Differential Topology

Swayam Chube

May 15, 2023

Contents

0	Preliminaries	2
	0.1Exterior Algebra0.2Differential Forms on \mathbb{R}^n	3
1	Manifolds	4

Chapter 0

Preliminaries

The coordinates on \mathbb{R}^n are denoted by x^1, \ldots, x^n . Let $U \subseteq \mathbb{R}^n$ be open. A real valued function $f: U \to \mathbb{R}$ is said to be C^k at $p \in U$ if its partial derivatives

$$\frac{\partial^i f}{\partial x^{i_1} \cdots \partial x^{i_j}}$$

of all orders $j \le k$ exist and are continuous at p. In particular, f is C^{∞} if it is C^k for all $k \ge 0$. Henceforth, we use the term *smooth function* to mean C^{∞} function.

Definition 0.1 (Diffeomorphism). A smooth map $f: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^n$ is said to be a *diffeomorphism* if it is bijective and has a smooth inverse.

In other words, diffeomorphisms are the isomorphisms in the category of smooth manifolds, \mathbf{Man}^{∞} .

0.1 Exterior Algebra

Definition 0.2. A *k*-linear function $f: V^n \to \mathbb{R}$ is said to be

symmetric if for each $\sigma \in \mathfrak{S}_n$,

$$f(v_{\sigma(1)},\ldots,v_{\sigma(n)})=f(v_1,\ldots,v_n)$$

alternating if for each $\sigma \in \mathfrak{S}_n$,

$$f(v_{\sigma(1)},\ldots,v_{\sigma(n)})=(\operatorname{sgn}\sigma)f(v_1,\ldots,v_n)$$

We denote by $A_n(V)$, the \mathbb{R} -vector space of alternating n-linear functions on a vector space V. These are also called *alternating* n-tensors or multicovectors of degree n.

We can symmetrize and alternate operators. Let $f: V^n \to \mathbb{R}$ be an *n*-linear function. Define

$$\operatorname{Sym}(f)(v_1,\ldots,v_k) = \sum_{\sigma \in \mathfrak{S}_n} f(v_{\sigma(1)},\ldots,v_{\sigma(n)})$$
$$\operatorname{Alt}(f)(v_1,\ldots,v_k) = \sum_{\sigma \in \mathfrak{S}_n} (\operatorname{sgn}\sigma) f(v_{\sigma(1)},\ldots,v_{\sigma(n)})$$

It is not hard to see that Sym(f) is symmetric and Alt(f) is alternating.

0.2 Differential Forms on \mathbb{R}^n

The concept of a differential form is dual to the concept of a vector field. For an open subset $U \subseteq \mathbb{R}^n$, a vector field assigns, to each point in U, a vector in the tangent space of the point, similarly, a differential form assigns a covector on the tangent space of the point.

Chapter 1

Manifolds

Definition 1.1 (Locally Euclidean). A topological space M is said to be *locally Euclidean of dimension n* if for every point $p \in M$ there is a neighborhood U of p, an open subset $V \subseteq \mathbb{R}^n$ and a homeomorphism $\phi: U \to V$.

The pair $(U, \phi : U \to \mathbb{R}^n)$ is called a *chart*, U is called a *coordinate neighborhood* and ϕ a *coordinate map*. We say that a chart (U, ϕ) is *centered* at $p \in U$ if $\phi(p) = \mathbf{0}$.

Recall that for $m \neq n$, nonempty open subsets of \mathbb{R}^m and \mathbb{R}^n are not homeomorphic, consequently, the local dimension is well defined.

Definition 1.2 (Manifold). A *topological manifold* is a Hausdorff, second countable, locally Euclidean space. It is said to be of dimension n if it is locally Euclidean of dimension n.

Definition 1.3 (Compatibility of Charts). Two charts $(U, \phi : U \to \mathbb{R}^n)$ and $(V, \psi : V \to \mathbb{R}^n)$ of a topological manifold are said to be C^{∞} -compatible if the two maps

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V), \quad \psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$$

are smooth. These two maps are called the *transition functions* between the charts. If U and V are disjoint then the two charts are automatically C^{∞} -compatible.

Henceforth, by compatible charts, we mean C^{∞} -compatible charts.

Definition 1.4 (Atlas). A C^{∞} -atlas on a locally Euclidean space M is a collection $\mathfrak{U} = \{(U_{\alpha}, \psi_{\alpha})\}_{\alpha \in J}$ of pairwise compatible charts that cover M.

An atlas \mathfrak{M} on a locally Euclidean space is sadi to be *maximal* if it is not contained in a larger atlas.

Lemma 1.5. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas on a locally Euclidean space. If two charts (V, ψ) and (W, σ) are both compatible with the atlas $\{(U_{\alpha}, \phi_{\alpha})\}$, then they are compatible with each other.