

ORGANIC CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Reaction Mechanism-II

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

ELECTROPHILIC ADDITION REACTION

1. Correct reactivity order for EAR of following compounds is

$$\begin{array}{ccc} & & & CH_3 \\ I & & I \\ I & & II \\ Ph_2C=CH-CH_3 & & CH_2=CH-NO_2 \\ III & & IV \\ \end{array}$$

- (1) IV > I > II > III
- (2) III > II > I > IV
- (3) II > III > I > IV
- (4) II > III > IV > I

HC0160

- 2. The intermediate during the addition of HCl to propene in the presence of peroxide is
 - (1) $CH_3 \dot{C}H CH_2Cl$ (2) $CH_3 \dot{C}H CH_3$
 - (3) $CH_3 CH_2 \overset{\oplus}{C}H_2$ (4) $CH_3 \dot{C}H CH_3$

HC0161

3.
$$\langle \bigcirc \rangle$$
 - CH=CH-COOH + Br₂ \longrightarrow A

the number of chiral carbons in 'A' are

- $(1)\ 1$
- (2) 2
- (3) 3
- (4) 4

HC0163

 CH_3 -CH= $CH_2 \xrightarrow{dil/H_2SO_4} A$ 4. CH_3 -CH= $CH_2 \xrightarrow{B_2H_6} \xrightarrow{H_2O_2} B$

Wrong statement about the product is

- (1) A and B have the same functional group
- (2) A and B are position isomers.
- (3) A and B show chain isomerism
- (4) Mixed ether is the isomer of both A and B

HC0164

- **5**. Which of the following alkene is most reactive for hydration
 - (1) ethene
- (2) propene
- (3) 1-butene
- (4) 2-methyl propene

HC0165

6. The major product of the following reaction is

$$CH = CH - CH_3 \xrightarrow{\text{(i) Hg(OAc)}_2, H_2O}$$

Build Up Your Understanding

(4)
$$HO - CH = CH - CH_3$$

HC0166

7.
$$CH_3 \xrightarrow{A} CH_3$$
; Reagent 'A' is

- (1) BH₃,H₂O₂/ŎH
- (2) H₀O/H[⊕]
- (3) Hg(OCOCH₃)₂,H₂O/NaBH₄
- (4) Cl₂/aq. NaOH

HC0167

- 8. Which of the following alkenes on hydration gives a tertiary alcohol
 - (1) 2-Butene
- (2) Isobutylene
- (3) Ethene
- (4) α-Butylene

HC0168

9. formed predominant product when 3-methyl-2-pentene reacts with HOCl is

HC0169

- Propene on addition with HI, gives **10**.
 - (1) CH₃—CHI—CH₃
- (2) CH₃—CH₂—CH₂I
- (3) CH₂—CHI—CH₂I
- (4) None of the above

HC0170

Chemistry: Reaction Mechanism - If Toin Telegram: @Chalnaayaaa

11. What is the main product of this reaction?

$$CH_3 - C \equiv CH \xrightarrow{HCl(g)}$$
 ?

(3)
$$CH_3$$
- CH_2 - CH

HC0171

- **12.** 1–Phenyl propene on reaction with HBr gives (as a major product)
 - (1) C₆H₅CH₂CH(Br)CH₃
 - (2) C₆H₅CH(Br)CH₂CH₃
 - (3) C₆H₅CH₂CH₂CH₂Br
 - $(4) C_6H_5CH(Br)CH=CH_9$

HC0173

NUCLEOPHILIC ADDITION REACTION

- Cyanohydrin of the following compound on hydrolysis gives compound that can show optical isomerism:
 - (1) HCHO
- (2) CH₃CHO
- (3) CH₃COCH₃
- (4) All the above

CC0175

- 14. When acetone reacts with Grignard reagent followed by hydrolysis, it gives:
 - (1) 1° –alcohol
- (2) 2° -alcohol
- (3) 3° –alcohol
- (4) Methyl alcohol

CC0178

FREE RADICAL ADDITION REACTION

- Reaction of HBr with propene in the presence of peroxide gives
 - (1) 3-bromo propane
- (2) Allyl bromide
- (3) n-propyl bromide
- (4) Isopropyl bromide

HC0179

- **16.** Isobutylene \xrightarrow{HBr} "product". The product is
 - (1) Isobutyl bromide
- (2) Tert. butyl bromide
- (3) Tert. butyl alcohol
- (4) isobutyl alcohol

HC0180

FREE RADICAL SUBSTITUTION REACTION

- **17**. The nitrating agent for the nitration of alkanes is:
 - (1) Conc. HNO₃
 - (2) Mixture of conc. HNO₃ and conc. H₂SO₄
 - (3) Acetyl nitrate
 - (4) HNO₃ vapours at high temperature

HC0182

- 18. The chain propagating step is fastest in the reaction of an alkane with
 - (1) Fluorine free radical
 - (2) Chlorine free radical
 - (3) Iodine free radical
 - (4) Bromine free radical

HC0183

- In the nitration of propane, the product obtained in maximum yield is
 - (1) 1-nitropropane
- (2) 2-nitropropane
- (3) Nitroethane
- (4) Nitromethane

HC0184

- 20. Only two isomeric monochloro derivatives are possible for (exclude stereo isomers)
 - (1) n-butane
 - (2) 2, 4-dimethyl pentane
 - (3) benzene
 - (4) 2-methyl butane

HC0185

21. What is the chief product obtained when n-butane is treated with bromine in the presence of light at 130° C?

HC0186

ELECTROPHILIC SUBSTITUTION REACTION

- **22**. The strongest deactivating effect on aromatic ring is
 - (1) -CH₂Cl
- (2) -OCH₂
- $(3) CH_3$
- (4) -CCl₃

23. Which of the following is maximum reactive towards E.S.R.:-

AH0188

- **24.** Correct order of reactivity of following compound with an electrophile:-
 - (I) $p-CH_3-C_6H_4-CH_3$
 - (II) $C_6H_5-CH_3$
 - (III) $p-CH_3-C_6H_4-NO_2$
 - (IV) $p-O_2N-C_6H_4-NO_2$
 - (1) I > II > III > IV
- (2) II > I > IV > III
- (3) III > II > I > IV
- (4) IV > III > II > I

AH0189

- **25**. Toluene is more reactive than benzene towards electrophilic reagents due to :-
 - (1) Inductive effect only
 - (2) Hyperconjugative effect only
 - (3) Both inductive as well as hyperconjugative effects
 - (4) Strong mesomeric effect

AH0190

- **26.** Nitration of benzene is
 - (1) nucleophilic substitution
 - (2) nucleophilic addition
 - (3) electrophilic substitution
 - (4) electrophillic addition

AH0191

27. Consider the following compounds:

Correct order of their reactivity in electrophilic substitution reactions would be :-

- (1) I > II > III > IV
- (2) IV > III > II > I
- (3) III > II > I > IV
- (4) III > IV > I > II

AH0192

- **28.** The active species in the nitration of benzene is
 - (1) NO₂⁺
- (2) HNO₃
- (3) NO_3^-
- (4) NO₂
- AH0193

- **29.** The function of anhydrous $AlCl_3$ in the Friedel craft's reaction
 - (1) To absorb water
 - (2) To absorb HCl
 - (3) To produce electrophile
 - (4) To produce Nucleophile

AH0194

30. In which of the following compound the electrophile attack on o- and p- positions:

(1) NC

AH0195

31.
$$\bigcirc$$
 + CH₂=CH₂ $\stackrel{\text{H}^*}{\longrightarrow}$ \bigcirc CH₂-CH₃

Incorrect statement about this reaction

- (1) Benzene is substrate
- (2) Ethene is reagent
- (3) Reaction is EAR with respect to ethene
- (4) Reaction is NSR for benzene

AH0401

32. For the reaction

$$\frac{\text{CH}_3\text{Cl}}{\text{AlCl}_3} \rightarrow \text{(A)} \xrightarrow{\text{Cl}_2} \text{(B)}$$
(major)

Product B is:

NUCLEOPHILIC SUBSTITUTION REACTION

- The correct reactivity order towards H-X will be
- (II) CH₂=CH-CH₂OH
- (III) CH₃-CH₂-OH
- (1) II > I > III > IV
- (2) IV > III > II > I
- (3) II > IV > I > III
- (4) II > IV > III > I

AE0196

- **34.** Which of the following product will be obtained when neopentyl alcohol is treated with conc. HCl in presence of ZnCl₂.
 - (1) t- butyl chloride
- (2) isobutylene
- (3) t– pentyl chloride
- (4) Neo pentyl chloride

AE0197

- **35.** In $S_N 1$ the first step involves the formation of
 - (1) free radical
- (2) carbanion
- (3) carbocation
- (4) final product

HD0198

- To form alkane isonitrile, alkyl halide is reacted **36**. with:
 - (1) KCN
- (2) AgCN
- (3) NaCN
- (4) NH₄CN

HD0199

- **37.** Alkyl fluorides are synthesised by
 - (1) Finkelstein reaction
- (2) Swart reaction
- (3) Kolbe reaction
- (4) Wurtz reaction

HD0201

- The products of reaction of alcoholic silver nitrite **38**. with ethyl bromide are
 - (1) Ethane
- (2) Ethene
- (3) Ethyl alcohol
- (4) Nitro ethane

HD0202

- **39.** For the reaction,
 - $C_{9}H_{5}OH + HX \longrightarrow C_{9}H_{5}X$, the order of reactivity is
 - (1) HI > HCI > HBr
- (2) HI > HBr > HCl
- (3) HCl > HBr > HI
- (4) HBr > HI > HCl

AE0203

- The reaction, $CH_3Br + OH^- \longrightarrow CH_3OH + Br^-$ **40**. obeys the mechanism
 - $(1) S_{N} 1$
- $(2) S_{N} 2$
- (3) E^1
- (4) E^2

HD0204

- 41. Butanenitrile may be prepared by heating
 - (1) Propyl alcohol with KCN
 - (2) Butyl alcohol with KCN
 - (3) Butyl chloride with KCN
 - (4) Propyl chloride with KCN

HD0205

42. The given reaction is an example of

$$C_2H_5Br + KCN(aq.) \longrightarrow C_2H_5CN + KBr$$

- (1) Elimination
- (2) Nucleophilic substitution
- (3) Electrophilic substitution
- (4) Redox change

HD0206

- An alkyl halide may be converted into an alcohol **43**. bυ
 - (1) Addition
- (2) Substitution
- (3) Dehydrohalogenation (4) Elimination

AE0208

- 44. Compound is most reactive towards NaOH in
 - (1) CH₂Cl
- (2) CH₂=CHCl
- $(3) C_6H_5Cl$

- (4) C₆H₅CH₂Cl

HD0209

45. Most stable carbocation formed from

$$(CH_3)_3C$$
-Br, $(C_6H_5)_3CBr$, $(C_6H_5)_2CHBr$ and $C_6H_5CH_2Br$ would be

- (1) $C_6H_5 \overset{\oplus}{C}H_2$
- (2) (CH₃)₃ $\stackrel{\oplus}{C}$
- (3) $(C_6H_5)_3 \stackrel{\oplus}{C}$
- (4) $(C_6H_5)_2 \overset{\oplus}{CH}$

HD0210

- **46**. $S_{N}1$ reaction on an optically active substrate having only one chiral centre which is also reaction centre, gives :-
 - (1) Retention in configuration
 - (2) Inversion in configuration
 - (3) Partially racemised product
 - (4) Complete racemised product

- The hydrolysis of alkyl halides by aqueous NaOH **47**. is best termed as
 - (1) electrophilic substitution reaction
 - (2) electrophilic addition reaction
 - (3) nucleophilic addition reaction
 - (4) nucleophilic substitution reaction

HD0212

- **48**. Reaction of sodium ethoxide and ethyl iodide will give :-
 - (1) Ether
- (2) Ethyl alcohol
- (3) Acetaldehyde
- (4) Acetic acid

HD0213

- **49.** The least reactive chlorine is present in
 - (1) Methyl chloride
- (2) Allyl chloride
- (3) Ethyl chloride
- (4) Vinyl chloride

HD0214

50. Arrange the following compounds in the increasing order of their SN² reactivity?

- (c)
- (d)

- (1) (a) < (b) < (c) < (d)
- (2) (a) < (c) < (d) < (b)
- (3) (d) < (c) < (b) < (a)
- (4) (b) < (d) < (c) < (a)

HD0215

- **51.** Which alcohol produces turbidity with Lucas reagent most slowly
 - (1) 2-Butanol
- (2) t-Butyl alcohol
- (3) Isobutyl alcohol
- (4) Diphenylcarbinol

AE0216

- **52.** The reaction of ethyl iodide with sodium ethoxide is
 - (1) An electrophilic substitution reaction
 - (2) A nucleophilic addition reaction
 - (3) A nucleophilic substitution reaction
 - (4) A free radical substitution reaction

HD0218

- The Williamson synthesis involves :-**53**.
 - (1) A nucleophilic addition
 - (2) An electrophilic substitution
 - (3) SN² displacement
 - (4) SN¹ displacement

HD0219

54. In the Williamson synthesis of ethers given by the general equation -

 $R-X + R'ONa \longrightarrow R-O-R'$ the yield from

R-X follows the sequence:

- (1) $CH_3X > 1^\circ > 2^\circ > 3^\circ$
- (2) $CH_3X < 1^\circ < 2^\circ < 3^\circ$
- (3) $CH_{2}X < 1^{\circ} < 2^{\circ} > 3^{\circ}$
- (4) $CH_3X > 1^\circ < 2^\circ < 3^\circ$

HD0220

- **55**. With conc. HBr ethyl phenyl ether yields :-
 - (1) Phenol and ethyl bromide.
 - (2) Bromobenzene and ethanol
 - (3) Phenol and ethane
 - (4) Bromobenzene and ethane

HD0221

ELIMINATION REACTION

- The reactivity of alkyl halides in E² elimination **56**. reactions follows the order
 - (1) R-I < R-Br < R-CI < R-F
 - (2) R-F < R-Cl < R-Br < R-I
 - (3) R-I > R-Cl > R-Br < R-F
 - (4) R-I < R-Br < R-F < R-CI

HD0223

- **57**. The unimolecular elimination involves formation of
 - (1) A free radical
- (2) A carbanion
- (3) A carbocation
- (4) A biradical

HD0224

- **58**. Which of the following alkyl halides gives a mixture of alkenes on dehydrohalogenation
 - (1) n-Propyl halide
 - (2) Isopropyl halide
 - (3) s-Butyl bromide
 - (4) t-Butyl bromide

59. Arrange the following alkanols A, B and C in order of their reactivity towards acid catalysed dehydration:-

- (1) A > B > C
- (2) B > A > C
- (3) B > C > A
- (4) C > B > A

AE0228

60. The major product in the following reaction is

$$CH_2-OH \xrightarrow{H^*} ?$$

$$CH_2-OH \xrightarrow{H^*} ?$$

$$CH_2 - CH_2 - CH_2$$

HD0229

61. Arrange the following alkyl halides in decreasing order of the rate of elimination reaction with alcoholic KOH.

(A)
$$CH_3$$
– C – CH_2 – Br (B) CH_3 – CH_2 – Br CH_3

- (C) CH₃-CH₂-CH₂-Br
- (1) A > B > C
- (2) C > B > A
- (3) B > C > A
- (4) A > C > B

HD0231

62.
$$CH_2$$
-OH $A \xrightarrow{H^{\oplus}} A \xrightarrow{HBr} B$

What is the structure of B:-

AE0415

ANSWER KEY **EXERCISE-I** (Conceptual Questions) Que. Ans. Que. Ans. Que. Ans. Que. Ans. Que. Ans.

EXERCISE-II (Previous Year Questions)

AIPMT 2006

- **1.** Nucleophilic addition reaction will be most favoured in :
 - O || (1) CH₃CH₂CH₂-C-CH₃
 - O || (2) CH₃-C-CH₃
 - O || (3) CH₃-CH₂-CH₂-C-H
 - O || (4) CH₃–C–H

CC0232

- **2.** The major organic products of reaction are $CH_3-O-CH(CH_3)_2 + HI \longrightarrow$
 - (1) CH₃OH +(CH₃)₂CHI
 - (2) ICH₂-O-CH(CH₃)₂
 - (3) CH₃-O-C(CH₃)₂
 - (4) CH₃I+ (CH₃)₂CHOH

AE0233

AIPMT 2007

3. Predict the product 'C' obtained in the following reaction of 1-butyne:

$$CH_3$$
- CH_2 - C = CH \xrightarrow{HCl} B \xrightarrow{HI} C

- (1) CH₃-CH₂-CH₂-C-H Cl
- (2) CH₃-CH₂-CH-CH₂Cl
- (4) CH₃-CH-CH₂-CH₂
 Cl

HC0235

AIPMT/NEET

- **4.** The order of decreasing reactivity towards electrophilic reagent for the following:
 - (a) Benzene
- (b) Toluene
- (c) Chloro benzene
- (d) Phenol
- (1) b > d > a > c
- (2) d > c > b > a
- (3) d > b > a > c
- (4) a > b > c > d

AH0236

- **5.** For the following:
 - (a) I⁻
- (b) Cl⁻
- (c) Br⁻

the increasing order of nucleophilicity would be:

- (1) $Cl^{-} < Br^{-} < l^{-}$
- (2) $I^- < Cl^- < Br^-$
- (3) $Br^{-} < Cl^{-} < l^{-}$
- (4) $I^- < Br^- < Cl^-$

HD0237

6. In the reaction :

$$CH_3$$

 CH_3 - CH_4 - CH_3 - CH_3 + $HI \longrightarrow \dots$

which of following compounds will be formed:

- (1) CH₃-CH-CH₃ + CH₃-CH₂-OH CH₃
- (2) CH₃-CH-CH₂-OH + CH₃-CH₃ CH₃
- (3) CH₃-CH-CH₂-OH + CH₃-CH₂-I CH₃
- (4) CH₃-CH-CH₂-I + CH₃-CH₂-OH CH₃

AE0238

AIPMT 2008

7. $\begin{matrix} CH_3 \\ H_3C-CH-CH=CH_2 + HBr \longrightarrow A \end{matrix}$

A (Predominantly) is:

$$CH_3$$

(1) CH_3 –C– CH_2CH_3

(2) CH₃-CH-CH-CH₃

$$CH_3$$
 Br

(3) CH₃-CH-CH-CH₃

(4) CH₃-CH-CH₂-CH₂Br

HC0239

- **8.** In a SN^2 substitution reaction of the type $R-Br+Cl^{\Theta} \xrightarrow{DMF} R-Cl+Br^{\Theta}$, which one of the following has the highest relative rate?
 - CH₃ (1) CH₃-CH-CH₂Br
- CH₃ (2) CH₃–C–CH₂Br
- (3) CH₃-CH₂Br
- (4) CH₃-CH₂-CH₂Br

HD0240

- **9.** Which one of the following is most reactive towards electrophilic attack?
 - (1) NO₂
- (2) OH
- (3) Cl
- (4) CH₂OH

AH0241

- **10.** The relative reactivities of acyl compounds towards nucleophillic substitution are in the order of :-
 - (1) Acid anhydride>Amide > Ester >Acyl chloride
 - (2) Acyl chloride >Ester>Acid anhydride > Amide
 - (3) Acyl chloride >Acid anhydride >Ester> Amide
 - (4) Ester >Acyl chloride>Amide >Acid anhydride

CA0242

AIPMT 2009

- **11.** Benzene reacts with CH₃Cl in the presence of anhydrous AlCl₃ to form :-
 - (1) Xylene
- (2) Toluene
- (3) Chlorobenzene
- (4) Benzylchloride

AH0243

- **12.** Nitrobenzene can be prepared from benzene by using a mixture of conc. HNO₃ and conc. H₂SO₄. In the mixture, nitric acid acts as a/an:
 - (1) Catalyst
- (2) Reducing agent
- (3) Acid
- (4) Base

AH0244

- **13.** Which of the following reactions is an example of nucleophilic substitution reaction?
 - (1) $RX + Mg \longrightarrow RMgX$
 - (2) $RX + KOH \longrightarrow ROH + KX$
 - (3) $2RX + 2Na \longrightarrow R R + 2NaX$
 - (4) $RX + H_2 \longrightarrow RH + HX$

HD0245

AIPMT 2010

- **14.** Which one is most reactive towards SN¹reaction?
 - (1) $C_6H_5CH_2Br$
 - (2) C₆H₅CH(C₆H₅)Br
 - (3) C₆H₅CH(CH₃)Br
 - (4) $C_6H_5C(CH_3)(C_6H_5)Br$

HD0246

- **15.** Among the given compounds, the most susceptible to nucleophilic attack at the carbonyl group is:-
 - (1) CH₃COCl
 - (2) CH₃COOCH₃
 - (3) CH₃CONH₂
 - (4) CH₃COOCOCH₃

CA0247

16. Which one is most reactive towards electrophilic reagent?

$$(1) \bigcirc OCH_3 \qquad (2)$$

AH0248

- 17. The reaction of toluene with Cl₂ inpresence of FeCl₃ gives 'X' and reaction in presence of light gives 'Y'. Thus, 'X' and 'Y' are:-
 - (1) X = Benzyl chloride,
 - Y = m-chlorotoluene
 - (2) X = Benzal chloride,
 - Y = o-chlorotoluene
 - (3) X = m-chlorotoluene,
 - Y = p-chlorotoluene
 - (4) X = o- and p-chlorotoluene
 - Y = Trichloromethyl benzene

18. Which one of the following compounds will be most readily dehydrated?

HD0250

19. The correct order of increasing reactivity of C–X bond towards nucleophile in the following compounds is :-

- (III) (1) III < II < I < IV
- (2) I < II < IV < III

(IV)

- (3) II < III < I < IV
- (4) IV < III < I < II

HD0251

AIPMT Pre-2011

20. Which one is a nucleophilic substitution reaction among the following?

(1)
$$CH_3$$
– CH = CH_2 + $H_2O \xrightarrow{H^+} CH_3$ – CH – CH_3 | OH

(2) RCHO + R'MgX
$$\longrightarrow$$
 R-CH-R' OH

$$(3) CH_3-CH_2-CH-CH_2Br + NH_3 \longrightarrow$$

(4) CH₃CHO + HCN → CH₃CH(OH)CN

HD0255

AIPMT Mains-2011

21. Which of the following compounds undergoes nucleophilic substitution reaction most easily?

HD0256

22. The order of reactivity of phenyl magnesium bromide (PhMgBr) with the following compounds:-

$$CH_3$$
 $C=O$ CH_3 $C=O$ and Ph $C=O$ (I) (II) (III)

- (1) I > II > III
- (2) III > II > I
- (3) II > I > III
- (4) I > III > II

CC0257

23. Consider the reaction :

(i)
$$(CH_3)_2CH-CH_2Br \xrightarrow{C_2H_5OH}$$

 $(CH_3)_2CH-CH_2OC_2H_5 + HBr$

(ii)
$$(CH_3)_2CH-CH_2Br \xrightarrow{C_2H_5O^-}$$

 $(CH_3)_2CH-CH_2OC_2H_5 + Br^-$

The mechanisms of reaction (i) and (ii) are respectively:-

- (1) S_{N^2} and S_{N^1}
- (2) S_{N^1} and S_{N^2}
- (3) S_{N^1} and S_{N^1}
- (4) S_{N^2} and S_{N^2}

AIPMT Pre.-2012

- Acetone is treated with excess of ethanol in the 24. presence of hydrochloric acid. The product obtained is:
 - (1) $(CH_3)_2C < OH OC_2H_5$ (2) $(CH_3)_2C < OC_2H_5 OC_2H_5$

 - O || (3) CH₃CH₂CH₂-C-CH₃
 - O || (4) CH₃CH₂CH₂-C-CH₂CH₂CH₃

CC0261

25. In the following reaction:

$$\begin{array}{c} CH_{3} \\ CH_{3} - C - CH = CH_{2} \xrightarrow{H_{2}O/H^{\oplus}} A + B \\ CH_{3} & \text{Major product Minor product} \end{array}$$

The major product is :-

- $\begin{array}{c} \operatorname{CH_3} \\ \text{(1)} \\ \operatorname{H_3C-C} & \operatorname{CH-CH_3} \\ \operatorname{CH_3} \\ \operatorname{OH} \end{array}$
- CH₃ (2) H₃C-C-CH₂-CH₂ CH₃ OH
- CH₃ (3) H₃C-C—CH-CH₃ OHCH₃
- CH₃ (4) H₂C—C-CH₂-CH₃ OH CH₃

HC0262

AH0263

- **26.** Among the following compounds the one that is most reactive towards electrophilic nitration is:
 - (1) Toluene
 - (2) Benzene
 - (3) Benzoic Acid
 - (4) Nitrobenzene

NEET-UG 2013

- **27**. Which of the following compounds will not undergo Friedal-Craft's reaction easily:-
 - (1) Toluene
 - (2) Cumene
 - (3) Xylene
 - (4) Nitrobenzene

AH0264

- Among the following ethers, which one will **28**. produce methyl alcohol on treatement with hot concentrated HI?
 - (1) CH₃-CH-CH₂-O-CH₃ | | CH₃
 - (2) CH₃-CH₂-CH₂-CH₂-O-CH₃

 - CH₃ (4) CH₃-C-O-CH₃ CH₃

AE0265

AIPMT 2014

29. Which of the following compounds will undergo racemisation when hydrolysed by solution of KOH

- (2) CH₃CH₂CH₂Cl
- (3) H₃C-CH-CH₂Cl

30. What products are formed when the following compound is treated with Br_2 in the presence of $FeBr_3$?

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$Br$$

$$CH_{3}$$

(3) Br
$$CH_3$$
 and CH_3 CH_3

and

$$(4) \bigcirc CH_3 \qquad \text{and} \qquad CH_3$$

$$CH_3 \qquad \text{ord} \qquad CH_3$$

AH0270

31. Identify Z in the sequence of reactions:

$$CH_{3}CH_{2}CH = CH_{2} \xrightarrow{HBr/H_{2}O_{2}} Y \xrightarrow{C_{2}H_{5}ONa} Z$$

- (1) CH₃-(CH₂)₃-O-CH₂CH₃
- (2) (CH₃)₂CH₂-O-CH₂CH₃
- (3) CH₃(CH₂)₄-O-CH₃
- (4) CH₃CH₂-CH(CH₃)-O-CH₂CH₃

HC0271

32. Which one is most reactive towards Nucleophilic addition reaction?

CC0272

AIPMT 2015

- **33.** The reaction of $C_6H_5CH = CHCH_3$ with HBr produces:-
 - (1) C₆H₅CH₂CHCH₃ Br
 - (2) C₆H₅CH₂CH₂CH₂Br

HC0277

- **34.** Treatment of cyclopentanone O with methyl lithium gives which of the following species?
 - (1) Cyclopentanonyl cation
 - (2) Cyclopentanonyl radical
 - (3) Cyclopentanonyl biradical
 - (4) Cyclopentanonyl anion

CC0278

35. Which of the following is the most **correct** electron displacement for a nucleophilic reaction to take place?

(3)
$$H_3C \rightarrow C = \overrightarrow{C} - C - CI$$

GC0084

Pro-Modical

Re-AIPMT 2015

36. In the reaction with HCl, an alkene reacts in accordance with the Markovnikov's rule, to give a product 1-chloro-1-methylcyclohexane. The possible alkene is:

- (3) (1) and (2)
- (4)

HC0279

- **37.** Reaction of carbonyl compound with one of the following reagents involves nucleophilic addition followed by elimination of water. The reagent is:
 - (1) hydrocyanic acid
 - (2) sodium hydrogen sulphite
 - (3) a Grignard reagent
 - (4) hydrazine in presence of feebly acidic solution

CC0280

38. Which one of the following esters gets hydrolysed *most easily* under alkaline conditions?

(3)
$$O_2N$$
 OCOCH₃

CA0281

- **39.** In an $S_N 1$ reaction on chiral centres, there is :
 - (1) 100% retention
 - (2) 100% inversion
 - (3) 100% racemization
 - (4) inversion more than retention leading to partial recemization

HD0282

 ${\bf 40.}$ Which of the following is not the product of

dehydration of OH?

HD0283

- **41.** Which of the following reaction(s) can be used for the preparation of alkyl halides?
 - (I) $CH_3CH_2OH + HCl \xrightarrow{anh.ZnCl_2}$
 - (II) $CH_3CH_2OH + HCl \longrightarrow$
 - (III) $(CH_2)_3COH + HCl \longrightarrow$
 - (IV) $(CH_2)_2CHOH + HCl \xrightarrow{anh.ZnCl_2}$
 - (1) (IV) only
 - (2) (III) and (IV) only
 - (3) (I), (III) and (IV) only
 - (4) (I) and (II) only

AE0284

NEET-I 2016

- **42.** In the reaction
- $H-C = CH \frac{(1) \text{NaNH}_2 / \text{liq.NH}_3}{(2) \text{CH}_3 \text{CH}_2 \text{Br}} \times \frac{(1) \text{NaNH}_2 / \text{liq.NH}_3}{(2) \text{CH}_3 \text{CH}_2 \text{Br}} Y$

X and Y are:

- (1) X = 1-Butyne; Y = 3-Hexyne
- (2) X = 2-Butyne; Y = 3-Hexyne
- (3) X = 2-Butyne; Y = 2-Hexyne
- (4) X = 1-Butyne; Y = 2-Hexyne

HD0293

- **43.** Which of the following reagents would distinguish cis-cyclopentane-1,2-diol from its trans-isomer?
 - (1) Acetone
 - (2) Ozone
 - (3) MnO₂
 - (4) Aluminium isopropoxide

CC0294

- **44.** The product formed by the reaction of an aldehyde with a primary amine is :-
 - (1) Schiff base
- (2) Ketone
- (3) Carboxylic acid
- (4) Aromatic acid

CC0295

- **45.** Consider the nitration of benzene using mixed conc. H_2SO_4 and HNO_3 . If a large amount of KHSO $_4$ is added to the mixture, the rate of nitration will be:-
 - (1) faster
- (2) slower
- (3) unchanged
- (4) doubled

AH0296

- **46.** For the following reactions :-
 - (a) $CH_3CH_2CH_2Br + KOH \rightarrow CH_3CH=CH_2+KBr + H_2O$

(b)
$$H_3C$$
 CH_3 H_3C CH_3 $+$ KBr OH

(c)
$$\bigcirc$$
 + Br₂ \longrightarrow \bigcirc Br

Which of the following statement is **correct**?

- (1) (a) and (b) are elimination reaction and (c) is addition reaction
- (2) (a) is elimination, (b) is substitution and (c) is addition reaction
- (3) (a) is elimination, (b) and (c) are substitution reactions
- (4) (a) is substitution, (b) and (c) are addition reaction

HD0297

47. The reaction

Can be classified as :-

- (1) Williamson ether synthesis reaction
- (2) Alcohol formation reaction
- (3) Dehydration reaction
- (4) Williamson alcohol synthesis reaction

HD0298

NEET-II 2016

- **48.** Which of the following compounds shall not produced propene by reaction with HBr followed by elimination or direct only by elimination reaction?
 - (1) $H_2C = C = O$
- (2) $H_3C-C-CH_2Br$
- (3) H₂C—CH
- (4) $H_3C-C-CH_2OH$

HD0299

49. In the given reaction

the product P is :-

AH0300

- **50.** The compound that will react most readily with gaseous bromine has the formula
 - $(1) C_4 H_{10}$
- (2) C_2H_4
- $(3) C_3H_6$
- (4) C₂H₂

HC0301

- **51.** Which of the following can be used as the halide component for Friedel-Crafts reaction?
 - (1) Chloroethene
 - (2) Isopropyl chloride
 - (3) Chlorobenzene
 - (4) Bromobenzene

AH0302

52. Consider the reaction

CH₃CH₂CH₂Br + NaCN → CH₃CH₂CH₂CN + NaBr

This reaction will be the fastest in

- (1) N,N'-dimethylformamide (DMF)
- (2) water
- (3) ethanol
- (4) methanol

53. In pyrrole

The electron density is maximum on :-

- (1) 2 and 4
- (2) 2 and 5
- (3) 2 and 3
- (4) 3 and 4

GC0091

NEET(UG) 2017

Predict the correct intermediate and product in the following reaction:

$$H_{3}C\text{--}C\equiv CH\xrightarrow{H_{2}O,\ H_{2}SO_{4}} \text{Intermediate} \longrightarrow \text{product}$$
 (A) (B)

- (3) $A : H_3C-C=CH_2$ $B : H_3C-C-CH_3$ O O (4) $A : H_3C-C=CH_2$ $B : H_3C-C-CH_3$ $B : H_3C-C-CH_3$ O O

CC0311

NEET(UG) 2018

- **55**. Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - (1) In spite of substituents nitro group always goes to only m-position.
 - (2) In electrophilic substitution reactions amino group is meta directive.
 - (3) In absence of substituents nitro group always goes to m-position
 - (4) In acidic (strong) medium aniline is present as anilinium ion.

AH0315

In the reaction **56**.

$$\begin{array}{c} OH & O^{-}Na^{+} \\ \hline \\ O + CHCl_{3} + NaOH \\ \hline \end{array}$$

the electrophile involved is

- (1) dichloromethyl cation (ČHCl_o)
- (2) formyl cation ($\overset{\oplus}{C}HO$)
- (3) dichloromethyl anion (CHCl₂)
- (4) dichlorocarbene (:CCl₂)

AE0316

57. Which of the following carbocations is expected to be most stable?

GC0317

NEET(UG) 2020

- **58**. Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give:
 - (1) Isobutyl alcohol
 - (2) Isopropyl alcohol
 - (3) Sec. butyl alcohol
 - (4) Tert. butyl alcohol

AE0416

59. Anisole on cleavage with HI gives:

(1)
$$+ C_2H_5OH$$

$$4) + C_2H_5I$$

AE0417

- **60.** Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:
 - (a) β -Elimination reaction
 - (b) Follow Zaitsev rule
 - (c) Dehydrohalogenation reaction
 - (d) Dehydration reaction
 - (1) (a), (b), (d)
- (2) (a), (b), (c)
- (3) (a), (c), (d)
- (4) (b), (c), (d)

HD0418

NEET(UG) 2020 (COVID-19)

- **61.** Which of the following compound is most reactive in electrophilic aromatic substitution?
 - (1) Cl

- (3)
- (4) OH

AH0419

- **62.** Which of the following will **NOT** undergo $S_N 1$ reaction with $\overline{O}H$?
 - (1) $CH_2 = CH CH_2Cl$
 - (2) (CH₃)₃ CCl

HD0420

- **63.** Which of the following is a free radical substitution reaction?
 - (1) Benzene with Br₂/AlCl₃
 - (2) Acetylene with HBr
 - (3) Methane with Br₂/hv
 - (4) Propene with HBr/(C₂H₅COO)₃

HC0421

NEET(UG) 2021

64. The major product of the following chemical reaction is:

$$CH_3$$
 CH $-CH$ $= CH_2 + HBr \frac{(C_6H_5CO)_2O_2}{(CH_3CO)_2O_2}$?

(1)
$$CH_3$$
 CH CH_2 CH_2 CH_2 CH_3

(2)
$$CH_3$$
 CH CH_2 CH_2 CH_2 CH_2 CH_3

(4)
$$CH_3$$
 CBr-CH₂-CH₃

HC0422

NEET (UG) 2022

- **65.** The incorrect statement regarding chirality is:
 - (1) The product obtained by $S_N 2$ reaction of haloalkane having chirality at the reactive site shows inversion of configuration,
 - (2) Enantiomers are superimposable mirror images of each other.
 - (3) A racemic mixture shows zero optical rotation.
 - (4) $S_N 1$ reaction yields 1:1 mixture of both enantiomers.

HD0432

NEET (UG) 2022 (Overseas)

- **66.** The increasing order of reactivity of the following compounds towards acid catalysed dehydration is
 - (a) CH₃-CH₂-OH

(d) $CH_3-C(CH_3)_9-OH$

Choose the **correct answer** from the options given below :

$$(1)$$
 (b) < (a) < (c) < (d)

$$(2)$$
 (a) < (c) < (d) < (b)

$$(4)$$
 (b) < (c) < (a) < (d)

AE0433

Re-NEET (UG) 2022

67. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

> Assertion (A): Chlorine is an electron withdrawing group but it is ortho, para directing in electrophilic aromatic substitution.

Reason (R):

Inductive effect of chlorine destabilises intermediate carbocation formed during the electrophilic substitution, however due to the more pronounced resonance effect, the halogen stabilises the carbocation at ortho and para positions.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (3) **(A)** is correct but **(R)** is not correct
- (4) **(A)** is not correct but **(R)** is correct.

AH0434

68. Which of the following reactions is not an example for nucleophilic addition - elimination reaction?

 $CH_3CH = N-OH+H_9O$

(3) CH₃CHO+C₆H₅NHNH₂

CH₃CH=N-NHC₆H₅+H₂O

(4)
$$CH_3CHO + NH_3$$

CH₃CH= NH + H₂O

CC0435

EXERCISE-II (Previous Year Questions)									ANSWER KEY							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Ans.	4	4	3	3	1	3	1	3	2	3	2	4	2	4	1	
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Ans.	2	4	2	2	3	2	1	4	2	3	1	4	4	4	3	
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	
Ans.	1	4	4	4	2	3	4	3	4	4	3	1	1	1	2	
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
Ans.	2	1	1	1	3	2	1	2	3	4	4	3	4	2	2	
Que.	61	62	63	64	65	66	67	68								
Ans.	4	3	3	1	2	1	1	1								

EXERCISE-III (Analytical Questions)

 CH_3

1. Ph-CH= $\overset{1}{C}$ -CH₃ + HBr $\xrightarrow{\text{Peroxide}}$ (X)

'X' is

$$\begin{array}{ccc} & \operatorname{Br} & \operatorname{CH}_3 \\ & \operatorname{I} & \operatorname{I} \\ \text{(1) Ph-CH-CH-CH}_3 \end{array}$$

(3) Ph–CH
$$_2$$
–CH–CH $_2$ –Br CH $_3$

(4) Ph–CH=C–CH
$$_2$$
–Br CH $_3$

HC0335

2. CH_3 CH_3

A (major product) is

(1)
$$CH_3$$
– CH – CHD – CH_2 – OH
 CH_3

(2)
$$CH_3$$
– CH – CH – CH_2 – D
 CH_3 OH

HC0337

3. Hydration of in presence of

H₂SO₄/HgSO₄ gives

HD0339

Master Your Understanding

4. Identify correct order of reactivity for electrophilic substitution reaction of the following compounds:-

$$(1) \bigcirc Cl \qquad NO_2 \qquad CH_3 \qquad CHO$$

$$< \bigcirc CH \qquad < \bigcirc CH$$

(3)
$$\bigcirc$$
 CHO \bigcirc NO₂ CH₃ \bigcirc CH \bigcirc CH

$$(4) \bigcirc O_2 \bigcirc C_1 \bigcirc C_{H_3} \bigcirc O_3 \bigcirc O_3$$

AH0340

5. $\langle \bigcirc \rangle$ O-C- $\langle \bigcirc \rangle$ $\xrightarrow{\text{NO}_2}$ Product is :-

$$(1) \bigcirc \bigcirc$$

(3)
$$O_2N - O - C - O$$

$$(4) \left\langle \begin{array}{c} NO_2 \\ O \\ -C - C \end{array} \right\rangle$$

6. p- nitro toluene on further nitration gives

(2)
$$\bigcap_{NO_2}^{CH_3}$$

(3)
$$\bigcap_{NO_2}^{CH_3}$$
 $\bigcap_{NO_2}^{NO_2}$

$$(4) \underbrace{OOD}_{OOD} OODD$$

AH0342

7. Which of the following reaction gives t-butyl benzene:

(1)
$$C_6H_6$$
 + t-butyl chloride, $\xrightarrow{AlCl_3}$

(2)
$$C_6H_6 + (CH_3)_2C = CH_2 \xrightarrow{HF}$$

(3)
$$C_6H_6$$
 + t-butyl alcohol $\xrightarrow{H_2SO_4}$

(4) All of them

AH0343

- **8.** Halogenation of alkanes gives a mixture of monohalo products. The ease of substitution follows the order
 - (1) Tertiary H > primary H > secondary H
 - (2) Primary H < secondary H < tertiary H
 - (3) Primary H > secondary H > tertiary H
 - (4) Secondary H > tertiary H < primary H

GC0344

- **9.** The number of different substitution products possible when ethane is allowed to react with bromine in sunlight are
 - (1)9
- (2)6
- (3) 8
- (4)5

HC0345

- 10. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives
 - (1) o-cresol
 - (2) p-cresol
 - (3) 2, 4-dihydroxy toluene
 - (4) Benzyl alcohol

HC0346

11. Which gives maximum yield of C₂H₅Cl

(1)
$$C_2H_6 + Cl_2 \xrightarrow{hv, light} C_2H_5Cl + HCl$$
 excess

(2)
$$C_2H_6 + Cl_2 \xrightarrow{hv} C_2H_5Cl + HCl$$

excess

(3)
$$C_2H_6 + Cl_2 \xrightarrow{hv} C_2H_5Cl$$

(4)
$$C_2H_6+Cl_2 \xrightarrow{Dark} C_2H_5Cl + HCl^{-1}$$

HC0347

12. Which of the following has maximum nucleophilicity:-

(2)
$$CH_3 - O^{\Theta}$$

$$(4)$$
 \bigcirc \bigcirc \bigcirc \bigcirc

HD0348

- **13.** Alkaline hydrolysis of 2,2-dichloropropane gives
 - (1) Acetone
- (2) 2,2-propane-diol
- (3) Propane
- (4) Propan-2-ol

HD0350

14. Electrophile $\stackrel{\oplus}{NO}_{2}$ attacks the following :

$$(II)$$
 NO_2

- in which cases $\overset{\scriptscriptstyle{\oplus}}{\text{NO}}_2$ will attack at meta position
- (1) II and IV
- (2) I, II and III
- (3) III and IV
- (4) I only

15. Which of the following statement is correct for SN² mechanism

- (1) In (c) carbon atom is sp³ hybridized
- (2) In (c) carbon atom is sp² hybridised
- (3) (a) and (e) are electrophiles
- (4) (c) is more stable then (d)

HD0352

16. Following reaction is

$$CH_{3}(CH_{2})_{5} \xrightarrow{H} HO-C \xrightarrow{OH} HO-C$$

$$H_{3}C \xrightarrow{OH} HO-C \xrightarrow{CH_{3}} CH_{3}$$

- (1) E_{1}
- (2) S_{N^1}
- (3) E_2
- (4) S_{N^2}

HD0353

17.
$$\overset{3}{\text{CH}_3} \overset{2}{\overset{-\text{CH}}{\overset{-\text{CH}_2\text{Cl}}{\overset{-\text{aq. KOH}}{\overset{-\text{CH}}}{\overset{-\text{CH}}{\overset{-\text{CH}}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}}{\overset{-\text{CH}}}{\overset{-\text{CH}$$

In the above reaction the attack of a nucleophile would be from which side

- (1) On the front side of Cl of C_1 carbon
- (2) On C₂ carbon
- (3) On the rear side of Cl of C₁ carbon
- (4) On C₃ carbon

HD0354

- **18.** Which of the following ether can not be prepared by Williamson's method:-
 - (1) Ditertbutyl ether
 - (2) Ethyl-tert-butyl ether
 - (3) Anisole
 - (4) 1 & 2 Both

AE0355

19. Major product of the reaction :-

$$(CH_3)_3C-Cl + C_2H_5ONa \longrightarrow$$

would be :-

- $(1) (CH_3)_2 C OC_2 H_5$
- $(2) (CH_3)_3 C C_2 H_5$
- (3) $(CH_3)_2C=CH_2$
- (4) CH_3 -CH=CH- C_9H_5

HD0357

- **20.** The major product obtained on treatment of CH₂CH₂CH(F)CH₂ with CH₂O⁻/CH₂OH is
 - (1) CH₃CH₂CH(OCH₃)CH₃
 - (2) CH₃CH=CHCH₃
 - (3) CH₃CH₂CH=CH₂
 - (4) CH₃CH₂CH₂CH₂OCH₃

HD0359

21. CH_3 OH $\xrightarrow{H^+}$ X (major) 'A' is

HD0361

22. In following two columns:

Column-I

(a) CH_3 - CH_2 - $Br + HS^- \rightarrow CH_3$ - CH_2 - $SH + Br^-$

OH
(b)
$$(CH_3)_2C = CH_2 + HOCl \rightarrow (CH_3)_2C - CH_2 - Cl$$

(c)
$$CH_3$$
- CH_2 - $Br + -OH \rightarrow CH_2$ = CH_2 + $H_2O + Br$

(d)
$$(CH_3)_3C-CH_2-OH + H-Br \rightarrow (CH_3)_2CBrCH_2-CH_3 + H_2O$$

(e)
$$\stackrel{\text{Cl}}{\longrightarrow}$$
 $\stackrel{\text{OH}}{\longrightarrow}$

Column-II

- (1) Nucleophilic substitution
- (2) Elimination
- (3) Electrophilic substitution
- (4) Electrophilic addition
- (5) Rearrangement reaction
- (1) a, d \rightarrow 1, b \rightarrow 4, c \rightarrow 2, e \rightarrow 1
- (2) e, a, $d \rightarrow 1$, $b \rightarrow 4$, $c \rightarrow 3$
- (3) a, $e \rightarrow 1$, $b \rightarrow 4$, $c \rightarrow 2$, $d \rightarrow 5$
- (4) a, $c \rightarrow 1$, $b \rightarrow 4$, $e \rightarrow 3$, $d \rightarrow 5$

- **23.** Which is not correct about nitration?
 - (1) $\overset{\mbox{\tiny \tiny T}}{\mbox{\tiny NO}_2}$ is an attacking electrophile
 - (2) In general, nitration is monosubstitution process
 - (3) In nitrating mix, $\mbox{HNO}_{\mbox{\tiny 3}}$ acts as acid, & $\mbox{H}_{\mbox{\tiny 2}}\mbox{SO}_{\mbox{\tiny 4}}$ acts as base
 - (4) In nitrating mix HNO_3 acts as base & H_2SO_4 acts as an acid

