Prof. Dr. Bernhard Seeger Jana Holznigenkemper M.Sc. Marius Kuhrt M.Sc.

Übungen zur Vorlesung **Algorithmen und Datenstrukturen**

Abgabe: 30.04.2023, bis **spätestens** 23:59 Uhr über die ILIAS Plattform

Übung 2

Aufgabe 2.1: *O*-Notation Zuordnung

(3 Punkte)

Ordnen Sie die Methoden $\tt f1$ und $\tt f2$ den niedrigsten Laufzeiten in $\mathcal O ext{-Notation zu}$:

```
1 , \log n , \sqrt{n} , n , n\log n , n^2 , n^3 , 2^n , 3^n , n!.
```

Begründen Sie Ihre Antworten.

```
public static int f1(int n) {
      int x = 0;
                                       O(n)
      for ( int i = 0; i < n; i++ )</pre>
                                                O(i)
           for ( int j = 0; j <= i; j++ )</pre>
               for ( int k = 0; k < 5; k++ )
                                                   O(5)
                    x = x + j;
      return x;
 }
 public static int f2(int n) {
      if ( n <= 1 )</pre>
           return 2;
      else
13
           return f2(n-1) * f2(n-2);
14
```

Aufgabe 2.2: \mathcal{O} -Notation Berechnung (1+1+1+2)

(5 Punkte)

Beweisen Sie die folgenden Aussagen:

```
a) Gegeben f(n) = n^3 + n, zeigen Sie: f(n) \in \mathcal{O}(n^3)
```

b) Gegeben $f(n) = \log(n^2)$, zeigen Sie: $f(n) \in \mathcal{O}(\log(n))$

c) Gegeben $f(n) = \sqrt{n}$, zeigen Sie: $f(n) \in \Omega(\log(n))$

d) Gegeben $f(n) = 4n^4 + n^3$, zeigen Sie: $f(n) \in \Theta(2n^4 + 15n^3)$

Aufgabe 2.3: *O*-Notation Aussagen (2+2+2)

(6 Punkte)

Zeigen oder widerlegen Sie folgende Aussagen:

- a) $f(n) \in \mathcal{O}(f(n)^2)$
- **b)** $\forall \varepsilon > 0 : n \log(n) \in \mathcal{O}(n^{1+\varepsilon})$
- c) Wenn $f(n) \in \mathcal{O}(g(n))$, dann gilt $2^{f(n)} \in \mathcal{O}(2^{g(n)})$

Aufgabe 2.4: Rekursive Algorithmen* (4+2)

(6 Punkte)

In der Vorlesung wurde folgende Rekursionsgleichung für die Laufzeit der binären Suche hergeleitet:

$$T(n) = \begin{cases} b + T\left(\frac{n-1}{2}\right) & \text{falls } n > 0, \\ a & \text{sonst.} \end{cases}$$

Folgende Vermutung für die geschlossen Form aufgestellt: $T(n) = \log_2(n+1) \cdot b + a$ (vgl. Skript S. 86).

- a) Beweisen Sie mittels vollständiger Induktion, dass die geschlossene Form gilt. Bedenken Sie, dass wir vereinfachend annehmen, dass $n=2^k-1$ ist und daher die Induktion auch über k vollzogen werden kann.
- **b)** Wie kann die Laufzeit für n abgeschätzt werden, die sich nicht als $2^k 1$ darstellen lassen? Hinweis: Die Kostenfunktion ist monoton.
- * Aufgabe 2.4 ist für Lehramtsstudierende optional.