Digital Image Processing

Image Enhancement

Emad Fatemizadeh

Distance/online Course: Session o3

Date: 21 February 2021, 3rd Esfand 1399

Histogram Processing

> Image Histogram and Normalized Histogram:

$$h(r_k) = n_k, \ k = 0,1,2,\dots, L-1 \Rightarrow p(r_k) = \frac{n_k}{MN}$$

Histogram Processing

> Effect of histogram on Image quality:

Histogram Equalization

> Continuous case:

 $p_r(r)$ ~Input Image pdf

$$s = T(r) = (L-1) \int_{0}^{r} p_r(w) dw \propto Uni[0, L-1]$$

Histogram Equalization

> Discrete case:

$$p_r(r_k) = \frac{n_k}{MN}$$

$$s = T(r) = (L-1) \sum_{j=0}^k p_r(r_j) \propto ???$$

Histogram Equalization

- > Example:
 - -Exact equalization in NOT achieved!

Histogram Matching

- > Image with highest quality in field does NOT obey uniform distribution, necessarily!
- \rightarrow Assume we know target optimal distribution, $p_z(r)$

$$s = T(r) = (L - 1) \int_{0}^{r} p_{r}(w)dw$$

$$G(z) = (L - 1) \int_{0}^{z} p_{z}(v)dv = s$$

$$z = G^{-1}(T(r)) \propto p_{z}(z)$$

Local Processing

- Local processing is very effective approach in image processing (Natural images are Non-stationary)
 - -Local histogram equalization
 - -Local and adaptive intensity transform
 - Local statistics (mean and variance)

Image Subtraction

> Digital Subtraction Angiography: $f_{Enh} = K(f_{Post} - f_{Pre}) + f_{Pre}$

Pre Contrast Agent Injection

Post Contrast Agent Injection | Subtraction without Registration | Subtraction with Registration

- \rightarrow For $n \times n$ window,
 - -Filtering/Mask/Kernel/Window/Template Processing

Smoothing Linear Filtering (Correlation and/or Convolution)

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

> Correlation/Convolution, valid (center) and same (right)

1	- In	itia	ıl po	osit	ion	for w	Cor	rela	tio	n re	esult	Ful	ll co	orre	elat	ion	res	ult
\1	2	3	0	0	0	0						0	0	0	0	0	0	0
4	5	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	8	9	0	0	0	0	0	9	8	7	0	0	0	9	8	7	0	0
0	0	0	1	0	0	0	0	6	5	4	0	0	0	6	5	4	0	0
0	0	0	0	0	0	0	0	3	2	1	0	0	0	3	2	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0						0	0	0	0	0	0	0

7	-Ro	otat	ted	w			Con	vol	utio	n r	esult	Ful	l co	nv	olut	tion	re	sult
 <u> </u>	8	7 !	0	0	0	0						0	0	0	0	0	0	0
6	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2	1	0	0	0	0	0	1	2	3	0	0	0	1	2	3	0	0
0	0	0	1	0	0	0	0	4	5	6	0	0	0	4	5	6	0	0
0	0	0	0	0	0	0	0	7	8	9	0	0	0	7	8	9	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0						0	0	0	0	0	0	0

- > Blurring Effect:
- > Boxcar windows:

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

1 × 1	3 × 3
11 × 11	21 × 21

- > Most Common Spatial Filter:
 - -Gaussian Kernel:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \xrightarrow{kernel\ limited\ size} G_{\sigma}(x,y) = Ke^{-\frac{x^2+y^2}{2\sigma^2}}$$

- -Kernel/Windows size: $\approx ([6\sigma] \times [6\sigma])$
- -K: Normalization factor $(\sum_{x} \sum_{y} G_{\sigma}(x, y) = 1)$
- -Less blurring

- Order statistics filter:
 - -Median (Best simple choice for salt & pepper noise)
 - $-g(x,y) = \sum_{(s,t)\in S(x,y)} median\{f(s,t)\}\$

- > Image Sharpening:
 - Highlight edges using *first* or *second* derivative:
- > Laplacian of image

$$\pm \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial Y^2} \right) = \pm \nabla^2 f$$

> Discrete Implementation with + sign (left) and - sign (right):

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

> Image enhancement:

$$g(x,y) = f(x,y) + c\nabla^2 f(x,y)$$

> Kernel formulation:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 00 \end{bmatrix} + c \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 \end{bmatrix}$$

> Example:

(a) Blurred image of the North Pole of the moon. (b) Laplacian image obtained using the kernel in Fig. 3.45(a). (c) Image sharpened using Eq. (3-54) with c = -1. (d) Image sharpened using the same procedure, but with the kernel in Fig. 3.45(b).

> Noise suppression in Laplacian processing:

$$-\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial Y^2}\right) = -\nabla^2 f$$

> Laplacian of Gaussian (LoG) of image:

$$LoG(f) = -\nabla^{2}(G_{\sigma} * f) = (-\nabla^{2}G_{\sigma}) * f$$

$$\nabla^{2}G_{\sigma} = \left(\frac{2\sigma^{2} - x^{2} - y^{2}}{\sigma^{4}}\right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

> LoG Kernel

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

> LoG approximation via DoG (Difference of Gaussian)

$$G_D(x,y) = \frac{1}{2\pi\sigma_1^2} e^{-\frac{x^2+y^2}{2\sigma_1^2}} - \frac{1}{2\pi\sigma_2^2} e^{-\frac{x^2+y^2}{2\sigma_2^2}}$$

> Image Sharpening using image gradient:

$$\nabla f = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x}, & \frac{\partial f}{\partial y} \end{bmatrix}^T \Rightarrow M(x, y) = \|\nabla f\|, \widehat{M}(x, y, y) = \left| \frac{\partial f}{\partial x} \right| + \left| \frac{\partial f}{\partial y} \right|$$

> Discrete implementation of g_x and g_y (Sobel Mask):

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

> Image Sharpening using image gradient, M(x, y):

Matlab Command

- > Image Statistics:
 - -means2, std2, corr2, imhist, regionprops
- > Image Intensity Adjustment:
 - -imadjust, histeq, adapthisteq, imnoise
- > Linear Filter:
 - -imfilter, fspecial, conv2, corr2,
- > Nonlinear filter:
 - -medfilt2, ordfilt2

The End

>AnY QuEsTiOn?

