AutoML: Meta-Learning Ever-learning AutoML

Bernd Bischl Frank Hutter Lars Kotthoff Marius Lindauer <u>Joaquin Vanschoren</u>

What can we learn to learn?

Training Task Acquisition

- Ultimately, meta-learning translates constraints on the learner to constraints on the data
 - ▶ The biases we don't put in manually have to be learnable from data
- Can we automatically create new tasks to inform and challenge our meta-learners?
- ullet Paired open-ended trailblazer (POET): evolves a parameterized environment $heta_E$ for agent $heta_A$
- Select agents that can solve challenges AND evolve environments so they are solvable

Figure source: Wang et al. 2019

Does POET scale?

Increasingly difficult 3D terrain, 18 degrees of freedom.

Generative Teaching Networks

- Based on an existing dataset, generate synthetic training data for more efficient training
 - Like dataset distillation, but uses meta-learning to update the generator model
- While POET has limited expressivity (limited to θ_E), GTNs could produce all sorts of training datasets and environments
 - ▶ While being careful not to generate noise: needs some grounding in reality

Thank you!

