(20) In the opposite figure:

AC = cm.

- (a) 3
- (b) 4
- (c)6
- (d) 8

(21) In the opposite figure:

If AB : AC = 2 : 3

, then BD : BC =

- (a) 2:1
- (b) $\frac{3}{2}$
- (c) $\frac{2}{3}$
- (d) $\frac{1}{2}$

(22) In the opposite figure:

 \overrightarrow{XL} bisects the exterior angle X, then $\frac{YL}{YX} = \cdots$

(a) $\frac{YZ}{ZL}$

(b) $\frac{YL}{LZ}$

(c) $\frac{LZ}{ZX}$

(d) $\frac{XZ}{XY}$

(23) By using the opposite figure:

All the following statements are true except

(a) $\frac{BA}{AC} = \frac{BD}{DC}$

(b) $\frac{BA}{AC} = \frac{BE}{EC}$

(c) $\frac{CA}{AB} = \frac{DA}{AE}$

(d) ∠ DAE is a right angle

(24) In the opposite figure:

 $DE = \cdots cm.$

(a) 12

(b) 24

(c) 30

(d) 35

(25) In the opposite figure:

 $x = \cdots cm$.

(a) 1

(b) 2

(c) 3

(d) 4

(26) In the opposite figure:

CF = cm.

(a) 3

(b) 4

(c) 5

(d) 6

(4) In the opposite figure:

which of the following statements is true?

(b)
$$AB \times AC = BD \times DC$$

(c) m (
$$\angle$$
 BAD) = m (\angle CAD)

(d)
$$AD = \sqrt{BD \times DC - AB \times AC}$$

(5) In the opposite figure:

Which of the following conditions is sufficient to prove that AD bisects the exterior angle at the vertex A?

(a)
$$\frac{AD}{AC} = \frac{DB}{BC}$$

(b)
$$\frac{AB}{AC} = \frac{BD}{BC}$$

(c)
$$\frac{AB}{AC} = \frac{CD}{BD}$$

(d)
$$AB \times DC = AC \times DB$$

(6) In the opposite figure:

Circle M in which, \overline{AB} is a diameter, $E \subseteq \overline{AB}$

$$, if AE = 15 cm. , BE = 20 cm. , AC = 21 cm.$$

,
$$\overrightarrow{CE}$$
 intersect circle M at D , then m (\widehat{AD}) =°

(a) 45

(b) 90

(c) 22.5

(d) 60

(7) In the opposite figure:

which of the following statements is false?

- (a) CE = 10 cm.
- (b) BE bisects ∠ ABC
- (c) BE = $4\sqrt{21}$ cm. (d) DE = $12\sqrt{2}$ cm.

(8) In the opposite figure:

If a $(\triangle ABD) = 30 \text{ cm}^2$, a $(\triangle ACD) = 40 \text{ cm}^2$

- , then AD is
- (a) perpendicular to BC

- (b) bisects ∠ BAC
- (c) passes through the midpoint of \overline{BC}
- (d) All the previous

