2. $r(A_1, \ldots, A_k) = r = \dim \ell(A_1, \ldots, A_k),$

Доказателство:

Нека $\{A_{i_1},\ldots,A_{i_r}\}$ е МЛНП за A_1,\ldots,A_k .

- 1. Да разгледаме техните линейни обвивки $U=\ell(A_{i_1},\ldots,A_{i_r})$ и $W=\ell(A_1,\ldots,A_k)$. МЛНП $\{A_{i_1},\ldots,A_{i_r}\}$ е подмножество на изходната система $\Rightarrow U\subset W$. Всеки вектор от изходната система е линейна комбинация $A_j\in\ell(A_{i_1},\ldots,A_{i_r}),\ \forall j=1,\ldots,k\ \Rightarrow W\subset U$ откъдето получаваме, че W=U.
- 2. Получихме, че $\ell(A_{i_1},\dots,A_{i_r})=W=\ell(A_1,\dots,A_k)$ и векторите $\{A_{i_1},\dots,A_{i_r}\}$ са линейно независими \Rightarrow те образуват базис на $\ell(A_1,\dots,A_k)$, откъдето получаваме че $r(A_1,\dots,A_k)=r=\dim\ell(A_1,\dots,A_k)$.

4. Сума на подпространства

Знаем, че в ненулево линейно пространство V има различни подпространства и освен това ако се вземе сечението на две подпространство се получава пак подпространство.

Непосредствено се вижда, че обединението на две подпространство *не е* подпространство. За да се опише подпространството, което съдържа обединението на две подпространства се използва конструкцията на сума на подпространства.

Определение:

Нека V е линейно пространство над полето F и U и W са подпространства на V. Сума на подпространствата U и W се нарича:

$$U + W = \{a + b \mid a \in U, b \in W\}.$$

Пример:

Нека в 4 мерното векторно пространство \mathbb{R}^4 разгледаме подпространствата $U=\ell(a_1,a_2)$ и $W=\ell(b_1,b_2)$, където

$$egin{aligned} a_1 &= (1,1,0,0), & a_2 &= (0,0,1,1) \ b_1 &= (1,0,1,0), & b_2 &= (0,1,0,1) \end{aligned}$$

Описанието на подпространствата може да бъде направено по следния начин $U = \{(x,x,y,y) \mid x,y \in \mathbb{R}\}$ и $W = \{(z,t,z,t) \mid z,t \in \mathbb{R}\}$. Тогава сумата на подпространствата е множеството

$$U+W=\{(x+z,x+t,y+z,y+t)\ |\ x,y,z,t\in\mathbb{R}\}.$$

Забележка: По подобен начин може да се определи сума на повече от две подпространства. Ако V е линейно пространство и U_1,\ldots,U_k са подпространства на V, тогава

$$U_1 + \ldots + U_k = \{a_1 + \ldots + a_k \mid a_i \in U_i, \ i = 1, \ldots, k\}.$$

4.1. Свойства на сумата на подпространства

Твърдение:

Нека V е линейно пространство, като U и W са негови подпространства. Тогава е изпълнено:

- 1. U+W е подпространство на V,
- 2. Изпълнено е, че $\ell(a_1,\ldots,a_k) + \ell(b_1,\ldots,b_s) = \ell(a_1,\ldots,a_k,b_1,\ldots,b_s)$,
- 3. ако за подпространството T е в сила, че U < T и W < T, тогава е изпълнено U + W < T,
- 4. сумата на подпространствата U и W е равна на сечението на всички подпространства на V, които съдържат обединението $U \cup W$

$$U+W = igcap_{T\supset \{U\cup W\}, T< V} T.$$

Доказателство:

1. Нека да разгледаме два произволни елемента от сумата на подпространствата $a=u_1+w_1$ и $b=u_2+w_2$. Тъй като U и W, като подпространства са затворени относно операциите, е изпълнено $\lambda a=\lambda u_1+\lambda w_1\in U+W$, както и

$$a+b=(u_1+w_1)+(u_2+w_2)=(\underbrace{u_1+u_2}_{\in U})+(\underbrace{w_1+w_2}_{\in W})\in U+W$$

По този начин получаваме, че U+W е подпространство.

2. Нека да резгледаме по един елемент от всяка една от двете линейни обвивки $u\in U=\ell(a_1,\ldots,a_k)$, където $u=\lambda_1a_1+\ldots+\lambda_ka_k$, също и $w\in W=\ell(b_1,\ldots,b_s)\Rightarrow w=\mu_1b_1+\ldots+\mu_sb_s$. Тогава имаме

$$egin{array}{lll} u+w&=&\lambda_1a_1+\ldots+\lambda_ka_k+\mu_1b_1+\ldots+\mu_sb_s \ &&&&\downarrow \ U+W&\subset&\ell(a_1,\ldots,a_k,b_1,\ldots,b_s) \end{array}$$

От друга страна за произволен вектор $t \in \ell(a_1, \dots, a_k, b_1, \dots, b_s)$ е изпълнено, че

$$t = \underbrace{eta_1 a_1 + \ldots + eta_k a_k}_{\in \ell(a_1,\ldots,a_k)} + \underbrace{\gamma b_1 + \ldots + \gamma_s b_s}_{\in \ell(b_1,\ldots,b_s)}$$

$$egin{array}{ll} t &\in& \ell(a_1,\ldots,a_k)+\ell(b_1,\ldots,b_s) \ && & \Downarrow \ && & \ell(a_1,\ldots,a_k,b_1,\ldots,b_s)\subset U+W \end{array}$$

Следователно

$$\ell(a_1,\ldots,a_k)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k,b_1,\ldots,b_s)$$

- 3. Ако T < V е подпространство, което съдържа и двете $U \subset T$ $W \subset T$, то за произволен елемент от сумата на подпространствата е изпълнено $a = u + w \in T$. зашото $u \in U \subset T$ и $w \in W \subset T$.
- 4. Сумата U+W се съдържа във всички подпространства T , които съдържат $U\cup W$, затова U+W се съдържа в сечението на всички такива подпространства

$$U \cup W \subset T \Rightarrow U + W \subset T \Rightarrow U + W \subset \bigcap_{(U \cup W) \subset T} T$$

Ако L=U+W , тогава L съдържа обединението $U\cup W$:

$$egin{aligned} u \in U \Rightarrow u = u + \underbrace{\mathcal{O}}_{\in W} \in U + W \ w \in W \Rightarrow w = \underbrace{\mathcal{O}}_{\in U} + w \in U + W \end{aligned}
ight\} \Rightarrow \{U \cup W\} \subset U + W$$

Получаваме, че L=U+W е едно от подпространствата, които участват в сечението и следователно $\bigcap_{T\supset U,W} T\subset U+W$. По този начин установихме, че

$$U+W=igcap_{(U\cup W)\subset T}T$$

4.2. размерност на сумата

Теорема:

 ${
m He}$ ка V е линейно пространство над полето $F,\ U$ и W са крайномерни подпространства на V. Тогава е изпълнено

$$\dim(U+W)=\dim U+\dim W-\dim(U\cap W).$$

Доказателство:

Тъй като U и W са крайномерни пространства, затова и тяхното сечение $U\cap W$ също е крайномерно и нека e_1,\ldots,e_s е базис на $U\cap W$ и $\dim(U\cap W)=s$. Ако сечението е нулевото пространство $U\cap W=\{\mathcal{O}\}$, тогава не се взема никакъв вектор за сечението.

Допълва се базиса на сечението веднъж до базис на подпространството U и от друга страна се допълва до базис на W:

$$e_1,\dots,e_s,a_1,\dots a_m$$
 - базис на $U,$ $\dim U=s+m,$ $e_1,\dots,e_s,b_1,\dots b_k$ - базис на $W,$ $\dim W=s+k.$

Ще докажем, че $e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k$ образува базис на сумата на подпространствата U+W.

• За векторите от разглежданите базиси е изпълнено $e_i \in U \cap W \subset U + W$, освен това $a_j \in U \subset U + W$, както и $b_l \in W \subset U + W$. Следователно $\ell(e_1, \ldots, e_s, a_1, \ldots a_m, b_1, \ldots b_k) \subset U + W$. Нека разгледаме произволен елемент от сумата $t = u + w \in U + W$, където $u = \lambda_1 e_1 + \ldots + \lambda_s e_s + \alpha_1 a_1 + \ldots + \alpha_m a_m \in U$ и $w = \mu_1 e_1 + \ldots + \mu_s e_s + \beta_1 b_1 + \ldots + \beta_k b_k \in W$. От това изразяване, получаваме

$$egin{array}{lcl} t &=& u+w= \ &=& (\lambda_1+\mu_1)e_1+\ldots+(\lambda_s+\mu_s)e_s+ \ &&+lpha_1a_1+\ldots+lpha_ma_m+ \ &&+eta_1b_1+\ldots+eta_kb_k. \ && \Downarrow \ t &\in& \ell(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k) \end{array}$$

По този начин се получи, че $U+W\subset \ell(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k)$. Следователно $U+W=\ell(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k).$

• Ще докажем, че векторите $e_1, \ldots, e_s, a_1, \ldots a_m, b_1, \ldots b_k$ са линейно независими. За целта разглеждаме едно изразяване на нулевия вектор

$$\underbrace{\gamma_1 e_1 + \ldots + \gamma_s e_s}_{=x \in U \cap W} + \underbrace{\delta_1 a_1 + \ldots + \delta_m a_m}_{=y \in U} + \underbrace{
u_1 b_1 + \ldots
u_k b_k}_{=z \in W} = \mathcal{O}$$

За векторите $x \in U \cap W$, $y \in U$ и $z \in W$ е изпълнено $x + y + z = \mathcal{O}$, следователно x + y = -z. Изпълнено е, че $x + y \in U$, както и $-z \in W$ и тъй като те са равни, затова тези вектори са от сечението на двете подмножества $x + y = -z \in U \cap W$. Следователно тези вектори могат да се представят като линейна комбинация на базисните вектори на $U \cap W$ и затова можем да напишем $x + y = -z = \omega_1 e_1 + \ldots + \omega_s e_s$. Изразяваме по следния начин

$$\omega_1 e_1 + \ldots + \omega_s e_s + \nu_1 b_1 + \ldots \nu_k b_k = \mathcal{O}.$$

Векторите $e_1,\ldots,e_s,b_1,\ldots b_k$ са линейно независими, защото са базис на подпространството W и затова всички коефициенти на тази линейна комбинация са нули $\omega_1=0,\ldots,\omega_s=0,\nu_1=0,\ldots \nu_k=0$, следователно е изпълнено $x+y=\mathcal{O}$. По този начин установяваме и

за останалите коефициенти, че са равни на нула $\gamma_1=0,\ldots,\gamma_s=0$, както и $\delta_1=0,\ldots,\delta_m=0$. Следователно $e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k$ са линейно независими.

По този начин установихме, че $e_1, \ldots, e_s, a_1, \ldots a_m, b_1, \ldots b_k$ е базис на U+W. Следователно е изпълнено

$$\dim(U+W) = s+m+k =$$
 $= (s+m)+(s+k)-s =$
 $= \dim U + \dim W - \dim(U\cap W).$

Пример:

В разгледания на предната страница пример в \mathbb{R}^4 , където $U=\ell(a_1,a_2)\,$ и $W=\ell(b_1,b_2)$, където

$$egin{aligned} a_1 &= (1,1,0,0), \quad a_2 &= (0,0,1,1) \ b_1 &= (1,0,1,0), \quad b_2 &= (0,1,0,1) \end{aligned}$$

Елементите на подпространствата се изразяват по следния начин

$$U=\{(x,x,y,y)\mid x,y\in\mathbb{R}\}$$
 и $W=\{(z,t,z,t)\mid z,t\in\mathbb{R}\}$ Тогава

$$egin{array}{lll} U+W &=& \{(x+z,x+t,y+z,y+t) \mid x,y,z,t \in \mathbb{R}\} = \ &=& \ell(a_1,a_2,b_1,b_2) \end{array}$$

Сечението на двете подпространства е едномерно и $U \cap W = \ell(c)$, където c = (1,1,1,1). Можем да определим размерността на сумата $\dim(U+W) = 2+2-1=3$.

Следвайки начина на доказване на теоремата, можем да намерим базис на сумата на подпространствата. Имаме следните базиси $\{c,a_1\}$ образува базис на U,

 $\{c,b_1\}$ образува базис на W,

 $\{c,a_1,b_1\}$ образува базис на U+W .

4.3. Директна сума

Create PDF in your applications with the Pdfcrowd HTML to PDF API

PDFCROWD

Определение:

Нека U и W са подпространства на линейното пространство V. Сумата на подпространствата U+W се нарича директна сума - когато всеки вектор от $a\in U+W$ може да се изрази по единствен начин във вид $a=u+w,\ u\in U,\ w\in W$. Когато сумата на подпространствата е директна сума, записваме $U\oplus W$.

Пример:

Нека линейно пространство V има базис b_1, \ldots, b_n и нека $1 \leq k < n$. За подпространствата $U = \ell(b_1, \ldots, b_k)$ и $W = \ell(b_{k+1}, \ldots, b_n)$ е вярно, че сумата на тези подпространства е директна сума.

ullet Нека $a\in U+W$ е представено като $a=u_1+w_1$ и освен това като $a=u_2+w_2$, където $u_1,u_2\in U$ и $w_1,w_2\in W$. Тогава е изпълнено, че

$$u_1+w_1=u_2+w_2 \ \Rightarrow \ u_1-u_2=w_2-w_1 \in U \cap W$$

- \circ Нека $t\in U\cap W$, следва че $t=\lambda_1b_1+\ldots+\lambda_kb_k=\mu_{k+1}b_{k+1}+\ldots+\mu_nb_n$, откъдето получаваме, че $\lambda_1b_1+\ldots+\lambda_kb_k-\mu_{k+1}b_{k+1}-\ldots-\mu_nb_n=\mathcal{O}$. Векторите b_1,\ldots,b_n са линейно независими, откъдето получаваме, че $\lambda_1=0,\ldots,\lambda_k=0,\mu_{k+1}=0,\ldots,\mu_n=0$ и следователно $U\cap W=\{\mathcal{O}\}$.
- ullet От това получаваме, че $u_1 u_2 = w_2 w_1 = \mathcal{O}$.

Получихме, че всеки вектор от U+W по единствен начин се представя като вектор от U плюс вектор от W, следователно сумата на подпространствата е директна сума и е изпълнено, че $U \oplus W = V$.

4.4. Т (за директна сума)

Начина, по който се доказа, че имаме директна сума в предния пример, е валиден за произволни пространства. В сила е следната теорема:

Теорема:

Нека U и W са подпространства на линейното пространство V. Сумата U+W е директна сума, тогава и само тогава когато $U\cap W=\{\mathcal{O}\}$.

Доказателство:

| Нека сумата на двете подпространства е директна сума $U+W=U\oplus W$. За произволен елемент от сечението $x\in U\cap W$, има две $\overline{}$ очевидни представяния като сума на елемент от подпространството U плюс елемент от W и щом сумата на подпространствата е директна, трябва тези две представяния да изразяват едно и също:

$$egin{aligned} x &= x + \mathcal{O}, & ext{където } x \in U, & \mathcal{O} \in W \ x &= \mathcal{O} + x, & ext{където } \mathcal{O} \in U, & x \in W \end{aligned} \} \Rightarrow x = \mathcal{O}$$

Получихме, че единственият елемент от сечението може да бъде нулевия вектор $U \cap W = \{\mathcal{O}\}$.

 \sqsubseteq Нека е изпълнено $U\cap W=\{\mathcal{O}\}$ и да разгледаме произволен елемент от сумата на подпространствата $a\in U+W$. Ако е изпълнено $a = u_1 + w_1$ и $a = u_2 + w_2$, тогава е изпълнено

$$u_1+w_1=u_2+w_2 \ \Rightarrow \ u_1-u_2=w_2-w_1 \in U \cap W = \{\mathcal{O}.\,\}$$

Получихме, че $u_1 = u_2$ и $w_1 = w_2$, следователно векторът a по единствен начин се представя като сума на вектори от U и W.

Следствие:

Ако U и W са крайномерни подпространства на линейното пространство V и тяхната сума е директна сума, тогава

$$\dim(U \oplus W) = \dim U + \dim W.$$