Some definitions

- a method is called consistent if the truncation error $\tau^h \to 0$ as $h \to 0$
 - in the example, we had that $au^h pprox C_t h^2$
 - ⇒ the discretization method is consistent
- a method is called stable if $\|L_h^{-1}\| \approx C_\ell$ where $C_e ll > 0$ is a constant independent of h
 - it can be shown that the solution operator in the example satisfies this inequality
 - ⇒ the discretization method is stable
- a method is called convergent if $||e_h|| = ||u u^h|| \to 0$ as $h \to 0$
 - because in the example we have $\tau^h \approx C_t h^2$ and $\|L_h^{-1}\| \approx C_\ell$, we have that $\|e_h\| \approx \|L_h^{-1}\| |\tau^h| \leq C_t C_\ell h^2$
 - ⇒ the discretization method is convergent