AMENDMENTS TO THE CLAIMS

- 1. (Original) An organic electroluminescent device comprising:
- a pair of electrodes; and

at least one organic layer between the pair of electrodes, the at least one organic layer including a luminescent layer,

wherein the luminescent layer contains at least one electron injection/transport compound, at least one hole injection/transport compound, and at least one green or blue phosphorescent compound; and the electron injection/transport compound and the hole injection/transport compound each has a minimum triplet exciton energy value which is equal to or more than that of the green or blue phosphorescent compound.

- 2. (Original) The organic electroluminescent device of claim 1, wherein the hole injection/transport compound has an ionization potential of from 5.6 eV to 6.1 eV.
- 3. (Original) The organic electroluminescent device of claim 1, wherein the electron injection/transport compound has an electron affinity of from 2.0 eV to 3.5 eV.
- 4. (Original) The organic electroluminescent device of claim 1, wherein the green or blue phosphorescent compound is a transition metal complex capable of emitting light via a triplet excitation state.
- 5. (Original) The organic electroluminescent device of claim 1, wherein the electron injection/transport compound, the hole injection/transport compound and the green or blue phosphorescent compound each has a T_1 value of 62 kcal/mole or more; and phosphorescence obtained from the green or blue phosphorescent compound has a λ max of not longer than 500 nm.
- 6. (Original) The organic electroluminescent device of claim 1, wherein the hole injection/transport compound is a substituted or unsubstituted pyrrole compound.

7. (Original) The organic electroluminescent device of claim 6, wherein the substituted or unsubstituted pyrrole compound is represented by the formula (1):

(1)

wherein R^{11} to R^{15} each represents a hydrogen atom or a substituent, and the substituents may be bonded to each other to form a ring structure.

8. (Original) The organic electroluminescent device of claim 7, wherein the formula (1) is represented by the formula (3):

(3)

$$L^{31} \underbrace{\left(-L^{32}\right)_{n^{32}}}_{R^{35}} R^{33} \\ R^{34} \\ I_{n^{31}}$$

wherein R^{32} to R^{35} each represents a hydrogen atom or a substituent, and the substituents may be bonded to each other to form a ring structure; L^{31} represents a connecting group; L^{32} represents a di- or more valent connecting group; n^{31} represents an integer of 2 or more; and n^{32} represents an integer of from 0 to 6.

- 9. (Currently Amended) The organic electroluminescent device of elaims claim 1, wherein the electron injection/transport compound is a heterocyclic compound containing at least two nitrogen atoms.
- 10. (Original) The organic electroluminescent device of claim 9, wherein the heterocyclic compound containing at least two nitrogen atoms is a compound represented

by the formula (2):

(2)

$$R^{21}$$
 X^{21} X^{22} X^{23} X^{24} X^{23}

wherein R^{21} represents a hydrogen atom or a substituent; X^{21} , X^{22} , X^{23} , and X^{24} each represents a nitrogen atom or a substituted or unsubstituted carbon atom; and at least one X^{21} , X^{22} , X^{23} , and X^{24} represents a nitrogen atom.

11. (Original) The organic electroluminescent device of claim 10, wherein the formula (2) is represented by the formula (4):

(4)

$$L^{41} = \left(L^{42} \right)_{n^{42}} N R^{42}$$

$$R^{43} = R^{42}$$

$$R^{42} = R^{42}$$

wherein R⁴¹, R⁴², and R⁴³ each represents a hydrogen atom or a substituent; L⁴¹ represents a connecting group; n⁴¹ represents an integer of 2 or more; L⁴² represents a dior more valent connecting group; and n⁴² represents an integer of from 0 to 6.

12. (Original) The organic electroluminescent device of claim 10, wherein the formula (2) is represented by the formula (5):

(5)

$$L^{51} \underbrace{\left(-L^{52}\right)_{n^{52}}}_{N} \underbrace{N}_{N} \underbrace{R^{52}}_{R^{53}} \underbrace{1}_{n^{51}}$$

wherein R^{52} , R^{53} , and R^{54} each represents a hydrogen atom or a substituent; L^{51} represents a connecting group; n^{51} represents an integer of 2 or more; L^{52} represents a dior more valent connecting group; and n^{52} represents an integer of from 0 to 6.

13. (New) The organic electroluminescent device of claim 1, wherein at least one of the hole injection/transport compounds contained in the luminescent layer is represented by the following formula (6)

wherein R^{61} , R^{62} and R^{63} each represent a substituent and n^{61} to n^{63} each represent an integer of 0 to 5.

14. (New) The organic electroluminescent device of claim 1, wherein at least one of the hole injection/transport compounds contained in the luminescent layer is represented by the following formula (7)

(7)
$$R^{73} \xrightarrow{R^{74}} R^{75} R^{76} R^{79}$$

wherein R^{70} to R^{79} each represent a hydrogen atom, an alkyl group, an aryl group, or a group that forms a hydrocarbon ring when bonded to each other.

15. (New) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogen-containing six-membered ring compound.

16. (New) The organic electroluminescent device of claim 15, wherein the nitrogen-containing six-membered ring compound is represented by the following formula (8), formula (9), formula (10) or general formula (11)

wherein R^{81} to R^{85} , R^{91} to R^{94} , R^{101} to R^{104} and R^{111} to R^{113} each represents a hydrogen atom or a substituent.

- 17. (New) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogen-containing heterocyclic compound, and that at least one of the hole injection/transport compounds is a pyrrole compound.
- 18. (New) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogen-containing heterocyclic compound, and that at least one of the hole injection/transport compounds is a triarylamine-based compound.

- 19. (New) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogen-containing heterocyclic compound, and that at least one of the hole injection/transport compounds is a hydrocarbon-based aromatic compound.
- 20. (New) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a hydrocarbon-based aromatic compound, and that at least one of the hole injection/transport compounds is a triarylamine-based compound.
- 21. (New) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a hydrocarbon-based aromatic compound, and that at least one of the hole injection/transport compounds is a pyrrole compound.
- 22. (New) The organic electroluminescent device of claim 1, wherein the luminescent layer has at least one stacked layer structure of an electron injection/transport compound and a hole injection/transport compound.
- 23. (New) The organic electroluminescent device of claim 1, wherein the luminescent layer contains a plurality of domain structures of an electron injection/transport compound and a hole injection/transport compound.
- 24. (New) The organic electroluminescent device of claim 1, wherein a light emission caused by the organic electroluminescent device originates from the green or blue phosphorescent compound.