Evaluation methods for unsupervised word embeddings

EMNLP 2015

Tobias Schnabel, Igor Labutov, David Mimno and Thorsten Joachims

Cornell University

September 19th, 2015

Motivation

How similar (on a scale from 0-10) are the following two words?

(a) tiger

(b) fauna

- Answer: 5.62 (According to WordSim-353)
- Problems:
 - Large variance ($\sigma = 2.9$)
 - Aggregation of different pairs
- Question: How can we improve this?

Procedure design for intrinsic evaluation

Which option is most similar to the query word?

Query: skillfully					
(a) swiftly	(b) expertly	(c) cleverly			
(d) pointedly	(e) I don't know the meaning of one (or several) of the words				

Answer: 8/8 votes for (b)

Procedure design for intrinsic evaluation

Comparative evaluation (new):

Advantages:

- Directly reflects human preferences
- Relative instead of absolute judgements

Looking back

How can we improve absolute evaluation?

Comparative evaluation

... but

How should we pick these?

Inventory design

Often: Heuristically chosen

Goal: Linguistic insight

- Aim at diversity and balancedness:
 - Balance rare and frequent words (e.g., play vs. devour)
 - Balance POS classes (e.g., skillfully vs. piano)
 - Balance abstractness/concreteness (e.g., eagerness vs. table)

Results

Embeddings:

- Prediction-based: CBOW and Collobert&Weston (CW)
- Reconstruction-based: CCA, Hellinger PCA, Random Projections, GloVe
- Trained on Wikipedia (2008), made vocabularies the same

Details:

- Options came from position k = 1, 5, 50 in NN from each embedding
- 100 query words x 3 ranks = 300 subtasks
- Users of Amazon Mechanical Turk answered 50 such questions
- Win score: Fraction of votes for each embedding, averaged

Results – by frequency

Normalized scores by global word frequency.

⇒ Performance varies with word frequency

Results – by rank

Normalized scores by nearest neighbor rank k.

⇒ Different falloff behavior

Results – absolute performance

	relatedness			categorization		sel. prefs		analogy						
	rg	ws	WSS	wsr	men	toefl	ap	esslli batt.	up	mcrae	an	ansyn a	ansem	average
CBOW	74.0	64.0	71.5	56.5	70.7	66.7	65.9	70.5 85.2	24.1	13.9	52.2	47.8	57.6	58.6
GloVe	63.7	54.8	65.8	49.6	64.6	69.4	64.1	65.9 77.8	27.0	18.4	42.2	44.2	39.7	53.4
TSCCA	57.8	54.4	64.7	43.3	56.7	58.3	57.5	70.5 64.2	31.0	14.4	15.5	19.0	11.1	44.2
C&W	48.1	49.8	60.7	40.1	57.5	66.7	60.6	61.4 80.2	28.3	16.0	10.9	12.2	9.3	43.0
H-PCA	19.8	32.9	43.6	15.1	21.3	54.2	34.1	50.0 42.0	-2.5	3.2	3.0	2.4	3.7	23.1
Rand. Proj.	17.1	19.5	24.9	16.1	11.3	51.4	21.9	38.6 29.6	-8.5	1.2	1.0	0.3	1.9	16.2

Results on absolute intrinsic evaluation

⇒ Similar results for absolute metrics

However: Absolute metrics less principled and insightful

Looking back

How can we improve absolute evaluation?

Comparative evaluation

How should we pick the query inventory?

Strive for diversity and balancedness

... but

(a) tiger (b) fauna

Are there more global properties?

Properties of word embeddings

- Common: Pair-based evaluation, e.g.,
 - Similarity/relatedness
 - Analogy
- Idea: Set-based evaluation
 - All interactions considered
 - Goal: measure coherence

Properties of word embeddings

What word belongs the least to the following group?

(a) finally	(b) eventually
(c) put	(d) immediately

Answer: put (8/8 votes)

Properties of word embeddings

Construction:

For each embedding, create sets of 4 with one intruder

Results

⇒ Set-based evaluation ≠ item-based evaluation

Looking back

How can we improve absolute evaluation?

/

Comparative evaluation

How should we pick the query inventory?

/

Strive for diversity and balancedness

Are there other interesting properties?

Coherence

... but

What about downstream performance?

The big picture

The big picture

The big picture

Extrinsic vs. intrinsic performance

Hypothesis:

 Better intrinsic quality also gives better downstream performance

Experiment:

Use each word embedding as extra features in supervised task

Results - Chunking

⇒ Intrinsic performance ≠ extrinsic performance

Looking back

How can we improve absolute evaluation?

Comparative evaluation

How should we pick the query inventory?

Strive for diversity and balancedness

Are there other interesting properties?

Coherence

Does better intrinsic performance lead to better extrinsic results?

No!

Discussion

- Why do we see such different behavior?
 - Hypothesis: Unwanted information encoded as well
- Embeddings can accurately predict word frequency

Discussion

- Also: Experiments show strong correlation of word frequency and similarity
- Further problems with cosine similarity:
 - Used in almost all intrinsic evaluation tasks conflates different aspects
 - Not used during training: disconnect between evaluation and training

Better:

 Learn custom metric for each task (e.g., semantic relatedness, syntatic similarity, etc.)

Conclusions

- Practical recommendations:
 - Specify what the goal of an embedding method is
 - Advantage: Now able to use datasets to inform training

- Future work:
 - Improving similarity metrics
 - Use data from comparative experiments to do offline evaluation
- All data and code available at:
 - http://www.cs.cornell.edu/~schnabts/eval/