

Yotsuba Network Design Brief

360CT - Advanced Network Management and Design

By James Thomas - 9195071 Liam Smith - SID Alexander Collins - SID

Contents

Ta	able o	of Con	tents	i						
1	Intr	oducti	ion	1						
2	Rec. 2.1 2.2 2.3 2.4 2.5	Expan Netwo IP Ad Emplo	ents and Assumptions asion	. 2						
3	Phy	sical N	Network Design	4						
	3.1 Devices									
		3.1.1	CCTV	. 4						
		3.1.2	Wireless Access Points	. 4						
		3.1.3	Switches	. 4						
		3.1.4	Routers	. 4						
		3.1.5		. 4						
	3.2	Wiring	g	. 4						
		3.2.1	Fibre	. 4						
		3.2.2	Copper - CAT6a	. 5						
	3.3	Device	e Placement	. 5						
		3.3.1	Ground Floor							
		3.3.2	1st Floor							
		3.3.3	2nd Floor							
		3.3.4	3rd Floor							
		3.3.5	4th Floor							
		3.3.6	5th Floor							
		3.3.7	6th Floor							
		3.3.8	7th Floor							
		3.3.9	Server Room	. 6						
4	\mathbf{Log}	Logical Network Design								
	4.1	Justifi	ications	. 8						
5	Ado	Addressing Scheme								
	5.1		ne	. 9						
	5.0	Ingtif	destions	C						

6	Net	work Policies	10						
	6.1	Issues	10						
	6.2	Resolutions	10						
7	Security								
	7.1	Previous Security Threats	11						
		7.1.1 IP Theft	11						
		7.1.2 Internal Breach	11						
		7.1.3 Identity Theft	11						
	7.2	Possible Security Threats	11						
		7.2.1 Some new attack	11						
	7.3	Solutions	11						
		7.3.1 Physical Security Measures	12						
		7.3.2 Access Control	12						
8	Monitoring and Maintenance								
	8.1	Software	13						
	8.2	Justifications	13						
9	Disa	ster Plan	14						
	9.1	Risks	14						
	9.2	Plan	14						
10	\mathbf{Add}	itional Problems	15						
	10.1	Renting One Floor Out	15						
		Splitting Between Two Buildings	16						
R€	efere	nces	17						

1. Introduction

This is to get references to appear (Heikkinen & Hamalainen, 2020)

2. Requirements and Assumptions

2.1 Expansion

An assumed rate of expansion of 10-20 new employees annually is being used for this project. This expansion will be spread over all departments acquiring 1-2 new employees annually.

2.2 Network Speeds and Bandwidth

Research showed that private internet for the greater Tokyo region had available speeds in the range of 10Mbps to 1Gbps. It is assumed that enterprise internet speeds will be within a similar range and that the Yotsuba Group will be purchasing at the top range. Therefor a 10Gbps connection will be used for the designs.

2.3 IP Address Block

As the Yotsuba Group is a rapidly expanding company, it is assumed that they have purchased their own Class B IP block. This block is IP RANGE and will be used for all designs.

2.4 Employee breakdown

As no information on individual department employee count was provided it has been assumed based on departmental needs.

- Research and Technology 50 employees
- Financial Planning 20 employees
- Sales 34 employees
- Material and Design 50 employees
- Personnel 20 employees
- Planning and Manufacturing 60 employees
- Legal and Accounting 10 employees
- Marketing 20 employees

- IT 20 employees
- \bullet Department Head and Assistants 16 (8+8) employees

2.5 Extra Devices

3. Physical Network Design

3.1 Devices

- 3.1.1 CCTV
- 3.1.2 Wireless Access Points
- 3.1.3 Switches
- 3.1.4 Routers
- 3.1.5

3.2 Wiring

3.2.1 Fibre

3.2.1.1 Multimode Fiber - OM4

Could be used in and between core/access due to high data transfer rates (10Gbps) over a distance of 550m.

While the distance of 550m is overkill for a 7 story building, the allowance for higher distances at higher speeds (100m at 100Gbps) will be good for future proofing our solution.

Use case would be from server room to server cupboard.

OM4 would be used due to the cost/benifit compared to OM5 which would be overkill for our setup.

Type	Distance for a 10Gbps connection	Cost per meter
OM1	$33\mathrm{m}$	
OM2	82m	
OM3	300m	
OM4	550m	
OM5	550m	

3.2.2 Copper - CAT6a

Allows us to utilise 10Gbps over 100m. Use case would be from workstations to server cupboard.

3.3 Device Placement

3.3.1 Ground Floor

Figure 3.1: Ground floor floor plan

3.3.2 1st Floor

MAKE NEW 1ST FLOOR

3.3.3 2nd Floor

MAKE NEW 2ND FLOOR

3.3.4 3rd Floor

3.3.5 4th Floor

This is text

3.3.6 5th Floor

This is text

Figure 3.2: 3rd floor floor plan

Figure 3.3: 4th floor floor plan

3.3.7 6th Floor

This is text

3.3.8 7th Floor

MAKE NEW TOP FLOOR

3.3.9 Server Room

Figure 3.4: 5th floor floor plan

Figure 3.5: 6th floor floor plan

4. Logical Network Design

Figure 4.1: A Network Design produced in PacketTracer.

4.1 Justifications

5. Addressing Scheme

- 5.1 Scheme
- 5.2 Justifications

6. Network Policies

- 6.1 Issues
- 6.2 Resolutions

7. Security

7.1 Previous Security Threats

The Yotsuba Group reported a number of security incidents in the last 6 months. These have been assumed below.

7.1.1 IP Theft

The company had some intellectual property stolen from a physical attack on the servers within the company premises, the attackers were not found or apprehended as the security was not to standard. This attack was made possible by a lack of physical security measures on there network infrastructure.

7.1.2 Internal Breach

30% of attacks come from employee's within the companies, some data was accessed by departments who has access to other parts of the organisation that they should not have had. A lack of access control was the cause of this attack.

7.1.3 Identity Theft

An external attack left the customer database held by the company open and accessible to the attackers, this in turn was used to ciphon their data and initiate fraud through loan applications under customer names.

7.2 Possible Security Threats

In addition to the previous incidents, various other attacks could be possible against the group and their network. These have been outlined below.

7.2.1 Some new attack

7.3 Solutions

A list of solutions.

- 7.3.1 Physical Security Measures
- 7.3.2 Access Control
- 7.3.2.1 Access Control Configurations

8. Monitoring and Maintenance

- 8.1 Software
- 8.2 Justifications

9. Disaster Plan

- 9.1 Risks
- 9.2 Plan

10. Additional Problems

10.1 Renting One Floor Out

The second floor will combine four different departments to allow for space in the first floor. The new layout can be seen in figure 10.1.

Figure 10.1: 2nd floor floor plan combining 4 different departments

Figure 10.2: 1st floor vacant plan

10.2 Splitting Between Two Buildings

References

Heikkinen, E., & Hamalainen, T. D. (2020). Deployment of batch processing for log file analysis. 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). https://doi.org/10.1109/icps48405.2020.9274712