CS 181 Homework 5

Sriram Balachandran

TOTAL POINTS

96 / 100

QUESTION 1

1 Question 1 20 / 20

√ + 4 pts Not completely incorrect

Construction

√ + 10 pts Correct

- + 9 pts Small Mistake
- + 5 pts Flawed
- + 0 pts Incorrect

Proof of correctness

√ + 6 pts Correct

- + 5 pts Small Mistake
- + 3 pts Flawed / Incomplete
- + 0 pts Incorrect

QUESTION 2

2 Question 2 19 / 20

- 0 pts Correct
- √ 1 pts Small Mistake in construction
 - 3 pts missing some clarity
 - 3 pts Flawed Proof
 - 10 pts wrong strategy/partial answer
 - 15 pts Error
 - 15 pts no answer/ I don't know
 - no such thing as epsilon should be the empty set instead

QUESTION 3

Question 3 60 pts

3.1 3a 12 / 15

- 0 pts Correct
- √ 3 pts Incorrect input to Turing machine
 - 6 pts Incorrect code for y
 - 6 pts Incorrect/partially correct explanation of

accept / reject

- 15 pts No answer

3.2 3b 15 / 15

√ - 0 pts Correct

- 6 pts Does not mention infinitely possible input x
- 12 pts "I Don't Know"
- 15 pts No answer

3.3 3c 30 / 30

√ - 0 pts Correct

- 6 pts Partially correct use of recursion theorem
- 12 pts Incorrect use of recursion theorem
- 6 pts Partially correct analysis of cases
- 15 pts No clear analysis of cases
- 24 pts "I don't know"
- 30 pts No answer

1. (20 points). Prove that the language

$$\mathsf{COMPL}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = \overline{L(M_2)}, \text{ where } M_1 \text{ and } M_2 \text{ are Turing machines} \}$$

is not Turing-recognizable.

Answer:

We will prove $\mathsf{COMPL}_{\mathsf{TM}}$ is not Turing-recognizable by contradiction. Assume there is a recognizer R(x,y) that recognizes $\mathsf{COMPL}_{\mathsf{TM}}$.

Let $L(M_2) = \Sigma^*$, where $\Sigma^* = \{w | w = \{0, 1\}^*\}$, and let $z = \langle M_1 \rangle$ by the recursion theorem. For $M_1(x)$, we run $R(z, \langle M_2 \rangle)$. Let us then pose contradictions that arise from every possible return state of R.

If R accepts, then we accept x. Thus $L(M_1) = \Sigma^*$. This is a contradiction since $L(M_1) \neq \overline{L(M_2)}$.

If R rejects, then we can consider $L(M_1) = \epsilon$, where ϵ is the empty set, since M_1 will reject all inputs. This poses a contradiction since $L(M_1) = \overline{L(M_2)}$, which means R should not have rejected.

If R loops forever, the recognizer does not believe $\langle M_1, M_2 \rangle$ to be in COMPL_{TM}. For any input x, M_1 will loop forever, and never accept. Thus $L(M_1) = \epsilon$, which is a contradiction since $L(M_1) = \overline{L(M_2)}$, which means R should have accepted $\langle M_1, M_2 \rangle$ instead of looping forever.

Since every possible outcome of a recognizer R for COMPL_{TM} resulted in a contradiction for $\langle M_1, M_2 \rangle$, COMPL_{TM} is not Turing-recognizable.

2. (20 points). Define SUBSET_{TM} to be the problem of testing whether the set of strings accepted by a Turing machine, say M_1 , is also accepted by another Turing machine, say M_2 . More formally,

$$\mathsf{SUBSET}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) \subseteq L(M_2) \}.$$

Show that $SUBSET_{TM}$ is undecidable.

Answer:

We will prove $\mathsf{SUBSET}_{\mathsf{TM}}$ is undecidable by contradiction. Assume there exists a D(x,y) that decides $\mathsf{SUBSET}_{\mathsf{TM}}$.

Let $L(M_2) = \{1000101, 110100100\}$, and let $z = \langle M_1 \rangle$ by the recursion theorem. For $M_1(x)$, we run $D(z, \langle M_2 \rangle)$. Let us then pose contradictions that arise from every possible return state of D.

If D accepts, then we accept x. Since x is an arbitrary input, $L(M_1) = \Sigma^*$, which is not guaranteed to be a subset of $L(M_2)$ (x could be 0, which would violate the subset condition).

If D rejects, then we would reject all x. Thus $L(M_2) = \epsilon$. However this poses a contradiction since $\epsilon \subseteq L(M_2)$, which means D shouldn't have rejected.

Since every possible outcome of a recognizer R for SUBSET_{TM} resulted in a contradiction for $\langle M_1, M_2 \rangle$, SUBSET_{TM} is not Turing-decidable.

- 3. (60 points) We define a new notion called a "certified" language. A language L over the alphabet $\{0,1\}$ is called "certified" if there exists a Turing machine M satisfying the following conditions:
 - For all $x \in L$, there exists a $y \in \{0,1\}^*$ such that M(x,y) accepts.

1 Question 1 20 / 20

√ + 4 pts Not completely incorrect

Construction

- √ + 10 pts Correct
 - + 9 pts Small Mistake
 - + 5 pts Flawed
 - + **0 pts** Incorrect

Proof of correctness

- √ + 6 pts Correct
 - + 5 pts Small Mistake
 - + 3 pts Flawed / Incomplete
 - + **0 pts** Incorrect

1. (20 points). Prove that the language

$$\mathsf{COMPL}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = \overline{L(M_2)}, \text{ where } M_1 \text{ and } M_2 \text{ are Turing machines} \}$$

is not Turing-recognizable.

Answer:

We will prove $\mathsf{COMPL}_{\mathsf{TM}}$ is not Turing-recognizable by contradiction. Assume there is a recognizer R(x,y) that recognizes $\mathsf{COMPL}_{\mathsf{TM}}$.

Let $L(M_2) = \Sigma^*$, where $\Sigma^* = \{w | w = \{0, 1\}^*\}$, and let $z = \langle M_1 \rangle$ by the recursion theorem. For $M_1(x)$, we run $R(z, \langle M_2 \rangle)$. Let us then pose contradictions that arise from every possible return state of R.

If R accepts, then we accept x. Thus $L(M_1) = \Sigma^*$. This is a contradiction since $L(M_1) \neq \overline{L(M_2)}$.

If R rejects, then we can consider $L(M_1) = \epsilon$, where ϵ is the empty set, since M_1 will reject all inputs. This poses a contradiction since $L(M_1) = \overline{L(M_2)}$, which means R should not have rejected.

If R loops forever, the recognizer does not believe $\langle M_1, M_2 \rangle$ to be in COMPL_{TM}. For any input x, M_1 will loop forever, and never accept. Thus $L(M_1) = \epsilon$, which is a contradiction since $L(M_1) = \overline{L(M_2)}$, which means R should have accepted $\langle M_1, M_2 \rangle$ instead of looping forever.

Since every possible outcome of a recognizer R for COMPL_{TM} resulted in a contradiction for $\langle M_1, M_2 \rangle$, COMPL_{TM} is not Turing-recognizable.

2. (20 points). Define SUBSET_{TM} to be the problem of testing whether the set of strings accepted by a Turing machine, say M_1 , is also accepted by another Turing machine, say M_2 . More formally,

$$\mathsf{SUBSET}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) \subseteq L(M_2) \}.$$

Show that $SUBSET_{TM}$ is undecidable.

Answer:

We will prove $\mathsf{SUBSET}_{\mathsf{TM}}$ is undecidable by contradiction. Assume there exists a D(x,y) that decides $\mathsf{SUBSET}_{\mathsf{TM}}$.

Let $L(M_2) = \{1000101, 110100100\}$, and let $z = \langle M_1 \rangle$ by the recursion theorem. For $M_1(x)$, we run $D(z, \langle M_2 \rangle)$. Let us then pose contradictions that arise from every possible return state of D.

If D accepts, then we accept x. Since x is an arbitrary input, $L(M_1) = \Sigma^*$, which is not guaranteed to be a subset of $L(M_2)$ (x could be 0, which would violate the subset condition).

If D rejects, then we would reject all x. Thus $L(M_2) = \epsilon$. However this poses a contradiction since $\epsilon \subseteq L(M_2)$, which means D shouldn't have rejected.

Since every possible outcome of a recognizer R for SUBSET_{TM} resulted in a contradiction for $\langle M_1, M_2 \rangle$, SUBSET_{TM} is not Turing-decidable.

- 3. (60 points) We define a new notion called a "certified" language. A language L over the alphabet $\{0,1\}$ is called "certified" if there exists a Turing machine M satisfying the following conditions:
 - For all $x \in L$, there exists a $y \in \{0,1\}^*$ such that M(x,y) accepts.

2 Question 2 19 / 20

- **0 pts** Correct
- ✓ 1 pts Small Mistake in construction
 - **3 pts** missing some clarity
 - 3 pts Flawed Proof
 - 10 pts wrong strategy/partial answer
 - 15 pts Error
 - **15 pts** no answer/ I don't know
 - no such thing as epsilon should be the empty set instead

- For all $x \notin L$ and for all $y \in \{0,1\}^*$, M(x,y) rejects. (We think of y as being the "certificate" that allows x to be in the language.)
- (a) (15 points). Let $Halt_{\epsilon}$ denote the language of all the Turing machines which halt on input ϵ . More formally,

$$\operatorname{Halt}_{\epsilon} = \{ \langle N \rangle \mid N \text{ halts on } \epsilon \},$$

where $\langle N \rangle$ denotes the code of the machine N. Show that $\operatorname{Halt}_{\epsilon}$ is a certified language. **Hint:** Think about how the input y could be made to relate to whether or not a machine "halts".

Answer:

We will construct a certifier C(x,y) that certifies $\operatorname{Halt}_{\epsilon}$ as follows. Let x be the description of a Turing Machine we are trying to certify, and let y be some binary string. The certifier will then run the Turing machine that x describes with input $_{\epsilon}$ for val(y) steps, where val(y) is equal to the integer that the binary string y represents.

If the machine halts within val(y) steps, then C accepts. Since val(y) will always be some finite integer, we know that C will always finish running and accept or reject its input.

If the machine does not halt within val(y) steps, then C will reject.

To prove correctness, consider the description of a turing machine $N \in \operatorname{Halt}_{\epsilon}$. Since we know that it is in $\operatorname{Halt}_{\epsilon}$, we know that after some finite number of steps, the machine will eventually halt on input ϵ , meaning that all N in $\operatorname{Halt}_{\epsilon}$ is guaranteed to have a certificate y such that C(N, y) will accept.

Then consider $M \notin \operatorname{Halt}_{\epsilon}$. Since we know M will not halt on input ϵ , absolutely no binary string y will certify M, and C will always reject M.

(b) (15 points). Explain why your method does not work if you try to prove that the language $\text{Halt}_{\mathsf{all}} = \{\langle N \rangle \mid N \text{ halts on all inputs} \}$ is a certified language.

Answer:

The method used on the previous certifier worked because it only had to check if the provided machine halted within val(y) steps on a finite number of inputs $(|\{\epsilon\}| = 1)$. However the description of $\operatorname{Halt}_{all}$ requires that the machine halts for all inputs. This means that if y was the certificate provided to our certifier, it would have to check that the provided input machine halts within val(y) steps for all $w \in \{0,1\}^*$, which is a set of infinite size. The Certifier would never accept or reject any machine run with any input, which does not satisfy the conditions of being a certifier.

(c) (30 points). Use the recursion theorem to prove that the language $\operatorname{Halt}_{\mathsf{all}} = \{\langle N \rangle \mid N \text{ halts on all inputs}\}$ is not a certified language. Answer:

We will prove that $\operatorname{Halt}_{all}$ is not a certified language by contradiction. Assume C(x,y) certifies $\operatorname{Halt}_{all}$. Let us then consider N(x), where N is some Turing Machine, and $x \in \{0,1\}^*$. Let $z = \langle N \rangle$ by the recursion theorem. Then, $\forall bin(i) \in [0,|x|]$, where bin(i) is the binary representation of some integer i, run C(z,i).

If C accepts for any i, then we loop. This causes a contradiction since C accepting means that it should've halted on input x.

If C rejects all i, we accept the input x. If $N \notin \operatorname{Halt}_{all}$, it is clear this will immediately cause a cause a contradiction, since we will always halt on all x, which is a contradiction.

3.1 3a 12 / 15

- 0 pts Correct
- √ 3 pts Incorrect input to Turing machine
 - **6 pts** Incorrect code for y
 - 6 pts Incorrect/partially correct explanation of accept / reject
 - 15 pts No answer

- For all $x \notin L$ and for all $y \in \{0,1\}^*$, M(x,y) rejects. (We think of y as being the "certificate" that allows x to be in the language.)
- (a) (15 points). Let $Halt_{\epsilon}$ denote the language of all the Turing machines which halt on input ϵ . More formally,

$$\operatorname{Halt}_{\epsilon} = \{ \langle N \rangle \mid N \text{ halts on } \epsilon \},$$

where $\langle N \rangle$ denotes the code of the machine N. Show that $\operatorname{Halt}_{\epsilon}$ is a certified language. **Hint:** Think about how the input y could be made to relate to whether or not a machine "halts".

Answer:

We will construct a certifier C(x,y) that certifies $\operatorname{Halt}_{\epsilon}$ as follows. Let x be the description of a Turing Machine we are trying to certify, and let y be some binary string. The certifier will then run the Turing machine that x describes with input $_{\epsilon}$ for val(y) steps, where val(y) is equal to the integer that the binary string y represents.

If the machine halts within val(y) steps, then C accepts. Since val(y) will always be some finite integer, we know that C will always finish running and accept or reject its input.

If the machine does not halt within val(y) steps, then C will reject.

To prove correctness, consider the description of a turing machine $N \in \operatorname{Halt}_{\epsilon}$. Since we know that it is in $\operatorname{Halt}_{\epsilon}$, we know that after some finite number of steps, the machine will eventually halt on input ϵ , meaning that all N in $\operatorname{Halt}_{\epsilon}$ is guaranteed to have a certificate y such that C(N, y) will accept.

Then consider $M \notin \operatorname{Halt}_{\epsilon}$. Since we know M will not halt on input ϵ , absolutely no binary string y will certify M, and C will always reject M.

(b) (15 points). Explain why your method does not work if you try to prove that the language $\text{Halt}_{\mathsf{all}} = \{\langle N \rangle \mid N \text{ halts on all inputs} \}$ is a certified language.

Answer:

The method used on the previous certifier worked because it only had to check if the provided machine halted within val(y) steps on a finite number of inputs $(|\{\epsilon\}| = 1)$. However the description of $\operatorname{Halt}_{all}$ requires that the machine halts for all inputs. This means that if y was the certificate provided to our certifier, it would have to check that the provided input machine halts within val(y) steps for all $w \in \{0,1\}^*$, which is a set of infinite size. The Certifier would never accept or reject any machine run with any input, which does not satisfy the conditions of being a certifier.

(c) (30 points). Use the recursion theorem to prove that the language $\operatorname{Halt}_{\mathsf{all}} = \{\langle N \rangle \mid N \text{ halts on all inputs}\}$ is not a certified language. Answer:

We will prove that $\operatorname{Halt}_{all}$ is not a certified language by contradiction. Assume C(x,y) certifies $\operatorname{Halt}_{all}$. Let us then consider N(x), where N is some Turing Machine, and $x \in \{0,1\}^*$. Let $z = \langle N \rangle$ by the recursion theorem. Then, $\forall bin(i) \in [0,|x|]$, where bin(i) is the binary representation of some integer i, run C(z,i).

If C accepts for any i, then we loop. This causes a contradiction since C accepting means that it should've halted on input x.

If C rejects all i, we accept the input x. If $N \notin \operatorname{Halt}_{all}$, it is clear this will immediately cause a cause a contradiction, since we will always halt on all x, which is a contradiction.

3.2 3b **15** / **15**

√ - 0 pts Correct

- 6 pts Does not mention infinitely possible input x
- 12 pts "I Don't Know"
- 15 pts No answer

- For all $x \notin L$ and for all $y \in \{0,1\}^*$, M(x,y) rejects. (We think of y as being the "certificate" that allows x to be in the language.)
- (a) (15 points). Let $Halt_{\epsilon}$ denote the language of all the Turing machines which halt on input ϵ . More formally,

$$\operatorname{Halt}_{\epsilon} = \{ \langle N \rangle \mid N \text{ halts on } \epsilon \},$$

where $\langle N \rangle$ denotes the code of the machine N. Show that $\operatorname{Halt}_{\epsilon}$ is a certified language. **Hint:** Think about how the input y could be made to relate to whether or not a machine "halts".

Answer:

We will construct a certifier C(x,y) that certifies $\operatorname{Halt}_{\epsilon}$ as follows. Let x be the description of a Turing Machine we are trying to certify, and let y be some binary string. The certifier will then run the Turing machine that x describes with input $_{\epsilon}$ for val(y) steps, where val(y) is equal to the integer that the binary string y represents.

If the machine halts within val(y) steps, then C accepts. Since val(y) will always be some finite integer, we know that C will always finish running and accept or reject its input.

If the machine does not halt within val(y) steps, then C will reject.

To prove correctness, consider the description of a turing machine $N \in \operatorname{Halt}_{\epsilon}$. Since we know that it is in $\operatorname{Halt}_{\epsilon}$, we know that after some finite number of steps, the machine will eventually halt on input ϵ , meaning that all N in $\operatorname{Halt}_{\epsilon}$ is guaranteed to have a certificate y such that C(N, y) will accept.

Then consider $M \notin \operatorname{Halt}_{\epsilon}$. Since we know M will not halt on input ϵ , absolutely no binary string y will certify M, and C will always reject M.

(b) (15 points). Explain why your method does not work if you try to prove that the language $\text{Halt}_{\mathsf{all}} = \{\langle N \rangle \mid N \text{ halts on all inputs} \}$ is a certified language.

Answer:

The method used on the previous certifier worked because it only had to check if the provided machine halted within val(y) steps on a finite number of inputs $(|\{\epsilon\}| = 1)$. However the description of $\operatorname{Halt}_{all}$ requires that the machine halts for all inputs. This means that if y was the certificate provided to our certifier, it would have to check that the provided input machine halts within val(y) steps for all $w \in \{0,1\}^*$, which is a set of infinite size. The Certifier would never accept or reject any machine run with any input, which does not satisfy the conditions of being a certifier.

(c) (30 points). Use the recursion theorem to prove that the language $\operatorname{Halt}_{\mathsf{all}} = \{\langle N \rangle \mid N \text{ halts on all inputs}\}$ is not a certified language. Answer:

We will prove that $\operatorname{Halt}_{all}$ is not a certified language by contradiction. Assume C(x,y) certifies $\operatorname{Halt}_{all}$. Let us then consider N(x), where N is some Turing Machine, and $x \in \{0,1\}^*$. Let $z = \langle N \rangle$ by the recursion theorem. Then, $\forall bin(i) \in [0,|x|]$, where bin(i) is the binary representation of some integer i, run C(z,i).

If C accepts for any i, then we loop. This causes a contradiction since C accepting means that it should've halted on input x.

If C rejects all i, we accept the input x. If $N \notin \operatorname{Halt}_{all}$, it is clear this will immediately cause a cause a contradiction, since we will always halt on all x, which is a contradiction.

From this construction one should see that for some $N \in \operatorname{Halt}_{all}$, some inputs x will halt. However, since we claim that C certifies $\operatorname{Halt}_{all}$, it is guaranteed that for at least one input, when |x| >= val(y), where y is the certificate of N in the certifier C(x,y), N will not halt and cause a contradiction.

3.3 3c 30 / 30

√ - 0 pts Correct

- 6 pts Partially correct use of recursion theorem
- 12 pts Incorrect use of recursion theorem
- 6 pts Partially correct analysis of cases
- 15 pts No clear analysis of cases
- 24 pts "I don't know"
- 30 pts No answer