

Ejercicios-Tema-4-con-explicacio...

dcardenas11

Ingeniería de Servidores

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Consigue Empleo o Prácticas

Matricúlate en IMF y accede sin coste a nuestro servicio de Desarrollo Profesional con más de 7.000 ofertas de empleo y prácticas al mes.

TEMA 4

Análisis comparativo del rendimiento (benchmarking)

PROBLEMA 4.1 En la tabla siguiente se muestra el tiempo de ejecución (expresado en segundos) y el número de instrucciones ejecutadas en el computador Cleopatra para cinco programas distintos.

Programa	Tiempo (s)	Instrucciones (×10°	<u>_</u> CPI	
asterix	56	543	3	
obelix	59	346	3	
panoramix	113	415	3	
idefix	132	256	Ş	510 514 414 55 025
abraracurcix	120	235 , F	(1PŠ =	513+346+415+256+235 _ 3'74
				56+59+413+132+120

- 1. Calcule el número medio de MIPS de este computador al ejecutar los 5 programas.
- 2. Determine el número medio de ciclos por instrucción (CPI) obtenidos por este computador. Considere para ello que las instrucciones ejecutadas por los tres primeros programas duran 3 ciclos de media mientras que las del resto duran 5 ciclos.

 \[
 \textstyle{CPI} = \frac{\textstyle{ZNI_1}}{\textstyle{NI}} = \frac{3\cdot 5}{\textstyle{NI}}
 \]

Solución:

- 1. El computador obtiene 3,74 MIPS.
- 2. El número medio de CPI es 3,55.

PROBLEMA 4.2 La tabla siguiente muestra el tipo y número de las operaciones de coma flotante ejecutadas por un programa de prueba en el computador MATES; la última columna representa el coste computacional en operaciones normalizadas.

Operación	Cantidad (×10 ⁹)	Operaciones normalizadas
add.s, sub.s	456	1
div.s, mul.s	340	3
sqrt.s	180	12
sqrt.d	70	15
log.d	30	18

Se sabe que el programa tarda una hora en ejecutarse. Indique el rendimiento de este computador mediante el uso de MFLOPS y MFLOPS normalizados. ¿Existe mucha diferencia entre ambos valores?

SOLUCIÓN: El programa obtiene 299 MFLOPS y 1452 MFLOPS normalizados.

$$MPLOPS = \frac{Op.FL}{1h\cdot 10^6} = 298'89$$
 $MPLOPS_{norm} = 1451'67$

PROBLEMA 4.3 Considere la información (incompleta) obtenida por la orden siguiente en un computador sin más carga que la ejecución de esta orden y sin operaciones de E/S:

Se sabe que el número de instrucciones ejecutadas es de 32 × 10⁹; de estas últimas, el 60 % se ejecuta en dos ciclos, mientras que el resto lo hace en cinco ciclos. Calcule el número medio de ciclos por instrucción (CPI) obtenidos por el programa, la frecuencia de funcionamiento del procesador y los MIPS alcanzados por el procesador.

SOLUCIÓN: El programa obtiene un CPI de 3,2 y 246,2 MIPS. La frecuencia del procesador es de 0,788 GHz.

PROBLEMA 4.4 La tabla siguiente muestra los tiempos de ejecución en segundos de tres programas de prueba en tres máquinas A, B y C. Aplíquense al menos dos técnicas de análisis que permitan extraer conclusiones contradictorias respecto del rendimiento de las máquinas.

Programa	Α	В	С
mafalda	185	164	126
felipe	161	163	143
miguelito	182	110	295

SOLUCIÓN: La máquina más rápida es la B. Para obtener una conclusión diferente bastaría con calcular un promedio ponderado dando más peso a la máquina que se quisiera beneficiar o bien normalizando los valores respecto de esta misma máquina.

PROBLEMA 4.5 La tabla que se muestra a continuación refleja los tiempos de ejecución, en segundos, de los 14 programas de prueba que integran un determinado benchmark empleado para el cálculo del rendimiento en aritmética de coma flotante. En particular, los tiempos corresponden a la máquina de referencia y a una máquina que denominaremos A (columnas "Base" y "Peak", con el mismo significado que usa SPEC para sus comparaciones).

Programa	Referencia	A-Base	A-Peak
168.wupwise	1600	419	300
171.swim	3100	562	562
172.mgrid	1800	607	607
173.applu	2100	658	605
177.mesa	1400	273	242
178.galgel	2900	571	571
179.art	2600	1040	1038
183.equake	1300	501	387
187.facerec	1900	434	434
188.ammp	2200	705	697
189.lucas	2000	784	758
191.fma3d	2100	534	534
200.sixtrack	1100	395	336
301.apsi	2600	866	866

- La optimización de la compilación permite obtener una mejora, en ambos casos, de 1,07.
- 3. En teoría no afectará porque los índices mostrados afectan únicamente a la aritmética entera.
- 4. No se puede saber porque este benchmark es de aritmética en coma flotante.

PROBLEMA 4.10 Responda brevemente a las siguientes cuestiones sobre el benchmark CPU2006 que ha desarrollado el consorcio SPEC:

- ¿Qué componentes del sistema informático evalúa?
- 2. ¿Cuáles son los lenguajes en que están programados los diferentes programas que lo integran?
- 3. ¿Cuál es la diferencia entre los índices SPECint2006 y SPECint base2006?
- 4. Indique cómo se calcula el índice SPECfp2006. El método de cálculo empleado, ¿satisface todas las exigencias de un buen índice de prestaciones? Razone la respuesta.

Solución:

- El procesador, el sistema de memoria y el compilador.
- 2. C, C++ y Fortran.
- 3. El primero se obtiene con los programas compilados, cada uno de ellos, con parámetros que optimizan la ejecución del código en la máquina que se evalúa con el objetivo de conseguir el menor tiempo de ejecución posible (rendimiento pico). El segundo utiliza opciones de compilación genéricas y comunes a todos los programas.
- 4. Se usa la media geométrica de los ratios obtenidos dividiendo los tiempos de ejecución en la máquina de referencia con los de la máquina que se evalúa, es decir, la media geométrica de las ganancias en velocidad con respecto a una máquina de referencia. Este método de cálculo no satisface las exigencias de un buen índice de prestaciones ya que no refleja de manera correcta la comparación basada en los tiempos de ejecución.

PROBLEMA 4.11 En un computador se ha llevado a cabo un estudio para determinar si el tipo de memoria principal es un factor importante en su rendimiento. Para ello se ha medido el tiempo de ejecución de seis programas con dos tipos de memoria: MA (más rápida y más cara) y MB (más lenta y más barata). Las medidas de los tiempos de ejecución (en segundos) de los programas son los siguientes:

Calcule si las diferencias observadas son significativas al 95% de confianza y, en caso afirmativo, determine la mejora de velocidad conseguida debido al uso del tipo de memoria más rápida. DATO: $|t_{0,025,4}| = 2,78$.

SOLUCIÓN: Las diferencias son significativas. La memoria MA permite obtener una mejora de velocidad del 9% con respecto a la memoria MB.

