ACT-11302: Cálculo Actuarial III -Notas de Clase-

Juan Carlos Martínez-Ovando

ITAM

23 de agosto de 2016

Agenda

Modelo estadístico

Definición Verosimilitud Conjugacidad Predicción

Modelo estadístico

Definición

Notación

- N es una variable aleatoria observable discreta para la frecuencia de siniestros
- lacktriangleq X es una variable aleatoria observable continua para la severidad individual
- $lackbox{ }Y$ se define como una modificación de la variable aleatoria X (en términos de la póliza)
- $ightharpoonup S = \sum_{k=1}^N X_j$ se define como el monto agregado de siniestros de un portafolio.

Modelo estadístico

Sin pérdida de generalidad, refirámonos a X. El modelo estadístico se define como la distribución de probabilidades de X indizada por θ , i.e.

$$X \sim F(x|\theta).$$
 (1)

El soporte de X, denotado por \mathcal{X} se define como,

$$\mathcal{X} = \{x : F(x|\theta) > 0\}. \tag{2}$$

El parámetro θ , toma valores en el espacio parametral Θ (generalmente de dimensión finita).

Definición

Notación

- ightharpoonup N es una variable aleatoria observable discreta para la frecuencia de siniestros
- lacktriangleq X es una variable aleatoria observable continua para la severidad individual
- $lackbox{ }Y$ se define como una modificación de la variable aleatoria X (en términos de la póliza)
- $ightharpoonup S = \sum_{k=1}^{N} X_j$ se define como el monto agregado de siniestros de un portafolio.

Modelo estadístico

Sin pérdida de generalidad, refirámonos a X. El modelo estadístico se define como la distribución de probabilidades de X indizada por θ , i.e.

$$X \sim F(x|\theta).$$
 (1)

El soporte de X, denotado por $\mathcal X$ se define como,

$$\mathcal{X} = \{x : F(x|\theta) > 0\}. \tag{2}$$

El parámetro θ , toma valores en el espacio parametral Θ (generalmente de dimensión finita).

Definición

Densidades y masa de probabilidad

- 1. Cuando X es absolutamente continua, $F(x|\theta)$ admite una densidad, $f(x|\theta)$ y $\mathbb{P}(X=x)=0$ para todo $x\in\mathcal{X}.$
- 2. Cuando X es discreta, $\mathbb{P}(X=x)>0$ para todo $x\in\mathcal{X}$. Los valores de x que satisfacen lo anterior se llaman átomos.
- $3.\,$ Cuando X es del tipo mixta, admite una parte absolutamente continia al mismo tiempo de admitir átomos, i.e.

$$\mathbb{P}(X \le x) = F(x|\theta) = F_c(x|\theta_c) + \sum_{x_k \le x} p(X = x_k|\theta_d), \tag{3}$$

donde

- $ightharpoonup F_c$ es el componente continuo de la distribución
- $\{x_k\}_{k>1}$ son los átomos de la distribución
- $m{ heta}_c$ y $m{ heta}_d$ son los parámetros asociados con la parte continua y discreta, respectivamente.

Consideremos un conjunto de datos $X_1 = x_1, \dots, X_n = x_n$ en el caso continuo.

Función de verosimilitud

► Enfoque frecuentista: Independencia

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n; \theta) = \prod_{i=1}^n f(x_i; \theta). \tag{4}$$

► Enfoque bayesiano: Independencia condicional

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \int \prod_{i=1}^n f(x_i | \theta) \pi(\theta) d\theta.$$
 (5)

Tarea

Cómo será la expresión de la función de verosimilitud en el caso discreto y tipo mixta?

Consideremos un conjunto de datos $X_1 = x_1, \dots, X_n = x_n$ en el caso continuo.

Función de verosimilitud

► Enfoque frecuentista: Independencia

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n; \theta) = \prod_{i=1}^n f(x_i; \theta). \tag{4}$$

► Enfoque bayesiano: Independencia condicional

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \int \prod_{i=1}^n f(x_i | \theta) \pi(\theta) d\theta.$$
 (5)

Tarea.

Cómo será la expresión de la función de verosimilitud en el caso discreto y tipo mixta?

Tipos de datos

- Las expresiones anteriores son correctas cuando los datos son exactos.
- Cuando trabajamos con datos agrupados en \Re_+ , modificamos el soporte $\mathcal X$ por una partici ón $\{c_j\}_{j=1}^J$ tal que,

$$c_1 < c_2 < \ldots < c_J, \tag{6}$$

sustituyendo \mathcal{X} por el conjunto,

$$C = \{(c_j, c_{j+1}] : c_j < c_{j+1}, j = 1, \dots, J\}.$$
(7)

Tarea

Cómo será la expresión de la función de verosimilitud para datos agrupados?

Tipos de datos

- Las expresiones anteriores son correctas cuando los datos son exactos.
- Cuando trabajamos con datos agrupados en \Re_+ , modificamos el soporte $\mathcal X$ por una partici ón $\{c_j\}_{j=1}^J$ tal que,

$$c_1 < c_2 < \ldots < c_J, \tag{6}$$

sustituyendo \mathcal{X} por el conjunto,

$$C = \{(c_j, c_{j+1}] : c_j < c_{j+1}, j = 1, \dots, J\}.$$
(7)

Tarea

Cómo será la expresión de la función de verosimilitud para datos agrupados?

Distribuciones conjugadas

En el análisis bayesiano de datos, el uso de familias conjugadas entre $f(x|\theta)$ y $\pi(\theta)$ es de utilidad para obtener expresiones analíticas cerradas en el proceso de aprendizaje.

Familia Exponencial

Las familias conjugadas están definidas dentro de la Familia Exponencial de Distribuciones (lineal), para las que la función de densidad o masa de probabilidad admiten la siguiente expresión,

$$f(x|\theta) = p(x)q(\theta)^{-1}exp\{-\theta x\},\tag{8}$$

considerando que el soporte ${\mathcal X}$ no depende de $\theta.$

Prior conjugada

Las distribución inicial conjugada para la representación atenrior toma la forma,

$$\pi(\theta) = c(k_0, m_0)q(\theta)^{-k_0} \exp\{-\theta m_0\},\tag{9}$$

donde k_0 y m_0 son hiper parámetros.

Distribuciones conjugadas

En el análisis bayesiano de datos, el uso de familias conjugadas entre $f(x|\theta)$ y $\pi(\theta)$ es de utilidad para obtener expresiones analíticas cerradas en el proceso de aprendizaje.

Familia Exponencial

Las familias conjugadas están definidas dentro de la Familia Exponencial de Distribuciones (lineal), para las que la función de densidad o masa de probabilidad admiten la siguiente expresión,

$$f(x|\theta) = p(x)q(\theta)^{-1}exp\{-\theta x\},\tag{8}$$

considerando que el soporte ${\mathcal X}$ no depende de $\theta.$

Prior conjugada

Las distribución inicial conjugada para la representación atenrior toma la forma,

$$\pi(\theta) = c(k_0, m_0)q(\theta)^{-k_0} \exp\{-\theta m_0\},\tag{9}$$

donde k_0 y m_0 son hiper parámetros.

Predicción

Enfoque frecuentista

Bajo el enfoque frecuentista, la predicción de un valor futuro de X, X^f , se obtiene a través de la imputación del EMV de θ en el modelo, i.e.

$$X^f|x_1...,x_n \sim f(x^f|\widehat{\theta}_n),$$
 (10)

donde $\widehat{\theta}_n = \widehat{\theta}_n(x_1 \dots, x_n)$.

Enfoque bayesiano

Bajo el enfoque bayesiano, la predicción se obtiene usando argumentos probabilistas, como

$$p(x^f|x_1...,x_n) = \int_{\Theta} f(x^f|\theta)\pi(\theta|x_1...,x_n)d\theta,$$
 (11)

donde $\pi(\theta|x_1\ldots,x_n)\propto f(x_1\ldots,x_n|\theta)\pi(\theta)$ es la distribución de θ actualizada con la información contenida en $x_1\ldots,x_n$.

Tarea.

Muestra que el modelo Bernoulli-beta, visto en las clases previas, es un tipo de distribuciones conjugadas.

Predicción

Enfoque frecuentista

Bajo el enfoque frecuentista, la predicción de un valor futuro de X, X^f , se obtiene a través de la imputación del EMV de θ en el modelo, i.e.

$$X^f|x_1...,x_n \sim f(x^f|\widehat{\theta}_n),$$
 (10)

donde $\widehat{\theta}_n = \widehat{\theta}_n(x_1 \dots, x_n)$.

Enfoque bayesiano

Bajo el enfoque bayesiano, la predicción se obtiene usando argumentos probabilistas, como

$$p(x^f|x_1...,x_n) = \int_{\Theta} f(x^f|\theta)\pi(\theta|x_1...,x_n)d\theta,$$
 (11)

donde $\pi(\theta|x_1,\ldots,x_n)\propto f(x_1,\ldots,x_n|\theta)\pi(\theta)$ es la distribución de θ actualizada con la información contenida en x_1,\ldots,x_n .

Tarea

Muestra que el modelo Bernoulli-beta, visto en las clases previas, es un tipo de distribuciones conjugadas.

Predicción

Enfoque frecuentista

Bajo el enfoque frecuentista, la predicción de un valor futuro de X, X^f , se obtiene a través de la imputación del EMV de θ en el modelo, i.e.

$$X^f|x_1\ldots,x_n\sim f(x^f|\widehat{\theta}_n),$$
 (10)

donde $\widehat{\theta}_n = \widehat{\theta}_n(x_1 \dots, x_n)$.

Enfoque bayesiano

Bajo el enfoque bayesiano, la predicción se obtiene usando argumentos probabilistas, como

$$p(x^f|x_1...,x_n) = \int_{\Theta} f(x^f|\theta)\pi(\theta|x_1...,x_n)d\theta,$$
 (11)

donde $\pi(\theta|x_1,\ldots,x_n)\propto f(x_1,\ldots,x_n|\theta)\pi(\theta)$ es la distribución de θ actualizada con la información contenida en x_1,\ldots,x_n .

Tarea

Muestra que el modelo Bernoulli-beta, visto en las clases previas, es un tipo de distribuciones conjugadas.

Gracias por su atención...

juan.martinez.ovando@itam.mx