GE2262 Business Statistics

Topic 7 Inference for the Proportion

Reference

Levine, D.M., Krehbiel, T.C. and Berenson, M.L., *Business Statistics: A First Course*, Pearson Education Ltd, Chapter 7 & 8 & 9

Outline

- Sampling Distribution of the Sample Proportion
- Confidence Interval Estimate for the Proportion
- Sample Size Determination for the Proportion
- Hypothesis Testing for the Proportion

Will Britain Leave EU?

- Express (UK), 22 June 2016: Analysts at TNS surveyed 2,320 adults across the UK online between June 16-22. The baseline results reveal a 2% lead for the EU leave campaign, with support for Brexit at 43% compared to 41% for Remain
- We do not know the true population of British intending to leave EU until the result of the referendum is announced. A common way to gain insights on election or a referendum campaign is to held a survey and based inference on the proportion of success in a sample taken from the relevant population
- In practice, most of these surveys are inaccurate because
 - The involved sample is biased. It does not truly represent the population
 - Some voters had not honestly revealed their voting intention, or they changed their mind after the survey

Sample Proportion

- Let Y be the number of observations belong to the one of the two levels (e.g. success and failure, yes and no, etc.) of a categorical variable in a random sample of n observations
- The proportion of observations belong to one of the two levels (e.g. success, yes, etc.) in the sample

$$p = \frac{Y}{n}$$

is called the sample proportion

Sample Proportion

Cont'd

We saw in Topic 3 that Y, obeys a binomial distribution with

$$P(Y = y) = \frac{n!}{y! (n - y)!} \pi^{y} (1 - \pi)^{n - y}$$

where

P(Y = y) = probability that Y = y events of interest, where y = 0, 1, 2, ..., n

 π = probability of an event of interest, or the population proportion of observations belong to the level of interest

- A small enterprise has 4 staff, N = 4 (3 males and 1 female)
- Variable of interest: Gender
- Let Y = no. of male staff, $\pi = \text{proportion of male staff} = 0.75$
- Random samples of size 2 with replacement are taken (n=2)
- As Y obeys a binomial distribution
 - $Price Y \sim B(2, 0.75)$

$$\mu = n\pi = 2 \times 0.75 = 1.5$$

$$\sigma = \sqrt{n\pi(1-\pi)}$$

$$= \sqrt{2 \times 0.75 \times 0.25} = \sqrt{0.375}$$

Cont'd

Sample proportion of male staff, $p = \frac{Y}{n}$ 16 possible sample proportions

Respondent	A (M)	B (M)	C (F)	D (M)
A (M)	2/2 = 1	2/2 = 1	1/2 = 0.5	2/2 = 1
B (M)	2/2 = 1	2/2 = 1	1/2 = 0.5	2/2 = 1
C (F)	1/2 = 0.5	1/2 = 0.5	0/2 = 0	1/2 = 0.5
D (M)	2/2 = 1	2/2 = 1	1/2 = 0.5	2/2 = 1

Probability distribution of p

p	0	0.5	1
P(p)	1/16	6/16	9/16

Cont'd

Summary measures for the sampling distribution of sample proportion

$$\mu_{p} = \sum p_{i} P(p_{i})$$

$$= 0 \left(\frac{1}{16}\right) + 0.5 \left(\frac{6}{16}\right) + 1 \left(\frac{9}{16}\right) = 0.75 = \pi$$

$$\sigma_{p} = \sqrt{\sum (p_{i} - \mu_{p})^{2} P(p_{i})}$$

$$= \sqrt{(0 - 0.75)^{2} \left(\frac{1}{16}\right) + (0.5 - 0.75)^{2} \left(\frac{6}{16}\right) + (1 - 0.75)^{2} \left(\frac{9}{16}\right)}$$

$$= 0.3062$$

$$= \sqrt{\frac{\pi(1-\pi)}{n}} = \frac{\sqrt{n\pi(1-\pi)}}{n}$$

• We say the sample proportion p is an unbiased estimator of the population proportion π

Cont'd

The exact form of the sampling distribution of p is rather complicated. Instead of using the exact distribution of p, it is common to approximate the sampling distribution by a normal distribution

Cont'd

- Suppose you want to estimate the proportion (π) of CityU students who skipped 2 or more classes per week in last semester
- \blacksquare A sample of size n is collected
- You register your data points as categorical observations: Yes,
 skipped 2 or more classes; or No, skipped 1 or less class
- For subsequent data manipulation, you may code those who skipped
 2 or more classes as a 1, and those who skipped
 1 or less class as a 0
- Using the numeric coded values, and denotes X_i as the numeric coded value of the ith observed student in the sample, we see that $Y = \sum X_i$ = observed number of students who skipped 2 or more classes
 - $p = \frac{Y}{n} = \frac{\sum X_i}{n}$ = sample proportion of students who skipped 2 or more classes
- $\frac{\sum X_i}{n}$ is like the formula for the sample mean, so, a sample proportion is a special case of a sample mean

Cont'd

Since the sampling distribution of $p = \frac{Y}{n} = \frac{\sum X_i}{n}$ has

mean π and standard deviation $\sqrt{\frac{\pi(1-\pi)}{n}}$, then by Central

Limit Theorem, sampling distribution of p follows a normal distribution approximately with mean π and

standard deviation
$$\sqrt{\frac{\pi(1-\pi)}{n}}$$
 for large n

Cont'd

 Hence, for large sample size, the distribution of the random variable

$$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

is approximately standard normal

- This statistic can be used to obtain confidence intervals, and hypothesis testing for the population proportion
- In practice, "n is large enough" often means that $n\pi \geq 5$ and $n(1-\pi) \geq 5$, that is π cannot be too small or too large

Cont'd

- Normal approximation can be used if
 - $n \ge 30$
 - \square $n\pi \geq 5$
 - $n(1-\pi) \geq 5$
 - \rightarrow Sampling distribution of sample proportion $p \sim N(\mu_p, \sigma_p^2)$
- 2 parameters in sampling distribution of sample proportion
 - \square Mean, $\mu_p=\pi$
 - \Box Variance, $\sigma_p^2 = \frac{\pi(1-\pi)}{n}$

Sampling Distribution of p

 π = population proportion

• Converting the sample proportion p to Z value

$$Z = \frac{p - \mu_p}{\sigma_p} = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

Sampling Distribution of *p*

Standardized
Normal Distribution

- Suppose that the manager of the local bank determines that 40% of all depositors have multiple accounts at the bank
- If you select a random sample of 200 depositors, what is the probability that the sample proportion of depositors with multiple accounts is less than 0.3?

- Given $\underline{\pi}$ = population proportion of depositors with multiple accounts = $\underline{0.4}$
- As n = 200 > 30, $n\pi = 80 > 5$, $n(1 \pi) = 120 > 5$ → The sampling distribution of p follows Normal distribution approximately, i.e. $p \sim N(\mu_p, \sigma_p^2)$

$$P(p < 0.3)$$

$$= P(Z < \frac{0.3 - 0.4}{\sqrt{\frac{0.4(1 - 0.4)}{200}}})$$

Cont'd

- Given $\pi =$ population proportion of depositors with multiple accounts = 0.4
- As n=200>30, $n\pi=80>5$, $n(1-\pi)=120>5$ → The sampling distribution of p follows Normal distribution approximately, i.e. $p\sim N(\mu_p,\sigma_p^2)$

$$P(p < 0.3)$$
= $P(Z < \frac{0.3 - 0.4}{\sqrt{\frac{0.4(1 - 0.4)}{200}}}) = P(Z < -2.89)$
= 0.0019

16

Confidence Interval Estimate for the Proportion – Example

Cont'd

For these data,
$$p = \frac{95}{200} = 0.475$$

As
$$n = 200 > 30$$
, $np = 95 > 5$, $n(1-p) = 105 > 5$

 \rightarrow The sampling distribution of p follows Normal distribution approximately

95% confidence interval (C.I.) for π

$$p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.475 \pm 1.96 \sqrt{\frac{0.475(1-0.475)}{200}}$$
$$= [0.406, 0.544]$$

We are 95% confident that the population proportion of depositors having RMB deposit account is between 0.406 and 0.544

20

Cont'd

Determining Sample Size for the Proportion – Example

$$\pi = \frac{22}{10000} = 0.0022$$

$$n = \frac{\left(Z_{\alpha/2}\right)^2 \pi (1 - \pi)}{E^2} = \frac{(2.575)^2 0.0022(1 - 0.0022)}{0.001^2}$$
$$= 14555.28 \approx 14556$$

Round Up

Test of Hypothesis for the Proportion

Exercise

$$H_0$$
: $\pi = 0.80$
 H_1 : $\pi \neq 0.80$

$$n = 45 > 30$$

$$np = 39 > 5$$

$$n(1-p)=6>5$$

 $p \sim N$ approximately

At
$$\alpha = 0.05$$

Critical Value =
$$\pm 1.96$$

Reject H_0 if Z < -1.96 or

$Z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}} = \frac{\frac{39}{45} - 0.80}{\sqrt{\frac{0.80(1 - 0.80)}{45}}}$

At $\alpha=0.05$, do not reject H_0

There is insufficient evidence that the true proportion of customers to be served within 5 minutes upon their arrival is not 80%

29

Confidence Interval Estimate for the Proportion

Since the population proportion, π , is unknown, the standard deviation of p can be estimated by sample standard deviation S_p

$$S_p = \sqrt{\frac{p(1-p)}{n}}$$

- Hence, $Z = \frac{p-\pi}{S_p} \sim N(0,1)$ approximately, for large n
- As the population proportion π is unknown, we may verify the "large enough" condition by np and n(1-p)

Confidence Interval Estimate for the Proportion Cont'd

- Conditions
 - □ The no. of successes, *Y*, follows Binomial distribution
 - Normal approximation can be used
 - $n \ge 30$
 - $np \geq 5$
 - $n(1-p) \ge 5$
- $100(1-\alpha)\%$ Confidence interval estimate

$$p \pm Z_{\alpha/2}$$
 Standard Error, σ_p Sampling Error, E

Confidence Interval Estimate for the Proportion – Example

- Among the 200 depositors you randomly selected, 95 of them have RMB deposit account at the bank
- Set up a 95% confidence interval estimate for the population proportion of depositors having RMB deposit account at the bank

Confidence Interval Estimate for the Proportion – Example

For these data,
$$p = \frac{95}{200} = 0.475$$

As
$$n = 200 > 30$$
, $np = 95 > 5$, $n(1 - p) = 105 > 5$

95% confidence interval (C.I.) for π

$$p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

We are 95% confident that the population proportion of depositors having RMB deposit account is between 0.406

and 0.544

Cont'd

- Given $\pi =$ population proportion of depositors with multiple accounts = 0.4
- As n=200>30, $n\pi=80>5$, $n(1-\pi)=120>5$ → The sampling distribution of p follows Normal distribution approximately, i.e. $p\sim N(\mu_p,\sigma_p^2)$

$$P(p < 0.3)$$
= $P(Z < \frac{0.3 - 0.4}{\sqrt{\frac{0.4(1 - 0.4)}{200}}}) = P(Z < -2.89)$
= 0.0019

16

Confidence Interval Estimate for the Proportion – Example

Cont'd

For these data,
$$p = \frac{95}{200} = 0.475$$

As
$$n = 200 > 30$$
, $np = 95 > 5$, $n(1 - p) = 105 > 5$

 \rightarrow The sampling distribution of p follows Normal distribution approximately

95% confidence interval (C.I.) for π

$$p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.475 \pm 1.96 \sqrt{\frac{0.475(1-0.475)}{200}}$$
$$= [0.406, 0.544]$$

We are 95% confident that the population proportion of depositors having RMB deposit account is between 0.406 and 0.544

20

Cont'd

Determining Sample Size for the Proportion – Example

Cont'd

$$\pi = \frac{22}{10000} = 0.0022$$

$$n = \frac{\left(Z_{\alpha/2}\right)^2 \pi (1 - \pi)}{E^2} = \frac{(2.575)^2 0.0022(1 - 0.0022)}{0.001^2}$$
$$= 14555.28 \approx 14556$$

Round Up

Test of Hypothesis for the Proportion

Exercise

 H_0 : $\pi = 0.80$ H_1 : $\pi \neq 0.80$

n = 45 > 30

np = 39 > 5

n(1-p) = 6 > 5

 $p \sim N$ approximately

At $\alpha = 0.05$

Critical Value = ± 1.96

Reject H_0 if Z < -1.96 or

At lpha=0.05, do not reject H_0

There is insufficient evidence that the true proportion of customers to be served within 5 minutes upon their arrival is not 80%

Rejection region, $\alpha/2 = 0.025$

2

Confidence Interval Estimate for the Proportion Cont'd

- Special considerations
 - If $p-Z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}$ < 0, we have to replace the lower bound of the confidence interval by 0
 - □ If $p + Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} > 1$, we have to replace the upper bound of the confidence interval by 1
- But why?

Factors Affecting Interval Width (Precision)

- Level of confidence, (1α)
 - \square $(1-\alpha) \uparrow \rightarrow |Z$ -value $|\uparrow \rightarrow width of interval <math>\uparrow$
- Sample size, n
- Sample proportion, p
 - If p increases from 0 to 0.5, then p(1-p) increases from 0 to 0.25, leading to a wider interval
 - If p further increases from 0.5 to 1, then p(1-p) drops from 0.25 to 0, leading to a narrower interval

Intervals extend from

$$p - Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$
 to $p + Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$

Determining Sample Size for the Proportion

Sampling error (or margin of error)

$$E = Z_{\alpha/2} \sqrt{\frac{\pi(1-\pi)}{n}}$$

Solving the equation for n gives

$$n = \frac{(Z_{\alpha/2})^2 \pi (1-\pi)}{E^2}$$

ullet If the computed n is not an integer, round it up to nearest integer

Determining Sample Size for the Proportion – Example

- According to the *Developments in the Banking Sectors* published by Hong Kong Monetary Authority in June 2014, at the end of the first quarter of 2014, 22 credit card lending were found in each 10,000 transactions
- Pou want to have 99% confidence of estimating the proportion of credit card lending at your bank to within $\pm~0.001$
- What is the minimum sample size being needed?

Determining Sample Size for the Proportion – Example

Cont'd

$$\pi = \frac{22}{10000} = 0.0022$$

$$n = \frac{\left(Z_{\alpha/2}^{2.575}\right)^2 \pi (1 - \pi)}{E_{0.001}^2} = 1455.28 = 14556$$

- Given π = population proportion of depositors with multiple accounts = 0.4
- As n = 200 > 30, $n\pi = 80 > 5$, $n(1 \pi) = 120 > 5$ \rightarrow The sampling distribution of p follows Normal distribution approximately, i.e. $p \sim N(\mu_p, \sigma_p^2)$

$$P(p < 0.3)$$
= $P(Z < \frac{0.3 - 0.4}{\sqrt{\frac{0.4(1 - 0.4)}{200}}}) = P(Z < -2.89)$
= 0.0019

Confidence Interval Estimate for the Proportion – Example

Cont'd

For these data,
$$p = \frac{95}{200} = 0.475$$

As
$$n = 200 > 30$$
, $np = 95 > 5$, $n(1-p) = 105 > 5$

 \rightarrow The sampling distribution of p follows Normal distribution approximately

95% confidence interval (C.I.) for π

$$p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.475 \pm 1.96 \sqrt{\frac{0.475(1-0.475)}{200}}$$
$$= [0.406, 0.544]$$

We are 95% confident that the population proportion of depositors having RMB deposit account is between 0.406 and 0.544

Determining Sample Size for the Proportion – Example

Cont'd

$$\pi = \frac{22}{10000} = 0.0022$$

$$n = \frac{\left(Z_{\alpha/2}\right)^2 \pi (1 - \pi)}{E^2} = \frac{(2.575)^2 0.0022(1 - 0.0022)}{0.001^2}$$
$$= 14555.28 \approx 14556$$

Round Up

Test of Hypothesis for the Proportion

Exercise

 H_0 : $\pi = 0.80$

 $H_1: \pi \neq 0.80$

n = 45 > 30

np = 39 > 5

n(1-p) = 6 > 5

 $p \sim N$ approximately

At $\alpha = 0.05$

Critical Value = +1.96

Reject H_0 if Z < -1.96 or

Cont'd

 $Z = \frac{p - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)}} = \frac{\frac{39}{45} - 0.80}{\sqrt{0.80(1 - 0.80)}}$

= 1.118

At $\alpha = 0.05$, do not reject H_0

There is insufficient evidence that the true proportion of customers to be served within 5 minutes upon their arrival is not 80%

Z > +1.96

Determining Sample Size for the Proportion

Cont'd

- What should we do if π is unknown?
- 1. Use p (sample proportion) from some similar studies
 - lacksquare As p provides the best estimate of π
- 2. If p also unknown, use 0.5
 - □ When π = 0.5, $\pi(1 \pi)$ becomes the largest, i.e. 0.25
 - floor Hence you can determine a sample size fulfilling the requirement of any other value for the true but unknown π

- Conditions
 - \Box The no. of successes, Y, follows Binomial distribution
 - Normal approximation can be used
 - $n \ge 30$
 - $np \geq 5$
 - $n(1-p) \ge 5$

Test statistic,
$$Z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

Exercise

- Your bank had the business objective of serving 80% of the customers within 5 minutes upon the time the customer enters the bank
- Of the 45 randomly selected customers, 39 are served
 within 5 minutes upon their arrival
- Test the claim of the bank at 5% level of significance

- Exercise Cont'd

Cont'd

- Given $\pi =$ population proportion of depositors with multiple accounts = 0.4
- As n = 200 > 30, $n\pi = 80 > 5$, $n(1 \pi) = 120 > 5$ → The sampling distribution of p follows Normal distribution approximately, i.e. $p \sim N(\mu_p, \sigma_p^2)$

$$P(p < 0.3)$$
= $P(Z < \frac{0.3 - 0.4}{\sqrt{\frac{0.4(1 - 0.4)}{200}}}) = P(Z < -2.89)$
= 0.0019

16

Confidence Interval Estimate for the Proportion – Example

Cont'd

For these data,
$$p = \frac{95}{200} = 0.475$$

As
$$n = 200 > 30$$
, $np = 95 > 5$, $n(1-p) = 105 > 5$

 \rightarrow The sampling distribution of p follows Normal distribution approximately

95% confidence interval (C.I.) for π

$$p \pm Z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} = 0.475 \pm 1.96 \sqrt{\frac{0.475(1-0.475)}{200}}$$
$$= [0.406, 0.544]$$

We are 95% confident that the population proportion of depositors having RMB deposit account is between 0.406 and 0.544

20

Cont'd

Determining Sample Size for the Proportion – Example

Cont'd

$$\pi = \frac{22}{10000} = 0.0022$$

$$n = \frac{\left(Z_{\alpha/2}\right)^2 \pi (1 - \pi)}{E^2} = \frac{(2.575)^2 0.0022(1 - 0.0022)}{0.001^2}$$
$$= 14555.28 \approx 14556$$

Round Up

Test of Hypothesis for the Proportion

Exercise

 $H_0: \pi = 0.80$

$$H_1: \pi \neq 0.80$$

$$n = 45 > 30$$

$$np = 39 > 5$$

$$n(1-p) = 6 > 5$$

 $p \sim N$ approximately

At
$$\alpha = 0.05$$

Critical Value = ± 1.96

Reject H_0 if Z < -1.96 or

At $\alpha = 0.05$, do not reject H_0

There is insufficient evidence that the true proportion of customers to be served within 5 minutes upon their arrival is not 80%

region, 2 = 0.025

29

- Exercise Cont'd

Cont'd

$$H_0: \pi = 0.80$$

 $H_1: \pi \neq 0.80$

$$Z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}} = \frac{\frac{39}{45} - 0.80}{\sqrt{0.80(1 - 0.80)}} = 1.118$$

p-value

$$= P(Z \le -1.118) + P(Z \ge 1.118)$$

$$= 2 \times P(Z \le -1.118)$$

- $= 2 \times 0.1314$
- = 0.2628

p-value = 0.2628

As p-value > α , do not reject H_0

-1.118 +1.118

There is insufficient evidence that the true proportion of customers to be served within 5 minutes upon their arrival is not 80%

30

Do Voters Really Vote When They Say They Do?

- On November 8, 1994, a historic election took place in US, in which the Republican Party won control of both houses of Congress for the first time since 1952
- But how many people actually voted?
- On November 28, 1994, Time magazine reported that in a telephone poll of 800 adults taken during the two days following the election, 56% reported that they had voted
- But based on information from the Committee for the Study of the American Electorate, in fact, only 39% of American adults had voted
- Could it be the case that the results of the poll simply reflected a sample that, by chance, voted with greater frequency than the general population?

Do Voters Really Vote When They Say They Do?

Cont'd

- Let's suppose that the truth about the population is that only 39% of American adults voted, i.e. $\pi = 39\% = 0.39$
- We can expect in samples of 800 adults, the size used by the Time magazine poll, the mean is 0.39 and standard error is

0.017, i.e.
$$\mu_p = \pi = 0.39$$
 and $\sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}} = 0.017$

- According to the Empirical Rule, we are almost certain that the sample proportion based on a sample of 800 adults should fall within $3 \times 0.017 = 0.051$ of the truth of 0.39
- In order words, if respondents were telling the truth, the sample proportion should be no higher than 44.1%
 (=39%+5.1%), no where near the reported percentage of 56%

Do Voters Really Vote When They Say They Do?

Cont'd

- We can also find how likely the sample proportion of 0.56 or above to happen
- Given n = 800, $\mu_p = 0.39$ and $\sigma_p = 0.017$
- $P(p \ge 0.56) = P(Z \ge 10) \approx 0$
- It is virtually impossible to have such high proportion of voters voted in the election
- The differences between data may be the result of a variety of factors
 - Differences in the respondents' interpretation of the questions
 - Respondents' inability or unwillingness to provide correct information or recall correct information