## 碩士學位論文

6

# The Measurement and Control of Stewart Platform applied to the Tele-operated Vehicle System by forward kinematics

國民大學校 自動車專門大學院

李 吉 營

## 碩士學位論文

6

# The Measurement and Control of Stewart Platform applied to the Tele-operated Vehicle System by forward kinematics

指導教授 金 廷 河

論文 碩士學位 請求論文 提出 .

2001年 12月

國民大學校 自動車工學專門大學院 李 吉 營 2001

李 吉 營 碩士學位 請求論文 認准 ...

2001年 12月3日

 審查委員長
 李
 雲
 成
 印

 審查
 委員
 金
 贊
 默
 印

 審查
 委員
 金
 廷
 河
 印

國民大學校 自動車工學專門大學院 電子制御

| Nomenclature                               |
|--------------------------------------------|
| List of Figures                            |
| List of Tables                             |
| 1. Introduction                            |
| 1.1 Research Background 8                  |
| 1.2 Research Purpose & Contents            |
|                                            |
| 2. System Configuration                    |
| 2.1 Master System                          |
| 2.2 Slave System                           |
|                                            |
| 3. Kinematics Analysis of Stewart Platform |
| 3.1 Inverse Kinematics                     |
| 3.2 Forward Kinematics                     |
| 3.2.1 Forward Kinematics Analysis          |
| 3.2.2 Newton-Raphson Method                |
| 3.3 Dynamics Analysis                      |
|                                            |

| 3.3.1 Newton-Euler Formulation                          | 24 |
|---------------------------------------------------------|----|
| 3.3.2 Dynamics Analysis of Stewart Platform             | 25 |
| 3.3.3 Dynamics of Limbs                                 | 32 |
| 3.3.4 Dynamics of Moving Platform                       | 34 |
| 3.3.5 Actuator and Ground Reaction Force                | 36 |
|                                                         |    |
| 4. Measurement and Control of Stewart Platform          | 37 |
| 4.1 Measurement of Stewart Platform                     | 37 |
| 4.2 Measurement of Stewart Platform Forward Kinematics  | 39 |
| 4.3 Performance Analysis of Measurement Platform System | 40 |
| 4.3.1 Hysteresis & Dead Band                            | 40 |
| 4.3.2 Test of Dynamic Property                          | 41 |
| 4.4 Control of Stewart Platform                         | 43 |
| 4.5 Input Data of Stewart Platform (1/2Car Model)       | 46 |
|                                                         |    |
| 5. Analysis of Test and Result                          | 48 |
| 5.1 Y-Translation, Roll, Circle Motion Test             | 48 |
|                                                         |    |
| 6. Conclusion                                           | 60 |
| Appendix 1                                              | 62 |

| Reference | · | <br> | <br> | ٠. | <br> | <br>٠. | ٠. | <br>٠. | • • | <br>٠. | ٠. |      |  | <br> |  | <br>٠. | <br> | <br> | 64 | 1 |
|-----------|---|------|------|----|------|--------|----|--------|-----|--------|----|------|--|------|--|--------|------|------|----|---|
| Abstract  |   | <br> | <br> |    | <br> | <br>   |    | <br>   |     | <br>   |    |      |  | <br> |  | <br>   | <br> | <br> | 60 | - |
|           |   | <br> | <br> |    | <br> | <br>   |    | <br>   |     | <br>   |    | <br> |  | <br> |  | <br>   | <br> | <br> | 68 | ĉ |

(Master System) (Slave System) 가 가 6 linear potentiometer 2 prototype AC Servo Motor 가 1/2 Car Roll, Pitch, Vertical Roll, Pitch, Vertical 2 6

1

6

Newton-Raphson

### NOMENCLATURE

| $\boldsymbol{A}$ | fixed frame                                                                   |
|------------------|-------------------------------------------------------------------------------|
| B                | moving link frame                                                             |
| $g_c$            | gravitational constant                                                        |
| $h_i^A$          | angular momentum of limb $i$ taken about point $A_i$                          |
| $^{i}h_{i}^{A}$  | $h_i^A$ expressed in the <i>i</i> th limb frame                               |
| $h_{ji}^C$       | angular momentum of link $j$ of the $i$ th limb taken about the center of     |
|                  | mass of link $j$                                                              |
| I                | identity matrix                                                               |
| $I_{i}$          | inertia matrix of link $i$ taken about the center of mass and expressed in a  |
|                  | fixed frame $A$                                                               |
| $oldsymbol{J}_p$ | Jacobian matrix of a moving platform                                          |
| $n_p$            | resulting moment exerted at the center of mass a moving platform              |
| ${}^{B}n_{p}$    | $n_p$ expressed in a moving frame $B$                                         |
| $p_x, p_y, p_z$  | x, $y$ , and $z$ coordinates of $p$                                           |
| $p_u, p_v, p_w$  | u, v and $w$ coordinates of $p$                                               |
| $^{A}P$          | position vector of the center of mass of a moving platform with respect       |
|                  | to a fixed frame $A$                                                          |
| $^{B}P$          | position vector of the center of a point $P$ with respect to a fixed          |
|                  | frame $B$                                                                     |
| $^{A}R_{B}$      | $3\times3$ rotation matrix that describes the orientation of frame $B$ with   |
|                  | respect to frame $A$                                                          |
| ${}^{B}R_{A}$    | inverse transformation of ${}^{A}R_{B}$ , ${}^{B}R_{A} = {}^{A}R_{B}^{-1}$    |
| $r_{ci}$         | position vector of the center of mass of link $i$ relative to the $i$ th link |
|                  | frame, expressed in a fixed frame.                                            |

 $u_x, u_y, u_z$  x, y, and z components of **u** 

**u** unit vector pointing along the *u*-axis of a moving frame

 $\mathbf{v}$  unit vector pointing along the v-axis of a moving frame

 $V_p$  velocity of the center of mass of a moving platform relative to a fixed

frame

v<sub>n</sub> acceleration of the center of mass of a moving platform relative to a

fixed frame

 $W_x, W_y, W_z$  x, y, and z components of **w** 

**w** unit vector pointing along the w-axis of a moving frame

 $\mathbf{W}_{x}$ ,  $\mathbf{W}_{y}$ ,  $\mathbf{W}_{z}$  x, y, and z components of  $\mathbf{W}_{i}$ 

**W** angular velocity of a rigid body

 $W_p$  angular velocity of moving platform

 $\mathbf{W}_{p}$  angular acceleration of moving platform

## LIST OF FIGURES

| [Fig.1.1]  |                                             | 11 |
|------------|---------------------------------------------|----|
| [Fig.2.1]  |                                             | 11 |
| [Fig.2.2]  | 6                                           | 11 |
| [Fig.2.3]  |                                             | 16 |
| [Fig.2.4]  |                                             | 19 |
| [Fig.2.5]  |                                             | 20 |
| [Fig.2.6]  |                                             | 21 |
| [Fig.3.1]  | The Coordinate of Stewart Platform          | 22 |
| [Fig.3.2]  | The Coordinate of Stewart Platform Dynamics | 26 |
| [Fig.3.3]  | Euler Angle of Limb                         | 28 |
| [Fig.3.4]  | Free Body Diagram of a Typical Limb         | 30 |
| [Fig.4.1]  |                                             | 38 |
| [Fig.4.2]  |                                             | 38 |
| [Fig.4.3]  |                                             | 38 |
| [Fig.4.4]  |                                             | 41 |
| [Fig.4.5]  | Hysteresis Dead Band                        | 42 |
| [Fig.4.6]  | Dead Band가                                  | 43 |
| [Fig.4.7]  | 가                                           | 44 |
| [Fig.4.8]  | PID (With Anti-Windup)                      | 45 |
| [Fig.4.9]  |                                             | 46 |
| [Fig.4.10] |                                             | 46 |

| [Fig.4.11] Gai      | n            |      |         | 47         |
|---------------------|--------------|------|---------|------------|
| [Fig.4.14] Half Car | r Model      |      |         | 47         |
| [Fig.4.15] Half Car | Model Simula | tion |         | 48         |
| [Fig.4.16] Dynamic  | cs Analysis  |      |         | 48         |
| [ Fig.5.1] Encoder  | Feedback     | Υ-   |         |            |
|                     |              |      |         | 50         |
| [ Fig.5.2] Encoder  |              |      | Encoder |            |
| [ Fig.5.3]          | Feedback     |      |         | 50         |
| _                   |              |      |         | 51         |
| [ Fig.5.4]          | Feedback     |      | Encoder |            |
|                     |              |      |         | 51         |
| [ Fig.5.5] Encoder  | Feedback     | Roll |         |            |
|                     |              |      |         | 52         |
| [ Fig.5.6] Encoder  |              |      | Encoder | <b>5</b> 0 |
| <br>[ Fig.5.7]      | Feedback     |      |         | 53         |
|                     |              |      |         | 53         |
| [ Fig.5.8]          | Feedback     | Roll | Encoder |            |
|                     |              |      |         | 54         |
| [ Fig.5.9] Encoder  | Feedback     |      |         |            |
|                     |              |      |         | 55         |
| [ Fig.5.10] Encoder |              |      | Encoder | 55         |
| [ Fig.5.11] Encoder |              |      |         |            |
| [ Fig.5.12]         |              |      |         |            |

|                   |          |          |         | 57 |
|-------------------|----------|----------|---------|----|
| [ Fig.5.13]       | Feedback |          | Encoder |    |
|                   |          |          |         | 57 |
| [ Fig.5.14]       | Feedback | 200mm    |         | 56 |
| [ Fig.5.15] 200mm | Encoder  | Feedback | 1       |    |
|                   |          |          |         | 59 |

## LIST OF TABLES

| Table.1 | Stewart Platform Specification              | 15 |
|---------|---------------------------------------------|----|
| Table.2 | Excursion Maximum Velocity                  | 16 |
| Table.3 | Minimum Working Space for continuous motion | 16 |
| Table.4 | , 가                                         | 17 |
| Table.5 | Electric Vehicle Specification              | 19 |

1.

6

가

1.1

가

Stewart

,

. 가 (open loop

(serial manipulator)

가 ,

가

, 가

가 . 가

, , , , , 가

가 .

,

8

6

\_

(parallel manipulator)

(closed loop)

(end effector)

가 . Fitcher (instantaneous inverse kinematics) , Sugimoto (motor algebra) Zhiming 6 가 6 (linkspace) 6 (workspace) 가 가 가 가 (kinematic isotropy), (dynamic isotropy) Aria 가

|            | ,     | Kosug            | ge                            |       |              |   |            |        |    |
|------------|-------|------------------|-------------------------------|-------|--------------|---|------------|--------|----|
| Ma<br>Yang | Angel | es               | ,                             |       |              | , |            | ,      | Do |
|            |       | (Loca            | al Perform                    | iance | Index)       | , |            |        | 가  |
|            |       |                  | 가                             |       |              |   |            |        |    |
|            | ,     |                  | , 가                           |       |              |   | ,          |        | ,  |
|            |       |                  | Griffis                       | Duf   | fy,          |   | anua<br>16 |        | •  |
|            | ,     | Raghav           | /an                           |       |              |   | 40         |        |    |
| -          |       | ewton -<br>Zhang | . Dieudo<br>Raphson)<br>Song, | nne   | Perri<br>Lee |   |            | Nguyen |    |
| 가          |       |                  |                               |       |              |   |            |        |    |

. Cheok

가 가 가 가 가 가 가 가 (Kinematic Parameter) . Wang 2R-P-3R 6 Zhuang Roth, Driels Pathre Innocenti 가 , Zhuang Wang 가 , Innocenti 가 , Zhuang 가 .

6 Linear Potentiometer



[Fig. 1.1]

[Fig.1.1] Roll, Pitch, Yaw,

Vertical, Lateral, Longitudinal 6 6 1/2 Car (Bump) Roll, Pitch, Vertical prototype AC Servo Motor Roll, Pitch, Vertical (Que) (Feed Back) (Encoder) 2 6 6 가

## 2. System Configuration



[Fig.2.1]

System . Slave System 7,

System

#### 2.1 Master System









[Fig.2.2] 6

[Fig.2.2] 6-DOF 가

System

AC Servo system

Prototype

3

(Translation)

(Rotation) ,

CSMZ-01BA1ANM3 220V

100W AC Servo Motor

, Limit Sensor

. , 6

 $Multi-Motion \quad Controller (MMC-\quad BODPV81 \quad Control \quad Card)$ 

CSDJ-01BX1 AC Servo Drive

**Table 1 Stewart Platform Specification** 

| Mass of Platform               | 5kg                      |  |  |  |  |
|--------------------------------|--------------------------|--|--|--|--|
| Mass of Cylinder               | 1 kg                     |  |  |  |  |
| Mass of Piston                 | 1 kg                     |  |  |  |  |
| Radius of Base                 | 0.2125m                  |  |  |  |  |
| Radius of Platform             | 0.1625m                  |  |  |  |  |
| Height of Platform             | 0.706m                   |  |  |  |  |
| Mass of xx inertia of Platform | 0.05127 <sub>kg⋅m²</sub> |  |  |  |  |
| Mass of yy inertia of Platform | 0.05466 kg⋅m²            |  |  |  |  |
| Mass of zz inertia of Platform | 0.1046 kg⋅m²             |  |  |  |  |
| Actuator Stroke                | 250mm( ± 125mm)          |  |  |  |  |
| Distance                       | Max: 948mm Min: 698mm    |  |  |  |  |

Table 1 (Spec.)

(mass of inertia) CATIA V5





(a) Joint Coordinate of Base

(b) Joint Coordinate of Platform

[Fig.2.3]

[Fig.2.3]

Table 2

**Table 2 Excursion Maximum Velocity** 

| Function     | Vertical             | Lateral              | Longitudinal             |
|--------------|----------------------|----------------------|--------------------------|
| Displacement | ±125mm               | ±125mm               | ±125mm                   |
| Velocity     | 300 mm/sec           | 300 mm/sec           | 300 mm/sec               |
| Acceleration | ±0.5g                | ±0.3g                | ±0.3g                    |
| Function     | Roll                 | Pitch                | Yaw                      |
| Displacement | ±25 deg              | ±25 deg              | ±25 deg                  |
| Velocity     | 20 deg/sec           | 20 deg/sec           | 20 deg/sec               |
| Acceleration | ±60                  | ±60                  | ±60 deg/sec <sup>2</sup> |
| Acceleration | deg/sec <sup>2</sup> | deg/sec <sup>2</sup> | ±00 deg/sec              |

Table 3 Minimum Working Space for continuous motion

| Function     | Vertical | Lateral | Longitudinal |
|--------------|----------|---------|--------------|
| Displacement | ±2.25mm  | ±2.25mm | ±2.25mm      |
| Function     | Roll     | Pitch   | Yaw          |
| Displacement | ±4 deg   | ±4 deg  | ±4 deg       |

Table 4 , 가

| Displacement | Velocity | Acceleration |
|--------------|----------|--------------|

| Warting!     | +120 mm | 95         | +020-         |  |  |
|--------------|---------|------------|---------------|--|--|
| Vertical     | -130 mm | 85 mm/s    | ± 0.39 g      |  |  |
|              | +320 mm | 105        | ± 0.42        |  |  |
| Lateral      | -330 mm | 195 mm/s   | ± 0.42 g      |  |  |
|              | +325 mm | 40-7       | ± 0.40        |  |  |
| Longitudinal | -325 mm | 195 mm/s   | ± 0.42 g      |  |  |
| Di. I        | +47 deg | 22.5.1.7   | ± 240 1 4 42  |  |  |
| Pitch        | -47 deg | 32.5 deg/s | ± 240 deg/s^2 |  |  |
| 5.11         | +45 deg |            | ± 2.00        |  |  |
| Roll         | -45 deg | 32 deg/s   | ± 240 deg/s^2 |  |  |
|              | +36 deg |            | 1             |  |  |
| Yaw          | -36 deg | 60 deg/s   | ± 280 deg/s^2 |  |  |

Table 2 MIL-STD-1588

가 ,

Table 3

가 . Table 3 Vertical (+)

, Vertical, Lateral,

Longitudinal, Pitch, Roll ,

가

## 2.2 Slave System





[Fig.2.4]

| [Fig.2.4] | Master Syst      | em       | Control     | Signal   |    |   |          |
|-----------|------------------|----------|-------------|----------|----|---|----------|
| (Slav     | ve System)       |          | (Slave      | Syster   | n) |   | 가        |
| (Accele   | eration System), |          | (Brake S    | System), |    |   | (Lateral |
| System),  | (Laser           | Sensor,  | Ultra Sonic | Sensor)  |    |   |          |
| [Fig.2.4] |                  | 2.2[Kw], | 3[Hp]       | 48[V]    | DC | 가 |          |

Table 5 Electric Vehicle Specification

|                  | S     | PECIFICATION                                            |  |  |
|------------------|-------|---------------------------------------------------------|--|--|
| Overall Length   |       | 230cm                                                   |  |  |
| Overall Width    |       | 119.5cm                                                 |  |  |
| Overall Hight    |       | 124cm                                                   |  |  |
| Wheat Base       |       | 166.5cm                                                 |  |  |
| Wheel Tread      | Front | 92.5cm                                                  |  |  |
|                  | Rear  | 98.5cm                                                  |  |  |
| Dry Weight       |       | 250kg (Without Batteries)                               |  |  |
| Ground Clearance |       | 10cm                                                    |  |  |
| Turning Radius   |       | 2.7m                                                    |  |  |
| Body             |       | PMMA/ABS                                                |  |  |
| Battery          |       | 48Voltage/8V, Output:48V,2LAmp                          |  |  |
| Trans            | aste  | Double Reduction Helical Gear                           |  |  |
| Supersion        | Front | Tapered Leaf Spring &<br>Hydraulic Shock Absorber       |  |  |
|                  | Rear  | Leaf Spring & Hydrastic<br>Shock Absorber               |  |  |
| Steen            | ing   | Rack & Pinion Gear Box Type                             |  |  |
| Brake            |       | Mechanical Brake Cable System<br>to Drum Brake          |  |  |
| Frame            |       | All Aluminum Alloy Frame                                |  |  |
| Tire             |       | 18*85-80, 4ply-rating                                   |  |  |
| Motor            |       | Traction Shunt Re-gen Metor,2.2kw/3hp,<br>DC48V-2800RPM |  |  |





(a)



(b) Acceleration Control Part



(c) Handle Control Part

[Fig.2.5]

(d) Brake Control Part

[Fig.2.5]

Acceleration System, Handle System,

Brake System

Master System

Appendix 가



[Fig.2.6]

[Fig.2.6] Master System 가

Lateral, Longitudinal

Acceleration

Pedal, Handle, Brake Pedal

Acceleration Pedal, Handle, Brake Pedal

Acceleration

System, Handle System, Brake System

## 3. Kinematics Analysis of Stewart Platform

### 3.1 Inverse Kinematics



Moving Platform  $A_i$   $A_i$   $A_i$ Prismatic joint

Fixed base

[Fig.3.1] The Coordinate of Stewart Platform (inverse kinematics)

. 가 가 $d_i$ 

 $d_{i} = \sqrt{(d_{ix}^{2} + d_{iy}^{2} + d_{iz}^{2})}$  (1)

•

$$u_{x}^{2} + u_{y}^{2} + u_{z}^{2} = 1,$$

$$v_{x}^{2} + v_{y}^{2} + v_{z}^{2} = 1,$$

$$w_{x}^{2} + w_{y}^{2} + w_{z}^{2} = 1,$$

$$u_{x}v_{x} + u_{y}v_{y} + u_{z}v_{z} = 0,$$

$$u_{x}w_{x} + u_{y}w_{y} + u_{z}w_{z} = 0,$$

$$v_{x}w_{x} + v_{y}w_{y} + v_{z}w_{z} = 0,$$

$$(2)$$

(1) (2)

$$d_{i}^{2} = p^{T} p + [^{B}b_{i}]^{T} [^{B}b_{i}] + a_{i}^{T} a_{i} + 2p^{T} [^{A}R_{B}{}^{B}b_{i}] - 2p^{T} a_{i} - 2[^{A}R_{B}{}^{B}b_{i}]^{T} a_{i}$$
(3)  
$$i = 1,2,3,4,5,6$$
(3) 
$$d_{i}$$

#### 3.2 Forward Kinematics

#### 3.2.1 Forward Kinematics Analysis

(Forward kinematics) 6 가 , , , , , , , , , , , , , , ,

#### 3.2.2 Newton-Raphson Method

6

가 . ,

$$f_i(a) = d_{ix}^2 + d_{iy}^2 + d_{iz}^2 - d_i^2 = 0$$
 (4)

*a* .

$$a = [a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6]^T = [T_x \ T_y \ T_z \ \boldsymbol{a} \ \boldsymbol{b} \ \boldsymbol{g}]^T$$

a .

- $\begin{bmatrix} & 1 \end{bmatrix}$  a.
- [ 2] .
- $[ \quad 3] \quad d_i \left( [d_{ix} \quad d_{iy} \quad d_{iz}]^T \right)$
- [ 4]  $f_i(a)$   $A_{ij} = \frac{\partial f_i}{\partial a_j}$
- $[ \qquad 5] \quad C_i = -f_i(a)$ 
  - $, \sum_{j=1}^{6} \left| C_{j} \right| < a \qquad ,$

[6] .

3.3 Dynamics Analysis

#### 3.3.1 Newton-Euler Formulation

(Dynamics analysis)

·

Fichter, Sugimoto .

Zhiming Lee,

Lebret (Lagrangian) .

25

가

.

#### 3.3.2 Dynamics analysis of Stewart Platform



[Fig 3.2] The Coordinate of Stewart Platform Dynamics

[Fig.3.2]

$$A(x,y,z)$$
  $B(u,v,w)$  7\tau  $x-y$   $A_i(i=1 \ to \ 6) \ u-v$   $B_i(i=1 \ to \ 6)$   $A_i$   $C(x_i,y_i,z_i)$   $C(x_i,y_i,z_i)$ 

(Inverse Dynamics Analysis)

Motion

P Trajectory

$$(oldsymbol{f},~oldsymbol{q},~oldsymbol{y})$$
 P

$$(\boldsymbol{f},\ \boldsymbol{q},\ \boldsymbol{y}) \qquad . \qquad P$$
 7 
$$v_p = p \qquad v_p = p \qquad . \qquad \boldsymbol{f}$$

Z.

(rotation matrix)

$${}^{A}R_{B} = \begin{bmatrix} c\mathbf{f}c\mathbf{q} & -s\mathbf{f}c\mathbf{y} + c\mathbf{f}s\mathbf{q}\mathbf{y} & s\mathbf{f}s\mathbf{y} + c\mathbf{f}s\mathbf{q}\mathbf{y} \\ s\mathbf{f}c\mathbf{q} & c\mathbf{f}c\mathbf{y} + s\mathbf{f}s\mathbf{q}\mathbf{y} & -c\mathbf{f}s\mathbf{y} + s\mathbf{f}s\mathbf{q}\mathbf{y} \\ -s\mathbf{q} & c\mathbf{q}\mathbf{y} & c\mathbf{q}\mathbf{y} \end{bmatrix}$$
(1)

(angular velocity)  $\mathbf{W}_{p}$ 

$$\mathbf{w}_{p} = \mathbf{\dot{f}} w + \mathbf{\dot{q}} v' + \mathbf{\dot{y}} u''$$
 (2)

$$(2) w, v', u''$$

$$w_{p} = \begin{bmatrix} \dot{\mathbf{y}} s \mathbf{f} s \mathbf{y} + \dot{\mathbf{y}} c \mathbf{f} s \mathbf{q} \mathbf{y} - \dot{\mathbf{q}} s \mathbf{f} \\ \dot{\mathbf{y}} c \mathbf{f} s \mathbf{y} + \dot{\mathbf{y}} s \mathbf{f} s \mathbf{q} \mathbf{y} + \dot{\mathbf{q}} c \mathbf{f} \\ \dot{\mathbf{y}} c \mathbf{q} \mathbf{y} + \dot{\mathbf{f}} \end{bmatrix}$$
(3)

가 (angular acceleration) (3)

$$\dot{w}_{p} = \begin{bmatrix} \ddot{y} s f s y + \dot{y} f c f s y + \dot{y}^{2} s f c y + \dot{y} c f s q c y - \dot{y} f s f s q c y \\ + \dot{q} \dot{y} c f c q c y - y^{2} c f s q s y - \ddot{q} s f - \dot{q} c f \\ - \dot{y} c f s y + \dot{y} f s f s y - y^{2} c f c y + \dot{y} s f s q c y + \dot{y} f c f s q c y \\ + \dot{y} \dot{q} s f c q c y - y^{2} s f s q s y + \ddot{q} c f - \dot{q} f s f \\ \ddot{y} c q c y - \dot{y} \dot{q} s q c y - \dot{y}^{2} c q s y + \ddot{f} + \dot{f} \end{bmatrix}$$

$$w_{p} \qquad \dot{w}_{p} \qquad A \qquad ,$$

$$^{A} R_{B}^{T} \qquad . \qquad (4)$$

#### (a) Position Analysis

$$a_i + d_i \, s_i = p + b_i \tag{5}$$

 $a_i$ 

,  $b_i$ 

(5)

$$s_i = \frac{p + b_i - a_i}{d_i} \tag{6}$$

$$d_i = \left| p + b_i - a_i \right| \tag{7}$$

Universal Joint

. 
$$z_i$$

 $y_{i}$   $q_{i}$  (rotation matrix)



[Fig 3.3] Euler Angles of Limb

$${}^{A}R_{i} = \begin{bmatrix} c\mathbf{f}_{i}c\mathbf{q}_{i} & -s\mathbf{f}_{i} & c\mathbf{f}_{i}s\mathbf{q}_{i} \\ s\mathbf{f}_{i}c\mathbf{q}_{i} & c\mathbf{f}_{i} & s\mathbf{f}_{i}s\mathbf{q}_{i} \\ -s\mathbf{q}_{i} & 0 & c\mathbf{q}_{i} \end{bmatrix}$$
(8)

 $s_i$  i

$${}^{i}s_{i} = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \tag{9}$$

(8),(9)  $S_i$ 

$$s_{i} = \begin{bmatrix} c\mathbf{f}_{i} s \mathbf{q}_{i} \\ s\mathbf{f}_{i} s \mathbf{q}_{i} \\ c\mathbf{q}_{i} \end{bmatrix}$$
 (10)

(10)

 $\boldsymbol{q}_i, \boldsymbol{f}_i$ 

$$c\mathbf{q}_{i} = s_{iz}$$

$$s\mathbf{q}_{i} = \sqrt{(s_{ix}^{2} + s_{iy}^{2})} \qquad (0 \le \mathbf{q} \le \mathbf{p})$$

$$s\mathbf{f}_{i} = s_{iy} / s\mathbf{q}_{i}$$

$$c\mathbf{f}_{i} = s_{ix} / s\mathbf{q}_{i}$$
(11)

 $(6)\sim(10)$ 

(direction) (Euler angles)

[Fig.3.4]

(Cylinder) (Piston)



[Fig 3.4] Free Body Diagram of a Typical Limb

$$r_{1i} = a_i + e_1 \, s_i \tag{12}$$

$$r_{2i} = a_i + (d_i - e_2)s_i (13)$$

#### (b) Velocity Analysis

(linear velocity) (angular velocity)

i

$$^{i}v_{bi}=^{i}R_{A}v_{bi} \tag{15}$$

$$^{i}v_{bi} = d_{i}^{i}w_{i}\times^{i}s_{i} + \dot{d}_{i}^{i}s_{i}$$
 (16)

(linear velocity) (angular

velocity)

$$\overset{\bullet}{d}_{i} = {}^{i}V_{biz} \tag{17}$$

$${}^{i}w_{i} = \frac{1}{d_{i}}({}^{i}s_{i} \times {}^{i}v_{bi}) = \frac{1}{d_{i}} \begin{bmatrix} -{}^{i}v_{biy} \\ {}^{i}v_{bix} \\ 0 \end{bmatrix}$$
 (18)

, i (cylinder) (piston)

 $^{i}V_{1i}, ^{i}V_{2i}$  (12)

$${}^{i}v_{1i} = e_{1}{}^{i}w_{i} \times {}^{i}s_{i} = \frac{e_{1}}{d_{i}} \begin{bmatrix} {}^{i}v_{bix} \\ {}^{i}v_{biy} \\ 0 \end{bmatrix}$$
 (19)

$${}^{i}v_{2i} = (d_{i} - e_{2}){}^{i}w_{i} \times {}^{i}s_{i} + \overset{\bullet}{d}_{i}{}^{i}s_{i} = \frac{1}{d_{i}} \begin{bmatrix} (d_{i} - e_{2}){}^{i}v_{bix} \\ (d_{i} - e_{2}){}^{i}v_{biy} \\ d_{i}{}^{i}v_{biz} \end{bmatrix}$$
(20)

#### (C) Acceleration Analysis

 $(14) B_i$ 

가

$$\overset{\bullet}{v}_{bi} = \overset{\bullet}{v}_p + \overset{\bullet}{w}_p \times b_i + \overset{\bullet}{w}_p \times (\overset{\bullet}{w}_p \times b_i)$$
(21)

(16) i

$$B_i$$
 가  $i$  가

$$v_{bi} = d_i^i s_i + d_i^i w_i \times^i s_i + d_i^i w_i \times^i (w_i \times^i s_i) + 2 d_i^i w_i \times^i s_i$$
(22)

(22) 기

$$d_{i} = v_{biz} + d_{i}^{i} w_{i}^{2} = v_{biz} + \frac{i}{i} v_{bix}^{2} + \frac{i}{i} v_{biy}^{2}$$

$$d_{i} = v_{biz} + d_{i}^{i} w_{i}^{2} = v_{biz} + \frac{i}{i} v_{bix}^{2} + \frac{i}{i} v_{biy}^{2}$$
(23)

가 (angular acceleration)

$$\overset{i}{w}_{i} = \frac{1}{d_{i}} \overset{i}{s}_{i} \times \overset{i}{v}_{bi} - \frac{2\overset{i}{d}_{i}}{d_{i}} w_{i} = \frac{1}{d_{i}} \begin{bmatrix} \overset{i}{v}_{biy} + \frac{2^{i}v_{biz}^{i}v_{biy}}{d_{i}} \\ \overset{i}{v}_{bix} - \frac{2^{i}v_{biz}^{i}v_{bix}}{d_{i}} \\ v_{bix} - \frac{2^{i}v_{biz}^{i}v_{bix}}{d_{i}} \end{bmatrix} \tag{24}$$

(19),(20) *i* 

가 .

$$v_{1i} = e_{1}^{i} w_{i} \times^{i} s_{i} + e_{1}^{i} w_{i} \times^{i} s_{i} = \frac{e_{i}}{d_{i}} \begin{bmatrix} i \cdot v_{bix} - \frac{2^{i} v_{biz}^{i} v_{bix}}{d_{i}} \\ v_{bix} - \frac{2^{i} v_{biz}^{i} v_{biy}}{d_{i}} \\ v_{biy} - \frac{2^{i} v_{biz}^{i} v_{biy}}{d_{i}} \\ - \frac{v_{bix}^{2} + v_{biy}^{2}}{d_{i}} \end{bmatrix}$$
 (25)

$$v_{2i} = d_i^i s_i + (d_i - e_2)^i w_i \times^i s_i + (d_i - e_2)^i w_i \times (w_i \times^i s_i) + 2d_i^i w_i \times^i s_i$$

$$= \frac{1}{d_{i}} \begin{pmatrix} (d_{i} - e_{2})^{i} v_{bix} + \frac{2e_{2}^{i} v_{biz}^{i} v_{bix}}{d_{i}} \\ (d_{i} - e_{2})^{i} v_{biy} + \frac{2e_{2}^{i} v_{biz}^{i} v_{bix}}{d_{i}} \\ d_{i}^{i} v_{biz} + \frac{e_{2}^{(i} v_{bix}^{2} + i v_{biy}^{2})}{d_{i}} \end{pmatrix}$$

$$(26)$$

#### 3.3.3 Dynamics of the Limbs

6

Subsystem

[Fig.3.4]

. Euler

i  $A_i$  (resultant

moment) (angular

momentum)

$${}^{i}n_{i}^{A} = \frac{d}{dt}({}^{i}h_{i}^{A}) \tag{27}$$

(angular momentum)

$${}^{i}h_{i}^{A} = m_{1}e_{1}({}^{i}s_{i} \times {}^{i}v_{1i}) + m_{2}(d_{i} - e_{2})({}^{i}s_{i} \times {}^{i}v_{2i}) + {}^{i}h_{1i}^{C} + {}^{i}h_{2i}^{C}$$
(28)

$${}^{i}h_{1i}^{C} = {}^{i}I_{1i}{}^{i}w_{i}$$
 ,  ${}^{i}h_{2i}^{C} = {}^{i}I_{2i}{}^{i}w_{i}$ 

 $^{i}I_{1i}$   $^{i}I_{2i}$  (inertia

matrix) . (29)

.

$$\frac{d}{dt}({}^{i}h_{i}^{A}) = m_{1}e_{1}({}^{i}s_{i} \times {}^{i}v_{1i}) + m_{2}(d_{2} - e_{2})({}^{i}s_{i} \times {}^{i}v_{2i}) + {}^{i}I_{1i}{}^{i}w_{i} \qquad (29)$$

$$+{}^{i}w_{i} \times ({}^{i}I_{1i}{}^{i}w_{i}) + {}^{i}I_{2i}{}^{i}w_{i} + {}^{i}I_{2i}{}^{i}w_{i} + {}^{i}w_{i} \times ({}^{i}I_{2i}{}^{i}w_{i})$$

$$i \qquad (moment)$$

` ′

 $B_{i}$ 

(reaction force) .  $A_i$ 

(moment)

 $B_i$  (reaction force)

.

$$(30) \quad (31) \qquad (28) \qquad \qquad i \qquad \text{Limb frame}$$

$${}^{i}f_{bix} = \frac{1}{d_{i}} [m_{1}e_{1}g_{c}s\boldsymbol{q}_{i} + m_{2}(d_{i} - e_{2})g_{c}s\boldsymbol{q}_{i} - m_{1}e_{1}^{i}\dot{v}_{1ix} - m_{2}(d_{i} - e_{2})^{i}\dot{v}_{2ix} - I_{1iy}^{i}\dot{w}_{iy} - I_{2iy}^{i}\dot{w}]$$
(31)

$${}^{i}f_{biy} = \frac{1}{d_{i}} \left[ -m_{1}e_{1} {}^{i}v_{1iy} - m_{2}(d_{i} - e_{2}) {}^{i}v_{2iy} + I_{1ix} {}^{i}w_{ix} + I_{2ix} {}^{i}w_{ix} \right]$$
(32)
$$I_{jix} I_{jiy}$$
(j=1) (j=2)
(principal)

#### 3.3.4 Dynamic of the Moving Platform

(inertial frame)

Newton's equation

$$\sum_{i=1}^{6} {}^{A} f_{bi} + m_{p} {}^{A} g = m_{p} {}^{A} \dot{v}_{p}$$
 (33)

(34) x,y,z

$$\sum_{i=1}^{6} \left( {}^{i}f_{bix}c\mathbf{f}_{i}c\mathbf{q}_{i} - {}^{i}f_{biy}s\mathbf{f}_{i} + {}^{i}f_{biz}c\mathbf{f}_{i}s\mathbf{q}_{i} \right) = m_{p} \dot{\mathbf{v}}_{px}$$

$$(34)$$

$$\sum_{i=1}^{6} ({}^{i}f_{bix}s\boldsymbol{f}_{i}c\boldsymbol{q}_{i} + {}^{i}f_{biy}c\boldsymbol{f}_{i} + {}^{i}f_{biz}s\boldsymbol{f}_{i}s\boldsymbol{q}_{i}) = m_{p} \dot{\boldsymbol{v}}_{py}$$
(35)

$$\sum_{i=1}^{6} \left( -i f_{bix} s \mathbf{f}_{i} + i f_{biz} c \mathbf{q}_{i} \right) = m_{p} \dot{v}_{pz} + m_{p} g_{c}$$
(36)

B (Cener

of Mass) (Resulting Moment) Euler-equation

$${}^{B}n_{p} = \sum_{i=1}^{6} {}^{B}b_{i} \times {}^{B}f_{bi}$$
 (37)

$$\sum_{i=1}^{6} b_{iv} (a_{31}{}^{i} f_{bix} + a_{32}{}^{i} f_{biy} + a_{33}{}^{i} f_{biz}) = I_{pu} \dot{\mathbf{w}}_{pu} - \mathbf{w}_{pv} \mathbf{w}_{pw} (I_{pv} - I_{pw})$$
(38)

$$\sum_{i=1}^{6} -b_{iu}(a_{31}{}^{i}f_{bix} + a_{32}{}^{i}f_{biy} + a_{33}{}^{i}f_{biz}) = I_{pv} \dot{\boldsymbol{w}}_{pv} - \boldsymbol{w}_{pw} \boldsymbol{w}_{pu}(I_{pw} - I_{pu}) \quad (39)$$

$$\sum_{i=1}^{6} [b_{iu}(a_{21}^{i}f_{bix} + a_{22}^{i}f_{biy} + a_{23}^{i}f_{biz}) - b_{iv}(a_{11}^{i}f_{bix} + a_{12}^{i}f_{biy} + a_{13}^{i}f_{biz})] = I_{pw} \dot{\mathbf{w}}_{pw}$$
(40)

(38)~(40) 
$$a_{ij}$$
 limb 
$${}^{B}R_{i} \qquad (i,j) \qquad , \ {}^{B}w_{p} = \left[w_{pu}, w_{pv}, w_{pw}\right]^{T}$$
 (angular velocity)

$$I_{pu},I_{pv},I_{pw}$$
 u, v, w

(the principal moment of inertia)

$$(35) \sim (41)$$

$$\begin{bmatrix} {}^{A}S_{1x} & {}^{A}S_{2x} & \dots & {}^{A}S_{6x} \\ {}^{A}S_{1y} & {}^{A}S_{2y} & \dots & {}^{A}S_{6y} \\ {}^{A}S_{1z} & {}^{A}S_{2z} & \dots & {}^{A}S_{6z} \\ {}^{B}M_{1x} & {}^{B}M_{2x} & \dots & {}^{B}M_{6x} \\ {}^{B}M_{1y} & {}^{B}M_{2y} & \dots & {}^{B}M_{6z} \\ {}^{B}M_{1z} & {}^{B}M_{2z} & \dots & {}^{B}M_{6z} \end{bmatrix} \stackrel{i}{f}_{b5z} \stackrel{i}{f}_{b6z} = \begin{bmatrix} m({}^{A}a_{x} - {}^{A}g_{x}) - {}^{A}F_{Ex} \\ m({}^{A}a - {}^{A}g_{y}) - {}^{A}F_{Ey} \\ m({}^{A}a - {}^{A}g_{z}) - {}^{A}F_{Ez} \\ {}^{B}H_{x} - {}^{B}T_{Ex} \\ {}^{B}H_{y} - {}^{B}T_{Ex} \\ {}^{B}H_{y} - {}^{B}T_{Ez} \end{bmatrix}$$

$$, {}^{A}F_{E} \qquad , {}^{B}H_{E} \qquad {}^{B}T_{E}$$

$$7! \qquad . (41)$$

#### 3.3.5 Actuator and Ground Reaction Force

$$^{i}f_{biz}$$
 ,  $z_{i}$   $i$  (Actuating Force)  $\mathbf{t}_{i}$  . 
$$\mathbf{t}_{i} = ^{i}f_{biz} + m_{2}g_{c}c\mathbf{q} + m_{2}^{i}v_{2iz} \qquad (42)$$

4.

4.1

.

(Sensor)

. 가 . 가 . ,

· 가? · 가?





[ Fig.4.1] [ Fig.4.2]



[ Fig.4.3]

, 가 (Feed back) 2가 (noise) [Fig.4.1] CIRMA Lab. 6 Linear Moving Platform Potentiometer Forward Kinematics Translation Inverse Kinematics Rotation . [Fig.4.2] 2 6 Linear Potentiometer Linear Potentiometer

. Linear Potentiometer

(encoder) AC Servo Motor CSMZ-01BA 1ANM3 220V, 100W 11 2500 [Fig.4.3] 3 (translation) (rotation) 가 , 가 , 가 (noise) Linear Potentiometer 4.2 [Fig.4.4] Linear Potentiometer 6 Linear Potenti-ometer 가 Forward Kinematics Roll, Pitch, Yaw, Vertical, Lateral, Longitudinal 6 6 Inverse Kinematics 6 (Reference input)







[ Fig.4.4]

### 4.34.3.1 Hysteresis & Dead Band

[ Fig.4.5]



[Fig.4.5] Dead Band Hysteresis . Dead Band 가

Hysteresis

**Dead Band** 

가 가 가 가 dead band Hysteresis 가 가 . Hysteresis Dead Band (Sum) Cycle Up-scale Down-scale Dead Band Hysteresis Hysteresis Dead Band (%) ) Hysteresis가 0.12%

4.3.2

.

, , ,

.



[ Fig.4.6] Dead Band가



[Fig. 4.7] 가

: , 가

.

50% , .

.

4.4

PID - (Model-Based Control) .

가 ,

PID .

PID

, (Computer Load)가

(Dynamic Uncertainties)

(Tracking Performance)

[Fig.4.8]

PID . R(s)

Inverse Kinematics

. PID  $G_c(s)$ 

 $oldsymbol{
u}$ 

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s \tag{44}$$

Kp , Kd

, Ki .

가 가 가

#### "Anti-Windup"



[Fig4.8] PID (With Anti-Windup)

PID

1[V]



[ Fig.4.9]





[Fig.4.10] (a) 1Volt Step
. (a)
Open-loop Step input

(a),(b) [Fig.4.9] . (c)

(d) .

[Fig.4.11] Gain



[ **Fig.4.11**] Gain

Step (Gain Tuning)

.

# 4.5 (1/2Car Model)

[Fig. 4.12] Half Car Model

[Fig.4.14] 60Km/h

1m, 5cm Bump 2

가





[Fig.4.14] Dynamics Analysis

Half Car Inverse Dynamics

Platform CATIA **5.** 

| 5.1 | $\mathbf{Y}$ | , Roll, |
|-----|--------------|---------|
|     | _            | ,,      |

|          |      |   |     |   | 27         | <b>'</b> } |      |     |         |           |          |
|----------|------|---|-----|---|------------|------------|------|-----|---------|-----------|----------|
|          |      |   | 6   |   |            | 5          |      |     |         | 1가        |          |
|          |      |   |     |   |            | Roll,      | Pito | ch, | Yaw,    | Vertical, | Lateral, |
| Longitud | inal | 6 |     |   |            |            |      |     |         |           | 4        |
|          |      | Χ |     | Υ |            |            |      | 가   |         |           |          |
| 2가       |      |   | 2가  |   |            |            |      |     |         |           |          |
| _ '      |      |   | _ ' |   |            |            |      |     |         | ,         |          |
|          |      |   |     | 6 |            | Lin        | ear  | Р   | otentio |           |          |
| Volt     | 가    |   |     |   | 가          |            |      |     |         |           |          |
|          |      |   |     |   | <b>7</b> 1 |            |      |     |         |           |          |
|          |      |   |     |   |            |            |      |     |         | 가         | 가        |
|          |      |   |     |   |            |            |      |     |         | ,         |          |
| -1       | -1   |   |     |   |            |            |      |     |         |           |          |
| 가        | 가    |   | フ   | ŀ |            |            |      |     |         |           |          |
|          |      |   | ĺ   | • |            |            |      |     | 가       | ,         |          |
|          |      |   |     |   |            |            |      |     |         |           |          |
|          |      |   |     |   |            |            | ,    |     |         |           |          |
| 3        |      |   |     |   |            | 가          |      |     |         |           |          |
|          |      |   |     |   |            | 3          | 3    |     |         |           |          |
| 가        |      |   | 6   |   |            |            |      |     |         |           |          |



[Fig.5.1] Encoder Feedback Y-



[Fig.5.2] Encoder Feedback Y- Encoder
Y 5 Y

Fig.5.1 Y

Fig.5.2 Fig5.1







[ Fig.5.4] Feedback Y - Encoder

Fig.5.3

5 Y

Fig.5.4 Fig5.3



[Fig.5.5] Encoder Feedback Roll

X 5 X

Fig.5.5 X



Fig.5.6 Fig5.5





[Fig.5.8] Feedback Roll Encoder

Fig.5.7

5 X

Fig.5.8 Fig5.7



[Fig.5.9] Encoder Feedback



[ Fig.5.10] Encoder Feedback

Encoder



[ Fig.5.11] Encoder Feedback 200mm 6 5

1가

Roll, Pitch, Yaw, Vertical, Lateral, Longitudinal Roll, Pitch, Yaw, Vertical Χ 가 Υ 가

가

Fig.5.9 200mm 4 0

X, Y Encoder

Encoder 가

6 . Fig.5.10 Encoder Forward

Kinematics 6

Fig,5,11 . Line XY

"\*" Encoder



[ Fig.5.12] Feedback



[Fig.5.13] Feedback Encoder



Fig.5.12 200mm 4 0

X, Y Linear Potentiometer

Forward Kinematics

Inverse Kinematics

6 . Fig.5.13 Encoder 7 Forward Kinematics 6 .

Fig,5,14 XY . Line

"\*" Encoder .



Fig.5.15 Encoder

1 Input, Encoder , Linear Potentiometer
Forward Kinematics 1

1

. Linear Potentiometer Error



[ **Fig.5.15**] 200mm Feedback 1

Fig.5.16

Input,
Encoder , Linear Potentiometer Forward Kinematics

1 .

Fig.5.14 Error

. , Fig.5.15 Linear Potentiometer가

Noise Error .

Error

Input

•

Input Data .

6.

|              |                      | •            |
|--------------|----------------------|--------------|
| 1.           |                      |              |
|              |                      | 가            |
| 2.Y- , Roll- | ·                    |              |
|              | Encoder              | 가            |
| 가            |                      |              |
| . 6          |                      | Input        |
| 3. 4         | X-Y                  | 가            |
|              | Error 가              |              |
| Encoder      |                      |              |
| . ,          | Linear Potentiometer | Sensor Error |
| 가            |                      | ,            |
|              |                      | 가            |
| 4. :         | ·                    |              |
|              |                      | . ,          |
|              |                      |              |
| Appendix     |                      |              |
| 가            |                      |              |

5. Half-Car Bump

6. プト Linear Encoder

フト
フト
フト
スト
7.Forward Kinematics

Error

#### -Appendix 1

#### ▶ Acceleration Control Part



#### -Appendix 2

#### Brake Control Part



#### -Appendix 3

#### Handle Control Part



- [1] Husain, M. and Waldron, K.J., Direct Position Kinematics of the 3-1-1-1 Stewart Platform Transactions of ASME, Journal of Mechanical Design, Vol. 116, pp.1102~1107, 1994
- [2] Husty, M.L., An Algorithm for Solving the Direct Kinematics of Stewart-Gough-Type Platform to be published, 1994
- [3] Merlet, J.P., Closed-form Resolution of the Direct Kinematics of Parallel Manipulators using Extra Sensor Data IEEE International Conferences on Robotics and Automation, pp.200~204, 1993
- [4] Dieudonne, J.E. and Perrish, R.V., An Actuator Extension Transformation for a Motion Simulator and Inverse Transformation Applying Newton-Rhapson Method NASA tech. Note, NASA TN D~7067, 1972
- [5] Fichter, A Stewart Platform Based Manipulator: General Theory and Practical Construction international Journal of Robotics Research, Vol.5, No.2, pp.157~182, 1980
- [6] Sugimoto, K., Kinematic and Dynamic Analysis of Parallel Manipulators by means of Motor Algebra Transactions od ASME, Journal of Mechanics, Transmissions and Automation in Design, Vol.109, No.3, pp.3~7, 1987
- [7] Zhiming, J., Study of the Effect of Leg Inertia in Stewart Platforms *IEEE*International Conference on Robotics and Automation, pp.121~126, 1996
- [8] Lee, J.D., Albus, J.S., Dagalakis, N.G. and Tsai, T., Computer Simulation of a parallel Link Manipulator *Robotics and Computer-Integrated Manufacturing*, Vol.5, No.4, pp.333~342, 1989
- [9] Lebret, G., Liu, K. and Lewis, F.L., Dynamic Analysis and Control of a Stewart Platform Manipulator *Journal of Robotics and Automation*, Vol.4, No.3,

- pp.354~360, 1988
- [10] Kurtz, R. and Hayward, V., Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism with Actuator Redundancy. *IEEE Transaction on Robotics and Automation*, Vol.8, No.5, pp.644~651, 1992
- [11] Bhattacharya, S., Hatwal, H. and Ghosh, A., On the Optimum Design of Stewart Platform Type Parallel Manipulators *Robotica*, Vol.13, pp.133~140, 1995
- [12] D. Stewart, A Platform with Six Degree of Freedom, *Proc. Of Institute of Mech. Engrs.*, Vol.180, part 1, no. 5, pp.71~378, 1965
- [13] Craig, John J., Introduction to Robotics Addison Wesley, 1989
- [14] Lung-Wen TSAI, Robot Analysis
  Manipulators, John Wiley & Sons, INC., 1993
- [15] Do, W. Q. D. and Yang, D. C. H, Inverse Dynamics of Platform Type of Manipulation Struction The American Society of Mechanical Engineering, pp 86~94, 1986
- [16] Nair R. and Maddocks J. H., On the Forward Kinematics of Parallel Manipulators International Journal of Robotics Research, Vol. 13, No. 2, pp. 171~188, 1994
- [17] ,遠隔 走行 無人 自動車 基本設計 性能分析 研究 . 2000

#### **ABSTRACT**

The Measurement and Control of Stewart Platform applied to the Tele-operated Vehicle System by forward kinematics

#### By Lee Gil Young

## Graduate School of Automotive Engineering Kookmin University Seoul, Korea

In this paper, the integration of driving simulator and unmanned vehicle by means of new concept for better performance through a Tele-operated system is suggested. But autonomous system is one of the most difficult research topics from the point of view of several constrains on mobility, speed of vehicle and lack of environmental information. In these days, however, many innovations on the vehicle provide the appropriate automatic control in vehicle subsystem for reducing human error. This tendency is toward to the unmanned vehicle or the tele-operated vehicle ultimately. This paper describes the motion system. It is developed for a vehicle simulator composed of a six DOF Stewart Platform driven by servo motors. Our vehicle simulator and tele-operated vehicle have lineless serial communication. Tele-operated vehicle and simulator exchange each others motion que. We use general motion que, because the response of vehicle sensor is very rough. We determine Forward kinematics analysis of the motion platform by using numerical methods. Our Stewart Platform has six limbs and six linear potentiometers. Six linear potentiometers are directly connected to the base and the platform except limbs. Six linear

potentiometers exactly determine relative dynamics. We analyze the motion platform using data of limbs and direct connecting linear potentiometers. We analyze performance of two pattern measurement.