

YC31xx BT 应用说明

V1.0

Yichip Microelectronics ©2014

Revision History

Version	Date	Author	Description		
V1.0	2019/9/6	Zhiteng.Yi	Initial version		

Confidentiality Level:

confidential

目录

1.	蓝牙原	应用		 4
	1.1.	应用]	 4
	1.	1.1.	打开蓝牙	 4
	1.	1.2.	透传方式	 4
	1.2.	常用]命令接口	 4
	1.	2.1.	设置 BLE 名字:	 4
			设置 BLE 地址:	
		2.3.	设置 SPP 名字:	5
	1.	2.4.	设置 BT 地址:	5
	1.	2.5.	设置可 SPP BLE 发现	5
			发数据:	
		2.7	关于配对	5
			公署 NVP AM	

1. 蓝牙应用

蓝牙可以用中断和非中断两种方式接收数据。库中提供蓝牙初始化的接口(BLE and SPP)。蓝牙透传指令参照易兆透传指令文档,以下会介绍到 Pos 应用开发常用的指令以及接口。蓝牙部分使用的库文件又 yc_bt&yc_ipc.

1.1. 应用

1.1.1. 打开蓝牙

- 1.蓝牙初始化直接调用蓝牙初始化函数 BT_Init();
- 2.然后打开蓝牙的中断,蓝牙占用一个独立中断源: enable_intr(INTR_BT); 蓝牙初始化成功则会收到 02 09 00 则表示蓝牙初始化成功

1.1.2. 透传方式

- 1.如何操作蓝牙,蓝牙数据透传实际是通过读写内存的方式进行的。
- 2.收到透传信息: IPC have data()返回 TRUE 则收到蓝牙事件。
- 3.其它操作蓝牙的命令,都有接口实现在 yc_bt.c 中。

1.2. 常用命令接口

在 yc_bt.c 中提供 SPP,BLE 的名字、地址、可发现的设置接口,返回为 TRUE 则设置成功。

1.2.1. 设置 BLE 名字:

BT_SetBleName(blename,sizeof(blename));blename 字符串最后一个字节不能为'\0',否则某些手机可能会显示有问题。

1.2.2. 设置 BLE 地址:

BT_SetBleAddr(ble_addr)

1.2.3. 设置 SPP 名字:

BT_SetBtName(btname, sizeof(btname)) btname 字符串最后一个字节不能为'\0',否则某些手机可能会显示有问题。

1.2.4. 设置 BT 地址:

BT_SetBtAddr(bt_addr);

1.2.5. 设置可 SPP BLE 发现

BT_SetVisibility(TRUE,TRUE,TRUE)

1.2.6. 发数据:

Boolean BT_SendSppData(uint8_t * spp_data, uint16_t DataLen),长度不能大于 255 Boolean BT_SendBleData(uint8_t * ble_data, uint16_t DataLen),长度不能大于 255

1.2.7. 关于配对

Boolean BT_SetParingMode(uint8_t mode);

Mode 对应的配对模式

0x00:pincode

0x01:just work

0x02:passkey

0x03:confirm

- 1. 设置 pincode: BT_SetPincode(uint8_t* Pincode,uint8_t len);
- 2. 设置 passkey:BT_PasskeyEntry(uint8_t *key_data);(key data 长度为 4)
- 3. 设置 confirmGkey:BT_ConfirmGkey(uint8_t mismatching); (mismatching 为 0 则配对)

1.2.8. 设置 NVRAM

Boolean BT_SetNVRAM(uint8_t * NvData),长度固定为170Bytes,包含五个设备NVRAM data。