Hash Tables

Comparison

implementation	guarantee		average case			ordered	operations	
	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.38 lg N	1.38 lg N	?	yes	compareTo()
red-black tree	2 lg N	2 lg N	2 lg N	1.00 lg N	1.00 lg N	1.00 lg N	yes	compareTo()

Can we do better?

Hashing: Basic Plan

- Save items in a key-indexed table (index is a function of the key)
- Hash function: Method for computing array index from key
- Issues
 - Computing the hash function
 - Equality test: Method for checking whether two keys are equal
 - Collision resolution: Algorithm and data structure to handle two keys that hash to the same array index.

hash(``not'') = 3

hash("it")

Classic Space-Time Limitation

- No space limitation: trivial hash function with key as index.
- No time limitation: trivial collision resolution with sequential search.
- Space and time limitations: hashing

Computing Hash Functions

- Idealistic goal
 - Scramble the keys uniformly to produce a table index.
 - Efficiently computable.
 - Each table index equally likely for each key.
 - Thoroughly researched problem, still problematic in practical applications
- Example: Phone numbers.
 - Bad: first three digits.
 - Better: last three digits.
- Practical challenge. Need different approach for each key type.

Hash Functions and Hash Tables

- lacktriangle A hash function h maps keys of a given type to integers in a fixed interval [0, N-1]
- Example:

 $h(x) = x \mod N$

is a hash function for integer keys

- \clubsuit The integer h(x) is called the hash value of key x
- A hash table for a given key type consists of
 - Hash function h
 - Array or Vector (called "table") of size N
- When implementing a map with a hash table, the goal is to store item (k, o) at index i = h(k)

Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer
- Our hash table uses an array of size N = 10,000 and the hash function h(x) = last four digits of x

Hash Functions

A hash function is usually specified as the composition of two functions:

Hash code:

 h_1 : keys \rightarrow integers

Compression function:

 h_2 : integers $\rightarrow [0, N-1]$

The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{h}_2(\boldsymbol{h}_1(\boldsymbol{x}))$$

The goal of the hash function is to"disperse" the keys in a random way

Hash Codes

- Memory address:
 - We reinterpret the memory address of the key object as an integer.
 - Doesn't work for numeric and string keys.
 - Also bad if objects can move!
- Integer cast:
 - We reinterpret the bits of the key as an integer
 - Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java)

- Component sum:
 - We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components, ignoring overflows.
 - Suitable for numeric keys
 of fixed length greater
 than or equal to the
 number of bits of the
 integer type (e.g., long
 and double in Java).

Hash Codes (cont.)

Polynomial accumulation:

 We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)

$$a_0 a_1 \dots a_{n-1}$$

We evaluate the polynomial

$$p(z) = a_0 + a_1 z + a_2 z^2 + ... + a_{n-1} z^{n-1}$$

at a fixed value z, ignoring overflows.

Especially suitable for strings

- Polynomial p(z) can be evaluated in O(n) time using Horner's rule:
 - The following polynomials are successively computed, each from the previous one in O(1) time

$$p_0(z) = a_{n-1}$$

 $p_i(z) = a_{n-i-1} + zp_{i-1}(z)$
 $(i = 1, 2, ..., n-1)$

• We have $p(z) = p_{n-1}(z)$

Compression Functions

Division:

- $\bullet h_2(y) = y \bmod N$
- The size N of the hash table is usually chosen to be a prime
- The reason has to do with number theory...

- Multiply, Add and Divide (MAD):
 - $h_2(y) = (ay + b) \bmod N$
 - a and b are nonnegative integers such that $a \mod N \neq 0$
 - Otherwise, every integer would map to the same value b

Collision Handling

Collisions occur when different elements are mapped to the same cell

Separate Chaining:

 let each cell in the
 table point to a linked
 list of entries that map
 there

 Separate chaining is simple, but requires additional memory outside the table

Open Addressing

- The colliding item is placed in a different cell of the table.
- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer sequence of probes

- Example:
 - $h(x) = x \mod 13$
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

Search with Linear Probing

- Consider a hash table A that uses linear probing
- **♦** get(*k*)
 - We start at cell h(k)
 - We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

```
Algorithm get(k)
   i \leftarrow h(k)
   p \leftarrow 0
   repeat
       c \leftarrow A[i]
       if c = \emptyset
           return null
        else if c.key() = k
           return c.element()
       else
           i \leftarrow (i+1) \bmod N
           p \leftarrow p + 1
   until p = N
   return null
```

Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements
- ◆ remove(k)
 - We search for an entry with key k
 - If such an entry (k, o) is found, we replace it with the special item AVAILABLE and we return element o
 - Else, we return *null*

- ♠ put(k, o)
 - We throw an exception if the table is full
 - We start at cell h(k)
 - We probe consecutive cells until one of the following occurs
 - A cell *i* is found that is either empty or stores *AVAILABLE*, or
 - N cells have been unsuccessfully probed
 - We store entry (k, o) in cell i

Separate chaining vs. linear probing

- Separate chaining.
 - Easier to implement delete.
 - Performance degrades gracefully.
 - Clustering less sensitive to poorly-designed hash function.
- Linear probing.
 - Less wasted space.
 - Better cache performance.

Quadratic Probing

Iteratively tries buckets

 $A[(i+j^2) \mod N]$

for j = 0, 1, 2... until an empty bucket is found.

 Consider a hash table storing integer keys that handles collision with double hashing

$\mathbf{A}T$	10
/ V	13
 	10

•
$$h(k) = (k + j^2) \mod 13$$

k	h(k)	Probe	es	
18 41	5	5		
41	2	2		
22 44 59 32	9	9		
44	5	5	6	
59	7	7		
32	6	6	7	10

Double Hashing

- Double hashing uses a secondary hash function d(k) and handles collisions by placing an item in the first available cell of the series (i+jd(k)) mod N for j = 0, 1, ..., N 1
- The secondary hash function d(k) cannot have zero values
- The table size N must be a prime to allow probing of all the cells

 Common choice of compression function for the secondary hash function:

$$d_2(k) = q - (k \mod q)$$
 where

- q < N
- q is a prime
- The possible values for $d_2(k)$ are

Example of Double Hashing

 Consider a hash table storing integer keys that handles collision with double hashing

$$N = 13$$

- $h(k) = k \mod 13$
- $d(k) = 7 k \mod 7$
- Insert keys 18, 41,22, 44, 59, 32, 31,73, in this order

			1		1 1
k	h(k)	d(k)	Prol	oes	
18	5	3	5		
18 41	2	1	2		
22	9	6	9		
44	5	5	5	10	
22 44 59	7	4	7		
32	6	3	6		
31	5	4	5	9	0
73	8	4	8		

Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take O(n) time
- The worst case occurs when all the keys inserted into the map collide
- The load factor $\alpha = n/N$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is

 $1/(1-\alpha)$

- The expected running time of all the dictionary ADT operations in a hash table is O(1)
- In practice, hashing is very fast provided the load factor is not close to 100%
- When the load gets too high, we can rehash....
- Applications: very numerous, e.g. computing frequencies.