Lenguajes Formales y Computabilidad | FAMAF - UNC

Combos de definiciones y convenciones notacionales y los Combos de teoremas

25.06.2025

Matias Viola

Contenido

Contenido

1.	Con	ıbos de	e definiciones y convenciones notacionales	1
	1.1.	Comb	o 1: Defina:	1
		1.1.1.	Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivo	1
		1.1.2.	$\langle s_1, s_2, \rangle$	1
		1.1.3.		
		1.1.4.	«familia Σ -indexada de funciones»	1
		1.1.5.	R(f,G): Recursion primitiva sobre variable alfabética con valores numéricos	S
			1	
	1.2.	Comb	o 2: Defina:	2
		1.2.1.	n *	
		1.2.2.	L(M)	
			«f es una función de tipo (n, m, s) »	
		1.2.4.	(x)	
		1.2.5.	$(x)_i$	
	1.3.		o 3: Defina:	
		1.3.1.	Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivamente	
		1.0.1.	enumerable	2
		1.3.2.	s≤	
			*=	
			# [≤]	
	1.4.		o 4: Defina cuando una función $f:D_f\subseteq\omega^n imes\Sigma^{*m} o\omega$ es llamada Σ -	J
	1.1.		vamente computable y defina «el procedimiento P computa a la función f ».	3
	1.5.		o 5: Defina cuando un conjunto $S\subseteq\omega^n imes\Sigma^{*m}$ es llamado Σ -efectivamente	J
	1.5.		itable y defina: «el procedimiento efectivo P decide la pertenencia a S »	4
	1.6.	_	o 6: Defina cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -efectivamente	1
	1.0.		erable y defina: «el procedimiento efectivo P enumera a S »	4
	1.7.		o 7: Defina cuando una función $f:D_f\subseteq\omega^n imes\Sigma^{*m} o\omega$ es llamada Σ -Turing	
	1./.		itable y defina «la máquina de Turing M computa a la función f »	
	1.8.	•	o 8: Defina:	
	1.0.	1.8.1.	$M(P)$ Minimización de variable numérica \dots	
		1.8.2.	Lt	
		1.8.3.	Conjunto rectangular	
		1.8.4.	« S es un conjunto de tipo (n,m) »	
	1.9.		o 9	
	1.9.		Conjunto rectangular	
		1.9.1.		
		1.9.2.	« I es una instrucción de S^Σ »	
		1.9.3.	« P es un programa de S^Σ »	
		1.9.4.	I_i^P	
		1.9.5.	n(P)	
		1.9.6.	Bas	6

Contenido

	1.10.	Combo 10: Defina relativo al lenguaje S^Σ :	6
		1.10.1. «estado»	6
		1.10.2. «descripción instantánea»	6
		1.10.3. S_P	6
		1.10.4. «estado obtenido luego de t pasos, partiendo del estado $(\vec{x}, \vec{\alpha})$ »	
		1.10.5. « P se detiene (luego de t pasos), partiendo desde el estado $(\vec{x}, \vec{\alpha})$ »	7
	1.11.	Combo 11: Defina:	7
		1.11.1. $\Psi_P^{\mathrm{n,m,\#}}$	7
		1.11.2. «f es Σ -computable» y « P computa a f »	7
		1.11.3. $M^{\leq}(P)$ Minimización de variable alfabética	8
	1.12.	Combo 12: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -computable,	
		cuando es llamado $\Sigma\text{-enumerable}$ y defina «el programa P enumera a S »	8
	1.13.	Combo 13	8
		1.13.1. $i^{n,m}$	8
		1.13.2. $E_{\#}^{n,m}$	9
		1.13.3. $E_{\#}^{n,m} + E_{*}^{n,m}$	9
		1.13.4. $E_{\#_{i}}^{n,m}$	9
		1.13.5. $E_{*_i}^{n,m}$	
		1.13.6. Halt ^{n,m}	
		1.13.7. $T^{n,m}$	9
		1.13.8. AutoHalt $^{\Sigma}$	9
		1.13.9. Los conjuntos A y N	9
	1.14.	Combo 14: Explique en forma detallada la notación lambda	0
	1.15.	Combo 15: Dada una función $f:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto	
		es y qué propiedades debe tener el macro: [V2 \leftarrow f(V1,W1)]	.0
	1.16.	Combo 16: Dado un predicado $p:D_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto es	y
		qué propiedades debe tener el macro: [IF P(V1,W1) GOTO A1] $$. 1
	1.17.	Combo 17: Defina el concepto de función y desarrolle las tres Convenciones	
		Notacionales asociadas a dicho concepto	.2
2	Com	abos de teoremas	2
۷.	2.1.	Combo 1	
	2.2.	Combo 2	
	2.3.	Combo 3	
	2.4.	Combo 4	
	2.5.	Combo 5	
	2.6.	Combo 6	
	2.7.	Combo 7	
	2.8.	Combo 8	
	2.9.	Combo 9	

1. Combos de definiciones y convenciones notacionales

1.1. Combo 1: Defina:

1.1.1. Cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivo

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -recursivo cuando la función $\chi_S^{\omega^n \times \Sigma^{*m}}$ sea Σ -recursiva.

1.1.2. $\langle s_1, s_2, ... \rangle$

Dada una infinitupla $(s_1,s_2,\ldots)\in\omega^{[\mathbb{N}]}$ usaremos $\langle s_1,s_2,\ldots\rangle$ para denotar al numero $\prod_{i=1}^\infty \mathrm{pr}(i)^{s_i}$

1.1.3. « f es una función Σ -mixta»

Sea Σ un alfabeto finito. Una función f es Σ -mixta si:

- 1. $(\exists n, m \in \omega) \text{Dom}_f \subseteq \omega^n \times \Sigma^{*m}$
- 2. $\operatorname{Im}_f \subseteq O \in \{\omega, \Sigma^*\}$

1.1.4. «familia Σ -indexada de funciones»

Dado un alfabeto Σ , una familia Σ -indexada de funciones sera una función $G: \Sigma \to \operatorname{Im}_G$ donde Im_G es el conjunto de funciones G(a) asociadas a cada $a \in \Sigma$.

NOTACIÓN: Si G es una familia Σ -indexada de funciones, entonces para $a \in \Sigma$, escribiremos G_a en lugar de G(a).

1.1.5. R(f,G): Recursion primitiva sobre variable alfabética con valores numéricos.

Sea una función $f:S_1\times...\times S_n\times L_1\times...\times L_m\to\omega$ con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ conjuntos no vacíos.

Sea una familia Σ -indexada de funciones $G_a:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\times \Sigma^*\to\omega$ para cada $a\in\Sigma$.

Definimos recursivamente la función $R(f,G):S_1\times...\times S_n\times L_1\times...\times L_m\times \Sigma^*\to \omega$ de la siguiente manera:

- 1. $R(f,G)(\vec{x},\vec{\alpha},\varepsilon) = f(\vec{x},\vec{\alpha})$
- 2. $R(f,G)(\vec{x},\vec{\alpha},\alpha a) = G_a(R(f,G)(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha)$

También diremos que R(f,g) es obtenida por recursion primitiva a partir de f y G.

1.2. Combo 2: Defina:

1.2.1. $d \stackrel{n}{\vdash} d'$ y $d \stackrel{*}{\vdash} d'$

(no hace falta que defina ⊢)

- $d \stackrel{n}{\vdash} d'$ si $(\exists d_2, ..., d_n \in \text{Des}) d \vdash d_2 \vdash ... \vdash d_n \vdash d'$.
- $d \stackrel{*}{\vdash} d'$ sii $(\exists n \in \omega) d \stackrel{n}{\vdash} d'$

1.2.2. L(M)

Llamamos L(M) al conjunto formado por todas las palabras que son aceptadas por alcance de estado final.

Una palabra $\alpha_1...\alpha_n \in \Sigma^*$ es aceptada por M por alcance de estado final si partiendo de $Bq_0\alpha_1...\alpha_nB...$ en algún momento de la computación M esta en un estado de F.

1.2.3. «f es una función de tipo (n, m, s)»

Dada una función Σ -mixta f,

- Si $f = \emptyset$, entonces es una función de tipo (n, m, s) cualquiera sean $n, m \in \omega$ y $s \in \{\#, *\}$.
- Si $f \neq \emptyset$, entonces hay únicos $n, m \in \omega$ tales que $D_f \subseteq \omega^n \times \Sigma^{*m}$.
 - Si $I_f \subseteq \omega$, entonces es una función de tipo (n, m, #).
 - Si $I_f \subseteq \Sigma^*$, entonces es una función de tipo (n, m, *).

De esta forma, cuando $f \neq \emptyset$, hablaremos de «el tipo de f» para referirnos a esta única terna (n, m, s).

1.2.4. (x)

Dado $x \in \mathbb{N}$, usaremos (x) para denotar a la única infinitupla $(s_1, s_2, ...) \in \omega^{[\mathbb{N}]}$ tq $x = \langle s_1, s_2, ... \rangle = \prod_{i=1}^{\infty} \operatorname{pr}(i)^{s_i}$

1.2.5. $(x)_i$

Dados $x, i \in \mathbb{N}$, usaremos $(x)_i$ para denotar a s_i de $(s_1, s_2, ...) = (x)$.

Se le suele llamar la «i-esima bajada de x» al numero $(x)_i$ (al «bajar» el i-esimo exponente de la única posible factorización de x como producto de primos).

1.3. Combo 3: Defina:

1.3.1. Cuando un conjunto $S\subseteq \omega^n\times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable

(no hace falta que defina «función Σ -recursiva»)

Diremos que un conjunto $S\subseteq \omega^n\times \Sigma^{*m}$ sera llamado Σ -recursivamente enumerable cuando sea vacío o haya una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}=p_i^{n,m}\circ F$ sea Σ -recursiva para cada $i\in\{1,...,n+m\}$.

1.3.2. s^{\leq}

Sea \leq un orden sobre Σ^* .

$$\begin{split} S^{\leq}: \Sigma^* &\to \Sigma^* \\ \left(a_n\right)^m &\to \left(a_1\right)^{m+1} \\ \alpha a_i {\left(a_n\right)}^m &\to \alpha a_{i+1} {\left(a_1\right)}^m \text{ con } 1 \leq i < n \end{split}$$

1.3.3. *≤

Sea \leq un orden sobre Σ^* .

$$*^{\leq}: \omega \to \Sigma^*$$

$$0 \to \varepsilon$$

$$i+1 \to s^{\leq}(*^{\leq}(i))$$

1.3.4. #≤

Sea \leq un orden sobre Σ^* .

$$\begin{split} \#^{\leq} : \Sigma^* &\to \omega \\ \varepsilon &\to 0 \\ a_{i_k} ... a_{i_0} &\to i_k n^k + ... + i_0 n^0 \end{split}$$

1.4. Combo 4: Defina cuando una función $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es llamada Σ -efectivamente computable y defina «el procedimiento P computa a la función f»

Sea $O \in \{\omega, \Sigma^*\}$. Una función Σ -mixta $f : \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m} \to O$ sera llamada Σ -efectivamente computable si hay un procedimiento efectivo P tq

- 1. El conjunto de datos de entrada de P es $\omega^n \times \Sigma^{*m}$
- 2. El conjunto de datos de salida esta contenido en \mathcal{O} .
- 3. Si $(\vec{x}, \vec{\alpha}) \in \mathrm{Dom}_f$, entonces P se detiene partiendo de $(\vec{x}, \vec{\alpha})$, dando como dato de salida $f(\vec{x}, \vec{\alpha})$.
- 4. Si $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} \mathrm{Dom}_f$, entonces P no se detiene partiendo desde $(\vec{x}, \vec{\alpha})$

En ambos casos diremos que P computa a la función f.

Obs: $f=\emptyset$ es un procedimiento que nunca se detiene cualesquiera sea su dato de entrada. Por lo tanto es Σ -efectivamente computable, cualesquiera sean n,m,O y Σ .

1.5. Combo 5: Defina cuando un conjunto $S\subseteq \omega^n\times \Sigma^{*m}$ es llamado Σ -efectivamente computable y defina: «el procedimiento efectivo P decide la pertenencia a S»

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ sera llamado Σ -efectivamente computable cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -efectivamente computable.

Si P es un procedimiento efectivo el cual computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$, entonces diremos que P decide la pertenencia a S, con res_pecto al conjunto $\omega^n \times \Sigma^{*m}$.

Obs: $f = \emptyset$ es un procedimiento que siempre da 0 cualesquiera sea su dato de entrada. Por lo tanto es Σ -efectivamente computable, cualesquiera sean n, m, O y Σ .

1.6. Combo 6: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -efectivamente enumerable y defina: «el procedimiento efectivo P enumera a S»

Un conjunto $S\subseteq \omega^n\times \Sigma^{*m}$ sera llamado Σ -efectivamente enumerable cuando sea vacío o haya una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}$ sea Σ -efectivamente computable, para cada $i\in\{1,...,n+m\}$.

1.7. Combo 7: Defina cuando una función $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es llamada Σ -Turing computable y defina «la máquina de Turing M computa a la función f»

Diremos que una función $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*$ es Σ -Turing computable si existe una máquina de Turing con unit, $M=(Q,\Sigma^*,\Gamma,\delta,q_0,B,\nu,F)$ tq:

- 1. Si $(\vec{x}, \vec{\alpha}) \in \mathrm{Dom}_f$, entonces hay un $p \in Q$ tq $\lfloor q_0 B \nu^{x_1} B ... B \nu^{x_n} B \alpha_1 B ... B \alpha_m \rfloor \stackrel{*}{\vdash} \lfloor p B f(\vec{x}, \vec{\alpha}) \rfloor$ y $\lfloor p B f(\vec{x}, \vec{\alpha}) \rfloor$ $\not\vdash$ d para cada $d \in \mathrm{Des}$
- 2. Si $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} \mathrm{Dom}_f$, entonces M no se detiene partiendo de $\lfloor q_0 B \nu^{x_1} B ... B \nu^{x_n} B \alpha_1 B ... B \alpha_m \rfloor$.

Cuando una maquina de Turing con unit M cumpla ambos items, diremos que M computa a la función f o que f es computada por M.

Cabe destacar que la condición $\lfloor pBf(\vec{x},\vec{\alpha}) \rfloor \not\vdash d$ para cada $d \in \text{Des}$ es equivalente a que (p,B) no este en el dominio de δ o que si lo este y que la tercer coordenada de $\delta(p,B)$ sea L.

1.8. Combo 8: Defina:

1.8.1. M(P) Minimización de variable numérica

Sea Σ un alfabeto finito y sea $P: \mathrm{Dom}_P \subseteq \omega^n \times \Sigma^{*m}$. Dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $t \in \omega$ tq $P(t, \vec{x}, \vec{\alpha}) = 1$, usaremos $\min_t P(t, \vec{x}, \vec{\alpha})$ para denotar al menor de tales t's.

Definimos $M(P) = \lambda \vec{x} \vec{\alpha} [\min_t P(t, \vec{x}, \vec{\alpha})]$

Diremos que M(P) es obtenida por minimización de variable numérica a partir de P.

Obs: M(P) esta definida solo para aquellas (n+m)-uplas $(\vec{x}, \vec{\alpha})$ para las cuales hay al menos un t tq se da $P(t, \vec{x}, \vec{\alpha}) = 1$

1.8.2. Lt

 $\begin{aligned} \operatorname{Lt}: \mathbb{N} &\to \omega \\ 1 &\to 0 \\ x &\to \max_{i} (x)_{i} \neq 0 \end{aligned}$

1.8.3. Conjunto rectangular

Sea Σ un alfabeto finito. Un conjunto Σ -mixto es llamado rectangular si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$.

1.8.4. «S es un conjunto de tipo (n,m)»

Dado un conjunto Σ -mixto $S \neq \emptyset$, decimos que S es un conjunto de tipo (n,m) para referirnos a los únicos $n,m \in \omega$ tq $S \subseteq \omega^n \times \Sigma^{*m}$

 \emptyset es un conjunto de tipo (n,m) cualesquiera sean $n,m\in\omega$ por lo cual cuando hablemos de el tipo de un conjunto deberemos estar seguros de que dicho conjunto es no vacío.

1.9. Combo 9

1.9.1. Conjunto rectangular

Sea Σ un alfabeto finito. Un conjunto Σ -mixto es llamado rectangular si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$.

1.9.2. «I es una instrucción de S^{Σ} »

Una instrucción de S^{Σ} es ya sea una instrucción básica de S^{Σ} o una palabra de la forma αI , donde $\alpha \in \{L\overline{n} : n \in \mathbb{N}\}$ y I es una instrucción básica de S^{Σ} . Llamamos Ins^{Σ} al conjunto de todas las instrucciones de S^{Σ} .

1.9.3. «P es un programa de S^{Σ} »

Un programa de S^Σ es una palabra de la forma $I_1I_2...I_n$ donde $n\geq 1,I_1,...,I_n\in \mathrm{Ins}^\Sigma$ y se cumple la ley de los GOTO.

Ley de los GOTO: Para cada $i\in\{1,...,n\}$, si GOTO $L\overline{m}$ es un tramo final de I_i , entonces existe $j\in\{1,...,n\}$ tq I_j tiene label $L\overline{m}$.

$$\begin{split} \textbf{1.9.4.} \ I_{\pmb{i}}^P \\ \lambda i P\big[I_i^P\big] : \omega \times \mathrm{Pro}^\Sigma \to \Sigma^* \\ (i,P) &\to \begin{cases} \text{i-esima instrucción de P si } i \in \{1,\dots,n(P)\} \\ \varepsilon & \text{si } i \notin \{1,\dots,n(P)\} \end{cases} \end{split}$$

1.9.5.
$$n(P)$$

$$\lambda P[n(P)]: \operatorname{Pro}^{\Sigma} \to \omega$$

$$P \to m \text{ tq } P = I_1 I_2 ... I_m$$

1.9.6. Bas

$$\begin{split} \operatorname{Bas}: \operatorname{Ins}^{\Sigma} & \to \left(\Sigma \cup \Sigma_{p}\right)^{*} \\ & I \to \begin{cases} J \text{ si } I \text{ es de la forma } L\overline{k}J \text{ con } J \in \operatorname{Ins}^{\Sigma} \\ I \text{ c.c.} \end{cases} \end{split}$$

1.10. Combo 10: Defina relativo al lenguaje S^{Σ} :

1.10.1. «estado»

Es un par
$$(\vec{x},\vec{\sigma})=((s_1,s_2,\ldots),(\sigma_1,\sigma_2,\ldots))\in\omega^{[\mathbb{N}]}\times\Sigma^{*[\mathbb{N}]}$$

Si $i \geq 1$, entonces diremos que s_i es el valor de la variable $N\bar{i}$ y α_i es el valor de la variable $P\bar{i}$ en el estado $(\vec{x}, \vec{\sigma})$.

1.10.2. «descripción instantánea»

Es una terna $(i, \vec{x}, \vec{\sigma}) \in \mathrm{Des}^{\Sigma} = \omega \times \omega^{[\mathbb{N}]} \times \Sigma^{*[\mathbb{N}]}$ tq $(\vec{x}, \vec{\sigma})$ es un estado.

Si $i\in\{1,...,n(P)\}$, $(i,\vec{x},\vec{\sigma})$ nos dice que las variables están en el estado $(\vec{x},\vec{\sigma})$ y que la instrucción que debemos realizar es I_i^P

1.10.3. S_P

Dado un programa P.

$$S_P: \mathrm{Des}^\Sigma \to \mathrm{Des}^\Sigma$$

$$\begin{pmatrix} (i,\vec{x},\vec{\sigma}) & \text{si } i\notin\{1,\dots,n(P)\} \\ (i+1,(s_1,\dots,s_k-1,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{k} - 1 \\ (i+1,(s_1,\dots,s_k+1,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{k} + 1 \\ (i+1,(s_1,\dots,s_n,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{n} \\ (i+1,(s_1,\dots,0,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow 0 \\ (i+1,s,\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } N\overline{k} \neq 0 \operatorname{GOTO } L\overline{m} \wedge s_k = 0 \\ (\min\{l:I_l^P \operatorname{tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{k} \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{k} \cdot a \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{k} \cdot a \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{n} \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow E \\ (\min\{l:I_l^P \operatorname{tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } P\overline{k} \operatorname{BEGINS } a \operatorname{GOTO } L\overline{m} \wedge [\sigma_k]_1 = a \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } P\overline{k} \operatorname{BEGINS } a \operatorname{GOTO } L\overline{m} \wedge [\sigma_k]_1 \neq a \\ (\min\{l:I_l^P \operatorname{tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{GOTO } L\overline{m} \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{GOTO } L\overline{m} \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{SKIP} \\ \end{pmatrix}$$

1.10.4. «estado obtenido luego de t pasos, partiendo del estado $(\vec{x}, \vec{\alpha})$ »

Dado un programa P y la descripción instantánea obtenida luego de t pasos desde el estado $(\vec{x}, \vec{\sigma})$

$$\overbrace{S_P(...S_P(S_P(1,\vec{x},\vec{\sigma}))...)}^{\text{t veces}} = (j,\vec{u},\vec{\eta})$$

diremos que $(\vec{u}, \vec{\eta})$ es el estado obtenido luego de t pasos, partiendo del estado $(\vec{x}, \vec{\sigma})$.

1.10.5. «P se detiene (luego de t pasos), partiendo desde el estado

$$(ec{x},ec{lpha})$$
»

Dado $S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...) = (j, \vec{u}, \vec{\eta})$, si su primer coordenada j es igual a n(P) + 1, diremos que P se detiene (luego de t pasos), partiendo desde el estado $(\vec{x}, \vec{\sigma})$.

1.11. Combo 11: Defina:

1.11.1. $\Psi_P^{n,m,\#}$

Dado $P \in \text{Pro}^{\Sigma}$.

$$\begin{split} D_{\Psi_P^{n,m,\#}} &= \{(\vec{x},\vec{\sigma}) \in \omega^n \times \Sigma^{*^m} : P \text{ termina partiendo de } \|x_1,...,x_n,\alpha_1,...,\alpha_m\|\} \\ &\Psi_P^{n,m,\#} : D_{\Psi_P^{n,m,\#}} \to \omega \\ & (\vec{x},\vec{\sigma}) \to \text{valor de } N_1 \text{ cuando } P \text{ termina partiendo de } \|x_1,...,x_n,\alpha_1,...,\alpha_m\| \end{split}$$

1.11.2. «f es Σ -computable» y «P computa a f»

Dado $s,O\in\{(\#,\omega),(*,\Sigma^*)\}$. Una función Σ -mixta $f:S\subseteq\omega^n\times\Sigma^{*m}\to O$ sera llamada Σ -computable si hay un programa P de S^Σ tq $f=\Psi_P^{n,m,s}$.

En tal caso diremos que la función f es computada por P.

1.11.3. $M^{\leq}(P)$ Minimización de variable alfabética

Sea que $\Sigma \neq \emptyset$. Sea \leq un orden total sobre Σ , \leq puede ser naturalmente extendido a un orden total sobre Σ^* . Sea $P: \mathrm{Dom}_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^*$ un predicado. Cuando $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$ es tq existe al menos un $\alpha \in \Sigma^*$ tq $P(\vec{x}, \vec{\alpha}, \alpha) = 1$, usaremos $\min_{\{\alpha\}}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha)$ para denotar al menor $\alpha \in \Sigma^*$ tq $P(\vec{x}, \vec{\alpha}, \alpha) = 1$.

Definimos $M^{\leq}(P) = \lambda \vec{x} \vec{\alpha} \left[\min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha) \right]$

Diremos que $M^{\leq}(P)$ es obtenida por minimización de variable alfabética a partir de P.

Obs: $M^{\leq}(P)$ esta definida solo para aquellas (n+m)-uplas $(\vec{x}, \vec{\alpha})$ para las cuales hay al menos un α to se da $P(\vec{x}, \vec{\alpha}, \alpha) = 1$

1.12. Combo 12: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -computable, cuando es llamado Σ -enumerable y defina «el programa P enumera a S»

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ sera llamado Σ -computable cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -computable.

Un conjunto $S\subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -enumerable cuando sea vacío o haya una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}$ sea Σ -computable, para cada $i\in\{1,...,n+m\}$.

Nótese que, un conjunto no vacío $S\subseteq\omega^n\times\Sigma^{*m}$ es Σ -enumerable sii hay programas $P_1,...,P_{n+m}$ con dato de entrada $x\in\omega$ tales que:

$$S = \operatorname{Im} \left[\Psi_{P_1}^{1,0,\#}, ..., \Psi_{P_n}^{1,0,\#}, \Psi_{P_{n+1}}^{1,0,*}, ..., \Psi_{P_{n+m}}^{1,0,*} \right]$$

Como puede notarse, los programas $P_1,...,P_{n+m}$ puestos secuencialmente a funcionar desde el estado $\|x\|$ producen, en forma natural, un procedimiento efectivo que enumera a S. Es decir que los programas $P_1,...,P_{n+m}$ enumeran a S.

1.13. Combo 13

Defina:

1.13.1.
$$i^{n,m}$$

 $i^{n,m}: \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \omega$
 $(0, \vec{x}, \vec{\alpha}, P) \to 1$
 $(t, \vec{x}, \vec{\alpha}, P) \to j \operatorname{tq} \overbrace{S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...)}^{\operatorname{t veces}} = (j, \vec{u}, \vec{\eta})$

1.13.2.
$$E_{"}^{n,m}$$

1.13.2.
$$E_\#^{n,m}$$

 $E_\#^{n,m}: \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \omega^{[\mathbb{N}]}$

$$(0,\vec{x},\vec{\alpha},P) \rightarrow (x_1,...,x_n,0,...)$$

$$(t,\vec{x},\vec{\alpha},P) \rightarrow \vec{u} \text{ tq} \ \overbrace{S_P(...S_P(S_P(1,\vec{x},\vec{\sigma}))...)}^{\text{t veces}} = (j,\vec{u},\vec{\eta})$$

1.13.3.
$$E_{\#}^{n,m}$$
 + $E_{*}^{n,m}$
 $E_{*}^{n,m}: \omega \times \omega^{n} \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \Sigma^{*[\mathbb{N}]}$

$$(0, \vec{x}, \vec{\alpha}, P) \rightarrow (\alpha_1, ..., \alpha_n, \varepsilon, ...)$$

$$(t,\vec{x},\vec{\alpha},P) \rightarrow \vec{\eta} \text{ tq} \ \overbrace{S_P(...S_P(S_P(1,\vec{x},\vec{\sigma}))...)}^{\text{t veces}} = (j,\vec{u},\vec{\eta})$$

1.13.4.
$$E_{\#_j}^{n,m}$$

 $E_{\#_j}^{n,m}: \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \omega$

$$E_{\#_j}^{n,m} = p_j^{n,m} \circ E_{\#}^{n,m}$$

1.13.5.
$$E^{n,m}_{*_j}$$

 $E^{n,m}_{*_j}: \omega \times \omega^n \times \Sigma^{*^m} \times \operatorname{Pro}^{\Sigma} \to \Sigma^*$

$$E^{n,m}_{*_j} = p^{n,m}_j \circ E^{n,m}_*$$

1.13.6. $Halt^{n,m}$

$$\operatorname{Halt}^{n,m}: \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \{0,1\}$$

$$(t, \vec{x}, \vec{\sigma}, P) \rightarrow i^{n,m}(t, \vec{x}, \vec{\alpha}, P) = n(P) + 1$$

1.13.7. $T^{n,m}$

 $\mathrm{Dom}_{T^{n,m}} = \{(\vec{x},\vec{\sigma},P): P \text{ se detiene partiendo de} \parallel x_1,...,x_n,\alpha_1,...,\alpha_m \parallel \}$

$$T^{n,m}: \mathrm{Dom}_{T^{n,m}} \to \omega$$

$$(t, \vec{x}, \vec{\sigma}, P) \to \min_t(\operatorname{Halt}^{n,m}(t, \vec{x}, \vec{\sigma}, P))$$

1.13.8. AutoHalt^{Σ}

Dado $\Sigma \supseteq \Sigma_p$

$$AutoHalt^{\Sigma} : Pro^{\Sigma} \to \{0, 1\}$$

$$P \to (\exists t \in \omega) \mathrm{Halt}^{0,1}(t, P, P)$$

1.13.9. Los conjuntos A y N

Dado
$$\Sigma \supseteq \Sigma_p$$

$$A = \left\{P \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(P)\right\}$$

$$N = \{ P \in \text{Pro}^{\Sigma} : \neg \text{AutoHalt}^{\Sigma}(P) \}$$

1.14. Combo 14: Explique en forma detallada la notación lambda

Usamos la notación lambda de Church de la forma descrita a continuación.

Esta notación se define en función de un alfabeto finito previamente fijado, que denotaremos por Σ .

Solo se usan expresiones tq:

1. Variables permitidas:

- Se usan variables numéricas que se valúan en números de (ω) , y se denotan por letras como x, y, z, u, v, w, n, m, k,
- Se usan **variables alfabéticas** que se valúan en palabras sobre el alfabeto Σ . Se denotan por letras como $\alpha, \beta, \gamma, \delta, \varepsilon, \psi, \eta, \dots$
- 2. **Dominio parcial**: Las expresiones lambda pueden ser **parcialmente definidas**. Es decir, puede haber valuaciones de sus variables para las cuales la expresión no este definida.
- 3. Libertad sintáctica: Las expresiones pueden ser descritas informalmente.
- 4. Valores booleanos: Consideramos que las expresiones booleanas toman valores en el conjunto $\{0,1\}\subseteq\omega$ (usando 0 para falso y 1 para verdadero).

Dado un alfabeto Σ a las expresiones que cumplan las características dadas anteriormente las llamaremos lambdificables con respecto a Σ .

1.15. Combo 15: Dada una función $f: \mathrm{Dom}_f \subseteq \omega \times \Sigma^* \to \omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro: [V2 \leftarrow f(V1,W1)]

Dada una función $f:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$ $\Sigma\text{-computable, la palabra$

$$V\overline{2} \leftarrow f(V1, W1)$$

denota a un macro M que cumple lo siguiente:

- 1. Sus variables oficiales son: V1, V2, W1
- 2. No tiene labels oficiales.
- 3. Si reemplazamos (tanto oficiales como auxiliares en cada caso):
 - 1. Las variables $V\overline{k'}$ por variables concretas $N\overline{k}$ con k distintos entre si.
 - 2. Las variables $W\overline{j'}$ por variables concretas $P\overline{j}$ con j distintos entre si.
 - 3. Los labels $A\overline{z'}$ por labels concretos $L\overline{z}$ con z distintos entre si.

Obtenemos la palabra $N\overline{k_2} \leftarrow f\left(N\overline{k_1}, P\overline{j_1}\right)$ la cual es un programa de S^Σ .

El cual debe cumplir que: Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}, N\overline{k_2}, P\overline{j_1}$ valores x_1, x_2, α_1 , se dará que

- 1. Si $(x_1, \alpha_1) \notin \text{Dom}_P$, el programa no se detiene.
- 2. Si $(x_1, \alpha_1) \in \mathrm{Dom}_P$, luego de una cantidad finita de pasos el programa se detiene llegando a un estado e' tq:
 - 1. e' asigna a $N\overline{k_2}$ el valor $f(x_1, \alpha_1)$;
 - 2. e' solo difiere de e en el valor de $N\overline{k_2}$ y en las variables que reemplazaron a las auxiliares de M.

La palabra $N\overline{k_2} \leftarrow f\left(N\overline{k_1}, P\overline{j_1}\right)$ se denomina la expansión del macro $V2 \leftarrow f(V1, W1)$ respecto de la elección concreta de variables y labels realizada.

1.16. Combo 16: Dado un predicado $p:D_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro: [IF P(V1,W1) GOTO A1]

Dado un predicado $P:\mathrm{Dom}_P\subseteq\omega\times\Sigma^*\to\{0,1\}$ Σ -computable, la palabra

[IF
$$P(V1, W1)$$
 GOTO $A1$]

denota a un macro M que cumple lo siguiente:

- 1. Sus variables oficiales son: V1, W1
- 2. A1 es su único label oficial.
- 3. Si reemplazamos (tanto oficiales como auxiliares en cada caso):
 - 1. Las variables $V\overline{k'}$ por variables concretas $N\overline{k}$ con k distintos entre si.
 - 2. Las variables $W\overline{j'}$ por variables concretas $P\overline{j}$ con j distintos entre si.
 - 3. Los labels $A\overline{z'}$ por labels concretos $L\overline{z}$ con z distintos entre si.

Obtenemos la palabra $\left[\text{IF } P \left(N\overline{k_1}, P\overline{j_1} \right) \text{ GOTO } L\overline{z_1} \right]$ la cual, si se cumple la ley del GOTO respecto a $L\overline{z_1}$, es un programa de S^{Σ} .

El cual debe cumplir que: Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}$, $P\overline{j_1}$ valores x_1 , α_1 , se dará que

- 1. Si $(x_1, \alpha_1) \notin \text{Dom}_P$, el programa no se detiene.
- 2. Si $(x_1, \alpha_1) \in \text{Dom}_P$, luego de una cantidad finita de pasos:
 - 1. Si $P(x_1, \alpha_1) = 1$, se salta al label $L\overline{z_1}$.
 - 2. Si $P(x_1, \alpha_1) = 0$, el programa se detiene.

En ambos casos, el estado alcanzado e' solo puede diferir de e en las variables que reemplazaron a las auxiliares de M.

La palabra $\left[\operatorname{IF} P\left(N\overline{k_1}, P\overline{j_1}\right) \operatorname{GOTO} L\overline{z_1}\right]$ se denomina la expansión del macro $\left[\operatorname{IF} P(V1, W1) \operatorname{GOTO} A1\right]$ respecto de la elección concreta de variables y labels realizada.

1.17. Combo 17: Defina el concepto de función y desarrolle las tres Convenciones Notacionales asociadas a dicho concepto

Una función es un conjunto de pares tq, si $(x, y) \in f$ y $(x, z) \in f$, entonces y = z.

Dada una función f, definimos:

- $\operatorname{Dom}_f = \{x : (x, y) \in f \text{ para algún } y\}$
- $\operatorname{Im}_f = \{ y : (x, y) \in f \text{ para algún } x \}$

Las convenciones notacionales son:

- Dado $x \in \text{Dom}_f$, usaremos f(x) para denotar al único $y \in \text{Im}_f$ tq $(x,y) \in f$.
- Escribimos $f:S\subseteq A\to B$ para expresar que f es una función tq $\mathrm{Dom}_f=S\subseteq A$ y $\mathrm{Im}_f\subseteq B.$ También escribimos $f:A\to B$ si S=A. En tal contexto llamaremos a B conjunto de llegada.
- Muchas veces para definir una función f, lo haremos dando su dominio y su regla de asignación. Esto determina por completo a f ya que $f = \left\{(x, f(x)) : x \in \mathrm{Dom}_f\right\}$.

Básico Con conjunto de llegada y flechas Con flechas y por casos $\mathrm{Dom}_f = \omega \qquad \qquad f:\omega \to \omega \qquad \qquad f:\mathbb{N} \to \omega$ $f(x) = 23x \qquad \qquad x \to 23x \qquad \qquad x \to \begin{cases} x+1 \text{ si x es par} \\ x+2 \text{ si x es impar} \end{cases}$

2. Combos de teoremas

2.1. Combo 1

- 1. **Proposición** (Caracterización de conjuntos Σ -p.r.): Un conjunto S es Σ -p.r. sii S es el dominio de alguna función Σ -p.r. (En la inducción de la prueba hacer solo el caso de la composición)
- 2. **Teorema** (Neumann vence a Gödel): Si h es Σ -recursiva, entonces h es Σ -computable. (En la inducción de la prueba hacer solo el caso h=R(f,G), con $I_h\subseteq\omega$)

2.2. Combo 2

- 1. **Lema** (Lema de división por casos para funciones Σ -p.r.): Supongamos $f_i:D_{f_i}\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*,\ i=1,...,k$, son funciones Σ -p.r. tales que $D_{f_i}\cap D_{f_j}=\emptyset$ para $i\neq j$. Entonces $f_1\cap\ldots\cap f_k$ es Σ -p.r. (Hacer el caso $k=2,\,n=2$ y m=1)
- 2. **Proposición** (Caracterización básica de conjuntos Σ-enumerables): Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:
 - 1. S es Σ -enumerable
 - 2. Hay un programa $P \in \operatorname{Pro}^{\Sigma} \mathsf{tq}$:
 - 1. Para cada $x\in\omega,$ P se detiene partiendo desde el estado $[\![x]\!]$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$, donde $(x_1,...,x_n,\alpha_1,...,\alpha_m)\in S$
 - 2. Para cada $(x_1,...,x_n,\alpha_1,...,\alpha_m)\in S$ hay un $x\in\omega$ tq P se detiene partiendo desde el estado $[\![x]\!]$ y llega a un estado como en $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$

2. Combos de teoremas 13

(Hacer el caso n = 2 y m = 1)

2.3. Combo 3

1. **Teorema** (Gödel vence a Neumann): Si $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*$ es Σ -computable, entonces f es Σ -recursiva

- 2. **Teorema** (Caracterización de conjuntos Σ -efectivamente computables): Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes:
- (a) S es Σ -efectivamente computable (b) S y $(\omega^n \times \Sigma^{*m}) S$ son Σ -efectivamente enumerables (Hacer solo $(b) \to (a)$)

2.4. Combo 4

- 1. **Proposición** (Caracterización básica de conjuntos Σ -enumerables): (igual a Combo 2, hacer caso n=2, m=1)
- 2. **Lema** (Lema de la sumatoria): Sea Σ un alfabeto finito. Si $f:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\to\omega$ es Σ -p.r., con $S_i\subseteq\omega$ y $L_j\subseteq\Sigma^*$ no vacíos, entonces

$$\lambda xy\vec{x}\vec{\alpha}$$
. $\sum_{t}=x^{y}f(t,\vec{x},\vec{\alpha})$ es Σ -p.r.

2.5. Combo 5

- 1. Lema: Sea $\Sigma=@,\%,!$ y $f:S_1\times S_2\times L_1\times L_2\to \omega$, con $S_1,S_2\subseteq \omega$ y $L_1,L_2\subseteq \Sigma^*$ no vacíos. Sea G una familia Σ -indexada de funciones $G_a:\omega\times S_1\times S_2\times L_1\times L_2\times \Sigma^*\to \omega$ para cada $a\in \Sigma$.
- Si f y cada G_a son Σ -efectivamente computables, entonces R(f,G) lo es. (Ejercicio de la Guía 5)
- 1. **Lema** (Lema de cuantificación acotada): Sea $p: S \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$ un predicado Σ -p.r., y $\bar{S} \subseteq S$ un conjunto Σ -p.r. Entonces

$$\lambda x \vec{x} \vec{\alpha} \Big[\Big(\forall t \in \bar{S} \Big)_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \Big] \text{ es } \Sigma\text{-p.r.}$$

2.6. Combo 6

- 1. Lema: Si $S\subseteq \omega^n \times \Sigma^{*m}$ es Σ -efectivamente computable, entonces S es Σ -efectivamente enumerable
- 2. **Teorema** (Caracterización de conjuntos Σ -r.e.): Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes:
- (1) S es Σ -recursivamente enumerable (2) S= IF, para alguna $F:D_F\subseteq\omega^k\times\Sigma^{*l}\to\omega^n\times\Sigma^{*m}$ tq cada F(i) es Σ -recursiva (3) $S=D_f$, para alguna función Σ -recursiva f (Hacer la prueba de (2) \to (3), con k=l=1 y n=m=2)

2.7. Combo 7

1. Lema (Lema de minimización acotada): Sean $n,m\geq 0$. Sea $p:D_{\nu}\subseteq\omega\times\omega^n\times\Sigma^{*m}\to\omega$ un predicado Σ -p.r.

2. Combos de teoremas 14

(a) M(P) es Σ -recursiva (b) Si existe una función $f: \omega^n \times \Sigma^{*m} \to \omega$ Σ -p.r. tq $M(P)(\vec{x}, \vec{\alpha}) = \min_t P(t, \vec{x}, \vec{\alpha}) \le f(\vec{x}, \vec{\alpha})$, entonces M(P) es Σ -p.r.

1. **Lema**: Si $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to O$ es Σ -recursiva y $S\subseteq D_f$ es Σ -r.e., entonces f|S es Σ -recursiva

(Hacer solo el caso S no vacío, n=m=1 y $O=\Sigma^*$)

2.8. Combo 8

- 1. **Lema**: Si $\Sigma \supseteq \Sigma_n$, entonces AutoHalt $^{\Sigma}$ no es Σ -recursivo
- 2. **Teorema**: Si $\Sigma \supseteq \Sigma_p$, entonces AutoHalt $^\Sigma$ no es Σ -efectivamente computable
- 3. Lema: Sea $A=p\in \operatorname{Pro}^\Sigma$: Auto $\operatorname{Halt}^{\Sigma(P)}=1$, entonces A es Σ -r.e. y no Σ -recursivo Además, el conjunto $N=p\in \operatorname{Pro}^\Sigma$: Auto $\operatorname{Halt}^{\Sigma(P)}=0$ no es Σ -r.e.
- 1. **Teorema** (Neumann vence a Gödel): Si h es Σ -recursiva, entonces h es Σ -computable (Hacer solo el caso h=M(P))

2.9. Combo 9

1. Lema (Lema de división por casos para funciones Σ -recursivas): Supongamos $f_i:D_{f_i}\subseteq \omega^n\times \Sigma^{*m}\to O$ para i=1,...,k, tales que $D_{f_i}\Rightarrow D_{f_j}=\emptyset$ para $i\neq j$. Entonces $f_1\vDash ... \vDash f_k$ es Σ -recursiva

(Hacer el caso $k=2,\,n=m=1$ y $O=\omega$)

1. **Teorema** (Gödel vence a Neumann): Si $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es Σ -computable, entonces f es Σ -recursiva