Mit csinál az alábbi Turing gép? Próbáljuk ki 1111 és 11111 bemenettel.

Milyen függvényt számol ki?

$$f(\underbrace{1...1}_{x \text{ db}}) = \underbrace{1...1}_{y \text{ db}} \longleftrightarrow f(x) = y$$

példe. f(u)= n MODZ

 Kövessük az alábbi
Turing gép működését
az aaba bemeneti szón.

A kezdőkonfiguráció: $q_0\Delta aaba \Delta$, Az elfogadó állapot: h_a (Δ az üres szalagcella jele)

a/a, R

b/b, R

 Δ/Δ , R

Milyen nyelvet fogad el?

Kövessük az alábbi
Turing gép működését
az aaba bemeneti szón.

A kezdőkonfiguráció: $q_o\Delta aaba~\Delta$, Az elfogadó állapot: h_a (Δ az üres szalagcella jele)

Milyen nyelvet fogad el? (a ww, $w \in \{a,b\}^*$ alakú szavakat)

Tekintsük azokat a determinisztikus Turing gépeket, amik üres szalaggal elindítva 1-eseket írnak a szalagra, majd megállnak. "k állapotú szorgos hód": az a k állapotú Turing gép, ami az összes lehetséges k állapotú közül a legtöbb 1-est írja ki, mielőtt megáll.

Tekintsük azokat a determinisztikus Turing gépeket, amik üres szalaggal elindítva 1-eseket írnak a szalagra, majd megállnak. "k állapotú szorgos hód": az a k állapotú Turing gép, ami az összes lehetséges k állapotú közül a legtöbb 1-est írja ki, mielőtt megáll.

- Miért nehéz a Turing-gépekkel kapcsolatos kérdések eldöntése?
- A 2 állapotú "szorgos hód"
 - Mennyit lép és mennyi 1-est ír a szalagra, amíg megáll:

· Válasz: 4 1-es 6 lépés után

- A 3 állapotú "szorgos hód"
 - Mennyit lép és mennyi 1-est ír a szalagra, amíg megáll:

Válasz: 6 1-es 14 lépés után

- A 4 állapotú "szorgos hód"
 - 13 1-est ír a szalagra 107 lépés után
- A legjobb 5 állapotú jelölt:
 - · 4098 1-est ir a szalagra 47.176.870 lépés után
- A legjobb 6 állapotú jelölt:
 - $\approx 3.5 \cdot 10^{18267}$ 1-est ir a szalagra $\approx 7.4 \cdot 10^{36534}$ lépés után