Integration: Single-cell RNA and Single-cell RNA

Group 5

Ali Balubaid, Azari Bantan, Turki Sobahy

Monocytes can differentiate into macrophages or dendritic cells

The **TME** (tumoural factors) play a role in driving the **differentiation of monocytes into pro-tumoral/anti-tumoral** monocyte-derived cells
(macrophages/DCs), contributing to tumor development

How do monocyte populations vary across different cancer types, and how does this variation contribute to their differentiation into pro-tumoral or anti-tumoral phenotypes, impacting tumor progression?

HOW?

Analyze a collection of scRNA-seq datasets for monocytes from different cancer samples

Dataset collection

Raw scRNA-seq datasets (monocytes)

Data preprocessing

- CellRanger
- QC
- Filtering out low-quality cells
- Normalization

Integration

Downstream analysis

Functional Annotation and Pathway Analysis

Mapping GEX signatures of monocytes to known anti-/pro-tumour signals

Differential Gene Expression Analysis

Characterize monocytes subpopulations

I.e., based on marker gene expression and known monocyte subsets (e.g., classical, intermediate, non-classical, DC-like cells...etc.)

Criteria

- Human data
- Monocytes
- Monocytes isolated from cancer patient samples

Raw scRNA-seq datasets (monocytes)

/				•
E	Breast Cancer	Lung Cancer	Melanoma	
	Ding et al. (2023)	Sun et al. (2024)	Smalley et al. (2021)	
Bre	echbuhl et al. (2020)	Chen et al. (2021)	Lozano et al. (2022)	
		Chan et al. (2021)	Rad Pour et al. (2021)	

