

Graph of feasible region I

- a. minimize $3\omega_1 \omega_2$ \Rightarrow opt. soln. is (0,5)
- b. minimize ω₁
 ⇒ opt. soln. is the intersection of the ω₂-axis and the feasible region
- c. minimize -W,
 ⇒ model is unbounded (obj. fn.
 Contours with better obj. fn. value
 "move to the right" without limit.)

$$-x_1 + 4x_3 = 13$$
 $\Rightarrow x_1 = 1, x_3 = \frac{14}{4} = \frac{7}{2}$

b.
$$\vec{d}^{x_2} = (d_{x_1}, 1, d_{x_2}, 0)$$

 $-d_{x_1} + 4d_{x_3} = -1$
 $2d_{x_1} = -6$

$$= d_{x_1} = -3$$
, $d_{x_3} = -1$

c.
$$\overline{C}_{x_2} = -30 + 1 = -29$$

 $\Rightarrow \overline{d}^{x_2}$ not improving

$$\vec{d}^{x_4} = (d_{x_1}, 0, d_{x_2}, 1)$$

$$-d_{x_1} + 4d_{x_3} = -21$$

d. Choose dx4: X4 is the entering variable

$$\lambda_{\text{max}} = min \left\{ \frac{7/2}{5} \right\} = \frac{7}{10}$$
 χ_3 is the leaving variable.

=> new BFS =
$$(1,0,\frac{2}{2},0) + \frac{2}{10}(1,0,-5,1) = (\frac{12}{10},0,0,\frac{2}{10})$$

s.t.
$$\gamma_1 + 2\gamma_2 > 3$$
 (1)
 $2\gamma_1 + 3\gamma_2 > 4$ (2)
 $\gamma_1 + \gamma_2 > 1$ (3)
 $2\gamma_1 + 3\gamma_2 > 5$ (4)

Y1, 42 7,0.

optimal soln: $y_i^* = 1$, $y_2^* = 1$.

Onal complementary slackness: dual constraint not active
 corresponding primal variable = 0.

From part b, it is clear that constraints (2) and (3) are not active at (1,1). \Rightarrow In an optimal solution to [P], we must have $X_2 = X_3 = 0$.

d. modified [P]:

max
$$3x_1 + 5x_4$$

s.t. $x_1 + 2x_4 \le 5$
 $2x_1 + 3x_4 \le 8$
 $x_1, x_4 \ge 0$

optimal soln to modified [P]: \$\$\\ \chi_1 = 1, \chi_4 = 2

optimal soln. to [P]: (1,0,0,2)

P4. Symbolic input parameters:

C = cost of crude oil per 1000 barrels

Pa = price of unprocessed aviation fuel per 1000 barrels

Ph = price of unprocessed heating oil per 1000 barrels

qa = price of processed aviation fuel per 1000 barrels

Bh = price of processed heating oil per 1000 barrels

ta = time to process aviation fuel per 1000 barrels

th = time to process aviation fuel per 1000 barrels

B = available crude oil, in 1000s.

Decision variables: (in 1000 barrels)

Z = amt. of crude oil to buy

Xa = amt. of unprocessed AF to sell

Xh = amt. of unprocessed Ho to rell

Ya = amt. of processed AF to sell

Yh = amt. of processed Ho to sell.

Model:

max $Pa \times n + Ph \times n + ga \times a + gh \times n - CZ$ (fotal profit) s.t. $\frac{3}{4}Z = Xa + ya$ (crude oil $\rightarrow AF$) $\frac{1}{4}Z = Xh + yh$ (crude oil $\rightarrow Ho$) $taya + thyh \leq T$ (crucker time) $Z \leq B$ (available crude oil) $Xa, ya, Xh, yh, Z \geq 0$.

- $\frac{PS}{c}$. The objective for vector $\vec{c} = (3, 11, -8, 0)$
 - a. $\vec{d}^{\text{W4}} = (1, 0, -4, 1)$ does NOT lead to a conclusion that the LP is unbounded, since its components are not all nonnegative.
 - b. $d^{\omega_4} = (1, 3, 0, 1)$ has associated reduced cost $C_{\omega_4} = 3b$. Since the LP is minimizing, d^{ω_4} is not improving. So, even though all components of d^{ω_4} are nonnegative, we cannot conclude that the LP is unbounded.
 - c. $\vec{d}^{Wq} = (1,0,3,1)$ has associated reduced cost $\vec{c}_{Wq} = -21$, and so \vec{d}^{Wq} is improving, with all nonnegative components. Therefore, we can conclude that the LP is unbounded.
 - d. $\vec{d}^{W_4} = (-1, 1, -2, 1)$. Similar to part a.

P6. Symbolic input parameters:

> P = set of presents C = set of children

Vij = happiness of child i "present j for iEC, jeP bj = # present j available for jeP.

Decision variables: Xij = # present j given to child i for iEC, jeP.

max min { \(\sum_{j \in P} \) \(V_{ij} \) \(X_{ij} \) : i \(\in C \) } Model:

Lhappiness of child i

s.t. ∑ Xij ≤ bj for jeP (available presents) Xij ≥0 for ie C, jeP.

convert to LP

s.t. $Z \leq \sum_{j \in P} V_{ij} X_{ij}$ for $i \in C$ ∑ xij ≤ bj for jeP Xij ≥0 for i∈ C, jeP.