Universidad Carlos III de Madrid

Principios Físicos de la Informática

- **1.**-Dado el circuito de corriente alterna de la figura por cuya resistencia R circula una corriente de intensidad eficaz de 10 A, determinar:
 - a) La diferencia de potencial V_{AB} , así como las intensidades de las corrientes que circulan por las otras dos ramas.
 - b) Dibujar el diagrama fasorial de las magnitudes calculadas en el apartado anterior, tomando la intensidad de corriente que circula por la resistencia como origen de fases.
 - c) Calcular la potencia activa en la rama AB.

Datos: R= 1Ω ; L= 5 mH; f=50 Hz

Solución:

a) En primer lugar, dibujemos el sentido de las corrientes en cada rama para un instante de tiempo arbitrario.

Universidad Carlos III de Madrid

Principios Físicos de la Informática

Por tratarse de dos ramas inductivas la tensión entre los puntos A y B estará adelantada respecto a las intensidades eficaces que circulan por ellas, I_1 e I_2 . Respecto a I_2 , el ángulo de desfase será de 90° grados ya que la rama es inductiva pura mientras que el ángulo de desfase respecto a I_1 lo calculamos junto con la tensión entre A y B, ya que debemos tomar esta intensidad como origen de fases

$$\vec{V}_{AB} = \vec{Z}_{AB} \ \vec{I}_{l} = (1+0.5\pi \ j) \ 10 \angle 0^{\circ} = 18.62 \angle 57.5^{\circ} \ V$$

(0,75 puntos)

La intensidad por la segunda rama será

$$\vec{I}_2 = \frac{\vec{V}_{AB}}{\vec{Z}_L} = \frac{18,62 \ \angle 57,5^{\circ}}{0.5 \ \pi \ \angle 90^{\circ}} = 11,86 \ \angle -32,5^{\circ} \ A$$

(0,75 puntos)

Y la intensidad total

$$\vec{I} = \vec{I}_1 + \vec{I}_2 = 10 + (10 - 6,37 \text{ j}) = 20,99 \angle -17,6^{\circ} \text{ A}$$
(0,75 puntos)

b) Teniendo en cuenta los resultados del apartado anterior, el diagrama de fasores será

(0,75 puntos)

Universidad Carlos III de Madrid

Principios Físicos de la Informática

c) La potencia activa consumida en la rama AB

$$\overline{P} = I_1^2 R = (10 A)^2 1 \Omega = 100 W$$

(0,5 puntos)

Principios Físicos de la Informática

Convocatoria ordinaria:19/05/2012

Problema 3: (3 puntos)

Se introduce una espira cuadrada de lado *a*=10cm en el interior de un solenoide de longitud *i*=20cm N=1000 vueltas por el que circula una corriente igual a *l_a*=1A de tal manera que el eje del solenoide es perpendicular al plano de la espira, como se muestra en la figura. La espira se encuentra completamente dentro del

solenoide y tiene una resistencia $R=1 \Omega$.

a) Calcular el flujo magnético a través de la espira

b) Si ahora la corriente que circula por el solenoide viene dada por l(t)=l0cos(ωt), con ω=1.53-168 s-1, ¿cuáles serán la fuerza electromotriz y la corriente inducidas en la espira?

c) Si además en t=0s la espira se pone a girar con una velocidad angular igual a ω en torno a un eje que pasa por su centro y paralelo a uno de los lados de la espira ¿cuánto valdrán ahora la fuerza electromotriz y la corriente inducidas en la espira?

μ0=4π-10-7 Ns2/C2

Propuesta 1

Se introduce una espira cuadrada de lado a=10cm en el interior de un solenoide de longitud l=20cm N=1000 vueltas por el que circula una corriente igual a I_0 =1A de tal manera que el eje del solenoide es perpendicular al plano de la espira, como se muestra en la figura. La espira se encuentra completamente dentro del solenoide y tiene una resistencia R=1 Ω .

a) Calcular el flujo magnético a través de la espira

b) Si ahora la corriente que circula por el solenoide viene dada por I(t)=I₀cos(ωt), con ω=1.53·10³ s⁻¹, ¿cuáles serán la fuerza electromotriz y la corriente inducidas en la espira?

c) Si además en t=0s la espira se pone a girar con una velocidad angular igual a ω en torno a un eje que pasa por su centro y paralelo a uno de los lados de la espira ¿cuánto valdrán ahora la fuerza electromotriz y la corriente inducidas en la espira?

 $\mu_0 = 4\pi \cdot 10^{-7} \text{ Ns}^2/\text{C}^2$

- El: Compo magnetico debido el solemoide (considerandolo ideal) es

B=n,110 Jo y su direcció la del ge del sulawide

Al ser constante el flujo a traves de la espira cuadrade de lado a será

(0,5 puntos)

- Si la corriente es ahora I=Io cos(cot) el mevo flujo dependors del trempo

φ = B. 5 = 10 μο a2 Io cos (wt)

le f.e.m seré $E = -\frac{d\phi}{dt} = \frac{Nho}{\ell} a^2 I_0 w sen(wt) =$

= 0'096 sen (153 103 t) V (0,75 puntos)

la intensitad

 $J = \frac{E}{R} = \frac{1}{R} \frac{N}{\ell} l_0 \alpha^2 J_0 \omega sen(\omega t) =$ = 0'096 sen(1'53:103 t) A

(0,5 puntos)

-Alvora alamas se pone a girar Φ= B·S = B·s·cos(wt) = Nu Ioa2 cos(wt) cos(ut) del engulo Broes parable es hey que haver el producto escales = Puo Io a cos (wt) $\mathcal{E} = \frac{d\phi}{dt} = \frac{N}{\ell} \int_{0}^{\infty} a^{2} \left\{ 2 \omega \cos(\omega t) \operatorname{sen}(\omega t) \right\} =$ = 0'19 cos (wt) sen(wt) V (0,75 puntos) I = 0'19 cos(wt) sen(wt) A R=12 (0,5 puntos)