12 decembrie 2020

Conf. dr. Adriana Buică

Ecuații și inecuații

1. Să se rezolve în \mathbb{R} ecuația

$$\log_2|x| + \log_{|x|} 4 = 3. \quad \diamond$$

- **2**. (Model propus la UBB, 2019) Numărul soluțiilor reale ale ecuației $\log_2|x|+\log_{|x|}4=3$ este: A. 2; B. 4; C. 0; D. 1. \diamond
- **3.** (Concurs UBB, 2019) Fie $a \in \mathbb{R}$ un parametru. Ecuația $x^2 + 2(a-1)x + a 1 = 0$ nu are nicio soluție reală dacă:

A.
$$a \in (1, \frac{3}{2})$$
; B. $a \in (-\infty, 1]$; C. $a \in (0, 1)$; D. $a \in (\frac{3}{2}, 2)$; E*. $a \in (0, \frac{3}{2})$.

4. (Model propus la UBB, 2019) O soluție a inecuației

$$A_{x+2}^3 + C_{x+3}^2 > 5(x+2)$$
, este

A.
$$x = 3$$
; B. $x = 2$; C. $x = 1$; D. $x = 0$. \diamond

Rezultate utile

Fie $I, J \subset \mathbb{R}$ intervale nevide și $f: I \to J$ o funcție. Fie $\alpha, \beta \in J$ cu $\alpha \leq \beta$.

Dacă f e injectivă atunci ecuația $f(x) = \alpha$ are cel mult o soluție.

Dacă f e bijectivă atunci ecuația $f(x) = \alpha$ are soluție unică, $x = f^{-1}(\alpha)$.

Dacă f e strict monotonă atunci f e injectivă.

Dacă f e bijectivă și strict crescătoare, atunci f^{-1} e strict crescătoare.

Dacă f e strict crescătoare și $x^* \in I$, atunci

$${x \in I : f(x) < f(x^*)} = {x \in I : x < x^*}.$$

Dacă f e strict descrescătoare și $x^* \in I$, atunci

$${x \in I : f(x) < f(x^*)} = {x \in I : x > x^*}.$$

Un exemplu. Fie a > 0, $a \neq 1$ și $f : \mathbb{R} \to (0, \infty)$, $f(x) = a^x$.

Ştim că f este bijectivă, iar inversa ei este $f^{-1}:(0,\infty)\to\mathbb{R}, f^{-1}(y)=\log_a y.$

Ştim că f şi f^{-1} sunt strict crescătoare dacă şi numai dacă a > 1.

De asemenea, f și f^{-1} sunt strict descrescătoare dacă și numai dacă a < 1. \square

- 5. (a) Să se justifice că suma a două funcții strict descrescătoare este strict descrescătoare.
- (b) Să se justifice că funcția $f: \mathbb{R} \to (0, \infty), f(x) = \left(\frac{3}{5}\right)^x + \left(\frac{4}{5}\right)^x$ este strict descrescătoare.
- (c) Rezolvați în \mathbb{R} ecuația $3^x + 4^x = 5^x$ și inecuația $3^x + 4^x > 5^x$.
- (d) Să se justifice că f este bijectivă. \diamond
- **6.** (a) Fie $f(x) = \sqrt{2-x} x$. Să se determine domeniul maxim de definiție D și imaginea J ale funcției f de expresie f(x). Să se justifice că $f: D \to J$ este bijectivă. Să se calculeze $f(0), f^{-1}(0)$ și să se arate că $0 < f^{-1}(1) < \frac{1}{2}$.
- (b) Să se afle soluțiile reale ale ecuațiilor $\sqrt{2-x}-x=0, \ \sqrt{2-x}-x=1,$ respectiv, $\sqrt{2-x}-x=-3,$ și ale inecuațiilor $\sqrt{2-x}-x<0, \ \sqrt{2-x}-x<-3, \ \sqrt{2-x}-x>-3,$ respectiv $\ln(\sqrt{2-x}-x)\leq 0$.
 - (c) Este $\frac{\pi}{4}$ soluție a inecuației $\ln(\sqrt{2-x}-x) \leq 0$?

$Probleme\ propuse$

- 7. Numărul de soluții reale ale ecuației $\sqrt{3-x}-x=0$ este
- A. 0; B. 1; C. 2; D. 3. ⋄
- 8. Numărul de soluții reale ale ecuației $\sqrt{3-x}-x=-10$ este
- A. 0; B. 1; C. 2; D. 3. ♦
- 9. Ecuația $\sqrt{3-x}-x=a$ are cel puțin o soluție reală dacă

A.
$$a \in (-\infty, -10)$$
; B. $a \in \{-10, -9, -8\}$; C. $a \in \{-3, -2, -1, 0\}$; D. $a \in \{8, 9, 10\}$. \diamond

10. O soluție a inecuației $\ln(-\sqrt{3-x}+x) \le 0$ este

A.
$$x = 3$$
; B. $x = 2$; C. $x = e$; D. $x = 3/2$. \diamond