

Figure 50.12: Two examples in which it is impossible to find purple hyperplanes which separate the red and blue points.

Remark: Write m=p+q. The reader should be aware that in machine learning the classification problem is usually defined as follows. We assign m so-called class labels $y_k=\pm 1$ to the data points in such a way that $y_i=+1$ for each blue point u_i , and $y_{p+j}=-1$ for each red point v_j , and we denote the m points by x_k , where $x_k=u_k$ for $k=1,\ldots,p$ and $x_k=v_{k-p}$ for $k=p+1,\ldots,p+q$. Then the classification constraints can be written as

$$y_k(w^{\top}x_k - b) > 0$$
 for $k = 1, ..., m$.

The set of pairs $\{(x_1, y_1), \dots, (x_m, y_m)\}$ is called a set of training data (or training set).

In the sequel, we will not use the above method, and we will stick to our two subsets of p blue points $\{u_i\}_{i=1}^p$ and q red points $\{v_j\}_{j=1}^q$.

Since there are infinitely many hyperplanes separating the two subsets (if indeed the two subsets are linearly separable), we would like to come up with a "good" criterion for choosing such a hyperplane.

The idea that was advocated by Vapnik (see Vapnik [182]) is to consider the distances $d(u_i, H)$ and $d(v_j, H)$ from all the points to the hyperplane H, and to pick a hyperplane H that maximizes the smallest of these distances. In machine learning this strategy is called finding a maximal margin hyperplane, or hard margin support vector machine, which definitely sounds more impressive.

Since the distance from a point x to the hyperplane H of equation $w^{T}x - b = 0$ is

$$d(x,H) = \frac{|w^{\top}x - b|}{\|w\|},$$