Integers

gisela Real

March 2024

Exercises

1 Let x be a real number, prove that there exists an integer q and a real number $0 \le s \le 1$ such that x = q + s and q, s are uniquely determined.

Source: Lang, Undergraduate Algebra Chapter 1, exercise 5

Let q be an integer, the set of integers q such that $q \leq n$ is bounded from above. Then there exists an integer m such that q < m.

$$qx < (q+1)$$
$$0 \le x - q < 1$$

Let s = x - q then $o \le 1$. This proves the existence of real numbers s and integer q. Now for the uniqueness, suppose that:

$$x_1 = q + s, 0 \le s_1 \le 1$$

 $x_2 = q + s, 0 \le s_2 \le 1$

Then if s_1s_2 and s_2 1 subtracting we get:

$$(q_1 - q_2) = s_2 - s_1$$

 $s_2-s_1<1$ and $s_2-s_1>0$ but (q_1-q_2) is an integer then if $(q_1-q_2)>0$ we will have that $q_1-q_2\geq 1$ then $s_1=s_2$ and therefore $q_1-q_2=0$ thus $q_1=q_2$