Week 13: MST (Prim) and SSSP (Dijkstra)

Agenda:

- ► Minimum Spanning Trees (Cont'd): Prim's Algorithm
- ► Single-Source Shortest Paths: Dijkstra's Algorithm

Reading:

- ► CLRS: 624-642 (covers Prim's)
- ► CLRS: 643-664 (covers Dijkstra's)

Recall: Minimum Spanning Tree (MST) problem

- ► Input: edge-weighted undirected graph
- ► Notions:
 - ightharpoonup subgraph: G' = (V, E'), where $E' \subset E$, forest = acyclic graph, trees
 - spanning subgraph: subgraph including all the vertices
 - \blacktriangleright spanning tree: spanning subgraph which is a tree acyclic connected must have exactly n-1 edges
 - e.g., BFS/DFS-tree is a spanning tree of the graph
 - minimum spanning tree: sum of weights on tree edges is minimal
- ► The MST Problem: Find a minimum spanning tree (MST) for the input graph.
 - There could be more than one ..., e.g., all weights are the same, both BFS/DFS produce a MST ...
- ► Important for:
 - Min-cost set of edges that we need so that all vertices can reach one another
 - Learning value: a canonical example for greedy algorithms.
 - ▶ Useful info derived from the MST algorithms...
- ► The Minimum Spanning Forest problem: If the given graph is not necessarily connected: find MST for each CC.

Recall: Greedy algorithms and MST problem

- Greedy algorithms:
 - greedy each step makes the best choice (locally minimum)
 - and don't look back
 - Optimal substructure: an optimal solution to the original problem contains within it optimal solutions to subproblems.

T is MST for $G=(V,E)\Rightarrow$ for any $U\subset V$ where T[U] is connected, T[U] is a min-spanning tree.

- ► The general MST algorithm outline:
 - 1. A is a set of "safe" edges: they are contained in some MST T
 - 2. $A = \emptyset$ initially
 - 3. while (|A| < n-1) do: find a safe edge e = (u,v) and set $A = A \cup \{e\}$.

What happens when we halt?

- ► Two greedy solutions
 - Prim's Algorithm (Actually: Prim + Dijkstra + Boruvka) Grow T vertex-wise: A is always a MST on some $S \subset V$
 - Kruskal's (Actually: Kruskal + Boruvka) Grow T edge-wise: A is always a minimal set of edges without a cycle (forest)

Prim's algorithm for the MST problem:

- ► Input: an edge-weighted (simple, undirected, connected) graph (positive weights)
- Output: an MST
- ► Idea:
 - Suppose we have already an MST A spanning subset S of vertices (Initially: S =a single vertex, $A = \emptyset$)
 - ▶ Grow A to span one more vertex $v \in \overline{S} = V \setminus S$ by adding a single edge (u, v) for some $u \in S$ and $v \notin S$.
 - Which edge to pick? Greedy! min-weight edge from all possible edges crossing the (S, \bar{S}) cut.
- First sketch:

$$\begin{array}{ll} \operatorname{procedure\ primMST}(G) & **G = \{V, E\} \\ \hline S = \{s\} & **for\ any\ start\ vertex\ s \\ A = \emptyset \\ \text{while\ } (|S| < |V|)\ \operatorname{do} \\ & \text{find\ a\ minimum\ weight\ edge}\ e = (u,v)\colon\ u \in S\ \operatorname{and}\ v \notin S \\ S = S \cup \{v\} \\ & A = A \cup \{e\} \\ \text{return\ } A \\ \end{array}$$

Prim's algorithm for the MST problem — an example:

► Input graph *G*:

ightharpoonup primMST(G, w, 1) returns:

- First we prove correctness of Prim's algorithm
- ► Then we improve the naïve algorithm to reduce runtime Not surprisingly, finding the min-edge quickly is going to be useful (heaps!)

Prim's algorithm for the MST problem — correctness:

- In the proof we show the substitution property.
- At any point, suppose $A \subset T$ for some MST T, and we show that there exists a MST T' that contains $A \cup \{e\}$.
- ▶ If $e \in T$, we are done.
- ▶ Since $u \in S$ whereas $v \notin S$, so on the unique $u \to v$ path there has to be some edge e' = (u', v') in T that crosses the (S, \bar{S}) -cut. Clearly, $w(e) \leq w(e')$.
- ▶ We argue $T' = T \setminus \{e'\} \cup \{e\}$ is spanning V; and as it has n-1 edge it has to a spanning tree, with cost $\leq w(T)$.
- In fact, it is enough to argue u' and v' remain connected: Any $x \to y$ path on T either goes through e' or not. In the latter case, the $x \to y$ path remains in the T'; in the former case — use the new $u' \to v'$ path to connect x with y.
- So why do u' and v' remain connected? Well, in T there's a $u \to v$ path that e' was a part of. So u is connected to u' and v' is connected to v. So, $u' \to u, v \to v'$ is a path connected u' and v' in T'.

Prim's algorithm for the MST problem — faster implementation:

- Example: input graph G:
- 1 2 2 8 13 5
- ightharpoonup primMST(G, w, 1) returns:
- ▶ primMST(G, w, 1): an intermediate tree Already picked black edges spanning 1,5,3; what are the candidate edges?

7/18

Prim's algorithm for the MST problem — faster implementation:

► Idea:

าง

For each node $\notin S$ — keep track of the min edge that connects it to S.

Update the information only for the neighbors of the node that is currently being added to S.

Uses a priority queue Q on \bar{S} (so S is implicit — all the nodes **not** in Q)

Pseudocode:

 $\begin{array}{ll} \operatorname{prodedure\ primMST}(G) & **G = (V,E) \\ \hline \text{for\ each\ } v \in V(G) \text{\ do} \\ \hline v.key = \infty \\ v.predec = \text{NIL} \\ s.key = 0 & **for\ some\ arbitrary\ start\ vertex\ s} \\ \operatorname{Initialize\ a\ min-priority-queue\ } Q \text{\ on\ } V \text{\ using\ } key \\ \text{while\ } (Q \neq \emptyset) \text{\ do} \\ u = \operatorname{ExtractMin}(Q) & **r\ dequeued\ first\ for each\ v\ neighbor\ of\ u\ do \\ \text{\ if\ } (v \in Q \text{\ and\ } w(u,v) < v.key) \text{\ then\ } \\ v.predec = u \end{array}$

decrease-key(Q, v, w(u, v)) **v.key is now w(u, v)

maintain \$.Q Q on V,s where V. key = min { w (v,v) | ues}

Week 13: MST (Prim) and SSSP (Dijkstra)

hvanant

Prim's algorithm for the MST problem — faster implementation:

- Analysis of the improved algorithm:
 - \blacktriangleright correctness (almost done need to prove that $\mathsf{ExtractMin}(Q)$ does extract the minimum weight edge that crosses the $(Q,\bar{Q})\text{-cut})$
 - running time: $\Theta\Big(n+\sum_{u\in V}\Big((1+deg(u))\cdot\log n\Big)\Big)$ -so: $\Theta((n+m)\log n)=\Theta(m\log(n))$ adjacency list graph representation for a connected graph $m\geq n-1$.
 -or $\Theta(n^2+m\log(n))$ in the adjacency matrix representation.
- Using more sophisticated data-structure (Fibonacci heap), runtime of Prim is reduced to $O(n \log(n) + m)$.

What does Prim Teach Us?

- ► Theorem: Let T be a spanning tree of G.
 Then T is a MST iff each edge is the min-edge crossing the cut it induces.
- ▶ I.e., take T, and some $e \in T$. Removing e from T disconnects T and creates two components $C_1, C_2 = V \setminus C_1$.

Then the claim is that e is a minimal edge out of all the edges the cross the (C_1, C_2) -cut.

Moreover, this is true for all edges $e \in T$.

- min-weight of edge crossing $(\{1,5,6\},\{2,3,4,7\})$ -cut = 8 min-weight of edge crossing $(\{1,2,3,5,6\},\{4,7\})$ -cut = 13
- ▶ Proof. \Rightarrow If T is a MST, pick any e. For contradiction, assume e isn't a minimum edge crossing the cut it induces replace e with an edge of strictly smaller weight. The resulting graph is a spanning tree (has n-1 edges and spans V) with cost strictly smaller than T. Contradiction.
- \blacktriangleright \Leftarrow If all edges in T satisfy this property how do we prove it is a MST?
- ▶ Use Prim!

What does Prim Teach Us?

▶ Theorem: Let T be a spanning tree of G.

Then T is a MST iff each edge is the min-edge crossing the cut it induces.

- ightharpoonup = If all edges in T satisfy this property how do we prove it is a MST?
- ► Use Prim!

Claim: there's an instantiation of Prim that builds T, starting from s. In other words: we can run Prim and maintain the invariant that T[S] is a single connected component T[S] is a spanning tree of T[S].

- ▶ Proof by induction on S. Clearly true for |S| = 1.
- ► The induction step:
- Suppose in the transition from S to $S \cup \{v\}$ Prim picks an edge e = (u, v) of weight w. Let $e_1 = (a_1, b_1), e_2 = (a_2, b_2), ..., e_k = (a_k, b_k)$ be all the edges in T with one vertex (a_i) in S and one vertex (b_i) in S.
 - edges in T with one vertex (a_i) in S and one vertex (b_i) in S.

 Since Prim picks the min-edge connecting S with \bar{S} , we have $w(e) < w(e_1), w(e) < w(e_2), ..., w(e) < w(e_k)$.
 - ASOC $w(e) < \min\{\overline{w}(e_1), w(e_2), ..., w(e_k)\}$ the weight of the edge chose by Prim is strictly smaller than all of the edges in T that leave S.
 - Look at the path v → u on T. It starts at S̄ and edges at S, so it must use some edge e_j. So the removal of e_j separates u from v.
 Hence e_i isn't the min-edge that separates the cut (e also crosses the same)
 - Hence e_j isn't the min-edge that separates the cut (e also crosses the same cut). Contradiction!
 - Thus $w(e) = \min\{w(e_1), ... w(e_k)\} = w(e_i)$.
 - Instantiate the priority-queue of Prim to pick b_j rather than v (both have the same key, so break ties in favor of b_j rather than v).

11/18

Shortest path problems:

- ▶ BFS recall: outputs every s-to-v shortest path
 - ▶ s start vertex
 - \triangleright v reachable vertex from s (residing in a same connected component)
 - ► shortest # edges
 - running time $\Theta(n+m)$
- ▶ But what if the edges of the graph have weights?
 In this case, shortest-path in terms of #edges isn't shortest weighted path.

E.g. shortest weighted-path distance between 1 and 2 is 8.

- The weight of a path = sum of weights on edges on path.
 - Note: if there is no path between two nodes, the distance is set to ∞ ...
- ▶ The Shortest Path problem: find the shortest path in an edge-weighted graph connecting s and t.
- Turns out, shortest-path has a few properties that allow us to infer in the process all shortest-paths from a node s to any other node in the graph. So we study the Single-Source Shortest Path (SSSP) problem: Given an edge-weighted graph G and a source s, find out for each vertex $v \in V(G)$ a shortest paths from s to v.
- Variants:
 - edge weights: non-negative vs. arbitrary weights

Shortest Paths

- A shortest path from u to v: out of all $u \to v$ paths, it is a path of minimal weight. (Can be more than one.)
- But a shortest path must satisfy subpath optimality: if $(u_0, u_1, ..., \underbrace{u_i, ..., u_j}_{\text{optimal}}, ..., u_k)$ is a shortest $u_0 \to u_k$ path, then $(u_i, u_{i+1}, ..., u_j)$ is a shortest $u_i \to u_j$ path.
- \blacktriangleright we denote d(u,v) as the shortest path length from u to v
- ▶ Shortest paths remain well-defined if there are negative weight directed

- edges... (why not undirected?)
- ...as long as there isn't a negative weight path from a node to itself.
- ► So we assume **no negative cycles**.
- ► Shortest path distances *d* is a metric:
 - For any u, we have d(u, u) = 0
 - For any u, v, we have d(u, v) = d(v, u) (if G is undirected)
 - For any u, v, w, we have $d(u, w) \leq d(u, v) + d(v, w)$.

Common Outline of Single Source Shortest Path Algorithms

- Our shortest paths algorithm starts at a source s.
- ▶ It maintains a *dist* attribute for each vertex that will serve as the estimation of the shortest-path distance.
- During the execution of the algorithm, we always have $u.dist \ge d(s, u)$.
- ▶ We start with init(): set $s.dist \leftarrow 0$ and $u.dist \leftarrow \infty$ for any $u \neq s$.
- We only update the dist attribute by Relaxing
- procedure $\operatorname{relax}(u,v)$ **u,v two adjacent nodes if (v.dist > u.dist + w(u,v)) then $v.dist \leftarrow u.dist + w(u,v)$ where should be a small plane.
- Claim: any algorithm that starts with init() and only updates dist using relax() must always satisfy $v.dist \ge d(s, v)$ for any v.
- Proof: by induction on the number of times relax() is invoked. Base case: invoked 0 times claim holds through init(). Induction step: If relax(u,v) doesn't change v.dist we are done. Otherwise, we now have
- $v.dist = u.dist + w(u, v) \ge d(s, u) + w(u, v) \ge d(s, v)$
- Corollary: Since relax() cannot increases v.dist, so if and when we set v.dist = d(s, v) we keep v.dist unchanged.

d(s,v) & d(s,v)+w(wv)

Si V-d+w(u,v)

Dijkstra's SSSP algorithm:

- For graphs with non-negative weights (both directed and undirected)
- ► Idea in Dijkstra's algorithm:
 - Maintains a set S of vertices for which we know the shortest path. Initially, $S = \{s\}$, at the end: S = V.
 - Which vertex from $\bar{S} = V \setminus S$ should we pick?
 - Dijsktra: the greedy solution the node in \bar{S} with minimum dist.
- procedure dijkstra(G, w, s) **G = (V, E), w =weights foreach v do **initialization
 - $v.dist \leftarrow \infty$
 - $v.predec \leftarrow \texttt{NIL}$
 - $s.dist \leftarrow 0$
 - Build Min-Priority-Queue Q on all nodes, key = dist** nodes in Q are nodes we are not yet sure about
 - ** namely Q holds nodes in $ar{S}$
 - while ($Q \neq \emptyset$) do
 - $u \leftarrow \texttt{ExtractMin}(Q) \qquad \qquad **s \text{ dequeued first}$
 - foreach v neighbor of u do
 - if (v.dist > u.dist + w(u, v)) then $v.dist \leftarrow u.dist + w(u, v)$ **a Relax() call
 - $v.predec \leftarrow u$
 - ${\tt decrease-key}(Q, v, v.dist)$

Dijkstra's SSSP algorithm — an example:

► Input graph *G*:

ightharpoonup dijkstra(G,1):

ightharpoonup dijkstra(G,1) trace:

$$egin{array}{c|c} v & 1 \\ v.dist/v.predec & 0/N. \end{array}$$

2 dequeued

6 dequeued

- 0/NIL
- - 1 dequeued 0/NIL
 - 9/10/NIL 5 dequeued
 - 9/10/NIL9/1

 ∞/\mathtt{NIL}

- 3 dequeued 0/NIL9/1
- 0/NIL9/17 dequeued 0/NIL 9/1
- 10/225/310/225/3

23/7

 ∞/\mathtt{NIL}

 ∞/\mathtt{NIL}

11/5

10/2

10/2

 ∞/\mathtt{NIL} ∞/\mathtt{NIL}

 ∞/NIL 3/1

 ∞/NIL 3/1

 ∞/NIL 3/1

3/1

3/1

3/1

- 12/1
- 12/112/1

 ∞/\mathtt{NIL}

12/1

12/1

12/1

 ∞/\mathtt{NIL}

 ∞/\mathtt{NIL}

 ∞/\mathtt{NIL}

19/2

19/2

19/2

19/2

(A)(I

16/18

Dijkstra's SSSP algorithm — Correctness:

- LI: "at the start of each while-loop iteration u.dist = d(s, u) for all $u \notin Q$."
- Initialization: The statement is vacuously true when Q holds all nodes. The statement is clearly true for the first vertex taken out of Q: the source s.
- ightharpoonup Termination: At the end of the while-loop, Q is empty, so we have found all shortest-paths distances from s.
- Maintenance:
 - ► Suppose LI holds at the beginning of the iteration. Denote *u* as the node Extract-Min(*Q*) takes out.
 - ASOC d(s, u) < u.dist.
 - Look at a shortest-path $s \to u$. $s \notin Q$ but $u \in Q$. Let (x,y) be the first edge such that $x \notin Q$ but $y \in Q$. (y might be u, x might be s.)
 - First, $d(s,y) \leq d(s,u)$ (subpath optimality + non negative weights)
 - Second, when we took x outof Q we made sure $y.dist \le x.dist + w(x,y)$
 - Since $x \notin Q$ in the beginning of the iteration, then x.dist = d(s, x).
 - Thus $y.dist \le d(s,x) + w(x,y) = d(s,y)$ (Again, subpath optimality)
 - Altogether: $y.dist = d(s, y) \le d(s, u) < u.dist$
 - If y = u immediate contradiction. If $y \neq u$ — then Extract-Min(Q) should return y not u. Contradiction in any case.

Dijkstra's SSSP algorithm — analysis:

- ightharpoonup |V| = n and |E| = m
- ► Running time:
 - ▶ init()— takes O(n) time.
 - Initializing the priority-queue O(n)
 - For each node, ExtractMin takes $O(\log(n))$ time.
 - ... and we search for all neighbors (O(deg(v)) in the adjacency list model, O(n) in the adjacency matrix model)
 - For every edge, we examine the edge atmost twice (each time we take its endpoints from Q) and invoke relax() at most once, and decrease the key at most once.
 - So $O(\log(n))$ work per edge.
- ► In the adjacency-list model

$$O(n) + O(n) + O(n \log(n)) + O(\sum_{v} deg(v)) + O(m \log(n)) = O((n+m) \log(n))$$

► In the adjacency-matrix model

$$O(n) + O(n) + O(n(\log(n) + n)) + O(m\log(n)) = O(n^2 + m\log(n))$$

There exists a more refined implementation of the PQ (with Fibonacci heaps) that gives runtime $O(n \log(n) + m)$

Week 14: SSSP and APSP

Agenda:

- ▶ Bellman-Ford
- ► Floyd-Warshall

Reading:

► Textbook pages 643-663, 684-699

Bellman-Ford's SSSP algorithm for the general case:

- ► General case edge weights **could be negative**
- Output:

Case 1. if there is a negative weight cycle, report it

Case 2. otherwise report all the dist[u] values and the associated paths

- An key idea in the algorithm:

 If there is no negative weight cycle reachable from s,
 - \rightarrow every s-to-u shortest path contains at most n-1 edges;
 - $\rightarrow \exists u$ such that s-to-u shortest path contains 1 edge;
 - $\rightarrow \dots$
 - \rightarrow at termination: for every directed edge (u,v) there must be $d[v] \leq d[u] + w(u,v)$.
 - $\rightarrow \rightarrow d[v]$ can be reduced n-1 times in order to reach value dist[v], but no more.
- ightharpoonup procedure relax (u,v)
 - if d[v] > d[u] + w(u, v) then $d[v] \leftarrow d[u] + w(u, v)$ $p[v] \leftarrow u$

▶ procedure bellman-ford(G, w, s) **G = (V, E)

```
\begin{aligned} &\text{for each } v \in V(G) \text{ do} &\text{**initialization} \\ &d[v] \leftarrow \infty \\ &p[v] \leftarrow \text{NIL} \\ &d[s] \leftarrow 0 \\ &\text{for } i \leftarrow 1 \text{ to } n-1 &\text{**}n = |V(G)| \\ &\text{for each edge } (u,v) \in E(G) \text{ do} \\ &\text{relax } (u,v) &\text{**update } d[v] \\ &\text{for each edge } (u,v) \in E(G) \text{ do} \\ &\text{if } d[u] + w(u,v) < d[v] \text{ then **there is a negative cycle return FALSE} \\ &\text{return TRUE} \end{aligned}
```

- ▶ Define $\delta(s, v)$: length of the shrotest path from s to v
- ▶ Lemma 1: For all $v \in V$, at every iteration and over any sequence of relaxactions we have $d[v] \geq \delta(s,v)$ and once d[v] achieves value $\delta(s,v)$ it never changes.

lacktriangle Proof: By induction on the number of relaxation steps. Base case i=0 is trivial.

For I.S. consider the relaxation of an edge (u, v) and assume d[v] changes:

$$d[v] = d[u] + w(u, v)$$

$$\geq \delta(s, u) + w(u, v)$$

$$\geq \delta(s, v)$$

Also note that d[v] can only increase during a relax operation and since it is $\geq \delta(s,v)$ it doesn't change once it reaches this value.

Lemma 2: Suppose that G has no negative cycle reachable from s. Then after n-1 iterations $d[v] = \delta(s,v)$ for all $v \in V$.

Proof: Consider a vertex $v \in V$ and assumr $s = v_0, v_1, v_2, \dots, v_k = v$ is a shortest path from s to v.

We prove by induction on i that after iteration $i \geq 0$: $d[v_i] = \delta(s, v_i)$.

Base: i=0 is trivial

I.S.: Suppose that $d[v_{i-1}] = \delta(s,v_{i-1})$ and consider iteration i when we relax (v_{i-1},v_i) . Then it can be seen that $d[v_i] = d[v_{i-1}] + w(v_{i-1},v_i) = \delta(s,v_{i-1}) + w(v_{i-1},v_i) = \delta(s,v_i)$.

- ► To complete the proof of correctness, we show that if there is a negative cycle then the algorithm detects it.
- **>** suppose there is a negative cycle $c: v_0, v_1, v_2, \ldots, v_k = v_0$:

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$$

By way of contradiction suppose the algorithm returns true, i.e. for all $1 \le i \le k$: $d[v_i] \le d[v_{i-1} + w(v_{i-1}, v_i)]$. Thus:

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} d[v_{i-1} + \sum_{i=1}^{k} w(v_{i-1}, v_i)]$$

but $\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}]$ since each vertex of the cycle appears exactly once in each sum. Thus $0 < \sum_{i=1}^k w(v_{i-1}, v_i)$ which contradicts the assumption.

Floyd-Warshall's algorithm for All-Pairs-Shortest path:

- General case (weights can be negative but no negative cycle);
- lackbox Output: shortest path between "every" pair u,v of vertices.
- ▶ Idea: Use dynamic programming. Define d[i,j,k] to be the length of shortest path from i to j for which all intermediate vertices are in $\{1,\ldots,k\}$, for every $1 \leq i,j \leq n$ and 0 < k < n.
- ▶ When $k = 0 \Longrightarrow$ no intermediate vertex, so: d[i, j, 0] = w(i, j).
- For general k > 1:
 - If the path does not contain k, inter. vertices only from $\{1, \ldots, k-1\}$: d[i, j, k-1].
 - If the path contains k, it has two parts: one goes from i to k with intermediate only from $\{1, \ldots, k-1\}$, followed by a path from k to j using only from $\{1, \ldots, k-1\}$: d[i, k, k-1] + d[k, j, k-1].
- Recurrence:

$$d[i, j, k] = \min \begin{cases} w(i, j) & k = 0 \\ d[i, k, k - 1] + d[k, j, k - 1] & k \ge 1 \end{cases}$$

ightharpoonup We compute the table bottom-up, starting from smaller values of k to larger values.

Floyd-Warshall's algorithm:

-Pseudocode

```
procedure Floyd-Warshall(G)
for i \leftarrow 1 to n do
   for j \leftarrow 1 to n do
       d[i, j, 0] = w(i, j)
       b[i,j] = 0 ** b[i,j] keeps the break point vertex
for k \longleftarrow 1 to n do
   for i \leftarrow 1 to n do
       for i \leftarrow 1 to n do
           if d[i, k, k-1] + d[k, j, k-1] < d[i, j, k-1] then
              d[i, j, k] = d[i, k, k - 1] + d[k, j, k - 1]
              b[i,j] = k
           else
              d[i, j, k] = d[i, j, k - 1]
```

Floyd-Warshall's algorithm:

ightharpoonup To print the actual path between i and j:

▶ Running time: $\Theta(n^3)$, better than n run of Dijkstra (one for every vertex as a source).

