This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images, Please do not report the images to the Image Problem Mailbox.

HIS PAGE BLANK (USPTO)

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

EPO - DG 1

REC'D 0 3 JUL 2000

02. 06. 2000

WIPO

PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

99106656.4

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

10/04/00

1014 - 02.91 EPA/EPO/OEB Form

THIS PAGE BLANK (USPTO)

Eur päisches **Patentamt**

European **Patent Office**

Office eur péen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.: Application no.: Demande n°:

99106656.4

Anmeldetag: Date of filing: Date de dépôt:

01/04/99

Anmelder:

Applicant(s): Demandeur(s):

Stymne, Sten, Dr.

26831 Svalöv

SWEDEN

Bezeichnung der Erfindung:

Title of the invention: Titre de l'invention:

Recombinant DNA molecules encoding enzymes of the biosynthetic pathway for the production of triacylglycerol

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:

Aktenzeichen:

Pays:

File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

C12N15/54, C12N9/10, C12N15/81, C12N15/82, C12N1/16, C12N5/10

Contracting states designated at date of filling: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE Etats contractants désignés lors du depôt:

Bemerkungen:

Remarks: Remarques: The original title of the application reads as follows: Recombinant DNA molecules encoding a new class of enzymes in the biosynthetic pathway for the production of triacylglycerol

1012

- 04.98

THIS PAGE BLANK (USPTO)

RECOMBINANT DNA MOLECULES ENCODING A NEW CLASS OF ENZYMES IN THE BIOSYNTHETIC PATHWAY FOR THE PRODUCTION OF TRIACYLGLYCEROL

5

The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding enzymes catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

10

15

The invention further relates to novel type of enzymes and their encoding genes for transformation. More specifically, the invention relates to use of a type of genes encoding a not previously described type of enzymes hereinafter designated phospholipid:diacylglycerol acyltransferases (PDAT). This type of genes expressed alone in transgenic organisms will enhance the total amount of oil (triacylglycerols) produced in the cells. The PDAT genes, in combination with a gene for the synthesis of an uncommon fatty acid will, when expressed in transgenic organisms, enhance the levels of the uncommon fatty acids in the triacylglycerols.

20

There is considerable interest world-wide in producing chemical feedstock, such as fatty acids, for industrial use from renewable plant resources rather than non-renewable petrochemicals. This concept has broad appeal to manufacturers and consumers on the basis of resource conservation and provides significant opportunity to develop new industrial crops for agriculture.

25

There is a diverse array of unusual fatty acids in oils from wild plant species and these have been well characterised (see e.g. Badami & Patil, 1981). Many of these acids have industrial potential and this has led to interest in domesticating relevant plant species to enable agricultural production of particular fatty acids.

30

Development in genetic engineering technologies combined with greater understanding of the biosynthesis of unusual fatty acids now makes it possible to transfer genes coding for key enzymes involved in the synthesis of a particular fatty acid from a wild species into domesticated oilseed crops. In this way individual fatty acids can be produced in high purity and quantities at moderate costs.

15

In all crops like rape, sunflower, oilpalm etc., the oil (i.e. triacylglycerols) is the most valuable product of the seeds or fruits and other compounds like starch, protein, and fibre is regarded as by-products with less value. Enhancing the quantity of oil per weight basis at the expense of other compounds in oil crops would therefore increase the value of crop. If genes, regulating the allocation of reduced carbon into the production of oil can be up-regulated, the cells will accumulate more oil on the expense af other products. Such genes might not only be used in already high oil producing cells such as oil crops but could also induce significant oil production in moderate or low oil containing crops such as e.g. soy, oat, maize, potato, sugarbeats, and turnips as well as in microorganisms.

Summary of the invention

Many of the unusual fatty acids of interest, c.g. medium chain fatty acids, hydroxy fatty acids, epoxy fatty acids and acetylenic fatty acids, have physical properties that are distinctly different from the common plant fatty acids. The present inventors have found that, in plant species naturally accumulating these uncomman fatty acids in their seed oil (i.e. triacylglycerol), these acids are absent, or present in very low amounts in the membrane (phospho)lipids of the seed. The low concentration of these acids in the membrane lipids is most likely a prerequisite for proper membrane function and thereby for proper cell functions. One aspect of the invention is that seeds of transgenic crops can be made to accumulate high amounts of uncommon fatty acids if these fatty acids are efficiently removed from the membrane lipids and channelled into seed triacylglycerols.

25

30

35

20

The inventors have identified a novel class of enzymes in plants catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the production of triacylglycerol these enzymes that lysophospholipids presumably, and, (phospholipid:diacylglycerol acyltransferases abbreviated as PDAT) are involved in the removal of hydroxylated, epoxygenated fatty acids, and probably also other uncommon fatty acids such as medium chain fatty acids, from phospholipids in plants. Further, the same enzyme reaction was shown to be present in microsomal preparations from baker's yeast (Saccharomyces cerevisiae). A so called ,knock out' yeast mutant, disrupted in the respective gene was obtained and microsomal membranes from the mutant was shown to totally lack PDAT activity. Thus, it was proved that the disrupted gene encodes for a PDAT enzyme. In addition, two further genes from Arabidopsis thaliana were found with an amino acid sequence having 42 % identity over 96 amino acids and an amino acid sequence having 47 % identity over 73 amino acids with the yeast enzyme.

In a first embodiment, this invention is directed to nucleic acid sequences that encode a PDAT. This includes sequences that encode biologically active PDATs as well as sequences that are to be used as probes, vectors for transformation or cloning intermediates. The PDAT encoding sequence may encode a complete or partial sequence depending upon the intended use. All or a portion of the genomic sequence, cDNA sequence, precursor PDAT or mature PDAT is intended.

10

5

In a different aspect, this invention relates to a method for producing a PDAT in a host cell or progeny thereof, including genetically engineered oil seeds, yeast and moulds or any other oil accumulating organism, via the expression of a construct in the cell. Cells containing a PDAT as a result of the production of the PDAT encoding sequence are also contemplated within the scope of the invention.

15

In a different embodiment, this invention also relates to methods of using a DNA sequence encoding a PDAT for increasing the oil-content within a cell.

20

Another aspect of the invention relates to the accommodation of high amounts of uncomman fatty acids in the triacylglycerol produced within a cell, by introducing a DNA sequence producing a PDAT that specifically removes these fatty acids from the membrane lipids of the cell and channel them into triacylglycerol. Plant cells having such a modification are also contemplated herein.

25

A PDAT of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide fragment obtainable from a microorganism, animal or plant source that demonstrates the ability to catalyse the production of triacylglycerol from a phospholipid and diacylglycerol under enzyme reactive conditions. By "enzyme reactive conditions" is meant that any necessary conditions are available in an environment (e.g., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

30

35

Other PDATs are obtainable from the specific sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic PDATs, including modified amino acid sequences and starting materials for synthetic-protein modelling from the

10

4

exemplified PDATs and from PDATs which are obtained through the use of such exemplified sequences. Modifed amino acid sequences include sequences that have been mutated, truncated, increased and the like, whether such sequences were partially or wholly synthesised. Sequences that are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

Further, the nucleic acid probes (DNA and RNA) of the present invention can be used to screen and recover "homologous" or "related" PDATs from a variety of plant and microbial sources.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1.

PDAT activity in microsomal fractions of S. cerevisiae. Aliquots of lyophilised 15 microsomal membranes (10 nmol phosphatidylcholine) from a wild type yeast (strain YN979) (lane 1-3, 3), a yeast mutant (strain B10280), disrupted in the YNROO8w gene (lane 4-6, 9) or the yeast mutant complemented with a single copy plasmid containing the PDAT gene (lane 7) were assayed for PDAT activity. 2 nmol sn-1-oleoyl-sn-2-[14C]sn-1-oleoyl-sn-2-[14C]-oleoylricinoleoylphosphatidylcholine (lane 1-7) or 20 phosphatidyl choline (lane 8-9) and 5 nmol of dioleoyl-diacylglycerol (lane 2,5, 7-9) or rac-cleoyl-vernoloyldiacylglycerol (lane 3, 6) were added in benzene solution. The benzene was evaporated under N2 (g) and 0.1 ml of 50 mM potassium phosphate, pH 7.2, was added. The suspension was thoroughly mixed and after 90 min at 30 °C the lipids were extracted in chloroform and separated an thin layer chromatography on silica 25 gel 60 plates in hexan/dietyletber/acetic acid (35:70:1.5). The radioactive lipids were visualised and quantified an the plates by electronic autoradiagraphy (Instant imager, Packard, US). Abbreviations used: triacylglycerol, TAG, FA, fatty acid (i.e. oleic acid); monoricinoleoyl-1-OH-1-epTAG, monoricinoleoyl-triacylglycerol; 1-OH-TAG. monovernoleoyl-triacylglycerol and OH-FA, ricinoleic acid. 30

Brief Description of the SEQ ID:

SEQ ID NO. 1: The amino acid sequence of the yeast ORF YNROO8w from Saccharomyces cerevisiae

SEQ ID NO. 2: Amino acid sequence of the region of the Arabidopsis thuliana genomic sequence (AC004557).

SEQ ID NO. 3:. Amino acid sequence of the region of the Arabidopsis thaliana genomic sequence (AB006704).

5 SEQ ID NO. 4: The corresponding genomic DNA sequence of the amino acid sequence (SEQ ID NO. 5) of the yeast ORF YNROO8w from Saccharomyces cerevisiae.

The present invention can be essentially characterized by the following aspects:

- 10 1. Use of a PDAT gene (genomic clone or cDNA) for transformation.
 - Use of a DNA molecule according to item 1 wherein said DNA is used for transformation of any organism in order to be expressed in this organism and result in an active recombinant PDAT enzyme in order to increase oil content of the organism.
- 15 3. Use of a DNA molecule of item 1 wherein said DNA is used for transformation of any organism in order to prevent the accumulation of undesirable fatty acids in the membrane lipids.
 - 4. Use according to item 1, wherein said PDAT gene is used for transforming transgenic oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, such as medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
 - 5. Use according to item 1, wherein said PDAT gene is used for transforming organisms, and wherein said organisms are crossed with other oil accumulating organisms engineered to produce any uncommon fatty acid which is harmful if present in high amounts in membrane lipids, comprising medium chain fatty acids, hydroxylated fatty acids, epoxygenated fatty acids and acetylenic fatty acids.
 - 6. Use according to item 1, wherein the enzyme encoded by said PDAT gene or cDNA is coding for a PDAT with distinct acyl specificity.
- 7. Use according to item 1 wherein said PDAT encoding gene or cDNA, is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 30% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 1.
- 8. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an

20

01-04-1999

5

10

- amino acid sequence 40% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 1.
- 9. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 60% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 1
- 10. Use according to item 1 wherein said PDAT encoding gene or cDNA is derived from Saccharornyces cereviseae, or contain nucleotide sequences coding for an amino acid sequence 80% or more identical to the amino acid sequence of PDAT as presented in SEQ. ID. NO. 1.
- 11. Use according to claim 1 wherein said PDAT encoding gene or cDNA is derived from from plants or contain nucleotide sequences coding for an amino acid sequence 40% or more identical to the amino acid sequence of PDAT from *Arabidopsis thaliana* as presented in SEQ. ID. NO. 2 or 3.
- 15 12. Transgenic oil accumulating organisms comprising, in their genome, a PDAT gene transferred by recombinant DNA technology or somatic hybridization.
 - 13. Transgenic oil accumulating organisms according to item 12 comprising, in their genome, a PDAT gene having specificity for substrates with particular uncommon fatty acid and the gene for said uncommon fatty acid.
- 20 14. Transgenic organisms according to item 12 or 13 which are selected from the group consisting of fungi, plants and animals.
 - 15. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants.
- 16. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a storage organ specific promotor.
 - 17. Transgenic organisms according to item 12 or 13 which are selected from the group of agricultural plants and where said PDAT gene is expressed under the control of a seed promotor.
- 30 18. Oils from organisms according to item 12 17.
 - 19. A method for altering acyl specificity of a PDAT by alteration of the nucleotide sequence of a naturally occurring encoding gene and as a consequence of this alternation creating a gene encoding for an enzyme with novel acyl specifity.
 - 20. A protein encoded by a DNA molecule according to item 1 or a functional fragment thereof.
 - 21. A protein of item 20 designated phospholipid:diacylglyceriol acyltransferase.

10

15

20

25

30

35

- 22. A protein of item 21 which has a distinct acyl specificity.
- 23. A protein of item 13 having the amino acid sequence as set forth in Fig. 1, 2 or 3 or an amino acid sequence with at least 30 % homology to said amino acid sequence.
- 24. A protein of item 23 isolated from Saccharomyces cereviseae.

EXAMPLE 1

Determination of substrate utilisation by the acyl-CoA independent acyltransferase in the synthesis of triacylglycerols in microsomal preparations of developing castor bean endosperm and bakers yeast.

Microsomal membranes prepared from developing endosperm of castor bean (Ricinus communis) catalyse the selective transfer of ricinoleoyl-(12-hydroxy-9-octadecenoyl) and vernoloyl(12-epoxy-9-octadecenoyl) groups from both diacylglycerols and phosphatidylcholine into triacylglycerols The substrate utilisation was investigated in castor bean microsomes by using radioactive sn-l-oleoyl-sn-2-[¹⁴C]ricinoleoyl-diacylglycerol (sn-2-[¹⁴C]-ricinoleoyl-diacylglycerol) or sn-1-oleoyl-sn-2-(¹⁴C]-ricinoleoyl-phosphatidylcholine (sn-2-(¹⁴C]-ricinoleoyl-phosphatidylcholine) together with different non-radioactive diacylglycerol.

The preparatian of microsomal fractions of developing castor bean endosperm and freeze drying of the microsomes were performed in kown manner. Assays with addition of diacylglycerol and phosphatidylcholine substrates were performed. The results showed that if radioactive sn-2-[14C]ricinoleoyl-diacylglyoerol was used as the only added substrate, 2.8 % of the radio-labelled ricinoleoyl chains were found in triacylglycerol with one ricinoleoyl group, 12.4 % of the radioactivity was found in triacylglycerol-species with two ricinoleoyl groups and only trace amounts were associated with triacylglycerol consisting of three ricinoleoyl groups. If incubations with sn-2-[14C] ricinoleoyl-diacylglycerol were performed in a 1:4 (mol:mol) mixture with non-radioactive diacylglycerol species containing one vernoloyl group, the distribution of radioactivity between different molecular species of triacylglycerol changed only marginally compared to incubations with just radioactive substrate. Only 1.3% of the added ¹⁴C-labelled ricinoleoyl groups were metabolised into triacylglycerol species with one ricinoleoyl and one vernoloyl group. Similarly, only marginal changes in the radioactive triacylglycerol molecular species was seen in incubations where sn-2-[14C]-

ricinoleoyl-diacylglycerol was mixed with non-labelled divernoloyl-diacylglycerol. However, by adding unlabelled diricinoleoyl-phosphatidylcholine together with sn-2-[\frac{14}{C}]-ricinoleoyl-diacylglycerol the radioactivity metabolised into the different triacylglycerol species were substantially altered.

5

Only trace amounts of radioactivity were detected in triacylglycerol species with one ricinoleoyl chain whereas the radioactivity in triacylglycerol with two ricinoleoyl groups were doubled as compared to incubations with only sn-2-[¹⁴C]-ricinoleoyl-diacylglycerol added.

10

30

35

EXAMPLE 2

Transformation and expression of YNROORw gene in yeast

The yeast mutant (strain B 10280) disrupted in the YNROO8w gene, was transformed with the single copy plasmid pFL39 having the PDAT-gene (YNROO8w) under the control of the endogenous promotor region (583 bp 5' untranslated) inserted into the cloning cassette. The transformed yeast was pre-cultivated at 28 °C for 20 h in defined YNB medium without tryptophane added. Cells were harvested and re-suspended in minimal medium (Meesters eI al., 1996), supplemented with 16 g/l glycerol to the original volume of the growth culture. The culture was further incubated for 24 h after which cells were harvested by centrifugation. Microsomal fraction of the yeast was prepared as described in Example 1 above and was incubated in the presence of sn-2-[14C]-ricinoleoyl-phosphatidylcholine (Fig 1, lane 7). This experiment clearly shows that the PDAT activity could be restored by the expression of the YNROO8w gene in the mutant yeast strain Bl0280 normally lacking the PDAT-activity.

The effect of the over-expression of the PDAT gene on the lipid accumulation was studied by transforming the wild-type yeast (strain SCY62) with a plasmid pJN92 containing the PDAT gene (YNR008w) under the control of a GALl-promotor. The transformed yeast was then cultivated at 28 °C in defined YBN medium lacking uracil. The expression of the PDAT gene was induced by the addition of 2 % (vlv) galactose after 10 hours growth and was further incubated for 18 hours. The yeast cells were harvested and the lipid content of the yeast was analysed by thin layer chromatography and gas liquid chromatography. The total lipid content in the yeast with the over-expressed PDAT was 1.3 fold higher that in the control yeast transformed with an empty

plasmid pJN92. The expression of the PDAT gene bhd no effect on the growth rate as determined by optical density measurements. The elevated lipid content in the yeast transformed with PDAT as compared to the control yeast can be totally accounted for by an 80 % increase seen in the triacylglycerol content. The levels of the polar lipids and sterol esters were not significantly effected by the over-expression of the PDAT gene. Hence, these results clearly demonstrate the use of the PDAT gene in increasing the oil content in transgenic organisms.

10

SEQUENCE LISTING

							S	EQUE	NCE .	LTST.	LING					
	<110	> St	λιπτε	Dr.	, Ste	en										
5	<120	EN:	COMB ZYME TRI	S IN	THE	BIO	SYNT	LES ! HETI(ENCO: PA	DING THWA	a n Y Foi	ew Ci R Thi	LASS E PRO	OF ODUC!	rion	
10	<130	> st	Amse													
	<140: <141:															
15	<160	> 5														
	<170	> Pa	tent	In V	er.	2.0										
20	<210 <211 <212 <213	> 66 > PR		romy	ces	cere	visi	ae								
25	<400 Met 1	> 1 Gly	Thr	Leu	Phe 5	Arg	Arg	Asn	Val	Gln 10	Asn	Gln	Lys	\$ er	Asp 15	Ser
	qaA	Glu	Asn	Asn 20	Lys	Gly	Gly	Ser	Val 25	His	naA	Lys	Arg	Glu 30	Ser	Arg
30	Aşn	His	Ile 35	His	His	Gln	Gln	Gly 40	Leu	GJA	His	Lyş	Arg 45	Arg	Arg	Gly
35	Ile	Ser 50	Gly	Ser	Ala	rys	Arg 55	Asn	Glu	Arg	Gly	Lys 60	Asp	Phe	Asp	Arg
	Lys 65	Arg	Asp	Gly	Asn	Gly 70	Arg	Lys	Arg	Trp	Arg 75	Asp	Ser	Arg	Arg	Leu 80
40	Ile	Phe	Ile	Leu	Gly 85	Ala	Phe	Leu	Gly	Val 90	Leu	Leu	Pro	Phe	Ser 95	Phe
	Gly	Ala	Tyr	ніs 100	Val	His	Asn	Şer	Asp 105	Ser	Asp	Leu	Phe	Asp 110	Asn	Phe
45	Val	Asn	Phe 115	Asp	Ser	Leu	Lys	Val 120	Tyr	Leu	Asp	Asp	Trp 125	Lys	qaA	Val
50	Leu	Pro 130		Gly	Ile	Ser	Ser 135		Ile	Asp	Asp	Ile 140	Gln	Ala	Gly	Asn
50	Tyr 145		Thr	Ser	Ser	Leu 150		Asp	Leu	Şer	Glu 155	Asn	Phe	Ala	Val	Gly 160
55	Lys	Gln	Leu	Leu	Arg 165		Tyr	Asn	Ile	Glu 170	Ala	Lys	His	Pro	Val 175	Val
	Met	Val	Pro	Gly 180		Ile	Ser	Thr	Gly 185	ıle	Glu	Sex	Trp	190	Val	. Ile

Gly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 195 200 205

	Gly	Ser 210	Phe	Tyr	Met	Leu	Arg 215	Thr	Met	Val	Met	Asp 220	Lys	Val	Cys	Trp
5	Leu 225	Lys	His	Val	Met	Leu 230	qaA	Pro	Glu	Thr	G1y 235	Leu	Asp	Pro	Pro	Asn 240
	Phe	Thr	Leu	Arg	Ala 245	Ala	Gln	Gly	Phe	Glu 250	Ser	Thr	Asp	Tyr	Phe 255	Ile
10	Ala	G1y	Tyr	Trp 260	Ile	Trp	Asn	Lys	Val 265	Phe	Gln	Asn	Leu	Gly 270	Val	Ile
15	Gly	Tyr	G1u 275	Pro	Asn	Lys	Met	Thr 280	Ser	Ala	Ala	Tyr	Asp 285	ālb	Arg	Leu
	Ala	Tyr 290	Leu	Asp	Leu	Glu	Arg 295	Arg	Ąsp	Arg	Туг	Phe 300	Thr	Lys	Leu	Lys
20	Glu 305	Gln	Ile	G1u	Leu	Phe 310	His	Gln	Leu	Şer	Gly 315	Glu	Lys	Va1	Сув	Leu 320
	Ile	Gly	His	Ser	Met 325	Gly	Ser	Gln	Ile	11e 330	Phe	Tyr	Phe	Met	Lys 335	Trp
25	Val	Glu	Ala	Glu 3 40	Gly	Pro	Leu	Тут	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
30	Asn	Glu	His 355	Ile	Asp	Ser	Phe	11e 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
	Ala	Pro 370	Lys	Ala	Val	Pro	A1a 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
35	11e 385		Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Jeu 395	Glu	Lys	: Phe	Phe	Ser 400
40	Arg	ı Ile	: Glu	Arg	Val 405		Met	Leu	Gln	Th: 410	Trp	Gly	GJĀ	, Ile	Pro 415	Şer
40	Met	Lev	1 Pro	Lys 420		Glu	Glu	Val	11e 425	Trp	Gl _y	/ Asp	Met	430	Ser	Ser
45	Şer	r Glu	. Asp 435		Leu	ı Aşn	. Asr	44(Thr	aA :	Thi	Tyr	Gl ₃	y Asr	Phe	e Ile
	Arq	J Pho 450		a Arg	as!	Thr	Ser 455	Asg	Ala	. Phe	e Ası	1 Lys 460	Ası)	n Lei	1 Thi	: Met
50	Ly:		p Alá	ı Ile	a Asi	1 Met 470		Le	ı Ser	r Ile	e Se:	r Pro	G11	u Trj) Let	Gln 480
	Ar	g Ar	g Val	l His	Gl: 489	ı Glr 5	ту	r Se	c Phe	e Gl; 49	у Т у: 0	r Sei	r Ly	s Ası	n Gl: 49	u Glu 5
55	Gl	u Le	u Arg	g Lys 50		n Glv	ı Le	ı Hi	5 His	s Ly 5	s Hi	s Tr	p Se	r Ası 51	n Pr	o Met
60	G1	u Va	1 Pro		ı Pr	o Gli	ı Ala	a Pr 52	o Hia	s Me	t Ly	s Il	е Ту 52	r Cy 5	s Il	е Туг

Gly Val Asn Asn Pro Thr Glu Arg Ala Tyr Val Tyr Lys Glu Glu Asp Asp Ser Ser Ala Leu Asn Leu Thr Ile Asp Tyr Glu Ser Lys Gln Pro 5 550 Val Phe Leu Thr Glu Gly Asp Gly Thr Val Pro Leu Val Ala His Ser Met Cys His Lys Trp Ala Gln Gly Ala Ser Pro Tyr Asn Pro Ala Gly 10 585 Ile Asn Val Thr Ile Val Glu Met Lys His Gln Pro Asp Arg Phe Asp 500 15 Ile Arg Gly Gly Ala Lys Ser Ala Glu His Val Asp Ile Leu Gly Ser Ala Glu Leu Asn Asp Tyr Ile Leu Lys Ile Ala Ser Gly Asn Gly Asp 20 Leu Val Glu Pro Arg Gln Leu Ser Asn Leu Ser Gln Trp Val Ser Gln 25 Met Pro Phe Pro Met 660 <210> 2 30 <211> 387 <212> PRT <213> Arabidopsis thaliana <400> 2 Val Gly Ser Asn Val Tyr Pro Leu Ile Leu Val Pro Gly Asn Gly Gly 35 Asn Gln Leu Glu Val Arg Leu Asp Arg Glu Tyr Lys Pro Ser Ser Val 40 Trp Cys Ser Ser Trp Leu Tyr Pro Ile His Lys Lys Ser Gly Gly Trp Phe Arg Leu Trp Phe Asp Ala Ala Val Leu Leu Ser Pro Phe Thr Arg 45 Cys Phe Ser Asp Arg Met Met Leu Tyr Tyr Asp Pro Asp Leu Asp Asp Tyr Gln Asn Ala Pro Gly Val Gln Thr Arg Val Pro His Phe Gly Ser 50 Thr Lys Ser Leu Leu Tyr Leu Asp Pro Arg Leu Arg Asp Ala Thr Ser 55 Tyr Met Glu His Leu Val Lys Ala Leu Glu Lys Lys Cys Gly Tyr Val 120

Asn Asp Gln Thr Ile Leu Gly Ala Pro Tyr Asp Fhe Arg Tyr Gly Leu

	Ala 145	Ala	Ser	Gly	His	Pro 150	Ser	Arg	Val	Ala	Ser 155	Gln	Phe	Leu	Gln	Asp 160
5	Leu	Lys	Gln	Leu	Val 165	Glu	Lys	Thr	Şer	Ser 170	Glu	Asn	Glu	Gly	Lys 175	Pro
	Val	Ile	Leu	Leu 180	Ser	His	Ser	Leu	Gly 185	Çly	Leu	Phe	va1	Leu 190	His	Phe
10	Leu	Asn	Arg 195	Thr	Thr	Pro	Ser	Trp 200	Arg	Arg	Lys	Tyr	Ile 2 0 5	Lys	His	Phe
1.5	Val	Ala 210	Leu	Ala	Ala	Pro	Trp 215	Gly	Gly	Thr	I1e	Ser 220	Gln	Met	Lys	Thr
15	Phe 225	Ala	Ser	Gly	Asn	Thr 230	Leu	Gly	Val	Pro	Leu 235	Val	Asn	Pro	Leu	Leu 240
20	Val	Arg	Arg	His	Gln 245	Arg	Thr	Ser	Glu	Ser 250	Asn	G1n	Trp	Leu	Leu 255	Pro
	Ser	Thr	Lys	Val 260	Phe	His	Asp	Arg	Thr 265	Lys	Pro	Leu	Val	Val 270	Thr	Pro
25	Gln	Va1	Asn 275	Tyr	Thr	Ala	Tyr	Glu 280	Met	Asp	Arg	Phe	Phe 285	Ala	Asp	Ile
20	Gly	Phe 290		Gln	Gly	Val	Val 295		Тут	Lys	Thr	Arg 300	Val	Leu	Pro	Leu
30	Thr		Glu	Leu	Met	Thr 310		Gly	Val	Pro	Val 315	Thr	Cys	Ile	Tyr	Gly 320
35	Arg	Gly	Val	Asp	Thr 325		Glu	Val	Leu	Met 330	Tyr	Gly	Lys	Gly	Gly 335	Phe
	Asp	Lys	Gln	340		Ile	Lys	Тух	Gly 345	Asp	Gly	Asp	Gl3	Thr 350	val	Asn
40	Leu	ı Ala	355		Ala	Ala	Let	1 Lys 360	val	Ası	Ser	Leu	Asr 365	Thr	· Val	Glu
45	Ile	370		y Val	. Ser	His	375		Ile	: Let	ı Lys	380	Gli	ı Ile	ala e	Leu
43	Lys 38!		ı Ile)												
50	<2: <2:	10> ; 11> ; 12> ;	389 PRT	idops	sis 1	thali	iana								-	
55	Le	00> u Ly 1	3 s Ly:	s Gl	u Gl	y Lei 5	ı Ly	s Ala	a Ly:	s Hi 1	s Pro O	o Vai	l Va	l Ph	e Il	e Pro 5
60	G1	y I1	e Va	1 Th:		y G1:	y Le	u Gl	u Le	u Tr 5	p Gl	u Gl	y Ly	E Gl 3	n Cy	s Ala

	Asp	Gly	Leu 35	Phe	Arg	Lys	Arg	Leu 40	Trp	G1y	Gly	Thr	Phe 45	Leu	Cys	Trp
5	Vai	Glu 50	His	Met	Ser	Leu	Asp \$ 5	Asn	Glu	Thr	Gly	Leu 60	Asp	Pro	Ala	Gly
	Ile 65	Arg	Val	Arg	Ala	Val 70	Ser	Gly	Leu	Val	Ala 75	Ala	Asp	Tyr	Phe	Ala 80
10	Pro	Gly	Tyr	Phe	va1 85	Trp	Ala	Val	Leu	Ile 90	Ala	Asn	Leu	Ala	His 95	Ile
1.6	Gly	Tyr	Glu	Glu 100	Lys	Asn	Met	Tyr	Met 105	Ala	Ala	Tyr	asp	Trp 110	Arg	Leu
15	Ser	Phe	Gln 115	Asn	Thr	Glu	Arg	Asp 120	Gln	Thr	Leu	Ser	Arg 125	Met	Lys	Ser
20	Asn	11e 130	Glu	Leu	Met	Val	Ser 135	Thr	Asn	GJY	Gly	Lys 140	Lys	Ala	Val	Ile
	Vaí 145	Pro	His	Ser	Met	Gly 150	Val	Leu	туr	Phe	Leu 155	His	Phe	Met	Lys	Trp 160
25	Val	Glu	Ala	Pro	Ala 165	Pro	Leu	Gly	Gly	Gly 170	Gly	Gly	Pro	Asp	Trp 175	Cys
30	Ala	Lys	Tyr	11e 180		Ala	Val	Met	Asn 185	Ile	Gly	Gly	Pro	Phe 190	Leu	Gly
50	Val	Pro	Lys 195	Ala	Val	Ala	Gly	Leu 200	Phe	Ser	Ala	Glu	Ala 205	Lys	Asp	Met
35	Arg	Met 210		Arg	Thr	Trp	Asp 215		Thr	Met	. Ser	Met 220	Leu	Pro	Lys	Gly
	G1y 225		Thr	Ile	Trp	Gly 230		Leu	Asp	Trp	Ser 235	Pro	Glu	Lėv	Pro	240
40	Ala	Pro	Glu	ı Met	Glu 245		Tyr	Ser	Leu	250	Gly	Val	G1y	, Ile	255	Thr
45				260)				265	•				276)	: Ile
45			275	5				280)				285	>		Cys
50	Let	1 Ly:		a Gly	/ Val	l Tyr	295		l Ası	Gly	y Asg	300	ı Thi	r Va	l Pro	val
	30	5				310	3				31!	5				r Arg 320
55					32!	5				33	a				33	
60				34	0				34	5				35	0	a His
50	٧a	l As	p Il	e Me	t Gl	y As	n Ph	e Al	a Le	u Il	e Gl	u As	p Il	e Me	t Ar	g Val

· ~~. :_ ·

365 360 355 Ala Ala Gly Gly Asn Gly Ser Asp Ile Gly His Asp Gln Val His Ser 380 5 Gly Ile Phe Glu Trp 10 <210> 4 <211> 1986 <212> DNA <213> Saccharomyces cerevisiae <220> 15 <221> CD\$ <222> (1)..(1983) <400>4atg ggc aca ctg ttt cga aga aat gtc cag aac caa aag agt gat tct 20 Met Gly Thr Leu Phe Arg Arg Asn Val Gln Asn Gln Lys Ser Asp Ser 10 gat gaa aac aat aaa ggg ggt tot gtt cat aac aag cga gag agc aga Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 25 aac cac att cat cat caa cag gga tta ggc cat aag aga aga agg ggt Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly 30 att agt ggc agt gca aaa aga aat gag cgt ggc aaa gat ttc gac agg 192 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg 50 35 240 aaa aga gac ggg aac ggt aga aaa cgt tgg aga gat tcc aga aga ctg Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 att tte att ctt ggt gea tte tta ggt gta ett ttg ccg ttt age ttt 288 40 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe ggc gct tat cat gtt cat aat agc gat agc gac ttg ttt gac aac ttt 336 Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 45 gta aat ttt gat tca ctt aaa gtg tat ttg gat gat tgg aaa gat gtt 384 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 120 50 ctc cca caa ggt ata agt tcg ttt att gat gat att cag gct ggt aac 432 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn 130 55 tac too aca tot tot tra gat gat etc agt gaa aat tit goo git ggt Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asn Phe Ala Val Gly 150 145 aaa caa ctc tta cgt gat tat aat atc gag gcc aaa cat cct gtt gta 60 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val

marana an ay wasan

					165					170					175		
5	atg Met	gtt Val	cct Pro	ggt Gly 180	gtc Val	att Ile	tct Ser	acg Thr	gga Gly 185	att Ile	gaa Glu	agc Ser	tgg Trp	gga Gly 190	gtt Val	att Ile	576
10	gga Gly	gac Asp	gat Asp 195	gag Glu	tgc Cys	gat Asp	agt Ser	tct Ser 200	gcg Ala	cat His	ttt Phe	egt Arg	aaa Lys 205	cgg Arg	c tg Leu	tgg Trp	624
10	gga Gly	agt Ser 210	ttt Phe	tac Tyr	atg Met	ctg Leu	aga Arg 215	aca Thr	atg Met	gtt Val	atg Met	gat Asp 220	aaa Lys	gtt Val	tgt C y s	tgg Trp	672
15	ttg Leu 225	aaa Lys	cat His	gta Val	atg Met	tta Leu 230	gat Asp	cct Pro	gaa Glu	aca Thr	ggt Gly 235	ctg Leu	gac Asp	cca Pro	ccg Pro	aac Asn 240	720
20	ttt Phe	acg Thr	cta Leu	cgt Arg	gca Ala 245	gca Ala	cag Gln	Gly	ttc Phe	gaa Glu 250	tca Ser	act Thr	gat Asp	tat Tyr	ttc Phe 255	atc Ile	768
25	gca Ala	GJÀ aaa	tat Tyr	tgg Trp 260	att Ile	tgg Trp	aac Asn	aaa Lys	gtt Val 265	ttc Phe	caa Gln	aat Asn	ctg Leu	gga Gly 270	gta Val	att Ile	816
30	ggc Gly	tat Tyr	gaa Glu 275	ccc Pro	aat Asn	aaa L ys	atg Met	acg Thr 280	agt Ser	gct Ala	gcg Ala	tat Tyr	gat Asp 285	tgg Trp	agg Arg	ctt Leu	864
30	gca Ala	tat Tyr 290	tta Leu	gat Asp	cta Leu	gaa Glu	aga Arg 295	cgc Arg	gat Asp	agg Arg	tac Tyr	ttt Phe 300	acg Thr	aag Lys	cta Leu	aag Lys	912
35	gaa Glu 305	caa Gln	atc Ile	gaa Glu	ctg Leu	ttt Phe 310	cat His	caa Gln	ttg Leu	agt S er	ggt Gly 315	gaa Glu	aaa Lys	gtt Val	tgt Cys	tta Leu 320	960
40	att Ile	gga Gly	cat His	tct Ser	atg Met 325	ggt Gly	tct Ser	çag Gln	att Ile	atc Ile 330	ttt Phe	tac Tyr	ttt Phe	atg Met	aaa Lys 335	tgg Trp	1008
45	gtc Val	gag Glu	gct Ala	gaa Glu 3 40	ggc Gly	cct Pro	ctt Leu	tac Tyr	ggt Gly 345	aat Asn	ggt Gly	ggt Gly	cgt Arg	ggc Gly 350	Trp	gtt Val	1056
50	aac Asn	gaa Glu	cac His 355	ata Ile	gat Asp	tça Ser	ttc Phe	att Ile 360	aat Asn	gca Ala	gca Ala	G l y ggg	acg Thr 365	Leu	ctg Leu	GJA ââc	1104
30			aag Lys					Leu					Met				1152
55	att Ile 385	Gln	tta Leu	aat Asn	acg Thr	tta Leu 390	Ala	atg Met	tat Tyr	ggt Gly	ttg Leu 395	Glu	aag Lys	ttc Phe	tto Phe	tca Ser 400	1200
60	aga Arg	att Ile	gag Glu	aga Arg	gta Val 405	Lys	atg Met	tta Leu	саа Glл	acg Thr 410	Trr	ggt Gly	ggt Gly	ata Ile	cca Pro 415	tca Ser	1248

æ	atg Met	cta Leu	cca Pro	aag Lys 420	gga Gly	gaa Glu	gag Glu	gtc Val	att Ile 425	tgg Trp	G j À aga	gat Asp	atg Met	aag Lys 430	tca Ser	tct Ser	1296
5	tca Ser	gag Glu	gat Asp 435	gca Ala	ttg Leu	aat Asn	aac Asn	aac Asn 440	act Thr	gac Asp	aca Thr	tac Tyr	ggc Gly 445	aat Asn	ttc Phe	att Ile	1344
10	cga Arg	ttt Phe 450	gaa Glu	agg Arg	aat Asn	acg Thr	agc Ser 455	gat Asp	gct Ala	ttc Phe	aac Asn	aaa Lys 460	aat Asn	ttg Leu	aca Thr	atg Met	1392
15	aaa Lys 465	gac Asp	gcc Ala	att Ile	aac Asn	atg Met 470	aca Thr	tta Leu	tcg Sex	ata Ile	tca Ser 475	cct Pro	gaa Glu	tgg Trp	ctc Leu	caa Gln 480	1440
20	aga Arg	aga Arg	gta Val	cat His	gag Glu 485	cag Gln	tac Tyr	tcg Ser	ttc Phe	ggc Gly 490	tat Tyr	tcc Ser	aag Lys	aat Asn	gaa Glu 495	gaa Glu	1488
25	gag Glu	tta Leu	aga A rg	aaa Lys 500	aat Asn	gag Glu	cta Leu	cac His	cac His 505	aag Lys	cac His	tgg Trp	tcg Ser	aat Asn 510	cca Pro	atg Met	1536
دع	gaa Glu	gta Val	cca Pro 515	ctt Leu	cca Pro	gaa Glu	gct Ala	ccc Pro 520	cac His	atg Met	aaa Lys	atc Ile	tat Tyr 525	tgt Cys	ata Ile	tac Tyr	1584
30	Gly	gtg Val 530	aac Asn	aac Asn	cca Pro	act Thr	gaa Glu 535	agg Arg	gca Ala	tat Tyr	gta Val	tat Tyr 540	aag Lys	gaa Glu	gag Glu	gat Asp	1632
35	gac Asp \$45	Ser	tct Ser	gct Ala	ctg Leu	aat Asn 550	ttg Leu	acc Thr	atc Ile	gac Asp	tac Tyr 555	Glu	agc Ser	aag Lys	caa Gln	ect Pro 560	1680
40	gta Val	ttc Phe	ctc Leu	acc Thr	gag Glu 565	Gly	gac Asp	gga gga	acc Thr	gtt Val 570	Pro	ctc Leu	gtg Val	gcg Ala	cat His 575	tca Ser	1728
45	atg Met	tgt Cys	cac His	aaa Lys 580	Trp	gcc Ala	cag Gln	ggt Gly	gct Ala 585	Ser	CCG	tac Tyr	aac	Pro 590	Ala	gga Gly	1776
	att Ile	aac Asn	gtt Val 595	Thr	att Ile	gtg Val	gaa Glu	atg Met 600	Lys	cac His	Cag Glr	cca Pro	gat Asp 605	Arg	ttt Phe	gat Asp	1824
50	ata Ile	cgt Arc 610	Gly	gga Gly	gca Ala	aaa Lys	ago Ser 615	Ala	gaa Glu	cac His	gta Val	gac Asp 620) Ile	cto Lev	. 617 : 880	agc Ser	1672
55	gcg Ala 629	Gli	g ttg i Lev	aac Asr	gat Asr	tac Tyr 630	Tle	trg Lev	raaa Lys	att : Ile	gca Ala 639	Sei	. Gl ⁷	aat Asr	ggo Gly	gat Asp 640	1920
60	ct(Le	gto u Val	gag l Glu	g cca	CGC Arg 645	, Glr	tte Lev	r tct 1 Ser	aat Asn	ttg Lev 650	ı Sei	c caq r Glr	j tg: L Trj	g gti p Val	tci Sei 65!	cag cGln	1968

atg ccc ttc cca atg taa Met Pro Phe Pro Met 5 <210> 5 <211> 661 <212> PRT <213> Saccharomyces cerevisiae 10 <400> 5 Met Gly Thr Leu Phe Arg Arg Asn Val Gin Asn Gln Lys Ser Asp Ser Asp Glu Asn Asn Lys Gly Gly Ser Val His Asn Lys Arg Glu Ser Arg 15 Asn His Ile His His Gln Gln Gly Leu Gly His Lys Arg Arg Arg Gly 20 Ile Ser Gly Ser Ala Lys Arg Asn Glu Arg Gly Lys Asp Phe Asp Arg Lys Arg Asp Gly Asn Gly Arg Lys Arg Trp Arg Asp Ser Arg Arg Leu 65 70 75 80 25 Ile Phe Ile Leu Gly Ala Phe Leu Gly Val Leu Leu Pro Phe Ser Phe Gly Ala Tyr His Val His Asn Ser Asp Ser Asp Leu Phe Asp Asn Phe 30 Val Asn Phe Asp Ser Leu Lys Val Tyr Leu Asp Asp Trp Lys Asp Val 120 35 Leu Pro Gln Gly Ile Ser Ser Phe Ile Asp Asp Ile Gln Ala Gly Asn Tyr Ser Thr Ser Ser Leu Asp Asp Leu Ser Glu Asm Phe Ala Val Gly 40 150 Lys Gln Leu Leu Arg Asp Tyr Asn Ile Glu Ala Lys His Pro Val Val Met Val Pro Gly Val Tle Ser Thr Gly Ile Glu Ser Trp Gly Val Ile 45 185 Cly Asp Asp Glu Cys Asp Ser Ser Ala His Phe Arg Lys Arg Leu Trp 200 50 Gly Ser Phe Tyr Met Leu Arg Thr Met Val Met Asp Lys Val Cys Trp 215 Leu Lys His Val Met Leu Asp Pro Glu Thr Gly Leu Asp Pro Pro Asn 55 235 Phe Thr Leu Arg Ala Ala Gln Gly Phe Glu Ser Thr Asp Tyr Phe Ile 60 Ala Gly Tyr Trp Ile Trp Asn Lys Val Phe Gln Asn Leu Gly Val Ile

	Gly	Tyr	Glu 275	Pro	Asn	Lys	Met	Thr 280	Ser	Ala	Ala	ŢΥ	Asp 285	Ţτp	Arg	Leu
5	Ala	Туг 290	Leu	Asp	Leu	G1u	Arg 295	Arg	qeA	Arg	Туг	Phe 300	Thr	Lys	Leu	Lys
10	Glu 305	Gln	Ile	Glu	Leu	Phe 310	His	Gln	Leu	Ser	Gly 315	Glu	Lys	Val	Сув	Leu 320
10	Ile	Gly	His	Ser	Met 325	G1y	Ser	Gln	Ile	Ile 330	Phe	Tyr	Phe	Met	Lys 335	TYP
15	Val	Glu	Ala	Glu 340	Gly	Pro	Leu	Tyr	Gly 345	Asn	Gly	Gly	Arg	Gly 350	Trp	Val
	Asn	Glu	His 355	Ile	Asp	Ser	Phe	11e 360	Asn	Ala	Ala	Gly	Thr 365	Leu	Leu	Gly
20	Ala	Pro 370	Lys	Ala	Val	Pro	Aia 375	Leu	Ile	Ser	Gly	Glu 380	Met	Lys	Asp	Thr
25	11e 385	Gln	Leu	Asn	Thr	Leu 390	Ala	Met	Tyr	Gly	Leu 395	Glu	Lys	Phe	Phe	Ser 400
23	Arg	Ile	Glu	Arg	Val 405	Lys	Met	Leu	Gln	Thr 410	Trp	Gly	Gly	Ile	Pro 415	Sex
30	Met	Leu	Pro	Lys 420	Gly	Glu	Glu	Val	11e 425	Trp	Gly	Asp	Met	Lys 430	Ser	Ser
	Ser	G1u	Asp 435	Ala	Leu	Asn	Asn	Asn 440	Thr	Asp	Thr	тух	G1y 445	Asn	Phe	Ile
35	Arg	Phe 450	Glu	Arg	Asn	Thr	Ser 45 5		Ala	Phe	Asn	Lys 460		Leu	Thr	Met
40	Lys 465	_	Ala	Ile	Asn	Met 470		Leu	Şer	Ile	Ser 475		G1u	Trp	Leu	Gln 480
70	Arg	Arg	Va1	His	Glu 485		Туг	Ser	Phe	Gly 490		Ser	Lys	Äsn	Glu 495	Glu
45	Glu	Leu	Arg	Lys 500		Glu	Leu	His	His 505		His	Trp	Ser	Asn 510		Met
	Glu	Val	Pro 515		Pro	Glu	Ala	9ro 520		Met	. Lya	Ile	Tyr 525		Ile	Tyr
50	Gly	Val		Asn	Pro	Thr	Glu 535		Ala	ТУ	Val	Tyr 540		Glu	Glu	qeA ı
55	Asp 545		: Ser	Ala	Leu	A±n 550		Thr	Ile	: Ası	555		. Ser	Lys	Gln	Pro 560
J.J	Va]	Phe	e Leu	Thr	565		Asr	Gly	Thr	7 Val		Leu	ı Val	. Ala	Hia 579	Ser
60	Met	: Cya	s Hia	580		Ala	Glī	ı Gly	Ala 585		r Pro	туз	r Ası	9 Pro	Ala)	e Gly

	Ile	Asn	Va1 595	Thr	Ile	Va1	Glu	Met 600	Lys	His	Gln	Pro	Asp 605	Arg	Phe	Asp
5	Ile	Arg 610	Gly	Gly	Ala	Lys	Ser 615	Ala	Glu	His	Val	Asp 620	Ile	Leu	Gly	Ser
	Ala 625	Glu	Leu	Asn	qaA	Tyr 630	Ile	Leu	Lys	Ile	Ala 635	Ser	G1y	Asn	Gly	Asp 640
10	Leu	Val	Glu	Pro	Arg 645	Gln	Leu	Ser	Asn	Leu 650	Ser	Gln	Trp	val	Ser 655	Gln
	Met	Pro	Phe	Pro	Met											
15																

10

Claims

- 1. A recombinant DNA molecule encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol, wherein said enzyme comprises a amino sequence set forth in SEQ ID NO. 1, SEQ. ID. NO. 2 or SEQ ID NO. 3 or fragments thereof.
 - 2. The DNA molecule of claim 1 wherein said enzyme is designated as phospholipid:diacylglyceriol acyltransfercase.
- 3. A vector comprising a DNA molecule of claim 1 or 2.
- 4. A vector of claim 3 further comprising a selectable marker gene.
- 15 5. A host cell containing a DNA molecule of claim 1 or 2.
 - 6. The host cell of claim 5 which is a plant cell or yeast cell.
- 7. A process for the production of transgenic yeast cells, plant cells or plants comprising a) transforming a DNA molecule of claims 1 or 2 into plant cells or plants; and b) selecting of transformed plant cells or plants having an altered biosynthetic pathway in the production of triacylglycerol.
- 8. A process of claim 7 wherein the altered biosynthetic pathway is characterised by an increased or altered oil content.
 - 9. A method of claim 7 wherein the altered biosynthetic pathway is characterised by the prevention of accumulation of undesirable fatty acids in the membrane lipids.
- 30 10. A protein encoded by a DNA molecule according to claim 1 or 2 or a functional fragment thereof

TAG H 8 1-0H-TAG ---

01-04-1999 ELECTED VICE TO THE TOTAL CONTROL OF THE OF LUMBER SPEC

22

Abstract of the Disclosure

The present invention relates to the isolation, identification and characterization of recombinant DNA molecules encoding an enzyme catalysing the transfer of fatty acids from phospholipids to diacylglycerol in the biosynthetic pathway for the production of triacylglycerol.

THIS PAGE BLANK (USPTO)