Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer:

The optimal value of alpha for both ridge and lasso regression is 0.0001. If we increase the alpha (hyper parameter value), the accuracy of the model starts dropping gradually. It might increase a bit till the optimal hyper parameter value but the accuracy will decrease with the increase in alpha and model will become more parse.

Features that lasso provides at optimal alpha(0.0001):

Featuere	Coef
MSSubClass_160	1.661479
Total_sqr_footage	0.801819
MSSubClass_70	0.729687
EnclosedPorch	0.464683
PoolArea	0.458387
3SsnPorch	0.449309
ScreenPorch	0.424282
LotConfig_FR2	0.416400
LotFrontage	0.382299
MiscVal	0.341944

Features that lasso provides at optimal alpha(0.0002):

Featuere	Coef
MSSubClass_160	1.633332
Total_sqr_footage	0.704254
MSSubClass_70	0.462230
EnclosedPorch	0.460270
PoolArea	0.452888
3SsnPorch	0.449200
ScreenPorch	0.421660
LotFrontage	0.390213
LotConfig_FR2	0.315798
LotConfig_Inside	0.307388

Features that ridge provides at optimal alpha(0.0001):

Feaure	Coef
MSSubClass_160	1.688584
Total_sqr_footage	0.898970
LotConfig_FR2	0.521824
MiscVal	0.469450
EnclosedPorch	0.468222
PoolArea	0.464391
3SsnPorch	0.450001
ScreenPorch	0.427369
LotFrontage	0.402402
Total_Bathrooms	0.396804

Features that ridge provides at optimal alpha(0.0002):

Feaure	Coef
MSSubClass_160	1.688553
Total_sqr_footage	0.898878
LotConfig_FR2	0.521768
MiscVal	0.469423
EnclosedPorch	0.468224
PoolArea	0.464396
3SsnPorch	0.450013
ScreenPorch	0.427380
LotFrontage	0.402384
Total_Bathrooms	0.396763

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

After creating model in both Ridge and Lasso we can see that the r2_scores are almost the same for both. However, since Lasso will penalize more on the dataset and can also helpo in feature elimination, therefore we are going to consider Lasso as our final model.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer:

The five most important predictor variables in the Lasso model are below:

- MSSubClass_160 2-STORY PUD 1946 & NEWER type of dwelling involved in the sale
- Total_sqr_footage Overall area for all floors and basement
- MSSubClass_70 2-STORY 1945 & OLDER type of dwelling involved in the sale

- EnclosedPorch Enclosed porch area in square feet
- PoolArea Pool area in square feet

If above variables are not available in the incoming data, then the five most important variables will be:

- 3SsnPorch Three season porch area in square feet
- ScreenPorch Screen porch area in square feet
- LotConfig_FR2 Frontage on 3 sides of property
- LotFrontage Linear feet of street connected to property
- MiscVal \$Value of miscellaneous feature

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer:

We should make sure that the model is robust and generalisable by regularizing the model and using a regularisation term with RSS because the hyper parameter will ensure to srike the right balance between the model being too simple or too complex. Making the model more generalisable may have a negative impact on the accuracy upto some extent but we can also have a look at the precision and recall of the model because sensitivity and specificity also play imporant roles in the model evaluation criteria. Together if all three are above average we may accept the model. Also, a very accurate model may have a chance of getting overfitted.