

k-Anonymität

Thomas Maier, Kai Sonnenwald, Tom Petersen

Universität Hamburg Fachbereich Informatik

Agenda

- 1. Motivation & Abgrenzung
- 2. k-Anonymität
 - Generalisierung
 - Unterdrückung
- 3. Schwächen der k-Anonymität
- 4. I-Diversity
- 5. Schwächen der I-Diversity
- 6. t-Closeness
- 7. Literaturverzeichnis

Motivation

Einführendes Beispiel, dass das Setting und in die Begriffe einführt

Identifier	Nicht-sensibel			Sensibel
Name	Geschlecht	PLZ	Geburtsdatum	Erkrankung
Mia Schulz	w	21989	20.5.1944	Osteoporose
Elias Wagner	m	21727	25.8.1983	Gicht
Hanna Weber	w	20817	28.3.1953	Osteoporose
Leon Schulz	m	21220	28.10.1994	Bronchitis
Sofia Koch	w	20270	21.1.1965	Gicht
Leon Schmidt	m	20188	5.5.1958	Hepatitis
Hanna Schäfer	w	21462	11.2.1999	Epilepsie
Elias Schneider	m	20388	3.8.1971	Multiple Skle
Mia Fischer	w	21896	14.12.1999	Diabetes
Ben Meyer	m	21024	8.1.1982	Diabetes

Anonym?

Sweeney - Beispiel [Swe02]

_

- Group Insurance Commission veröffentlichte Patientendaten in anonymer Form
- Cambridge, Massachusetts voter registration list mit den öffentlichen Informationen der GIC abgeglichen
- Beispielsweise konnte Massachusetts governor William Weld eindeutig identifiziert werden.
- -> [Swe00], [Gol06] Studien über die Eindeutigkeit von demographischen Faktoren in der U.S.-Bevölkerung MAL REINSCHAUEN

Abgrenzung

Abgrenzung zu anderen Konzepten (statistische Datenbanken, Authentifikation, ...)

k-Anonymität

Notizen identifier, quasi-identifier, sensitive attributes k-anonymity

Begriffe

- Explicit identifier Attribut, das ein Individuum (nahezu) eindeutig identifiziert. Bsp: Name, Adresse, Steuernummer, ...
- Sensitive attribute Attribut, dessen Wert für ein Individuum in einer Datenmenge nicht herausgefunden werden darf.
- Quasi identifier Attributmenge, die ein Individuum in Kombination identifizieren kann. Formal in [Swe02] p. 7 auch [MKGV07] p. 3: Eine Menge nicht-sensibler Attribute $\{A_i,\ldots,A_j\}$ einer Tabelle, deren Attribute mit einer externen Datenquelle verknüpft werden können, um mindestens ein Individuum der Gesamtmenge eindeutig zu identifizieren.

k-Anonymität

Informell: Eine Tabelle (Datensatz?) erfüllt k-Anonymität, wenn jede Zeile (jeder Eintrag) ununterscheidbar von k-1 anderen Zeilen im Bezug auf jede "quasi identifier"-Menge ist.

Formal: Sei $T(A_1, \ldots, A_n)$ eine Tabelle und $Q_T = \{A_i, \ldots, A_j\}$ der zugehörige quasi identifier. T erfüllt k-Anonymität genau dann, wenn jede Belegung von Werten in $T[Q_T]$ mindestens k mal auftritt, wobei $T[Q_T]$ die duplikatenerhaltende Projektion von T auf die Attribute des quasi identifiers beschreibt.

Generalisierung

s. Samarati, Sweeney Kapitel 3

domain, ground domain, generalization (partial ordering on domains) generalized table

Suppression

...

in combination with generalization

Schwächen der k-Anonymität

Unsorted matching attack Veröffentlichung mehrerer *k*—anonymer Tabellen mit derselben Sortierung ausgehend von einer nicht-öffentlichen Tabelle. [Swe02] p.10 Complementary release attack Veröffentlichung mehrerer *k*—anonymer Tabellen unterschiedlicher Generalisierung, die zusammengeführt die k-Anonymität verletzen. [Swe02] p.11 Temporal attack Dynamische Tabellen können k-Anonymität verletzen. [Swe02] p.12 Homogeneity attack Gleichheit der sensitive attributes einer Gruppe, die sich in den Werten des guasi identifiers gleicht, leakt das sensitive attribute eines Individuums.

Background knowledge attack Nutzen von Hintergrundwissen, um mit hoher Wahrscheinlichkeit auf den Wert des sensitive attributes eines Individuumsin einer Gruppe

[MKGV07] p. 2

I-Diversity

Schwächen der I-Diversity

Skewness attack similarity attack

t-Closeness

Literaturverzeichnis I

GOLLE, Philippe:

Revisiting the uniqueness of simple demographics in the US population.

In: Proceedings of the 5th ACM workshop on Privacy in electronic society ACM, 2006, S. 77–80

MACHANAVAJJHALA, Ashwin; KIFER, Daniel; GEHRKE, Johannes; VENKITASUBRAMANIAM, Muthuramakrishnan: I-diversity: Privacy beyond k-anonymity.

In: ACM Transactions on Knowledge Discovery from Data (TKDD) 1 (2007), Nr. 1, S. 3

Literaturverzeichnis II

SAMARATI, Pierangela; SWEENEY, Latanya:

Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression / Technical report, SRI International.

1998. -

Forschungsbericht

SWEENEY, Latanya: Simple Demographics Often Identify People Uniquely. (2000)

SWEENEY, Latanya:

k-anonymity: A model for protecting privacy.

In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002), Nr. 05, S. 557–570