PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-142302

(43) Date of publication of application: 29.05.1998

(51)Int.CI.

G01R 31/36

(21)Application number: 08-302171

B60R 16/02

(22) Date of filing:

13.11.1996

(71)Applicant: HONDA MOTOR CO LTD

(72)Inventor: MARUNO NAOKI

ARAKI KAZUHIRO

(54) APPARATUS FOR DETECTING RESIDUAL CAPACITY OF BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To correctly detect the residual capacity of a battery of a lithium ion secondary cell by estimating the irreversible deterioration amount of the battery when left at a high potential. SOLUTION: When the detected voltage of a battery is left at a value exceeding a higher predetermined voltage (e.g. 3.9V when converted into a voltage of a lithium ion secondary cell) than a rated voltage of the battery (e.g. 3.6V of the same converted value), specifically when the battery is left after fully charged, a time at a high voltage state is counted, based on which a capacity deterioration amount Cd of the battery is calculated. A value obtained by subtracting the calculated capacity deterioration amount Cd from a reference capacity (capacity when the battery is fresh) Cr is set as a full charge capacity Cf afterwards. A value obtained by subtracting a discharge amount Cd is from the full charge capacity Cf is a residual capacity Cc. These

LEGAL STATUS

[Date of request for examination]

26.11.2002

[Date of sending the examiner's decision of rejection

values are displayed by bar graphs 61, 62, 63.

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-142302

(43)公開日 平成10年(1998) 5月29日

(51)	Int.Cl.

識別記号

FΙ

G01R 31/36 B60R 16/02

670

G 0 1 R 31/36 B 6 0 R 16/02

A.

.

670Z

審査請求 未請求 請求項の数3 OL (全 10 頁)

(21)	HIE	器骨

特願平8-302171

(71)出願人 000005326

本田技研工業株式会社

(22)出願日

平成8年(1996)11月13日

東京都港区南青山二丁目1番1号

(72)発明者 丸野 直樹

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72)発明者 荒木 一浩

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 弁理士 千葉 剛宏 (外1名)

(54) 【発明の名称】 電池残容量検出装置

(57)【要約】

【課題】リチウムイオン二次電池からなるバッテリの高電位放置時における不可逆劣化量を予測して電池の残容量を正確に検出する。

【解決手段】検出したバッテリ電圧が、バッテリの定格電圧(リチウムイオン二次電池のセル換算では、3.6 V)よりも高い所定電圧(例えば、同3.9 V)を超える値で放置されていた場合、具体的には、満充電後の放置状態にある場合には、その高電圧状態である時間をタイマにより計時し、この計時時間に基づきバッテリの容量劣化量Cdを計算する。計算した容量劣化量Cdを基準容量(新品時の容量)Crから引いた値を、以降の満充電容量Cfとする。この満充電容量Cfから放電量Cdisを引いた値を残容量Ccとする。これらの値を棒グラフ61、62、63で表示する。

1

【特許請求の範囲】

【請求項1】リチウムイオン二次電池の電圧を検出する 電圧検出手段と、

検出した電圧と前記電池の定格電圧よりも高い所定電圧 とを比較して比較結果信号を出力する比較手段と、

前記比較結果信号が、前記検出電圧が前記所定電圧を超える高電圧状態であることを表す状態であることを検出したときに、時間の計時を行う計時手段と、

前記計時手段による高電圧状態にある時間の計時時間に 基づき前記電池の容量劣化量を計算する容量劣化計算手 10 段と、

前記容量劣化量に基づいて前記リチウムイオン二次電池の残容量を補正する残容量補正手段と、

を有することを特徴とする電池残容量検出装置。

【請求項2】請求項1記載の装置において、

前記容量劣化計算手段は、前記電池の容量劣化量を、前記高電圧状態計時時間と前記検出電圧値に基づき計算することを特徴とする電池残容量検出装置。

【請求項3】請求項1記哉の装置において、

前記容量劣化計算手段は、前記電池の容量劣化量を、前 20 記高電圧状態計時時間と前記電池の温度に基づき計算す ることを特徴とする電池残容量検出装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明は、リチウムイオン 二次電池を、例えば、動力源とする電気自動車に適用し て好適な電池残容量検出装置に関する。

[0002]

【従来の技術】最近、リチウムイオン二次電池は、その小型、高容量性が注目されて、電子機器を始めとして、種々の分野で使用されており、電池を動力源とする電気自助車においても、その使用が考えられている。例えば、車輪の回転駆動源としてモータ、すなわち走行用モータが採用される電気自動車においては、前記電池により前記走行用モータが回転するように構成される。

【0003】このような電気自動車においては、従来のガソリン自動車等の燃料計に相当する残容量表示計がダッシュボード上に配置され、その表示指針の位置に応じて、運転者に再充電を促すように様成される。

[0004]

【発明が解決しようとする課題】ところで、リチウムイオン二次電池は、ニッケル水素二次電池またはニッケルカドミウム二次電池等の他の二次電池とは異なり、充電時または充電後の放置時において、正負電極間の電圧が、定格電圧(公称電圧ともいい、通常、室温において、3.6 V)よりも高電位状態になっている場合には、満充電容量が基準容量(標準容量または定格容量ともいい、通常、いわゆる新品時における容量)よりも小さくなってしまうことが確認された。なお、一般に、満充電容量は可逆容量とも称される。

【0005】とのリチウムイオン二次電池における可逆 容量の低下現象は、いわゆる自己放電現象による容量低 下とは異なり、リチウムイオン二次電池の性能劣化とな り、一般的には、回復不可能である。

【0006】なお、この劣化現象は、負極(炭素)の表面に炭酸リチウム(LiCO」)等のリチウム化合物の被膜ができるためと考えられている。リチウムイオン二次電池には、例えば、コバルト酸リチウムイオン二次電池、マンガン酸リチウムイオン二次電池等複数の種類があり、種類に応じて劣化の程度も異なるのであるが、上述の不可逆的劣化は、全てのリチウムイオン二次電池に共通する現象であり、特に高分子電解質を用いたポリマー型二次電池で顕著である。

【0007】この発明はこのような課題を考慮してなされたものであり、リチウムイオン二次電池における不可逆劣化量を予測して電池の残容量を正確に検出する電池残容量検出装置を提供することを目的とする。

[0008]

【課題を解決するための手段】この発明は、リチウムイオン二次電池の電圧を検出し、検出電圧が高電圧状態である場合には、一定条件のもとに、残容量を補正するようにしている。

【0009】また、この発明は、リチウムイオン二次電池の電圧を検出し、検出した電圧と前記電池の定格電圧よりも高い所定電圧とを比較し、前記検出電圧が前記所定電圧を超える高電圧状態であることを表す状態であることを比較検出したときに、時間の計時を行い、前記高電圧状態にある時間の計時時間に基づき前記電池の容量劣化量を計算し、前記容量劣化量に基づいて前記リチウムイオン二次電池の残容量を補正するようにしている。

【0010】との発明によれば、高精度に容量劣化量を計算することができ、したがって、リチウムイオン二次電池の残容量を正確に求めることができる。

【0011】この場合、前記容量劣化の計算は、前記電池の容量劣化量を、前記高電圧状態計時時間と前記検出電圧値に基づき計算することで、より高精度に容量劣化量を計算することができる。

【0012】また、前記容量劣化の計算は、前記電池の容量劣化量を、前記高電圧状態計時時間と前記電池の温 40 度に基づき計算することで、同様に、より高精度に容量 劣化量を計算することができる。

【0013】さらに、前記容量劣化の計算は、前記電池の容量劣化量を、前記高電圧状態計時時間と前記検出電圧値と前記電池の温度に基づき計算することで、一層高精度に容量劣化量を計算することができる。

【0014】この発明の装置は、ディスクリート部品により構成することが可能であり、CPU等を利用したソフトウエアにより実現することも可能である。これらを併用して実施することも可能である。

50 [0015]

【発明の実施の形態】以下、この発明の一実施の形態に ついて図面を参照して説明する。

【0016】図1は、この発明の一実施の形態が適用さ れた電気自動車10が、充電コネクタ11の端子11 a、11b、11cを介して車外の充電器12の出力側 に接続された構成を示している。 充電器 1 2 の入力側に は、例えば、交流200V電源13が接続されている。 【0017】電気自動車10には、リチウムイオン二次 電池を直列接続して、例えば、288Vにした高電圧の バッテリ15が搭載されている。バッテリ15には、そ 10 の端子間電圧(電圧信号ともいう。) Vbを測定(検 出)する電圧センサ(電圧計、電圧検出器、電圧測定手 段、電圧検出手段) 16が接続されている。バッテリ1 5には、コネクタ11a、11bを介して直流の充電電 圧が供給され、その充電器12の出力電流(電流信号ま たは電流値ともいう。) [1が電流センサ(電流計、電 流検出器、電流測定手段、電流検出手段) 2 1 で測定 (検出)される。

【0018】バッテリ15の出力側には、出力電流(電 流信号または電流値ともいう。) [2を測定(検出)す る電流センサ(電流計、電流検出器、電流測定手段、電 流検出手段)22を介して、負荷である3相のモータ2 4をPWM (パルス幅変調)制御により駆動するモータ 駆動ユニット(Power Drive Unit、以 下、PDUともいう。)23が接続されている。

【0019】また、電気自動車10には、各々、制御、 判断、計算、計時手段等として動作し、かつ必要に応じ て、相互にデータのやりとりを行う管理用ECU(E1 ectric Control Unit) 312E-タ用ECU32が搭載されている。なお、管理用ECU 31とモータ用ECU32は、各々、中央処理装置とし てのCPUと、システムプログラム等が記憶される記憶 手段であるROMと、ワーク用等として使用される記憶 手段であるRAMと、計時用のタイマ(計時手段)、A /D変換器、D/A変換器等の入出力インタフェース等 が含まれるマイクロコンピュータにより構成されてい る。計時用のタイマは、各種含まれているが、そのう ち、後に詳細に説明する、バッテリ15が高電位状態で 放置されている時間を計時するタイマを放置タイマ18 という。

【0020】モータ用ECU32には、モータ24の回 転数信号(単に、回転数ともいう。)Nm、アクセルベ ダル34からのアクセル開度信号(単に、開度ともい う。) θ p 、電流センサ22からの電流信号 I 2 、電圧 センサ16からの電圧信号Vbが供給され、さらにイグ ニッションスイッチ41が接続され、これらの信号に基 づいてモータ駆動ユニット23を制御する。

【0021】管理用ECU31には、電流センサ21か らの電流信号(の値) [1、電流センサ22からの電流 信号(の値)I 2、電圧センサI B からの電圧信号(の B B とステップB B で求めた実電力B B の値の大きさを比較

値) Vb、バッテリ15に取り付けられた温度センサ (温度計、温度検出器、温度検出手段) 44からの温度 信号(温度)Tbが供給され、さらに、充電スイッチ4 3が接続され、これらの信号に基づいて充電器12を制 御するとともに、表示器45上の残容量表示を制御す る。なお、図1中、符号Ichgは、バッテリ15に供 給される充電電流(値または信号)を表し、この充電電 流Ichgは、Ichg=Il-I2により管理用EC U31で計算することができる。

【0022】次に、上述の実施の形態の動作について説 明する。なお、この発明の要旨は、管理用ECU31に よるバッテリ15の残容量検出処理にあるので、これに ついて詳しく説明し、モータ用ECU32によるモータ 駆動ユニット23の制御については、簡潔に説明する。 以下の順序で動作を説明する。

【0023】A.モータ用ECU32による制御動作の 説明

B. 残容量検出処理のための可逆容量(満充電容量)の 低下現象の説明と管理用ECU31による制御動作の総 括的な説明

C. 管理用ECU31による制御動作の説明 まず、A. モータ用ECU32による制御動作につい て、図2に示すフローチャートをも参照して説明する。 【0024】モータ用ECU32は、充電器12が切り 離されていて、かつイグニッションスイッチ41が閉状 態(オン状態)にされていることを条件に、モータ24 の回転制御処理(図2に示すフローチャートによる処 理)を行う。

【0025】この場合、まず、モータ24の回転数Nm を取り込む(ステップS1)とともに、アクセルペダル 34の踏力に応じたアクセル開度 θ pを取り込む (ステ ップS2)。

【0026】次に、回転数Nmとアクセル開度 θ pとに 基づいて要求トルクTRQをルックアップテーブルまた は関数、例えば、 $TRQ = f(\theta p, Nm)$ として求め る(ステップS3)。

【0027】次に要求電力Pcを求める(ステップS 4)。要求電力Pcは、要求トルクTRQと回転数Nm の積、すなわち、Pc=TRQ×Nmにより計算すると 40 とができる。

【0028】さらに、PDU23に供給される電圧、す なわち端子間電圧Vbと供給される電流 12を取り込む (ステップS5、S6)。電流12は、バッテリ15か ら見れば、放電電流である。

【0029】次いで、実電力Peを計算する(ステップ S7)。この実電力Peは、PDU23に供給される電 圧V bと電流 I 2の積に効率 nを掛けた値、Pe=Vb × I 2× nで得られる。

【0030】次に、ステップS4で求めた要求電力Pc

する(ステップS8)。

【0031】実電力Peの値が要求電力Pcの値より大きい場合には、実電力Peを低下させる必要があるので、モータ用ECU32からPDU23へ供給されるPWM信号のデューティを小さくする(ステップS9)。【0032】反対に、実電力Peの値が要求電力Pcの値より小さい場合には、実電力Peを増加させる必要があるので、モータ用ECU32からPDU23に供給されるPWM信号のデューティを大きくする(ステップS10)。

【0033】実電力Peの値と要求電力Pcとの値が同一である場合には、デューティを変化させない。

【0034】ステップS8~S10の判定処理が終了した場合には、ステップS1にもどり、ルーチンを繰り返す。

【0035】以上の説明が、A. モータ用ECU32による制御動作についての説明であり、次に、B. 残容量検出処理のための可逆容量(満充電容量)の低下現象についての説明と、管理用ECU31による制御動作についての総括的な説明を行う。

【0036】まず、管理用ECU31による制御動作について総括的に説明する。

【0037】バッテリ15を構成するセルである単電池 としてのリチウムイオン二次電池の定格電圧 V_r は V_r = 3.6Vである。

【0038】これに対して、従来の技術の項で述べたように、正負電極端子間の端子間電圧Vb(なお、単電池の端子間電圧は、正確には、バッテリ15の端子間電圧を直列個数で割った値として得られるが、繁雑であるので、リチウムイオン二次電池1個の端子間電圧も符号Vbで表し、以下、バッテリ15は、単電池であるものとして説明する。)が、定格電圧Vrより高い高電圧状態になっている場合には、換言すれば、高電位にさらされている場合には、満充電容量(可逆容量)が低下するという劣化が起こる。そこで、この実施の形態では、この劣化が起こり始まる関値電圧(所定電圧、所定高電圧または高電圧放置判断電圧ともいう。)Vthを、仮に、Vth=3.9 Vに設定している。

【0039】バッテリ15の充電時には、バッテリ15 を満充電まで充電するため、定格電圧Vrよりかなり高 40 い電圧(例えば、4.2V)で充電する場合が多い。充電電圧が低い場合には、この充電により蓄えられる電力が少なくなってしまうからである。したがって、そのような電圧、例えば、Vb=4.2 Vで充電して満充電状態にあるとしても、端子間電圧VbがVb=4.2 Vの状態になったまま、充電器12を外した状態で長時間放置した場合には、劣化量(容量劣化量または劣化容量ともいう。)が大きくなる。

【0040】そこで、バッテリ15の劣化を防止するためには、閾値電圧Vthより低い電圧で充電すればよい 50

6

10 【0041】劣化量のその他の特徴について検討した結果、以下の特徴事項を見出した。

- (1) 劣化量は、高電圧放置に伴い、最大定格容量の 20%程度まで進行する。換言すれば、定格容量が初期 値の80%になってしまう。
- (2) 劣化は、高電圧放置であっても、1~2日程度では発生しないが、30日を超えると最大定格の15%程度まで進行する。
- (3) 図3に示すように、劣化の進行速度(単位時間 当たりの劣化量) $\triangle Ah$ (アンペアアワー)/h(アワー)は、バッテリ電圧(放置電位、放置電圧)Vbに比例して速くなる。すなわち、高電圧ほど早く劣化する。
- (4) 同様に、図3に示すように、劣化の進行速度 Δ Ah/hは、バッテリ温度Tbにも比例する。例えば、バッテリ温度TbがTb=25℃に比較して、Tb=45℃の高温度であるほど早く劣化する。
- (5) また、劣化現象は高電位放置時にかぎらず、充電中であっても放電中であっても、バッテリ電圧Vbが高電位であれば発生する。

【0042】なお、充電時間および放電時間そのものは、劣化が発生する時間オーダーでの放置時間に比較すればはるかに短い時間であるので、以下に説明する実施の形態では、充電中と放電中以外の劣化予測処理、すなわち放置中の劣化量のみを推定(予測)することとする。以上の知見に基づいて、管理用ECU31で制御動作を行う。

【0043】C. 管理用ECU31による制御動作の説 明

管理用ECU31による電池残容量検出制御処理について図4に示すフローチャートをも参照して説明する。この場合、予め、実際に電気自動車10に搭載するバッテリ15の種類に応じて、積算された放置時間Taの所定時間毎に、図3に示した放置電位(V)対単位時間当たりの劣化量(△Ah/h)の特性を測定しておき、管理用ECU31内にルックアップテーブルまたは関数として格納しておく。この実施の形態では、所定温度毎に、例えば、0℃から5℃きざみで40℃まで測定した、図3のテーブルを劣化速度テーブル51として格納する。同様に、図5に示すように、前記バッテリ15の種類に応じて、高電位下の最大劣化量Cdmaxを測定して、記憶手段に格納しておく。さらに、前記バッテリ15の

種類に応じて、バッテリ15が、いわゆる新品である場 合の基準容量(定格容量、標準容量ともいう。)を測定 しておき基準容量Crとして記憶手段に記憶しておく。 【0044】このような準備のもとに、まず、バッテリ 15の動作モード(動作状態)について判定する(ステ ップS11)。イグニッションスイッチ41が閉じられ た状態(オン状態)であれば、放電モードの制御を行 い、充電スイッチ43が閉じられた状態(オン状態)で あれば、充電モードの制御を行い、イグニッションスイ ッチ41 および充電スイッチ43 がともに開かれた状態 10 回計算時の残容量 C c' に、ステップ S 2 2 で計算した (オフ状態)であれば、放置モードの制御を行う。な お、イグニッションスイッチ41と充電スイッチ43が ともに閉じられる状態はない。

【0045】充電モードにおいては、充電コネクタ11*

 $Cc = Cc' + (Ichg \times Tchg) \times nchg$

 $=Cc'+Cchg\times\eta chg$

なお、図4に示すフローチャートにおいては繁雑になる ので省略しているが、残容量C c を計算した場合には、 表示器45上の残容量Ccの表示を更新する処理を行う ようにしている。

【0049】次いで、この残容量Ccが満充電容量Cf になったかどうかを確認し(ステップS24)、そうで ない場合には、ステップS11、S21~S24までの 処理を繰り返す。

【0050】ステップS24の判断が肯定的となったと きには、充電器12をオフ状態とし(ステップS2 5)、残容量Ccを満充電容量Cf(Cc=Cf)とす る(ステップS26)。この場合、表示器45上の残容 **量表示が更新される。** ×

Cc = Cc' - Cdis

次に、放置モードにおいては、バッテリ15の端子間電 圧Vbが、劣化の発生する所定高電圧Vth(Vth= 3.9V)を超えているかどうかを判断する(ステップ S41)。超えていない場合には、劣化が進行しないの でステップS11にもどる。

【0054】一方、端子間電圧Vbが所定電圧Vthを 超えていた場合には(Vb>Vth)、放置タイマ18 によりその状態が所定時間(例:30分)継続したかど うかを判断する(ステップS42)。該所定時間が継続 した時は、放置タイマ18をいったんリセットし(ステ 40 ップS43)、劣化速度テーブル51を検索する(ステ ップS44)。劣化速度テーブル51は、図3の劣化特☆

 $Cd = Cd' + \Delta \times Tn$

図4のフローチャートでは、劣化量はステップS42で 設定した所定時間(30分)毎に計算されるので、放置 時間Tnは該所定時間(30分)になる。

【0057】次に、この劣化量Cdと髙電位最大劣化量 (リミット鼠、リミット値)Cdmax(図5参照)と を比較する(ステップS46)。

【0058】劣化量Cdが高電位最大劣化量Cdmax 50

*が接続されていることを確認した後、充電器12をオン 状態にする (ステップS21)。

【0046】次に、充電容量Cchgを検出する(ステ ップS22)。充電容量Cchgは、電流センサ21お よび電流センサ22により検出した充電電流 I c h g (II-I2) に充電時間Tchgを掛けた値として計 算できる。

【0047】次に、残容量Ccを計算する(ステップS 23)。残容量Ccは、次の(1)式に示すように、前 充電容量Cchgに充電効率ηchgを掛けた値を加え た値に等しい。

[0048]

... (1)

※【0051】次に、放電モードにおいては、放電容量 (放電量) Cdisを検出する(ステップS31)。放 電容量Cdisは、電流センサ22により検出した電流 20 を放電電流 I 2 として、この値に放電時間Tdisを掛 けた値として得られる。

【0052】 このとき、残容量Ccは、次の(2)式に 示すように、前回の残容量Cc´から、計算した放電容 量Cdisを引いた値として計算すればよい (ステップ S32)。なお、前回の残容量С c′が、ステップS2 6の処理後の満充電容量Cfであった場合には、この満 充電容量Cfから、計算した放電容量Cdisを引いた 値として計算すればよいことはもちろんである。

[0053]

... (2)

☆性を考慮して、バッテリ15の状態(温度、電圧)がス テップS42で設定した所定時間(30分)継続した時 のバッテリの劣化速度(AAh/h)として記憶されて いる。

【0055】次に、バッテリ15の劣化量(高電圧劣化 補正量) Cdを計算する(ステップS45)。この劣化 量Cdは前回の劣化量Cd′に新たな劣化分、すなわ ち、劣化速度△×放置時間Tn で表される劣化分を加え ることで計算される。よって、劣化量Cdは次の(3) 式で求められる。

[0056]

... (3)

よりも大きい場合には、劣化量Cdの値をその高電位最 大劣化量Cdmaxとし(ステップS47)、そうでな い場合には、ステップS46で計算した劣化量Cdを劣 化量Cdの値として、満充電容量Cfを次の(4)式に より計算する(ステップS48)。

[0059]

C f = C r - C d

この(4)式において、符号Crは、上述したように、 バッテリ15が新品である場合の基準容量であり、した がって、(4)式は満充電容量Cfが劣化量Cd分だけ 小さくなったことを意味している。もし、次に、充電モ ードに入った場合に、前記ステップS26における満充 電容量Cfの値は、このステップS48で計算した値が 用いられる。

【0060】この場合、現在の残容量CcがステップS 48で計算した満充電容量Cfを超える値であった場合 10 には(ステップS49:YES)、そのようなことはあ り得ないので、現在の残容量Ccの値を、計算した満充 電容量Cfの値とする(ステップS50)。換言すれ ば、計算された満充電容量Cfの値が、計算される残容×

Cc(%)=(残容量Cc/基準容量Cr)×100

図6は、この(5)式に基づく表示器45上の棒グラフ 表示例を示している。この棒グラフ表示は、例えば、発 光ダイオードを利用して、バッテリ15が新品時には、 残容量CcがCc=Crとされ、基準容量Cr分の、例 えば、緑色発光表示の棒グラフ61とされ、劣化時の満 充電時には、残容量CcがCc=Cfとされて、満充電 容量Cf分の緑色発光表示の棒グラフ62とされる。ま た、この劣化時において、走行して放電させた場合に は、残容量Cc部分を緑色発光表示とし、放電量Cdi sの部分を、例えば、黄色発光表示として棒グラフ63 を表示する。なお、バッテリ15の髙電位放置劣化後の 棒グラフ62、63において、点線で示す劣化量部分は 表示しない。

【0063】上述した動作について、図7に示すタイム チャートにより概略的に説明する。

【0064】すなわち、時点t11~t12の走行期間 においては、バッテリ電圧Vbが降下するとともに、積 算された放電量(負の傾斜で表された部分)分だけ、表 示残容量Cc(%)が低下する。そして、時点t12~ 時点t13の放置時間の後に、時点t13~t14の間 で充電を行う。この期間では、充電量(正の傾斜で表さ れた部分)が積算され、かつバッテリ電圧V bが高電位 劣化が始まる閾値電圧Vthを超える。時点tl4にお いて、充電器12が切り放されて、その時点 t 14以降 時点t I5まで高電位状態で放置されたものとする。

【0065】時点t15~t16において、再び走行が 開始され、放電量が積算される。また、時点t16~t 17において、走行が停止され、その状態で放置され る。時点 t 17 において、再び充電が開始されるが、時 点t18において充電が停止され、時点t18~t19 の間放置されたものとする。時点t19では、放置電圧 Vbが補正が必要となる髙電圧放置判断電圧Vthに達 していないので、標準容量Crに対する劣化補正を行わ ない。

【0066】このように、上述の実施の形態によれば、

... (4)

* 量Ccの値を超えないようにする。すなわち、放置モー ドでは、基本的にはバッテリ15は放電しないので残容 量Ccは低下しない。しかし、高電圧放置を長時間続け て劣化量Cdが増加した場合は満充電容量Cfが低下し ているので、計算上、残容量>満充電容量(ステップS 49:YES)になることがある。しかし物理的には残 容量Ccは満充電容量Cfを超えないのでステップS4 9、550の処理が必要になる。

10

【0061】なお、表示器45上に表示する残容量を表 示残容量Cc(%)として、次の(5)式で得られる値 に対応する表示を行う。

[0062]

... (5)

リチウムイオン二次電池からなるバッテリ15の電圧V bを検出し、検出電圧Vbが高電圧状態(Vb>Vt h)である場合には、劣化補正量Cdを計算し、満充電 容量Cfを低減することで、正確な残容量Ccを算出す ることができるという効果が達成される。

【0067】さらに具体的に説明すれば、検出したバッ テリ電圧Vbが、バッテリ15の定格電圧(リチウムイ オン二次電池のセル換算では、3.6V)よりも高い所 定電圧Vth(例えば、同3.9V)を超える値で放置 されていた場合、例えば、満充電後の放置状態にある場 合には、その高電圧状態である時間を放置タイマ18に より計時し、この計時時間(放置時間)Tnに基づきバ ッテリの容量劣化量Cdを計算する。図6に示すよう に、計算した容量劣化量Cdを基準容量(新品時の容

量) Crから引いた値を、以降の満充電容量Cfとす 30 る。この満充電容量Cfから放電量Cdisを引いた値 を残容量Ccとする。

【0068】この場合、前記劣化補正量Cdを計算する 際に、バッテリ温度Tbと高電位の検出電圧値と放置時 間Tnに基づいて、劣化速度△Ah/hの最も正確な値 を選択するようにしているので、きわめて、髙精度に劣 化容量Cdを計算することができる。

【0069】なお、上述の実施の形態では、管理用EC U31とこれにインストールされたソフトウエアを利用 してこの発明を実現しているが、この発明は、そのソフ トウエアによる処理の一部または全部をディスクリート 部品、例えば、電圧検出手段としての電圧計、比較手段 としての比較器、計時手段としてのタイマ、容量劣化計 算手段(または残容量補正手段)としてのコンデンサ (記憶手段)を含む加減乗除器とにより構成することも 可能である。

【0070】また、この発明は上述の実施の形態に限ら ず、この発明の要旨を逸脱することなく種々の樽成を採 り得ることはもちろんである。

[0071] 50

12

【発明の効果】以上説明したように、この発明によれ ば、リチウムイオン二次電池の端子間電圧を検出し、検 出した電圧が、電池の定格電圧よりも高い予め決定した 所定電圧を超える高電圧状態であった場合には、高電圧 状態にある計時時間に基づく容量劣化量を計算し、電池 の残容量を補正するようにしている。

11

【0072】とのため、リチウムイオン二次電池におけ る高電圧下における不可逆劣化量による電池の容量減を 精度良く予測計算することが可能となり、結果として、 電池の残容量を正確に検出することができるという効果 10 U が達成される。

【図面の簡単な説明】

【図1】この発明の一実施の形態が適用された電気自動 車に充電器が接続された構成を示すブロック図である。

【図2】図1例中、モータによる走行制御の説明に供さ れるフローチャートである。

【図3】温度と高電位放置電位に対する単位時間劣化量 の関係を示す特性図である。

【図4】図1例中、電池残容量検出制御の説明に供され るフローチャートである。

*【図5】高電位放置時間と劣化量(容量減)との関係を 示す特性図である。

【図6】残容量の棒グラフ表示の説明に供されるグラフ である。

【図7】図1例中、電池残容量検出制御の説明に供されず るタイムチャートである。

【符号の説明】

10…電気自動車 15…バッテリ 18… (髙電位) 放置タイマ 3 1 …管理用EC

41…イグニッションスイッチ 43…充電スイッ

44…温度センサ

Vb…端子間電圧 Tb…バッテリ温

Cc…計算される現在の残容量 C c′…前回計算

時の残容量

Cd…高電位劣化量 Cd i s…放電容

量

*20 C r …基準容量

【図1】

[図5]

FIG. 5

【図2】

【図3】

FIG.3

【図6】

【図7】

