

number of Solutions in [0, 27] Good ton (SK WSA) = Wt (SK 8mA) ten(STEOSA) = ten(STEMA) ten (STWSK) ten (STEMA) =1 tenAtenB =1

$$5\pi \cos x + 5\pi \delta m A = (2n-1)\frac{\pi}{2}$$

$$65x + \delta m A = (2n-1)\frac{\pi}{10}$$

$$65x + \delta m X = C$$

$$1c1 = \sqrt{2^{2}+b^{2}}$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$6 = 1$$

$$7 = 1$$

$$7 = 1$$

$$7 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

$$8 = 1$$

20-11 < 6		= 52	20-1

if
$$n=1$$

$$\omega_{3}x + \delta_{m}x = \frac{2n-1}{10} = \frac{1}{10}$$

$$\frac{1}{\sqrt{2}} \omega_{3}x + \frac{1}{\sqrt{2}} \delta_{m}x = \frac{1}{10\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} \omega_{3}x + \frac{1}{\sqrt{2}} \delta_{m}x = \frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

for one volue of $n \rightarrow assirations$ we have 14 values of n, number
of have in values of n, number
of have in = 14x2 = 28 halusing

TYPE AS USING SUBSTITUTION. 8mx +wsx = t 8m2x + cos4 + 28mxcosx = +2 1+ 8max= +2 8m2x = +2-1

$$8mx - cosx = t$$

 $8m^2x + cos^2x - 28mxcosx = t^2$
 $8m 2x = (-t^2 - t^2)$

Q
$$\int mx + \omega_3 x = 1 + \int mx \omega_3 x$$

 $\int mx + \omega_3 x = 1 + \int mx \omega_3 x$
 $\int mx + \omega_3 x = t$
 $\int 1 + \int mx = t^2$
 $\int mx = t^2 - 1$
 $\int mx = t^2 - 1$
 $\int mx = t^2 - 1$

$$(t-1)^{2}=0$$

$$t=1$$

$$\delta m \times + \omega s \times = 1$$

$$\sqrt{a^{2}+b^{2}} = \sqrt{3}$$

$$\sqrt{a^{2}+b^{2}} = \sqrt{3}$$

$$\sqrt{a} \delta m \times + \sqrt{3} \omega s \times = \sqrt{3}$$

$$\delta m \pi y \quad \omega_{3} \pi y$$

$$\omega s (x - \pi y)^{-} \sqrt{3}$$

$$2 \times - \pi y^{2} = 2n\pi - \pi y$$

$$x = 2n\pi + \pi$$

$$x = 2n\pi - \pi y$$

$$x = 2n\pi - \pi y$$

$$t = \frac{1}{4}$$
 $t = -1$
 $8m2 \times cos2 \times = \frac{1}{4}$
 $28m2 \times cos2 \times = 1$
 $8m4 \times = 1$
 $4x = nx + (-1)^n = 1$
 $4x = nx + (-1)^n = 1$
 $4x = nx + (-1)^n = 1$

Smax cosax = -1 2 8m2× 6052x=-7 8m4x = -3 Rejected

	HOMEWORK	CIASS # 2-
BB#6	4,7	
BB#7	1,2,5	WORKSHEET # 2
£×#1	23,24,27	
E x# 2	12,14	
EXYA	3,12	
Ex 4B	4,7,11,16	
Ex#5	3	