PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-269611

(43)Date of publication of application: 29.09.2000

(51)Int.CI.

H05K 1/02 H01L 21/60

H05K 3/34

(21)Application number: 11-069939

(71)Applicant: CASIO COMPUT CO LTD

(22)Date of filing:

16.03.1999

(72)Inventor: SAITO KOICHI

SUGIYAMA KAZUHIRO

(54) FLEXIBLE WIRING BOARD

(57)Abstract:

PROBLEM TO BE SOLVED: To make a pitch to be finer in a flexible wiring board (COF) where a semiconductor chip is loaded on a film substrate.

SOLUTION: A connection terminal 11 placed on the upper face of a film substrate is formed of a linear connection terminal main body part 11a, and a planar/circular tip reinforcing part 11b installed at the tip reinforcing part of the connection terminal main body part 11a. For making the length of one side in a connection electrode 12 arranged below a semiconductor chip and an array pitch P to be small and making the pitch fine, the tip reinforcing part 11b is prevented from being easily peeled from the film substrate, when the diameter of the tip reinforcing part 11b is made similar to the length L of one side of the connection electrode 12, even if the width T of the connection terminal main body part 11a is made smaller than the length L of one side of the connection electrode 12 by certain degree, by considering bonding

precision at the time of loading the semiconductor chip on the film substrate.

LEGAL STATUS

[Date of request for examination]

12.07.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-269611 (P2000-269611A)

(43)公開日 平成12年9月29日(2000.9.29)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
H05K 1/0	2	H 0 5 K 1/02	J 5E319
		•	B 5E338
H01L 21/6	3 1 1	H01L 21/60	311W 5F044
H 0 5 K 3/3	4 501	H 0 5 K 3/34	501E
		審査請求 未請求	: 請求項の数6 OL (全 4 頁)
(21)出願番号	特顯平11-69939	(71)出願人 000001	443
		カシオ	計算機株式会社
(22) 出顧日	平成11年3月16日(1999.3.16)	東京都渋谷区本町1丁目6番2号	
		(72)発明者 斎藤	浩一
			青梅市今井3丁目10番地6 カシオ 株式会社青梅事業所内
		(72)発明者 杉山	
			四四 青梅市今井3丁目10番地6 カシオ
			株式会社青梅事業所内
		(74)代理人 1000749	
			杉村次郎
	•		最終質に続く

(54)【発明の名称】 フレキシブル配線基板

(57)【要約】

【課題】 フィルム基板上に半導体チップが搭載された フレキシブル配線基板 (COF) において、より一層の ファインピッチ化を図る。

【解決手段】 フィルム基板の上面に設けられた接続端子11は、直線状の接続端子本体部11aと、この接続端子本体部11aの先端補強部に設けられた平面円形状の先端補強部11bとからなっている。この結果、半導体チップの下面に設けられた接続電極12の一辺の長さしてファインピッチ化を図る場合、フィルム基板上に半導体チップを搭載する際のボンディング精度を考慮して、接続端子本体部11aの幅Tを接続電極12の一辺の長さしよりもある程度小さくしても、先端補強部11bの直径を接続電極12の一辺の長さしと同じとすると、この先端補強部11bがフィルム基板から剥離しにくいようにすることができる。

1

【特許請求の範囲】

【請求項1】 フィルム基板上に所定の配列ピッチで配 列された接続端子に電子部品下に同一の配列ピッチで配 列された接続電極が接続されていることにより、前記フ ィルム基板上に前記電子部品が搭載されたフレキシブル 配線基板において、前記接続端子は、前記接続電極と接 続される接続端子本体部と、該接続端子本体部の先端部 に設けられ、最大幅が前記接続端子本体部の幅よりも大 きい先端補強部とからなることを特徴とするフレキシブ ル配線基板。

【請求項2】 請求項1記載の発明において、前記接続 電極は平面方形状であり、前記接続端子本体部の幅は前 記接続電極の所定の一辺の長さよりも小さくなっている ことを特徴とするフレキシブル配線基板。

【請求項3】 請求項2記載の発明において、前記先端 補強部の最大幅は前記接続端子本体部の幅よりも大きく て前記接続電極の所定の一辺の長さと同じかそれよりも 小さくなっていることを特徴とするフレキシブル配線基 板。

【請求項4】 請求項1記載の発明において、前記接続 20 端子本体部に連続する配線の幅は前記接続端子本体部の 幅よりも大きくなっていることを特徴とするフレキシブ ル配線基板。

【請求項5】 請求項4記載の発明において、前記接続 電極は平面方形状であり、前記接続端子本体部の幅は前 記接続電極の所定の一辺の長さよりも小さくなってお り、前記配線の幅は前記接続端子本体部の幅よりも大き くて前記接続電極の所定の一辺の長さと同じかそれより も小さくなっていることを特徴とするフレキシブル配線 基板。

【請求項6】 請求項1~5のいずれかに記載の発明に おいて、前記電子部品は半導体チップまたは半導体チッ プを有するものであることを特徴とするフレキシブル配 線基板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、フィルム基板上 に半導体チップ等の電子部品が搭載されたフレキシブル 配線基板に関する。

[0002]

【従来の技術】例えば、液晶表示装置には、液晶表示パ ネルとこの液晶表示パネルにデータ信号等を供給する回 路基板とをフレキシブル配線基板を介して接続したもの がある。この場合、フレキシブル配線基板として、液晶 表示パネルを駆動するためのLSI等からなる半導体チ ップをフィルム基板上に搭載してなるもの、つまりCO F(Chip On Film)と呼ばれるものを用いることがある。

【0003】図5は、従来のこのようなフレキシブル配 線基板において、フィルム基板の上面に設けられた接続

係を示したものである。この場合、接続端子1は、図示 しないフィルム基板上に直接または接着剤を介してラミ ネートされた銅箔等をエッチングすることによって形成 され、直線状であって、所定の配列ピッチで配列されて いる。一方、図示しない半導体チップの下面に設けられ た接続電極 (バンプ電極) 2は、平面正方形状であっ て、同一の配列ピッチで配列されている。そして、接続 電極2が接続端子1に異方性導電接着剤(図示せず)を 介して接続されることにより、フィルム基板上に半導体 10 チップが搭載されるようになっている。

2

[0004]

【発明が解決しようとする課題】ところで、平面正方形 状の接続電極2の一辺の長さをLとし、配列ピッチをP とすると、接続電極2間の間隔Dは(P-L)となる。 一方、半導体チップをフィルム基板上に搭載する際のボ ンディング精度が±Aであるとすると、左右方向の位置 ずれの関係から、接続端子1が接続電極2から左右方向 に食み出ないようにするには、接続端子1の幅Tを最大 で(L-2A)とせざるを得ない。しかるに、接続電極 2の一辺の長さL及び配列ピッチPを小さくしてファイ ンピッチ化を図る場合、半導体チップをフィルム基板上 に搭載する際のボンディング精度±Aを考慮すると、接 続端子1の幅Tを最大で (L-2A) とせざるを得ない ので、接続端子1の幅下が接続電極2の一辺の長さしに 比べてかなり小さくなってしまう。この結果、接続端子 1のフィルム基板に対するピール強度が低下し、特に接 続端子1の先端部がフィルム基板から剥離しやすくなる ので好ましくなく、したがってファインピッチ化に限界 があるという問題があった。この発明の課題は、より一 30 層のファインピッチ化を図ることである。

[0005]

【課題を解決するための手段】この発明は、フィルム基 板上に所定の配列ピッチで配列された接続端子に電子部 品下に同一の配列ピッチで配列された接続電極が接続さ れていることにより、前記フィルム基板上に前記電子部 品が搭載されたフレキシブル配線基板において、前記接 続端子を、前記接続電極と接続される接続端子本体部 と、該接続端子本体部の先端部に設けられ、最大幅が前 記接続端子本体部の幅よりも大きい先端補強部とによっ て構成したものである。この発明によれば、接続端子を 接続端子本体部とこれよりも幅広の先端補強部とによっ て構成しているので、接続端子本体部の幅をある程度小 さくしても、先端補強部がフィルム基板から剥離しにく いようにすることができ、ひいてはより一層のファイン ピッチ化を図ることができる。

[0006]

40

【発明の実施の形態】図1は、この発明の第1実施形態 におけるフレキシブル配線基板において、フィルム基板 の上面に設けられた接続端子と半導体チップの下面に設 端子と半導体チップの下面に設けられた接続電極との関 50 けられた接続電極との関係を示したものである。この場

合、接続端子11は、図示しないフィルム基板上に直接または接着剤を介してラミネートされた銅箔等をエッチングすることによって形成され、直線状の接続端子本体部11aの先端部に設けられた平面円形状の先端補強部11bとからなり、所定の配列ピッチで配列されている。一方、図示しない半導体チップの下面に設けられた接続電極(バンプ電極)12は、平面正方形状であって、同一の配列ピッチで配列されている。そして、接続電極12が接続端子本体部11aに異方性導電接着剤(図示せず)を介して接続されることにより、フィルム基板上に半導体チップが搭載されるようになっている。

【0007】ここで、平面正方形状の接続電極12の一 辺の長さをLとし、配列ピッチをPとすると、接続電極 12間の間隔Dは(P-L)となる。一方、半導体チッ プをフィルム基板上に搭載する際のボンディング精度が ±Aであるとすると、左右方向の位置ずれの関係から、 接続端子本体部11aが接続電極12から左右方向に食 み出ないようにするには、接続端子本体部11aの幅T を最大で(L-2A)とせざるを得ない。しかるに、接 20 続電極12の一辺の長さL及び配列ピッチPを小さくし てファインピッチ化を図る場合、半導体チップをフィル ム基板上に搭載する際のボンディング精度±Aを考慮し て、接続端子1の幅Tを(L-2A)とある程度小さく しても、先端補強部11bの直径(最大幅)を接続電極 12の一辺の長さしと同じとすると、この先端補強部1 1 b がフィルム基板から剥離しにくいようにすることが でき、ひいてはより一層のファインピッチ化を図ること ができる。

【0008】なお、図2に示すこの発明の第2実施形態 30 のように、接続端子本体部11aに連続する配線13の幅を接続電極12の一辺の長さと同じとしてもよい。この場合、半導体チップをフィルム基板上に搭載する際のボンディング精度が生Aであるとすると、図1に示す場合も同じであるが、上下方向の位置ずれも考慮する必要がある。そこで、図2に示す状態を所期の状態とすると、接続電極12と先端補強部11bとの間の間隔D1をA以上とし、接続電極12と配線13との間の間隔D2もA以上とすると、上下方向の位置ずれを吸収することができる。 40

【0009】また、図3に示すこの発明の第3実施形態のように、半導体チップの下面に接続電極12が千鳥状に配列されている場合には、すべての接続端子本体部11aの長さを長くし、すべての接続端子11の形状を同じとすればよい。このようにすれば、半導体チップをフィルム基板上に搭載する際のボンディング時に左右方向の位置ずれが生じても、すべての先端補強部11bがそれと隣接する接続電極12と短絡しないようにすることができる。

【0010】また、先端補強部11bの直径(股大幅)は、接続端子本体部11aの幅よりも大きくて接続電極12の一辺の長さよりも小さくなるようにしてもよい。また、接続端子本体部11aの幅よりも大きくて接続電極も、接続端子本体部11aの幅よりも大きくて接続電極12の一辺の長さよりも小さくなるようにしてもよい。さらに、先端補強部11bの平面形状は、円形状に限らず、例えば図4(A)~(C)にそれぞれ示すように、正方形状、長方形状、台形状等としてもよい。加えて、接続電極12の平面形状は正方形状に限らず、長方形状や円形状等であってもよい。

【0011】さらに、上記実施形態では、フィルム基板上に半導体チップを搭載する場合について説明したが、これに限らず、CSP(chip size package)やBGA(ball grid array)等と呼ばれる半導体装置(半導体チップを有するもの)やその他の電子部品を搭載するようにしてもよい。

[0012]

【発明の効果】以上説明したように、この発明によれば、接続端子を接続端子本体部とこれよりも幅広の先端補強部とによって構成しているので、接続端子本体部の幅をある程度小さくしても、先端補強部がフィルム基板から剥離しにくいようにすることができ、ひいてはより一層のファインピッチ化を図ることができる。

【図面の簡単な説明】

【図1】この発明の第1実施形態におけるフレキシブル 配線基板において、フィルム基板の上面に設けられた接 続端子と半導体チップの下面に設けられた接続電極との 関係を示す図。

0 【図2】この発明の第2実施形態におけるフレキシブル 配線基板において、フィルム基板の上面に設けられた接 続端子と半導体チップの下面に設けられた接続電極との 関係を示す図。

【図3】この発明の第3実施形態におけるフレキシブル 配線基板において、フィルム基板の上面に設けられた接 続端子と半導体チップの下面に設けられた接続電極との 関係を示す図。

【図4】 $(A) \sim (C)$ はそれぞれ先端補強部の他の各例を示す図。

40 【図5】従来のフレキシブル配線基板において、フィルム基板の上面に設けられた接続端子と半導体チップの下面に設けられた接続電極との関係を示す図。

【符号の説明】

- 11 接続端子
- 1 1 a 接続端子本体部
- 11b 先端補強部
- 12 接続電極
- 13 配線

フロントページの続き

Fターム(参考) 5E319 AA03 AB05 AC16 BB16 CC61

5E338 AA12 AA16 BB72 BB75 CC01

CD13 CD14 CD19 CD22 CD33

EE27

5F044 KK11 LL09 MM03 QQ01