Devoir Sur Table $n^{\circ}1$ – Durée : 3h

L'utilisation de la calculatrice, des feuilles/notes de cours ou d'exercices est interdite.

La présentation, la rédaction, la clarté et la précision des raisonnements entreront dans l'appréciation de la copie.

Les résultats non encadrés/soulignés/surlignés ne seront pas pris en compte.

Exercice 1 : Calculs de sommes et produits

1. Soit $n \ge 3$ un entier. Calculer les sommes et produits suivants. On donnera les résultats sous la forme "la plus simple" (= la plus factorisée) possible, éventuellement avec des factorielles.

(a)
$$\sum_{k=1}^{n} 3k(k+1)$$
 (b) $\sum_{k=1}^{n} 2^{2k+1}$ (c) $\prod_{k=n+1}^{2n} (3k)$ (d) $\prod_{k=3}^{n} \left(1 - \frac{1}{k^2}\right)$

2. On donne le programme Python suivant

```
for k in range(1,10):
    S = S + 4*k**3
print(S)
```

Quelle valeur numérique est affichée? Détailler votre raisonnement et/ou les calculs effectués.

- 3. (a) Développer le polynôme $(x+1)^5$.
 - (b) Soit $n \in \mathbb{N}^*$. En calculant la somme $S = \sum_{k=1}^{n} ((k+1)^5 k^5)$ de deux façons, montrer que

$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}.$$

Exercice 2: Une bijection

On considère l'application

$$f:]-1,1[\rightarrow \mathbb{R}$$

$$t \mapsto \ln\left(\frac{1+t}{1-t}\right).$$

- 1. Justifier que l'application f est bien définie.
- 2. Définir en langage Python la fonction f. (Penser à importer la bibliothèque nécessaire!) On considère que l'utilisateur d'une fonction sait s'en servir : il est donc inutile de vérifier que l'argument d'entrée t est bien entre -1 et 1.
- 3. Montrer que f est bijective et déterminer sa bijection réciproque.

Exercice 3: Une somme, plusieurs méthodes

Soit $x \in \mathbb{R} \setminus \{1\}$. Dans cet exercice, on se propose d'étudier différentes méthodes pour établir la formule :

$$\forall n \in \mathbb{N}, \quad \sum_{k=1}^{n} kx^k = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^2}. \quad (\star)$$

Les 3 questions, correspondant à 3 méthodes distinctes, doivent être traitées indépendamment.

- 1. Méthode 1 : Récurrence. Démontrer la formule (\star) par récurrence.
- 2. Méthode 2 : Sommes doubles. Soit $n \in \mathbb{N}$. Calculer la somme $\sum_{1 \le i \le j \le n} x^j$ de deux manières différentes. En déduire la formule (\star) .

3. Méthode 3: Transformation d'Abel.

Soit $n \in \mathbb{N}$, soient $a_1, a_2, \ldots, a_n, a_{n+1}$ et $b_1, b_2, \ldots, b_n, b_{n+1}$ des réels.

- (a) Que vaut la somme $\sum_{k=1}^{n} (a_{k+1}b_{k+1} a_kb_k) ?$
- (b) Démontrer la formule d'Abel : $\sum_{k=1}^{n} a_k (b_{k+1} b_k) = (a_{n+1} b_{n+1} a_1 b_1) \sum_{k=1}^{n} (a_{k+1} a_k) b_{k+1}$
- (c) Calculer $\sum_{k=1}^{n} k(x^{k+1} x^k)$ en fonction de x et n.
- (d) En déduire finalement la formule (\star) .

Exercice 4: Un critère d'injectivité

Soient E et F deux ensembles non-vides et une application $f:E\to F$. On souhaite démontrer l'équivalence suivante :

f est injective \iff Il existe une application $g: F \to E$ telle que $g \circ f = Id_E$.

- 1. Démontrer l'implication de la droite vers la gauche.
- 2. On suppose à présent f injective. On pose $\widetilde{F} = f(E)$ et on définit $\widetilde{f}: E \to \widetilde{F}$ $x \mapsto f(x)$.
 - (a) Justifier que l'application \widetilde{f} est bijective.
 - (b) On fixe un élément $x_0 \in E$ et on pose : $\forall y \in F$, $g(y) = \begin{cases} \widetilde{f}^{-1}(y) & \text{si } y \in \widetilde{F} \\ x_0 & \text{si } y \in F \setminus \widetilde{F}. \end{cases}$ Obtenir la conclusion voulue.
- 3. Donner un exemple de deux applications f et g telles que $g \circ f = Id_E$, avec f non surjective. (on pourra par exemple choisir pour E et F des intervalles de \mathbb{R})

*** Fin du sujet ***