

9)
$$W(n) = W(n-1)+2$$
 $W(n) = \frac{\pi}{2} = n(n-1) \in O(n)$
 $W(n) \in O(n)$

h) $W(n) = W(n-1)+n'$
 $W(n) = \frac{\pi}{2} : = n'(h'-1) \in O(c'')$
 $W(n) \in O(n'')$

i) $W(n) = W(n'')+1 \Rightarrow W(n''')+1 \quad W(n) \in O(\log \log n)$

2) $A : W(n) = SW(n'/2) + n$
 $B : W(n) = 2W(n-1)+1$
 $C : W(n) = qw(n'/3) + O(n^2)$
 $-16 \quad Shows \quad Hat \quad He \quad W(n) \quad For \quad algo \quad H \quad is \quad \in O(n'')$
 $-1e \quad Shows \quad Hat \quad W(n) \quad For \quad algo \quad B \quad is \quad \in O(n'')$
 $-1e \quad Shows \quad Hat \quad W(n) \quad For \quad algo \quad C \quad is \quad \in O(n'') = 1$

I would close $Algo \in C$ because $W(n) \cap A$ and $W(n) \cap B$

are stricty dominated by Win C.