TANGO 커뮤니티 제1회 컨퍼런스

성명 조창식

소속 ETRI

1. TANGO 프로젝트

2. 연구배경

3. TANGO 차별성 Detection 자동 생성/학습

다양한 배포 환경 지원

Well Designed 프레임워크

4. TANGO 릴리즈 일정

1. TANGO 프로젝트

 $\underline{\underline{\mathbf{N}}}$ arget $\underline{\underline{\mathbf{N}}}$ o-code neural network $\underline{\underline{\mathbf{G}}}$ eneration and $\underline{\underline{\mathbf{O}}}$ peration framework

(타겟 적응형 No-code 기반 신경망 자동 생성/배포 프레임워크)

신경망을 잘 모르는 산업현장(공장,의료) 사용자도 타겟 장비(클라우드,엣지,온디바이스)에 적합한 신경망을 생성/배포할 수 있도록 지원하는 통합개발 프레임워크

AI 대중화 시대의 필수 전략 기술 (AI Democratization)

2. 연구 배경 - 신경망 응용 개발의 어려움

🦷도메인 전문가

ML scientist

신경망 학습

신경망 배포

ML engineer

▋도메인 전문가

도메인 지식과 신경망 전문지식에 대한 고도의 개발경험 요구

2. 연구 배경 - MLOps 개발 동향

퍼블릭 클라우드 AutoML 기반 MLOps 도구 각축

구글 Vertex.AI

MS Azur ML

AZURE MACHINE LEARNING STUDIO

Amazon Sagemaker

Amazon SageMaker

Canvas

오픈소스 Kubeflow

수동 프로그래밍을 쉽게 하기 위해, 라이브러리/API를 추상화하는 방향으로 진화 AutoML API 제공, Python 라이브러리를 사용하여 쉬운 코딩 지향

중급 이상의 신경망 전문지식 요구

2. 연구 배경 - MLOps 개발 동향

퍼블릭 클라우드 AutoML 기반 MLOps 도구 각축

MLOps 도구 특징

- ◎ 다양한 인공지능 응용 지원
- ◎ 다양한 AutoML(NAS, HPO) 알고리즘 지원
- ◎ 다양한 배포환경 지원 (클라우드, 엣지, 온디바이스)
- 손쉬운 웹 UI 제공

지원 응용

- Image Classification
- Tabular Classification
- Tabular Regression
- Text Classification
- Object Detection
- Text Embedding
- Question Answering
- Sentence Pair Classification
- Image Embedding
- Named Entity Recognition
- Instance Segmentation
- Text Generation
- Text Summarization
- Semantic SegmentationMachine Translation

지원 알고리즘

- ENAS
- DARTS
- P-DARTS
- SPOS
- CDARTS
- ProxylessNAS

. .

주로, Tabular 데이터에 대한 AutoML 적용[ML], 이미지의 경우 Classification에 집중, 하이퍼파라메터 최적화 위주[DL] 배포는 자사 클라우드에 최적화

3. TANGO 차별성 - Detection 자동 생성/학습

Classification, Detection, Segmentation **山**교

단순히 <mark>단일</mark> 이미지 분류

실제 필드에서 효용성이 떨어짐

여러 객체 분류와 위치까지 표시

TANGO의 타겟

객체의 윤곽까지 표시

데이터 라벨링에 장시간 소요

3. TANGO 차별성 - Detection 자동 생성/학습

Classification, Detection, Segmentation 산업체 적용 예

Classification (폐결핵검사)

○폐질환 분석

- 정상과 폐결핵인지 분류
- 폐결핵은 5개 병으로 세분화
- 영상의학과 의사가 라벨링
- 특징벡터 기반 연합학습
- Densenet 백본 사용

Detection (용접불량 검사)

♥파이프 성형시 용접불량 탐지

- 파이프 X선 촬영 비파괴검사
- 용접부위의 정확한 불량부위 검출 (과다용접, 기공, 크랙 부위 등)
- 파이프 X선 이미지 영상의 육안 검사로 라벨링
- YOLO 신경망 사용

Segmentation (칫솔불량 검사)

○칫솔 불량부위 검출

- 정상 칫솔과 불량 칫솔을 구분
- 대표적인 불량은 손잡이 기포
- 일반인도 육안으로 라벨링 가능
- 라벨링 소요 시간 많음
- Unet 신경망 적용

3. TANGO 차별성 - Detection 자동 생성/학습

Detection을 지원하는 신경망 자동생성 도구(세계최고 성능 추구)

Figure 3: EfficientDet architecture – It employs EfficientNet [39] as the backbone network, BiFPN as the feature network, and shared class/box prediction network. Both BiFPN layers and class/box net layers are repeated multiple times based on different resource constraints as shown in Table 1.

- Classification는 백본만 있음 (Resnet, Densenet)
- Object Detection(객체 탐지)는 백본, 넥, 헤드로 구성됨
- Detection 분야는 아직도 진화 중 (YOLO3/4/5/6/7, PPYOLO, YOLOX, ScaledYOLO ,,,,)

넥 계층의 연결선에 대한 탐색을 통하여 정확도, 성능을 고려한 신경망 자동생성

3. TANGO 차별성 - 다양한 배포 환경 지원

클라우드, 엣지, 온디바이스 및 다종 가속 환경 통합 지원

- (다양한 타겟 환경 통합 지원) 구글, Nvidia, Intel 등 글로벌 기업들은 자사의 클라우드 혹은 자사 가속HW에 특화된 기술만 제공
- (실행 코드 자동 생성) 신경망 모델을 타겟 환경에서 실행하는데 필수적인 코드의 자동 생성 지원

3. TANGO 차별성 - Well Designed 프레임워크

Docker 기반 MSA 구조, Rest API 통신, YAML 데이터 교환 정의

3. TANGO 차별성 - Well Designed 프레임워크

다양한 알고리즘 추가 및 향후 기능 확장에 최적화된 MSA(도커) 구조

알고리즘 다양화

- ◎ Base Model Select (다중 Approach 접근)
 - 홍익대 (태스크 기반 Rule-based 제안)
 - 조지아공대 (Feature Engineering 기반 제안)
- ^❷ Neck NAS (다중 알고리즘 접근)
- 고려대(Porxyness NAS), ETRI (SuperNet NAS) 병렬

기능 확장

- 학습 도구(Bag of Freebies/Special) 지원
- ◎ 드래그 & 드랍 파이프라인 관리
- ◎ Multi-Node Multi GPU 분산 학습
- ◉ Kubernetes, Backend.ai(래블업) 오케스트레이션
- ◎ 국내 CSP 솔루션화

4. TANGO 릴리즈 일정

매년 두 번의 릴리즈 버전을 완성하고 하반기에 공개SW 세미나 추진

4. TANGO 릴리즈 일정

CHANGE is CHANCE

Tango는 개발과정에서부터 전 과정이 오픈소스로 공개되는 만큼, 국내의 전 산업이 손쉽고 신속하게 소프트웨어를 개발할 수 있도록 지원하는 혁신적인 기술 개발을 위하여 많은 분들이 참여하여 주시기를 희망합니다

https://github.com/ML-TANGO/TANGO

TANGO 커뮤니티 제1회 컨퍼런스

감사합니다.

