EECS240 - Spring 2010

Lecture 19: High-Speed Filter Design

Elad Alon Dept. of EECS

Link Channels and ISI

- 20-30dB loss at 3GHz
- How bad is that?
- Two related issues:
 - (1) Noise and min. signal amplitude
 - (2) Intersymbol interference

Inter-symbol interference (ISI)

- Channel is low pass
 - Short TX pulses get spread out

EECS240 Lecture 19

Impact of ISI

- Middle sample is corrupted by 0.2 trailing ISI (from previous symbol) and 0.1 leading ISI (from next symbol)
- Total ISI: 0.3 total ISI
 - · Middle symbol incorrectly detected

Equalization

- ISI is proportional to TX swing
 - Generally can't just boost signal to overcome it
- Solution: Equalization
 - If channel applies filter H(s)
 - Pass the signal through another filter H-1(s)

EECS240 Lecture 19

Equalization cont'd

- Link channel basically low-pass
 - Equalizer boosts high frequency, attenuates low frequency

Equalizer Requirements EECS240 Lecture 19 7

Equalizer Requirements cont'd

Equalizer Options and Limitations

EECS240 Lecture 19 9

RX Equalizer

RX Equalizer Implementations EECS240 Lecture 19 11

RX Equalizer Implementations

RX Equalizer Implementations EECS240 Lecture 19 13

RX Equalizer Implementations

Programmability EECS240 Lecture 19 15

Aside: Switched Cap. Resistor

Lecture 19

16

EECS240

