Record No.: ZCOER-ACAD/R/16M Revision: 00 Date:01/04/2021

Question Bank

Department: Common for All

Semester: I

Academic Year: 2024- 2025

Class: F.Y.B.Tech.

Div: All

Date:

Course: Engineering Mathematics I & Linear Algebra and Differential Calculus

Unit IV - Partial Differentiation

Q. No.	*************************************	Marks	CO	Blooms
Q.1	If $z = \tan(y + ax) + (y - ax)^{\frac{3}{2}}$ find the value of $\frac{\partial^2 z}{\partial x^2} - a^2 \frac{\partial^2 z}{\partial y^2}.$	5	CO4	2
	If $T = \sin\left(\frac{xy}{x^2 + y^2}\right) + \sqrt{x^2 + y^2}$, by using Euler's theorem, find $x\frac{\partial T}{\partial x} + y\frac{\partial T}{\partial y}$.	5	CO4	3
	If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, by using Euler's theorem prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{4} (\tan^3 u - \tan u).$	5	CO4	3
Q.4	If $u = tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$ then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \left(1 - 4sin^2 u \right) \sin 2u$	5	CO4	2
Q.5	If $u = ax + by$; $y = bx - ay$ then find the value of $\left(\frac{\partial u}{\partial x}\right)_{y} \left(\frac{\partial x}{\partial u}\right)_{v} \left(\frac{\partial y}{\partial v}\right)_{x} \left(\frac{\partial v}{\partial y}\right)_{u}.$	5	CO4	2
Q.6	If $u = sin^{-1} \left(\sqrt{x^2 + y^2} \right)$ then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}.$	5	CO4	3
	If $u = f(r, s)$ where $r = x^2 + y^2$, $s = x^2 - y^2$ then show that $y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = 4xy \frac{\partial u}{\partial r}$.	5	CO4	2
Q.8	If $u = \ln(x^2 + y^2)$, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$	5	CO4	2

ZEAL EDUCATION SOCIETY'S ZEAL COLLEGE OF ENGINEERING AND RESEARCH

NARHE | PUNE -41 | INDIA

Record No.: ZCOER-ACAD/R/16M		Revision: 00	Date:01/04/2021		
Q.9	If $e^{2u} = y^2 - x^2$, $cosec \ v = \frac{y}{x}$ the $\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)$.	n find the value of	5	CO4	3
Q.10	If $u = f(x - y, y - z, z - x)$ then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$		5	CO4	2
Q.11	If $u = ax + by$, $v = bx - ay$ then $\left(\frac{\partial u}{\partial x}\right)_v \left(\frac{\partial x}{\partial v}\right)_v$	find the value of	5	CO4	2
Q.12	If $u = \log(x^3 + y^3 - xy^2 - x^2y)$: $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 u = \frac{-4}{(x+y)^2}.$	then prove that	5	CO4	2

