In what follows, we fix an abelian group A. We will freely use the theory and results of ??

Definition 0.1. An A-graded spectral sequence $(E_r, d_r)_{r>r_0}$ is the data of:

- A collection of A-graded abelian groups $\{E_r^*\}_{r\geq r_0}$
- A collection of A-graded homomorphisms $d_r: E_r \to E_r$ for $r \ge r_0$ (of possibly nonzero degree) such that $d_r \circ d_r = 0$
- For each $r \geq r_0$, an A-graded isomorphism $E_{r+1} \cong \ker d_r / \operatorname{im} d_r$ of degree 0 (where $\ker d_r$ and $\operatorname{im} d_r$ are canonically A-graded by ??, and their quotient is canonically A-graded by ??).

Typically we call a \mathbb{Z}^2 -graded spectral sequence a bigraded spectral sequence, and a \mathbb{Z}^3 -graded spectral sequence is a trigraded spectral sequence.

0.1. Unrolled exact couples and their associated spectral sequences. For our purposes, we will only care about spectral sequences which arise from A-graded unrolled exact couples. In what follows, we follow [1], with minor modifications for our setting, in which everything is A-graded.

Definition 0.2. An A-graded unrolled exact couple (D, E; i, j, k) is a diagram of A-graded abelian groups and A-graded homomorphisms (of possibly non-zero degree)

$$\cdots \longrightarrow D^{s+2} \xrightarrow{i} D^{s+1} \xrightarrow{i} D^{s} \xrightarrow{i} D^{s-1} \longrightarrow \cdots$$

$$\downarrow^{j} \nwarrow_{k} \downarrow^{j} \nwarrow_{k} \downarrow^{j} \downarrow^{j}$$

$$E^{s+2} E^{s+1} E^{s} E^{s-1}$$

in which each triangle $D^{s+1} \xrightarrow{i} D^s \xrightarrow{j} E_s \xrightarrow{k} D^{s+1}$ is an exact sequence. We require that each occurrence of i (resp. j, k) is of the same degree. In other words, an unrolled exact couple can be described as a tuple (D, E; i, j, k) of $\mathbb{Z} \times A$ -graded abelian groups and $\mathbb{Z} \times A$ -graded maps $i: D \to D, j: D \to E$, and $k: E \to D$, such that the \mathbb{Z} -degrees of i, j, and k are -1, 0, and 1, respectively. Usually i and one of j or k will be of A-degree 0.

Given an A-graded unrolled exact couple (D, E; i, j, k), we may define an associated $\mathbb{Z} \times A$ -graded spectral sequence as follows: Given some $s \in \mathbb{Z}$ and some $r \geq 1$, we first define the following subgroups of E_s :

$$Z_r^s := k^{-1}(\operatorname{im}[i^{r-1}: D^{s+r} \to D^{s+1}])$$
 and $B_r^s := j(\ker[i^{r-1}: D^s \to D^{s-r+1}])$

where we adopt the convention that i^0 is simply the identity. These are furthermore A-graded subgrous of E_s (by ?? and ??). In this way, for each $s \in \mathbb{Z}$, we get an infinite sequence of A-graded subgroups:

$$0 = B_1^s \subseteq B_2^s \subseteq B_3^s \subseteq \cdots \subseteq \operatorname{im} j = \ker k \subseteq \cdots \subseteq Z_3^s \subseteq Z_2^s \subseteq Z_1^s = E^s.$$

Now, for each $s \in \mathbb{Z}$ and $r \geq 1$, we define the A-graded abelian group

$$E_r^s := Z_r^s / B_r^s,$$

so that in particular $E_1^s=E^s$ for all $s\in\mathbb{Z}$, as $Z_1^s=k^{-1}(D^{s+1})=E^s$ and $B_1^s=j(\ker\operatorname{id}_{D^s})=j(0)=0$. Now we can define differentials $d_r^s:E_r^s\to E_r^{s+r}$ to be the composition

$$E_r^s = Z_r^s/B_r^s \xrightarrow{k} \text{im}[i^{r-1}: D^{s+r} \to D^{s+1}] \xrightarrow{j \circ i^{-(r-1)}} Z_r^{s+r}/B_r^{s+r} = E_r^{s+r},$$

where given some $e \in Z_r^s = k^{-1}(\operatorname{im} i^{r-1})$, the first arrow takes a class $[e] \in E_r^s$ represented by some $e \in Z_r^s$ to the element k(e), which lives in $\operatorname{im} i^{r-1}$ by definition, and the second arrow takes

 $i^{r-1}(d)$ to the class [j(d)]. Note the first map is well-defined, as given $b \in B_r^s = j(\ker[i^{r-1}])$, we have k(b) = 0, as $b \in \operatorname{im} j = \ker k$. To see the second map is well-defined, first note that given $d \in D^{s+r}$, that

$$k(j(d)) = 0 \in \text{im}[i^{r-1}: D^{s+2r} \to D^{s+r+1}],$$

so that

$$j(d) \in k^{-1}(\text{im}[i^{r-1}: D^{s+2r} \to D^{s+r+1}]) = Z_r^{s+r},$$

as desired, so that given $d \in D^{s+r}$, $j(d)inZ_r^{s+r}$, so it makes sense to discuss the class $[j(d)] \in Z_r^{s+r}/B_r^{s+r} = E_r^{s+r}$. Secondly, if $i^{r-1}(d) = i^{r-1}(d')$ for some $d, d' \in D^{s+r}$, then

$$j(d) - j(d') = j(d - d') \in j(\ker[i^{r-1}: D^{s+r} \to D^{s+1}]) = B_r^{s+r},$$

so that [j(d)] = [j(d')] in E_r^{s+r} , as desired. It is straightforward to check that these maps are also A-graded homomorphisms, so that by unravelling definitions d_r^s is an A-graded homomorphism of degree $\deg k - (r-1) \cdot \deg i + \deg j$ (so that in the standard case $\deg i = 0$, d_r^s simply has degree $\deg k + \deg j$).

These differentials square to zero, in the sense that for each $s \in \mathbb{Z}$ and $r \geq 1$ we have that $d_r^{s+r} \circ d_r^s : E_r^s \to E_r^{s+2r}$ is the zero map. Indeed, suppose we are given some class $[e] \in E_r^s$ represented by an element $e \in E^s$, so $k(e) = i^{r-1}(d)$ for some $d \in D^{s+r}$. Then

$$d_r^{s+r}(d_r^s([e])) = d_r^{s+r}([j(d)]) = [j(i^{-(r-1)}(k(j(d))))] = [j(i^{-(r-1)}(0))] = 0,$$

where the second-to-last equality follows by the fact that $k \circ j = 0$. Note that by unravelling definitions, $d_1^s = j \circ k$.

We claim that $\ker d_r^s = Z_{r+1}^s/B_r^s$. First of all, let $[e] \in E_r^s = Z_r^s/B_r^s$, so that [e] is represented by some $e \in E^s$ with $k(e) = i^{r-1}(d)$ for some $d \in D^{s+r}$. Then if $[e] \in \ker d_r^s$, by definition this means $j(d) \in B_r^{s+r} = j(\ker[i^{r-1}:D^{s+r}\to D^{s+1}])$, so j(d) = j(d') for some $d' \in D^{s+r}$ with $i^{r-1}(d') = 0$. Thus $d-d' \in \ker j = \operatorname{im} i$, so there exists some $d'' \in D^{s+r+1}$ such that i(d'') = d-d'. Then

$$k(e) = i^{r-1}(d) = i^{r-1}(i(d'') + d') = i^r(d'') + i^{r-1}(d'),$$

but since $i^{r-1}(d')=0$, we have $k(e)\in \operatorname{im}[i^r:D^{s+r+1}\to D^{s+1}]$, so that $e\in Z^s_{r+1}$, meaning $[e]\in Z^s_{r+1}/B^s_r$, as desired. On the other hand, suppose we are given some class $[e]\in Z^s_{r+1}/B^s_r$, represented by $e\in Z^s_{r+1}$ with $k(e)\in \operatorname{im}[i^r:D^{s+r+1}\to D^{s+1}]$. Then if we write $k(e)=i^r(d)=i^{r-1}(i(d))$, then $d^s_r([e])=[j(i(d))]=0$ (since $j\circ i=0$), as asserted.

Finally, we claim that the image of $d_r^{s-r}: E_r^{s-r} \to E_r^s$ is B_{r+1}^s/B_r^s . First, let $e \in Z_r^{s-r}$, so $k(e) = i^{r-1}(d)$ for some $d \in D^s$. Then we'd like to show that $d_r^s([e]) = [j(d)]$ belongs to B_{r+1}^s/B_r^s . It suffices to show that $d \in \ker[i^r: D^s \to D^{s-r}]$. To see this, note that

$$i^{r}(d) = i(i^{r-1}(d)) = i(k(e)) = 0,$$

since $i \circ k = 0$. Hence we've shown im $d_r^{s-r} \subseteq B_{r+1}^s/B_r^s$. Conversely, let $j(d) \in B_{r+1}^s$, so $d \in D^s$ and $i^r(d) = 0$. Then we'd like to show that $[j(d)] \in B_{r+1}^s/B_r^s$ is in the image of d_r^{s-r} . To see this, note that

$$i^r(d) = 0 \implies i^{r-1}(d) \in \ker i = \operatorname{im} k,$$

so there exists some $e \in E^{s-r}$ such that $k(e) = i^{r-1}(d)$, so $e \in Z_r^{s-r}$. Unravelling definitions, it follows that $d_r^{s-r}([e]) = [j(d)]$, so [j(d)] is indeed in the image of d_r^{s-r} , as desired.

To recap, we have constructed for each $s \in \mathbb{Z}$ and $r \geq 1$ an A-graded abelian group E_r^s along with differentials $d_r^s : E_r^s \to E_r^{s+r}$. Furthermore, if we take homology in the middle term of the following sequence

$$E_r^{s-r} \xrightarrow{d_r^{s-r}} E_r^s \xrightarrow{d_r^s} E_r^{s+r},$$

we get

$$\ker d_r^s/\operatorname{im} d_r^{s-r} = \frac{Z_{r+1}^s/B_r^s}{B_{r+1}^s/B_r^s} \cong Z_{r+1}^s/B_{r+1}^s = E_{r+1}^s.$$

Thus, we get a spectral sequence:

Proposition 0.3. We may associate a $\mathbb{Z} \times A$ -graded spectral sequence $r \mapsto (E_r, d_r)$ to the A-graded unrolled exact couple (D, E; i, j, k) by defining $E_r := \bigoplus_{s \in \mathbb{Z}} E_r^s$ and the differentials

$$d_r: E_r \to E_r$$

are those constructed above, which have $\mathbb{Z} \times A$ -degree $(r, \deg j - (r-1) \cdot \deg i + \deg k)$.

0.2. Convergence of spectral sequences.