Matematica Discreta

Stefano Piccoli

 $22~\mathrm{marzo}~2022$

Indice

Introduzione		2
1	Algoritmo di Euclide	9
2	Identità di Bezout	4

Introduzione

Capitolo 1

Algoritmo di Euclide

Siano a e b due interi con $0 \le b \le a$

- 1. Se b = 0 allora MCD(a, b) = a e l'algoritmo **termina**
- 2. Se $b \neq 0$ faccio la divisione euclidea tra a e b:

$$a = b \cdot q + r, \ 0 \le r \le b$$

Termina quando si trova $b=0 \to MCD(a,b)$ è l'**ultimo resto non nullo**

3. Sostituisco a=b e b=r e riparto da ${\bf 1}$

Esempio a = 168, b = 132

$$168 = 132 \cdot 1 + 36 \rightarrow$$

$$132 = 36 \cdot 3 + 24 \rightarrow$$

$$36 = 24 \cdot 1 + 12 \rightarrow$$

$$24 = 12 \cdot 2 + 0$$

Capitolo 2

Identità di Bezout

Siano a e b due interi e d = MCD(a, b) allora esistono \boldsymbol{x} e \boldsymbol{y} tali che:

$$a\boldsymbol{x} + b\boldsymbol{y} = d$$