

In the Claims

30. (currently amended) A compound of formula I, II or III

(I)

(II)

wherein

G₁ and G₁' are independently hydrogen or halogen,

G_2 and G_2' are independently hydrogen, halogen, nitro, cyano, E_3SO- , E_3SO_2- , $-COOG_3$, perfluoroalkyl of 1 to 12 carbon atoms, $-P(O)(C_6H_5)_2$, $-CO-G_3$, $-CO-NH-G_3$, $-CO-N(G_3)_2$, $-N(G_3)-CO-G_3$,

G_3 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by 1 to 4 alkyl of 1 to 4 carbon atoms; or G_3 is T_1 or T_2 ,

E_1 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 24 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by 1 to 4 alkyl of 1 to 4 carbon atoms; or E_1 is alkyl of 1 to 24 carbon atoms substituted by one or two hydroxy groups; or E_1 is the group $-(CH_2)_m-CO-X-T_1$ where m is 0, 1 or 2; or E_1 is the group $-(CH_2)_p-X-CO-T_2$ where p is 1, 2 or 3,

E_2 and E_2' are independently straight or branched alkyl chain of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by one to three alkyl of 1 to 4 carbon atoms; or E_2 and E_2' are independently said alkyl of 1 to 24 carbon atoms or said alkenyl of 2 to 18 carbon atoms substituted by one or more $-OH$, $-OCOE_{11}$, $-OE_4$, $-NH_2$, $-NHCOE_{11}$, $-NHE_4$ or $-N(E_4)_2$, or mixtures thereof, where E_4 is straight or branched chain alkyl of 1 to 24 carbon atoms; or said alkyl or said alkenyl interrupted by one or more $-O-$, $-NH-$ or $-NE_4-$ groups or mixtures thereof and which can be unsubstituted or substituted by one or more $-OH$, $-OE_4$ or $-NH_2$ groups or mixtures thereof; or E_2 and E_2' are independently $-(CH_2)_m-CO-X-T_1$ or $-(CH_2)_p-X-CO-T_2$, or E_4 is T_1 or T_2 ,

X is $-O-$ or $-N(E_{16})-$,

E_{16} is hydrogen, C_1-C_{12} -alkyl, C_3-C_{12} -alkyl interrupted by 1 to 3 oxygen atoms, or is cyclohexyl or C_7-C_{15} aralkyl,

E_{11} is a straight or branched chain C_1-C_{18} alkyl, C_5-C_{12} cycloalkyl, straight or branched chain C_2-C_{18} alkenyl, C_6-C_{14} aryl or C_7-C_{15} aralkyl; or E_{11} is T_1 or T_2 ,

E_3 is alkyl of 1 to 20 carbon atoms, hydroxyalkyl of 2 to 20 carbon atoms, alkenyl of 3 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, aryl of 6 to 10 carbon atoms or said aryl substituted by one or two alkyl of 1 to 4 carbon atoms or 1,1,2,2-tetrahydroperfluoroalkyl where the perfluoroalkyl moiety is of 6 to 16 carbon atoms,

L is alkylene of 1 to 12 carbon atoms, alkylidene of 2 to 12 carbon atoms, benzylidene, p -xylylene, $\alpha,\alpha,\alpha',\alpha'$ -tetramethyl- m -xylylene or cycloalkylidene, and

T is $-SO-$, $-SO_2-$, $-SO-E-SO-$, $-SO_2-E-SO_2-$, $-CO-$, $-CO-CH_2-CO-$, $-CO-E-CO-$, $-COO-E-OCO-$ or $-CO-NG_5-E-NG_5-CO-$,

where E is alkylene of 2 to 12 carbon atoms, cycloalkylene of 5 to 12 carbon atoms, or alkylene interrupted or terminated by cyclohexylene of 8 to 12 carbon atoms;

G_5 is G_3 or hydrogen,

T_1 is straight or branched chain alkyl of 25 to 100 carbon atoms, or said alkyl substituted by one hydroxyl group and interrupted by one oxa moiety, or a mixture of such alkyl moieties; or

T_1 is $-(R-O)_n-R-OG_x$ where R is ethylene, propylene, trimethylene, 1,2-butylene or tetramethylene, and n is 6 to 49 so that the total number of carbon atoms in T_1 is at least 25,

G_x is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by 1 to 4 alkyl of 1 to 4 carbon atoms,

T_2 is straight or branched alkyl of 23 to 100 carbon atoms; and

with the proviso that at least one of E_1 , E_2 and E_2' is a group $-(CH_2)_m-CO-X-T_1$ or a group

$-(CH_2)_p-X-CO-T_2$ or at least one of G_2 and G_2' is a group $-COOG_3$, $-CO-G_3$, $-CO-NH-G_3$, $-CO-N(G_3)_2$, $-N(G_3)-CO-G_3$,

where G_3 is T_1 or T_2 .

31. (currently amended) A compound according to claim 30 of formula I

wherein

G_1 is hydrogen,

G_2 is hydrogen, chloro, fluoro, cyano, E_3SO^- , $E_3SO_2^-$, $-COOG_3$, CF_3 , $-CO-G_3$, $-CO-NH-G_3$ or $-CO-N(G_3)_2$,

G_3 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or G_3 is T_1 or T_2 ,

E_1 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 24 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or E_1 is the group $-(CH_2)_m-CO-X-T_1$ where m is 0, 1 or 2; or E_1 is the group $-(CH_2)_p-X-CO-T_2$ where p is 1, 2 or 3,

E_2 is straight or branched alkyl chain of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or E_2 is said alkyl of 1 to 24 carbon atoms or said alkenyl of 2 to 18 carbon atoms substituted by one or more -OH, -OCOE₁₁, -OE₄, -NHCOE₁₁, -NHE₄ or -N(E₄)₂, or mixtures thereof, where E_4 is straight or branched chain alkyl of 1 to 24 carbon atoms; or said alkyl or said alkenyl interrupted by one or more -O-, -NH- or -NE₄- groups or mixtures thereof and which can be unsubstituted or substituted by one or more -OH, -OE₄ or -NH₂ groups or mixtures thereof; or E_4 is T_1 or T_2 ,

X is -O- or -N(E₁₆)-,

E_{16} is hydrogen,

E_{11} is a straight or branched chain C₁-C₁₈alkyl, C₅-C₁₂cycloalkyl, C₆-C₁₄aryl or C₇-C₁₅aralkyl; or E_{11} is T_1 or T_2 ,

E_3 is alkyl of 1 to 20 carbon atoms, hydroxyalkyl of 2 to 20 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or aryl of 6 to 10 carbon atoms,

T_1 is straight or branched chain alkyl of 25 to 70 carbon atoms, ~~or said alkyl substituted by one hydroxyl group and interrupted by one exa moiety~~, or a mixture of such alkyl moieties; or

T_1 is -(R-O)_n-R-OH where R is ethylene, propylene, trimethylene or tetramethylene, and n is 6 to 49 so that the total number of carbon atoms in T_1 is at least 25, and

T_2 is straight or branched alkyl of 23 to 70 carbon atoms; and

with the proviso that at least one of E_1 and E_2 is a group -(CH₂)_m-CO-OT₁ or a group -(CH₂)_p-O-CO-T₂, or G₂ is a group -COOG₃, -CO-G₃, -CO-NH-G₃ or -CO-N(G₃)₂ where G₃ is T_1 or T_2 .

32. (previously present d) A compound according to claim 30 of formula III

wherein

G_1 and G_1' are hydrogen,

G_2 and G_2' are independently hydrogen, chloro, fluoro, cyano, E_3SO^- , $E_3SO_2^-$, $-COOG_3$, CF_3 , $-CO-G_3$, $-CO-NH-G_3$ or $-CO-N(G_3)_2$,

G_3 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or G_3 is T_1 or T_2 ,

E_2 and E_2' are independently straight or branched alkyl chain of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or E_2 and E_2' are independently said alkyl of 1 to 24 carbon atoms or said alkenyl of 2 to 18 carbon atoms substituted by one or more $-OH$, $-OCOE_{11}$, $-OE_4$, $-NHCOE_{11}$, $-NHE_4$ or $-N(E_4)_2$, or mixtures thereof, where E_4 is straight or branched chain alkyl of 1 to 24 carbon atoms; or said alkyl or said alkenyl interrupted by one or more $-O-$, $-NH-$ or $-NE_4-$ groups or mixtures thereof and which can be unsubstituted or substituted by one or more $-OH$, $-OE_4$ or $-NH_2$ groups or mixtures thereof; or E_4 is T_1 or T_2 ,

E_{16} is hydrogen,

E_{11} is a straight or branched chain C_1-C_{18} alkyl, C_5-C_{12} cycloalkyl, C_6-C_{14} aryl or C_7-C_{15} aralkyl; or E_{11} is T_1 or T_2 ,

E_3 is alkyl of 1 to 20 carbon atoms, hydroxyalkyl of 2 to 20 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or aryl of 6 to 10 carbon atoms,

L is alkylene of 1 to 12 carbon atoms, alkylidene of 2 to 12 carbon atoms, benzylidene, p-xylylene, $\alpha,\alpha,\alpha',\alpha'$ -tetramethyl-m-xylylene or cycloalkylidene,

T_1 is straight or branched chain alkyl of 25 to 70 carbon atoms, or said alkyl substituted by one hydroxyl group and interrupted by one oxa moiety, or a mixture of such alkyl moieties; or

T_1 is $-(R-O)_n-R-OH$ where R is ethylene, propylene, trimethylene or tetramethylene, and n is 6 to 49 so that the total number of carbon atoms in T_1 is at least 25, and

T_2 is straight or branched alkyl of 23 to 70 carbon atoms; and

with the proviso that at least one of E_2 and E_2' is a group $-(CH_2)_m-CO-OT_1$ or a group $-(CH_2)_p-O-CO-T_2$, or at least one of G_2 and G_2' is a group $-COOG_3$, $-CO-G_3$, $-CO-NH-G_3$ or $-CO-N(G_3)_2$ where G_3 is T_1 or T_2 .

33. (previously presented) A compound according to claim 30 which is

- (a) $C_{20}-C_{40}$ alkyl 3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 35-51°C;
- (b) $C_{20}-C_{40}$ alkyl 3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 58-63°C;
- (c) $C_{20}-C_{40}$ alkyl 3-(5-chloro-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 33°C;
- (d) $C_{20}-C_{40}$ alkyl 3-(5-chloro-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 57-67°C;
- (e) $C_{20}-C_{40}$ alkyl 3-(5-trifluoromethyl-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate;
- (f) $C_{20}-C_{40}$ alkyl 3-(5-phenylsulfonyl-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 42°C;

(g) C_{20} - C_{40} alkyl 3-(5-phenylsulfonyl-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 65-74°C; or

(h) C_{40} - C_{60} alkyl 3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate.