2017-09-13

- The language of **propositional logic** is based on **propositions**, or **declarative sentences** which one can, in principle, argue as being true or false.
- The basic blocks of the language are **atomic** (or **indecomposable**) sentences.
- More complex sentences can be constructed with **connectives**: ¬ (negation/not), ∧ (conjunction/and), V (disjunction/or), \Rightarrow (implication).
- **Sequent**: $\phi_1, \phi_2, ..., \phi_n \vdash \psi$, where ϕ are **premises**, and ψ is a **conclusion**.
- A sequent is **valid** if a proof (built by the proof rules) can be found.
- For each connective, we have introduction proof rule(s) and also elimination proof rule(s).
 - Double negation introduction $(\neg \neg i)$: $\frac{p}{\neg \neg p} \neg \neg i$
 - Double negation elimination $(\neg \neg e)$: $\frac{\neg \neg p}{p}$
 - Conjunction introduction (Ai): $\frac{p \cdot q}{p \wedge q}$ Ai
 - Conjunction elimination $(\Lambda e_1/\Lambda e_2)$: $\frac{p \wedge q}{p} \Lambda e_1$ or $\frac{p \wedge q}{q} \Lambda e_2$
 - **Disjunciton introduction** (Vi_1/Vi_2) : $\frac{p}{p\vee q}$ Vi_1 or $\frac{q}{p\vee q}$ Vi_2
 - Disjunciton elimination (Ve): $\frac{p \vee q \boxed{p} \boxed{q}}{2} \times Ve$ Implication introduction (⇒i): \$\frac{\begin{array}{c} \phi \\ \psi \equiv \psi \equiv \equi

 - Implication elimination (\Rightarrow e) or Modus ponens (MP): $\frac{\phi \phi \Rightarrow \psi}{\psi} \Rightarrow$ e
 - Modus tollens (MT): $\frac{\phi \Rightarrow \psi \neg \psi}{\neg \phi}$ MT
- A sentence ϕ such that $\vdash \phi$ is called a **theorem**.