"Explainable Artificial Intelligence" für Stammzellmodelle des Leigh-Syndroms

Maximilian Otto

Erstprüfer: Prof. Dr. Landgraf (FU Berlin)

Betreuer: Dr. Metzger (MDC)

Kombiniert:

KLASSIFIKATION MIT RESNEXT-50 (DS VS. TT)

540 von 540 korrekt klassifiziert

	precision	recall	f1-score	support
DS		1.00		264
TT	1.00			276
accuracy	y			540

Z'-Factor: 0.924

3Blue1Brown, "Chapter 1 Deep Learning", 05.10.2017,

WAS KÖNNEN WIR DAMIT MACHEN?

> Früherkennung von Krankheiten unter kontrollierten Umständen

- > Wirkstoffe für eine mögliche Behandlung evaluieren
- -> Welche Kulturen lassen sich nach Behandlung wie gut von normalen oder erkrankten unterscheiden?

> Versuchen, die Unterschiede zwischen den Klassen zu visualisieren

OKKLUSIONSBASIERTE ATTRIBUTION

Zug wird dank der Schienen als solcher erkannt

Auto wird als Zug erkannt

OKKLUSIONSBASIERTE ATTRIBUTION

Die Strukturen der Zellkulturen werden erkannt

Problematisch: Leere Flächen

Unterschiede nicht immer intuitiv erkennbar

NEUER PLAN

> Eingabebild so modifizieren, dass es als andere Klasse erkannt wird

> Wie muss es sich ändern? Können wir einen Unterschied sehen?

> Neue Netzwerkarchitektur für Klassifikation & Bildgenerierung

BILDGENERIERUNG (AUTOENCODER)

BILDGENERIERUNG (AUTOENCODER)

BILDGENERIERUNG (AUTOENCODER)

INVERTIBLE NEURAL NETWORK

Jens Behrmann et. all ("Invertible Residual Networks", Mai 2019)

KLASSIFIKATION (DS VS. TT)

ResNext50:

540 von 540 korrekt klassifiziert

Z'-Factor: 0.924

Train vs. Test Accuracy 99 98 96 95 100 15 20 25 30 35 40

i-ResNet50:

540 von 540 korrekt klassifiziert

Z'-Factor: 0.701

COUNTERFACTUALS

ENTSCHEIDUNGSGRENZE

ENTSCHEIDUNGSGRENZE

ZUSAMMENFASSUNG

- > Eingabebild so modifizieren, dass es als andere Klasse erkannt wird
 - -> Überzeugende Bilder generiert

- > Wie muss es sich ändern? Können wir einen Unterschied sehen?
 - -> Höhere mitochondriale Membranaktivität in Zellclustern bei Behandlung

- > Neue Netzwerkarchitektur für Klassifikation & Bildgenerierung
 - -> Klassifikation: Vergleichbare Ergebnisse
 - -> Bildgenerierung: MSE-Verlust von <0.002

AUSBLICK: MULTI-CLASS-PROBLEM (VERSCHIEDENE MEDIKAMENTE TESTEN)

ATTRIBUTIONS

Occlusion Example:

AUTOENCODER

GENERATE NEW IMAGES (AUTOENCODER)

COUNTERFACTUALS

