q_2

Christoffer Mondrup Kramer

2023-05-23

Ex. 4 Q2

producinty

4.3. Let **X** be $N_3(\mu, \Sigma)$ with $\mu' = [-3, 1, 4]$ and

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Which of the following random variables are independent? Explain.

- (a) X_1 and X_2
- (b) X_2 and X_3
- (c) (X_1, X_2) and X_3
- (d) $\frac{X_1 + X_2}{2}$ and X_3
- (e) X_2 and $X_2 \frac{5}{2}X_1 X_3$

Let us first define the variables:

```
mu <- c(-3, 1, 4)

x_1 <- c(1, -2, 0)
x_2 <- c(-2, 5, 0)
x_3 <- c(0, 0, 2)
sigma <- data.frame(
    x_1,
    x_2,
    x_3
)
sigma <- data.matrix(sigma)</pre>
```

a

 X_1 and X_2 :

These are not independent since, their covariances are not zero:

provavinty.

4.3. Let **X** be $N_3(\mu, \Sigma)$ with $\mu' = [-3, 1, 4]$ and

$$\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Which of the following random variables are independent? Explain.

- (a) X_1 and X_2
- (b) X_2 and X_3
- (c) (X_1, X_2) and X_3
- (d) $\frac{X_1 + X_2}{2}$ and X_3
- (e) X_2 and $X_2 \frac{5}{2}X_1 X_3$

b

 X_2 and X_3 :

These seem to be independent since their co-variance is 0, but it is not given

procaomey

4.3. Let **X** be $N_3(\mu, \Sigma)$ with $\mu' = [-3, 1, 4]$ and

$$\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Which of the following random variables are independent? Explain.

- (a) X_1 and X_2
- (b) X_2 and X_3
- (c) (X_1, X_2) and X_3
- (d) $\frac{X_1 + X_2}{2}$ and X_3
- (e) X_2 and $X_2 \frac{5}{2}X_1 X_3$

We can test this by getting the correlation ,matrix using the formula on p. 72 / 110 $P=(v^{1/2})^{-1}\Sigma(v^{1/2})^{-1}$ Here $(v^{1/2})$ is the inverse of the population standard deviation matrix, which is given by taking the square root of the diagonal for σ and letting the rest be 0:

28.05.2023 22.26 q_2

```
# Get standard deviation matrix
std_dev <- sigma
std_dev[,] <- 0
diag(std_dev) <- sqrt(diag(sigma))
std_dev</pre>
```

```
## x_1 x_2 x_3

## [1,] 1 0.000000 0.000000

## [2,] 0 2.236068 0.000000

## [3,] 0 0.000000 1.414214
```

```
# calculate correlation matrix
cor_mat <- solve(std_dev) %*% sigma %*% solve(std_dev)
cor_mat</pre>
```

```
##  [,1]  [,2] [,3]

## x_1  1.0000000 -0.8944272  0

## x_2 -0.8944272  1.0000000  0

## x_3  0.0000000  0.0000000  1
```

 $\#The\ above\ was\ just\ for\ my\ own\ sake\ to\ make\ it\ easier\ just\ use\ R\ built\ in\ function\ cov2cor(sigma)$

As we can see X_2 and X_3 has a correlation of zero, so I will conclude that they are most likely independent:

```
x_1 x_2 x_3

[1,] 1.0000000 -0.8944272 0

[2,] -0.8944272 1.0000000 0

[3,] 0.0000000 0.0000000 1
```

C

 (X_1,X_2) and $X_3.$ Yes since both X_1 and X_2 are independent from $X_3.$

```
x_1 x_2 x_3
[1,] 1.0000000 -0.8944272 0
[2,] -0.8944272 1.0000000 0
[3,] 0.0000000 0.0000000 1
```

d

```
((X_1 + X_2) / 2) and X_3
```

Yes again X_1 and X_2 might be dependent, but both variables are still independent from X_3

28.05.2023 22.26 q_2

 X_2 and X_2 - $5/2X_1$ - X_3

No Since x_1 and x_2 have a strong negative correlation and a shared co-variance they cannot be independent.