Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2021

Szachownica i domino

Z szachownicy 8×8 wycinamy jedno pole z narożnika.

Czy tak zdeformowaną szachownicę można pokryć kostkami domina, jeśli każda taka kostka obejmuje dwa pola szachownicy?

Szachownica i domino

Z szachownicy 8×8 wycinamy dwa pola z przeciwległych narożników.

Czy taką szachownicę można pokryć kostkami domina?

Szachownica i pchły

W środku każdego pola szachownicy 5×5 siedzi pchła. Na sygnał każda z pcheł przeskakuje na jakieś sąsiadujące pole. Dwa pola są sąsiadujące, jeśli mają wspólny bok.

Czy istnieje strategia gwarantująca, że na każdym polu ponownie będzie dokładnie jedna pchła?

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech $k, s \in N > 0$.

Jeśli wrzucimy k kulek do s szuflad (Dirichleta) a kulek jest więcej niż szuflad (k > s), to w którejś szufladzie znajdą się przynajmniej 2 kulki.

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech A i B będą skończonymi zbiorami.

Wówczas, jeśli |A| > |B|, to nie istnieje funkcja różnowartosciowa z $A \le B$.

Zasada szufladkowa Dirichleta

Zasada szufladkowa

Niech $k, s \in N > 0$.

Jeśli wrzucimy $k > s \cdot i$ kulek do s szuflad (Dirichleta), to w którejś szufladzie znajdą się przynajmniej i+1 kulki.

Krzesła i ludzie

W rzędzie stoi 12 krzeseł. Zajmuje je 9 osób.

Pokaż, że w każdym przypadku jakieś 3 sąsiadujące krzesła zostaną zajęte.

Liczba znajomych

Pokaż, że w dwolnej grupie n osób ($n \in N$) znajdą się 2 osoby o takiej samej liczbie znajomych (z tej grupy).

Dwukolorowa płaszczyzna

Każdy punkt płaszczyzny kolorujemy na jeden z dwóch kolorów: szmaragdowy lub koralowy.

Pokaż, że znajdą się dwa punkty w odległości dokładnie 1 i tego samego koloru.

55 liczb

Wybieramy 55 liczb naturalnych takich, że:

$$1 \le x_1 < x_2 < \dots x_{55} \le 100.$$

Pokaż, że jakkolwiek byśmy je nie wybrali, jakieś dwie będą różnić się o 9.

Funkcja modulo

Niech $n, d \in Z$ i $d \neq 0$.

$$n \mod d = n - \lfloor \frac{n}{d} \rfloor d$$

$$n \mod d = r \Leftrightarrow 0 \le r < d \land \exists_{k \in \mathbb{Z}} n = kd + r$$

Funkcja modulo - własności

$$(a+b) \mod n = (a \mod n + b \mod n) \mod n$$

 $(a \cdot b) \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$

Przystawanie modulo:

$$a \equiv_n b \Leftrightarrow a \mod n = b \mod n$$

$$a+b \equiv_n a \mod n + b \mod n$$

 $a \cdot b \equiv_n (a \mod n) \cdot (b \mod n)$

Podzielność

Niech
$$n, d \in Z$$
 i $d \neq 0$.
 $d \mid n \Leftrightarrow \exists_{k \in Z} \ n = kd$

$$d|n \Leftrightarrow n \mod d = 0$$
$$d|n \Leftrightarrow n \equiv_d 0$$

Podzielność- własności

$$d|n_1 \wedge d|n_2 \Rightarrow d|(n_1+n_2)$$

Czy zachodzi implikacja w drugą stronę?

Podzielność przez 7

Pokaż, że wśród dowolnych 8 liczb całkowitych różnica jakichś dwóch dzieli się przez 7.

Potęgi 3

Pokaż, że istnieją dwie potęgi 3, których różnica dzieli się przez 2021.

Podzielność przez 3

Podzielność przez 3

Liczba naturalna x dzieli się przez 3 wtw, gdy suma jej cyfr w zapisie dziesiętnym dzieli się przez 3.

NWD

NWD

Niech $a, b \in N$.

 $NWD(a, b) = \max\{d \in N : d|a \land d|b\}$

Algorytm Euklidesa

Algorytm Euklidesa

$$a \ge b > 0$$

$$NWD(a, b) = NWD(b, a \mod b)$$

$$NWD(a, 0) = a$$

Rozszerzony algorytm Euklidesa

Rozszerzony algorytm Euklidesa

$$a \ge b > 0$$

$$\exists_{x,y\in Z} xa + yb = NWD(a,b)$$

Rozszerzony algorytm Euklidesa

$$xa + yb = NWD(a, b)$$

$$x'b + y'(a \mod b) = NWD(b, a \mod b) = NWD(a, b)$$

$$x'b + y'(a - b\lfloor \frac{a}{b} \rfloor) = NWD(a, b)$$

$$y'a + (x' - \lfloor \frac{a}{b} \rfloor)b = NWD(a, b)$$

$$x \leftarrow y', \ y \leftarrow x' - \lfloor \frac{a}{b} \rfloor$$

Rozszerzony algorytm Euklidesa

Niech $a, b, d \in N$, $x, y \in Z$ oraz a > 0.

$$d|a \wedge d|b \wedge xa + yb = d$$

Czy to znaczy, że d = NWD(a, b)?

Liczby względnie pierwsze

Niech $a, b \in Z$.

a i b są względnie pierwsze gdy NWD(a, b) = 1.