science with current and future solar physics missions ASI, february 1-3 2023

the reconstruction of electron maps by means of visibilities recorded by the Spectrometer/Telescope for Imaging X-rays on-board Solar Orbiter

michele piana

MIDA, dipartimento di matematica, università di genova

INAF – osservatorio astrofisico di torino

credits

- anna maria massone (UNIGE, co-PI STIX, all topics)
- paolo massa (UNIGE and western kentucky university, calibration, ground software)
- anna volpara (UNIGE, calibration, ground software)
- emma perracchione (POLITO, ground software)
- federico benvenuto (UNIGE, calibration, ground software)
- sara garbarino (UNIGE, ground software)

STIX: state of the art

image formation (talk di anna volpara domani)

	Sub-coll. label	Sub-coll. number	Center X [mm]	Center Y [mm]	Slit width [mm]	Pitch front [mm]	Orientation front [deg]	Pitch rear [mm]	Orientation rear [deg]	m factor	
	10a	3	-62.5	-13.5	0.479	0.909644	151.481	0.999045	148.374	-1	
	10b	20	12.5	-27.5	0.479	0.951208	86.902	0.951208	93.098	1	
	10c	22	12.5	-73.5	0.479	0.909644	28.519	0.999045	31.626	1	
	9a	16	-12.5	-73.5	0.336	0.641967	170.363	0.691656	169.609	-1	
	9b	14	-12.5	-27.5	0.336	0.674193	107.937	0.656988	112.010	1	
	9c	32	62.5	-36.5	0.336	0.682197	51.702	0.649830	48.379	-1	
	8a	21	12.5	-50.5	0.236	0.453678	9.744	0.477944	10.270	1	
	8b	26	37.5	-13.5	0.236	0.457628	131.141	0.473450	128.819	-1	
	8c	4	-62.5	-36.5	0.236	0.461187	68.589	0.469602	71.437	1	
	7a	24	37.5	36.5	0.166	0.320259	29.479	0.330680	30.538	1	
	7b	8	-37.5	-13.5	0.166	0.320259	150.521	0.330680	149.462	-1	
	7c	28	37.5	-59.5	0.166	0.325344	91.059	0.325344	88.941	-1	_
Paolo Ma	6a	15	-12.5	-50.5	0.117	0.229395	50.572	0.225614	49.437	-1	ea Francesco
i dolo ivia	6b	27	37.5	-36.5	0.117	0.230433	169.870	0.224640	170.127	1	ou i runcesco
	6c	31	62.5	-13.5	0.117	0.228493	109.301	0.226482	110.693	1	
2	5a	6	-37.5	36.5	0.083	0.158505	69.515	0.159487	70.488	1	1.7
Battaglia ^{3,}	5b	30	62.5	13.5	0.083	0.160427	10.091	0.157598	9.911	-1	Garbarino ^{1,7} ,
Danagna	5c	2	-62.5	13.5	0.083	0.158078	130.394	0.159925	129.601	-1	Jaivaillo,
	4a	25	37.5	13.5	0.059	0.111198	89.638	0.111198	90.362	1	
	4b	5	-37.5	59.5	0.059	0.110594	29.820	0.111811	30.182	1	
Calarina Ca	4c	23	37.5	59.5	0.059	0.110594	150.180	0.111811	149.818	-1	Daving Chami
Sabrina Gu	3a	7	-37.5	13.5	0.042	0.077582	110.237	0.077817	109.762	-1	Ryan ³ , Shane
	3b	29	62.5	36.5	0.042	0.077921	50.194	0.077480	49.807	-1	,
	3c	1	-62.5	36.5	0.042	0.078039	169.956	0.077364	170.044	1	
	2a	12	-12.5	50.5	0.030	0.054408	129.864	0.054192	130.135	1	1
A. Male	2b	19	12.5	27.5	0.030	0.054357	70.166	0.054243	69.834	-1	Massone ¹ ,
11. 1.11	2c	17	12.5	73.5	0.030	0.054136	9.969	0.054465	10.031	1	, indissolie ,
	1a	11	-12.5	73.5	0.022	0.037929	150.062	0.038071	149.938	-1	
	1b	13	-12.5	27.5	0.022	0.038000	90.124	0.038000	89.876	-1	•
	1c	18	12.5	50.5	0.022	0.037929	29.938	0.038071	30.062	1	2
	Table 1	Mominal v	oluge of th	a noroma	tore oboroe	toring anal	cub collimator	Enom laft	to right; out ool	limeter	

Table 1. Nominal values of the parameters charactering each sub-collimator. From left to right: sub-collimator label, sub-collimator number, coordinates of the window center, slit width, pitch of the front window, orientation angle of the rear window and m factor. The values of the center coordinates and of the slit width are the same for the front and the rear window of the same sub-collimator. The parameters of windows 9 and 10 are not reported, as they refer to CFL and BKG, respectively.

ground software

A&A 668, A145 (2022) https://doi.org/10.1051/0004-6361/202243907 © The Authors 2022

Forward fitting STIX visibilities

Anna Volpara¹, Paolo Massa², Emma Perracchione³, Andrea Francesco Battaglia^{5,6}, Sara Garbarino¹, Federico Benvenuto¹, Säm Krucker^{5,7}, Michele Piana^{1,8}, and Anna Maria Massone^{1,4}

Solar Physics (2023) 298:1 https://doi.org/10.1007/s11207-022-02090-6

The Eruption of 22 April 2021 as Observed by Solar Orbiter: Continuous Magnetic Reconnection and Heating After the Impulsive Phase

L. Rodriguez¹ · A. Warmuth² · V. Andretta³ · M. Mierla^{1,4} · A.N. Zhukov^{1,5} · D. Shukhobodskaia¹ · A. Niemela^{6,1} · A. Maharana^{6,1} · M.J. West⁷ · E.K.J. Kilpua⁸ · C. Mösti⁹ · E. D'Huys¹ · A.M. Veronig¹⁰ · F. Auchère¹¹ · A.F. Battaglia^{12,13} · F. Benvenuto¹⁴ · D. Berghmans¹ · E.C.M. Dickson¹⁰ · M. Dominiqua¹ · S. Gissot¹ · L.A. Hayes¹⁵ · A.C. Katsiyannis¹ · E. Kraaikamp¹ · F. Landini¹⁶ · J. Magdalenic^{1,6} · G. Mann² · P. Massa¹⁷ · B. Nicula¹ · M. Piana¹⁴ · O. Podladchikova² · C. Sasso³ · F. Schuller² · K. Stegen¹ · R. Susino¹⁶ · M. Uslenghi¹⁸ · C. Verbeeck¹

first science results

STIX: principle and physics

STIX observes count visibilities count visibilities are directly connected to photons physics is in the electrons

from photon to electron visibilities

photon visibilities:

$$V(u, v; \varepsilon) = \iint I(x, y; \varepsilon) e^{2\pi i(ux + vy)} dxdy$$

bremsstrahlung equation:

$$I(x, y; \varepsilon) = \frac{a^2}{4\pi R^2} \int_{\varepsilon}^{\infty} N(x, y) \overline{F}(x, y; E) Q(\varepsilon, E) dE$$

electron visibilities:

$$W(u,v;E) := \frac{a^2}{4\pi R^2} \iint N(x,y)\overline{F}(x,y;E)e^{2\pi i(ux+vy)}dxdy$$

bremsstrahlung equation for visibilities

$$V(u, v; \varepsilon) = \int_{\varepsilon}^{\infty} W(u, v; E) Q(\varepsilon, E) dE$$

from photon to electron visibilities

$$V(u, v; \varepsilon) = \int_{\varepsilon}^{\infty} W(u, v; E) Q(\varepsilon, E) dE$$

the relation between the **measured photon visibilities** and the **electron visibilities** is described by a Volterra integral equation of the first kind

visibility inversion problem: determine the electron visibilities, W(u,v;E), from the observed count visibilities $V(u,v;\varepsilon)$

visibility information in photon space may be converted, via a (regularized) spectral inversion technique, to visibility information in the *electron* domain.

electron maps

algorithm for electron image reconstruction:

1. for each (u,v) pair solve

$$V(u, v; \varepsilon) = \int_{\varepsilon}^{\infty} W(u, v; E) Q(\varepsilon, E) dE$$

by means of tikhonov regularization (which regularizes along the energy direction)

2. for each E solve

$$W(u, v; E) = \frac{a^2}{4\pi R^2} \iint \overline{F}(x, y; E) e^{2\pi i(ux + vy)} dxdy$$

by means of a fourier-based imaging algorithm (which reduces artifacts by imposing appropriate constraints)

(piana et al, electron flux spectral imaging of solar flares through regularized analysis of hard X-ray source visibilities, ApJ, 665, 846, 2007)

(prato et al regularized visibility-based approach to astronomical imaging spectroscopy SIAM journal im sci, 2 910, 2009)

$$V(u_1,v_1;\varepsilon)$$

$$W(u_1,v_1;E)$$

from electron visibilities to electron maps

STIX photon vs electron maps: may 7 2021

imaging method: massa et al, MEM GE: a new maximum entropy method for image reconstruction from solar X-ray visibilities, ApJ, 894, 46, 2019

photon vs electron maps: may 7 2021

20-22 keV

22-25 keV

25-28 keV

28-32 keV

32-36 keV

photon vs electron maps: may 7 2021

APPLICABILITY CONDITIONS – FROM RHESSI TO STIX

this software realizes an imaging spectroscopy procedure, i.e. it provides electron visibility cubes from photon visibility cubes. specifically:

- you need count visibilities at many count energies
- you do not necessarily need uniform sampling of the count energies (differently than what required in the RHESSI GUI)
- the output electron energies have the same sampling of the count energies
- you will have more output electron energies than input count energies
- the software also produces regularized photon maps
- differently than for RHESSI, you have as many electron visibility spectra as count visibility spectra

in progress: DEM maps

$$\phi(\epsilon) = \int_{\epsilon}^{\infty} F(E)Q(\epsilon, E)dE \qquad F(E) = \int_{V} n(r)\mathcal{F}(E, r)dr$$

$$\mathcal{F}(E, r) = A \frac{n(r)E}{[kT(r)]^{3/2}} e^{-\frac{E}{kT(r)}}$$

$$F(E) = AE \int_{V} \frac{n^{2}(r)}{[kT(r)]^{3/2}} e^{-\frac{E}{kT(r)}}dr$$

$$dr = dS_{T}dl = \frac{1}{|\nabla T|} dS_{T}dT$$

$$F(E) = AE \int_{0}^{\infty} \xi(T) \frac{e^{-\frac{E}{kT}}}{[kT]^{3/2}}dT \qquad \xi(T) = \int_{S_{T}} \frac{n^{2}(r(T))}{|\nabla T|} dS_{T}$$

$$Q(\epsilon, E) = \frac{1}{\epsilon E}$$

$$\phi(\epsilon) = \frac{A}{\epsilon} \int_{0}^{\infty} \xi(T) \frac{e^{-\frac{E}{kT}}}{(kT)^{1/2}}dT \qquad \phi(x, y; \epsilon) = \frac{A}{\epsilon} \int_{0}^{\infty} \xi(x, y; T) \frac{e^{-\frac{E}{kT}}}{(kT)^{1/2}}dT$$

$$V(u, v; \epsilon) = \int \int \phi(x, y; \epsilon)e^{i(xu+yv)}dxdy \qquad W(u, v; T) = \int \int \xi(x, y; T)e^{i(xu+yv)}dxdy$$

$$V(u, v; \epsilon) = \frac{A}{\epsilon} \int_{0}^{\infty} W(u, v; T) \frac{e^{-\frac{E}{kT}}}{(kT)^{1/2}}dT$$

more in progress: energy budget

released energy	flare	hard X-rays	STIX
thermal energy	chromosphere/corona	EUV	EUI
kinetic energy	corona	CME	METIS

ingredients:

- event with both flare and CME
- limb flare observation
- (possibly) some de-saturation at EUV
- algorithms for parameter estimation

emslie et al, global energetics of thirtyeight large solar eruptive events,

ApJ, 759, 71, 2012

even more in progress: coronal holes

correlations between coronal holes and solar wind variations:

hard X-ray emission from the corona: STIX

coronal holes: EUI

solar wind: SWA

- bale et al, highly structured slow solar wind emerging from an equatorial coronal hole, nature, 576, 237, 2019
- krucker et al, hard X-ray emission from the solar corona, astron. astrophys. rev., 16, 155, 2008