

VISUALISASI & MACHINE LEARNING

Dipersembahkan oleh Nurul Fadil

Hello i'am Nurul Fadil.

i'am data science antusiast form FGA Binar Academy

TABLE CONTAINS

Visualisasi Dashboard

Machine Learning

- Business Problem
- Data Understanding
- EDA
- Feature Engineering
- Modeling
- Predict With Data Test
- Conclusion
- Appendix

Dashboard Visualisasi Kasus Covid-19

DASHBOARD KASUS COVID-19 DI INDONESIA

https://datastudio.google.com/reporting/c5480907-ca44-43cb-8e0b-7cb82a1ece66

Penjelasan

Dashboard interaktif untuk mengetahui jumlah kasus covid-19 dengan rentang waktu yang diinginkan pembaca dan kolom pencarian informasi berdasarkan provinsi.

Dashboard ini digunakan untuk mengetahui lebih cepat informasi terkini kasus covid-19 di berbagai wilayah dan untuk memudahkan pembaca dalam mencari informasi tentang kasus covid di berbagai wilayah

Predict Customer Churn With Machine Learning Python

BUSINESS PROBLEM

Perkembangan industri telekomunikasi sangatlah cepat, hal ini dapat dilihat dari perilaku masyarakat yang menggunakan internet dalam berkomunikasi.

Perilaku ini menyebabkan banyaknya perusahaan telekomunikasi dan meningkatnya internet service provider yang dapat menimbulkan persaingan antar provider.

Pelanggan memiliki hak dalam memilih provider yang sesuai dan dapat beralih dari provider sebelumnya yang diartikan sebagai Customer Churn.

Peralihan ini dapat menyebabkan berkurangnya pendapatan bagi perusahaan telekomunikasi sehingga penting untuk ditangani.

DATA UNDERSTANDING

pada kolom churn sebagai variable dependent / kolom taget

Data Understanding

terlihat terdapat 20 kolom dengan keterangannya pada predikisi kali ini akan digunakan target pada kolom churn untuk prediksi dan melihat pengaruh feature terhadap target

variable dependent

• churn

variable idependent

- state
- account_length
- area_code
- international_plan
- voice_mail_plan
- number_vmail_messages
- total_day_minutes
- total_day_calls
- total_day_charge

- total_eve_minutes
- total_eve_calls
- total_eve_charge
- total_night_minutes
- total_night_calls
- total_night_charge
- total_intl_minutes
- total_intl_calls
- total_intl_charge
- number_customer_service_calls

Kolom	Definisi			
state	US State			
account_length	Total bulan customer menjadi user telco provider			
area_code	Kode Area			
international_plan	Customer memiliki plan international			
voice_mail_plan	Customer memiliki plan voice mail			
number_vmail_messages	Total pesan voice mail			
total_day_minutes	Total minutes pada day calls			
total_day_calls	Total day calls			
total_day_charge	Total charge dari day calls			
total_eve_minutes	Total menit pada evening call			
total_eve_calls	Total evening call			
total_eve_charge	Total charge pada evening call			
total_night_minutes	Total menit pada night call			
total_night_calls	Total night call			
total_night_charge	Total charge pada night call			
total_intl_minutes	Total menit pada international call			
total_intl_calls	Total international call			
total_intl_charge	Total charge pada international call			
number_customer_service_calls	Total call kepada customer service			
churn	Customer churn			

terlihat terdapat 15 kolom numerikal yang memiliki outlier dan terdapat 3 kolom dengan distribusi skew positif

30

25

Maka akan dilakukan scaling pada tahapan preprosesing

terlihat pada pengguna jaringan internasional memiliki selisih lebih kecil maka untuk pengguna jaringan internasional mempertimbangkan untuk pemberian promo atau melakukan penyesuaian harga agar pelanggan tidak mudah dalam churn

terlihat pada area dengan code 415 lebih banyak customer churn dengan area lainnya maka perlu di adakan campaign untuk meminimalisir customer churn pada area tersebut

terlihat user mulai melakukan churn pada account_length di atas 50

maka perlu mempertimbangakan kualitas pelayanan bagi pengguna lama

terlihat terdapa feature yang saling berkolerasi maka akan dilakuakan drop pada kolom yang berkolerasi dan menetapkan 1 feature

-1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

feature yang akan di drop ialah 'total_day_charge', 'total_eve_charge', 'total_night_charge', 'total_intl_charge']\

Feature Engineering

pada tahapan ini akan dilakukan penyesuaaian data pada kolom-kolom sebelum dilakukan permodelan diantaranya:

- 1. pada kolom area_code akan diambil di 3 digit angka dan mengubah kolom tersebut menjadi integer.
- 2. melakukan onehot encoding pada kolom state.
- 3. melakukan label encodng pada kolom 'international_plan', 'voice_mail_plan', 'churn'.
- 4. melakukan drop pada data yang memiliki korelasi antar fitur.
- 5. melakukan scaling data dengan standarization untuk menyeragamkan data.
- 6. melakukan pemisahan data train dan data test dengan perbandiangan 75:25.
- 7. memisakan kolom target dengan kolom fitur.

MODELLING RESULT

Model	Accuracy	Precision	Recall	F1-Score	ROC
Random Forest Classifier	0.9397	0.9411	0.6233	0.7499	0.9240
Decision Tree Classifier	0.9238	0.7212	0.7727	0.7460	0.8610

Ditemukan hasil bahwa pada model random forest menjadi best model dengan akurasi model lebih tinggi sebesar 0.9397

Predict With Data Test

Pada data test dilakukan prediksi dimana customer yang melakukan churn sebanyak 68 orang yang diprediksi dan 682 customer yang tidak diprediksi churn

Conclusion

- kasus bisnis yang memerlukan tinggi akurasi model dengan random forest menjadi pilihan terbaik dengan beberapa catatan untuk melakukan penigkatan performa pada nilai recall
- data yang tersedia memiliki ketidakseimbangan pada data target maka untuk melakukan improvisasi perlu adanya data yang seimbang
- penambahan fitur label pada masing-masing customer akan lebih baik untuk menetukan target pemasaran yang lebih spesifik

Appendix

Google Colab

https://colab.research.google.com/drive/1Xdj26oPc2wOQ aHAODnzzcTXhvC3E1ZLX?usp=sharing

Dashboard Google Studio

https://datastudio.google.com/reporting/c5480907-ca44-43cb-8e0b-7cb82a1ece66

Thank You