페설물을 리용한 트리폴리린산알루미니움이 제조

림청엽, 리철

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《페설물과 도시오물을 원료로 다시 재생하여 생산에 리용하는데 깊은 관심을 돌려야 합니다.》(《김정일선집》 중보판 제22권 313폐지)

트리폴리린산알루미니움(AIH₂P₃O₁₀·2H₂O)은 사람들의 건강에 피해를 주고 자연환경을 오염시키는 크롬화합물과 광명단, 린산아연 등을 대신할수 있는 무독성무기질녹막이색감으로 개발되여 널리 쓰이고있다.[1, 2] 트리폴리린산알루미니움은 린산과 산화알루미니움 또는 수산화알루미니움으로부터 린산이수소알루미니움을 얻고 그것을 축합시켜제조한다.[1, 3]

우리는 폐설물로 얻어지는 수산화알루미니움을 건식린산에 비하여 값눅은 습식린산 과 반응시켜 트리폴리린산알루미니움을 제조하기 위한 연구를 하였다.

실 험 방 법

원료로는 41% 습식린산과 30% 과산화수소수, 페설물로 얻어진 수산화알루미니움을, 기구로는 석영비커(500mL), 불수강용기(500mL), 가열기, 교반기, 마플로, 행성식볼분쇄기를 리용하였다.

트리폴리린산알루미니움의 제조 200mL의 41% 습식린산에 P_2O_5 량(환산값)의 0.5%에 해당한 과산화수소가 포함되여있는 30% 과산화수소수를 첨가한 다음 페설물로 얻어진 수산화알루미니움과 일정한 P/AI(물질량비)로 혼합하여 석영비커에 넣고 $80\sim90^{\circ}$ C에서 1h동안 반응시켜 린산이수소알루미니움을 얻었다. 그것을 불수강용기로 옮기고 $180\sim200^{\circ}$ C에서 일정한 시간동안 유지하여 물을 증발시킨 후 $300\sim320^{\circ}$ C의 마플로속에 넣고 3h이상 저어주면서 축합시켰다. 생성물을 찬물속에 넣어 수쇄 및 수화시키고 분쇄, 세척, 려과분리한다음 100° C에서 건조시키고 립도가 40μ m 이하로 되도록 다시 분쇄하였다.

조성 및 결정구조, 결정모양의 분석 물질의 조성은 X선형광분석기(《ZSX Primus Ⅲ+》)로, 결정구조는 X선회절분석기(《Rigaku Miniflex》)로, 결정모양은 주사전자현미경(《JSM-6610A》) 으로 분석하였다.

실험결과 및 고찰

페설물로 얻어진 수산화알루미니움의 조성과 결정구조 페설물로 얻어진 수산화알루미니움에서 알루미니움의 함량은 산화알루미니움으로 환산하여 약 81%이다. 여기에는 또한 모래와 금속알루미니움쪼각을 비롯한 불순물들이 포함되여있다.(표 1) 그리고 X선회절분석결과(그림 1)로부터 페설물로 얻어진 수산화알루미니움은 삼수번석형과 무정형의 혼합물이라는것을 알수 있다.

과산화수소의 영향 과산화수소수를 첨가하지 않은 41% 습식린산을 리용하여 제조한 후 세척하지 않은 트리폴리린산알루미니움의 XRD도형은 그림 2와 같다.

표	1.	페설물로	얻어진	수산화알루미니움의	조선*

성분	Al_2O_3	CaO	SO ₃	Na ₂ O	SiO ₂	MgO	P_2O_5	Fe ₂ O ₃	기타
함량/%	80.8	6.0	4.8	3.8	1.6	0.8	0.8	0.6	0.8

* 산화물로 환산한 결과임.

그림 1. 폐설물로 얻어진 수산화알루미니움의 XRD도형

그림 2. 과산화수소를 첨가하지 않은 41% 습식린산을 리용하여 제조한 후 세척 하지 않은 트리폴리린산알루미니움의 XRD도형(P/Al=3)

그림 2로부터 과산화수소를 첨가하지 않은 41% 습식린산을 리용하여 P/Al=3인 조건에서 제조한 후 세척하지 않고 려과분리한 트리폴리린산알루미니움(2θ=11.28°)속에는 부반응생성물인 린산알루미니움이 각이한 결정형태(2θ=8.16, 25.28° 등)로 존재한다는것을 알수 있는데 그것은 린산량이 적기때문이라고 본다. 그리고 생성물이 회색을 띠며 누기풀림성이 센것은 습식린산에 포함되여있던 유기물질과 중간생성물인 린산이수소알루미니움을 비롯한 불순물들이 남아있기때문이다.

한편 과산화수소를 첨가한 41% 습식린산을 리용하여 P/Al값이 2.5 및 2.9인 조건에서 제조한 다음 수쇄 및 수화, 분쇄, 세척공정을 거친 트리폴리린산알루미니움에는 린산알루미니움과 미반응물인 수산화알루미니움이 포함되여있다. 그러나 P/Al값이 각각 3.3 및

3.5인 경우에는 기본적으로 트리폴리린산알루미니움(20=11.12, 18.00, 19.76, 24.24, 31.28, 52.24)만이 얻어지며(그림 3) 생성물은 밝은 흰색을 띠고 누기풀림성이 없다. 그것은 과산화수소에 의하여 습식린산에 포함되여있던 유기물질이 제거되고 린산이수소알루미니움을 비롯한 물풀림성불순물들도 세척과정에 제거되였기때문이라고 본다. 그럼에도 불구하고 XRD도형에서 20 가 기준값인 11.2 [3]대신에 11.12 로 나타나는것은(그림 3) 생성물속에 아직 일정한 량의불순물들이 남아있는것과 관련된다.(표 2)

그림 3. 과산화수소를 첨가한 41% 습식린산을 리용하여 제조한 트리폴리린산알루미니움의 XRD도형(P/Al=3.5)

표 2. 과산화수소를 첨가한 41% 습식린산을 리용하여 제조한 트리폴리린산알루미니움의 조성

성분	P_2O_5	Al_2O_3	SO ₃	Fe_2O_3	K ₂ O	SiO_2	MgO	CaO	기타
함량/%	79.3	12.3	6.2	1.4	0.1	0.1	0.1	0.1	0.4

^{*} 산화물로 환산한 결과임, P/Al=3.5

그림 4. 과산화수소를 첨가한 41% 습식 린산을 리용하여 제조한 트리폴리린산 알루미니움의 SEM사진(P/Al=3.5)

트리폴리린산알루미니움의 결정모양 과산화수소를 첨가한 41% 습식린산을 리용하여 제조한 트리폴리린산알루미니움의 SEM사진은 그림 4와 같다.

그림 4로부터 파산화수소를 첨가한 41% 습식린산을 리용하여 제조한 트리폴리린산알루미니움의 결정은 비늘모양이며 크기는 $0.1\sim5\mu$ m라는것을 알수 있다.

맺 는 말

1) 습식린산을 리용하여 트리폴리린산알루 미니움을 제조할 때 과산화수소를 첨가하면 유

기불순물들이 제거되여 백색도가 높아진다.

- 2) 제조반응이 충분히 진행되도록 하자면 P/AI(물질량비)가 3.3이상이여야 한다.
- 3) 트리폴리린산알루미니움에 포함되여있는 물풀림성불순물들을 제거하자면 생성물을 반드시 세척하여야 한다.

참 고 문 헌

- [1] M. Tsuhako et al.; Bulletin of the Chemical Society of Japan, 48, 1830, 1975.
- [2] Lu Qing-hua et al.; Trans. Nonferrous Met. Soc. China, 22, 483, 2012.
- [3] Zhu Liu et al.; WO 2014/005498 A1, 2014.

주체110(2021)년 4월 5일 원고접수

Preparation of Aluminium Tripolyphosphate by Using the Waste

Rim Chong Yop, Ri Chol

We prepared aluminium tripolyphosphate by reacting aluminum hydroxide obtained as the waste with wet-process phosphoric acid.

If perhydrol is added in the reaction system, the whiteness degree of the product is improved because organic impurities are removed.

Keywords: aluminium tripolyphosphate, aluminium hydroxide