CS446: Machine Learning

Spring 2017

Problem Set 7

Kaizhao Liang(kl2)

Handed In: April 28, 2017

- 1. a. $Pr(x^{(j)}) = \sum_{z=\{1,2\}} \prod_i Pr(x_i^{(j)}|z)$ $Pr(x^{(j)}) = \alpha \prod_i p_i^{x_i^{(j)}} (1-p_i)^{(1-x_i^{(j)})} + (1-\alpha) \prod_i q_i^{x_i^{(j)}} (1-q_i)^{(1-x_i^{(j)})}$
 - b. By Bayse rule:

$$f_{z}^{(j)} = Pr(Z = z | x^{(j)}) = \frac{Pr(x^{(j)} | Z = z) Pr(Z = z)}{Pr(x^{(j)})}$$

$$f_{1}^{(j)} = \frac{\alpha \prod_{i} p_{i}^{x_{i}^{(j)}} (1 - p_{i})^{(1 - x_{i}^{(j)})}}{\alpha \prod_{i} p_{i}^{x_{i}^{(j)}} (1 - p_{i})^{(1 - x_{i}^{(j)})} + (1 - \alpha) \prod_{i} q_{i}^{x_{i}^{(j)}} (1 - q_{i})^{(1 - x_{i}^{(j)})}}$$

$$f_{2}^{(j)} = \frac{(1 - \alpha) \prod_{i} q_{i}^{x_{i}^{(j)}} (1 - q_{i})^{(1 - x_{i}^{(j)})}}{\alpha \prod_{i} p_{i}^{x_{i}^{(j)}} (1 - p_{i})^{(1 - x_{i}^{(j)})} + (1 - \alpha) \prod_{i} q_{i}^{x_{i}^{(j)}} (1 - q_{i})^{(1 - x_{i}^{(j)})}}$$

c. $E[LL] = E(\sum_{j=[1,m]} log(Pr(x^{(j)}|p,q,\alpha))) = \sum_{j=[1,m]} E(log(Pr(x^{(j)}|p,q,\alpha)))$ $Pr_z^j = Pr(Z = z|x^{(j)}, p^0, q^0, \alpha^0) = f_z^{(j)}(p^0, q^0, \alpha^0)$ where p^0, q^0, α^0 are the original parameters.

$$E[LL] = \sum_{j=[1,m]} \sum_{z=\{1,2\}} Pr_z^j log(Pr(Z=z, x^{(j)}|\tilde{p}, \tilde{q}, \tilde{\alpha})) - \sum Pr_z^j log(Pr_z^j)$$

$$\begin{split} E[LL] &= \sum_{j=[1,m]} Pr_1^{(j)} log(\tilde{\alpha} \prod_i \tilde{p_i} x_i^{(j)} (1-\tilde{p_i})^{(1-x_i^{(j)})}) + Pr_2^{(j)} log((1-\tilde{\alpha}) \prod_i \tilde{q_i} x_i^{(j)} (1-\tilde{q_i})^{(1-x_i^{(j)})} - \sum_j Pr_1^{(j)} log(Pr_1^{(j)}) + Pr_2^{(j)} log(Pr_2^{(j)}) \end{split}$$

$$\begin{split} E[LL] &= \sum_{j=[1,m]} (Pr_1^{(j)}(log(\tilde{\alpha}) + \sum_{i=[1,n+1]} x_i^{(j)}log(\tilde{p_i}) + (1-x_i^{(j)})log(1-\tilde{p_i})) + \\ ⪻_2^{(j)}(log((1-\tilde{\alpha})) + \sum_{i=[1,n+1]} x_i^{(j)}log(\tilde{q_i}) + (1-x_i^{(j)})log(1-\tilde{q_i}))) - \sum_{j} (Pr_1^{(j)}log(Pr_1^{(j)}) + Pr_2^{(j)}log(Pr_2^{(j)})) \end{split}$$

d. Given that $Pr_1^j + Pr_2^j = 1$,

To maximize the E(LL):

$$\begin{split} &\frac{\partial E(LL)}{\partial \tilde{\alpha}} = \sum_{j=[1,m]} \frac{Pr_1^j}{\tilde{\alpha}} - \frac{Pr_2^j}{1-\tilde{\alpha}} = 0 \\ &\tilde{\alpha} = \frac{\sum_j Pr_1^j}{m} \\ &\frac{\partial E(LL)}{\partial \tilde{p}_i} = \sum_{j=[1,m]} Pr_1^j (\frac{x_i^{(j)}}{\tilde{p}_i} - \frac{1-x_i^{(j)}}{1-\tilde{p}_i}) = 0 \\ &\tilde{p}_i = \frac{\sum_{j=[1,m]} Pr_1^j x_i^{(j)}}{\sum_{j=[1,m]} Pr_1^j} \\ &\frac{\partial E(LL)}{\partial \tilde{q}_i} = \sum_{j=[1,m]} (1-Pr_1^j) (\frac{x_i^{(j)}}{\tilde{q}_i} - \frac{1-x_i^{(j)}}{1-\tilde{q}_i}) = 0 \\ &\tilde{q}_i = \frac{\sum_{j=[1,m]} (1-Pr_1^j) x_i^{(j)}}{\sum_{j=[1,m]} (1-Pr_1^j)} \end{split}$$

- e. Update rules for:
 - α : Update the α as the average of the Probability that each sample was generated

with z equal to 1 given current parameters. It is approximating the true average. \tilde{p}_i : Update the \tilde{p}_i as the Probability of all $x_i=1$ given that z=1 with the current parameters. It's approximating the true p_i

 \tilde{q}_i : Update the \tilde{q}_i as as the Probability of all $x_i=1$ given that z=2 with current parameters. It's approximating the true q_i

```
Initialization:
set \alpha to random real number between 0 and 1
set p to an array of length n+1 with random real number between 0 and 1
set q to an array of length n+1 with random real number between 0 and 1
set \theta to a small number as the termination criteria
do
\alpha \leftarrow \alpha'
p_i \leftarrow p_i'
q_i \leftarrow q_i'
\alpha' = 0
p' = [0]^{n+1}
q' = [0]^{n+1}
      for all x^{(j)} do
           Pr_1^j = f_1^j(\alpha, p, q)
           Pr_2^{\bar{j}} = f_2^{\bar{j}}(\alpha, p, q)
           Pr_2^j =
           \alpha' \leftarrow \alpha' + Pr_1^j
          p_i' \leftarrow p_i' + Pr_1^j x_iq_i' \leftarrow q_i' + Pr_2^j x_i
     end for
p_i' \leftarrow \frac{p_i'}{\alpha'}
q_i' \leftarrow \frac{\alpha'}{m - \alpha'}
\alpha' \leftarrow \frac{\alpha'}{m}
while |q-q'|+|p-p'|+|\alpha-\alpha'|\geq \theta
```

- *Note that the $f_i^j = Pr(Z = i | x^{(j),\alpha,p,q})$ in the inner **for** loop, which is the equation derived in (b.).
- *Also the update rules derived in (e.) are used after the **for** loop to update the p', q' and α' .

$$\begin{aligned} \text{f.} \quad & x_0 = sign(log(\frac{Pr(X_0=1)}{Pr(X_0=0)})) \\ & Pr(X_0=1) = Pr(Z=1|x_1,...,x_n)p_0 + Pr(Z=2|x_1,...,x_n)q_0 \\ & Pr(X_0=0) = Pr(Z=1|x_1,...,x_n)(1-p_0) + Pr(Z=2|x_1,...,x_n)(1-q_0) \\ & Pr(Z=1|x_1,...,x_n) = \frac{Pr(x_1,...,x_n|Z=1)Pr(Z=1)}{Pr(x_1,...,x_n)} = \frac{\alpha \prod_{i=1}^n p_i^{x_i}(1-p_i)^{1-x_i}}{\alpha \prod_{i=1}^n p_i^{x_i}(1-p_i)^{1-x_i} + (1-\alpha) \prod_{i=1}^n q_i^{x_i}(1-q_i)^{1-x_i}} \\ & Pr(Z=2|x_1,...,x_n) = \frac{Pr(x_1,...,x_n|Z=2)Pr(Z=2)}{Pr(x_1,...,x_n)} = \frac{(1-\alpha) \prod_{i=1}^n q_i^{x_i}(1-q_i)^{1-x_i}}{\alpha \prod_{i=1}^n p_i^{x_i}(1-p_i)^{1-x_i} + (1-\alpha) \prod_{i=1}^n q_i^{x_i}(1-q_i)^{1-x_i}} \end{aligned}$$

So,

$$x_0 = sign(log(p_0 \alpha \prod_{i=1}^n p_i^{x_i} (1 - p_i)^{1 - x_i} + q_0 (1 - \alpha) \prod_{i=1}^n q_i^{x_i} (1 - q_i)^{1 - x_i}) - log((1 - p_0) \alpha \prod_{i=1}^n p_i^{x_i} (1 - p_i)^{1 - x_i} + (1 - q_0) (1 - \alpha) \prod_{i=1}^n q_i^{x_i} (1 - q_i)^{1 - x_i}))$$

g. rewrite the decision surface, we have:

rewrite the decision surface, we have:
$$x_0 = sign(log(\frac{p_0\alpha\prod_{i=1}^n p_i^{x_i}(1-p_i)^{1-x_i} + q_0(1-\alpha)\prod_{i=1}^n q_i^{x_i}(1-q_i)^{1-x_i}}{(1-p_0)\alpha\prod_{i=1}^n p_i^{x_i}(1-p_i)^{1-x_i} + (1-q_0)(1-\alpha)\prod_{i=1}^n q_i^{x_i}(1-q_i)^{1-x_i}}))$$

$$x_0 = sign(log(\frac{p_0\alpha + q_0(1-\alpha)\prod_{i=1}^n (\frac{q_i}{p_i})^{x_i}(\frac{1-q_i}{1-p_i})^{1-x_i}}{(1-p_0)\alpha + (1-q_0)(1-\alpha)\prod_{i=1}^n (\frac{q_i}{p_i})^{x_i}(\frac{1-q_i}{1-p_i})^{1-x_i}}))$$

$$x_0 = sign((2p_0-1)\alpha + (2q_0-1)(1-\alpha)\prod_{i=1}^n (\frac{q_i}{p_i})^{x_i}(\frac{1-q_i}{1-p_i})^{1-x_i}))$$

if p_0 and q_0 are both greater or both less than $\frac{1}{2}$ Then the label is bound to be 1 or 0, and the decision is made independent of x_i 's given the way we choose the label.

Otherwise, given that log is a concave and singluarly increasing function, rewrite the decision surface again:

 $x_0 = sign(\sum_{i=1}^n x_i (log(\frac{q_i}{p_i}) - log(\frac{1-q_i}{1-p_i})) + \sum_{i=1}^n log(\frac{1-q_i}{1-p_i}) + log(|\frac{(1-2q_0)(1-\alpha)}{(1-2p_0)\alpha}|)) \text{ Since we can rewrite the decision surface into } w^T x + \theta, \text{where } w = [log(\frac{q_i}{p_i}) - log(\frac{1-q_i}{1-p_i})]^n$ and the $\theta = \sum_{i=1}^{n} log(\frac{1-q_i}{1-p_i}) + log(|\frac{(1-2q_0)(1-\alpha)}{(1-2p_0)\alpha}|)$, the decision surface is linear.

- 2. a. "The two directed trees obtained from T are equivalent" means that the probability of any event or conditional event will be the same no matter which tree it's computed by.
 - b. The value on the nodes are always the same, no matter which root we choose. When there are only two nodes x_1, x_2 in the undirected tree T,

Since T has to satisfy the Bayse rule, otherwise the tree distribution learnt would not make any sense:

$$Pr(x_1|x_2)Pr(x_2) = Pr(x_2|x_1)Pr(x_1) = Pr(x_1, x_2)$$

So no matter which node is picked as root, the directed trees generated are equivalent because the joint probabilities would be the same.

Inductive Hypothesis: Suppose that for the undirected tree T_k with n=1,...,k nodes, the above argument holds.

If we add one more new node x' to get undirected tree T_{k+1} ,

for two directed trees T^1 and T^2 generated from T_{k+1} , if the joint probability of the event does not include the x', the joint probabilities derived from both T^1 and T^2 will be the same by the inductive hypothesis.

For event that includes the new node x', $E = x_1, x_2, ..., x'$:

$$Pr(E) = Pr(x'|Parents(x'))Pr(root) \prod_{i \in \{E-x'\}} Pr(x_i|Parents(x_i))$$

 $Pr(root)\prod_{i\in\{E-x'\}} Pr(x_i|Parents(x_i))$ remains the same by the inductive hypothesis and Pr(x'|Parents(x')) is the same in T^1 and T^2

Thus, when n=k+1, the inductive hypothesis also holds. So the joint probability is the same no matter which node is picked to be root.

Given two events X and X' of $x_1, x_2, ..., x_n$ and $x_1', x_2', ..., x_n'$, the conditional prob-

ability, by Bayse Rule: $Pr(X|X') = \frac{Pr(\{X+X'\})}{Pr(X')}$ $Pr(\{X+X'\}) \text{ and } Pr(X') \text{ are proven not to be changed when we pick different}$ nodes as root. So the probability of the conditional event also does not change.