Geometry of Sphere of Projections

WEI YUAN

ABSTRACT. Enter abstract here

Introduction

Introduction here!

1. Preliminary

Definition 1.1. Let \mathcal{M} be a manifold with a complex structure. A rank n **Hermitian** holomorphic vector bundle over \mathcal{M} consists of a manifold \mathcal{E} with a complex structure together with a holomorphic map π from \mathcal{E} onto \mathcal{M} such that each fibre $\mathcal{E}_x = \pi^{-1}(x)$ is isomorphic to a Hilbert space and such that for each x_0 there exists a neighborhood Δ of x_0 and holomorphic functions $\xi_i(x)$, $i=1,\ldots,n$, form Δ to \mathcal{E} whose values form a basis for \mathcal{E}_x .

For a separable Hilbert space \mathcal{H} , let

 $Gr(n, \mathcal{H}) = \{\text{n-dimensional subspaces of } \mathcal{H}\}.$

1.1. **Curvature Matrix.** Let $E \to X$ be a \mathbb{C} -vector bundle. $\mathcal{E}(X, E)$ denotes the sections of E.

Definition 1.2. Let $E \to X$ be a \mathbb{C} -vector bundle. Then a connection D on $E \to X$ is a \mathbb{C} -linear mapping

$$D: \mathcal{E}(X,E) \to \mathcal{E}(X,T^*(X) \otimes_{\mathbb{C}} E)$$

which satisfies

$$D(f\xi) = df \cdot \xi + fD\xi,$$

where $f \in C^{\infty}(X)$ and $\xi \in \mathcal{E}(X, E)$.

Suppose that $E \to X$ is a C-vector bundle. Let $\{e_1, \dots, e_n\}$ be a frame for E over a open subset U. Then locally, $\xi \in \mathcal{E}(U, E)$ can be write as

$$(e_1 \quad e_2 \quad \dots \quad e_n) \times \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix} = \sum_{k=1}^{k} \xi_k e_k.$$

If

$$De_j = \sum_{i}^{n} \theta_{ij} e_i,$$

where $\theta_{ij} \in \mathcal{E}(U, T^*(X) \otimes E)$, then

$$D((e_1 \quad e_2 \quad \dots \quad e_n) \times \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}) =$$

$$(e_1 \quad e_2 \quad \dots \quad e_n) \times \begin{pmatrix} d\xi_1 \\ d\xi_2 \\ \vdots \\ d\xi_n \end{pmatrix} + \begin{pmatrix} \theta_{11} \quad \dots \quad \theta_{1n} \\ \vdots \quad \ddots \quad \vdots \\ \theta_{n1} \quad \dots \quad \theta_{nn} \end{pmatrix} \times \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$

$$\theta(e) = \begin{pmatrix} \theta_{11} & \dots & \theta_{1n} \\ \vdots & \ddots & \vdots \\ \theta_{n1} & \dots & \theta_{nn} \end{pmatrix} \text{ will be called the associated connection matrix.}$$

$$\begin{pmatrix} e'_1 & e'_2 & \dots & e'_n \end{pmatrix} = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix} \times \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix}$$

is another frames over U, then

$$\begin{pmatrix} e_1' & e_2' & \dots & e_n' \end{pmatrix} \times \begin{pmatrix} \xi_1' \\ \xi_2' \\ \vdots \\ \xi_n' \end{pmatrix} = \xi = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix} \times \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$

implies that

$$\begin{pmatrix} e_1' & e_2' & \dots & e_n' \end{pmatrix} \times \begin{pmatrix} \xi_1' \\ \xi_2' \\ \vdots \\ \xi_n' \end{pmatrix} = \begin{pmatrix} e_1' & e_2' & \dots & e_n' \end{pmatrix} \times \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix}^{-1} \times \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$

or

$$\begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix} \times \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix} = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix} \times \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix} \times \begin{pmatrix} \xi_1' \\ \xi_2' \\ \vdots \\ \xi_n' \end{pmatrix}.$$

Then

$$D((e_{1} \ e_{2} \ \dots \ e_{n}) \times \begin{pmatrix} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n} \end{pmatrix}) = D((e_{1} \ e_{2} \ \dots \ e_{n}) \times \begin{pmatrix} g_{11} \ \dots \ g_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} \xi'_{1} \\ \xi'_{2} \\ \vdots \\ \xi'_{n} \end{pmatrix})$$

$$= (e_{1} \ e_{2} \ \dots \ e_{n}) \begin{pmatrix} dg_{11} \ \dots \ dg_{1n} \\ \vdots \ \ddots \ \vdots \\ dg_{n1} \ \dots \ dg_{nn} \end{pmatrix} \times \begin{pmatrix} \xi'_{1} \\ \xi'_{2} \\ \vdots \\ \xi'_{n} \end{pmatrix} + \begin{pmatrix} g_{11} \ \dots \ g_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} d\xi'_{1} \\ d\xi'_{2} \\ \vdots \\ d\xi'_{n} \end{pmatrix}$$

$$+ \begin{pmatrix} \theta_{11} \ \dots \ \theta_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} g_{11} \ \dots \ g_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} \xi'_{1} \\ \xi'_{2} \\ \vdots \\ \xi'_{n} \end{pmatrix})$$

$$= (e'_{1} \ e'_{2} \ \dots \ e'_{n}) \begin{pmatrix} d\xi'_{1} \\ d\xi'_{2} \\ \vdots \\ d\xi'_{n} \end{pmatrix} + \begin{pmatrix} g_{11} \ \dots \ g_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} g_{11} \ \dots \ g_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} d\xi'_{1} \\ d\xi'_{2} \\ \vdots \\ d\xi'_{n} \end{pmatrix}$$

$$+ \begin{pmatrix} g_{11} \ \dots \ g_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} g_{11} \ \dots \ g_{1n} \\ \vdots \ \ddots \ \vdots \\ g_{n1} \ \dots \ g_{nn} \end{pmatrix} \times \begin{pmatrix} \xi'_{1} \\ \xi'_{2} \\ \vdots \\ \xi'_{n} \end{pmatrix}).$$

Therefore

$$\begin{pmatrix} \theta'_{11} & \dots & \theta'_{1n} \\ \vdots & \ddots & \vdots \\ \theta'_{n1} & \dots & \theta'_{nn} \end{pmatrix} = \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix}^{-1} \times \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix}$$

$$+ \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix}^{-1} \times \begin{pmatrix} \theta_{11} & \dots & \theta_{1n} \\ \vdots & \ddots & \vdots \\ \theta_{n1} & \dots & \theta_{nn} \end{pmatrix} \times \begin{pmatrix} g_{11} & \dots & g_{1n} \\ \vdots & \ddots & \vdots \\ g_{n1} & \dots & g_{nn} \end{pmatrix}$$

Definition 1.3. Let $E \to X$ be a \mathbb{C} -vector bundle with a connection D and $\theta(e)$ be the associated connection matrix for a frame $e = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix}$. We define the curvature matrix associated with the connection matrix $\theta(e)$ to be

$$\Theta(D, e) = d\theta(e) + \theta(e) \wedge \theta(e),$$

an $n \times n$ matrix of 2-forms.

Lemma 1.1. *Let g be a change of frame*, *i.e.*

$$\begin{pmatrix} e_1' & e_2' & \dots & e_n' \end{pmatrix} = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix} \cdot g.$$

Then

$$\Theta(D, e \cdot g) = g^{-1}\Theta(D, e)g.$$

Lemma 1.2.
$$[d + \theta(e)][d + \theta(e)]\xi = \Theta(D, e)\xi$$
.

Remark 1.1. Let

$$\mathcal{E}^p(X,E) = \mathcal{E}(X, \wedge^p T^*(X) \otimes_{\mathbb{C}} E)$$

be the differential forms of degree p on X with coefficients in E. We can extend D to a linear map

$$D: \mathcal{E}^{p}(X, E) \to \mathcal{E}^{p+1}(X, E)$$

$$D\xi = d\xi + \theta(e) \land \xi \quad \text{for any } \xi \in \mathcal{E}^{p}(X, E)$$

Then, we have $D^2\xi = \Theta(D, e)\xi$.

1.2. The Canonical Connection and Curvature of a Hermitian Holomorphic Vector Bundle.

Definition 1.4. Let $E \to X$ be a \mathbb{C} -vector bundle. A Hermitian metric h on E is an assignment of a Hermitian inner product \langle , \rangle_x to each fibre E_x of E such that for any open set $U \subset X$ and $\xi, \beta \in \mathcal{E}(U, E)$ the function

$$\langle \xi, \beta \rangle : U \to \mathbb{C}$$

given by

$$\langle \xi, \beta \rangle(x) = \langle \xi(x), \beta(x) \rangle_x$$

is C^{∞} .

Remark 1.2. *If E is a Hermitian vector bundle over X*. *Then we can extend the metric on E in a natrual manner to act on E-valued covectors in the following*

$$\langle \omega \otimes \xi, \omega' \otimes \xi' \rangle_{x} = \omega \wedge \omega' \langle \xi, \xi' \rangle_{x}$$

for $\omega \in \wedge^p T_x^*(X)$, $\omega' \in \wedge^q T_x^*(X)$, and $\xi, \xi' \in E$, for $x \in X$.

Definition 1.5. Let $E \to X$ be a holomorphic vector bundle over a complex manifold X. If E, as a differentiable bundle, is equipped with a differentiable Hermitian metric, then E is called a Hermitian holomorphic vector bundle.

If *X* is a complex manifold,

$$\sum_{r} \mathcal{E}^{r}(X, E) = \sum_{p,q} \mathcal{E}^{p,q}(X, E),$$

where $\mathcal{E}^{p,q}(X,E) = \mathcal{E}(X \wedge^{p,q} T^*(X) \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathcal{E}(X,\mathbb{C})} \mathcal{E}(X,E)$. If D is a connection, then D = D' + D'' and

$$D' = \partial + \theta : \mathcal{E}(X, E) \to \mathcal{E}^{1,0}(X, E)$$
$$D'' = \bar{\partial} : \mathcal{E}(X, E) \to \mathcal{E}^{0,1}(X, E).$$

Note that $H = (\langle e_i, e_j \rangle)_{i,j}$ is a Hermitian matrix, where (e_1, \dots, e_n) is a holomorphic frame. Then

$$\theta = H^{-1}\partial H$$

give a connection D such that

- $d\langle \xi, \beta \rangle = \langle D\xi, \beta \rangle + \langle \xi, D\beta \rangle$ for any ξ , beta $\in \mathcal{E}(X, E)$;
- if ξ is a holomorphic section of E, then $D''\xi = 0$.

Remark 1.3. *If* (e_1, \ldots, e_n) *is a holomorphic frame, then*

$$D' = \partial + \theta$$
$$D'' = \bar{\partial}.$$

We also have

- θ is of type (1,0), and $\partial\theta = -\theta \wedge \theta$.
- $\Theta(D,e) = \bar{\partial}\theta$ and $\Theta(D,e)$ is of type (1,1).
- $\bar{\partial}\Theta(D,e) = 0$, and $\partial\Theta(D,e) = [\Theta(D,e),\theta]$.

1.3. **Chern Classes.** Let $\widetilde{I}_k(M_n(\mathbb{C}))$ be the C-vector space of all invariant C-linear forms on $M_n(\mathbb{C})$, i.e. $\widetilde{\phi}: M_n(\mathbb{C}) \times \cdots \times M_n(\mathbb{C}) \to \mathbb{C}$, $\in \widetilde{I}_k(M_n(\mathbb{C}))$ if

$$\widetilde{\phi}(TA_1T^{-1},\ldots,TA_kT^{-1}) =$$
widetildephi (A_1,\ldots,A_k)

for and invertible element $T \in M_n(\mathbb{C})$.

Suppose $\widetilde{\phi} \in \widetilde{I}_k(M_n(\mathbb{C}))$. Let $\phi : M_n(\mathbb{C}) \to \mathbb{C}$ be

$$\phi(A) = \widetilde{\phi}(A, \dots, A).$$

Then ϕ is a homogeneous polynomial of degree k in the entries of A. Let

 $I_k(\mathcal{M}_n) = \{\phi : \phi(gAg^{-1} = \phi(A), \phi \text{ is homogeneous polynomials of degree } k\}.$ If $\phi \in I_k$, then

$$\widetilde{\phi}(A_1,\ldots,A_k) = \frac{(-1)^k}{k!} \sum_{j=1}^k \sum_{i_1 < \cdots < i_j} (-1)^j \phi(A_{i_1} + \cdots + A_{i_j})$$

is a element in $\widetilde{I_k}(M_n(\mathbb{C})$.

Note that we can extend $\phi \in \widetilde{I}_k(M_n(\mathbb{C}) \text{ to } \mathcal{E}^*(X, Hom(E, E)) \text{ in the following way,}$

$$\phi(A_1 \cdot \omega_1, \dots, A_k \cdot \omega_k) = \omega_1 \wedge \dots \wedge \omega_k \phi(A_1, \dots, A_k).$$

Theorem 1.1. Let $E \to X$ be a differentiable \mathbb{C} -vector bundle, let D be a connection on E, and suppose that $\phi \in I_k(M_n(\mathbb{C}))$. Then

- $\phi(\Theta(D, E))$ is closed.
- $\phi(\Theta(D, E))$ in the de Rham group $H^{2k}(X, \mathbb{C})$ is independent of the connection D.

Definition 1.6. *Let* $E \to X$ *be a differentiable* \mathbb{C} *-vector bundle equipped with a connection* D. *Then the kth Chern form of* E *relative to the connection* D *is defined to be*

$$c_k(E,D) = \Phi_k(\frac{i}{2\pi}\Theta(D,E)) \in \mathcal{E}^{2k}(X,E),$$

where $\Phi_k \in I_k(M_n(\mathbb{C}))$ are invariant polynomials defined by

$$det(I+A) = \sum_{k=0}^{n} \Phi_k(A), \quad A \in M_n(\mathbb{C}).$$

The total Chern form of E relative to D is defined to be

$$c(E,D) = \sum_{k=0}^{n} c_k(E,D), \quad n = rankE.$$

The kth Chern class of the vector bundle E, denoted by $c_k(E)$, is the cohomology class of $c_k(E,D)$ in the de Rham group $H^{2k}(X,\mathbb{C})$, and the total Chern class of E, denoted by c(E), is the cohomology class of c(E,D) in $H^*(X,\mathbb{C})$; i.e., $c(E) = \sum_{k=0}^n c_k(E)$.

1.4. Complex Line Bundles.

Proposition 1.1. Let X be a (paracompact) differentiable manifold with topological dimension n. Suppose $E \to X$ is a differentiable vector bundle. Then there is n+1 open covers $\{U_i\}_{i=0}^n$ of X such that $E|_{U_i}$ is trivial.

REFERENCES

M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978) 187–261.
 AMSS