1. The daily flight of an airline company appears in following figure. CITY lists the cities, and ORIG[K] and DEST[K] denote the cities of the origin and destinations respectively, of the flight NUMBER[K]. Draw the corresponding directed graph of the data.

Total marks: 20

3

	CITY		NUMBER	ORIG	DEST
1	Atlanta	1	701	2	3
2	Boston	2	702	3	2
3	Chicago	3	705	5	3
4	Miami	4	708	3	4
5	Philadelphia	5	711	2	5
	(a)	6	712	5	2
		7	713	5	1
		8	715	1	4
		9	717	5	4
		10	718	4	5
			(b)		

- 2. What is the complexity of an algorithm?
- 3. Consider an algorithm which finds the minimum number among n numbers. If the complexity function is C(n):
- i) Describe and find C(n) for the worst case
- ii) Describe and find C(n) for the best case
- iii) Find C(n) for the average case when n=3

$$m \leftarrow a[1];$$
 For $i \leftarrow 2$ to size of input; if $m > a[i]$ then $m \leftarrow a[i];$ output $m.$

4. Consider the following array representation. Calculate the address of A[1][2] (base address is 100).

