Machine Learning II A crash course on Optimization

Le Thi Khanh Hien UMONS, thikhanhhien.le@umons.ac.be

Mons, February 2023

What will be covered in this crash course?

Lecture 1:

- Prerequisites of linear algebra and mathematical analysis
- A brief introduction to convex optimization

Lecture 2:

- Gradient descent method
- Newton method
- Proximal point algorithm

Lecture 3:

- Accelerated proximal point algorithm
- Stochastic gradient method

Where do we meet optimization?

OPTIMIZATION is everywhere

An example - diet problem

Design a diet plan that minimizes the expense per day

	Food	Energy	Protein	Calcium	Price per	Daily limit
	1000	(kcal)	(g)	(mg)	serving (€)	Daily IIIIII
	Oatmeal	110	4	2	3	3
2	Chicken	205	32	12	24	3
	Eggs	160	13	54	13	5
	Milk	160	8	285	9	8
	Pie	420	4	22	24	3
	Pork	260	14	80	13	2

Optimization - how?

- Mathematical Modelling: describing a real world problem in mathematical terms, and defining the corresponding optimization problem.
- Computational Optimization: using an appropriate optimization algorithm to find an approximate solution to the optimization problem.

Optimization - how?

- Mathematical Modelling: describing a real world problem in mathematical terms, and defining the corresponding optimization problem.
- Computational Optimization: using an appropriate optimization algorithm to find an approximate solution to the optimization problem.

Optimization for Machine Learning

- Mathematical Modelling: mathematically modelling the machine learning problem.
- Computational Optimization: learn the model parameters.
 - in practice, many libraries are available but practitioners consider optimization algorithms as "black box".
 - in this course, we study the algorithms and try to understand how they work.

General optimization problem

$$\min_{x} f(x)
s.t. x \in \mathcal{X}.$$

Example:

Regularized linear regression

$$\min_{x \in \mathbb{R}^d} \frac{1}{2} ||Ax - y||_2^2 + \lambda R(x),$$

where $\{(a_i, y_i)\}$ for i = 1, ..., n, are n pairs of training data and A is a matrix whose i-th row is a_i^T .

General optimization problem

$$\min_{x} f(x)
s.t. x \in \mathcal{X}.$$

Example:

Regularized linear regression

$$\min_{x \in \mathbb{R}^d} \frac{1}{2} ||Ax - y||_2^2 + \lambda R(x),$$

where $\{(a_i, y_i)\}$ for i = 1, ..., n, are n pairs of training data and A is a matrix whose i-th row is a_i^T .

Regularized logistic regression

$$\min_{w \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp \left(-y_i \left\langle x_i, w \right\rangle \right) \right) + \lambda \|w\|_1,$$

9 / 74

where $\{(x_i, y_i)\}$ for i = 1, ..., n, $x^i \in \mathbb{R}^m$ and $y_i \in \{-1, 1\}$ are n pairs of training data.

Table of content

Some preliminaries of linear algebra and mathematical analysis

2 A brief introduction to convex optimization

Some preliminaries of linear algebra and mathematical analysis

Some notations

- Sets \mathcal{X} , (a,b), [a,b], [a,b], (a,b], \mathbb{R} , \mathbb{R}_+ , $x \in \mathcal{X}$.
- Real-valued functions: $f: \mathcal{X} \to \mathcal{Y} \subset \mathbb{R}$, \mathcal{X} is called the domain, \mathcal{Y} is called the range.
- Matrices
 - Matrix addition
 - Matrix product
 - Square matrix, trace of square matrix
 - Eigenvalues of a square matrix, spectral radius
 - Singular values of a matrix
 - Positive definite and positive semidefinite matrix

Real vector space

A vector space \mathbb{E} over \mathbb{R} is a set of elements (which are called "vectors") such that:

- (A) For any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$, there corresponds a "sum" $\mathbf{x} + \mathbf{y}$ that satisfies the following properties
 - $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
 - $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$ for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{E}$.
 - There exists a unique "zero vector" ${\bf 0}$ in ${\mathbb E}$ such that ${\bf x}+{\bf 0}={\bf x}$ for any ${\bf x}$.
 - For any $\mathbf{x} \in \mathbb{E}$, there exists $-\mathbf{x} \in \mathbb{E}$ such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$.
- (B) For any scalar (real number) $a \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{E}$, there corresponds a "scalar multiplication" $a\mathbf{x}$ satisfying the following properties
 - $a(b\mathbf{x}) = (ab)\mathbf{x}$ for any $a, b \in \mathbb{R}, \mathbf{x} \in \mathbb{E}$.
 - 1x = x for any $x \in \mathbb{E}$.
- (C) The summation and scalar multiplication satisfy the following properties
 - $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$ for any $a \in \mathbb{R}$, $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
 - $(a+b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$ for any $a,b \in \mathbb{R}$, $\mathbf{x} \in \mathbb{E}$.

Basis. A basis of a vector space \mathbb{E} is a set of linearly independent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ that spans \mathbb{E} : for any $\mathbf{x} \in \mathbb{E}$, there exists $\beta_1, \dots, \beta_n \in \mathbb{R}$ such that

$$\mathbf{x} = \sum_{i=1}^{n} \beta_i \mathbf{v}_i.$$

Dimension. The dimension of a vector space $\mathbb E$ is the number of vectors in a basis of $\mathbb E$.

Norm

A norm $\|\cdot\|$ on a vector space $\mathbb E$ is a function $\|\cdot\|:\mathbb E\to\mathbb R_+$ satisfying the following properties:

- (nonnegativity) $\|\mathbf{x}\| \ge 0$ for any $\mathbf{x} \in \mathbb{E}$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$.
- (positive homogeneity) $||a\mathbf{x}|| = |a| ||\mathbf{x}||$ for any $\mathbf{x} \in \mathbb{E}$ and $a \in \mathbb{R}$.
- (triangle inequality) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.

Norm

A norm $\|\cdot\|$ on a vector space $\mathbb E$ is a function $\|\cdot\|:\mathbb E\to\mathbb R_+$ satisfying the following properties:

- (nonnegativity) $\|\mathbf{x}\| \ge 0$ for any $\mathbf{x} \in \mathbb{E}$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$.
- (positive homogeneity) $||a\mathbf{x}|| = |a| ||\mathbf{x}||$ for any $\mathbf{x} \in \mathbb{E}$ and $a \in \mathbb{R}$.
- (triangle inequality) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.

Example: I_p -norm of \mathbb{R}^n (with $p \geq 1$):

Inner product

An inner product of \mathbb{E} is a function that associates to each pair of \mathbf{x} , \mathbf{y} a real number denoted by $\langle \mathbf{x}, \mathbf{y} \rangle$ and satisfying the following properties:

- (commutativity) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{E}$.
- (linearity) $\langle a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2, \mathbf{y} \rangle = a_1 \langle \mathbf{x}_1, \mathbf{y} \rangle + a_2 \langle \mathbf{x}_2, \mathbf{y} \rangle$ for any $a_1, a_2 \in \mathbb{R}$ and $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y} \in \mathbb{E}$.
- (positive definite) $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ for any $\mathbf{x} \in \mathbb{E}$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = 0$.

Euclidean Spaces. A finite dimensional real vector space equipped with an inner product $\langle \cdot, \cdot \rangle$ and the norm $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is called a Euclidean space.

Example.

- \bullet \mathbb{R}^n is an Euclidean space with
 - dot product $\langle x,y\rangle=\sum_{k=1}^n x_k y_k$ and $\|x\|_2=\sqrt{\langle x,x\rangle}=\sqrt{\sum_{k=1}^n x_k^2}$.
 - Q-inner product (where Q is a positive definite matrix) $\langle x,y\rangle_Q = x^\top Qy$ and $\|x\|_Q = \sqrt{\langle x,x\rangle_Q} = \sqrt{x^\top Qx}$.

ullet $\mathbb{R}^{m imes n}$ is an Euclidean space with inner product

$$\langle A,B \rangle = \operatorname{Trace}(A^TB) = \sum_{i=1}^m \sum_{j=1}^n A_{ij}B_{ij} \quad \text{and} \quad \|A\|_F = \sqrt{\operatorname{Trace}(A^TA)}.$$

Orthogonality $\mathbf{x} \perp \mathbf{y}$ if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Cauchy-Schwarz inequality
$$\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$$
.

General version of Cauchy-Schwarz inequality: Let $\mathbb E$ be an inner product vector space endowed with a norm $\|\cdot\|$. Then we have

$$|\langle \mathbf{y}, \mathbf{x} \rangle| \leq \|\mathbf{y}\|_* \|\mathbf{x}\|$$
, for any $\mathbf{y} \in \mathbb{E}^*, \mathbf{x} \in \mathbb{E}$,

where \mathbb{E}^* is the dual space of \mathbb{E} , and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$.

General version of Cauchy-Schwarz inequality: Let $\mathbb E$ be an inner product vector space endowed with a norm $\|\cdot\|$. Then we have

$$|\langle \mathbf{y}, \mathbf{x} \rangle| \leq \|\mathbf{y}\|_* \|\mathbf{x}\|$$
, for any $\mathbf{y} \in \mathbb{E}^*, \mathbf{x} \in \mathbb{E}$,

where \mathbb{E}^* is the dual space of \mathbb{E} , and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|_*$ (Optional reading) What is a dual space? What is a dual norm?

A linear transformation from \mathbb{E} to \mathbb{R} is called a linear functional. The dual space of \mathbb{E} , denoted by \mathbb{E}^* is the set of all linear functionals on \mathbb{E} . For inner product spaces, given a linear functional $f \in \mathbb{E}^*$, there always exists $\mathbf{y} \in \mathbb{E}$ such that $f(\mathbf{x}) = \langle \mathbf{y}, \mathbf{x} \rangle$. Suppose \mathbb{E} is endowed with a norm $\|\cdot\|$, then the dual norm of the dual space is given by

$$\|\mathbf{y}\|_* := \max_{\mathbf{x}: \|\mathbf{x}\| \le 1} \langle \mathbf{y}, \mathbf{x} \rangle = \max_{\mathbf{x}: \|\mathbf{x}\| = 1} \langle \mathbf{y}, \mathbf{x} \rangle.$$

General version of Cauchy-Schwarz inequality: Let $\mathbb E$ be an inner product vector space endowed with a norm $\|\cdot\|.$ Then we have

$$|\langle \mathbf{y}, \mathbf{x} \rangle| \leq \|\mathbf{y}\|_* \|\mathbf{x}\|$$
, for any $\mathbf{y} \in \mathbb{E}^*, \mathbf{x} \in \mathbb{E}$,

where \mathbb{E}^* is the dual space of \mathbb{E} , and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|_*$. (Optional reading) What is a dual space? What is a dual norm?

Example.

- I_p -norm of \mathbb{R}^n (with $p \ge 1$): $\|x\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$. The dual norm of I_p -norm with p > 1 is I_q -norm, where q satisfies $\frac{1}{p} + \frac{1}{q} = 1$.
- The dual norm of $\|\cdot\|_Q$ is $\|\cdot\|_{Q^{-1}}$.

Matrix norm Let $A \in \mathbb{R}^{m \times n}$.

- Frobenius norm $||A||_F = \sqrt{\sum_{i,j} A_{ij}^2} = \sqrt{\sum_i \sigma_i^2}$.
- Nuclear norm $||A||_* = \sum_i \sigma_i$.

Matrix norm Let $A \in \mathbb{R}^{m \times n}$.

- Frobenius norm $||A||_F = \sqrt{\sum_{i,j} A_{ij}^2} = \sqrt{\sum_i \sigma_i^2}$.
- Nuclear norm $||A||_* = \sum_i \sigma_i$.

(Optional reading)

(a, b)-norm

$$\left\Vert A\right\Vert _{a,b}=\max_{\mathbf{x}}\left\{ \,\left\Vert A\mathbf{x}\right\Vert _{b}:\left\Vert \mathbf{x}\right\Vert _{a}\leq1\right\} .$$

- Spectral norm: $||A||_2 = ||A||_{2,2} = \sqrt{\lambda_{\max}(A^{\top}A)} = \sigma_{\max}(A)$
- 1-norm: $||A||_1 = ||A||_{1,1} = \max_{j=1,\dots,n} \sum_{i=1}^m |A_{i,j}|$.
- ∞ -norm: $||A||_{\infty} = ||A||_{\infty,\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |A_{i,j}|$.

Matrix norm Let $A \in \mathbb{R}^{m \times n}$

- Frobenius norm $||A||_F = \sqrt{\sum_{i,j} A_{ij}^2} = \sqrt{\sum_i \sigma_i^2}$.
- Nuclear norm $||A||_* = \sum_i \sigma_i$.

(Optional reading)

(a, b)-norm

$$\left\|A\right\|_{\mathbf{a},\mathbf{b}} = \max_{\mathbf{x}} \left\{ \left\|A\mathbf{x}\right\|_{\mathbf{b}} : \left\|\mathbf{x}\right\|_{\mathbf{a}} \leq 1 \right\}.$$

- Spectral norm: $||A||_2 = ||A||_{2,2} = \sqrt{\lambda_{\max}(A^{\top}A)} = \sigma_{\max}(A)$
- 1-norm: $||A||_1 = ||A||_{1,1} = \max_{j=1,\dots,n} \sum_{i=1}^m |A_{i,j}|$.
- ∞ -norm: $||A||_{\infty} = ||A||_{\infty,\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |A_{i,j}|$.

Useful inequalities:

- $\|Ax\|_2 \le \|A\|_2 \|x\|_2.$
- $\rho(A) \le ||A||_2 \le ||A||_F \le ||A||_*$.
- $\bullet \ \langle A,B\rangle \leq \|A\|_F \, \|B\|_F.$

Big O notations

When $x \to \infty$:

- $f(x) = O(g(x)) \Leftrightarrow \exists \alpha, x_0 > 0 \text{ s.t } |f(x)| \le \alpha |g(x)|, \forall x > x_0.$
- $f(x) = o(g(x)) \Leftrightarrow \forall \alpha > 0, \exists x_0 > 0 \text{ s.t } |f(x)| \le \alpha |g(x)|, \forall x > x_0.$

Big O notations

When $x \to \infty$:

- $f(x) = O(g(x)) \Leftrightarrow \exists \alpha, x_0 > 0 \text{ s.t } |f(x)| \le \alpha |g(x)|, \forall x > x_0.$
- $f(x) = o(g(x)) \Leftrightarrow \forall \alpha > 0, \exists x_0 > 0 \text{ s.t } |f(x)| \le \alpha |g(x)|, \forall x > x_0.$

When $x \rightarrow a$:

- $f(x) = O(g(x)) \Leftrightarrow \exists \alpha, d > 0 \text{ s.t } |f(x)| \le \alpha |g(x)|, \forall x : ||x a|| < d.$
- $f(x) = o(g(x)) \Leftrightarrow \forall \alpha > 0, \exists d > 0 \text{ s.t}$ $|f(x)| \le \alpha |g(x)|, \forall x : ||x - a|| < d.$

Big O notations

When $x \to \infty$:

•
$$f(x) = O(g(x)) \Leftrightarrow \exists \alpha, x_0 > 0 \text{ s.t } |f(x)| \leq \alpha |g(x)|, \forall x > x_0.$$

•
$$f(x) = o(g(x)) \Leftrightarrow \forall \alpha > 0, \exists x_0 > 0 \text{ s.t } |f(x)| \le \alpha |g(x)|, \forall x > x_0.$$

When $x \rightarrow a$:

•
$$f(x) = O(g(x)) \Leftrightarrow \exists \alpha, d > 0 \text{ s.t } |f(x)| \leq \alpha |g(x)|, \forall x : ||x - a|| < d.$$

•
$$f(x) = o(g(x)) \Leftrightarrow \forall \alpha > 0, \exists d > 0 \text{ s.t}$$

 $|f(x)| \le \alpha |g(x)|, \forall x : ||x - a|| < d.$

(Optional reading)

When $x \to \infty$:

•
$$f(x) = \Omega(g(x)) \Leftrightarrow \exists \alpha, x_0 > 0 \text{ s.t } |f(x)| \ge \alpha |g(x)|, \forall x > x_0.$$

•
$$f(x) = \omega(g(x)) \Leftrightarrow \forall \alpha > 0, \exists x_0 > 0 \text{ s.t } |f(x)| \le \alpha |g(x)|, \forall x > x_0.$$

When $x \rightarrow a$:

•
$$f(x) = \Omega(g(x)) \Leftrightarrow \exists \alpha, d > 0 \text{ s.t } |f(x)| \ge \alpha |g(x)|, \forall x : ||x - a|| < d.$$

•
$$f(x) = \omega(g(x)) \Leftrightarrow \forall \alpha > 0, \exists d > 0 \text{ s.t.}$$

 $|f(x)| \le \alpha |g(x)|, \forall x : ||x - a|| < d.$

Example.

- sin(x) = O(1) as $x \to \infty$.
- $x^4 + 100x^2 = O($) as $x \to 0$.
- $\frac{3}{n} + \frac{5}{n^2} = O($) as $n \to +\infty$.

Example.

- sin(x) = O(1) as $x \to \infty$.
- $x^4 + 100x^2 = O($) as $x \to 0$.
- $\frac{3}{n} + \frac{5}{n^2} = O($) as $n \to +\infty$.

Table: Classes of functions commonly encountered when analyzing algorithms

Notation	Name	
O(1)	constant	
$O(\log(x))$	logarithmic	
O(x)	linear	
$O(x^q), 1 < q < 2$	super-linear	
$O(x^2)$	quadratic	
$O(x^c)$ (for some constant c)	polynomial	
$O(c^{x})$ (for some constant c)	exponential	

A few basic differentiation rules

Derivatives

• Scalar function of scalar variable $f: \mathbb{R} \to \mathbb{R}$

$$f'(x) := \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}.$$

A few basic differentiation rules

Derivatives

• Scalar function of scalar variable $f: \mathbb{R} \to \mathbb{R}$

$$f'(x) := \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}.$$

- Multivariate scalar function $f: \mathbb{R}^n \to \mathbb{R}$. Suppose f is a continuously twice differentiable function.
 - Partial derivative

$$\frac{\partial f}{\partial x_i} := \lim_{\Delta x_i \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + \Delta x_i, x_{i+1}, \dots, x_n) - f(x)}{\Delta x_i}$$

Gradient

$$\nabla f(\mathbf{x}) := (\frac{\partial f}{\partial \mathbf{x}_1}, \dots, \frac{\partial f}{\partial \mathbf{x}_n})^{\top}.$$

Hessian matrix

$$\nabla^2 f(x) := \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_i} \right]$$

Example.

Find gradient and Hessian of $f: \mathbb{R}^3 \to \mathbb{R}, f(x) = x_1^2 + 3x_1x_2 + 2x_2^2 + x_1$.

(Optional reading) Frechet derivative on norm vector spaces https:

 $//link.springer.com/content/pdf/10.1007/3-7643-7357-1_4.pdf$

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously twice differentiable function.

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously twice differentiable function. Taylor Expansion:

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + o(||y - x||),$$

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x) (y - x) + o(||y - x||^2).$$

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously twice differentiable function. Taylor Expansion:

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + o(\|y - x\|),$$

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x) (y - x) + o(\|y - x\|^2).$$

Jacobian matrix of a multivalued function $f: \mathbb{R}^n \to \mathbb{R}^m$, $f(x) = [f_1(x), \dots, f_m(x)]$ is

$$\nabla f(x) = [\nabla f_1(x), \nabla f_2(x), \dots, \nabla f_m(x)] \in \mathbb{R}^{n \times m}.$$

Example. Find Jacobian matrix of $f(x_1, x_2) = [x_1^2, x_1x_2, 2]^{\top}$.

Chain rule. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ be two differentiable mappings. Define h(x) := g(f(x)) (or $h = g \circ f$, h is a composition of g and f). Then we have

$$\nabla h(x) = \nabla f(x) \nabla g(f(x)).$$

(Optional reading)

Chain rule in general case https:

 $// link.springer.com/content/pdf/10.1007/3-7643-7357-1_4.pdf$

Chain rule. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ be two differentiable mappings. Define h(x) := g(f(x)) (or $h = g \circ f$, h is a composition of g and f). Then we have

$$\nabla h(x) = \nabla f(x) \nabla g(f(x)).$$

Example

•
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \log(1 + \exp(-x))$, $\nabla f(x) = ?$, $\nabla^2 f(x) = ?$.

Chain rule. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ be two differentiable mappings. Define h(x) := g(f(x)) (or $h = g \circ f$, h is a composition of g and f). Then we have

$$\nabla h(x) = \nabla f(x) \nabla g(f(x)).$$

Example

- $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \log(1 + \exp(-x))$, $\nabla f(x) = ?$, $\nabla^2 f(x) = ?$.
- (See Lab 1) Given a matrix $A \in \mathbb{R}^{m \times n}$ and a differentiable function $f : \mathbb{R}^m \to \mathbb{R}$. Let $h : \mathbb{R}^n \to \mathbb{R}$ be defined by h(x) = f(Ax). $\nabla h(x) = ? \nabla^2 h(x) = ?$

General optimization problem

$$\min_{x} f(x)$$

$$s.t. x \in \mathcal{X}.$$

- Existence of a solution?
- Global or local minimum?
- Optimality conditions?
- Convex/nonconvex problem?
- Constrained/unconstrained problem?
- Continuous/discrete problem?

II. A brief introduction to convex optimization

References:

- Sebastien Bubeck, "Convex Optimization: Algorithms and Complexity", Foundations and Trends in Machine Learning, 8(3-4): 231-357, 2015.
- Stephen Boyd and Lieven Vandenberghe, "Convex Optimization".
 Web-page of the book: https://stanford.edu/~boyd/cvxbook/
- Boris Mordukhovich and Nguyen Mau Nam, "An Easy Path to Convex Analysis and Applications" (2013).

Convexity, subgradient, Fermat's optimality condition

Definition 1

A set $C \subset \mathbb{E}$ is convex if for any $x,y \in C$ and $\lambda \in [0,1]$, the point $\lambda x + (1-\lambda)y \in C$. Equivalently, C is convex if

$$[x,y] := \left\{ \lambda x + (1-\lambda)y | \lambda \in [0,1] \right\} \subset C.$$

Example

- Let $a \in \mathbb{E}^* \setminus \{0\}$ and $\beta \in \mathbb{R}$. The following sets are convex:
 - (i) the hyperplane $H = \{x \in \mathbb{E} | \langle a, x \rangle = \beta\}$,
 - (ii) the half-space $H^- = \{x \in \mathbb{E} | \langle a, x \rangle \leq \beta \}$,
- Let $c \in \mathbb{E}$ and $\varepsilon > 0$. Let $\|\cdot\|$ be an arbitrary norm on \mathbb{E} . The closed ball

$$\mathbb{B}_r(c) := \{ x \in \mathbb{E} | \|x - c\| \le \varepsilon \}$$

is a convex set.

Algebraic Operations with convex sets

Proposition 2.1 (Intersections of convex sets)

Let $\{C_i\}_{i\in I}$ be a collection of convex sets in \mathbb{E} . Then $\bigcap_{i\in I}C_i$ is also a convex set.

Corollary. Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$. The polyhedral set $\{x \in \mathbb{R}^n | Ax \leq b\}$ is convex.

Optional reading

Proposition 2.2

Suppose that $\mathbb E$ and $\mathbb F$ be two Euclidean spaces.

- (i) Let A and B be two convex sets in \mathbb{E} . Then
 - $\lambda A := \{\lambda a | a \in A\}$ is convex.
 - $A + B := \{a + b | a \in A, b \in B\}$ is convex.
- (ii) Let $A \subset \mathbb{E}$ and $B \subset \mathbb{F}$ be convex sets. Then $A \times B$ is convex on $\mathbb{E} \times \mathbb{F}$.
- (iii) Let $A \subset \mathbb{E}$ be a convex set and $\Gamma : \mathbb{E} \to \mathbb{F}$ be an affine mapping. Then the image

$$\Gamma(A) := \{ \Gamma a | \ a \in A \}$$

is convex.

(iv) Let $B \subset \mathbb{F}$ be a convex set and $\Gamma : \mathbb{E} \to \mathbb{F}$ be an affine mapping. Then the pre-image

$$\Gamma^{-1}(A) := \{ x \in \mathbb{E} | \ \Gamma x \in A \}$$

is convex.

Extended real-valued functions

That function can take value in $\mathbb{R} \cup \{-\infty, \infty\}$. Conventions: for $a \in \mathbb{R}$ we have

- $a + \infty = \infty + a = \infty$,
- $a \infty = -\infty + a = \infty$,
- $a \cdot \infty = \infty \cdot a = \infty$ for 0 < a,
- $a \cdot (-\infty) = (-\infty) \cdot a = -\infty$ for 0 < a,
- $a \cdot \infty = \infty \cdot a = -\infty$ for a < 0,
- $a \cdot (-\infty) = (-\infty) \cdot a = \infty$ for a < 0,
- $0 \cdot \infty = \infty \cdot 0 = 0 \cdot (-\infty) = (-\infty) \cdot 0 = 0$.

For an extended real-valued function f, we define:

- dom $(f) := \{ \mathbf{x} \in \mathbb{E} : f(\mathbf{x}) < \infty \}.$
- $\operatorname{epi}(f) := \{(\mathbf{x}, t) : f(\mathbf{x}) \leq t, \mathbf{x} \in \mathbb{E}, t \in \mathbb{R}\}.$
- Lev $(f, \alpha) := \{ \mathbf{x} \in \mathbb{E} : f(\mathbf{x}) \le \alpha \}$ for any $\alpha \in \mathbb{R}$.

Optional reading

Proper functions. f is called proper if f does not take the value $-\infty$ and dom(f) is nonempty.

Closed functions. A function $f: \mathbb{E} \to [-\infty, \infty]$ is closed if its epigraph is closed. Lower semicontinuity. A function $f: \mathbb{E} \to [-\infty, \infty]$ is called lower semicontinuous

$$f(\bar{\mathbf{x}}) \leq \liminf_{n \to \infty} f(\mathbf{x}_n).$$

Or equivalently, for every $\alpha \in \mathbb{R}$ with $f(\bar{\mathbf{x}}) > \alpha$ there exists $\delta > 0$ such that

$$f(\mathbf{x}) > \alpha$$
 for all $\mathbf{x} \in \mathbb{B}_{\delta}(\mathbf{\bar{x}})$.

A function $f: \mathbb{E} \to [-\infty, \infty]$ is called lower semicontinuous if it is lower semicontinuous at each point in \mathbb{E} .

Theorem 2.1

Let f be an extended real-valued function. Then the following properties are equivalent:

- (i) f is lower semicontinuous.
- (ii) f is closed.
- (iii) For any $\alpha \in \mathbb{R}$, the α -level set of f is closed.

at $\bar{\mathbf{x}} \in \mathbb{R}$ if for any sequence $\{\mathbf{x}_n\} \to \bar{\mathbf{x}}$ we have

Convex functions.

Definition 2

Let $f:\Omega\to\bar{\mathbb{R}}$ be an extended real-valued function defined on a convex set $\Omega\subset\mathbb{E}$. We say f is convex on Ω (or convex relative to Ω) if

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$$
 for all $x,y \in \Omega, t \in [0,1]$.

If the inequality is strict for $x \neq y$ then f is strictly convex on Ω .

Proposition 2.3 (Convexity of epigraph for convex functions)

The extended real-valued function $f : \mathbb{E} \to \overline{\mathbb{R}}$ is convex if and only if its epigraph $\mathrm{epi}\,(f)$ is convex.

Convex functions.

Definition 2

Let $f:\Omega\to \overline{\mathbb{R}}$ be an extended real-valued function defined on a convex set $\Omega\subset \mathbb{E}$. We say f is convex on Ω (or convex relative to Ω) if

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$$
 for all $x,y \in \Omega, t \in [0,1]$.

If the inequality is strict for $x \neq y$ then f is strictly convex on Ω .

Proposition 2.3 (Convexity of epigraph for convex functions)

The extended real-valued function $f : \mathbb{E} \to \overline{\mathbb{R}}$ is convex if and only if its epigraph $\operatorname{epi}(f)$ is convex.

- Affine function $f(x) = a^{T}x + b$
- Every norm on \mathbb{R}^n is convex.

Characterizations of differentiable convex functions.

Theorem 2.2 (Derivative tests)

Suppose f is a differentiable function on an open convex set $\Omega \subset \mathbb{R}^n$. f is convex on Ω if and only if one of the following conditions holds

- (i) $\langle y x, \nabla f(y) \nabla f(x) \rangle \ge 0$ for all $x, y \in \Omega$.
- (ii) $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$ for any $x, y \in \Omega$.
- (iii) $\nabla^2 f(x)$ is positive-semidefinite for all x in Ω .

Example

- $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^p$.
- $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = \frac{1}{2}\alpha x^2 + \frac{1}{2}\beta y^2 y$.

•
$$f: [\varepsilon, \infty) \to \mathbb{R}$$
, $f(x) = -log(x)$.

•
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = log(1 + exp(-x))$.

•
$$f: [\varepsilon, \infty) \to \mathbb{R}, f(x) = 1/x$$
.

• Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = x^\top A x + x^\top b + c$.

• Consider $f: \mathbb{R} \to \bar{\mathbb{R}}$ defined by $f(x) = \begin{cases} +\infty, & \text{if } x < 0, \\ 1, & \text{if } x = 0, \\ x^2, & \text{if } x > 0. \end{cases}$ Find dom (f). Is f convex?

• (See Lab 1) Find all $a \in \mathbb{R}$ such that $f : \mathbb{R}^2 \to \overline{\mathbb{R}}$ defined by $f(x,y) = |xy| + a(x^2 + y^2)$ is convex.

Operations preserving convexity.

Proposition 2.4

- (i) (Linear operation) Let $f,g:\mathbb{E}\to \overline{\mathbb{R}}$ be convex function. Then αf and f+g are convex for any $\alpha\geq 0$.
- (ii) (Supremum operation) Let $f_i : \mathbb{E} \to \overline{\mathbb{R}}$, $i \in I$, be convex functions, where I is an arbitrary index set. Then $\sup_{i \in I} f_i(x)$ is convex.
- (iii) (Linear change of variable) Let $f: \mathbb{F} \to \overline{\mathbb{R}}$ be a convex function, let $A: \mathbb{E} \to \mathbb{F}$ be a linear operator between two Euclidean spaces, and $b \in \mathbb{F}$. Then the function g(x) := f(Ax + b) is convex on \mathbb{E} .
- (iv) Let $f: \mathbb{E} \to \mathbb{R}$ be convex and let $g: \mathbb{R} \to \overline{\mathbb{R}}$ be non-decreasing and convex on a convex containing the range of the function f. Then the composition $g \circ f$ is convex.

Example. Is $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = (|x| + |y|)^2$ a convex function?

Optimization problem. Consider the following optimization problem

$$\min_{x \in \Omega} \quad f(x), \tag{1}$$

where $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is an extended real-valued function (cost function, objective function), and Ω is a nonempty, convex set.

Example.

• $\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 \text{ s.t. } x \ge 0.$

Definition 3 (Local/global minimizers)

Let $\bar{x} \in \mathbb{E}$, we say

• \bar{x} is a local minimizer/optimal solution to Problem (1) if $f(\bar{x}) < \infty$ and there exists $\varepsilon > 0$ such that

$$f(x) \ge f(\bar{x})$$
 for all $x \in \mathbb{B}_{\varepsilon}(\bar{x}) \cap \Omega$.

In this case, $f(\bar{x})$ is called the local optimal value of f.

• \bar{x} is a global/absolute minimizer/optimal solution to Problem (1) if $f(x) \ge f(\bar{x})$ for all $x \in \Omega$. In this case, $f(\bar{x})$ is called the optimal value of f.

Theorem 2.3 (Weierstrass existence theorem)

Let $f: \Omega \to \mathbb{R}$ be a continuous function, where Ω is a nonempty, compact subset of \mathbb{R}^n . Then the following optimization problem has global optimal solution

$$\min_{x \in \Omega} f(x)$$
 and $\max_{x \in \Omega} f(x)$.

Example.

• Given $X \in \mathbb{R}^{m \times n}$, find

$$\min_{W \in \mathbb{R}^{m \times r}, H \in \mathbb{R}^{r \times n}} \frac{1}{2} \|X - WH\|^2 \quad \text{s.t.} \quad W_{ij}, H_{ij} \in [0, 1].$$

• Given training data (x_i, y_i) , $y_i \in \{-1, 1\}$, i = 1, ..., n, find

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, w \rangle)) + \frac{\lambda}{2} ||w||_1.$$

Optional reading

Theorem 2.4

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be a lower semicontinuous function (l.s.c). The following hold:

- Then the optimization problem $\min_{x \in \Omega} f(x)$, where Ω is a nonempty compact subset of \mathbb{R}^n that intersects $\mathrm{dom}\, f$, attains its absolute minimum.
- Assume that $\inf\{f(x), x \in \mathbb{R}^n\} < \infty$ and there exists $\alpha \in \mathbb{R}$ for which $\inf\{f(x), x \in \mathbb{R}^n\} < \alpha$ and the level set $\{x \in \mathbb{R}^n \big| f(x) < \alpha\}$ is bounded. Then the optimization problem $\min_{x \in \mathbb{R}^n} f(x)$ attains its absolute minimum at some point $\bar{x} \in \text{dom } f$.

Theorem 2.5

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and assume that $\inf\{f(x), x \in \mathbb{R}^n\} < \infty$. The following properties are equivalent.

- There exists $\alpha \in \mathbb{R}$ such that $\inf\{f(x), x \in \mathbb{R}^n\} < \alpha$ and the level set $\{x \in \mathbb{R}^n | f(x) < \alpha\}$ is bounded.
- All the level sets $\{f(x), x \in \mathbb{R}^n\} < \alpha$ of f are bounded.
- $\bullet \ \lim_{\|x\|\to\infty} f(x) = \infty.$
- $\bullet \ \ \liminf_{\|x\|\to\infty} \tfrac{f(x)}{\|x\|}>0.$

Theorem 2.6

If f is a convex function, a local minimizer of f is also a global minimizer.

Proof.

Suppose \bar{x} is a local minimizer of f. We have $f(\bar{x}) \leq f(x)$ for all $x \in B_{\varepsilon}(\bar{x})$ for some ϵ . For all y, let us define $y^k = \frac{1}{k}y + (1 - \frac{1}{k})\bar{x}$. Then we have

$$y^k - \bar{x} = \frac{1}{k}(y - \bar{x}).$$

Hence, when k is big enough, we have $y^k \in B_{\varepsilon}(\bar{x})$. By convexity of f, we have

$$f(\bar{x}) \le f(y^k) \le \frac{1}{k} f(y) + (1 - \frac{1}{k}) f(\bar{x}).$$

This implies $f(\bar{x}) \leq f(y)$ for all y.

Subdifferential of a convex function.

Definition 4

Let $f: \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function (not necessarily differentiable) and $\overline{\mathbf{x}} \in \mathrm{dom} f$. A vector $v \in \mathbb{E}^*$ is called a subgradient of f at $\overline{\mathbf{x}}$ if

$$f(\mathbf{x}) \geq f(\overline{\mathbf{x}}) + \langle v, \mathbf{x} - \overline{\mathbf{x}} \rangle$$
 for all $\mathbf{x} \in \mathbb{E}$.

The subdifferential of f at $\overline{\mathbf{x}}$ is defined by

$$\partial f(\overline{\mathbf{x}}) := \{ v \in \mathbb{E}^* | f(\mathbf{x}) \ge f(\overline{\mathbf{x}}) + \langle v, \mathbf{x} - \overline{\mathbf{x}} \rangle \, \forall \mathbf{x} \in \mathbb{E} \}.$$

Proposition 2.5

Let $f: \mathbb{E} \to \overline{\mathbb{R}}$ be a proper, l.s.c. convex function.

- If f is differentiable at \bar{x} then $\partial f(\bar{x}) = \nabla f(\bar{x})$.
- (Optional reading) Suppose that $\bar{x} \in \text{int} (\text{dom } f)$, i.e., f is continuous at \bar{x} . Then $\partial f(\bar{x})$ is nonempty and is a compact convex set.

• $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|. Find $\partial f(x)$.

• $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|. Find $\partial f(x)$.

- (See Lab 1) Let $f(x) = \max\{f_1(x), f_2(x)\}$, where $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ are differentiable convex functions. Prove that
 - If $f_1(x) > f_2(x)$, f has unique subgradient $v = \nabla f_1(x)$
 - If $f_2(x) > f_1(x)$, f has unique subgradient $v = \nabla f_2(x)$.
 - If $f_1(x) = f_2(x)$, then any point on the line segment between $\nabla f_1(x)$ and $\nabla f_2(x)$ is a subgradient of f at x.

• $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|. Find $\partial f(x)$.

- (See Lab 1) Let $f(x) = \max\{f_1(x), f_2(x)\}$, where $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ are differentiable convex functions. Prove that
 - If $f_1(x) > f_2(x)$, f has unique subgradient $v = \nabla f_1(x)$
 - If $f_2(x) > f_1(x)$, f has unique subgradient $v = \nabla f_2(x)$.
 - If $f_1(x) = f_2(x)$, then any point on the line segment between $\nabla f_1(x)$ and $\nabla f_2(x)$ is a subgradient of f at x.
- Let $f_i(w) = \max(0, -y_i w^\top x_i)$. Find $\partial f_i(w)$.

Theorem 2.7 (Fermat's optimality condition)

Let $f \in \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function. Then \mathbf{x}^* is a minimizer to f if and only if $0 \in \partial f(\mathbf{x}^*)$.

Proof.

Theorem 2.7 (Fermat's optimality condition)

Let $f \in \mathbb{E} \to \overline{\mathbb{R}}$ be a proper convex function. Then \mathbf{x}^* is a minimizer to f if and only if $0 \in \partial f(\mathbf{x}^*)$.

Proof.

Example. Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\|A\mathbf{x}-b\|_2^2.$$

Basic subgradient calculus rules.

Theorem 2.8 (Sum rule I)

Let $f,g:\mathbb{E}\to \bar{\mathbb{R}}$ be proper convex functions. Suppose that f is differentiable at $\bar{x}\in \mathrm{dom}\, g$. Then we have

$$\partial (f+g)(\bar{x}) = \nabla f(\bar{x}) + \partial g(\bar{x}).$$

Basic subgradient calculus rules.

Theorem 2.8 (Sum rule I)

Let $f,g:\mathbb{E}\to \bar{\mathbb{R}}$ be proper convex functions. Suppose that f is differentiable at $\bar{x}\in \mathrm{dom}\, g$. Then we have

$$\partial (f+g)(\bar{x}) = \nabla f(\bar{x}) + \partial g(\bar{x}).$$

(Optional reading)

Theorem 2.9 (Sum rule II)

Let $f,g:\mathbb{E}\to \overline{\mathbb{R}}$ be proper convex functions. Suppose that $\operatorname{dom} f\cap\operatorname{int}(\operatorname{dom} g)\neq\emptyset$. Then we have the sume rule

$$\partial (f+g)(x) = \partial f(x) + \partial g(x)$$
 for any $x \in \text{dom } f \cap \text{dom } g$.

Lagrangian Duality

Primal optimization problem

$$egin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x) \ & ext{s.t.} & g_i(x) \leq 0, i = 1, \ldots, m \ & h_i(x) = 0, i = 1, \ldots, q. \end{array}$$

The Lagrangian function is the function $L: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

$$L(x,\lambda,\gamma)=f(x)+\sum_{i=1}^m\lambda_ig_i(x)+\sum_{i=1}^q\gamma_ih_i(x).$$

Primal optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 $s.t.$ $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., q.$

The Lagrangian function is the function $L: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

$$L(x,\lambda,\gamma)=f(x)+\sum_{i=1}^m\lambda_ig_i(x)+\sum_{i=1}^q\gamma_ih_i(x).$$

Note that

$$\max_{\lambda \geq 0, \gamma} L(x, \lambda, \gamma) = \begin{cases} f(x) & \text{if } x \text{ is a feasible solution of the primal problem} \\ +\infty & \text{otherwise.} \end{cases}$$

Primal optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 $s.t.$ $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., q.$

The Lagrangian function is the function $L: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

$$L(x,\lambda,\gamma)=f(x)+\sum_{i=1}^m\lambda_ig_i(x)+\sum_{i=1}^q\gamma_ih_i(x).$$

Note that

$$\max_{\lambda \geq 0, \gamma} L(x, \lambda, \gamma) = \begin{cases} f(x) & \text{if } x \text{ is a feasible solution of the primal problem} \\ +\infty & \text{otherwise.} \end{cases}$$

Hence, solving the primal problem is equivalent to solving

$$\min_{x} \max_{\lambda \geq 0, \gamma} L(x, \lambda, \gamma)$$

Dual problem

$$\max_{\lambda \geq 0, \gamma} \min_{x} L(x, \lambda, \gamma) = \max_{\lambda \geq 0, \gamma} \rho(\lambda, \gamma),$$

where $\rho(\lambda, \gamma) = \min_{x} L(x, \lambda, \gamma)$.

Dual problem

$$\max_{\lambda \geq 0, \gamma} \min_{x} L(x, \lambda, \gamma) = \max_{\lambda \geq 0, \gamma} \rho(\lambda, \gamma),$$

where $\rho(\lambda, \gamma) = \min_{x} L(x, \lambda, \gamma)$.

Weak duality Let p^* be the optimal value of the primal problem and q^* be the optimal value of the dual problem. It always holds that $p^* \geq d^*$, that is

$$\min_{x} \max_{\lambda \geq 0, \gamma} L(x, \lambda, \gamma) \geq \max_{\lambda \geq 0, \gamma} \min_{x} L(x, \lambda, \gamma).$$

Dual problem

$$\max_{\lambda \geq 0, \gamma} \min_{x} L(x, \lambda, \gamma) = \max_{\lambda \geq 0, \gamma} \rho(\lambda, \gamma),$$

where $\rho(\lambda, \gamma) = \min_{x} L(x, \lambda, \gamma)$.

Weak duality Let p^* be the optimal value of the primal problem and q^* be the optimal value of the dual problem. It always holds that $p^* \ge d^*$, that is

$$\min_{x} \max_{\lambda \geq 0, \gamma} L(x, \lambda, \gamma) \geq \max_{\lambda \geq 0, \gamma} \min_{x} L(x, \lambda, \gamma).$$

- For some certain problems, we have strong duality $p^* = d^*$.
- Conditions that guarantee strong duality in convex problems are called constraint qualifications

(Optional reading)

Standard convex optimization problem

minimize
$$_{x \in \mathbb{R}^n}$$
 $f(x)$
 $s.t.$ $g_i(x) \le 0, i = 1, ..., m$
 $Ax = b,$

where f and g_i are convex functions. Strong duality holds for the standard convex optimization problem if there exists a point that is strictly feasible (this is called Slater's condition):

$$\exists x \in \text{rel int } \cap_{i=1}^m \text{dom } g_i, \text{ such that } g_i(x) < 0, i = 1, \dots, m, Ax = b.$$

Soft-margin Support Vector Machine

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(w^\top x_i)\} + R(w).$$

Summary

- Real vector space, norm, inner product
- Basic differentiable rules: gradient, Hessian, Jacobian, chain rule
- Convex set, extended real-valued function, domain, epigraph, convex function, characterizations of differentiable convex functions, local and global optimal solutions.
- Subgradient of a convex function, Fermat's optimality condition
- Primal and dual problems in Lagrangian duality.