

사무소 법인카드 이상거래 탐지 모델 개선 방안

디지털전략부 R&D센터 AI파트

인턴 김범수

Contents

I . 추진배경

i) 현행 프로세스

ii) 문제점 및 추진방향

Ⅲ. <u>초도모델</u> 분석

i) 데이터 레이아웃

ii) 분석 결과

iii) 데이터 품질 향상

Ⅲ. 성능 고도화

i) EDA(탐색적 자료 분석)

ii) 파생변수 생성 예시

iii) 파생변수 현황

iv) AI 기반 모델링 결과

IV. _{결 론}

i) 개인 기여도 및 소감

Ⅱ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

i) 현행 프로세스

약 100,000건

법인카드 사용

룰 기반 모니터링

의심거래 직접분류

명확한 사유제시 어려움

이상거래 **4,500**여건

약4.3%만

 소명 요청
 정상 분류

소명자료 직접분석

소명서 작성

정상 결제

Ⅱ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

ii) 문제점 및 추진방향

PoC 추진방향 (현재 진행중)

現 시스템

- ✓ 현 프로세스는 담당자에게 업무 과다(부담)
- ✔ 담당자의 경험과 직관에 의존하여 소명요청
 - → 명확한 사유를 제시하기 어려움
- ✔ 새로운 유형의 이상거래 기존 시스템 적용 불가

PoC

- ✓ 기존 거래 데이터를 Random Forest, Cat Boost, LightGBM 등 AI 기반 학습모델을 통해 분석하여 이상거래 탐지 시스템 고도화
- ✓ 다양한 분석 지표를 활용하여 객관적인 성능 평가
- ✓ 향후 은행 내 FDS(이상금융거래 탐지 시스템)의 확대 가능성을 점검

개인 추진방향

- ✓ 데이터 품질 고도화를 통해 향후 확장성을 증가
- ✓ 데이터 분석을 통한 이상거래 탐지 시스템 고도화에 기여

Ⅱ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

i) 데이터 레이아웃

변수명	데이터 예시	종류	특이사항
Label_소명여부	여(이상 거래) / 부(정상 거래)	2 개	
개인id	kkikkk9b	5,057 개	데이터 비식별화
사무소코드	2066	1,202 개	
사무소명	000지점	1,200 지점	
소명대상_구분	마트, 가전, 가구	15 개	
사용일	20180605	1,324 일	
결제요일	월 ~ 일	7 개	
시간	000000 ~ 235959		
가맹점명	㈜스타벅스커피코리아	219,364 지점	
업종코드	2104	330 개	
업종명	외식유흥관련가맹점	198 개	
가맹점세부업종명	양식	278 개	
금액	0 ~ 30,450,624,560		0원, 백억단위의 데이터 有
가맹점 주소	서울특별시 강남구 봉은사로…	266,976개	주소 이상
사무소 주소	서울 서대문구 미근동21-1 … 1,176개		

<mark>ඊ NH</mark>농협은행

ii) 데이터 품질 이상

결제 가맹점 주소 이상

데이터 품질 확인 결과 주소를 입력할 때 에러가 발생하는 경우가 전체의 41%

→ 약 270,000개 데이터 中 110,000개

띄어쓰기 오기입

서울특별시 강서구 공항대로 269-15120호 (마곡동,힐스테이트에코마곡)
세종특별자치시 만남로 1461층 103,104,105호 (고운동,삼성프라자)
서울특별시 서대문구 통일로9안길 36-41층
서울특별시 종로구 새문안로5길 111층 (당주동)

일부 주소만 입력

603-26 동원원룸a동

4-2백양상가

1193번지 대주 상가 102호

546-23 A동1층

숫자만 입력

278-14 G-101

108

2992-1 13/5

427-10

Ⅱ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

ii) 데이터 품질 향상

외부 API를 활용한 데이터 품질을 개선

As-Is

비정확한 데이터 입력시 에러 발생

전라남도 보성군 보성읍 현충로 92-42

경기 안산시 단원구 원시동동산로 76 지하110호 경기 안산시 단원구 목내동광양프론티어1동121호 서울특별시 강서구 마곡중앙6로 66108호, 109호

To-Be

Google Geocoding의 경우 가장 일치하는 위치를 반환

Ⅲ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

ii) 데이터 품질 향상

[개인 아이디어를 통한 데이터 품질 개선]

As-Is

띄어쓰기 오기입시 에러 발생

서울특별시 강서구 공항대로 269-15

서울특별시 서대문구 통일로9안길 36-41층 서울특별시 종로구 새문안로5길 111층 (당주동) 세종특별자치시 만남로 1461층 103,104,105호 (고운동,삼성프라자)

To-Be

주소의 일정부분을 제거하여 정확한 주소를 반환

NH농협은행

iii) 분석 결과

Decision Tree (의사결정 나무)

사용모델: Decision Tree

총 데이터 : 1,924,521개

초도모델 분석 결과(Raw Data)

주지표	재현율 (Recall)	8.5%
	정밀도 (Precision)	58.2%
부지표	F1-Score	14.9%
	정확도 (Accuracy)	99.3%

℧NH농협은행

iii) 분석 결과

맞춘(정답) 결과 정확도(Accuracy) : 전체 데이터

테스트 데이터(전체) : 577,357개		시스템 예측 결과	
맞춘(정답) 결과 : 573,070개		정상거래	이상거래
실 제	정상거래	572,696(TN)	269(FP)
결 과	이상거래	4,018(FN)	374(TP)

초도모델 분석 결과(Raw Data)

주지표	재현율 (Recall)	8.5%
	정밀도 (Precision)	58.2%
부지표	F1-Score	14.9%
	정확도 (Accuracy)	99.3%

<mark>ඊ NH</mark>농협은행

iii) 분석 결과

대출 정상거래(1억)의 수익(1%) = 100만원 부도의 경우(이상거래) 발생하는 손해 = 1억

정확도 : $\frac{98(TN) + 1(TP)}{100(All Data)} = 99%$		시스템 C	계측 결과
		정상	부도(이상)
실제	정상	98(TN)	0(FP)
실제 결과	부도(이상)	1(FN)	1(TP)

Ⅲ. 성능 고도화

IV. 결 론

℧NH농협은행

iii) 분석 결과

재현율(Recall) : TP + FN

총 데이터 : 1,924,521개 학습용 : 1,347,164개 <mark>테스트용 : 577,357개</mark>		시스템 예측 결과	
		정상거래	이상거래
실 제	정상거래	572,696(TN)	269(FP)
결 과	이상거래	4,018(FN)	374(TP)

초도모델 분석 결과(Raw Data)

주지표	재현율 (Recall)	8.5%
	정밀도 (Precision)	58.2%
부지표	F1-Score	14.9%
	정확도 (Accuracy)	99.3%

Ⅲ. 성능 고도화

IV. 결 론

℧NH농협은행

iii) 분석 결과

정밀도(Precision) : $\frac{TP}{TP + FP}$

총 데이터 : 1,924,521개 학습용 : 1,347,164개 테스트용 : 577,357개		시스템 예측 결과	
		정상거래	이상거래
실 제	정상거래	572,696(TN)	269(FP)
결 과	이상거래	4,018(FN)	374(TP)

초도모델 분석 결과(Raw Data)

주지표	재현율 (Recall)	8.5%
	정밀도 (Precision)	58.2%
부지표	F1-Score	14.9%
	정확도 (Accuracy)	99.3%

Ⅲ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

i) EDA(탐색적 자료분석)

사무소 - 가맹점 거리 **10km이상**부터 이상거래 ↑

→ 10km 이상 결제 여부 파생변수 생성

50만원 이상부터 이상거래 ↑
→ 50만원 이상 결제 여부 파생변수 생성

Ⅲ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

i) EDA(탐색적 자료분석)

주말사용 결제 이상거래 ↑ → 주말 사용, 공휴일 사용 여부 파생변수 생성

22시 이후부터 이상거래 ↑ → 22 ~ 07시 사이 결제 여부 파생변수 생성

Ⅱ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

ii) 파생변수 생성 예시(공통)

고도화 시킨 데이터를 활용한 위도, 경도 추출

Python 오픈소스를 활용하여 위·경도 기반의 거리 계산

Ⅱ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

ii) 파생변수 생성 예시(개인)

초도 모델

Ⅰ. 추진 배경

Only 기본 데이터

주지표	재현율 (Recall)	8.5%
	정밀도 (Precision)	58.2%
부지표	F1-Score	14.9%
	정확도 (Accuracy)	99.3%

법인카드 id별 이상거래 가중치 생성

법인카드 id별 소명건수 EDA 진행 2번 이상 소명한 부서 多 (재소명률 ↑)

파생변수 포함 모델

기본 데이터 + 법인카드 id별 가중치

주지표	재현율 (Recall)	35.3%
	정밀도 (Precision)	58.2%
부지표	F1-Score	43.8%
	정확도 (Accuracy)	99.3%

℧NH농협은행

iii) 파생변수 현황

순번	파생변수 설명	순번	파생변수 설명
1	사무소-가맹점 거리 (공 통)	13	소명대상_구분별 이상 거래 비율
2	5km 이상 여부	14	결제가맹점 – 사무소 주소 일치여부
3	10km 이상 여부	15	금액이 1,000단위 여부
4	id별 소명건수 2회 이상 여부	16	금액이 10,000단위 여부
5	공휴일 사용 여부	17	금액이 50,000단위 여부
6	공휴일 전후 사용 여부	18	거리 구간별 이상 거래 비율
7	주말 사용 여부	19	금액 구간별 이상 거래 비율
8	22시~07시 사용 여부	20	id별 평균 결제 금액
9	50만원 이상 사용 여부	21	평균 결제 금액 초과 여부
10	10만원 이상 사용 여부	22	id별 평균 결제 거리
11	업종별 이상 거래 비율	23	평균 결제 거리 초과 여부
12	세부업종별 이상 거래 비율	24	id별 전월대비 평균 결제 금액

기설명한 파생변수(10개)

추가적인 파생변수(14개)

Ⅱ. 초도모델 분석

Ⅲ. 성능 고도화

IV. 결 론

iv) Al 기반 모델링 결과

		초도모델 (Decision Tree)	Decision Tree	Random Forest	Gradient Boosting	Light GBM
주	재현율 (Recall)	8.5%	86.1%	86.3%	89.8%	88.0%
부	정밀도 (Precision)	58.2%	63.0%	73.4%	17.3%	80.9%
	F1-Score	14.9%	72.8%	79.3%	29.1%	84.3%
	정확도 (Accuracy)	99.3%	99.5%	99.6%	96.5%	99.7%

℧NH농협은행

i) 개인 기여도 및 소감

개인 기여도

개인 소감

- ✓ 데이터 품질 개선을 통한 확장성 증가→ 새로운 서비스 개발시 도움
- ✓ 실제 PoC에 일정부분 기여

Q&A

[참고 자료]

참고 자료

기대효과

- ✓ 1시간 80개 → 1,312시간 활용 가능
- ✓ 향후 FDS 시스템 도입을 위해 필요한 데이터 품질을 사전에 고도화

[참고 자료]

		시스템 예측 결과		
		정상	부도(이상)	
실제	정상	90(TN)	4(FP)	
결과	부도(이상)	1(FN)	5(TP)	

$$Accuracy = \frac{TP + TN}{All\ Data}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

[참고 자료]

Random Forest

Gradient Boosting

lightGBM

