谱序列

Guanyu Li

2020年3月2日

1 双复形和全复形

定义. 分次模/分次对象

定义. 设M, N是分次R模,若R模态射 $f: M \to N$ 满足存在整数d,使得对任意 $n \in \mathbb{Z}$ 都有 $f: M_n \to N_{n+k}$,则称f是阶数为k的分次映射(graded map of degree k).

命题1.1. 若 $M \xrightarrow{f} N \xrightarrow{g} P$ 分别是阶数为k, l的分次映射,则 $g \circ f$ 是阶数为k + l的分次映射.

定义. 一个双分次模(bigraded module)是一族有两个指标的R模

$$M := \{M_{p,q}\}_{(p,q) \in \mathbb{Z} \times \mathbb{Z}},$$

一般我们记为 $M_{\bullet\bullet}$.若M,N是双分次模,一族映射

$$f = \{f_{p,q}: M_{p,q} \to N_{p+k,q+l}\}_{(p,q)\in\mathbb{Z}\times\mathbb{Z}}$$

若都是R模映射,则称f是阶数为(k,l)的双分次映射.

接下来我们都用上同调的序号记号.

定义. 设M是双分次R模, d_I,d_{II} 是两个阶数分别为(1,0)和(0,1)的双分次微分映射(即 $d_I^{p,q} \circ d_I^{p,q} = 0$, $d_{II}^{p,q+1} \circ d_{II}^{p,q} = 0$).若映射满足

$$d_{I}^{p,q+1} \circ d_{II}^{p,q} + d_{II}^{p+1,q} \circ d_{I}^{p,q} = 0,$$

1 双复形和全复形

则称 (M, d_I, d_{II}) 是一个**双复形**(bicomplex).

例1. 设M是双分次R模, d_I , δ 是两个阶数分别为(1,0)和(0,1)的双分次微分映射,使得M是一个交换图(注意这和双复形差了一个符号!),那么我们可以通过符号变换构造一个双复形.令 $d_{II}^{p,q}=(-1)^p\delta^{p,q}$,那么

$$d_I^{p,q+1}\circ d_{II}^{p,q}+d_{II}^{p+1,q}\circ d_I^{p,q}=$$

定义. 设M是双分次R模,那么

$$\operatorname{Tot}(M)^n := \bigoplus_{p+q=n} M^{p,q}$$

和 $D^n: \operatorname{Tot}(M)^n \to \operatorname{Tot}(M)^{n+1}$,

$$D^n:=\sum_{p+q=n}(d_I^{p,q}+d_{II}^{p,q})$$

称为M的全复形(total complex).

2 滤子和正合对 3

引理1.1. 若M是双复形,则(Tot(M),D)是复形.

很多时候,我们关心的上同调问题是某个双复形的全复形的上同调群,而谱序列就是一种计算全复形上 同调群的某种技巧.

例2. 设M是双分次R模, (M,d_I,d_{II}) 是一个双复形,那么我们可以定义双复形的转置 M^T : 这意味着 $\operatorname{Tot}(M)=\operatorname{Tot}(M^T)$.

2 滤子和正合对

定义. 设 \mathcal{A} 是Abel范畴,X是 \mathcal{A} 中的对象,则X的一个递降滤子(descending filtration)是一族X的子对象 $\{F^nX\}_{n\in\mathbb{Z}}$ 满足

$$0 \subset \cdots \subset F^{n+1}X \subset F^nX \subset \cdots X$$
.

定义. 设M是双分次R模, (M,d_I,d_{II}) 是一个双复形,那么称

$$({}^{I}F^{p}\mathrm{Tot}(M))^{n}:=\bigoplus_{i\geq p}M^{i,n-i}=\cdots\oplus M^{p+2,q-2}\oplus M^{p+1,q-1}\oplus M^{p,q}$$

为Tot(M)的第一滤子(the first filtration),称

$$(^{II}F^p\mathrm{Tot}(M))^n := \bigoplus_{j\geq p} M^{n-j,j} = \cdots \oplus M^{p-2,q+2} \oplus M^{p-1,q+1} \oplus M^{p,q}$$

2 滤子和正合对 4

为Tot(M)的第二滤子(the second filtration).

定义. 设A是Abel范畴,D, E是A中的双分次对象,f, g, h是双分次映射,若

是正合的,那么称(D, E, f, g, h)是正合对(exact couple).

定理2.1. 每一个Abel范畴A中的上链X•的滤子 F^pX •都给出一个正合对

$$D \xrightarrow{f (-1,1)} D$$

$$h (1,0) \qquad E,$$

其中映射的度在图中已经标出.

Proof. 我们有复形的短正合列

$$0 \to F^{p+1}X^{\bullet} \xrightarrow{i^{p+1}} F^pX^{\bullet} \xrightarrow{\pi^p} F^pX^{\bullet}/F^{p+1}X^{\bullet} \to 0,$$

2 滤子和正合对 5

这诱导了上同调群的长正合序列

$$\cdots \to H^{n}(F^{p+1}X^{\bullet}) \xrightarrow{H^{n}(i^{p+1})} H^{n}(F^{p}X^{\bullet}) \xrightarrow{H^{n}(\pi^{p})} H^{n}(F^{p}X^{\bullet}/F^{p+1}X^{\bullet}) \to$$

$$\xrightarrow{\delta^{n}} H^{n+1}(F^{p+1}X^{\bullet}) \xrightarrow{H^{n+1}(i^{p+1})} H^{n+1}(F^{p}X^{\bullet}) \xrightarrow{H^{n+1}(\pi^{p})} H^{n+1}(F^{p}X^{\bullet}/F^{p+1}X^{\bullet}) \to \cdots$$

我们取n = p + q, $f = H^{\bullet}(i^{p+1}), g = H^{\bullet}(\pi^p), h = \delta^{\bullet}$, 并且

$$D = \{D^{p,q} := H^{p+q}(F^p X^{\bullet})\}$$

$$E = \{E^{p,q} := H^{p+q}(F^p X^{\bullet}/F^{p+1} X^{\bullet})\}$$

代入到长正合序列中即为

$$\cdots \to D^{p+1,q-1} \xrightarrow{f^{p+1,q-1}} D^{p,q} \xrightarrow{g^{p,q}} E^{p,q} \xrightarrow{h^{p,q}} D^{p+1,q} \to \cdots$$

定义. 设A是Abel范畴,X是A中的双分次对象,d是双分次映射满足 $d \circ d = 0$,则称(X,d)是微分双分次对象(differential bigraded object).

若(X,d)是微分双分次对象,d的阶数为(k,l),那么定义(X,d)的上同调为

$$H(X,d)^{p,q} := \frac{\ker d^{p,q}}{\operatorname{im} d^{p-k,q-l}}.$$

定理2.2. $\Xi(D,E,f,g,h)$ 是Abel范畴A上的一个正合对,那么 $d:=h\circ g:E\to E$ 给出A上的一个微分双分次对象(E,d),且存在一个新的正合对 (D_2,E_2,f_2,g_2,h_2)

满足 $E_2 = H(E,d)$, 称为导出对(derived couple).

Proof. 首先我们验证微分.按照定义, $d \circ d = (h \circ g) \circ (h \circ g) = h \circ (g \circ h) \circ g = h \circ 0 \circ g = 0$. 按照条件定义 $E_2 = H(E,d)$,定义

$$D_2 := \operatorname{Im} f$$
,

且 $f_2 := f|_{D_2} = f \circ \iota$, 其中 $\iota : D_2 \to D$ 是嵌入.

推论2.2.1. 每一个Abel范畴A中的上链X•的滤子 F^pX •都给出一族正合对

$$D_r \xrightarrow{f_r (1,-1)} D_r$$

$$h_r (-1,2) \qquad \qquad \downarrow g_r (1-r,r-1)$$

$$E_r,$$

3 收敛性 6

且满足

1. 双分次映射 f_r, g_r, h_r 的度分别为(1, -1), (1 - r, r - 1)和(-1, 2).

2. 微分 d_r 的度为(), 它由 $hf_{-r+1}g$ 诱导.

定义. 设A是Abel范畴,A上的谱序列 $(E_r, d_r)_{r>1}$ 是一族A中的对象和态射的全体 $E = (E_r^{p,q}, d_r^{p,q})$,满足

- 1. 态射 $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ 定义在第r页,且是微分映射,即 $d_r^{p+r,q-r+1} \circ d_r^{p,q} = 0$.
- 2. 有同构

$$H^{p,q}(E_r) := \frac{\operatorname{Ker} d_r^{p,q}}{\operatorname{Im} d_r^{p+r,q-r+1}} \cong E_{r+1}^{p,q}.$$

3 收敛性

定义. 设A是Abel范畴,X是A的对象,Y是X的子对象,Z是Y的子对象,则Y/Z称为X的一个子商(subquotient).

若 $(E_r,d_r)_{r\geq 1}$ 是谱序列,那么 $E_2=H(E_2,d_2)$ 是 E_1 的子商: $E_2:=Z_2/B_2$.同理我们知道 E_3 是 E_2 的子商,且

$$B_1 \subset B_2 \subset \cdots \cap B_r \subset \cdots \subset Z_r \subset Z_2 \subset Z_1 \subset E_1$$
.

定义. 给定谱序列 $(E_r,d_r)_{r\geq 1}$,定义 $Z_{\infty}:=\bigcap_{r\geq 1}Z_r$, $B_{\infty}:=\bigcup_{r\geq 1}B_r$,则谱序列的极限项(limit term)为 $E_{\infty}^{p,q}:=\frac{Z_{\infty}^{p,q}}{B_{p,q}^{p,q}}.$

借用MacLane的描述, Z^r 是出现到第r页的对象, B^r 是被第r页限制的对象,而 Z^{∞} 和 B^{∞} 是一直出现和最终被限制的对象.

引理3.1. 设 $(E_r, d_r)_{r>1}$ 是谱序列,那么

- 1. $E_{r+1} = E_r$ 当且仅当 $Z_{r+1} = Z_r, B_{r+1} = B_r$.
- 2. 若存在s使得对任意 $r \geq s$ 都有 $E_{r+1} = E_r$,则 $E_{\infty} = E_s$.

考虑 \mathcal{A} 中上链 X^{\bullet} 的一个滤子 $F^{p}X^{\bullet}$,于是我们有单同态 $i^{p}: F^{p}X^{\bullet} \to X^{\bullet}$,这诱导了 $H^{n}(i^{p}): H^{n}(F^{p}X^{\bullet}) \to H^{n}(X^{\bullet})$.由于 $F^{p}X^{\bullet} \subseteq F^{p-1}X^{\bullet}$,我们有 $\operatorname{Im} H^{n}(i^{p}) \subseteq \operatorname{Im} H^{n}(i^{p-1}) \subseteq H^{n}(X^{\bullet})$,这意味着

$$\Phi^p H^n(X^{\bullet}) := \operatorname{Im} H^n(i^p)$$

是 $H^n(X^{\bullet})$ 的一个滤子,称为 F^pX^{\bullet} 的诱导滤子(derived filtration).

定义. 设 X^{\bullet} 是Abel范 畴A上 的 上 链, $F^{p}X^{\bullet}$ 是 上 链 的 滤 子.若 $\forall n \in \mathbb{Z}$ 都 能 找 到 整 数l(n)和u(n)使 得 $F^{u(n)}X^{n} = 0$ 且 $F^{l(n)}X^{n} = X^{n}$,则称滤子 $F^{p}X^{\bullet}$ 是有界的(bounded).

定义. 给定Abel范畴中的谱序列 $(E_r, d_r)_{r>1}$,若存在分次对象 H^n 和 H^n 的有界滤子 $\Phi^p H^n$ 满足

$$E^{p,q}_{\infty} \cong \frac{\Phi^p H^n}{\Phi^{p+1} H^n},$$

则称谱序列 $(E_r, d_r)_{r>1}$ 收敛到 $(converges\ to)H^n$, 记为

$$E_2^{p,q} \Rightarrow_p H^n$$
.

定理3.1. Abel范畴A中的上链X•的滤子 F^pX •给出的谱序列 $(E_r, d_r)_{r>1}$ 都满足

- 1. 对任意给定的p,q都存在r使得 $E_r^{p,q} = E_r^{p,q}$.
- 2. $E_2^{p,q} \Rightarrow_p H^n(X^{\bullet})$.

Proof.

命题3.2. 设 $X^{\bullet \bullet}$ 是三象限双复形,且设 $^IE_r^{p,q},^{II}E_r^{p,q}$ 是 $Tot(X^{\bullet \bullet})$ 的第一滤子和第二滤子所诱导的谱序列,那么

- 1. 第一滤子和第二滤子都是有界的.
- 2. 对任意p,q都存在页数r = r(p,q)使得 $^{I}E_{\infty}^{p,q} = ^{I}E_{r}^{p,q}, ^{II}E_{r}^{p,q} = ^{II}E_{\infty}^{p,q}$.
- $3.\ ^{I}E_{2}^{p,q}\Rightarrow_{p}H^{n}(\mathrm{Tot}(X^{\bullet\bullet}))\mathbb{A}^{II}E_{2}^{p,q}\Rightarrow_{p}H^{n}(\mathrm{Tot}(X^{\bullet\bullet})).$

虽然这个结果看上去很不错,但不论是符号上还是实际计算上这些都并不能够帮助我们.

3 收敛性 8

定义. 给定Abel范畴A中的三象限双复形 $X^{\bullet\bullet}$,称 $H_I^p(H_{II}^q(X^{\bullet\bullet}))$ 为 $X^{\bullet\bullet}$ 的第一上同调(the first iterated cohomology),称 $H_{II}^p(H_I^q(X^{\bullet\bullet}))$ 为 $X^{\bullet\bullet}$ 的第二上同调(the second iterated cohomology).

定理3.3. 给定Abel范畴A中的三象限双复形 $X^{\bullet \bullet}$,则

- 1. ${}^{I}E_{1}^{p,q} = H_{II}^{q}(X^{p,\bullet}).$
- 2. ${}^{I}E_{2}^{p,q} = H_{I}^{p}(H_{II}^{q}(X^{\bullet \bullet})) \Rightarrow_{p} H^{n}(\operatorname{Tot}(X^{\bullet \bullet})).$

对偶地,我们同样有

定理3.4. 给定Abel范畴A中的三象限双复形 $X^{\bullet \bullet}$,则

- 1. ${}^{II}E_1^{p,q} = H_I^q(X^{\bullet,p}).$
- 2. $^{II}E_2^{p,q} = H^p_{II}(H^q_I(X^{\bullet \bullet})) \Rightarrow_p H^n(\operatorname{Tot}(X^{\bullet \bullet})).$

例3. 给定R模范畴中的交换图

$$P \xrightarrow{g} Q$$

$$\uparrow \qquad \qquad \downarrow \uparrow$$

$$M \xrightarrow{f} N,$$

做适当的变换我们得到一个三象限双复形 $X^{\bullet \bullet}$,我们考虑N,P都是Q的子模的特殊情形,来计算该双复形的全复形

$$0 \to M \xrightarrow{()} P \oplus N \xrightarrow{g+k} Q$$

的上同调.

定义. 设 $(E_r, d_r)_{r\geq 1}$ 是Abel范畴中的谱序列,若 $E_2^{p,q} = 0$ 对所有非零的q都成立,则称 E_r 落在p轴上(collapses on the p-axis).

命题3.5. 设 $(E_r,d_r)_{r>1}$ 三象限谱序列,且 $E_2^{p,q} \Rightarrow_p H^n(X^{\bullet})$,若称 E_r 落在任意轴上,则

- 1. $E_2^{p,q} = E_{\infty}^{p,q}$ 对任意p, q成立.
- 2. 若 E_r 落在p轴上,则 $H^n(X^{\bullet}) = E_2^{n,0}$;若 E_r 落在q轴上,则 $H^n(X^{\bullet}) = E_2^{0,n}$.

定理3.6. 给定Abel范畴A中的三象限谱序列 $(E_r,d_r)_{r\geq 1}$,且 $E_2^{p,q}\Rightarrow_p H^n(\mathrm{Tot}(X^{\bullet \bullet}))$,则

- 1. 对任意n都存在满同态 $E_2^{n,0} \to E_\infty^{0,n}$ 和单同态 $E_2^{0,n} \to E_\infty^{n,0}$.
- 2. 对任意n都存在满同态 $E_{\infty}^{n,0} \to H^n(\mathrm{Tot}(X^{\bullet \bullet}))$ 和单同态 $E_{\infty}^{0,n} \to H^n(\mathrm{Tot}(X^{\bullet \bullet}))$.
- 3. 存在正合序列

$$0 \to E_2^{1,0} \to H^1(\mathrm{Tot}(X^{\bullet \bullet})) \to E_2^{0,1} \xrightarrow{d_2} E_2^{2,0} \to H^2(\mathrm{Tot}(X^{\bullet \bullet}))$$

4 Cartan-Eilenberg预解

定义. 设 X^{\bullet} 是Abel范畴A上的上链,那么称

$$0 \to Z^n \to X^n \xrightarrow{d^n} B^{n+1} \to 0$$
$$0 \to B^n \hookrightarrow Z^n \to H^n \to 0$$

为 X^{\bullet} 的基本短正合列(fundamental exact sequence).若上链复形 X^{\bullet} 的基本短正合列都分裂,则称 X^{\bullet} 分裂(split).

定义. 设 X^{\bullet} 是Abel范畴A上的上链,如果

$$0 \to X^{\bullet} \to I^{0,\bullet} \to I^{1,\bullet} \to \cdots$$

是整合列且对每个p以下每个整合列都是A中的内射预解

$$0 \to X^p \to I^{0,p} \to I^{1,p} \to \cdots$$
$$0 \to Z^p(X^{\bullet}) \to Z^{0,p} \to Z^{1,p} \to \cdots$$
$$0 \to B^p(X^{\bullet}) \to B^{0,p} \to B^{1,p} \to \cdots$$
$$0 \to H^p(X^{\bullet}) \to H^{0,p} \to H^{1,p} \to \cdots$$

则称这是X[•]的一个Cartan-Eilenberg内射预解(Cartan-Eilenberg injective resolution).

定理4.1. 若Abel范畴A中包含有足够多的内射对象,则 $Com^{\bullet}(A)$ 中的每个上链复形都有Cartan-Eilenberg内射预解.

5 Grothendieck谱序列

定义. 设 \mathcal{A} 是Abel范畴,且含有足够多的内射对象,X是 \mathcal{A} 的对象, $F: \mathcal{A} \Rightarrow \mathbf{Ab}$ 是加性函子.若 $R^pF(X) = 0$ 对于任意 $p \geq 1$ 都成立,则称X是右F零调的(right F-acyclic).

定理5.1 (Grothendieck谱序列). 设 $F: A \Rightarrow \mathcal{B}, G: A \Rightarrow \mathcal{C} \not\in A$ 起码范畴间的协变加性函子,且 \mathcal{B} 中包含足够多的内射对象,F将A中的内射对象映为 \mathcal{B} 中的右G零调对象.那么对任意A中的对象X,存在第一象限的收敛谱序列

$$E_2^{p,q} := (R^p G \circ R^q F)(X) \Rightarrow R^{p+q}(G \circ F)(X).$$

Proof. 选取X在A中的一个内射预解

$$0 \to X \to J^1 \to J^2 \to \cdots$$

于是我们得到B中的一个