Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 5 Предмет: Проектирование реконфигурируемых гибридных вычислительных систем Тема: Интерфейс АХІ Задание 1

Студент: Ерниязов Т.Е.

Гр. № 3540901/81502

Преподаватель: Антонов А.П.

Оглавление

1.	Задание	3
2.	Скрипт для выполнения работы	5
3.	Моделирование	5
4.	Синтез	6
5.	С RTL моделирование	. 11
6.	Выводы	. 11

1. Задание

- Создать проект axi_interfaces_prj
- Подключить файл axi_interfaces.c (папка source)
- Подключить тест axi_interfaces_test.c
- Микросхема: xa7a12tcsg325-1q
- Задать: clock period 4; clock_uncertainty 0.1
- Установить директивы:
 - Порт d_o:
 - Array partition: type cyclic, factor 8, dimension 1
 - Interface: mode axis, register_mode both
 - о Порт d_i:
 - Array partition: type cyclic, factor 8, dimension 1
 - Interface: mode axis, register_mode both
 - o Block level
 - Unroll: factor 8
 - Pipeline: rewind
 - Interface: mode s_axilite
- осуществить моделирование
- осуществить синтез
 - о привести в отчете:
 - performance estimates=>summary
 - utilization estimates=>summary
 - Performance Profile
 - interface estimates=>summary
 - объяснить какой интерфейс использован для блока (и какие сигналы входят) и для портов (и какие сигналы входят).
 - scheduler viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - На скриншоте показать Initiation Interval
- Осуществить C|RTL моделирование
 - о Открыть временную диаграмму (все сигналы)
 - Отобразить два цикла обработки на одном экране
 - На скриншоте показать Latency
 - На скриншоте показать Initiation Interval

Исходные файлы с кодом устройства и теста приведены ниже. Исходный код:

```
#include "axi_interfaces.h"

// The data comes in organized in a single array.
// - The first sample for the first channel (CHAN)
// - Then the first sample for the 2nd channel etc.
// The channels are accumulated independently
// E.g. For 8 channels:
// Array Order: 0 1 2 3 4 5 6 7 8 9 10 etc. 16 etc...
// Sample Order: A0 80 00 D0 E0 F0 60 H0 A1 B1 C2 etc. A2 etc...
// Output Order: A0 80 00 D0 E0 F0 60 H0 A0+A1 B0+B1 C0+C2 etc. A0+A1+A2 etc...

void axi_interfaces (dout_t d_o[N], din_t d_i[N]) {
   int i, rem;
   // Store accumulated data
   static dacc_t acc[CHANNELS];

// Accumulate each channel
For_Loop: for (i=0;i<N;i++) {
   rem=iXCHANNELS;
   acc(rem] = acc(rem] + d_i[i];
   d_o[i] = acc[rem];
   }
}</pre>
```

Рис. 1.1. Исходный код

Код теста:

Рис. 1.2. Код теста

2. Скрипт для выполнения работы

Ниже приведён скрипт, который был написан для автоматизации выполнения работы.

```
open_project -reset axi_interfaces_prj

add_files axi_interfaces.c

add_files -tb axi_interfaces.c

add_files -tb result.golden.dat

set_top axi_interfaces

open_solution -reset solution1

set_part {xa7al2tcsg325-1q}

create_clock -period 4

set_directive_array_partition -type cyclic -factor 8 -dim 1 "axi_interfaces" d_i

set_directive_array_partition -type cyclic -factor 8 -dim 1 "axi_interfaces" d_o

set_directive_unroll -factor 8 "axi_interfaces/For_Loop"

set_directive_interface -mode axis -register -register_mode both "axi_interfaces" d_o

set_directive_interface -mode axis -register_register_mode both "axi_interfaces" d_o

set_directive_interface -mode axis -register_for_Loop"

set_directive_interface -mode s_axilite "axi_interfaces"

csim_design

csynth_design

cosim_design -trace_level all

exit
```

Рис 2.1. Скрипт выполнения работы

Ниже приведены установленные директивы, после выполнения скрипта. По рисунку видно, что директивы установлены корректно.

Рис. 2.2. Установленные директивы

3. Моделирование

По результатам моделирования, приведённым ниже, видно, что устройство проходит тесты.

```
*************** CSIM start *********
CSIM will launch GCC as the compiler.
Compiling(apcc) ../../../axi_interfaces_test.c in debug mode
INFO: [HLS 200-10] Running 'D:/Xilinx/Vivado/2018.2/bin/unwrapped/win64.o/apcc.exe'
INFO: [HLS 200-10] For user 'napst' on host 'eterium' (Windows NT_amd64 version 6.2)
INFO: [HLS 200-10] In directory 'D:/10Semester/vivado/lab5_port_level_axi_interface/s
csim/build'
                                            Tmp directory is apcc_db APCC is done.
INFO:
      Compiling(apcc)
O: [HLS 200-10]
O: [HLS 200-10]
O: [HLS 200-10]
                                           ../../../axi_interfaces.c in debug mode
Running 'D:/Xilinx/Vivado/2018.2/bin/unwrapped/win64.o/apcc.exe'
For user 'napst' on host 'eterium' (Windows NT_amd64 version 6.2)
In directory 'D:/10Semester/vivado/lab5_port_level_axi_interface/s
INFO:
 csim/būild
                                          Tmp directory is apcc_db APCC is done.
              [APCC
[APCC
                          202-3]
202-1]
INFO:
INFO:
      Generating csim.exe
 Test passed
                                         [SIM 211-1]
[SIM 211-3]
```

Рис 3.1. Результаты моделирования

4. Синтез

Ниже приведены оценки производительности. По ним видно, что оценочное время выполнения одного такта 3.3 нс, а latency составляет 5-6 тактов.

Рис. 4.1. Оценка производительности

Оценка использования ресурсов показывает, что будут использованы 1579 LUT.

Utilization Estimates								
Summary	DDAM 10K	DCD40F						
Name	BRAM_18K	DSP48E	FF	LUT				
DSP	-	-	-	-				
Expression	-	-	0	954				
FIFO	-	-	-	-				
Instance	0	-	36	40				
Memory	-	-	-	-				
Multiplexer	-	-	-	585				
Register	-	-	848	-				
Total	0	0	884	1579				
Available	40	40	16000	8000				
Utilization (%)	0	0	5	19				

Рис. 4.2. Оценка использования ресурсов

По профилю производительности, можно сказать, что latency составляет 5-6 тактов, а II 4 такта.

Рис. 4.3. Профиль производительности

Ниже приведён список портов устройства с указанием их протокола.

d_o_0_TREADY	in	1	axis	d_o_0	
d_o_0_TDATA	out	16	axis	d_o_0	
d_o_0_TVALID	out	1	axis	d_o_0	
d_o_1_TREADY	in	1	axis	d_o_1	pointer
d_o_1_TDATA	out	16	axis	d_o_1	pointer
d_o_1_TVALID	out	1	axis	d_o_1	pointer
d_o_2_TREADY	in	1	axis	d_o_2	pointer
d_o_2_TDATA	out	16	axis	d_o_2	pointer
d_o_2_TVALID	out	1	axis	d_o_2	pointer
d_o_3_TREADY	in	1	axis	d_o_3	pointer
d_o_3_TDATA	out	16	axis	d_o_3	pointer
d_o_3_TVALID	out	1	axis	d_o_3	pointer
d_o_4_TREADY	in	1	axis	d_o_4	pointer
d_o_4_TDATA	out	16	axis	d_o_4	pointer
d_o_4_TVALID	out	1	axis	d_o_4	pointer
d_o_5_TREADY	in	1	axis	d_o_5	pointer
d_o_5_TDATA	out	16	axis	d_o_5	pointer
d_o_5_TVALID	out	1	axis	d_o_5	pointer
d_o_6_TREADY	in	1	axis	d_o_6	pointer
d_o_6_TDATA	out	16	axis	d_o_6	
d_o_6_TVALID	out	1	axis	d_o_6	
d_o_7_TREADY	in	1	axis	d_o_7	pointer
d_o_7_TDATA	out	16	axis	d_o_7	pointer
d_o_7_TVALID	out	1	axis	d_o_7	pointer
d i 0 TDATA	in	16	axis	d i 0	
d i 0 TVALID	in	1	axis	d i 0	
d i 0 TREADY	out	1	axis	d i 0	-
d i 1 TDATA	in	16	axis	d i 1	pointer
d i 1 TVALID	in	1	axis	d i 1	pointer
d i 1 TREADY	out	1	axis	d i 1	pointer
d i 2 TDATA	in	16	axis	d i 2	pointer
d_i_2_TVALID	in	1	axis	d i 2	pointer
d_i_2_TREADY	out	1	axis	d_i_2	pointer
d_i_3_TDATA	in	16	axis	d_i_3	pointer
d_i_3_TVALID	in	1	axis	d_i_3	pointer
d_i_3_TREADY	out	1	axis	d_i_3	
d i 4 TDATA	in	16	axis	d i 4	
d i 4 TVALID	in	1	axis	d i 4	
d i 4 TREADY	out	1	axis	d_i_4	
d i 5 TDATA	in	16	axis	d_i_5	
d i 5 TVALID	in	1	axis	d_i_5	
d i 5 TREADY	out	1	axis	d i 5	
d i 6 TDATA	in	16	axis	d i 6	-
d i 6 TVALID	in	1	axis	d_i_6	
d i 6 TREADY	out	1	axis	d_i_6	
d i 7 TDATA	in	16	axis	d_i_0	
d i 7 TVALID	in	1	axis	d_i_7	
d_i_7_TVALID d_i_7_TREADY	out	1	axis	d_i_7	
"_i_/_INLADI	out	т	avis	u_i_/	pointer

Рис. 4.4. Список портов

Ниже приводится таблица использования ресурсов на каждом шаге выполнения.

	Resource\Control Step	C0	C1	C2	C3	C4
1	⊡I/O Ports					
2	d_i_1		re	ad		
3	d_i_6		read			
4	d_i_0		read			
5	d_i_2		read			
6	d_i_4		read			
7	d_i_5		read			
8	d_i_3		read			
9	d_i_7		read			
10	d_o_0				Wr	ite
11	d_o_2				wr	ite
12	d_o_1				wr	ite
13	d_o_4				wr	ite
14	d_o_7				wr	ite
15	d_o_5				wr	ite
16	d_o_3				wr	ite
17	d_o_6				write	
18	⊡Expressions					
19	i_1_7_fu_236		+			
20	il_phi_fu_222		phi_mux			
21	do_init_phi_fu_206		phi_mux			
22	exitcond_fu_246		icmp			
23	StgValue_72_fu_252			return		
24	tmp_4_fu_278				+	
25	tmp_4_1_fu_309				+	
26	tmp_4_6_fu_464				+	
27	tmp_3_2_fu_328				+	
28	tmp_3_3_fu_359				+	
29	tmp_3_7_fu_483				+	
30	tmp_4_4_fu_402				+	
31	tmp_3_1_fu_297				+	
32	tmp_4_7_fu_495				+	
33	tmp_3_fu_266				+	
34	tmp_4_3_fu_371				+	
35	tmp_3_6_fu_452				+	
36	tmp_4_2_fu_340				+	
37	tmp_4_5_fu_433				+	
38	tmp_3_4_fu_390				+	
39	tmp_3_5_fu_421				+	

Рис. 4.5. Использование ресурсов

Ниже приведён результат работы планировщика вычислений.

Рис. 4.6. Планировщик вычислений

5. C|RTL моделирование

Результат C|RTL моделирования приведён ниже.

Рис. 5.1. Результат моделирования

6. Выводы

В данной работе был получен опыт использования AXI Interface, а также были рассмотрены несколько директив, позволяющих выполнять оптимизацию проекта.