2

3

4

5

3

4

5

6

What is claimed is:

1	1.	A method for closed loop power control in a wireless communication
2	network, com	prising:

despreading a received signal;

estimating the signal power of the despread received signal;

estimating the noise power of the despread received signal, estimating the noise power including:

multiplying the despread received signal with an orthogonal noise code to cancel the received signal; and

accumulating the multiplied despread received signal over one frame; determining a signal-to-noise ratio of the received signal at least in part by dividing the estimated signal power by the estimated noise power; and

determining a reverse power control bit based on the determined signal-tonoise ratio.

2. The method according to Claim 1, wherein the determined reverse power control bit corresponds to a power down command if the determined signal-tonoise ratio is above a predetermined threshold and wherein the determined reverse power control bit corresponds to a power up command if the determined signal-tonoise ratio is not above the predetermined threshold.

15

1	3.	The method according to Claim 1, wherein the orthogonal noise code is
2	a Walsh code	
1	4.	The method according to Claim 3, wherein the Walsh code is a thirty-
2	two bit code	in which the most significant sixteen bits are ones and the least
3	significant si	ixteen bits are zeros.
1	5.	The method according to Claim 1, wherein the despread received signal
2	is arranged a	as a plurality of Rake fingers, and wherein estimating the signal power of
	the despread	I received signal is comprised of:
	obtair	ning a forward power control bit by decoding the despread received
1	signal;	
<u></u>	for ea	ach of the plurality of Rake fingers:
<u> </u>		multiplying the decoded forward power control bit with at least one
= = 8	forward pov	ver control bit portion;
9		determining the position of the reverse power control bit;
10		selecting the despread received signal of the corresponding Rake finger
11	for a duration	on of one power control group;
12		accumulating the received despread signal to eliminate all data channel
13	signals exce	ept a pilot signal to create a decimated pilot signal;

delayed version of the decimated pilot signal to obtain a multiplied result;

multiplying the decimated pilot signal with a complex conjugate of a

accumulating a real component of the multiplied result over one power control group to obtain a Rake finger output; and

determining the signal power estimate by coherently combining and averaging the plurality of Rake finger outputs.

- 6. The method according to Claim 2, further comprising puncturing the determined reverse power control bit into power control group data corresponding to a power control group.
- 7. The method according to Claim 6, wherein puncturing the determined reverse power control bit comprises:

buffering control group data corresponding to a plurality of power control groups, the determined reverse power control bit being punctured into each of the power control group data corresponding to the plurality of power control groups; and updating the buffered control group data each time a reverse power control bit is determined.

- 8. The method according to Claim 7, wherein the reverse power control bit is determined two times per power control group.
- 9. The method according to Claim 6, wherein puncturing the determined reverse power control bit comprises:

3	using a first quantity of symbols in each power control group to determine a
4	first signal power estimate;
5	determining a first power control bit based on the first signal power estimate;
6	puncturing the first power control bit into the n+2 power control group
7	wherein n corresponds to a predetermined power control group;
8	using a second quantity of symbols in each power control group to determine a
9	second signal power estimate;
0	determining a second power control bit based on the second signal power
1	estimate; and
1	replacing the punctured first power control bit with the second power control
3	bit if a power control bit position in the n+2 power control group is after the second
4	quantity of symbols in a current reverse link power control group.
1	10. The method according to Claim 9, wherein the first quantity of symbols
2	corresponds to a first four symbols in a power control group and wherein the second
3	quantity of symbols corresponds to six symbols in the power control group.
1	11. The method according to Claim 10, wherein the symbols are Walsh
2	symbols.

12. The method according to Claim 11, wherein the punctured power control bit is determined two times per power control group.

2

3

1

2

3

4

5

6

13.	The method according to Claim 1, wherein the despread received signal
is arranged a	s a plurality of Rake fingers, and wherein estimating the signal power of
the despread	received signal is comprised of:

for each of the plurality of Rake fingers:

coherently accumulating the despread received signal;

taking a squared amplitude over a time of the coherent accumulation to determine a finger signal power level within one-half of a power control group;

summing the finger signal power levels for all of the plurality of Rake fingers together over one-half of the power control group to determine an intermediate signal power estimate; and

adding the intermediate signal power estimate to a previous signal power estimate.

- 14. The method according to Claim 13, wherein the despread received signal includes a non-gated pilot signal.
- 15. The method according to Claim 1, wherein the despread received signal is arranged as a plurality of Rake fingers, and wherein estimating the signal power of the despread received signal is comprised of:
- obtaining a forward power control bit by decoding the despread received signal;

8
9
10
11
12
13
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21
22

2

3

6	for each of the plurality of Rake fingers:
7	multiplying the decoded forward power control bit with at least one
8	forward power control bit portion;
9	determining the position of the reverse power control bit;
10	selecting the despread received signal of the corresponding Rake finger
11	for a duration of one-half power control group;
12	accumulating the received despread signal to eliminate all data channel
13	signals except a pilot signal to create a decimated pilot signal;
H	multiplying the decimated pilot signal with a complex conjugate of a
\ \ 5	delayed version of the decimated pilot signal to obtain a multiplied result;
16	accumulating a real component of the multiplied result over one-half
	power control group to obtain a finger signal power level;
= 18 1	summing the finger signal power levels for all of the plurality of Rake fingers
19	together over one-half of the power control group to determine an intermediate signal
20	power estimate; and
21	adding the intermediate signal power estimate to a previous signal power
22	estimate.

16. A method for estimating a power level for a despread wireless communication signal having a non-gated pilot signal, the despread received signal being arranged as a plurality of Rake fingers, the method comprised of:

4	obtaining a forward power control bit by decoding the despread received
5	signal;
6	for each of the plurality of Rake fingers:
7	multiplying the decoded forward power control bit with at least one
8	forward power control bit portion;
9	determining the position of the reverse power control bit;
.0	selecting the despread received signal of the corresponding Rake finger
.1	for a duration of one power control group;
2	accumulating the received despread signal to eliminate all data channel
	signals except a pilot signal to create a decimated pilot signal;
4	multiplying the decimated pilot signal with a complex conjugate of a
	delayed version of the decimated pilot signal to obtain a multiplied result;
	accumulating a real component of the multiplied result over one power
7	control group to obtain a Rake finger output; and
.8	determining the signal power estimate by coherently combining and averaging
.9	the plurality of Rake finger outputs.
1	17. A method for estimating a power level for a despread wireless
2	communication signal having a gated pilot signal, the despread received signal being
3	arranged as a plurality of Rake fingers, the method comprised of:
4	for each of the plurality of Rake fingers:
5	coherently accumulating the despread received signal;
	and applicant to out or Difficult

6	taking a squared amplitude over a time of the coherent accumulation to
7	determine a finger signal power level within one-half of a power control group;
8	summing the finger signal power levels for all of the plurality of Rake fingers
9	together over one-half of the power control group to determine an intermediate signal
10	power estimate; and
11	adding the intermediate signal power estimate to a previous signal power
12	estimate.
1 2 2 2 3 Section of the least than	18. A system for closed loop power control in a wireless communication
1. 2	network, comprising:
1113 11113	a communication unit having:
	a receiver, the receiver receiving a first signal;
<u>1</u> 5	a central processing unit, the central processing unit in operative
4 5 5 6 call and a second and a	communication with the receiver and executing functions including:
7	despreading the received first signal;
8	estimating the signal power of the despread received first signal;
9	estimating the noise power of the despread received first signal,
10	estimating the noise power including:
11	multiplying the despread received signal with an
12	orthogonal noise code to cancel the received first signal; and
13	accumulating the multiplied despread received first signal
14	over one frame:

r ,

determining a signal-to-noise ratio of the received first signal at least in part by dividing the estimated signal power by the estimated noise power; and determining a reverse power control bit based on the determined signal-to-noise ratio.

- 19. The system according to Claim 18, wherein the central processing unit further performs the function of punching the determined reverse power control bit into a second signal.
- 20. The system according to Claim 19, further including a device, wherein the communication unit further includes a transmitter in operative communication with the central processing unit, the transmitter transmitting the second signal to the device using the wireless communication network.
- 21. The system according to Claim 18, wherein the determined reverse power control bit corresponds to a power down command if the determined signal-to-noise ratio is above a predetermined threshold and wherein the determined reverse power control bit corresponds to a power up command if the determined signal-to-noise ratio is not above the predetermined threshold.
- 22. The system according to Claim 18, wherein the orthogonal noise code is a Walsh code.

1	23. The system according to Claim 22, wherein the Walsh code is a thirty-
2	two bit code in which the most significant sixteen bits are ones and the least
3	significant sixteen bits are zeros.
1	24. The system according to Claim 18, wherein the despread received first
2	signal is arranged as a plurality of Rake fingers, and wherein estimating the signal
3	power of the despread received first signal is comprised of:
4 "	obtaining a forward power control bit by decoding the despread received first
5 1	signal;
T 6	for each of the plurality of Rake fingers:
	multiplying the decoded forward power control bit with at least one
8 8 9 ml	forward power control bit portion;
1 9	determining the position of the reverse power control bit;
10	selecting the despread received signal of the corresponding Rake finger
11	for a duration of one power control group;
12,	accumulating the received despread signal to eliminate all data channel
13	signals except a pilot signal to create a decimated pilot signal;
14	multiplying the decimated pilot signal with a complex conjugate of a
15	delayed version of the decimated pilot signal to obtain a multiplied result;
16	accumulating a real component of the multiplied result over one power

control group to obtain a Rake finger output; and

2

1

2

18

19

1

2

3

1

determining the signal power estimate by coherently combining and averaging the plurality of Rake finger outputs.

- 25. The system according to Claim 21, wherein the central processing unit further executes the function of puncturing the determined reverse power control bit into power control group data corresponding to a power control group.
- 26. The system according to Claim 25, wherein puncturing the determined reverse power control bit comprises:

buffering control group data corresponding to a plurality of power control groups, the determined reverse power control bit being punctured into each of the power control group data corresponding to the plurality of power control groups; and updating the buffered control group data each time a reverse power control bit is determined.

- 27. The system according to Claim 26, wherein the reverse power control bit is determined two times per power control group.
- 28. The system according to Claim 25, wherein puncturing the determined reverse power control bit comprises:
- using a first quantity of symbols in each power control group to determine a

 first signal power estimate;
- determining a first power control bit based on the first signal power estimate;

.

puncturing the first power control bit into the n+2 power control group
wherein n corresponds to a predetermined power control group;

using a second quantity of symbols in each power control group to determine a second signal power estimate;

determining a second power control bit based on the second signal power estimate; and

replacing the punctured first power control bit with the second power control bit if a power control bit position in the n+2 power control group is after the second quantity of symbols in a current reverse link power control group.

- 29. The system according to Claim 28, wherein the first quantity of symbols corresponds to a first four symbols in a power control group and wherein the second quantity of symbols corresponds to six symbols in the power control group.
- 30. The system according to Claim 29, wherein the symbols are Walsh symbols.
- 31. The system according to Claim 30, wherein the punctured power control bit is determined two times per power control group.
 - 32. The system according to Claim 18, wherein the despread received first signal is arranged as a plurality of Rake fingers, and wherein estimating the signal power of the despread received first signal is comprised of:

4	for each of the plurality of Rake fingers:
5	coherently accumulating the despread received first signal;
6	taking a squared amplitude over a time of the coherent accumulation to
7	determine a finger signal power level within one-half of a power control group;
8	summing the finger signal power levels for all of the plurality of Rake fingers
9	together over one-half of the power control group to determine an intermediate signal
0	power estimate; and
1	adding the intermediate signal power estimate to a previous signal power
2	estimate.
2	
İ	33. The system according to Claim 32, wherein the despread received first
2	signal includes a non-gated pilot signal.
1	34. The system according to Claim 18, wherein the despread received first
2	signal is arranged as a plurality of Rake fingers, and wherein estimating the signal
3	power of the despread received first signal is comprised of:
4	obtaining a forward power control bit by decoding the despread received first
5	signal;
5	for each of the plurality of Rake fingers:
7	multiplying the decoded forward power control bit with at least one
3	forward power control bit portion;
)	determining the position of the reverse power control bit;

10	selecting the despread received first signal of the corresponding Rake
11	finger for a duration of one-half power control group;
12	accumulating the received despread first signal to eliminate all data
13	channel signals except a pilot signal to create a decimated pilot signal;
14	multiplying the decimated pilot signal with a complex conjugate of a
15	delayed version of the decimated pilot signal to obtain a multiplied result;
16	accumulating a real component of the multiplied result over one-half
17	power control group to obtain a finger signal power level;
T8	summing the finger signal power levels for all of the plurality of Rake fingers
19 20 21 21 22	together over one-half of the power control group to determine an intermediate signal
20	power estimate; and
21	adding the intermediate signal power estimate to a previous signal power
22	estimate.