Aprendizagem 2023 Homework I – Group 036 (ist1103248, ist1103327)

Part I: Pen and paper

1 Ganho de inferención

16(y) = H(2) - H(2/y)

Entropia

H(M) =
$$\frac{2}{5}$$
 - p(m;)log a (p(mi)), M = $\frac{2}{5}$ m 1, m 2, ... m, m 3

H(2/y) = $\frac{2}{5}$ | $\frac{|X|}{|X|}$ H(2|Xi)

H(got | y 1 > 0.4 1 y 2) = $\frac{3}{7}$ (- $\frac{1}{3}$ log $\frac{1}{3}$ - $\frac{1}{3}$ log $\frac{1}{3}$ \tag{4}

H(yot | y 1 > 0.4 1 y 3) = $\frac{1}{7}$ (a) (1 log 2 1)

+ $\frac{2}{7}$ (-1 log 2 1) \times 0.965

H(yot | y 1 > 0.4 1 y 3) = $\frac{1}{7}$ (a) (1 log 2 1)

+ $\frac{1}{7}$ (- $\frac{1}{3}$ log 2 $\frac{1}{3}$ - $\frac{1}{3}$ log 2 $\frac{1}{3}$)

+ $\frac{3}{7}$ (- $\frac{1}{3}$ log 2 $\frac{1}{3}$ - $\frac{1}{3}$ log 2 $\frac{1}{3}$)

+ $\frac{3}{7}$ (- $\frac{1}{3}$ log 2 $\frac{1}{3}$ - $\frac{1}{3}$ log 2 $\frac{1}{3}$)

 \times 0.857

H(yot | y 1 > 0.4 1 y 1) = $\frac{2}{7}$ (- $\frac{1}{3}$ log 2 $\frac{1}{3}$ - $\frac{1}{3}$ log 2 $\frac{1}{3}$)

 \times 0.857

 \times 0.857

 $|G(y_2)| = H(y_0 + |y_1 > 0.4) - H(y_0 + |y_1 > 0.4) - H(y_0 + |y_1 > 0.4) - H(y_0 + |y_1 > 0.4)$ = 1.55 + -0.965 = 0.592

16(y3)= Hlyatly120.4) - Hlyatly120.41y3) = 1.557-0.557= G.700

16(yu) = Hlyoutly 1 > 0.4) = Hlyoutly 1> 0.4 1 yu) = 1.557-0.965 = 0.592

Como y3 tem o maior ganto de informação vais ser a próximo vonável a ser usada na árvore de decisão.

*Para y 12 y 3=1 se há duas observações. Uma delas dá a autro B. Como está escrito no enunciado que é preciso 4 doservações para dividir um né, não vamos dividir o nó e escolher par ordem alfabética (como está dito no panto ii))

** Para y 1 > 0.4 1 y 3 = 0 só há uma dosevuaçõe Com atput B, Gogo a folha Voir ser B.

* * * (omo há 4 observações para >1 >0.4 e y3=2 e 2 yout diferentes, vamos ter de analisar , autra variairel para decidir. H(yout 1 51>0.41 53=2) = -2 log2 = -2 logz = 1 H(gout 1 y170.41 y3=21y2)= 1 (-1 log21) + 1 (-1 loga 1) +2(-1log21)=0 Hlyoutly 100.4 1y3=21yi) = = = (-1 aloga 1 - 1 loga 1) +1 (-1 loga1) + 1/4 (-1 log21) = 0.5 IG(y2)= H(you+1y1>0.4/y3=2)-H(you+1y1>0.4/y3=2/y2) = 1-0=1 16 (yu) = H(you+1 yn>0.4 ny 3=2)-H(you+1yn>0.4 ny 3=2 nyu) Gro you tem maior ganto de intermação, vou ser a próximo voirável a ser usodo. * Para 42=0 e 52=1 Sé varnos tes 1 closervaçõe, logo voi ser cloro o valor da tolho. Para (B) (A) y2=2 temos 2 observações pom o resmo gat, Cogo também vai serclara

	(a	través tabel	2)			1350	
2.		yout (Real)	1 40	(Oterisa) tu	(através	árvore	de 1.)
	XA	A					
	X2	В		AB			1
	*3	B		C			
	Xu	(C			
	×s	·C		C			
	×G	А		A			190
	X	A		A	-		
	×g	A		A			
	×q	B		A			1100
	×90	B		B			
5 40 5	×11	C .		C			
3-31-3	X12	C		C		_	
							1000
The same							
		Pe	al				
		A	B	C			
	Δ	4	^	0			
	A	7					11 199
0+0	B	0	2	0			
Previsto	C	6	1	4			
							17 6 13

3.
$$FA - SCOR(B=1) = \frac{1}{F} = \frac{1}{2} \left(\frac{1}{P} + \frac{1}{A}\right)$$

L) $P = Precision$
 $R = Pecall$
 $P = \frac{TP}{TP + FP}$
 $P = \frac{TP}{TP + TP}$
 $P = \frac{TP}{TP + TP}$
 $P = \frac{TP}{TP + TP}$
 $P = \frac{TP}{T$

4. Peason Carelation Gefficient (PCC)													
P((ly1, y2) = cov ly1,y2) = Zy1y2 - Zy1Zy2													
(Vorlya) (Vorlye)													
$\left(\overline{2y_1^2} - \left(\overline{2y_2}\right)^2\right) \times \left(\overline{2y_2^2} - \left(\overline{2y_2}\right)^2\right)$													
- Annual Control	91	ranky	92	rank ja	(1/21)2	(ryz)2	(71×142)						
M	6.24	3	1	8	9	64	24						
XJ	0.06	2	2	11	4	121	22						
X3	0.04	1	6	3.5	1	12.25	3.5						
λy	0.36	5	0	3.5	25	12.25	17.5						
XS	0.32	4	0	35	16	12.25	14						
X6	0.68	10	2	11	100	121	110						
X	0.9	12	0	3.5	1244	12.25	42						
×8	0.76	17	2	11	121	121	121						
X9	6.46	7	1	8	49	64	56						
X10	6.62	9	0	3.5	81	12.25	31.5						
XM	0.44	6	1	8	36	64	48						
X12	0.52	8	0	3.5	64	12.25	28						
		Z = 78		Z=120.78	Z=650	Z=628.5	Z = SM > . S						
10	and=or	denor par	order	n Croscent	e								
1	ank y	2=0 = 1	+2+3	+4+5+6	= 3.5								
	1												
$Vanx y2=1=\frac{7}{3}+8+9=\frac{6}{3}$													
rank y2=2>10+11+12=11													
3													
Spearman (41,42)= P((([3,2,154,10])													
Spearman $(y_1, y_2)^2$ PCC ([3,2,1,5,4,10,12,11,7,9,6,8), [6,11,3.5,3.5,3.5,11,3.5,11,8,3.5,8,3.5])													
[5/12 5 3 3 5 3 5 3 5 3 5 5 5 5 5 6 5 5 6 5 5 6 5 5 6 5 6													
$= \frac{(517.5 - 78 \times 78)}{12} / \sqrt{(650 - \frac{78^2}{12}) \times (628.5 - \frac{78^2}{12})}$ $\approx 0.07966 \cdot (0.02) \times (650 - \frac{78^2}{12}) \times (628.5 - \frac{78^2}{12})$													
~0.07966 1 12) (628.3 12)													
~0.07966, logo y1 ey2 estão "loosely related"													
	J. Carla												

Part II: Programming

```
1. from sklearn.feature_selection import f_classif
2 from scipy.io.arff import loadarff
3 import pandas as pd
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import seaborn as sns
8 data = loadarff('column_diagnosis.arff')
10 df = pd.DataFrame(data[0])
11
x = df.drop('class', axis=1)
y = df['class']
15 f_values, p_values = f_classif(x, y)
highest_discriminative_idx = np.argmax(f_values)
lowest_discriminative_idx = np.argmin(f_values)
19
  variable_names = ["pelvic_incidence", "pelvic_tilt", "lumbar_lordosis_angle", "
      sacral_slope", "pelvic_radius", "degree_spondylolisthesis"]
21
22 most_discriminative_variable = variable_names[highest_discriminative_idx]
23 least_discriminative_variable = variable_names[lowest_discriminative_idx]
25 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
27 sns.distplot(df[df["class"] == b'Spondylolisthesis'][most_discriminative_variable
     ], hist=False, label="Spondylolisthesis", ax=ax1)
sns.distplot(df[df["class"] == b'Hernia'][most_discriminative_variable], hist=
     False, label="Hernia", ax=ax1)
29 sns.distplot(df[df["class"] == b'Normal'][most_discriminative_variable], hist=
      False, label="Normal", ax=ax1)
ax1.set_xlabel(most_discriminative_variable)
ax1.set_ylabel("Probability Density")
32 ax1.set_title(f"Class-Conditional PDF for {most_discriminative_variable} (Most
     discriminative)")
sns.distplot(df[df["class"] == b'Spondylolisthesis'][least_discriminative_variable
     ], hist=False, label="Spondylolisthesis", ax=ax2)
sns.distplot(df[df["class"] == b'Hernia'][least_discriminative_variable], hist=
     False, label="Hernia", ax=ax2)
sns.distplot(df[df["class"] == b'Normal'][least_discriminative_variable], hist=
     False, label="Normal", ax=ax2)
ax2.set_xlabel(least_discriminative_variable)
ax2.set_ylabel("Probability Density")
39 ax2.set_title(f"Class-Conditional PDF for {least_discriminative_variable} (Least
     discriminative)")
40
41 ax1.legend()
42 ax2.legend()
44 plt.savefig("Exercicio1.png")
45 plt.tight_layout()
46 plt.show()
```



```
2. from scipy.io.arff import loadarff
 2 import pandas as pd
 import matplotlib.pyplot as plt
 4 import seaborn as sns
 5 from sklearn.model_selection import train_test_split
 6 from sklearn.tree import DecisionTreeClassifier
 7 from sklearn.metrics import accuracy_score
 8 from sklearn.preprocessing import LabelEncoder
data = loadarff('column_diagnosis.arff')
12 df = pd.DataFrame(data[0])
14 le = LabelEncoder()
15 df['class'] = le.fit_transform(df['class'])
x = df.drop('class', axis=1)
  y = df['class']
  x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7,
      random_state=0, stratify=y)
21
  depth\_limits = [1, 2, 3, 4, 5, 6, 8, 10]
24 train_accuracies = []
  test_accuracies = []
26
  for depth in depth_limits:
27
      train acc = 0
28
29
      test_acc = 0
      for _ in range(10):
30
           clf = DecisionTreeClassifier(max_depth=depth, random_state=0)
31
           clf.fit(x_train, y_train)
32
33
           train_acc += accuracy_score(y_train, clf.predict(x_train))
           test_acc += accuracy_score(y_test, clf.predict(x_test))
35
36
       train_acc /= 10
37
      test_acc /= 10
38
```

```
39
      train_accuracies.append(train_acc)
40
      test_accuracies.append(test_acc)
41
42
43 sns.set(style="whitegrid")
 plt.figure(figsize=(10, 6))
 plt.plot(depth_limits, train_accuracies, marker='o', label='Training Accuracy')
46 plt.plot(depth_limits, test_accuracies, marker='o', label='Testing Accuracy')
47 plt.title('Decision Tree Accuracy vs. Depth Limit')
48 plt.xlabel('Depth Limit')
49 plt.ylabel('Accuracy')
50 plt.legend()
 plt.xticks(depth_limits)
 plt.savefig("Exercicio2.png")
55 plt.show()
```


3. Ao observar o gráfico resultante do exercício anterior, reparamos que a accuracy do treino melhora com o aumento da profundidade da árvore de decisão. Este resultado faz sentido e pode ser explicado pelo facto de árvores de decisão mais profundas tedem a capturar padrões mais complexos nos dados para treino.

Por outro lado, a accuracy de teste começa por aumentar até à profundidade de 4 ou 5, começando logo em seguida a descer. Este comportamento pode ser explicado pelo overfitting que é um fenómeno onde árvores mais profundas se tornam demasiado específicas para os valores usados no treino e por consequência não conseguem generalizar os resultados para dados novos, os dados de teste.

O resultado mais alto da accuracy de teste é em árvores de profundidade 4 ou 5, isto quer dizer que árvores de profundidade média são as que oferecem melhores resultados evitando o problema de overfitting. Concluindo, a escolha de uma profundidade de 4 ou 5 parece ser a mais adequada para este caso.

```
4.
    i. from scipy.io.arff import loadarff
     2 import pandas as pd
     3 import matplotlib.pyplot as plt
     4 from sklearn.model_selection import train_test_split
     5 from sklearn.tree import DecisionTreeClassifier
     6 from sklearn.tree import plot_tree
     7 from sklearn.preprocessing import LabelEncoder
     9 data = loadarff('column_diagnosis.arff')
     df = pd.DataFrame(data[0])
     13 le = LabelEncoder()
     14 df['class'] = le.fit_transform(df['class'])
     16 x = df.drop('class', axis=1)
     y = df['class']
     19 clf = DecisionTreeClassifier(min_samples_leaf=20, random_state=0)
    20 clf.fit(x, y)
     plt.figure(figsize=(12, 8))
     23 plot_tree(clf, filled=True, feature_names=x.columns, class_names=['Hernia', '
          Spondylolisthesis', 'Normal'])
     24 plt.title("Decision Tree Classifier")
     plt.savefig("Exercicio4.png")
     26 plt.show()
```

Decision Tree Classifier

ii. Para detetar a presença de Disk Hernia através da nossa árvore de decisão é possível seguir dois ramos da árvore. O primeiro e mais simples, permite-nos chegar à conclusão que um paciente tem esta doença apenas sabendo que tem um degree_spondylolisthesis <= 16,079 e um sacral_slope <= 28,136. Para se chegar à mesma conclusão pelo segundo ramo, é preciso não só degree_spondylolisthesis <= 16,079, mas também uma pelvic_radius <= 117,36 e uma sacral_slope <= 40,149. Com isto concluímos, que se pode considerar que um paciente tem uma Disk Hernia quando tem um degree_spondylolisthesis <= 16,079 e uma sacral_slope <= 28,136, no entanto se a sacral_slope > 28,136, mas ainda for <= 40,149 e se a pelvic_radius <= 117,36 também é possível concluir que o paciente tem Disk Hernia.