1 The Exponential Map

1.1 One-Parameter Subgroup and the Exponential Map

One-Parameter Subgroups

Definition 1.1. A one-parameter subgroup of G is defined to be a Lie homomorphism $g: \mathbb{R} \to G$ with \mathbb{R} considered as a Lie group under addition.

Theorem 1.2. Let G be a Lie group. The one-parameter subgroups of G are precisely the maximal integral curves of left-invariant vector field starting at the identity.

Definition 1.3. Given $X \in \text{Lie}(G)$, the one-parameter subgroup determined by X in this way is called the *one-parameter subgroup generated by* X.

The one-parameter subgroups of $GL(n, \mathbb{R})$ are not hard to compute explicitly.

Proposition 1.4. For any $A \in \mathfrak{gl}(n,\mathbb{R})$, let

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k = I_n + A + \frac{1}{2} A^2 + \cdots$$

This series converges to an invertible matrix $e^A \in GL(n, \mathbb{R})$, and the one-parameter subgroup of $GL(n, \mathbb{R})$ generated by $A \in \mathfrak{gl}(n, \mathbb{R})$ is $\gamma(t) = e^{tA}$.

We would like to compute the one-parameter subgroups of $\mathrm{GL}(n,\mathbb{R})$, such as O(n).

Proposition 1.5. Suppose G is a Lie group and $H \subseteq G$ is a Lie subgroup. The one-parameter subgroups of H are precisely those one-parameter subgroups of G whose initial velocities lie in T_eH .

The Exponential Map

Definition 1.6. Given a Lie group G with Lie algebra \mathfrak{g} , we define a map $\exp : \mathfrak{g} \to G$, called the *exponential map* of G, as follows: for any $X \in \mathfrak{g}$, we set

$$\exp X = \gamma(1),$$

where γ is the one-parameter subgroup generated by X, or equivalently the integral curve of X starting at the identity.

Proposition 1.7. Let G be a Lie group. For any $X \in \text{Lie}(G)$, $\gamma(s) = \exp sX$ is the one-parameter subgroup of G generated by X.

Proposition 1.8. Let G be a Lie group and let \mathfrak{g} be its Lie algebra.

- 1. The exponential map is a smooth map from \mathfrak{g} to G.
- 2. For any $X \in \mathfrak{g}$ and $s, t \in \mathbb{R}$, $\exp(s+t)X = \exp sX \exp tX$.
- 3. For any $X \in \mathfrak{g}$, $(\exp X)^{-1} = \exp(-X)$.

- 4. For any $X \in \mathfrak{g}$ and $n \in \mathbb{Z}$, $(\exp X)^n = \exp(nX)$.
- 5. The differential $(d \exp)_0 : T_0 \mathfrak{g} \to T_e G$ is the identity map, under the canonical identifications of both $T_0 \mathfrak{g}$ and $T_e G$ with \mathfrak{g} itself.
- 6. The exponential map restricts to a diffeomorphism from some neighborhood of 0 in \mathfrak{g} to a neighborhood of e in G.
- 7. If H is another Lie group, \mathfrak{h} is its Lie algebra, and $\Phi: G \to H$ is a Lie group homomorphism, the following diagram commutes:

$$\begin{array}{ccc}
\mathfrak{g} & \xrightarrow{\Phi_*} & \mathfrak{h} \\
\exp \downarrow & & \downarrow \exp \\
G & \xrightarrow{\Phi} & H
\end{array}$$

8. The flow θ of a left-invariant vector field X is given by $\theta_t = R_{\exp tX}$ which is the right multiplication by $\exp tX$.

Proposition 1.9. Let G be a Lie group, and let $H \subseteq G$ be a Lie subgroup. With Lie(H) considered as a subalgebra of Lie(G) in the usual way, the exponential map of H is the restriction to Lie(H) of the exponential map of G, and

$$\operatorname{Lie}(H) = \{ X \in \operatorname{Lie}(G) : \exp tX \in H \text{ for all } t \in \mathbb{R} \}.$$