

CAPTURA E TRANSMISSÃO DE DADOS DE IMAGENS DE VISÃO GLOBAL ESPECÍFICA PARA O FUTEBOL DE ROBÔS

Pedro Dorighello Foltran Orientador: Prof. Dr. Renê Pegoraro

Agenda

- Introdução
 - o Problema
 - Objetivo
 - Materiais
- Sistema
- Conclusão
- Trabalhos Futuros
- Referências
- Agradecimentos

Introdução

Futebol de Robô

- Evoluir as áreas de Robótica e Inteligência Artificial
- Em Bauru desde 1998
- Junção de diversos Módulos
 - Módulo de Estratégia
 - Módulo de Controle
 - Módulo de Visão

Visão Global

- Fornece imagens do campo todo
- Câmera localizada a 2 metros
- Identificar jogadores e bola

Problema

- Atraso no recebimento das imagens
 - Módulo Antigo → USB
- Consequências
 - Posição real do Robô incorreta
 - Velocidade real incorreta
 - o Portanto, resposta ao ambiente incorreta

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

- Webcam é lenta:
 - Transferência necessita de um overhead maior se comparado a outros.
 - Compactação e descompactação da própria Web (LOGITECH, 2012).

Fonte: Elaborada pelo autor

Objetivo

Desenvolver um sistema utilizando Banana Pi que capture as imagens utilizadas pelo software do futebol de robôs compactando-as e transmitindo-as via Ethernet.

Materiais e Métodos

- Banana Pi
 - Computador de placa única
 - Permite conectar módulos (entrada CSI)
 - Saída Ethernet até 1 Gb/s
 - Instalação de diferentes S. O.
 - Escolhido Lubuntu
- Câmera (OMNIVISION TECHNOLOGIES, INC, 2011)
 - OV5640 da Omni Vision
 - Permite atualizações

Materiais e Método

- Transmissão UDP
 - Overhead menor (8 Bytes x 20 Bytes) (AXELSON, 2015)
 - Economiza banda de transmissão

A transmissão é dividida em três momentos, descritos a seguir.

Materiais e Método

UNIVERSIDADE ESTADUAL PAULISTA
"JÚLIO DE MESQUITA FILHO"

Momento 0 – Calibração

Envio contínuo de imagens 640x480 (614400 *bytes*) em RGB de 15 *bits*, para criação do Vetor de Conversão de Cores.

Vermelho	Verde	Azul	Cor
11001	1001 0	1100 1	
1010 0	01001	1010 0	
1011 0	0101 1	1011 0	

Índice do Vetor	Valor (max. 255)	
:	0 6	
110011001011001	5	
101000100110100	5	
101100101110110	5	
:	0 6 9	

Materiais e Método

Envio do Vetor – Momento 1
 Envio do vetor de 32 kbytes para o Banana Pi, sendo utilizado a seguir.

Jogo – Momento 2

Imagem passa por um processo próprio de conversão, compactação e é enviada.

Fonte: Elaborada pelo autor

Compactação

- Após converter para as flags de cores específicas, as repetições de valores tendem a aumentar → menos de 10 cores específicas.
- Essas repetições são organizadas em compactação BMP:

Descompactado	Compactado	
04 04 04 45 56 67 06 06 06 06 06	03 04 00 03 45 56 67 05 06	

Sistema

O Sistema implementa os momentos anteriores em C++.

- Video for Linux (V4L2) (SCHIMEK et al., 1999)
 - API utilizada para captura de imagens.
 - Utiliza Buffers em fila.
 - Compatível apenas com formato YUYV.
 - Trabalho em nível próximo ao hardware

- YUYV
 - 4 Bytes formam 2 pixels.
 - Tempo extra de processamento para converter em RGB 555
- Transmissão
 - Solicitações do usuário (computador) para o servidor (Banana Pi).
 - Envio das imagens:
 - Em pacotes (para com ou sem compactação)
 - Cliente aguarda recebimento total da imagem ou caractere de fim (255).

Conclusão

Sistema está implementado e funcional conforme os métodos apresentados e mostrou-se promissor.

É também escalável, permitindo futuras atualizações.

Para a integral substituição recomenda-se algumas alterações no *driver* da câmera.

Trabalhos Futuros

- Atualização do *Driver*:
 - Alteração do fps
 - Envio das imagens em RGB

Melhor gerenciamento dos pacotes enviados.

O Sistema em funcionamento

Agradecimentos e Perguntas

Referências

AXELSON, J. USB complete. 5. ed. Lakeview Research, 2015. Disponível em: . Acesso em: 02/02/2017.

COSTA, A. H. R.; PEGORARO, R. Construindo robôs autônomos para partidas de futebol: o time guaraná. SCBA Controle & Automação, v. 11, n. 93, p. 141–149, dec 2000. Disponível em: . Acesso em: 02/02/2017.

LOGITECH. The h.264 advanced video coding (avc) standard. In: . [s.n.], 2012. Disponível em: . Acesso em: 02/02/2017

OMNIVISION TECHNOLOGIES, INC. OV5640 Datasheet PRODUCT SPECIFICATION. [S.I.], 2011. Disponível em: . Acesso em: 02/02/2017.

SCHIMEK, M. H.; DIRKS, B.; VERKUIL, H.; RUBLI, M. Video for linux two api specification. History, v. 6, p. 11, 1999