Nanoscale metrology with nitrogen vacancy centers in diamond

Aedan Gardill

Outline

Metrology with nitrogen vacancy centers

Electric field noise in nanodiamonds

Ultimate limits to coherence and sensitivity

Outline

Metrology with nitrogen vacancy centers

Electric field noise in nanodiamonds

Ultimate limits to coherence and sensitivity

Metrology with solid state defects

No need for trapping or cooling!

Our lab

Sample placed flush against the defect's bulk material

Often perform measurements in ambient conditions

Bulk diamonds

Nanodiamonds

<u>UW-Madison</u> Aug 18, 2020

Magnetic fields

Electric fields

Nanoscale metrology with NV centers

Goal: use NVs to measure local surface noise

- Superconducting qubits
- Quantum dots
- Other novel materials

M. Lee et al., Magnetometers - Fundamentals and Applications of Magnetism (2020)

Outline

Metrology with nitrogen vacancy centers

Electric field noise in nanodiamonds

Ultimate limits to coherence and sensitivity

NVs in Nanodiamond

Inserted in living cells

G. Kucsko *et al., "*Nanometre-scale thermometry in a living cell" Nature (2013)

Deterministically placed on surfaces

S. I. Bogdanov *et al.,* "Deterministic integration of single nitrogen-vacancy centers into nanopatch antennas" arXiv (2019)

One main obstacle...

Very poor coherence time

Optically levitated

"Researchers use laser to levitate glowing nanodiamonds in vacuum" J. Fenster, University of Rochester (2015)

Lifetime of state $m_s = 0$

Lifetime of state $m_s = +1$

Measurements of γ and Ω

Electric field noise in nanodiamonds

Outline

Metrology with nitrogen vacancy centers

Electric field noise in nanodiamonds

Ultimate limits to coherence and sensitivity

Relaxation rates of native NV in bulk diamond

State dependent relaxation in bulk diamond

M. Lee et al., Magnetometers - Fundamentals and Applications of Magnetism (2020)

NVB₁

NVA3 NVB1

NVC

NVA3

Conclusions

- Electric field noise in nanodiamonds
- Larger magnetic field mitigate electric field noise

- Phonon-limited relaxation of NVs
- Ultimate limit to NV sensitivity at room temperature

Looking forward

- Continue to investigate electric field noise in nanodiamonds
- Understand origin of phonon-limited relaxation in bulk diamond – temperature

 Nanoscale measurements on surface noise of other materials – superconducting qubits, quantum dots

Our cryostat!

Acknowledgements and funding

NDSEG

The work was supported by the grant DE-SC0020313 funded by the U.S. Department of Energy, Office of Science

Kolkowitz Lab