# On some Krylov subspace methods tailored for large-scale two-by-two block linear systems

Kui Du

School of Mathematical Sciences, Xiamen University

https://kuidu.github.io

joint work with Jia-Jun Fan and Fang Wang

The 22nd Annual Meeting of CSIAM, Nanjing, 2024

#### **Outline**

- 1 Two-by-two block linear systems
- 2 SPMR-SC, SPQMR-SC, nsLSQR
- GPMR
- A Randomized Gram-Schmidt process, randomized GMRES
- **5** Sketched GMRES + k-truncated Arnoldi
- **6** Summary

#### Two-by-two block linear systems

• Nonsymmetric saddle-point linear systems of the form:

$$\begin{bmatrix} \mathbf{M} & \mathbf{A}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix},$$

where  $\mathbf{M} \in \mathbb{R}^{m \times m}$  is invertible,  $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$  are nonzero, and  $\mathbf{b} \in \mathbb{R}^n$  is nonzero.

• Nonsymmetric partitioned linear systems of the form:

$$\begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix},$$

where  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times m}$ , and  $\mathbf{b} \in \mathbb{R}^m$ , and  $\mathbf{c} \in \mathbb{R}^n$ . Note that  $\lambda$  and/or  $\mu$  may be zero.

#### Review papers and books

 Michele Benzi, Gene H. Golub, and Jörg Liesen Numerical solution of saddle point problems.
 Acta Numerica (2005), pp. 1137.







#### Nonsymmetric saddle-point linear systems

Nonsymmetric saddle-point linear systems of the form:

$$\begin{bmatrix} \mathbf{M} & \mathbf{A}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix},$$

where  $\mathbf{M} \in \mathbb{R}^{m \times m}$  is invertible.

 Monolithic methods: solving the system as a whole, for example, GMRES

Segregated methods: exploiting the block structure, excluding the preconditioning stage, for example, SPMR, SPQMR, nsLSQR

R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SISC, Vol. 40, No. 3 (2018)

K. Du, J.-J. Fan, and F. Wang. nsLSQR: A quasi-minimum residual method for nonsymmetric saddle-point linear systems. (2024)

## Simultaneous bidiagonalization via $\mathbf{M}$ -conjugacy

#### Algorithm Simultaneous bidiagonalization via M-conjugacy

**Require:** 
$$\mathbf{M} \in \mathbb{R}^{m \times m}$$
,  $\mathbf{A}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times m}$ , and  $\mathbf{b}$ ,  $\mathbf{c} \in \mathbb{R}^n$ 

1: 
$$\beta_1 \mathbf{v}_1 := \mathbf{c}, \ \delta_1 \mathbf{z}_1 := \mathbf{b}$$

2: 
$$\mathbf{u} = \mathbf{A}^{\top} \mathbf{v}_1, \ \mathbf{w} = \mathbf{M}^{-\top} \mathbf{B}^{\top} \mathbf{z}_1$$

3: 
$$\alpha_1 = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_1 = \mathbf{w}^\top \mathbf{u}/\alpha_1$$

4: 
$$\mathbf{u}_1 = \mathbf{M}^{-1}\mathbf{u}/\alpha_1, \ \mathbf{w}_1 = \mathbf{w}/\gamma_1$$

5: **for** 
$$k = 1, 2, \dots$$
 **do**

6: 
$$\beta_{k+1}\mathbf{v}_{k+1} := \mathbf{A}\mathbf{w}_k - \alpha_k\mathbf{v}_k, \ \delta_{k+1}\mathbf{z}_{k+1} := \mathbf{B}\mathbf{u}_k - \gamma_k\mathbf{z}_k$$

7: 
$$\mathbf{u} = \mathbf{A}^{\mathsf{T}} \mathbf{v}_{k+1} - \beta_{k+1} \mathbf{M} \mathbf{u}_k, \ \mathbf{w} = \mathbf{M}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{z}_{k+1} - \delta_{k+1} \mathbf{w}_k$$

8: 
$$\alpha_{k+1} = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_{k+1} = \mathbf{w}^\top \mathbf{u}/\alpha_{k+1}$$

9: 
$$\mathbf{u}_{k+1} = \mathbf{M}^{-1} \mathbf{u} / \alpha_{k+1}, \ \mathbf{w}_{k+1} = \mathbf{w} / \gamma_{k+1}$$

10: **end for** 

## Simultaneous bidiagonalization via $\mathbf{M}\text{-}\mathbf{conjugacy}$

• Simultaneous bidiagonalization via M-conjugacy:

$$\begin{split} \mathbf{A}\mathbf{W}_k &= \mathbf{V}_{k+1}\mathbf{C}_{k+1,k}, \quad \mathbf{A}^\top\mathbf{V}_{k+1} = \mathbf{M}\mathbf{U}_{k+1}\mathbf{C}_{k+1}^\top, \\ \mathbf{B}\mathbf{U}_k &= \mathbf{Z}_{k+1}\mathbf{F}_{k+1,k}, \quad \mathbf{B}^\top\mathbf{Z}_{k+1} = \mathbf{M}^\top\mathbf{W}_{k+1}\mathbf{F}_{k+1}^\top, \\ \mathbf{W}_k^\top\mathbf{M}\mathbf{U}_k &= \mathbf{V}_k^\top\mathbf{V}_k = \mathbf{Z}^\top\mathbf{Z}_k = \mathbf{I}_k, \end{split}$$

where

$$\mathbf{U}_{k} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \end{bmatrix}, \quad \mathbf{V}_{k} = \begin{bmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \end{bmatrix},$$

$$\mathbf{W}_{k} = \begin{bmatrix} \mathbf{w}_{1} & \cdots & \mathbf{w}_{k} \end{bmatrix}, \quad \mathbf{Z}_{k} = \begin{bmatrix} \mathbf{z}_{1} & \cdots & \mathbf{z}_{k} \end{bmatrix},$$

$$\mathbf{C}_{k} = \operatorname{bidiag}(\beta_{i}, \alpha_{i}), \quad \mathbf{C}_{k+1,k} = \begin{bmatrix} \mathbf{C}_{k} \\ \beta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix},$$

$$\mathbf{F}_{k} = \operatorname{bidiag}(\delta_{i}, \gamma_{i}), \quad \mathbf{F}_{k+1,k} = \begin{bmatrix} \mathbf{F}_{k} \\ \delta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix}.$$

#### **SPMR-SC**

• The kth SPMR-SC iterate is

$$\mathbf{x}_k = \mathbf{U}_k \widetilde{\mathbf{x}}_k, \quad \mathbf{y}_k = \mathbf{V}_k \widetilde{\mathbf{y}}_k,$$

where

$$\begin{bmatrix} \widetilde{\mathbf{x}}_k \\ \widetilde{\mathbf{y}}_k \end{bmatrix} = \underset{\widetilde{\mathbf{x}} \in \mathbb{R}^k, \ \widetilde{\mathbf{y}} \in \mathbb{R}^k}{\operatorname{argmin}} \left\| \begin{bmatrix} \mathbf{0} \\ \delta_1 \mathbf{e}_1 \end{bmatrix} - \begin{bmatrix} \mathbf{I}_k & \mathbf{C}_k^\top \\ \mathbf{F}_{k+1,k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \end{bmatrix} \right\|_2.$$

 Equivalent to USYMQR applied to the Schur complement system:

$$-\mathbf{S}\mathbf{y} = \mathbf{b}, \quad \mathbf{S} = \mathbf{B}\mathbf{M}^{-1}\mathbf{A}^{\top}.$$

 SPMR-SC can be more numerically stable than USYMQR when the Schur complement is ill-conditioned.

#### **Example: an ill-conditioned Schur complement**

 $cond(\mathbf{A}) \approx 10^5$ ,  $cond(\mathbf{B}) \approx 10^5$ ,  $cond(\mathbf{S}) \approx 10^8$ 



# Simultaneous bidiagonalization via biorthogonality

#### Algorithm Simultaneous bidiagonalization via biorthogonality

Require:  $\mathbf{M} \in \mathbb{R}^{m \times m}$ ,  $\mathbf{A}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times m}$ , and  $\mathbf{b}$ ,  $\mathbf{c} \in \mathbb{R}^n$ 

1: 
$$\delta_1 = |\mathbf{c}^\top \mathbf{b}|^{1/2}, \ \beta_1 = \mathbf{c}^\top \mathbf{b}/\beta_1$$

2: 
$$\mathbf{v}_1 = \mathbf{b}/\delta_1, \ \mathbf{z}_1 = \mathbf{c}/\beta_1$$

3: 
$$\mathbf{u} = \mathbf{A}^{\top} \mathbf{v}_1, \ \mathbf{w} = \mathbf{M}^{-\top} \mathbf{B}^{\top} \mathbf{z}_1$$

4: 
$$\alpha_1 = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_1 = \mathbf{w}^\top \mathbf{u}/\alpha_1$$

5: 
$$\mathbf{u}_1 = \mathbf{M}^{-1}\mathbf{u}/\alpha_1, \ \mathbf{w}_1 = \mathbf{w}/\gamma_1$$

6: **for** 
$$k = 1, 2, \dots$$
 **do**

7: 
$$\mathbf{v} = \mathbf{B}\mathbf{u}_k - \gamma_k \mathbf{v}_k, \ \mathbf{z} = \mathbf{A}\mathbf{w}_k - \alpha_k \mathbf{z}_k$$

8: 
$$\delta_{k+1} = |\mathbf{z}^{\top} \mathbf{v}|^{1/2}, \ \beta_{k+1} = |\mathbf{z}^{\top} \mathbf{v}| / \delta_{k+1}$$

9: 
$$\mathbf{v}_{k+1} = \mathbf{v}/\delta_{k+1}, \ \mathbf{z}_{k+1} = \mathbf{z}/\beta_{k+1}$$

10: 
$$\mathbf{u} = \mathbf{A}^{\top} \mathbf{v}_{k+1} - \beta_{k+1} \mathbf{M} \mathbf{u}_k, \ \mathbf{w} = \mathbf{M}^{-\top} \mathbf{B}^{\top} \mathbf{z}_{k+1} - \delta_{k+1} \mathbf{w}_k$$

11: 
$$\alpha_{k+1} = |\mathbf{w}^\top \mathbf{u}|^{1/2}, \ \gamma_{k+1} = \mathbf{w}^\top \mathbf{u}/\alpha_{k+1}$$

12: 
$$\mathbf{u}_{k+1} = \mathbf{M}^{-1} \mathbf{u} / \alpha_{k+1}, \ \mathbf{w}_{k+1} = \mathbf{w} / \gamma_{k+1}$$

13: end for

## Simultaneous bidiagonalization via biorthogonality

• Simultaneous bidiagonalization via biorthogonality:

$$\begin{split} \mathbf{A}\mathbf{W}_k &= \mathbf{Z}_{k+1}\mathbf{C}_{k+1,k}, \quad \mathbf{A}^{\top}\mathbf{V}_{k+1} = \mathbf{M}\mathbf{U}_{k+1}\mathbf{C}_{k+1}^{\top}, \\ \mathbf{B}\mathbf{U}_k &= \mathbf{V}_{k+1}\mathbf{F}_{k+1,k}, \quad \mathbf{B}^{\top}\mathbf{Z}_{k+1} = \mathbf{M}^{\top}\mathbf{U}_{k+1}\mathbf{F}_{k+1}^{\top}, \\ \mathbf{W}_k^{\top}\mathbf{M}\mathbf{U}_k &= \mathbf{V}_k^{\top}\mathbf{Z}_k = \mathbf{I}_k, \end{split}$$

where

$$\mathbf{U}_{k} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \end{bmatrix}, \quad \mathbf{V}_{k} = \begin{bmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \end{bmatrix},$$

$$\mathbf{W}_{k} = \begin{bmatrix} \mathbf{w}_{1} & \cdots & \mathbf{w}_{k} \end{bmatrix}, \quad \mathbf{Z}_{k} = \begin{bmatrix} \mathbf{z}_{1} & \cdots & \mathbf{z}_{k} \end{bmatrix},$$

$$\mathbf{C}_{k} = \operatorname{bidiag}(\beta_{i}, \alpha_{i}), \quad \mathbf{C}_{k+1,k} = \begin{bmatrix} \mathbf{C}_{k} \\ \beta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix},$$

$$\mathbf{F}_{k} = \operatorname{bidiag}(\delta_{i}, \gamma_{i}), \quad \mathbf{F}_{k+1,k} = \begin{bmatrix} \mathbf{F}_{k} \\ \delta_{k+1} \mathbf{e}_{k}^{\top} \end{bmatrix}.$$

#### SPQMR-SC

The kth SPQMR-SC iterate is

$$\mathbf{x}_k = \mathbf{U}_k \widetilde{\mathbf{x}}_k, \quad \mathbf{y}_k = \mathbf{V}_k \widetilde{\mathbf{y}}_k,$$

where

$$\begin{bmatrix} \widetilde{\mathbf{x}}_k \\ \widetilde{\mathbf{y}}_k \end{bmatrix} = \underset{\widetilde{\mathbf{x}} \in \mathbb{R}^k, \ \widetilde{\mathbf{y}} \in \mathbb{R}^k}{\operatorname{argmin}} \left\| \begin{bmatrix} \mathbf{0} \\ \delta_1 \mathbf{e}_1 \end{bmatrix} - \begin{bmatrix} \mathbf{I}_k & \mathbf{C}_k^\top \\ \mathbf{F}_{k+1,k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \end{bmatrix} \right\|_2.$$

 Equivalent to QMR applied to the Schur complement system:

$$-\mathbf{S}\mathbf{y} = \mathbf{b}, \quad \mathbf{S} = \mathbf{B}\mathbf{M}^{-1}\mathbf{A}^{\top}.$$

 The convergence of SPMR-SC is monotonic, while the convergence of SPQMR-SC is erratic.

## **Bidiagonal-Hessenberg reduction**

#### Algorithm Bidiagonal-Hessenberg reduction

**Require:**  $\mathbf{M} \in \mathbb{R}^{m \times m}$ ,  $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{b} \in \mathbb{R}^n$ 

1: 
$$\mathbf{u}_1 = \mathbf{b}/\beta_1 \text{ with } \beta_1 = \|\mathbf{b}\|_2$$

2: 
$$\mathbf{v} = \mathbf{A}^{\top} \mathbf{u}_1$$
,  $\mathbf{v}_1 = \mathbf{M}^{-1} \mathbf{v}$ ,  $\alpha_1 = \begin{cases} |\mathbf{v}_1^{\top} \mathbf{v}|^{1/2} & \text{if } \mathbf{v}_1^{\top} \mathbf{v} \neq 0 \\ \|\mathbf{v}_1\|_2 & \text{if } \mathbf{v}_1^{\top} \mathbf{v} = 0 \end{cases}$ 

3: 
$$\mathbf{v}_1 = \mathbf{v}_1/\alpha_1$$

4: **for** 
$$k = 1, 2, \dots$$
 **do**

5: 
$$\mathbf{u} = \mathbf{B}\mathbf{v}_k$$

6: **for** 
$$i = 1, 2, ..., k$$
 **do**

7: 
$$h_{ik} = \mathbf{u}_i^{\top} \mathbf{u}$$

8: 
$$\mathbf{u} = \mathbf{u} - h_{ik}\mathbf{u}_i$$

10: 
$$\mathbf{u}_{k+1} = \mathbf{u}/\beta_{k+1} \text{ with } \beta_{k+1} = \|\mathbf{u}\|_2$$

11: 
$$\mathbf{v} = \mathbf{A}^{\top} \mathbf{u}_{k+1} - \beta_{k+1} \mathbf{M} \mathbf{v}_k, \ \mathbf{v}_{k+1} = \mathbf{M}^{-1} \mathbf{v}, \ \alpha_{k+1} = \begin{cases} |\mathbf{v}_{k+1}^{\top} \mathbf{v}|^{1/2} & \text{if } \mathbf{v}_{k+1}^{\top} \mathbf{v} \neq 0 \\ \|\mathbf{v}_{k+1}\|_2 & \text{if } \mathbf{v}_{k+1}^{\top} \mathbf{v} = 0 \end{cases}$$

12: 
$$\mathbf{v}_{k+1} = \mathbf{v}_{k+1}/\alpha_{k+1}$$

13: **end for** 

## **Bidiagonal-Hessenberg reduction**

Bidiagonal-Hessenberg reduction:

$$\begin{split} \mathbf{A}^{\top}\mathbf{U}_k &= \mathbf{M}\mathbf{V}_k\mathbf{C}_k^{\top}, \qquad \mathbf{U}_{k+1}^{\top}\mathbf{U}_{k+1} = \mathbf{I}_{k+1}, \\ \mathbf{B}\mathbf{V}_k &= \mathbf{U}_{k+1}\mathbf{H}_{k+1,k} = \mathbf{U}_k\mathbf{H}_k + \beta_{k+1}\mathbf{u}_{k+1}\mathbf{e}_k^{\top}, \end{split}$$

where

$$\mathbf{U}_{k} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{k} \end{bmatrix}, \quad \mathbf{V}_{k} = \begin{bmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{k} \end{bmatrix},$$

$$\mathbf{C}_{k} = \begin{bmatrix} \alpha_{1} & & & \\ \beta_{2} & \alpha_{2} & & \\ & \ddots & \ddots & \\ & & \beta_{k} & \alpha_{k} \end{bmatrix}, \quad \mathbf{H}_{k+1,k} = \begin{bmatrix} h_{11} & \cdots & h_{1k} \\ h_{21} & \ddots & \vdots \\ & & \ddots & h_{kk} \\ & & & h_{k+1,k} \end{bmatrix}.$$

#### nsLSQR

• The kth nsLSQR iterate is

$$\begin{bmatrix} \mathbf{x}_k \\ \mathbf{y}_k \end{bmatrix} = \begin{bmatrix} \mathbf{V}_k \widetilde{\mathbf{x}}_k \\ \mathbf{U}_k \widetilde{\mathbf{y}}_k \end{bmatrix},$$

where  $\widetilde{\mathbf{x}}_k$  and  $\widetilde{\mathbf{y}}_k$  solve

$$\begin{bmatrix} \widetilde{\mathbf{x}}_k \\ \widetilde{\mathbf{y}}_k \end{bmatrix} = \underset{\widetilde{\mathbf{x}} \in \mathbb{R}^k, \ \widetilde{\mathbf{y}} \in \mathbb{R}^k}{\operatorname{argmin}} \left\| \begin{bmatrix} \mathbf{0} \\ \beta_1 \mathbf{e}_1 \end{bmatrix} - \begin{bmatrix} \mathbf{I}_k & \mathbf{C}_k^\top \\ \mathbf{H}_{k+1,k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \end{bmatrix} \right\|_2.$$

 Equivalent to GMRES applied to the Schur complement system:

$$-\mathbf{S}\mathbf{y} = \mathbf{b}, \quad \mathbf{S} = \mathbf{B}\mathbf{M}^{-1}\mathbf{A}^{\top}.$$

 nsLSQR can be more numerically stable than GMRES when the Schur complement is ill-conditioned.

#### **Example: an ill-conditioned Schur complement**

 $cond(\mathbf{A}) \approx 7 \times 10^3$ ,  $cond(\mathbf{B}) \approx 7 \times 10^3$ ,  $cond(\mathbf{S}) \approx 5 \times 10^7$ 



### **Example: Flow over an obstacle (IFISS)**



#### Nonsymmetric partitioned linear systems

Nonsymmetric partitioned linear systems of the form

$$\begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix}.$$

Note that  $\lambda$  and/or  $\mu$  may be zero.

 Monolithic methods: solving the system as a whole, for example, GMRES

Segregated methods: exploiting the block structure, excluding the preconditioning stage, for example, GPMR, GPBiLQ, GPBiCG, GPQMR

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol. 44, No. 1 (2023)

K. Du, J.-J. Fan, and F. Wang. GPBiLQ and GPQMR: Two iterative methods for unsymmetric partitioned linear systems. arXiv:2401.02608 (2024)

## Simultaneous orthogonal Hessenberg reduction

#### Algorithm Simultaneous orthogonal Hessenberg reduction

Require: A, B, b, c, all nonzero

1: 
$$\beta \mathbf{v}_1 := \mathbf{b}, \ \gamma \mathbf{u}_1 := \mathbf{c}$$

2: **for** 
$$k = 1, 2, \cdots$$
 **do**

3: **for** 
$$i = 1, 2, \dots, k$$
 **do**

4: 
$$h_{ik} = \mathbf{v}_i^{\top} \mathbf{A} \mathbf{u}_k$$

5: 
$$f_{ik} = \mathbf{u}_i^{\top} \mathbf{B} \mathbf{v}_k$$

6: end for

7: 
$$h_{k+1,k}\mathbf{v}_{k+1} = \mathbf{A}\mathbf{u}_k - \sum_{i=1}^k h_{ik}\mathbf{v}_i$$

8: 
$$f_{k+1,k}\mathbf{u}_{k+1} = \mathbf{B}\mathbf{v}_k - \sum_{i=1}^k f_{ik}\mathbf{u}_i$$

9: end for

## Simultaneous orthogonal Hessenberg reduction

Simultaneous orthogonal Hessenberg reduction

$$\mathbf{A}\mathbf{U}_k = \mathbf{V}_k \mathbf{H}_k + h_{k+1,k} \mathbf{v}_{k+1} \mathbf{e}_k^{\top} = \mathbf{V}_{k+1} \mathbf{H}_{k+1,k},$$

$$\mathbf{B}\mathbf{V}_k = \mathbf{U}_k \mathbf{F}_k + f_{k+1,k} \mathbf{u}_{k+1} \mathbf{e}_k^{\top} = \mathbf{U}_{k+1} \mathbf{F}_{k+1,k},$$

$$\mathbf{V}_{k+1}^{\top} \mathbf{V}_{k+1} = \mathbf{U}_{k+1}^{\top} \mathbf{U}_{k+1} = \mathbf{I}_{k+1},$$

where

$$\mathbf{U}_k = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}, \quad \mathbf{V}_k = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \end{bmatrix},$$

and

$$\mathbf{H}_{k+1,k} = \begin{bmatrix} h_{11} & \cdots & h_{1k} \\ h_{21} & \ddots & \vdots \\ & \ddots & h_{kk} \\ & & h_{k+1,k} \end{bmatrix}, \mathbf{F}_{k+1,k} = \begin{bmatrix} f_{11} & \cdots & f_{1k} \\ f_{21} & \ddots & \vdots \\ & \ddots & f_{kk} \\ & & f_{k+1,k} \end{bmatrix}.$$

#### **GPMR**

The kth GPMR iterate is

$$\begin{bmatrix} \mathbf{x}_k \\ \mathbf{y}_k \end{bmatrix} = \underset{\mathbf{x} \in \text{range}(\mathbf{V}_k), \ \mathbf{y} \in \text{range}(\mathbf{U}_k)}{\operatorname{argmin}} \left\| \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix} - \begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \right\|_2.$$

Equivalent to Block-GMRES:

$$\begin{bmatrix} \lambda \mathbf{I} & \mathbf{A} \\ \mathbf{B} & \mu \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^1 & \mathbf{x}^2 \\ \mathbf{y}^1 & \mathbf{y}^2 \end{bmatrix} = \begin{bmatrix} \mathbf{b} & \mathbf{0} \\ \mathbf{0} & \mathbf{c} \end{bmatrix}.$$

 GPMR terminates significantly earlier than GMRES on a residual-based stopping criterion with an improvement up to 50% in terms of number of iterations.

A. Montoison and D. Orban. GPMR: An iterative method for unsymmetric partitioned linear systems. SIMAX, Vol. 44, No. 1 (2023)

#### Example: A = well1850, B = illc1850



#### Randomized Gram-Schmidt process

#### Algorithm 2.1. RGS algorithm

```
Given: n \times m matrix W and k \times n matrix \Theta, m \le k \ll n.
Output: n \times m factor Q and m \times m upper triangular factor R.
for i = 1 : m do
   1. Sketch \mathbf{w}_i: \mathbf{p}_i = \mathbf{\Theta} \mathbf{w}_i.
                                                                                                   # macheps: u_{fine}
   2. Solve k \times (i-1) least-squares problem:
                               [\mathbf{R}]_{(1:i-1.i)} = \arg\min_{\mathbf{y}} \|\mathbf{S}_{i-1}\mathbf{y} - \mathbf{p}_i\|.
                                                                                                   # macheps: u_{fine}
   3. Compute projection of \mathbf{w}_i: \mathbf{q}'_i = \mathbf{w}_i - \mathbf{Q}_{i-1}[\mathbf{R}]_{(1:i-1:i)}.
                                                                                                   # macheps: u_{crs}
   4. Sketch \mathbf{q}'_i: \mathbf{s}'_i = \mathbf{\Theta} \mathbf{q}'_i.
                                                                                                   # macheps: u_{fine}
                                                                                                   # macheps: u_{fine}
   5. Compute the sketched norm r_{i,i} = ||\mathbf{s}_i'||.
   6. Scale vector \mathbf{s}_i = \mathbf{s}'_i/r_{i,i}.
                                                                                                   # macheps: u_{fine}
   7. Scale vector \mathbf{q}_i = \mathbf{q}'_i/r_{i,i}.
                                                                                                   # macheps: u_{fine}
end for
```

8. (Optional) compute 
$$\Delta_m = \|\mathbf{I}_{m \times m} - \mathbf{S}_m^{\mathrm{T}} \mathbf{S}_m\|_{\mathrm{F}}$$
 and  $\tilde{\Delta}_m = \frac{\|\mathbf{P}_m - \mathbf{S}_m \mathbf{R}_m\|_{\mathrm{F}}}{\|\mathbf{P}_m\|_{\mathrm{F}}}$ .  
Use Theorem 3.2 to certify the output. # macheps:  $u_{fine}$ 

#### $\mathbf{W} = \mathbf{Q}\mathbf{R}, \ \mathbf{\Theta}\mathbf{W} = \mathbf{\Theta}\mathbf{Q}\mathbf{R}, \ (\mathbf{\Theta}\mathbf{Q})^{\top}(\mathbf{\Theta}\mathbf{Q}) = \mathbf{I}_m, \ \mathrm{cond}(\mathbf{Q}) \ \text{is small}$

O. Balabanov and L. Grigori. Randomized Gram-Schmidt process with application to GM-RES. SISC, Vol. 44, No. 3 (2022)

### Randomized GMRES (rGMRES) for Ax = b

#### Algorithm 4.1. RGS-Arnoldi algorithm

**Given:**  $n \times n$  matrix **A**,  $n \times 1$  vector **b**,  $k \times n$  matrix **\Theta** with  $k \ll n$ , parameter m. **Output:**  $n \times m$  factor  $\mathbf{Q}_m$  and  $m \times m$  upper triangular factor  $\mathbf{R}_m$ .

- 1. Set  $w_1 = b$ .
- 2. Perform 1st iteration of Algorithm 2.1.

for 
$$i = 2 : m \text{ do}$$

- 3. Compute  $\mathbf{w}_i = \mathbf{A}\mathbf{q}_{i-1}$ .
- # macheps:  $u_{fine}$ 4. Perform *i*th iteration of Algorithm 2.1.

#### end for

5. (Optional) Compute  $\Delta_m$  and  $\tilde{\Delta}_m$ . Use Proposition 4.1 to certify the output.

- # macheps:  $u_{fine}$
- ullet Let  $\widehat{\mathbf{Q}}_m$  and  $\widehat{\mathbf{H}}_{m+1,m}$  be the basis matrix and the Hessenberg matrix computed with Algorithm 4.1.
- The mth rGMRES iterate is  $\mathbf{x}_m = \widehat{\mathbf{Q}}_m \mathbf{y}_m$  where

$$\mathbf{y}_m = \underset{\mathbf{y}}{\operatorname{argmin}} \|\widehat{\mathbf{H}}_{m+1,m}\mathbf{y} - \widehat{r}_{11}\mathbf{e}_1\|_2.$$

#### sGMRES + k-truncated Arnoldi for Ax = f

ullet The solution  $\mathbf{y}_{\star}$  of the overdetermined least-squares problem

$$\min_{\mathbf{y}} \|\mathbf{A}\mathbf{B}\mathbf{y} - \mathbf{f}\|_2$$

yields an approximate solution  $x_B = By_*$  to Ax = f.

• The solution  $\widehat{\mathbf{y}}$  of the sketched problem

$$\min_{\mathbf{y}} \|\mathbf{S}(\mathbf{A}\mathbf{B}\mathbf{y} - \mathbf{f})\|_2$$

induces an approximate solution  $\hat{\mathbf{x}} = \mathbf{B}\hat{\mathbf{y}}$  to  $\mathbf{A}\mathbf{x} = \mathbf{f}$ .

- sGMRES saves computational cost:  $\hat{\mathbf{x}} = \mathbf{B}\hat{\mathbf{y}}$ , columns of  $\mathbf{B}$  form a basis of the Krylov subspace  $\mathcal{K}_i(\mathbf{A}, \mathbf{f})$ .
- k-truncated Arnoldi, skecth + precondition, for a good B

Y. Nakatsukasa and J. A. Tropp. Fast and accurate randomized algorithms for linear systems and eigenvalue problems. SIMAX, Vol. 45, No. 2 (2024)

#### sGMRES + k-truncated Arnoldi for Ax = f

#### **Algorithm 1.1.** sGMRES + k-truncated Arnoldi.

**Input:** Matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$ , right-hand side  $\mathbf{f} \in \mathbb{C}^n$ , initial guess  $\mathbf{x} \in \mathbb{C}^n$ , basis dimension d, number k of vectors for truncated orthogonalization, stability tolerance  $tol = O(u^{-1})$ .

**Output:** Approximate solution  $\hat{x} \in \mathbb{C}^n$  to linear system (1.5) and estimated residual norm  $\hat{r}_{est}$ 

#### 1 function sGMRES

- 2 Draw subspace embedding  $\mathbf{S} \in \mathbb{C}^{s \times n}$  with s = 2(d+1)  $\triangleright$  See subsection 2.4
- 3 Form residual and sketch: r = f Ax and g = Sr
- 4 Normalize basis vector  $\mathbf{b}_1 = \mathbf{r}/\|\mathbf{r}\|_2$  and apply matrix  $\mathbf{m}_1 = \mathbf{A}\mathbf{b}_1$
- 5 **for** j = 2, 3, 4, ..., d **do**  $\triangleright$  See also subsection 5.2
- 6 Truncated Arnoldi:  $w_j = (\mathbf{I} b_{j-1} b_{j-1}^* \dots b_{j-k} b_{j-k}^*) m_{j-1} \quad \triangleright b_{-i} = 0$  for i > 0
- 7 Normalize basis vector  $\boldsymbol{b}_j = \boldsymbol{w}_j / \|\boldsymbol{w}_j\|_2$  and apply matrix  $\boldsymbol{m}_j = \boldsymbol{A}\boldsymbol{b}_j$
- 8 Sketch reduced matrix:  $C = S[m_1, ..., m_d]$
- 9 Thin QR factorization: C = UT
- 10 if condition number  $\kappa_2(T) > \text{tol then warning...}$
- 11 Either whiten  ${\bf B} \leftarrow {\bf B} {\bf T}^{-1}$  or form new residual and restart  $\qquad >$  See subsection 5.3
- 12 Solve least-squares problem:  $\hat{\boldsymbol{y}} = \boldsymbol{T}^{-1}(\boldsymbol{U}^*\boldsymbol{g})$

⊳ See (3.7)

13 Residual estimate:  $\hat{r}_{\text{est}} = \|(\mathbf{I} - \boldsymbol{U}\boldsymbol{U}^*)\boldsymbol{g}\|_2$ 

See (3.8)

- 14 Construct solution:  $\hat{\boldsymbol{x}} = \boldsymbol{x} + [\boldsymbol{m}_1, \dots, \boldsymbol{m}_j]\hat{\boldsymbol{y}}$
- **Implementation:** In line 6, use double Gram–Schmidt for stability. In line 9, the QR factorization may require pivoting. In lines 11–12, apply  $\boldsymbol{T}^{-1}$  via triangular substitution.

#### **Summary**

- We have presented nsLSQR for nonsymmetric saddle-point linear systems.
- nsLSQR is mathematically equivalent to GMRES applied to the corresponding Schur complement system, but may be numerically superior.
- nsLSQR usually is faster than SPMR-SC and SPQMR-SC in terms of the number of iterations, and if the iteration cost is dominated by the M-solve rather than reorthogonalization, then nsLSQR should be the preferred method.
- The ideas of rGMRES and sGMRES can be used for GPMR and nsLSQR.
- Intelligent iterative methods for two-by-two block linear systems?

Thanks!