Project Report

Pletiuk R M

2023-11-12

Project "CodeCurrencies: Decoding IT Salaries through R Analysis"

In this project, I aim to analyze the salaries of IT professionals using R software. I will compile and analyze a dataset, visualizing various aspects of salaries through diverse graphs. Additionally, I will calculate descriptive statistics, construct at least 7 simple linear regression models, and build 5 multiple linear regression models to explore relationships between economic variables and IT salaries. Finally, I will create a report in R, presenting the findings and drawing conclusions on the factors influencing IT salaries.

Plan:

- Descriptive statistics
- ► Plots
- ► Pair regression
- ► Multiple regression

Descriptive statistics (part 1)

Descriptive statistics of variables:

```
Salary
##
                      Age
                                Number_of_projects
##
   Min.
          :12614
                 Min.
                        :19.00
                                Min. : 1.000
##
   1st Qu.:33876
                 1st Qu.:24.00
                                1st Qu.: 4.000
##
   Median :44534
                 Median :26.00
                                Median : 5.000
##
   Mean :45740
                 Mean
                        :26.39
                                Mean : 5.717
##
   3rd Qu.:54822
                 3rd Qu.:28.00
                                3rd Qu.: 7.000
##
   Max.
         :85722
                 Max.
                        :36.00
                                Max. :11.000
```

Descriptive statistics (part 2)

Descriptive statistics of variables:

```
##
     Experience
                   Hour on week
                                 Job satisfaction
##
   Min.
          :1.000
                  Min.
                         :20.00
                                 Min.
                                        :2.500
##
   1st Qu.:3.000
                  1st Qu.:35.00
                                 1st Qu.:3.400
##
   Median :5.000
                  Median:40.00
                                 Median :3.900
##
   Mean :4.409
                  Mean
                         :37.16
                                 Mean :3.958
##
   3rd Qu.:6.000
                  3rd Qu.:40.00
                                 3rd Qu.:4.550
##
   Max.
          :8.000
                  Max.
                         :45.00
                                 Max.
                                        :5.000
```

Plot "Average Number of Projects vs Type of Employment"

Plot "Percentage Distribution of Continent"

Plot "Scatter Plot of Salary vs Age"

Plot "Boxplot of Salary by Specialization"

Plot "Line Plot of Age vs Experience"

Plot "Salary by Specialization and Education"

These are the pairwise regressions

- 1. Salary ~ Experience
- 2. Salary ~ Hour on week
- 3. Salary ~ Age
- 4. Salary ~ Number of projects
- 5. Salary ~ Job satisfaction
- 6. Salary ~ Additional profit
- 7. Number of projects ~ Experience

Linear pair Regression: Experience vs Salary (1)

► Plot Linear pair Regression

Linear pair Regression: Experience vs Salary (2)

```
Call: Im(formula = Salary \sim Experience, data = my\_data3)
```

Residuals: Min 1Q Median 3Q Max -22483 -6146 -44 3900 27790

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2974 2034 1.462 0.146 Experience 9700 436 22.246 <2e-16 *** — Signif. codes: 0 '' 0.001 " 0.01 " 0.05 " 0.1 ' 1

Residual standard error: 8370 on 157 degrees of freedom Multiple R-squared: 0.7592, Adjusted R-squared: 0.7576 F-statistic: 494.9 on 1 and 157 DF, p-value: < 2.2e-16

Regression Equation: Salary = 2973.496 + 9700.305 * Experience

Linear pair Regression: Number of projects vs Experience (1)

▶ Plot Linear pair Regression

Linear pair Regression: Number of projects vs Experience (2)

```
Call: Im(formula = Number\_of\_projects \sim Experience, data = my\_data3)
```

Residuals: Min 1Q Median 3Q Max -6.4205 -1.2688 -0.2905 0.7529 5.7962

```
Coefficients: Estimate Std. Error t value \Pr(>|t|) (Intercept) 1.11709 0.45778 2.44 0.0158 * Experience 1.04334 0.09815 10.63 <2e-16 *** — Signif. codes: 0 '' 0.001 " 0.01 " 0.05 " 0.1 ' ' 1
```

Residual standard error: 1.884 on 157 degrees of freedom Multiple R-squared: 0.4185, Adjusted R-squared: 0.4148 F-statistic: 113 on 1 and 157 DF, p-value: < 2.2e-16

Regression Equation: Number_of_projects = 1.117088 + 1.043342 * Experience

Other pairwise regressions (1)

Salary ~ Hour on week:

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24365.9714 11210.5329 2.173489 0.03124202
## Hour_on_week 575.2387 299.5522 1.920329 0.05662923
```

Regression Equation: Salary vs Hour on week: Salary = $24365.97 + 575.2387 * Hour_on_week$

▶ Salary ~ Age:

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19462.8835 9633.995 2.020230 0.045059852
## Age 995.7343 361.615 2.753575 0.006590452
```

Regression Equation: Salary vs Age: Salary = 19462.88 + 995.7343 * Age

Other pairwise regressions (2)

► Salary ~ Number of projects

```
## Estimate Std. Error t value P: ## (Intercept) 19383.729 2551.3338 7.597488 2.5543  
## Number_of_projects 4610.216 410.0642 11.242670 6.9233
```

Regression Equation: Salary vs Number of projects: Salary = $19383.73 + 4610.216 * Number_of_projects$

► Salary ~ Job satisfaction

```
## Estimate Std. Error t value Pr
## (Intercept) 43349.9835 7838.245 5.5305724 1.3054
## Job satisfaction 603.9282 1950.736 0.3095899 7.57283
```

Regression Equation: Salary vs Job satisfaction: Salary = $43349.98 + 603.9282 * Job_satisfaction$

Other pairwise regressions (3)

► Salary ~ Additional profit

```
## Estimate Std. Error t value
## (Intercept) 32841.68327 2311.176973 14.209939 5.49
## Additional_profit 19.72827 3.021613 6.529053 8.70

Regression Equation: >Salary vs Additional profit: Salary =
32841.68 + 19.72827 * Additional profit
```

Multiple regressions

- Salary ~ Experience + Hour_on_week
- ► Salary ~ Experience + Number_of_projects
- Salary ~ Experience + Additional_profit
- ► Salary ~ Experience + Job_satisfaction
- Salary ~ Hour_on_week + Number_of_projects + Additional_profit + Job_satisfaction

Multiple Regression: Experience + Number_of_projects vs Salary (1)

Call: $Im(formula = Salary \sim Experience + Number_of_projects, data = my_data)$

Residuals: Min 1Q Median 3Q Max -22064.2 -6044.8 -354.3 4736.1 25013.1

Coefficients: Estimate Std. Error t value $\Pr(>|t|)$ (Intercept) 1592.1 1996.5 0.797 0.426394 Experience 8410.1 551.0 15.264 < 2e-16 **Number_of_projects** 1236.6 341.6 3.620 0.000398 — Signif. codes: 0 '' 0.001'' 0.01 " 0.05 '' 0.1' ' 1

Residual standard error: 8064 on 156 degrees of freedom Multiple R-squared: 0.7778, Adjusted R-squared: 0.775 F-statistic: 273.1 on 2 and 156 DF, p-value: < 2.2e-16

Regression Equation: Salary = 1592.101 + 8410.104 * Experience + 1236.603 * Number_of_projects

Other Multiple Regressions (1)

► Salary ~ Experience + Hour_on_week:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) -9184.8841 5694.7392 -1.612872 1.087935e-01
```

Experience 9628.5160 431.4620 22.316022 2.048344e-50 Hour_on_week 335.7323 147.1601 2.281409 2.387699e-02

Regression Equation: Salary = -9184.884 + 8410.104 * Experience + 1236.603 * Hour_on_week

```
► Salary ~ Experience + Additional_profit
```

```
(Intercept) 2608.81644 2035.195989 1.281850 2.017970e-01
Experience 9326.76970 490.078612 19.031171 1.641173e-42
Additional profit 3.07661 1.879314 1.637092 1.036270e-01
```

Estimate Std. Error t value

Pr(>|t|

Regression Equation: Salary = 2608.816 + 8410.104 * Experience + 1236.603 * Additional_profit

Other Multiple Regressions (2)

► Salary ~ Experience + Job_satisfaction

```
Estimate Std. Error t value Pr(>|t|)
```

(Intercept) 5846.8343 4205.9455 1.3901355 1.664680e-01 Experience 9721.9655 437.4611 22.2236112 3.354983e-50 Job_satisfaction -750.1113 960.7357 -0.7807676 4.361223e-01

Regression Equation: Salary = 2608.816 + 8410.104 * Experience + 1236.603 * Job_satisfaction

Other Multiple Regressions (3)

Salary ~ Hour_on_week + Number_of_projects + Additional_profit + Job_satisfaction

```
## (Intercept) 8415.082766 10240.430647 0.8217509 4
## Hour_on_week 385.455932 226.103710 1.7047749 9
## Number_of_projects 4314.487916 526.189921 8.1994879 9
## Additional_profit 2.618995 3.271784 0.8004794 9
## Job_satisfaction -852.855867 1455.897523 -0.5857939 9
Regression Equation: Salary = 8415.083 + 385.4559 *
```

Hour_on_week + 4314.488 * Number_of_projects + 2.618995 * Additional profit + -852.8559 * Job satisfaction

Conclusion

Insights and Trends

The analysis revealed key insights into IT salaries, showcasing trends through descriptive statistics and diverse visualizations.

Regression Models

Constructed simple and multiple linear regression models provided a deeper understanding of the impact of economic variables on IT salaries, offering valuable predictive capabilities.

Future Considerations

These findings have implications for strategic HR decisions, and future research could explore industry-specific nuances for a more nuanced perspective.