• Prof.Dr. Ferucio Laurențiu Tiplea

Department of Computer Science "Al.I.Cuza" University of Iaşi

Office: C 301

Tel: (0232) 201538

Date: Feb 12, 2016

Examen Final (Restanță)

1. (IPsec)

(a) Descrieți, succint dar clar, elementele ce stau la baza arhitecturii *IPsec* (asociere de securitate, AH, ESP, moduri de utilizare pentru datagrame IPv4).

3p

1p

2p

1.5p

1.5p

- (b) Modul de criptare CBC al unei secvențe $P_1 \cdots P_n$ cu vectorul de inițializare $IV = C_0$ este dat prin $C_i = e_K(P_i \oplus C_{i-1})$, pentru orice $1 \le i \le n$. Ce implicații, la destinație, are apariția unei erori în transmisia unui bloc C_i ?
- (c) Modul de criptare PCBC al unei secvențe $P_1\cdots P_n$ cu vectorul de inițializare $IV=C_0$ este dat prin $C_1=e_K(P_1\oplus C_0)$ și $C_i=e_K(P_i\oplus P_{i-1}\oplus C_{i-1})$, pentru orice $2\leq i\leq n$. Ce implicații, la destinație, are apariția unei erori în transmisia unui bloc C_i ?
- 2. Presupunem că mesajele transmise prin SSL sunt prelucrate astfel:
 - mesajul este imparțit în blocuri, B_1, \ldots, B_m (fiecare cu cel mult 2^{14} octeți);
 - pentru fiecare bloc B_i se realizează:
 - se aplică un MAC blocului B_i rezultând X_i ;
 - se criptează X_i cu un criptosistem simetric în modul CBC rezultând Y_i ;
 - se adaugă un header SSL rezultând Z_i ;
 - se transmite Z_i printr-un segment TCP.

Criptarea primului bloc X_1 se face astfel:

- se împarte X_1 în blocuri de 64 sau 128 bits (în funcție de criptosistem), $X_1 = x_1^1 \cdots x_1^{l_1}$;
- se generează $Y_1 = y_1^1 \cdots y_1^{l_1}$, unde $y_1^1 = e_k(x_1 \oplus y_0)$, y_0 este un vector inițial, iar $y_1^j = e_K(x_1^j \oplus y_1^{j-1})$, pentru orice j > 1.

Criptarea celorlalte blocuri $X_i = x_i^1 \cdots x_i^{l_i}$ (i > 1) se face ca și pentru X_1 dar cu deosebirea că y_0 este ales ca fiind $y_{i-1}^{l_{i-1}}$ (ultimul criptotext din blocul anterior).

- (a) Arătați că un intrus care are acces la blocurile Y_1 și X_2 dar nu la X_1 , poate decide efectiv dacă un anumit sub-bloc x_1^j coincide sau nu cu un mesaj x^* (de aceeași lungime cu x_1^j) ales de intrus (remarcă: funcția de criptare este injectivă).
- (b) Dacă un sub-bloc x_1^j conține o parolă mică, poate fi utilizat rezultatul anterior pentru montarea unui atac prin ghicirea parolei? (puteți presupune că intrusul poate monta un atac de plaintext ales).
- (c) Cum poate fi îmbunătățit protocolul pentru a nu mai avea loc proprietatea de la (a)?