Homework5

Qi'ao Chen 21210160025

October 24, 2021

Exercise 1. Let M be a structure and $\mathcal U$ be an ultrafilter on $\mathbb N$. Let $M^{\mathcal U}$ be the ultrapower $\prod_{i\in\mathbb N}M/\mathcal U$. Let $f:M\to M^{\mathcal U}$ be the map sending $a\in M$ to the class of (a,a,a,\dots) , i.e., the class of constant function $g_a(x)=a$. Show that f is an elementary embedding.

Proof. Let $M_i = M$ for all $i \in \mathbb{N}$, $\alpha_a = f(a)$

First we show that f is an embedding. f is injective from definition.

- 1. For any constant symbol c, $c^M \in M$. Then $c^M = a$ and $M \models c = a$. As $\{i \in \mathbb{N} : M_i \models c = a\} = \mathbb{N} \in \mathcal{U}$, we have $M^{\mathcal{U}} \models c = f(a)$ and $f(c^M) = f(a) = c^{M^{\mathcal{U}}}$.
- 2. For any function symbol h and suppose $M \vDash h(a_1,\dots,a_n) = a$. Then $\{i \in \mathbb{N}: M_i \vDash h(a_1,\dots,a_n)\} = \mathbb{N} \in \mathcal{U}$. Hence $M^{\mathcal{U}} \vDash h(f(a_1),\dots,f(a_n)) = f(a)$. Thus $f(h^M(a_1,\dots,a_n)) = f(a) = h^{M^{\mathcal{U}}}(f(a_1),\dots,f(a_n))$.
- 3. For any relation symbol R, $M \vDash R(a_1,\ldots,a_n)$ iff $\{i \in \mathbb{N}: M_i \vDash R(a_1,\ldots,a_n)\}$ iff $M^{\mathcal{U}} \vDash R(f(a_1),\ldots,f(a_n))$

Consequently f is an embedding. For arbitrary formula $\varphi(x_1,\ldots,x_n)$, if $M \vDash \varphi(a_1,\ldots,a_n)$ where $a_1,\ldots,a_n \in M$. Then $\{i \in \mathbb{N}: M \vDash \varphi(a_1,\ldots,a_n)\} = \mathbb{N} \in \mathcal{U}$. Thus $M^{\mathcal{U}} \vDash \varphi(f(a_1),\ldots,f(a_n))$. If $M^{\mathcal{U}} \vDash \varphi(f(a_1),\ldots,f(a_n))$, then $S = \{i \in \mathbb{N}: M \vDash \varphi(a_1,\ldots,a_n)\} \in \mathcal{U}$. As $S \neq \emptyset$, $M \vDash \varphi(a_1,\ldots,a_n)$ and $S = \mathcal{U}$. Thus we have

$$M\vDash\varphi(a_1,\dots,a_n)\Leftrightarrow M^{\mathcal{U}}\vDash\varphi(f(a_1),\dots,f(a_n))$$

and f is elementary

Exercise 2 (2). Say that a set $S \subseteq \mathbb{N}$ is **cofinite** if $\mathbb{N} \setminus S$ is finite. Show that there is an ultrafilter \mathcal{U} containing every cofinite set (and possibly other sets as well)

Proof. Let $A=\{S\subseteq \mathbb{N}: S \text{ is cofinite}\}$. For any $S_1,S_2,S_1\cap S_2=\mathbb{N}-((\mathbb{N}-S_1)\cup (\mathbb{N}-S_2))$. As $\mathbb{N}-S_1$ and $\mathbb{N}-S_2$ is finite, $S_1\cap S_2$ is still cofinite. Thus A has finite intersection property and there is a filter $\mathcal{F}\supseteq A$. Hence there is an ultrafilter $\mathcal{U}\supseteq \mathcal{F}\supseteq A$

Exercise 3. For $i\in\mathbb{N}$, let \mathcal{U}_i be the set $\{S\subseteq\mathbb{N}:i\in S\}$. Show that \mathcal{U}_i is an ultrafilter on \mathbb{N}

Proof. 1. As $i \in \mathbb{N}$ and $i \notin \emptyset$, we have $\mathbb{N} \in \mathcal{U}_i$ and $\emptyset \notin \mathcal{U}_i$

- 2. If $A \in \mathcal{U}_i$ and $A \subseteq B$, then $i \in A \subseteq B$, hence $B \in \mathcal{U}_i$
- 3. If $A, B \in \mathcal{U}_i$, then $i \in A$ and $i \in B$, so $i \in A \cap B$. Thus $A \cap B \in \mathcal{U}$
- 4. For any $A \subseteq \mathbb{N}$, either $i \in A$ or $i \notin A$, whence either $A \in \mathcal{U}$ or $\mathbb{N} \setminus A \in \mathcal{U}$ Consequently, \mathcal{U} is an ultrafilter

Exercise 4. Let $\mathcal U$ be a non-principal ultrafilter on $\mathbb N$. Show that $\mathcal U$ contains every cofinite set.

Proof. If there is a cofinite set S that isn't belong to \mathcal{U} . Then $S' = \mathbb{N} \setminus S$ is finite and belongs to \mathcal{U} . For every element $s \in S'$, either $\{s\} \in \mathcal{U}$ or $\mathbb{N} \setminus \{s\} \in \mathcal{U}$. If $\{s\} \in \mathcal{U}$, then \mathcal{U} is principal. So for all $s \in S'$, $\mathbb{N} \setminus \{s\} \in \mathcal{U}$. Then the finite intersection $S' \cap \bigcap_{s \in S'} (\mathbb{N} \setminus \{s\}) = \emptyset \in \mathcal{U}$, which is impossible. Thus \mathcal{U} contains every cofinite set.

Exercise 5. Let \mathcal{U} be an ultrafilter on \mathbb{N} containing every cofinite set. Let $\mathbb{R}^{\mathcal{U}}$ be the ultrapower of the structure $(\mathbb{R}, +, \cdot, 0, 1)$. Show that $\mathbb{R}^{\mathcal{U}}$ is not isomorphic to \mathbb{R}

Proof. Let $a \in \mathbb{R}^{\mathcal{U}}$ be the class of the tuple $(0,1,2,3,4,5,\dots)$. For each $n \in \mathbb{N}$, let $\varphi_n(x,y)$ be

$$\underbrace{1+1+\cdots+1}_{n \text{ times}} + y \cdot y = x$$

As a is a function $\mathbb{N} \to \mathbb{R}$ s.t. for all $i \in \mathbb{N}$, a(i) = i. Let $b : \mathbb{N} \to \mathbb{R}$ be

$$b(i) = \begin{cases} 0 & i \le n \\ \sqrt{i - n} & i > n \end{cases}$$

We claim that $\mathbb{R}^{\mathcal{U}} \vDash \varphi_n([a],[b])$. Let $S = \{i \in \mathbb{N} : \mathbb{R} \vDash \phi(a(i),b(i))\}$. Then $\mathbb{N} \setminus S = \{0,\dots,n-1\}$ is finite. Thus $S \in \mathcal{U}$. As $\mathbb{R}^{\mathcal{U}} \vDash \varphi_n([a],[b]) \Leftrightarrow S = \{i \in \mathbb{N} : \mathbb{R} \vDash \varphi_n(a(i),b(i))\} \in \mathcal{U}$, we have $\mathbb{R}^{\mathcal{U}} \vDash \varphi_n([a],[b])$ and $\mathbb{R}^{\mathcal{U}} \vDash \exists y \varphi_n([a],y)$. Let $\Gamma(x) = \{\varphi_n(x,y) : n \in \mathbb{N}\}$. Then $\Gamma(x)$ is realized in $\mathbb{R}^{\mathcal{U}}$ but not in \mathbb{R} since

there is n s.t. x-n<0. If there is such a isomorphism f, then $f^{-1}([a])$ realizes $\Gamma(x)$, which is impossible. Thus $\mathbb{R}^{\mathcal{U}}$ is not isomorphic to \mathbb{R} . \square