- 1) For my birthdale 27-Dec-2003, n = 12272003
 - ., m=n (mod 64) = 3

. ', w = 000011 is the 6-bit binary representation of m.

Now, $L_{\omega} := \{ x \in \{0,1\}^* \mid \omega \text{ is a substring of } x \}$

. '. A DFA that accept L is shown below:

② Given, $Z = \{0,1,2\}$ and $\omega \in \{0,1,2\}^*$ is a ternary representation of a number enc(ω) (by dropping the leading zeros). Given language is

 $L = \{ \omega \in \Xi^* \mid enc(\omega) \text{ is divisible by } S \}$

Let Q = {20, 2, , 22, 23, 24} be the states, where

20, 21, 22, 23, 24 represent remainders 0, 1, 2, 3, 4 respectively, when divided by 5.

... The state 20 is an accept state.

Pg-02

We can now construct a DFA from the transition function S: Q × ∑ → Q defined as below;

	O	1	2
90	20	2,	9,
9,	93	24	90
92	2,	22	2,
9,	24	20	9,
2.	92	23	24
_			

The corresponding DFA is given below:

Here, S(2; ,a) represents the remainder when (3enc (w) +a) is divided by 3 5, where w is the input strung read so far and enc (w) its termosay representation.

For a language $L \subseteq \mathbb{Z}^*$, $pref(L) := \left\{ w \in \mathbb{Z}^* \mid ww \in L \text{ for some } w \in \mathbb{Z}^* \right\}$ If L is regular, then then let $M = (Q, \mathbb{Z}, S, 2_o, F)$ be the machine that recognizes L.

To show that pref(L) is regular, we find a DFA M Pg-03 ! that will accept it.

Let $\hat{M} = (Q, \Xi, S, Q_0, \hat{F})$ be the DFA that accepts pref (L), which is the same as that for L, except the set of accepting states \hat{F} . We say:

 $q \in \widehat{F}(\Xi) \exists$ a path \widehat{q} to an accepting state f of M. i.e., there is a string $w' \in \mathbb{Z}^*$ so that $s(q, w') = f \in F$. Clearly, this works because $y \circ S(2_o, w) = q$, then $w \in \operatorname{pref}(L)$ since $s(q_o, ww') = f \in L$; and conversely,

Let $\Sigma = \{a_1, a_2, \dots, a_k\}$ be the input alphabet and let L consist of strings $\omega \in \Sigma^*$ such that the last symbol of ω does not occur elsewhere in ω ; i.e., if $\omega \in L$ then $\omega = xa$ where $x \in (\Sigma \setminus \{a\})^*$.

In NFA that accepts L is shown below:

In the above NFA, M = (Q, Z, S, 20, F):
where,

where, $Q = \{q_0, q_1, ..., q_k, f\}$, $F = \{f\}$ $f : Q \times \sum u \{\xi\} \rightarrow 2^Q$ defined by

$$S(q_0, \xi) = q_i + i = 1, 2, \dots, k$$

 $J(q_i, a) = \begin{cases} f & \text{if } a = q_i \\ q_i & \text{if } a \neq a_i \end{cases}$

Pg-04

for k=0, $0^k=\xi$, and for k=1, $0^k=1$. .'. $0^* \subseteq L^*$. Now any element of L^* is of the form 0^n , n positive integer. .'. $L^* \subseteq 0^*$.

We give a DFA which shows that L* is regular.

Here, M = (Q, Z, 8, 20, F) $Q = \{20, 21\}$ is the set of states. $F = \{20\}$

and S: QXE -> Q is defined as:

 $f(q_0, 0) = q_0, 8(q_0) = q_0$ $f(q_0, a) = q_0$ $f(q_0, a) = q_0$

s (2,, b) = 21 E

· . L * is regular.

6 Consider the regular language $L = \{ \omega \in \{0, 1\}^{\times} \mid n^{th} \text{ digit from the right is } 1\}$

In NFA that accepts L is!

Now, any DFA of this NFA has to remember the Pg-05] last n bits of the string. Since any bit can be Oor 2, string.

'. any 2" bit "can be an acceptable string.

Consider a DFA with # states $< 2^n$. Since there are 2^n n-bit strings. .'. By PHP, at least two n-bit etrings, say $x = x_1x_2 - x_n$ and $y = y_1 y_2 - y_n$, go to the same state from $y_1 = y_2 + y_2 - y_n$, go to the same state from $y_1 = y_2 + y_2 - y_n$, $y_2 = y_1 + y_2 - y_2 + y_2 - y_n$.

 $(2x \neq y)$, $(x_i \neq y_i)$ for some $i \in \{1, 2, -, n\}$.

- If $z_1 \neq y_1$, we can assume WLOG that $x_1 = L, y_1 = 0$. Then $z \in L$ but $y \notin L$, a contradiction, : both go to the state g.
- of $x_i \neq y_i$ for some $i \geq 1$, then again $w \perp 0$ to we can assume $x_i = 1$, $y_i = 0$.

then $\delta(2_0, 2') = \delta(2_0, y') = \delta(2, 00.00) = q'(say)$. where x' and y' axe extensions of x and y = y. (i-1) 0's i = x,

$$x' = x_1 x_2 \cdots x_n \underbrace{00 \cdots 0}_{(i-1)}$$
, $y' = y_1 y_2 \cdots y_n \underbrace{00 \cdots 0}_{(i-1)}$.

Now, not hit of a from the right is I but not hit of y' from the right is O.

- go to the same state 2'.
- i Any DFA for this must have at least 2" states, i.e., we have a "small" DNFA but a "large" DFA.

D L \(\{ 0, 1 \}^\times \) Such that L consists of all strings w such that there are two o's in w separated by a number of positions that is a multiple of 9.

First we give an NFA that accepts L:

In the above NFA,

$$M = (Q, \Sigma, \delta, \varrho_0, f)$$
, $f = \{\varrho_5\}$
 $Q = \{\varrho_0, \varrho_1, \varrho_2, \varrho_3, \varrho_4, \varrho_5\}$ NFA.
 $S: Q \times \Sigma \rightarrow Q$ is defined as in the above diagram.

Now the DFA that accepts I can be defined by:

$$M' = (Q', \Sigma, 8', 2, 3, F'),$$
 $Q' = 2^{Q}, \text{ MANGE MA}$
 $F = \{S \in 2^{Q} \mid S \cap F \neq \emptyset\}$
 $J: Q' \times \Sigma \rightarrow Q' \text{ is defined as}$
 $S'(2, a) = \bigcup S(2, a)$
 $g \in S$

Here, L={w ∈ {0,19} * | enc(w) is divisible by 7?. The DFA for this is similar to that for L={ w ∈ {0,13 × | enc(w) is divisible by 73 with just the transition function reversed.

It is shown below:

Here, $M = (Q, \Xi, 8, 9_0, F)$ of $Q = \{9_0, 9_1, 9_2, 9_3, 9_4, 9_5, 9_6\}$ are the states with 9_i representing remainder i $(0 \le i \le 6)$ when divided by 7.

 $F = \{90\}$, i.e., remainder 0. $\Sigma = \{0,1\}$ as defined above.

P8-08

- ', min (L) is accepted by Mmin , i.e., min (L) is regular.

In case of max (L), we can define

Mmax = (Q, E, 8, 20, Fmux)

Where from = F \ Q' . .: max (L) is accepted by M max , i.e., max (L) is regular.

(10) Given, L is regulær. Thus, let $M=(Q, \Sigma, S, S_0, F)$ be a DFA that accepts L. Starce To show that $L'=\{\omega\omega'|\omega\in L, |\omega'|=k\}$ is regular, we need to find a DFA M'that accepts L'.

We can

Let M' = (Q', Z, 8', 20, F') where

FLAZINAVE

Q' = QU{q,, 22, ..., 2ky, F'= {2ky,

S': Q' × Z -> Q' is defined as

The diagram of the DFA is shown below:

