Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3211	К работе допущен	18.04.2024
Студент Бо	олорболд Аригуун	Работа выполнена	25.05.2024
Преполаватель	Смирнов А В	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.07

Изучение свойств ферромагнетика

1. Цель работы:

- 1. Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H)
- 2. Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания

2. Задачи, решаемые при выполнении работы:

- Настройка прибора;
- Подсчёт вспомогательных коэффициентов α, β, χ;
- Оценка погрешностей величин.

3. Объект исследования:

Сердечник (магнитопровод) трансформатора как образец для изучения магнитных свойств ферромагнитного материала.

4. Метод экспериментального исследования.

Лабораторный (многократные изучения величин).

5. Рабочие формулы и исходные данные:

in the me deputy is it mexed in the definition							
Значение	Размерность	Комментарий					
68	Ом	первое сопротивление					
470	кОм	второе сопротивление					
0,47	мкФ	емкость конденсатора					
0,64	см^2	площадь поперчного сечения ферромагнетика					
7,8	СМ	средняя длина ферромагнетика					
1665	Вит	число витков намагничивающей обмотки					
970	Вит	число витков измерительной обмотки					
200	мВ/дел	коэффициенты измерения величин X _c , Y _r , X _m , Y _m					
50	мВ/дел	1 коэффициенты измерения величин λ_c , 1_r , λ_m , 1_m					
0,000001256637061	Гн/м	магнитная постоянная					
0,000056	безразмерная	магнитная восприимчивость					
6.5	дел	площадь петли гистерезиса					
0.000364	Вт	мощность на перемагничивание образца					
10	Гц	входная частота генератора					
Соот	ветственно стат	гичные коэффициенты					
313,9140271	_						
3,558311856	_						
0,000557608399	_						
	68 470 0,47 0,64 7,8 1665 970 200 50 0,000001256637061 0,000056 6.5 0.000364 10 Coort 313,9140271 3,558311856	68 Ом 470 кОм 0,47 мкФ 0,64 см^2 7,8 см 1665 Вит 970 Вит 200 мВ/дел 50 мВ/дел 0,000001256637061 Гн/м 0,000056 безразмерная 6.5 дел 0.000364 Вт 10 Гц Соответственно стата 313,9140271 — 3,558311856 —					

$$\alpha = \frac{N_1}{l \cdot R_1}$$
$$\beta = \frac{R_2 \cdot C_1}{N_2 \cdot S}$$

$$\chi = K_x K_y \frac{N_1 \cdot R_2 \cdot C_1}{N_2 \cdot R_1} \cdot f$$

$$B = \beta \cdot U_y$$

$$P = \chi \cdot S_{\Pi\Gamma}$$

$$H = \alpha \cdot U_x$$

$$\mu = \frac{B}{\mu_0 \cdot H}$$

6. Измерительные приборы.

№ п/п	Наиме	менование Тип прибо		Используемый	Погрешность
				диапазон	прибора
1	Запомі	инающий	цифровой		<u>±</u> 3%
	осцилл	юграф			

7. Схема установки.

РИС. 1 Общий вид лабораторной установки

8. Результаты прямых измерений и их обработки (таблицы, примеры расчётов).

Uxc, B	U _{yr} , B	Нс, А/м	Вг, Тл
0,112	0,094	35,158	0,334

Таблица 1.

U_{xm},B	U_{ym} , B	H_m , A/M	Вт, Тл	μ_m
0.74	0.196	116.14819	0.3487145619	2389.173961

Таблица 2.

Nº	U, B	U _x , B	H, A/M	U _y , B	В, Тл	μ
2	19	0.73	227.588	0.192	0.683	2388.84
4	17	0.56	174.222	0.172	0.612	2795.50
6	15	0.44	138.122	0.152	0.541	3116.12
8	13	0.355	111.439	0.132	0.470	3354.05
10	11	0.29	91.035	0.113	0.402	3514.83
12	9	0.23	72.200	0.093	0.331	3647.36

14	7	0.19	58.074	0.069	0.246	3364.35
16	5	0.14	43.948	0.054	0.192	3479.28

Таблица 3.

Рис. 2. Протокол.

9. Расчёт результатов косвенных измерений (рисунки, примеры расчётов).

Представим, что мы выполняем работу в настоящий момент, тогда в соответствии с методическими указаниями:

- Занесём в бланк протокола значения параметров, указанных на стенде: см. пункт 5, исходные данные. Они будут необходимы нам для нахождения коэффициентов α, β, χ.
- 2) Соберём лабораторную установку (для нас уже были собраны).
- 3) Зафиксируем входную частоту генератора: $f = 10 \, \Gamma_{\rm II}$, начальную амплитуду выходного сигнала генератора $V = 20 \, \rm B$ для режима V_{np} .

Рис. 3. Лицевая панель генератора сигналов АКИП-3409/2

- 4) Продолжаем настраивать прибор.
- 5) Подберём значения K_x и K_y так, чтобы картинка петли будет занимать существенную часть экрана:
- 6) Дальше должно было быть процесс подбора и работы с гистерезисом, но к огромному сожалению мы потеряли снимок гистерезиса. Зато мы знаем из наших расчётов, что S_{пг} = 6,5дел.

7)
$$H_c = 112 \cdot 10^{-3} \cdot 313,9 = 35,2 \frac{A}{M}$$
 $B_r = 94 \cdot 10^{-3} \cdot 3,6 = 0,334 \text{ T}_{M}$
 $H_m = \frac{740}{2} \cdot 10^{-3} \cdot 313,9 = 116,2 \frac{A}{M}$
 $B_m = \frac{196}{2} \cdot 10^{-3} \cdot 3,6 = 0,35 \frac{A}{M}$
 $\mu_m = \frac{0,7}{4\pi \cdot 10^{-7} \cdot 232,3} = 2389,2$
 $P = 5,6 \cdot 10^{-5} \cdot 6,5 = 3,64 \cdot 10^{-4} \text{ BT}$

10. Расчёт погрешностей измерений (для прямых и косвенных измерений).

$$\alpha = \frac{N_1}{l \cdot R_1}$$

$$\begin{split} \Delta\alpha &= \sqrt{\left(\frac{\partial\alpha}{\partial N_1} \cdot \Delta N_1\right)^2 + \left(\frac{\partial\alpha}{\partial l} \cdot \Delta l\right)^2 + \left(\frac{\partial\alpha}{\partial R_1} \cdot \Delta R_1\right)^2} = 31,648 \frac{1}{\mathsf{M} \cdot \mathsf{OM}} \\ \beta &= \frac{R_2 \cdot C_1}{N_2 \cdot S} \\ \Delta\beta &= \sqrt{\left(\frac{C_1 \cdot \Delta R_2}{N_2 \cdot S}\right)^2 + \left(\frac{R_2 \cdot \Delta C_1}{N_2 \cdot S}\right)^2 + \left(\frac{C_1 \cdot R_2}{N_2^2 \cdot S} \cdot \Delta N_2\right)^2 + \left(\frac{C_1 \cdot \Delta R_2}{N_2 \cdot S^2} \cdot \Delta S\right)^2} = 0,575 \frac{\mathsf{OM} \cdot \Phi}{\mathsf{M}^2} \\ \chi &= K_x K_y \frac{N_1 \cdot R_2 \cdot C_1}{N_2 \cdot R_1} \cdot f \end{split}$$

Полагая, что $\Delta f = 1$ В:

$$\Delta\chi=\pm0,157\cdot10^{-3}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1.

12. Выводы а анализ результатов работы.

Окончательный результат:

- Коэрцитивная сила: $H_c = 35,2 \frac{A}{M}$
- Остаточная индукция: $B_r = 0.334 \, \mathrm{T} \pi$
- Индукция в состоянии насыщения: $B_m = 0.35 \frac{A}{M}$
- Напряженность в состоянии насыщения: $H_m = 116.2 \frac{A}{M}$
- Магнитная проницаемость в состоянии насыщения: $\mu_m = 2389,2$
- Мощность потерь на перемагничивание ферромагнетика: $P = 3.64 \cdot 10^{-4} \; \mathrm{BT}$

Вывод:

Я ознакомился со свойством ферромагнетиков, зависимостью магнитной проницаемости и магнитной индукции от напряженности магнитного поля.