Baze podataka Katedra za računarstvo Elektronski fakultet u Nišu

Normalne forme i normalizacija

Prof.dr Leonid Stoimenov

Pregled

- Uvod
- Normalne forme
- Normalizacija
 - **INF**
 - ▶ 2NF
 - ▶ 3NF
 - **BCNF**

Uvod

- Nakon projektovanja BP sledi analiza projektovane šeme i donošenje odluke da li je projektovana šema dobra ili je treba dalje doterivati
- Da bismo doneli takvu odluku potrebno je da shvatimo koje probleme, ako ih ima, može da proizvede ta šema
- Kao vodič za to služe normalne forme koje nam obezbeđuju informaciju o tome koji se problemi neće javiti ako je šema u nekoj normalnoj formi
- U teoriji relacionog modela podataka je predloženo više normalnih formi

Svrha normalizacije

Proces normalizacije je formalna metoda koja se oslanja na funkcionalnim zavisnostima, odnosno na zavisnostima između ključeva (primarnog i kandidata) i ostalih atributa relacije.

Normalizacija je postupak kojim se dobija skup relacija sa željenim osobinama tj ograničenjima definisanim normalnom formom, kako bi se izbegle anomalije ažuriranja.

Proces Normalizacije

Normalizacija se izvršava u više koraka.

- Svaki korak odgovara jednoj normalnoj formi sa željenim osobinama definisanim normalnom formom
- Svaka sledeća normalna forma je stroža i uvodi više restrikcija
- Svaka sledeća normalna forma smanjuje mogućnost pojave anomalija

Kod relacionog modela, jedino je prva normalna forma (1NF) je kritična kod kreiranja relacija, sve ostale NF su opcione.

Funkcionalne zavisnosti i normalizacija

Osnovne karakteristike FZ kod normalizacije

- Definišu jedan-na-jedan relacije između atributa sa leve- i atributa sa desne- strane FZ;
- Postoje sve vreme;
- Netrivijalne su.

Normalne forme

- I. Prva normalna forma (1NF)
- 2. Druga normalna forma (2NF)
- 3. Treća normalna forma (3NF)
- 4. Boyce-Coddova normalna forma (BCNF)

definišu se na osnovu funkcionalnih zavisnosti (FZ) među atributima

- 5. Četvrta normalna forma (4NF)
- Peta normalna forma (5NF) ili normalna forma projekcija-spoj (PJNF)
- 7. Normalna forma domen-ključ (DKNF)

4NF se zasniva na višeznačnim zavisnostima (VVZ)

5NF se zasniva na zavisnosti spoja (ZS)

DKNF uzima u obzir sve moguće zavisnosti i ograničenja

PRVA NORMALNA FORMA (1NF)

Definicija:

Šema relacije **R**(R;**F**) je u prvoj normalnoj formi (1NF) ako i samo ako domeni relacije R sadrže samo proste (atomične) vrednosti

Proste vrednosti su vrednosti koje se ne mogu dalje deliti ili ako u konkretnoj situaciji nisu rastavljene na komponente

PRVA NORMALNA FORMA (1NF)

- U 1NF nisu dozvoljeni viševrednosni i kompozitni atributi i njihove kombinacije,
- Praktično, nisu dopuštene relacije u relacijama (tzv. ugneždene relacije) ili relacije kao atributi torki
 - Ovaj uslov je ukinut kod ugneždenog relacionog modela i kod objektno-relacionih sistema
- Istorijski je 1NF uvedena da bi se onemogućila pojava viševrednosnih atributa, kompozitnih atributa i njihovih kombinacija

1NF

Ponavljanje = (propertyNo, pAddress, rentStart, rentFinish, rent, ownerNo, oName)

Nenormalizovana relacija (NNF)

Tabela sadrži više vrednosti atributa/koje se ponavljaju

ClientNo	cName	propertyNo	pAddress	rent S tart	rentFinish	rent	owner N o	oName
	John	PG4	6 lawrence St,Glasgow	I-Jul-00	31-Aug-01	350	CO40	Tina Murphy
CR76	kay	PG16	5 Novar Dr, Glasgow	I-Sep-02	I-Sep-02	450	CO93	Tony Shaw
		PG4	6 lawrence St,Glasgow	I-Sep-99	10-Jun-00	350	CO40	Tina Murphy
CR56	Stewart	PG36	2 Manor Rd, Glasgow	10-Oct- 00	I-Dec-01	370	CO93	Tony Shaw
		PG16	5 Novar Dr, Glasgow	I-Nov-02	I-Aug-03	450	CO93	Tony Shaw

Test za 1NF

Provera za prvu normalnu formu:

- Proveriti da li su svi atributi šeme relacije prosti (atomični)
- Ako jesu, tada je šema relacije u 1NF
- Ako nisu tada šema relacije nije u 1NF
 - Takvu šemu treba prevesti u INF, tj. treba izvršiti 1NF normalizaciju

1NF u praksi

Relacija u 1NF: presek jedne kolone i jedne vrste sadrži samo jednu vrednost.

Normalizacija

- Ukloniti horizontalne redundance u podacima
 - Ne postoje dve kolone koje čuvaju istu informaciju
 - Ne postoji kolona koja čuva više od jedne vrednosti
- Svaka vrsta treba da bude jedinstvena
 - Koristiti primarni ključ
- Postupak normalizacije

izdvojiti grupu koja se ponavlja u novu relaciju, koja sadrži taj atribut kao i primarni ključ originalne relacije.

1NF u praksi

- Šta se dobija:
 - Lakše zadavanje upita/uređenja
 - Skalabilno
 - Svaka vrsta se može identifikovati kod ažuriranja
 - Ako se konceptualno projektovanje uradi kako treba, relacija je sigurno u 1NF!

Uslov 1NF je ukinut kod kod objektno-relacionih sistema!

Druga normalna forma (2NF)

Druga normalna forma (2NF) se bazira na konceptu potpune funkcionalne zavisnosti

Definicija:

Funkcionalna zavisnost $X \rightarrow Y$ je potpuna funkcionalna zavisnost ako izbacivanjem bilo kog atributa A iz X ova zavisnost više ne važi

Definicija:

Funkcionalna zavisnost $X \rightarrow Y$ je parcijalna funkcionalna zavisnost ako se neki atribut $A \in X$ može izbaciti iz X i da zavisnost i dalje važi

Druga normalna forma (2NF)

Definicija:

Šema relacije $\mathbf{R}(R;\mathbb{F})$ je u drugoj normalnoj formi (2NF) ako svaki atribut A u R ispunjava jedan od sledeća dva uslova:

- I) javlja se u nekom ključu kandidatu
- 2) nije parcijalno zavisan od nekog ključa kandidata

Druga normalna forma (2NF)

Interpretacija definicije:

Šema relacije R(R;F) je u drugoj normalnoj formi
 (2NF) ako svaki njen neključni atribut nije
 parcijalno zavistan od nekog ključa šeme relacije

 Šema relacije R(R;F) je u drugoj normalnoj formi (2NF) ako svaki njen neključni atribut potpuno funkcionalno zavisi od svakog ključa šeme relacije R

Test za 2NF

Treba proveriti da li je svaki neključni atribut potpuno funkcionalno zavistan od svakog ključa kandidata

Postupak:

- 1. Naći sve ključeve šeme relacije
 - a. Naći sve ključne atribute
 - b. Naći sve neključne atribute
- 2. Izvršiti proveru uslova potpune funkcionalne zavisnosti

Specijalni slučajevi 2NF: Ako se u šemi relacije **R** svi ključevi kandidati sastoje samo od **jednog atributa** ili ako su svi atributi ključni, onda je šema relacije R u 2NF

2NF - Primer 1

Da li je šema relacije $\mathbf{R}(R;\mathbb{F})$ u 2NF? R=(A,B,C,D) $\mathbb{F}=\{AB\rightarrow C,B\rightarrow DC,BC\rightarrow A\}$

- Naći sve ključeve šeme relacije K={B}
- Kako jedini ključ K={B} sadrži jedan atribut, R je u 2NF.
- 3. KRAJ TESTA

2NF - Primer 2

Da li je šema relacije $\mathbf{R}(R,\mathbb{F})$ u 2NF? R=(A,B,C,D,E)

$$\mathbb{F}=\{A\rightarrow BC,CD\rightarrow E,B\rightarrow D,E\rightarrow A\}$$

- Naći sve ključeve šeme relacije KI=A, K2=E, K3=BC,K4=CD
- Naći sve ključne atribute
 KA = {A, B,C,D,E}
- Naći sve neključne atributeNKA = { }
- 4. Kako su svi atributi ključni, R je u 2NF.
- 5. KRAJ TESTA

2NF - Primer 3

Da li je šema relacije $\mathbf{R}(R,\mathbb{F})$ u 2NF?

$$R=(S,A,I,P)$$

$$F=\{SI\rightarrow P,S\rightarrow A\}$$

- Naći sve ključeve šeme relacije K=SI
- Naći sve ključne atribute
 KA = {S,I}
- 3. Naći sve neključne atribute NKA = {A,P }
- 4. Proveriti da li A parcijalno zavisi od ključa SI Kako je za FZ: S→A , S ⊂ K, to neključni atribut A parcijalno zavisi od ključa SI i šema relacije nije u 2NF. KRAJ TESTA

2NF u praksi

Relacija mora da bude u 1NF, uz dodatni uslov da svaki neprimarni atribut potpuno zavisi od ključa

Normalizacija

- Eliminisati vertikalnu redundancu u podacima
 - Ista vrednost ne sme se ponavljati u nekoj vrsti
- Kompozitni ključevi
 - Sve kolone u vrsti moraju da se referenciraju na sve delove ključa

Šta se dobija

- Povećava se efikasnost čuvanja podataka
- Smanjuje ponavljanja podataka

2NF Normalizacija

- Preduslov da relacija bude u 1NF
- Eliminacija parcijalnih zavisnosti
 - Ako postoji parcijalna zavisnost, vršimo dekompoziciju šeme relacije na osnovu te FZ
 - U novu šemu relacije izdvajamo parcijalno zavisne atribute i atribut koji ih određuje (ključ nove relacije)
 - "Stara" šema relacije sadrži sve atribute osim parcijalno zavisnih.

2NF Normalizacija

Primer: Šema relacije R=(S,A,I,P) nije u 2NF, $\mathbb{F}=\{SI\rightarrow P, S\rightarrow A\}$

Ključ: Sl

FZ koja narušava 2NF: S→A

(za A postoji parcijalna FZ u odnosu na ključ SI)

Normalizacija dekompozicijom: na osnovu S-A

RI=(S,I,P) (iz R izbašen parc. zav. atr. A)

R2=(S,A) (nova šema rel. na osnovu FZ)

(Drimarni Kliuč)

Primer 2NF Normalizacije

alianthia anasantukla -> nantCtant nantEiniah

Relacija

ClientRental(clientNo, propertyNo, rentStart, rentFinish, cName,

pAddress, rent, ownerNo, oName)

ima sledeće FZ:

TOI	clientino, propertyino 7 rentstart, rentrinish	(Primarni Kijuć)
fd2	clientNo → cName	(Parcijalna zavisnost)
fd3	propertyNo → pAddress, rent, ownerNo, oName	(Parcijalna zavisnost)
fd4	ownerNo → oName	(Tranzitivna zavisnost)
fd5	clientNo, rentStart → propertyNo, pAddress,	
	rentFinish, rent, ownerNo, oName	(Ključ kandidat)
fd6	propertyNo, rentStart → clientNo, cName, rentFinish	n (Ključ kandidat)

fd2 fd3 clientNo → cName propertyNo → pAddress, rent, ownerNo, oName

Primer (nast)

Eliminacija parcijalnih zavisnosti, kreiranje 3 nove relacije

Client (clientNo, cName)

PropertyOwner (<u>propertyNo</u>, pAddress, rent, ownerNo, oName) Rental (<u>clientNo</u>, <u>propertyNo</u>, rentStart, rentFinish)

Client

ClientNo	cName
CR76	John Kay
CR56	Aline Stewart

Rental

ClientNo	propertyNo	rentStart	rentFinish
CR76	PG4	1-Jul-00	31-Aug-01
CR76	PG16	1-Sep-02	1-Sep-02
CR56	PG4	1-Sep-99	10-Jun-00
CR56	PG36	10-Oct-00	1-Dec-01
CR56	PG16	1-Nov-02	1-Aug-03

PropertyOwner

propertyNo	pAddress	rent	ownerNo	oName
PG4	6 lawrence St,Glasgow	350	CO40	Tina Murphy
PG16	5 Novar Dr, Glasgow	450	CO93	Tony Shaw
PG36	2 Manor Rd, Glasgow	370	CO93	Tony Shaw

Treća normalna forma (3NF)

Definicija:

Šema relacije $\mathbf{R}(R;\mathbb{F})$ je u trećoj normalnoj formi (3NF) u odnosu na skup funkcionalnih zavisnosti \mathbb{F} ako za svaku funkcionalnu zavisnost u \mathbb{F}^+ oblika $\mathbf{X} \rightarrow \mathbf{A}$ ($\mathbf{X} \subseteq \mathbf{R}$, \mathbf{A} je jedan atribut iz \mathbf{R}) važi :

- I) $A \subseteq X$ ($X \rightarrow A$ je trivijalna funkcionalna zavisnost) ili
- 2) X je super ključ šeme relacije $\mathbf{R}(R;\mathbb{F})$ ili
- 3) A je ključni atribut šeme relacije $\mathbf{R}(R;\mathbb{F})$

Odnos 2NF i 3NF

- Svaka 3NF relacija je takođe u 2NF
- Postoje relacije koje su u 2NF, a nisu u 3NF

Treći uslov 3NF definicije

- Ako FZ X→A ne zadovoljava uslov 3) iz 3NF definicije, razlozi mogu biti:
- I. X je pravi podskup nekog ključa K
 - \square X \rightarrow A je parcijalna zavisnost i par (X,A) je redundantan
- X nije pravi podskup nijednog ključa
 - X→A je tranzitivna zavisnost zbog lanca zavisnosti K→X→A
 (ne možemo pridružiti X vrednost ključu K, a da ne pridružimo A vrednost X-u).
 - Ovaj uslov vodi ka anomalijama unosa, brisanja i modifikacije.

Parcijalne i tranzitivne zavisnosti

- Treba proveriti da li svaka zavisnost iz F⁺ zadovoljava uslov I) ili 2) ili 3) iz 3NF definicije
- Može se dokazati da je dovoljno proveriti samo funkcionalne zavisnosti iz F
 - ako nijedna od FZ iz $\mathbb F$ ne narušava 3NF ograničenja, tada to neće činiti nijedna zavisnost iz $\mathbb F^+$
- Specijalni slučaj: Ako $\mathbb F$ sadrži FZ čije desne strane sadrže više od jednog atributa, tada primenom pravila dekompozicije skup $\mathbb F$ treba transformisati u skup $\mathbb F$ ' gde sve FZ sadrže po jedan atribut sa desne strane

3NF u praksi

- Instanca šeme koja nije u 3NF sadrži redundantne informacije koje su posledica FZ
- Relacija mora da bude u 2NF
 - Ako je relacija u 2NF, postoje dobre šanse da je i u 3NF
- Sve kolone moraju da direktno zavise od primarnog ključa
- Ako ste dobro odradili konceptualno projektovanje u preslikavanje na relacioni model, relacije su uglavnom u 3NF
- Šta se dobija
 - Nema redundanse u podacima

3NF normalizacija

- Preduslov: relacija je u 2NF
- Eliminacija tranzitivnih zavisnosti
 - Dekompozicija relacije na osnovu takve zavisnosti: Izdvoje se atributi iz takvih zavisnosti u novu relaciju zajedno sa kopijom atributa koji ih određuje/ju.

Primer 3NF normalizacije

Funkcionalne zavisnosti za Client, Rental i PropertyOwner:

Client

fd2 clientNo \rightarrow cName (Prim.ključ)

Rental

fdI	clientNo, propertyNo -> rentStart, rentFinish	(Prim.ključ)
fd5	clientNo, rentStart \rightarrow propertyNo, rentFinish	(Ključ kand.)
fd6	propertyNo, rentStart → clientNo, rentFinish	(Ključ kand.)

PropertyOwner

fd3 propertyNo \rightarrow pAddress, rent, ownerNo, oName (Prim. ključ) fd4 ownerNo \rightarrow oName (Tranzitivna zavisnost)

Primer 3NF normalizacije

Rezultat normalizacije relacije PropertyOwner dekompozicijom na osnovu

fd4: ownerNo → oName

Client (clientNo, cName)

Rental (clientNo, propertyNo, rentStart, rentFinish)

PropertyOwner (propertyNo, pAddress, rent, ownerNo)

Owner (ownerNo, oName)

Primer 3NF normalizacije

Client

ClientNo	cName		
CR76	John Kay		
CR56	Aline Stewart		

Rental

ClientNo	propertyNo	rentStart	rentFinish
CR76	PG4	1-Jul-00	31-Aug-01
CR76	PG16	1-Sep-02	1-Sep-02
CR56	PG4	1-Sep-99	10-Jun-00
CR56	PG36	10-Oct-00	1-Dec-01
CR56	PG16	1-Nov-02	1-Aug-03

PropertyOwner

propertyNo	pAddress	rent	ownerNo
PG4	6 lawrence St,Glasgow	350	CO40
PG16	5 Novar Dr, Glasgow	450	CO93
PG36	2 Manor Rd, Glasgow	370	CO93

Owner

ownerNo	oName		
CO40	Tina Murphy		
CO93	Tony Shaw		

Boyce-Codd-ova normalna forma (BCNF)

Definicija:

Šema relacije $\mathbf{R}(R;\mathbb{F})$ je u Boyce-Codd-ovoj normalnoj formi (BCNF) u odnosu na skup funkcionalnih zavisnosti \mathbb{F} ako za svaku funkcionalnu zavisnost u \mathbb{F}^+ oblika $X \rightarrow Y$ ($X \subseteq R, Y \subseteq R$) važi:

- I) $Y \subseteq X$ ($X \rightarrow Y$ je trivijalna funkcionalna zavisnost) ili
- 2) X je super ključ šeme relacije
- U BCNF sve netrivijalne FZ su oblika

super ključ ightarrow skup atributa

Odnos 3NF i BCNF

- 3NF sadrži treći uslov koji ne postoji u BCNF, što predstavlja relaksaciju BCNF uslova
- Svaka BCNF relacija je takođe u 3NF
- Postoje relacije koje su u 3NF, a nisu u BCNF

BCNF test

- Treba proveriti da li svaka zavisnost iz F⁺ zadovoljava ograničenje I) ili 2) iz definicije BCNF
- lacksquare Dovoljno je proveriti samo funkcionalne zavisnosti iz lacksquare
 - ako nijedna od FZ iz $\mathbb F$ ne narušava BCNF ograničenja, tada to neće činiti nijedna zavisnost iz $\mathbb F^+$

BCNF test

- **Ulaz:** Šema relacije $\mathbf{R}(R;\mathbb{F})$
- Izlaz: TRUE ako je šema relacije **R**(R; F) u BCNF ili FALSE ako nije
- Metoda: Proveriti da li sve netrivijalne FZ $X \rightarrow Y$ iz F zadovoljavaju BCNF uslov 2), odnosno da li je X super ključ

Algoritam:

- I. **za svaku** netrivijalnu FZ $X \rightarrow Y$ iz \mathbb{F} **do**
- 2. Izračunati X^+_F // zatvarač skupa atributa X u odnosu na F
- 3. if $(X^+_F \neq R)$ then return(FALSE) // X nije super ključ, šema // relacije nije u BCNF
- 4. enddo
- return(TRUE) // šema relacije je u BCNF

BCNF – Primer 1

Da li je šema relacije $\mathbf{R}(R;\mathbb{F})$ u BCNF?

R={A,B,C,D} i

$$\mathbb{F}$$
={AB \rightarrow C, BC \rightarrow A, B \rightarrow D}

BCNF test: Sve FZ iz $\mathbb F$ su netrivijalne i treba ih proveriti

- I. Proveriti da li $FZAB \rightarrow C$ zadovoljava BCNF ograničenje
 - Naći $(AB)^+$ _F=(A,B,C,D)
 - □ Kako je (AB)⁺_F=R zaključujemo da ova FZ zadovoljava BCNF ograničenje
- 2. Proveriti da li FZ $BC \rightarrow A$ zadovoljava BCNF ograničenje

 - □ Kako je (BC)⁺_F=R zaključujemo da ova FZ zadovoljava BCNF ograničenje

BCNF – Primer 1

Da li je šema relacije $\mathbf{R}(R;\mathbb{F})$ u BCNF?

R={A,B,C,D} i

$$\mathbb{F}$$
={AB \rightarrow C, BC \rightarrow A, B \rightarrow D}

BCNF test: Sve FZ iz \mathbb{F} su netrivijalne i treba ih proveriti (nastavak)

- 3. Proveriti da li FZ $B\rightarrow D$ zadovoljava BCNF ograničenje
 - \square Naći (B) $_{\mathbb{F}}^{+}$ =(B,D)
 - Kako je (B)_F⁺≠R zaključujemo da ova FZ NE zadovoljava BCNF ograničenje, ova <u>šema nije u BCNF.</u> KRAJ TESTIRANJA

BCNF - Primer 2

Da li je šema relacije $\mathbf{R}(R;\mathbb{F})$ u BCNF? R=(A,B,C,D) $\mathbb{F}=\{AB\rightarrow C,B\rightarrow DC,BC\rightarrow A\}$

BCNF test

- Proveriti da li FZ AB→C zadovoljava BCNF uslov 2)
 (AB)+=(A,B,C,D)
 Kako je (AB)+=R, to je AB super ključ, zadovoljava uslov 2)
- Proveriti da li FZ B→DC zadovoljava BCNF uslove
 (B)+=(A,B,C,D)
 Kako je (B)+=R, to je B super ključ, zadovoljava uslov 2)

BCNF - Primer 2

Da li je šema relacije $\mathbf{R}(R;\mathbb{F})$ u BCNF? R=(A,B,C,D) $\mathbb{F}=\{AB\rightarrow C,B\rightarrow DC,BC\rightarrow A\}$

(nastavak)

3. Proveriti da li FZ BC→A zadovoljava BCNF uslove (BC)+=(A,B,C,D)
Kako je (BC)+=R, to je BC super ključ, zadovoljava 2)
R je u BCNF, KRAJ TESTA

Svojstva BCNF šeme

- Instanca BCNF šeme ne sadrži redundantne informacije koje su posledica FZ
- Anomalije modifikacije i brisanja se ne javljaju u BCNF šemama
- Relacije sa više od 1 ključa još uvek imaju anomalije unosa
 - Da bi se izbegao ovaj problem jedan od ključeva se označava za primarni i zabranjuje se da njegovi atributi imaju NULL vrednosti

BCNF u praksi

- Relacija je u BCNF ako, i samo ako, svaki atribut koji određuje neki drugi atribut je ključ kandidat.
- Razlika između 3NF i BCNF je u tome što za zavisnost A → B,
 - 3NF dozvoljava da B može da bude primarni atribut, dok
 A nije kandidat za ključ
 - BCNF zahteva da takva zavisnost može da postoji samo ako je A kandidat za ključ

BCNF normalizacija (Primer 1)

Normalizacija šeme relacije $\mathbf{R}(R;\mathbb{F})$ do BCNF?

R={A,B,C,D} i

$$\mathbb{F}$$
={AB \rightarrow C, BC \rightarrow A, B \rightarrow D}

BCNF test: Sve FZ iz $\mathbb F$ su netrivijalne i treba ih proveriti

FZ koja narušava BCNF: B→D

Dekompozicija:

RI={A,B,C} (početna relacija bez desne strane FZ $B\rightarrow D$) R2={B,D} (na osnovu $B\rightarrow D$)

Primer BCNF normalizacije

ClientInterview

ClientNo	interviewDate	interviewTime	staffNo	roomNo
CR76	13-May-02	10.30	SG5	G101
CR76	13-May-02	12.00	SG5	G101
CR74	13-May-02	12.00	SG37	G102
CR56	1-Jul-02	10.30	SG5	G102

fdl	clientNo, interviewDate → interviewTime, staffNo, roomNo	(Prim.ključ)
fd2	staffNo, interviewDate, interviewTime→ clientNo	(Kand.ključ)
fd3	roomNo, interviewDate, interviewTime → clientNo, staffNo	(Kand.ključ)
fd4	staffNo, interviewDate → roomNo	(nije ključ kandidat)

Posledica: potencijalne anomalije ažuriranja.

Na primer, treba ažurirati dve torke ako se menja vrednost roomNo za staffNo SG5 i 13-May-02.

Primer BCNF normalizacije

Moramo da eliminišemo FZ koja narušava BCNF tako što ćemo da uradimo dekompoziciju po toj FZ na dve relacije Interview i SatffRoom:

fd4 staffNo, interviewDate → roomNo
Interview (clientNo, interviewDate, interviewTime, staffNo)

StaffRoom(<u>staffNo</u>, <u>interviewDate</u>, roomNo)

Interview

ClientNo	interviewDate	interviewTime	staffNo
CR76	13-May-02	10.30	SG5
CR76	13-May-02	12.00	SG5
CR74	13-May-02	12.00	SG37
CR56	1-Jul-02	10.30	SG5

StaffRoom

staffNo	interviewDate	roomNo
SG5	13-May-02	G101
SG37	13-May-02	G102
SG5	1-Jul-02	G102

Denormalizacija

- Spajanje relacija u jednu kako bi se povećala efikasnost nekih upita/pretraga
- Može se koristiti ako se proceni da je dobitak kod pretrage veći od problema sa anomalijama
- Preporuka: izvršiti najpre normalizaciju kako treba, pa tek onda denormalizaciju ako treba
- Koristite jedino ako ne postoji drugi način optimizacije izvršenja upita
 - Pokušajte sa temp tabelama, UNION-ma, VIEW-ma, ugnježdenim upitima i sl

Normalne forme i normalizacija

Pitanja ???