Stepan Gordeev
UConn

Sudhir Singh MSU, World Bank

Sep 29, 2023

Stockman

• misallocation is a big driver of cross-country income differences

- misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies \rightarrow inputs not allocated to most productive uses

- misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies \rightarrow inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries

- misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - potential **benign** causes: mismeasurement, unobserved late-season shocks

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - potential benign causes: mismeasurement, unobserved late-season shocks
 - potential malign causes: poor property rights, communal land distribution, min. prices

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - potential benign causes: mismeasurement, unobserved late-season shocks
 - potential malign causes: poor property rights, communal land distribution, min. prices
- farms grow different crops, most grow multiple

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - potential benign causes: mismeasurement, unobserved late-season shocks
 - potential **malign** causes: poor property rights, communal land distribution, min. prices
- farms grow different crops, most grow multiple
 - $-\,$ but misallocation literature uses single-product firms using the same production fn

- · misallocation is a big driver of cross-country income differences
 - market frictions, distortionary policies → inputs not allocated to most productive uses
- misallocation especially severe & costly in agriculture in low-income countries
 - potential benign causes: mismeasurement, unobserved late-season shocks
 - potential malign causes: poor property rights, communal land distribution, min. prices
- farms grow different crops, most grow multiple
 - $-\,$ but misallocation literature uses single-product firms using the same production fn

how does heterogeneous product choice affect aggregate misallocation cost?

DATA

Indian farm-crop-level survey

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

Model

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

MODEL

multi-product farms facing misallocative distortions

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

Model

multi-product farms facing misallocative distortions

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

Model

multi-product farms facing misallocative distortions

RESULTS

· compared to the **multi**-product model, standard **1**-product models:

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

Model

multi-product farms facing misallocative distortions

- · compared to the **multi**-product model, standard **1**-product models:
 - understate misallocation via 2 channels

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

MODEL

multi-product farms facing misallocative distortions

- · compared to the **multi**-product model, standard **1**-product models:
 - understate misallocation via 2 channels \leftarrow dominate if view most frictions as malign

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

MODEL

multi-product farms facing misallocative distortions

- · compared to the **multi**-product model, standard **1**-product models:
 - understate misallocation via 2 channels \leftarrow dominate if view most frictions as malign
 - overstate misallocation via 2 channels

DATA

- Indian farm-crop-level survey
- estimate crop-level production functions
 - crops are significantly heterogeneous in input intensities

MODEL

multi-product farms facing misallocative distortions

- · compared to the multi-product model, standard 1-product models:
 - understate misallocation via 2 channels ← dominate if view most frictions as malign
 - overstate misallocation via 2 channels ← dominate if view most frictions as benign

· AGRICULTURAL MISALLOCATION

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions
- Multi-Product Firms & Misallocation

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

- Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - $\,\,
 ightarrow\,$ # of products responds to distortions

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

- Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - ightarrow # of products responds to distortions
- this paper:

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

- Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - \rightarrow # of products responds to distortions
- this paper:
 - > heterogeneous productivities and production functions

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions
- Multi-Product Firms & Misallocation
 - Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - \rightarrow # of products responds to distortions
 - this paper:
 - > heterogeneous productivities and production functions
- agriculture is perfect to explore interaction of product choice and misallocation
 why

- · AGRICULTURAL MISALLOCATION
 - base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow (2009) for manufacturing
 - measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
 - identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,
 Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
 - this paper:
 - > crop-specific production functions
 - > multi-crop farms adjusting crop choice to frictions

- Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
 - \rightarrow # of products responds to distortions
- this paper:
 - > heterogeneous productivities and production functions
- $\boldsymbol{\cdot}$ $\,$ agriculture is perfect to explore interaction of $\,$ product choice and $\,$ misallocation
 - ▶ why
 - but mechanisms apply equally to other sectors

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households

- · India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with crop-plot-level data

DATA

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with crop-plot-level data
- 10,318 plots, 4,803 farmers

DATA

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with crop-plot-level data
- 10,318 plots, 4,803 farmers
 - plot-crop-level inputs, outputs

DATA

- India's Rural Economic and Demographic Survey (REDS)
 - nationally representative of rural Indian households
 - use 2007-08 round, only with crop-plot-level data
- 10,318 plots, 4,803 farmers
 - plot-crop-level inputs, outputs
 - plot-level physical characteristics

MULTI-PRODUCT FARMS IN INDIA

CROP CHOICE IS HETEROGENEOUS

MANY FARMS GROW MULTIPLE CROPS, MAINLY ACROSS SEASONS

MANY FARMS GROW MULTIPLE CROPS, MAINLY ACROSS SEASONS

· 3 agricultural seasons: Kharif (monsoon), Rabi (winter/spring), Zaid (summer/dry)

PRODUCTION FUNCTIONS

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

production function:

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy
 - > instead: use random forests to predict land price using physical land features
 - ▶ quality index construction

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy
 - > instead: use random forests to predict land price using physical land features
 - ▶ quality index construction
- $x_{labor} = labor input (days)$

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy
 - > instead: use random forests to predict land price using physical land features
 - ▶ quality index construction
- $-x_{labor}$ = labor input (days)
- Xinter = intermediate inputs (seeds, fertilizer, etc.)
 - ▶ inputs, output

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy
 - > instead: use random forests to predict land price using physical land features
 - ▶ quality index construction
- $-x_{labor}$ = labor input (days)
- $-x_{inter}$ = intermediate inputs (seeds, fertilizer, etc.)
 - ▶ inputs, output
- merge crops into 5 groups ► list

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy
 - > instead: use random forests to predict land price using physical land features
 - ► quality index construction
- $-x_{labor}$ = labor input (days)
- $-x_{inter}$ = intermediate inputs (seeds, fertilizer, etc.)
 - ▶ inputs, output
- merge crops into 5 groups ➤ list
- 2SLS at plot-level using instruments for inputs adapting Gollin, Udry (2021)'s method

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- -y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy
 - > instead: use random forests to predict land price using physical land features
 - ► quality index construction
- $-x_{labor}$ = labor input (days)
- $-x_{inter}$ = intermediate inputs (seeds, fertilizer, etc.)
 - ▶ inputs, output
- merge crops into 5 groups ► list
- 2SLS at plot-level using instruments for inputs adapting Gollin, Udry (2021)'s method
 - idea: shocks to farm fs plots $k \neq j$ change shadow price of inputs on fs plot j

$$y_{f,i,t} = z_{f,i,t} l_{f,i,t}^{\gamma_i} x_{labor,f,i,t}^{\alpha_{labor,i}} x_{inter,f,i,t}^{\alpha_{inter,i}}$$

- for farm f, crop i, season t
- y = market value of physical output
- l = land input (quality-adjusted)
 - > common measures: land area ignores quality, land price is noisy
 - > instead: use random forests to predict land price using physical land features
 - ▶ quality index construction
- $-x_{labor}$ = labor input (days)
- x_{inter} = intermediate inputs (seeds, fertilizer, etc.)
 - ▶ inputs, output
- merge crops into 5 groups ► list
- 2SLS at plot-level using instruments for inputs adapting Gollin, Udry (2021)'s method
 - idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j
 - ▶ details

PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS CROPS

PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS CROPS

PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS CROPS

· OBJECTIVES:

model multi-product farm decisions in presence of distortions

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation
 - Hsieh, Klenow (2009): misallocation in manufacturing

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation
 - Hsieh, Klenow (2009): misallocation in manufacturing
 - Chen, Restuccia, Santaeulalia-Llopis (2022): misallocation in agriculture

- model multi-product farm decisions in presence of distortions
- provide a mapping from observable outcomes to unobserved distortions
- quantify the aggregate output cost of misallocation induced by distortions
- build on models of single-product firm-level misallocation
 - Hsieh, Klenow (2009): misallocation in manufacturing
 - Chen, Restuccia, Santaeulalia-Llopis (2022): misallocation in agriculture
- add multi-product firms choosing among heterogeneous crops

• profit-maximizing farm f: sells output py_f , pays for inputs

$$\max \qquad p \overbrace{Z_f \ l_f \ ^\gamma \Pi_g \left(x_{f,g} \right. ^{\alpha_g} \right)}^{y_f} - \underbrace{\sum_{g=1}^G r_g}_{\text{flex. input costs}} \\ \text{s.t.} \qquad l_f = L_f \quad (\lambda_f)$$

- profit-maximizing farm f: sells output py_f , pays for inputs
- Cobb-Douglas production function with TFP z_f

max
$$p \ \overline{z_f} \ l_f \ {}^{\gamma} \ \Pi_g \left(x_{f,g} \ {}^{\alpha_g} \right) - \sum_{g=1}^G r_g \ x_{f,g}$$
revenue $flex. input costs$

S.t. $l_f = L_f \ (\lambda_f)$

- profit-maximizing farm f: sells output py_f , pays for inputs
- Cobb-Douglas production function with TFP $\emph{z}_\emph{f}$
- flexible inputs g: labor, intermediates
 - quantity $x_{f,g}$ rented at r_g

max
$$p \underbrace{z_f l_f \, {}^{\gamma} \, \Pi_g \left(x_{f,g} \, {}^{\alpha_g} \, \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^G r_g \, x_{f,g}}_{\text{flex. input costs}}$$
s.t. $l_f = L_f \, (\lambda_f)$

- profit-maximizing farm f: sells output py_f , pays for inputs
- Cobb-Douglas production function with TFP $\emph{z}_\emph{f}$
- flexible inputs g: labor, intermediates
 - quantity $x_{f,g}$ rented at r_g
- · land input l is in fixed supply L_f
 - almost no land market in India

max
$$p \ \overline{z_f \ l_f} \ {}^{\gamma} \Pi_g \left(x_{f,g} \ {}^{\alpha_g} \right) - \sum_{g=1}^G r_g \tau_{f,g} \ x_{f,g}$$
revenue $s.t. \ l_f = L_f \ (\lambda_f)$

- farm-input distortions $\tau_{f,g}$ capture misallocative frictions
 - represented with tax $(au_{f,g}>1)$ or subsidy $(au_{f,g}<1)$ idiosyncratic to farm f, input g

$$\max \underbrace{p \, z_f \, l_f \, {}^\gamma \, \Pi_g \left(x_{f,g} \, {}^{\alpha_g} \, \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^G r_g \tau_{f,g}}_{\text{flex. input costs}} x_{f,g}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \quad (\lambda_f)$$

- · farm-input distortions $au_{f,g}$ capture misallocative frictions
 - represented with tax ($au_{f,g}>$ 1) or subsidy ($au_{f,g}<$ 1) idiosyncratic to farm f, input g
- between inputs: $au_{f,labor} > au_{f,inter} o ext{farm } f ext{ uses "too little" labor}$

$$\max \qquad p \, \overbrace{z_f \, l_f \, {}^\gamma \, \Pi_g \left(x_{f,g} \, {}^{\alpha_g} \, \right)}^{y_f} \quad - \, \underbrace{\sum_{g=1}^G r_g \tau_{f,g}}_{\text{flex. input costs}} \, x_{f,g}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \quad (\lambda_f)$$

- · farm-input distortions $au_{f,g}$ capture misallocative frictions
 - represented with tax ($au_{f,g} > 1$) or subsidy ($au_{f,g} < 1$) idiosyncratic to farm f, input g
- between inputs: $\tau_{f,labor} > \tau_{f,inter} \rightarrow \text{farm } f \text{ uses "too little" labor}$
- between farms: $au_{1,g} > au_{2,g} \; \forall g \; o \; \text{farm 1 is "too small" given its TFP } z_f$

max
$$p \ \overline{z_f} \ l_f \ {}^{\gamma} \ \Pi_g \left(x_{f,g} \ {}^{\alpha_g} \ \right) - \underbrace{\sum_{g=1}^G r_g \tau_{f,g}}_{\text{flex. input costs}} \ x_{f,g}$$
s.t. $l_f = L_f \ (\lambda_f)$

- \cdot farm-input distortions $au_{f,g}$ capture misallocative frictions
 - represented with tax ($au_{f,g}>$ 1) or subsidy ($au_{f,g}<$ 1) idiosyncratic to farm f, input g
- between inputs: $\tau_{f,labor} > \tau_{f,inter} \rightarrow \text{farm } f \text{ uses "too little" labor}$
- between farms: $\tau_{1,q} > \tau_{2,q} \ \forall g \rightarrow \text{farm 1 is "too small" given its TFP } z_f$
- · L_f fixed \rightarrow land is also distorted unless distributed to equalize λ_f
 - e.g. lacking property rights, communal land distribution

$$\max \underbrace{p \; \overline{z_f \; l_f \; {}^\gamma \; \Pi_g \left(x_{f,g} \; {}^{\alpha_g} \; \right)}}_{\text{revenue}} - \underbrace{\sum_{g=1}^G r_g \tau_{f,g} \qquad x_{f,g}}_{\text{flex. input costs}}$$

$$\text{s.t.} \qquad l_f \qquad = L_f \qquad (\lambda_f)$$

- \cdot farm-input distortions $au_{f,g}$ capture misallocative frictions
 - represented with tax ($au_{f,g} > 1$) or subsidy ($au_{f,g} < 1$) idiosyncratic to farm f, input g
- between inputs: $\tau_{f,labor} > \tau_{f,inter} \rightarrow \text{farm } f \text{ uses "too little" labor}$
- between farms: $au_{1,g} > au_{2,g} \; \forall g \; o \; \text{farm 1 is "too small" given its TFP } z_f$
- · $\mathit{L_f}$ fixed ightarrow land is also distorted unless distributed to equalize λ_f
 - e.g. lacking property rights, communal land distribution
- distortions extracted from observed input, output choices
 - rationalize all heterogeneity in data ► details

FARM: MULTIPLE PRODUCTS

$$\max \underbrace{\sum_{i=1}^{N} p_{i} \underbrace{Z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(X_{f,g,i} \alpha_{g,i} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \underbrace{\sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}}$$

$$\text{s.t.} \underbrace{\sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f}}_{\text{flex. } (\lambda_{f})}$$

• heterogeneous crops i = 1...N

FARM: MULTIPLE PRODUCTS

$$\max \underbrace{\sum_{i=1}^{N} p_{i} \underbrace{z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(x_{f,g,i} \alpha_{g,i} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g}}_{\text{flex. input costs}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \quad (\lambda_{f})$$

- heterogeneous crops i = 1...N
- *l* in fixed supply $L_f \rightarrow$ interdependent crop production
 - params of crop i change $o \lambda_f$ changes o inputs and outputs of crops -i change
 - Just, Zilberman, and Hochman (1983), Shumway, Pope, Nash (1984)
 - justifies Gollin, Udry (2021) prod. fn. identification

FARM: MULTIPLE PRODUCTS

$$\max \underbrace{\sum_{i=1}^{N} p_{i} \underbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g}}_{\text{flex. input costs}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \quad (\lambda_{f})$$

- heterogeneous crops i = 1...N
- *l* in fixed supply $L_f \rightarrow$ interdependent crop production
 - params of crop i change $\rightarrow \lambda_f$ changes \rightarrow inputs and outputs of crops -i change
 - Just, Zilberman, and Hochman (1983), Shumway, Pope, Nash (1984)
 - justifies Gollin, Udry (2021) prod. fn. identification
- farm-input-crop distortions $au_{f,g,i}$, $au_{f,l,i}$
 - ightarrow fit observed input ratio heterogeneity across crops within a farm

FARM: FIXED COST

$$\max \sum_{i=1}^{N} \underbrace{\sum_{j=1}^{N} p_{i} \underbrace{Z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(X_{f,g,i} \alpha_{g,i} \right)}_{\text{revenue}} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- fixed cost ω per produced crop
 - ightarrow farms choose $crop\ set$ in addition to $crop\ mix$
 - farms don't all produce everything
 - → fit observed heterogeneity in crop sets

$$\max \sum_{i=1}^{N} \left(p_{i} \sum_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(x_{f,g,i} \alpha_{g,i} \right) \right)^{\eta} - \sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i} - \sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]$$

$$\text{flex. input costs}$$

$$\text{s.t.} \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

· crop-level concavity term $\eta < 1$

$$\max \sum_{i=1}^{N} \left(p_{i} \underbrace{Z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(X_{f,g,i} \alpha_{g,i} \right)}^{y_{f,i}} \right)^{\eta} - \underbrace{\sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} X_{f,g,i}}_{\text{flex. input costs}} - \underbrace{\sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]}_{\text{fixed cost per crop}}$$

$$\text{s.t.} \quad \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- captures several motives for farmers to mix crops beyond prod. fn. DRS

$$\max \sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(x_{f,g,i} \alpha_{g,i} \right)}^{y_{f,i}} \right)^{\eta} - \sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i} - \sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]$$

$$\text{flex. input costs}$$

$$\text{S.t.} \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk

$$\max \sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(x_{f,g,i} \alpha_{g,i} \right)}^{y_{f,i}} \right)^{\eta} - \sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i} - \sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]$$

$$\text{flex. input costs}$$

$$\text{s.t.} \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety

$$\max \sum_{i=1}^{N} \left(p_{i} \overbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right)}^{y_{f,i}} \right)^{\eta} - \sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i} - \sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]$$

$$\text{flex. input costs}$$

$$\text{s.t.} \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety
 - market power

$$\max \sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i}^{\gamma_{i}} \Pi_{g} \left(x_{f,g,i}^{\alpha_{g,i}} \right)}^{y_{f,i}} \right)^{\eta} - \sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i} - \sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]$$

$$\text{flex. input costs}$$

$$\text{s.t.} \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety
 - market power
 - farm's problem with η equivalent to subsistence or market power \triangleright details

$$\max \sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(x_{f,g,i} \alpha_{g,i} \right)}^{y_{f,i}} \right)^{\eta} - \sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i} - \sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]$$

$$\text{flex. input costs}$$

$$\text{s.t.} \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- · crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety
 - market power
 - farm's problem with η equivalent to subsistence or market power \triangleright details
- calibrated to minimize distortions needed to explain data ► details

$$\max \sum_{i=1}^{N} \left(p_{i} \underbrace{z_{f,i} l_{f,i} \gamma_{i} \Pi_{g} \left(x_{f,g,i} \alpha_{g,i} \right)}^{y_{f,i}} \right)^{\eta} - \sum_{g=1}^{G} r_{g} \tau_{f,g} \sum_{i=1}^{N} \tau_{f,g,i} x_{f,g,i} - \sum_{i=1}^{N} \omega \cdot 1[y_{f,i} > 0]$$

$$\text{flex. input costs}$$

$$\text{s.t.} \sum_{i=1}^{N} l_{f,i} \tau_{f,l,i} = L_{f} \qquad (\lambda_{f})$$

- crop-level concavity term $\eta < 1$
- · captures several motives for farmers to mix crops beyond prod. fn. DRS
 - risk
 - subsistence + love of variety
 - market power
 - farm's problem with η equivalent to subsistence or market power \triangleright details
- calibrated to minimize distortions needed to explain data ► details

▶ solution ▶ GE

• to quantify aggregate cost of distortions, conduct counterfactual reallocations

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
 - equalize (or reduce) distortions between farms

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
 - equalize (or reduce) distortions between farms
 - prohibit product switching to limit assumptions

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
 - equalize (or reduce) distortions between farms
 - prohibit product switching to limit assumptions
 - treat each season as a separate economy

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
 - equalize (or reduce) distortions between farms
 - prohibit product switching to limit assumptions
 - treat each season as a separate economy
- · compute counterfactual \(\Delta\)output: reallocation gain

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
 - equalize (or reduce) distortions between farms
 - prohibit product switching to limit assumptions
 - treat each season as a separate economy
- \cdot compute counterfactual Δ output: reallocation gain
 - reflects aggr. TFP gain from better input allocation between farms

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
 - equalize (or reduce) distortions between farms
 - prohibit product switching to limit assumptions
 - treat each season as a separate economy
- \cdot compute counterfactual Δ output: reallocation gain
 - reflects aggr. TFP gain from better input allocation between farms
 - captures misallocation cost

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
 - equalize (or reduce) distortions between farms
 - prohibit product switching to limit assumptions
 - treat each season as a separate economy
- · compute counterfactual \(\Delta\)output: reallocation gain
 - reflects aggr. TFP gain from better input allocation between farms
 - captures misallocation cost
- compare reallocation gain between multi-product model and 1-product model
 - ▶ details

BENCHMARK EXERCISE

BENCHMARK EXERCISE

- equalize cross-farm distortions $\lambda_{\!f}, au_{\!f,g}$

BENCHMARK EXERCISE

- equalize cross-farm distortions $\lambda_f, au_{f,g}$
- keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$

BENCHMARK EXERCISE

- \cdot equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

reallocation gain

multi-product: 294%

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

reallocation gain

multi-product: 294%

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

a more conservative and practical estimate

reallocation gain

multi-product: 294%

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- a more conservative and practical estimate
- downscale frictions s.t. their variances match those in the least-distorted state

reallocation gain

multi-product: 294%

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- a more conservative and practical estimate
- downscale frictions s.t. their variances match those in the least-distorted state
 - Tamil Nadu has the least dispersed distortions

reallocation gain

multi-product: 294%

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- a more conservative and practical estimate
- downscale frictions s.t. their variances match those in the least-distorted state
 - Tamil Nadu has the least dispersed distortions

reallocation gain

multi-product: 294%

1-product: 212% (28% ↓)

multi-product: 35%

1-product: **45**% (26% ↑)

BENCHMARK EXERCISE

- · equalize cross-farm distortions $\lambda_f, au_{f,g}$
- · keep within-farm distortions $au_{f,l,i}, au_{f,g,i}$
 - preserve idiosyncratic product choice motives

MATCH LEAST-DISTORTED STATE

- a more conservative and practical estimate
- downscale frictions s.t. their variances match those in the least-distorted state
 - Tamil Nadu has the least dispersed distortions

▶ sensitivity to concavity ▶ role of states, seasons

reallocation gain

multi-product: 294%

1-product: 212% (28% ↓)

multi-product: 35%

1-product: **45**% (26% ↑)

• PRODUCT HETEROGENEITY AS FRICTIONS ▶ details

- Product Heterogeneity as Frictions ▶ details
 - heterogeneous product choice \rightarrow heterogeneous input mixes

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice → heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions

- PRODUCT HETEROGENEITY AS FRICTIONS ▶ details
 - heterogeneous product choice → heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation

- · Product Heterogeneity as Frictions ▶ details
 - heterogeneous product choice → heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ► details

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice → heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ▶ details
 - 1-product model misses within-farm TFP dispersion across products

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice \rightarrow heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ▶ details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice \rightarrow heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ▶ details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- **RETURNS TO SCALE** ▶ *details*

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice \rightarrow heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ▶ details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ▶ details
 - farms growing products with high returns to scale can expand more

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice \rightarrow heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ▶ details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ► details
 - farms growing products with high returns to scale can expand more
 - 1-product model misses returns to scale heterogeneity

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice \rightarrow heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ► details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ► details
 - farms growing products with high returns to scale can expand more
 - 1-product model misses returns to scale heterogeneity
 - → understates misallocation

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice \rightarrow heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ► details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ► details
 - farms growing products with high returns to scale can expand more
 - 1-product model misses returns to scale heterogeneity
 - → understates misallocation
- ENDOGENOUS PRODUCT CHOICE ► details

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice \rightarrow heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ► details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ► details
 - farms growing products with high returns to scale can expand more
 - 1-product model misses returns to scale heterogeneity
 - → understates misallocation
- Endogenous Product Choice ▶ details
 - farms can partly mitigate effect of frictions

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice → heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ► details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ▶ details
 - farms growing products with high returns to scale can expand more
 - 1-product model misses returns to scale heterogeneity
 - → understates misallocation
- ENDOGENOUS PRODUCT CHOICE ► details
 - farms can partly mitigate effect of frictions
 - by growing product less intensive in the distorted input

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice → heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ► details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ► details
 - farms growing products with high returns to scale can expand more
 - 1-product model misses returns to scale heterogeneity
 - → understates misallocation
- ENDOGENOUS PRODUCT CHOICE ► details
 - farms can partly mitigate effect of frictions
 - by growing product less intensive in the distorted input
 - 1-product model misses this margin of adjustment

- PRODUCT HETEROGENEITY AS FRICTIONS ► details
 - heterogeneous product choice → heterogeneous input mixes
 - 1-product model views heterogeneous input mixes as evidence of frictions
 - → overstates misallocation
- TFP DISPERSION ► details
 - 1-product model misses within-farm TFP dispersion across products
 - → understates misallocation
- RETURNS TO SCALE ▶ details
 - farms growing products with high returns to scale can expand more
 - 1-product model misses returns to scale heterogeneity
 - → understates misallocation
- ENDOGENOUS PRODUCT CHOICE ▶ details
 - farms can partly mitigate effect of frictions
 - by growing product less intensive in the distorted input
 - 1-product model misses this margin of adjustment
 - → overstates misallocation

MECHANISMS DECOMPOSITION: BENCHMARK REALLOCATION

• benchmark: single-product model understates gain by 82 pp (28%)

MECHANISMS DECOMPOSITION: BENCHMARK REALLOCATION

• benchmark: single-product model understates gain by 82 pp (28%)

MECHANISMS DECOMPOSITION: BENCHMARK REALLOCATION

• benchmark: single-product model understates gain by 82 pp (28%)

- view most distortions as removable \rightarrow firms' ability to expand matters most

→ single-product model understates misallocation

MECHANISMS DECOMPOSITION: "LEAST-DISTORTED STATE" REALLOCATION

• "least-distorted state": single-product model overstates gain by 10 pp (26%)

MECHANISMS DECOMPOSITION: "LEAST-DISTORTED STATE" REALLOCATION

• "least-distorted state": single-product model overstates gain by 10 pp (26%)

MECHANISMS DECOMPOSITION: "LEAST-DISTORTED STATE" REALLOCATION

• "least-distorted state": single-product model overstates gain by 10 pp (26%)

view most distortions as benign → estimation of frictions matters most
 → single-product model overstates misallocation > details

• existing misallocation estimates: single agggregate product or multiple homogeneous products

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- · estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
 - overstate misallocation by

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
- benchmark exercise: 1-product model understates misallocation

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
- benchmark exercise: 1-product model understates misallocation
 - but error depends on exercise of interest

- existing misallocation estimates: single agggregate product or multiple homogeneous products
- estimate heterogeneous production functions across crops in India
- multi-product model shows that conventional 1-product models:
 - understate misallocation by
 - > ignoring within-farm productivity heterogeneity
 - > ignoring returns-to-scale heterogeneity across crops
 - overstate misallocation by
 - > misinterpreting product heterogeneity as frictions
 - > missing endogenous product choice response
- benchmark exercise: 1-product model understates misallocation
 - but error depends on exercise of interest
 - no simple correction that can be applied to standard models

WHY AGRICULTURE?

 \cdot agriculture is the perfect setting to study endogenous product choice

back

WHY AGRICULTURE?

- agriculture is the perfect setting to study endogenous product choice
 - firm-product (farm-crop) inputs and outputs are feasible to measure

back

WHY AGRICULTURE?

- agriculture is the perfect setting to study endogenous product choice
 - firm-product (farm-crop) inputs and outputs are feasible to measure
 - products (crops) are ∼homogeneous across firms (farms)

back

WHY AGRICULTURE?

- agriculture is the perfect setting to study endogenous product choice
 - firm-product (farm-crop) inputs and outputs are feasible to measure
 - products (crops) are ∼homogeneous across firms (farms)
- but mechanism applies to **non-agricultural** settings too
 - → relevant for *more* developed countries too

FARM SOLUTION EXPRESSIONS

$$\begin{split} \sum_{i \in l_{f}} \left(\lambda_{f}^{\frac{\eta \sum_{g} \alpha_{g,i} - 1}{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}} \right) \left(\left(p_{i} Z_{f,i} \right)^{\eta} \eta \left(\frac{\gamma_{i}}{\tau_{f,l,i}} \right)^{1 - \eta \sum_{g} \alpha_{g,i}} \Pi_{g} \left(\frac{\alpha_{g,i}}{r_{g} \tau_{f,g} \tau_{f,g,i}} \right)^{\eta \alpha_{g,i}} \right)^{\frac{1}{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}} \tau_{f,l,i} = L_{f} \\ x_{f,g,i} &= \frac{\alpha_{g,i}}{r_{g} \tau_{f,g} \tau_{f,g,i}} \left(\frac{\gamma_{i}}{\lambda_{f} \tau_{f,l,i}} \right)^{\frac{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}{\alpha_{g,i} - \eta \gamma_{i}}} \left(\left(p_{i} Z_{f,i} \right)^{\eta} \eta \Pi_{h} \left(\frac{\alpha_{h,i}}{r_{h} \tau_{f,h} \tau_{f,h,i}} \right)^{\eta \alpha_{h,i}} \right)^{\frac{1}{1 - \eta \sum_{h} \alpha_{h,i} - \eta \gamma_{i}}} \\ l_{f,i} &= \left(\left(p_{i} Z_{f,i} \right)^{\eta} \eta \left(\frac{\gamma_{i}}{\lambda_{f} \tau_{f,l,i}} \right)^{1 - \eta \sum_{g} \alpha_{g,i}} \Pi_{g} \left(\frac{\alpha_{g,i}}{r_{g} \tau_{f,g} \tau_{f,g,i}} \right)^{\eta \alpha_{g,i}} \right)^{\frac{1}{1 - \eta \sum_{g} \alpha_{g,i} - \eta \gamma_{i}}} \end{split}$$

LIST OF CROPS

Crop list

Rice	Wheat	Other Cereals	Pulses	Oilseeds, Fruits and Vegetables		
		Barley Maize Sorghum Pearl millet Finger millet Others	Black gram Green peas Pigeon peas Horse gram Cowpea Kidney bean Lentil Chickpeas Others	Oilseeds Sesame Groundnut Castor Sunflower Niger Soybean Safflower Rapseed Linseed Others	Vegetables Ash gourd Beet root Bitter gourd Bottle gourd Eggplant Board bean Cabbage Cauliflower Carrot Potato Cucumber Peas	Fruits / Condiments Mango Papaya Grapes Plum Cardamom Chilli Cumin Dill seed Indian mustard Other

- · labor:
 - family and hired labor days by plots

- · labor:
 - family and hired labor days by plots
- · land:
 - quality-adjusted land measure

- · labor:
 - family and hired labor days by plots
- · land:
 - quality-adjusted land measure
- · intermediate inputs:
 - expenses on seeds, fertilizer, irrigation, machinery and bullocks, and fuels

- · labor:
 - family and hired labor days by plots
- · land:
 - quality-adjusted land measure
- · intermediate inputs:
 - expenses on seeds, fertilizer, irrigation, machinery and bullocks, and fuels
- · output:
 - market value of quantity harvested

• idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j

• idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot $j \rightarrow$ serve as instruments for inputs on j

- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot $j \rightarrow$ serve as instruments for inputs on j
- · assumptions:

- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot $j \rightarrow$ serve as instruments for inputs on j
- · assumptions:
 - observed shocks to farm f's plot k affect shadow price of inputs on f's plot j

- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j
 - \rightarrow serve as instruments for inputs on j
- · assumptions:
 - observed shocks to farm f's plot k affect shadow price of inputs on f's plot j
 - **observed** shocks affecting input demand on plot k are not correlated with **unobserved** shocks affecting input demand on plot j, conditional on observed shocks to j

- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j
 - \rightarrow serve as instruments for inputs on j
- · assumptions:
 - **observed** shocks to farm fs plot k affect **shadow price** of inputs on fs plot j
 - observed shocks affecting input demand on plot k are not correlated with unobserved shocks affecting input demand on plot j, conditional on observed shocks to j
 - f-level shocks interacted with plot-level features provide such shocks

- idea: shocks to farm f's plots $k \neq j$ change shadow price of inputs on f's plot j
 - \rightarrow serve as instruments for inputs on j
- · assumptions:
 - **observed** shocks to farm fs plot k affect **shadow price** of inputs on fs plot j
 - observed shocks affecting input demand on plot k are not correlated with unobserved shocks affecting input demand on plot j, conditional on observed shocks to j
 - f-level shocks interacted with plot-level features provide such shocks
- · 2SLS first stage:

$$M_{j,i,t} = Z_{k \neq j,i,t} + \mu_{j,i,t}$$

- M = land, labor, intermediates
- $-Z_{k\neq j,i,t}$: instruments from other plots within farm
 - > agricultural shocks interacted with plot characteristics
 - > household, community characteristics & shocks interacted with plot characteristics

 \cdot common land input measures are problematic

- \cdot common land input measures are problematic
 - plot area: ignores quality

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - use random forests for prediction

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - use random forests for prediction
- $\cdot \rightarrow$ quality index = predicted price/acre

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - use random forests for prediction
- · → quality index = predicted price/acre
 - captures quality: RF explains $> \frac{1}{2}$ of observed price variation in test sample

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - use random forests for prediction
- · → quality index = predicted price/acre
 - captures quality: RF explains $> \frac{1}{2}$ of observed price variation in test sample
 - ${\it removes\ noise}:$ use predicted values, minimize overfitting \to captured variation driven by population patterns, not individual mismeasurement

- · common land input measures are problematic
 - plot area: ignores quality
 - plot market price: likely excessively noisy when land markets are underdeveloped
- instead: predict plot's market price with its physical land features
 - use random forests for prediction
- · → quality index = predicted price/acre
 - captures quality: RF explains $> \frac{1}{2}$ of observed price variation in test sample
 - removes noise: use predicted values, minimize overfitting \to captured variation driven by population patterns, not individual mismeasurement

▶ details

· procedure

- · procedure
 - 1. split data into **training** sample (2/3) and **test** sample (1/3)

- · procedure
 - 1. split data into training sample (2/3) and test sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features

- procedure
 - 1. split data into training sample (2/3) and test sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - $>\,$ physical characteristics: soil type, color, salinity, drainage, ...

- procedure
 - 1. split data into training sample (2/3) and test sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > physical characteristics: soil type, color, salinity, drainage, ...
 - > irrigation access: presence of wells, canals, ...

procedure

- 1. split data into **training** sample (2/3) and **test** sample (1/3)
- 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > physical characteristics: soil type, color, salinity, drainage, ...
 - > irrigation access: presence of wells, canals, ...
 - > OLS includes all 2-way interactions

procedure

- 1. split data into training sample (2/3) and test sample (1/3)
- 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > physical characteristics: soil type, color, salinity, drainage, ...
 - $>\,$ irrigation access: presence of wells, canals, ...
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation

- procedure
 - 1. split data into **training** sample (2/3) and **test** sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > physical characteristics: soil type, color, salinity, drainage, ...
 - $>\,\,$ irrigation access: presence of wells, canals, ...
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation
 - 3. compute Mean Squared Error and R^2 on test data
 - > to preclude overfitting

- procedure
 - 1. split data into **training** sample (2/3) and **test** sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > physical characteristics: soil type, color, salinity, drainage, ...
 - > irrigation access: presence of wells, canals, ...
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation
 - 3. compute Mean Squared Error and R^2 on **test** data
 - > to preclude overfitting
- · results

	OLS	RF
MSE	0.61	0.49
R ²	0.39	0.51

- · procedure
 - 1. split data into training sample (2/3) and test sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > physical characteristics: soil type, color, salinity, drainage, ...
 - > irrigation access: presence of wells, canals, ...
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation
 - 3. compute Mean Squared Error and R^2 on **test** data
 - > to preclude overfitting
- · results

	OLS	RF
MSE	0.61	0.49
R^2	0.39	0.51

· → quality index = predicted price/acre

- procedure
 - 1. split data into **training** sample (2/3) and **test** sample (1/3)
 - 2. estimate OLS & RF on training data: reg log price/acre on land features
 - > physical characteristics: soil type, color, salinity, drainage, ...
 - > irrigation access: presence of wells, canals, ...
 - > OLS includes all 2-way interactions
 - > RF tuned with k-fold cross-validation
 - 3. compute Mean Squared Error and R^2 on **test** data
 - > to preclude overfitting

results

	OLS	RF
MSE	0.61	0.49
R^2	0.39	0.51

- $\cdot \rightarrow \text{quality index} = \text{predicted price/acre}$
- quality-adjusted land = quality index × plot area

PRODUCTION FUNCTIONS: ALL CROPS

PRODUCTION FUNCTIONS: TABLE

	Aggregate	Rice	Wheat	Other Cereals	Pulses	Veg, Frt, Oil
Land	0.427	0.511	0.414	0.407	0.379	0.330
	(0.031)	(0.021)	(0.032)	(0.034)	(0.060)	(0.035)
Labor	0.189	0.161	0.122	0.248	0.316	0.430
	(0.031)	(0.037)	(0.036)	(0.058)	(0.074)	(0.064)
Intermediates	0.351	0.307	0.517	0.245	0.255	0.127
	(0.041)	(0.033)	(0.040)	(0.046)	(0.076)	(0.052)
Observations	14,705	4,807	3,566	2,779	1,128	2,338
R^2	0.624	0.742	0.713	0.590	0.417	0.572
Village FEs	Υ	Υ	Υ	Υ	Υ	Υ
Season FEs	Υ	Υ	Υ	Υ	Υ	Υ
	First Stage: F statistics					
Land	77.0	62.0	40.3	37.8	15.7	19.3
Labor	49.3	34.7	17.7	25.2	12.9	14.8
Intermediates	35.8	31.7	21.5	19.9	8.9	11.8
K-Paap Wald F statistic	51.1	40.4	16.0	30.8	12.4	12.7

PRODUCTION FUNCTIONS: PAIRWISE EQUALITY TEST P-VALUES

• for each farm f, need to check all 2^N possible sets of nonzero crops

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's λ_f by solving one non-linear equation for each farm

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's λ_f by solving one non-linear equation for each farm
 - 2. compute optimal $\{x_{f,g,i}\}_{g,i}$, $\{l_{f,i}\}_i$, $\{y_{f,i}\}_i$ given λ_f

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's λ_f by solving one non-linear equation for each farm
 - 2. compute optimal $\{x_{f,g,i}\}_{g,i}$, $\{l_{f,i}\}_i$, $\{y_{f,i}\}_i$ given λ_f
 - 3. compute optimal profit net of fixed cost
 - ▶ expressions

- for each farm f, need to check all 2^N possible sets of nonzero crops
 - 1. fix crop set's λ_f by solving one non-linear equation for each farm
 - 2. compute optimal $\{x_{f,g,i}\}_{g,i}$, $\{l_{f,i}\}_i$, $\{y_{f,i}\}_i$ given λ_f
 - 3. compute optimal profit net of fixed cost
 - ▶ expressions
- for each farm, pick profit-maximizing crop set

· subsistence farmer with love of variety

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility *U*:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

 \rightarrow mix crops to provide a diverse diet

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility *U*:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility *U*:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

ightarrow mix crops due to downward-sloping demand in each crop

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- ightarrow mix crops due to downward-sloping demand in each crop
- both setups produce farm-level FOCs that are identical to the main model

- subsistence farmer with love of variety
 - farmer minimizes costs of providing utility U:

$$U = \left(\sum_{i} \varphi_{i} y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- → mix crops to provide a diverse diet
- crop-level markets are monopolistically competitive
 - intermediate crop aggregator combines farms' varieties:

$$Y_i = \left(\sum_f y_{f,i}^{\eta}\right)^{\frac{1}{\eta}}$$

- ightarrow mix crops due to downward-sloping demand in each crop
- both setups produce farm-level FOCs that are identical to the main model
 - but the appropriate way to define GE may be different

• unobserved distortions map to observed marginal revenue products:

$$r_g au_{f,g} au_{f,g,i} = rac{lpha_{g,i} \eta \left(p_i extstyle{y}_{f,i}
ight)^{\eta}}{ extstyle{x}_{f,g,i}} = mrpg_{f,i}$$
 $\lambda_f au_{f,l,i} = rac{\gamma_i \eta \left(p_i extstyle{y}_{f,i}
ight)^{\eta}}{l_{f,i}} = mrpl_{f,i}$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$

$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}y_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{\mathsf{x}_{f,g,i}} = mrpg_{f,i}$$

$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{\mathsf{x}_{f,g,i}} = mrpg_{f,i}$$

$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\boldsymbol{\cdot} \to \text{extracted}$ fundamentals rationalize observed dispersion b/w farms frictionless economy

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{\mathsf{x}_{f,g,i}} = mrpg_{f,i}$$

$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \to {\sf extracted}$ fundamentals rationalize observed dispersion b/w farms frictionless economy $\Leftrightarrow \tau_{f,g} \tau_{f,g,i} = 1$

unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{\mathsf{x}_{f,g,i}} = mrpg_{f,i}$$

$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow \tau_{f,a}\tau_{f,a,i} = 1 \Leftrightarrow mrpg_{f,i} = \overline{mrpg}_i, mrpl_{f,i} = \overline{mrpl}_i$$

• unobserved distortions map to observed marginal revenue products:

$$r_g au_{f,g} au_{f,g,i} = rac{lpha_{g,i} \eta \left(p_i y_{f,i}
ight)^{\eta}}{x_{f,g,i}} = mrpg_{f,i}$$

$$\lambda_f au_{f,l,i} = rac{\gamma_i \eta \left(p_i y_{f,i}
ight)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\boldsymbol{\cdot} \to \mathsf{extracted}$ fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow \tau_{f,q}\tau_{f,q,i} = 1 \Leftrightarrow mrpq_{f,i} = \overline{mrpq_i}, mrpl_{f,i} = \overline{mrpl_i}$$

distorted economy

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta \left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{\mathsf{x}_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta \left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \, o \,$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow au_{f,g} au_{f,g,i} = 1 \Leftrightarrow au_{rpg_{f,i}} = \overline{mrpg}_i, au_{rpl_{f,i}} = \overline{mrpl}_i$$
distorted economy $\Leftrightarrow ext{heterog. } au_{f,g} au_{f,a,i}$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{\mathsf{X}_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta\left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

• physical **productivity** implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \, o$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow au_{f,g}\tau_{f,g,i} = 1 \Leftrightarrow mrpg_{f,i} = \overline{mrpg}_i, mrpl_{f,i} = \overline{mrpl}_i$$

distorted economy \Leftrightarrow heterog. $\tau_{f,g}\tau_{f,g,i} \Leftrightarrow$ heterog. $mrpg_{f,i}, mrpl_{f,i}$

• unobserved distortions map to observed marginal revenue products:

$$r_{g}\tau_{f,g}\tau_{f,g,i} = \frac{\alpha_{g,i}\eta \left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{\mathsf{X}_{f,g,i}} = mrpg_{f,i}$$
$$\lambda_{f}\tau_{f,l,i} = \frac{\gamma_{i}\eta \left(p_{i}\mathcal{Y}_{f,i}\right)^{\eta}}{l_{f,i}} = mrpl_{f,i}$$

physical productivity implied by production fn.:

$$z_{f,i} = \frac{y_{f,i}}{l_{f,i}^{\gamma_i} \Pi_g \left(x_{f,g,i}^{\alpha_{g,i}} \right)}$$

 $\cdot \rightarrow$ extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy
$$\Leftrightarrow$$
 $\tau_{f,g}\tau_{f,g,i}=1$ \Leftrightarrow $mrpg_{f,i}=\overline{mrpg}_i,\ mrpl_{f,i}=\overline{mrpl}_i$

distorted economy \Leftrightarrow heterog. $au_{f,g} au_{f,g,i}$ \Leftrightarrow heterog. $mrpg_{f,i}, mrpl_{f,i}$

► splitting distortions

• splitting $r_g au_{f,g} au_{f,g,i}$ into 3 terms is arbitrary from farm f's POV

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $au_{f,g,i}$ don't distort f-level demand of g

- splitting $r_q \tau_{f,q} \tau_{f,q,i}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,q,i}$ don't distort f-level demand of g
 - $ightarrow X_{f,g} = \sum_i X_{f,g,i} = \sum_i \tau_{f,g,i} X_{f,g,i}$

- splitting $r_q \tau_{f,q} \tau_{f,q,j}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,q,i}$ don't distort f-level demand of g

$$\rightarrow X_{f,g} = \sum_{i} X_{f,g,i} = \sum_{i} \tau_{f,g,i} X_{f,g,i}$$

- likewise restrict $\tau_{f,l,i}$:
 - assume $\tau_{f,l,i}$ don't distort f-level demand of l

- splitting $r_q \tau_{f,q} \tau_{f,q,j}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,q,i}$ don't distort f-level demand of g

$$\rightarrow X_{f,g} = \sum_i X_{f,g,i} = \sum_i \tau_{f,g,i} X_{f,g,i}$$

- likewise restrict $\tau_{f,l,i}$:
 - assume $\tau_{f,l,i}$ don't distort f-level demand of l

$$\rightarrow L_f = \sum_i l_{f,i} = \sum_i \tau_{f,l,i} l_{f,i}$$

- splitting $r_g \tau_{f,q} \tau_{f,q,j}$ into 3 terms is arbitrary from farm f's POV
 - and does not matter for aggregate misallocation estimate
 - but will matter for partial reallocation exercises \rightarrow come up with a sensible split
- split $r_g \tau_{f,g}$ from $\tau_{f,g,i}$:
 - assume $\tau_{f,q,i}$ don't distort f-level demand of g

$$\rightarrow X_{f,g} = \sum_{i} X_{f,g,i} = \sum_{i} \tau_{f,g,i} X_{f,g,i}$$

- likewise restrict $\tau_{f,l,i}$:
 - assume $\tau_{f,l,i}$ don't distort f-level demand of l

$$ightarrow$$
 $L_f = \sum_i l_{f,i} = \sum_i \tau_{f,l,i} l_{f,i}$

• split of r_g from $au_{f,g}$ imposed by GE

ESTIMATE THE ELASTICITY OF SUBSTITUTION

· from consumption FOC:

$$\log\left(\frac{p_iC_i}{\sum_j p_jC_j}\right) = -\log\left(\sum_j \varphi_j^{\sigma} p_j^{1-\sigma}\right) + (1-\sigma)\log p_i + \sigma\log \varphi_i$$

ESTIMATE THE ELASTICITY OF SUBSTITUTION

from consumption FOC:

$$\log\left(\frac{p_i C_i}{\sum_j p_j C_j}\right) = -\log\left(\sum_j \varphi_j^{\sigma} p_j^{1-\sigma}\right) + (1-\sigma)\log p_i + \sigma\log \varphi_i$$

• estimate with 2SLS: $\log s_{h,i} = \beta_0 + \beta_1 \log p_{h,i} + \gamma_i + \varepsilon_{h,i}$

ESTIMATE THE ELASTICITY OF SUBSTITUTION

• from consumption FOC:

$$\log\left(\frac{p_i C_i}{\sum_j p_j C_j}\right) = -\log\left(\sum_j \varphi_j^{\sigma} p_j^{1-\sigma}\right) + (1-\sigma)\log p_i + \sigma\log \varphi_i$$

• estimate with 2SLS: $\log s_{h,i} = \beta_0 + \beta_1 \log p_{h,i} + \gamma_i + \varepsilon_{h,i}$

	$\log s_{h,i}$
σ	1.699
$\log p_{h,i}$	-0.699 (0.067)
Observations Kleibergen-Paap F stat	40,833 230.9

Village-level instruments: Elevation \times rain, ruggedness \times rain, pucca roads availability

 \cdot τ s reproducing data need to be extreme if η is too high or too low

• τ s reproducing data need to be extreme if η is too high or too low

• low η : farm, farm-crop output more uniformly distributed in efficient allocation \rightarrow data farm size "too varied", farms mix crops "too little" \rightarrow extreme distortions

• τ s reproducing data need to be extreme if η is too high or too low

- low η : farm, farm-crop output more uniformly distributed in efficient allocation \rightarrow data farm size "too varied", farms mix crops "too little" \rightarrow extreme distortions
- high η : farm, farm-crop output more dispersed in efficient allocation
 - ightarrow data farm size "too uniform", farms mix crops "too much" ightarrow extreme distortions

• τ s reproducing data need to be extreme if η is too high or too low

- low η : farm, farm-crop output more uniformly distributed in efficient allocation \rightarrow data farm size "too varied", farms mix crops "too little" \rightarrow extreme distortions
- · high η : farm, farm-crop output more dispersed in efficient allocation
 - ightarrow data farm size "too uniform", farms mix crops "too much" ightarrow extreme distortions
- ightarrow pick η that minimizes distortions required to explain observed output distribution
 - → conservative misallocation estimates

• τ s reproducing data need to be extreme if η is too high or too low

- low η : farm, farm-crop output more uniformly distributed in efficient allocation \rightarrow data farm size "too varied", farms mix crops "too little" \rightarrow extreme distortions
- high η : farm, farm-crop output more dispersed in efficient allocation
 - ightarrow data farm size "too uniform", farms mix crops "too much" ightarrow extreme distortions
- ightarrow pick η that minimizes distortions required to explain observed output distribution
 - → conservative misallocation estimates
- ▶ details

• representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_{i}C_{i} = \sum_{g} r_{g}X_{g}^{agg} + \Pi$$

• representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_i C_i = \sum_{g} r_g X_g^{agg} + \Pi$$

• goods markets clear ∀i:

$$C_i = \sum_f y_{f,i}$$

representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_i C_i = \sum_{g} r_g X_g^{agg} + \Pi$$

• goods markets clear ∀*i*:

$$C_i = \sum_f y_{f,i}$$

• inputs markets clear $\forall g$:

$$\sum_{f} \sum_{i} x_{f,g,i} = X_g^{agg}$$

representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_{i}C_{i} = \sum_{g} r_{g}X_{g}^{agg} + \Pi$$

• goods markets clear ∀*i*:

$$C_i = \sum_f y_{f,i}$$

• inputs markets clear $\forall g$:

$$\sum_{f} \sum_{i} x_{f,g,i} = X_g^{agg}$$

• estimate $\sigma = 1.7$ from consumption FOC \blacktriangleright details

representative consumer buys crops, sells inputs, receives profit from owned farms

$$\max_{\{C_i\}_{i=1}^N} \left(\sum_i \varphi_i C_i^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$\sum_{i} p_i C_i = \sum_{g} r_g X_g^{agg} + \Pi$$

• goods markets clear ∀i:

$$C_i = \sum_f y_{f,i}$$

• inputs markets clear $\forall g$:

$$\sum_{f} \sum_{i} x_{f,g,i} = X_g^{agg}$$

- estimate $\sigma = 1.7$ from consumption FOC \blacktriangleright details
- ▶ profits details

· farm-crop revenue:

$$p_{i} y_{f,i} = \left(\underbrace{\left(\frac{1}{\lambda_{f} \tau_{f,m,i}}\right)^{\gamma_{i}} \Pi_{g} \left(\frac{1}{\tau_{f,g} \tau_{f,g,i}}\right)^{\alpha_{g,i}}}_{\text{composite distortion, } dist_{f,i}}\right)^{\frac{1}{1-\eta(\sum_{g} \alpha_{g,i}+\gamma_{i})}} \underbrace{\left(p_{i} Z_{f,i} \gamma_{i}^{\gamma_{i}} \eta^{\sum_{g} \alpha_{g,i}+\gamma_{i}} \Pi \left(\frac{\alpha_{g,i}}{r_{g}}\right)^{\alpha_{g,i}}\right)^{\frac{1}{1-\eta(\sum_{g} \alpha_{g,i}+\gamma_{i})}}}_{\text{"objective" factors}}$$

back

· farm-crop revenue:

$$p_{i}y_{f,i} = \left(\underbrace{\left(\frac{1}{\lambda_{f}\tau_{f,m,i}}\right)^{\gamma_{i}}\Pi_{g}\left(\frac{1}{\tau_{f,g}\tau_{f,g,i}}\right)^{\alpha_{g,i}}}_{\text{composite distortion, } dist_{f,i}}\right)^{\frac{1}{1-\eta(\sum_{g}\alpha_{g,i}+\gamma_{i})}}\underbrace{\left(p_{i}Z_{f,i}\gamma_{i}^{\gamma_{i}}\eta^{\sum_{g}\alpha_{g,i}+\gamma_{i}}\Pi\left(\frac{\alpha_{g,i}}{r_{g}}\right)^{\alpha_{g,i}}\right)^{\frac{1}{1-\eta(\sum_{g}\alpha_{g,i}+\gamma_{i})}}}_{\text{"objective" factors}}$$

· $Var(\log dist_{f,i})$ needed to match observed output dispersion depends on chosen η

GE PROFITS

$$\Pi = \sum_{f} \left[\sum_{i=1}^{N} p_{i} y_{f,i} - \sum_{g=1}^{G} r_{g} \sum_{i=1}^{N} x_{f,g,i} \right]$$

- distortions au, fixed costs ω , concavity η are not reflected in dividends sent to consumer
 - farmers act as if frictions they face had monetary representations
 - but these are non-monetary and not added/subtracted from dividends
- equivalent formulation: τ s, ω s are monetary taxes/subsidies, administered by consumer
 - show up in dividends and consumer's BC as government revenue/expense
- choice is arbitrary: both formulations (or any mixture) produce identical equilibrium conditions

• to quantify aggregate cost of distortions, conduct counterfactual reallocations

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- \cdot equalize (or reduce) distortions au between farms

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- \cdot equalize (or reduce) distortions au between farms
- \cdot prohibit product set switching

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions au between farms
- prohibit product set switching
 - ightarrow don't need productivities, frictions for unobserved farm-product combinations

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions au between farms
- prohibit product set switching
 - ightarrow don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- \cdot equalize (or reduce) distortions au between farms
- prohibit product set switching
 - ightarrow don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- · compute counterfactual Δ output

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- \cdot equalize (or reduce) distortions au between farms
- prohibit product set switching
 - ightarrow don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- · compute counterfactual Δ output
 - reallocation gain = Δ output between counterfactual and current

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions au between farms
- prohibit product set switching
 - → don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- · compute counterfactual Δ output
 - reallocation gain = Δ output between counterfactual and current
 - $-\,$ aggregate inputs are fixed \rightarrow aggregate output \uparrow reflects aggregate TFP \uparrow

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- equalize (or reduce) distortions au between farms
- prohibit product set switching
 - → don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- · compute counterfactual Δ output
 - reallocation gain = Δ output between counterfactual and current
 - aggregate inputs are fixed \rightarrow aggregate output \uparrow reflects aggregate TFP \uparrow
 - farm-level TFPs are fixed → aggregate TFP ↑ reflects pure reallocation gain or misallocation cost

- to quantify aggregate cost of distortions, conduct counterfactual reallocations
- \cdot equalize (or reduce) distortions au between farms
- prohibit product set switching
 - ightarrow don't need productivities, frictions for unobserved farm-product combinations
- treat each season as a separate economy
 - to prevent double-booking of inputs in a single season
 - sum aggregate output across seasons
- compute counterfactual ∆output
 - reallocation gain = Δ output between counterfactual and current
 - aggregate inputs are fixed \rightarrow aggregate output \uparrow reflects aggregate TFP \uparrow
 - farm-level TFPs are fixed → aggregate TFP ↑ reflects pure reallocation gain or misallocation cost
- · compare reallocation gain between multi-product model and 1-product model
 - ► reallocation exercise details

• reallocation 1: equalize land and labor distortions, crop sets fixed

- reallocation 1: equalize land and labor distortions, crop sets fixed
 - farms can't change crop sets, but can change crop ratios

- reallocation 1: equalize land and labor distortions, crop sets fixed
 - farms can't change crop sets, but can change crop ratios
 - $-\ \ \text{crop sets fixed} \rightarrow \text{extract all needed fundamentals from data}$

- reallocation 1: equalize land and labor distortions, crop sets fixed
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$

- reallocation 1: equalize land and labor distortions, crop sets fixed
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, \bar{\lambda}$

- reallocation 1: equalize land and labor distortions, crop sets fixed
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, ar{\lambda}$
- · reallocation 2: equalize land and labor distortions, allow crop set changes

- · reallocation 1: equalize land and labor distortions, crop sets fixed
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, ar{\lambda}$
- reallocation 2: equalize land and labor distortions, allow crop set changes
 - a farm can plant a crop it's not observed growing o counterfactual $z_{f,i}$, $au_{f,g}$, $au_{f,g,i}$ unknown

- · reallocation 1: equalize land and labor distortions, crop sets fixed
 - farms can't change crop sets, but can change crop ratios
 - crop sets fixed \rightarrow extract all needed fundamentals from data
 - set $au_{f,g} au_{f,g,i}=$ 1, $\lambda_f=ar{\lambda}$
 - solve for market-clearing $\{p_i\}_i, \{r_g\}_g, ar{\lambda}$
- reallocation 2: equalize land and labor distortions, allow crop set changes
 - a farm can plant a crop it's not observed growing o counterfactual $z_{f,i}$, $au_{f,g}$, $au_{f,g,i}$ unknown
 - ightarrow need to parameterize **unconditional** z, au distributions and calibrate to match observed **conditional** distributions

BENCHMARK EXERCISE SENSITIVITY

	0.93	1588	1781	1961	2123	2267	2393	2503
	0.83	1300	1472	1635	1787	1924	2047	2157
	0.73	762	837	909	977	1040	1098	1152
=	0.63		284	289	294	299	303	306
	0.53					141		
	0.43							
	0.33							
		1.1	1.3	1.5	1.7 σ	1.9	2.1	2.3

(a) reallocation gain, %

BENCHMARK EXERCISE SENSITIVITY

(a) reallocation gain, %

· misallocation estimates are always sensitive to calibrated concavity

BENCHMARK EXERCISE SENSITIVITY

- (a) reallocation gain, %
- misallocation estimates are always sensitive to calibrated concavity
 - firms can expand grow more easily in reallocation ightarrow greater gain

BENCHMARK EXERCISE SENSITIVITY

(a) reallocation gain, %

(b) single-product model error, %

- misallocation estimates are always sensitive to calibrated concavity
 - firms can expand grow more easily in reallocation \rightarrow greater gain
- $\boldsymbol{\cdot}$ sign and magnitude of single-product model's error also depends on calibration

REALLOCATION: ROLE OF STATES AND SEASONS

	main	within state	no split by season
multi-product:	294%	107%	314%
1-product:	212%	124%	260%

back

• 1-product model misinterprets crop heterogeneity as frictions

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice, produces it

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice, produces it
 - farm 2 draws high z in vegetables, produces them

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice, produces it
 - farm 2 draws high z in vegetables, produces them
 - assume no frictions $\rightarrow \frac{\alpha_{g,rice}\eta(\rho_{rice}y_1)^{\eta}}{x_{1,g}} = \frac{\alpha_{g,veg}\eta(\rho_{veg}y_2)^{\eta}}{x_{2,g}}$ in multi-crop model

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice, produces it
 - farm 2 draws high z in vegetables, produces them
 - assume no frictions $\rightarrow \frac{\alpha_{g,rice}\eta(p_{rice}y_1)^{\eta}}{x_{1,g}} = \frac{\alpha_{g,veg}\eta(p_{veg}y_2)^{\eta}}{x_{2,g}}$ in multi-crop model
 - 1-product model: $\frac{\alpha_{g,agg}\eta(p_{agg}y_1)^{\eta}}{x_{1,g}} \neq \frac{\alpha_{g,agg}\eta(p_{agg}y_2)^{\eta}}{x_{2,g}} \rightarrow \text{imputes frictions}$

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice, produces it
 - farm 2 draws high z in vegetables, produces them
 - assume no frictions $ightarrow rac{lpha_{g,rice}\eta(p_{rice}y_1)^{\eta}}{x_{1,g}} = rac{lpha_{g,veg}\eta(p_{veg}y_2)^{\eta}}{x_{2,g}}$ in multi-crop model
 - 1-product model: $\frac{\alpha_{g,agg}\eta(p_{agg}y_1)^{\eta}}{x_{1,g}} \neq \frac{\alpha_{g,agg}\eta(p_{agg}y_2)^{\eta}}{x_{2,g}} \rightarrow \text{imputes frictions}$
 - → overstates misallocation

- 1-product model misinterprets crop heterogeneity as frictions
 - farm 1 draws high z in rice, produces it
 - farm 2 draws high z in vegetables, produces them
 - assume no frictions $\rightarrow \frac{\alpha_{g,rice}^{n}\eta(p_{rice}y_1)^n}{x_{1,g}} = \frac{\alpha_{g,veg}\eta(p_{veg}y_2)^n}{x_{2,g}^n}$ in multi-crop model
 - 1-product model: $\frac{\alpha_{g,agg}\eta(p_{agg}y_1)^{\tilde{\eta}}}{x_{1,g}} \neq \frac{\alpha_{g,agg}\eta(p_{agg}y_2)^{\tilde{\eta}}}{x_{2,g}} \rightarrow \text{imputes frictions}$
 - → overstates misallocation

• exercise to isolate: apply 1-product model to counterfactual reallocation data generated by multi-product model

• 1-product model understates TFP dispersion

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_{\rm M} < z_{\rm H}$

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - − severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = z_H

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - − severe frictions → farm mostly grows rice → avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = z_H
 - 1-product model: remove frictions \rightarrow avg TFP still z_M

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - − severe frictions → farm mostly grows rice → avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = z_H
 - 1-product model: remove frictions \rightarrow avg TFP still z_M
 - → 1-product model understates misallocation

- 1-product model understates TFP dispersion
 - a farm has z_L in rice, z_H in vegetables
 - − severe frictions \rightarrow farm mostly grows rice \rightarrow avg TFP = $z_M < z_H$
 - multi-crop model: remove frictions \rightarrow farm switches to vegetables \rightarrow avg TFP = z_H
 - 1-product model: remove frictions \rightarrow avg TFP still z_M
 - → 1-product model understates misallocation
- exercise to isolate: treat farm-crops as separate farms for 1-product model

 \cdot some products have higher returns to scale o some farms grow more in reallocation

- \cdot some products have higher returns to scale o some farms grow more in reallocation
- 1-product model misses their greater potential growth

- some products have higher returns to scale ightarrow some farms grow more in reallocation
- 1-product model misses their greater potential growth
- → 1-product model understates misallocation

- \cdot some products have higher returns to scale o some farms grow more in reallocation
- 1-product model misses their greater potential growth
- → 1-product model understates misallocation
 - exercise to isolate: rescale input elasticities in multi-product model s.t. all crops have the same returns to scale

• simulated multi-product farm as labor distortion $\tau_{f,labor}$ is varied:

• $\tau_{f,labor}$ \uparrow \rightarrow shift from labor-intensive vegetables to land-intensive rice

• apply **single**-product model to extract frictions from simulated **multi**-product data

- apply single-product model to extract frictions from simulated multi-product data
- multi-product model: optimal product choice response to frictions
 - modest $\tau_{f,labor}$ increase \rightarrow shift to land-intensive rice \rightarrow hire even more land rel. to labor

- apply single-product model to extract frictions from simulated multi-product data
- multi-product model: optimal product choice response to frictions
 - modest $\tau_{f,labor}$ increase \rightarrow shift to land-intensive rice \rightarrow hire even more land rel. to labor
- 1-product model: high input ratio dispersion \rightarrow infer large heterogeneity in frictions

- · apply **single**-product model to extract frictions from simulated **multi**-product data
- multi-product model: optimal product choice response to frictions
 - modest $\tau_{f,labor}$ increase \rightarrow shift to land-intensive rice \rightarrow hire even more land rel. to labor
- ullet 1-product model: high input ratio dispersion ullet infer large heterogeneity in frictions
 - ightarrow 1-crop model overstates misallocation

- exercise to isolate: prohibit farms in multi-product model to change product choice in counterfactuals
 - keep product sets fixed
 - keep input allocation across crops fixed: farm can choose $\sum_i x_{f,g,i}$ but $x_{f,g,i}$ gets a fixed share of total

Remove More Distortions → 1-Product Model Overstates

• 1-product error when conducting increasingly expansive reallocations:

