Welcome in the fabulous world of GRIB coding - written by users for users

Making Everything Easier

GRIB2 and EcCodes for TOUMMIES"

Learn:

How to get through the GRIB2/EcCodes jungle!

Dörte Liermann, DWD COSMO-GM 2019

Learn more about GRIB2 and ecCodes

Everything you always wanted to know about GRIB2 and ecCodes but were afraid to ask

GRIB2/EcCodes in a NUTSHELL with practical examples

GRIB2 / EcCodes for COSMO / ICON

- **✓** GRIB2 structure compared to GRIB1?
- **✓** Basics, Features and Tools of EcCodes
- ✓ Interpretation and modifying of GRIB2 messages
 - **✓** Coding differences **✓** What is new with GRIB2?
 - ✓ FAQ / Summary + Support (🎉 pitfall) / LINKS

WMO GRIB(2) definition

GRIB? = <u>WMO Binary Code Form: FM 92 GRIB</u>

Standard code for forecast products

- GRIdded Binary : Edition 0 (1985), Edition 1 (1990)
- GRIB2 = General Regularly distributed Information in Binary form: Edition 2 (2001)

http://www.wmo.int/pages/prog/www/WMOCodes/ManualonCodes.html

- Data encoded in GRIB consists of a continuous bit-stream made of a sequence of octets (1 octet = 8 bits).
- Self explaining, compressed, table (and template) driven format
- GRIB message contains meta data (explaining the product, grid,...) plus packed data values
- Updated twice a year: May 2019 (Version 23), November 2019 (Version 24)
- In GRIB 2 the description of the data (parameter, time, statistics, ...) is **more complex** and is more template/table based
- In GRIB2 a lot more meta data are defined for accurate encoding
- In GRIB 2 several meta data are defined with higher precision
 - lat/lon are in micro-degrees
 - more (>255) vertical coordinate parameters possible
 - longer (3 vs 8 octets) GRIB message possible

Comparing GRIB1 – GRIB2

GRIB 1

SECTION 0 Indicator (GRIB)

SECTION 1 Product definition SECTION 2 Grid Description

SECTION 3 Bitmap

SECTION 4 Binary Data

SECTION 5 End (7777)

GRIB 2

SECTION 0 Indicator(GRIB,...)

SECTION 1 Identification

SECTION 2 (Local Use)

SECTION 3 Grid Definition 4

✓ template.4.xxx.def

template.3.xxx.def

SECTION 4 Product Definition

SECTION 5 Data Representation

SECTION 6 Bitmap

SECTION 7 Binary Data

SECTION 8 End (7777)

- Each section first contains length and number of section plus content (mainly) provided via templates
- Each section may contain local entries (local tables)
- Local section 2 is optional and defined by the originating center:
 - O There could exist different sections 2 for one centre
 - O For international exchange it is recommended NOT to use local section 2.
 - O For international exchange it is recommended to waive local entries at all.

GRIB2: Grid and product templates (examples) Deutscher Wetterdienst

Grid definition templates GDT (section 3)

Description of grid	GDT
Regular latitude / longitude	3.0
Rotated latitude / longitude (COSMO)	3.1
General unstructured grid (ICON)	3.101

Product definition templates (section 4)

4 templates for one kind of variable (here: common; extra for chemicals, tiles, aerosols, distribution function,)	Deter- ministic	Ensemble
Point in time	PDT 4.0	PDT 4.1
Time interval	PDT 4.8	PDT 4.11

GRIB2: Templates of Section 4 (product) WMO-Tab. 4.0 (Extract)

Product for horizontal level or layer	Point in time	Time intervall
Analysis / Forecast (deterministic)	0	8
Analysis / Forecast (Ensemble)	1	11
Analysis / Forecast f. chem. element (deterministisch)	40	42
Analysis / Forecast f. chem. element (Ensemble)	41	43
Analysis / Forecast f. Aerosols (incl. particel size) (deterministic)	44	46
Analysis / Forecast f. Aerosols (incl. particel size) (Ensemble)	45	47
Analysis / Forecast error	7	-
Radar product	20	-
Satellite product - Observation	31	-
Satellite product - Forecast (synthetic)	32	-
Satellite product - Forecast (synthetic) (Ensemble)	33	34
"Partioned parameter" (used for land use classes (external parameter))	53	54
"Tile": detertministic / ensemble	55/62	59/63
"Distribution function" (Dust, Ash (COSMO/ICON-ART)): det./ens.	57/67	58/68
Further ensemble products: derived, properbilities, percentile,	++++	++++

Element coding of model fields GRIB1 vs. GRIB2

GRIB1: Element coding by ee (element) and tab (table)

Example: temperature is ee=11 in tab=2 (WMO)

GRIB2: Element coding by a triplet

discipline category parameter

Discipline

- 0 Meteorological products
- 1 Hydrological products
- 2 Land surface products
- 3 Space products
- 10 Oceanographic products

Example: temperature is (0,0,0)

REGULATION GRIB2

92.6.2 To maintain orthogonal structure of GRIB Edition 2, **parameter names** in Code table 4.2 should **not** contain **surface type** and **statistical process** as part of the name.

Product d	liscipline 0 – Meteorological products
Category	Description
0	Temperature
1	Moisture
2	Momentum
3	Mass
4	Short-wave radiation
5	Long-wave radiation
6	Cloud
20	Chemical constituents

Product discipline 0 – Meteorological products,					
paramete	r category 0: tempe	erature			
Number	Parameter	Units			
0	Temperature	K			
1	Virtual temperature	K			
2	Potential temperatu	re K			
10	Latent heat net flux	W m-2			
11	Sensible heat net fle	ux W m–2			
18	Snow temperature ((top of snow) K			

ECCODES GRIB(2) definition

Basics Features

EcCodes (GRIB_API): Introduction and Basics

EcCodes

https://confluence.ecmwf.int/display/ECC/ecCodes+Home

- Standard software for GRIB at DWD
- Developed at ECMWF for de-/encoding of GRIB1 AND GRIB2
- EcCodes (GRIB plus BUFR) is an evolution of GRIB_API
 - No internal knowledge of GRIB structure needed (libDWD/GRIB1: arrays for sections)
 - Each element of a grib message has an alphanumeric name (key) that can be used to access the information linked to it (value)

```
key = value approach: shortName = T_2M
typeOfLevel = heightAboveGround
level = 2
```

- Flexible local definitions for each centre possible
 - ✓ local section 2 dependent on centre
 - ✓ local extensions of tables / local templates
 - ✓ local definition file shortName.def for edzw (DWD)

Basics: **KEYS** (Key names are case sensitive!)

(see ECMWF training material)

There are coded (really in GRIB message) and computed keys. The computed ones are invented by EcCodes and are the result of a combination of keys or just temporary.

THINGS

- Keys <u>can</u> have different types :
 - INTEGER key:i, REAL key:d, CHARACTER key:s.
 - The default (native) type is displayed if only "key" is used.
- Keys are combined in namespaces :
 - parameter
 - time
 - vertical
 - geography

KNOW

ABOUT

KEYS!

- The set of keys available changes from one message to another as it depends on the content of the message.
- Changing the value of some keys can cause some other keys to disappear and new keys to be available.

EcCodes feature: shortName concept

- The <u>"shortName" concept</u> consists of a set of definition files
 - shortName.def

 - paramld.def unique identifier
- shortName, name, ... are computed keys defined by the originating centre, NOT coded in the GRIB message!
- This feature is designed for easy interpretation of a grib variable
- shortName is the acronym used in output NAMELIST &GRIBOUT (COSMO) or &output_nml (ICON)
 - int2lm / COSMO code uses "shortName" directly
 - ## Each variable has to be defined in the definition file shortName.def (INPUT, OUTPUT)
- → ICON code does not use "shortName" internally, but the INPUT requires the shortName key and therefore the DWD definition files. OUTPUT can be generated with internal variable names and optional with shortNames.
- ICON I/O uses "shortName" via provided so-called dictionary files. These dictionaries map the ICON internal variable names to GRIB2 shortNames.
 - ♣ Each variable has to be defined in shortName.def and dictionary file
- All COSMO centres should use the same definition files

Meaning of shortName?

shortName is a "computed, <u>edition</u> <u>independent</u> key" interpreting the defined variable, defined in "shortName.def" for GRIB1 <u>AND</u> GRIB2.

GRIB1 shortName = T_2M	GRIB2 shortName = T_2M
#paramld: 500011 #2m Temperature	#paramld: 500011 #2m Temperature
<pre>'T_2M' = { table2Version = 2; indicatorOfParameter = 11;</pre>	'T_2M' = { discipline = 0; parameterCategory = 0; parameterNumber = 0;
<pre>indicatorOfTypeOfLevel = 105 ; level = 2 ; }</pre>	<pre>typeOfFirstFixedSurface = 103; scaleFactorOfFirstFixedSurface = 0; scaledValueOfFirstFixedSurface = 2; }</pre>

- paramId = unique identifier (paramId.def)
- GRIB1 name = GRIB2 name (name.def)
- ee/tab vs. dis/cat/par
- Level coding "height above ground" different typeOfLevel = ,heightAboveGround"

shortName-Definition of different centers

Variable	shortName					
	DWD centre=78	ECMWF centre=98	ECMWF products with DWD implementation			
2m temperature	T_2M	2t	T_2M			
Geopotential	FI	Z	FI			
Land cover (0=sea, 1=land)	FR_LAND	Ism	FR_LAND			
Total precipitation	TOT_PREC	tp	TOT_PREC			

DESIGN: Display of shortName

The ecCodes design is in a way that the shortNames defined for a special implementation (e.g. DWD) will be displayed <u>independent of</u> the coded centre.

This means that the DWD shortNames will be displayed also for centre=98 coded variables as long as there exists a definition.

DWD Implementation Local configuration – local definition files

ecCodes tool *codes info* gives information of implemented version of ecCodes:

- \sim ecCodes Version 2.12.0
- **ECCODES DEFINITION PATH** (definition files)

How is the DWD environment implemented?

(Get the DWD definition files from https://opendata.dwd.de/weather/lib/grib or https://github.com/COSMO-ORG/eccodes-cosmo-resources (MCH, Jean-Marie Bettems), only with github account)

- Get **ECMWF** installation with default set of definition files (directory *definitions*)
- Get **DWD** definition files for the same version(for shortName etc; **definitions.edzw**)
- Set ECCODES_DEFINITION_PATH
 - The ECCODES_DEFINITION_PATH environment variable can be set to use local definition files instead of the definition files provided within the ECMWF distribution
 - ECCODES_DEFINITION_PATH= < definitions.edzw>:< definitions>
 - The library searches for each required definition file first in *definitions.edzw* and then in *definitions*
 - If the file is found in *definitions.edzw* then it is used by the decoding engine
 - The user can override all the definition files with his/her own definition files
 - In DWD definitions.edzw this is done mainly for parameter information D. Liermann, COSMO GM 2019

Use <u>DWD implementation</u> (centre=78) for COSMO partners (here: "cosmo" (centre=250) and "lssw" (centre=215))

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Links to centre 78 (edzw/DWD) are used for other centres to get the DWD definition files (Use "Link-Script" provided together with DWD definitions)

Some files in directory *definitions.edzw/grib2* for <u>local section 2</u>:

grib2LocalSectionNumber.215.table -> grib2LocalSectionNumber.78.table grib2LocalSectionNumber.250.table -> grib2LocalSectionNumber.78.table grib2LocalSectionNumber.78.table

local.215.def -> local.78.def

local.250.def -> local.78.def

local.78.250.def

local.78.252.def

local.78.253.def

local.78.254.def

local.78.28.def

local.78.def

Links to centre 78

See the links in *definitions.edzw/grib2/localConcepts* for "local concept":

cosmo -> edzw edzw

Issw -> edzw

✓ shortName.def, name.def, units.def ...

WMO/ECCODES GRIB(2) definition

What else is new with GRIB2?

Independent Keys: vertical

Coding of level and layer

In GRIB2 "level" and "layer" are coded as follows:

<u>Computed</u> keys **typeOfLevel**, **level**, **topLevel**, **bottomLevel** (layer) are defined by <u>coded</u> keys

- ★ typeOfFirstFixedSurface
- ★ scaleFactorOfFirstFixedSurface
- ★ scaledValueOfFirstFixedSurface and for layer additionally
- ★ typeOfSecondFixedSurface
- ≫ scaleFactorOfSecondFixedSurface
- scaledValueOfSecondFixedSurface
- GRIB2 REG 92.1.12: Items in section 3 and 4 which consists of a scale factor F and a scaled value V are related to the original value L as follows: $L \times 10^{F} = V$
 - Examples + model hybrid level/layer: GRIB1 109 / 110 -> GRIB2 105 / 2*105
 - + depth below land (level/layer): GRIB1 111 / 112 -> GRIB2 106 / 2*106
 - Layer GRIB1(DWD): level=bottomLevel, Layer GRIB2: level=topLevel

typeOfLevel=,,depthBelowLand" or ,,depthBelowLandLayer":

- \times Unit is **cm** for GRIB1 and it is **m** for GRIB2.
- It is recommended to use real values by level:d, topLevel:d, bottomLevel:d to get the correct values for 'depth below ground' in GRIB2.
 - Correction of GRIB1 W_SO, W_SO_ICE from level to layer in GRIB2

Independent Keys: vertical

New coding for model levels

NEW in GRIB2: typeOfFirst/SecondFixedSurface=150

typeOfLevel=generalVertical/Layer introduces new (coded) keys

- nlev (number of "half levels")
- numberOfVGridUsed (type of vertical coordinate)
- uuidOfVGrid (universal unique identifier)
- → No vertical coordinate parameters any more
- → Replaced by GRIB2 3D height messages (HHL)
- ! Vertical coordinates PV (only relevant for old GME or IFS model data)
 - → PVPresent=1, NV>0
 - \times Array PV(1,...,NV) contains the vertical coordinates
 - >> Delete PV array with tool grib_set -s deletePV=1 (this includes PVPresent=0 AND NV=0)!!
 - → Ordering of hybride coordinates ak,bk:

```
GRIB1 (GDS): ak1,ak2,ak3,....,bk1,bk2,bk3,bk4,... ("not in use in intern.exchange")
```

GRIB2 (PDS): as pairs (ak1,bk1), (ak2,bk2), (ak3,bk3),...according to WMO, but in practical it is done as in GRIB1!!

Independent Keys: geography

typeOfGrid

(= gridType)

- regular_ll
- rotated_II
- triangular_grid
- unstructured_grid

NOTE

GRIB2: Longitudes are from 0 – 360 degrees!

GRIB1: Longitudes and latitudes in Milli-degrees (10⁻³ degrees)

GRIB2: <u>Longitudes and latitudes in Micro-degrees (10-6 degrees)</u>

independent key: latitudeOfFirstGridPointInDegrees ...

GRIB2: Product Identifying Keys Deutscher Wetterdienst

Wetter und Klima aus einer Hand

New information (meta data) = new keys

Кеу	Description/Remark	Table
significanceOfReferenceTime	Analysis (0), start of forecast (1),	WMO: 1.2
productionStatusOfProcessedData	Entries for operations (0), parallel suite (1) and experiments (2)	WMO: 1.3
typeOfProcessedData	Classification of products: rough subdivision in analysis (0/an), forecast (1/fc),	WMO: 1.4
typeOfGeneratingProcess	Detailed definition of generation, e.g. 'initialization' (1), including local entries as 'nudging' (202), 'invariant data' (196),	WMO: 4.3
backgroundGeneratingProcessIdentifier	Discrimination between main run (0), assimilation (2), pre-assimilation (1)	Local table
localDefinitionNumber	Defines local section 2 254 (det.), 253 (ens.), 252 (ens. Prod.), 250 (COSMO), 28 (COSMO-LEPS)	Local table
localVersionNumber localNumberOfExperiment localInformationNumber localTypeOfEnsembleForecast localTypeOfEnsembleProductGeneration localTypeOfEnsemblePostprocessing localDecodeDate:s; localValidityDate:s	Keys in local section 2 (without COSMO-LEPS keys, depending on localDefinitionNumber)	

ECCODES GRIB(2) definition

Tools

TOOLS – Interpreting and modifying GRIB messages

Help for syntax: grib_<tool> -h codes_<tool> -h

codes_info Information of implemented version of ecCodes

ECCODES_DEFINITION_PATH (definition files)

ECCODES_SAMPLES_PATH (sample files)

grib_ls List (short) of content

grib dump Complete list of content

grib_count Number of messages in a file

grib get Get key information

grib_set Set (modify) keys

grib_copy Copies the content of GRIB files printing values of some keys

TOOLS grib_ls / grib_dump

",List" or ",Dump" of GRIB-Files:

```
grib_ls List of (meta) data content
    grib_ls -p key1,key2,key3 file1
```

With key:s, key:l, key:d the output type is CHARACTER, INTEGER or REAL, for example: centre:s = edzw, centre:l = 78

■ WARNING: Default-List differs for GRIB1/2 and DWD/EZMW!

```
grib_dump comprehensive content of keys and their values (coded and computed)

grib_dump -O file1 octet mode (only coded keys!)

(WMO documentation style dump)
```


TOOLS grib_ls examples

y	ງເ ເນ_ເ	s ille.grii	ue 🔽 ue	iauits						
е	dition	centre	date	dataType	gridType	typeOfLevel	level	stepRange	shortName	packingType
2		edzw	2016011	4 fc	rotated_ll	heightAboveGround	2	3	RELHUM_2M	grid_simple
2		edzw	2016011	4 fc	rotated_ll	surface	0	0-3	TOT_PREC	grid_simple
2		edzw	2016011	4 fc	rotated_ll	heightAboveGround	10	2-3	VMAX_10M	grid_simple
2		edzw	2016011	4 fc	rotated_ll	heightAboveGround	2	2-3	TMAX_2M	grid_simple
2		edzw	2016011	4 fc	rotated_ll	heightAboveGround	2	2-3	TMIN_2M	grid_simple
2)	edzw	2016011	4 fc	rotated II	heightAboveGround	2	3	T 2M	grid simple

250

500

850

1000

grib_l:	s file.grib1	grib_ls for GR	IB1 : differen	t output com	pared to C	GRIB2 (see above)
edition	centre	typeOfLevel levels	dataDate	stepRange	shortName	packingType gridType
1	edzw	hybridLayer 1-2	20160114	3	U	grid_simple rotated_ll
1	edzw	hybridLayer 2-3	20160114	3	U	grid_simple rotated_II
1	edzw	hybridLayer 3-4	20160114	3	U	grid_simple rotated_II
1	edzw	hybridLayer 4-5	20160114	3	U	grid_simple rotated_II

rotated II surface

rotated II isobaricInhPa

rotated II isobaricInhPa

rotated II isobaricInhPa

rotated_ll isobaricInhPa

grib_ls -PdateTime,centre:l file.grib1 ≥ additional keys dateTime and centre:l

-		•		•		_			
dateTime	centre	edition	centre	typeOfLevel	levels	dataDate	stepRange	shortName	packingType gridType
20160114	0000 78	1	edzw	hybridLay	er 38-39	2016011	L4 3	CLC	grid_simple rotated_ll
20160114	0000 78	1	edzw	hybridLay	er 39-40	2016011	L4 3	CLC	grid_simple rotated_ll
20160114	0000 78	1	edzw	hybridLay	er 40-41	2016011	L4 3	CLC	grid_simple rotated_ll

arih le filo arih? 🔽 defaulte

20160114

20160114

20160114

20160114

20160114

fc

fc

edzw

edzw

edzw

edzw

edzw

2

PS

grid_simple

grid_simple

grid_simple

grid_simple

grid_simple

TOOLS grib_Is examples "namespace"

grib_ls -n parameter -wcount=13 laf2019032600

(w = where; -wcount=13 -> 13 th field)

centre paramid shortName units name

cosmo 500028 U m s-1 U-Component of Wind

grib_ls -n time -wcount=13 lbff00030000

dataDate dataTime stepUnits stepType stepRange startStep endStep validityDate validityTime 20190326 0000 h 3 20190326 300 instant 3) 0 - 3(accum

grib_ls -n vertical -wcount=13 laf2019032600

typeOfLevel topLevel bottomLevel

generalVerticalLayer 4 5

grib_ls -n geography -wcount=13 laf2019032600

Ni Nj iScansNegatively jScansPositively jPointsAreConsecutive latitudeOfFirstGridPointInDegrees longitudeOfFirstGridPointInDegrees latitudeOfLastGridPointInDegrees iDirectionIncrementInDegrees jDirectionIncrementInDegrees

latitudeOfSouthernPoleInDegrees longitudeOfSouthernPoleInDegrees angleOfRotationInDegrees

gridType bitmapPresent

81 71 010 -16.125 344.281 -11.75 349.281 0.0625 0.0625 -40 10 0 rotated_II 0

TOOLS grib_dump examples

grib_dump -w count=1 -O file.grib2 ✓ octal presentation of first field (extract) Wetter und Klima aus einer Hand

```
#======= MESSAGE 1 (length=349567)
     identifier = GRIB
5-6
     reserved = MISSING
   discipline = 0 [Meteorological products (grib2/tables/16/0.0.table)]
   editionNumber = 2
      totalLength = 349567
6-7
      centre = 78 [Offenbach (RSMC) (grib2/centre.table) ]
12 significanceOfReferenceTime = 1 [Start of forecast (grib2/tables/16/1.2.table) ]
13-14 year = 2016
15 month = 1
16 \, day = 14
17 hour = 0
18 minute = 0
19 second = 0
20 productionStatusOfProcessedData = 9 [Uncertainties in ensembles of regional reanalysis project test (UERRA) (grib2/tables/16/1.3.table) ]
21 typeOfProcessedData = 1 [Forecast products (grib2/tables/16/1.4.table , grib2/tables/local/edzw/1/1.4.table)]
.....definition of grid ......
...
8-9
      productDefinitionTemplateNumber = 0 [Analysis or forecast at a horizontal level or in a horizontal layer at a point in time (grib2/tables/16/4.0.table)
grib2/tables/local/edzw/1/4.0.table) ]
22 parameterCategory = 1 [Moisture (grib2/tables/16/4.1.0.table, grib2/tables/local/edzw/1/4.1.0.table)]
11 parameterNumber = 1 [Relative humidity (%) (grib2/tables/16/4.2.0.1.table, grib2/tables/local/edzw/1/4.2.0.1.table) ]
12 typeOfGeneratingProcess =2 [Forecast (grib2/tables/16/4.3.table , grib2/tables/local/edzw/1/4.3.table )
13 backgroundProcess = 255 [missing (grib2/tables/local/edzw/1/backgroundProcess.table)]
14 generatingProcessIdentifier = 135 [c2 fc (old name: LM2MO) (grib2/tables/local/edzw/1/generatingProcessIdentifier.table) ]
. . . . .
18 indicatorOfUnitOfTimeRange = 1 [Hour (grib2/tables/16/4.4.table) ]
      forecastTime = 3
23 typeOfFirstFixedSurface = 103 [Specified height level above ground (m) (grib2/tables/16/4.5.table, grib2/tables/local/edzw/1/4.5.table)
24 scaleFactorOfFirstFixedSurface = 0
25-28 scaledValueOfFirstFixedSurface = 2
29 typeOfSecondFixedSurface = 255 [Missing (grib2/tables/16/4.5.table , grib2/tables/local/edzw/1/4.5.table) ]
30 scaleFactorOfSecondFixedSurface = MISSING
31-34 scaledValueOfSecondFixedSurface = MISSING
```


TOOLS grib_dump examples

grib_dump -w count=1 file.grib2 **Including presentation of "computed keys" for first field in message**

```
#======= MESSAGE 1 (length=349567)
GRIB {
# Meteorological products (grib2/tables/16/0.0.table)
discipline = 0; editionNumber = 2;
# Offenbach (RSMC) (grib2/centre.table) centre = 78; subCentre = 255;
# Start of forecast (grib2/tables/16/1.2.table) significanceOfReferenceTime = 1;
dataDate = 20160114;
dataTime = 0:
dateTime = 201601140000;
# Uncertainties in ensembles of regional reanalysis project test (UERRA) (grib2/tables/16/1.3.table) productionStatusOfProcessedData = 9;
# Forecast products (grib2/tables/16/1.4.table, grib2/tables/local/edzw/1/1.4.table) typeOfProcessedData = 1;
stepUnits = 1;
forecastTime = 3;
stepRange = 3;
# Specified height level above ground (m) (grib2/tables/16/4.5.table, grib2/tables/local/edzw/1/4.5.table) typeOfFirstFixedSurface = 103;
#-READ ONLY- unitsOfFirstFixedSurface = m;
#-READ ONLY- nameOfFirstFixedSurface = Specified height level above ground;
scaleFactorOfFirstFixedSurface = 0;
scaledValueOfFirstFixedSurface = 2;
# Missing (grib2/tables/16/4.5.table, grib2/tables/local/edzw/1/4.5.table) typeOfSecondFixedSurface = 255;
#-READ ONLY- unitsOfSecondFixedSurface = unknown;
#-READ ONLY- nameOfSecondFixedSurface = Missing; scaleFactorOfSecondFixedSurface = MISSING; scaledValueOfSecondFixedSurface = MISSING;
level = 2;
shortName = RELHUM 2M;
#-READ ONLY- maximum = 100:
#-READ ONLY- minimum = 6.71332:
#-READ ONLY- average = 75.0553;
#-READ ONLY- numberOfMissing = 0;
                                                                     Additional statistics
#-READ ONLY- standardDeviation = 16.3698;
#-READ ONLY- skewness = -1.11381;
#-READ ONLY- kurtosis = 1.27099;
#-READ ONLY- isConstant = 0:
```


#-READ ONLY- getNumberOfValues = 174688;}

TOOLS grib_get/grib_set

Get keys or set key-value-pairs:

grib_get -p key[:s,l,d] in.grib
grib_set -s key1=val1,key2=val2 in.grib out.grib

Get: *Minimum, maximum, average of values* grib_get –p shortName,min,max,avg in.grib

Set: GRIB2 format

grib_set –s edition=2 in.grib1 out.grib2 ■ May NOT work! Use grib_filter!

Set: Celsius instead of Kelvin (Bias)
grib_set -s offsetValuesBy=-273.15 TK.grib TC.grib

Set: Scale with factor grib_set -s scaleValuesBy=0.968 X.grib Y.grib

TOOLS grib copy/grib compare/grib filter

Copy messages with grib-copy

grib_copy [options] grib_file output_grib_file

Example 1: Extraction of desired fields (here: Temperature)

grib copy -wshortName=T input.grib T.grib

Example 2: Split one file into its messages (one file per shortName)

grib _copy input.grib [shortName].grb

Example 3: Convert multi-GRIB-fields to single fields

grib copy multi.grib2 single.grib2

Compare 2 GRIB files

grib_compare [options] grib_file1 grib_file2

Filter a GRIB file according to given rules (special syntax for rules file!)

grib_filter [options] rules file grib file

WMO/ECCODES GRIB(2) definition

Summary / FAQ / Links

GRIB1 vs GRIB2

Short summary of major differences with "solutions" Wetter und Klima aus einer Hand

- Different definition of "level" for layers in GRIB1 and GRIB2
 - → Use "topLevel" and "bottomLevel" instead
 - Depth below ground in cm (GRIB1) or m (GRIB2)
 - → Use level:d, topLevel:d, bottomLevel:d or coded keys scaledValueOfFirstFixedSurface/scaleFactorOfFirstFixedSurface to show correct values when using grib_ls or grib_get
- In GRIB2 W_SO and W_SO_ICE are coded as layers
- New vertical coordinate: generalVertical(Layer)
 - → No vertical coordinate parameters any more but GRIB2 3D height fields (HHL)
- Longitudes and latitudes in "milli"- (GRIB1) or "micro degrees" (GRIB2)
 - → Use the independent keys "......InDegrees"
- GRIB2: Range of longitudes only from 0 360 Degrees! No negative values.
- Special case "constant data"

(isConstant=1, numberOfBits=0, only reference value, no data)

FAQ - See also ECMWF FAQ

FAQ	ANSWER

Useful Links

WMO

Manual on Codes (Volume I.2, Part B)

http://www.wmo.int/pages/prog/www/WMOCodes/ManualonCodes.html Extracted GRIB2 Templates and Tables / Common code tables

http://www.wmo.int/pages/prog/www/WMOCodes/WMO306 vI2/LatestVERSION/LatestVERSION.html

ECCODES / ECMWF

EcCodes HOME: https://confluence.ecmwf.int/display/ECC/ecCodes+Home

ECMWF parameter database: https://apps.ecmwf.int/codes/grib/param-db/

ECCODES / DWD

DWD eccodes definition files: https://opendata.dwd.de/weather/lib/grib

COSMO

GRIB documentation page

http://www.cosmo-model.org/content/model/documentation/grib/default.htm

ICON

ICON documentation

https://code.mpimet.mpg.de/projects/iconpublic/wiki/Documentation

THANKS FOR YOUR ATTENTION

SIMPLY EXPLAINED

CONTACT:

Dörte Liermann

Deutscher Wetterdienst (DWD)

Research and Development - FE 13

Frankfurter Strasse 135

63067 Offenbach

Germany

Phone: +49 69 8062 2732

Email: doerte.liermann@dwd.de

NOW YOU ARE READY FOR ... **GRIB2 and EcCodes**

for

ADVANCED LEARNERS

