Universidad de Santiago de Chile Facultad de Administración y Economía Departamento de Economía

Ayudantía #6

Teoría del Productor

- 1) Considere las siguientes funciones de producción y desarrolle:
 - a) Describa si pertenece a una función de Corto Plazo (CP) o de Largo Plazo (PL)
 - b) Estudie sus rendimientos a escala
 - c) Encuentre las funciones de Pme
 - d) Grafique
 - $f(L) = 5L + 5L^2 L^3$
 - a) Esta función solo depende del factor trabajo, por lo cual es una función de corto plazo.
 - b) Para estudiar el tipo de rendimiento a escala debemos incluir un escalar y estudiar el grado de él:

$$f(L) = 5L + 5L^2 - L^3$$

$$f(\lambda L) = 5(\lambda L) + 5(\lambda L)^2 - (\lambda L)^3$$

$$f(\lambda L) = 5\lambda L + 5\lambda^2 L^2 - \lambda^3 L^3$$

$$f(\lambda L) = \lambda(5L + \lambda 5L^2 - \lambda^2 L^3)$$

Notar que en este caso no podemos determinar el tipo de rendimiento a escala de la función.

c) Para encontrar la función de Producto Medio, debemos dividir por el factor correspondiente:

$$Pme = \frac{f(L)}{L} = \frac{5L + 5L^2 - L^3}{L}$$

$$Pme = 5 + 5L - L^2$$

Figura 1: Función de Producción

- f(L) = 2La) Esta función solo depende del factor trabajo, por lo cual es una función de corto plazo.
 - b) Para estudiar el tipo de rendimiento a escala debemos incluir un escalar y estudiar el grado de él:

$$f(L) = 2L$$

$$f(\lambda L) = 2(\lambda L)$$

$$f(\lambda L) = \lambda 2L$$

Como el exponente de λ es 1, podemos concluir que la función de producción tiene rendimientos constantes a escala.

c) Para encontrar la función de Producto Medio, debemos dividir por el factor correspondiente:

$$Pme = \frac{f(L)}{L} = \frac{2L}{L}$$

$$Pme = 2$$

Figura 2: Función de Producción

— Pmg L=Pme L=2

$$\bullet \ f(L) = L^2$$

a) Esta función depende del factor trabajo, por lo cual es una función de corto plazo.

b)

$$f(L) = L^{2}$$

$$f(\lambda L) = (\lambda L)^{2}$$

$$f(\lambda L) = \lambda^{2} L^{2}$$

$$f(\lambda L) = \lambda^{2} f(L)$$

Como el exponente de λ es mayor a 1, podemos concluir que la función de producción tiene rendimientos crecientes a escala.

c)

$$Pme_{L} = \frac{f(L)}{L} = \frac{L^{2}}{L}$$

$$Pme_{L} = L$$

Figura 3: Función de Producción

• f(K,L)=KL a) Esta función depende del factor trabajo y capital, por lo cual es una función de largo plazo.

$$f(K, L) = KL$$

$$f(\lambda K, \lambda L) = \lambda K \lambda L$$

$$f(\lambda K, \lambda L) = \lambda^2 KL$$

$$f(\lambda K, \lambda L) = \lambda^2 f(K, L)$$

Como el exponente de λ es mayor a 1, podemos concluir que la función de producción tiene rendimientos crecientes a escala.

$$\begin{split} Pme_K &= \frac{f(K,L)}{K} = \frac{KL}{K} \\ Pme_K &= L \end{split}$$

$$\begin{split} Pme_L &= \frac{f(K,L)}{L} = \frac{KL}{L} \\ Pme_L &= K \end{split}$$

Figura 4: Función de Producción

— Pmg L=Pme L=5

•
$$f(L) = 2\sqrt{L}$$

a) Esta función depende del factor trabajo, por lo cual es una función de corto plazo.

b)

$$f(L) = 2\sqrt{L}$$

$$f(\lambda L) = 2\sqrt{\lambda L}$$

$$f(\lambda L) = \lambda^{1/2} 2\sqrt{L}$$

$$f(\lambda L) = \lambda^{1/2} f(L)$$

Como el exponente de λ es menor a 1, podemos concluir que la función de producción tiene rendimientos decrecientes a escala.

c)

$$Pme_{L} = \frac{f(L)}{L} = \frac{2\sqrt{L}}{L}$$

$$Pme_{L} = \frac{2}{\sqrt{L}}$$

Figura 5: Función de Producción

• $f(K,L) = K^2L^2$. Donde $K_0 = 5$ a) Esta función depende del factor trabajo y capital, por lo cual es una función de largo plazo, pero es interesante notar que nos entregan el valor $K_0 = 5$ el cual nos sirve para obtener la función de producción de corto plazo:

$$f(K,L) = K^2L^2$$

$$f(K,L) = K_0^2L^2$$

$$f(K,L) = 5^2L^2$$

$$f(L) = 25L^2$$

b)

$$f(K, L) = K^2 L^2$$

$$f(\lambda K, \lambda L) = (\lambda K)^2 (\lambda L)^2$$

$$f(\lambda K, \lambda L) = \lambda^2 K^2 \lambda^2 L^2$$

$$f(\lambda K, \lambda L) = \lambda^4 f(K, L)$$

Como el exponente de λ es mayor a 1, podemos concluir que la función de producción tiene rendimientos crecientes a escala.

$$\begin{split} Pme_K &= \frac{f(K,L)}{K} = \frac{K^2L^2}{K} \\ Pme_K &= KL^2 \end{split}$$

$$Pme_{L} = \frac{f(K, L)}{L} = \frac{K^{2}L^{2}}{L}$$

$$Pme_{L} = K^{2}L$$

Figura 6: Función de Producción

Consideramos L = 10

2) Considera que una empresa tiene una función de producción Q=KL. Encuentre la función del mapa de iocuantas y gráfique si la empresa decide tener 50 unidades de Q.

Para encontrar la función de mapa de isocuantas, simplemente debemos considera un nivel de

producción fijo y luego despejar \hat{K} :

$$\overline{Q} = KL$$

$$K = \frac{\overline{Q}}{L}$$

Luego, simplemente reemplazamos por el nivel de producción deseado:

$$K = \frac{\overline{Q}}{L}$$
$$K = \frac{50}{L}$$

Cuadro 1: Valores

\overline{L}	K
0.1	500
1	50
10	5
100	0.5