Data Intake Report

Team Members: Saif Amer, saifamer67@gmail.com, United States of America, Data

Science track

Problem Description

ABC Pharma seeks to improve patient therapy outcomes by understanding **persistence** patterns in drug usage prescribed by physicians. Persistency refers to whether patients continue their prescribed therapies over time. The business objective is to automate the identification of persistence behavior using a machine learning classification model. This will enable targeted interventions to improve long-term patient outcomes

and therapy adherence.

Task: Build a **classification model** to predict whether a patient will be persistent

(Persistency Flag = 1) or not (Persistency Flag = 0).

Data Understanding

The dataset consists of patient-level health and treatment data, including demographics, provider and clinical information, comorbidities, drug usage, and adherence history. Each row represents a unique patient.

Key Points:

Target Variable: Persistency Flag

Granularity: Patient level

Time Sensitivity: Some variables are time-bound (e.g., events in the last 365 days)

Type of Data Available for Analysis

Category Examples

Demographics Age, Gender, Race, Region, Ethnicity

Provider NTM - Physician Specialty

Attributes

Clinical Factors T-Score, Risk Segment, Change Indicators, DEXA

scans

Therapy Usage Glucocorticoid and Injectable Usage

Comorbidities Chronic and Acute Conditions

Adherence Therapy adherence metrics

Outcome Persistency_Flag (0 or 1)

Data Problems

Problem Type	Details
Missing Values (NA)	Present in several features like T-Score, Change in Risk Segment, DEXA-related features, and Comorbidities. NA values can represent either missing data or meaningful absence of diagnosis/event.
Categorical Imbalance	The Persistency_Flag is likely to be imbalanced (most patients are either persistent or non-persistent).
Outliers	Possible outliers in Age, NTM - Dexa Scan Frequency, and numerical adherence values.
Skewed Variables	Features like scan frequency, comorbidities count, and adherence are likely right-skewed.
High Cardinality	Fields like NTM - Risk Factors and NTM - Comorbidity may contain high-cardinality categorical data or text strings.

Overcoming Problems

A. Handling Missing Values

Approach	Why
Categorical NA → 'Unknown'	For features like Change in T Score, Change in Risk Segment, NA can be a meaningful category.
Numerical NA → Median/Mode Imputation	For variables like T Score, where NA may be due to unrecorded data, median imputation is robust.
Drop Variables/Rows	Only if missingness is extreme (>50%) and the variable adds little value.

B. Handling Outliers

Step Why

IQR-based capping or Mitigate extreme values in Age, Dexa Scan

transformation Frequency, Adherence.

Domain-specific thresholds Apply medically informed caps if available (e.g.,

age < 120).

C. Addressing Class Imbalance

Technique Purpose

SMOTE / Oversampling Balance the minority class in training data.

Stratified K-Fold Maintain class ratios during model evaluation.

Cross-validation

Class-weight Adjustment Penalize the misclassification of the minority class

more heavily.

D. Encoding Categorical Variables

Type Technique

Nominal (e.g., Gender, Ethnicity) One-Hot Encoding

Ordinal (e.g., Risk Segment: Label Encoding

Worsened < Remained Same <

Improved)

High Cardinality (e.g., Risk Factors, Feature hashing or dimensionality reduction

Comorbidity) (e.g., PCA, clustering based encoding)

E. Feature Engineering Ideas

Feature Transformation

Age Binning into age groups

Adherence Categorize into Low, Medium, High

adherence

Interaction Terms Risk × Specialty or Gender × Comorbidity

F. Scaling and Transformation

Method Purpose

StandardScaler / Normalize numerical features for distance-based

MinMaxScaler models

Log Transformation For skewed count-based features like scan

frequency