Fachhochschule Südwestfaler
Technische Betriebswirtschaft
DrIng. Carsten Mense

Name, Vorname:	
MatrNr.:	

Physik und Umwelt – Klausur SS 2021 am 19. Juli 2021

Name:	Vorname:
MatrNr.:	

Erlaubte Hilfsmittel sind ausschließlich:

 Stifte, nicht programmierbarer Taschenrechner, Vorlesungs- und Übungsmittschriften, Formelzettel & Bücher

Wichtig:

- Vorname, Name, Matrikelnummer und Seitenzahl sind lesbar in DRUCKSCHRIFT auf jedes Blatt zu schreiben
- Ohne nachvollziehbaren Rechenweg gibt es keine Punkte
- Es sind dokumentenfeste Schreibgeräte und Blätter und digitale Aufzeichnungsmöglichkeiten zulässig
- Die Multiple-Choice-Aufgaben sind eindeutig aufzuschreiben / zu kennzeichnen.

Beispiel: 1G

• **elektronische Geräte** zur Kommunikation mit anderen Menschen dürfen **nicht** benutzt werden.

Ausnahme: nicht programmierbaren Taschenrechner

Bewertung:

	Multiple Choice	Nr. 1	Nr. 2	Nr. 3	Nr. 4	Nr. 5	Gesamt
Punkte							

N	0	te	:	

Multiple Choice Fragen

- Benennen sie die richtige(n) Antwort an. Auch mehrere Antworten können richtig sein.
- Es werden nur **vollständig** richtige Antworten/Lösungen gewertet.
- Die richtige(n) Antwort(en) ist (sind) eindeutig zu benennen z.B.: 1A & 1B

1. Frage (3 P.)

In der folgenden Abbildung ist der Wärmedurchgang durch eine **zwei**schalige ebene Wand schematisch dargestellt. Markieren Sie die richtige Aussage, die im **konkreten** Fall gültig ist!

- 1A) α_i ist der Wärmedurchgangskoeffizient
- 1B) α_a ist der Wärmeübergangskoeffizient von der Innenluft zur Wandinnenseite
- 1C) $\lambda_1 < \lambda_2$
- 1D) $\lambda_1 = \lambda_2$
- 1E) $\frac{1}{U} = \frac{1}{\alpha_i} + \frac{d}{\lambda} + \frac{1}{\alpha_a}$
- 1F) $\lambda_1 > \lambda_2$

2. Frage (3 P.)

Ein beweglicher Kolben in einem Gaszylinder wird **isobar** (p = 2 hPa) verschoben, wobei sich das Volumen um $\Delta V = 20$ ml ändert. Welche Volumenänderungsarbeit ΔW_V wird dabei verrichtet?

- 2A) $4 \cdot 10^{-2} \text{ Nm}$
- 2B) $4 \cdot 10^{-3} \text{ J}$
- 2C) 4 bar · ml
- 2D) 4 J
- 2E) 40 Nm

Name, Vorname: Matr.-Nr.:

3. Frage (3 P.)

Um welchen **Faktor f** nimmt die von allen Wellenlängen zusammen abgestrahlte Leistung der Wärmestrahlung zu, wenn ein schwarzer Körper von $\theta_1 = 20$ °C auf $\theta_2 = 200$ °C erwärmt wird?

- 3A) f = 1,61
- 3B) f = 4.8
- 3C) f = 9.2
- 3D) f = 6.8
- 3E) f = 10000

4. Frage (3 P.)

Das menschliche Auge ist für grünes Licht ca. 10 Mal empfindlicher als für alle anderen Farben. Häufig werden somit auch grüne Laserpointer mit der Wellenlänge von $\lambda = 532$ nm eingesetzt. Geben Sie die Energie eines Photons der Laserstrahlung in der atomphysikalischen Energieeinheit **eV** an.

- 4A) 1,24 eV
- 4B) 25,2 eV
- 4C) 6,8 eV
- 4D) 0,64 eV
- 4E) 2,33 eV

5. Frage (3 P.)

Feuchte Luft ist ein Gasgemisch aus trockener Luft und Wasserdampf. Für die Dichten von feuchter Luft (ρ Luft,feucht) und trockener Luft (ρ Luft,trocken) gilt bei gleicher Lufttemperatur und bei gleichem Luftdruck folgende Aussage:

- 5A) Die Dichte der Luft ist unabhängig von relativen Luftfeuchtigkeit
- 5B) ρ Luft, feucht $> \rho$ Luft, trocken
- 5C) ρ Luft, feucht $< \rho$ Luft, trocken
- 5D) Die Dichte der Luft nimmt mit steigender Luftfeuchtigkeit zu
- 5E) Die Dichte der Luft nimmt mit steigender Luftfeuchtigkeit ab

Name, Vorname: Matr.-Nr.:

6. Frage (3 P.)

Welche der im **V,T-Diagramm** eingezeichneten Kurven stellt die **Isobare** eines idealen Gases dar?

- 6A) Kurve A
- 6B) Kurve B
- 6C) Kurve C
- 6D) Kurve D
- 6E) Kurve E

7. Frage (3 P.)

Wie groß ist die spezielle Gaskonstante Rs der gasförmigen Verbindung Ozon O₃?

- 7A) 173,2 J /(kg ·K)
- 7B) 8,314 J /(mol · K)
- 7C) 17 J /(mol · K)
- 7D) 24,942 J /(kg ·K)
- 7E) 489 J /(kg ·K)
- 7F) 0,489 J /(kg ·K)

Name, Vorname: Matr.-Nr.:

8. Frage (3 P.)

Eine Gammastrahlung (E_{γ} = 600 keV) fällt auf eine d = 100 mm dicke Stahl-Platte. Sie besitzt den linearen Schwächungskoeffizienten $\mu = 0.603 \frac{1}{cm}$. Wie viel Prozent der auftreffenden Strahlungsintensität I₀ werden durch die Stahl-Platte **durchgelassen**?

- 8A) 0%
- 8B) 0,24 %
- 8C) 1,65 %
- 8D) 11,5 %
- 8E) 33,5 %
- 8F) 3,45 %
- 8G) 13,5 %

9. Frage (3 P.)

Ein Metalldraht aus einer Kupferlegierung besitzt bei ϑ_0 = 20 °C eine Länge von I_0 = 0,5 m. Nach Erwärmung auf ϑ_1 = 100 °C hat sich der Draht um ΔI = 0,72 mm verlängert. Welchen Längenausdehnungskoeffizienten α besitzt die Kupferlegierung?

- 9A) $16 \frac{\mu m}{mK}$
- 9B) 17 · 10⁻⁶ K⁻¹
- 9C) 19 · 10⁻⁶ K⁻¹
- 9D) 18 · 10⁻⁶ K⁻¹
- 9E) $21 \frac{\mu m}{mK}$
- 9F) 20 · 10⁻⁶ K⁻¹

10. Frage (3 P.)

Das radioaktive **Au-198** Nuklid ist ein β **- Strahler** und zeigt folgenden Zerfall:

$$^{198}Au \rightarrow {}_{Z}^{A}X + e^{-} + \bar{v}_{e}$$

Markieren Sie die Spalte mit den richtigen Zahlen, Kernladungszahl Z und Massenzahl A, des beim Zerfall entstehenden Tochternuklids, welches hier durch das "unbekannte" Elementsymbol X gekennzeichnet werden soll.

^A _Z X	10A	10B	10C	10D	10E	10F
Z	78	80	79	99	81	82
Α	198	198	198	214	198	200

Fachhochschule Südwestfalen
Technische Betriebswirtschaft
DrIng. Carsten Mense

Name, Vorname: Matr.-Nr.:

11. Frage (3 P.)

Die Volumen von Wasser wird bei zwei verschiedenen Temperaturen gemessen. Bei ϑ_1 = 20 °C wird eine Volumen von V_1 = 5 dm³ und bei ϑ_1 = 30 °C wird eine Dichte von V_2 = 5,0128 dm³ gemessen. Welchen kubischen Ausdehnungskoeffizienten besitzt Wasser für diesen Temperaturbereich?

11A)
$$\gamma = 1,023 \cdot 10^{-3} \text{ K}^{-1}$$

11B)
$$\gamma = 1.011 \cdot 10^{-3} \text{ K}^{-1}$$

11C)
$$\gamma = 0.64 \cdot 10^{-3} \text{ K}^{-1}$$

11D)
$$\gamma = 0.3056 \cdot 10^{-3} \text{ K}^{-1}$$

11E)
$$\gamma = 0.2064 \cdot 10^{-3} \text{ K}^{-1}$$

11F)
$$\gamma = 0.256 \cdot 10^{-3} \text{ K}^{-1}$$

12. Frage (3 P.)

Eine Wärmekraftmaschine, Gasturbine, durchläuft einen **Carnot-Prozess**, der durch die isothermen Arbeitstemperaturen ϑ_h = 1400 °C und ϑ_k = 600 °C gekennzeichnet ist. Geben Sie den thermischen Wirkungsgrad des Carnot-Prozesses an!

12A)
$$\eta c = 35 \%$$

12B)
$$\eta_C = 47.8 \%$$

12C)
$$\eta_C = 52 \%$$

12D)
$$\eta c = 54.3 \%$$

12E)
$$\eta c = 59.7\%$$

12F)
$$\eta c = 45,4 \%$$

Name, Vorname: Matr.-Nr.:

13. Frage (3 P.)

Eine Luft/Wasser-Wärmepumpe nutzt die in der Außenluft enthaltene Wärmeenergie und wandelt diese über den Kältemittelkreislauf der Wärmepumpe in Heizwärme um. Berechnen Sie die theoretisch Leistungszahl $\epsilon_{WP,C}$ der Wärmepumpe, wenn die Umgebungsluft eine Temperatur von 9_{Luft} = 10 °C besitzt und das Heizwasser auf eine Temperatur von 9_{Wasser} = 60 °C erwärmt werden soll.

- 13A) $\epsilon_{WP.C} = 6,66$
- 13B) $\epsilon_{WP,C} = 3.21$
- 13C) $\epsilon_{WP.C} = 2.36$
- 13D) $\epsilon_{WP,C} = 8,54$
- 13E) $\epsilon_{WP,C} = 5.21$
- 13F) $\epsilon_{WP,C} = 67.3 \%$

14. Frage (3 P.)

Eine Gesteinsprobe wird mit Hilfe der Röntgenspektroskopie analysiert. Dabei tritt im Röntgenspektrum eine dominante K_{α} -Linie auf. Die Energie beträgt **8 keV**. Um welches Element handelt es sich.

- 14A) Aluminium
- 14B) Titan
- 14C) Eisen
- 14D) Silber
- 14E) Kupfer
- 14F) Gold

15. Frage (3 P.)

Der Begriff **Sublimation** beschreibt folgenden physikalischen Vorgang.

- 15A) den Phasenübergang von fest zu flüssig
- 15B) den Phasenübergang von flüssig zu fest
- 15C) die parallele Ausrichtung divergenter Lichtstrahlen
- 15D) den direkten Phasenübergang von fest zu gasförmig
- 15E) das Angleichen der Dichten von flüssiger und gasförmiger Phase
- 15F) das Trennen von zwei Flüssigkeiten

Fachhochschule Südwestfaler
Technische Betriebswirtschaft
DrIng. Carsten Mense

Name, Vorname:	
MatrNr.:	

1. Aufgabe (9 P.)

Der Saunameister führt einen Aufguss in einer finnischen Sauna durch. Die Sauna besitzt folgende Innenmaße:

Breite: b = 4 m Höhe: h = 2.5 m Tiefe: t = 3 m.

Die Ausgangstemperatur der Luft beträgt ϑ_0 = **80** °C und die relative Luftfeuchtigkeit ϕ_{rel} = **7** %. Durch den Aufguss erhöht sich die Temperatur auf ϑ_1 = **85** °C. Berechnen sie das maximale Wasservolumen V in Litern für den Aufguss, wenn die relative Luftfeuchtigkeit ϕ_{rel} = **20** % nicht überschritten werden soll.

Maximale absolute Luftfeuchtigkeit (Sättigungsgrenze):

$$\rho_{w,max}(80^{\circ}C) = 290.7 \text{ g/m}^3$$
 $\rho_{w,max}(85^{\circ}C) = 349.8 \text{ g/m}^3$

Name, Vorname:	
MatrNr.:	

2. Aufgabe (9 P.)

Eine Kunststoffspritzgussmaschine hat eine maximale Heizleistung von P = 10 kW. Das Kunststoffgranulat muss, bevor es in die Form eingespritzt wird, geschmolzen werden. Dazu wird das Kunststoffgranulat von ϑ_0 = 20 °C auf die Schmelztemperatur von ϑ_1 = 163°C erwärmt und geschmolzen. Es handelt sich um den Kunststoff Polypropylen (PP).

- a) Berechnen sie die **maximale Mengenleistung** \dot{m} der Maschinen in der Einheit **Kilogramm pro Stunde** unter der Voraussetzung das keine Wärmeverluste auftreten. Bedeutet, wie viel Kilogramm Granulat kann pro Stunde geschmolzen werden?
- b) Berechnen sie die Energiemenge ΔE in der Einheit MJ (Megajoule) die täglich, innerhalb von 24 h, verbraucht wird.

Anmerkungen:

spezifische Wärmekapazität von Polypropylen (Feststoff): cpp = 1,7 kJ/(kg K)

Schmelzenthalpie von Polypropylen: $\Delta H_{S,PP} = 207 \text{ kJ/kg}$

Fachhochschule Südwestfaler
Technische Betriebswirtschaft
DrIng. Carsten Mense

Name, Vorname:	
MatrNr.:	

3. Aufgabe (9 P.)

Ein Wetterballon wird auf der Erdoberfläche, Meereshöhe $h_0 = 0m$, $\vartheta_0 = 20$ °C und $p_0 = 1013$ mbar, mit $V_0 = 6$ m^3 Helium gefüllt. Der Wetterballon steigt in eine Höhe von $h_1 = 10$ km auf. Die Temperatur beträgt dort $\vartheta_1 = -30$ °C. Die Ballonhülle ist nur zu einem geringen Anteil gefüllt, sodass sich das Gas ausdehnen kann.

a) Berechnen Sie das Volumen des Ballons, wenn er sich in der Flughöhe von h_1 = 10 km befindet.

Anmerkung:

Für die Berechnung des Luftdrucks in 10 km Höhe gehen sie von einer konstanten Temperatur von $\vartheta = 20$ °C aus.

Molare Masse von Luft: M = 0,02896 kg/molErdbeschleunigung: $g = 9,807 \text{ m/s}^2$ Ideale Gaskonstante: R = 8,314 J/(mol K)

individuelle Gaskonstante von Luft: $R_S = 287,06 \frac{J}{ka \cdot K}$

Name, Vorname:	
MatrNr.:	

4. Aufgabe (9 P.)

Bei der Renovierung eines 40 Jahre alten Hauses soll geprüft werden, ob es sich finanziell lohnt die Fenster mit einer gesamten Fensterfläche von A = 15 m² zu erneuern. Der Wärmedurchgangskoeffizient der alten Fenster beträgt Ualt = 2,5 W/m²K. Die neuen Fenster haben einen Wärmedurchgangskoeffizient Uneu = 0,8 W/m²K.

- a) Berechnen sie die eingesparte Wärmeleistung $\Delta \dot{Q}$. Die äußere Lufttemperatur beträgt $\vartheta_a = -5$ °C und die Raumtemperatur (Luft) $\vartheta_i = 20$ °C.
- b) Berechnen sie die Wärmemenge ΔQ in der **Einheit kWh**, die an einem kalten Wintertag eingespart wird. Die äußere Lufttemperatur beträgt $\vartheta_a = -5$ °C und die Raumtemperatur (Luft) $\vartheta_i = 20$ °C.
- c) Berechnen sie die Kostenersparnis wenn mit Heizöl geheizt wird. Der Wirkungsgrad der Heizung betrage 100 %. Der Brennwert von 1 Liter Heizöl beträgt 35,3 MJ/Liter und der Preis pro Liter 0,70 €/Liter.

Fachhochschule Südwestfalen
Technische Betriebswirtschaft
DrIng. Carsten Mense

Name, Vorname:	
MatrNr.:	

5. Aufgabe (9 P.)

Kabeltrommel werden zur Leitung von Strom genutzt, um beispielsweise Elektrogeräte im Garten zu betreiben. Das Verlängerungskabel stellt dann einen zusätzlichen elektrischen Widerstand dar.

- a) Berechnen sie die durch die Kabeltrommel hervorgerufene zusätzliche Verlustleistung. Gehen sie davon aus, dass Gleichstrom mit einer Spannung von U=220~V und einer Stromstärke I=10~A geleitet wird. Die Gesamtlänge der Kabeltrommel beträgt I=50~m, der Durchmesser des Kabels d=1,4~mm, der spezifische Widerstand des Kupferkabels $\rho_{Cu}=17\cdot 10^{-3} \frac{\Omega \ mm^2}{m}$.
- b) Beschreiben sie kurz, welche Gefahr besteht, wenn das Kabel nicht von der Trommel abgewickelt wird.