

WEBENCH® Design Report

VinMin = 3.7V VinMax = 4.2V Vout = 5.0V lout = 1.0A Device = TPS61230DRCR Topology = Boost Created = 9/2/14 5:44:06 AM BOM Cost = \$1.67 Footprint = 201.0mm2 BOM Count = 10 Total Pd = 0.3W

Design: 3822995/2 TPS61230DRCR TPS61230DRCR 3.7V-4.2V to 5.0V @ 1.0A

Electrical BOM

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
I. Cff	Kemet	C0603C180J5GACTU Series= C0G/NP0	Cap= 18.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0603 5mm2
2. Cin	TDK	C2012X5R0J226M Series= 285	Cap= 22.0 μF VDC= 6.3 V IRMS= 0.0 A	1	\$0.06	0805 7mm2
3. Cout	MuRata	GRM21BR61A106KE19L Series= X5R	Cap= 10.0 µF ESR= 2.0 mOhm VDC= 10.0 V IRMS= 0.0 A	3	\$0.03	0805 7mm2
I. Css	MuRata	GRM155R71C153KA01D Series= X7R	Cap= 15.0 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3mm2
5. L1	Bourns	SRU1028-1R0Y	L= 1.0 μH DCR= 4.9 mOhm	1	\$0.33	SRU1028 144mm2
S. Rfbb	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3mm2
7. Rfbt	Vishay-Dale	CRCW0402402KFKED Series= CRCWe3	Res= 402.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3mm2
3. U1	Texas Instruments	TPS61230DRCR	Switcher	1	\$1.15	DRC0010G 16mm2

Operating Values

Operating values				
#	Name	Value	Category	Description
1.	Cin IRMS	134.357 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	650.036 mA	Current	Output capacitor RMS ripple current
3.	IC lpk	1.659 A	Current	Peak switch current in IC
4.	lin Avg	1.432 A	Current	Average input current
5.	L lpp	465.425 mA	Current	Peak-to-peak inductor ripple current
6.	BOM Count	10	General	Total Design BOM count
7.	FootPrint	201.0 mm2	General	Total Foot Print Area of BOM components
8.	Frequency	2.0 MHz	General	Switching frequency
9.	Pout	5.0 W	General	Total output power
10.	Total BOM	\$1.67	General	Total BOM Cost
11.	Duty Cycle	27.854 %	Op_point	Duty cycle
12.	Efficiency	94.377 %	Op_point	Steady state efficiency
13.	IC Tj	44.116 degC	Op_point	IC junction temperature
14.	ICThetaJA	49.1 degC/W	Op_point	IC junction-to-ambient thermal resistance
15.	IOUT_OP	1.0 A	Op_point	lout operating point
16.	VIN_OP	3.7 V	Op_point	Vin operating point
17.	Vout p-p	9.452 mV	Op_point	Peak-to-peak output ripple voltage
18.	Cin Pd	0.0 W	Power	Input capacitor power dissipation
19.	Cout Pd	281.698 μW	Power	Output capacitor power dissipation
20.	IC Pd	287.489 mW	Power	IC power dissipation
21.	L Pd	10.054 mW	Power	Inductor power dissipation
22.	Total Pd	297.908 mW	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	1.0 A	Maximum Output Current
2.	lout1	1.0 Amps	Output Current #1
3.	SoftStart	0.5 ms	Soft Start Time (ms)
4.	VinMax	4.2 V	Maximum input voltage
5.	VinMin	3.7 V	Minimum input voltage

#	Name	Value	Description
6.	Vout	5.0 V	Output Voltage
7.	Vout1	5.0 Volt	Output Voltage #1
8.	base_pn	TPS61230	Base Product Number
9.	source	DC	Input Source Type
10.	Ta	30.0 degC	Ambient temperature

Design Assistance

1. TPS61230 Product Folder: http://www.ti.com/product/tps61230: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.