Further Mathematics

S.Olivia

March 2024

目录

1	多元函数的极限与连续 5				
	1.1	基本概念	. 5		
	1.2	二元函数的极限	. 5		
		1.2.1 重极限与累次极限	. 6		
	1.3	二元函数的连续性	. 6		
		1.3.1 复合函数的连续性	. 6		
2	多元	· ·函数微分学	7		
-	2.1	可微性	-		
	2.1	2.1.1 偏导数			
		2.1.2 全微分			
		2.1.3 曲面的切平面与法线			
	2.2	复合函数微分法			
		2.2.1 复合函数的偏导数			
		2.2.2 复合函数的全微分			
	2.3	方向导数与梯度			
		2.3.1 方向导数			
		2.3.2 梯度			
	2.4	泰勒公式与极值			
		2.4.1 高阶偏导数			
		2.4.2 中值定理和泰勒公式			
		2.4.3 极值			
3		数定理及其应用	13		
	3.1	隐函数			
		3.1.1 隐函数定理			
	3.2	隐函数组			
	3.3	条件极值	. 14		
4	曲线	积分	15		
	4.1	第一型曲线积分	. 15		
	4.2	第二型曲线积分	15		

4 目录

5	重积	l分	17
	5.1	二重积分	17
		5.1.1 二重积分的概念	17
		5.1.2 累次积分	17
		5.1.3 二重积分的性质	17
		5.1.4 二重积分的计算	18
		5.1.5 二重积分的变量代换	18
	5.2	格林公式	19
	5.3	三重积分	19
		5.3.1 三重积分的概念	19
		5.3.2 累次积分	20
		5.3.3 三重积分的计算	20
		5.3.4 三重积分的变量代换	20
)// - 		
6	数项		23
	6.1	级数的收敛性	
		6.1.1 级数的概念	23
		6.1.2 级数的收敛性	23
	6.2	正项级数	24
		6.2.1 正项级数收敛性的一般判别原则	24
		6.2.2 比式判别法和根式判别法	24
		6.2.3 积分判别法	24
	6.3	一般项级数	25
		6.3.1 交错级数	25
		6.3.2 绝对收敛级数及其性质	25
		6.3.3 阿贝尔判别法和狄利克雷判别法	25
	6.4	幂级数	26
		6.4.1 幂级数的概念	26
		6.4.2 函数展开成幂级数	26
		6.4.3 求幂级数的和函数	27

多元函数的极限与连续

1.1 基本概念

平面: $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R} = \{(x, y) | x, y \in \mathbf{R}\}$

平面点集: $\{(x,y)|(x,y)$ 满足条件 $P\}$

邻域: $U(P_0, \delta) = \{P | |PP_0| < \delta\}$

内点: P_0 是集合D的内点,如果存在 $\delta > 0$,使得 $U(P_0, \delta) \subset D$

外点: P_0 是集合D的外点, 如果存在 $\delta > 0$, 使得 $U(P_0, \delta) \cap D = \emptyset$

(边) 界点: P_0 是集合D的边界点,如果对任意 $\delta > 0$, $U(P_0, \delta)$ 内既有D内的点,也有D外的点

聚点:对任意 $\delta > 0$, $U(P_0, \delta)$ 内有D内的点

开集:集合D中的每一点都是D的内点,如(a,b)

闭集:集合D中的每一个边界点都是D的点,如[a,b]

开域: 联通的开集

闭域: 联通的闭集

有界集:集合D内的点都在某一邻域内无界集:集合D内的点没有界限约束

联通集:集合D内的任意两点都可以用D内的折线连接

1.2 二元函数的极限

称f在D上当P → P₀时以A为极限,记

$$\lim_{P \to P_0} f(P) = A$$

当 P, P_0 分别用坐标 $(x, y), (x_0, y_0)$ 表示时,上式也常写作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$$

多元函数的逼近可以沿着任何一条路径进行,但是极限只有一个,与逼近的路径无关。如果极限不相等,则称多元函数在该点无极限。

1.2.1 重极限与累次极限

在上面讨论的 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A$ 中, 自变量 (x,y)是以任何方式趋于 (x_0,y_0) 的, 这种极限也称为重极限。

而x与y依一定的先后顺序, 相继趋于 x_0 与 y_0 时 f 的极限, 这种极限称为累次极限。若对每一个 $y \in Y(y,y_0)$,存在极限 $\lim_{x\to x_0} f(x,y)$,它一般与y有关,记作

$$\varphi(y) = \lim_{x \to x_0} f(x, y)$$

如果进一步还存在极限

$$L = \lim_{y \to y_0} \varphi(y)$$

则称此L为f(x,y)先对 $x(x \to x_0)$ 后对 $y(y \to y_0)$ 的累次极限,记作

$$L = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

定理 1.1 如果 f(x,y) 的重极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ 与累次极限 $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$ 都存在,则两者必定相等。

$\varepsilon - \delta$ 定义

对于任何正数 ε ,都能够找到一个正数 δ ,当x满足 $0<|x-a|<\delta$ 时,对于满足上式的x都有 $0<|f(x)-b|<\varepsilon$ 。

1.3 二元函数的连续性

和一元函数相似,二元函数的连续性也有以下三种定义:

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = f(x_0, y_0)$$

- 1. 有定义
- 2. 有极限
- 3. 极限等于函数值

几何意义:不断开的曲面。

1.3.1 复合函数的连续性

设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有定义,函数u = g(x,y)在点 (x_0,y_0) 的某邻域内有定义,且f(x,y)在点 (x_0,y_0) 连续,g(x,y)在点 (x_0,y_0) 连续,那么复合函数u = g(f(x,y))在点 (x_0,y_0) 连续。"连续函数的连续函数是连续函数"。

多元函数微分学

2.1 可微性

2.1.1 偏导数

定义 2.1 设函数z=f(x,y)在点 (x_0,y_0) 的某邻域内有定义,当x在 x_0 处有增量 Δx ,y在 y_0 处有增量 Δy 时,相应的函数有增量 $\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)$,如果极限

$$\lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\Delta x}$$

存在,则称此极限为函数z = f(x,y)在点 (x_0,y_0) 处对x的偏导数,记作

$$\left.\frac{\partial z}{\partial x}\right|_{(x_0,y_0)} \quad \ \, \vec{\mathrm{g}} \quad f_x'(x_0,y_0) \quad \ \, \vec{\mathrm{g}} \quad z_x'$$

同理可得函数z = f(x,y)在点 (x_0,y_0) 处对y的偏导数。

怎么求:

- 对x的偏导数:将y看作常数,对x求导;
- 对y的偏导数: 将x看作常数, 对y求导。

关于连续性

- 1. 对于一元函数,可导必定连续
- 2. 对于多元函数,偏导数存在不一定连续

2.1.2 全微分

定义 2.2 设函数z = f(x,y)在点 (x_0,y_0) 的某邻域内有定义,且在该点有偏导数,则称函数 z = f(x,y)在点 (x_0,y_0) 处可微分,如果存在常数A和B,使得全增量

$$\Delta z = A\Delta x + B\Delta y + o(\rho)$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$,则称 $A\Delta x + B\Delta y$ 为函数z = f(x,y)在点 $P_0 = (x_0,y_0)$ 处的全微分,记作

$$dz|_{P_0} = df(x_0, y_0) = A\Delta x + B\Delta y$$

当 Δx 和 Δy 趋于零时,全微分dz可作为全增量 Δz 的近似值,于是有近似公式

$$f(x,y) \approx f(x_0, y_0) + A(x - x_0) + B(y - y_0)$$

可微性条件

定理 2.1 若二元函数 f 在其定义域内一点 (x_0, y_0) 处可微,则 f 在该点关于每个自变量的偏导数都存在。此时,全微分可写成

$$df(x,y) = f_x(x,y)dx + f_y(x,y)dy$$

定理 2.2 (可微的充分条件) 若函数 z = f(x,y) 在点 (x_0,y_0) 处的偏导数 $f_x(x_0,y_0)$ 和 $f_y(x_0,y_0)$ 存在且连续,则 f 在该点可微。

另外,连续是可微的一个必要条件。

2.1.3 曲面的切平面与法线

定义 2.3 设曲面 z = f(x,y) 在点 (x_0,y_0,z_0) 处可微,且 $f_x(x_0,y_0) \neq 0$,则曲面在该点的切平面方程为

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

同理,有曲面 F(x,y,z)=0 在点 (x_0,y_0,z_0) 处可微,则曲面在该店的切平面方程为

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

定义 2.4 设曲面 z = f(x,y) 在点 (x_0, y_0, z_0) 处可微, 且 $f_x(x_0, y_0) \neq 0$, 则曲面在该点的法线方程为

$$\frac{x - x_0}{f_x(x_0, y_0)} = \frac{y - y_0}{f_y(x_0, y_0)} = \frac{z - z_0}{-1}$$

同理,有曲面 F(x,y,z)=0 在点 (x_0,y_0,z_0) 处可微,则曲面在该店的法线方程为

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

法向量

设曲面 f(x, y, z) = 0 在点 $P_0(x_0, y_0, z_0)$ 处可微,且 $f_x(x_0, y_0, z_0) \neq 0$,则曲面在该点的法向量为

$$\mathbf{n} = (f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0))$$

定义 2.5 (正交) 若两个向量 $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$ 满足 $a \cdot b = 0$, 则称向量 $a \in b$ 正交。

定义 2.6 (平行) 设曲线或曲面 C_1 和 C_2 在某一点 P 处的切向量分别为 v_1 和 v_2 ,如果 v_1 与 v_2 正交,则称曲线或曲面 C_1 和 C_2 在点 P 处平行。

2.2. 复合函数微分法 9

2.2 复合函数微分法

2.2.1 复合函数的偏导数

定理 2.3 设函数 z = f(u, v) 在点 (u, v) 处可微, 函数 u = u(x, y) 和 v = v(x, y) 分别在点 (x, y) 处可微, 则复合函数 z = f(u(x, y), v(x, y)) 在点 (x, y) 处可微, 且有

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}$$

特殊情况:有函数 z = f(u, x, y), u = u(x, y),则

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial y}$$

这里,把f看作u,x,y三个变量的函数,z看作x,y两个变量的函数。

2.2.2 复合函数的全微分

定理 2.4 设函数 z = f(u, v) 在点 (u, v) 处可微, 函数 u = u(x, y) 和 v = v(x, y) 分别在点 (x, y) 处可微, 则复合函数 z = f(u(x, y), v(x, y)) 在点 (x, y) 处可微, 且有

$$dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv$$

2.3 方向导数与梯度

2.3.1 方向导数

定义 2.7 设函数 z=f(x,y) 在点 (x_0,y_0) 的某邻域内有定义,点 $P_0(x_0,y_0)$ 处沿方向 $\boldsymbol{l}=(\cos\alpha,\cos\beta)$ 的方向导数为

$$\frac{\partial z}{\partial l} = \lim_{\rho \to 0} \frac{f(x_0 + \rho \cos \alpha, y_0 + \rho \cos \beta) - f(x_0, y_0)}{\rho}$$

其中 $\rho = \sqrt{(\cos \alpha)^2 + (\cos \beta)^2}$ 。

就是多元函数沿着某个特定方向的变化率。

定理 2.5 函数 z=f(x,y) 在点 (x_0,y_0) 处可微,则函数在该点沿任一方向 $\boldsymbol{l}=(\cos\alpha,\cos\beta)$ 的方向导数存在,且有

$$\frac{\partial z}{\partial l} = f_x(x_0, y_0) \cos \alpha + f_y(x_0, y_0) \cos \beta \quad \star$$

2.3.2 梯度

定义 2.8 设函数 z = f(x,y) 在点 (x_0,y_0) 处可微, 定义函数 z = f(x,y) 在点 (x_0,y_0) 处的梯度为

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \quad \star$$

就是多元函数变化率取值最大的方向。

定理 2.6 函数 z = f(x,y) 在点 (x_0,y_0) 处可微,则函数在该点的梯度 $\nabla f(x_0,y_0)$ 就是函数在该点沿各个方向的方向导数的最大值,且有

$$\frac{\partial z}{\partial l} = \nabla f(x_0, y_0) \cdot \boldsymbol{l}$$

2.4 泰勒公式与极值

2.4.1 高阶偏导数

二元函数的二阶偏导数有如下四种形式:

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

$$f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

$$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

$$f_{yx} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

另外,称 $\frac{\partial^2 f}{\partial x \partial y}$ 和 $\frac{\partial^2 f}{\partial y \partial x}$ 这种既有关于 x, 又有关于 y 的高阶偏导数为混合偏导数。

定理 2.7 若函数 z=f(x,y) 在点 (x_0,y_0) 处的二阶偏导数 $f_{xx},f_{yy},f_{xy},f_{yx}$ 都存在且连续,则

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

复合函数的高阶偏导数

设

$$z = f(x, y), x = \varphi(s, t), y = \phi(s, t)$$

若函数 f, φ, ϕ 都具有连续的二阶偏导数,则复合函数 $z = f(\varphi(s,t), \phi(s,t))$ 对 s,t 同样存在二阶连续偏导数。

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\ \frac{\partial z}{\partial t} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \end{split}$$

显然 $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$ 仍然是 s,t 的复合函数,其中 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 是 x,y 的函数, $\frac{\partial x}{\partial s}$, $\frac{\partial x}{\partial t}$, $\frac{\partial y}{\partial s}$, $\frac{\partial y}{\partial t}$ 是 s,t 的函数。继续求… (求不出来了)

2.4.2 中值定理和泰勒公式

定理 2.8 (拉格朗日中值定理) 设函数 z=f(x,y) 在凸开域 $D\in R^2$ 连续, 在 D 的所有内点都可微,则对于 D 内任意两点 $P(a,b),Q(a+h,b+k)\in D,\forall\theta(0<\theta<1)$, 使得

$$f(a+h,b+k) - f(a,b) = f_x(a+\theta h,b+\theta k)h + f_y(a+\theta h,b+\theta k)k$$

2.4. 泰勒公式与极值 11

定理 2.9 (泰勒公式) 设函数 z=f(x,y) 在点 $P_0(x_0,y_0)$ 的某邻域内具有 n+1 阶连续偏导数,则对于任意一点 $(x_0+h,y_0+k), \forall \theta \in (0,1)$,使得

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right) f(x_0, y_0) + \frac{1}{2!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 f(x_0, y_0) + \cdots + \frac{1}{n!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n f(x_0, y_0) + R_n$$

其中 R_n 为拉格朗日余项,即

$$R_n = \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(x_0 + \theta h, y_0 + \theta k)$$

前面的中值定理是泰勒公式的特殊情况,即 n=0。

若只要求 $R_n = o(\rho^n)$, 此时 n 阶泰勒公式为

$$f(x_0 + h, y_0 + k) = \sum_{n=1}^{n} \frac{1}{p!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right)^p f(x_0, y_0) + o(\rho^n)$$

实际优化问题的目标函数往往比较复杂。为了使问题简化,通常将目标函数在某点附近展开为泰勒(Taylor)多项式来逼近原函数。

一元函数在点 x_k 处的泰勒展开式为:

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 + o^n$$

二元函数在点 (x_k, x_u) 处的泰勒展开式为:

$$f(x,y) = f(x_k, y_k) + (x - x_k) f_x(x_k, y_k) + (y - y_k) f_y(x_k, y_k)$$

$$+ \frac{1}{2!} [(x - x_k)^2 f_{xx}(x_k, y_k) + 2(x - x_k)(y - y_k) f_{xy}(x_k, y_k) + (y - y_k)^2 f_{yy}(x_k, y_k)] + o^n$$

2.4.3 极值

定义 2.9 设函数 z = f(x,y) 在点 (x_0,y_0) 的某邻域内有定义,如果存在这个邻域内的任意一点 (x,y),使得 $f(x,y) \leq f(x_0,y_0)$,则称 $f(x_0,y_0)$ 是函数 z = f(x,y) 的一个极大值点;如果存在这个邻域内的任意一点 (x,y),使得 $f(x,y) \geq f(x_0,y_0)$,则称 $f(x_0,y_0)$ 是函数 z = f(x,y) 的一个极小值点。

定理 2.10 (极值的必要条件) 设函数 z = f(x,y) 在点 (x_0,y_0) 处有极值, 且在该点处有偏导数, 则有

$$f_x(x_0, y_0) = 0, f_y(x_0, y_0) = 0$$

定义 2.10 (稳定点) , 即驻点若函数 z=f(x,y) 在点 (x_0,y_0) 处有偏导数,且在该点处有偏导数 $f_x(x_0,y_0)=0, f_y(x_0,y_0)=0$,则称点 (x_0,y_0) 为函数 z=f(x,y) 的一个稳定点。

- 稳定点不一定是极值点;
- 极值点一定是稳定点。

定理 2.11 (极值的充分条件) 判断驻点是否等于极值点

设函数 z=f(x,y) 在点 $P_0(x_0,y_0)$ 处有连续偏导数,且在该点处有偏导数 $f_x(x_0,y_0)=0, f_y(x_0,y_0)=0$,则有

- - 若 $f_{xx}(P_0) > 0$, 则 P_0 是函数 z = f(x, y) 的一个极小值点;
 - 若 $f_{xx}(P_0) < 0$, 则 P_0 是函数 z = f(x, y) 的一个极大值点。
- 若 $f_{xx}(P_0)f_{yy}(P_0) f_{xy}^2(P_0) = 0$,则无法判断 P_0 是否为函数 z = f(x,y) 的一个极值点。

隐函数定理及其应用

3.1 隐函数

定义 3.1 设方程 F(x,y)=0 在点 (x_0,y_0) 的某一邻域内恒有解 y=f(x),且 $f(x_0)=y_0$,若 f(x) 在点 x_0 处可微,则称 y=f(x) 为方程 F(x,y)=0 在点 (x_0,y_0) 处的隐函数。

3.1.1 隐函数定理

定理 3.1 (隐函数存在唯一性定理) 设函数 F(x,y) 满足下列条件

- 1. $F(x_0, y_0) = 0$;
- 2. F(x,y) 在点 (x_0,y_0) 的某一邻域内有连续偏导数 $F_y(x,y)$;
- 3. $F_{\nu}(x_0, y_0) \neq 0$.

则在点 (x_0,y_0) 的某一邻域内,方程 F(x,y)=0 有且仅有一个连续可微的隐函数 y=f(x),满足 F(x,f(x))=0,且 $y_0=y(x_0)$,并有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'} \tag{3.1}$$

定理 3.2 (隐函数可微性定理) 设函数 F(x,y) 满足隐函数存在唯一性定理的条件,在 D 内还存在连续的 $F_x(x,y)$ 则由方程 F(x,y)=0 所确定的隐函数 y=f(x) 在 I 内有连续的导函数,且

$$f'(x) = -\frac{F_x'(x,y)}{F_y'(x,y)}$$
(3.2)

3.2 隐函数组

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

$$(3.3)$$

定理 3.3 (雅可比行列式) 设函数 F(x,y,u,v) 和 G(x,y,u,v) 在点 (x_0,y_0,u_0,v_0) 的某一邻域内有连续偏导数 $F_x,F_y,F_u,F_v,G_x,G_y,G_u,G_v$,且

$$J = \frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix} \neq 0$$
(3.4)

则在点 (x_0,y_0,u_0,v_0) 的某一邻域内,方程组 F(x,y,u,v)=0 和 G(x,y,u,v)=0 有且仅有一个连续可微的隐函数组 u=f(x,y) 和 v=g(x,y),满足 F(x,y,f(x,y),g(x,y))=0 和 G(x,y,f(x,y),g(x,y))=0,且 $u_0=u(x_0,y_0)$ 和 $v_0=v(x_0,y_0)$,并有

$$\begin{cases}
\frac{\partial u}{\partial x} = \frac{1}{J} \frac{\partial (F,G)}{\partial (x,v)} = -\frac{\begin{vmatrix} F_x & F_v \\ G_x & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \end{vmatrix}}, \frac{\partial v}{\partial x} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,x)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_x & F_v \end{vmatrix}} \\
\frac{\partial u}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (y,v)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_x \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}, \frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} \\
\frac{\partial v}{\partial x} = \frac{1}{J} \frac{\partial (F,G)}{\partial (y,v)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_x \end{vmatrix}} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_x \end{vmatrix}} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{1}{J} \frac{\partial (F,G)}{\partial (u,y)} = -\frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v \rangle} \\
\frac{\partial v}{\partial y} = \frac{\langle F_u & F_v \rangle}{\langle G_u & G_v$$

3.3 条件极值

定理 3.4 (拉格朗日乘数法) 设函数 z=f(x,y) 在条件 $\varphi(x,y)=0$ 下取得极值,则可以构造拉格朗日函数

$$L(x, y, \lambda) = f(x, y) + \lambda \phi(x, y)$$
(3.6)

其中 λ 为拉格朗日乘子。则z = f(x,y)在条件 $\varphi(x,y) = 0$ 下取得极值的必要条件是

$$\begin{cases} L'_x = 0 \\ L'_y = 0 \\ \varphi(x, y) = 0 \end{cases}$$

$$(3.7)$$

即

$$\begin{cases} f'_x + \lambda \varphi'_x = 0 \\ f'_y + \lambda \varphi'_y = 0 \\ \varphi(x, y) = 0 \end{cases}$$
(3.8)

曲线积分

4.1 第一型曲线积分

第一型曲线积分是对弧长的积分,它是曲线积分的最简单形式。 计算步骤:

- 1. 画出所积曲线的示意图,并转化为定积分的形式: $\int_L f(x,y) \, \mathrm{d} s$
- 2. 确定积分区间 $[x_1, x_2]$ 或 $[y_1, y_2]$ 或 $[t_1, t_2]$
- 3. 计算 ds:

$$ds = \sqrt{1 + (\frac{dy}{dx})^2} dx = \sqrt{1 + (\frac{dx}{dy})^2} dy = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$

4. 将 ds 代入积分式中, 计算积分

4.2 第二型曲线积分

第二型曲线积分是对向量场的积分,它是曲线积分的一般形式。 计算步骤:

1. 画出所积曲线的示意图,并转化为定积分的形式:

$$\int_{L} P(x,y) dx + \int LQ(x,y) dy = \int_{L} P(x,y) dx + Q(x,y) dy = \int_{L} \vec{F}(x,y) \cdot d\vec{r}$$

- 2. 确定积分区间 $[x_1, x_2]$ 或 $[y_1, y_2]$ 或 $[t_1, t_2]$ (注意有方向)
- 3. 计算 dx 和 dy:

$$\begin{cases} dx = \frac{dx}{dt} dt \\ dy = \frac{dy}{dt} dt \end{cases}$$

4. 将 dx 和 dy 代入积分式中, 计算积分

性质:

1. 线积分与路径无关:

$$\int_{L} \vec{F}(x,y) \cdot d\vec{r} = \int_{L_{1}} \vec{F}(x,y) \cdot d\vec{r} = \int_{L_{2}} \vec{F}(x,y) \cdot d\vec{r}$$

2. 线积分与参数化无关

$$\int_L (\alpha \vec{F}_1(x,y) + \beta \vec{F}_2(x,y)) \cdot d\vec{r} = \alpha \int_L \vec{F}_1(x,y) \cdot d\vec{r} + \beta \int_L \vec{F}_2(x,y) \cdot d\vec{r}$$

3. 线积分与方向有关

$$-\int_{L} \vec{F}(x,y) \cdot d\vec{r} = \int_{-L} \vec{F}(x,y) \cdot d\vec{r}$$

重积分

5.1 二重积分

5.1.1 二重积分的概念

定义 5.1 设 f(x,y) 在有界闭区域 D 上有界,将 D 划分为 n 个小区域 D_{ij} ,在每个小区域 D_{ij} 取一点 (ξ_{ij},η_{ij}) ,作积分和

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(\xi_{ij}, \eta_{ij}) \Delta \delta_{ij}$$

如果当小区域的直径趋于零时,这个积分和的极限存在,且与划分方法和点的选取无关,那么称此极限为 f(x,y) 在区域 D 上的二重积分,记作

$$\iint_D f(x,y) \,\mathrm{d}\delta$$

5.1.2 累次积分

定理 5.1 设 f(x,y) 在有界闭区域 D 上有界,且 D 的边界为 $a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)$,则

$$\iint_D f(x,y) \, d\delta = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \, dy \right) \, dx$$

5.1.3 二重积分的性质

1. 线性性质: 设 f(x,y) 和 g(x,y) 在区域 D 上有界, k_1,k_2 为常数,则

$$\iint_{D} (\alpha f(x, y) + \beta g(x, y)) d\delta = \alpha \iint_{D} f(x, y) d\delta + \beta \iint_{D} g(x, y) d\delta$$

2. 区域可加性:设 D 可表示为两个无交区域 D_1, D_2 的并,f(x,y) 在 D 上有界,则

$$\iint_D f(x,y) d\delta = \iint_{D_1} f(x,y) d\delta + \iint_{D_2} f(x,y) d\delta$$

3. 保号性:设 f(x,y) 在区域 D 上有界,且 $f(x,y) \ge 0$,则

$$\iint_D f(x,y) \, \mathrm{d}\delta = 0 \iff f(x,y) = 0$$

$$f(x,y) \equiv 1, \iint_D 1 \,d\delta = \delta$$

4. 绝对值不等式:设 f(x,y) 在区域 D 上有界,则

$$\left| \iint_D f(x, y) \, \mathrm{d}\delta \right| \le \iint_D |f(x, y)| \, \mathrm{d}\delta$$
$$f(x, y) \le g(x, y) \Rightarrow \iint_D f(x, y) \, \mathrm{d}\delta \le \iint_D g(x, y) \, \mathrm{d}\delta$$

5. 设 M, m 分别为 f(x,y) 在区域 D 上的最大值和最小值,则

$$m\delta \le \iint_D f(x,y) \,\mathrm{d}\delta \le M\delta$$

5.1.4 二重积分的计算

1. 若积分区域 D 为矩形区域, 且 f(x,y) 在 D 上连续,则

$$\iint_D f(x,y) \, d\delta = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx$$

若 $f(x,y) = f_1(x)f_2(y)$

$$\iint_D f(x,y) d\delta = \int_a^b dx \int_c^d f_1(x) f_2(y) dy = \int_a^b f_1(x) dx \int_c^d f_2(y) dy$$
$$= \left(\int_a^b f_1(x) dx\right) \left(\int_c^d f_2(y) dy\right)$$

2. 若积分区域 D 为三角形区域, 且 f(x,y) 在 D 上连续,则

$$\iint_D f(x,y) \, d\delta = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \, dy \right) \, dx$$

5.1.5 二重积分的变量代换

1. 设 x = x(u,v), y = y(u,v) 为区域 D 到区域 D' 的一一映射, 且满足

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

为 D 到 D' 的可逆变换,且 x(u,v),y(u,v) 具有一阶连续偏导数,则

$$\iint_D f(x,y) d\delta = \iint_{D'} f(x(u,v),y(u,v)) |J| d\delta'$$

其中
$$J = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \left| \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \right|$$

2. 设 x = x(u), y = y(v) 为区域 D 到区域 D' 的一一映射,且满足

$$\begin{cases} x = x(u) \\ y = y(v) \end{cases}$$

5.2. 格林公式 19

为 D 到 D' 的可逆变换,且 x(u),y(v) 具有一阶连续偏导数,则

$$\iint_D f(x,y) d\delta = \iint_{D'} f(x(u), y(v)) |J| d\delta'$$

其中 $J = \left| \frac{\mathrm{d}x}{\mathrm{d}u} \frac{\mathrm{d}y}{\mathrm{d}v} \right|$, $\mathrm{d}\delta' = \left| \frac{\mathrm{d}x}{\mathrm{d}u} \frac{\mathrm{d}y}{\mathrm{d}v} \right| \mathrm{d}u \,\mathrm{d}v$

极坐标变换

设 $x = r\cos\theta, y = r\sin\theta$,则

$$\iint_{D} f(x, y) d\delta = \iint_{D'} f(r \cos \theta, r \sin \theta) |J| d\delta'$$
$$= \iint_{D'} f(r \cos \theta, r \sin \theta) r dr d\theta$$

5.2 格林公式

定理 5.2 设 D 是平面区域,P(x,y),Q(x,y) 在 D 上有连续偏导数,则

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L} P dx + Q dy$$

这里 L 是区域 D 的边界,按照逆时针方向取正向。

[口诀]交换相减反求偏导,交叉相乘积分加。

面积公式:

 $\iint_D 1 \, \mathrm{d}\delta = \frac{1}{2} \oint_L x \, \mathrm{d}y - y \, \mathrm{d}x$

积分与路径无关:

 $\oint_L P \, \mathrm{d}x + Q \, \mathrm{d}y = 0$

也就是说

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

5.3 三重积分

5.3.1 三重积分的概念

定义 5.2 设 f(x,y,z) 在有界闭区域 V 上有界,将 V 划分为 n 个小体积 V_i ,在每个小体积 V_i 取一点 (ξ_i,η_i,ζ_i) ,作积分和

$$\sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta V_i$$

如果当小体积的直径趋于零时,这个积分和的极限存在,且与划分方法和点的选取无关,那么称此极限为 f(x,y,z) 在区域 V 上的三重积分,记作

$$\iiint\limits_V f(x,y,z)\,\mathrm{d}V$$

20 CHAPTER 5. 重积分

5.3.2 累次积分

定理 5.3 设 f(x,y,z) 在有界闭区域 V 上有界,且 V 的边界为 $a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x), \psi_1(x,y) \le z \le \psi_2(x,y)$,则

$$\iiint_V f(x,y,z) \, \mathrm{d}V = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} \left(\int_{\psi_1(x,y)}^{\psi_2(x,y)} f(x,y,z) \, \mathrm{d}z \right) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_a^b \, \mathrm{d}x \int_{\varphi_1(x)}^{\varphi_2(x)} \, \mathrm{d}y \int_{\psi_1(x,y)}^{\psi_2(x,y)} f(x,y,z) \, \mathrm{d}z \right) \, \mathrm{d}y + \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} \left(\int_{\psi_1(x,y)}^{\psi_2(x,y)} f(x,y,z) \, \mathrm{d}z \right) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_a^b \, \mathrm{d}x \int_{\varphi_1(x)}^{\varphi_2(x)} \, \mathrm{d}y \int_{\psi_1(x,y)}^{\psi_2(x,y)} f(x,y,z) \, \mathrm{d}z \right) \, \mathrm{d}y$$

5.3.3 三重积分的计算

1. 若积分区域 V 为长方体区域, 若函数 f(x,y,z) 在长方体

$$V = [a, b] \times [c, d] \times [e, f]$$

上的三重积分存在,则

$$\iiint_V f(x, y, z) \, dV = \int_a^b \left(\int_c^d \left(\int_e^f f(x, y, z) \, dz \right) \, dy \right) \, dx$$

2. 若积分区域 V 为棱柱区域,且 f(x,y,z) 在 V 上连续,则

$$\iiint_V f(x, y, z) \, dV = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} \left(\int_{\psi_1(x, y)}^{\psi_2(x, y)} f(x, y, z) \, dz \right) \, dy \right) \, dx$$

5.3.4 三重积分的变量代换

1. 设 x=x(u,v,w),y=y(u,v,w),z=z(u,v,w) 为区域 V 到区域 V' 的一一映射,且满足

$$\begin{cases} x = x(u, v, w) \\ y = y(u, v, w) \\ z = z(u, v, w) \end{cases}$$

为 V 到 V' 的可逆变换,且 x(u,v,w),y(u,v,w),z(u,v,w) 具有一阶连续偏导数,则

$$\iiint_V f(x,y,z) \, dV = \iiint_{V'} f(x(u,v,w),y(u,v,w),z(u,v,w)) |J| \, dV'$$

其中

$$J = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = \left| \begin{array}{ccc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{array} \right|$$

2. 设 x = x(u, v), y = y(u, v), z = z(u, v) 为区域 V 到区域 V' 的一一映射,且满足

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases}$$

为 V 到 V' 的可逆变换,且 x(u,v),y(u,v),z(u,v) 具有一阶连续偏导数,则

$$\iiint_V f(x,y,z) \, dV = \iiint_{V'} f(x(u,v),y(u,v),z(u,v)) |J| \, dV'$$

其中 $J = \left| \frac{\mathrm{d}x}{\mathrm{d}u} \frac{\mathrm{d}y}{\mathrm{d}v} \frac{\mathrm{d}z}{\mathrm{d}v} \right|$, $\mathrm{d}V' = \left| \frac{\mathrm{d}x}{\mathrm{d}u} \frac{\mathrm{d}y}{\mathrm{d}v} \frac{\mathrm{d}z}{\mathrm{d}v} \right| \mathrm{d}u \,\mathrm{d}v$

5.3. 三重积分 21

柱坐标变换

设
$$x = r\cos\theta, y = r\sin\theta, z = z$$
, 其中 $0 \le r \le +\infty, 0 \le \theta \le 2\pi, -\infty \le z \le +\infty$,
$$\iiint_V f(x, y, z) \, \mathrm{d}V = \iiint_{V'} f(r\cos\theta, r\sin\theta, z) \, |J| \, \mathrm{d}V'$$
$$= \iiint_{V'} f(r\cos\theta, r\sin\theta, z) r \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}z$$

球坐标变换

设
$$x=r\sin\varphi\cos\theta, y=r\sin\varphi\sin\theta, z=r\cos\varphi$$
,其中 $0\leq r\leq +\infty, 0\leq \theta\leq 2\pi, 0\leq \varphi\leq\pi$,

$$\begin{split} \iiint_{V} f(x,y,z) \, \mathrm{d}V &= \iiint_{V'} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) \, |J| \, \, \mathrm{d}V' \\ &= \iiint_{V'} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^2 \sin \varphi \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}\theta \end{split}$$

22 CHAPTER 5. 重积分

数项级数

6.1 级数的收敛性

6.1.1 级数的概念

定义 6.1 设 $\{a_n\}$ 是一个数列,称 $\sum\limits_{n=1}^{\infty}a_n$ 为数项级数,记作 $\sum a_n$,其中 a_n 称为级数的通项。

6.1.2 级数的收敛性

定义 6.2 设 $\sum a_n$ 是一个数项级数,如果数列 $\{S_n\}$ 收敛,其中 $S_n=\sum\limits_{i=1}^n a_i$,则称级数 $\sum a_n$ 收敛,否则称级数 $\sum a_n$ 发散。

定理 6.1 (级数收敛的柯西准则) 设 $\sum a_n$ 是一个数项级数, 级数 $\sum a_n$ 收敛的充分必要条件是: 对于任意 $\varepsilon > 0$, 存在正整数 N, 使得对于任意 m > N 及任意的正整数 p, 有

$$|a_{m+1} + a_{m+2} + \dots + a_{m+p}| < \varepsilon$$

定理 6.2 (级数收敛的必要条件) 设 $\sum a_n$ 是一个数项级数,如果 $\sum a_n$ 收敛,则 $\lim_{n\to\infty}a_n=0$ 。

定理 6.3 设 $\sum a_n$ 和 $\sum b_n$ 是两个数项级数,则对任意常数 c,d,级数 $\sum (ca_n+db_n)$ 也收敛,并且有

$$\sum (ca_n + db_n) = c \sum a_n + d \sum b_n$$

定理 6.4 去掉、增加或改变级数的有限项并不改变级数的敛散性。

定理 6.5 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。

常见的级数

- 1. 等比级数: $\sum_{n=0}^{\infty} aq^n = \frac{a}{1-q}$, 其中 |q| < 1 时收敛。
- 2. 调和级数: $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散。
- 3. p 级数: $\sum_{n=1}^{\infty} \frac{1}{n^p} \stackrel{.}{=} p > 1$ 时收敛, $p \le 1$ 时发散。

6.2 正项级数

6.2.1 正项级数收敛性的一般判别原则

定理 6.6 (比较原则) 设 $\sum a_n$ 和 $\sum b_n$ 是两个正项级数, 如果存在正整数 N, 使得对于任意 n>N, 有 $a_n\leq b_n$, 则有

- 1. 若 $\sum b_n$ 收敛,则 $\sum a_n$ 也收敛;
- 2. 若 $\sum a_n$ 发散,则 $\sum b_n$ 也发散。

在实际使用上,比较原则的极限形式通常更方便

定理 6.7 (比较原则的极限形式) 设 $\sum a_n$ 和 $\sum b_n$ 是两个正项级数, 如果 $\lim_{n\to\infty} \frac{a_n}{b_n} = A$, 则有

- 1. 若 $0 < A < +\infty$, 则 $\sum a_n$ 与 $\sum b_n$ 同时收敛或同时发散;
- 2. 若 A = 0 且 $\sum b_n$ 收敛,则 $\sum a_n$ 也收敛;
- 3. 若 $A = +\infty$ 且 $\sum b_n$ 发散,则 $\sum a_n$ 也发散。

6.2.2 比式判别法和根式判别法

定理 6.8 (比式判别法) 设 $\sum a_n$ 是一个正项级数, 如果且存在某正整数 N, 及常数 q(0 < q < 1), 使得对于任意 n > N, 有

- 1. $\frac{a_{n+1}}{a} \leq q$, 则 $\sum a_n$ 收敛;
- $2. \frac{a_{n+1}}{a_n} \geq 1$,则 $\sum a_n$ 发散。

定理 6.9 (比式判别法的极限形式) 设 $\sum a_n$ 是一个正项级数, 如果 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=q$, 则有

- 1. 若 q < 1, 则 $\sum a_n$ 收敛;
- 2. 若 q > 1 或 $q = +\infty$, 则 $\sum a_n$ 发散。

定理 6.10 (根式判别法) 设 $\sum a_n$ 是一个正项级数,且存在某正数 N 及常数 l,使得对于任意 n>N,有

- 1. $\sqrt[n]{a_n} \le l < 1$, 则 $\sum a_n$ 收敛;
- $2. \sqrt[n]{a_n} \ge 1$, 则 $\sum a_n$ 发散。

定理 6.11 (根式判别法的极限形式) 设 $\sum a_n$ 是一个正项级数, 如果 $\lim_{n\to\infty} \sqrt[n]{a_n} = l$, 则有

- 1. 若 l < 1,则 $\sum a_n$ 收敛;
- 2. 若 l > 1, 则 $\sum a_n$ 发散。

6.2.3 积分判别法

定理 6.12 (积分判别法) 设 f 为 $[1,+\infty)$ 上的连续正函数,且单调递减,那么正项级数 $\sum f(n)$ 与反常积分 $\int_1^{+\infty} f(x) \, \mathrm{d}x$ 同时收敛或同时发散。

6.3. 一般项级数 25

6.3 一般项级数

6.3.1 交错级数

定义 6.3 若级数的各项符号正负相间, 即 $\sum (-1)^n a_n$, 则称该级数为交错级数。

定理 6.13 (莱布尼茨判别法) 若交错级数满足

- 1. $a_n \geq 0$;
- 2. $\lim_{n\to\infty} a_n = 0$ 单调递减;

则交错级数 $\sum (-1)^n a_n$ 收敛。

6.3.2 绝对收敛级数及其性质

定义 6.4 若级数 $\sum |a_n|$ 收敛,则称级数 $\sum a_n$ 绝对收敛。

定理 6.14 绝对收敛级数必收敛。

定理 6.15 (条件收敛) 若级数 $\sum a_n$ 收敛, 但 $\sum |a_n|$ 发散,则称级数 $\sum a_n$ 为条件收敛级数。

定理 6.16 (级数的重排) 设 $\sum a_n$ 是一个绝对收敛级数,对于任意一一对应的正整数 $n_1, n_2, \cdots, n_k, \cdots$,级数 $\sum a_{n_k}$ 也收敛,并且有

$$\sum a_n = \sum a_{n_k}$$

定理 6.17 绝对收敛级数的任意重排仍然绝对收敛, 且其和不变。

定理 6.18 (级数的乘积) 若 $\sum a_n$ 为收敛级数, a为常数, 则 $\sum ua_n = u \sum a_n$ 。

6.3.3 阿贝尔判别法和狄利克雷判别法

定理 6.19 (阿贝尔判别法) 设 $\sum a_n$ 为一个级数, 如果

- $1. \sum a_n$ 的部分和数列 $\{S_n\}$ 有界;
- $2. \sum b_n$ 单调趋于零。

则 $\sum a_n b_n$ 收敛。

定理 6.20 (狄利克雷判别法) 设 $\sum a_n$ 为一个级数, 如果

- $1. \sum a_n$ 的部分和数列 $\{S_n\}$ 有界;
- $2. \sum b_n$ 单调趋于零且单调递减。

则 $\sum a_n b_n$ 收敛。

6.4 幂级数

6.4.1 幂级数的概念

定义 6.5 设 $\{a_n\}$ 是一个数列, 称级数 $\sum a_n x^n$ 为幂级数。

定理 6.21 (阿贝尔定理) 若幂级数 $\sum a_n x^n$ 在 $x=x_0$ 处收敛,那么当 $|x|<|x_0|$ 时该幂级数一定绝对收敛;反之当 $x=x_0$ 发散,那么当 $|x|<|x_0|$ 时该幂级数一定发散。

定义 6.6 (收敛半径) 设幂级数 $\sum a_n x^n$ 的收敛半径为 R, 则当 $x \in (-R,R)$ 时, 该幂级数收敛。

收敛半径的计算:

设幂级数 $\sum a_n x^n$ 的收敛半径为 R,则

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
$$R = \frac{1}{\rho}$$

6.4.2 函数展开成幂级数

定理 6.22 设函数 f(x) 在 x_0 处有 n 阶导数,且 $f^{(n)}(x)$ 在 x_0 处连续,那么 f(x) 在 x_0 处展开成幂级数的表达式为

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

利用泰勒公式直接展开

由泰勒级数理论可知,函数 f(x)展开成幂级数的步骤如下:

- 1. 求函数及其各阶导数在 x = 0 处的值;
- 2. 写出 $x_0 = 0$ 麦克劳林级数 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(0) x^n$, 并求出其收敛半径 R;
- 3. 判别在收敛区间 (-R,R) 内 $\lim_{n\to\infty} R_n(x)$ 是否为0

常见的泰勒级数

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
;

•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!};$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!};$$

•
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n};$$

•
$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1};$$

6.4. 幂级数 27

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, x \in (-1,1);$$

•
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, x \in (-1,1);$$

利用已知幂级数展开

6.4.3 求幂级数的和函数

定理 6.23 (性质) 1. 逐项可积性:设幂级数 $\sum a_n x^n$ 的和函数 S(t) 在收敛域上可积,

$$\int_{0}^{x} S(t)dt = \int_{0}^{x} (\sum a_{n}t^{n})dt = \sum \frac{a_{n}}{n+1}x^{n+1}$$

2. 逐项微分性: 设幂级数 $\sum a_n x^n$ 的和函数 S(t) 在收敛域上可导,

$$S'(x) = \sum na_n x^{n-1}$$