BANKURA UNIVERSITY

B. Sc. Semester I (Hons) Examination 2017 MATHEMATICS

Subject Code : 12102 Course Code : UG/SC/102/C-02

Course Title: Algebra

Full Marks: 40 Time: 2 Hours

The figures in the right hand side margin indicate marks.

1. Answer any five questions:

 $2\times5=10$

- a) If the sum of two roots of the equation $x^3 + px^2 + qx + r = 0$ is zero, then show that pq = r
- b) Express the complex number 1–i in Polar form with Principal argument.
- c) z is a variable complex number such that an amplitude of $\frac{z-i}{z+1}$ is $\frac{\pi}{4}$. Show that the point z lies on a circle in the complex plane.
- d) Show that for any three real numbers a, b, c

$$a^{8}+b^{8}+c^{8}>a^{2}b^{2}c^{2}(ab+bc+ca)$$
.

- e) Let λ be an eigen value of an $n \times n$ matrix A. Show that λ^2 is an eigen value of A^2 .
- f) Is the following transformation linear?

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by

$$T(x,y) = (x+y,0), \forall x,y \in \mathbb{R}$$

- g) Suppose R and S are two equivalence relations on a nonempty set A. Verify whether $R \cup S$ and $R \cap S$ are equivalence relations on A.
- h) Use the theory of congruence to find the remainder when the sum $1^3+2^3+3^3+....+99^3$ is divided by 3.

2. Answer any four questions:

 $5\times4=20$

- a) i) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation whose roots are $\alpha\beta + \beta\gamma$, $\beta\gamma + \gamma\alpha$, $\gamma\alpha + \alpha\beta$.
- ii) Find the minimum number of complex roots of the equation $x^7 3x^3 + x^2 = 0$.

$$x+y+z=1$$

$$x+2y-z=b$$

$$5x+7y+az=b^{2}$$

has no solution, only one solution, many solutions respectively.

c) If

$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} ,$$

then find three eigen vectors of A which are linearly independent. 5

- d) i) If a is prime to b then prove that $a^2 + b^2$ is prime to a^2b^2 .
- ii) Prove that the product of k consecutive integers is divisible by k. 3
- e) A relation β is defined on \mathbb{Z} by " $x \beta y$ if and only if $x^2 y^2$ is divisible by 5" for $x, y, \in \mathbb{Z}$. Prove that β is an equivalence relation on \mathbb{Z} and find the distinct equivalence classes.
- f) Let V(F) be a vector space and $S \neq \phi$ be a finite subset of V. Then prove the set W of all linear combinations of the elements of S forms a subspace of V. Also show that W is the smallest subspace of V containing S.

3. Answer either (a) or (b):

 $10 \times 1 = 10$

- a) i) Show that the sets $A = \{x \in \mathbb{R} : 0 \le x \le 1\}$ and $B = \{x \in \mathbb{R} : a \le x \le b\}$ have same cardinal number.
- ii) If |z| = 1 and amp $z = \theta$, $(0 < \theta < \pi)$ then find the modulus and principal amplitude of $\frac{2}{1+z}$.
- iii) Prove that for n > 3, the integers n, n + 2, n + 4 cannot be all primes.
- b) i) State and prove the Cauchy Schwarz inequality.
- ii) Verify Caley Hamilton theorem for the matrix 4

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix} \cdot \text{Hence find A}^{-1}.$$