







```
IRLS
  Objective: Find \hat{\theta} = (d, R) that minimizes \sum p(y_u - d - R(x_u - \bar{x}))
 Also:
     1. I_{n+1} = 0, \hat{\mathcal{B}}_{o} = \begin{bmatrix} \alpha_{o} \\ \beta_{o} \end{bmatrix}
     2. 200p
            c) bet residual & reights
                     \Gamma u = \Im u - \Im u = \Im u - [1 \times u] \hat{\theta};
                     Wu = P((n))
           b) Solu HLS publican
                       \sum_{u \in P} w_u r_u z_u = 0 \rightarrow \theta_{i+1}
            c) Chick corregera of ôi & ô; n Early exit
Newton Raphson
Goal: 0 & B° 34. 4(0, P) = 0
Also:
    1. I_{nit}: i \leftarrow 0, \hat{\theta_0}
                                                        2. Loop
           a) Updak itaak:
                             \hat{\theta}_{i+1} = \hat{\mathcal{O}}_i - \left[ \Psi'(\hat{\theta}_i; \rho) \mathcal{J}'(\psi/\hat{\theta}_i; \rho) \right]
           b) Check converse & early exit.
```



$$P(S) = \begin{cases} 1 \\ (n) \end{cases}$$

$$P(S) =$$

| Fundin: a          | $(p) = f\left(\sum_{n \in P} (y_n)\right) \rightarrow$                                                                | $\alpha(\rho) = f(\alpha_{\rightarrow \tau}(s))$         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| INFERENCE          |                                                                                                                       |                                                          |
| Emors              |                                                                                                                       |                                                          |
| · Study            |                                                                                                                       |                                                          |
| · Sample           | - Operto                                                                                                              |                                                          |
| 6 Measurent        | Tristment method                                                                                                      |                                                          |
| Anatomy of Sis. 5  | Test                                                                                                                  |                                                          |
|                    | from same pop.                                                                                                        |                                                          |
| Discrepancy measur |                                                                                                                       |                                                          |
| 1 Observ discrpa   |                                                                                                                       |                                                          |
|                    | , M                                                                                                                   |                                                          |
| 6 ρ- val:          |                                                                                                                       | [D(P,,i, P2,i) 2 dolo]                                   |
|                    |                                                                                                                       |                                                          |
| tron:              | et Ho but Ho tre                                                                                                      |                                                          |
| · Typ II: acce     | et Hb but Hb tre  Bot Hb but Hb folse                                                                                 |                                                          |
| Confidence Interes |                                                                                                                       |                                                          |
| O Emile varina:    | 2 / 11 1                                                                                                              |                                                          |
| Var                | $\frac{\sqrt{2}}{\sqrt{N}} = \frac{\sqrt{N-n}}{\sqrt{N-1}}$                                                           |                                                          |
| @ Bootesty C.T.    |                                                                                                                       |                                                          |
| SE = S             | $SD \supseteq \tilde{\alpha} (S) = \begin{cases} \frac{1}{2} (\alpha(S_{b}^{*}) - \bar{\alpha}) \\ B = 1 \end{cases}$ | $\overline{a}^* = \frac{1}{2} \sum_{\alpha} \alpha(S^*)$ |
|                    |                                                                                                                       | i = 1                                                    |
| A: Noise noi       |                                                                                                                       |                                                          |
|                    | $a(s) \pm c \times sD[\bar{a}(s)]$                                                                                    |                                                          |
|                    |                                                                                                                       |                                                          |
| B: Percentile      | . 1/2 & (1-1/2) th pearties of                                                                                        | bootreting distr.                                        |
|                    |                                                                                                                       |                                                          |

| C: Bootstap - Critice PREDICTION |                | distr. of          | ZL = a (Sb*<br>SDx               | ) - als)<br>[alsi*)] ~ 2~ bootstep                  |
|----------------------------------|----------------|--------------------|----------------------------------|-----------------------------------------------------|
| APSE                             |                |                    |                                  |                                                     |
|                                  |                | ) = 1 5 (v         | $\hat{\mu}_s \left(x_n\right)^2$ |                                                     |
| Across multiple so               |                |                    |                                  |                                                     |
| APSE (P, Jū                      | M j=1          | APSE (P, )         |                                  | Axx (Vo [4123)                                      |
|                                  | = 1 5<br>M 5   | 1 5 (bn-7<br>N nep | (2n)                             | $\frac{1}{M} \sum_{j=1}^{M} \tilde{\mu}_{s_{j}}(x)$ |
|                                  | + 1 5 -        | N Zep ( ps; (      | $(2n)^2$                         | → Var [jū]                                          |
|                                  | 1 1 5<br>N nep | (ā(22) - T(        | $(\alpha_n))^2$                  | Bius 2 [ū]                                          |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |
|                                  |                |                    |                                  |                                                     |