Al Tools & Frameworks Assignment Report

Part 1: Theoretical Understanding

Q1: Differences Between TensorFlow and PyTorch

- TensorFlow: Static graph execution, better for production deployment (e.g., TensorFlow Lite, TensorFlow.js).
- **PyTorch**: Dynamic graph execution, easier debugging and more pythonic.
- Use Case: Choose TensorFlow for scalable deployment and PyTorch for rapid experimentation and research.

Q2: Use Cases for Jupyter Notebooks

- 1. Interactive experimentation with data and models.
- 2. Step-by-step documentation for educational tutorials or demonstrations.

Q3: spaCy vs. Python String Operations

- spaCy provides tokenization, named entity recognition (NER), and part-of-speech tagging.
- Unlike str.split() or regex, spaCy uses trained models, making it more accurate and context-aware.

Comparative Analysis: Scikit-learn vs. TensorFlow

Feature	Scikit-learn	TensorFlow
Focus	Classical ML	Deep Learning (DL)
Beginner Friendly	Very easy to use	Steeper learning curve
Community Support	Mature, widely used	Huge, especially in DL field

Part 2: Practical Implementation

Task 1: Scikit-learn - Iris Dataset

- Preprocessed data by encoding labels.
- Trained a **Decision Tree Classifier**.
- Achieved high accuracy (~95%).
- Evaluated with accuracy, precision, and recall.

Code: ml/iris_classifier.ipynb

Task 2: TensorFlow - MNIST Dataset

- Built a CNN with 2 convolutional layers and dense layers.
- Achieved test accuracy >95%.
- Visualized predictions on 5 samples.

Code: dl/mnist_cnn_tensorflow.py

Task 3: spaCy - Amazon Reviews

- Used en_core_web_sm for NER.
- Rule-based sentiment analysis using keyword matching.
- Extracted product names and classified sentiment.

Part 3: Ethics & Optimization

Ethical Considerations

- MNIST Bias: Risk of biased handwriting recognition across cultures.
- Amazon Reviews: Incomplete entity detection and sentiment misunderstanding.
- Mitigation: Use Fairness Indicators and advanced NLP models like transformers.

Debugging Challenge Example

Issue: Used categorical_crossentropy with integer labels.

Fix:

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')

[™] Conclusion

This assignment helped reinforce the practical skills and ethical considerations involved in Al development. Each team member contributed to code, theory, and presentation, ensuring balanced participation and deeper understanding of real-world Al tooling.