Tout savoir sur la régression linéaire

Partie 1 : La théorie

Présenté par Morgan Gautherot

Problème de régression

	Surface (x_1)	Nb de pièces(x_2)	Année (x_3)	Prix (y)
1	70	3	2010	460
2	40	3	2015	232
3	45	4	1990	315
4	12	2	2017	178
m	25	1	2005	240

Jeu d'entraînement pour la prédiction de prix de maison

Utiliser une droite

Equation d'une droite

Les paramètres de la régression linéaire

$$y = w_0 + w_1 x$$

$$w_0 = 1.5$$

 $w_1 = 0$

$$w_0 = 0$$
$$w_1 = 0.5$$

$$w_0 = 1$$

 $w_1 = 0.5$

Quels paramètres choisir?

La notion d'erreur

L'erreur moyenne au carré

$$\hat{y} - y \qquad \hat{y}_1 = 500 \qquad y_1 = 520 \qquad \hat{y}_1 - y_1 = -20$$

$$\frac{1}{m} \sum \hat{y} - y \qquad \hat{y}_2 = 350 \qquad y_2 = 320 \qquad \hat{y}_1 - y_1 = 30$$

$$\frac{1}{2} \sum_{i=1}^{2} \hat{y}_{(i)} - y_{(i)} = \frac{10}{2} = 5$$

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_{(i)} - y_{(i)})^2$$

Quels paramètres choisir?

$$\hat{y} = 0 + 0.x_1$$

$$J(0) = \frac{1}{2m} [(1)^2 + (2)^2 + (3)^2] = 2.3$$

 $\hat{y} = 0 + 0.5. x_1$

$$J(0.5) = \frac{1}{2m} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2] = 0.68$$

 W_1

1.5

 $\hat{y} = 0 + 1. x_1$

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_{(i)} - y_{(i)})^{2}$$
2.3
$$J(w)$$
0.68
$$0$$

$$w_{1}$$

 $J(1) = \frac{1}{2m} [(1-1)^2 + (2-2)^2 + (3-3)^2] = 0$

Fonction de coût avec deux paramètres

Le gradient descent

Soit n le nombre de variables

Répéter ce processus jusqu'à la convergence :

La dérivée partielle

$$w_{1} \coloneqq w_{1} - \alpha \frac{\partial}{\partial w_{1}} J(W)$$

$$t_{1} \qquad t_{0}$$

$$w_{1} \coloneqq w_{1} - positif$$

$$t_{1} \qquad t_{0}$$

$$w_{1} < w_{1}$$

$$t_{1} \qquad t_{0}$$

La dérivée partielle

$$w_{1} \coloneqq w_{1} - \alpha \boxed{\frac{\partial}{\partial w_{1}} J(W)}$$

$$t_{1} \qquad t_{0}$$

$$w_{1} \coloneqq w_{1} - negatif$$

$$t_{1} \qquad t_{0}$$

$$w_{1} > w_{1}$$

$$t_{1} \qquad t_{0}$$

Atteindre le minimum

Réduit vers le minimum

Impact du learning rate

Learning rate trop grand

Impact du learning rate

Learning rate trop petit

