2020 Full States EV and EC of One Check

This is the example vignette for function: **snw_evuvw20_jaeemk** from the **PrjOptiSNW Package.** 2020 integrated over VU and VW. Average C or V given unemployment probabilities.

Test SNW EVUVW20 JAEEMK Defaults

Call the function with defaults.

```
clear all;
st_solu_type = 'bisec_vec';
% Solve the VFI Problem and get Value Function
mp_params = snw_mp_param('default_docdense');
mp_params('beta') = 0.95;
mp_controls = snw_mp_control('default_test');
% set Unemployment Related Variables
xi=0.5; % Proportional reduction in income due to unemployment (xi=0 refers to 0 labor income;
b=0; % Unemployment insurance replacement rate (b=0 refers to no UI benefits; b=1 refers to 100
TR=100/58056; % Value of a welfare check (can receive multiple checks). TO DO: Update with alte
mp_params('xi') = xi;
mp params('b') = b;
mp_params('TR') = TR;
% Solve for Unemployment Values
mp_controls('bl_print_vfi') = false;
mp_controls('bl_print_ds') = false;
mp_controls('bl_print_ds_verbose') = false;
mp_controls('bl_print_precompute') = false;
mp_controls('bl_print_precompute_verbose') = false;
mp_controls('bl_print_a4chk') = false;
mp_controls('bl_print_a4chk_verbose') = false;
mp_controls('bl_print_evuvw20_jaeemk') = false;
mp controls('bl print evuvw20 jaeemk verbose') = false;
```

Solve the model:

```
%% A. Solve VFI
% 2. Solve VFI and Distributon
% Solve the Model to get V working and unemployed
% solved with calibrated regular a2
[V_ss,ap_ss,cons_ss,mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
```

Completed SNW_VFI_MAIN_BISEC_VEC;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=524.9862

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-6.6619e+08	-15.245	21.865	-1.4343

	p_VFI ons_VI	·I	2 3	2 6 3 6	4.37e+0 4.37e+0			265e+05 265e+05		1.3967e+09 2.3276e+08		36.426 8.4413	1.1397 1.5848
xxx T	ABLE:\			(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX									
		c1		c2	c3	c4	c! 	5	c526	5496 	c526497	c526498	c526499
r: r:	2	-293 -284	.42	-293.57 -284.03	-291.09 -281.55	-285.44 -275.97	7 -267	5.41 7.24	-4.	3584 2519	-4.2643 -4.1612	-4.1713 -4.0717	-4.0795 -3.9832
r: r:	4	-274 -265	.22	-274.48 -264.86	-272.03 -262.58	-266.62 -257.53	-249	8.33 9.74	-4.	1429 0309	-4.0559 -3.9475	-3.9698 -3.8649	-3.8847 -3.7833
	79	-256 -13.	642	-256.17 -13.628	-13.535	-249.3 -13.298	-12	1.96 .896	-0.2		-3.8452 -0.21058	-3.7659 -0.20086	-3.6873 -0.19173
r	80 81	-12.2 -10.0	605	-12.269 -10.591	-12.176 -10.498	-11.939 -10.261	L -9.8	.537 8589	-0.1	1712	-0.16182 -0.11163	-0.1543 -0.10646	-0.14722 -0.10157
	82 83	-8.34 -5.0		-8.3358 -5.0529	-8.2424 -4.9595	-8.0055 -4.7226		6035 3206	-0.06 -0.02		0.062242 0.019972	-0.05936 -0.019038	-0.056635 -0.018161
xxx T	ABLE:	. —		(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			_						
		c1 	c2 	c3	c4 		c5	c526	.496 	c526497	c526498	c526499	c526500
r: r:		0	0	0.0005149 0.0005149			0.021589	112 112		117.67 117.71	123.4 123.43	129.31 129.34	135.72 135.76
r: r:	3	0	0 0	0.000314	0.0041	456 6	0.018539 0.018307	112	2.2	117.73 118.39	123.45 124.11	129.37 130.03	135.78 136.44
r		0	0 0	5.2907e-6			0.018091	113	53	119.07 85.364	124.79 89.335	130.03 130.71 93.258	137.12 97.348
r	80 81	0	0 0		0 0	0	0	76.1 67.9	.24	79.747 70.639	83.431 73.673	86.986 76.991	90.578 81.091
r	82 83	0	0		0	0	0	50.1		53.467	56.302	57.884	60.587
				(XXXXXXXXXXXX		Ü	Ü		Ü	Ŭ	Ü	· ·	Ü
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	c:		c2	c3		.4	c5	_	c526496	c526497	c526498	c526499
r		0.03		0.037251	0.040477		14486	0.04932		12.265	12.55	12.844	13.145
r: r:	3	0.03	6717	0.037251 0.037251	0.040477 0.040784	0.04	15375 16998	0.05066	4	12.501 12.755	12.787 13.042	13.082 13.337	13.383 13.638
	5	0.03	9534	0.038678 0.040068	0.042314 0.043802	0.04	18449 19839	0.05403 0.05563	35	13 13.236	13.289 13.525	13.584 13.821	13.883 14.116
	79 80		9737 9737	0.19791 0.19791	0.20163 0.20163		21175 21175	0.2314 0.2314		35.811 40.752	37.362 42.953	39.409 45.286	41.7 47.946
	81 82		9737 9737	0.19791 0.19791	0.20163 0.20163		21175 21175	0.2314 0.2314		48.909 66.71	52.039 69.193	55.022 72.375	57.919 6 77.007
r	83	0.19	9737	0.19791	0.20163	0.2	21175	0.2314	15	116.82	122.65	128.66	134.88
% 200 if (i	arams 20 V mp_pa % mar V_ss_ cons_ % cha % sol % a2_ % cos xi =	and arams arams arams from 2020 ange lving coving the mp_r	2_cov C sa s('a2 rom h Ø = V 2020 xi a g for idyr resol	me as V_S _covidyr' eaven _ss; = cons_ss nd b to f employed > a2, we	<pre>mp_params S and cons) == mp_pa ; or people but 2020 increased th employe</pre>	withoutax retax in	f tax t 'a2')) ut unem esults n 2020	nployme	ent s	hock	and other		

```
mp params('xi') = 1;
    mp_params('b') = 0;
    [V_ss_2020,~,cons_ss_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
    mp_params('xi') = xi;
    mp_params('b') = b;
end
% Solve unemployment, with three input parameters, auto will use a2_covidyr
% as tax, similar for employed call above
[V_unemp_2020,~,cons_unemp_2020] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time

0.018623

0.018623

0.019354

0.020066

0.19737

r2

r3

r4

r5

r79

0.019158

0.019888

0.020601

0.19791

0.019158

			. —			rray (Matrix	etc)					
XXX	XXXXXXX	XXXXX	i i	xxxxxxx idx	xxxxx ndim	xxxxxxxx numel	rowN	colN	sum	mean	std	coefvari
			_									
	V_VFI		1	1	6	4.37e+07	83	5.265e+05	-6.8822e+6	08 -15.749	22.879	-1.4527
	ap_VFI		2	2	6	4.37e+07 4.37e+07		5.265e+05	1.3605e+6			1.1657
			3	3	6				2.2887e+6			
	cons_V	LI	5	5	О	4.37e+07	83	5.265e+05	2.200/0+6	06 5.23/5	0.4430	1.6122
XXX	TABLE:	_										
		c1		c2		c 3	c4	c5	c526496	c526497	c526498	c526499
	m1	220		210	02	210 20	206 07	204 50	4 4406	4 2420	4 2464	4 1512
	r1 r2	-320		-318			-296.97	-284.58 -275.14	-4.4406 -4.3331	-4.3429 -4.239	-4.2464 -4.1461	-4.1513 -4.0543
	r3	-310		-309 -299			-287.43 -277.88	-275.14	-4.3331 -4.2231	-4.239 -4.1327	-4.1461	-3.955
		-301 -290				-291.3	-277.88	-257.1				-3.8567
	r4 r5	-281		-289 -279			-260.2	-249.16	-4.1145 -4.0121	-4.0276 -3.9284	-3.9417 -3.8457	-3.7638
	r79	-281		-13.6			-200.2	-249.16	-0.22291	-0.21238	-0.20247	-0.19317
	r80	-13.		-12.2			-13.296	-12.896	-0.17128	-0.21238	-0.20247	-0.1483
	r81	-12.		-12.2			-11.939	-9.8589	-0.11815	-0.11254	-0.13331	-0.1483
	r82	-8.3		-8.33			-8.0055		-0.065887	-0.11254	-0.10726	-0.057044
	r83	-5.0		-5.05			- 4. 7226		-0.021146	-0.020134	-0.039823	-0.018294
	1.02	-5.0	600	-5.0	029	-4.9595	-4.7220	-4.3200	-0.021146	-0.020134	-0.019103	-0.010294
XXX	TABLE:	ap_VF										
		c1	c2	c 3	c4	c 5	c526490	6 c526497	c526498	c526499	c526500	
	r1	0	0	0	0	0.0083625	107.54	113.09	118.82	124.74	130.86	
	r2	0	0	0	0	0.0074731	107.45	112.99	118.72	124.64	130.75	
	r3	0	0	0	0	0.0058503	107.33	112.88	118.61	124.52	130.64	
	r4	0	0	0	0	0.0049981	107.54	113.08	118.81	124.73	130.85	
	r5	0	0	0	0	0.004174	107.76	113.3	119.03	124.95	131.07	
	r79	0	0	0	0	0	80.462	84.34	88.311	92.234	96.324	
	r80	0	0	0	0	0	75.113	78.736	82.42	85.975	90.439	
	r81	0	0	0	0	0	66.945	69.639	72.673	76.669	81.091	
	r82	0	0	0	0	0	50.126	53.467	55.311	56.953	60.587	
	r83	0	0	0	0	0	0	0	0	0	0	
xxx	TABLE:	cons_	VFI x	XXXXXX	xxxxx	XXXXX						
		C	1	(c2	с3	с4	c 5	c526496	c526497	c526498	c526499
	r1	0.01	.8623	0.0	19158	0.022901	0.033062	- ———— 2 0.04448	6 11.989	12.265	12.55	12.844

0.21175

0.045375

0.046998

0.048579

0.050114

0.23145

12.223

12.476

12.72

35.417

12.955

12.501

12.755

13.236

37.362

13

12.787

13.042

13.289

13.525

39.409

13.082

13.337

13.584

13.821

41.7

0.022901 0.033062

0.022901 0.033062

0.023632 0.033792

0.024344 0.034504

0.20163

```
r80
       0.19737
                   0.19791
                               0.20163
                                           0.21175
                                                       0.23145
                                                                  40.752
                                                                             42.953
                                                                                        45.286
                                                                                                   47.946
                               0.20163
                                                                             52.039
r81
       0.19737
                   0.19791
                                           0.21175
                                                       0.23145
                                                                  48.909
                                                                                        55.022
                                                                                                   57.241
       0.19737
                               0.20163
                                           0.21175
                                                       0.23145
                                                                  65.719
                                                                             68.202
                                                                                        72.375
                                                                                                   76.948
r82
                   0.19791
r83
       0.19737
                   0.19791
                               0.20163
                                           0.21175
                                                       0.23145
                                                                  115.84
                                                                             121.66
                                                                                        127.68
                                                                                                   133.89
```

```
%% B. Solve Dist
[Phi_true] = snw_ds_main_vec(mp_params, mp_controls, ap_ss, cons_ss);
```

Completed SNW_DS_MAIN_VEC;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=929.8427

Previous code

```
% % Solve the Model to get V working and unemployed
% [V_ss,ap_ss,cons_ss,mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
% % Solve unemployment
% [V_unemp,~,cons_unemp,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
% [Phi_true] = snw_ds_main(mp_params, mp_controls, ap_ss, cons_ss, mp_valpol_more_ss);
```

Precompute

```
inc_VFI = mp_valpol_more_ss('inc_VFI');
spouse_inc_VFI = mp_valpol_more_ss('spouse_inc_VFI');
total_inc_VFI = inc_VFI + spouse_inc_VFI;
% Get Matrixes
cl_st_precompute_list = {'a', ...
    'inc', 'inc_unemp', 'spouse_inc', 'spouse_inc_unemp', 'ref_earn_wageind_grid'};
mp_controls('bl_print_precompute_verbose') = false;
[mp_precompute_res] = snw_hh_precompute(mp_params, mp_controls, cl_st_precompute_list, ap_ss, False);
```

Wage quintile cutoffs=0.4645 0.71528 1.0335 1.5632
Completed SNW_HH_PRECOMPUTE;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time cost=274.186

Solve for 2020 Evuvw With 0 and 2 Checks

```
% Call Function
welf_checks = 0;
[ev20_jaeemk_check0, ec20_jaeemk_check0] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss_2020, cons_ss_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);
```

Completed SNW_A4CHK_WRK_BISEC_VEC;SNW_MP_PARAM=st_biden_or_trump_undefined;welf_checks=0;TR=0.0017225;SNW_MP_PARAM=completed SNW_A4CHK_UNEMP_BISEC_VEC;welf_checks=0;TR=0.0017225;xi=0.5;b=0;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;timeEUEC=8.0161

```
% Call Function
welf_checks = 2;
[ev20_jaeemk_check2, ec20_jaeemk_check2] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss_2020, cons_ss_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);
```

Completed SNW_A4CHK_WRK_BISEC_VEC;SNW_MP_PARAM=st_biden_or_trump_undefined;welf_checks=2;TR=0.0017225;SNW_MP_PARAM=completed SNW_A4CHK_UNEMP_BISEC_VEC;welf_checks=2;TR=0.0017225;xi=0.5;b=0;SNW_MP_PARAM=default_docdense;SNW_MP_CONTRCLedefault_test;timeEUEC=7.9748

```
mn_V_U_gain_check = ev20_jaeemk_check2 - ev20_jaeemk_check0;
mn_MPC_U_gain_share_check = (ec20_jaeemk_check2 - ec20_jaeemk_check0)./(welf_checks*mp_params()
```

Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'w:
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

savings

group

Tabulate value and policies along savings and shocks:

mean_eta_1

mean_eta_3

mean_eta_4

mean_eta_5

mean_eta_6

mean_

mean_eta_2

1	9	1.7895	1.5987	1.4282	1.2759	1.1399	1.0186	0.
2	0.00051498	1.7558	1.5706	1.4046	1.2561	1.1234	1.0048	٠.
3	0.0041199	1.2893	1.1743	1.0674	0.96875	0.87844	0.79612	6
4	0.013905	0.81154	0.75393	0.69804	0.64472	0.59456	0.54778	0.
5	0.032959	0.50535	0.47604	0.44576	0.41574	0.38688	0.35965	0.
6	0.064373	0.33813	0.3215	0.3034	0.28476	0.26638	0.24877	0.

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_data

IN_MPC_U_GAIN_C	CHECK(A,Z)), we mean eta 1	elf_checks=2, mean eta 2		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	mean eta 5	mean eta 6	mean
0	0.99849	0.99673	0.99517	0.99431	0.99427	0.99447	0.99
0.00051498	0.99821	0.99612	0.99428	0.99327	0.99321	0.99345	0.99
0.0041199	0.92102	0.91723	0.91636	0.91603	0.91597	0.91618	0.91
0.013905	0.84509	0.84419	0.84307	0.84318	0.844	0.8451	0.84
0.032959	0.731	0.72966	0.7316	0.73563	0.73964	0.74369	0.75
0.064373	0.64956	0.64918	0.6496	0.65084	0.6536	0.65665	0.65
1	0 0.00051498 0.0041199 0.013905 0.032959	savings mean_eta_1 0 0.99849 0.00051498 0.99821 0.0041199 0.92102 0.013905 0.84509 0.032959 0.731	savings mean_eta_1 mean_eta_2 0 0.99849 0.99673 0.00051498 0.99821 0.99612 0.0041199 0.92102 0.91723 0.013905 0.84509 0.84419 0.032959 0.731 0.72966	savings mean_eta_1 mean_eta_2 mean_eta_3 0 0.99849 0.99673 0.99517 0.00051498 0.99821 0.99612 0.99428 0.0041199 0.92102 0.91723 0.91636 0.013905 0.84509 0.84419 0.84307 0.032959 0.731 0.72966 0.7316	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 0 0.99849 0.99673 0.99517 0.99431 0.00051498 0.99821 0.99612 0.99428 0.99327 0.0041199 0.92102 0.91723 0.91636 0.91603 0.013905 0.84509 0.84419 0.84307 0.84318 0.032959 0.731 0.72966 0.7316 0.73563	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 0 0.99849 0.99673 0.99517 0.99431 0.99427 0.00051498 0.99821 0.99612 0.99428 0.99327 0.99321 0.0041199 0.92102 0.91723 0.91636 0.91603 0.91597 0.013905 0.84509 0.84419 0.84307 0.84318 0.844 0.032959 0.731 0.72966 0.7316 0.73563 0.73964	savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 mean_eta_6 0 0.99849 0.99673 0.99517 0.99431 0.99427 0.99447 0.00051498 0.99821 0.99612 0.99428 0.99327 0.99321 0.99345 0.0041199 0.92102 0.91723 0.91636 0.91603 0.91597 0.91618 0.013905 0.84509 0.84419 0.84307 0.84318 0.844 0.8451 0.032959 0.731 0.72966 0.7316 0.73563 0.73964 0.74369

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' num2support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' num2str(we
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Marginal Value and MPC over Y(a,eta), Conditional On Kids, Marry, Age, Education

Income is generated by savings and shocks, what are the income levels generated by all the shock and savings points conditional on kids, marital status, age and educational levels. Plot on the Y axis MPC, and plot on the X axis income levels, use colors to first distinguish between different a levels, then use colors to distinguish between different eta levels.

Set Up date, Select Age 38, unmarried, no kids, lower education:

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
% 38 year old, unmarried, no kids, lower educated
% Only Household Head Shock Matters so select up to 'n_eta_H_grid'
mn_total_inc_jemk = total_inc_VFI(20,:,1:mp_params('n_eta_H_grid'),1,1,1);
mn_V_W_gain_check_use = ev20_jaeemk_check2 - ev20_jaeemk_check0;
mn_C_W_gain_check_use = ec20_jaeemk_check2 - ec20_jaeemk_check0;
```

Select Age, Education, Marital, Kids Count:s

```
% Selections
it age = 21; % +18
it_marital = 1; % 1 = unmarried
it_kids = 1; % 1 = kids is zero
it educ = 1; % 1 = lower education
% Select: NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
mn_C W gain check jemk = mn_C W gain check use(it age, :, 1:mp_params('n_eta_H grid'), it_educ,
mn_V_W_gain_check_jemk = mn_V_W_gain_check_use(it_age, :, 1:mp_params('n_eta_H_grid'), it_educ,
% Reshape, so shock is the first dim, a is the second
mt_total_inc_jemk = permute(mn_total_inc_jemk,[3,2,1]);
mt C W gain check jemk = permute(mn C W gain check jemk,[3,2,1]);
mt C W gain check jemk(mt C W gain check jemk<=1e-10) = 1e-10;
mt V W gain check jemk = permute(mn V W gain check jemk,[3,2,1]);
mt_V_W_gain_check_jemk(mt_V_W_gain_check_jemk<=1e-10) = 1e-10;</pre>
% Generate meshed a and shock grid
[mt_eta_H, mt_a] = ndgrid(eta_H_grid(1:mp_params('n_eta_H_grid')), agrid);
```

Marginal Value Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

```
figure();
it_a = 1;
scatter((mt_total_inc_jemk(:,it_a)), (mt_V_W_gain_check_jemk(:,it_a)), 100);
title({'MN\_V\_W\_GAIN\_CHECK(Y(A, eta)), Lowest A, J38M0E0K0', ...
    'Each Circle is A Different Shock Level'});
xlabel('Y(a,eta) = Spouse + Household head Income Joint');
ylabel('MN\_V\_W\_GAIN\_CHECK(A, eta)');
grid on;
grid minor;
```

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_V\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```

(MN_V_W_GAIN_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0 Color Represent different A Savings State, Circle-Group=Shock


```
figure();
scatter((mt_total_inc_jemk(:)), log(mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
xlim([0,7]);
grid on;
grid minor;
```


Marginal Consumption Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_C\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```



```
figure();
scatter(log(mt_total_inc_jemk(:)), log(mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('log of income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
grid on;
grid minor;
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

log of income(a,eps)

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
```

% Value Function st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.038527	0.037553	0.036379	0.033145	0.030452	0.028194
2	2	0	0.053415	0.052114	0.050493	0.045939	0.042139	0.038944
3	3	0	0.063389	0.062083	0.060366	0.054947	0.050428	0.046631
4	4	0	0.072383	0.070992	0.069108	0.062921	0.057762	0.053429
5	5	0	0.079913	0.078518	0.076562	0.069748	0.06407	0.059304
6	1	1	0.012602	0.012065	0.01155	0.010426	0.0094863	0.0086955
7	2	1	0.01678	0.016072	0.015393	0.013895	0.012637	0.01158
8	3	1	0.020271	0.019456	0.018665	0.016854	0.015337	0.014062
9	4	1	0.024225	0.023287	0.022361	0.020206	0.018399	0.016877
10	5	1	0.029524	0.028487	0.02744	0.02482	0.022631	0.02079

% Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(M	IN_MPC_U_	_GAIN_CHEC	CK(KM,J)), welf_	_checks=2, TR=0.	.0017225 xxxxx	xxxxxxxxxxxxx	<xxxxxx< th=""><th></th></xxxxxx<>	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.084608	0.090543	0.10335	0.10135	0.099555	0.098243
2	2	0	0.09227	0.09874	0.1136	0.11143	0.10989	0.10821
3	3	0	0.10204	0.1099	0.12674	0.12369	0.12091	0.11993
4	4	0	0.10652	0.1144	0.13184	0.12908	0.1263	0.12421
5	5	0	0.1125	0.11953	0.13744	0.13456	0.13155	0.12878
6	1	1	0.11122	0.11518	0.12131	0.11968	0.11893	0.11799
7	2	1	0.11206	0.11641	0.12306	0.12166	0.12056	0.11955
8	3	1	0.1176	0.12247	0.1311	0.12797	0.12718	0.12652
9	4	1	0.11929	0.12501	0.13176	0.1305	0.13114	0.12824
10	5	1	0.1264	0.13179	0.1402	0.13884	0.13503	0.13339

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp support graph('cl st xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar permute = [2,3,6,1,4,5];
% Value Function
st title = ['MEAN(MN V U GAIN CHECK(EM,J)), welf checks=' num2str(welf checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_v_u_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesd
group
              marry
                    mean_age_18
                               mean_age_19
                                          mean_age_20
                                                                          mean_age_23
```

mean age 21

mean_age_22

1	0	0	0.062745	0.06175	0.060482	0.056976	0.053863	0.051102
2	1	0	0.060305	0.058754	0.056681	0.049704	0.044078	0.039499
3	0	1	0.021795	0.020987	0.020201	0.018731	0.017442	0.016318
4	1	1	0.019567	0.01876	0.017963	0.015749	0.013955	0.012483

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=2, TR=0.0017225 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx												
group	edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23				
1	0	0	0.091431	0.09559	0.10516	0.10437	0.10421	0.10418				
2	1	0	0.10775	0.11765	0.14003	0.13567	0.13107	0.12756				
3	0	1	0.1091	0.11287	0.1172	0.11714	0.11697	0.11645				
4	1	1	0.12553	0.13148	0.14177	0.13832	0.13616	0.13382				
	group 1 2 3	group edu 1 0 2 1 3 0	group edu marry 1 0 0 2 1 0 3 0 1	group edu marry mean_age_18 1 0 0 0.091431 2 1 0 0.10775 3 0 1 0.1091	group edu marry mean_age_18 mean_age_19 1 0 0 0.091431 0.09559 2 1 0 0.10775 0.11765 3 0 1 0.1091 0.11287	group edu marry mean_age_18 mean_age_19 mean_age_20 1 0 0 0.091431 0.09559 0.10516 2 1 0 0.10775 0.11765 0.14003 3 0 1 0.1091 0.11287 0.1172	group edu marry mean_age_18 mean_age_19 mean_age_20 mean_age_21 1 0 0 0.091431 0.09559 0.10516 0.10437 2 1 0 0.10775 0.11765 0.14003 0.13567 3 0 1 0.1091 0.11287 0.1172 0.11714	group edu marry mean_age_18 mean_age_19 mean_age_20 mean_age_21 mean_age_22 1 0 0 0.091431 0.09559 0.10516 0.10437 0.10421 2 1 0 0.10775 0.11765 0.14003 0.13567 0.13107 3 0 1 0.1091 0.11287 0.1172 0.11714 0.11697				

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


