

MERLIN-Frac: An Efficient Computational Approach To Origami Fracture Mechanics

Mateus B. Neiva ^{1,2} Glaucio H. Paulino ² Carlos A. de Almeida ¹

¹Pontifical Catholic University of Rio de Janeiro ²Princeton University

MERLIN software (Liu K, Paulino GH.) [1]

- Reduced order model (ROM) composed by "bar-and-hinge" elements
- Bars elements are assumed under nonlinear Odgen hyperelastic model
- Elastic hinges are divided into bending and folding element types

PPR (Park K, Paulino GH, Roesler JR.) [3]

- Cohesive zone model (CZM)
- Polynomial potential based model
- 3D displacement formulation

$$\Psi(\Delta_n, \Delta_t) = \min(\phi_n, \phi_t) + \left[\Gamma_n \left(1 - \frac{\Delta_n}{\delta_n} \right)^{\alpha} \left(\frac{m}{\alpha} + \frac{\Delta_n}{\delta_n} \right)^m + \langle \phi_n - \phi_t \rangle \right] \cdot \left[\Gamma_t \left(1 - \frac{|\Delta_t|}{\delta_t} \right)^{\alpha} \left(\frac{n}{\beta} + \frac{|\Delta_t|}{\delta_t} \right)^m + \langle \phi_t - \phi_n \rangle \right]$$

Traction vector components:

$$T_t(\Delta_n, \Delta_t) = \frac{\partial \Psi(\Delta_n, \Delta_t)}{\partial \Delta_t}$$
, $T_n(\Delta_n, \Delta_t) = \frac{\partial \Psi(\Delta_n, \Delta_t)}{\partial \Delta_n}$

Traction-displacement curves obtained with the following parameters in traction vector $\phi_n = 100N/m$, $\phi_t = 200N/m$, $\sigma_{max} = 40MPa$, $\tau_{max} = 30MPa$, $\alpha = 5$, $\beta = 1.3$, $\lambda_n = 0.1$, $\lambda_t = 0.2$

Global coordinates converted into local coordinate systems.

MERLIN-Frac (MERLIN and PRR combined)

- Creases fracture (mountain or valley)
- Combination in a single procedure is not straightforward since additional considerations arise

P-refinement

• Hermitian basis functions are used to interpolate element displacement gaps (without extra nodes additions)

$$N_1 = \frac{1}{4} \cdot (2.0 - 3\xi + \xi^3), \quad N_2 = \frac{1}{4} \cdot (2.0 + 3\xi - \xi^3)$$

Rotation

- In 3D analysis the normal vector is not uniquely defined
- Auxiliary nodes can be chosen for establishing an unique local coordinate system

Sampling example

- 4×4 Miura-Ori tessellation model with prescribed displacement
- Solution with an incremental-iterative Newton-Raphson scheme

Merlin Variables	Value	PPR Variables	Value
a	2m	ϕ_n	500N/m
b	2m	ϕ_t	500N/m
heta	60°	σ_{max}	0.01MPa
E_0	1GPa	$ au_{max}$	0.01MPa
$lpha_1$	5.0	lpha	3.0
$lpha_2$	1.0	eta	3.0
k_f	100N/m	λ_n	0.02
$\vec{k_b}$	10MN/m	λ_t	0.02
A_{bar}	$1cm^2$	th	0.0254m

Miura-Ori tessellation results for $\bar{u} = 1.0m$

References

- [1] Paulino GH. Liu K. Nonlinear mechanics of non-rigid origami: an efficient computational approach. *Proc. R. Soc. A*, 473, 2017.
- [2] Paulino GH. Park K.
 Computational implementation of the ppr potential-based cohesive model in abaqus: Educational perspective.

 Engineering Fracture Mechanics, 93:239–262, 2012.
- [3] Roesler JR. Park K, Paulino GH. A unified potential-based cohesive model of mixed-mode fracture. *J Mech Phys Solids*, 57(6):891–908, 2009.