федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ПИиКТ, Системное и прикладное программное обеспечение

Лабораторная работа №3

Выполнение циклических программ

Вариант 48766

Выполнил:

Кива Глеб Владимирович, Группа Р3108 **Преподаватель:**

Вербовой А. А., Преподаватель практики, ФПИ и КТ ИТМО

Содержание

ЗАДАНИЕ	. 3
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	
ВЫВОДЫ	. 8

ЗАДАНИЕ

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

404:	0416	412:	EEF4
405:	A000	413:	8406
406:	E000	414:	CEF9
407:	0200	415:	0100
408:	+ 0200	416:	0000
409:	EEFD	417:	F500
40A:	AF03	418:	0000
40B:	EEFA		
40 C:	AEF7		
40D:	EEF7		
40E:	AAF6		
40F:	F003		
410:	AEF6		
411:	0700		

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1) Восстановление текста исходной программы

Адресб	Код команды/ Данные	Мнемоника	Комментарии				
404	0416	ARR_BEGIN	Адрес первого элемента массива				
405	A000	ARR_CURRENT	Адрес текущего элемента массива				
406	E000	ARR_LENGTH	Количество элементов в массиве				
407	0200	RESULT	Результат				
408	0200	CLA	Записать нули в аккумулятор 0 > AC				
409	EEFD	ST IP-3	Сохранение в ячейку (IP-3)/407 с прямой относительной адресацией AC > M				
40A	AF03	LD #0x03	Прямая загрузка операнда в аккумулятор 0003 > AC				
40B	EEFA	ST IP-6	Сохранение в ячейку (IP-6)/406 с прямой относительной адресацией AC > M				
40C	AEF7	LD IP-9	Загрузка из ячейки (IP-9)/404 в аккумулятор с прямой относительной адресацией М > AC				
40D	EEF7	ST IP-9	Сохранение в ячейку (IP-9)/405 с прямой относительной адресацией AC > M				
40E	AAF6	LD (IP-A)+	Загрузка из ячейки, адрес которой хранится в ячейке (IP-A)/405 и увеличение значения в ячейке (IP-A)/405 на 1 (с косв. относ. автоинк. загрузкой) GET(M++) > AC				
40F	F003	BEQ IP+3	Перейти в (IP+3)/413, если равенство (Z==0)				
410	AEF6	LD IP-A	Загрузка из ячейки (IP-A)/407 в аккумулятор с прямой относительной адресацией М > AC				

411	0700	INC	AC++
412	EEF4	ST IP-C	Сохранение в ячейку (IP-C)/407 с прямой относительной адресацией AC > M
413	8406	L00P 0x406	Зацикливание с прямой абсолютной адресацией, ячейка 406 М IP++ если М <= 0
414	CEF9	JUMP IP-7	Выполнить следующей команду с адресом (IP-7)/40E М > IP
415	0100	HLT	Остановить программу
416	0000	Элементы масси	38
417	F500		
418	0000		

2) Описание программы

2.1) Назначение программы и реализуемые ею функция

Программа реализует реализует подсчёт ненулевых элементов массива, сохраняя ответ в ячейку результата.

2.2) Описание и назначение исходных данных, ОП и ОДЗ исходных данных и результата

ОП:

- ARR_BEGIN, ARR_CURRENT 11-разрядный адрес ячейки памяти БЭВМ
- ARR_LENGTH, RESULT беззнаковое, 16-тиразрядное число
- ЭЛЕМЕНТ ARR знаковое, 16-тиразрядное число

ОДЗ:

- $ARR_LENGTH \in \{1; 2^8\}$
- $ARR_BEGIN \in \{16; 404-ARR_LENGTH\}/\{416; 7FF-ARR_LENGTH+1\}$
- $ARR_CURRENT \in \{ARR_BEGIN; ARR_BEGIN ARR_LENGTH + 1\}$
- $RESULT \in \{0; 2^{16} 1\}$
- $ARR[i] \in \{-2^{15}; 2^{15} 1\}$

3) Составление таблицы трассировки

При ARR= $\{0; -2816; 0\}$; ARR_LENGTH = 3; ARR_BEGIN = 0x416

	няемая анда	Содержимое регистров процессора после выполнения команды						Ячейка, содержимое которой изменилось после выполнения команды			
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
404	0416										
405	A000										
406	E000										
407	0200										
408	0200	409	0200	408	0200	000	0408	0000	0100		
409	EEFD	40A	EEFD	407	0000	000	FFFD	0000	0100	407	0000
40A	AF03	40B	AF03	40A	0003	000	0003	0003	0000		
40B	EEFA	40C	EEFA	406	0003	000	FFFA	0003	0000	406	0003
40C	AEF7	40D	AEF7	404	0416	000	FFF7	0416	0000		
40D	EEF7	40E	EEF7	405	0416	000	FFF7	0416	0000	405	0416
40E	AAF6	40F	AAF6	416	0000	000	FFF6	0000	0100	405	0417
40F	F003	413	F003	40F	F003	000	0003	0000	0100		
413	8406	414	8406	406	0002	000	0001	0000	0100	406	0002
414	CEF9	40E	CEF9	414	040E	000	FFF9	0000	0100		
40E	AAF6	40F	AAF6	417	F500	000	FFF6	F500	1000	405	0418
40F	F003	410	F003	40F	F003	000	040F	F500	1000		
410	AEF6	411	AEF6	407	0000	000	FFF65	0000	0100		
411	0700	412	0700	411	0700	000	0411	0001	0000		
412	EEF4	413	EEF4	407	0001	000	FFF4	0001	0000	407	0001
413	8406	414	8406	406	0001	000	0000	0001	0000	406	0001
414	CEF9	40E	CEF9	414	040E	000	FFF9	0001	0000		
40E	AAF6	40F	AAF6	418	0000	000	FFF6	0000	0100	405	0419
40F	F003	413	F003	40F	F003	000	0003	0000	0100		
413	8406	415	8406	406	0000	000	FFFF	0000	0100	406	0000
415	0100	416	0100	415	0100	000	0415	0000	0100		
416	0000										
417	F500										
418	0000										

ВЫВОДЫ

В ходе выполнения работы были освоены навыки работы с циклами и командами ветвления в БЭВМ.

Контрольные вопросы:

- 1. Организация одномерных массивов данных в памяти. Организация и обработка массивов с числом измерений, больше чем одно.
- 2. Сравнение значений в БЭВМ. Команды условных и безусловного переходов.
- 3. Организация циклических вычислений. Команда LOOP.
- 4. Режимы адресации БЭВМ.
- 5. Описание адресных команд и команд переходов с различными режимами адресации: наименование, назначение, тип команды и вид адресации. Количество и название машинных циклов, потактовое выполнение команд.
- 6. Количество обращений к памяти команд БЭВМ с различными режимами адресации.
- 7. Где находятся аргументы программы? Где находится результат? Как они представлены?
- 8. Какое максимальное количество элементов данных может поддерживать ваша программа?