# Transverse field Ising model and Majorana chain

Different realizations of the transverse field Ising model (TFIM)

3) Majorana chain

$$H = - \int_{j=1}^{\frac{m-1}{2}} \underline{G}_{j}^{z} \underline{G}_{j+1}^{z} - h \sum \underline{G}_{j}^{x}$$

$$\uparrow \uparrow \downarrow \uparrow \uparrow \uparrow \downarrow$$

- 1) Spin chain:  $|0\rangle = |\psi_{\uparrow}\rangle \approx |\dots \uparrow \uparrow \uparrow \uparrow \dots \rangle$ ,  $|1\rangle = |\psi_{\downarrow}\rangle \approx |\dots \downarrow \downarrow \downarrow \downarrow \dots \rangle$  unprotected
- 2) An interval of rough boundary surrounded by smooth boundary

We will show that models 2 and 3 are *formally* equivalent to model 1, in the sense that the terms in the corresponding Hamiltonians are mapped to the operators  $d_{j}^{2}d_{j+1}^{2}$  and  $d_{j}^{2}$  such that all algebraic relations are preserved. All three models have a two-fold degenerate ground state, which represents a logical qubit. However, different physical systems allow different *perturbations*. In particular, the logical Z is realized by a local operator  $d_{j}^{2}$  in the spin chain and by nonlocal operators in the

other two models. Nonlocal operators are unlikely to appear as perturbations to the Hamiltonian!

(to be defined later)

protected; can be used as quantum memory elements

## An interval of rough boundary surrounded by smooth boundary



$$H = - \Im \sum_{S} A_{S} - \Im \sum_{P} B_{P} - h \sum_{j=1}^{m} G_{j}^{x}$$

commutes with all other terms except the incomplete plaquettes

 $B_{j+\frac{1}{2}}$  (j=1,..,l-1)

operators  $c_i^x$  act on the "active" spins, denoted by circles

We work in the subspace  $\mathcal{H} = \{ | \psi \rangle \in \mathcal{B}^{\otimes h} : A_s | \psi \rangle = | \psi \rangle$  for all  $A_s$ ,  $B_p$  except  $B_{j+\frac{1}{2}} \}$ 

case, each of these

$$\begin{array}{cccc}
6_{j}^{x} & \mapsto & 6_{j}^{x} \\
6_{j}^{z} & \mapsto & Z_{j} \\
6_{j}^{z} & \stackrel{z}{\mapsto} & \beta_{j+1} & \stackrel{z}{=} Z_{j} Z_{j+1}
\end{array}$$

If  $h \not \in J$ , both the spin chain and the surface code Hamiltonian protect from a logical X error. However, a logical Z error is likely to happen in the spin chain but

not in the surface code.

effects a logical Z

means that the operators act in 1 in the same way

#### **Introducing fermions**

(a box can be empty or filled with a particle)

(basis states of the Hilbert space):

$$n_1=0$$
  $n_3=1$   $n_m=1$ 

(The Fock states may be identified with the basis states of *m* qubits, but the elementary operators are different)

## Elementary operators

Fock states

creation: 
$$a_{j}^{+} \mid n_{i}, ..., n_{j-1}, 0, ... \rangle = (-1)^{\sum_{s \neq j} n_{s}} \mid n_{i}, ..., n_{j-1}, 1, ... \rangle$$
,  $a_{j}^{+} \mid n_{i}, ..., n_{j-1}, 1, ... \rangle = 0$  annihilation:  $a_{j} \mid n_{i}, ..., n_{j-1}, 1, ... \rangle = (-1)^{\sum_{s \neq j} n_{s}} \mid n_{i}, ..., n_{j-1}, 0, ... \rangle$ ,  $a_{j} \mid n_{i}, ..., n_{j-1}, 0, ... \rangle = 0$ 

$$a_{j} a_{k} = -a_{k} a_{j}, \quad a_{j}^{\dagger} a_{k}^{\dagger} = -a_{k}^{\dagger} a_{j}^{\dagger}, \quad a_{j}^{\dagger} a_{k} + a_{k} a_{j}^{\dagger} = \delta_{jk}$$

 $|n_1,..,n_m\rangle$ 

## Relation to qubit operators (Jordan-Wigner transformation)

$$a_{j} = Z \cdots Z \underbrace{\begin{pmatrix} X + iY \end{pmatrix}}_{2} \underline{I} \cdots \underline{I} \qquad a_{j}^{+} = Z \cdots Z \underbrace{\begin{pmatrix} X - iY \end{pmatrix}}_{2} \underline{I} \cdots \underline{I}$$

## Majorana formalism

Example: m=2

$$C_{2\ell-1} = a_{\ell} + a_{\ell}^{+} = Z \cdot \cdot \cdot Z \times I \cdot \cdot \cdot I$$

$$C_{2\ell} = \frac{a_{\ell} - a_{\ell}^{+}}{i} = Z \cdot \cdot \cdot Z \times I \cdot \cdot \cdot I$$

$$C_{2\ell} = \frac{a_{\ell} - a_{\ell}^{+}}{i} = Z \cdot \cdot \cdot Z \times I \cdot \cdot \cdot I$$

$$C_a = YI$$
  $C_y = ZY$ 

Toy Hamiltonian

$$C_{i}C_{k} = -C_{k}C_{j} \quad \{j \in \mathcal{L}_{k} + C_{k}C_{j} = 2\delta_{jk}\}$$

$$C_{ij}C_{k}+C_{k}C_{j}=2\delta_{jk}$$

$$C_{ij}C_{k}+C_{k}C_{j}=2\delta_{jk}$$

$$H=\frac{i}{2}(A_{12})$$

$$C_{i} C_{k} + C_{k} C_{j} = 2 \delta_{jk}$$

$$C_{2\ell-1} C_{2\ell} = X_{\ell} Y_{\ell} = i Z_{\ell}$$

$$H = \frac{i}{2} \left( A_{12} C_1 C_2 + A_{13} C_1 C_3 + A_{23} C_2 C_3 \right)$$

$$= -\frac{1}{2} \left( A_{12} Z I - A_{13} Y X + A_{23} X X \right)$$

$$C_{i}C_{k} + C_{k}C_{j} = 2 O_{jk}$$

$$C_{2l-1}C_{2l} = X_{l}Y_{l} = i Z_{l}$$
# of fermions modulo 2

Keeping the parity fixed: 
$$N_2 = N - N_1 \pmod{2}$$

$$H = -\frac{1}{2} \left( A_{12} Z - A_{13} Y + A_{23} X \right)$$

$$C_{j}^{2}=1$$

# Reduction of the TFIM to a Majorana chain Hamiltonian

$$H = -\int \sum_{\ell=1}^{m-1} \chi_{\ell} \chi_{\ell+1} - h \sum_{\ell=1}^{m} Z_{\ell}$$
using dual basis:  $\chi \leftrightarrow Z$ ,  $1+\rangle = 1 \leftrightarrow \lambda$ 

$$= h \sum_{\ell=1}^{m} (i C_{2\ell-1} C_{2\ell}) + J \sum_{\ell=1}^{m-1} (i C_{2\ell} C_{2\ell+1})$$

## Interpretation in terms of ordinary fermions (e.g. electrons)

$$i C_{2\ell-1}C_{2\ell} = -Z_{\ell} = \begin{cases} -1 & \text{if } n_{\ell}=0 \\ +1 & \text{if } n_{\ell}=1 \end{cases} 2 a_{\ell}^{+} a_{\ell} - 1$$

Terms like  $\alpha_{\ell}^{+}$   $\alpha_{\ell}^{+}$  are prohibited by the conservation of electric charge or some other quantum number (except perhaps for neutrinos). However, such terms appear in

the mean-field description of superconductors.

In a superconductor, the total charge is conserved but these terms are allowed:  $\hat{\Psi} \quad a_k^{\dagger} a_k^{\dagger}, \qquad \hat{\Psi}^{\dagger} a_k a_k^{\dagger}$ borrowing/returning an electron pair

 $Z_{l} = -i C_{2l-1} C_{2l}$ 

e.g.  $\chi_1 \chi_2 = C_2 C_3$ 

 $\times_{\ell} \times_{\ell+1} = -i C_{2\ell} C_{2\ell+1}$ 

from the condensate

Mean-field approximation: 

is treated as a c-number because there are many electron pairs in the condensate.

# **Quadratic fermionic Hamiltonians**

$$H(A) = \frac{i}{4} \sum_{j,k} A_{jk} C_j C_k$$
 A is a real skew-symmetric matrix

The normalization factor  $\frac{i}{4}$  is chosen such that  $\left[-iH(A), -iH(B)\right] = -iH\left([A,B]\right)$   $= \frac{i}{4} \left( C_{1}, C_{2}, C_{3}, C_{4} \right) \begin{pmatrix} O & A_{12} & A_{13} & O \\ -A_{12} & O & A_{23} & O \\ -A_{13} & -A_{23} & O & O \\ O & O & O \end{pmatrix} \begin{pmatrix} C_{1} & C_{2} & C_{3} & C_{4} \\ C_{2} & C_{3} & C_{4} \end{pmatrix}$ The normalization factor  $\frac{i}{4}$  is chosen such that  $\left[-iH(A), -iH(B)\right] = -iH\left([A,B]\right)$ 

$$=\frac{i}{4}\left(C_{1},C_{2},C_{3},C_{4}\right)\begin{pmatrix}-A_{12} & 0 & A_{23} & 0\\-A_{13} & -A_{23} & 0 & 0\\0 & 0 & 0 & 0\end{pmatrix}\begin{pmatrix}C_{2}\\C_{3}\\C_{4}\end{pmatrix}$$

 $H = \frac{i}{2} \left( A_{12} C_{1} C_{2} + A_{13} C_{1} C_{3} + A_{23} C_{2} C_{3} \right)$ 

Example:

# Reduction of a real skew-symmetric matrix to a standard form

$$\begin{pmatrix} 0 & \xi_1 \\ -\xi_1 & 0 \end{pmatrix}$$
  $\begin{pmatrix} 0 & (\vec{0}^2 + \vec{0}^2) \end{pmatrix}$  is an orthogonal matrix  $\xi_1 = \xi_2$ 

Recipe: Find the eigenvalues and eigenvectors of the Hermitian matrix  $\dot{\iota}$  A and organize them in pairs  $((\xi, \vec{u}_1) \quad (-\xi, \vec{u}_2)) \quad ((\xi_2, \vec{u}_3), (-\xi_2, \vec{u}_4)):$ 

$$((\xi_1, \mathcal{U}_1), (-\xi_1, \mathcal{U}_2)), ((\xi_2, \mathcal{U}_3), (-\xi_2, \mathcal{U}_4)).$$
If  $(\lambda, \vec{\mathcal{U}}) = \xi_1 \vec{\mathcal{U}}$  if  $(\lambda, \vec{\mathcal{U}}) = \xi_2 \vec{\mathcal{U}}$  (by complex conjugation)

If  $i \stackrel{?}{\mathcal{U}}_{2\ell-1} = \mathcal{E}_{\ell} \stackrel{?}{\mathcal{U}}_{2\ell-1}$ , then  $-i \stackrel{?}{\mathcal{U}}_{2\ell-1} = \mathcal{E}_{\ell} \stackrel{?}{\mathcal{U}}_{2\ell-1}^*$  (by complex conjugation). Let  $\stackrel{?}{\mathcal{U}}_{2\ell} := \stackrel{?}{\mathcal{U}}_{2\ell-1}^*$ ,  $\stackrel{?}{\mathcal{F}}_{2\ell-1} = \stackrel{?}{\mathcal{U}}_{2\ell-1} + \stackrel{?}{\mathcal{U}}_{2\ell}$ ,  $\stackrel{?}{\mathcal{F}}_{2\ell} = i \stackrel{?}{\mathcal{U}}_{2\ell-1} - \stackrel{?}{\mathcal{U}}_{2\ell}$   $\Rightarrow \begin{cases} \stackrel{?}{\mathcal{F}}_{2\ell-1} = -\mathcal{E}_{\ell} \stackrel{?}{\mathcal{F}}_{2\ell} \\ \stackrel{?}{\mathcal{F}}_{2\ell} = \mathcal{E}_{\ell} \stackrel{?}{\mathcal{F}}_{2\ell-1} \end{cases}$ 

### **Diagonalization of the Hamiltonian**

Let us define a new set of Majorana, annihilation, and creation operators called normal modes:

$$(\widetilde{C}_{1},...,\widetilde{C}_{2m}) = (C_{1},...,C_{2m}) Q$$
,  $\widetilde{a}_{\ell} = \frac{\widetilde{C}_{2\ell-1} + i \widetilde{C}_{2\ell}}{2}$ ,  $\widetilde{a}_{\ell}^{\dagger} = \frac{\widetilde{C}_{2\ell-1} - i \widetilde{C}_{2\ell}}{2}$ 

Then  $H(A) = \frac{i}{2} \sum_{\ell=1}^{m} \mathcal{E}_{\ell} \widetilde{C}_{2\ell-1} \widetilde{C}_{2\ell} = \sum_{\ell=1}^{m} \mathcal{E}_{\ell} \left( \widehat{a}_{\ell}^{+} \widetilde{a}_{\ell}^{-} - \frac{1}{2} \right) \qquad (\pm \varepsilon \text{ are the eigenvalues of } i A)$ 

energies of elementary excitations

Ground state: 
$$\widetilde{a}_{\ell} \mid \widetilde{0} \rangle = 0$$
 for  $\ell=1,...,m$ 

Eigenstates of the Hamiltonian: 
$$(\widetilde{n}_{1},...,\widetilde{n}_{m}) = (\widetilde{a}_{1}^{+})^{\widetilde{n}_{1}} \cdots (\widetilde{a}_{m}^{+})^{\widetilde{n}_{\ell}} | \widetilde{o} >$$

Many-body energy spectrum: 
$$E_{\widetilde{\mathcal{H}}_{l},...,\widetilde{\mathcal{H}}_{m}} = E_{D} + \sum_{\ell=1}^{m} \mathcal{E}_{\ell} \widetilde{\mathcal{H}}_{\ell} , \quad \text{where } E_{0} = -\frac{1}{2} \sum_{\ell=1}^{m} \mathcal{E}_{\ell}$$

## **Excitation spectrum of the infinite Majorana chain**

(We may keep it finite but ignore boundary conditions)

**Eigenvectors of** *iA* are indexed by quasimomentum *k* 

$$l=1$$
  $l=2$ 

(momentum defined modulo 212)

$$\overrightarrow{U}(k) = \begin{pmatrix} f_1 \\ f_2 \\ f_1 e^{ik} \\ f_2 e^{ik} \end{pmatrix} \begin{cases} \ell = 1 \\ \ell = 2 \end{cases}$$

$$\downarrow \ell = 1 \qquad \qquad \ell = 2 \qquad \qquad \ell = 1 \qquad \qquad \ell = 2 \qquad \qquad \ell = 1, 2 \quad \text{is the site index within a unit cell}$$

$$l=1$$
  $l=2$ 

$$=...,0,1,2,3,...$$
 refers to a unit cell
$$=1,2$$
 is the site index within a unit cell

$$\begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \widetilde{A}(K) \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$

$$\widetilde{A}(K) = 2 \begin{pmatrix} 0 & h - \Im e^{-iK} \\ -h + \Im e^{iK} & 0 \end{pmatrix} \qquad \mathcal{E}(K) = 2 [h - \Im e^{iK}]$$

Phase transition (as reflected by the excitation spectrum)

$$H = -\Im \sum_{\ell=1}^{m-1} X_{\ell} X_{\ell+1} - h \sum_{\ell=1}^{m} Z_{\ell}$$

$$\Rightarrow_{k}$$

On opposite sides of this transition point, the complex-valued function  $\mathcal{W}(k)$  is topologically different:

At |h|=|J|, the energy gap  $\triangle$  vanishes.

 $\mathcal{E}(K) = 2 \left| h - J e^{iK} \right|$ 



(h) < []



We will also see that the  $|\Im| < |\hbar|$  phase does not have boundary modes, but the  $|\Im| > |\hbar|$  phase does

 $|\psi_{\rightarrow}\rangle \approx |\cdots \rightarrow \rightarrow \rightarrow \cdots\rangle$ 

## Boundary modes (a.k.a. "unpaired Majorana modes" or "Majorana zero modes")

## Extreme cases

$$H = \Im \sum_{\ell=1}^{m-1} \underline{i} C_{2\ell} C_{2\ell+1} = \underline{i} \left( \mathcal{E}_1 \widetilde{C}_1 \widetilde{C}_2 + \mathcal{E}_2 \widetilde{C}_3 \widetilde{C}_4 + \cdots \right)$$
The boundary modes do not participate in the Hamiltonian, and therefore, the corresponding energy  $\mathcal{E}_1$  is zero

Ground states are defined by the condition 
$$\widetilde{N}_2 = \cdots = \widetilde{N}_m = 0 \implies -i C_{2\ell} C_{2\ell+1} \mid \frac{3}{2} \rangle = \left( \frac{39h}{3} \right) \mid \frac{3}{2} \rangle$$

The boundary modes are unconstrained, i.e. the corresponding occupation number  $\widehat{h}_{1}$  is arbitrary

Fermionic parity of the ground states (corresponds to flipping all spins in TFIM, 
$$Z - Z | \psi_{-} \rangle = | \psi_{-} \rangle$$
)
$$P = \prod_{\ell=1}^{m} \left( -i C_{2\ell-1} C_{2\ell} \right) \equiv -i C_{1} C_{2m} \left( sgn J \right)^{m-1}$$

 $H = \frac{L}{2} \mathcal{E}_1 \widetilde{\mathcal{E}}_1 \widetilde{\mathcal{E}}_2 + \cdots$  If the chain is long,  $\mathcal{E}_1 \approx 0$ , and the boundary modes correspond to approximate null  $A\vec{q}, \approx A\vec{q} \approx 0$ vectors of A:

modes correspond to approximate null vectors of A: 
$$A \vec{q}_1 \approx A \vec{q}_2 \approx 0$$

$$\vec{C}_S = \sum_{j=1}^{2m} C_j \cdot \beta_{jS} = (C_{1,-}, C_{2m}) \vec{q}_S \quad \text{(we are interested in } s=1,2)$$

$$\vec{d} = A \vec{q}_1 \approx A \vec{q}_2 \approx 0$$

$$\vec{d} = \sum_{j=1}^{2m} C_j \cdot \beta_{jS} = (C_{1,-}, C_{2m}) \vec{q}_S \quad \text{(we are interested in } s=1,2)$$

General case of boundary modes (for  $|\Im| > |\hbar|$ )

Boundary mode energy: 
$$\mathcal{E}_{1} = \vec{q}_{1}^{T} A \vec{q}_{2} = 2 h (1-2) \mathcal{X}^{m-1}$$

**Effective Hamiltonian** 

and fermionic parity:

The j-th element of  $\vec{f}_s$ , i.e. the coefficient in front of  $c_i$  in  $\tilde{c}_1$ ,  $\tilde{c}_2$ 

dary mode energy: 
$$\xi_1 = \vec{q}_1^T A \vec{q}_2 = 2 h (1-x^2) x^{m-1}$$

 $H_{eff} = \frac{i}{2} \mathcal{E}_{1} \widetilde{C}_{1} \widetilde{C}_{2}, \quad \mathcal{E}_{1} \sim \left(\frac{h}{n}\right)^{n} \mathcal{I}$ 

 $P = -i \widetilde{C}_1 \widetilde{C}_2 \cdot (sgn J)^{m-1}$ 

#### Physical realization of the Majorana chain (work in progress)

**Device proposal** (Lutchyn, Sau, Das Sarma 2010,

Oreg, Refael, von Oppen 2010)

First experiment (Kouwenhoven's group 2012)



#### Nanowire growth



Lutchyn at al, arXiv:1707.04899



Gazibegovic at al, Nature 548, 434 (2017)

**Tunneling** (Law, Lee, Ng 2009)



### Some (not quite successful) experiments





Zhang et al, doi:10.1038/nature26142 (2018) (The paper was retracted due to problems with data)





Unfortunately, these results do not prove the existence of Majorana zero modes. Such plots are observed only in a fraction of samples, in a narrow parameter region, and might be a coincidence. So we have to wait until the device quality improves and more accurate measurements are done.