Notation:

n^L = number of neurons in layer L. n⁰ is number of inputs

 w_{ii}^{L} = weight into layer L, from neuron j to neuron i

W^L = matrix of weights from L-1 to L, dimension 2

b,L = bias for neuron i of layer L

B^L = bias vector for layer L

 a_i^L = output i of layer L.

A^L = vector output of layer L. A⁰ is input vector

 z_i^L = weighted sum of neuron i of layer L incl bias.

 σ = activation function. $a_i^L = \sigma(z_i^L)$, or sometimes, $a_i^L = \sigma(Z^L)$ e.g. for softmax

 $E = \text{error function cost} = E(A^N, Y)$, where N is final layer

 d_i^L = partial of E wrt z_i^L

 $\partial a/\partial z = e^{-z}/(1+e^{-z})^2$

More complex for softmax, where da/dz becomes a matrix of da_j/dz_i for all j, i:
$$\frac{\partial E}{\partial z_1} = \frac{\partial a_{1,j}\partial z_1}{\partial a_{2,j}\partial z_1} \frac{\partial a_{2,j}\partial z_1}{\partial a_{3,j}\partial z_1} \frac{\partial E}{\partial a_1}$$
$$\frac{\partial E}{\partial a_2} = \frac{\partial a_{1,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial a_{2,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial E}{\partial a_2} \frac{\partial E}{\partial a_2}$$
$$\frac{\partial E}{\partial a_2} = \frac{\partial A_{1,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial A_{2,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial E}{\partial a_2} \frac{\partial E}{\partial a_2}$$
$$\frac{\partial E}{\partial a_2} = \frac{\partial A_{1,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial A_{2,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial E}{\partial a_2} \frac{\partial E}{\partial a_2}$$
$$\frac{\partial E}{\partial a_2} = \frac{\partial A_{1,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial A_{2,j}\partial z_2}{\partial a_{2,j}\partial z_2} \frac{\partial E}{\partial a_2} \frac{\partial E}{\partial a_2}$$