- Näherung $f(x) = f(x_0) + f'(x_0)(x x_0) + r(x)(x x_0)$
- gesucht sind höhere Näherungen
 - Sei f: (a,b)–> \mathbb{R} diffbar
 - wenn f': (a,b)–> \mathbb{R} auch diffbar
 - dann heißt f'' = (f')' die zweite Aleitung
 - f heißt n mal diffbar, wenn $f^n = (f^{n-1})'$ existiert
- n-te Taylor-Polynom
 - Sei f: (a,b)−> \mathbb{R} n mal diffbar x0∈(a,b)
 - dann heißt $T_n(f,x_0,x)=\sum_{k=0}^n \frac{f^k(x_0)}{k!}(x-x_0)^k$ das n-te Taylor-Polynom von f an der Stelle x0
- $\bullet \ T_n(f,x_0,x_0)=f(x_0)$
- $\bullet \ T_n'(f,x_0,x_0)=f'(x_0)$
- \bullet $T_n(f,x_0,x_0)$ ist Polynom von Grad \leq n, das bei x0 mit f in den ersten n Ableitungen übereinstimmt

$$-\ T_n^l(f,x_0,x_0) = f^l(x_0)$$

Taylor-Lagrauge

- Sei f: (a,b) -> \mathbb{R} (n+1)-mal diffbar, $x, x_0 \in (a,b)$
 - Dann gibt es ein
t zwischen x und $x_0,\,\mathrm{sodass}$

*
$$f(x) = T_n(f, x, x_0) + \frac{f^{n+1}(t)}{(n+1)!}(x - x_0)^{n+1}$$

- * Restglied von Lagrauge
- * wiederholbar für n Ableitungen alle Glieder des Taylor-Polynom

$[[{\bf Differential rechnung}]]$