Tutorial 4

Exercise 1:

Consider the "Course" table below from a relational database, which tracks course information:

course_id	course_name	credits	professor	max_students
CS101	Intro to Programming	4	Smith, J	150
MA205	Advanced Calculus	3	Jones, K	60
PH310	Ethics in Tech	3	Smith, J	90
BI401	Molecular Biology	4	Lee, M	45

- a. What is the degree of this table?
- b. What is the possible domain for the following fields?
 - course_id:
 - professor:
 - credits:

Exercise 2:

Correct the following tables by restructuring the fields to improve data integrity (table properties in a relational model):

- Exercise 1 table: Course (course_id, course_name, credits, professor, max_students)
- Employees (Employee_ID, Name, Date_Place_of_Birth)
- Projects (Project_ID, Project_Name, Project_Description, Budget_euro_dollar)
- Library_Book (ISBN, Title, Author_Names, Year_Published)

Exercise 3:

Give an example domain (the set of permissible values) for each of the following data types:

- String of characters:
- Integer:
- Decimal number:
- Date:
- Boolean:

Exercise 4:

Assume a scenario where a database needs to manage the sales and inventory of a vinyl record store

Identify:

- a. The main entities:
- b. Other necessary entities to extract required information (e.g., track song information)
- c. The relationships between these entities