Dones Fernando-Emanuel.
grupa 143

Asionele geometriei en li diene plane in limbaj de teoria multimi la

Sistemul axiomal

Definin umatoarele multimi si relatii fundamentale:

P = multimea punctelor din plan

D: multimea dreptelor din plan

I: multimea segmentelor din plan

U: mul timea ung huirilor din plan

E : relatia de incidentà

- : relatia de ordonare

= = relatio de congruenta

11 = relatio de paralelism

Axionele de incidenta

1. VAIBEP a.r. A + B => 3! d ED a.r. A, B E d

2. YdeD, JABEP a. A+B ABEd

3. ∃ A,B,C ∈ P a.s. A + B + C ^ y d ∈ P a.s.

A.B.C Ed

1. Asi mele de ordonare

Definin relation " punctul B est intre A si C" drept "A-B-C"

1. VA,B,C & P a.i. A-B-C => A + B + C ^

3 d & D ani A,B,C & d

2. \ A, B \ P a.r. A + B => J C \ P a.i. A - B-C

3. VA, B, C & P a.i. A-B-C => 7 (C-A-B)

4. Axioma lui Parch

 $\forall A,B,C \in P$, $\forall d \in D$ a.s. $A \notin d$, $B \notin d$, $C \notin d$ ¹ $(\exists M \in P \text{ a.s. } B-M-C \text{ } M \in d) \text{ } (\exists N \in P \text{ a.s. } A-N-C \text{ } N \in d) \text{ } (\exists k \in D \text{ a.s. } A-N-C \text{ } N \in d) \text{ } (\exists k \in P \text{ a.s. } A-K-B \text{ } K \in d)$ $A,B,C \in \mathcal{L}$ =) $\exists K \in P \text{ a.s. } A-K-B \text{ } K \in d$

5. \(\text{A}_1 \text{B}_1 \text{C} \in \text{P} \) \(\text{M} \text{M} \text{M} \text{C} \) \(\text{A} \text{C} \text{P} \) \(\text{A} \text{C} \text{P} \) \(\text{A} \text{C} \text{C} \text{C} \) \(\text{A} \text{C} \text{C} \) \(\text{A} \text{C} \text{C} \text{C} \) \(\text{A} \text{C} \text{C} \text{C} \text{C} \) \(\text{A} \text{C} \text{C} \text{C} \text{C} \) \(\text{A} \text{C} \text{C} \text{C} \text{C} \text{C} \) \(\text{C} \)

6. HAIBIC, LIMINEP a.s. (8dEP a.s. AIBICED)

AB-L-C^C-M-A^A-N-B => 8gEP a.s. LIMINEG

7. YAIBEP as. A+B => JMEP as. A-M-B

8. \(\text{A}_1 \text{B}_1 \text{C}_1 \text{D} \in \text{P} \quad \text{a.s.} \(\text{A-B-C}^\cappa \text{B-C-D} = \text{S} \)

=) \(\text{A}_- \text{B}_- \text{D}^\cappa \text{A-C-D} \)

9. 4 A.B.C a.T. D-C-A 1 A-B-C => A-B-D 1B-C-D

Axionele de ungmenta

- 1. Vn ED, V[AB] Ef a.i. JOEP OED =>
- 2. \(\langla \text{ABJ, \(\text{A'B'J, \(\text{A'B'J \end{abj \in \(\text{A'B'J \end{abj \
- 3. Y A.B.C. A'.B'.C' & P a.a. A'-B'-C' ^ A-B-C ^
 [AB] = [A'B'] ^ [BC] = [B'C'] => [AC] = [A'C']
 - 4. \forall h h \in V, \forall s \in D, D' = remi plan limitat de s => \exists ! t \in D' a: s t \equiv h h
 - 5. YABICIA'B'C' & P a.s. BAC = B'A'C "[ABJ = [A'B']"

 "[AC] = [A'C'] => ABC = A'B'C'

Axioma de paralelism

1. Postulatul lui Endid

VAEP, VdED a.s. A&d => 3! d'ED a.s.
d'11 d' AEd'

Axiomele de continuitate

1. Axioma lui Arhimede

 $\forall O, A, P \in P, \forall A \in D$ a.i. $O(A, P \in A) \Rightarrow \exists K \in IN,$ $\exists A_1, A_2, ..., A_K \in P \text{ a.i.} (A \in IOA_2), A_2 \in IOA_3 J^2...$ $A_1 \in [OA_{1+1}J, ..., A_{K-1} \in IOA_K]) \land (IOAJ = [AA_2] = ... = [A_{K-1}A_K])^2$ $P \in [OA_K]$

2. Axioma lui Cantor - Dedehind $\forall d \in D$, $A_i \in P$, $\forall i = 1, m$, $B_i \in P$, $\forall i = 1, m$ ai. A_i , $B_i \in d$ ^ $[A_{i+1}, B_{i+1}] \in [A_i, B_i] \quad \forall i = 1, m \Rightarrow 1$ $\exists P \in P$ ai. $\forall i = 1, m$ $P \in [A_i, B_i]$

Bibliografie

- 1. Curs Geometrie: A. M. Jeleman
- 2. Matematica manual pentru dana a 14-a, Seventrie si trigonometrie, 1980: K. Teleman, M. Floreson, C. Naduleson, D. Wran, E. Staneson