Sub Code: BMET-502 ROLL NO......

V SEMESTER EXAMINATION, 2022 – 23 (3rd Year, B.Tech. – Mechanical Engineering) MACHINE COMPONENT DESIGN –I

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

**Design Data Handbook is Allowed

Q 3.	Answer any two parts of the following. a) What do you understand by full length and graduated leaves of leaf spring? Write	10x2 = 20
	e) Derive expression for the diameter of a shaft subjected to combined bending and twisting.	
	6, determine the diameter of the shaft.	
	700 MPa and a ultimate shear stress of 500 MPa. Assuming a factor of safety as	
	of 10000 N-m. the shaft is made of 45 C 8 steel having ultimate tensile stress of	
	d) A solid circular shaft is subjected to a bending moment of 3000 N-m and a torque	
	and fatigue factor for torsion is 1.0.]	
	find the shear stress induced in the shaft. [Given: fatigue factor for bending is 1.5]	
	diameter to the outer diameter is 0.5. if the outer diameter of the shaft is 80mm,	
	10 kN. Assume that the load is applied gradually and the ratio of the inner	
	bending moment of 3 kN-m. It is subjected, at the same time, to an axial load of	
	c) A hollow shaft is subjected to a maximum torque of 1.5 kN-m and a maximum bending moment of 3 kN m. It is subjected at the same time, to an axial lead of	
	b) Explain the procedure of a design of shafts on the basis of rigidity.	
	these two terms are used in design of shafts.	
Q 2.	Answer any four parts of the following. a) Define equivalent twisting moment and equivalent bending moment. State when	5x4=20
0.2	e) A hollow shaft of 40 mm outer diameter and 25 mm inner diameter is subjected to twisting moment of 120 N-m, simultaneously; it is subjected to an axial thrust of 10kN and a bending moment of 80 N-m. Calculate the maximum compressive and shear stresses.	5.4.20
	d) Write Soderberg's equation and state its application to different type of loadings.	
	Poisson's ratio	
	c) Explain the following: (1) Resilience (2) Proof resilience (3) Bulk modulus (4)	
	b) What is meant by eccentric loading and eccentricity?	
	fatigue failure?	
	a) What are the factors to be considered while designing machine parts to avoid	
Q 1.	Answer any four parts of the following.	5x4=20

	the expression for determining the stress and deflection in full length and	
	graduated leaves.	
	b) Derive expression for stress and deflection in helical springs of non-circular wire.	
	c) A compression coil spring made of an alloy steel is having the following	
	specifications:	
	Mean diameter of coil = 50 mm; Wire diameter = 5 mm; Number of active coils = 20.If this spring is subjected to an axial load of 500 N; calculate the maximum shear stress (neglect the curvature effect) to which the spring material is subjected.	
Q 4.	Answer any two parts of the following.	10x2=20
	a) Describe, with the help of neat sketch, a centrifugal clutch and deduce an	
	expression for the total frictional torque transmitted. How the shoes and springs	
	are designed for such a clutch?	
	b) Derive the expression for the braking torque.	
	c) An engine developing 45 kW at 1000 r.p.m. is fitted with a cone clutch built	
	inside the flywheel. The cone has a face angle of 12.5° and a maximum mean	
	diameter of 500 mm. the coefficient of friction is 0.2. The normal pressure on the	
	clutch face is not to exceed 0.1 N/mm ² . Determine: (i) The face width required,	
	and (ii) The axial spring force necessary to engage the clutch.	
Q 5.	Answer any two parts of the following. a) What are the various terms used in journal bearings analysis and design? Give	10x2= 20
	their definitions in brief.	
	b) Design a self-aligning ball bearing for a radial load of 7000 N and a thrust load	
	of 2100 N. The desired life of the bearing is 160 million of revolutions at 300	
	r.p.m. Assume uniform and steady load. [Given: for self-aligning ball bearing,	
	for W _A /W _R value of radial factor is 0.65 and value of thrust factor is 3.5]	
	c) The following data is given for a 360° hydrodynamic bearing:	
	radial load = 3.2 kN	
	journal speed = 1490 rpm	
	journal diameter = 50 mm	
	bearing length = 50 mm	
	radial clearance = 0.05 mm	
	viscosity of lubricant = 25 centi-poise	
	Assume that the total heat generated in the bearing is carried by the total oil flow	
	in the bearing, calculate (i) coefficient of friction (ii) power lost in friction	
	(iii) minimum oil film thickness (iv) flow requirement in liters/min	
	(iii) minimum oil film thickness (iv) flow requirement in liters/min (v) temperature rise	
