Contents

	Edi	tor's fo	reword		page xvii
	Pre	face			xix
Part I	Pri	nciples	and elem	entary applications	
	1	Plausi	ble reasor	ning	3
		1.1	Deducti	ve and plausible reasoning	3
		1.2	Analogi	ies with physical theories	6
		1.3	The thir	nking computer	7
		1.4	Introduc	cing the robot	8
		1.5	Boolear	n algebra	9
		1.6	Adequa	te sets of operations	12
		1.7	The bas	ic desiderata	17
		1.8	Comme	ents	19
			1.8.1	Common language vs. formal logic	21
			1.8.2	Nitpicking	23
	2	The q	uantitative	e rules	24
		2.1	The pro	duct rule	24
		2.2	The sun	n rule	30
		2.3	Qualitat	tive properties	35
		2.4	Numeri	cal values	37
		2.5	Notatio	n and finite-sets policy	43
		2.6	Comme	ents	44
			2.6.1	'Subjective' vs. 'objective'	44
			2.6.2	Gödel's theorem	45
			2.6.3	Venn diagrams	47
			2.6.4	The 'Kolmogorov axioms'	49
	3	Eleme	entary sam	pling theory	51
		3.1	Samplin	ng without replacement	52
		3.2	Logic v	s. propensity	60
		3.3	Reasoni	ing from less precise information	64
		3.4	Expecta	ations	66
		3.5	Other fo	orms and extensions	68

viii Contents

	3.6	Probability as a mathematical tool	68
	3.7	The binomial distribution	69
	3.8	Sampling with replacement	72
		3.8.1 Digression: a sermon on reality vs. models	73
	3.9	Correction for correlations	75
	3.10	Simplification	81
	3.11	Comments	82
		3.11.1 A look ahead	84
4	Eleme	ntary hypothesis testing	86
	4.1	Prior probabilities	87
	4.2	Testing binary hypotheses with binary data	90
	4.3	Nonextensibility beyond the binary case	97
	4.4	Multiple hypothesis testing	98
		4.4.1 Digression on another derivation	101
	4.5	Continuous probability distribution functions	107
	4.6	Testing an infinite number of hypotheses	109
		4.6.1 Historical digression	112
	4.7	Simple and compound (or composite) hypotheses	115
	4.8	Comments	116
		4.8.1 Etymology	116
		4.8.2 What have we accomplished?	117
5	Queer	uses for probability theory	119
	5.1	Extrasensory perception	119
	5.2	Mrs Stewart's telepathic powers	120
		5.2.1 Digression on the normal approximation	122
		5.2.2 Back to Mrs Stewart	122
	5.3	Converging and diverging views	126
	5.4	Visual perception – evolution into Bayesianity?	132
	5.5	The discovery of Neptune	133
		5.5.1 Digression on alternative hypotheses	135
		5.5.2 Back to Newton	137
	5.6	Horse racing and weather forecasting	140
		5.6.1 Discussion	142
	5.7	Paradoxes of intuition	143
	5.8	Bayesian jurisprudence	144
	5.9	Comments	146
		5.9.1 What is queer?	148
6	Elemen	ntary parameter estimation	149
	6.1	Inversion of the urn distributions	149
	6.2	Both N and R unknown	150
	6.3	Uniform prior	152
	6.4	Predictive distributions	154

Contents ix

6.5	Truncated uniform priors	157
6.6	A concave prior	158
6.7	The binomial monkey prior	160
6.8	Metamorphosis into continuous parameter estimation	163
6.9	Estimation with a binomial sampling distribution	163
	6.9.1 Digression on optional stopping	166
6.10	Compound estimation problems	167
6.11	A simple Bayesian estimate: quantitative prior information	168
	6.11.1 From posterior distribution function to estimate	172
6.12	Effects of qualitative prior information	177
6.13	Choice of a prior	178
6.14	On with the calculation!	179
6.15	The Jeffreys prior	181
6.16	The point of it all	183
6.17	Interval estimation	186
6.18	Calculation of variance	186
6.19	Generalization and asymptotic forms	188
6.20	Rectangular sampling distribution	190
6.21	Small samples	192
6.22	Mathematical trickery	193
6.23	Comments	195
The ce	ntral, Gaussian or normal distribution	198
7.1	The gravitating phenomenon	199
7.2	The Herschel–Maxwell derivation	200
7.3	The Gauss derivation	202
7.4	Historical importance of Gauss's result	203
7.5	The Landon derivation	205
7.6	Why the ubiquitous use of Gaussian distributions?	207
7.7	Why the ubiquitous success?	210
7.8	What estimator should we use?	211
7.9	Error cancellation	213
7.10	The near irrelevance of sampling frequency distributions	215
7.11	The remarkable efficiency of information transfer	216
7.12	Other sampling distributions	218
7.13	Nuisance parameters as safety devices	219
7.14	More general properties	220
7.15	Convolution of Gaussians	221
7.16	The central limit theorem	222
7.17	Accuracy of computations	224
7.18	Galton's discovery	227
7.19	Population dynamics and Darwinian evolution	229
7.20	Evolution of humming-birds and flowers	231

7

x Contents

	7.21	Application to economics	233
	7.22	The great inequality of Jupiter and Saturn	234
	7.23	Resolution of distributions into Gaussians	235
	7.24	Hermite polynomial solutions	236
	7.25	Fourier transform relations	238
	7.26	There is hope after all	239
	7.27	Comments	240
		7.27.1 Terminology again	240
8	Suffici	ency, ancillarity, and all that	243
	8.1	Sufficiency	243
	8.2	Fisher sufficiency	245
		8.2.1 Examples	246
		8.2.2 The Blackwell–Rao theorem	247
	8.3	Generalized sufficiency	248
	8.4	Sufficiency plus nuisance parameters	249
	8.5	The likelihood principle	250
	8.6	Ancillarity	253
	8.7	Generalized ancillary information	254
	8.8	Asymptotic likelihood: Fisher information	256
	8.9	Combining evidence from different sources	257
	8.10	Pooling the data	260
		8.10.1 Fine-grained propositions	261
	8.11	Sam's broken thermometer	262
	8.12	Comments	264
		8.12.1 The fallacy of sample re-use	264
		8.12.2 A folk theorem	266
		8.12.3 Effect of prior information	267
		8.12.4 Clever tricks and gamesmanship	267
9	Repeti	tive experiments: probability and frequency	270
	9.1	Physical experiments	271
	9.2	The poorly informed robot	274
	9.3	Induction	276
	9.4	Are there general inductive rules?	277
	9.5	Multiplicity factors	280
	9.6	Partition function algorithms	281
		9.6.1 Solution by inspection	282
	9.7	Entropy algorithms	285
	9.8	Another way of looking at it	289
	9.9	Entropy maximization	290
	9.10	Probability and frequency	292
	9.11	Significance tests	293
		9.11.1 Implied alternatives	296

Contents xi

		9.12	Compar	ison of psi and chi-squared	300
		9.13	The chi-	-squared test	302
		9.14	General	ization	304
		9.15	Halley's	s mortality table	305
		9.16	Comme	nts	310
			9.16.1	The irrationalists	310
			9.16.2	Superstitions	312
	10	Physic	s of 'rand	om experiments'	314
		10.1	An inter	resting correlation	314
		10.2	Historic	al background	315
		10.3	How to	cheat at coin and die tossing	317
			10.3.1	Experimental evidence	320
		10.4	Bridge l	nands	321
		10.5	General	random experiments	324
		10.6	Induction	on revisited	326
		10.7	But wha	at about quantum theory?	327
		10.8	Mechan	ics under the clouds	329
		10.9	More or	n coins and symmetry	331
		10.10	Indepen	dence of tosses	335
		10.11	The arro	ogance of the uninformed	338
Part II	Adv	vanced	application	ons	
	11	Discre		robabilities: the entropy principle	343
		11.1		tind of prior information	343
		11.2		$m \sum p_i^2$	345
		11.3		: Shannon's theorem	346
		11.4		llis derivation	351
		11.5	An exar	-	354
		11.6		ization: a more rigorous proof	355
		11.7		properties of maximum entropy	
				butions	358
		11.8		tual problems – frequency correspondence	365
		11.9	Comme		370
	12	_	_	s and transformation groups	372
		12.1		e we trying to do?	372
			Ignoran	_	374
		12.3		ous distributions	374
		12.4		rmation groups	378
			12.4.1	Location and scale parameters	378
			12.4.2	A Poisson rate	382
			12.4.3	Unknown probability for success	382
		10.5	12.4.4	Bertrand's problem	386
		12.5	Comme	nts	394

xii Contents

13	Decisi	on theory, historical background	397	
	13.1	Inference vs. decision	397	
	13.2	Daniel Bernoulli's suggestion	398	
	13.3	The rationale of insurance	400	
	13.4	Entropy and utility	402	
	13.5	The honest weatherman	402	
	13.6	Reactions to Daniel Bernoulli and Laplace	404	
	13.7	Wald's decision theory	406	
	13.8	Parameter estimation for minimum loss	410	
	13.9	Reformulation of the problem	412	
	13.10	Effect of varying loss functions	415	
	13.11	General decision theory	417	
	13.12	Comments	418	
		13.12.1 'Objectivity' of decision theory	418	
		13.12.2 Loss functions in human society	421	
		13.12.3 A new look at the Jeffreys prior	423	
		13.12.4 Decision theory is not fundamental	423	
		13.12.5 Another dimension?	424	
14	Simple	426		
	14.1	Definitions and preliminaries	426	
	14.2	Sufficiency and information	428	
	14.3 Loss functions and criteria of optimum			
		performance	430	
	14.4	A discrete example	432	
	14.5	How would our robot do it?	437	
	14.6	Historical remarks	438	
		14.6.1 The classical matched filter	439	
	14.7	The widget problem	440	
		14.7.1 Solution for Stage 2	443	
		14.7.2 Solution for Stage 3	445	
		14.7.3 Solution for Stage 4	449	
	14.8	Comments	450	
15	Parado	451		
	15.1	How do paradoxes survive and grow?	451	
	15.2	Summing a series the easy way		
	15.3	Nonconglomerability	453	
	15.4	The tumbling tetrahedra	456	
	15.5	Solution for a finite number of tosses	459	
	15.6	Finite vs. countable additivity	464	
	15.7	The Borel–Kolmogorov paradox	467	
	15.8	The marginalization paradox	470	
		15.8.1 On to greater disasters	474	

X111

	15.9	Discussion	478
		15.9.1 The DSZ Example #5	480
		15.9.2 Summary	483
	15.10	A useful result after all?	484
		How to mass-produce paradoxes	485
	15.12		486
16	Orthod	lox methods: historical background	490
	16.1	The early problems	490
	16.2	Sociology of orthodox statistics	492
	16.3	Ronald Fisher, Harold Jeffreys, and Jerzy Neyman	493
	16.4	Pre-data and post-data considerations	499
	16.5	The sampling distribution for an estimator	500
	16.6	Pro-causal and anti-causal bias	503
	16.7	What is real, the probability or the phenomenon?	505
	16.8	Comments	506
		16.8.1 Communication difficulties	507
17	Princir	ples and pathology of orthodox statistics	509
	17.1	Information loss	510
	17.2	Unbiased estimators	511
	17.3	Pathology of an unbiased estimate	516
	17.4	The fundamental inequality of the sampling variance	518
	17.5	Periodicity: the weather in Central Park	520
		17.5.1 The folly of pre-filtering data	521
	17.6	A Bayesian analysis	527
	17.7	The folly of randomization	531
	17.8	Fisher: common sense at Rothamsted	532
	17.0	17.8.1 The Bayesian safety device	532
	17.9	Missing data	533
	17.10	Trend and seasonality in time series	534
	17.10	17.10.1 Orthodox methods	535
		17.10.2 The Bayesian method	536
		17.10.3 Comparison of Bayesian and orthodox	220
		estimates	540
		17.10.4 An improved orthodox estimate	541
		17.10.5 The orthodox criterion of performance	544
	17.11	The general case	545
	17.12	Comments	550
18	The A	p distribution and rule of succession	553
	18.1	Memory storage for old robots	553
	18.2	Relevance	555
	18.3	A surprising consequence	557
	18.4	Outer and inner robots	559

xiv Contents

	18.5	An application	561
	18.6	Laplace's rule of succession	563
	18.7	Jeffreys' objection	566
	18.8	Bass or carp?	567
	18.9	So where does this leave the rule?	568
	18.10	Generalization	568
	18.11	Confirmation and weight of evidence	571
		18.11.1 Is indifference based on knowledge or ignorance?	573
	18.12	Carnap's inductive methods	574
	18.13	Probability and frequency in exchangeable sequences	576
	18.14	Prediction of frequencies	576
	18.15	One-dimensional neutron multiplication	579
		18.15.1 The frequentist solution	579
		18.15.2 The Laplace solution	581
	18.16	The de Finetti theorem	586
	18.17	Comments	588
19	Physic	al measurements	589
	19.1	Reduction of equations of condition	589
	19.2	Reformulation as a decision problem	592
		19.2.1 Sermon on Gaussian error distributions	592
	19.3	The underdetermined case: <i>K</i> is singular	594
	19.4	The overdetermined case: K can be made nonsingular	595
	19.5	Numerical evaluation of the result	596
	19.6	Accuracy of the estimates	597
	19.7	Comments	599
		19.7.1 A paradox	599
20	Model	comparison	601
	20.1	Formulation of the problem	602
	20.2	The fair judge and the cruel realist	603
		20.2.1 Parameters known in advance	604
		20.2.2 Parameters unknown	604
	20.3	But where is the idea of simplicity?	605
	20.4	An example: linear response models	607
		20.4.1 Digression: the old sermon still another time	608
	20.5	Comments	613
		20.5.1 Final causes	614
21	Outlier	rs and robustness	615
	21.1	The experimenter's dilemma	615
	21.2	Robustness	617
	21.3	The two-model model	619
	21.4	Exchangeable selection	620
	21.5	The general Bayesian solution	622

Contents xv

21.6	Pure outliers	624
21.7	One receding datum	625
22 Introdu	ction to communication theory	627
22.1	Origins of the theory	627
22.2	The noiseless channel	628
22.3	The information source	634
22.4	Does the English language have statis	tical properties? 636
22.5	Optimum encoding: letter frequencies	s known 638
22.6	Better encoding from knowledge of d	igram frequencies 641
22.7	Relation to a stochastic model	644
22.8	The noisy channel	648
Appendix A	Other approaches to probability the	ory 651
	A.1 The Kolmogorov system of p	robability 651
	A.2 The de Finetti system of prob	ability 655
	A.3 Comparative probability	656
	A.4 Holdouts against universal co	mparability 658
	A.5 Speculations about lattice the	ories 659
Appendix B	Mathematical formalities and style	661
	B.1 Notation and logical hierarchy	y 661
	B.2 Our 'cautious approach' polic	ey 662
	B.3 Willy Feller on measure theor	ry 663
	B.4 Kronecker vs. Weierstrasz	665
	B.5 What is a legitimate mathema	tical function? 666
	B.5.1 Delta-functions	668
	B.5.2 Nondifferentiable fun	ctions 668
	B.5.3 Bogus nondifferential	ole functions 669
	B.6 Counting infinite sets?	671
	B.7 The Hausdorff sphere paradox	x and mathematical
	diseases	672
	B.8 What am I supposed to publis	h? 674
	B.9 Mathematical courtesy	675
Appendix C	Convolutions and cumulants	677
	C.1 Relation of cumulants and mo	oments 679
	C.2 Examples	680
References	-	683
Bibliograph	y	705
Author inde		721
Subject inde	x	724