PyMolDat - Molecule Viewing Software

Gianluca Cientanni

Supervisor: Dr. A. Misquitta

School of Physics and Astronomy Queen Mary University of London

Extended Project

Bachelors of Science in Physics

Abstract

Abstract 1:

Table of contents

1	Concept		1
	1.1	Introduction	1
	1.2	Motivation	1
	1.3	Week 2-3	1
2	Week 1-3		
	2.1	Prototyping Molecule Viewer	2
	2.2	Database	2
	2.3	Molecular Connectivity Algorithm	2
		2.3.1	2
3	Chapter 3		
	3.1	Chapter 3	3
4	Con	clusion	4
	4.1	Summary and Final Thoughts for the Reader	4
5	Refe	erences	5

1. Concept

1.1 Introduction

What did we do? How can one access the software (GitHub link)?

1.2 Motivation

Adding polarisation graphics/Van der Waals interactions on a software package is easier than added plugins to PyMol etc.

1.3 Week 2-3

I chose to use matplotlib due to it's ease in integrating into a GUI window, and for its numerous methods to create interactive objects.

- 2. Week 1-3
- 2.1 Prototyping Molecule Viewer
- 2.2 Database
- 2.3 Molecular Connectivity Algorithm
- 2.3.1

- 3. Chapter 3
- 3.1 Chapter 3

- 4. Conclusion
- 4.1 Summary and Final Thoughts for the Reader

5. References