Problem Sheet No. 2

A roofer tosses a small tool towards a coworker on the ground. What is the minimum horizontal velocity v₀ necessary so that the tool clears point B? Locate the point of impact by specifying the distance s shown in the figure.

Ans. $V_0 = 6.64 \text{ m/s}$, s = 2.49 m

2. The pilot of an airplane carrying a package of mail to a remote outpost wishes to release the package at the right moment to hit the recovery location A. What angle θ with the horizontal should the pilot's line of sight to the target make at the instant of release? The airplane is flying horizontally at an altitude of 100 m with a velocity of 200 km/h.

Ans.
$$\theta = 21.7^{\circ}$$

3. For a certain interval of motion, the pin P is forced to move in the fixed parabolic slot by the vertical slotted guide, which moves in the *x*- direction at the constant rate of 20 mm/s. All measurements are in millimeters and seconds. Calculate the magnitudes of the velocity v and acceleration *a* of pin P when x = 60 mm.

Ans. v = 25 mm/s, a = 5 mm/s²

4. A particle is ejected from a tube at A with a velocity *v* at an angle θ with the vertical *y*-axis. A strong horizontal wind gives the particle a constant horizontal acceleration a in the *x*-direction. If the particle strikes the ground at a point directly under its released position, determine the height *h* of the point A. The downward *y*-acceleration may be taken as constant *g*.

5. In the cathode-ray tube, electrons traveling horizontally from their source with the velocity v_0 are deflected by an electric field E due to the voltage gradient across the plates P. The deflecting forces causes an acceleration in the vertical direction on the sketch equal to eE/m, where e is the electron charge and m is its mass. When clear of the plates, the electrons travel in straight lines. Determine the expression for the deflection δ for the tube and plate dimension shown.

Ans.
$$\delta = \frac{eEl}{mv_0^2} \left(\frac{l}{2} + b \right)$$

Figure - 5

6. A projectile is launched with speed ν_0 from point A. Determine the launch angle θ that results in the maximum range R up the incline of angle α (where $0 \le \alpha \le 90^{\circ}$). Evaluate your results for $\alpha = 0$, 30° and 45° Ans.

$$\theta = \frac{90^{\circ} + a}{2}, \theta = 45^{\circ},60^{\circ},67.5^{\circ}$$

Figure - 6