NORMALIZATION

Subscription Types(subscription_type_name, validity, price)

Functional Dependencies:

1.) {subscription type name} **②** {validity,price}

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "subscription_type_name" is the primary key ,We can say that the table is in the Boyce-Codd normal form.

User(<u>user_id</u>,user_lastname,user_firstname,subscription_type_name,date_of_birth,password, nationality, gender,street,city,state,zipcode)

Functional Dependencies:

- 2.) {zipcode} **②** {city,state }

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Here from the second functional dependency since the zip code can determine the state and the city. Hence we are splitting the table.

BCNF: Since we have split the tables into two, we have user_id as a primary key in one table and we have zipcode and the primary key in another table, Hence we can say that the following tables are in BCNF.

Decomposed Tables:

- a) User(<u>user id</u>,user_lastname,user_firstname,subscription_type_name,date_of_birth,pas sword,nationality, gender,street ,zipcode)
- b) UserZipCodes(<u>zipcode</u>,city,state)

Payment(<u>payment_id</u>,user_id,payment_date,payment_type,payment_status,subscription_type _name,street,city,state,zipcode)

Functional Dependencies:

- 1.) {payment_id} {\overline{\payment_id}, payment_date, payment_type, payment_status, subscription
 _type_name, street, city, state, zipcode}
- 2.) {zipcode} **②** {city,state }

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Here from the second functional dependency since the zip code can determine the state and the city. Hence we are splitting the table.

BCNF: Since we have split the tables into two, we have payment_id as a primary key in one table and we have zipcode and the primary key in another table, Hence we can say that the following tables are in BCNF.

Decomposed tables:

a. Payment(payment_id,user_id,payment_date,payment_type,payment_status,sub scription type name,street,zipcode)

b. UserZipCodes(zipcode,city,state)

Content(<u>content_id</u>,content_type_name,duration,pg_rating_name,date_of_release,genre_name,subscription_type_name,production_house_id)

Functional Dependencies:

1.) {content_id} {\oldsymbol{O}} {content_type_name,duration,pg_rating_name,date_of_release,genre_n ame,subscription type name,production house id }

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "content_id" is the primary key ,We can say that the table is in the Boyce-Codd normal form.

Awards(<u>award name</u>,description):

Functional Dependencies:

1.) {award name} **②** {description}

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "award_name" is the primary key, We can say that the table is in the Boyce-Codd normal form.

Worker(worker id, worker firstname, worker lastname, nationality, gender, date of birth)

Functional Dependencies:

1.) {worker id} ● { worker firstname, worker lastname, nationality, gender, date of birth }

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "worker_id" is the primary key ,We can say that the table is in the Boyce-Codd normal form.

Content Type(content type name, description)

Functional Dependencies:

1.) {content type name} **②** {description}

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "content_type_name" is the primary key ,We can say that the table is in the Boyce-Codd normal form.

PG rating(**pg rating name**,description)

Functional Dependencies:

1.) {pg rating name} **②** {description}

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "pg_rating_name" is the primary key, We can say that the table is in the Boyce-Codd normal form.

Genre(genre name, description)

Functional Dependencies:

1.) { genre name } **②** {description}

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "pg_rating_name" is the primary key, We can say that the table is in the Boyce-Codd normal form.

Production_House(<u>production_house_id</u>,production_house_name,established_on)
Functional Dependencies:

1.) {production_house_id} • { production_house_name,established_on}

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF: Since in this table the column "production_house_id" is the primary key, We can say that the table is in the Boyce-Codd normal form.

is bestowed(award name,content id,awarded date)

Functional Dependencies:

1.) {award name,content id} **②** { awarded date}

1NF: Here in this table all the columns have atomic values and we do not have any multivalued attributes, Hence we are considering this table to be in the 1NF.

2NF: Each non-prime attribute depends on the primary key, Hence we are considering this table to be in the 2NF.

3NF: Every non-prime attribute is dependent non-transitively on the primary key, Therefore, We are considering this table to be in the 3NF.

BCNF:Since in this table we can see the only non-prime attribute "awarded_date" is not a subset of the prime attributes "award_name" and "content_id". Hence by this we can consider that this table is the BCNF.