| Exercise 2.1  | Prove the "  | homogeneous     | Null stellens at | z," which s | ays if $\mathfrak{a} \subseteq S$ | is a hom                           | ogeneous     | ideal, an  | $\operatorname{id} \operatorname{if} f$ | $\in S$ is |
|---------------|--------------|-----------------|------------------|-------------|-----------------------------------|------------------------------------|--------------|------------|-----------------------------------------|------------|
| a homogeneous | s polynomial | with $\deg f >$ | 0, such that j   | f(P) = 0 fo | r all $P \in Z$                   | $(\mathfrak{a})$ in $\mathbf{P}^n$ | , then $f^q$ | ∈ a for so | ome $q$                                 | > 0.       |

Solution:

**Exercise 2.2** For a homogeneous ideal  $\mathfrak{a} \subseteq S$ , show that the following conditions are equivalent:

- (i.)  $Z(\mathfrak{a}) = \emptyset$  (the empty set);
- (ii.)  $\sqrt{\mathfrak{a}} = \text{either } S \text{ or the ideal } S_+ = \bigoplus_{d>0} S_d;$
- (iii.)  $\mathfrak{a} \supseteq S_d$  for some d > 0.

Solution: (i)  $\Rightarrow$  (ii). Since  $Z(\mathfrak{a}) = \emptyset$ , the zero set of  $\mathfrak{a}$  in affine space is either  $\emptyset$  or  $\{0\}$ . In the first case, we certainly have  $\sqrt{\mathfrak{a}} = S$ . In the second case, we have  $\sqrt{\mathfrak{a}} = \{p \in S : p(0) = 0\} = S_+$ .

(ii)  $\Rightarrow$  (iii). It suffices to show that there exists d such that all monomials of degree d lies in  $\mathfrak{a}$ . Since  $S_+ \subset \sqrt{\mathfrak{a}}$ , for each  $0 \leq i \leq n$ , there exists  $d_i$  such that  $x_i^{d_i} \in \mathfrak{a}$ . Let  $d = n \sum_{i=0}^n d_i$ . Then if a monomial has degree d, then there exists i such that the exponent of  $x_i$  in the monomial is at least  $\sum_{i=0}^n d_i$ , and therefore at least  $d_i$ , which implies that the monomial is in  $\mathfrak{a}$ .

(iii)  $\Rightarrow$  (i). If  $S_d \subseteq \mathfrak{a}$  for some d > 0, then  $x_i \in \sqrt{\mathfrak{a}}$  for every  $0 \leq i \leq n$ , which means that  $Z(\mathfrak{a}) = Z(\sqrt{\mathfrak{a}}) = \emptyset$ .  $\square$ 

## Exercise 2.3

- (1) If  $T_1 \subseteq T_2$  are subsets of  $S^h$ , then  $Z(T_1) \supseteq Z(T_2)$ .
- (2) If  $Y_1 \subseteq Y_2$  are subsets of  $\mathbf{P}^n$ , then  $I(Y_1) \supseteq I(Y_2)$ .
- (3) For any two subsets  $Y_1, Y_2$  of  $\mathbf{P}^n$ ,  $I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$ .
- (4) If  $\mathfrak{a} \subseteq S$  is a homogeneous ideal with  $Z(\mathfrak{a}) \neq \emptyset$ , then  $I(Z(\mathfrak{a})) = \sqrt{\mathfrak{a}}$ .
- (5) For any subset  $Y \subseteq \mathbf{P}^n$ ,  $Z(I(Y)) = \overline{Y}$ .

Solution:

## Exercise 2.4

- (1) There is a one-to-one inclusion-reversing correspondence between algebraic sets in  $\mathbf{P}^n$  and homogeneous radical ideals of S not equal to  $S_+$  given by  $Y \mapsto I(Y)$  and  $\mathfrak{a} \mapsto Z(\mathfrak{a})$ . Note: Since  $S_+$  does not occur in this correspondence, it is sometimes called te *irrelevant* maximal ideal of S.
- (2) An algebraic set  $Y \subseteq \mathbf{P}^n$  is irreducible if and only if I(Y) is a prime ideal.
- (3) Show that  $\mathbf{P}^n$  itself is irreducible.

Solution:

## Exercise 2.5

- (1)  $\mathbf{P}^n$  is a noetherian topological space.
- (2) Every algebraic set in  $\mathbf{P}^n$  can be written uniquely as a finite union of irreducible algebraic sets, no one containing another. These are called its *irreducible components*.

Solution:

for 2.12(b)

We prove the harder direction that  $Z(\mathfrak{a}) \subseteq \operatorname{im}(\rho_d)$ . We may index the N+1 coordinates of a point in  $\mathbf{P}^n$  by tuples of the form  $(a_0, a_1, \ldots, a_n)$  where  $a_i \in \mathbb{Z}_+$  and the sum of all  $a_i$ 's is d. Given  $\mathbf{y} \in Z(\mathfrak{a})$ , I claim that there exists  $0 \le i \le n$  such that  $y_{d\mathbf{e}_i} \ne 0$ . Indeed, suppose towards the contrary. Then since for any index  $\mathbf{v} = (a_0, a_1, \ldots, a_n)$ ,  $p(\mathbf{y}) = y_{\mathbf{v}}^d - \prod_{i=0}^n y_{d\mathbf{e}_i}^{a_i} \in \mathfrak{a}$ , we have that  $p(\mathbf{y}) = y_{\mathbf{v}}^d = 0$ , which implies that  $y_{\mathbf{v}} = 0$  for arbitrary  $\mathbf{v}$ , which is absurd. So fix some i and some representative of  $\mathbf{y}$  such that  $y_{d\mathbf{e}_i} = 1$ . Let  $\mathbf{x} \in \mathbf{P}^n$  be such that  $x_i = y_{d\mathbf{e}_i} = 1$  and

So fix some i and some representative of  $\mathbf{y}$  such that  $y_{d\mathbf{e}_i} = 1$ . Let  $\mathbf{x} \in \mathbf{P}^n$  be such that  $x_i = y_{d\mathbf{e}_i} = 1$  and  $x_j = y_{d\mathbf{e}_i - \mathbf{e}_i + \mathbf{e}_j}$ . We claim that  $\rho_d(\mathbf{x}) = \mathbf{y}$ . By construction, we already have that  $x_i^{d-1}x_j = x_j = y_{d\mathbf{e}_i - \mathbf{e}_i + \mathbf{e}_j}$ . It's straightforward to check that the polynomials in  $\mathfrak{a}$  ensures that  $y_{\mathbf{v}} = M_{\mathbf{v}}(\mathbf{x})$ .

To give an example to make this proof clearer, consider the example when n=1 and d=3. Then if  $\mathbf{y}=(y_{30},y_{21},y_{12},y_{03})\in Z(\mathfrak{a})$ , suppose WLOG that  $y_{30}=1$ . Then  $\mathbf{y}=\rho_d(1,y_{21})$ . We check that since  $y_{30}y_{12}-y_{21}^2=0$ , indeed  $y_{12}=y_{21}^2$ . Similarly, since  $y_{03}y_{30}^2-y_{21}^3$ , indeed  $y_{03}=y_{21}^3$ .