

Metrics Explorer

Log Analytics

Azure Blob/ Data Lake Monitoring

- Blob and Data Lake have same inbuild monitoring tools
 - Because Data Lake is built on top of Blob
- Monitoring options
 - Insights/Workbooks
 - Metrics/Alerts
 - Classic Diagnostic settings
 - · Logging aspects and retention period

Monitoring

Databricks - Monitoring

Ganglia

- Built in to Databricks by default
- Default collection in every 15 min
- Can view snapshot of live data

Azure Monitor

- No Native support for Databricks
- Download and Install "Dropwizard metrics library"
 - Build a JAR file Spark-listeners-loganalytics-1.0-SNAPSHOT.jar
 - This is available on GitHub
 - Then you can create gauges or counters in your application code
 - You can also use Log4j appender in the same library.
 - Then you can create a log4j.properties configuration file

Databricks - Monitoring

Grafana

- Open source visualization platform
- 3 steps required:
 - Install Dropwizard metrics library in Databricks
 - Configure Azure Log Analytics workspace
 - Deploy and configure Grafana

Stream Analytics Service

Jobs can be monitored

- Azure Portal
- PowerShell
- .NET SDK
- Visual Studio

Important metrics

- SU% Utilization
- Runtime Error
- Watermark delay
- Input deserialization error
- Backlogged Input events
- Data Conversion Errors

Watermark delay matrics

Simple case: no time window, late arrival and out-of-order policy set to 10 seconds SELECT * FROM input TIMESTAMP BY eventTime Stream processing Stream Ingestion **Events** 000 Output Upload, IoT Hub Event Hubs Transmission Timeline ("wall clock") **Event Time:** Arrival Time (EnqueuedTime): Time when processed event is outputted: 12:01:00 12:01:05 12:01:06

Source: Microsoft

Output Watermark Delay = 12:01:06 - 12:01:00 = 6 seconds

Watermark delay matrics

Source: Microsoft

Troubleshoot Data Partitioning Bottlenecks

- Partitioning Process of physically dividing data into separate data store
- Why Partitioning
 - Improve Scalability, Security and availability
 - Reduce Contention
 - **Optimize** Performance
- Three strategies of partitioning
 - Horizontal partitioning
 - Vertical partitioning
 - Functional partitioning

Horizontal Partitioning

Key	Name	Description	Stock	Price	La stOrdered
ARC1	Arc welder	250 Amps	8	119.00	25-Nov-2013
BRK8	Bracket	250mm	46	5.66	18-Nov-2013
BRK9	Bracket	400mm	82	6.98	1-Jul-2013
HOS8	Hose	1/2"	27	27.50	18-Aug-2013
WGT4	Widget	Green	16	13.99	3-Feb-2013
WGT6	Widget	Purple	76	13.99	31-Mar-2013

Key	Name	Description	Stock	Price	LastOrdered
HOS8	Hose	1/2"	27	27.50	18-Aug-2013
WGT4	Widget	Green	16	13.99	3-Feb-2013
WGT6	Widget	Purple	76	13.99	31-Mar-2013

Vertical Partitioning

Key	Name	Description	Stock	Price	LastOrdered
ARC1	Arc welder	250 Amps	8	119.00	25-Nov-2013
BRK8	Bracket	250mm	46	5.66	18-Nov-2013
BRK9	Bracket	400mm	82	6.98	1-Jul-2013
HOS8	Hose	1/2"	27	27.50	18-Aug-2013
WGT4	Widget	Green	16	13.99	3-Feb-2013
WGT6	Widget	Purple	76	13.99	31-Mar-2013

Key	Name	Description	Price
ARC1	Arc welder	250 Amps	119.00
BRK8	Bracket	250mm	5.66
BRK9	Bracket	400mm	6.98
HOS8	Hose	1/2"	27.50
WGT4	Widget	Green	13.99
WGT6	Widget	Purple	13.99

Key	Stock	La st Ordered		
ARC1	8	25-Nov-2013		
BRK8	46	18-Nov-2013		
BRK9	82	1-Jul-2013		
HOS8	27	18-Aug-2013		
WGT4	16	3-Feb-2013		
WGT6	76	31-Mar-2013		

Functional Partitioning

Key	Customer	Address	Phone	
1630	[name]	[address]	12345	
1631	[name]	[address]	12345	
1648	[name]	address	12345	
1842	[name]	[address]	12345	
2055	[name]	address	12345	
2139	[name]	[address]	12345	

Key	Customer	Address	Phone	
1630	[name]	[address]	12345	
1631	[name]	[address]	12345	
1648	[name]	[address]	12345	
1842	[name]	[address]	12345	***
2055	[name]	[address]	12345	
2139	[name]	[address]	12345	***

Partitioning

Design Considerations

- Balance data distribution
- Balance workload distribution
- Minimize cross-partition data access or joins operations.
- Replicate static reference data
- Prefer eventual consistency
- Replicate partitions

Data Lake Optimization Techniques

- Data Ingestion considerations
 - Storage hardware
 - High speed internal network
 - Fast network connection b/w on-premises and cloud
- Parallel read/write
 - e.g. Data Factory parallel copies settings
- Structure your data set
 - File size vs number of files
 - File size b/w 256 MB to 100 GB
 - Folder and file structure
 - e.g. Dataset\YYYY\MM\DD\datafile_YYYY_MM_DD_HH_MM.tsv
- Same region
- Batch Data

Three main component

- Input
- output
- Data processing Query

Streaming Units (SUs)

- Processing power (CPU and Memory) allocated to your stream analytics job.
- · Azure Stream Analytics jobs perform all processing in memory
- · If SU% utilization is low and input events get backlogged
- Microsoft recommends setting an alert on 80% SU Utilization metric to prevent resource exhaustion
- The best practice is to start with 6 SUs for queries that don't use PARTITION BY
- Complex query logic could have high SU% utilization even when it is not continuously receiving input events.

Parallelization

- Partitioning helps to divide data in subsets.
- This would be based on partition key.
- If the data in the Event Hub has a partition key defined, then it is highly recommended to define the partition key in the input of Stream Analytics Job.
- · Input are already partitioned, output needs to be partitioned
- Embarrassingly parallel jobs
 - An embarrassingly parallel job is the most scalable scenario in Azure Stream Analytics.
 - It connects one partition of the input to one instance of the query to one partition of the output.
 - The number of input partitions must equal the number of output partitions.

SQL

SELECT *
INTO output

FROM input

PARTITION BY DeviceID

INTO 10

Steps in Query

- You can have multiple step in a query.
- You can start with 6 SUs for queries that don't use PARTITION BY
- You can also add 6 streaming units for each partition in a partitioned step.
- Example:
 - Let's say your input stream is partitioned by value of 10, and you only have
 one step in query

```
SQL

SELECT *
INTO output
FROM input
PARTITION BY DeviceID
INTO 10
```


Optimization

Maintain Statistics

- Automatically detect and create statistics on columns
- AUTO_CREATE_STATISTICS
- Update statistics of more relevant columns like date (or columns used in joins, where and group by clause)

PolyBase

- ADF or BCP can be used for small load
- PolyBase is best choice for large volume of data
- MPP architecture
- CTAS or INSERT INTO

Hash distribution large tables

- Default is Round Robin distribution
- Small tables joins Round Robin is fine
- Big tables joins use Hash Distribution

Optimization

Do not over partition

- Too many partition can slow down query
- Partition should have more than 1 million rows
- 60 partition by default
- So if you manually create 100 partition, behind the scene it is 100*60 = 6000 partitions.

Use the smallest possible column size

- Important for char or varchar type columns
- Use varchar instead nvarchar

Scaling

- Before you perform a heavy data loading or transformation operation
- During peak business hours

Pausing and resuming compute

- Storage and compute are seperate
- Transaction cancel