

$\rm IEL~2021/2022$ - Semestrální projekt

Maksim Kalutski xkalut00

19. prosince 2021

Obsah

1	Příklad 1	2
2	Příklad 2	5
3	Příklad 3	7
4	Příklad 4	9
5	Příklad 5	11
6	Shrnutí výsledků	13

Stanovte napětí U_{R7} a proud I_{R7} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

1. Seriové zapojení zdroju $U_1,\ U_2$: $U_{12}=U_1+U_2=125V+65V=190V$

$$U_{12} = U_1 + U_2 = 125V + 65V = 190V$$

2. Paralelní zapojení rezistorů
$$R_4, R_5$$
:
$$R_{45} = \frac{R_4*R_5}{R_4+R_5} = \frac{250\Omega*300\Omega}{250\Omega+300\Omega} = \frac{75000\Omega}{550\Omega} = 136,3636\Omega$$

3. Seriové zapojení rezistorů R_{45} , R_7 :

$$R_{457} = R_{45} + R_7 = 136,3636\Omega + 330\Omega = 466,3636\Omega$$

4. Trojůhelnik - Hvězda:

$$R_A = \frac{R_1 * R_2}{R_1 + R_2 + R_3} = \frac{510\Omega * 500\Omega}{510\Omega + 500\Omega + 550\Omega} = \frac{255000\Omega}{1560\Omega} = 163,4615\Omega$$

$$R_B = \frac{R_1 * R_3}{R_1 + R_2 + R_3} = \frac{510\Omega * 550\Omega}{510\Omega + 500\Omega + 550\Omega} = \frac{280500\Omega}{1560\Omega} = 179,8007\Omega$$

$$R_C = \frac{R_2*R_3}{R_1+R_2+R_3} = \frac{500\Omega*550\Omega}{510\Omega+500\Omega+550\Omega} = \frac{275000\Omega}{1560\Omega} = 176,2820\Omega$$

5. Seriové zapojení rezistorů $R_B,\ R_{457}$:

$$R_{B457} = R_B + R_{457} = 179,8077\Omega + 466,3636\Omega = 646,1643\Omega$$

6. Seriové zapojení rezistorů R_C , R_6 :

$$R_{C6} = R_C + R_6 = 176,2820\Omega + 800\Omega = 976,2820\Omega$$

7. Paralelní zapojení rezistorů
$$R_{B457}, R_{C6}$$
:
$$R_{BC4567} = \frac{R_{B457}*R_{C6}}{R_{B457}+R_{C6}} = \frac{646,1643\Omega*976,2820\Omega}{646,1643\Omega+976,2820\Omega} = \frac{630838,5751\Omega}{1622,4463\Omega} = 388,8194\Omega$$

8. Seriové zapojení rezistorů R_A , R_{BC4567} , R_8 :

$$R_{EKV} = R_A + R_{BC4567} + R_8 = 163,4615\Omega + 388,8194\Omega + 250\Omega = 802,2809\Omega$$

9. **Proud obvodu:**
$$I = \frac{U_{12}}{R_{EKV}} = \frac{190V}{802,2809\Omega} = 0,2368A$$

10. Napětí R_{BC4567} :

$$U_{RBC4567} = I * R_{BC4567} = 0,2368A * 388,8194\Omega = 92,0724V$$

11. Proud
$$I_{R7}$$
:
$$I_{R7}=I_{RB457}=\frac{U_{RBC4567}}{R_{B457}}=\frac{92,0724V}{646,1643\Omega}=0,1425A$$

12. Napětí U_{R7} :

$$U_{R7} = I_{R7} * R_7 = 0,1425A * 330\Omega = 47,025V$$

Stanovte napětí U_{R1} a proud I_{R1} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Н	220	190	360	580	205	560

1. Seriové zapojení rezistorů $R_4,\ R_5$: $R_{45}=R_4+R_5=205\Omega+560\Omega=765\Omega$

$$R_{45} = R_4 + R_5 = 205\Omega + 560\Omega = 765\Omega$$

2. Paralelní zapojení rezistorů
$$R_3, R_{45}$$
:
$$R_{345} = \frac{R_3*R_{45}}{R_3+R_{45}} = \frac{580\Omega*765\Omega}{580\Omega+765\Omega} = \frac{443700\Omega}{1345\Omega} = 329,8885\Omega$$

3. Použijeme Théveninůvu větu na
$$R_1$$
:
$$I_0 = \frac{U}{R_2 + R_{345}} = \frac{220V}{360\Omega + 329,8885\Omega} = \frac{220V}{689,8885\Omega} = 0,3189A$$

5

4. Zjistíme odpor
$$R_i$$
 bez R_1 :
$$R_i = \frac{R_2*R_{345}}{R_2+R_{345}} = \frac{360\Omega*329,8885\Omega}{360\Omega+329,8885\Omega} = \frac{118759,86\Omega}{689,8885\Omega} = 172,1436\Omega$$

5. Zjistíme napětí U_{345} :

$$U_{345} = I_0*R_{345} = 0,3189A*329,8885\Omega = 105,2014V$$

6. Zjistíme napětí zdroje bez R_1 :

$$U_{AB} = U - U_{345} = 220V - 105, 2014V = 114,7986V$$

7. **Zjistíme**
$$I_{R1}$$
:
$$I_{R1} = \frac{U_{AB}}{R_i + R_1} = \frac{114,7986V}{172,1436\Omega + 190\Omega} = \frac{114,7986V}{362,7436\Omega} = 0,3165A$$

8. Zjistíme napětí U_{R1} :

$$U_{R1} = I_{R1} * R_1 = 0,3165A * 190\Omega = 60,135V$$

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
E	135	0.55	0.65	52	42	52	42	21

1. Nahrazení napěťového zdroje

Nejprve si nahradíme napěťový zdroj za proudový pro jednodušší počítání vodivostí do následného dosazení do matice. Pro náhradu napěťového zdroje platí: $I_z = \frac{U}{R_5}$

2. Najdeme základní proud:

$$I_z = \frac{U}{R_5} = \frac{135V}{21\Omega} = 6,4286A$$

3. Sestavíme matice:
$$\begin{pmatrix} G_1 + G_4 + G_5 & -G_4 - G_5 & 0 \\ -G_4 - G_5 & G_3 + G_4 + G_5 & -G_3 \\ 0 & -G_3 & G_2 + G_3 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} I_z + I_1 \\ I_2 - I_z \\ -I_2 \end{pmatrix}$$

7

$$\begin{pmatrix} 0,0192+0,0238+0,0476 & -0,0238-0,0476 & 0 \\ -0,0238-0,0476 & 0,0192+0,0238+0,0476 & -0,0192 \\ 0 & -0,0192 & 0,0238+0,0192 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} =$$

$$= \begin{pmatrix} 6,4286+0,55\\0,65-6,4286\\-0,65 \end{pmatrix}$$

$$\begin{pmatrix} 6,9786 \\ -5,7786 \\ -0,65 \end{pmatrix} = \begin{pmatrix} 0,0906 & -0,0714 & 0 \\ -0,0714 & 0,0906 & -0,0192 \\ 0 & -0,0192 & 0,0046 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix}$$

$$\begin{pmatrix} 6,9786 \\ -0,2789 \\ -0,65 \end{pmatrix} = \begin{pmatrix} 0,0906 & -0,0714 & 0 \\ 0 & 0,0343 & -0,0192 \\ 0 & -0,0192 & 0,0046 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix}$$

$$\begin{pmatrix} 6,9786 \\ -0,2789 \\ -0,8060 \end{pmatrix} = \begin{pmatrix} 0,0906 & -0,0714 & 0 \\ 0 & 0,0343 & -0,0192 \\ 0 & 0 & 0,0061 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix}$$

4. Z matice můžeme najít U_c

$$U_c * 0,0061 = -0,8060$$

$$U_c = \frac{-0.8060}{0.006} = -132,1311$$

5. Když máme U_c tak najdeme U_b :

$$U_b * 0.0343 - (0,0192 * (-132,1311)) = -0,2789$$

$$U_b = \frac{-0.2789 + (0.0192 * (-132,1311))}{0.0343} = 20,6282$$

6. Najdeme napětí na rezistoru R_3 :

$$U_{R3} = U_b - U_c$$

$$U_{R3} = 20,6282 - (-132,1311) = 152,7593V$$

7. Najdeme proud na rezistoru R_3 : $I_{R3} = \frac{U_{R3}}{R_3}$

$$I_{R3} = \frac{152,7593V}{52\Omega} = 2,9377A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	L_2 [mH]	C_1 [μ F]	C_2 [µF]	f [Hz]
F	2	3	12	10	170	80	150	90	65

1. Vypočítáme si úhlovou rychlost a impedance na jednotlivých cívkách a kondenzátorech

$$z \omega = 2\pi f = 2\pi 60 = 120\pi$$

$$Z_L = j\omega L$$

$$Z_{L1} = j \times 120\pi \times 0,17H = j64,0885$$

$$Z_{L2} = j \times 120\pi \times 0,06H = j30,1593$$

$$Z_{L2} = j \times 120\pi \times 0,06H = j30,1593$$

$$Z_C = \frac{1}{j\omega C}$$

$$Z_{C1} = \frac{1}{j \times 120\pi \times 0,00015F} = -j17,6839$$
$$Z_{C2} = \frac{1}{j \times 120\pi \times 0,00009F} = -j29,4731$$

$$Z_{C2} = \frac{1}{j \times 120\pi \times 0,00009F} = -j29,4731$$

$$I_A = I_A(Z_{L1} + Z_{C2} + R_1) + I_B \times (-R_1) + I_C(-Z_{C2}) = -2$$

$$I_B = I_A \times (-R_1) + I_B(Z_{C1} + R_1) + I_C(0) = -2$$

$$I_C = I_A(-Z_{C2}) + I_B(0) + I_C(Z_{L2} + Z_{C2} + R_2) = 3$$

2. Vytvoříme matice

$$\begin{pmatrix} Z_{L1} + Z_{C2} + R_1 & -R_1 & -Z_{C2} \\ -R_1 & Z_{C1} + R_1 & 0 \\ -Z_{C2} & 0 & Z_{L2} + Z_{C2} + R_2 \end{pmatrix} \times \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} j64,0885 - j29.4731 + 12 & -12 & j29.4731 \\ -12 & -j17,6839 + 12 & 0 \\ j29.4731 & 0 & j30,1593 - j29.4731 + 10 \end{pmatrix} \times \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} j34,6154 + 12 & -12 & j29.4731 \\ -12 & -j17,6839 + 12 & 0 \\ j29.4731 & 0 & j0,6862 + 10 \end{pmatrix} \times \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 3 \end{pmatrix}$$

3. Vypočítame proud I_A, I_B, I_C

$$\begin{split} I_A &= -0,0637 - 0,0832j \\ I_B &= -0,0340 - 0,1333j \\ I_C &= 0,0545 + 0,1534j \end{split}$$

4. Vypočítame proud a napěti cívky L_2

$$I_{L2} = I_C = 0,0545 + 0,1534j$$

$$U_{L2} = I_{L2} \times Z_{L2} = (0,0545 + 0,1534j) \times j30,1593 = -4,6264 + 1,6437j$$

$$|U_{L2}| = \sqrt{(-4,6264)^2 + (1,6137j)^2} = \sqrt{21,4036 - 2,7017} = 4,9097V$$

$$\varphi = arctg \frac{I_{m(U_{L2})}}{R_{e(U_{L2})}} = arctg \frac{-4,6264}{1,6437} = 1,2294rad = 70^{\circ}$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C = f(t)$. Proveď te kontrolu výpoč tu dosazením do sestavené diferenciální rovnice.

	sk.	U [V]	$R [\Omega]$	C[F]	$u_C(0)$ [V]
	Н	8	50	40	4
	R				
0 s	,				
\leq	7.				
, `	P	С	Lu		
		_	uc		
+	$\overline{}$		V		
((=)				

1. Vytvoříme rovnice podle II. Kirchhoffového zakona a vyjadříme proud:

$$U_R + U_C - U = 0$$

$$R * I + U_C - U = 0$$

$$I = \frac{U - U_C}{R}$$

$$I = \frac{U - U_C}{R}$$

2. Sestavíme si rovnici pro $U_C^{'}$ a vytvoříme diferenciální rovnici:

$$U_C' = \frac{1}{C} * I$$

$$U'_{C} = \frac{1}{C} * I$$

$$U'_{C} = \frac{U - U_{C}}{R * C} = \frac{8V - U_{C}}{500 \times 40F}$$

$$U'_{C} + U_{C} * \frac{1}{2000} = \frac{1}{250}$$

$$U_C' + U_C * \frac{1}{2000} = \frac{1}{250}$$

3. Vypočítáme λ z charakteristické rovnice:

$$\lambda + \frac{1}{R*C} = 0$$

$$\lambda + \frac{1}{R_*C} = 0
\lambda + \frac{1}{2000} = 0
\lambda = -\frac{1}{2000}$$

$$\lambda = -\frac{1}{2000}$$

4. Tvar rovnice:

$$U_C(t) = k(t)e^{\lambda * t}$$

$$U_C(t) = k(t)e^{-\frac{t}{2000}}$$

5. Dosadíme do obecné rovnice a zderivujeme:
$$U_C'(t)=k'(t)e^{-\frac{t}{2000}}+k(t)(-\tfrac{1}{2000})e^{-\tfrac{t}{2000}}$$

$$U_C' + U_C * \frac{1}{2000} = \frac{1}{250}$$

6. Dosadíme do rovnice, kterou jsme si definovali:
$$U_C' + U_C * \frac{1}{2000} = \frac{1}{250}$$

$$k'(t)e^{-\frac{t}{2000}} + k(t)(-\frac{1}{2000})e^{-\frac{t}{2000}} + k(t)(\frac{1}{2000})e^{-\frac{t}{2000}} = \frac{1}{250}$$

$$k'(t)e^{-\frac{t}{2000}} = \frac{1}{250}$$

$$k'(t)e^{-\frac{t}{2000}} = \frac{1}{250}$$

7. Zbavíme se derivace a vyjádříme k(t):

$$k'(t) = \frac{1}{250} e^{\frac{t}{2000}}$$

$$\int k'(t) = \int \frac{1}{250} e^{\frac{t}{2000}} dt$$

$$k(t) = \frac{1}{250} \int e^{\frac{t}{2000}} dt$$

$$\int k'(t) = \int \frac{1}{250} e^{\frac{t}{2000}} dt$$

$$k(t) = \frac{1}{250} \int e^{\frac{t}{2000}} dt$$

$$k(t) = \frac{1}{250} * \frac{1}{\frac{1}{2000}} e^{\frac{t}{2000}} + K$$

$$k(t) = 8e^{\frac{t}{2000}} + K$$

$$k(t) = 8e^{\frac{t}{2000}} + K$$

8. Dosadíme k(t) do očekáváné rovnice:

$$U_C(t) = \left(8e^{\frac{t}{2000}} + K\right) * e^{-\frac{t}{2000}}$$

$$U_C(t) = 8 + Ke^{-\frac{t}{2000}}$$

9. Vypočítame K podle podmínky $U_C(t) = 4V, t = 0$:

$$U_C(0) = 8 + Ke^0$$

$$4 = 8 + K$$

$$K = -4$$

10. Kontrola:
$$U_C' + U_C * \frac{1}{2000} = \frac{1}{250}$$

$$U_C(t) = 8 - 4e^{-\frac{t}{2000}}$$

$$U_C(t) = 8 - 4e^{-\frac{t}{2000}}$$

$$U'_C + \frac{1}{125} - \frac{4e^{-\frac{t}{2000}}}{2000} = \frac{1}{125}$$

$$U'_C = \frac{4e^{-\frac{t}{2000}}}{2000}$$

$$U_C' = \frac{4e^{-\frac{t}{2000}}}{2000}$$

11. Dosadíme do diferenciální rovnice a vypočítáme s hodnotami K=-4 a t=0:

$$U'_C + U_C * \frac{1}{2000} = \frac{8}{2000}$$

Dosadime do differentialing
$$U'_C + U_C * \frac{1}{2000} = \frac{8}{2000}$$

$$\frac{4e^{-\frac{t}{2000}}}{2000} + \frac{8-4e^{-\frac{t}{2000}}}{2000} = \frac{1}{250}$$

$$\frac{4e^{0}}{2000} + \frac{8-4e^{0}}{2000} = \frac{1}{250}$$

$$\frac{8}{2000} = \frac{1}{250}$$

$$0 = 0$$

$$\frac{4e^0}{2000} + \frac{8 - 4e^0}{2000} = \frac{1}{250}$$

$$\frac{6}{2000} = \frac{1}{250}$$

12

Shrnutí výsledků

Příklad	Skupina	$ m V\acute{y}sledky$			
1	F	$U_{R7} = 47,025V$	$I_{R7} = 0,1425A$		
2	Н	$U_{R1} = 60,135V$	$I_{R1} = 0,3165A$		
3	E	$U_{R3} = 152,7593V$	$I_{R3} = 2,9377A$		
4	F	$ U_{L_2} = 4,9097V$	$\varphi_{L_2} = 70^{\circ}$		
5	Н	$u_C = 8 - \epsilon$	$4e^{-\frac{t}{2000}}$		