Leeture 19: Advection
Logistics: - ItW6 due today
- HW7 is posked due next Thursday
- HW4 last chance this Thusday
- Office hours on <u>Even</u> today
Last time: - Timestepping === == + (1-0)c"
- Theta Method
IM cnt = Ex cn + At fs
M = \$ At (1-0) L O=1: Forward E
EX = = Sto & O: Bachw. E
- Same for all linear problems G== : CN
- Physics contained in =
Toolay: - Advection
- Method of Characteristics
- Advection operator

Advection

Solute balance equation

Advection

nondimensionaize:

$$\frac{\partial c'}{\partial t'}$$
 + $\nabla' \cdot \left[\frac{t_e}{t_A} q'c' - \frac{t_e}{t_D} \nabla'e'\right] = \frac{t_e}{t_E} e'$

last time
$$t_c = t_D$$
 take limit $Pe = \frac{t_D}{t_A} \rightarrow 0$
 \Rightarrow Diffusion Equ

=> Advection equation:
$$\frac{\partial c'}{\partial t'} + \nabla \cdot \left[q'c'\right] = 0$$

Analytic solutions to Advection egu

Constitut ID transport of tracer along ID column with const p, k => 9 & v = const

Dimensional Problem:

PDE:
$$\frac{3c}{3t} + \sqrt{\frac{3c}{3x}} = 0$$

IC $c(x,0) = c_0(x)$

$$x \in \mathbb{R}$$
 $t \in [C, T]$

$$C(x_1t) = c(x(\xi), t(\xi)) = \theta(\xi)$$

Total change of 6 along 5

$$\frac{d\theta}{d\xi} = \frac{\partial c}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial c}{\partial \xi} \frac{\partial \xi}{\partial \xi}$$

rearraugh

$$\frac{d\theta}{d\xi} = \frac{dt}{d\xi} \frac{\partial c}{\partial t} + \frac{dx}{d\xi} \frac{\partial c}{\partial x}$$
 $\frac{d\theta}{d\xi} = 0$
 $\frac{d\theta}{d\xi} =$

luihal condition:

$$C(x = x_0, t = t_0) = c_0(x_0)$$

Analytic solu:
$$c(x,t) = c_{\epsilon}(x-v(t-t_{0}))$$

typically to =0

travelling wave mossel.

Discretization of advective flux Steady example problem Dimbers after dropping primes: PDE: V. (Pec-Vc)-0 fresh = 0 6 041 BC: c(0) = 0 c(1) = 1Analytic solution: $C(x) = \frac{e^{R_e x} - 1}{e^{R_e} - 1}$ Discretize Skady Advection - Diffusion Equ

Discretize Skeady Advection - Diffusion Equ
PDE:
$$\nabla \cdot (qc - D_m \nabla e) = 0$$
 q's are known from
Discrete: $\underline{D} \cdot (\underline{A}(q)c - \underline{K}\underline{d}\underline{G}\underline{c}) = 0$ Hu flew problem
 $\underline{D} \cdot (\underline{A}(q) - \underline{K}\underline{d}\underline{G}) c = 0$
 $\underline{L} c = 0$ as before

What is A?

Shape is ID Nx+1 by Ux] same shape

2D Nf by N.) as G

$$a_{i} = q_{i}$$
 c_{i-1}
 $q_{i} \ge 0$
 $c_{i-2} = \{c_{i-1}, q_{i} \ge 0\}$

How do we implement this?