제9장

과전류 보호

9.1	과전류에 대한 보호(KEC 212)	149
9.2	과전류 보호장치의 종류 및 특성(KEC 212.3)	151
9.3	과부하전류에 대한 보호(KEC 212.4)	154
9.4	단락전류에 대한 보호(KEC 212.5)	162

제9장. 과전류 보호

* 과전류란 전기기기에 대해서는 그의 정격전류, 절연전선 및 케이블에 대해서는 허용전류를 초과한 전류를 말한다. 과전류는 과부하전류와 단락전류가 있으며 전기사용기기의 과부하, 단락고장 또는 지락고장과 같은 경우에 발생한다.

1) 과부하전류

원동기의 베어링 파손 등 전기적인 고장이 없이 회로에 발생할 수 있지만 지속시간이 길어지면 회로에 열적손상이 가해지므로 회로를 자동 차단하여야 한다.

2) 단락전류

정상 운전상태에서 전위차가 있는 충전된 도체 사이에 임피던스가 0인 고장으로 인하여 발생한 과전류(큰 전류)이며, 회로를 보호하기 위하여 즉시 차단하여야 한다.

9.1 과전류에 대한 보호(KEC 212)

1 과전류에 대한 보호의 원칙(KEC 212.1)

1) 자동차단장치에 의해 보호

회로도체(전선)의 과부하 및 단락고장이 발생할 때 전원을 **자동차단장치(MCCB, RCD, 퓨즈)에 의해 보호**하여야 한다.

[그림 9.1-1] 과전류보호(배선차단기, 퓨즈 및 도체 허용전류) 시간/전류 특성

2) 과전류에 의한 손상

전기회로(전선)에 과전류(과부하전류 및 단락전류)가 흐르면 다음과 같은 현상

으로 절연파괴가 발생할 수 있으므로 과전류보호장치를 설치하여야 한다.

- (1) 온도상승에 의한 열적손상
- (2) 전자기력에 의한 기계적 응력(비틀림 현상 등)

2 회로의 특성에 따른 요구사항(KEC 212.2)

1) 선도체의 보호(KEC 212.2.1)

- (1) 모든 선도체에 과전류 검출기(과전류 차단기 또는 경보기)를 설치할 것.
- (2) 과전류가 검출된 선도체(전원선)만 차단할 것.
- (3) 3상전동기 등 단상 차단이 위험한 경우는 결상 및 불평형에 대한 보호장치로 모든 선도체를 동시에 차단한다.

2) 중성선의 보호(KEC 212.2.2)

- (1) 중성선의 단면적이 **선도체의 단면적과 동등 이상**인 경우 중성선에 과전류검출기를 설치할 필요 없음
- (2) 중성선의 단면적이 선도체보다 작은 경우와 고조파 과전류가 검출되는 경우 중성선에는 그 단면적에 따른 과전류 검출기 또는 차단장치를 설치하고, 이 때 과전류 검출에 의해 선도체를 차단해야 하지만 중성선을 차단할 필요는 없다. 따라서 중성선의 과전류 검출과 선도체 차단을 동시에 하는 4P차단기 를 설치한다.

[참고] 현재 4P차단기의 적용 목적과 적용

3상4선식 380 V 공급에 의한 단상2선식 220 V 사용에 따른 중성선의 보호이나, 이미 보호기기가 설치되어 보호기기 추가 없이 3고조파 성분이 15 %이하로 간주되는 공동주택의 경우 중성선을 선도체의 1/2까지 줄일 수 있다.

(3) PEN 도체의 보호

PEN 도체는 중성선은 물론이고 보호도체(PE)의 역할을 하므로 개방되어서는 안 되므로 차단장치 및 개폐장치를 설치할 수 없다.

3) 중성선 차단 및 재폐로(KEC 212.2.3)

중성도체를 차단 및 재폐로 하는 회로의 경우에 설치하는 개폐기 및 차단기는 차단 시 중성도체가 상도체 보다 늦게 차단되어야 하며, 재폐로 시에는 상도체 와 동시 또는 먼저 투입될 것. 중성선이 먼저 단선되면 [그림 9.1-2] 와 같이 부하에 비례하는 전압이 발생하여 높은 전압이 발생할 수 있다.
[참고] 대부분의 차단기는 중성단자를 약간 길게 하여 **선투입 후차단하게 제작**된다.

[그림 9.1-2] 중성선 단선 시 개념도

9.2 과전류 보호장치의 종류 및 특성(KEC 212.3)

1 과전류 보호장치의 종류

- 1) 과전류 보호장치에는 배선차단기, 누전차단기 및 퓨즈가 있다. 퓨즈는 거의 사용하지 않고, 누전차단기(RCD: 과거 ELB의 IEC적용에 의하여 바뀜)는 MCCB에 영상변류기(ZCT)를 추가하여 누전과 과전류보호를 겸한 것으로 특성은 MCCB와 같다.
- 2) 배선차단기는 산업용(MCCB)과 주택용(MCB)이 있다. 주택용 배선차단기는 일반인이 접촉할 우려가 있는 장소(세대 내 분전반 및 이와 유사한 장소)에 적용하여야 한다. 여야 한다.

2 배선차단기의 특성

1) 주택용 배선차단기

- (1) 주택용의 적용범위는 380V 이하, 정격전류 125A 이하이며, 차단용량은 25kA 이하이다
- (2) [그림 9.2-5]의 주택용 D-20은 정격전류가 20 A인 Type "D"를 의미한다.
- (3) [표 9.2-2]에 의거 APT 등의 주택에는 Type "C"를 권장한다.
- (4) [그림 9.2-3]은 "C"타입의 주택용 배선차단기 동작특성곡선으로 그래프의 상단

에 부동작전류인 1.13배와 동작전류인 1.45배를 표기하여 [표 9.2-2] 과전류 트립동작시간 및 특성(주택용 배선용 차단기)을 만족함을 확인할 수 있으며, 순시 트립 범위는 500~1,000%로 순시트립에 따른 구분(주택용 배선차단기)의 조건 을 만족하고 있다.

[표 9.2-1] 과전류 트립 동작시간 및 특성(주택용 배선차단기)

정격전류의 구분	시 간	정격전류의 배수(모든 극에 통전)		
경기간까의 구판	시신	부동작전류	규약동작전류	
63 A 이하 63 A 초과	60분 120분	1.13배 1.13배	1.45배 1.45배	

[표 9.2-2] 순시 트립에 따른 구분(주택용 배선차단기)

형	순시 트립 범위	적용 장소
В	3ln 초과 ~ 5ln 이하	난방기기, 온수기
С	5ln 초과 ~ 10ln 이하	조명, 콘센트, 소형 전동기
D	10ln 초과 ~ 20ln 이하	돌입전류가 큰 부하, 변압기

비고 1. B, C, D: 순시 트립 전류에 따른 차단기 분류

2. In: 배선용차단기 정격전류

[그림 9.2-3] 주택용 배선용차단기 동작특성곡선

[그림 9.2-4] 산업용 배선용차단기 동작특성곡선

[그림 9.2-6] 산업용 배선차단기

2) 산업용 배선차단기

- (1) 산업용은 1,000 V 이하, 정격전류 2,000 A 이하이다.
- (2) [그림 9.2-4]는 산업용 배선차단기의 동작특성곡선이다.
 - ① 상단에 부동작 전류인 1.05배와 규약동작전류인 1.3배까지 바이메탈에 의한 열동트립으로 과부하전류의 크기에 따라 동작시간에 반비례(반한시 특성) 한다.

[표 9.2-3] 과전류 트립 동작시간 및 특성(산업용 배선차단기)

정격전류의 구분	시 간	정격전류의 배수(모든 극에 통전)		
경독한파의 구판	시신	부동작전류	규약동작전류	
63 A 이하 63 A 초과	60분 120분	1.05배 1.05배	1.3배 1.3배	

② 고장 시 전자석에 의한 전자 차단장치로 10배의 정격전류에서 순시 트립하여 단락 보호를 한다. 순시 트립전류의 전 차단시간은 10ms (0.01초) 이하이다.

[참고] 그림 9.2.2-4의 FTU와 FMU

열동전자식 정격 가조정 노브가 있는 정격(트립)전류 조정형 배선차단기이다.

- 1) FTU(Fixed Trip Unit) : 열동전자식 정격/순시 고정
- 2) FMU(Fixed Magnetic trip Unit) : 열동전자식 정격 가조정(노브)/순시 고정
- 3) Ir : 트립전류, In : 정격전류

9.3 과부하전류에 대한 보호(KEC 212.4)

주택용 배선차단기는 주로 세대분전반 등의 분기회로에만 적용되므로 여기서는 산업용 배선차단기에 대하여 기술한다.

1 도체(전선)와 과부하보호장치(MCCB) 사이의 협조

(1)

다음 두 가지의 조건을 충족해야 한다.

$$I_R \leq I_n \leq I_Z$$

$$I_2 \le 1.45 \times I_Z \tag{2}$$

여기서.

 I_{R} : 회로의 설계전류[정상의 공급회로 전류 : 전부하전류(FLC)]

 I_z : 전선의 허용전류

In: 보호장치(배선차단기)의 정격전류

 I_0 : 보호장치의 60분 규약동작전류[산업용 배선차단기(I_n) = $1.3 \times$ 정격전류(I_n)]

[그림 9.3-1] 과부하보호 설계 조건도 적용 예

1) 보호협조 해설

(1) $I_B \leq I_n \leq I_Z$ (1)의 조건 : 설계전류 (I_B) 를 고려한 차단기 선정

MCCB의 정격전류 또는 설정값(I_n)은 회로 설계전류(I_B) 이상이 되어야 하며, 보호되는 전선의 허용전류는 배선차단기(MCCB)의 정격전류(I_n) 보다 커야 한다.

(2) $I_2 \leq 1.45 \times I_Z$ (2)의 조건 : 케이블의 열적강도를 고려한 차단기 선정

- ① 이는 **퓨즈와 바이메탈형 배선차단기**에 적용되며, 주택용 배선차단기와 누전차단기는 열동전자트립형으로 (1)의 조건이 만족되면 (2)의 조건을 무조건 만족한다. 따라서 MCCB 선정 시 바이메탈형 MCCB는 사용을 고려하여야 한다.
- ② 열동전자트립형 산업용 MCCB의 규약동작전류($I_2 = 1.3 \times I_n$)를 결정하는 범위의 한계값으로 전선 허용전류의 1.45배가 된다. 일반적으로 전선 허용전류의 과부하 내열특성은 [그림 9.3-2]과 같이 1.45배의 전류에서 케이블의 과부하보호점이 60분까지 가능하므로 (2)의 조건을 만족하다.

[그림 9.3-2] 케이블의 과부하 내열특성

(3) $I_n \geq \frac{I_m imes eta}{\delta}$ 조건 : 전동기 기동시간과 기동전류를 고려한 차단기 선정

[단, δ : 규약동작배율, β : 기동배율($I_m \times \beta$: 기동전류), I_m : 전동기 정격전류] 확실한 제원의 기동시간이 길고 기동전류가 큰 플랜트설비에서는 전동기가 기동실패 되지 않도록 차단기 정격 결정에 **규약동작배율(\delta)**을 고려하여 결정 하여야 한다. 또한, 차단기 용량선정 시 제조사별로 특성이 다르므로 동일하게 일괄 적용할 수 없으며 제조사의 제원에 따라서 각각 선정하여야 한다.

[참고] 전동기용 MCCB(산업용 배선차단기)의 실무 적용방법

① 기동시간이 길거나(5초 이상) 기동전류가 큰(8 In 이상) 전동기 부하의

경우 MCCB의 규약동작배율(δ)에 따라 차단기(MCCB)와 케이블의 규격에 차이가 크므로 성능이 좋은 차단기의 선정이 경제적으로 유리하다.

② 건축물에 사용되는 급수, 배수, 온수, 급탕, 소화 펌프 등에 적용되는 전동기 부하의 경우 대부분 기동시간이 대부분 2초 이하로 짧다. 전동기 규격 결정은 기계설계에서 하며 펌프 등 원동기 입력의 약 1.25~1.3배 큰 것으로 결정한다. 따라서 설계전류[전부하전류(FLC)]를 적용하면 문제가 없으나, 여러 가지 어려움이 있어 부하전류를 적용하게 되므로 여유를 줄필요가 없다.

2) 용어의 정의와 해설

(1) 회로의 설계전류(I_R: Design Current)

회로의 설계전류는 정상의 공급회로에 전류가 흐를 때 상정되는 전류이다.

① 분기회로

부하의 효율과 역률 및 부하율이 고려된 부하의 최대전류를 의미하며, 고조파 발생부하인 경우에는 고조파전류에 의한 선전류 증가분이 고려되어야 한다.

② 간선

추가로 수용률, 부하 불평형률, 장래 부하증가에 대한 여유 등이 고려되어야 한다.

$$I_{B} = \frac{\sum P_{i}}{K \cdot V} \times a \times h \times k$$

여기서, $I_{\scriptscriptstyle R}$: 회로의 설계전류(A)

P: 단상 또는 3상부하의 입력(VA)

K: &V(Phase) 식별계수(3상: $\sqrt{3}$, 단상: 1)

K: 부하의 정격전압(V)

α:수용률

h: 고조파 발생부하의 선전류 증가계수

k: 부하의 불평형에 따른 선전류 증가계수

(2) 케이블의 허용전류(Iz: Current Carrying Capacity of Cable)

케이블의 허용전류는 도체가 정상상태에서 전선의 최고사용 온도를 초과하지 않는 범위 이내에서 도체에 연속적으로 흘릴 수 있는 최대전류이다. [표 9.3-1]은 절연 형태별 최고사용온도와 적용 케이블의 종류를 나타낸다.

ſΨ	9	3-	11	적여	형태벽	취고/	나용온도외	- 저용	케이블의	종류
	∕.			2.	011 =	1 414	╵ᄋᆫᆂᆈ	\neg		\circ

절연물의 종류	케이블의 종류	허용온도(℃)
PVC	450/750 비닐절연전선, VV Cable	70
XLPE, EPR	HFIX, EPR, F-CV, FR-8 Cable	90

(3) 보호장치의 정격전류(I_n)

보호장치의 정격전류(I_n)는 대기 중에 노출된 상태에서 규정된 온도상승한도를 초과하지 않고 연속하여 최대로 흘릴 수 있는 전류값으로 정하고 있다.

단, 정격전류를 조정할 수 있게 설계 및 제작된 경우에는 조정된 전류값이 보호 장치의 정격전류가 된다.

(4) 보호장치의 규약동작전류 (I_2)

보호장치의 규약동작전류(I_2)는 보호장치가 규약시간 이내에 유효한 동작을 보장하는 전류로 제조사가 기술시방서에 공시하여 제공하거나, 제품 표준에 제시되어야 한다.

3) KEC에 의한 동력부하(분기회로)의 MCCB 선정사례(1)

(1) 회로의 설계전류 선정

정격전압, 정격용량	3상 380 V 22 kW	기동전류	316.8 A(직입기동)
정격전류	44 A	기동시간	4초

(2) 전선(도체)의 허용전류 결정

전선의 허용전류 결정은 도체의 절연형태별 허용온도, 공사방법, 주위온도 등에 의해 결정된다. 여기서는 450/750 V 저독성 난연폴리올레핀절연전선 (HFIX)을 전선관공사(공사방법 B1)로 적용하였다. 도체의 허용온도 90°C, 주위온도 40°C(30°C의 보정계수 0.91)을 적용하였다.

[표 9.3-2] 포설조건을 고려하여 보정된 HFIX의 허용전류

공칭 단면적(m²)	허용전류(A) 30℃, 1회선	보정된 허용전류(A) 40℃, 1회선
HFIX 6mm² ×3, E 6mm²	48	44
HFIX 10mm² ×3, E 10mm²	66	60
HFIX 16mm² ×3, E 16mm²	88	80

(3) I_B≤In≤Iz을 적용한 과전류차단기(MCCB)의 정격전류 선정
 과전류차단기의 정격전류(In)는 회로의 설계전류(Ib : 44A)보다 크고 도체의 허용전류(Iz) 보다 작아야 하므로 아래와 같이 50 A로 선정한다.

$$I_B(44 \text{ A}) \leq In(50 \text{ A}) \leq Iz(60A - 10\text{mm}^2 \text{ x } 3)$$

(4) *I*₂ ≤ 1.45×Iz를 적용한 MCCB 정격전류 선정

보호장치의 규약동작전류(I2)는 MCCB를 정격전류 130%의 과전류가 1시간 이상 지속되면 과전류차단기가 동작한다.

$$I_2 = In \times 130\% = 50 \text{ A} \times 1.3 = 65 \text{ A}$$

$$I_2(65 \text{ A}) \le 1.45 \times I_Z (1.45 \times 54 \text{ A} = 78.3 \text{ A})$$
 3

- (5) 전동기의 최대기동전류를 고려한 MCCB의 정격전류 선정 전동기는 전전압기동시 정격전류의 6~8배 정도의 기동전류가 회로에 흐르므로 MCCB의 오동작을 방지를 위하여 전동기 분기회로 MCCB의 정격전류를 다음의 방법으로 선정한다.
 - ① 보호장치의 최소동작시간(tb)은 기동실패를 고려하여 전동기의 전전압기동 시간(tm)을 기준으로 하여 50~100%의 범위에서 가산한다(**일반적으로** 기동시간×1.5 선정).
 - ② 보호장치의 규약동작배율(δ)는 MCCB 제조사가 제시한 동작 특성곡선에 서 최소동작시간(tb)과 특성곡선의 교점에 해당하는 동작전류가 차단기의 규약동작배율(δ)이 된다.

여기서 보호장치의 최소동작시간(tb)은 전동기 기동시간인 **4초에 기동실패** 를 고려하여 150%의 여유율을 주어 6초로 선정한다. 따라서 보호장치의 규약동작배율(δ)은 [그림 9.3-3]과 같이 5.8배로 결정된다.

규약동작배율(δ)이 5.8배로 결정됨에 따라 과부하보호장치의 정격전류 In은

$$I_n \ge \frac{I_m \times \beta}{\delta} = \frac{44 \times 7.2}{5.8} = 55 A \tag{4}$$

여기서, Im: 전동기 회로의 설계전류(44 A)

β: 전동기의 전전압기동배율(7.2)

δ: 보호장치의 규약동작배율(5.8배)

따라서, 계산 값보다 큰 표준규격의 과전류차단기의 정격전류는 63 A가 된다.

주의 여기에 적용한 과전류차단기는 LS, Susol TS 100의 동작특성곡선을 나타낸 것으로 다른 MCCB의 경우 다르게 적용된다.

[그림 9.3-3] 최대기동전류에 대한 보호장치의 동작특성

(6) MCCB 선정에 따른 케이블의 굵기 조정

전동기의 최대기동전류를 고려한 과전류차단기의 정격전류가 50 A에서 63 A로 조정됨에 따라

 $I_B \le \text{In} \le \text{Iz}(4\ 212.4-1)$ 에 적합하도록 도체의 허용전류가 $63\ A$ 이상이 되는 전선의 굵기인 HFIX 16로 $x\ 3$ (허용전류 80A)로 조정한다. 따라서

$$I_R(44 \text{ A}) \leq In(63 \text{ A}) \leq Iz(80A-16 \text{ m²} \text{ x } 3)$$
 5

4) KEC에 의한 건축설비 동력부하(분기회로)의 MCCB 선정사례(2)

(1) 회로의 설계전류 선정

정격전압, 정격용량	3상 380 V 18.5 kW	기동전류	270 A(직입기동)
정격전류	37 A	기동시간	3초

(2) 절연전선(도체)의 허용전류 결정 여기서는 HFIX를 전선관공사로 적용하였다. 이는 **전선관공사(공사방법 B1)**, 도체의 허용온도 90℃, 주위온도 30℃를 적용하였다.

[표 9.3-3] 포설조건을 고려한 HFIX의 허용전류

공칭 단면적(m²)	허용전류(A) 30℃, 1회선
6	48
10	66

(3) $I_B \le In \le Iz$ (식 212.4.1)을 적용한 과전류차단기(MCCB)의 정격전류 선정 과전류차단기의 정격전류(In)는 회로의 설계전류(I_B) 보다 크고 도체의 허용 전류(Iz) 보다 작아야 하므로 아래와 같이 40 A로 선정한다.

$$I_R(37 \text{ A}) \leq In(40 \text{ A}) \leq Iz(48 \text{ A} - 6 \text{ m²})$$

 (4) I₂ ≤1.45×Iz를 적용한 MCCB 정격전류 선정
 보호장치의 규약동작전류(I₂)는 MCCB를 정격전류 130%의 과전류가 1시간 이상 지속되면 과전류차단기가 동작한다.

$$I_2 = I_1 \times 130\% = 40 \text{ A} \times 1.3 = 52 \text{ A}$$
 ②
$$I_2(52 \text{ A}) \le 1.45 \times I_2(1.45 \times 44 \text{ A} = 58 \text{ A})$$
 ③

(5) 전동기의 최대기동전류를 고려한 MCCB의 정격전류 선정 따라서 보호장치의 최소동작시간(tb)은 전동기 기동시간은 3초에 여유율을 고려하여 4.5초로 선정한 경우, 보호장치의 **규약동작배율(δ)은 7배**로 결정된다. 과부하보호장치의 정격전류 In은

$$I_n \ge \frac{I_m \times \beta}{\delta} = \frac{270}{7} = 38.6 A \tag{4}$$

(6) MCCB 선정에 따른 케이블의 굵기 조정 계산 값 보다 큰 표준규격의 과전류차단기의 **정격전류는 40A** 이하로 MCCB 조정이 필요 없으므로 전선의 굵기 조정도 없어 ①의 값으로 선정 한다.

[참고] 전동기 기동방식별 MCCB와 전선의 선정

전동기 기동전류를 고려한 차단기 정격선정 시 전동기의 기동방식은 고려할 필요가 없다. 즉, 직입기동 시 선정방법으로 하여도 문제 없다. 이유는 감전압기동 시 기동전류는 기동방식에 따라 작아지나 기동시간은 길어진다.

즉, 전동기의 시간-전류 특성에서 기동전류와 가동시간은 " $I^2 \cdot t = 2$ 일정"에 따라 비례적으로 변화한다. 이는 [그림 9.3-4]과 같이 과부하보호장치의 반한시 동작특성과 유사하게 변화하는 것이다. 따라서 과부하보호장치의 정격전류는 전동기의 전전압 기동전류와 전전압 기동시간으로 선정하거나, 감전압기동에 의한 감소 된 전류와 길어진 기동시간으로 선정해도 같은 결과가 된다.

[그림 9.3-4] 전동기 기동방식별 기동전류와 기동시간의 개념

2 전기안전공사 검사기준

- 1) 전동기 기동시간은 제작사 보증값을 활용할 것.
- 2) 보호장치의 규약동작배율은 실제 설치될 제조사 및 모델의 특성곡선을 적용할 것. 즉, 현대, 효성 등 전동기 제작사의 Data Sheet를 기준으로 기동전류를 결정하고, 기동시간을 규약동작배율 계산식에 적용하면 된다.

3 과부하 보호장치의 설치 위치(KEC 212.4.2)

간선에서 분기되는 분기점에서 분기회로 **과부하보호장치(분전반)의 설치위치는 3 m** 이하에 설치하여야 하며, 단락보호가 되는 경우 거리 제한 없이 설치할 수 있다

[주의] KEC에서는 판단기준의 "P1 정격전류의 35% 이상 8 m 이하, 55% 이상 제한 없음"을 적용할 수 없다.

[그림 9.3-5] 과부하 보호장치의 설치위치

9.4 단락전류에 대한 보호(KEC 212.5)

1 단락보호장치의 설치(KEC 212.5.1)

회로에는 전선 및 접속부에 위험한 열적·기계적 영향을 일으키기 전에 보호장치 부하측의 어떠한 점에서의 단락전류도 차단하는 단락보호장치를 시설하여야 한다. 단락보호장치 설치 점에서의 예상 단락전류는 계산 또는 측정에 의해 결정한다.

2 단락보호장치의 특성(KEC 212.5.5)

1) 차단용량

단락보호장치의 정격차단전류는 그 설치 점에서의 예상 단락전류 이상이어야 한다. 보호장치의 정격차단전류를 선정하는 경우 회로에서 발생 가능한 **전압변화**, 선로 정수의 변화 등을 고려하여 설계여유를 25% 정도 가산하여 결정하는 것이 바람직하다.

보호장치의 정격차단전류>예상단락전류 × 1.25

2) 케이블 등의 단락전류

케이블에 단락고장이 발생한 경우에는 단락고장전류에 의한 도체의 단시간 허용 온도에 도달하는 시간은 다음과 같이 산출한다.

$$t = (\frac{kS}{I_{o}})^{2}$$

여기서 t: 단락전류 지속시간(초)

s : 도체의 단면적(m²)

L : 단락전류 실효값(A)

 $_k$: 도체 재료의 저항률, 온도계수, 열용량, 해당 초기온도와 최종온도를

고려한 계수([표 9.4-1] 참조)

[표 9.4-1] 도체에 대한 k값

		도체절연 형식								
	구 분	구분 F		PVC(열가소성)		EP고무/가교 폴	고무	무기재료		
		(열기	l소성)	90	90℃ 리에틸렌		(열경화성)	PVC	노출	
단	ː면적(㎜²)	≦300	>300	≦300	>300	(열경화성)	60℃	외장	비외장	
초기온도(℃)			70	9	90	90	60	70	105	
최종온도(℃)		160	140	160	140	250	200	160	250	
도체	구리	115	103	100	86	143	141	115	135/115	
재료	알루미늄	76	68	66	57	94	93	_	-	

전류의 비대칭분(직류분)이 중요해지는 짧은 시간(0.1초 미만)의 경우 및 한류 차단기의 경우, k^2S^2 는 보호장치 제조업자가 표시하는 통과에너지(I^2t)값 보다 커야 한다.

3) 단락고장전류에 의한 보호장치의 동작시간

(1) 보호장치의 동작배율
$$(\delta)$$
 : $\delta = \frac{I_S}{I_n}$

(2) 단락보호장치의 동작시간 (t_n)

[그림 9.4-1] 단락보호장치의 동작특성

4) 평가기준

① 적정 : $t_n < t_Z$

② 부적정 : $t_n \ge t_Z$

5) 단락보호장치의 정격전류

단락보호장치의 정격전류는 절연전선 및 케이블의 허용전류 이상이어도 가능하다. 이는 전선의 과부하는 과부하 보호장치로 보호하므로 단락보호만을 실시하는 보호장치의 정격전류는 전선의 허용전류 이상이라도 가능한 것이다. 그러나하나의 보호장치로 과부하 및 단락 모두를 보호할 때는 과부하 및 단락보호장치설치 위치에서의 양쪽 요건 모두를 충족시켜야 한다.