

Circuit Theory and Electronics Fundamentals

Department of Physical Engineering, Técnico, University of Lisbon

RC circuit

April 7, 2021 Diogo Simões, Júlia Mestre, Rafael Dias

Contents

1	Intro	oduction	1
2	The	oretical Analysis	2
	2.1	Nodal analysis	2
	2.2	Equivalent resistance	3
	2.3	Natural solution	
	2.4	Forced solution	4
	2.5	Total solution	5
	2.6	Frequency responses	
3	Sim	ulation Analysis	6
	3.1	Operating Point Analysis	6
	3.2	Natural response	8
	3.3	Forced response	10
	3.4	Frequency analysis	12
1	Con	nelusion	15

1 Introduction

The objective of this laboratory assignment is to study a RC circuit containing a AC voltage source V_s , a capacitor C, a voltage controlled current source I_b , a current controlled voltage source V_d and resistors, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 . The circuit can be seen in Figure 1.

In Section 2, a theoretical analysis of the circuit is presented. In Section 3, the circuit is analysed by simulation, and the results are compared to the theoretical results obtained in Section 2. The conclusions of this study are outlined in Section 4.

Figure 1: RC circuit to be analysed

2 Theoretical Analysis

In this section, the circuit shown in Figure 1 is analysed theoretically, analysing the circuit for t<0, calculating the equivalent resistance, determining the natural and forced solutions and superimposing them to find the total solution.

2.1 Nodal analysis

For t<0, $v_s(t) = V_s(t)$, it is a DC circuit. We can determine the voltges in all nodes and currents in all branches using the nodal method. Since this is a linear circuit, we apply Ohm's Law, $V_i = R_i * I$ and the Kirchoff Current Law (KCL), $\sum I_i = 0$.

We get the following equation, in matrix form:

This equation solved using octave yields the following results:

Variable	Value [A or V]
V_1	5.13612248730V
V_2	4.88464690881V
V_3	4.36195145882V
V_4	-0.000000000V
V_5	4.92000960269V
V_6	5.69027079572V
V_7	-1.96654083449V
V_8	-2.94453891610V
l ₁	0.00024147744V
I_2	0.00025321233V
I ₃	-0.00001173489V
I ₄	-0.00120106056V
I ₅	-0.00025321233V
I ₆	0.00095958312V
I ₇	0.00095958312V
I_S	-0.00024147744V
I_b	-0.00025321233V
I_c	-0.0000000000V
I_e	-0.00095958312V

Table 1: Node Analysis Results for t<0

2.2 Equivalent resistance

Now, we have to determine the equivalent resistance R_eq as seen from the capacitor terminals. We take out all the independent voltage sources (make $V_s=0$) and replace the capacitor with a voltage source Vx=V(6)-V(8). The values of V(6) and V(8) were already obtained via nodal analysis in the previous subsection. To determine the current I_x supplied by V_x we run mesh analysis:

$$\begin{bmatrix} R1 + R3 + R4 & -R3 & -R4 & 0 \\ -Kb * R3 & Kb * R3 - 1 & 0 & 0 \\ -R4 & 0 & R4 + R6 + R7 - Kd & 0 \\ 0 & -R5 & Kd & R5 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \\ I_C \\ I_D \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ V_x \end{bmatrix}$$
 (2)

This yields the following results:

Variable	Value [A or V]
V_x	8.63480971182V
I_x	0.00283856995V
R_{equiv}	3041.95770117000V

Table 2: Equivalent resistance

$$I_D = I_x = R_{eq} = \frac{V_x}{I_x} = R_{eq} = \frac{V_x}{I_x} = \frac{V_x}{I_x}$$

This value is equal to R_5 , which makes sense: since the current controlled voltage source V_d has null internal resistance, all the current flows through mesh D (which only contains V_d and R_5).

For the time constant:

$$\tau = R_{eq} \cdot C =$$

EXPLICAR PORQUE AQUI OU DPS NO FINAL DO REL L L L L

2.3 Natural solution

Using the capacitor voltage V_x for t<0 as the initial condition, the natural solution of $v_{6n}(t)$ becomes:

$$v_{6n}(t) = V_x e^{\frac{-x}{1000R_5C}} \tag{3}$$

This equation gives us the following plot in [0,20]ms:

Figure 2: Natural solution $v_{6n}(t)$

2.4 Forced solution

To determine the forced solution in the same interval [0, 20]ms we use a phasor voltage source V_s and replace C with its impedance Z_c .

We run nodal analysis to determine the phasor voltages in all nodes:

$$\omega = 2*\pi*1000$$

$$\begin{bmatrix} -G1 & G1+G2+G3 & -G2 & 0 & -G3 & 0 & 0 & 0 \\ 0 & -G2-Kb & G2 & 0 & Kb & 0 & 0 & 0 \\ 0 & Kb & 0 & 0 & -G5-Kb & G5+(C*\omega*i) & 0 & -(C*\omega*i) \\ 0 & 0 & 0 & -G6 & 0 & 0 & G6+G7 & -G7 \\ 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -Kd*G6 & 1 & 0 & Kd*G6 & -1 \\ 0 & -G3 & 0 & -G4 & G4+G3+G5 & -G5-(C*\omega*i) & -G7 & G7+(C*\omega*i) \end{bmatrix}$$

Solving this system of equation in octave yiels the following results:

Variable	Value [A or V]
Z1	V00000000000V
Z2	V00000000000V
Z3	V00000000000V
Z4	V00000000000V
Z5	V00000000000V
Z6	0.08501303490V
Z 7	-0.0000000000V
Z8	-0.0000000000V

Table 3: Phasor voltages

2.5 Total solution

Converting the phasors to real time functions for f=1KHz, we can then superimpose the natural and forced solutions:

$$y_1 = \Re(V_f(6) * e^{(x} * \omega * i/1000)) + V_x * exp(-x/1000/R5/C)$$

 $y_2 = \sin(\omega * x2/1000)$

This plot in the interval [-5,20]ms:

Figure 3: Final total solution $v_6(t)$

2.6 Frequency responses

For the frequency responses, we get the following plot:

EXPLICAR COMO E PORQUE DIFEREMM M M

3 Simulation Analysis

3.1 Operating Point Analysis

Table 4 shows the simulated operating point results for the circuit at times t < 0.

Name	Value [A or V]
@ca[i]	0.000000e+00
@gb[i]	-2.53212e-04
@r1[i]	2.414774e-04
@r2[i]	2.532123e-04
@r3[i]	-1.17349e-05
@r4[i]	-1.20106e-03
@r5[i]	-2.53212e-04
@r6[i]	9.595831e-04
@r7[i]	9.595831e-04
v(1)	5.136122e+00
v(2)	4.884647e+00
v(3)	4.361951e+00
v(5)	4.920010e+00
v(6)	5.690271e+00
v(8)	-2.94454e+00
v(71)	-1.96654e+00
v(72)	-1.96654e+00

Table 4: Operating point. A variable preceded by @ is of type *current* and expressed in Ampere; other variables are of type *voltage* and expressed in Volt.

Table 5 shows the simulated operating point results for the circuit given that $V_s=0$ and replacing the capacitor with a voltage source imposing the voltage on the terminals of said capacitor as calculated in the earlier analysis.

Name	Value [A or V]
@gb[i]	-6.24390e-18
@r1[i]	5.954528e-18
@r2[i]	6.243896e-18
@r3[i]	-2.89368e-19
@r4[i]	1.300919e-18
@r5[i]	-2.83857e-03
@r6[i]	-8.67362e-19
@r7[i]	1.165891e-21
v(1)	0.000000e+00
v(2)	-6.20107e-15
v(3)	-1.90901e-14
v(5)	-5.32907e-15
v(6)	8.634810e+00
v(8)	1.776357e-15
v(71)	1.777545e-15
v(72)	1.777545e-15

Table 5: Operating point. A variable preceded by @ is of type *current* and expressed in Ampere; other variables are of type *voltage* and expressed in Volt.

This is necessary so as to provide initial conditions for the analyses made below given that V_s at time t=0 is equal to 0 but the voltage difference in the terminals of the capacitor stays constant for very short time intervals.

3.2 Natural response

We will now use the values of V(6) and V(8) calculated above as initial conditions for a transient analysis of the natural response of the circuit when $V_s=0$. This is represented in figure 1

Figure 4: Natural Response

3.3 Forced response

Utilizing the same initial conditions and the value for V_s given for t>0, an analysis of the forced response of the circuit over time was performed. This is represented in figure 1

Figure 5: Forced Response

3.4 Frequency analysis

Finally, the frequency response of the circuit was studied and the magnitude and phase of both V_s and V(6) was plotted for values of f from 0.1Hz to 1MHz.

Figure 6: Frequency Response - Magnitude

Figure 7: Frequency Response - Magnitude

The magnitude of the voltage V_s is always 1 (or 0 in dB), and its phase is always 0, by definition. As we can see, the magnitude of V(6) drops sharply between the orders of magnitude of 10^1 to 10^3 , stabilizing at a value of around -4.9dB. The phase starts off being close to 0, but deviates to negative values, stabilizing at $-\pi$.

4 Conclusion

In this laboratory assignment the objective of analysing a static DC circuit has been achieved. A static analysis has been performed on the circuit, through both the node analysis and mesh analysis methods, using the Octave software, and a simulation was run using ngspice. The

three sets of results all match with all available decimal places of precision. The reason for this perfect match is the fact that although this circuit has multiple components and nodes, all of the components are linear, and no time dependence exists. The matching of results for the various methods also helps to confirm the accuracy of the equations used for the theoretical analysis.