Distributed Big Data Stream Processing

Wenxin Li 2018-12-22

Outline

A primer on distributed stream processing

- Introduction to streams
- Stream processing systems

A brief survey on stream processing optimizations

7 optimization techniques will be introduced

A paper on OSDI'18

 Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflow

A primer on distributed stream processing

Streams

Bank transactions

Sensor data

Cat video in tweets

Streaming applications

Application scenarios

 Ranging from anomaly traffic detection, social network analysis, stream database queries, online machine learning, ...

Streaming examples

Query examples in social network analysis						
Tweet Statistics	[rate, count] of [tweet, hashtag] on [location, language, topic]					
Users Analysis	[rate, count] of [tweet, hashtag, retweet] on [gender, age-group] per [location, language]					
Top-k Analysis	Top-k [popular, trending] [hashtag, topic, retweet] per [language, location]					
Sentiment Analysis	[aggregate, categorize] sentiment of each [hashtag, country, topic]					
System Load	[rate, count] of [bandwidth usage, request] per [node, region]					

Big & Fast

Social Network

Facebook: > 845M active users, > 8B messages/day

Twitter: > 140M active users, >340M tweets/day

Autonomous Driving

1GB data per minute per car

Traffic Monitoring

High event rates: millions events / sec

High query rates: thousands

queries / sec

Distributed Processing

Apache Storm

Used by Weather Channel, WebMD, Alibaba, Baidu etc.

Heron

Used by Twitter

Puma, Stylus, Swift

Used by Facebook

Samza

Used by LinkIn

Flink

Used by meituan

A basic architecture

Storm topology

2 Requirements

Low tuple latency

 End-to-end tuple latency: the time between a tuple entering the topology from the source, to producing an output result on the sink.

High throughput:

 the number of tuples that a system can process per time unit.

A brief survey on stream processing optimizations

Overview

7 optimization techniques

- Operator reordering
- Redundancy elimination
- Scaling
- Placement
- Load balancing
- Batching
- Load shedding

1 Operator Reordering

Move more selective operators upstream to filter data early.

2 Redundancy Elimination

Eliminate redundant computations

3 Scaling

Scaling the computation resource allocated to an operator

4 Placement

Assign operators to hosts and cores

5 Load balancing

Distribute workload evenly

6 Batching

Process multiple data items in a single batch

7 Load shedding

Degrade gracefully when overloaded

Three steps is all you need:

fast, accurate, automatic scaling decisions for distributed streaming dataflow

Vasiliki Kalavri, John Liagouris, Moritz Hoffmann et al. OSDI 18

The scaling problem

Given a logical dataflow with sources $S_1, S_2, ..., S_n$ and rates $\lambda_1, \lambda_2, ..., \lambda_n$ identify the minimum parallelism π_i per operator i, such that the physical dataflow can sustain all source rates.

Automatic scaling

Existing work

Borealis

StreamCloud

Seep

IBM Streams

Spark Streaming

Google Dataflow

Dhalion

• • •

metrics

CPU utilization backlog, tuples/s backpressure signal

problematic due to interference, multitenancy

policy

threshold and rule-based if CPU > 80% => scale

sensitive to noise, manual, hard to tune

scaling action

small changes, one operator at a time

non-predictive, speculative steps

The proposed DS2 overview

externally observed

policy threshold-based

non-predictive, single-operator

true rates through instrumentation

dataflow dependency model

> predictive, dataflow-wide actions

no oscillations

true rates as bounds to avoid over/under-shoot

fast convergence

An illustrative example

What if we scale $o_1 \times 4$?

How much to scale O₂?

An example

The DS2 model

<u>Useful time</u>: The time spent by an operator instance in **deserialization**, **processing**, and **serialization** activities.

<u>True processing (resp. output) rate</u>: The number of **records** an operator instance can process (resp. output) **per unit of useful time**.

Optimal parallelism for o_i

aggregated true output rate of upstream ops average true processing rate of o_i

Scale up/down behavior

(a) No overshoot when scaling up

Scale up/down behavior

Evaluation

DS2 vs. Dhalion on Heron using a word count dataflow

Evaluation

DS2 on Apache Flink

Evaluation

Convergence-NEXMARK

				at most 3 steps			
initial parallelism		QI: flatmap	Q2: filter scale-up	Q3: incremental join	Q5: tumbling window join	Q8: sliding window	QII: session window
	8 =>	12 => 16	=> 3 => 4	6 => 20	4 => 5 => 6	10	12 => 22 => 28
	12 =>	16	14	18 => 20	16	10	22 => 28
	16 =>	16	12 => 14	20	16	8 => 10	26 => 28
	20 =>	16	3 => 4	20	4 => 6	8 => 10	28
	24 =>	16	14	20	4 => 6	8 => 10	28
	28 =>	16	14	20	13 => 16	8 => 10	28

scale-down

a single step for many queries and initial configurations

=> : scaling action

Thanks!