Color, Imagen y Tecnología de Display

Dr. Ivan Sipiran

Color

- Importante en visión humana
- Espectro visible humano es 400nm (azul) a 700nm (rojo)
- Máquinas pueden ver más que eso: rayos X, infrarojo, ondas de radio

Color

Color - Factores

- Luz: el espectro de energía que ilumina la superficie del objeto
- Reflectancia: proporción de luz reflejada con respecto a luz entrante
- Especularidad: Altamente especular vs.mate
- Distancia: Distancia a la fuente de luz
- Ángulo: Ángulo entre la normal de la superficie y la fuente de luz
- Sensitividad: Cuán sensible es el sensor

Física del Color

- Luz blanca es compuesta de todas las frecuencias visibles (400 700)
- Ultravioleta y rayos X son de longitud de onda más pequeña
- Infrarojo y ondas de radio son de longitud de onda más grande

Color para humanos

- RGB es un sistema aditivo (se añaden colores al negro), usado en pantallas
- CMY[K] es un sistema sustractivo (usado en impresoras)
- HSV es un espacio perceptual usado en arte, psicología y reconocimiento
- YIQ usado para TV es bueno para compresión

Cubo de color RGB

- Valores RGB normalizados a 0 − 1
- Gris son valores en la diagonal
- Colores "puros" en las esquinas

Hexágono de color HSV

Color codificado relativo a la diagonal del cubo de color. Hue es codificado como un ángulo, saturación es la distancia desde la diagonal y la intensidad es la altura.

Modelo CMYK

- Cyan, magenta, yellow, black
- Modelo sustractivo de color
 - Sustrae colores de la luz
- Utilizado en impresión
 - Utiliza tinta negra en vez de los otros tres colores

Interpolación de colores

Interpolación de colores

El canal alfa

• Cada píxel necesita

• Rojo: 8 bits

• Verde: 8 bits

• Azul: 8 bits

• +Alfa: 8 bits

• Total: 32 bits

Color final

$$c = \alpha c_f + (1 - \alpha)c_b$$
 foreground background

Cómo se representa una imagen?

Créditos: Nintendo

- Una matriz 2D donde cada celda tiene asignado un color
- Cada celda se conoce como píxel
- Este modelo de visualización se conoce como *raster*

Imágenes Raster

- Modelo simple
 - Un píxel por celda
- Resolución fija
 - Se pierde nitidez al hacer zoom
- Costoso de almacenar
 - Distintas estrategias de compresión

Dispositivos Raster

Imágenes vectoriales

- Modelos paramétricos por cada figura representada
 - Líneas, cuadrados, círculos, curvas, etc
- Resolución infinita
 - No hay pérdida de nitidez al hacer zoom
- Tamaño depende de la complejidad del contenido

Créditos: Vecteezy

Formatos de imágenes

- Vectoriales
 - SVG
 - PDF
 - EPS
- Formatos Raster
 - BMP
 - JPG
 - PNG
 - GIF

Arquitecturas de los Sistemas Raster Scan

Conceptos

Framebuffer

Área de memoria para almacenar el dibujo

Video Controller

- Accesa el framebuffer para refrescar la pantalla
- Obtiene valores de los píxels durante un ciclo de refresco
- Contiene la tabla de colores a utilizar

Cómo especificar un color?

- Almacenar directamente el color en el framebuffer
- Ejemplo: Framebuffer de 3 bits
 - Primer bit para el rojo
 - Segundo bit para el verde
 - Tercer bit para el azul
 - Podemos representar 8 colores

Color Code	CODES FOR A THREE-BIT PER P Stored Color Values in Frame Buffer			IXEL FRAME BUFF
	RED	GREEN	BLUE	Displayed Colo
0	0	0	0	Black
1	0	0	1	Blue
2	0	1	0	Green
3	0	1	1	
4	1	0	0	Cyan
5	1	0	1	Red
6	1	1	1	Magenta
7	1		0	Yellow
1		1	1	White

Cómo especificar un color? Esquema directo

- Para representar más colores, se requieren más bits
- Simple, pero costoso en memoria
 - Cuánta memoria se necesita para un framebuffer de 1080x1920 píxels (Full HD) donde cada color utiliza 6 bits?
 - Si fueran 24 bits?

Cómo especificar un color? Esquema indirecto

- Almacenar el color a utilizar en una tabla separada
- En el framebuffer se almacena un índice de un color almacenado en la tabla

Cómo especificar un color? Esquema indirecto

- Ejemplo: framebuffer de 8 bits para 256 colores
- Cada color en el framebuffer puede tener un valor entre 0 y 255
- Cada posición en la tabla tiene 24 bits para especificar el color de un píxel
 - 8 bits para intensidades de rojo, verde y azul

Esquema Indirecto

- Es posible cambiar el color asociado a un índice
 - Misma imagen puede ser coloreada distinto

True Color

False Color

Arte y magia con paletas de colores Mark Ferrari

- Imágenes digitales animadas [link]
- Presentación en Game Developer Conference (GDC) [link]

Crash Course: Screen & 2D Graphics

https://www.youtube.com/watch?v=7Jr0SFMQ4Rs

A brief history of graphics

https://www.youtube.com/watch?v=QyjyWUrHsFc&t=374s

Preguntas?