Don't say CAT: NEW ITEM RESPONSE THEORY APPROACHES FOR DEVELOPING SHORT TEST FORMS

Ottavia M. Epifania^{1,2}, Pasquale Anselmi¹, Egidio Robusto¹ ottavia.epifania@unipd.it

¹University of Padova

²Catholic University of the Sacred Heart

September 30th 2022, Padova

XXX Annual Conference of the Italian Psychology Association (AIP)

- 1 Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets
- **4** Simulation study
- **5** Some final remarks

CAT

CAT

Computerized Adaptive Testing

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: Ad-hoc tests for each person \rightarrow The information is maximized for each level of θ (i.e., for each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across θ levels (i.e., across all respondents)

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: *Ad-hoc* tests for each person \rightarrow The information is maximized for each level of θ (i.e., for each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

Issue

Different short test forms for each respondent \to Potential fairness issues in assessments, e.g. for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across θ levels (i.e., across all respondents)

Item Response Theory and short test forms

ADAPTIVE SHORT FORMS: *Ad-hoc* tests for each person \rightarrow The information is maximized for each level of θ (i.e., for each respondent) \rightarrow (CAT: Computerized Adaptive Testing)

Issue

Different short test forms for each respondent \to Potential fairness issues in assessments, e.g. for recruitment

STATIC SHORT FORMS: Static tests equal for all respondents \rightarrow The information is maximized across θ levels (i.e., across all respondents)

Issue

Not being tailored to any θ level of interest \to Potentially more items are needed to cover a wide range of θ s

Aim

New IRT-based procedures for shortening tests

Aim

New IRT-based procedures for shortening tests

+

Equal for all respondents

Aim

New IRT-based procedures for shortening tests

Equal for all respondents

Tailored to specific levels of the latent trait

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets
- 4 Simulation study
- **5** Some final remarks

Item Response Theory 2-PL Model

$$P(x_{pj} = 1 | \theta_p, b_j, a_j) = \frac{exp[a_j(\theta_p - b_j)]}{1 + exp[a_j(\theta_p - b_j)]}$$

where:

 $P(x_{pj} = 1)$: Probability of a correct response to item j by respondent p

 θ_p : Ability of respondent p

 b_i : Difficulty of item j

 a_i : Discrimination of item j

Item Information Function

$$IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$$

Item Information Function

$$IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$$

Figure 1:
$$a = 0.20$$
, $a = 0.70$, $a = 1.90$, $b = 0$

Item Information Function

$$IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$$

Figure 1:
$$a = 0.20$$
, $a = 0.70$, $a = 1.90$, $b = 0$

Test Information Function

$$TIF = \sum_{j=1}^{J} IIF_j$$

Item Information Function

$$IIF_j = a_j^2 [P(\theta)(1 - P(\theta))]$$

Figure 1: a = 0.20, a = 0.70, a = 1.90, b = 0

Test Information Function

$$TIF = \sum_{i=1}^{J} IIF_{j}$$

Figure 2: TIF = $IIF_1 + IIF_2 + IIF_3$

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests

Benchmark procedure Procedures based on θ targets

- 4 Simulation study
- **5** Some final remarks

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests
 Benchmark procedure
 Procedures based on θ targets
- **4** Simulation study
- **5** Some final remarks

Benchmark procedure

Selected items \rightarrow items with the highest *IIF*s

e.g.: 3-item short form from 10-item full-length test

item	b	a	IIF
1	-0.67	0.71	0.08
2	0.50	1.19	0.15
3	-2.43	0.25	0.01
4	2.12	1.98	0.24
5	1.72	0.39	0.03
6	-2.28	1.62	0.19
7	0.64	0.50	0.05
8	-2.51	1.68	0.19
9	-0.66	0.44	0.04
10	0.72	0.33	0.02

Benchmark procedure

Selected items \rightarrow items with the highest *IIF*s

e.g.: 3-item short form from 10-item full-length test

item	b	а	IIF
4	2.12	1.98	0.24
8	-2.51	1.68	0.19
6	-2.28	1.62	0.19
2	0.50	1.19	0.15
1	-0.67	0.71	0.08
7	0.64	0.50	0.05
9	-0.66	0.44	0.04
5	1.72	0.39	0.03
10	0.72	0.33	0.02
3	-2.43	0.25	0.01

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests

Benchmark procedure

Procedures based on θ targets

- 4 Simulation study
- **5** Some final remarks

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	θ_1'	θ_2'	θ_3'
item	-2.67	0.01	2.67
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			4.□

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	$ heta_2'$	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	θ_2'	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	θ_2'	θ_3'
item	-2.67	$0.\overline{01}$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	$ heta_2'$	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	θ_2'	θ_3'
item	-2.67	$0.\overline{01}$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	θ_2'	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest *IIF*s in respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	θ_2'	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Segmenting the latent trait

Segmenting the latent trait

Equal Intervals Procedure
Equal segmentation

Segmenting the latent trait

Equal Intervals Procedure
Equal segmentation

Unequal Intervals Procedure
Clustering

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets
- 4 Simulation study
- **5** Some final remarks

Comparison between the item selection procedures:

- Benchmark procedure (BP): The N items with the highest IIFs are selected from the full-length test
- Equal Intervals Procedure (EIP): The N items that maximize the information for each θ' obtained by dividing the latent trait into equal intervals are selected
- Unequal Intervals Procedure (UIP): The N items that maximize the information for each θ' obtained by clustering the latent trait are selected
- Random Procedure (RP): N items are randomly selected from the full-length tests
- 10, 30, 50, 70, 90-item short test forms from a 100-item full-length test

1000 respondents p

- 1 Normal distribution $p \sim \mathcal{N}(0,1)$
- 2 Positive skewed distribution $p \sim Beta(1, 100)$ (linearly transformed to obtain negative values)
- 3 Uniform distribution $p \sim \mathcal{U}(-3,3)$

100 items *j*:

- $b \sim \mathcal{U}(-3,3)$
- *a* ∼ *U*(0.40, 2)

An overall look

Figure 3: Overall Information of the short test forms

A closer look

Figure 4: TIF of the 10-item short test form

An even closer look

Figure 5: $bias = \theta - \hat{\theta}$ of the 10-item short test form

- Introduction
- 2 Item Response Theory and information functions
- 3 IRT procedures for shortening tests Benchmark procedure Procedures based on θ targets
- 4 Simulation study
- **5** Some final remarks

Good!

There's no "one-fits-all" solution

The θ distribution is a key element

Good!

There's no "one-fits-all" solution

The θ distribution is a key element

..but work is still needed

Real life applications are missing

The CAT is missing

Thank you! ottavia.epifania@unipd.it

