

Master Ingénierie Statistique.

Statistique Non paramétrique .
Anne Philippe
Estimation fonctionnelle

Exercice 1.

Soit X une variable aléatoire continue de densité

$$f(x) = \frac{e^x}{(1 + 5e^x)^{1.2}} \qquad \forall x \in \mathbb{R}.$$

- (1) Calculer la fonction de répartition de la loi de X.
- (2) Calculer la fonction de quantile de la loi de X.

Exercice 2.

Soit X une variable aléatoire continue de densité définie par

$$f(x) = \begin{cases} 3(x-1)(2-x) & \text{si } x \in]1,2[\\ 3(x-3)(4-x) & \text{si } x \in]3,4[\\ 0 & \text{sinon} \end{cases}$$

Quelle est la médiane de la loi de X?

Exercice 3.

Soit $X_1, ..., X_n$ n variables aléatoires iid suivant la loi qui admet pour fonction de répartition F. Soit a < b des nombres fixés tels que F(a) > 0 et f(b) < 1. On pose $\theta = T(F) = F(b) - F(a)$.

- 1) Donner l'estimateur par injection de θ . On le note $\hat{\theta}_n$.
- 2) Calculer l'erreur quadratique (erreur au sens L^2) de cet estimateur.
- 3) Montrer que $\sqrt{n}(\hat{\theta}_n \theta)$ converge en loi vers une variable aléatoire gaussienne.
- 4) Déterminer un intervalle de confiance de niveau asymptotique $1-\alpha$ pour le paramètre θ .

Exercice 4.

Soit X une variable aléatoire appartenant à L^3 . On note μ et σ^2 la moyenne et la variance de X Le coefficient d'asymétrie - qui mesure le manque de symétrie d'une distribution - est défini par

$$\kappa = \frac{E((X - \mu)^3)}{\sigma^3}.$$

- 1) Quelle est la valeur de κ pour la loi normale $\mathcal{N}(0,1)$?
- 2) Soit $X_1,...,X_n$ n variables aléatoires iid suivant la même loi que $X \in L^3$. Quel est l'estimateur par injection du paramètre κ .
- 3) Montrer que cet estimateur converge presque surement vers θ .

EXERCICE 5.

Soit $X_1, ..., X_n$ n variables aléatoires iid suivant la loi de fonction de répartition F. On suppose que $F^- = F^{-1}$.

- 1) Quelle est la loi de $F(X_1)$.
- 2) Montrer que la loi de la variable aléatoire $\sup_{x \in \mathbb{R}} |F_n(x) F(x)|$ ne depend pas de la loi de X_1 .

1

Exercice 6.

Soit $X_1,...,X_n$ n variables aléatoires iid suivant la loi de fonction de répartition F. On fixe $x \in \mathbb{R}$). Montrer que pour tout b > 0

$$P(|\hat{F}_n(x) - F(x)| > b) \le \frac{1}{4nb^2}$$

et en déduire un intervale de confiance de niveau $1-\alpha$ pour F(x)

Exercice 7.

Soit (X_1, \ldots, X_n) n variables aléatoires indépendantes et de même loi. On suppose que la loi de X_1 admet une densité f. On observe (x_1, \ldots, x_n) une réalisation de (X_1, \ldots, X_n) . On dispose des informations suivantes à propos de l'histogramme de ces données

Classe
$$I_i$$
 | $]0,2]$ | $]2,4]$ | $[4,7]$ | $]7,11]$ | $]11,15]$
Hauteur h_i | 0.245 | 0.130 | 0.050 | 0.020 | h_5

On rappelle que l'histogramme est une fonction constante par morceaux qui définit une densité.

- 1) Calculer la valeur de h_5 .
- 2) A partir des informations disponibles, peut-on calculer la valeur du processus empirique \hat{F}_n au point t=7? si oui donner la valeur sinon donner un encadrement de cette valeur.
- 3) Même question pour t = 10.
- 4) On dispose de l'information supplémentaire $\hat{F}_n(3) = 0.6$. Construire l'histogramme des observations $(x_1, ..., x_n)$ associé aux classes suivantes :

$$[0,2]$$
, $[2,3]$, $[3,4]$, $[4,7]$, $[7,11]$, $[11,15]$.