Lesson Objectives

- 1. Writing and Graphing Inequalities
- 2. Interval Notation Overview
- 3. Convert among inequality, graph, and interval notation (any variation)
 - Non-ending interval (involves positive or negative infinity)
- 4. Compound Inequalities
 - Open or Closed interval (in BETWEEN 2 endpoints infinity is NOT involved)
 - Two non-ending intervals together (2 endpoints going AWAY from each other)

A. Writing & Graphing Inequalities

• Warm-Up

Directions: Compare. Write <, >, or = in the blank.

3)
$$\frac{1}{2}$$
 $\frac{3}{4}$

4)
$$0.25 \underline{\hspace{1cm}} \frac{1}{4}$$

• Graphing Inequalities

To write and graph inequalities, you must connect words with symbols.

Look at the information in the table below.

Symbol	Words	Graph
<	"is than"	Shades to theCLUDED
≤	"is than or equal to" "at most" "no more than"	Shades to the CLUDED
>	"is than"	Shades to theCLUDED
≥	"is than or equal to" "at least" "no less than"	Shades to theCLUDED

B. Interval Notation - Overview	
Domain and range do not always involve a discrete () nun	
Interval notation is used for elements (not countable)	!).
Set-builder notation () can convert to interval notation	n, and vice-versa.
Interval Notation is describing how the number line is (or "pain"	ted"), written as:
• the value first, and	
• the value second.	
It's identifying the starting and ending points of the	·
points in are shaded (included).	
When using interval notation, the starting and ending points also contain a	a symbol:
(or) means "not included" or "open"	
[or] means "included" or "closed"	
General format for Interval Notation	
The general format for Interval Notation looks like this:	
or number, number	or
Note that the smaller number could be, or the larger number could	be
Remember to ALWAYS use with either positive or negative	e
Non-ending interval: (a, ∞) is interpreted as $x > a$, where a infinity is always expressed as being "open" (not included).	_ included and
Example: $x > 1$ graph:	5 6
Interval Notation:	
Non-ending interval: $(-\infty, b]$ is interpreted as $x \le b$, where b and again, infinity is always expressed as being "open" (not included).	_ included
Example: $x \le 5$ graph:	5 6
Interval Notation:	

In interval notation:

C.	Convert among Inequality, Graph, and Interval Notation (any variation)
•	Non-ending interval (involves positive or negative infinity) EXAMPLE: Write the set $\{x x < 5\}$ in interval notation. [2.3.1] [SOLUTION] The expression there at the end is read as:
	"The set of all values x, x is than 5."
Th	nat expression $\{x x < 5\}$ is written in notation .
	or ease of use, you can the braces and the initial " x " part. ocus just on the INEQUALITY part: $x < 5$
	 Ensure the variable is on the of the symbol (it IS) x < 5 If it isn't, you need to REVERSE the inequality (not needed here): x < 5 By far the most common error students make – forgetting to reverse it. x < 5 is read as "x is than 5" First, look at the graph of this inequality:
▼ -1	 What is the SMALLER number? Is it INCLUDED or EXCLUDED?
	How do you know?Use BRACKET or PARENTHESIS?
	 What is the LARGER number? Is it INCLUDED or EXCLUDED? How do you know? Use BRACKET or PARENTHESIS?
•	Interval notation is always done as: [or (smaller number , larger number) or] $ \text{ANSWER: Given the set-builder notation, } \{x x<5\} $

• EXAMPLE: Write the inequality in interval notation. $\{x \mid -3 \le x\}$ [1.3.5]
The expression there at the end is read as: "The set of all values x, such that negative 3 is than or equal to x."
That expression $\{x \mid -3 \le x\}$ is written inbuilder notation.
For ease of use, you can IGNORE the braces and the initial " x " part.
Focus just on the INEQUALITY part: $-3 \le x$
• Ensure the variable is on the LEFT of the symbol (it's). $-3 \le x$
o If it isn't, you need to the inequality:
 Keep the " of the inequality pointed to the object.
 By far the most common error students make – to reverse it.
• $x \ge -3$ is read as "x is than or equal to negative 3"
 First, look at the graph of this inequality:
-5 -4 -3 -2 -1 0
 What is the SMALLER number? Is it INCLUDED or EXCLUDED? How do you know? Use BRACKET or PARENTHESIS?
 Is it INCLUDED or EXCLUDED? How do you know?
 Is it INCLUDED or EXCLUDED? How do you know? Use BRACKET or PARENTHESIS? What is the LARGER number? Is it INCLUDED or EXCLUDED? How do you know?
 Is it INCLUDED or EXCLUDED? How do you know? Use BRACKET or PARENTHESIS? What is the LARGER number? Is it INCLUDED or EXCLUDED? How do you know? Use BRACKET or PARENTHESIS?

D. Compound Inequalities • Open or Closed interval (in two endpoints – infinity is NOT involved) **EXAMPLE:** Write the interval notation for the set $\{x \mid -10 < x < 10 \mid \text{*Beecher JIT.6.6}\}$ [SOLUTION] That expression $\{x \mid -10 < x < 10\}$ is written in **set-builder notation**. For ease of use, you can IGNORE the braces and the initial "x|" part. Focus just on the INEQUALITY part: -10 < x < 10This is one type of ______ INEQUALITY, because it involves more than one endpoint. Notice that the variable is **IN** ______ the two endpoints. There is a common structure with this "in-between" inequality: • The _____ number is always on the _____ The number is always on the _____ • (This mimics how they truly are on the number line as well.) _____ symbols are pointing _____ (____-than type) o The symbols can use any combination of _____ or ____. Returning to the inequality: -10 < x < 10Pull these apart into 2 separate inequalities: and Let's graph these TOGETHER on the _____ number line. **before** you graph it: -10 < x reverses to ______ -10 < xYou need to graph TOGETHER these 2 inequalities: and - 10 (cluded) shading and +10 (cluded) shading -11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ANSWER: The set $\{x \mid -10 < x < 10 \text{ in interval notation is: }$

You can graph compound inequalities MUCH than the previous example, by streamlining the process. Let's look at another example: • **EXAMPLE:** Write the inequality in interval notation. $-3 < x \le 2$ [1.3.3][SOLUTION] The smaller number – 3 has the symbol < (– 3 ___cluded = ____ The larger number 2 has the symbol ≤ (2 cluded = **ANSWER**: The inequality $-3 < x \le 2$ in interval notation is _____ • **EXAMPLE:** Write the inequality in interval notation. [1.3.9] [SOLUTION] This time the inequality is not given – only the graph is given. This is even easier! _____ (____ cluded) Smaller number = − 7 • Larger number = 4 _____(___cluded) **ANSWER**: That inequality as graphed in interval notation is • Two non-ending intervals together (2 endpoints going from each other) The other type of COMPOUND INEQUALITY is where the shading starts at 2 endpoints and they go _____ from each other. A big giveaway is that you'll see the word **"** or the " ______" symbol, _____. • **EXAMPLE:** Express the set in interval notation. [1.3.7] $\{x | x < 4 \text{ or } x \ge 7\}$ [SOLUTION] There are 2 separate inequalities separated by "or": Make sure the endpoint is written on the , the on the . Graph these 2 inequalities TOGETHER on the number line: Left piece Right piece Smaller number: () Smaller number: ____ (Larger number: ___ (_____ Larger number: ____ (____) Interval notation: Interval notation: MERGE these two pieces TOGETHER, remove the word "or" and use "_____" symbol (U): ANSWER: The interval notation for $\{x \mid x < 4 \text{ or } x \ge 7\}$ is ______

Sources used:

- 1. Desmos online graphing calculator, located at www.desmos.com/calculator
- 2. Pearson MyLab Math: College Algebra with Integrated Review, 5th Edition, Beecher
- 3. Pearson MyLab Math: College Algebra with Modeling and Visualization, 6th Edition, Rockswold