Swetha Jayapathy

Student ID: 934041047

Instructor : Julianne Schutfort

CS321: Introduction to Theory of Computation

January 21, 2020

CS 321 HW2

Submit typed solutions created using a word processor or text editor as a pdf file to Canvas. For any solutions involving an NFA or DFA also submit the .jff JFLAP files.

1) (8 pts) Given an NFA M with the transition graph shown below.

a) Give a regular expression r such that L(r) = L(M)

$$r = b(ab)^* + a(a)^* b(b)^*$$

L(r) = {b,bab,babab.., ab, aab,abb,aabbb,}

b) Construct a regular grammar G such that L(G) = L(M)

Let
$$G = (V, T, S, P)$$
 be the grammar for the above mentioned NFA, where $V = \{S, Q1, Q2, Q3, Q4\}$ and $T = \{a,b\}$

The production P is defined as below:

2) (8 pts) Given the regular grammar G = (V, S, T, P) where $V = \{A, B, C, S\}, T = \{0, 1\}$ and productions P defined below,

$$S \rightarrow 00A \mid 1B$$

 $A \rightarrow 0A \mid \lambda$
 $B \rightarrow 11C \mid 1$
 $C \rightarrow 0B$

a. Construct an NFA M such that L(M) = L(G)

Let M be the NFA for the above defined Grammar.

M = (Q,
$$\sum$$
, δ , q0, F) where
Q = {S, A, B, C, D, E, F}
 \sum = {0, 1}
F = {A, D}

Transition Function:

$$\delta$$
 (B,0)= φ

$$δ$$
 (B,0)= $φ$ $δ$ (C,0)= B

$$\delta$$
 (C,1)= ϕ

$$\delta$$
 (E,0)= A δ (D,1)= ϕ

$$\delta$$
 (D,1)= ϕ

$$\delta$$
 (E.1)= ω

$$\delta$$
 (E,1)= ϕ δ (D,0)= ϕ

$$\delta (A.0) = A$$

$$\delta$$
 (A,0)= A δ (F,0)= ϕ

$$\delta (A,1) = \varphi$$

$$\delta$$
 (A,1)= ϕ δ (F,1)= C

Another way:

Let M be the NFA for the above defined Grammar.

 $M = (Q, \sum, \delta, q0, F)$ where

$$Q = \{S, A, B, C, D\}$$

$$\sum = \{0, 1\}$$

$$F = \{A, D\}$$

Transition function:

- δ (S,00)= A
- δ (S,1)= B
- $\delta (A,0) = A$
- δ (B,1)= D
- δ (B,11)= C
- δ (C, 0)= B
- b) Give a regular expression r such that L(r) = L(G)

Regular expression $r = 000^* + 1(110)^*1$

- 3) (4 pts) Suppose that a bank only permits passwords that are strings from the alphabet \Box = {a, b, c, d,
- 1, 2, 3, 4} that follow the rules:
 - The length is at least five characters
 - It begins with a letter {a, b, c, d}
 - It ends with two digits {1, 2, 3, 4}

The set of legal passwords forms a regular language L. Construct a regular expression r

such that L(r) = L.

4) (5 pts) Prove that if L is regular language then LR is a regular language.

Given that L is a Regular language, then there exists a NFA M = (Q, \sum , δ , q0, F). Let w be the set of strings in Language L.

There also exists a regular grammar G = (V, S, T, P) such that L = L(G)

Let LR be the reverse of language L. To show LR is a regular language, lets construct an NFA M' = (Q \cup {q0'}, \sum , δ ', q0', F'), such that

$$L(M') = LR.$$

$$\delta'(q0', \varepsilon) = F$$

$$δ'(q0, α) = φ$$
 where $α ∈ Σ$

$$\delta'(p, \alpha) = \{ q \mid \delta(q, a) = p \}$$
 where $q \in Q, \alpha \in \Sigma$ -----eq1

Now to prove L(M') = LR:

Since $w \in L(R)$, we know that w = a1,a2,a3...an and there exists states m0, m1, m2...mn such that m0 = q0 and mn = F.

M' will accept w R, which can be rewritten from the above as w R = ε a_n, a_{n-1},a_{n-2}a₁

Which has state sequence as q0', m_n , m_{n-1} , m_{n-2}m1

q0' is the initial state of M' and m1 is the Final state of M'.

The transition function for M' can be written as below:

 1^{st} transition function $\ \ \text{-}\ \delta\text{'}(q0\text{'}\ ,\,\varepsilon)$ = $m_n,$ hence $m_n\in F.$

The next transitions in general can be written as

$$M_{i-1} \in \delta'(m_i, a_i)$$

Which can be written as $m_{i-1} \in \{ q \mid \delta(q, a_i) = m_i \}$ according to eq1 and also as $\delta(m_{i-1}, a_i) = m_i$ which was derived from $w \in L(M)$.

Example - Let us consider the below NFA M

NFA M

The reverse of the above NFA would be

M

$$LR = \{ wR : w_{\varepsilon}L \}$$

As we can see the reverse of the language LR consists of the same set of strings accepted by Language L in a reverse order.

Q' = Q -> Set of states in Q and Q' are the same.

 $\Sigma' = \Sigma$ -> Set of all possible strings are same

F' = q0 -> The initial state of the original Language is the final state for the Reversed Language.

$$\delta'(~q~,~\alpha~) = \delta 1~(q~,~\alpha~) \quad \text{ where } \alpha~\varepsilon~\sum,~q~\varepsilon~Q$$

If $w R \in L(M')$ then,

 δ^{\prime} *(q0 , w) = qf where qf ε F' and qf ε F

From the above it can be said that

$$\delta' * (q0', wR) = F'$$

therefore $w R \in L(M')$ and is a regular language.