Variation of [v] in Cook Islands Māori

Quartz Colvin^{Rutgers University}

COOK ISLANDS MĀORI

2

Variation of [v] in Cook Islands Māori

1.0 Introduction

In this paper, we will do a statistical analysis of [v] across a sample of islands in Cook Islands Māori (CIM). It's known that in many dialects and other varieties of Māori, this phoneme can be realized as [w] or [v]. This paper aims to take a statistical approach to this generalization.

This paper has four sub-questions to investigate. First, how does w~v duration vary by island and second, how does intensity for these phonemes vary by island. The other two questions are about identifying information about the surface forms of w~v by island. Specifically, we will model f0 and f2 to determine whether certain islands have a voiced phoneme realized. Finally, the f2 model will help us determine which islands have higher rates of [w]s surfacing and which have more [v]s surfacing.

1.1 Background (CIM)

Cook Islands Māori is an Eastern Polynesian language classified as *Endangered*. It is very closely related to Aotearoa Māori, but is definitely different from it.

It's known across both Aotearoa (NZ) Māori and CIM that some speakers regularly pronounce [v] as [w], but it isn't clear to anyone who does this more and what conditions it.

???fill in

2.0 Methods

???fill in

3.0 Data

???fill in

4.0 Analysis

This section readdresses the main questions about the w~v alternation. First, how does duration differ by island and second, how does intensity vary by island? Finally, do any islands have regular occurrence of [w] instead of [v] surfacing. For this final question, we will compare f0 and f2 separately.

Note that in all of my models, I did not control for where w~v occurs in the word, since I am looking at general frequency information and not doing a phonological analysis of specific environments in which [w] or [v] occurs more.

???discuss autocorrelation issue

4.1 Duration by island

???fill in

island	word	duration
Atiu	ava	0.08
Atiu	ava	0.07
Atiu	ava	0.14
Atiu	ava	0.11
Atiu	ava	0.05
Atiu	ava	0.13
	Atiu Atiu Atiu Atiu Atiu Atiu	Atiu ava Atiu ava Atiu ava Atiu ava Atiu ava Atiu ava

term	estimate	std.error	statistic	p.value
(Intercept)	0.0660169	0.0033898	19.4750727	0.0000000
islandMauke	-0.0003532	0.0038067	-0.0927931	0.9260887
islandPenrhyn	0.0179242	0.0044121	4.0624899	0.0000528
islandRarotonga	-0.0208246	0.0044925	-4.6354104	0.0000041

Figure 1

4.2 Intensity by island

???fill in

island	word	intensity
Atiu	ava	54.08202
Atiu	ava	58.06061
Atiu	ava	48.40481
Atiu	ava	54.18315
Atiu	ava	49.59224
Atiu	ava	53.07335
	Atiu Atiu Atiu Atiu Atiu Atiu	Atiu ava Atiu ava Atiu ava Atiu ava Atiu ava Atiu ava

Figure 2

term	estimate	std.error	statistic	p.value
(Intercept)	57.4682172	0.8418656	68.2629370	0.0000000
islandMauke	2.2841738	0.9458247	2.4150075	0.0159356
islandPenrhyn	-6.9840858	1.0957577	-6.3737500	0.0000000
islandRarotonga	0.0787305	1.1157213	0.0705647	0.9437601

4.3 Voicing by island

speaker	island	word	f0	duration
TA	Atiu	ava	128.5916	0.08
TA	Atiu	ava	127.0908	0.08
TA	Atiu	ava	127.4540	0.08
TA	Atiu	ava	160.6464	0.07
TA	Atiu	ava	157.4397	0.07
TA	Atiu	ava	158.2820	0.07

F0 values by duration across the Cook Islands

Figure 3

term	estimate	std.error	statistic	p.value
(Intercept)	143.226548	1.779445	80.4894349	0.0000000
islandMauke	29.922893	2.005496	14.9204478	0.0000000
islandPenrhyn	-1.840639	2.304081	-0.7988602	0.4244468
islandRarotonga	40.179828	2.400413	16.7387166	0.0000000

4.4 w \sim v distribution by island

???fill in

speaker	island	word	f2
TA	Atiu	ava	964.3925
TA	Atiu	ava	950.2333
TA	Atiu	ava	2575.9621
TA	Atiu	ava	961.5736
TA	Atiu	ava	984.4541
TA	Atiu	ava	896.0441

Figure 4

term	estimate	std.error	statistic	p.value
(Intercept)	1090.9432	39.79288	27.415534	0
islandMauke	308.5190	44.70677	6.900944	0
islandPenrhyn	373.9431	51.79373	7.219853	0
islandRarotonga	360.9223	52.73736	6.843768	0

5.1 Data analysis

I used R (Version 4.5.0; R Core Team, 2024) and the R-packages broom (Version 1.0.8; Robinson, Hayes, & Couch, 2025), dplyr (Version 1.1.4; Wickham, François, Henry, Müller, & Vaughan, 2023), ds4ling (Version 1.0; Casillas, 2025), forcats (Version 1.0.0; Wickham, 2023a), ggplot2 (Version 3.5.2; Wickham, 2016), ggpubr (Version 0.6.0; Kassambara, 2023), here (Version 1.0.1; Müller, 2020), lme4 (Version 1.1.37; Bates, Mächler, Bolker, & Walker, 2015), lmerTest (Version 3.1.3; Kuznetsova, Brockhoff, & Christensen, 2017), lubridate (Version 1.9.4; Grolemund & Wickham, 2011), Matrix (Version 1.7.3; Bates, Maechler, & Jagan, 2025), papaja (Version 0.1.3; Aust & Barth, 2024), purrr (Version 1.0.4; Wickham & Henry, 2025), readr (Version 2.1.5; Wickham, Hester, & Bryan, 2024), stringr (Version 1.5.1; Wickham, 2023b), tibble (Version 3.2.1; Müller & Wickham, 2023), tidyr (Version 1.3.1; Wickham, Vaughan, & Girlich, 2024), tidyverse (Version 2.0.0; Wickham et al., 2019) and tinylabels (Version 0.2.5; Barth, 2023) for all my analyses.

6.0 Conclusion

???fill in

References

- Aust, F., & Barth, M. (2024). papaja: Prepare reproducible APA journal articles with R

 Markdown. https://doi.org/10.32614/CRAN.package.papaja
- Barth, M. (2023). *tinylabels: Lightweight variable labels*. Retrieved from https://cran.r-project.org/package=tinylabels
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
- Bates, D., Maechler, M., & Jagan, M. (2025). *Matrix: Sparse and dense matrix classes and methods*. https://doi.org/10.32614/CRAN.package.Matrix

- Casillas, J. (2025). ds4ling: Datasets and functions developed for SPAN658: Data science for linguists. Retrieved from https://github.com/jvcasillas/ds4ling
- Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. *Journal* of Statistical Software, 40(3), 1–25. Retrieved from https://www.jstatsoft.org/v40/i03/
- Kassambara, A. (2023). Ggpubr: 'ggplot2' based publication ready plots.

 https://doi.org/10.32614/CRAN.package.ggpubr
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. *Journal of Statistical Software*, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
- Müller, K. (2020). Here: A simpler way to find your files. https://doi.org/10.32614/CRAN.package.here
- Müller, K., & Wickham, H. (2023). *Tibble: Simple data frames*. https://doi.org/10.32614/CRAN.package.tibble
- R Core Team. (2024). R: A language and environment for statistical computing. Vienna,
 Austria: R Foundation for Statistical Computing. Retrieved from
 https://www.R-project.org/
- Robinson, D., Hayes, A., & Couch, S. (2025). Broom: Convert statistical objects into tidy tibbles. https://doi.org/10.32614/CRAN.package.broom
- Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.

 Retrieved from https://ggplot2.tidyverse.org
- Wickham, H. (2023a). Forcats: Tools for working with categorical variables (factors). https://doi.org/10.32614/CRAN.package.forcats
- Wickham, H. (2023b). Stringr: Simple, consistent wrappers for common string operations. https://doi.org/10.32614/CRAN.package.stringr
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., . . . Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

- Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). *Dplyr: A grammar of data manipulation*. https://doi.org/10.32614/CRAN.package.dplyr
- Wickham, H., & Henry, L. (2025). Purrr: Functional programming tools. https://doi.org/10.32614/CRAN.package.purrr
- Wickham, H., Hester, J., & Bryan, J. (2024). Readr: Read rectangular text data. https://doi.org/10.32614/CRAN.package.readr
- Wickham, H., Vaughan, D., & Girlich, M. (2024). *Tidyr: Tidy messy data*. https://doi.org/10.32614/CRAN.package.tidyr