Sprawozdanie z Listy 5 Obliczenia Naukowe

Tomasz Hałas 29 grudnia 2021

Spis treści

1	Zad	anie 1.
	1.1	Opis problemu
	1.2	Problem przechowywania i złożoności czasowej
	1.3	Eliminacja Gaussa
		1.3.1 Eliminacja Gaussa z częściowym wyborem elementu głównego
	1.4	Rozkład LU
	1.5	Optymalizacja
		1.5.1 Rozkład LU
	1.6	Testy
	1.7	Rozwiązanie
	1.8	Wnioski
	1.9	Powód
	1.10	Podsumowanie

1 Zadanie 1.

1.1 Opis problemu

Zadanie polegało na rozwiązaniu układu równań liniowych:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

gdzie macierz $\bf A$ jest rzadką macierzą kwadratową oraz dany jest wektor prawych stron b. Macierz $\bf A$ wygląda nastepująco:

:

Struktura owej macierzy składa się z kwadratowych macierzy wewnętrznych (bloków): A_k , B_k , C_n , 0, które:

- 1. A_k jest macierzą gęstą.
- 2. $\mathbf{B_k}$ ma tylko dwie ostatnie kolumny niezerowe.
- 3. C_n jest macierzą diagonalną.
- 4. **0** jest kwadratową macierzą zerową.

Naszym zadaniem jest znaleść optymalny sposób na rozwiązanie $\mathbf{A}\mathbf{x} = \mathbf{b}$, zarówno algortymicznie jak i pamięciowo.

1.2 Problem przechowywania i złożoności czasowej

Nasza macierz \mathbf{A} zawiera bardzo dużo 0 i jest macierzą rzadką. Przechowywanie jej w pamięci zajmowałoby $\theta(n^2)$ miejsca. Aby ograniczyć zużycie pamięci zapamiętuje tylko te indeksy \mathbf{A} , które nie są 0. Język Julia umożliwia mi to za pomocą bibloteki SparseArray. Za jej pomocą przechowuje a_{ij} , gdzie i-te wiersze i j-te kolumne, nie zawierają 0. Umożliwia mi to łatwą i szybką iteracje po macierzy \mathbf{A} .

Innym problem jest złożoność czasowa. Mianowicie algorytm eliminacji Gaussa dla macierzy rzadkiej ma złożoność $\theta(n^3)$. Naszym zadaniem jest zredukowanie go do $\theta(n)$ uwzględniając, że **A** zawiera bardzo dużo 0.

1.3 Eliminacja Gaussa

Algorytm rozwiązuje układy równań liniowych oraz wyznacza rozkład LU, wykorzystując operacje elementarne(dodawanie, odejmowanie wielokrotności wierszów i kolumn), aby sprowadzić macierz do macierzy schodkowej górnej.

W tym celu iteracyjnie będziemy zerować wszystkie elementy znadującę się pod przekątną. Posłużymy się tutaj tak zwanym "mnożnikiem" = $\frac{a_{ik}}{a_{kk}}$. Będziemy go stosować do weliminowania elementu a_{ik} . W tym celu należy od i-tego elementu odjać k-ty wiersz pomnożony przez mnożnik. Niestety algorytm nie zadziała w sytuacji, gdy napotkamy zero na diagonali macierzy. Podczas wykonywania eliminacji Gaussa bedzięmy równiez jednocześnie zmieniać wektor prawych stron. Algorytm ma złożoność $\theta(n^3)$.

```
egin{aligned} \mathbf{input} \ n, (a_{ij}) \ \mathbf{for} \ k = 1 \ \mathbf{to} \ n - 1 \ \mathbf{do} \ \mathbf{for} \ i = k + 1 \ \mathbf{to} \ n \ \mathbf{do} \ & z \leftarrow a_{ik}/a_{kk} \ & a_{ik} \leftarrow 0 \ & \mathbf{for} \ j = k + 1 \ \mathbf{to} \ n \ \mathbf{do} \ & a_{ij} \leftarrow a_{ij} - z a_{kj} \ & \mathbf{end} \ \mathbf{do} \ & \mathbf{output} \ (a_{ij}) \end{aligned}
```

Rysunek 1: Pseudokod algorytmu.

w celu rozwiązania układu równań skorzytsamy z algorytmu podstawienia wstecz.

```
\begin{array}{l} \textbf{input} \ n, (a_{ij}), (b_i) \\ \textbf{for} \ i = n \ \textbf{to} \ 1 \ \textbf{step} - 1 \ \textbf{do} \\ x_i \leftarrow \big(b_i - \sum_{j=i+1}^n a_{ij} x_j\big) \big/ a_{ii} \\ \textbf{end do} \\ \textbf{output} \ (x_i) \end{array}
```

Rysunek 2: Pseudokod algorytmu.

1.3.1 Eliminacja Gaussa z częściowym wyborem elementu głównego

Aby zapobiec sytuacji, gdy napotkamy zero na diagonali macierzy, zastosujemy eliminacje Gaussa z częściowym wyborem elementu głównego. Polega ona na znalezieniu największego bezwględnie elementu w kolumnie i odpowiednim "przestawieniu" wierszy macierzy, tak aby znaleziony element był w odpowiednim miejscu.

1.4 Rozkład LU

Otrzymujemy go wykonując metodę eliminacji Gaussa. W jej wyniku otrzymujemy macierz dolno trójkątna (L) oraz górno trójkątną (U)

$$\mathbf{L} = egin{bmatrix} l_{11} & 0 & \cdots & 0 \ l_{21} & l_{22} & \cdots & 0 \ dots & dots & \ddots & 0 \ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix}, \quad \mathbf{U} = egin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \ 0 & u_{22} & \cdots & u_{2n} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & u_{nn} \end{bmatrix}.$$

,gdzie rozwiązanie Ax = b dzieli się na dwa etapy:

- 1. Lz = b względem z
- 2. Ux = z względem x

Widzimy, że dużą zaletą tej motedy jest fakt, że przy zmianie wektora prawych stron nie musimy dokonywać ponowych obliczeń dla jednego równania. Złożoność algortymiczna wynosi $\theta(n^3)$, natomiast złożoność algorytmiczna układu powyżych równań wynosi $\theta(n^2)$. U uzyskujemy w klasycznym alogrtymie eliminacji Gaussa. Natomiast macierz L uzyskujemy zapisując w niej kolejne mnożniki.

Dla rozkładu LU również istnieje metoda z częściowym wyborem elementu głównego i działa ona analogicznie jak przypadku eliminacji Gaussa.

1.5 Optymalizacja

Zważywszy na fakt, że nasza macierz jest rzadka i wstępuje w niej wiele zer, jesteśmy wstanie skrócić ilość iteracji jaką wykonuje nasz algorytm, z racji tego, że nie musimy zerować wielu elementów w kolumnach.

Iterując po każdej kolumnie nie musimy rozpatrywac wszystkich rzędów, z tego względu

że dalsza część macierzy zawiera 0. Wiemy też, że maksymalne wychylenie pod diagonalnę wynosi l (rozmiar jednej macierzy bloczkowej). Oprócz tego maskylanie musimy "wyeliminować" mniej więcej l kolejnych rzędów. A więc złożoność naszej procedury wynosi $\theta(nl^2)$ co jest równe $\theta(n)$.

Identyczne optymalizacje wykonywane są dla częściowego wyboru elementu głównego, lecz w jego przypadku musimy wybrać za każdym razem pivota, co spowoduje nie więcej niż $\theta(n)$, ale z większa dokładnością do stałej.

1.5.1 Rozkład LU

Sytuacja jest idetyczna jest w przykładzie z eliminacją Gaussa. Jedynie co jest zwiększone to liczba operacji, którą musimy wykonać, aby zrobić $\mathbf{L}\mathbf{U}$ co spowoduje, że otrzymamy nie więcej niż $\theta(n)$, ale z większa dokładnością do stałej. Analogicznie dla rozkładu $\mathbf{L}\mathbf{U}$ z częściowym wyborem elementu głównego.

1.6 Testy

Zaimplemenotwane zostały testy (moduł Test.jl) w celu sprawdzenia poprawności moich funkcji. Wykonuje je dla danych testowych w zadaniu. Wszystkie testy zostały poprawnie napisane.

1.7 Rozwiązanie

W celu otrzymania wyników wywołuje 4 funkcje rozwiązujące równania liniowe za pomocą eliminacji Gaussa lub rozkładu $\mathbf{L}\mathbf{U}$ otrzymanego z eliminacji Gaussa. Macierz \mathbf{A} tworzę za pomocą funkcji blockmat dla poszczególnych n z cond = 1, a nastepnię dla której wyliczam wektor prawych stron \mathbf{b} . Wykonuje ten proces 20 razy dla pewnego n i licze średnią z czasu wykonywania oraz zużytej pamięci. Na końcu tworzę wykres.

1.8 Wnioski

W swojej implementacji starałem się osiągnąć złożoność $\theta(n)$. Pod spodem znadują się wyniki mojego rozwiązania.

Rysunek 3: Wykres zużycia pamięci.

Rysunek 4: Wykres czasu.

Widzimy, że na wykresie pamięci nasza złożonosc jest liniowa. Powodem dla których rozkład LU ma bardzo duże zużycie pamięci jest fakt, że przechowuje dwie tablice U oraz L, a więc dla bardzo dużych danych mamy sporo więcej żużytej pamięci, plus dodatkowo wykorzystuje L i U do rozwiązania układy równań LUx = b.

Natomiast wykres czasu zupełności zaprzecza faktu, że mamy złożoność liniową. Zaczynając od interpretacji wyników widzimy, że rozkład LU zajmuje najwięcej czasu, gdyż jego "solver" jak i zwiększona ilość operacji potrzebują go wiecęj nic w zwykłej eliminacji Gaussa. Wyniki przedstawione na wykresie w zupełności spełniaja "oczekwiną kolejność" poszczególnych funkcji. Dodatkowo warto nademnić tutaj, że nie wykorzystujemy przewagi jaką daje nam fakt, że jedno równanie mamy policzone w rozkładzie LU. Niestety za każdym razem na nowo liczymy cały układ równań.

1.9 Powód

Powodem najprawdopobniej braku złożoności liniowej na wykresie czasu, jest fakt, że zakładamy SparseArray iż ma dostęp rzędu $\theta(1)$ do poszczególnych elementów, co nie zawsze jest zgodne z rzeczywistością oraz nasza złożoność liniowa zawiera stałe (tutaj

przykładowo l^2), co wypływa na wykres czasu.

Na wykresie pamięci widoczne sa również "skoki", które oznaczają, że dla coraz większych danych algorytmy są coraz efektywniej rzadzą sobie pod względem alokacji pamięci w wykonaniu zdania.

1.10 Podsumowanie

Widzimy, jak istotne jest dostosowywanie odpowiednio metod i odpowiednich zależności w celu rozwiązania danego problemu. W tym przypadku dało nam to możliwość zaoszczedzić czas i zasoby potrzebne do wykonania zadania.