Help Logout Interrupt

Main Menu | Search Form | Posting Counts | Show S Numbers Edit S Numbers Preferences

Search Results -

-	Terms	Documents
nanonananananananananananananananananan	l13 and (quil or quila or quil-a)	3

US Patents Full-Text Database

US Pre-Grant Publication Full-Text Database

JPO Abstracts Database **EPO Abstracts Database**

Derwent World Patents Index **IBM Technical Disclosure Bulletins**

Database:

	113	and	(quil	or	quila	or	quil-a)		
Refine Search:				·······	***************************************	aaan aan	··········	Ţ	Clear

Search History

Today's Date: 12/6/2001

DB Name	Query	Hit Count	Set Name
USPT	bvh\$	98	<u>L1</u>
USPT	l1 and streptoc\$	0	<u>L2</u>
USPT	bvh-3	0	<u>L3</u>
USPT	streptococ\$.ti,ab,clm.	1370	<u>L4</u>
USPT	<pre>14 and (peptide or polypeptide or poly-peptide or protein)</pre>	1049	<u>L5</u>
USPT	15 and vaccin\$	428	<u>L6</u>
USPT	15 and vaccin\$.clm.	106	<u>L7</u>
USPT	(16 or 17) and pneumon\$	280	<u>L8</u>
USPT	(16 or 17) and pneumon\$.clm.	154	<u>L9</u>
USPT	19 and (peptide or polypeptide or poly-peptide or protein).clm.	108	<u>L10</u>
USPT	110 and 11	0	<u>L11</u>
USPT	l1 and pneumon\$	0	<u>L12</u>
USPT	17 and 110	29	<u>L13</u>
USPT	113 and (quil or quila or quil-a)	3	<u>L14</u>

WEST

Search Results - Record(s) 1 through 3 of 3 returned.

L15: Entry 1 of 3

File: USPT

Jul 17, 2001

US-PAT-NO: 6262029

DOCUMENT-IDENTIFIER: US 6262029 B1

TITLE: Chemically modified saponins and the use thereof as adjuvants

DATE-ISSUED: July 17, 2001

US-CL-CURRENT: <u>514/26</u>; <u>424/184.1</u>, <u>424/204.1</u>, <u>424/234.1</u>, <u>514/23</u>, <u>536/18.6</u>, <u>536/5</u>

INT-CL: [7] A61K 31/70, A61K 39/00, C07H 15/24

L15: Entry 2 of 3

File: USPT

Jun 27, 2000

US-PAT-NO: 6080725

DOCUMENT-IDENTIFIER: US 6080725 A

TITLE: Immunostimulating and vaccine compositions employing saponin analog adjuvants and uses thereof

DATE-ISSUED: June 27, 2000

US-CL-CURRENT: <u>514/26</u>; <u>424/184.1</u>, <u>514/25</u>, <u>536/4.1</u>, <u>536/5</u>

INT-CL: [7] A61K 31/705, A61K 39/00

L15: Entry 3 of 3

File: USPT

Aug 29, 1995

US-PAT-NO: 5445817

DOCUMENT-IDENTIFIER: US 5445817 A

TITLE: Pertussis toxin used as a carrier protein with non-charged saccharides in conjugate vaccines

DATE-ISSUED: August 29, 1995

US-CL-CURRENT: 424/194.1; 424/197.11, 424/240.1, 424/244.1, 424/831, 530/402, 530/403

INT-CL: [6] A61K 39/385, A61K 39/09, A61K 39/10

STEM: HOME

Cost is in DialUnits

Menu System II: D2 version 1.7.8 term=ASCII

*** DIALOG HOMEBASE(SM) Main Menu ***

Information:

- 1. Announcements (new files, reloads, etc.)
- 2. Database, Rates, & Command Descriptions
- 3. Help in Choosing Databases for Your Topic
- 4. Customer Services (telephone assistance, training, seminars, etc.)
- 5. Product Descriptions

Connections:

- 6. DIALOG(R) Document Delivery
- 7. Data Star(R)
 - (c) 2000 The Dialog Corporation plc All rights reserved.

/H = Help

/L = Logoff

/NOMENU = Command Mode

Enter an option number to view information or to connect to an online
 service. Enter a BEGIN command plus a file number to search a database
(e.g., Bl for ERIC).
?b 155

06dec01 12:59:44 User228206 Session D1636.1

\$0.00 0.206 DialUnits FileHomeBase

\$0.00 Estimated cost FileHomeBase

\$0.00 Estimated cost this search

\$0.00 Estimated total session cost 0.206 DialUnits

File 155:MEDLINE(R) 1966-2001/Dec W5

Set Items Description

?s streptoc? and vaccin? and (saponin? or quil? or quila?)

58652 STREPTOC?

111855 VACCIN?

5393 SAPONIN?

691 OUIL?

13 QUILA?

S1 4 STREPTOC? AND VACCIN? AND (SAPONIN? OR QUIL? OR QUILA?) ?t s1/9/all

1/9/1

DIALOG(R) File 155: MEDLINE(R)

11135505 21082588 PMID: 11214671

Antibody response in sheep following immunization with Streptococcus bovis in different adjuvants.

Shu Q; Bir SH; Gill HS; Duan E; Xu Y; Hiliard; Rowe JB

Division of Animal Science, University of New England, Armidale, NSW, Australia. Q.Shu@massey.ac.nz

Veterinary research communications (Netherlands) Jan 2001, 25 (1) p43-54, ISSN 0165-7380 Journal Code: XCD

Languages: ENGLISH

Document type: Journal Article

Record type: Completed Subfile: INDEX MEDICUS

Recent studies have shown that immunization with **Streptococcus** bovis using Freund's complete adjuvant (FCA) may confer protection against lactic acidosis in sheep. The major objective of this study was to compare the antibody responses to S. bovis in a practically acceptable adjuvant (Freund's incomplete adjuvant (FIA); **QuilA**; dextran sulphate (Dex); Imject Alum; or Gerbu) and in FCA. Thirty-five sheep were randomly

allocated to 7 treatment groups. Six groups were immunized with S. bovis in an adjuvant; the other group served as the non-immunization control. The primary immunization was administered intramuscularly on day 0. followed by a booster injection on day 28. Immunization with FCA induced the highest saliva and serum antibody responses. The saliva antibody concentrations in the FIA and QuilA groups were significantly higher than those in the Alum, Dex and Gerbu groups (p < 0.01). The serum antibody concentration in the FIA group was significantly higher than those in the QuilA , Alum. Dex and Gerbu groups (p < 0.01). Immunization enhanced the antibody level in faeces (p < 0.05), but there was no significant difference between the different adjuvant groups (p > 0.05). Seven and 14 days following booster immunization, the saliva antibody levels induced by QuilA and/or FIA were comparable with the level stimulated by FCA (p > 0.05). There was a strongly positive correlation (R2 = 0.770, p < 0.01) between the antibody concentrations in salival and serum. Compared with the controls, a higher faecal dry matter content was observed in the animals immunized with either FCA or QuilA . The change in faecal dry matter content was positively associated with the faecal antibody concentration (R2 = 0.441, p < 0.05). These results indicate that FIA and QuilA were effective at inducing high levels of antibody responses to S. bovis, and suggest that either Freund's incomplete adjuvant or QuilA may be useful for preparing a practically acceptable vaccine against lactic acidosis.

Tags: Animal; Comparative Study; Male

Adjuvants, Descriptors: Immunologic--administration and dosage--AD; *Antibodies, Bacterial--biosynthesis--BI; *Bacterial Vaccines --immunology *Sheep--immunology--IM; * Streptococcus bovis--immunology--IM; * Vaccination --veterinary--VE; Alum Compounds--administration and dosage --AD; Antibodies, Bacterial--analysis--AN; Antibodies, Bacterial--blood --BL; Bacterial Vaccines --administration and dosage--AD; Dextrans --administration and dosage--AD; Enzyme-Linked Immunosorbent Assay --veterinary--VE; Feces--chemistry--CH; Freund's Adjuvant--administration dosage--AD; Injections, Intramuscular--veterinary--VE; Allocation; Saliva--immunology--IM; Saponins --administration and dosage --AD; Streptococcus bovis--physiology--PH; Vaccination --methods--MT CAS Registry No.: 0 (Adjuvants, Immunologic); 0 (Alum Compounds); 0 (Bacterial Vaccines); 0 (Antibodies, Bacterial); 0 10043-01-3 66594-14-7 (Quil A); 9004-54-0 (aluminum sulfate); (Dextrans); 9007-81-2 (Freund's Adjuvant) Record Date Created: 20010214

1/9/2

DIALOG(R) File 155:MEDLINE(R)

10835903 20352794 PMID: 10895910

Effects of various adjuvants on efficacy of a vaccine against Streptococcus bovis and Lactobacillus spp in cattle.

Shu Q; Hillard MA; Bindon BM; Duan E; Xu Y; Bird SH; Rowe JB; Oddy VH; Gill HS

Department of Animal Science and the Cooperative Research Centre for Cattle and Beef Industry, University of New England, Armidale, NSW, Australia.

American journal of veterinary research (UNITED STATES) Jul 2000, 61 (7) p839-43, ISSN 0002-9645 Journal Code: 40C

Languages: ENGLISH

Document type: Journal Article

Record type: Completed Subfile: INDEX MEDICUS

OBJECTIVE: To determine efficacy of vaccines incorporating QuilA, alum, dextran combined with mineral oil, or Freund adjuvant for immunization of feedlot cattle against Streptococcus bovis and Lactobacillus spp. ANIMALS: 24 steers housed under feedlot conditions. PROCEDURE: Steers were randomly assigned to 4 experimental groups and a control group. Animals in experimental groups were inoculated on days 0 and 26 with vaccines containing Freund adjuvant (FCA), QuilA, dextran combined with mineral oil (Dex), or alum as adjuvant. Serum anti-S bovis and anti-Lactobacillus IgG concentrations were measured, along with fecal

pH, ruminal fluid pH, and number of S bovis and Lactobacillus spp in ruminal fluid. RESULTS: Throughout the study, serum anti-S bovis and anti-Lactobacillus IgG concentrations for animals in the Dex, QuilA , and alum groups were similar to or significantly higher than concentrations for animals in the FCA group. Serum anti-S bovis and anti-Lactobacillus IgG concentrations were significantly increased on days 26 through 75 in all 4 experimental groups, and there was a linear relationship between anti-S bovis and anti-Lactobacillus IgG concentrations. For animals in the QuilA and Dex groups, mean pH of feces throughout the period of experiment were significantly higher and numbers of S bovis and Lactobacillus spp in ruminal fluid on day 47 were significantly lower than values for control CONCLUSIONS AND cattle. CLINICAL RELEVANCE: Results suggest that immunization of feedlot steers against S bovis and Lactobacillus spp with vaccines incorporating Freund adjuvant, QuilA , dextran, or alum as an adjuvant effectively induced high, long-lasting serum anti-S bovis and anti-Lactobacillus IgG concentrations. Of the adjuvants tested, dextran may

be the most effective. Tags: Animal; Comparative Study; Male Descriptors: Adjuvants, Immunologic--standards--ST; *Bacterial Vaccines --standards--ST; *Cattle Diseases--immunology--IM; *Lactobacillus --immunology--IM; Streptococcal Infections--veterinary--VE; Streptococcus bovis--immunology--IM; Adjuvants, Immunologic --administration and dosage--AD; Alum Compounds--administration and dosage Alum Compounds--standards--ST; Analysis of Variance; Antibodies, Bacterial--biosynthesis--BI; Antibodies, Bacterial--blood--BL; Anticoagula nts--administration and dosage--AD; Anticoagulants--standards--ST; Bacterial Vaccines --administration and dosage--AD; Bacterial Vaccines --immunology--IM; Body Weight; Cattle; Cattle Diseases--microbiology--MI; Cattle Diseases--prevention and control--PC; Dextrans--administration and dosage--AD; Dextrans--standards--ST; Feces--microbiology--MI; Freund's Adjuvant--administration and dosage--AD; Freund's Adjuvant--standards--ST; Hydrogen-Ion Concentration; IgG--biosynthesis--BI; IgG--blood--BL; Linear Rumen--microbiology--MI; Models; Random Allocation; --administration and dosage--AD; Saponins --standards--ST; Streptococcal Infections--blood--BL; Streptococcal Infections--immunology--IM; Infections--prevention and control--PC; Streptococcal Streptococcal Vaccines --administration and dosage--AD; Streptococcal --immunology--IM; Streptococcal Vaccines --standards--ST; Vaccination --veterinary--VE CAS Registry No.: 0 (Adjuvants, Immunologic); 0 (Alum Compounds); 0 (Antibodies, Bacterial); 0 (Anticoagulants); 0 (Bacterial Vaccines); 0 (IgG); 0 (Saponins); 0 (Streptococcal Vaccines); 10043-01-3 (aluminum sulfate); 66594-14-7 (Quil A); 9004-54-0 (Dextrans); 9007-81-2 (Freund's Adjuvant) Record Date Created: 20001103

1/9/3

DIALOG(R) File 155: MEDLINE(R)

08565273 95348563 PMID: 7622906

Anti-polysaccharide immunoglobulin isotype levels and opsonic activity of antisera: relationships with protection against Streptococcus pneumoniae infection in mice.

Alonso De Velasco E; Dekker BA; Verheul AF; Feldman RG; Verhoef J; Snippe

Eijkman-Winkler Institute for Medical and Clinical Microbiology, Utrecht University, Netherlands.

Journal of infectious diseases (UNITED STATES) Aug 1995, 172 (2) p562-5, ISSN 0022-1899 Journal Code: IH3

Languages: ENGLISH

Document type: Journal Article

Record type: Completed

Subfile: AIM; INDEX MEDICUS

Relationships between in vitro parameters (opsonic activity and anti-pneumococcal polysaccharide [PS] antibody subclasses) and in vivo mouse protection were established by logistic regression analysis. Data

were from 158 mice challenged with pneumococci after vaccination with synthetic oligosaccharide- and PS-protein conjugates in combination with the adjuvant Quil A. The hypothesis that serum opsonic activity has predictive value for protection against pneumococcal infection was tested. Serum opsonic activity was well correlated with protection (chi 2 = 35.5, P < 0.001), although a stronger correlation was observed for anti-PS IgM and IgG. The combined use of IgG and opsonic activity as predictor variables yielded the best fitting model for predicting protection (chi 2 = 74.1, P < 0.001). When opsonic activity data were added to models that included various antibody isotypes, the statistical significance of the models was enhanced. Thus, the opsonic activity of antisera induced by pneumococcal vaccines can predict mouse protection.

Tags: Animal; Female

Descriptors: Antibodies, Bacterial--blood--BL; *Immunoglobulin Isotypes --blood--BL; * Streptococcus pneumoniae--immunology--IM; Adjuvants, Immunologic; Antigens, Bacterial--immunology--IM; Bacterial Vaccines --immunology--IM; Mice; Mice, Inbred BALB C; Opsonins--blood--BL; Pneumococcal Infections--immunology--IM; Pneumococcal Infections --microbiology--MI; Pneumococcal Infections--mortality--MO; Polysaccharides, Bacterial--immunology--IM

CAS Registry No.: 0 (Adjuvants, Immunologic); 0 (Antibodies, Bacterial); 0 (Antigens, Bacterial); 0 (Bacterial Vaccines); 0 (Immunoglobulin Isotypes); 0 (Opsonins); 0 (Polysaccharides, Bacterial); 0 (pneumococcal polysaccharide type 17F)
Record Date Created: 19950830

1/9/4

DIALOG(R) File 155: MEDLINE(R)

08359028 95193317 PMID: 7887020

Adjuvant Quil A improves protection in mice and enhances opsonic capacity of antisera induced by pneumococcal polysaccharide conjugate vaccines.

DeVelasco EA; Dekker HA; Antal P; Jalink KP; van Strijp JA; Verheul AF; Verhoef J; Snippe H

Eijkman-Winkler Institute of Medical Microbiology, Utrecht University, The Netherlands.

Vaccine (ENGLAND) Nov 1994, 12 (15) p1419-22, ISSN 0264-410X Journal Code: X60

Languages: ENGLISH

Document type: Journal Article

Record type: Completed Subfile: INDEX MEDICUS

The adjuvant effect of **Quil** A on the primary antibody response of mice to pneumococcal capsular polysaccharide conjugates was examined. **Quil** A increased the anti-capsular polysaccharide antibody titres, the protection against **Streptococcus** pneumoniae, and the opsonic capacity of the antibodies as measured in a newly developed in vitro phagocytosis assay, using the mouse macrophage cell line J774.

Tags: Animal

Descriptors: Adjuvants, Immunologic--pharmacology--PD; *Bacterial Vaccines --immunology--IM; *Opsonins--immunology--IM; * Saponins --pharmacology--PD; *Streptococcus pneumoniae--immunology--IM; Cell Line; Immune Sera--immunology--IM; Macrophages--immunology--IM; Mice; Mice, Inbred BALB C; Phagocytosis--immunology--IM; Polysaccharides--immunology--IM

CAS Registry No.: 0 (Adjuvants, Immunologic); 0 (Bacterial Vaccines); 0 (Immune Sera); 0 (Opsonins); 0 (Polysaccharides); 0 (Saponins); 66594-14-7 (Quil A)

Record Date Created: 19950413 ?logoff hold

\$2.18 Estimated cost File155

\$0.05 TYMNET
\$2.23 Estimated cost this search
\$2.23 Estimated total session cost 0.638 DialUnits

Status: Signed Off. (1 minutes)

our SELECT statement is:

s (pneunoni? or pneumonococ?) and vaccin? and (protein or polypeptide or peptide? or amino) and (quila? or saponin? or quil)

Items File

Status: Break Sent.

?s (pneumoni? or pneumonococ?) and vaccin? and (protein or polypeptide or peptide? or a mino) and (quila? or saponin? or quil)

Your SELECT statement is:

s (pneumoni? or pneumonococ?) and vaccin? and (protein or polypeptide or peptide? or amino) and (quila? or saponin? or quil)

Items	File	
3		Biosis Previews(R) 1969-2001/Dec W1
1	9:	Business & Industry(R) Jul/1994-2001/Dec 05
2		Gale Group PROMT(R)_1990-2001/Dec 05
6		SciSearch(R) Cited Ref Sci_1990-2001/Dec W2
1		Gale Group Magazine DB(TM) 1959-2001/Dec 05
2		ELSEVIER BIOBASE 1994-2001/Dec W1
5	73:	EMBASE 1974-2001/Dec W1
3	76:	Life Sciences Collection_1982-2001/Nov

Status: Break Sent.

?s (pneumoni? or pneumococ?) and vaccin? and (protein or polypeptide or peptide? or ami no) and (quila? or saponin? or quil)

Your SELECT statement is:

s (pneumoni? or pneumococ?) and vaccin? and (protein or polypeptide or peptide? or amino) and (quila? or saponin? or quil)

Items	File	
3	 5·	Biosis Previews(R)_1969-2001/Dec W1
2	9.	Business & Industry(R)_Jul/1994-2001/Dec 05
	16:	Gale Group PROMT(R) 1990-2001/Dec 05
	34:	SciSearch(R) Cited Ref Sci_1990-2001/Dec W2
	47:	Gale Group Magazine DB(TM)_1959-2001/Dec 05
2	71:	ELSEVIER BIOBASE 1994-2001/Dec W1
		EMBASE 1974-2001/Dec W1
3		Life Sciences Collection 1982-2001/Nov
Examined		
1	98:	General Sci Abs/Full-Text 1984-2001/Oct
1	129:	PHIND(Archival) 1980-2001\(\overline{7}\)Dec W1
		Pascal $1973-200\overline{1}/\text{Dec W1}$
4	148:	Gale Group Trade & Industry DB 1976-2001/Dec 05
6	149:	TGG Health&Wellness DB(SM) $197\overline{6}$ -2001/Nov W3
		MEDLINE(R)_1966-2001/Dec W5
		Federal Register_1985-2001/Dec 05
Examined 1		
		ChemEng & Biotec Abs_1970-2001/Oct
Examined 1		
		CLAIMS(R)/US Patent 1950-01/Dec 04
		EUROPEAN PATENTS 1978-2001/NOV W04
		PCT FULLTEXT_1983-2001/UB=20011129,UT=20011122
1	357:	Derwent Biotechnology Abs_1982-2001/Jan B1
		Beilstein Online
6		CA SEARCH(R) 1967-2001/UD=13524
		Current Contents Search(R) 1990-2001/Dec W3
1		AMA Journals 1982-2001/Dec B1
1	449:	IMSWorld Company Profiles_1992-2001/Nov

457: The Lancet 1986-2000/Oct $\overline{W}1$

```
484: Periodical Abs Plustext 1986-2001/Dec W1
       Examined 200 files
               2
                   570: Gale Group MARS(R) 1984-2001/Dec 05
                   621: Gale Group New Prod.Annou.(R)_1985-2001/Dec 05
                   636: Gale Group Newsletter DB(TM)\overline{1}987-2001/Dec 05
                   649: Gale Group Newswire ASAP(TM)_2001/Dec 06
               1
       Examined 250 files
                   652: US Patents Fulltext 1971-1979
               3
                   653: US Patents Fulltext 1980-1989
             268
                   654: US PAT.FULL. 1990-2001/Dec 04
                   813: PR Newswire 1987-1999/Apr 30
               1
   36 files have one or more items; file list includes 288 files.
?save temp
Temp SearchSave "TD453" stored
Your last SELECT statement was:
   S (PNEUMONI? OR PNEUMOCOC?) AND VACCIN? AND (PROTEIN OR POLYPEPTIDE OR -
PEPTIDE? OR AMINO) AND (QUILA? OR SAPONIN? OR QUIL)
          Items
                   File
             439
                   349: PCT FULLTEXT_1983-2001/UB=20011129,UT=20011122
             268
                   654: US PAT.FULL. 1990-2001/Dec 04
              57
                   348: EUROPEAN PATENTS 1978-2001/NOV W04
              32
                   653: US Patents Fulltext 1980-1989
               9
                   440: Current Contents Search(R) 1990-2001/Dec W3
               6
                   34: SciSearch(R) Cited Ref Sci_1990-2001/Dec W2
                   149: TGG Health&Wellness DB(SM) 1976-2001/Nov W3
               6
               6
                   399: CA SEARCH(R) 1967-2001/UD=\overline{1}3524
               5
                   73: EMBASE 1974-2001/Dec W1
               4
                    16: Gale Group PROMT(R) 1990-2001/Dec 05
   36 files have one or more items; file list includes 288 files.
        - Enter P or PAGE for more -
Your last SELECT statement was:
   S (PNEUMONI? OR PNEUMOCOC?) AND VACCIN? AND (PROTEIN OR POLYPEPTIDE OR -
PEPTIDE? OR AMINO) AND (QUILA? OR SAPONIN? OR QUIL)
          Items File
           ----
               4
                   148: Gale Group Trade & Industry DB 1976-2001/Dec 05
               4
                   340: CLAIMS(R)/US Patent 1950-01/Dec 04
                   484: Periodical Abs Plustext_1986-2001/Dec W1
               4
               3
                    5: Biosis Previews(R) 1969-2001/Dec W1
               3
                    76: Life Sciences Collection 1982-2001/Nov
               3
                   652: US Patents Fulltext 1971-1979
               2
                    9: Business & Industry(R) Jul/1994-2001/Dec 05
               2
                    47: Gale Group Magazine DB(TM) 1959-2001/Dec 05
               2
                   71: ELSEVIER BIOBASE 1994-2001/Dec W1
               2
                   144: Pascal 1973-2001/Dec W1
   36 files have one or more items; file list includes 288 files.
        - Enter P or PAGE for more -
Your last SELECT statement was:
   S (PNEUMONI? OR PNEUMOCOC?) AND VACCIN? AND (PROTEIN OR POLYPEPTIDE OR -
PEPTIDE? OR AMINO) AND (QUILA? OR SAPONIN? OR QUIL)
          Items File
           ----
               2
                   390: Beilstein Online
                   570: Gale Group MARS(R) 1984-2001/Dec 05
               2
               2
                   636: Gale Group Newsletter DB(TM) 1987-2001/Dec 05
               1
                   98: General Sci Abs/Full-Text 1984-2001/Oct
               1
                   129: PHIND(Archival)_1980-2001/Dec W1
                   155: MEDLINE(R) 1966-2001/Dec W5
```

?rf

N1

N2

N.3

N 4

N5

Νб

N7

И8

И9

N10

?p

Ref

N11

N12

N13

N14

N15

N16

N17

N18

N19

N20

Ref

N21

N22

N23

N24

N25

N26

459: Daily Essentials (Archival) 1996-2001/Nov

```
N27
                   180: Federal Register_1985-2001/Dec 05
N28
                   315: ChemEng & Biotec Abs_1970-2001/Oct
                   357: Derwent Biotechnology Abs_1982-2001/Jan B1
N29
                   442: AMA Journals 1982-2001/Dec B1
N30
               1
  36 files have one or more items; file list includes 288 files.
        - Enter P or PAGE for more -
?p
Your last SELECT statement was:
   S (PNEUMONI? OR PNEUMOCOC?) AND VACCIN? AND (PROTEIN OR POLYPEPTIDE OR -
PEPTIDE? OR AMINO) AND (QUILA? OR SAPONIN? OR QUIL)
           Items File
           ----
N31
                   449: IMSWorld Company Profiles 1992-2001/Nov
                   457: The Lancet 1986-2000/Oct \overline{W}1
N32
               1
                   459: Daily Essentials (Archival) 1996-2001/Nov W2
N33
               1
                   621: Gale Group New Prod. Annou. (R) 1985-2001/Dec 05
N34
               1
                   649: Gale Group Newswire ASAP(TM) 2001/Dec 06
N35
               1
                   813: PR Newswire 1987-1999/Apr 30
N36
               1
                    2: INSPEC 1969-2001/Dec W1
               0
N37
                     6: NTIS 1\overline{9}64-2001/\text{Dec W}3
               0
N38
                     8: Ei Compendex(R)_1970-2001/Dec W1
N39
               0
                    10: AGRICOLA 70-2001/Nov
N40
               0
   36 files have one or more items; file list includes 288 files.
        - Enter P or PAGE for more -
?p
Your last SELECT statement was:
   S (PNEUMONI? OR PNEUMOCOC?) AND VACCIN? AND (PROTEIN OR POLYPEPTIDE OR -
PEPTIDE? OR AMINO) AND (QUILA? OR SAPONIN? OR QUIL)
Ref
           Items File
___
           ____
               0
N41
                   14: Mechanical Engineering Abs 1973-2001/Nov
               0
                    15: ABI/Inform(R) 1971-2001/Dec 06
                    18: Gale Group F&S Index(R) 1988-2001/Dec 04
                    19: Chem. Industry Notes 1974-2001/ISS 200148
N 4 4
               0
N45
               0
                    20: World Reporter 1997-2001/Dec 06
                    25: Weldasearch 1966-2001/Apr
N46
               0
                    28: Oceanic Abst. 1964-2001/Nov
N47
              0
                    29: Meteor. & Geoastro. Abs. 1970-2001/Dec
               0
N48
N49
                    31: World Surface Coatings Abs 1976-2001/Dec
               0
N50
               0
                    32: METADEX(R)_1966-2001/Feb B1
   36 files have one or more items; file list includes 288 files.
        - Enter P or PAGE for more -
?b n2 n1 n3:n36;exs
       06dec01 13:08:13 User228206 Session D1636.4
            $9.46
                    7.569 DialUnits File411
     $9.46 Estimated cost File411
     $0.30 TYMNET
```

\$9.76 Estimated cost this search

\$9.99 Estimated total session cost 7.642 DialUnits

Status: Break Sent.

?ds

Set S1	Items 880	Description (PNEUMONI? OR PNEUMOCOC?) AND VACCIN? AND (PROTEIN OR POLY-
	PE	EPTIDE OR PEPTIDE? OR AMINO) AND (QUILA? OR SAPONIN? OR QUIL)
S2	844	RD (unique items)
S3	468	S2/1999:2001
S4	376	S2 NOT S3
?t s4/	free/300-	-376

DIALOG Accession Number: 02002041 Supplier Number: 850105-47

Biological Products; Allergenic Extracts; Implementation of Efficacy Review

Date: WEDNESDAY, JANUARY 23, 1985

Word Count: 205773

4/8/373 (Item 1 from file: 315)

421676

Aquila's QS-21 adjuvant enhances DNA vaccine immune response.

PUBLICATION DATE: 21 May 1997 (970521)

4/8/374 (Item 1 from file: 442)

DIALOG(R)File 442:(c)2001 Amer Med Assn -FARS/DARS apply. All rts. reserv.

00021899

Copyright (C) 1989 American Medical Association

Some Late Reports From the Front in War Against Various Sexually Transmitted Diseases (MEDICAL NEWS & PERSPECTIVES)

LINE COUNT: 00132

WORD COUNT: 01830

4/8/375 (Item 1 from file: 449) 00021083 (USE FORMAT 7 FOR FULLTEXT)

SMITHKLINE BEECHAM: R&D PROFILE : SYSTEMIC ANTI-INFECTIVE AGENTS

May 06 1998

Word Count: 3,363

4/8/376 (Item 1 from file: 459)

00015210

COMPANY PROFILE: AQUILA BIOPHARMACEUTICALS

February 27, 1998 (19980227)

?logoff hold

Table 1

62

AGAAGCCTATTGGAATGGGAAGCAGGGATCTCGTCCTTCTTCAAGTTCTAGTTATAATGCAAATCCAGC TCAACCAAGATTGTCAGAGAACCACAATCTGACTGTCACTCCAACTTATCATCAAAATCAAGGGGAAAA CATTTCAAGCCTTTTACGTGAATTGTATGCTAAACCCTTATCAGAACGCCATGTGGAATCTGATGGCCT TATTTTCGACCCAGCGCAAATCACAAGTCGAACCGCCAGAGGTGTAGCTGTCCCTCATGGTAACCATTA CCACTTTATCCCTTATGAACAATGTCTGAATTGGAAAAACGAATTGCTCGTATTATTCCCCTTCGTTA TCGTTCAAACCATTGGGTACCAGATTCAAGACCAGAACAACCAAGTCCACAATCGACTCCGGAACCTAG TCCAAGTCCGCAACCTGCACCAAATCCTCAACCAGCTCCAAGCAATCCAATTGATGAGAAATTGGTCAA AGAAGCTGTTCGAAAAGTAGGCGATGGTTATGTCTTTGAGGAGAATGGAGTTTCTCGTTATATCCCAGC CAAGGATCTTTCAGCAGAAACAGCAGCAGGCATTGATAGCAAACTGGCCAAGCAGGAAAGTTTATCTCA TAAGCTAGGAGCTAAGAAAACTGACCTCCCATCTAGTGATCGAGAATTTTACAATAAGGCTTATGACTT ACTAGCAAGAATTCACCAAGATTTACTTGATAATAAAGGTCGACAAGTTGATTTTGAGGCTTTGGATAA CCTGTTGGAACGACTCAAGGATGTCNCAAGTGATAAAGTCAAGTTAGTGGANGATATTCTTGCCTTCTT AGCTCCGATTCGTCATCCAGAACGTTTAGGAAAACCAAATGCGCAAATTACCTACACTGATGATGAGAT TCAAGTAGCCAAGTTGGCAGGCAAGTACACAACAGAAGACGGTTATATCTTTGATCCTCGTGATATAAC CAGTGATGAGGGGGATGCCTATGTAACTCCACATATGACCCATAGCCACTGGATTAAAAAAAGATAGTTT GTCTGAAGCTGAGAGAGCGGCAGCCCAGGCTTATGCTAAAGAGAAAGGTTTGACCCCTCCTTCGACAGA CCATCAGGATTCAGGAAATACTGAGGCAAAAGGAGCAGAAGCTATCTACAACCGCGTGAAAGCAGCTAA GAAGGTGCCACTTGATCGTATGCCTTACAATCTTCAATATACTGTAGAAGTCAAAAACGGTAGTTTAAT CATACCTCATTATGACCATTACCATAACATCAAATTTGAGTGGTTTGACGAAGGCCTTTATGAGGCACC GCATTCAGATAATGGTTTTGGTAACGCTAGCGACCATGTTCAAAGAAACAAAAATGGTCAAGCTGATAC AGAGAAACCGCAAAGCGAGAAACCAGAGTCTCCAAAACCAACAGAGGAACCAGAAGAATCACCAGAGGA ATCAGAAGAACCTCAGGTCGAGACTGAAAAGGTTGAAGAAAAACTGAGAGAGGCTGAAGATTTACTTGG AAAAATCCAGGAT /

SP642 amino acid (SEQ ID NO:66)

CSYELGRHQAGQVKKESNRVSYIDGDQAGQKAENLTPDEVSKREGINAEQXVIKITDQGYVTSHGDHYH
YYNGKVPYDAIISEELLMKDPNYQLKDSDIVNEIKGGYVIKVNGKYYVYLKDAAHADNIRTKEEIKRQK
QERSHNHNSRADNAVAAARAQGRYTTDDGYIFNASDIIEDTGDAYIVPHGDHYHYIPKNELSASELAAA
EAYWNGKQGSRPSSSSSYNANPAQPRLSENHNLTVTPTYHQNQGENISSLLRELYAKPLSERHVESDGL
IFDPAQITSRTARGVAVPHGNHYHFIPYEQMSELEKRIARIIPLRYRSNHWVPDSRPEQPSPQSTPEPS
PSPQPAPNPQPAPSNPIDEKLVKEAVRKVGDGYVFEENGVSRYIPAKDLSAETAAGIDSKLAKQESLSH
KLGAKKTDLPSSDREFYNKAYDLLARIHQDLLDNKGRQVDFEALDNLLERLKDVXSDKVKLVXDILAFL
APIRHPERLGKPNAQITYTDDEIQVAKLAGKYTTEDGYIFDPRDITSDEGDAYVTPHMTHSHWIKKDSL
SEAERAAAQAYAKEKGLTPPSTDHQDSGNTEAKGAEAIYNRVKAAKKVPLDRMPYNLQYTVEVKNGSLI
IPHYDHYHNIKFEWFDEGLYEAPKGYTLEDLLATVKYYVEHPNERPHSDNGFGNASDHVQRNKNGQADT
NQTEKPSEEKPQTEKPEEETPREEKPQSEXPESPKPTEEPEESPEESEEPQVETEKVEEKLREAEDLLG
KIQD

SP043 nucleotide (SEQ ID NO:67)

SP043 amino acid (SEQ ID NO:68)

YKGELEKGYQFDGWEISGFEGKKDAGYVINLSKDTFIKPVFKKIEEKKEEENKPTFDVSKKKDNPQVNH SQLNESHRKEDLQREEHSQKSDSTKDVTATVLDKNNISSKSTTNNPNK

SP044 nucleotide (SEQ ID NO:69)

1157

TGTCAGAATT AACATCTCCA AACGCTGTTC TTGAATCGGT CATTCTGATA CCATTTTCTG 10200
CACAATAAAC CAATACACGA TTATAGGCTT CTGTAGATTT AACCACTATA TACAATTCAA 10260
TCATTTTAGA ACGATTTTGC AGATATTTT TTAGTGGTTG GAACATGGAT ATCACACCCC 10320
AAACAGAAAT GGCTACTAAA AGAGCTCCCT CATAAGG 10357

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6867 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

CGGGACATTC TCAATCTTCT GTCTTTTGTT TTTCTCTTCT TTCTATGATA CAATGGAAAA 60 AATAAATTCA AAAGGAGTTT TTTTATGACT TATCCAAATC TCTTGGACCG CTTCTTAACC 120 TATGTTAAGG TCAACACGCG CTCTGATGAA CACTCTACTA CTACTCCAAG TACACAGAGT 180 CAGGTTGACT TCGCAACAAA TGTCCTAATT CCTGAAATGA AACGTGTTGG ACTGCAAAAT 240 GTTTACTATC TACCGAATGG TTTTGCTATT GGAACCTTGC CAGCCAACGA TCCGTCTTTA 300 ACACGTAAGA TTGGTTTTAT ATCGCACATG GATACTGCTG ATTTTAATGC TGAAGGAGTC 360 AATCCACAGG TAATTGAAAA CTACGATGGT GGTGTGATTG AACTAGGGAA TTCTGGTTTC 420 AAACTCGATC CAGCTGACTT CAAGAGTCTT GAAAAATATC CAGGACAAAC GCTCATCACA 480 ACAGATGGAA CAACCTTGCT AGGTGCTGAT GACAAGTCAG GAATTGCTGA AATTATGACA 540 GCCATTGAAT ATCTAACTGC TCATCCTGAA ATTAAGCACT GTGAGATTCG TGTTGGTTTT 600 GGTCCAGATG AAGAAATCGG TGTTGGTGCC AATAAATTTG ATGCAGAAGA TTTTGATGTG 660 GATTTTGCCT ACACTGTTGA TGGTGGTCCA CTAGGTGAAC TTCAGTACGA GACTTTCTCA 720 GCCGCTGGTG CTGAATTGCA TTTCCAAGGT CGTAATGTCC ACCCTGGTAC TGCCAAAGGG 780 CAGATGGTCA ATGCCCTTCA GCTAGCAATT GATTTTCATA ATCAACTTCC AGAAAATGAC 840 CGACCTGAGT TAACTGAAGG TTACCAAGGT TTTTACCATC TAATGGATGT GACAGGTAGT 900 GTTGAGGAGG CGCGTGCAAG CTACATCATT CGTGATTTTG AAAAAGATGC CTTTGAAGCG 960 CGTAAAGCAT CCATGCAATC TATCGCTGAT AAGATGAATG AAGAACTTGG GAGCGACCGT 1020 GTCACTCTCA ACTTGACAGA CCAGTACTAC AATATGAAAG AAGTCATTGA AAAAGATATG 1080 ACTCCAATTA CCATTGCTAA AGCCGTTATG GAAGATCTAG GTATCACGCC TATTATCGAA 1140

			1158			
CCAATCCGGG	GTGGAACAGA	CGGCTCTAAG	ATTTCCTTTA	TGGGAATCCC	AACTCCGAAT	120
ATCTTTGCAG	GTGGCGAAAA	TATGCACGGA	CGTTTTGAAT	ACGTTAGCCT	TCAGACTATG	126
GAACGTGCAG	TTGATACCAT	CATTGGCATC	GTAGCTTATA	AAGGCTAAAA	AGACGAGGTA	132
GCTCAGCTAC	TTCGCCTTTC	TTTTTATTCT	ACTGGTTTTT	CTTGATTTCC	AGTAGTTGTA	138
GAAGATTCTG	TTGTTTCATT	TTCTGAAGTT	GATTCAGCAG	GTTTAGAATC	TCTTGTATTG	144
CTTGGTTTGT	TTTCGTCGCT	AGCAGTTTCA	ATGTTAGATT	CTGCAGTTGC	GTTTGGTTGG	150
TTCTCAGCAC	TGGTGTTATC	ACCATTTGCT	TCAGCATTTC	TTGCTGGACT	TGTTTCTTCA	156
CTTGCGCTAG	CTTTTGACTG	GATTTGATGA	TTCAAAACTA	GAATAGCTTT	TGTCGATTCA	162
agtaaagctg	TTTTGTCTTT	ACTCTTAGCA	GAAAGTTGAT	CTAATAATGC	ATCCACCTTA	168
TCAAAGTCCG	CATCAGATCC	ATTATTACTT	TCTAAATAAG	AGTGAAGCGA	CATGAGAATA	174
TCGTAGAGTT	TTTGATAGAG	TACAAGTGTC	TGAGGATCTT	GCTCAGCATT	TTCCTTTTCT	180
TGTTGAAGGG	CGCTAGCGAT	ACGAGTCAAG	ACATCTTTTA	CCTGACTGTT	TACTTCATCC	186
AAGTCTGCAT	CAGCCTTGTT	TGTGGCAGCT	TTTAGATTTT	CTACTTCTTC	TGCCAAGGAT	192
TGTCTGATTC	CTTCTTCATG	GATTTGTTCC	AAGAGTTGAT	TTGCCTTGCT	CAAAAGACTT	198
TCTACTTCTT	CCTTGCTATC	TGTCGCAGAT	TATTGGTTGC	TATCTACCAT	GTACTCCTAA	204
AACAGGAGAG	TTATAATCCA	AGATTACAAG	GCCTTACAGA	AATAAGAAAT	CCAGATAAGA	210
CAATGTTCGT	CCAAGACGCT	ATTCGCTTCG	CACAGCAGCA	CGGATTCAAT	ATGCTTTAAT	216
TTTAAAGTTT	AGGTGTCAAG	ACCTCTTTTT	AGTGTGCCCA	AAATTTAGAG	AAGTAATCAA	222
тсаастааст	ТТТАТТТТТТ	TCAAACTTTC	AGTAAACTGA	CCTAAAGCTA	ACTCAATCTG	228
TCTTTGTAGA	TGCTTCTGCT	ATCAGCTAGA	AGTTGATCTA	CTTTTGCCAA	GACTGCCTTC	234
TCATCAAAAG	TTCCAGGTTG	atagttggat	TGCAGGGATG	GAATCTTGTT	TTTCAAAGCC	240
GCTTCATATC	CCTTAGTTTG	AACCTTGATG	TAGTGATTGT	GGTCGCCATG	AGGAATCACA	246
AAACCTTCTG	AATCTTCACT	TATAATTCGA	TTGGCATCAA	AACCATGACC	ATCTTCTTCC	2520
TCATGATGGA	CATGTAGTGA	CGGATTACTT	AATACAGAAC	TAGAAGAACT	TCCTACCTCT	258
TCCGTGTTAG	AGTGTGATGG	GGGATTGTTA	AGAGATGACT	TAGGAATATA	GTGATAGTGA	2640

TCCCCATGTC TTACTATATA AGCATCACCT GTATCTCTGA CAATATCATT AGGGTTAAAG

ACATATGTGG CTGCTAATTC ACCTGCCGAC AAGTCACTCT CAGGAATGAA ATGATAGTGA

CCACCATGTG GTACTATAGT AGATTGAAAT AGAATATGAG CAAATTGATA AGGGGATTTT

AAAGTAATTT CTAACAATGA TTTAGAAACT ATGATGTGCT ATTCTAAATT CAACTCACTA

TATATAACCA TCATCGGTAG TATAACGTCC CTGTAATTTT GCTACAGATA CTTCTGCACT

2700

2760

2820

2880

AGCTCCTTTA	TCGTCTTTAC	CATGTTCTTG	TTTTTGGCGA	TTGATTTCAT	CTTTTGTTCG	300
TACATTTTCT	GCATGAGCTT	GATCTTTAAG	GTAAACATAA	TACTTTCCAT	CTACCTTAAT	306
AATATATCCT	CCCTTAACCT	AACTGACGAT	ATCTTGATCT	TTCGGCTGAT	AGTTGGGGGC	312
ТТТСАТТААТ	AGCTCTTCAC	TAAAGAGCGC	A TCAAAAGGA	ACTTTACCAT	TATAGTAGTG	318
ATAATGATCG	CCATGAGAAG	TTACATAACC	TTGATCTGTA	ATCTTAATAA	CAATTTGTTT	324
TGCTTGAATT	CCTTCTTTTT	GACTAACCTA	GTCTGGAGTC	AAATTTTCAG	TCTTCTTAGT	330
GTCTTTATTA	CTGTTTACAT	ATGAAACACG	ATTTTTATCT	GTATTGGCCT	GTTAGCTATG	336
TTGGTTCAGA	GCATAAACAC	ACAGACTTAA	GGAAAGGATA	ACAACAGATC	CAGCTGCTAT	342
ATATTTCTTT	TTAAATTTCA	TAATTACCTC	ATTTCTATAA	TATTTATAT	GATGTCTTCA	348
ттаттааатс	ATTAAATAAA	TTAATTAACC	AATTAATTAA	CTAGTAAATA	TTCCACCTCT	354
TTTTAAGTTG	TATGTCAAGA	AATTTTATAT	АТТААТААТА	AAATGAAATT	CTCCCAAAGT	360
CAGAGTTTTA	TTTCTAACTT	TTGAGAGAAC	TTCATTTTTG	ATTCAGACTT	TTTCTACTGC	366
TATTCCTTAC	GCTATGAGAT	CAGATAAATT	CTTTTTTATC	ACTTCTCCAC	TTGGCAATCT	372
ТААТТСААТС	GTTCCATCCA	TATTGAATAT	AACACTATCT	AAGCCTAATC	CGTAACTAGC	378
TGTAAATTTT	TCTAATTTTT	CTTGTACAGG	ATCTACTGCT	GGAGCTTCCT	CTAATGCTGG	384
АТСТААСАТА	GGGTCACTCC	CCACATTCCC	TTCTGGATTC	AACATTCCAT	TATCCGTTGA	390
GTTTTCTGGT	TTTACAGGTT	TTTCGTTTGG	TGCCTCTGGT	AAAGAATCTG	CTGGTTTATT	396
TTCTGTTGGT	TGGTTCTCAA	CTGTTCCAGT	AGATACTTTT	CCATTTTCAG	ATGGTTTATT	402
TTCACCATTT	CCTTGAGGTG	CTTCTCCTGT	AAAATCTGCC	ATATTCTTTT	TAATGACTTC	408
TCCCGATGGT	AAATATAATT	CAATTGTTCC	GTCCATATTA	AACAAGACAT	TTTCTAGCTT	414
CATCCCATAA	CTTTCAGCAA	ATTTTGCTAC	TTTTTCTTGT	ACAGGATCCA	CTGTAGGAAC	420
TTCTTCTAAC	GTTGAATTAC	TAGTACTATT	CCCAGTTTCA	GAAAGTTTTT	CTTTTTCTAC	426
СТТСТСАСТА	GTCTTTGGTT	CTTCTACCTT	TTCATCAAGT	TTTAAGTTTT	CTTGTGCTTT	4320
ATTCCTTTTA	AATTGTGGTA	GAATACTTGG	TTTATCAGTT	TGATTTTCTT	TTTCCAAGAT	438
AGGTACTTCC	ACAATATAAG	TCGATTGATT	GTCCAAATAA	GCATTTGCCA	TGAAGGTTAC	444
AGGAATTTTA	TTTCCGGCCG	TTCTGGTTGT	TCCTTGGTTT	AATTTCGGAA	TCGGTAATTT	4500
GATTTCACCA	ACTTTATAGT	ТАТТТТСТАА	ATAAGCATTT	CCATGAAATT	CATCAAACAC	4560
TCTGACTAAA	GCATCAGTTC	CTTTAGGCAC	TGCAAATTGA	GGGTTCACTC	TTAAATAAGT	4620
ATCCCCTGCA	TGGAAAGGAT	AGAAAATCGT	TTGACTGGCC	ATTTTGTAAG	CTAAAGAGGT	4680

			1160			
TGGAACTGTA	AATGTACCAT	CATAACTTAC	TTCTGGATAA	TCTTTTGAAG	CGATAGTATA	4740
CTTAAATGTT	TGTCCTGGTA	AATAAGGTTG	ATCTAATTCA	AAGTTTGCAA	TATTCCCTAC	4800
TCCTTCTCCA	AATACTTTAC	CAGATACTTT	CTCCAATACT	TTTCCATCTG	GTGTTATTAA	4860
TTTTACTAGC	ATATTGATAC	CTAATTTTTT	CTCCAATTCA	GGCGGAAAAC	TAAAAGAAAC	4920
GCGTTTTTGA	CCATTGGCTA	GAGTAAAGTT	TTGATTATTA	AACGTACTAT	TTTTTAACAA	4980
ATTAACAACA	TTCGTTAATT	CTTCTCCAGT	ATAAACTTTA	TTCCCTTCTT	TTTTAGCAAC	5040
TCCTTCTTCG	GGTTTAAACA	GTTCATAGTT	ACTGTGAGAA	TGACCAATTC	CAACCGGTTT	5100
ATGTTCATCA	ATCGGATCTG	CATGATGGTG	ATCTCCATGC	GGATAAATAA	TCGCATTTTT	5160
ТТСТТТАТТС	ACGACAATAC	TTTCACGTTT	GACACCATAT	TGTTTCATAA	TGCCAGCAAT	5220
TTTTTCTTCG	ATTTTTTAT	СТАААТСТТТ	CATTTCTTTG	GCATTACTTG	GATAATCCTG	5280
TTCATGAGAT	GACAAAGAAT	CTAATCCATT	ATGACTAGTT	TTAACTTCCT	СТАААТСТТТ	5340
TTGCGCAsCT	TAATTTGCTC	TTCTGTCAAG	TCCTTCTTGA	AGAAATAATG	ATTGTGGTCT	5400
CCGTGACTCA	TGACAAAACC	TGATTCATCT	TCAGCGATAA	TACGATTAGC	ATCAAATCCG	5460
TATCCATCTT	CTTCATGTTT	CTCATGTGAA	GTTCCTGGAT	TGATTGGAAG	AGATGGAGAA	5520
GGTGTTGCTA	GACTATTGTT	TGGAAGAGTC	GGTTGCCCAA	TTTGATTTGA	TTTTGGAATG	5580
TAATGGAAAT	GATCACCATG	TCTTACAATA	TAAGCTGTAG	CCGTTTCTTC	AACGATATCT	5640
TTTGGATTAA	AAATATAACC	ATCAGATGCT	GAAGAGAGCT	CCTTACTTGT	CGTTAAAGAA	5700
GAAGGATTGC	TTGAAAGACT	GCCTAGACTA	GACACTACTT	CATTAGGTTT	TGCATTTGTA	5760
GAAACTGTAG	AACCAGTTCC	ACTGATAGGC	ACCATTCTGG	CAATCTTTTC	TTCTAAGGCA	5820
GAAAGCTTGC	TGTAAGGAAT	AAAGTGGTAA	TGGTCGCCAT	GCGGAATCGC	AACTCCATTT	5880
GGTGTACGAC	TGATAATCTT	AGCAGGGTCA	AAGACCAGGC	CATCTGATTC	ACTGTAACGT	5940
TGGGCGCTAG	GTGAATCATA	GAGTTCCTTC	AAAAGACTCT	GGAGATTTTC	AGATTTATTT	6000
GCTGGCTTGC	TAGTTGATCC	TTTTGCTACA	GATTGCGTGT	TATTGTCACT	AGCTGTTGAA	6060
GAATAGCTTA	ACTGACTCGG	TTGCATATTT	TTTCCAGCCA	GATGTGCTTT	AGCTGCTGCT	6120
AATTCACTAG	CAGATAAATC	GCTTTTGGGA	ATGTAGTGAT	AGTGACCTCC	ATGAGGAACG	6180
ATATAAGCAT	TACCCGTATC	TTCGATAATA	TCAGCTGGAT	TAAAGACATA	ACCATCATTT	6240
GTCGTATATC	GTCCCTGAGA	CCTTGCTACA	GCAACATTAG	AGTTAACCTT	CTCATTATCT	6300
PTGACATGTT	CTTGTTTTTG	ACGATTGATT	TCATCTTTAG	TTCGAACATT	ATCAGCATGA	6360
GCTGCATCTT	TCAGGTAGAC	ТТТТАТААТА	CCATCGACCT	TGATGATATA	ACCACCCTTG	6420
ACTTCATTGA	CAATATCAGC	GTCTTTAAGT	TGATAGTTTG	GATCCTTCAT	CAAGAGTTCT	6480

1161

TCACTAAAGA	GGGCATCATA	AGGAACTTTC	CCATTATAGT	AATGATAGTG	GTCACCGTGT	6540
GACGTTACAT	AGCCCTGATC	TGTAATTTTG	ATTACAATTT	GCTCAGCCTG	AATTCCTTCT	6600
TTCTGGCTAA	CCTGGTCTGG	TGTCAAGTTT	TCACTTTTCT	GACTTGACTG	GCTGCCATCC	6660
ACATAAGAGA	CACGATTATT	GTCCTTATTT	TCCTGCGAAC	GATGCTGGTT	TAGTGCATAG	6720
GCACATAGAC	TCAAGGATAC	GATAACAGCT	GATCCAGCTG	СТАТАТАТТТ	ТТТАСТАААТ	6780
TTCATAAATC	CCTCATTTCA	ATAAATGATG	AAGTTTTTTC	TCAACTTCTT	TTACTTTATT	6840
AAATAGTTTT	CTAAACCCGG	GGGTACC				6867

(2) INFORMATION FOR SEQ ID NO: 193:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 999 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

CGTTCTAAAA	ATGCAGTACG	TTTGATTGAG	AAATCAGTTA	AAGGTATGCT	TCCACACAAT	60
ACACTTGGAC	GCGCTCAAGG	TATGAAGTTG	AAAGTATTTG	TTGGAGCTGA	GCACACTCAC	120
GCTGCACAAC	AACCAGAAGT	TCTTGACATT	TCAGGĄCTTA	TCTAAGGAAA	GGAACAATAA	180
AGTATGTCAC	AAGCACAATA	TGCAGGTACT	GGACGTCGTA	AAAACGCTGT	TGCACGCGTT	240
CGCCTTGTTC	CAGGAACTGG	TAAAATCACT	GTTAACAAAA	AAGATGTTGA	AGAGTACATC	300
CCACACGCTG	ACCTTCGTCT	TGTCATCAAC	CAACCATTCG	CAGTTACTTC	AACTGTAGGT	360
TCATACGACG	TTTTCGTTAA	CGTTATAGGT	GGTGGATACG	CTGGTCAATC	AGGAGCTATC	420
CGTCACGGTA	TCGCTCGTGC	CCTTCTTCAA	GTAGACCCAG	ACTTCCGCGA	TTCATTGAAA	480
CGCGCAGGAC	TTCTTACACG	TGACTCACGT	AAAGTTGAAC	GTAAGAAACC	AGGTCTTAAG	540
AAAGCTCGTA	AAGCATCACA	ATTTAGTAAA	CGTTAATTCG	AAAGAATTAC	ТАТАСТТАТА	600
CAGAGCACCT	TTCGGGGTGT	TCTTTTTTA	TACTTTCTTA	CTAAATTGGT	GCAATTGACA	660
CAGTTGTTGC	GACTTTAGTC	GCTTACAAAT	GTGGCTGCAA	CCTGACATGG	TCAGTTGCCT	720
CAAAACGTTA	ATCAATACGA	ттататсаас	GTTTCAAAGC	ACTCAAGGGT	TTACCCTATG	780
GGTGCTTTTT	TCTATACTTT	CTAAAAAAGT	TTACCCTAAA	ATTTGCCCTA	AAATTACCCT	840
ACTTATTTT	AAGATGTTGG	TAGGCAACTT	GTCCAGCAGA	TAATGGAACT	ATGTTTGAAG	900
TATTAACATA	AGTCTTAGTT	GTAACGGTAT	CGCTATGAGT	TAATGCTTCA	GAAATGGCTT	960

727

GCTGCTGGAC	TAGCTGCTTC	ACCATTGTTT	TTAGGATAGT	CAGAAATATA	GCTTAATTTC	9780
CCAGTCCATT	TTTTATCAGG	ATACACTTTA	GAAGTAAAGC	TTACTTCTTG	ACCTACAGAA	9840
AGGTTGGCTA	GATTGTACTC	AGACAATTCT	CCCTTGACTT	GTAAATTTTC	ATTGCTGACA	9900
ATATGAACCA	TAACTTGACT	CGCCCCTGTT	GGAGATTTAG	AAACATTGCT	ATTGACTTCG	9960
ACCACAGTTC	CCTCTAGGGT	ACTGAGAACA	GTTGTTGCAT	CCAATTGACT	TTGAGCCTTG	10020
CTTAATTGCG	CCGCAGCATC	TGCACGCGCA	TCACGGGCAT	CACCCAATTG	AGCGTCAATA	10080
GAAGCAACAG	AATTTCCAGC	CACTGGAGTT	GGGCTTTGCA	CCGTTGCATC	TTCTCCTCCT	10140
ACTGGCGCTG	GTAACTGTGG	AGCCGGAGCT	GAAGCGGCTT	CATTTCGTGC	TTGATTGAGT	10200
TCATTGATAT	GACGATCTGC	CCTAGCTACT	GCTCGACTAG	CTGAATCATA	GGCCGCCTGC	10260
GCTTCTGAAC	TACTGTACTT	GACTAAAGCC	TGCCCTTCGC	TGACCTTATC	GCCCACAGAA	10320
ACAAGGATTT	САТСТАААТС	ACCCTTACTA	GCATCAAAAT	AAACATATTG	TTCATTTTTT	10380
GCTGTTACTG	TCCCTGACAA	TAAAACAGAG	GAGGCCACGC	TTCCTTCCTT	GGCAACAACA	10440
AGATGAGTAG	GCTCATCTTT	TAGAGCAGTC	TGAGAAGGTT	GTCTAAAGAG	TAAAATCCCC	10500
CCAGCACCCA	ATACAACTAC	ACTCGCAGCA	CCGATTGCTG	CATACAGTTG	CCACTTTTTA	10560
GCTTTACCAT	TCTTTTTCTT	Cataatgaaa	CTCCTTTTCT	TTTTTACAAT	ACTTTGCTAT	10620
TATACCAAAT	TTCCCTCCAG	CAAACAATAC	AGTTCAGGAT	TAAACAATCG	TTCGGAATTT	10680
TGCTTTTCGG						10690

(2) INFORMATION FOR SEQ ID NO: 94:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8195 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:

G	AGAAAGCGC	CCACGTTTCC	CCGAAGGGAG	AAAGGCGGAC	AGGTATCCGG	TAAGCGGCCA	60
G	GGTCGGAAC	AGGAGAGCGC	AACGAGGGAG	CTTCCCAGGG	GGAAACGCCT	GGTATCTTTA	120
Τ	AGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA	TTTTTGTGAT	GCTCGTCAGG	180
G	GGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCGGCCTTT	TTACGGTTCC	TGGCCTTTTG	240
С	TGGCCTTTT	GCTCACATGT	TCTTTCCTGC	GTTATCCCCT	GATTCTGTGG	ATAACCGTAT	300
т	ACCGCCTTT	GAGTGAGCTG	ATACCGCTCG	CCGCAGCCGA	ACGACCGAGC	GCAGCGAGTC	360

			728			
AGTGAGCGAG	GAAGCGGAAG	AGCGCCCAAT		CCTCTCCCCG	CGCGTTGGCC	42
GATTCATTAA	TGCAGCTGGC	ACGACAGGTT	TCCCGACTGG	AAAGCGGGCA	GTGAGCGCAA	48
CGCAATTAAT	GTGAGTTAGC	TCACTCATTA	GGCACCCCAG	GCTTTACACT	TTATGCTTCC	54
GGCTCGTATG	TTGTGTGGAA	TTGTGAGCGG	ATAACAATTT	CACACAGGAA	ACAGCTATGA	60
Catgattacg	AATTCGAGCT	CGGTACCCGG	AAAATCCAGA	AAATGCTTGA	AAAAAATCCT	66
agaag at ggt	АТААТАСТАА	ATTGTAAGGG	TTATCACATA	ТААСТСАААА	AAAGAAAGAA	720
CAAAAGGAGA	GTCAAACTAT	GGCTTCTAAA	GATTTCCACG	TAGTGGCAGA	AACAGGTATT	780
CACGCACGTC	CAGCAACATT	GTTGGTACAA	ACTGCTAGCA	AATTTGCTTC	AGATATCACT	840
CTTGAGTACA	AAGGTAAATC	AGTTAACCTT	AAATCAATTA	TGGGTGTTAT	GAGTCTTGGT	900
GTTGGCCAAG	GTGCTGACGT	AACTATCTCA	GCTGAAGGTG	CAGATGCAGA	TGACGCTATC	960
GCTGCAATCT	CAGAAACAAT	GGAAAAAGAA	GGATTGGCAT	AAGGGAAATG	ACAGAAATGC	1020
TTAAAGGAAT	CGCAGCATCT	GACGGTGTTG	CAGTTGCAAA	AGCATATCTA	CTCGTTCAGC	1080
CGGATTTGTC	ATTTGAGACT	ATTACAGTCG	AAGATACAAA	CGCAGAAGAA	GCTCGCCTTG	1140
ATGCCGCTCT	ACAGGCATCA	CAAGACGAGC	TTTCTGTTAT	TCGCGAGAAA	GCAGTAGGTA	1200
CGCTCGGTGA	AGAAGCAGCT	CAAGTTTTTG	ATGCTCACTT	AATGGTTCTT	GCTGACCCAG	1260
AAATGATCAG	CCAAATCAAG	GAAACTATCC	GTGCGAAGAA	AGTGAATGCA	GAAGCAGGTC	1320
TGAAAGAAGT	TACAGATATG	TTTATCACTA	TCTTTGAAGG	CATGGAAGAC	AACCCATACA	1380
TGCAAGAACG	CGCAGcGGAT	WTCCGCGACG	TGACAAAACG	TGTATTGGCA	AACCTTCTTG	1440
СТААААА АТТ	GCCAAACCCA	GCTTCTATCA	ATGAAGAAGT	GATTGTGATT	GCGCATGACT	1500
TGACTCCTTC	AGATACAGCT	CAATTGGACA	AAAACTTTGT	AAAAGCTTTT	GTAACCAACA	1560
TTGGTGGACG	TACAAGCCAC	TCAGCTATCA	TGGCACGTAC	ACTTGAAATT	GCTGCTGTAT	1620
TAGGTACAAA	TAACATCACT	GAAATCGTTA	AAGACGGTGA	CATCCTTGCT	GTTAACGGGA	1680
TCACTGGAGA	AGTGATTATC	AACCCAACAG	ATGAACAAGC	GGCAGAATTT	AAAGCAGCTG	1740
GTGAAGCCTA	TGCGAAACAA	AAAGCTGAAT	GGGCACTTTT	GAAAGATGCT	CAAACAGTGA	1800
CTGCTGACGG	TAAACACTTC	GAGTTGGCTG	CTAATATCGG	TACTCCAAAA	GACGTTGAAG	1860
GTGTTAACAA	CAACGGTGCA	GAAGCTGTTG	GACTTTACCG	TACAGAGTTC	TTGTACATGG	1920
ATTCTCAAGA	CTTCCCAACT	GAAGATGAGC	AGTATGAAGC	ATACAAGGCT	GTTCTTGAAG	1980
GAATGAACGG	TAAACCTGTT	GTCGTTCGTA	CAATGGATAT	CGGTGGAGAT	AAGGAACTTC	2040
CTTACTTCGA	TATGCCTCAC	GAAATGAACC	CATTCCTTGG	ATTCCGTGCT	CTTCGTATCT	2100
CTATCTCTGA	GACTGGAGAT	GCTATGTTCC	GCACACAAAT	CCGTGCTCTT	CTTCGTGCGT	2160

CTGTTCACGG	TCAATTGCGT	ATCATGTTCC	CAATGGTTGC	GCTCTTGAAA	GAATTCCGTG	222
CAGCGAAAGC	AGTCTTTGAT	GAAGAAAAAG	CAAACCTTCT	TGCTGAAGGT	GTTGCAGTTG	228
CGGATAACAT	CCAAGTTGGT	ATCATGATCG	AGATTCCTGC	AGCGGCTATG	CTTGCAGACC	234
AATTTGCTAA	AGAAGTTGAC	TTCTTCTCAA	TTGGTACAAA	CGACTTGATC	CAATATACAA	240
TGGCAGCAGA	CCGTATGAAC	GAACAAGTTT	CATACCTTTA	CCAACCATAC	AACCCATCAA	246
TCCTACGCTT	GATTAACAAT	GTGATCAAAG	CAGCTCACGC	TGAAGGTAAA	TGGGCTGGTA	252
TGTGTGGTGA	GATGGCTGGT	GACCAACAAG	CTGTTCCACT	TCTTGTCGGA	ATGGGCTTGG	258
ATGAGTTCTC	TATGTCAGCA	ACATCTGTAC	TTCGTACACG	CAGCTTGATG	AAGAAACTCG	264
ACACAGCTAA	GATGGAAGAG	TACGCAAACC	GTGCCCTTAC	AGAATGCTCA	ACAATGGAAG	270
AAGTTCTTGA	ACTTCAAAAA	GAATACGTTA	ATTTTGATTA	ATCGAAAAGT	CCCTGCAACT	276
CAGTTACAGG	GATTTTTTG	ATATTTTAAA	AAGAATTTTC	AAGAAAATCT	TTCTTATAGA	282
AAGTCCAACC	TTGAAAAAGT	AGTGGTCAGA	ACAAAAAATA	CTTAAATGGT	TCATAAAATT	288
CTTGACAAGT	TGGATATTTA	GGAGTAAACT	ATTAACCAGT	TAAGTAATAG	AGAGGAGTTT	294
CTGCAATTTA	GAAATGAATT	GCAACTAGAA	АТАТСАААТА	GAAAGAGAGT	TTCGATGAAA	300
ATTAATAAGA	AATACCTTGT	TGGTTCTGCG	GCACTTTGAT	TTTAAGTGTT	TGTTCTTACG	306
AGTTGGGACT	GTATCAAGCT	AGAACGGTTA	AGGAAAATAA	TCGTGTTTCC	TATATAGATG	312
GAAAACAAGC	GACGCAAAAA	ACGGAGAATT	TGACTCCTGA	TGAGGTTAGC	AAGCGTGAAG	318
GAATCAATGC	TGAGCAAATC	GTCATCAAGA	TAACAGACCA	AGGCTATGTC	ACTTCACATG	324
GCGACCACTA	TCATTATTAC	AATGGTAAGG	TTCCTTATGA	CGCTATCATC	AGTGAAGAAT	330
TACTCATGAA	AGATCCAAAC	TATAAGCTAA	AAGATGAGGA	TATTGTTAAT	GAGGTCAAGG	336
GTGGATATGT	TATCAAGGTA	GATGGAAAAT	ACTATGTTTA	CCTTAAGGAT	GCTGCCCACG	342
CGGATAACGT	CCGTACAAAA	GAGGAAATCA	ATCGACAAAA	ACAAGAGCAT	AGTCAACATC	348
GTGAAGGTGG	AACTCCAAGA	AACGATGGTG	CTGTTGCCTT	GGCACGTTCG	CAAGGACGCT	354
ATACTACAGA	TGATGGTTAT	ATCTTTAATG	CTTCTGATAT	CATAGAGGAT	ACTGGTGATG	360
CTTATATCGT	TCCTCATGGA	GATCATTACC	ATTACATTCC	TAAGAATGAG	TTATCAGCTA	366
GCGAGTTGGC	TGCTGCAGAA	GCCTTCCTAT	CTGGTCGAGG	AAATCTGTCA	AATTCAAGAA	372
CCTATCGCCG	ACAAAATAGC	GATAACACTT	CAAGAACAAA	CTGGGTACCT	TCTGTAAGCA	378
ATCCAGGAAC	TACAAATACT	AACACAAGCA	ACAACAGCAA	CACTAACAGT	CAAGCAAGTC	384
AAAGTAATGA	САФФСАФАСФ	ርጥሮጥጥርልልል	ACCTCTACAA	እ ርጥር ርርጥጥጥር	ACTCA ACCAC	300

CTGTTCACGG	TCAATTGCGT	ATCATGTTCC	CAATGGTTGC	GCTCTTGAAA	GAATTCCGTG	222
CAGCGAAAGC	AGTCTTTGAT	GAAGAAAAAG	CAAACCTTCT	TGCTGAAGGT	GTTGCAGTTG	228
CGGATAACAT	CCAAGTTGGT	ATCATGATCG	AGATTCCTGC	AGCGGCTATG	CTTGCAGACC	234
AATTTGCTAA	AGAAGTTGAC	TTCTTCTCAA	TTGGTACAAA	CGACTTGATC	CAATATACAA	240
TGGCAGCAGA	CCGTATGAAC	GAACAAGTTT	CATACCTTTA	CCAACCATAC	AACCCATCAA	246
TCCTACGCTT	GATTAACAAT	GTGATCAAAG	CAGCTCACGC	TGAAGGTAAA	TGGGCTGGTA	252
TGTGTGGTGA	GATGGCTGGT	GACCAACAAG	CTGTTCCACT	TCTTGTCGGA	ATGGGCTTGG	258
ATGAGTTCTC	TATGTCAGCA	ACATCTGTAC	TTCGTACACG	CAGCTTGATG	AAGAAACTCG	264
ACACAGCTAA	GATGGAAGAG	TACGCAAACC	GTGCCCTTAC	AGAATGCTCA	ACAATGGAAG	270
AAGTTCTTGA	ACTTCAAAAA	GAATACGTTA	ATTTTGATTA	ATCGAAAAGT	CCCTGCAACT	276
CAGTTACAGG	GATTTTTTTG	ATATTTTAAA	AAGAATTTTC	AAGAAAATCT	TTCTTATAGA	282
AAGTCCAACC	TTGAAAAAGT	AGTGGTCAGA	ACAAAAAATA	CTTAAATGGT	TCATAAAATT	288
CTTGACAAGT	TGGATATTTA	GGAGTAAACT	ATTAACCAGT	TAAGTAATAG	AGAGGAGTTT	294
CTGCAATTTA	GAAATGAATT	GCAACTAGAA	ATATCAAATA	GAAAGAGAGT	TTCGATGAAA	3000
ATT AATAA GA	AATACCTTGT	TGGTTCTGCG	GCACTTTGAT	TTTAAGTGTT	TGTTCTTACG	306
AGTTGGGACT	GTATCAAGCT	AGAACGGTTA	AGGAAAATAA	TCGTGTTTCC	TATATAGATG	3120
GAAAACAAGC	GACGCAAAAA	ACGGAGAATT	TGACTCCTGA	TGAGGTTAGC	AAGCGTGAAG	3180
GAATCAATGC	TGAGCAAATC	GTCATCAAGA	TAACAGACCA	AGGCTATGTC	ACTTCACATG	324
GCGACCACTA	TCATTATTAC	AATGGTAAGG	TTCCTTATGA	CGCTATCATC	AGTGAAGAAT	3300
FACTCATGAA	AGATCCAAAC	TATAAGCTAA	AAGATGAGGA	TATTGTTAAT	GAGGTCAAGG	3360
GTGGATATGT	TATCAAGGTA	GATGGAAAAT	ACTATGTTTA	CCTTAAGGAT	GCTGCCCACG	3420
CGGATAACGT	CCGTACAAAA	GAGGAAATCA	ATCGACAAAA	ACAAGAGCAT	AGTCAACATC	3480
GTGAAGGTGG	AACTCCAAGA	AACGATGGTG	CTGTTGCCTT	GGCACGTTCG	CAAGGACGCT	3540
ATACTACAGA	TGATGGTTAT	ATCTTTAATG	CTTCTGATAT	CATAGAGGAT	ACTGGTGATG	3600
CTTATATCGT	TCCTCATGGA	GATCATTACC	ATTACATTCC	TAAGAATGAG	TTATCAGCTA	3660
GCGAGTTGGC	TGCTGCAGAA	GCCTTCCTAT	CTGGTCGAGG	AAATCTGTCA	AATTCAAGAA	3720
CCTATCGCCG	ACAAAATAGC	GATAACACTT	CAAGAACAAA	CTGGGTACCT	TCTGTAAGCA	3780
ATCCAGGAAC	TACAAATACT	AACACAAGCA	ACAACAGCAA	CACTAACAGT	CAAGCAAGTC	3840
AAAGTAATGA	CATTGATAGT	CTCTTGAAAC	AGCTCTACAA	ACTGCCTTTG	AGTCAACGAC	3900

			730			
ATGTAGAATC	TGATGGCCTT	GTCTTTGATC	CAGCACAAAT	CACAAGTCGA	ACAGCTAGAG	3960
GTGTTGCAGT	GCCACACGGA	GATCATTACC	ACTTCATCCC	TTACTCTCAA	ATGTCTGAAT	4020
TGGAAGAACG	AATCGCTCGT	ATTATTCCCC	TTCGTTATCG	TTCAAACCAT	TGGGTACCAG	4080
ATTCAAGGCC	AGAACAACCA	AGTCCACAAC	CGACTCCGGA	ACCTAGTCCA	GGCCCGCAAC	4140
CTGCACCAAA	TCTTAAAATA	GACTCAAATT	CTTCTTTGGT	TAGTCAGCTG	GTACGAAAAG	4200
TTGGGGAAGG	ATATGTATTC	GAAGAAAAGG	GCATCTCTCG	TTATGTCTTT	GCGAAAGATT	4260
TACCATCTGA	AACTGTTAAA	AATCTTGAAA	GCAAGTTATC	AAAACAAGAG	AGTGTTTCAC	4320
ACACTTTAAC	TGCTAAAAA	GAAAATGTTG	CTCCTCGTGA	CCAAGAATTT	TATGATAAAG	4380
CATATAATCT	GTTAACTGAG	GCTCATAAAG	CCTTGTTTGA	AAATAAGGGT	CGTAATTCTG	4440
ATTTCCAAGC	CTTAGACAAA	TTATTAGAAC	GCTTGAATGA	TGAATCGACT	AATAAAGAAA	4500
AATTGGTAGA	TGATTTATTG	GCATTCCTAG	CACCAATTAC	CCATCCAGAG	CGACTTGGCA	4560
AACCAAATTC	TCAAATTGAG	TATACTGAAG	ACGAAGTTCG	TATTGCTCAA	TTAGCTGATA	4620
AGTATACAAC	GTCAGATGGT	TACATTTTTG	ATGAACATGA	TATAATCAGT	GATGAAGGAG	4680
ATGCATATGT	AACGCCTCAT	ATGGGCCATA	GTCACTGGAT	TGGAAAAGAT	AGCCTTTCTG	4740
ATAAGGAAAA	AGTTGCAGCT	CAAGCCTATA	CTAAAGAAAA	AGGTATCCTA	CCTCCATCTC	4800
CAGACGCAGA	TGTTAAAGCA	AATCCAACTG	GAGATAGTGC	AGCAGCTATT	TACAATCGTG	4860
TGAAAGGGGA	AAAACGAATT	CCACTCGTTC	GACTTCCATA	TATGGTTGAG	CATACAGTTG	4920
AGGTTAAAAA	CGGTAATTTG	ATTATTCCTC	ATAAGGATCA	TTACCATAAT	ATTAAATTTG	4980
CTTGGTTTGA	TGATCACACA	TACAAAGCTC	CAAATGGCTA	TACCTTGGAA	GATTTGTTTG	5040
CGACGATTAA	GTACTACGTA	GAACACCCTG	ACGAACGTCC	ACATTCTAAT	GATGGATGGG	5100
GCAATGCCAG	TGAGCATGTG	TTAGGCAAGA	AAGACCACAG	TGAAGATCCA	AATAAGAACT	5160
TCAAAGCGGA	TGAAGAGCCA	GTAGAGGAAA	CACCTGCTGA	GCCAGAAGTC	CCTCAAGTAG	5220
AGACTGAAAA	AGTAGAAGCC	CAACTCAAAG	AAGCAGAAGT	TTTGCTTGCG	AAAGTAACGG	5280
ATTCTAGTCT	GAAAGCCAAT	GCAACAGAAA	CTCTAGCTGG	TTTACGAAAT	AATTTGACTC	5340
TTCAAATTAT	GGATAACAAT	AGTATCATGG	CAGAAGCAGA	AAAATTACTT	GCGTTGTTAA	5400
AAGGAAGTAA	TCCTTCATCT	GTAAGTAAGG	AAAAAATAAA	CTAATGAAAA	ATGAAAGTCT	5460
CGATAAAGAG	GCTTTCATTT	TTATTATGTA	TATATGTAAA	ATTCTTGACA	AGCAATATTA	5520
AAAAGAGTAA	ACTATTAACT	AGTTAATTAA	CCGGTTTATT	ACTTTATAGT	GAATCAAATA	5580
TACTTAAGAA	AAGAGGAAAG	AATGAAAATT	ААТАААААТ	ATCTAGCAGG	TTCAGTGGCA	5640
GTCCTTGCCC	TAAGTGTTTG	TTCCTATGAA	CTTGGTCGTC	ACCAAGCTGG	TCAGGTTAAG	5700

AAAGAGTCTA	ATCGAGTTKC	TTATATAGAT	GGTGATCAGG	CTGGTCAAAA	GGCAGAAAAC	576
TTGACACCAG	ATGAAGTCAG	TAAGAGGGAG	GGGATCAACG	CCGAACAAAT	CGTCATCAAG	582
ATTACGGATC	AAGGTTATGT	GACCTCTCAT	GGAGACCATT	АТСАТТАСТА	TAATGGCAAG	588
GTCCCTTATG	ATGCCATCAT	CAGTGAAGAG	CTCCTCATGA	AAGATCCGAA	TTATCAGTTG	5940
AAGGATTCAG	ACATTGTCAA	TGAAATCAAG	GGTGGTTATG	TTATCAAGGT	AGATGGAAAA	6000
TACTATGTTT	ACCTTAAGGA	TGCAGCTCAT	GCGGATAATA	TTCGGACAAA	AGAAGAGATT	6060
AAACGTCAGA	AGCAGGAACA	CAGTCATAAT	CACGGGGGTG	GTTCTAACGA	TCAAGCAGTA	6120
GTTGCAGCCA	GAGCCCAAGG	ACGCTATACA	ACGGATGATG	GTTATATCTT	CAATGCATCT	6180
GATATCATTG	AGGACACGGG	TGATGCTTAT	ATCGTTCCTC	ACGGCGACCA	TTACCATTAC	6240
ATTCCTAAGA	ATGAGTTATC	AGCTAGCGAG	TTAGCTGCTG	CAGAAGCCTA	TTGGAATGGG	6300
AAGCAGGGAT	CTCGTCCTTC	TTCAAGTTCT	AGTTATAATG	CAAATCCAGC	TCAACCAAGA	6360
TTGTCAGAGA	ACCACAATCT	GACTGTCACT	CCAACTTATC	ATCAAAATCA	AGGGGAAAAC	6420
ATTTCAAGCC	TTTTACGTGA	ATTGTATGCT	AAACCCTTAT	CAGAACGCCA	TGTGGAATCT	6480
GATGGCCTTA	TTTTCGACCC	AGCGCAAATC	ACAAGTCGAA	CCGCCAGAGG	TGTAGCTGTC	6540
CCTCATGGTA	ACCATTACCA	CTTTATCCCT	TATGAACAAA	TGTCTGAATT	GGAAAACGA	6600
ATTGCTCGTA	TTATTCCCCT	TCGTTATCGT	TCAAACCATT	GGGTACCAGA	TTCAAGACCA	666(
GAACAACCAA	GTCCACAATC	GACTCCGGAA	CCTAGTCCAA	GTCCGCAACC	TGCACCAAAT	6720
CCTCAACCAG	CTCCAAGCAA	TCCAATTGAT	GAGAAATTGG	TCAAAGAAGC	TGTTCGAAAA	6780
GTAGGCGATG	GTTATGTCTT	TGAGGAGAAT	GGAGTTTCTC	GTTATATCCC	AGCCAAGGAT	6840
CTTTCAGCAG	AAACAGCAGC	AGGCATTGAT	AGCAAACTGG	CCAAGCAGGA	AAGTTTATCT	6900
CATAAGCTAG	GAGCTAAGAA	AACTGACCTC	CCATCTAGTG	ATCGAGAATT	TTACAATAAG	6960
GCTTATGACT	TACTAGCAAG	AATTCACCAA	GATTTACTTG	ATAATAAAGG	TCGACAAGTT	7020
GATTTTGAGG	CTTTGGATAA	CCTGTTGGAA	CGACTCAAGG	ATGTCyCAAG	TGATAAAGTC	7080
AAGTTAGTGG	ATGATATTCT	TGCCTTCTTA	GCTCCGATTC	GTCATCCAGA	ACGTTTAGGA	7140
AAACCAAATG	CGCAAATTAC	CTACACTGAT	GATGAGATTC	AAGTAGCCAA	GTTGGCAGGC	7200
AAGTACACAA	CAGAAGACGG	TTATATCTTT	GATCCTCGTG	ATATAACCAG	TGATGAGGG	7260
GATGCCTATG	TAACTCCACA	TATGACCCAT	AGCCACTGGA	TTAAAAAAGA	TAGTTTGTCT	7320
GAAGCTGAGA	GAGCGGCAGC	CCAGGCTTAT	GCTAAAGAGA	AAGGTTTGAC	CCCTCCTTCG	7380
ACAGACCATC	AGGATTCAGG	AAATACTGAG	GCAAAAGGAG	CAGAAGCTAT	CTACAACCGC	7440

PCT/US97/19588 WO 98/18931

			732			
GTGAAAGCAG	CTAAGAAGGT	GCCACTTGAT		ACAATCTTCA	ATATACTGTA	7500
GAAGTCAAAA	ACGGTAGTTT	AATCATACCT	CATTATGACC	ATTACCATAA	CATCAAATTT	7560
GAGTGGTTTG	ACGAAGGCCT	TTATGAGGCA	CCTAAGGGGT	ATACTCTTGA	GGATCTTTTG	7620
GCGACTGTCA	AGTACTATGT	CGAACATCCA	AACGAACGTC	CGCATTCAGA	TAATGGTTTT	7680
GGTAACGCTA	GCGACCATGT	TCGTAAAAAT	AAGGTAGACC	AAGACAGTAA	ACCTGATGAA	7740
GATAAGGAAC	ATGATGAAGT	AAGTGAGCCA	ACTCACCCTG	AATCTGATGA	AAAAGAGAAT	7800
CACGCTGGTT	TAAATCCTTC	AGCAGATAAT	CTTTATAAAC	CAAGCACTGA	TACGGAAGAG	7860
ACAGAGGAAG	AAGCTGAAGA	TACCACAGAT	GAGGCTGAAA	TTCCTCAAGT	AGAGAATTCT	7920
GTTATTAACG	CTAAGATAGC	AGATGCGGAG	GCCTTGCTAG	AAAAAGTAAC	AGATCCTAGT	7980
ATTAGACAAA	ATGCTATGGA	GACATTGACT	GGTCTAAAAA	GTAGTCTTCT	TCTCGGAACG	8040
AAAGATAATA	ACACTATTTC	AGCAGAAGTA	GATAGTCTCT	TGGCTTTGTT	AAAAGAAAGT	8100
CAACCGGCTC	CTATACAGTA	GTAAAATGAA	TGGAGCATAT	TTTATGGAGA	AGTAACCTTT	8160
CGTGTTACTT	CTCTTTTTTA	GAAAAACGTA	ACAGA			8195
(2) INFORM	TION FOR SE	Q ID NO: 95	5:			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2004 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

TT	TACTAAAA	GGAAAAAAGA	ACTGATTTCT	CAGTCCTTCA	TTAATCTTAT	TCCACACTAA	60
ΑΊ	AGGTATGG	GTAAACAGGT	TGTTGACCTT	GGTGAATCTC	GACTTCAACG	TCTTCGAATT	120
CI	TCTACGAT	TTCTTGAGCG	ATTTCATTGG	CAAGTTCTTC	GCTTCCGTCT	TCACCTACAT	180
AC	SAAGGTTAC	GATTTCACTG	TCTTCATCCA	ACATATGTTT	CAAGGTTTCA	GTCAATGT IT	240
GC	TGCATATC	AGGGTTTGAC	ACAAGAATTT	TTCCATCCAC	CATACCTAAA	TTATCGTTTT	300
C?	TGGATTTC	TAAGCCATCG	ATCGTTGTAT	CACGCACGGC	TGTTGTGACG	CTTCCGCTAA	360
CC	ACATCGCT	AAGAGCAGCT	GTCATACGCT	CTTGGTTTTC	TTCAATGGAC	TTGCTTGGAT	420
CF	AAGGCAAG	AAGACTTGTC	ATACCTTGAG	GAAGAGTGCG	AGCCTCTACC	ACTACCGCTG	480
G'I	TGCTCCAA	AACTTCTGCC	GCAGATTGAG	CTGCCATGAA	GATGTTCTTG	TTGTTTGGCA	540
AC	SAAGATGAT	GTTACGGGCA	TTAACCTGTT	CAACAGCCTT	GATAAAGTCT	TCTGTTGAAG	600
GC	STTCATGGT	TTGACCGCCT	TCGATAACAT	AATCCACGCC	TTGAGAACAG	AAGATATCTG	660

CLASSIFICATION OF SUBJECT MATTER
PC 7 C12N15/31 C12N15/62

C07K14/315 A61K39/09

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) C12N C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, CAB Data, STRAND

C. DOCUL	KENTS CO	PNSIDEF	ied to be	RELEVANT

Category *	Oitation of desument, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x)	WO 98 18930 A (HUMAN GENOME SCIENCES INC; CHOI GIL H (US); HROMOCKYJ ALEX (US); J) 7 May 1998 (1998-05-07) cited in the application SP103; SEQ ID NOs. 181 and 182; page 85, line 14 - line 42; claims 1-21; table I SEQ ID Nos. 65 and 66;	1-12
(x)	WO 98 18931 A (DOUGHERTY BRIAN A ; HUMAN GENOME SCIENCES INC (US); ROSEN CRAIG A () 7 May 1998 (1998-05-07) SEQ ID No.192 claims 1-20 SEQ ID No. 94	1-12

LX	Further documents are listed in the	continuation of box C.
----	-------------------------------------	------------------------

Patent family members are listed in annex.

- Special categories of aked documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to eatablish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or
- document published prior to the international filing date but later than the priority date elaimed
- "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

2 4. 07. 00

'&' document member of the same patent family

Date of the actual completion of the international search

Fax: (+31-70) 340-3016

Date of mailing of the international search report

28 June 2000 Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentinan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx, 31 651 epo ni,

Authorized officer

Hornig, H

Form PCT/ISA/210 (second sheet) (July 1992)