Boolean Algebra, Gates and Circuits

Kasper Brink November 14, 2018

(Images taken from Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc.)

Multi-level Architecture

Analog vs. Digital Logic

Digital computers process discrete information.

All information is represented by two logical values: logic $0 \rightarrow e.g.$ voltage between 0.0 and 0.5 V logic $1 \rightarrow e.g.$ voltage between 1.0 and 1.5 V

To design and analyze digital circuits we make use of *Boolean Algebra*.

Boolean Values and Operators

Boolean values $B = \{0, 1\}$ Boolean variables $x \in B$

Boolean operator			ponds to operator
$\overline{\overline{X}}$	complement (NOT)	$\neg p$	negation
$x \cdot y$	product (AND)	$p \wedge q$	conjunction
x + y	sum (OR)	$p \vee q$	disjunction

X	X
0	1
1	0

X	У	ХУ
0	0	0
0	1	0
1	0	0
1	1	1

Х	У	x + y
0	0	0
0	1	1
1	0	1
1	1	1

Derived Operators

 \overline{xy} NAND $\overline{x+y}$ NOR $x \oplus y$ XOR (exclusive or)

X	У	xy	$\overline{x+y}$	$X \oplus Y$
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

Boolean Functions

Boolean function of degree $n: f: B^n \to B$

We can describe each Boolean function by its *truth table*, for example this function $f: B^3 \to B$

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

The function f is true iff exactly one of its arguments is true.

How many distinct Boolean functions of degree n exist?

 2^{2^n}

Boolean Expressions

Boolean expression: expression using 0, 1, boolean variables and operators.

Every Boolean expression represents a Boolean function.

Example: $f(x, y) = x + \overline{y}$

X	У	f(x,y)
0	0	1
0	1	0
1	0	1
1	1	1

Conversely: can every Boolean function be written as a Boolean expression?

Deriving a Boolean Expression for a Function

Example:

X	У	f(x,y)	
0	0	1	$\overline{x}\overline{y}$
0	1	0	
1	0	1	хÿ
1	1	1	xy

This gives us $f(x, y) = \overline{x} \overline{y} + x \overline{y} + x y$

Literal: x_i or $\overline{x_i}$

Minterm: product of literals where each variable occurs

exactly once

Expression for f: sum of the minterms where f = 1

This is called the *(full) Disjunctive Normal Form* (DNF), or the *"sum of products"* representation.

Equivalence of Boolean Expressions

Two Boolean expressions that represent the same Boolean function are called *equivalent*.

Example:
$$x + \overline{y} = \overline{x} \overline{y} + x \overline{y} + x y$$

You can prove this by showing that both expressions have the same truth table.

Often more convenient: rewriting expressions using the laws of Boolean algebra.

Laws of Boolean Algebra

Name	Multiplicative form	Additive form
Complement	$\overline{\overline{x}} =$	X
Identity	$x \cdot 1 = x$	x + 0 = x
Null	$x \cdot 0 = 0$	x + 1 = 1
Idempotent	XX = X	X + X = X
Inverse	$x\overline{x}=0$	$x + \overline{x} = 1$
Commutative	xy = yx	x + y = y + x
Associative	x(yz) = (xy)z	x + (y + z) = (x + y) + z
Distributive	x(y+z) = xy + xz	x + yz = (x + y)(x + z)
Absorption	x(x+y)=x	x + xy = x
De Morgan	$\overline{xy} = \overline{x} + \overline{y}$	$\overline{x+y} = \overline{x}\overline{y}$

See also Tanenbaum, figure 3-6 (p. 156).

Rewriting Expressions (1)

Example: rewrite the following expression to (full) DNF.

$$(x+z)(\overline{x+\overline{y}}) = (x+z)(\overline{x}\cdot\overline{\overline{y}})$$
 (de Morgan)
 $= x\overline{x}y + z\overline{x}y$ (distributivity, double complement)
 $= 0 + z\overline{x}y$ (inverse, null)
 $= \overline{x}yz$ (identity, commutativity)

Rewriting Expressions (2)

Example: derive an expression for the following function, and simplify this.

Х	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$f(x, y, z) = \overline{x}y\overline{z} + x\overline{y}\overline{z} + xy\overline{z}$$
 (DNF)

$$= (\overline{x}y + x\overline{y} + xy)\overline{z}$$
 (distributivity)

$$= (\overline{x}y + x\overline{y} + (xy + xy))\overline{z}$$
 (idempotent)

$$= (\overline{x}y + xy + x\overline{y} + xy)\overline{z}$$
 (commutativity)

$$= ((\overline{x} + x)y + x(\overline{y} + y))\overline{z}$$
 (distributivity)

$$= (y + x)\overline{z}$$
 (inverse & null)

$$= y\overline{z} + x\overline{z}$$
 (distributivity)

Karnaugh Maps

Karnaugh Map is a graphical method for simplifying a Boolean expression.

Basic idea:

 Two minterms that differ in exactly one literal can be combined into a simpler term:

$$A\overline{B}CD + A\overline{B}\overline{C}D \longrightarrow A\overline{B}D$$

- Put all minterms in a table, ordered such that neighboring cells differ in exactly one literal.
- Visually locate blocks of minterms that can be combined, which are as large as possible.

Karnaugh Maps: Example

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

$$F = \overline{A}D + \overline{C}D + A\overline{B}\overline{D}$$

Karnaugh Maps: Rules

- Choose blocks to cover all the ones, but none of the zeros.
- Blocks are allowed to overlap.
- Blocks must:
 - be rectangular
 - have lengths of 1, 2 or 4
 - be as large as possible
- Use as few blocks as possible.
- Wrap around: top bottom, left right, corners

Karnaugh Maps: Example 2

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$F = \overline{B} + \overline{A}C + A\overline{C}$$

Functional Completeness

- Every Boolean function can be expressed as a sum of products of literals (DNF).
 - \rightarrow The set of operators $\{-, \cdot, +\}$ is functionally complete.
- The sets $\{\overline{\ },\cdot\}$ and $\{\overline{\ },+\}$ are also functionally complete.
- The operators NAND (\overline{xy}) and NOR $(\overline{x+y})$ are each functionally complete on their own.

Gates en Circuits

Digital Circuits

Physical implementation of digital logic:

Boolean values → signals in electronic circuit Boolean operators → gates

Completeness: every Boolean function can be expressed with the help of a complete set of operators, for example $\{-, \cdot, +\}$ or $\{NAND\}$.

Therefore: every Boolean function can be implemented as a *circuit* by connecting gates from a complete set together!

Gates

How are Gates Implemented?

XOR

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

$$A\oplus B=\overline{A}B+A\overline{B}$$

Equivalence of Circuits

$$AB + AC$$
 $AB + AC$
 $AB + AC$
 $AB + AC$

$$A(B+C)$$
 B
 C
 $B+C$

Combinational and Sequential Logic

Combinational circuit

- output of circuit only depends on input (at the current time)
- implements a Boolean function
- acyclic circuit (mostly)

Sequential circuit

- output of circuit depends on input and internal state
- implements a finite state machine
- cyclic circuit: feedback
- "circuit with memory"

Majority

Α	В	С	М
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Multiplexer: choose between signals

Circuit with data inputs D_0 en D_1 and control input S. If S=0, the signal from D_0 is passed to the output, else D_1 is.

Output
$$X = \overline{S} \cdot D_0 + S \cdot D_1$$

Multiplexer with 8 inputs

General Multiplexer

In general: a multiplexer with n control inputs selects one of the input signals D_0, \ldots, D_{2^n-1} and passes this to the output.

Decoder

The binary number on the n inputs determines which of the 2^n outputs will become active (output a "1").

Half Adder

Adding two 1-bit numbers A en B:

A 0 1 0 1
B
$$\frac{0}{00}$$
 + $\frac{0}{01}$ + $\frac{1}{01}$ + $\frac{1}{10}$ +

Sum = $A \oplus B$ Carry = AB

Full Adder

Adding 1-bit numbers with carry-in.

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sum =
$$A \oplus B \oplus C_{in}$$

Carry = $AB + (A \oplus B) \cdot C_{in}$

Hades

- Practical assignment will be done in Hades, the Hamburg Design System.
- "Framework for interactive simulation"
- Can be downloaded from https://tams.informatik.uni-hamburg.de/applets/hades/

Summary

Boolean Algebra

- Boolean functions and expressions
- Disjunctive normal form
- Laws of Boolean algebra
- Karnaugh maps
- Functional completeness

Gates and circuits

- Physical implementation of digital logic
- Combinational and sequential circuits
- Gate symbols
- Circuits: xor, majority, multiplexer, decoder, half adder, full adder.

