

ÉCOLE CENTRALE LYON

Rapport

BE 1 - Éléments Finis

Élèves : Valentin MESSINA

Edgar PONTIES

Enseignant:
Abdel-Malik ZINE

Table des matières

1	Introduction			
2 Maillage et représentation graphique de la solution exacte				
3	Approximation par éléments finis P_1 3.1 Étude de l'erreur élements finis P_1 : Cas de diffusion dominante 3.2 Étude de l'erreur élements finis P_1 : Cas de convection dominante	4 6 8		
4	Approximation par éléments finis P_2	11		
•	4.1 Calcul de la matrice $A_2 \dots \dots \dots \dots \dots \dots \dots$			
	4.2 Calcul du vecteur b_2			
	4.3 Étude de l'erreur élements finis P_2			
	4.4 Comparaison des méthodes éléments finis P_1 et P_2			
5	Une technique de stabilisation : SUPG	17		
	5.1 Calcul des matrices A_{supg} et du second membre b_{supg}	17		
	5.2 Comparaison entre la solution stabilisée et la solution exacte			
	5.3 Comparaison entre la solution stabilisée et la solution non stabilisée	18		
6	3 Conclusion			

Table des figures

1	Trace de la solution exacte pour plusieurs valeurs des parametres	3
2	Comparaison de la solution exacte calculée en 1000 points avec la méthode	
	des éléments finis P_1 (pour deux valeurs de ε)	5
3	Zoom sur les courbes avec $\varepsilon = 1 \dots \dots \dots \dots \dots$	6
4 5	Solution en fonction du nombre d'espaces de calcul (diffusion dominante) . Estimation de la dépendance en h de l'erreur de la méthode P_1 (diffusion	7
0	dominante)	7
6	Solution en fonction du nombre d'espaces de calcul (convection dominante)	8
7	Estimation de la dépendance en h de l'erreur de la méthode P_1 (convection	
	dominante)	9
8	Tracé de la solution en fonction du nombre d'espaces de calcul pour diffé-	
	rentes valeurs de ε	10
9	Tracé de la solution approchée et de la solution exacte pour différentes	
	valeurs de ε	11
10 11	Solution en fonction du nombre d'espaces de calcul $(P_2, diffusion dominante)$ Estimation de la dépendance en h de l'erreur de la méthode P_2 (diffusion	14
	dominante)	15
12	Comparaison de la résolution P_1 et P_2 pour un problème en diffusion do-	
	minante	16
13	Comparaison de la résolution P_1 et P_2 pour un problème en convection	
	dominante	16
14	Nouvelles et anciennes fonction de base (fonctions chapeaux)	17
15	Comparaison de la solution exacte calculée en 1000 points avec la méthode	
	des éléments finis P_1 stabilisée	18
16	Comparaison de la résolution P_1 et P_1 stabilisée pour un problème en	
	convection dominante	19

1 Introduction

Nous cherchons à résoudre le problème de convection-diffusion en une dimension par la méthode des éléments finis P_1 et P_2 . Ce problème s'écrit :

$$\begin{cases} -\varepsilon \frac{d^2 u}{dx^2} + \beta(x) \frac{du}{dx} = f(x), \forall x \in]0, 1[\\ u(0) = u(1) = 0 \end{cases}$$
 (1)

Dans le cas simple où $\beta = \beta_0 = cte$, $f = f_0 = cte$, le problème (1) a une solution dont nous connaissons l'expression :

$$u_{exa}(x) = \frac{f_0}{\beta_0} \left(x - \frac{1 - \exp(\frac{\beta_0}{\varepsilon}x)}{1 - \exp(\frac{\beta_0}{\varepsilon})} \right)$$

2 Maillage et représentation graphique de la solution exacte

Nous représentons graphiquement la solution exacte, pour $\beta_0 \in \{-1, 1\}$ et $\varepsilon \in \{1, 0.5, 0.1, 0.01\}$, en fixant $f_0 = 1$.

FIGURE 1 – Tracé de la solution exacte pour plusieurs valeurs des paramètres

Nous remarquons que plus ε est faible plus la convection est dominante pour notre solution.

Le changement de signe de β_0 change uniquement l'orientation de la courbe.

3 Approximation par éléments finis P_1

Pour trouver le problème variationnel associé au problème de convection-diffusion 1D, on multiplie l'équation (1) par une fonction test v et on intègre sur [0,1]. On obtient finalement la formulation variationnelle suivante :

$$\begin{cases}
 u \in H_0^1(]0,1[) \\
 \varepsilon \int_0^1 \frac{du}{dx} \frac{dv}{dx} + \beta_0 \int_0^1 \frac{du}{dx} v(x) dx = \int_0^1 f(x) v(x) dx, \forall v \in H_0^1(]0,1[)
\end{cases}$$
(2)

On prend alors un ensemble de dimension finie $V_h \subset H_0^1(]0,1[)$, la formulation discrète de la formulation variationnelle est alors équivalente au système suivant :

$$\begin{cases} \xi \in \mathbb{R}^n \\ \mathcal{A}\xi = b \end{cases} \tag{3}$$

Les matrices \mathcal{A} et le vecteur b étant spécifiés dans l'énoncé. Pour s'assurer que le problème (3) admet une unique solution, il faut vérifier que \mathcal{A} est inversible. Pour ce faire, on montre qu'elle est définie positive.

$$\bullet \ \forall X \in \mathbb{R}^{n}, \langle \mathcal{A}X, X \rangle = \frac{\varepsilon}{h} \langle \mathcal{D}X, X \rangle + \frac{\beta_{0}}{2} \langle \mathcal{C}X, X \rangle$$

$$\text{Pour } X \in \mathbb{R}^{n} \text{ tel que } X = [X_{i}]_{1 \leq i \leq n}, \mathcal{C}X = \begin{pmatrix} X_{2} \\ -X_{1} + X_{3} \\ \vdots \\ -X_{i-1} + X_{i+1} \\ \vdots \\ -X_{n-2} + X_{n} \\ -X_{n-1} \end{pmatrix}$$

On a alors:

$$\langle \mathcal{C}X, X \rangle = X_2 X_1 + \sum_{i=1}^{n} (-X_{i-1} + X_{i+1}) X_i - X_{n-1} X_n$$
$$= X_2 X_1 + (X_n X_{n-1} - X_1 X_2) - X_{n-1} X_n$$
$$= 0$$

Finalement, $\forall X \in \mathbb{R}^n, \langle AX, X \rangle = \frac{\varepsilon}{h} \langle \mathcal{D}X, X \rangle$

• On montre désormais que $\langle \mathfrak{D}X, X \rangle \geq 0$.

Pour
$$X \in \mathbb{R}^n$$
 non nul tel que $X = [X_i]_{1 \le i \le n}, \mathcal{D}X = \begin{pmatrix} 2X_1 - X_2 \\ -X_1 + 2X_2 - X_3 \\ \vdots \\ -X_{i-1} + 2X_i - X_{i+1} \\ \vdots \\ -X_{n-2} + 2X_{n-1} - X_n \\ -X_{n-1} + 2X_n \end{pmatrix}$

On a alors:

$$\langle \mathcal{D}X, X \rangle = \sum_{i=1}^{n} (2X_i^2 - 2X_i X_{i+1} + 2X_{i+1}^2)$$

$$\geq \sum_{i=1}^{n} (X_i^2 - 2X_i X_{i+1} + X_{i+1}^2)$$

$$\geq \sum_{i=1}^{n} (X_i - X_{i+1})^2$$

$$\geq 0$$

Ainsi, $\langle \mathcal{D}X, X \rangle > 0$ et $\langle \mathcal{D}X, X \rangle = 0$ ssi $\forall i \in \{1, ..., n\}, X_i = 0$ car il s'agit d'une somme de termes positifs. Ainsi, \mathcal{D} , donc \mathcal{A} est définie positive donc **inversible**. Le système (3) donné admet donc bien une unique solution $\xi = \mathcal{A}^{-1}b$.

Nous résolvons le problème (1) avec la méthode des éléments finis P_1 . Nous traçons sur une même figure les solutions au problème pour différents pas de discrétisation $(h \in \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128})$, ce qui revient à considérer différents nombres d'éléments formant la subdivision de notre espace [0,1] $(n \in \{15,31,63,127\})$. Nous prenons bien soin de compléter notre solution par sa valeur aux limites de l'espace, ce qui ramène finalement la solution calculée en n+2 points. Nous calculons notre solution avec les paramètres suivants : $\beta_0 = 1$, $f_0 = 1$, $\varepsilon \in \{0.1,1\}$.

FIGURE 2 – Comparaison de la solution exacte calculée en 1000 points avec la méthode des éléments finis P_1 (pour deux valeurs de ε)

On remarque que globalement la solution est bien approchée par la méthode des éléments finis.

FIGURE 3 – Zoom sur les courbes avec $\varepsilon = 1$

Sur la figure 3, on voit bien le décalage entre la solution exacte, qui semble presque dérivable (au sens "lisse"), car calculée en beaucoup de points. On remarque d'une part que plus le pas de discrétisation est faible, plus la courbe à de points calculées (c.f. la définition), mais d'autre part que plus le pas est faible, plus les points pris par la courbe sont proches de la solution exacte.

3.1 Étude de l'erreur élements finis P_1 : Cas de diffusion dominante

On se place dans le cas de la diffusion dominante, c'est avec dire avec un ε grand. On prend en particulier $\varepsilon = 1$, $\beta_0 = 1$, $f_0 = 1$. On trace dans un premier temps la solution en fonction du nombre d'espace de calcul.

FIGURE 4 – Solution en fonction du nombre d'espaces de calcul (diffusion dominante)

On remarque que pour toute les valeur de n $(n \in \{15, 31, 63, 127\})$, la solution à la même forme que celle attendue.

On calcule ensuite l'erreur de la solution de la solution pour pouvoir l'estimer en fonction du pas de discrétisation. L'erreur est définie par la formule suivante : $Err(h) = u_h - u_{exa}$. On trace ensuite $\ln(||Err(h)||_{\infty})$ en fonction de $\ln(h)$.

FIGURE 5 – Estimation de la dépendance en h de l'erreur de la méthode P_1 (diffusion dominante)

On trouve $k = 1.995 \approx 2$, ce qui souligne le résultat du cours qui indique qu'avec

l'approximation P_1 , on obtient une erreur en O(h) pour la norme H^1 c'est-à-dire une erreur en $O(h^2)$ pour la norme infinie.

3.2 Étude de l'erreur élements finis P_1 : Cas de convection dominante

On se place dans le cas de la convection dominante, c'est avec dire avec un ε petit. On prend en particulier $\varepsilon = 0.005$, $\beta_0 = 1$, $f_0 = 1$. On trace dans un premier temps la solution en fonction du nombre d'espace de calcul.

FIGURE 6 – Solution en fonction du nombre d'espaces de calcul (convection dominante)

On remarque que la solution ne converge pas pour des grandes valeurs de pas de discrétisatio. Ainsi, la représentation de $\ln(||Err(h)||_{\infty})$ en fonction de $\ln(h)$ n'est pas exploitable pour avoir la dépendance de l'erreur en fonction du pas de discrétisation.

FIGURE 7 – Estimation de la dépendance en h de l'erreur de la méthode P_1 (convection dominante)

On ne peut pas donner de valeur de k.

On fixe maintenant $\beta_0 = 1$, $f_0 = 1$, mais on prend $\varepsilon \in \{0.1, 0.05, 0.01, 0.005\}$. L'idée est de déterminer le nombre d'espaces de simulation nécessaire (*i.e.* la taille du pas de discrétisation) pour obtenir une solution convergente. On trace ainsi pour chaque valeur de ε la solution en fonction du nombre d'espaces de calcul, et on retient le nombre d'espaces à partir duquel la solution converge.

FIGURE 8 – Tracé de la solution en fonction du nombre d'espaces de calcul pour différentes valeurs de ε

On retient les les valeurs suivantes :

ε	Nombre d'espaces de calcul	P_e
0.1	20	0.2381
0.05	30	0.3226
0.01	50	0.9804
0.005	100	0.9901

On remarque ainsi que plus le ε est petit, plus le nombre de d'espaces de calcul doit être élevé. On remarque également que l'on trouve un nombre de Péclet local (défini par : $P_e = \frac{|\beta|h}{2\varepsilon}$) de plus en plus grand, c'est a dire que le transfert est plus convectif que diffussif. Finalement, on trace la solution obtenue avec le nombre d'espaces choisis, en comparant avec la solution exacte.

FIGURE 9 – Tracé de la solution approchée et de la solution exacte pour différentes valeurs de ε

Pour les valeurs pas trop faible de ε ($\varepsilon = \{0.1, 0.05\}$) la solution simulée approche bien la solution exacte. On se rend compte cependant que plus ε prend des valeurs faibles, plus il est compliqué d'approcher la solution par la méthode des éléments finis.

4 Approximation par éléments finis P_2

Pour calculer la matrice \mathcal{A}_2 et le vecteur b_2 dans le cadre de la méthodes des éléments finis P_2 , on considère, d'après le cours, les polynômes suivants pour $i \in [0, n]$:

•
$$\phi_{2i}(x) = \frac{2}{h^2}(x - x_{2i+1})(x - x_{2(i+1)})$$
 sur $K_i = [x_{2i}, x_{2(i+1)}]$

•
$$\phi_{2i}(x) = \frac{2}{h^2}(x - x_{2i-1})(x - x_{2(i-1)}) \text{ sur } K_{i-1} = [x_{2(i-1)}, x_{2i}]$$

•
$$\phi_{2i+1}(x) = -\frac{4}{h^2}(x - x_{2i})(x - x_{2(i+1)})$$
 sur $K_i = [x_{2i}, x_{2(i+1)}]$

Il reste à calculer les dérivées de ces polynômes. On détaille le calcul pour le premier, les autres calculs étant identiques. Ici, on a : $x_{2i+1} = \frac{h}{2}(2i+1)$, c'est le cas du cours avec a = 0 car on travaille sur [0, 1].

$$\phi_{2i}(x) = \frac{2}{h^2} \left(x^2 - x(x_{2i+1} + x_{2(i+1)}) + x_{2i+1} x_{2(i+1)} \right), \text{ donc } \phi'_{2i}(x) = \frac{2}{h^2} \left(2x - (x_{2i+1} + x_{2(i+1)}) \right).$$
Or $x_{2i+1} + x_{2(i+1)} = \frac{h}{2} (2i+1) + \frac{h}{2} (2i+2) = \frac{2 \times h}{2} (2i+3/2) = 2 \times x_{2i+3/2}.$

D'où $\phi'_{2i}(x) = \frac{4}{h^2}(x - x_{2i+3/2})$. En faisant de même pour chaque polynôme on obtient :

•
$$\phi_{2i}(x) = \frac{2}{h^2}(x - x_{2i+1})(x - x_{2(i+1)})$$
 et $\phi'_{2i}(x) = \frac{4}{h^2}(x - x_{2i+3/2})$ sur $K_i = [x_{2i}, x_{2(i+1)}]$

•
$$\phi_{2i}(x) = \frac{2}{h^2}(x - x_{2i-1})(x - x_{2(i-1)})$$
 et $\phi'_{2i}(x) = \frac{4}{h^2}(x - x_{2i-3/2})$ sur $K_{i-1} = [x_{2(i-1)}, x_{2i}]$

•
$$\phi_{2i+1}(x) = \frac{-4}{h^2}(x - x_{2i})(x - x_{2(i+1)})$$
 et $\phi'_{2i+1}(x) = \frac{-8}{h^2}(x - x_{2i+1})$ sur $K_i = [x_{2i}, x_{2(i+1)}]$

4.1 Calcul de la matrice A_2

D'après le cours, la matrice \mathcal{A}_2 s'écrit $\mathcal{A}_2 = \varepsilon \mathcal{D} + \beta_0 \mathcal{M}$ avec \mathcal{D} la matrice de diffusion et \mathcal{M} la matrice de masse. La matrice \mathcal{A}_2 est pentadiagonale, on ne calcule donc que les termes non nuls pour $i \neq 1, n+1$:

- Ligne d'indice pair $2i: \mathcal{A}_{2i,2i-2}, \mathcal{A}_{2i,2i-1}, \mathcal{A}_{2i,2i}, \mathcal{A}_{2i,2i+1}$ et $\mathcal{A}_{2i,2i+2}$
- Ligne d'indice impair $2i-1:\mathcal{A}_{2i-1,2i-2},\mathcal{A}_{2i-1,2i-1}$ et $\mathcal{A}_{2i-1,2i}$

La matrice \mathcal{D} étant symétrique, on ne calcule donc que les coefficients de la partie supérieure :

- Ligne d'indice pair $2i: \mathcal{D}_{2i+1,2i+1}$ et $\mathcal{D}_{2i+1,2i+2}$
- Ligne d'indice impair 2i-1 : $\mathfrak{D}_{2i,2i}, \mathfrak{D}_{2i,2i+1}$ et $\mathfrak{D}_{2i,2i+2}$
- LIGNE D'INDICE IMPAIR : Calcul de $\mathcal{D}_{2i+1,2i+1}$

$$\mathcal{D}_{2i+1,2i+1} := \int_{x_{2i}}^{x_{2i+2}} \left(\phi'_{2i+1}(x)\right)^2 dx = \int_{x_{2i}}^{x_{2i+2}} \left(-\frac{8}{h^2}(x-x_{2i+1})\right)^2 dx \text{ avec } x_{2i} = \frac{h}{2}(2i) \text{ et } x_{2i+2} = \frac{h}{2}(2i+2)$$

On pose $u = x - x_{2i+1}$, du = dx, on a alors : $x_{2i} - x_{2i+1} = -\frac{h}{2}$ et $x_{2i+2} - x_{2i+1} = \frac{h}{2}$, d'où :

$$\mathcal{D}_{2i+1,2i+1} = \frac{8^2}{h^4} \int_{-h/2}^{h/2} u^2 du = \frac{8^2}{h^4 \times 3} \left(\left(\frac{h}{2}\right)^3 - \left(-\frac{h}{2}\right)^3 \right) = \boxed{\frac{16}{3h}}$$

On trouve de même $\mathcal{D}_{2i+1,2i+2} = \boxed{-\frac{8}{3h}}$

 \bullet LIGNE D'INDICE PAIR : Calcul de $\mathfrak{D}_{2i,2i}$

$$\mathcal{D}_{2i,2i} := \int_{x_{2i-2}}^{x_{2i}} (\phi'_{2i}(x))^2 dx + \int_{x_{2i}}^{x_{2i+2}} (\phi'_{2i}(x))^2 dx$$

$$= \int_{x_{2i-2}}^{x_{2i}} (-\frac{4}{h^2} (x - x_{2i-3/2}))^2 dx + \int_{x_{2i}}^{x_{2i+2}} (\frac{4}{h^2} (x - x_{2i+3/2}))^2 dx$$

$$= \frac{16}{h^4} (\int_{x_{2i-2}}^{x_{2i}} (x - x_{2i-3/2})^2 dx + \int_{x_{2i}}^{x_{2i+2}} (x - x_{2i+3/2})^2 dx)$$

En faisant le même type de changement de variables que pour la le calcul précédent, on a :

$$\mathcal{D}_{2i,2i} = \frac{16}{h^4} \left(\int_{-h/4}^{3h/4} u^2 du + \int_{-3h/4}^{-h/4} u^2 du \right) = \frac{16}{h^4} \int_{-3h/4}^{3h/4} u^2 du = \boxed{\frac{14}{3h}}$$
 On trouve de même
$$\mathcal{D}_{2i,2i+1} = \boxed{-\frac{8}{3h}} \text{ et } \mathcal{D}_{2i,2i+2} = \boxed{-\frac{1}{3h}}$$

4.2 Calcul du vecteur b_2

Maintenant, on calcule le vecteur b_2 . D'après le cours, ses coordonnées sont données par $b_i = \int_0^1 f_0 \phi_i(x) dx$. Il faut donc distinguer les coordonnées paires et impaires : calculons par exemple b_{2i+1} .

$$b_{2i+1} = f_0 \frac{-4}{h^2} \int_{x_{2i}}^{x_{2i+2}} (x - x_{2i})(x - x_{2i+2}) dx$$

On pose alors $u = x - x_{2i+2}$, du = dx et on obtient :

$$b_{2i+1} = \frac{-4f_0}{h^2} \int_{-h}^0 u(u+h)du$$

$$= \frac{-4f_0}{h^2} \left(\int_{-h}^0 u^2 du + h \int_{-h}^0 u du \right)$$

$$= \frac{-4f_0}{h^2} \left(\frac{1}{3} \left(0^3 - (-h)^3 \right) + \frac{h}{2} \left(0^2 - (-h)^2 \right) \right)$$

$$= \frac{-4f_0}{h^2} \left(\frac{h^3}{3} - \frac{h^2}{2} \right)$$

$$= 2 \times \frac{f_0 h}{3}$$

Finalement, $b_{2i+1} = 2 \times \frac{f_0 h}{3}$ et on trouve de même $b_{2i} = \frac{f_0 h}{3}$.

4.3 Étude de l'erreur élements finis P_2

On se place dans le cas de la diffusion dominante, c'est avec dire avec un ε grand. On prend en particulier $\varepsilon = 1$, $\beta_0 = 1$, $f_0 = 1$. On trace dans un premier temps la solution en fonction du nombre d'espaces de calcul.

FIGURE 10 – Solution en fonction du nombre d'espaces de calcul (P_2 , diffusion dominante)

On remarque que pour toutes les valeurs de n $(n \in \{31, 63, 127, 263\})$, la solution à la même forme que celle attendue.

On calcule ensuite l'erreur de la solution de la solution pour pouvoir l'estimer en fonction du pas de discrétisation. L'erreur est définie par la formule suivante : $Err(h) = u_h - u_{exa}$. On trace ensuite $\ln(||Err(h)||_{\infty})$ en fonction de $\ln(h)$.

FIGURE 11 – Estimation de la dépendance en h de l'erreur de la méthode P_2 (diffusion dominante)

On trouve $k = 3.9841 \approx 4$, ce qui souligne le résultat du cours qui indique qu'avec l'approximation P_2 , on obtient une erreur en $O(h^2)$ pour la norme H^1 c'est-à-dire une erreur en $O(h^4)$ pour la norme infinie.

4.4 Comparaison des méthodes éléments finis P_1 et P_2

Nous allons comparer la résolution P_1 et P_2 dans deux cas : $\varepsilon = 1$, $\beta_0 = 1$, $f_0 = 1$ et $\varepsilon = 0.001$, $\beta_0 = 1$, $f_0 = 1$.

Nous avons choisi de comparer les deux méthodes en traçant la solution en fonction du nombre d'espaces de calcul : cela permet de voir si les solution converge et à partir de quelle finesse de pas de discrétisation.

FIGURE 12 – Comparaison de la résolution P_1 et P_2 pour un problème en diffusion dominante

FIGURE 13 – Comparaison de la résolution P_1 et P_2 pour un problème en convection dominante

Dans le cas de la diffusion dominante, on se rend compte que la solution converge bien dans tout les cas.

Dans le cas de convection dominante, on voit que la solution diverge, mais qu'elle se stabilise mieux pour la résolution P_2 .

Cependant, la solution ne converge pas totalement pour autant, on peut donc conclure

que l'interpolation pas des polynômes de degré supérieurs 1 permets de réduire les oscillations, mais ne les supprime pas.

5 Une technique de stabilisation : SUPG

5.1 Calcul des matrices A_{supg} et du second membre b_{supg}

On calcule donc l'expression de \mathcal{A}_{supg} et de b_{supg} . Il suffit d'utiliser les expressions de \mathcal{A} et b dans le cas P_1 en remplaçant les fonctions de formes ϕ_i par les nouvelles fonctions de formes ω_i définies, $\forall i=1,...,n$, par :

$$\omega_i = \phi_i + \alpha \beta_0 \phi_i'$$

avec:

$$\alpha = \begin{cases} \frac{\gamma}{12} \frac{h}{\beta_0} & \text{si } \gamma < 6\\ \frac{1}{2} \frac{h}{\beta_0} & \text{sinon} \end{cases} \text{ et } \gamma = \frac{\beta_0}{\epsilon} h$$

On obtient alors la nouvelle matrice \mathcal{A}_{supg} et le (nouveau) vecteur $b_{supg} = b$:

$$\boxed{\mathcal{A}_{supg} = \mathcal{A} + \alpha \beta_0^2 \times \frac{1}{h} \mathcal{D} \text{ et } \boxed{b_{supg} = b}}$$

On affiche les nouvelles fonctions de forme ω_i afin de les comparer aux anciennes fonctions de forme ϕ_i .

FIGURE 14 – Nouvelles et anciennes fonction de base (fonctions chapeaux)

On voit bien que les fonctions ont la même forme, mais leurs "poids" est adaptés en fonction de la situation de calcul dans laquelle on se trouve (convection ou diffusion dominante).

5.2 Comparaison entre la solution stabilisée et la solution exacte

On cherche à comparer la solution exacte avec les solution obtenue avec le modèle P_1 stabilisé.

FIGURE 15 – Comparaison de la solution exacte calculée en 1000 points avec la méthode des éléments finis P_1 stabilisée

Plus h est faible plus la solution colle à la solution exacte. Cependant on voit bien que avec h = 1/64 on obtient déjà une approximation très satisfaisante, bien plus que ce que l'on avait obtenue avec n = 50 en figure 9, soit h = 1/51 avec la solution P_1 (même ε , B_0 , f_0).

5.3 Comparaison entre la solution stabilisée et la solution non stabilisée

Enfin, on cherche à comparer les solutions données par le problème P_1 et par le problème P_1 stabilisé.

FIGURE 16 – Comparaison de la résolution P_1 et P_1 stabilisée pour un problème en convection dominante

On observe que le problème des oscillations n'est plus présent avec la solution stabilisée. Cependant, pour des faibles valeurs de pas (h = 1/16), on voit que la solution n'est pas correctement approchée : on n'atteint pas le maximum attendu. Malgré cela, la solution est tout de même bien mieux approchée que par la méthode P_1 non stabilisée.

6 Conclusion

Pour conclure, nous avons utilisé la méthode des éléments finis P_1 et P_2 pour résoudre le problème de convection-diffusion 1D. Les différences entre les deux méthodes dépendent des valeurs des paramètres : en diffusion dominante, les deux méthodes fonctionnent bien. En revanche, en convection dominante, les deux méthodes fonctionnent assez mal car on observe des oscillations dans la représentation graphique dans les deux cas, mais la solution P_2 est tout de même meilleure que la P_1 . On en conclut que le choix de polynôme interpolateur de degré supérieure n'est pas toujours la solution adaptée.

Enfin, pour éliminer ces oscillations gênantes, nous avons donc chercher à stabiliser la solution P_1 par la méthode SUPG. Le problème des oscillations disparaît mais il convient de choisir des valeurs de pas faible pour approcher au mieux la solution.