Chapter 4

Channel Coding and Error Control

Adapted from class notes by Prof. Leszek T. Lilien, CS, Western Michigan University and

Prof. Dharma P. Agrawal & Qing-An Zeng, University of Cincinnati

Most slides based on publisher's slides for 1st and 2nd edition of: *Introduction to Wireless and Mobile Systems* by Agrawal & Zeng © 2016, Dharma P. Agrawal and Qing-An Zeng. All rights reserved.

Protocol Hierarchies (cont.)

■ 對等式通訊(Peer-to-Peer)

Channel/ Channel coding

4.1. Introduction

- Why need channel coding for radio communication?
 - Severe transmission problems
 - In terrestrial mobile communications due to:
 - Multipath fading
 - E.g., reflections / diffractions / scattering in cellular wireless communications

→ Low S/N (signal-to-noise) ratio = SNR

S/N Ratio (SNR), SIR

- 訊號與雜訊比(Signal to Noise Ratio; Signal to Interference Ratio)
- 雜訊(Noise)對訊號(Signal)的干擾程度
 - S/N或S/I: 通常以dB來表示比值
 - S/N值愈高,訊號品質愈好
 - 必須使S/N > 1 (其dB值>0)
 - 提高發射功率,可使S/N值提高,但須規範

Error Control Process (1)

Single-bit error

0 changed to 1

Multiple-bit error

Two errors

Error Control Process (2)

Burst error

http://www.juimg.com/zhengban/201707/sytukuqita_2246247.html

WCB/McGraw-Hill

© The McGraw-Hill Companies, Inc., 1998

4.1. Introduction (cont.)

- In satellite communications due to:
 - Limited xmitting power for forward channels (downlink)
 - Limited satellite energy resources

=> Need means to improve transmissions
Channel coding and error control are such means

For example, mobile phone

GSM Voice Coding Sequence

4.1. Introduction – cont. 1

Need channel coding and error control to improve transmissions

- Channel coding (CC)
 - = coding (discrete digital) information into a form suitable for transmission, with emphasis on enhanced reliability

http://pansci.asia/wp-content/uploads/2014/04/pp1-560x286.png

http://us.etherwan.com/Download/ePaper/00074/images/MediaConverter_2012.jpg

4.1. Introduction – cont. 1

- Channel coding (CC)
 - CC adds redundancy that allows for information restoration or recovery when needed
 CRC Packet
 - Price paid: need broader bandwidth 代價; 運費; 押鏢金
 - CC ensures proper transmission quality
 - Measured by
 - Bit error quality (BER) / Frame error quality (FER)

Channel Coding

- Bit Error Rate (BER): 數位系統訊號受干擾的程度
- BER過高→通話品質下降
 - Error Detection / Error Correction → Channel Coding
- GSM TCH channel coding

Channel Coding (cont.)

Source: 禹帆, 無線通訊網路概論,文魁

■ GSM TCH頻道編碼時對260個位元的處理方式

Need broader bandwidth

TCH Channel Coding

Channel Coding (cont.)

行動電話語音頻道於各個階段經過

4.1. Introduction – cont. 2

 Channel coding/decoding in a wireless communication system

p. 80 (頁90) Fig. 4.1

Error Control Process (Review)

- All transmission media have potential for introduction of errors
- Error control process has two components
- Error detection.

- redundancy in data so that error can be detected
- **■** Error correction

 once error detected, frames corrected or retransmitted

Error Detection (Review)

Error-Detecting (Review)

The checksum is the 16 bit one's complement of $^{\rm Receiver}$ the one's complement sum of all 16 bit words.

WCB/McGraw-Hill

Error-Detecting (Review)

Error-Detecting Codes -- CRC CRC (Cyclic Redundancy Check)

E.g., FCS(Frame Check Sequence)

in Ethernet/WiFi frame format

Error Correction

- Two types of errors
 - Lost frame –

never arrives

Damaged frame –error in bits

- Automatic Repeat reQuest (ARQ)
 - Positive acknowledgment (ACK) if received
 - Retransmission after time-out if not ACK
 - Negative ACK and retransmission if error
- Error-Correcting Codes

Error Correction (EC)

■ The key EC idea:

DH data DT

- Transmit enough redundant data to allow receiver to recover from errors all by itself
 - No sender retransmission required
- Major categories of EC codes (保護的方法與等級)

(really: forward error correction – FEC)

- Linear block codes
 - Hamming code
 - BCH code
 - Cyclic codes
 - Reed-Solomon codes
- Convolutional codes (迴旋碼)
- Turbo codes (渦輪碼)

4.2. Linear Block Codes

- Information is divided into **blocks** of length *k*
- r parity bits or check bits are added to each block
 - Total length: n = k + r
- Coding rate:

$$R = k/n = k/(k+r)$$

- Decoder looks for code word closest to received vector
 - Received vector = code vector + error vector
- Tradeoffs between
 - Efficiency: R
 - Reliability: 可靠度;判斷正確的程度
 - Encoding/decoding complexity: algorithm

Hamming Code (Review)

$$n = 11, k = 7, r = 4, R = 7/11$$

Coding rate

Code word

4.5. Convolutional Codes

請功夫最好的保鑣

- Most commonly used channel codes.
 - E.g., in GSM and IS-95
- Encoding of information stream wither than http://static.apple.nextmedia.com/images/e-paper/20121102/large/1351837530_3133.jpg information blocks 0010011010011010001100...
 - Output (encoded bits) depends not only on current input bits but also on past data bits
 - M max. # of (past) stages (a.k.a. memory size) affecting output k n
 - Easy implementation using shift register
 - Assuming k inputs and n outputs
- Decoding most often based on the Viterbi Algorithm

電動絞肉機 0010011010011010001100

Convolutional Codes: (k=1, n=2, M=2)

XOF	1	\mathbf{Y}_1	
х	D1	D2	x XOR D2
0	0	0	0
0	1	1	0
1	0	0	1
1	1	1	1

Convolutional Codes: (*k*=1, *n*=2, M=2) Encoder

GSM Channel Coding

■ Convolutional Coding運用Exclusive OR計算

出更多的位元

Source: 禹帆, 無線通訊網路概論,文魁

A	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive OR 運算表

Example 3: **RSC** encoder

■ Rate 1/2 <u>recursive</u>, <u>systematic</u> convolutional (**RSC**)

One can see that the input being encoded is included in the output sequence too (look at the output 2). Such codes are referred to as *systematic*; otherwise the code is called *non-systematic*.

Source: http://en.wikipedia.org/wiki/Convolutional code

Example 2: non-recursive encoder

 Rate 1/3 <u>non-recursive</u>, <u>non-systematic</u> convolutional encoder with constraint length 3

Viterbi Decoding Algorithm

The Viterbi algorithm was conceived by Andrew Viterbi in 1967 as an error-correction scheme for noisy digital communication links, finding universal application in decoding the convolutional codes used in both CDMA and GSM digital cellular, dial-up modems, satellite, deep-space communications, and 802.11

Source: http://en.wikipedia.org/wiki/Viterbi_algorithm

4.6. Interleaver

- Interleaving is heavily used in wireless communication for protection against burst errors
 - Recall:

Burst error— a contiguous sequence of symbols, received over a data transmission channel, such that:

- Block interleaver most common interleaver
 - Concept next slide

Concept of Interleaver

Copyright © 2016, Dharma P. Agrawal and Qing-An Zeng. All rights reserved

Interleaving (Example)

p. 91 (頁102) Fig. 4.8

Channel Interleaving

頻道編碼(Channel Coding)與交錯(Interleaving) 對資料的切割方式

Channel Coding (cont.)

For example, GSM

Source: 禹帆, 無線通訊網路概論,文魁

4.7. Turbo Codes

- Brief history of turbo codes:
 - First introduced by C. Berrou *et al.* only in 1993
 - Considered as the most efficient FEC coding schemes
 - Performance close to the (perfect) Shannon Limit at modest complexity!
- Turbo codes use known components
 - Including: simple convolutional or block codes, interleaver, soft-decision decoder
- Turbo codes proposed for
 - Low-power applications
 - Such as deep-space and satellite communications,
 - Interference-limited applications
 - Such as 3G cellular, PCS (personal communication services), ad hoc networks and sensornets

Information Capacity Theorem

- Bit Rate: 單位時間內傳送的位元數目, bps
- Baud Rate: 載波之頻率或相位的變化率,Hertz
- Nyquist Theory: C = 2B (ideal channel)
 - C: 載波最高的傳輸率,bps
 - B: 通訊頻道的頻寬, Hz
 - 例:1 GSM 頻道 = 200kHz = B 載波傳輸率上限 C = 2B = 400kbps

Information Capacity Theorem (cont.)

Shannon's theorem:

- $C = B \cdot \log_2(1+S/N)$ (noisy channel)
- C: 頻道的數據傳輸率, bps
- B: 通訊頻道的頻寬, Hz
- 例:1 GSM 頻道 = 200kHz = B

$$S/N = 2.56$$

數據傳輸率上限 C = 200k*lg(2.56) = 271 kbps

$$S/N = 10$$
 (剛好 $10 dB$)

數據傳輸率上限 C = 200k*lg(11) = 692 kbps

利用換底公式:
$$lg(2.56) = log_2(2.56) = \frac{log(2.56)}{log(2)} = \frac{0.40824}{0.30103} = 1.356$$

Turbo Codes: Encoder

X: Information

Y_i: Redundancy Information

p. 92 (頁103) Fig. 4.9

Example of Turbo-code Encoder

Hardware-wise, this turbo-code encoder consists of two identical **RSC** coders, C1 and C2, as depicted on the figure, which are connected to each other using a concatenation scheme, called parallel concatenation

Source: http://en.wikipedia.org/wiki/Turbo code

Turbo Codes: Decoder

X': Decoded Information

4.8. Automatic Repeat Request (ARQ)

- [LTL] Sometimes Cyclic Code can detect but can't correct errors
 - Must ask for retransmission
 - Can use Automatic Repeat Request (ARQ)
 - D sends (positive) acknowledgement ACK if received packets correct
 - If D detects error it can't correct, D sends negative acknowledgement
 NAK this requests retransmission

Stop-And-Wait ARQ

ACK: Acknowledge

NAK: Negative ACK

NAK = NACK

p. 93 (頁105) Fig. 4.12

Go-Back-N ARQ (GBN ARQ)

Selective-Repeat ARQ (SR ARQ)

p. 96 (頁108) Fig. 4.14

The End of Chapter 4

