Teoria do Consumidor:

Excedente do consumidor e equação de Slutsky

Roberto Guena de Oliveira

5 de abril de 2012

Sumário

- A função de utilidade indireta
- Função dispêndio e demanda compensada
- Medidas de variação de bem estar individual
- Equação de Slutsky
- 5 O problema de minimização dos gastos
- 6 Exercícios

Sumário

- A função de utilidade indiretaDefinição
- 2 Função dispêndio e demanda compensada
- Medidas de variação de bem estar individual
- 4 Equação de Slutsky
- 5 O problema de minimização dos gastos
- 6 Exercícios

Função de utilidade indireta Definicão

Sejam as funções de demanda $x_1(p_1,p_2,m)$ e $x_2(p_1,p_2,m)$ resultantes da solução do problema de maximizar a função de utilidade $U(x_1,x_2)$ dada a restrição orçamentária $p_1x_1+p_2x_2=m$. A função de utilidade indireta, notada por $V(p_1,p_2,m)$, retorna, para os valores de p_1 , p_2 e n a utilidade obtida ao se resolver esse problema

$$V(p_1, p_2, m) = U(x_1(p_1, p_2, m),)x_2(p_1, p_2, m))$$

Função de utilidade

$$U(x_1, x_2) = x_1^a x_2^{1-a}, \quad 0 < a < 1$$

Função de utilidade

$$U(x_1, x_2) = x_1^a x_2^{1-a}, \quad 0 < a < 1$$

Funções de demanda

$$x_1(p_1, p_2, m) = a \frac{m}{p_1}$$
 e $x_2(p_1, p_2, m) = (1 - a) \frac{m}{p_2}$

Função de utilidade

$$U(x_1, x_2) = x_1^a x_2^{1-a}, \quad 0 < a < 1$$

Funções de demanda

$$x_1(p_1, p_2, m) = a \frac{m}{p_1}$$
 e $x_2(p_1, p_2, m) = (1 - a) \frac{m}{p_2}$

Função de utilidade indireta

$$V(p_1, p_2, m) = \left[a\frac{m}{p_1}\right]^a \left[(1-a)\frac{m}{p_2}\right]^{1-a}$$

Função de utilidade

$$U(x_1, x_2) = x_1^a x_2^{1-a}, \quad 0 < a < 1$$

Funções de demanda

$$x_1(p_1, p_2, m) = a \frac{m}{p_1}$$
 e $x_2(p_1, p_2, m) = (1 - a) \frac{m}{p_2}$

Função de utilidade indireta

$$V(p_1, p_2, m) = \left[a\frac{m}{p_1}\right]^a \left[(1-a)\frac{m}{p_2}\right]^{1-a} = a^a(1-a)^{1-a}\frac{m}{p_1^a p_2^{1-a}}$$

Sumário

- A função de utilidade indireta
- Função dispêndio e demanda compensadaFunção dispêndio
- Medidas de variação de bem estar individual
- Equação de Slutsky
- 5 O problema de minimização dos gastos
- Exercícios

Definições

A função de dispêndio, notada por $e(p_1, p_2, u)$, é uma função que retorna a resposta à seguinte questão: que renda deve ser dada a um consumidor para garantir que, com essa renda, dados os preços p_1 e p_2 , ele obtenha, ao maximizar sua utilidade, o nível de utilidade u?

Desse modo, $e(p_1, p_2, u)$ é definida por

$$V(p_1, p_2, e(p_1, p_2, u)) = u$$

A função de utilidade indireta

$$V(p_1, p_2, m) = a^a (1-a)^{1-a} \frac{m}{p_1^a p_2^{1-a}}$$

A função de utilidade indireta

$$V(p_1, p_2, m) = a^a (1-a)^{1-a} \frac{m}{p_1^a p_2^{1-a}}$$

Função dispêndio:

$$V(p_1, p_2, e(p_1, p_2, u)) = u$$

A função de utilidade indireta

$$V(p_1, p_2, m) = a^a (1-a)^{1-a} \frac{m}{p_1^a p_2^{1-a}}$$

Função dispêndio:

$$V(p_1, p_2, e(p_1, p_2, u)) = u$$

 $\Rightarrow a^a (1-a)^{1-a} \frac{e(p_1, p_2, u)}{p_1^a p_2^{1-a}} = u$

A função de utilidade indireta

$$V(p_1, p_2, m) = a^a (1 - a)^{1 - a} \frac{m}{p_1^a p_2^{1 - a}}$$

Função dispêndio:

$$V(p_1, p_2, e(p_1, p_2, u)) = u$$

$$\Rightarrow a^a (1 - a)^{1 - a} \frac{e(p_1, p_2, u)}{p_1^a p_2^{1 - a}} = u$$

$$\Rightarrow e(p_1, p_2, u) = u \frac{p_1^a p_2^{1 - a}}{a^a (1 - a)^{1 - a}}$$

Observações

• Se considerarmos u uma constante, a função $e(p_1, p_2, u)$ passa a ter apenas dois argumentos e seu gráfico descreverá a superfície de iso-utilidade indireta associada ao nível de utilidade u.

Observações

- Se considerarmos u uma constante, a função $e(p_1, p_2, u)$ passa a ter apenas dois argumentos e seu gráfico descreverá a superfície de iso-utilidade indireta associada ao nível de utilidade u.
- Se adicionalmente considerarmos p_2 uma constante, a função $e(p_1, p_2, u)$ para a ter apenas um argumento variável e seu gráfico será uma curva de iso-utilidade indireta.

Função dispêndio e curvas de iso-utilidade indireta

Funções de demanda compensada

Definimos as funções de demanda compensada ou hicksiana pelos bens 1 e 2, notadas respectivamente por $h_1(p_1, p_2, u)$ e $h_2(p_1, p_2, u)$ como

$$h_1(p_1, p_2, u) = x_1(p_1, p_2, e(p_1, p_2, u))$$

e

$$h_2(p_1, p_2, u) = x_2(p_1, p_2, e(p_1, p_2, u))$$

Funções demanda e dispêndio

$$x_1(p_1, p_2, m) = a \frac{m}{p_1}$$

 $e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$

Funções demanda e dispêndio

$$x_1(p_1, p_2, m) = a \frac{m}{p_1}$$

 $e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$

Função demanda compensada (bem 1)

$$h_1(p_1, p_2, u) = x_1(p_1, p_2, e(p_1, p_2, u))$$

Funções demanda e dispêndio

$$x_1(p_1, p_2, m) = a \frac{m}{p_1}$$

 $e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$

Função demanda compensada (bem 1)

$$h_1(p_1, p_2, u) = x_1(p_1, p_2, e(p_1, p_2, u))$$

$$= a \frac{u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}}{p_1} = u \left[\frac{a}{1-a} \frac{p_2}{p_1} \right]^{1-a}$$

$\overline{e(p_1,p_2,u)}$ é côncava em relação a p_1

$\overline{e(p_1,p_2,u)}$ é côncava em relação a p_1

$\overline{e(p_1,p_2,u)}$ é côncava em relação a p_1

Lema de Shephard

$$\frac{\partial e(p_1, p_2, u)}{\partial p_1} = h_1(p_1, p_2, u)$$
$$\frac{\partial e(p_1, p_2, u)}{\partial p_2} = h_2(p_1, p_2, u)$$

Função dispêndio

$$e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$$

Função dispêndio

$$e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$$

$$h_1(p_1, p_2, u) = \frac{\partial e(p_1, p_2, u)}{\partial p_1}$$

Função dispêndio

$$e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$$

$$h_1(p_1, p_2, u) = \frac{\partial e(p_1, p_2, u)}{\partial p_1}$$
$$= \frac{\partial}{\partial p_1} u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$$

Função dispêndio

$$e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$$

$$h_1(p_1, p_2, u) = \frac{\partial e(p_1, p_2, u)}{\partial p_1}$$

$$= \frac{\partial}{\partial p_1} u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}} = a u \frac{p_1^{a-1} p_2^{1-a}}{a^a (1-a)^{1-a}}$$

Função dispêndio

$$e(p_1, p_2, u) = u \frac{p_1^a p_2^{1-a}}{a^a (1-a)^{1-a}}$$

$$h_{1}(p_{1}, p_{2}, u) = \frac{\partial e(p_{1}, p_{2}, u)}{\partial p_{1}}$$

$$= \frac{\partial}{\partial p_{1}} u \frac{p_{1}^{a} p_{2}^{1-a}}{a^{a} (1-a)^{1-a}} = a u \frac{p_{1}^{a-1} p_{2}^{1-a}}{a^{a} (1-a)^{1-a}}$$

$$= u \left[\frac{a}{1-a} \frac{p_{2}}{p_{1}} \right]^{1-a}$$

Curvas de iso-utilidade indireta para bens normais

Curvas de iso-utilidade indireta para bens inferiores

Curvas de iso-utilidade indireta para bens inferiores

Curvas de iso-utilidade indireta para bens inferiores

Curvas de iso-utilidade indireta para preferências quase-lineares

Lei da demanda compensada

A demanda compensada de um bem é não crescente em relação ao preço desse bem, ou seja

$$p_1^1 > p_1^0 \Rightarrow h_1(p_1^1, p_2, m) \le h_1(p_1^0, p_2, m)$$

Lei da demanda compensada

A demanda compensada de um bem é não crescente em relação ao preço desse bem, ou seja

$$p_1^1 > p_1^0 \Rightarrow h_1(p_1^1, p_2, m) \leq h_1(p_1^0, p_2, m)$$

Observação:

A lei da demanda não é válida para a demanda não compensada, uma vez que os bens Giffen são teoricamente possíveis.

Curvas de demanda marshalliana e de demanda compensada – preferências quase-lineares

Sumário

- A função de utilidade indireta
- Punção dispêndio e demanda compensada
- Medidas de variação de bem estar individual
 - Variação compensatória
 - Variação equivalente
 - Comparações
 - Excedente do consumidor
- Equação de Slutsky
- O problema de minimização dos gastos
- 6 Exercícios

Variação compensatória

Seja uma mudança nos preços e na renda do consumidor dos valores iniciais (p_1^0, p_2^0, m^0) para os valores finais (p_1^1, p_2^1, m^1) . Associada a essa mudança definimos a variação compensatória na renda desse consumidor (VC) como a redução na renda (ou o negativo do aumento na renda) necessária(o) para fazer com que, a partir dos preços e renda finais (p_1^1, p_2^1, m^1) , o consumidor volte a obter em equilíbrio, o mesmo nível de utilidade que obtia com os preços e renda originais, (p_1^0, p_2^0, m^0) .

Variação compensatória – definições equivalentes

Usando a função de utilidade indireta:

$$V(p_1^1, p_2^1, m^1 - VC) = V(p_1^0, p_2^0, m^0)$$

Variação compensatória – definições equivalentes

Usando a função de utilidade indireta:

$$V(p_1^1,p_2^1,m^1-VC)=V(p_1^0,p_2^0,m^0)$$

Usando a função dispêndio:

$$VC = m^1 - e(p_1^1, p_2^1, V(p_1^0, p_2^0, m^0))$$

Variação compensatória – definições equivalentes

Usando a função de utilidade indireta:

$$V(p_1^1,p_2^1,m^1-VC)=V(p_1^0,p_2^0,m^0)$$

Usando a função dispêndio:

$$VC = m^1 - e(p_1^1, p_2^1, V(p_1^0, p_2^0, m^0))$$

Representação gráfica – redução em

m

Representação gráfica – redução em p_1

Representação gráfica – redução em p_1

Representação gráfica – redução em p

Representação gráfica – redução em p

Representação gráfica – aumento em p

Redução em p_1 – representação alternativa.

Redução em p_1 – representação alternativa.

Variação equivalente

Seja uma mudança nos preços e na renda do consumidor dos valores iniciais (p_1^0, p_2^0, m^0) para os valores finais (p_1^1, p_2^1, m^1) . Associada a essa mudança definimos a variação equivalente na renda desse consumidor (VE) como o aumento na renda (ou o negativo da redução na renda) necessário(a) para fazer com que, a partir dos preços e renda iniciais (p_1^0, p_2^0, m^0) , o consumidor passasse a obter em equilíbrio, o mesmo nível de utilidade que obteria com os preços e renda finais, (p_1^0, p_2^1, m^1) .

Variação equivalente – definições equivalentes

Usando a função de utilidade indireta:

$$V(p_1^0, p_2^0, m^0 + VE) = V(p_1^1, p_2^1, m^1)$$

Variação equivalente – definições equivalentes

Usando a função de utilidade indireta:

$$V(p_1^0,p_2^0,m^0+VE)=V(p_1^1,p_2^1,m^1)$$

Usando a função dispêndio:

$$VE = e(p_1^0, p_2^0, V(p_1^1, p_2^1, m^1)) - m^0$$

Representação gráfica – redução em p_1

Representação gráfica – redução em p_1

Representação gráfica – redução em p

Representação gráfica – redução em p_1

Representação gráfica – aumento em

VC e VE – redução em p_1

√C e √E – aumento em p

Comparando as medidas

Variação apenas no preço de um bem

Bens normais VC < VEBens inferiores VC > VEPreferências quase-lineares VC = VE

Variação compensatória e equivalente e demanda compensada

O caso de uma mudança em p_1

Variação compensatória

$$VC = e(p_1^0, p_2, u^0) - e(p_1^1, p_2, u^0) = \int_{p_1^1}^{p_1^0} h_1(p_1, p_2, u^0) dp_1$$

Variação equivalente

$$VE = e(p_1^0, p_2, u^1) - e(p_1^1, p_2, u^1) = \int_{p_1^1}^{p_1^0} h_1(p_1, p_2, u^1) dp_1$$

Nas quais
$$u^0 = V(p_1^0, p_2, m)$$
 e $u^1 = V(p_1^1, p_2, m)$

Excedente do consumidor

Em se tratando de um bem com demanda independente da renda (preferências quase-lineares), as duas áreas do slide anterior coincidem e são chamadas variação no excedente do consumidor.

Uma medida aproximada

Um consumidor tem a função de utilidade $U(x, y) = x^{\alpha}y^{1-\alpha}$, com $0 < \alpha < 1$, em que x é a quantidade do primeiro bem e y a do segundo. Os preços dos bens são, respectivamente, p e q, e m é a renda do consumidor. Julgue as afirmações:

• A demanda do consumidor pelo primeiro bem será x = m/p

Um consumidor tem a função de utilidade $U(x, y) = x^{\alpha}y^{1-\alpha}$, com $0 < \alpha < 1$, em que x é a quantidade do primeiro bem e y a do segundo. Os preços dos bens são, respectivamente, p e q, e m é a renda do consumidor. Julgue as afirmações:

A demanda do consumidor pelo primeiro bem será

x = m/p

Um consumidor tem a função de utilidade $U(x, y) = x^{\alpha}y^{1-\alpha}$, com $0 < \alpha < 1$, em que x é a quantidade do primeiro bem e y a do segundo. Os preços dos bens são, respectivamente, p e q, e m é a renda do consumidor. Julgue as afirmações:

- A demanda do consumidor pelo primeiro bem será x = m/p
- ① A demanda do consumidor pelo segundo bem será $y = (1 \alpha)m/\alpha q$

Um consumidor tem a função de utilidade $U(x, y) = x^{\alpha}y^{1-\alpha}$, com $0 < \alpha < 1$, em que x é a quantidade do primeiro bem e y a do segundo. Os preços dos bens são, respectivamente, p e q, e m é a renda do consumidor. Julgue as afirmações:

- A demanda do consumidor pelo primeiro bem será x = m/p
- A demanda do consumidor pelo segundo bem será $y = (1 \alpha)m/\alpha q$

F

Um consumidor tem a função de utilidade $U(x, y) = x^{\alpha}y^{1-\alpha}$, com $0 < \alpha < 1$, em que x é a quantidade do primeiro bem e y a do segundo. Os preços dos bens são, respectivamente, p e q, e m é a renda do consumidor. Julgue as afirmações:

- A demanda do consumidor pelo primeiro bem será x = m/p
- ① A demanda do consumidor pelo segundo bem será $y = (1 \alpha)m/\alpha q$
- Se m = 1.000, $\alpha = 1/4$ e q = 1, então o consumidor irá adquirir 250 unidades do segundo bem.

F

Um consumidor tem a função de utilidade $U(x, y) = x^{\alpha}y^{1-\alpha}$, com $0 < \alpha < 1$, em que x é a quantidade do primeiro bem e y a do segundo. Os preços dos bens são, respectivamente, p e q, e m é a renda do consumidor. Julgue as afirmações:

- A demanda do consumidor pelo primeiro bem será x = m/p
- ① A demanda do consumidor pelo segundo bem será $y = (1 \alpha)m/\alpha q$
- Se m = 1.000, $\alpha = 1/4$ e q = 1, então o consumidor irá adquirir 250 unidades do segundo bem.

F

Suponha que: m = 288, $\alpha = 1/2$ e p = q = 1. Se q quadruplicar, será necessário triplicar a renda do consumidor para que ele fique tão bem quanto antes, pelo cálculo de sua variação compensatória.

Suponha que: m = 288, $\alpha = 1/2$ e p = q = 1. Se q quadruplicar, será necessário triplicar a renda do consumidor para que ele fique tão bem quanto antes, pelo cálculo de sua variação compensatória.

- 3 Suponha que: m = 288, $\alpha = 1/2$ e p = q = 1. Se q quadruplicar, será necessário triplicar a renda do consumidor para que ele fique tão bem quanto antes, pelo cálculo de sua variação compensatória.
- 3 Suponha que m=288, $\alpha=1/2$ e imagine que, após uma situação inicial em que p=q=1, q tenha quadruplicado. Pelo cálculo da variação equivalente, a variação de bem-estar corresponderá à redução de sua renda à metade, aos preços iniciais.

- 3 Suponha que: m = 288, $\alpha = 1/2$ e p = q = 1. Se q quadruplicar, será necessário triplicar a renda do consumidor para que ele fique tão bem quanto antes, pelo cálculo de sua variação compensatória.
- 3 Suponha que m=288, $\alpha=1/2$ e imagine que, após uma situação inicial em que p=q=1, q tenha quadruplicado. Pelo cálculo da variação equivalente, a variação de bem-estar corresponderá à redução de sua renda à metade, aos preços iniciais.

- 3 Suponha que: m = 288, $\alpha = 1/2$ e p = q = 1. Se q quadruplicar, será necessário triplicar a renda do consumidor para que ele fique tão bem quanto antes, pelo cálculo de sua variação compensatória.
- 3 Suponha que m=288, $\alpha=1/2$ e imagine que, após uma situação inicial em que p=q=1, q tenha quadruplicado. Pelo cálculo da variação equivalente, a variação de bem-estar corresponderá à redução de sua renda à metade, aos preços iniciais.

Sendo U(x, y) a função que representa a utilidade atribuída por um consumidor a uma cesta (x, y) qualquer, julgue as proposições:

• Se $U(x,y)=x^{\alpha}y^{\beta}$, sendo α e β dois números positivos, as preferências do consumidor não são bem-comportadas.

Sendo U(x, y) a função que representa a utilidade atribuída por um consumidor a uma cesta (x, y) qualquer, julgue as proposições:

① Se $U(x,y) = x^{\alpha}y^{\beta}$, sendo α e β dois números positivos, as preferências do consumidor não são bem-comportadas. F

Sendo U(x, y) a função que representa a utilidade atribuída por um consumidor a uma cesta (x, y) qualquer, julgue as proposições:

- ① Se $U(x, y) = x^{\alpha}y^{\beta}$, sendo α e β dois números positivos, as preferências do consumidor não são bem-comportadas. F
- Se $U(x, y) = x + \ln(y)$ e se a demanda é interior, então a variação no excedente do consumidor decorrente de uma variação no preço do bem y mede a variação no bem-estar do consumidor.

Sendo U(x, y) a função que representa a utilidade atribuída por um consumidor a uma cesta (x, y) qualquer, julgue as proposições:

- ① Se $U(x, y) = x^{\alpha}y^{\beta}$, sendo α e β dois números positivos, as preferências do consumidor não são bem-comportadas. F
- Se $U(x, y) = x + \ln(y)$ e se a demanda é interior, então a variação no excedente do consumidor decorrente de uma variação no preço do bem y mede a variação no bem-estar do consumidor.

Sumário

- A função de utilidade indireta
- Punção dispêndio e demanda compensada
- Medidas de variação de bem estar individual
- Equação de Slutsky
 - Efeitos substituição e renda
 - Efeitos substituição e renda de Slutsky
 - A equação de Slutsky
 - O caso de compra e venda
- O problema de minimização dos gastos
- 6 Exercícios

Efeitos substituição e renda

Definição

O efeito substituição associado a uma mudança no preço do bem 1 de p_1^0 para p_1^1 , com o preço do bem dois e a renda constantes em p_2 e m é dado por

Efeitos substituição e renda

Definição

O efeito substituição associado a uma mudança no preço do bem 1 de p_1^0 para p_1^1 , com o preço do bem dois e a renda constantes em p_2 e m é dado por

$$ES = h_1(p_1^1, p_2, V(p_1^0, p_2, m)) - x_1(p_1^0, p_2, m)$$

= $h_1(p_1^1, p_2, V(p_1^0, p_2, m)) - h_1(p_1^0, p_2, V(p_1^0, p_2, m))$

Efeitos substituição e renda

Definição

O efeito substituição associado a uma mudança no preço do bem 1 de p_1^0 para p_1^1 , com o preço do bem dois e a renda constantes em p_2 e m é dado por

$$ES = h_1(p_1^1, p_2, V(p_1^0, p_2, m)) - x_1(p_1^0, p_2, m)$$

= $h_1(p_1^1, p_2, V(p_1^0, p_2, m)) - h_1(p_1^0, p_2, V(p_1^0, p_2, m))$

Definição

O efeito renda associado a uma mudança no preço do bem 1 de p_1^0 para p_1^1 , com o preço do bem dois e a renda constantes em p_2 e m é dado por

$$ER = x_1(p_1^1, p_2, m) - h_1(p_1^1, p_2, V(p_1^0, p_2, m))$$

Ilustração gráfica – redução de preço, bem normal

Ilustração gráfica – aumento de preço, bem inferior

Três possibilidades

Bens normais: Efeitos substituição e renda têm a mesma direção.

Três possibilidades

Bens normais: Efeitos substituição e renda têm a mesma direção.

Bens inferiores ordinários: Efeitos substituição e renda têm sinal contrário e efeito substituição é maior, em módulo, ao efeito renda.

Três possibilidades

- Bens normais: Efeitos substituição e renda têm a mesma direção.
- Bens inferiores ordinários: Efeitos substituição e renda têm sinal contrário e efeito substituição é maior, em módulo, ao efeito renda.
- Bens de Giffen: Efeitos substituição e renda têm sinal contrário e efeito renda é maior, em módulo, ao efeito substituição.

Efeitos substituição e renda de Slutsky

Convenções

$$\Delta p_1 = p_1^1 - p_1^0$$
 $X_1^0 = X_1(p_1^0, p_2, m)$

Efeitos substituição e renda de Slutsky

Convenções

$$\Delta p_1 = p_1^1 - p_1^0 \qquad x_1^0 = x_1(p_1^0, p_2, m)$$

Definições:

Os efeitos substituição e renda de Slutsky (respectivamente *ESS* e *ERS*) associados a uma mudança no preço do bem 1 de p_1^0 para p_1^1 , com o preço do bem dois e a renda constantes em p_2 e p_2 0 e p_2 1 são dados por

$$ESS = x_1(p_1^1, p_2, m + \Delta p_1 x_1^0) - x_1(p_1^0, p_2, m)$$

Efeitos substituição e renda de Slutsky

Convenções

$$\Delta p_1 = p_1^1 - p_1^0$$
 $x_1^0 = x_1(p_1^0, p_2, m)$

Definições:

Os efeitos substituição e renda de Slutsky (respectivamente *ESS* e *ERS*) associados a uma mudança no preço do bem 1 de p_1^0 para p_1^1 , com o preço do bem dois e a renda constantes em p_2 e p_2 0 e p_2 1 e p_2 2 e p_2 3 dados por

$$ESS = x_1(p_1^1, p_2, m + \Delta p_1 x_1^0) - x_1(p_1^0, p_2, m)$$

$$ERS = x_1(p_1^1, p_2, m) - x_1(p_1^1, p_2, m + \Delta p_1 x_1^0)$$

Ilustração gráfica

$$h_1(p_1, p_2, u) \equiv x_1(p_1, p_2, e(p_1, p_2, u))$$

$$h_1(p_1, p_2, u) \equiv x_1(p_1, p_2, e(p_1, p_2, u))$$

$$\frac{\partial h_1}{\partial p_1} = \frac{\partial x_1}{\partial p_1} + \frac{\partial x_1}{\partial m} \frac{\partial e(p_1, p_2, u)}{\partial p_1}$$

$$h_1(p_1, p_2, u) \equiv x_1(p_1, p_2, e(p_1, p_2, u))$$

$$\frac{\partial h_1}{\partial p_1} = \frac{\partial x_1}{\partial p_1} + \frac{\partial x_1}{\partial m} \frac{\partial e(p_1, p_2, u)}{\partial p_1}$$

$$= \frac{\partial x_1}{\partial p_1} + \frac{\partial x_1}{\partial m} h_1(p_1, p_2, u)$$

$$h_1(p_1, p_2, u) \equiv x_1(p_1, p_2, e(p_1, p_2, u))$$

$$\frac{\partial h_1}{\partial p_1} = \frac{\partial x_1}{\partial p_1} + \frac{\partial x_1}{\partial m} \frac{\partial e(p_1, p_2, u)}{\partial p_1}$$

$$= \frac{\partial x_1}{\partial p_1} + \frac{\partial x_1}{\partial m} h_1(p_1, p_2, u)$$

$$= \frac{\partial x_1}{\partial p_1} + \frac{\partial x_1}{\partial m} x_1(p_1, p_2, e(p_1, p_2, u))$$

$$h_{1}(p_{1}, p_{2}, u) \equiv x_{1}(p_{1}, p_{2}, e(p_{1}, p_{2}, u))$$

$$\frac{\partial h_{1}}{\partial p_{1}} = \frac{\partial x_{1}}{\partial p_{1}} + \frac{\partial x_{1}}{\partial m} \frac{\partial e(p_{1}, p_{2}, u)}{\partial p_{1}}$$

$$= \frac{\partial x_{1}}{\partial p_{1}} + \frac{\partial x_{1}}{\partial m} h_{1}(p_{1}, p_{2}, u)$$

$$= \frac{\partial x_{1}}{\partial p_{1}} + \frac{\partial x_{1}}{\partial m} x_{1}(p_{1}, p_{2}, e(p_{1}, p_{2}, u))$$

$$\frac{\partial x_{1}}{\partial p_{1}} = \frac{\partial h_{1}}{\partial p_{1}} - \frac{\partial x_{1}}{\partial m} x_{1}$$

$$\frac{\partial x_1}{\partial p_1} = \frac{\partial h_1}{\partial p_1} - \frac{\partial x_1}{\partial m} x_1$$

$$\frac{\partial x_1}{\partial p_1} = \frac{\partial h_1}{\partial p_1} - \frac{\partial x_1}{\partial m} x_1$$

$$\frac{\partial x_1}{\partial p_1} \frac{p_1}{x_1} = \frac{\partial h_1}{\partial p_1} \frac{p_1}{h_1} - \frac{\partial x_1}{\partial m} \frac{p_1 x_1}{x_1}$$

$$\frac{\partial x_1}{\partial p_1} = \frac{\partial h_1}{\partial p_1} - \frac{\partial x_1}{\partial m} x_1$$

$$\frac{\partial x_1}{\partial p_1} \frac{p_1}{x_1} = \frac{\partial h_1}{\partial p_1} \frac{p_1}{h_1} - \frac{\partial x_1}{\partial m} \frac{m}{x_1} \frac{p_1 x_1}{m}$$

$$\frac{\partial x_1}{\partial p_1} = \frac{\partial h_1}{\partial p_1} - \frac{\partial x_1}{\partial m} x_1$$

$$\frac{\partial x_1}{\partial p_1} \frac{p_1}{x_1} = \frac{\partial h_1}{\partial p_1} \frac{p_1}{h_1} - \frac{\partial x_1}{\partial m} \frac{m}{x_1} \frac{p_1 x_1}{m}$$

$$\epsilon_{1,1} = \epsilon_{h_1,p_1} - s_i \epsilon_{1,m}$$

A função de demanda do bem 1 é $x_1(p_1,p_2,m(p_1,p_2))$ na qual

$$m(p_1,p_2) \equiv p_1\omega_1 + p_2\omega_2.$$

A função de demanda do bem 1 é $x_1(p_1, p_2, m(p_1, p_2))$ na qual

$$m(p_1,p_2) \equiv p_1\omega_1 + p_2\omega_2.$$

Assim

$$\frac{dx_1}{dp_1} = \frac{\partial x_1}{\partial p_1} + \frac{\partial x_1}{\partial m} \omega_1$$

A função de demanda do bem 1 é $x_1(p_1, p_2, m(p_1, p_2))$ na qual

$$m(p_1,p_2) \equiv p_1\omega_1 + p_2\omega_2.$$

Assim

$$\frac{dx_1}{dp_1} = \frac{\partial x_1}{\partial p_1} + \begin{bmatrix} \frac{\partial x_1}{\partial m} \omega_1 \end{bmatrix}$$
 Efeito renda dotação

A função de demanda do bem 1 é $x_1(p_1, p_2, m(p_1, p_2))$ na qual

$$m(p_1,p_2) \equiv p_1\omega_1 + p_2\omega_2.$$

Assim

$$\frac{dx_1}{dp_1} = \frac{\partial x_1}{\partial p_1} + \boxed{\frac{\partial x_1}{\partial m}\omega_1}$$
 Efeito renda dotação
$$\frac{dx_1}{dp_1} = \frac{\partial h_1}{\partial p_1} + \frac{\partial x_1}{\partial m}(\omega - x_1)$$

A função de demanda do bem 1 é $x_1(p_1, p_2, m(p_1, p_2))$ na qual

$$m(p_1, p_2) \equiv p_1 \omega_1 + p_2 \omega_2.$$

Assim

$$\frac{dx_1}{dp_1} = \frac{\partial x_1}{\partial p_1} + \boxed{\frac{\partial x_1}{\partial m}\omega_1}$$
 Efeito renda dotação
$$\frac{dx_1}{dp_1} = \frac{\partial h_1}{\partial p_1} + \frac{\partial x_1}{\partial m}(\omega - x_1)$$

Caso o bem 1 seja normal e o consumidor seja ofertante líquido desse bem, o efeito renda total (ordinário + dotação) terá sinal contrário ao efeito substituição.

Sumário

- A função de utilidade indireta
- Função dispêndio e demanda compensada
- Medidas de variação de bem estar individual
- 4 Equação de Slutsky
- O problema de minimização dos gastos
 - O problema
 - Funções dispêndio e demanda compensada
- 6 Exercícios

Minimização de gastos

Qual é o valor da cesta de bens mais barata que garanta que um consumidor com preferências representadas por uma função de utilidade $U(x_1, x_2)$ atinja um nível mínimo de utilidade \bar{u} ?

Minimização de gastos

Qual é o valor da cesta de bens mais barata que garanta que um consumidor com preferências representadas por uma função de utilidade $U(x_1, x_2)$ atinja um nível mínimo de utilidade \bar{u} ?

Trata-se de resolver o problema:

$$\min_{x_1,x_2} p_1x_1 + p_2x_2$$
sujeito a $U(x_1,x_2) \ge \bar{u}$

62 / 73

Solução matemática

O problema

$$\min_{x_1,x_2} p_1x_1 + p_2x_2$$
sujeito a $U(x_1,x_2) \geq \bar{u}$

Solução matemática

O problema

$$\min_{x_1,x_2} p_1x_1 + p_2x_2$$
sujeito a $U(x_1,x_2) \ge \bar{u}$

O Lagrangiano

$$\mathscr{L} = p_1 x_1 + p_2 x_2 - \lambda (U(x_1, x_2) - \bar{u})$$

Solução matemática

O problema

$$\min_{x_1,x_2} p_1x_1 + p_2x_2$$
sujeito a $U(x_1,x_2) \geq \bar{u}$

O Lagrangiano

$$\mathscr{L} = p_1 x_1 + p_2 x_2 - \lambda (U(x_1, x_2) - \bar{u})$$

Condições de 1ª ordem

$$\begin{pmatrix} \frac{UMg_1}{UMg_2} = \frac{p_1}{p_2} \\ U(x_1, x_2) = \bar{u} \end{pmatrix}$$

Funções de demanda compensada e função dispêndio

Função de demanda compensada

Sejam $h_1(p_1, p_2, u)$ e $h_2(p_1, p_2, u)$ as funções que geram as quantidades ótimas dos bens 1 e 2, respectivamente, para o problema de minimização de gastos. Elas são chamadas funções de demanda compensadas ou funções de demanda hicksianas.

Funções de demanda compensada e função dispêndio

Função de demanda compensada

Sejam $h_1(p_1, p_2, u)$ e $h_2(p_1, p_2, u)$ as funções que geram as quantidades ótimas dos bens 1 e 2, respectivamente, para o problema de minimização de gastos. Elas são chamadas funções de demanda compensadas ou funções de demanda hicksianas.

A função dispêndio

A função dispêndio, notada por $e(p_1,p_2,u)$, é a função que determina o gasto ótimo associado ao problema de minimização de gasto. Ela é definida por

$$e(p_1, p_2, u) \equiv p_1 h_1(p_1, p_2, u) + p_2 h_2(p_1, p_2, u)$$

Com relação à racionalidade das escolhas dos consumidores e seus impactos sobre o nível de bem estar, observa-se que (assinale falso ou verdadeiro):

Suponha que o consumidor só pode consumir quantidades não negativas dos bens e possui preferências representadas pela seguinte função utilidade: $U(x_1, x_2) = -x_1x_2$. Pode-se afirmar que as preferências desse consumidor satisfazem às propriedades de monotonicidade e convexidade.

Com relação à racionalidade das escolhas dos consumidores e seus impactos sobre o nível de bem estar, observa-se que (assinale falso ou verdadeiro):

Suponha que o consumidor só pode consumir quantidades não negativas dos bens e possui preferências representadas pela seguinte função utilidade: $U(x_1, x_2) = -x_1x_2$. Pode-se afirmar que as preferências desse consumidor satisfazem às propriedades de monotonicidade e convexidade.

F

Com relação à racionalidade das escolhas dos consumidores e seus impactos sobre o nível de bem estar, observa-se que (assinale falso ou verdadeiro):

- Suponha que o consumidor só pode consumir quantidades não negativas dos bens e possui preferências representadas pela seguinte função utilidade: $U(x_1, x_2) = -x_1x_2$. Pode-se afirmar que as preferências desse consumidor satisfazem às propriedades de monotonicidade e convexidade.
- Se a Taxa de Dispêndio (medida pela relação entre os respectivos gastos) com a aquisição de 2 bens, em dois momentos no tempo, for superior ao Índice de Preços de Laspeyres, os consumidores se defrontam com uma melhoria do bem estar no final do período.

Com relação à racionalidade das escolhas dos consumidores e seus impactos sobre o nível de bem estar, observa-se que (assinale falso ou verdadeiro):

- O Suponha que o consumidor só pode consumir quantidades não negativas dos bens e possui preferências representadas pela seguinte função utilidade: $U(x_1, x_2) = -x_1x_2$. Pode-se afirmar que as preferências desse consumidor satisfazem às propriedades de monotonicidade e convexidade.
- Se a Taxa de Dispêndio (medida pela relação entre os respectivos gastos) com a aquisição de 2 bens, em dois momentos no tempo, for superior ao Índice de Preços de Laspeyres, os consumidores se defrontam com uma melhoria do bem estar no final do período.

Se o Índice de Quantidade de Laspeyres for inferior à unidade, os consumidores estão em melhor posição (maior utilidade) no período base comparado ao período corrente.

Se o Índice de Quantidade de Laspeyres for inferior à unidade, os consumidores estão em melhor posição (maior utilidade) no período base comparado ao período corrente.

- Se o Índice de Quantidade de Laspeyres for inferior à unidade, os consumidores estão em melhor posição (maior utilidade) no período base comparado ao período corrente.
- O Excedente do Consumidor corresponde exatamente à medida em unidades monetárias do ganho de utilidade obtido em razão do consumo do bem 1, quando a função utilidade do consumidor é quase-linear em relação ao bem 2.

- Se o Índice de Quantidade de Laspeyres for inferior à unidade, os consumidores estão em melhor posição (maior utilidade) no período base comparado ao período corrente.
- O Excedente do Consumidor corresponde exatamente à medida em unidades monetárias do ganho de utilidade obtido em razão do consumo do bem 1, quando a função utilidade do consumidor é quase-linear em relação ao bem 2.

- Se o Índice de Quantidade de Laspeyres for inferior à unidade, os consumidores estão em melhor posição (maior utilidade) no período base comparado ao período corrente.
- O Excedente do Consumidor corresponde exatamente à medida em unidades monetárias do ganho de utilidade obtido em razão do consumo do bem 1, quando a função utilidade do consumidor é quase-linear em relação ao bem 2.
- Considerando os impactos de variações dos preços, a Variação Equivalente (VE) é medida pela renda que deve ser transferida ao consumidor para que, aos preços finais, ele alcance a mesma utilidade daquela inicial.

- Se o Índice de Quantidade de Laspeyres for inferior à unidade, os consumidores estão em melhor posição (maior utilidade) no período base comparado ao período corrente.
- O Excedente do Consumidor corresponde exatamente à medida em unidades monetárias do ganho de utilidade obtido em razão do consumo do bem 1, quando a função utilidade do consumidor é quase-linear em relação ao bem 2.
- Considerando os impactos de variações dos preços, a Variação Equivalente (VE) é medida pela renda que deve ser transferida ao consumidor para que, aos preços finais, ele alcance a mesma utilidade daquela inicial.

Com relação às escolhas ótimas dos consumidores, constata-se que:

1 Se as preferências do indivíduo estão representadas pela função utilidade U(x,y) = 2x + y e os preços dos bens são $p_x = p_y = 2$, então uma redução de p_x para $p_x = 1$ resulta num Efeito Substituição igual a zero.

Com relação às escolhas ótimas dos consumidores, constata-se que:

Se as preferências do indivíduo estão representadas pela função utilidade U(x,y)=2x+y e os preços dos bens são $p_x=p_y=2$, então uma redução de p_x para $p_x=1$ resulta num Efeito Substituição igual a zero.

- Se as preferências do indivíduo estão representadas pela função utilidade U(x,y)=2x+y e os preços dos bens são $p_x=p_y=2$, então uma redução de p_x para $p_x=1$ resulta num Efeito Substituição igual a zero.
- Se dois bens x e y são complementares perfeitos e o preço do bem x decresce, então o Efeito Renda é zero e o Efeito Total se iguala ao Efeito Substituição.

- Se as preferências do indivíduo estão representadas pela função utilidade U(x,y)=2x+y e os preços dos bens são $p_x=p_y=2$, então uma redução de p_x para $p_x=1$ resulta num Efeito Substituição igual a zero.
- Se dois bens x e y são complementares perfeitos e o preço do bem x decresce, então o Efeito Renda é zero e o Efeito Total se iguala ao Efeito Substituição.

Com relação às escolhas ótimas dos consumidores, constata-se que:

A negatividade do Efeito Substituição decorre diretamente do Axioma Forte da Preferência Revelada.

Com relação às escolhas ótimas dos consumidores, constata-se que:

A negatividade do Efeito Substituição decorre diretamente do Axioma Forte da Preferência Revelada.

- A negatividade do Efeito Substituição decorre diretamente do Axioma Forte da Preferência Revelada. F
- No caso de preferências do tipo Cobb-Douglas, a Elasticidade-Preço Cruzada da demanda por bens é nula, enquanto a Elasticidade-Preço da demanda por cada um deles é unitária (em módulo).

- A negatividade do Efeito Substituição decorre diretamente do Axioma Forte da Preferência Revelada.
- No caso de preferências do tipo Cobb-Douglas, a Elasticidade-Preço Cruzada da demanda por bens é nula, enquanto a Elasticidade-Preço da demanda por cada um deles é unitária (em módulo).

- A negatividade do Efeito Substituição decorre diretamente do Axioma Forte da Preferência Revelada.
- No caso de preferências do tipo Cobb-Douglas, a Elasticidade-Preço Cruzada da demanda por bens é nula, enquanto a Elasticidade-Preço da demanda por cada um deles é unitária (em módulo).
- Nas funções demandas geradas a partir de uma função utilidade do tipo $U(X,Y)=X^2+Y^2$ as demandas individuais por cada bem são independentes do preço do outro.

- A negatividade do Efeito Substituição decorre diretamente do Axioma Forte da Preferência Revelada.
- No caso de preferências do tipo Cobb-Douglas, a Elasticidade-Preço Cruzada da demanda por bens é nula, enquanto a Elasticidade-Preço da demanda por cada um deles é unitária (em módulo).
- Nas funções demandas geradas a partir de uma função utilidade do tipo $U(X,Y)=X^2+Y^2$ as demandas individuais por cada bem são independentes do preço do outro.

• A função dispêndio E(p, U) é a função valor associada ao problema de minimização do dispêndio, condicionado a determinado nível de utilidade \overline{U} que o consumidor deseja alcançar. As seguintes propriedades são válidas para essa função: homogeneidade de grau zero nos preços dos produtos, não decrescente nos preços de cada produto p_i , crescente em U e côncava nos preços.

O A função dispêndio E(p, U) é a função valor associada ao problema de minimização do dispêndio, condicionado a determinado nível de utilidade \overline{U} que o consumidor deseja alcançar. As seguintes propriedades são válidas para essa função: homogeneidade de grau zero nos preços dos produtos, não decrescente nos preços de cada produto p_i , crescente em U e côncava nos preços.

- A função dispêndio E(p, U) é a função valor associada ao problema de minimização do dispêndio, condicionado a determinado nível de utilidade U que o consumidor deseja alcançar. As seguintes propriedades são válidas para essa função: homogeneidade de grau zero nos preços dos produtos, não decrescente nos preços de cada produto pi, crescente em U e côncava nos preços.
- Sabendo que a função de utilidade indireta de um consumidor é dada por:

$$V(p_1, p_2, R) = \frac{R}{2p_1^{0,5}p_2^{0,5}}$$

é possível afirmar que a função dispêndio associada a essas preferências é dada por: $E(p_1, p_2, U) = 2p_1^{0,5}p_2^{0,5}U$.

- A função dispêndio E(p, U) é a função valor associada ao problema de minimização do dispêndio, condicionado a determinado nível de utilidade U que o consumidor deseja alcançar. As seguintes propriedades são válidas para essa função: homogeneidade de grau zero nos preços dos produtos, não decrescente nos preços de cada produto pi, crescente em U e côncava nos preços.
- Sabendo que a função de utilidade indireta de um consumidor é dada por:

$$V(p_1, p_2, R) = \frac{R}{2p_1^{0,5}p_2^{0,5}}$$

é possível afirmar que a função dispêndio associada a essas preferências é dada por: $E(p_1, p_2, U) = 2p_1^{0.5}p_2^{0.5}U$. V

$$x \succsim y \Leftrightarrow x_1 > y_1 \text{ ou } x_1 = x_2 \text{ e } x_2 \ge y_2$$
,

é possível afirmar que essas preferências são completas, transitivas e contínuas.

$$x \succsim y \Leftrightarrow x_1 > y_1 \text{ ou } x_1 = x_2 \text{ e } x_2 \ge y_2$$
,

é possível afirmar que essas preferências são completas, transitivas e contínuas.

$$x \succsim y \Leftrightarrow x_1 > y_1 \text{ ou } x_1 = x_2 \text{ e } x_2 \ge y_2$$
,

é possível afirmar que essas preferências são completas, transitivas e contínuas.

Se em uma economia só existem dois bens entre os quais o consumidor tem de escolher, então é possível afirmar que os dois são substitutos.

$$x \succsim y \Leftrightarrow x_1 > y_1$$
 ou $x_1 = x_2$ e $x_2 \ge y_2$,

é possível afirmar que essas preferências são completas, transitivas e contínuas.

Se em uma economia só existem dois bens entre os quais o consumidor tem de escolher, então é possível afirmar que os dois são substitutos.
F(difere do gab)

$$x \succsim y \Leftrightarrow x_1 > y_1 \text{ ou } x_1 = x_2 \text{ e } x_2 \ge y_2,$$

é possível afirmar que essas preferências são completas, transitivas e contínuas.

- Se em uma economia só existem dois bens entre os quais o consumidor tem de escolher, então é possível afirmar que os dois são substitutos.
 F(difere do gab)
- Um consumidor tem suas preferências pelos bens $x \in y$ representadas pela seguinte função utilidade $u : \mathbb{R}^2 \to \mathbb{R}$: $U(x,y) = -\left[(x-3)^2 + (y-3)^2\right]$. Essas preferências exibem ponto de saciedade global na cesta (0,0).

$$x \gtrsim y \Leftrightarrow x_1 > y_1$$
 ou $x_1 = x_2$ e $x_2 \ge y_2$,

é possível afirmar que essas preferências são completas, transitivas e contínuas.

- Se em uma economia só existem dois bens entre os quais o consumidor tem de escolher, então é possível afirmar que os dois são substitutos.
 F(difere do gab)
- Um consumidor tem suas preferências pelos bens $x \in y$ representadas pela seguinte função utilidade $u : \mathbb{R}^2 \to \mathbb{R}$: $U(x,y) = -\left[(x-3)^2 + (y-3)^2\right]$. Essas preferências exibem ponto de saciedade global na cesta (0,0).

Considere a seguinte função utilidade $u(x,y) = -\frac{1}{x} - \frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

A demanda pelo bem 2 é

$$y(p_x, p_y, r) = \frac{r}{p_y + \sqrt{p_x p_y}}$$

Considere a seguinte função utilidade $u(x,y) = -\frac{1}{x} - \frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

A demanda pelo bem 2 é

$$y(p_x, p_y, r) = \frac{r}{p_y + \sqrt{p_x p_y}}$$

Considere a seguinte função utilidade $u(x,y) = -\frac{1}{x} - \frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

A demanda pelo bem 2 é

$$y(p_x, p_y, r) = \frac{r}{p_y + \sqrt{p_x p_y}}$$

A utilidade indireta é dada por

$$V(p_x, p_y, r) = \frac{p_x + p_y + 2\sqrt{p_x p_y}}{2r}$$

Considere a seguinte função utilidade $u(x,y)=-\frac{1}{x}-\frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

A demanda pelo bem 2 é

$$y(p_x, p_y, r) = \frac{r}{p_y + \sqrt{p_x p_y}}$$

A utilidade indireta é dada por

$$V(p_x, p_y, r) = \frac{p_x + p_y + 2\sqrt{p_x p_y}}{2r}$$

F

Considere a seguinte função utilidade $u(x,y)=-\frac{1}{x}-\frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

 A função dispêndio tem a forma de Elasticidade de Substituição Constante;

Considere a seguinte função utilidade $u(x,y)=-\frac{1}{x}-\frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

 A função dispêndio tem a forma de Elasticidade de Substituição Constante;

Considere a seguinte função utilidade $u(x,y)=-\frac{1}{x}-\frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

- A função dispêndio tem a forma de Elasticidade de Substituição Constante;
- A função demanda hicksiana (ou compensada) pelo bem 1 é

$$h_X(p_X,p_Y,u_0)=-\frac{\sqrt{p_X}+\sqrt{p_Y}}{p_Y}u_0$$

Considere a seguinte função utilidade $u(x,y)=-\frac{1}{x}-\frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

- A função dispêndio tem a forma de Elasticidade de Substituição Constante;
- A função demanda hicksiana (ou compensada) pelo bem 1 é

$$h_X(p_X, p_Y, u_0) = -\frac{\sqrt{p_X} + \sqrt{p_Y}}{p_Y} u_0$$

Considere a seguinte função utilidade $u(x,y)=-\frac{1}{x}-\frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

- A função dispêndio tem a forma de Elasticidade de Substituição Constante;
- A função demanda hicksiana (ou compensada) pelo bem 1 é

$$h_X(p_X, p_Y, u_0) = -\frac{\sqrt{p_X} + \sqrt{p_Y}}{p_Y}u_0$$

Para esta função utilidade, a equação de Slutsky não vale.

Considere a seguinte função utilidade $u(x,y)=-\frac{1}{x}-\frac{1}{y}$, em que x denota a quantidade do bem 1 e y a quantidade do bem 2. Denote por p_x o preço do bem 1, por p_y o preço do bem 2 e por r a renda do consumidor. Responda V ou F às seguintes alternativas:

- A função dispêndio tem a forma de Elasticidade de Substituição Constante;
- A função demanda hicksiana (ou compensada) pelo bem 1 é

$$h_X(p_X, p_Y, u_0) = -\frac{\sqrt{p_X} + \sqrt{p_Y}}{p_Y} u_0$$

Para esta função utilidade, a equação de Slutsky não vale.

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

① A demanda hicksiana pelo bem 1 tem a forma $q_1=\overline{U}\left[p_1^{\rho}+p_2^{\rho}\right]^{1/\rho}$, em que $\rho=0,75$.

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

$$q_1=\overline{U}\left[p_1^{
ho}+p_2^{
ho}\right]^{1/
ho}$$
, em que $ho=0$, 75 .

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

- ① A demanda hicksiana pelo bem 1 tem a forma $q_1=\overline{U}\left[p_1^{
 ho}+p_2^{
 ho}\right]^{1/
 ho}$, em que ho=0, 75 .
- A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da demanda hicksiana do bem 2 ao preço do bem 1.

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

① A demanda hicksiana pelo bem 1 tem a forma $q_1 = \overline{U} \left[p_1^{\rho} + p_2^{\rho} \right]^{1/\rho}$, em que $\rho = 0$, 75.

- F
- A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da demanda hicksiana do bem 2 ao preço do bem 1.

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

① A demanda hicksiana pelo bem 1 tem a forma $q_1=\overline{U}\left[p_1^{\rho}+p_2^{\rho}\right]^{1/\rho}$, em que $\rho=0,75$.

- F
- A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da demanda hicksiana do bem 2 ao preço do bem 1.
- V
- ② A demanda marshalliana pelo bem 1 tem a forma $q_1 = Ap_2^{1-\alpha}p_1^{\alpha-1}W$, em que A é uma função de α e em que W é a renda do consumidor.

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

- ① A demanda hicksiana pelo bem 1 tem a forma $q_1=\overline{U}\left[p_1^{\rho}+p_2^{\rho}\right]^{1/\rho}$, em que $\rho=0,75$.
- 41 = 0 [p₁ + p₂] , em que p = 0,73 .
 A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da

demanda hicksiana do bem 2 ao preço do bem 1.

② A demanda marshalliana pelo bem 1 tem a forma $q_1 = Ap_2^{1-\alpha}p_1^{\alpha-1}W$, em que A é uma função de α e em que W é a renda do consumidor.

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

- A demanda hicksiana pelo bem 1 tem a forma $q_1 = \overline{U} \left[p_1^{\rho} + p_2^{\rho} \right]^{1/\rho}$, em que $\rho = 0,75$.
- A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da demanda hicksiana do bem 2 ao preço do bem 1.
- ② A demanda marshalliana pelo bem 1 tem a forma $q_1 = Ap_2^{1-\alpha}p_1^{\alpha-1}W$, em que A é uma função de α e em que W é a renda do consumidor.
- \odot O efeito-renda para esta função é dado por $(-\alpha^2 W)/p_1^2$.

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

• A demanda hicksiana pelo bem 1 tem a forma $q_1 = \overline{U} \left[p_1^{\rho} + p_2^{\rho} \right]^{1/\rho}$, em que $\rho = 0,75$.

- F
- A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da demanda hicksiana do bem 2 ao preço do bem 1.
- ② A demanda marshalliana pelo bem 1 tem a forma $q_1 = Ap_2^{1-\alpha}p_1^{\alpha-1}W$, em que A é uma função de α e em que W é a renda do consumidor.
- \odot O efeito-renda para esta função é dado por $(-\alpha^2 W)/p_1^2$. V

Considere uma função de utilidade Cobb-Douglas $U=q_1^{\alpha}\,q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

- A demanda hicksiana pelo bem 1 tem a forma $q_1 = \overline{U} \left[p_1^{\rho} + p_2^{\rho} \right]^{1/\rho}$, em que $\rho = 0,75$.
- A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da demanda hicksiana do bem 2 ao preço do bem 1.
- ② A demanda marshalliana pelo bem 1 tem a forma $q_1 = Ap_2^{1-\alpha}p_1^{\alpha-1}W$, em que A é uma função de α e em que W é a renda do consumidor.
- \odot O efeito-renda para esta função é dado por $(-\alpha^2 W)/p_1^2$. V
- Para esta função de utilidade, o efeito renda é igual ao efeito substituição.

Considere uma função de utilidade Cobb-Douglas $U = q_1^{\alpha} q_2^{1-\alpha}$. Julgue as afirmativas abaixo:

- A demanda hicksiana pelo bem 1 tem a forma $q_1 = \overline{U} \left[p_1^{\rho} + p_2^{\rho} \right]^{1/\rho}$, em que $\rho = 0$, 75.
- A sensibilidade da demanda hicksiana do bem 1 em relação ao preço do bem 2 é igual à sensibilidade da demanda hicksiana do bem 2 ao preço do bem 1.
- A demanda marshalliana pelo bem 1 tem a forma $q_1 = Ap_2^{1-\alpha}p_1^{\alpha-1}W$, em que A é uma função de α e em que W é a renda do consumidor.
- **3** O efeito-renda para esta função é dado por $(-\alpha^2 W)/p_1^2$. V
- Para esta função de utilidade, o efeito renda é igual ao efeito substituição.

F