Rudin 3.5 For any two real sequences $\{a_n\}$, $\{b_n\}$, prove that

$$\limsup_{n\to\infty} (a_n + b_n) \leq \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n,$$

provided the sum on the right is not of the form $\infty - \infty$.

Suppose that $\limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n \neq \infty - \infty$, so that this sum is determinate. Define

$$A_n = \sup_{k \ge n} a_n$$
, $B_n = \sup_{k \ge n} b_n$, and $C_n = \sup_{k \ge n} (a_n + b_n)$.

We first show that $C_n \leq A_n + B_n$ for all n. For k and n such that $k \geq n$, we have that $a_k \leq A_n$ and $b_k \leq B_n$. Then $a_k + b_k \leq A_n + B_n$ for all $k \geq n$, so $C_n = \sup_{k \geq n} (a_n + b_n) \leq A_n + B_n$. Thus, using the alternate definition of the lim sup, we have

$$\limsup_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} C_n$$

$$\leq \lim_{n \to \infty} (A_n + B_n) = \lim_{n \to \infty} A_n + \lim_{n \to \infty} B_n = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

SS 1.5.11 Solve the equation $(z + 1)^5 = z^5$.

Taking fifth roots of the equation yields

$$z+1=ze^{ik\frac{2\pi}{5}},$$

where $k \in \mathbb{Z}$. We note that k = 0 (and all other multiples of 5) yields z + 1 = z, which reduces to 1 = 0, an inconsistent equation. Isolating z, we therefore have the solutions

$$z = \frac{1}{e^{ik\frac{2\pi}{5}} - 1},$$

with four unique solutions obtained using k=1,2,3,4. We expect 4 unique solutions because $(z+1)^5-z^5$ is a fourth-degree polynomial.