04 - Properties of Multivariate Normal Distribution

Junvie Pailden

SIUE, F2017, Stat 589

August 31, 2017

Properties of Multivariate Normal Distribution

- 1. If $\mathbf{X} \sim N_p(\mu, \Sigma)$, then any linear combination of variables $\mathbf{a}'\mathbf{X} = a_1X_1 + \cdots + a_pX_p \sim N(\mathbf{a}'\mu, \mathbf{a}'\Sigma\mathbf{a}).$
- 2. If $\mathbf{a}'\mathbf{X} \sim N(\mathbf{a}'\mu, \mathbf{a}'\Sigma\mathbf{a})$ for every \mathbf{a} , then \mathbf{X} must be $N_p(\mu, \Sigma)$. (Alternative definition of MVN)
- 3. If $\mathbf{X} \sim N_p(\mu, \Sigma)$, the q linear combinations

$$\mathbf{A}_{(q \times p)} \mathbf{X}_{(p \times 1)} = \begin{bmatrix} a_{11} X_1 + \dots + a_{1p} X_p \\ a_{21} X_1 + \dots + a_{2p} X_p \\ \vdots \\ a_{q1} X_1 + \dots + a_{qp} X_p \end{bmatrix} \sim N_q(\mathbf{A}\mu, \mathbf{A} \Sigma \mathbf{A}')$$

All subsets of X are normally distributed.

Properties of Multivariate Normal Distribution

4. If \mathbf{X}_1 $(q_1 \times 1)$ and \mathbf{X}_2 $(q_2 \times 1)$ are independent, then $\Sigma_{12} = Cov(\mathbf{X}_1, \mathbf{X}_2) = 0$, a $q_1 \times q_2$ matrix of zeros.

5. If

$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \sim N_{q_1+q_2} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right),$$

then \mathbf{X}_1 and \mathbf{X}_2 are independent if and only if $\Sigma_{12}=0$.

6. If X_1 and X_2 are independent and distributed as $N_{q_1}(\mu_1, \Sigma_{11})$ and $N_{q_2}(\mu_2, \Sigma_{22})$, then

$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \sim N_{q_1 + q_2} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix} \right)$$

Conditional Distribution

$$\begin{array}{l} \bullet \quad \mathrm{Let} \, \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \sim N_{q_1+q_2} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) \text{, and } |\Sigma_{22}| > 0 \text{,} \\ \text{where } \mathbf{X}_1 \, \left(q_1 \times 1 \right) \text{ and } \mathbf{X}_2 \, \left(q_2 \times 1 \right). \end{array}$$

• Then the conditional distribution of X_1 , given that $X_2 = x_2$, is normal and has

$$\begin{split} E(\mathbf{X}_1|\mathbf{X}_2 &= \mathbf{x}_2) = \mu_{1|2} \\ &= \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2) \\ Cov(\mathbf{X}_1|\mathbf{X}_2 &= \mathbf{x}_2) &= \Sigma_{1|2} \\ &= \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} \\ \mathbf{X}_1|\mathbf{X}_2 &= \mathbf{x}_2 \sim N_{q_1}(\mu_{1|2}, \Sigma_{1|2}) \text{ (usual notation)} \end{split}$$

Multivariate Normal Conditional Distribution

- 1. All conditional distributions are (multivariate) normal.
- 2. The conditional mean is of the form

$$\mu_{1} + \beta_{1,q+1}(x_{q+1} - \mu_{q+1}) + \dots + \beta_{1,p}(x_{p} - \mu_{p})$$

$$\vdots$$

$$\mu_{q} + \beta_{q,q+1}(x_{q+1} - \mu_{q+1}) + \dots + \beta_{q,p}(x_{p} - \mu_{p})$$

$$\beta_{1,q}^{2} \text{ are defined by}$$

where the β 's are defined by

$$\Sigma_{12}\Sigma_{22}^{-1} = \begin{bmatrix} \beta_{1,q+1} & \beta_{1,q+2} & \cdots & \beta_{1,p} \\ \beta_{2,q+1} & \beta_{2,q+2} & & \beta_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{q,q+1} & \beta_{q,q+2} & \cdots & \beta_{p,q+1} \end{bmatrix}$$

3. The conditional variance, $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$, do not depend on the value(s) of the conditioning variable.

Conditional Density of a Bivariate Normal Distribution

1. If $f(x_1, x_2)$ is the bivariate normal density, show that $f(x_1|x_2)$ is

$$N\left(\mu_1 + \frac{\sigma_{12}}{\sigma_{22}}(x_2 - \mu_2), \ \sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}}\right).$$

Example Bivariate Normal

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N_2 \begin{pmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 1.2 & 1 \\ 1 & 1.2 \end{bmatrix} \end{pmatrix}$$

- 2. What is mean and variance of $X_1|X_2=4$?
- 3. What is the distribution of $X_1|X_2=4$?
- 4. Find $Pr(X_1 \le 3.5 | X_2 = 4)$.

Spectral Decomposition (SD)

Let A be a $k \times k$ positive definite symmetric matrix, the SD of A is

$$\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_k \mathbf{e}_k \mathbf{e}_k' = \sum_{i=1}^k \lambda_i \mathbf{e}_i \mathbf{e}_i' = \mathbf{P} \Delta \mathbf{P}'$$

where $\lambda_1, \lambda_2, \dots, \lambda_k > 0$ are eigenvalues of \mathbf{A} and $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ are the associated normalized eigenvectors ($\mathbf{e}_i' \mathbf{e}_i = 1, \mathbf{e}_i' \mathbf{e}_j = 0$, for $i \neq j$).

$$P = [e_1, e_2, \dots, e_k], PP' = P'P = I$$

$$\Delta = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix}$$

$$A^{-1} = \mathbf{P}\Delta^{-1}\mathbf{P}' = \sum_{i=1}^{k} \frac{1}{\lambda_i} \mathbf{e}_i \mathbf{e}_i'$$

Square Root of a Positive Definite Matrix

$$A^{1/2} = \mathbf{P}\Delta^{1/2}\mathbf{P}' = \sum_{i=1}^{k} \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i'$$
$$A^{-1/2} = \mathbf{P}\Delta^{-1/2}\mathbf{P}' = \sum_{i=1}^{k} \frac{1}{\sqrt{\lambda_i}} \mathbf{e}_i \mathbf{e}_i'$$

Properties:

- 1. $(\mathbf{A}^{1/2})' = \mathbf{A}^{1/2}$ (symmetric)
- 2. $\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$
- 3. $\mathbf{A}^{1/2}\mathbf{A}^{-1/2} = \mathbf{A}^{-1/2}\mathbf{A}^{1/2} = \mathbf{I}$

Example

$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \sim N_2 \left(\begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \right)$$

Find the following:

- 1. $tr(\Sigma)$
- 2. $det(\Sigma)$
- 3. eigenvalue and eigenvector of Σ
- 4. square root of $A = A^{1/2}$

Example: Question 1

```
(Sigma <- cbind(c(2,1,0), c(1,2,-1), c(0,-1,2)))
      [,1] [,2] [,3]
#[1,] 2 1 0
# [2,] 1 2 -1
# [3,] 0 -1 2
library(matrixcalc) # load matrixcalc
matrix.trace(Sigma) # 1) compute the trace
# [1] 6
det(Sigma) # 2) compute determinant
```

[1] 4

```
(r <- eigen(Sigma)) # 3) Compute the eigenvalues/eigenvect
# eigen() decomposition
# $values
 [1] 3.4142136 2.0000000 0.5857864
#
# $vectors
#
              [,1] [,2]
                                       [,3]
# [1.] 0.5000000 7.071068e-01 -0.5000000
# [2.] 0.7071068 1.099065e-15 0.7071068
# [3,] -0.5000000 7.071068e-01 0.5000000
11 <- sqrt(r$values[1])</pre>
12 <- sqrt(r$values[2])
13 <- sqrt(r$values[3])</pre>
v1 <- r$vector[.1]
v2 \leftarrow r\$vector[.2]
v3 \leftarrow r\$vector[.3]
```

Compute square root of Sigma

```
# 4) Square root of A using previous formula
(Sigma.root <- 11*v1%*%t(v1) +
12*v2%*%t(v2) + 13*v3%*%t(v3))
```

```
# [,1] [,2] [,3]
# [1,] 1.3603883 0.3826834 0.0538253
# [2,] 0.3826834 1.3065630 -0.3826834
# [3,] 0.0538253 -0.3826834 1.3603883
```

```
zapsmall(Sigma.root %*% Sigma.root)
```

```
# [,1] [,2] [,3]
# [1,] 2 1 0
# [2,] 1 2 -1
# [3,] 0 -1 2
```

Quadratic Forms

- 1. $(\mathbf{X} \mu)' \Sigma^{-1} (\mathbf{X} \mu)$ is distributed as χ_p^2 , where χ_p^2 denotes the chi-square distribution with p degrees of freedom.
- 2. The $N_p(\mu,\Sigma)$ distribution assigns probabilty $1-\alpha$ to the solid ellipsoid

$$\{\mathbf{x}: (\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu) \le \chi_p^2(\alpha)\}$$

where $\chi^2_p(\alpha)$ denotes the upper $(100\alpha){\rm th}$ percentile of the χ^2_p distribution.

3. If
$$p = 2$$
, find $Pr((\mathbf{X} - \mu)'\Sigma^{-1}(\mathbf{X} - \mu) \le 4.61)$.

```
# See Table 3 in appendix pchisq(4.61, df=2)
```

Maximum Likelihood Estimation

Suppose $\mathbf{X}_1, \dots, \mathbf{X}_n$ are IID $N_p(\mu, \Sigma)$, Σ^{-1} exists. Then, the likelihood function of (μ, Σ) is

$$\begin{split} L(\mu, \Sigma) &= \{ \text{joint density of } \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n | \ \mu, \ \Sigma \} \\ &= \prod_{i=1}^n \left[\frac{\exp\{-\frac{1}{2}(\mathbf{X}_j - \mu)'\Sigma^{-1}(\mathbf{X}_j - \mu)}{(2\pi)^{\frac{np}{2}}|\Sigma|^{\frac{1}{2}}} \right] \\ &= \frac{\exp\{-\frac{1}{2}\sum_{j=1}^n (\mathbf{X}_j - \mu)'\Sigma^{-1}(\mathbf{X}_j - \mu)}{(2\pi)^{\frac{np}{2}}|\Sigma|^{\frac{1}{2}}} \end{split}$$

 $\hat{\mu}$ and $\hat{\Sigma}$ are the values which maximize L.

Maximum Likelihood Estimator

Let $\mathbf{X}_1,\dots,\mathbf{X}_n$ be a random sample (same as IID) from a multivariate normal population with mean μ and covariance Σ .

Then

$$\hat{\mu} = \bar{\mathbf{X}}$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{X}_j - \bar{\mathbf{X}}) (\mathbf{X}_j - \bar{\mathbf{X}})' = \frac{(n-1)}{n} \mathbf{S}$

are the maximum likelihood estimators of μ and Σ , respectively. (Refer to pages 168 to 172 for the proof)

mvnmle for Multivariate Normal MLE in R

```
library(mvnmle)
library(mvtnorm)
set.seed(21)
Sigma0 <- matrix(c(1, .79, .79, 1), 2) # popn covariance
X <- rmvnorm(20, mean = c(0, 0), sigma = Sigma0) # n= 20
par.est <- mlest(X) # use mlest() to get mean/cov est
par.est$muhat</pre>
```

```
# [1] 0.1574176 0.1335548
```

par.est\$sigmahat

```
# [,1] [,2]
# [1,] 1.572559 1.133193
# [2,] 1.133193 1.064320
```

MLE are consistent estimators

As n increases the estimates converge to the value that the estimator is designed to estimate.

```
set.seed(21)
X <- rmvnorm(100, c(0, 0), Sigma0) # n = 100
par.est <- mlest(X)
par.est$muhat</pre>
```

```
# [1] -0.02177700 -0.01724776
```

```
par.est$sigmahat
```

```
# [,1] [,2]
# [1,] 0.9915466 0.8739523
# [2,] 0.8739523 1.1078480
```

MLE are consistent estimators

As n increases the estimates converge to the value that the estimator is designed to estimate.

```
set.seed(21)
X <- rmvnorm(1000, c(0, 0), Sigma0) # n = 1000
par.est <- mlest(X)
par.est$muhat</pre>
```

```
# [1] 0.07130167 0.05703656
```

par.est\$sigmahat

```
# [,1] [,2]
# [1,] 1.0475618 0.8538465
# [2,] 0.8538465 1.0526822
```

Missing Values

The apple data (in mvnmle) provides the number of apples (in 100s) on 18 different apple trees. For 12 trees, the percentage of apples with worms (\times 100) is also given.

```
# 'data.frame': 18 obs. of 2 variables:
# $ size : num 8 6 11 22 14 17 18 24 19 23 ...
# $ worms: num 59 58 56 53 50 45 43 42 39 38 ...
# is.na() checks for missing values (NA) in each column,
# colSums(is.na()) counts the number of NA in each column
colSums(is.na(apple))
```

```
# size worms
# 0 6
```

str(apple)

data(apple) # load data

```
apple.est <- mlest(apple) # use mlest() to get MLE's
apple.est$muhat</pre>
```

```
# [1] 14.72227 49.33325
```

apple.est\$sigmahat

```
# [,1] [,2]
# [1,] 89.53415 -90.69653
# [2,] -90.69653 114.69470
```

```
# verify
colMeans(apple, na.rm = TRUE) # remove rows with NA's
# size worms
```

```
cov(apple, use = "complete") # remove rows with NA's
```

```
# size worms
# size 84.00000 -85.09091
# worms -85.09091 111.09091
```

14.72222 45.00000

The Wishart Distribution

 The sampling distribution of the sample covariance matrix is called the Wishart distribution. Let

$$\mathbf{W} = (n-1)\mathbf{S} = \sum (\mathbf{X}_i - \bar{\mathbf{X}})(\mathbf{X}_i - \bar{\mathbf{X}})'$$

• The dist'n of the random matrix W is the Wishart distribution, denoted by $W_p(n-1,\Sigma)$ with df=n-1.

$$\mathbf{W} \sim W_p(n-1, \Sigma)$$
$$E(\mathbf{W}) = (n-1)\Sigma$$
$$Cov(\mathbf{W}) = 2(n-1)\Sigma \otimes \Sigma$$

 The Wishart distribution is the multivariate antilog to the Chi-square distribution and it has similar uses.

More information on Wishart Distribution's in this link.

Wishart Dist in R

```
## Artificial
(S <- toeplitz((5:1)/5))</pre>
```

```
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1.0 0.8 0.6 0.4 0.2
# [2,] 0.8 1.0 0.8 0.6 0.4
# [3,] 0.6 0.8 1.0 0.8 0.6
# [4,] 0.4 0.6 0.8 1.0 0.8
# [5,] 0.2 0.4 0.6 0.8 1.0
```

```
set.seed(11)
R <- rWishart(500, df = 5, Sigma = S) # generate 500 sampl
dim(R) # array 5 5 500

# [1] 5 5 500

mR <- apply(R, 1:2, mean) # ~= E[ Wish(S, 5) ] = 5 * S
round(mR, digits = 2) # round</pre>
```

```
# [,1] [,2] [,3] [,4] [,5]
# [1,] 5.00 4.07 3.06 2.08 1.07
# [2,] 4.07 5.11 4.15 3.15 2.06
# [3,] 3.06 4.15 5.15 4.12 3.03
# [4,] 2.08 3.15 4.12 5.04 3.95
# [5,] 1.07 2.06 3.03 3.95 4.87
```

The Sampling Distribution of X and S If $X_1, ..., X_n \sim N_p(\mu, \Sigma)$, (IID),

- Sampling Dist'n of $\bar{\mathbf{X}}$

$$\bar{\mathbf{X}} \sim N_p(\mu, (1/n)\Sigma)$$

Quadratic Forms

$$n(\bar{\mathbf{X}} - \mu)' \mathbf{\Sigma}^{-1} (\bar{\mathbf{X}} - \mu) \sim \chi_n^2$$

$$\mathbf{W} = (n-1)\mathbf{S} \sim W_n(n-1,\Sigma)$$

 $ar{\mathbf{X}}$ and \mathbf{S} are independent.

Large-Sample Behavior of $ar{\mathbf{X}}$ and \mathbf{S}

Let $\mathbf{X}_1,\dots,\mathbf{X}_n$ be indep obs from a pop'n with mean μ and finite (nonsingular) covariance Σ . Then

• (Central Limit Theorem)

$$\sqrt{n}(\bar{\mathbf{X}}-\mu) \quad \text{is approx} \ \ N_p(0,\Sigma)$$

and

$$n(\bar{\mathbf{X}} - \mu)' \mathbf{S}^{-1}(\bar{\mathbf{X}} - \mu)$$
 is approx χ_p^2

equivalently

$$n(\bar{\mathbf{X}} - \mu)' \mathbf{S}^{-1}(\bar{\mathbf{X}} - \mu)$$
 is approx $\frac{p(n-1)}{n-p} F_{p,n-p}$

for n-p large.