Lab Session 4

MA-423: Matrix Computations

July-November 2014

S. Bora

- 1 Given a vector $x \in \mathbb{R}^n$, write a MATLAB function program $[\mathbf{u}, \gamma, \tau] = \mathtt{reflect}(\mathbf{x})$ to compute $u \in \mathbb{R}^n$, and $\gamma \in \mathbb{R}$ so that $Qx = [-\tau, 0, \dots, 0]^T$ where $\tau = \pm ||x||_2$ and the sign is chosen so that it is the same as that of the first entry of x.
- 2 Write another function program B = applreflect(u, gamma, A) to efficiently perform the multiplication QA where $Q = I \gamma uu^T$.
- 3. Use the programs written above to write another function program $[Q,R] = \mathtt{reflectqr}(A)$ that computes the QR decomposition of $A \in \mathbb{R}^{n \times n}$ via reflectors. The program should be such that the lower triangular part of A contains the vectors u (apart from the leading 1 entry) required to construct the reflectors used at each stage and the values of γ corresponding to each reflector are stored in a separate vector.

Also if $Q_1, Q_2, \dots Q_{n-1}$ are the reflectors such that $Q = Q_1 Q_2 \cdots Q_{n-1}$, then Q may be computed by computing its columns. In doing so you can use the fact that

$$Q(:,k) = Qe_k = Q_1Q_2Q_3\cdots Q_ke_k, \qquad k = 1, 2, \dots n-1.$$

Verify your answer by computing $||A - QR||_2$ which will be $\mathcal{O}(u)$ if your program is correct. Compare your Q and R with that obtained from the built in MATLAB command $[\mathbb{Q}, \mathbb{R}] = \operatorname{qr}(\mathbb{A})$ which also uses the same method to compute Q and R.

You may look up relevant pages of your textbook for writing the programs for [2] and [3].