Lines 10 de Noviembre de 2011.

contraste ({ tho: M = Mo tha: M < Mo

Contraste 3

Ha: M > Mo

PRUEBAS DE HIPOTESIS MÁS COMUNES

Caso	Contraste de hipótesis	Estadístico de prueba	Criterio de decisión
Muestra grande con varianza conocida	$ \begin{cases} H_o: \mu = \mu_0 \\ H_a: \mu < \mu_0 \\ H_a: \mu > \mu_0 \\ H_a: \mu \neq \mu_0 \end{cases} $	$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	
Muestra pequeñas con varianza desconocida	$\begin{split} H_o: \mu &= \mu_0 \\ H_a: \mu &< \mu_0 \\ H_a: \mu &> \mu_0 \\ H_a: \mu &\neq \mu_0 \end{split}$	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$	$t < -t_{\alpha,n-1}$ $t > t_{\alpha,n-1}$ $ t > t_{\alpha/2,n-1}$
Dos poblaciones con Varianzas conocidas	$H_o: \mu_1 = \mu_2$ $H_a: \mu_1 < \mu_2$ $H_a: \mu_1 > \mu_2$ $H_a: \mu_1 \neq \mu_2$	$z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\begin{split} z < -z_a \\ z > z_a \\ z > z_{a/2} \end{split}$
Dos poblaciones con varianzas desconocidas pero iguales $\sigma_1^2 = \sigma_2^2$	$\begin{split} H_o: & \mu_1 = \mu_2 \\ H_a: & \mu_1 < \mu_2 \\ H_a: & \mu_1 > \mu_2 \\ H_a: & \mu_1 > \mu_2 \end{split}$	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	$\begin{split} I < &-I_{\alpha,n_1+n_2-2} \\ I > &I_{\alpha,n_1+n_2-2} \\ &I > &I_{\alpha/2,n_1+n_2-2} \end{split}$

Confiança 1-a=P(0 e[U,L]) No a es la significancia. No a es la significancia. No a es la significancia.	
$\alpha_{1/2} = \frac{\alpha_{1/2}}{N_{1-\frac{\alpha}{2}, \eta-1}^{2}} \frac{\alpha_{1/2}}{N_{1-\frac{\alpha}{2}, \eta-1}^{2}} \frac{\alpha_{1/2}}{N_{1/2}} \alpha_$	Ca

Caso	Contraste de hipótesis	Estadístico de prueba	Criterio de decisión
Dos poblaciones con varianzas desconocidas diferentes $\sigma_1^2 \neq \sigma_2^2$	$\begin{split} H_o: & \mu_1 = \mu_2 \\ H_a: & \mu_1 < \mu_2 \\ H_a: & \mu_1 > \mu_2 \\ H_a: & \mu_1 \neq \mu_2 \end{split}$	$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_{11}^2 + s_{22}^2}}$ $gl = \frac{\left(\frac{s_{11}^2 + s_{22}^2}{n_{11} + n_{22}}\right)^2}{\left(\frac{s_{11}^2}{n_{11}}\right)^2}$ $\frac{\left(\frac{s_{21}^2}{n_{11}}\right)^2 + \left(\frac{s_{21}^2}{n_{22}}\right)^2}{n_{21} - 1}$ $\frac{1}{n_{21}} + \frac{1}{n_{22}} + \frac{1}{n_{22}} + \frac{1}{n_{22}}$	$\begin{aligned} &t < -t_{\alpha,gt} \\ &t > t_{\alpha,gt} \\ & t > t_{\alpha/2,gt} \end{aligned}$
Una proporción	$H_o: p = p_0$ $H_a: p < p_0$ $H_a: p > p_0$ $H_a: p \neq p_0$	$z = \frac{p - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$	$\begin{split} z < -z_{\alpha} \\ z > z_{\alpha} \\ z > z_{\alpha/2} \end{split}$
Dos proporciones	$H_o: p_1 = p_2$ $H_a: p_1 < p_2$ $H_a: p_1 > p_2$ $H_a: p_1 \neq p_2$	$z = \frac{p_1 - p_2}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}}$	$\begin{aligned} z &< -z_{\alpha} \\ z &> z_{\alpha} \\ z &> z_{\alpha/2} \end{aligned}$
Una varianza	$H_o: \sigma^2 = \sigma_0^2$ $H_a: \sigma^2 < \sigma_0^2$ $H_a: \sigma^2 > \sigma_0^2$ $H_a: \sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$\chi^{2} < \chi_{1-\alpha,s-1}^{2}$ $\chi^{2} > \chi_{\alpha,s-1}^{2}$ $\chi^{2} < \chi_{1-\alpha/2,s-1}^{2} 0 \chi^{2} > \chi_{\alpha/2,s-1}^{2}$
Dos varianzas	$H_o: \sigma_1^2 = \sigma_2^2$ $H_a: \sigma_1^2 < \sigma_2^2$ $H_a: \sigma_1^2 > \sigma_2^2$ $H_a: \sigma_1^2 > \sigma_2^2$ $H_a: \sigma_1^2 \neq \sigma_2^2$	$F = \frac{s_1^2}{s_2^2}$	$\begin{split} F < F_{1-a,s_1-1,s_2-1} \\ F > F_{a,s_1-1,s_2-1} \\ F < F_{1-a/2,s_1-1,s_2-1} \text{o} F > F_{a/2,s_1-1,s_2-1} \end{split}$

Si Ep <-Ve → Rechasor Ho Si Ep >-Ve → No rechasor Hb

(Si acase no me dati el habr de or trabajamas

Criterio de decisión s: Ep < -Vc o Ep > Vc Rechair Ho

1 Due depende de la significancia a proporcionada por d'investigador.

RR ~ Si Ep>Vc ~ Rechasor Ho

Existe otro manera de tomar la decisión (Recharar o no la hipóbesis nula)

p-value se la probabilidad que el estadístico de prueba Ep dejo a la derecha.

Se encuentra con tablas o con la aplicación.

, Posiciona al valor critico

5° p-value < ~ ~ Ep ∈ AR ~ Rechasor Ho

Si p-value > a ~ Ep €RR ~ No rechasar the

#0: M = No

Trabajamos o contrastar con una significancia de \propto (0 \propto 100 %)

Información muestral: XI, X2,..., Xn

f(X1, X2,..., Xn) = Ep estadístico de prueba

Ponto critico: Definido por la significancia (proporcionada por el investigador)

S: Ep > Vc ~ Rechasor Ho S: Ep < Vc ~ No rechasor Ho.

ع _	p-value
Ep 1	100.0
Eps Eps	0,035 0,12

31 ∝=0.0≤ 0.00 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.0

Si p-value < 0 : Rechazar Ho y cuando se rechaza la hipótesis nula se dice que la prueba es significativa.