Diferenciais, Plano tangente

- 1. Considere a função real $f(x,y) = x^2 + y^3$
 - (a) Determine a aproximação linear L(x,y) da função f na vizinhança do ponto (2,1).
 - (b) Utilize a aproximação linear L(x, y) da alínea anterior para determinar um valor aproximado de f(2.01, 0.99).
 - (c) Determine a equação do plano tangente à superfície $z=x^2+y^3$ no ponto (2,1,f(2,1)) e o vector perpendicular a esse plano.
 - (d) Determine o diferencial de f no ponto dado.
 - (e) Utilize a alínea anterior para determinar uma aproximação da variação da função real f, quando (x, y) varia de (2, 1) para (2.001, 1.003).
- 2. Considere a função real $f(x,y) = 3x^2 2xy$
 - (a) Determine a aproximação linear L(x,y) da função f na vizinhança do ponto $(2,\frac{10}{4})$.
 - (b) Utilize a aproximação linear L(x, y) da alínea anterior para determinar um valor aproximado de f(2.01, 2.4).
 - (c) Determine a equação do plano tangente à superfície $z = 3x^2 2xy$ no ponto $(2, \frac{10}{4}, f(2, \frac{10}{4}))$ e o vector perpendicular a esse plano.
 - (d) Determine o diferencial de f no ponto dado.
 - (e) Utilize a alínea anterior para determinar uma aproximação da variação da função real f, quando (x,y) varia de $(2,\frac{10}{4})$ para (1.99,2.51).
- 3. Considere a função real $f(x,y) = \ln(x^2 + y^2)$
 - (a) Determine a aproximação linear L(x,y) da função f na vizinhança do ponto (1,-1).
 - (b) Utilize a aproximação linear L(x, y) da alínea anterior para determinar um valor aproximado de f(1.01, -0.99).
 - (c) Determine a equação do plano tangente à superfície $z = \ln(x^2 + y^2)$ no ponto (1, -1, f(1, -1)) e o vector perpendicular a esse plano.
 - (d) Determine o diferencial de f no ponto dado.
 - (e) Utilize a alínea anterior para determinar uma aproximação da variação da função real f, quando (x, y) varia de (1, -1) para (1.02, -1.03).
- 4. Considere a função real $f(x,y) = x^3 \exp(2y)$
 - (a) Determine a aproximação linear L(x,y) da função f na vizinhança do ponto (1,0).
 - (b) Utilize a aproximação linear L(x, y) da alínea anterior para determinar um valor aproximado de f(0.99, 0.001).

- (c) Determine a equação do plano tangente à superfície $z = x^3 \exp(2y)$ no ponto (1,0,f(1,0)) e o vector perpendicular a esse plano.
- (d) Determine o diferencial de f no ponto dado.
- (e) Utilize a alínea anterior para determinar uma aproximação da variação da função real f, quando (x, y) varia de (1, 0) para (1.001, -0.003).
- 5. Calcule o diferencial de f(df) para as funções definidas do seguinte modo:
 - a) $f(x,y) = \arcsin\left(\frac{y}{x}\right)$ b) $f(x,y,z) = xyz x^z$ c) $f(x,y,z,t) = 3x 2y^2 z^3 + t$
- 6. Usando diferenciais, obtenha uma aproximação da variação da função real definida em 1.b), quando (x, y, z) varia de (1, 2, -1) para (1.001, 1.999, -1.01).
- 7. Usando diferenciais calcule um valor aproximado de l
n $\left(1.01^2+0.02^3\right)$
- 8. Determine as equações do plano tangente e da reta normal à superfície $x^3 + 2xy^2$ $7z^3 + 3y + 1 = 0$ no ponto (1, 1, 1).
- 9. Considere a superfície $48z = 2x^2 + 3y^2$ (parabolóide).
 - (a) Determine a equação do plano tangente à superfície no ponto $P=(3,2,\frac{5}{8})$.
 - (b) Determine os cossenos diretores da reta normal à superfície no ponto P.
- 10. Determine a equação do plano tangente à superfície $x^2 + 2y^2 + z^2 = 1$ de modo que seja paralelo ao plano x - y + 2z = 0.

Vetor gradiente, derivadas direccionais

1. Construa o campo vectorial gradiente (grad $f = \overrightarrow{\nabla} f$) das seguintes funções:

a)
$$z = xy$$
 b) $z = x^2 + y^2$ c) $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$

- 2. Determine o gradiente de f (grad $f = \overrightarrow{\nabla} f$) nos casos seguintes
 - (a) $f(x,y) = x^2 + y^2 (1 + \sin x), (a,b) = (\pi, 2)$
 - (b) $f(x, y, z) = (x^2 + \cos z) e^{-x+y}$, $(a, b, c) = (1, 1, \pi)$.
- 3. Escreva a expressão $\overrightarrow{\nabla} U$ quando U é uma função real de n variáveis reais.
- 4. Seja $f(x,y) = \ln \|\overrightarrow{r}\|$, onde $\overrightarrow{r} = (x,y)$. Mostre que $\overrightarrow{\nabla} f = \frac{\overrightarrow{r}}{\|\overrightarrow{r}\|^2}$.
- 5. Seja $\overrightarrow{r} = \sum_{i=1}^{n} x_i \overrightarrow{e}_i$. Mostre que grad $\|\overrightarrow{r}\|^k = k \cdot \|\overrightarrow{r}\|^{k-2} \cdot \overrightarrow{r}$, definindo $\|\overrightarrow{r}\| = k \cdot \|\overrightarrow{r}\|^{k-2}$.
- 6. Calcule as seguintes derivadas dirigidas: :
 - (a) da função $f(x, y, z) = \left(\frac{x}{y}\right)^z$ no ponto (1, 1, 1) na direcção do vector $\overrightarrow{u} = 2\overrightarrow{e}_1 + 1$

2

- (b) da função u=xy+yz+zx no ponto M=(2,1,3) na direcção que vai deste ao ponto N=(5,5,15) ;
- (c) da função $z=x^2-xy-2y^2$ no ponto P=(1,2) na direcção que faz com o eixo \overrightarrow{OX} um ângulo de 60^o .
- 7. Seja $f(x, y, z) = \sin\left(\frac{xz}{x^2 + y^2}\right)$.
 - (a) Determine a função vectorial $\overrightarrow{\nabla} f$.
 - (b) Calcule $\overrightarrow{\nabla} f(2,1,0)$.
 - (c) Qual a taxa de variação de f no ponto (2,1,0) segundo o vector (1,1,1)?
- 8. Sabendo que $D_{\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)}f\left(a,b\right)=3\sqrt{2}$ e $D_{\left(\frac{3}{5},-\frac{4}{5}\right)}f\left(a,b\right)=5$, determine $\overrightarrow{\nabla}f\left(a,b\right)$.
- 9. Em que direcção a partir do ponto (2,0) a função f(x,y)=xy tem taxa de variação -1?
- 10. Sabendo que $D_{\overrightarrow{u}}f(a,b) = \overrightarrow{u}.\overrightarrow{\nabla}f(a,b) = \|\overrightarrow{\nabla}f(a,b)\|$. $\cos\phi$, onde ϕ é o ângulo entre os vectores \overrightarrow{u} e $\overrightarrow{\nabla}f(a,b)$ $\Big(\phi = \triangleleft\Big(\overrightarrow{u},\overrightarrow{\nabla}f(a,b)\Big)\Big)$, diga
 - (a) Qual a direcção segundo a qual f tem maior taxa de variação? Nessa direcção, qual a taxa de variação?
 - (b) Qual a direcção segundo a qual f tem menor taxa de variação? Nessa direcção, qual a taxa de variação?
 - (c) Qual a direcção segundo a qual f tem taxa de variação nula?
- 11. A temperatura no local (x,y) numa região do plano XOY é T^oC onde $T(x,y)=x^2e^{-y}$.
 - (a) Em que direcção a partir do ponto (2, 1) a temperatura aumenta mais depressa?
 - (b) Qual a taxa de crescimento nessa direcção?
- 12. Em que direcção a partir do ponto (a,b,c) a função $f(x,y)=x^2+y^2-z^2$ aumenta metade da sua taxa de variação máxima nesse ponto?
- 13. Seja $f(x,y) = 100 x^2 y^2$.
 - (a) Determine a derivada de f no ponto $P_0 = (3,4)$ segundo o vector $\cos \alpha \cdot \overrightarrow{e}_1 + \sin \alpha \cdot \overrightarrow{e}_2$.
 - (b) Em que direcção se deve sair de P_0 para que os valores da função aumentem o mais rapidamente possível?
 - (c) Interprete geometricamente o resultado, atendendo ao gráfico de f.

Derivadas de funções compostas

- 1. Considere a função $T(x,y)=x^2e^y-xy^3$, onde $x=\cos t$ e $y=\sin t$. Determine $\frac{dT}{dt}$ usando a regra da cadeia.
- 2. Para $z = \cos(x^2y)$, onde $x = s^3t^2$ e $y = s^2 + \frac{1}{t}$, calcule $\frac{\partial z}{\partial s}$ e $\frac{\partial z}{\partial t}$.
- 3. Seja $v = x + y^2$, $x = \int_0^t \cos w \ dw$, $y = \arccos u + \sin t$, calcule $\frac{\partial v}{\partial t} \in \frac{\partial v}{\partial u}$.
- 4. Calcule $\frac{d^2u}{dt^2}$ para $u=e^{x-2y}$, onde $x=\sin t$ e $y=t^3$.
- 5. Seja z=xy com x=f(t) e y=g(t), onde g e f são funções deriváveis. Determine $\frac{dz}{dt}$.
- 6. Sendo $z = txy^2$ em que $x = t + \ln(y + t^2)$ e $y = e^t$, calcule $\frac{\partial z}{\partial t}$ e $\frac{dz}{dt}$.
- 7. Mostre que, sendo $u = \phi \left(x^2 + y^2 + z^2 \right)$ com $z = \rho \cos \varphi \cos \theta$, $y = \rho \cos \varphi \sin \theta$, $z = \rho \sin \varphi$, se tem $\frac{\partial u}{\partial \varphi} = \frac{\partial u}{\partial \theta} = 0$.
- 8. Seja $F=u\varphi\left(u^x,v^2+u\right)$ com $u=\sin\left(x+y\right)$ e $v=\cos\left(x+y\right)$. Determine $\frac{\partial F}{\partial x}$.
- 9. Seja z = f(x, y), onde $x = 2v + \ln t$ e $y = \frac{1}{t}$. Calcule $\frac{\partial^2 z}{\partial v^2}$, $\frac{\partial^2 z}{\partial v \partial t}$, $\frac{\partial^2 z}{\partial t^2}$.
- 10. Seja $u = x^2 + y^2$, $v = x^2 y^2$ e w = xy
 - (a) Determine a matriz jacobiana (matriz das derivadas) $\frac{\partial(u,v,w)}{\partial(x,y)}$.
 - (b) Considere que $x = t^2$ e $y = 4t^2$. Determine o vector $(\frac{dx}{dt}, \frac{dy}{dt})$.
 - (c) Usando a regra da cadeia, determine simultaneamente $\frac{du}{dt}$, $\frac{dv}{dt}$, $\frac{dw}{dt}$.
- 11. Considere que a temperatura T num certo líquido depende da profundidade z e do tempo t, através da fórmula $T=e^{-t}z$.
 - (a) Determine a taxa de variação da temperatura relativamente ao tempo, num ponto que se move no líquido, de modo que no instante t se encontre ao nível de profundidade z = f(t).
 - (b) Calcule a taxa de variação de temperatura considerada na alínea anterior quando $f(t) = e^t$.
- 12. Considere que a força E de um campo eléctrico no espaço varia com a posição (x,y,z) e com o tempo t através da fórmula E=f(x,y,z). Determine a taxa de variação da força E, relativamente ao tempo, quando essa força é medida ao longo da hélice $x=\sin t,\,y=\cos t,\,z=t.$

4