Microwave Engineering Practices

Lab Instructor: Dr. WU Guang

Lab Timing: Thursday (10:00-12:00)

Experiment: 3

Part-1: Impedance Matching using LC Network

Part-2: Double Stub Impedance Transformer

Southern University of Science and Technology, Shenzhen, P.R. China

Task-1:

Design of Impedance Matching using LC Network

Design *L*-section matching networks to match a load impedance of *Zl* to a source impedance of *Zs* at a frequency of 2 GHz. Advanced Design System 15.01 software can be used to perform the simulation. Design solutions 1 and 2.

- (a) **Case-1:** $Zl = 200 j100 \Omega$ and $Zs = 100 \Omega$
- (b) Case-2: $Zl = 50 \Omega$ and $Zs = 100 + j80 \Omega$

Task-2

Design of Double Stub Impedance Transformer

Design a double-stub shunt tuner to match a load impedance $Zl = 60 - j80 \Omega$ to a source impedance of $Zs = 50 \Omega$ line. The stubs are to be open-circuited stubs and are spaced $\lambda/8$ apart. The match frequency is 2 GHz, plot the reflection coefficient magnitude versus frequency from 1 to 3 GHz. Advanced Design System 15.01 software can be used to perform the simulation. Design all possible solutions.

Substrate Properties:

Substrate			Conductor	
Dielectric constant	Substrate thickness	Loss tangent	Copper thickness	Conductivity
2.33	0.787 mm	0.0012	0.017 mm	5.8×10 ⁷

Procedure:

- 1. Calculate the electrical lengths L_1 and L_2 using Smith chart utility based on the load and source impedances.
- 2. Calculate the physical dimensions using **Lincalc** of ADS.
- 3. Design the schematic on the ADS workspace following the above.
- 4. Define substrate properties (consider same substrate as used earlier) and add frequency sweep as given.
- 5. Setup and run simulation.
- 6. Display the simulation data.

HA#4

Design impedance transformers to match a source of 50 Ω to a load of 110 Ω at a frequency of 2 GHz (see the attached paper). Plot the simulated S-parameters.