Practical Sessio程婚代写代做 CS编程辅导

Objectives

1. To draw the lo

2. To write down

3. To find Boole

olean expressions

ons of given circuit diagrams

Tasks

1. Draw the logic gate circuit corresponding to the following Boolean expression

Answer:

Assignment Project Exam Help

https://tutorcs.com

2. Write the Boolean expression of the following circuit diagram. Set up the truth table

Answer: X = C.A + A.B'

Table 1. Trut	h Table for Tas	招序	代写	计化	<i>y</i> (c	编程	辅导
Α	В	Tex / 1	B'	C.A	А. В	<u> </u>	र नाम च
0	0		1 	0	0	0	
0	0	製料	源号	0	0	0	
0	1			0	0	0	
0	1			0	0	0	
1	0		MAS.	0	1	1	
1	0	1	1	1	1	1	
1	1	WeC	'hat:	cstu	tores	0	
1	1	1	0	1	0	1	

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

3. Write the Boolean expression of the following circuit diagram. Set up the truth table

Answer: X = (A' . C')' . A . B' + A . C . B

or equivalently, X = MUV where $M = K \cdot A \cdot B' \cdot L = A \cdot C \cdot B \cdot K = (A' \cdot C')'$

Table 2. Truth Table for Task 3

Α	В	£ .	A'	B' ,	C' •	K,	L -	M	Х
0	0	ASS1	anmo	ant P	roje	at Ex	am.	delp	0
0	0	1	1	1	0	1	0	0	0
0	1	Q	. 1	0	11	0	0	0	0
0	1	Hma	ıl: tu	tores		3.CC	m	0	0
1	0	0	0	1	1	1	0	1	1
1	0	1	0	1	0	1	0	1	1
1	1	0)	7497	894	76	1	0	0	0
1	1	1	0	0	0	1	1	0	1

https://tutorcs.com

4. Compare X of exercise 2 and exercise 3. Keep in mind that the Boolean expression of X in exercise 3 can be simplified to the one of exercise 2.

Answer (not assessed):

```
(A'.C')' . A.B' + A.C.B = // Apply DeMorgan Theorem: (A.B)'=A'+B' and (A+B)'=A'.B'

= (A + C).A.B' + A.C.B = // Distributive Law – permits the factoring out of an expression

= A.A.B' + C.A.B' + A.C.B = // Idempotent Rule

= A.B' + C.A.B' + A.C.B = // Absorptive Law – absorbing like terms

= A.B' + C.A(B'+B) = // complement Rule

= A.B' + C.A
```

5. Find the Boolean expression of function f(x,y,z) with three inputs and one output; f(x,y,z) produces 1 when at least two of the inputs and one output; f(x,y,z)

Step1: set up the truth table

Step2: find all her preparated by inverting the inputs with zero and keeping the rest as they are, e.g., the subexpression for (x=0,y=1,z=1).

Answer: x'yz, QQ;xy2749389476

Step3: f(x,y,z) is given by summing (applying logical OR) all the sub-expressions found in step2. https://tutorcs.com

Answer: f = x'yz + xy'z + xyz' + xyz

Step4 (this step is optional and will **not be assessed**): Simplify f(x,y,z) using Boolean algebra. For those who are interested in how to simplify Boolean expressions, they can read the following link (Karnaugh maps) https://www.geeksforgeeks.org/k-mapkarnaugh-map/

Answer: this is out of the scope of this lab session

6. Revisit and study the 4-bit ripple carry adder shown in the slides. Draw the circuit for an 8-bit ripple carry adder