Métodos de interpolación y aproximación polinómica uaem

Datos del Censo

1940	1950	1960	1970	1980	1990	2000
40,056	45135	60256	80150	90542	100456	106123

¿qué población existía en los años 1964,1976,1988,1992?

La forma de conocer el dato correspondiente a esos años, haciendo un cálculo entre los datos de dos censos, a esto le llamamos interpolar.

En esta capítulo usaremos los polinomios como curvas de aproximación

Suponga que f está definida y es continua en [a,b]. Para cada $\varepsilon > 0$

Existe un polinomio P(x), con la propiedad de que

$$/f(x)-P(x)/<\varepsilon$$

Para todo x en [a,b]

Las ventajas de usar polinomios son:

- La derivada existe
- Es continua
- La integral existe también

La interpolación es la estimación de un valor dentro de un conjunto de datos.

Método de interpolación lineal

En este método se nos dan dos puntos (x_1, y_1) y (x_2, y_2) , y deseamos conocer el valor que tendrá y_0 , cuando tenemos x_0 . Lo que podremos hacer con una función lineal de la forma:

$$f(x) = a_0 + a_1 x$$

aem

Existe varios métodos:

- Polinomios de Lagrange
- Polinomio cúbico de Hermite
- Spline

uaem

7

Se usan polinomios de aproximación que se determinan con sólo específicar los puntos en el plano por donde debe pasar el polinomio P(x).

Para una recta $P(x) = a_0(x-x_1) + a_1(x-x_0)$ donde vamos a determinar a_0 y a_1 . Para encontrar el valor de a_0 , se hace $x=x_0$ y $\frac{des}{des}$ y $\frac{P(x_0)}{a_0} = \frac{P(x_0)}{x_0-x_1} = \frac{f(x_0)}{x_0-x_1}$

Para encontrar el valor de a_1 se hace $x=x_1$ y despejando

$$a_1 = \frac{P(x_1)}{x_1 - x_0} = \frac{f(x_1)}{x_1 - x_0}$$

De tal modo que al sustituir en P(x) queda

$$P(x) = \frac{f(x_0)}{x_0 - x_1} (x - x_1) + \frac{f(x_1)}{x_0 - x_2} (x - x_2)$$

$$\frac{J(x_1)}{x_1 - x_0}(x - x_0)$$

10

Definimos las funciones:

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}, L_1(x) = \frac{x - x_0}{x_1 - x_0}$$

Se define entonces:

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

Con:

$$L_0(x_0) = \frac{x_0 - x_1}{x_0 - x_1} = 1, L_0(x_1) = \frac{x_1 - x_1}{x_0 - x_1} = 0$$

V

$$L_1(x_0) = \frac{x_0 - x_0}{x_1 - x_0} = 0, L_1(x_1) = \frac{x_1 - x_0}{x_1 - x_0} = 1$$

Tenemos:

$$P(x_0) = L_0(x_0)f(x_0) + L_1(x_0)f(x_0) = f(x_0)$$

$$P(x_1) = L_0(x_1)f(x_1) + L_1(x_1)f(x_1) = f(x_1)$$

Así pues es la única función que pasa por (x_0,y_0) y (x_1,y_1)

uaem 1.

Aplicar el método con un polinomio de 1er, otro de 2o y finalmente uno de 3er. grado a los siguientes datos:

X	0	1	2	3	4	5
Y	1	-0.624	-1.47	3.24	-0.73	-6.37

aem 14

Para los polinomios de interpolación de Lagrange de 2o. Grado tenemos

$$P_2(x) = L_0 f(x_0) + L_1 f(x_1) + L_2 f(x_2)$$

Donde

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$L_2(x) = \frac{(x - x_1)(x - x_0)}{(x_2 - x_1)(x_2 - x_0)}$$

Para los polinomios de interpolación de Lagrange de 3o. Grado tenemos

$$P_3(x) = L_0 f(x_0) + L_1 f(x_1) + L_2 f(x_2) + L_3 f(x_3)$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

A continuación debemos elaborar el programa que calcule numéricamente la interpolación para un conjunto de datos. El programa requiere:

- los puntos a interpolar, dados en dos vectores x,y.
- los valores donde deseamos interpolar.

18