Si su rol comienza con 29 coloque 0029

ESTE CERTAMEN CONSTA DE 20 PREGUNTAS EN 9 PÁGINAS. TIEMPO: 105 MINUTOS SIN CALCULADORA. APAGAR Y GUARDAR CELULARES.

DEBE FUNDAMENTAR TODAS SUS RESPUESTAS: LA JUSTIFICACIÓN Y/O DESARROLLO DE LAS RESPUESTAS CORRECTAS PODRÁ SER CORREGIDA.

1. La presión P del gas dentro de un reactor varía con el tiempo según el gráfico y la tabla adjuntos:

Tiempo	Presión	
[min]	[atm]	
60	1,2	
70	1,1	
80	1,0	
90	1,0	

Las rapideces medias de cambio, \overline{V}_P , de la presión del gas para los dos intervalos que van de 10[min] a 40[min] y de 40[min] a 70[min] son, aproximadamente:

	e 10[min] a 40[min]	De 40[min] a 70[min]		
A)	-0,07[atm/min]	-0,03[atm/min]		
B)	-0,07[atm/min]	-0,01[atm/min]		
C)	0,07[atm/min]	-0,03[atm/min]		
D)	-0,4[atm/min]	-0,05[atm/min]		
E)	-0,05[atm/min]	-0,01[atm/min]		

- **2.** Un cuerpo se mueve a lo largo del eje x de modo que su rapidez instantánea v varía con el tiempo según el gráfico adjunto. La aceleración media \overline{a} del cuerpo en el intervalo entre los instantes 0 y 3[s] es:
 - A) $5[m/s^2]$
 - B) $-2[m/s^2]$
 - C) $2[m/s^2]$
 - D) $15[m/s^2]$
 - E) $-5[m/s^2]$

3. El triángulo ABC de la figura es equilátero. M y N son, respectivamente, los puntos medios de los lados BC y AC.

Entonces, el vector unitario en la dirección del vector

 \overrightarrow{AM} – \overrightarrow{BN} es:

$$B) \quad \frac{1}{\sqrt{2}}(\hat{i} + \hat{j})$$

4. Considere los vectores representados en la figura adjunta.

Entonces, el vector \overrightarrow{a} queda correctamente expresado por:

A)
$$-\vec{b} - \vec{c} + \vec{d} - \vec{e}$$

B)
$$-\vec{b} - \vec{c} + \vec{d} + \vec{e}$$

C)
$$\vec{b} + \vec{c} + \vec{d} + \vec{e}$$

D)
$$-\vec{b} - \vec{c} - \vec{d} + \vec{e}$$

E)
$$\vec{b} - \vec{c} + \vec{d} + \vec{e}$$

5. En el gráfico adjunto se representa la rapidez media de cambio, \overline{V}_H , del nivel de agua en un estanque, para los intervalos de $10[\min]$ indicados.

En el instante 40[min] el nivel del agua en el estanque es 2,30[m]. Entonces, el nivel del agua en el estanque en el instante t=0 es, aproximadamente:

C)
$$2,4[m]$$

D)
$$0.8[m]$$

6. Un automóvil y una motocicleta viajan por un mismo camino en direcciones opuestas y con rapideces constantes. En cierto instante la distancia entre los vehículos es D y el automóvil está pasando frente a una torre. Si los vehículos se cruzan a la distancia $\frac{D}{4}$ de la

torre, la razón $\frac{v_A}{v_M}$ entre las respectivas rapideces del automóvil y la motocicleta es:

- A) $\frac{1}{4}$
- B) $\frac{2}{3}$
- C) $\frac{1}{2}$
- D) $\frac{1}{3}$
- E) $\frac{3}{4}$

7. La posición, \mathbf{y} , de un cuerpo lanzado verticalmente hacia arriba varía con el tiempo según el gráfico adjunto. El roce con el aire puede despreciarse. De los siguientes gráficos el que mejor representa la componente v_y de la velocidad del cuerpo, en función del tiempo, es:

8. Una partícula se mueve a lo largo del eje x de modo que la componente v_x de su velocidad varía con el tiempo según el gráfico adjunto.

Entonces, de las siguientes afirmaciones:

- I. La posición de la partícula en el instante 3T es igual a su posición en t=0.
- II. En el intervalo entre 0 y 3T la partícula recorre una distancia igual a la recorrida entre 3T y 6T.
- III. El vector aceleración de la partícula en el instante 3T tiene magnitud cero.

- A) Todas
- B) Ninguna
- C) IyII
- D) I y III
- E) II y III
- **9.** La figura muestra un cubo y 4 vectores : dos de ellos corresponden a diagonales y los otros dos, a aristas del cubo.

Entonces, el vector \overrightarrow{d} queda correctamente expresado por:

B)
$$\vec{a} + \vec{b} - \vec{c}$$

C)
$$-\vec{a} - \vec{b} - \vec{c}$$

D)
$$\vec{a} + \vec{b} + \vec{c}$$

E)
$$-\vec{a} + \vec{b} + \vec{c}$$

10. Dos objetos, P y Q, se mueven con velocidades constantes expresadas por los vectores:

$$\vec{v}_P = (3\hat{i} + 2\hat{j})[m/s]$$

$$\vec{v}_{Q} = (-6\hat{i} + 4\hat{j})[m/s]$$

Si los objetos se cruzan en t = 0, entonces, en t = 2 [s] la diferencia $\vec{r}_P - \vec{r}_Q$ entre sus posiciones es:

A)
$$(9\hat{i} - 2\hat{j})[m]$$

B)
$$(-9\hat{i} + 2\hat{j})[m]$$

C)
$$(-18\hat{i} + 4\hat{j})[m]$$

D)
$$(18\hat{i} + 4\hat{j})[m]$$

E)
$$(18\hat{i} - 4\hat{j})[m]$$

11. El diámetro de cierta esfera varía con el tiempo según: D(t)=3t. Entonces, la rapidez media de cambio \overline{v}_A del área de dicha esfera, para el intervalo entre los instantes t y $t+\Delta t$, es igual a:

A)
$$18\pi t + 9\pi\Delta t$$

$$A_{\text{esfera}} = \pi \, D^2$$

C)
$$18\pi \frac{t^2}{\Delta t} + 18\pi t + 9\pi \Delta t$$

$$D) \quad 9\pi\frac{t^2}{\Delta t} - 18\pi\Delta t + 9\pi\Delta t$$

$$\mathsf{E)} \quad 9\pi \frac{\mathsf{t}^2}{\Delta \mathsf{t}} - 9\pi \Delta \mathsf{t}$$

12. Un barco realiza un desplazamiento \overrightarrow{AB} en dirección Este de 7[km] de magnitud. Luego gira en un ángulo α y realiza un segundo desplazamiento \overrightarrow{BC} de 4[km] de magnitud, como se muestra en la figura. Si el desplazamiento resultante tiene una magnitud de 9[km], entonces se cumple que:

A)
$$\operatorname{sen}\alpha = -\frac{2}{7}$$

B)
$$\cos \alpha = -\frac{2}{7}$$

C)
$$\tan \alpha = \frac{2}{7}$$

D)
$$\operatorname{sen}\alpha = \frac{2}{7}$$

E)
$$\cos \alpha = \frac{2}{7}$$

13. ABC es un triángulo rectángulo de lados 5[m], 12[m] y 13[m]. Entonces, los vectores unitarios $\hat{\epsilon}$ y $\hat{\eta}$, expresados en función de los vectores unitarios \hat{i} y \hat{j} , son iguales a:

D)
$$\frac{5}{13}\hat{i} - \frac{12}{13}\hat{j}$$
 $-\frac{12}{13}\hat{i} + \frac{5}{13}\hat{j}$

E)
$$\frac{5}{13}\hat{i} + \frac{12}{13}\hat{j}$$
 $-\frac{12}{13}\hat{i} - \frac{5}{13}\hat{j}$

B)
$$\sqrt{F_1^2 + F_2^2}$$

C)
$$\sqrt{(F_1 \cos \alpha - F_2 \sin \beta)^2 + (F_1 \sin \alpha + F_2 \cos \beta)^2}$$

D)
$$\sqrt{(F_1\cos\alpha + F_2\sin\beta)^2 + (F_1\sin\alpha - F_2\cos\beta)^2}$$

E)
$$-F_1 - F_2$$

15. Una partícula se mueve en sentido horario sobre una trayectoria circular con rapidez constante v = 7[m/s]. El vector velocidad de la partícula, en la posición indicada, se puede expresar como:

A)
$$\vec{v} = (4,2\hat{i} + 5,6\hat{j})[m/s]$$

B)
$$\vec{v} = (-4.2\hat{i} - 5.6\hat{j}) [m/s]$$

C)
$$\vec{v} = (4,2\hat{i} - 5,6\hat{j}) [m/s]$$

D)
$$\vec{v} = (5,6\hat{i} - 4,2\hat{j}) [m/s]$$

E)
$$\vec{v} = (5,6\hat{i} + 4,2\hat{j})[m/s]$$

16. El gráfico muestra la concentración de glucosa en la sangre de un animal, en función del tiempo.

Acerca de la rapidez instantánea de cambio v_c de la concentración de glucosa, se puede afirmar que en el intervalo de 12[h] considerado en el gráfico, es cero o es máxima:

es cero:

es máxima:

A) En t
$$\approx$$
 1,5 [h] y en t \approx 6,2 [h] Sólo en t \approx 4 [h]

B) Nunca Sólo en t
$$\approx$$
 4 [h]

C) En t
$$\approx$$
 1,5 [h] y en t \approx 6,2 [h] Sólo en t \approx 6,2 [h]

D) Sólo en
$$t = 0$$
 Sólo en $t \approx 6.2$ [h]

E) Sólo en
$$t = 0$$
 Sólo en $t \approx 4$ [h]

17. A un estanque, en forma de cilindro recto de 5[m²] de área basal, ingresa agua cuyo caudal varía con el tiempo como se indica en el gráfico adjunto.

La rapidez media de cambio \overline{v}_h del nivel del estanque entre los instantes 0 y 10[min] es, aproximadamente:

A)
$$\frac{-7}{240}$$
 [m/min]

B)
$$\frac{-35}{240}$$
 [m/min]

- C) 0
- D) 3,5[m/min]
- E) 0.7[m/min]

18. Desde un punto P, ubicado a nivel del suelo, se observan los extremos inferior (Q) y superior (S) de una antena vertical instalada sobre el techo de un edificio. Los respectivos ángulos de elevación son 37° y 53°, como se indica en la figura adjunta.

Si el largo de la antena es L=35[m], entonces, la distancia D, entre el punto P y la base del edificio, es aproximadamente igual a:

- B) 45[m]
- C) 25[m]
- D) 18[m]
- E) 60[m]

- **19.** En un viaje entre dos ciudades, la rapidez media de un vehículo es V. Durante el primer tercio de la distancia la rapidez media de este vehículo es $\frac{3}{2}$ V . Entonces, la rapidez media en el resto del camino es igual a:
 - A) $\frac{4}{5}$
 - B) $\frac{2}{3}V$
 - C) $\frac{1}{2}$ V
 - D) $\frac{6}{7}$ V
 - E) $\frac{3}{4}V$
- **20.** Desde un altura de 80[m] sobre el suelo se deja caer una bolita P y simultáneamente, se lanza desde el suelo una segunda bolita Q, verticalmente hacia arriba. La bolita Q llega al suelo 1,6[s] antes que la bolita P.

Despreciando el roce del aire y usando $g \approx 10 [m/s^2]$, la rapidez con que fue lanzada la bolita Q es, aproximadamente:

- A) 10[m/s]
- B) 5[m/s]
- C) 12[m/s]
- D) 6[m/s]
- E) 15[m/s]

Correctas Certamen 2 FIS100 1er Sem 2011

PREG	Р	Q	R	S
1	С	Α	Е	В
2	В	A C E	D	Е
3	Α	Е	В	С
4	Е	B A	Α	D
5	D	Α	С	В
6	В	D	Е	Α
7	D	D	D	D
8	Е	В	Α	D
9	Α	C E	В	Е
10	С		С	Α
11	Е	A E	В	С
12 13	В	Е	Α	С
13	С	В	E C	Α
14	Α	D	C	Е
15 16	Е	C A	D	В
16	С	Α	В	Е
17	С	E E	Α	D
18	Α	Е	Е	С
19	В	D	С	Α
20	D	С	D	В