Question 1

The average power in a resistor is determined in terms of rms vollage and current.

$$p = i_{rms}^2 R$$
 or $p = v_{rms} i_{rms}$ or $p = \frac{v_{rms}^2}{R}$

We have $l(t) = z \cos(izon^2)$, so $i_{rms} = z/\sqrt{z}$

Therefore $p = (2/\sqrt{z})^2 \times 4\pi z = 8\omega$

Question 2

For a coparitor,
$$\overline{I}_c \longrightarrow + \overline{V}_c -$$
 where $\overline{E}_c = \frac{1}{j\omega c}$ Here, the phasor current is $\overline{I}_c = 2 \angle 0^\circ$

and
$$Z_{c} = \frac{1}{j\omega c} = \frac{1}{j(1207 \times 400 \times 10^{-6})}$$

$$\sqrt{16} = Z_{c} \hat{I}_{c} = (-j6.6315)(2)$$

= -j13.2629

therefore
$$V_c = |\vec{V}_c| = |3.2629 \text{ y}$$

Question 3

A skelch often helps:

- Need to convert the time 0.1875 ms into degrees.

One period $T = \frac{1}{f} = \frac{1}{1000} = 1 \text{ ms}$

Therefore 1 ms of time corresponds to 360° (one complete period)

We have a simple ratio:
$$\frac{0.1875 \text{ ms}}{1 \text{ ms}} = \frac{P}{360^{\circ}}$$
so $\psi = 0.1875 \times 360^{\circ} = 67.5^{\circ}$
So $i_2(t)$ leads $i_1(t)$ by 67.5° ,

Hence $\Theta_2 = \Theta_1 + \Psi$

$$= -45^{\circ} + 67.5^{\circ}$$

$$\theta_2 = 22.5^{\circ}$$

Question 4

The voltage phosor V, = 30/30°, so peak amplifude is 30 The current phasor has an RMS amplifude of 10, and leads V_1 by 40°, so \bar{I}_1 's phase is $30^\circ + 40^\circ = 70^\circ$ The peck amplitude of I, = 12 x 10 = 14.14 A The current phasor is 14.14/70° Answer is (c)

Question 5

A node-voltage equation at A
$$-\overline{I}_1 - \overline{I}_2 + \overline{I} = D$$
 so $\overline{I}_2 = \overline{I} - \overline{I}_1$

We are given
$$\bar{I}_1 = 10 \sqrt{45^\circ}$$
 and $\bar{I}_2 = 8 \sqrt{30^\circ}$
so $\bar{I}_2 = 8 \sqrt{30^\circ} - 10 \sqrt{45^\circ}$
 $= (6.9282 + j4) - (7.0711 + j7.0711)$
 $= -0.14286 - j3.07107$
 $\bar{I}_2 = 3.07439 \sqrt{-92.663^\circ}$, so $\Theta_2 = -92.663^\circ$

Question 6

From above, the peak amplitude of $V_2(t)$ was found to be $|I_2| = 3.07439 \text{ A}$

And its rms value $|\tilde{L}_{2,rms}| = 3.07439/JZ = 2.1739 A$

Question 7

We have $\overline{V} = 400 \angle 120^\circ$ and $\overline{I} = 5 \angle 30^\circ$

Therefore, the impedance must be Z = V/I

$$Z = \frac{400/120^{\circ}}{5/30^{\circ}} = 80/90^{\circ} \Omega$$

or Z = j802

Since this purely imaginary and positive, it is inductive impedance

We are given w = 100 rads /sec, so

100 L = 80

giving L = 0.8 H