Fortgeschrittene Fehlerrechnung Übungsblatt 2

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: May 10, 2024)

I. NULLHYPOTHESE

Nullhypothese: Die Ereignisse sind nach einer Poisson-Verteilung mit Mittelwert $\mu = 2,148$ verteilt.

Alternativhypothese: Die Ereignisse sind nicht nach einer Poisson-Verteilung mit Mittelwert $\mu = 2,148$ verteilt.

Ereignisse	0	1	2	3	4	5	6	7	8	≥9
Häufigkeit	40	85	92	62	25	19	7	4	2	0
Poisson-Wahrscheinlichkeit	0,116717	0,250709	0,269261	0,192791	0,103529	0,044476	0,0159224	0,0048859	0,00131187	0,000396293
Poisson-Häufigkeit	39,217	84,2382	90,4718	64,7778	34,7857	14,9439	5,34993	1,64166	0,440787	0,133155

Beobachtung: Die letzte 3 Klassen haben theoretische Häufigkeit, die kleine als 5 ist, Wir fassen deswegen die 4 letzte Klassen zusammen.

Ereignisse	0	1	2	3	4	5	≥6
Häufigkeit	40	85	92	62	25	19	13
Poisson-Wahrscheinlichkeit	0,116717	0,250709	0,269261	0,192791	0,103529	0,044476	0,0225165
Poisson-Häufigkeit	39,217	84,2382	90,4718	64,7778	34,7857	14,9439	7,56553

 χ^2 Statistik:

$$\chi^{2} = \frac{(40 - 39, 217)^{2}}{39, 217} + \frac{(85 - 84, 2382)^{2}}{84, 2382} + \frac{(92 - 90, 4718)^{2}}{90, 4718} + \frac{(62 - 64, 7778)^{2}}{64, 7778}$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

$$+\frac{(25-34,7857)^2}{34,7857} + \frac{(19-14,9439)^2}{14,9439} + \frac{(13-7,56553)^2}{7,56553} \approx 7,92488$$

Bestimmung der Anzahl der Freiheitzgrade

Anzahl der Klassen: 7

Zwangsbedingungen: 1

Freiheitsgrade: 7 - 1 = 6

p-Wert

$$p = \int_{7.92488}^{\infty} f_{\chi^2(6)}(x) \, \mathrm{d}x \approx 0,243659$$

Da der p-Wert größer als das Irrtumsniveau (=0,05) ist, ist die Poisson-Verteilung mit einer Irrtumswahrscheinlichkeit von 5% Poisson verteilt mit Mittelwert 2,148. Das heißt: Im Fall, dass die Daten wirklich nach einer Poisson-Verteilung mit Mittelwert 2,148 verteilt sind, gibt es eine $\approx 24\%$ Wahrscheinlichkeit, dass eine Stichprobe weiter von den erwarteten Werte als die gegebene Messung gestreut sind. Die Wahrscheinlichkeit eines Fehlers 1. Art ist also 5%.

Weil das Parameter μ kontinuierlich ist, ist die Wahrscheinlichkeit eines Fehlers vom Typ 2 1, also die Daten sind fast sicherlich nicht nach einer Poisson-Verteilung mit μ gleich genau 2,148. Dies entspricht physikalisch, dass die Nachkommastellen nach 8 fast sicherlich nicht alle Null sind.

Eine Unterscheidung zwischen z.B. 2,148 und 2,148 + 10⁻⁹ ist aber auch physikalisch nicht sinnvoll. Insgesamt können wir nicht schließen, dass der Mittelwert genau 2,148 ist, jedoch können wir sagen, dass eine Poisson-Verteilung mit Mittelwert 2,148 eine gute Approximation ist und mittels der Messung können wir die Verteilung der Ereignisse nicht von einer solchen Poisson-Verteilung unterscheiden.