COURSERA DATA SCIENCE CAPSTONE

1. Introduction/Business Problem

As the cities become larger with growing urbanization, so does the road traffic. Road traffic comprises of different participants, from pedestrians and cyclists to large vehicles. And it becomes very important to not only ensure smooth traffic flow but also road safety. Improper traffic conditions can impede the economic development in city and make a city less competent and attractive than their peers for business. Road Safety requires in-depth understand and insights from the data to ensure that we learn from the historical errors. A data model based on the historical data, would be able to provide the insights model the severity of accidents based on multiple factors. This in turn would be able to provide help in putting place measures, signs, improvements etc. which would help to reduce accidents and improve road safety conditions. In the current situation, based on the Data available for Seattle (from SDOT Traffic Management Division) the goal is to develop a model which predicts Severity of the accident based on multiple factors. The model would help in testing and provide guidance before implementation of measures.

2. Data

The data file used is "Collision - All Years" which has been sourced from SDOT Traffic Management Division. The data has 38 attributes and covers the time period from 2004 to present date.

Each of the data point (rows) has a Severity Code which specific the severity of the accident and has details about various other attributes (like Junction Type, Weather condition, Light condition, Road conditions etc.). The aim of the model would be to model Severity based on the multiple attributed (below table has correlations).

SEVERITYCODE	1.000000
PERSONCOUNT	0.130949
PEDCOUNT	0.246338
PEDCYLCOUNT	0.214218
VEHCOUNT	-0.054686
SDOT_COLCODE	0.188905
OBJECTID	0.020131
INTKEY	0.104973
LIGHTCOND_N	-0.038968
ROADCOND_N	-0.043377
WEATHER_N	-0.099871
INATTENTIONIND_N	0.046378
UNDERINFL_N	0.041599
HITPARKEDCAR_N	-0.101498
SPEEDING_N	0.038938
COLLISIONTYPE_N	-0.112318
JUNCTIONTYPE_N	-0.136318
PEDROWNOTGRNT_N	0.206283

For Reference Type of Data Attributed

Further Metadata Description from Source : https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Metadata.pdf

The data is split into 2 kinds of severity "Injury collision" and "Property Damage Only Collision". As evident from the below plot the data is lopsided towards "Property Damage Only Collision" type

3. Methodology

The data has multiple attributed which can be used for prediction of Severity. Post intimal analysis a predictor matrix was arrived at. Predictor matrix was further refined using Recursive Feature Elimination and then implemented to further refine the attributed.

As the output of the model is Binomial, Logistic Regression should be used to develop a model. Categorical variables were updated to numbers and the SEVERITYCODE was updated to represent 0 or 1 as the values.

Moreover, once the predictor variables are finalized, the performance of the below models would be compared

- Logistic Regression
- Gaussian Naïve Bayes
- Random Forest Classifier

The below attributed were selected as predictor variables for the model

```
Predictor Matrix=
     ['PERSONCOUNT',
     'PEDCOUNT',
     'PEDCYLCOUNT',
     'VEHCOUNT',
     'SDOT COLCODE',
     'OBJECTID',
     'INTKEY',
     'LIGHTCOND N',
     'ROADCOND_N',
     'WEATHER N',
     'INATTENTIONIND N',
     'UNDERINFL N',
     'HITPARKEDCAR N',
     'SPEEDING_N',
     'COLLISIONTYPE N',
     'JUNCTIONTYPE N',
     'PEDROWNOTGRNT N']
```

3.1. Recursive Feature Elimination

Recursive Feature Elimination has been used to further refine the selected features. The Logistic Regression with solver 'liblinear' has been used.

```
Output:
True True True True]
```

3.2. Model Implementation using statsmodel.api

Based on the output all the predictor variable will be retained and we will further implement the model using Python package statsmodel.api to further refine the predictor.

Optimization terminated successfully. Current function value: 0.521967 Iterations 7

Results: Logit ______

Pseudo R-squared: 0.144 AIC: 162771.8083 08 01:53 BIC: 162941.0755 Model: Logit Dependent Variable: y 2020-09-08 01:53 BIC: 162941.0755 Date: No. Observations: 155889 Log-Likelihood: -81369. 16 155872 LL-Null: -95085 LLR p-value: 0.0000 Scale: 1.0000 -95085. Df Model: Df Residuals: 155872 Converged: 1.0000 No. Iterations: 7.0000

______ Coef. Std.Err. z P > |z| [0.025 0.975]
 0.2173
 0.0054
 40.6165
 0.0000
 0.2068
 0.2278

 2.8881
 0.0492
 58.6689
 0.0000
 2.7916
 2.9846

 2.3197
 0.0513
 45.2048
 0.0000
 2.2191
 2.4203

 0.2894
 0.0124
 23.3720
 0.0000
 0.2651
 0.3137

 0.0378
 0.0012
 31.2503
 0.0000
 0.0354
 0.0401

 0.0196
 0.0314
 0.6230
 0.5333
 -0.0420
 0.0811

 0.9176
 0.1327
 6.9171
 0.0000
 -0.6576
 1.1775

 -0.0190
 0.0037
 -5.1619
 0.0000
 -0.0262
 -0.0118

 0.0348
 0.0027
 13.0637
 0.0000
 -0.296
 0.0400

 -0.1088
 0.0038
 -28.5075
 0.0000
 -0.1163
 -0.1014

 0.3446
 0.0162
 21.2451
 0.0000
 0.3128
 0.3764

 0.0560
 0.0086
 6.5487
 0.0000
 -1.5679
 -1.3497

 0.6276
 0.0252
 <td x1 x2 x3 x4x5 x6 **x**7 x8 x9 x10 x11 x12 x13 x14x15 x16

Based on the output summary below the variable X6 (OBJECTID) has p-value greater than 0.05 so we will drop the attribute and update the predictor variable to the below and re-run summary.

```
Predictor Matrix N=
     [ 'PERSONCOUNT',
      'PEDCOUNT',
     'PEDCYLCOUNT',
      'VEHCOUNT',
     'SDOT COLCODE',
     'INTKEY',
     'LIGHTCOND N',
     'ROADCOND N',
     'WEATHER N',
```

x17

```
'INATTENTIONIND_N',
'UNDERINFL_N',
'HITPARKEDCAR_N',
'SPEEDING_N',
'COLLISIONTYPE_N',
'JUNCTIONTYPE_N',
'PEDROWNOTGRNT N']
```

Optimization terminated successfully.

Current function value: 0.521968

Iterations 7

Results: Logit

Results: Logit									
Model:		Logit		Pseudo R-squared:				0.144	
Dependent Variable:		-		AIC:			162770.1964		
Date:		2020-09-08	02:00	BIC:			1629	29.5068	
No. Observations:		155889		Log-Li	kelihood	1:	-813	369.	
Df Model:		15		LL-Nul			-950	85.	
Df Residuals:		155873		LLR p-value:			0.0000		
Converged:		1.0000	Scale:			1.0000			
No. Iterations:		7.0000							
	Coef.	Std.Err.	z	P:	> z	0]	.025	0.975]	
x1	0.2174	0.0053	40.66	512 0	.0000	0.	 2069	0.2279	
x2	2.8899	0.0492	58.79	902 0	.0000	2.	7935	2.9862	
x3	2.3209	0.0513	45.25	567 0	.0000	2.	2204	2.4214	
x4	0.2878	0.0121	23.74	150 0	.0000	0.	2641	0.3116	
x5	0.0377	0.0012	31.32	228 0	.0000	0.	0353	0.0400	
x6	0.9204	0.1326	6.94	130 0	.0000	0.	6606	1.1803	
x 7	-0.0193	0.0037	-5.25	554 0	.0000	-0.	0264	-0.0121	
x8	0.0348	0.0027	13.06	576 0	.0000	0.	0296	0.0400	
x9	-0.1090	0.0038	-28.58	337 0	.0000	-0.	1165	-0.1015	
x10	0.3447	0.0162	21.25	548 0	.0000	0.	3129	0.3765	
x11	0.0599	0.0059	10.07	772 0	.0000	0.	0482	0.0715	
x12	-1.4549	0.0553	-26.29	996 0	.0000	-1.	5634	-1.3465	
x13	0.6258	0.0251	24.97	712 0	.0000	0.	5767	0.6750	
x14	-0.0715	0.0024	-29.51	L94 0	.0000	-0.	0763	-0.0668	
x15	-0.1471	0.0052	-28.31	L58 0	.0000	-0.	1572	-0.1369	
x16	0.8563	0.0405	21.16	551 0	.0000	0.	7770	0.9356	

4. Results

4.1. Logistic Regression Model Fitting, Confusion Matrix and Results

Below are the final results for 3 models which were used for modelling.

- Logistic Regression
- Gaussian Naïve Bayes
- Random Forest Classifier

In terms of the confusion matrix, the best performance is the model which uses Random forest Classifier.

LOGISTIC REGRESSION Classification Report precision recall f1-score support 0 0.75 0.96 0.84 27221 0.25 1 0.75 0.38 11669 0.75 38890 0.75 0.75 micro avg 0.61 38890 macro avg 0.75 0.61 weighted avg 0.75 0.75 0.70 38890

Confusion Matrix <AxesSubplot:>

GAUSSIAN NAIVE BAYES Classification Report

Ctassiii	precision		precision recall		f1-score	support	
	0	0.74	0.97	0.84	27221		
	1	0.76	0.23	0.35	11669		
micro	avg	0.75	0.75	0.75	38890		
macro		0.75	0.60	0.59	38890		
weighted		0.75	0.75	0.69	38890		

Confusion Matrix <AxesSubplot:>

	OM FOREST CLAS sification Rep prec		recall	f1-score	support		
	0 1	0.77 0.72	0.94 0.34	0.85 0.46	27221 11669		
m	icro avg acro avg hted avg	0.76 0.75 0.76	0.76 0.64 0.76	0.76 0.66 0.73	38890 38890 38890		
Confusion Matrix <axessubplot:></axessubplot:>							
				- 0.60			
0 -	66.03%		3.97%	- 0.45			
r -				- 0.30			
	19.76%		10.25%	- 0.15			
	'n		1				

4.2. Precision and ROC Curve

ROC (Receiver operating characteristic) curve illustrates diagnostic ability. Good classifier stays away from the red line. The graph is basically plot pf true positive rate and false positive rate at different thresholds.

Based on the below graph, the Random Forest Classifier has the best performance

5. Conclusion

Based on the dataset a model to predict severity was initially developed using LogisticRegression and then further modelled using the below 3 models.

- Logistic Regression
- Gaussian Naïve Bayes
- Random Forest Classifier

Random Forest Classifier model was able to achieve 75% success rate based on the test data.

In the given model, the model is predicting severity as two outcomes only (Injury Collision and Property Damage Collision). As a next step the larger data set with multiple severity can be used to develop an advanced model. Moreover, the data can be used to also gain insights to ensure that adequate measures are taken and implemented to ensure Road Safety.