

# SpaceX

Colin Grigsby 4/17/2023





# OUTLINE



- Executive Summary
- Introduction
- Methodology
- Results
  - Visualization Charts
  - Dashboard
- Discussion
  - Findings & Implications
- Conclusion
- Appendix

### **EXECUTIVE SUMMARY**



#### What was used to gather the data:

- Web scraping collected data from SpaceX API
- Exploratory data analysis, data wrangling, data visualization, and interactive visual analytics were used to analyze and visualize data
- Analysis revealed patterns and trends in SpaceX's launch history
- A machine learning prediction model was used to forecast future launch success rates based on historical data.

### INTRODUCTION



#### Objective:

Use historical data from past launches to predict the success rate of future launches.

#### Questions we set out to answer:

- What is the best place to launch from?
- Can we predict the success of a launch?
- How do the materials affect success rate?



#### **Data Collection**

- Used a Space X API:
  - https://api.spacexdata.com/v4/rockets/
- Web Scraping from this wiki page:
  - https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches (2010%E2%80%9320



#### **Data Wrangling**

Used collected data to summarize the data

- Counts of take-off locations
- Counts of where the rockets orbited
- Counts of the outcomes of the missions



#### **Exploratory Data Analysis**

Visualized relationship between features

- Used SQL Queries on the data to gather data quickly
  - Examples:
  - Top 5 launch sites
  - total number of success and failures
  - Failed Landing outcomes, the Booster version, and launch site name



#### Last methods were:

- Building an interactive map using Folium
  - Marked on a map launch and success/failure locations
- Building a Dashboard with Plotly Dash
  - Interactive dashboard to visualize data
- Using Predictive analysis:
  - Logistical regression
  - Decision tree
  - K-nearest-neighbor
  - Support vector machine

#### **Exploratory Data Analysis results:**

- SpaceX uses 4 launch Locations
- Average payload of F9 v1.1 booster is 2,928 kg
- First successful landing was in 2015
- Number of payload outcomes increase as years passed

### Flight Number vs Payload Mass:



CCAFS LC-40 success rate: 60%

KSC LC-39A and VAFB SLC 4E success rate: 77%

#### Flight Number vs Launch Site:



CCAFS LC-40 has been most successful recently



### Payload Mass vs Launch Site:



Correlation between Launch sites and payload mass

#### **Orbit VS Success**



Correlation between Orbit level and Success



### Flight Number vs Orbit:



Different orbit levels verses success rates



**Distinct Launch Sites** 

### Launch\_Site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

| Date            | Time<br>(UTC) | Booster_Version | Launch_Site     | Payload                                                       | PAYLOAD_MASS_KG_ | Orbit        | Customer           | Mission_Outcome | Landing<br>_Outcome    |
|-----------------|---------------|-----------------|-----------------|---------------------------------------------------------------|------------------|--------------|--------------------|-----------------|------------------------|
| -06-<br>2010 18 | 3:45:00       | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon Spacecraft Qualification Unit                          | 0                | LEO          | SpaceX             | Success         | Failure<br>(parachute) |
| -12-<br>2010 15 | 5:43:00       | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon demo flight C1, two CubeSats, barrel of Brouere cheese | 0                | LEO<br>(ISS) | NASA (COTS)<br>NRO | Success         | Failure<br>(parachute) |
| -05-<br>2012 07 | 7:44:00       | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon demo flight C2                                         | 525              | LEO<br>(ISS) | NASA (COTS)        | Success         | No attempt             |
| -10-<br>2012 00 | ):35:00       | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX CRS-1                                                  | 500              | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt             |
| -03-<br>2013 15 | 5:10:00       | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX CRS-2                                                  | 677              | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt             |

Display 5 records where launch sites begin with the string 'CCA'

TOTAL\_PAYLOAD

111268

Total payload mass carried by boosters launched by NASA (CRS)

AVG\_PAYLOAD

2928.4

Average payload mass carried by booster version F9 v1.1

FIRST\_SUCCESS\_GP

01-05-2017

First succesful landing outcome in ground pad was acheived.

F9 FT B1022
F9 FT B1026
F9 FT B1021.2
F9 FT B1031.2

Names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000



Total number of successful and failure mission outcomes.

Names of the booster versions which have carried the maximum payload mass.

#### Booster\_Version

F9 B5 B1048.4

F9 B5 B1048.5

F9 B5 B1049.4

F9 B5 B1049.5

F9 B5 B1049.7

F9 B5 B1051.3

F9 B5 B1051.4

F9 B5 B1051.6

F9 B5 B1056.4

F9 B5 B1058.3

F9 B5 B1060.2

F9 B5 B1060.3

| Booster_Version | Launch_Site |  |  |
|-----------------|-------------|--|--|
| F9 v1.1 B1012   | CCAFS LC-40 |  |  |
| F9 v1.1 B1015   | CCAFS LC-40 |  |  |

Records which will display the month names, failure landing outcomes in drone ship ,booster versions, launch site for the months in year 2015.

Rank of the count of successful landing outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

| Landing _Outcome     | QTY |
|----------------------|-----|
| Success              | 20  |
| No attempt           | 10  |
| Success (drone ship) | 8   |
| Success (ground pad) | 6   |
| Failure (drone ship) | 4   |
| Failure              | 3   |
| Controlled (ocean)   | 3   |
| Failure (parachute)  | 2   |
| No attempt           | 1   |

### Folium Map:

Most launches are on the east coast All are close to water



### Folium Map:

Green is success, red is fail



### Folium Map:

Distances to ocean, highway, and airport







Predictive analysis:
Using the LogReg data







Predictive analysis: Using the SVM data







Predictive analysis:
Using the tree\_cv data











Predictive analysis:

Accuracy of predictive analysis was 86.4% Test accuracy was 83.3%



# **DASHBOARD**



https://u9cmgrigsby-8050.theiadocker-2-labs-prod-theiak8s-4-tor01.proxy.cognitiveclass.ai/

# DASHBOARD TAB 1



## DASHBOARD TAB 2



### DASHBOARD TAB 3

### **SpaceX Launch Records Dashboard**



### OVERALL FINDINGS & IMPLICATIONS

### **Findings**

- Success increased over time
- Some launch sites were more successful, some improved more than others
- No correlation of mass versus success

#### **Implications**

- The data query of results
- One site has more successes, another shows more successes as time passes
- The graphs don't show an obvious trend of mass affecting the outcome

### CONCLUSION



- Successful outcomes increased over time
- Payload and Orbit levels don't seem to affect the outcomes according to these findings
- We can predict future outcomes to a 86% accuracy rate

# **APPENDIX**

• Success rates increasing until dipping in 2020

