Міністерство освіти і науки України Національний університет "Львівська політехніка"

Лабораторна робота №9 з дисципліни «Програмування частина 2»

Виконав:

Студент групи АП-11 Братейко Вадим

Прийняв:

Чайковський І.Б.

«Логічні та побітові операції у мові С»

Мета роботи: навчитися використовувати логічні та побітові операції під час програмування на мові С.

Теоретичні відомості В програмуванні треба мати можливість не лише проводити обчислення над числовими даними, тобто робити арифметичніоперації, але й обробляти логічні дані. З логічними даними програма має справу, коли перевіряє чи виконується деяка умова

В мові С логічні значення зображуються за допомогою цілих чисел. А саме, число 0 зображує логічну хибу, а будь-яке відмінне від нуля число зображує логічну істину.

В мові С існує три логічні операції:

- 1. Логічна операція І&&;
- 2. Логічна операція АБО ||;
- 3. Логічна операція НЕ! або логічне заперечення.

Операції	Позначення	Умова	Короткий опис
I	&&	a==3 && b>4	Складена умова істинна,
			якщо істинні обидві прості
			умови
АБО		a==3 b>4	Складена умова істинна,
			якщо істинна, хоча б одна з
			простих умов
HE	!	! (a==3)	Умова істинна, якщо а не
			дорівнює 3

Операції порівняння

Операція	Значення
<	менше
<=	менше або рівне
==	перевірка на рівність
>=	більше або рівне
>	більше
!=	перевірка на нерівність

Пріоритет операцій в С

Пріоритет	Операція	Асоціативність	Опис
	::		унарна операція дозволу області дії
	[]		операція індексування
	0		круглі скобки
1		зліва направо	звернення до члена структури або
	•		класу
	_		звернення до члена структури або
	->		класу через покажчик
2	++		постфіксний інкремент
2		зліва направо	постфіксний декремент
2	++		префікс ний інкремент
3		справа наліво	префіксний декремент
	*		множення
4	/	зліва направо	ділення
	%	_	залишок від ділення
-	+		додавання
5	_	зліва направо	віднімання
	>>		зсув вправо
6	<<	зліва направо	зрушення вліво
	<		менше
7	<=		менше або дорівнює
/	>	зліва направо	більше
	>=		більше або дорівнює
8	==	anina wannana	дорівнює
0	!=	зліва направо	не дорівнює
9	&&	зліва направо	Логічне I
10		зліва направо	Логічне АБО
11	9.		умовна операція (тернарного
11	?:	справа наліво	операція)
	=		присвоювання
	*=		множення з привласненням
12	/=		поділ з привласненням
12	°/o=	справа наліво	залишок від ділення з привласненням
	+=		додавання з привласненням
	_=		віднімання з привласненням
13	,	зліва направо	кома

Приклад 1

```
#include <stdio.h>
int main() {
    int a = 017; // 017 відповідає 15 у десятковій системі int b = 036; // 036 відповідає 30 у десятковій системі

// Побітове І int bitwise_and = a & b; printf("a & b = %o\n", bitwise_and); // %о для виводу у вісімковій системі

// Побітове АБО int bitwise_or = a | b; printf("a | b = %o\n", bitwise_or);
```

```
// Зсув вправо на 2 (тільки для змінної а)
  int left shift a = a >> 2;
  printf("a >> 2 = \% o \ n", left shift a);
a \& b = 16
a \mid b = 37
a << 2 = 3
Приклад 2
1) Переведення значень змінних а= 017, b=036 з вісімкової у двійкову
   систему числення:
a = 017 (вісімкова) = 000 001 111 (двійкова)
b = 036 (вісімкова) = 011 110 (двійкова)
2)Виконання необхідних операцій:
*Побітове I (a & b):
000 001 111
& 000 011 110
000 001 110
*Побітове АБО (a | b):
000 001 111
000011110
000 011 111
*Зсув вліво на 2 (тільки для a) (a << 2):
000\,001\,111 << 2 = 000\,111\,100
*Зсув вправо на 2 (тільки для a) (a >> 2):
000\,001\,111 >> 2 = 000\,000\,011
3)Отже, результати операцій для змінних а та b:
а & b = 00001110 (вісімкова: 016)
a \mid b = 0000111111 (вісімкова: 037)
a << 2 = 000 111 100 (вісімкова: 074)
a >> 2 = 000\,000\,011 (вісімкова: 003)
Приклад 3
#include < stdio.h >
#include<conio.h>
main() {
int a=0,b=3,c;
c=b\%2||(a>=0)&&(++b/2*a)==0;
```

printf("a=%d, c=%d\n",a,c);

```
getch();
a=0, c=1
Приклад 4
#include < stdio.h >
#include<conio.h>
main() {
int a=1,b=0,c;
c=b\%2||(a>=0)&&(++b*a)==0;
printf("c=\%d\n",c);
getch();
c=0
Приклад 5
#include < stdio.h >
#include<conio.h>
main() {
int x=2,z,y=0;
z=(x==0)&&(y=x)||(y>0);
printf("z=\%d\n",z);
getch();
z=0
```

Відповіді на контрольні запитання

1) Пріоритети операцій:

У мові C існує певний порядок виконання операцій, від найвищого пріоритету до найнижчого:

```
Дужки ()
Постфіксні оператори ++ і --
Префіксні оператори ++ і --
Оператори множення *, ділення /, залишок від ділення %
Оператори додавання + і віднімання -
Оператори відношення <, <=, >, >=
Оператори рівності ==, !=
Логічні оператори І &&
Логічні оператори АБО ||
Оператор присвоєння =
Оператори побітового І &, АБО |, ХОК ^
Оператори зсуву бітів <<, >>
2) Таблиця істинності логічного І:
```

Операція логічне І, виконується згідно таблиці істинності:

X	Y	X&&Y
0	0	0
0	1	0
1	0	0
1	1	1

3) Таблиця істинності логічного АБО:

Операція логічне АБО, виконується згідно таблиці істинності:

X	Y	X Y
0	0	0
0	1	1
1	0	1
1	1	1

- 4) Особливості виконання побітових операцій зсуву:
- 1.Операції зсуву вправо >> та вліво << виконують зсув бітів вказаного числа на вказану кількість позицій.
- 2.При зсуві вправо знакове число може зберігати або втрачати свій знак в залежності від реалізації мови.
 - 5) Таблиця істинності побітової операції XOR:

X	Y	X^Y
0	0	0
0	1	1
1	0	1
1	1	0

Висновок: на цій лабораторній роботі я ознайомився і навчитися використовувати логічні та побітові операції під час програмування на мові С.