Scalar Products

Integer sequence a having length 2n+2 is defined as follows:

- $a_0 = 0$
- $a_1 = C$
- ullet $a_{i+2} = (a_{i+1} + a_i) \ \% \ M$, where $0 \le i < 2n$

Write a function generator, gen, to generate the remaining values for a_2 through a_{2n+1} . The values returned by gen describe two-dimensional vectors $v_1 \ldots v_n$, where each sequential pair of values describes the respective x and y coordinates for some vector v in the form $x_1, y_1, x_2, y_2, \ldots, x_n, y_n$. In other words, $v_1 = (a_2, a_3), v_2 = (a_4, a_5), \ldots, v_n = (a_{2n}, a_{2n+1})$.

Let S be the set of scalar products of v_i and v_j for each $1 \le i, j \le n$, where $i \ne j$. Determine the number of different residues in S and print the resulting value modulo M.

Input Format

A single line of three space-separated positive integers: C (the value of a_1), M (the modulus), and n (the number of two-dimensional vectors), respectively.

Constraints

- $1 < C < 10^9$
- $1 < M < 10^9$
- $1 < n < 3 \times 10^5$

Output Format

Print a single integer denoting the number of different residues %~M in S.

Sample Input

453

Sample Output

2

Explanation

Sequence
$$a=a_0,a_1,(a_1+a_0)\%M,(a_2+a_1)\%M,\ldots,(a_{2n}+a_{2n-1})\%M\}$$
 = $\{0,\,4,\,(4+0)\%5,\,(4+4)\%5,\,(3+4)\%5,\,(2+3)\%5,\,(0+2)\%5,\,(2+0)\%5\}$ = $\{0,4,4,3,2,0,2,2\}$.

This gives us our vectors: $v_1=(4,3)$, $v_2=(2,0)$, and $v_3=(2,2)$.

Scalar product $S_0(v_1,v_2)=8$.

Scalar product $S_2(v_2,v_3)=4$.

Scalar product $S_0(v_1,v_3)=14$.

There are ${f 2}$ residues ${f \%}$ ${f 5}$ in ${f S}$ (i.e.: ${f 3}$ and ${f 4}$), so we print the result of ${f 2}{f \%}{f 5}$ (which is ${f 2}$).