Classe 7: contingut

- Realisme: Il·luminació (2)
 - Breu recordatori de models empírics
 - Il·luminació en OpenGL 3.3 (1)
 - Càlcul de color en vèrtexs
 - Shading de polígons
 - Suavitzat d'arestes
 - Il·luminació en OpenGL 3.3 (2)
 - Càlcul de color en fragments

IDI 2018-2019 1Q

Models d'il·luminació (recordatori)

- Els models d'il·luminació simulen les lleis físiques que determinen el color d'un punt. El càlcul exacte és computacionalment inviable.
- Classificació dels models d'il·luminació:
 - Models Locals o empírics
 - Models Globals: traçat de raig, radiositat

- Focus puntuals
- No ombres
- No interreflexions de llum
- entre objectes
- No miralls

- Focus puntuals
- Reflexió especular de llum rebuda d'altres objectes
- Miralls

- Ombres i penombres
- Reflexió difusa de llum
- rebuda d'altres objectes No Miralls

IDI 2018-2019 1Q

Classe 7: contingut

- Realisme: Il·luminació (2)
 - Breu recordatori de models empírics
 - Il·luminació en OpenGL 3.3 (1)
 - Càlcul de color en vèrtexs
 - Shading de polígons
 - Suavitzat d'arestes
 - Il·luminació en OpenGL 3.3 (2)
 - Càlcul de color en fragments

IDI 2018-2019 1O

Càlcul color en un punt: models empírics

El càlcul el farem per cada vèrtex (al Vertex Shader) I **el farem en SCO**, per tant:

- Cal passar la posició del vèrtex a SCO
 - > multiplicant per (view * TG)
- Cal passar el vector normal a SCO
 - multiplicant per la matriu inversa de la transposada de (view * TG), -li direm NormalMatrix-

mat3 NormalMatrix = inverse (transpose (mat3 (view * TG)))

- La posició del focus de llum també ha d'estar en SCO
 - Multiplicat per view (si no la tenim directament en SCO)

IDI 2018-2019 1Q

Procés de visualització: Shading (colorat) de polígons Uniforms: Llums, TG, VM, PM Vertex Shader V_M , N, mat Càlcul coordenades de clipping Càlcul del color en el vèrtex Clipping Viewport Perspective Transform **Division** (xd,yd,zd, c_v) $\{(xf,yf,zf,cf)\}$ Rasterització + Z-buffer {(xf,yf,zf,cf)} Fragment Shader

Shading (colorat) de polígons

- Colorat Constant ≡ Flat shading → C_f=C1
 color uniforme per tot el polígon (funció del color calculat en un
 vèrtex); cada cara pot tenir diferent color.
- Colorat de Gouraud \equiv *Gouraud shading* \equiv *Smooth shading*

$$Ca = \frac{1}{Y1 - Y2} (C1(Ys - Y2) + C2(Y1 - Ys))$$

$$Cb = \frac{1}{Y3 - Y2} (C2(Y3 - Ys) + C3(Ys - Y2))$$

$$Cs = \frac{1}{Xb - Xa} (Ca(Xb - Xs) + Cb(Xs - Xa))$$

IDI 2018-2019 10

10

Flat versus Gouraud Shading

IDI 2018-2019 1Q

Limitacions del colorat de polígons:

- Taca especular en mig d'una cara → desapareix → discretitzant millor
- Taca en un vèrtex

- Il·luminació si ens apropem a un polígon gran → → discretitzant millor
- Efectes en cara d'un cub

IDI 2018-2019 1Q

12

Classe 7: contingut

- Realisme: Il·luminació (2)
 - Breu recordatori de models empírics
 - Il·luminació en OpenGL 3.3 (1)
 - Càlcul de color en vèrtexs
 - Shading de polígons
 - Suavitzat d'arestes
 - Il·luminació en OpenGL 3.3 (2)
 - Càlcul de color en fragments

IDI 2018-2019 1Q

Quin model d'il·luminació i shading s'utilitza? Per què no es veuen les arestes? Noteu la forma de les siluetes

IDI 2018-2019 1O

14

Suavitzat d'arestes

• Normal per cara vs normal per vèrtex

OI 2018-2019 1Q

Suavitzat d'arestes: exemple

• Normal per cara vs normal per vèrtex

IDI 2018-2019 10

16

Classe 7: contingut

- Realisme: Il·luminació (2)
 - Breu recordatori de models empírics
 - Il·luminació en OpenGL 3.3 (1)
 - Càlcul de color en vèrtexs
 - Shading de polígons
 - Suavitzat d'arestes
 - Il·luminació en OpenGL 3.3 (2)
 - Càlcul de color en fragments

IDI 2018-2019 1Q

Millor aproximació al càlcul del color en un punt: "Shading de Phong" en FS

Idea 2:

- Podem fer "out" del VS dels atributs associats a vèrtex com N, V (en SCO) i també de les constants de material.
- La rasterització aproximarà els seus valors pel fragment interpolant la informació dels vèrtexs del triangle [©]

Idea 1: Per cada píxel (fragment) càlcul del color

• Càlcul color per fragment: $FragColor = I_{\alpha\lambda}k_{\alpha\lambda} + \Sigma_i(I_{fi\lambda}k_{d\lambda}\cos(\Phi_i)) + \Sigma_i(I_{fi\lambda}k_{s\lambda}\cos^n(\alpha_i)$

 $cos(\Phi) => dot(L,N) en SCO$ $cos(\alpha) => dot(R, V) en SCO$

- Requereix info de llums => *uniforms*
- Requereix el punt, altres vectors en SCO o SCA i les constants material
- Tenim el punt en SCD => podríem calcular les seves coordenades en SCO o SCA; però cóm podem saber N i les constants material?

IDI 2018-2019 1O

Exercici 6:

Una escena està formada per dos cubs amb les cares paral·leles als plans de coordenades. El CUB1 té aresta 20, el centre de la seva base en (0,0,0) i és de color verd i mate; el CUB2 té aresta 20, centre de la seva base en (30,0,0) i és del mateix color verd però brillant. Il·luminem l'escena amb un focus groc situat en (50,10,0). L'obsevador es troba en una posició que pot veure les cares dels cubs ubicades en x=10 i x=40. Si es pinta l'escena amb OpenGL utilitzant model d'il·luminació de Phong en VS i Smooth shading (Gouraud Shading), de quin color es veuran aquestes cares? No hi ha llum ambient.

- a) La cara en x=10 és veurà de color verd constant, la cara en x=40 també és veurà de color constant però d'un verd més fosc.
- b) La cara en x=10 és veurà de color verd constant, la cara en x=40 també és veurà de color constant però d'un verd més clar.
- c) La cara en x=10 és veurà de color verd constant, la cara en x=40 també és veurà de color constant però d'un verd més clar i amb una taca especular groga en mig de la cara.
- d) La cara en x=10 és veurà amb diferents tonalitats de verd, la cara en x=40 també és veurà amb diferents tonalitats de verd però més clars i amb una taca especular groga en mig de la cara.

IDI 2018-2019 1Q

Exercici 7:

Un cub amb constants de material Kd=(0.8,0,0.8) i Ks=(1,1,1) i N=100, és il·luminat amb un focus que emet llum de color (1,1,0). No hi ha llum ambient. La càmera (correctament definida) és axonomètrica i l'observador i el focus estan a una distància 10 d'una cara (i mirant cap a ella) sobre una recta que és perpendicular a la cara i que passa pel seu centre. Indica, raonant la resposta:

- a) quins colors observa l'observador en el cub si s'utilitza *FLAT shading* (colorat constant)? Indica els colors dels vèrtexs.
- b) quins colors observa l'observador en el cub si es pinta amb *SMOOTH shading* (colorat de Gouraud)?

IDI 2018-2019 1Q 2

Exercici 8:

Volem il·luminar un polígon de 10x10 ubicat sobre el pla XZ i centrat en l'origen, amb un focus de llum blanca ubicat en la posició (0,2,0). No hi ha llum ambient. La normal del polígon és (0,1,0). Les constants de material del polígon són Kd=(0,0.8,0), Ks=(1,1,1) i Shininess= 100. Indica quina de les següents afirmacions és la correcta:

- a) Com la llum ha d'estar fixa en l'escena, el càlcul de la il·luminació s'ha de fer obligatòriament en el vèrtex shader per a cada vèrtex del polígon.
- Si el càlcul de la il·luminació es realitza en el fragment shader, cal passar la posició de la llum i la normal a coordenades de dispositiu.
- c) Si el càlcul de la il·luminació es realitza en el vèrtex shader, cal que les posicions del vèrtex, del focus i la normal estiguin referenciades totes respecte al sistema de coordenades de l'aplicació o de l'observador.
- d) La imatge -acoloriment- que s'obtindrà del polígon serà la mateixa tant si els càlculs es realitzen en el vertex com en el fragment shader; sempre que es realitzin en el sistema de coordenades adient.

2018-2019 IQ 2

Exercici 9:

Una escena està formada per dos cubs d'aresta 2 amb cares paral·leles als plans coordenats i centres als punts (0, 1, 0) i (3, 1, 0). El primer és vermell i el segon verd. Ambdós són mats.

Per error s'ubica a l'usuari a la posició (0, 1, 0) amb VRP al (3, 1, 0). L'òptica és axonomètrica amb un window = (-4, 4, -4, 4), zN = -1, zF = 6. S'ubica una llum blanca a (8, 1, 0). Si no hi ha llum ambient, i el background és blau, indica què es veurà en funció del mètode d'eliminació de parts amagades que s'utilitza:

- a) Si només s'empra back-face culling: un quadrat de color negre
- b) Si tenim zbuffer i back-face culling activats: un quadrat de color verd
- c) Si només tenim el zbuffer activat: un quadrat de color vermell
- d) Si només tenim el back-face culling activat: un quadrat de color verd

IDI 2018-2019 1Q

Classe 7: contingut

- Realisme: Il·luminació (2)
 - Breu recordatori de models empírics
 - Il·luminació en OpenGL 3.3 (1)
 - Càlcul de color en vèrtexs
 - Shading de polígons
 - Suavitzat d'arestes
 - Il·luminació en OpenGL 3.3 (2)
 - Càlcul de color en fragments

IDI 2018-2019 1O