# Cable-1

# **Title**

Cables under vertical uniform loads and thermal loads

# Description

Six cables each have an initial length of 100 feet and a unique support configuration. Each cable is subjected to a vertical uniform load of 1.0 kip/ft (including cable self-weight) and a thermal load of 100  $^{\circ}$ F.

The finite element model was created by generating 2-node cable elements.

Perform cable element analysis to determine the support reactions at supports C1-C6.



Structural geometry and boundary conditions

## Model

#### Analysis Type

Cable element analysis

#### Unit System

ft, kips

#### Dimension

Unstrained length 100 ft

#### Element

Cable element

## Material

Modulus of elasticity  $E = 208,330 \text{ kips/in}^2$ Thermal coefficient C = 6.5e-6 1/F

#### Section Property

Pipe: Outer diamenter 2.4 in, Thickness 0.24 in

#### **Boundary Condition**

Both ends pinned

#### Loads

Self weight 1kips/ft Thermal change 100°F

#### Specified Displacements

| Case | Specified Displacements in DX direction (ft) |  |  |
|------|----------------------------------------------|--|--|
| C1   | 20                                           |  |  |
| C2   | 0                                            |  |  |
| C3   | -20                                          |  |  |
| C4   | -40                                          |  |  |
| C5   | -60                                          |  |  |
| C6   | -80                                          |  |  |

## **Results**

#### Cable Analysis Results: Reactions of the cable elements

Case 1: C1



Case 2: C2



Case 3: C3



Case 4: C4



Case 5: C5



Case 6: C6



# **Comparison of Results**

The response was computed with a convergence tolerance of 0.0001. The total load was applied in one load step (with the stiffness matrix re-calculated after every iteration). The support reactions at C1-C6 are illustrated in the table below and compared with the target solutions reported by Peyrot and Goulois [1].

Unit: kips

| Cable | Direction           | MIDAS         | Target        | Ratio<br>MIDAS/Target |
|-------|---------------------|---------------|---------------|-----------------------|
| C1    | X-Direction         | 4,255,672.50  | 4,170,000.00  | 1.02                  |
|       | <b>Z</b> -Direction | -2,553,359.22 | -2,511,000.00 | 1.02                  |
| C2    | X-Direction         | 504.23        | 504.00        | 1.00                  |
|       | <b>Z</b> -Direction | -328.93       | -328.80       | 1.00                  |
| C3    | X-Direction         | 22.16         | 22.15         | 1.00                  |
|       | <b>Z</b> -Direction | 15.74         | 15.73         | 1.00                  |
| C4    | X-Direction         | 9.18          | 9.17          | 1.00                  |
|       | <b>Z</b> -Direction | 19.25         | 19.24         | 1.00                  |
| C5    | X-Direction         | 3.06          | 3.06          | 1.00                  |
|       | <b>Z</b> -Direction | 19.94         | 19.93         | 1.00                  |
| C6    | X-Direction         | 0.00          | 0.00          | 1.00                  |
|       | Z-Direction         | 20.03         | 20.02         | 1.00                  |

#### Reference

1. Peyrot, A.H., and Goulois, A.M. (1979). "Analysis of cable structures." Computers & Structures, Vol. 10, No. 5, 805–813.