Homework Assignment 1

Matthew Tiger

September 14, 2016

Problem 1.4.1. Find the fixed points and determine their stability for the function

$$f(x) = \frac{6}{x} - 1.$$

 \square

Problem 1.4.2. Let $f: \mathbb{R} \to \mathbb{R}$. If f'(x) exists with $f'(x) \neq 1$ for all $x \in \mathbb{R}$, prove that f has at most one fixed point. (Hint: Use the Mean Value Theorem).

 \square

Problem 1.4.4. Let $S_{\mu}(x) = \mu \sin(x)$, $0 \le x \le 2\pi$, $0 < \mu \le \pi$ and $C_{\mu}(x) = \mu \cos(x)$, $\pi \le x \le \pi$ and $\pi \le \mu \le \pi$, $\mu \ne 0$.

- i. Show that S_{μ} has a super-attracting fixed point at $x = \pi/2$, when $\mu = \pi/2$.
- ii. Find the corresponding values for C_μ having a super-attracting fixed point.

Solution. \Box

Problem 1.4.7. Let N_f be the Newton function of the map $f(x) = x^2 + 1$. Clearly there are no fixed points of the Newton function as there are no zeros of f. Show that there are points c where $N_f^2(c) = c$ (called *period 2-points* of N_f).

Solution. \Box

Problem 1.4.8. i. Suppose that f(c) = f'(c) = 0 and $f''(c) \neq 0$. If f''(x) is continuous at x = c, show that the Newton function $N_f(x)$ has a removable discontinuity at x = c. (Hint: Apply LHopitals rule to N_f at x = c.)

- ii. If in addition, f'''(x) is continuous at x = c with $f'''(c) \neq 0$, show that $N'_f(c) = 1/2$, so that x = c is not a super-attracting fixed point in this case.
- iii. Check the above for the function $f(x) = x^3x^2$ with c = 0.

 \square