WORKS OF PROFESSOR CECIL H. PEABODY

PUBLISHED BY

JOHN WILEY & SONS.

Thermodynamics of the Steam-engine and other Heat-engines.

This work is intended for the use of students in technical schools, and gives the theoretical training required by engineers. 8vo, cloth, \$,000.

Tables of the Properties of Saturated Steam and other Vapors.

These tables were prepared for the use of students in technical schools and colleges, and of engineers in general. 8vo, cloth, \$1 00.

Valve-gears for Steam-engines.

This book is intended to give engineering students instruction in the theory and plutice of designing valve-gears for steam-engines—8vo, cloth, \$3.30.

Steam-bollers.

By Prof. Cecu. H. Peanony and Prof. Enward F. Miller. Nearly 400 pages; 142 illustrations. 8vo, cloth, \$4.00.

SATURATED STEAM

AND OTHER VAPORS.

BV

CECIL H. PEABODY,

PROFESSOR OF MARINE ENGINEERING AND NAVAL ARCHITECTURE,
MASSACHUSETTS INSTITUTE OF TROUNOLOGY.

SIXTH EDITION, REVISED AND ENLARGED.

FOURTH THOUSAND.

NEW YORK: JOHN WILEY & SONS. 530.T

Copyright, 1888, BY CECIL H. PEABODY.

AUTOCK MUTOCK MRCHENES US

SATURATED STEAM, AND OTHER VAPORS.

A companison of the several tables of the properties of saturated steam, expressed in English units, reveals discrepancies of considerable magnitude; and investigation shows that, while all are in some manner founded on the experiments of Regnault, various methods of calculation have been used, and in some cases other experimental data have been employed. A review of the whole subject, in connection with the preparation of notes on thermodynamics for the use of the students of the Massachusetts Institute of Technology, made it seem important to calculate a set of tables, to accompany those notes, founded on the best and most recent data.

In presenting the tables for general use, it appears proper to state in full the data and the methods of calculation employed, so that each one may see the degree of accuracy and correctness of the tables, and the reliance to be placed on them.

Tables of the properties of other vapors have been added, which will be discussed hereafter.

Pressure of Saturated Steam.—As a conclusion from all the experiments on the tension of saturated steam, Regnault gives, in the *Memoires de l'Institut de France, etc.*, Tome XXI., the following data:—

TEMPERATURE	PRESSURE
C.	MM. OF MERCURY.
-32	0.32
16	1.29
0	4.60
25	23.55
50	91.98
75	288.50
100	760.00
130	2030.0
160	4651.6
190	9426.
2 20	17390.

following formulæ, which give the pressure in millimetres of mercury for any temperature in degrees Centigrade:—

A. For steam from
$$-32^{\circ}$$
 to 0° C.
 $p = a + ba^{\circ}$.
 $a = -0.08038$.
 $\log b = 9.6024724 - 10$.
 $\log a = 0.033398$.

 $\log b = 9.6024724 - 10.$ $\log a = 0.033398.$ $n = 32^{\circ} - t.$ **B.** For steam from 0° to 100°

B. For steam from 0° to 100° C. $\log p = a - ba^n + c\beta^n.$ a = 4.7384380. $\log b = 0.6116485.$ $\log c = 8.1340339 - 10.$ $\log a = 9.9967249 - 10.$ $\log \beta = 0.006865036.$

n = t.

C. For steam from 100° to 220° C. $\log p = a - ba^n + c\beta^n.$ a = 5.4583895. $\log b = 0.4121470.$ $\log c = 7.7448901 - 10.$ $\log a = 9.997412127 - 10.$

 $\log \beta = 0.007590697.$

n=t-100. **D.** For steam from $=20^{\circ}$ to 220° C- $\log p=a-ba^n-c\beta^n$.

a = 6.2640348. $\log b = 0.1397743.$ $\log c = 0.6924351.$ $\log a = 9.994049292 - 10.$ $\log \beta = 9.998343862 - 10.$ n = t + 20.

By aid of the formulæ A and B, Regnault calculated and recorded tables of the pressures of saturated steam for temperatures from -32° to 100° C. The formula D was calculated from the data given above for the temperatures -20° , $+40^{\circ}$, 100° , 160° , and 220° C., and was intended to represent the whole range of experiments. By this formula, instead of formula C, he calculated the pressures set down in his tables for temperatures from 100° C.

to 220° C.

that differ but little from those that will be given later. Some of the more recent tables in the French system were calculated by his equations.

DILL CHILL BILL DILLIAM, ALLY D. CHILLIAM VALL CHIL.

Equations for the Pressure of Steam at Paris. — In view of the preceding statements, it appeared desirable to re-calculate the constants for Equations B and C, with a degree of accuracy that should exclude any doubt as to the reliability of the results. Accordingly, the logarithms required were taken from Vega's ten-place table, and then the remainder of the calculations were carried on with natural numbers, checking by independent methods, with the following results: —

B. For steam from 0° to 100° C. $\log p = a - ba^n + c\beta^n.$ a = 4.7393622142. $\log b = 0.6117400190.$ $\log c = 8.1320378383 - 10.$ $\log a = 9.996725532820 - 10.$ $\log \beta = 0.006864675924.$ n = t.C. For steam from 100° to 220° C. $\log p = a - ba^n + c\beta^n.$

a = 5.4574301234. $\log b = 0.4119787931.$ $\log c = 7.7417476470 - 10.$ $\log a = 9.99741106346 - 10.$ $\log \beta = 0.007642489113.$ n = t - 100.

To show the degree of accuracy attained, the following tables are given:—

		TAGOVITON XX.	
t.	p.	LOG p FROM TABLE OF LOGARITHMS.	LOG p CALCULATED BY EQUATION.
0	4.60	0.6627578317	
25	23.55	1.3719909115	1.37199097
50	91.98	1.9636934052	1.96369346
75	288.50	2.4601458175	2.46014587
100	760	2.8808135923	2.88081365

t. p. LOG p FROM TABLE LOG p CALCULATED OF LOGARITHMS. BY EQUATION.

100 760.00 2.8808135923

EQUATION C.

C and the numerical work was not carried to so large a number of decimal places. For the calculation of tables, the constants are carried to seven places of significant figures only; this gives six significant figures in the result, of which five are recorded in the table.

Pressure of Steam at Latitude 45°. — French System. — It is customary to reduce all measurements to the latitude of 45°, and to sea-level. The standard thermometer should then have its boiling and freezing points determined under, or reduced to such conditions. The value of g, the acceleration due to gravity, is, at Paris, latitude 48° 50′ 14″ and 60 metres above sea-level, 9.809218 metres; and at 45°, and at sea-level, it is 9.806056 metres. Consequently, 760 mm. of mercury at 45° gives a pressure equal to that of 759.755 mm. at Paris; and this corresponds to a temperature of 99.991 C. In other words, the thermometer which is standard at 45° has each degree 0.99991 of the length of the degree of a thermometer standard at Paris.

To reduce Equation B to 45° latitude, we have

$$\log p = a + \log \frac{980.9218}{980.6056} - ba^{0.99991t} + c\beta^{0.99901t};$$

and for Equation C,

$$\log p = a + \log \frac{980.9218}{980.6056} - ba^{(0.00001i - 100)} + c\beta^{(0.00001i - 100)}$$

$$= a + \log \frac{980.9218}{980.6056} - ba^{-0.000} a^{0.00001 (i - 100)} + c\beta^{-0.000} \beta^{0.00001 (i - 100)}.$$

The resulting equations which were used in calculating Table III are

For steam from 0° to 100° C, at 45° latitude.

$$\log p = a_1 - ba_1^n + c\beta_1^n.$$

$$a_1 = 4.739502.$$

$$\log b = 0.6117400.$$

$$\log c = 8.13204 - 10.$$

$$\log a_1 = 9.996725828 - 10$$

$$\log \beta_1 = 0.0068641.$$

n = t

n = t - 100.

$$\log p = a_1 - b_1 a_1^n + c_1 \beta_1^n.$$

$$a_1 = 5.457570.$$

$$\log b_1 = 0.4120021.$$

$$\log c_1 = 7.74168 - 10.$$

$$\log a_1 - 9.997411296 - 10.$$

$$\log \beta_1 = 0.0076418.$$

equations for the pressure of steam, so that they will give the pressures in pounds on the square inch for degrees Fahrenheit, there are required the comparison of measures of length, and of weight, the comparison of the seales of the thermometers, and the specific gravity of mercury.

Professor Rogers (Proceedings of the Am. Acad. of Arts and Sciences, 1882-83, also Additional Observations, etc.) gives for the length of the metre, 39.3702 inches. This differs from the value given by Capt. Clarke (Proceedings of the Royal Society, vol. av., 1866), by an amount that does not affect the values in the tables; his value being 39.370432 inches.

Professor Miller (Phil. Transactions, extvi., 1856) gives for the weight of one kilogram, 2.20462125 pounds.

Regnault gives, for the weight of one litre of mercury, 13.5959 kilograms. The degree Fahrenheit is § of the length of the degree Centigrade.

Let
$$k = \frac{13.5959 \times 2.204621}{39.3702};$$

then the equations B and C have for the reduction to degrees Fahrenheit, and pounds on the square inch,

$$\log p = a_1 + \log k - ba^{fin} + c\beta^{fin}, \log p = a_1 + \log k - b_1a_1^{fin} + c_1 \beta_1^{fin}.$$

The resulting equations, which were used in calculating Tables I and II, are: --

For steam from 32° to 212° F., in pounds on the square inch. B.

$$\log p = a_2 - ba_2^n + c\beta_2^n.$$

$$a_2 = 3.025908.$$

$$\log b = 0.6117400.$$

$$\log c = 8.13204 - 10.$$

$$\log a_2 = 9.998181015 - 10.$$

$$\log \beta_2 = 0.0038134.$$

$$n = t - 32.$$

For steam from 212° to 428° F., in pounds on the square inch. C.

$$\log p = a_2 - b_1 a_2^n + c_1 \beta_2^n.$$

$$a_2 = 3.743976.$$

$$\log b_1 = 0.4120021.$$

$$\log c_1 = 7.74168 - 10.$$

$$\log a_2 = 9.998561831 - 10.$$

$$\log \beta_2 = 0.0042454.$$

$$n = t - 212.$$

All of the foregoing equations make the pressure a function of the tem-

Other Equations for the Pressure of Steam. — Rankine, in his Steam Engine and other Prime Movers, gives the following equation:—

$$\log p = A - \frac{B}{T} - \frac{C}{T^2}.$$

For pounds on the square inch, corresponding to degrees Fahrenheit, -

$$A = 6.1007.$$

 $\log B = 3.43642.$
 $\log C = 5.59873.$
 $T = t + 461.^{\circ}2$ F.

This equation has been largely used for calculating tables on the English system. The following table will give a comparison between the results from this formula and those from Formula B and C.

TEMPERATURE.	PRESSU	RE.
	Regnault at 45° latitude.	Rankine.
32	0.0890	0.083
77	0.4555	0.452
122	1.7789	1.78
167	5.579	5.58
212	14.99	14.70
257	33.711	33.71
302	69.27	69.21
347	129.79	129.8
392	225.56	225.9
428	336.26	336.3

Differential Co-efficient $\frac{dp}{dt}$.—As will be seen later, the differential co-efficient $\frac{dp}{dt}$ is used in calculating the volume and density of saturated vapors.

From the general equation of the form,

$$\log p = a + ba^n + c\beta^n,$$

differentiation gives

$$\frac{1}{n}\frac{dp}{dt} = \frac{1}{M^2}b \log a \cdot a^n + \frac{1}{M^2}c \log \beta \cdot \beta^n,$$

in which M is the modulus of the common system of logarithms.

The equation may be written, -

$$\frac{1}{n}\frac{dp}{dt}=Aa^n+B\beta^n.$$

French units.

B. For 0° to 100° C., mm. of mercury,
$$\log A = 8.8512729 - 10$$
. $\log B = 6.69305 - 10$. $\log a_1 = 9.996725828 - 10$. $\log \beta_1 = 0.0068641$.

C. For 100° to 220° C., mm. of mercury.

$$\log A = 8.5495158 - 10.$$

$$\log B = 6.34931 - 10.$$

$$\log a_1 = 9.997411296 - 10.$$

$$\log \beta_1 = 0.0076418.$$

English units.

B. For 32° to 212° F., pounds on the square inch.

$$\begin{array}{l} \log A = 8.5960005 - 10. \\ \log B = 6.43778 - 10. \\ \log a_2 = 9.998181015 - 10. \\ \log \beta_3 = 0.0038134. \end{array}$$

C. For 212° to 428° F., pounds on the square inch,

 $\log A = 8.2942434 - 10.$ $\log B = 6.09403 - 10.$ $\log a_0 = 9.998561831 - 10.$

 $\log \beta_0 = 0.0042454$.

Heat of the Liquid and Specific Heat. - A preliminary series of experiments convinced Regnault that the specific heat of water at low temperature is unity. To test the specific heat at higher temperatures, he ran hot water from a boiler, and at a known temperature, into a calorimeter in which the temperature varied from 8° to 14° C., and the resulting upper temperature varied from 17° to 29° C. Knowing the original weight of water in the calorimeter, the weight run in from the boiler, and the initial and final temperatures in the calorimeter, he calculated the mean specific heat of water between the temperature of the boiler and the final temperatures of the calorimeter. A series of forty such experiments was made, with the temperature of the boiler varying from 108° to 192° C., from which Regnault concluded that the mean specific neat from 0° to 100° is 1.005; and from 0° to 200°, 1.016. The corresponding heat of the liquid, i.e., the heat required to raise one kilogram of water from 0° to a given temperature, t, is

and solving for the two constants by aid of the two known values of q, the following equation, which is commonly used, is deduced:—

$$q = t + 0.00002t^2 + 0.0000003t^8$$
.

The specific heat at any temperature is, therefore, -

$$c = \frac{dq}{dt} = 1 + 0.00004t + 0.0000000t^2.$$

These equations are for use with the Centigrade scale; for the Fahrenheit scale, a given temperature may be reduced to the Centigrade scale, and then introduced in the same equations.

The process of making the experiments is really a complex one; for the water, in leaving the boiler, has work done on it by the steam pressure in the boiler, and it has a certain velocity impress on it at the same time, and again, in entering the calorimeter, it does work against the atmospheric pressure, and the kinetic energy of its motion is changed into heat. At higher temperatures there is a double change of state; part of the water changes to steam on leaving the boiler, and that steam is condensed again in the calorimeter. It is probable that the error of neglecting the effect of these several actions is inconsiderable.

The degree of accuracy to be accorded to this work is indicated by the fact that Regnault gives four significant figures in stating the data for the calculation of the constants in the equations.

Rowland's Experiments.—A series of experiments was made by Rowland at Baltimore, to determine the mechanical equivalent of heat, which gave a delicate method of determining the heat of the liquid, and the specific heat.

The apparatus used was similar to that used by Joule, with modifications to give greater certainty of results. The calorimeter was of larger size, and the paddle had the upper vanes curved like the blades of a centrifugal pump, to give a strong circulation up through the centre, past the thermometer for taking the temperatures, and down at the outside. The paddle was driven by a petroleum engine, and the power applied was measured by making the calorimeter into a friction brake, with two arms at which the turning moment was measured. Radiation was made as small as possible, and then was made determinate by use of a water-jacket outside of the calorimeter.

The experiments consisted essentially in delivering a measured amount of work to the water in the calorimeter, and in noting the rise of temperature produced thereby.

The whole range covered by the experiments was from 2° to 41° C. The results show that 430 kilogrammetres of work are required to raise one kilogramme of water from 2° to 3° C. Assuming that the same amount will be

ROWLAND'S MECHANICAL EQUIVALENT OF HEAT.

Degrees, C.	Total Number of Kilogram- meters.	Mechanical Equivalent of Heat.	Heat of the Liquid, Experimental.	Heat of the Liquid, Calculated.	Degrees, C.	Total Number of Kilogram- meters.	Mechanical Equivalent of Heat.	Heat of the Liquid, Experimental.	Heat of the Liquid, Calculated.
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	430 860 1290 1721 2150 2580 3009 3439 3868 4296 4723 5151 5578 6006 6433 6861 7280 7717 8144 8571 8007	429.8 429.5 429.3 429.0 428.8 428.5 428.3 428.1 427.7 427.7 427.4 427.2 426.8 426.4 426.4	1.0068 2.0135 3.0204 4.0295 5.0339 6.0408 7.0452 8.0520 9.0564 10.050 11.058 12.061 13.060 14.063 15.065 16.064 17.066 18.068 19.068 20.068 21.065	1.007 2.014 3.022 4.029 5.030 6.040 7.045 8.049 9.054 10.058 11.060 12.061 13.063 14.064 15.066 17.066 18.066 19.066 20.066 21.064	22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41	9424 9850 10277 10701 11128 11553 11978 12828 13253 13675 14101 14527 14952 15379 15805 16657 17083 17508	426.1 426.0 425.9 425.8 425.7 425.6 425.6 425.6 425.7 425.7 425.8 425.8	22,065 23,063 24,062 25,055 26,054 27,050 28,045 29,031 30,035 31,030 32,018 33,016 34,011 35,008 36,008 37,007 38,003 39,000 39,998 40,993	22.063 23.061 24.059 25.058 26.053 27.048 28.042 29.037 30.032 31.027 32.023 33.018 34.014 35.000 36.007 37.005 38.004 39.002 40.000

In the above table, column 1 gives the number of degrees above freezing on the Centigrade scale; column 2 gives the number of kilogrammetres required to raise one kilogramme of water from freezing point to the given temperature; column 3 is Rowland's mechanical equivalent of heat at the given temperature derived from 10° intervals on column 2; column 4 is obtained by dividing the numbers in column 2 by the mechanical equivalent of heat at $16\frac{2}{3}^{\circ}$ C., or 62° F., from column 3; and column 5 is calculated by considering the specific heat to be constant for each five degrees of temperature. These specific heats were derived from a curve obtained by plotting temperatures for abscissæ, and heats of the liquid for ordinates. The values of the specific heats will be given later, in connection with those for higher temperatures.

A review of the preceding table shows that the specific heat at low temperatures varies quite markedly, so that it appeared advisable to investigate the effect of this variation on Regnault's experiments already quoted. This was done quite expeditiously by multiplying the mean specific heat given by him for his several experiments by the true average specific heat for the range of temperature in the calorimeter. This corrected specific heat was

temperature of the boiler. The results were then plotted as before, and compared with the heats of the liquid derived from Regnault's mean specific heats uncorrected. The points by the corrected method were a little more regularly arranged than the points obtained by assuming the specific heat to be unity at low temperatures; but the improvement was inconsiderable. The inequality of the specific heat at low temperatures is seldom so much as the unavoidable errors of the method.

It appeared, that if the specific heat was assumed to be constant, from 40° to 45°, from 45° to 155°, and from 155° to 200° C., the straight lines thus drawn represented the experimental values as recalculated quite nearly; and, further, they represented the uncorrected experimental values more nearly than Regnault's equation.

Specific Heat of Water. — The combination of Rowland's and Regnault's experiments on the heat of the liquid by the method described gives the specific heats set down in the following table, Centigrade scale:—

					S	PECIFIC HEAT.
From 0° 1	to 5° C.	32° to	5 41º F	٠.		1.0072
5°	10°	·11°	$50^{\rm o}$	•		1.0044
10°	15°	$50^{\rm o}$	59^{o}		•	1.0016
15°	20°	59°	68"			1.
20°	25°	68°	77^{o}			0.9984
25°	30°	77°	86°			0.9948
30°	35°	86°	95^{o}			0.9954
35°	40°	95°	104^{o}		•	0.9982
40°	45°	1()-10	1130			1.
45°	155°	113°	3110			1.008
155°	200°	3110	392°			1.046

Thermal Unit.—Heat is measured in calories, or British thermal units (BTU). A calorie commonly is defined as the heat required to raise one kilogramme of water from freezing point to 1" C.; and a British thermal unit, that required to raise one pound from 32" to 33" F. Nothing is known about the specific heat of water from 0" to 2" C.; consequently the commonly accepted value of the thermal unit is an ideal quantity inferred from the behavior of water at higher temperatures. It is more scientific to take an easily verified quantity for the standard; and there is a practical convenience in choosing 62° F. for the standard temperature, because it is near the mean temperature of the air during experimental work. Therefore, it is near the mean temperature in the calorimeter during ordinary work with that instru-

one pound of water from 62° to 63° F. This agrees substantially with the definition of the calorie, as the heat required to raise one kilogramme of water from 15° to 16° C.

In the tables for other vapors than steam, the old definition for the caloric, and Regnault's value for the heat of the liquid, are retained, to avoid entire recalculation.

Mechanical Equivalent of Heat.—The mechanical equivalent in metre-kilogrammes of one calorie at $16^{2\circ}_{3}$ C., deduced from Rowland's experiments in the third column of the table on page 58, is 427.1.

Since the value given by Joule is commonly quoted, it will be of interest to make a comparison of his latest work (1873) with Rowland's, as given in the following table:—

Temperature.	Joule's Value at Manchester,	Reduced to the Z and to the latitu	Rowland's Yalue,	
	English System.	English,	French.	corresponding.
14.79 12.79 15.50 14.50 17.39	772.7 774.6 779.1 767.0 774.0	776.1 778.5 776.4 770.5 777.0	425.8 427.1 426.0 422.7 420.3	427.6 428.0 427.3 427.5 426.9

The value of g at Baltimore, latitude 39° 17′, is 980.05 centimetres therefore, reducing to 45° of latitude, and at the sea level, the value of the mechanical equivalent of heat is

$$J = 426.9$$
.

To reduce to the English system, multiply by §, and by the length of the metre in feet, so that

Total Heat.—This term is defined as the heat required to raise a unit of weight of water from freezing point to a given temperature, and to entirely evaporate it at that temperature. The experiments made by Regnault were in the reverse order; that is, steam was led from a boiler into the calorimeter, and there condensed. Knowing the initial and final weights of the calorimeter, the temperature of the steam, and the initial and final temperatures of the water in the calorimeter, he was able, after applying the necessary corrections, to calculate the total heats for the several experiments.

As a conclusion of the work, he gives the following values for the total heats:—

Assuming an equation of the form

$$\lambda = A + Bt,$$

Regnault calculated the constants from the values given for 100° and 195°, and gives the equation

$$\lambda = 606.5 + 0.305t.$$

Wishing to see the effect of the varying value of the specific heat at low temperatures, I recalculated the total heats given by experiment, by a method resembling that used in recalculation of the heats of the liquid, and plotted the results together with Regnault's values uncorrected. The recalculated points were a little more regular than the original ones, and lay nearer the line represented by the above equation. Especially did the recalculated points for those experiments, for which the true mean specific heat of the water in the calorimeter was nearly unity, lie near that line. It therefore appears that the equation represents our best knowledge of the total heat of steam.

For the Fahrenheit scale the equation becomes

$$\lambda = 1091.7 + 0.305 (t - 32).$$

Heat of Vaporization.—If the heat of the liquid be subtracted from the total heat, the remainder is called the heat of vaporization, and is represented by r, so that

$$r = \lambda - q$$
.

Internal and External Latent Heat. — The heat of vaporization overcomes external pressure, and changes the state from liquid to vapor at constant temperature and pressure. Let the specific volume of the saturated vapor be s, and that of the liquid be σ , then the change of volume is $s - \sigma = u$, on passing from the liquid to the vaporous state. The external work is

$$p(s - \sigma) = pu$$
,

and the corresponding amount of heat, or the external latent heat, is

$$Ap(s-\sigma)=Apu$$
,

A being the reciprocal of the mechanical equivalent of heat.

The heat required to do the disgregation work, or the internal latent heat, is

$$\rho = r - \Lambda pu$$
.

Specific Volume and Density of Steam. — On account of the great difficulty of direct determination of the weight of saturated steam, it is customary to calculate the specific volume of steam by aid of the following equation, derived by the application of the principles of thermo-dynamics to the general

in which A is the reciprocal of the mechanical equivalent of heat, T is the temperature from the absolute zero, and σ is the volume of one unit of weight of the liquid from which the vapor is formed. The differential co-efficient $\frac{dp}{dt}$ can be calculated by aid of the equations on page 11.

The absolute temperature is obtained by adding 273.7 to the temperature in degrees Centigrade, or 460.7 to the temperature in degrees Fahrenheit.

The volumes and densities of saturated steam given in Tables I, II, and III, were calculated by this method.

It is of interest to consider the degree of accuracy that may be expected

from this method of calculating the density of saturated vapor. The value of r repends on λ and q; for the first, Regnault gives three figures in the data from which the empirical equation is deduced, and the experimental work does not indicate a greater degree of accuracy. The fourth figure, if stated, is likely to be in error to the extent of five units. The value of T is commonly stated in four figures, of which the last may be in error by two units. A, as determined by Rowland, has four figures, the last being uncertain to the extent of one or two units. The differential co-efficient $\frac{dp}{dk}$ is deduced from the equations for calculating p; and those equations are derived from data having five places of significant figures. Now the Equations B and C_1 for steam at 45° of latitude for the English system give a pressure of 14.6967 pounds on the square inch; but the specific volume calculated by aid of Equation B is 26.550 cubic feet, while Equation C gives 26.637 cubic feet. The mean, 26.60, differs from either extreme by about one in seven hundred. This discrepancy is due to the fact that the curves represented by Equations B and C meet at the common temperature, 212°, but do not have a common Since the equations are empirical and not logical, the error or uncertainty is unavoidable, and all calculated specific volumes are affected by a similar uncertainty. The greatest probable error is in determining r, for which it may be about one in one thousand. The error introduced into this equation by using the values of A in common use, that is, 772 instead of 778,

Tate and Fairbairn's Experiments.—In 1860 an attempt was made by Tate and Fairbairn to determine the specific volume of steam by direct experiment. The following table, taken from the *Philosophical Transactions*, Vol. cl., gives the results of all their experiments, together with the volumes calculated by their empirical formula,

is about one in one hundred.

	Pressure in Inches of Mercury.	Maximum Temperature, Fahrenheit, of Saturation. T	Specific Volume from Experiments, 1'.	Specific Volume from Formula, U.	Error of Formula,	1
1 2 3 4 5 6 7 8 9 1' 2' 8' 6' 7' 8' 6' 10' 11' 12' 13' 14'	5.35 8.62 9.45 12.47 12.61 13.62 10.01 18.36 22.88 53.61 55.52 55.80 66.84 76.20 81.53 84.20 92.23 90.08 90.00 104.54 112.78 122.25 114.25	186,77 155,33 159,36 170,92 171,48 174,92 182,30 188,30 198,78 242,90 244,82 255,50 244,82 255,50 263,14 267,21 269,20 274,76 274,76 274,30 276,42 288,25 288,25	8275.3 5333.5 4920.2 5722.6 5715.1 3438.1 3051.0 2026.4 2140.5 943.1 908.0 892.5 759.4 649.2 635.3 605.7 685.4 546.2 447.2 458.3 433.1 449.6	\$183 5526 4900 57740 57745 2624 900 765 6028 6028 6028 6038 604 426 426 426	- 1	:

It is apparent that the errors of this formula are much larger than the probable errors of the thermo-dynamic method.

The following table, giving the volumes in cubic metres of one kilogramme of saturated steam, shows the comparison of the two methods:—

By equation 0° 0. 60° 0. 100° 0. 150° 0. 200° 0.
$$s = \frac{1}{AT} \cdot \frac{dt}{dt} + \sigma$$
 . 211.5 12.11 1.660 0.3875 0.1277

From equation

$$V = 25.62 + \frac{49158}{P + 0.72}$$
, 54.97 11.43 1.643 0.3706 0.1343

Steam Entropy. — From the second law of thermo-dynamics may be deduced the equation

$$d\phi = \frac{dQ}{T},$$

in which ϕ is the entropy, dQ is the heat applied or withdrawn, and T is the absolute temperature. Since the entropy depends on the state of the substance only, and not on the method of arriving at that state, we may calculate the increase of entropy in one unit of weight of a given mixture of water and steam above the entropy of the suppose of the entropy of the entropy

freezing point to the temperature t, and that the portion x is then changed into steam. During the first operation the change of entropy will be

$$\theta = \int_0^t \frac{dq}{T} = \int_0^t \frac{cdt}{T}.$$

During the second operation the change of entropy will be

$$\frac{\overline{T}}{T}$$
,

since the heat is added at the constant temperature t. The entire change of entropy will be

$$\phi = \frac{xr}{T} + \int_0^r \frac{cdt}{T} = \frac{xr}{T} + \theta.$$

At any other state the entropy of a unit of weight of a mixture of steam and water will be

$$\phi_1 = \frac{x_1 r_1}{T_1} + \theta_1,$$

and the change of entropy will be

$$\phi - \phi_1 = \frac{xr}{T} + \theta - \frac{x_1r_1}{T_1} - \theta_1.$$

During an adiabatic change no heat is transmitted, and the entropy is constant.

$$\frac{xr}{T} + \theta = \frac{x_1r_1}{T_1} + \theta_1.$$

When the initial state including the value of x is known, and also the final temperature or pressure, the final value of x_1 may be calculated by the above equation; and the initial and final volumes may be found by the equations

$$v = xu + \sigma, \quad v_1 = x_1v_1 + \sigma;$$

the value of u for a given temperature or pressure, from the equation,

$$s = u + \sigma$$
.

Entropy of the Liquid. — When the specific heat of a liquid is known in terms of the temperature, the entropy of the liquid,

$$\theta = \int_{0}^{t} \frac{cdt}{T}$$

is readily calculated. For water we have, for example, the entropy of the liquid at 13° C.

$$1.0072 \log_s \frac{T_5}{T_c} + 1.0044 \log_s \frac{T_{10}}{T_c} + 1.0016 \log_s \frac{T_{10}}{T_0}$$

For other liquids having the general formula for the heat of the liquid,

$$q = at + bt^2 + ct^8,$$

Other Vapors.—Tables IV to IX are taken from Zeuner's Mechanischen Wärmetheorie. His values for the specific volume and density were calculated with 273 for the absolute temperature of 0° C., and with 424 for the mechanical equivalent of heat. To bring these tables into accord with Tables I, II, and III, the values of the specific volume and density have been modified by using 273.7 for the absolute temperature of 0° C., and 426.7 for the mechanical equivalent of heat at Paris.

The equations by which the tables were calculated, taken from Regnault's memoirs, Académie des Sciences, Comptes rendus, Tome XXXVI, are here assembled, together with Zeuner's equations for the differential co-efficient, $\frac{1}{p} \frac{dp}{dt}$.

TEMPERATURE AND PRESSURE.

1	log р	n	b	a
	2	3	4	5
Alcohol Ether	$a - ba^n + c_1 \beta^n$ $a + ba^n - c_1 \beta^n$ $a - ba^n - c_1 \beta^n$ $a - ba^n - c_1 \beta^n$ $a - ba^n - c_1 \beta^n$	5,2253893	4.9809960 0,0002284 2.9534284 0,4405063 9,4375480	0,0485307 3,1906390 0,0068673 0,2857380 1,0674890

TEMPERATURE AND PRESSURE - Concluded.

	log a.	log 3.	n	Limits.
	G	7	8	O
Alcohol	1.00708567 0.0145775 1.0074144 1.0077628 1.0007120	1.0409485 1.096877 1.0868176 1.0941907 1.0949780	[-20°, +150°C, -20°, +120° +20°, +164° -20°, +140° -20°, +188°

The equation for the temperature and pressure of the saturated vapor of aceton, as recalculated by Zenner, is,—

$$\log p = a - ba^{n} + c\beta^{n},$$

$$a = 5.3085.119$$

$$\frac{1}{p}\frac{d\,p}{dt}=Aa^n+B\beta^n$$

From Zeuner's Wärmetheorie.

	810	IN.		
	Aa^n	$B\beta^n$	Log (Aa ⁿ)	$\text{Log }(B\beta^n)$
Alcohol Ether	+ + + + + +	-+++ +++	-1.1720041-0.0029143t -1.3390624-0.0031223t -1.3410130-0.0026856t -1.4339778-0.0022372t -1.8611078-0.0002880t -1.3268535-0.0026148t t, temperature C.	$\begin{array}{c} -2.9992701-0.0590515t\\ -4.4016396+0.0145775t\\ -2.0667124-0.0131824t\\ -2.0511078-0.0088093t\\ -1.3812195-0.0050220t\\ -1.9064582-0.0215592t \end{array}$

HEAT OF THE LIQUID.

Alcohol	•	$q = 0.54754t + 0.0011218t^2 + 0.000002206t^3$
Ether		$q = 0.52901t + 0.0002959t^2$
Chloroform	•	$q = 0.23235t + 0.0000507t^2$
Carbon bisulphide		$q = 0.23523t + 0.0000815t^2$
Carbon tetrachloride	•	$q = 0.19798t + 0.0000906t^2$
Aceton	•	$q = 0.50643t + 0.0003965t^2$
		MOTAT INFA TO
		TOTAL HEAT.

			TOTAL HEAT.
Ether	•		$\lambda = 94 + 0.45t - 0.00055556t^2$
Chlorofe	orm	•	$\lambda = 67 + 0.1375t$
Carbon	bisulph	ide	$\lambda = 90 + 0.14601t - 0.0004123t^2$
Carbon	tetrach	oride	$\lambda = 52 + 0.14625t - 0.000172t^2$
Aceton			$\lambda = 140.5 + 0.36644t - 0.000516t$

The total heat of alcohol varies in so irregular a manner that no equation can be given for it.

Zeuner gives the following empirical equations for calculating the heat equivalent of the internal work, which are proposed to lessen the labor of calculation

HEAT EQUIVALENT OF INTERNAL WORK.

Water		•	$\rho = 575.40 - 0.791t$
Ether			$\rho = 86.54 - 0.10648t - 0.0007160t^2$
Chlorofo	ıın	•	$\rho = 62.44 - 0.11282t - 0.0000140t^2$
Carbon l	oisulp	hide	$\rho = 82.79 - 0.11446t - 0.0004020t^2$
Carbon t	etrael	ıloride	$\rho = 48.57 - 0.06844t - 0.0002080t^2$
Aceton			$a = 131.63 - 0.20184t - 0.0006280t^2$

Sulphur Dioxide and Ammonia. — The use of ice-machines has brought into prominence liquids which vaporize at low temperatures. For two such

SULPHUR DIOXIDE.	AMMONIA,
$\log p = a - ba^n - c\beta^n$	$\log p = a - ba^n - c\beta^n$
a = 5.6663790	a = 11.5043330
b = 3.0146890	b = 7.4503520
c = 0.1465400	c = 0.9499674
$\log a = 1.9972989$	$\log \alpha = \overline{1.9996014}$
$\log \beta = \overline{1}.9872900$	$\log \beta = \overline{1.9939729}$
n = t + 28	n = t + 22
Limits, $-28, +62$.	Limits, $-22, +82$.

Unfortunately the heat of the liquid and the total heat for these substances have not been determined. We have, however, some of the properties of these substances in the gaseous state or more properly in the state of superheated vapors.

Now, it has been shown by Zeuner that superheated steam may have its properties represented by the equation

$$pv = BT - Cp^{\alpha}$$

in which p is the pressure in pounds on the square foot or kilograms on the square meter, v is the volume of a pound in cubic feet or of a kilogram in cubic meters, and T is the absolute temperature. The constants have the following values when calculated from the properties of saturated steam:

French units, . . .
$$B = 51.3$$
 $C = 198$ $a = \frac{1}{4}$. English units, . . . $B = 93.5$ $C = 971$ $a = \frac{1}{4}$.

It was first proposed by Ledoux to find similar equations to represent the properties of superheated sulphur dioxide and ammonia, and to use such equations for calculating approximate tables of the properties of these vapors when saturated, just as the tables of the properties of saturated steam had been used in establishing the equation for superheated steam.

In the *Thermodynamics of the Steam-engine* by the author, pages 452 to 459, this calculation has been carried out with the best ascertained properties of the superheated vapors of sulphor dioxide and ammonia with the following results:

SULPHUR DIOXIDE. AMMONIA.

French units,
$$pv = 14.5 \ T - 48p^{0.22}$$
 $pv = 54.3 \ T - 142p^{\frac{1}{2}}$
English units, $pv = 26.4 \ T - 184p^{0.22}$ $pv = 99 \ T - 540p^{\frac{1}{2}}$

The application of these equations to the vanors when saturated gives

HEAT OF VAPORIZATION.

French units,
$$r = 98 - 0.27t$$
 $r = 300 - 0.8t$.
English units, $r = 176 - 0.27(t - 32)$ $r = 540 - 0.8(t - 32)$.

SPECIFIC HEAT OF THE LIQUID.

SULPHUR DIOXIDE. AMMONIA. c=0.4 c=1.1

Tables X and XI were calculated by aid of the equations written, and may be of use for approximate calculations, in default of more reliable tables.

Specific Volume of Liquids. — Table XII was taken from the *Phys.-Chem.* Tabellen of Landolt and Börnstein.

Volume of Water.—Table XIII gives the volumes of water compared with its volume at 4°. From 0° to 100° C., the values are those given by Rossetti. Above 100°, the values are those calculated by the equations given by Hirn in the *Annales de Chimie et de Physique*, 1867.

Volumes of Liquids.—The volumes of liquids at high temperatures, compared with the volume at freezing point, are represented by the following equations given by Hirn in the Annales:—

Water 100° C. to 200° C. (vol. at 4° C. = unity)	$1+0.00010807875t \ +0.0000030073053t^2 \ +0.000000028730422t^3 \ -0.00000000000036457031t^4$	Logs. 6.0361445—10 4.4781862—10 1.4583419—10 8.8225409—20
Alcohol 30° C. to 160° C. (vol. at 0° C.= unity)	1+0.00073892265 <i>t</i> +0.00001055235 <i>t</i> ² -0.000000092480842 <i>t</i> ³ +0.00000000040413567 <i>t</i> ⁴	6.8685001—10 3.0233402—10 2.660517—10 0.6065278—10
Ether 30° C. to 130° C. (vol. at 0° C. = unity)	$\begin{array}{l} 1+0.0013489059\ell \\ +0.0000065537\ell^2 \\ -0.00000034490756\ell^3 \\ +0.0000000033772062\ell^4 \end{array}$	7.1299817 10 4.8164866 10 2.5377028 10 0.5285571 10
Carbon bisulphide 30° to 100° C. (vol. at v=	$1+0.0011680550t +0.0000016480508t^2 -0.00000000081119062t^3 +0.0000000000000046580t^4$	7.0074036—10 4.2172103—10 0.9091229—10 .7849494—20
Carbon tetrachloride 30° to 100° C. (vol. at 0°C.=unity)v=	$1 + 0.0010671883t + 0.0000035651378t^2 - 0.000000014949281t^8 + 0.000000000085182318t^4$	7.0282409-10 4.5520763-10 2.1746202-10 9.9303494-20

Explanation of the Tables. — In Table I, the first column gives the temperature, t, of saturated steam.

The second column gives the corresponding pressure, p, in pounds on the square inch, above an absolute vacuum; the differences are placed between the two numbers from which they are derived. For example, the pressure at 40° F. is 0.1216 pounds per square inch; and the difference to be used in interpolation, and placed half a line lower, is 48.

The third column gives the heat of the liquid, q, required to raise the temperature of one pound of water from 32° F. to a given temperature.

The fourth column gives the total heat, λ , required to raise one pound of water from 32° F, to a given temperature, and to entirely vaporize it under the pressure due to that temperature.

The fifth column gives the heat of vaporization, or the heat required to vaporize one pound of water at a given temperature, under the pressure corresponding.

The sixth column gives the heat required to do the disgregation work during the vaporization of one pound of water.

The seventh column gives the heat required to overcome the external pressure, and do the work of increasing the volume from σ to s.

The eighth column gives the entropy of the liquid.

The ninth and tenth columns give the specific volume, or volume in cubic feet, of one pound of saturated steam, and the density or weight of one cubic foot in pounds.

Table II differs from Table I in that it is arranged to give the properties of saturated steam for each pound of pressure.

Table III gives the properties of saturated steam in French units; and Tables IV to XI give the properties of other saturated vapors in the same

TABLE I.

SATURATED STEAM.

ENGLISH UNITS.

Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	f the Liquid.		Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	DENSITY.	Temperature, Degrecs Fahr.
atul	e, und Incl	the	Total Heat.	riza	uiva erna	uiva terr	of Lig	Vol	Weight, in Pounds, of one Cubic Foct.	se F
per	Pressure, Pour Square In	Heat of	H	t of apo	P. H. A.	Ex Ork	opy	ific	it. Ciest,	gree
lem D	Pres	Hea	Pota	Ieat	leat of ≪	of W	intr	pec	Veig Pou one Poc	De
t	,	9	λ	μη γ	٩	Apu	$\int \frac{cdt}{T}$	so s		t
	*****************						<u> </u>		у	
32	0.0800 36	0	1091.7	1001.7	1035.9	55.8	0.0000	3387 197	0.0002952	32
33	$0.0926 \begin{array}{c} 30 \\ 37 \end{array}$	1.01	1002.0	1091.0	1035.1	55.9	0.0020	$\begin{array}{c} 3387 \\ 3260 \\ 122 \end{array}$	$\substack{0.0002952\\0.0003007}_{120}$	33
34	0.0063 30	2.01	1002.3	1090.3	1034.3	50.0	0.0041	9190		34
35	10.1002 4.1	3.02	1092.6	1089.6	1033.6	50.0	0.0061	3022 110	$\begin{array}{c} 0.0003187_{122} \\ 0.0003309127 \\ 0.0003436127 \end{array}$	35
36	0.1042 40	4.03	1002.0	1088.0	1032.8	50.1	0.0081	$2010 \frac{112}{107}$	0.0003436_{132}^{127}	36
37	0.1083 43	5.04	1093.2	1088.2	1032.0	56.2	0.0101	2803 103	0.0003568	37
38	0.1120 44	0.04 7.05	1093.5 1093.8	1087.5 1086.7	1031.3	50.2	0.0122	2700 00	$0.0003568_{136} \\ 0.0003704_{141} $	38
05	0.1140 46	1.(,,,	1000.0	1000.7	1030.4	56.3	0.0142	2001 05	$0.0003704141 \\ 0.0003845145$	39
40	0.1216_{-48}	8.06	1094.1	1086.0	1029,6	56.4	0.0162	2506 91	0.0003990_{151}	40
41	0.1264 40	9.06	1004.4	1085,3	1028.8	56.5	0.0182	2415 87	0.0004141	41
42	0.1313 51	10.07	1004.8	1084.7	1028.1	56.6	0.0202	2328 84	$\substack{0.0004141\\0.0004296155\\0.0004456160}$	42
7(3	0. 1304 53	11.07	1005.1	1084.0	1027.3	56.7	0.0222	2328 2244 80		43
44	0.1417 54	12.08	1005.4	1083.3	1020.5	50.8	0.0242	2164 77	0.0004021	44
45 46	0.1475 57	13,08 14.09	1095.7 1096.0	1082.6	1025.8 1025.0	50.8 50.0	0.0202 0.0282	2001 74	$\begin{array}{c} 0.0004702171 \\ 0.0004968170 \\ 181 \end{array}$	45 46
	110	ļ			1040.0	00.0	·	71		
47	0,1580 60	15,09 16,10	1006.3	$1081.2 \\ 1080.5$	1024.2	57.0	0.0302	1042 68	0.0005149187	47
49	0.1708 62	17.10	1096.9	1079.8	1023.4	$57.1 \\ 57.2$	0.0322	1000 80	$\begin{array}{c} 0.0005140187 \\ 0.0005330194 \\ 0.0005530201 \end{array}$	48 49
-						1		00		
50	0.1773 66	18.10	1097.2	1079.1	1021.8	57.3	0.0361	1 ⁷⁴⁵ 60	0.0005731_{206}	50
51	0.1839 69	19.11	1007.5	1078.4	1021.1	57.3	0.0381	1685 50	0.0005937213	51
52 53	0.1070 71	20.11 21.11	1097.8 1098.1	1077.7	1020.3 1010.5	57.4 57.5	0.0400	1020 50	$\begin{array}{c} 0.0006151213 \\ 0.0006150219 \\ 0.0006369226 \end{array}$	52 53
	10	l	1000.1	1011.0	10117.0	01.0	0.0420	1370 54		
54	0.2052 76	22.11	1098.4	1076.3	1018.7	57.6	0.0430	1516 51	0.0006595234	54
55	D SOLVE TO	23.11 24.11	1008.7	1075.6	1017.0	57.7 57.8	0.0459 0.0478	1400 50		55 56
1	(81	l						4.6		
57 58	0.2287 83	25.12 26.12	1009.3	1074.2 1078.5	1016.3	57.9 57.9	0.0407	$\begin{vmatrix} 1367 \\ 1321 \end{vmatrix}$	0.0007317254	57 58
59	0.2450 80	27.12	1000.0	1072.8	1014.8	58.0	0.0517	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0007571_{263}^{254} \\ 0.0007834_{270}^{270} \end{array}$	59
60	0.0717	28.12	1100.2	1072.1	1014.0	58.1	0.0555	42	ł	60
00	02	40.12	1100.2	1012.1	1014.0	90.1	U.U ()()()	1234 41	0.0008104280	
l cr	0.0007	00 10	1100 5	1071 4	1010 0	E0 0	A AFFI	4100	1.000000	61

					<u>.</u> 1		<u>.</u> T		ie.	DENSITY.	
1	ŀ.	Pressure, Pounds per Square Inch.	ne Liquid		Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	, ig	Specific Volume	Weight, in 35 Points, of 25 Poor. Poor.	Temperature, Degrees Fahr.
Ì	ture is Fa	Pressure, Pounds Square Inch	=	eat.	oriz	quiv itern K.	A Ster	o se); \	Cult	rees
	pera	Po Po are J	Heat of	Total Heat.	at of Var	at e	AST E	the	pecii	Yell Pour Four	De
	Temperature, Degrees Fahr.	Pres Squ	Hea				Ħ	Entropy of	εΓ. s	y	t
1	t	Þ	9	λ	r	ρ	Apu	$\mid T \mid$, , , , , , , , , , , , , , , , , , ,	
1	64	0.2020	32.12	1101.5	1069,4	1010.9	58.5	0.0632	$\frac{107826}{10425}$;	$\begin{array}{c} 0.0009273313 \\ 0.0009586325 \\ 0.0009911329 \end{array}$	64 65
	65	$\begin{array}{c} 0.2929 \\ 0.3033 \\ 0.3140 \\ 110 \end{array}$	$33.12 \\ 34.12$	$\frac{1101.8}{1102.1}$	1068.7	1010.1	58.6 58.6	0.0651	1009.	0.0000011325	66
	66				1007.3	1008.6	58.7	0.0680		0.001024 ₃₅ 0.00105935 0.00100135	67
	67 68	$\begin{array}{c} 0.3250 \\ 0.3364 \\ 117 \\ 0.3481 \\ 121 \end{array}$	35.12 36.12	1102.4 1102.7	1066.6	1007.8	58.8 58.9	0.0708 0.0727	976.3 ₃₁₆ 944.7304 914.3 ₂₉₃	0.00105935	68 69
,	69	0.3481_{121}^{111}	37.12	1103.0	1065.9	1007.0				0.00113037	70
	70	0.3602_{124}	38.11	1103.3	1065.2	1006.2	59.0	0.0745	885.0280	1	1
	71	,	39,11	1103.6	1064.5	1005.4 1004.6	59.1 59.2	0.0764	\$50.7 _{.272} \$29.5 ₂₆₃ \$03.2 ₂₅₃	0.00116708 0.00120500	71 72
	72 73	$ \begin{smallmatrix} 0.3726 \\ 0.3854 \\ 0.3986 \\ 136 \end{smallmatrix} $	40.11 41.11	1103.9 1104.2	1063.8 1063.1	1003.8	59.3	0.0802	800.2260	0.00120540	73
	74		42.11	1104.5	1002.4	1003.0	50.4	0.0820	777.0244	0.00128641	74 75
	75	$\begin{bmatrix} 0.4122_{140} \\ 0.4262_{144} \\ 0.4406_{149} \end{bmatrix}$	43.11	1104.8	1061.7	1002.3 1001.5	59.4 59.5	0.0839	777.9.214 759.5236 729.9228	0.00137043	76
	76	1	44.11	1105.1			59.0	0,0876	707.1	1	77
	77	$\begin{bmatrix} 0.4555_{153} \\ 0.4708_{157} \end{bmatrix}$	45,10 46,10	1105.4 1105.7	1000.3	1000.7	59.7	0.0805	707.1 ₂₁₉ 085.2211 061.133	0.00141445	78
	79	$\begin{bmatrix} 0.4703157 \\ 0.4865162 \end{bmatrix}$	47.00	1106.0	1058.9	999.1	50.8	0.0013	200	1	
	80	0.5027107	48.09	1106.3	1058.2	998,3	59.9	0,0032	013.8197	0,001553,(0	80
	81	1	49,08	1106.6	1057.5	997.5	00.0	0.0050	005,0191 005,0184 586,6178	0.00130251	81 82
	82	0.5104 0.5365 177 0.5542 181	50.08	1107.0	1056.9	0.000,8	60.2	0.0087	586.6181	0,00170555	83
				1107.6	1055,5	995.2	30.3	0,1005	1)	84
	84	$\begin{smallmatrix} 0.5723 \\ 0.5910 \\ 0.5910 \\ 192 \\ 0,0102 \\ 197 \end{smallmatrix}$	53.00	1107.9	1054.8	994.4	(30,-1	0.1028 0.1041		$\begin{array}{c c} 0.00181356 \\ 0.00180957 \end{array}$	85
	86	0,6102107	54.00	1108.2	1054.1	003.7	00.4		i i	1	87
	87	0.6200	55,05 56,05	1108.5	1053, 1	992.0	60.5			$\begin{array}{c c} 0.001920_{50} \\ 0.001985_{60} \end{array}$	88
	88		57.04	1109.1	1052.1	1001.4	00.7	0,1000	488.014	0.00204500	89
	90			1109.4	1051.4	0,000	00.8	0.111	1 474.6 ₁₃₁	0.00210764	90
	91		1	1109.7	1050.7	080.8	0,00			0.00217166	91
	92	0.7372_{933}^{220}	60,03	1110.0	1050.0				$\frac{1}{3} \left[\begin{array}{c} 447.1 \\ 434.0 \\ 12 \end{array} \right]$	$\begin{bmatrix} 0.002171_{66} \\ 0.002237_{67} \\ 0.002304_{68} \end{bmatrix}$	92
	93								;	1	94
	94	0.7844_{240}	$\{ \begin{bmatrix} 62.02 \\ 63.02 \end{bmatrix}$				5 61.3	0.120	(] -t091.33 j	$\begin{bmatrix} 0.002372_{71} \\ 0.00244373 \\ 0.00251074 \end{bmatrix}$	95 96
	96	$6 \mid 0.8342_{250}^{2502}$	04.01		1047.2	985.8	s (511	0.122	1	- 1	
	97	0.8601	65.01						388.111	0.00259076	97
	98	$\begin{array}{c c} 0.886727 \\ 0.914028 \end{array}$	$\frac{6}{6} \mid 66.01$							$\begin{array}{c} 0 & 0.00266678 \\ 7 & 0.00274480 \end{array}$	99
	100	1	68.0	1112.4	1044	082.	7 61.	7 0.120	l		100

ahr	pei jh.	uid		tion	lent 1	lent 1	id.	ıme	DENSITY.	br.	
Temperature, Degrees Fahr	Pressure, Pounds per Square Inch.	the Liquid	leat.	Heat of Vaporization	Heat equivalent of Internal Work.	ıt equivalent f External Vork.	Entropy of the Liquid.	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fabr.	
mper Degra	Po Po Squar	Heat of	Total Heat.	at of Vap	at ec of In Worb	Heat ec of Ex Work	tropy the	ecific	sight bunda le C	mper	
r Te			ر 130				i G				
	Þ	q	^	<i>r</i>	- Р	Apu	$\int \frac{cdt}{T}$	s	γ		
104 105	1.0019,319	72.0 73.0	$\frac{1113.7}{1114.0}$	1041.7 1041.0.	979.6 978.8	$62.1 \\ 62.2$	0.1364	310.188	0.003163_{91} 0.003254_{93} 0.003347^{93}	104 105	
106	1.0019,119 1.0038,128 1.1266,336	74.0	1114.0	1040.3	978.0	62.3	0.1382 0.1400	$\begin{array}{c} 316.1_{88} \\ 307.3_{85} \\ 298.8_{82} \end{array}$	0.00334793 0.00334794	106	
107		75.0	1114.6	1039.6	977.2	62.4	0.1417		0.00344196	107	
108 109	1.1602_{345} 1.1947354 1.2301362	76.0 77.0	$\frac{1114.9}{1115.2}$	1038.9 1038.2	976.4 975.6	62.6 62.6	$0.1435 \\ 0.1452$	$\begin{array}{c} 290.6_{79} \\ 282.777 \\ 275.075 \end{array}$	$\begin{array}{c} 0.003441_{96} \\ 0.00353799 \\ 0.003636_{102}^{102} \end{array}$	108 109	
110	1.2663_{372}	78.0	1115.5	1037.5	974.8	62.7	0.1470	$267.5_{\column{7}{\scriptsize 72}}$	0.003738_{104}	110	,
111 112	1.3035381	79.0 80.0	1115.8 1116.1	1036.8 1036.1	974.0 973.2	62.8	0.1487	260.370	0.003842106	111 112	
113	1.3035.381 1.3416381 1.3807391	81.0	1116.4	1035.4	972.4	63.0	0.1505 0.1522	260.3 ₇₀ 253.3 ₆₈ 240.5 ₆₆	$\substack{0.003842\\0.003948106\\0.004057}$	113	
114 115	1.4207.411	82.0 83.0	1116.7 1117.0	1034.7 1034.0	971.6 970.8	63.1 63.2	0.1540	239.964	0.004168	114 115	
116	$\frac{1.4207}{1.4618}$ $\frac{411}{1.5039}$	84.0	1117.3	1033.3	970.0	63.3	0.1558 0.1575	$\begin{array}{c} 239.9_{64} \\ 233.5_{62} \\ 227.3_{60} \end{array}$	$\begin{array}{c} 0.004168_{115} \\ 0.004283_{116} \\ 0.004309_{120} \end{array}$	116	
117		85.0	1117.6	1032.6	909.2	63.4	0.1592	l	0.004519121	117	
118 119	1.5470 1.5912452 1.6364 464	80.0 87.0	$1117.9 \\ 1118.2$	1031.9 1031.2	968,4 967.6	63.5 63.6	$0.1610 \\ 0.1627$	$\begin{bmatrix} 221.3_{58} \\ 215.5_{56} \\ 209.9_{55} \end{bmatrix}$	$\begin{array}{c} 0.004519\\ 0.004640121\\ 0.004764_{124} \end{array}$	118 119	
120	1.0828,474	88.1	1118.5	1030,4	906.7	63.7	0.1645	204.4 ₅₃	0.004892 ₁₃₀	120	
121	i e	80.1	1118.8	1029.7	900.0	63.7	0.1062		0.005022134	121 122	
122 123	$\substack{1.7302\\1.7789\\1.8287\\510}$	90.1	1110.2	1029.1 1028.4	965,3	63.8	0.1679	$\begin{array}{c} 199.1_{52} \\ 193.9_{50} \\ 188.9_{48} \end{array}$	$\begin{array}{c} 0.005022\\ 0.005156137\\ 0.005293\\ 130 \end{array}$	123	
124 125		92.1	1119.8	1027.7	903.7	64.0	0.1714		0.005432142	124 125	
126	$\begin{array}{c} 1.8797_{521} \\ 1.9318_{534} \\ 1.9852_{547} \end{array}$	93.1 94.1	1120.1 1120.4	1027.0	962.1	64.1	$0.1731 \\ 0.1748$	$184.1_{179.4}^{47}_{179.4}^{184.1}_{46}_{44}$	$\begin{bmatrix} 0.005432_{142} \\ 0.005574_{146} \\ 0.005720_{148} \end{bmatrix}$	126	
127		95.1	1120.7	1025.6	961.3	64.3	0.1765		0.005868 ₁₅₂ 0.006020156	127	
128 129	$\begin{smallmatrix} 2.0399 \\ 2.0959560 \\ 2.0959574 \\ 2.1533580 \end{smallmatrix}$	96.1 97.1	1121.0	1024.9 1024.2	960.5 959.7	04.4	0.1783	$170.4_{43} \\ 166.1_{42} \\ 161.9_{41} $	$0.006020156 \\ 0.006176160$	128 129	
130	2.2110000	98.1	1121.6	1023.5	058.0	64.6	0.1817	157.839	0.006336_{162}	130	
131	2.2719	99.1	1121.9	1022.8	058.1	64.7	0.1834	153.038	0.000498166	131 132	
132	$\begin{smallmatrix} 2.2719 \\ 2.3333614 \\ 2.3961628 \\ 2.3961642 \end{smallmatrix}$	100.2	1122.2 1122.5	1022.0 1021.3	957.2 950.4	64.8	0.1851	$\begin{array}{c} 153.0_{38} \\ 150.1_{37} \\ 140.4_{36} \end{array}$	$ \begin{array}{c} 0.006498166 \\ 0.006664169 \\ 0.006833172 \end{array} $	133	
134	2.4603058	102.2	1122.8	1020.6	055.6	65.0	0.1885			134 135	
135 136	$\begin{smallmatrix} 2.4003 \\ 2.5201058 \\ 2.5201671 \\ 2.5032087 \end{smallmatrix}$	103.2	1123.1 1123.4	1019.9	054.8 054.0	05.1 05.2	0.1902 0.1919	$^{142.8}_{139.2_{34}}_{135.8_{33}}$	$\begin{bmatrix} 0.007005176 \\ 0.007181180 \\ 0.007361184 \end{bmatrix}$	136	
137		105.2	1128.7	1018.5	953.2	65.3	0.1936			137 138	
138	$\begin{smallmatrix} 2.6619 \\ 2.7321702 \\ 2.8040734 \end{smallmatrix}$	106.2 107.2	1124.0 1124.3	1017.8 1017.1	952.4 951.6	05.4 05.5	0.1952 0.1969	$\begin{array}{c} 132.5_{32} \\ 129.3_{31} \\ 120.2_{30} \end{array}$	$\begin{bmatrix} 0.007545_{187} \\ 0.007732_{192} \\ 0.007924_{106} \end{bmatrix}$	139	
140	2.8774751	108.2	1124.6	1016.4	950.8	65.6	0.1986	123.230	0.008120108	140	
141	2.0525	109.2	1124.9	1015.7	950.0	65.7	0.2003	120.200	0.008318	141	-

	Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in Strange, of a strong or Cubic Libroral Fout.	Temperature, Ikgrees Fabr.
	T t	A W	9	λ	r -	p	-l pu	$\int_{r}^{r} dt$	s	У	F #
	144 145 146	3.1877 ₈₁₉ 3.2696836 3.3532 ₈₅₅	112.2 113.3 114.3	1125.0 1126.2 1126.5	1013.7 1012.9 1012.2	947.7 946.8 946.0	66.0 66.1 66.2		$^{114.8}_{109.226}_{106.625}$	$\substack{0.008042\\0.009159220\\0.009379220}$	144 145 146
	147 148 149	$3.4387_{873} \ 3.5260_{892} \ 3.6152_{911}$	115.3 116.3 117.3	1126.8 1127.1 1127.4	1011.5 1010.8 1010.1	045.2 944.4 943.6	66.3 66.4 66.5	0,2103 0,2119 0,2136	104.1 101.724 50.3324 50.33230	$\begin{array}{c} 0.009004_{220} \\ 0.009833_{237} \\ 0.01007_{24} \end{array}$	147 148 149
	150	3.7063 ₉₃₀	118.3	1127.7	1000.4	042.8	66.6	0.2152	97.03224	0.01031 ₂₄	150
	151 152 153	3.7993 ₉₅₀ 3.8943 ₉₇₀ 3.9913 ₉₉₀	119.3 120.3 121.3	1128.0 1128.3 1128.6	1008.7 1008.0 1007.3	942.0 941.3 940.5	66.7 66.8	0.2505 0.5182 0.5180	94.70 92.61212 90.49206	0.01055 ₂₅ 0.0108025 0.01105 <u>2</u> 6	151 152 153
	154 155 156	$\substack{4.0903\\4.1914\\1032\\4.2946\\1054}$	122.3 123.3 124.3	1128.0 1120.2 1120.5	1006.0 1005.9 1005.2	039,7 038,9 038,1	66,9 67.0 67.1	0,2218 0,2235 0,2251	88,42 ₂₀₁ 86,42 ₁₀₅ 84,47 ₁₀₁	0.01131 ₂₀ 0.0115757 0.0118427	154 155 156
	157 158 159	$\substack{4.4000\\4.5075\\1097\\4.6172\\1120}$	125.4 126.4 127.4	1120.8 1130.1 1130.4	1004.4 1003.7 1003.0	987.2 986.4 985.6	67.2 67.3 67.4	0,2267 0,2284 0,2300	\$2.50 \$0.70 \$5,70 \$5,00 \$176	0.01207 <u>28</u> 0.01207 <u>28</u> 0.01207 <u>28</u>	157 158 159
on company	160	4.72921143	128.4	1130.7	1002.3	934.8	67.5	0,2316	77.14171	0.0129630	160
- van Fernaministe Miles	161 162 163	$\begin{smallmatrix} 4.8435\\ 4.9601\\ 1189\\ 5.079\\ 121 \end{smallmatrix}$	120.4 130.4 131.4	1131.0 1131.4 1131.7	1001.6 1001.0 1000.3	934.0 933.3 932.5	67.6 67.7 67.8	0,2302 0,2349 0,2365	75,43 166 73,77 163 72,14 158	0.0132630 0.0135630 0.0138631	161 162 163
Action to the second experience and the seco	164 165 166	$\begin{array}{c} 5.200_{124} \\ 5.324_{126} \\ 5.450_{129} \end{array}$	132.4 133.4 134.4	1132.0 1132.3 1132.6	999.6 998.9 998.2	931.7 930.9 930.1	67.9 68.0 68.1	0,2381 0,2397 0,2413	70,56 69,01150 67,51 ₁₄₆	0.01417 ₃₂ 0.01440 ₃₂ 0.01481 ₃₃	164 165 166
	167 168 169	5.579 ₁₃₁ 5.710 ₁₃₄ 5.844 ₁₃₇	135.4 136.4 137.4	1182.9 1138.2 1133.5	99 7. 5 990.8 990.1	929.8 928.5 927.7	68.2 68.3 68.4	0,2429 0,2445 0,2461	00.05 04.02 04.02 140 00.22	0,01514 ₃₄ 0,01548 ₃₄ 0,01582 ₃₅	167 168 169
	170	5.981 ₁₃₉	138.5	1133.8	995.3	020.8	08.5	0.2477	61.85132	0.0101735	170
Andrew Company of the	171 172 173	$\begin{array}{c} 6.120 \\ 6.262 \\ 6.407 \\ 147 \end{array}$	139.5 140.5 141.5	1134.1 1134.4 1134.7	994.6 993.9 993.2	920.0 925.2 924.4	08.0 08.7 08.8	0,2493 0,2509 0,2525	60,53128 50,25126 57,00123	0.01652:06 0.01688:06 0.01724:38	171 172 173
\$1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	174 175 176	6.554 6.704 154 6.858 156	142.5 143.5 144.5	1135.0 1135.3 1135.6	002.5 001.8 001.1	023.7 022.0 022.1	68.8 68.0 69.0	0,2541 0,2557 9,2573	56.76120 55.56116 54.40114	0.0176238 0.0180638 0.0183840	174 175 176
	177 178 179	7.014 7.178162 7.335165	145.5 140.5 147.5	1135.0 1136.2 1136.5	990,4 989,7 980,0	021.8 020.5 910.7	69.1 69.2 69.3	0,2580 0,2604 0,2620	53,26112 52,14108 51,06105	0.0187840	177 178 179
	180	7.500108	148.5	1136.8	988.3	918.9	60.4	0.2636	50,01103		180

	ahı	s pe	the Liquid		ion	len 1	len al	uid.	ıme	DENSITY.	hr.	
	Temperature, Degrees Fabi	Pressure, Pounds pe Square Inch.	the	feat.	Heat of Vaporization	Heat equivalen of Internal Work.	at equivalen f External Fork.	Entropy of the Liquid	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fahr.	
	empe	ressu Po Juare	Heat of	Total Heat.	eat of Vapo	sat e	Heat ed of E	trop	ecific	eight ound ne C oot.	nper egre	
	Ĕ	₽ ₽	Ħ	μ λ	H			g cdt		¥4.94		
							Apu	$\frac{\int \frac{cdt}{T}}{}$	s	γ	t	
+	184 185	$\begin{array}{c} 8.192181 \\ 8.373185 \\ 8.558188 \end{array}$	152.6 153.6	1138.1 1138.4	985.5 984.8	915.7 914.9	69.8 69.9	$0.2699 \\ 0.2714$	46.0304	0.02172	184	
	186		154.6	1138.7	984.1	914.1	70.0	0.2730	$\begin{array}{c} 46.03_{04} \\ 45.09_{02} \\ 44.17_{89} \end{array}$	$\begin{array}{c} 0.02172_{46} \\ 0.0221846 \\ 0.0226447 \end{array}$	185 186	
	187 188	$\substack{8.740\\8.937\\195\\9.132\\198}$	155.6 156.6	1139.0 1139.3	983.4 982.7	913.4 912.6	70.0 70.1	$0.2745 \\ 0.2761$	43.28	0.02311	187	
	189		157.6	1139.6	982.0	901.8	70.2	0.2777	$\begin{array}{c} 43.28_{87} \\ 42.4185 \\ 41.56_{83} \end{array}$	$\begin{array}{c} \textbf{0.02311}_{47} \\ \textbf{0.0235848} \\ \textbf{0.0240649} \end{array}$	188 189	
	190	0.330_{202}	158.6	1139,9	981.3	911.0	70.3	0.2792	40.73_{81}	0.02455_{50}	190	
	191 192	$\begin{array}{c} 9.532_{200} \\ 9.738_{200} \\ 9.947_{213} \end{array}$	159.6 100.0	1140.2 1140.5	980.6 979.9	910.2 909.4	70.4 70.5	$0.2808 \\ 0.2823$	39.9279	0.0250551	191	
	193	$0.047\frac{200}{213}$	161.6	1140.8	979.2	908.6	70.6	0.2838	$\begin{array}{c} 39.92_{79} \\ 39.1378 \\ 38.35_{70} \end{array}$	$\substack{0.0250551\\0.0255652\\0.0260852}$	192 193	
	194 195	$\frac{10.160}{10.377217}$	162.6 163.7	1141.1 1141.4	978.5 977.7	907.8 906.9	70.7	$0.2854 \\ 0.2869$	37.5974	0.02660	194	
	196	$\begin{array}{c} 10.160 \\ 10.377221 \\ 10.598224 \end{array}$	104.7	1141.7	977.0	900.2	70.8	0.2885	$\begin{array}{c} 37.59_{74} \\ 36.85_{72} \\ 36.13_{71} \end{array}$	$\begin{array}{c} 0.02660_{54} \\ 0.0271454 \\ 0.02768_{55} \end{array}$	195 196	
	197 198	10.822_{220} 11.051_{232} 11.283_{207}	165.7 166.7	1142.0 1142.3	976.3 975.6	905.4 904.6	70.9 71.0	0.2900		$\substack{0.02823\\0.0287957}$	197	
	199	$11.283\frac{232}{237}$	107.7	1142.0	974.0	903.8	71.1	0.2915 0.2930	$\begin{array}{c} 35.42 \\ 34.7369 \\ 34.066 \end{array}$	$0.0287957 \\ 0.0293058$	198 199	
	200	11.520_{241}	168.7	1142.9	074.2	903.0	71.2	0.2946	33.40_{64}	0.02094_{50}	200	
	201 202	$\frac{11.761}{12.005244}$	169.7 170.7	1143.2 1143.6	973.5 972.9	902.2 901.5	71.3 71.4	0.2961 0.2976	32.76	0.0305359	201	
	203	$\substack{11.761\\12.005244\\12.254254}$	171.7	1143.9	972.2	000.8	71.4	0.2001	$\begin{array}{c} 32.70_{03} \\ 32.13_{01} \\ 31.52_{00} \end{array}$	$\substack{0.03053\\0.0311201\\0.0317301}$	202 203	
	204 205	12.508	172.7 173.7	1144.2 1144.5	971.5 970.8	900.0 890.2	71.5 71.6	0.3007 0.3022			204	
	206	13.028_{200}^{203}	174.7	1144.8	970.1	808.4	71.7	0.3037	$\begin{array}{c} 30.02_{50} \\ 30.33_{57} \\ 20.76_{57} \end{array}$	$\substack{0.03235\\0.0329762\\0.03361} \substack{66\\65}$	205 206	
	207 208	$\substack{13.294_{271}\\13.565276\\13.841507}$	175.8	1145.1	969.3	807.5	71.8	0.3052			207	
	209	13.841_{281}^{276}	176.8 177.8	1145.4 1145.7	968.6 9 67. 9	80 6.7 80 6. 0	71.9	$0.3067 \ 0.3082$	29.19 50 28.6354 28.0952	$\substack{0.03426\\0.0349367\\0.03500\\08}$	208 209	
	210	14.122_{285}	178.8	1146.0	967.2	805,2	72.0	0.3097	27.57 ₅₂	0.0302869	210	
	211 212	14.407200	170.8 180.8	1146.3 1146.6	966.5 965.8	804.4 803.5	72.1	0.3112		0.03697	211	
	213	$\substack{14.407200\\14.007203\\14.000200}$	181.8	1140.0	965.1	802.6	72.3 72.5	$0.3127 \\ 0.3142$	$\begin{array}{c} 27.05_{45} \\ 26.60_{44} \\ 26.16_{40} \end{array}$	$\substack{0.03697 \\ 0.0376064 \\ 0.0382472}$	212 213	
	214		182.8	1147.2	964.4	891.8	72.6	0.3157	1		214	
	215 216	$\substack{15,280\\15,502\\309\\15,001\\313}$	183.8 184.8	1147.5 1147.8	963.7 963.0	891.0 890.2	72.7 72.8	$0.3172 \\ 0.3187$	$25.07_{48} \ 25.10_{40} \ 24.73_{45}$	$\substack{0.03896\\0.0396973\\0.0404375}$	215 216	
	217		185.8	1148.1	962.3	889.5	72.8	0.3202			217	
	218 219	$\substack{16.214_{319}\\16.533324\\16.857_{320}}$	180.8 187.8	1148.4 1148.7	961.6 960.9	888.7 887.9	72.9 73.0	$0.3217 \ 0.3232$	$\begin{array}{c} 24.28_{44} \\ 23.84_{43} \\ 23.41_{43}^{2} \end{array}$	$\begin{array}{c} 0.04118_{70} \\ 0.0419478 \\ 0.04272_{80} \end{array}$	218 219	
	220	17.186335	188.9	1140.0	960.1	887.1	73.0	0.3246	22.0842	0.0435280	220	
	221	17.521340	180.0	1149.3	959.4	880.3	73.1	0.3261	22.5641	0.04432	221	

e, ahr		uid		ion.	lent 1	lent al	uid.	ıme	DENSITY.	thr.
Temperature, Degrees Fahr	Pressure, Pounds I Square Inch.	the Liquid	leat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	y of e Liquid	Specific Volume	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fahr.
mpe Degr	essui Pc uare	at of	Total Heat.	at of Vapo	at ec	A E	Entropy of the I	ecific	sight ound ne C oot.	mper begre
		Пезt				H OF	₽ cdt		W.C.	
	<i>p</i>	9	λ			Afu	$\int \frac{cdt}{T}$	s	γ	
224	18.557 ₃₅₇	192.9	1150.8	957.4	884.0	73.4	0.3305	21.3738	0.04679_{85}	224
225 226	$\begin{array}{c} 18.557_{357} \\ 18.914_{362} \\ 19.276_{368} \end{array}$	193.9 194.9	1150.6 1150.9	956.7 956.0	883.3 882. 5	73.4 73.5	0.3320 0.3335	$\begin{array}{c} 21.37 \\ 20.9938 \\ 20.6237 \\ 20.6237 \end{array}$	$\begin{array}{c} 0.04679\\ 0.0476486\\ 0.0485088\end{array}$	225 226
227		195.9	1151.2	955.3	881.7	73.6	0.3349		1	227
228 229	$\begin{array}{c} 19.644_{374} \\ 20.018_{379} \\ 20.397_{386} \end{array}$	196.9 197.9	1151.5 1151.8	954.6 953.9	880.9 880.2	73.7 73.7	0.3364 0.3379	$20.25_{19.8936}$ 19.54_{34}	$\begin{array}{c} 0.04938_{90} \\ 0.05028_{90} \\ 0.05118_{90} \end{array}$	228 229
230	20.783 ₃₀₂	198.9	1152.1	953.2	879.4	73.8	0.3393	10.20	0.05208 ₉₂	230
	20.100302					Į		19.2033		{·
231 232	$\substack{21.175\\21.572397\\21.572404\\21.976}_{410}$	199.9 201.0	$1152.4 \\ 1152.7$	952.5 951.7	878.6 877.8	73.9 73.9	$0.3408 \\ 0.3423$	$\substack{18.87\\18.5433\\18.2232}$	$\begin{array}{c} 0.05300_{94} \\ 0.05394_{95} \\ 0.05480_{97} \end{array}$	231 232
233	21.976_{410}^{*04}	202.0	1153.0	951.0	877.0	74.0	0.3437		0.0548997	233
234 235	$\frac{22.386}{22.803}$	203.0 204.0	1153.3 1153.6	950.3 949.6	876.2 875.4	$74.1 \\ 74.2$	$0.3452 \\ 0.3466$	$\frac{17.90}{17.5931}$	$0.05580_{09} \ 0.05685_{09} \ 0.05784^{09}$	234
236	$\substack{22.386\\22.803\\423\\23.226\\420}$	205.0	1153.9	948.9	874.6	74.3	0.3481	17.90_{31} 17.50_{30} 17.20_{30}	$0.05784_{101}^{0.9}$	236
237		206.0 207.0	1154.2	948.2 947.5	873.9	74.3 74.4	0.3495		0.05885	237 238
238 239	$\begin{array}{c} 23.055 \\ 24.001 \\ 442 \\ 24.533 \\ 440 \end{array}$	208.0	1154.5 1154.8	946.8	873.1 872.3	74.5	$0.3510 \\ 0.3524$	$\substack{16.99\\16.7029\\16.4228}$	$ \begin{array}{c} 0.05885_{102} \\ 0.05987_{103} \\ 0.06090_{105} \end{array} $	239
240	24.982_{450}	209.0	1155.1	946.1	871.6	74.5	0.3538	16.14 ₂₇	0.06195106	240
241		210.0	1155.4	945.4	870.8	74.6	0.3553		1	241
242 243	$\begin{array}{c} 25.438_{462} \\ 25.900_{470} \\ 26.370_{476} \end{array}$	211.0 212.0	1155.8 1156.1	944.8 944.1	870.1 869.3	74.7 74.8	0.3567 0.3581	$\begin{array}{c} 15.87 \\ 15.6026 \\ 15.3426 \end{array}$	$\begin{array}{c} 0.06301_{108} \\ 0.06409_{110} \\ 0.06519_{111} \end{array}$	242
244		213.0	1156.4	943.4	868.5	74.9	0.3596			244
245 246	26.846 27.830 27.821 408	$214.1 \\ 215.1$	1156.7 1157.0	942.6 941.9	867.7 866.9	74.9 75.0	$0.3610 \\ 0.3624$	$\substack{15.08 \\ 14.8325 \\ 14.5825}$	$\begin{array}{c} 0.06630_{113} \\ 0.06743_{115} \\ 0.06858_{115} \end{array}$	245
	00.010	216.1		941.2	866.1	75.1	0.3639		0.00079	l -
247 248	$\substack{28.310 \\ 28.824512 \\ 29.336520}$	217.1	1157.3 1157.6	940.5	865.3	75.2	0.3653	$\begin{array}{c} 14.34_{23} \\ 14.11_{23} \\ 13.88_{23} \end{array}$	$ \begin{array}{c} 0.06973 \\ 0.07089116 \\ 0.07207120 \end{array} $	248
249	29.336520	218.1	1157.9	939.8	864.5	75.3	0.3667			1 Σ
250	20.856 ₅₂₈	210.1	1158.2	939.1	863.8	75.3	0.3681	13.65 ₂₂	0.07327 ₁₂₁	250
251 252	80.384535	220.1 221.1	1158.5 1158.8	$938.4 \\ 937.7$	863.0 862.2	75.4 75.5	0.3695 0.3709	$\begin{array}{c} 13.43_{22} \\ 13.21_{22} \\ 12.99_{21} \end{array}$	0.07448123	251
253	$\begin{array}{c} 80.384 \\ 80.919543 \\ 81.462 \\ 550 \end{array}$	222.1	1159.1	937.0	861.4	75.6	0.3724	12.99_{21}^{22}	$ \begin{bmatrix} 0.07448_{123} \\ 0.07571_{126} \\ 0.07697_{128} \end{bmatrix} $	253
254		223.1	1159.4	936.3	860.7	75.6	0.3738	12.7821		254
255 256	$\substack{82.012 \\ 82.571566 \\ 83.137574}$	$224.1 \\ 225.1$	1159.7 1160.0	935.6 934.9	859.9 859.1	75.7 75.8	0.3752 0.3766	$\begin{array}{c} 12.78_{21} \\ 12.57_{20} \\ 12.37_{20} \end{array}$	$ \begin{array}{c c} 0.07825_{128} \\ 0.07953_{129} \\ 0.08082_{132} \end{array} $	255 256
257		226.2	1160.3	934.1	858.2	75.9	0.3780	l		257
258 259	$\begin{array}{c} 33.711_{583} \\ 34.204_{590} \\ 34.884_{509} \end{array}$	$227.2 \\ 228.2$	1160.6 1160.9	$933.4 \\ 932.7$	857.5 856.7	75.9 76.0	0.3794	$\begin{array}{c} 12.17_{19} \\ 11.98_{19} \\ 11.79_{19} \end{array}$	$ \begin{array}{c} 0.08214_{133} \\ 0.08347_{135} \\ 0.08482_{137} \end{array} $	258 259
260	98 489	220.2	1161.2	932.0	855.9	76.1	0.3822	11.60 ₁₈	0.08619 ₁₃₈	260
	35.483 ₆₀₇				l	1				l 1
261	36.090 ₆₁₆	230.2	1161.5	931.3	855.1	76.2	0.3836	11.42_{18}	0.08757	201

Temperature, Degrees Fahr	264 265 266	267 268 269	270	271 272 273	274 275 276	277 278 279	280	274 275 276 277 278 279 280 281 282 283	284 285 286	287 288 289	290	291 292 293	294 295 296	1	297 298 299
Weight, in Founds, of one Cubic Foot.	$\begin{array}{c} 0.09182 \\ 0.09327145 \\ 0.093474 \\ 150 \end{array}$	$\begin{array}{c} 0.09624151 \\ 0.09775152 \\ 0.09927152 \end{array}$	0.1008 ₁₆	$\begin{array}{c} 0.1024\\ 0.1040\\ 0.1056\\ 16 \end{array}$	$\substack{0.1072\\0.108817\\0.110517}$	$\substack{0.1122\\0.113017\\0.115017}$	0.117318	$\begin{array}{c} 0.1191 \\ 0.120018 \\ 0.122718 \end{array}$	$\begin{array}{c} 0.1245_{19} \\ 0.1264_{19} \\ 0.1283_{19} \end{array}$		0.1350_{20}	$ \begin{array}{c} 0.1370_{20} \\ 0.1300_{20} \\ 0.1410_{21} \end{array} $	0.144021	$\begin{array}{c} 0.1440_{21} \\ 0.1461_{21} \\ 0.1482_{21} \end{array}$	$ \begin{array}{c} 0.1401_{21} \\ 0.1482_{21}^{21} \\ 0.1503_{21} \\ 0.1524_{21}^{21} \\ 0.1545_{22}^{22} \\ 0.1567_{22} \end{array} $
s Specific Volum	$\begin{bmatrix} 10.89 \\ 10.72 \\ 10.75 \\ 10.55 \\ 10 \end{bmatrix}$	$\begin{bmatrix} 10.39 & 16 \\ 10.23 & 16 \\ 10.07 & 15 \end{bmatrix}$	9.918_{152}	$\begin{array}{c} 9.766_{149} \\ 9.6171_{146} \\ 9.471_{143} \end{array}$	$\begin{array}{c} 9.328 \\ 9.187 \\ 138 \\ 9.040 \\ 136 \end{array}$	$8.913_{133} \\ 8.780_{134} \\ 8.640_{128} $	8.521	$\begin{array}{c} 8.305 \\ 8.271 \\ 8.271 \\ 122 \\ 8.140 \\ 110 \end{array}$	$\begin{bmatrix} 8.030_{117} \\ 7.913_{116} \\ 7.707_{113} \end{bmatrix}$	$ \begin{array}{ c c c c }\hline 7.684_{111} \\ 7.573_{109} \\ 7.464_{108} \\ \end{array} $	7.356105	7.251 ₁₀₃ 7.148 ₁₀₂ 7.046 ₁₀₀	6.94600	$\begin{array}{c} 6.946_{99} \\ 6.84797 \\ 6.750_{95} \end{array}$	$\frac{6.655}{6.56202}$
Entropy of the Liquid.	0,3878 0,3891 0,3906	0,3919 0,3933 0,3947	0.3961	$\begin{array}{c} 0.3975 \\ 0.3988 \\ 0.4002 \end{array}$	0,4016 0,4030 0,4043	0.4057 0.4071 0.4084	0.4008	0,4112 0,4125 0,4139	0.4152 0.4106 0.4179	0,4193 0,4206 0,4220	0.4233	0.4200			$\begin{array}{ c c c } 0.4313 \\ 0.4327 \\ 0.4340 \\ \end{array}$
External of External Work.	76.4 76.5 76.6	76.6 76.7 76.8	70.9	76.9 77.0 77,1	77.2 77.3 77.3	77.4 77.5 77.6	77.6	77.8	78.0	78.3	78.4	78.0			3 78.9 79.0 79.0
Heat equivalen of Internal Work.	852.0 852.1 851.3	850.6 849.8 849.0	848.1	847.4 846.6 845.8	845.0 844.2 843.5	842.7 841.0 841.1	840.4	839.6 838.8 838.0	837.2 836.5 835.7	834.0 834.1 833.4	832.0	831.0			827.8 827.0 826.8
y Heat of Vaporizatio	928.6	927.2 926.5 925.8	925.0	924.3 923.6 922.9	022.2 021.5 020.8	$\begin{array}{c} 920.1 \\ 919.4 \\ 918.7 \end{array}$	9.18.0	917,3 916,6 915,9	915.2 914.5 913.8	913.1 912.4 911.7	011.0	910,3 909,6 908,0	908.2 907.4	906.7	
> Total Heat.	1162.5 1162.8 1163.1	1163,4 1163,7 1164,0	1164.3	1164.6 1164.9 1165.2	1165.5 1165.8 1166.1	1166.4 1166.7 1167.0	1167.3	1167.6 1168.0 1168.3	1168.6 1168.9 1169.2	1169.5 1169.8 1170.1	1170.4	1171.0			1172.2 1172.5 1172.8
Heat of the Liqui	233.2 234.2 235.2	236.2 237.2 238.2	239,3	240.3 241.3 242.3	243.3 244.3 245.3	1		250.3 251.4 252.4	253.4 254.4 255.4	256.4 257.4 258.4	250.4	200.4 201.4 202.4	203.4 204.5	205.5	
Pressure,	37.963 ₆₋₁₁ 38.604 ₆₅₁ 39.255 ₆₅₉	$\begin{array}{c} 39.914 \\ 40.582677 \\ 41.259 \\ 686 \end{array}$	41.945_{695}	$\substack{42.040\\43.345\\714\\44.059\\723}$	44,782 ₇₀₀ 45,515 ₇₄₀ 46,258 ₇₅₀	47.011 ₇₆₂ 47.773772 48.545 ₇₈₃	49,328792	$\begin{array}{c} 50.12_{80} \\ 50.02_{82} \\ 51.74_{82} \end{array}$	52.50 ₈₃ 53.39 ₈₅ 54.24 ₈₅	55.00 ₈₇ 55.00 ₈₇ 56.83 ₈₀	1			03.2805	64.25 ₀₈ 65.23 ₀₀
Thegrees Fadi	54 55 56	57 58 59	70	71 72 73	74 75 76	77 78 79	30	81 32 83	94 95 96	B7 (38 (39	Э0	91 92 93	94 95	96	

e, abı	t pe ch.	nid		tior	len.	len al	id.	nme	DENSITY.	ıbr.	
Temperature, Degrees Fabi	Pressure, Pounds pe Square Inch.	Heat of the Liquid	Total Heat.	Heat of Vaporization	Heat equivalen of Internal Work.	Heat equivalent of External Work.	는 Entropy of 나는 the Liquid.	Specific Volum	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fahr.	
ť	<i>p</i>	q	λ		ρ	Ари	$\int \frac{cdt}{T}$	s	γ	t	
304 305 306	$\begin{array}{c} 71.36\\72.42\\108\\73.50\\109\end{array}$	273.5 274.5 275.5	1174.7 1175.0 1175.3	901.2 900.5 899.8	\$21.7 \$20.9 \$20.1	79.5 79.6 79.7	0.4419 0.4433 0.4446	$\substack{6.035_{83} \\ 5.952_{81} \\ 5.871_{80}}$	$\begin{array}{c} 0.1657_{23} \\ 0.1680_{23} \\ 0.1703_{24}^{23} \end{array}$	304 305 306	
307 308 309	$\substack{74.59 \\ 75.69110 \\ 76.80111 \\ 113}$	276.6 277.6 278.6	1175.6 1175.9 1176.2	899.0 898.3 89 7. 6	819.3 818.5 817.7	79.7 79.8 79.9	$\begin{array}{c} 0.4459 \\ 0.4472 \\ 0.4485 \end{array}$	$5.791_{79} $ 5.71278 5.63476	$\substack{0.1727 \\ 0.175124 \\ 0.177524 \\ 0.177524}$	307 308 309	
310	77.93_{114}	279.6	1176.5	896.9	817.0	79.9	0.4498	5.558 ₇₄	0.1799_{24}	310	
311 312 313	$\begin{array}{c} 79.07_{116} \\ 80.23_{116} \\ 81.39_{118} \end{array}$	280.6 281.6 282.7	1176.8 1177.1 1177.4	896.2 895.5 894.7	816.2 815.4 814.5	80.0 80.1 80.2	$\begin{array}{c} 0.4511 \\ 0.4524 \\ 0.4538 \end{array}$	$\begin{array}{c} 5.484_{74} \\ 5.41073 \\ 5.337_{71} \end{array}$	$\substack{0.1823_{25}\\0.1848_{25}\\0.1878_{26}}$	311 312 313	
314 315 316	$\begin{array}{c} 82.57120 \\ 83.77121 \\ 84.98122 \end{array}$	283.7 284.8 285.8	1177.7 1178.0 1178.3	804.0 803.2 802.5	813.8 812.9 812.1	80.2 80.3 80.4	$\begin{array}{c} 0.4552 \\ 0.4565 \\ 0.4579 \end{array}$	$5.266_{71} \\ 5.195_{69} \\ 5.126_{68}$	$\begin{array}{c} 0.1899_{\underline{26}} \\ 0.1925_{\underline{26}} \\ 0.1951_{\underline{26}} \end{array}$	314 315 316	
317 318 319	$\begin{array}{c} 86.20 \\ 87.43123 \\ 88.68127 \end{array}$	286.9 287.9 289.0	1178.6 1178.9 1179.2	891.7 891.0 890.2	811.3 810.5 809.6	80.4 80.5 80.6	0.4592 0.4600 0.4619	$\begin{array}{c} 5.058_{67} \\ 4.99166 \\ 4.925_{64} \end{array}$	$\begin{array}{c} 0.1977_{27} \\ 0.200427 \\ 0.203127 \end{array}$	317 318 319	
320	80.95128	290.0	1179.5	889.5	808.8	80.7	0.4633	4.861 ₆₄	0.2058_{27}	320	
321 322 323	$\begin{array}{c} 91.23_{129} \\ 92.52_{130} \\ 93.82_{132} \end{array}$	201.0 202.1 203.1	1179,8 1180,2 1180,5,	888.8 888.1 887.4	808.1 807.3 806.5	80.7 80.8 80.9	0.4646 0.4659 0.4672	$\substack{4.797_{62}\\4.735_{62}\\4.673_{61}}$	$\substack{0.2085_{27}\\0.211228\\0.2140_{28}}$	321 322 323	
324 325 326	$\begin{array}{c} 95.14_{134} \\ 96.48_{135} \\ 97.83_{137} \end{array}$	294.2 295.2 296.3	1180.8 1181.1 1181.4	886. 6 885.9 885.1	805.7 804.9 804.1	\$0.0 \$1.0 \$1.1	0.4686 0.4699 0.4713	$\substack{4.612\\4.552\\59\\4.493\\57}$	$\substack{0.2168\\0.219729\\0.222629}$	324 325 326	
327 328 329	$\begin{array}{c} 99.20_{138} \\ 100.58_{139} \\ 101.97_{141} \end{array}$	297.3 298.4 299.4	1181.7 1182.0 1182.3	884.4 883.6 882.9	803.3 802.4 801.6	81.1 81.2 81.3	$\begin{array}{c} 0.4726 \\ 0.4739 \\ 0.4752 \end{array}$	$\begin{array}{c} 4.43657 \\ 4.37956 \\ 4.32356 \end{array}$	$\substack{0.2255\\0.228429\\0.2313}_{30}$	327 328 329	
330	103.38 ₁₄₃	300.5	1182.6	882.1	800.8	81.3	0.4766	4.267_{54}	0.234331	330	
331 332 333	$\begin{array}{c} 104.81_{144} \\ 106.25_{145} \\ 107.70_{147} \end{array}$	301.5 302.6 303.6	1182.9 1183.2 1183.5	881.4 880.6 879.9	800.0 799.1 798.4	81.4 81.5 81.5	0.4779 0.4792 0.4805	$\begin{array}{c} 4.213_{54} \\ 4.159_{52} \\ 4.107_{52} \end{array}$	$\begin{array}{c} 0.2374_{30} \\ 0.2404_{31} \\ 0.2435_{31} \end{array}$	331 332 333	
334 335 336	$109.17_{149} \\ 110.66151 \\ 112.17_{152}$	304.6 305.7 306.7	1183.8 1184.1 1184.4	879.2 878.4 877.7	797.6 796.7 796.0	81.6 81.7 81.7	0.4818 0.4832 0.4845	$\begin{array}{c} 4.055\\ 4.004\\ 50\\ 3.954\\ 50 \end{array}$	$\substack{0.2466_{32}\\0.2498_{31}\\0.2529_{32}^{31}}$	334 335 336	
337 338 339	$\begin{smallmatrix} 113.69 \\ 115.22153 \\ 116.77157 \end{smallmatrix}$	307.8 308.8 309.9	1184.7 1185.0 1185.3	876.9 876.2 875.4	795.1 794.3 793.5	81.8 81.9 81.9	$\begin{bmatrix} 0.4858 \\ 0.4871 \\ 0.4884 \end{bmatrix}$	3.904 ₄₉ 3.855 ₄₈ 3.807 ₄₇	$\begin{array}{c} 0.2561_{33} \\ 0.2594_{33} \\ 0.2627_{33} \end{array}$	337 338 339	
340	118.34 ₁₅₉	310.9	1185.6	874.7	702.7	82.0	0.4897	3.760_{47}	0.2660_{33}	340	
341	119.93160	312.0	1185.9	873.9	791.8	82.1	0.4910	3.71345	0.269333	341	

	hr.	per	f the Liquid.		ion.	ent	ent 1	i	me.	DENSITY.	١ څ٠	
	Temperature, Degrees Fahr.	Pressure, Pounds p Square Inch.	the Lig	eat.	Heat of Vaporization	Heat oquivalent of Internal Work.	it equivalent f External Fork.	Entropy of the Liquid.	Specific Volume	Weight, in Pounds, of one Cubic Foot.	Temperature, Degrees Fahc	
	npera	ssure Po nare]	Heat of	Total Heat.	at of Vapo	at og f Int Vork	f Ex	tropy	cific	sight, sunde se C	mper)egre	
1		Pre Sq1	He	I .	- 1		Heat of J	E cdt		i		
-	t	<i>1</i>	q	λ	<i>r</i>	ρ	Apre	Sedt T	<u>s</u>	γ		
1:	344 345 346	$\substack{124.78\\126.43}_{107}$ $\substack{128.10\\128}$	315.1 316.1 317.2	1186.9 1187.2 1187.5	871.8 871.1 870.3	789.5 788.8 787.9	82.3 82.3 82.4	0.4949 0.4962 0.4975	$\begin{array}{c} 3.578_{44} \\ 3.534_{43} \\ 3.491_{42} \end{array}$	$\begin{array}{c} 0.2795_{35} \\ 0.2830_{35} \\ 0.2865_{35} \end{array}$	344 345 346	
1	347 348 349	129.79 131.49172 133.21174	318.2 319.3 320.3	1187.8 1188.1 1188.4	809.6 808.8 808.1	787.1 786.3 785.5	82.5 82.5 82.6	0.4988 0.5001 0.5014	$\begin{array}{c} 3.440 \\ 3.40742 \\ 3.365 \\ 41 \end{array}$	$\begin{array}{c} \textbf{0.2900}_{35} \\ \textbf{0.2935}_{36} \\ \textbf{0.2971}_{37} \end{array}$	347 348 349	
1	350	134.95176	321.4	1188.7	807.3	784.7	82.6	0.5027	3.324_{40}	0.3008_{37}	350	
	351 352 353	136.71 138.48177 140.27179	322.4 323.5 324.5	1189.0 1189.3 1189.6	806.6 805.8 805.1	783.0 783.0 782.3	82.7 82.8 82.8	0.5040 0.5053 0.5066	$3.284_{39} \\ 3.245_{39} \\ 3.206_{38}$	$\begin{array}{c} 0.304537 \\ 0.308237 \\ 0.311938 \end{array}$	351 352 353	
	354 355 356	142.08 143.91[83 145.75[84	325.6 326.6 327.7	1189.9 1190.2 1190.5	864.3 863.6 862.8	781.4 780.7 770.8	82.9 82.9 83.0	0,507\$ 0,5091 0,5104	$\begin{array}{c} 3.108_{38} \\ 3.130_{38} \\ 3.002_{36} \end{array}$	$\begin{array}{c} 0.3157_{38} \\ 0.3195_{39} \\ 0.3234_{38} \end{array}$	354 355 356	
	357 358 359	147.62 ₁₈₈ 149.50 ₁₉₀ 151.40 ₁₉₃	328.7 329.7 330.8	1190.8 1191.1 1191.4	862.1 861.4 860.6	779.0 778.3 777.4	83.1 83.1 83.2	0.5117 0.5130 0.5142	3.05036 3.02036 2.98435	$\begin{array}{c} 0.3272_{30} \\ 0.3311_{40} \\ 0.3351_{40} \end{array}$	357 358 359	
1	360	153,33 194	331.8	1191.7	859.9	770.7	83.2	0.5155	2.94935	0.339140	360	
	361 362 363	155.27 ₁₀₅ 157.22 ₁₀₈	332.0 333.0 335.0	1192.0 1192.4 1192.7	859.1 858.5 857.7	775.8 775.2 774.3	83.3 83.4	0.5168 0.5181 0.5193	2.914 ₃₄ 2.880 ₃₄ 2.840 ₃₃	$\begin{array}{c} 0.3431_{41} \\ 0.3472_{41} \\ 0.3513_{42} \end{array}$	361 362 363	
	364 365 366	$\begin{array}{c c} 163.22_{203}^{202} \\ 165.25_{206}^{203} \end{array}$	336.0 337.1 338.1	1193.0 1193.3 1193.6	857.0 856.2 855.5	773.5 772.7 771.9	83.5	0,5206 0,5219 0,5231	$\begin{array}{c c} 2.813.13 \\ 2.78032 \\ 2.74832 \end{array}$	$ \begin{bmatrix} 0.3555_{42} \\ 0.3597_{42} \\ 0.3639_{43}^{43} \end{bmatrix} $	364 365 366	
	367 368 369	109.39200	330.2 340.2 341.3	1193.9 1194.2 1194.5	854.7 854.0 853.2	771.1 770.4 769.5		0.5244 0.5257 0.5209	()1	$\begin{array}{c} 0.3682_{43} \\ 0.372543 \\ 0.3708_{44}^{43} \end{array}$	367 368 369	
	370	173.60214	342.3	1104.8	852.5	768.7	83.8	0.5282	2.02330	0.381244	370	
	371 372 373	177.80513	343.3 344.4 345.5	1195.1 1195.4 1195.7	851.8 851.0 850.2	767.1	83.9	0.5307	2.56320	$\begin{array}{c} 0.3856_{45} \\ 0.3901_{45} \\ 0.3940_{46}^{45} \end{array}$	371 372 373	
	374 375 376	182.27 ₂₂₂ 184.40 ₂₂₄ 180.73 ₂₂₆	340.5 347.5 348.6	1196.0 1196.3 1196.6	849.5 848.8 848.0	704.8	84.0	(),5345	$\begin{array}{ c c c } 2.47028 \\ \hline 2.44828 \\ \end{array}$	$\begin{array}{c} 0.3002_{46} \\ 0.403846 \\ 0.4084_{47} \end{array}$	374 375 376	
	378 378 378	3 191.27226	349.6 350.6 351.7		847.3 846.6 845.8	762.4	1 84.2	0.5382	$\begin{bmatrix} 2.303_{27}^{21} \\ 2.300_{28}^{27} \end{bmatrix}$		377 378 379	
	380	0 105,91 ₂₃ .	352.8	1197.8	845.0	700.8	84.2	0.5407	2.33825	1	380	ļ. 1
					1	بممسا	ببملہ	1000	0.010	U 4000	381	ľ

	ture, ss Fabr	nds pe	the Liquid	eat.	rizatio	uivale ernal	uftale ferral	ref Lègui		## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ture. :- Fah	
	Temperature, Degrees Fahr	Pressure, Pounds I Square Inch.	Heat of	Total Heat.	Heat of Vaporizatio	Heat cettivale of Infernal Work.	Hear contain	Entrance of the Indian	男 2 祖 · 安	Weight, in Pontaba, f err Culte Econ	Temperature, Degrees Fahr	
	ť	ja on	9	λ	· ·	ρ	Apu	J:#	\$	Ϋ́	1	
	384 385 386	$\begin{array}{c} 205.43_{244} \\ 207.87_{246} \\ 210.33_{248} \end{array}$	350.9 358.0 359.0	1109.1 1199.4 1199.7	\$42.2 \$41.4 \$40.7	757.8 756.9 756.2	84.4 84.5 84.5	0,5157 0,5169 0,5181	2.18721		384 385 386	
	387 388 389	$\substack{242.81\\215.31250\\215.31253\\217.84}_{255}$	360.1 361.1 362.2	1200.0 1200.3 1200.6	839.9 839.2 838.4	755.8 754.6 753.8	81.6 81.6 81.6	0,5494 0,5506 0,5518	2.160 2.160 2.160 2.162	0.472853	387 388 389	
	390	220.39257	303.2	1200.9	837.7	753.0	ĺ	0,5534	20		390	
	391 392 393	$\substack{222,96\\225,50\\263\\228,10\\264}$	364.3 365.3 366.4	1201.2 1201.5 1201.8	836,9 836,2 835,4	! .	81.8	0,5548 0,5555 0,5568 :	2.02155 2.02155	0.483354 0.488754 0.494155	391 392 393	
	394 395 396	$\substack{230.83\\233.50269\\230.10272}$	367.4 368.4 369.5	1202.4 1202.4 1202.7	\$34.7 \$34.0 \$30.2	749.9 749.1 748.0	84.9	0,55%0 0,5592 0,5601	1.05055	0,499655 0,505456 0,540756	394 395 396	
	397 398 399	$\substack{238.01\\241.05274\\244.42279}$	370.5 371.6 372.6	1203.0 1203.3 1203.6	802.5 801.7 801.0	747.6 740.7 746.0	85.0	0.4829	1.01051 1.80521	0.516356 0.521958 0.527759	397 398 399	İ
	400	247.21_{282}	373.7	1203.0	830,2	715.2	85,0	0,5050	4.874_{20}	a_{5336}	400	İ
	401 402 403	$\begin{array}{c} 250.03 \\ 252.87284 \\ 255,74287 \\ 255,74280 \end{array}$	374.7 375.8 370.8	1204.2 1204.6 1204.9	828,8 828,8 828,1	744,5 743,7 743,0	Sec. 1		1,5011,00	$\begin{array}{c} 0.5394 \\ 0.545260 \\ 0.541260 \end{array}$	401 402 403	
	404 405 406	$\begin{array}{c} 258.63 \\ 201.55 \\ 205 \\ 264.50 \\ 207 \end{array}$	377.9 378.9 380.0	1205.2 1205.5 1205.8	827.0 820.0 825,8	742.2 741.4 740.6	10.71	0,5701 0,5714 0,5726	1.791 to 1.775 to 1.756 to		404 405 406	<u> </u>
	407 408 409	$\begin{array}{c} 207.47 \\ 270.47300 \\ 273.40302 \\ 273.40305 \end{array}$	381.0 382.0 383.1	1206, 1 1206, 4 1206, 7	825.1 824.4 823.6	739.9 739.2 738.3	No. 12	0,5735 0,5741 0,5762	1.737 18 1.719 19 1.700 18		407 408 409	
	410	276.54_{308}	384.1	1207.0	822.0	7:17.0	85,31	0.5774	1.68218		410	
	411 412 413	$\begin{array}{c} 270.02\\282.73311\\282.73313\\285.80316 \end{array}$	385.2 386.2 387.3	1207.3 1207.6 1207.9	822.1 821.4 820.0	730, 3 735, 3 735, 3	24.1.17	0,57% 0,579% 0,5840	1.001115		411 412 413	
	414 415 416	$\begin{array}{c} 289.02\\ 202.21319\\ 202.21321\\ 205.42325 \end{array}$	388.3 389.4 390.4	1208.2 1208.5 1208.8	819.9 819.1 818.4	734.5 734.7 734.0	Mi. 4 Mi. 1 Mi. 1	0,5%22 0,5%34 0,5%40	1.61217 1.61617 1.67817	0.627.1 0.627.1 0.634.7	414 415 416	
	417 418 419	208.67 301.04337 305.24333	391.5 392.5 393.6	1200.1 1200.4 1200.7	817.0 816.0 816.1	732.2 731.5 730.7	85,4 85,4 85,4	0,5858 0,5870 0,5881	1.581 to 1.545 to 1.525 to	0,641 0,6477 0,6547	417 418 419	
	420	308.57 ₃₃₆	304.6	1210.0	815.4	730,0	85,4	0.5503		0.6617	420	
- }	421	311.03,000	395,6	1210.3	814.7	7:251.33	85.4	0.5(0)5	1.498	0.008	421	

TABLE II.

SATURATED STEAM.

ENGLISH UNITS.

Processing	Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid.	Total Heat.	Heat of Vaperization.	Men contradent of Internal Work.	Dat spinalent of External West.	Fire with	Specific Volume.	Methy 62 DENSET. Cults of Four Foot.	Pressure, Pounds per Square Inch.
	p	ŧ	g	λ	7"	11	$A \wedge a$	1 7	x.	γ	<i>*</i>
-	1 2 3	$\begin{array}{c} 101,90_{2428} \\ 126,271535 \\ 141,62_{1147} \end{array}$	70.0 94.4 100.8	1113.1 1120.5 1125.1	1043,0 1026,1 1015,3	981,1 961,9 949,5	61,9 64,2 65,8	0,1329 0,1754 0,2013	173.655.2 173.655.2 118.4 _{28.1}	0,00290,277 0,00576268 0,00814268	3
	4 5 6	$\substack{153.00 \\ 162.34780 \\ 170.14676}$	121.4 130.7 138.6	1128.6 1131.5 1133.8	1007.2 1000.8 995.2	933.4	66,8 67,7 68,5	0,2203 0,2353 6,2480	90,31 70,2511,35 61,67 8,30	0.01622250	4. 5 6
	7 8 9	176.90 ₀₀₂ 182.92541 188.33 ₄₉₂	145.4 451.5 150.0	1435.9 1437.7 1430.4	090.5 980.2 982.5	021.4 916.5 912.4	69,1 69,7 70,1	0,2587 0,2682 0,2760	55,676,20 -17,674,21 -12,10,134 -12,10,137	0.01871.51 0.02125249 0.02371217	7 8 9
1	10	103,25453	161.0	140.9	979.0	1008.4	70.0	0,2842	$as, m_{3,3,8}$	0.02021215	10
	11 12 13	$\begin{array}{c} 197.78_{420} \\ 201.08301 \\ 205.89368 \end{array}$	100.5 170.7 174.6	1142.8 1143.6 1144.7	975,8 972,9 970,1	316.11.43	71.0 71.1 71.7	0,2942 0,2974 0,3035	201.554.274 201.142.20 201.552.103	0,02808 0,03111245 0,03355245	11 12 13
	14 15 16	200.57 ₃₄₆ 213.03320 216.32320	178,3 181,8 185,1	1145.8 1146.9 1147.9	967.5 965.1 962.8	895,5 892,6 890,0	72.0 72.5 72.8	0,31094 0,3143 0,31492	27,79 1.61 26,15 1.64 21,50 1.65	0,03000 0,03826241 0,04007240	14 15 16
	17 18 19	210.44 222.40284 225.24271	188.3 191.3 194.1	1148.0 1149.8 1150.7	969,6 958,5 956,6	885.3	711.2	0,0238 0,0289 0,0284	23,201,202 22,001,10 20,00	0,04307,240 0,04547,239 0,04780,237	17 18 19
	20	227.95260	196,9	1151.5	954,6	881.0	731,65	0,10000	100,001	0,05023230	20
	21 22 23	$\begin{array}{c} 230.55 \\ 233.06251 \\ 235.47232 \end{array}$	100,5 202,0 204,5	1152.3 1153.0 1153.7	052,8 051,0 940,2	879.0 877.0 875.0	733.8 74.0 74.2	0,3404 0,3438 0,3473	19.01 ₈₄ 18.20 ₇₅ 17.45 ₆₀	0,05259 0,0546529 0,0573425	21 22 23
	24 25 26	$\begin{smallmatrix} 237.70 \\ 240.04 \\ 242.21 \\ 211 \end{smallmatrix}$	200,8 200,1 211,2	1154,4 1155,1 1155,8	0-17-0 0-0-0 0-1-1-0	873.2 871.5 869.9	71.1 71.5 71.7	0,3504 0,3539 0,3570	16,70 ₆₃ 16,165 16,665	0.05000 0.00100222 0.00102221	24 25 26
	27 28 29	244.32 ₂₀₄ 240.30 ₁₀₈ 248.34 ₁₀₃	213.4 215.4 217.4	1156.5 1157.1 1157.7	943.1 941.7 940,3	868,2 866,7 865,1	74.9 75.0 75.2	30,19000 10,19029 10,19057	15,00151 14,4950 14,6344	0.088885.00 0.088855.01 0.071305.00	27 28 29
1	30	250.27188	210.4	1158.3	0.800	કલકા, લ	75.3	0,3355	13.5941	0.07380230	30
	31 32 33	252.15 253.98179	221.3 223.1 224.0	1158,8 1159,4 1150,0	937.5 936.3 935.0	800,7	75.6	0.3712	13.18 10	0.07500 0.07821230 0.08051230	31 32 33

Weight, Pound, Pour, Pressur Pressur Pressur Pressur Pressur	11 $ 11.75_{20}^{32} 0.08508_{599}^{228} 35 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 225	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 01 & 0.484_{197} & 0.1054_{23} \\ 20 & 0.287_{190} & 0.1077_{22} \\ 38 & 0.097_{183} & 0.1099_{23} & \textbf{46} \end{array} $	74 8.740 107 0.1144 22 48	1 1 1 1	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 37 & 7.323_{120}^{120} & 0.1366_{21}^{22} \\ 52 & 7.208_{112}^{115} & 0.1387_{22}^{22} & 59 \end{bmatrix}$	100 22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Entropy	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 3856 & 11.16_{28} \\ 3878 & 10.88_{26} \\ 3900 & 10.62_{25} \end{array}$	I	$ \begin{array}{c c} 3942 \\ 3962 \\ 3982 \end{array} = \begin{array}{c c} 10.13_{22} \\ 9.906_{216} \\ 9.690_{206} \end{array} $	$\begin{array}{c c} 4001 & 9.484_{197} \\ 4020 & 9.287_{190} \\ 4038 & 9.097_{183} \end{array}$	$\begin{array}{c c} 4056 & 8.914 \\ 4074 & 8.740 \\ 4092 & 8.573 \\ 150 \end{array}$		li e			$4207 \mid 7.096_{100}$	$\begin{array}{c c} 4281 \\ 4295 \\ 4309 \end{array} \begin{vmatrix} 6.087105 \\ 6.882103 \\ 6.77999 \end{vmatrix}$	1	$\begin{array}{c c} 4323 & 6.680_{97} \\ 4337 & 6.583_{93} \\ 4350 & 6.490_{89} \end{array}$	4363 6.401 ₈₇ 4370 6.314 ₈₆ 4389 6.228 ₈₄	4363 6.401 ₈₇ 4370 6.314 ₈₆ 4389 6.228 ₈₄
Meat equivalen of External Work.	75.9 0.3787 76.0 0.3811 76.2 0.3834	76.3 0.3856 76.4 0.3878 76.5 0.3900	76.7 0.3921	76.8 0.3942 76.9 0.3962 77.0 0.3982	77.1 0.4001 77.2 0.4020 77.3 0.4038	77.4 0.4056 77.5 0.4074 77.6 0.4092	77.7 0.4109	77.8 0.4126 77.9 0.4143 78.0 0.4166	$ \begin{array}{c c c} 78.1 & 0.4175 \\ 78.2 & 0.4191 \\ 78.3 & 0.4207 \end{array} $	78.4 0.4222 78.4 0.4237 78.5 0.4252	78.6 0.4267	78.7 0.4281 78.8 0.4297 78.9 0.4309	1 50 A A A 100	$ \begin{vmatrix} 78.9 & 0.432 \\ 79.0 & 0.433 \\ 79.1 & 0.435 \end{aligned} $	79.0 0.4387	70.0 0.4337 70.1 0.4350 70.2 0.4366 70.2 0.4370
Heat equivalen of Internal	857.8 856.6 855.3	854.0 852.8 851.7	850.3	849.2 848.1 847.0	845.9 844.8 843.7	842.7 841.7 840.7	839.7	838.7 837.8 830.8	835.9 834.9 834.0	833.1 832.4 831.5	830.7	820.8 828.0 828.0	827.3	826.5 825.6	826.5	826.5 825.6 824.8 824.1
y Heat of Vaporization	933.7 932.6 931.5	930,3 929,2 928,2	927.0	926.0 925.0 924.0	923.0 922.0 921.0	920.1 919.2 918.3	917.4	916.5 915.7 914.8	914.0 913.1 912.3	911.5 910.8 910.0	000.3	3.800 7.700 9.000	906.2	905.5 904.7	905.5	905.5 904.7 904.0 908.3
> Total Heat.	1160.4 1161.0 1161.5	1162.0 1162.5 1163.0	1163.4	1163.9 1164.3 1164.8	1165.2 1165.6 1166.0	1166.4 1166.8 1167.2	1107.6	1168.0 1168.4 1168.7	1169.1 1169.4 1169.8	1170,1 1170,5 1170,8	1171.2	1171.5 1171.8 1172.1	1172.4	1172.7 1173.0	1172.7	1172.7 1173.0 1173.3 1173.6
Heat of the Liquid	226.7 228.4 230.0	231.7 233.3 234.8	236,4	237.0 239.3 240.8	242.2 243.6 245.0	246.3 247.6 248.9	250.2	251.5 252.7 253.0	255.1 256.3 257.5	258.6 250.7 260.8	201.9	263.0 264.1 265.2	200.2	207.2 208.3	207.2	207.2 268.3 209.3 270.3
Temperature, Degrees Fah	$\begin{array}{c} 257.50 \\ 259.19169 \\ 260.85 \\ 162 \end{array}$	$\begin{array}{c} 262.47_{150} \\ 264.06155 \\ 265.01151 \end{array}$	267.13 ₁₄₉	$\begin{array}{c} 268.62 \\ 270.08146 \\ 271.51 \\ 140 \end{array}$	272.91 274.29 136 275.65	$\begin{array}{c} 270,99 \\ 278,30 \\ 128 \\ 279,58 \\ 127 \end{array}$	280.85	$\begin{array}{c} 282.10 \\ 283.32121 \\ 284.53110 \end{array}$	$\substack{285.72\\286.80\\116\\288.05\\114}$	$\begin{array}{c} 289.19 \\ 290.31111 \\ 291.42109 \end{array}$	292.51_{108}	$\substack{203.50\\204.65106\\205.70}_{104}$	900.74	$\begin{array}{c} 206.74_{103} \\ 207.77101 \\ 208.78_{00} \end{array}$	207.77101 208.78 ₀₀ 209.77 ₀₀ 300.76 ₀₈ 301.74 ₀₇	
Pressure, - Pounds pe Square Inch.	34 35 36	37 38 39	40	41 42 43	44 45 46	47 48 49	50	51 52 53	54 55 56	57 58 59	60	61 62 63	64	65 66	65	65 66 67 68

SATURATED STEAM-Continued.

					1	j .	1		
Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid.	Total Heat.	Heat of Vaporization	Heat equivalent of Exernal Work.	Med Canitalent	Figure 4.	Specific Volume	Weight The State of The State o
Þ	ŧ	q	λ	2-	P	1/11] /	i a	γ
74 75 76	306.46 ₉₂ 307.38 ₉₀ 308.28 ₉₀	276.0 276.0 277.8	1175.4 1175.7 1176.0	800.4 808.8 808.2	\$19.7 \$19.1 \$18.4	79.7 79.7 79.8	0.4452 0.4464 0.4476	5.769171 5.69171	0.1714 0.1736 0.1737
77 78 79	$\begin{array}{c} 309.18_{88} \\ 310.06_{88} \\ 310.94_{86} \end{array}$	278.7 279.6 280.5	1176.2 1176.5 1176.8	897.5 896.9 896.3	817.6 817.0 816.3	79.9 79.9 80.0	0,4487 0,4490 0,4511	5.55 (36 5.488 ₆₃	0, 1770 0, 1: 01 0, 1822
80	311.80_{86}	281.4	1177.0	805.6	815,5	80.1	0.4522	Hii	0.1843
81 82 83	$\begin{array}{c} 312.66_{85} \\ 313.51_{85} \\ 314.36_{83} \end{array}$	282.3 283.2 284.1	1177.3 1177.6 1177.8	895.0 894.4 893.7	\$14.9 \$14.2 \$13.4		0.4534 0.4545 0.4557	$\frac{5,302}{5,301}$ $\frac{11}{61}$ $\frac{10}{58}$	0.1865 0.1880 0.1908
84 85 86	$\begin{array}{c} 315.19\\ 316.02\\ 82\\ 316.84\\ 81\end{array}$	285.0 285.8 286.7	1178.1 1178.3 1178.6	803.1 802.5 801.0	812.8 812.1 811.5	*	0, 1568 0, 1579 0, 4590	1 1 1 1 1 1	0,1930 0,1954 0,197:
87 88 89	$\begin{array}{c} 317.65_{80} \\ 318.45_{80} \\ 319.25_{70} \end{array}$	287.5 288.4 289.2	1178.8 1179.1 1179.3	891.3 890.7 890.1	\$10.8 \$10.8 \$00.5	80,5 80,5 80 ft	0 4601 0, 1612 0, 1622	5.1255 5.0095 5.0095 5.001 5.001 4.9095 4.9095	0.1995 0.2014 0.2023
90	320.04_{77}	290.0	1179.6	880,6	808,0		0, 10321	4.858_{50}	0.2051
91 92 93	$\begin{array}{c} 320.83_{77} \\ 321.60_{77} \\ 322.37_{77} \end{array}$	290.8 291.6 292.4	1170.8 1180.0 1180.3	889.0 888.4 88 7. 0	808,3 807,6 807,1	80,8		4,808 pt 4,700 pt 4,712 pt	0.210 0.210 0.210
94 95 96	$\substack{\frac{323.14}{323.8975} \\ 323.8975 \\ 324.6474}$	293.2 294.0 294.8	$\begin{array}{c} 1180.5 \\ 1180.7 \\ 1181.0 \end{array}$	887.3 880.7 880.2	505.8	80,0	0,4673 0,4653 0,4693	4,665 4,61946 4,57444	0.214 0.216 0.218
97 98 99	$\substack{ 325.38_{74} \\ 326.1274 \\ 326.86_{72} }$	295.0 296.4 297.1	1181.2 1181.4 1181.6	885.0 885.0 884.5	804.0 803.0 803.4	SLE	0, 1702 : 0, 1712 0, 1723	$\frac{4.530}{4.486} \frac{11}{12}$ $\frac{4.530}{4.444} \frac{12}{11}$	H citif
100	327.5872	-207.0	1181.0	0.148	802.8	K1.2	0,4763	4,40341	0.227
101 102 103	$\begin{array}{c} 328.30_{72} \\ 329.02_{71} \\ 329.73_{70} \end{array}$	298.6 299.4 300.1	1182.1 1182.3 1182.5	882.4 882.4	802.0 801.0 801.1	81.0 ·	0,1713 0,4733 0,4762	4,302 in 4,322 in 4,282 in	0,221
104 105 106	$\begin{array}{c} 330.43_{70} \\ 331.13_{70} \\ 331.83_{69} \end{array}$	300.9 301.6 302.3	1182.7 1182.0 1183.1	881,8 881,3 8,088	700.0	M1.1	0, 1771 0, 1780 0, 1790	4.014	0.23 0.23 0.23 0.23
107 108 109	332.52 333.2068 333.8868	308.0 303.8 304.5	1183.4 1183.6 1183.8	880,4 879,8 870.9	11114.2	71.11	0.4799	4.142 4.1662 4.1663	0.241

b be	ahı	the Liquid		ion	len il	len al	uid	ıme	DENSITY.	. ber	-
Pressure, Pounds I Square Inch.	Temperature, Degrees Fahr	f the	Icat.	Heat of Vaporization	Heat equivalen of Internal Work.	it equivalen External Fork.	y of e Liquid	Specific Volum	Weight, in Pounds, of one Cubic Foot.	윤명	
Pressure, Pour Square In	Degr	Heat of	Total Heat.	eat o Vap	eat e	eat e	Entropy c	ecific	eight ound ne C	Pressure, Poun Square In	
ρ. γ	£ t	H 4	Ĕ.	H	Η̈́ρ	Apu	$\vec{\Xi}$ $\int \frac{dt}{T}$	S.		1 (
							T		<u> </u>	<i>p</i>	
114 115	337.20 337.86 338,50 <mark>64</mark>	308.0	1184.8 1185.0	876.8 876.3	795.0 794.4	81.8 81.9	0.4860 0.4869	$\begin{array}{c} 3.894_{32} \\ 3.862_{31} \\ 3.831_{30} \end{array}$	$0.2568_{21} \\ 0.2589_{21} \\ 0.2610^{21}$	114 115	
116		309.4	1185.2	875.8	793.9	81.9	0.4877	3.831_{30}^{31}	21	116	
117 118	339.14_{64} 339.78_{64} 340.42_{63}	310.0 310.7	1185.4 1185.6	875.4 874.9	793.5 792.9	81.9	0.4886 0.4894	$\begin{array}{c} 3.801 \\ 3.770 \\ 3.740 \\ 20 \end{array}$	$\substack{0.2631_{22}\\0.265321\\0.2674_{21}}$	117 118	
119		311.4	1185.8	874.4	792.4	82.0	0.4903			119	
120	$344,05_{02}$	3(2.0	1180.0	874.0	791.9	82.1	0.4911	$3.711_{\underline{28}}$	0.2695_{20}	120	
121	341.67 342.2062 342.9161	312.7	$\frac{1180.2}{1186.3}$	873.5 873.0	791.4	82.1 82.2	$0.4919 \\ 0.4927$	$\substack{3.683_{28}\\3.655_{28}\\3.627_{28}}$	$0.2715_{0.273621}$	121 122	
123	342.9162	314.0	1186.5	872.5	790.3	82.2	0.4935	3.627_{28}^{28}	$\substack{0.2715 \\ 0.273021 \\ 0.2757}_{22}$	123	
124 125	$\frac{343.52}{344.1301}$	314.6	1186.7 1186.9	872.1 871.7	789.4 789.4	82.2 82.3	0.4943 0.4951	$\frac{3.599}{3.57927}$	0.2779	J24 125	
126	343,52 344,13 ₆₀ 344,73 ₆₀	315.9	1187.1	871.2	788.9	82.3	0.4959	$\begin{array}{c} 3.500_{27} \\ 3.57226 \\ 3.540_{26} \end{array}$	$\substack{0.2779\\0.280021\\0.282020\\21}$	126	
127 128	345,33 ₆₀	316.5 317.1	1187.3 1187.4	870.8 870.3	788.4 787.9	82.4 82.4	$0.4967 \\ 0.4974$		0.2841	J.27 128	
129	345,33 ₆₀ 345,93 ₆₀ 346,53 ₅₉	317.7	1187.0	869.0	787.5	82.4	0.4982	$\begin{array}{c} 3.520_{26} \\ 3.40425 \\ 3.46025 \end{array}$	$\begin{array}{c} 0.2841 \\ 0.286221 \\ 0.288321 \\ \end{array}$	129	
130	347.12_{59}	318,4	1187.8	869.4	780,9	82.5	0.4000	3.444_{25}	0.290421	130	
131	347.71	319.0 319.6	1188.0 1188.2	869.0 868.0	786.5 786.1	82.5 82.5	$0.4997 \\ 0.5005$	3.41924	0.2025	131 132	
133	$\begin{array}{c} 347.71_{58} \\ 348.2058 \\ 348.8758 \end{array}$	320.2	1188.4	868.2	785.6	82.6	0.5012	$\begin{array}{c} 3.419_{24} \\ 3.30524 \\ 3.371_{24} \end{array}$	$\begin{array}{c} 0.2025_{21} \\ 0.204621 \\ 0.2067_{21} \end{array}$	133	
134 135		320.8	1188.5	867.7	785.1	82.6	0.5020			134	
136	349,45 ₅₈ 350,6357 350,6057	321.4	1188.7 1188.0	867.3 866.9	784.7 784.2	82 6 82.7	0.5027 0.5035	$\begin{array}{c} 3.347_{24} \\ 3.323_{23} \\ 3.300_{23} \end{array}$	$\begin{array}{c} 0.2988 \\ 0.300921 \\ 0.303021 \end{array}$	135 136	
137		322.6	1180.0	866.4	783.7	82.7	0.5042	3 977		137	
138 139	351,17 ₅₆ 351,7356 352,2956	323.2 323.8	1189.2 1189.4	800.0 805.0	783.3 782.8	82.7 82.8	0.5049 0.5056	$\begin{array}{c} 3.25522 \\ 3.25521 \\ 3.23422 \end{array}$	$\begin{array}{c} 0.3051_{21} \\ 0.3072_{20} \\ 0.3092_{21} \end{array}$	138 139	
140	352.85	324.4	1180.5	805.1	782.3	82.8	0.5064	3.212_{21}	0.311321	140	
141		325.0	1189.7	864.7	781.0	82.8	0.5071		0.3134	141	
142 143	353,40 ₅₅ 353,955 354,50 <u>55</u>	325.0 326.1	1189.9 1190.1	804.3 864.0	781.4	82.0 82.0	0.5078	$\begin{array}{c} 3.191_{21} \\ 3.170_{21} \\ 3.140_{21} \end{array}$	$\begin{array}{c} 0.3134_{21} \\ 0.3155_{21} \\ 0.3170_{21} \end{array}$	142 143	
144		326.7	1100.2	803.5	780.6	82.0	0.5002			144	
145 146	355,0554 355,5954 356,1354	327.2 327.8	1190.4 1190.6	803.2 802.8	780.2 779.8	83.0 83.0	0.5099 0.5106	$\begin{array}{c} 3.128_{21} \\ 3.107_{20} \\ 3.087_{19} \end{array}$	$ \begin{smallmatrix} 0.3197_{21} \\ 0.3218_{21} \\ 0.3230_{20} \end{smallmatrix} $	145 146	
147		328.3	1190.7	862.4	779.4	83.0	0.5113		0.3259	147	
148 149	356.67 ₅₃ 357.20 ₅₃ 357.73 ₅₃	328.0 320.4	1190.9 1191.0	862.0 861.6	778.9 778.5	83.1 83.1	$0.5119 \\ 0.5126$	$\begin{array}{c} 3.068 \\ 3.049 \\ 3.030 \\ 10 \end{array}$	$\begin{array}{c} 0.328021 \\ 0.330021 \\ 0.330021 \end{array}$	148 149	
150	358,20 ₅₂	330.0	1101.2	801.2	778.1	83.1	0.5133	3.011 ₁₉	0.332121	150	
151	358.78	330.5	1191.4	860.0	777.7	83.2	0.5140	2.00210	0.834221	151	

	s per	e, ahr.	he Liquíd.		ation.	alent al	alent	ġ.	lume.	DENSITY.	ls per	
	Pressure, Pounds I Square Inch.	Temperature, Degrees Fahr.	Heat of the	> Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	s Specific Volume.	Weight, in Pounds, of one Cubic Foot,	Pressure, Pounds Square Inch.	
	Press Squar	Temī Deg	Heat	Total	Heat V	Heat	Heat	Entr the	ed:	Weight Page One Fue	Pressure Pot Square It	
	Þ	<u>t</u>	q	λ	· · · · · · · · · · · · · · · · · · ·	ρ	Apu	$\int_{-T}^{t_{c}dt}$	\$	γ	1	
	154 155 156	$360.34_{\overline{5}2}$ $360.86\overline{5}1$ $361.37\overline{5}1$	332.2 332.7 333.3	1191.8 1192.0 1192.2	850.6 850.3 858.9	776.8 776.0 775.6	80,3 85,3 85,3	0,5160 0,5166 0,5173	$\frac{2,937}{2,919}$ 18 $\frac{2,919}{17}$ 18	$\begin{array}{c} 0.340521 \\ 0.342621 \\ 0.344720 \end{array}$	154 155 156	
	157 158 159	$\begin{array}{c} 361.88\\ 362.3051\\ 362.9051\\ 362.0050 \end{array}$	333.8 334.3 334.9	1192.3 1192.5 1192.7	858.5 858.2 857.8	775.2 774.8 774.4	\$3.3 \$3.4 \$3.4	0.5179 0.5180 0.5192	2.884 2.867 2.867 17 2.850	$\begin{array}{c} 0.3467_{24} \\ 0.34885_{24}^{24} \\ 0.3509_{24}^{24} \end{array}$	157 158 159	
;	160	363.40 ₅₀	335.4	1102.8	857.4	774.0	80.4	0,5198	2.800	0.858021	160	
	161 162 163	363,90 ₅₀ 364,40 ₅₀ 364,90 ₄₉	335.9 336.4 337.0	1193.0 1193.1 1193.3	857.4 856.7 856.3	773.7 772.2 772.8	83.4 83.5 83.5	0,5217 0,5217 0,5217	$\frac{2.816}{2.78017}$ $\frac{2.78016}{2.78016}$	0,3551 0,357221 0,350021	161 162 163	
	164 165 166	$\begin{array}{c} 365,30_{40} \\ 365,88_{40} \\ 366,37_{48} \end{array}$	337.5 338.0 338.5	1193,4 1193,6 1193,7	855,9 855,6 855,2	772.1 772.0 771.6	\$3,5 \$3,6 \$3,6	0,5224 0,5230 0,5236	2.767 2.751 2.756 2.766 15	$\begin{array}{c} 0.3614_{24} \\ 0.3655_{20} \\ 0.3655_{20} \end{array}$	164 165 166	
:	167 168 169	366,85 367,3348 367,8148	339,0 339,5 340,0	1194.0 1194.0 1194.2	854.6 854.6 854.2	771.3 770.9 770.5	83.6 83.6 83.7	0.5251 0.5244 0.5242	2.721 2.7001a 2.691 a	0,3075 0,369551 0,371621	167 168 169	
	170	368,29 ₄₈	:340,5	1194.3	853,8	770.1	83.7	0,5260	2,07615	0.0707 ₂₁	170	
	171 172 173	$368.77_{47} \\ 360.24_{47} \\ 360.71_{47} $	341.0 341.5 342.0	1194.4 1194.6 1194.7	850,4 850,1 852,7	769,7 769,4 768,9	83.7 83.7 83.8	0,5266 0,5272 0,5278	2.001 2.007 2.002 14	$\begin{array}{c} 0.3758_{20} \\ 0.3778_{21}^{21} \\ 0.3700_{21}^{21} \end{array}$	171 172 173	
	174 175 176	$370.18_{47} \\ 370.0547 \\ 371.1247$	342,5 343,0 343,5	1194,8 1195,0 1195,1	852,8 852,0 851,6	768,5 768,2 767,8	80,8 80,8 80,8	0,5281 0,5290 0,5206	2.618 2.603 lb 2.589 ld	0,0820,1 0,081121 0,080221	174 175 176	
	177 178 179	$ \begin{array}{r} 371.50 \\ 372.0546 \\ 372.5146 \\ \end{array} $	344.4 344.4 344.9	1 195.3 1 195.4 1 195.6	851,3 851,0 850,7	767.5 767.1 766.8	80,8 80,9 80,9	0,5309 0,5308 0,5313	2.561 2.561 2.518 13	0,3883 0,390121 0,392520	177 178 179	
	180	372.97 ₄₆	345.4	1195.7	850.3	766.4	83.9	0,5319	2,535	0,394521	180	
	181 182 183	373.43 373.8845 374.3345	345.9 346.4 346.8	1195,9 1190,0 1190,1	850,0 849,6 849,3	700, I 705, 0 705, 0	81.0	7,535,0 1,555,0 7,555,0 7,555,0	2.508 2.508 2.405 13	0,0000.4 0,0087.4 0,400821	181 182 183	
	184 185 186	374.78 375.2345 375.0845	347.3 347.8 348.2	1196.2 1196.4 1196.5	0.818 0.818 6.818	764.0 764.6 764.3	84.0 84.0 84.0	0,5347		0,4029 0,404920 0,407021	184 185 186	i
	187 188 189	$\begin{array}{c} 376.12 \\ 376.5644 \\ 377.0044 \end{array}$	348.7 340.2 340.6	119 6. 6 1196.8 1196.9	847.0 847.0 847.3	763.8 763.5 763.2	81.1 81.1 81.1	0,5250 0,5364 0,5370	2. 4.17 2. 4.17 2. 4.17 2. 124	$\substack{0.4090\\0.411121\\0.413221}$	187 188 189	1
	190	377.44 ₄₄	350,1	1107.1	847.0	762.0	84.1	0,5375	2.404[2	0.4153_{21}	190	

	s per	e, abr	the Liquid.		ıtion	alent al	nlent al	ıid.	ume	DENSITY.	per .	
	Pressure, Pounds per Square Inch.	Temperature, Degrees Fabr	of the Lic	Total Heat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	는 Entropy of the Liquid	Specific Volume	Weight, in Pounds, of one Cubic Foot.	Pressure, Pounds p Square Inch.	
1	Pressure, Pour Square In	remp Deg	Heat of	Fotal	Jeat C	Jeat of I Wo	deat of E	Satroj th	pecif	Veigh Poun one Foot.	ressu P quare	
!	<i>p</i>	t	9	λ	2	ρ	Ари	$\int \frac{cdt}{T}$	s s	γ	p	
	194	379.18.13	351.9	1197.6	845.7	761.5	84.2	0.5397	$2.361_{12} \\ 2.34912$	0.423621	194	
	195 196	$379.18_{43} \\ 379.61_{43} \\ 380.04_{43}$	352.4 352.8	1197.7 1197.8	845.3 845.0	761.1 760.8	84.2 84.2	0.5402 0.5408	$2.34912 \\ 2.33712$	$\begin{array}{c} 0.425721 \\ 0.425721 \\ 0.427820 \end{array}$	195 196	
	197 198	$\begin{array}{c} 380.47 \\ 380.80 \\ 42 \\ 381.31 \\ 42 \end{array}$	353.3 353.7	1198.0 1198.1	844.7 844.4	760.4 760.1	84.3 84.3	0. 541 3 0.5418	$2.325 \\ 2.31411 \\ 2.30410$	$\begin{array}{c} 0.4298_{20} \\ 0.4318_{20} \\ 0.4338_{21} \end{array}$	197 198	; {
	199		354.1	1108.2	844.1	759.8	84.3	0.5423	2.304_{10}^{10}		199	
	200	381.73_{42}	354.6	1198.4	843.8	759.5	84.3	0.5429	2.294_{10}	0.4359_{20}	200	ļ
	201	382,1542 382,5742 382,0042	355.0 355.4	1198.5 1198.6	843.5 843.2	759.1 758.8	84.4	0.5434 0.5439	$2.284 \atop 2.27410 \atop 2.26311$	$\begin{array}{c} 0.4370_{20} \\ 0.4399_{21}^{20} \\ 0.4420_{21}^{21} \end{array}$	201	
	203		355.9	1198.8	842.9	758.5	84.4	0.5444		0.442021	203	
	204	$\begin{array}{c} 383.41 \\ 383.8241 \\ 384.2341 \end{array}$	356.8	1108.9 1100.0	842.6 842.2	758.2 757.8	84.4	0.5449	$2.252 \\ 2.24110 \\ 2.23110$	$ \begin{array}{c c} 0.4441_{20} \\ 0.4461_{21} \\ 0.4482_{21} \end{array} $	204	
	206		357.2	1100.1	841.9	757.4	84.5	0.5459		0.448221	206	
	207 208 209	384,64 385,0541 385,4641	357.6 358.0 358.5	1199.3 1199.4 1199. 5	841.7 841.4 841.0	757.2 756.9 756.5	84.5 84.5 84.5	0.5465 0.5470 0.5475	$2.221 \atop 2.21110 \atop 2.20011$	$ \begin{array}{c} 0.4503_{21} \\ 0.452420 \\ 0.454420 \\ \end{array} $	208 209	ĺ
	210	385.87 _{.11}	358.0	1100.6	840.7	756.2	84.5	0.5480	2.19010	0.4565 ₂₁	210	
	211		359.3	1199.8	840.5	750.0	84.5	0.5485			211	
	212 213	$\begin{array}{c} 380.28 \\ 380.08 \\ 387.08 \\ 40 \end{array}$	359.7 300.1	1109.9 1200.0	840.2 839.9	755.6 755.3	84.0 84.6	0.5489 0.5494	$\begin{array}{c} 2.180 \\ 2.171 \\ 2.162 \\ 10 \end{array}$	$ \begin{vmatrix} 0.4586_{21} \\ 0.4607_{20} \\ 0.4627_{21} \end{vmatrix} $	212 213	
	214	387.48 ₄₀ 387.88 ₄₀	300.6	1200.1	839.5	754.9	84.6	0.5499			214	
	215 216	387.88 10 388.28 30	301.0	1200.2 1200.4	839.2 · 839.0	754.6 754.4	84.0	0.5504	$\begin{array}{c} 2.152\\ 2.14210\\ 2.1320 \end{array}$	$\begin{array}{c} 0.4648 \\ 0.4669 \\ 0.4690 \\ 21 \end{array}$	215 216	
	217 218	388,67 ₃₉ 389,06 ₃₉ 389,45 ³⁹	361.8 362.2	1200.5 1200.6	838.7 838.4	754.1 753.8	84.6 84.6	0.5514 0.5519		$\begin{bmatrix} 0.4711 \\ 0.473120 \\ 0.475120 \\ 0.475120 \end{bmatrix}$	217 218	
	219	380.4539	302.0	1200.7	838.1	753.4	84.7	0.5524	$\begin{array}{c} 2.123 \\ 2.1149 \\ 2.105 \\ 0 \end{array}$	21	219	
	220	389.84_{39}	363.0	1200.8	837.8	753.1	84.7	0.5520	2.096	0.4772_{20}	220	
	221 222	$390,23_{30}$ $390,623_{30}$ $391,01_{30}$	363.5	1201.0 1201.1	837.5 837.2	752.8 752.5	84.7	0.5538 0.5538	2.087 2.0789 2.069	$\begin{bmatrix} 0.4792 \\ 0.481321 \\ 0.483421 \end{bmatrix}$	221 222	
	223		364.3	1201.2	830.9	752.2	84.7	0.5543		0.483421	223	
	224 225	$\begin{array}{c} 391.40_{39} \\ 391.7938 \\ 392.1738 \end{array}$	364.7	1201.3 1201.4	836.6 836.3	751.0 751.0	84.7 84.7	0.5548	$\begin{array}{c} 2.000_{0} \\ 2.051_{0} \\ 2.042_{8} \end{array}$	$ \begin{array}{c} 0.4855_{21} \\ 0.4876_{21} \\ 0.4896_{21} \end{array} $	224	
	226		805.5	1201.6	830.1	751.3	84.8	0.5557	4		226	
	227 228	392,5538 302,9338 303,3138	365.9 366.3	1201.7 1201.8	835.8 835.5	751.0 750.7	84.8 84.8	0.5562	2.034 ₈ 2.026 ₉ 2.017 ₈	$ \begin{array}{c} 0.4917 \\ 0.493920 \\ 0.495920 \\ 0.495920 \end{array} $	227 228 229	ł
	229		300.7	1201.0	835.2	750.4	84.8	0.5571	2.0008	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	230	
	230	393,69 ₃₈	367.1	1202.0	834.9	750.1			2.0008	0.5000	231	
	231	304.07	367.5	1202.1	834.0	140.0	84.8	0.5581	₩. O(17)	0.0000001	201	

	e, unds per Inch.	Temperature, Degrees Fahr.	the Liquid.	leat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in J Founds, of a some Cubic Frot.	Pressure, Pounds per Square Inch.	
	Pressure, Pounds Square Inch.	emper	Heat of	Total Heat.	leat o	leat e	leat e	1111	pecifi	Veigh Foun-	ressu Pa quare	
	Ω Ω p	<u>t</u>	# 4	λ	<u>,</u>	ρ,	1/11	$\int_{-T}^{T} dt$	<i>2</i> ,	γ	F 72	
	234	305.19	368,6	1202.5	833.0	749.0	84.9	0,5594	1.976	0.5062,	234	
	235 236	$ \begin{array}{r} 395.19_{37} \\ 395.56_{37} \\ 395.93_{37} \end{array} $	369.0 369.4	1202.6 1202.7	833.6 833.3	748.7 748.4	84.9 84.9	0,5599 0,5603	$rac{1.976_{ m S}}{1.968_{ m S}}$	0.506220 0.508221 0.510820	235 236	
	237 238	396.30 _{.37} 396.67,37 397.04,37	369.8 370.2	1202.8 1202.9 1203.0	017 T	748.1 747.8 747.5	81.9 81.9 81.9	0.5612	$\frac{1.952}{1.944}$ $\frac{1.944}{1.930}$	$\begin{array}{c} 0.5123_{21} \\ 0.514421 \\ 0.516521 \end{array}$	237 238 239	
	239		370.6	1203.2	832.2	747.3		0,5621	1.928 ₇	0.5186 ₂₀	240	
	240	397.41 ₃₆	371.3	1200.3	832.0	717.0	85.0	0,5026			241	
	241 242 243	397.77 ₃₆ 398.13 ₃₆ 398.40 ₃₆	371.7 372.1	1203.4 1203.5	SH.7 SH.4	740.7 746.4	85,0 85,0	0,5630	$\frac{1.921_8}{1.9137}$ $\frac{1.9137}{1.9008}$	0.5200 ₂₀ 0.5220 ₂₁ 0.5247 ₂₁	242 243	
	244 245	308,85 _{:36} 399,21:36 309,57:36	372.5 372.8	1203.6 1203.7	\$31,1 \$30,9			0.5643	$\frac{1.898}{1.8915}$ $\frac{7}{1.8808}$	$\begin{array}{c} 0.5268_{21} \\ 0.528953_{22} \\ 0.531121 \end{array}$	244 245	
	246		373.2	1203.8	830.6		85.0				246	
	247 248	399,93 ₃₆ 400,2035 400,6435	373.6 374.0	1203.9 1204.0	\$30,3 \$30,0	7 (5.0	85.0	0,5652 0,5656	1.8684	0,5332 <u>91</u> 0,5353 <u>9</u> 0	247	
	249	400.6435	374.3	1204.1	820.8			0.5601	ı	20	249	
	250	400,00 ₀₅	374.7	1204.2	820.5	:		0,5665	1.8547	0.5000_{20}	250	
	251 252	$401.34_{35} 401.0035 402.0435$	375.1 375.4	1204.4 1204.5	829.3 829.1		55.1	0,5669 0,5673	1.847., 1.840.,	0.5443 ₀₀ 0.548354 0.545454	251 252	
	253		375.8	1204,6	828.8	i	Soul	0,5678	1.8884		253	
	254 255	$\begin{array}{c} 402.30_{35} \\ 402.74_{35} \\ 403.00_{35} \end{array}$	376.2 376.5	1204.7 1204.8	828.5 828.0	740.4 740.2	85.1 85.1	0,565g 0,565G	1,8291., 1,8404,	0,5475 _{.91} 0,5496 _{.91}	254 255	
1	256	403.0035	370.0	1204.0	828.0	712.0	55.1	O, laten .	1.8124	0,551721	256	
	257 258	403.44	:377.3 :377.0	1205.0 1205.1	827.7 827.5	742.6 742.4	85.1 85.1	0,5695	1.7057	0,5538 ₂₄	257 258	
	259	$\begin{array}{c} 403.44_{35} \\ 403.7034 \\ 404.13_{34} \end{array}$	378.0	1205.2	H27.2	712.1		0,5703	i.wii.l	0,5538 ₀ 1 0,5550 <mark>21</mark> 0,5580 <u>21</u>	259	
	260	404.47_{34}	378.4	1205.3	826,0	741.7	55,2	0.5707	1.785_{H}	0,560120	260	
	261 262	404.8134	378.7 370.1	1205.4 1205.5	826.7 826.4	711.5	85.2 85.2	0,5711		0,5091 0,504251 0,500551	261 262	
	263	$\begin{array}{c} 404.81_{34} \\ 405.1534 \\ 405.40_{34} \end{array}$	379.4	1205.6	826,2	711.0	80.2	0.5749	i.Tiril	0,500021	263	
	264 265	405.8334	379,8 380,2	1205.7 1205.8	825,0 825,6	740.7 740.4	85.2 85.2	0,5724	1.750	0.5081	264	
1	266	405.83_{34} 406.1734 406.51_{33}	380,5	1205.0		740.2	50.2	0,5732	1.759 _d 1.759 _d 1.740 _d	0.585121 0.576521 0.572020	265 266	
	267 268		380.8 381.2	1206.0 1206.1	825.2 824.0	740.0 739.7	No.2	0.5733 0.5740	1.730	0,5746, ₄₁ 0,5767.01	267	
	269	$\begin{array}{c} 406.84_{94} \\ 407.18_{34} \\ 407.52_{33} \end{array}$	381.5	12001, 2	824.7	7:111,5	50.2	0,5711	1.740 1.7314 1.725 1	0,5788 <u>21</u>	268 269	
	270	407.85 ₃₃	381.0	1200.3	824.4	7331,2	No. 14	0,5748	1. 100011	n,58m;20	270	
		100.40	أحديما									

Density Dens	re, ound Inch
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pressure, Pounds per Equare Inch.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p D
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	274
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	275 276
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	279
	280
	281 282
284 412.40 ₃₂ 386.6 1207.7 821.1 735.8 85.3 0.5803 1.639 ₅ 0.610 ₂	283
285 412.72_{33}^{32} 387.0 1207.8 820.8 735.5 85.3 0.5806 1.634_0^5 0.612_0^2	284
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	286
$ \begin{bmatrix} \textbf{287} & 443.36_{32} \\ \textbf{288} & 413.68_{32} \\ 444.00_{32} & 388.3 \end{bmatrix} = \begin{bmatrix} 387.7 & 1208.0 \\ 388.0 & 1208.1 \\ 388.3 & 1208.2 \end{bmatrix} = \begin{bmatrix} 820.3 & 735.0 \\ 820.1 & 734.7 \\ 810.0 & 734.5 \end{bmatrix} = \begin{bmatrix} 85.3 & 0.5844 \\ 0.5818 & 1.6175 \\ 0.6822 & 1.6125 \end{bmatrix} = \begin{bmatrix} 0.616_2 \\ 0.618_2 \\ 0.620_2 \end{bmatrix} $	287 288
	289
290 414.32 ₃₁ 388.6 1208.3 819.7 734.3 85.4 0.5826 1.007 ₆ 0.022 ₃	290
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	291 292
	293
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	294 295
296 410.1531 500.0 1205.0 515.5 65.4 0.3645 1.575	296
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	297 298
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	299
300 417.42 ₃₀ 301.9 1209.3 817.4 732.0 85.4 0.5803 1.554 ₅ 0.644 ₂	300
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	301 302
	303
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	304 305
	306
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	307 308
	309
310 420.4230 305.0 1210.2 815.2 720.8 85.4 0.5808 1.505 ₅ 0.664 ₂	310

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pressure, Pounds per Square Inch.	Temperature, Degreea Fahr.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Founds, of one Cubic Foot.	Pressure, Pounds per Square Inch.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Þ	t		λ	*	ρ	Apu] <u>"</u>	s	у	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	315		396.6	1210.6	814.0	728.5	85.5	0.5916	$\substack{1.486 \\ 1.4814 \\ 1.4775}$	0.6755	315
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	318	$\substack{422.50\\422.7020\\423.0820}$	397.5	1210.0	813,4	727.9	85.5	0.5926		$\begin{array}{c} 0.679_2 \\ 0.681_2^2 \\ 0.683_2^2 \end{array}$	318
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	320	423.37_{20}	398.1	1211.1	813.0	727.5	85.5	0.5933	1.450_{5}	0.685_{3}	320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	322	$\substack{423.0620\\423.9520\\424.24\underline{20}}$	398.7	1211.2	812.5	727.0	85.5	0.5940	1.454_{4} 1.450_{5} 1.445_{4}	$\begin{array}{c} 0.688_{2} \\ 0.690_{2}^{2} \\ 0.692_{2}^{2} \end{array}$	322
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	325		399,6	1211.5	811.0	720.4	85.5	0.5950	$1.441_{-1.4375}$ $1.432_{-1.432}$	$\substack{0.694_2\\0.696_2\\0.698_2}$	325
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	328	425,0028	400,5	1211.8	811.3	725.8	85.5	0.5960		$0.700_{2} \\ 0.702_{2}^{2} \\ 0.704_{3}^{2}$	328
			330	426.24_{28}	401.1	1211.0	810.8	725.3	85.5	0.5967	1.415.1	0.707_{2}	330
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	332	$\substack{426.52_{28}\\426.8028\\427.0828}$	401.7	1212.1	810.4	724.9	85.5	0.5074	1.411 1.4074 1.4034	$\substack{0.709\\0.7112\\0.7132}$	332
			335	$\substack{427.36_{28}\\427.64_{28}\\427.92}$	402.6	1212.4	8,008	724.3	85.5	0.5084	$1.399 \atop 1.395 \atop 4}$ 1.391	$\begin{array}{c} 0.715 \\ 0.717 \\ 0.717 \\ 0.710 \end{array}$	335

TABLE III.

SATURATED STEAM.

The corresponding of the co	1)	1)					·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ure, Centi	ers ury.	iquid.		zation.	ralent	alent	uid.	lume.		re, Jenti-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rati	net erc		Ieat	o ii	feri	ter.	y of Liq	Δ.	i oid	atu)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	age rad	L E	at o	al H	t of	Pala	o E	rop	ific	ght, os,	per igre
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ter	P. 20	He	Tot	Hea	Hea	Head M	Sut) pec	Vei Kil Met	E O E
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	{		q		ļ			cdt		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								T			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		0.000	000.5	606.5	575.5	31.0	0.00000	211.5 ₁₃₈	0.004730_{327}	О
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	4.041200			605.8		31.1	0.00367	197.7.01	0.005057	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.303386						0.00733	184.6_{122}^{131}	0.005417360	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6.000.111	0.022	007.4	004.4	673.2	31.2	0.01098	172.4_{112}^{122}	$[0.005800_{\pm 03}^{103}]$	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6,100,120			603.7	572.4	31.3	0.01461	161.2	0.006203	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.530 105						[0.01823]	150.8_{06}^{104}	0.006630_{150}^{427}	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		0.040	008.3	602.3	570.8	31.5	0.02183	141.2_{90}^{10}	0.007080481	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.494		608.6	601.6	570,0	31.6	0.02542	132.200	0.007501	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.010557						0.02899	123.0_{77}^{83}	0.008069_{590}^{508}	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	8.570591	9.054	000.2	600.1	568.4	31.7	0.03255	116.2_{72}	0.008608569	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	9.107_{028}	10.058	600.6	500.5	567.7	31.8	0.03609	109.067	0.009177	- 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.795065						0.03962	102.3 69	0.000779 001	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10.460704						0.04818	98.09590	0.01041 001	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.1047.17	10.000	010.0	001.4	000.0	02.1	0.04003	90.19543	0.0110871	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.911_{701}							84.70507	0.0117970	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13.702837							70.69472	0.0125570	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	10.000/884	10.000	011.4	000.0	565.0	52.5	0.00700	74.97441	0.0183483	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14.423037					32.4	0.06050	70.56	0.0141700	17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15.300089							66.44^{412}_{386}	0.01505_{03}^{88}	18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19		10.000	012.3	503.2	560.0	32.6	0.00735	62.58360	0.01598_{97}	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20.066	612.6	502.5	550.8	32.7	0.07076	58.98 ₃₃₇	0.01095103	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18.4981165	21.004						55.61 _{9.18}	0.01798100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.003 (220							52.46295	0.01906106	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40		20.001	019.0	990.4	007.0	32.0	0.08091	$^{40.51}277$	0.02020119	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22.1881200	24.050						46.74050	0.02130190	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		23.554 1440							44.15^{200}_{243}	0.02265120	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	24.1nl4 1516		014.4	988.3	055.1	33.2	0.00004	41.72_{227}	0.02397138	26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.510 1505	27.048		587.7		33.3	0.09426		0.02535	27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		28.1071679	28.042		587.0			0.09756	37.31 ²¹⁴	0.02680^{145}_{153}	28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	20.7801707	29.037	615.3	580.3	552.8	33.5	0.10085	35.30 188	0.02833159	29
1 1000 177	30	31.553,000		015.7	585.7	552.1	33.6	0.10413			30
		1999			1	1	1	- 1	XT()	108	

e, enti	3.	the Liquid		ation	alent al	ılen t al	ا ف	ume	DENSITY.	enti-	
Temperature, Degrees Centi	Pressure, Millimeters of Mercury,	of the Li	Heat.	Heat cî Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centigrade.	
l'emp Deg	Vieses	Heat of	Total Heat.	Jeat C	Ieat of I	of F	Intro the	pecif	Veigh Kilos one Meter	Pegi Degi grad	
t	<i>*</i>	2	λ	7		Ари	$\int \frac{cdt}{T}$	s	γ	t t	
33	33.411	81.027	010.0	585.0	551.3	33.7	0.10740	31.65	0.03160	31	
32		33.018	616.6	584.3 583.6	550.5 549.7	33.8 33.9	$0.11067 \\ 0.11392$	$ \begin{array}{c} 31.65 \\ 29.98167 \\ 28.42148 \end{array} $	$0.03160 \\ 0.03335175 \\ 0.03519193$	32 33	
34	k 39.571		$616.9 \\ 617.2$	582.9 582.2	548.9 548.2	34.0	0.11716 0.12039		$\begin{bmatrix} 0.03712 \\ 0.03913201 \\ 0.04124220 \end{bmatrix}$	34 35	
36	$\begin{array}{c c} & 44.2072374 \\ \hline & 44.2072400 \end{array}$	30.007	617.5	581.5	547.4	34.1	0.12362	24.25_{123}^{131}	0.04124_{220}^{211}	36	
31	3 40.3082011	I COCIOCIA	618.1	580.8 580.1	546.6 545.8	34.2	0.12683 0.13004	23.02116 21.86109 20.77103	$\begin{array}{c} 0.04344 \\ 0.04574 \\ 0.04815 \end{array}$	37 38	
39	280			579.4	545.0	34.4	0.13324	20.77103	575251	39	
4	1100	40.0	618.7	578.7	544.2	34.5	0.1364	19.74 ₉₈	0.05066	46	
4:	2 61.00330	41.0 42.0	019.0 019.3	578.0 577.3	543.4 542.6	34.6	$0.1396 \\ 0.1428$	$18.76_{92} \ 17.84_{86} \ 16.98_{82}$		41 42	
4	1	43.0	619.6	570.6	541.8	34.8	0.1459	1		43	
4	5 71.40500	44.0 45.0	010.9	575.9 575.2	541.0 540.2	34.9	$0.1491 \\ 0.1522$	$\begin{array}{c} 16.16_{77} \\ 15.39_{73} \\ 14.66_{69} \end{array}$	$\begin{bmatrix} 0.06187_{310} \\ 0.06497_{325} \\ 0.06822_{338} \end{bmatrix}$	44	
4		46.0	620.5	574.5	539.4	35.1	0.1554		0.06822338	46	
4	8 83.21 120	47.0 48.0	620.8	573.8	537.8	35.2 35.3 35.4	0.1585	$\begin{array}{c} 13.97_{66} \\ 13.31_{62} \\ 12.69_{58} \end{array}$	$\begin{bmatrix} 0.07160_{352} \\ 0.07512366 \\ 0.07878381 \end{bmatrix}$	47 48 49	
4		50.0	621.4	572.4	537.0	35.5	0.1648	$\begin{vmatrix} 12.0558 \\ 12.11_{55} \end{vmatrix}$	0.08259394	50	
	407	}	022.1	571.1	535.5	35.6	0.1710	l .	1	51	
5	$\begin{array}{c c} 1 & 96.65 \\ 2 & 101.54 \\ 106.64 \\ 531 \end{array}$	51.0	022.1 022.4 022.7	570.3 509.6	534.6 533.8	35.7 35.8	$0.1741 \\ 0.1772$	$\begin{array}{c} 11.50_{53} \\ 11.03_{50} \\ 10.53_{47} \end{array}$		52 53	
		53.1		568.9	533.0		0.1803	10.0047	0.09940470	54	
5	4 111.05 ₅₅₄ 5 117.49 ₅₇₆ 6 123.25 ₆₀₁	54.1	023.0	508.2 507.5	532.2 531.4	36.0		$ \begin{vmatrix} 10.06 & 45 \\ 9.610 & 45 \\ 9.185 & 40 \end{vmatrix} $	$\begin{array}{c} 0.00340_{470} \\ 0.1041_{48} \\ 0.1089_{50} \end{array}$	55 56	
		56.1	623.6	1	530.7	36.1	0.1805	9 789	0.100.750	57	
5	$\begin{array}{c} 7 \\ 129, 20 \\ 135, 51 \\ 69 \\ 142, 02 \\ 678 \end{array}$	57.1 58.1	023.9 024.2 024.5	500.8 500.1 505.4	520.0 520.1	36.2	0.1925	8.39936	$\begin{smallmatrix} 0.1139_{52} \\ 0.119154 \\ 0.1245_{56} \end{smallmatrix}$	58 59	
į		50.1	024.8	564.7	528.3	1	{	7.68732		60	
1	100	61.1	625.1	564.0	527.5	ļ				61	
6	51 155.85 ₇₈₃ 103.18 ₇₆₂ 170.80 ₇₀₂	62.1 63.1	625.4 625.7	563.3	526.7 525.9	36.6	0.2046	7.05131 6.75420	$\begin{smallmatrix} 1 & 0.1358_{60} \\ 0.1418_{63} \\ 0.1481_{65} \end{smallmatrix}$	62 63	
1	170.50702	04.2	626.0	501.8	525.0	}	1	,	,	64	
	54 178.72 ₈₂₃ 55 186.95 ₈₅₅ 66 105.50 ₈₈₈	05.2 06.2	626.6 626.6	561.1	524.2 523.4	36.9	0.2136	$\begin{array}{c} 6.201_{25}^{26} \\ 5.947_{25}^{26} \end{array}$	$\begin{bmatrix} 0.1546_{67} \\ 0.1613_{69} \\ 0.1682_{71} \end{bmatrix}$	65 66	
- 1	1	67.2	626.0	559.7	522.6				1	67	
- 1 - 0	57 204.38 ₀₂₂ 58 213.60 ₀₅₇ 59 298 17 ⁰⁵⁷	08.2	627.2	559.0 558.3	521.8 521.0	37.2		5.472 ²³ 5.250 ²²	$\begin{smallmatrix} 0.1753_{74} \\ 0.182778 \\ 0.1905_{80} \end{smallmatrix}$	68 69	

Ì	e, Cent	78 .y.	uid.		ion.	lent	lent	uid.	ame	DENSITY.	e, Sent
	Temperature, Degrees Cent grade.	Pressure, Millimeters of Mercury.	Heat of the Liguid.	Total Heat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Cent grade.
	t	Þ	7	λ	7	ρ	Apu	$\int \frac{cdt}{T}$	s	γ	t
	71 72 73	$\substack{243.39 \text{f} 068 \\ 254.071107 \\ 265.14 \text{f} 148}$	71.2 72.2 73.2	628.2 628.5 628.8	557.0 556.3 555.6	519.5 518.7 517.9	37.5 37.6 37.7	0.2313 0.2342 0.2371	$\substack{4.839\\4.648183\\4.465183}$	$\substack{0.206784\\0.215188\\0.223991}$	71 72 73
	74 75 76	$\begin{array}{c} 276.62 \\ 288.511232 \\ 300.831276 \end{array}$	74.2 75.2 76.2	$\begin{array}{c} 629.1 \\ 629.4 \\ 629.7 \end{array}$	554.9 554.2 553.5	517.1 516.3 515.5	37.8 37.9 38.0	$\begin{array}{c} 0.2400 \\ 0.2429 \\ 0.2458 \end{array}$	$\substack{4.291\\4.124\\159\\3.965\\152}$	$\substack{0.2330\\0.2425\\0.2522}$	74 75 76
	77 78 79	$\begin{array}{c} 313.59 \\ 326.80 \\ 1368 \\ 340.48 \\ 1415 \end{array}$	77.3 78.3 79.3	630.0 630.3 630.6	552.7 552.0 551.3	514.0 513.8 513.0	38.1 38.2 38.3	0.2487 0.2516 0.2544	$\substack{3.813\\3.668\\139\\3.520\\132}$	$\begin{array}{c} 0.2623 \\ 0.2726 \\ 107 \\ 0.2833 \\ 111 \end{array}$	77 78 79
	80	354,63 ₁₋₄₆₄	80.3	630.9	550.6	512.3	38.3	0.2573	3.397_{127}	0.2944_{114}	80
	81 82 83	$\begin{array}{c} 369.27_{1514} \\ 384.41_{1567} \\ 400.08_{1619} \end{array}$	81.3 82.3 83.3	631.2 631.5 631.8	549.9 549.2 548.5	511.5 510.7 509.9	38.4 38.5 38.6	0.2601 0.2630 0.2658	$3.270_{121} \\ 3.149_{110} \\ 3.033_{111}$	$\begin{array}{c} 0.3058 \\ 0.3176 \\ 122 \\ 0.3208 \\ 125 \end{array}$	81 82 83
	84 85 86	$\substack{416.27\\433.01\\450.31\\1787}$	84.3 85.3 86.3	632.1 632.4 632.7	547.8 547.1 540.4	509.1 508.3 507.5	38.7 38.8 38.9	$\begin{array}{c} 0.2686 \\ 0.2714 \\ 0.2742 \end{array}$	$\substack{\frac{2.922}{2.815107} \\ 2.815101 \\ 2.71408}$	$ \begin{bmatrix} 0.3423_{120} \\ 0.3552_{133} \\ 0.3685_{137} \end{bmatrix} $	84 85 86
	87 88 89	468.18 ₁₈₄₆ 486.641907 505.71 ₁₀₆₉	87.3 88.3 89.4	633.0 633.3 633.6	545.7 545.0 544.2	506.7 505.9 505.0	39.0 39.1 39.2	0.2770 0.2798 0.2826	$\begin{array}{c} 2.616_{93} \\ 2.523_{90} \\ 2.433_{86} \end{array}$	$\begin{bmatrix} 0.3822\\ 0.3965\\ 146\\ 0.4111\\ 140 \end{bmatrix}$	87 88 89
	90	525.40 ₂₀₃₂	90.4	634.0	543.6	504.3	39.3	0.2854	2.34782	0.4260 ₁₅₅	90
	91 92 93	$\begin{array}{c} 545.72_{2008} \\ 500.70_{2104} \\ 588.34_{2233} \end{array}$	91.4 92.4 93.4	634.3 634.6 634.9	542.9 542.2 541.5	503.6 502.8 502.0	39.3 39.4 39.5	0.2881 0.2909 0.2937	$\begin{array}{c} 2.265_{79} \\ 2.186_{76} \\ 2.110_{72} \end{array}$	$ \begin{bmatrix} 0.4415_{160} \\ 0.4575_{164} \\ 0.4739_{169} \end{bmatrix} $	91 92 93
	94 95 96	610,67 ₂₃₀₃ 633,70 ₂₃₇₅ 657,45 ₂₄₄₈	94.4 95.4 96.4	635.2 635.5 635.8	540.8 540.1 530.4	501.2 500.4 409.6			$\begin{array}{c} 2.038_{70} \\ 1.968_{67} \\ 1.901_{65} \end{array}$	$ \begin{array}{c c} 0.4908_{173} \\ 0.5081_{180} \\ 0.5261_{184} \end{array} $	94 95 96
	97 98 99	681.93 ₂₅₂₄ 707.17 ₂₆₀₂ 733.19 ₂₆₈₁	97.4 98.4 99.4	636.1 636.4 636.7	538.7 538.0 537.3	408.8 408.1 407.3	39.9	0.3073	$\begin{array}{c} \textbf{1.836}_{62} \\ \textbf{1.774}_{59} \\ \textbf{1.715}_{54} \end{array}$	$\begin{array}{c} 0.5445 \\ 0.5630 \\ 0.5831 \\ 191 \end{array}$	97 98 99
	100	700.00275	100.4	637.0	536.6	406.4	40.2	0.3127	1.661 ₅₂	0.6024195	100
	101 102 103	787.5 ₂₈₃ 815.8 ₂₀₂ 845.0 ₃₀₁	101.4 102.5 103.5	637.3 637.6 637.9	535.0 535.1 534.4	495.0 494.7 493.9	40.4	0.3181	$\begin{array}{c} 1.609\\ 1.55653\\ 1.50549 \end{array}$	$ \begin{array}{c} 0.6219_{208} \\ 0.6427_{218} \\ 0.6645_{223} \end{array} $	
	104 105 106	875.1 ₃₀₀ 906.0 ₃₁₉ 937.0 ₃₂₈	104.5 105.5 106.5	638.2 638.5 638.8	533.7 533.0 532.3	403.2 402.4 401.6	40.0	0.3261	$\begin{array}{c} 1.450_{47} \\ 1.400_{47} \\ 1.305_{45} \end{array}$	$\begin{array}{c} \textbf{0.6868}_{229} \\ \textbf{0.7097}_{236} \\ \textbf{0.7333}_{243} \end{array}$	
	107 108 109	970.7 ₃₃₇ 1004.4 _{3.47}	107.5 108.5 109.5	639.1 639.4 639.7	531.6 530.9 530.2	490.1	40.8	0.3341	1.27842	$\begin{array}{c} 0.7576 \\ 0.7825 \\ 0.8080 \\ 260 \end{array}$	107 108 109

	Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid	> Total Heat,	Y Heat of Yaporization	Heat equivalent of Internal Work.	Heat equivalent of External	Entropy of	4 Specific Volume	Weight, in Kilos, of zu of cree Cubic Land	Temperature, Degrees Centi- grade.
	111 112 113	1111.4 _{:377} 1149.1 _{:398} 1187.0 _{:308}	111.5 112.5 113.5	640.4 640.7 641.0	528,9 528,2 527,5	487.8 487.0 486.3	41.1 41.2 41.2	0,3420 0,3446 0,3471	1.162 1.12636 1.09135	$\begin{array}{c} 0.8608275 \\ 0.8883283 \\ 0.0166200 \end{array}$	111 112 113
i	114 115 116	$\substack{1227.7 \\ 1268.7 \\ 1310.7 \\ 432}$	114.6 115.6 116.6	641.3 641.6 641.9	526.7 526.0 525.3	485,4 484,6 483,8	41.3 41.4 41.5	0,3498 0,3524 0,3550	$\substack{1.057\\1.025\\0.0942201\\200}$	$\begin{array}{c} 0.9456_{209} \\ 0.9755205 \\ 1.99631 \end{array}$	114 115 116
į	117 118 119	$\substack{1353.0\\1308.9\\455\\1443.8\\467}$	117.6 118.6 119.6	642.2 642.5 642.8	524.6 523.9 523.2	483.1 482.3 481.5	41.5 41.6 41.7	0,3576 0,3601 0,3627	0,9643,59 0,9654578 0,9676 ₂₀₈	1.037 1.069 1.102	117 118 119
	120	1490.5 ₄₈₀	120.6	643.1	522.5	480.7	41.8	0,3653	$0.8808_{\pm0.8}$	1.135_{35}	120
	121 122 123	$\begin{array}{c} 1538.5 \\ 1587.7506 \\ 1638.3518 \end{array}$	121.6 122.6 123.6	643.4 643.7 644.0	521.8 521.1 520.4	480,0 479,2 478,4	41.8 41.9 42.0	0,3378 0,3704 0.3729	0,8550 ₉₅₀ 0,8300 ₂₃₁ 0,8050 ₂₃₃	1,170 1,205/35 1,241/37	121 122 123
	124 125 126	$\substack{1690.1\\1743.3532\\1797.8545}$	124.6 125.6 126.6	644.8 644.6 644.9	519.7 519.0 518.3	477.0 476.8 476.1	42.1 42.2 42.2	0,3755 0,3780 0,3805	0,7826 ₀₂₁ 0,7602516 0,7686211	1.55 170	124 125 126
	127 128 129	$\substack{1853.7_{573}\\1911.0587\\1909.7_{601}}$	127.7 128.7 120.7	6 (5,2 645,5 645,8	517.5 516.8 516.1	475.2 474.4 475.6		0,850 0,850 0,855	0.7175 ₂₀₃ 0.6975 ¹⁰⁵ 0.6775 ¹ 85	$\frac{1.384}{1.431} \frac{10}{11}$ $\frac{1.431}{42}$	127 128 129
	130	2020.8	130.7	646.2	545,5	473,0	42.5	11,00048	0,6501 ₁₅₀	1.517_{13}	130
	131 132 133	$\substack{2091.5 \\ 2154.8 \\ 647 \\ 2219.5 \\ 663}$	131.7 132.7 133.7	646,5 646,8 647,1	514.8 514.1 513.4	472.2 471.4 470.6	12.7	0,3934 0,3955 0,3980	0,8061 165	1,560 to 1,605 to 1,050 to	131 132 133
	134 135 136	$\begin{array}{c} 2285.8 \\ 2353.7605 \\ 2423.2712 \end{array}$	134.7 135.7 130.7	617.4 617.7 618.0	512.7 512.0 511.3	469.4 469.1 468.3	12,0 12,0 13,0	n, man	ម.ជំនមម ម.ជំនិងជម្រើ ម.ជំនិងជម្រើ	1.6965 17 1.743 18 1.710 49	134 135 136
	137 138 139	2404.4 ₇₂₈ 2507.2745 2641.7 ₇₆₂	137.7 138.7 139.8	6.48.0 6.48.0 6.810	500,0 500,0 500,1	467.5 466.7 465.9	13.1 13.2 13.2	n, 1079 n, 1103 n, 1125	luti;	1.04253	137 138 139
	140	2717.9_{780}	140,8	649.2	508.4	465.1	40.0	0,1152	£ 4 a5 4	1.10553	140
	141 142 143	2705,0 2875,7510 2057,3 ₈₃₅	141.8 142.8 143.8	649.5 649.8 650.4	507.7 507.0 500.3	461,3 463,5 462,8	151, I 411, 5 411, 5	n, 1177 n, 1244 n, 1225		2.10.15 2.10.15 2.15.57	141 142 143
,	144 145 146	3040,8 3126,1853 3213,3872 3213,3802	144.8 145.8 146.8	650,4 650,7 651,0	504.51	462,0 461,2 460,1	13.7 13.7 43.8	11, 19 111 (11, 1974) 11, 1974)	0, 151 1 0, 1 (00) 1 (0 10, 1 (00) 1 (0 10, 1 (00) 1 (00)	# # 28 () # 1	144 145 146
	147	3302.5 3303.6931	147.x 148.8	051.0 051.0	auta aug.s	459,0 458,0	13.9 43.9	0.1001 0.1005	0.4179 0.1071 0.1071	s in the	147 148

	nti-		jd.		ion.	ent	ent	d.	me.	DENSITY.	inti-	
	Temperature, Degrees Centigrade.	Pressure, Millimeters of Mercury.	the Liquid.	eat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centi- grade.	
	emperatu Degrees grade.	essur Millin of Me	Heat of	Total Heat.	sat of Vapo	eat ec of In Work	eat ec of Ex Work	the	ecific	eight Kilos, ne C feter.	Degr grade	
	ar t	A p	Ħ g	Ĕλ	ŭ r	Ĕρ	Щ Ари	$\int_{T}^{\vec{\Omega}} \frac{cdt}{T}$	ig s	β ^H oA	Ē t	
1												
	151 152 153	$\begin{array}{c} 3679.1 \\ 3778.4 \\ 1014 \\ 3879.8 \\ 1035 \end{array}$	151.8 152.9 153.9	652.6 652.9 653.2	500.8 500.0 499.3	456.6 455.8 455.0	44.2 44.2 44.3	0.4417 0.4440 0.4464	$\begin{array}{c} 0.3779_{93} \\ 0.3686_{90} \\ 0.3596_{87} \end{array}$	$\substack{\frac{2.646}{2.71368} \\ 2.781}_{69}$	151 152 153	
	154 155 156	$\begin{array}{c} 3983.3 \\ 4089.0 \\ 1079 \\ 4196.9 \\ 1102 \end{array}$	154.9 155.9 156.9	653.5 653.8 654.1	498.6 497.9 497.2	454.2 453.4 452.7	44.4 44.5 44.5	0.4488 0.4511 0.4536	$\begin{array}{c} 0.3509_{85} \\ 0.3424_{82} \\ 0.3342_{80} \end{array}$	$\begin{array}{c} 2.850\\ 2.92070\\ 2.99272\\ 2.99274 \end{array}$	154 155 156	
	157 158 159	$\begin{array}{c} 4307.1\\ 4419.51144\\ 4534.31171\end{array}$	158.0 159.0 160.1	654.4 654.7 655.0	496.4 495.7 494.9	451.8 450.0 440.2	44.6 44.7 44.7	0.4560 0.4584 0.4608	$ \begin{array}{c} 0.3262_{78} \\ 0.318476 \\ 0.3108_{73} \end{array} $	$\begin{array}{c} 3.066_{75} \\ 3.141_{76} \\ 3.217_{78} \end{array}$	157 158 159	
	160	4651.4_{1195}	161.1	655.3	494.2	449.4	44.8	0.4633	0.3035	3.29579	160	
	161 162 163	4770.9 4892.7 1243 5017. 127	162.2 163.2 164.2	655.6 655.9 656.2	493.4 492.7 492.0	448.5 447.7 447.0	44.9 45.0 45.0	$\begin{array}{c} 0.4657 \\ 0.4681 \\ 0.4705 \end{array}$	$\begin{array}{c} 0.2964_{69} \\ 0.289567 \\ 0.2828_{66} \end{array}$	$\begin{array}{r} 3.374_{80} \\ 3.454_{82} \\ 3.536_{84} \end{array}$	161 162 163	
	164 165 166	5144. 120 5273. 132 5405. 134	165.3 166.3 167.4	656.5 656.8 657.1	491.2 490.5 489.7	446.1 445.3 444.5	45.1 45.2 45.2	$\begin{array}{c} 0.4729 \\ 0.4752 \\ 0.4776 \end{array}$	$\begin{array}{c} 0.2762 \\ 0.269963 \\ 0.263762 \\ \end{array}$	3.620 ₈₅ 3.705 ₈₇ 3.792 ₈₈	164 165 166	
	167 168 169	5539, 187 5676, 140 5816, 143	168.4 169.5 170.5	657.4 657.7 658.0	489.0 488.2 487.5	4-13.7 4-12.9 4-12.1	45.3 45.3 45.4	0.4800 0.4824 0.4847	$\begin{bmatrix} 0.2577\\ 0.251958\\ 0.246257\\ 0.246255 \end{bmatrix}$	$\begin{bmatrix} 3.880_{90} \\ 3.970_{91} \\ 4.061_{93} \end{bmatrix}$	167 168 169	
	170	5959, 145	171.6	058.4	486.8	441.3	45.5	0.4871	0.2407 ₅₃	4.154_{94}	170	
	171 172 173	6104. 147 6251. 151 6402. 153	172.6 173.7 174.7	658.7 659.0 659.3	480.1 485.3 484.6	440.5 439.7 438.9	45.6 45.6 45.7	0.4895 0.4918 0.4941	$ \begin{vmatrix} 0.2354 \\ 0.230252 \\ 0.2251 \\ 0.2251 \\ 0 \end{vmatrix} $	$\begin{array}{r} 4.248_{07} \\ 4.345_{09} \\ 4.444_{09} \end{array}$	171 172 173	
	174 175 176	0555. 157 6712. 159 6871. 162	175.8 176.8 177.8	659.6 659.9 600.2	483.8 483.1 482.4	438.1 437.3 436.5	45.7 45.8 45.9	0.4985 0.4988 0.5011	$\begin{bmatrix} 0.2201_{48} \\ 0.2153_{47} \\ 0.2106_{45} \end{bmatrix}$	4.543 ₁₀₁ 4.644 ₁₀₃ 4.747 ₁₀₅	174 175 176	
	177 178 179	7093, 165 7108, 168 7366, 171	178.9 179.9 181.0	660.5 660.8 661.1	481.6 480.9 480.1	435.7 434.9 434.0		0.5035 0.5058 0.5081	$ \begin{array}{c} 0.2061 \\ 0.201744 \\ 0.1073 \\ 42 \end{array} $	$\begin{array}{c c} 4.852\\ 4.950107\\ 5.068109\\ \hline \end{array}$	177 178 179	
	180	7537. 175	182.0	661.4	479.4	433.3	46.1	0.5104	0.193141	5.178 ₁₁₃	180	
	181 182 183	7712. 177 7880. 181 8070. 183	183.1 184.1 185.2	661.7 662.0 662.3	478.6 477.9 477.1	432.4 431.7 430.8	46.2	0.5127 0.5150 0.5173	$\begin{array}{c} 0.1890_{40} \\ 0.1850_{30} \\ 0.1811_{38} \end{array}$	5.291 5.405114 5.522118	181 182 183	
	184 185 186	8253. 187 8440. 101	186.2 187.3 188.3	662.6 662.9 663.2	470.4 475.6 474.0	430.1 429.2 428.5	46.4		0.1736_{96}^{94}	$\begin{array}{c} 5.640 \\ 5.700120 \\ 5.882 \\ 125 \end{array}$	184 185 186	
	187 188	8824. 107	189.4 190.4	663.8	474.1 473.4	427.6 426.9		0.5264 0.5287		$\begin{array}{c} 6.007_{127} \\ 6.134_{128} \\ 6.262_{128} \end{array}$	187 188 189	

SATURATED STEEL

		DA	TURA.					1		i i	
Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of		s. Specific Volume.	Weight, in Kilos, of Nacone Cubic Meter.	Temperature, Degrees Centigrade.
= -		1	λ	r	ρ	Aft	J.	<i>r</i>	numeral in combination of the second of	* Marketing of Residence programming	wycarania i na
191 192 193	9639. ₂₁₁ 9844. ₂₁₄ 10058. ₂₁₈	194.6 195.6	665.1	471.3 470.5 469.8 469.0	424.6 423.7 423.0 422.2	40.7 40.8 40.8	0.5	1	0.1532_{31} 0.1501_{30} 0.1471_{30} 0.1441_{20}	$\begin{array}{c} 6.525136 \\ 6.601137 \\ 6.708140 \\ 6.038142 \\ 7.080145 \\ 7.225147 \end{array}$	191 192 193 194 195
194 195 196	$\substack{10276{222}\\10498{226}\\10724{229}}$	196.7 197.7 198.8	6,000	468.3 467.5 466.8	421.4 420.6 410.8	46.1	0.5	480	$egin{array}{l} 0.1441_{20} \ 0.1412_{28} \ 0.1384_{27} \ 0.1357_{27} \end{array}$	1	196
197 198 199	$\substack{10953.238\\11186.238\\11424.240}$	199.8 200.9 201.9	666.6 666.9 667.2	466.0 465.3	419.0	47.	0.7	5511 5533 5555	$\begin{array}{c} 0.1357_{17} \\ 0.133057 \\ 0.130326 \\ 0.1277_{25} \end{array}$	1	
200 201 202	$\begin{array}{c} 11604{245} \\ 11000{240} \\ 12158{253} \\ 12411{257} \end{array}$	203.0 204.0 205.0	667.5 667.8 668.1 668.4	464.5 463.8 463.1 462.3	416.' 415.' 415.	7 47.	1 0.	5577 5599 5021	0,1252 0,1228 ₂ 0,1228 ₂ 0,1204 ₂	7.984 8.143 m	
203 204 205 206	$\begin{array}{ c c c c c }\hline 12411.257\\ 12668.262\\ 12930.265\\ 13195.270\\\hline \end{array}$	2010.10	668.7 669.0 669.3	461.6 460.8 460.1	413	5 47	.a 0.	5648 ,5665 ,5687	0.1181,, 0.11585, 0.11355	1 .	•
207 208 209	13405. ₂₇ ; 18739. ₂₇ ;	210.3	669.6 669.9 670.2	459.9 458.0 457.8	3 411 4 410	.1 47	.:1 U	,5700 ,5701 ,5752	0.1113., 0.10027 0.10717 0.1050	į	
210	14301.28	7 213.4	670.9	457.3 456. 455.	4 418	1.0 4	7.4).5774 1.5745 1.5817	0.1030	***	
212 213	14880.29 15177.30	217.6	6 671.5 3 671.8	455. 454.	3 40°	7.6 4 9.7 4	7.4	0,5%00 0,5%00 0,5%61	0,0073 0,0854	i	1
21 21	6 16096.3	5 219.	7 672.4 7 672.7	452 452	7 40 ,0 40	5,2 4 4.5 •	7.5	0,590; 0,592; 0,594;	0.001	***	2
21 21 21	.9 16782.3 17058.3	21 221. 26 222. 31 223.	8 673.3	3 450	,5 40	3.0	17.5 47.5	0,500	à .		

TABLE IV.

SATURATED VAPOR OF ETHER.

Temperature, Lugrees Centigrade.	Pressure,	Heat of the Liquid.	> Total Heat.	Heat of Vaporization.	Heat equivalent of Internal	Heat equivalent of External Work.	기존 Entropy of 나는 Liquid.	° Specific Volume.	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centigrade.
0	184.39	0.00	94.00	04.00	86.45	7.55	0.0000	1.278	0.782	0
10	286.83	5.32	98.44	93.12	85.37	7.75	0.01009	0.8440	1.185	10
20	432.78	10.70	102.78	92.08	84.13	7.95	0.03772	0.5741	1.742	20
30	634.80	16.14	107.00	90.86	82.72	8.14	0.05593	0.4013	2.402	30
40	907,04	21.63	111.11	80,48	81.15	8.33	0.07374	0.2877	3.746	40
50	1264,8	27.19	115.11	87,02	70.41	8.51	0.09117	0.2108	4.744	50
60	1725,0	32.80	11 9. 00	80,20	77.53	8.67	0.1083	0.1580	6.329	60
70	2304.9	38,48	122.78	84.30	75.49	8.81	0.1250	0.1203 0.0932 0.0731 0.0577 0.0450	8.313	70
80	3022.8	44,21	126.44	82.23	73.32	8.91	0.1415		10.73	80
90	3898.3	50,00	130.00	80.00	71.03	8.97	0.1576		13.68	90
100	4953.3	55,86	133.44	77.58	08.62	8.96	0.1735		17.33	100
110	6214.6	61,77	136.78	75.01	06.13	8.88	0.1891		21.79	110
120	7710.2	07.74	140.00	72.26	63.57	8.69	0.2045	0.0364	27.47	120

TABLE V.

SATURATED VAPOR OF ALCOHOL

Temperature, Degrees Centi.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat.	y Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External	Sk Entropy of કોફ the Liquid.	ь Specific Volume.	Weight, in Kilos, of Cubic Meter.	Temperature, Degrees Centigrade.
o	12.70	0.00	236.5	236.50	223.38	13.12	0.0000	32.21	0.03105	0
10 20 30	24.23 44.46 78.52	$\begin{array}{c} 5.59 \\ 11.42 \\ 17.40 \end{array}$	244.4 252.0 258.0	238.81 240.58 240.51	225, 29 226, 56 226, 03	13.52 14.02 14.48	0.01996 0.04003 0.06029		0.05750 0.1016 0.1738	10 20 30
40	133.69	23.71	262.0	238.29	223.44	14.85	$0.08073 \\ 0.1014 \\ 0.1223$	3.465	0.2886	40
50	219.90	30.21	264.0	233.79	218.59	15.10		2.143	0.4666	50
60	350.21	37.37	265.0	227.63	212.38	15.25		1.359	0.7358	60
70	541.15	44.58	205.2	220.62	205.28	15.34	0.1435 0.1650 0.1868	0.8855	1.129	70
80	812.91	52.11	205.2	213.09	197.69	15.40		0.5921	1.689	80
90	1189.3	50.07	200.0	206.03	100.54	15.49		0.4073	2.455	90
100	1697. 6	68.18	267.8	190.12	183.54	15.58	$0.2090 \\ 0.2315 \\ 0.2544$	0.2874	3.479	100
110	2367.6	70.74	269.6	192.86	177.15	15.71		0.2083	4.801	110
120	3231. 7	85.67	272.5	186.83	170.07	15.86		0.1544	6.477	120
130	4323.0	04.98	276.0	181.02	164.99	16.03	0.2776	0.1170	8.547	130
140	5674.6	104.70	280.5	175.80	159.55	16.25	0.3013	0.0905	11.05	140
150	7318.4	114.82	285.3	170.48	154.03	16.45	0.3254	0.0714	14.01	150

TABLE VI.

SATURATED VAPOR OF CHLOROFORM.

Temperature, Legrees Centigrade.	Pressure, * Millimeters of Mercury.	Eat of the Liquid.	> Total Heat.	y Heat of Vaporization.	Heat equivalent of Internal	Heat equivalent of External Work.	의원 Entropy of 나타 Liquid.	6 Specific Volume.	Weight, in Kilos, of one Cubic.	Temperature, Degrees Centigrade.
o	50.72	0.00	67.00	67.00	62.45	4.55	0.00000	2.377	0.4207	0
10 20 30	$100.47 \\ 160.47 \\ 247.51$	2.33 4.67 7.02	68.38 69.75 71.12	66.04 65.08 64.10	61.29 60.14 59.00	4.75 4.94 5.10	0.00836 0.01646 0.02432	1.475 0.9601 0.6437	0.6780 1.042 1.554	10 20 30
40 50 60	369,26 535,05 755,44	9.37 11.74 14.12	72.50 73.87 75.25	63.13 62.13 61.13	57.87 56.78 55.60	5.26 5.40 5.53	0.03196 0.03940 0.04004	0.4449 0.3155 0.2291	2.248 3.170 4.356	40 50 60
70 80 90	1042.1 1407.6 1865.2	10.51 18.01 21.32	76.62 78.00 79.37	60.11 59.09 58.05	54.45 53.31 52.10	5.66 5.78 5.80	0.05369 0.06057 0.00729	0.17/J0 0.1286 0.5991	5.88 7.78 10.09	70 80 90
100 110 120	2428.5 3111.0 3025.7	23.74 20.17 28.01	80.75 82.12 83.50	57.01 55.95 54.89	51.01 49.84 48.67	$\begin{array}{c} 6.00 \\ 6.11 \\ 6.22 \end{array}$	0.07386 0.08027 0.08655	0.0777 0.0618 0.0500	12.87 16.18 20.00	100 110 120
130 140 150	4885.1 6000.2 7280.6	31.06 33.52 35.09	84.87 80.25 87.02	53.81 52.73 51.63	47.48 40.30 45.10	6.33 6.43 6.53	0.09270 0.09872 0.10462	0.0410 0.0340 0.0286	24.39 29.4 35.0	130 140 150
160	8734.2	38.47	89.00	50.53	43.90	6.63	0.11041	0.0243	41.2	160

TABLE VII.

SATURATED VAPOR OF CARBON BISULPHIDE.

Temperature, Degrees Centi. grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat.	Heat of Vaporization.	Heat equivalent of External Work.	Musical Section of Market		4 Specify V lume.	DESSITY, MASSITY OF THE PROPERTY OF THE PROPER	Temperature, Legrees Ceni- grade.
0	127.91	0.00	90,00	90,00	82,70	7.24	п, синния	1.766	0.5662	0
10	198.46	2,30	91.42	80,08	\$1,58	7.48	0,00547	1.177	0,8498	10
20	298.03	4,74	92.76	88,02	80,01	7.71	0,01670	0.3071	1,239	20
30	434.62	7,13	94.01	88,08	78,97	7.91	0,02472	0.5084	1,759	30
40	617.53	9.54	05,18	85,61	77.51	8.27	0,03252	0,4068	2,440	40
50	857.07	11.06	00,27	84,61	76.01		0,04013	0,3017	3,315	50
60	1164.5	14.41	07,28	82,87	71.15		0,04758	0,2261	4,417	60
70	1552.1	16.86	98,20	81.34	72.78	8,58	0,05452	0,1726	5.794	70
80	2032.5	19.34	99,04	70.70	71.03	8,67	0,06192	0,1338	7.478	80
90	2010.1	21.83	99,80	77.97	00.20	8,77	0,06856	0,1052	9.51	90
100	3325.2	24.34	100,48	76, 14	67.29	8,85	0,07566	0,0837	11.95	100
110	4164.1	26.86	101,07	74, 21	65.31	8,90	0,08233	0,0674	14.84	110
120	5148.8	29.40	101,58	72, 18	63.24	8,94	0,08860	0,0549	18.21	120
130	6201.6	31.96	102.01	70,05	01.00	8.96	0,09527	0,0452	22.12	130
140	7604.0	34.53	102.36	67.83	88.83	8.95	0,10157	0,0375	26.7	140
150	9005.9	37.12	102.62	65,50	88.83	8.92	0,10775	0,0314	31.8	150

TABLE VIII.

SATURATED VAPOR OF CARBON TETRACHLORIDE.

Temperature, Degrees Centigrade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat,	Heat of Vaporization.	Heat equivalent of Internal	Beat equivalent of External Work.	Entropy of 나는 the Liquid.	' Specific Volume.	Weight, in M. Kilos, of Sone Cubic Meter.	Temperature, Degrees Centigrade.
o	32,95	0.00	52.0 0	52.00	48.54	3.46	0.00000	3.272	0.3056	C)
10 20 30	55.97 90.99 142.27	1.09 3.09 6.02	53,44 54,86 50,23	51.45 50.87 50.21	47.85 47.13 46.33	3.60 3.74 3.88	$\begin{array}{c} 0.00714 \\ 0.01409 \\ 0.02087 \end{array}$	2.005 1.283 0.8510	$\begin{array}{c} 0.4987 \\ 0.7794 \\ 1.175 \end{array}$	10 20 30
40 50 60	214.81 314.38 447.43	8.06 10.12 12.20	57.58 58.88 80.16	40.52 48.76 47.00	45.51 44.62 43.60	4.01 4.14 4.25	0.02749 0.03396 0.04028	$\begin{array}{c} 0.5831 \\ 0.4109 \\ 0.2969 \end{array}$	1.715 2.434 3.368	40 50 60
70 80 90	621.15 843.20 1122.3	14.30 16.42 18.55	61.40 62.60 63.77	47.10 46.18 45.22	42.75 41.74 40.50	4.35 4.44 4.72	0.04648 0.04255 0.05849	0.2192 0.1650 0.1263	4.562 6.061 7.92	70 80 90
100 110 120	1407.1 1887.4 2303.7	20.70 22.87 25.06	64.90 66.01 67.07	44.20 43.14 42.01	39.62 38.52 37.30	4.58 4.62 4.65	0.06433 0.07006 0.07569	0.0980 0.0770 0.0611	10.20 12.90 16.37	100 110 120
130 140 150	2906.0 3709.0 4543.1	27.27 20.40 31.73	08.10 09.10 70.07	40.83 39.01 38.34	36.18 34.95 33.75	4.65 4.63 4.50	0.08122 0.08666 0.09201	$\begin{array}{c} 0.0490 \\ 0.0395 \\ 0.0321 \end{array}$	20.41 25.3 31.2	130 140 150
160	5513.1	34.00	71.00	37.00	32.47	4.53	0.09729	0.0262	38.2	160

TABLE IX.

SATURATED VAPOR OF ACETON.

Temperature, Legrees Centi. grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat.	y Heat of Vajorization.	Heat equivalent of Internal Work,	Meat equivalent S of External Nork.	Entropy of	* Specific Volume.	Meight, in Case of Kilos, of Kilos, of Kilos, of Kilos, Meter.	Temperature, Nerves Centigrade.
o	63.33	0.00	140,50	140,50	131.82	8,08	(),()()()()	4.275	0.2339	o
10 20 30	110.32 180.08 280.05	5,10 10,29 15,55	144.11 147.62 151.03	139,01 137,33 135,48		10.17	0,01832 0,03627 0,05380	2,686 1,758 1,187	0,8723 0,5688 0,8425	10 20 30
40 50 60	419,35 608,81 860,96	20,80 20,31 31,81	154,33 157,53 100,63	133,44 131,22 128,82	119,80,	11,36	0.07119 0.08820 0.1040	0,8227 0,5830 0,4215	1.215 1.716 2.372	40 50 60
70 80 90	1180.9 1611.1 2140.8	37,30 43,05 48,70	163,62 166,51 169,30	126,23 123,46 120,51	111,49	11.97	0.1214 0.1376 0.1536	0,3106 0,2328 0,1773	3,220 4,296 5,640	70 80 90
120 110 100	2706.2 3504.3 4552.0	54.61 60.50 66.48	171.98 174.56 177.04	117.37 114.06 110.56	101.78	12.28	0.1694 0.1850 0.2004	0, 1372 0, 1076 0,0856	7.289 9.294 11.68	100 110 120
130 140	5084.9 7007.6	72.54 78.67	179,42 181,69	100,88 103,02			0,2156 0,2306	0,0880 0,0861	14,61 17,83	130 140

TABLE X. SATURATED VAPOR OF AMMONIA.

· ENGLISH UNITS.

,										
Temperature, Degrees Fah- renheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid,	Specific Volume.	Weight, in pounds, of one Cubic Foot.	Temperature. Degrees Fub- renheit.
1	<u>, </u>	9	λ	*	ρ	Apu	\int_{T}^{cdt}	s 	γ	t
-40 -35 -30	9.98 11.58 18.36	-79 -74 -68	519 520 522	598 594 590	549 544 540	49 50 50	$ \begin{array}{r} -0.1737 \\ -0.1607 \\ -0.1482 \end{array} $	26.9 23.3 20.3	0.0373 0.0429 0.0492	-40 -35 -30
-25	15.40	-68	523	586	535	51	-0.1354 -0.1229 -0.1103	17.8	0.0562	-25
-20	17.70	-57	525	582	531	51		15.6	0.0640	-20
-15	20.25	-52	520	578	526	53		13.7	0.0726	-15
-10 -5 0	23.10 26.25 29.74	$ \begin{array}{r} -46 \\ -41 \\ -35 \end{array} $	528 520 531	574 570 566	522 517 513	52 53 53	-0.0982 -0.0859 -0.0738	12.2 10.8 9.63	$\begin{array}{c} 0.0821 \\ 0.0925 \\ 0.104 \end{array}$	-10 -5 0
5 10 15	83.58 87.80 42.43	$-30 \\ -24 \\ -19$	533 534 535	562 558 554	508 504 500	53 54 54	-0.0619 -0.0501 -0.0386	8.60 7.71 6.93	0.116 0.130 0.144	5 10 15
20	47.49	-13	537	550	495	55	-0.0271 -0.0157 -0.0044	6.24	0.160	20
25	53.01	-8	538	546	491	55		5.64	0.177	25
30	59.01	-2	540	543	486	5 6		5.11	0.196	30
35	65.58	3	541	538	482	56	0.0067	4.64	$0.216 \\ 0.237 \\ 0.260$	35
40	72.59	9	543	534	478	56	0.0177	4.20		40
45	80.21	14	544	580	473	57	0.0287	3.85		45
50	88.44	20	546	520	469	57	0.0395	8.52	0.284	50
55	97.30	25	547	522	464	58	0.0502	8.22	0.310	55
60	106.82	81	549	518	460	58	0.0608	2.96	0.338	60
65	117.04	86	550	514	456	58	0.0713	2.72	0.867	65
70	127.98	42	552	510	451	59	0.0817	2.51	0.898	70
75	139.67	47	553	506	447	59	0.0921	2.82	0.481	75
80	152.15	53	555	502	442	60	$\begin{array}{c} 0.1028 \\ 0.1124 \\ 0.1224 \end{array}$	2.14	0.467	80
85	165.47	58	556	498	488	60		1.99	0.504	85
90	179.64	64	558	494	484	60		1.82	0.548	90
95	194.70	69	559	490	428	61	0.1824	1.71	0.584	95
100	210.70	75	561	486	425	61	0.1428	1.59	0.627	100

TABLE XI. SATURATED VAPOR OF SULPHUR DIOXIDE.

ENGLISH UNITS,

ا ف	ا نہ			<u>.</u>	iii	ent	эе		DENSITY.	
Temperature, Degrees Fah- renheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in pounds, of one Cubic Foot.	Temperature, Degrees Fab- renheit.
t	1	<i>q</i>	λ	<i>*</i>	ρ	Ари	$\int \frac{cdt}{T}$	s	γ	t
-40	3.14	-29	166	195	182	13	-0.0632 -0.0584 -0.0539	23.0	0.0434	-40
-35	3.70	-27	167	194	180	14		19.7	0.0507	-35
-30	4.34	-25	168	193	179	14		17.0	0.0590	-30
-25 -20 -15	5.07 5.90 6.83	$ \begin{array}{r} -23 \\ -21 \\ -19 \end{array} $	168 169 170	191 190 189	177 176 175	14 14 14	$ \begin{array}{r} -0.0492 \\ -0.0447 \\ -0.0401 \end{array} $	14.7 12.7 11.1	$\begin{array}{c} 0.0682 \\ 0.0785 \\ 0.0901 \end{array}$	-25 -20 -15
-10	7.88	-17	170	187	173	14	$ \begin{array}{c c} -0.0357 \\ -0.0312 \\ -0.0268 \end{array} $	9.78	0.103	-10
-5	9.05	-15	171	186	172	14		8.56	0.117	-5
0	10.35	-13	172	185	170	15		7.54	0.133	0
5 10 15	11.81 13.41 15.19	$ \begin{array}{r r} -11 \\ -9 \\ -7 \end{array} $	172 173 174	183 182 181	168 167 166	15 15 15	$\begin{array}{c c} -0.0225 \\ -0.0182 \\ -0.0140 \end{array}$	6.67 5.93 5.29	0.150 0.169 0.189	5 10 15
20	17.15	-5	174	179	164	15	$\begin{array}{c} -0.0098 \\ -0.0057 \\ -0.0016 \end{array}$	4 72	0.212	20
25	19.30	-3	175	178	163	15		4.23	0.236	25
30	21.66	-1	176	177	162	15		3.81	0.263	30
35	$24.24 \\ 27.06 \\ 30.12$	1	176	175	160	15	0.0024	3.43	0.291	35
40		3	177	174	158	16	0.0064	3.10	0.322	40
45		5	177	172	156	16	0.0104	2.81	0.356	45
50	33.45	7	178	171	155	16	0.0144	2.58	0.390	50
55	37.07	9	179	170	154	16	0.0182	2.32	0.430	55
6 0	40.98	11	179	168	152	16	0.0221	2.11	0.473	60
65	45.20	13	180	167	151	16	0.0259	1.94	0.516	65
70	49.75	15	181	166	150	16	0.0297	1.78	0.563	70
75	54.64	17	181	164	148	16	0.0334	1.63	0.614	75
80	59.90	19	182	163	146	17	0.0372	1.50	0.668	80
85	65.54	21	183	162	145	17	0.0409	1.38	0.725	85
90	71.57	23	183	160	143	17	0.0445	1.27	0.786	90
95	78.02	25	184	159	142	17	0.0482	1.18	0.849	95
100	84.90	27	185	158	141	17	0.0518		0.917	100

34

TABLE XII.

SPECIFIC GRAVITY AND SPECIFIC VOLUME OF LIQUIDS.

Name of Liquid.	Specific Gravity, compared with Water at 4° C. Specific Volume Cubic Meters per Kilo.
Alcohol, C_2II_6O . Ether, $C_4II_{10}O$. Chloroform. Carbon bisulphide, CS_2 . Carbon tetrachloride, CCI_4 . Aceton, C_3II_6O . Sulphur Dioxide SO_2 . Ammonia NII_3 .	0.736 [Kopp, 1800] 0.001358 1.527 [Thorpe, 1880] 0.000655 1.2922 [Thorpe, 1880] 0.00074 1.6320 [Thorpe, 1880] 0.000613 0.81 [Zander, 1882] 0.00123

TABLE XIII.

VOLUME OF WATER.

Vol. at 4° C=1.

[Rossetti, 1871] and [Hirn, 1867.]

Tempera- ture.	Volume.	Tempera- ture.	Volume.	Tompera- ture.	Volume.	Tempera- ture.	Volume.
10	1.000253	60	1.01691	110	1.0512	160	1.1018
20	1.001744	70	1.02256	120	1.0599	170	1.1139
30	1.00425	80	1.02887	130	1.0694	180	1.1268
40	1.00770	90	1.08567	140	1.0795	190	1.1403
50	1.01105	100	1.04312	150	1.0903	200	1.1544

									6	ย
1.0	0.0000	0.00995	0.01980	0.02956	0.03922	0.04879	0.05827	0.06766	0.07696	0.08618
1.1	0,09531	0.1044	0.1133	0.1222	0.1310	0.1398	0.1484	0.1570	0.1655	0.1739
1.2	0,1823	0.1906	0.1988	0.2070	0.2151	0.2231	0.2311	0.2390	0.2469	0.2546
1.3	0,2624	0.2700	0.2776	0.2852	0.2927	0.3001	0.3075	0.3148	0.3221	0.3293
1.4	0.3365	0.3436	0.3507	0.3577	0.3646	0.3716	0.3784	0.3853	0.3920	0.3988
1.5	0.4055	0.4121	0.4187	0.4253	0.4318	0.4382	0.4447	0.4511	0.4574	0.4637
1.6	0.4700	0.4762	0.4824	0.4886	0.4947	0.5008	0.5068	0.5128	0.5188	0.5247
1.7	0.5306	0.5365	0.5423	0.5481	0.5539	0.5596	0.5653	0.5710	0.5766	0.5822
1.8	0.5878	0.5933	0.5988	0.6043	0.6098	0.6152	0.6206	0.6259	0.6313	0.6366
1.9	0.6418	0.6471	0.6523	0.6575	0.6627	0.6678	0.6729	0.6780	0.6831	0.6881
2.0	0.6931	0.6981	0.7031	0.7080	0.7129	0.7178	0.7227	0.7275	0.7324	0.7372
2.1	0.7419	0.7467	0.7514	0.7561	0.7608	0.7655	0.7701	0.7747	0.7793	0.7839
2.2	0.7884	0.7930	0.7975	0.8020	0.8065	0.8109	0.8154	0.8198	0.8242	0.8236
2.3	0.8329	0.8372	0.8416	0.8459	0.8502	0.8544	0.8587	0.8629	0.8671	0.8713
2.4	0.8755	0.8796	0.8838	0.8879	0.8920	0.8961	0.9002	0.9042	0.9083	0.9123
2.5	0.9163	0.9203	0.9243	0.9282	0.9322	0.9361	0.9400	0.9439	0.9478	0.9517
2.6	0.9555	0.9594	0.9632	0.9670	0.9708	0.9746	0.9783	0.9821	0.9858	0.9895
2.7	0.9933	0.9969	1.0006	1.0043	1.0080	1.0116	1.0152	1.0188	1.0225	1.0260
2.8	1.0296	1.0332	1.0367	1.0403	1.0438	1.0473	1.0508	1.0543	1.0578	1.0613
2.9	1.06.47	1.0682	1.0716	1.0750	1.0784	1.0818	1.0852	1.0886	1.0919	1.0953
3.0	1,0986	1.1019	1.1053	1.1086	1.1119	1.1151	1.1184	1.1217	1.1249	1.1282
3.1	1.1314	1.1346	1.1378	1.1.410	1.1442	I.1474	1.1506	I.1537	1.1569	1.1600
3.2	1.1032	1.1663	1.169.4	1.1725	1.1756	I.1787	1.1817	1.1848	1.1878	1.1909
3.3	1.1939	1.1969	1.2000	1.2030	1.2060	I.2090	1.2119	1.2149	1.2179	1.2208
3.4	1.2238	1.2267	1.2296	1.2326	1.2355	1.2384	1.2413	I.2442	1.2470	1.2499
3.5	1.2528	1.2556	1.2585	1.2613	1.2641	1.2669	1.2698	I.2726	1.2754	1.2782
3.6	1.2809	1.2837	1.2865	1.2892	1.2920	1.2947	1.2975	I.3002	1.3029	1.3056
3.7	1.3083	1.3110	1.3137	1.3164	1.3191	1.3218	1.3244	1.3271	1.3297	1.3324
3.8	1.3350	1.3376	1.3403	1.3420	1.3455	1.3481	1.3507	1.3533	1.3558	1.3584
3.9	1.3610	1.3635	1.3661	1.3686	1.3712	1.3737	1.3762	1.3788	1.3813	1.3838
4.0	1.3863	1.3888	1.3913	1.3938	1.3962	1.3987	1.4012	1,4036	1.4061	1.4085
4.1	1.4110	1.4134	1.4159	1.4183	1.4207	1.4231	1.4255	1.4279	1.4303	1.4327
4.2	1.4351	1.4375	1.4398	1.4422	1.4446	1.4469	1.4493	1.4516	1.4540	1.4563
4.3	1.4586	1.4609	1.4633	1.4656	1.4679	1.4702	1.4725	1.4748	1.4770	1.4793
4.4	1.4816	1.4839	1.4861	r.4884	1.4907	1.4929	1.4951	1.4974	1.4996	1.5019
4.5	1.5041	1.5063	1.5085	1.5107	1.5129	1.5151	1.5173	1.5195	1.5217	1.5239
4.6	1.5261	1.5282	1.5304	1.5326	1.5347	1.5369	1.5390	1.5412	1.5433	1.5454
4.7	1.5476	1.5497	1.5518	1.5539	1.5560	1.5581	1.5602	1.5623	1.5644	1.5665
4.8	1.5686	1.5707	1.5728	1.5748	1.5769	1.5790	1.5810	1.5831	1.5851	1.5872
4.9	1.5892	1.5913	1.5933	1.5953	1.5974	1.5994	1.6014	1.6034	1.6054	1.6074
5.0	1.6094	1.6114	1.6134	1.6154	1.6174	1. 6194	1.6214	1.6233	1.6253	1.6273
5.1	1.6292	1.6312	1.6332	1.6351	1.637 1	1.6390	1.6409	1.6429	1.6448	1.6467
5.2	1.6487	1.6506	1.6525	1.6544	1.6563	1.6582	1.6601	1.6620	1.6639	1.6658
5.3	1.667 7	1.6696	1.6715	1.6734	1.6752	1.6771	1.6790	1.6808	1.6827	1.6845
5.4	1.6864	1.6882	1.6901	1.6919	1.6938	1.6956	1.6974	1.6993	1.7011	1.7029
5.5	1.7047	1.7066	1.7084	1.7102	1.7120	1.7138	1.7156	1.7174	1.7192	1.7210
5.6	1.7228	1.7246	1.7263	1.7281	1.7299	1.7317	1.7334	1.7352	1.7370	1.7387

}	0	1	2	3	4	5	6	7	8	9
5.7	1.7.105	1.7.122	7.5146			-				
5.8	I 7579	1.7500	1.7440	I.7457	1.7475	1.7492	1.7509	1.7527	1.7544	1.7561
5.9	1.7750	1.7706	1.7613	1.7630	1.7647	1.7664	1.7681	1.7699	1.7716	1.7733
		1.7760	1.7783	1.7800	1.7817	1.7834	1.7851	1.7867	1.7884	1.7901
6.0	1.7018	1.7934	1.7951	1.7967	1.7984	1.8001	1.8017	1.8034	1.8050	18.066
6.1	r.8083	T.8ogg	1.8116	1.8132	1.8148	1.8165	1.8181	1.8197		
6.2	1.82.15	1.8202	1.8278	1.8204	1.8310	1.8326	1.83.42		1.8213	1.8229
6.3	1,8,405	1.8421	1.8.137	1.8453	1.8469	1.8485	1.8500	1.8358 1.8516	I.8374 I.8532	1.8390
6.4	1,8563	1.8570	1.850.4	1.8610	1.8625	1.8641	1.8656	1,8672	- 000-	- 0
6.5	1.8718	1.8733	1.87.10	1.876.4	1.8779	1.8705	1.8810	1.8825	1.8687	1.8703
6.6	1.8871	1.8886	1.8901	1.8916	1.8931	1.8946	1.8961	1.8976	1.8840 1.8991	1.8856
6.7	LOOSE	1.0036	1.9051	1.9066	1.9081	1.9005	1.0110	1.9125	1.9140	70755
6.8	1.0100	1.0184	1.0190	1.9213	1.9228	1.9242	1.9257	1.0272	1.9286	1.9155
6.9	1.9315	1.9330	1.9344	1.9359	1.9373	1.9387	1.9402	1.9416	1.9430	1.9301
7.0	1.9459	1.9473	r.9.488	1,9502	1.9516	1.9530	1.9544	1.9559	1.9573	1.9587
7.1	r.ofor	1.0615	1,9629	1.9643	1.9657	1.9671	1.9685			
7.2	1.9741	1.0755	1.0700	1.0782	1.9796	1.9810	1.9824	1.9699	1.9713	1.9727
7.3	1.9879	1.0802	1.9906	1.9920	1.9933	1.9947	1.9961	1.9974	1.9851 1.9988	2.0001
7.4	2,0015	2.0028	2.00.12	2.0055	2,0060	2.0082	2.0096	2.0100	2.0122	2.0136
7.5	2.0140	2,0102	2.0176	2.0189	2.0202	2.0215	2.0220	2.02.12	2.0255	2.0268
7.6	5,0381	2,0295	2.0308	2.0321	2.033.1	2.03.17	2.0360	2.0373	2.0386	2.0399
7.7	2.0.112	2.0425	2.0438	2,0,151	2.0.16.1	2.0.177	2.0490	2.0503	2.0516	2.0528
7.8	2.05.11	2.055.1	2.0507	2.0580	2.0592	2.0005	2.0018	2.0631	2.0043	2.0656
	2,0008	2,0081	5.0094	2.0707	2.0719	2.0732	2.0744	2.0757	2.0769	2.0782
8.0	2.0794	2.0807	2.0819	2.0832	2.08.1.1	2.0857	2,0869	2.0881	2.0894	2.0906
8.1	2.0010	2,0031	2.0943	2,0956	2,0968	2.0980	2.0002	2.1005	2.1017	2.1029
8.2	3.104 L	2,105.4	2.1000	2.1078	2.1000	2.1102	2.1114.	2.1126	2.1138	2.1150
8.3	2.1103	2.1175	2.1187	2.1199	2,1211	2.1223	2.1235	2.12.17	2.1258	2.1270
8.4	2,1282	2.120.4	2,1306	2.1318	2.1330	2.13.12	2.1353	2.1365	2.1377	2.1389
8.5	2.1401	2.1.112	2.1.12.1	2.1436	2.1.4.8	2.1459	2.1471	2.1483	2.1494	2.1506
8.6	2.1518	2.1529	2.1541	2.1552	2.1504	2.1576	2.1587	2.1599	2.1010	2.1622
8.7	2.1633	2.16.15	2.1656	2.1668	2,1679	2.1691	2.1702	2.1713	2.1725	2.1736
н.н	2.1748	3.1750	2.1770	2.1782	2.1793	2,1804	2.1815	2.1827	2.1838	2.1840
8.9	2.1801	2.1872	2.1883	2,189.4	2.1905	21917	2.1928	2.1939	2.1950	2.1961
9.0	2.1972	2.1983	2.1994	2.2006	2.2017	2.2028	2.2039	2.2050	2.2061	2.2072
9.1	2,2083	2,200,4	2,2105	2.2116	2.2127	2.2138	2.2148	2.2159	2.2170	2.2181
9.2	2,2102	2.2203	2.221.4	2.2225	2,2235	2.22.16	2.2257	2.2208	2.2279	2,2280
9.3	2,2300	2.2311	2.2322	2,2332	2.2343	2.2354	2.2364	2.2375	2.2386	2.2396
9.4	2.2407	2.2418	2.2.128	2,2,139	2,2450	2.2460	2.2471	2,2481	2.2492	2,2502
9.5	2.2513	2.2523	2.2534	2.2544	2.2555	2.2565	2.2576	2.2586	2.2597	2,2007
9.6	2,2018	2.2028	2,2038	2,2649	2.2059	2.2670	2.2680	2.2690	2.270I	2.2711
9.7	2.2721	2.2732	2,27,42	2.2752	2.2762	2.2773	2.2783	2.2793	2.2803	2.2814
9.8	2.2824	2,2834	2.2844	2.2854	2.2865	2.2875	2.2885	2.2895	2.2905	2.2915
9.9	2.2925	2,2935	2.2946	2,2956	2.2966	2,2976	2.2986	2.2996	2.3000	2.3016
10.0	2,3026									
1	l '	Ι '	1	'				ł	ì	1

SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

OF

JOHN WILEY & SONS,

NEW YORK.

LONDON: CHAPMAN & HALL, LIMITED.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.

Books marked with an asterisk are sold at *net* prices only.

All books are bound in cloth unless otherwise stated.

AGRICULTURE.

CATTLE FEEDING—DAIRY PRACTICE—DISEASES OF ANIMALS—GARDENING, ETC.

Armsby's Manual of Cattle Feeding12mo,	\$1 75
Downing's Fruit and Fruit Trees8vo,	5 00
Grotenfelt's The Principles of Modern Dairy Practice. (Woll.)	
12mo,	2 00
Kemp's Landscape Gardening12mo,	2 50
Loudon's Gardening for Ladies. (Downing.)12mo,	1 50
Maynard's Landscape Gardening12mo,	1 50
Steel's Treatise on the Diseases of the Dog8vo,	8 50
" Treatise on the Diseases of the Ox8vo,	6 00
Stockbridge's Rocks and Soils8vo,	2 50
Woll's Handbook for Farmers and Dairymen12mo,	1 50

ARCHITECTURE.

BUILDING-CARPENTRY-STAIRS-VENTILATION-LAW, ETc.

		~.		
Berg's Bu	ildings and Structures of American Railroads4to,	7	50	
Birkmire'	s American Theatres—Planning and Construction.8vo,	8	00	
**	Architectural Iron and Steel8vo,	8	50	
**	Compound Riveted Girders8vo,	2	00	
	Skeleton Construction in Buildings8vo,	8	00	

Birkmire's Planning and Construction of High Office Buildings.		
8 v o,	\$3	50
Carpenter's Heating and Ventilating of Buildings8vo,	3	00
Freitag's Architectural Engineering8vo,	2	50
Gerhard's Sanitary House Inspection16mo,	1	00
" Theatre Fires and Panics	1	50
Hatfield's American House Carpenter8vo,	5	00
Holly's Carpenter and Joiner		75
Kidder's Architect and Builder's Pocket-book16mo, morocco,	4	00
Merrill's Stones for Building and Decoration8vo,	5	00
Monckton's Stair Building-Wood, Iron, and Stone4to,	4	00
Wait's Engineering and Architectural Jurisprudence8vo,	6	00
Sheep,	6	50
Worcester's Small Hospitals-Establishment and Maintenance,		
including Atkinson's Suggestions for Hospital Archi-		
tecture12mo,	. 1	25
World's Columbian Exposition of 1893Large 4to,	2	50
ARMY, NAVY, Etc.		
MILITARY ENGINEERING-ORDNANCE-LAW, ETC.		
Bourne's Screw Propellers4to,	5	00
*Bruff's Ordnance and Gunnery8vo,	6	00
Chase's Screw Propellers8vo,	3	00
Cooke's Naval Ordnance	12	50
Cronkhite's Gunnery for Non-com. Officers32mo, morocco,	2	00
*Davis's Treatise on Military Law8vo,	7	00
Sheep,	7	50
* " Elements of Law8vo,	2	50
De Brack's Cavalry Outpost Duties. (Carr.)32mo, morocco,	.2	00
Dietz's Soldier's First Aid16mo, morocco,	1	25
* Dredge's Modern French ArtilleryLarge 4to, half morocco,	15	00
" Record of the Transportation Exhibits Building,		
World's Columbian Exposition of 18934to, half morocco,	10	00
Durand's Resistance and Propulsion of Ships8vo,	5	00
Dyer's Light Artillery12mo,	3	00
Hoff's Naval Tactics	1	50
*Ingalls's Ballistic Tables	1	50

351 470 473 440 44 435 430		
Mahan's Permanent Fortifications. (Mercur.).8vo, half morocco,	\$ 7	
Mercur's Attack of Fortified Places		00
" Elements of the Art of War		00
Metcalfe's Ordnance and Gunnery12mo, with Atlas,		00
Murray's A Manual for Courts-Martial16mo, morocco,	1	50
" Infantry Drill Regulations adapted to the Springfield		
Riffe, Caliber .45		10
*,Phelps's Practical Marine Surveying8vo,	2	50
Powell's Army Officer's Examiner	4	00
Sharpe's Subsisting Armies32mo, morocco,	1	50
Very's Navies of the World8vo, half morocco,	3	50
Wheeler's Siege Operations8vo,	2	00
Winthrop's Abridgment of Military Law	2	50
Woodhull's Notes on Military Hygiene	1	50
Young's Simple Elements of Navigation16mo, morocco,	2	00
" " first edition	1	00
ASSAYING.		
SMELTING-ORE DRESSING-ALLOYS, ETC.		
Fletcher's Quant. Assaying with the Blowpipe16mo, morocco,	1	50
Furman's Practical Assaying8vo,		00
Kunhardt's Ore Dressing		50
O'Driscoll's Treatment of Gold Ores8vo,		00
Ricketts and Miller's Notes on Assaying		00
Thurston's Alloys, Brasses, and Bronzes8vo,		50
Wilson's Cyanide Processes		50
"The Chlorination Process		50
The omornation rocess	•	00
ASTRONOMY.		
PRACTICAL, THEORETICAL, AND DESCRIPTIVE.		
Craig's Azimuth4to,	Я	50
Doolittle's Practical Astronomy8vo,		00
Gore's Elements of Geodesy8vo,		50
		00
Hayford's Text-book of Geodetic Astronomy8vo.		00
* Michie and Harlow's Practical Astronomy8vo,		00

BOTANY.

GARDENING FOR LADIES, ETC.

Baldwin's Orchids of New EnglandSmall 8vo,	\$ 1	50
London's Gardening for Ladies. (Downing.)12mo,	1	50
Thomé's Structural Botany16mo,	2	25
Westermaier's General Botany. (Schneider.)8vo,	2	00
BRIDGES, ROOFS, Etc.		
CANTILEVER-DRAW-HIGHWAY-SUSPENSION.		
(See also Engineering, p. 7.)		
Boller's Highway Bridges8vo,	2	00
* " The Thames River Bridge4to, paper,	5	00
Burr's Stresses in Bridges	3	50
Crehore's Mechanics of the Girder8vo,	5	00
Dredge's Thames Bridges 7 parts, per part,	1	25
Du Bois's Stresses in Framed StructuresSmall 4to,	10	00
Foster's Wooden Trestle Bridges	5	00
Greene's Arches in-Wood, etc8yo,	2	50
Bridge Trusses8vo.	2	50
" Roof Trusses	1	25
Howe's Treatise on Arches	4	00
Johnson's Modern Framed Structures	10	00
Merriman & Jacoby's Text-book of Roofs and Bridges.		
Part I., Stresses	2	50
Merriman & Jacoby's Text-book of Roofs and Bridges,		
Part II., Graphic Statics	IJ	50
Merriman & Jacoby's Text-book of Roofs and Bridges,		
Part III., Bridge Designsvo,	2	50
Merriman & Jacoby's Text-book of Roofs and Bridges.		
Part IV., Continuous, Draw, Cantilever, Suspension, and		
Arched Bridges8vo,	빏	50
* Morisou's The Memphis BridgeOblong 4to,	10	00
Waddell's Iron Highway Bridges8vo,	4	00
" De Pontibus (a Pocket-book for Bridge Engineers).		
16mo, morocco,	8	00
Wood's Construction of Bridges and Roofs		00

CHEMISTRY.

QUALITATIVE—QUANTITATIVE—ORGANIC—INORGANIC, ET	c.	
Adriance's Laboratory Calculations12mo,	\$1	25
Allen's Tables for Iron Analysis8vo,	3	00
Austen's Notes for Chemical Students12mo,	1	50
Bolton's Student's Guide in Quantitative Analysis8vo,	1	50
Classen's Analysis by Electrolysis. (Herrick and Boltwood.).8vo,	3	00
Crafts's Qualitative Analysis. (Schaeffer.)	1	50
Drechsel's Chemical Reactions. (Merrill.)12mo,	1	25
Fresenius's Quantitative Chemical Analysis. (Allen.)8vo,	6	00
" Qualitative " (Johnson.)8vo,	3	00
" (Wells.) Trans.		
16th German Edition8vo,	5	00
Fuertes's Water and Public Health	1	50
Gill's Gas and Fuel Analysis	1	25
Hammarsten's Physiological Chemistry. (Maudel.)8vo,	4	00
Helm's Principles of Mathematical Chemistry. (Morgan).12mo,	1	50
Kolbe's Inorganic Chemistry12mo,	1	50
Ladd's Quantitative Chemical Analysis	1	00
Landauer's Spectrum Analysis. (Tingle.)8vo,	3	00
Löb's Electrolysis and Electrosynthesis of Organic Compounds.		
(Lorenz.)12mo,	1	00
Mandel's Bio-chemical Laboratory12mo,	1	50
Mason's Water-supply8vo,	5	00
" Examination of Water12mo,	1	25
Meyer's Organic Analysis. (Tingle.) (In the press.)		
Miller's Chemical Physics8vo,	2	00
Mixter's Elementary Text-book of Chemistry12mo,	1	50
Morgan's The Theory of Solutions and its Results12mo,	1	00
" Elements of Physical Chemistry12mo,	2	00
Nichols's Water-supply (Chemical and Sanitary)8vo,	2	50
O'Brine's Laboratory Guide to Chemical Analysis8vo,	2	00
Perkins's Qualitative Analysis12mo,	1	. 00
Pinner's Organic Chemistry. (Austen.)12mo,	1	. 50
Poole's Calorific Power of Fuels8vo,	3	00
Ricketts and Russell's Notes on Inorganic Chemistry (Non-		
motallia) Oblana 8va maragaa		17 8

Schimpf's Volumetric Analysis	\$2 50
Spencer's Sugar Manufacturer's Handbook16mo, morocco,	2 00
" Handbook for Chemists of Beet Sugar Houses.	
16mo, morocco,	3 00
Stockbridge's Rocks and Soils8vo,	2 50
Tillman's Descriptive General Chemistry. (In the press.)	
Van Deventer's Physical Chemistry for Beginners. (Boltwood.)	
12mo,	1 50
Wells's Inorganic Qualitative Analysis	1 50
" Laboratory Guide in Qualitative Chemical Analysis.	•
8vo,	1 50
Whipple's Microscopy of Drinking-water8vo,	3 50
Wiechmann's Chemical Lecture Notes	3 00
" Sugar Analysis Small 8vo,	2 50
Wulling's Inorganic Phar. and Med. Chemistry12mo,	2 00
DRAWING.	
ELEMENTARY—GEOMETRICAL—MECHANICAL—TOPOGRAPHIC	АĻ.
Hill's Shades and Shadows and Perspective8vo,	2 00
MacCord's Descriptive Geometry8vo,	3 00
"Kinematics8vo,	5 00
" Mechanical Drawing8vo,	4 00
Mahan's Industrial Drawing. (Thompson.)2 vols., 8vo,	3 50
Reed's Topographical Drawing. (H. A.)4to,	5 00
Reid's A Course in Mechanical Drawing8vo.	2 00
" Mechanical Drawing and Elementary Machine Design.	
8vo. (In the press.)	
Smith's Topographical Drawing. (Macmillan.)8vo,	2 50
Warren's Descriptive Geometry 2 vols., 8vo,	3 50
" Drafting Instruments	1 25
" Free-hand Drawing	1 00
" Linear Perspective12mo,	1 00
" Machine Construction	7 50
" Plane Problems	1 25
" Primary Geometry12mo,	75

Dual-lams and Theorems 970 9 50

Warren's Shades and Shadows8vo,	\$ 3 00
"Stercotomy—Stone cutting8vo,	2 50
Whelpley's Letter Engraving	2 00
ELECTRICITY AND MAGNETISM.	
ILLUMINATION—BATTERIES—PHYSICS—RAILWAYS.	
Authory and Brackett's Text-book of Physics. (Magic.) Small	
8vo,	3 00
Authony's Theory of Electrical Measurements12mo,	1 00
Barker's Deep-sea Soundings8vo,	2 00
Benjamin's Voltaic Cell8vo,	3 00
"History of Electricity8vo,	3 00
Classen's Analysis by Electrolysis. (Herrick and Boltwood.) 8vo,	3 00
Cosmic Law of Thermal Repulsion12mo,	75
Crehore and Squier's Experiments with a New Polarizing Photo-	
Chronograph8vo,	3 00
Dawson's Electric Railways and Tramways. Small, 4to, half	
morocco,	12 50
* Dredge's Electric Illuminations2 vols., 4to, half morocco,	25 00
" " Vol. II4to,	7 50
Gilbert's De magnete. (Mottelay.)8vo,	2 50
Holman's Precision of Measurements8vo,	2 00
" Telescope-mirror-scale MethodLarge 8vo,	75
Löb's Electrolysis and Electrosynthesis of Organic Compounds.	
(Lorenz.)	1 00
*Michie's Wave Motion Relating to Sound and Light,8vo,	4 00
Morgan's The Theory of Solutions and its Results12mo,	1 00
Niaudet's Electric Batteries. (Fishback.)	2 50
Pratt and Alden's Street-railway Road-beds8vo,	2 00
Reagan's Steam and Electric Locomotives	2 00
Thurston's Stationary Steam Engines for Electric Lighting Pur-	
poses8vo,	2 50
*Tillman's Heat8vo,	1 50
•	

ENGINEERING.

CIVIL-MECHANICAL-SANITARY, ETC.

(See also Bridges, p. 4; Hydraulies, p. 9; Materials of	F En
GINEERING, p. 10; MECHANICS AND MACHINERY, p. 12;	STEAM
Engines and Boilers, p. 14.)	
Baker's Masonry Construction Svo.	\$5 00
" Surveying Instruments	3 00
Black's U. S. Public WorksOblong 4to,	5 00
Brooks's Street-railway Location	1 50
Butts's Civil Engineers' Field Book16mo, morocco,	2 50
Byrne's Highway Construction	5 00
" Inspection of Materials and Workmanship!fine,	8 00
Carpenter's Experimental Engineeringsvo.	6 00
Church's Mechanics of Engineering—Solids and PluidsSvo.	(i th)
" Notes and Examples in Mechanics	2 (8)
Crandall's Earthwork Tables	1 50
The Transition Curve	1.50
*Dredge's Penn. Railroad Construction, etc. Large 4to.	-
half moreover.	20 (0)
* Drinker's Tunnelling4to, half morocco,	25 00
Eissler's Explosives—Nitroglycerine and Dynamite Svo.	4 00
Folwell's Sewerage	3 00
Fowler's Coffer-dam Process for Piers	2 50
Gerhard's Sanitary House Inspection	1 00
Godwin's Railroad Engineer's Field-book 16mo, morocco,	2 50
Gore's Elements of Geodesy	2.50
Howard's Transition Curve Field-bookthmo, increase,	1.50
Howe's Retaining Walls (New Edition.)	1 25
Hudson's Excavation Tables. Vol. II	1 (8)
Hutton's Mechanical Engineering of Power Plants Svo.	5 00
Johnson's Materials of ConstructionLarge Myo,	00 11
" Stadia Reduction Diagram, Sheet, 224 × 284 inches,	50
" Theory and Practice of Surveying Small Sec.	4 (9)
Kent's Mechanical Engineer's Pocket-book16mo, morocco,	5 00
Kiersted's Sewage Disposal 12mo.	1 35
Mahan's Civil Engineering. (Wood.)	5 00
Merriman and Brook's Handbook for Surveyors 16mo, mor.	ए ।सा
Merriman's Geodetic Surveying	2 (R)
" Retaining Walls and Masonry Dams, Nea.	3 (9)
Sumary Engineering.	2 (8)
Nagle's Manual for Railroad Engineers	H (R)
Ogden's Sewer Design. (In the press.)	
Patton's Civil Engineering.	27 244

Dotter 1 79	
Patton's Foundations	
Pratt and Alden's Street-railway Road-beds	\$5 00
TOOL Well's Roads and D	2 00
Scarles & Field Engineering 12mo.	1 25
" Railroad G	3 00
Diguett and Riccin's Mr. 1	1 50
Diffaring Engineering T . Cutting and Masonry One	1 50
Diffill S With Monat	2 50
Spalding's Roads and Barrell Strain Small 4to	≈ 50 3 00
Hydranii a	2 00
1 avior's Prismoidal Tales	
Taylor's Prismoidal Formulas and Earthwork	2 00
* Trantwine's Civil E	1 50
* Trautwine's Civil Engineer's Pocket-book16mo, morocco,	5 00
Cross-section	5 00
Excavations and EmbankmentsSheet, Laying Out Curves	25
* Laying Out Curves	2 00
Waddell's De Pontibus (A Pocket-book for Bridge Engineers).	2 50
Works To the Market of the Control o	
Wait's Engineering and Architectural Jurisprudence8vo,	3 00
o wrispi udence8yo,	6 00
"Law of Field Operation in Engineering, etc8vo.	6 50
Warren's Stereotomy—Stone-cutting8vo. *Webb's Engineering Instruments	
*Webb's Engineering Instruments16mo, morocco,	2 50
Nor False	50
Wegmann's Construction of Tr	1 25
Wellington's Location of Reilways	5 60
Wheeler's Civil Engineering Ways	5 00
Wheeler's Civil Engineering	4 00
Wolff's Windmill as a Prime Mover8vo,	3 00
	- 00
•••	
HYDRAULICS.	
WATER-WHEELS-WINDMILLS-SERVICE PIPE-DRAINAGE, ETC.	
HINDHILLS—SERVICE PIPE—DRAINAGE, ETC	o .
(See also Engineering, p. 7.)	
Bazin's Experiments	
Bazin's Experiments upon the Contraction of the Liquid Vein.	
(Trantwine.)	00
Bovey's Treatise on Hydraulics	00
Coffin's Graphical Solution of Hydraulic Problems	50
Ferrel's Treatise on the Winds, Cyclones, and Tornadoes8vo, 4	
Fuertes's Water and Public Health	00
Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.)	0 0
a riadiwine.)	

	\$ 1	25
Mason's Water Supplysvo.	5 (
" Examination of Water	1 '	
Merriman's Treatise on Hydraulics	4 (
Nichois's Water Supply (Chemical and Sanitary)Svo.		
Wegmann's Water Supply of the City of New York	10 (
Weisbach's Hydraulies. (Du Bols.)	5 (
Whipple's Microscopy of Drinking Water	3 (
" Hydraulic and Placer Mining	4 (
Wolff's Windmill as a Prime Mover	20	
Wood's Theory of Turbines	2.5	
MANUFACTURES.	- No.	
BOILERS-EXPLOSIVES-IRON STEEL-SUGAR WOOLLENS, E	TC.	
Allen's Tables for Iron AnalysisSvo.	11 (1	()
Beaumont's Woollen and Worsted Manufacture12mo,	1 5	H
Bolland's Encyclopædia of Founding Terms12me,	8 0	ij
The Iron Founder	9.5	11
" " " Supplement	2 3	(1)
Bouvier's Handbook on Oil Painting	'\$ (F	13
Eissler's Explosives, Nitroglycerine and Dynamite	4 ()	11
Fodr's Boiler Making for Boiler Makers	1 (1	1
Metcalfe's Cost of Manufactures	à D	8
Metcalf's Steel—A Manual for Steel Users	A CH)
* Reisig's Guide to Piece Dyeing	là H	
	ii (1))
runations for Chemists of Best Subst. Houses.		
7732	II (N	
While the Transfer and the state of the stat	ង ម	
Manuella A	i th	
44 37 31 1 723 4 1	in in	
	¥ 54	-
	ម្ចាស់ មេសា	
	. 11¢)
MATERIALS OF ENGINEERING.		
STRENGTHELASTICITY RESISTANCE, ETC.		
(See also Engineering, p. 74		
Baker's Masonry Construction.	5 (H)	,
Beardslee and Kent's Strength of Wrought from	1 50	
Bovey's Strength of Materials	T THE	
Burrs Ensurity and Resistance of Materials.	i ini	
Remarks of the I design of the sections and the) Oil	

	Lanza's Applied Mechanics	7 50
	Merrill's Stones for Building and Decoration	5 00
	"Strength of Materials	4 00
	Patton's Treatise on Foundations	1 00 5 00
	Rockwell's Roads and Pavements in France12mo,	1 25
	Spalding's Roads and Pavements in France	2 00
	Thurston's Materials of Construction	5 00
	"Materials of Engineering3 vols., 8vo,	8 00
	Vol. I., Non-metallic	2 00
	Vol. II., Iron and Steel	3 50
	Vol. III., Alloys, Brasses, and Bronzes8vo,	2 50
	Wood's Resistance of Materials	2 00
		~ 00,
	MATHEMATICS.	
	CALCULUS—GEOMETRY—TRIGONOMETRY, ETC.	
	Baker's Elliptic Functions8vo,	1 50
	Ballard's Pyramid Problem	1 50
	Barnard's Pyramid Problem8vo,	1 50
	*Bass's Differential Calculus	4 00
	Briggs's Plane Analytical Geometry12mo,	1 00
	Chapman's Theory of Equations12mo,	1 50
	Compton's Logarithmic Computations12mo,	1 50
	Davis's Introduction to the Logic of Algebra8vo,	1 50
	Halsted's Elements of Geometry8vo,	1 75
	" Synthetic Geometry8vo,	1 50
	Johnson's Curve Tracing	1 00
	" Differential Equations—Ordinary and Partial.	
	Small 8vo,	3 50
	" Integral Calculus	1 50
	" Unabridged. Small 8vo.	
	(In the press.)	
	" Least Squares	1 50
	*Ludlow's Logarithmic and Other Tables. (Bass.)8vo,	2 00
	* "Trigonometry with Tables. (Bass.)8vo,	3 00
	*Mahan's Descriptive Geometry (Stone Cutting)8vo,	1 50
	Morriman and Woodward's Higher Mathematics 8vo,	5 00
•	Merriman's Method of Least Squares	2 00 2 50
	Parker's Quadrature of the Circle	z 50
	Rice and Johnson's Differential and Integral Calculus,	0 50
	2 vols. in 1, small 8vo,	2 50

Rice and Johnson's Differential CalculusSmall 8vo, \$3 00
Rice and Johnson's Differential Calculus. Abridgment of Differential Calculus. Small 8vo, 1 50
it Trusted
Totten's Metrology
TIT - mon's 1/08CH1UUIYO O
" Drailing instrument
" Free-hand Drawing
Higher Linear Perspective 12mo, 1 00
Linear Perspective
Primary Geometry
Plane Problems
Problems and Theorems
Projection Drawing8vo, 2 00
Ward's Co-ordinate Geometry. 12mo, 1 00
Trigonometry Large 8vo, 3 00
Woolf's Descriptive Geometry
WECHANICS—MACHINER 1.
TEXT-BOOKS AND PRACTICAL WORKS.
Baldwin's Steam Heating for Buildings
Deniemin's Willikies and 1
Chardal's Letters to incomme
Charach's Mechanics of East
" Notes and mamp."
Crehore's Mechanics of the Grand Pulleys
Geometroll's Bells and I disoft
" TOOLIICU CICATAB
Clampton's HITSL LIGHTON
Compton and De Groodt's Speed Lathe
Dana's Elementary Income Pottern Making
Dana's Elementary Mechanics
Dredge's Truis.
m mr
Vol. II., Statics
Wol. III., Kinetics
Fitzgerald's Boston Machinist
Flather's Dynamometers
Hall's Car Lubrication
Hall's Can Filing
Johnson's Theoretical

Jones's Machine Design. Part II., Strength and Proportion of		
Macaine Parts	3 (0
Lanza's Applied Mechanics	7 8	50
MacCord's Kinematics8vo,	5 (00
Merriman's Mechanics of Materials. 8vo,	4 (00
melcanes cost of manufactures	5 (00
*Michie's Analytical Mechanics8vo,	4 (00
Richards's Compressed Air	1 8	50
Robinson's Principles of Mechanism 8vo,	3 (00
Smith's Press-working of Metals	3 (
Thurston's Friction and Lost Work8vo,	3 (00
"The Animal as a Machine	1 (
Warren's Machine Construction	7	
Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)8vo,	5	00
" Mechanics of Engineering. Vol. III., Part I.,		
Sec. I. (Klein.)8vo,	5	00
Weisbach's Mechanics of Engineering. Vol. III., Part I.,		
Sec. II. (Klein.)8vo,	5	
Weisbach's Steam Engines. (Du Bois.)8vo,	5	
Wood's Analytical Mechanics8vo,	3	
Elementary Mechanics	1	
" Supplement and Key12mo,	1	25
METALLURGY.		
IRON-GOLD-SILVER-ALLOYS, ETC.		
Allen's Tables for Iron Analysis8vo,	3	00
Egleston's Gold and MercuryLarge 8vo,	7	50
" Metallurgy of SilverLarge 8vo,	7	50
* Kerl's Metallurgy—Copper and Iron8vo,	15	00
* '' Steel, Fuel, etc 8vo,	15	00
Kunhardt's Ore Dressing in Europe 8vo,	1	50
Metcalf's Steel-A Manual for Steel Users		00
0.70		00
O'Driscoll's Treatment of Gold Ores8vo,		
Thurston's Tron and Steel8vo,	3	50
Thurston's Iron and Steel	3 2	50
Thurston's Iron and Steel8vo,	3 2	
Thurston's Iron and Steel	3 2	50
Thurston's Iron and Steel	3 2 1	50
Thurston's Iron and Steel	3 2 1	50 50
Thurston's Iron and Steel	3 2 1	50 50
Thurston's Iron and Steel	3 2 1 2 2 2	50 50

Brush and Penfield's Determinative Mineralogy. New Ed. 8vo, \$4 00 Chester's Catalogue of Minerals
nou EDS Etc.
STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.
STATIONARY—MARINE—LOCOMOTIVE—GAS ENGINES, ETC.
Baldwin's Steam Heating for Buildings

Reagan's Steam and Electric Locomotives12mo,	\$2	00
Röntgen's Thermodynamics. (Du Bois.)8vo	5	00
Sinclair's Locomotive Running	2	00
Snow's Steam-boiler Practice		
Thurston's Boiler Explosions	1	50
" Engine and Boiler Trials	5	00
" Manual of the Steam Engine. Part I., Structure		
and Theory8vo,	6	00
" Manual of the Steam Engine. Part II., Design,		
Construction, and Operation8vo,	6	00
2 parts,	10	00
Thurston's Philosophy of the Steam Engine		75
" Reflection on the Motive Power of Heat. (Carnot.)		
12mo,		50
Stationary Steam Engines8vo,		50
Steam-poner Construction and Operation		00
Spangler's Valve Gears8vo,		50
Weisbach's Steam Engine. (Du Bois.)8vo,		00
Whitham's Constructive Steam Engineering8vo,		00
Steam-engine Design		00
Wilson's Steam Boilers. (Flather.)		50
Wood's Thermodynamics, Heat Motors, etc8vo,	4	00
TABLES, WEIGHTS, AND MEASURES.		
FOR ACTUARIES, CHEMISTS, ENGINEERS, MECHANICS-MET	RIC	
TABLES, ETC.		
Adriance's Laboratory Calculations	1	25
Allen's Tables for Iron Analysis8vo,		00
Bixby's Graphical Computing Tables Sheet,		25
Compton's Logarithm s	1	50
Crandall's Railway and Earthwork Tables8vo,	1	50
Egleston's Weights and Measures18mo,		75
Fisher's Table of Cubic Yards Cardboard,		25
Hudson's Excavation Tables. Vol. II 8vo,	1	00
Johnson's Stadia and Earthwork Tables	1	25
Ludlow's Logarithmic and Other Tables. (Bass.) 12mo,		00
Totten's Metrology8vo,	2	5 0
VENTILATION.		
STEAM HEATING-HOUSE INSPECTION-MINE VENTILATION	N.	
Baldwin's Steam Heating12mo,		50
Beard's Ventilation of Mines		50
Carpenter's Heating and Ventilating of Buildings8vo,		00
Gerhard's Sanitary House Inspection		00

1 50

MISCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, LanguageGilt edges,	\$	5 00
Bailey's The New Tale of a Tub8vo,		75
Ballard's Solution of the Pyramid Problem8vo,	:	1 50
Barnard's The Metrological System of the Great Pyramid8vo,	:	1 50
Davis's Elements of Law8vo,	,	S 00
Emmon's Geological Guide-book of the Rocky Mountains8vo,		1 50
Ferrel's Treatise on the Winds8vo,		4 00
Haines's Addresses Delivered before the Am. Ry. Assn12mo.	2	3 50
Mott's The Fallacy of the Present Theory of SoundSq. 16mo,		00
Perkins's Cornell UniversityOblong 4to,		L 50
Ricketts's History of Rensselaer Polytechnic Institute8vo,	5	3 00
Rotherham's The New Testament Critically Emphasized.		
12mo,	1	50
" The Emphasized New Test. A new translation.		
Large 8vo,	2	00
Totten's An Important Question in Metrology8vo,	2	50
Whitehouse's Lake MœrisPaper,		25
* Wiley's Yosemite, Alaska, and Yellowstone4to,	9	00
HEBREW AND CHALDEE TEXT-BOOKS.		
FOR SCHOOLS AND THEOLOGICAL SEMINARIES.		
Gesenius's Hebrew and Chaldee Lexicon to Old Testament.		
(Tregelles.)Small 4to, half morocco,	5	00
Green's Elementary Hebrew Grammar		25
" Grammar of the Hebrew Language (New Edition). 8vo,		00
" Hebrew Chrestomathy8vo,		00
Letteris's Hebrew Bible (Massoretic Notes in English).		
8vo, arabesque,	2	25
MEDICAL.		
Bull's Maternal Management in Health and Disease12mo,	-	00
Hammarsten's Physiological Chemistry. (Mandel.)8vo,	4.	00
Mott's Composition, Digestibility, and Nutritive Value of Food.		
Large mounted chart,		25
Ruddiman's Incompatibilities in Prescriptions8vo,		00
Steel's Treatise on the Diseases of the Ox 8vo,		00
"Treatise on the Diseases of the Dog8vo,		50
Woodhull's Military Hygiene	1	50
Worcester's Small Hospitals—Establishment and Maintenance,		
including Atkinson's Suggestions for Hospital Archi-		
tecture	1	25