Continuity of Functions

Let $D \subseteq \mathbb{R}$. consider a function $f: D \to \mathbb{R}$ and a point $C \in D$. We say that f is continuous at C if $\{x_n\}$ any sequence in D such that $\{x_n \to C \Rightarrow f(x_n) \to f(C)$.

If f is NOT continuous at c, we say that f is discontinuous at c.

 $\frac{Ex.1}{1}$ for = |x|, $x \in \mathbb{R}$.

let 2n -> c as n->0

M → |2n | -> |C|

This ishows a that f(zn) -> f(c).

: f is continuous at any point CER.

 $f: \mathbb{R} \to \mathbb{R}$ be the Dirichlet function defined by $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

let CER.

Let $\{x_n\}$ be a sequence of rational numbers such that $x_n \longrightarrow C$,

and { yny be a sequence of irrational numbers such that yn -> c.

 $f(x_n) \Longrightarrow 1 \longrightarrow 1$ this shows that f is discondinuous $f(y_n) = 0 \longrightarrow 0$ at any point $c \in \mathbb{R}$.

* Let $D \subseteq \mathbb{R}$, $C \in \mathbb{D}$, and let $f,g:D \to \mathbb{R}$ be function that are continuous at c. Then

i) f+g is continuous at c

" c for every r & R, ii) rf n

iii) fg .

n n C 1) Ifl "

What about the converse of the above four statement? [Left as exercise]

[E-S definition]

Let $D \subseteq \mathbb{R}$, $c \in D$, and let $f: D \to \mathbb{R}$ be a function. Then f is continuous at c if for every E>0 there is 870 such that

 $z \in D$ and $|z-c| < \delta \implies |f(x)-f(c)| < \delta$.

[Note that this can be derived from the sequential definition of continuity 7 of continuity]

Note: Let $D \subseteq \mathbb{R}$, $c \in \mathbb{D}$, and let $f: D \to \mathbb{R}$ be a function that is continuous at c.

If f(c) >0 then there is a neighbourhood of c such that f(x) 70 for all x ∈ N(c,8,)

If f(c) <0 then there is a neighbourhood N(c, &) of c such that f(x) <0 for all ace N(c, 82).

- * Properties of Continuous Functions.
- Let $f: [a,b] \longrightarrow \mathbb{R}$ be continuous. Then
 - i) fis bounded on [a,b]
 - ii) f attains its supremum and infimum (bounds), that is $f(c) = \sup \{ f(x) : x \in [a,b] \} \text{ and } f(d) = \inf \{ f(x) : x \in [a,b] \}$

for some c and d ∈ [a,b].

- Ex. for example, $f(x) = x^2$, $\alpha \in [-1, 2]$ then f affains its greatest lower bound at $\alpha = 0$ and least upper bound at $\alpha = 2$.
- Ex. 2. $f(x) = \frac{1}{x-1}$, $x \in (1, 2]$ Then f is continuous on (1, 2] but it is NOT bounded on (1, 2].

Fimilarly, $f(x) = x^2$, $x \in [1,2]$.

Then f is continuous and bounded on (1,2]. But inf $\{f(x): x \in (1,2]\} = 1$ which is NOT affaired by f in (1,2].

This is because (1,2] is NOT closed and bounded intention.

* [Intermediate Value Theorem]

Let $f: [a,b] \to \mathbb{R}$ be continuous on [a,b]. If $f(a) \neq f(b)$ then f attains every value between f(a) and f(b) in the of (a,b).

that f(a) < f(b).

Let k be a real number such that f(a) < k < f(b)

Consider $\varphi(x) = f(x) - k \quad \forall x \in [a,b]$.

Then $\varphi: [a,b] \to \mathbb{R}$ continuous.

Now $\varphi(a) = f(a) - k < 0$, $\varphi(b) = f(b) - k > 0$

· p(a), p(b) <0

that $\varphi(c) = 0$.

=> f(c) = k

Let I be an interval and $f: I \to \mathbb{R}$ be continuous on I. Then show that f(I) is an interval. [left as Exercise]

[A subset S of IR is an interval if for any two points x_1 , $x_2 \in S$ with $x_1 < x_2$, the closed interval $[x_1, x_2] \subset S$]

* A function $f:[a,b] \rightarrow [a,b]$ is continuous on [a,b]. Prove that there exists a point c in [a,b] such that f(c) = c.

Solution: - If f(a) = a, then c = a.

If f(b) = b, then c = b.

If $f(a) \neq a$ and $f(b) \neq b$, then consider

 $\varphi(x) = f(x) - x$, $x \in [a, b]$.

Note that $\varphi(a) = f(a) - a > 0$ as $f(a) \in [a,b]$ and $f(a) \neq a$ $\varphi(b) = f(b) - b < 0$ as $f(b) \in [a,b)$.

50, $\varphi(a)\cdot\varphi(b)<0$.

therefore by Bolzano's theorem, there is a $c \in (a,b)$ such that p(c) = 0

=> f(c) = c. [Proved].