

Faculty of Computer Science Chair of Automata Theory

ONTOLOGY REASONING FOR COMPLEX EVENT RECOGNITION

Anni-Yasmin Turhan

"Skype", January 26th 2022

Before we start . . .

...a bit about myself

- Senior research and teaching fellow ("Privatdozent") at TU Dresden, Institute for Theoretical Computer Science
- · Research interest:

"Investigate reasoning services for formal ontology languages by methods from theoretical computer science"

- PI in several KR&R-related research projects
- service to the community:
 - WS co-chair of conferences: KI'15, KR'20
 - PC co-chair of conferences: JIST'17, KI'18
- RuleML+RR & me:
 - PC member: '17, '18, '19, '21
 - runner-up best paper award: 2019

A general view on ontology-based complex event recognition

Challenges for ontology-based complex event recognitioncan be addressed by which DL extensions?

 incomplete information use of standard assumptions 	Defeasible DLs
 uncertain knowledge apply probabilities 	Probabilistic DLs
 vague information admit vague queries 	Relaxed queries
 contradicting information inconsistency-tolerant reasoning 	Reasoning under repair semantics
 temporal modeling employ temporal reasoning 	Temporalized DLs

DL KBs and DL reasoning

Concept descriptions

- are built from named concepts and roles
- by concept constructors (and role constructors) available in the DL E.g. by use of conjunction (□) and existential restriction (∃r.C): Person □ ∃suffers-from.Disease

DL knowledge bases: and DL reasoning

```
TBox T
:
Patient □ Person □ ∃suffers-from.Disease
:
```

```
ABox A
Person(bob)
Disease(cooties)
(bob, cooties)suffers-from
```

```
Query types: subsumption Patient \sqsubseteq Disease instance query Patient(x) conjunctive query \phi(x_1, \ldots, x_n) : \exists y_1, \ldots y_m. Disease(x_1) \land \ldots
```

Dealing with incomplete (and contradictory) information

Defeasible DLs (DDLs)

- augment the KB by defeasible axioms
 - handle incomplete information by "standard assumptions"

E.g.: $Patient \sqsubseteq \exists has\text{-}organ.(Heart \sqcap \exists located.LeftSide)$

- can be "overridden" by contradicting information regarding exceptional instances
- reasoning in DDLs:
 - non-monotonic: old consequences obsolete under added information
 - can handle contradictory information gracefully!

Approaches for reasoning in Defeasible DLs ...

By materialization

- suffers from: quantification neglect defeasible information "omitted" for quantified objects → propositional behavior

New approach: typicality models for \mathcal{EL}_{\perp}

[Pensel-Turhan-LPNMR-19], [Pensel-Turhan-IJAR-20]

- Idea: use the structure generated by reasoning in classical EL (canonical model) and "copy" its domain
- yields model-based semantics!
- reasoning algorithms for subsumption and instance checking by reduction to classical reasoning (+ complexity investigation)
- approach alleviates quantification neglect!

Dealing with contradictory information in temporal CQA

Reasoning under repair semantics:

Restore contradiction free versions of the KB and reason w.r.t. those.

ABox repair: in temporal setting:

maximal subset of the time-stamped data consistent with the TBox

There can be exponentially many repairs!

Different kinds of repair semantics:

- Brave semantics: reasoning w.r.t. one repair
- all ABox repair semantics (AR): reasoning w.r.t. all repairs
- intersection ABox repair semantics (IAR): reasoning w.r.t. the intersection of all repairs

 $\mathsf{IAR}\text{-answers}\subseteq\mathsf{AR}\text{-answers}\subseteq\mathsf{brave}\text{-answers}$

Temporal behavior of predicates: rigid / non-rigid (flexible over time)

Our results for inconsistency-tolerant temporal CQA

[Bourgaux-Koopmann-Turhan-SemWebJ-19]

We have explored the complexity landscape for:

 $\{brave, AR, IAR\} \times \{\mathcal{EL}, DL-Lite\} \times \{no rigid, rigid concepts, rigid concepts \& roles\}$

in regard of

- combined complexity (TBox, ABox and query are input)
- data complexity (ABox is input)

Lessons learned:

- Effect of temporal reasoning: increases data complexity
- choice of the repair semantics (brave, AR or IAR):
 - no increase for brave (compared to classical semantics) for combined complexity
 - IAR is always "cheapest" among the three repair semantics

Dealing with vagueness and imprecision by relaxed queries

Relaxed queries (a.k.a. queries under approximate semantics)

- retrieve tuples "similar" to classical answers complex event recognition: detect situations "close" to a critical one
- useful when exact query is hard to formalize
- closely related to top-k queries

Advantages of relaxing queries for DLs:

- user-defined and query specific notion of similarity
- DL KB stays classical

Investigated query types and approaches to model similarity:

- 1. instance queries by concept similarity measures
- 2. regular path queries by weighted transducers

Relaxing concepts by concept similarity measures

Concept similarity measures (CSM) := yield for a pair of concepts a value from [0,1]

- higher value indicates higher similarity
- used in ontology-based life science applications
- "well-behaved" CSMs: fulfill formal properties
 constructed for \$\mathcal{E}\mathcal{L}\$ in [Lehmann-Turhan-JELIA-12]

Relaxed instance queries

Individual a is relaxed instance of C_q w.r.t. \mathcal{K} , csm and t, iff there exists a concept description D s.t.

- $csm(C_q, D) \ge t$ and
- D(a) holds w.r.t. K

Results: [Ecke-Peñaloza-Turhan-KR-12, Ecke-Peñaloza-Turhan-IJAR-13]

- ullet answering relaxed instance queries in \mathcal{EL} in non-deterministic polynomial time
- algorithm implemented in ELASTIQ reasoner

Relaxing conjunctive two-way regular path queries

Query language: conjunctive two-way regular path queries

- retrieves k-tuples from labeled graph
- path query: regular language (specified by NFA)
- part of standardized ontology query language SPARQL

Notion of similarity:

- "distortion cost" of transforming data path word into guery path word
- computed by a weighted transducer

Results:

[FernándezGil-Turhan-AAAI-21]

- complexity of query entailment w.r.t. a threshold for the cost in lightweight DLs: EL, DL-Lite
- complexity does not increase compared to classical semantics

Other research interests

- example-driven learning of concepts generate concepts (and queries) from positive examples
- reasoning in DLs with concrete domains concepts can refer to values (e.g. numbers) and predicates over these values
- ontology-mediated probabilistic model checking
 - combining verification technique with ontology reasoning
 - enhancing states of stochastic programs by information from ontologies