WikipediA

Functional group

In organic chemistry, a **functional group** is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition. This enables systematic prediction of chemical reactions and behavior of chemical compounds and the design of chemical synthesis. The reactivity of a functional group can be modified by other functional groups nearby. Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis.

A functional group is a group of atoms in a molecule with distinctive chemical properties, regardless of the other atoms in the molecule. The atoms in a functional group are linked to each other and to the rest of the molecule by covalent bonds. For repeating units of polymers, functional groups attach to their nonpolar core of carbon atoms and thus add chemical character to carbon chains. Functional groups can also be charged, e.g. in carboxylate salts (-COO⁻), which turns the molecule into a polyatomic ion or a complex ion. Functional groups binding to a central atom in a coordination complex are called ligands. Complexation and solvation are also caused by specific interactions of functional groups. In the common rule of thumb "like dissolves like", it is the shared or mutually well-interacting functional groups which give rise to solubility. For example, sugar dissolves in water because both share the hydroxyl functional group (-OH) and hydroxyls interact strongly with each other. Plus, when functional groups are more electronegative than atoms they attach to, the functional groups will become polar, and the otherwise nonpolar molecules containing these functional groups become polar and so become soluble in some aqueous environment.

Benzyl acetate has an ester functional group (in red), an acetyl moiety (circled with dark green) and a benzyloxy moiety (circled with light orange). Other divisions can be made.

Combining the names of functional groups with the names of the parent <u>alkanes</u> generates what is termed a <u>systematic nomenclature</u> for naming organic compounds. In traditional nomenclature, the first carbon atom after the carbon that attaches to the functional group is called the <u>alpha carbon</u>; the second, beta carbon, the third, gamma carbon, etc. If there is another functional group at a carbon, it may be named with the Greek letter, e.g., the gamma-amine in gamma-aminobutyric acid is on the third carbon of the carbon chain attached to the carboxylic acid group. <u>IUPAC conventions</u> call for numeric labeling of the position, e.g. 4-aminobutanoic acid. In traditional names various qualifiers are used to label <u>isomers</u>, for example, isopropanol (IUPAC name: propan-2-ol) is an isomer of n-propanol (propan-1-ol). The term <u>moiety</u> has some overlap with the term "functional group". However, a moiety is an entire "half" of a molecule, which can be only a single functional group, but also a larger unit consisting of multiple functional groups. For example, an "aryl moiety" may be any group containing an aromatic ring, regardless of how many functional groups the said aryl has.

Contents

Table of common functional groups

Hydrocarbons

Groups containing halogen

Groups containing oxygen

Groups containing nitrogen

Groups containing sulfur

Groups containing phosphorus

Groups containing boron

Groups containing metals

Names of radicals or moieties

See also

References

External links

Table of common functional groups

The following is a list of common functional groups. [3] In the formulas, the symbols R and R' usually denote an attached hydrogen, or a <u>hydrocarbon</u> side chain of any length, but may sometimes refer to any group of atoms.

Hydrocarbons

Hydrocarbons are a class of molecule that is defined by functional groups called <u>hydrocarbyls</u> that contain only carbon and hydrogen, but vary in the number and order of double bonds. Each one differs in type (and scope) of reactivity.

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
Alkane	Alkyl	R(CH ₂) _n H	R√} _n	alkyl-	-ane	H H C H H Ethane
Alkene	Alkenyl	R ₂ C=CR ₂	R^1 R^3 R^2 R^4	alkenyl-	-ene	H H C=C H H Ethylene (Ethene)
Alkyne	Alkynyl	RC≡CR'	R-C≡C-R′	alkynyl-	-yne	H−C≡C−H Acetylene (Ethyne)
Benzene derivative	Phenyl	RC ₆ H ₅ RPh	R—	phenyl-	-benzene	Cumene (Isopropylbenzene)

There are also a large number of branched or ring alkanes that have specific names, e.g., <u>tert-butyl</u>, <u>bornyl</u>, <u>cyclohexyl</u>, etc. Hydrocarbons may form charged structures: positively charged <u>carbocations</u> or negative <u>carbanions</u>. Carbocations are often named <u>-um</u>. Examples are <u>tropylium</u> and triphenylmethyl cations and the cyclopentadienyl anion.

Groups containing halogen

Haloalkanes are a class of molecule that is defined by a carbon—halogen bond. This bond can be relatively weak (in the case of an iodoalkane) or quite stable (as in the case of a fluoroalkane). In general, with the exception of fluorinated compounds, haloalkanes readily undergo nucleophilic substitution reactions or elimination reactions. The substitution on the carbon, the acidity of an adjacent proton, the solvent conditions, etc. all can influence the outcome of the reactivity.

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
haloalkane	halo	RX	R-X	halo-	alkyl halide	Cl Chloroethane (Ethyl chloride)
fluoroalkane	fluoro	RF	R-F	fluoro-	alkyl fluoride	H H H Fluoromethane (Methyl fluoride)
chloroalkane	chloro	RCI	R-Cl	chloro-	alkyl chloride	H Cl HCl Chloromethane (Methyl chloride)
bromoalkane	bromo	RBr	R-Br	bromo-	alkyl bromide	Br C.,"H H Bromomethane (Methyl bromide)
iodoalkane	iodo	RI	R-I	iodo-	alkyl iodide	H H Iodomethane (Methyl iodide)

Groups containing oxygen

Compounds that contain C-O bonds each possess differing reactivity based upon the location and $\underline{hybridization}$ of the C-O bond, owing to the electron-withdrawing effect of sp-hybridized oxygen (carbonyl groups) and the donating effects of p^2 -hybridized oxygen (alcohol groups).

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
Alcohol	Hydroxyl	ROH	R ^{∕0} `H	hydroxy-	-ol	H H H H Methanol
Ketone	Carbonyl	RCOR'	R R'	-oyl- (-COR') or oxo- (=O)	-one	Butanone (Methyl ethyl ketone)
<u>Aldehyde</u>	<u>Aldehyde</u>	RCHO	O R H	formyl- (-COH) or oxo- (=O)	-al	H Acetaldehyde (Ethanal)
Acyl halide	Haloformyl	RCOX	R X	carbonofluoridoyl- carbonochloridoyl- carbonobromidoyl- carbonoiodidoyl-	-oyl fluoride -oyl chloride -oyl bromide -oyl iodide	O
Carbonate	Carbonate ester	ROCOOR'	R _O R'	(alkoxycarbonyl)oxy-	alkyl carbonate	Triphosgene (bis(trichloromethyl) carbonate)
Carboxylate	Carboxylate	RCOO ⁻	$ \begin{array}{c} O \\ R \end{array} $ $ \begin{array}{c} O \\ O \\ R \end{array} $	carboxy-	-oate	O_Na ⁺ Sodium acetate (Sodium ethanoate)
Carboxylic acid	Carboxyl	RCOOH	ROH	carboxy-	-oic acid	OH Acetic acid (Ethanoic acid)
Ester	Carboalkoxy	RCOOR'	O R'	alkanoyloxy- or alkoxycarbonyl	alkyl alkan oate	Ethyl butyrate (Ethyl butanoate)
Hydroperoxide	Hydroperoxy	ROOH	R_O_O_H	hydroperoxy-	alkyl hydroperoxide	OH tert-Butyl hydroperoxide
Peroxide	Peroxy	ROOR'	R_O_O_R'	peroxy-	alkyl peroxide	Di-tert-butyl peroxide
Ether	Ether	ROR'	R_0_R'	alkoxy-	alkyl ether	Diethyl ether (Ethoxyethane)
Hemiacetal	Hemiacetal	R ₂ CH(OR ₁)(OH)	R ¹ O OH R ² C H	alkoxy -ol	-al alkyl hemiacetal	
Hemiketal	Hemiketal	RC(OR")(OH)R'	RO OH R	alkoxy -ol	-one alkyl hemiketal	
Acetal	Acetal	RCH(OR')(OR")	RO OR	dialkoxy-	-al dialkyl acetal	
Ketal (or Acetal)	Ketal (or Acetal)	RC(OR")(OR"')R'	RO OR	dialkoxy-	-one dialkyl ketal	

Orthoester	Orthoester	RC(OR')(OR")(OR"')	OR R'—C—OR OR	trialkoxy-		
Heterocycle (if cyclic)	Methylenedioxy	(-OCH ₂ O-)		methylenedioxy-	-dioxole	Methylenedioxybenzene (1,3-Benzodioxole)
Orthocarbonate ester	Orthocarbonate ester	C(OR)(OR')(OR")(OR")	R""-Q	tetralkoxy-	tetraalkyl orthocarbonate	H ₃ C CH ₃ O CH ₃ CH ₃ CH ₃ Tetramethoxymethane
Organic acid anhydride	Carboxylic anhydride	R ₁ (CO)O(CO)R ₂	R! 0 R ²		anhydride	Butyric anhydride

Groups containing nitrogen

Compounds that contain nitrogen in this category may contain C-O bonds, such as in the case of \underline{amides} .

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
Amide	Carboxamide	RCONR'R"	O R R''	carboxamido- or carbamoyl-	-amide	NH ₂ Acetamide (Ethanamide)
	Primary amine	RNH₂	R ^N H H	amino-	-amine	H H H H Methylamine (Methanamine)
Amines	Secondary amine	R'R"NH	R—N R'	amino-	-amine	H CH ₃ CH ₃ Dimethylamine
Annes	Tertiary amine	R ₃ N	R—N R'	amino-	-amine	N \
	4° ammonium ion	R₄N⁺	$\begin{array}{c} R_4 \\ R_1 \nearrow N^+ \\ R_2 \end{array}$	ammonio-	-ammonium	Choline
	Primary ketimine	RC(=NH)R'	R R'	imino-	-imine	
landa -	Secondary ketimine	RC(=NR")R'	N R'	imino-	-imine	
Imine	Primary aldimine	RC(=NH)H	$R \stackrel{H}{\longmapsto} H$	imino-	-imine	NH Ethanimine
	Secondary aldimine	RC(=NR')H	R H	imino-	-imine	
lmide	lmide	(RCO)₂NR'		imido-	-imide	NH O Succinimide (Pyrrolidine-2,5-dione)
Azide	Azide	RN ₃	R ^{-N} N ⁺ _N -	azido-	alkyl azide	Phenyl azide (Azidobenzene)
Azo compound	Azo (Diimide)	RN₂R'	R ^{_N} N ^{_R'}	azo-	-diazene	Methyl orange (p-dimethylamino- azobenzenesulfonic acid)

	Cyanate	ROCN	R ^{∕O} `C _{≷N}	cyanato-	alkyl cyanate	H₃C´ ^O `C _N Methyl cyanate
Cyanates	Isocyanate	RNCO	R ^{_N} °C _{°O}	isocyanato-	alkyl isocyanate	H ₃ C ^{✓N} [©] C _© O Methyl isocyanate
<u>Nitrate</u>	Nitrate	RONO ₂	O = + N O N O -	nitrooxy-, nitroxy-	alkyl nitrate	Amyl nitrate (1-nitrooxypentane)
Nitrile	Nitrile	RCN	R-≡N	cyano-	alkane nitrile alkyl cyanide	Benzonitrile (Phenyl cyanide)
	Isonitrile	RNC	R-N≡C-	isocyano-	alkane isonitrile alkyl isocyanide	H ₃ C−N=C− Methyl isocyanide
Nitrite	Nitrosooxy	RONO	R _{~O} ∕N _{≈O}	nitrosooxy-	alkyl nitrite	Isoamyl nitrite (3-methyl- 1-nitrosooxybutane)
Nitro compound	<u>Nitro</u>	RNO ₂	O R ^N , O-	nitro-		H O Nitromethane
Nitroso compound	Nitroso	RNO	R ^{_N} ≈o	nitroso- (Nitrosyl-)		Nitrosobenzene
Oxime	Oxime	RCH=NOH	N OH N OH R H R R' aldoxime ketoxime		Oxime	H ₃ C CH ₃ Acetone oxime (2-Propanone oxime)
Pyridine derivative	Pyridyl	RC₅H₄N	R— N R— N R— N	4-pyridyl (pyridin-4-yl) 3-pyridyl (pyridin-3-yl) 2-pyridyl (pyridin-2-yl)	-pyridine	H N Nicotine
Carbamate ester	Carbamate	RO(C=O)NR ₂	R ¹ O R ² R ³	(-carbamoyl)oxy-	-carbamate	Chlorpropham (Isopropyl (3- chlorophenyl)carbamate)

Groups containing sulfur

Compounds that contain sulfur exhibit unique chemistry due to their ability to form more bonds than oxygen, their lighter analogue on the periodic table. Substitutive nomenclature (marked as prefix in table) is preferred over functional class nomenclature (marked as suffix in table) for sulfides, disulfides, sulfoxides and sulfones.

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
Thiol	Sulfhydryl	RSH	R ^S \H	sulfanyl- (-SH)	-thiol	SH Ethanethiol
Sulfide (Thioether)	Sulfide	RSR'	R ^S R'	substituent sulfanyl- (-SR')	di(s <i>ubstituent</i>) sulfide	H ₃ C CH ₃ (Methylsulfanyl)methane (prefix) or Dimethyl sulfide (suffix)
Disulfide	Disulfide	RSSR'	R ^S S ^{R'}	substituent disulfanyl- (-SSR')	di(substituent) disulfide	H ₃ C S CH ₃ (Methyldisulfanyl)methane (prefix) or Dimethyl disulfide (suffix)
Sulfoxide	Sulfinyl	RSOR'	0 	-sulfinyl- (-SOR')	di(substituent) sulfoxide	H ₃ C CH ₃ (Methanesulfinyl)methane (prefix) or Dimethyl sulfoxide (suffix)
Sulfone	Sulfonyl	RSO ₂ R'	0 0 R S R'	-sulfonyl- (-SO ₂ R')	di(substituent) sulfone	H ₃ C S CH ₃ (Methanesulfonyl)methane (prefix) or Dimethyl sulfone (suffix)
Sulfinic acid	Sulfino	RSO₂H	O S OH	sulfino- (-SO ₂ H)	-sulfinic acid	HO S NH ₂ 0 2-Aminoethanesulfinic acid
Sulfonic acid	Sulfo	RSO ₃ H	O O R S OH	sulfo- (-SO ₃ H)	-sulfonic acid	Benzenesulfonic acid
Sulfonate ester	Sulfo	RSO ₃ R'	0 0 R S O R'	(-sulfonyl)oxy- or alkoxysulfonyl-	R' R-sulfonate	Methyl trifluoromethanesulfonate or Methoxysulfonyl trifluoromethane (prefix)
Thiocyanate	Thiocyanate	RSCN	R ^{∕S} \C _N	thiocyanato- (-SCN)	substituent thiocyanate	S C N
	Isothiocyanate	RNCS	R ^{∕N} ≥C _≥ S	isothiocyanato- (-NCS)	substituent isothiocyanate	N C S
Thioketone	Carbonothioyl	RCSR'	S R R'	-thioyl- (-CSR') or sulfanylidene- (=S)	-thione	Diphenylmethanethione (Thiobenzophenone)
Thial	Carbonothioyl	RCSH	S R H	methanethioyl- (-CSH) or sulfanylidene- (=S)	-thial	
Thiocarboxylic acid	Carbothioic S-acid	RC=OSH	O R SH	mercaptocarbonyl-	-thioic S-acid	Thiobenzoic acid (benzothioic S-acid)
	Carbothioic <i>O</i> -acid	RC=SOH	S R OH	hydroxy(thiocarbonyl)-	-thioic <i>O</i> -acid	
Thioester	Thiolester	RC=OSR'	o R S R'		S-alkyl-alkane- thioate	S-methyl thioacrylate (S-methyl prop-2-enethioate)
	Thionoester	RC=SOR'	S R O R'		O-alkyl-alkane- thioate	

Dithiocarboxylic acid	Carbodithioic acid	RCS₂H	S R SH	dithiocarboxy-	-dithioic acid	Dithiobenzoic acid (Benzenecarbodithioic acid)
Dithiocarboxylic acid ester	Carbodithio	RC=SSR'	S R S R'		-dithioate	

Groups containing phosphorus

Compounds that contain phosphorus exhibit unique chemistry due to their ability to form more bonds than nitrogen, their lighter analogues on the periodic table.

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
Phosphine (Phosphane)	Phosphino	R ₃ P	R ¹ / _{R²} R ³	phosphanyl-	-phosphane	Methylpropylphosphane
Phosphonic acid	Phosphono	RP(=O)(OH) ₂	O II P OH	phosphono-	substituent phosphonic acid	Benzylphosphonic acid
Phosphate	Phosphate	ROP(=O)(OH) ₂	R O OH	phosphonooxy- or O-phosphono- (phospho-)	substituent phosphate	Glyceraldehyde 3-phosphate (suffix) O-Phosphonocholine (prefix) (Phosphocholine)
Phosphodiester	Phosphate	HOPO(OR) ₂	R P P P	[(alkoxy)hydroxyphosphoryl]oxy- or O-[(alkoxy)hydroxyphosphoryl]-	di(substituent) hydrogen phosphate or phosphoric acid di(substituent) ester	DNA O-[(2-Guanidinoethoxy)hydroxyphosphoryl]-L-serine (prefix) (Lombricine)

Groups containing boron

Compounds containing boron exhibit unique chemistry due to their having partially filled octets and therefore acting as Lewis acids.

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
Boronic acid	Borono	RB(OH) ₂	OH R ^B OH	Borono-	substituent boronic acid	HO B OH Phenylboronic acid
Boronic ester	Boronate	RB(OR) ₂	OR' R OR"	O-[bis(alkoxy)alkylboronyl]-	substituent boronic acid di(substituent) ester	
Borinic acid	Borino	R₂BOH	R' R OH	Hydroxyborino-	di(substituent) borinic acid	
Borinic ester	Borinate	R ₂ BOR	R' R B OR"	O-[alkoxydialkylboronyl]-	di(substituent) borinic acid substituent ester	Diphenylborinic acid 2-aminoethyl ester (2-Aminoethoxydiphenyl borate)

Groups containing metals

Chemical Class	Structural Formula	Prefix	Suffix	Example
Alkyllithium	RLi	-lithium		H ₃ C —Li methyllithium
Alkylmagnesium halide	esium halide RMgX (X=Cl, Br, I)[note 1] -magnesium halid		-magnesium halide	H ₃ C — MgCl methylmagnesium chloride
Alkylaluminium	Al ₂ R ₆	(tri/di)alkyl-	-aluminium	trimethylaluminium
Silyl ether	R ₃ SiOR		-silyl ether	F CH ₃ Sinch ₃ CH ₃ trimethylsilyl triflate

note 1 Fluorine is too electronegative to be bonded to magnesium; it becomes an ionic salt instead.

Names of radicals or moieties

These names are used to refer to the moieties themselves or to radical species, and also to form the names of halides and substituents in larger molecules.

When the parent hydrocarbon is unsaturated, the suffix ("-yl", "-ylidene", or "-ylidyne") replaces "-ane" (e.g. "ethane" becomes "ethyl"); otherwise, the suffix replaces only the final "-e" (e.g. "ethyne" becomes "ethynyl").[4]

When used to refer to moieties, multiple single bonds differ from a single multiple bond. For example, a methylene bridge (methanediyl) has two single bonds, whereas a methylene group (methylidene) has one double bond. Suffixes can be combined, as in methylidyne (triple bond) vs. methylylidene (single bond and double bond) vs. methanetriyl (three double bonds).

There are some retained names, such as $\underline{\text{methylene}}$ for methanediyl, 1,x- $\underline{\text{phenylene}}$ for phenyl-1,x-diyl (where x is 2, 3, or 4), $\underline{\text{[5]}}$ $\underline{\text{carbyne}}$ for methylidyne, and $\underline{\text{trityl}}$ for triphenylmethyl.

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
Single bond		R•		Ylo- ^[6]	-yl	Methyl group Methyl radical
Double bond		R:		?	-ylidene	Methylidene
Triple bond		R:		?	-ylidyne	Methylidyne
Carboxylic acyl radical	Acyl	R-C(=O)•		?	-oyl	Acetyl

See also

- Category:Functional groups
- Group contribution method

References

- 1. Compendium of Chemical Terminology (IUPAC "Gold Book") functional group (http://goldbook.iupac.org/html/F/F02555.html)
- 2. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7
- 3. Brown, Theodore (2002). Chemistry: the central science. Upper Saddle River, NJ: Prentice Hall. p. 1001. ISBN 0130669970.
- 4. Moss, G. P.; W.H. Powell. "RC-81.1.1. Monovalent radical centers in saturated acyclic and monocyclic hydrocarbons, and the mononuclear EH4 parent hydrides of the carbon family" (https://web.archive.org/web/20150209155729/http://www.chem.qmul.ac.uk/iupac/ions/RC811.html). IUPAC Recommendations 1993. Department of Chemistry, Queen Mary University of London. Archived from the original (http://www.chem.qmul.ac.uk/iupac/ions/RC811.html#p11) on 9 February 2015. Retrieved 25 February 2015.
- 5. "R-2. 5 Substituent Prefix Names Derived from Parent Hydrides" (https://www.acdlabs.com/iupac/nomenclature/93/r93_271.htm). IUPAC. 1993. section P-56.2.1
- "Revised Nomenclature for Radicals, Ions, Radical Ions and Related Species (IUPAC Recommendations 1993: RC-81.3. Multiple radical centers)" (https://web.archive.org/web/20170611171918/http://www.chem.qmul.ac.uk/iupac/ions/RC813.html). Archived from the original (http://www.chem.qmul.ac.uk/iupac/ions/RC813.html) on 2017-06-11. Retrieved 2014-12-02.

External links

- IUPAC Blue Book (organic nomenclature) (https://www.acdlabs.com/iupac/nomenclature/)
- "IUPAC ligand abbreviations" (https://web.archive.org/web/20070927121055/http://www.iupac.org/reports/provisional/abstract04/RB-prs310804/TableVII-3.04.pdf) (PDF). IUPAC. 2 April 2004. Archived from the original (http://www.iupac.org/reports/provisional/abstract04/RB-prs310804/TableVII-3.04.pdf) (PDF) on 27 September 2007. Retrieved 25 February 2015.
- Functional group video (https://www.clutchprep.com/organic-chemistry/functional-groups)
- Functional group synthesis (https://www.organic-reaction.com/organic-synthesis/functional-group-synthesis/) from organic-reaction.com

Retrieved from "https://en.wikipedia.org/w/index.php?title=Functional_group&oldid=1015754743"

This page was last edited on 3 April 2021, at 10:28 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.