671834 54.7 328366 4249990520 51 11 9.628916 44.7 956566 9.9 672991 54.6 328703 4282690679 504 11 9.628916 44.7 956566 9.9 672991 54.6 327003 4280490470 47 13 629453 44.7 956506 9.9 672947 54.6 328726 426319045 49 16 630267 44.6 956387 9.9 673972 54.6 328726 426319045 46 16 630267 44.6 956387 9.9 673972 54.6 328726 426319046 45 16 630267 44.6 956387 9.9 673929 54.6 328726 426319046 45 17 630654 44.5 956089 10.0 674910 54.5 325743 4270890421 41 18 630792 44.6 956387 10.0 674910 54.5 325416 4273690484 42 19 631838 44.5 956089 10.0 674910 54.5 325416 427369048 42 21 9.631853 44.5 956089 10.0 674910 54.5 325416 427369048 42 22 631889 44.4 956909 10.0 675806 54.4 10.324436 428189047 139 23 632154 44.9 956969 10.0 676506 54.4 10.324436 428189058 34 24 632392 44.4 956909 10.0 676506 54.4 10.324436 428189058 34 25 632688 44.3 956569 10.0 676916 54.3 322467 4284919058 38 26 632923 44.4 956909 10.0 676806 54.3 322486 428190368 40 27 633189 44.2 956509 10.0 67680 54.3 322486 428190368 34 28 633464 44.9 956509 10.0 67680 54.3 322486 4289990280 34 28 633464 44.9 956509 10.0 67680 54.3 322486 4289990280 34 28 633648 44.3 956569 10.0 67680 54.3 322486 4289490380 34 38 634778 44.9 956548 10.0 676806 54.3 322486 4289490380 34 39 636384 44.1 956569 10.0 67680 54.2 322467 42849490380 34 30 63384 44.1 956569 10.0 67680 54.2 322467 42849490380 34 31 9.634284 44.0 956547 10.1 679745 54.1 320654 4310490233 28 38 635478 44.9 956548 10.1 679745 54.1 320656 423469030 34 38 634778 44.0 956547 10.1 689146 54.0 319880 433190133 20 38 63650 43.8 956483 10.1 689146 54.0 319880 438199008 44 40 636933 38.8 954833 10.1 689176 54.1 320864 4310490233 28 38 638564 43.9 956486 10.1 68916 54.7 320864 4310490233 28 38 63868 43.7 956492 10.0 68676 55.1 31989 438199008 11 39 638244 43.9 956493 10.2 686867 55.7 53.6 318884 43899009 10.0 676866 54.1 320866 43899009 10.0 67686 54.1 320866 43899009 10.0 67686 54.3 320					9.8					
February February										
S	7									
9 62847 44.8 956684 9.9 667294 11.9 628816 44.7 956566 9.9 672947 54.6 327379 42552 90607 51.0 42552 90607 5										
10 622647 44 8 9506524 9 9 9 671953 54 7 1 327109 54252 90495 54 1 1 1 1 1 1 1 1 1										
12 629185 44.7 966566 9.5 672819 54.6 326736 42687 90458 46.6 629969 44.6 966327 9.9 673274 54.6 326736 42681 90458 46.6 630267 44.6 9663287 9.9 673267 54.5 326071 42683 90433 44.6 966328 9.9 673267 54.5 325733 42709 90421 43.8 43.2 966029 10.0 67484 54.5 325736 42687 90421 43.8 44.5 966148 10.0 674910 54.4 325739 44.5 966029 10.0 675327 54.5 325743 42709 90421 43.8 42.2 631859 44.4 955689 10.0 676545 54.4 324456 42848 90383 40.2 40.2 632329 44.3 955789 10.0 676546 54.3 323111 42841 90358 38.8 44.2 955869 10.0 6767216 54.3 323111 42841 90358 38.8 44.2 955609 10.0 6767636 54.3 323121 428920 90321 35.8 44.4 9556609 10.0 6767636 54.3 323131 42820 90323 35.8 42824 42.8 955789 10.0 676369 54.2 323154 42894 90334 36.8 42.8 955729 10.0 676369 54.2 323154 42894 90334 36.8 42.8 955729 10.0 676369 54.2 323154 428920 90321 35.8 42824 42.8 955680 10.0 6776360 54.2 323154 428920 90321 35.8 42824 42.8 955680 10.0 6776360 54.2 323154 428920 90321 35.8 42824 42.8 955680 10.0 6776360 54.2 323154 428920 90321 35.8 42824 42.8	10		44.8				54.7			
13 639453 44.7 956506 9.9 673972 54.6 326726 42631 90458 46 16 639287 44.6 956387 9.9 673972 54.6 326326 42631 90458 46 18 630257 44.6 956387 9.9 673929 54.6 326326 42631 90458 46 18 630792 44.5 956328 9.9 673929 54.6 325734 3270990421 43 18 630792 44.5 956328 10.0 674910 54.5 325743 3270990421 43 59 56328 10.0 674910 54.4 325090 42762 90396 41 19 631059 44.5 956089 10.0 674910 54.4 325090 42762 90396 41 19 631059 44.5 956089 10.0 675937 54.4 324763 42785 90383 40 42 22 631859 44.4 955969 10.0 675836 54.4 324763 42841 90358 32 632125 44.4 955969 10.0 676216 54.3 324741 42841 90358 32 55 63268 44.3 955949 10.0 676216 54.3 323474 42841 90358 32 56 632923 44.3 955949 10.0 676216 54.3 323467 42841 90358 32 56 632923 44.3 955589 10.0 676216 54.3 323467 42841 90358 32 56 632923 44.3 955589 10.0 676216 54.3 323467 42841 90358 32 56 632923 44.3 955589 10.0 676216 54.3 323467 42841 90358 32 56 632923 44.3 955589 10.0 676216 54.3 323467 42841 90358 32 56 632923 44.1 9556509 10.0 677620 54.2 322480 42949 90309 34 42.2 955648 10.0 677620 54.2 322480 42949 90309 34 32 633454 44.2 9556509 10.0 677820 54.2 322480 42949 90309 34 39 363478 44.0 955527 10.1 679146 54.2 321504 4314 42999 90284 32 32 56 635306 43.9 9555287 10.1 679146 54.2 321504 4314 90358 32 63 635507 43.9 955528 10.1 679146 54.2 321504 43104 90233 28 66 635670 43.9 9551267 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319566 42 41.0 955307 10.1 679146 54.2 321504 43159 90059 36 66 635670 43.9 955126 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319566 42 41.0 955247 10.1 680120 54.0 319560 4318 905000 54.4 63648 43.5 955428 10.1 680120 54.0 319560 4318 905000 54.0 318980 4318 905000 54.0 318980 4318 905000 54.0 318980 4318 905400 54.0 318980 4318 90500 54.0 318980 4318 905400 54.0 318980 4318 90540 54.0 318980 54.0 318980 54.0 318980 54.0 318980 54.0	111	690185	44.7							
14 6 63993			44.7		9.9					
16 6309267 44.6 956327 9.9 673929 54.6 326071 42683 90433 44 44.6 9563268 9.9 6749267 54.5 325743 42709 90421 43 43 43 44 45 956089 10.0 675937 54.4 324763 42785 90383 40 44.5 956089 10.0 675937 54.4 324763 42785 90383 40 42 43 44.5 956089 10.0 675937 54.4 324763 42785 90383 40 42 633292 44.3 955969 10.0 676216 54.3 323784 42867 90346 37 32 632125 44.4 955909 10.0 676216 54.3 323784 42867 90346 37 54 632929 44.3 955689 10.0 676364 54.3 323784 42867 90346 37 54 632929 44.3 955699 10.0 676364 54.3 323784 42867 90346 37 633894 44.2 955669 10.0 677194 54.3 322380 42946 90309 34 42946 90309 34 34 34 34 34 34 34 3					9.9					46
17 630624 44.6 956368 9.9 674957 54.5 325743 32709 9429 143 344 54.5 956368 10.0 674910 54.4 324763 42769 90389 44.5 956368 10.0 676937 54.4 324763 42785 90383 40.2 631859 44.4 956909 10.0 676327 54.4 324763 42815 90371 39 63222 44.4 956909 10.0 676216 54.3 323784 42867 90346 37 325784 42867 90346 37 326784 42878 90346 37 326784 42878	15	629989			9.9	673602		826398		
17 030024 44.6 950205 9.9 074267 54.5 325436 42736 90408 42 42 42 631393 44.5 956148 10.0 677537 54.4 324763 42762 90394 42 42 956969 10.0 676543 54.4 324110 42841 903693 42 42 42 956969 10.0 676543 54.4 323134 42 42 42 42 42 42 42					9 9					
18							54.5			
20 9.531936 44.5 9.56089 10.0 9.675367 54.4 10.334436 42815 90371 3381839 44.4 9.56909 10.0 9.675664 54.4 323436 42894 428967 90346 37 323784 428967 90346 37 323784 42894			44.5		10.0					
21 9.631593 44.4 956969 10.0 675696 64.4 323110 42841 90363 39 363125 44.4 956969 10.0 676543 54.3 323131 42841 90363 37 428 42867 90346 37 42894 90348 36 632923 44.3 955789 10.0 676543 54.3 323131 42894 90334 36 632923 44.3 955789 10.0 676543 54.3 323131 42999 90323 32 633189 44.2 95669 10.0 677520 54.2 322480 42972 90296 33 19 633984 44.1 956569 10.0 677846 54.2 322480 42972 90296 33 19 633984 44.1 956580 10.0 677846 54.2 322480 42972 90296 33 19 6334249 44.1 956536 10.1 679471 54.2 321504 43061 90259 30 13 633984 44.1 9565367 10.1 679471 54.2 321504 43061 90259 30 333 634778 44.0 9565247 10.1 679471 54.1 10.31179 43077 190246 23 32 32 32 32 32 32 32 32 32 32 32 32			44.5							
22 631859 44.4 956909 10.0 676216 54.3 323784 7489490384 36 24 632392 44.3 9568789 10.0 676643 54.3 323181 49920 90321 36 25 632688 44.3 9556789 10.0 676643 54.3 323181 49920 90321 36 26 632923 44.3 9556789 10.0 677690 54.3 323181 49920 90321 36 27 633189 44.2 955658 10.0 677520 54.2 322480 42946 90309 34 28 633454 44.2 955658 10.0 677846 54.2 322480 42972 90226 33 29 633714 44.2 955548 10.0 678496 54.2 321829 4025 90271 31 30 633984 41.1 955548 10.0 678496 54.2 321829 4025 90271 31 31 9.634249 44.1 9565488 10.0 678496 54.2 321829 40025 90271 31 32 634514 44.0 955368 10.1 679471 54.2 321829 40025 90271 31 33 634778 44.0 956397 10.1 679471 54.1 320654 43104 90232 37 34 635642 44.0 956397 10.1 679471 54.1 320654 43104 90232 37 36 635570 43.9 955166 10.1 680444 54.1 320654 43104 90232 37 36 635570 43.9 955166 10.1 680444 54.0 320654 43104 90232 37 38 636680 43.8 956494 10.1 680464 54.0 319566 43209 90183 24 37 635834 43.9 955056 10.1 680768 54.0 319566 43209 90183 24 38 636097 43.8 956491 10.1 680446 54.0 319566 43209 90183 24 40 636636 43.8 954833 10.1 681466 53.9 318566 43209 90183 24 40 636636 43.8 954833 10.1 681466 53.9 318566 43209 90183 24 41 9.636886 43.7 954701 10.1 682370 53.9 317290 43339 90106 12 46 638197 43.7 954701 10.1 682370 53.9 317290 43339 90095 16 46 638197 43.7 9546701 10.1 682367 53.9 317290 43339 90095 16 46 638197 43.7 9546701 10.1 682367 53.9 317290 43392 90095 16 46 638197 43.7 9546701 10.1 682367 53.9 317290 43392 90095 16 46 638197 43.7 9546701 10.1 682367 53.9 317290 43392 90095 16 47 638458 43.6 954457 10.2 684696 53.7 10.3 43669 9009 118 48 638704 43.4 954152 10.2 685691 53.6 317406 43575 90070 16 48 638981 43.5 954385 10.2 6865675 53.6 313724 43875 90092 16 56 640644 43.3 958968 10.2 686575 53.6 313406 43654 99049 12 56 64164 43.2 958783 10.2 686575 53.6 313406 43654 99049 12 56 64164 43.2 958783 10.2 686575 53.6 313406 43654 99049 12 56 64164 43.2 958783 10.2 686575 53.6 313406 43654 99049 12 56 64164 43.2 958783 10.2 686575 53.6 313406 43654 99049 12 56 64164 43.2 958783 10.2 686					10.0					
24 632392 44.3 9558789 10.0 676563 54.3 323181 49920 90391 34 25 632688 44.3 955729 10.0 6776369 54.3 323181 49920 90391 35 27 633189 44.2 955650 10.0 677520 54.2 322480 42946 90309 34 28 633454 44.2 955658 10.0 677520 54.2 322480 42972 90296 33 30 633984 41.1 955488 10.0 678496 54.2 321829 4025 90271 31 30 633984 44.1 955588 10.0 678496 54.2 321829 4025 90271 31 32 634514 44.0 955588 10.1 679471 54.2 321829 40025 90271 31 33 634778 44.0 955387 10.1 679471 54.1 320654 4310 9025 30 34 635570 43.9 955186 10.1 679471 54.1 320654 4310 9022 32 35 635570 43.9 955186 10.1 680444 54.0 955387 10.1 680444 54.0 319556 4320990183 24.0 636683 43.9 955056 10.1 680768 54.0 319556 4320990183 24.0 636683 43.8 954944 10.1 680446 54.0 319556 4320990183 24.0 636683 43.8 954944 10.1 681416 53.9 318560 4320990183 24.0 636683 43.8 954944 10.1 681416 53.9 318560 4328919018 24.0 636683 43.8 954944 10.1 68287 63.9 318560 4331390133 20.0 43.8 954701 10.1 682387 63.9 318560 4331390133 20.0 43.6 95457 10.2 684646 53.7 315676 43848 90092 17.0 44 637673 43.7 954701 10.1 682387 63.8 316927 43.6 95457 10.2 684696 53.7 315676 438529 90095 12.0 684646 53.7 315676 438529 90095 12.0 686571 53.6 313480 43849 90092 12.0 686571 53.6 313483 43790082 12.0 686571 53.6 313483 43790082 12.0 686571 53.6 313483 43790082 12.0 686571 53.6 313483 43790082 12.0 686571 53.6 313483 43790082 12.0 686571 53.6 313483 43879 90095 12.0 686571 53.5 313483 43879 90095 12.0 686571 53.5 313483 43879 90095 12.0 686571 53.5 313480 43879 90095 12.0 686571 53.5 313480 43879 90095 12.0 686571 53.5 313480 4			**.*		10.0					
24 632392 44.3 9556729 10.0 676689 54.3 323801 42920 90391 35 66 632923 44.3 9556729 10.0 677194 54.3 322806 42946 90309 34 677194 54.2 955668 10.0 677194 54.2 322806 42946 90309 34 677820 54.2 322806 42946 90309 34 677820 54.2 322806 42946 90309 34 677820 54.2 322806 42946 90309 34 677820 54.2 322806 42972 90228 32 56 632404 44.1 955438 10.0 678171 54.2 321829 43025 90271 31 9.634249 44.1 955538 10.1 679146 54.2 321829 43025 90271 31 32 634249 44.0 955368 10.1 679146 54.1 320854 43104 90233 28 634578 44.0 955367 10.1 679146 54.1 320854 43104 90233 28 636560 43.9 955186 10.1 680120 54.1 320854 43104 90233 28 636560 43.9 955186 10.1 680120 54.1 320854 43104 90233 28 636360 43.9 955186 10.1 680120 54.1 320859 43130 90221 27 63583 43.9 955065 10.1 680120 54.0 319880 43182 90196 25 4316 90208 34 38 954084 10.1 680120 54.0 319880 43182 90196 25 4316 90208 34 38 954084 10.1 680120 54.0 318980 43182 90196 25 4316 90208 34 38 954084 10.1 680120 54.0 318980 43285 90171 23 400 63663 43.8 954084 10.1 681902 54.0 318980 43285 90171 23 43285 90171 24 636767 34.7 954762 10.1 682367 53.9 10.3 17937 43340 9020 19 44 636673 43.7 954762 10.1 682367 53.9 10.3 17937 43340 9020 19 44 636673 43.7 954762 10.1 682367 53.9 317613 43366 90108 18 63366 53.9 317613 43366 90108 18 63366 53.9 317613 43366 90108 18 63366 53.9 317613 43366 90108 18 63366 53.8 316644 4345 90070 16 638934 43.5 954367 10.2 683667 53.8 316644 4345 90070 16 638936 43.5 954367 10.2 684698 53.7 315666 43859 90098 17 46 64028 43.3 954080 10.2 684593 53.5 316644 4345 90099 10.2 684593 53.5 316644 4345 90099 10.2 684593 53.5 313664 43658 9908 904 9 64567 10.2 684698 53.7 315667 43458 99099 10.2 686593 53.5 313694 4371 90007 16 636664 43.3 954080 10.2 686567 53.5 313664 43455 90009 10.2 686569 53.5 313664 43455 90009 10.2 686569 53.5 313664 43455 90009 10.2 686569 53.5 313664 43455 90099 10.2 686569 53.5 313664 43455 90099 10.2 686569 53.5 313664 43658 9908 90098 10.2 686569 53.5 313664 43458 90099 10.2 686593 53.5 313664 43458 90099 10.2 686593 53.5 313664 43458 90099					10.0			823784		
28 633464 44.2 955669 10.0 677846 54.2 322480 42972 90296 33 283719 44.2 955668 10.0 677846 54.2 321849 43025 90271 31 30 633984 44.1 9.56548 10.0 678891 54.2 321839 43025 90271 31 32 638514 44.0 956307 10.1 679471 54.1 320179 64 4310 490233 28 635306 43.9 955126 10.1 679471 54.1 320186 43104 90233 28 635306 43.9 955126 10.1 680424 54.0 319526 43.9 955126 10.1 680424 54.0 319526 4310 43.9 955126 10.1 680424 54.0 319526 4310 43.9 955126 10.1 680424 54.0 319526 4310 4301 90221 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43104 905021 27 635834 43.9 955065 10.1 680424 54.0 319526 43209 90183 24 40 636633 43.8 954944 10.1 681416 63.9 318526 43209 90183 24 42 63763 43.7 954762 10.1 682387 63.9 10.317937 433409120 19 44 637673 43.7 954762 10.1 682387 63.9 110.317937 433409120 19 44 637673 43.7 954762 10.1 683265 63.9 10.317937 433409120 19 44 63673 43.6 954518 10.2 683669 63.8 316644 43445 90070 15 683667 43.8 954451 10.2 683667 63.8 316321 4366 90108 18 638924 43.5 954335 10.2 684566 53.7 315676 43523 90092 12 684564 43.4 954152 10.2 685651 53.6 640844 43.3 954926 10.2 685651 53.6 640844 43.3 954926 10.2 685651 53.6 640844 43.3 954926 10.2 685651 53.6 640844 43.3 954926 10.2 686569 53.5 640644 43.3 954926 10.2 686569 53.5 640644 43.3 954926 10.2 686569 53.5 640644 43.3 954926 10.2 686569 53.5 640644 43.3 954926 10.2 686569 53.5 640644 43.3 954926 10.2 686561 53.6 640844 43.2 9558783 10.2 686561 53.6 640844 43.2 9558783 10.2 687540 53.5 131280 43785 89906 2 6641584 43.2 9558783 10.2 687540 53.5 131280 43785 89906 2 6641584 43.2 9558783 10.2 687540 53.5										
Section Sect			44.3		10.0		54.8			
28 633454 44.2 955648 10.0 678171 54.2 321829 43025 90268 33 30 63398 44.1 956428 10.0 678171 54.2 321829 43025 90269 30 31 9.634249 44.1 9.565428 10.0 678426 54.2 10.321179 43077 90246 29 32 684514 44.0 956538 10.1 679146 54.1 320654 43104 90232 27 4316 63250 44.0 956547 10.1 679795 54.1 320654 43104 90232 27 43130 90221 27 43130 902			44.3		10.0		54.8			
29 633719 44.2 955488 10.0 678496 54.2 321829 43025 90271 31 9.534249 44.1 9.955368 10.1 679146 54.1 320854 43104 90233 28 3363778 44.0 955307 10.1 679146 54.1 320854 43104 90233 28 36 635570 43.9 955186 10.1 680120 54.1 320854 43104 90233 28 36 635570 43.9 955186 10.1 680120 54.1 320854 43130 90221 23 36 635503 43.9 955186 10.1 680120 54.1 320854 43182 90196 25 36 635570 43.9 955186 10.1 680120 54.1 320854 43182 90196 25 38 636360 43.8 955055 10.1 680768 54.0 319860 43182 90196 25 42 43 43 43.9 955186 10.1 680786 54.0 319860 43182 90196 25 43 43 43.9 955186 10.1 680786 54.0 319860 43182 90196 25 43 43 43.9 95505 10.1 680786 54.0 318896 43281 90196 25 43 43 43.9 95505 10.1 681092 54.0 318896 43281 90196 25 43 43 43.9 95505 10.1 681092 54.0 318896 43281 901918 32 43 43 43.7 954762 10.1 681740 53.9 318564 43287 90146 21 48 48 54 54 54 54 54 54 54 54 54 54 54 54 54					10.0					
30 633984 44.1 956488 10.0 1 679146 54.2 10.321179 43077 904923 32 834614 44.0 956397 10.1 679716 54.1 320659 43130 90221 32 836367 43.9 956186 10.1 680120 54.0 319890 43156 90208 36 635570 43.9 956186 10.1 680120 54.0 319890 43156 90208 36 635670 43.9 9565065 10.1 680120 54.0 319890 43156 90208 36 63660 43.8 956065 10.1 680120 54.0 319890 43156 90208 36 63660 43.8 956496 10.1 680140 54.0 319890 43156 90208 36 63660 43.8 956496 10.1 680192 54.0 319890 43156 90208 36 63660 43.8 956496 10.1 680192 54.0 319890 43156 90208 36 63660 43.8 956496 10.1 680192 54.0 319890 4325 90171 23 39 636360 43.7 956406 10.1 681416 53.9 138590 43815 90183 24 40 636623 43.8 95494 10.1 681740 53.9 138590 43815 90183 24 40 636633 43.8 95494 10.1 682987 53.9 138590 43815 90183 24 44 95673 31.7 954762 10.1 682387 53.9 138590 43815 90183 24 45 63793 43.6 954518 10.1 682387 53.9 131613 43366 90108 18 43673 43.6 954518 10.2 682887 53.9 317930 43349 905005 16 646 638197 43.6 954518 10.2 684901 53.7 315676 43523 90070 15 638924 33.5 954935 10.2 684966 53.7 315676 43523 90071 15 65 640544 43.4 954152 10.2 685612 55 640544 43.3 954929 10.2 685612 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 685621 53.6 640644 43.3 954929 10.2 6865612 53.6 640644 43.3 954929 10.2 6865612 53.6 640644 43.3 954929 10.2 6865612 53.6 640644 43.3 954929 10.2 6865612 53.6 640644 43.3 954929 10.2 6865612 53.6 640644 43.3 954929 10.2 6865612 53.6 640644 43.3 954930 10.2 6865612 53.6 640644 43.3 954929 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 6865612 53.6 640644 43.2 954782 10.2 686561					10.0					
32 634514 44.0 955307 10.1 679795 64.1 320629 43156 90208 26 635306 43.9 955186 10.1 680120 54.0 319856 4316 90208 26 635507 43.9 955086 10.1 680120 54.0 319856 43156 90208 26 635606 43.8 955095 10.1 680424 54.0 319556 43229 90183 24 40.0 636623 43.9 955086 10.1 680168 54.0 319856 43235 90171 23 636360 43.8 956095 10.1 680168 54.0 319856 43235 90171 23 636360 43.8 956095 10.1 680168 54.0 319856 43235 90171 23 636360 43.8 956095 10.1 680168 54.0 319856 43235 90171 23 636360 43.8 956095 10.1 680168 54.0 319856 43235 90171 23 636360 43.7 954762 10.1 682387 53.9 11.0 1 682387 53.9	30		44 1			678496		321504	48051 90259	
32 034014 44.0 965937 10.1 679471 54.1 320652 43130]90221 27 34 635042 44.0 965947 10.1 680120 54.0 319856 43166]90208 26 35 635570 43.9 955186 10.1 680444 54.0 319856 4320]90183 24 37 635834 43.9 955055 10.1 680444 54.0 319556 4320]90183 24 38 636097 43.9 955005 10.1 680444 54.0 319556 4320]90183 24 40 636636 43.8 954944 10.1 681416 53.9 318908 43261]90183 24 40 636638 43.8 954944 10.1 681416 53.9 318564 43281]90146 21 42 637148 43.7 954701 10.1 682367 53.9 317290 43313)90132 12 43 637411 43.7 954701 10.1 682367 53.9 317290 43392]90096 17 44 637673 43.7 954640 10.1 682310 53.8 316967 43418 90029 16 45 638458 43.6 954517 10.1 683366 53.8 316967 43418 90029 16 46 638197 43.6 954579 10.1 683366 53.8 316967 43418 90029 16 47 638458 43.6 954578 10.2 683696 53.8 316944 43448 90070 16 48 638790 43.5 954395 10.2 684640 15.7 315676 43523 90093 12 49 638981 43.6 954457 10.2 684601 53.7 315676 43523 90093 12 49 638981 43.6 954457 10.2 684601 53.7 315676 43523 90093 12 49 638981 43.6 954457 10.2 684601 53.7 315676 43523 90093 12 49 638981 43.6 954457 10.2 684696 53.8 316937 43471 90057 14 46 638458 43.6 954457 10.2 684691 53.7 315676 43523 90093 12 50 63924 43.5 954395 10.2 684646 53.7 315676 43523 90093 12 51 9.639603 43.4 9.54152 10.2 684968 53.7 315676 43523 90093 12 52 639764 43.4 9.54152 10.2 685612 53.6 314064 43649 90019 11 53 640024 43.4 9.54152 10.2 685612 53.6 314384 43649 90019 11 54 640284 43.3 953968 10.2 685612 53.6 314064 43648 90098 67 56 640844 43.3 953968 10.2 686575 53.6 313493 4388 938968 66 57 641064 43.3 953864 10.2 686575 53.6 313493 4378 98998 45 58 641064 43.3 9538968 10.2 686575 53.6 313493 43818 98998 45 58 641064 43.3 9538968 10.2 686575 53.6 313493 43818 98998 54 58 641842 43.2 953783 10.2 687249 53.5 312460 43785 89906 2 58 641842 43.2 953783 10.2 687249 53.5 312480 43785 89906 2 58 641842 43.2 953783 10.2 687249 53.5 312480 43785 89906 2 58 641842 43.2 953783 10.2 687249 53.5 312480 43785 89906 2 58 641842 43.2 953783 10.2 687249 53.5 312480 43883 89999 42 58 641842 43.2 953783 10.2 687249 5					10.1	9.678821				
34 635042 44.0 950597 10.1 679795 54.1 390905 43156 90208 26 635570 43.9 955186 10.1 680120 54.1 390806 4319299 90183 24 37 635834 43.9 955056 10.1 680768 54.0 319880 4329 90183 24 38 636607 43.8 964944 10.1 681416 53.9 318586 43287 90146 21 40 63663 43.8 964944 10.1 681740 53.9 318586 43287 90146 21 40 63663 43.8 964948 10.1 681740 53.9 318586 43287 90146 21 42 637148 43.7 954762 10.1 682710 53.8 31694 43287 90146 21 43 63741 43.7 954762 10.1 682367 53.9 317633 43369 90190 19 43 636876 43.7 954762 10.1 682367 53.9 317633 43369 90190 19 44 637673 43.7 954762 10.1 682367 53.9 317633 43369 90190 19 44 637673 43.7 954762 10.1 6823710 53.8 31694 4348 90090 17 44 637673 43.7 954640 10.1 683033 53.8 316967 43418 90082 16 638197 43.6 954579 10.1 683365 53.8 31694 43445 90070 16 66 638197 43.6 954457 10.2 683679 53.8 316321 43471 90067 14 46 638891 43.5 954581 10.2 684604 53.7 315699 43491 90045 13 693942 43.6 954457 10.2 684901 53.7 315676 43523 90092 12 684904 53.7 315694 43419 90045 13 693942 43.6 954457 10.2 684904 53.7 315699 43491 90045 13 693942 43.6 954457 10.2 684908 53.7 315676 43523 90092 12 684904 53.7 315694 43471 90067 14 638981 43.5 954936 10.2 684908 53.7 315692 43575 90007 10 55 640644 43.3 953986 10.2 685295 53.6 314388 43625 89994 9 540094 10.2 685934 53.6 640024 43.4 954029 10.2 685934 53.6 314388 43625 89994 9 540094 10.2 685695 53.6 314388 43625 89994 9 540094 10.2 685695 53.6 314388 43625 89994 9 540094 10.2 685695 53.6 314388 43625 89994 9 540094 10.2 685695 53.6 314388 43625 89994 9 540094 13 6664044 43.3 953986 10.2 685695 53.6 314388 43625 89994 9 540094 10.2 685695 53.6 314388 43625 89998 9 540094 10.2 685695 53.6 314488 43625 89998 10.2 685695 53.6 314488 43625 89998 10.2 685695 53.6 314488 43625 89998 10.2 685695 53.6 314488 43625 89998 10.2 685695 53.6 314488 43625 89998 10.2 685695 53.6 314488 43625 89988 7 68660 641842 43.3 953986 10.2 685695 53.5 312781 43769 89918 3 68660 641842 43.2 953783 10.2 687661 53.5 313460 43785 89908 2 1600000000000000000000000000000000000					10.1					
Section Sect			44.0		10.1		54.1			
36 635570 43.9 955196 10.1 680444 64.0 319566 43209 90183 24 24 319232 43235 90171 23 386 636097 43.8 955005 10.1 681092 54.0 318920 43235 90171 23 386 63604 43.8 954094 10.1 681092 54.0 318920 43235 90171 23 3896084 43.7 954883 10.1 681416 53.9 318584 43287 90146 21 21 4374 43.7 954762 10.1 682387 53.9 317613 43366 90108 18 43.6 954893 10.1 682387 53.9 317613 43366 90108 18 43.6 954701 10.1 683303 63.8 316964 43445 90070 16 43.6 638197 43.6 954579 10.1 683303 63.8 316644 43445 90082 16 43.6 638197 43.6 954579 10.2 683679 53.8 316644 43445 90070 16 43.6 683879 43.6 954579 10.2 684901 63.7 315676 43523 90071 16 43.6 43.6 954457 10.2 684968 63.7 315676 43523 90071 10 436684968 63.7 315676 43523 90071 10 436684968 63.7										
36 636967 43.8 954944 10.1 681692 54.0 318996 43261 90168 22 39 636360 43.8 954944 10.1 681740 53.9 318260 43287 90146 21 41 9.636886 43.7 9.54762 10.1 682367 53.9 10.317613 43366 90106 18 43 637411 43.7 954701 10.1 682710 53.8 317613 43366 90106 18 45 637935 43.6 954579 10.1 683365 53.9 317290 43392 90092 16 46 638197 43.6 954518 10.2 683687 53.9 316321 43.4 4345 90070 16 46 638197 43.6 954518 10.2 683686 53.8 316644 43445 90070 16 48 638790 43.5 954354 10.2 684901 53.7 315676 43523 90092 12 49 638981 43.5 954354 10.2 684901 53.7 315676 43523 90092 12 49 638981 43.5 954354 10.2 684901 53.7 315676 43523 90092 12 51 9.639503 43.4 9.954512 10.2 684646 53.7 315676 43523 90092 12 51 9.639503 43.4 9.954512 10.2 6856512 53.6 314368 4368 89904 9 52 639764 43.4 954152 10.2 6856512 53.6 314368 4368 89904 9 52 639764 43.4 954152 10.2 685652 53.6 314388 43869 89904 9 52 639764 43.4 954152 10.2 685652 53.6 314388 43869 89904 9 53 640644 43.3 954969 10.2 6856512 53.6 314368 4368 89906 7 56 640644 43.3 954969 10.2 6865675 53.6 314388 43899019 10.2 686667 53.6 314388 43889 89906 6 56 640544 43.3 954969 10.2 6866577 53.5 313420 4376 89908 56 56 640544 43.3 954969 10.2 686698 53.6 314388 43889 89966 6 56 640544 43.2 954872 10.2 686698 53.5 313420 4376 89908 50 56 640544 43.2 954872 10.2 686698 53.5 313420 4376 89908 50 56 640544 43.2 954872 10.2 686698 53.5 313420 4376 89908 50 56 641684 43.2 954872 10.2 687219 53.5 313400 43785 89908 50 56 641684 43.2 9558783 10.2 687540 53.5 313400 43785 89908 50 56 641684 43.2 9558783 10.2 687540 53.5 313400 43785 89908 50 56 641684 43.2 9558783 10.2 687540 53.5 313480 43785 89908 50 56 641684 43.2 9558783 10.2 687540 53.5 313400 43785 89908 50 56 641684 43.2 9558783 10.2 687540 53.5 313480 43785 89908 50 56 641684 43.2 9558783 10.2 687561 53.4 311818 43837 89879 0	36								48209 90183	
38			43.9		10.1					
30					10.1					
41 9.636886 43.7 9.54762 10.1 682367 53.9 317613 43340 90120 19 682367 63.9 317613 43366 90108 18 637673 43.7 954701 10.1 6832710 53.8 317613 43366 90108 18 65 637673 43.7 954670 10.1 683303 53.8 316290 43418 90052 16 638197 43.6 954579 10.1 683303 53.8 316644 43445 90070 16 638197 43.6 954518 10.2 6836679 53.8 316644 43445 90070 16 47 638468 43.6 954457 10.2 684304 53.7 315676 43523 90032 12 49 638961 43.5 954354 10.2 684304 53.7 315676 43523 90032 12 684304 53.5 954354 10.2 684504 53.7 315676 43549 90070 10 10 10 10 10 10 10 10 10 10 10 10 10			43.8		10.1		53.9			
42 637434 43.7 954701 10.1 682371 63.9 317613 4336690106 18 637673 43.7 954570 10.1 683033 53.8 316907 43418 90092 16 638197 43.6 954518 10.2 683697 53.8 316644 43445 90070 15 43.6 638197 43.6 954518 10.2 683697 53.8 316644 43445 90070 15 63.8 316321 43.5 954351 10.2 684001 53.7 315676 43523 90032 12 43.5 954354 10.2 684068 53.7 315676 43523 90032 12 683691 53.8 316644 43471 90070 15 63 639242 43.5 954354 10.2 684666 53.7 315676 43523 90032 12 684068 53.7 315676 43523 90032 12 684068 53.7 315676 43523 90070 16 63 639242 43.5 954354 10.2 684666 53.7 315634 43549 90019 11 63 63 64004 43.4 954152 10.2 685612 53.6 314368 43628 89994 9 52 639764 43.4 954152 10.2 685612 53.6 640544 43.3 954029 10.2 685612 53.6 314368 43628 89994 9 54 64064 43.3 954029 10.2 6865934 53.6 314368 43628 89996 53 640544 43.3 954029 10.2 6865934 53.6 314368 43628 89996 6 641684 43.2 954782 10.2 686597 53.5 313423 43706 89996 6 641684 43.2 954782 10.2 687219 53.5 313423 43706 89994 9 53 641684 43.2 954782 10.2 687219 53.5 313403 43785 89905 10.2 687540			43.8		10.1		53.9			
43 637411 43.7 954640 10.1 683033 53.8 316967 43418 90082 16 45 637935 43.6 954579 10.1 683365 53.8 316967 43418 90082 16 46 638197 43.6 954579 10.1 683365 53.8 316967 43418 90082 16 47 638458 43.6 954457 10.2 684601 53.7 315676 43452 90042 12 48 638981 43.5 954395 10.2 684901 53.7 315676 43452 90042 12 49 638981 43.5 954395 10.2 684968 53.7 315676 43523 90042 12 49 638981 43.5 954325 10.2 684968 53.7 315676 43523 90042 12 50 639242 43.5 954325 10.2 684968 53.7 315676 43523 90042 12 51 9.639503 43.4 9.54274 10.2 684968 53.7 315676 43523 90042 12 51 9.639503 43.4 9.54274 10.2 685612 53.6 314388 43628 98994 9 52 639764 43.4 954152 10.2 685612 53.6 314388 43628 98994 9 53 640024 43.4 954152 10.2 685612 53.6 314066 43654 89968 7 54 640284 43.3 954929 10.2 685657 53.6 314066 43654 89968 7 55 640644 43.3 954929 10.2 686577 53.5 313406 43654 89968 7 56 640804 43.3 953968 10.2 686575 53.6 313745 43680 89966 6 57 641064 43.2 958783 10.2 687249 53.5 312460 43738 89930 4 58 641324 43.2 958783 10.2 687249 53.5 312460 43785 89990 2 59 641584 43.2 958783 10.2 687540 53.5 312460 43785 89990 2 59 641684 43.2 958783 10.2 687540 53.5 312480 43785 89906 2 50 641842 958782 10.3 687861 53.5 312480 43785 89906 2 50 641842 958782 10.3 687861 53.5 312480 43785 89906 2 50 641842 958782 10.2 687540 53.5 312480 43785 89906 2 50 641842 958782 10.3 687861 53.5 312480 43785 89906 2 50 641842 958782 10.3 687861 53.5 312480 43785 89906 2 50 641842 958782 10.2 687861 53.5 312480 43785 89906 2 50 641842 958782 10.3 687861 53.5 312480 43785 89906 2 50 641842 958782 10.3 688182 53.4 311818 43887 88879 0			40.1		10.4					
44 637673 43.7 954640 10.1 683365 63.8 316967 43445 90070 16 45 637935 43.6 954579 10.1 683365 63.8 316644 43445 90070 16 46 638197 43.6 954518 10.2 683679 53.8 315999 43497 90045 13 48 638790 43.5 954396 10.2 684901 53.7 315999 43497 90045 13 49 638981 43.5 954395 10.2 684666 53.7 315676 43523 90039 11 50 639242 43.5 954395 10.2 684666 53.7 315676 43523 90099 11 50 639264 43.4 954213 10.2 684666 53.7 315354 43549 90019 11 51 9.639503 43.5 954213 10.2 684666 53.7 315354 43549 90019 11 52 639764 43.4 954152 10.2 685593 53.6 134388 43625 8994 9 52 639764 43.4 954090 10.2 685934 53.6 314086 43654 89968 7 54 640624 43.4 954090 10.2 685934 53.6 314086 43654 89968 7 55 640644 43.3 954990 10.2 685934 53.6 314086 43654 89968 7 56 640804 43.3 953968 10.2 686595 53.6 313423 43706 89945 9 56 641842 43.2 953783 10.2 6867861 53.5 313420 43785 89908 1 58 641842 43.2 953783 10.2 6867861 53.5 312480 43785 89908 1 58 641842 43.2 953783 10.2 687861 53.5 312480 43785 89918 3 58 641842 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 59 641848 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 50 641842 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 50 641842 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 50 641848 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 50 641848 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 50 641848 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 50 641848 43.2 953783 10.2 687861 53.5 312480 43785 89908 1 50 641848 43.2 953783 10.2 687861 53.4 311818 43837 89939 0 50 641848 43.2 953783 10.2 687861 53.4 311818 43837 89939 0		637411			10.1					
10	44	637673		954640	10.1	683033		316967		
43.6 954396 10.2 684901 53.7 31599 43497 90045 13 48 638720 43.6 954396 10.2 684924 53.7 315676 43523 90039 11 50 639242 43.5 954335 10.2 684646 53.7 315364 48549 90019 11 51 9.639503 43.5 954274 10.2 9.685936 53.7 10.314710 43602 89994 9 52 639764 43.4 954152 10.2 685936 53.7 10.314710 43602 89994 9 53 640024 43.4 954052 10.2 685936 53.6 314388 43625 89996 7 54 640284 43.4 954029 10.2 685936 53.6 314388 43625 89996 7 55 640644 43.3 953968 10.2 686597 53.6 314388 43625 89996 6 56 640644 43.3 953968 10.2 686597 53.5 313423 43706 89996 6 56 640644 43.3 953968 10.2 686986 53.7 53.5 313423 43706 89996 6 56 640644 43.3 953968 10.2 686757 53.5 313423 43706 89998 4 57 641064 43.2 953783 10.2 687219 53.5 312460 43785 89998 59 58 641824 43.2 953783 10.2 687861 53.4 312460 43785 89998 10.2 687861 53.4 31488 43785 89998 50 59 641684 43.2 953783 10.2 687861 53.4 312480 43785 89998 10.2 687861 53.4 31488 43785 89998 50 59 641684 43.2 953783 10.2 687861 53.4 311818 43837 89999 10.2 688182 53.4 311818 43837 89999 10.2 688182 53.4 311818 43837 89998 10.2 688182 53.4 311818 43837 89999 10.2 688182 53.4 311818					10.1	683356				
48 638720 43.5 954396 10.2 684834 53.7 315676 43523 90032 12 49 638981 43.5 954335 10.2 684846 53.7 315676 43523 90032 12 50 639242 43.5 954274 10.2 684968 53.7 315032 43575 90007 10 51 9.639503 43.4 9.54152 10.2 685612 53.6 315032 43575 90007 10 52 639764 43.4 954152 10.2 685612 53.6 314086 48654 89968 7 53 640024 43.4 954090 10.2 685612 53.6 314086 48654 89968 7 54 640284 43.3 954909 10.2 685625 53.6 314086 48654 89968 7 55 640644 43.3 958968 10.2 686577 63.5 313403 48706 89943 5 56 64084 43.3 953968 10.2 686577 63.5 313102 43738 89969 6 57 641064 43.2 958783 10.2 687249 53.5 312460 43738 89990 4 58 641324 43.2 958783 10.2 687540 53.5 312781 43755 9900 2 59 641584 43.2 958782 10.2 687540 53.5 312460 43785 89905 2 59 641842 43.2 958782 10.2 687861 53.5 312480 43785 89905 2 59 641842 43.2 958782 10.2 687861 53.5 312480 43785 89905 2 59 641842 958782 10.3 687861 53.5 312480 43785 89905 2 50 641842 958782 10.3 687861 53.5 312139 48811 89892 1 50 641842 958782 10.3 688182 53.4 311139 48818 89897 0 50 606184 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58					10 2					
80 638981 43.5 964351 0.2 684968 63.7 315036 485499009 11 50 639242 43.5 954273 10.2 684968 63.7 315032 43575 90007 10 51 9.639603 43.4 9.54213 10.2 685612 53.6 131470 43602 89994 9 53 640024 43.4 954090 10.2 685934 53.6 314066 43654 89981 8 53 64024 43.4 954090 10.2 685934 53.6 314066 43654 89968 7 54 640284 43.3 954029 10.2 686595 53.6 314066 43654 89968 7 54 640284 43.3 954929 10.2 686595 53.6 314066 43654 89968 7 64064 43.3 954929 10.2 686597 53.5 313423 48706 89948 55 66 640804 43.3 954906 10.2 686598 53.5 313423 48706 89948 55 66 640804 43.3 953966 10.2 686598 53.5 313423 48706 89948 55 66 641824 43.2 953783 10.2 687249 53.5 312781 43759 89918 3 68 641824 43.2 953783 10.2 687540 53.5 312400 43785 8995 10.2 687640 53.5 312400 43785 8995			43.6		10.2		53,7			
10.2 684968 63.7 10.2 684968 63.7 10.3 10.			43.5		10.2					
51 9.639503 43.4 9.954213 10.2 9.685290 63.7 10.314710 43602 89994 9 52 639764 43.4 954152 10.2 685612 53.6 6304024 43.4 954090 10.2 685934 63.6 314988 48628 89968 7 640624 43.3 954029 10.2 6865934 63.6 314988 4868 89968 6 65 640644 43.3 953968 10.2 686575 53.5 3134323 48706 89945 6 664044 43.3 953968 10.2 686597 53.5 313423 48706 89943 9 641824 43.2 953783 10.2 687249 63.5 312460 43785 89908 4 9 641842 43.2 953783 10.2 687540 53.5 312460 43785 89908 2 1 687540 53.5 312460 43785 89908 2 1 687540 53.5 311818 48837 898979 0 641842 43.2 953783 10.2 687861 53.4 311818 48837 898979 0					10.2					
52 639764 43.4 954152 10.2 685612 55.6 314388 48625 89981 8 5 640024 43.4 954090 10.2 685934 53.6 314066 48654 89968 7 5 640644 43.3 954029 10.2 686525 53.6 314066 48706 89965 6 6 640804 43.3 953968 10.2 686527 53.6 313423 48706 89943 5 6 641064 43.2 958783 10.2 686898 63.5 312781 48758 89918 3 6864184 43.2 958783 10.2 687549 53.5 312781 48758 89918 3 64184 43.2 958783 10.2 687549 53.5 312460 43785 89906 2 687549 53.5 312460 43785 89906 2 687549 53.5 312460 43785 89906 2 687549 53.5 312460 48785 89906 2 687549 53.5 312460 48785 89906 2 687549 53.5 312460 48785 89906 2 687549 53.5 312460 48785 89906 2 687549 53.5 312460 48785 89906 2 687549 53.5 312460 48785 89906 2 687549 53.5 312460 48785 89908 2 687549 53.5 312480	51	9.639503		9.954213	10 2	9.685290	53.7	10.314710	43602 89994	9
54 640284 43.3 954029 10.2 686255 53.6 313745 48680 89956 6 56 640544 43.3 953968 10.2 686577 53.5 313402 48736 89943 55 66 64084 43.2 958783 10.2 686786 53.5 312781 43759 89918 3 641324 43.2 958783 10.2 687540 53.5 312460 43785 89905 2 687540 53.5 312460 43785 89905 2 687540 53.5 312460 43785 89905 2 687540 53.5 312480 43785 89905 2 687540 53.5 312480 43785 89905 2 687540 53.5 312480 43785 89905 2 687540 53.5 312480 43785 89905 2 687540 53.5 312480 43785 89905 2 687540 53.5 312480 43785 89905 2 687540 53.5 312480 43811 89899 1 2 687540 53.5 312480 43811 89899 1 2 687540 53.5 312480 43785 89905 2 687540 53.5 312480 43785 89905 2 641842 43.2 958783 10.2 687540 53.5 311818 48837 89879 0 688182 53.4 311818 48837 89879 0					110 2					
55 640544 43.3 953968 10.2 686577 53.5 313423 48706 89943 5 5 640804 43.3 953906 10.2 686898 53.5 313102 48733 89930 4 5 641064 43.2 9538845 10.2 687540 53.5 312781 48759 89918 3 5 641824 43.2 953783 10.2 687540 53.5 312460 43785 89906 2 687540 53.5 312460 43785 89906 2 687540 53.5 312460 43785 89906 2 687540 53.5 312460 43785 89906 2 687540 53.5 312460 43785 89906 2 687861 53.4 312139 48811 89892 1 68182 53.4 311818 48837 89879 0 6 641842 60					10.2					
56 640804 43.3 953906 10.2 686898 63.5 313102 43733 89930 4 57 641064 43.2 953845 10.2 687219 53.5 312761 43759 89918 3 58 641824 43.2 953783 10.2 687540 53.5 312460 43765 89962 1 60 641824 43.2 953760 10.2 687861 53.4 312139 48811898992 1 60 641842 953660 68182 53.4 311818 48837 89879 0 Coting. Tang. N. cos. N. cos. N. dips. /			43.3		10.2		53.6	010140		
57 641064 43.2 953834 10.2 687219 53.5 312781 4375989918 3 58 641324 43.2 953783 10.2 687540 53.5 312460 43785 889005 2 59 641584 43.2 953782 10.2 687540 53.5 312480 43785 88905 2 687861 53.4 311818 48837 88992 1 681842 43.2 953862 10.3 683182 53.4 311818 48837 88979 0 68184					10.2					
58 641824 43.2 953783 10.2 687540 53.5 312460 43785 89905 2 641842 43.2 953722 10.3 687861 53.5 312139 43811 89892 1 6641842 43.2 953660 Cotine. Sine. Cotang. Tang. N. cos. N. stips. 7					10.2				43759 89918	
59 641584 43.2 953722 10.3 687861 53.4 312139 43811 89892 1 688182 53.4 311818 48837 89879 0 Cotine. Sine. Cotang. Tang. N. cos. N. sips. /	58				10.2	687540		312460		2
Cotine. Sine. Cotang. Tang. N. cos. N. sipe.		641584				687861			43811 89892	
	60		20.2				30.4			
64 Degrees.		Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sipe.	1

2	Pable II.	1	og. Sines s	md Ta	ngents. (2	6°) N	etural Sines.		4	7
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	9.641842	43.1	9.953660	10.8	9.688182	53.4	10.811818		89879	60
1	642101	43.1	958599	10.3	688502	53.4	311498	43868		59
2	642360 642618	43.1	953537 953475	10.3	688823 689143	53.4	311177 310857	43889 43916		58 57
8 4	642877	43.0	953413	10.3	689463	53.3	310537	43942		56
5	643135	43.0	953352	10.3	689783	53.3	810217	43968		55
6	643393	43.0 43.0	953290	10.3 10.8	690103	53.3 53.3	809897	43994		54
7	643650	42.9	953228	10.3	690423	53.8	309577	44020		58
8	643908 644165	42.9	953166 953104	10.3	690742 691062	53.2	309258 308938	44046 44072		52 51
10	644423	42.9	953042	10.3	691381	53.2	308619	44098		50
11	9.644680	42.8	9.952980	10.3	9.691700	53.2	10.308300	44124		49
12	644936	42.8 42.8	952918	10.4 10.4	692019	53.1 53.1	307981	44151		48
13	645193	42.7	952855	10.4	692338	53.1	307662	44177		47
14	645450 645706	42.7	952793	10.4	692656 692975	53.1	807344 807025	44203 44229		46
15 16	645962	42.7	952731 952669	10.4	693293	53.1	806707	44255		45 44
17	646218	42.6	952606	10.4	693612	53.0	306388	44281		43
18	646474	42.6 42.6	952544	10.4	693930	53.0	306070	44307	89649	42
19	646729	42.5	952481	10.4 10.4	694248	53.0 53.0	305752	44333		41
20	646984	42.5	952419	10.4	694566	52.9	305434	44359		40
21 22	9.647240 647494	42.5	9.952356 952294	10.4	9.694883 695201	52.9	10.305117 304799	44385 44411		39 38
23	647749	42.4	952231	10.4	695518	52.9	304482	44437		37
24	648004	42.4	952168	10.4	695836	52.9	304164	44464		36
25	648258	42.4 42.4	952106	10.5 10.5	696153	52.9 52.8	303847	44490		35
26	648512	42.3	952043	10.5	696470	52.8	303550	44516		34
27	648766	42.3	951980	10.5	696787	52.8	303213	44542		33
29	649020 649274	42.3	951917 951854	10.5	697103 697420	52.8	302897 302580	44568 44594		32 31
30	649527	42.2	951791	10.5	697736	52.7	302264	44620		30
81	9.649781	42.2	9.951728	10.5	9.698053	52.7	10.301947	44646		29
82	650034	$\frac{42.2}{42.2}$	951665	10.5 10.5	698369	$52.7 \\ 52.7$	301631	44672		28
33	650287	42.1	951602	10.5	698685	52.6	301315	44698		27
34 35	650539 650792	42.1	951539 951476	10.5	699001 699316	52.6	300999 300684	44724 44750		26 25
36	651044	42.1	951412	10.5	699632	52.6	300368	44776		24
87	651297	42.0	951349	10.5	699947	52.6	300053	44802		23
38	651549	$\frac{42.0}{42.0}$	951286	10.6 10.6	700263	52.6 52.5	299737	44828		22
39	651800	41.9	951222	10.6	700578	52.5	299422	44854		21
40 41	652052 9.652304	41.9	951159 9.951096	10.6	700893 9.701208	52.5	299107 10-298792	44880 44906		20 19
42	652555	41.9	951032	10.6	701523	52.4	298477	44900		18
43	652806	41.8	950968	10.6	701837	52.4	298163	44958		17
44	653057	41.8 41.8	950905	10.6 10.6	702152	52.4 52.4	297848	44984	89311	16
45	653308	41.8	950841	10.6	702466	52.4	297534	45010		15
46 47	653558	41.7	950778	10.6	702780	52.3	297220	45086		14
48	653808 654059	41.7	950714 950650	10.6	703095 703409	52.3	296905 296591	45062 45088		13 12
49	654309	41.7	950586	10.6	703723	52.3	296277	45114		11
50	654558	41.6	950522	10.6	704036	52.3 52.2	295964	45140		10
51	9.654808	41.6 41.6	9.950458	10.7 $ 10.7 $	9.704350	52.2	10.295650	45166	89219	9
52	655058	41.6	950394	10.7	704663	52.2	295337	45192		8
53 54	655307	41.5	950330	10.7	704977	52.2	295023	45218		7
65	655556 655805	41.5	950366 950202	10.7	705290 705603	52.2	294710 294397	45248 45269		5
56	656054	41.5	950138	10.7	705916	52.1	294084	45295		4
57	656302	41.4	950074	10.7	706228	52.1	293772	45321	39140	3
58	656551	41.4	950010	10.7 10.7	706541	$52.1 \\ 52.1$	293459	45347		2
69	656799	41.3	949945	10.7	706854	52.1	293146	45373		1
60	657047		949881		707166		292834	45399		0
	Cosine.		Sine.		Cotang.	L	Tang.	N. cos.	N.sine.	-

4	8	L	og. Sines a	nd Tar	igents. (27	°) Na	tural Sines.	TABLE I	I.
7	Sine.	D. 10.	Cosine.	D. 10 '	Tang.	D. 10	Cotang.	N. sine. N. cos.	_
0	9.657047		9.949881		9.707166		10.292834	45399 89101	60
1	657295	41.3 41.3	949816	10.7	707478	52.0 52.0	292522	45425 89087	59
2	657542	41.2	949752	10.7 10.7	707790	52.0	292210 291898	45451 89074 45477 89061	58 57
8	657790 658037	41.2	949688 949623	10.8	708102 708414	52.0	291586	45503 89048	56
5	658284	41.2	949558	10.8	708726	51.9 51.9	291274	45529 89035	55
6	658531	41.1	949494	10.8	709037	51.9	290963	45554 89021	54
8	658778 659025	41.1	949429 949364	10.8	709349 709660	51.9	290651 290340	45580 89008 45606 88995	58 52
9	659271	41.1	949304	10.8	709971	51.9	290029	45632 88981	51
10	659517	41.0 41.0	949235	10.8 10.8	710282	51.8 51.8	289718	45658 88968	50
	9.659763	41.0	9.949170	10.8	9.710593	51.8	10.289407	45684 88955	49
12	660009	40.9	949105 949040	10.8	710904 711215	51.8	289096 288785	45710 88942 45736 88928	48 47
13 14	660255 660501	40.9	948975	10.8	711525	51.8	288475	45762 88915	46
15	660746	40.9 40.9	948910	10.8 10.8	711836	51.7 51.7	288164	45787 88902	45
16	660991	40.8	948845	10.8	712146	51.7	287854	45813 88888	44
17	661236	40.8	948780	10.9	712456 712766	51.7	287544 287284	45839 88875 45865 88862	43 42
18 19	661481 661726	40.8	948715 948650	10.9	713076	51.6	286924	45891 88848	41
20	661970	40.7	948584	10.9	713386	51.6	286614	45917 88835	40
21	9.662214	40.7 40.7	9.948519	10.9 10.9	9.713696	51.6 51.6	10.286304	45942 88822	39
22	662459	40.7	948454	10.9	714005	51.6	285995	45968 88808	38 37
23 24	662703 662946	40.6	948388 948323	10.9	714314 714624	51.5	285686 285376	45994 88795 46020 88782	86
25	663190	40.6	948257	10.9	714933	51.5	285067	46046 88768	35
26	663433	40.6 40.5	948192	10.9 10.9	715242	51.5 51.5	· 284758	46072 88755	84
27	663677	40.5	948126	10.9	715551	51.4	284449	46097 88741	83
28 29	663920 664163	40.5	948060 947995	10.9	715860 716168	51.4	284140 283832	46123 88728 46149 88715	32 31
30	664406	40.5	947929	11.0	716477	51.4	283523	46175 88701	80
81	9.664648	40.4	9.947863	11.0	9.716785	51.4	10.283215	46201 88688	29
32	664891	40.4	947797	11.0 11.0	717093	51.4 51.3	282907	46226 88674	28
83	665133	40.3	947731	11.0	717401	51.3	282599 282291	46252 88661 46278 88647	27 26
84 85	665375 665617	40.3	947665 947600	11.0	717709 718017	51.3	281983	46304 88634	25
86	665859	40.3 40.2	947533	11.0	718325	51.3	281675	46330 88620	24
37	666100	40.2	947467	11.0 11.0	718633	51.3 51.2	281367	46355 88607	28
38	666342	40.2	947401	11.0	718940 719248	51.2	281060 280752	46381 88593 46407 88580	22 21
39 40	666583 666824	40.2	947335 947269	11.0	719555	51.2	280445	46433 88566	20
41	9.667065	40.1	9.947203	11.0	9.719862	51.2	10.280138	46458 88553	19
42	667305	40.1 40.1	947136	11.0 11.1	720169	51.2 51.1	279831	46484 88539	18
48	667546	40.1	947070	11.1	720476	51.1	279524 279217	46510 88526	17
44 45	667786 668027	40.0	947004 946937	11.1	720783 721089	51.1 51.1	278911	46536 86512 46561 88499	16 15
46	668267	40 0	946871	11.1	721396	51.1	278604	46587 88485	14
47	668506	40.0 39.9	946804	11.1 11.1	721702	51.1 51.0	27 82 9 8	46613 88472	18
48	668746	39.9	946738	11.1	722009	51.0	277991	46639 88458	12 11
49 50	668986 669225	39.9	946671 946604	11.1	722315 722621	51.0	277685 277379	46664 88445 46690 88431	10
51	9.669464	39.9	9.946538	11.1	9.722927	51.0	10.277073	46716 88417	9
52	669703	39.8 39.8	946471	11.1 11.1	723232	51.0 50.9	276768	46742 88404	8
53	669942	39.8	946404	11.1	723538	50.9	276462	46767 88390	7
54 55	670181 670419	39.7	946337 946270	11.1	723844 724149	50.9	276156 275851	46793 88377 46819 88363	6
56	670658	39.7	946203	11.2	724454	50.9	275546	46844 88349	4
57	670896	39.7 39.7	946136	11.2	724759	50.9 50.8	275241	46870 88336	8
58	671134	39.6	946069	$ 11.2 \\ 11.2$	725065	50.8	274935	46896 88322	2
59 60	671372 671609	39.6	946002	11.2	725369 725674	50.8	274631 274326	46921 88308 46947 88295	1
-	Cosine.		945935		Cotang.			N. cos. A.sine.	÷
II —	Cosine.	L	Sine.			Ь	Tang.	I A. COR. A.PIDO.	<u>'</u>
<u> </u>				- (2 Degrees.				_

7	ABLE II.	I	og. Sines s	nd Ta	ngents. (2	8°) N	atural Sines		4	9
7	Sine.	D. 10'	Cosine.	D. 10'	Tang.	D. 10'	Cotung.	N. sine.	V. cos	
0	9.671609	89.6	9.945935	11.2	9.725674	50.8	10.274326	46947 8		60
1	671847	39.5	945868	11.2	725979	50.8	274021	469738		59 58
2	672034 672321	39.5	94580J 945733	11.2	726284 726588	50.7	273716 273412	46999 8 47024 8		57
8	672558	39.5	945666	11.2	726892	50.7	273108	470508		56
5	672795	39.5	945598	11.2	727197	50.7 50.7	272803	470768	8226	55
6	673032	39.4 39.4	945531	11.2 11.2	727501	50.7	272499	471018		54
7	673268	39.4	945464	11.3	727805	50.6	272195 271891	47127 8 47153 8		53 52
8	673505 673741	39.4	945396 945328	11.3	728109 728412	50.6	271588	471788		51
10	673977	39.3	945261	11.3	728716	50.6	271284	472048		50
11	9.674213	39.3 39.3	9.945193	11.3	9.729020	50.6 50.6	10.270980	47229		49
12	674448	39.2	945125	11.3	729323	50.5	270677	472558		48
13 14	674584 674919	39.2	945038 944990	11.3	729626 729929	50.5	270374 270071	47281 8 47306 8		46
15	675155	39.2	944922	11.3	730233	50.5	269767	473328		45
16	675390	39.2 39.1	944854	11.3 11.3	730535	50.5 50.5	269465	473588	8075	44
17	675524	39.1	944786	11.3	730838	50.4	269162	47383 8		43 42
18 19	675359	39,1	944718	11.3	731141 731444	50.4	268859 268556	47409 8 47434 8		41
20	676094 676328	39.1	944650 944582	11.8	731746	50.4	268254	474608		40
21	9.676562	39.0	0.044514	11.4	9.732048	50.4	10.267952	474868	8006	39
22	676793	39.0 39.0	944440	11.4 11.4	732351	50.4 50.3	267649	475118		38
23	677030	39.0	944377	11.4	782653	50.3	267347 267045	47537 8 47562 8		37 36
24 25	677264 677498	38.9	944309 944241	11.4	732955 73 3 257	50.3	266743	47588		35
26	677731	38.9	944172	11.4	733558	50.3	266442	476148		34
27	677964	38.9 38.8	944104	11.4 11.4	733860	50.3 50.2	266140	476398	7923	33
28	678197	33.8	944036	11.4	734162	50.2	265838	47665 8	7909	32
29 30	678430	38.8	943967	11.4	734463 734764	50.2	265537 265236	47690 8 47716 8	7220	31 30
81	678663 9.678895	38.8	943899 9.943830	11.4	9.735066	50.2	10.264934	47741 8		29
32	679128	38.7 38.7	943761	11.4	735367	50.2 50.2	264633	477678		28
33	679360	38.7	943693	11.4 11.5	785668	50.2	264332	477938		27
34	679592	38.7	943624	11.5	735969	50.1	264031 263731	478188		26 25
35 36	679824 680056	38.6	943555 943486	11.5	736269 736570	50.1	263430	47844 8 47869 8		24
87	680288	38.6	943417	11.5	736871	50.1	263129	478958		23
38	680519	38.6 38.5	943348	11.5 11.5	737171	50.1 50.0	262829	479208		22
39	680750	38.5	913279	11.5	787471	50.0	262529	479468		21 20
40	680982	38.5	943210 9.943141	11.5	737771 9.738071	50.0	262229 10,261929	47971 8 47997 8		19
41	7.681213 681443	38.5	943072	11.5	738371	50.0	261629	480228		18
43	681674	38.4 38.4	943003	11.5 11.5	738671	50.0 49.9	261329	48048	7701	17
44	681905	38.4	942934	11.5	738971	49.9	261029	48073 8		16
45	682135	38.4	942864 942795	11.5	739271 739570	49.9	260729 260430	48099 8 48124 8		15 14
46 47	682365 682595	38.3	942796	11.6	739870	49.9	260130	481508		13
48	682825	38.3	942656	11.6	740169	49.9	259831	481758		12
49	683055	38.3 38.3	942587	11.6 11.6	740468	49.9 49.8	259532	48201 8		11
50	683284	38.2	942517	11.6	740767	49.8	259233 10.258934	48226 8 48252 8		10 9
51 52	9.683514 683743	38.2	9.942448 942378	11.6	9.741056 741365	49.8	258635	48277 8		8
53	683972	38.2	942308	11.6	741664	49.8	258336	483038		7
54	684201	38.2 38.1	942239	11.6 11.6	741952	49.8 49.7	258038	48328 8		6
55	684430	38.1	942169	11.6	742261	49.7	257739	483548		5
56 57	684658	38.1	942099 942029	11.6	742559 742858	49.7	257441 257142	48379 8 48405 8		3
58	684887 685115	38.0	941959	11.6	743156	49.7	256844	484308		2
59	685343	38.0	941889	11.6	743454	49.7 49.7	256546	484568	7476	1
60	685571	38.0	941819	11.7	743752		256248	484818		0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N	l.sine.	
1				6	1 Degrees.					

6	U	Lo	g. Sines en	d Tan	gents. (39	') Nat	neral Simes.	TARLE P	
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	-
0	9.685571	88.0	9.941819	11.7	9.748752	49.6	10.256248	48481 87462	60
1	685799	37.9	941749	11.7	744050	49.6	255950	48506 87448	59
2	686027 686254	37.9	941679 941609	11.7	744348 744645	49.6	255652 255355	48532 87434 48557 87420	58 57
4	686482	37.9	941539	11.7	744943	49.6	255057	48583 87406	56
5	686709	37.9 37.8	941469	11.7 11.7	745240	49.6 49.6	254760	48608 87891	55
6	686986	37.8	941398	11.7	745538	49.5	254462	48634 87377	54
8	687163 687389	37.8	941328 941258	11.7	745835 746132	49.5	254165 253868	48659 87363	53
9	687616	37.8	941187	11.7	746429	49.5	253500 253571	48684 87349 48710 87335	52 51
10	687843	37.7 37.7	941117	11.7 11.7	746726	49.5	253274	48785 87321	50
	9.688069	37.7	9.941046	11.8	9.747023	49.4	10.252977	48761 87806	49
12 13	688295 688521	37.7	940975 940905	11.8	747319 747616	49.4	252681	48786 87292	48
14	688747	37.6	940834	11.8	747913	49.4	252384 252087	48811 87278 48837 87264	47 46
15	688972	37.6 37.6	940768	11.8	748209	49.4 49.4	251791	48862 87250	45
16	689198	37.6	940698	11.8 11.8	748505	49.8	251495	48888 87235	44
17	689423 689648	37.5	940622 940551	11.8	748801	49.3	251199	48913 87221	43
18 19	689873	37.5	940480	11.8	749097 749393	49.8	250903 250607	48938 87207 48964 87193	42 41
20	690098	37.5	940409	11.8	749689	49.3	250311	48989 87178	40
	9.690323	37.5 37.4	9.940338	11.8 11.8	9.749985	49.3 49.8	10.250015	49014 87164	39
22	690548	37.4	940267	11.8	750281	49.2	249719	49040 87150	38
23 24	690772 690996	37.4	940196 940125	11.8	750576 750872	49.2	249424 249128	49065 87136 49090 87121	37 36
25	691220	37.4	940054	11.9	751167	49.2	248833	49116 87107	35
26	691444	37.3 37.3	939982	11.9 11.9	751462	49.2 49.2	248538	49141 87093	34
27	691668	37.8	939911	11.9	751757	49.2	248243	49166 87079	33
28	691892 692115	37.3	939840 939768	11.9	752052 752347	49.1	247948	49192 87064	32
29 30	692339	37.2	939697	11.9	752642	49.1	247653 247358	49217 87050 49242 87036	31 30
	9.692562	37.2	9.939625	11.9	9.752937	49.1	10.247063	49268 87021	29
32	692785	37.2 37.1	939554	11.9 11.9	758231	49.1 49.1	246769	49293 87007	28
33	693008	37.1	989482 939410	11.9	753526	49.1	246474	49318 86993	27
84 35	693231 693453	37.1	939339	11.9	753820 754115	49.0	246180 245885	49344 86978 49369 86964	26 25
36	693676	37.1	939267	11.9	754409	49.0	245591	49394 86949	24
37	693898	37.0 37.0	989195	$12.0 \\ 12.0$	754703	49.0 49.0	245297	49419 86935	28
88	694120 694842	37.0	989128 939052	12.0	754997 755291	49.0	245003	49445 86921	22
89 40	694564	37.0	938980	12.0	755585	49.0	244709 244415	49470 86906 49495 86892	21 20
	9.694786	36.9	9.938908	$12.0 \\ 12.0$	9.755878	48.9	10.244122	49521 86878	19
42	695007	36.9 36.9	938836	12.0	756172	48.9 48.9	24 3828	49546 86863	18
43	695229	36.9	938763 938691	12.0	756465	48.9	243535	49571 86849	17
44 45	695450 695671	36.8	938619	12.0	756759 757052	48.9	243241 242948	49596 86834 49622 86820	16 15
46	695892	36.8	988547	12.0	757345	48.9	242655	49647 86805	14
47	696113	36.8 36.8	938475	$12.0 \\ 12.0$	757638	48.8 48.8	242362	49672 86791	13
48	696334	36.7	938402	12.1	757931	48.8	242069	49697 86777	12
49 50	696554 696775	36.7	938330 938258	12.1	758224 758517	48.8	241776 241483	49723 86762 49748 86748	11 10
	9.696995	36.7	9.938185	12.1	9.758810	48.8	10.241190	49773 86733	9
52	697215	36.7 36.6	938113	12.1 12.1	759102	48.8 48.7	240898	49798 86719	8
53	697435	36.6	938040 937967	12.1	759395	48.7	240605	49824 86704	7
54 55	697654 697874	36.6	937895	12.1	759687 759979	48.7	240313 240021	49849 86690 49874 86675	6
56	698094	36.6	937822	12.1	760272	48.7	239728	49899 86661	4
57	698313	36.5	937749	12.1 12.1	760564	48.7 48.7	239436	49924 86646	3
58	698532	36.5	987676 987604	12.1	760856	48.6	239144	49950 86632	2
59 60	698751 698970	36.5	987531	12.1	761148 761439	48.6	238852 288561	49975 86617 50000 86603	1 0
۳	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	-
1-	1.0001101	`			O Degrees.	<u></u>		ii corsi remine.	

TABLE II. Log. Since and Tangentz. (80°) Natural Since. 51										
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	9.698970	00.4	9.937531	12.1	9.761439	48.6	10.238561	50000	86603	60
1	699189	36.4 36.4	937458	$12.1 \\ 12.2$	761731	48.6	23 8269	50025		59
2	699407	36.4	937385	12.2	762023	48.6	237977		36573	58
3	699626	36.4	937312	12.2	762314	48.6	237686	50076		57 56
4	699844 700062	36.3	937238 937165	12.2	762606 762897	48.5	237394 237103		86544 86530	55
5 6	700280	36.3	937092	12.2	763188	48.5	236812	50151		54
7	700498	36.3	937019	12.2	763479	48.5	236521	50176		53
8	700716	36.3 36.3	936946	$12.2 \\ 12.2$	763770	48.5	236230	50201		52
9	700933	86.2	936872	12.2	764061	48.5	235939	50227		51
10	701151	36.2	986799	10 0	764352	48.4	235648	50252		50
	9.701368 701585	36.2	9.936725 936652	12.2	9.764643 764933	48.4	10.235357 235067	50277 50302		49
12 13	701802	36.2	936578	12.3	765224	48.4	234776	50327		47
14	702019	36.1	936505	12.3	765514	48.4	234486	50352		46
15	702236	36.1 36.1	936431	12.3 12.3	765805	48.4 48.4	234195	50377		45
16	702452	36.1	936357	12.3	766095	48.4	233905	50403		44
17	702669	36.0	936284	12.3	766385	48.3	233615	50428		43 42
18	702885 703101	36.0	936210 936136	12.3	766675 766965	48.3	233325 233035	50453 50478		41
19 20	703101	36.0	936062	12.3	767255	48.3	232745	50503	36310	40
	9.703533	36.0	9.935988	12.3	9.767545	48.3	10.232455	50528	86295	39
22	703749	30.0	935914	12.3	767834	48.3	232166	50553		38
23	703964	35.9 35.9	935840	$12.3 \\ 12.3$	768124	48.3 48.2	231876	50578		37
24	704179	35.9	935766	12.4	768413	48.2	231587	50603		36
25	704395 704610	35.9	935692 935618	12.4	768703 768992	48.2	231297 231008	50628 50654		35 34
26 27	704825	35.8	935543	12.4	769281	48.2	230719		86207	33
28	705040	35.8	935469	12.4	769570	48.2	230430	50704		32
29	705254	35.8	935395	12.4	769860	48.2	230140		86178	31
80	705469	35.8 35.7	935320	12.4 12.4	770148	48.1 48.1	229852		86163	30
	9.705683	35.7	9.935246	12.4	9.770437	48.1	10.229563		86148	29 28
32 33	705898 706112	35.7	935171 935097	12.4	770726 771015	48.1	229274 228985		86133 86119	27
34	706326	35.7	935022	12.4	771303	48.1	228697		86104	26
35	706539	35.6	934948	12.4	771592	48.1	228408		86089	25
36	706753	35.6 35.6	934873	12.4 12.4	771880	48.1 48.0	228120		86074	24
87	703967	35.6	934798	12.5	772168	48.0	227832		86059	23 22
38 39	707180 707393	35.5	934723 934649	12.5	772457 772745	48.0	227543 227255		86045 86030	21
40	707606	35.5	934574	12.5	773033	48.0	226967	51004		20
	9.707819	35.5	9.934499	12.5	9.773321	48.0	10.226679	51029		19
42	708032	35.0	934424	12.5	773608	48.0	226392		85985	18
43	708245	35.4 35.4	934349	12.5 12.5	773896	47.9 47.9	226104	51079		17
44	708458	35.4	934274	12.5	774184	47.9	225816	51104		16
45 46	703670 708882	35.4	934199 934123	12.5	774471	47.9	225529 225241	51129 51154		15 14
47	709094	35.3	934123	12.5	775046	47.9	224954	51179		13
48	709303	35,3	933973	12.5	775333	47.9	224667	51204	85896	12
49	709518	35.3 35.3	933898	12.5 12.6	775621	47.9 47.8	224379	51229		11
50	709730	35.3	933822	12.6	775908	47.8	224092	51254		10
	9.709941	35.2	9.933747	12.6	9.776195	47.8	10.223805 223518	51279 51304		9 8
52 53	710153 710364	35.2	933671 933596	12.6	776482 776769	47.8	223231	51329		7
54	710575	35.2	933520	12.6	777055	47.8	222945	51354		6
55	710786	35.2	933445	12.6	777342	47.8	222658	51379	85792	5
56	710967	35.1 35.1	933369	12.6 12.6	777628	47.8 47.7	222372	51404		4
57	711208	35.1	933293	12.6	777915	47.7	222085	51429		8
58 59	711419	35.1	933217	12.6	778201	47.7	221799 221512	51454 51479		2
60	711629 711839	35.0	933141 933066	12.6	778487 778774	47.7	221012 221226	51504		ō
-00					Cotang.		Tang.		N.sine.	-
<u>-</u>	Cosine.		Sine.	<u> </u>			Tang.	A. COB.	74.01116.	
L					59 Degrees.		and the second of the second			

V

5	2	L	og. Sines ar	d Tar	gents. (31	°) Na	tural Sines.	TABLE I	I.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	1_
0	0.711839	35.0	9.933036	12.6	9.778774	47.7	10.221226	51504 85717	60
1	712050	35.0	932990	12.7	779060	47.7	220940	51529 85702	59
2	712260	35.0	932914	12.7	779346	47.6	220654	51554 55687	58
3	712469 712679	34.9	932838 932762	12.7	779632 779918	47.6	220368 220082	51579 85672 51604 85657	57 56
5	712889	34.9	932685	12.7	780203	47.6	219797	51628 85642	55
6	713098	34.9 34.9	932609	12.7 12.7	780489	47.6 47.6	219511	51653 85627	54
7	713308	34.9	932533	12.7	780775	47.6	219225	51678 85512	53
8	713517	34.8	932457	12.7	781060	47.6	218940 218654	51703 85597 51728 85582	52
9 10	713726 713935	34.8	932380 932304	12.7	781346 781631	47.5	218369	51753 85567	51 50
	9.714144	34.8	9.932228	12.7	9.781916	47.5	10.218084	51778 85551	49
12	714352	34.8 34.7	932151	$12.7 \\ 12.7$	782201	47.5 47.5	217799	51803 85536	48
13	714561	34.7	932075	12.8	782486	47.5	217514	51828 85521	47
14	714769	34.7	931998	12.8	782771 783056	47.5	217229 216944	51852 85506 51877 85491	46
15 16	714978 715186	34.7	931921 931845	12.8	783341	47.5	216659	51902 85476	45 44
17	715394	34.7	931768	12.8	783626	47.5	216374	51927 85461	43
18	715602	34.6	931691	$ 12.8 \\ 12.8 $	783910	47.4	216090	51952 85446	42
19	715809	34.6 34.6	931614	12.8	784195	47.4	215805	51977 85431	41
20	716017	34.6	931537	12.8	784479	47.4	215521	52002 85416	40
21 22	9.716224	34.5	9.931460	12.8	9.784764	47.4	10.215236 214952	52026 85401 52051 85385	39 38
23	716432 716639	34.5	931383 931306	12.8	785048 785332	47.4	214668	52076 85370	87
24	716846	34.5	931229	12.8	785616	47.3	214384	52101 85355	36
25	717053	34.5 34.5	931152	12.9	785900	47.3 47.3	214100	52126 85340	35
26	717259	34.4	931075	12.9 12.9	786184	47.3	213816	52151 85325	34
27	717466	34.4	930998	12.9	786468	47.3	213532	52175 85310	83
28 29	717673 717879	34.4	930921 930943	12.9	786752 787036	47.3	213248 212964	52200 85294 52225 85279	ა2 31
80	718085	34.4	930766	12.9	787319	47.3	212681	52250 85264	30
	9.718291	34.3	9.930688	12.9	9.787603	47.2	10.212397	52275 85249	29
32	718497	34.3 34.3	930611	12.9 12.9	787886	47.2 47.2	212114	52299 85234	28
83	718703	34.3	930533	12.9	788170	47.2	211830	52324 85218	27
34	718909	34.3	930456	12.9	788453	47.2	211547	52349 85203	26
85 86	719114 719320	34.2	930378 930300	12.9	788736 789019	47.2	211264 210981	52374 85188 52399 85173	25 24
37	719525	34.2	930223	13.0	789302	47.2	210698	52428 85157	28
88	719730	34.2	930145	13.0	789585	47.1	210415	52448 85142	22
89	719935	34.2 34.1	930067	13.0 13.0	789868	47.1 47.1	210132	52473 85127	21
40	720140	34.1	929989	13.0	790151	47.1	209849	52498 85112	20
41	9.720345 720549	34.1	9.929911	13.0	9.790433	47.1	10.209567 209284	52522 85096 52547 85081	19
43	720754	34.1	929755	13.0	790716 790999	47.1	209204	52572 85066	18 17
44	720958	34.0	929677	13.0	791281	47.1	208719	5259, 85051	16
45	721162	34.0 34 0	929599	13.0 13.0	791563	47.1 47.0	208437	52621 85035	15
46	721366	34.0	929521	13.0	791846	47.0	208154	52646 85020	14
47 48	721570	34.0	929442	13.0	792128	47.0	207872	52671 85005	13
49	721774 721978	83.9	929364 929286	13.1	792410 792692	47.0	207590 207308	52696 84989 52720 84974	12 11
50	722181	33.9	929207	18.1	792974	47.0	207026	52745 84959	10
51	9.722385	33.9 33.9	9.929129	13.1	9.793256	47.0 47.0	10.206744	52770 84943	9
52	722588	33.9	929050	13.1 13.1	793538	46.9	206462	52794 84928	8
53	722791	33.8	928972	13.1	793819	46.9	206181	52819 84913	7
54 55	722994 723197	33.8	928893 928815	13.1	794101	46.9	205899 205617	52844 84897 52869 84882	6
56	723197	33.8	928736	13.1	794383 794664	46.9	205336	52893 84866	4
57	723603	33.8	928657	13.1	794945	46.9	205055	52918 84851	8
58	723805	33.7 33.7	928578	13.1	795227	46.9	204773	52943 84836	2
59	724007	33.7	928499	13.1 13.1	795508	46.9 46.8	204492	52967 84820	1
60	724210		928420		795789	20.0	204211	52992 84805	0
I	Cosine.	1	Sine.		Cotang.		Tang.	N. cos. N.sine.	7
				5.5	B Degrees.				

58 Degrees.

	TABLE II. Log. Sines and Tangents. (32°) Natural Sines. 53										
T	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos	1_		
0	9.724210	99 77	9.928420	10.0	9.795789	40 0	10.204211	52992 84805			
1		33.7 33.7	928342	13.2 13.2	796070	46.8 46.8	203930	53017 84789			
2		33.6	928263	13.2	796351	46.8	203649	53041 84774			
8		33.6	928183	13.2	796632	46.8	203368	53066 84759			
4 5		33.6	928104	13.2	796913	46.8	203087	53091 84743 53115 84728			
6		33.6	928025 927946	13.2	797194 797475	46.8	202806 202525	5314084712			
7		33.5	927867	13.2	797755	46.8	202245	53164 84697			
il š		33.5	927787	13.2	798036	46.8	201964	53189 84681			
9	726024	33.5	927708	13.2	798316	46.7 46.7	201684	53214 84666	51		
10		33.5 33.5	927629	13.2 13.2	798596	46.7	201404	53238 84650			
11		33.4	9.927549	13.2	9.798877	46.7	10.201123	53263 84635			
12		33.4	927470	13.3	799157	46.7	200843	53288 84619			
13 14		33.4	927390 927310	13.3	799437 799717	46.7	200563 200283	53312 84604 53337 84588			
i5		33.4	927231	13.3	799997	46.7	200003	53361 84573			
16		33.4	927151	13.3	800277	46.6	199723	53386 84557	44		
17	727628	33.3	927071	13.3	800557	46.6	199443	53411 84542	43		
18		33.3 33.3	926991	13.3 13.3	800836	46.6 46.6	199164	53435 84526			
19		33.3	926911	13.3	801116	46.6	198884	53460 84511			
20		00 0	926831 9.926751	13.3	801396	46.6	198604	53484 84495			
21 22		33.2	9.926751 926671	13.3	9.801675 801955	46.6	10.198325 198045	53509 84480 53584 84464			
23		33.2	926591	13.3	802234	46.6	197766	53558 84448			
24		33.2	926511	13.3	802513	46.5	197487	53583 84433			
25	729223	33.2	926431	13.4	802792	46.5	197208	53607 84417			
26		33.1 33.1	926351	13.4 13.4	803072	46.5 46.5	196928	53632 84402			
27		33.1	926270	13.4	803351	46.5	196649	53656 84386			
28		33.1	926190	13.4	803630	46.5	196370	53681 84370			
29		33.0	926110	13.4	803908	46.5	196092	53705 84355			
30 31		33.0	926029 9.925949	13.4	804187 9.804466	46.5	195813 10.195534	53780 84339 53754 84324			
32		33.U	925868	13.4	804745	46.4	195255	53779 84308			
33		33,0	925788	13.4	805023	46.4	194977	53804 84292			
34		33.0 32.9	925707	13.4 13.4	805302	46.4 46.4	194698	53828 84277			
35		32.9	925626	13.4	805580	46.4	194420	53853 84261			
36		32.9	925545	13.5	805859	46.4	194141	53877 84245			
} 37 38		32.9	925465 925384	13.5	806137 806415	46.4	193863 193585	53902 84230 53926 84214			
39		32.9	925303	13.5	806693	46.3	193307	53951 84198			
40		32.8	925222	13.5	806971	46.3	193029	53975 84182			
41		32.8	9.925141	13.5	9.807249	46.3	10.192751	54000 84167			
42	732587	32.8 32.8	925060	13.5 13.5	807527	46.3 46.3	192473	54024 84151	18		
4.3		32.8	924979	13.5	807805	46.3	192195	54049 84135			
44		32,7	924897	13.5	808083	46.3	191917	54073 84120			
45 46		32.7	924816 924735	13.5	808361 808638	46.3	191639 191362	54097 84104 54122 84088			
47		32.7	924755	13.6	808916	46.2	191084	54146 84072			
48		32.7	924572	13.6	809193	46.2	190807	54171 84057			
49		32.7	924491	13.6	809471	46.2	190529	54195 84041	11		
50		32.6 32.6	924409	13.6 13.6	809748	46.2 46.2	190252	54220 84025			
51		32.6	9.924328	13.6	9.810025	46.2	10.189975	54244 84009			
52		32.6	924246	13.6	810302	46.2	189698	54269 83994			
53 54		32.5	924164 924083	13.6	810580 810857	46.2	189420 189143	54293 83978 54317 83962			
55		32.5	924003	13.6	811134	46.2	188866	54342 83946			
56		32.5	923919	13.6	811410	46.1	188590	54366 83930			
57	735525	32.5	923837	13.6	811687	46.1	188313	54891 83915	8		
58		$32.5 \\ 32.4$	923755	13.6 13.7	811964	46.1 46.1	188036	54415 83899			
59		32.4	923673	13.7	812241	46.1	187759	54440 83883			
60			923591		812517		187483	54464 83867			
 	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine	<u>. T</u>		
IJĨ				5	7 Degrees.						

5	4	'Io	g. Sines un	d Tun	gents. (88°) Nat	tural Sines.	TABLE I	L.
7	Sine.	D. 10'	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9.786109		9.923591		9.812517		10.187482	54464 83867	60
ľĭ	786303	32.4	923509	18.7	812794	46.1	187206	54488 83851	59
2	736498	32.4 32.4	923427	13.7 13.7	813070	46.1 46.1	186930	54513 83835	58
8	736692	32.3	923345	13.7	813347	46.0	186653	54537 83819	57
4	736886	32.3	923263	13.7	813623	46.0	186377	54561 83804	56
5	787080	32.3	923181	13.7	813899	46.0	186101	54586 83788 54610 83772	55 54
6	737274	32.3	923098	18.7	814175	46.0	185825 185548	54635 83756	53
8	737467 737661	32.3	923016 922933	18.7	814452 814728	46.0	185272	54659 83740	52
9	787855	32.2	922851	13.7	815004	46.0	184996	54683 83724	51
10	738048	32.2	922768	18.7	815279	46.0	184721	54708 83708	50
ii	9.738241	32.2	9.922686	13.8	9,815555	46.0	10.184445	54732 83692	49
12	738434	32.2 32.2	922603	13.8 13.8	815831	45.9 45.9	184169	54756 83676	48
13	738627	32.1	922520	18.8	816107	45.9	183893	54781 83660	47
14	738820	32.1	922438	13.8	816382	45.9	183618	54805 83645	46
15	739013	32.1	922355	13.8	816658	45.9	183342 183067	5482983629 5485483613	45 44
16	789206	32.1	922272 922189	13.8	816933 817209	45.9	182791	54878 83597	43
17 18	789398 739590	32.1	922189	13.8	817484	45.9	182516	54902 83581	42
19	789783	32.0	922023	13.8	817759	45.9	182241	54927 83565	41
20	739975	32.0	921940	13.8	818035	45.9 45.8	181965	54951 83549	40
21	9.740167	32.0	9.921857	13.8	9.818310	45.8	10.181690	54975 83538	39
22	740359	$32.0 \\ 32.0$	921774	13.9 13.9	818585	45.8	181415	54999 83517	88
23	740550	31.9	921691	13.9	818860	45.8	181140	55024 83501	37
24	740742	31.9	921607	18.9	819135	45.8	180865	55048 83485	36
25	740934	31.9	921524	13.9	819410	45.8	180590	55072 83469 55097 83453	35 34
26	741125	31.9	921441	13.9	819684 819959	45.8	180316 180041	55121 83437	33
27 28	741316 741508	31.9	921357 921274	13.9	820234	45.8	179766	5514583421	32
29	741699	31.8	921190	13.9	820508	45.8	179492	55169 83405	31
30	741889	31.8	921107	13.9	820783	45.7	179217	55194 83389	30
31	9.742080	31.8	9.921023	13.9	9.821057	45.7 45.7	10.178943	55218 83373	29
32	742271	31.8 31.8	920939	13.9 14.0	821332	45.7	178668	55242 83356	28
33	742462	31.7	920856	14.0	821606	45.7	178394	55266 88340	27
34	742652	31.7	920772	14.0	821880	45.7	178120 177846	55291 83324 55315 83308	26 25
35	742842	31.7	920688	14.0	822154	45.7	177571	55339 83292	24
36 87	743033 743223	31.7	920604 920520	14.0	822429 822703	45.7	177297	55363 83276	28
38	743413	31.7	920436	14.0	822977	45.7	177023	55388 83260	22
39	743602	31.6	920352	14.0	823250	45.6	176750	55412 83244	21
40	743792	31.6	920268	14.0	823524	45.6	176476	55436 83228	20
41	9.743982	31.6 31.6	9.920184	14.0 14.0	9.823798	45.6 45.6	10.176202	55460 83212	19
42	744171	31.6	920099	14.0	824072	45.6	175928	55484 83195	18
43	744361	31.5	920015	14.0	824345	45.6	175655	55509 83179	17
44	744550	31.5	919931	14.1	824619	45.6	175381 175107	55533 83163 55557 83147	16 15
45	744739	31.5	919846	14.1	824893 825166	45.6	174834	5558183131	14
46 47	744928 745117	31.5	919762 919677	14.1	825439	45.6	174561	55605 83115	13
48	745306	31.5	919593	14.1	825713	45.5	174287	55680 83098	12
49	745494	31.4	919508	14.1	825986	45.5	174014	55654 83082	11
50	745683	31.4	919424	14.1	826259	45.5	173741	55678 83066	10
51	9.745871	31.4 31.4	9.919339	14.1 14.1	9.826532	45.5	10.173468	5570283050	9
52	746059	31.4	919254	14.1	826805	45.5	173195	55726 83084	8
53	746248	31.8	919169	14.1	827078	45.5	172922 172649	55750 83017 55775 83001	7 6
54	746436	31.3	919085	14.1	827351 827624	45.5	172649	55799 82985	5
55 56	746624 746812	31.3	919000	14.1	827624	45.5	172103	55823 82969	4
57	746999	31.3	918915 918830	14.2	828170	45.4	171830	55847 82963	8
58	747187	31.3	918745	14.2	828442	45.4	171558	55871 82936	9
59	747374	31.2	918659	14.2	828715	45.4	171285	55895 82920	1
60	747562	31.2	918574	14.2	828987	45.4	171013	55919 82904	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sime.	7
			·	ì	6 Degrees.				
ـــا		-			- refrees	_			_

7	ABLĘ II.	I	og. Sines s	nd Ta	ngents. (3	6°) N	stural Sines.	5	5
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine N. cos.	
0	9.747562	31.2	9.918574	14.2	9.828987	45.4	10.171013	55919 82904	60
1	747749	31.2	918489	14.2	829260	45.4	170740	55943 82887	59 58
3	747936 748123	31.2	918404 918318	14.2	829532 829805	45.4	170468 170195	55968 82871 55992 82855	57
4	748310	31.1	918233	14.2	830077	45.4	169923	56016 82839	56
5	748497	31.1 31.1	918147	14.2 14.2	830349	45.4 45.8	169651	56040 82822	55
6	748683	31.1	918062	14.2	830621	45.8	169379	56064 82806	54 53
8	748870 749056	31.1	917976 917891	14.3	830893 831165	45.3	169107 168835	56088 82790 56112 82773	52
9	749243	31.0	917805	14.3	831437	45.8	168563	56136 82757	51
10	749426	31.0 31.0	917719	14.3 14.3	831709	45.8 45.3	168291	56160 82741	50
11	9.749615	31.0	9.917634	14.3	9.831981	45.3	10.168019	56184 82724	49 48
12 13	749801 749987	81.0	917548 917462	14.3	832253 832525	45.3	167747 167475	56208 82708 56232 82692	47
14	750172	30.9	917376	14.3	832796	45.8	167204	56256 82675	46
15	750358	30.9 30.9	917290	14.3 14.3	833068	45.3 45.2	166932	56280 82659	45
16	750543	30.9	917204	14.3	833339	45.2	166661	56305 82643	44
17	750729 750914	30.9	917118 917032	14.4	833611 833882	45.2	166389 166118	56329 82626 56353 82610	48 42
18 19°	7510914	30.8	916946	14.4	834154	45.2	165846	56377 82593	41
20	751284	30.8 30.8	916859	14.4 14.4	834425	45.2 45.2	165575	56401 82577	40
21	9.751469	30.8	9.916773	14.4	9.834696	45.2	10.165304	56425 82561	39
22 23	751654 751839	30.8	916687 916600	14.4	834967 835238	45.2	165033 164762	56449 82544 56473 82528	38 37
24	752023	30.8	916514	14.4	835509	45.2	164491	56497 82511	36
25	752208	30.7	916427	14.4 14.4	835780	45.2 45.1	164220	56521 82495	35
26	752392	30.7 30.7	916341	14.4	836051	45.1	163949	56545 82478	84
27	752576	30.7	916254	14.4	836322 836593	45.1	163678 163407	56569 82462 56593 82446	38 32
28	752760 752944	30.7	916167 916081	14.5	836864	45.1	163136	56617 82429	31
80	753128	30.6	915994	14.5	837134	45.1 45.1	162866	56641 82413	30
31	9.753312	30.6 30.6	9.915907	14.5 14.5	9.837405	45.1	10.162595	56665 82396	
32	753495	30.6	915820	14.5	837675	45.1	162325 162054	56689 82380 56713 82363	28 27
33	753679 753862	30.6	915733 915646	14.5	837946 838216	45.1	161784	56736 82347	26
35	754046	30.5	915559	14.5 14.5	838487	45.1 45.0	161513	56760 82330	25
36	754229	30.5 30.5	915472	14.5	838757	45.0	161243	56784 82314	24 23
87	754412	30.5	915385	14.5	839027 839297	45.0	160973 160703	56808 82297 56832 82281	23
88 39	754595 754778	30.5	915297 915210	14.5	839568	45.0	160432	56856 82264	21
40	754960	30.4	915123	14.5	839838	45.0 45.0	160162	56880 82248	20
41	9.755143	30.4 30.4	9.915035	14.6 14.6	9.840108	45.0	10.159892	56904 82281	19
42	755326	30.4	914948	14.6	840378	45.0	159622 159353	56928 82214 56952 82198	18 17
43 44	755508 755690	30.4	914860 914773	14.6	840647 840917	45.0	159083	56976 82181	16
45	755872	30.4	914685	14.6 14.6	841187	44.9 44.9	158813	57000 82165	15
46	756054	30.3 30.3	914598	14.6	841457	44.9	158543	57024 82148	
47	756236	30.3	914510	14.6	841726	44.9	158274 158004	57047 82182 57071 82115	18 12
48 49	756418 756600	30.3	914422 914334	14.6	841996 842266	44.9	157734	57095 82098	ii
50	756782	30.3	914246	14.6	842535	44.9 44.9	157465	57119 82082	10
51	9.756963	30.2 30.2	9.914158	14.7 14.7	9.842805	44.9	10.157195	57143 82065	9
52	757144	30.2	914070	14.7	843074 843343	44.9	156926 156657	57167 82048 57191 82082	8
53 54	757326 757507	30.2	913982 913894	14.7	843343 843612	44.9	156388	57215 82015	6
55	757688	30.2	913806	14.7	843882	44.9 44.8	156118	57238 81999	5
56	757869	30.1 30.1	913718	14.7 14.7	844151	44.8	155849	57262 81982	4
57	758060	80.1	913630	14.7	844420	44.8	155580 155311	57286 81965 57310 81949	8
58 59	758230 758411	30.1	913541 913453	14.7	844689 844958	44.8	155042	57334 81932	î
60	758591	80.1	913365	14.7	845227	44.8	154773	57358 81915	ō
1-	Coeine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	7
1-			<u></u>		5 Degrees.		<u>-</u> '		
				,	Taylor St.				

5	6	L	og. Sines as	nd Tax	igents. (35	°) Na	tural Sines.	TABLE I	I.
7	Sine.	D. 10'	Cosine.	D. 10	Tang.	D. 10"	Cotang.	N. sine. N. cos.	$\overline{}$
0	9.758591	20.1	9.913365	14 7	9.845227	44.0	10.154773	57358 81915	60
1	758772	30.1 30.0	913276	14.7 14.7	845496	44.8 44.8	154504	57381 81899	59
2	758952	30.0	913187	14.8	845764	44.8	154236	57405 81882	58
8 4	759132 759312	30.0	913099 913010	14.8	846033 846302	44.8	153967 153698	57429 81865 57453 81848	57 56
5	759492	30.0	912922	14.8	846570	44.8	153430	57477 81832	55
6	759672	30.0 29.9	912833	14.8 14.8	846839	44.7	153161	57501 81815	54
7	759852	29.9	912744	14.8	847107	44.7	152893	57524 81 798	53
8	760031 760211	29.9	912655 912566	14.8	847376 847644	44.7	152624 152356	57548 81782 57572 81765	52 51
10	760390	29.9	912477	14.8	847913	44.7	152087	57596 81748	50
11	9.760569	29.9 29.8	9.912388	14.8 14.8	9.848181	44.7 44.7	10.151819	57619 81731	49
12	760748	29.8	912299	14.9	848449	44.7	151551	57643 81714	48
13 14	760927 761106	29.8	912210 912121	14.9	848717 848986	44.7	151283 151014	57667 81698 57691 81681	47 46
15	761285	29.8	912031	14.9	849254	44.7	150746	57715 81664	45
16	761464	29.8 29.8	911942	14.9 14.9	849522	44.7	150478	57738 81647	44
17	761642	29.7	911853	14.9	849790	44.6	150210	57762 81631	43
18 19	761821 761999	29.7	911763 911674	14.9	850058 850325	44.6	149942 149675	57786 81614 57810 81597	42 41
20	762177	29.7	911584	14.9	850593	44.6		57833 81580	40
21	9.762356	29.7 29.7	9.911495	14.9 14.9	9.850861	44.6	10.149139	57857 81563	39
22	762534	29.6	911405	14.9	851129	44.6	148871	57881 81546	38
23 24	762712 762889	29.6	911315 911226	15.0	851396 851664	44.6	148604 148336	57904 81530 57928 81513	37 36
25	763067	29.6	911136	15.0	851931	44.6	148069	57952 81496	35
26	763245	29.6 29.6	911046	15.0 15.0	852199	44.6 44.6	147801	57976 81479	34
27	768422	29.6	910956	15.0	852466	44.6	147534	57999 81462	33
28 29	763600 763777	29.5	910866 910776	15.0	852733 853001	44.5	147267 146999	58023 81445 58047 81428	32 31
80	763954	29.5	910686	15.0	853268	44.5	146732	58070 81412	30
81	9.764131	29.5 29.5	9.910596	15.0	9.853535	44.5	10 - 146465	58094 81395	29
32	764308	29.5	910506	15.0 15.0	853802	44.5 44.5	146198	58118 81378	28
33 34	764485 764662	29.4	910415 910325	15.0	854069 854336	44.5	145931 145664	58141 81361 58165 81344	27 26
35	764838	29.4	910235	15.1	854603	44.5	145397	58189 81327	25
86	765015	29.4 29.4	910144	15.1 15.1	854870	44.5 44.5	145130	58212 81310	24
37	765191	29.4	910054	15.1	855137	44.5	144863	58236 81293	23
38 39	765367 765544	29.4	909963 909873	15.1	855404 855671	44.5	144596 144329	58260 81276 58283 81259	22 21
40	765720	29.3	909782	15.1	855938	44.4	144062	58307 81242	20
41	9.765896	29.3 29.3	9.909691	15.1 15.1	9.856204	44.4 44.4	10 - 143796	58330 81225	19
42	766072	29.3	909601	15.1	856471	44.4	143529	58354 81208	18
43 44	766247 766423	29.3	909510 909419	15.1	856737 857004	44.4	143263 142996	58378 81191 58401 81174	17 16
45	766598	29.3	909328	15.1	857270	44.4	142990	58425 81157	15
46	766774	$\frac{29.2}{29.2}$	909237	15.2	857537	44.4 44.4	142463	58449 81140	14
47	766949	29.2	909146	15.2 15.2	857803	44.4	142197	58472 81123	13
48 49	767124 767300	29.2	909055 908964	15.2	858069 858336	44.4	141931	58496 81106	12
50	767475	29.2	908873	15.2	858602	44.4	141664 141398	58519 81089 58543 81072	11 10
51	9.767649	29.1 29.1	9.908781	15.2 15.2	9.858868	44.3 44.3	10.141132	58567 81055	9
52	767824	29.1	908690	15.2	859134	44.3	140866	58590 81038	8
53 54	767999 7681 4 3	29.1	908599 908507	15.2	859400 859666	44.3	140600 140334	58614 81021 58637 81004	7 6
55	768348	29.1	908416	15.2	859932	44.3	140068	58661 80987	5
56	768522	29.0 29.0	908324	15.3 15.3	850198	44.3 44.3	139802	58684 80970	4
57 58	768697	29.0	908233	15.3	850464	44.3	139536	58708 80953	3
59	768871 769045	29.0	908141 908049	15.3	850730 850995	44.3	139270	58731 80936	2
60	769219	29.0	907958	15.3	851261	44.3	139005 138739	58755 80919 58779 80902	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	-
—	•			5-		<u>'</u>		,	
	_				= _2081008.				

	PABLE II.	1	Log. Sines a	and Ta	ngents. (3	6°) N	atural Sines		57
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	\vdash
0	9.769219	20.0	9.907958	15.0	9.861261	44.0	10.138739	58779 80902	60
1	769393	29.0 28.9	907866	15.3 15.3	861527	44.3 44.3	138473	58802 80885	59
2	769566	28.9	907774	15.3	861792	44.2	138208	58826 80867	58
8	769740	28.9	907682	15.3	862058	44.2	137942	5884980850	57 56
5	769913 770087	28.9	907590 907498	15.3	862323 862589	44.2	137677 137411	58873 80833 58896 80816	55
6	770260	28.9	907406	15.3	862854	44.2	137146	58920 80799	54
7	770433	28.8 28.8	907314	15.3 15.4	863119	44.2 44.2	136881	58943 80782	58
8	770606	28.8	907222	15.4	863385	44.2	136615	58967 80765	52
10	770779	28.8	907129	15.4	863650	44.2	136350	58990 80748	51
11	770952 9.771125	28.8	907037 9.906945	15.4	863915 9.864180	44.2	136085 10.135820	59014 80730 59037 80713	50 49
12	771298	28.8	906852	15.4	864445	44.2	135555	59061 80696	48
13	771470	28.7 28.7	906760	15.4 15.4	864710	44.2 44.2	135290	59084 80679	47
14	771643	28.7	906667	15.4	864975	44.1	185025	59108 80662	46
15	771815	28.7	906575	15.4	865240	44.1	134760	59131 80644	45
16 17	771987 772159	28.7	906482 906389	15.4	865505 865770	44.1	134495 134230	59154 80627 59178 80610	44 48
18	772331	23.7	906296	15.5	866035	44.1	133965	59201 80593	42
19	772503	28.6 28.6	906204	15.5 15.5	866300	44.1	133700	59225 80576	41
20	772675	28.6	906111	15.5	866564	44.1 44.1	133436	59248 80558	40
	9.772847	28.6	9.906018	15.5	9.866829	44.1	10.133171	59272 80541	39
22 23	773018	28.6	905925	15.5	867094 867358	44.1	132906	59295 80524 59318 80507	38 37
24	773190 773361	28.6	905832 905739	15.5	867623	44.1	132642 132377	59342 80489	36
25	778533	28.5	905645	15.5	867887	44.1	132113	59365 80472	35
26	773704	28.5 28.5	905552	15.5 15.5	868152	44.1	131848	59389 80455	84
27	773875	28.5	905459	15.5	868416	44.0 44.0	131584	59412 80438	33
28	774046	28.5	905366	15.6	868680	44.0	131320	59436 80422	32 31
29 30	774217 774388	28.5	905272 905179	15.6	868945 869209	44.0	131055 130791	59459 80403 59482 80386	30
	9.774558	28.4	9.905085	15.6	9.869473	44.0	10.130527	59506 80368	29
32	774729	28.4 28.4	904992	15.6 15.6	869737	44.0	130263	59529 80351	28
33	774899	28.4	904898	15.6	870001	44.0 44.0	129999	59552 80334	27
34	775070	28.4	904804	15.6	870265	44.0	129735	59576 80316	26 25
35 36	775240 775410	28.4	904711 904617	15.6	870529 870793	44.0	129471 129207	59599 80299 59622 80282	24
37	775580	28.3	904523	15,6	871057	44.0	128943	59646 80264	23
38	775750	28.3 28.3	904429	15.6	871321	44.0	128679	59669 80247	22
39	775920	28.3	904335	15.7 15.7	871585	44.0 44.0	128415	59693 80230	21
40	776090	28.3	904241	15.7	871849	43.9	128151	59716 80212	20
41 42	9.776259 776429	28.3	9.904147	15.7	9.872112 872376	43.9	10.127888 127624	59739 80195 59763 80178	19 18
43	776598	28.2	903959	15.7	872640	43.9	127360	59786 80160	17
44	776768	28.2 28.2	903864	15.7 15.7	872903	43.9 43.9	127097	59809 80143	16
45	776937	28.2	903770	15.7	873167	43.9	126833	59832 80125	15
46	777106	28.2	903676	15.7	873430	43.9	126570	59856 80108	14
47 48	777275 777444	28.1	903581 903487	15.7	873694 873957	43.9	126306 126043	59879 80091 59902 80073	13 12
49	777613	28.1	903392	15.7	874220	43.9	125780	59926 80056	ii
50	777781	28.1 28.1	903298	15.8	874484	43.9	125516	59949 80038	10
51	3.777950	28.1	9.903202	15.8 15.8	9.874747	43.9 43.9	10.125253	59972 80021	9
52	778119	28.1	903108	15.8	875010	43.9	124990	59995 80003	8
53 54	778287 778455	28.0	903014 902919	15.8	875273 875536	43.8	124727 124464	60019 79986 60042 79968	7 6
55	778624	28.0	902819	15.8	875800	43.8	124404	60042 79951	5
56	778792	28.0 28.0	902729	15.8	876063	43.8	123937	60089 79934	4
57	778960	28.0	902634	15.8 15.8	876326	43.8 43.8	123674	60112 79916	8
58	779128	28.0	902539	15.9	876589	43.8	123411	60135 79899	2
.59 60	779295 779463	27.9	902444 902349	15.9	876851 877114	43.8	123149 122886	60158 79881 60182 79864	1 0
100	Cosine.		Sine.					N. cos. N.sine.	
	Conne.	L	Sine.	<u></u>	Cotang.	l	Tang.	I IA. COR-IA SIDE	
<u> </u>					3 Degrees.				

5	8	Lo	g. Sines an	d Tan	gents. (87°) Nat	tural Sines.	TABLE I	t.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
0	9.779463	07.0	9.902349	15.0	9.877114	40.0	10.122886	60182 79864	60
1	779631	27.9 27.9	902253	15.9 15.9	877877	43.8 43.8	122623	60205 79846	59
2	779798	27.9	902158	15.9	877640	43.8	122360	60228 79829	58
8	779966	27.9	902063	15.9	877903	43.8	122097	60251 79811	57
4	780133	27.9	901967 901872	15.9	878165	43.8	121835 121572	60274 79793 60298 79776	56 55
6	780300 780467	27.8	901776	15.9	878428 878691	43.8	121309	60321 79758	54
7	780634	27.8	901681	15.9	878953	43.8	121047	60344 79741	53
8	780801	27.8	901585	15.9	879216	43.7	120784	60367 79723	52
9	780968	27.8	901490	15.9	879478	43.7 43.7	120522	60390 79706	51
10	781134	27.8 27.8	901394	15.9 16.0	879741	43.7	120259	60414 79688	50
	9.781301	27.7	9.901298	16.0	9.880003	43.7	10.119997	60437 79671	49
12	781468	27.7	901202	16.0	880265	43.7	119735	60460 79658	48 47
13	781634	27.7	901106	16.0	880528 880790	43.7	119472 119210	60483 79635 60506 79618	46
14 15	781800 781966	27.7	901010 900914	16.0 16.0	881052	43.7	118948	60529 79600	45
16	782132	27.7	900818	16.0	881314	43.7	118686	60553 79583	44
17	782298	27.7	900722	16.0	881576	43.7	118424	60576 79565	43
18	782464	27.6	900626	16.0	881839	43.7 43.7	118161	60599 79547	42
19	782630	27.6	900529	16.0	882101	43.7	117899	60622 79530	41
20	782796	27.6 27.6	900433	16 0 16 1	882363	43.6	117637	60645 79512	40
	9.782961	27.6	9.900337	16.1	9.882625	43.6	10.117375	60668 79494 60691 79477	3 9 38
22 23	783127	27.6	900242	16.1	882887 883148	43.6	117113 116852	60714 79459	37
24	783282 783458	27.5	900144 900047	16,1	883410	43,6	116590	60738 79441	36
25	783623	27.5	899951	16.1	883672	43.6	116328	60761 79424	35
26	783788	27.5	899854	16.1	883934	43.6	116066	60784 79406	34
27	783953	27.5	899757	16.1	884196	43.6	115804	60807 79388	33
28	784118	27.5	899660	16.1 16.1	884457	43.6 43.6	115543	60830 79371	32
20	784282	27.5 27.4	899564	16.1	884719	43.6	115281	60853 79353	31
39	784447	07 4	899467	16.2	884980	43.6	115020	60876 79335	30 29
31 32	9.784612	27.4	9.899370	16.2	9.885242 885503	43.6	10.114758 114497	60899 79318 60922 79300	28
83	784776 784941	27.4	899273 899176	16.2	885765	43.6	114235	60945 79282	27
34	785105	27.4	899078	16.2	886026	43.6	113974	60968 79264	26
35	785269	27.4	898981	16.2	886288	43.6	113712	60991 79247	25
36	785433	27.3	898884	16.2	886549	43.6	113451	61015 79229	24
37	785597	27.3	898787	16.2 16.2	886810	43.5 43.5	113190	61038 79211	23
38	785761	27.8 27.3	898689	16.2	887072	43.5	112928	61061 79193	22
39	785925	27.3	898592	16.2	887333	43.5	119667 112406	61084 79176 61197 79158	21 20
40 41	786089 9.786252	27.3	898494 9.898897	16.3	887594 9.887855	43.5	10.112145	61130 79140	19
41	786416	27.2	898299	16.3	888116	43.5	111884	61153 79122	18
43	786579	27.2	898202	16.3	888377	43.5	111623	61176 79105	17
44	786742	27.2	898104	16.3	888639	43.5 43.5	111361	61199 79087	16
45	786906	27.2	898006	16.3	888900	43.5	111100	61222 79069	15
46	₹ 787069	27.2 27.2	897908	16.3 16.3	889160	43.5	110840	61245 79051	14
47	787232	27.1	897810	16.3	889421	43.5	110579 110318	61268 79033 61291 79016	13 12
48	787395	27.1	897712	16.3	889682 889943	43.5	110057	61314 78998	ii
49 50	787557 787720	27.1	897614 897516	16.3	890204	43.5	109796	61337 78980	10
51	9.787883	27.1	9.897418	16.3	9.890465	43.4	10.109535	61360 78962	9
52	788045	27.1	897320	16.4	890725	43.4 43.4	109275	61383 78944	8
53	788208	27.1	897222	16.4	890986	43.4	109014	61406 78926	7
54	788370	27.1 27.0	897123	16.4 16.4	891247	43.4	108753	61429 78908	6
55	788532	27.0	897025	16.4	891507	43.4	108493	61451 78891	4
56	788694	27.0	896926	16.4	891768	43.4	108232 107972	61474 78873	3
57 58	788856	27.0	896828	16.4	892028 892289	43.4	107711	61520 78837	2
59	789018 789180	27.0	896729 896631	16.4	892549	43.4	107451	61543 78819	1
60	789342	27.0	896532	16.4	892810	43.4	107190	61566 78801	0
<u>₩</u>	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	7
H	· COUTTIE.	·	Diffe.						
					2 Degrees.				

,	ABLE II.	I	og. Bines s	and Ta	ngents. (3	89) N	atural Sinos		59		
	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.			
0	9.789342	96.0	9.896532	10.4	9.892810	40.4	10.107190	61566 78801	60		
1	789504	26.9 26.9	896433	16.4 16.5	893070	43.4 43.4	106930	61589 78783	59		
2	789665	26.9	896335	16.5	893331	43.4	106669	61612 78765	58		
8	789827	26.9	896236	16.5	893591	43.4	106409	61635 78747	57		
4 5	789988 790149	26.9	896137 896038	16.5	893851 894111	43.4	106149 105889	61658 78729 61681 78711	56 55		
6	790310	26.9	895939	16.5	894371	43.4	105629	61704 78694	54		
7	790471	26.8	895840	16.5	894632	43.4	105368	61726 78676	58		
8	790632	26.8 26.8	895741	16.5 16.5	894892	48.8	105108	61749 78658	52		
.9	790793	26.8	895641	16.5	895152	48.8	104848	61772 78640	51		
10 11	790954 9.791115	26.8	895542 9.895443	16.5	895412 9.895672	43.8	104588 10.104328	61795 78622 61818 78604	50 49		
12	791275	20.0	895343	16.0	895932	43.3	104068	61841 78586	48		
13	791486	26.7	895244	16.6	896192	43.8	103808	61864 78568	47		
14	791596	26.7 26.7	895145	16.6 16.6	896452	43.8	103548	61887 78550	46		
15	791757	26.7	895045	16.6	896712	48.8	103288	61909 78532	45		
16 17	791917 792077	26.7	894945	16.6	896971 897231	43.8	103029	61932 78514	44		
18	792237	26.7	894846 894746	16.6	897491	48.8	102769 102509	61955 78496 61978 784 7 8	42		
19	792397	26.6	894646	16.6	897751	48.8	102249	62001 78460	41		
20	792557	26.6 26.6	894546	16.6	898010	48.8 48.8	101990	62024 78442	40		
	9.792716	26.6	9.894446	16.6 16.7	9.898270	43.8	10.101780	62046 78424	39		
22 28	792876	26.6	894346	16.7	898530	48.8	101470	62069 78405	88		
28	793035 793195	26.6	894246 894146	16.7	898789 899049	43.8	101211 100951	62092 78887 62115 78869	37 36		
25	793354	26.5	894046	16.7	899308	43.2	100692	62138 78351	85		
26	793514	26.5	893946	16.7	899568	43.2	100432	62160 78383	84		
27	793678	26.5 26.5	893846	16.7 16.7	899827	48.2 48.2	100173	62183 78315	88		
28	793832	26.5	898745	16.7	900086	48.2	099914	62206 78297	32		
29 80	7939 9 1 794150	26.5	898645 893544	16.7	900846 900605	48.2	099654 099395	62229 78279	81		
81	9.794308	26.4	9.893444	16.7	9.900864	48.2	10.099136	62251 78261 62274 78243	30 29		
82	794467	20.4	893343	16.8	901124	48.2	098876	62297 78225	28		
83	794626	26.4 26.4	893243	16.8 16.8	901383	48.2 48.2	098617	62820 78206	27		
84	794784	26.4	893142	16.8	901642	48.2	098358	62342 78188	26		
85 86	794942 795101	26.4	893041 892940	16.8	901901 902160	43.2	098099 097840	62365 78170	25		
37	795259	26.4	892839	16.8	902419	43.2	097581	62388 78152 62411 78134	24 28		
88	795417	26.3	892739	16.8	902679	43.2	097321	62483 78116	22		
89	795575	26.3 26.3	892638	16.8 16.8	902938	48.2 43.2	097062	62456 78098	21		
40	795788	26.8	892536	16.8	903197	43.1	096803	62479 78079	20		
41 42	9.795891 796049	26.3	9.892435 892334	16.9	9.903455 903714	43.1	10.096545	62502 78061	19		
48	796206	26.3	892233	16.9	903973	43.1	096286 096027	62524 78043 62547 78025	18 17		
44	796364	26.8	892132	16.9	904232	48.1	095768	62570 78007	16		
45	796521	26·2 26·2	892030	16.9 16.9	904491	43.1 43.1	095509	62592 77988	15		
46	796679	26.2	891929	16.9	904750	43.1	095250	62615 77970	14		
47 48	796886 796998	26.2	891827 891726	16.9	905008 905267	48.1	094992 094783	62638 77952	18		
100	797150	26.2	891624	16.9	905267	43.1	094783	62660 77984 62683 77916	12 11		
50	797807	26.1	891528	16.9	905784	48.1	094216	62706 77897	10		
51	9.797464	26-1 26-1	9.891421	17.0 17.0	9.906043	48.1 43.1	10.093957	62728 77879	9		
52	797621	26.1	891319	17.0	906302	43.1	093698	62751 77861	8		
53 54	797777	26 · 1	891217 891115	17.0	906560 906819	43.1	098440 098181	62774 77843	7		
55	798091	26.1	891018	17.0	907077	48.1	092923	62796 77824 62819 77806	6 5		
56	798247	26.1	890911	17.0	907336	43.1	092664	62842 77788	4		
57	798403	26.1 26.0	890809	17.0 17.0	907594	43.1 43.1	092406	62864 77769	8		
58	796560	26.0	890707	17.0	907852	43.1	092148	62887 77751	2		
5 9	798716 798872	26.0	890605	17.0	908111	43.0	091889	62909 77783	1		
∥≃			890503		908369		091631	62932 77715	0		
 	Cosine.		Sine.	L	Cotang.	<u> </u>	Tang.	N. cos. N.sine	1		
	51 Degrees.										

6	0	Lo	r. Sines and	i Tans	rents. (39°) Nat	ural Sines.	TABLE I	I.
١-,-	Sine.	D. 16'	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	_
0	9.798772		9.890503		9.908369		10.091631	62932 77715	60
1	799028	26.0 26.0	890400	17.0 17.1	908628	43.0 43.0	091372	62955 77696	59
2	799184	26.0 26.0	890298	17.1	908886	43.0	091114	62977 77678	58
8	799339	25.9	890195	17.1	909144	43.0	090856	63000 77660 63022 77641	57 56
4	799495	25.9	890093 889990	17.1	909402 909660	43.0	090598 090340	63045 77623	55
5	799651 799806	25.9	889888	17.1	909918	43.0	090082	63068 77605	54
6	799962	25.9	889785	17.1	910177	43.0	089823	63090 77586	53
8	800117	25.9	889682	17.1 17.1	910435	43.0 43.0	089565	63113 77568	52
9	800272	25.9 25.8	889579	17.1	910693	43.0	089307	63135 77550	51
10	800427	25.8	889477	17 1	910951	43.0	089049 10.088791	63158 77531 93180 77513	50 49
	9.800582 800737	25.8	9.889374 889271	17.2	9.911209 911467	43.0	088533	63203 77494	48
12 18	800892	25.8	889168	17.2	911724	43.0	088276	63225 77476	47
14	801047	25.8	889064	17.2	911982	43.0	088018	63248 77458	46
15	801201	25.8 25.8	888961	17.2 17.2	912240	43.0 43.0	087760	63271 77439	45
16	801356	25.7	888858	17.2	912498	43.0	087502	63293 77421	44
17	801511	25.7	888755	17.2	912756 913014	43.0	087244 086986	63316 77402 63338 77384	42
18 19	801665 801819	25.7	888651 888548	17.2	913271	42.9	086729	63361 77366	41
20	801973	25.7	888444	17.2	913529	42.9	086471	63383 77347	40
	9.802128	25.7	9.888341	17.3	9.913787	42.9 42.9	10.086213	63406 77329	39
22	802282	25.7 25.6	888237	17.3 17.3	914044	42.9	085956	63428 77310	38
28	802436	25.6	888134	17.3	914302	42.9	085698	63451 77292	37 36
24	802589	25.6	888030	17.3	914560 914817	42.9	085440 085183	63473 77273 63496 77255	35
25 26	802743 802897	25.6	887926 887822	17.3	915075	42.9	034925	63518 77236	34
27	803050	25.6	887718	17.3	915332	42.9	084668	63540 77218	33
28	803204	25.6	887614	17.3	915590	42.9	084410	63563 77199	32
29	803357	25.6	887510	17.3 17.3	915847	42.9 42.9	084153	63585 77181	31
30	803511	$25.5 \\ 25.5$	887406		916104	42.9	083896	63608 77162	30
31	9.803664	25.5	9.887302	17.4	9.916362	42.9	10.083638 083381	63630 77144 63653 77125	29 28
32	803817 803970	25.5	887198 887093	17.4	916619 916877	42.9	083123	63675 77107	27
34	804123	25.5	886989	17.4	917134	42.9	082866	63698 77088	26
35	804276	25.5	886885	17.4	917391	42.9	082609	63720 77070	25
36	804428	25.4	886780	17.4 17.4	917648	42.9 42.9	082352	63742 77051	24
37	804581	25.4 25.4	886676	17.4	917905	42.9	082095	63765 77033	23
38	804734	25.4	886571	17.4	918163 918420	42.8	081837 081580	63787 77014 63810 76996	22 21
39 40	804886 805039	25.4	886466 886362	17.4	918677	42.8	081323	63832 76977	20
41	9.805191	25.4	9.886257	17.5	9.918934	42.8	10.081066	63854 76959	19
42	805343	25.4	886152	11.0	919191	42.8 42.8	080809	63877 76940	18
43	805495	25.3 25.3	886047	17.5 17.5	919448	42.8	080552	63899 76921	17
44	805647	25.3	885942	17.5	919705	42.8	080295	63922 76903	16
45	805799	25.3	885837	17.5	919962 920219	42.8	080038 079781	63944 76884 63966 76866	15
46 47	805951 806103	25.3	885732 885627	17.5	920219	42.8	079524	63989 76847	13
48	806254	25.3	885522	17.5	920733	42.8	079267	64011 76828	12
49	806406	25.3	885416	17.5	920990	42.8 42.8	079010	64033 76810	11
50	806557	25.2	885311	17.5	921247	42.8	078753		10
51	9.806709	$\begin{array}{c} 25.2 \\ 25.2 \end{array}$	9.885205	17.6 17.6	9.921503	42.8	10.078497	64078 76772	9
52	806860	25.2	885100	17.6	921760	42.8	078240 077983	64100 76754 64123 76735	8
53 54	807011	25.2	884994	17.6	922017 922274	42.8	077983 077726	64145 76717	6
55	807163 807314	25.2	884889 884783	17.6	922530	42.8	077470	64167 76698	5
56	807465	25.2	884677	17.6	922787	42.8	077213	64190 76679	4
57	807615	25.1	884572	17.6	923044	42.8 42.8	076956	64212 76661	8
58	807766	25.1	884466	17.6	923300	42.8	076700	64234 76642	2
59	807917	25.1 25.1	884360	17.6 17.6	928557	42.7	076443	64256 76623	1
60	808067	20.1	884254	11.0	923813		076187	64279 76604	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	<u></u>
_				5	0 Degrees.				

_	TABLE II. Log. Sines and Tangents. (40°) Natural Sines. 61										
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang. Y	N .sine.	N. cos.	_	
0	9.808067	05.1	9.884254		9.923813	40.5	10.076187	64279	76604	60	
1	808218	25.1 25.1	884148	17.7 17.7	924070	42.7 42.7	075930	64301		59	
2	808368	25.1	884042	17.7	924327	42.7	075678	64323		58	
3	808519	25.0	883936	17.7	924583	42.7	075417	64346		57	
5	808669 808819	25.0	883829 883723	17.7	924840 925096	42.7	075160	64368 64390		56 55	
6	808969	25.0	883617	17 7	925352	42.7	074904 074648	64412		54	
7	809119	25.0	883510	17.7	925609	42.7	074391		76473	53	
8	809269	25.0	883404	17,7	925865	42.7	074135	64457		52	
9	809419	25.0 24.9	883297	17.7 17.8	926122	42.7 42.7	073878	64479		51	
10	809569	24.9	883191	17.8	926378	42.7	073622	64501		50	
11	9.809718	24.9	9.883084	17.8	9.926634	42.7	10.073366	64524		49	
12 13	809868 810017	24.9	882977 882871	17.8	926890	42.7	073110	64546 64568	76380	48 47	
14	810167	24.9	882764	17.8	927147 927403	42.7	072858 072597	64590		46	
15	810316	24.9	882657	17.8	927659	42.7	072341	64612	76323	45	
16	810465	24.8	882550	17.8	927915	42.7	072085	64635		44	
17	810614	24.8 24.8	882443	17.8	928171	42.7 42.7	071829	64657	76286	43	
18	810763	24.8	882336	17.8 17.9	928427	42.7	071578	64679	76267	42	
19 20	810912	24.8	882229	17.9	928683	42.7	071317		76248	41	
	811061 9.811210	24.8	882121 9.882014	17.9	928940	42.7	071060	64723		40 39	
22	811358	24.8	881907	17.9	9.929196 929452	42.7	10.070804 070548	64746 64768		38	
23	811507	24.7	881799	17.9	929708	42.7	070292	64790		37	
24	811655	24.7	881692	17.9	929964	42.7	070036	64812		36	
25	811804	$\frac{24.7}{24.7}$	881584	17.9 17.9	930220	42.6 42.6	069780	64834		35	
26	811952	24.7	881477	17.9	930475	42.6	069525	64856		34	
27 28	812100 812248	24.7	881369	17.9	930731	42.6	069269	64878		33	
29	812396	24.7	881261 881153	18.0	930987 931243	42.6	069013 068757	64901 64923		32 31	
30	812544	24.6	881046	18.0	931499	42.6	068501	64945		30	
	9.812692	24.6	9.880938	18.0	9.931755	42.6	10.068245	64967		29	
32	812840	24.6 24.6	880830	18.0 18.0	932010	42.6 42.6	067990	64989	76003	28	
33	812988	24.6	880722	18.0	932266	42.6	067734		75984	27	
34 35	813135 813283	24.6	880613	18.0	932522	42.6	067478	65033		26 25	
36	813430	24.6	880505 880397	18.0	932778 933033	42.6	067222 066967	65055 65077		24	
37	813578	24.5	880289	18.0	933289	42.6	066711	65100	75908	23	
38	813725	24.5	880180	18.1	933545	42.6	066455	65122		22	
39	813872	24.5 24.5	880072	18.1 18.1	933800	42.6 42.6	066200	65144	75870	21	
40	814019	24.5	879963	18.1	934056	40 6	065944	65166	75851	20	
41	9.814166 814313	24.5	9.879855	18.1	9.934311	42.6	10.065689	65188		19	
43	814460	24.5	879746 879637	18.1	934567 934823	42.6	065433 065177	65210 65232		18 17	
44	814607	24.4	879529	18.1	935078	42.6	064922	65254		16	
45	814753	24.4	879420	18.1	935333	42.6	064667	65276		15	
46	814900	24.4 24.4	879311	18.1 18.1	935589	42.6 42.6	064411	65298	75738	14	
47	815046	24.4	879202	18.2	985844	42.6	064156	65320		13	
48 49	815193	24.4	879093	18.2	936100	42.6	063900	65342		12	
50	815339 815485	24.4	878984 878875	18.2	936355 936610	42.6	063645 063390	65364 65386		11 10	
51	9.815631	24.3	9.878766	18.2	9.936866	42.6	10.063134	65408	75642	9	
52	815778	24.8	878656	18.2	937121	42.5	062879	65430		8	
53	815924	24.3 24.3	878547	18.2 18.2	937376	42.5 42.5	062624	65452	75604	7	
54	816069	24.3	878438	18.2	937632	42.5	062368	65474		6	
55 56	816215 816361	24.3	878328	18.2	937887	42.5	062113	65496		5 4	
57	816507	24.3	878219 878109	18.3	938142 938398	42.5	061858 061602	65518 65540		3	
58	816652	24.2	877999	18.3	938653	42.5	061347	65562		2	
59	816798	24.2	877890	18.3	938908	42.5	061092	65584		1	
60	816943	24.2	877780	18.3	939163	42.5	060837	65606		0	
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	7	
i T				- 4	9 Degrees.						

6:	2	Lo	g. Sines an	d Tan	gents. (41) Nat	ural Since.	TABLE I	Ľ.
7	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine. N. cos.	
0	9.816943	24.0	9.877780	18.3	9.939163	42.5	10.060837	65606 75471	60
1	817088	24.2 24.2	877670	18.3	939418	42.5	060582	65628 75452	59
2	817233	24.2	877560	18.3	939673	42.5	060327	65650 75433	58
8	817379	24.2	877450	18.3	939928 940183	42.5	060072 059817	65672 75414 65694 75395	57 56
5	817524	24.1	877340 877230	18.3	940438	42.5	059562	65716 75375	55
6	817668 817813	24.1	877120	18.4	940694	42.5	059306	65738 75356	54
7	817958	24.1	877010	18.4	940349	42.5 42.5	059051	65759 75337	58
8	818103	24.1	876899	18.4 18.4	941204	42.5	058796	65781 75818	52
9	818247	24.1 24.1	876789	18.4	941458	42.5	058542	65803 75299	51
10	818392	24.1	876678	18.4	941714 9.941968	42.5	058286	65825 75280 65847 75261	50 49
11 12	9.818536	24.0	9.876568 876457	18.4	942223	42.5	10.068032 057777	65869 75241	48
13	818681 818825	24.0	876347	18.4	942478	42.5	057522	65891 75222	47
14	818969	24.0	876236	18.4	942733	42.5 42.5	057267	65913 75203	46
15	819113	24.0	876125	18.5 18.5	942988	42.5	057012	65935 75184	45
16	819257	24.0 24.0	876014	18.5	943243	42.5	000101	65956 75165	44
17	819401	24.0	875904	18.5	943498	42.5	056502 056248	65978 75146 66000 75126	43 42
18	819545 819689	23.9	875793 875682	18.5	948752 944007	42.5	055993	66022 75107	41
19 20	819832	28.9	875571	18.5	944262	42.5	055738	66044 75088	40
	9.819976	23.9	9.875459	18.5	9.944517	42.5 42.5	10.055483	66066 75069	39
22	820120	23.9	875348	18.5 18.5	944771	42.4	055229	66088 75050	38
23	820263	23.9 23.9	875237	18.5	945026	42.4	054974		37
24	820406	23.9	875126	18.6	945281	42.4	054719	66131 75011 66153 74992	36 35
25	820550 820693	23.8	875014 874903	18.6	945535 945790	42.4			34
26 27	820836	23.8	874791	18.6	946045	42.4	DESOURE	66197 74953	33
28	820979	23.8	874680	18.6	946299	42.4 42.4	053701	66218 74934	32
29	821122	23.8	874568	18.6 18.6	946554	42.4	053446	66240 74915	31
30	821265	23.8 23.8	874456	18.6	946808	42.4	053192	66262 74896	80
	9.821407	23.8	9.874844	18.6	9.947063 947318	42.4	10.052937 052682	66284 74876 66306 74857	29 28
32 33	821550 821693	23.8	874232 874121	18.7	947572	42.4	052428	66327 74838	27
34	821835	23.7	874009	18.7	947826	42.4	050174	66349 74818	26
35	821977	23.7	873896	18.7	948081	42.4 42.4	001919		25
36	822120	23.7 23.7	873784	18.7 18.7	948336	42.4	001004		24
37	822262	23.7	873672	18.7	948590	42.4	1 001410		23 22
38	822404	23.7	873560	18.7	948844 949099	42.4	051156 050901	66458 74722	21
39 40	822546 822688	23.7	873448 873335	18.7	949353	42.4	050647		20
41	9.822830	23.6	9.873223	18.7	9.949607	42.4	10.050393		19
42	822972	23.6	873110	18.7	949862	42.4 42.4	050138	66523 74663	18
43	823114	23.6 23.6	872998	18.8 18.8	950116	42.4	049884	66545 74644	17
44	823255	23.6	872885	18.8	950370	42.4	049630 049375		16 15
45	823397	23.6	872772 872659	18.8	950625 950879	42.4	049375	66610 74586	14
46	823539 823680	23.6	872547	18.8	951133	42.4	048867	66632 74567	13
48	823821	23.5	872434	18.8	951388	42.4	048612	66653 74548	12
49	823963	23.5	872321	18.8 18.8	951642	42.4 42.4	048358	66675 74522	11
50	824104	23.5 23.5	872208	18.8	951896	42.4	040104	66697 74509	10
51	9.824245	23.5	9.872095	18.9	9.952150 952405	42.4	10.047850 047595	66718 74489 66740 74470	8
52	824386	23.5	871981	18.9	952406	42.4	047941	66762 74451	7
53 54	824527 824668	23.5	871868 871755	18.9	952913	42.4	047087	66783 74431	6
55	824808	23.4	871641	18.9	953167	42.4 42.3	046833	66805 74412	5
56	824949	23.4	871528	18.9 18.9	953421	42.3	046579	66827 74392	4
57	825090	23.4 23.4	871414	18.9	953675	42.3	046325	66848 74373	8
58	825230	23.4	871301	18.9	953929	42.8	046071 045817	66870 74858 66891 74334	2
59	825371	23.4	871187	18.9	954183 954437	42.3	045563	66913 74314	ō
60	825511		871073					!!	, -
II	Cosine.		Sine.	<u> </u>	Cotang.	<u> </u>	Tang.	N. cos N.sine.	سنا

48 Degrees.

1	TABLE II.		log. Since			2°) N	atural Sines		6	3
7	Sime.	D. 10'	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N. sine.	cos.	
0	9.825511	20.4	9.871073		9.954437	42.3	10.045563	66913 7	4314	60
1	825651	23.4 23.3	870960	19.0 19.0	954691	42.3	045309		4295	59
2	825791	23.3	870846	19.0	954945	42.3	045055	66956 7		58
3	825931	23.8	870732	19.0	955200	42.3	044800	66978 7 66999 7		57 56
4 5	826071 826211	23.3	870618 870504	19.0	955454 955707	42.3	044546 044293	67021 7		55
6	826351	23.3	870390	19.0	955961	42.3	044039	67043 7		54
7	826491	23.8	870276	19.0	956215	42.8 42.8	043785	67964 7	4178	53
8	826631	23.8 28.8	870161	19.0 19.0	956469	42.3	043581	670867		52
9	826770	28.2	870047	19.1	956728	42.8	043277	67107		51
10	8 26910 9 .827049	23.2	8 69938 9.869818	19.1	956977 9.957231	42.8	043023 10.042769	67129 7 67151 7		50 49
12	827189	23.2	869704	19.1	957485	42.8	942515	67172		48
13	827328	23.2 23.2	869589	19.1	957739	42.3	042261	67194		47
14	827467	23.2	869474	19.1 19.1	957998	42.3	042007	67215		46
15	827606	23.2	869360	19.1	958246	42.8	041754	67237 7		45
16 17	827745 827884	23.2	869245 869130	19.1	958500	42.3	041500 041246	67258 7 67280 7		43
18	828023	23.1	869015	19.1	958754 959008	42.3	040992	67301		42
19	828162	23.1	868900	19.2	959262	42.8	040738	67323		41
20	828301	23.1 23.1	868785	19.2	959516	42.3	040484	67344	3924	40
	9.828439	23.1	9.868670	19.2 19.2	9.959769	42.3	10.040231	67366		39
22	828578	23.1	868555	19.2	960028	42.3	039977	67887		38
23 24	828716 828855	23.1	868440 858324	19.2	960277 960531	42.3	039723 039469	67409 7 67430 7		37 36
25	828993	23.0	868209	19.2	960784	42.3	039216	67452		85
26	829131	23.0 23.0	868093	19.2	961038	42.8	938962	67478 7		34
27	829269	23.0	867978	19.2 19.3	961291	42.3	038709	67495		83
28	829407	23.0	867862	19.8	961545	42.3	038455	67516		32
29 80	829545 829683	23.0	867747	19.8	961799	42.3	038201 037948	67538 7		31 39
	9.829821	23.0	867631 9.867515	19.8	962052 9.962306	42.3	19.037694	67559 7 67580 7		29
82	829959	22.9	867399	19.8	962560	42.3	037440	67602 7		28
83	830097	22.9 22.9	867283	19.8	962813	42.3 42.3	037187	67623 7	3669	27
84	830234	22.9	867167	19.3 19.3	963067	42.3	936933	67645 7		26
85 86	830372 830509	22.9	867051 866935	19.3	963320	42.3	036689	67666		25 24
37	830646	22.9	866819	19.4	963574 963827	42.3	036426 936173	67688 7 67709 7		23
38	830784	22.9	866703	19.4	964081	42.3	035919	67730		22
89	830921	$\frac{22.9}{22.8}$	866586	19.4	964335	42.3	035665	67752		21
40	831058	22.8	866470	19.4 19.4	964588	42.3	035412	67773		20
41 42	9.831195 831332	22.8	9.866353	19.4	9.964842	42.2	10.035158	67795		19
48	831469	22.8	866237 866129	19.4	965095 965349	42.2	034905 034651	67816 7 67837 7		18 17
44	831606	22.8	866004	19.4	965602	42.2	034398	67859		16
45	831742	22.8 22.8	865887	19.5	965855	42.2 42.2	034145	67880 7	3432	15
46	831879	22.8	865770	19.5 19.5	966109	42.2	033891	67901 7		14
47 48	832015	22.7	865653	19.5	966362	42.2	033638	67923 7		18
40	832152 832288	22.7	865536 865419	19.5	966616 966869	42.2	033384 033131	67944 7 67965 7		12 11
50	832425	22.1	865302	19.5	967123	42.2	032877	67987		io
51	9.832561	22.7 22.7	9.865185	19.5 19.5	9.967376	42.2	10.032624	68008 7	3314	9
52	832697	22.7	865068	19.5	967629	42.2	032371	68029 7		8
5 3	832833 832969	22.7	864950	19.5	967883	42.2	032117			7
55	833105	23.0	864833 864716	19.6	968136 968389	42.2	031864 031611	68072 7 68093 7		6
56	833241	22.6	864598	19.6	968643	42.2	031357	68115		4
57	833377	22.6 22.6	864481	19.6	968896	42.2	031104	68136		3
58	833512	00 B	864363	19.6 19.6	969149	42.2 42.2	030851	68157		2
59 60	833648	99 6	864245	19.6	969403	42.2	030597	68179		1
==	833783	·	864127		959656			68200		0
	Cosine.		Sine.	L	Cotang.	<u> </u>	Tang.	N. cor.	v.sine.	<u> </u>
L				4	7 Degrees,					- 1

6	4	Lo	g. Sines an	d Tan	gents. (43°) Nat	inral Sines.	TABLE I	ı.
1	Sine.	D. 10"	Cosine.	D. 10"	Tang.	D. 10"	Cotang.	N.sine. N. cos.	
0	9.833783	22.6	9.864127	19.6	9.969656	42.2	10.030344	68200 73135	60
1	88 3919	22.5	864010	19.6	969909	42.2	030091	68221 73116	59
3	834054 834189	22.5	863892 863774	19.7	970162 970416	42.2	029838 029584	68242 73096 68264 73076	58 57
4	834325	22.5	863656	19.7	970669	42.2	029331	68285 78056	56
5	834460	$\frac{22.5}{22.5}$	863538	19.7 19.7	970922	42.2 42.2	029078	68306 73036	55
6	834595	22.5 22.5	863419	19.7	971175	42.2	028825	68327 73016	54
7	834730	22.5	863301	19.7	971429	42.2	028571 028318	68349 72996 68370 72976	58 52
8	834865 834999	22.5	863183 863064	19.7	971682 971935	42.2	028065	68391 72967	51
10	835134	22.4	000040	19.7	972188	42.2	027812	68412 72937	50
11	9.835269	22.4 22.4	9.862827	19.8 19.8	9.972441	42.2 42.2	10.027559	68434 72917	49
12	835403	22.4	862709	19.8	972694	42.2	027306	68455 72897	48
18	835538 835672	22.4	862590 862471	19.8	972948 973201	42.2	027052 026799	68476 72877 68497 72857	47 46
14 15	835807	22.4	862353	19.8	973454	42.2	026546	68518 72837	45
16	835941	22.4	862234	19.8 19.8	973707	42.2 42.2	026293	68539 72817	44
17	836075	$\frac{22.4}{22.3}$	862115	19.8	973960	42.2	026040	68561 72797	43
18	836209	22.3	861996	19.8	974213	42.2	025787 025534	68582 72777 68603 72757	42 41
19 20	836343 836477	22.3	861877 861758	19.8	974466 974719	42.2	025281	68624 72737	40
	9.836611	22.3	9.861638	19.9	9.974973	42.2	10.025027	68645 72717	39
22	836745	$\begin{array}{c} 22.3 \\ 22.3 \end{array}$	861519	19.9 19.9	975226	42.2 42.2	024774	68666 72697	38
23	836878	22.3	861400	19.9	975479	42.2	024521	68688 72677	37
24	837012	22.2	861280	19.9	975732 975985	42.2	024268 024015	68709 72657 68730 72637	36 35
25 26	837146 837279	22.2	861161 861041	19.9	976238	42.2	023762	68751 72617	34
27	837412	22.2	860922	19.9	976491	42.2	023509	68772 72597	33
28	837546	$\frac{22.2}{22.2}$	860802	19.9 19.9	976744	42.2 42.2	023256	68793 72577	32
29	887679	22.2	860682	20.0	976997	42.2	023003	68814 72557	81
30 31	837812 9.837945	22.2	860562 9.860442	20.0	977250 9.977503	42.2	022750 10.022497	68835 72537 68857 72517	30 29
32	838078	22.2	860322	20.0	977756	42.2	022244	68878 72497	28
33	838211	22.1	860202	20.0 20.0	978009	42.2 42.2	021991	68899 72477	27
34	838344	$22.1 \\ 22.1$	860082	20.0	978262	42.2	021738	68920 72457	26
35	838477	22.1	859962	20.0	978515	42.2	021485 021232	68941 72437 68962 72417	25 24
36 37	838610 838742	22.1	859842 859721	20.0	978768 979021	42.2	020979	68983 72397	23
38	838875	22.1	859601	20.1	979274	42.2	020726	69004 72377	22
89	839007	$22.1 \\ 22.1$	859480	20.1 20.1	979527	42.2 42.2	020473	69025 72357	21
40	839140	22.0	859360	20.1	979780	42.2	020220	69046 72337	20
	9.839272	22.0	9.859239 859119	20.1	9.980033 980286	42.2	10.019967 019714	69067 72317 69068 72297	19 18
42	839404 839536	22.0	858998	20.1	980538	42.2	019462	69109 72277	17
44	839668	22.0	858877	20.1	980791	42.2 42.1	019209	69130 72257	16
45	839800	$\frac{22.0}{22.0}$	858756	$20.1 \\ 20.2$	981044	42.1	018956	69151 72236	15
46	839932	22.0	858635 858514	20.2	981297 981550	42.1	018703 018450	69172 72216 69193 72196	14 13
47	840064 840196	21.9	858393	20.2	981803	42.1	018197	69214 72176	12
49	840328	21.9	858272	20.2	982056	42.1	017944	69235 72156	11
50	840459	21.9	858151	$\frac{20.2}{20.2}$	982309	42.1 42.1	017691	69256 72136	10
51	9.840591	21.9 21.9	9.858029	20.2	9.982562	42.1	10.017438	69277 72116 69298 72095	9
52 53	840722 840854	21.9	857908 857786	20.2	982814 983067	42.1	017186 016933	69319 72075	7
54	840985	21.9	857665	20.2	983320	42.1	016680	69340 72055	6
55	841116	21.9	857543	$\frac{20.3}{20.3}$	983573	42.1 42.1	016427	69361 72035	5
56	841247	21.8 21.8	857422	20.3	983826	42.1	016174	69382 72015	8
57	841378	21.8	857300 857178	20.3	934079 984331	42.1	015921 015669	69403 71995 69424 71974	2
58 59	841509 841640	21.8	857056	20.3	984584	42.1	015416	69445 71954	î
60	841771	21.8	856934	20.3	984837	42.1	015163	69466 71934	0
-"	Ci sine.		Sine.		Cotang.		Tang.	N. cos. N.sine.	7
1				4	d Degrees.				

1 100000

T	ABLE II.	1	og. Sines a	nd Ta	ngents. (44	1°) N	atural Sines.		6	5
1	Sine.	D. 10"	Cosine.	D. 10	Tang.	D. 10"	Cotang.	N. sine.	N. cos.	
0	9.841771	21.8	9.856934	20.3	9.984837	42.1	10.015163	69466		60
1	841902	21.8	856812	20.3	985090	42.1	014910	69487		59
2	842033	21.8	856690	20.4	985343	42.1	014657	69503		58
3 4	842163 842294	21.7	856568 856446	20.4	985596 985848	42.1	014404 014152	69529 69549		57 56
5	842424	21.7	856323	20.4	986101	42.1	013899	69570		55
6	842555	21.7	856201	20.4	986354	42.1	013646	69591		54
7	842685	21.7	856078	20.4 20.4	986607	42.1	013393	69612	71792	53
8	842815	$\substack{21.7 \\ 21.7}$	855956	20.4	986860	$\frac{42.1}{42.1}$	013140	69633		52
9	842946	21.7	855833	20.4	987112	42.1	012888		71752	51
10	843076 9.843206	21.7	855711 9.855588	20.5	987365 9.987618	42.1	012635 10.012382	69675 69696	71732 ·	50 49
11 12	843336	21.6	855465	20.5	987871	42.1	012129	69717		48
13	843466	21.6	855342	20.5	988123	42.1	011877	69737		47
14	843595	21.6	855219	20.5 20.5	988376	42.1 42.1	011624	69758		46
15	843725	21.6 21.6	855096	20.5	988629	42.1	011371	69779		45
16	843855	21.6	854973	20.5	988882	42.1	011118	69800		44
17	843984	21.6	854850	20.5	989134	42.1	010866	69821 69842		43 42
18 19	844114 844243	21.5	854727 854603	20.6	989387 989640	42.1	010613 010360	69862		41
20	844372	21.5	854480	20.6	989893	42.1	010107	69883		40
	9.844502	21.5	9.854356	20.6	9.990145	42.1	10.009855	69904		39
22	844631	21.5	854233	20.6	990398	40.1	009602	69925		38
23	844760	21.5	854109	20.6	990651	42.1 42.1	009349	69946		37
24	844889	$21.5 \\ 21.5$	853986	20.6 20.6	990903	42.1	009097	69966		36
25	845018	21.5	853862	20.6	991156	42.1	008844	69987		35
26	845147	21.5	853738	20.6	991409	42.1	008591	70008		34
27 28	845276 845405	21.4	853614 853490	20.7	991662 991914	42.1	008338 008086	70029		33 32
29	845533	21.4	853366	20.7	992167	42.1	007833	70070		31
30	845662	21.4	853242	20.7	992420	42.1	004500	70091		30
31	9.845790	21.4	9.853118	20.7	9.992672	42.1	10.007328	70112		29
32	845919	21.4	852994	20.7 20.7	992925	42.1 42.1	001010	70132		28
33	846047	21.4 21.4	852869	20.7	993178	42.1	006822	70153		27
34	846175	21.4	852745	20.7	993430	42.1	006570	70174		26
35 36	846304	21.4	852620 852496	20.7	993683 993936	42.1	006317 006064	70195		25 24
37	846432 846560	21.3	852371	20.8	993930	42.1	005004	70215 70236	71180	23
38	846688	21.3	852247	20.8	994441	42.1	005559	70257		22
39	846816	21.3	852122	20.8	994694	42.1	005306	70277		21
40	846944	21.3	851997	20.8 20.8	994947	42.1 42.1	005053	70298		20
	9.847071	$ 21.3 \\ 21.3$	9.851872	20.8	9.995199	42.1	10.004801	70319		19
42	847199	21.3	851747	20.8	995452	42.1	004548	70339		18
43 44	847327	21.3	851622	20.8	995705 995957	42.1	004295 004043	70360		17 16
45	847454 847582	21.2	851497 851372	20.9	996210	42.1	003790	70381 70401		15
46	847709	21.2	851246	20.9	996463	42.1	003537	70422		14
47	847836	21.2	851121	20.9	996715	42.1	003285	70443		13
48	847964	21.2	850996	20.9	996968	$\frac{42.1}{42.1}$	003032	70463	70957	12
49	848091	$ 21.2 \\ 21.2$	850870	20.9 20.9	997221	42.1	002779	70484		11
50	848218	21.2	850745	20.9	997473	42.1	002527	70505		10
51	9.848345	21.2	9.850619	20.9	9.997726	42.1	10.002274	70525		9
52 53	848472 848599	21.1	850493 850368	21.0	997979 998231	42.1	002021 001769	70546 70567		7
54	848726	21.1	850242	21.0	998484	42.1	001703	70587		6
55	848852	21.1	850116	21.0	998737	42.1	001263	70608		5
56	848979	21.1	849990	21.0	998989	42.1	001011	70628		4
57	849106	21.1	849864	21.0	999242	42.1 42.1	000758	70649	70772	8
58	849232	$21.1 \\ 21.1$	849738	$21.0 \\ 21.0$	999495	42.1	000505	70670		2
59	849359	21.1	849611	21.0	999748	42.1	000253	70690		1
60	849485		849485		10.000000		000000	l l.	70711	0
	Cosine.	1	Sine.	1	Cotang.		Tang.	N. cos.	N.sine.	-
L				4	5 Degrees.					_

CABOT SCIENCE LIBRARY AUG 2 3 1993 , INC. 84

100 CAMBRIDGE STREET CHARLESTOWN, MASS.

