Algorithms for Massive Data Problems

longhuan@sjtu.edu.cn

Massive data problem 1

- The input data is too large to be stored in random access memory.
- Streaming model: data arrive one at a time.
- E.g. $a_1, a_2, ..., a_n$ where $a_i \in [1, m]$ and $m = 2^b$ are IP addresses. We would prefer algorithm polynomial in b and $\log n$.

Example: Random sampling 'on the fly'

- A stream a_1, a_2, \dots, a_n .
- To select an index i with probability proportional to the value of a_i .

Sleeping Experts algorithm: (sum of the a_i 's seen so far, index i selected with probability $\frac{a_i}{s}$)

- Initially $(s = a_1, i = 1)$
- When the data a_{j+1} comes

$$i \rightarrow j + 1$$
 with probability $\frac{a_{j+1}}{s + a_{j+1}}$; $s = s + a_{j+1}$.

Frequency Moments of Data Streams

- A stream $a_1, a_2, ..., a_n$, where $a_i \in [1, m]$.
- *n*, *m* are very large.
- Goal: determine the number of distinct a_i in the sequence.

Traditional algorithm

- O(m) space, or
- $O(n \log m)$ space

Goal: $O(\log n + \log m)$

- Impossible for deterministic algorithm.
- Trick: randomization and approximation.

Frequency Moments of Data Streams

- A stream $a_1, a_2, ..., a_n$, where $a_i \in [1, m]$.
- *n*, *m* are very large.
- Goal: determine the number of distinct a_i in the sequence.

Traditional algorithm

- O(m) space, or
- $O(n \log m)$ space

Goal: $O(\log n + \log m)$

- Impossible for deterministic algorithm.
- Trick: randomization and approximation.

Frequency Moments of Data Streams

- A stream $a_1, a_2, ..., a_n$, where $a_i \in [1, m]$.
- *n*, *m* are very large.
- To determine the number of distinct a_i in the sequence.
- ✓ Suppose $n \ge m + 1$,
- ✓ Suppose the Algorithm uses < m bits of memory on all inputs.
 </p>

There will be a contradiction!

Beat the Lower Bound

The set S of distinct element

- Suppose it's chosen u.a.r. from {1, ..., m}.
- Let *min* be the minimum element in *S*.

The expected value of min is: $\frac{m}{|s|+1}$

Thus
$$|S| \approx \frac{m}{min} - 1$$

Keeping track of min in $O(\log m)$ space!

Beat the Lower Bound

In general, the set *S* is *not* chosen u.a.r.

Hash function:

$$h: \{1,2,\ldots,m\} \to \{0,1,2,\ldots,M-1\}.$$

Keep track of the minimum hash value.

Hash function family!

2-Universaly/Pairwise Independent Hash Functions

A set of hash functions

$$H = \{h \mid h: \{1,2,...,m\} \rightarrow \{0,1,2,...,M-1\}\}$$

is 2-universal or pairwise independent if for all x and y in $\{1,2,...,m\}$ with $x \neq y$, h(x) and h(y) are

- ① each equally likely to be any element of $\{0,1,2,...,M-1\}$, and
- 2 are statistically independent.

For all w, z:

$$Prob_{h\sim H}(h(x)=w\wedge h(y)=z)=\frac{1}{M^2}.$$

2-Universaly/Pairwise Independent Hash Functions

M is a prime number greater than m. For each pair of integers a and b in the range [0, M-1], define a hash function

$$h_{ab}(x) = ax + b \pmod{M}$$

Then $H = \{h_{ab} \mid a, b \in [0, M - 1]\}$ is 2-universal.

Distinct Element Counting Algorithm

Let $b_1, b_2, ..., b_d$ be the distinct values appearing in input.

- ① Select h from H,
- ② $S = \{h(b_1), h(b_2), ..., h(b_d)\}$ is a set of d random and pairwise independent values from the set $\{0, 1, 2, ..., M-1\}$.

Claim: $d \approx \frac{M}{min}$

M is a prime number greater than m. For each pair of integers a and b in the range [0, M-1], define a hash function

$$h_{ab}(x) = ax + b \pmod{M}$$
 Then $H = \{h_{ab} \mid a, b \in [0, M-1]\}$ is 2-universal.

Lemma. With probability at least $\frac{2}{3} - \frac{d}{M}$, we have $\frac{d}{6} \le \frac{M}{M} \le 6d$, where min is the smallest element of S.

Number of Occurrences of a Given Element

A stream $a_1, a_2, ..., a_n$ where $a_i \in \{0,1\}$. We want to count the number of 1s (m) in this sequence.

We can obviously do this in $\log n$ space. Goal: $\log \log n$.

Strategy: keep a value k such that $2^k \approx m$.

Represent k will need only $\log \log n$ space.

```
Algorithm.
Initialize k = 0
For i = 1 to n do
if x_i = 0 then k = k;
if x_i = 1 then k + + with probability \frac{1}{2^k}.
Output 2^k - 1.
```

Massive data problem 2

The input is stored in the memory, but because the input is so large, we would need to

- 1 produce a much smaller approximation to it, or
- 2 perform an approximate computation on it in low space.

Example: Matrix Algorithms using Sampling

Algorithms for matrix problems:

- Matrix multiplication
- Low-rank approximation
- SVD
- Compressed representations
- Linear regression
-

 $O(n^3)$ operations

- ✓ Pick a random sub-matrix and compute with that.
- ✓ <u>Pick a subset of columns or rows</u> of the input matrix.

A is an $m \times n$ matrix

B is an $n \times p$ matrix

A(:,k) the k^{th} column of A, a $m \times 1$ matrix;

B(k,:) the k^{th} row of B, a $1 \times p$ matrix.

$$AB = \sum_{k=1}^{n} A(:,k)B(k,:)$$

Sample k from the set $\{1,2,...,n\}$ with probability p_k .

A is an $m \times n$ matrix B is an $n \times p$ matrix

$$AB = \sum_{k=1}^{n} A(:,k)B(k,:)$$
Sample k from the set $\{1,2,...,n\}$ with

Sample *k* probability p_k .

Define an associated random matrix variable

$$X = \frac{1}{p_k} A(:, k) B(k,:)$$
 with probability p_k .

$$E(X) = \sum_{k=1}^{n} Prob(z = k)(X = x)$$

$$= \sum_{k=1}^{n} Prob(z = k) \frac{1}{p_k} A(:, k)B(k,:) = AB.$$

Define an associated random matrix variable

$$X = \frac{1}{p_k} A(:, k) B(k,:)$$
 with probability p_k .

$$E(X) = AB$$

$$Var(X) = \sum_{i=1}^{m} \sum_{j=1}^{p} Var(x_{ij})$$

$$= \sum_{k} \frac{1}{p_k} |A(:,k)|^2 \cdot |B(k,:)|^2 - ||AB||_F^2$$

$$A = B^T$$
, length squared sampling: $p_k = \frac{|A(;,k)|^2}{\|A\|_F^2}$.

Define an associated random matrix variable

$$X = \frac{1}{p_k} A(:, k) B(k,:)$$
 with probability p_k .

Length squared sampling:
$$p_k = \frac{|A(;,k)|^2}{\|A\|_F^2}$$
.

Estimate AB:

Do s independent trials. Each trial i, i = 1, 2, ..., s yields a matrix X_i .

Output
$$\frac{1}{S}\sum_{i=1}^{S} X_i$$

Estimate AB:

Do s independent trials. Each trial i, i = 1, 2, ..., s yields a matrix X_i .

Output
$$\frac{1}{s} \sum_{i=1}^{s} X_i$$

$$\begin{split} \frac{1}{s} \sum_{i=1}^{s} X_{i} &= \frac{1}{s} \left(\frac{A(:,k_{1})B(k_{1},:)}{p_{k_{1}}} + \frac{A(:,k_{2})B(k_{2},:)}{p_{k_{2}}} + \dots + \frac{A(:,k_{s})B(k_{s},:)}{p_{k_{s}}} \right) \\ &= \left(\frac{A(:,k_{1})}{\sqrt{sp_{k_{1}}}}, \frac{A(:,k_{2})}{\sqrt{sp_{k_{2}}}}, \dots, \frac{A(:,k_{s})}{\sqrt{sp_{k_{s}}}} \right) \cdot \left(\frac{B(k_{1},:)}{\sqrt{sp_{k_{1}}}}, \frac{B(k_{2},:)}{\sqrt{sp_{k_{2}}}}, \dots, \frac{B(k_{s},:)}{\sqrt{sp_{k_{s}}}} \right) \\ &= C_{m \times s} \cdot R_{s \times p} \end{split}$$

Estimate AB:

Do s independent trials. Each trial i, i = 1, 2, ..., s yields a matrix X_i . Output $\frac{1}{s} \sum_{i=1}^{s} X_i$

$$AB \approx C_{m \times s} \cdot R_{s \times p} = \left(\frac{A(:,k_1)}{\sqrt{sp_{k_1}}}, \frac{A(:,k_2)}{\sqrt{sp_{k_2}}}, \cdots, \frac{A(:,k_s)}{\sqrt{sp_{k_s}}}\right) \cdot \left(\frac{B(k_1,:)}{\sqrt{sp_{k_1}}}, \frac{B(k_2,:)}{\sqrt{sp_{k_2}}}, \cdots, \frac{B(k_s,:)}{\sqrt{sp_{k_s}}}\right)$$

Theorem. Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. The product AB can be estimated by CR, where C is an $m \times s$ matrix consisting of S columns of S picked according to length-squared distribution and scaled as above, S is the $S \times p$ matrix as above. Then the error is bounded by

$$E(\|AB - CR\|_F^2) \le \frac{\|A\|_F^2 \|B\|_F^2}{s}$$

Thus to ensure $E(\|AB - CR\|_F^2) \le \epsilon^2 \|A\|_F^2 \|B\|_F^2$, it suffices to make s greater than or equal to $\frac{1}{\epsilon^2}$. If ϵ is $\Omega(1)$, so is $s \in O(1)$, then the multiplication CR can be carried out in time O(mp).

Implementing Length Squared Sampling

Sketch of a Large Matrix

- Interpolative approximation
- SVD