## THE #RDATATABLE PACKAGE

for fast, flexible and memory efficient data wrangling

Arun Srinivasan co-developer, data.table



# Willem Ligtenberg FORMER COLLEAGUE, DEVELOPER, DATA.TABLE USER ASSISTING ME TODAY





Main author: <u>Matt Dowle</u>, H2O.ai

- Main author: <u>Matt Dowle</u>, H2O.ai
- Homepage: <a href="http://r-datatable.com">http://r-datatable.com</a>

- Main author: <u>Matt Dowle</u>, H2O.ai
- Homepage: <a href="http://r-datatable.com">http://r-datatable.com</a>
- Since 2006 on CRAN, >35 releases so far

- Main author: <u>Matt Dowle</u>, H2O.ai
- Homepage: <a href="http://r-datatable.com">http://r-datatable.com</a>
- Since 2006 on CRAN, >35 releases so far
- ~6100 unit tests, ~90% coverage (using covr)

- Main author: <u>Matt Dowle</u>, H2O.ai
- Homepage: <a href="http://r-datatable.com">http://r-datatable.com</a>
- Since 2006 on CRAN, >35 releases so far
- ~6100 unit tests, ~90% coverage (using covr)
- ~451 packages import/depend/suggest data.table

- Main author: <u>Matt Dowle</u>, H2O.ai
- Homepage: <a href="http://r-datatable.com">http://r-datatable.com</a>
- Since 2006 on CRAN, >35 releases so far
- ~6100 unit tests, ~90% coverage (using covr)
- ~451 packages import/depend/suggest data.table
  - ~22 packages per month since Jan'17

- Main author: <u>Matt Dowle</u>, H2O.ai
- Homepage: <a href="http://r-datatable.com">http://r-datatable.com</a>
- Since 2006 on CRAN, >35 releases so far
- ~6100 unit tests, ~90% coverage (using covr)
- ~451 packages import/depend/suggest data.table
  - ~22 packages per month since Jan'17
- 10th most starred R package on Github (METACRAN)

- Main author: Matt Dowle, H2O.ai
- Homepage: <a href="http://r-datatable.com">http://r-datatable.com</a>
- Since 2006 on CRAN, >35 releases so far
- ~6100 unit tests, ~90% coverage (using covr)
- ~451 packages import/depend/suggest data.table
  - ~22 packages per month since Jan'17
- 10th most starred R package on Github (METACRAN)
- >5800 Q on StackOverflow. 3rd amongst R packages

## OBJECTIVE

#### **OBJECTIVE**

Main: Get you comfortable with data.table's DT[i, j, by] syntax.

#### **OBJECTIVE**

- Main: Get you comfortable with data.table's DT[i, j, by] syntax.
- If time permits, will discuss fread, fwrite, rbindlist, reshape etc.

#### BASE R REFRESHER

#### EXERCISE 1A

- 1a. Subset all rows where id column equals 1 & code column is not equal to "c"
- 1b. Same as (1) but perform the subset using with(). See ?with if necessary
- 2. Select valA and valB columns from DF1 and store it in variable tmp1
- 3. Get sum(valA) and sum(valB) for id > 1 as a 1-row, 2-col data.frame
- 4. Replace valB with valB+1 for all rows where code == "c"
- 5. Add a new column valc column with values equal to valB^2 valA^2
- **6.** Get sum(valA) and sum(valB) grouped by id and code (i.e., for each unique combination of id, code)
- 7. Get sum(valA) and sum(valB) grouped by id for id >= 2 & code %in% c("a", "c")
- 8. Replace valA with max(valA)-min(valA) grouped by code
- 9. Create a new col named valb with max(valb)-min(valA) grouped by code

#### **EXERCISE 1B**

10. Subset DF1 by DF2 on id, code column. That is, for each row of DF2\$id, DF2\$code, get valA and valB cols from DF1. Include rows that have no matches as

well.

- 11. Same as (10), but fetch just the **first** matching row of **DF1** for each row of **DF2\$id**, **DF2\$code**. Exclude non-matching rows.
- 12. For every row of DF2\$id, DF2\$code that matches with DF1's, update valA with valA\*mul.
- 13. Add a new column val to DF1 with values from DF2\$mul where DF2\$id, DF2\$code matches with DF1's. Rows that don't match should have NA.
- 14. Compute sum(valA)\*mul for every row of DF2\$id, DF2\$code by matching it against DF1.
- 15. For every row of **DF2\$id**, **DF2\$code** that matches with **DF1**'s, update **valB** with **valB\*mul**.

## Every question is a good question! Feel free to interrupt.

| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |

| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |

| A | В | C | D |
|---|---|---|---|
| 1 |   |   |   |
| 1 |   |   |   |













| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |





| A   | В | C | D | A      | Ε |
|-----|---|---|---|--------|---|
| 3   |   |   |   | 3      |   |
| 3 2 |   |   |   | 3<br>2 |   |
| 1   |   |   |   | 1      |   |
| 1   |   |   |   | 1      |   |
| 3   |   |   |   | 3      |   |

| A                             | В | C | D | Е |
|-------------------------------|---|---|---|---|
| 3                             |   |   |   |   |
| 3 2                           |   |   |   |   |
| 1                             |   |   |   |   |
| 1                             |   |   |   |   |
| <ul><li>1</li><li>3</li></ul> |   |   |   |   |



| A | В | C | D | A   | C | A | В |
|---|---|---|---|-----|---|---|---|
| 1 |   |   |   | 3   |   | 1 |   |
| 1 |   |   |   | 3 2 |   | 1 |   |
|   |   |   |   | 1   |   |   |   |
|   |   |   |   | 1   |   |   |   |
|   |   |   |   | 7   |   |   |   |







| A | В | C | D | A   | C | A | В |
|---|---|---|---|-----|---|---|---|
| 1 |   |   |   | 3   |   | 1 |   |
| 1 |   |   |   | 3 2 |   | 1 |   |
|   |   |   |   | 1   |   |   |   |
|   |   |   |   | 1   |   |   |   |
|   |   |   |   | 7   |   |   |   |











| A          | В | C | D | A   |  |
|------------|---|---|---|-----|--|
| 3          |   |   |   | 3   |  |
| <b>3 2</b> |   |   |   | 3 2 |  |
| 1          |   |   |   | 1   |  |
| 1          |   |   |   | 1   |  |
| 3          |   |   |   | 3   |  |

| Α   | В | C | D | Е |
|-----|---|---|---|---|
| 3   |   |   |   |   |
| 3 2 |   |   |   |   |
| 1   |   |   |   |   |
| 1   |   |   |   |   |
| 3   |   |   |   |   |



| A | В | C | D | A   | A | В |
|---|---|---|---|-----|---|---|
| 1 |   |   |   | 3 2 | 1 |   |
| 1 |   |   |   | 2   | 1 |   |
|   |   |   |   | 1   |   |   |
|   |   |   |   | 1   |   |   |
|   |   |   |   | 3   |   |   |



| A | В | C | D | A | В | C | D | Е |
|---|---|---|---|---|---|---|---|---|
| 3 |   |   |   | 3 |   |   |   |   |
| 2 |   |   |   | 2 |   |   |   |   |
| 1 |   |   |   | 1 |   |   |   |   |
| 1 |   |   |   | 1 |   |   |   |   |
| 3 |   |   |   | 3 |   |   |   |   |









| Α | В | C | D | A | В | C | D | Ε |
|---|---|---|---|---|---|---|---|---|
| 3 |   |   |   | 3 |   |   |   |   |
| 2 |   |   |   | 2 |   |   |   |   |
| 1 |   |   |   | 1 |   |   |   |   |
| 1 |   |   |   | 1 |   |   |   |   |
| 3 |   |   |   | 3 |   |   |   |   |















| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |

A E41

| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |





| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |

| A | В | C | D |
|---|---|---|---|
| 4 | _ | _ | _ |
| 1 |   |   |   |
| 1 |   |   |   |

| A | В | Е |
|---|---|---|
| 1 |   |   |
| 1 |   |   |



| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |

| A | В | C | D |
|---|---|---|---|
| 4 | _ | _ | _ |
| 1 |   |   |   |
| 1 |   |   |   |

| A | В | Ε |
|---|---|---|
| 1 |   |   |
| 1 |   |   |

| A | В | C | D |
|---|---|---|---|
| 3 |   |   |   |
| 2 |   |   |   |
| 1 |   |   |   |
| 1 |   |   |   |
| 3 |   |   |   |

A E 4 1



| A | В | C | D |
|---|---|---|---|
| 4 | _ | _ | _ |
| 1 |   |   |   |
| 1 |   |   |   |

| A | В | Ε |
|---|---|---|
| 1 |   |   |
| 1 |   |   |



| 3 | C | D | 4 | В | C | D | Ε |
|---|---|---|---|---|---|---|---|
|   |   |   | 3 |   |   |   | _ |
|   |   |   | 2 |   |   |   | _ |
|   |   |   | 1 |   |   |   |   |
|   |   |   | 1 |   |   |   |   |
|   |   |   | 3 |   |   |   | _ |





| A | В | C | D |
|---|---|---|---|
| 4 | _ | _ | _ |
| 1 |   |   |   |
| 1 |   |   |   |

| A | В | Ε |
|---|---|---|
| 1 |   |   |
| 1 |   |   |



| D | A   | В | C | D | Е |
|---|-----|---|---|---|---|
|   | 3   |   |   |   | _ |
|   | 3 2 |   |   |   | _ |
|   | 1   |   |   |   |   |
|   | 1   |   |   |   |   |
|   | 3   |   |   |   | _ |







| A | В | C | D |
|---|---|---|---|
| 4 | _ | _ | _ |
| 1 |   |   |   |
| 1 |   |   |   |

| A | В | Ε |
|---|---|---|
| 1 |   |   |
| 1 |   |   |



|   | A      | В | C | D | Е |
|---|--------|---|---|---|---|
|   | 3      |   |   |   | _ |
|   | 3<br>2 |   |   |   | _ |
|   | 1      |   |   |   |   |
| ı |        |   |   |   |   |
|   | 3      |   |   |   | _ |

| A | Ε |
|---|---|
| 4 |   |
| 1 |   |







| A | В | C | D |
|---|---|---|---|
| 4 | _ | _ | _ |
| 1 |   |   |   |
| 1 |   |   |   |





| A   | В | C | D | Е |
|-----|---|---|---|---|
| 3   |   |   |   | _ |
| 3 2 |   |   |   | _ |
| 1   |   |   |   |   |
| 1   |   |   |   |   |
| 3   |   |   |   | _ |

| A | Ε |
|---|---|
| 4 |   |
| 1 |   |









| A | В | C | D |
|---|---|---|---|
| 4 | _ | _ | _ |
| 1 |   |   |   |
| 1 |   |   |   |

| A | В | Ε |
|---|---|---|
| 1 |   |   |
| 1 |   |   |



| A | В | C | D | Е |
|---|---|---|---|---|
| 3 |   |   |   | _ |
| 2 |   |   |   | _ |
| 1 |   |   |   |   |
| 1 |   |   |   |   |
| 3 |   |   |   | _ |

| A | Ε |
|---|---|
| 4 |   |
| 1 |   |













































#### OUTLINE

- Discuss each group (1-4) one by one and learn
  data.table with these exercises you just attempted (~10
  min for each group)
- You will internalise the concepts by solving exercises immediately after each group (~15-20 min)
- We will go through the answers (~5-10 min)
- If time permits, discuss other functions.

think in terms of basic units — rows, columns and groups

- think in terms of basic units rows, columns and groups
- data.table syntax provides placeholder for each of them

General form: DT[i, j, by]

- think in terms of basic units rows, columns and groups
- data.table syntax provides placeholder for each of them



On which rows

What to do?

Grouped by what?

### CREATING DATA.TABLE

```
require(data.table)
DT1 = as.data.table(DF1)
DT2 = as.data.table(DF2)
```

# Group 1

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

```
DT1[id == 1 & code != "c"]
```

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

```
DT1[id == 1 & code != "c"]
```

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |



|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | b    | 2    | 11   |
| 2: | 1  | b    | 7    | 16   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | valA | valB |
|----|------|------|
|    | 1    | 10   |
| 2: | 2    | 11   |
| 3: | 3    | 12   |
|    | 4    | 13   |
|    | 5    | 14   |
|    | 6    | 15   |
|    | 7    | 16   |
| 8: | 8    | 17   |
| 9: | 9    | 18   |

3. Get sum(valA) and sum(valB) for id > 1 as a 1-row, 2-col data.frame

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

3. Get sum(valA) and sum(valB) for id > 1 as a 1-row, 2-col data.frame

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

3. Get sum(valA) and sum(valB) for id > 1 as a 1-row, 2-col data.frame

|            | id | code | valA | valB |
|------------|----|------|------|------|
| 1:         | 1  | С    | 1    | 10   |
| 2:         | 1  | b    | 2    | 11   |
| <b>3</b> : | 1  | С    | 3    | 12   |
| 4:         | 1  | С    | 4    | 13   |
| 5:         | 2  | а    | 5    | 14   |
| 6:         | 2  | а    | 6    | 15   |
| 7:         | 1  | b    | 7    | 16   |
| 8:         | 2  | а    | 8    | 17   |
| 9:         | 1  | С    | 9    | 18   |

|    | valA | valB |
|----|------|------|
| 1: | 19   | 46   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | а    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | а    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | а    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
|    | 3  | d    | 1   |

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | а    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

| DT1[DT2, | on=.(id, | code), |
|----------|----------|--------|
| .(valA,  | valB)]   |        |

|    | valA | valB |
|----|------|------|
| 1: | NA   | NA   |
| 2: | NA   | NA   |
| 3: | 1    | 10   |
| 4: | 3    | 12   |
| 5: | 4    | 13   |
| 6: | 9    | 18   |
| 7: | NA   | NA   |
| 8: | NA   | NA   |

11. Same as (10), but fetch just the **first** matching row of **DF1** for each row of **DF2\$id**, **DF2\$code**. Exclude non-matching rows.

??

11. Same as (10), but fetch just the first matching row of DF1 for each row of DF2\$id, DF2\$code. Exclude non-matching rows.

## Practice

## GROUP 1 WRAP UP

### **Easy-moderate:**

- 1. Get all rows where valA > 5 and valB is  $\leq$  16 from DT1.
- 2. Get all rows where valA is in between 5 and 8 (both included) from DT1.
- 3. Order DT1 by code in increasing order, and within that by valA in decreasing order.
- 4. Return the last two rows of DT1.
- 5. Return a random sample of 4 rows.
- 6. Get median of valA and valB cols where code is not "a". Name the columns 'mA' and 'mB'.
- 7. Remove all rows in DT2 where DT2\$code is duplicated. Store the result in DT3. Hint: see ? duplicated.

#### **Moderate-Hard:**

- 8. Return all unique combinations of id, code (as a two column data.table) where valA $^2$  > valB. Hint: you'll need to use the function `unique()` in `j`.
- 9. Read ?`.SD` and check explanation and examples and try to use `.SD` in `j` to solve (8).
- 10. For every DT3\$code, return the last matching values of valA from DT1 along with 'id' column from DT3. i.e., result should contain code, valA and id (from DT3) columns. Do not remove non-matching rows.

# Group 2

4. Replace valB with valB+1 for all rows where code == "c"

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

4. Replace valB with valB+1 for all rows where code == "c"

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 11   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 13   |
| 4: | 1  | С    | 4    | 14   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 19   |

??

5. Add a new column valc column with values equal to valB^2 - valA^2

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |



5. Add a new column valc column with values equal to valB^2 - valA^2

|    | id | code | valA | valB      | valC |
|----|----|------|------|-----------|------|
| 1: | 1  | С    | 1    | 10        | 99   |
| 2: | 1  | b    | 2    | 11        | 117  |
| 3: | 1  | С    | 3    | 12        | 135  |
| 4: | 1  | С    | 4    | <b>13</b> | 153  |
| 5: | 2  | а    | 5    | 14        | 171  |
| 6: | 2  | а    | 6    | 15        | 189  |
| 7: | 1  | b    | 7    | 16        | 207  |
| 8: | 2  | а    | 8    | 17        | 225  |
| 9: | 1  | С    | 9    | 18        | 243  |



5. Add a new column valc column with values equal to valB^2 - valA^2

|    | id | code | valA | valB | valC |
|----|----|------|------|------|------|
| 1: | 1  | С    | 1    | 10   | 99   |
| 2: | 1  | b    | 2    | 11   | 117  |
| 3: | 1  | С    | 3    | 12   | 135  |
| 4: | 1  | С    | 4    | 13   | 153  |
| 5: | 2  | а    | 5    | 14   | 171  |
| 6: | 2  | а    | 6    | 15   | 189  |
| 7: | 1  | b    | 7    | 16   | 207  |
| 8: | 2  | а    | 8    | 17   | 225  |
| 9: | 1  | С    | 9    | 18   | 243  |

```
DT1[, valC := valB^2-valA^2]
```

12. For every row of DF2\$id, DF2\$code that matches with DF1's, update valA with valA\*mul.

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | a    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

12. For every row of DF2\$id, DF2\$code that matches with DF1's, update valA with valA\*mul.

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | а    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

12. For every row of DF2\$id, DF2\$code that matches with DF1's, update valA with valA\*mul.

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 3    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 9    | 12   |
| 4: | 1  | С    | 12   | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 27   | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | а    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

```
DT1[DT2, on=.(id, code),
    valA := valA*i.mul]
```

13. Add a new column val to DF1 with values from DF2\$mul where DF2\$id, DF2\$code matches with DF1's. Rows that don't match should have NA.

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

13. Add a new column val to DF1 with values from DF2\$mul where DF2\$id, DF2\$code matches with DF1's. Rows that don't match should have NA.

|    | id | code | valA | valB | val |
|----|----|------|------|------|-----|
| 1: | 1  | С    | 1    | 10   | 3   |
| 2: | 1  | b    | 2    | 11   | NA  |
| 3: | 1  | С    | 3    | 12   | 3   |
| 4: | 1  | С    | 4    | 13   | 3   |
| 5: | 2  | а    | 5    | 14   | NA  |
| 6: | 2  | а    | 6    | 15   | NA  |
| 7: | 1  | b    | 7    | 16   | NA  |
| 8: | 2  | а    | 8    | 17   | NA  |
| 9: | 1  | С    | 9    | 18   | 3   |

```
DT1[DT2, on=.(id, code),
    val := i.mul]
```

## Practice

## **GROUP 2 WRAP UP**

### Easy-moderate: (unless specified, assume DT1)

- 1. On those rows where id != 2, replace valA and valB with valA+1 and valB+1 respectively.
- 2. On those rows where id == 2, replace valA with valB if valA is <= 7, else with valB^2.
- 3. Create a new column 'tmp' and assign 'NA' to it by reference.
- 4. What's the type (or class) of `tmp` column that we just created?
- 5. Do DT1[, tmp := NULL] and observe the output.. What's the difference compared to (3)?

### **Moderate-Hard:**

- 6. Create a new column named "rank" which takes value 1 where code == "a", 2 where code == "b" and 3 where code == "c". Do it in as many different ways you could think of :-).
- 7. Let DT3 = DT2[!duplicated(code)]. Update both valA and valB columns with 'valA\*mul' and 'valB\*mul' wherever DT3\$code matches DT1\$code.. What happens to those rows where there are no matches in DT1? Why?
- 8. Add the column 'mul' from DT2 to DT1 by reference where DT2\$id matches DT1\$id. What happens to those values where DT2\$id has the same value occurring more than once?
- 9. Replace DT2\$mul with NA where DT1\$id, DT1\$code matches DT2\$id, DT2\$code.

# Group 3

**6.** Get **sum(valA)** and **sum(valB)** grouped by **id** and **code** (i.e., for each unique combination of **id, code**)

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

```
DT1[, .(sum(valA), sum(valB)),
by=.(id, code)]
```

|    | id | code | V1 | V2 |
|----|----|------|----|----|
| 1: | 1  | С    | 17 | 53 |
| 2: | 1  | b    | 9  | 27 |
| 3: | 2  | a    | 19 | 46 |

7. Get sum(valA) and sum(valB) grouped by id for id >= 2 & code %in% c("a", "c")

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

| id | code | V1 | V2 |
|----|------|----|----|
| 2  | a    | 19 | 46 |

```
DT1[id >= 2 & code %in% c("a", "c"),
    lapply(.SD, sum),
    by=.(id, code)]
```

**14**. Compute **sum(valA)\*mul** for every row of **DF2\$id**, **DF2\$code** by matching it against **DF1**.

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | a    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

```
DT1[DT2, on=.(id, code),
    sum(valA)*mul,
    by=.EACHI]
```

|    | id | code | V1 |
|----|----|------|----|
| 1: | 3  | b    | NA |
| 2: | 1  | а    | NA |
| 3: | 1  | С    | 51 |
| 4: | 2  | С    | NA |
| 5: | 3  | d    | NA |

## GROUP 3 WRAP UP

### Easy-moderate: (unless specified, assume DT1)

- 1. Get max(valB) min(valA) grouped by code. Name the column 'diff'.
- 2. Get max(valA) min(valB) grouped by code and id. Name the column 'diff'
- 3. Get the median of valA grouped by code.
- 4. Get the median of valA and log(sum(valB)) grouped by code. Why does it fail? Hint: Read the error message and use verbose = TRUE for both (3) and (4) and observe the difference.
- 5. For each code (i.e., grouped by code) randomly sample one row of the rest of the columns. Hint: you could do it with `.SD` and `.N` and `sample()`.

#### **Moderate-Hard:**

- 6. Get the most frequently occurring code grouped by id. This might require multiple steps.
- 7. Get the count of values where valA > sqrt(valB) is TRUE and the count of values where the condition isn't TRUE.
- 8. Get min(valA) of DT1 from rows that match id, code from DT2 and NA if it doesn't match.
- 9. Get max(valB) of DT1 from rows that match id, code from DT2. Only keep matching rows
- 10. Let DT3 = DT2[!duplicated(id)]. For each DT3\$id, get sum of valB only where valA >= mul.

# Group 4

8. Replace valA with max(valA)-min(valA) grouped by code

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | a    | 5    | 14   |
| 6: | 2  | a    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

```
DT1[, valA :=
   max(valA)-min(valA),
   by=code]
```

8. Replace valA with max(valA)-min(valA) grouped by code

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 8    | 10   |
| 2: | 1  | b    | 5    | 11   |
| 3: | 1  | С    | 8    | 12   |
| 4: | 1  | С    | 8    | 13   |
| 5: | 2  | a    | 3    | 14   |
| 6: | 2  | a    | 3    | 15   |
| 7: | 1  | b    | 5    | 16   |
| 8: | 2  | a    | 3    | 17   |
| 9: | 1  | С    | 8    | 18   |

```
DT1[, valA :=
   max(valA)-min(valA),
   by=code]
```

9. Create a new col named valD with max(valB)-min(valA) grouped by code

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | a    | 5    | 14   |
| 6: | 2  | a    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | a    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

```
DT1[, valD :=
    max(valB)-min(valA),
    by=code]
```

9. Create a new col named valb with max(valb)-min(vala) grouped by code

|            | id | code | valA | valB | valD |
|------------|----|------|------|------|------|
| 1:         | 1  | С    | 1    | 10   | 17   |
| 2:         | 1  | b    | 2    | 11   | 14   |
| 3:         | 1  | С    | 3    | 12   | 17   |
| 4:         | 1  | С    | 4    | 13   | 17   |
| 5:         | 2  | а    | 5    | 14   | 12   |
| 6:         | 2  | а    | 6    | 15   | 12   |
| <b>7</b> : | 1  | b    | 7    | 16   | 14   |
| 8:         | 2  | а    | 8    | 17   | 12   |
| 9:         | 1  | С    | 9    | 18   | 17   |

```
DT1[, valD :=
    max(valB)-min(valA),
    by=code]
```

15. For every row of **DF2\$id**, **DF2\$code** that matches with **DF1**'s, update **valB** with **valB\*mul**.

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 10   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 12   |
| 4: | 1  | С    | 4    | 13   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 18   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | а    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

```
DT1[DT2, on=.(id, code),
  valB := valB*i.mul,
  by=.EACHI]
```

15. For every row of **DF2\$id**, **DF2\$code** that matches with **DF1**'s, update **valB** with **valB\*mul**.

|    | id | code | valA | valB |
|----|----|------|------|------|
| 1: | 1  | С    | 1    | 30   |
| 2: | 1  | b    | 2    | 11   |
| 3: | 1  | С    | 3    | 36   |
| 4: | 1  | С    | 4    | 39   |
| 5: | 2  | а    | 5    | 14   |
| 6: | 2  | а    | 6    | 15   |
| 7: | 1  | b    | 7    | 16   |
| 8: | 2  | а    | 8    | 17   |
| 9: | 1  | С    | 9    | 54   |

|    | id | code | mul |
|----|----|------|-----|
| 1: | 3  | b    | 5   |
| 2: | 1  | a    | 4   |
| 3: | 1  | С    | 3   |
| 4: | 2  | С    | 2   |
| 5: | 3  | d    | 1   |

```
DT1[DT2, on=.(id, code),
  valB := valB*i.mul,
  by=.EACHI]
```

## GROUP 4 WRAP UP

### Easy-moderate: (unless specified, assume DT1)

- 1) Update valB with valB\*<no: of rows in that group> grouped by code
- 2) Update both valA and valB with valA\*max(valA) and valB\*max(valB) respectively grouped by id, code
- 3) Create two new columns 'A2', 'B2', while grouped by code, by randomly sampling (with replacement) the same number of rows in the group from valA and valB respectively.
- 4. Add a column named 'uniq\_N' which contains the count of unique 'code' values, while grouped by 'id'.

#### **Moderate-Hard:**

- 5. Update all rows of valB with NA where DT3\$id, DT3\$code \*don't\* match with DT1\$id, DT1\$code.
- 6. Let DT3 = DT2[!duplicated(id)]. For each DT3\$id, find all rows in DT1\$id that is <= DT3\$id and compute sum(valA)\*mul.