

Overview Vishay Sensing Solution

Proximity and Light Sensing

What is light?

Sensing Solution - Overview

Light sensing

- VEML3328
- VEML6035
- VEML6031X00

Proximity sensing

- VCNL4200
- VCNL4030X01
- VCNL4035X01
- VCNL36826S

Proximity - Sensors

VCNL4200, VCNL4030X01, VCNL4035X01, VCNL36826S

Proximity - Working Principle

Proximity - Working Principle

- Functionality
 - The object is outside of the defined detection zone threshold is not yet crossed and the application remains off

Proximity - Working Principle

- Functionality
 - Object enters the detection zone, the threshold is crossed and the application is turned on

Proximity - Working Principle

- Functionality
 - Threshold is set as long as the object is in the defined detection zone (hysteresis)

Proximity - Working Principle

- Functionality
 - When the object leaves the defined detection zone the threshold is crossed and the application is turned off again

Proximity – Use cases

- Touchless switches
 - Soap dispenser
 - Hand dryer
- Wake up detection
 - Monitors
 - Automatic doors
- IOT devices
 - Thermostat
 - Home automation displays

Proximity – Design considerations General proximity working principle

- The peak of sensitivity (highest absolute measurement value is achieved by the sensor) is defined by the distance between emitter and detector which is mostly determined by the fixed package design
- The right-hand side of the peak is defined by the inverse square law
 - Proximity applications are typically operated on the right-hand side of the peak.
- The saturation area around the peak leads to a blind spot of the sensor where no detection is possible. This can be influenced by the sensor settings (IT, driving current)

Proximity – Design Considerations

Parameters

Sensor side

- Integration time (measurement time)
- VCSEL/IR-Emitter current (driving current)
- MPS (multi pulse) setting (number of consecutive measurement pulses per cycle)

Influence

Proximity – Design Considerations

Parameters

Application Side

- Reflectivity of the used reflection material
- Surface type & size
- Distance between object & sensor

Influence

Proximity – Important take aways

- The output value of the digital proximity sensor is given in digital counts (not in an actual distance!)
- The output value depends on the applied settings (internally as well as externally)
- The overall output behavior is described by its distance curve
- Every distance curve behaves based on the inverse square law (E= I/d^2) and therefore always declines by the power of two
- The differences in between the sensor determines the possible detection range

What is light?

ALS - Sensors

VEML6031X00, VEML6035

Smart Lighting – Overview

Ambient light sensing (ALS)

- Mimics the photopic vision of the human eye
- Output value can be transferred in lux (Brightness)

Application

- Display dimming & brightness control
- Light source differentiation

RGB - Sensing

- Provides more information about the visible light range
- Output value can be transferred into color values

Application

- Correlated Color Temperature (CCT)
- Optical encoding

Ambient light sensing – Design considerations

1000lx 0.1% transmissive glass 1lx

Necessary

- Define mechanical dimension (FOV)
- Define resolution based on the optical requirements
 - Integration time, Photodiode Size, Gain

Optional

 Implement automatic gain control algorithm to automatically adjust the result based on the lighting environment

• Implement light source differentiation based on IR-Channel to active more reliable results

regardless of the used light sources

TABLE 5	TABLE 5 - RESOLUTION AND MAXIMUM DETECTION RANGE AT PD_DIV4 = 0 (= x 4/4)											
	GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5			
IT (ms)	T	YPICAL RESOL	.UTION (lx/cour	nt)		MAXIMUM POSSIBLE ILLUMINATION (Ix)						
400	0.0034	0.0068	0.0103	0.0136		223	446	675	891			
200	0.0068	0.0136	0.0206	0.0272		446	891	1350	1783			
100	0.0136	0.0272	0.0412	0.0544		891	1783	2701	3565			
50	0.0272	0.0544	0.0824	0.1088		1783	3565	5402	7130			
25	0.0544	0.1088	0.1648	0.2176		3565	7130	10 803	14 260			
12.5	0.1088	0.2176	0.3297	0.4352		7130	14 260	21 607	28 521			
6.25	0.2176	0.4352	0.6594	0.8704		14 260	28 521	43 213	57 042			
3.125	0.4352	0.8704	1.3188	1.7408		(-) ⁽¹⁾	(-) ⁽¹⁾	(-) (1)	(-) ⁽¹⁾			

TABLE 6	TABLE 6 - RESOLUTION AND MAXIMUM DETECTION RANGE AT PD_DIV4 = 1 (= x 1/4)											
	GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5			
IT (ms)	Т	YPICAL RESOL	.UTION (lx/cour	nt)]	MAXI	MUM POSSIBL	E ILLUMINATIO	ON (lx)			
400	0.0136	0.0272	0.0412	0.0544]	891	1783	2701	3565			
200	0.0272	0.0544	0.0824	0.1088]	1783	3565	5402	7130			
100	0.0544	0.1088	0.1648	0.2176]	3565	7130	10 803	14 260			
50	0.1088	0.2176	0.3297	0.4352]	7130	14 260	21 607	28 521			
25	0.2176	0.4352	0.6594	0.8704	1	14 260	28 521	43 213	57 042			
12.5	0.4352	0.8704	1.3188	1.7408]	28 521	57 042	86 427	114 083			
6.25	0.8704	1.7408	2.6376	3.4816]	57 042	114 083	172 854	228 167			
3.125	1.7408	3.4816	5.2752	6.9632		(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾			

ALS – Important take aways

- The ALS channel (green channel) mimics the response of the human eye
- The output value can be transferred into a lux value (brightness) by the given resolution
- The sensitivity of the sensor is determined by the photodiode size, gain and integration time

TABLE 5	TABLE 5 - RESOLUTION AND MAXIMUM DETECTION RANGE AT PD_DIV4 = 0 (= x 4/4)											
	GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5			
IT (ms)	T	YPICAL RESOL	.UTION (lx/cour	nt)]	MAXI	MUM POSSIBL	E ILLUMINATIO	ON (lx)			
400	0.0034	0.0068	0.0103	0.0136]	223	446	675	891			
200	0.0068	0.0136	0.0206	0.0272		446	891	1350	1783			
100	0.0136	0.0272	0.0412	0.0544]	891	1783	2701	3565			
50	0.0272	0.0544	0.0824	0.1088		1783	3565	5402	7130			
25	0.0544	0.1088	0.1648	0.2176		3565	7130	10 803	14 260			
12.5	0.1088	0.2176	0.3297	0.4352]	7130	14 260	21 607	28 521			
6.25	0.2176	0.4352	0.6594	0.8704]	14 260	28 521	43 213	57 042			
3.125	0.4352	0.8704	1.3188	1.7408		(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾			

TABLE 6	TABLE 6 - RESOLUTION AND MAXIMUM DETECTION RANGE AT PD_DIV4 = 1 (= x 1/4)											
	GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5			
IT (ms)	Т	YPICAL RESOL	.UTION (lx/cour	nt)		MAXIMUM POSSIBLE ILLUMINATION (Ix)						
400	0.0136	0.0272	0.0412	0.0544		891	1783	2701	3565			
200	0.0272	0.0544	0.0824	0.1088	1	1783	3565	5402	7130			
100	0.0544	0.1088	0.1648	0.2176		3565	7130	10 803	14 260			
50	0.1088	0.2176	0.3297	0.4352]	7130	14 260	21 607	28 521			
25	0.2176	0.4352	0.6594	0.8704	1	14 260	28 521	43 213	57 042			
12.5	0.4352	0.8704	1.3188	1.7408		28 521	57 042	86 427	114 083			
6.25	0.8704	1.7408	2.6376	3.4816]	57 042	114 083	172 854	228 167			
3.125	1.7408	3.4816	5.2752	6.9632		(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾			

Fig. 5 - Relative Sensitivity, ALS Channel vs. Wavelength

RGB - Sensors

VEML3328

Color and light detection – What can we see ?

Color and light detection – What can we see ?

Color and light detection – What can we see ?

Color and light detection – What can we see ?

VEML3328 Normalized Responsivity

Color and light detection- Light source detection

The more channels we have to "break down" the light, the more we know about the type of light being used

Color and light detection- Light source detection

Incandescent

Color and light detection- Light source detection

Sunlight

© VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

Cool White LED 1

© VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

Color and light detection- Light source detection

Flourescent

© VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

Color and light detection- Desinging it in

High sensitivity needed?

		DG: x 4									
	GAIN: x 4	GAIN: x 2	GAIN: x 2 GAIN: x 1								
IT (ms)	TYPICAL RESOLUTION (lx/cnt)										
400	0.003	0.006	0.012	0.024							
200	0.006	0.012	0.024	0.048							
100	0.012	0.024	0.048	0.096							
50	0.024	0.048	0.096	0.192							
		DG	x 2								
	GAIN: x 4	GAIN: x 2	GAIN: x 1	GAIN: x 1/2							
IT (ms)		TYPICAL RESC	LUTION (lx/cnt	()							
400	0.006 0.012		0.024	0.048							
200	0.012	0.024	0.048	0.096							
100	0.024	0.048	0.096	0.192							
50	0.048	0.096	0.192	0.384							
		DG	x 1								
	GAIN: x 4	GAIN: x 2	GAIN: x 1	GAIN: x 1/2							
IT (ms)		TYPICAL RESC	LUTION (lx/cnt)							
400	0.012	0.024	0.048	0.096							
200	0.024	0.048	0.096	0.192							
100	0.048	0.096	0.192	0.384							
50	0.096	0.192	0.384	0.768							

GAIN: x 4	GAIN: x 2	GAIN: x 1	GAIN: x 1/2
MAXI	MUM POSSIBL	E ILLUMINATION	ON (lx)
197	393	786	1573
393	786	1573	3146
786	1573	3146	6291
1573	3146	6291	12 583
	DG:	x 2	
GAIN: x 4	GAIN: x 2	GAIN: x 1	GAIN: x 1/2
MAXI	MUM POSSIBL	E ILLUMINATION	ON (lx)
393	786	1573	3146
786	1573	3146	6291
1573	3146	6291	12 583
3146	6291	12 583	25 165
	DG:	x 1	
GAIN: x 4	GAIN: x 2	GAIN: x 1	GAIN: x 1/2
MAXI	MUM POSSIBL	E ILLUMINATION	ON (lx)
786	1573	3146	6291
1573	3146	6291	12 583
3146	6291	12 583	25 165
6291	12 583	25 165	50 331

Detecting Color or CCT?

Cover glass material and window size

Fig. 12 - Window Area for an Opening Angle of ± 55°

_ J

Color and light detection- Applications

RGB – Important take aways

- The green channel mimics the response of the human eye and can be used for ambient light measurement
- The RGB output levels can be converted with the help of the mapping matrix into actual color values
- The sensitivity of the sensor is determined by the photodiode size, gain and integration time

TABLE 5 - RESOLUTION AND MAXIMUM DETECTION RANGE AT PD_DIV4 = 0 (= x 4/4)											
	GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		
IT (ms)	Т	YPICAL RESOL	UTION (lx/cour	nt)]	MAXI	MUM POSSIBL	E ILLUMINATIO	ON (lx)		
400	0.0034	0.0068	0.0103	0.0136]	223	446	675	891		
200	0.0068	0.0136	0.0206	0.0272		446	891	1350	1783		
100	0.0136	0.0272	0.0412	0.0544		891	1783	2701	3565		
50	0.0272	0.0544	0.0824	0.1088		1783	3565	5402	7130		
25	0.0544	0.1088	0.1648	0.2176		3565	7130	10 803	14 260		
12.5	0.1088	0.2176	0.3297	0.4352]	7130	14 260	21 607	28 521		
6.25	0.2176	0.4352	0.6594	0.8704]	14 260	28 521	43 213	57 042		
3.125	0.4352	0.8704	1.3188	1.7408		(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾		

TABLE 6 - RESOLUTION AND MAXIMUM DETECTION RANGE AT PD_DIV4 = 1 (= x 1/4)											
	GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		GAIN x 2	GAIN x 1	GAIN x 0.66	GAIN x 0.5		
IT (ms)	Т	YPICAL RESOL	.UTION (lx/cour	nt)]	MAXI	MUM POSSIBL	E ILLUMINATIO	ON (lx)		
400	0.0136	0.0272	0.0412	0.0544]	891	1783	2701	3565		
200	0.0272	0.0544	0.0824	0.1088]	1783	3565	5402	7130		
100	0.0544	0.1088	0.1648	0.2176		3565	7130	10 803	14 260		
50	0.1088	0.2176	0.3297	0.4352	1	7130	14 260	21 607	28 521		
25	0.2176	0.4352	0.6594	0.8704	1	14 260	28 521	43 213	57 042		
12.5	0.4352	0.8704	1.3188	1.7408]	28 521	57 042	86 427	114 083		
6.25	0.8704	1.7408	2.6376	3.4816]	57 042	114 083	172 854	228 167		
3.125	1.7408	3.4816	5.2752	6.9632	1	(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾	(-) ⁽¹⁾		

