CARDIOVASCULAR DISEASE

Janith Perera

PURPOSE OF THE PROJECT

- Predict a posible Cardiovascular (Heart) Disease from risk factors which can be caused heart failures
- Compare the prediction accuracy of the target variable which is Heart Disease with using following classification models
 - 1. Logistics Regression
 - 2. Decision Tree
 - 3. Random Forest
 - 4. Support Vector Machine
 - 5. Stochastic Gradient Descent
 - 6. XGBoost
- Target variable of the datast is binary variable
- 11 input variables such as Age, Sex, Chest pain type, Cholesterol, Resting ECG and etc.

SIGNIFICANCE OF THE PROJECT

- Cardiovascular diseases are the number 1 reason of death worldwide
- 4 out of 5 cardiovascular disease deaths are due to heart attacks and strokes
- It is beneficial if we can predict the heart disease accurately in order to take precautions

RESEARCH QUESTION

Are Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, Stochastic Gradient Descent, XGBoost algorithms good models for predicting the possible heart disease based on clinical risk factors like chest pain type, cholesterol level, resting ECG, fasting blood sugar, maximum heart rate and etc.

DATASET

Target variable:

Binary value – HeartDisease [1:HeartDisease, 0:Normal]

Input varables:

- 11 variables
- Categorical values Sex, ChestPainType, RestingECG, ExerciseAngina,
 ST_Slope
- Numarical values Age, RestingBP, Cholesterol, FastingBS, MaxHR, Oldpeak

Zero null-values 918 intences Downloaded from Kaggle.com

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

DATA SPLITTING

Balanced target variable

- Used get_dummies() method to one-hot-encode the categorical variables.
- Used StandardScaler() method to scale the numerical variables
- Used train_test_split() method to split the dataset into 70% of training and
 - 30% testing sets

- Initialy used six models clasification models
 - Logistic Regression, Decision Tree Classifier, Random Forest Classifier,
 Support Vector Machine Classifier, Stochastic Gradient Desent Classifier and
 XG Boost Classifier

```
1 model table = PrettyTable()
   model table.field names = ['Model', 'Accuracy Score', 'Precision Score', 'Recall Score', 'F1 Score', 'ROC-AUC Score', 'Log-loss Score']
 4 models = [LogisticRegression(random state=42),
             DecisionTreeClassifier(criterion='gini', random state=42),
             RandomForestClassifier(n estimators=100, max features=None, random state=42),
             SVC(kernel='rbf', random state=42),
             SGDClassifier(max iter=1000, random state=42),
             GradientBoostingClassifier(n estimators=100, max features=None, random state=42)]
11 for model in models:
        model.fit(X train, y train)
        y pred = model.predict(X test)
        acc score = accuracy score(y test, y pred)
        precision = precision score(y test, y pred)
       recall = recall score(y test, y pred)
        f1 = f1 score(y test, y pred)
       roc auc = roc auc score(y test, y pred)
        lg loss = log loss(y test, y pred)
       model table.add row([type(model). name , format(acc score, '.2f'), format(precision, '.2f'), format(recall, '.2f'), format(f1, '.2f'), format(roc auc, '.2f'), format(lg los
21 print('Comparison of accuracy scores for the test set in different models')
22 print(model table)
```


Comparison of accuracy scores for the test set in different models						
Model		Precision Score				Log-loss Score
+ LogisticRegression	+ 0.88	+ 0.92	0.88	0.90	0.89	+ 4.00
DecisionTreeClassifier	0.78	0.88	0.73	0.79	0.79	7.76
RandomForestClassifier	0.85	0.90	0.84	0.87	0.85	5.26
svc	0.88	0.90	0.91	0.90	0.88	4.00
SGDClassifier	0.75	0.91	0.65	0.76	0.78	8.51
GradientBoostingClassifier	0.88	0.93	0.86	0.89	0.88	4.25
+	+	·				+

• Selected best three models with highest accuracy scores and remodeled with cross validation to select optimal models

Best three models

Logistic Regression, Support Vector Machine Classifier and XG Boost Classifier

MODEL OPTIMIZATION

Selected best model out of them using cross validation method

Comparison of cross validation	on scores for the test set in different models
+	++
Model	CV Score
+	++
LogisticRegression	0.85
svc	0.87
GradientBoostingClassifier	0.86
+	++

MODEL OPTIMIZATION AND SELECTION

- Selected the Support Vector Machine Classifier as the best performer among the models
- Tuned with the hyperparameters to select the model

 Hyperparameter tuned model has the overall accuracy score of 0.90 on training set and 0.88 on testing set

Model Results

Classification Reports

Classificatio	on report on precision	U	set f1-score	support
0	0.92	0.86	0.89	298
1	0.89	0.93	0.91	344
accuracy			0.90	642
macro avg	0.90	0.90	0.90	642
weighted avg	0.90	0.90	0.90	642

Classification report on testing set						
	precision	recall	f1-score	support		
0	0.86	0.85	0.86	112		
1	0.90	0.91	0.90	164		
accuracy			0.88	276		
macro avg	0.88	0.88	0.88	276		
weighted avg	0.88	0.88	0.88	276		

Confusion Matrix on Test set

- For this dataset Support Vector Classification model worked best
- * With the hyperparameter tuning model prediced the target variable with 88% accuracy
- Cholesterol, FastingBS, Oldpeak, ST_Slop_Flat, ST_Slop_UP are the most important features of predicting heart disease

THANK YOU

1333