Quadratures

Marcin Kuta

Quadratures

Quadrature	Nodes
Newton-Cotes	Equispaced nodes
Clenshaw-Curtis	Chebyshev nodes
Gauss	Legendre nodes

Quadratures

$$M(f) = (b-a)f(\frac{a+b}{2}) \tag{1}$$

$$T(f) = \frac{b-a}{2}(f(a)+f(b)) \tag{2}$$

$$S(f) = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b))$$
 (3)

Simple quadratures and error bounds

Quadrature	Error
Midpoint rule	$\frac{1}{24}f''(\eta)h^3$
Trapezoid rule	$\frac{1}{12}f''(\eta)h^3$
Simpson $1/3$ (parabolic)	$\frac{1}{90}f^{(4)}(\eta)h^5$
Simpson 3/8 (cubic)	$\frac{\frac{1}{24}f''(\eta)h^3}{\frac{1}{12}f''(\eta)h^3}$ $\frac{\frac{1}{90}f^{(4)}(\eta)h^5}{\frac{3}{80}f^{(4)}(\eta)h^5}$

Quadrature	Degree of exactness	Rate of convergence
Midpoint rule	1	3
Trapezoid rule	1	3
Simpson $1/3$ (parabolic)	3	5
Simpson 3/8 (cubic)	3	5

Composite quadratures

Quadrature	Rate of convergence
Midpoint rule	2
Trapezoid rule	2
Simpson $1/3$ (parabolic)	4
Simpson 3/8 (cubic)	4

Gaussian quadratures and scaling

$$\int_{-1}^{1} f(\xi) \,\mathrm{d}\xi \approx \sum_{i=0}^{n} A_{i} f(\xi_{i}) \tag{4}$$

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} \sum_{i=0}^{n} A_{i} f(x_{i})$$
 (5)

$$x_i = \frac{b+a}{2} + \frac{b-a}{2}\xi_i \tag{6}$$

Empirical order of convergence

$$E(h) \approx Ch^p$$
 (7)

$$\log E(h) \approx \log(C) + p\log(h) \tag{8}$$

$$p \approx \frac{\log(\frac{E(h_2)}{E(h_1)})}{\log(\frac{h_2}{h_1})} \tag{9}$$

References

- [1] Michael T. Heath, Scientific Computing. An Introductory Survey, 2nd Edition, Chapter 8: Numerical Integration and Differentation 2002
- [2] Włodzimierz Funika, Całkowanie numeryczne, http://home.agh.edu.pl/~funika/mownit/lab4/ calkowanie.pdf