Le produit scalaire: exercices.

Exercice 1:

On considère la figure ci-dessous.

Calculer les produits scalaires.

a. $\overrightarrow{DC}.\overrightarrow{DE}$ b. $\overrightarrow{FC}.\overrightarrow{FA}$

c. \overrightarrow{EC} . \overrightarrow{BF}

d. \overrightarrow{DA} . \overrightarrow{FB}

Exercice 2:

On considère l'hexagone ci-dessous.

Exprimer les produits scalaires en fonction de a.

a. $\overrightarrow{AB} \cdot \overrightarrow{DE}$ \overrightarrow{DC} . \overrightarrow{AO}

b. $\overrightarrow{CF} \cdot \overrightarrow{BO}$ c. $\overrightarrow{OC} \cdot \overrightarrow{ED}$ d. $\overrightarrow{AD} \cdot \overrightarrow{FC}$ e. $\overrightarrow{DO} \cdot \overrightarrow{FC}$

Exercice 3: Dans chaque cas, calculer $\vec{u} \cdot \vec{v}$.

a.
$$\|\vec{u}\| = \sqrt{2}$$
, $\|\vec{v}\| = 5$ et $(\vec{u}, \vec{v}) = \frac{\pi}{4}$.

b.
$$\|\vec{u}\| = 3$$
, $\|\vec{v}\| = 2$ et $(\vec{u}, \vec{v}) = \frac{-2\pi}{3}$.

Exercice 4:

Calculer \overrightarrow{AB} . \overrightarrow{AC} dans chacun des cas suivants.

Exercice 5: Dans un repère (O, \vec{i} , \vec{j}) du plan, calculer le produit scalaire \vec{u} . \vec{v} .

a.
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ b. $\vec{u} \begin{pmatrix} -3 \\ 2 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$. c. $\vec{u} \begin{pmatrix} k - \sqrt{2} \\ \sqrt{3} - k \end{pmatrix}$ $\vec{v} \begin{pmatrix} k + \sqrt{2} \\ \sqrt{3} + k \end{pmatrix}$

Exercice 6: Dans le repère orthonormé (O; $\frac{1}{1}$, $\frac{1}{1}$), on a: A(1;-1), B(5;3), C(10;-2) et D(3;-5). Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{CB} \cdot \overrightarrow{DA}$.

Exercice 7: Dans le repère orthonormé (O; $\frac{1}{1}$, $\frac{1}{1}$), on a: A(2;-1), B(4;2), C(4;0) et D(1;2).

- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{CD}$.
- 2. Qu'en déduit-on pour les droites (AB) et (CD)?

Exercice 8: Dans le repère orthonormé (O; \vec{i} , \vec{j}), soit A(2;1), B(6;-1), C(7;1) et D(3;3) 4 points.

- Quelle est la nature du triangle ABC?
- Ouelle est la nature du quadrilatère ABCD?

Exercice 9: Dans chaque cas, calculer $\vec{u} \cdot \vec{v}$.

a.
$$\|\vec{u}\| = 5$$
, $\|\vec{v}\| = 3$ et $\|\vec{u} - \vec{v}\| = 6$

b.
$$\|\vec{u}\| = 3$$
, $\|\vec{v}\| = 2$ et $\|\vec{u} + \vec{v}\| = 4$

Exercice 10: Soit un parallélogramme ABCD tel que AB=6, AD=3 et AC=8. Calculer \overrightarrow{AB} . \overrightarrow{AC} .

Exercice 11: ABC est un triangle tel que AB=3, AC=6 et BC=5. Soit I le milieu de [AB].

- 1. Calculer CI.
- 2. Déterminer l'ensemble E des points M du plan tels que MA²+MB²=61. Vérifier que $C \in E$.

Exercice 12 : ABCD est un rectangle de centre O. Un point M est placé à l'intérieur du rectangle de telle sorte que MA=30 m, MB=31m et MC=6m.

On souhaite déterminer MD.

- 1. Démontrer que MA²+MC²=MB²+MD².
- 2. Calculer MD

Exercice 13: Sur la figure ci-contre, AB=4.

Déterminer graphiquement

a.
$$\overrightarrow{AB}$$
 . \overrightarrow{AC} d. \overrightarrow{AB} . \overrightarrow{AF}

b.
$$\overrightarrow{AB}$$
 . \overrightarrow{AD}
e. \overrightarrow{AB} . \overrightarrow{AG}

c.
$$\overrightarrow{AB}$$
 . \overrightarrow{AB}

d.
$$\overrightarrow{AB}$$
 . \overrightarrow{AF}

e.
$$\overrightarrow{AB}$$
 . \overrightarrow{AG}

f.
$$\overrightarrow{AB}$$
 . \overrightarrow{AH}

Exercice 14 : Soit ABC un triangle équilatéral de côté 3. Soit H le milieu de [BC]. Calculer \overrightarrow{AH} . \overrightarrow{CH} , \overrightarrow{AB} . \overrightarrow{AH} et \overrightarrow{BC} . \overrightarrow{CH} .

Exercice 15: Le triangle ABC a ses trois angles aigus. [AK] et [BH] sont deux hauteurs du triangle.

- 1. Exprimer \overrightarrow{CB} . \overrightarrow{CA} de deux façons différentes.
- 2. En déduire que $CH \times CA = CK \times CB$.

Exercice 16: P et Q sont deux points d'un demi-cercle de diamètre [AB]. Les droites (AP) et (BQ) se coupent en un point M.

- 1. Démontrer que \overrightarrow{AP} . $\overrightarrow{AM} = \overrightarrow{AB}$. \overrightarrow{AM} et que \overrightarrow{BO} . $\overrightarrow{BM} = \overrightarrow{BA}$. \overrightarrow{BM} .
- 2. En déduire que \overrightarrow{AP} . \overrightarrow{AM} + \overrightarrow{BO} . \overrightarrow{BM} = AB².

Exercice 17:Soit ABCD un trapèze rectangle de bases AB = 2a et CD = a et de hauteur AD=h.

- 1. Calculer \overrightarrow{AC} . \overrightarrow{BD} en fonction de a et h.
- 2. Peut-on choisir h de telle sorte que les diagonales (AC) et (BD) soient perpendiculaires?

Exercice 18: On considère A, B, C et H quatre points quelconques du plan.

- 1. En introduisant le point A, calculer \overrightarrow{AH} . \overrightarrow{BC} + \overrightarrow{AB} . \overrightarrow{CH} + \overrightarrow{AC} . \overrightarrow{HB} (*).
- 2. En utilisant (*), montrer que dans un triangle ABC non aplati, les trois hauteurs sont

Indication : Noter H l'intersection de deux hauteurs et prouver que la troisième hauteur passe aussi par H.

Exercice 19: Le triangle ABC est tel que AB=4, $BC = 4\sqrt{3}$ et \overrightarrow{BA} . \overrightarrow{BC} =24. Calculer la mesure de l'angle \widehat{ABC} , puis déterminer la nature du triangle ABC.