This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

(10) International Publication Number WO 02/082514 A1

(51) International Patent Classification7: 21/762

H01L 21/20.

(21) International Application Number: PCT/US02/10317

(22) International Filing Date: 4 April 2002 (04.04.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/281,502

4 April 2001 (04.04.2001)

- MASSACHUSETTS INSTITUTE OF (71) Applicant: TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, MA 02139 (US).
- (72) Inventors: CHENG, Zhiyuan; 14 Seventh Street, Cambridge, MA 02141 (US). FITZGERALD, Eugene, A.,; 7 Camelot Road, Windham, NH 03087 (US). ANTO-NIADIS, Dimitri, A.; 195 Beethoven Avenue, Newton, MA 02468 (US).
- (74) Agent: TESTA, HURWITZ & THIBEAULT, LLP; Patent Administrator, High Street Tower, 125 High Street, Boston, MA 02110 (US).

- (81) Designated States inational): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FL GB, GD, GE, GH, GM, HR, HU, HD, HL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE. IT, LU, MC, NL, PT, SE, TR), OAPI patent (BE, BJ, CE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: A METHOD FOR SEMICONDUCTOR DEVICE FABRICATION

(57) Abstract: A method of fabricating a semiconductor structure. According to one aspect of the invention, on a first semiconductor 📭 substrate, a first compositionally graded Si_{1-x}Ge, buffer is deposited where the Ge composition x is increasing from about zero to a value less than about 20%. Then a first etch-stop Si_{1.y}Ge_y layer is deposited where the Ge composition y is larger than about 20% so that the layer is an effective etch-stop. A second etch-stop layer of strained Si is then grown. The deposited layer is bonded to a second substrate. After that the first substrate is removed to release said first etch-stop Si1., Ge, layer. The remaining structure is then removed in another step to release the second etch-stop layer. According to another aspect of the invention, a semiconductor structure is provided. The structure has a layer in which semiconductor devices are to be formed. The semiconductor structure includes a substrate, an insulating layer, a relaxed SiGe layer where the Ge composition is larger than approximately 15%, and a device layer selected from a group consisting of, but not limited to, strained-Si, relaxed Si1-, Ge, layer, strained Si1-, Ge, layer, Ge, GaAs, III-V materials, and II-IV materials, where Ge compositions y and z are values between 0 and 1.

10

15

20

25

30

35

A METHOD FOR SEMICONDUCTOR DEVICE FABRICATION

PRIORITY INFORMATION

This application claims priority from provisional application Ser. No. 60/281,502 filed April 4, 2001.

BACKGROUND OF THE INVENTION

The invention relates to the production of a general semiconductor substrate of relaxed Si_{1-x}Ge_x-on-insulator (SGOI) for various electronics or optoelectronics applications, the production of strained Si or strained SiGe field effect transistor (FET) devices on SGOI, and the production of monocrystalline III-V or II-VI material-on-insulator substrates.

Relaxed SGOI is a very promising technology as it combines the benefits of two advanced technologies: the conventional SOI technology and the disruptive SiGe technology. The SOI configuration offers various advantages associated with the insulating substrate, namely reduced parasitic capacitances, improved isolation, reduced short-channel-effect, etc. The SiGe technology also has various advantages, such as mobility enhancement and integration with III-V devices.

One significant advantage of the relaxed SGOI substrate, is to fabricate high mobility strained-Si, strained-Si_{1-x}Ge_x or strained-Ge FET devices. For example, strained-Si MOSFETs can be made on the SGOI substrate. The strained-Si MOSFETs on the SGOI has attracted attention because it promises very high electron and hole mobilities, which increase the speed of the electronic circuit. Other III-V optoelectronic devices can also be integrated into the SGOI substrate by matching the lattice constants of III-V materials and the relaxed Si_{1-x}Ge_x. For example, a GaAs layer can be grown on Si_{1-x}Ge_x-on-insulator where x is equal or close to 1. SGOI may serve as an ultimate platform for high speed, low power electronic and optoelectronic applications.

There are several methods for fabricating SGOI substrates and SGOI FET devices. In one method, the separation by implantation of oxygen (SIMOX) technology is used to produce SGOI. SIMOX uses a high dose oxygen implant to bury a high concentration of oxygen in a Si_{1-x}Ge_x layer, which will then be converted into a buried oxide (BOX) layer upon annealing at a high temperature. One of the main drawbacks is the quality of the resulting Si_{1-x}Ge_x film and the BOX layer. In addition, the Ge segregation during the high temperature anneal also limits the amount of Ge composition to a value that is low, such as 10%. Due to the low Ge composition, the device

not an ideal SGOI substrate and the silicon layer is unnecessary, and may complicate or undermine the performance of devices built on it. The relaxation of the resultant SiGe film and quality of the resulting structure are main concerns.

In a recent method, relaxed Si_{1-x}Ge_x-on-insulator is produced by using 20% SiGe layer as an etch-stop. First a compositionally graded Si_{1-x}Ge_x buffer (where x is less than about 0.2) and then a uniform Si_{1-y}Ge_y etch-stop layer (where y is larger than about 0.2) are deposited on the first substrate. Then the deposited layer is bonded to a second insulating substrate. After removing the first substrate and graded buffer layer utilizing the Si_{1-y}Ge_y as an etch-stop, a Si_{1-y}Ge_y-on-insulator (SGOI) results. The method makes use of an experimental discovery that Si_{1-y}Ge_y with Ge composition larger than about 20% is a good etch-stop for all three conventional Si etchant systems, KOH, TMAH and EDP, and the selectivity is better than the conventional p++ etch stop. In this method the etch-stop Si_{1-v}Ge_v layer is part of the final SGOI structure. However, as the Ge composition in the final SGOI structure is fixed by the etch-stop Si_{1-y}Ge_y, if the desired Ge composition in the final SGOI structure is much higher or lower than 0.2, the above method is not practical. If it is much lower than 0.2, for example 0.1, Si_{0.9}Ge_{0.1} is not a good etch stop at all. If it is much larger than 0.2, the Ge composition difference between the etch-stop layer and surface layer in the grade buffer is too big and there is large lattice constant difference between the two layers, which prevents the growth of a relaxed etch-stop Si_{1-y}Ge_y layer with good quality.

From above, clearly an improved method is needed to fabricate a relaxed SGOI substrate with high Ge composition and wide range of Ge composition. An improved method is needed to fabricate strained-Si or strained-SiGe FET devices on SGOI substrate with high Ge composition.

25

30

10

15

20

SUMMARY OF THE INVENTION

According to one aspect of the invention, the invention provides a method of semiconductor device fabrication, and more specifically, a method of production of a general semiconductor substrate of relaxed SGOI for various electronics or optoelectronics applications, a method of production of strained Si or strained SiGe FET devices on SGOI, and the production of monocrystalline III-V or II-VI material-on-insulator substrates. The invention provides a method of producing a relaxed Si_{1-x}Ge_x-on-insulator substrate with high Ge composition and wide range of Ge composition, and the Ge composition may be much less or much higher than 20%. The invention provides an improved method to fabricate

10

15

20

25

30

Fig. 2. is a block diagram of a compositionally graded Si_{1-x}Ge_x buffer 30. The compositionally graded Si_{1-x}Ge_x buffer 30 is a multi-layer structure where the Ge composition in each layer is changing gradually from a beginning value to a final value. For example, the compositionally graded Si_{1-x}Ge_x buffer 30 shown in Fig. 2 has 16 layers, and the Ge composition x in the first layer is 0% and is increasing gradually to 2%, 4%, 6% until 30% in the last layer (layer 16). Such a compositionally graded Si_{1-x}Ge_x buffer 30 allows a high quality relaxed Si_{0.7}Ge_{0.3} layer to be grown on the top of the buffer with low threading dislocation density.

Referring to Figs. 1(a)-1(d), a compositionally graded Si_{1-x}Ge_x buffer 6 is epitaxially grown on a 4-inch Si (100) substrate 2, where the Ge composition x is increasing gradually from zero to 25% with a grading rate of 10% Ge/µm. Within the compositionally graded Si_{1-x}Ge_x buffer 6, a portion of the buffer 6 with Ge composition larger than about 20% forms a natural etch stop. A 2.5 µm-thick undoped, relaxed Si_{0.75}Ge_{0.25} cap layer 4 is then deposited, as shown in Fig. 1(a). The slow grading rate and high growth temperature result in a completely relaxed cap layer 4 with threading dislocation densities of ~10⁵ cm⁻². As shown in Fig. 1(b), the wafer 2 is then flipped over and bonded to a second Si substrate 10, which is thermally oxidized. The oxide 12 in the second substrate will become the insulator layer in the final SiGe-on-insulator substrate. The bonded pair is then annealed at 850 °C for 1.5 hrs. The bonded pair is grounded to remove the donor wafer substrate 8, as shown in Fig. 1(c). The wafer 8 is then subjected to a TMAH solution to etch away a portion of the compositionally graded Si_{1-x}Ge_x buffer 6 with Ge composition less than 20%. The etching process stops approximately at a 20% SiGe layer 14 within the compositionally graded Si_{1-x}Ge_x buffer 6 and the 20% SiGe layer 14 is used as a natural etch stop.

After performing the etching process, the remaining portion of the compositionally graded Si_{1-x}Ge_x buffer 14 with a Ge composition between 20% to 25% and part of the relaxed Si_{0.75}Ge_{0.25} layer 4 are removed by chemical-mechanical polishing (CMP), resulting in a relaxed Si_{0.75}Ge_{0.25}-on-insulator substrate, as shown in Fig. 1(d). The CMP process is also essential in planarizing the SGOI surface for epitaxial regrowth in the next step. As shown in Fig. 1(e), in order to make a strained-Si device 22, a 100 nm p-type (doping 10¹⁶ cm⁻³) relaxed Si_{1-x}Ge_x layer 18 is grown at 850 °C with a Ge composition of 25%, followed by 8.5 nm-thick undoped strained-Si layer 20 grown at 650°C. Electronic devices may be fabricated on the above semiconductor structure. In particular, a large size strained-Si n-MOSFETs can be fabricated on the above structure and significant electron mobility enhancement is observed from the strained-Si MOSFETs.

15

20

25

30

where Q_b is the bulk depletion charge, Q_{im} is the inversion charge, and ε_s is the dielectric constant of Si. Because of uncertainties in the strained-Si/Si_{0.75}Ge_{0.25} doping, the bulk depletion charge Q_b is not computed from the usual $N_A x_{d,max}$ approximation. Instead, Q_b is extracted from

$$E_{ox}\varepsilon_{ox}=Q_{inv}+Q_{b},$$
 Eq. 4

where E_{ox} is the electric field in the gate oxide. As a result, the effective field can be approximated by

$$E_{eff} = \left[E_{ox} \varepsilon_{ox} - Q_{inv} / 2 \right] / \varepsilon_{s}.$$
 Eq. 5

The inversion charge Q_{inv} is taken to be

$$C_{ox}(V_{GS}-V_T)$$
. E_{ox} Eq. 6

and is assumed to be equal to V_{GS}/t_{ox} , which holds under the conditions of strong inversion and $V_{GS} >> V_{DS}$, such that the potential difference between the strongly-inverted Si surface and the S/D regions is negligibly small compared with the large potential drop across the thick gate oxide.

Fig. 4 is a graph demonstrating the measured effective electron mobility as a function of the effective vertical electric field on a strained-Si on SGOI. The graph also demonstrates the mobilities of two other controls, such as conventional bulk Si MOSFETs 34 and strained-Si MOSFETs 38 on relaxed bulk SiGe substrate, for comparison. Since all three devices have the same geometry and are processed simultaneously, possible errors due to factors such as the extraction of the ring geometry factor, and approximations in E_{eff} evaluation do not impact the relative comparison of the electron mobility characteristics. As shown in Fig. 4, the measured mobility for the CZ Si control device 34 is close to the universal mobility curve 40. Fig. 4 also shows that the measured electron mobility enhancement for strained Si MOSFETs 36 fabricated on SGOI as compared to the mobility of co-processed bulk Si MOSFETs 38 is significant (~1.7 times). In addition, the electron mobilities are comparable for devices fabricated on SGOI 36 and bulk relaxed SiGe layers 38, thus demonstrating the superior mobility performance introduced by the strained-Si channel is retained in this SGOI structure. This enhancement factor of 1.7 is consistent with previously reported experimental and theoretical values for strained-Si n-MOSFETs on bulk relaxed SiGe films.

This demonstrates that the fabrication of relaxed SGOI structures and strained-Si FET devices on SGOI with high Ge composition of 25% is practical. This also demonstrates that strained-Si MOSFETs fabricated on a SGOI substrate can significantly

15

20

25

30

composition. The SiGe layer thickness uniformity is important. For example, to fabricate strained-Si MOSFET devices on a SGOI structure, the performance of the devices strongly depends on the thickness of the Si_{0.2}Ge_{0.8} layer. A uniform SiGe layer is highly desired. To fabricate SGOI with Ge composition of 80% using the method described in Fig. 1, it necessitates the deposition of a relative thick compositionally graded Si_{1-x}Ge_x buffer where the Ge composition is increasing gradually from zero to 80%. A TMAH or KOH etch step etches away the portion of the compositionally graded Si_{1-x}Ge_x buffer where Ge composition is less than 20% and stops at 20% SiGe layer within the compositionally graded Si_{1-x}Ge_x buffer. The remaining portion of the compositionally graded Si_{1-x}Ge_x buffer is still considerably thick, where Ge composition varies from about 20% to 80%. For example, the remaining portion of the compositionally graded Si_{1-x}Ge_x buffer with Ge composition from 20% to 80% has a thickness of 6 μm if the buffer is grown with a grading rate of 10% Ge/μm.

This 6 µm thick buffer needs to be removed in order to explore the Si_{0.2}Ge_{0.8} layer, for example by means of CMP. This removing step may induce significant non-uniformity. There are two possible sources of non-uniformity. First, the growth of the SiGe film itself may be not uniform across the whole substrate. For example, it is observed that the SiGe buffer can vary more than 10% in thickness if the surface of the Si substrate is placed in parallel to the direction of reactant gas flow in the CVD reactor during growth. In this orientation, one part of the substrate is in contact with higher concentration of gas than the other part since the gas concentration is decreasing along its flow pass as gas gets consumed. Therefore, the growth rate is different, resulting in differences of layer thickness. To avoid this non-uniformity, it is preferred that the surface of the Si substrate be placed normal to the direction of reactant gas flow in the reactor during the growth.

The second source comes from the removing process of the buffer layer. For example, if the buffer layer is removed by a polishing technique such as CMP, the CMP process may induce some uniformity. Although the CMP can improve the local uniformity, it may induce some global non-uniformity across the wafer. For example, the CMP process may polish the edge of the wafer faster than the center. As a result, the final SGOI structure has a non-uniform SiGe layer. Using two or more etch-stops, the system can improve the uniformity as described in the embodiment below.

Fig. 6 is block diagram of a SGOI substrate with improved SiGe layer uniformity using two etch stop layers, which is especially suitable for SGOI substrates with high Ge composition. As shown in Fig. 6, a compositionally graded Si_{1-x}Ge_x buffer 56 is grown on a

WO 02/082514 PCT/US02/10317

13

and a ser eggs in the

bonding. However, as described above, CMP may induce global non-uniformity across the wafer. Moreover, in some cases, there may not be enough thickness for a surface to be polished. For example, if a layer is a strained Si etch-stop layer, its thickness is very small in order to keep it strained without relaxation, for example 10 nm.

Two approaches may be used to solve this issue. The first approach is before depositing the last thin material layer (e.g., the last layer is a strained Si layer), polish the SiGe buffer layer to achieve enough surface smoothness. Then grow the last strained Si etch-stop layer, which results in a smoother final surface. If the surface is smooth enough, the structure can be bonded directly. Even if polishing is still needed, it will reduce the thickness to be polished.

5

10

15

20

25

30

The second approach requires before bonding to deposit an additional insulating material layer like an oxide layer on the first structure. Afterward, polish this additional insulating layer to achieve enough surface smoothness, and then bond the polished insulating layer to a second substrate.

Fig. 8 is a block diagram of a Si_{0.8}Ge_{0.2}-on-insulator substrate with improved Si_{0.8}Ge_{0.2} layer uniformity. As shown in Fig. S, a compositionally graded Si_{1-x}Ge_x buffer 84 is grown on a silicon substrate 82, where Ge composition x is increasing gradually from zero to about 20%. Then a Si_{0.8}Ge_{0.2} etch-stop layer 86 with selected thickness is deposited. The Si_{0.8}Ge_{0.2} etch-stop layer 86 will also contribute to the SiGe layer in the final Si_{0.8}Ge_{0.2}on-insulator substrate. The thickness of the Si_{0.8}Ge_{0.2} etch-stop layer 86 is thick enough to sustain the selective etch process. This thickness is also chosen deliberately such that the resulting final Si_{0.8}Ge_{0.2}-on-insulator substrate has a desired Si_{0.8}Ge_{0.2} layer thickness. For example, for the purpose of fabricating high mobility strained-Si MOSFET on Si_{0.8}Ge_{0.2}-oninsulator substrate, a final Si_{0.8}Ge_{0.2} layer 86 thickness of 100 nm or less may be desired. After the deposition of Si_{0.8}Ge_{0.2} etch-stop layer 86, an additional insulating layer is deposited, for example an oxide layer 88. The oxide layer 88 is polished by CMP to achieve surface smoothness required by wafer bonding. By doing this, the polishing of Si_{0.8}Ge_{0.2} etch-stop layer 86 is avoided. Without the polishing step, the Si_{0.8}Ge_{0.2} etch-stop layer 86 can maintain its good uniformity. After flipping over and bonding to a second substrate, the first substrate is removed. After a selective etching process with TMAH or KOH, which removes the compositionally graded Si_{1-x}Ge_x buffer and stops at the Si_{0.8}Ge_{0.2} etch-stop layer 86, a final Si_{0.8}Ge_{0.2}-on-insulator substrate results. The structure has good SiGe layer uniformity. Polishing may be used to smooth the Si_{0.8}Ge_{0.2} surface after etching without

13 CLAIMS

1	1. A method	d of fabricating a semiconductor structure comprising:	
2	p:	roviding a first semiconductor substrate;	
3	d	epositing a compositionally graded Si _{1-x} Ge _x buffer on said first	
4	semicono	ductor substrate, where the Ge composition x is increasing from abo	ut
5	0% to a v	value larger than about 20%, wherein a portion of said compositiona	lly
6	graded S	i _{1-x} Ge _x buffer with Ge composition larger than about 20% forms a	· ·
7	natural S	iGe etch-stop layer;	
8	d	epositing one or more material layers selected from the group consis	sting
9	of, but n	ot limited to, relaxed Si _{1-y} Ge _y layer, strained Si _{1-z} Ge _z layer, strained-	Si,
10	Ge, GaA	s, III-V materials, and II-VI materials, where Ge compositions y and	d z
11	are value	es between 0 and 1.	
12	Ъ	onding said deposited layers to a second substrate;	
13	r	emoving said first substrate to explore said etch-stop SiGe layer whi	ch
14	including	g the portion of said compositionally graded $Si_{1-x}Ge_x$ buffer where the	ıe Ge
15	composi	tion is larger than approximately 20%; and	
16	r	emoving said remaining portion of said compositionally graded Si _{1-x}	(Ge _x
17	buffer in	order to release said one or more material layers.	
ı	2. The met	hod of claim 1, wherein said second substrate has an insulating layer	r on
2	the surface.		
1	3. The met	hod of claim 1 further comprising depositing an insulating layer before	ore
2	bonding.		
1	4. The met	hod of claim 1 further comprising polishing the surface of one of sa	id
2	deposited layers	S	
1	5. The me	thod of claim 1 further comprising polishing the surface of said first	
2	substrate before	bonding.	
1	6. The me	thod of claim 1 further comprising depositing one or more second	
2	material layers	selected from the group consisting of, but not limited to, relaxed Si	_{-y} Ge _y
3	layer, strained	Si ₁₋₂ Ge ₂ layer, strained-Si, Ge, GaAs, III-V materials, and II-VI mate	erials,
4	where Ge comp	positions y and z are values between 0 and 1.	
1	7. The me	thod of claim 6 further comprising polishing the surface of said rele	ased

15	bonding said deposited layers to a second substrate;
16	removing said first substrate to release said uniform etch-stop Si _{1-y} Ge _y layer;
17	removing said uniform etch-stop Si _{1-y} Ge _y layer; and
18	removing said second compositionally graded Si ₁₋₂ Ge _z buffer.
1	12. The method of claim 11, wherein said second substrate has an insulating layer on
2	the surface.
1	13. The method of claim 11 further comprising depositing an insulating layer before
2	bonding.
1	14. The method of claim 11 further comprising polishing the surface of one of said
2	deposited layers.
1	15. The method of claim 11 further comprising polishing the surface of said first
2	substrate before bonding.
1	16. The method of claim 11 further comprising depositing one or more second
2	material layers selected from the group consisting of, but not limited to, relaxed Si _{1-y} Ge _y
3	layer, strained Si ₁₋₂ Ge _z layer, strained-Si, Ge, GaAs, III-V materials, and II-VI materials,
4	where Ge compositions y and z are values between 0 and 1.
1	17. The method of claim 16 further comprising polishing the surface of said released
.2	of said one or more material layers before depositing said one or more second material
3	layers.
1	18. The method of claims 11 further comprising fabricating a semiconductor device
2	selected from the group consisting of, but not limited to, FET device, MOSFET device,
3	MESFET device, solar cell device, and optoelectronic device.
1	19. A semiconductor etch-stop layer structure that includes a monocrystalline
2	semiconductor substrate, said semiconductor etch-stop layer structure comprises:
3	a first compositionally graded Si _{1-x} Ge _x buffer where the Ge composition x
4	is increasing from about zero to a value less than about 20%;
5	a uniform etch-stop Si _{1-y} Ge _y layer of with a selected thickness where the
6	Ge composition y larger than about 20%; and
7	a second compositionally graded Si _{1-z} Ge _z buffer where the Ge
8	composition x is decreasing from about 20% to a value less than 20%.

PCT/US02/10317 WO 02/082514

7	smaller value, a relaxed Si _{1-y} Ge _y layer, a strained Si _{1-z} Ge _z layer, where Ge composition y	-
8	is a value between 0 and 1, a GaAs layer, a III-V material layer, and a II-VI material	
9	layer.	٠.
-		
1	25. A method of fabricating a semiconductor structure comprising:	
2	providing a first semiconductor substrate;	
3	depositing a first compositionally graded Si _{1-x} Ge _x buffer on said first	
4	semiconductor substrate, where the Ge composition x is increasing from about	
5	zero to a value less than about 20%;	
6	depositing a first etch-stop Si _{1-y} Ge _y layer on said first compositionally	
7	graded Si _{1-x} Ge _x buffer where the Ge composition y is larger than about 20% so	
8	that the layer is an effective etch-stop;	
9	depositing a second etch-stop layer of strained Si;	
١0	bonding said deposited layers to a second substrate;	
11	removing said first substrate to release said first etch-stop Si _{1-y} Ge _y layer;	
12	removing said remaining structure to release said second etch-stop layer; and	
13	processing said released second etch-stop layer.	
ı	26. The method of claim 25 further comprising depositing one or more material	
2	layers before depositing said second etch-stop layer, and said one or more material layers	;
3	are material layers selected from the group consisting of, but not limited to, a	
4	compositionally graded Si ₁₋₂ Ge _z buffer where the Ge composition z is increasing from	
5	about 20% to a value much higher than 20%, a second compositionally graded Si _{1-k} Ge _k	
6	buffer where the Ge composition k is decreasing from about 20% to a smaller value, a	
7	relaxed Si ₁₋₂ Ge ₂ layer, a strained Si ₁₋₀ Ge ₀ layer, where Ge composition o is a value	
8	between 0 and 1, a GaAs layer, a III-V material layer, and a II-VI material layer.	
1	27. The method of claim 25 further comprising, before bonding, depositing one or	
2	more material layers selected from the group consisting of, but not limited to, a relaxed	
3	Si _{1-z} Ge _z layer, a strained Si _{1-z} Ge _z layer, where Ge composition z is a value between 0 an	d
4	1, a GaAs layer, a III-V material layer, and a II-VI material layer.	
1	28. The process of claim 25, wherein said second substrate has an insulating layer or	1
2	the surface.	
1	29. The method of claim 25 further comprising depositing an insulating layer before	;

2

bonding.

Ge composition in each layer:

	in eac	th layer:
	layer 16: Si _{0.7} Ge _{0.3}	30%
	layer 15: Si _{0.72} Ge _{0.28}	. 28%
	layer 14: Si _{0.74} Ge _{0.26}	26%
	layer 13: Si _{0.76} Ge _{0.24}	24%
uffer	layer 12: Si _{0.78} Ge _{0.22}	22%
e e	layer 11: Si _{0.8} Ge _{0.2}	20%
Si _{1-x} C	layer 10: Si _{0.82} Ge _{0.18}	18%
i sub	layer 9: Si _{0.84} Ge _{0.16}	16%
y gra	layer 8: Si _{0.86} Ge _{0.14}	30 14%
A compositionally graded Si _{1-x} Ge _x buffer grown on a Si substrate	layer 7: Si _{0.88} Ge _{0.12}	12%
positi	layer 6: Si _{0.9} Ge _{0.1}	10%
СОШ	layer 5: Si _{0.92} Ge _{0.08}	8%
₹	layer 4: Si _{0.94} Ge _{0.06}	6%
	layer 3: Si _{0.96} Ge _{0.04}	-4%
	layer 2: Si _{0.98} Ge _{0.02}	2%
(layer 1: Si	.) 0%
	Si substrate	

FIG. 2

4/8

FIG. 3

5/8

FIG. 4

6/8

FIG. 5

FIG. 6

INTERNATIONAL SEARCH REPORT

etional Application No PCT/US 02/10317

A. CLASSIF IPC 7	HO1L21/20 HO1L21/762		
According to	International Patent Classification (IPC) or to both national classification	and IPC	
B. FIELDS			
Minimum do	cumentation searched (classification system tollowed by classification s $H01L$		
	ion searched other than minimum documentation to the extent that such	·	
	ata base consulted during the international search (name of data base ternal, INSPEC, WPI Data, PAJ, IBM-TD		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
Х	WO 99 53539 A (MASSACHUSETTS INST TECHNOLOGY) 21 October 1999 (1999- abstract; claims; figures 1A-1D,10	10-21)	1-3,6
X	US 6 059 895 A (CHU JACK OON ET A 9 May 2000 (2000-05-09)	L)	1-3,6,8, 9,11-13, 16, 18-21, 23-29, 32,34-37
Y	abstract; claims; figures		4,5,7, 10,14, 15,17, 30,31,33
	-/	/	
X Fu	orther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
A docur cons *E* earlie filing *L* docur whic cital *O* docur othe	ment defining the general state of the art which is not sidered to be of particular relevance or document but published on or after the international grate ment which may throw doubts on priority claim(s) or chi is cited to establish the publication date of another the control of the special reason (as specified) ament referring to an oral disclosure, use, exhibition or er means	T later document published after the int or priority date and not in conflict wit cited to understand the principle or to invention. X' document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the cannot be considered to involve an indocument is combined with one or ments, such combination being obvi in the art.	h the application but heory underlying the claimed invention of the considered to locument is taken alone claimed invention inventive step when the nore other such docurous to a person skilled
I -	ne actual completion of the international search	Date of mailing of the international s	earch report
	16 September 2002	23/09/2002	
Name an	nd mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rüswijk Tel. (+31-70) 340-3016 Fax: (+31-70) 340-3016	Wirner, C	

INTERNATIONAL SEARCH REPORT

information on patent family members

ntional Application No
PCT/US 02/10317

Patent document cited in search report		Publication date		Patent family member(s)	-	Publication - date
WO 9953539	A	21-10-1999	CA EP JP WO US	2002511652 T 9953539 A	۱1	21-10-1999 24-01-2001 16-04-2002 21-10-1999 14-06-2001
US 6059895	Α	09-05-2000	US JP JP TW		32 A.	25-05-1999 21-06-1999 17-11-1998 01-05-2000
WO 9859365	Α	30-12-1998	EP JP US WO US	2000513507 7 2002084000 / 9859365 / 6107653 /	A1 T A1 A1 A1 A	05-07-2000 10-10-2000 04-07-2002 30-12-1998 22-08-2000 18-09-2001
WO 0048239	Α	17-08-2000	US EP WO		A1 A1 A1	22-11-2001 21-11-2001 17-08-2000
EP 0683522	Α	22-11-1995	US EP JP JP	0683522	A A2 B2 A	09-07-1996 22-11-1995 27-12-1999 08-12-1995
WO 0199169	A	27-12-2001	AU WO	6857701 0199169		02-01-2002 27-12-2001