MRAM: La promesa Electromagnetica

David Pachon Sergio Montoya

### Imagina...

Imagina que estás queriendo conseguir el récord mundial de cálculo de dígitos de Pi (que actualmente se encuentra en aproximadamente 300.000.000.000.000). Entonces, el espacio que ocuparía, asumiendo que usas un *nibble* (4 bits) para almacenar cada dígito, sería de unos **150 terabytes**.¿Donde podrias guardar tanta información?

## **SOTA: HD**



### **SOTA: DRAM**



## ¿Por que no se usa una sola?

- Velocidad de un SSD (Mucho mas rapido que un HD): 50 microsegundos
- Velocidad de un DRAM: 17 nanosegundos (3000 veces mas rapido)
- DRAM es volatil

De ahi nace una propuesta de solución: MRAM

# ¿Qué es una MTJ (Magnetic Tunnel Junction)?

Capa de barrera (generalmente de óxido de magnesio, MgO): Es una barrera delgada ( 1 nm) que permite el tunelamiento cuántico de electrones.

# ¿Qué es una MTJ (Magnetic Tunnel Junction)?

La resistencia eléctrica de la MTJ depende de la relación entre las direcciones de magnetización de las dos capas ferromagnéticas:

Paralela  $\rightarrow$  baja resistencia (estado lógico 0).

Antiparalela  $\rightarrow$  alta resistencia (estado lógico 1).

Este fenómeno se conoce como magnetorresistencia de túnel (TMR).



### **Toggle MRAM**

### **Toggle MRAM Technology**



# spin dependent tunnel junction



#### **MRAM**

Corriente por la word line  $\rightarrow$  genera un campo magnético en una dirección (por ejemplo, horizontal). Corriente por la bit line  $\rightarrow$  genera un campo magnético en la dirección perpendicular (por ejemplo, vertical).



#### **MRAM**

Solo la capa libre cambia su magnetización porque está diseñada para ser sensible a los campos magnéticos. En cambio, la capa fija está "anclada" mediante una capa antiferromagnética y materiales más resistentes al cambio, por lo que permanece inalterada.



### Lectura de un bit en MRAM

Se aplica un voltaje de lectura entre la bit line y la tierra. La corriente atraviesa la MTJ (Magnetic Tunnel Junction). Se mide la corriente resultante. Usando la ley de Ohm

$$R = \frac{V}{I}$$

Se calcula la resistencia de la MTJ. Según el valor de resistencia:

Baja resistencia o Estados paralelos o bit = 0

Alta resistencia ightarrow Estados antiparalelos ightarrow bit =1

La lectura no cambia el estado del bit.

La corriente de lectura es muy pequeña para no afectar la magnetización.



#### References

- 1. Dynamic Random Acess Memory (DRAM) Explained 'All About Semiconductor' by Samsung Semiconductor.
  - https://youtu.be/\_pdwsakYhMk?feature=shared
- How does Computer Memory Work?. https://youtu.be/7J7X7aZvMXQ?feature=shared
- What Is MRAM?. https://youtu.be/VRJ7xYPMfGA?si=rT4iHyEM\_GpyUh2x
- 4. Prof. Tiffany Santos: Spins, Bits & Flips: Essentials for a High-Density MRAM. https://youtu.be/GyjPeqqWeKA?feature=shared
- 5. Libro: Scott, J. C. But How Do It Know? The Basic Principles of Computers for Everyone. https://www.amazon.com/But-How-Know-Principles-Computers/dp/0615303765