	ONEL	ogor	nali	sati	on	S	2	Pas	Sag	e	en	F	oune	1
		emie d'i	k (bye	ne /	e w	210	ine rei	ngi	e 3	elé : I		vēe 1R4	
	G	(3)	-	J G	à .	ż	dŧ	= /				`		
•	avec	G	-	74 h	h 14 h	Ь Ь К	۲ ۲ ۲		1	14	7	max	(ħ,	-3L)
	poditive	_ ola	fui	h c,		h ca		١	ole	l	a	syn	ieh	ìc.
0					1 g (7;		1	U	= [Lal	τ	It ₃ 1	T.J	
		32			93									
		Z	= {	27 ((0, '	1,-	1,0	1/c						
0					1,									

2 Auni, on peut écrire pour n:= UT3 Q(n) = Q(3) = 1 Azi · n dt La contrainte l'écrit 80 = 211 2 (M, 3. 7) x+ 211 2 (B, 3. 8) 4 On défaint une nouvelle base de 176 ERE E= 7E1, -, E6 } := 2e1, e2, e3, L1, L2, L3} pour évoire δρ = 211 Z (Nk2·2) où Ny = UTUKU, LEM3 Nk = UT Bk-3U, k = 4.5,6. PASSAGE EN FOURIER In peut développer y dans sa vérie de Faurier v.e. $\dot{\eta}(t) = \sum_{n \in \mathbb{N}} -n \, a_n \, \sin(nt) + n \, b_n \, \cos(nt).$

Avec Parreval, ou obtient en analogie auec (8S) Qu(2) = 1 sq n(+)n(+) db = TT 2 m2 (sq qu an + Agbn. bn) и = (un) n := VZTT = Jg (n an) n U:= (Un)n:= \211 Chg (nbn)n. Pour la contrainte, on obtient grâce à L²-orthogonalité Sp. Ex = 217 Zin Nkon.an = Z + () Ve Z) vn · un = E & Nion un air on a défini, N/2 = VAg Sp = Z = (Z, Nyon. un) Ex = 2 h T (vn,un)

	4
,00	$ \begin{array}{c} \mathcal{T}(u, u) := \sum_{k \in \mathbb{N}_{k}} (\hat{N_{k}} u \cdot u) \equiv_{k_{j}} \dots \\ \in \mathcal{L}(\mathbb{R}^{4} \otimes \mathbb{R}^{4} \mathbb{R}^{6}). \end{array} $
à	un problème de dimension linie
gi I g	uel $\omega := 8p \in \mathbb{R}^6$ on went trainer in vectors $u, v \in \mathbb{R}^4$ t, q
	(i) $ u = u _{e^2}, v - v _{e^2};$ (ii) $T(u,v) = w.$
Po	eur ceci, il faudra résondre l'équation
ou	$T(\hat{\alpha}, \hat{\omega}) = \frac{ \omega }{\ u\ _{e^2} \ \omega\ _{e^2}}$ $\hat{\alpha} = u/ u , \hat{\omega} = v/ v \text{et} \hat{\omega} = w/ \omega .$
De e4 u	Aus, ou coincerait bien que les reteurs u, v joient contems dans certain plan dans R4.