Abstract Algebra

: Lecture 6

Leo

2024.10.08

Definition 1. A Ring $(R, +, \cdot)$ is a set R with two binary operations + and \cdot such that:

(R,+) is an abelian group;

 (R,\cdot) is a semigroup;

 $a \cdot (b+c) = a \cdot b + a \cdot c \text{ for all } a, b, c \in R;$

 $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in R$.

A ring R which has a multiplicative identity 1 is called a ring with unity.

Definition 2. Let R be a ring with unity. Given $a \in R$, if ba = 1, b is a left inverse of a, and if ab = 1, b is a right inverse of a. Further, if ab = 1 and ba = 1, b is the two-sided inverse of a. a is called invertible if it has a two-sided inverse.

Definition 3. If for $a, b \in R$, $a \neq 0$ and $b \neq 0$, ab = 0. Then a, b are called zero factors.

Definition 4. If ab = ba for all $a, b \in R$, then R is called a commutative ring.

Definition 5. If each element of R has a multiplicative inverse, then R is called a division ring.

Definition 6. If R is commutative and has no zero factors, then R is called an integral domain.

Example 7. $(\mathbb{Z}, +, \cdot)$ is an integral domain.

Example 8. $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ is a commutative ring. If n is a prime number, then $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ is a field.

Example 9. $(M_n(\mathbb{F}), +, \times)$ is a ring. It is not commutative or division $(n \ge 2)$.

Example 10. $(\mathbb{F}[x], +, \times)$ is a integral domain.

Definition 11. A subset S of a ring R is called a subring of R if S is a ring under the operations of R.

Example 12. $(2\mathbb{Z}, +, \cdot)$ is a subring of $(\mathbb{Z}, +, \cdot)$.

Example 13. Diagonal matrices form a subring of $M_n(\mathbb{F})$.

Example 14. $\{f(x)x|f(x)\in\mathbb{F}[x]\}\ is\ a\ subring\ of\ (\mathbb{F}[x],+,\cdot).$

Definition 15. A subring I of a ring R is called an ideal if $rI, Ir \subseteq I$ for all $r \in R$.

Definition 16. For a ring R and an ideal I of R, the quotient ring R/I is defined as $R/I = \{r+I | r \in R\}$. And + and \cdot are defined as (r+I) + (s+I) = (r+s) + I and $(r+I) \cdot (s+I) = rs + I$.

Example 17. $\mathbb{Z}/2\mathbb{Z}$ is a field.

Example 18. $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is a prime number.

Example 19. $\mathbb{F}[x]/(x) \simeq \mathbb{F}$.

Example 20. $\mathbb{F}[x]/(x^2) \simeq \mathbb{F}[x]_{\leq 1}$.

Definition 21. Let $M \subset R$ where R is a ring with unity. The (double sided-)ideal generated by M is defined as $(M) = \bigcap_{j \in J} I_j = RMR$, where I_j 's are all ideals of R containing M. If R has no unity then $(M) = RMR + RM + MR + \mathbb{Z}M$

Example 22. $a \in R$, R is a ring. $(a) = \{ \sum_{finite} ra + as + paq + na | r, s, p, q \in R, n \in \mathbb{Z} \}.$

Definition 23. $\varphi: R_1 \to R_2$ is a ring homomorphism if $\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$ and $\varphi(r_1r_2) = \varphi(r_1)\varphi(r_2)$ for all $r_1, r_2 \in R_1$. $\ker \varphi = \{r \in R_1 | \varphi(r) = 0\}$, $\operatorname{Im} \varphi = \{\varphi(r) | r \in R_1\} \subseteq R_2$. It's easy to check that $\ker \varphi$ is an ideal of R_1 and $\operatorname{Im} \varphi$ is a subring of R_2 . Moreover, φ is injective if and only if $\ker \varphi = \{0\}$ and surjective if and only if $\operatorname{Im} \varphi = R_2$.

Theorem 24. For a ring homomorphism $\varphi: R_1 \to R_2, R_1/\ker \varphi \simeq \operatorname{Im} \varphi \leqslant R_2$

Theorem 25. Let $I \triangleleft R$ s.t. $\pi : R \rightarrow R/I : r \mapsto r + I$, natural homomorphism. Then:

- 1. The ideal(subring) of R containing I and ideal(subring) of R/I are in one-to-one correspondence;
- 2. If $I \triangleleft J \triangleleft R$ then $J/I \triangleleft R/I$ and $R/J \simeq \frac{R}{I}/\frac{J}{I}$.

Theorem 26. Let $I \triangleleft R$, $S \leqslant R$. Then I + S is a subring of R, and:

- 1. $S \cap I \triangleleft S$ and $I \triangleleft I + S$;
- 2. $(I+S)/I \simeq S/S \cap I$.

Exercise 27. Prove those 3 theorems.

Definition 28. Given two rings $(R, +, \times)$ and $(S, +, \times)$, define $R \times S = \{(r, s) | r \in R, s \in S\}$ where addition and multiplication are defined as:

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$

 $(r_1, s_1)(r_2, s_2) = (r_1 r_2, s_1 s_2)$

It's easy to check $R \times S$ is a ring. $R \times S$ is called the direct product of R and S.