Terminology

Agent 在t 时刻

1. 所处的状态

2. 进行的动作

 S_t -

 a_t

agent 是如何根据状态来**决定**动作的?换言之, a_t 与 s_t 如何联系起来?

3. Policy $\pi(A|S)$: agent 在处于状态 s_t^3 的情况下,以特定的目标为指导,做出动作 a_t 的概率。例如

 $\pi(a_t^1|s_t^3)=0.3$

 $\pi(a_t^2|s_t^3)=0.65$

 $\pi(a_t^3|s_t^3)=0.05$

即,在状态 s_t^3 的情况下,agent做出action 2的概率最大,是0.65。接下来的问题是,特定目标是什么?是累积奖励cumulative reward的最大化。那,什么是奖励?

4. Reward 的设定,就是对agent的世界观进行设定,告诉它什么是对的、什么是错的,从而决定了它的行为准则。例如:

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).

• Nothing happens: R = 0

Agent的trained policy会尽量规避风险,努力向final迈进,但也会偶尔吃金币 (假如金币远小于10000)。

注意: agent在基于policy做出action是有**随机性的**,并不是一味的去做能够获得最大累积奖励的action。例如,agent处于状态 s_t^3 时可能进行的动作,以及获得的奖励如图1,Policy如图2所示。

虽然agent做 a_t^2 的获益最大,但是agent还是有可能做 a_t^3 。这就好比agent在一个由policy决定的potential action pool中进行随机采样,虽然 a_t^2 样本最多,但是完全有可能采样到 a_t^3 ,甚至 a_t^1 。

综上,在RL中,在一个状态下,agent的动作虽然倾向于最优,但是同样具有随机性,其目的是在博弈时增加不确定性,防止被对手看穿。

当agent进行了动作后,agent就会处于一个新的状态 s_{t+1} ,这个状态是确定的吗?不是。如下图所示,当agent做了向上的动作,环境(程序)可能会返回不同的状态 s_{t+1} 。在这个例子中,环境的随机状态由怪物的随机移动导致。

5. State transition: $p(s_{t+1}^1|s_t^3, a_t^3)$

当前状态为 s_t^3 ,进行动作 a_t^3 后,环境使其处于 s_{t+1}^1 的概率。这是环境可知而玩家不可知的。

注意: 在RL中,在agent做出一个动作后,环境使其处于的新状态具有不确定性,即环境用状态转移函数算出随机性,然后用概率随机抽样得到 s_{t+1}^4

$$p(s_{t+1}^{1}|s_{t}^{3}, a_{t}^{3})=0.3$$
 $p(s_{t+1}^{2}|s_{t}^{3}, a_{t}^{3})=0.5$ $p(s_{t+1}^{3}|s_{t}^{3}, a_{t}^{3})=0.1$ $p(s_{t+1}^{4}|s_{t}^{3}, a_{t}^{3})=0.1$ $p(s_{t+1}^{4}|s_{t}^{3}, a_{t}^{3})=0.2$ s_{t+1}^{4} s_{t+1}^{4} s_{t+1}^{4} s_{t+1}^{4} s_{t+1}^{4} s_{t+1}^{4} s_{t+1}^{4}

综上: 阐述了RL中的五个基本概念和两个不确定性来源

State-action-reward trajectory:

接下来, 讲述三个高级的概念。

6. Return

Definition: Return (aka cumulative future reward).

- $U_t = R_t + R_{t+1} + R_{t+2} + R_{t+3} + \cdots$
 - Future reward is less valuable than present reward
 - R_t should be given less weight than R_{t+1} 从人的思维来讲,1年后的reward相比于今天的reward具有更大的不确定性。 在衡量两者时,1年后的reward具有较小的权重。

Therefore,

Definition: Discounted return (aka cumulative discounted future reward).

- γ: discount rate (tuning hyper-parameter).
- $U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$

 U_t 表示: 从t时刻起,将来能获得的cumulative reward。由于在任意时刻的状态、相应的决策都具有<mark>随机性</mark>,State-action-reward trajectory具有许多种可能,而每一种可能对应于一个cumulative reward u_t 。因此, U_t 是一个随机变量,具有随机性(这也是为什么用大写字母的原因)。

• Return U_t depends on states $S_t, S_{t+1}, S_{t+2}, \cdots$ and actions $A_t, A_{t+1}, A_{t+2}, \cdots$

7. Action-Value Function

Definition: Action-value function for policy π . 与policy有关

• $Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right]$. 给定policy π ,在状态 s_t^1 条件下选择 a_t^1 能 〈 得到的 U_t 的期望。 有多好。

Definition: Optimal action-value function. 与policy无关

• $Q^*(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t)$. 遍历所有policy,在状态 s_t^1 条件下选择 a_t^1 最多能得到的 U_t 的期望。 最好也就是这样了。

Whatever policy function π is used, the result of taking a_t^1 at state s_t^1 cannot be better than $Q^*(s_t^1, a_t^1)$.

8. State-Value Function

Definition: State-value function.

- $V_{\pi}(s_t) = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$. (Actions are discrete.)
- $V_{\pi}(s_t) = \int \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}) d\mathbf{a}$. (Actions are continuous.)

For fixed policy π , $V_{\pi}(s)$ evaluates how good the situation is in state s.

 $\mathbb{E}_{S}[V_{\pi}(S)]$ evaluates how good the policy π is.

综上, 有两种AI控制agent的方法:

The agent can be controlled by either $\pi(a|s)$ or $Q^*(s,a)$.

Policy-based learning

Suppose we have a good policy $\pi(a|s)$.

- Upon observing the state s_t ,
- random sampling: $a_t \sim \pi(\cdot | s_t)$.

Value-based learning

Suppose we know the optimal action-value function $Q^*(s, a)$.

- Upon observe the state s_t ,
- choose the action that maximizes the value: $a_t = \operatorname{argmax}_a Q^*(s_t, a)$.