Recommended Problems

Problem 1

Prove that if A and B are sets of the same cardinality then F(A) and F(B) are isomorphic.

Problem 2

Prove that, if R is commutative, then R^n and R^k are isomorphic if and only if n = k.

Strategy:

Assume $f: \mathbb{R}^n \to \mathbb{R}^k$ is an isomorphism.

- 1. If *R* is a field, this follows from the fact that the dimension of a vector space is well-defined.
- 2. If R is not a field, it has a proper maximal ideal m so that R/m is a field.
- 3. $R^n/mR^n=(R/m)^n$. Any elememt $(mr_1, mr_2, \ldots, mr_n)$ belongs to $m^n \subset R^n$. Conversely, if $x=(m_1,\ldots,m_n) \in m^n$, then $x=m_1e_1+m_2e_2+\cdots+m_ne_n$ where the e_i are the elements of R^n with 1 in position i and 0 elsewhere. Therefore $mR^n=m^n$. Define a map $\pi_n:R^n\to (R/m)^n$ that reduces each component mod m. This is an R-module homomorphism whose kernel is m^n .

Problem 2 continued

- 4. The composite map $\pi_k \circ f: R^n \to R^k/mR^k$ has mR^n in its kernel.
- 5. Suppose that $\pi_k \circ f(x) = 0$. Then f(x) belongs to mR^k , so write $f(x) = m_1 y_1 + \cdots + m_j y_j$ with $y_j \in R^k$. Since f is surjective, each $y_j = f(x_j)$ and therefore $f(x) = m_1 f(x_1) + \cdots + m_j f(x_j) = f(b)$ where $b \in mR^n$. Since f is injective, we see that $x \in mR^n$. Thus $\pi_k \circ f$ is surjective and the kernel of $\pi_k \circ f$ is mR^n .
- 6. By the isomorphism theorem, there is a quotient map $\overline{\pi_k \circ f}: R^n/mR^n \to R^k/mR^k$ that is an isomorphism. It is also R/m linear it's R-linear because it's an R-module map, and m acts like zero. Therefore it is an isomorphism of vector spaces between $(R/m)^n$ and $(R/m)^k$ and therefore n=k.

Note: This is false if R is not commutative. Problem 27 constructs an example.

Problem 6

Prove that if M is a finitely generated R-module generated by n elements, then any quotient of M can be generated by at most n elements. In particular, quotients of cyclic modules are cyclic.

Problems 16 and 17: Decomposition Theorem

These two problems establish the decomposition theorem for modules. We assume that R is commutative with 1. Let M be a module and let I and J be ideals of R.

- ▶ Prove that the map $M \to M/IM \times M/JM$ defined by $m \mapsto (m + IM, m + JM)$ is an R module homomorphism with kernel $IM \cap JM$.
- Suppose that I + J = R. Prove that the map in the previous part is surjective and its kernel is IJM so that

$$M/IJM = M/IM \times M/JM$$

in this case.

Decomposition theorem continued

This problem is proved in a manner very similar to the situation for rings. The second part is the interesting one. For surjectivity, given $(m_1+IM,m_2+JM)\in M/IM\times M/JM$, we want to find m so that $m-m_1\in IM$ and $m-m_2\in JM$. Write 1=i+j with $i,j\in R$. Then m=im+jm. Let $m_1=jm$ and $m_2=im$. Then $m-m_1=m_2\in iM$ and $m-m_2=m_1\in JM$.

For the second part, suppose $m \in IM \cap JM$. Write m = im + jm. Since $m \in JM$, $im \in IJM$, and since $m \in IM$ and R is commutative, $jm \in IJM$. Therefore $m \in IJM$.

This can be extended by induction to families of ideals I_1, \ldots, I_k that are pairwise relatively prime $(I_i + I_j = R \text{ for any pair.})$

Problem 24 (optional)

This problem constructs an infinite direct product of free modules that is not free; in fact it shows that the countable direct product of copies of $\mathbb Z$ is not free.