Modelagem de Fenômenos Físicos

Aula 10 – Aplicações da Integração

Frank Coelho de Alcantara - 2023 -1

Posição, Velocidade e Aceleração

Posição: No contexto de movimento, posição é o local específico de um objeto em um determinado ponto em dado instante no tempo.

Velocidade: Velocidade é a taxa de variação da posição em relação ao tempo. É a primeira derivada da posição em relação ao tempo.

Aceleração: Aceleração é a taxa de variação da velocidade em relação ao tempo. É a primeira derivada da velocidade em relação ao tempo, ou, se preferir, a segunda derivada da posição em relação ao tempo.

Derivadas

Derivadas: As derivadas medem como uma função muda à medida que sua incógnita muda. Neste caso:

- 1. A derivada da posição em relação ao tempo nos dá a velocidade. Simbolicamente, se x(t) é a função da posição, então v(t) = dx/dt representa a velocidade do objeto.
- 2. A derivada da velocidade em relação ao tempo nos dá a aceleração. Simbolicamente, se v(t) é a função da velocidade, então a(t) = dv/dt a aceleração do objeto.

Integrais

1. A integral da aceleração em relação ao tempo nos dá a velocidade. Simbolicamente, se a(t)é a função da aceleração, então:

$$v(t) = \int a(t) dt + C$$

é a função da velocidade. Onde a constante de integração, pode ser interpretada como a velocidade inicial).

Integrais

A integral da velocidade em relação ao tempo nos dá a posição. Simbolicamente, se v(t) é a função da velocidade, então:

$$x(t) = \int v(t)dt + C$$

é a função da posição. Onde a Constante de Integração pode ser interpretada como a velocidade inicial.

Um Exemplo aqui.

Área Entre Curvas f(x)

Considere as equações

$$f(x) = -x^2 + 4x + 3$$

e

$$g(x) = -x^3 + 7x^2 - 10x + 5$$

no intervalo $1 \le x \le 2$ e calcule a área entre estas duas curvas.

Área entre as funções f(x) e g(x) entre x = 1 e x = 2 $f(x) = -x^2 + 4x + 3$ $g(x) = -x^3 + 7x^2 - 10x + 5$

1.5

0.0

0.5

1.0

Frank Coelho de Alcantara - 2023-1

3.0

2.5

Analisando o Problema

Analisando o Problema

Algebricamente

A área entre as curvas será a área sob a curva de $f(x) = -x^2 + 4x + 3$ Subtraída do valor da área sob a curva de $g(x) = -x^3 + 7x^2 - 10x + 5$

$$\int (f(x) - g(x))dx = \int f(x)dx - \int g(x) dx$$

$$\int_{1}^{2} (-x^{2} + 4x + 3) dx - \int_{1}^{2} (-x^{3} + 7x^{2} - 10x + 5) dx =$$

$$\int_{1}^{2} ((-x^{2} + 4x + 3) - (-x^{3} + 7x^{2} - 10x + 5)) dx$$

Algebricamente

$$\int_{1}^{2} \left((-x^{2} + 4x + 3) - (-x^{3} + 7x^{2} - 10x + 5) \right) dx$$

$$\int_{1}^{2} (-x^{2} + 4x + 3 + x^{3} - 7x^{2} + 10x - 5) dx$$

$$\int_{1}^{2} (x^{3} - 8x^{2} + 14x - 2) dx$$

$$\int_{1}^{2} x^{3} dx - \int_{1}^{2} 8x^{2} dx + \int_{1}^{2} 14x dx - \int_{1}^{2} 2dx$$

Algebricamente

$$\int_{1}^{2} x^{3} dx - \int_{1}^{2} 8x^{2} dx + \int_{1}^{2} 14x dx - \int_{1}^{2} 2dx$$

$$\int_{1}^{2} x^{3} dx - 8 \int_{1}^{2} x^{2} dx + 14 \int_{1}^{2} x dx - 2 \int_{1}^{2} x^{0} dx$$

$$= \frac{x^{4}}{4} - \frac{8x^{3}}{3} + \frac{14x^{2}}{2} - 2x \Big|_{1}^{2} = \left(\frac{16}{4} - \frac{64}{3} + 28 - 4\right)_{2} - \left(\frac{1}{4} - \frac{8}{3} + 7 - 2\right)_{1}$$

$$= \frac{49}{12} = 4.0833 \dots$$

Um Exemplo aqui.

Uma Regra Geral

Exemplo: área entre curvas

Área Entre Curvas f(y)

Calcule a área entre as funções dadas por:

$$x = \frac{1}{2}(y^2 - 3)$$

E

$$x = y + 1$$

Analisando o problema

Analisando o problema

- 1. Primeiro encontrar os pontos de interseção. Pontos onde as funções são iguais.
- 2. Resolver a Integral da área considerando:

Área

$$= \int_{a}^{b} (função \ a \ direita) - (função \ a \ esquerda) \ dx,$$
$$a \le x \le b$$

Analisando o problema

Considere que a área é um valor absoluto;

Solução neste link.

Exercícios Práticos

Resolva os seguintes problemas

1. Suponha que um físico esteja estudando duas partículas quânticas em um potencial unidimensional. As energias potenciais das partículas são dadas pelas funções: $V_1(x) = x^2$ e $V_2(x) = x^2 - 2x + 1$ onde $V_1(x)$ e $V_2(x)$ representam, respectivamente as energias potenciais das partículas 1 e 2 e x é a posição destas partículas no espaço.

O físico gostaria de saber a diferença de energia potencial média entre as duas partículas no intervalo de posição de x=0 a x=2. Essa diferença é definida como a área entre as duas curvas de energia potencial.

Encontre a energia potencial média entre as partículas, algébrica e computacionalmente (sympy) e trace o gráfico da área que representa esta energia.

Resolva os seguintes problemas

2. Determine a área entre as curvas $x=y^2$ e $y=\sqrt{x}$. Usando o matplotlib, trace o gráfico destas funções sombreando a área entre elas.

Obrigado!

Frank Coelho de Alcantara – 2023 -1

