Ch.5-Mathematical Induction and Binomial Theorem

AI24BTECH11016-Jakkula Adishesh Balaji

Section-A — JEE Advanced/IIT-JEE

I.Integer Value Correct Type

- 1) The coefficients of three consecutive terms of $(1 + x)^{n+5}$ are in the ratio 5:10:14. Then n= (JEE Adv. 2013)
- 2) Let m be the smallest positive integer such that the coefficient of x^2 in the expansion of $(1+x)^2+(1+x)^3+...+(1+x)^{49}+(1+x)^{50}+(1+mx)^{50}$ is $(3n+1)^{51}C_3$ for some positive integer n. Then the value of n is (JEE Adv. 2016)
- 3) Let $X = {10C_1}^2 + 2{10C_2}^2 + 3{10C_3}^2 + ... + 10{10C_{10}}^2$, where ${10C_r}, r \in \{1, 2, ..., 10\}$ denote binomial coefficients. Then, the value of $\frac{1}{1430}X$ is ______ (JEE Adv. 2018)
- 4) Suppose

$$\det \begin{vmatrix} \sum_{k=0}^{n} k & \sum_{k=0}^{n} k^{2n} C_k \\ \sum_{k=0}^{n} {}^{n} C_k k & \sum_{k=0}^{n} {}^{n} C_k 3^k \end{vmatrix} = 0$$

holds for some positive integer n. The $\sum_{k=0}^{n} \frac{{}^{n}C_{k}}{k+1}$ equals _______(JEE Adv. 2019)

Ch.18-Definite Integrals and Applications of Integrals

AI24BTECH11016-Jakkula Adishesh Balaji

Section-B — JEE Main / AIEEE

- 16) The area of the region bounded by the curves y = |x 2|, x = 1, x = 3 and the x-axis is (2004)
 - a) 4
 - b) 2
 - c) 3
 - d) 1

17) If
$$I_1 = \int_0^1 2^{x^2} dx$$
, $I_2 = \int_0^1 2^{x^3} dx$, $I_3 = \int_1^2 2^{x^2} dx$, $I_4 = \int_1^2 2^{x^3} dx$ then (2005)

- a) $I_2 > I_1$
- b) $I_1 > I_2$
- c) $I_3 = I_4$
- d) $I_3 > I_4$
- 18) The area enclosed between the curve $y = \log_e (x + e)$ and the coordinate axes is (2005)
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 19) The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S_1, S_2, S_3 are respectively the areas of these parts numbered from top to bottom then $S_1 : S_2 : S_3$ is (2005)
 - a) 1:2:1
 - b) 1:2:3
 - c) 2:1:2
 - d) 1:1:1
- 20) Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the oordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is $(\beta \sin(\beta) + \frac{\pi}{4}\cos(\beta))$. Then $f(\frac{\pi}{2})$ is (2005)
 - a) $\frac{\pi}{4} + \sqrt{2} 1$
 - b) $\frac{1}{2} \sqrt{2} + 1$
 - c) $1 \frac{\pi}{4} \sqrt{2}$
 - d) $1 \frac{7}{4} + \sqrt{2}$
- 21) The value of $\int_{-\pi}^{\pi} \frac{\cos^2(x)}{1+a^x} dx$, a > 0, is (2005)

22) The value of the integral $\int_3^6 \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} dx$ is (2005)a) $\frac{1}{2}$ b) $\frac{3}{2}$ c) 2 d) 1 23) $\int_0^{\pi} xf(\sin x) dx$ is equal to (2006)a) $\pi \int_0^{\pi} f(\cos x) dx$ b) $\pi \int_0^{\pi} f(\sin x) dx$ c) $\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} f(\sin x) dx$ d) $\pi \int_0^{\frac{\pi}{2}} f(\cos x) dx$ 24) $\int_{-\frac{3\pi}{2}}^{\frac{\pi}{2}} \left[(x+\pi)^3 + \cos^2(x+3\pi) \right] dx$ is equal to (2006)25) The value of $\int_{1}^{a} [x] f'(x) dx$, a > 1 where [x] denotes the greatest integer not exceeding (2006)a) $af(a) - \{f(1) + f(2) + ... f([a])\}$ b) $[a] f(a) - \{f(1) + f(2) + ... f([a])\}$ c) $[a] f([a]) - \{f(1) + f(2) + ... f(a)\}$ d) $af([a]) - \{f(1) + f(2) + ... f(a)\}$ 26) Let $F(x) = f(x) + f\left(\frac{1}{x}\right)$, where $f(x) = \int_1^x \frac{\log t}{1+t} dt$, Then F(e) equals (2006)a) 1 b) 2 c) $\frac{1}{2}$ 27) The solution for x of the equation $\int_{\sqrt{2}}^{x} \frac{1}{t\sqrt{t^2-1}} dt$ is (2007)a) $\frac{\sqrt{3}}{2}$ b) $2\sqrt{2}$ c) 2 d) none 28) The area enclosed between the curves $y^2 = x$ and y = |x| is (2007)

a) π

b) $\frac{\pi}{2}$ c) $\frac{\pi}{a}$ d) 2π

a) $\frac{1}{6}$ b) $\frac{1}{3}$ c) $\frac{2}{3}$ d) 1

- 29) Let $I = \int_0^1 \frac{\sin x}{\sqrt{x}} dx$ and $J = \int_0^1 \frac{\cos x}{\sqrt{x}} dx$. Then which one of the following is true?

 - a) $I > \frac{2}{3}$ and J > 2b) $I < \frac{2}{3}$ and J < 2c) $I < \frac{2}{3}$ and J > 2d) $I > \frac{2}{3}$ and J < 2
- 30) The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is

 - a) $\frac{5}{3}$ b) $\frac{1}{3}$ c) $\frac{2}{3}$ d) $\frac{4}{3}$