

Prior-Data Conflict: a brief introduction

Gero Walter

Institut für Statistik Ludwig-Maximilians-Universität München

September 7th, 2010

Prior-Data Conflict

Prior-Data Conflict \(\hat{\pm}\) situation in which...

- ... informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- "... the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising." (Evans & Moshonov, 2006)

(...and there are not enough data to overrule prior beliefs!)

$$\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_j} \qquad \qquad \mathbb{V}(\theta_j) = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_j + 1}$$

$$\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_i} =: y_j^{(0)} \quad \mathbb{V}(\theta_j) = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_i + 1} = \frac{y_j^{(0)}(1 - y_j^{(0)})}{n^{(0)} + 1}$$

Data :	k	\sim	$M(oldsymbol{ heta})$	
conjugate prior:	$\boldsymbol{ heta}$	\sim	$Dir(n^{(0)}, y^{(0)})$	$n^{(0)} = \sum \alpha_i$
posterior:	$ heta \mid k$	~	$Dir(n^{(1)}, y^{(1)})$	

$$\mathbb{E}[\theta_j] = \frac{\alpha_j}{\sum \alpha_i} =: \mathbf{y}_j^{(0)} \quad \mathbb{V}(\theta_j) = \frac{\mathbb{E}[\theta_j](1 - \mathbb{E}[\theta_j])}{\sum \alpha_i + 1} = \frac{\mathbf{y}_j^{(0)}(1 - \mathbf{y}_j^{(0)})}{\mathbf{n}^{(0)} + 1}$$

$$y_j^{(1)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y_j^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{k_j}{n}$$
 $n^{(1)} = n^{(0)} + n$

$$y_j^{(0)} \in [0.7, 0.8], \quad k_j/n = 0.75$$

 $(n^{(0)} = 8) \quad (n = 16)$

$$k_j/n = 0.75$$

$$y_j^{(0)} \in [0.2, 0.3],$$

 $(n^{(0)} = 8)$

$$k_j/n = 1$$
 $(n = 16)$

$$y_j^{(0)} \in [0.7, 0.8], \quad k_j/n = 0.75$$

 $(n^{(0)} = 8) \quad (n = 16)$

$$k_j/n = 0.75$$
$$(n = 16)$$

$$y_j^{(1)} \in [0.73, 0.76]$$

$$y_j^{(0)} \in [0.2, 0.3], \quad k_j/n = 1$$

 $\binom{n^{(0)} = 8}{}$ $(n = 16)$

$$\kappa_j/n = 1$$
 $(n = 16)$

Case (i):
$$y_j$$

$$y_j^{(0)} \in [0.7, 0.8], \quad k_j/n = 0.75$$

 $(n^{(0)} = 8) \quad (n = 16)$

$$y_j^{(1)} \in [0.73, 0.76]$$

Case (ii):
$$y_j^{(0)} \in [0.2, 0.3], \quad k_j/n = 1$$

 $(n^{(0)} = 8)$ $(n = 16)$

$$y_j^{(1)} \in [0.73, 0.76]$$

$$(n^{(0)} = 24)$$

$$k_j/n = 0.75$$
$$(n = 16)$$

$$k_j/n = 1$$

$$(n = 16)$$

$$0$$

$$1$$

Case (i):
$$y_j^{(0)} \in [0.7, 0.8], \quad k_j/n = 0.75$$

 $\binom{n^{(0)} = 8}{}, \quad (n = 16)$

$$y_j^{(1)} \in [0.73, 0.76]$$
 $(p_j^{(0)} = 24)$

$$(n=16) 0$$

Case (ii):
$$y_j^{(0)} \in [0.2, 0.3], \quad k_j/n = 1$$

 $(n^{(0)} = 24)$

$$(n^{(0)} = 8)$$
 $(n = 16)$
 $y_i^{(1)} \in [0.73, 0.76]$

$$\left[V(\theta_i) \in [0.0178, 0.0233] \longrightarrow V(\theta_i | \mathbf{k}) \in [0.0072, 0.0078] \right]$$

Posterior inferences do not reflect uncertainty due to unexpected observations!

genuinely Bayesian, but today not limited to: we consider also data-data conflict

- genuinely Bayesian, but today not limited to: we consider also data-data conflict
- precise models:
 - most conjugate models tend to ignore prior-data conflict
 - some do react, but often not satisfactorily
 - diagnosis schemes: presence, and when safely ignorable
 - ▶ if present, no general strategy (if and) how to do inference

- genuinely Bayesian, but today not limited to: we consider also data-data conflict
- precise models:
 - most conjugate models tend to ignore prior-data conflict
 - some do react, but often not satisfactorily
 - diagnosis schemes: presence, and when safely ignorable
 - ▶ if present, no general strategy (if and) how to do inference
- imprecise probability models:
 - some share same drawbacks as precise models
 - opportunity to encode precision of probability statements
 - relation of (amount/quality of) information and imprecision

- genuinely Bayesian, but today not limited to: we consider also data-data conflict
- precise models:
 - most conjugate models tend to ignore prior-data conflict
 - some do react, but often not satisfactorily
 - diagnosis schemes: presence, and when safely ignorable
 - ▶ if present, no general strategy (if and) how to do inference
- imprecise probability models:
 - some share same drawbacks as precise models
 - opportunity to encode precision of probability statements
 - relation of (amount/quality of) information and imprecision
- relations to learning in general?
- adjusting background information in the light of unexpected observations (Frank Hampel, 2007)

Bernoulli Data Scenario

Prior model expects quite certainly 5 successes out of 20, but data says 18 successes out of 20.

Bernoulli Data Scenario

Prior model expects quite certainly 5 successes out of 20, but data says 18 successes out of 20.

- \implies generalized iLUCK-model: $y^{(0)} \approx \frac{5}{20} = \frac{1}{4}$, $n^{(0)} \le 20$
 - $y^{(0)} \in [0.2, 0.3], n^{(0)} \in [1, 20]$
 - $y^{(0)} \in [0.2, 0.3], n^{(0)} \in [10, 20]$
 - $y^{(0)} = 0.25, n^{(0)} \in [1, 20]$
 - $y^{(0)} = 0.25, n^{(0)} \in [10, 20]$

Set of priors: $y^{(0)} \in \ [0.2\ ; 0.3] \ and \ n^{(0)} \in \ [10\ ; 20]$

Set of posteriors: $y^{(1)} \in [0.55; 0.87]$ and $n^{(1)} \in [21; 40]$

Observation $\tau(x) = 0.9$ with t = 0.9

Set of posteriors: $y^{(1)} \in [0.55 ; 0.7]$ and $n^{(1)} \in [30 ; 40]$

Set of priors: $y^{(0)} = 0.25$ and $n^{(0)} \in [10; 20]$

Set of posteriors: $y^{(1)} \in [0.57; 0.87]$ and $n^{(1)} \in [21; 40]$

Set of posteriors: $y^{(1)} \in [0.57; 0.68]$ and $n^{(1)} \in [30; 40]$

Before the introduction of general smoking bans for public areas, it was thought that an introduction of such a law would seriously harm pubs and bars.

Before the introduction of general smoking bans for public areas, it was thought that an introduction of such a law would seriously harm pubs and bars.

sales volumes

X (tobacco products)

Before the introduction of general smoking bans for public areas, it was thought that an introduction of such a law would seriously harm pubs and bars.

sales volumes

Regression/Correlation Data Scenario

Prior model expects quite certainly a positive slope, data suggests instead a negative slope.

- standardize x and y: \tilde{x} , \tilde{y}
- no intercept necessary, $\beta_1 = \rho(x, y)$
- ▶ posterior expectation of β_1 is weighted average of prior expectation and LS estimate (= -0.9687)

20

15

10

"Strong Happiness"

Data situation: Bernoulli sampling (observe 0 or 1).

Idea: Choose sample size n_1 such that $I^{(1)}$ low enough under certain threshold I such that – even if we got another sample n_2 in conflict to $\mathcal{Y}^{(1)} - I^{(2)}$ is still below I!

With a sample of such a size n_1 we attain "strong happiness", because whatever we would see as a following sample, we would never get more imprecise than I!

(Is only possible because degree of prior-data conflict is bounded due to Bernoulli sampling!).

"Strong Happiness"

$$I^{(2)} = \frac{\overline{n}^{(0)}I^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} + \frac{\overline{n}^{(0)} - \underline{n}^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} \left(\frac{n_1}{\underline{n}^{(0)} + n_1} \Delta \left(\frac{c_1}{n_1}, \mathcal{Y}^{(0)} \right) + \frac{n_2}{\underline{n}^{(0)} + n_1 + n_2} \Delta \left(\frac{c_2}{n_2}, \mathcal{Y}^{(1)} \right) \right)$$

$$\stackrel{!}{\leq} I \quad \forall \ (k_2, \ n_2)$$

"Strong Happiness"

$$I^{(2)} = \frac{\overline{n}^{(0)}I^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} + \frac{\overline{n}^{(0)} - \underline{n}^{(0)}}{\overline{n}^{(0)} + n_1 + n_2} \left(\frac{n_1}{\underline{n}^{(0)} + n_1} \Delta \left(\frac{c_1}{n_1}, \mathcal{Y}^{(0)} \right) + \frac{n_2}{\underline{n}^{(0)} + n_1 + n_2} \Delta \left(\frac{c_2}{n_2}, \mathcal{Y}^{(1)} \right) \right)$$

$$\stackrel{!}{\leq} I \quad \forall \ (k_2, \ n_2)$$

If data from second sample in conflict with $\mathcal{Y}^{(1)}$ (and conflict strong enough), then imprecision $I^{(2)}$ should first increase and then decrease in n_2 .

 \rightarrow find n_2 that maximizes $I^{(2)}$ for maximal possible conflict with current $\mathcal{Y}^{(1)}$, plug into formula for $I^{(2)}$ and give n_1 as a function of $I^{(0)}$ (or $\mathcal{Y}^{(0)}$) and I (and $\mathcal{N}^{(0)}$).