A - множество $\Lambda \subseteq 2^A$, если

- 1. $\Lambda_i \neq \emptyset \ \forall i \in I$
- 2. $\Lambda_i \cap \Lambda_j = \emptyset \ \forall i \neq j, i, j \in I$
- $3. \bigcup_{i \in I} \Lambda_i = A$

 K,Λ - разбиения A $K=\{K_i\}_{i\in I},\ \Lambda=\{\Lambda_i\}_{i\in I}$ K измельчает Λ , если $\forall j \in J \; \exists i \in I \; K_j \subseteq \Lambda_i$

Произведение разбиений K и Λ - разбиение $\Pi = \{\Pi_s\}_{s \in S}$, которое измельчает одновременно и K, и Λ , и при этом является самым крупным из таких разбиений (любое другое, измельчающее K и Λ , измельчает и Π).

Доказательство.

 $\Pi_{ij} = \Lambda_i \cap K_j, \ i \in I, \ j \in J$

 $\Pi = \{\Pi_{ij} : \Pi_{ij} \neq \emptyset\}$

1. Проверим, что Π - разбиение

- $a) \neq \emptyset$: по построению
- б) $\Pi_{ij}, \Pi_{pq} \neq \varnothing$

$$(!)\Pi_{ij}\cap\Pi_{pq}=\varnothing$$

- 1 случай. $i \neq p, a \in \Pi_{ij} \Rightarrow a \in \Lambda_i \cap K_j \Rightarrow a \in \Lambda_i \Rightarrow a \in \Lambda_p \Rightarrow a \notin \Pi_{pq}$ аналогично, $\forall a \in \Pi_{pq}, \ a \notin \Pi_{ij}$
- **2 случай.** $i=p,j\neq q,b\in\Pi_{pq}\Rightarrow b\in K_q\Rightarrow b\in K_j\Rightarrow b\notin\Pi_{ij}$ аналогично, $\forall b\in\Pi_{ij},\ b\notin\Pi_{pq}$
- в) $\cup \Pi = A$ по построению : $a \in A \Rightarrow \exists i \in I, j \in J$ $a \in \Lambda_i, a \in K_j \Rightarrow a \in \Lambda_i \cap K_j \Rightarrow \Lambda_i \cap K_j \neq \emptyset \Rightarrow \Pi_{ij} \in \Pi$
- 2. Измельчает Λ и K $\forall \Pi_{ij} \in \Pi \ \Pi_{ij} = \Lambda_i \cap K_j \Rightarrow \Pi_{ij} \subseteq \Lambda_i$ и $\Pi_{ij} \subseteq K_j$
- 3. Самое крупное

 Σ - измельчение K и Λ

$$\Sigma = \{\Sigma_t\}_{t \in T}$$

 $\Sigma_t \neq \emptyset$

$$\exists i,j \ \Sigma_t \subseteq \Lambda_i, \Sigma_t \subseteq K_j$$
 $\Sigma_t \subseteq \Lambda_i \cap K_j \Rightarrow \Pi_{ij} \neq \varnothing$ и $\Sigma_t \subseteq \Pi_{ij}$

Утверждение. A - конечное множество.

$$|2^A| = 2^{|A|}$$

Доказательство: Индукция по |A|

```
рассмотрим множество A, |A|=n+1, n\geq 0 \exists a\in A |A\backslash\{a\}|=n 2^A=2^{A\backslash\{a\}}\cup\{a\cup2^{A\backslash\{a\}}\} |2^A|=2|2^{A\backslash\{a\}}|=2*2^n=2^{n+1}
```

1 Бинарные отношения

Упорядочная пара $(a,b),\ a$ - первая компонента, b - вторая компонента. $(a,b)=(\alpha,\beta)\Rightarrow a=\alpha,\ b=\beta$

 $A,B\quad A\times B=\{(a,b):a\in A,\ b\in B\}$ - прямое произведение A и B.

Бинарное отношение R на A,B - подмножество их прямого произведения.