# EECS 545: Machine Learning Lecture 2. Linear Regression (Part 1)

Honglak Lee



### Announcement

- Homework #1 is due 11:55 pm, Jan. 30 (Tue)
  - Note: this is the same date as Add/Drop deadline.
  - Form a study group and start early.

#### Honor code

- Collaboration and discussion is strongly encouraged, but you should write your own solution independently.
- Write down the names of study group members.
- Do not refer to or copy solutions from any other people or other resources. In addition, please do not let other people copy your solution.

### Announcement

- Project information and <u>suggested project topics</u>
   will be released by today (to be updated by Friday).
- The project proposal is due by Feb 2, Friday (23:55 PM).

### Announcement

- Tutorial/review recordings are available on canvas: (optional)
  - Linear Algebra (by Violet)
  - Probability (by Anthony)
  - Python (by Yunseok)
- A quiz will be due 24 hours after every lecture
  - E.g. the lecture 2 quiz will be due tomorrow (Thursday 1/18) at 10:30am
- Questions?

# Supervised Learning

- Goal:
  - Given data X in feature space and the labels Y
  - Learn to predict Y from X
- Labels could be discrete or continuous
  - Discrete-valued labels: classification
  - Continuous-valued labels: regression (today's topic)





# Overview of Topics

- Linear Regression
  - Objective function
  - Vectorization
  - Computing gradient
  - Batch gradient vs. Stochastic Gradient
  - Closed form solution

### **Notation**

In this lecture, we will use the following notation:

- $\mathbf{x} \in \mathbb{R}^D$ : data (scalar or vector)
- $\phi(\mathbf{x}) \in \mathbb{R}^M$ : features for  $\mathbf{x}$  (vector)
- $\phi_i(\mathbf{x}) \in \mathbb{R}$ : j-th feature for  $\mathbf{x}$  (scalar)
- $y \in \mathbb{R}$ : continuous-valued label (i.e., target value)
- $\mathbf{x}^{(n)}$ : denotes the n-th training example.
- $y^{(n)}$ : denotes the n-th training label.

# Linear regression (with 1D inputs)

- Consider the 1D case (e.g. D=1)
- Given a set of observation  $\{x^{(1)} \dots x^{(N)}\}$
- and corresponding target values  $\{y^{(1)}\dots y^{(N)}\}$
- We want to learn a function  $h(x,\mathbf{w}) \approx y$  to predict future values



# Oth Order Polynomial



# 1<sup>st</sup> Order Polynomial



# 3<sup>rd</sup> Order Polynomial



# Linear Regression (general case)

$$h(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{M-1} w_j \phi_j(\mathbf{x})$$

- The function  $h(\mathbf{x}, \mathbf{w})$  is linear in parameters  $\mathbf{w}$ .
  - Goal: Find the best value for the weights w.
- For simplicity, add a bias term (constant function):

$$M-1$$

$$h(\mathbf{x},\mathbf{w}) = \sum_{j=0} w_j \phi_j(\mathbf{x}) = \mathbf{w}^ op \phi(\mathbf{x})$$
 where  $\mathbf{w} = (w_0,\dots,w_{M-1})^ op$ 

( $\mathbf{w}$  and  $\phi(\mathbf{x})$  are column vectors)

 $\phi_0(\mathbf{x}) = 1$ 

# **Basis Functions**

• The basis functions  $\phi_j(\mathbf{x})$  doesn't need to be linear

$$\phi_j(x) = x^j \qquad \phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\} \qquad \sigma(a) = \frac{1}{1+\exp(-a)}$$

$$0.5 \qquad 0.5 \qquad 0.5 \qquad 0.5 \qquad 0.5$$

$$0.25 \qquad 0.25 \qquad 0.25$$

# Objective: Sum-of-Squares Error Function



$$E(\mathbf{w}) = \frac{1}{2} \sum_{1}^{N} \left\{ h(\mathbf{x}^{(n)}, \mathbf{w}) - y^{(n)} \right\}^{2}$$

We want to find w that minimizes  $E(\mathbf{w})$  over the training data.

# Linear regression via gradient descent (illustration)











# Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

Gradient

$$rac{\partial E(w)}{\partial w_k} = rac{\partial}{\partial w_k} rac{1}{2} \sum_{n=1}^N \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight)^2$$

# Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

Gradient

$$egin{aligned} rac{\partial E(w)}{\partial w_k} &= rac{\partial}{\partial w_k} rac{1}{2} \sum_{n=1}^N \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight)^2 \ &= \sum_{n=1}^N \left[ \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight) rac{\partial}{\partial w_k} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight) 
ight] \end{aligned}$$

# Least squares problem

#### Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

#### Gradient

$$egin{aligned} rac{\partial E(w)}{\partial w_k} &= rac{\partial}{\partial w_k} rac{1}{2} \sum_{n=1}^N \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight)^2 \ &= \sum_{n=1}^N \left[ \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight) rac{\partial}{\partial w_k} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight) 
ight] \ &= \sum_{n=1}^N \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} 
ight) \phi_k(\mathbf{x}^{(n)}) \end{aligned}$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)})$$

#### We get a vectorized form of the gradient:

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_{M-1}} E(\mathbf{w}) \end{bmatrix}$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)}).$$

#### We get a vectorized form of the gradient:

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \phi(\mathbf{x}^{(n)}) = \begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_{M-1}} E(\mathbf{w}) \end{bmatrix} = \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \begin{bmatrix} \phi_0(\mathbf{x}^{(n)}) \\ \phi_1(\mathbf{x}^{(n)}) \\ \vdots \\ \phi_{M-1}(\mathbf{x}^{(n)}) \end{bmatrix}$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)})$$

#### We get a vectorized form of the gradient:

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \phi(\mathbf{x}^{(n)}) = \begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_{M-1}} E(\mathbf{w}) \end{bmatrix} = \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \begin{bmatrix} \phi_0(\mathbf{x}^{(n)}) \\ \phi_1(\mathbf{x}^{(n)}) \\ \vdots \\ \phi_{M-1}(\mathbf{x}^{(n)}) \end{bmatrix} = \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)}).$$

#### We get a vectorized form of the gradient:

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \qquad \qquad \phi(\mathbf{x}^{(n)}) =$$

$$\begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_{M-1}} E(\mathbf{w}) \end{bmatrix} = \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \begin{bmatrix} \phi_0(\mathbf{x}^{(n)}) \\ \phi_1(\mathbf{x}^{(n)}) \\ \vdots \\ \phi_{M-1}(\mathbf{x}^{(n)}) \end{bmatrix}$$

$$= \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$

 $= \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$ 

# **Batch Gradient Descent**

- Given data (x, y) and an initial w
  - Repeat until convergence:

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w})$$

where

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$
$$= \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$

# Stochastic Gradient Descent

- Main idea: instead of computing batch gradient (over entire training data), just compute gradient for individual example and update
- Repeat until convergence

$$-$$
 for  $n=1,...,N$ 

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w} | \mathbf{x}^{(n)})$$

where

gradually decreased as training time (t) goes on: e.g., 
$$\eta_t \propto \frac{1}{t}$$
 or  $\eta_t = \eta_1 \frac{1}{(1+(t-1)/\tau)}$ 

Note: Typically the learning rate is

$$\nabla_{\mathbf{w}} E(\mathbf{w}|\mathbf{x}^{(n)}) = \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}\right) \phi(\mathbf{x}^{(n)})$$

$$= \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)}\right) \phi(\mathbf{x}^{(n)})$$

### Stochastic Gradient Descent

Repeat until convergence:

- for n=1,...,N

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w} | \mathbf{x}^{(n)})$$

Note: Typically the learning rate is gradually decreased as training time (t) goes on:

 $\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}|\mathbf{x}^{(n)}) \quad \text{e.g., } \eta_t \propto \frac{1}{t} \text{ or } \eta_t = \eta_1 \frac{1}{(1+(t-1)/\tau)}$ 

where 
$$\nabla_{\mathbf{w}} E(\mathbf{w}|\mathbf{x}^{(n)}) = \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}\right) \phi(\mathbf{x}^{(n)})$$

$$= \left(\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)}\right) \phi(\mathbf{x}^{(n)})$$

- Implementation tips in practice:
  - For each step of gradient computation in SGD, a small number of samples ("minibatch") may be used for computing the gradient instead of just one sample. Then we iterate this over the entire dataset with multiple epochs until convergence.

# Batch gradient vs. Stochastic gradient





- Main idea:
  - Compute gradient and set gradient to 0. (condition for optimal solution)
  - Solve the equation in a closed form
- The objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$

We will derive the gradient from matrix calculus

• Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$

Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right)^2 - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} (y^{(n)})^2$$

• Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right)^2 - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} (y^{(n)})^2$$

$$= \frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi \mathbf{w} - \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y}$$

Trick: vectorization (by defining data matrix)

### The data matrix

- The design matrix is an NxM matrix, applying
  - the M basis functions (columns)
  - to N data points (rows)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

 $\Phi \mathbf{w} \approx \mathbf{y}$ 

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right)^2 - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} (y^{(n)})^2$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j \left( \mathbf{x}^{(n)} \right) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - y^{(n)} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left( \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) \right)^2 - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} (y^{(n)})^2$$

$$= \frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi \mathbf{w} - \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y}$$

### Useful trick: Matrix Calculus

- Idea so far:
  - Compute gradient and set gradient to 0 (condition for optimal solution)
  - Solve the equation in a closed form using matrix calculus
- Need to compute the first derivative in matrix form

### Matrix calculus: The Gradient

- Suppose that  $f: \mathbb{R}^{m \times n} \to \mathbb{R}$  is a function that takes as an input matrix **A** of size [m x n] and returns a real value (scalar).
- Then the gradient of f with respect to  $A \in \mathbb{R}^{m \times n}$  is the matrix of partial derivatives, defined as:

$$\nabla_{A} f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$
$$(\nabla_{A} f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$$

### Matrix calculus: The Gradient

Note that the size of  $\nabla_A f(A)$  is always the same as the size of A. So if, in particular, A is just a vector  $x \in \mathbb{R}^n$ , then

$$abla_x f(x) = egin{bmatrix} rac{\partial f(x)}{\partial x_1} \ rac{\partial f(x)}{\partial x_2} \ rac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

- $\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$ .
- For  $t \in \mathbb{R}$ ,  $\nabla_x(t f(x)) = t\nabla_x f(x)$ .

### **Gradient of Linear Functions**

• Linear function:  $f(\mathbf{x}) = \sum_{i=1}^{n} b_i x_i = \mathbf{b}^{\top} \mathbf{x}$ 

• Gradient: 
$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k$$

• Compact form:  $\nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{b}$ 

### **Gradient of Quadratic Functions**

\* Assumption: A is a symmetric matrix: i.e.,  $A_{ij} = A_{ij}$ 

Quadratic function:

$$f(\mathbf{x}) = \sum_{i,j=1} x_i A_{ij} x_j = \mathbf{x}^\top \mathbf{A} \mathbf{x}$$

• Gradient:

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = 2\sum_{j=1}^n A_{kj}x_j = 2(\mathbf{A}\mathbf{x})_k$$

Compact form:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 2\mathbf{A}\mathbf{x}$$

### Putting together: Solution via matrix calculus

Compute gradient and set to zero

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \left( \frac{1}{2} \mathbf{w}^{\top} \Phi^{\top} \Phi \mathbf{w} - \mathbf{w}^{\top} \Phi^{\top} \mathbf{y} + \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} \right)$$
$$= \Phi^{\top} \Phi \mathbf{w} - \Phi^{\top} \mathbf{y}$$
$$= \mathbf{0}$$

Solve the resulting equation (normal equation)

$$\Phi^{\top}\Phi\mathbf{w} = \Phi^{\top}\mathbf{y}$$
 $\mathbf{w}_{\mathrm{ML}} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}\mathbf{y}$ 

This is the Moore-Penrose pseudo-inverse:  $\Phi^\dagger = (\Phi^\top \Phi)^{-1} \Phi^\top$  applied to:  $\Phi \mathbf{w} \approx \mathbf{y}$ 

### Geometric Interpretation

- Assuming many more observations (N) than the M basis functions  $\phi_j(x)$  (j=0,...,M-1)
- View the observed target values  $\mathbf{y} = \{y^{(1)}, ..., y^{(N)}\}$  as a vector in an N-dim. space.
- The M basis functions  $\phi_i(x)$  span the N-dimensional subspace.
  - Where the N-dim vector for  $\phi_j$  is  $\{\phi_j(\mathbf{x}^{(1)}), ..., \phi_j(\mathbf{x}^{(N)})\}$
- Φw<sub>MI</sub> is the point in the subspace with minimal squared error from y.
- It's the projection of y onto that subspace.

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$



# Back to curve-fitting examples

## Polynomial Curve Fitting



$$h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_{M-1} x^{M-1} = \sum_{j=0}^{M-1} w_j x^j$$

# Oth Order Polynomial



# 1<sup>st</sup> Order Polynomial



# 3<sup>rd</sup> Order Polynomial



# 9<sup>th</sup> Order Polynomial



# Over-fitting



Root-Mean-Square (RMS) Error:

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

# **Polynomial Coefficients**

|                          | M=1  | M=2   | M=4    | M=10        |
|--------------------------|------|-------|--------|-------------|
| $\overline{w_0^{\star}}$ | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$            |      | -1.27 | 7.99   | 232.37      |
| $w_2^\star$              |      |       | -25.43 | -5321.83    |
| $w_3^\star$              |      |       | 17.37  | 48568.31    |
| $w_4^{\star}$            |      |       |        | -231639.30  |
| $w_5^{\star}$            |      |       |        | 640042.26   |
| $w_{6}^{\star}$          |      |       |        | -1061800.52 |
| $w_7^\star$              |      |       |        | 1042400.18  |
| $w_8^\star$              |      |       |        | -557682.99  |
| $w_9^{\star}$            |      |       |        | 125201.43   |

### Data Set Size: N = 15

#### 9<sup>th</sup> Order Polynomial



### Data Set Size: N = 100

#### 9<sup>th</sup> Order Polynomial



# Q. How do we choose the degree of polynomial?

### Rule of thumb

- If you have a small number of data points, then you should use low order polynomial (small number of features).
  - Otherwise, your model will overfit
- As you obtain more data points, you can gradually increase the order of the polynomial (more features).
  - However, your model is still limited by the finite amount of the data available (i.e., the optimal model for finite data cannot be infinite dimensional polynomial).
- Controlling model complexity: regularization

#### Any feedback (about lecture, slide, homework, project, etc.)?

(via anonymous google form: <a href="https://forms.gle/99jeftYTaozJvCEF8">https://forms.gle/99jeftYTaozJvCEF8</a>)



#### Change Log of lecture slides:

https://docs.google.com/document/d/e/2PACX-1vRKx40eOJKACqrKWraio0AmlFS1\_xBMINuWcc-jzpfo-ySj\_gBuqTVdf Hy8v4HDmqDJ3b3TvAW1FVuH/pub