Part E:

. Consider the following processes with arrival times and burst times:

| P3 | 2 | 6 |

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

Pid	Arival	Burst	Completion	Turn	Wating
	Time	Time	time	around	time
				time	
P1	0	5	5	5	0
P2	1	3	8	7	1
Р3	2	6	14	12	2

Gannt chart-(Non Preemptive)

P1	P2	Р3	
0	5	8	14

WT= TAT-BT

TAT=CT-AT

Avg waiting time is(0+1+2)/3=1units.

2. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

|-----|

| P1 | 0 | 3 |

| P2 | 1 | 5 |

| P3 | 2 | 1 |

| P4 | 3 | 4 |

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

Pid	Arival Time	Burst Time	Completion time	Turn around time
P1	0	3	3	3
P2	1	5	8	7
P3	2	1	9	7
P4	3	4	13	10

Gannt chart-(Non Preemptive)

TAT=CT-AT

Average TAT = (3+7+7+10)/4=6.75units

3. Consider the following processes with arrival times, burst times, and priorities (lower number

indicates higher priority):

| P1 | 0 | 6 | 3 |

| P2 | 1 | 4 | 1 |

| P3 | 2 | 7 | 4 |

| P4 | 3 | 2 | 2 |

Calculate the average waiting time using Priority Scheduling.

PI	Ariva	Burs	priorit	Completio	Turn	Watin
D	1	t	У	n time	Aroun	g
	time	time			d time	time.
P1	0	6	3	4	4	2
P2	1	4	1	6	5	1
Р3	2	7	4	9	7	0
P4	3	2	2	16	13	11

P1	P2	Р3	P4	
0	4	6	9	16

WT= TAT-BT

TAT=CT-AT

Avg waiting time is(0+1+2+11)/4=3.5 units.

4. Consider the following processes with arrival times and burst times, and the time quantum for

Round Robin scheduling is 2 units:

Process Arrival Time Burst Time	
P1 0 4	
P2 1 5	
P3 2 2	
P4 3 3	

Calculate the average turnaround time using Round Robin scheduling.

Process Id	Arival time	Burst time	Completion time	Turn Around time
P1	0	4	6	6
P2	1	5	8	7
Р3	2	2	10	8
P4	3	3	13	10

Gantt Chart _

TAT=CT-AT

Avg Turn around time is(6+7+8+10)/4=7.75 units.

5. Consider a program that uses the fork() system call to create a child process. Initially, the parent

process has a variable x with a value of 5. After forking, both the parent and child processes

increment the value of x by 1.

What will be the final values of x in the parent and child processes after the fork() call?

Ans-

So after fork call the value of x will be 6 in child and also in parent copy