Tarea 18 - Integracion Numérica

Marco Antonio Esquivel Basaldua (MCMESQ)

Un método de cuadratura es una aproximación de una integral definida de una función f(x) que selecciona puntos x_i en la evaluación del intervalo de integración y lo multiplica por un coeficiente de peso λ_i para cada valor de x_i .

$$\int_{x_0}^{x_n} f(x) \ dx = \sum_{i=0}^n \lambda_i f(x_i)$$

A diferencia de las reglas de cuadratura de Newton-Cotes en las que el valor de las x_i son conocidas y están dadas por $x_i=x_0+ih$, donde $h=\frac{x_n-x_0}{n}$, en la cuadratura de Gauss se seleccionan estos puntos de manera óptima construida para dar el resultado de un polinomio de grado menor o igual a 2n+1. Por lo que se puede obtener mayor precisión al utilizar estas fórmulas. El dominio de tal cuadratura por regla es de [-1,1], dada por:

$$\int_{-1}^1 f(x) dx = \sum_{i=1}^n \lambda_i f(x_i)$$

Usando el método de Gauss-Legendre λ_i está dado por:

$$\lambda_i=rac{2}{(1-x_i^2)[P_n'(x_i)]^2}$$

donde P_n son los polinomios de Legendre en el intervalo [-1,1].

Se presenta una lista de de coeficientes λ_i y puntos x_i para $n=0,\ldots,4$:

Number of points (n + 1)	Points (xi)	Weights (λ_i)	Gauss-Legendre formula $\int_{-1}^{\frac{\pi}{2}} f(x) dx = \sum_{i=0}^{n} \lambda_{i} f(x_{i})$
1	0	2	= 2f(0)
2	$\pm\sqrt{\frac{1}{3}}$	1	$= f\left(-\sqrt{\frac{1}{3}}\right) + f\left(\sqrt{\frac{1}{3}}\right)$
3	0 $\pm \sqrt{\frac{3}{5}}$	8 9 5 9	$= \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$
4	$\pm \sqrt{\frac{3 - 2\sqrt{6/5}}{7}}$ $\pm \sqrt{\frac{3 + 2\sqrt{6/5}}{7}}$		$\begin{split} &=\frac{18+\sqrt{30}}{36}f\left(\sqrt{\frac{3-2\sqrt{6/5}}{7}}\right)+\frac{18+\sqrt{30}}{36}\\ &f\left(-\sqrt{\frac{3-2\sqrt{6/5}}{7}}\right)+\frac{18-\sqrt{30}}{36}f\left(\sqrt{\frac{3+2\sqrt{6/5}}{7}}\right)\\ &+\frac{18-\sqrt{30}}{36}f\left(-\sqrt{\frac{3+2\sqrt{6/5}}{7}}\right) \end{split}$
5	0 $-\frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$ $\pm \frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$		$\begin{split} &= \frac{322 + 13\sqrt{70}}{900} f\left(-\frac{1}{3}\sqrt{5 - 2\sqrt{\frac{10}{7}}}\right) + \frac{322 + 13\sqrt{70}}{900} \\ &f\left(\frac{1}{3}\sqrt{5 - 2\sqrt{\frac{10}{7}}}\right) + \frac{128}{225} f(0) + \frac{322 - 13\sqrt{70}}{900} \\ &f\left(-\frac{1}{3}\sqrt{5 + 2\sqrt{\frac{10}{7}}}\right) + \frac{322 - 13\sqrt{70}}{900} f\left(\frac{1}{3}\sqrt{5 + 2\sqrt{\frac{10}{7}}}\right) \end{split}$

Fuente: Gupta, Rajesh Kumar. "Numerical Methods, Fundamentals and Applications". Cambridge
University Press, 2019.

Los cambios de intervalos van de [-1,1] después de aplicar la cuadratura de Gauss:

$$\int_a^b f(x) \ dx = rac{b-a}{2} \int_{-1}^1 f\left(rac{b-a}{2}x + rac{a+b}{2}
ight) dx$$

Aplicando la aproximación:

$$\int_a^b f(x) \ dx pprox rac{b-a}{2} \sum_{i=1}^n \lambda_i f\left(rac{b-a}{2} x_i + rac{a+b}{2}
ight)$$

En este reporte se presentan los métodos de Integración usando las fórmulas de Gauss-Legendre a partir de la cuadratura de Gauss para n=0,1,2,3,4.

Se ejemplifican estas fórmulas para la integración de las funciones:

$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$

$$\int_{1}^{2} \sqrt{1+\cos^2 x} \, dx$$

para n = 0, 1, 2, 3, 4

El valor de las integrales con una exactitud de 6 decimales es:

$$\int_{-1}^{1} rac{1}{1+x^2} dx = rac{\pi}{2} pprox 1.570796 \ \int_{1}^{2} \sqrt{1+\cos^2 x} \ dx pprox 1.040246$$

Se incluye una comparativa de las integrales de estas funciones con las reglas por la cuadratura de Newton-Cotes (regla del Trapezoide, regla de Simpson 1/3, Simpson 3/8, la regla de Boole y la regla de Weddle).

Un punto (n = 0)

Al calcular el valor de ambas integrales para n=0 usando la cuadratura de Newton-Cotes y la cuadratura de Gauss-Legendre se obtiene:

Integral	Newton-Cotes (regla del Trapezoide)	Gauss-Legendre
$\int_{-1}^1 rac{1}{1+x^2} dx$	1	2
Error	0.570796	0.429204
$\int_1^2 \sqrt{1+\cos^2 x} \ dx$	1.109881	1.002499
Error	0.069635	0.037747

Dos puntos (n = 1)

Al calcular el valor de ambas integrales para n=1 usando la cuadratura de Newton-Cotes y la cuadratura de Gauss-Legendre se obtiene:

Integral	Newton-Cotes (regla Simpson 1/3)	Gauss-Legendre
$\int_{-1}^1 rac{1}{1+x^2} dx$	1.666667	1.5
Error	0.095871	0.070796
$\int_1^2 \sqrt{1+\cos^2 x} \ dx$	1.038293	1.041583
Error	0.001953	0.001337

Tres puntos (n = 2)

Al calcular el valor de ambas integrales para n=2 usando la cuadratura de Newton-Cotes y la cuadratura de Gauss-Legendre se obtiene:

Integral	Newton-Cotes (regla Simpson 3/8)	Gauss-Legendre
$\int_{-1}^1 rac{1}{1+x^2} dx$	1.6	1.583333
Error	0.029204	0.012537
$\int_1^2 \sqrt{1+\cos^2 x} \ dx$	1.03942	1.040205
Error	0.000826	0.000041

Cuatro puntos (n = 3)

Al calcular el valor de ambas integrales para n=3 usando la cuadratura de Newton-Cotes y la cuadratura de Gauss-Legendre se obtiene:

Integral	Newton-Cotes (regla de Boole)	Gauss-Legendre
$\int_{-1}^1 rac{1}{1+x^2} dx$	1.56	1.568627
Error	0.010796	0.002169
$\int_1^2 \sqrt{1+cos^2x} \ dx$	1.040287	1.040248
Error	0.000041	0.000002

Cinco puntos (n=4)

Al calcular el valor de ambas integrales para n=4 usando la cuadratura de Newton-Cotes y la cuadratura de Gauss-Legendre se obtiene:

Integral	Newton-Cotes (regla de Weddle)	Gauss-Legendre
$\int_{-1}^1 rac{1}{1+x^2} dx$	1.572308	1.571171
Error	0.001512	0.00375
$\int_1^2 \sqrt{1+cos^2x}\ dx$	1.040247	1.040246
Error	0.000001	0.0

Se puede observar que la integración por la cuadratura de Gauss es mejor que la realizada por la cuadratura de Newton-Cotes. Se aprecia que el error, en el caso de los métodos de Gauss-Legendre es más cercana a cero que el error generado por las integraciones de la cuadratura de Newton -Cotes.

En esta tarea se incluye, ademàs de los programas para cada uno de los valores de n solicitados, un programa que los incluye a todos, solo es necesario que el usuario ingrese el valor de n por la consola una vez que éste sea solicitado. A manera de completar la comparativa con las reglas usadas en la Tarea 17 usando la cuadratura de Newton-Cotes se incluye el caso para 5 puntos, donde n=4, que corresponde, en Newton-Cotes, a la regla de Weddle.