University of Toronto Department of Mathematics

MAT224H1F

Linear Algebra II

Midterm Examination

October 23, 2012

S. Uppal

Duration: 1 hour 50 minutes

Last Name:	
Given Name:	
Student Number:	
Tutorial Group:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY		
Question	Mark	
1	/10	
2	/10	
3	/10	
4	/10	
5	/10	
6	/10	
TOTAL	/60	

[10] 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation that has the matrix

$$\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

relative to the bases $\alpha = \{(1, -1, 1), (0, 1, 0), (1, 0, 0)\}$ of \mathbb{R}^3 and $\beta = \{(3, 2), (2, 1)\}$ of \mathbb{R}^2 . Find T(x, y, z) for any $(x, y, z) \in \mathbb{R}^3$.

Solution: Using the information in the question, we have that:

$$\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix} = [T]_{\beta\alpha} = ([T(1, -1, 1)]_{\beta} \ [T(0, 1, 0)]_{\beta} \ [T(1, 0, 0)]_{\beta})$$

Therefore, we get:

$$T(1,-1,1) = 2(3,2) + 1(2,1) = (8,5)$$

$$T(0,1,0) = 3(3,2) + 2(2,1) = (13,8)$$

$$T(1,0,0) = 1(3,2) + 1(2,1) = (5,3)$$

$$T(0,0,1) = T(1,-1,1) + T(0,1,0) - T(1,0,0) = (8,5) + (13,8) - (5,3) = (16,10)$$

$$T(x,y,z) = xT(1,0,0) + yT(0,1,0) + zT(0,0,1)$$

$$= x(5,3) + y(13,8) + z(16,10) = (5x + 13y + 16z, 3x + 8y + 10z)$$

[10] **2.** Let $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformation defined by

$$T(a + bx + cx^2) = (a + b, b + c, a - c).$$

Find bases for the kernel and image of T.

Solution: Take the bases $\alpha = \{1, x, x^2\}$ of $P_2(\mathbb{R})$ and $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ of \mathbb{R}^3 . Then, from the definition of T:

$$T(1) = (1,0,1) = (1,0,0) + (0,0,1)$$

$$T(x) = (1,1,0) = (1,0,0) + (0,1,0)$$

$$T(x^2) = (0,1,-1) = (0,1,0) - (0,0,1)$$

So, we get the following matrix corresponding to T in bases α and β , and we row-reduce it:

$$[T]_{\beta\alpha} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \xrightarrow{R3-R1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{R3+R2} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R1-R2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The leading ones in the reduced matrix appear in the first and second column, so the first and second column of the original matrix give a basis for its image: $\text{Im}[T]_{\beta\alpha} = \text{span}\{(1,0,1),(1,1,0)\}$. From this, we can recover a basis $\{v_1,v_2\}$ for the image of T:

$$[v_1]_{\beta} = (1,0,1) \Rightarrow v_1 = 1(1,0,1) + 0(0,1,0) + 1(0,0,1) = (1,0,1)$$
$$[v_2]_{\beta} = (1,1,0) \Rightarrow v_2 = 1(1,0,0) + 1(0,1,0) + 0(0,0,1) = (1,1,0)$$

Furthermore, the kernel of the reduced version of $[T]_{\beta\alpha}$ is the same as the kernel of $[T]_{\beta\alpha}$. If (x, y, z) is such a vector, then:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

This gives us the equations x - z = 0, y + z = 0 or equivalently x = z, y = -z. So, the only vectors in the kernel are scalar multiples of (1, -1, 1), which gives a basis for $Ker[T]_{\beta\alpha}$. So, KerT is also one dimensional with basis given by the polynomial h(x) such that $[h(x)]_{\alpha} = (1, -1, 1)$. Namely, $h(x) = (1)1 + (-1)x + (1)x^2 = x^2 - x + 1$.

To summarize, a basis for the image of T is $\{(1,1,0),(1,0,1)\}$ and a basis for the kernel of T is $\{x^2-x+1\}$.

[10] **3.** Let $W = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - 2y + z = 0\}$. Show W is isomorphic to \mathbb{R}^2 and find an isomorphism $T: W \to \mathbb{R}^2$.

Solution: The equation for W tells us that points in W must satisfy z = 2y - 3x so W consists of vectors (x, y, 2y - 3x) where $x, y \in \mathbb{R}$. We can express this vector (x, y, 2y - 3x) = x(1, 0, -3) + y(0, 1, 2). So, any vector in W is a linear combination of (1, 0, -3) and (0, 1, 2). Furthermore, these two vectors are linearly independent since $a_1(1, 0, 3) + a_2(0, 1, 2) = (0, 0, 0)$ implies $a_1 = 0, a_2 = 0, 3a_1 + 2a_2 = 0$. Therefore, $\alpha = \{(1, 0, -3), (0, 1, 2)\}$ is a basis for W. So, both W and \mathbb{R}^2 are two-dimensional and hence isomorphic. To construct an isomorphism between them, take the standard basis $\beta = \{(1, 0), (0, 1)\}$ of \mathbb{R}^2 . Then define a map $T: W \to \mathbb{R}^2$ by T(1, 0, -3) = (1, 0) and T(0, 1, 2) = (0, 1) and extend T to all of W by requiring it to be a linear transformation, namely, for any $(x, y, z) \in W$, (x, y, z) = a(1, 0, -3) + b(0, 1, 2), then T(x, y, z) = T(a(1, 0, -3) + b(0, 1, 2)) = aT(1, 0, -3) + bT(0, 1, 2) = a(1, 0) + b(0, 1) = (a, b).

We thus have a linear transformation and we need to show that it is injective and surjective, which will mean it is an isomorphism. Since W and \mathbb{R}^2 are both of dimension 2, T is surjective if and only if it is injective, so it suffices to prove it is injective. To show this, we will prove that $KerT = \{0\}$. For any vector in the kernel, (x, y, z) = a(1, 0, -3) + b(0, 1, 2), we must have (0, 0) = T(x, y, z) = (a, b). This means a = b = 0 and so (x, y, z) = 0(1, 0, -3) + 0(0, 1, 2) = (0, 0, 0). Hence, T is injective and so an isomorphism.

[10] **4.** Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be the linear transformation whose matrix with respect to some basis α for \mathbb{C}^2 is

$$\begin{bmatrix} 1+i & 1-i \\ 1-i & 2 \end{bmatrix}.$$

Find the matrix of T^{-1} with respect to α , if possible.

Solution: Given $A = [T]_{\alpha\alpha}$, we need to reduce [A|I] to find A^{-1} :

$$[A|I] = \begin{bmatrix} 1+i & 1-i & 1 & 0 \\ 1-i & 2 & 0 & 1 \end{bmatrix} \xrightarrow{(1-i)/2} \overset{R_1}{R_1} \begin{bmatrix} 1 & -i & (1-i)/2 & 0 \\ 1-i & 2 & 0 & 1 \end{bmatrix}$$

$$R_2 \xrightarrow{(1-i)R_1} \begin{bmatrix} 1 & -i & (1-i)/2 & 0 \\ 0 & 3+i & i & 1 \end{bmatrix} \xrightarrow{(3-i)/10} \overset{R_2}{R_2} \begin{bmatrix} 1 & -i & (1-i)/2 & 0 \\ 0 & 1 & (3i+1)/10 & (3-i)/10 \end{bmatrix}$$

$$R_1 \xrightarrow{+iR_2} \begin{bmatrix} 1 & 0 & (1-2i)/5 & (3i+1)/10 \\ 0 & 1 & (3i+1)/10 & (3-i)/10 \end{bmatrix}$$

So, we get:

$$[T^{-1}]_{\alpha\alpha} = [T]_{\alpha\alpha}^{-1} = \begin{bmatrix} (1-2i)/5 & (3i+1)/10 \\ (3i+1)/10 & (3-i)/10 \end{bmatrix}$$

[10]5. Let $T: \mathbb{Z}_3^3 \to \mathbb{Z}_3^3$ be defined by

$$T(x_1, x_2, x_3) = (2x_1 + x_2, x_1 + x_2 + x_3, x_2 + 2x_3).$$

Show that there is no basis α for \mathbb{Z}_3^3 such that $[T]_{\alpha\alpha}$ is diagonal.

Solution: We have that:

$$T(x_1, x_2, x_3) = (2x_1 + x_2, x_1 + x_2 + x_3, x_2 + 2x_3)$$

= $x_1(2, 1, 0) + x_2(1, 1, 1) + x_3(0, 1, 2)$

The standard basis for \mathbb{Z}_3^3 is $\beta = \{(1,0,0),(0,1,0),(0,0,1)\}$ and by the above we see that:

$$T(1,0,0) = (2,1,0)$$

 $T(0,1,0) = (1,1,1)$
 $T(0,0,1) = (0,1,2)$

So, the matrix corresponding to T is $A = [T]_{\beta\beta} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$.

To find the eigenvalues, we compute:

$$0 = \det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & 1 & 2 - \lambda \end{bmatrix}$$
$$= (2 - \lambda)((1 - \lambda)(2 - \lambda) - 1) - 1(1(2 - \lambda) - 0(1)) = (2 - \lambda)\lambda^{2}$$

The two eigenvalues are $\lambda = 2$ and $\lambda = 0$ with multiplicities one and two respectively. To find the eigenspace corresponding to the eigenvalue 0, we need to find the kernel of A - 0I. It is easier to do if we reduce the matrix first:

$$E_{0} = \operatorname{Ker} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_{2} - 2R_{1}} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_{2} + R_{3}} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\xrightarrow{R_{1} - R_{3}} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_{3} \leftrightarrow R_{2}} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Now, a vector (x, y, z) is in the kernel if and only if:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

This tells us that x + 2z = y + 2z = 0 or equivalently x = y = z (in \mathbb{Z}_3). This means that the eigenspace E_0 of $A = [T]_{\beta\beta}$ is spanned by the vector (1, 1, 1) so has dimension 1. Therefore, the eigenspace of T for the eigenvalue 0 also has dimension 1, which is smaller than the multiplicity of $\lambda = 0$. So T is not diagonalizable, i.e. there is no basis with respect to which the matrix for T is diagonal.

6. Let V and W be vector spaces over a field F, and $T: V \to W$ a linear transformation. Let $\alpha = \{v_1, v_2, \ldots, v_n\}$ be a basis for V. Prove $\dim(\text{Ker}(T)) = 0$ if and only if $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ is linearly independent.

Solution: First, assume that $\dim(\operatorname{Ker}(T))=0$. We want to show that $\{T(v_1),T(v_2),\ldots,T(v_n)\}$ is linearly independent. Since it has dimension zero, $\operatorname{Ker}(T)=\{0\}$. Now if a_1,\ldots,a_n are such that $a_1T(v_1)+\ldots+a_nT(v_n)=0$, then by linearity of $T,T(a_1v_1+\ldots a_nv_n)=0$. So, $a_1v_1+\ldots a_nv_n$ is in the kernel of T and therefore $a_1v_1+\ldots a_nv_n=0$. $\{v_1,\ldots,v_n\}$ is linearly independent so we must have $a_1=\ldots=a_n=0$. This implies $\{T(v_1),T(v_2),\ldots,T(v_n)\}$ is linearly independent.

Now, assume $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ is linearly independent. We want to show that $\dim(\operatorname{Ker}(T)) = 0$. It suffices to show $\operatorname{Ker}(T) = \{0\}$. Take any $v \in V$ which is in the kernel, i.e. T(v) = 0. Since $\alpha = \{v_1, v_2, \ldots, v_n\}$ is a basis for V, there are some scalars a_1, \ldots, a_n such that $v = a_1v_1 + \ldots + a_nv_n$. Then, $0 = T(v) = T(a_1v_1 + \ldots + a_nv_n) = a_1T(v_1) + \ldots + a_nT(v_n)$. We've assumed $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ is linearly independent so we must have $a_1 = \ldots = a_n = 0$. So, v = 0 which implies $\operatorname{Ker}(T) = \{0\}$ and so $\dim(\operatorname{Ker}(T)) = 0$.