so that

$$2f(\ldots,u_i,u_i,\ldots)=0,$$

and in every characteristic except 2, we conclude that $f(..., u_i, u_i, ...) = 0$, namely f is alternating.

Proposition 34.1 shows that in every characteristic except 2, alternating and skew-symmetric multilinear maps are identical. Using Proposition 34.1 we easily deduce the following crucial fact.

Proposition 34.2. Let $f: E^n \to F$ be an alternating multilinear map. For any families of vectors, (u_1, \ldots, u_n) and (v_1, \ldots, v_n) , with $u_i, v_i \in E$, if

$$v_j = \sum_{i=1}^n a_{ij} u_i, \qquad 1 \le j \le n,$$

then

$$f(v_1, \dots, v_n) = \left(\sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \, a_{\sigma(1),1} \cdots a_{\sigma(n),n}\right) f(u_1, \dots, u_n) = \det(A) f(u_1, \dots, u_n),$$

where A is the $n \times n$ matrix, $A = (a_{ij})$.

Proof. Use Property (ii) of Proposition 34.1.

We are now ready to define and construct exterior tensor powers.

Definition 34.2. An *n*-th exterior tensor power of a vector space E, where $n \geq 1$, is a vector space A together with an alternating multilinear map $\varphi \colon E^n \to A$, such that for every vector space F and for every alternating multilinear map $f \colon E^n \to F$, there is a unique linear map $f_{\wedge} \colon A \to F$ with

$$f(u_1,\ldots,u_n)=f_{\wedge}(\varphi(u_1,\ldots,u_n)),$$

for all $u_1, \ldots, u_n \in E$, or for short

$$f = f_{\wedge} \circ \varphi.$$

Equivalently, there is a unique linear map f_{\wedge} such that the following diagram commutes:

$$E^n \xrightarrow{\varphi} A \\ \downarrow^{f_{\wedge}} \\ F.$$

The above property is called the universal mapping property of the exterior tensor power (A, φ) .