Formal Affine Demazure Algebras

Raj Gandhi

University of Ottawa

July 10, 2020

A Bit of Motivation

```
X = \{ \text{Smooth quasi-projective variety over field } k \}. k(X) = \{ \text{Function field of } X \}. W = \{ \text{Irreducible closed subvariety of } X \text{ of codimension } (r-1) \text{ in } X \}.
```

 $D = \{ \text{Irreducible closed subvariety of } W \text{ of codimension } 1 \text{ in } W \}.$

A Bit of Motivation

 $X = \{$ Smooth quasi-projective variety over field $k \}$. $k(X) = \{$ Function field of $X \}$.

 $W = \{ \text{Irreducible closed subvariety of } X \text{ of codimension } (r-1) \text{ in } X \}.$

 $D = \{ \text{Irreducible closed subvariety of } W \text{ of codimension 1 in } W \}.$

Let $f \in k(X)^{\times}$. "Restricting" f to D, possible to write $f = ut^n$, u unit, $n \in \mathbb{Z}$.

Homomorphism. $\operatorname{ord}_D : k(X)^{\times} \to \mathbb{Z}, \quad f = ut^n \mapsto n.$

Finite formal sum. $\operatorname{div}(f) := \sum_{D} \operatorname{ord}_{D}(f)D$.

A Bit of Motivation

 $X = \{$ Smooth quasi-projective variety over field $k \}$.

$$k(X) = \{ \text{Function field of } X \}.$$

 $W = \{\text{Irreducible closed subvariety of } X \text{ of codimension } (r-1) \text{ in } X\}.$

 $D = \{ \text{Irreducible closed subvariety of } W \text{ of codimension 1 in } W \}.$

Let $f \in k(X)^{\times}$. "Restricting" f to D, possible to write $f = ut^n$, u unit, $n \in \mathbb{Z}$.

Homomorphism. $\operatorname{ord}_D: k(X)^{\times} \to \mathbb{Z}, \quad f = ut^n \mapsto n.$

$$\textit{Finite} \ \text{formal sum}. \quad \operatorname{div}(f) := \sum_{D} \operatorname{ord}_{D}(f) D.$$

 $Z^r := \{ \text{Free abelian group on irreducible closed codim. } r \text{ subvarieties in } X \}.$

 $B^r := \{ \text{Subgroup of } Z^r \text{ generated by elements of the form } \operatorname{div}(f) \}.$

$$CH^r(X) := Z^r/B^r$$
.

 $CH^*(X) := \bigoplus_{r \geqslant 1} CH^r(X)$ is called the *Chow group* of X. It is a *graded ring* via the *intersection product*.

 $CH^*(X) := \bigoplus_{r \geqslant 1} CH^r(X)$ is called the *Chow group* of *X*. It is a *graded ring* via the *intersection product*.

 CH^* can be viewed as a functor: {Category of smooth quasi-projective varieties over k} \to {Category of graded commutative rings with unit}.

It satisfies various "functorial" properties:

① (Flat pullbacks): Let $f: X \to Y$ be a flat morphism of varieties. Let $W \subseteq Y$ be a smooth closed subvariety. Define the pullback $f^*: CH^i(Y) \to CH^i(X)$ by $f^*([W]) = [f^{-1}(W)]$. By flatness, it preserves the graded degree i.

It satisfies various "functorial" properties:

- ① (Flat pullbacks): Let $f: X \to Y$ be a flat morphism of varieties. Let $W \subseteq Y$ be a smooth closed subvariety. Define the pullback $f^*: CH^i(Y) \to CH^i(X)$ by $f^*([W]) = [f^{-1}(W)]$. By flatness, it preserves the graded degree i.
- ② (Proper push-forwards): Let $f: X \to Y$ be a proper morphism of varieties, and suppose $Z \subseteq X$ is a smooth closed subvariety. Then there is a push-forward $f_*: CH^{\dim X-i}(X) \to CH^{\dim Y-i}(Y)$ given by

$$f_*([Z]) = \begin{cases} 0, & \text{if } \dim f(Z) < \dim Z, \\ [k(Z) : k(f(Z))][f(Z)], & \text{if } \dim f(Z) = \dim Z \end{cases}$$

4/22

1 (Localization Exact Sequence): Let $i:Y\subseteq X$ be a smooth closed subvariety, and let $j:U=X\setminus Y\subseteq X$ be its open complement in X. Then

$$CH^{\dim Y-r}(Y) \stackrel{i_*}{\longrightarrow} CH^{\dim X-r}(X) \stackrel{j^*}{\longrightarrow} CH^{\dim X-r}(U) \longrightarrow 0$$

is exact.

① (Localization Exact Sequence): Let $i:Y\subseteq X$ be a smooth closed subvariety, and let $j:U=X\setminus Y\subseteq X$ be its open complement in X. Then

$$CH^{\mathrm{dim}Y-r}(Y) \stackrel{i_*}{\longrightarrow} CH^{\mathrm{dim}X-r}(X) \stackrel{j^*}{\longrightarrow} CH^{\mathrm{dim}X-r}(U) \longrightarrow 0$$

is exact.

② (Chern classes): Let VB(X) be set of isomorphism classes of vector bundles over X (there is a map $[U] \to [V]$ in VB(X) whenever there is a morphism $V \to U$). The Chern class of X with respect to CH^* is a collection of set maps $c_i^{CH^*}: VB(X) \to CH^*(X)$ satisfying naturality and various properties, where we view $CH^*(X)$ as a set here.

① (Localization Exact Sequence): Let $i:Y\subseteq X$ be a smooth closed subvariety, and let $j:U=X\setminus Y\subseteq X$ be its open complement in X. Then

$$CH^{\dim Y - r}(Y) \stackrel{i_*}{\longrightarrow} CH^{\dim X - r}(X) \stackrel{j^*}{\longrightarrow} CH^{\dim X - r}(U) \longrightarrow 0$$

is exact.

② (Chern classes): Let VB(X) be set of isomorphism classes of vector bundles over X (there is a map $[U] \to [V]$ in VB(X) whenever there is a morphism $V \to U$). The Chern class of X with respect to CH^* is a collection of set maps $c_i^{CH^*}: VB(X) \to CH^*(X)$ satisfying naturality and various properties, where we view $CH^*(X)$ as a set here.

Let L_1 and L_2 be two line bundles over X. Then

$$c_1^{CH^*}(L_1 \otimes L_2) = c_1^{CH^*}(L_1) + c_1^{CH^*}(L_2).$$

Oriented Cohomology Theories: Definition

```
\mathcal{V} = \{ \text{the category of smooth quasi-projective varieties over } k \}.
\mathcal{R} = \{ \text{the category of graded commutative unital rings} \}.
h^* : \mathcal{V} \to \mathcal{R} = \{ \text{contravariant functor satisfying various axioms} \}.
```

Note, given $f: X \to Y$ in \mathcal{V} , the existence of a pullback $f^*: h^i(Y) \to h^i(X)$ is implied by the contravariance of h^* (i.e., $f^*:=h^*(f)$).

Oriented Cohomology Theories: Definition

 $\mathcal{V} = \{ \text{the category of smooth quasi-projective varieties over } k \}.$ $\mathcal{R} = \{ \text{the category of graded commutative unital rings} \}.$ $h^* : \mathcal{V} \to \mathcal{R} = \{ \text{contravariant functor satisfying various axioms} \}.$

Note, given $f: X \to Y$ in \mathcal{V} , the existence of a pullback $f^*: h^i(Y) \to h^i(X)$ is implied by the contravariance of h^* (i.e., $f^*:=h^*(f)$). Among the properties h^* satisfies, we have:

① Give a *projective* morphism $f: X \to Y$ in \mathcal{V} , there is a homomorphism of graded $h^*(Y)$ -modules

$$f_*: h^{\dim X - j}(X) \to h^{\dim Y - j}(Y)$$

called the *push-forward*. Here $h^*(X)$ is an $h^*(Y)$ -module via the pullback f^* .

① (Localization Exact Sequence): Let $i:Y\subseteq X$ be a smooth closed subvariety, and let $j:U=X\setminus Y\subseteq X$ be its open complement in X. Then

$$h^{\dim Y - r}(Y) \stackrel{i_*}{\longrightarrow} h^{\dim X - r}(X) \stackrel{j^*}{\longrightarrow} h^{\dim X - r}(U) \longrightarrow 0$$

is exact.

① (Localization Exact Sequence): Let $i:Y\subseteq X$ be a smooth closed subvariety, and let $j:U=X\setminus Y\subseteq X$ be its open complement in X. Then

$$h^{\dim Y - r}(Y) \stackrel{i_*}{\longrightarrow} h^{\dim X - r}(X) \stackrel{j^*}{\longrightarrow} h^{\dim X - r}(U) \longrightarrow 0$$

is exact.

② Let VB be the contravariant "vector bundles" functor, so VB(X) is the set of isomorphism classes of vector bundles over X. There exist natural transformations $c_i^{h^*}: VB \to h^*$ called *Chern classes* satisfying various propertes, where h^* is viewed as a set-theoretic functor here.

Recall: Given line bundles L_1 and L_2 over X, the Chern classes for Chow theory satisfy

$$c_1^{CH^*}(L_1 \otimes L_2) = c_1^{CH^*}(L_1) + c_1^{CH^*}(L_2).$$

*This is *not* true in general.

8/22

Recall: Given line bundles L_1 and L_2 over X, the Chern classes for Chow theory satisfy

$$c_1^{\textit{CH}^*}(L_1 \otimes L_2) = c_1^{\textit{CH}^*}(L_1) + c_1^{\textit{CH}^*}(L_2).$$

*This is *not* true in general.

Definition

A one-dimensional commutative formal group law over commutative ring R is a power series $F(u,v) = \sum_{i,i \ge 0} a_{i,i} u^i v^j \in R[\![u,v]\!]$ satisfying:

- **1** $F(0, u) = F(u, 0) = u \in R[u],$
- ② F(u, v) = F(v, u), and
- **3** F(u, F(v, w)) = F(F(u, v), w).

Note:

- (1) implies that $a_{0,0} = 0$, and $a_{1,0} = a_{0,1} = 1$.
- (2) implies that $a_{i,j} = a_{i,i}$ for all i, j.

8/22

The additive formal group law over R is

$$F(u, v) = u + v.$$

The additive formal group law over R is

$$F(u, v) = u + v$$
.

Example

The multiplicative-periodic formal group law over R is

$$F(u, v) = u + v - \beta uv,$$

where $\beta \in R^{\times}$.

Let *E* be the elliptic curve

E:
$$v = u^3 + a_1uv + a_2u^2v + a_3v^2 + a_4uv^2 + a_6v^3$$
.

The *elliptic* formal group law over $R = \mathbb{Z}[a_1, a_2, a_3, a_4, a_6]$ is

$$F(u, v) = u + v - a_1 uv - a_2 (u^2 v + uv^2) + O(4).$$

Let *E* be the elliptic curve

E:
$$v = u^3 + a_1uv + a_2u^2v + a_3v^2 + a_4uv^2 + a_6v^3$$
.

The *elliptic* formal group law over $R = \mathbb{Z}[a_1, a_2, a_3, a_4, a_6]$ is

$$F(u, v) = u + v - a_1 uv - a_2 (u^2 v + uv^2) + O(4).$$

Example

Let $\mathbb L$ be the *Lazard* ring, i.e., the commutative ring on generators $a_{i,j}$, $i,j\in\mathbb N_{>0}$, subject to the relations imposed by the axioms of the formal group law. Then

$$F_U(u, v) = u + v + \sum_{i,j \ge 1} a_{i,j} u^i v^j$$

is the universal formal group law.

Lemma

Let F be an arbitrary formal group law over R. Then there is a unique ring homomorphism

$$f: \mathbb{L} \to R$$

such that $F(u, v) = u + v + \sum_{i,j \geqslant 1} f(a_{i,j})u^i v^j$.

Lemma

Let F be an arbitrary formal group law over R. Then there is a unique ring homomorphism

$$f: \mathbb{L} \to R$$

such that $F(u, v) = u + v + \sum_{i,j \ge 1} f(a_{i,j}) u^i v^j$.

Quillen's formula: Let L_1 and L_2 be two line bundles over X. Let h^* be any oriented cohomology theory. Then

$$c_1^{h^*}(L_1 \otimes L_2) = F(c_1^{h^*}(L_1), c_1^{h^*}(L_2)),$$

where *F* is a formal group law over $R = h^*(pt)$, pt := Spec(k).

Lemma

Let F be an arbitrary formal group law over R. Then there is a unique ring homomorphism

$$f: \mathbb{L} \to R$$

such that $F(u, v) = u + v + \sum_{i,j \ge 1} f(a_{i,j}) u^i v^j$.

Quillen's formula: Let L_1 and L_2 be two line bundles over X. Let h^* be any oriented cohomology theory. Then

$$c_1^{h^*}(L_1 \otimes L_2) = F(c_1^{h^*}(L_1), c_1^{h^*}(L_2)),$$

where *F* is a formal group law over $R = h^*(pt)$, pt := Spec(k).

The *Chow theory* corresponds to the *additive* formal group law over \mathbb{Z} .

Lemma

Let F be an arbitrary formal group law over R. Then there is a unique ring homomorphism

$$f: \mathbb{L} \to R$$

such that $F(u, v) = u + v + \sum_{i,j \ge 1} f(a_{i,j}) u^i v^j$.

Quillen's formula: Let L_1 and L_2 be two line bundles over X. Let h^* be any oriented cohomology theory. Then

$$c_1^{h^*}(L_1 \otimes L_2) = F(c_1^{h^*}(L_1), c_1^{h^*}(L_2)),$$

where *F* is a formal group law over $R = h^*(pt)$, pt := Spec(k).

The *Chow theory* corresponds to the *additive* formal group law over \mathbb{Z} .

Algebraic K-theory corresponds to the multiplicative-period formal group law over $\mathbb{Z}[\beta, \beta^{-1}]$.

Question: Is there a universal oriented cohomology theory?

Question: Is there a universal oriented cohomology theory?

Answer: Yes. It is called *algebraic cobordism* and denoted Ω^* .

Question: Is there a universal oriented cohomology theory? **Answer:** Yes. It is called *algebraic cobordism* and denoted Ω^* .

Theorem (Levine-Morel (2007))

Let h^* be an oriented cohomology theory over k. Then there is a unique morphism of oriented cohomology theories $\Omega^* \to h^*$ (i.e., a natural transformation that commutes with push-forwards), and the formal group law corresponding to Ω^* is the universal formal group law F_U over the Lazard ring \mathbb{L} .

Question: Given a formal group law *F*, can we construct an oriented cohomology theory?

Question: Given a formal group law *F*, can we construct an oriented cohomology theory?

Answer: Yes. Let F be a formal group law over R. Then there is an oriented cohomology theory

$$h^*(-)_F = \Omega^*(-) \otimes_{\mathbb{L}} R$$
,

where R is an \mathbb{L} -module via the universal morphism $\mathbb{L} \to R$. A theory constructed in this way is called a *free oriented cohomology theory*.

Detour

Definition

An algebraic group G over k is an object that is simultaneously a group and an algebraic variety over k, such that the group operations

$$\mu: G \times G \to G$$
, $\mu(x,y) = xy$, and $\iota: G \to G$, $\iota(x) = x^{-1}$,

are morphisms of varieties.

Detour

Definition

An algebraic group G over k is an object that is simultaneously a group and an algebraic variety over k, such that the group operations

$$\mu:G imes G o G,\quad \mu(x,y)=xy,\quad \text{and}\quad \iota:G o G,\quad \iota(x)=x^{-1},$$

are morphisms of varieties.

Example

The additive group ${\bf G_a}$ is the affine space \mathbb{A}^1_k with group operations $\mu(x,y)=x+y$ and $\mu(x)=-x$.

Detour

Definition

An algebraic group G over k is an object that is simultaneously a group and an algebraic variety over k, such that the group operations

$$\mu: G \times G \to G$$
, $\mu(x,y) = xy$, and $\iota: G \to G$, $\iota(x) = x^{-1}$,

are morphisms of varieties.

Example

The additive group G_a is the affine space \mathbb{A}^1_k with group operations $\mu(x,y)=x+y$ and $\mu(x)=-x$.

Example

The multiplicative group G_m is the affine open $K^* \subseteq \mathbb{A}^1_k$ with group operations $\mu(x,y) = xy$ and $\mu(x) = x^{-1}$.

An algebraic group is called a *(split)* torus of rank n is it is isomorphic to n copies, $\mathbf{G_m} \times \cdots \times \mathbf{G_m}$, over k.

An algebraic group is called a *(split)* torus of rank n is it is isomorphic to n copies, $\mathbf{G_m} \times \cdots \times \mathbf{G_m}$, over k.

A *character* of an algebraic group G is a morphism of algebraic groups $\chi:G\to \mathbf{G_m}$. Let $\Lambda(G)$ be the *lattice of character* of G.

15/22

An algebraic group is called a *(split)* torus of rank n is it is isomorphic to n copies, $\mathbf{G_m} \times \cdots \times \mathbf{G_m}$, over k.

A character of an algebraic group G is a morphism of algebraic groups $\chi: G \to \mathbf{G_m}$. Let $\Lambda(G)$ be the lattice of character of G.

There is a finite subset of $\Lambda(G)$ called a *root system* and denoted Φ , which corresponds to the *adjoint representation* of G. The lattice generated by Φ is called the *root lattice* Λ_r and is contained in $\Lambda(G)$.

An algebraic group is called a *(split)* torus of rank n is it is isomorphic to n copies, $\mathbf{G_m} \times \cdots \times \mathbf{G_m}$, over k.

A character of an algebraic group G is a morphism of algebraic groups $\chi: G \to \mathbf{G_m}$. Let $\Lambda(G)$ be the lattice of character of G.

There is a finite subset of $\Lambda(G)$ called a *root system* and denoted Φ , which corresponds to the *adjoint representation* of G. The lattice generated by Φ is called the *root lattice* Λ_r and is contained in $\Lambda(G)$.

Theorem

Let G be split connected reductive algebraic group over a field k containing split maximal torus T. Then G is completely determined by the quadruple $(\Lambda(T), \Phi, \Lambda(T)^{\vee}, \Phi^{\vee})$ called the *root datum* of G, where $\Lambda(G)^{\vee}$ and Φ^{\vee} are the *duals* of $\Lambda(G)$ and Φ , respectively.

 $R = \{\text{commutative unital ring}\}.$ $F = \{\text{One dimensional commutative formal group law over } R\}.$

```
R = \{ \text{commutative unital ring} \}. F = \{ \text{One dimensional commutative formal group law over } R \}. G = \{ \text{split connected reductive algebraic group over field } k \}. (\Lambda, \Phi, \Lambda^{\vee}, \Phi^{\vee}) = \{ \text{root datum of } G \}.
```

```
R = \{\text{commutative unital ring}\}. F = \{\text{One dimensional commutative formal group law over } R\}. G = \{\text{split connected reductive algebraic group over field } k\}. (\Lambda, \Phi, \Lambda^{\vee}, \Phi^{\vee}) = \{\text{root datum of } G\}. R[\![x_{\Lambda}]\!] = \{\text{Formal power series ring with variables indexed by } \Lambda\}. \mathcal{J}_F = \{\text{closure of ideal generated by elements } x_{\lambda_1 + \lambda_2} - F(x_{\lambda_1}, x_{\lambda_2})\}.
```

$$R = \{\text{commutative unital ring}\}.$$

$$F = \{\text{One dimensional commutative formal group law over } R\}.$$

$$G = \{\text{split connected reductive algebraic group over field } k\}.$$

$$(\Lambda, \Phi, \Lambda^{\vee}, \Phi^{\vee}) = \{\text{root datum of } G\}.$$

$$R[\![x_{\Lambda}]\!] = \{\text{Formal power series ring with variables indexed by } \Lambda\}.$$

$$\mathcal{J}_F = \{\text{closure of ideal generated by elements } x_{\lambda_1 + \lambda_2} - F(x_{\lambda_1}, x_{\lambda_2})\}.$$

The formal group algebra is the (complete) quotient:

$$S := R[x_{\Lambda}]/J_{F}.$$

Note: This definition of is purely algebraic, and independent of all axioms of the oriented cohomology theory.

 $W = \{ \text{Wely group of } \Phi, \text{ generated by reflections } s_{\alpha}, \alpha \in \Phi \}.$

 $W = \{ \text{Wely group of } \Phi, \text{ generated by reflections } s_{\alpha}, \alpha \in \Phi \}.$ $\Omega = \{ \text{Localization of } S \text{ at elements } x_{\alpha}, \alpha \in \Phi, \text{ (assume } x_{\alpha} \text{ are regular)} \}.$

 $W=\{\text{Wely group of }\Phi\text{, generated by reflections }s_{\alpha}\text{, }\alpha\in\Phi\}.$ $Q=\{\text{Localization of }S\text{ at elements }x_{\alpha}\text{, }\alpha\in\Phi\text{, (assume }x_{\alpha}\text{ are regular)}\}.$

Set $Q_W := Q \otimes_R R[W]$ as an *R*-module, with multiplication

$$(q\delta_w)\cdot (q'\delta_{w'})=qw(q')\delta_{ww'},\quad w,w'\in W \text{ and } q,q'\in \mathcal{Q},$$

and extended by linearity. Here, δ_W is the element in R[W] corresponding to $W \in W$, and Ω_W is the localized twisted formal group algebra.

 $W=\{\text{Wely group of }\Phi\text{, generated by reflections }s_{\alpha}\text{, }\alpha\in\Phi\}.$ $Q=\{\text{Localization of }S\text{ at elements }x_{\alpha}\text{, }\alpha\in\Phi\text{, (assume }x_{\alpha}\text{ are regular)}\}.$

Set $Q_W := Q \otimes_R R[W]$ as an *R*-module, with multiplication

$$(q\delta_w)\cdot (q'\delta_{w'})=qw(q')\delta_{ww'},\quad w,w'\in W \text{ and } q,q'\in \mathcal{Q},$$

and extended by linearity. Here, δ_W is the element in R[W] corresponding to $W \in W$, and Ω_W is the localized twisted formal group algebra.

Definition

Let $\alpha \in \Phi$. Define a *Demazure element*

$$X_{\alpha} = \frac{1}{X_{\alpha}}(1 - \delta_{s_{\alpha}}).$$

The formal affine Demazure algebra \mathbf{D}_F is the R-subalgebra of Ω_W generated by δ and the Demazure elements X_{α} , $\alpha \in \Phi$.

For $w \in W$, fix a reduced decomposition $w = s_{\alpha_{i_1}} \circ \cdots \circ s_{\alpha_{i_m}}$ in simple roots. Set $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_m})$. Define

$$X_{I_w} := X_{i_1} \cdot \cdot \cdot \cdot X_{i_m}$$
.

For $w \in W$, fix a reduced decomposition $w = s_{\alpha_{i_1}} \circ \cdots \circ s_{\alpha_{i_m}}$ in simple roots. Set $I_w := (\alpha_{i_1}, \dots, \alpha_{i_m})$. Define

$$X_{I_w} := X_{i_1} \cdot \cdot \cdot \cdot X_{i_m}$$
.

Theorem (Calmes-Zainoulline-Zhong (2016))

The formal affine Demazure algebra \mathbf{D}_F is a free \mathbb{S} -module with basis X_{l_w} , $w \in W$.

For $w \in W$, fix a reduced decomposition $w = s_{\alpha_{i_1}} \circ \cdots \circ s_{\alpha_{i_m}}$ in simple roots. Set $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_m})$. Define

$$X_{I_w} := X_{i_1} \cdot \cdot \cdot \cdot X_{i_m}$$
.

Theorem (Calmes-Zainoulline-Zhong (2016))

The formal affine Demazure algebra \mathbf{D}_F is a free \mathbb{S} -module with basis X_{l_w} , $w \in W$.

Research Question: Can this theorem be extended to arbitrary Coxeter groups (i.e., to arbitrary complex reflection groups)?

For $w \in W$, fix a reduced decomposition $w = s_{\alpha_{i_1}} \circ \cdots \circ s_{\alpha_{i_m}}$ in simple roots. Set $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_m})$. Define

$$X_{I_w} := X_{i_1} \cdot \cdot \cdot \cdot X_{i_m}$$
.

Theorem (Calmes-Zainoulline-Zhong (2016))

The formal affine Demazure algebra \mathbf{D}_F is a free \mathbb{S} -module with basis X_{l_w} , $w \in W$.

Research Question: Can this theorem be extended to arbitrary Coxeter groups (i.e., to arbitrary complex reflection groups)?

Work in Progress: Extend the theorem to all real finite reflection groups.

Let *B* be a maximal closed connected solvable subgroup of *G*. There are two well known theorems:

Let *B* be a maximal closed connected solvable subgroup of *G*. There are two well known theorems:

Theorem

G/B is a projective variety independent of the chosen B.

Let *B* be a maximal closed connected solvable subgroup of *G*. There are two well known theorems:

Theorem

G/B is a projective variety independent of the chosen B.

Theorem

For each character $\lambda \in \Lambda$ of $T \subseteq G$, there is a canonical line bundle $L(\lambda)$ over the projective variety G/B.

Let *B* be a maximal closed connected solvable subgroup of *G*. There are two well known theorems:

Theorem

G/B is a projective variety independent of the chosen B.

Theorem

For each character $\lambda \in \Lambda$ of $T \subseteq G$, there is a canonical line bundle $L(\lambda)$ over the projective variety G/B.

We would like to compute the oriented cohomology $h^*(G)$. To do this, we will use knowledge of the oriented cohomology $h^*(G/B)$.

There is a *coproduct* on the formal affine Demazure algebra \mathbf{D}_F , which induces a *commutative product* on the dual $\mathbf{D}_F^* := \mathrm{Hom}(\mathbf{D}_F, \mathcal{S})$.

There is a *coproduct* on the formal affine Demazure algebra \mathbf{D}_F , which induces a *commutative product* on the dual $\mathbf{D}_F^* := \mathrm{Hom}(\mathbf{D}_F, \mathcal{S})$.

There is an R-algebra map $c_{\mathbb{S}}: \mathbb{S} \to \mathbf{D}_F^*$ defined by $x_{\lambda} \mapsto \operatorname{ev}_{x_{\lambda}}$.

There is a *coproduct* on the formal affine Demazure algebra \mathbf{D}_F , which induces a *commutative product* on the dual $\mathbf{D}_F^* := \mathrm{Hom}(\mathbf{D}_F, \mathcal{S})$.

There is an *R*-algebra map $c_{\mathcal{S}}: \mathcal{S} \to \mathbf{D}_{\mathcal{F}}^*$ defined by $x_{\lambda} \mapsto \operatorname{ev}_{x_{\lambda}}.$

Let h^* be the oriented cohomology theory corresponding to F. There is another R-algebra map $\mathfrak{c}: \mathbb{S} \to h^*(G/B)$ defined by $x_\lambda \mapsto c_1^{h^*}(L(\lambda))$.

There is a *coproduct* on the formal affine Demazure algebra \mathbf{D}_F , which induces a *commutative product* on the dual $\mathbf{D}_F^* := \mathrm{Hom}(\mathbf{D}_F, \mathcal{S})$.

There is an R-algebra map $c_{\mathbb{S}}: \mathbb{S} \to \mathbf{D}_{F}^{*}$ defined by $x_{\lambda} \mapsto \operatorname{ev}_{x_{\lambda}}$.

Let h^* be the oriented cohomology theory corresponding to F. There is another R-algebra map $\mathfrak{c}: \mathbb{S} \to h^*(G/B)$ defined by $x_\lambda \mapsto c_1^{h^*}(L(\lambda))$.

Let I be the ideal in \mathbf{D}_F^* generated by multiplication by elements x_λ , $\lambda \in \Lambda$. Let $\pi: \mathbf{D}_F^* \to \mathbf{D}_F^*/I$ be the natural projection.

There is a *coproduct* on the formal affine Demazure algebra \mathbf{D}_F , which induces a *commutative product* on the dual $\mathbf{D}_F^* := \mathrm{Hom}(\mathbf{D}_F, \mathcal{S})$.

There is an *R*-algebra map $c_{\mathbb{S}}:\mathbb{S}\to \mathbf{D}_{\!\scriptscriptstyle F}^*$ defined by $x_{\lambda}\mapsto \mathrm{ev}_{x_{\lambda}}.$

Let h^* be the oriented cohomology theory corresponding to F. There is another R-algebra map $\mathfrak{c}: \mathbb{S} \to h^*(G/B)$ defined by $x_\lambda \mapsto c_1^{h^*}(L(\lambda))$.

Let I be the ideal in \mathbf{D}_F^* generated by multiplication by elements x_λ , $\lambda \in \Lambda$. Let $\pi: \mathbf{D}_F^* \to \mathbf{D}_F^*/I$ be the natural projection.

Theorem (Calmes-Petrov-Zainoulline (2013))

There is an R-algebra isomorphism $\theta: h^*(G/B) \to \mathbf{D}_F^*/I$, such that $\mathfrak{c} = \theta \circ \pi \circ c_S$.

Theorem (Corollary of Gille-Zainoulline (2012))

There are R-algebra isomorphisms

$$h^*(G) \simeq h^*(G/B)/(\mathrm{im}\mathfrak{c}) \simeq \mathbf{D}^*/(I + (\mathrm{im}(c_{\mathbb{S}}))).$$

21/22

Theorem (Corollary of Gille-Zainoulline (2012))

There are R-algebra isomorphisms

$$h^*(G) \simeq h^*(G/B)/(\mathrm{im}\mathfrak{c}) \simeq \mathbf{D}^*/(I+(\mathrm{im}(c_{\mathcal{S}}))).$$

Research Problem: Compute $h^*(G)$ by computing $\mathbf{D}^*/(I+(\mathrm{im}(c_S)))$ for arbitrary algebraic groups.

Theorem (Corollary of Gille-Zainoulline (2012))

There are R-algebra isomorphisms

$$h^*(G) \simeq h^*(G/B)/(\mathrm{im}\mathfrak{c}) \simeq \mathbf{D}^*/(I+(\mathrm{im}(c_S))).$$

Research Problem: Compute $h^*(G)$ by computing $\mathbf{D}^*/(I+(\mathrm{im}(c_S)))$ for arbitrary algebraic groups.

Research Problem: Compute $\mathbf{D}^*/(I+(\operatorname{im}(c_{\mathcal{S}})))$ for real finite reflection groups (gives *virtual* cohomology: no algebraic groups can actually be constructed from real root systems of types H and $I_2(m)$, $m \ge 7$).

Progress: Given an *adjoint* algebraic group, i.e., the root lattice Λ_r equals the character lattice Λ , of *rank* two, i.e., the root system generates a two-dimensional vector space, we have:

$$\Omega^*(A_1 \times A_1) = \mathbb{L}[x, y]/(2x, 2y)$$

$$\Omega^*(A_2) = \mathbb{L}[x]/(3x, x^3)$$

$$\Omega^*(B_2) = \mathbb{L}[x]/(x^4, 2x^2, 2x - a_{11}x^2)$$

$$\Omega^*(G_2) = \mathbb{L}[x]/(x^2, 2x, a_{11}x).$$