Best Available Copy

ROYAL AIRCRAFT ESTABLISHMENT

U.D.C. 534.88 : 621.396.677.3 : 623.983 : 7.05 : 681.31

ROYAL AIRCRAFT ESTABLISHMENT

Technical Report 70130

July 1970

COMPUTER-AIDED DESIGN OF SONAR ARRAYS FOR MINIMUM SIDE-LOBE LEVEL

Ъу

P. W. James

SUMMARY

The Report describes a way of designing a two dimensional array to minimise the side-lobes while maintaining any given beamwidth of the radiation pattern in the array plane. The amplitudes and phases associated with the elements are adjusted by a modified gradient method which uses a linear programming procedure. An example is given in which the side-lobe level for a six-element array is lowered by 21 dB.

Departmental Reference: Rad 1036

CONTENTS

	Page
1 INTRODUCTION	3
2 GENERAL METHOD	3
3 APPLICATION TO 2D ARRAY	10
4 NUMERICAL EXAMPLE	13
5 SUMMARY	16
Appendix A	19
Appendix B	21
Appendix C	24
Tables 1-9	27
Symbols	36
Reference	38
Illustrations	Figures 1-18
Detachable abstract cards	

..

7

1 INTRODUCTION

1.1 We are concerned with arrays consisting of a fairly small number (N) of elements placed in a horizontal plane. Each element is omnidirectional and unaffected by its neighbours. The array polar diagram will be considered in the horizontal plane only, and at a single frequency.

Having fixed, arbitrarily, the positions of the elements, then for a linear method of beam-forming, we have to choose 2N quantities, namely, the amplitude weighting and phase shift to be applied to each element. We normally desire that the final polar diagram should have a narrow main beam and low side-lobes. The present work deals with the problem which may be stated formally as follows:

For a given beamwidth, choose the weights and phases to minimise your largest side-lobe.

1.2 The Dolph-Tschebyscheff theory solves this problem for linear and equally spaced arrays. However, as far as I know, there is no theory available for the present case. The brute force method of trying all combinations of weights and phases is quite impossible, unless N is trivially small, since it equires far too much computer time. The only practicable method seems to be to select an arbitrary initial situation and then try to reduce the side-lobe level by some kind of gradient method.

In section 2 the method used in this Report is explained. It will be seen to be a gradient method, but with special treatment to deal with discontinuities in the gradient of the object function. The special treatment used a linear programming procedure. In section 3 the method is applied to the manay under consideration. In section 4 numerical results for a particular array are presented.

2 GENERAL METHOD

2.1 In this section we present in general terms the method of solution.

Any set of weights and phases may be represented as a vector in a space of 2N dimensions. Since the array pattern should have a preset beamwidth, the vectors are restricted to a space of dimension n, say, which is less than 2N. It might be expected that we could choose n coordinates arbitrarily, and solve for the remaining 2N - n. This turns out to be the case, so we can consider the problem to be one of minimising the side-lobe level when the point of interest is allowed to range freely over a space of n dimensions.

2.2 We shall denote the point of interest by $\underline{z} = (z_1, \ldots, z_n)$, the number of side-lobes by m and the values of the power at these side-lobes by y_1, \ldots, y_m . All these are functions of \underline{z} . It may be that for some \underline{z} , m = 0. There are then no side-lobes and the problem is solved. In general however m > 0 and so there exists a largest y, with value \hat{y} :

$$\hat{y} = \max_{i} (y_{i}) . \qquad (1)$$

In order to reduce \hat{y} it is natural to make a step in the direction of -grad \hat{y}

$$\Delta z = -\varepsilon \operatorname{grad} \hat{y}$$
 (2)

where $\epsilon > 0$. The simplest rule is to set ϵ equal to a constant, and in fact the program to be described uses just this method in its initial stages. The flow chart is shown in Fig.1.

- 2.3 After a number of cycles of this simple gradient method, the procedure gets into difficulties. This happens when two or more side-lobes are nearly equal, and the identity of the largest changes from cycle to cycle. The gradient vector of $\hat{\mathbf{y}}$ is discontinuous. It can happen that $\hat{\mathbf{y}}$ is actually increased by a gradient step, due to the rôle of maximum side-lobe passing from one lobe to another. In the program it was arranged that if $\hat{\mathbf{y}}$ failed to decrease over three successive iterations, the simple gradient method would be abandoned in favour of the linear programming method described below.
- 2.4 In the neighbourhood of the point of interest z_0 , we may suppose that the following linear approximations hold

$$y_i(\underline{z}) = y_i(\underline{z}_0) + (\underline{z} - \underline{z}_0) \cdot (\text{grad } y_i)_{\underline{z}_0}$$
 (3)

Thus the change in y_i is proportional to the projection of the displacement $(\underline{z} - \underline{z}_0)$ on the gradient grad y_i . In order to change all the y_i s, it is most efficient to use a displacement which belongs to the m-dimensional linear manifold spanned by the gradients, that is, fo. some scalars $c_1, \dots c_m$,

$$(\underline{z} - \underline{z}_0)_j = \sum_{j=1}^m c_j (\text{grad } y_j)_j$$
 (4)

or

$$\underline{z} - \underline{z}_0 = \sum_{j=1}^{m} c_j \operatorname{grad} y_j.$$
 (5)

For, given any displacement, we could obtain the same changes in the y_i^s by using a smaller displacement, namely, that obtained by projecting the given displacement on to the manifold spanned by the gradients.

The point is that instead of dealing with an n-dimensional isplacement, we need only consider the m-dimensional vector $\underline{\mathbf{c}}$. Normally m is less than n, and so the amount of computation will be reduced. In matrix notation we put

$$\underline{z} - \underline{z} = \underline{g}' \underline{c} \tag{6}$$

where \underline{g} is an $m \times n$ matrix whose ith row is grad \underline{y}_1 written as a row vector, and \underline{c} is a column vector of order m. The original linearised equation may be written

$$\underline{y} = \underline{b} + \underline{g} (\underline{z} - \underline{z}_0) \tag{7}$$

where \underline{y} and \underline{b} are column n-vectors consisting of $y_{\underline{i}}(\underline{z})$ and $y_{\underline{i}}(\underline{z}_0)$. Substituting, we obtain

$$\underline{y} = \underline{b} + \underline{h} \underline{c} \tag{8}$$

where \underline{h} is the $m \times m$ matrix $\underline{g} \underline{g}'$.

In order to avoid trouble with non-linearity, let us restrain \underline{c} so that none of its components can numerically exceed a given quantity ϵ ; that is,

$$|c_i| \le \varepsilon$$
 , $i = 1, 2, \dots, m$. (9)

These can be converted into one-sided constraints by setting

$$c_{i} = p_{i} - q_{i};$$
 $i = 1,...,m$ (10)

where the p_i , q_i satisfy

$$0 \le p_i \le \epsilon$$
, $0 \le q_i \le \epsilon$; $i = 1, \dots, m$. (11)

Further, we incroduce r_i , s_i such that

$$p_i + r_i = \epsilon, q_i + s_i = \epsilon; \qquad i = 1, ..., m$$
 (12)

where $r_{i} \ge 0$, $s_{i} \ge 0$; i = 1, ..., m.

We now introduce yet more variables x_i , ..., x_m such that

$$\hat{y} = y_i + x_i$$
; $i = 1,...,m$. (13)

Since $y = \max_{i} (y_i)$, then $x_i \ge 0$ for each i. It is not convenient to have \hat{y} appearing in more than one equation, so we shall retain the equation obtained from i = 1, namely

$$\hat{y} = y_1 + x_1 \tag{14}$$

and eliminate \hat{y} from the rest

$$0 = y_i - y_1 + x_i - x_1 ; i = 2,...,m .$$
 (15)

Substituting for y_i the value

$$b_i + \sum_{j=1}^m h_{ij} c_j$$
 (16)

as given by the matrix equation (8), we obtain

$$\hat{y} = b_1 + \sum_{j=1}^{m} h_{1j} c_j + x_1$$
 (17)

$$0 = b_{i} - b_{1} + x_{i} - x_{1} + \sum_{j=1}^{m} (h_{ij} - h_{1j}) c_{j}; \qquad i = 2, ..., m(18)$$

or

$$\hat{y} = b_1 + \sum_{j=1}^{m} h_{1j} (p_i - q_i) + x_1$$
 (19)

$$0 = b_{i} - b_{1} + \sum_{j=1}^{m} (h_{1j} - h_{ij}) (p_{i} - q_{i}) + x_{i} - x_{1}; \quad i = 2, ..., m (20)$$

2.5 To summarise, we now have a standard problem in linear programming, involving the (2m + 1) basic variables

$$x_1$$
; p_1 , \dots , p_m ; q_1 , \dots , q_m

and the (3m - 1) slack variables

$$\mathbf{x}_2$$
, ..., \mathbf{x}_m ; \mathbf{r}_1 , ..., \mathbf{r}_m ; \mathbf{s}_1 , ..., \mathbf{s}_m .

These are linked by the (3m - 1) equations

$$b_1 - b_i = x_i - x_1 + \sum_{j=1}^{m} (h_{ij} - h_{1j}) p_j + \sum_{j=1}^{m} (-h_{ij} + h_{1j}) q_j ; i = 2,...,m$$
, (21)

$$\epsilon = r_i + p_i$$
; $i = 1,...,m$, (22)

$$\varepsilon = s_i + q_i$$
; $i = 1,...,m$ (23)

We have to maximise the object function +ŷ, given by

$$-b_{1} = (-\hat{y}) + x_{1} + \sum_{j=1}^{m} h_{1j} p_{j} + \sum_{j=1}^{m} -h_{1j} q_{j}$$
 (24)

subject to the constraints

$$x_i \ge 0$$
 , $p_i \ge 0$, $q_i \ge 0$, $r_i \ge 0$, $s_i \ge 0$; $i = 1, ..., m$. (25)

In solving this problem we may use the fact that a feasible solution is known, namely $p_i = q_i = r_i = s_i = 0$ corresponding to a zero step.

2.6 There are several ways of solving linear programming problems, but in this case we used the Simplex method. The tableau is shown as Table 1. The procedure will not be explained here, but readers not acquainted with it will find an elementary treatment in Vajda¹. It is an algorithm which yields, after a finite number of steps, the values of all the variables and the maximised object function.

Having obtained p_i and q_i we calculate c_i from

$$c_i = p_i - q_i \tag{26}$$

and then by matrix multiplication find the step vector

$$\underline{z} - \underline{z}_{0} = \underline{g}' \underline{c} . \tag{27}$$

The (linearised) minimum value \hat{y}_{lin} of y is obtained by negating the maximised object function of the linear programming routine.

Fig. 2 is a simplified flowchart for the program.

2.7 We now calculate the actual value \hat{y}_{true} of \hat{y} at the new point of interest. If it were not for non-linearity this would be equal to the value \hat{y}_{lin} given by the linear programming routine. If ϵ is small enough the two numbers will be nearly equal.

By repeated iteration we obtain a sequence of pairs of numbers

$$\hat{\textbf{y}}_{\text{start}}$$
 , $(\hat{\textbf{y}}_{\text{lin}}^{(1)}$, $\hat{\textbf{y}}_{\text{true}}^{(1)})$, $(\hat{\textbf{y}}_{\text{lin}}^{(2)}$, $\hat{\textbf{y}}_{\text{true}}^{(2)})$, ...

with the property

$$\hat{y}_{lin}^{(i+1)} \leq \hat{y}_{true}^{(i)}$$
 for all i. (28)

If a is small enough

$$\hat{\mathbf{y}}_{1in}^{(i)} \triangleq \hat{\mathbf{y}}_{true}^{(i)} \tag{29}$$

so the sequence $\{y_{true}^{(i)}\}$ is monotone decreasing, approximately. In order to guarantee a truly monotone decreasing sequence, we adopt the following procedure:-

"If $\hat{y}_{true}^{(i+1)} > \hat{y}_{true}^{(i)}$, reject the point (i+1) just obtained, replace ϵ by $\epsilon/2$ and repeat the linear programming routine about the point of interest i".

It is intuitively obvious that halving ϵ , if necessary many times, will cause $\hat{y}_{true}^{(i+1)}$ to approach $\hat{y}_{lin}^{(i+1)}$, and since $\hat{y}_{lin}^{(i+1)}$ cannot exceed $\hat{y}_{true}^{(i)}$, we will eventually arrive at a value of $\hat{y}_{true}^{(i+1)}$ which is not greater than $\hat{y}_{true}^{(i)}$. Thus we obtain a sequence $\{\hat{y}_{true}^{(i)}\}$ which is genuinely monotone non-increasing, by this device of variable step length. The sequence is bounded below (by 0) and therefore it converges.

In practice it was found that the sequence converged quite rapidly (typically 20 iterations) until the values of \hat{y}_{true} were constant apart from rounding errors. The values of ε did not approach zero. In the tinal steady state all the gradients grad y_i are zero, and all the y_i s equal.

2.8 The variable-ε device was also used to speed up the convergence, by foubling ε when we appeared to be fer from a final solution. The actual rule adopted was as follows:-

"Suppose $\hat{y}_{true}^{(i)}$, $\hat{y}_{true}^{(i+1)}$, $\hat{y}_{true}^{(i+2)}$ are three successive values of \hat{y} . Then if the difference between the last pair is more than half the difference between the first pair, i.e.

$$\hat{y}_{\text{true}}^{(i+2)} - \hat{y}_{\text{true}}^{(i+1)} \ge \frac{1}{2} (\hat{y}_{\text{true}}^{(i+1)} - \hat{y}_{\text{true}}^{(i)})$$
 (30)

we replace ϵ by 2ϵ on the next iteration". This rule allows us to start with a very small value of $\frac{-6}{\epsilon}$. The computer will then keep

doubling to until it approaches the final value, or until non-linearity effects cause the 't-halving' rule previously described to come into play.

No arrangements were made in the program to halt it when convergence was obtained. Successive values of \hat{y}_{true} where printed and the program was interrupted by the operator when they became steady. The results were then obtained via common storage by entering an auxiliary program.

3 APPLICATION TO 2D ARRAY

3.1 Fig.3 shows the array consisting of N omnidirectional elements, which we label 1, 2,...,N, and in which element j has coordinates (x_j, y_j) . The array may be regarded as lying in one plane (xy). We shall consider the polar diagram for directions lying only in this plane.

The 'array function' f(A), which is a complex amplitude, is given by

$$f(A) = \sum_{j=1}^{N} w_j \exp ik (x_j \cos A + y_j \sin A)$$
 (31)

where A = angle measured from the x-axis

k = 2"/wavelength

 w_1, \ldots, w_N are the (complex) weights associated with the elements.

The array power function will be defined to be

$$P(A) = |f(A)|^2$$
 (32)

3.2 The problem may now be stated as follows:

Given N, k, x_1, \dots, x_N , y_N, \dots, y_N , choose w_N, \dots, w_N so that the side-lobe level is minimised, subject to the condition that the beamwidth has a prescribed value 2A.

3.3 The restrictions on beamwidth will be taken to mean that the following equations hold

$$P(0) = 1$$

$$P(A_0) = \frac{1}{2}, P(-A_0) = \frac{1}{2}.$$
 (33)

Thus 2A is the -3 dB beamwidth (Fig.4).

The side-lobes will be defined as all the maxima of P(A) that do not lie in the range -A to A; i.e.

$$A = A_{i}$$
, $i = 1,...,m$

where {A_i} are the solutions of

$$P'(A) = 0 P''(A) < 0 A_0 < |A| < \pi$$
 (34)

The actual values of the side-lobes, the $\{y_i\}$ of the previous section, are

$$y_{i} = P(A_{i})$$
 (35)

3.4 The equation (33) may be expressed in terms of the array function as

$$f(0) = 1$$

$$f(A_0) = 2^{-\frac{1}{2}} \exp(i e_1)$$

$$f(-A_0) = 2^{-\frac{1}{2}} \exp(i e_2)$$
(36)

by introducing the (as yet unknown) phases e_1 and e_2 . (No phase need be introduced in the first equation.) We then have three equations coupling the N variables w_1, \ldots, w_N . Provided that N is at least 3, we can solve these equations (in general) for any 3 of $\{w_i\}$ in terms of e_1 , e_2 , $\{x_i\}$, $\{y_i\}$, A_0 , k and the remaining $\{w_j\}$. We choose to solve for w_1 , w_2 and w_3 . There are then N-3 'free' variables w_4, \ldots, w_N ; or, rather, since $\{w_j\}$ are complex, there are 2N-6 free real variables at our disposal, to which must be added the e_1 and e_2 , giving 2N-4 free variables. Thus we set n = 2N-4, and z_1, z_2, \ldots, z_n will correspond to

$$e_1, e_2, Re(w_4), Im(w_4), \dots, Re(w_N), Im(w_N)$$
 (37)

The equations which express w_1 , w_2 , w_3 in terms of the free variables are cumbersome, but may be found in Appendix A.

3.5 Having forced the array function to satisfy the mainbeam conditions by solving the equations for w_1 , w_2 , w_3 , we now need to locate the maxima. The method used was to compute P(A) for every A at suitable intervals (say $10~\rm deg$) in order to find the maxima approximately, and then refine by solving

$$f'(A) = 0$$
 , (38)

by Newton's method. The details are given in Appendix B.

All solutions with $|A| \le A_0$ are then deleted and the remaining angles re-ordered so that $P(A_1)$ is the largest of the $P(A_1)$.

3.6 The procedures described in section 2 call for the gradients

grad
$$P(A_i)$$
, $i = 1,...,m$

taken with respect to the 2N-4 dimensional vector z. Now

$$\operatorname{grad} P(A_{\underline{i}}) = \operatorname{grad}_{A_{\underline{i}}} P(A_{\underline{i}}) + \frac{3P(A_{\underline{i}})}{3A_{\underline{i}}} \operatorname{grad} A_{\underline{i}}$$
 (39)

where $\operatorname{grad}_{A_{\hat{1}}}$ denotes the gradient calculated as if $A_{\hat{1}}$ did not depend on \underline{z} . Fortunately, since $A_{\hat{1}}$ is a maximum,

$$\frac{\partial P(A_i)}{\partial A_i} = 0 \tag{40}$$

and so

$$\operatorname{grad} P(A_{i}) = \operatorname{grad}_{A_{i}} P(A_{i})$$
 (41)

The actual components will be

$$[\text{grad } P(A_i)]_j = \frac{0}{0e_j} [P(A_i)]; \qquad j = 1,2$$
 (42)

$$[\text{grad } P(A_i)]_{2j+1} = \frac{\partial}{\partial (\text{Re}(w_{j+2}))} [P(A_i)]; \quad j = 1,...,N-3$$
 (43)

[grad
$$P(A_i)$$
] $2j+2 = \frac{\partial}{\partial (Im(w_{i+2}))} [P(A_i)]; j = 1,...,N-3 . (44)$

When we carry out the differentiations, remembering that the free variables affect $P(A_i)$ not only explicitly but also via the variables w_1 , w_2 , w_3 , the resulting expressions are rather lengthy, so these are relegated to Appendix C, (in which the components of grad $P(A_i)$ are written

$$d_1, d_2, g_1, g_2, \dots, g_{2N-6}$$
.

The numerical computation is not as long as the expressions might suggest since the computer can use much of previously stored information.

4 NUMERICAL EXAMPLE

4.1 The example uses six elements, placed regularly around a circle of radius 0.25 wavelength (Fig.5). The main beam is to be mid-way between two elements.

4.2 The most natural way to obtain a beam in the x-axis direction is to apply phases to bring the elements in-phase in this direction; and then use equal weighting amplitudes. This gives

$$w_{j} = \frac{1}{N} \exp(-i k x_{j}) ; j = 1,...,N$$
 (45)

or

$$w_1 = w_6 = 0.034816 - 0.162990 i$$

 $w_2 = w_5 = 0.166667$
 $w_3 = w_4 = 0.034816 + 0.162990 i$

The polar pattern of this array is plotted in Fig.6. The beamwidth is $84 \, \deg$. There are two side-lobes, located at $\pm 162.3 \, \deg$ with level -11.15 dB.

This pattern should be compared with the later results obtained by the side-lobe reduction program.

4.3 The high side-lobe levels under natural phasing makes this array a suitable subject for the program, provided we do not demand beamwidths much less than 84 deg. The actual values of $2A_0$ used were 55 deg to 90 deg in steps of 5 deg.

The initial values of the free variables were, at first, chosen to be

$$e_1 = 0$$
, $e_2 = 0$
 $w_4 = 0.0348162 + 0.162990 i$
 $w_5 = 0.166667$
 $w_6 = 0.0348162 - 0.162990 i$,

the last three being taken from the natural weighting. It was later found that this happened to be a rather unfavourable starting point, and machine time could be saved by starting from the values of e_1 to w_6 that constituted the final values for another A_0 case.

Fig. 7 illustrates the convergence of the maximum side-lobe as a plot against iteration number. The step length is also shown in Fig.8. For this

example, $2A_0 = 85$ deg. The final power value was 4.40172×10^{-4} or -33.56 dB in this case, showing an improvement of over 20 dB compared with the natural weighting scheme for approximately the same beamwidth.

- 4.4 The results for the eight values of \mathbf{A}_{0} are given in Tables 2 to 9. For each element, the tables give
 - (i) the x and y coordinates in wavelengths
 - (ii) the weights w_i in real and imaginary parts
- (iii) the weights in polar form, that is, amplitude and phase, with the phase given in radians and in degrees.

The tables also contain the results of an independent program which computed the -3 dB points and listed the side-lobes.

The actual polar diagrams corresponding to these results are plotted in Figs.9 to 16.

It may be noted that the -3 dB points of these curves occur at the required angles. Further, all the side-lobes are at the same level. This common level depends on the beanwidth; the larger the beamwidth we can allow, the lower the side-lobe level. The trade-off between beamwidth and side-lobe level is illustrated in Fig.17, for this particular array. The point for the original phasing is also plotted on this figure, and it is about 21 dB above the curve. As the beamwidth increases, the side-lobe level drops rapidly. As the beamwidth decreases, the level increases as if to approach 0 dB at about 40° . No solutions have been found which give reasonable patterns for beamwidths less than 50° , which suggests that 'supergain' weightings do not exist for this particular array.

4.5 The tolerances for these arrays are also of interest. Naturally, reducing the side-lobe level makes the pattern more sensitive to phasing and other errors, as it is necessary to compare tolerances in a way which is not masked by this effect. In this Report we express the tolerance at the rms phase error which applied (independently) to all elements, leads to a variance of the complex array function equal to 0.001. (Roughly speaking, this means that the 'noise' in the pattern is 30 dB down.) The value can readily be shown to be

$$|f(0)| \left\{ \frac{0.001}{N} \Big|_{j=1}^{\frac{1}{2}} |w_{j}|^{2} \right\}^{\frac{1}{2}} \cdot \frac{180}{\pi} \text{ degrees} .$$
 (46)

This tolerance is plotted in Fig.18 against beamwidth. On this curve is also shown the tolerance for natural phasing. Note that the tolerance is maximum at around 84°, the original beamwidth, and becomes less at narrower beamwidth, being about half the original value at 55°. For beamwidths around 70° to 90° the tolerance is only slightly less than the original tolerance with natural phasing (over 80%). The fact that the side-lobe levels are shown going down to some -40 dB does not of course mean that they could necessarily be achieved in practice. It would be necessary to consider, for example, mutual coupling, inter-element screening, departures from omnidirectionality, as well as the phase and amplitude tolerances. However these effects apply to any array, and it is outside the scope of this Report to include them.

4.6 The weights and phases for these optimised arrays have, in this example, rather curious properties. In the first place, they are not symmetric about the beam axis, that is

$$w_1 \neq w_6, w_2 \neq w_5, w_3 \neq w_4$$
.

It follows that each solution is one of a pair, the other being obtained by reflection in the x-axis. Secondly, the array has conjugate complex symmetry about the y-axis, that is,

$$w_1 = w_3^*, w_6 = w_4^*, \text{ and } w_2 \text{ and } w_5 \text{ are real.}$$

Probably these properties are due to the geometry of this example, but they show that these optimised arrays may be quite different from the arrays one would normally consider.

5 SUMMARY

5.1 We have described a method of adjusting the complex weights in a two-dimensional array in order to optimise its pattern. The optimisation consists of minimising the side-lobe level (that is, the largest side-lobe) while holding the -3 dB beamwidth at any value we choose.

The procedure is a gradient method, modified to deal with the discontinuities in the gradient vector. At each iteration we choose the next step using a linear programming routine. The step length is controlled by a parameter which is varied automatically so as to minimise the number of steps needed.

The method is a general one in that it can be applied to any problem requiring the minimising of the largest of several non-linear functions.

5.2 As an example, we considered a six-element array shaped like a regular hexagon, with the main beam mid-way between two elements. Starting from the natural phasing scheme, the program reduced the side-lobe level from -11 to -32 dB for unchanged beamwidth. The solutions indicated weights and phases strikingly different from the natural phasing scheme.

Figs.9 to 16 show the polar diagrams for this array for various beamwidths. The minimum side-lobe level decreases quickly as the beamwidth is allowed to increase, and Fig.17 shows the relation for this particular example. Such a curve may be used to select a beamwidth when the side-lobe level is prescribed.

The tolerance, expressed as the rms phase error which would produce pattern noise at -30 dB, were only slightly less than those for the original phasing (typically 80%), so there is no objection to the optimised arrays with regard to tolerance.

BLANK PAGE

Appendix A

A.1 We write the equations in matrix form

$$\begin{bmatrix} B & C \end{bmatrix} \begin{bmatrix} W \\ Z \end{bmatrix} = E \tag{A-1}$$

where [B C] is the 6 x 2N matrix of coefficients

in which

$$b_{j}^{0} = k x_{j}$$
 (A-3)

$$b_{j}^{+} = k(x_{j} \cos A_{o} + y_{j} \sin A_{o})$$
 (A-4)

$$b_{j}^{-} = k(x_{j} \cos A_{o} - y_{i} \sin A_{o})$$
 (A-5)

 $\begin{bmatrix} W \\ Z \end{bmatrix}$ is the 2N column vector whose transpose is

[
$$Re(w_1)$$
, $Im(w_1)$, $Re(w_2)$, $Im(w_2)$, ...] . (A-6)

E is the six-vector whose transpose is

[1, 0,
$$(1/\sqrt{2}) \cos e_1$$
, $(1/\sqrt{2}) \sin e_1$, $(1/\sqrt{2}) \cos e_2$, $(1/\sqrt{2}) \sin e_2$]. (A-7)

The partitioning is such that B is 6×6 , C is $6 \times (2N-6)$, w is 6×1 , E is $(2N-6) \times 1$. This allows us to write

$$BW + CZ = E (A-8)$$

whence

$$W = B^{-1} (E - CZ)$$
 (A-9)

cr

$$W = AE - DZ \tag{A-10}$$

where A is the 6 \times 6 matrix B⁻¹ and D is the 6 \times (2N-6) matrix AC.

A depends on A_0 and (x_j, y_j) , j = 1, 2, 3; D depends on A_0 and (x_j, y_j) , j = 4 to 2N-6; thus A and D are independent of the weights w_j and need not be recomputed at each iteration. The vector Z depends on w_j , j = 4 to 2N-6, via the equation

The weights w_1, w_2, w_3 are then obtained by

$$w_{1} = W_{1} + i W_{2}$$

$$w_{2} = W_{3} + i W_{4}$$

$$w_{3} = W_{5} + i W_{6}$$
(A-12)

A.2 There exists the possibility that B will be singular, in which case the method will fail. This will happen if, for example, $A_0 = 0$. However for reasonable data no trouble has been encountered.

Appendix B

B.1 The first stage in locating the maxima begins by computing the array \mathbf{p}_1 , ..., \mathbf{p}_{M+1}

where

$$p_{i} = P(\pi(2_{i}/M - 1))$$
, $i = 1,...,M$
 $p_{M+1} = p_{1}$
(B-1)

for some convenient integer M. M nust be chosen large enough so that the interval $2\pi/M$ is less than the interval between maxima, and is found by experiment. We then examine the list and find all j such that

$$p_{i-1} < p_i > p_{i+1}$$
 (B-2)

giving as a first approximation

$$A = \pi(2_i/M - 1)$$
 (B-3)

B.2 The exact value of A at the maximum is then found by applying Newton's method to solve

$$P'(A) = 0$$
 . (B-4)

If A is an approximate solution, the next approximation A' is

$$A^{\dagger} = A - P^{\dagger}(A)/P^{\prime\prime}(A)$$
 (B-5)

The iteration is stopped when $|A' - A| \le 10^{-4}$ and A' taken as the solution.

B.3 The formulae for P(A), P'(A) and P"(A) will now be derived.

Writing F_0 and F_1 for the real and imaginary parts of f(A), i.e.

$$F_0 = \sum_{j=1}^{N} b_3, \quad F_1 = \sum_{j=1}^{N} b_4$$
 (B-6)

where

$$b_3 = Re(w_j) \cos b_0 - Im(w_j) \sin b_0$$
 (B-7)

$$b_4 = \text{ke}(w_j) \sin b_0 + \text{Im}(w_j) \cos b_0$$
 (B-8)

$$b_{o} = k \times \cos A + k y \sin A \qquad (B-9)$$

then

$$P(A) = F_0^2 + F_1^2$$
 (B-10)

[The b_is depend on j, but the notation ignores this for simplicity.] The first derivative P'(A) is

$$P'(\Lambda) = 2\left\{F_0 \frac{dF_0}{dA} + F_1 \frac{dF_1}{dA}\right\}$$

or

$$2(F_0:_2+F_1:_3)$$
 (B-11)

where

$$F_{2} = \sum_{j} \frac{db_{3}}{dA}$$

$$= \sum_{j} -b_{4} \frac{db_{0}}{dA}$$

$$= \sum_{j} -b_{4} b_{1}$$
(B-12)

130

and

$$F_{3} = \sum_{j} \frac{db_{4}}{dA}$$

$$= \sum_{j} b_{3} b_{1}$$
(B-13)

where

$$b_1 = -k x_j \sin A + k y_j \cos A$$
 (B-14)

The second derivative P"(A) is

$$P''(A) = 2\left\{F_0 \frac{dF_2}{dA} + F_2 \frac{dF_0}{dA} + F_1 \frac{dF_3}{dA} + F_3 \frac{dF_1}{dA}\right\}$$

or

$$2\left\{F_{0}F_{4} + F_{1}F_{5} + F_{2}^{2} + F_{3}^{2}\right\}$$
 (B-15)

where

$$F_{4} = \sum_{j} \frac{d}{dA} (-b_{4}b_{1})$$

$$= \sum_{j} \left[-b_{4} \frac{db_{1}}{dA} - b_{1} \frac{db_{4}}{dA} \right]$$

$$= \sum_{j} \left[-b_{4} (-b_{0}) - b_{1} (b_{3} b_{1}) \right]$$

$$= \sum_{j} \left[b_{4} b_{0} - b_{3} b_{1}^{2} \right]$$
(B-16)

and similarly

$$F_5 = \frac{5}{3} (-b_3 b_0 - b_4 b_1^2)$$
 (B-17)

Appendix C

C.l If a is any variable

$$\frac{3}{3.5} P(A_1) = 2(F_0 G_0 + F_1 G_1)$$
 (C-1)

where

$$F_{o} = \sum_{j=1}^{N} \left[\operatorname{Re}(w_{j}) \cos b_{o}^{(j)} - \operatorname{Im}(w_{j}) \sin b_{o}^{(j)} \right]$$
 (C-2)

$$F_{1} = \sum_{j=1}^{N} \left[\text{Re}(w_{j}) \sin b_{0}^{(j)} + \text{Im}(w_{j}) \cos b_{0}^{(j)} \right]$$
 (C-3)

$$b_0^{(j)} = k x_i \cos A + k y_i \sin A \qquad (C-4)$$

and

$$G_o = \frac{\partial F_o}{\partial \alpha}$$
, $G_1 = \frac{\partial F_1}{\partial \alpha}$. (C-5)

C.2 To evaluate d_1 , take α to be e_1 . Then

$$G_{o} = \frac{3}{3e_{1}} \sum_{j=1}^{N} \left[\operatorname{Re}(w_{j}) \cos b_{o}^{(j)} - \operatorname{Im}(w_{j}) \cos b_{o}^{(j)} \right] . \quad (C-6)$$

Now \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 are functions of \mathbf{e}_1 but the remaining weights are not. Hence

$$G_{o} = \sum_{j=1}^{3} \left\{ \frac{\partial}{\partial e_{1}} [\operatorname{Re}(w_{j})] \cos b_{o}^{(j)} - \frac{\partial}{\partial e_{1}} [\operatorname{Im}(w_{j})] \sin b_{o}^{(j)} \right\} . (C-7)$$

However, $Re(w_j)$ is the (2j-1)th component of W, and is equal to

$$\sum_{k=1}^{6} A_{2j-1,k} E_{k} - (DZ)_{2j-1}$$
(C-8)

while $Im(w_i)$ is

$$\sum_{k=1}^{6} A_{2j,k} E_{k} - (DZ)_{zj} . \qquad (C-9)$$

Differentiating w.r.t. e₁ gives

$$\frac{\partial}{\partial e_1} \operatorname{Re}(w_j) = \sum_{k=1}^{6} A_{2j-1,k} \frac{\partial E_k}{\partial e_1}$$
 (C-10)

$$\frac{\partial}{\partial \mathbf{e}_1} \operatorname{Im}(\mathbf{w}_j) = \sum_{k=1}^{6} A_{2j,k} \frac{\partial \mathbf{E}_k}{\partial \mathbf{e}_1} . \qquad (C-11)$$

But

$$\frac{\partial E_k}{\partial e_1}$$
 = 0 unless k = 3 or 4, and $\frac{\partial E_3}{\partial e_1}$ = $-E_4$, $\frac{\partial E_4}{\partial e_1}$ = E_3 . (C-12)

Hence we get

$$\frac{\partial}{\partial \mathbf{e}_{1}} \operatorname{Re}(\mathbf{w}_{j}) = V_{1,2j-1}$$
 (C-13)

$$\frac{\partial}{\partial e_1} \operatorname{Im}(w_j) = V_{1,2j} \tag{C-14}$$

where

$$V_{1,k} = -A_{k,3} E_4 + A_{k,4} E_3, \quad k = 1 \text{ to } 6$$
 (C-15)

Similarly, we write

$$\frac{\hat{\sigma}}{\partial e_2} \operatorname{Re}(w_j) = V_{2,2j-1}$$
 (C-16)

$$\frac{\partial}{\partial e_2} \operatorname{Re}(w_j) = v_{2,2j-1}$$
 (C-17)

where

$$V_{2,k} = -A_{k,5} E_6 + A_{k,6} E_5, \quad k = 1 \text{ to } 6$$
 (C-18)

By substitution

$$G_0 = \int_{j=1}^{3} \left[v_{k,2j-1} \cos b_0^{(j)} - v_{k,2j} \sin b_0^{(j)} \right]$$
 (C-19)

and, similarly,

$$G_o = \int_{j=1}^{3} \left[v_{k,2j-1} \sin b_o^{(j)} - v_{k,2j} \cos b_o^{(j)} \right]$$
 (C-20)

where k = 1 for differentiation w.r.t. e_1 , and 2 for e_2 .

C.3 To find g_k we take α to be z_k . In differentiating F_0 and F_1 we have to remember that w_1 , w_2 , w_3 depend on z_k via the matrix D, and also that one of w_4 , ..., w_{2N-6} depends directly on z_k .

If k is odd, say 2i - 7 where $4 \le i \le N$, then

$$G_{o} = \sum_{j=1}^{3} \left[-D_{2j-1,k} \cos b_{o}^{(j)} + D_{2j,k} \sin b_{o}^{(j)} \right] + \cos b_{o}^{(i)} \qquad (C-21)$$

$$G_1 = \int_{j=1}^{3} \left[-D_{2j-1,k} \sin b_0^{(j)} - D_{2j,k} \cos b_0^{(j)} \right] + \sin b_0^{(i)}$$
 (C-22)

If k is even, equal to 2i - 6, then

$$G_{o} = \sum_{j=1}^{3} \left[-D_{2j-1,k} \cos b_{o}^{(j)} + D_{2j,k} \sin b_{o}^{(j)} \right] - \sin b_{o}^{(i)}$$
 (C-23)

$$G_1 = \sum_{j=1}^{3} \left[-D_{2j-1,k} \sin b_0^{(j)} - D_{2j,k} \cos b_0^{(j)} \right] + \cos b_0^{(j)}$$
 (C-24)

In either case, the gradient component is

$$g_k = 2(F_0 G_0 + F_1 G_1)$$
 (C-25)

Table 1

TABLEAU FOR LINEAR PROGRAMMING ROUTINE

		2	P	:	ct E	41	:	P.
-	b ₁ - b ₂	7	h ₂₁ - h ₁₁	:	h _{2m} - h _{1m}	-h ₂₁ + h ₁₁		-h _{2m} + h _{1m}
	b ₁ - b ₃	-1	h ₃₁ - h ₁₁	:	հ _{3m} - հ _{1m}	$-h_{31} + h_{11}$	į	-h _{3m} + h _{1m}
	•••	••••	••••					
	p1 - p		h _{ml} - h ₁₁	:	հ - Իլա	-h + h 11	:	-h + h հ
	w	0		i	С	С	:	С
	••••	• • • •	••••		•••			
	w	0	С	:	-	C	: :	С
	u.	c	c	:	0	-	:	c
	• • • •		••••		••••			••••
	w	0	c	:	c	С		
-y _{n:ax}	-b	-	h ₁ 1 2	:	h Lm	-h ₁₁	:	-h _{1m}

i de selle en entre de destamblemente de sentiment de constructional particular de construction de constructin

The second control of the second control of

Table 2

BEAMWIDTH 55 DEG

N= 6 MAX.SL= E1= 9.07103E-03				
X Y WT-R WT-I WT-AMP PH-RAD PH-DEG	1 .2165Ø6 .125 28ØØ5 3.Ø8759E-Ø2 .281747 3.Ø3178 173.7Ø8	2 Ø .25 .57Ø239 -2.37417E-Ø4 .57Ø239 -4.16347E-Ø4 -2.38549E-Ø2	3 2165Ø6 .125 28Ø266 -3.Ø3791E-Ø2 .2819Ø8 -3.Ø3362 -173.814	4 2165Ø6 125 3.537Ø9E-Ø2 .19Ø323 .193582 1.387Ø5 79.4719
X Y WT-R WT-I WT-AMP PH-RAD PH-DEG	5 0 25 .219784 -3.87944E-06 .219784 -1.76512E-05 -1.01134E-03	6 .2165Ø6125 3.52782E-Ø219Ø247 .19349 -1.38744 -79.4948	* ******** ** **	·
1/2 PWR -27.5 Ø DB -8.51 DB -8.51 DB -8.51 DB DIR 4.31995 -3ØDB TOLS: POS 6.45862E WT .352439 PH 2.3251	@ 101.3 @ 180 @ -101.3 (6.35	DEG DEG DEG DEG DB)		

Table 3

BEAMWIDTH 60 DEG

N= 6 MAX.SL= 6.78598E-Ø2 (-11.6839 DB) E1= 4.96462E-Ø3 E2=-5.Ø2428E-Ø3 RAD

	1	2	3	4
X	.2165Ø6	Ø	-,2165Ø6	2165Ø6
Y	.125	.25	.125	125
WT-R	~.2Ø2399	.474223	2Ø235	5.35152E-Ø2
WT-I	-2.2Ø666E-Ø2	5.18891E-Ø5	2.19617E-Ø2	.167044
WT-AMP	.2Ø3598	.474223	.2Ø3539	.175407
PH-RAD	-3.Ø3299	1.Ø9419E-Ø4	3.Ø3348	1.26076
PH DEG	-173.778	6.26925E-Ø3	173.8Ø6	72.2363

	5	6
X	Ø	.2165Ø6
Y	25	 125
WT-R	.218211	5.354ØØE-Ø2
WT-I	-1.Ø83Ø9E-Ø5	167Ø23
WT-AMP	.218211	.175394
PH-RAD	-4.9635ØE-Ø5	-1.26Ø59
PH-DEG	-2.84388F-d3	-72 2265

1/2 PW	'R −3Ø	3Ø	DEG	
Ø	ĎВ	@ Ø		DEG
-11.68	DB	@ -1Ø5	5.7	DEG
-11.68	DB	@ 105	5.7	DEG
-11.68	DB	@ 180	ð	DEG
DIR 4	.86244	(6.8	37	DB)
−3ØDB	TOLS:			
POS	7.79463E	- Ø3 (√L	
WT	.425343]	OB	
PH	2.80607	J	DEG	

Table 4

BEAMWIDTH 65 DEG

	= 3.11699E-Ø2 3 E2=-2,88797	(-15. 0 626 E- 0 3 RAD	DB)	
X Y WT-R WT-I WT-AMP PH-RAD PH-DEG	1 .2165Ø6 .125 127Ø46 -6.5Ø121E-Ø2 .142714 -2.66861 -152.9	2 Ø .25 .391772 -3.34624E-Ø6 .391772 -8.54131E-Ø6 -4.89381E-Ø4	3 2165Ø6 .125 127Ø47 6.5Ø226E-Ø2 .14272 2.66855 152.897	4 2165Ø6 125 5.51484E-Ø2 .145494 .155595 1.20849 69.2412
X Y WT-R WT-I WT-AMP PH-RAD PH-DEG	5 Ø 25 .226542 -2.78361E-Ø6 .226542 -1.22874E-Ø5 -7.Ø4Ø16E-Ø4	6 .2165Ø6 125 5.51492E-Ø2 145485 .155587 -1.2Ø846 -69.2397	e <u>e</u> e e	

1/2 PWR -32.5	32.5	DEG
Ø DB	@ Ø	DEG
-15.Ø6 DB		DEG
-15. ∅ 6 DB	@ -111.1	DEG
-15.Ø6 DB	@ 111.1	DEG
DIR 4.98824	(6.98	DB)
-3ØDB TOLS:		
POS 9.28274E-	-Ø3 WL	
WT .5Ø6547	DB	
PH 3 34178	DEC	

Table 5 BEAMWIDTH 70 DEG

N= 6 MAX.SL E1=-4.47159E-Ø	= 1.333ØSE-Ø2 4 E2= 3.2513		DB)	
X Y WI-R WI-I WI-AMP PH-RAD PH-DEG	1 .2165Ø6 .125 -6.98724E-Ø2 -9.16232E-Ø2 .115226 -2.22231 -127.329	2 Ø .25 .334Ø35 6.Ø3756E-Ø5 .334Ø35 1.8Ø746E-Ø4 1.Ø356ØE-Ø2	5 2165Ø6 .125 -6.98346E-Ø2 9.147Ø1E-Ø2 .115Ø81 2.22286 127.361	4 2165Ø6 125 6.12264E-Ø2 .134584 .147856 1.14385 65.5378
X Y WT-R WT-I WT-AMP PH-RAD PH-DEG	5 Ø 25 .227295 -4.09895E-06 .227295 -1.80336E-05 -1.033325E-03	6 .2165Ø6125 6.12369E-Ø2134572 .14785 -1.14375 -65.5321		
-18.75 DB -18.75 DB	35 DEG @ Ø @ 117.1 @ -117.1 @ 18Ø (6.83 -Ø2 WL DB DEG	DEG DEG DEG DEG DB)		

Table 6

BEAMWIDTH 75 DEG

N= 6	MAX.SL=	5	13755E-Ø3 (-2)	2.8924	(שע
El= 4.1	.3922E- Ø 4		E2=-4.20647E-04	RAD	
		,	2		

	1	2	3	4
X	.2165Ø6	Ø	2165Ø6	2165Ø6
Y	.125	.25	.125	125
WT-R	-1.75293E-Ø2	.2881Ø4	-1.75279E-Ø2	6.21181E-Ø2
WI-I	110457	3.13678E-Ø6	.11Ø447	.126866
WT-AMP	.111839	.2881Ø4	.111829	.141257
PH-RAD	-1.72818	1.08877E-Ø5	1.72818	1.11547
PH-DEG	-99.Ø175	6.23817E- Ø 4	99.Ø175	63.912

	5	6
X	Ø	.2165 Ø 6
Y	-,25	-,125
WT-R	.2291Ø4	6.21188E-Ø2
WT-I	-8.76854E- 4 7	126864
WT-AMP	.2291Ø4	.141256
PH-RAD	-3.82732E-Ø6	-1.11546
PH-DEG	-2.19289E-Ø4	-63.9114

1/2 PWR -37	.5 37.5	DEG
Ø	DB @ Ø	DEG
-22.89	DB @ -123.7	DEG
-22.89	DB @ 123.7	DEG
-22.89	DB @ 18Ø	DEG
DIR 4.56¢76	(6.59	DB)
-30DB TOLS:		
PGS 1.1242	4E-Ø2 WL	
WI .61348	1 DB	
PH 4.0472	4 DEG	

Table 7

BEAMWIDTH 80 DEG

N= 6	MAX.SL=	1.69646E-Ø3	(-27.704	5 DB)
El=-1.	84984E-Ø3	E2= 1.85Ø591	E-Ø3 RA	D .

	1	2	3	4
X	.2165Ø6	Ø	2165Ø6	216506
Y	.125	.25	.125	125
WT-R	2.73322E-Ø2	.253Ø21	2.73332E-Ø2	6.28844E-Ø2
WT-I	12Ø433	3.5296ØE-Ø6	.120423	.124688
WT-AMP	.123496	.253Ø21	.123486	.139648
PH-RAD	-1.34763	1.39498E-Ø5	1.3476	1.10369
PH-DEG	-77.2134	7.99266E-Ø4	77.2119	63.2367

	5	6
X	Ø	.2165Ø6
Y	~.25	125
WT-R	.22988	6.28856F-Ø2
WT-I	-3.63328E-Ø6	124677
WT-AMP	.22988	.139639
PH-RAD	-1.58Ø51E-Ø5	-1.1Ø364
PH-DEG	-9.Ø5567E-Ø4	-63.2342

1/2 PWR	-40	40	DEG	
Ø	DB	0 Ø		DEG
-27.7	DB	@ 13	Ø.8	DEG
-27.7	DB	@ -130	ø.8	DEG
-27.7	DB	@ 180	Ø	DEG
DIR 4.2	8581	(6.3	32	DB)
-3ØDB TO	LS:			
POS 1.	16584E-	-Ø2 1	WL.	
WT .6	36183	3	DB	
PH 4.	197Ø1	j	DEG	

-3ØDB TOLS:

POS 1.17455E-Ø2 WT .64Ø936 PH 4.22837

WL DB DEG

Table 8

BEAMWIDTH 85 DEG

	1	2	3	4	
X Y	.2165Ø6 .125	Ø	2165Ø6	2165Ø6	
ı WT-R	6.71199E-Ø2	.25 .22631	.125	125	
wt-k WT-I	1256Ø9	3.11Ø32E-Ø6	6.71194E-Ø2 .125597	6.28798E-Ø2 .12468	
WT-AMP	.142417	.22631	.142407	.139639	
PH-RAD	-1.08004	1.37436E-Ø5		1.10369	
PH-DEG	-61.8819	7.87452E- Ø 4		63.2369	
X Y WT-R WT-I UT-AMP PH-RAD PH-DEG	5 Ø 25 .229864 -3.937Ø7E-Ø6 .229864 -1.71278E-Ø5 -9.81352E-Ø4	.139629 -1.1Ø365			
1/2 PWR	42.5 42.5 DB @ 0 DB @ 138.5 DB @ -138.5 DB @ 18Ø 36 (6.Ø5	DEG DEG DEG DEG DEG DEG DB)			

Table 9
BEAMWIDTH 90 DEG

3

-.2165Ø6

.125 .1Ø2Ø15

.1269Ø7

.162826 .89371 51.2059 -.2165Ø6

6.3436ØE-Ø2

.126Ø92

.14115 -1.10468 63.2934

-.125

N= 6 MAX.SL= El= 4.18666E- 0 4			DB)
	1	2	3
X	.2165Ø6	Ø	-,
Y	.125	.25	
WT-R	.10201	.204806	
WT-I	126915	6.Ø6649E-Ø6	
	.162829	. 204806	
	-,893764	2.962Ø6E-Ø5	
	-51.2Ø89	1.69714E-Ø3	
	5	6	
X	Ø	.2165Ø6	
Y	 25	125	
	.231238	6.34371E-Ø2	
WT-I	-3.Ø7767E-Ø6		
WT-AMP	.231238	.141141	
PH-RAD	-1.33Ø95E-Ø5		
PH-DEG	-7.6258 Ø E -Ø 4	-63.291	
1/2 PWR -45	45		
Ø DB	@ Ø	DEG	
-39.7 DB	@ -149.4	DEG	
		DEG	
-39.71 DB	@ 18Ø	DEG	
DIR 3.79Ø87	(5.79	DB)	
-3ØDB TOLS:			
POS 1.15987E	-Ø2 WL		
WT .632929	DB		
PH 4.17555	DEG		

SYMBOLS

```
azimuthal angle
Α
                     semi-beamwidth to -3 dB points
                     y, at beginning of iteration
р
                     components of b
bi
                     vector consisting of c_1, \dots, c_m
                     scalars expressing \Delta z in terms of the gradients
                     phases at -3 dB points
e_1, e_2
f(.)
                     complex array function
                     matrix whose rows are grad ŷ;
Ë
                     components of g
g<sub>ij</sub>
                     <u>g g'</u>
ħ
                     components of h
                      \sqrt{-1}
                      indices
                      2\pi/\text{wavelength}
                      number of side-lobes
                      number of elements
                      number of free variables
n
                      array power function |f(.)|^2
P(.)
                      auxiliary variables used to convert problem to standard
p<sub>i</sub>, q<sub>i</sub>, r<sub>i</sub>, s<sub>i</sub>
                      linear programming form
                      complex weight for element i
                      Cartesian coordinates of element i
x_i \cdot y_i
                      power level of side-lobe i
Уi
                      largest of y;
                      initial value of ŷ
y_{start}
\hat{y}_{1in}^{(i)}
                      linearised ŷ after iteration i
y(i)
true
                      true ŷ after iteration i
                      vector consisting of z_1, \dots, w_n
<u>z</u>
                      free variables, identified with e_1, e_2 and the real and
                      imaginary parts of w_{\underline{a}}, \dots, w_{\underline{N}}
```

SYMBOLS (Cont'd)

 $\frac{\Delta z}{\varepsilon} \hspace{1cm} \text{increment in } \underline{z} \hspace{1cm} \text{resulting from iteration} \\ \varepsilon \hspace{1cm} \text{small constant limiting step length}$

grad gradient operator $\left(\frac{\partial}{\partial z_1}, \ldots, \frac{\partial}{\partial z_n}\right)$

matrix transpose

REFERENCE

No.	Author	Title, etc.	
1	S. Vajda	Linear programming and the theory of games.	
		Methuen & Co. Ltd., London (1960)	

Fig. 1 Flow chart for first method of sidelobe reduction

Fig. 2 Simplified flow chart for the second method

008 80247

Fig. 3 Array configuration

A74508 B03

Fig. 4 Illustrating beam-defining points and sideiobe definitions

Fig. 5 Array used as example

Fig.7 Typical sequence of $\hat{\mathbf{y}}_{\text{true}}$ values during computation

fig P Typical sequence of E values during computation

Fig. 9 Optimised pattern for 55° beamwidth

Fig. 10 Optimised pattern for 60° beamwidth

Fig.11 Optimised pattern for 65° beamwidth

Fig. 12 Optimised pattern for 70° beamwidth

Fig.13 Optimised pattern for 75° beamwidth

Fig. 14 Optimised pattern for 80° beamwidth

Fig. 15 Optimised pattern for 85° beamwidth

Fig. 17 Relation between sidelobe level and beamwidth

Fig. 18 Phase tolerance (-30 dB pattern noise) versus beamwidth