1 Универсальные алгебры, сигнатуры, термы, изоморфизмы

Определение 1.1. Сигнатура - множество имён операций с указанием их местности.

$$(f^{(2)}, g^{(3)}, h^{(0)}), (+^{(2)}, \cdot^{(3)})$$

 $h^{(0)}$ - символ константы, V - имена переменных

Определение 1.2. Терм - выражение, составленное из символов сигнатуры и переменных

- 1. $x \in V$, x терм
- $2. \ c$ символ константы, c терм
- 3. если $t_1,...,t_n$ термы и f символ n-местной операции, то $f(t_1,...,t_n)$ терм

Пример 1.1. Примеры термов: -(x), -(0), +(x, y), 2+3+a

Определение 1.3. Замкнутый терм - терм, не содержащий переменных

Определение 1.4. Универсальная алгебра - пусть Σ - сигнатура, тогда универсальная алгебра сигнатуры Σ - это пара вида (A,I), где A - произвольное непустое множество, а I - некоторое отображение, которое для всякого $p^{(m)} \in \Sigma$, $I(p^{(m)})$ - n-местной операции на множестве

Пример 1.2 (Пример универсальной алгебры). Пусть

$$\Sigma = (+^{(2)}, \cdot^{(2)}, -^{(1)}, 0^{(0)}, 1^{(0)})$$

mог ∂a

$$R=(\mathbb{R},I): I(+)-$$
 сложение
$$I(\cdot)-y$$
множение
$$I(-)-$$
вичитание
$$I(0)-0$$

$$I(1)-1$$

Определение 1.5. $\mathbb R$ называется основным множеством или носителем алгебры, а I - интерпретацией или интерпретирующей функцией

Определение 1.6. Состояние - функция, приписывающая переменной некоторый элемент носителя $\sigma: V \to A$

Пример 1.3. Пример состояний: $\sigma = \{(x,3), (y,-8)\}, \sigma(x) = 3$

Определение 1.7. Значение терма на состоянии - значение того выражения, в котором переменные заменены их значениями

- 1. t переменная, $\sigma(t)$ по определению состояния
- 2. t символ константы, $I(t) = \sigma(t_1) = v_1$
- 3. если $t_1,...,t_n$ термы и $\sigma(t_1)=v_1,...,\sigma(t_n)=v_n$, то $\sigma(t)=I(f)(v_1,...,v_n)$

Определение 1.8. Изоморфизм - Пусть Σ - сигнатура, $\mathcal{A}=(A,I),$ $\mathcal{B}=(B,J)$ -

универсальные алгебры сигнатуры Σ , тогда изоморфизм между \mathcal{A} и \mathcal{B} - это $h: \mathcal{A} \to \mathcal{B}$ - биективная функция, которая удовлетворяет следующему условию:

$$h(I(f_i)(a_1,...,a_n)) = J(f_i)(h(a_1),...,h(a_n))$$

для любых $a_1,...,a_n$ и $f_i \in \Sigma$

Пример 1.4. Пример изоморфизма: пусть $\Sigma = (f^{(2)}), \ \mathcal{A} = (\mathbb{R}, +), \ \mathcal{B} = (\mathbb{R}, \cdot)$

Надо доказать:

$$h(a_1 + a_2) = h(a_1) \cdot h(a_2)$$

 $a_1, a_2 \in \mathbb{R}$

 $\Pi y cm b h(x) = e^x$, тогда

$$h(a_1 + a_2) = e^{a_1 + a_2} = e^{a_1} \cdot e^{a_2} = h(a_1) \cdot h(a_2) \blacksquare$$

Теорема 1.1. h - изоморфизм между A и B, то h^{-1} - изоморфизм между B и A

Доказательство. пусть $b_1, ..., b_{n_i} \in B$, тогда надо доказать

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i}))$$

Так как $b_1 = h(a_1), ..., b_{n_i} = h(a_{n_i}),$

$$I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i})) = I(f_i)(h^{-1}(h(a_1)),...,h^{-1}(h(a_{n_i})))$$

= $I(f_i)(a_1,...,a_{n_i})$

По определению изоморфизма

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = h^{-1}(h(I(f_i)(a_1,...,a_{n_1}))) = I(f_i)(a_1,...,a_{n_1})$$

Из этих двух равенств следует то, что надо доказать

Определение 1.9. Системы, между которыми существует изоморфизм называют **изоморфными**

$$A \simeq B$$

операции в изоморфных системах обладают одними и теми же свойствами

Определение 1.10. $t(x_1,...,x_n)$ - терм t не содержит других переменных кроме $x_1,...,x_n$

Определение 1.11. Пусть \mathcal{A} - алгебра, $a_1, ..., a_n$ - элементы алгебры \mathcal{A} , тогда

$$t(a_1,...,a_n) = \sigma(t), \sigma(x_1) = a_1,...,\sigma(x_n) = a_n$$

Теорема 1.2. h - изоморфизм между $\mathcal{A} = (A, I)$ и $\mathcal{B} = (B, J)$, то для любого терма $t(x_1, ..., x_n)$ и любых $a_1, ..., a_n$ выполняется

$$h(t^{\mathcal{A}}(a_1, ..., a_n)) = t^{\mathcal{B}}(h(a_1), ..., h(a_n))$$

Доказательство. Индукция по построению терма t

1.
$$t = x$$

$$t^{\mathcal{A}}(a) = a \Leftrightarrow h(t^{\mathcal{A}}(a)) = h(a) \Leftrightarrow t^{\mathcal{B}}(h(a)) = h(a)$$

2. t = c

$$\sigma(c) = I(c) = J(c) \Rightarrow t^{\mathcal{A}} = I(c), t^{\mathcal{B}} = J(c) \Rightarrow h(I(c)) = J(c)$$

по определению гомоморфизма

3.
$$t = f(t_1, ..., t_k)$$

$$h(t^{\mathcal{A}}(a_{1},...,a_{n})) = h(I(f)(t_{1}^{\mathcal{A}}(a_{1},...,a_{n}),...,t_{k}^{\mathcal{A}}(a_{1},...,a_{n}))) = J(f)(h(t_{1}^{\mathcal{A}}(a_{1},...,a_{n})),...,h(t_{k}^{\mathcal{A}}(a_{1},...,a_{n}))) = J(f)(t_{1}^{\mathcal{B}}(h(a_{1}),...,h(a_{n})),...,t_{k}^{\mathcal{B}}(h(a_{1}),...,h(a_{n})) = t^{\mathcal{B}}(h(a_{1}),...,h(a_{n}))$$

Пример 1.5. Доказать что $\mathcal{A} = (\mathbb{R};\cdot) \ncong \mathcal{B} = (\mathbb{R}^+;\cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{A} \to \mathcal{B},$ тогда

$$h(0) = x, x \in \mathbb{R}^+$$

$$x = h(0) = h(0 \cdot 0) = h(0) \cdot h(0) = x^{2}$$

 $x = x^{2} \Rightarrow x = 1$

$$h(1) = y, y \in \mathbb{R}^+$$

$$y = h(1) = h(1 \cdot 1) = h(1) \cdot h(1) = y^{2}$$

 $y = y^{2} \Rightarrow y = 1$

h(0) = 1 = h(1) - противоречие (h не биективна). Утверждение не верно. \Box

Пример 1.6. Доказать что $\mathcal{A} = (\mathbb{R}; +) \not\cong \mathcal{B} = (\mathbb{R}; \cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{B} \to \mathcal{A},$ тогда

$$h(0) = x, h(1) = y; x, y \in \mathbb{R}$$
$$x = h(0) = h(0 \cdot 0) = h(0) + h(0) = 2x \Rightarrow x = 2x = 0$$
$$y = h(1) = h(1 \cdot 1) = h(1) + h(1) = 2y \Rightarrow y = 2y = 0$$

Противоречие (*h* должно быть биекцией)

Пример 1.7. Доказать что $\mathcal{A} = (\mathbb{R};\cdot) \cong \mathcal{B} = (\mathbb{C};\cdot)$

Доказательство. Предположим что существует изоморфизм $h: \mathcal{B} \to \mathcal{A},$ тогда

$$h(x) = -1; x \in \mathbb{C}, -1 \in \mathbb{R}$$

Пример 1.8. Доказать что $\mathcal{A} = (\mathbb{Z}; \min^{(2)}) \ncong \mathcal{B} = (\mathbb{Z}; \max^{(2)})$

 \square оказательство.

Пример 1.9. Доказать что $A = (\omega; +) \not\cong B = (\omega^+; \cdot)$

 \square оказательство.

Пример 1.10. Доказать что $\mathcal{A}=(\mathbb{Q};+)\not\cong\mathcal{B}=(\mathbb{Q}^+;\cdot)$

Пример 1.11. Доказать что $\mathcal{A}=(\mathbb{Z};\cdot)
ot\cong\mathcal{B}=(\mathbb{G};\cdot)$