编译原理

第六章 LR语法分析技术(3)

方徽星

扬州大学信息工程学院(505)

fanghuixing@yzu.edu.cn

2018年春季学期

本章主要内容

- 一. 自下向上语法分析
- 二.LR分析
 - SLR
 - LR(1)
 - LALR
- 三. 使用二义性文法
- 四. Yacc

LALR(Look-Ahead LR)

Franklin Lewis DeRemer "Practical Translators for LR(k) languages" (1969- MIT-博士论文)

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

能否减少减少状态数量?

- 例:再考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

原分析器在处理ccd\$时会走到状态4 但会发现此时没有ACTION[4,\$]因此会报错

- 例: 再考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

新分析器在处理ccd\$时 会走到状态47,此时可以归约 $[C \rightarrow \bullet cC, \$]$ $[C \rightarrow \bullet cC, c/d]$ $[C \rightarrow \bullet d, c/d]$

归约后走到状态2,但此时 ACTION[2,\$] = "报错", 因此也会报错

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

因此合并状态后,新的分析器最终能够 在移入新的符号时发现错误!

- 将具有相同核心的状态替换为它们的并集,不会 产生原有状态中没有出现的移入/归约冲突
 - 因为如果合并的状态存在移入/归约冲突则原来状态 里也有移入/归约冲突,则原来的文法就不是LR(1)文 法
 - 移入动作有核心本身就可以决定,不考虑向前看符号,而归约会考虑向前看符号
- 合并项集可能会产生归约/归约冲突

核心:LR(1)项集中所有项的第一分量的集合

- 例:考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow aAd \mid bBd \mid aBe \mid bAe$
 - $A \rightarrow c$
 - $B \rightarrow c$

项集{ $[A \rightarrow c \bullet, d]$, $[B \rightarrow c \bullet, e]$ }是可行前缀ac的有效项;项集{ $[A \rightarrow c \bullet, e]$, $[B \rightarrow c \bullet, d]$ }是可行前缀bc的有效项;上述两个项集本身都没有冲突,且核心相同,它们的并集:

 $[A \rightarrow c \bullet, d/e], [B \rightarrow c \bullet, d/e]$ 产生了一个**归约/归约**冲突,考虑当输入为d或e时

- 简单但空间需求大的LALR分析表构造算法
 - 输入:一个增广文法G'
 - **输出:**文法*G*′的LALR语法分析表函数*ACTION*和 *GOTO*
 - 方法:
 - 1. 构造LR(1)项集族 $C = \{I_0, I_1, ..., I_n\}$
 - 对于项集中的每个核心,找出所有具有相同核心的项集, 并替换为项集之并集
 - 3. 令 $C' = \{J_0, J_1, ..., J_m\}$ 为得到的LR(1)项集族。状态i的语法分析动作(ACTION)是按照**规范LR**语法分析表构造算法中的方法根据 J_i 构造得到的

如果存在动作冲突,则本算法无法生成语法分析器,这个文法也就不是LALR(1)的

- 简单但空间需求大的LALR分析表构造算法
 - 输入:一个增广文法G'
 - **输出:**文法*G*′的LALR语法分析表函数*ACTION*和 *GOTO*
 - 方法(续):
 - 4. GOTO表的构造方法如下:
 - 如果 $J = I_1 \cup I_2 \cup \cdots \cup I_k$,则 $GOTO(I_i, X)$ 的核心相同

因为 I_1 、 I_2 、…、 I_k 具有相同的核心且 GOTO(I,X)的核心 只由I 的核心决定

• 令K为所有与 $GOTO(I_1, X)$ 具有相同核心的项集的并集,则GOTO(J, X) = K

C'为LALR(1)项集族

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

• 例:再次考虑文法 • $S' \rightarrow S$ $[C \rightarrow c \cdot C, \$]$ • $S \rightarrow CC$ $[C \rightarrow \bullet cC, \$]$ $[C \rightarrow \bullet d, \$]$ • $C \rightarrow cC \mid d$ I_9 $[C \rightarrow cC \cdot, \$]$ $[C \rightarrow c \cdot C, c/d]$ $[C \rightarrow \bullet cC, c/d]$ $[C \rightarrow cC \cdot, c/d]$ $[C \rightarrow \bullet d, c/d]$ $[C \rightarrow c \cdot C, c/d/\$]$ $[C \rightarrow \bullet cC, c/d/\$]$ $[C \rightarrow cC \cdot, c/d/\$]$ $[C \rightarrow \bullet d, c/d/\$]$

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow CC$
 - $C \rightarrow cC \mid d$

• 例:再次考虑文法

1.
$$S \rightarrow CC$$

2.
$$C \rightarrow cC$$

3.
$$C \rightarrow d$$

状		ACTION		GOTO	
状 态	С	d	\$	S	С
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	S47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

- 只使用内核项表示任意LR(0)项集
 - 内核项:初始项[S'→•S]或[S'→•S,\$]以及那些点•
 不在产生式体左端的项,如:[A→B•c,d]
- 根据LR(0)项的内核生成LALR(1)项的内核
- 将LALR(1)项当作规范LR(1)项计算项集族并构造 分析表

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R \mid id$
 - $R \rightarrow L$

$$I_0: [S' o ullet S] \hspace{1cm} I_5: [L o \mathrm{id} ullet] \ I_1: [S' o Sullet] \hspace{1cm} I_6: [S o L = ullet R] \ I_2: [S o Lullet = R] \hspace{1cm} I_7: [L o st Rullet] \ I_8: [R o Lullet] \ I_3: [S o Rullet] \hspace{1cm} I_9: [S o L = Rullet] \ I_4: [L o st ullet R]$$

LR(0)项集的所有内核项

向前看符号 ℓ 可以添加到某个LALR(1)项集J中的LR(0)项 $[B \rightarrow \gamma \cdot \delta]$ 之上:

• 情况1: $\exists I$. 内核项 $[A \rightarrow \alpha \bullet \beta, j] \in I \land J = GOTO(I, X)$ 且

 $\forall g. [B \rightarrow \gamma \bullet \delta, k] \in GOTO(CLOSURE(\{[A \rightarrow \alpha \bullet \beta, g]\}), X)$

特别地,向前看符号\$对于初始项集中的项 $[S' \rightarrow \bullet S]$ 而言是自发生成的

向前看符号 ℓ 可以添加到某个LALR(1)项集J中的LR(0)项 $[B \rightarrow \gamma \cdot \delta]$ 之上:

• 情况2: 条件与1相同,除了 j = k且 $GOTO(CLOSURE(\{[A \rightarrow \alpha \cdot \beta, k]\}), X)$

包含[$B \rightarrow \gamma \bullet \delta, \ell$]的原因是 $[A \rightarrow \alpha \bullet \beta]$ 有一个向前看符号 ℓ

向前看符号从I的内核项 $[A \rightarrow \alpha \cdot \beta]$ 传播到了J的内核项 $[B \rightarrow \gamma \cdot \delta]$ 上

- 确定向前看符号算法
 - 输入:一个LR(0)项集 I的内核K以及一个文法符号X
 - 输出:
 - 由项集I中的项为 GOTO(I,X)中的内核 项自发生成的向前看 符号
 - 那些将向前看符号传播到GOTO(I,X)中内核项的项集I中的项

```
for (K中的每个项[A \rightarrow \alpha \cdot \beta]) {
      J := CLOSURE(\{[A \rightarrow \alpha \cdot \beta, \#]\});
       if ([B \rightarrow \gamma \bullet X \delta, a] \in J \land a \neq \#) \{
              断定GOTO(I,X)中的项
              B \rightarrow \gamma X \cdot \delta的向前看符号a是
              自发生成的;
       if ([B \rightarrow \gamma \bullet X\delta, \#] \in J) {
              断定向前看符号从1中的项
              A \rightarrow \alpha \cdot \beta传播到了GOTO(I, X)
              中项B \rightarrow \gamma X \cdot \delta之上;
```

其中#是一个不在当前文法中的符号

- 高效计算LALR(1)项集族的内核
 - 输入:一个增广文法*G*′
 - 输出:文法G'的LALR(1)项集族的内核
 - 方法:
 - 1. 构造G'的LR(0)项集族的内核
 - 2. 将"确定LS算法"应用于每个LR(0)项集I的内核及 每个文法符号X
 - 确定GOTO(I,X)中各内核项的哪些LS是GS
 - 并确定LS从I中的哪些项被传播到GOTO(I,X)的内核项

LS: 向前看符号 GS: 自发生成的符号

- 高效计算LALR(1)项集族的内核
 - 输入:一个增广文法G'
 - 输出:文法G'的LALR(1)项集族的内核
 - 方法:
 - 3. 基于步骤2, 建表格
 - 最初每个项的LS只包括步骤2中确定的GS
 - 4. 扫描内核项
 - 遇到项*i*时,查表确定*i*的传播目标*j*
 - 将项i的LS加到项j的LS集合中(真正的传播动作)

直到没有新的LS被传播为止!

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R \mid id$
 - $R \rightarrow L$
 - ②将"确定LS算法"应用于
 - LR(0)项集 I_0 :

① LR(0)项集的所有内核项

$$I_0\colon [S' o ullet S] \qquad I_5\colon [L o \mathrm{id}ullet] \ I_1\colon [S' o Sullet] \qquad I_6\colon [S o L=ullet R] \ I_2\colon [S o Lullet = R] \qquad I_7\colon [L o st Rullet] \ [R o Lullet] \qquad I_8\colon [R o Lullet] \ I_3\colon [S o Rullet] \qquad I_9\colon [S o L=Rullet] \ I_4\colon [L o st ullet R]$$

$$J \coloneqq CLOSURE(\{[S' \rightarrow \bullet S, \#]\});$$

$$J \coloneqq CLOSURE(\{[S^* \to \bullet S, \#]\})$$

$$[S' \rightarrow \bullet S, \#]$$

$$[L \rightarrow \bullet * R, \#/=]$$

$$[S \rightarrow \bullet L = R, \#]$$
 $[L \rightarrow \bullet id, \#/=]$

$$[L \rightarrow \bullet \mathrm{id}, \#/=]$$

$$[S \rightarrow {}^{\bullet}R, \#]$$

$$[R \rightarrow \bullet L, \#]$$

符号=不等于#

$$[L \rightarrow * \bullet R, =]$$
和 $[L \rightarrow id \bullet, =]$ 中的符号=是LS

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R \mid id$
 - $R \rightarrow L$
 - ②将"确定LS算法"应用于

LR(0)项集 I_0 :

① LR(0)项集的所有内核项

$$I_0: [S' \rightarrow \bullet S]$$

$$I_1: [S' \rightarrow S \bullet]$$

$$I_2: [S \rightarrow L \bullet = R]$$

$$[R \rightarrow L \bullet]$$

$$I_3: [S \rightarrow R \bullet]$$

$$I_4$$
: $[L \rightarrow * {}^{\bullet}R]$

$$I_5:[L\to id\bullet]$$

$$I_6: [S \to L = \bullet R]$$

$$I_7: [L \to * R \bullet]$$

$$I_8: [R \rightarrow L \bullet]$$

$$I_9: [S \rightarrow L = R \bullet]$$

$$J := CLOSURE(\{[S' \rightarrow \bullet S, \#]\});$$

$$[S' \rightarrow \bullet S, \#]$$

$$[L \rightarrow \bullet * R, \#/=]$$

$$[S \rightarrow \bullet L = R, \#]$$

$$[S \rightarrow \bullet L = R, \#]$$
 $[L \rightarrow \bullet id, \#/=]$

$$[S \rightarrow {}^{\bullet}R, \#]$$

$$[R \rightarrow \bullet L, \#]$$

因为#在[$S' \rightarrow \bullet S$,#]中,所

以
$$[S' \rightarrow \bullet S]$$
 将它的LS传播

到了
$$I_1$$
中的[$S' \rightarrow S \bullet$]

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R \mid id$
 - $R \rightarrow L$
 - ②将"确定LS算法"应用于

LR(0)项集I₀:

① LR(0)项集的所有内核项

$$I_0: [S' \to \bullet S]$$

$$I_1: [S' \rightarrow S \bullet]$$

$$I_2: [S \to \underline{L} \bullet = R]$$

$$[R \to \underline{L} \bullet]$$

$$I_3: [S \rightarrow R \bullet]$$

$$I_4$$
: $[L \rightarrow * {}^{\bullet}R]$

$$I_5: [L \rightarrow id \bullet]$$

$$I_6: [S \to L = \bullet R]$$

$$I_7: [L \to *R \bullet]$$

$$I_8: [R \rightarrow L \bullet]$$

$$I_9: [S \rightarrow L = R \bullet]$$

$$J := CLOSURE(\{[S' \rightarrow \bullet S, \#]\});$$

$$[S' \rightarrow \bullet S, \#]$$

$$[L \rightarrow \bullet * R, \#/=]$$

$$[S \rightarrow \bullet L = R, \#]$$

$$[S \rightarrow \bullet L = R, \#]$$
 $[L \rightarrow \bullet id, \#/=]$

$$[S \rightarrow {}^{\bullet}R, \#]$$

$$[R \rightarrow \bullet L, \#]$$

因为#在[
$$S \rightarrow \bullet L = R, \#$$
]中

所以
$$[S' \rightarrow \bullet S]$$
 将它的LS传

播到了
$$I_2$$
中的 $[S \rightarrow L \bullet = R]$

• 例:再次考虑文法

•
$$S' \rightarrow S$$

•
$$S \rightarrow L = R \mid R$$

•
$$L \rightarrow * R$$
 | id

- $R \rightarrow L$
- ②将"确定LS算法"应用于
- LR(0)项集 I_0 :

$$I_0\colon [S' o ullet S] \qquad I_5\colon [L o \mathrm{id}ullet] \ I_1\colon [S' o Sullet] \qquad I_6\colon [S o L=ullet R] \ I_2\colon [S o Lullet = R] \qquad I_7\colon [L o st Rullet] \ [R o Lullet] \qquad I_8\colon [R o Lullet] \ I_3\colon [S o Rullet] \qquad I_9\colon [S o L=Rullet] \ I_4\colon [L o st ullet R]$$

$$J \coloneqq CLOSURE(\{[S' \rightarrow \bullet S, \#]\}) ;$$

$$[S' \rightarrow \bullet S, \#]$$

$$[S' \rightarrow \bullet S, \#]$$
 $[L \rightarrow \bullet * R, \#/=]$

$$[S \rightarrow \bullet L = R, \#]$$
 $[L \rightarrow \bullet id, \#/=]$

$$L \rightarrow \bullet id, \#/=]$$

$$[S \rightarrow {}^{\bullet}R, \#]$$

$$[R \rightarrow \bullet L, \#]$$

因为#在[$S \rightarrow \bullet R$,#]中

所以 $[S' \rightarrow \bullet S]$ 将它的LS传

播到了 I_3 中的[$S \rightarrow R \bullet$]

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R \mid id$
 - $R \rightarrow L$
 - ②将"确定LS算法"应用于

LR(0)项集I₀:

① LR(0)项集的所有内核项

$$I_0: [S' \rightarrow \bullet S]$$

$$I_1: [S' \rightarrow S \bullet]$$

$$I_2: [S \rightarrow L \bullet = R]$$

$$[R \rightarrow L \bullet]$$

$$I_3: [S \rightarrow R \bullet]$$

$$I_4:[L \to * {}^{\bullet}R]$$

$$I_5: [L \rightarrow id \bullet]$$

$$I_6: [S \to L = \bullet R]$$

$$I_7: [L \to * R \bullet]$$

$$I_8: [R \rightarrow L \bullet]$$

$$I_9: [S \rightarrow L = R \bullet]$$

 $J \coloneqq CLOSURE(\{[S' \rightarrow \bullet S, \#]\})$;

$$[S' \rightarrow \bullet S, \#]$$

$$[S' \rightarrow \bullet S, \#]$$
 $[L \rightarrow \bullet * R, \#/=]$

$$[S \rightarrow \bullet L = R, \#]$$

$$[S \rightarrow \bullet L = R, \#]$$
 $[L \rightarrow \bullet id, \#/=]$

$$[S \rightarrow {}^{\bullet}R, \#]$$

$$[R \rightarrow \bullet L, \#]$$

因为#在[$L \rightarrow \bullet * R, \#/=$]中

所以 $[S' \rightarrow \bullet S]$ 将它的LS传

播到了 I_{4} 中的[$L \rightarrow * \bullet R$]

• 例:再次考虑文法

•
$$S' \rightarrow S$$

•
$$S \rightarrow L = R \mid R$$

•
$$L \rightarrow * R$$
 | id

- $R \rightarrow L$
- ②将"确定LS算法"应用于
- LR(0)项集I₀:

$$I_0\colon [S' o ullet S] \qquad I_5\colon [L o \mathrm{id}ullet] \ I_1\colon [S' o Sullet] \qquad I_6\colon [S o L=ullet R] \ I_2\colon [S o Lullet = R] \qquad I_7\colon [L o st Rullet] \ [R o Lullet] \qquad I_8\colon [R o Lullet] \ I_3\colon [S o Rullet] \qquad I_9\colon [S o L=Rullet] \ I_4\colon [L o st ullet R]$$

$$J := CLOSURE(\{[S' \rightarrow \bullet S, \#]\});$$

$$[S' \rightarrow \bullet S, \#]$$
 $[L \rightarrow \bullet * R, \#/=]$ $[S \rightarrow \bullet L = R, \#]$ $[L \rightarrow \bullet id, \#/=]$ $[S \rightarrow \bullet R, \#]$ $[R \rightarrow \bullet L, \#]$

因为#在[$L \rightarrow \bullet id$, #/=]中 所以[$S' \rightarrow \bullet S$]将它的LS传 播到了 I_5 中的[$L \rightarrow id \bullet$]

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow *R$ | id
 - $R \rightarrow L$
 - ②将"确定LS算法"应用于

LR(0)项集I₀:

 $J \coloneqq CLOSURE(\{[S' \rightarrow \bullet S, \#]\})$;

$$[S' \rightarrow \bullet S, \#]$$

$$[L \rightarrow \bullet * R, \#/=]$$

$$[S \rightarrow \bullet L = R, \#]$$

$$[S \rightarrow \bullet L = R, \#]$$
 $[L \rightarrow \bullet id, \#/=]$

$$[S \rightarrow {}^{\bullet}R, \#]$$

$$[R \rightarrow \bullet L, \#]$$

① LR(0)项集的所有内核项

$$I_0: [S' \rightarrow \bullet S]$$

$$I_5: [L \to id \bullet]$$

$$I_1: [S' \rightarrow S \bullet]$$

$$I_6: [S \to L = \bullet R]$$

$$I_2: [S \to L \bullet = R]$$

$$I_7: [L \to *R \bullet]$$

$$[R \rightarrow L \bullet]$$

$$I_{\mathbf{R}}: [R \to L \bullet]$$

$$I_3: [S \rightarrow R \bullet]$$

$$I_{\mathfrak{g}}: [S \to L = R \bullet]$$

$$I_4$$
: $[L \rightarrow * {}^{\bullet}R]$

因为#在[
$$R \rightarrow \bullet L$$
,#]中
所以[$S' \rightarrow \bullet S$]将它的LS传
播到了 I_2 中的[$R \rightarrow L \bullet$]

• 例:再次考虑文法

•
$$S' \rightarrow S$$

•
$$S \rightarrow L = R \mid R$$

•
$$L \rightarrow * R \mid id$$

•
$$R \rightarrow L$$

传播 —

3建表格

项	T#	向前看符号
项 集	项	初值
I_0	$[S' \rightarrow {}^{ullet}S]$	\$
I_4	$[L \rightarrow * {}^{\bullet}R]$	=
I_5	$[L \rightarrow id \bullet]$	=

自发生成的 向前看符号

从	到
$I_0:[S'\to \bullet S]$	$I_1: [S' \rightarrow S \bullet]$ $I_2: [S \rightarrow L \bullet = R]$ $I_2: [R \rightarrow L \bullet]$ $I_3: [S \rightarrow R \bullet]$ $I_4: [L \rightarrow * \bullet R]$ $I_5: [L \rightarrow id \bullet]$
$I_2: [S \rightarrow \underline{L} \bullet = R]$	$I_6: [S \rightarrow L = \bullet R]$
$I_4:[L \to * \bullet R]$	$I_4: [L o * ullet R] \ I_5: [L o oldsymbol{id}ullet] \ I_7: [L o * Rullet] \ I_8: [R o L ullet]$
$I_6: [S \rightarrow L = \bullet R]$	$I_4: [L \rightarrow * \bullet R]$ $I_5: [L \rightarrow id \bullet]$ $I_8: [R \rightarrow L \bullet]$ $I_9: [S \rightarrow L = R \bullet]$

• 例:再次考虑文法

•
$$S' \rightarrow S$$

•
$$S \rightarrow L = R \mid R$$

•
$$L \rightarrow * R$$
 | id

•
$$R \rightarrow L$$

• $R \to L$ 将这些符号传播出去!

4)扫描:

项	TÆ	向前看符号
项 集	项	初值
I_0	$[S' \rightarrow \bullet S]$	\$
I_4	$[L \to * {}^{\bullet}R]$	=
I_5	$[L \rightarrow id \bullet]$	=

从	到
$I_0: [S' \to \bullet S]$	$I_1: [S' \rightarrow S \bullet]$ $I_2: [S \rightarrow L \bullet = R]$ $I_2: [R \rightarrow L \bullet]$ $I_3: [S \rightarrow R \bullet]$ $I_4: [L \rightarrow * \bullet R]$ $I_5: [L \rightarrow id \bullet]$
$I_2: [S \to L \bullet = R]$	$I_6: [S \rightarrow L = \bullet R]$
$I_4: [L \to * \bullet R]$	$I_4: [L \rightarrow * \bullet R]$ $I_5: [L \rightarrow id \bullet]$ $I_7: [L \rightarrow * R \bullet]$ $I_8: [R \rightarrow L \bullet]$
$I_6: [S \to L = \bullet R]$	$I_4: [L \rightarrow * \bullet R]$ $I_5: [L \rightarrow id \bullet]$ $I_8: [R \rightarrow L \bullet]$ $I_9: [S \rightarrow L = R \bullet]$

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow *R$ | id
 - $R \rightarrow L$
- 4)扫描:

继续扫描直到 没有新的LS被 传播为止!

项	T.F.	向前看符号		
集	· 项 	初值	第一趟	
I_0	$[S' \rightarrow \bullet S]$	\$	\$	
I_1	$[S' \rightarrow S \bullet]$		\$	
I_2	$[S \to \underline{L} \bullet = R]$ $[R \to \underline{L} \bullet]$		\$ \$	
I_3	$[S \rightarrow R \bullet]$		\$	
I_4	$[L \to * {}^{\bullet}R]$	=	=/\$	
I_5	[L o id ullet]	=	=/\$	
I_7	$[L \to * R \bullet]$		=	
I_8	$[R \rightarrow L \bullet]$		=	

- 例:再次考虑文法
 - $S' \rightarrow S$
 - $S \rightarrow L = R \mid R$
 - $L \rightarrow * R$ | id
 - $R \rightarrow L$

$$I_2$$
 $[S \rightarrow L \bullet = R, \$]$
 $[R \rightarrow L \bullet, \$]$

 $R \rightarrow L \bullet \mathbb{L}$ \$\text{ \pi} \text{ \pi}

项 集	项	向前看符号
I_0	$[S' \rightarrow \bullet S]$	\$
I_1	$[S' \rightarrow S \bullet]$	\$
I_2	$[S \to \underline{L} \bullet = R]$	\$
	[R o L ullet]	\$
I_3	$[S \rightarrow R \bullet]$	\$
I_4	$[L \rightarrow * {}^{\bullet}R]$	=/\$
I_5	[L o id ullet]	=/\$
I_6	$[S \to L = \bullet R]$	\$
<i>I</i> ₇	$[L o * R \bullet]$	=/\$
<i>I</i> ₈	$[R \rightarrow L \bullet]$	=/\$
I_9	$[S \to L = R \bullet]$	\$