Problem2

Pej

November 29, 2018

1 Introduction and Outlines

Implement one Smart Beta strategy and discuss pros and cons compared to a chosen benchmark.

Disclaimer: I do not have background in portfolio management/construction. The following is the result of reading the Wiki pages on CAPM and Markowitz's Modern Portfolio Theory. Also, it is under base assumption of no mistake in the codes!

So with this being said, the following is an attempt to construct a dynamic portfolio from some random holdings of SPY. Dynamics means the diversification is change at some fixed periods. For example, every month ('M') a certain calculation is done and based on those the diversification (how the capital is distributed on the assets) is modified.

Main Assumption: In the diversification it is assumed that there is no cap on the capitals. That is any amount of shares/stocks can be bought and also liquidity is possible at the observation times (Monthly for example).

Strategy Outline:

- calculate a β_i associate to the *i*-th asset rate r_i , using a market index. In our case we used SPY as the benchmark. β 's are calculated at the end of an observation period ($alloc_period$). The calculation is based on the covariances and the volatility of SPY over a predetermined period (lookBackDays).
- based on the $\{\beta_i\}$ decide to sell and/or buy new stocks (from the pre-considered set of tickers). In this step the position (weight) w_i is digital, that is you either buy the i-th asset or sell completely.

$$\beta_i = \frac{cov(r_i, r_{SPY})}{vol(SPY)} \tag{1}$$

• apply the weights to the portfolio for the next period.

In the above the decision of the portfolio manager on how to define the $w_i = W_i(\{\beta_j\})$ is left as a quantile parameter that defines a cuttoff on what *beta* is accepted and what is not.

2 Packages

3 Data and Source

The data are gathered from yahoo finance using their API tools to fetch the database through python.

4 Parameters

```
In [111]: ##### the strategy:
          ##### is based on reallocating capital over a range of
          ##### assets on 'alloc_period' based.
          ##### the period 'alloc_period' can be modified bellow.
          alloc_period='M'
          ##### the vol and covariance of the assets are obtain
          ##### from historical data by looking back from the
          ##### day of allocation back till 'lookBackDays' number of days
          ##### 'lookBackDays' is defined and can be modified
          lookBackDays=70
          ##### the allocation is based on comparing the beta of each asset
          ##### in the basket and comparing it to
          ##### the a cutoff set at the beginning.
          ##### The cutoff is defined by a 'quantile_'.
          quantile_ =0.5 # != 1.0 or there is no allocation
          ##### number of asset in the basket = number of columns in the
          ##### data - 1, since one column is the index itself
          num_assets = closes.shape[1]-1 ## -1 because one col is the spy (index)
```

5 Illustration

6 The market index is SPY

In [113]: ########## variance of of spy (the index) this will be used as the numeraire to obto
spy_vol_3M1M = closes_return['SPY'].rolling(lookBackDays).std().resample(alloc_period)

7 Covariances

```
8 \{\beta_i\}
```

9 Weights and Reallocation of Caps Based on β 's

```
In [116]: ### Digital Strategy
    ### we assign the weghts in the following way (a bit silly though !)
    ### in each allocation period the assets with a beta higher than cutoff
    ### of that period receives a w=1 and otherwise w=0
    ### (notice this in practice means you need to sell all the position on one asset==> h
    ### ==> liquidity issue
weights = np.zeros(betas.shape, dtype=int)
for r in range(betas.shape[0]):
    cutoff = betas.iloc[r].quantile(quantile_)
```

weights_df = pd.DataFrame(weights, index= betas.index, columns=cols)

weights[r, :] = betas.iloc[r].apply(lambda x: (0,1)[x>cutoff])

10 Returns

```
In [117]: ######### application to the returns
    ### lets exclude the SPY from returns
    portfolio_return = np.zeros([betas.shape[0]-1, 1])
    closes_return_assets = closes_return.drop(['SPY'], axis=1)
    for alloc_idx in range(len(betas.index)-1):
        start_date = betas.index[alloc_idx]
        end_date = betas.index[alloc_idx+1]
        period_returns = closes_return_assets.loc[start_date:end_date]
```

```
### This is the aggregate return daily
total_per_date_in_period_return = period_returns.mul(weights[alloc_idx, :], ).sum(
# full return in alloc_period - aggregate return Monthly
portfolio_return[alloc_idx,0]=(total_per_date_in_period_return + 1.0).prod() - 1

col_name = 'portfolio %s '%(alloc_period) + 'Return'
portfolio_return=pd.DataFrame(portfolio_return, index=betas.index[1:], columns=[col_name]
```

11 Illustration of returns

```
In [118]: ##### The index return over same period:

market_index = closes_return['SPY']
    return_per_period_idx=np.zeros([betas.shape[0]-1, 1])
    for alloc_idx in range(len(betas.index)-1):
        start_date = betas.index[alloc_idx]
        end_date = betas.index[alloc_idx+1]
        period_returns_idx = market_index.loc[start_date:end_date]
        return_per_period_idx[alloc_idx, 0] = (period_returns_idx+1).prod()-1

col_name = 'SPY %s '%(alloc_period) + 'Return'
    return_per_period_idx= pd.DataFrame(return_per_period_idx, index=betas.index[1:], col
```

12 Overview and Final Results

print 'Annual mean return over the horizon of the Index %:', return_per_period_idx

alloc_period : M

hist data used from 70 days prior : allocation to quantiles > 0.500000 :

In [181]: portfolio_return *100

Out[181]:		portfolio M Return
	Date	
	2013-12-31	30.850111
	2014-01-31	10.407848
	2014-02-28	29.051271
	2014-03-31	-35.761914
	2014-04-30	-28.586576
	2014-05-31	53.548087
	2014-06-30	91.111906
	2014-07-31	-36.694971
	2014-08-31	-7.686768
	2014-09-30	-1.340038
	2014-10-31	14.610343
	2014-11-30	69.339104
	2014-12-31	-12.881044
	2015-01-31	-46.641394
	2015-02-28	98.763274
	2015-03-31	-9.712619
	2015-04-30	-27.257293
	2015-05-31	6.203842
	2015-06-30	-28.002931
	2015-07-31	10.540944
	2015-08-31	-64.762432
	2015-09-30	-54.477730
	2015-10-31	86.692670
	2015-11-30	-1.786692
	2015-12-31	-42.552455
	2016-01-31	-65.365010
	2016-02-29	-16.820930
	2016-03-31	10.975783
	2016-04-30	50.546005 -17.291260
	2016-05-31 2016-06-30	-32.369408
	2016-00-30	80.944140
	2016-07-31	15.752938
	2016-09-30	-20.652282
	2016-10-31	-38.888551
	2016-11-30	79.972333
	2016-11-30	-25.665009
	2017-01-31	17.197721
	2017-02-28	9.452241
	2017-02-20	8.440916
	2017-03-31	-4.622728
	2017-05-31	11.889035
	2017-06-30	11.786402
	2017-07-31	22.401877
	2017-08-31	-6.678591
	2017-09-30	1.223639

2017-10-31	0.013816
2017-11-30	-14.582586
2017-12-31	11.222381

In [177]: return_per_period_idx *100

Out[177]:		SPY M Return
	Date	
	2013-12-31	2.038675
	2014-01-31	-3.068226
	2014-02-28	3.939071
	2014-03-31	0.640398
	2014-04-30	1.520294
	2014-05-31	2.625828
	2014-06-30	1.577750
	2014-07-31	-1.394143
	2014-08-31	1.893599
	2014-09-30	-1.838475
	2014-10-31	2.085659
	2014-11-30	3.922155
	2014-12-31	-0.801160
	2015-01-31	-3.925823

2015 22 22	F 000400
2015-02-28	5.620460
2015-03-31	-2.007980
2015-04-30	0.100844
2015-05-31	0.270690
2015-06-30	-2.486502
2015-07-31	2.423710
2015-08-31	-6.299219
2015-09-30	-3.839595
2015-10-31	10.554015
2015-11-30	0.365512
2015-12-31	-2.715214
2016-01-31	-5.929196
2016-02-29	-0.082595
2016-03-31	5.346255
2016-04-30	0.150470
2016-05-31	1.701155
2016-06-30	-0.361496
2016-07-31	5.061449
2016-08-31	0.119754
2016-09-30	-0.779815
2016-10-31	-0.992170
2016-11-30	3.688723
2016-12-31	1.186001
2017-01-31	1.789469
2017-02-28	3.920017
2017-03-31	-0.577789
2017-04-30	0.757548
2017-05-31	1.411290
2017-06-30	0.124225
2017-07-31	2.245700
2017-08-31	0.234904
2017-09-30	2.121865
2017-10-31	2.356406
2017-11-30	3.217141
2017-12-31	1.579686