Homework & Assignment-2

- 1. Let X be a metric space, $\alpha \in X$, r > 0. Is it true that $\overline{B(\alpha, r)} = \{ y \in X \mid d(\alpha, y) \leq r \} ?$
- 2. X be a metric space, $U\subseteq X$ open, $A\subseteq X$. Prove that $U\cap A=\emptyset \iff U\cap \overline{A}=\emptyset$.
- 3. X a metaic space. Prove that $A \subseteq X$ is dense \iff the only open the only closed set properly $\supseteq A$ is $X \iff$ the only open Set disjoint from A is $\phi \iff$ A intersects every non-empty open set \iff A intersects every open ball.
- [A. Consider $X = \mathcal{C}([0,1],\mathbb{R})$ with the norm $||f|| = \int |f(x)| dx$ giving the metaic d(f,g) = ||f-g||. Define $f_n \in X$ by $f_n(x) = 1$ for $x \in [0, \frac{1}{2}]$, $f_n(x) = -2^n(x-\frac{1}{2})$ for $x \in [\frac{1}{2}, \frac{1}{2}+\frac{1}{2}]$ and $f_n(x) = 0$ for $x \in [\frac{1}{2}+\frac{1}{2}n,1]$. Prove that (f_n) is a Cauchy sequence in X which is not convergent.
 - 5. Give an example to show that the diameter sequence converging to zero in Cantor's intersection theorem is essential, i.e. Cannot be dropped from the hypothesis.
 - 6. A Closed Subset of X is nowhere dense (=> its complement is dense.
 - 7. Prove that the Cantor set is nowhere dense.
 - 8. Let (x,d) be a metric space, $x_0 \in X$. Show that $f_{x_0}(x) \neq R$, $f_{x_0}(x) = d(x_0,x)$ is continuous. Is f_{x_0} uniformly continuous? 9. Let X, Y be metric spaces, $A \subseteq X$ non-empty. Show that
 - 9. Let X, Y be metal spaces, $(x \in X, x) = g(x)$ $\forall x \in A$ for $f,g: X \to Y$ continuous, $f(x) = g(x) \forall x \in A$ $\Rightarrow f(x) = g(x) \forall x \in A$.

- 10. Let X be any non-empty set and B(x) be the R-vector space of all bounded functions on X. Lot-feB, $\|f\|:=\sup\{|f(x)|, x \in X\}$. Prove that (B(x), d), for $d(f,g):=\|f-g\|$, is a complete metaic space.
- 11. What the completion of (X,d) in Problem 4?
- 12. Let X = the set of positive integers with discrete metric.Let $\mathcal{C}(X,R)$ be the space of bounded (continuous) functions on X. Show that $\mathcal{C}(X,R)$ is not separable.
- 13. Replace X in (12) by an arbitrary discrete metaic Space.

 Prove that C(x,R) is separable <=> X is finite.
 - 14. A function $f: X \times Y \rightarrow Z$ of topological spaces is jointly continuous in $x \in Y$ if f is continuous; we say f is continuous in x, if for any $y \in Y$, the map: $x \rightarrow Z$ given by $x \mapsto f(x,y)$ is continuous, Similarly we define continuity of f in Y.
 - · Assume all X, Y, Z are metric spaces. Show that f is jointly continuous (=> > > > 1, Y, -> y implies
 - $f'(\alpha_n, y_n) \rightarrow f'(\alpha, y)$.

 f is j ointly continuous \Rightarrow f is continuous in each variable separately. Show that converse of this is false.

Please submit solutions of Problems 4 & 13 as Assignment - 2, both carry 2 points.