Test

Geometric Series (for r less than one):

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

$$S = \lim_{n \to \infty} S_n = \frac{a}{1 - r}$$

Preliminary Test:

if
$$\lim_{n\to\infty} a_n \neq 0$$
, then series Diverges

Comparation Test:

$$A \leq C$$
, A Converges $A \geq D$, A Diverges

Integral Test:

$$\int^{\infty} A \ dn \begin{cases} \text{A finite} \to \text{Converges} \\ \text{A infinite} \to \text{Diverges} \end{cases}$$

Ratio Test:

$$\rho_n = \left| \frac{a_{(n+1)}}{a_n} \right|$$

$$\rho = \lim_{n \to \infty} \rho_n \begin{cases} \rho > 1 \text{ Diverge} \\ \rho = 0 \text{ Inconclusive} \\ \rho < 1 \text{ Converges} \end{cases}$$

Special Comparation:

$$\lim_{n\to\infty}\frac{A}{C} \text{ Limit finite} \to \text{A Converges}$$

$$\lim_{n\to\infty}\frac{A}{D} \text{ Limit } \ \ 0 \to \text{A Diverges}$$

Raabe Test:

$$\rho \equiv \lim_{n \to \infty} \left[n(\frac{a_n}{a_{n+1}} - 1) \right] \begin{cases} \rho > 1, \text{ Converge} \\ \rho = 1, \text{ Inconclusive} \\ \rho < 1, \text{ Diverge} \end{cases}$$

Root Test:

$$\rho \equiv \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

$$\equiv \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \begin{cases} \rho > 1, \text{ Converge} \\ \rho = 1, \text{ Inconclusive} \\ \rho < 1, \text{ Diverge} \end{cases}$$

Alternating series Test

if
$$|a_{n+1}| \le |a_n|$$
 and $\lim_{n \to \infty} a_n = 0$

then series converges.

Function Expansion

Taylor Series about x = a:

$$\frac{1}{n!}(x-a)^n f^n(a) = f(a) + (x-a)f'(a) + \frac{1}{2!}(x-a)^2 f''(a) + \frac{1}{3!}(x-a)^3 f'''(a) + \cdots$$

Maclaurin Series:

$$\frac{1}{n!}(x)^n f^n(0) = f(0) + (x)f'(0) + \frac{1}{2!}(x)^2 f''(0) + \frac{1}{3!}(x)^3 f'''(0) + \cdots$$

Maclaurin Expansion for basic function:

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} - 1 < x \le 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{(n)} = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \cdots + |x| < 1$$