

Device Features

- OIP3 = 35.5 dBm @ 1900 MHz
- Gain = 16 dB @ 1900 MHz
- Output P1 dB = 19.7 dBm @ 1900 MHz
- 50 Ω Cascadable
- Patented temperature compensation
- RoHS2-compliant SOT-89 SMT package

Product Description

BeRex's BG14A is a high performance InGaP/GaAs HBT MMIC amplifier, internally matched to 50 Ohms and uses a patented *temperature compensation* circuit to provide stable current over the operating temperature range without the need for external components. The BG14A is designed for high linearity gain block applications that require excellent gain flatness. It is packaged in a RoHS2-compliant with SOT-89 surface mount package.

Applications

- Base station Infrastructure/RFID
- · Commercial/Industrial/Military wireless system

Applications Circuit

^{*}C1, C2, C3 =100 pF \pm 5%; C4 = 1000 pF \pm 5%; C5 = 10uF; L1 = 39nH

Vcc=5.2V if 1200nH is used to compensate IR drop across L1.

Typical Performance¹

			Frequ	iency			Unit
	70	500	900	1900	3500	5800	MHz
Gain	17.0	17.3	16.7	16.0	14.1	11.7	dB
S11	-20.0	-18.5	-17.5	-27.5	-26.3	-10.5	dB
S22	-13.0	-14.0	-15.0	-10.5	-12.5	-14.6	dB
OIP3 ²	38.0	39.0	37.5	35.5	29.5	25.7	dBm
P1dB	20.0	20.0	19.5	19.5	17.9	15.7	dBm
N. F	5.4	5.5	5.5	6.0	7.3	9.2	dB

 $[\]overline{}$ Device performance $\underline{}$ measured on a BeRex evaluation board at 25°C, 50 Ω system.

² OIP3 _ measured with two tones at an output of 9 dBm per tone separated by 1 MHz.

	Min.	Typical	Max.	Unit
Bandwidth	5		6000	MHz
I _C @ (Vc = 5V)	78	85	95	mA
V_{C}		5.0		V
dG/dT		-0.004		dB/°C
R _{TH}		85		°C/W

Absolute Maximum Ratings

Parameter	Rating	Unit
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-55 to +155	°C
Junction Temperature	+190	°C
Operating Voltage	+6.5	V
Supply Current	150	mA
Input RF Power	23	dBm

Operation of this device above any of these parameters may result in permanent damage.

^{*40}nH or higher value L1 improves RF performance at under 500MHz.

^{*}Optimum value of L1 may vary with board design.

^{*}C1,C2=8200pF, L1=1200nH for 70MHz application,

^{*}L1:6.8nH, C1&C2:10pF for 3.5GHz Application.

V-I Characteristics

BeRex SOT89 Evaluation Board

*Dielectric constant _ 4.2 *RF pattern width 52mil *31mil thick FR4 PCB

Typical Device Data

S-parameters (Vc=5V, Ic=85mA, T=25°C)

S-Parameter

(Vdevice = 5.0V, Icc = 85mA, T = 25 °C, calibrated to device leads)

Freq [MHz]	\$11 [Mag]	\$11 [Ang]	S21 [Mag]	\$21 [Ang]	S12 [Mag]	\$12 [Ang]	S22 [Mag]	S22 [Ang]
100	0.10	171.88	7.65	175.83	0.07	-1.13	0.24	-2.91
500	0.11	143.45	7.56	159.35	0.07	-5.10	0.23	-15.82
1000	0.11	117.91	7.25	139.76	0.07	-10.16	0.20	-34.06
1500	0.10	98.77	6.88	121.30	0.07	-15.27	0.19	-54.09
2000	0.07	75.88	6.58	103.34	0.06	-21.24	0.19	-76.31
2500	0.06	54.59	6.21	85.64	0.06	-23.63	0.20	-97.86
3000	0.08	61.49	5.83	69.39	0.06	-27.49	0.19	-120.59
3500	0.10	80.13	5.60	53.05	0.06	-31.52	0.20	-145.80
4000	0.13	104.62	5.26	36.86	0.06	-37.21	0.23	-166.51
6000	0.33	147.99	4.09	-22.63	0.05	-52.78	0.44	176.24

Typical Performance (Vd = 5V, Ic = 85mA, T = 25°C)

Freq	MHz	70	500	900	1900	2140	2450	3500	5800
S21	dB	17.0	17.3	16.7	16.0	15.7	15.4	15.2	11.7
S11	dB	-20.0	-18.5	-17.5	-27.5	-23.0	-19.0	-16.0	-10.5
S22	dB	-13.0	-14.0	-15.0	-10.5	-11.5	-10.0	-13.0	-14.6
P1	dBm	20.0	20.0	19.5	19.5	19.5	19.5	19.5	25.7
OIP3	dBm	38.0	39.0	37.5	35.5	35.5	34.5	33.0	15.7
NF	dB	5.4	5.5	5.5	6.0	6.1	6.3	6.6	9.2

Typical Performance (Vd = 4.7V, Ic = 79mA, T = 25°C)

Freq	MHz	70	500	900	1900	2140	2450	3500
S21	dB	17.1	16.6	16.6	15.6	15.3	15.1	14.3
S11	dB	-12.4	-20.6	-19.8	-23.4	-22.1	-21.6	-23.2
S22	dB	-8.7	-11.9	-12.8	-10.2	-9.5	-11.2	-16.9
P1	dBm	18.4	19.1	19.2	19.3	19.2	19.2	18.3
OIP3	dBm	37.5	37.5	36.0	35.0	34.0	33.5	31.5
NF	dB	5.4	5.5	5.5	6.0	6.1	6.3	6.6

Typical Performance (Vd = 4.5V, Ic = 69mA, T = 25°C)

Freq	MHz	70	500	900	1900	2140	2450	3500
S21	dB	16.9	16.9	16.5	15.9	15.3	15.0	14.3
S11	dB	-12.6	-21.2	-20.3	-23.5	-21.9	-21.7	-23.7
S22	dB	-8.6	-11.8	-12.6	-10.1	-9.4	-11.1	-16.9
P1	dBm	17.9	17.9	17.4	17.5	17.5	17.3	16.7
OIP3	dBm	37.5	37.5	33.5	32.5	32.5	32.5	30.5
NF	dB	5.4	5.5	5.5	6.0	6.1	6.3	6.6

Typical Performance (Vd = 4V, Ic = 45mA, T = 25°C)

	-			-				
Freq	MHz	70	500	900	1900	2140	2450	3500
S21	dB	16.7	16.2	16.2	15.3	15.0	14.8	14.1
S11	dB	-13.5	-24.0	-23.0	-23.2	-21.2	-21.8	-27.1
S22	dB	-8.3	-11.1	-11.8	-9.6	-9.0	-10.6	-16.2
P1	dBm	14.5	14.7	14.7	14.3	13.7	14.4	14.5
OIP3	dBm	29.5	27.5	27.5	28.0	27.0	27.5	27.0
NF	dB	5.4	5.5	5.5	6.0	6.1	6.3	6.6

WCDMA 4FA 2140 -60dBc

WCDMA 6FA 2140 -60dBc

ACLR

Device Performance

Pin-Pout-Gain

1900 MHz, 5V/85mA

OIP3

ACPR

Gain Flatness

Package Outline Dimension

NOTE:

1. DIMENSIONS IN MILLIMETERS.

DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 8.5mm PER END.

DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.

INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 8.5mm PER SIDE.

DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

A DATUMS A, B AND D TO BE DETERMINED 8.18mm FROM THE LEAD TIP.

TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

		MILLI	METERS		NOTE
SYMBOL	MINIMUM	NON	JINAL	MAXIMUM	NOIE
A	1.40	1	.50	1.60	
A1	0.00		_	0.10	
Ь	0.38	().42	0.48	
Ь1	0.48	0	.52	0.58	
b2	1.79	1	.82	1.87	
C	0.40	0	.42	0.46	
D	4.40	4	.50	4.70	2,3
E	3.70	4.00		4.30	
E E1	2.40	2	.50	2.70	2,3
E2	0.80	1	.00	1.20	
E3	0.40	0	.50	0.60	
e		1.5	O TYP.		
0			TYP.		
R		0.1	5 TYP.		
R1	-		_	0.20	
SYMBOL	TOLERANCES OF AND POSI	FORM TION	NOTE		
aaa	0.15				
bbb	0.20				
ccc	0.10				
ddd	0.10				

Suggested PCB Land Pattern and PAD Layout

PCB Land Pattern

Note : All dimension _ millimeters

PCB lay out _ on BeRex website

PCB Mounting

Package Marking

Tape & Reel

SOT89

Packaging information:

Tape Width (mm): 12
Reel Size (inches): 7
Device Cavity Pitch (mm): 8

Devices Per Reel: 1000

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 1C

Value: Passes <2000V

Test: Human Body Model (HBM)

Standard: JEDEC Standard JESD22-A114B

MSL Rating: Level 1 at +265°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling this device.

NATO CAGE code:

2 N 9 6 F
