

MATEMATIKA 9

M9PBD21C0T02

DIDAKTICKÝ TEST

Počet úloh: 16

Maximální bodové hodnocení: 50 bodů

Povolené pomůcky: pouze psací a rýsovací potřeby

1 Základní informace k zadání zkoušky

- Časový limit pro řešení didaktického testu je uveden na záznamovém archu.
- U každé úlohy je uveden maximální počet bodů.
- Za neuvedené řešení úlohy či za nesprávné řešení úlohy jako celku se neudělují záporné body.
- Odpovědi pište do záznamového archu.
- Poznámky si můžete dělat do testového sešitu, nebudou však předmětem hodnocení.
- Didaktický test obsahuje otevřené
 a uzavřené úlohy. Uzavřené úlohy
 obsahují nabídku odpovědí. U každé
 takové úlohy nebo podúlohy je právě
 jedna odpověď správná.

Pravidla správného zápisu do záznamového archu

- Řešení úloh zapisujte do záznamového archu modře nebo černě píšící propisovací tužkou, která píše dostatečně silně a nepřerušovaně.
- Nejednoznačný nebo nečitelný zápis odpovědi bude považován za chybné řešení.
- V konstrukčních úlohách rýsujte tužkou a následně vše obtáhněte propisovací tužkou.

2.1 Pokyny k otevřeným úlohám

Jméno a příjmení

 Řešení úloh pište čitelně do vyznačených bílých polí záznamového archu.

- Pokud budete chtít provést opravu, původní zápis přeškrtněte a nový uveďte do stejného pole.
- Je-li požadován celý postup řešení, uveďte jej do záznamového archu. Pokud uvedete pouze výsledek, nebudou vám přiděleny žádné body.
- Zápisy uvedené mimo vyznačená bílá pole záznamového archu nebudou hodnoceny.

2.2 Pokyny k uzavřeným úlohám

 Odpověď, kterou považujete za správnou, zřetelně zakřížkujte v příslušném bílém poli záznamového archu, a to přesně z rohu do rohu dle obrázku.

	Α	В	C	D	E
14			\boxtimes		

 Pokud budete chtít následně zvolit jinou odpověď, pečlivě zabarvěte původně zakřížkované pole a zvolenou odpověď vyznačte křížkem do nového pole.

 Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné otázky) bude považován za nesprávnou odpověď.

TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

1 bod

1 Vypočtěte:

$$\sqrt{\frac{16}{0,1} + 9} =$$

Řešení:

$$\sqrt{\frac{16}{0,1} + 9} = \sqrt{160 + 9} = \sqrt{169} = \mathbf{13}$$

max. 2 body

2

2.1 Vypočtěte, kolikrát více je polovina z 240 minut než dvě třetiny z 1 hodiny.

Řešení:

240 minut = 4 hodiny

$$\frac{\frac{1}{2} \cdot 4}{\frac{2}{3}} = \frac{2}{\frac{2}{3}} = 2 \cdot \frac{3}{2} = 3$$

případně

Polovina z 240 minut je 120 minut.

Dvě třetiny z 1 hodiny (60 minut) jsou 40 minut.

3krát

2.2 Čtyřúhelník lze rozdělit na dva rovnoramenné trojúhelníky o obsahu $S_1 = 1\,200\,\mathrm{cm}^2$ a $S_2 = 0.2\,\mathrm{m}^2$, nebo na dva shodné trojúhelníky, každý o obsahu S_3 .

Vypočtěte v dm^2 obsah S_3 .

$-\cdot\cdot S_1 S_2 \cdot S_3 \cdot \cdots$

Řešení:

$$S_1 = 1200 \text{ cm}^2 = 12 \text{ dm}^2$$

 $S_2 = 0.2 \text{ m}^2 = 20 \text{ dm}^2$
 $S_3 = \frac{S_1 + S_2}{2}$
 $S_3 = \frac{12 \text{ dm}^2 + 20 \text{ dm}^2}{2} = 16 \text{ dm}^2$

Doporučení: Úlohy 3, 4.3 a 5 řešte přímo v záznamovém archu.

max. 4 body

3 Vypočtěte a výsledek zapište zlomkem v základním tvaru.

3.1

$$\frac{2 - \frac{4}{7}}{3 - \frac{13}{21}} =$$

Řešení:

$$\frac{2 - \frac{4}{7}}{3 - \frac{13}{21}} = \frac{\frac{14 - 4}{7}}{\frac{63 - 13}{21}} = \frac{\frac{10}{7}}{\frac{50}{21}} = \frac{10}{7} \cdot \frac{21}{50} = \frac{3}{5}$$

3.2

$$\left(\frac{3}{8} - \frac{2}{5}\right) \cdot 5 - \frac{3}{4} =$$

Řešení:

$$\left(\frac{3}{8} - \frac{2}{5}\right) \cdot 5 - \frac{3}{4} = \frac{15 - 16}{40} \cdot 5 - \frac{3}{4} = -\frac{1}{40} \cdot 5 - \frac{3}{4} = -\frac{1}{8} - \frac{3}{4} = -\frac{1+6}{8} = -\frac{7}{8}$$

V záznamovém archu uveďte v obou částech úlohy celý postup řešení.

max. 4 body

4

4.1 Zjednodušte (výsledný výraz nesmí obsahovat závorky).

$$(2-x)\cdot 3x - 2x =$$

Řešení:

$$(2-x)\cdot 3x - 2x = 6x - 3x^2 - 2x = 4x - 3x^2$$

4.2 Umocněte a zjednodušte (výsledný výraz nesmí obsahovat závorky).

$$\left(y-\frac{1}{2}\right)^2=$$

Řešení:

$$\left(y - \frac{1}{2}\right)^2 = y^2 - 2 \cdot y \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2 = y^2 - y + \frac{1}{4}$$

4.3 Zjednodušte a **rozložte** podle vzorce (výsledný výraz uveďte ve tvaru součinu).

$$5^2 - (a^2 + 16) =$$

Řešení:

$$5^{2} - (a^{2} + 16) = 25 - a^{2} - 16 = 9 - a^{2} = (3 - a)(3 + a)$$

V záznamovém archu uveďte pouze v úloze 4.3 celý postup řešení.

5 Řešte rovnici:

5.1

$$2x \cdot (3,2-2,3) = 2x - (3,2-2,3)$$

Řešení:

$$2x \cdot (3,2-2,3) = 2x - (3,2-2,3)$$
$$2x \cdot 0,9 = 2x - 0,9$$
$$1,8x = 2x - 0,9$$
$$0,9 = 0,2x$$
$$x = 4,5$$

5.2
$$\frac{y+3}{3} + \frac{3}{8} \cdot (y+1) = \frac{2y-1}{4} + 1$$

Řešení:

$$\frac{y+3}{3} + \frac{3}{8} \cdot (y+1) = \frac{2y-1}{4} + 1 \quad | \cdot 24|$$

$$8 \cdot (y+3) + 9 \cdot (y+1) = 6 \cdot (2y-1) + 24$$

$$8y + 24 + 9y + 9 = 12y - 6 + 24$$

$$17y + 33 = 12y + 18$$

$$5y = -15$$

$$y = -3$$

V záznamovém archu uveďte v obou částech úlohy celý postup řešení (zkoušku nezapisujte).

Přímá trasa z místa A do místa B měří 4 km. Přesně v polovině této trasy je místo S.

Z místa A vystartovali současně 3 kamarádi a za **stejný čas** zdolali na této trase úseky **různých délek**:

Soňa došla pěšky pouze do místa S.

Barbora doběhla až do místa B.

Karel na kole dojel nejprve do místa *B*, pak se vrátil zpět do *A* a nakonec zamířil do místa *S*, kam dorazil ve stejném okamžiku jako Soňa.

Každý z kamarádů se pohyboval stálou rychlostí.

Soňa $A \rightarrow S$

Barbora $A \rightarrow S \rightarrow B$

Karel $A \rightarrow S \rightarrow B \rightarrow S \rightarrow A \rightarrow S$

(CZVV)

max. 3 body

6 Vypočtěte,

6.1 kolikrát větší byla rychlost Karla než rychlost Barbory,

Řešení:

Vzdálenosti překonané za stejný čas:

Soňa 2 km Barbora 4 km Karel 10 km

$$\frac{10}{4} = 2.5$$

Za stejný čas překonal Karel 2,5krát větší vzdálenost než Barbora, a jeho rychlost tak byla **2,5krát** větší než rychlost Barbory.

Jiný způsob řešení:

Vzdálenost mezi body *A*, *S* označíme *d*.

Čas, za který každý z kamarádů urazil svou trasu, označíme t.

	dráha	čas	rychlost
Barbora	2 <i>d</i>	t	$\frac{2d}{t}$
Karel	5 <i>d</i>	t	$\frac{5d}{t}$

$$\frac{\frac{5d}{t}}{\frac{2d}{t}} = \frac{5d}{t} \cdot \frac{t}{2d} = \frac{5}{2} = 2,5$$

6.2 kolik **km** od místa A byl vzdálen Karel v okamžiku, kdy Barbora míjela místo S,

Řešení:

Když Barbora míjela místo S, byla v polovině své trasy. Karel byl také v polovině své trasy, tj. ujel S km (10 : 2 = 5). Vracel se tedy zpět od místa S, od něhož byl vzdálen již 1 km (5 – 4 = 1), a k místu A mu zbývaly ještě **3 km** (4 – 1 = 3).

6.3 kolik **m** od sebe byli vzdáleni Karel s Barborou v okamžiku, kdy Soňa urazila prvních 400 m.

Řešení:

Když Soňa urazila prvních 400 m, byla v pětině své trasy $\left(\frac{400 \text{ m}}{2\,000 \text{ m}} = \frac{1}{5}\right)$.

Karel byl také v pětině své trasy, tj. byl od místa A vzdálen 2 000 m (10 000 : $5 = 2\,000$).

Barbora byla ve stejném okamžiku od místa A vzdálena 800 m (4 000 : 5 = 800).

Karel s Barborou byli tedy od sebe vzdáleni **1200 m** (2 000 - 800 = 1200).

VÝCHOZÍ TEXT A TABULKA K ÚLOZE 7

Každý účastník soutěže mohl získat 0, 1, 2, 3, nebo 4 body.

Výsledky soutěže jsou uvedeny v tabulce. Některá pole tabulky nejsou vyplněna.

			stníků, k			Aritmetický průměr	
	0 bodů	1 bod	2 body	3 body	4 body	počet bodů	počtu bodů
Dívky	7		4	0	5		
Chlapci			5	4	2	36	

(CZVV)

max. 3 body

7

7.1 Dívek, které získaly pouze 1 bod, bylo dvakrát více než dívek bez bodu.

Vypočtěte průměrný bodový zisk dívek.

Řešení:

	Р	očet úča	stníků, k	teří získa	Celkový	Aritmetický průměr	
	0 bodů	1 bod	2 body	3 body	4 body	počet bodů	počtu bodů
Dívky	7	14	4	0	5	42	1,4

Počet dívek, které získaly 1 bod: $2 \cdot 7 = 14$

Celkový počet bodů všech dívek: $7 \cdot 0 + 14 \cdot 1 + 4 \cdot 2 + 0 \cdot 3 + 5 \cdot 4 = 42$

Počet všech dívek: 7 + 14 + 4 + 0 + 5 = 30Průměrný bodový zisk dívek: 42:30 = 1,4 7.2 Chlapců, kteří získali pouze 1 bod, bylo dvakrát více než chlapců bez bodu. Všichni chlapci dohromady získali v soutěži 36 bodů.

Vypočtěte průměrný bodový zisk chlapců.

Řešení:

	Р	očet úča	stníků, k	teří získa	Celkový	Aritmetický průměr	
	0 bodů	1 bod	2 body	3 body	4 body	počet bodů	počtu bodů
Chlapci	x	2 <i>x</i>	5	4	2	36	1,8

Neznámá x představuje počet chlapců, kteří nezískali žádný bod.

Celkový počet bodů všech chlapců:

$$x \cdot 0 + 2x \cdot 1 + 5 \cdot 2 + 4 \cdot 3 + 2 \cdot 4 = 36$$

 $2x + 10 + 12 + 8 = 36$
 $2x = 6$
 $x = 3$

Počet všech chlapců: $3 + 2 \cdot 3 + 5 + 4 + 2 = 20$ Průměrný bodový zisk chlapců: 36:20 = 1,8

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 8

Trojúhelníky AB_1C_1 a AB_2C_2 jsou pravoúhlé.

Společný vrchol A dělí úsečky B_1B_2 a C_1C_2 ve stejném poměru:

$$|AB_1| : |AB_2| = |AC_1| : |AC_2| = 1 : 3.$$

Úsečka C_1C_2 měří 20 cm.

Odvěsna B_1C_1 měří 4 cm.

(CZVV)

max. 3 body

8 Vypočtěte

8.1 v cm délku přepony AC_1 menšího trojúhelníku,

Řešení:

Bod A dělí úsečku C_1C_2 délky 20 cm v poměru 1 : 3.

Přepona AC_1 menšího trojúhelníku tak představuje jeden ze čtyř dílů, na které rozdělíme úsečku C_1C_2 .

Délka přepony AC_1 : 20 cm : 4 = **5 cm**

8.2 v cm obvod menšího trojúhelníku (AB_1C_1),

Řešení:

V pravoúhlém trojúhelníku AB_1C_1 má odvěsna B_1C_1 délku 4 cm a přepona AC_1 délku 5 cm (viz řešení úlohy 8.1).

Délka odvěsny
$$AB_1$$
: $\sqrt{5^2 - 4^2}$ cm = $\sqrt{25 - 16}$ cm = $\sqrt{9}$ cm = 3 cm
Obvod trojúhelníku AB_1C_1 : 3 cm + 4 cm + 5 cm = **12 cm**

8.3 v cm² obsah většího trojúhelníku (AB_2C_2).

Řešení:

Úsečka AB_2 je třikrát delší než úsečka AB_1 , měří tedy 9 cm (3 · 3 = 9). Úsečka AC_2 je třikrát delší než úsečka AC_1 , měří tedy 15 cm (3 · 5 = 15).

Délka odvěsny
$$B_2C_2$$
 většího trojúhelníku: $\sqrt{15^2 - 9^2}$ cm = $\sqrt{144}$ cm = 12 cm
Obsah trojúhelníku AB_2C_2 : $\frac{9 \text{ cm} \cdot 12 \text{ cm}}{2} = 54 \text{ cm}^2$

případně

Můžeme využít podobnosti trojúhelníků AB_2C_2 a AB_1C_1 .

Délka odvěsny B_2C_2 většího trojúhelníku je třikrát větší než délka odvěsny B_1C_1 menšího trojúhelníku: $3 \cdot 4$ cm = 12 cm

Obsah trojúhelníku
$$AB_2C_2$$
: $\frac{9 \text{ cm} \cdot 12 \text{ cm}}{2} = 54 \text{ cm}^2$

případně

Obsah trojúhelníku
$$AB_1C_1$$
: $\frac{3 \text{ cm} \cdot 4 \text{ cm}}{2} = 6 \text{ cm}^2$

Obsah většího trojúhelníku AB_2C_2 je 9krát větší (3² = 9) než obsah trojúhelníku AB_1C_1 : $9 \cdot 6 \text{ cm}^2 = 54 \text{ cm}^2$

Doporučení pro úlohy 9 a 10: Rýsujte přímo do záznamového archu.

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 9

(CZVV)

max. 3 body

- 9 Bod *A* je vrchol **rovnoramenného pravoúhlého** trojúhelníku *ABC*. Vrchol *B* tohoto trojúhelníku leží na polopřímce *AX*, vrchol *C* na přímce *c*. Pravý úhel je buď při vrcholu *A*, nebo při vrcholu *B*.
 - **Sestrojte** trojúhelník *ABC* s pravým úhlem při vrcholu
- 9.1 *A*,
- 9.2 *B* a vrcholy *B*, *C* označte písmeny.

V záznamovém archu obtáhněte celou konstrukci propisovací tužkou (čáry i písmena).

Řešení:

(CZVV)

max. 3 body

10 Bod *A* je vrchol rovnoběžníku *ABCD*.

Bod M leží uvnitř strany AB tohoto rovnoběžníku, bod N uvnitř strany AD a výška na stranu AB měří 5 cm.

Vrchol D má od vrcholů A i B stejnou vzdálenost, tedy |BD| = |AD|.

Sestrojte vrcholy *B*, *C*, *D* rovnoběžníku *ABCD*, **označte** je písmeny a rovnoběžník **narýsujte**.

V záznamovém archu obtáhněte celou konstrukci propisovací tužkou (čáry i písmena).

Řešení:

VÝCHOZÍ TEXT K ÚLOZE 11

V knihovně je 480 knih psaných česky, zbývajících 40 % knih je cizojazyčných.

Z cizojazyčných knih je jedna osmina knih psána německy a ostatní knihy anglicky.

(CZVV)

max. 4 body

11 Rozhodněte o každém z následujících tvrzení (11.1–11.3), zda je pravdivé (A), či nikoli (N).

11.1 V knihovně je **méně než** 300 cizojazyčných knih.

11.2 V knihovně tvoří německy psané knihy 5 % všech knih.

X

11.3 V knihovně je 280 knih psaných anglicky.

X

Řešení:

11.1

Knihy psané česky 60 % všech knih ... 480 knih 10 % ... 80 knih
$$(480:6=80)$$
 Cizojazyčné knihy 40 % ... 320 knih $(80\cdot4=320)$

Tvrzení 11.1 je **nepravdivé**.

11.2

$$\frac{1}{8} \cdot 40 \% = 5 \%$$

Tvrzení 11.2 je **pravdivé**.

11.3

Knihy psané německy ...
$$\frac{1}{8}$$
 cizojazyčných knih
Knihy psané anglicky ... $\frac{7}{8}$ cizojazyčných knih, tj. 280 knih $\left(\frac{7}{8} \cdot 320 = 280\right)$

Tvrzení 11.3 je pravdivé.

V rovině leží rovnoramenný lichoběžník *ABCD* se základnou *AB*, rovnostranný trojúhelník *BEC* a polopřímky *AB*, *CD*.

(CZVV)

2 body

12 Jaká je velikost úhlu φ ?

Velikosti úhlů neměřte, ale vypočtěte.

- A) menší než 45°
- B) 45°
- C) 50°
- (D)) 55°
 - E) větší než 55°

Řešení:

Přímky *AB* a *CD* jsou rovnoběžné, proto oba červeně vyznačené střídavé úhly mají stejnou velikost 65°.

Lichoběžník *ABCD* je rovnoramenný, proto oba jeho vnitřní úhly při základně *AB* mají stejnou velikost 65°.

Trojúhelník BEC je rovnostranný a každý jeho vnitřní úhel má velikost 60°.

Úhly o velikostech 65°, 60° a φ tvoří přímý úhel: $\varphi = 180^{\circ} - (65^{\circ} + 60^{\circ}) = 55^{\circ}$

(CZVV)

2 body

13 Kolik m² uválcoval přední rotační válec?

Výsledek je zaokrouhlen na celé m^2 . Za π lze dosadit 3,14.

- A) méně než 250 m²
- B) 251 m²
- C) 314 m^2
- D) 331 m²
- E) více než 332 m²

Řešení:

Průměr válce označíme d, poloměr r a výšku v.

Obsah plochy uválcované při jedné otáčce předního válce je roven obsahu pláště válce, označíme jej S_1 .

$$d$$
 = 0,5 m, v = 0,8 m
 S_1 = $2\pi r \cdot v$, $r = \frac{d}{2}$
 S_1 = πdv

Obsah plochy uválcované při 200 otáčkách předního válce:

$$200S_1 = 200\pi dv$$

 $200S_1 \doteq 200 \cdot 3,14 \cdot 0,5 \text{ m} \cdot 0,8 \text{ m} = 251,2 \text{ m}^2 \doteq \textbf{251 m}^2$

VÝCHOZÍ TEXT K ÚLOZE 14

Ve třídě 9. A je počet dívek o 4 větší než počet chlapců.

Na exkurzi se z 9. A přihlásila čtvrtina dívek a polovina chlapců.

Mezi žáky 9. A, kteří se přihlásili na exkurzi, bylo dívek o 2 méně než chlapců.

(CZVV)

2 body

14 Neznámou d je označen počet dívek 9. A.

Ze které rovnice lze v souladu se zadáním určit počet dívek třídy 9. A?

A)
$$\frac{d}{2} - 2 = \frac{d+4}{4}$$

B)
$$\frac{d}{2} + 2 = \frac{d-4}{4}$$

C)
$$\frac{d}{4} - 2 = \frac{d+4}{2}$$

(D)
$$\frac{d}{4} + 2 = \frac{d-4}{2}$$

E)
$$\frac{d}{4} + 2 = \frac{d+4}{2}$$

Řešení:

Ve třídě 9. A platí:

Počet všech dívek: d

Počet všech chlapců: d-4

Počet dívek, které se přihlásily na exkurzi: $\frac{d}{4}$

Počet chlapců, kteří se přihlásili na exkurzi: $\frac{d-4}{2}$

Přihlášených dívek bylo o 2 méně než přihlášených chlapců:

$$\frac{d}{4} = \frac{d-4}{2} - 2$$

$$\frac{d}{\mathbf{4}}+\mathbf{2}=\frac{d-\mathbf{4}}{\mathbf{2}}$$

Mezi třemi sloupy A, B, C jsou uchycena lana.

Délka lana uchyceného mezi dvěma sloupy je vždy o 20 % větší než vzdálenost těchto sloupů.

Vzdálenost sloupů A, B je 20 m.

Délka lana mezi sloupy A, C je 36 m.

Vzdálenost sloupů B, C je o 20 % menší než vzdálenost sloupů A, B.

(CZVV)

max. 6 bodů

15 Přiřaďte ke každé otázce (15.1–15.3) správnou odpověď (A-F).

15.1 Jaká je délka lana mezi sloupy A, B? <u>C</u>

Řešení:

Vzdálenost sloupů A, B 100 % ... 20 m

Délka lana mezi sloupy A, B 120 % ... **24 m** $(1,2 \cdot 20 = 24)$

15.2 Jaká je vzdálenost sloupů A, C? <u>E</u>

Řešení:

Délka lana mezi sloupy A, C 120 % ... 36 m

Vzdálenost sloupů A, C 100 % ... **30 m** (36 : 1,2 = 30)

15.3 Jaká je délka lana mezi sloupy B, C? A

Řešení:

Vzdálenost sloupů A, B 100 % ... 20 m

Vzdálenost sloupů B, C 80 % ... 16 m $(0.8 \cdot 20 = 16)$

Vzdálenost sloupů B, C 100 % ... 16 m

Délka lana mezi sloupy B, C $120 \% \dots 19,2 m (1,2 \cdot 16 = 19,2)$

- A) 19,2 m
- B) 20 m
- C) 24 m
- D) 28,8 m
- E) 30 m
- F) jiná

První čtverec má obvod 60 cm.

Každý další čtverec je sestaven z několika shodných obdélníků. Každý z těchto **obdélníků** má **obvod 60 cm**.

Druhý čtverec je sestaven ze dvou shodných obdélníků, třetí ze tří shodných (užších) obdélníků, čtvrtý ze čtyř shodných (ještě užších) obdélníků atd.

20 cm

(CZVV)

max. 4 body

16

16.1 Vypočtěte v cm **délku strany** třetího čtverce.

Řešení:

Obdélníky dělí stranu 3. čtverce na 3 shodné díly délky d. Jeden obdélník má rozměry d a 3d a obvod 60 cm:

$$d + 3d + d + 3d = 60 \text{ cm}$$

 $8d = 60 \text{ cm}$

Délka kratší strany obdélníku: d = 60 cm : 8 = 7.5 cm

Délka strany čtverce je stejná jako větší rozměr obdélníku:

$$3d = 3 \cdot 7,5 \text{ cm} = 22,5 \text{ cm}$$

16.2 Vypočtěte v cm **obvod** devátého čtverce.

Řešení:

Devátý čtverec je sestaven z 9 obdélníků.

Obdélníky tedy dělí stranu čtverce na 9 shodných dílů délky d.

Jeden obdélník má rozměry d a 9d a obvod 60 cm:

$$d + 9d + d + 9d = 60 \text{ cm}$$

 $20d = 60 \text{ cm}$

Délka kratší strany obdélníku: d = 60 cm : 20 = 3 cm

Délka strany čtverce je stejná jako větší rozměr obdélníku:

$$9d = 9 \cdot 3 \text{ cm} = 27 \text{ cm}$$

Obvod 9. čtverce: $4 \cdot 27 \text{ cm} = 108 \text{ cm}$

16.3 Určete, kolikátý čtverec má **stranu** délky 28 cm.

Řešení:

Obdélníky dělí stranu hledaného čtverce na shodné díly délky d.

Jeden obdélník má obvod 60 cm, jeho kratší strana má délku d a delší strana měří 28 cm, stejně jako strana čtverce.

$$d + 28 \text{ cm} + d + 28 \text{ cm} = 60 \text{ cm}$$

 $2d = 4 \text{ cm}$
 $d = 2 \text{ cm}$

Delší strana obdélníku je 14krát delší než kratší strana (28 cm : 2 cm = 14), hledaný čtverec je tedy sestaven ze 14 obdélníků.

Ze 14 obdélníků je sestaven **14. čtverec**.