

How the Computer Works

based on X86/Linux

孟宁

电话: 0512-68839303

E-mail: mengning@ustc.edu.cn

主页: http://staff.ustc.edu.cn/~mengning

地址: 苏州工业园区独墅湖高等教育区仁爱路188号507室

Agenda

- The stored program computer
- X86 implementation
- Registers and Memory
- Stack memory + operations
- Example Program
- From C to running program
- Homework

The stored program computer

- Memory holds instructions and data
- CPU interpreter of instructions

ABI: Application Binary Interface

- Instructions encoding
- Registers convention in Instructions
- Most instructions can take a Memory address

X86 implementation

- EIP is incremented after each instruction
- Instructions are different length
- EIP modified by CALL, RET, JMP, and conditional JMP

Registers for work space

General-Purpose Registers

31	16	15	8	7	0	16-bit	32-bit
		AH		AL		AX	EAX _{累加器} (Accumulator)
		BH		BL		BX	EBX基地址寄存器(Base Registe
		CH		CL		CX	ECX计数寄存器(Count Register)
		DH		DL		DX	EDX 数据寄存器(Data Register)
			BP				EBP 堆栈基指针(Base Pointer)
		SI DI					ESI 亦以史去思(Indox Docistor
							变址寄存器(Index Register
		SP					ESP 堆栈顶指针(Stack Pointer)

- 8, 16, and 32 bit versions
- By convention some registers for special purposes
- Example: ADD EAX, 10
- Other instructions: SUB, AND, etc.

Segment Register

- ◆ CS——代码段寄存器(Code Segment Register), 其值为代码段的 段值;
- ◆ DS——数据段寄存器(Data Segment Register), 其值为数据段的 段值;
- ◆ ES——附加段寄存器(Extra Segment Register), 其值为附加数据 段的段值;
- ◆ SS——堆栈段寄存器(Stack Segment Register), 其值为堆栈段的段值;
- ◆ FS——附加段寄存器(Extra Segment Register), 其值为附加数据 段的段值;
- ◆ GS——附加段寄存器(Extra Segment Register), 其值为附加数据段的段值。

EFLAGS register

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	D	V I P	V F	A	V M	RF	0	N T	-0 p L	OF	D	F	T	SF	Z	0	AF	0	P	1	CF
X ID Flag (ID X Virtual Inter X Virtual Inter X Alignment C X Virtual-8086 X Resume Flax Nested Tas X I/O Privilege S Overflow Fl C Direction Fl X Interrupt En X Trap Flag (IS Sign Fla	in the second se	ot Feck lock (R NT eve (C (C (C (C (F))	Fla (/ de (F) Fl el (DF) Fla	g (AC) (VI	(VI) - M) (IF	F)		P)																							
S Indicates a	Str	ıtu	s	-la	a																										

- C Indicates a Control Flag
- X Indicates a System Flag

Memory: more work space

```
movl %eax, %edx edx = eax; register mode movl $0x123, %edx edx = 0x123; immediate movl 0x123, %edx edx = *(int32_t*)0x123; direct movl (%ebx), %edx edx = *(int32_t*)ebx; indirect movl 4(\%ebx), %edx edx = *(int32_t*)(ebx+4); displaced
```

- Memory instructions: MOV, PUSH, POP, etc
- Most instructions can take a memory address
- b,w,l分别代表8位,16位和32位

Stack memory + operations

Example instruction What it does

pushl %eax subl \$4, %esp

movl %eax, (%esp)

popl %eax movl (%esp), %eax

addl \$4, %esp

call 0x12345 pushl %eip (*)

movl \$0x12345, %eip (*)

ret popl %eip (*)

enter pushl %ebp

movl %esp,%ebp

leave movl %ebp,%esp

popl %ebp

Stack grows down

• Use to implement procedure calls

- 80386: 32 bit data and bus addresses
- Now: the transition to 64 bit addresses
- Backwards compatibility:
 - Boots in 16-bit mode, and switches to protected mode with 32-bit addresses
- 80386 also added virtual memory addresses
 - Segment registers are indices into a table
 - Page table hardware

...
pushl \$8
movl %esp, %ebp
subl \$4, %esp
movl \$8, (%esp)
...

nushl \$8
movl %esp, %ebp
pushl \$8
...

nushl \$8
movl %esp, %ebp
pushl %esp
pushl \$8
addl \$4, %esp
popl %esp
...

请画出当前堆栈状态, 表明当前栈顶和栈基地址位置

From C to running program

Example

```
int g(int x)
          return x+3;
int f(int x)
          return g(x);
int main(void)
          return f(8)+1;
```

```
g:
                    %ebp
          pushl
                    %esp, %ebp
          movl
                    8(%ebp), %eax
          movl
          addl
                    $3, %eax
          popl
                    %ebp
          ret
f:
          pushl
                    %ebp
                    %esp, %ebp
          movl
                    $4, %esp
          subl
                    8(%ebp), %eax
          movl
                    %eax, (%esp)
          movl
          call
                    g
                    %ebp,%esp
          movl
          popl
                    %ebp
          ret
main:
          pushl
                    %ebp
                    %esp, %ebp
          movl
          subl
                    $4, %esp
                    $8, (%esp)
          movl
          call
                    $1, %eax
          addl
                    %ebp,%esp
          movl
          popl
                    %ebp
          ret
```


1 2			
	g:	- Idena	0/ alam
3		pushl	%ebp
4		movl	%esp, %ebp
5		movl	8(%ebp), %eax
6		addl	\$8, %eax
7		popl	%ebp
8		ret	•
9			
10	main:		
11		pushl	%ebp
12		movl	%esp, %ebp
13		pushl	\$8
14		call	g
15		subl	\$8, %eax
16		movl	%ebp,%esp
17		popl	%ebp
18		ret	-
19			

它对应的C代码?

- ◆ 对能看得见的结构部分(例如,通用寄存器,控制寄存器,状态寄存器,中断或者例外寄存器)的使用方法,或者说编程模式,就是所谓的ABI。
- ◆ 掌握一个CPU的ABI,或者说编程界面,是一个基本功。是必须的。浅显说,就是那些寄存器的用法,分布和使用约定。
- ◆ 定义一个处理器的ABI,也是做编译器设计的第一个环节。笔者曾经设计过一个网络处理器的GCC的后端target。设计的第一个事情其实就是设计寄存器的约定。(by陈怀临)

- ◆ 计算机是怎样工作的? [单任务]
- ◆ 计算机是怎样工作的? [多任务]

实验: 计算机是怎样工作的?

- ◆ 实验:请使用Example的c代码分别生成.cpp,.s,.o和 ELF可执行文件,并加载运行,分析.s汇编代码在CPU 上的执行过程
- ◆ 要求: 通过实验解释单任务计算机是怎样工作的,并 在此基础上讨论分析多任务计算机是怎样工作的。
- ◆ gcc用法参考(*表示文件名)
 - gcc -E -o *.cpp *.c
 - gcc –x cpp-output –S –o *.s *.cpp
 - gcc -S -o *.s *.c
 - gcc -x assembler -c *.s -o *.o
 - gcc -c *.c -o *.o
 - as -o *.o *.s
 - gcc -o * *.o
 - gcc -o * *.c

"世上无难事

只要肯登攀"

谢谢大家!

参考资料:

http://pdos.csail.mit.edu/6.828/2011/lec/l-x86.pdf

http://www.tektalk.org/2011/12/11