A NEEDLE IN A HAYSTACK: ASTEROIDS IN LARGE SURVEYS

Benoit Carry, Lagrange/OCA

Solar System Objects

ESA/Rosetta

Solar System Objects

ESA/Rosetta

ESO/INAF-VST/OmegaCAM

Solar System Objects in surveys

Solar System Objects in surveys

Solar System Objects in surveys

Sergeyev+2021

Identification of Solar System Objects

ESO/INAF-VST/OmegaCAM

• Where are the asteroids?

Identification of Solar System Objects

Worldwide Telescope User Manual

• Where are the asteroids?

- Cone-search
 - All sources in one FOV
 - At a specific time!

Identification of Solar System Objects

J. Moevens

• Where are the asteroids?

- Cone-search
 - All sources in one FOV
 - At a specific time!
- Solar-system Cone-search
 - All known objects (1.3M)
 - Compute ephemerides
 - Crossmatch with FOV

— Identification of Solar System Objects

Ciel de nuit en Vercors

• Where are the asteroids?

- Cone-search
 - All sources in one FOV
 - At a specific time!
- Solar-system Cone-search
 - All known objects (1.3M)
 - Compute ephemerides
 - Crossmatch with FOV
- SkyBoT
 - VO ConeSearch for SSO!
 - Pre-Compute ephemerides

Berthier+2006, +2016

— Merci VO & SkyBoT

We produced 96% of available colors of SSOs in two articles

Solar System Objects Photometry

FINK borker of alert for LSST, data from ZTF

Distance

O HG Bowell1989

$H=m-f(r,\Delta)$

• Phase

- O HG Bowell1989
- \circ HG_1G_2 Muinonen+2010

$$H=m-f(r,\Delta)-g(\gamma)$$

Aspect

o sHG1G2 Carry+2024

$$H=m - f(r, \Delta) - g(\gamma) - s(\alpha, \delta)$$

— Merci VO & Miriade

```
import requests

url = "https://ssp.imcce.fr/webservices/miriade/api/ephemcc.php?"

params = {
         "-name": 'jeanpierrerivet',
         "-ep": '2024-01-01T00:00:00',
         "-nbd": 365,
         "-step": '10d',
         "-mime": "json",
}

r = requests.post(url, params=params, timeout=2000)
```

— Merci VO & Miriade

—— Properties of Solar System Objects

Yarkovsky effect $\propto 10^{-4}$ au/My

Inspired by Bottke2001

$$\frac{da}{dt} = \frac{(1 - \mathbf{A})}{9n} \frac{\pi \mathbf{D}^2}{mc} \frac{S_{\odot}}{\Delta^2} \left[\mathbf{W_n} \sin^2 \gamma - 2\mathbf{W_{\omega}} \cos \gamma \right]$$

Detection in Gaia DR2 Spoto+2018

Yarkovsky effect $\propto 10^{-4}$ au/My

Inspired by Bottke2001

$$\frac{da}{dt} = \frac{(1 - A)}{9n} \frac{\pi D^2}{mc} \frac{S_{\odot}}{\Delta^2} \left[W_n \sin^2 \gamma - 2W_{\omega} \cos \gamma \right]$$

Detection in Gaia DR2 Spoto+2018

Detection in Gaia DR3! Dziadura+2023

— Merci VO & SsODNet

Yarkovsky effect $\propto 10^{-4}$ au/My

Inspired by Bottke2001

$$\frac{da}{dt} = \frac{(1-A)}{9n} \frac{\pi D^2}{mc} \frac{S_{\odot}}{\Delta^2} \left[W_n \sin^2 \gamma - 2W_{\omega} \cos \gamma \right]$$

Detection in Gaia DR2 Spoto+2018

Detection in Gaia DR3! Dziadura+2023

```
import rocks
targets = ["Anteros", "Bacchus", "2002 WP", "2000 BD19", ...]
ssos = rocks.rocks(targets)
for i in range(len(targets)):
    data.loc[i, "num"] = ssos[i].number
    data.loc[i, "hame"] = ssos[i].name
    data.loc[i, "diameter"] = ssos[i].diameter.value
    data.loc[i, "albedo"] = ssos[i].albedo.value
    ...
```

Extremely easy access to information

- Dedicated rocks python client
- ▶ Density for 49 NEOs! 74%!

Dziadura+2023

—— Some remarks on VO & planetary sciences

- We are a community not (yet) used to big data
 - Used to deal with 10s or 100s (maybe 1000s) of objects
 - Watch out! NEOSurveyor, LSST, ...
- VO is amazing but yes, many tools are not designed for SSOs
 - Many protocols are not time-dependent
 - TAP is pretty universal
 - Some VO services exist! VOSSP (SkyBoT, Miriade, SsODNet), MP3C, EPN, ...
 - Some non-VO services exist! JPL API, MPC API, ..., wrappers in astroquery! sbpy!
- Building services for us by ourselves
 - Services are (generally) not decided top-down
 - Best (most useful) services are bottom-up IMHO
 - If you have a nice solution to [a problem], consider releasing it! Open science