Derivando Expressões

Paulo Ricardo Lisboa de Almeida

Derivando expressões

No mundo real, é muito comum termos apenas as tabelas verdade.

A partir da tabela verdade, precisamos derivar uma expressão lógica.

Não se assuste!

Esse é o esquema de uma CPU Simples.

Hennessy, Patterson (2014)

Não se assuste!

Esse é o esquema de uma CPU Simples.

Você não precisa entender o esquema completo. Vai aprender ele em Arquitetura de Computadores.

Não se assuste!

Esse é o esquema de uma CPU Simples. Você não precisa entender o esquema completo. Vai aprender ele em Arquitetura de Computadores. Vamos usar apenas um trecho para um exemplo do mundo real.

Hennessy, Patterson (2014)

A ALU recebe quatro variáveis booleanas, que indicam o que ela precisa fazer (uma soma, uma multiplicação, uma conjunção, uma disjunção, ...)

A ALU recebe quatro variáveis booleanas, que indicam o que ela precisa fazer (uma soma, uma multiplicação, uma conjunção, uma disjunção, ...)

Vamos criar uma função que indica se o somador da ALU precisa ser ativado (verdadeiro) ou não (falso).

Essa função pode ser implementada no circuito, para comandar o somador da ALU.

Veremos como fazer essas implementações no futuro.

De acordo com a especificação da CPU, as quatro variáveis booleanas que controlam a operação ativam o somador de acordo com a seguinte tabela verdade.

Não vamos nos preocupar nesse exemplo sobre o exato motivo dessas variáveis ativarem ou não o somador. Se você quiser ver esses detalhes, leia em Hennessy, Patterson (2014).

S indica se o somador deve ser ativado ou não de acordo com as variáveis A, B, C e D.

A	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Problema

Temos uma tabela verdade, mas precisamos definir uma função booleana a partir dela.

A Forma Normal Disjuntiva (FND) também é conhecida como:

Soma dos Produtos.

Soma de Mintermos.

Na tabela verdade, identifique todas as linhas que a função tem 1 como resposta.

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Na tabela verdade, identifique todas as linhas que a função tem 1 como resposta.

Faça o produto (conjunção) das variáveis em cada linha, negando as variáveis que aparecem com O nessa linha.

O produto das variáveis é denominado **mintermo** ou **minitermo**.

A	В	C	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
l	0	0	0	0
l	0	0	1	0
l	0	1	0	0
l	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Na tabela verdade, identifique todas as linhas que a função tem 1 como resposta.

Faça o produto (conjunção) das variáveis em cada linha, negando as variáveis que aparecem com O nessa linha.

O produto das variáveis é denominado **mintermo** ou **minitermo**.

Faça a soma (disjunção) dos mintermos.

		_	_		_		_			_	-				
r		٨	ח		ח		٨	ח	רו	ח	_	٨	ח	~	ח
``	=	А	n	l	IJ	+	А	п	[.]	I J -	⊦ /	4	n.	l	IJ
_		, ,,	υ.	- .	$\boldsymbol{\smile}$		1 1	י ט			•	١.	υ.	- .	

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Faça você mesmo

Derive uma expressão para F usando a Forma Normal Disjuntiva.

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Faça você mesmo

Derive uma expressão para F usando a Forma Normal Disjuntiva.

 $F = \overline{A}.B.\overline{C} + \overline{A}.B.C + A.\overline{B}.C + A.B.\overline{C}$

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

A Forma Normal Conjuntiva (FNC) também é conhecida como:

Produto das Somas.

Produto de Maxtermos.

Forma **dual** da soma dos produtos.

Na tabela verdade, identifique todas as linhas que a função tem 0 como resposta.

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Na tabela verdade, identifique todas as linhas que a função tem 0 como resposta.

Faça a soma (disjunção) das variáveis em cada linha, negando as variáveis que aparecem com 1 nessa linha.

A soma das variáveis é denominado **maxtermo** ou **maxitermo**.

	_	_	
S = A+B+C	A+B+C	A+B+C	A+B+C

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Na tabela verdade, identifique todas as linhas que a função tem 0 como resposta.

Faça a soma (disjunção) das variáveis em cada linha, negando as variáveis que aparecem com 1 nessa linha.

A soma das variáveis é denominado maxtermo ou maxitermo.

Faça multiplicação (conjunção) dos mintermos.

 $S = A+B+C \cdot A+B+\overline{C} \cdot \overline{A}+B+C \cdot \overline{A}+\overline{B}+\overline{C}$

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Na tabela verdade, identifique todas as linhas que a função tem 0 como resposta.

Faça a soma (disjunção) das variáveis em cada linha, negando as variáveis que aparecem com 1 nessa linha.

A soma das variáveis é denominado maxtermo ou maxitermo.

Faça multiplicação (conjunção) dos mintermos.

Tem algo errado aqui!

 $S = A+B+C \cdot A+B+\overline{C} \cdot \overline{A}+B+C \cdot \overline{A}+\overline{B}+\overline{C}$

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	l
1	1	0	1
1	1	1	0

Na tabela verdade, identifique todas as linhas que a função tem 0 como resposta.

Faça a soma (disjunção) das variáveis em cada linha, negando as variáveis que aparecem com 1 nessa linha.

A soma das variáveis é denominado maxtermo ou maxitermo.

Faça multiplicação (conjunção) dos mintermos.

 $S = (A+B+C).(A+B+\overline{C}).\overline{A}+B+C.(\overline{A}+\overline{B}+\overline{C})$

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Faça você mesmo

Derive uma expressão para F usando a Forma Normal Conjuntiva.

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Faça você mesmo

Derive uma expressão para F usando a Forma Normal Conjuntiva.

$$F = (\overline{A} + B + C).(\overline{A} + B + \overline{C}).(\overline{A} + \overline{B} + C)$$

A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

FORMAS CANÔNICAS

Tanto a FND quanto a FNC são formas canônicas ou formas padrão.

Simplificações

As formas canônicas são úteis e simples para, por exemplo, encontrarmos a função booleana através de sua tabela verdade.

Mas a implementação dessas funções requer muitas portas lógicas.

Podemos simplificar as expressões através de, por exemplo.

Mapas de Karnaugh.

Teoremas e Postulados da Álgebra de Boole.

Veremos adiante...

Exercícios

1. Derive a expressão para o somador do primeiro exemplo usando a Forma Normal Conjuntiva

2. Faça a soma dos produtos e o produto das somas para a tabela verdade ao lado. Solução na Seção 4-4 de Tocci et al.

		~ ~ ~	111000	+	1 2 1 1 2 2	~~~		c 0 m
_	•			1 31111	1 1 1/// 1	1111		1 11111
				1011	10 11-1	וחו	-	
			uma	111111	113 V.L.I		"	

- a. Pelo menos 3 variáveis
- b. Uma função de saída F
- c. Faça a soma dos produtos e o produto das somas para essa tabela verdade.

A	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Referências

Hennessy, J. L., Patterson, D. A. Computer Organization and Design: The Hardware/Software Interface. 2014.

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Widmer. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

