Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №103 Курсовая работа часть №2 по дисциплине Дискретная математика

> Выполнил Студент группы Р3115 Владимир Мацюк Преподаватель: Поляков Владимир Иванович

1 Вариант

$$C = (A \pm 1)_{mod15}$$

Число входных/выходных переменных 5/5 Разрядность операндов: 4/-

2 Задание

1. Построить таблицу истинности системы булевых функций, отражающую закон функционирования комбинационной части операционного устройства, реализующего заданные операции.

У	a ₁	a ₂	a ₃	a ₄	٧	c ₁	C ₂	C 3	C ₄
0	0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	0	0	1	1
0	0	0	1	1	0	0	1	0	0
0	0	1	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1	1	0
0	0	1	1	0	0	0	1	1	1
0	0	1	1	1	0	1	0	0	0
0	1	0	0	0	0	1	0	0	1
0	1	0	0	1	0	1	0	1	0
0	1	0	1	0	0	1	0	1	1
0	1	0	1	1	0	1	1	0	0
0	1	1	0	0	0	1	1	0	1
0	1	1	0	1	0	1	1	1	0
0	1	1	1	0	1	0	0	0	0
0	1	1	1	1	d	d	d	d	d
1	0	0	0	0	1	1	1	1	0
1	0	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	1
1	0	0	1	1	0	0	0	1	0
1	0	1	0	0	0	0	0	1	1
1	0	1	0	1	0	0	1	0	0
1	0	1	1	0	0	0	1	0	1
1	0	1	1	1	0	0	1	1	0
1	1	0	0	0	0	0	1	1	1
1	1	0	0	1	0	1	0	0	0
1	1	0	1	0	0	1	0	0	1
1	1	0	1	1	0	1	0	1	0
1	1	1	0	0	0	1	0	1	1
1	1	1	0	1	0	1	1	0	0
1	1	1	1	0	0	1	1	0	1
1	1	1	1	1	d	d	d	d	d

2. Привести систему булевых функций к виду, дающему минимальную цену схемы, путем решения задач минимизации, факторизации и декомпозиции.

<u>V</u>

y=0		a ₁ a ₂					
		00	01	11	10		
	00						
a ₃ a ₄	01						
	11			d			
	10			1			

y=1	a_1a_2					
		00	01	11	10	
	00	1				
a ₃ a ₄	01					
	11			d		
	10					

<u>C</u>1

y=0	a_1a_2					
		00	01	11	10	
	00			1	1	
a ₃ a ₄	01				1	
	11		1	d	1	
	10				1	

y=1		a_1a_2					
		00	01	11	10		
	00	1		1			
a ₃ a ₄	01			4	1		
	11			d	1		
	10			1	1		

<u>C</u>2

y=0	a_1a_2					
		00	01	11	10	
	00		1	1		
a ₃ a ₄	01		1	1		
	11	1		d	1	
	10		1			

y=1	a_1a_2					
		00	01	11	10	
	00	1			1	
a ₃ a ₄	01		1	1		
	11		1	d		
	10		1	1		

<u>C</u>3

y=0	a_1a_2					
		00	01	11	10	
	00					
a ₃ a ₄	01	1	1	1	1	
	11			d		
	10	1	1		1	

y=1	a ₁ a ₂						
		00	01	11	10		
	00	1	1	1	1		
a ₃ a ₄	01						
	11	1	1	d	1		
	10						

<u>C</u>4

y=0	a ₁ a ₂					
		00	01	11	10	
	00	1	1	1	1	
a ₃ a ₄	01					
	11			d		
	10	1	1		1	

$$\left\{ \begin{array}{l} v=\overline{y}a_1a_2a_3\vee y\overline{a_1a_2a_3a_4}\ (S_q=11)\\ c_1=\overline{y}a_1\overline{a_2}\vee a_1a_2\overline{a_3}\vee \overline{y}a_2a_3a_4\vee y\overline{a_1a_2a_3a_4}\vee ya_1a_3\vee a_1a_4\ (S_q=33)\\ c_2=\overline{y}a_2\overline{a_3}\vee \overline{ya_2}a_3a_4\vee \overline{ya_1}a_2\overline{a_4}\vee y\overline{a_2a_3a_4}\vee ya_2a_4\vee ya_2a_3\ (S_q=27)\\ c_3=\overline{ya_3}a_4\vee \overline{ya_2}a_3\overline{a_4}\vee \overline{ya_1}a_3\overline{a_4}\vee y\overline{a_3}\overline{a_4}\vee ya_3a_4\ (S_q=22)\\ c_4=\overline{ya_3a_4}\vee \overline{ya_2a_4}\vee ya_3\overline{a_4}\vee ya_1\overline{a_4}\vee \overline{a_1}a_2\overline{a_4}\ (S_q=20)\\ S_q=113 \end{array} \right.$$

$$\left\{ \begin{array}{l} \varphi = y\overline{a_2}\overline{a_3}\overline{a_4}(S_q = 4) \\ v = \overline{y}a_1a_2a_3 \vee \varphi \bar{a_1}(S_q = 8) \\ c_1 = \overline{y}a_1\overline{a_2} \vee a_1a_2\overline{a_3} \vee \overline{y}a_2a_3a_4 \vee \varphi \overline{a_1} \vee a_1ya_3 \vee a_1a_4 \; (S_q = 24) \\ c_2 = \overline{y}a_2\overline{a_3} \vee \overline{y}\overline{a_2}a_3a_4 \vee \overline{y}\overline{a_1}a_2\overline{a_4} \vee \varphi \vee a_2y(a_3 \vee a_4) \; (S_q = 21) \\ c_3 = \overline{y}\overline{a_3}a_4 \vee \overline{y}a_3\overline{a_4}(\overline{a_2} \vee \overline{a_1}) \vee ya_3a_4 \vee y\overline{a_3}\overline{a_4} \; (S_q = 19) \\ c_4 = \overline{y}\overline{a_4}(\bar{a_3} \vee \bar{a_2}) \vee y\bar{a_4}(a_3 \vee a_1) \vee \bar{a_1}a_2\bar{a_4} \; (S_q = 16) \end{array} \right.$$

$$Tv = 3\tau, \ Tc_1 = 4\tau, \ Tc_2 = 4\tau, \ Tc_3 = 3\tau, \ Tc_4 = 3\tau, \ T = \max(v, Tc_1, Tc_2, Tc_3, Tc_4) = 4\tau.$$

- 3. Построить комбинационные схемы, реализующие систему булевых функций на элементах различных базисов. Для каждой схемы определить цену по Квайну и задержку.
- 4. Провести анализ построенных схем для различных комбинаций входных сигналов.

$$F(00000) = 00001$$
$$F(10000) = 11110$$

