Grado en Ingeniería Informática Especialidad: Computación

APRENDIZAJE AUTOMÁTICO 4º Curso

Nombre:	DNI:
- 10	

1. (3 puntos) Consideremos la siguiente red neuronal, que utiliza la función sigmoide (σ) como función de activación y un coeficiente de aprendizaje de 0.5:

- a) Calcular, detallando las formulas utilizadas, la salida de la red para la entrada x = (0.05, 0.10) asumiendo que todos los pesos de la red son los indicados en rojo y su error total para la salida esperada y = (0.01,0.99). (0.5 puntos).
- b) Realizar los cálculos necesarios siguiendo el algoritmo de retropropagación hasta hallar el valor de los pesos w1 y w5 después una iteración completa del algoritmo de retropropagación con los valores intermedios explicados necesarios para el cálculo de estos pesos. Debe explicarse cada paso con la teoría asociada a ellos (2 puntos).
- c) Que cambios **mínimos** debería tener esta red si quisiéramos utilizarla para clasificar entre dos posibles escenarios (0/1). ¿Y entre 4 (0/1/2/3)? **(0.5 puntos)**.
- 2. Regresión lineal (2 puntos). Teniendo en cuenta la siguiente tabla:

Asume H(x) inicial con $\theta_0 = 0$ y $\theta_1 = 0$

- *a*) Aplicar el algoritmo de descenso por gradiente con la primera iteración completa y recalcular todos los coeficientes con ratio de aprendizaje 0.25. **(1 punto)**.
- b) ¿Cuál es el valor inicial del error cuadrático para la tabla?
 ¿Cuál será el error cuadrático final para una entrada = 25?
 ¿Qué ocurre si la tasa de aprendizaje es muy alta o muy baja?
 Dibuja el posible efecto sobre el error.
 Dibuja la regresión obtenida y los puntos de la tabla inicial. (1 punto).
- 3. (2 puntos) Dado el siguiente conjunto de datos.

Lugar	Clima	Región	Decisión
beach	warm	goa	Yes
hilly	winter	kullu	Yes
mountain	windy	Mumbai	No
mountain	windy	Shimla	Yes
beach	windy	Mumbai	No
beach	windy	goa	No
beach	warm	Shimla	Yes

, aplicar los algoritmos:

- Find-S
- Dual Find-S
- * Eliminación de Candidatos
- Id3 (nodo raiz únicamente)
- * AQ (Primera regla)
- 4. (2 puntos) Escribir el pseucódigo de los algoritmos señalados con '*'del ejercicio anterior, explicando **DETALLADAMENTE** en comentarios cuál es el propósito de cada una de las líneas y/o trozos de código.
- 5. (1 punto) **Clustering**:
 - Pseudocódigo del algoritmo Kmeans
 - Describir los posibles criterios de convergencia para Kmeans
 - Fortalezas del Kmeans
 - Describe qué son y cómo se pueden evitar los Outliers