Definice, které snad u zkoušky udělají Velebnosti radost

Nezaručuji správnost uvedených definic. Ty jsou nicméně vyjmuty (někdy mírně přeformulovány) především z AKLA a přednášek doc. Velebila. Přeji příjemné učení.

Lineární kombinace - Lin. kombinací seznamu vektorů $(\mathbf{x}_1,...,\mathbf{x}_n)$ (se seznamem skaláru $(a_1,...,a_n) \in \mathbb{F}$) je vektor $v = \sum_{i=1}^n a_i \cdot \mathbf{x}_i$.

Lineární nezávislost - Seznam vektorů S je lineárně nezávislý právě tehdy, když platí jedna z těchto podmínek: 1) seznam S je prázdný, 2) seznam $S = (\mathbf{x}_1, ..., \mathbf{x}_n)$ a kdykoli $\sum_{i=1}^n a_i \cdot \mathbf{x}_i = \mathbf{o}$, pak $a_1 = ... = a_n = 0$.

 $\mathbf{Line\acute{a}rn\acute{i}}$ závislost - Seznam vektorů S je lin. závislý právě tehdy, když není lineárně nezávislý.

Lineární obal - Ať M je jakákoli množina vektorů lin. prostoru L. Lineárním obalem množiny vektorů M je množina vektorů span(M) tak, že: 1) lin. obal prázdné množiny je span $(\emptyset) = \mathbf{o}$, 2) lin. obal neprázdné množiny je množina všech lin. kombinací vektorů z M, tj. span $(M) = \bigcup_{n \in \mathbb{N}} \{\sum_{i=1}^n a_i \cdot \mathbf{x}_i | a_1, ..., a_n \in \mathbb{F}, \mathbf{x}_1, ..., \mathbf{x}_n \in M\}$.

Lineární podprostor - Ať W je podmnožina lin. prostoru L. Řekneme, že W je lineární podprostor lin. prostoru L, když platí, že $\operatorname{span}(W) \subseteq W$.

Spojení lineárních podprostorů - Ať $\{W_i|i\in I\}$ je systém lin. podprostorů prostoru L. Lin. podprostoru span $(\bigcup_{i\in I}W_i)$ prostoru L říkáme spojení podprostorů $W_i, i\in I$ a značíme jej $\bigvee_{i\in I}W_i$.

Množina generátorů - Ať W je lin. podprostor prostoru L. Řekneme, že množina G generuje W, když platí $\operatorname{span}(G) = W$.

Konečně generovaný podprostor - Řekneme, že lin. podprostor W prostoru L je konečně generovaný, když existuje konečná množina jeho generátorů.

Báze - Lineárně nezávislé množině B, která generuje prostor L, říkáme báze prostoru L. Je-li konečná, pak seznamu prvků B říkáme uspořádaná báze.

Dimenze - Lineární prostor L má dimenzi n (značíme: dim(L) = n), když existuje báze B prostoru L, která má n prvků a $n \in \mathbb{N}$.

Souřadnice - Souřadnice vektoru v vzhledem k bázi B jsou seznam $(a_1,...,a_n) \in \mathbb{F}$ takový, že $v = \sum_{i=1}^n a_i \cdot \mathbf{x_i}$. Značíme $\operatorname{coord}_B(\mathbf{v}) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

Lineární zobrazení - Ať L_1, L_2 jsou lin. prostory nad \mathbb{F} . Zobrazení $\mathbf{f}: L_1 \longrightarrow L_2$ říkáme lineární zobrazení z L_1 do L_2 , když platí $\mathbf{f}(\mathbf{x} + \mathbf{x}') = \mathbf{f}(\mathbf{x}) + \mathbf{f}(\mathbf{x}')$ a $\mathbf{f}(a \cdot \mathbf{x}) = a \cdot \mathbf{f}(\mathbf{x})$ pro vš. $a, \mathbf{x}, \mathbf{x}'$.

Jádro - Mějme lin. zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$. Jádro zobrazení \mathbf{f} , ker(\mathbf{f}), je poté množina všech $\mathbf{x} \in L_1$ takových, že $\mathbf{f}(\mathbf{x}) = \mathbf{o}$. Neboli ker(\mathbf{f}) = { $\mathbf{x} | \mathbf{f}(\mathbf{x}) = \mathbf{o}$ }.

Obraz - Mějme lin. zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$. Obraz zobrazení \mathbf{f} , im(\mathbf{f}), je poté množina všech $\mathbf{y} \in L_2$ takových, že existuje nějaké $\mathbf{x} \in L_1$, že $\mathbf{f}(\mathbf{x}) = \mathbf{y}$. Neboli im(\mathbf{f}) = { $\mathbf{y} | \mathbf{f}(\mathbf{x}) = \mathbf{y}$ pro nějaké \mathbf{x} }.

 $\mathbf{Hodnost}$ - Mějme lin. zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$. Pak hodnost lineárního zobrazení je číslo $\mathrm{rank}(\mathbf{f}) = \dim(\mathrm{im}(\mathbf{f}))$.

Defekt - Mějme lin. zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$. Pak defekt lineárního zobrazení je číslo def(f) = dim(ker(f))).

Monomorfismus - Lin. zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$ je monomorfismus právě tehdy, když pro každé $\mathbf{x}_1, \mathbf{x}_2 \in L_1$ platí, že když $\mathbf{f}(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_2)$, pak $\mathbf{x}_1 = \mathbf{x}_2$. Lze také: Lin. zobrazení je monomorfismus, když je prosté (je injektivní).

Epimorfismus - Lin. zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$ je epimorfismus právě tehdy, když pro každé $\mathbf{y} \in L_2$ existuje $\mathbf{x} \in L_1$ takové, že $\mathbf{f}(\mathbf{x}) = \mathbf{y}$. Lze také: Lin. zobrazení je epimorfismus, když je na (je surjektivní).

Izomorfismus - Lin. zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$ je izomorfismus právě tehdy, když je monomorfismus a epimorfismus zároveň. Lze také: Lin. zobrazení je izomorfismus, když je prosté a na (je bijektivní).

Regulární matice - Matice A je regulární (invertibilní, izomorfismus), pokud existuje taková matice \mathbf{A}^{-1} , že platí $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{E} = \mathbf{A}^{-1} \cdot \mathbf{A}$.

Singulární matice - Matice je singulární, právě když není regulární.

 \mathbf{Horn} í blokový \mathbf{tvar} - Matice \mathbf{M} je v horním blokovém tvaru, je-li každý nenulový řádek matice \mathbf{M} nad jakýmkoli řádkem samých nul a je-li každý pivot (tj. první nenulová položka zleva) jakéhokoli nenulového řádku matice \mathbf{M} vždy více napravo než pivot předchozího řádku.

Afinní podprostor - Ať W je lin. podprostor prost. L. Ať W má koneč. dimenzi a označme $0 \le d = \dim(W)$. Ať \mathbf{p} je vektor v L. Množině vektorů $\pi = \mathbf{p} + W = \{\mathbf{p} + \mathbf{w} | \mathbf{w} \text{ je ve } W\}$ říkáme d-dimesionální afinní podprostor prostoru U. Bázi prostoru U také říkáme zaměření (směr) tohoto podprostoru.

Permutace - Permutace na n je bijekce $\pi: \{1, 2, ..., n\} \longrightarrow \{1, 2, ..., n\}$. Množině vš. permutací množiny $\{1, 2, ..., n\}$, spolu s operací skládání ·, říkáme symetrická grupa permutací n-prvkové množiny, značíme S_n .

Inverze v permutaci - Ať $\pi = \begin{bmatrix} 1 & 2 & 3 & \dots & n \\ \pi(1) & \pi(2) & \pi(3) & \dots & \pi(n) \end{bmatrix}$ je permutace. Inverze v permutaci π je výskyt situace i < j a současně $\pi(i) > \pi(j)$ (inverze v permutaci je jedno překřížení strun ve strunovém diagramu).

Znaménko permutace - Znaménko permutace π je číslo sign π , které je definováno takto:

sign
$$\pi = \begin{cases} +1, & \text{pokud } \pi \text{ obsahuje sudý počet inverzí,} \\ -1, & \text{pokud } \pi \text{ obsahuje lichý počet inverzí.} \end{cases}$$

Determinant - Pro matici \mathbf{A} typu $n \times n$ nad \mathbb{F} definujeme determinant jako skalár $\det(\mathbf{A}) = \sum_{\pi \in S_n} \operatorname{sign} \ \pi \cdot a_{\pi(1),1} \cdot a_{\pi(2),2} \cdot \ldots \cdot a_{\pi(n),n}$. Často se píše i $|\mathbf{A}|$ místo $\det(\mathbf{A})$.

Algebraický doplněk - Determinantu $A_{ij} = \det(\mathbf{a}_1,...,\mathbf{a}_{j-1},\mathbf{e}_i,\mathbf{a}_{j+1},...,\mathbf{a}_n)$ říkáme algebraický doplňěk pozice (i,j) v matici $\mathbf{A} = (\mathbf{a}_1,...,\mathbf{a}_n)$.

Adjungovaná matice - Pro matici **A** typu $n \times n$ je její adjungovaná matice adj(**A**) transponovaná matice algebraických doplňků pozic v matici **A**.

Vlastní hodnota, vlastní vektor - Pro lineární zobrazení $L_1 \xrightarrow{\mathbf{f}} L_2$ je λ v \mathbb{F} vlastní hodnotou (vlastním číslem), pokud existuje nenulový vektor \mathbf{x} splňující rovnost $\mathbf{f}(\mathbf{x}) = \lambda \cdot \mathbf{x}$. Každému takovému nenulovému vektoru \mathbf{x} říkáme vlastní vektor příslušný hodnotě λ .

Char. polynom čtvercové matice - Ať A je matice typu $n \times n$ nad $\mathbb{F}, n \geq 1$. Výrazu $\det(\mathbf{A} - x\mathbf{E}_n)$ říkáme charakteristický polynom matice A (značení: $\operatorname{char}_{\mathbf{A}}(x)$).

Násobnost kořene komplexního polynomu - Komplexní číslo λ je kořen polynomu $p(x) \in \mathbb{C}[x]$ násobnosti k, pokud platí rovnost $p(x) = (x - \lambda)^k \cdot q(x)$ pro $q(x) \in \mathbb{C}$ a $q(\lambda) \neq 0$.

Reálný skalární součin - Ať L je lin. prostor nad \mathbb{R} . Funkci $\langle -|-\rangle : L \times L \to \mathbb{R}$ říkáme skalární součin, pokud platí následující, pro libovolné vektory \mathbf{x} , \mathbf{y} : 1) Komutativita: $\langle \mathbf{x} | \mathbf{y} \rangle = \langle \mathbf{y} | \mathbf{x} \rangle$, 2) Linearita ve druhé souřadnici: zobrazení $\langle \mathbf{x} | - \rangle : L \to \mathbb{R}$ je lineární, 3) Positivní definitnost: $\langle \mathbf{x} | \mathbf{x} \rangle \geq 0$, $\langle \mathbf{x} | \mathbf{x} \rangle = 0$ iff $\mathbf{x} = \mathbf{o}$.

Norma vektoru - Normu vektoru x definujeme jako $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x} | \mathbf{x} \rangle}$.

Ortogonalita vektorů - Pokud $\langle \mathbf{x} | \mathbf{y} \rangle = 0$, mluvíme o ortogonálních (také: navzájem kolmých) vektorech.

Pozitivně definitní matice - Řekneme, že matice \mathbf{G} typu $n \times n$ nad \mathbb{R} je pozitivně definitní, když existuje matice \mathbf{R} s lineárně nezávislými sloupci tak, že $\mathbf{G} = \mathbf{R}^T \cdot \mathbf{R}$.

Ortogonální báze - Ortogonální množině v L, která tvoří bázi L, říkáme ortogonální báze.

Ortonormální báze - Bázi $(\mathbf{b}_1, ..., \mathbf{b}_n)$ prostoru se skalárním součinem, která splňuje rovnost $\langle \mathbf{b}_i | \mathbf{b}_j \rangle = \delta_{ij}$ (Kroneckerův symbol δ splňuje: $\delta_{ij} = 1, \delta_{ij} = 0$ pro $i \neq j$), říkáme ortonormální.

Projekce na podprostor - Ať W je podprostor lineráního prostoru L se skalárním součinem, ať \mathbf{x} je libovolný vektor v L. Vektoru $\operatorname{proj}_W(\mathbf{x})$, který leží ve W a pro který je $\mathbf{x} - \operatorname{proj}_W(\mathbf{x})$ kolmý na všechny vektory z W, říkáme ortogonální projekce vektoru \mathbf{x} na podprostor W. (Vektoru $\mathbf{x} - \operatorname{proj}_W(\mathbf{x})$ budeme říkat ortogonální rejekce vektoru \mathbf{x} podprostorem W a budeme jej značit $\operatorname{rej}_W(\mathbf{x})$.)

Vzájemná poloha afinních podprostorů - Ať $\pi = \mathbf{p} + W$ a $\pi' = \mathbf{p}' + W'$ jsou dva afinní podprostory prostoru \mathbb{R}^n . Řekneme, že: 1) π a π' jsou rovnoběžné, pokud platí $W \subseteq W'$ nebo $W' \subseteq W$, 2) π a π' jsou různoběžné, pokud nejsou rovnoběžné a mají alespoň jeden společný bod, 3) π a π' jsou mimoběžné, pokud nesjou rovnoběžné a nemají žádný společný bod.

Dimenzi lineárního podprostoru $W \cap W'$ budeme říkat stupeň rovnoběžnosti afinních podprostorů π a π' .

Gramova matice - Ať matice $\mathbf{A}: \mathbb{R}^k \to \mathbb{R}^n$ má sloupc. zápis $(\mathbf{a}_1, ..., \mathbf{a}_k)$, kde $k \leq n$. Matici $\mathbf{A}^T \mathbf{A}: \mathbb{R}^k \to \mathbb{R}^k$ budeme říkat Gramova matice seznamu vektorů $(\mathbf{a}_1, ..., \mathbf{a}_k)$.

Gramův determinant - Ať matice $\mathbf{A}: \mathbb{R}^k \to \mathbb{R}^n$ má sloupcový zápis $(\mathbf{a}_1, ..., \mathbf{a}_k)$, kde $k \leq n$. Determinantu $\det(\mathbf{A}^T \mathbf{A})$ budeme říkat Gramův determinant seznamu $(\mathbf{a}_1, ..., \mathbf{a}_k)$ a značit jej budeme $\operatorname{Gram}(\mathbf{a}_1, ..., \mathbf{a}_k)$.

Přepis definice vektorového součinu seznamu $(\mathbf{x}_1,...,\mathbf{x}_{n-1})$ v $\mathbb{R}^n, n \geq 2$ - $\langle \times (\mathbf{x}_1,...,\mathbf{x}_{n-1}) | \mathbf{x} \rangle = \det(\mathbf{x}_1,...,\mathbf{x}_{n-1},\mathbf{x})$ pro všechna $\mathbf{x} \neq \mathbb{R}^n$.

Vzájemná vzdálenost afinních podprostorů - Ať π a π' jsou dva afinní podprostory prostoru \mathbb{R}^n . Reálnému číslu $\omega(\pi, \pi') = \inf\{\|\mathbf{x} - \mathbf{x}'\| | \mathbf{x} \in \pi, \mathbf{x}' \in \pi'\}$ říkáme vzájemná vzdálenost π a π' .