2021全國資訊學科能力競賽 解說(NHSPC2021 Editorial)

A - barbershop

有 n 個人一起來店,第 i 個人的服務時間為 t_i 。每個客人等待時間是前面人 + 自己服務時間總和,求 等待時間總和的最小值。

例如:三個人服務時間為 2,1,3,若服務順序為 1,2,3 則等待時間總和為 2 + (2+1) + (2+1+3) = 11。

等價題序:給一個陣列 $t:=\{t_1,\,t_2,\,...,\,t_n\}$ · 將 t 重新排列使得 $nt_1+(n-1)t_2+(n-2)t_3+...+t_n$ 最小。由上式不難得知,順序越前面被乘的係數就越大,所以可以貪心地將數字從小排到大。複雜度 $O(n\log n)$ 。

B - bus

給定由 n 條線段組成的折線 $\mathbf{P} := \left\{\overline{P_i P_{i+1}}\right\}_{i=1}^n$ 與一點 O · 問 O 到 P 的最短距離。

先考慮這個問題:給定一線段 \overline{PQ} 與一點 O · 求 O 到 \overline{PQ} 的距離。 首先我們作 O 到 \overline{PQ} 的垂足 H · 並試著計算 \overline{OH} 。 注意 \overline{OH} 其實就是 ΔOPQ 以 \overline{PQ} 為底時的高 · 所以可以用下面的方法計算:

Length_OH(0: Point, PQ: Segment):
 A ← ΔOPQ
 return 2A/|PQ|

ΔΟΡΟ 可以用 Shoelace formula 計算。

但事情沒有這麼簡單。 O 到 \overline{PQ} 的距離並不總是 \overline{OH} : 當 \angle OPQ 或 \angle OQP 為鈍角時,H 並不在 \overline{PQ} 上,而此時的最短距離是 \overline{OP} 或 \overline{OQ} 。 由畢氏定理可知, \angle OPQ 為鈍角的充要條件是 $\overline{OP}^2 + \overline{PQ}^2 < \overline{OQ}^2$, 因此 O 到 \overline{PQ} 間的距離就可以用下面的方法計算:

```
Distance(0: Point, PQ: Segment):
    if |OP|^2 + |PQ|^2 < |OQ|^2 then
        return |OP|
    else if |OQ|^2 + |PQ|^2 < |OP|^2 then
        return |OQ|
    else
        return Length_OH(O, PQ)
    end if</pre>
```

代入 $\overline{PQ} = \overline{P_1P_2}, \overline{P_2P_3}, \dots, \overline{P_nP_{n+1}}$ 並取最小值就是答案。

C - busker

給一張 n 點(城市) m 邊的有向圖 G_0 。 我們對 G_0 的每條邊都加上 k 個點(村莊),得到一張 n+mk 節點的有向圖 G_0 並賦予點權重 g_0 公 (每個節點的收支)。

設 C 是 G 上的一個簡單環且 u ∈ V(C)。 若從 u 出發沿著 C 走一圈,任意前綴點權重和(所持金)都 ≥ 0 ,我們就說 C 是 G 的一個**好環**,而 u 是 C 的一個**好起點**。

請找出 G 的任一個好環 C 與 C 的任一個好起點 u · 並求出 C 上有幾個點可以當作好起點 · 這些好起點又有幾個在 G_0 上。

非負環必可以找到好起點

顯然一個好環有點權重和 ≥ 0 。我們證明若一個環的點權重和 ≥ 0 ,則它必定是一個好環 (i.e. 可以找到一個好起點)。

設 C 是一個點權重和 \geq 0 的環。隨意找一個 $u_1 \in V(C)$. 並設從 u_1 沿著 C 出發走一圈經過的點依序是 u_2 , u_3 , ..., $u_{|V(C)|}$ 。 對於所有的 $i \in \{0, 1, ..., |V(C)|\}$. 考慮在每個節點的所持金數列 s (也就是環的點權 前綴和) :

$$s(i) = \begin{cases} 0, & \text{if } i = 0, \\ c(u_1) + c(u_2) + \ldots + c(u_i), & \text{if } i \ge 1. \end{cases}$$
 (1)

考慮路途任一所持金最小的時刻 $k \in \{0, 1, ..., |V(C)| - 1\}$,也就是 k 滿足

$$s(k) = \min_{0 \le i \le |V(C)|-1} s(i).$$
 (2)

注意我們有 $s(|V(C)|) \ge 0 = s(0)$,因此

$$s(k) = \min_{0 \le i \le |V(C)|} s(i). \tag{3}$$

接著證明 uk+1 是一個好起點。

對於所有的 i ∈ { k + 1, k + 2, ..., |V(C)| } · 從 u_{k+1} 出發沿著 C 走到 u_i 的點權重和是 s(i) - s(k) · 但 s(k) ≤ s(i) · 故 s(i) - s(k) ≥ 0 °

非負環求好起點的數量

到前面為止,已經證明了任意一個非負環必定存在一個好起點(也就是題目所求的入能敷出演藝路線)。這裡假設讀者已經很熟悉 O(VE) 找負環的技巧。

接著來處理題目的另一個詢問,也就是環上共有幾個好起點。

方法 1: DP

定義 s 的前綴最小值 α_i 為 u_1 沿著 C 走到 u_i 時的最小所持金:

$$\alpha_i = \min_{0 \le k \le i} s(i). \tag{4}$$

類似地,我們也可以定義 s 的後綴最小值 β:

$$\beta_i = \min_{i < k < |V(C)|} s(i). \tag{5}$$

若改變起點從 u_x 開始沿著 C 走一圈,可以推出所持金最小的時刻如下:

- u_x 至 u_{|V(C)|} 間:β_x s(x 1)
- u₁ 至 u_{x-1} 間: α_{x-1} + s(|V(C)|) s(x 1)
- 上面兩者取最小值即可求得以 ux 為起點繞 C 走一圈的最小所持金

由於環展開頂多只有 n + mk 個節點, 故這邊複雜度為 O(n + mk)。

方法 2:

不失一般性假定 k=0,亦即任意時間所持金皆非負,對於所有的 i 皆有 s(i) ≥ 0。 接著證明 u_i 是好起 $\Longrightarrow s(i-1) ≤ s(j)$ for all $j ∈ \{i, i+1, ..., |V(C)|\}$ 。

1. 若 j ≥ i,從 u_i 沿著 C 走到 u_i 的點權重和是 s(j) - s(i-1) , 故 ⇒ 是直接結論。

2. 若 j < i,從 u_i 沿著 C 走到 u_j 的點權重和變成 s(|V(C)|) + s(j) - s(i-1), 又因為 $s(j) \ge 0$,我們有 $s(|V(C)|) + s(j) - s(i-1) \ge s(|V(C)|) - s(i-1) \ge 0$,

這給出了 ← 的證明,因此只要找出了一個非負環,就能在 O(|C|) = O(n + mk) 時間求出所有的好起點。

Subtask 1: $n \le 20$

直接建立 G · 注意我們有 $|V(G)| = n + mk = O(n^3)$ 且 $|E(G)| = m(k+1) = O(n^3)$ 。 對於每條邊 (u, v) · 轉移權重 c(u) :

[圖片待補]

我們用 Bellman-Ford 演算法找出一個非負環,時間複雜度為 $O(|V(G)||E(G)|) = O(n^6)$ 。

Subtask 2: $n \le 90$

在 Subtask 1 中,Bellman-Ford 的節點更新次數只要達到 n,就找到一個非負環了,故時間複雜度進一步降成 $O(n|E(G)|) = O(n^4)$ 。

Subtask 3: $n \le 2000$, $m \le 8000$

[圖片待補]

如此一來 Bellman-Ford 的時間就降為 O(mn)。

D - car

給一張 n 點 m 邊的有向圖,每條邊都可以反轉,但反轉第 i 條邊需要權限 c_i,反轉複數條邊所需的權限值就是反轉邊的最大權限。

問至少要有多少權限才可以將邊反轉使得整張圖沒有環?並輸出反轉方案。

Subtask 1: $n,m \le 20$

可以枚舉要反轉邊的 subset, 之後再檢查環有沒有被刪掉。

Subtask 2: $c_i \le 100$

答案 = 選的邊裡的最大權重,直接枚舉這個數字 x,代表可以將權限 x 以下的所有邊做任意反轉操作。

至於要怎麼求出方案以及判斷 x 是否是可行解, 這裡提供一個方法:

- 1. 首先將 ≤ x 的所有邊刪除,做 > x 邊的拓樸排序。
- 2. 由於 $\leq x$ 的邊可以任意改動方向,我們就改動邊的方向來符合上個步驟求出的拓樸順序。

在決定 x 以後可以花 O(n + m) 的時間檢查並求出可行解,複雜度是 O(c(n + m))。

Subtask 3: $n,m \le 10^5, c_i \le 10^9$

在 subtask 2 中我們已經知道了枚舉一個解的權限值判斷是否可行的方法。可以發現,若枚舉的解越大,可以改動的邊越多,也更有可能存在可行解,存在單調性。

因此我們可以將 subtask 2 中枚舉權重的部分改成二分搜尋,在 $O((n+m)\log c)$ 的時間做完。 當然 也能先將邊權 c_1 , ..., c_m 排序,再對排序後的 c_i 們做二分搜,時間複雜度進一步降成 $O((n+m)\log m)$ 。

E - colosseum

有座 n 層樓的競技場,其中第 i 層開設時間、金幣枚數門檻、挑戰費時、結束後獲得金幣枚數分別為 x_i , y_i , t_i , w_i 。 參賽者初始擁有的金幣枚數為 0,但可以從任一層開始挑戰。在抵達第 i 層時:

- 若已擁有 ≥ y_i 枚金幣且抵達時間 < x_i, 可以選擇等待競技開始或直接進入第 i+1 層
- 若已擁有 ≥ y; 枚金幣且抵達時間 ≥ x; 就一定要花 t; 時間參加競技
- 否則只能直接進入第 i+1 層

請問參賽者在時間 m 時能獲得的最大金幣數量是多少?本題 $n \le 300000$ 且 $1 \le w_i \le 1000$ 。

Subtask 2: $x_i = y_i = 0$

用兩個 pointer 來模擬 queue · 找出在 t_i 區間和不超過 m 的情況下 · w_i 區間和的最大值 · 時間複雜 度是 O(n) 。

Subtask 3: $x_i = 0$

由於每一層只要達到門檻數量的金幣就會發生戰鬥,可以用一個 queue Q 來儲存金幣數 f 與時間 s,並依序考慮第 1 層到第 n 層。

加入第 i 層時,先把 (0, 0) 插入 Q 的後端,接著將 $f \ge y_i$ 的 (f, s) 們全部加上 (w_i, t_i) ,最後再從 Q 的前端踢掉 s > m 的那些 (f, s) 們。 可以得到一個 $O(n^2)$ 時間複雜度的做法,再用 Fenwick tree 進一步加速到 $O(n \log n)$ 。

Subtask 1: n ≤ 1000

在金幣數相同的情況下,可以知道時間比較早的不會比較差。 我們用一個 hash map M 來儲存金幣數 f (key type) 與時間 s (mapped type),並依序考慮第 1 層到第 n 層。 加入第 i 層時,先加入 (0,0)至 M 中,接著對於 M 裡所有滿足 f \geq y_i 的 (f,s) 數對,做下面這件事情:

- 1. 若 s ≥ x_i · 則把 (f, s) 踢掉 · 並根據 s + t_i 是否超過 m 決定要不要加入 (f + w_i, s + t_i) 至 M 中。
- 2. 否則,根據 $x_i + t_i$ 是否超過 m,決定要不要加入 $(f + w_i, x_i + t_i)$ 至 M 中。

|M| 最大為 $\Sigma w_i + 1$,總共做 n 次,時間複雜度為 $O(n \Sigma w_i)$ 。

滿分做法(並沒有)

在驗題的過程中·我們誤以為時間越早金幣越多越好·但這是不正確的。 考慮 m = 10 \ x = {0, 0, 3, 0, 0} \ y = {0, 0, 10, 110, 0} \ t = {1, 1, 1, 5, 5} \ w = {100, 10, 1, 1, 1000} \ \circ

最佳解是從第 2 層出發,第 3 層等待,最後得到的 1011 枚金幣 (這時離開第 3 層的時間與金幣數分別為 4 與 11)。 另一方面,若從第 1 層出發且第 3 層不等待,則離開第 3 層的時間與金幣數分別為 2 與 110,看似比前者為優,但因過了 y_4 = 110 的門檻被強迫參加第 4 層的競技,最後只能拿到 111 枚金幣。

基本上這種測試資料需要特別構造。 由於比賽時的測資是隨機生成的,在我們的機器上平行跑了時間複雜度 $O(n \Sigma w_i)$ 的解 12 小時後終於確認比賽時的輸入輸出都是對的,只是這個執行時間根本不可能過得了時限。

F - fruit

- 一開始船上有 c 個種類的水果,第 i 種類有 ni 顆
- 依序經過 c 個城市,每經過一個城市可以決定要不要把船上**所有前 i 種類**的水果給當地盤商賣
- 積載每顆水果經過都市 i 需要積載成本 pi
- 把每顆水果給都市 i 的盤商賣需要成本 si
- 在都市 i 賣種類 j 的水果最後只會賣出 r_{ii} 顆

問若積載成本和銷售成本總和不超過 T 的前提下,最多能賣幾顆水果?限制:

- $1 \le c, n_i \le 40$
- $1 \le p_i, s_i \le 1000$
- $T \le 10^7$

Subtask 1: $c \le 20$, $T \le 30000$

直接枚舉所有可能的銷售都市集合,組合數為 $\Omega(2^{\circ})$ 。

Subtask 2: T ≤ 30000

考慮 DP 狀態 dp[i][j]:

- i 是最後一次卸貨給盤商銷售的城市 (=賣出最大的水果種類)
- j 是到城市 i 卸貨為止前 i 種類水果積載 + 銷售的費用和
- dp[i][j] 為最後一次在城市 i 卸貨, 前 i 種水果總花費 j 時最大賣出的水果數量
- 特殊地,若 i=0 則代表尚未卸貨

枚舉 i 的上一個卸貨點 $k(0 \le k < i)$:

- 最後一次卸貨所卸的水果種類為 k+1 至 i, 令 N = 船上 k+1 至 i 的水果數量和
- 最後一次卸貨產生的銷售費用為 N * s_i
- 水果 k+1 至 i 產生的積載費用為 N * (p₁ + p₂ + ... + p_i)
- 此次卸貨,在此城市將賣出 r_{i,k+1} + r_{i,k+2} + ... + r_{i,i} 顆水果

可以注意到上面的轉移式中,n, s, p, r_i 的和都可以用前綴和來 O(1) 求出。 因此只要輸入時先預處理這些數列的前綴和,便可以做到狀態 O(cT) 轉移 O(c) 的 DP,時間複雜度為 $O(c^2T)$ 。

滿分做法

因為 T 的範圍太大不適合拿來當狀態,只好試著想辦法用水果數量來構造對偶狀態。 考慮 DP 狀態 dp[i][j]:

- i 是最後一次卸貨給盤商銷售的城市 (=賣出最大的水果種類)
- j是到城市 i 為止前 i 種類水果銷售數量和
- dp[i][j] 為最後一次在城市 i 卸貨, 前 i 種水果銷售量 j 時所花的最小成本
- 特殊地,若 i=0 則代表尚未卸貨

轉移和上面 $O(c^2T)$ 的作法極為類似, 分別列出每次卸貨所產生的積載、銷售成本以及銷售量轉式會很清楚因此就不多加贅述了。 答案為滿足 $dp[i][i] \leq T$ 最大可能的 i。

整體的複雜度分析:

- 水果數量為 Σn; 個, 狀態數 O(c Σn;)
- 轉移 O(c)
- 因此 DP 的時間複雜度為 O(c² Σn_i)

G - pineapple

給定一棵有根樹,一開始每條邊權重都是1,處理下列兩種操作:

- 1. 把某條邊的權重變 0。
- 2. 詢問根節點到某一節點的權重和。

詢問數和節點數都是 105 等級。

Subtask 2

Root 的度數為 $1 \cdot 且其他節點度數最多為 2 \Rightarrow 給的樹是一條 path。$

這筆 subtask 可以用一棵 BIT 或線段樹來維護每條邊的權重, 詢問等價於求序列前綴和。複雜度是 O(n log n)。

滿分做法

假設某筆詢問將邊 (x, y) 由 1 改成 0,其中 x 是父節點。這個操作相當於將子樹 y 的答案都減 1。 每次的操作都是一個子樹操作,因此我們可以先計算初始答案,並將樹的時間戳記用來做線段樹的 index,即可在每次操作 $O(\log n)$ 的時間維護訊息。

這個技巧一般被稱作 Euler Tour Technique 或者俗稱樹壓平。 對此技巧不熟悉的可以在上面連結或相關關鍵字找到資料。

H - puipui

對於一個數列 $\mathbf{a} = a_1, a_2, \dots, a_k$ 定義 $f(\mathbf{a})$ 為

$$\max_{1 \le i \le k} \left| a_{(i \bmod k)+1} - a_i \right|. \tag{6}$$

上式和題目所求的環狀數列最大高度差等價。 現在給定 n 個數 h_1, h_2, \ldots, h_n · 想要從裡面抓出 p 個 k 項的數列 $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_p}$ (當然我們有 $n \geq pk$) 。請問

$$\max_{1 \le i \le p} f(\mathbf{a_i}) \tag{7}$$

的最小值是多少?

Subtask 2: k=n, p=1

不失一般性,假定 $h_1 \le h_2 \le \ldots \le h_n$ 。 經過亂嘗試以後我們發現似乎只要把奇數項從小排到大,再把偶數項從大排到小,就能給出最佳解。 (至於為什麼亂試會得到這個結論,就留給讀者自行思考了 [窩不知道.jpq])

為了接下來的討論方便,以下給出一些定義:

- 1. 一個 $\sigma \in S_n$ 是 $1,2,\ldots,n$ 的排列,我們寫成 $\sigma = \sigma(1),\sigma(2),\ldots,\sigma(n)$, 一個例子是 $\sigma = 1,3,5,4,2$ 。
- 2. $\sigma|_i$ 為「從 σ 去掉所有 >i 的數後得到的 $1,2,\ldots,i$ 排列 」。 例如當 $\sigma=1,3,5,4,2$ 時, $\sigma|_3$ 就是 1,3,2 。
- 3. 對於所有的 $\tau \in S_i$ · 定義 $g(\tau; \mathbf{h})$ 為

$$\max_{1 \le j \le i} |h_{\tau((j \bmod i) + 1)} - h_{\tau(j)}|. \tag{8}$$

白話一點解釋 $g(\tau; \mathbf{h})$ 代表的是將前 i 隻老鼠以 τ 排成環狀數列所得的最大高度差。 在本 subtask 中,我們要找出 $\sigma \in S_n$ 使得 $g(\sigma; \mathbf{h})$ 有最小值。

4. 定義

$$\sigma^* = \begin{cases} 1, 3, \dots, n-2, n, n-1, n-3, \dots, 2, & \text{if } n \text{ is odd,} \\ 1, 3, \dots, n-3, n-1, n, n-2, \dots, 2, & \text{if } n \text{ is even.} \end{cases}$$
 (9)

可以發現當 $n \geq 2$ 時, $\sigma^*|_{n-1}$ 和 $n \leftarrow n-1$ 時的 σ^* 完全相同。

我們用數學歸納法證明 σ^* 會給出最小的 $g(\sigma; \mathbf{h})$ 。 對於 $n \leq 3 \cdot g(\sigma; \mathbf{h}) = h_n - h_1$ · 在 n 是 3 以下的情況確實為最佳解。 若 $n \geq 4$ 並考慮把 n 插入 $\sigma^*|_{n-1}$ 以得到 σ^* 的過程。 由於 n 被插入 n-2 和 n-1 中間且 n-1 和 n-3 相鄰,我們知道

$$g(\sigma^*|_{n-1}; \mathbf{h}) \ge h_{n-1} - h_{n-3} \ge h_{n-1} - h_{n-2}. \tag{10}$$

另一方面,對於任意 $\sigma \in S_n$,我們本來就有

$$\begin{cases} g(\sigma; \mathbf{h}) \ge h_n - h_{n-2}, \\ g(\sigma; \mathbf{h}) \ge g(\sigma|_{n-1}; \mathbf{h}). \end{cases}$$
(11)

所以可以分兩種情況:

- 1. $g(\sigma^*|_{n-1};\mathbf{h}) < h_n h_{n-2} \Rightarrow g(\sigma^*;\mathbf{h}) = h_n h_{n-2}$ · 故 σ^* 為最小的 $g(\sigma;\mathbf{h})$ °
- 2. $g(\sigma^*|_{n-1};\mathbf{h}) \geq h_n h_{n-2} \Rightarrow g(\sigma^*;\mathbf{h}) = g(\sigma^*|_{n-1};\mathbf{h})$ · 根據歸納法假設知道 σ^* 也會最小化 $g(\sigma;\mathbf{h})$

只要先將 \mathbf{h} 排序好,就能在 O(n) 時間內得出答案,時間複雜度為 $O(n \log n)$ 。

Subtask 3: p = 1

一樣先將 ${\bf h}$ 排序好,接著再用 sliding window 在 O(n) 時間內得出答案,時間複雜度與 subtask 2 相同。

滿分做法

直接對答案 x 做二分搜·判斷是否能切出 $\geq p$ 個 k 項的數列 \mathbf{a} 滿足 $f(\mathbf{a}) \leq x$ 。時間複雜度為 O(n log n + n log H)·其中 H 是 h_i 的最大值。

I - rail

給定 L, 問 2×L 方格能放幾個不相交的迴圈使得所有方格中心都被經過, 且每個迴圈最多只能有 1 條斜邊。

[圖片待補]

可以發現若鉛直線切出的寬度是 I 與 i-I · 則被切出 I 的那邊有 2I - 3 種填滿的方式 · 這樣一來我們就有

$$D_i = \sum_{j=0}^{i-2} (2(i-j) - 3)D_j. \tag{12}$$

Subtask 1: L ≤ 7

直接帶入遞迴式計算,時間複雜度是指數級。

Subtask 2: L ≤ 1000

根據前面所介紹的遞迴式依序計算 $D_0,\,D_1,\,...,\,D_L$, 並用一個 DP 表格記錄算過的 D_i 們,需時 $O(L^2)$ 。

Subtask 3: $L \le 10^5$

整理遞迴式

$$D_{i} = \sum_{j=0}^{i-2} (2(i-j) - 3)D_{j}$$

$$= \sum_{j=0}^{i-2} (2i - 2j - 3)D_{j}$$

$$= (2i - 3)\sum_{j=0}^{i-2} D_{j} - 2\sum_{j=0}^{i-2} jD_{j}.$$
(13)

令
$$A_i:=\sum_{j=0}^i D_j$$
 以及 $B_i:=\sum_{j=0}^i jD_j$,則上式可以進一步寫成 $A_i-A_{i-1}=(2i-3)A_{i-2}-2B_{i-2}.$ (14)

加上 $B_i = B_{i-1} + i(A_i - A_{i-1})$ 這個條件,即可在 O(L) 時間內算出 $D_L = A_L - A_{L-1}$ 。

Subtask 4: $L \le 10^{10}$

我們再度化簡遞迴式:

$$D_i = (2i - 3) \sum_{j=0}^{i-2} D_j - 2 \sum_{j=0}^{i-2} j D_j, \tag{15}$$

$$D_{i-1} = (2i-5)\sum_{j=0}^{i-3} D_j - 2\sum_{j=0}^{i-3} jD_j.$$
(16)

將兩式相減得到

$$D_{i} - D_{i-1} = (2i - 3)D_{i-2} + 2\sum_{j=0}^{i-3} D_{j} - 2(i - 2)D_{i-2}$$

$$= D_{i-2} + 2\sum_{j=0}^{i-3} D_{j},$$
(17)

因此

$$D_i - D_{i-1} - D_{i-2} = 2\sum_{j=0}^{i-3} D_j, (18)$$

$$D_{i-1} - D_{i-2} - D_{i-3} = 2\sum_{j=0}^{i-4} D_j.$$
(19)

再度將兩式相減得到

$$D_i - 2D_{i-1} + D_{i-3} = 2D_{i-3},$$

故有

$$D_i = 2D_{i-1} + D_{i-3}. (20)$$

這是個線性遞迴式。搭配初始條件 $D_0=1, D_1=0, D_2=1$. 則對於所有的 $L\geq 3$. 皆有

$$\begin{pmatrix} D_L \\ D_{L-1} \\ D_{L-2} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} D_{L-1} \\ D_{L-2} \\ D_{L-3} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^{L-2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. \tag{21}$$

利用快速幕,即可在 O(log L) 時間內得出答案。

This site is open source. Improve this page.