$Alg\`ebre$

Groupes, ...

Denis Vekemans *

Solution 15 (G,\cdot,e) et (G',\star,e') deux groupes et $f:G\to G'$ un homomorphisme.

$$H' \subseteq G'$$
.

Montrons d'abord que $f^{-1}(H')$ est un sous-groupe de G.

On a f(e) = e' par propriété d'un homomorphisme.

Ainsi, $f^{-1}(e') \in f^{-1}(H')$ et $f^{-1}(H') \neq \emptyset$.

Il reste à motrer que $\forall u \in f^{-1}(H'), \forall v \in f^{-1}(H'), u \cdot v^{-1} \in f^{-1}(H')$...

Sous ces conditions, $\exists x \in H'$ tel que $f^{-1}(x) = u$ et $\exists y \in H'$ tel que $f^{-1}(y) = v$, donc

$$f(u \cdot v^{-1}) = f(u) \star f(v^{-1})$$
 par définition d'un homomorphisme
$$= f(u) \star (f(v))^{-1}$$
 par propriété d'un homomorphisme
$$= x \star y^{-1} \in H' \text{ car } H' < G'$$

et donc, $u \cdot v^{-1} \in f^{-1}(H')$.

Ainsi, $f^{-1}(H')$ est un sous-groupe de G.

Montrons ensuite que $f^{-1}(H')$ est un sous-groupe distingué de G.

Il reste à montrer que $\forall u \in f^{-1}(H'), \forall g \in G, g \cdot u \cdot g^{-1} \in f^{-1}(H')$...

Sous ces conditions, $\exists x \in H'$ tel que $f^{-1}(x) = u$.

$$f(g \cdot u \cdot g^{-1}) = f(g) \star f(u) \star f(g^{-1})$$
 par définition d'un homomorphisme
$$= f(g) \star f(u) \star (f(g))^{-1}$$
 par propriété d'un homomorphisme
$$= f(g) \star x \star f(g)^{-1} \in H' \text{ car } H' \leq G'$$

et donc, $g \cdot u \cdot g^{-1} \in f^{-1}(H')$.

Ainsi, $f^{-1}(H')$ est un sous-groupe distingué de G.

Solution 17
$$x \star y = x\sqrt{1+y^2} + y\sqrt{1+x^2}.$$

 $^{^*}$ Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

 $\phi: \mathbb{R} \to \mathbb{R}; x \mapsto \sinh(x).$

$$\phi(x) \star \phi(y) = \phi(x)\sqrt{1 + \phi(y)^2} + \phi(y)\sqrt{1 + \phi(x)^2}$$

$$= \sinh(x)\sqrt{1 + \sinh^2(y)} + \sinh(y)\sqrt{1 + \sinh^2(x)}$$

$$= \sinh(x)\cosh(y) + \sinh(y)\cosh(x)$$

$$= \sinh(x + y) = \phi(x + y)$$

Donc, ϕ est un **homomorphisme**.

Or ϕ est bijective, de bijection réciproque $\phi^{-1}: \mathbb{R} \to \mathbb{R}; x \mapsto \arg \sinh(x)$.

D'où ϕ est un **isomorphisme**.

Solution 19 Soit *ABCD* un carré (direct). Soit *O* son centre.

On note $\Delta = (AC)$, $\Delta' = (BD)$, $\delta = \text{m\'ediatrice}([AB])$ et $\delta' = \text{m\'ediatrice}([AD])$. On désigne par

- Id l'identité,
- s_O la symétrie de centre O,
- $r_{O,\alpha}$ la rotation de centre O et d'angle α (et ce pour chaque angle $\frac{\pi}{2}$ et $-\frac{\pi}{2}$),
- s_d la symétrie orthogonale par rapport à la droite d (et ce pour chacune des droites $\Delta, \Delta', \delta, \delta'$).

Soit Isom l'ensemble des isométries du carré :

$$Isom = \{Id = u_1, s_0 = u_2, r_{O,\frac{\pi}{2}} = u_3, r_{O,-\frac{\pi}{2}} = u_4, s_{\Delta} = u_5, s_{\Delta'} = u_6, s_{\delta} = u_7, s_{\delta'} = u_8\}.$$

Construire la table de la loi du groupe $(Isom, \circ, Id)$.

En ligne i, colonne j, on trouve $u_i \circ u_j$.

0	Id	s_0	$r_{O,\frac{\pi}{2}}$	$r_{O,-\frac{\pi}{2}}$	s_{Δ}	$s_{\Delta'}$	s_{δ}	$s_{\delta'}$
Id	Id	s_0	$r_{O,\frac{\pi}{2}}$	$r_{O,-\frac{\pi}{2}}$	s_{Δ}	$s_{\Delta'}$	s_{δ}	$s_{\delta'}$
s_O	s_0	Id	$r_{O,-\frac{\pi}{2}}$	$r_{O,\frac{\pi}{2}}$	$s_{\Delta'}$	s_{Δ}	$s_{\delta'}$	s_{δ}
$r_{O,\frac{\pi}{2}}$	$r_{O,\frac{\pi}{2}}$	$r_{O,-\frac{\pi}{2}}$	s_O	Id	s_{δ}	$s_{\delta'}$	$s_{\Delta'}$	s_{Δ}
$r_{O,-\frac{\pi}{2}}$	$r_{O,-\frac{\pi}{2}}$	$r_{O,\frac{\pi}{2}}$	Id	s_O	$s_{\delta'}$	s_{δ}	s_{Δ}	$s_{\Delta'}$
s_{Δ}	s_{Δ}	$s_{\Delta'}$	$s_{\delta'}$	s_{δ}	Id	s_O	$r_{O,-\frac{\pi}{2}}$	$r_{O,\frac{\pi}{2}}$
$s_{\Delta'}$	$s_{\Delta'}$	s_{Δ}	s_{δ}	$s_{\delta'}$	s_O	Id	$r_{O,\frac{\pi}{2}}$	$r_{O,-\frac{\pi}{2}}$
s_{δ}	s_{δ}	$s_{\delta'}$	s_{Δ}	$s_{\Delta'}$	$r_{O,\frac{\pi}{2}}$	$r_{O,-\frac{\pi}{2}}$	Id	s_O
$s_{\delta'}$	$s_{\delta'}$	s_{δ}	$s_{\Delta'}$	s_{Δ}	$r_{O,-\frac{\pi}{2}}$	$r_{O,\frac{\pi}{2}}$	s_O	Id

S'agit-il d'un groupe abélien?

Non, car la table n'est pas symétrique (par exemple, $s_{\Delta} \circ s_{\delta} \neq s_{\delta} \circ s_{\Delta}$).

Soit Isom l'ensemble des isométries positives du carré : $Isom_+ = \{Id, s_0, r_{O, \frac{\pi}{2}}, r_{O, -\frac{\pi}{2}}\}.$

Montrer que $\{Id\} \subseteq \{Id, s_O\} \subseteq Isom_+ \subseteq Isom$.

Il est évident que $\{Id\} < \{Id, s_O\} < Isom_+ < Isom$, d'après la table du groupe $(Isom, \circ)$.

• $\{Id\} \subseteq \{Id, s_O\}$? $Id \circ Id \circ Id = Id \in \{Id\}, \text{ et } s_O \circ Id \circ \underbrace{s_O^{-1}}_{=s_O} = Id \in \{Id\}.$

D'où $\{Id\} \subseteq \{Id, s_O\}.$

• $\{Id, s_O\} \leq Isom_+$?

$$Id \circ Id \circ Id = Id \in \{Id, s_{O}\}, \ s_{O} \circ Id \circ \underbrace{s_{O}^{-1}}_{=s_{O}} = Id \in \{Id, s_{O}\}, \ r_{O, \frac{\pi}{2}} \circ Id \circ \underbrace{r_{O, \frac{\pi}{2}}^{-1}}_{=r_{O, -\frac{\pi}{2}}} = Id \in \{Id, s_{O}\},$$

$$r_{O, -\frac{\pi}{2}} \circ Id \circ \underbrace{r_{O, -\frac{\pi}{2}}^{-1}}_{=s_{O}} = Id \in \{Id, s_{O}\}, \ Id \circ s_{O} \circ Id = s_{O} \in \{Id, s_{O}\}, \ s_{O} \circ s_{O} \circ \underbrace{s_{O}^{-1}}_{=s_{O}} = s_{O} \in \{Id, s_{O}\},$$

$$r_{O,-\frac{\pi}{2}} \circ Id \circ r_{O,\frac{-\pi}{2}}^{-1} = Id \in \{Id, s_{O}\}, \ Id \circ s_{O} \circ Id = s_{O} \in \{Id, s_{O}\}, \ s_{O} \circ s_{O} \circ \underbrace{s_{O}^{-1}}_{=s_{O}} = s_{O} \in \{Id, s_{O}\},$$

$$r_{O,\frac{\pi}{2}} \circ s_{O} \circ r_{O,\frac{\pi}{2}}^{-1} = s_{O} \in \{Id, s_{O}\}, \ \text{et} \ r_{O,-\frac{\pi}{2}} \circ s_{O} \circ r_{O,-\frac{\pi}{2}}^{-1} = s_{O} \in \{Id, s_{O}\}.$$

$$r_{O,\frac{\pi}{2}} \circ s_{O} \circ \underbrace{r_{O,\frac{\pi}{2}}^{-1}}_{=r_{O,-\frac{\pi}{2}}} = s_{O} \in \{Id, s_{O}\}, \text{ et } r_{O,-\frac{\pi}{2}} \circ s_{O} \circ \underbrace{r_{O,-\frac{\pi}{2}}^{-1}}_{=r_{O,\frac{\pi}{2}}} = s_{O} \in \{Id, s_{O}\}.$$

D'où $\{Id, s_O\} \leq Isom_+$.

• $Isom_+ \leq Isom$? Les démonstrations précédentes font une exhaustion des cas possibles ... Cependant, on peut également réfléchir pour éviter d'écrire de longues lignes inutiles.

Ainsi, les éléments de $Isom_+$ sont des rotations de centre O (d'angles 0 -auquel cas, c'est Id-, $\frac{\pi}{2}$, $-\frac{\pi}{2}$ et π -auguel cas, c'est s_{O} -).

Et, les éléments de Isom sont des rotations de centre O ou des symétries orthogonales par rapport à des axes contenant O.

Premier cas: $g \in Isom$ avec g une rotation de centre O, donc $g \in Isom_+$. $h \in Isom_+$ avec h une rotation de centre O.

 $g \circ h \circ g^{-1}$ est donc composée de trois rotations de $Isom_+$ et est, d'après la table du groupe $Isom_+$ une rotation de $Isom_+$.

Second cas: $q \in Isom$ avec q une symétrie orthogonale par rapport à un axe contenant O, donc $g \notin Isom_+$. $h \in Isom_+$ avec h une rotation de centre O.

 $h \in Isom_+$ est, d'après la table du groupe Isom, composée de deux symétries orthogonales de Isom: $h = g_1 \circ g_2 \text{ avec } g_1 \in Isom, g_1 \notin Isom_+ g_2 \in Isom \text{ et } g_2 \notin Isom_+.$

$$g \circ h \circ g^{-1} = g \circ (g_1 \circ g_2) \circ g^{-1} = (g \circ g_1) \circ (g_2 \circ g^{-1}).$$

Maintenant, d'après la table du groupe Isom, $g \circ g_1$ et $g_2 \circ g^{-1}$ sont des rotations de $Isom_+$ (car g, g_1, g_2, g^{-1} sont des éléments de Isom sans être des éléments de $Isom_+$).

D'où $g \circ h \circ g^{-1} = (g \circ g_1) \circ (g_2 \circ g^{-1})$ est donc composée de deux rotations de $Isom_+$ et est, d'après la table du groupe Isom, une rotation de $Isom_+$.

Conclusion sur les deux cas. $\forall g \in Isom, \forall h \in Isom_+, g \circ h \circ g^{-1} \in Isom_+ \text{ et } Isom_+ \subseteq Isom_-$

Remarque 1. Le théorème suivant aurait aussi pu être utilisé.

THEOREME. Soient d et d' deux droites sécantes en O. Alors $s_d \circ s_{d'} = r_{O,2(\widehat{d',d})}$.

Réciproquement, soit $r_{O,\alpha}$ et soit d une droite contenant O. Alors, il existe une unique droite d' contenant O telle que $r_{O,\alpha} = s_d \circ s_{d'}$ et dans ce cas, $\alpha = 2(\widehat{d',d})$, ou encore, il existe une unique droite d'' contenant O telle que $r_{O,\alpha} = s_{d''} \circ s_d$ et dans ce cas, $\alpha = 2(d, d'')$.

Remarque 2. Il existe d'autres sous-groupes de Isom comme $\{Id, s_0, s_{\Delta}, s_{\Delta'}\}$ ou encore $\{Id, s_0, s_{\delta}, s_{\delta'}\}$.