Homotopie et optimisation de courbes sur les surfaces combinatoires

Francis Lazarus

GIPSA-Lab, CNRS, INPG

Surface combinatoire

Surface combinatoire

Chemins, cycles, lacets, homotopie, π_1

$$p,q:[0,1] o\mathcal{M} ext{ avec } p(0)=p(1)=q(0)=q(1)$$
 $p\simeq q ext{ si } \exists F:[0,1] imes[0,1] o\mathcal{M}:$ $\begin{cases} orall t\in[0,1] & F(0,t)=F(1,t)=p(0) \ orall s\in[0,1] & F(s,0)=p(s) \ orall s\in[0,1] & F(s,1)=q(s) \end{cases}$

Définition

 $\pi_1(\mathcal{M}, x) = \text{ens. lacets de base } x \text{ modulo } \simeq \text{avec loi de concaténation.}$

Homotopie libre de cycles

$$c,d: \mathbb{R}/\mathbb{Z} \to \mathcal{M}$$

$$c \overset{\mathsf{libre}}{\simeq} d \; \mathsf{si} \; \exists F : \mathbb{R}/\mathbb{Z} \times [0,1] \to \mathcal{M} : \\ \left\{ egin{array}{ll} \forall s \in [0,1] & F(s,0) = c(s) \ \forall s \in [0,1] & F(s,1) = d(s) \end{array}
ight.$$

Pour tout cycle c, un chemin d'approche $c(0) \rightsquigarrow x$ définit un élément [c] de $\pi_1(\mathcal{M}, x)$ à conjugaison près.

Lemme

 $c \stackrel{\text{libre}}{\simeq} d \text{ ssi } [c] \text{ et } [d] \text{ sont conjugués.}$

Calcul du π_1

Calcul du π_1

Test d'homotopie

$$W(f) = ab$$

 $f \stackrel{libre}{\simeq} g \Leftrightarrow W(f)$ et W(g) sont conjugués

[Dey and Guha, 1999]

Décision en $O(n + k_1 + k_2)$

Cas ouverts : \mathcal{M} orientable, $g(\mathcal{M})=2$ ou

 \mathcal{M} non-orientable. $g(\mathcal{M}) = 3.4$

Test d'homotopie

$$W(f) = ab$$
 $f \stackrel{libre}{\simeq} g \Leftrightarrow W(f)$ et $W(g)$ sont conjugués

[Dey and Guha, 1999]

Décision en $O(n + k_1 + k_2)$

Cas ouverts : $\mathcal M$ orientable, $g(\mathcal M)=2$ ou

 \mathcal{M} non-orientable, $g(\mathcal{M}) = 3,4$

Test d'homotopie

$$f \stackrel{libre}{\simeq} g \Leftrightarrow W(f)$$
 et $W(g)$ sont conjugués

[Dey and Guha, 1999]

Décision en $O(n + k_1 + k_2)$

Cas ouverts : \mathcal{M} orientable, $g(\mathcal{M}) = 2$ ou

 \mathcal{M} non-orientable, $g(\mathcal{M}) = 3,4$

Système canonique

 $< a_1, b_1, a_2, b_2 \dots, a_g, b_g | [a_1, b_1] [a_2, b_2] \dots [a_g, b_g] >$

[Vegter and Yap, 1990], [Lazarus et al., 2001]

Calcul d'un système canonique en temps optimal O(gn).

Système canonique

Système canonique

Plus petit graphe des coupe

Pb: Calcul d'un sous-graphe de longueur minimal dont le complémentaire est un disque topologique.

Plus petit graphe de coupe

[Erickson, Har-Peled, 2002]

NP-difficile par réduction du pb du sous-arbre de Steiner. $O(\log^2 g)$ -approximation en $O(g^2 n \log n)$ time.

Plus petit système fondamental

[Erickson and Whittlesey, 2005]

On peut calculer un système fondamental de longueur minimale en temps $O(n \log n + gn)$

[Thomassen 90]

Exemples : Les cycles non-séparateurs, les cycles non-contractiles Contre-exemples : Les cycles séparateurs non-contractiles, une classe d'homotopie

[Thomassen 90]

Exemples : Les cycles non-séparateurs, les cycles non-contractiles Contre-exemples : Les cycles séparateurs non-contractiles, une classe d'homotopie

[Thomassen 90]

Exemples : Les cycles non-séparateurs, les cycles non-contractiles Contre-exemples : Les cycles séparateurs non-contractiles, une classe d'homotopie

[Thomassen 90]

Exemples : Les cycles non-séparateurs, les cycles non-contractiles Contre-exemples : Les cycles séparateurs non-contractiles, une

classe d'homotopie

[Colin de Verdière et Lazarus, 2002]

[Colin de Verdière et Lazarus, 2003]

Soient S de taille n et genre g avec b bords et $\alpha = \max(|e_i|)/\min(|e_j|)$. Soit un lacet simple de taille k. On peut calculer un lacet simple minimal librement homotope en temps $O((g+b)^2\alpha^2(k+n)^3\log(\alpha k+n))$.

Représentant minimal dans une classe d'homotopie libre

[Colin de Verdière et Lazarus, 2003]

Soient S de taille n et genre g avec b bords et $\alpha = \max(|e_i|)/\min(|e_j|)$. Soit un lacet simple de taille k. On peut calculer un lacet simple minimal librement homotope en temps $O((g+b)^2\alpha^2(k+n)^3\log(\alpha k+n))$.

Représentant minimal dans une classe d'homotopie

Cas général [Erickson, Colin de Verdière 2006]

- Décomposition octogonale
- 2 Construction de la zone admissible du R.U.
- 3 calcul de p.c.c. dans la zone admissible

Décomposition octogonale

Analyse : Argument de Dehn pour la taille de la zone admissible.

Analyse : Argument de Dehn pour la taille de la zone admissible.

Analyse : Argument de Dehn pour la taille de la zone admissible.

Analyse : Argument de Dehn pour la taille de la zone admissible.

Analyse : Argument de Dehn pour la taille de la zone admissible.

Plus court cycle de partage

[Chambers et al., 2006]

Le calcul d'un pccp est NP-difficile. Il existe un algorithme de complexité $g^{O(g)}n \log n$ (le problème est FPT).

Graphe grille

[Itai et al. 82]

Réduction cycle séparateur à PCCP

Configuration défavorable

Configuration défavorable

Compter le nombre maximal de lacets homotopes.

Deux arcs homotopes bordent un disque.

À chaque croisement avec une courbe séparatrice, l'orientation est inversée.

Le nouveau cycle est simple, 0-homologue, non contractile \implies cycle de partage plus court avec moins d'intersections = contradiction

Conclusion

Problèmes essentiels résolus : test homotopie, calcul d'un élément minimal dans une classe d'homotopie.

- Cas non traités pour le test d'homotopie
- Calcul d'un système canonique minimal
- Calcul d'une décomposition en pantalons minimale
- Calcul d'une homotopie "minimale" entre deux courbes homotopes