# HW3 Porter Erica

Erica Porter 9/13/2017

### Problem 3

Takeaways from the style guides include:

- Consistency is important; it is best to develop a sufficiently neat programming style and use a similar format throughout multiple files/projects.
- Spacing is essential for writing and reading code; be wary of using tabs.
- Identifiers and variable names should not have excessive special characters and should follow neat, standard naming conventions
- Try to neatly indent code/functions/processes with different types of commands (e.g. when using tidyr, each "verb" should be on its own line).

I will try to improve my own code by:

- Weave my code and text a more effectively for R Markdown documents requiring code, text, and explanations.
- Format, label tables and printed results better (e.g. explore grid functions, stargazer, graph packages).
- Keeping track of variable and data frame names better.
- Including effective spacing and code chunks to improve the appearance and progression of .Rmd files, rather than solely creating a neat PDF.

# Problem 4

Some suggestions for stylistic improvements included:

- Inserting spaces after commas and around operators
- Format functions better (e.g. opening and closing curly braces on their own line)
- Limit lines to <80 characters
- Use <- for assignment rather than =
- Consistently use double-quotes rather than single-quotes
- Avoid using absolute paths if possible
- Variable and function names should be lowercase
- Avoid using absolute paths

#### Problem 5

Table 1: Compare dev means

| mean1    | mean2    | sd1      | sd2      | corr       |
|----------|----------|----------|----------|------------|
| 54.26610 | 47.83472 | 16.76983 | 26.93974 | -0.0641284 |
| 54.26873 | 47.83082 | 16.76924 | 26.93573 | -0.0685864 |
| 54.26732 | 47.83772 | 16.76001 | 26.93004 | -0.0683434 |
| 54.26327 | 47.83225 | 16.76514 | 26.93540 | -0.0644719 |
| 54.26030 | 47.83983 | 16.76774 | 26.93019 | -0.0603414 |
| 54.26144 | 47.83025 | 16.76590 | 26.93988 | -0.0617148 |
| 54.26881 | 47.83545 | 16.76670 | 26.94000 | -0.0685042 |
| 54.26785 | 47.83590 | 16.76676 | 26.93610 | -0.0689797 |
| 54.26588 | 47.83150 | 16.76885 | 26.93861 | -0.0686092 |
| 54.26734 | 47.83955 | 16.76896 | 26.93027 | -0.0629611 |
| 54.26993 | 47.83699 | 16.76996 | 26.93768 | -0.0694456 |
| 54.26692 | 47.83160 | 16.77000 | 26.93790 | -0.0665752 |
| 54.26015 | 47.83972 | 16.76996 | 26.93000 | -0.0655833 |









# Problem 6

The Blood Pressure data from Wu and Humada needs to be reformatted/tidied because the measurements for blood pressure span six different columns, the devices measurements are not grouped together, and doctor measurements are not all grouped together. I will use the gather, separate, and mutate commands in tidyr to create a single column for day (the original data has an extraneous column for day) and columns for measuring entity, associated measure number, and the measurement value. Below I have printed the first 5 rows of the tidy data set and a summary table describing the data. See the Appendix for full R code.

Table 2: First 5 observations for Blood Pressure

| Day | method | replicate | value  |
|-----|--------|-----------|--------|
| 1   | Dev    | 1         | 133.34 |
| 2   | Dev    | 1         | 110.94 |
| 3   | Dev    | 1         | 118.54 |
| 4   | Dev    | 1         | 137.94 |
| 5   | Dev    | 1         | 139.52 |

Table 3: Summary of Blood Pressure data

| Day             | method          | replicate       | value           |
|-----------------|-----------------|-----------------|-----------------|
| Length:90       | Length:90       | Length:90       | Min. :110.8     |
| Class:character | Class:character | Class:character | 1st Qu.:125.5   |
| Mode :character | Mode :character | Mode :character | Median $:130.4$ |
| NA              | NA              | NA              | Mean $:129.0$   |
| NA              | NA              | NA              | 3rd Qu.:134.3   |
| NA              | NA              | NA              | Max. :139.6     |

# Problem 7

```
## $solution
## [1] -9.162986
##
## $`number iterations`
## [1] -9.109611 -9.162556 -9.162986 -9.162986
##
Read 4.8% of 1048575 rows
Read 70.6% of 1048575 rows
Read 1048575 rows and 13 (of 13) columns from 0.093 GB file in 00:00:04
```

Table 4: Number of Unique Makes and Models

| unique_make | unique_model |
|-------------|--------------|
| 38          | 405          |

Table 5: Top Defects, their makes, and models

| top_defects | $top\_defect\_makes$ | top_defect_models   |
|-------------|----------------------|---------------------|
| K04         | VOLKSWAGEN           | GOLF PLUS           |
| AC1         | VOLKSWAGEN           | FOX                 |
| G05         | PEUGEOT              | 307; SW 2.0HDI 66KW |
| K05         | VOLKSWAGEN           | GOLF                |
| J03         | OPEL                 | AGILA; Z1.2XE       |

Table 6: Description of linear fit by Make

|                         | Dependent variable:       |
|-------------------------|---------------------------|
|                         | n                         |
| Make                    | 0.593** (0.282)           |
| Constant                | 4.788 (6.301)             |
| Observations            | 38                        |
| $\mathbb{R}^2$          | 0.109                     |
| Adjusted R <sup>2</sup> | 0.085                     |
| Residual Std. Error     | 19.040 (df = 36)          |
| F Statistic             | $4.425^{**} (df = 1; 36)$ |
| Note:                   | *p<0.1; **p<0.05; ***p<   |

Table 7: ANOVA of linear fit by Make

| Statistic | N | Mean      | St. Dev.  | Min       | Max        |
|-----------|---|-----------|-----------|-----------|------------|
| Df        | 2 | 18.500    | 24.749    | 1         | 36         |
| Sum Sq    | 2 | 7,327.276 | 8,093.601 | 1,604.236 | 13,050.320 |
| Mean Sq   | 2 | 983.372   | 878.034   | 362.509   | 1,604.236  |
| F value   | 1 | 4.425     |           | 4.425     | 4.425      |
| Pr(>F)    | 1 | 0.042     |           | 0.042     | 0.042      |

Table 8: Description of linear fit by Model

|                         | Dependent variable:         |
|-------------------------|-----------------------------|
|                         | n                           |
| Model                   | 0.0001 (0.001)              |
| Constant                | 1.518*** (0.121)            |
| Observations            | 405                         |
| $\mathbb{R}^2$          | 0.0001                      |
| Adjusted R <sup>2</sup> | -0.002                      |
| Residual Std. Error     | 1.213 (df = 403)            |
| F Statistic             | 0.022  (df = 1; 403)        |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01 |

There appears to be a relationship between car make and number of defects.

Table 9: ANOVA of linear fit by Model

| Statistic | N | Mean    | St. Dev. | Min   | Max     |
|-----------|---|---------|----------|-------|---------|
| Df        | 2 | 202.000 | 284.257  | 1     | 403     |
| Sum Sq    | 2 | 296.400 | 419.126  | 0.033 | 592.767 |
| Mean Sq   | 2 | 0.752   | 1.017    | 0.033 | 1.471   |
| F value   | 1 | 0.022   |          | 0.022 | 0.022   |
| Pr(>F)    | 1 | 0.881   |          | 0.881 | 0.881   |

This workflow could certainly be improved; I had trouble finding the most common makes and models for each defects, so I ended up creating many separate data sets and using subset and count multiple times. This does not seem very efficient to me and I would have liked to use the subset and count functions to make the table of common values in one step (or at least fewer).

# Appendix: R code

```
## Problem 4 ##
## Get stylistic comments about homework 2 ##
lint(filename = ("02_data_munging_summarizing_R_git/HW2_Porter_Erica.Rmd")
```

```
## Problem 5 ## Write a function to determine summary
## statistics for device measurements ##
dev_data <- readRDS("./HW3_data.rds")</pre>
# Initialize empty vectors to receive each of the stats for
# the observations #
mean1 < - c()
mean2 <- c()
sd1 <- c()
sd2 <- c()
corr <- c()
# Loop through the data to evaluate mean, sd, and correlation
# for each of 13 observers #
for (i in 1:13) {
    mean1[i] <- mean(subset(dev_data, Observer == i)$dev1)</pre>
    mean2[i] <- mean(subset(dev_data, Observer == i)$dev2)</pre>
    sd1[i] <- sd(subset(dev_data, Observer == i)$dev1)</pre>
    sd2[i] <- sd(subset(dev_data, Observer == i)$dev2)</pre>
    corr[i] <- cor(subset(dev_data, Observer == i)$dev1, subset(dev_data,</pre>
        Observer == i)$dev2)
}
summary_stats <- cbind(mean1, mean2, sd1, sd2, corr)</pre>
summary_stats <- as.data.frame(summary_stats)</pre>
## Problem 5 ## Paste the summary statistics into a data frame
## to print ##
knitr::kable(summary_stats, caption = "Compare dev means")
## Problem 5 ## Create boxplots to compare dev1 and dev2 means
## ##
par(mfrow = c(1, 2))
boxplot(mean1, data = summary_stats)
boxplot(mean2, data = summary_stats)
vioplot(summary_stats$sd1, col = "gray")
vioplot(summary_stats$sd2, col = "gray")
```

```
blood_pressure_tidy <- blood_pressure[-1, -5]</pre>
colnames(blood_pressure_tidy) <- c("Day", "Dev_1", "Dev_2", "Dev_3",</pre>
    "Doc_1", "Doc_2", "Doc_3")
blood_pressure_tidy <- blood_pressure_tidy %>% gather(measure_num,
    value, Dev_1:Doc_3) %>% separate(measure_num, into = c("method",
    "replicate"), sep = "_") %>% mutate(value = as.numeric(value))
# Print first 5 observations and a summary table
knitr::kable(head(blood_pressure_tidy, n = 5), caption = "First 5 observations for Blood Pressure")
knitr::kable(summary(blood_pressure_tidy), caption = "Summary of Blood Pressure data")
## Another method I tried for tidying Blood Pressure Data that
## I wanted to keep for reference ##
url <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BloodPressure.dat"
blood_pressure <- read.table(url, header = F, skip = 1, fill = T,</pre>
    stringsAsFactors = F)
blood_pressure_tidy <- blood_pressure[-1, ]</pre>
colnames(blood pressure tidy) <- c("Day 1", "Dev 1", "Dev 2",
    "Dev_3", "Day_2", "Doc_1", "Doc_2", "Doc_3")
devices <- blood_pressure_tidy[, c("Dev_1", "Dev_2", "Dev_3")]</pre>
doctors <- blood_pressure_tidy[, c("Doc_1", "Doc_2", "Doc_3")]</pre>
devices <- devices %>% gather(Device, device_read, Dev_1:Dev_3) %>%
    mutate(Device = gsub("Dev_", "", Device))
doctors <- doctors %>% gather(Doctor, doc_read, Doc_1:Doc_3) %>%
    mutate(Doctor = gsub("Doc_", "", Doctor))
Day \leftarrow rep(1:15, 3)
blood_pressure_tidy <- cbind(Day, devices, doctors)</pre>
blood_presure_tidy <- as.numeric(c(blood_pressure_tidy$device_read,
    blood pressure tidy$doc read))
```

```
## Problem 7 ##
# This is my first attempt at a function for Newton's method
# # This generates a solution without displaying intermediate
# iterations # Begin with a starting value for x Obtain an
# estimate x - f(x)/f'(x) Repeat while the tolerance
# conditions are satisfied
fun <- function(x) {</pre>
    3^x - \sin(x) + \cos(5 * x)
der <- function(x) {</pre>
    log(3) * 3^x - 5 * sin(5 * x) - cos(x)
newton <- function(fun, der, a, t = 0.01) {
    b \leftarrow a - fun(a)/der(a)
    while ((abs(a - b) > t) & (abs(a - b)/(abs(a) + abs(b))) >
        c \leftarrow a - fun(a)/der(a)
        b <- a
        a <- c
        result <- a
```

```
return(result)
    }
}
## Problem 7 ## This is my second attempt at Newton's method
## with iterations #
fun <- function(x) {</pre>
    3^x - \sin(x) + \cos(5 * x)
der <- function(x) {</pre>
    log(3) * 3^x - 5 * sin(5 * x) - cos(x)
newton2 <- function(f, a, b, t, n = 1000) {
    x_0 < -a
    k <- n
    for (i in 1:n) {
        deriv \leftarrow der(x 0)
         c \leftarrow x_0 - (fun(x_0)/deriv)
        k[i] \leftarrow c
         if (abs(c - x_0) < t) {
             estimate \leftarrow tail(k, n = 1)
             to_print <- list(solution = estimate, `number iterations` = k)</pre>
             return(to_print)
        }
        x_0 <- c
    }
}
newton2(fun, -10, 10, 1e-04, n = 100)
```

```
# Subset all rows from year 2017 and count unique Makes and
defects17 <- defects_small[grep("2017", defects_small$`Inspection Date`),</pre>
unique_make <- length(unique(defects17$Make))</pre>
unique_model <- length(unique(defects17$Model))</pre>
knitr::kable(as.data.frame(cbind(unique_make, unique_model)),
    caption = "Number of Unique Makes and Models")
# Find top 5 defect codes
common_defects <- as.data.frame(defects17 %>% count(`Defect Code`,
    sort = TRUE))
top_defects <- common_defects$`Defect Code`[1:5]</pre>
# Find most common make for each of above defects
defect_make1 <- (as.data.frame(subset(defects17, `Defect Code` ==</pre>
    top_defects[1]) %>% count(Make, sort = TRUE)))[1, 1]
defect_make2 <- (as.data.frame(subset(defects17, `Defect Code` ==</pre>
    top_defects[2]) %>% count(Make, sort = TRUE)))[1, 1]
defect_make3 <- (as.data.frame(subset(defects17, `Defect Code` ==</pre>
    top defects[3]) %>% count(Make, sort = TRUE)))[1, 1]
defect_make4 <- (as.data.frame(subset(defects17, `Defect Code` ==</pre>
    top_defects[4]) %>% count(Make, sort = TRUE)))[1, 1]
defect_make5 <- (as.data.frame(subset(defects17, `Defect Code` ==</pre>
    top_defects[5]) %>% count(Make, sort = TRUE)))[1, 1]
top_defect_makes <- c(defect_make1, defect_make2, defect_make3,</pre>
    defect_make4, defect_make5)
# Find most common model for each of above makes
def1 <- subset(defects17, `Defect Code` == top_defects[1] & Make ==</pre>
    top_defect_makes[1])
def2 <- subset(defects17, `Defect Code` == top_defects[2] & Make ==</pre>
    top_defect_makes[2])
def3 <- subset(defects17, `Defect Code` == top_defects[3] & Make ==</pre>
    top_defect_makes[3])
def4 <- subset(defects17, `Defect Code` == top_defects[4] & Make ==</pre>
    top defect makes[4])
def5 <- subset(defects17, `Defect Code` == top defects[5] & Make ==</pre>
    top_defect_makes[5])
defect_model1 <- (as.data.frame(def1 %>% count(Model, sort = TRUE)))[1,
defect_model2 <- (as.data.frame(def2 %>% count(Model, sort = TRUE)))[1,
defect_model3 <- (as.data.frame(def3 %>% count(Model, sort = TRUE)))[1,
defect_model4 <- (as.data.frame(def4 %>% count(Model, sort = TRUE)))[1,
    1]
defect_model5 <- (as.data.frame(def5 %>% count(Model, sort = TRUE)))[1,
top_defect_models <- c(defect_model1, defect_model2, defect_model3,</pre>
    defect_model4, defect_model5)
```

```
# Table of common defect codes, their makes, and models
defect_table <- as.data.frame(cbind(top_defects, top_defect_makes,</pre>
    top defect models))
knitr::kable(defect_table, caption = "Top Defects, their makes, and models")
# Check for relationship b/w number of defects and make, then
# by model
carmake <- as.data.frame(defects17 %>% count(Make, sort = TRUE))
carmake$Make <- as.numeric(factor(carmake$Make))</pre>
colnames(carmake) <- c("Make", "n")</pre>
carmodel <- as.data.frame(defects17 %>% count(Model, sort = TRUE))
carmodel$Model <- as.numeric(factor(carmodel$Model))</pre>
## Problem 8 ##
fit = lm(n \sim Make, data = carmake)
stargazer(fit, title = "Description of linear fit by Make", header = F,
    no.space = T, single.row = T)
stargazer(anova(fit), title = "ANOVA of linear fit by Make",
    header = F, no.space = T, single.row = T)
fit1 = lm(n \sim Model, data = carmodel)
stargazer(fit1, title = "Description of linear fit by Model",
    header = F, no.space = T, single.row = T)
stargazer(anova(fit1), title = "ANOVA of linear fit by Model",
    header = F, no.space = T, single.row = T)
```