

تمارین

نرسم الآن جدول ال DFA :

Informatics; 19/04/2022

δ	а	b
$[q_0]$	$[q_1]$	$[q_2]$
$[q_1]$	Ø	$[q_3]$
$[q_2]$	$[q_3]$	Ø
$\overline{[q_3]}$	Ø	Ø

هذا الأوتومات يقبل لغة مكونة من ab أو ba

■ ارسم NDA للجدول التالي ثم قم بالتحويل إلى DFA.

δ	а	b
$[q_0]$	q_1	q_2
$[q_1]$	Ø	q_3
$[q_2]$	q_3	Ø
$[q_3]$	Ø	Ø

الحل:

■ ليكن لدينا أوتوماتين ال DFA التاليين المطلوب:

محتوى مجاني غير مخصص للبيع التجاري

2. ماهي حالات القبول النهائية؟

$$F = \{q_2\}: M_1$$
 من أجل $F = \{q_1, q_4\}: M_2$ من أجل

 M_1, M_2 . ماهي الحالة الابتدائية لـ M_1, M_2

$$.q_1$$
 من أجل M_1 : الحالة الابتدائية هي

$$.q_1$$
 من أجل M_2 : الحالة الابتدائية هي M_2

$$M_1 = q_1, q_2, q_3, q_1, q_1;$$

 $M_2 = q_1, q_1, q_1, q_2, q_4;$

4. ما هي الآلة التي تقبل السلسلة 'aabb؛

في الآلة M_1 :السلسلة غير مقبولة، أما في الآلة M_2 : فهي مقبولة.

5. هل اللغة arepsilon'مقبولة في إحدى الآلتين ؟

في الآلة M_1 : غير مقبولة.

في الآلة M_2 : مقبولة لأن الحالة الابتدائية هي حالة نهائية، فتكون السلسلة الفارغة مقبولة.

$$\begin{split} M_1 &= (\{q_1q_2,q_3\},\{a,b\},\delta_1,q_1,\{q_2\}) \\ M_2 &= (\{q_1,q_2,q_3,q_4\},\{a,b\},\delta_2,q_1,\{q_1,q_4\}) \end{split}$$

δ_1	а	b
q_1	q_2	q_1
q_2	q_3	q_3
q_3	q_2	q_1

δ_2	а	b
q_1	q_1	q_2
q_2	q_3	q_4
q_3	q_2	q_1
q_4	q_3	q_4

Minimization of DFA

= هي عملية تقليل الحالات لأوتومات معين إلى الحد الأدنى، وذلك من خلال دمج الحالات إذا كان:

:. ليكن لدينا الحالة q_1,q_2 و وجد انتقال من $q_2\leftarrow q_1$ ومن $q_2\leftarrow q_1$ عند نفس الرمز نقوم بالدمج:

δ	0
q_1	q_2
q_2	q_1

:. إذا وجد انتقال من q_1 ومن q_2 إلى نفس الحالة، ولتكن q_3 عندها نقوم بالدمج:

δ	0
q_1	q_3
q_2	q_3

$$\rightarrow$$

δ	0
q_1q_2	q_3

تمرين: ليكن لدينا DFA التالي، والمطلوب عمل minimization له.

الحل: نقوم بتجاهل q_2,q_4 لأنها حالات unreachable

δ_{\cdot}	0	1
q_0	q_1	q_3
q_1	q_0	q_3
q_3	q_5	q_5
q_5	q_5	q_5

q_0 0 0 0	q_1 0	q_2 q_2	\rightarrow q_4
	1	q_3	0,1
		0,1	0,1

0,1	δ_{\cdot}	0	1
$\longrightarrow q_0q_1$ $\xrightarrow{1}$ q_3q_5	q_0q_1	q_0q_1	$q_{3}q_{5}$
	$q_{3}q_{5}$	$q_{3}q_{5}$	$q_{3}q_{5}$

ملاحظة1: نقوم بحذف حالات dead state / unreachable قبل البدء بالحل. ملاحظة2: نقوم بدمج الحالات النهائية مع بعضها أو غير النهائية مع بعضها، أيّ لا يمكن دمج حالة نهائية مع حالة غير نهائية معاً.

■ تمرين: لدينا DFA التالي، والمطلوب عمل minimization له.

الحل:

unreachable نقوم بالتخلص من q_6,q_7 لأنها حالات فيصبح شكل الأوتومات بعد الاختزال كالتالي:

نكتب جدول الانتقالات:

نقوم بدمج q_3,q_4 معاً لأنه يوجد انتقال إلى نفس الحالة، ولكن لا يمكن دمج q_5 معهما لأنها حالة نهائية و q_3,q_4 حالات غير نهائية. ونقوم بدمج q_1,q_2 معاً لأنه يوجد انتقال منهما نفس الحالة (و هي الحالة q_3,q_4 بعد الدمج).

	0		1		
	a.	0			
	q_1	- [q_3	0,1	
0					0,1
\rightarrow (q_0)		1		(q_5)	
	1/	1			
1		0	\frown	0,1	
	q_2 –	→ (q_4		
	K	1			
	0	/1			
		q_7			
	δ		Λ		1

 q_6

δ	0	1		
q_0	q_1	q_2		
q_1	q_3	q_4		
q_2	q_4	q_3		
q_3	q_5	q_5		
q_4	q_5	q_5		
q_5	q_5	q_5		

δ	0	1
q_0	q_1	q_2
q_1	$q_{3}q_{4}$	q_3q_4
q_2	$q_{3}q_{4}$	q_3q_4
q_3q_4	q_5	q_5
q_5	q_5	q_5

	δ	0	1
•	q_0	q_1q_2	q_1q_2
•	q_1q_2	q_3q_4	q_3q_4
	$q_{3}q_{4}$	q_5	q_5
	q_5	q_5	q_5

■ تمرين: لدينا DFA التالي، والمطلوب عمل minimization له.

		_
δ	0	1
q_0	q_3	q_1
q_1	q_2	q_5
q_2	q_2	q_5
q_3	q_0	q_4
q_4	q_2	q_5
q_5	q_5	q_5

δ	0	1
q_0	q_3	$q_{1}q_{2}q_{4}$
$q_{1}q_{2}q_{4}$	$q_1q_2q_4$	q_5
q_3	q_0	$q_1 q_2 q_4$
q_5	q_5	q_5

δ	0	1
q_0q_3	$q_{0}q_{3}$	$q_{1}q_{2}q_{4}$
$q_1q_2q_4$	$q_1q_2q_4$	q_5
q_5	q_5	q_5

فكرة ال minimization مشروحة بشكل كامل و مُفصّل في المحاضرة <mark>الخامسة نظري</mark> و ضمن هذه المحاضرة قد تم شرح الفكرة بشكل بسيط و حل بعض التمارين عليها.

انتهت المحاضرة