Age recognition

Big Data for Official Statistics A.Y. 2020/2021

S. Palaia - Master Degree in Data Science - Sapienza

1. Objectives

Predict the person's age given a face picture

2. Dataset(s)

Name	Dimension of the Dataset (num. of sample)	Dimension of the pics (pixel width x pixel height)	Link
Facial-age (Kaggle)	9778	200px*200px	https://www.kaggle.com/frabbisw/facial-age
UTK Face	23.708	200px*200px	https://susanqq.github.io/UTKFace/
Union	33.486	200px*200px	

3. ML Project

3. Data cleaning and reshaping

Distribution of the ages/ages range before and after preprocessing

3. Preprocessing - informations

```
1 faces.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 33486 entries, 0 to 33485
Data columns (total 2 columns):
    # Column Non-Null Count Dtype
--- 0 file 33486 non-null object
1 age 33486 non-null object
dtypes: object(2)
memory usage: 523.3+ KB
```

```
[ ] 1 faces=pd.read_csv(BASE_PATH + 'faces.csv')
2 faces.head()
```

```
file age

0 48_65.jpg (46,54)

1 28_935.jpg (28,31)

2 4_294.jpg (3,9)

3 81_8.jpg (66,+)

4 10_129.jpg (10,20)
```

[] 1 faces.head()

	file	age
0	48_65.jpg	8
1	28_935.jpg	4
2	4_294.jpg	5
3	81_8.jpg	10
4	10_129.jpg	1

3. Preprocessing - images

3. Preprocessing - images (cnt)

3. Preprocessing - images (cnt)

	sec1_mean	sec1_std	sec2_mean	sec2_std	sec3_mean	sec3_std	sec4_mean	sec4_st
0	0.19	0.392301	0.00	0.000000	0.00	0.000000	0.10	0.30000
1	0.00	0.000000	0.00	0.000000	0.00	0.000000	0.00	0.00000
2	0.08	0.271293	0.00	0.000000	0.23	0.420833	0.03	0.17058
3	0.10	0.300000	0.09	0.286182	0.00	0.000000	0.09	0.28618
4	0.19	0.392301	0.10	0.300000	0.00	0.000000	0.00	0.00000
66965	0.08	0.271293	0.18	0.384187	0.11	0.312890	0.03	0.17058
66966	0.00	0.000000	0.01	0.099499	0.19	0.392301	0.06	0.23748
66967	0.21	0.407308	0.07	0.255147	0.00	0.000000	0.00	0.00000
66968	0.12	0.324962	0.11	0.312890	0.05	0.217945	0.08	0.27129
66969	0.00	0.000000	0.10	0.300000	0.00	0.000000	0.08	0.27129
66970 r	ows × 801 colu	ımns						

4. Model(s)

- Logistic Regression
- Random Forest
- Stochastic Gradient
 Descent
- KNN
- Gaussian NB
- Perceptron
- Linear SVC
- Decision Tree
- SVC

5. Evaluation

Accuracy: 0.58902

5. Evaluation (cnt)

[] 1 print(classification_report(y_test, y_pred))							
	precision	recall	f1-score	support			
0.0	0.81	0.96	0.88	1604			
1.0	0.71	0.70	0.71	1612			
2.0	0.44	0.56	0.49	1761			
3.0	0.39	0.48	0.43	1568			
4.0	0.47	0.33	0.39	1579			
5.0	0.82	0.78	0.80	1462			
6.0	0.45	0.36	0.40	1514			
7.0	0.48	0.47	0.48	1600			
8.0	0.59	0.54	0.56	1372			
9.0	0.64	0.54	0.59	1368			
10.0	0.71	0.74	0.73	1303			
accuracy			0.59	16743			
macro avg	0.59	0.59	0.59	16743			
weighted avg	0.59	0.59	0.58	16743			

6. Final Project

3. Preprocess

- 7 ages range (encoded)
- GrayScale images
- Augmentation
- train/test/val -21.486/6.000/6.000
- Batch 32
- Prefetch

4. Model - CNN (1)

4 kind of layers:

- Convolutional (2D)
- Average pooling
- Global Average pooling
- Dense

Number of filter increase, while dimension of pictures decrease

Relu inside
Softmax in the end

Layer (type)	Output	Shape 	Param #
conv2d (Conv2D)	(None,	198, 198, 32)	320
average_pooling2d (AveragePo	(None,	99, 99, 32)	0
conv2d_1 (Conv2D)	(None,	97, 97, 64)	18496
average_pooling2d_1 (Average	(None,	48, 48, 64)	0
conv2d_2 (Conv2D)	(None,	46, 46, 128)	73856
average_pooling2d_2 (Average	(None,	23, 23, 128)	0
conv2d_3 (Conv2D)	(None,	21, 21, 256)	295168
average_pooling2d_3 (Average	(None,	10, 10, 256)	0
global_average_pooling2d (Gl	(None,	256)	0
dense (Dense)	(None,	132)	33924
dense_1 (Dense)	(None,	7)	931

Total params: 422,695 Trainable params: 422,695 Non-trainable params: 0

5. Model - compile

Sparse categorical cross entropy Adam Accuracy

Checkpoint

Tensor Board

Accuracy:

Train - 0.88 Valid - 0.86 Test - 0.84

7. App

- Heroku repository
- Flask
 - frontend
 - o Backend
 - o 3 pages

Thanks to Fatih: Face Detection App Tutorial - GitHub

6. Video

My brother - 34 years old

7. Conclusion

Convolutional Neural Network looking at Random Forest Classifier's predictions

#Debates2020

CM

Thank
you
for
the
attention

