Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный университет Факультет прикладной математики и процессов управления

### Проектная работа

По дисциплине: *Алгоритмы и анализ сложности* Алгоритм Борувки нахождения минимального остовного дерева в графе

Выполнила:

Студентка 3 курса группы 18.Б13-пу бакалаврской программы "Программирование и информационные технологии" Неумоина Елизавета Петровна

Проверил:

к.ф.-м.н. Никифоров Константин Аркадьевич

# Содержание

- 1. Введение
- 2. Алгоритм
  - 2.1. Псевдокод
- 3. Математический анализ алгоритма
- 4. Эмпирический анализ алгоритма
  - 4.1. Цель эксперимента
  - 4.2. Измеряемая метрика
  - 4.3. Характеристики входных данных
  - 4.4. Программная реализация алгоритма
  - 4.5. Генератор образца входных данных
  - 4.6. Выполнение алгоритма над образцом входных данных
  - 4.7. Анализ полученных результатов
    - 4.7.1. Проверка теоретической оценки
    - 4.7.2. Анализ при удвоении размера входных данных
  - 4.8. Вычислительная среда и оборудование
- 5. Литература

# Введение

Алгоритм Борувки — это алгоритм нахождения минимального остовного дерева в графе. Был впервые опубликован в 1926 году чешским математиком Отакаром Борувкой в качестве метода нахождения оптимальной электрической сети в Моравии. Стоит отметить, что алгоритм хорошо параллелизуется и является основой для распределенного алгоритма GHS.

Минимальные остовные деревья позволяют решить задачу, в которой требуется соединить множество точек (представляющих города, дома, перекрестки и др. объекты) наименьшим объемом дорожного полотна, труб, проводов и т.п.

Алгоритм следует "жадной" стратегии: на каждом этапе выбираются самые легкие ребра. Не для всех задач такой выбор ведет к оптимальному решению, однако для задачи о покрывающем дереве это так.

# Алгоритм

- 1. В самом начале каждая вершина графа G является фрагментом (тривиальным деревом), а ребра не принадлежат ни одному из них.
- 2. Пока T не является деревом (что эквивалентно условию: пока число ребер в T меньше, чем V-1, где V- количество вершин в графе / пока количество фрагментов больше 1):
  - 2.1. Для каждого фрагмента Т определяется минимальное по весу инцидентное ему ребро.
  - 2.2. Минимальные ребра добавляются в MST, а соответствующие фрагменты объединяются.
- 3. Получившийся граф Т является MST.

Данный алгоритм может работать неправильно, если в графе есть равные по весу ребра. Избежать эту проблему можно, например, выбирая в пункте 2.1. среди ребер, равных по весу, ребро с наименьшим номером. [1]

#### Псевдокод [2]

#### algorithm Borůvka is

**input**: граф G, ребра которого имеют различные веса.

**output**: T – минимальное остовное дерево графа G.

Инициализировать лес T как набор одновершинных деревьев, одно для каждой вершины графа.

while T имеет больше одной компоненты  $\mathbf{do}$ 

Найти связные компоненты T и обозначить каждую вершину G ее компонентом

Инициализировать самое легкое ребро для каждого компонента в "None"

for each ребра  $\{u-v\}$  в G do

**if** u и v имеют разные ветки компонентов:

**if**  $\{u-v\}$  легче, чем самое легкое ребро для компоненты u, **then** Сделать  $\{u-v\}$  самым легким ребром компоненты u

**if**  $\{u-v\}$  легче, чем самое легкое ребро для компоненты v, **then** Сделать  $\{u-v\}$  самым легким ребром компоненты v

for each компоненты, чье самое легкое ребро не "None" do

Добавить их самые легкие ребра в T.

# Математический анализ алгоритма

**Свойство.** Время прогона алгоритма Борувки с целью вычисления дерева MTS заданного графа есть O(E \* logV \* logE).

**Док-во:** Поскольку число деревьев в лесе уменьшается наполовину на каждом этапе, число этапов не превышает значения logV. Время выполнения каждого этапа, самое большее пропорционально затратам на выполнение E операций find, что меньше E\*logE, или линейно с точки зрения практических приложений. Функция find необходима для того, чтобы присвоить индекс каждому поддереву с таким расчетом, чтобы можно было быстро определить, к какому поддереву принадлежит вершина. [3] Т.е. эта функция определяет родительскую вершину для каждой вершины (в каждом поддереве одна родительская вершина). На каждом этапе эта функция вызывается сначала пропорциональное E (количеству ребер) раз, а затем количество раз, не превышающее logE. (см. подробнее код реализации **boruvkaAlgorithm.py**)

Время прогона, оценка которого дается свойством, представляет собой консервативную верхнюю границу, поскольку оно не учитывает существенное уменьшение ребер на каждом этапе. В каждой итерации количество деревьев уменьшается, по крайней мере вдвое, что дает нам MST после, самое большее, logV итераций, каждая из которых выполняется за линейное время. В целом это нам дает алгоритм с временем исполнения O(E\*logV). [4]

Если зафиксировать количество ребер E=4\*V, то получим сложность O(V\*logV).

Таким образом, мы получим **логарифмически линейный** класс эффективности.

# Эмпирический анализ алгоритма

Воспользуемся общим планом эмпирического анализа алгоритма: [5]

- 1. <u>Цель эксперимента:</u> проверка точности теоретических выводов об эффективности алгоритма.
- 2. <u>Измеряемая метрика:</u> трудоемкость алгоритма. <u>Единицы измерения:</u> время выполнения программы.

#### 3. Характеристики входных данных:

- 3.1. Количество вершин *V*: [10, 100] с шагом 1
- 3.2. Количество ребер E: [V 1; V\*(V-1)/2]. Так как сложность алгоритма зависит от количества ребер E, будем считать E=4\*V
- 3.3. Веса ребер: [1, 10]

#### 4. Программная реализация алгоритма:

Алгоритм принимает на вход массив ребер графа (ребро представляется в виде [u, v, w], где u и v — вершины графа, w — вес ребра), на выходе выдает массив ребер MST и его вес MSTWeight.

Код алгоритма находится в файле boruvkaAlgorithm.py

# 5. Генератор образца входных данных:

На вход принимает количество вершин V и ребер E, на выходе дает массив ребер (ребра в виде [u, v, w]).

#### Основные шаги:

- 5.1. Создается пустой массив (наш граф, в котором в дальнейшем будут храниться ребра).
- 5.2. Для удобства задается матрица инцидентности размерности  $[V \ x \ V]$ , заполненная нулями. В ней будем хранить информацию о наличии ребра в графе.
- 5.3. Случайным образом строится массив ребер (включая случайное определение веса ребра в заданном диапазоне), соединяющий все вершины (по сути список). Это необходимо, чтобы на выходе мы получили связный граф.
- 5.4. Случайным образом выбираются оставшиеся V 1-E ребер:
  - 5.4.1. Случайным образом выбираются две вершины.
  - 5.4.2. В матрице инцидентности проверяется информация о наличии ребра, и, если оно отсутствует и вершины различны, случайным образом решается, будет ли ребро в графе ([False, True]).
  - 5.4.3. В случае *True* случайным образом выбирается вес в заданном диапазоне. Ребро добавляется в массив ребер графа, в матрицу инцидентности заносится информация о наличии ребра в графе.

Код генератора находится в файле *boruvkaAlgorithm.py* (функция *generate\_graph*).

#### 6. Выполнение алгоритма над образцом входных данных.

Заданное m (количество образцов входных данных при фиксированном n): 30

Было решено повторять алгоритм для каждого n заданное количество раз (repeats = 30) для получения усредненного времени выполнения. Это поможет избежать проблему получения нулевых значений времени работы алгоритма.

#### Измеренные значения трудоемкости (время выполнения):

| n         | 10      | 11      | 12      | 13      | 14      | 15      | 16      | 17      | 18      | 19      | 20      |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| f(n) (мc) | 0.13514 | 0.13951 | 0.12306 | 0.1408  | 0.15720 | 0.21416 | 0.26810 | 0.25957 | 0.22629 | 0.32852 | 0.68306 |
| 21        | 22      | 23      | 24      | 25      | 26      | 27      | 28      | 29      | 30      | 31      | 32      |
| 0.35258   | 0.29587 | 0.30605 | 0.32156 | 0.36280 | 0.35210 | 0.44997 | 0.45957 | 0.57864 | 0.51723 | 0.44073 | 0.94534 |
| 33        | 34      | 35      | 36      | 37      | 38      | 39      | 40      | 41      | 42      | 43      | 44      |
| 0.69675   | 0.66751 | 0.59398 | 0.72147 | 0.62330 | 0.98494 | 1.26139 | 1.03948 | 1.05933 | 0.79701 | 0.91588 | 0.83840 |
| 45        | 46      | 47      | 48      | 49      | 50      | 51      | 52      | 53      | 54      | 55      | 56      |
| 1.37614   | 0.98419 | 0.84122 | 0.90845 | 0.91437 | 1.32676 | 1.00313 | 1.00675 | 1.04658 | 1.19265 | 1.71601 | 1.01573 |
| 57        | 58      | 59      | 60      | 61      | 62      | 63      | 64      | 65      | 66      | 67      | 68      |
| 1.05202   | 1.35315 | 1.31423 | 1.62676 | 1.28447 | 1.12683 | 1.26221 | 2.10612 | 1.26404 | 1.56744 | 1.36432 | 1.76997 |
| 69        | 70      | 71      | 72      | 73      | 74      | 75      | 76      | 77      | 78      | 79      | 80      |
| 1.54695   | 1.52209 | 1.91176 | 1.52810 | 1.59463 | 1.40063 | 2.22734 | 2.03686 | 1.64490 | 2.34527 | 1.74697 | 1.62548 |
| 81        | 82      | 83      | 84      | 85      | 86      | 87      | 88      | 89      | 90      | 91      | 92      |
| 2.74836   | 1.88234 | 2.26950 | 1.94409 | 1.90812 | 2.48014 | 1.63120 | 2.22448 | 2.53443 | 2.27045 | 2.44850 | 2.00849 |
| 93        | 94      | 95      | 96      | 97      | 98      | 99      | 100     |         |         |         |         |
| 1.91653   | 2.53857 | 2.10686 | 3.17119 | 1.98594 | 4.17679 | 4.65084 | 4.32012 |         |         |         |         |

Таб. 1. Измеренные значения трудоемкости при заданном n (размер входных данных – количество вершин)



Рис.1. Измеренные значения трудоемкости

#### 7. Анализ полученных результатов

теоретической оценки  $\Theta(n * \log(n))$  воспользуемся 7.1. Для проверки определением:

$$f(n) = \theta(g(n)) \text{ if } \exists n_0 \in \mathbb{N}, \exists c_1, c_2 > 0 : \forall n \ge n_0 : c_1 g(n) \le f(n)$$
  
$$\le c_2 g(n)$$

Для  $n_0 \in [10, 100]$  найдем константы  $c_1, c_2$  по принципу:

• 
$$c_1=\min\left(\frac{f(n)}{n*log(n)}\right)$$
для  $n\in[n_0;100]; c_1=0.00286, n_0=10$ 
•  $c_2=\max\left(\frac{f(n)}{n*log(n)}\right)$ для  $n\in[n_0;100]; c_2=0.00790, n_0=10$ 

$$ullet$$
  $c_2 = \max\left(rac{f(n)}{n*log(n)}
ight)$ для  $n \in [n_0;100]; c_2 = 0.00790, n_0 = 10$ 

• 
$$c_1 > 0$$
 и  $c_2 > 0$ 

Верхняя и нижняя асимптотика измеренных значений трудоёмкости



Рис. 2. Верхняя и нижняя асимптотика измеренных значений трудоемкости

# 7.2. Построим график $\frac{f(2n)}{f(n)}$ для $n \in [10, 50]$ с шагом 1.

Анализируя теоретическую оценку:  $\lim_{n \to \infty} \frac{2n*\log(2n)}{n*\log(n)} = \lim_{n \to \infty} \frac{2(\log(2) + \log(n))}{\log(n)} = \lim_{n \to \infty} 2\left(\frac{1}{\log(n)} + 1\right) = 2$  и график, делаем вывод, что с увеличением и происходит затухание к 2.



Рис. 3. Отношение измеренных значений трудоемкости при удвоении размера входных данных

#### Код анализа находится в файле empiricalAnalysis.py

# 8. Вычислительная среда и оборудование:

- Процессор *Intel*® *Core*<sup>тм</sup> *i5-7200U CPU* @ 2.50GHz 2.71 GHz
- Установленная память (ОЗУ): 8 ГБ
- Тип системы: 64-разрядная операционная система, процессор х64
- Язык программирования: Python
- Используемые библиотеки:
  - *NumPy* для векторных вычислений
  - Random для генерации случайных значений
  - *MatPlotLib* для визуализации результатов
  - Тіте для вычисления трудоемкости алгоритма

Весь код доступен по ссылке: <a href="https://github.com/Elizaneu/EmpiricalAnalysis">https://github.com/Elizaneu/EmpiricalAnalysis</a>

# Литература

- 1. Университет ИТМО. Алгоритм Борувки [Электронный ресурс] <u>Алгоритм Борувки Викиконспекты (ifmo.ru)</u>
- 2. Wikipedia. The Free Encyclopedia. Borůvka's algorithm. Pseudocode. <u>Borůvka's algorithm Wikipedia</u>
- 3. *Седжвик Р*. Часть 5. Алгоритмы на графах. Глава 20. Минимальные остовные деревья. 20.5. Алгоритм Борувки // Фундаментальные алгоритмы на С++. Алгоритмы на графах: Пер. с англ./Роберт Седжвик. СПб: ООО "ДиаСофтЮП", 2002. С. 266 270. ISBN 5-93772-054-7.
- 4. *Скиена С.* Глава 15. Задачи на графах с полиномиальным временем исполнения. 15.3. Минимальные остовные деревья // Алгоритмы. Руководство по разработке. 2-у изд.: Пер. с англ. СПб: БХВ-Петербург. 2011. С. 500 505. ISBN 978-5-9775-0560-4.
- 5. *Левитин А.В.* Глава 2. Основы анализа эффективности алгоритмов: Эмпирический анализ алгоритмов // Алгоритмы. Введение в разработку и анализ М.: Вильямс, 2006. С. 127 134. ISBN 5-8459-0987-2.