Dry Beans Classification

IART G03 - Checkpoint

Ana Inês Oliveira de Barros - up201806593 João de Jesus Costa - up201806560 João Lucas Silva Martins - up201806436

Problem specification

Task

Classify between seven different registered varieties of dry beans with similar features, based on the features collected. The beans can be of any of the following classes: Seker, Barbunya, Bombay, Cali, Dermosan, Horoz, and Sira.

Experience

A dataset with information collected about dry beans and their classification, with the following attributes: Area, Perimeter, Major axis length, Minor axis length, Aspect ratio, Eccentricity, Convex area, Equivalent diameter, Extent, Solidity, Roundness, Compactness, ShapeFactor1, ShapeFactor2, ShapeFactor3, ShapeFactor4.

Performance

The classification accuracy, the classification precision, and the training/classification times.

Related work and bibliographic search

- Previous solutions of the same problem
 - https://github.com/NaitikJ/DryBean--Dataset
 - https://github.com/HimankSehgal/DSGRecruitmentTask_DryBeanDataset
- Data Analysis and Machine Learning Projects
 - https://github.com/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb
- Performance metrics to classification problems
 - https://www.kaggle.com/usengecoder/performance-metrics-for-classification-problems
- Feature Selection Techniques
 - https://pierpaolo28.github.io/blog/blog27/
 - https://www.kaggle.com/rxsraghavagrawal/feature-selection-techniques
 - https://www.kaggle.com/prashant111/comprehensive-guide-on-feature-selection
- Select k best: feature selection example in python
 - https://www.datatechnotes.com/2021/02/seleckbest-feature-selection-example-in-python.html
- Remove outliers in python
 - https://www.statology.org/remove-outliers-python

Tools & algorithms

Libraries & tools

Programming language: Python 3.9.4

Programming environment: Jupyter Lab

- matplotlib 3.4.1-2 matpletlib
- numpy 1.20.2-1
- pandas 1.2.3-1 pandas
- scikit-learn 0.24.1-1
- scipy 1.6.3-1 SisciPy
- seaborn 0.11.1-1 aseaborn

Classifiers used

- Decision trees
- K-nearest neighbors
- Support vector
- Naive bayes
- Random forest

Figure 3- Support vector results

Figure 1- Decision tree results

Figure 4- Naive bayes results

Figure 2- K-nearest neighbors results

Figure 5- Random forest results

Implemented Work

1. Data analysis

Figure 6 - Imbalance of bean classes in the data.

2. Outlier removal

Figure 7 - Example of outlier.

3. Attribute selection

Figure 8 - Correlation between Area and ConvexArea.

1 0.97 0.93 0.95 0.27 1.1 0.99 0.95 0.22 0.36 0.22 0.36 0.24 0.27 1.1 0.99 0.95 0.22 0.31 0.25 0.24 0.27 0.99 0.99 0.92 0.31 0.55 0.41 0.87 0.77 0.41 0.44 0.97 0.90</t

Figure 9 - Attribute correlation heatmap.

4. Model comparison

Figure 10 - Model accuracy comparison.

Figure 11 - Model precision comparison.