Olist Ecommerce - Data Management & Analysis - by Srinivas Abhilash Chintalur				
- by Srinivas Abhilash Chintalur	Olist Ecom	merce- Data Ma	anagement &	Analysis
			- by Srinivas Ak	hilash Chintalur

Table of Contents

Data Source	3
Entity Relationship Diagram	3
Database creation, table population, and business questions	5
Database creation and table population:	5
Data dictionary:	9
Business Hypothesis & Analysis	12

Data Source

Dataset: Brazilian e-commerce dataset available in Kaggle

A single dataset is available is normalized into seven datasets/tables as shown below

Table name	Table Description
Orders	Information about the orders like order status, order
	purchase time, order approval time, etc.
Customer	Information about the customers like customer id, city,
	state, etc
Product	Information about the product like product id, product
	category, product weight, etc.
Seller	Information about the seller like seller id, seller state, etc.
Payment	Information about payments like payment type, payment
	installments, etc.
Delivery	Information related to delivery like the seller to carrier
	delivery time, carrier to customer delivery time, dispatch
	time etc.
Geolocation	Information related to latitude and longitude of the orders
	placed

Entity Relationship Diagram

Relationships used in the ERD:

Definition: Order item – An order can have multiple items in it, each item is assigned one order item id

- 1) One seller might have sold zero or more order items, and one order item has only one seller
- 2) One order item has only one product, while one product can be in multiple order items
- 3) One order can have multiple order items, while one order item belongs to only one order
- 4) One order has one payment, and one payment has one order
- 5) One order has only one customer, and one customer can place one more orders
- 6) One order can be placed from one location, and one location might come up have multiple orders

Database creation, table population, and business questions

My dataset consists of a single CSV file (brazil_ecom_cleaned.csv)

A snippet of the dataset

Approach:

- 1) Import the dataset into the MySQL database ensuring all the data points have the correct data type.
- 2) Generate 6 tables using SQL queries
- 3) Frame business questions, and use SQL queries on the 6 tables to answer the business questions

Database creation and table population

As my dataset is in denormalized form, I created a table for it and loaded the dataset(csv file) into this table.

- Step 1: Created a database: ecommerce (Refer to the SQL query in DB_Table_creation.sql)
- **Step 2:** Created a table: ecomm_denom_table in the ecommerce database (Refer to the SQL query in DB_Table_creation.sql)
- **Step 3:** Loading data from brazil_ecom_cleaned.csv file into the ecommerce.ecomm_denom_table, below screenshots illustrate the steps of data loading

Provided the csv file path in the table data import tab

Selected the destination table, in our case it is ecommerce.ecomm_denom_table

Mapped all the columns in the csv file to the columns created in the table

Started the import process

Data import Error 1:

Received an error as the column appeared twice

As the column 'ORDER_DELIVERED_CARRIER_DATE' was repeating twice, I went to the previous step of mapping the columns and fixed it.

Data import Error 2:

After fixing this, I received another error due to the issue in the date format of date-based columns in the CSV file. Changed the date format from 'dd-mm-yyyy HH:MM:SS' to 'yyyy-mm-dd HH:MM:SS' and fixed the issue.

Step 4: Created 7 tables: seller, product, customer, payment, geolocation, orders, order_item (Refer to the SQL query in DB_Table_creation.sql)

Step 5: Load data from the denormalized table into each of the 7 tables created

Data dictionary

SELLER table

Field	Data Description
SELLER_ID	The unique ID for each seller
SELLER_STATE	The state that the seller belongs to

PRODUCT table

Field	Туре	Null	Key	Default	Extra
PRODUCT_ID	varchar(100)	NO	PRI	NULL	
PRODUCT_CATEGORY_NAME	varchar(200)	YES		NULL	
PRODUCT_WEIGHT_G	decimal(20,3)	YES		NULL	
VOLUMETRIC_WEIGHT	decimal(20,3)	YES		NULL	

Field	Data Description
PRODUCT_ID	The unique ID for each product
PRODUCT_CATEGORY_NAME	Category of the product
PRODUCT_WEIGHT_G	Weight of the product
VOLUMETRIC WEIGHT	Volume of the product ordered

PAYMENT table

			_		
Field	Type	Null	Key	Default	Extra
ORDER_ID	varchar(100)	NO	PRI	NULL	
PAYMENT_TYPE	varchar(200)	YES		NULL	
PAYMENT_INSTALLMENTS	int	YES		NULL	
PAYMENT_SEQUENTIAL	int	YES		NULL	
TOTAL_PAYMENT_VALUE	decimal(20,3)	YES		NULL	

Field	Data Description
PRODUCT_ID	The unique ID for each product
PRODUCT_CATEGORY_NAME	Category of the product
PRODUCT_WEIGHT_G	Weight of the product
VOLUMETRIC_WEIGHT	Volume of the product ordered

CUSTOMER table

Field	Type	Null	Key	Default	Extra
CUSTOMER_ID	varchar(100)	NO	PRI	NULL	
CUSTOMER_CITY	varchar(100)	YES		NULL	
CUSTOMER_STATE	char(2)	YES		NULL	

Field	Data Description
CUSTOMER_ID	The unique ID for each customer
CUSTOMER_CITY	City of the customer
CUSTOMER_STATE	State of the customer

GEOLOCATION table

		-		-	
Field	Type	Null	Key	Default	Extra
CUSTOMER_ZIP_CODE_PREFIX	varchar(10)	YES		NULL	
GEOLOCATION_LAT	decimal(20,10)	NO	PRI	NULL	
GEOLOCATION_LNG	decimal(20,10)	NO	PRI	NULL	

Field	Data Description
CUSTOMER_ZIP_CODE_PREFIX	The unique ID for each customer
GEOLOCATION_LAT	City of the customer
CUSTOMER_STATE	State of the customer

ORDER_ITEM table

Field	Туре	Null	Key	Default	Extra
ORDER_ID	varchar(100)	NO	PRI	NULL	
ORDER_ITEM_ID	varchar(100)	NO	PRI	NULL	
PRODUCT_ID	varchar(100)	YES		NULL	
SELLER_ID	varchar(100)	YES		NULL	
PRICE	decimal(20,3)	YES		NULL	
FREIGHT_VALUE	decimal(20,3)	YES		NULL	

Field	Data Description
ORDER_ID	The unique ID for each order
ORDER_ITEM_ID	The unique ID for each item in the order
PRODUCT_ID	The unique ID for the product
SELLER_ID	The unique ID of the seller
PRICE	Price of the product
FREIGHT_VALUE	Delivery value of the order

ORDERS table

Field	Type	Null	Key	Default	Extra
ORDER_ID	varchar(100)	NO	PRI	NULL	
CUSTOMER_ID	varchar(100)	NO	PRI	NULL	
GEOLOCATION_LAT	decimal(20,10)	YES		NULL	
GEOLOCATION_LNG	decimal(20, 10)	YES		NULL	
ORDER_STATUS	varchar(20)	YES		NULL	
ORDER_PURCHASE_TIMESTAMP	datetime	YES		NULL	
ORDER_APPROVED_AT	datetime	YES		NULL	
ORDER_DELIVERED_CARRIER_DATE	datetime	YES		NULL	
ORDER_DELIVERED_CUSTOMER_DATE	datetime	YES		NULL	
ORDER_ESTIMATED_DELIVERY_DATE	datetime	YES		NULL	
SELLER_TO_CARRIER_DELIVERYTIME	decimal(20,3)	YES		NULL	
CARRIER_TO_CUSTOMER_DELIVERY	decimal(20,3)	YES		NULL	
SELLER_DISPATCH_TIME	varchar(10)	YES		NULL	
CUSTOMER_DELIVERY_TIME	varchar(10)	YES		NULL	

Field	Data Description		
ORDER_ID	The unique ID for each order		
CUSTOMER_ID	The unique ID for each customer		
GEOLOCATION_LAT	Latitude of the order location		
GEOLOCATION_LNG	Longitude of the order location		
ORDER_STATUS	Status of the order (delivered or cancelled)		
ORDER_PURCHASE_TIMESTAMP	The timestamp of the order purchase		
ORDER_APPROVED_AT	The timestamp of the order approval		
ORDER_DELIVERED_CARRIER_DATE	The timestamp of order delivery to the carrier		
ORDER_DELIVERED_CUSTOMER_DATE	The timestamp of order delivery to the		
	customer		
ORDER_ESTIMATED_DELIVERY_DATE	The estimated delivery date to the customer		
SELLER_TO_CARRIER_DELIVERYTIME	Time taken to reach from seller to carrier		
CARRIER_TO_CUSTOMER_DELIVERYTIME	Time taken to reach from carrier to customer		
SELLER_DISPATCH_TIME	Time taken by the seller to dispatch (binary:		
	delay or fast)		
CUSTOMER_DELIVERY_TIME	Time taken for the delivery (binary: delay or		
	fast)		

Business Hypothesis & Analysis

The e-commerce company started receiving complaints from the city 'santa rita'. The management
wanted to have a look at the details of the orders from 'santa rita' and understand if there are any
issues after looking at the data.

There were a 7 orders from santa rita, the details of which were presented to the management.

2. What is the average order value and average delivery cost?

Avg. delivery price is approximately one-sixth of the avg. order value

3. How are the orders distributed over the days of the month? and days of the week?

 $The trend of sum of Order \ Distribution for Order \ Day \ Month. \ The marks are \ labelled \ by \ sum of Order \ Distribution.$

The number of orders peak on 16th and 24th dates of the month, while 1st, 21st, 23rd and 28th record low orders.

 $Sum of Order \ Distribution for each \ Order \ Day \ of the \ Week. \ Colour shows \ details \ about \ Order \ Day \ of the \ Week. \ The \ marks \ are labelled \ by \ sum \ of \ Order \ Distribution.$

Mondays and Tuesdays have higher % of orders, while Saturdays and Sundays have a significantly lower % of orders

4. What are the highest and lowest ordered product categories?

Product Categories				
Highest order	Lowest ordered			
Bed, Table and Bath products	Kitchen			
Beauty and Health care	Gaming PCs			
Sport	Children clothing			
Computer accessories	Insurance and Services			

5. Do customers prefer more installments for higher-value products?

The plot of average of Avg Payment Installments for Ten Per Groups. Colour shows details about Ten Per Groups. The marks are labelled by sum of Avg Payment Installments.

The average payment installments decreases as the order value increases

6. The management is interested in knowing the states with the highest and the lowest orders as it would help allocate the workforce accordingly. The distribution of orders across different states in the country. A detailed heatmap would help the organization allocate the workforce more efficiently.

Sao Paulo state has the highest frequency of orders, while most of the north western regions have no orders

7. What is the percentage of orders that are dispatched late by the seller (seller_dispatch_time = Delay) but delivered before the promised time to the customer (customer_delivery_time = Fast)?

6.8% of the orders are dispatched late by the sellers but received on time by the customers

8. As high-value and low-volume products generate a lot of revenue for an e-commerce company, What is the distribution of (high-value, low-volume), (low-value, high-volume), (low-value, low-volume), (high-value, high-volume) products are delivered before the promised time to the customer?

Value and Volume bands	# of Products	% Distribution
High value and High volume	30307	43.4
Low value and High volume	17243	16.6
Low value and Low volume	30307	23.4
High value and Low volume	17243	16.6

The distribution of High value and Low volume is quite less as compared to the counterparts

9. How many orders in total are using more than 5 vouchers to pay the order amount?

124

The number of orders with more than 5 vouchers are quite less

10. As it would decrease the delivery costs, the management wants to run marketing campaigns and generate more orders from the states where we have sellers but very few customers.

11. The management would like to run a credit card campaign if there are a significant number of customers who are not using credit cards to pay the orders, what is the percentage of customers who are using a credit card for a full payment/ partial payment?

77%

The % of orders using credit cards for partial/complete payment are quite high