Discrete	Mark			
Lecture	17			
Proofs				

What is a proof?

an explanation of a math. fact

100% convincing

100% cker

5+ep-by-5+ep

each step is conefully explained Theorem

Propositions Ly "small theorems"

examples]

The Fundamental Theorem of Algebra Every degree-n polynomial has at most n roots.

FTC

If a function
$$f:[a,b]\to\mathbb{R}$$
 is continuous, then
$$\int_a^b f(x)\,dx = F(b) - F(a), \text{ where } F'(x) = f(x).$$

- 1) most theorems & propositions are

 P=>Q (or PL=>Q)
- 2 proofs use definitions & previous facts

Definitions of certain sets $(\emptyset, IN, \mathbb{Z}, ...)$ will be used

also some familiar concepts about IN, I

Definition 3.1. (Divides & Divisors). An integer $a \in \mathbb{Z}$ is said to divide another integer, $b \in \mathbb{Z}$, if $\exists q \in \mathbb{Z}$ such that

$$b = q \cdot a$$

This is notated by writing a|b, where the line "|" is pronounced "divides." For instance, you are already aware that 5 divides 10, but now we can write 5|10; this is a true statement because

$$10 = 2 \cdot 5$$
.

We also use the word divisor in this situation. That is, the phrase "a divides b" can be restated as "a is a divisor of b." This allows us to write and speak sentences like "5 is a divisor of 10." Indeed, one can write down all of the divisors of 10 (or any integer):

the set of the divisors of
$$10 = \{-10, -5, -2, -1, 1, 2, 5, 10\}$$
.

Make certain you can use the definitions of "divides" and "divisors" to understand why each number in the set above belongs there. A good way to check that you're understanding these is to answer a questions like these: what are all the divisors of 9? What about the divisors of 5? 100? 24?

Note: These definitions only apply to integers, even though you know how to divide other types of numbers (like rationals and reals). Also, some us the synonym "factor" for "divisor."

ex)
$$3/8$$
 is false

 $8 = 9.3 = 3.9$, $9 \in \mathbb{Z}$

no $9 \in \mathbb{Z}$ will solve $39 = 8$
 $1 = 1 \text{ foil}(9 = 2)$
 $9 = 3$
 $3/8$
 $4 = 3 \text{ is not a}$
 $4 = 3 \text{ is not a}$
 $4 = 3 \text{ is not a}$

you're understanding these is to answer a questions like these: what are all the divisors of 9? What about the divisors of 5? 100? 24?

iivisors or 5. 10	1	why?
1 9	9 is a much of I	9= 9.1 /
(-1) 9	9 is a multir of -1	9 = (-9)·(-1)~
3/9	9 is a multi of 3	9 = 3 · 3
(-3) 19		9 = (-5) (-3)
9 9		9 = 1.9
(-9) 19		9 = (-1)·(-9)
	1 9 (-1) 9 3 9 (-3) 9 9 9	(-1) 9 9 is a multi of -1 3 9 9 is a multi of 3 (-3) 9 9

divisors of 24:
$$\{2-100,-50,-25,-20,-10,-5,-1,...,50,100\}$$

nover loss of limes we focus on positive divisors

Definition 3.2. (Multiple). An integer $b \in \mathbb{Z}$ is said to be a multiple of another integer $a \in \mathbb{Z}$ if $\exists q \in \mathbb{Z}$ such that

$$b = q \cdot a$$

In other words, the phrase "b is a multiple of a" is another way of saying "a|b." (Also 'b is a multiple of a" means "a is a divisor of b.") For instance, we can say "10 is a multiple of 5."

$$\frac{\text{ex}}{3}$$
 9 is a multiple of 3 $\sqrt{3}$ $9 = 9.3$

Definition 3.3. (Prime). A natural number $p \in \mathbb{N}$ is a **prime number** if it has exactly two (positive) divisors. For instance, 7 is prime because the only natural numbers that divide it are 1 and 7. 10 is **not prime** because it has more than two (positive) divisors, and 1 is **not prime** because it only has one, single (positive) divisor.

Compare this definition with the more common one that sounds something like this: "a number p is prime if it is only divisible by 1 and itself."

positive divisors of 10:
$$\frac{5}{2}$$
 1, z , s , $10\frac{3}{2}$

positive divisors of 1: $\frac{5}{2}$ 1 $\frac{3}{2}$

2 is prime because its (pos.) divisors are $\frac{1}{2}$

3 is prime $\frac{5}{2}$

passem: every neIN is divisible by I and n

Open question: how many postaive divisors

do perfect squares lave?

10 has 4 (post) divisors

12 has 6 (post) divisors

16 has 5 (post) divisors

81,2,4,8,163

Summarize

we prove propositions & theorems

we will need various definitions to)
write & understand these proofs

We will focus on three types of proofs

- Direct Proof

 Contra positive Proof

 Contra positive Proof

 Contra positive Proof

 - · Proof by Contradiction