

Deep Learning for Science and Engineering Teaching Kit

A primer on TensorFlow and PyTorch

The Deep Learning for Science and Engineering Teaching Kit is licensed by NVIDIA and Brown University under the Creative Commons Attribution-NonCommercial 4.0 International License.

Contents

Introduction to Deep Learning frameworks
Programming mode and computational graphs
Ranks and Tensor data structures
Methods on tensors
Basic Linear algebraic operations on Tensors
Coding binary operator and operands using Python Primitives
Automatic differentiation (AD)
Basic function approximation using Neural Networks

Objectives

- ☐ Brief introduction of tensors and algebraic operations on tensors using PyTorch and TensorFlow
- ☐ A brief introduction on preparing data for training processes
- ☐ An example of implementation of regression problem in python with and with out PyTorch and TensorFlow
- □ Demonstration on implementation of feed-forward fully-connected network in PyTorch and TensorFlow
- □Demonstration on implementation of AD process in PyTorch and TensorFlow

Deep Learning frameworks

- In this course, we will demonstrate the implementation of machine learning algorithms in two frameworks.
- PyTorch: PyTorch is the product of Facebook: Feels more ``pythonic" with an object-oriented approach.
- TensorFlow: TensorFlow is developed and maintained by Google Brain. Has several options from which you may choose.

Installing PyTorch

☐ Go to PyTorch Website and select the environment and configuration; e.g, on Mac with CPU and using pip as package builder, we have

☐ Then run this in jupyter not book as follow

Note the ! (exclamation) before the pip


```
In [2]: 1 !pip3 install torch torchvision torchaudio
```


Installing Tensorflow

☐ Very simple: run this on *jupyter* note book

```
In []: 1 !pip3 install tensorflow
```

☐ Sidenote: To know the list of packages in your current environment; do

```
In [3]: 1 !pip freeze
```


Demo: Installing the PyTorch and TensorFlow

Computational Model in PyTorch and TensorFlow

- ☐ Mathematical expressions are evaluated by first constructing the computational graph
- □In graph operators are represented by nodes and edges as data or arrays or placeholders
- ☐ Evaluate the graph by passing the data for variables

Computational graph: An example

 $ex_1: 8*(y+x)$

Demo: Construct Graph in Python

Lets code up: Graph based computation

"Constant" sub-class: e.g., 8

```
# Super class for Expressions:
 2
   class Expr:
       pass
   ### Subclass of Expr for Constant e.g., 3
   class Const(Expr):
       def __init__(self, val):
            self.val = val
10
11
       def getVal(self):
12
           return self.val
13
14
       def str (self):
15
           return str(self.getVal())
16
17
       def eval(self, env):
18
           return self.getVal()
19
```

"Variable" sub-class: e.g., 8

```
### Subclass of Expr for Variables e.g., x, y
   class Var(Expr):
       def init (self, name):
23
           self.name = name
24
25
       def getName(self):
26
           return self.name
27
28
       def str (self):
29
            return self.getName()
30
31
       def eval(self, env):
32
           return env[self.name]
33
```


Lets code up: Graph based computation:

Binary Operation: "Plus" sub-class

Binary Operation: "Times" sub-class

```
class Plus(Expr):
    def __init__(self, l, r):
        self.l = 1
        self.r = r
    def str (self):
        return "(" + str(self.l) + "+" + str(self.r) + ")"
    def getLeft(self):
        return self.l
    def getRight(self):
        return self.r
    def eval(self, env):
        return self.getLeft().eval(env) + self.getRight().eval(env)
```

```
### Subclass of Expr for Binary Operations: e.g., x, y
class Times(Expr):
    def __init__(self, l, r):
        self.l = 1
        self.r = r
    def getLeft(self):
        return self.1
    def getRight(self):
        return self.r
    def str (self):
        return "(" + str(self.getLeft()) + "*" + str(self.getRight()) +
```


Demo: Graph Based Computation

Scalars, Vectors, Matrices and Tensors

Data Structures: NumPy and PyTorch

1 import numpy as np

```
# Set seed for reproducibility
np.random.seed(0)

# Predefine Matrix of shape=(2,3)
np.array([[4, 5, 6], [1, 7, 8]])

# Zero Matrix of shape=(3,3)
np.zeros((3,3))

# Identity Matrix of shape=(2,2)
np.eye(2)

# Random Matrix of shape=(3,3)
np.random.rand(3,3)
```



```
In [30]: 1 import torch
```

```
# Set seed for reproducibility
torch.manual_seed(0)

# Predefine Matrix of shape=(2,3)
torch.tensor([[4, 5, 6], [1, 7, 8]])

# Zero Matrix of shape=(3,3)
torch.zeros((3,3))

# Identity Matrix of shape=(2,2)
torch.eye(2)

# Random Matrix of shape=(3,3)
torch.rand(3,3)
```


Properties of Tensor

```
# Scaler
   s = torch.tensor(1.)
   print(f"Sclaer x: {s}")
   # Check dimension of Scaler: which is Rank in Linear Algebra Term
   d = s.dim()
   print(f"Dimension of vector is: {d}")
10
   # Vectors
   v = torch.tensor([1., 2., 3.])
   print(f"Vector v: {v}")
14 #Check dimension of Vectors
15 d = v.dim()
   print(f"Dimension of vector is: {d}")
17
18
   # Matrix
   m = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
   d = m.dim()
   print(f"Dimension of matrix is: {d}")
23
24
   # Tensor
   # Matrix
   m = torch.tensor([[[1., 2., 3.], [4., 5., 6.], [1., 2., 3.], [4., 5., 6.]]))
   d = m.dim()
   print(f"Dimension of Tensor is: {d}")
30
```


Demo: Tensors in PyTorch

Methods on Tensors: dimensions

```
# Scaler
   s = torch.tensor(1.)
   print(f"Sclaer x: {s}")
   # Check dimension of Scaler: which is Rank in Linear Algebra Term
 8 d = s.dim()
 9 print(f"Dimension of vector is: {d}")
10
   # Vectors
12 v = torch.tensor([1., 2., 3.])
13 print(f"Vector v: {v}")
14 #Check dimension of Vectors
15 d = v.dim()
16 print(f"Dimension of vector is: {d}")
17
18
19 # Matrix
20 m = torch.tensor([[1., 2., 3.],[4., 5., 6.]])
   d = m.dim()
   print(f"Dimension of matrix is: {d}")
23
24
   # Tensor
   # Matrix
   m = torch.tensor([[[1., 2., 3.], [4., 5., 6.], [1., 2., 3.], [4., 5., 6.]]))
   d = m.dim()
   print(f"Dimension of Tensor is: {d}")
30
```


Demo: dim Methods on Tensors

Methods on Tensors: sum and reshape

```
Sum
    # Set seed for reproducibility
   torch.manual_seed(0)
    # Random Matrix of shape=(3,3)
   x = torch.rand(3,2)
   print(f"x: {x}")
    xsum = torch.sum(x, dim=1)
    print(f"xsum using mthod1: {xsum}")
11
   x.sum(dim=1)
    print(f"xsum using mthod2: {xsum}")
14
15
```

```
Reshape: view and reshape methods
In [62]:
          1 #### Inplace Reshaping
             # A vector of length N=10
            x = torch.tensor([1,2,3,4,5,6,7,8,9,10, 11, 12])
             # Reshape in amatrix of shape= (2,5)
            x.view(3,4)
             # Reshape with unspecified number of rows and 4 column
            x.view(-1, 4)
          10
             #### Reshaping via copying
         12
             # A vector of length N=10
             x = torch.tensor([1,2,3,4,5,6,7,8,9,10,11,12])
         15
             # Reshape in amatrix of shape= (2,5)
             y3 = x.reshape(3,4)
          18
             # Reshape with unspecified number of rows and 4 column
         20 y4 = x.reshape(-1,4)
```


Demo: Methods sum and reshape Tensors in PyTorch

Methods on Tensors: computing norms

$$L_p \text{ norm} : ||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

$$L^1 \text{ norm} : ||\mathbf{x}||_1 = |x_1| + |x_2| + \dots + |x_n|$$

$$L^2 \text{ norm} : ||\mathbf{x}||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Using inbuild PyTorch method

Using PyTorch Primitives

```
torch.manual_seed(0)
x = torch.rand(3)
x.norm(p=1)
x.norm(p=2)
print(f"L1 Norm of x is:{x.norm(p=1)}")
print(f"L2 Norm of x is:{x.norm(p=2)}")
```

```
1  n1 = torch.sum(torch.abs(x))
2  print(f"L1 norm: is: {n1}")
3  n2 = torch.sqrt(torch.sum(x**2))
4  print(f"L2 norm: is: {n2}")
5
6  ## Or Calling method directly on the data structures
7  n1 = x.abs().sum()
8  print(f"L1 norm: is: {n1}")
9  n2 = (x**2).sum().sqrt()
10  print(f"L2 norm: is: {n2}")
```

Demo: Norms

Tensors on GPUs

Mapping tensors to GPU

```
dev_cpu = torch.device("cpu")
 2 dev_gpu = torch.device("cuda:0")
   # Send Tensor to GPU
   x.to(dev_cpu)
 6
tensor([[4., 5., 8.],
       [3., 8., 9.]])
 1 # At the start of your code
 device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
   # For later dispatch
   x.to(device)
tensor([[4., 5., 8.],
        [3., 8., 9.]])
```


NumPy ----> PyTorch ----> NumPy

```
import numpy as np
 X = np.random.random((4,4))
 #print(X)
 # NumPy to PyTorch
2 Y = torch.from numpy(X)
3 #print(Y)
 # PyTorch ---> NumPy
 X = Y.numpy()
 #print(X)
```


Timing GPU Operations

```
1 A = torch.rand(100, 400, 400)
 2 \#B = A.cuda()
 3 A.size()
torch.Size([100, 400, 400])
 1 %timeit -n 3 torch.bmm(A, A)
 2 %timeit -n 3 torch.bmm(B, B)
```


Demo: Tensors on GPU, NumPy<->PyTorch, and, Timing

Automatic Differentiation in Python

$$d = a * (a + b)$$

Forward pass

Backward pass

By chain rule:

$$\frac{\partial d}{\partial a} = \frac{\partial \bar{d}}{\partial a} + \frac{\partial \bar{d}}{\partial c} * \frac{\partial \bar{c}}{\partial a}$$
$$= c + a$$

$$\frac{\partial d}{\partial b} = \frac{\partial d}{\partial c} * \frac{\partial c}{\partial b} = a * 1 = a$$

AD in Python from Scratch

```
1 from collections import defaultdict
   class Var:
       def __init__(self, val, local_grad=()):
            self.val = val
            self.local_grad = local_grad
       def __add__(self, other):
           y = self.val + other.val
10
           local_grad = ((self, 1), (other, 1))
11
           return Var(y, local_grad)
12
13
       def __mul__(self, other):
14
           y = self.val*other.val
           local_grad = ((self, other.val), (other, self.val))
15
16
           return Var(y, local grad)
17
       def __sub__(self, other):
18
           y = self.val - other.val
19
           local\_grad = ((self, 1), (other, -1))
20
           return Var(y, local_grad)
21
22
23
24
```

Forward pass

AD in Python from Scratch

```
26
   def get_grads(var):
28
       grad = defaultdict(lambda:0)
29
30
       def compute_grad(var, path):
            for child_var, loc_grad in var.local_grad:
31
                val_path_child = path * loc_grad
32
33
                grad[child_var] += val_path_child
                compute_grad(child_var,val_path_child)
34
35
36
       compute grad(var, path=1)
37
38
       return grad
39
40
```

$$\frac{\partial d}{\partial a} = \frac{\partial \bar{d}}{\partial a} + \frac{\partial \bar{d}}{\partial c} * \frac{\partial \bar{c}}{\partial a}$$

$$= c + a$$

$$\frac{\partial d}{\partial b} = \frac{\partial d}{\partial c} * \frac{\partial c}{\partial b} = a * 1 = a$$

AD in Python from Scratch

Evaluation of derivatives

```
a = Var(8)
    b = Var(6)
    ## AD for Addition
    grad = get grads(d)
    print(f"AD of addition: {grad[a]}")
    ## AD for Subtraction
14
    d = a*c
    grad = get_grads(d)
19
    print(f"AD of subtraction: {grad[a]}")
AD of addition: 22
AD of subtraction: 10
```


Demo: Reverse AD in Python

Einstein Summation-2D

$$\begin{bmatrix} 8 & 6 & 8 \\ 6 & 7 & 9 \\ 8 & 4 & 8 \\ 4 & 8 & 5 \end{bmatrix} \times \begin{bmatrix} 5 & 9 & 7 & 4 \\ 5 & 5 & 7 & 3 \\ 8 & 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 126 & 174 & 111 \\ 98 & 132 & 90 \\ 135 & 158 & 128 \end{bmatrix}$$

In Einstein Notation: Summation over repeated indices

 $C_{ik} = A_{ij}B_{jk}$

i, j: fixed indices

k: free index

Einstein Summation-ND

$$\begin{bmatrix} 9 & 7 & 3 \\ 8 & 3 & 4 \\ 9 & 7 & 3 \\ 5 & 5 & 5 \end{bmatrix} \times \begin{bmatrix} 7 & 5 & 4 & 4 \\ 7 & 9 & 8 & 4 \\ 8 & 4 & 8 & 5 \end{bmatrix} = \begin{bmatrix} 107 & 108 & 73 & 102 \\ 83 & 86 & 56 & 82 \\ 107 & 108 & 73 & 102 \\ 78 & 97 & 58 & 98 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 8 & 3 \\ 6 & 7 & 4 \\ 9 & 8 & 6 \\ 4 & 5 & 8 \end{bmatrix} \times \begin{bmatrix} 8 & 6 & 8 & 6 \\ 7 & 9 & 8 & 4 \\ 8 & 4 & 8 & 5 \end{bmatrix} = \begin{bmatrix} 112 & 108 & 120 & 71 \\ 129 & 115 & 136 & 84 \\ 176 & 150 & 184 & 116 \\ 131 & 101 & 136 & 84 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 8 & 8 \\ 9 & 6 & 4 \\ 7 & 4 & 5 \\ 7 & 7 & 6 \end{bmatrix} \times \begin{bmatrix} 5 & 9 & 7 & 4 \\ 5 & 5 & 7 & 3 \\ 8 & 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 139 & 159 & 129 & 108 \\ 107 & 139 & 117 & 82 \\ 95 & 118 & 92 & 75 \\ 118 & 140 & 116 & 91 \end{bmatrix}$$

$$(b, i, j) = (3, 4, 3) \quad (b, j, k) = (3, 3, 4) \quad (b, i, k) = (3, 4, 4)$$

```
= torch.einsum("bij, bjk->bik", A,B)
 2 C
tensor([[[107, 108, 73, 102],
        [ 83, 86, 56, 82],
        [107, 108, 73, 102],
        [ 78, 97, 58, 98]],
       [[112, 108, 120, 71],
       [129, 115, 136, 84],
       [176, 150, 184, 116],
        [131, 101, 136, 84]],
       [[139, 159, 129, 108],
       [107, 139, 117, 82],
       [ 95, 118, 92, 75],
        [118, 140, 116, 91]])
  1 Ct = torch.matmul(A, B)
 1 Ct
tensor([[[107, 108, 73, 102],
         [83, 86, 56, 82],
         [107, 108, 73, 102],
         [ 78, 97, 58, 98]],
        [[112, 108, 120, 71],
         [129, 115, 136, 84],
         [176, 150, 184, 116],
         [131, 101, 136, 84]],
        [[139, 159, 129, 108],
         [107, 139, 117, 82],
         [ 95, 118, 92, 75],
         [118, 140, 116, 91]])
                                            BROWN
```


b = Batch Size

Demo: Einstein Summation

NN + Function Approximation

$$y_{NN} = f(x) = \Phi (\mathbf{W}\mathbf{x} + \mathbf{b})$$
$$y = f(x)$$
$$\mathcal{L} = \frac{1}{N} \sum_{i} (y_{NN} - y)^{2}$$

NN + Function Approximation

$$y_{NN} = f(x) = \Phi (\mathbf{W}\mathbf{x} + \mathbf{b})$$
$$y = f(x)$$
$$\mathcal{L} = \frac{1}{N} \sum_{i} (y_{NN} - y)^{2}$$

To Find W and b, we need to

compute $\frac{\partial \mathcal{L}}{\partial \mathbf{W}}$ and $\frac{\partial \mathcal{L}}{\partial \mathbf{b}}$ using

backpropagation.

NN + Function Approximation

$$y = x^{2} + \epsilon$$

$$\epsilon \sim U[0, 1), \text{ and } x \in [-1, 1]$$

$$\text{Noise} = 10\%$$

Data Preparation

```
import numpy as np
   import imageio
   import torch
   import torch.nn.functional as F
   import torch.utils.data as Data
   from torch.autograd import Variable
   import matplotlib.pyplot as plt
   %matplotlib inline
   torch.manual_seed(1234)
   ### Input data
   x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
   # torch.unsqueeze: Returns a new tensor
   # with a dimension of size one inserted at the specified position.
   y = torch.square(x)
   # Add Random Noise
   y = y + 0.1*torch.rand(y.size())
   # Plot the data
   plt.figure(figsize=(8,4))
   x plot, y plot = x.numpy(), y.numpy()
   plt.scatter(x_plot, y_plot, color="red")
   plt.xlabel("x")
   plt.ylabel("y")
   plt.show("Data for Regression Analysis")
CR plt.show()
```

Training

```
# Convert x and y to tracked variables
   x = Variable(x)
   y = Variable(y)
   Net = torch.nn.Sequential(
         torch.nn.Linear(1, 100),
         torch.nn.LeakyReLU(),
         torch.nn.Linear(100, 1))
   optimizer = torch.optim.Adam(Net.parameters(), lr = 0.01)
   loss function = torch.nn.MSELoss()
12
   image list = []
   Niter = 300 + 1
15
   fig, ax = plt.subplots(figsize=(15,10))
17
   for it in range(150):
18
19
       y_pred = Net(x)
20
       loss = loss_function(y_pred, y) # Notice the order: NN
       optimizer.zero grad()
21
                                 # Zero Out the gradient
       loss.backward()
22
       optimizer.step()
```


$$y = \sin(x) + \epsilon$$

$$\epsilon \sim U[0, 1), \text{ and } x \in [-6, 6]$$

$$\text{Noise} = 30\%$$

Demo: Demonstration of Function Approximations

Generic Code Template for Training in PyTorch

BROWN

Lecture 2: Summary

- ☐ Getting familiar with programming environment of the course
- □Introduction of *jupyter* notebook and setting it up on your machine.
- □Basics of data structure and operation in NumpPy and SciPy
- □Installation of deep learning frameworks TensorFlow and PyTorch
- Introduction to Nvidia's deep learning container and installation

Deep Learning for Science and Engineering Teaching Kit

Thank You

