Exercise 6.1. Find Galois groups for the following polynomials f over \mathbb{Q} :
--

1. $(t^2-3)(t^2+1)$

 \Box

2. $t^4 - t^2 + 1$

 \Box

3. $t^4 - 2$

 \Box

Exercise 6.2.1. Find $Gal_{\mathbb{F}_{3}(t^{2})}(\mathbb{F}_{3}(t))$.

Solution. \Box

Exercise 6.2.2. Find $Gal_{\mathbb{F}_{2}(t^{2})}(\mathbb{F}_{2}(t))$.

Solution. \Box

Exercise 6.3.1. Let K - M - L be a field extension and L : K is a normal extension. Prove that L : M is also a normal extension.

Solution. \Box

Exercise 6.3.2. Give an example of three fields K, M, L such that [L:K] = 4 and [M:K] = [L:M] = 2 (hence K-M and M-L are normal extensions) but L:K is not a normal extension.

Solution. \Box

Exercise 6.4. Let L: K be a splitting field extension for a non-constant polynomial $f \in K[t]$. Prove that $|Gal_K(L)|$ divides $(\deg f)!$.

Solution. \Box

Exercise 6.5.1. Let $f = t^3 + t + 1 \in \mathbb{F}_2[t]$. Prove that $Gal_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .

 \Box

Exercise 6.5.2. Let $f = t^3 + t^2 + 1 \in \mathbb{F}_2[t]$. Prove that $Gal_{\mathbb{F}_2}(f)$ is isomorphic to S_3 .

Solution. \Box