Algèbre de Boole

Dans l'intégralité de ce problème, E désigne un ensemble.

On appelle algèbre de Boole sur l'ensemble E, toute partie $\mathcal A$ de $\wp(E)$ telle que :

- (1) $\varnothing \in \mathcal{A}$,
- (2) $\forall A \in \mathcal{A}, \overline{A} \in \mathcal{A}$ (où \overline{A} désigne le complémentaire de A dans E) et
- $(3) \qquad \forall A, B \in \mathcal{A}, A \cup B \in \mathcal{A} .$
- 1. Propriétés élémentaires :

Dans cette question $\mathcal A$ désigne une algèbre de Boole sur E .

- 1.a Montrer que $E \in \mathcal{A}$.
- 1.b Etablir: $\forall A, B \in \mathcal{A}, A \cap B \in \mathcal{A}$ et $A \setminus B \in \mathcal{A}$.
- 2. Quelques exemples :
- 2.a Donner un exemple simple d'algèbre de Boole sur E.
- 2.b Soit $(E_1, E_2, ..., E_n)$ une partition de E.

On considère
$$\mathcal{A} = \left\{ \bigcup_{i \in I} E_i \ \left/ I \subset \{1,2,...,n\} \right\} \right.$$

Montrer que \mathcal{A} est une algèbre de Boole.

- 2.c Ici $E = \mathbb{R}$.
 - On considère ${\mathcal A}$ l'ensemble formé par les réunions d'un nombre fini d'intervalles de ${\mathbb R}$.

Montrer que $\mathcal A$ est une algèbre de Boole sur $\mathbb R$.

On rappelle au passage que l'ensemble vide est considéré être un intervalle de $\mathbb R$.

3. Endomorphisme d'algèbre de Boole

Soit \mathcal{A} une algèbre de Boole sur E .

On appelle endomorphisme de A toute application $f: A \to A$ telle que :

- (1) $\forall A \in \mathcal{A}, f(\overline{A}) = \overline{f(A)}$ et
- (2) $\forall A, B \in \mathcal{A}, f(A \cup B) = f(A) \cup f(B)$.
- 3.a Justifier que f(E) = E et $f(\emptyset) = \emptyset$.
- 3.b Montrer que $\forall A, B \in \mathcal{A}, f(A \cap B) = f(A) \cap f(B)$ et $f(A \setminus B) = f(A) \setminus f(B)$.
- 3.c Etablir aussi $\forall A, B \in \mathcal{A}, A \subset B \Rightarrow f(A) \subset f(B)$.
- $\text{3.d} \qquad \text{On note } \ \mathcal{K} = \left\{ A \in \mathcal{A} \big/ f(A) = \varnothing \right\} \ \text{appelé noyau de } \ f \ .$

Montrer que f est injective si et seulement si $\mathcal{K} = \{\emptyset\}$.

4. Description des algèbres de Boole finies.

Soit \mathcal{A} une algèbre de Boole sur E .

4.a On définit une relation binaire notée \mathcal{R} sur E par : $x\mathcal{R}y \Leftrightarrow \forall A \in \mathcal{A}, x \in A \Leftrightarrow y \in A$.

Montrer que \mathcal{R} est une relation d'équivalence sur E.

Pour $x \in E$, nous noterons Cl(x) la classe d'équivalence de x modulo la relation $\mathcal R$, celle-ci est appelée atome de l'algèbre de Boole $\mathcal A$ engendré par l'élément x .

- 4.b Soit $x \in E$. On note $A_x = \{X \in A/x \in X\}$. Etablir que $Cl(x) = \bigcap_{X \in A} X$.
- 4.c On suppose que A est constitué d'un nombre fini d'éléments.
- 4.c.i Montrer que A contient chacun de ses atomes.
- 4.c.ii Montrer que chaque élément de \mathcal{A} peut s'écrire comme une réunion finie d'atomes. Par suite \mathcal{A} se perçoit comme étant du type vu en 2.b.