TD n°5 : Interféromètre de Michelson.

EXERCICE 1 : interféromètre de Michelson (franges d'égale épaisseur)

Un interféromètre de Michelson est réglé pour donner des franges de coin d'air; la différence de marche au centre du champ des miroirs est nulle. On opère sous incidence quasi normale, en lumière monochromatique de longueur d'onde dans le vide $\lambda_0 = 0,5893$ µm et on dispose de deux lentilles convergentes L_1 et L_2 de même distance focale f' = 0,20 m. On observe les franges du coin d'air par projection sur un écran \mathbf{E} .

- 1. Faire un schéma.
- **2.** L'écran \mathbf{E} est placé à D=1 m de la lentille L_2 . L'interfrange mesuré sur l'écran est : i=5 mm. Calculer l'angle α du coin d'air.

On règle maintenant l'interféromètre de Michelson en lumière blanche.

3. Qu'observe-t-on sur l'écran?

On interpose sur un des trajets du faisceau lumineux (entre la séparatrice et un des miroirs) une lame d'indice n (le rayon lumineux est perpendiculaire aux faces de la lame) et d'épaisseur e.

- **4.** Montrer qu'en déplaçant un des miroirs, on peut retrouver le phénomène initial. Pourquoi opère-t-on en lumière blanche ?
- 5. Montrer qu'ainsi on peut mesurer l'indice de la lame connaissant son épaisseur.

EXERCICE 2

Un interféromètre de Michelson est constitué par une lame semi réfléchissante, non absorbante, appelée séparatrice SP dont les facteurs de transmission et de réflexion valent 1/2, et de deux miroirs plans M_1 et M_2 perpendiculaires l'un à l'autre. Les distances JA_1 et JA_2 sont égales. La lame SP est inclinée à 45° par rapport aux normales à M_1 et M_2 . La longueur d'onde de la source vaut $\lambda_0 = 546,1$ nm dans le vide, de symétrie de révolution autour de l'axe SJ. L'indice de l'air vaut 1,0. On observe dans le plan focal d'une lentille mince convergente L de distance focale f' = 1,0 m.

- 1. Qu'observe-t-on sur l'écran?
- 2. On déplace M_2 de e=1,1 mm dans la direction des x positifs. Montrer à l'aide d'un schéma que le phénomène d'interférences observé est analogue à celui d'une lame d'air à faces parallèles. Comment s'appelle le dispositif?
- 3. Où sont localisées les interférences ? Comment les observe-t-on expérimentalement ?

- 4. Déterminer les rayons des deux premiers anneaux brillants.
- 5. On place sur le bras JA1et parallèlement au miroir M_1 , une lame d'épaisseur $e' = 9,5 \mu m$ et d'indice n=1,5117. Calculer la variation de l'ordre d'interférence au centre et les rayons des deux premiers anneaux brillants.

EXERCICE 3: Observation d'un doublet.

Un interféromètre de Michelson est éclairé par une source monochromatique λ_0 (pulsation ω_0) collimatée par la lentille L_1 qui donne un faisceau parallèle. Ce faisceau, considéré comme étant une onde plane dont l'amplitude du champ électrique $E_0.exp(i\omega_0t)$ est divisé en deux faisceaux identiques par une lame séparatrice d'épaisseur négligeable (appelé pellicule séparatrice).

La première partie du faisceau réfléchie par un miroir fixe M_1 et après une nouvelle traversée de la pellicule se dirige vers la lentille L_2 et le détecteur. La deuxième partie du faisceau est réfléchie par un miroir mobile M_2 et après réflexion sur la pellicule vient interférer avec la première partie du faisceau. En x=0, la différence de marche δ entre les deux faisceaux qui interfèrent est nulle.

- 1. Ecrire l'amplitude du champ électrique des deux faisceaux au niveau du détecteur.
- 2. Ecrire l'éclairement Ed vu par le détecteur en fonction du déplacement d du miroir mobile M₂.
- 3. Représenter graphiquement la variation de l'éclairement Ed en fonction de λ_0 . Sur quelle distance doit-on déplacer le miroir mobile M_2 pour que l'éclairement Ed passe d'un minimum à un autre ?
- **4.** On remplace la source monochromatique par une source émettant deux longueurs d'onde proches λ_1 et λ_2 ($\Delta\lambda = \lambda_1 \lambda_2$, $\lambda_1 \approx \lambda_2 \approx \lambda_0$ et $\Delta\lambda << \lambda_0$) et de même amplitude. Donner la nouvelle expression de l'éclairement Ed en fonction de λ_0 , $\Delta\lambda$ et de d. Représenter schématiquement cette variation et déterminer $\Delta\lambda$ ou $\Delta\nu$.
- 5. Cette source est un laser He-Ne émettant sur deux modes séparés de $\Delta \nu$ au voisinage de $\lambda_0 = 632,8$ nm. Déterminer la valeur numérique de $\Delta \nu$ en MHz sachant que l'on est obligé de déplacer le miroir de 24,5 cm pour faire décrire à Ed(d) un motif complet.

EXERCICE 4 : Interférences en lumière blanche

On reprend l'interféromètre décrit dans l'exercice précédent auquel on se reportera. La source (S) émet maintenant de manière uniforme dans un intervalle de fréquence (v_1,v_2) . L'éclairement émis dans la bande élémentaire de largeur dv appartenant à cet intervalle s'écrit : $dE = AE_i dv$.

1. Montrer que l'éclairement total peut se mettre sous la forme :

$$E=E_0\left(1+f(\delta)\right)$$

Expliciter $f(\delta)$.

2. Cette source est en fait une source de lumière blanche ; les longueurs d'onde qui limitent le spectre sont : $\lambda_2 = 0$, 400 nm et $\lambda_1 = 0$, 650 nm. En vous aidant d'une calculatrice, tracer E / E_0 en fonction de δ , δ variant de -0,2 μ m à 0,2 μ m.

En déduire une méthode de réglage de l'interféromètre en épaisseur nulle.