Exponential NDF

This is code to accompany the book:

A Hitchhiker's Guide to Multiple Scattering

© 2020 Eugene d'Eon

www.eugenedeon.com/hitchhikers

notation

$$u = \mathbf{m} \cdot \mathbf{n} = Cos[\theta_m]$$

 $\alpha = roughness$

Definitions and derivations

In[2787]:= Exponential`D[u_,
$$\alpha_$$
] := $\frac{2 e^{-\frac{2\sqrt{1-u^2}}{u\alpha}}}{\pi u^4 \alpha^2}$ HeavisideTheta[u]

relationship to Beckmann

Integrate [Beckmann`D[u,
$$\alpha \sqrt{m}$$
] × PDF [GammaDistribution[$\frac{3}{2}$, 1]][m],
 {m, 0, Infinity}, Assumptions \rightarrow 0 < u < 1 && α > 0 && a > 0]
$$2 e^{-\frac{2\sqrt{1-u^2}}{u\alpha}}$$

Out[1900]=
$$\frac{2 e^{-\frac{2 \sqrt{1-u^2}}{u \alpha}}}{\pi u^4 \alpha^2}$$

In[2306]:= Integrate [Beckmann`D[u,
$$\frac{\alpha}{\sqrt{2}}$$
 m] × PDF[ChiDistribution[3]][m],

{m, 0, Infinity}, Assumptions
$$\rightarrow$$
 0 < u < 1 && α > 0 && a > 0

Out[2306]=
$$\frac{2 e^{-\frac{2\sqrt{1-u^2}}{u\alpha}}}{\pi u^4 \alpha^2}$$

shape invariant f(x)

In[1885]:= FullSimplify [Exponential`D[u,
$$\alpha$$
] u⁴ α^2 /. u -> $\frac{1}{\sqrt{1+x^2 \alpha^2}}$,

Assumptions
$$\rightarrow 1 - \frac{1}{\sqrt{1 + x^2 \alpha^2}} > 0 \&\& x > 0 \&\& \alpha > 0 \&\& a > 0$$

Out[1885]=
$$\frac{2 e^{-2 x}}{\pi}$$

distribution of slopes

In[1887]:= FullSimplify [Exponential`D
$$\left[\frac{1}{\sqrt{p^2+q^2+1}}, \alpha\right] \left(\frac{1}{\sqrt{p^2+q^2+1}}\right)^4$$
,

Assumptions
$$\rightarrow 0 < \alpha < 1 \&\& p > 0 \&\& q > 0$$

Out[1887]=
$$\frac{2 e^{-\frac{2\sqrt{p^2+q^2}}{\alpha}}}{\pi \alpha^2}$$

In[1889]:= Exponential`P22[p_, q_,
$$\alpha_$$
] :=
$$\frac{2 e^{-\frac{2\sqrt{p^2+q^2}}{\alpha}}}{\pi \alpha^2}$$

$$\label{eq:local_problem} $$\inf_{1890}:= Integrate[Exponential`P22[p, q, \alpha], \{p, -Infinity, Infinity\}, $$ \{q, -Infinity, Infinity\}, $$Assumptions $$\to 0 < \alpha < 1$$]$$

Out[1890]= 1

sigma - approximate with Ei sigma:

$$\begin{split} & \lim_{\| \sigma \| = 1} \; \; Ei \, \check{\sigma} [\, u_-, \, \alpha_-] \; \mathop{:=} \\ & \frac{1}{6 \, \sqrt{\pi} \, \left(-1 + u^2 \right) \, \alpha^2} \left(\alpha \, \left(3 \, \sqrt{\pi} \, u \, \left(-1 + u^2 \right) \, \alpha + 2 \, e^{\frac{u^2}{(-1 + u^2) \, \alpha^2}} \, \sqrt{1 - u^2} \, \left(-\alpha^2 + u^2 \, \left(-1 + \alpha^2 \right) \right) \right) + \\ & 3 \, \sqrt{\pi} \, u \, \left(-\alpha^2 + u^2 \, \left(-2 + \alpha^2 \right) \right) \, Erf \Big[\frac{u}{\sqrt{1 - u^2} \, \alpha} \Big] \, + \\ & 2 \, \sqrt{\pi} \, u^2 \, Abs [\, u\,] \, \left(1 + 2 \, Erf \Big[\frac{u^2 \, \sqrt{1 - u^2}}{\alpha \, Abs [\, u\,]} \, \right] \right) \end{split}$$

```
In[1948] = With[{\alpha = 2.1},
Plot[{
   Quiet[NIntegrate[Exponential`D[ui, \alpha] × Delta`\sigma[u, ui], {ui, 0, 1}]],
   Quiet[Ei^{\circ}\sigma[u, 1.7\alpha]]
 }, {u, -1, 1}]
```


G1 shadow

$$\begin{array}{l} \text{Ei} \wedge \left[\mathbf{u}_{-}, \mathbf{x}_{-} \right] := \\ & 2 \, \mathrm{e}^{\frac{u^{2}}{(1-u^{2}) \, \mathrm{e}^{2}}} \, \sqrt{1-u^{2}} \, \alpha \, \left(-\alpha^{2} + u^{2} \left(-1 + \alpha^{2} \right) \right) + \sqrt{\pi} \, u \, \left(3 \, \alpha^{2} + u^{2} \left(2 - 3 \, \alpha^{2} \right) \right) \, \mathrm{Erfc} \left[\frac{u}{\sqrt{1-u^{2}} \, \alpha} \right] \\ & 6 \, \sqrt{\pi} \, u \, \left(-1 + u^{2} \right) \, \alpha^{2} \\ & \log \left(-1 + u^{2} \right) \,$$

In[2886]:= Plot[Exponential`G1approx[u, .8], {u, 0, 1}, PlotRange \rightarrow All]

