Music Taste & Mental Health

An analysis exploring the Music & Mental Health (MxMH) dataset,

from Catherine Rasgaitis @Kaggle

Project Overview

<u>Objective:</u> Explore relationships between <u>music habits & preferences</u> and <u>mental health</u>.

number of hours/day

Favorite genre

Anxiety Depression Insomnia OCD

(Score from 0 to 10)

Implementation Details

1st Cleaning!

What to keep and what to drop

Checking null values

BPM variable (107/736 nulls)

Other variables (1 to 8 nulls)

Making decisions

Estimating average bpm of every favorite genre:

groupby("fav_genre")["bpm"].mean()

Replacing BPM null values with average bpm for corresponding favorite genre: apply(lambda row:)

Droping rows (12) for other variables: *dropna()*

Removing crazy outliers for BPM (9999999999 is not a valid BPM for a song)

Checking for duplicates (zero)

Fixing data types

Age

Anxiety, Depression, Insomnia, OCD astype(int)

	age	$primary_streaming_service$	hours_per_day	while_working	fav_genre	bpm	anxiety	depression	insomnia	ocd	music_effects
2	18	Spotify	4.0	No	Video game music	132.0	7	7	10	2	No effect
3	61	YouTube Music	2.5	Yes	Jazz	84.0	9	7	3	3	Improve
4	18	Spotify	4.0	Yes	R&B	107.0	7	2	5	9	Improve

(723, 11)

Data Analysis – Categorical Data

Data Analysis – Categorical Data

Data Analysis – Numerical Data

Streaming Service Preferences

Distribution of Primary Streaming Services by Age

Listening time and mental health

Kruskal-Wallis test P-value < 0.05

Distribution of Hours Per Day of Listening to Music by Insomnia Scores

Listening time and mental health

Hours per day and reported mental health scores:

Higher scores for <u>depression</u>, <u>insomnia</u> and <u>OCD</u> correlated with longer hours spent listening to music per day,

While

Lower scores correlated with fewer (or zero) hours of listening to music.

Favorite genre and mental health

Chi-squared test P-value < 0.05

Music effects on mental health

Main Insights

Listening Hours and Mental Health:

Significant differences in listening hours were observed across **depression**, **insomnia**, and **OCD** levels, but **not** across **anxiety** levels.

Higher scores for depression, insomnia, and OCD were associated with longer listening hours per day, possibly suggesting music as a <u>coping</u> <u>mechanism</u>.

Favorite Genre and Insomnia:

A significant association between **insomnia levels** and **favorite genre** was identified.

The lower the insomnia score, the higher the preference for **rock music**.

Main Insights and Next Steps

Biases in Population Data:

Favorite Genre Bias: Certain genres like **rock** and **pop** were overrepresented in the data, potentially skewing conclusions.

Age Distribution Bias: Some age groups appear to dominate the data.

What next?

Explore **interaction effects** between multiple variables (e.g., favorite gender, insomnia scores and listening hours) and statistical comparisons across **subgroups** (age, "while working").

Explore the effects of **other categories** that were not covered in this analysis.

Collect **additional data** (more behavioral and contextual variables and expand genre options) to reduce biases.

Thank You!

I will take your questions, now;)