Practice Problems: Lesson 7 - Non-Unique Solutions

Master these non-uniqueness patterns!

Part A: Identifying Non-Uniqueness

For each IVP, determine if solutions are unique. If not, explain why:

1.
$$y' = 3y^{2/3}, y(0) = 0$$

2.
$$y' = |y|^{1/2} \operatorname{sign}(y), \ y(0) = 0$$

3.
$$y' = 2\sqrt{y}, y(1) = 1$$

4.
$$y' = y^{1/3}, y(0) = 1$$

5.
$$y' = \begin{cases} 2\sqrt{y} & \text{if } y \ge 0 \\ 0 & \text{if } y < 0 \end{cases}, y(0) = 0$$

Part B: Finding Multiple Solutions

Find at least two different solutions for each IVP:

6.
$$y' = 2|y|^{1/2}$$
, $y(0) = 0$

7.
$$(y')^2 = 4y$$
, $y(0) = 0$, with $y \ge 0$

8.
$$y' = 3y^{2/3}, y(1) = 0$$

9.
$$|y'| = |y|^{1/2}, y(0) = 0$$

Part C: Solution Families

10. For
$$y' = 2\sqrt{y}$$
, $y(0) = 0$:

(a) Show that $y \equiv 0$ is a solution

(b) Show that
$$y = \begin{cases} 0 & x \le c \\ (x-c)^2 & x > c \end{cases}$$
 is a solution for any $c \ge 0$

(c) Sketch at least 4 different solutions

(d) Where does the Lipschitz condition fail?

- 11. Consider the general equation $y' = k|y|^{\alpha}$, y(0) = 0:
 - (a) For which values of α is the solution unique?
 - (b) Find the general solution family for $0 < \alpha < 1$
 - (c) What happens as $\alpha \to 0^+$?
 - (d) What happens as $\alpha \to 1^{-}$?

Part D: Lipschitz Analysis

- 12. Check the Lipschitz condition at y = 0 for:
 - (a) $f(y) = y^2$
 - (b) $f(y) = \sqrt{|y|}$
 - (c) $f(y) = y \ln |y|$ (with f(0) = 0)
 - (d) $f(y) = |y|^{3/2}$
 - (e) $f(y) = y^{2/3} \sin(1/y)$ (with f(0) = 0)
- 13. For each function in Problem 12, state whether the IVP with y(0) = 0 has unique solutions.

Part E: Clairaut and Singular Solutions

- 14. Consider Clairaut's equation: $y = xy' + (y')^2$
 - (a) Find the general solution (family of lines)
 - (b) Find the singular solution (envelope)
 - (c) Verify both satisfy the original equation
 - (d) Sketch the solution family and envelope
- 15. For the equation $y = xy' (y')^3$:
 - (a) Find all solutions through the point (0,0)
 - (b) Are there infinitely many such solutions?

Part F: Lost Solutions

- 16. Solve $y' = 2y^{1/2}$ by separation of variables:
 - (a) What solution do you get?
 - (b) What solution is missed?
 - (c) Why was it missed?

- 17. For $y' = y^2(1-y)^2$:
 - (a) Find all equilibrium solutions
 - (b) Solve by separation of variables
 - (c) Which solutions might be missed in the process?

Part G: Solution Crossing

- 18. Can two solutions of $y' = y^2$ cross? Why or why not?
- 19. Can two solutions of $y' = |y|^{1/2}$ cross? If yes, where?
- 20. Consider y' = f(y) where f is Lipschitz everywhere:
 - (a) Prove that two solutions cannot cross
 - (b) What does this imply about solution uniqueness?

Part H: Exam-Style Problems

- 21. Professor Ditkowski asks: "Give an example of an IVP with exactly 3 solutions."
 - (a) Construct such an example
 - (b) Verify all three solutions
 - (c) Explain why there are exactly three
- 22. Consider the "raindrop equation": $y' = -k\sqrt{y}$, y(T) = 0
 - (a) Interpret y physically (hint: radius)
 - (b) Find all solutions backward in time from t = T
 - (c) What does non-uniqueness mean physically?
- 23. For the IVP $y' = |y 1|^{1/2} + |y + 1|^{1/2}$, y(0) = 1:
 - (a) Where might uniqueness fail?
 - (b) Is the solution unique through (0,1)?
 - (c) What about through (0, -1)?
 - (d) What about through (0,0)?
- 24. The equation y' = g(y) has g(0) = g(1) = g(2) = 0 and g is not Lipschitz at these points:
 - (a) Describe possible solution behaviors
 - (b) Can a solution starting at y(0) = 0.5 reach y = 2?
 - (c) How many solutions might connect y(0) = 0 to y(10) = 2?

Part I: Advanced Theory

- 25. Prove that if $f(y) = |y|^{\alpha}$ with $0 < \alpha < 1$, then f is not Lipschitz at y = 0.
- 26. Show that the IVP $y' = y \ln |y|$, y(0) = 0 (with f(0) = 0) has a unique solution despite f not being Lipschitz at 0. (Hint: Use Osgood's criterion)
- 27. Consider "patching" solutions:
 - (a) If $y_1(x)$ solves the ODE for x < a with $y_1(a) = 0$
 - (b) And $y_2(x)$ solves it for x > b with $y_2(b) = 0$
 - (c) When can you "patch" them with $y \equiv 0$ on [a, b]?

Solution Hints

Part A: 1. Not unique ($\alpha = 2/3 < 1$) 2. Not unique (like $\sqrt{|y|}$) 3. Unique (initial value away from 0) 4. Unique (initial value away from 0) 5. Not unique (piecewise with flat spot)

Part B Key Ideas: - Always check $y \equiv 0$ first - Look for delayed start solutions - Consider both positive and negative branches

Remember: Non-uniqueness occurs when $\partial f/\partial y$ is unbounded or discontinuous!