

livroaberto@impa.br

Atividade:

Para o professor

Objetivos específicos

OE1 Entender o processo de determinação de um denominador comum entre duas frações com base na ideia de subdivisão da unidade da qual ambas sejam múltiplas inteiras, obtida a partir de um processo geométrico;

OE2 Determinar a soma e a diferença de duas frações a partir dessa subdivisão da unidade.

Discussões sobre o desenvolvimento da atividade

- Diferentemente da atividade anterior, nesta atividade a subdivisão da unidade já é dada, e sua determinação não é pedida ao aluno, o que voltará a ser objetivo das próximas atividades.
- 0 item a) visa especificamente à identificação geométrica de subdivisão da unidade que será empregada para efetuar as operações. Espera-se $\frac{1}{16}$ como resposta.
- No item b), procura-se resgatar as atividades sobre frações equivalentes realizadas na lição 4. Observe que aqui há um processo de recontagem a partir da subdivisão ``pedaço de chocolate''. Aqui a fração equivalente indica a recontagem da fração $\frac{1}{2}$ a partir da subdivisão $\frac{1}{16}$.
- No item c), procure destacar a interpretação de adição como ``juntar". Pretende-se que o professor tenha a possibilidade de sistematizar a adição, tendo como apoio a resposta dos alunos dadas a partir de observações visuais. Isto é, o estudante pode dizer que, juntos, Alice e Miguel comeram 11 pedaços e depois identificá-los como $\frac{11}{16}$ da barra de chocolate. A discussão deve ser encaminhada a partir da determinação de frações equivalentes desenvolvida no item anterior (e sem o uso do conceito de MMC). O objetivo é que o professor aproveite as soluções intuitivas dos alunos para apresentar, de forma mais sistematizada, a adição por uso de fração equivalentes, obtidas na busca de uma subdivisão comum:

$$\frac{1}{2} + \frac{3}{16} = \frac{8}{16} + \frac{3}{16} = \frac{11}{16}.$$

• 0 item d) deve ser encaminhado de forma análoga ao anterior. Especificamente, deve-se retomar a ideia de que $1=\frac{n}{n}$, discutida na lição anterior, daí apresentar

$$1 - \frac{11}{16} = \frac{16}{16} - \frac{11}{16} = \frac{5}{16}.$$

Atividade

Uma barra de chocolate é vendida com as marcações mostradas na figura abaixo.

Alice comeu a metade dessa barra de chocolate (em bege), quebrou o restante da barra em pedaços, seguindo as marcações e comeu 3 desses pedaços (em azul).

Se considerarmos a barra de chocolate como a unidade, indicamos que as quantidades comidas são: $\frac{1}{2}$ por Alice e $\frac{3}{16}$ por Miguel. Os pedaços da barra (quebrados por Miguel de acordo com as marcações na barra) correspondem a uma subdivisão dessa unidade. Observe que ambas as frações da barra de chocolate comidas por Alice e Miguel podem ser obtidas a partir dessa subdivisão: Miguel comeu 3 pedaços e a quantidade comida por Alice corresponde a 8 pedaços.

- a) Um pedaço corresponde a que fração da barra de chocolate?
- b) Complete a parte em branco (numerador) para indicar a fração da barra de chocolate que Alice comeu.

$$\frac{1}{2} = \frac{\square}{16}$$

- c) Que fração da barra de chocolate foi comida por Alice e por Miguel, juntos?
- d) Que fração da barra de chocolate não foi comida?

Solução:

- a) $\frac{1}{16}$.
- b) $\frac{1}{2}=\frac{8}{16}$, pois a fração equivalente a $\frac{1}{2}$ com denominador 16 é $\frac{8}{16}$.
- c) Observando as quantidades comidas por Alice e Miguel, a partir de um mesmo denominador, temos $\frac{1}{2} + \frac{3}{16} = \frac{8}{16} + \frac{3}{16} = \frac{11}{16}$.
- d) Recordemos que a barra de chocolate é a unidade de medida, então essa quantidade será entendida como 1 inteiro. Assim a quantidade restante será dada por $\frac{5}{16}$, pois $1 \frac{11}{16} = \frac{16}{16} \frac{11}{16} = \frac{5}{16}$.

Realização:

7 OLIMPÍADA BRASILEIRA
TO J DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

Patrocínio:

Social