5.4 TEST MS

			01. 12.51 N.E.	
1.		(i)	An atom, ion or molecule which can donate a lone electron pair	1
		(ii)	A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number exceeds oxidation state	1
		····		1
		(iii)	The number of co-ordinate bonds formed to a central metal ion or number of electron pairs donated or donor atoms	1
				[3]
2.	(a)	Electron transitions/electrons excitedin d shell (1) or d-d transition Do NOT allow charge transfer		
	(Energy in) visible range (1) (NOT emits in visible re		rgy in) visible range (1) (NOT emits in visible region)	
				2
	(b)	Char	age 1: (Different) oxidation states (1) age 2: (Different) ligands (1) age 3: (Different) co-ordination number (1) Do not allow shape as an answer	
				3
	(c)	e.g. t Make Meas Plot	N.B.: Allow concentration statement if included in graph statement	
			Allow adsorption but circle the d	

Also

[10] 5

3. (a) (i) Two (1) lone pair donor / electron pair donor (1) atoms Allow:- forms two co-ordinate bonds (1) NOT atom with two lone pairs

(ii)

5

Correct ligand structure (1) (

penalise any error

Six correct O-Fe bonds (1)

Correct charge (1)

N.B. Penalise the second mark if arrow from Fe shown

N.B. Ignore charges on atoms

- (b) $[AgCl_2]^-$ or $AgCl_2^-$ (1) (i)
 - (ii) Chloride or Cl⁻ big or large or repel (1) NOT Cl₂ or Cl⁺ or Cl Allow 'chlorine ion'

[7]

2

5

- 4. (i) $\underline{H_2O_2}$ (1) plus NaOH (1) (a) only allow if H_2O_2 given Alkaline H_2O_2 scores (1) Na_2O_2 scores (2)
 - Zn (1) plus HCl/H₂SO₄ (1) (ii) only allow if Zn given Ignore conc Not HNO₃
 - A <u>named</u> aldehyde or a correct formula clearly with an aldehyde gropup (1) or $Cu \rightarrow Mg$

(b) (i) Half-equation for the oxidation of
$$H_2O_2$$

 $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$ (or multiple) (1)
Half-equation for the reduction of manganate(VII) ions
 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (or multiple) (1)
Overall equation
 $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$ (1)
only allow this or multiple

(ii) Moles
$$MnO_4^- = mv/1000 = (2.82 \text{ to } 2.83) \times 10^{-4} \text{ (1)}$$

 $Moles H_2O_2 = 2.826 \times 10^{-4} \times 5/2 \text{ (1)} = (7.06 \text{ to } 7.08) \times 10^{-4}$
 $mark \ conseq \ to \ equation \ in \ b(i)$

$$[H_2O_2] = 7.065 \times 10^{-4} \times 1000/20$$
 (1) = (3.53 to 3.54) $\times 10^{-2}$

Mass = moles
$$\times$$
 M_r = 3.53 \times 10⁻² \times 34 = 1.2(0) (1)

Ignore units

Max 3 if ratio 2/5 used. (Final answers 0.19)

N.B. Using 3:5 ratio

Moles
$$MnO_4^- = (2.82 \text{ to } 2.83) \times 10^{-4} \text{ (1)}$$

Moles $[H_2O_2] = 2.826 \times 10^{-4} \times 5/3 \text{ (1)} = (470 \text{ to } 472)$
 $\times 10^{-4}$
 $[H_2O_2] = 4.71 \times 10^{-4} \times 1000/20 \text{ (1)} = (2.35 \text{ to } 2.36)$
 $\times 10^{-2}$

Mass = 0.8(0) (1) (i.e. 2 sig fig required)

[12]

7

- 5. (i) (Both) ions are negative or ions repel or High E_a (1)
 - (ii) *Meaning of the term autocatalytic:* A product of the reaction acts as a catalyst (1)

NOT a self catalysing reaction (0)

Catalyst:
$$Mn^{2+}$$
 or Mn^{3+} (1)

(iii)
$$Mn^{2+}$$
 converted into Mn^{n+} or Mn^{2+} oxidised (1) Mn^{n+} /oxidised species then oxidises/reacts with $C_2O_4^{2-}$ (1)

5 **[5]** 6. (a) V_2O_5 or NH_4VO_3 or name (1) xs (1) Zn (1) HCl or dil H_2SO_4 (1) abscence of air (1) colours seen (1) V(IV), V(III), V(II) seen (1)

max 6

(b) speeds rate (1) unchanged at end (1) different route/intermediate mechm (1) lower AE (1) different phase (1)

contact process/SO₃ or H_2SO_4 manufacture (1) $V_2O_5 + SO_2 \rightarrow V_2O_4$ (2 VO_2) + SO_3 (1)

$$V_2O_4 (2VO_2) + \frac{1}{2}O_2 \rightarrow SO_3 (1)$$

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$$
 (1)

change of oxidation state of

vanadium stated (1)

max 9

[15]