Acquiring, Processing, Using LiDAR data

Location: Touchet river

Name: Nicolas Vuille-dit-Bille

Reference: https://lidarportal.dnr.wa.gov

Process outlines

- Extract data from Washington LIDAR Portal
- Convert this data to a database with LAS format
- Create a LiDAR Dataset (*.lasd)
- From the *.lasd, generate a TIN (Triangulated Irregular Network)
- Build a model, inside of Model Builder to produce a REM

DTM and DTM hillshade (include the wire-frame of the las files)

DTS and DTS hillshade (include the wire-frame of the las files)

• Vegetation becomes visble around the river shape with DTS

Screenshot of min. 4 *.las tiles (disparate color ramps for each tile)

LiDAR Dataset with uniform symbology

 Uniformity allows to see some points pattern like the plane flight path (red points highlighted with red circle)

TIN - full extent

The TIN (Triangulated Irregular Network)
has been generated from *.lasd dataset

Portion of the TIN with points and breaklines symbolized as well

 TIN is a representation of a continuous surface built by triangular facets

Digitized channel centerline including the points generated (at a fixed distance) along the line

- On the right: upstream
- On the left: downstream
- The size of the circle increases with its elevation property

REM model in Model Builder

 The model has been built using Inverse Distance Weight (IWD) for multivariate interpolation

Relative Elevation Model

Higher river channel flow corresponds to lighter colour