

1.2W Differential Input/Output Audio Power Amplifier with Selectable Standby and 6dB fixed gain

- Differential inputs
- 80dB PSRR @ 217Hz with grounded inputs
- Operating from $V_{cc} = 2.5V$ to 5.5V
- 1.2W rail to rail output power @ Vcc=5V, THD=1%, F=1kHz, with 8Ω load
- 6dB integrated fixed gain
- Ultra-low consumption in standby mode (10nA)
- Selectable standby mode (active low or active high
- Ultra-fast startup time: 15ms typ.
- Available in 9-bump flip-chip (300μm bump diameter)
- Advanced pop & clickless circuitry

Description

The TS4995 is an audio power amplifier capable of delivering 1.2W of continuous RMS output power into an 8Ω load @ 5V. Thanks to its differential inputs, it exhibits outstanding noise immunity.

An external standby mode control reduces the supply current to less than 10nA. A STBY MODE pin allows the standby pin to be active HIGH or LOW. An internal thermal shutdown protection is also provided, making the device capable of sustaining short-circuits.

The device is equipped with Common Mode Feedback circuitry allowing outputs to be always biased at Vcc/2 regardless of the input common mode voltage.

The TS4995 has been designed for high quality audio applications such as mobile phones and requires few external components.

Pin Connections (top view)

Applications

- Mobile phones (cellular / cordless)
- Laptop / notebook computers
- PDAs
- Portable audio devices

Order Codes

Part Number	Temperature Range	Package	Packaging	Marking	
TS4995EIJT	-40 , +85°C	Lead free Flip-Chip9	Tape & Reel	A95	

1 Application Component Information

Components	Functional Description	
C _S	Supply Bypass capacitor which provides power supply filtering.	
C _B	C _B Bypass capacitor which provides half supply filtering. C _{IN} Optional input capacitor making a high pass filter together with R _{IN} . (fcl = 1 / (2 x Pi x R _{IN} x C _{IN})	
C _{IN}		

Figure 1. Typical application

2 Absolute Maximum Ratings

Table 1. Key parameters and their absolute maximum ratings

Symbol Parameter		Value	Unit	
VCC	Supply voltage ¹	6	V	
V _i Input Voltage ²		G _{ND} to V _{CC}	V	
T _{oper}	Operating Free Air Temperature Range	-40 to + 85	°C	
T _{stg}	Storage Temperature	-65 to +150	°C	
Tj	Maximum Junction Temperature	150	°C	
R _{thja}	Thermal Resistance Junction to Ambient ³	250	°C/W	
Pd	Power Dissipation	internally limited	W	
ESD	Human Body Model	2	kV	
ESD	Machine Model	200	V	
	Latch-up Immunity	200	mA	
	Lead Temperature (soldering, 10sec)	260	°C	

¹⁾ All voltages values are measured with respect to the ground pin.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2.5 to 5.5	V
V _{SM}	Standby Mode Voltage Input: Standby Active LOW Standby Active HIGH	V _{SM} =GND V _{SM} =V _{CC}	V
V _{STB}	Standby Voltage Input: Device ON (V_{SM} =GND) or Device OFF (V_{SM} = V_{CC}) Device OFF (V_{SM} =GND) or Device ON (V_{SM} = V_{CC})	$1.5 \le V_{STB} \le V_{CC}$ $G_{ND} \le V_{STB} \le 0.4^{-1}$	V
T _{SD}	Thermal Shutdown Temperature	150	°C
R_L	Load Resistor	≥ 4	Ω
R _{THJA}	Thermal Resistance Junction to Ambient	100	°C/W

¹⁾ The minimum current consumption (I_{STANDBY}) is guaranteed when V_{STB}=GND or V_{CC} (i.e. supply rails) for the whole temperature range.

²⁾ The magnitude of input signal must never exceed V_{CC} + 0.3V / G_{ND} - 0.3V

³⁾ The device is protected by a thermal shutdown active at 150°C

3 Electrical Characteristics

Table 3. Electrical characteristics - V_{CC} = +5V, GND = 0V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		4	7	mA
I _{STANDBY}	Standby Current No input signal, Vstdby = V_{SM} = G_{ND} , RL = 8Ω No input signal, Vstdby = V_{SM} = V_{CC} , RL = 8Ω		10	1000	nA
Voo	Differential Output Offset Voltage No input signal, RL = 8Ω		0.1	10	mV
V_{ICM}	Input Common Mode Voltage CMRR ≤ -60dB	0.6		V _{CC} - 0.9	V
Ро	Output Power THD = 1% Max, F= 1kHz, RL = 8Ω	0.8	1.2		W
THD + N	Total Harmonic Distortion + Noise Po = 850mW rms, $20Hz \le F \le 20kHz$, $RL = 8\Omega$		0.5		%
PSRR _{IG} Power Supply Rejection Ratio with Inputs Grounded F = 217Hz, R = 8Ω , C_{in} = 4.7μ F, C_b = 1μ F Vripple = $200mV_{PP}$		tbd	tbd		dB
CMRR	Common Mode Rejection Ratio $F=217Hz,RL=8\Omega,C_{in}=4.7\mu\text{F},C_{b}=1\mu\text{F}$ $\text{Vic}=200\text{mV}_{PP}$		tbd		dB
SNR	Signal-to-Noise Ratio (A Weighted Filter) $(R_L = 8\Omega, THD + N < 0.7\%, 20Hz \le F \le 20kHz)$		100		dB
GBP	GBP Gain Bandwidth Product $R_L = 8\Omega$		2		MHz
Output Voltage Noise, $20\text{Hz} \le F \le 20\text{kHz}$, $R_L = 8\Omega$ Unweighted A weighted Unweighted, Standby A weighted, Standby			12 10.5 1.5		μV _{RMS}
Zin	Zin Input impedance		tbd	tbd	kΩ
	Gain mismatch		6	6.5	dB
T _{WU}	T_{WU} Wake-Up Time ² $C_b = 1 \mu F$		15		ms

¹⁾ Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.

²⁾ Transition time from standby mode to fully operational amplifier.

Table 4. Electrical Characteristics: $V_{CC} = +3.3V$ (all electrical values are guaranteed with correlation measurements at 2.6V and 5V) GND = 0V, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter		Тур.	Max.	Unit
I _{cc}	Supply Current No input signal, no load		3	7	mA
I _{STANDBY}	Standby Current No input signal, Vstdby = $V_{SM} = G_{ND}$, RL = 8Ω No input signal, Vstdby = $V_{SM} = V_{CC}$, RL = 8Ω		10	1000	nA
Voo	Differential Output Offset Voltage No input signal, RL = 8Ω		0.1	10	mV
V_{ICM}	Input Common Mode Voltage CMRR ≤ -60dB	0.6		V _{CC} - 0.9	V
Ро	Output Power THD = 1% Max, F= 1kHz, RL = 8Ω	300	500		mW
THD + N	Total Harmonic Distortion + Noise Po = 300mW rms, 20Hz \leq F \leq 20kHz, RL = 8Ω		0.5		%
$\begin{array}{l} \text{Power Supply Rejection Ratio with Inputs Grounded}^1 \\ \text{F = 217Hz, R = 8} \Omega, C_{\text{in}} = 4.7 \mu\text{F}, C_{\text{b}} = 1 \mu\text{F} \\ \text{Vripple = 200mV}_{PP} \end{array}$		tbd	tbd		dB
Common Mode Rejection Ratio $F=217 Hz, RL=8\Omega, C_{in}=4.7 \mu F, C_{b}=1 \mu F$ $Vic=200 mV_{PP}$			tbd		dB
SNR Signal-to-Noise Ratio (A Weighted Filter) $(R_L = 8\Omega, THD + N < 0.7\%, 20Hz \le F \le 20kHz)$			100		dB
GBP Gain Bandwidth Product $R_L = 8\Omega$			2		MHz
Output Voltage Noise, $20\text{Hz} \le F \le 20\text{kHz}$, $R_L = 8\Omega$ Unweighted, $Av = 2.5$ A weighted, $Av = 2.5$ Unweighted, Standby A weighted, Standby			12 10.5 1.5		μV _{RMS}
Zin	Input impedance	tbd	tbd	tbd	kΩ
	Gain mismatch	5.5	6	6.5	dB
T _{WU}	T_{WU} Wake-Up Time ² $C_b = 1 \mu F$		15		ms

¹⁾ Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.

²⁾ Transition time from standby mode to fully operational amplifier.

Table 5. Electrical Characteristics - V_{CC} = +2.6V, GND = 0V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Supply Current No input signal, no load		Тур.	Max.	Unit
I _{CC}			3	7	mA
I _{STANDBY}	Standby Current No input signal, Vstdby = $V_{SM} = G_{ND}$, RL = 8Ω No input signal, Vstdby = $V_{SM} = V_{CC}$, RL = 8Ω			1000	nA
Voo	Differential Output Offset Voltage No input signal, $RL = 8\Omega$		0.1	10	mV
V_{ICM}	Input Common Mode Voltage CMRR ≤ -60dB	0.6		V _{CC} - 0.9	V
Ро	Output Power THD = 1% Max, F= 1kHz, RL = 8Ω	200	300		mW
THD + N	HD + N Total Harmonic Distortion + Noise Po = 225mW rms, 20Hz \leq F \leq 20kHz, RL = 8Ω		0.5		%
PSRR _{IG}	Power Supply Rejection Ratio with Inputs Grounded F = 217Hz, R = 8Ω , C_{in} = 4.7μ F, C_b = 1μ F Vripple = 200mV_{PP}		tbd		dB
CMRR	Common Mode Rejection Ratio $F=217\text{Hz, RL}=8\Omega,\ C_{in}=4.7\mu\text{F, }C_{b}=1\mu\text{F}$ $\text{Vic}=200\text{mV}_{PP}$		tbd		dB
SNR	SNR Signal-to-Noise Ratio (A Weighted Filter) $(R_L = 8\Omega, THD + N < 0.7\%, 20Hz \le F \le 20kHz)$		100		dB
GBP	GBP Gain Bandwidth Product $R_L = 8\Omega$		2		MHz
V _N	Output Voltage Noise, $20Hz \le F \le 20kHz$, $R_L = 8\Omega$ Unweighted A weighted Unweighted, Standby A weighted, Standby		12 10.5 1.5		μV _{RMS}
Zin	Input impedance	tbd	tbd	tbd	kΩ
	Gain mismatch		6	6.5	dB
T _{WU}	T_{WU} Wake-Up Time ² $C_b = 1\mu F$		15		ms

¹⁾ Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.

²⁾ Transition time from standby mode to fully operational amplifier.

4 Flip-chip package (9 bumps)

Dimensions in millimeters unless otherwise indicated.

Pin Out (top view)

Marking (top view)

TS4995 Revision History

5 Revision History

Date	Revision	Description of Changes
17 October. 2005	1	First Release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

