HORVÁTH MILÁN DIPLOMAMUNKA

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

INFORMATIKAI KAR SAVARIA MŰSZAKI INTÉZET

DIPLOMAMUNKÁK

EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR SAVARIA MŰSZAKI INTÉZET

Horváth Milán DIPLOMAMUNKA

Diplomamunka

Konzulens:

Bátorfi János György egyetemi tanársegéd Témavezető:

Prof. Dr.Sidor Jurij egyetemi tanár

ZÁRADÉK

Ez a diplomamunka elzártan kezelendő és őrzendő, a hozzáférése a vonatkozó szabályok szerint korlátozott, a diplomamunka tartalmát csak az arra feljogosított személyek ismerhetik.

A korlátozott hozzáférés időtartamának lejártáig az arra feljogosítottakon kívül csak a korlátozást kérelmező személy vagy gazdálkodó szervezet írásos engedélyéjével rendelkező személy nyerhet betekintést a diplomamunka tartalmába.

A hozzáférés korlátozása és a zárt kezelés 2034 január 31. napján ér véget.

Szombathely, 2024. 01. 31.

 ${\bf Placeholder\ for\ feladatkiir as.pdf}$

NYILATKOZATOK

Nyilatkozat az önálló munkáról

Alulírott, *Horváth Milán* (MYQGQ0), az Eötvös Loránd Tudományegyetem hallgatója, büntetőjogi és fegyelmi felelősségem tudatában kijelentem és sajátkezű aláírásommal igazolom, hogy ezt a diplomamunkát meg nem engedett segítség nélkül, saját magam készítettem, és diplomamunkámban csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a hatályos előírásoknak megfelelően, a forrás megadásával megjelöltem.

Ennek a diplomamunkának önálló, eredeti szerzője vagyok, ez az önálló szellemi alkotás jogtisztaság szempontjából megfelel az "Eötvös Loránd Tudományegyetem Szervezeti és Működési Szabályzata, II. kötet, Hallgatói Követelményrendszer. Módosításokkal egybeszerkesztett változat [2017. szeptember 1.]" c. szabályzat 74/A–74/C. §-aiban foglalt rendelkezéseknek.

Szombathely, 2025. október 6.	
	hallgató

Tartalomjegyzék

El	őszó			ix
Je	lölése	k jegyzo	éke	X
1.	Beve	ezetés		1
2.	Irod	almi át	tekintés	2
	2.1.	Képlék	keny alakítás elméleti alapjai	2
		2.1.1.	Rugalmas és képlékeny alakváltozás	2
		2.1.2.	Feszültség-alakváltozás kapcsolata, szakítódiagram	3
	2.2.	Mikros	szerkezettől a tervezésig	4
		2.2.1.	Kristályszerkezet és csúszórendszerek	4
		2.2.2.	Textúra-fejlődés az alakítás során	5
	2.3.	Lemez	zek képlékeny anizotrópiája	5
		2.3.1.	Az anizotrópia	5
		2.3.2.	Lankford-tényező	6
		2.3.3.	Csúcsosodás, az anizotrópia közvetlen hatása	6
		2.3.4.	Ideális mélyhúzható lemez	7
	2.4.	A mély	yhúzás technológiája	7
		2.4.1.	A mélyhúzás alapelvei, fázisai	7
		2.4.2.	Meghatározó technológiai paraméterek	8
		2.4.3.	A mélyhúzás tipikus hibái és azok okai	8
		2.4.4.	A mélyhúzás, mint egyensúlyi folyamat	8
	2.5.	Mélyh	úzó szerszámok tervezése	9
		2.5.1.	A szerszám felépítése	9

		2.5.2.	A szerszámgeometria szerepe	9
		2.5.3.	Technológiai erők számítása	9
	2.6.	Végese	elem módszer	9
		2.6.1.	Végeselem módszer alapelvei	9
		2.6.2.	Mélyhúzási folyamat szimulációja VEM-mel	10
		2.6.3.	Anyagmodellek	10
3.	Any	agok és	módszerek	11
4.	Szer	számki	alakítás	12
5.	Mér	ési ered	lmények értékelése	13
6.	Össz	efoglala	ás	14

Előszó

Már a középiskolás éveim során érdeklődtem a 3D tervezés, a CAD-CAM világa felé. Gépi forgácsoló szakmámból kifolyólag elég régóta kürölvesz engem a gépészeti világ és akkor jött a gondolat, mi lenne ha jelentkeznék egyetemre. Életem egyik legjobb döntése volt a gépészmérnöki képzés elkezdése. Rengeteg új információval gazdagodtam, sokkal jobban el tudtam mélyülni a CAD-CAM rendszerekben, valamint megismerkedtem számomra addig teljesen ismeretlen módszerekkel. Az egyik ilyen volt a végeselem analízis. Ez a terület tetszett meg a legjobban a képzés során, rengeteg lehetőség rejlik benne. A diplomamunka téma kiválasztásánál számomra fontos volt, hogy a CAD-CAM, valamint a végeselem analízis szerepet kapjanak az elkészítés során.

 $\sim \sim \sim$

Köszönetnyilvánítás

Ha kell

Szombathely, 2025. október 6.

Horváth Milán

Jelölések

A táblázatban a többször előforduló jelölések magyar és angol nyelvű elnevezése, valamint a fizikai mennyiségek esetén annak mértékegysége található. Az egyes mennyiségek jelölése – ahol lehetséges – megegyezik hazai és a nemzetközi szakirodalomban elfogadott jelölésekkel. A ritkán alkalmazott jelölések magyarázata első előfordulási helyüknél található.

Latin betűk

Jelölés	Megnevezés, megjegyzés, érték	Mértékegység
E	Rugalmassági modulusz	GPa
F	erő	N
S	keresztmetszet	mm ²

Görög betűk

Jelölés	Megnevezés, megjegyzés, érték	Mértékegység
ε	alakváltozás	1
σ	feszültség	MPa

Indexek, kitevők

Jelölés	Megnevezés, értelmezés	
e	elem	
max	maximális érték	

Bevezetés

A mélyhúzás a lemezalakítás egyik legösszetettebb és legszélesebb körben alkalmazott technológiája, amelynek során síklemezből háromdimenziós, üreges alkatrészeket állítanak elő. A folyamat sikerességét döntően befolyásolja a lemezanyag anizotróp viselkedése, amely a gyártási folyamat során – különösen a hengerelés következtében – kialakuló preferált kristályorientációból (textúra) ered. Az anyag irányított mechanikai tulajdonságai közvetlenül hatnak az alakíthatóságra, a fülképződésre és a végtermék minőségére.

Az anizotrópia mértékét a Lankford-paraméterrel (r-érték) jellemezzük, amely a vastagságirányú és szélességirányú alakváltozás arányát fejezi ki egytengelyű húzás során. Wu et al. (2023) kísérleti vizsgálatai rozsdamentes acél hengermélyhúzása során kimutatták, hogy az r_{90} értéke 29-48%-kal járul hozzá az aljzati visszarugózáshoz, míg az r_{45} és r_0 értékek másodlagos jelentőségűek. A síkanizotrópia (Δr), amely a különböző irányokban mért r-értékek közötti eltéréseket számszerűsíti, közvetlenül felelős a fülképződés mértékért és mintázatáért.

A képlékeny alakítás során fellépő anizotróp viselkedés pontos modellezése kritikus fontosságú a szerszámtervezésben és a folyamatoptimalizálásban. A hagyományos izotróp folyási kritériumok (von Mises, Tresca) nem képesek megfelelően leírni a lemezanyagok irányított tulajdonságait. Az elmúlt évtizedekben számos anizotróp folyási kritérium került kifejlesztésre – a klasszikus Hill'48 modellről (Hill, 1948) a fejlett Barlat-család kritériumaiig (Yld2000-2d, Yld2004-18p) –, amelyek fokozatosan javuló pontossággal írják le a valós anyagviselkedést (Chen et al., 2023).

Jelen irodalmi áttekintés célja, hogy átfogó képet nyújtson a mélyhúzás folyamatáról, a lemezanyagok anizotróp viselkedésének fizikai hátteréről, a szerszámtervezés alapelveiről, valamint a modern végeselem-módszer (VEM) alkalmazásáról. Külön hangsúlyt helyezünk az anyagfüggő viselkedésre és a kristályszerkezet szerepére, mivel ezek az alapvető tényezők határozzák meg a mélyhúzhatóságot és az ipari folyamatok megbízhatóságát.

Irodalmi áttekintés

2.1. Képlékeny alakítás elméleti alapjai

2.1.1. Rugalmas és képlékeny alakváltozás

A képlékeny alakítás olyan technológiai folyamatok összessége, amelyek során a fém vagy ötvözet munkadarabot külső mechanikai erőhatással, maradandó (képlékeny) alakváltozás révén alakítjuk át kívánt formára, miközben az anyag térfogata és tömege változatlan marad [1]. A folyamat alapja az anyag képlékeny viselkedése: a ráhatáskor fellépő feszültség túllépi a folyáshatárt, így az anyag a tehermentesítést követően sem tér vissza eredeti alakjára.

Az alakítási folyamatok a hőmérséklettől függően két alapvető csoportra oszthatók, amelyek különböző mikroszerkezeti folyamatokat és technológiai jellemzőket eredményeznek.

Hidegalakítás

Hidegalakítás ($T < 0, 3T_m$, ahol T_m az olvadáspont Kelvinben): A szobahőmérsékleten vagy közel ahhoz végzett alakítás során az anyag képlékenyen deformálódik, de az alakváltozás mechanizmusai (diszlokációs mozgás, csúszás) nem járnak újrakristályosodással. A hidegalakítás jellemzői:

- Kiváló méretpontosság (IT12-IT14 tolerancia)
- · Jó felületi minőség
- Növekedő szilárdság és keménység (alakítási keményedés)
- Csökkenő képlékenység

- Textúra kialakulása és stabilizálódása
- Maradó feszültségek jelenléte

Acéllemezeknél a szobahőmérsékletű alakítás uralkodó a járműipari alkalmazásokban, ahol a dimenzionális stabilitás és a felületi minőség kritikus követelmény. Az alumíniumötvözetek szintén kiválóan hidegalakíthatók az FCC kristályszerkezetből adódó jó szobahőmérsékletű képlékenységük miatt.

Melegalakítás

Melegalakítás ($T>0,5-0,6T_m$): Magasabb hőmérsékleten végzett alakítás során a képlékeny deformáció egyidejűleg zajlik a dinamikus újrakristályosodással vagy dinamikus recovery folyamatokkal, ami friss, deformálatlan szemcsestruktúrát eredményez. A melegalakítás előnyei:

- Jelentősen csökkentett alakítóerők
- Nagy alakváltozások elérhetősége egyetlen lépésben
- Kedvező mechanikai tulajdonságok finomabb szemcseszerkezet miatt
- Belső feszültségek csökkenése
- Nehezen alakítható anyagok megmunkálhatósága

Hátrányok közé tartozik a nagyobb energiaráfordítás, oxidációs és lekéregesedési problémák, valamint rosszabb méretpontosság és felületi minőség. A járműiparban alkalmazott korszerű nagyszilárdságú acélok (AHSS – Advanced High-Strength Steels) melegelakítása speciális keményítési eljárásokat (press hardening, hot stamping) tesz lehetővé, amelyek során a melegelakítást azonnal hűtéssel kombinálják [2].

2.1.2. Feszültség-alakváltozás kapcsolata, szakítódiagram

Az alakíthatóság az anyag azon képessége, hogy törés nélkül mekkora mértékű képlékeny alakváltozást képes elviselni adott alakítási körülmények között. Az alakíthatóságot számos tényező befolyásolja:

 Anyagi tényezők: Kristályszerkezet (FCC anyagok általában jobb alakíthatóságúak, mint BCC anyagok szobahőmérsékleten), kémiai összetétel és ötvözőelemek, mikroszerkezet (szemcseméret, fázisösszetétel), textúra (preferált kristályorientáció), előzetes alakváltozási történet (hideghengerlés mértéke). Technológiai tényezők: Alakítási hőmérséklet, alakváltozási sebesség, feszültségállapot (egytengelyű, síkbeli, háromtengelyű), súrlódási viszonyok, szerszámgeometria.

Az alakíthatóság jellemzésére több kísérleti módszer és kritérium létezik. A legismertebb az egytengelyű szakítóvizsgálatból származó szakadási nyúlás (A_{50} vagy A_{80}), amely azonban csak közelítő képet ad a komplex alakítási folyamatok során várható viselkedésről.

Lemezalakítás esetében a Forming Limit Diagram (FLD) az iparban széles körben alkalmazott eszköz, amely a főalakváltozások síkjában ábrázolja azt a határgörbét, amely elválasztja a biztonságos alakítási tartományt a nyakképződési/szakadási zónától. Az FLD hagyományos formája Keeler és Backofen (1963) kutatásaiból származik, és számos szabványosított mérésen alapul (Nakazima-teszt, Marciniak-teszt, hidraulikus domborítási teszt) [3].

[4] átfogó áttekintésükben rámutattak, hogy a hagyományos FLD nem képes előrejelezni a nyírási törésmódokat és az élrepedéseket, amelyek különösen az AHSS acélok esetében jelentenek problémát. Ennek következtében fejlettebb károsodásmodellek kerültek kifejlesztésre (MMC – Modified Mohr-Coulomb, eMMC – extended MMC, GISSMO – Generalized Incremental Stress State dependent damage MOdel), amelyek figyelembe veszik a feszültségi triaxialitást és a Lode-paraméter hatását a törési mechanizmusokra.

2.2. Mikroszerkezettől a tervezésig

Az anizotrópia azt jelenti, hogy az anyag mechanikai tulajdonságai különböző irányokban eltérők. Fémlemezeknél az anizotrópia elsődleges oka a kristályos textúra, azaz a preferált szemcseorientációk kialakulása a gyártási folyamat (hengerlés és hőkezelés) során.

2.2.1. Kristályszerkezet és csúszórendszerek

A kristályszerkezet alapvetően meghatározza a rendelkezésre álló csúszórendszerek számát és orientációját, ami döntően befolyásolja a képlékeny anizotrópiát és az alakíthatóságot.

FCC (face-centered cubic) fémek

Az FCC szerkezetű fémek (alumínium, réz, ausztenites acél, nikkel) 12 oktaéderikus csúszórendszerrel rendelkeznek: {111}<110> típusú síkok és irányok. A 12 független csúszó-

rendszer nagy szabadságot biztosít a képlékeny alakváltozáshoz, ami általában jó szobahőmérsékletű képlékenységet eredményez. Az FCC fémek gömbös illeszkedése (atomic packing factor = 0,74) és a csúszósíkok nagy sűrűsége kedvező alakíthatóságot biztosít. Az FCC anyagok hengerelése során jellemző textúrakomponensek alakulnak ki: Brass {112}<111>, Copper {112}<111>, S {123}<634>. Újrakristályosodás után megjelenik a Cube {001}<100> orientáció, amely közepes r-értékeket (r≈0,5-1,0) eredményez. [5] alumíniumlemezek vizsgálata kimutatta, hogy 20-30% húzás után a textúra <111> és <100> szálas textúrák felé fejlődik, ami jelentősen módosítja a lokális alakíthatóságot.

BCC (body-centered cubic) fémek

A BCC szerkezetű fémek (ferrites acél, alacsony karbontartalmú acél) elsődlegesen $\{110\}<111>$ és $\{112\}<111>$ rendszereken csúsznak, összesen 24-48 potenciális rendszerrel. A BCC szerkezet kisebb atomi illeszkedési faktora (0,68) és a csúszósíkok nagyobb Peierls-feszültsége miatt szobahőmérsékleten általában alacsonyabb képlékenységet mutat, mint az FCC fémek. A BCC anyagoknál az α -szálas ($\{001\}<110> \rightarrow \{112\}<110>$) és γ -szálas ($\{111\}<110>$, $\{111\}<112>$) textúrakomponensek kritikusak. [6] kristályplaszticitás-szimulációi bizonyították, hogy 8, 6 vagy 4 fül alakul ki a kezdeti BCC textúrától függően, és a textúra élessége közvetlenül korrelál a fülprofil élességével. A γ -szálas komponensek ($\{111\}<$ uvw>) magas r-értékeket (r=1,5-3,0) biztosítanak, ami kiváló alakíthatóságot eredményez.

2.2.2. Textúra-fejlődés az alakítás során

A textúra nem statikus jellemző, hanem útfüggő módon fejlődik az alakítási folyamat során. [7] átfogó tanulmánya szerint a textúra útfüggő módon fejlődik: a peremrégióban (síkbeli alakváltozás) P $\{011\}<111>$ és Goss $\{011\}<100>$ orientációk erősödnek a korai szakaszban, míg a falrégióban (egytengelyű húzás) α D-szálas komponensek dominálnak. Ez lokális alakíthatósági különbségeket eredményez ugyanazon alkatrészen belül.

2.3. Lemezek képlékeny anizotrópiája

2.3.1. Az anizotrópia

Az anizotrópia azt jelenti, hogy az anyag mechanikai tulajdonságai különböző irányokban eltérők. Fémlemezeknél az anizotrópia elsődleges oka a kristályos textúra, azaz a preferált szemcseorientációk kialakulása a gyártási folyamat (hengerlés és hőkezelés) során. A hen-

gerelési folyamat során nagy nyíró- és nyomó-alakváltozások érik a fémlemezt. Az egyes szemcsék nem homogén módon deformálódnak, mivel kristályorientációjuktól függően különböző csúszórendszerek aktiválódnak. A kedvezőbb orientációjú szemcsék gyorsabban alakulnak, míg mások lassabban, és ez egy preferált orientációeloszlást, azaz textúrát eredményez.

Az anizotrópia típusai:

- Normál anizotrópia (plastic strain ratio anisotropy): Az r-érték irányfüggősége, amely a vastagságirányú alakváltozás ellenállását jellemzi. Minél nagyobb az \bar{r} (átlagos r-érték), annál jobban ellenáll az anyag a vastagságcsökkenésnek, ezáltal jobb mélyhúzhatóságot mutat.
- Síkbeli anizotrópia (planar anisotropy): A különböző irányokban mért r-értékek közötti eltérés, $\Delta r = (r_0 2r_{45} + r_{90})/2$ képlettel számítva. Ez közvetlenül felelős a fülképződésért: $\Delta r > 0$ esetén fülek alakulnak ki 0° és 90°-nál, $\Delta r < 0$ esetén ± 45 °-nál.
- Folyáshatár-anizotrópia (yield strength anisotropy): Különböző irányokban eltérő folyáshatár értékek. Ez befolyásolja az anyagáramlást és az erőeloszlást a szerszámban.

2.3.2. Lankford-tényező

A Lankford-paraméter, vagy r-érték, az anizotrópia legfontosabb mennyiségi jellemzője, amelyet William T. Lankford vezetett be 1950-ben [8]. Az r-érték az egytengelyű húzóvizsgálat során mért szélességi és vastagsági valódi képlékeny alakváltozások arányaként definiált: $r = \varepsilon_{width}/\varepsilon_{thickness} = \ln(w/w_0)/\ln(t/t_0)$ ahol w és w_0 a pillanatnyi és kezdeti szélesség, t és t_0 a pillanatnyi és kezdeti vastagság. Az r>1 azt jelenti, hogy az anyag inkább szélességében, mint vastagságában alakul képlékenyen, ami előnyös mélyhúzásnál. Az átlagos r-érték (normál anizotrópia): $\bar{r} = (r_0 + 2r_{45} + r_{90})/4$. A síkanizotrópia (planar anisotropy): $\Delta r = (r_0 - 2r_{45} + r_{90})/2$. [9] kísérleti vizsgálata rozsdamentes acél hengereken kimutatta, hogy az r_{90} a legnagyobb hatással van az aljzati visszarugózásra (29-48% hozzájárulás), míg r_{45} és r_0 másodlagos jelentőségűek.

2.3.3. Csúcsosodás, az anizotrópia közvetlen hatása

Fülképződés (earing): Az anyag síkbeli anizotrópiája ($\Delta r \neq 0$) miatt a mélyhúzott pohár szélén periodikus magasság-ingadozások alakulnak ki. A fülek száma és elhelyezkedése közvetlenül függ a kristályos textúrától:

- 4 fül: Tipikus alumíniumötvözeteknél kockatextúra dominanciája esetén, 0°, 45°, 90°, 135° helyeken.
- 6 fül: Jellemző mélyhúzó acéloknál γ -szálas textúra esetén.
- 8 fül: Összetett textúra esetén, vegyes orientációs komponensekkel.

[10] kereskedelmi tisztaságú titán vizsgálatakor 13,7%-os fülmagasságot mért $\Delta r \neq 0$ esetén. A fülképződés csökkenthető optimalizált terítékalak alkalmazásával, amely figyelembe veszi az anizotróp viselkedést.

2.3.4. Ideális mélyhúzható lemez

Az optimális mélyhúzhatóság magas átlagos r-értéket ($\bar{r}\uparrow$) és a nullához közeli síkbeli anizotrópiát ($\Delta r \to 0$) igényel. A magas \bar{r} érték biztosítja az elvékonyodással szembeni nagy ellenállást, míg az alacsony Δr érték megakadályozza a fülképződést és az ezzel járó anyagveszteséget.

2.4. A mélyhúzás technológiája

2.4.1. A mélyhúzás alapelvei, fázisai

A mélyhúzás olyan lemezmegmunkálási eljárás, amelynek során síklemezt (tárcsalemezt, terítéket) bélyeg segítségével húzógyűrűn keresztül húzunk át, miközben a lemez radiális húzó- és tangenciális nyomófeszültség hatására üreges, általában forgásszimmetrikus vagy egyéb alakú alkatrésszé formálódik [1, 11]. A mélyhúzás során három fő deformációs zóna különíthető el:

- Bélyeg alatti zóna (aljzat): Itt az anyag viszonylag kis alakváltozást szenved, elsősorban hajlítási és egyenesítési cikluson megy keresztül a bélyegsugárnál.
- Sugár-régiók (bélyegsugár és húzógyűrű-sugár): Ezek a legkritikusabb zónák a legnagyobb von Mises feszültség szempontjából.
- **Peremzóna (flange):** A húzógyűrű és a peremtartó közötti terület, ahol az anyag radiális húzó- és tangenciális (kerületi) nyomófeszültségnek van kitéve.

2.4.2. Meghatározó technológiai paraméterek

- Határalakítási arány (LDR Limiting Drawing Ratio): A legnagyobb sikeresen mélyhúzható teríték átmérőjének (D_0) és a bélyeg átmérőjének (d_p) aránya: $LDR = D_0/d_p$. Az LDR értéke erősen anyagfüggő és közvetlenül összefügg az átlagos Lankford-paraméterrel (\bar{r}).
- Lemezvastagság hatása: A vastagság-átmérő arány (t_0/d_p) növelése javítja a mélyhúzhatóságot.
- **Alakítási sebesség hatása:** Nagyobb sebességeknél figyelembe kell venni az alakváltozási sebesség hatását (strain rate effect), amely növeli a folyáshatárt.
- Súrlódási viszonyok: A súrlódás alapvetően befolyásolja az anyagáramlást és az alakítóerő nagyságát.

2.4.3. A mélyhúzás tipikus hibái és azok okai

- Ráncosodás (wrinkling): A tangenciális nyomófeszültség következtében a peremrégióban lokális instabilitás lép fel. Megelőzése megfelelő peremtartó erővel lehetséges.
- Szakadás (tearing/fracture): Túlzott radiális húzófeszültség vagy nem megfelelő anyagnyúlás következménye. Elkerülése érdekében nagyobb szakadási nyúlással és magasabb r-értékkel rendelkező anyagokat kell választani.
- Fülképződés (earing): Az anyag síkbeli anizotrópiája ($\Delta r \neq 0$) miatt kialakuló periodikus magasság-ingadozások.
- Elvékonyodás (thinning): A lemez radiális húzása során bekövetkező vastagságcsökkenés.
- Narancsbőr-effektus (orange peel): Durva szemcseméretű anyagoknál jelentkező érdes felület.

2.4.4. A mélyhúzás, mint egyensúlyi folyamat

A sikeres mélyhúzás egy kényes egyensúly fenntartását igényli a két fő hibamód, a ráncosodás és a szakadás között. A peremtartó erőnek elég nagynak kell lennie a ráncosodás megakadályozásához, de nem lehet túl nagy, mert az a megnövekedett súrlódás miatt a bélyegáttöréshez (szakadáshoz) vezet. Ez a két korlát jelöli ki a biztonságos működési tartományt, az úgynevezett technológiai ablakot.

2.5. Mélyhúzó szerszámok tervezése

2.5.1. A szerszám felépítése

A mélyhúzó szerszám három alapvető funkcionális egységből áll:

- **Bélyeg (punch):** Meghatározza az alkatrész belső alakját. Anyaga jellemzően edzett szerszámacél (pl. X210Cr12).
- Húzógyűrű (die/mátrix): Meghatározza az alkatrész külső alakját. A bélyeg és a húzógyűrű közötti rés (clearance) kritikus paraméter.
- **Peremtartó (blank holder):** Biztosítja a teríték rögzítését és szabályozott normálerővel nyomja azt a húzógyűrű felületére.

2.5.2. A szerszámgeometria szerepe

A szerszámgeometria, különösen a lekerekítési sugarak (bélyegsugár r_p és húzógyűrűsugár r_d), alapvetően befolyásolja a feszültségeloszlást és az anyagáramlást. Túl kicsi sugarak szakadáshoz, túl nagyok pedig a méretpontosság elvesztéséhez vezethetnek. [12] részletesen vizsgálták a sugár hatását mikro-mélyhúzás esetében.

2.5.3. Technológiai erők számítása

Az egyszerűsített analitikus képlet a bélyegerő maximumának becsléséhez: $F_{draw} = \pi \times d_p \times t \times \sigma_{UTS} \times (D_0/d_p - \beta)$ ahol d_p a bélyeg átmérője, t a lemezvastagság, σ_{UTS} a szakítószilárdság, D_0 a teríték átmérője, és β egy kísérleti korrekciós tényező (\approx 0,6-0,7). Az anizotrópia figyelembevételéhez Hill'48 vagy fejlettebb folyási kritériumokat kell integrálni az erőszámításba.

2.6. Végeselem módszer

2.6.1. Végeselem módszer alapelvei

A végeselem-módszer (Finite Element Method, FEM) numerikus technika parciális differenciálegyenletek közelítő megoldására. A módszer alapja a kontinuum felosztása véges

számú, egyszerű geometriájú elemre (végeselem), amelyek csomópontjaiban az ismeretlen változókat (elmozdulás, feszültség, alakváltozás) interpolációs függvényekkel közelítjük.

2.6.2. Mélyhúzási folyamat szimulációja VEM-mel

A VEM szimulációk lehetővé teszik a komplex geometriák, nemlineáris anyagmodellek és kontaktusok pontos modellezését. Két fő megközelítés létezik:

- Explicit időintegrációs módszer: Hatékony nagy deformációs, dinamikus folyamatok szimulációjára (pl. LS-DYNA, ABAQUS/Explicit).
- Implicit időintegrációs módszer: Stabilis nagyobb időlépésekkel, kvázistatikus folyamatok és visszarugózás-analízis esetében preferált (pl. ABAQUS/Standard, ANSYS/Static).

A lemezalakítás szimulációjában leggyakrabban héjelemeket (shell elements) használnak.

2.6.3. Anyagmodellek

A pontos szimulációhoz elengedhetetlenek a fejlett anyagmodellek.

- Anizotróp folyási kritériumok: A Hill'48 kritérium a legegyszerűbb, de korlátozott pontosságú [13]. A Yld2000-2d [14] kiváló pontossággal írja le az alumíniumötvözetek viselkedését. A Yld2004-18p (Barlat et al., 2005) erősen anizotróp BCC és HCP anyagokhoz készült.
- Keményedési modellek: Az izotróp modellek nem képesek leírni a Bauschingereffektust. A kinematikus és kombinált keményedési modellek reálisabb leírást adnak komplex terhelési történetek esetén.

A legelterjedtebb szoftverek (ABAQUS, LS-DYNA, AutoForm) különböző szinteken támogatják ezen modellek implementációját, gyakran felhasználói alprogramokon (UMAT) keresztül.

Anyagok és módszerek

Szerszámkialakítás

Mérési eredmények értékelése

Összefoglalás

Irodalomjegyzék

- [1] L. Gillemot and Gy. Ziaja. Fémek képlékeny alakítása. Tankönyvkiadó, Budapest, 1977.
- [2] R. Pereira, N. Peixinho, and S. L. Costa. A review of sheet metal forming evaluation of advanced high-strength steels (ahss). *Metals*, 14(4):394, 2024. doi: 10.3390/met14040394.
- [3] Z. Marciniak, J. L. Duncan, and S. J. Hu. *Mechanics of sheet metal forming*. Butterworth-Heinemann, 2002.
- [4] A. S. Takalkar and M. C. L. Babu. A review on effect of thinning, wrinkling and spring-back on deep drawing process. *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture*, 233(6):1011–1036, 2019. doi: 10.1177/0954405417752509.
- [5] J. Savoie, Y. Zhou, J. J. Jonas, and S. R. MacEwen. Textures induced by tension and deep drawing in aluminum sheets. *Acta Materialia*, 44(2):587–598, 1996. doi: 10.1016/1359-6454(95)00214-6.
- [6] D. Raabe, Y. Wang, and F. Roters. Crystal plasticity simulation study on the influence of texture on earing in steel. *Computational Materials Science*, 34(3):221–234, 2005. doi: 10.1016/j.commatsci. 2004.12.072.
- [7] O. Engler. Correlating crystallographic texture with anisotropic properties and sheet metal forming of aluminium alloys. *Journal of Materials Research and Technology*, 35:514–522, 2025. doi: 10.1016/j. jmrt.2025.01.059.
- [8] W. T. Lankford, S. C. Snyder, and J. A. Bauscher. New criteria for predicting the press performance of deep drawing sheets. *Transactions of the ASM*, 42:1197–1232, 1950.
- [9] F. Wu, Y. Hong, Z. Zhang, C. Huang, and Z. Huang. Effect of lankford coefficients on springback behavior during deep drawing of stainless steel cylinders. *Materials*, 16(12):4321, 2023. doi: 10. 3390/ma16124321.
- [10] B. Tang, N. Guo, Z. Y. Liu, and Z. Y. Chen. Planar anisotropy, tension—compression asymmetry, and deep drawing behavior of commercially pure titanium at room temperature. *Journal of Materials Engineering and Performance*, 27(11):6073–6082, 2018. doi: 10.1007/s11665-018-3646-6.
- [11] Z. Weltsch. Képlékeny alakítás a járműiparban. Akadémiai Kiadó, Budapest, 2019.
- [12] L. Luo, D. Wei, G. Zu, and Z. Jiang. Influence of blank holder-die gap on micro-deep drawing of sus304 cups. *International Journal of Mechanical Sciences*, 191:106065, 2021. doi: 10.1016/j.ijmecsci.2020. 106065.

- [13] Z. Mu, J. Zhao, Q. Meng, X. Huang, and G. Yu. Applicability of hill48 yield model and effect of anisotropic parameter determination methods on anisotropic prediction. *Journal of Materials Engineering and Performance*, 31(3):2023–2042, 2022. doi: 10.1007/s11665-021-06366-z.
- [14] F. Barlat et al. Plane stress yield function for aluminum alloy sheets—part i: theory. *International Journal of Plasticity*, 19(9):1297–1319, 2003.

Melléklet A

Melléklet B