Lecture 23.01.2020 - Latex

To make references to equations in the text, type \label{<name>} and then refer to it using \ref{<name>}, it will automatically be done.

There is a command for splitting equation over multiple lines, look it up.

Greek letters

Name	Symbol
pi	π
chi	χ
rho	ho
Pi	Π
Psi	Ψ

Symbols of binary operations

Name	Symbol
big triangle down	abla
dagger	†
minus	_
times	×

Unusual symbols

Name	Symbol
approximately parallel not in	~ ∥ ∉

Inline formulae

- $M = \{x \in A \mid x > 0\}$
- $f: X \to Y$
- $\tan \operatorname{alpha} = \tan \alpha$, $\ln(e) = \ln(e)$ It is easy to see that $23^{1993} \equiv 1 \mod G$ $\operatorname{sum} = \sum_{1}^{n} x$ $\operatorname{product} = \prod_{1}^{n} x$

- $\operatorname{supremum} = \sup x$
- limit with upper bound = $\overline{\lim} x$

Big formulae

$$\sum_{i=1}^{n} n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\overline{\lim}_{n\to\infty} a_n = \inf_n \sup_{m\geq n} a_m$$

1

$$\oint_{-\infty}^{+\infty} f(x)dx = \frac{1}{3}$$

$$\oint_{-\infty}^{+\infty} f(x)dx = \frac{1}{3}$$

$$\prod_{n=1}^{n} i = 0$$

Symbols of other operators or special characters

Name	Symbol
partials	∂
infinity	∞
nabla	∇
for all:	\forall :
norm	A
asterisk	*
not equal	\neq
in, owns	\in , \ni
greater or equal	\geq
lesser or equal	\leq