Critical ideals of graphs

XXIV Coloquio Latinoamericano de Álgebra 2024

Carlos A. Alfaro (BANXICO)

Outline

- Critical ideals of graphs
- Applications to Sandpile group
- Applications to Smith group
- Applications to minimum rank and zero-forcing number

Initial motivation

There are many equivalent definitions of the sandpile group K(G) of a graph, we will use the torsion part of the cokernel of the Laplacian matrix.

Many researchers asked for a classification of the graphs whose Laplacian matrix have 2 and 3 invariant factors equal to one.

$$au(G) = |K(G)| = T(1,1)$$

 $G ext{ planar} \Rightarrow K(G) \simeq K(G^*)$

Sandpile groups might detect more properties than homology groups

The generalized Laplacian matrix

Let G be a graph with n vertices and $X_G = \{x_u : u \in V(G)\}$ a set of variables.

Definition

The generalized Laplacian matrix $A_X(G)$ of G is the matrix diag $(X_G) - A(G)$.

Example

$$\begin{bmatrix} x_0 & -1 & -1 & 0 & -1 & 0 \\ -1 & x_1 & 0 & -1 & -1 & 0 \\ -1 & 0 & x_2 & -1 & 0 & -1 \\ 0 & -1 & -1 & x_3 & 0 & -1 \\ -1 & 0 & 0 & 0 & x_4 & -1 \\ 0 & 0 & -1 & -1 & -1 & x_5 \end{bmatrix}$$

Critical ideals of graphs

Let $\mathcal{R}[X_G]$ denote the polynomial ring over a commutative ring \mathcal{R} in the variables X_G .

Definition

For $1 \le k \le n$, the k-th critical ideal $I_k^{\mathcal{R}}(G)$ is the ideal $\langle \operatorname{minors}_k(A_X(G)) \rangle$.

An ideal is said to be trivial or unit if it is equal to $\langle 1 \rangle$ (= $\mathcal{R}[X_G]$).

Definition

The algebraic co-rank $\gamma_{\mathcal{R}}(G)$ of G is the maximum integer k for which $I_k^{\mathcal{R}}(G)$ is trivial.

Critical ideals of graphs

Example

$$\begin{bmatrix} x_0 & -1 & -1 & 0 & -1 & 0 \\ -1 & x_1 & 0 & -1 & -1 & 0 \\ -1 & 0 & x_2 & -1 & 0 & -1 \\ 0 & -1 & -1 & x_3 & 0 & -1 \\ -1 & 0 & 0 & 0 & x_4 & -1 \\ 0 & 0 & -1 & -1 & -1 & x_5 \end{bmatrix}$$

For our graph, $\gamma_{\mathbb{R}}(G) = \gamma_{\mathbb{Z}}(G) = 3$.

And for the first non trivial $I_4^{\mathbb{R}}(G) = I_4^{\mathbb{Z}}(G)$, we give the Gröbner basis:

$$\langle x_0 + x_5 - 1, x_1 + x_5 - 1, x_2 - x_5, x_3 - x_5, x_4 + x_5 - 1, x_5^2 - x_5 - 1 \rangle$$
.

Note $I_n^{\mathcal{R}}(G) = \langle \det(A_X(G)) \rangle$.

Varieties of critical ideals of graphs

Definition

The variety V(I) of an ideal I is the set of common roots between polynomials in I.

Example

The ideal $I_4^{\mathbb{R}}(G)$ for G of our previous example: $\langle x_0 + x_5 - 1, x_1 + x_5 - 1, x_2 - x_5, x_3 - x_5, x_4 + x_5 - 1, x_5^2 - x_5 - 1 \rangle$, there are only two roots in its variety:

$$\left(\frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$$

and

$$\left(\frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right).$$

Varieties of critical ideals of graphs

Example

For the complete graph K_3 with 3 vertices, $\gamma_{\mathbb{R}}(K_3) = 1$,

$$I_2^{\mathbb{R}}(K_3) = \langle x_0 + 1, x_1 + 1, x_2 + 1 \rangle$$
, and

$$I_3^{\mathbb{R}}(K_3) = \langle x_0 x_1 x_2 - x_0 - x_1 - x_2 - 2 \rangle.$$

The variety $V(I_2^{\mathbb{R}}(K_3)) = \{(1,1,1)\}$, and the variety $V(I_3^{\mathbb{R}}(K_3))$ is

Figure: Partial view of the variety of $I_3^{\mathbb{R}}(K_3)$ in \mathbb{R}^3 .

Varieties of critical ideals of graphs

We have that

$$\langle 1 \rangle \supseteq I_1^{\mathcal{R}}(G) \supseteq \cdots \supseteq I_n^{\mathcal{R}}(G) \supseteq \langle 0 \rangle.$$

Then,

$$V(\langle 1 \rangle) \subseteq V(I_1^{\mathcal{R}}(G)) \subseteq \cdots \subseteq V(I_n^{\mathcal{R}}(G)) \subseteq V(\langle 0 \rangle).$$

Let σ be a permutation on V(G). Thus, σG is a graph on V(G) such that $\{i,j\} \in E(G)$ if and only if $\{\sigma(i),\sigma(j)\} \in E(\sigma G)$.

Corollary

Let G and G' be two graphs with n vertices. Then, G and G' are isomorphic if and only if there exists a permutation σ on V(G') such that the n-th critical ideals of G and $\sigma G'$ are equal.

There is a bijection between the edges of G and the monomials of degree n-2 in $\det(A_X(G))$ given by $\{i,j\} \mapsto -\prod_{k\neq i,j} x_k$.

Remember that the term of t^{n-2} in det(tI - A(G)) is the negative of the number of edges of G.

N. Ghareghani, F. Ramezani and B. Tayfeh-Rezaie. Graphs cospectral with starlike trees. *Linear Algebra Appl.* 429 (2008), 2691–2701.

Definition

The sandpile group K(G) of a graph G is the torsion part of the cokernel $\mathbb{Z}^n/Im(L(G))$ of the Laplacian matrix L(G).

Proposition

 $K(G) \cong \mathbb{Z}/f_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/f_r\mathbb{Z}$, where the integers f_1, f_2, \ldots, f_r are called invariant factors of the Laplacian matrix of G and satisfy $f_i|f_{i+1}$.

Proposition (Elementary divisors' theorem)

 $f_i = \Delta_i(L(G))/\Delta_{i-1}(L(G))$, where $\Delta_i(L(G))$ is the g.c.d. of the i-minors of the Laplacian matrix L(G).

Proposition (Corrales & Valencia, 2013)

By evaluating the i-th critical ideal $I_i^{\mathbb{Z}}(G)$ at the degree vector, we get an ideal that is spanned by $\Delta_i(L(G))$.

Example

$$\begin{split} I_2^{\mathbb{Z}}(K_3) &= \langle 1 \rangle, \\ I_2^{\mathbb{Z}}(K_3) &= \langle x_0 + 1, x_1 + 1, x_2 + 1 \rangle, \\ I_3^{\mathbb{Z}}(K_3) &= \langle x_0 x_1 x_2 - x_0 - x_1 - x_2 - 2 \rangle. \\ I_i^{\mathbb{Z}}(K_3)|_{X_G = \deg(K_3)} &= \langle \Delta_i(L(K_3)) \rangle = \begin{cases} \langle 1 \rangle & \text{if } i = 1, \\ \langle 3 \rangle & \text{if } i = 2, \\ \langle 0 \rangle & \text{if } i = 3. \end{cases} \\ \text{Therefore } K(K_3) \cong \mathbb{Z}/3\mathbb{Z}. \end{split}$$

Applications: Smith group

Definition

The Smith group S(G) of a graph G is the cokernel $\mathbb{Z}^n/Im(A(G))$ of the adjacency matrix A(G).

Proposition

 $S(G) \cong \mathbb{Z}/g_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/g_r\mathbb{Z} \oplus \mathbb{Z}^{n-r}$, where the integers g_1, g_2, \ldots, g_r are called invariant factors of the adjacency matrix and satisfy $g_i|g_{i+1}$.

Proposition

 $g_i = \Delta_i(G)/\Delta_{i-1}(G)$, where $\Delta_i(G)$ is the g.c.d. of the i-minors of A(G).

Applications: Smith group

Proposition

By evaluating the i-th critical ideal $I_i^{\mathbb{Z}}(G)$ at the zero vector, we get an ideal that is spanned by $\Delta_i(A(G))$.

Example

$$I_i^{\mathbb{Z}}(K_3)|_{\deg(K_3)} = \langle \Delta_i(K_3) \rangle = \begin{cases} \langle 1 \rangle & \text{if } i = 1, \\ \langle 1 \rangle & \text{if } i = 2, \\ \langle 2 \rangle & \text{if } i = 3. \end{cases}$$

Therefore $S(A(K_3)) \cong \mathbb{Z}/2\mathbb{Z}$.

Definition

Let f(G) denote the number of invariant factors of the Laplacian matrix of G equal to 1.

Problem

How often the critical group is cyclic? that is, how often f(G) is equal to n-2 or n-1?

Conjeture (D. Wagner, 2001 & D. Lorenzini, 2008)

Almost every connected simple graph has a cyclic critical group.

Theorem (M. Wood, 2017)

The probability that the critical group of a random graph is cyclic is asymptotically at most

$$\zeta(3)^{-1}\zeta(5)^{-1}\zeta(7)^{-1}\zeta(9)^{-1}\zeta(11)^{-1}\dots\approx 0.7935212$$

where ζ is the Riemann zeta function.

On the other hand...

Problem

What are the graphs whose critical group has i invariant factors equal to 1?

Dino Lorenzini noticed that the graphs with f(G) = 1 are only the complete graphs.

Observation

It is not always true that if H is an induced subgraph of G, then $K(H) \triangleleft K(G)$.

Proposition (Corrales & Valencia, 2013)

If H is an induced subgraph of G, then $I_i^{\mathcal{R}}(H) \subseteq I_i^{\mathcal{R}}(G)$.

Observation

- $\gamma_{\mathbb{Z}}(G) \leq f(G)$.
- {graphs with $f(G) \le i$ } is contained in {graphs with $\gamma_{\mathbb{Z}}(G) \le i$ }.

Theorem (Alfaro & Valencia, 2014)

Let G be a connected graph. Then, the following are equivalent:

- **2** { P_4 , \ltimes , dart, $K_{2,2,1,1}$, $K_5 \setminus P_3$ }-free graphs,
- **3** G is isomorphic to K_{n_1,n_2,n_3} or to $\overline{K_{n_1}} \vee (K_{n_2} + K_{n_3})$.

Theorem (Alfaro & Valencia, 2014)

Let G be a connected graph. Then, f(G) = 2 if and only if G is one of the following graphs:

- 1 K_{n_1,n_2,n_3} , where n_1 , n_2 and n_3 have the same parity.
- 2 $\overline{K_{n_1}} \vee (K_{n_2} + K_{n_3})$, where $n_1, n_2, n_3 \geq 3$ and have the same parity
- 3 few other cases.

Theorem (Alfaro, Barrus, Sinkovic & Villagrán, 2021)

Let G be a connected simple regular graph. Then $G \in \mathcal{K}_{\leq 3}$ if and only if G is one of the following:

- (a) C_5 ,
- (b) $K_3\square K_2$,
- (c) a complete graph K_r ,
- (d) a regular complete bipartite graph $K_{r,r}$,
- (e) a regular complete tripartite graph $K_{r,r,r}$,
- (f) a regular complete 4-partite graph $K_{r,r,r,r}$,
- (g) $C_4^{(-r,-r,-r,-r)}$, for any $r \in \mathbb{N}$.

where $C_4^{(-r,-r,-r,-r)}$ is the graph obtained by replacing the vertices in C_4 for cliques of size r and preserving adjacency.

Theorem (Alfaro, Valencia & Vazquez, 2017)

Let D be a connected digraph. Then, $\gamma_{\mathbb{Z}}(D) \leq 1$ if and only if D is isomorphic to Λ_{n_1,n_2,n_3} .

Theorem (Alfaro, Valencia & Vázquez, 2017)

Let D be a connected digraph. Then, f(D) = 1 if and only if D is one of the following graphs:

- 1 $n_1, n_2, n_3 \geq 1$,
- 2 other few cases.

Minimum rank

Definition

The minimum rank $\operatorname{mr}_{\mathcal{R}}(G)$ of G is the smallest possible rank among all the $n \times n$ symmetric matrices with entries in the field \mathcal{R} , whose u, v-entry $(u \neq v)$ is nonzero whenever u is adjacent to v and zero otherwise.

Observation

We might focus when \mathcal{R} is either \mathbb{R} or \mathbb{C} .

Zero-forcing number

Definition

The zero forcing game is a color-change game where vertices can be blue or white. At the beginning, a set of vertices B are colored blue while others remain white. The goal is to color all vertices blue through repeated applications of the color change rule: If u is a blue vertex and v is the only white neighbor of u, then v is forced to become blue. An initial set of blue vertices B is called a zero forcing set if starting with B one can make all vertices blue.

Definition

The zero forcing number Z(G) is the minimum cardinality of a zero forcing set.

Minimum rank & zero-forcing

Definition

$$mz(G) = |V(G)| - Z(G).$$

Example

Since there is no zero forcing set of size 2, then mz(G) = Z(G) = 3.

Theorem (AIM Minimum Rank Work Group, 2008)

For every graph G, $mz(G) \leq mr_{\mathcal{R}}(G)$ for any field \mathcal{R} .

Minimum rank & critical ideals

Lemma (The Weak Nullstellensatz)

Let \mathcal{R} be an algebraically closed field and let $I \subseteq \mathcal{R}[X]$ be an ideal satisfying $V(I) = \emptyset$. Then I is trivial.

Theorem (Alfaro & Lin, 2019)

If \mathcal{R} is an algebraically closed field, then $\operatorname{mr}_{\mathcal{R}}(G) \leq \gamma_{\mathcal{R}}(G)$.

Theorem (Alfaro & Lin, 2019)

For every graph G, $mz(G) \leq \gamma_{\mathcal{R}}(G)$ for any commutative ring \mathcal{R} .

Minimum rank & critical ideals

Conjecture

 $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Theorem (Alfaro & Lin, 2019)

If G is a connected graph with $\operatorname{mr}_{\mathbb{R}}(G) \leq 2$, then $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Theorem (Alfaro, 2018)

If G is a connected graph with $\operatorname{mr}_{\mathbb{R}}(G) \leq 3$, then $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Computational results

From the 143 connected graphs with at most 6 vertices, only 21 graphs have $\operatorname{mz}(G) < \gamma_{\mathbb{R}}(G)$. For the other graphs, $\operatorname{mz}(G) = \operatorname{mr}(G) = \gamma_{\mathbb{R}}(G)$.

Graphs with equal mz, mr and γ

Theorem (Alfaro & Lin, 2019)

For any tree T, $mz(T) = mr(T) = \gamma_{\mathbb{R}}(T)$.

Theorem (Alfaro & Lin, 2019)

For any cycle C_n with $n \ge 3$, $mz(C_n) = mr(C_n) = \gamma_{\mathbb{R}}(C_n)$.

Theorem (Alfaro & Lin, 2019)

Let G be the line graph of a tree. Then $mz(G) = mr(G) = \gamma_{\mathbb{R}}(G)$.

Graphs with equal mz, mr and γ

Theorem (Alfaro, Valencia & Vazquez, 2018)

Let D be a connected digraph. Then, $\gamma_{\mathbb{Z}}(D) \leq 1$ if and only if D is isomorphic to Λ_{n_1,n_2,n_3} .

Graphs with equal mz, mr and γ

Theorem (Alfaro & Lin, 2019)

Let $\mathcal R$ be a commutative ring with unity. The following are equivalent:

- 1 D is isomorphic to Λ_{n_1,n_2,n_3} ,
- $2 \operatorname{mr}_{\mathcal{R}}(D) \leq 1$,
- $mz(D) \leq 1,$
- $4 \gamma_{\mathcal{R}}(D) \leq 1.$

Sandpile group of outerplanar graphs

Given a plane graph G with s interior faces F_1, \ldots, F_s , let $c(F_i)$ denote the length of the cycle which bounds interior face F_i . The cycle-intersection matrix, $C(G) = (c_{ij})$ is the $s \times s$ matrix, where $c_{ii} = c(F_i)$, and c_{ij} is the negative of the number of common edges in the cycles bounding the interior faces F_i and F_i , for $i \neq j$.

Lemma

Let G be a connected plane graph. Then $K(G) \cong \operatorname{coker}(C(G))$ and $\tau(G) = \det(C(G))$.

Sandpile group of outerplanar graphs

The following result turns out by evaluating critical ideals of trees at $X = (c_{11}, \dots, c_{ss})$.

Theorem (Alfaro & Villagrán, 2021)

Let G be a biconnected outerplane graph with F_1, \ldots, F_n interior faces and whose weak dual is the tree T with n vertices. Let

$$\Delta_k = \gcd\left(\left\{d(\mathcal{M}): \mathcal{M} \in 2M_k^*\left(T^l\right)\right\}\right),$$

for
$$k \in [n]$$
. Then $K(G) \cong \mathbb{Z}_{\Delta_1} \oplus \mathbb{Z}_{\frac{\Delta_2}{\Delta_1}} \oplus \cdots \oplus \mathbb{Z}_{\frac{\Delta_n}{\Delta_{n-1}}}$ and $\tau(G) = \Delta_n$.

Main references

- C.A. Alfaro, Graphs with real algebraic co-rank at most two. Linear Algebra Appl. 556 (2018) 100–107.
- C.A. Alfaro, M.D. Barrus, J. Sinkovic, R.R. Villagrán, Graphs with few trivial characteristic ideals. Linear Algebra Appl. 615 (2021) 155–174.
- C.A. Alfaro & J.C.-H. Lin, Critical ideals, minimum rank and zero forcing number. Appl. Math. Comput. 358 (2019) 305–313.
- C.A. Alfaro & C.E. Valencia, Graphs with two trivial critical ideals. Discrete Appl. Math. 167 (2014) 33–44.
- C.A. Alfaro, C.E. Valencia & A. Vázquez-Ávila, Digraphs with at most one trivial critical ideal. Linear & Multilinear Algebra 66 (2018) 2036–204.
- C.A. Alfaro, R.R. Villagrán, The structure of sandpile groups of outerplanar graphs. Appl. Math. Comput. 395 (2021) 125861.
- AIM Minimum Rank Special Graphs Work Group. Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428 (2008) 1628–1648.
- H. Corrales & C.E. Valencia, On the critical ideals of graphs. Linear Algebra Appl. 439 (2013) 3870–3892.

Thank you Carlos A. Alfaro alfaromontufar@gmail.com