Imperial College London

Department of Electrical and Electronic Engineering

Final Year Project Report (DRAFT)

Project Title: A High-radix Online Arithmetic Verification System

Student: Zifan Wang

CID: **01077639**

Course: **EEE4**

Project Supervisor: **Dr. James J. Davis**

Second Marker: **Dr. Christos Bouganis**

Contents

1	Introduction	2
2	Background	2
3	Requirements Capture	2
4	System-level Design 4.1 Testbench Architecture	2 2 2
5	Hardware Design Choices 5.1 Randomiser 5.2 Driver 5.3 Monitor 5.4 Scoreboard	2 2 3 4 4
6	Software Design Choices 6.1 Code Structure	4 4
7	Hardware Implementation 7.1 Project Hierarchy 7.2 Randomiser 7.3 Driver 7.4 Monitor 7.5 Scoreboard	4 4 4 5 5
8	Software Implementation	5
9	System Integration 9.1 Qsys	5 5
10	Testing	5
11	Results	5
12	2 Evaluation	5
13	3 Conclusion	5
14	Further Work	5
15	User Guide	5

Nice abstract

- 1 Introduction
- 2 Background
- 3 Requirements Capture
- 4 System-level Design
- 4.1 Testbench Architecture
- 4.2 User Interface
- 5 Hardware Design Choices

5.1 Randomiser

With relatively low effort, random testing can provide significant coverage and discover relatively subtle errors [7]. LFSRs are a reliable way of generating pseudorandom numbers quickly with low cost [10].

5.1.1 LFSR Configurations

To compare, we can examine an 8-bit LFSR with taps on bit [7,5,4,3]. *Fibonacci* – Classical option, easier to write and scale in hardware.

Figure 1: Fibonacci Configuration

Galois – Harder to write if variable length is desired, but faster in hardware.

Figure 2: Galois Configuration

Others – Other LFSR configurations such as Xorshift [15] exists, but they are much slower in hardware.

5.1.2 Randomiser Structure

Horizontal – Easy to build, easy to test with.

Figure 3: Horizontal Structure

Vertical – Nice randomness, more scalable, need to seed all the LFSRs differently.

Figure 4: Vertical Structure

5.2 Driver

5.2.1 Dual Driver System

One driver focusses on fast stress tests, The other allows handwritten tests to coexist with random tests. They can be switched in software.

- 5.3 Monitor
- 5.4 Scoreboard
- 6 Software Design Choices
- **6.1** Code Structure
- 7 Hardware Implementation
- 7.1 Project Hierarchy
- 7.2 Randomiser
- 7.3 Driver
- 7.3.1 Delay Tester

I built a delay tester to find out the delay of the DUT. With a 3-bit counter as shown in the timing diagram, it can measure this delay for up to 8 clock cycles.

Figure 5: 3-bit Delay Tester FSM

Testing with 0 is safe since LFSR will never output 0.

Figure 6: Distributed Monitoring System

- 7.3.2 Switching system
- 7.4 Monitor
- 7.4.1 Sub Monitors
- 7.5 Scoreboard
- **8 Software Implementation**
- 9 System Integration
- **9.1 Qsys**
- 10 Testing
- 11 Results
- 12 Evaluation
- 13 Conclusion
- 14 Further Work
- 15 User Guide

References

- [1] I. Ahmed, S. Zhao, J. Meijers, O. Trescases and V. Betz, "Automatic BRAM Testing for Robust Dynamic Voltage Scaling for FPGAs", Int. Conf. on Field-Programmable Logic and Applications, 2018.
- [2] A Amin, W. Shinwari, "High-Radix Multiplier-Dividers: Theory, Design, and Hardware", IEEE Trans. Comput., vol. 1, no.8, 2008.
- [3] R.P. Brent, "A Regular Layout for Parallel Adders", IEEE Trans. Comput., vol. C-31, pp. 260-264, 1982.
- [4] B. Catanzaro, and B. Nelson, "Higher Radix Floating-Point Representations for FPGA-Based Arithmetic", Proceedings of the 51st Annual Design Automation Conference, 2005.
- [5] L. Chen, F. Lombardi, P. Montuschi, J. Han and W. Liu, "Design of Approximate High-Radix Dividers by Inexact Binary Signed-Digit Addition", Proceedings of the on Great Lakes Symposium on VLSI, 2017.
- [6] R. Duncan, "A Survey of Parallel Computer Architectures", Computer, vol. 23, pp. 5-16, 1990.
- [7] J.W. Duran, "An Evaluation of Random Testing", IEEE Trans. on Software Engineering, vol. SE-10, no. 4, pp. 438-444, 1984.
- [8] M.D. Ercegovac, "On-line Arithmetic: An Overview", 28th Annual Technical Symposium, pp. 86-93, Internaltional Society for Optics and Photonics, 1984.
- [9] M.D. Ercegovac, and T. Lang, "Digital Arithmetic", Morgan Kaufmann, 2003.
- [10] S. Hazwani, et al, "Randomness Analysis of Pseudo Random Noise Generator Using 24-bits LFSR", Fifth Int. Conf. on Intelligent Systems, Modelling and Simulation, 2014.
- [11] P. Kornerup, "Reviewing High-Radix Signed-Digit Adders", IEEE Trans. Comput., vol.64, no. 5, pp. 1502-1505, 2015.
- [12] H. Li, J.J. Davis, J. Wickerson and G.A. Constantinides, "ARCHITECT: Arbitrary-precision Constant-hardware Iterative Compute", Int. Conf. on Field-Programmable Technology, 2017.
- [13] T. Lynch, and M.J. Schulte, "A High Radix On-line Arithmetic for Credible and Accurate Computing", Journal of Universal Computer Science, vol. 1, no. 7, pp. 439-453, 1995.
- [14] T. Lynch, and M.J. Schulte, "Software for High Radix On-line Arithmetic", Reliable Computing, vol. 2, no. 2, pp. 133-138, 1996.
- [15] G. Marsaglia, "Xorshift RNGs", Journal of Statistical Software, 2003.
- [16] H.R. Srinivas, and K.K. Parhi, "High-Speed VLSI Arithmetic Processor Architectures Using Hybrid Number Representation", J. of VLSI Sign. Process., vol. 4. pp. 177-198, 1992.
- [17] K. Shi, D. Boland, and G.A. Constantinides, "Accuracy-Performance Tradeoffs on an FPGA through Overclocking", Proc. Int. Symp. Field-Programmable Custom Computing Machines, pp. 29-36, 2013.

- [18] K. Shi, D. Boland, E. Stott, S. Bayliss, and G.A. Constantinides, "Datapath Synthesis for Over-clocking: Online Arithmetic for Latency-Accuracy Trade-offs", Proceedings of the 13th Symposium on Field-Programmable Custom Computing Machines, pp. 1-6, ACM, 2014.
- [19] O. Šćekić "FPGA Comparative Analysis", University of Belgrade, 2005.
- [20] A.F. Tenca, and M.D. Ercegovac, "Design of high-radix digit-slices for on-line computations", 2007.
- [21] K.S. Trivedi, and M.D. Ercegovac, "On-line Algorithms for Division and Multiplication", IEEE Trans. Comput., vol. C-26, no. 7, pp. 667-680, 1977.
- [22] P. Whyte, "Design and Implementation of High-radix Arithmetic Systems Based on the SDNR/RNS Data Representation" Edith Cowan University, 1997.
- [23] Y. Zhao, J. Wickerson, and G.A. Constantinides, "An Efficient Implementation of Online Arithmetic", Int. Conf. on Field-Programmable Technology, 2016.
- [24] Accellera Systems Initiative, "Universal Verification Methodology 1.2 User's Guide", 2015.
- [25] Altera Corporation, "Cyclone V SoC Development Board Reference Manual", 2015.
- [26] Altera Corporation, "Memory System Design", Embedded Design Handbook, 2010.
- [27] Altera Corporation, "Introduction to Altmemphy IP", External Memory Interface Handbook: Reference Material, vol. 3, 2012.
- [28] Altera Corporation, "Phase-Locked Loop Basics, PLL,".
- [29] Altera Corporation, "Creating Qsys Components", 2018.
- [30] Altera Corporation, "Cyclone V Hard Processor System Technical Reference Manual", 2018.
- [31] Imperial College "An Ethics Code", Imperial College Research Ethics Committee, 2013.
- [32] Intel Corporation, "Cyclone V SoC Development Kit and Intel SoC FPGA Embedded Development Suite".
- [33] Intel Corporation, "Introduction to Intel FPGA IP Cores", 2018.
- [34] Intel Corporation, "Avalon Interface Specifications", 2018.
- [35] RocketBoards.org, "GSRD 14.1 User manual", 2015.
- [36] Xilinx, Inc, "Zynq-7000 All Programmable SoC", 2018.
- [37] Xilinx, Inc, "ZedBoard (Zyng Evaluation and Development) Hardware User's Guide", 2012.