Identification of critical connectors in the directed reaction-centric graphs of microbial metabolic networks

Maggie Tsui Miguel Guardado Noam Teyssier Silver Alkhafaji

November 18th 2020

Background/Description of Data

- Data is an adjacency matrix from a directed microbial metabolic network
 - Nodes are metabolic reactions and edges are metabolites
 - Binary NxN matrix, N is the number of reactions
- Matrices for five microorganisms: E. coli, K. pneumoniae, B. subtilis, G. metallireducens, and S. cerevisiae
- 4917 total nodes (mean = 983.4, std = 183.3) in the reaction graphs with 42181 total arcs (mean = 8436.2, std = 1311.5) across 5 organisms

	Organism	Nodes	Edges
0	eColi	1251	9099
1	gMetallireducens	900	8049
2	sCerevisiae	881	10460
3	bSubtilis	748	6489
4	kPneumoniae	1137	8084

Analysis Plan

- Recreate the results found in figure 2 of the paper showing that the reaction-centric networks are scale free (degree distribution follows a power law)
- Perform regression analysis (linear model) of node degrees for each microorganism
- Create our own cascade number algorithm
- Calculate correlation matrix with the different centrality metrics using networkx package in Python

Paper's Fig 2.

Fig. 2 Degree distribution in the reaction-centric metabolic networks. (a) Escherichia coli (IJO1366), (b) Bacillus subtilis (iYO844), (c) Geobacter metallireducens (iAF987), (d) Klebsiella pneumonia (iYL1228), and (e) Saccharomyces cerevisiae (iMM904). In-degree (denoted as a red square),

Recreating Fig 2.

```
Number of In degrees >> k_in = row_sum()
```

Number of Out degrees >> k_out = col_sum()

 $k_{total} = k_{in} + k_{out}$

Pr(k) obtained from KDE

```
def kde and score(vec):
    vec = vec.reshape(-1, 1)
    kde = KernelDensitv()
   kde.fit(vec)
    scores = kde.score samples(vec).ravel()
    return np.exp(scores)
def mat to kframe(mat, organism name='e coli'):
    in k = mat.sum(axis = 0).values
   out k = mat.sum(axis = 1).values
    total k = in k + out k
   frame = []
   for name, k_arr in [("in_k", in_k), ("out_k", out_k), ("total_k", total_k)]:
        k arr = k arr[k arr > 0]
        subframe = pd.DataFrame({
            'k arr' : k arr,
            'prob' : kde_and_score(k_arr),
            'k type' : name
        })
        frame.append(subframe)
   frame = pd.concat(frame)
   frame['log k'] = np.log10(frame.k arr)
    frame['log p'] = np.log10(frame.prob)
    frame['organism'] = organism name
    return frame
kframe list = [mat to kframe(m, o) for m, o in zip(mat list, org list)]
k frame = pd.concat(kframe list)
```

Our Fig 2.

Regression Analysis of Node Degrees (k)

Organism	R-Squared	Intercept	Coefficient	P_val
sCerevisiae	0.8564	-0.73135	-0.93891	< 2e-16
gMetallireducens	0.8586	-0.61384	-1.04682	< 2e-16
KPneumonie	0.8515	-0.61567	-1.02967	< 2e-16
bSubtilis	0.8170	-0.64510	-0.97476	< 2e-16
eColi	0.8379	-0.59247	-1.04100	< 2e-16

$$y = mx + b$$

Probability Distribution

Coefficient(Degree)

Intercept

Paper's Cascade Number Algorithm

Let a directional network be an ordered pair, (V, A), where V is the set of nodes and A is the set of arcs of the network. Then, the cascade set and cascade number are computed by the following algorithm:

Cascade(Node, Network(V, A))

Initialize a queue with the Node

Mark Node as cut off

Add all nodes v for which (Node, v) in A to the queue

Traverse queue

The node at the front of the queue is q

If q has no ancestors that are not marked as cut off

Mark q as cut off

Add all nodes v for which (q,v) in A to the queue

End if

End Traverse

The cascade set of Node is the set of nodes marked as cut off.

Cascade number = size of Cascade set

Cascade Number Algorithm

	Node	CascadeNumber	NumOut	Numln
0	0	0	0	2
1	1	0	1	8
2	2	0	1	2
3	3	0	1	1
4	4	0	1	0
5	5	0	1	0
6	6	0	1	0
7	7	0	1	0
8	8	0	1	1
9	9	1	1	1
10	10	2	1	0
11	11	0	1	1
12	12	1	1	2
13	13	0	1	0
14	14	0	1	0
15	15	0	1	0
16	16	0	1	1
17	17	0	1	0
18	18	1	1	0
19	19	1	1	0

The Code

```
def init (self, dg):
    self.dg = dg
    self.rg = nx.reverse view(self.dg)
    self.knockouts = set()
    self.cn = 0
def calculate(self, n, first=True):
    # first recursion
    if first:
        self.knockouts = set()
        self.cn = 0
        self.knockouts.add(n)
        for n in self.dg.neighbors(n):
            self.calculate(n, first=False)
        return self.cn
    # every other recursion
    else:
        # stops self loops
        if n in self.knockouts:
            return
        parent nodes = set(self.rg.neighbors(n))
        # all parent nodes have been knocked out
        if (parent nodes.intersection(self.knockouts) == parent nodes):
            self.cn += 1
            self.knockouts.add(n)
            for child in self.dg.neighbors(n):
                self.calculate(child, first=False)
        # not all parent nodes have been knocked out
        else:
            return
```

class CascadeNumber:

Correlation of Cascade Number and Degrees

Additional Analysis: Analyzing Centrality Metrics

- 5 different organism
- 4917 nodes total

-	Organism	k_in	k_out	k_total	k_prob	BetweennessCentrality	ClusteringCoeff	Bridge	BridgingCentrality	CascadeNum
1	eColi	6	0	6	0.0580100028	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	
2	eColi	1	3	4	0.0924816540	7.853140e-06	7.853140e-06	7.853140e-06	6.167180e-11	
3	eColi	3	14	17	0.0204745832	1.273720e-03	1.273720e-03	1.273720e-03	1.622363e-06	
4	eColi	2	35	37	0.0055617573	3.341345e-03	3.341345e-03	3.341345e-03	1.116459e-05	
5	eColi	0	29	29	0.0071321323	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	
6	eColi	0	4	4	0.0924816540	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	
7	eColi	0	4	4	0.0924816540	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	
8	eColi	6	2	8	0.0370412233	1.757579e-03	1.757579e-03	1.757579e-03	3.089085e-06	
9	eColi	57	6	63	0.0016658922	7.236145e-03	7.236145e-03	7.236145e-03	5.236179e-05	
10	eColi	3	14	17	0.0204745832	1.643370e-03	1.643370e-03	1.643370e-03	2.700664e-06	
11	eColi	57	7	64	0.0017141013	1.142245e-02	1.142245e-02	1.142245e-02	1.304723e-04	
12	eColi	57	5	62	0.0012873496	8.428701e-03	8.428701e-03	8.428701e-03	7.104299e-05	
13	eColi	57	5	62	0.0012873496	6.898377e-03	6.898377e-03	6.898377e-03	4.758760e-05	
14	eColi	57	6	63	0.0016658922	9.319659e-03	9.319659e-03	9.319659e-03	8.685605e-05	
15	eColi	57	3	60	0.0010544001	6.633763e-03	6.633763e-03	6.633763e-03	4.400681e-05	
16	eColi	57	3	60	0.0010544001	5.846833e-03	5.846833e-03	5.846833e-03	3.418546e-05	
17	eColi	53	2	55	0.0052129757	1.205446e-03	1.205446e-03	1.205446e-03	1.453099e-06	

- k in= Number of In Degrees
- k_out = Number of out Degrees
- k_total=Total Number of Degrees
- BetweennessCentrality= number of times a node acts as the shortest path of the system
- ClusteringCoeff=measure the degree to which nodes will cluster together
- Bridge=measure the number of edges whose removal causes the number of connected components to increase
- BridgingCentrality=Measure the extent of bridging capability. CC*Br
- CascadeNumber=Controllability of the graph

Correlation Matrix(pearson), of each centrality metric

Cascade number does not correlate well with any of the other statistics

Create a model to test sensitivity of Cascade Number

```
Call:
                                                                                  Model 1
lm(formula = CascadeNum ~ k_total + BetweennessCentrality + BridgingCentrality,
   data = train)
Residuals:
   Min
            10 Median
                           30
                                 Max
-1.5794 -0.4904 -0.4329 0.1247 10.1167
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    4.554e-01 2.503e-02 18.199 <2e-16 ***
k total
                    -7.109e-03 8.061e-04 -8.820 <2e-16 ***
BetweennessCentrality 5.241e+01 4.615e+00 11.357 <2e-16 ***
BridgingCentrality -5.780e+02 6.574e+01 -8.793 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.166 on 3683 degrees of freedom
Multiple R-squared: 0.04223, Adjusted R-squared: 0.04145
F-statistic: 54.13 on 3 and 3683 DF, p-value: < 2.2e-16
```

Excluded Bridge, Clustering Coefficient, k_in, k_out due to singularities.

Model 2: Interaction of Variables

```
Call:
lm(formula = CascadeNum ~ k_total * BetweennessCentrality * BridgingCentrality,
                                                                                       Model 2
   data = train)
Residuals:
   Min
            10 Median
                            30
                                   Max
-1.7359 -0.4807 -0.2262 0.1052 9.5596
Coefficients:
                                                 Estimate Std. Error t value Pr(>|t|)
                                                2.250e-01 2.920e-02 7.705 1.67e-14 ***
(Intercept)
k total
                                               -2.092e-03 1.100e-03 -1.902 0.0572 .
BetweennessCentrality
                                                1.868e+02 9.975e+00 18.731 < 2e-16 ***
BridgingCentrality
                                               -6.137e+03 4.309e+02 -14.242 < 2e-16 ***
                                               -1.912e+00 2.042e-01 -9.362 < 2e-16 ***
k_total:BetweennessCentrality
                                                5.990e+01 5.782e+00 10.359 < 2e-16 ***
k_total:BridgingCentrality
BetweennessCentrality:BridgingCentrality
                                                4.141e+04 3.884e+03 10.664 < 2e-16 ***
k_total:BetweennessCentrality:BridgingCentrality -3.915e+02 4.235e+01 -9.243 < 2e-16 ***
```

Tested to Validate the data

Created 80/20 split of training to test data for these models.

Model 1	58% accuracy
Model 2	59% accuracy

Cascade Number is Discrete!
I need to change my model to predict a discrete feature and not continous

actuals	predicteds
0	0.361065070
0	0.426998042
0	0.488894358
0	0.356546013
0	0.315562903
1	0.856292563
0	0.008062391
0	0.084495228
0	0.059466466
0	0.117322324
3	0.255136083
0	0.125261105
0	-1.165614635
0	0.447291195
0	0.453288728
0	0.423666182
0	0.507805873
5	0.568314610
2	0 504004470

Creating a GLM under a poisson distribution

```
glm(formula = CascadeNum ~ k_total + BetweennessCentrality +
    BridgingCentrality, family = poisson(link = "log"), data = train)
Deviance Residuals:
   Min
                  Median
                                       Max
-2.2200 -0.9362 -0.8479
                          -0.2360
                                    8.3718
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                     -9.260e-01 3.783e-02 -24.48
k_total
                     -2.524e-02 1.869e-03 -13.50
                                                     <2e-16 ***
BetweennessCentrality 1.914e+02 9.724e+00
                                             19.69
                                                     <2e-16 ***
BridgingCentrality
                     -4.689e+03 3.930e+02 -11.93
                                                     <2e-16 ***
```

Model 3	64% Accuracy
Model 4	64% Accuracy

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
alm(formula = CascadeNum ~ k_total * BetweennessCentrality *
    BridgingCentrality, family = poisson(link = "log"), data = train)
Deviance Residuals:
              10 Median
-2.3736 -0.8794 -0.7017 -0.2271
                                   6.2964
Coefficients:
                                                  Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                                -1.369e+00 4.989e-02 -27.435 < 2e-16 ***
k_total
                                                -1.647e-02 2.970e-03 -5.544 2.96e-08 ***
BetweennessCentrality
                                                4.210e+02 1.565e+01 26.896 < 2e-16 ***
BridgingCentrality
                                                -1.879e+04 9.975e+02 -18.841 < Ze-16 ***
k_total:BetweennessCentrality
                                                -3.402e+00 4.716e-01 -7.213 5.48e-13 ***
k_total:BridgingCentrality
                                                1.458e+02 1.110e+01 13.140 < 2e-16 ***
BetweennessCentrality:BridgingCentrality
                                                1.297e+05 8.055e+03 16.106 < 2e-16 ***
k_total:BetweennessCentrality:BridgingCentrality -9.868e+02 7.481e+01 -13.190 < Ze-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Lessons/Challenges

- Data was limited
 - Edge direction was not given in adjacency matrix
 - More network metrics would be helpful
- Translating cascade algorithm from pseudocode
- Discrete vs Continuous predictive modeling

Nice job on the presentation! Clear background and description of the network; good work fitting a linear model and reimplementing cascade number as a recursion. As we discussed in class, the high CV accuracy despite low R-square is a tip-off that there may be leakage between the training and test sets. Unbalanced classes also affect performance metrics.

Grade: 27/30

