Amendment Dated: June 19, 2008

Reply to Office Action dated March 25, 2008

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A method for evaluating a plurality of options comprising the steps of:
- a) selecting and accessing type 1 databases, DB_{i}^{1} , each of said selected databases DB_{i}^{1} including at least one option rating, $OR_{i}(x,n)$, for one of said options, x, with respect to a dimension n, where said option x can differ among said selected databases;
- b) selecting and accessing type 2 databases DB²_j, each of said type 2 databases DB²_i including at least one database rating DR_i(i) for at least one of said databases DB¹_i;
- c) associating weights, W_i with said databases DB¹_i, said weights W_i being calculated as a function of said database ratings DR_i(i); and
- d) calculating an overall rating R(m,n) for an option m with respect to said dimension n as a function of said weights W_i and option ratings $OR_i(m,n)$;
- e) repeating step d for each remaining one of said options for which there exists at least one option rating with respect to said dimension n; and
- f) generating a list of said options and associated overall ratings with respect to dimension n.
- 2. (Original) A method as described in claim 1 where said function of said weights W_i and said option ratings $OR_i(m,n)$ is:

$$R(m,n) = \sum_{i} (W_i \cdot Norm(OR_i(m,n)) / \sum_{i} W_i;$$

- a) where $Norm(OR_i(m,n)$ is a normalization of said option ratings $OR_i(m,n)$, and
- b) summation \sum_i ranges over all of said type 1 databases DB^1_i for which said option ratings $OR_i(m,n)$ are defined.

Amendment Dated: June 19, 2008

Reply to Office Action dated March 25, 2008

- 3. (Original) A method as described in claim 2 where said option ratings $OR_i(m,n)$ are normalized with respect to a maximum rating $OR_i(max)$ and a minimum satisfactory rating $OR_i(sat)$ for each of said selected type 1 databases DB^1_i .
- 4. (Original) A method as described in claim 2 where, if said option rating $OR_i(m,n)$ is less than said minimum satisfactory $OR_i(sat)$, said normalization, $Norm(OR_i(m,n))$ is set equal to a predetermined value; said predetermined value being less than a normalized minimum satisfactory rating $Norm(OR_i(sat))$.
- 5. (Original) A method as described in claim 2 where said function of said database ratings DR_i(i) is:

 $W_i = \sum_i (MW_i \cdot Norm(DR_i(i)) / \sum_i MW_i;$

- a) where Norm(DR_i(i)) is a normalization of said database ratings DR_i(i), and
- b) summation \sum_j ranges over all of said type 2 databases DB^2_j for which said option ratings $DR_i(i)$ are defined; and
 - c) MW_j are master weights associated with said type 2 databases DB_j^2 .
- 6. (Original) A method as described in claim 5 where said database ratings DR_{j}^{2} are normalized with respect to a maximum rating DR_{j} (max) and a minimum satisfactory rating DR_{i} (sat) for each of said selected type 2 databases DB_{j}^{2} .
- 7. (Original) A method as described in claim 6 where, if one of said weights W_i is less than 0, said one weight is set equal to 0.
- 8. (Original) A method as described in claim 5 further comprising the step of adjusting said master weights MW_j based on a user's evaluation of said list.
- 9. (Original) A method as described in claim 8 where said adjusting step comprises the steps of:

Amendment Dated: June 19, 2008

Reply to Office Action dated March 25, 2008

- a) said user identifying a selected choice m';
- b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the mean rating, $\Sigma_m R(m,n) / M$ as a function of master weights MW_j , where M is the total number of options for which R(m,n') is defined;
- c) setting $MW_i' = MW_i'(1 + \alpha P(MW_i'))$, where α is a small positive number; and
- d) repeating steps b and c for all remaining master weights MW_j.
- 10. (Original) A method as described in claim 8 where said adjusting step comprises the steps of:
 - a) said user identifying a selected choice m';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the maximum rating, max(R(m,n)) as a function of master weights MW_j ;
 - c) setting $MW_i' = MW_i'(1 + \alpha P(MW_i'))$, where α is a small positive number; and
 - d) repeating steps b and c for all remaining master weights MW_i.
- 11. (Original) A method as described in claim 1 where said options are rated with respect to a plurality of dimensions, comprising the further step of repeating steps d and e for each remaining one of said dimensions.
- 12. (Original) A method as described in claim 11 further comprising the step of adjusting said master weights MW_i based on a user's evaluation of said list.
- 13. (Original) A method as described in claim 12 where said adjusting step comprises the steps of:
 - a) said user identifying a selected choice m' and a critical dimension n';
 - b) calculating a partial derivative $P(MW_j)' = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm', n'(MW_j)$ is the deviation of option rating R(m', n') from the mean rating, $\Sigma_m R(m, n') / M$, along said

Amendment Dated: June 19, 2008

Reply to Office Action dated March 25, 2008

critical dimension n', as a function of master weights MW_j , where M is the total number of options for which R(m,n') is defined;

- c) setting $MW_i' = MW_i'(1 + \alpha P(MW_i'))$, where α is a small positive number; and
- d) repeating steps b and c for all remaining master weights MWi.
- 14. (Original) A method as described in claim 12 where said adjusting step comprises the steps of:
 - a) said user identifying a selected choice m';
 - b) calculating a partial derivative $P(MW_j') = \partial Fm', n'(MW_j) / \partial MW_j'$; where $Fm'n'(MW_j)$ is the deviation of option rating R(m',n) from the maximum rating, max(R(m,n)) as a function of master weights MW_j ;
 - c) setting $MW_j' = MW_j'(1 + \alpha P(MW_j'))$, where α is a small positive number; and
 - d) repeating steps b and c for all remaining master weights MW_i.

Amendment Dated: June 19, 2008

Reply to Office Action dated March 25, 2008

- 23. (Cancelled)
- 24. (Canceled)
- 25. (Cancelled)
- 26. (Cancelled)
- 27. (Cancelled)
- 28. (Cancelled)
- 29. (Cancelled)