WHAT IS CLAIMED IS:

1	1. An image processing method, performed by an image supply device
2	storing image data and an image output device performing image processing
3	with respect to the image data, which are connected via a communication path
4	through which the image data is communicated, the method comprising steps
- 5	of:
6	generating a control information item including a script for the image
7	processing which is described by a markup language; and
8	communicating the control information item between the image supply
9	device and the image output device, the communicating step comprising:
10	interpreting a control protocol for communicating the control
11	information item, by a first entity which executes processing for a first
12	hierarchic layer of a communication protocol;
13	interpreting a management protocol for managing an image data
14	file including the image data, by a second entity which executes processing for
15	a second hierarchic layer of the communication protocol which is lower than
16	the first hierarchic layer;
17	controlling a physical layer of the communication path, by a third
18	entity which executes processing for a third hierarchic layer of the
19	communication protocol which is lower than the second hierarchic layer, and
20	translating a command in the control information item between the
21	control protocol and the management protocol.

- 1 2. The image processing method as set forth in claim 1, wh rein the
- 2 management protocol is one of a picture transfer protocol (PTP) or a mass
- 3 storage class of a universal serial bus (USB).
- 1 3. The image processing method as set forth in claim 1, wherein the
- 2 third entity controls a universal serial bus (USB).
- 1 4. The image processing method as set forth in claim 3, wherein a still
- 2 image capture device class is used for the USB.
- 1 5. The image processing method as set forth in claim 1, wherein the
- 2 second entity manages the image data file through use of a predetermined file
- 3 system.
- 1 6. The image processing method as set forth in daim 1, wherein the
- 2 third entity controls one of a wireless local area network (LAN) and a peer to
- 3 peer wireless data communication.
- 1 7. An image processing system, comprising:
- 2 an image supply device, operable to store image data; and
- an image output device, connected to the image supply device via a
- 4 communication path through which the image data is communicated, and
- 5 operable to perform image processing with respect to the image data,
- 6 wherein each of the image supply device and the image output device
- 7 comprises:

8	a communication controller, operable to communicate, between the
9	image supply device and the image output device, a control information item
10	including a script for the image processing which is described by a markup
11	language;
12	a first entity, operable to execute processing for a first hierarchic
13	layer of a communication protocol, and to interpret a control protocol for
14,	communicating the control information item;
15	a second entity, operable to execute processing for a second
16	hierarchic layer of the communication protocol of the communication protocol
17	which is lower than the first hierarchic layer, and to interpret a management
18	protocol for managing an image data file including the image data;
19	a third entity, operable to execute processing for a third hierarchic
20	layer of the communication protocol of the communication protocol which is
21	lower than the second hierarchic layer, and to control a physical layer of the
22	communication path; and
23	a translator, which translates a command in the control information
24	item between the control protocol and the management protocol.
1	8. An image output device, connected to an image supply device storing
2	image data via a communication path, the image output device comprising:
3	a communication controller, operable to communicate, between the
4	image supply device and the image output device, a control information item
5	including a script for the image processing which is described by a markup
6	language;
7	a first entity, operable to everyte processing for a first biographic level

of a communication protocol, and to interpret a control protocol for communicating the control information item;

୍ 8

- a second entity, operable to execute processing for a second hierarchic layer of the communication protocol of the communication protocol which is lower than the first hierarchic layer, and to interpret a management protocol for managing an image data file including the image data;
- a third entity, operable to execute processing for a third hierarchic layer of the communication protocol of the communication protocol which is lower than the second hierarchic layer, and to control a physical layer of the communication path; and
- a translator, which translates a command in the control information item between the control protocol and the management protocol.
- 9. A computer program product comprising a computer program which causes a computer to serve as the communication controller, the first entity, the second entity, the third entity, and the translator in the image output device as set forth in claim 8.
 - 10. An image supply device, connected to an image output device performing image processing via a communication path, the image supply device comprising:
 - a storage, which stores image data to be subjected to the image processing:
 - a communication controller, operable to communicate, between the image supply device and the image output device, a control information item

including a script for the image processing which is described by a markup language;

- a first entity, operable to execute processing for a first hierarchic layer of a communication protocol, and to interpret a control protocol for communicating the control information item;
- a second entity, operable to execute processing for a second hierarchic layer of the communication protocol of the communication protocol which is lower than the first hierarchic layer, and to interpret a management protocol for managing an image data file including the image data;
- a third entity, operable to execute processing for a third hierarchic layer of the communication protocol of the communication protocol which is lower than the second hierarchic layer, and to control a physical layer of the communication path; and
- a translator, which translates a command in the control information item between the control protocol and the management protocol.
- 11. A computer program product comprising a computer program which causes a computer to serve as the communication controller, the first entity, the second entity, the third entity, and the translator in the image supply device as set forth in claim 8.
- 12. An image processing method, performed by an image supply device storing image data and an image output device performing image processing with respect to the image data which are connected via a communication path through which the image data is communicated, the method comprising steps

, 5	of:
6	generating a control information item including a script for the image
7	processing which is described by a markup language; and
8	communicating the control information item between the image supply
9	device and the image output device, the communicating step comprising:
10	interpreting a control protocol for communicating the control
11	information item, by a first entity which executes processing for a first
12	hierarchic layer of a communication protocol;
13	selecting one of second entities each executes processing for a
14	second hierarchic layer of the communication protocol which is lower than the
15	first hierarchic layer,
16	selecting one of third entities each executes processing for a third
17	hierarchic layer of the communication protocol which is lower than the second
18	hierarchic layer;
19	interpreting a management protocol for managing an image data
20	file including the image data, by the selected one of the second entities;
21	controlling a physical layer of the communication path, by the
22	selected one of the third entities; and
23	translating a command in the control information item between the
24 -	control protocol and the management protocol.

13. The image processing method as set forth in claim 12, wherein the management protocol is one of a picture transfer protocol (PTP) or a mass storage class of a universal serial bus (USB).

- 1 14. The image processing method as set forth in claim 12, wh rein the
- 2 selected one of the third entities controls a universal serial bus (USB).
- 1 15. The image processing method as set forth in claim 14, wherein a still
- 2 image capture device class is used for the USB.
- 1 16. The image processing method as set forth in claim 12, wherein the
- 2 selected one of the second entities manages the image data file through use of
- 3 a predetermined file system.
- 1 17. The image processing method as set forth in claim 12, wherein the
- 2 selected one of the third entities controls one of a wireless local area network
- 3 (LAN) and a peer to peer wireless data communication.
- 1 18. The image processing method as set forth in claim 17, wherein the
- 2 selected one of the second entities is valid in both of the image supply device
- 3 and the image output device.
- 1 19. The image processing method as set forth in claim 17, wherein the
- 2 selecting step is performed in accordance with a state of the communication
- 3 path.
- 1 20. The image processing method as set forth in claim 19, wherein the
- 2 selecting step is performed based on a priority table such that one of the
- 3 second entities and one of the third entities having respectively a relatively

4	higher	r order in the priority table ar	selected prior to on	s having a relatively		
5	lower	lower order in the priority tabl .				
1	21.	An image processing syste	m. comprising:			

an image supply device, operable to store image data; and
an image output device, connected to the image supply device via a
communication path through which the image data is communicated, and
operable to perform image processing with respect to the image data,

wherein each of the image supply device and the image output device comprises:

a communication controller, operable to communicate, between the image supply device and the image output device, a control information item including a script for the image processing which is described by a markup language;

a first entity, operable to execute processing for a first hierarchic layer of a communication protocol, and to interpret a control protocol for communicating the control information item;

a plurality of second entities, each operable to execute processing for a second hierarchic layer of the communication protocol of the communication protocol which is lower than the first hierarchic layer, and to interpret a management protocol for managing an image data file including the image data;

a plurality of third entities, each operable to execute processing for a third hierarchic layer of the communication protocol of the communication protocol which is lower than the second hierarchic layer, and to control a physical layer of the communication path;

a selector, which selects one of the second entities and a third entities; and

a translator, which translates a command in the control information item between the control protocol and the management protocol interpreted by the selected one of the second entities.

22. An image output device, connected to an image supply device storing image data via a communication path, the image output device comprising:

a communication controller, operable to communicate, between the image supply device and the image output device, a control information item including a script for the image processing which is described by a markup language;

a first entity, operable to execute processing for a first hierarchic layer of a communication protocol, and to interpret a control protocol for communicating the control information item;

a plurality of second entities, each operable to execute processing for a second hierarchic layer of the communication protocol of the communication protocol which is lower than the first hierarchic layer, and to interpret a management protocol for managing an image data file including the image data;

a plurality of third entities, each operable to execute processing for a third hierarchic layer of the communication protocol of the communication protocol which is lower than the second hierarchic layer, and to control a physical layer of the communication path;

19	a selector, which selects one of the second entities and a third
20	entities; and
21	a translator, which translates a command in the control information
22	item between the control protocol interpreted by the first entity and the
23	management protocol interpreted by the selected one of the second entities.
1	23. A computer program product comprising a computer program which
2	causes a computer to serve as the communication controller, the first entity,
3	the second entity, the third entity, the selector, and the translator in the image
4	output device as set forth in claim 21.
5 ,	
1	24. An image supply device, connected to an image output device
2	performing image processing via a communication path, the image supply
3	device comprising:
4	a storage, which stores image data to be subjected to the image
5	processing;
6	a communication controller, operable to communicate, between the
7	image supply device and the image output device, a control information item
8	including a script for the image processing which is described by a markup
9	language;
10	a first entity, operable to execute processing for a first hierarchic layer
11	of a communication protocol, and to interpret a control protocol for
12	communicating the control information item;

a second hierarchic layer of the communication protocol of the communication

a plurality of second entities, each operable to execute processing for

13

protocol which is lower than the first hierarchic layer, and to interpr t a management protocol for managing an image data file including the image data;

a plurality of third entities, each operable to execute processing for a third hierarchic layer of the communication protocol of the communication protocol which is lower than the second hierarchic layer, and to control a physical layer of the communication path;

a selector, which selects one of the second entities and a third entities; and

a translator, which translates a command in the control information item between the control protocol interpreted by the first entity and the management protocol interpreted by the selected one of the second entities.

25. A computer program product comprising a computer program which causes a computer to serve as the communication controller, the first entity, the second entity, the third entity, and the translator in the image supply device as set forth in claim 24.