solution

对于 a^{b^c} ,等于 a^{b^\prime} 。那么第一步就是把a化为 a_1 , $a=a_1^k,k$ 最大。

得到
$$a_1^{p_1^{x_1}\cdot p_2^{x_2}\cdot p_3^{x_3}\cdot p_4^{x_4}...}$$
的形式。设 $k=\max_{i=1}^n x_i.$

可以化成其它两项的指数塔的形式: $(a_1^{p_1^{y_1}\cdot p_2^{y_2}\cdot p_3^{y_3}\cdot p_4^{y_4}})^{p_1^{x_1-y_1}\cdot p_2^{x_2-y_2}\cdot p_3^{x_3-y_3}\cdot p_4^{x_4-y_4}\cdots$ 。

再化成三项的形式:
$$(a_1^{p_1^{y_1^1}\cdot p_2^{y_2^2}\cdot p_3^{y_3^3}\cdot p_4^{y_4^4}})^{(p_1^{x_1^1}\cdot p_2^{x_2^2}\cdot p_3^{x_3^3}\cdot p_4^{x_4^4}\dots)^w}$$
。

那么指数塔的第三项w只能为2到k中的数。

于是遍历w的取值,在w确定的情况下,有 $y_i^i+x_i^i\cdot w=x_i$,那么指数塔第二项中的 x_i^i 只能有 0到 x_i/w 种选项,第二项确定,第一项也就确定了。则总选项数为 $\prod_{i=1}^n(x_i/w+1)-1$.减一是减去指数塔第二项为一的情况。

powerTpwers 函数是计算数w可以有多少种不同的指数塔表示方式。