Feature engineering

Jakub Ševcech

Obsah

Praca s casom a datumami

Zoskupovanie viacerych pozorovani

Numericke atributy

Normalizacia

Vyrabanie atributov kombinovanim

Suvisiace temy, ktore dnes nestihame

Transformacia kategorickych atributov na numericke

Vyber atributov - Feature selection

Extrakcia atributov

Nevyvazene datasety

Vycerpavajuci zoznam mnozstva veci, co sa da robit na pripravu dat a na feature engineering najdete tu: http://www.datasciencecentral.com/profiles/blogs/feature-engineering-data-scientist-s-secret-sauce-1

Nanestastie je to len zoznam

Celkom pekny zoznam krokov a aj metod je tu: <a href="http://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-feature-engineering-how-to-engineer-feature

Zopar najcastejsie pouzivanych veci z toho vyberiem a ukazem na co je to dobre

```
In [1]:
```

```
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn

plt.rcParams['figure.figsize'] = 9, 6
from IPython.display import Image
```

Najskor sa skuste pozriet do dat a skusit tam najst nejake vlastnosti sami.

Napriklad rozbite atributy, kde sa v jednom nachadza viacero hodnot.

Priklad na datach o potopeni Titanicu https://www.kaggle.com/c/titanic (https://www.kaggle.com/c/titanic)

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [3]: import re
    titanic.Name.apply(lambda x: re.split('[,.]', x)).head(10)
```

```
Out[3]: 0 [Braund, Mr, Owen Harris]

1 [Cumings, Mrs, John Bradley (Florence Briggs...
2 [Heikkinen, Miss, Laina]
3 [Futrelle, Mrs, Jacques Heath (Lily May Peel)]
4 [Allen, Mr, William Henry]
5 [Moran, Mr, James]
6 [McCarthy, Mr, Timothy J]
7 [Palsson, Master, Gosta Leonard]
8 [Johnson, Mrs, Oscar W (Elisabeth Vilhelmina...
9 [Nasser, Mrs, Nicholas (Adele Achem)]
```

Name: Name, dtype: object

```
In [4]: titanic.Name.apply(lambda x: re.split('\s*[,.]\s*', x)).head(10)
Out[4]: 0
                                       [Braund, Mr, Owen Harris]
         1
              [Cumings, Mrs, John Bradley (Florence Briggs T...
         2
                                        [Heikkinen, Miss, Laina]
         3
                 [Futrelle, Mrs, Jacques Heath (Lily May Peel)]
                                      [Allen, Mr, William Henry]
         4
         5
                                              [Moran, Mr, James]
         6
                                       [McCarthy, Mr, Timothy J]
         7
                               [Palsson, Master, Gosta Leonard]
         8
              [Johnson, Mrs, Oscar W (Elisabeth Vilhelmina B...
                          [Nasser, Mrs, Nicholas (Adele Achem)]
         9
         Name: Name, dtype: object
In [5]: set(titanic.Name.apply(lambda x: re.split('\s*[,.]\s*', x)[1]))
Out[5]: {'Capt',
          'Col',
          'Don',
          'Dr',
          'Jonkheer',
          'Lady',
          'Major',
          'Master',
          'Miss',
          'Mlle',
          'Mme',
          'Mr',
          'Mrs',
          'Ms',
          'Rev',
          'Sir',
          'the Countess'}
```

```
In [6]: | titanic['title'] = titanic.Name.apply(lambda x: re.split('\s*[,.]\s*', x)[1])
        titanic.title.head(10)
Out[6]: 0
                  Mr
                 Mrs
               Miss
                 Mrs
                  Mr
                  Mr
                  Mr
              Master
                 Mrs
                 Mrs
        Name: title, dtype: object
In [7]: titanic.title.value counts()
Out[7]: Mr
                         517
                         182
        Miss
                         125
        Mrs
                          40
        Master
        Dr
        Rev
        Major
        Mlle
        Col
        Ms
        Mme
        Lady
        the Countess
        Capt
        Jonkheer
        Sir
        Don
        Name: title, dtype: int64
```

Teraz je tu zopar titulov, ktorych pocty su fakt zanedbatelne a ten model by sa ich tazko ucil. Hrozilo by praveze, ze sa preuci

Chcelo by to aby sa pospajali dohromady.

Napriklad Mlle = Mademoiselle = Miss

```
In [8]: titanic.loc[titanic.title == 'Mlle', 'title'] = 'Miss'
    titanic.loc[titanic.title == 'Mme', 'title'] = 'Mrs'
    titanic.loc[titanic.title.isin(['Capt', 'Don', 'Major']), 'title'] = 'Sir'
    titanic.loc[titanic.title.isin(['Dona', 'Lady', 'the Countess', 'Jonkheer']), 'title'] = 'Lady'
```

```
In [9]: titanic.groupby('title').size().plot(kind='bar')
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff34478b828>

/usr/local/lib/python3.5/dist-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sa
ns-serif'] not found. Falling back to DejaVu Sans
 (prop.get_family(), self.defaultFamily[fontext]))

Velmi pekna ukazka predspracovania na titanic datasete je tu: http://trevorstephens.com/kaggle-titanic-tutorial/r-part-4-featureengineering/ (http://trevorstephens.com/kaggle-titanic-tutorial/r-part-4-feature-engineering/)

Niekedy ma zmysel upravovat nielen nezavisle premenne (atributy), ale aj tie zavisle (predikovana hodnota)

Napriklad pri predikovani casu pristania lietadla nieje uplne dobry napad predikovat ten cas, ale skor dobu letu a potom ju len pripocitat k casu vzlietnutie

In [10]: url = 'http://www.datasciencecentral.com/profiles/blogs/predicting-flights-delay-using-supervised-learning' from IPython.display import IFrame IFrame(url, width=700, height=350)

Out[10]:

Praca s casom a datumami

In [11]: # https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+#
klasifikacia, ci je miestnost obsadena alebo nie na zaklade udajov zo senzorov
occupancy = pd.read csv('occupancy/datatraining.txt', sep=',')

date = pd.to_datetime(occupancy.date, format='%Y-%m-%d %H:%M:%S')

occupancy.date = date

occupancy.head()

Out[11]:

	date	Temperature	Humidity	Light	CO2	HumidityRatio	Occupancy
1	2015-02-04 17:51:00	23.18	27.2720	426.0	721.25	0.004793	1
2	2015-02-04 17:51:59	23.15	27.2675	429.5	714.00	0.004783	1
3	2015-02-04 17:53:00	23.15	27.2450	426.0	713.50	0.004779	1
4	2015-02-04 17:54:00	23.15	27.2000	426.0	708.25	0.004772	1
5	2015-02-04 17:55:00	23.10	27.2000	426.0	704.50	0.004757	1

Cas ako taky velmi vyuzit neviete. To rozlysenie je prilis drobne a ziadny model sa z toho nic nenauci.

Potrebovali by sme ten datum nejak predspracovat.

Identifikator dni by nam uz mohol pomoct. Granularita je podstatne hrubsia a model by to uz mohol vediet vyuzit.

Out[12]:

	date	Temperature	Humidity	Light	CO2	HumidityRatio	Occupancy	weekday
1	2015-02-04 17:51:00	23.18	27.2720	426.0	721.25	0.004793	1	2
2	2015-02-04 17:51:59	23.15	27.2675	429.5	714.00	0.004783	1	2
3	2015-02-04 17:53:00	23.15	27.2450	426.0	713.50	0.004779	1	2
4	2015-02-04 17:54:00	23.15	27.2000	426.0	708.25	0.004772	1	2
5	2015-02-04 17:55:00	23.10	27.2000	426.0	704.50	0.004757	1	2

Co ked sa dozvieme, ze cez vikend sa v tej miestnosti nekuri a rozhadzuje nam to teplotu v nameranych datach?

Out[13]:

	date	Temperature	Humidity	Light	CO2	HumidityRatio	Occupancy	weekday	weekend
8139	2015-02-10 09:29:00	21.05	36.0975	433.0	787.250000	0.005579	1	1	False
8140	2015-02-10 09:29:59	21.05	35.9950	433.0	789.500000	0.005563	1	1	False
8141	2015-02-10 09:30:59	21.10	36.0950	433.0	798.500000	0.005596	1	1	False
8142	2015-02-10 09:32:00	21.10	36.2600	433.0	820.333333	0.005621	1	1	False
8143	2015-02-10 09:33:00	21.10	36.2000	447.0	821.000000	0.005612	1	1	False

In [14]: occupancy.weekend.value_counts()

Out[14]: False 5263 True 2880

Name: weekend, dtype: int64

- Takto mozeme pracovat s dnami, tyzdnami, hodinami
- Vieme vyberat konkretne hodiny a najst napriklad aktivnu cast dna

• Mozeme najst rozne fazy dna kde sa ludia spravaju rozne

uzitocne napriklad pri analyze spravania sa ludi na webe - tesne poobede asi ludia citaju ine clanky ako v produktivnejsej casti dna

· vlastne, rozne dlhe intervaly

Uloha na doma

- Co ked sa v noci tiez nekuri?
- Co ked v nejake hodiny svieti cez okno slnko a tiez to rozhadzuje teplotu?

In [15]: # rozne atributy, ktore sa daju vytiahnut z casovej peciatky
url = 'http://pandas.pydata.org/pandas-docs/stable/api.html#datetimelike-properties'
IFrame(url, width=1000, height=350)

Out[15]:

Zoskupovanie viacerych pozorovani

Zoskupovanie viacerych transakcii per objekt

Typicke pri sledovani aktivity pouzivatelov kde zoskupujeme per pouzivatel

Napriklad kliknutia na stranky alebo operacie v banke

Ukazeme si zopar prikladov na datach o bankovych operaciach nedzi roznymi uctami.

Je to typicky priklad transakcnych dat

http://lisp.vse.cz/pkdd99/berka.htm (http://lisp.vse.cz/pkdd99/berka.htm)

In [16]: trans = pd.read csv('berka/trans.asc', sep=';', nrows=1000) trans.head()

Out[16]:

	trans_id	account_id	date	type	operation	amount	balance	k_symbol	bank	account
0	695247	2378	930101	PRIJEM	VKLAD	700.0	700.0	NaN	NaN	NaN
1	171812	576	930101	PRIJEM	VKLAD	900.0	900.0	NaN	NaN	NaN
2	207264	704	930101	PRIJEM	VKLAD	1000.0	1000.0	NaN	NaN	NaN
3	1117247	3818	930101	PRIJEM	VKLAD	600.0	600.0	NaN	NaN	NaN
4	579373	1972	930102	PRIJEM	VKLAD	400.0	400.0	NaN	NaN	NaN

In [17]: date = pd.to_datetime(trans.date, format='%y%m%d')

trans.date = date

trans.head()

Out[17]:

	trans_id	account_id	date	type	operation	amount	balance	k_symbol	bank	account
0	695247	2378	1993-01-01	PRIJEM	VKLAD	700.0	700.0	NaN	NaN	NaN
1	171812	576	1993-01-01	PRIJEM	VKLAD	900.0	900.0	NaN	NaN	NaN
2	207264	704	1993-01-01	PRIJEM	VKLAD	1000.0	1000.0	NaN	NaN	NaN
3	1117247	3818	1993-01-01	PRIJEM	VKLAD	600.0	600.0	NaN	NaN	NaN
4	579373	1972	1993-01-02	PRIJEM	VKLAD	400.0	400.0	NaN	NaN	NaN

Rozne typy operacii maju uplne ine vlastnosti. Mohli by sme to pouzit na to, aby sme vytvorili nove atributy, ktore budu tieto skupiny oddelovat.

In [18]: means = trans.groupby('operation').amount.mean()
 means

Out[18]: operation

PREVOD NA UCET 6361.600000
PREVOD Z UCTU 11329.065359
VKLAD 8025.238953
VYBER 10925.340000
Name: amount, dtype: float64

Out[19]:

	trans_id	account_id	date	type	operation	amount	balance	k_symbol	bank	account	mean_amount_per_operation
995	1977575	6701	1993-03-26	PRIJEM	VKLAD	29082.0	29282.0	NaN	NaN	NaN	8025.238953
996	1602509	5442	1993-03-26	PRIJEM	VKLAD	34681.0	42632.0	NaN	NaN	NaN	8025.238953
997	2127306	7203	1993-03-26	PRIJEM	VKLAD	900.0	900.0	NaN	NaN	NaN	8025.238953
998	308090	1050	1993-03-26	VYDAJ	VYBER	800.0	25517.0	NaN	NaN	NaN	10925.340000
999	401329	1366	1993-03-26	PRIJEM	VKLAD	5200.0	13726.0	NaN	NaN	NaN	8025.238953

Podobny vysledok viem dosiahnut aj operaciou merge (join v SQL)

je to trochu rychlejsie aj ked lambda mi dava podstatne sirsie moznosti operacii

```
In [20]:
          means df = pd.DataFrame(means)
          means df.columns = ['mean amount per operation']
          means df['operation'] = means df.index
          means df.index = range(len(means df))
          means df
Out[20]:
              mean_amount_per_operation
                                                operation
                                        PREVOD NA UCET
           0
                            6361.600000
                            11329.065359
                                          PREVOD Z UCTU
           2
                            8025.238953
                                                  VKLAD
           3
                            10925.340000
                                                  VYBER
          pd.merge(trans, means df, how='left', on='operation')
Out[21]:
                trans id account id
                                             type operation amount balance k_symbol
                                                                                       bank
                                                                                                account mean_amount_per_operation_x me
             0
                 695247
                              2378
                                          PRIJEM
                                                     VKLAD
                                                              700.0
                                                                       700.0
                                                                                  NaN
                                                                                       NaN
                                                                                                   NaN
                                                                                                                         8025.238953
                                    01-01
                                          PRIJEM
                 171812
                                                     VKLAD
                                                              900.0
                                                                       900.0
                                                                                  NaN
                                                                                       NaN
                                                                                                   NaN
                                                                                                                         8025.238953
             2
                 207264
                                          PRIJEM
                                                     VKLAD
                                                             1000.0
                                                                      1000.0
                                                                                  NaN
                                                                                       NaN
                                                                                                   NaN
                                                                                                                         8025.238953
                1117247
                              3818
                                          PRIJEM
                                                     VKLAD
                                                              600.0
                                                                       600.0
                                                                                       NaN
                                                                                                   NaN
                                                                                                                         8025.238953
                                                                                  NaN
                                          PRIJEM
                 579373
                              1972
                                                     VKLAD
                                                              400.0
                                                                       400.0
                                                                                  NaN
                                                                                       NaN
                                                                                                   NaN
                                                                                                                         8025.238953
                 771035
                              2632
                                          PRIJEM
                                                     VKLAD
                                                             1100.0
                                                                      1100.0
                                                                                       NaN
                                                                                                                         8025.238953
                                                                                  NaN
                                                                                                   NaN
                 452728
                              1539
                                          PRIJEM
                                                     VKLAD
                                                              600.0
                                                                       600.0
                                                                                       NaN
                                                                                                   NaN
                                                                                                                         8025.238953
                                                                                  NaN
```

Podobnym sposobom mozete vyrobit velmi vela roznych atributov

- nepridat len priemer, ale aj pomer, >, < alebo rozdiel medzi priemerom a aktualnou hodnotou
- priemer per account => odrazi zvyky konkretneho zakaznika
- · viete pouzit hociaky kategoricky atribut an vytvorenie segmentov
- agregovanie inych atributov
- · agregovanie v casovom okne
- ine agregacne funkcie: count, std, kvartily
- viete dokonca vytvorit nove kategoriccke atributy podla ktorych ma zmysel agregovat pomocou zhlukovania

Numericke atributy

co zaujimave sa da robit s nimi?

In [22]: # data o komunikacii pocitacov v sieti z www.neteye-blog.com/netcla-the-ecml-pkdd-network-classification-challend # uloha je klasifikovat aka aplikacia data generovala data_file = "../vos/challenge/NetCla/data/train.csv" netcla = pd.read_csv(data_file, nrows=1000, sep='\t') netcla.head()

Out[22]:

:		cli_pl_header	cli_pl_body	cli_cont_len	srv_pl_header	srv_pl_body	srv_cont_len	aggregated_sessions	bytes	net_samples	tcp_frag
_	0	667	0	0	336	143151	143151	1	155494	1	0
	1	667	0	0	336	143151	143151	1	310988	1	0
	2	667	0	0	336	143151	143151	1	310988	1	0
	3	592	0	0	238	1269	1269	1	2401	1	0
	4	592	0	0	238	1269	1269	1	4802	1	0

5 rows × 49 columns

```
In [23]: netcla.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 49 columns):
cli_pl_header
                       1000 non-null int64
cli pl body
                       1000 non-null int64
cli cont len
                        1000 non-null int64
srv pl header
                       1000 non-null int64
srv pl body
                       1000 non-null int64
                       1000 non-null int64
srv cont len
                        1000 non-null int64
aggregated sessions
bytes
                        1000 non-null int64
                        1000 non-null int64
net samples
tcp frag
                        1000 non-null int64
tcp pkts
                        1000 non-null int64
                        1000 non-null int64
tcp retr
tcp ooo
                        1000 non-null int64
                        1000 non-null int64
cli tcp pkts
                        1000 non-null int64
cli tcp ooo
                        1000 non-null int64
cli tcp retr
                        1000 non-null int64
cli tcp frag
cli tcp empty
                        1000 non-null int64
                        1000 non-null int64
cli win change
cli win zero
                        1000 non-null int64
cli_tcp_full
                        1000 non-null int64
cli_tcp_tot_bytes
                        1000 non-null int64
cli pl tot
                        1000 non-null int64
                        1000 non-null int64
cli pl change
                        1000 non-null int64
srv tcp pkts
                        1000 non-null int64
srv tcp ooo
                        1000 non-null int64
srv tcp retr
srv tcp frag
                        1000 non-null int64
                       1000 non-null int64
srv tcp empty
                        1000 non-null int64
srv win change
                        1000 non-null int64
srv win zero
                        1000 non-null int64
srv tcp full
srv tcp tot bytes
                        1000 non-null int64
srv pl tot
                        1000 non-null int64
                        1000 non-null int64
srv pl change
                        1000 non-null int64
srv tcp win
                        1000 non-null float64
srv tx time
cli tcp win
                        1000 non-null int64
```

client_latency 1000 non-null float64 application_latency 1000 non-null float64 cli_tx_time 1000 non-null float64 load_time 1000 non-null float64 server latency 1000 non-null float64 proxy 1000 non-null int64 sp_healthscore 1000 non-null int64 sp_req_duration 1000 non-null int64 sp_is_lat 1000 non-null int64 sp_error 1000 non-null int64 throughput 1000 non-null float64

dtypes: float64(7), int64(42)

memory usage: 382.9 KB

In [24]: # seaborn.pairplot(netcla) # toto nije dobry napad. Tych atributov je strasne vela a kazdy s kazdym je dost velko
plt.rcParams['figure.figsize'] = 18, 12
netcla.hist()
plt.rcParams['figure.figsize'] = 9, 6

/usr/local/lib/python3.5/dist-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sa ns-serif'] not found. Falling back to DejaVu Sans (prop.get family(), self.defaultFamily[fontext]))


```
In [25]: pom = netcla.throughput.hist(bins=50)
    pom.set_title('throughput')
```

Out[25]: <matplotlib.text.Text at 0x7ff3426aa320>

/usr/local/lib/python3.5/dist-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sa
ns-serif'] not found. Falling back to DejaVu Sans
 (prop.get_family(), self.defaultFamily[fontext]))

Rozne algoritmy mozu mat s takymto rozdelenim problem.

Logisticka regresia, neuronova siet alebo hocico, co pouziva vahy na atributoch

Aku mate dat vahu atributu ak ma rozsah od 0 do 10^6 a vacsina hodnot je sustredena na jednu stranu?

Velke hodnty vam budu velmi ovplyvnovat cely vypocet a nebudete vediet rozlysit tie male.

In [26]: from scipy.stats import boxcox

namiesto box-cox by sa dal pouzit logaritmus povodnej hodnoty, ale to je hack. box-cox sa dokaze postarat o to, aby sa vysledne rozelenie podobalo normalnemu

In [27]: # boxcox vrati transformovane data a parametre transformacie. Tie viem zafixovat a v tom pripade mi to vrati len
transformed, att = boxcox(netcla.throughput+1)# nevieme transformovat 0 a zaporne hodnoty. preto + 1
pom = pd.Series(transformed).hist(bins=50)
pom.set_title('throughput (box-cox)')

Out[27]: <matplotlib.text.Text at 0x7ff34113a2e8>

/usr/local/lib/python3.5/dist-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sa ns-serif'] not found. Falling back to DejaVu Sans (prop.get family(), self.defaultFamily[fontext]))

Toto sa uz trochu podoba na normalne rozdelenie ale nie je normalizovane

Zakladny typ normalizacie (skalovania) je vydelit na opravenie skaly

a odcitat nieco na opravu posunutia

```
In [28]: def normalization(data, shift, scale):
             return (np.array(data) - float(shift))/scale
```

- z-normalization: shift = mean, scale = std
- 0-1 normalization: shift = min, scale = max min
- kvartily na odstranenie outlierov

Nemusite to programovat. Sklearn uz ma nieco pripravene

- toto iste robi sklearn.preprocessing.StandardScaler pre vsetky atributy. Pozor ale na power law
- ak pouzijete RobustScaler, tak si viete poradit aj s outliermi (pouziva rozsah 1st quartile (25th quantile) and the 3rd quartile (75th quantile))

```
In [29]: z_transformed = normalization(transformed, np.mean(transformed), np.std(transformed))
    pom = pd.Series(z_transformed).hist(bins=50)
    pom.set_title('throughput (Z-normalization)')
```

Out[29]: <matplotlib.text.Text at 0x7ff3410b47b8>

/usr/local/lib/python3.5/dist-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sa
ns-serif'] not found. Falling back to DejaVu Sans
 (prop.get_family(), self.defaultFamily[fontext]))

Skalovanie / normalizacia nie je dolezita len pri trenovani modelu.

PCA (redukcia dimenzionality) napriklad to potrebuje tiez

PCA sa snazi vysvetlit varianciu v datach co najmensim poctom atributov. Vie ovahovat atributy datasetu podla toho kolko je v nich variancie a s takou vahou ich pouziva. Ak mate nenormalizovany atribut, ktory ma varianciu ovela vacsiu ako ostatne, tak bude vo vysledkej reprezentacii odrazeny velmi silno na ukor ostatnych. Nie vzdy to chcete.

Vyrabanie atributov kombinovanim

Niekedy vam samotny atribut velmi nepomoze. Ak ho ale nejak skombinujete s inym, tak uz moze.

Napriklad mate dataset aut, kde je spotreba a velkost nadrze. Tieto atributy su fajn, ale ak ich medzi sebou prenasobite, tak dostanete dojazd co moze tiez velmi dolezite pri vybere auta.

Na toto obycajne potrebujete domenovu znalost. Tento proces sa ale da do nejakej miery automatizovat.

Polynomialne kombinovanie

```
In [30]: X = np.arange(6).reshape(3, 2)
Out[30]: array([[0, 1],
                [2, 3],
                [4, 5]])
In [31]: from sklearn import preprocessing
         poly = preprocessing.PolynomialFeatures(3)
         poly.fit transform(X) # vytvorenie polynomialnych kombinacii
Out[31]: array([[
                                                                            0.,
                    1.,
                   27.],
                                               20.,
                                                      25.,
                    1.,
                                  5.,
                                        16.,
                                                             64.,
                  125.]])
```

a^0, a, b, a^2, a*b, b^2, a^3, a^2*b, a*b^2, b^3

Znovu si zoberiem data z Titanicu

In [32]: titanic = pd.read_csv('titanic/train.csv')
 titanic.head()

Out[32]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

nevieme pouzivat prazdne hodnoty pri vypocte polynomialnych vlastnosti rozdelime si data na zavisle a nezavisle premenne

In [33]: titanic_X = titanic.dropna().reindex(columns=[x for x in titanic.columns.values if x != 'Survived']).reset_index
titanic_y = titanic.dropna().reindex(columns=['Survived']).reset_index(drop=True)

In [35]: titanic_X

Out[35]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
1	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
2	7	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
3	11	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
4	12	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
5	22	2	Beesley, Mr. Lawrence	male	34.0	0	0	248698	13.0000	D56	S
6	24	1	Sloper, Mr. William Thompson	male	28.0	0	0	113788	35.5000	A6	S
7	28	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000	C23 C25 C27	S
8	53	1	Harper, Mrs. Henry Sleeper (Myna Haxtun)	female	49.0	1	0	PC 17572	76.7292	D33	С
9	55	1	Ostby, Mr. Engelhart Cornelius	male	65.0	0	1	113509	61.9792	B30	С
10	63	1	Harris, Mr. Henry Birkhardt	male	45.0	1	0	36973	83.4750	C83	S
11	67	2	Nye, Mrs. (Elizabeth Ramell)	female	29.0	0	0	C.A. 29395	10.5000	F33	S
12	76	3	Moen, Mr. Sigurd Hansen	male	25.0	0	0	348123	7.6500	F G73	S
13	89	1	Fortune, Miss. Mabel Helen	female	23.0	3	2	19950	263.0000	C23 C25 C27	S
14	93	1	Chaffee, Mr. Herbert Fuller	male	46.0	1	0	W.E.P. 5734	61.1750	E31	S
15	97	1	Goldschmidt, Mr. George B	male	71.0	0	0	PC 17754	34.6542	A5	С
16	98	1	Greenfield, Mr. William Bertram	male	23.0	0	1	PC 17759	63.3583	D10 D12	С
17	103	1	White, Mr. Richard Frasar	male	21.0	0	1	35281	77.2875	D26	S
18	111	1	Porter, Mr. Walter Chamberlain	male	47.0	0	0	110465	52.0000	C110	S
19	119	1	Baxter, Mr. Quigg Edmond	male	24.0	0	1	PC 17558	247.5208	B58 B60	С

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
20	124	2	Webber, Miss. Susan	female	32.5	0	0	27267	13.0000	E101	S
21	125	1	White, Mr. Percival Wayland	male	54.0	0	1	35281	77.2875	D26	S
22	137	1	Newsom, Miss. Helen Monypeny	female	19.0	0	2	11752	26.2833	D47	S
23	138	1	Futrelle, Mr. Jacques Heath	male	37.0	1	0	113803	53.1000	C123	S
24	140	1	Giglio, Mr. Victor	male	24.0	0	0	PC 17593	79.2000	B86	С
25	149	2	Navratil, Mr. Michel ("Louis M Hoffman")	male	36.5	0	2	230080	26.0000	F2	S
26	152	1	Pears, Mrs. Thomas (Edith Wearne)	female	22.0	1	0	113776	66.6000	C2	S
27	171	1	Van der hoef, Mr. Wyckoff	male	61.0	0	0	111240	33.5000	B19	S
28	175	1	Smith, Mr. James Clinch	male	56.0	0	0	17764	30.6958	A7	С
29	178	1	Isham, Miss. Ann Elizabeth	female	50.0	0	0	PC 17595	28.7125	C49	С
153	738	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292	B101	С
154	742	1	Cavendish, Mr. Tyrell William	male	36.0	1	0	19877	78.8500	C46	S
155	743	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	С
156	746	1	Crosby, Capt. Edward Gifford	male	70.0	1	1	WE/P 5735	71.0000	B22	S
157	749	1	Marvin, Mr. Daniel Warner	male	19.0	1	0	113773	53.1000	D30	S
158	752	3	Moor, Master. Meier	male	6.0	0	1	392096	12.4750	E121	S
159	760	1	Rothes, the Countess. of (Lucy Noel Martha Dye	female	33.0	0	0	110152	86.5000	B77	S
160	764	1	Carter, Mrs. William Ernest (Lucile Polk)	female	36.0	1	2	113760	120.0000	B96 B98	S
161	766	1	Hogeboom, Mrs. John C (Anna Andrews)	female	51.0	1	0	13502	77.9583	D11	S
162	773	2	Mack, Mrs. (Mary)	female	57.0	0	0	S.O./P.P. 3	10.5000	E77	S
163	780	1	Robert, Mrs. Edward Scott (Elisabeth Walton Mc	female	43.0	0	1	24160	211.3375	В3	S
164	782	1	Dick, Mrs. Albert Adrian (Vera Gillespie)	female	17.0	1	0	17474	57.0000	B20	S

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
165	783	1	Long, Mr. Milton Clyde	male	29.0	0	0	113501	30.0000	D6	S
166	790	1	Guggenheim, Mr. Benjamin	male	46.0	0	0	PC 17593	79.2000	B82 B84	С
167	797	1	Leader, Dr. Alice (Farnham)	female	49.0	0	0	17465	25.9292	D17	S
168	803	1	Carter, Master. William Thornton II	male	11.0	1	2	113760	120.0000	B96 B98	S
169	807	1	Andrews, Mr. Thomas Jr	male	39.0	0	0	112050	0.0000	A36	S
170	810	1	Chambers, Mrs. Norman Campbell (Bertha Griggs)	female	33.0	1	0	113806	53.1000	E8	S
171	821	1	Hays, Mrs. Charles Melville (Clara Jennings Gr	female	52.0	1	1	12749	93.5000	B69	S
172	824	3	Moor, Mrs. (Beila)	female	27.0	0	1	392096	12.4750	E121	S
173	836	1	Compton, Miss. Sara Rebecca	female	39.0	1	1	PC 17756	83.1583	E49	С
174	854	1	Lines, Miss. Mary Conover	female	16.0	0	1	PC 17592	39.4000	D28	S
175	858	1	Daly, Mr. Peter Denis	male	51.0	0	0	113055	26.5500	E17	S
176	863	1	Swift, Mrs. Frederick Joel (Margaret Welles Ba	female	48.0	0	0	17466	25.9292	D17	S
177	868	1	Roebling, Mr. Washington Augustus II	male	31.0	0	0	PC 17590	50.4958	A24	S
178	872	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	11751	52.5542	D35	S
179	873	1	Carlsson, Mr. Frans Olof	male	33.0	0	0	695	5.0000	B51 B53 B55	S
180	880	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	11767	83.1583	C50	С
181	888	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
182	890	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С

183 rows × 11 columns

In [36]: poly = preprocessing.PolynomialFeatures(2)

```
# pozor na prilis velke cislo. Vznikne vela atributov a hrozi ze budete mat malo dat na natrenovanie
polynomial titanic = poly.fit_transform(titanic_X)
ValueError
                                          Traceback (most recent call last)
<ipython-input-36-b0714673e126> in <module>()
      1 poly = preprocessing.PolynomialFeatures(2)
      2 # pozor na prilis velke cislo. Vznikne vela atributov a hrozi ze budete mat malo dat na natrenovanie
----> 3 polynomial titanic = poly.fit transform(titanic X)
/usr/local/lib/python3.5/dist-packages/sklearn/base.py in fit transform(self, X, y, **fit params)
    516
                if y is None:
    517
                    # fit method of arity 1 (unsupervised transformation)
--> 518
                    return self.fit(X, **fit params).transform(X)
    519
                else:
    520
                    # fit method of arity 2 (supervised transformation)
/usr/local/lib/python3.5/dist-packages/sklearn/preprocessing/data.py in fit(self, X, y)
   1307
                self : instance
   1308
-> 1309
                n samples, n features = check array(X).shape
   1310
                combinations = self. combinations(n features, self.degree,
   1311
                                                  self.interaction only,
/usr/local/lib/python3.5/dist-packages/sklearn/utils/validation.py in check array(array, accept sparse, dtype,
 order, copy, force all finite, ensure 2d, allow nd, ensure min samples, ensure min features, warn on dtype, es
timator)
    415
                # make sure we actually converted to numeric:
                if dtype numeric and array.dtype.kind == "0":
    416
--> 417
                    array = array.astype(np.float64)
                if not allow nd and array.ndim >= 3:
    418
    419
                    raise ValueError("Found array with dim %d. %s expected <= 2."
ValueError: could not convert string to float: 'C'
```

Nemozeme pouzivat kategoricke atributy. Len numericke

```
In [37]: polynomial titanic = poly.fit transform(titanic X. get numeric data())
          polynomial = pd.DataFrame(polynomial titanic)
In [38]:
           polynomial.head()
Out[38]:
                                                                                  20
                                                                                                 22
                                                                                                                  25
                                                                                                                       26
                                                                                                                                   27
                   2.0 1.0 38.0 1.0 0.0 71.2833
                                                              76.0 ... 1444.0 38.0 0.0 2708.7654 1.0 0.0 71.2833 0.0
                                                                                                                           5081.308859
                                                  16.0
                                                             140.0 ... 1225.0 35.0 0.0
                                                                                       1858.5000 1.0 0.0
                                                                                                                 0.0
                                                                                                                           2819.610000
           1 1.0
                   4.0 1.0 35.0 1.0
                                    0.0
                                        53.1000
                                                                                                         53.1000
                                        51.8625
                                                             378.0 ...
                                                                              0.0 0.0
                                                                                       2800.5750 0.0 0.0
                   7.0 1.0 54.0 0.0
                                                  49.0
                                                                      2916.0
                                                                                                          0.0000
                                                                                                                           2689.718906
                                        16.7000
                                                 121.0
                                                       33.0
                                                              44.0
                                                                        16.0
                                                                               4.0 4.0
                                                                                         66.8000
                                                                                                 1.0 1.0
                                                                                                         16.7000
                                                                                                                            278.890000
           4 1.0 12.0 1.0 58.0 0.0 0.0 26.5500
                                                 144.0
                                                       12.0 696.0 ... 3364.0
                                                                              0.0 0.0 1539.9000 0.0 0.0
                                                                                                          0.0000
                                                                                                                            704.902500
          5 rows × 28 columns
In [39]: titanic X. get numeric data().shape
Out[39]: (183, 6)
```

ak by ste chceli zachovat rozumne nazvy stlpcov: http://stackoverflow.com/questions/36728287/sklearn-preprocessing-polynomialfeatures-how-to-keep-column-names-headers-of)

Dobre, skusme natrenovat model a pozriet sa ako nam tieto polynomialne vlastnosti zmenia uspesnost

Najskor povodne data

```
In [40]: # berieme Len numericke data aby sme mali rovnake podmienky
         original = titanic.dropna(). get numeric data()
         original.head()
Out[40]:
             Passengerld Survived Pclass Age SibSp Parch
                                                            Fare
           1
                      2
                                     1 38.0
                                                       0 71.2833
           3
                                     1 35.0
                                                       0 53.1000
                                     1 54.0
                                                       0 51.8625
          10
                     11
                                                       1 16.7000
          11
                     12
                                     1 58.0
                                                       0 26.5500
In [41]: from sklearn.model selection import cross val score
         from sklearn.tree import DecisionTreeClassifier
         clf = DecisionTreeClassifier(max depth=5)
         cross validation results = cross val score(clf,
                                                      original[original.columns[original.columns != 'Survived']],
                                                      original['Survived'], cv=6)
          (cross validation results.mean(), cross validation results.std())
Out[41]: (0.48870967741935484, 0.16332615999783529)
In [42]: cross_validation_results
Out[42]: array([ 0.35483871, 0.4516129 , 0.22580645, 0.56666667, 0.7
                 0.63333333])
```

Tramtadada vysledok pre nase kombinovane data

```
In [43]: # pricapime naspat info o triedach
          polynomial['Survived'] = titanic y
          polynomial.head()
Out[43]:
                                                                    19 20
                                                                                  21 22 23
                                                                                                  24 25
                                                                                                           26
                                                                                                                      27 Survived
           0 1.0
                  2.0 1.0 38.0 1.0 0.0 71.2833
                                                      2.0
                                                           76.0 ... 38.0 0.0 2708.7654 1.0 0.0 71.2833 0.0
                                                                                                           0.0
                                                                                                               5081.308859
                                                 4.0
                  4.0 1.0 35.0 1.0 0.0 53.1000
                                                16.0
                                                      4.0 140.0 ... 35.0 0.0 1858.5000 1.0 0.0
                                                                                                              2819.610000
           1 1.0
                                                                                             53.1000 0.0
                  7.0 1.0 54.0 0.0 0.0 51.8625
                                                49.0
                                                      7.0 378.0 ...
                                                                    0.0 0.0
                                                                            2800.5750 0.0 0.0
                                                                                              0.0000 0.0
                                                                                                          0.0
                                                                                                               2689.718906
           3 1.0 11.0 3.0
                           4.0 1.0 1.0 16.7000
                                              121.0
                                                     33.0
                                                           44.0 ...
                                                                    4.0 4.0
                                                                              66.8000
                                                                                              16.7000 1.0
                                                                                                         16.7
                                                                                                                278.890000
           4 1.0 12.0 1.0 58.0 0.0 0.0 26.5500
                                              144.0 12.0 696.0 ...
                                                                    0.0 0.0 1539.9000 0.0 0.0
                                                                                                                704.902500
          5 rows × 29 columns
In [44]: from sklearn.model_selection import cross_val_score
          # clf = LogisticRegression()
          from sklearn.tree import DecisionTreeClassifier
          clf = DecisionTreeClassifier(max depth=5)
          cross validation results = cross val score(clf,
                                                        polynomial[polynomial.columns[polynomial.columns != 'Survived']],
                                                        polynomial['Survived'], cv=6)
          (cross_validation_results.mean(), cross_validation_results.std())
Out[44]: (0.5956989247311828, 0.096158936277069368)
In [45]: cross validation results
Out[45]: array([ 0.41935484, 0.64516129, 0.70967742, 0.66666667, 0.533333333,
                             1)
                  0.6
```

Nanestastie tieto Polynomialne vlastnosti vyrabaju len mocniny a nasobky

Daju sa ale spravit vlastne transformatory

Varovanie na koniec

- Ked budete robit hociake operacie nad datami, tak si dajte pozor aby ste robili rovnake operacie nad trenovacou aj testovacou sadou (transformacie atributov, vytvaranie novych, filtrovanie ...)
- Dajte si pozor aby vam do trenovania nepretiekli udaje z buducnosti

ked idem napriklad normalizovat nieco priemerom, tak hodnotu priemeru pocitam len nad trenovacimi datami a nie nad vsetkymi Pri tomto vedia velmi pomoct tzv. Pipeliny> http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html)

ked budete normalizovat udaje, tak na normalizovanie testovacej vzorky pouzite koeficienty z trenovacej vzorky

Na co by bolo dobre sa poziret niekedy nabuduce

Co su suvisiace temy, ktore sme teraz nestihli, ale ktore sa vam mozu velmi hodit v buducnosti

Transformacia kategorickych atributov na numericke

Vyber atributov

Extrakcia atributov

Nevyvazene datasety

Pipeline