Group 11, diamonds dataset

Tom Tribe, Ken MacIver, Jundi Yang, Mei Huang

2022-09-15

Group Members (photos)

Group Members (name, email, ORCID)

Tom Tribe

- tom.tribe2016@gmail.com
- **>** 0000-0002-5002-8066

Ken Maclver

- ken.maciver68@gmail.com
- 0000-0001-8999-4598

Jundi Yang

- ▶ ivyli112358@gmail.com
- 0000-0003-0888-9564

Mei Huang

- huangmei139@gmail.com
- 0000-0003-2401-0679

The Diamonds dataset

- ➤ This large dataset has 53940 rows (diamonds) of ten variables (approx 540,000 values)
- Slow to process!
- Nine of the variables are various measures of diamond size and quality, while the tenth is the price
- We selected diamonds because it was simple to understand what each variable was measuring, and to have the opportunity to work with a large dataset
- Particularly interested in which variables are most predictive of diamond price

The Variables

red font = categorical variable

- carat: the diamond's weight
- cut: a measure of quality
- color: a measure of colour quality
- clarity: a measure of clearness
- x: length in mm
- y: width in mm
- z: depth in mm
- depth: total depth percentage
- table: width of top of diamond relative to widest point
- price: the price of the diamond in US dollars

(List adapted from list at kaggle.com).

The Response Variable

'Price' seemed to us to be the obvious response variable.

Data Visualization (the dataset)

##		carat	cut	color	clarity	depth	table	price	X	У	Z	
##	1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43	
##	2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31	
##	3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31	
##	4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63	
##	5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75	
##	6	0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48	
##	7	0.24	Very Good	I	VVS1	62.3	57	336	3.95	3.98	2.47	
##	8	0.26	Very Good	H	SI1	61.9	55	337	4.07	4.11	2.53	
##	9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49	
##	10	0.23	Very Good	Н	VS1	59.4	61	338	4.00	4.05	2.39	

Data Visualisation (pairs plot)

Figure 1: Pairs plot

Other things of interest

The EDA revealed the following:

- some variables not Normally distributed
- ▶ long right tail for 'price' due to a few very expensive diamonds
- some zero values
- 'price' probably follows a beta distribution (from the Cullen-Frey plot)

Next Steps

- Principal Component Analysis
- Regression using the Principal Components
- Find best predictor variable for price