Given (F) D,

if there is some $\theta: H_{\mathcal{D}}(F^{*}xid) \cong H_{\mathcal{C}}(id \times G)$ one says

F is a left adjoint for G G is a right adjoint for F

and writes F-1G

The existence of θ is sometimes indicated by writing $F \times \frac{9}{3} \times \frac{9}{3$

Writing $fx \xrightarrow{g} Y$ $\chi \xrightarrow{g} GY$

Using this notation, can split the naturality condition for θ into two:

$$\frac{F_{X'} \xrightarrow{F_{U}} f_{X} \xrightarrow{9} Y}{f_{X} \xrightarrow{9} G_{Y} \xrightarrow{G_{Y}} G_{Y'}}$$

$$\frac{F_{X'} \xrightarrow{F_{U}} f_{X} \xrightarrow{9} G_{Y}}{f_{X} \xrightarrow{9} G_{Y} \xrightarrow{G_{Y}} G_{Y'}}$$

Proposition. Chas binary products if & only if the diagonal functor $\Delta = (id, id) : C \rightarrow C \times C$ has a right adjoint.

Proposition A cartesian category \mathbb{C} has all exponentials if & only if for all $X \in Obj\mathbb{C}$, the functor $(-) \times X : \mathbb{C} \longrightarrow \mathbb{C}$ has a right adjoint.

<u>troposition</u>. Chas binary products if fonly if the diagonal functor $\Delta = \langle id, id \rangle : \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ has a right adjoint.

Both instances of the following theorem

- a very useful characterisation of when
a functor has a right adjoint (or dually, has a left adjoint) Proposition A cartesian category. C has all exponentials if & only if for all $X \in BjC$, the functor

 $(-) \times X : \mathbb{C} \to \mathbb{C}$

has a right adjoint.

Theorem

F: $C \rightarrow D$ has a right adjoint if s only if for all $Y \in objD$ there are $GY \in objC$ & $E_Y \in D(F(GY), Y)$ with the universal property:

For all $X \in \mathcal{B}_j \mathbb{C}$ & $g \in \mathbb{D}(f(X),Y)$ there is

a unique $\hat{g} \in C(X,GY)$ sortisfying $\mathcal{E}_{Y} \circ F(\hat{g}) = g$

$$\begin{array}{ccc}
GY & F(GY) & \xrightarrow{\mathcal{E}_Y} & Y \\
\widehat{0} & & F(\widehat{9}) & & & & & \\
7X & & F(X) & & & & & & \\
\end{array}$$

in C

uP

in D

Proof of the theorem - "only if" part: given an adjunction (F, G, θ) , for each $Y \in Sbj D$ produce $E_Y : F(GY) \rightarrow Y$ Satisfying up.

We have $\theta_{X,Y}: \mathbb{D}(F_{X_1Y}) \cong \mathbb{C}(X_1G_Y)$ natural in $X \otimes Y$

Define: $\mathcal{E}_{Y} \triangleq \mathcal{O}_{GY,Y} \left(id_{GY} \right) : F(GY) \rightarrow Y$

In other words $\varepsilon_{\gamma} = id_{GY}$, i.e. $\frac{F(GY) \xrightarrow{\varepsilon_{\gamma}} Y}{GY \xrightarrow{id} GY}$ 13.6

Griren any
$$\{g: fx \rightarrow Y \text{ in } D\}$$

by naturality we have
$$\frac{g: Fx \rightarrow Y}{\overline{g}: x \rightarrow GY} \qquad \begin{cases} \underbrace{\varepsilon_Y \circ ff: fx} \xrightarrow{ff} f(GY) \xrightarrow{id_{GY}} Y \\ f: x \rightarrow GY \end{cases}$$

$$\begin{cases} g: Fx \rightarrow Y \\ \overline{g}: x \rightarrow GY \end{cases} \qquad \begin{cases} \underbrace{\varepsilon_Y \circ ff: fx} \xrightarrow{ff} f(GY) \xrightarrow{id_{GY}} Y \\ f: x \rightarrow GY \xrightarrow{id_{GY}} GY \end{cases}$$

$$\begin{cases} g: Fx \rightarrow Y \\ \overline{g}: x \rightarrow GY \end{cases} \qquad \begin{cases} f: x \rightarrow GY \xrightarrow{id_{GY}} GY \\ f: x \rightarrow GY \xrightarrow{id_{GY}} GY \end{cases}$$

$$\begin{cases} g: Fx \rightarrow Y \\ \overline{g}: x \rightarrow GY \end{cases} \qquad \begin{cases} f: x \rightarrow GY \xrightarrow{id_{GY}} GY \\ f: x \rightarrow GY \xrightarrow{id_{GY}} GY \end{cases}$$

$$\begin{cases} g: Fx \rightarrow Y \\ \overline{g}: x \rightarrow GY \end{cases} \qquad \begin{cases} f: x \rightarrow GY \xrightarrow{id_{GY}} GY \xrightarrow{id_{GY}} GY \xrightarrow{id_{GY}} GY \end{cases}$$

$$\begin{cases} g: Fx \rightarrow Y \\ \overline{g}: x \rightarrow GY \end{cases} \qquad \begin{cases} f: x \rightarrow GY \xrightarrow{id_{GY}} GY \xrightarrow{id$$

Proof of the theorem - "if" part:

We are given $F: \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D} \to \mathbb{D}$ and $\mathbb{C} \to \mathbb{D} \to \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D} \to \mathbb{D} \to \mathbb{C} \to \mathbb{D} \to \mathbb{C} \to \mathbb{$

Dextend YHGY to a functor G:D-C

(2) construct a natural iso $\theta: H_0^{\circ}(Fxid) \cong H_c^{\circ}(idx G)$

(i) For each D-morphism $g: Y \to Y$ we get F(GY') = Y' = Y and can apply up to get $Gg \triangleq (g \circ \mathcal{E}_{Y'})^{n} : GY \rightarrow GY$ The uniqueness part of up implies G(id) = id $G(g \circ g) = (Gg') \circ (Gg)$ so we get a functor $G: \mathbb{D} \to \mathbb{C}$.

(2) Since for all $g: fx \rightarrow Y$, there is a unique $f: X \rightarrow GY$ with $g = \xi_Y \circ Ff$, f = ε_r. Ff determines a bijection $C(X,GY) \cong D(fX,Y)$ and it is natural in x & Y since Grofou = Ep, o F (Grofou) = (E, . , FGV) · Ff · fu by det a

= (vo Er) off o Fu = vo fo fu

by det?

2) Since for all $g: fx \rightarrow Y$, there is a unique $f: x \rightarrow GY$ with $g = \xi_Y \circ Ff$, f → f = ε_r. Ff determines a bijection $\mathbb{C}(X,GY) \cong \mathbb{D}(fX,Y)$ and it is natural in $X \times Y$ since ... So we take 0 to be the inverse of this natural isomorphism.

Dual of the theorem

G: C= D has a left adjoint if s only if for all $X \in obj \mathcal{C}$ there ove $FX \in obj D^{2}$ $\eta_{X} \in \mathbb{C}(X, G(FX))$

with the universal property:

ZY

For all $Y \in Obj D & f \in C(x, G(Y))$ there is a unique $\hat{f} \in \mathbb{D}(F_{X,Y})$ satisfying $G(\hat{f}) \circ \eta_{X} = \hat{f}$ $G(F_{X}) \leftarrow \chi_{X}$ ç Fx f ↓

uP

 $G(\hat{f})\downarrow f$ G(Y)

E.g. from the dual version of the theorem we can conclude that the forget ful functor U: Mon -> Set has a left adjoint F: Set -> Mon, because of the universal property of $F(\Sigma) = (\text{List}(\Sigma), e, \text{nil}) & i_{\Sigma} : \Sigma \rightarrow \text{List}(\Sigma)$ trom Lecture 3. u (FS)

Why are adjoint functors important/useful?

useful mathematical construction (eg. "freely generated structures are left adjoints for forgetting structure") and pins it down uniquely up to iso