Section 6.4

The Gram-Schmidt Process

Motivation

All of the procedures we learned in §§6.2–6.3 require an *orthogonal* basis $\{u_1, u_2, \dots, u_m\}$.

▶ Finding the \mathcal{B} -coordinates of a vector x using dot products:

$$x = \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i$$

Finding the orthogonal projection of a vector x onto the span W of u_1, u_2, \ldots, u_m :

$$\operatorname{proj}_{W}(x) = \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}.$$

Problem: What if your basis isn't orthogonal?

Solution: The Gram-Schmidt process: take any basis and make it orthogonal.

The Gram-Schmidt Process

Let $\{v_1, v_2, \dots, v_m\}$ be a basis for a subspace W of \mathbb{R}^n . Define:

1. $u_1 = v_1$

Procedure

- 2. $u_2 = v_2 \text{proj}_{\text{Span}\{u_1\}}(v_2)$ $= v_2 \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1$
- 3. $u_3 = v_3 \text{proj}_{\mathsf{Span}\{u_1, u_2\}}(v_3)$ $= v_3 \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$

m.
$$u_m = v_m - \text{proj}_{\text{Span}\{u_1, u_2, ..., u_{m-1}\}}(v_m) = v_m - \sum_{i=1}^{m-1} \frac{v_m \cdot u_i}{u_i \cdot u_i} u_i$$

Then $\{u_1, u_2, \dots, u_m\}$ is an *orthogonal* basis for the same subspace W.

Remark

In fact, for every i between 1 and n, the set $\{u_1, u_2, \ldots, u_i\}$ is an orthogonal basis for $\text{Span}\{v_1, v_2, \ldots, v_i\}$.

The Gram–Schmidt Process

Find an orthogonal basis $\{u_1, u_2\}$ for $W = \text{Span}\{v_1, v_2\}$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Run Gram-Schmidt:

1.
$$u_1 = v_1$$
 2. $u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Why does this work?

- First we take $u_1 = v_1$.
- Now we're sad because $u_1 \cdot v_2 \neq 0$, so we can't take $u_2 = v_2$.
- ▶ Fix: let $L_1 = \text{Span}\{u_1\}$, and let $u_2 = (v_2)_{L_1^{\perp}} = v_2 \text{proj}_{L_1}(v_2)$.
- ▶ By construction, $u_1 \cdot u_2 = 0$, because $L_1 \perp u_2$.

 $V_1 = u_1$ $u_2 = (v_2)_{L_1^{\perp}}$ L_1

Important: Span $\{u_1, u_2\}$ = Span $\{v_1, v_2\}$ = W: this is an *orthogonal* basis for the *same* subspace.

The Gram–Schmidt Process

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\} = \mathbb{R}^3$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}.$$

Run Gram-Schmidt:

1.
$$u_1 = v_1$$

2.
$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

3.
$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$$

$$= \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} - \frac{4}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{1} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Important: Span $\{u_1, u_2, u_3\}$ = Span $\{v_1, v_2, v_3\}$ = W: this is an *orthogonal* basis for the *same* subspace.

The Gram-Schmidt Process

Three vectors, continued

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\mathsf{G-S}} u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Why does this work?

- ▶ Once we have u₁ and u₂, then we're sad because v₃ is not orthogonal to u₁ and u₂.
- Fix: let $W_2 = \text{Span}\{u_1, u_2\}$, and let $u_3 = (v_3)_{W_2^{\perp}} = v_3 \text{proj}_{W_3}(u_3)$.
- ▶ By construction, $u_1 \cdot u_3 = 0 = u_2 \cdot u_3$ because $W_2 \perp u_3$.

Check:

$$u_1 \cdot u_2 = 0$$

$$u_1 \cdot u_3 = 0$$

$$u_2 \cdot u_3 = 0$$

W₂

The Gram–Schmidt Process Three vectors in R⁴

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\}$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 4 \\ -2 \\ -2 \\ 0 \end{pmatrix}.$$

Run Gram-Schmidt:

1.
$$u_1 = v_1$$

2.
$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{pmatrix} -1\\4\\4\\-1 \end{pmatrix} - \frac{6}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} -5/2\\5/2\\5/2\\-5/2 \end{pmatrix}$$

3.
$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$$

$$= \begin{pmatrix} 4 \\ -2 \\ -2 \\ -2 \end{pmatrix} - \frac{0}{24} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{-20}{25} \begin{pmatrix} -5/2 \\ 5/2 \\ 5/2 \\ 5/2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Poll

What happens if you try to run Gram-Schmidt on a linearly dependent set of vectors $\{v_1, v_2, \dots, v_m\}$?

- A. You get an inconsistent equation.
- B. For some i you get $u_i = u_{i-1}$.
- C. For some i you get $u_i = 0$.
- D. You create a rift in the space-time continuum.

If $\{v_1, v_2, \dots, v_m\}$ is linearly dependent, then some v_i is in $Span\{v_1, v_2, \dots, v_{i-1}\} = Span\{u_1, u_2, \dots, u_{i-1}\}.$

This means

$$egin{aligned} v_i &= \mathsf{proj}_{\mathsf{Span}\{u_1,u_2,\ldots,u_{i-1}\}}(v_i) \ &\Longrightarrow u_i &= v_i - \mathsf{proj}_{\mathsf{Span}\{u_1,u_2,\ldots,u_{i-1}\}}(v_i) = 0. \end{aligned}$$

In this case, you can simply discard u_i and v_i and continue: so Gram–Schmidt produces an orthogonal basis from any spanning set!

QR Factorization Theorem

Let A be a matrix with linearly independent columns. Then

$$A = QR$$

where ${\it Q}$ has orthonormal columns and ${\it R}$ is upper-triangular with positive diagonal entries.

Recall: A set of vectors $\{v_1, v_2, \dots, v_m\}$ is **orthonormal** if they are orthogonal unit vectors: $v_i \cdot v_i = 0$ when $i \neq j$, and $v_i \cdot v_i = 1$.

Check: A matrix Q has orthonormal columns if and only if $Q^TQ = I$.

The columns of A are a basis for $W = \operatorname{Col} A$. The columns of Q come from Gram–Schmidt as applied to the columns of A, after normalizing to unit vectors. The columns of R come from the steps in Gram–Schmidt.

Here is the procedure for producing a ${\it QR}$ factorization.

Find the
$$QR$$
 factorization of $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

(The columns of A are the vectors v_1, v_2, v_3 from a previous example.)

Step 1: Run Gram-Schmidt and solve for v_1, v_2, v_3 in terms of u_1, u_2, u_3 .

$$u_{1} = v_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$v_{2} = v_{2} - \frac{v_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} = v_{2} - 1 u_{1} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$v_{2} = u_{1} + u_{2}$$

$$u_{3} = v_{3} - \frac{v_{3} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} - \frac{v_{3} \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$$

$$= v_{3} - 2 u_{1} - 1 u_{2} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

$$v_{3} = 2u_{1} + u_{2} + u_{3}$$

$$v_1 = 1 u_1$$
 $v_2 = 1 u_1 + 1 u_2$ $v_3 = 2 u_1 + 1 u_2 + 1 u_3$

Step 2: Write $A = \widehat{Q}\widehat{R}$, where \widehat{Q} has orthogonal columns u_1, u_2, u_3 and \widehat{R} is upper-triangular with 1s on the diagonal.

Do this by putting the above equations in matrix form:

$$A = \widehat{Q}\widehat{R} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Step 3: Scale the columns of \widehat{Q} to get unit vectors, and scale the rows of \widehat{R} by the opposite factor, to get Q and R.

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 0/1 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0/1 & -1/\sqrt{2} \\ 0/\sqrt{2} & 1/1 & 0/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 \cdot \sqrt{2} & 1 \cdot \sqrt{2} & 2 \cdot \sqrt{2} \\ 0 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 \\ 0 \cdot \sqrt{2} & 0 \cdot \sqrt{2} & 1 \cdot \sqrt{2} \end{pmatrix}.$$

Note that the entries in the ith column of Q multiply by the entries in the ith row of R, so this doesn't change the product.

The final QR decomposition is:

$$A = QR \qquad Q = \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \end{pmatrix} \qquad R = \begin{pmatrix} \sqrt{2} & \sqrt{2} & 2\sqrt{2} \\ 0 & 1 & 1 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

Another example

Find the *QR* factorization of
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & -2 \\ 1 & -1 & 0 \end{pmatrix}$$
.

(The columns are vectors from a previous example.)

Step 1: Run Gram-Schmidt and solve for v_1, v_2, v_3 in terms of u_1, u_2, u_3 :

$$u_1 = v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad v_1 = u_1$$

$$u_2 = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = v_2 - \frac{3}{2} u_1 = \begin{pmatrix} -5/2 \\ 5/2 \\ 5/2 \\ -5/2 \end{pmatrix}$$

$$v_2 = \frac{3}{2} u_1 + u_2$$

$$u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2 = v_3 + \frac{4}{5} u_2 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ -2 \end{pmatrix} \quad v_3 = -\frac{4}{5} u_2 + u_3$$

Another example, continued

$$v_1 = \frac{1}{2}u_1$$
 $v_2 = \frac{3}{2}u_1 + 1u_2$ $v_3 = 0u_1 - \frac{4}{5}u_2 + 1u_3$

Step 2: Write $A = \widehat{Q}\widehat{R}$, where \widehat{Q} has *orthogonal* columns u_1, u_2, u_3 and \widehat{R} is upper-triangular with 1s on the diagonal.

$$\widehat{Q} = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & -5/2 & 2 \\ 1 & 5/2 & 0 \\ 1 & 5/2 & 0 \\ 1 & -5/2 & -2 \end{pmatrix}$$

$$\widehat{R} = \begin{pmatrix} 1 & 3/2 & 0 \\ 0 & 1 & -4/5 \\ 0 & 0 & 1 \end{pmatrix}$$

Another example, continued

$$A = \widehat{Q}\widehat{R} \qquad \widehat{Q} = \begin{pmatrix} 1 & -5/2 & 2\\ 1 & 5/2 & 0\\ 1 & 5/2 & 0\\ 1 & -5/2 & -2 \end{pmatrix} \qquad \widehat{R} = \begin{pmatrix} 1 & 3/2 & 0\\ 0 & 1 & -4/5\\ 0 & 0 & 1 \end{pmatrix}$$

Step 3: Normalize the columns of \widehat{Q} and the rows of \widehat{R} to get Q and R:

$$Q = \begin{pmatrix} & & & & & | & & & | \\ u_1/\|u_1\| & u_2/\|u_2\| & u_3/\|u_3\| & & & = \begin{pmatrix} 1/2 & -1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} \end{pmatrix}$$

$$R = \begin{pmatrix} 1 \cdot \|u_1\| & 3/2 \cdot \|u_1\| & 0 \cdot \|u_1\| \\ 0 & 1 \cdot \|u_2\| & -4/5 \cdot \|u_2\| \\ 0 & 0 & 1 \cdot \|u_2\| \end{pmatrix} = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 5 & -4 \\ 0 & 0 & 2/\sqrt{2} \end{pmatrix}$$

The final
$$QR$$
 decomposition is

$$A = QR \qquad Q = \begin{pmatrix} 1/2 & -1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} \end{pmatrix} \qquad R = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 5 & -4 \\ 0 & 0 & 2\sqrt{2} \end{pmatrix}.$$

Let A be an invertible $n \times n$ matrix. Consider its QR factorization

$$A = QR$$
.

Recall: Since Q has orthonormal columns, $Q^TQ = I_n$, so $Q^T = Q^{-1}$.

But $det(Q^T) = det(Q)$, so

$$1 = \det(I_n) = \det(Q^T Q) = \det(Q^T) \det(Q) = \det(Q)^2.$$

It follows that $det(Q) = \pm 1$.

(Since det(R) > 0, in fact det(Q) has the same sign as det(A).)

Therefore,

$$\det(A) = \det(Q) \det(R) = \pm \det(R).$$

But R is upper-triangular, so it's easy to compute its determinant!

In fact, if v_1, v_2, \ldots, v_n are the columns of A, and u_1, u_2, \ldots, u_n are the vectors you obtain by applying Gram–Schmidt, then the (i, i) entry of R is $||u_i||$, so

$$\det(A) = \pm ||u_1|| \, ||u_2|| \cdots ||u_n||.$$

So you can use Gram-Schmidt to compute determinants (up to sign)!

Application: computing eigenvalues

Let A be an $n \times n$ matrix with real eigenvalues. Here is an algorithm:

 $A=Q_1R_1$ QR factorization $A_1=R_1Q_1$ swap the Q and R $=Q_2R_2$ find its QR factorization $A_2=R_2Q_2$ swap the Q and R $=Q_3R_3$ find its QR factorization et cetera

Theorem

The matrices A_k converge to an upper triangular matrix, and the diagonal entries converge (quickly!) to the eigenvalues of A.

This gives a computationally efficient way (called the $\it QR$ algorithm) to find the eigenvalues of a matrix.