

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS DISCIPLINAS: CÁLCULO FUNDAMENTAL I/CÁLCULO DIFERENCIAL E INTEGRAL I

Gabarito Lista II - Derivada

1. a)
$$\frac{f(x) - f(3)}{x - 3}$$

b)
$$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$$

b)
$$-\frac{\sqrt{2}}{2}$$

c)
$$f'(0)$$
 não existe

d)
$$\frac{1}{2}$$

f)
$$f'(0)$$
 não existe

3. a)
$$-8x$$

b)
$$\frac{-1}{(2x-1)\sqrt{2x-1}}$$

c)
$$-\frac{1}{(x+2)^2}$$

d)
$$-\frac{4}{(x+3)^2}$$

e)
$$\frac{1}{3\sqrt[3]{(x+3)^2}}$$

4. 2

d)
$$-1$$

e)
$$\frac{2}{15}$$

6. f'(0) não existe, pois f não é contínua em 0.

7. f'(3) não existe, pois f não é contínua em 3.

8. a) se
$$x > \frac{3}{4}$$

b) se $x < \frac{3}{4}$

b) se
$$x < \frac{5}{4}$$

9. a)
$$f'_{+}(3) = 2$$
; $f'_{-}(3) = -2$

b)
$$f'_{+}(1) = -2$$
; $f'_{-}(1) = 0$; $f'_{+}(-1) = 0$; $f'_{-}(-1) = 2$

c) $f'_{+}(2) = 2$; $f'_{-}(2) = 0$; $f'_{+}(-2) = 0$; $f'_{-}(-2) = 4$

- 10. a) Contínua.
 - b) $f'_{-}(1) = 2$, $f'_{+}(1) = -2$, $f'_{-}(-1) = 2$ e $f'_{+}(-1) = -2$;
 - c) Não, pois as derivadas laterais nesses pontos são dist
ntas. O gráfico terá um ponto anguloso nesses pontos.
 - d) Gráfico:

e) $f'(x) = \begin{cases} 2x. & -1 < x < 1 \\ -2x, & x > 1 \text{ ou } x < 1 \end{cases}$; $D = \mathbb{R} - \{-1, 1\}$.

- 11. a) $f'_{+}(1) = 0$; $f'_{-}(1) = 1$; f'(x) > 0 para x < 1.
 - b) $f'_{+}(2) = 2$; $f'_{-}(2) = -2$; f'(x) > 0 para x > 2 e f'(x) < 0 para x < 2.
- 12. Não é diferenciável em -4, pois o gráfico tem um ponto anguloso, o que significa que as derivadas laterais existem, porém são distintas. Não é diferenciável em 0, pois a função é descontínua nesse ponto.

13.
$$D(f) = \{x \in \mathbb{R} | x \le 3/5\}; D(f') = \{x \in \mathbb{R} | x < 3/5\}$$

14. a)
$$18x^2 + 6x + 12$$

b)
$$\frac{3}{2x^4}$$

c)
$$-\frac{20}{(5x-3)^2}$$

d)
$$2s(3s-1)(5s^3+2s) + 3(s^2-1)(5s^3+2s) + (s^2-1)(3s-1)(15s^2+2)$$

e)
$$\frac{3t^2 - 6t - 4}{(t-1)^2}$$

f)
$$\frac{(6x^3 + 27x^2 + 36x + 12)}{(x+2)^2}$$

g)
$$\frac{t^2 - 2bt + 2ab - a^2}{(t-b)^2}$$

h)
$$2x^3 - 12x^{-7}$$

i)
$$e^x(3x^2+x^3)$$

j)
$$2a^{2x}x^3(2+x\ln a)$$

k)
$$sen^6(x)cos^2(x)(7cos^2(x) - 3sen^2(x))$$

$$1) \ acos(x) - bsen(x)$$

$$\begin{array}{ll} \mathrm{m)} \ \, \dfrac{-\cos(x) - x(sen(x) + \cos(x))}{x^2 e^x} \\ \mathrm{n)} \ \, sec(x)(tg(x) - sec(x)) \end{array}$$

n)
$$sec(x)(tg(x) - sec(x))$$

o)
$$\frac{2e^{2x}}{tg^3(x)}(tg(x) - sec^2(x))$$

p)
$$\frac{-3}{2\sqrt{(2t+1)}\sqrt{(t-1)^3}}$$

q)
$$6(x+1)2^{3x^2+6x} \ln 2$$

r)
$$7(7t^2+6t)^6(14t+6)(3t-1)^4+12(7t^2+6t)^7(3t-1)^3$$

s)
$$e^{t/2} \left(\frac{1}{2}t^2 + \frac{9}{2}t + 5 \right)$$

t)
$$\frac{3x-2}{(3x-1)\sqrt{3x-1}}$$

u)
$$(2t+1)^{t^2-1} \left[2t \ln(2t+1) + \frac{2(t^2-1)}{2t+1} \right]$$

v)
$$(sen(x))^{x^2} [2x \ln(sen(x)) + x^2 cot g(x)]$$

w)
$$(e^x)^{tg(3x)}[3xsec^2(3x) + tg(3x)]$$

x)
$$\frac{-1+2x}{2\sqrt{xe^{2x}-x^2}}$$

16.
$$-\frac{128}{\pi^3} - \frac{1}{e^{\pi/4}} + 4$$

17.
$$\frac{1}{9}$$

18. a)
$$\frac{1}{(x+2)\ln 2}$$

b)
$$\frac{-(x+2)}{x(x+1)}$$

c)
$$(a+bx)^{\ln(a+bx)} \left(\frac{b\ln(a+bx)}{a+bx}\right)$$

d)
$$6sec^2(2x+1) + \frac{1}{2\sqrt{x}}$$

e)
$$arc \cos(3t) - \frac{3t}{\sqrt{1-9t^2}}$$

$$f) \frac{1}{2x\sqrt{x-1}}$$

g)
$$\frac{x \cot g h(x) - \ln(senh(x))}{x^2}$$

h)
$$\frac{3}{x^2}cosech^3\left(\frac{3x+1}{x}\right)cotgh\left(\frac{3x+1}{x}\right)$$

i)
$$6\theta^2 cosec^2(\theta^3) cotg(\theta^3)$$

j)
$$2utg^2(u) + 2u^2tg(u)sec^2(u)$$

$$k) \ \frac{2arc \ sen(x)}{\sqrt{1-x^2}}$$

$$1) -1$$

m)
$$2t \ arc \ cosec(2t+3) - \frac{2t^2}{|2t+3|\sqrt{(2t+3)^2-1}}$$

$$\mathbf{n}) \ -\frac{(t+1)cosech^2(t+1)^2}{\sqrt{cotgh(t+1)^2}}$$

o)
$$-\frac{21x^2}{10\sqrt[5]{(3x+1)^6}} + \frac{7x}{\sqrt[5]{3x+1}} + \frac{3}{2\sqrt{3x+1}}$$

p)
$$\frac{-2t^2e^{-t^2}-e^{-t^2}-1}{t^2}$$

q)
$$\frac{-\operatorname{sech}(\ln(x))\operatorname{tg}(\ln(x))}{x}$$

r)
$$2t \ tgh(t^2 - 1)$$

s)
$$\frac{3 + 2sen(2x)}{(3x - cos(2x))\ln 2}$$

t)
$$\cos^3\left(\frac{x}{2}\right) sen\left(\frac{x}{2}\right) - sen^3\left(\frac{x}{2}\right) cos\left(\frac{x}{2}\right)$$

u)
$$16t(4t^2-3)sech^2(4t^2-3)^2$$

v)
$$\frac{1}{2\sqrt{x}}$$

w)
$$\frac{b}{4\sqrt{ax+b\sqrt{x^3}}}$$

$$\mathbf{x}) \ \frac{arc \ sen(x) + arc \ cos(x)}{\sqrt{1 - x^2} arc \ sen(x) arc \ cos(x)}$$

y)
$$\frac{1}{1-x^2}$$

z)
$$\frac{\sqrt{1-x^2}arc\ sen(x)-3x}{3\sqrt[3]{x^2}\sqrt{1-x^2}(arc\ sen(x))^2}$$

19.
$$y = \frac{11x}{4} - \frac{9}{4}$$

20.
$$(3, 2\sqrt{2})$$

$$21. \ 3e^{-4}$$

22.
$$1-x$$

25.
$$y = x + \left(\frac{2 - 3\sqrt{3}}{3\sqrt{3}}\right)$$

26.
$$y = -\frac{x}{64} + \frac{1026}{64}$$

27. a)
$$-16m$$

b)
$$v(0) = 0m/s$$
; $v(1) = 3m/s$; $v(2) = 0m/s$; $v(3) = -9m/s$; $v(4) = -24m/s$.

c)
$$a(0) = 6m/s^2$$
; $a(1) = 0m/s^2$; $a(2) = -6m/s^2$; $a(3) = -12m/s^2$; $a(4) = -18m/s^2$.

28. a)
$$v_m = 16 + 2b + h$$

b)
$$v_m$$
 em $[3; 3, 1]$ é $22, 1m/s$; v_m em $[3; 3, 01]$ é $22, 01m/s$;

c)
$$v(t) = 16 + 2t$$
;

d)
$$22m/s$$
;

e)
$$2m/s^2$$
.

29. a)
$$y' = 12x^3 - 2$$
; $y'' = 36x^2$; $y''' = 72x$; $y^{(iv)} = 72$; $y^{(v)} = 0$

b)
$$y' = \frac{-x}{\sqrt{3-x^2}}$$
; $y'' = \frac{-3}{(3-x^2)\sqrt{3-x^2}}$

c)
$$y' = -\frac{1}{(x-1)^2}$$
: $y'' = \frac{2}{(x-1)^3}$; $y''' = -\frac{6}{(x-1)^4}$; $y^{(iv)} = \frac{24}{(x-1)^5}$

d)
$$y' = 2e^{2x+1}$$
; $y'' = 4e^{2x+1}$; $y''' = 8e^{2x+1}$

e)
$$y' = sen(x/2); y'' = \frac{1}{2}cos(x/2); y''' = -\frac{1}{4}sen(x/2); y^{(iv)} = -\frac{1}{8}cos(x/2); y^{(v)} = \frac{1}{16}sen(x/2)$$

f)
$$y' = sec^2(x)$$
; $y'' = 2sec^2(x)tg(x)$; $y''' = 4sec^2(x)tg^2(x) + 2sec^4(x)$

30.
$$y^{(100)} = sen(x)$$
.

32.
$$A = 6 e k = 2$$
.

33. a)
$$f^{(n)}(x) = (-1)^n e^{-x}$$

b)
$$f^{(n)}(x) = 0$$

c)
$$f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}$$

34. a)
$$y' = -\frac{x^2}{y^2}$$

b)
$$y' = -\sqrt{\frac{y}{x}}$$

c)
$$y' = -1$$

d)
$$y' = \frac{1}{e^y - 1}$$

e)
$$y' = \frac{y}{sec^2(y) - x}$$

f)
$$y' = \frac{2x + y\cos(xy)}{2y - x\cos(xy)}$$

g)
$$y' = \frac{1}{y(x+1)^2}$$

h)
$$y' = \frac{2e^{2x} - \cos(x+3y)}{3\cos(x+3y)}$$

35. Tangente:
$$y = \frac{6}{7}x + \frac{6}{7}$$
; Normal: $y = -\frac{7}{6}x - \frac{7}{6}$

36. Pontos: $(\sqrt{7},0)$ e $(-\sqrt{7},0)$; coeficiente angular das retas tangentes: -2.

37. Mostre. Coeficientes angulares das tangentes: $-\frac{2}{3}$ e $\frac{3}{2}.$

b)
$$-2$$