

FICHA DE TRABALHO N.º 8 - MATEMÁTICA A - 10.º ANO

FUNÇÕES REAIS DE VARIÁVEL REAL

Função Composta e Função Inversa; Generalidades; Monotonia, Extremos e Concavidades

"Conhece a Matemática e dominarás o Mundo."

Galileu Galilei

- **1.** Considere as funções $f: \{-2, -1, 0, 1, 2\} \rightarrow \{0, 1, 2, 3, 4\}$ definida por $f(x) = x^2$, $g: \{a, b, c\} \rightarrow \{a, b, c\}$ tal que g(a) = b, g(b) = c e g(c) = a, com $a, b, c \in \mathbb{R}$ e $h: \mathbb{R} \rightarrow \mathbb{R}$ definida por h(x) = 2x + 4.
 - **1.1.** Defina em extensão o conjunto G_f e justifique que f não é injectiva nem sobrejectiva.
 - **1.2.** Mostre que g admite inversa e caracterize-a, designando por g^{-1} a sua inversa.
 - **1.3.** Mostre que h admite inversa e caracterize-a, designando por h^{-1} a sua inversa.
 - 1.4. Determine:

a)
$$(f \circ h)(-3)$$

b)
$$g^{-1}(b)$$

c)
$$(h^{-1} \circ f)(2^{-1})$$

$$\mathbf{d)} \left(g \circ g^{-1} \right) (c)$$

- e) $h^{-1}(10)$, sem utilizar a expressão analítica de h^{-1} .
- **1.5.** Determine $D_{f \circ h}$ e caracterize por meio de uma tabela a função $f \circ h$.
- **1.6.** Seja $f|_A:A\to B$. Indique um conjunto $A\subset \{-2,-1,0,1,2\}$, com o maior número possível de elementos, e um conjunto B de modo que $f|_A$ seja bijectiva.
- **2.** Sejam $f \in g$ duas funções de domínio \mathbb{R} .

Sabe-se que:

- a função f é bijectiva e o ponto de coordenadas (2,5) pertence ao seu gráfico
- a função g é afim os pontos de coordenadas $\left(0,-5\right)$ e $\left(4,1\right)$ pertencem ao seu gráfico

Qual é o valor de $(g \circ f^{-1})(5)$?

A −2

B -1

C 1

3. Considere as funções $f: \{-3, -2, 0, 1, 3, 6\} \rightarrow \{-3, -2, -1, 2, 3, 4\}$ definida graficamente e g, de domínio $\{0, 1, 4, 5, 6, 8\}$, definida por um diagrama.

- **3.1.** Indique o contradomínio da função g e justifique que g não é injectiva nem sobrejectiva.
- **3.2.** Mostre que a função f admite inversa.
- **3.3.** Determine $D_{f \circ g}$ e caracterize $f \circ g$ recorrendo a uma tabela.
- 3.4. Determine, caso exista:

a)
$$f^{-1}(3)$$

b)
$$(f \circ f)(6)$$

c)
$$(g \circ f^{-1})(-1)$$

$$\mathbf{d)} \ (f \circ g \circ f)(3)$$

- **3.5.** Represente graficamente a função f^{-1} , função inversa de f.
- **3.6.** Resolva em \mathbb{R} as seguintes condições:

a)
$$(g \circ f)(x) = 0$$

b)
$$f(2x) < 0$$

c)
$$(f \circ f)(x) \ge 0$$

4 Seja g uma função bijectiva tal que o ponto de coordenadas ig(3,-2ig) pertence ao seu gráfico.

Considere a função h, definida por h(x) = g(x-1) + 2.

Qual dos pontos seguintes pertence necessariamente ao gráfico da função $\,h^{-1}$, função inversa de $\,h$?

A (0,2)

B (0,4)

C (4,0)

D (-2,3)

5. Na figura está representado, num referencial o.n. xOy, parte do gráfico de uma função g, polinomial de grau 3, de domínio \mathbb{R} e estritamente crescente em que -2 é o seu único zero.

5.1. Qual é o valor de $(g \circ g)(-2)$?

A 1

B 2

C 3

D 4

5.2. Seja h a função definida por $h(x) = \sqrt{2-x} + 1$. Qual é o valor de $(h \circ g^{-1})(0)$? (g^{-1} designa a função inversa de g)

A 1

B 2

C 3

D

5.3. Qual das seguintes funções pode ser impar?

A g(|x|)

B g(x-2)

 $\mathbf{C} g(x) - 4$

D g(x-2)-4

5.4. Na figura está representado em referencial o.n. xOy, parte do gráfico da função f, de domínio $\mathbb R$.

A função f é definida por f(x) = g(x+a) - b, com $a,b \in \mathbb{R}$.

Quais são os valores de a e de b?

- **A** a = -1 e b = 2
- **B** a = 1 e b = 2
- **C** a = -1 e b = -2
- **D** a = 1 e b = -2

6. Seja g uma função de domínio \mathbb{R} tal que o ponto de coordenadas (-3,-5) pertence ao seu gráfico.

Considere a função h, de domínio \mathbb{R} , definida por h(x) = 2 - 3 |g(x-1)|.

Qual dos seguintes pontos pertence necessariamente ao gráfico de h?

- (-2,-13)
- **B** (-4,17)
- (-2,17)
- D (-4,-13)
- 7. Na figura está representada em referencial o.n. Oxyz parte do gráfico de uma função g de domínio \mathbb{R} . Tal como a figura sugere, o gráfico de g intersecta o eixo Ox no ponto de abcissa 1.

Em qual das seguintes opções pode estar representado o gráfico da função f definida por f(x) = |g(x-2)| - 1?

Α

В

l C

- **8.** Considere uma função f, de domínio \mathbb{R} . Sabe-se que a função f é impar e tem exactamente três zeros
 - **8.1.** Qual das seguintes pode ser a expressão analítica da função f?
 - **A** $x^4 x^2$
- $\mathbf{B} \quad x^3 x$
- **C** $x^6 x^3$
- **D** *x*

Numa pequena composição indique a opção correcta e apresente, para cada uma das restantes opções, uma razão para a rejeitar.

8.2. Seja g uma função de domínio \mathbb{R} , par.

Mostre que a função h, também de domínio \mathbb{R} , definida por h(x) = x(f(x) + xg(x)) é par.

- **8.3.** Considere agora que um dos zeros da função f é o 3. Quais são os zeros das funções i, j e m, definidas por:
 - **a)** i(x) = f(x+2)

 $b) \ j(x) = f\left(-\frac{x}{4}\right)$

c) m(x) = f(|x|)

8.4. Suponha agora que o contradomínio da função $f \in \left] -4,4\right[$

Qual é o contradomínio da função t, definida por $t(x) = 2 + \frac{2|f(x-3)|}{3}$?

9. Considera a função h, de domínio $\mathbb{R}\setminus\{1\}$, cujo gráfico está parcialmente representado na figura seguinte.

- **9.1.** Determine os valores reais de x de modo que $h(x) \times h(6) \le 0$.
- **9.2.** Estude a função h quanto à monotonia e à existência de extremos relativos e absolutos. Caso existam, indiqueos.

- 9.3. Indique, justificando, o valor lógico das seguintes proposições.
 - a) A função h é contínua em todo o seu domínio.
 - **b)** $\forall a,b \in \mathbb{R} \setminus \{1\}, a \neq b \Rightarrow h(a) \neq h(b)$
 - c) $\exists x \in]-1,0[:(h \circ h)(x) = -2$
- **9.4.** Determine os valores reais de k para os quais a equação h(x) k = 0 tem exactamente duas soluções.
- **9.5.** Indique o domínio e o contradomínio da função g, definida por $g(x) = 2 3h\left(\frac{x}{3}\right)$.
- **9.6.** Considere a função $h\Big|_{]1,+\infty}[:]1,+\infty[\to]-\infty,3[$ cujo gráfico é uma semi-recta. Designe-a por g.
 - a) Mostre que $g(x) = -\frac{3x-15}{4}$.
 - b) Mostre que a função g é bijectiva e conclua que admite inversa.
 - c) Sem determinar a expressão analítica da função inversa de g, determine, $g^{-1}(2)$.
 - d) Caracterize a função g^{-1} .
 - e) Seja f a função de domínio \mathbb{R} definida por $f(x) = x^5 x^3 + 1$.

Determine o domínio da função $\,g\circ f\,$.

- **10.** Sejam f e g duas uma funções de domínio \mathbb{R} tais que f é ímpar e g é definida por $g(x) = x^3 f(x)$.
 - **10.1.** Mostre que o ponto de coordenadas (0,0) pertence ao gráfico de f.
 - **10.2.** Mostre que a função g é par.
 - $ilde{ t}$ 0.3. Na figura seguinte apresenta-se parte da tabela de variação do sinal da função g:

-∞	-3		-1		0
_	0	_	0	+	2

Qual é o conjunto solução da equação g(x) + |g(x)| = 0?

11. Considere a função g, de domínio \mathbb{R} e cuja tabela de variação da monotonia se apresenta a seguir:

х	-∞	0		2	+∞
g(x)	7	0	\searrow	-2	7

11.1. Qual das seguintes afirmações não é necessariamente verdadeira?

- $oldsymbol{\mathsf{B}}$ g tem pelo menos um zero.

 $lue{c}$ -2 é um mínimo da função g.

lacktriangledown lac

11.2. Considere agora que a função g é contínua em todo o seu domínio.

Quais são os extremos da função f definida por f(x) = 1 - 3g(2x)?

- **A** 1 e 7
- **B** −1 e 0
- **C** 0 e 1
- **D** −5 e −2

12. Seja f uma função de domínio \mathbb{R} tal que f(-2)=3 e f(4)=9

Sabe-se que o gráfico de f tem a concavidade voltada para cima no intervalo $\begin{bmatrix} -2,4 \end{bmatrix}$.

Qual das seguintes afirmações é necessariamente verdadeira?

 $[A] \forall x \in [-2,4], f(x) + x + 5 \le 0$

B $\forall x \in [-2,4], f(x) - x - 5 \le 0$

 $\forall x \in [-2,4], f(x) + x + 5 \ge 0$

D $\forall x \in [-2,4], f(x)-x-5 \ge 0$

13. Considere a função h, de domínio $\mathbb R$, definida por $h(x) = (k^3 - 3k + 1)x - (k^2 - 2)x + 3$, com $k \in \mathbb R$.

- **13.1.** Para que valores reais de k a função h é estritamente crescente?
- **13.2.** Mostre que h nunca pode ser uma função ímpar.
- **13.3.** Indique o valor lógico da proposição, $\exists k \in \mathbb{R} : f$ é uma função par.
- **13.4.** Para k=2 considere a função f, de domínio \mathbb{R} , definida por $f(x) = (h(x) + a)x^n$, com n natural e par e $a \in \mathbb{R}$. Determine a de modo que a função f seja ímpar.

14. Na figura está representada uma circunferência de centro em \mathcal{Q} e raio 2.

Os arcos AB e CD têm o mesmo comprimento que o raio da circunferência.

Considere que um ponto P, partindo de Q, se desloca a uma velocidade constante ao longo percurso sugerido pelas setas: de Q para A, seguindo pelo arco AB, em seguida de B para C, depois pelo arco CD e terminando em Q.

Seja d a função que dá a distância do ponto P ao ponto Q em função do tempo t, onde t=0 é o instante em que o ponto P inicia o movimento.

Numa pequena composição indique a opção onde pode estar representado o gráfico da função d e apresente, para cada uma das restantes opções, uma razão para rejeitar o gráfico dessa opção.

- **15.** Para cada $m \in \mathbb{R} \setminus \{0\}$ e $b \in \mathbb{R}$, considere a função g, de domínio \mathbb{R} , definida por g(x) = mx + b.
 - **15.1.** Mostre que g é bijectiva.
 - **15.2.** Mostre que se a função g coincidir com a sua inversa, então $m = -1 \lor m = 1$.
 - **15.3.** Admita que $g(x) = g^{-1}(x)$, $\forall x \in \mathbb{R}$.

Sabendo que o gráfico g^{-1} de intersecta o eixo Oy no ponto de ordenada 3, determine m e b.

- **15.4.** Considere m=2 e b=0 e seja h a função de domínio \mathbb{R} definida por $h(x)=-(g(x))^2$.
 - a) Determine o valor de $\frac{g\left(x_2\right)-g\left(x_1\right)}{x_2-x_1}$, para quaisquer $x_1,x_2\in\mathbb{R}$ e distintos. Justifique que a função g é estritamente crescente em \mathbb{R} .
 - b) Mostre que a função h não é injectiva.
 - c) Mostre que o gráfico da função h tem a concavidade voltada para baixo em $\mathbb R$.

Adaptado de dois exercícios do manual "Dimensões 10" da Editora Santillana

16. Na figura estão representados em referencial o.n. xOy parte dos gráficos das funções g e h, ambas de domínio \mathbb{R} .

Sabe-se que:

- o gráfico de g intersecta o eixo Oy no ponto de ordenada 1
- o gráfico de h intersecta o eixo Ox nos pontos de abcissa
 -8, -2 e 4
- o gráfico de h intersecta o eixo Oy no ponto de ordenada 3

A 0

B 1

C 3

16.2. A função h é definida por h(x) = ag(bx), com $a,b \in \mathbb{R} \setminus \{0\}$.

Quais são os valores de a e de b?

A $a = 3 \text{ e } b = -\frac{1}{2}$

B $a = 3 \text{ e } b = \frac{1}{2}$

 $a = \frac{1}{3} e b = -2$

 \Box $a = -3 e b = -\frac{1}{2}$

17. Sejam f uma função afim de domínio \mathbb{R} tais que f(-2)=6 e f(6)=-6, g a função inversa de f e a função h, de domínio $[1,+\infty[$, definida por $h(x)=\sqrt{2x-2}$.

- **17.1.** Qual é o valor de $(f \circ f)(-2) + (g \circ h)(19)$?
- **A** −12
- **B** -8
- **C** -6

D 0

- **17.2.** Qual é o domínio da função $h \circ f$?
- $\boxed{\mathbf{A}} \left[\frac{4}{3}, +\infty \right]$
- **B** [2,+∞
- $\left[\mathbf{C} \right] \infty, \frac{4}{3}$
- $\boxed{ \ \, }]-\infty,2]$

17.3. Qual das seguintes é a expressão analítica da função g, função inversa de f?

B $g(x) = -\frac{2x}{3} + 2$

 $g(x) = \frac{3x}{2} + 9$

D $g(x) = \frac{2x}{3} - 6$

17.4. Seja t a função de domínio \mathbb{R} definida por t(x) = |f(x)|

Qual das seguintes afirmações é verdadeira?

- lacksquare A função t tem máximo absoluto em x=2.
- **B** A função t tem máximo absoluto em x = -6.
- lacktriangle A função t tem mínimo absoluto em x = -6.
- **D** A função t tem mínimo absoluto em x = 2.

18. Nas figuras estão representadas em referencial o.n. xOy as funções f, g e h, todas de domínio $\mathbb R$.

18.1. Quais das três funções tem um extremo relativo no ponto de abcissa *a*?

- A Apenas h
- $\mathbf{B} f \mathbf{e} g$
- **C** g e h
- D f, g e h

18.2. O gráfico da função h é composto por partes de duas parábolas.

Considere as seguintes afirmações:

- **I.** O gráfico da função h tem a concavidade voltada para cima em $\mathbb R$.
- ${f II.}$ Em $\left]-\infty,a\right]$ o gráfico da função h tem a concavidade voltada para cima.

Quais das afirmações são verdadeiras?

- A Nenhuma
- ВІ

C II

D IeII.

18.3. Qual das seguintes afirmações é necessariamente falsa?

 $(f \circ h)(-a) > 0$

 $B (h \circ g)(c) > 0$

19. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = kx^2$, com $k \in \mathbb{R} \setminus \{0\}$.

Sejam A, B e C os pontos de abcissas a, b e c, respectivamente, com a < b < c, pertencentes ao gráfico de f tais que $m_{AB} < m_{BC}$, onde m_{AB} designa o declive da recta AB e m_{BC} designa o declive da recta BC.

19.1. Qual das seguintes afirmações é necessariamente verdadeira?

- **A** k > 0
- $\mathbf{B} \quad k = 7$
- **C** *k* < 0
- $D \quad k = 2$

19.2. Considere a = -1, b = 3 e $m_{AB} = 14$. Qual é o valor de k?

A 5

B 6

C 7

D 8

20. Considere as funções $f: \{-4, -2, 0, 4, 6\} \rightarrow \{-1, 0, 1, 2, 4\}$ tais que $G_f = \{(-4, 0), (-2, -1), (0, 1), (4, 2), (6, 4)\}$ e a função g, de domínio \mathbb{R} , definida por $g(x) = x^2 - x$

20.1. Qual das seguintes afirmações é verdadeira?

A $f^{-1}(0) - f(6) = 0$

B $(f \circ f)(6) = 2f(0)$

 $(g \circ f^{-1})(0) = 0$

 $|f^{-1}(-1)| = -g(-1)$

20.2. Determine o conjunto solução da equação $(f \circ g)(x) = 4$.

21. Na figura, está representada em referencial o.n. xOy o gráfico da função f de domínio]-5,7].

21.1. Construa a tabela de variação da monotonia da função *f* .

21.2. Qual é o contradomínio da função g, definida por g(x) = |2(f(x)-1)|?

- **21.3.** Considere a função h, definida por $h(x) = -2f\left(\frac{2x}{3}\right)$.
 - a) Determine os zeros da função h.
 - b) Estude a função h quanto à existência de extremos relativos e absolutos. Caso existam, indique-os.
- **21.4.** O ponto de coordenadas (6,2) não pertence ao gráfico da função:

$$\mathbf{A} f\left(\frac{x}{2}\right) + 1$$

B
$$f(x-1)+3$$

A
$$f\left(\frac{x}{2}\right)+1$$
 B $f(x-1)+3$ **C** $f\left(-\frac{x}{6}\right)-2$

D
$$f(x-8)+1$$

21.5. Considere a função t, de domínio \mathbb{R} , definida por t(x) = 2x - 3

Determine o conjunto solução da equação $(t \circ f)(x) = -1$.

- **21.6.** Caracterize a função j, função inversa da função da função $f|_{]-5,-1]}:]-5,-1] \rightarrow]-5,3]$.
- **21.7.** Considere a função i, definida por i(x) = |f(|x|)|.

Numa pequena composição indique a opção onde pode estar representado o gráfico da função *j* e apresente, para cada uma das restantes opções, uma razão para rejeitar o gráfico dessa opção.

Α

В

Solucionário

 $G_{f} = \left\{ \left(-2,4\right), \left(-1,1\right), \left(0,0\right), \left(1,1\right), \left(2,4\right) \right\}; \ f\left(-1\right) = f\left(1\right) = 1 \ \text{ e } -1 \neq 1 \\ \Rightarrow f \ \text{não \'e injectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D_{f}^{'} = \left\{0,1,4\right\} \neq B \\ \Rightarrow f \ \text{não \'e sobrejectiva}; D$

-1

4

- $g^{-1}: \big\{a,b,c\big\} \to \big\{a,b,c\big\} \ \ \text{tal que} \ \ g^{-1}\big(b\big) = a \ , \ \ g^{-1}\big(c\big) = b \ \ \text{e} \ \ g^{-1}\big(a\big) = c \ .$
- $h^{-1}: \mathbb{R} \to \mathbb{R}$ tal que $h^{-1}(x) = \frac{x}{2} 2$. 1.3.

- **1.4. b)** *a*

1.4.

- 1.5. -3 $(f \circ h)(x)$
- **1.6.** Por exemplo $A = \{0,1,2\}$ e $B = \{0,1,4\}$

$$D_{f \circ h} = \left\{ -3, -\frac{5}{2}, -2, -\frac{3}{2}, -1 \right\}$$

- 2.
- $D_{g}^{'} = \{-1,0,2,6\} \neq \{-1,0,2,5,6,7\} \Rightarrow g$ não é sobrejectiva; g(1) = g(4) = 0 e $1 \neq 4 \Rightarrow g$ não é injectiva
- 3.2. f é bijectiva, isto é, é injectiva e sobrejectiva. Logo, f admite inversa.
- 3.3. $(f \circ g)(x)$ -3 -3

3.4.

- $D_{f \circ g} = \{1, 4, 6, 8\}$
- **3.4.** c) 0
- 3.4. **d)** 3
- 3.5.

5.2.

5.3.

5.4.

6.

- 7.

8.1.

- **8.3.** a) $\{-5, -2, 1\}$
- **8.3. b)** {-12,0,12}
- **8.3. c)** $\{-3,0,3\}$

- **9.1.** $[-6, -3] \cup [1, 5]$
- **9.2.** A função h é estritamente crescente em $\left[-\infty, -\frac{9}{2}\right]$; é estritamente decrescente em $\left[-\frac{9}{2}, -2\right]$ e em $\left]1, +\infty\right[$; é constante em $\left[-2,1\right[.\frac{9}{8}$ é um máximo relativo em $x=-\frac{9}{2}$; -2 é um máximo relativo para todo o $x\in\left]-2,1\right[$; -2 é um mínimo relativo para todo o $x \in [-2,1]$. A função h não tem extremos absolutos.
- 9.3. a) Verdadeira
- b) Falsa. Por exemplo, $-6 \neq -3$ mas h(-6) = h(-3) = 0; h não é injectiva. 9.3.
- c) Verdadeira. $h\left(h\left(-\frac{1}{2}\right)\right) = h\left(-2\right) = -2$
- **9.4.** $k \in]-\infty, -2[\cup \{\frac{9}{8}\}]$ **9.5.** $D_g = \mathbb{R} \setminus \{3\}; D_g' =]-7, +\infty[$

- **9.6. d)** $g^{-1}:]-\infty,3[\rightarrow]1,+\infty[$ tal que $g^{-1}(x)=-\frac{4x}{3}+5$ **9.6. e)** $]-1,0[\cup]1,+\infty[$

- **10.3.** $]-\infty,-1] \cup [1,+\infty[$
- **11.1.** C

- 13.1. $k \in \left] -\sqrt{3},1\right[\cup \left] \sqrt{3},+\infty\right[$
- $h(0) = 3 \neq 0$. Se uma função afim é impar, então o seu gráfico contém o ponto de coordenadas (0,0). Logo, h nunca pode ser impar.
- 13.3. Verdadeira
- 13.4.

- 14. C

- **15.4. b)** h(-1) = h(1) = -4 e $-1 \ne 1 \implies h$ não é injectiva

16.1.

17.1.

17.3.

17.4. D

[0,12]

18.1.

18.3. D

19.1.

20.1. В $\{-2,3\}$

21.1.	х	-5		-1		3		5		7	21.2.
	f(x)	n.d.	7	3	\rightarrow	1	7	-1	7	1	

- **21.3.** a) $\left\{-\frac{15}{4}, 6, 9\right\}$
- **21.3.** b) -6 é um mínimo absoluto em $x = -\frac{3}{2}$; -2 é um mínimo relativo para todo o $x \in \left[-\frac{3}{2}, \frac{9}{2}\right] \cup \left\{\frac{21}{2}\right\}$; -2 é um máximo relativo para todo o $x \in \left[-\frac{3}{2}, \frac{9}{2}\right]$; 2 é um máximo relativo em $x = \frac{15}{2}$
- 21.4.

- **21.5.** $x \in]-1,3] \cup \{-2,7\}$ **21.6.** $j:]-5,3] \rightarrow]-5,-1]$ tal que $j(x) = \frac{x}{2} \frac{5}{2}$.

21.7. B