EDA and ESDA with GeoDa

John Snow & the 19th Century Cholera Epidemic

Julia Koschinsky Marcos Falcone spatial@uchicago.edu

September 2020

Resource Links

Download Data + Documentation

https://geodacenter.github.io/data-and-lab//snow/

Download GeoDa

https://geodacenter.github.io/

See GeoDa Snow Scripts in Context

- Storymap: https://bit.ly/3mSGZiS
- Video: https://bit.ly/365giRY

Examples and Spatial Data Files for Use in GeoDa

Broad St Pump

578 individual cholera deaths
Dataset 1

Cholera deaths in 40 housing blocks
Dataset 3

250 cholera deaths by building Datasets 2 + 4

Cholera deaths around Broad St pump Datasets 4, 5 + 6

Grand Experiment

Results for 28 subdistricts
Dataset 7

Overview of 7 Spatial Data Files: John Snow and the Cholera Epidemic

Screenshot	File # and name	Description	Case	Туре	N	Var.	Contemporary Source	Original Source	License
	1. deaths	Individual deaths	Broad St Pump	Point	578	4	Tobler 1994, Arribas-Bel et al. 2017	Snow 1855 (Map 1)	GPL
50но	2. deaths_by_bldg	Deaths aggregated to buildings	Broad St Pump	Point	250	8	Wilson 2011, Arribas-Bel et al. 2017	Snow 1855 (Map 1)	Unknown
	3. deaths_by_block	Deaths aggregated to blocks	Broad St Pump	Polygon	40	3	Wilson 2011, Arribas-Bel et al. 2017. Added workhouse by CSDS	Snow 1855 (Map 1)	Unknown
	4. pumps	6 pumps in the Broad St area	Broad St Pump	Point	6	4	Wilson 2011, Arribas-Bel et al. 2017	Snow 1855 (Map 1)	Unknown
	5. deaths_by_bsrings	Deaths aggregated to 5m rings around Broad St pump	Broad St Pump	Polygon	60	6	Tobler 1994, Wilson 2011, Arribas-Bel et al. 2017. Rings + calculations by CSDS	Snow 1855 (Map 1)	GPL
5049	6. deaths_by_otherrings	Deaths aggregated to 10m rings around other pumps	Broad St Pump	Polygon	35	6	Tobler 1994, Wilson 2011, Arribas-Bel et al. 2017. Rings + calculations by CSDS	Snow 1855 (Map 1)	GPL
March Miles	7. subdistricts	London subdistricts as of 1855 with data	Grand Experiment	Polygon	28	28	Data by Coleman 2019. Original boundaries by Koch and Denike 2006 (no data). Modified boundaries by CSDS .	Snow 1855 (Map 2)	BSD 2

Overview of GeoDa Scripts: The **Broad St Pump** and **Grand Experiment** Cases

MORE CHOLERA DEATHS NEAR **Broad Street Pump**

Identifying Clusters and Spatial Concentrations:

Connect deaths with nearby pumps:

Exploring the Relationship Between Two Point Layers

Explore deaths near the closest pumps:

K-Means Clustering and Heat Maps

View concentrations of deaths near Broad St pump: Identifying Distance Decay

Find hotspots near the pump -- with a spatial outlier: Local Moral Cluster Mapping

Comparing Distributions Across Groups:

Compare deaths near & far from pump: Conditional Box Plots

GRAND EXPERIMENT: MORE DEATHS FOR SOME WATER SUPPLIERS

Comparing Trends:

Compare trends of deaths by water supply area: Using the Time Editor and the Averages Chart

Exploring a Question with Multiple EDA and ESDA Tools:

Explore deaths, causes and water suppliers:

<u>Scatter Plots, Box Plots, Parallel Coordinate Plots,</u>

<u>Conditional Box Plots/Maps, Maps, and Cartograms</u>

THE BROAD ST PUMP CASE

STEP-BY-STEP EXAMPLE 1: EXPLORING THE RELATIONSHIP BETWEEN TWO POINT LAYERS

Identifying clusters and spatial concentrations: Connect cholera deaths with nearby pumps

Select a pump to see which cholera deaths are closest to that pump

GeoDa Implementation

DATA - 2 shapefiles (shp, shx, dbf):

- deaths_by_bldg
- pumps

VARIABLES

- deaths_by_bldg: deaths
- deaths_by_bldg: pumpID

STEPS

- 1. Map-Box Map (deaths)
- 2. Add basemap (Carto Light)
- 3. Change point radius to 5 (right-click on legend, e.g. on red box)
- Add layer to boxmap: + pumps and move to top then right-click pumps:
 - a. Change fill color of pumps to black
 - b. Change point radius to 8 🍺
 - c. Set Highlight Association for pumps to link ID of 6 pumps to pumpID of cholera deaths (deaths, pumpID, ID)
- 5. Linking and brushing: select pump(s)
- 6. Close map

2. Add basemap

3. Change point radius

4. Change settings

4c. Set highlight association

STEP-BY-STEP EXAMPLE 2: K-MEANS CLUSTERING AND HEAT MAPS

Identifying clusters and spatial concentrations: Explore deaths near the closest pumps

Cluster deaths by proximity to nearest pump (K-Means Clustering)

GeoDa Implementation

DATA - 1 shapefile (shp, shx, dbf):

deaths

VARIABLE

CL

STEPS

Run a K-Means Clustering Analysis

- 1. Clusters-K Means
- 2. **Select** "CL" as variable
- 3. **Set** the number of clusters as 5
- 4. **Save** Cluster in Field "CL"

Create a Heat Map

- 5. **Right click** on resulting map
- 6. **Heat Map-Specify Bandwidth**
- 7. **Select** desired bandwidth

6 - Heat Map - Specify Bandwidth

STEP-BY-STEP EXAMPLE 3: IDENTIFYING DISTANCE DECAY

Identifying clusters and spatial concentrations: View concentrations of deaths near Broad St pump

More Deaths Near Broad St Pump: Distance Decay Demonstration

GeoDa Implementation

DATA - 2 shapefiles (shp, shx, dbf):

- deaths_by_bldg
- deaths_by_bsrings

VARIABLES

- deaths_by_bldg: deaths
- deaths_by_bsrings: area

STEPS

Spatially join count of deaths to each ring around Broad St pump:

- 1. **Load** deaths_by_bsrings first (base layer to join points to)
- Load deaths_by_bldg (move to top to see points) +
- 3. **Tools-Spatial Join (Map Layer** = deaths, **Join Variable** = deaths, **Join Operation** = Sum)
- 4. **Add** new field to deaths_by_rings: deaths
- 5. **Table-Edit Variable Properties**: Real to integer
- 6. **Save** (this adds counts of deaths by ring to BroadStPump5mRings)

Calculate death density:

- 7. Table-Calculator
- 8. **Bivariate-Add Variable**: deathden → deaths DIVIDE area (decimals: 6, display 6)
- 9. **Save** (this adds deaths/area to table)

Map deathden:

- 1. Right-click on map- **Change Current Map Type** Natural Breaks: 10 (deathden)
- 2. Close project

3. Tools - Spatial Join

• • •		Spatial Join
Please select a	map layer	to apply spatial join to current map (pump1_5_60):
		Cholera_Deaths
Join Variable:	deaths	⊙
Join Operation:	Sum	<u> </u>
		OK Close

7. Table - Calculator

00			Calcu	lator				
	Special	Univariate	Bivariate	Spatial Lag	Rates	Date/Time		
Result Add Varia deathdens	ble =	Variable / deaths deathdens = d	•		ator 💍	Variable area	/ Constant	
			Apply	Close				

STEP-BY-STEP EXAMPLE 4: LOCAL MORAN CLUSTER MAP

Identifying clusters and spatial concentrations: Find hotspots near the pump -- with a spatial outlier

GeoDa Implementation

DATA - 2 shapefiles (shp, shx, dbf):

- deaths_by_block
- pumps

VARIABLE

deaths_by_block: deaths

STEPS

- 1. Tools-Weights Manager-Create
- 2. **Select ID** variable (ID)
- 3. **Distance Weight-Specify Bandwidth**: 150 meters.
- 4. Space-Univariate Local Moran's I
- 5. **Select variable** ("deaths"), then "Cluster Map"
- 6. **Add layer to boxmap**: pumps and move to top then right-click pumps:
 - a. Change fill color of 6pumps to black
 - b. Change point radius to 5
- 7. Close map

STEP-BY-STEP EXAMPLE 5: CONDITIONAL BOX PLOTS

Comparing distributions across groups: Compare deaths near & further from pump

Closer Proximity to Broad St Pump Associated with More Cholera Deaths

Buildings with deaths, colored by which pump the building is closest to.

If Broad St pump is closest then BSpump = 1, all others = 0

closest pump = other

closest pump = Broad St

Conditional Boxplot: Number of deaths, broken out by whether Broad St pump is the closest pump or not.

Caveats: There is no information in this dataset whether individuals drank water from the Broad St pump or not. Also, people who did not die are not included.

GeoDa Implementation

DATA - 1 shapefile (shp, shx, dbf):

deaths_by_bldg

VARIABLES

- deaths
- pumpID

STEPS

- 1. Map-Unique Values Map Select "pumpID".
- 2. Add Basemap (Carto Light) 📓
- 3. **Select category 1** in unique values map legend (pumpID = 1)
- 4. **Table Save selection** as new variable (**BSpump**): buildings with deaths where Broad St pump is closest (1) or other pump is closest (0)
- 5. **Explore-Conditional boxplot** with horizontal = BSpump, vertical = blank, and map theme = deaths (1 row, 2 columns)
 - a. Right-click: **Change horizontal bin breaks to unique values** for categorical representation of 0-1

BSpump

OK

Cancel

5.a. Modify horizontal bin breaks

BSpump

THE GRAND EXPERIMENT CASE

STEP-BY-STEP EXAMPLE 6: USING THE TIME EDITOR AND THE AVERAGES CHART

Comparing trends:
Compare trends of deaths by water supply area

Grand Experiment: SW Water Supplier Has Worse Cholera Death Trend Than SW-Lambeth

GeoDa Implementation

DATA - 1 shapefile (shp, shx, dbf):

subdistricts

VARIABLES

- deaths1849
- deaths1854

STEPS

Creating a time variable:

- 1. **Time Time Editor:** Select "deaths1849" and "deaths1854" and click on right arrow to move them from left to center
- 2. **Rename** new variable as "deaths"
- B. **Double click** on "Time" and replace the two values with "1849" and "1854" respectively
- 4. Click on right arrow to group variables and move them from center to right

Comparing distributions across time and space:

- 5. **Explore-Averages Chart:** Select "deaths(1849-1854)" as variable, change Group 2-Period 2 to "1854"
- 6. **Map-Unique Values Map:** Select "supplier"
- 7. **Select** only "Southwark&Vauxhall" observations on the "supplier" unique values map.

1-3. Time Editor

	Time Editor					
	New Group Details ?					
name:	deaths					
	numeric					
	2 of 2 variables to includ	е				
Time	Name					
1849	deaths1849					

deaths1854

1854

EXPLORING A QUESTION WITH MULTIPLE

STEP-BY-STEP EXAMPLE 7: SCATTER PLOTS, BOX PLOTS, PARALLEL COORDINATE PLOTS, CONDITIONAL BOX PLOTS/MAPS, MAPS, AND CARTOGRAMS

Exploring a question with multiple EDA and ESDA tools: Explore deaths, causes and water suppliers

GRAND EXPERIMENT: ESDA - Multiple Views of Deaths, Death Causes and Water Suppliers

GRAND EXPERIMENT: Linking and Brushing to Drill Into Unusual Observations

<25% (7) [-3.986 : 25% - 50% (7) [1.5 50% - 75% (7) [2.8 >75% (7) [5.205 : Upper outlier (0) [1:

#selected=1

SouthwarkVauxhall

#obs=28 #selected=1

GRAND EXPERIMENT

Subdistricts with Southwark&Vauxhall as Water Supplier Seem to Have Higher Share of Cholera Deaths

by water

supplier

Maps of Conditional Boxplot Variables

Unique Values Map: water **supplier**

Boxmap: death1k

low-high death1k category (dumpctdth: 0 = 0-3 deaths/1k, 1 = 4-14)

Conditional Boxplot

%death broken out by supplier and low/high %death

death1k

by low-high death1k category (dumpctdth: 0 = 0-3 deaths/1k, 1 = 4-14)

GRAND EXPERIMENT

Higher Share of Deaths in Subdistricts Associated with Southwark Water Company

Unique Values: supplier

Scatterplot | death1k: Cholera deaths per 1000 people

Unique value map supplier: Water supplier

@ Q 💠 X 🔯 Ø Unique Values: supplier 5.50 SouthwarkVauxhall SouthwarkVauxhall LONDON Kensington WESTMINSTER 9-0.09 0.11 0.31 0.51 0.71 0.91 10.134 0.000 -4.060 Chow test for sel/unsel regression subsets: need two valid regressions #obs=28 Q Q 💠 💥 📓 S Hinge=1.5: death1k 5.50 Lower outlier CITY OF LONDON < 25% (7) [-3 Iling LONDON 25% - 50% (7 Kensington WESTMINSTER 50% - 75% (7 22 > 75% (7) [5. Upper outlier 9-0.10 0.10 0.30 0.50 0.70 0.90 1.10 Chow test for sel/unsel regression subsets: need two valid regressions #obs=28

perc_lam: % population
served by Lambeth
company

Boxmap death1k: Cholera deaths per 1000 people

perc_south: % population
served by Southwark &
Vauxhall company

GeoDa Implementation

DATA - 1 shapefile (shp, shx, dbf):

subdistricts

VARIABLES

- **death1k** (deaths per 1,000 people; see below)
- **dumpctdth** (creates a 0-1 indicator variable for death1k: 0 is 0-3 deaths/1k people, 1 is 4-14 deaths per 1k people; see below)
- supplier

STEPS

Calculate death1k:

- **Table-Calculator-Bivariate-Add Variable**: death1k → 'd_overall' DIVIDE 'population' (decimals: 6, display 6)
- **Table-Calculator-Bivariate-Add Variable**: death1k → 'd_overall' MULTIPLY 1000 (decimals: 6, display 6)
- Save (this adds death1k to table)

Calculate dumpctdth:

- **Table- Sort** death1k highest to lowest
- Select observations equal to 4 or more: Save Selection
- Write 'dumpctdth' as variable name-Leave rest of the settings-Save (this adds dumpctdth to table)
- 1. Map-Box Plot (death1k), 🖾 add Carto Dark basemap
- 2. Map-Unique Values Map (supplier), add Carto Dark basemap
- 3. Map-Unique Values Map (dumpctdth), 🔄 add Carto Light basemap 🔎
- 4. **Explore-Conditional Box Plot** with horizontal = **dumpctdth**, vertical = **supplier**, and map theme = **death1k** (2 rows, 2 columns)
 - a. Right-click: **Change horizontal bin breaks to unique values** for categorical representation of 0-1

GRAND EXPERIMENT: Scatter Plots

Close conditional boxplot and unique values map (dumpctdth) Leave other two maps open (death1k and supplier)

Variables:

- death1k
- pct_lam: % population served by Lambeth company
- pct_south: % population served by Southwark & Vauxhall company

Functionality:

- Open scatterplot (X: pct_lam, Y: death1k)
- Open scatterplot (X: pct_south, Y: death1k)

Scatter Plot - x: perc_sou, y: death1k

perc lam

GRAND EXPERIMENT: Parallel Coordinate Plot

DATA - 1 shapefile (shp, shx, dbf):

subdistricts

VARIABLES

Deaths attributed to ...

- d_sou: ... the Southwark company
- d_lam: ... the Lambeth company
- **d_pump:** ... pumps or wells
- **d_thames:** ... Thames water
- **d_unasc** ... an unknown source

STEPS

- 1. Parallel coordinate plot:
 - a. **Double-click** on all 'd_x' variables: d_sou, d_lam, d_pump, d_thames, d_unasc
 - b. Right-click on plot: Classification Theme Boxplot Theme Hinge = 1.5
 - Move axes (by grabbing green circle at left start of axes) from top to bottom: d_sou, d_unknw, d_pump, d_lam, d_thames

1. Parallel coordinate plot variables

GRAND EXPERIMENT: Conditional Map and Cartogram

DATA - 1 shapefile (shp, shx, dbf):

subdistricts

VARIABLES

- death1k: Cholera deaths per 1000 people
- **supplier:** Water supply companies
- **dumpctdth:** low-high death1k category (dummy variable): 0 = 0-3 deaths/1k, 1 = 4-14)
- deaths: number of deaths

STEPS

- 1. **Explore-Conditional Plot-Boxplot** with horizontal = **supplier**, vertical = **dumpctdth**, and map theme = **death1k** (2 rows, 2 columns)
 - a. **Right-click: Change vertical bin breaks to unique values** for categorical representation of 0-1
- 2. Cartogram 🛟

Circle size = deaths (i.e. number of deaths) Circle color - death1k (i.e. deaths per 1k)

1. Conditional boxmap: variables

2. Cartogram variables

Cancel

GRAND EXPERIMENT: Unique Values Map and Boxplot

1 shapefile (shp, shx, dbf):

subdistricts

Variables:

- supplier
- death1k

Functionality:

- Map-Unique Values
 Map for 'supplier'
- 2. Explore-Box Plot for 'death1k'

REFERENCES

Arribas-Bel, D., de Graaff, T., & Rey, S. J. (2017). Looking at John Snow's Cholera map from the twenty first century: A practical primer on reproducibility and open science. In *Regional Research Frontiers*-Vol. 2 (pp. 283-306). Springer, Cham. Data can be downloaded from Dani Arribas-Bel's 'reproducible john snow' BitBucket repository at https://bitbucket.org/darribas/reproducible_john_snow/src/master/

Chave, S. P. W. (1958). Henry Whitehead and Cholera in Broad Street, Medical History, Volume 2, Number 2, pp. 92-108.

Coleman, T. (2019). Causality in the Time of Cholera: John Snow as a Prototype for Causal Inference. Working paper. Data can be downloaded from https://github.com/tscoleman/SnowCholera (last accessed September 2, 2020).

Coleman, T. (2020). John Snow, Cholera, and South London Reconsidered. Working paper. Available on SSRN at https://papers.ssrn.com/abstract=3696028
Data can be downloaded from https://github.com/tscoleman/SnowCholera (last accessed September 2, 2020).

Snow, J. (1855). *On the Mode of Communication of Cholera*, London, second edition, Map 1, available at https://www.bl.uk/learning/images/makeanimpact/publichealth/large12735.html

Snow, J. (1855). On the Mode of Communication of Cholera, London, second edition, Map 2, reprinted in Jefferson, Tom (2007), Cattive acque. John Snow e la vera storia del colera a Londra, Rome, Il Pensiero Scientifico Editore.

Tobler, W. (1994). Snow's Cholera Map, http://www.ncgia.ucsb.edu/pubs/snow/snow.html. Data files were obtained from the HistData CRAN R package.

Vinten-Johansen, P. (Ed.). (2020). Investigating Cholera in Broad Street: A History in Documents. Broadview Press.

Wilson, R (2011). *John Snow's Cholera data in more formats*, http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/. Reprojected data can also be downloaded from Dani Arribas-Bel's 'reproducible john snow' BitBucket repository at https://bitbucket.org/darribas/reproducible_john_snow/src/master/