

Intro to NILP

Summer Project: Frames to Fables

What is NLP?

Utilizing Natural Language to Facilitate Human-Computer Interaction

Make machines able to interpret, analyse and generate human like text

Text analysis by statistical methods, machine learning, deep learning etc

Language translation, speech recognition, text translation etc

Pre-Processing

01	What is pre-processing?						
	Cleaning and transforming raw data						
02	Why pre-processing?						
	Models can extract meaningful patterns and insights from data						
03	Some techniques						
	 Tokenisation Stemming Lemmatization Stopwords Removal 						

Tokenisation

Tokenisation

Breaking text into small tokens. Mostly these are words or subwords

Your Turn!

Let's see how well you learn!

Example

Sentence: I love IIT

Kanpur

Output: ['I', 'love', 'IIT',

'Kanpur']

Example

Sentence: I can guess

this right

Output: ['I', 'can', 'guess',

'this', 'right']

Stopwords

Stopwords

Words carrying little to no semantic meaning Example: 'The', 'And', 'Is'

Your Turn!

Ace it this time guys!!!

Example

Sentence: The Sun is

bright

Output: Sun bright

Example

Sentence: It is easy to

get 9+ CPI

Output: easy get 9 +

CPI

Feature Engineering

01	What is feature engineering?								
	Selecting, transforming or creating relevant features (attributes or variables) from raw data								
02	Use in NLP?								
	Representing text data in a way that captures its essential characteristics								
03	Some techniques								
	 BoW (Bag of Words): A numerical representation of text data using frequency N-grams: Sequence of 'n' words TF-IDF: A smarter version of BoW 								

Another Classifier Model

Articles

1000's of articles about Virat Kohli and Roger Federer

Input Data

Learning system

Can differentiate articles

Virat Kohli

Roger Federer

Bag of Words

Vocabulary

List down all the unique words

FrequencyFrequency of each

word

Representation

Store in a table format for insights

Feed the model

Feed this data to the model

Virat Kohli

That wait was a year and four days. Virat Kohli's version dwarfs it. As the man who succeeded Tendulkar as the centre of India's batting solar system, Kohli churned out hundreds like a machine. His first three years when he was only playing 50-over cricket took some time, but once his Test career started the longest gap he had to abide was eight months. Across the formats he went back to back routinely, three in a row twice, four in five innings at one stage. Before the interregnum, he scored 70 centuries in just over 10 years.

Then it stopped. Not for any apparent reason. He kept making starts, kept making scores, some of them big, some unbeaten. He just couldn't get a hundred – the man whose principal skill to this point had been converting those. A year became two, then approached three. The streak spanned 83 innings. In 26 of them, he scored half-centuries. He just couldn't get over the line.

Roger Federer

Federer arrived on the tour at a moment of transition for the men's game. With the aid of advanced racquet and string technologies, players had stopped trying to finish as many points as possible with a serve or at the net, and were instead playing out points on the baseline, hitting booming shots and scrambling speedily to defend.

Federer had the polished on-court style that much of the world would learn about in the summer of 2003, when he won Wimbledon, his first of twenty Grand Slam singles titles. Federer was an instantly indelible presence. It was not just the winning, which became formidable during the following four seasons. It was that he never seemed off-guard, off-kilter, or off-putting. He was not only "too good," as a tennis player mutters in the direction of his opponent after watching an impossibly conjured winner whiz past him

	Cricket	Tennis	Virat	Kohli	Innings	Federer	Racquet	Century	Grandslam	}
Article 1	1	0	1	1	1	0	0	1	0	
Article 2	0	1	0	0	0	3	1	0	1	

Now it's very easy for the model

Virat kohli article : [1 0 1 1 1 0 0 1 0 ...]

Roger Federer article : [0 1 0 0 0 3 1 0 1 ...]

	Cricket	Tennis	Virat	Kohli	Innings	Federer	Racquet	Century	Grandslam	}
Article 1	1	0	1	1	1	0	0	1	0	
Article 2	0	1	0	0	0	3	1	0	1	

Now it's very easy for the model

Virat kohli article : [1 0 1 1 1 0 0 1 0 ...]

Roger Federer article : [0 1 0 0 0 3 1 0 1 ...]

N-Grams

Sequence

A sequence of 'n' words

Order of words

In language, order of words is important

Local context

02

Relationship between adjacent words

Examples

Unigram/BoW: ['is', 'it'] Bigram: ['Is it', 'it good']


```
N = 1: This is a sentence
```

Unigram

this,
is,
a,
sentence

Bigram

this is, is a, a sentence

Trigram

this is a, is a sentence

$$TF(t, d) = \frac{\text{Number of times term t appears in document d}}{\text{Total number of terms in document d}}$$

The TF-IDF score is the product of TF and IDF:

$$TF-IDF(t, d, D) = TF(t, d) \times IDF(t, D)$$

For Document 1:

TF-IDF (cat, Document 1, D) =
$$0.167 \times 0.176 \approx 0.029$$

For Document 2:

TF-IDF(cat, Document 2, D) =
$$0 \times 0.176 = 0$$