

GRE IPv6 Tunnels

The GRE IPv6 Tunnels feature enables the delivery of packets from other protocols through an IPv6 network and allows the routing of IPv6 packets between private networks across public networks with globally routed IPv6 addresses. Generic routing encapsulation (GRE) is a unicast protocol that offers the advantages of encapsulating broadcast and multicast traffic (multicast streaming or routing protocols) or other non-IP protocols and of being protected by IPsec.

- Finding Feature Information, page 1
- Restrictions for GRE IPv6 Tunnels, page 1
- Information About GRE IPv6 Tunnels, page 2
- How to Configure GRE IPv6 Tunnels, page 2
- Configuration Examples for GRE IPv6 Tunnels, page 5
- Information About EoMPLS over IPv6 GRE Tunnel, page 6
- Additional References, page 14
- Feature Information for GRE IPv6 Tunnels, page 14

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for GRE IPv6 Tunnels

- GRE tunnel keepalive packets are not supported.
- Multipoint GRE (mGRE) IPv6 tunneling is not supported.

• There is limited support for tunnel transport in virtual routing and forwarding (VRF). The limited support in VRF is applicable to IPv6 point-to-point GRE without tunnel protection.

Information About GRE IPv6 Tunnels

Overview of GRE IPv6 Tunnels

The GRE IPv6 Tunnels feature enables the delivery of packets from other protocols through an IPv6 network and allows the routing of IPv6 packets between private networks across public networks with globally routed IPv6 addresses.

For point-to-point GRE tunnels, each tunnel interface requires a tunnel source IPv6 address and a tunnel destination IPv6 address when being configured. All packets are encapsulated with an outer IPv6 header and a GRE header.

GRE IPv6 Tunnel Protection

GRE IPv6 tunnel protection allows devices to work as security gateways, establish IPsec tunnels between other security gateway devices, and provide crypto IPsec protection for traffic from internal networks when the traffic is sent across the public IPv6 Internet. The GRE IPv6 tunnel protection functionality is similar to the security gateway model that uses GRE IPv4 tunnel protection.

How to Configure GRE IPv6 Tunnels

Configuring GRE IPv6 Tunnels

Perform this task to configure a GRE tunnel on an IPv6 network. GRE tunnels can be configured to run over an IPv6 network layer and transport IPv6 and IPv4 packets through IPv6 tunnels.

You must enable IPv6 or configure IPv6 MTU size more than 1500 on a tunnel's exit interface to avoid receiving warning messages.

Before You Begin

When GRE IPv6 tunnels are configured, IPv6 addresses are assigned to the tunnel source and the tunnel destination. The tunnel interface can have either IPv4 or IPv6 addresses (this is not shown in the task below). The host or device at each end of the configured tunnel must support both IPv4 and IPv6 protocol stacks.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface tunnel** *tunnel-number*
- **4. tunnel source** {*ipv6-address* | *interface-type interface-number*}
- **5. tunnel destination** *ipv6-address*
- 6. tunnel mode gre ipv6
- **7.** end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example: Device> enable	Enter your password if prompted.
Step 2	configure terminal	Enters global configuration mode.
	Example: Device# configure terminal	
Step 3	interface tunnel tunnel-number	Specifies a tunnel interface and number and enters interface configuration mode.
	<pre>Example: Device(config) # interface tunnel 0</pre>	
Step 4	tunnel source { <i>ipv6-address</i> <i>interface-type interface-number</i> }	Specifies the source IPv6 address or the source interface type and number for the tunnel interface.
	<pre>Example: Device(config-if) # tunnel source ethernet 0</pre>	• If an interface type and number are specified, the interface must be configured with an IPv6 address.
	0	Note Only the syntax used in this context is displayed. For more details, see the IPv6 Command Reference.
Step 5	tunnel destination ipv6-address	Specifies the destination IPv6 address for the tunnel interface.
	Example: Device(config-if)# tunnel destination 2001:0DB8:0C18:2::300	Note Only the syntax used in this context is displayed. For more details, see the IPv6 Command Reference.
Step 6	tunnel mode gre ipv6	Specifies a GRE IPv6 tunnel.
	<pre>Example: Device(config-if)# tunnel mode gre ipv6</pre>	Note The tunnel mode gre ipv6 command specifies GRE as the encapsulation protocol for the tunnel interface. Only the syntax used in this context is displayed. For more details, see the IPv6 Command Reference.

	Command or Action	Purpose
Step 7	end	Exits interface configuration mode and returns to privileged EXEC mode.
	<pre>Example: Device(config-if)# end</pre>	

Configuring GRE IPv6 Tunnel Protection

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface tunnel** *tunnel-number*
- **4. tunnel source** {*ipv6-address* | *interface-type interface-number*}
- **5.** tunnel destination ipv6-address
- 6. tunnel mode gre ipv6
- 7. tunnel protection ipsec profile profile-name
- 8. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example: Device> enable	Enter your password if prompted.
Step 2	configure terminal	Enters global configuration mode.
	Example: Device# configure terminal	
Step 3	interface tunnel tunnel-number	Specifies a tunnel interface and number and enters interface configuration mode.
	Example: Device(config) # interface tunnel 0	
Step 4	tunnel source {ipv6-address interface-type interface-number}	Specifies the source IPv6 address or the source interface type and number for the tunnel interface.

	Command or Action		Purpose		
	Example: Device(config-if)# tunnel source ethernet		 If an interface type and number are specified, the interface mus be configured with an IPv6 address. 		
	0	Note	Only the syntax used in this context is displayed. For more details, see the IPv6 Command Reference.		
Step 5	tunnel destination ipv6-address	Specif	ies the destination IPv6 address for the tunnel interface.		
	Example: Device(config-if) # tunnel destination 2001:0DB8:0C18:2::300	Note	Only the syntax used in this context is displayed. For more details, see the IPv6 Command Reference.		
Step 6	tunnel mode gre ipv6		Specifies a GRE IPv6 tunnel.		
	<pre>Example: Device(config-if)# tunnel mode gre ipv6</pre>	Note	The tunnel mode gre ipv6 command specifies GRE as the encapsulation protocol for the tunnel interface. Only the syntax used in this context is displayed. For more details, see the IPv6 Command Reference.		
Step 7	tunnel protection ipsec profile profile-name	Associ	ates the tunnel interface with an IPsec profile.		
	Example: Device(config-if) # tunnel protection ipsec profile ipsec-profile	Note	For the <i>profile-name</i> argument, specify the IPsec profile configured in global configuration mode.		
Step 8	end	Exits i mode.	nterface configuration mode and returns to privileged EXEC		
	<pre>Example: Device(config-if)# end</pre>				

Configuration Examples for GRE IPv6 Tunnels

Example: Configuring GRE IPv6 Tunnels

The following example shows how to configure a GRE tunnel over an IPv6 transport. In this example, Ethernet0/0 has an IPv6 address, and this is the source address used by the tunnel interface. The destination IPv6 address of the tunnel is specified directly. In this example, the tunnel carries both IPv4 and IS-IS traffic.

```
interface Tunnel0
  ip address 10.1.1.1 255.255.255.0
  ip router isis
  tunnel source Ethernet0/0
  tunnel destination 2001:DB8:1111:2222::1
  tunnel mode gre ipv6
!
interface Ethernet0/0
  no ip address
  ipv6 address 2001:DB8:1111:1111::1/64
```

```
router isis net 49.0001.0000.0000.000a.00
```

Example: Configuring GRE IPv6 Tunnel Protection

The following example shows how to associate the IPsec profile "ipsec-profile" with a GRE IPv6 tunnel interface. The IPsec profile is configured using the **crypto ipsec profile** command.

```
crypto ipsec profile ipsec-profile set transform-set ipsec-profile!
interface Tunnel1
ip address 192.168.1.1 255.255.255.252
tunnel source FastEthernet2/0
tunnel destination 10.13.7.67
tunnel protection ipsec profile ipsec-profile
```

Information About EoMPLS over IPv6 GRE Tunnel

Ethernet over MPLS (EoMPLS) is a tunneling mechanism that allows you to tunnel Layer 2 traffic through a Layer 3 MPLS network. EoMPLS is also known as Layer 2 tunneling.

The EoMPLS over IPv6 GRE Tunnel feature supports tunneling of EoMPLS traffic via an IPv6 network by using GRE tunnels. Effective from Cisco IOS XE Release 3.15s, EoMPLS is supported over IPv6 GRE tunnel.

The following figure shows a deployment model of the EoMPLS over IPv6 GRE Tunnel on a Cisco ASR 1000 Series Aggregation Services Router.

Figure 1: EoMPLS over IPv6 GRE Tunnel Deployment on a Cisco ASR 1000 Series Aggregation Services Router

Configuring EoMPLS over IPv6 GRE Tunnel

EoMPLS over IPv6 GRE Tunnel can be configured in the following two methods:

Using Legacy Commands, on page 6 Using Protocol-based Commands, on page 9

Using Legacy Commands

This section describes how to configure EoMPLS over IPv6 GRE Tunnel using legacy commands. The following are relevant configurations from both Provider Edge 1 Router and Provider Edge 2 Router:

SUMMARY STEPS

- 1. configure terminal
- 2. ipv6 unicast-routing
- 3. mpls label protocol ldp
- **4.** mpls ldp router-id Loopback0 [force]
- **5.** interface *type number*
- **6.** ip address *ip-address mask*
- 7. interface gigabitethernet slot/port
- **8.** encapsulation dot1 *vlan-id*
- **9.** xconnect *peer-ipaddress vc-id* encapsulation mpls
- **10.** interface tunnel *interface number*
- **11.** ip address *ip-address mask*
- **12.** tunnel source {*ip-address* | *interface-type interface-number*}
- **13.** tunnel mode gre ipv6
- **14.** tunnel destination *ipv6-address*
- **15.** mpls ip
- **16.** interface gigabitethernet slot/port
- **17.** ipv6 address { *ipv6-prefix/prefix-length* | *prefix-name sub-bits/prefix-length* }

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example: Router#configure terminal		
Step 2	ipv6 unicast-routing	Enables the forwarding of IPv6 unicast datagrams globally on the router.	
	<pre>Example: Router(config)#ipv6 unicast-routing</pre>		
Step 3	mpls label protocol ldp	Enables Label Distribution Protocol (LDP).	
	<pre>Example: Router(config) #mpls label protocol ldp</pre>		
Step 4	mpls ldp router-id Loopback0 [force]	Configures the LDP Router ID.	
	Example: Router(config) #mpls ldp router-id Loopback0 [force]	Note The optional force keyword ensures that the I address on interface loopback 0, and not the I address of any other interface, becomes the LD router ID.	
Step 5	interface type number	Enters configuration mode for the loopback interface.	

	Command or Action	Purpose
	Example: Router(config)#interface Loopback 0	
Step 6	ip address <i>ip-address mask</i> Example:	Sets the IP address and subnet mask for the loopback interface.
	Router(config-if)#ip address 10.1.1.2 255.255.255	
Step 7	interface gigabitethernet slot/port	Enters the configuration mode for a Gigabit Ethernet interface on the router.
	<pre>Example: Router(config-if)#interface GigabitEthernet0/0/1.2</pre>	
Step 8	encapsulation dot1 vlan-id	Enables 802.1Q trunking on a router.
	Example: Router(config-subif) #encapsulation dot1q 200	
Step 9	xconnect peer-ipaddress vc-id encapsulation mpls	Enables the attachment circuit and specifies the IP address of the peer, a VC ID, and the data encapsulation method.
	Example: Router(config-subif) #xconnect 10.1.1.1 100 encapsulation mpls	
Step 10	interface tunnel interface number	Designates a tunnel interface and enters interface configuration mode.
	<pre>Example: Router(config) #interface tunnel 10</pre>	
Step 11	ip address ip-address mask	Sets the IP address and subnet mask for the loopback interface.
	Example: Router(config-if)#ip address 41.0.0.1 255.255.255.0	
Step 12	tunnel source {ip-address interface-type interface-number}	Specifies the source IPv4 address or the source interface type and number for the tunnel interface.
	<pre>Example: Router(config-if) #tunnel source GigabitEthernet 0/0/0</pre>	
Step 13	tunnel mode gre ipv6	Specifies that the GRE over IPv6 encapsulation protocol is used in the tunnel.
	Example: Router (config-if) #tunnel mode gre ipv6	
Step 14	tunnel destination ipv6-address	Specifies the destination IPv6 address for the tunnel interface.
	Example: Router(config-if) #tunnel destination 2002::2	
Step 15	mpls ip	Enables mpls processing on the tunnel interface.

	Command or Action	Purpose
	<pre>Example: Router(config-if) #mpls ip</pre>	
Step 16	<pre>interface gigabitethernet slot/port Example: Router(config-if) #interface GigabitEthernet0/0/0</pre>	Enters the configuration mode for a Gigabit Ethernet interface on the router.
Step 17	<pre>ipv6 address { ipv6-prefix/prefix-length prefix-name sub-bits/prefix-length }</pre>	Configures an IPv6 address based on an IPv6 general prefix and enables IPv6 processing on an interface.
	Example: Router(config-if)#ipv6 address 2002::1/112	

Using Protocol-based Commands

This section describes how to configure EoMPLS over IPv6 GRE Tunnel using Protocol-based commands.

SUMMARY STEPS

- **1.** template type pseudowire [pseudowire-name]
- **2.** encapsulation mpls
- **3.** end
- **4.** interface pseudowire *number*
- **5.** source template type pseudowire
- **6.** encapsulation mpls
- 7. neighbor peer-address vcid-value
- **8.** end
- **9.** 12vpn xconnect context *context-name*
- **10.** member pseudowire *interface-number*
- **11.** member gigabit ethernet *interface-number*

	Command or Action	Purpose	
Step 1	template type pseudowire [pseudowire-name]	Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.	
	<pre>Example: Router(config) # template type pseudowire eompls</pre>		
Step 2	encapsulation mpls	Specifies the tunneling encapsulation.	

	Command or Action	Purpose
	<pre>Example: Router(config-pw-class)# encapsulation mpls</pre>	
Step 3	end	Exits to privileged EXEC mode.
	<pre>Example: Router(config-pw-class)# end</pre>	
Step 4	interface pseudowire <i>number</i>	Specifies the pseudowire interface and enters interface configuration mode.
	Example: Router(config) # interface pseudowire 100	
Step 5	source template type pseudowire	Configures the source template of type pseudowire named EoMPLS.
	<pre>Example: Router(config-if) # source template type pseudowire eompls</pre>	
Step 6	encapsulation mpls	Specifies the tunneling encapsulation.
	Example: Router(config-pw-class)# encapsulation mpls	
Step 7	neighbor peer-address vcid-value	Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.
	Example: Router(config-if) # neighbor 154.154.154.154 100	
Step 8	end	Exits to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	
Step 9	12vpn xconnect context context-name	Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.
	Example: Router(config) # 12vpn xconnect context eompls_100	
Step 10	member pseudowire interface-number	Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.
	Example: Router(config-xconnect)# member pseudowire 100	
Step 11	member gigabit ethernet interface-number	Specifies the location of the Gigabit Ethernet member interface.
	Example: Router(config-xconnect) # member GigabitEthernet0/0/1	

Verifying the EoMPLS over IPv6 GRE Tunnel Configuration

Use the following commands to verify that the EoMPLS over IPv6 GRE Tunnel feature is correctly configured.

SUMMARY STEPS

- **1.** show inter tunnel [tunnel-id]
- 2. show xconnect all [detail]
- 3. show mpls 12transport vc id detail

	Command or Action	Purpose				
Step 1	show inter tunnel	Router# show inter tunnel10				
отор .	[tunnel-id]	Tunnel10 is up, line protocol is up				
	[Hardware is Tunnel				
		Internet address is 41.0.0.2/24				
		MTU 1456 bytes, BW 100 Kbit/sec, DLY 50000 usec,				
		reliability 255/255, txload 1/255, rxload 1/255				
		Encapsulation TUNNEL, loopback not set				
		Keepalive not set				
		Tunnel linestate evaluation up				
		Tunnel source 2002::2 (GigabitEthernet0/0/0), destination 2002::1				
		Tunnel Subblocks:				
		src-track:				
		Tunnel10 source tracking subblock associated with GigabitEthernet0/0/0 Set of tunnels with source GigabitEthernet0/0/0, 1 member (includes iterato	rs).			
		on interface <ok></ok>	-,,			
		Tunnel protocol/transport GRE/IPv6				
		Key disabled, sequencing disabled				
		Checksumming of packets disabled				
		Tunnel TTL 255				
		Path MTU Discovery, ager 10 mins, min MTU 1280				
		Tunnel transport MTU 1456 bytes				
		Tunnel transmit bandwidth 8000 (kbps)				
		Tunnel receive bandwidth 8000 (kbps)				
		Last input never, output never, output hang never				
		Last clearing of "show interface" counters 04:41:12				
		Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0				
		Queueing strategy: fifo				
		Output queue: 0/0 (size/max)				
		30 second input rate 0 bits/sec, 0 packets/sec				
		30 second output rate 0 bits/sec, 0 packets/sec				
		8363 packets input, 1074130 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts)				
		0 runts, 0 giants, 0 throttles				
		0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort				
		8384 packets output, 1076628 bytes, 0 underruns				
		0 output errors, 0 collisions, 0 interface resets				
		0 unknown protocol drops				
		0 output buffer failures, 0 output buffers swapped out				
Sten 2	show xconnect	Router# show xconnect all				
otop 2	all [detail]	Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State				
	un [actun]	UP=Up DN=Down AD=Admin Down IA=Inactive				
		SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware				
		XC ST Segment 1 S1 Segment 2 S2				
		UP pri ac Gi0/0/0.2:200(Eth VLAN)				
		asr1001#show xconnect all detail				

Command or Action	Purpose	
	Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State UP=Up DN=Down AD=Admin Down IA=Inactive SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware	
	XC ST Segment 1 S1 Segment 2	S2
	UP pri ac Gi0/0/0.2:200(Eth VLAN) UP mpls 10.1.1.2:100 Interworking: ethernet Local VC label 17 Remote VC label 17	UP
show mpls 12transport ve id detail	Router# show mpls l2transport vc 100 detail Local interface: Gi0/0/0.2 up, line protocol up, Eth VLAN 200 up Interworking type is Ethernet Destination address: 10.1.1.2, VC ID: 100, VC status: up Output interface: Tul0, imposed label stack {17} Preferred path: not configured Default path: active Next hop: point2point Create time: 05:52:23, last status change time: 05:52:07 Last label FSM state change time: 05:52:07 Signaling protocol: LDP, peer 10.1.1.2:0 up Targeted Hello: 10.1.1.1(LDP Id) -> 10.1.1.2, LDP is UP Graceful restart: configured and not enabled Non stop routing: not configured and not enabled Status TLV support (local/remote) : enabled/supported LDP route watch : enabled Label/status state machine : established, LruRru Last local dataplane status rcvd: No fault Last BFD dataplane status rcvd: No fault Last BFD dataplane status rcvd: No fault Last local AC circuit status rcvd: No fault Last local AC circuit status sent: No fault Last local AD circuit status rcvd: No fault Last local LDP TLV status sent: No fault Last local LDP TLV status rcvd: No fault Last remote LDP TLV status rcvd: No fault Sequencing: receive disabled, send disabled Control Word: On (configured: autosense) SSO Descriptor: 10.1.1.2/100, local label: 17 Dataplane: SSM segment/switch IDs: 4098/4097 (used), PWID: 1 VC statistics: transit packet totals: receive 0, send 0 transit bycet totals: receive 0, send 0 transit packet drops: receive 0, sequencing 0, send 0	

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Master Commands List, All Releases
Tunnel commands: complete command syntax, command mode, defaults, command history, usage guidelines, and examples	Interface and Hardware Component Command Reference
IPv6 commands: complete command syntax, command mode, defaults, command history, usage guidelines, and examples	IPv6 Command Reference

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	

Feature Information for GRE IPv6 Tunnels

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for GRE IPv6 Tunnels

Feature Name	Releases	Feature Information
GRE IPv6 Tunnels	Cisco IOS XE Release 3.7S	The GRE IPv6 Tunnels feature enables the delivery of packets from other protocols through an IPv6 network and allows the routing of IPv6 packets between private networks across public networks with globally routed IPv6 addresses.
EoMPLS over IPv6 GRE Tunnel	Cisco IOS XE Release 3.15S	The EoMPLS over IPv6 GRE Tunnel feature supports tunneling of EoMPLS traffic via an IPv6 network by using GRE tunnels.

Feature Information for GRE IPv6 Tunnels