Advancing Brick Kiln Detection in Satellite Imagery using Modern Object Detection Techniques

Shardul Junagade, Rishabh Mondal, Prof. Nipun Batra IIT Gandhinagar

Introduction

- Air pollution accounts for ~8.1 million premature deaths annually.
- Brick kilns contribute 8–14% of pollution in the Indo-Gangetic Plain.
- Their scattered, unorganized nature makes large-scale detection crucial for research and planning.
- This study leverages modern object detection techniques to enhance brick kiln detection from overhead imagery.

Objective

- Detection and classification of brick kilns.
- Improve detection accuracy using:
 - SOTA object detection models
 - 2. Advanced **super-resolution** techniques

Dataset

3 types of brick kilns: Zigzag, FCBK, CFCBK

Region	Images	Zigzag	FCBK	CFCBK
Bihar	641	1000	120	10
Haryana	586	1000	120	10
Test Bihar	687	1000	120	10

Zig-Zag

Image Size: 640 x 640

Brick Kiln Detection

• Object Detection Models:

RF-DETR

• Experiments:

YOLOv11m-obb

- Converted annotations to model-specific formats.
- Trained all models on Bihar region dataset
- Tested on Test Bihar Dataset.

• Evaluation:

- 1. Applied Non-Maximum Suppression (NMS) with IoU threshold of 0.33.
- 2. Computed mAP@50 (mean Average Precision at IoU threshold 0.5) scores using supervision.

Domain Adaptation:

Trained on Haryana dataset and tested on the Test Bihar dataset.

Model	Bihar to Bihar	Haryana to Bihar	
YOLOv11m-obb	57.00	45.00	
RFDETR Base	49.76	36.78	
RFDETR Large	52.07	44.54	
RHINO (Resnet50 Backbone)	68.80	52.60	
RHINO (SwinT Backbone)	65.10	57.58	

Rhino (SwinT Backbone) Detection Results Same vs Cross-Region Training

Super-Resolution

- SwinIR: Swin Transformer-based image super-resolution model
- Thera: An aliasing-free arbitrary-scale super-resolution method using neural heat fields

Comparison between Original (640) and Super-Resolved Images (2560)

Model	Super Resolution	Bihar to Bihar	Haryana to Bihar
YOLOv11m-obb	SwinIR	57.50	46.00
TOLOVIIIII-ODD	Thera	61.47	49.60
DEDETD Door	SwinIR	52.95	38.00
RFDETR Base	Thera	53.05	33.38
RFDETR Large	SwinIR	55.10	43.33
	Thera	54.80	40.80
RHINO (Resnet50 Backbone)	SwinIR	75.32	50.30
PUINO (SwinT Packhone)	SwinIR	77.78	55.30
RHINO (SwinT Backbone)	Thera	76.73	61.03

Conclusion

- RHINO, a modern object detection model, significantly outperforms YOLO for brick kiln detection.
- Super-resolution techniques, like SwinIR and Thera, further boost detection accuracy by improving image quality.
- Models show some generalization across regions, with a slight performance drop.
- Overall, combining advanced detection methods with image super-resolution techniques offers a scalable and accurate approach to monitor brick kilns.

References

[1] H. Lee, M. Song, J. Koo, and J. Seo, "Hausdorff Distance Matching with Adaptive Query Denoising for Rotated Detection Transformer," arXiv.org, 2023. https://arxiv.org/abs/2305.07598 [2] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, "SwinIR: Image Restoration Using Swin Transformer," arXiv.org, Aug. 23, 2021. https://arxiv.org/abs/2108.10257 [3] A. Becker et al., "Thera: Aliasing-Free Arbitrary-Scale Super-Resolution with Neural Heat Fields," arXiv.org, 2023. https://arxiv.org/abs/2311.17643