Note: We will start at 12:53 pm ET

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

18-441/741: Computer Networks Assignment Project Exam Help Layer II

https://eduassistpro.github.io/

Add War Ghat edu_assist_pro

Physical Layer: Outline

- Digital networks
- Modulation: Franciamentals Exam Help
- Characteriz tion Channels
- Fundamenthttps://eduassistpro.githushipssion
- Digital ModulationeChat edu_assist_pro
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction

Transferring Information

- Information transfer is a physical process
- In this classive generally care about Help
 - Electrical si
 - Optical sign https://eduassistpro.github.io/
 - More broadly, EM waves.
 Add WeChat edu_assist_pro
 Information carriers can be e:
- - Sound waves, quantum states, proteins, ink & paper, etc.
- Quote (usually attributed to Einstein):
 - You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is meowing in Los Angeles.

Modulation

- Changing a signal to convey information
- Ways to modulate a sinusoidal wave
 - Amplitude Modulation (AM) Project Exam Help
 - Frequency Mod
 - Phase Modulati https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- In our case, modulate signal to encode a 0 or a 1. (multi-valued signals sometimes)
 - Analog is the same value just changes continuously

Modulation Examples

Phase

Why Different Modulation Methods?

- Offers choices with different tradeoffs:
 - Transmitter/Receiver complexity
 - Powerrequirements Project Exam Help
 - Bandwidt
 - Medium (https://eduassistpro.github.io/
 - Noise immwrity WeChat edu_assist_pro
 - Range
 - Multiplexing

Physical Layer: Outline

- Digital networks
- Modula Assignment Project Exam Help
- Characteriz tion Channels
- Fundamenthttps://eduassistpro.githushipssion
- Digital ModulationeChat edu_assist_pro
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction

Questions of Interest

- How long will it take to transmit a message?
 - How many bits are in the message (text, image)?
- How fast does the network/system transfer information?
 Assignment Project Exam Help
 Can a network/system handle a voice (video) call?
 - How many bits/https://eduassistpro.github.fb/what quality?
- How long will it take two transmedu_assiste without errors?
 - How are errors introduced?
 - How are errors detected and corrected?
- What transmission speed is possible over radio, copper cables, fiber, infrared, ...?

A Communications System

- Converts informat https://eduassistpro.github.io/ Injects energy int
 - Telephone converts wice intat edu_assist_pro
 Wireless LAN card converts bit
 - agnetic waves

Receiver

- Receives energy from medium
- Converts received signal into a form suitable for delivery to user
 - Telephone converts current into voice
 - Wireless LAN card converts electromagnetic waves into bits

Digital Binary Signal

For a given communications medium:

- How do we increase the bit rate (speed)?
- How do we achieve reliable communications?
- Are there limits to speed and reliability?

Bandwidth

- Bandwidth is width of the frequency range in which the Fourier transform of the signal is pon-zero.
- Sometimes r
 I width
- Or, where it i https://eduassistpro.githubeio/ (Usually, the half power thr edu assist -3dB)
- dB short for decibel
 - Defined as 10 * $log_{10}(P_1/P_2)$
 - When used for signal to noise: 10 * log₁₀(S/N)
- Also: dBm power relative to 1 milliwatt
 - Defined as 10 * log₁₀(P/1 mW)

Signal = Sum of Waves

Closer look at waves

The Frequency Domain

- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - Correspondiguementy Parajecta Environ Help
- Every signal frequency dohttps://eduassistpro.github.io/
 - What frequencies are present and what is Archit swer gth at edu_assist_pro
- E.g., radio and TV signals,

Spectra & Bandwidth

- Spectrum of a signal: measures power of signal as function of frequency
- $x_1(t)$ varies faster in time & has more high frequency content Pro than $x_2(t)$

Bandwidth W_s is d https://eduassistpro.github.lio.range of frequencies where a signal has non-negligible weChat edu_assist_pro power, e.g. range of band that contains 99% of total signal power

Mini Quiz: Between [A] x_1 and [B] x_2 , which has *more* bandwidth?

Spectrum of $x_1(t)$

Bad

Good

Transmission Channel Considerations

Every medium supports transmission in a certain frequency range.

> - Outside this range, effects such as ect Exam Help attenuation, .. degrade the signal that Exam Help much

 Transmission a https://eduassistpro.github.io/ hardware will tr the useful bandwidth in the useful bandwidth in the bandw frequency band. Frequency

- Tradeoffs between cost, distance, bit rate

 As technology improves, these parameters change, even for the same wire.

Attenuation & Dispersion

- Not nice low pass filters
- Why dowe care? Project Exam Help

Limits to Speed and Distance

- Noise: "random" energy is added to the signal.
- Attenuation: some of the energy in the signal leaking ment Project Exam Help
- Dispersion: atten https://eduassistpro.github.io/propagation spee dependent.
 Add WeChat edu_assist_pro
 (Changes the shape of the signal)
 - Effects limit the data rate that a channel can sustain.
 - » But affects different technologies in different ways
 - Effects become worse with distance.
 - » Tradeoff between data rate and distance

Pulse Transmission Rate

 Objective: Maximize pulse rate through a channel, that is, make T as small as possible

- If input is a nardweal seattedu_assiste upport is a spread-out pulse with ringing
- Question: How frequently can these pulses be transmitted without interfering with each other?
- 2W_c pulses/sec with <u>binary amplitude encoding</u>
 where W_c is the bandwidth of the channel

Bandwidth of a Channel

$$X(t) = a \cos(2\pi ft)$$
 Channel $Y(t) = A(f) a \cos(2\pi ft)$

- If input is sinusoid of frequency extrem Help
 - output is a sinusoi
 - Output is attenuat https://eduassistpro.github. depends on f
 - A(f)≈1, then input signal passes rea

 Add WeChat edu_assist_pro
 - A(f)≈0, then input signal is blocked
- Bandwidth W_c is range of frequencies passed by channel

Ideal lowpass channel

Multi-level Pulse Transmission

- Assume channel of bandwidth W_c, and transmit 2W_c pulses/sec (without interference)
- If pulses' amplitudes are either -A or +A, then each pulse conveys 1 to 15 signment Project Exam Help
 - Bit Rate = 1 b https://eduassistpro.github.io/c bps
- If amplitudes a +A}, then
 2x2W_c bps Add WeChat edu_assist_pro
- By going to M=2^m amplitude levels, we achieve
 Bit Rate = m bits/pulse x 2W_c pulses/sec = 2mW_c bps

In the absence of noise,

the bit rate can be increased without limit by increasing m

Noise & Reliable Communications

- All physical systems have noise
 - Electrons always vibrate at non-zero temperature
- Motion of electrons induces noise
 Assignment Project Exam Help
 Presence of noise limits accuracy of measurement of received signal https://eduassistpro.github.io/
- is comparable to Errors occur if Add WeChat edu_assist_pro noise level
- Thus, noise places a limit on how many amplitude levels can be used in pulse transmission
- Bit Error Rate (BER) increases with decreasing signal-tonoise ratio

Signal-to-Noise Ratio (SNR)

Physical Layer: Outline

- Digital networks
- Modula Assignment Project Exam Help
- Characteriz tion Channels
- Fundamenthttps://eduassistpro.githushinssion
- Digital ModulationeChat edu_assist_pro
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction

The Nyquist Limit

- A noiseless channel of width H can at most transmitasignarynsignateattaratetalp H.
 - Assumes

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

The Nyquist Limit

- A noiseless channel of width H can at most transmit a binary signal at a rate 2 x H.
 - Assumessitanmentiterojectoringam Help
 - E.g. a 3000
 a at a rate of at most 6000 bits/se https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Sample Quiz Question

• [True / False] The bandwidth of Wi-Fi (802.11 Asistiment geni) is 80 m/Hrs. So by Nyquist thhttps://eduassistpro.grandids 160 Mbps

Add WeChat edu_assist_pro

Past the Nyquist Limit

- More aggressive encoding can increase the bandwidth
- Example: modulate multi-valued symbols
 - Modulate blocks of "digital signal" bits, e.g, 3 bits = 8 values
 - Often comprise shutter the control of the control

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Problem? Noise!
 - The signals representing two symbols are less distinct
 - Noise can prevent receiver from decoding them correctly

Example: Modem Rates

Capacity of a Noisy Channel

- Places upper bound on channel capacity, while considering noise
- Shannon's theorem:

$$C = B \times \log_2(1 + S/N)$$

- C: maximum sqiparity the Project Exam Help
- B: channel ban
- S/N: signal to n https://eduassistpro.github.io/
 Often expresse
 S/N)
- Example: Add WeChat edu_assist_pro
 - Local loop bandwidth: 3200 Hz (
 - Typical S/N: 1000 (30db)
 - What is the upper limit on capacity?

$$C = 3200 \times \log_2(1 + 1000) = 31.9 \text{ Kbps}$$

Shannon's Channel Capacity Theorem

$$C = W_c \log_2(1 + SNR)$$
 bps

- Arbitrarily-religion more more properties and properties of the transmission r
- If R > C, then possible
 Add WeChat edu_assist_pro
- "Arbitrarily-reliable" means the BER can be made arbitrarily small through sufficiently complex "coding"
- C can be used as a measure of how close a system design is to the best achievable performance
- Bandwidth W_c & SNR determine C

Sample Quiz Question

• Find the Shannon channel capacity for a WiFi channel with W_c = 80 MHz and SNR = 40 dB

Assignment Project Exam Help

SNR (dB) SNR = 10^ Add WeChat edu_assist pro

 $C = 80 \log_2 (1 + 10000) \text{ Mbps}$ = $80 \log_{10} (10001)/\log_{10} 2 = 1063 \text{ Mbps}$

Physical Layer: Outline

- Digital networks
- Modula Assignment Project Exam Help
- Characteriz tion Channels
- Fundamenthttps://eduassistpro.github-io/sion
- Digital ModulationeChat edu_assist_pro
- Line Coding
- Properties of Media and Digital Transmission Systems
- Error Detection and Correction

From Signals to Packets

Analog Signal

"Digital" Signal Signment Project Exam Help

https://eduassistpro.github.io/

Bit Stream

Add WeChat edu_assist_pro

Packets

Packet Transmission

Baseband versus Carrier Modulation

- Baseband modulation: send the "bare" digital signal
 - Assignment Project Exam Help

 Channel must be able to transmit low frequencies
 - For exam https://eduassistpro.github.io/
- Carrier mo modulate a higher reguedu_assistalprealled a carrier
 - Can send the signal in a particular part of the spectrum
 - Can modulate the amplitude, frequency or phase
 - For example, wireless and optical

Bandpass Channels

- Bandpass cha https://eduassistpro.gqqquengies around some center fr
 - Radio channels delephone kat edu_assist_pro
- Digital modulators embed information into waveform with frequencies passed by bandpass channel
- Sinusoid of frequency f_c is centered in middle of bandpass channel
- Modulators embed information into a sinusoid

Amplitude Carrier Modulation

Signaling rate and Transmission Bandwidth

From modulation theory:

- If bandpass channel has bandwidth W_c Hz,
 - Then baseband channel has $W_c/2$ Hz available, so
 - modulation system supports $W_c/2 \times 2 = W_c$ pulses/second
 - That is, W_c pulses/second per W_c Hz = 1 pulse/Hz
 - Recall baseband transmission system supports 2 pulses/Hz

Frequency Division Multiplexing: Multiple Channels

Determines Bandwidth of Link

Frequency Modulation

- Use two frequencies to represent bits
 - "1" send frequency fc + d
 - "0" send frequency fc d
- Demodulator looks for power around fc + d or fc d

Phase Modulation

Information 1 0 1 1 0 1

Phase Shift Keying 0 1 1 1 0 1 1 0 1

-1 https://eduassistpro.github.io/

- Map bits into phase of sinuscided we consider the property of the
 - "1" send A $cos(2\pi ft)$, i.e. phase is 0
 - "0" send A $\cos(2\pi f t + \pi)$, i.e. phase is π
- Equivalent to multiplying $cos(2\pi ft)$ by +A or -A
 - "1" send A $cos(2\pi ft)$ multiply by 1
 - "0" send A $cos(2\pi ft + \pi) = -A cos(2\pi ft)$ multiply by -1

Modulator & Demodulator

Modulate $cos(2\pi f_c t)$ by multiplying by A_k for T seconds:

$$A_k$$
 \longrightarrow $Y_i(t) = A_k \cos(2\pi f_c t)$

Assignment Project Exam Help
 $\cos(2\pi f t)$ Transmitted signal

https://eduassistpro.github.io/

Demodulate (recover A_c) by mu 2cos($2\pi f_c t$) for T seconds and lowpass filte 2cos($2\pi f_c t$) hing):

Example of Phase Modulation

Example of Phase Demodulation

Baseband signal discernable after smoothing

+A

dd WeChat edu_assist_pro

Recovered Information

6T

Quadrature Amplitude Modulation (QAM)

- QAM uses two-dimensional signaling
 - A_k modulates in-phase $\cos(2\pi f_c t)$
 - B_k modulates quadrature phase $\sin(2\pi f_c t)$
 - Transmit similar impresse Requesta three masses of morents

- $Y_i(t)$ and $Y_q(t)$ both occupy the bandpass channel
- QAM sends 2 pulses/Hz

QAM Demodulation

Signal Constellations

- Each pair (A_k, B_k) defines a point in the plane
- Signal constellation set of signaling points Assignment Project Exam Heip

- 4 possible points per T sec.
- 2 bits / pulse

16 possible points per *T* sec. 4 bits / pulse

Physical Layer: Outline

- Digital networks
- Characterisignment Project Exam Help Channels
- Fundament ansmission
- Modems a https://eduassistpro.github.io/
- Line Coding (new legithredu_assist_pro
- Properties of Media and ransmission Systems
- Error Detection and Correction

