INFO251 - Applied Machine Learning

Lab 8

Announcements

PS3 grades posted

Today's Topics

- Classification Measures of Accuracy
- Decision Trees
- Random Forests

Performance / Evaluation Metrics

- Assume that green is the "positive" class here
- Accuracy = TP + TN / (TP + FP + FN + TN)
- TPR = TP / (TP + FN)
- FPR = FP / (FP + TN)
- Precision = TP / (TP + FP)

		Predicted	
		Green	Orange
Actual	Green	TP	FN
	Orange	FP	TN

Performance / Evaluation Metrics

- TPR = P[$\hat{y}(x)$ = Green | y = Green]
- FPR = P[$\hat{y}(x)$ = Green | y = Orange]
- Precision = P[$y = Green | \hat{y}(x) = Green$]

		Predicted	
		Green	Orange
Actual	Green	TP	FN
	Orange	FP	TN

ROC Curves

- Test alternative classification thresholds, record trade-off between TPR and FPR
- "Optimal" point on ROC curve: Closest to topleft corner?
- Other option for "quota" problems: Set "acceptance rate" to the rate of positive observations in the training set
- Exercise: Prove that calibrating the acceptance rate balances precision and recall

Trees / Forests

- Pick evaluation metrics
- Determine hyperparameters to tune
- Assess Feature Importance

Example: Classification Decision Tree Algorithm

```
def GrowTree(S):
if y == 0 for all (x, y in S):
            return leaf(0)
elif y == 1 for all (x, y in S):
            return leaf(1)
else:
            choose attribute x<sub>i</sub>
            s0 = [(x, y) \text{ in } S \text{ if } x_i == 0]
            s1 = [(x, y) \text{ in } S \text{ if } x] == 1]
            return node(x, GrowTree(s0), GrowTree(s1))
```

Example: Classification Decision Tree Algorithm

```
def GrowTree(S):
if y == 0 for all (x, y in S):
           return leaf(0)
elif y == 1 for all (x, y in S):
                                                       What are the hyperparameters?
           return leaf(1)
else:
           choose attribute x<sub>i</sub>
           s0 = [(x, y) \text{ in } S \text{ if } x_i == 0]
           s1 = [(x, y) \text{ in } S \text{ if } x] == 1]
            return node(x, GrowTree(s0), GrowTree(s1))
```

Decision Tree Splitting Criteria

- Classification
 - Entropy: $-\sum_{c=0}^{c} p_c \log_2 p_c$
 - Gini Impurity: 1 $\sum_{c=0}^{c} p_c^2$
- Regression
 - Sum of Squared Errors: $\sum_{i=1}^N y_i \overline{\overline{y}}$

Decision Tree Interpretability

- Tree Diagram
- Feature Importances
 - Either: Number of times the feature was split on
 - Either: Feature permutation
 - Classification: Weighted mean reduction in impurity (across all splits)
 - Regression: Weighted mean reduction in MSE (across all splits)

Example: Random Forests

- Bagging = Bootstrapp aggregating
 - Build an ensemble of models based on random subsets of the data (sampled with replacement)
 - Model predictions vote (classification) or are averaged (regression) for the ensemble prediction

Random Forests:

- Bootstrap aggregating with decision trees, plus select random subsets of features (with replacement) for each tree
- What are the hyperparameters?
- Feature Importances
 - Mean feature importance across all trees (can also take standard deviation)
 - Feature permutation