Test 2 • Graded

#### Student

Colin Cano

#### **Total Points**

88.75 / 100 pts

### Question 1

P1 10 / 10 pts



- + 2 pts Correct gcd (5823,354) = 3
- + 2 pts Correctly states that the numbers are not relatively prime for gcd(5823,354)
- + 6 pts Correct Euclidean Algorithm
- + 5 pts Correct Algorithm but not in the form of table, check comments
- + 3 pts Partially correct Euclidean Algorithm
- + 1 pt Wrong but tried
- + 0 pts All wrong or empty

#### Question 2

**P2** 10 / 10 pts

+ 3 pts a) 
$$a_n = a_{n-1} + 6 \label{eq:an}$$

+ 1 pt a) partially correct recursion formula

+ 2 pts a) 
$$a_1 = -8$$

+ 5 pts b) 
$$a_n = 6n-14 \\ \text{or} \\ a_n = -8+6(n-1)$$

- + 4 pts b) minor mistake in the explicit formula
- + 1 pt b) tried
- + 0 pts incomplete | incorrect
- + 1 pt see the specific comment

- + 15 pts Correct
- - + 1 pt BC: One side is correct, other is missing or wrong
- → + 2 pts IA: Correct assumption/hypothesis
  - + 1 pt IA: Partial induction assumption
- ✓ + 2 pts IS set up: Correct set up of what needs to be proved
  - + 1 pt IS set up: Partially correct
  - + 3 pts IS: Correct use of IA: clearly stated use of IA has exact IA form on the left to replace with IA)
- - + 6 pts IS: Correct mathematical manipulations
  - + 5 pts IS: Most of the math us right
  - + 4 pts IS: Some of the math is right
- → + 2 pts IS: Started common denominator correctly
  - + 2 pts IS: Correctly opened right side ()
  - + 0 pts Empty or totally wrong

P4 12 / 12 pts

```
\checkmark + 12 pts Correct a: \mathcal{O}(x^4) b: \mathcal{O}(x^7) c: \mathcal{O}(3^x)
```

- + **4 pts** correct answer for a)  $\mathcal{O}(x^4)$
- **+ 3.5 pts** for part a answered  $x^4$  instead of  ${\cal O}(x^4)$
- **+ 2 pts** For part a incorrectly included coefficients. Ex  $O(375x^4)$  instead of  $O(x^4)$
- $f + 1.5 \ pts$  Answer included  $x^4$  but incorrectly used coefficients and had notational errors.
- + 0.5 pts Correct notation, incorrect answer
- + **4 pts** correct answer for b)  $\mathcal{O}(x^7)$
- **+ 3.5 pts** for part b answered  $x^7$  instead of  $O(x^7)$
- + 2 pts For part b incorrectly included coefficients.
- $f + 1.5 \ pts$  Answer included  $x^7$  but incorrectly used coefficients and had notational errors.
- + **0.5 pts** Correct notation, incorrect answer
- + **4 pts** correct answer for c)  $\mathcal{O}(3^x)$
- **+ 3.5 pts** for part c answered  $3^x$  instead of  $O(3^x)$  or other small notation error.
- f + 1.5~pts Answer included  $3^x$  but incorrectly used coefficients and had notational errors.
- + **0.5 pts** Correct notation, incorrect answer
- + 0 pts All incorrect.

**P5 8** / 10 pts

- **v** + **5 pts** (a) Correct number of ways  $\binom{1}{1} \cdot \binom{13}{3} \cdot \binom{38}{2}$  with explanation
  - **+ 4 pts** Correct  $\binom{1}{1}\cdot\binom{13}{3}\cdot\binom{38}{2}$  terms and explanations but added unnecessary terms.
  - + 4 pts (a) Had correct answer but no explanations.
  - + 4.5 pts (a) Correct terms but used addition instead of multiplication.
  - + 4 pts (a) Correct terms but used permutations instead of combinations.
  - **+ 3.5 pts** (a) Had correct [  $\binom{1}{1} \cdot \binom{13}{3}$ ] OR [  $\binom{13}{3} \cdot \binom{38}{2}$ ] terms with explanations
  - **+ 2 pts** (a) Had correct  $\binom{13}{3} \cdot \binom{38}{2}$  terms missing explanation.
  - + 2 pts (a) Incorrect answer but correct method with explanations
  - + 1 pt Incorrect answer but correct method without explanations
  - **+ 1.5 pts** (a) Identified the  $\binom{13}{3}$  term
  - + 2 pts (a) valid explanation
  - + 1 pt (a) Attempted to provide explanations but they do not quite match with the terms of the answer.
  - + 5 pts (b) Correct number of ways  ${48 \choose 6}$  with explanation
  - + 4 pts (b) Almost correct but missing explanation
  - + 4 pts (b) Correct term but used permutation instead of combination.
- $\checkmark$  + 3 pts (b) Correct  $\binom{48}{6}$  term and explanation but with unnecessary other terms .
  - **+ 2.5 pts** (b) Correct  $\binom{48}{6}$  term but with invalid explanation and unnecessary other terms .
  - + 2 pts (b) Incorrect answer but correct method
  - + 2 pts (b) valid explanation
  - + 1 pt (b) Correctly identified that we are selecting from a pool of 48 cards.
  - + 1 pt (b) Attempted to provide explanations but they do not quite match with the terms of the answer.
  - + 0 pts No answer or completely incorrect

**P6 5** / 5 pts

- - **+ 4 pts** Correct answer and showed majority of the work
  - **+ 4 pts** Showed valid steps for the whole process and reached correct final answer but made small computational error in the process
  - **+ 3.5 pts** Showed almost all steps for the whole process and reached correct final answer but made small computational error in the process
  - + 3 pts Showed valid steps for the whole process but incorrect final answer (small computational or mod understanding error)
  - + 2 pts Correct answer but no work shown
  - **+ 1.5 pts** Showed some work and had somewhat valid steps but made multiple errors when evaluating mod functions.
  - + 1 pt Made an attempt to solve and showed at least two steps but did not give a final answer.
  - + 0 pts All wrong or missing

**2.75** / 4 pts

## 7.1 a) and b)

- + 4 pts Correct
- + 2 pts (a) Not one-to-one with proof.

  f(a) not equal to f(b) hence a not equal to b, correct
- + 1 pt (a) is correct without proof
- → + 2 pts (b) is correct with proof (no)
  - + 1 pt (b) is correct without proof
- → + 0.75 pts tried but wrong
  - + 1.5 pts (a) and (b) both incorrect, but tried
  - + 0 pts All wrong or missing
  - + 2.75 pts one correct and one wrong
  - + 3 pts (d) is correct with proof (yes)
  - **+ 1 pt** (d) yes, it is onto.
  - + 1 pt (d) has correct setup
  - + 1 pt (d) has correct work
  - + 3 pts (e) is correct with proof
  - + 1 pt (e) Yes, it is invertible
  - **+ 1 pt** (e) shows  $g(g^{-1}(y)) = y$
  - **+ 1 pt** (e) shows  $g^{-1}(g(x)) = x$
  - + 0 pts All wrong or missing
  - + 2 pts (f) is correct
  - **+ 1 pt** (f) started correct but wrong simplification
  - + 2 pts (g) is correct
  - + 1 pt (g) started correct but wrong simplification
  - + 0 pts All wrong



Not 1-1



- + 12 pts All correct.
- → + 4 pts Binary is correct. 0011 1101 1010 0111
- - + 2 pts Method for binary is correct.
  - + 2 pts Method for octal is correct.
  - + 2 pts Answer for octal is correct but no work shown
  - **+ 2 pts** Method for decimal is correct.
  - + 2 pts Answer for decimal is correct but no work shown
  - + 1 pt Intermediary values for decimal conversion are correct.
  - + 1 pt Binary conversion for 3 is correct. 0011
  - + 1 pt Binary conversion for D is correct. 1101
  - **+ 1 pt** Binary conversion for A is correct. 1010
  - **+ 1 pt** Binary conversion for 7 is correct. 0111
  - + 0 pts Answer is missing/ incorrect.

## Question 10

**EX** 1 / 0 pts

- **+ 6 pts** Correct B-(A $\cap$ B $\cap$ C) or equivalent
- + 3 pts Wrong answer used union instead of intersection.
- + 2 pts Tried and used correct symbols
- → + 1 pt Tried, but not valid expression
  - + 0 pts Wrong or empty

## **CS 2210 Discrete Structures**

# Test 2A

| Name: Colin | Cano | D 01573156 |
|-------------|------|------------|
|-------------|------|------------|

- You have 60 minutes to complete this exam.
- If you enter the room, you must turn in an exam before leaving the room.
- You must show your work and have correct final answer to receive full credit.
- You can use a simple calculator.

**Problem 1:** (10 points) Use Euclidian Algorithm to find gcd(5823,354) and decide whether 5823 and 354 are relatively prime.

| α    | 6        | 6/     |      | •         |       |         |        |
|------|----------|--------|------|-----------|-------|---------|--------|
| 5823 | 354      | 16     | 169  |           |       |         |        |
| 354  | 159      | 2      | 36   |           |       |         |        |
| 159  | 36       | 4      | . 15 |           |       |         |        |
| 36   | (5       | ک<br>ع | 3    |           |       |         |        |
| 15   | G<br>[3] | 2      | a    |           |       |         |        |
| , I  |          | is.    | not  | relativly | prime | because | 3 \$ 1 |

**Problem 2:** (10 points) Let sequence  $\{a_n\}$  be -8, -2, 4, 10, 16, 22, 28,... with n starting at 1.

(a) Find recursive formula for  $a_n$ .

$$a_{n} = a_{n-1} + 6$$
  $a_{i} = -8$ 

(b) Find explicit (iterative) formula for  $a_n$ .

**Problem 3:** (15 points) Prove for all  $n \ge 1$  that

$$\sum_{i=1}^{n} i(i+3) = \frac{n(n+1)(n+5)}{3}$$
BC:  $n=1$ 

$$|A| = \frac{n(n+1)(n+5)}{3} = 4$$

$$|A| = \frac{n(n+1$$

**Problem 4:** (12 points) Find closest big-O bound for:

**Problem 5:** (10 points) There are 52 cards in the deck. You must explain your answer to get full points.

(a) How many distinct six-card hands can be formed that include eight of hearts and exactly three cards of diamond suit? Ex: 5♦, 10♦, Q♦, 8♥, K♥, 9♠ meets the requirements.

30 
$$\begin{pmatrix} 13\\3 \end{pmatrix} * \begin{pmatrix} 38\\2 \end{pmatrix}$$

$$\uparrow \text{remains}$$
(and

(b) How many different six-card hands don't contain any 10s?

Problem 6: (5 points) Find value of 
$$(-134 mod 23 + 165 mod 23)^2 mod 5$$
. Show every step.

-134/13 = -6 R4

-134/13 = 7 R4

=  $(4 + 165 mod 23)^2$  mod 5

=  $(4 + 4)^2$  mod 5

=  $(4 + 4)^2$  mod 5

=  $(4 + 4)^2$  mod 5

<u>Problem 7:</u> (16 points) Consider functions  $f: \mathcal{R} \to \mathcal{R}$  and  $g: \mathcal{R} \to \mathcal{R}$  defined by  $f(x) = -2x^2 + 7$  and g(x) = 5x - 6.

(a) Is f(x) one-to-one? Prove your answer?

$$f(x) = -2x^2+7$$
  
 $f(y) = -2x^2+7$ 

R

ves one to one

(b) Is f(x) onto? Prove your answer.

$$\sqrt{\frac{y-7}{2}} = x$$

(c) Is g(x) one-to-one? Prove your answer.

$$9(x) = 9(y)$$

9x=91 yes one +d one

(d) Is g(x) onto? Prove your answer.

(e) Is g(x) invertible. If yes, then find inverse function.

it is immilble Ves

$$g^{-}(x) = 5(x+6) - 6$$
=  $y+6-6$ 

(f) Find  $f \circ g$ .

(g) Find  $g \circ f$ .

<u>Problem 8:</u> (10 points) Let a = 1101010 and b = 11101. Find sum of a and b and product of a and b without converting to decimal numbers. 1 (0) 11 (0) Hololo 11000 00000000 110101000 11010100000 100000000000 1401010 106 29 1101010 1 10 1X1 106 LOI 160 **Problem 9:** (12 points) Convert 3DA7 to binary, octal, decimal. 111 1000 1001 1000 1011 1100 1101 0 011 Binary: (00111101 1010 0111) Pecinal: 213+217+214+210+28+27+25+27+25+27+1= (19783), o
Octal: (36647)8

**Extra Credit:** (6 points) Give an expression equivalent to:

