Sokoban: Search in a complex domain

Yann Chazallon, Nicolas Dossou-Gbété, Tony Chan Ki Hong and Michal Staniaszek

October 21, 2013

- 1 Introduction
- 2 Development Process
- 3 Evaluation
- 4 Conclusions

What is Sokoban?

Sokoban is a puzzle game first published in 1982

- You play a warehouse keeper
- The goal is to push boxes onto goal locations in a map
- Movements in cardinal directions
- Boxes can only be pushed into empty spaces
- Only one box can move at a time

Why is it interesting?

- Application of AI to games can lead to investigation of new techniques
- High branching factor of maximum 4N

- 1 Introduction
- 2 Development Process
- 3 Evaluation
- 4 Conclusions

Board Representation

- Two layers
 - Static (walls, goals): singleton
 - Dynamic (player, boxes): search space
- Static cost map calculated at launch
 - Cost from each point to each goal
 - Cost from each point to each initial box position

Static Lock and Cost Map

Board hashing and equality

- Hash: array of chars: blank, \$ and @
- 2 versions: with and without player position
- Used for getHash(), getHashCode(), equals()
- 3 types of equality checks used:
 - Without player position: check if state is goal
 - With top leftmost player position: repeated state checks
 - Exact player position: during the actual path reconstitution

Heuristics

- First heuristic: Manhattan distances
- Other unsuccessful attempts:
 - Real cost
 - Pseudo MinMatching

Locked State Detection

Dynamic Lock Test Map

```
##############
#$
        $$
   $$
#$
   $$
         #$$
               #
    $#
#
   #$
             ###
#
             .+#
###############
```

Player Space Search

Board Space Search

Bi-directional Search

- 1 Introduction
- 2 Development Process
- 3 Evaluation
- 4 Conclusions

Method Comparison

	Time limit		
Search Method	5 sec	11 sec	15 sec
A*	12	15	16
Best First	56	60	64
Bi-directional Best First	76	81	82
Bi-directional A*	39	41	43

- No significant difference in number of maps solved with different limits
- Is the search going in the right direction?

Evaluation

Map Performance

- Can be solved within 15 sec, but not 11
- Requires a box to be positioned (at x) and not moved until the end.
- Problem is caused by heuristic preferring boxes on goals

```
Map 54
        ###### * #
             $ $
        ###$###
        #@
                #$
                   #
                   #
```

Map Performance

- Solved very quickly
- All but one box require only a single move
- Heuristic gives accurate estimate to the goal

Map 66

```
#########
##.$@ ###
###.# ###
###$#
#.$ #.# #
##.$ $# #
#.$ # # #
## #.$ #
#.$ #.###
##.$ $###
#.$ # ###
## $# ###
   .# ###
##
      ###
#########
```

Map Performance

- Unsolved within 15 sec
- Intermediate goal area causes issues with heuristic
- Requires making specific move sequences to get boxes on goals

Map 93

```
####
          @##
###
##
                    ###
   ##
          ##
####*
         ##
               ###
   #**##
                       #
   ####### . . * . #####
           ## . . . #
            #####
```

- 1 Introduction
- 2 Development Process
- 3 Evaluation
- 4 Conclusions