MESTRADOS INTEGRADOS EM ENGª MECÂNICA E EM ENGª E GESTÃO INDUSTRIAL | 2017-18

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 3h (20m de tolerância).

Prova de Reavaliação Global

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos quatro grupos utilizando folhas de capa distintas.

GRUPO I

1. [3,3] Sejam as aplicações lineares $S \in L(\mathbb{R}^3, \mathbb{R}^2)$, $T \in L(\mathbb{R}^3, \mathbb{R}^3)$ e $R \in L(\mathbb{R}^2, \mathbb{R}^3)$

$$S(x, y, z) = (x - y + z, x + z), T(x, y, z) = (x + y + z, x + z, -x + y - z)$$

$$R(x, y) = (x - 2y, -x - y, 4x - 2y)$$

definidas em relação às bases canónicas $E_3 \subset \mathbb{R}^3$ e $E_2 \subset \mathbb{R}^2$.

- **a)** Calcule o núcleo e o contradomínio de *T*. Para cada um desses subespaços, indique uma base e conclua em relação à sua dimensão.
- b) Mostre que apenas uma das funções é injetiva e obtenha a sua função inversa.
- **2.** [1,7] Considere as transformações lineares definidas na pergunta 1. e a base $U = \{(1,0,1),(0,-1,-1),(0,1,0)\} \subset \mathbb{R}^3$. Obtenha a matriz $m(RS-T^2)_{E_3,U}$, representação matricial de $RS-T^2$ em relação às bases E_3 e U.
- **3.** [3,6] Sejam o plano M: 2x+y+z=2, o ponto R=(1,2,1), e a reta, r, com a equação vetorial $X(t)=P+t\vec{a}$, $t\in\mathbb{R}$, em que P=(-1,0,1) e $\vec{a}=(1,-2,3)$. Determine:
 - a) A equação vetorial da reta, h, contida no plano M, concorrente com a reta r e que passa num ponto, S, que é a projeção ortogonal de R sobre o plano M.
 - **b**) A equação vetorial de uma reta, s, que passa em R, é concorrente com a reta r e faz um ângulo de 60° com o plano M.

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 3h (20m de tolerância).

Prova de Reavaliação Global

GRUPO II

- **4.** [4,5] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^4$, em que $\vec{a} = (1,1,5,1)$, $\vec{b} = (2,-1,1,2)$ e $\vec{c} = (3,0,6,-3)$, o subespaço de \mathbb{R}^4 , $\mathbf{H} = \{(x,y,z,w) \in \mathbb{R}^4 : x+y-z-w=0\}$, e o vetor $\vec{d} = (\alpha, \alpha, \alpha - 1, \alpha) \in \mathbb{R}^4$.
 - a) Calcule o subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço obtido que inclua apenas elementos de S. Justifique.
 - **b**) Tendo em conta o resultado obtido na alínea anterior, determine o valor de $\alpha \in \mathbb{R}$ de modo que o conjunto $U = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\}$ seja linearmente dependente.
 - c) Recorrendo ao maior número possível de elementos de H, obtenha uma base ortogonal, V, para o espaco \mathbb{R}^4 .
- 5. [1,8] Calcule, usando o método da condensação e indicando todas as operações efetuadas, o determinante da matriz real:

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 & k \\ w & k & w+1 & -w+k^2 \\ k-1 & w & -k-1 & kw+k+1 \\ 2k-1 & k & -1-2k & (k+1)^2 \end{bmatrix}$$

6. [3,1] Seja a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^3$, definida, em relação à base canónica, E, para o espaço \mathbb{R}^3 , por:

$$S(1,0,0) = (1,3,4)$$
, $S(0,1,0) = (2,6,8)$, $S(0,0,1) = (1,3,4)$

Considere a base $B = \{(1,0,0), (1,0,-1), (1,1,-1)\} \subset \mathbb{R}^3$.

- a) Calcule os valores próprios e os espaços próprios que lhes estão associados.
- **b)** Determine uma base de vetores próprios, U, para o espaço \mathbb{R}^3 e obtenha as matrizes $S_{U.E}$ e $S_{B.B}$.
- **7.** [2,0] Sejam os conjuntos $S = \{\vec{x}_1, \vec{x}_2, \vec{x}_3, ..., \vec{x}_s\} \subset \mathbb{R}^n$ e $K = \{\vec{y}_1, \vec{y}_2, \vec{y}_3, ..., \vec{y}_k\} \subset \mathbb{R}^n$. Mostre que L(S) = L(K), se e só se $\vec{x}_i \in L(K)$, i = 1, 2, ..., s e $\vec{y}_i \in L(S)$, j = 1, 2, ..., k.