Laborator 3.2 - Tehnologii NoSQL

Metode probabilistice pentru clasificare - Regresia logistica

Gheorghe Cosmin Silaghi

Universitatea Babeș-Bolyai

March 31, 2023

Intrebare de cercetare

- Dorim sa prezicem daca un posesor al unui card de credit va fi in situatia sa nu isi
 poata plati creditul luat (Default == yes) pe baza venitului anual si a balantei
 lunare a cardului de credit.
- Mai mult dorim sa aflam daca situatia persoanei (daca persoana este un student) influenteaza sau nu posibilitatea de Default.

Intrebare de cercetare

- Dorim sa prezicem daca un posesor al unui card de credit va fi in situatia sa nu isi
 poata plati creditul luat (Default == yes) pe baza venitului anual si a balantei
 lunare a cardului de credit.
- Mai mult dorim sa aflam daca situatia persoanei (daca persoana este un student) influenteaza sau nu posibilitatea de Default.

Pas 1 - Incarcarea si vizualizarea datelor

Regresia logistica

 modeleaza probabilitatea unei instante de a apartie unei categorii particulare a clasei tinta

$$p(balance) \stackrel{Not}{=} Pr(default = yes|balance) \in [0, 1]$$
 (1)

Regresia logistica

 modeleaza probabilitatea unei instante de a apartie unei categorii particulare a clasei tinta

$$p(balance) \stackrel{Not}{=} Pr(default = yes|balance) \in [0, 1]$$
 (1)

Prezicem default = yes daca p(balance) > threshold

Regresia logistica

 modeleaza probabilitatea unei instante de a apartie unei categorii particulare a clasei tinta

$$p(balance) \stackrel{Not}{=} Pr(default = yes|balance) \in [0, 1]$$
 (1)

• Prezicem default = yes daca p(balance) > threshold

Functia logistica

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \tag{2}$$

• p(X) ia valori exclusiv intre (0,1) si va fi o curba in forma de S

Regresia logistica II

Odds

$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X} \tag{3}$$

- valoare apropiata de zero indica o probabilitate foarte mica pentru default
- valoare apropiata de infinit indica o probabilitate foarte mare pentru default
- utilizat in jocurile de noroc (betting)

Regresia logistica II

Odds

$$\frac{\rho(X)}{1-\rho(X)} = e^{\beta_0 + \beta_1 X} \tag{3}$$

- valoare apropiata de zero indica o probabilitate foarte mica pentru default
- valoare apropiata de infinit indica o probabilitate foarte mare pentru default
- utilizat in jocurile de noroc (betting)

Log-odds sau logit

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X \tag{4}$$

- lacktriangledown daca $eta_1>0\Rightarrow$ cresterea lui X este asociata cu o crestere a lui p(X)
- daca $\beta_1 < 0 \Rightarrow$ crescator X este asociata cu o descrestere a lui p(X)

Metoda verosimilitarii maxime

incercam sa gasim valorile $\hat{\beta_0}$ si $\hat{\beta_1}$ astfel incat, inlocuite in functia logistica, aceasta calculeaza valori aproape de 1 pentru instantele care apartin categoriei respective, si calculeaza valori aproape de zero pentru instantele care nu apartin acelei categorii

Metoda verosimilitarii maxime

incercam sa gasim valorile $\hat{\beta_0}$ si $\hat{\beta_1}$ astfel incat, inlocuite in functia logistica, aceasta calculeaza valori aproape de 1 pentru instantele care apartin categoriei respective, si calculeaza valori aproape de zero pentru instantele care nu apartin acelei categorii

Functia de verosimilitate (likelihood)

$$\ell(\beta_0,\beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1-p(x_{i'}))$$

• β_0 si β_1 sunt alesi astfel incat sa maximizeze functia de verosimilitate

Metoda verosimilitarii maxime

incercam sa gasim valorile $\hat{\beta_0}$ si $\hat{\beta_1}$ astfel incat, inlocuite in functia logistica, aceasta calculeaza valori aproape de 1 pentru instantele care apartin categoriei respective, si calculeaza valori aproape de zero pentru instantele care nu apartin acelei categorii

Functia de verosimilitate (likelihood)

$$\ell(\beta_0,\beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

• β_0 si β_1 sunt alesi astfel incat sa maximizeze functia de verosimilitate

R code

mod <- glm(data = Default, default \sim balance, family = binomial) summary(mod)

	Coeficient	Std. error	Z-statistic	p-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Realizarea predictiilor

R code

nd <- tribble(~balance, 1000, 2000)
predicted <- predict(mod, newdata = nd, type =
"response")</pre>

Predictii

Pr(default = Yes|balance = 1000) = 0.0058Pr(default = Yes|balance = 2000) = 0.5857

Variabile nominale in regresia logistica

 In regresia logistica putem avea variabile binare (calitative) ca si predictori (e.g. variabila student)

Cod R

mod_student <- glm(data = Default, default \sim student, family = binomial)

	Coeficient	Std. error	Z-statistic	p-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student:Yes	0.4049	0.1150	3.52	0.00043

	value
$\hat{Pr}(default = Yes student = Yes)$	0.0431
$\hat{Pr}(default = Yes student = No)$	0.0292

Regresie logistica multipla

• mai multe variabile independente in regresie

Cod R

 $mod_all \leftarrow glm(data = Default, default \sim balance + income + student, family = binomial) summary(mod_all)$

	Coeficient	Std. error	Z-statistic	p-value
Intercept	-10.869	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.738	< 0.0001
income	3.03×10^{-6}	0.000008	0.37	0.7115
student:Yes	-0.6467	0.2363	-2.738	0.0062

Confounding

- Atunci cand este inclusa in model, o variabila confounding schimba sensul predictiei variabilei dependente,
- Modelul fara informatii cu privire la credit card prezice faptul ca studentii sunt predispusi la default
- Cand este inclusa in model si balanta cardului de credit, descoperim faptul ca un student devine un client mai putin riscant, decat o persoana care nu este student

Realizarea predictiilor si matricea de confuzie

- trebuie aplicat setupul complet de ML pentru antrenare si testare, inclusiv selectarea unei metode de validare a rezultatelor
- Pentru obtinerea celui mai bun model se poate folosi direct GLM sau utiliza package-ul Caret (pentru cross-validare si cautare parametri)

Cod R

pred.test <- predict(mod_balance_student_train, newdata = test, type = "response")
table(pred_test > 0.5, test\$default)

Threshold 0.5	Threshold 0.5		True values	
		No	Yes	
Predicted values	No	2878	78	
	Yes	19	25	

Threshold 0.2		True values	
		No	Yes
Predicted values	No	2815	49
Fredicted values	Yes	82	54

- identificam doar 25 de defaulters din cele peste 100 persoane in setul de test: ⇒ specificitatea este foarte mica (24.27%)
- putem creste numarul defaulters identificati daca scadem pragul la $0.2 \Rightarrow$ specificitatea creste la (52.42%)
- acest lucru se intampla cu costul cresterii numarului de false positives
- prin modificarea succesiva a pragului se poate obtine curba ROC