

Near field communication transceiver

PCD: proximity coupling device,邻近耦合设备(或读卡器) PICC: proximity integrated circuit card,邻近集成电路卡

Datasheet - production data

Features

- · Operating modes supported:
 - Reader/Writer
 - Card Emulation (ISO/IEC 14443-3 Type A)
 - Peer-to-Peer
- Hardware features
 - Dedicated internal frame controller
 - Highly integrated Analog Front End (AFE) for RF communications
 - Transmission and reception modes
 - Optimized power management
 - Tag Detection mode
 - Field Detection mode
- RF communication @13.56 MHz
 - ISO/IEC 14443 Type A and B in Reader and Card Emulation modes
 - ISO/IEC 15693 in Reader mode
 - ISO/IEC 18092 in Reader and Card Emulation modes
 - MIFARE® Classic compatible (a) (b)

- Communication interfaces with a Host Controller
 - Serial peripheral interface (SPI) Slave interface up to 2 Mbps
 - Up to 528-byte command/reception buffer (FIFO) depending on communication protocol
- 32-lead, 5x5 mm, very thin fine pitch quad flat (VFQFPN) ECOPACK®2 package

Applications

Typical protocols supported:

- ISO/IEC 14443-3 Type A and B tags
- ISO/IEC 15693 tags
- ISO/IEC 18000-3M1 tags
- NFC Forum tags: Types 1, 2, 3 and 4
- ST Dual Interface EEPROM

Typical ST95HF applications include:

- Handheld readers (OTP, PIN pad, POS)
 - E-payment, physical access control, transport, and government
- PC-Link (USB /Serial/PCMCIA)
 - E-payment, security access & authentication, data exchange)
- USB token
 - Security access & authentication, data exchange
- Integrated solution (chipset)
- Keyboard, laptop, set top box, printer, TV, etc.
- E-payment, data exchange, Bluetooth pairing, security access

MIFARE and MIFARE Classic are registered trademarks of NXP B.V. and are used under license.

Parity Framing mode is compatible with MIFARE® Classic requirements. However, access to Authenticated state must be supported by the external secure host which embeds the MIFARE® Classic library.

Contents ST95HF

Contents

1	Desc	Description				
	1.1	Block	diagram	5		
	1.2	List of	terms	6		
2	Pin a	and sigi	nal descriptions	7		
3	Pow	er mana	agement and operating modes	9		
	3.1	Opera	ting modes	9		
	3.2	Startu	p sequence	10		
4	Com	nmunica	ition protocols	12		
	4.1	Serial	peripheral interface (SPI)	12		
		4.1.1	Polling mode	12		
		4.1.2	Interrupt mode	14		
	4.2	Error o	codes	14		
	4.3	Suppo	rt of long frames	14		
5	Com	nmands		16		
	5.1	Comm	and format	16		
	5.2	List of	commands	16		
	5.3	IDN co	ommand (0x01) description	17		
	5.4	Protoc	col Select command (0x02) description	18		
	5.5	Pollfie	ld command (0x03) description	23		
	5.6	Send F	Receive (SendRecv) command (0x04) description	24		
	5.7		command (0x05) description			
	5.8	Send of	command (0x06) description	31		
	5.9		ommand (0x07) description			
		5.9.1	Idle command parameters			
		5.9.2	Using LFO frequency setting to reduce power consumption	35		
		5.9.3	Optimizing wake-up conditions	36		
		5.9.4	Using various techniques to return to Ready state	36		
		5.9.5	Tag detection calibration procedure	38		
	5.10	Read I	Register (RdReg) command (0x08) description	39		

ST95HF Contents

	5.11	Write Register (WrReg) command (0x09) description 4	
		5.11.1 Improving RF performance	
		5.11.2 Improving frame reception for ISO/IEC 14443 Type A tags	
		5.11.3 Improving RF reception for ISO/IEC 18092 tags	
	5.12	Subcarrier frequency response (0x0B) description	
	5.13	AcFilter command (0x0D) description4	
	5.14	Echo command (0x55) description	7
6	Electr	ical characteristics4	8
	6.1	Absolute maximum ratings	8
	6.2	DC characteristics 4	١9
	6.3	Power consumption characteristics	50
	6.4	SPI characteristics	52
	6.5	RF characteristics	54
	6.6	Oscillator characteristics 5	
7	Packa	ige mechanical data	. 7
			_
8	Part n	umbering 5	9
Appendix	A A	dditional Idle command description 6	0
Appendix	в Ех	cample of tag detection calibration process 6	i 1
Appendix		cample of tag detection command using results of tag detection	
Appendix		camples of ST95HF command code to activate NFC Forum and O/IEC 15693 tags	5
	D.1	ISO/IEC 14443 Type A	35
		D.1.1 NFC Forum Tag Type 1 (Topaz)	35
		D.1.2 NFC Forum Tag Type 2	37
		D.1.3 NFC Forum Tag Type 2 or 4: Using split frames to resolve collisions 6	38
		D.1.4 NFC Forum Tag Type 2	
		D.1.5 NFC Forum Tag Type 4A	' 5
	D.2	ISO/IEC 14443 Type B	'8
		D.2.1 NFC Forum Tag Type 4B	'8

Contents			ST95HF
	D.3	ISO/IEC	18092
		D.3.1	NFC Forum Tag Type 3
	D.4	ISO/IEC	15693
		D.4.1	ISO/IEC 15693 tag
Appendi	x E C	ard emu	lation communication
Revision	histor	у	

ST95HF Description

1 Description

The ST95HF is an integrated transceiver IC for contactless applications.

The ST95HF manages frame coding and decoding in Reader, Card Emulation and Peer-to-Peer modes for standard applications such as near field communication (NFC), proximity and vicinity standards.

The ST95HF embeds an Analog Front End to provide the 13.56 MHz Air Interface.

The ST95HF supports ISO/IEC 14443 Type A and B communication in Reader and Card Emulation modes, ISO/IEC 15693 (single or double subcarrier in Reader mode only) and ISO/IEC 18092 protocols in Reader and Card Emulation modes.

The ST95HF also supports the detection, reading and writing of NFC Forum Type 1, 2, 3 and 4 tags.

Figure 1. ST95HF application overview

1.1 Block diagram

Figure 2. ST95HF block diagram

Description ST95HF

1.2 List of terms

Table 1. List of terms

Term	Meaning		
DAC	Digital analog converter		
GND	Ground		
HFO	High frequency oscillator		
LFO	Low frequency oscillator		
MCU	Microcontroller unit		
NFC	Near Field Communication		
RFID	Radio Frequency Identification		
RFU	Reserved for future use		
SPI	Serial peripheral interface		
t _L	Low frequency period		
t _{REF}	Reference time		
WFE	Wait For Event		

2 Pin and signal descriptions

TX1 NC TX2 NC NC GND NC ST_R1 RX1 SSI_1 RX2 SSI_0 NC SPI_SCK GND_RX SPI_MOSI SPI_SS ۷PS IRQ_IN $\frac{8}{100}$ S IRQ_OUT Shaded area represents the dissipation pad. (Must be connected to ground.)

Figure 3. ST95HF pinout description

Table 2. ST95HF pin descriptions

Pin	Pin name	Type ⁽¹⁾	Main function	Alternate function
1	TX1	0	Driver output 1	
2	TX2	0	Driver output 2	
3	NC		Not connected	
4	NC		Not connected	
5	RX1	I	Receiver input 1	
6	RX2	I	Receiver input 2	
7	NC		Not connected	
8	GND_RX	Р	Ground (analog)	
9	ST_R0	0	ST Reserved ⁽²⁾	
10	NC		Not connected	
11	NC		Not connected	
12	ĪRQ_IN	I ⁽³⁾	Interrupt input	
13	VPS	Р	Main power supply	

Table 2. ST95HF pin descriptions (continued)

Pin	Pin name	Type ⁽¹⁾	Main function	Alternate function
14	ĪRQ_OUT	O ⁽⁴⁾	Interrupt output	
15	SPI_SS	I ⁽⁵⁾	SPI Slave Select (active low)	
16	SPI_MISO	O ⁽⁵⁾	SPI Data, Slave Output	
17	SPI_MOSI	l ⁽⁵⁾	SPI Data, Slave Input (5)	
18	SPI_SCK	I ⁽⁶⁾	SPI serial clock	
19	SSI_0	l (2)	Select serial communication interface	
20	SSI_1	I (5)	Select serial communication interface	
21	ST_R1	l ⁽⁷⁾	ST Reserved	
22	GND	Р	Ground (digital)	
23	NC		Not connected	
24	NC		Not connected	
25	NC		Not connected	
26	NC		Not connected	
27	NC		Not connected	
28	NC		Not connected	
29	XIN		Crystal oscillator input	
30	XOUT		Crystal oscillator output	
31	GND_TX	Р	Ground (RF drivers)	
32	VPS_TX	Р	Power supply (RF drivers)	

- 1. I: Input, O: Output, and P: Power
- 2. Must add a capacitor to ground (~1 nF).
- 3. Pad internally connected to a Very Weak Pull-up to VPS.
- 4. Pad internally connected to a Weak Pull-up to VPS.
- 5. Must not be left floating.
- 6. Pad internally connected to a Weak Pull-down to GND.
- 7. Pad input in High Impedance. Must be connected to VPS.

3 Power management and operating modes

3.1 Operating modes

The ST95HF has 2 operating modes: Wait for Event (WFE) and Active. In Active mode, the ST95HF communicates actively with a tag or an external host (an MCU, for example). WFE mode includes four low consumption states: Power-up, Hibernate, Sleep/Field Detector and Tag Detector. 两个模式:可以相互转化

The ST95HF can switch from one mode to another.

Table 3. ST95HF operating modes and states

Mode	State	Description
	Power-up	This mode is accessible directly after POR. Low level on IRQ_IN pin (longer than 10 µs) is the only wakeup source. LFO (low-frequency oscillator) is running in this state.
	Hibernate	Lowest power consumption state. The ST95HF has to be woken-up in order to communicate. Low level on \overline{IRQ}_{IN} pin (longer than 10 μ s) is the only wakeup source.
Wait For Event (WFE)	Sleep/Field Detector	Low power consumption state. Wakeup source is configurable: - Timer - IRQ_IN pin - SPI_SS pin - Field Detector LFO (low-frequency oscillator) is running in this state.
	Tag Detector	Low power consumption state with tag detection. Wakeup source is configurable: - Timer - IRQ_IN pin - SPI_SS pin - Tag detector LFO (low-frequency oscillator) is running in this state.
	Ready	In this mode, the RF is OFF and the ST95HF waits for a command (PROTOCOLSELECT,) from the external host via the selected serial interface (SPI).
Active	Reader	The ST95HF can communicate with a tag using the selected protocol or with an external host using the SPI interface.
	Card Emulation	The ST95HF can communicate as a Card or Tag with an external reader. The Card or Tag application is located in the Host and communicates with the ST95HF via the SPI interface.

Hibernate, Tag Detector, and Sleep/Field Detector states can only be activated by a command from the external host. As soon as any of these three states are activated, the ST95HF can no longer communicate with the external host. It can only be woken up.

The behavior of the ST95HF in 'Tag Detector' state is defined by the Idle command.

Figure 4. ST95HF initialization and operating state change

3.2 Startup sequence

After the power supply is established at power-on, the ST95HF waits for a low pulse on the pin $\overline{IRQ_IN}$ (t₁) before automatically selecting the external interface (SPI) and entering Ready state after a delay (t₃).

Figure 5. Power-up sequence

- 1. Note for pin SSI0: - SPI selected
- 2. Pin IRQ_IN low level < 0.2 VPS_Main.

Note:

When ST95HF leaves <u>WFE</u> mode (from Power-up, Hibernate, Tag Detector, or Sleep/Field Detector) following an $\overline{IRQ_IN}$ low level pulse.

5/

Figure 5 shows the power-up sequence for a ST95HF device; where,

t₀ is the initial wake-up delay
 t₁ is the minimum interrupt width
 t₂ is the delay for the serial interface selection
 t₃ is the HFO setup time (t_{SU(HFO)})
 100 µs (minimum)
 250 ns (typical)
 10 ms (maximum)

• t_4 is the V_{PS} ramp-up time from 0V to V_{PS} 10 ms (max. by design validation)

Note: VPS must be 0V before executing the start-up sequence.

The serial interface is selected after the following falling edge of pin $\overline{IRQ_IN}$ when leaving from POR or Hibernate state.

Table 4 lists the signal configuration used to select the serial communication interface.

Table 4. Select serial communication interface selection table

Pin	Serial interface
SSI_0	SPI: 1
SSI_1	SPI: 0

4 Communication protocols

4.1 Serial peripheral interface (SPI)

4.1.1 Polling mode

In order to send commands and receive replies, the application software has to perform 3 steps.

- 1. Send the command to the ST95HF.
- 2. Poll the ST95HF until it is ready to transmit the response.
- 3. Read the response.

The application software should never read data from the ST95HF without being sure that the ST95HF is ready to send the response.

The maximum allowed SPI communication speed is f_{SCK} .

A Control byte is used to specify a communication type and direction:

```
    0x00: Send command to the ST95HF
```

- 0x03: Poll the ST95HF
- 0x02: Read data from the ST95HF
- 0x01: Reset the ST95HF

spi步骤:send、轮询、read、Reset

The SPI_SS line is used to select a device on the common SPI bus. The SPI_SS pin is active low.

When the $\overline{\text{SPI_SS}}$ line is inactive, all data sent by the Master device is ignored and the MISO line remains in High Impedance state.

In Slave mode, the phase and polarization are defined with CPOL = 1 and CPHA = 1 or CPOL = 0 and CPHA = 0.

Figure 6. Sending command to ST95HF

Figure 7. Polling the ST95HF until it is ready

Table 5. Interpretation of flags

Bit	Meaning (Application point of view)	
[7:4] Not significant		
3 Data can be read from the ST95HF when set.		
2 Data can be sent to the ST95HF when set.		
[1:0]	Not significant	

Figure 8. Reading data from ST95HF

Data must be sampled at the rising edge of the SCK signal.

'Sending', 'Polling' and 'Reading' commands must be separated by a high level of the SPI_SS line. For example, when the application needs to wait for data from the ST95HF, it asserts the SPI_SS line low and issues a 'Polling' command. Keeping the SPI_SS line low, the Host can read the Flags Waiting bit which indicates that the ST95HF can be read. Then, the application has to assert the SPI_SS line high to finish the polling command. The Host asserts the SPI_SS line low and issues a 'Reading' command to read data. When all data is read, the application asserts the SPI_SS line high.

The application is not obliged to keep reading Flags using the Polling command until the ST95HF is ready in one command. It can issue as many 'Polling' commands as necessary. For example, the application asserts SPI_SS low, issues 'Polling' commands and reads Flags. If the ST95HF is not ready, the application can assert SPI_SS high and continue its algorithm (measuring temperature, communication with something else). Then, the application can assert SPI_SS low again and again issue 'Polling' commands, and so on, as many times as necessary, until the ST95HF is ready.

Note that at the beginning of communication, the application does not need to check flags to start transmission. The ST95HF is assumed to be ready to receive a command from the application.

Figure 9. Reset the ST95HF

To reset the ST95HF using the SPI, the application sends the SPI Reset command (Control Byte 01, see *Figure 9*) which starts the internal controller reset process and puts the ST95HF into Power-up state. The ST95HF will wake up when pin IRQ_IN goes low. The ST95HF reset process only starts when the SPI_SS pin returns to high level.

Caution: SPI communication is MSB first.

4.1.2 Interrupt mode

When the ST95HF is configure to use the SPI serial interface, pin IRQ_OUT is used to give additional information to user. When the ST95HF is ready to send back a reply, it sends an Interrupt Request by setting a low level on pin IRQ_OUT, which remains low until the host reads the data. 用于读取send的返回中断请求

The application can use the Interrupt mode to skip the polling stage.

Caution: SPI communication is MSB first.

4.2 Error codes

Table 6. Possible error codes and their meaning

Code	Name	Meaning	* (1)
0x80	EFrameRecvOK	Frame correctly received (additionally see CRC/Parity information)	
0x85	EUserStop	Stopped by user (used only in Card mode)	
0x86	ECommError	Hardware communication error	+
0x87	EFrameWaitTOut	Frame wait time out (no valid reception)	
0x88	EInvalidSof	Invalid SOF	+
0x89	EBufOverflow	Too many bytes received and data still arriving	
A8x0	EFramingError	if start bit = 1 or stop bit = 0	+
0x8B	EEgtError	EGT time out	
0x8C	EInvalidLen	Valid for ISO/IEC 18092, if Length <3	
0x8D	ECrcError	CRC error, Valid only for ISO/IEC 18092	
0x8E	ERecvLost	When reception is lost without EOF received (or subcarrier was lost)	+
0x8F	ENoField	When Listen command detects the absence of external field	
0x90 EUnintByte		Residual bits in last byte. Useful for ACK/NAK reception of ISO/IEC 14443 Type A.	

^{1.} Can be returned by EMD routine.

4.3 Support of long frames

In Reader mode it is possible to receive up to 528 bytes of frame data from VICC and Type-B cards and up to 526 bytes of frame data from Type-A cards. In this case, the device sends a reply to the external MCU in the following format:

<ResultCode> + <Len> + <N bytes of data>

Table 7. Format of ResultCode

Bit	Meaning			
7	Always 1			
6	Bit 9 of Length See examples and explanation below			
5				
4	If set, there are residual bits in the last byte. Applicable only for Type-A protocol.			
3:0	Always 0			

Figure 10. Long frame format

The number of databytes is 10-bit long.

Table 8. Examples of ResultCode: Len pairs

ResultCode	Len	Length of data
0x80	0x00	0
0x80	0x01	1
0x80	0xFF	255
0xA0	0x00	256
0xA0	0x01	257
0xA0	0xFF	511
0xC0	0x00	512
0xC0	0x01	513

5 Commands

5.1 Command format

The frame from the Host to the ST95HF has the following format:

<CMD><Len><Data>

• The frame from the ST95HF to Host has the following format:

<RespCode><Len><Data>

These two formats are available in SPI mode.

Fields <Cmd>, <RespCode> and <Len> are always 1 byte long. <Data> can be from 0 to 253 bytes.

Note:

The ECHO command is an exception as it has only one byte (0x55).

The following symbols correspond to:

>>> Frame sent by the Host to ST95HF

<<< Frame sent by the ST95HF to the Host

5.2 List of commands

Table 9 summarizes the available commands.

Table 9. List of ST95HF commands

Code	Command	Description
0x01	IDN	Requests short information about the ST95HF and its revision.
0x02	PROTOCOLSELECT	Selects the RF communication protocol and specifies certain protocol-related parameters.
0x03	POLLFIELD	Returns the current value of the FieldDet flag (used in Card Emulation mode).
0x04	SendRecv	Sends data using the previously selected protocol and receives the tag response.
0x05	LISTEN	Listens for data using previously selected protocol (used in Card Emulation mode).
0x06	SEND	Sends data using previously selected protocol (used in Card Emulation mode).
0x07	IDLE	Switches the ST95HF into a low consumption Wait for Event (WFE) mode (Power-up, Hibernate, Tag Detector, or Sleep/Field Detector), specifies the authorized wake-up sources and waits for an event to exit to Ready state.
0x08	RDREG	Reads Wake-up event register or the Analog Register Configuration (ACC_A or ARC_B) register.

Table 9. List of ST95HF commands (continued)

Code	Command	Description
0x09	WRREG	Writes Analog Register Configuration (ACC_A or ARC_B)) register or writes index of ACC_A or ARC_B register address. Writes the Timer Window (TimerW) value dedicated to ISO/IEC 14443 Type A tags. Writes the AutoDetect Filter enable register dedicated to ISO/IEC 18092 tags.
0x0B	SubFreqRes	Returns the most recent subcarrier frequency detected for ISO/IEC 18092 communication.
0x0D	ACFILTER	Enables or disables the anti-collision filter for ISO/IEC 14443 Type A protocol.
0x55 Есно		ST95HF performs a serial interface ECHO command (reply data $0x55$ or stops the Listening state when a listen command has been sent without error).
(Other codes	ST Reserved

5.3 IDN command (0x01) description

The IDN command (0x01) gives brief information about the ST95HF and its revision.

Table 10. IDN command description

Direction	Data	Comments	Example
Host to	0x01	Command code	0.0100
ST95HF	0x00	Length of data	>>>0x0100
	0x00	Result code	<<0x000F4E4643204653324A415354
	<len></len>	Length of data	134002ACE
	<device id=""></device>	Data in ASCII format (13	In this example,
ST95HF to		bytes)	<<0x4E4643204653324A4153543400
Host	<rom crc=""></rom>	CRC calculated for ROM content (2 bytes)	: 'NFC FS2JAST4', #4 (Last Character of NFC FS2JAST4 means ROM code revision 4.) 0x2ACE: CRC of ROM (real CRC may
			differ from this example)

It takes approximately 6 ms to calculate the CRC for the entire ROM. The application must allow sufficient time for waiting for a response for this command.

5.4 Protocol Select command (0x02) description

This command selects the RF communication protocol and prepares the ST95HF for communication with a reader or contactless tag.

Table 11. Protocol Select command description

Direction	Data	Comments	Example
	0x02	Command code	
	<len></len>	Length of data	
Host to ST95HF	<protocol></protocol>	Protocol codes (Reader): 00: Field OFF 01: ISO/IEC 15693 02: ISO/IEC 14443-A / NFC Forum Tag Type 1, Type 2, Type 4A 03: ISO/IEC 14443-B / NFC Forum Tag Type 4B 04: ISO/IEC 18092 / NFC Forum Tag Type 3	See Table 12: List of <parameters> values for the ProtocolSelect command for different protocols (Reader) on page 19. See Table 13: List of <parameters> values for different protocols (Card Emulation) on page 22.</parameters></parameters>
	<parameters></parameters>	Each protocol has a different set of parameters. See <i>Table 12</i> .	
ST95HF to	0x00	Result code	<<<0x0000
Host	0x00	Length of data	Protocol is successfully selected
ST95HF to	0x82	Error code	<<<0x8200
Host	0x00	Length of data	Invalid command length
ST95HF to	0x83	Error code	<<<0x8300
Host	0x00	Length of data	Invalid protocol

Note that there is no 'Field ON' command. When the application selects an RF communication protocol, the field automatically switches ON if the Reader state is selected.

When the application selects a protocol, the ST95HF performs all necessary settings: it will choose the appropriate reception and transmission chains, switch ON or OFF the RF field and connect the antenna accordingly.

Different protocols have different sets of parameters. Values for the <Parameters> field are listed in *Table 12*.

Table 12. List of <Parameters> values for the ProtocolSelect command for different protocols (Reader)

Drotocol	Code	Parameters — ↑byte		Parameters — ↑ byte	From the of common de
Protocol		Byte	Bit	Function	Examples of commands
Field OFF	0x00	0	7:0	RFU	>>>0x02020000
			7:6	RFU	
			5:4	00: 26 Kbps (H) 01: 52 Kbps 10: 6 Kbps (L) 11: RFU	H 100 S: >>>0x02 02 01 01 H 100 D: >>>0x02 02 01 03 H 10 S: >>>0x02 02 01 05 H 10 D: >>>0x02 02 01 07
ISO/IEC 15693	0x01	0	3	0: Respect 312-µs delay 1: Wait for SOF ⁽¹⁾	L 100 S: >>>0x02 02 01 21 L 100 D: >>>0x02 02 01 23
			2	0: 100% modulation (100) 1: 10% modulation (10)	L 10 S: >>>0x02 02 01 25 L 10 D: >>>0x02 02 01 27
			1	0: Single subcarrier (S) 1: Dual subcarrier (D)	In these examples, the CRC is automatically appended.
			0	Append CRC if set to '1'.	automatically appended.
			7:6	Transmission data rate 00: 106 Kbps 01: 212 Kbps (2) 10: 424 Kbps 11: RFU	>>>0x02020200: ISO/IEC 14443 Type A tag, 106 Kbps transmission and reception rates, Time interval 86/90
ISO/IEC 14443 Type A NFC Forum Tag Type 1 (Topaz)		0	5:4	Reception data rate 00: 106 Kbps 01: 212 Kbps ⁽²⁾ 10: 424 Kbps 11: RFU	Note that REQA, WUPA, Select20 and Select70 commands use a fixed interval of 86/90 µs between a request and its reply. Other commands use a variable interval with
(- -	0x02		3	RFU	fixed granularity. Refer to the ISO/IEC 14443
NFC Forum Tag			2:0	RFU	standard for more details.
Type 2		1		PP	These 5 bytes are optional. The
NFC Forum Tag		2		MM	default PP:MM:DD value is 0 (corresponds to FDT 86/90µs).
Type 4A		3		DD (optional to PP:MM)	For other values, FDT = (2^PP)*(MM+1)*(DD+128) *32/13.56 µs
		4		ST Reserved (Optional)	
		5		ST Reserved (Optional)	

Table 12. List of <Parameters> values for the ProtocolSelect command for different protocols (Reader) (continued)

Drotocol	Code			Parameters	Evenules of commands										
Protocol	Code	Byte	Bit	Function	Examples of commands										
	0x03		7:6	Transmission data rate 00: 106 Kbps 01: 212 Kbps 10: 424 Kbps 11: 848 Kbps											
		0	5:4	Reception data rate 00: 106 Kbps 01: 212 Kbps 10: 424 Kbps 11: 848 Kbps	>>>0x02020301: ISO/IEC 14443 Type B tag with CRC appended										
			3:1	RFU											
ISO/IEC 14443			0	Append CRC if set to '1'.											
Type B		1		PP	These 9 bytes are optional.										
NFC Forum Tag		2		MM	Default value of PP:MM:DD is 0 and corresponds to FWT										
Type 4B												3		DD (optional to PP:MM)	~302µs. FWT = (2^PP)*(MM+1)*(DD+128)* 32/13.56 µs
		5:4		TTTT (Optional)	TR0 = TTTT/FC (LSB first), default 1023 = 0x3FF										
		6		YY (Optional)	PCD Min TR1 (Min_TR1 = 8 * XX / f _S), default = 0										
		7		ZZ (Optional)	PCD Max TR1 (Max_TR1 = 8 * ZZ / f _S), default = 26 = 0x1A										
		8		ST Reserved (Optional)											
		9		ST Reserved (Optional)											

Table 12. List of <Parameters> values for the ProtocolSelect command for different protocols (Reader) (continued)

Protocol	Code		Parameters		Evenues of commands
Protocol	Code	Byte	Bit	Function	Examples of commands
	0x04		7:6	Transmission data rate 00: RFU 01: 212 Kbps 10: 424 Kbps 11: RFU	>>>0x02020451: ISO/IEC18092 tag, 212 Kbps transmission and reception rates with CRC appended.
		0	5:4	Reception data rate 00: RFU 01: 212 Kbps 10: 424 Kbps 11: RFU	Parameter 'Slot counter' is not mandatory. If it is not present, it is assumed that SlotCounter = 0×00 (1 slot)
			3:1	RFU	For device detection
ISO/IEC 18092			0	Append CRC if set to '1'.	commands, byte 1 bit 4 must be set to '0'. In this case, the FWT is 2.4 ms for the 1st slot
		4	7:5	RFU	and 1.2 ms more for each
NFC Forum Tag Type 3			4	0: FWT = 2.4 ms 1: FWT is specified by PP:MM bits	following slot, if slot counter is specified.
			3:0	Slot counter 0: 1 slot 1: 2 slots F: 16 slots	If slot counter = 0x10, the ST95HF does not respect reply timings, but polls incoming data and searches a valid response during ~8.4 ms.
		2		PP	These 3 bytes are optional.
		3		MM	Default value PP:MM:DD: is 0 and corresponds to RWT
			4		DD (optional to PP:MM)

^{1.} It is recommended to set this bit to '1'.

^{2.} Not characterized.

Table 13. List of <Parameters> values for different protocols (Card Emulation)

Protocol	Protocol (Card) Code		Parameters		Examples of commands
(Card)			Bit	Function	Comments
ISO/IEC 14443 Type A ⁽¹⁾			7:6	Transmission data rate 00: 106 Kbps 01: 212 Kbps (2) 10: 424 Kbps (2) 11: RFU	
	5:4	5:4	Reception data rate 00: 106 Kbps 01: 212 Kbps ⁽²⁾ 10: 424 Kbps ⁽²⁾ 11: RFU	>>>0x02021208 <><0x0000 Card Emulation for ISO/IEC 14443 Type A, Data rate is 106 Kbps for both up- and	
			3	Return an error, if no RF field Wait for RF field	down-links.
			2	RFU	
	1		1	0: HFO 1: ClkRec	
			0	RFU	

^{1.} Topaz is not supported in Card Emulation mode.

^{2.} Not qualified for this version.

5.5 Pollfield command (0x03) description

This command returns the current value of the FieldDet flag.

Table 14. POLLFIELD command description

Direction	Data	Comments	Example
	03	Command code	
	<len></len>	Length of data	>>>0x0300 Check if RF Field is ON or OFF
Host to ST95HF	<flags></flags>	RF field presence (Optional): 01: Wait for RF field appearance 00: Wait for RF field disappearance	>>> 0x0303010FFF - Wait for RF Field appearance for (16*256)/13.56 µs Flags, Presc and Timer parameters are optional. They must be specidfied if the application has to wait for RF field appearance or disappearance. The time to wait is (Presc+1)*(Timer+1)/13.56 µs.
	<presc></presc>	Timer prescaler (Optional)	
	<timer></timer>	Timer time-out (Optional)	, , , , , , , , , , , , , , , , , , , ,
	00	Result code	
ST95HF to	01	Length of data	<<<0x00000 or 0x000100 (No RF field detected) or 0x000101 (RF field detected)
Host	<fielddet></fielddet>	01, if FieldDet is set. Otherwise, 00.	

The result of this command depends on the protocol selected. If we select a Reader mode protocol, the flag FieldDet is set to '1' because the RF field is turned ON by the reader.

Table 15. Response for <POLLFIELD> command

Function	Explanation	Explanation I		Response example	Comments
	Response	00	01	01 or 00	This command returns the
	Result code				current state of the RF field.
Pollfield	Length of data field				<<<0x0000 or
	Bits [7:1]: RFU Bit 0: Field detected (if set)		set)		0x000100 (No RF field detected) or 0x000101 (RF field detected)

5.6 Send Receive (SendRecv) command (0x04) description

This command sends data to a contactless tag and receives its reply.

Before sending this command, the Host must first send the PROTOCOLSELECT command to select an RF communication protocol.

If the tag response was received and decoded correctly, the <Data> field can contain additional information which is protocol-specific. This is explained in *Table 17*.

Table 16. SendRecv command description

Direction	Data	Comments	Example
	0x04	Command code	
Host to ST95HF	<len></len>	Length of data	See <i>Table 17</i> and <i>Table 18</i> for detailed examples.
	<data></data>	Data to be sent	
	0x80	Result code	<<0x800F5077FE01B30000000000
ST95HF to	<len></len>	Length of data	71718EBA00
Host	<data></data>	Data received. Interpretation depends on protocol	The tag response is decoded. This is an example of an ISO/IEC 14443 ATQB response (Answer to Request Type B)
	0x90	Result code	<<0x90040x240000 (exception for
	0x04	Valid bits	4-bit frames where 'x' represents ACK or NAK value)
ST95HF to Host	ACK o r nak	ISO 14443-A ACK or NAK detection	90: Result code for "non-integer number of bytes are received" 04: total length of data 0A or 00: Data 24: "2" means no CRC, "4" means 4 significant bits in Data byte. 00 00: No collision in response Example ACK <
ST95HF to Host	X0 + <len> + Da</len>	ata (See Support of long fram	nes on page 14)
ST95HF to	0x86	Error code	-<<0x8600 Communication error
Host	0x00	Length of data	CONTROL CONTINUINGATION CONTINUINGATION
ST95HF to	0x87	Error code	<<<0x8700 Frame wait time out or no
Host	0x00	Length of data	tag
ST95HF to	0x88	Error code	-<<0x8800 Invalid SOF
Host	0x00	Length of data	
ST95HF to	0x89	Error code	<<<0x8900 Receive buffer overflow
Host	0x00	Length of data	(too many bytes received)

Table 16. SendRecv command description (continued)

Direction	Data	Comments	Example	
ST95HF to	0x8A	Error code	<<<0x8A00 Framing error (start bit = 0,	
Host	0x00	Length of data	stop bit = 1)	
ST95HF to	0x8B	Error code	<<<0x8B00 EGT time out (for ISO/IEC	
Host 0x00	0x00	Length of data	14443-B)	
ST95HF to 0x8C		Error code	<<<0x8C00 Invalid length. Used in NFC	
Host	0x00	Length of data	Forum Tag Type 3, when field Length < 3	
ST95HF to	0x8D	Error code	<<<0x8D00 CRC error (Used in NFC	
Host 0×00		Length of data	Forum Tag Type 3 protocol)	
ST95HF to Host	0x8E	Error code	<<<0x8E00 Reception lost without EOF	
	0x00	Length of data	received	

Table 17 gives examples of communication between the ST95HF and a contactless tag. The ST95HF receives a SendRecv command (>>> $0 \times 04...$) from the host and returns its response to the host (<<< $0 \times 80...$). *Table 17* provides more details on the ST95HF response format.

Table 17. List of <Data> Send values for the SENDRECV command for different protocols

Protocol	Explanation	Comm		nand example	Comments		
	Send example	04	03	022000	Example of an Inventory command		
	Command code	•			using different protocol configuration: Uplink: 100% ASK, 1/4 coding		
	Length of entire d	ata fi	eld		Downlink: High data rate, Single sub- carrier		
ISO/IEC 15693					>>> 0x0403260100 (Inventory - 1 slot)		
10000	Data				<< 0x800D0000CDE0406CD62902 E0057900		
					If length of data is '0', only the EOF will be sent. This can be used for an anti-collision procedure.		

Table 17. List of <Data> Send values for the SENDRECV command for different protocols (continued)

Protocol	Explanation	Command example			ple	Comments			
ISO/IEC 14443 Type A NFC Forum Tag Type 1 (Topaz) NFC Forum Tag Type 2	Send example Command code Length of entire da Data Transmission flaga 7: Topaz send forr parity bit and use byte. Pause betwee byte is 7 bits. 6: SplitFrame 5: Append CRC 4: Parity Framing [3:0]: Number of se	04 ata fio s: mat. I SOF een b	07 Jse E at be ytes	9370800 F8C8E	of each	Example of an NFC Forum Type 2 request sequence: >>>0x04022607 (REQA) <<0x800544002800 (ATQA) >>>0x0403932008 (Anti-collision CL1) <<0x80088804A8D5F1280000 (UID CL1) Example of an NFC Forum Type 1 (Topaz) request sequence: >>>0x04022607 (REQA) <<0x8005000C280000 (ATQ0 ATQ1) >>>0x0408780000000000000A8 (RID) <<0x800B11486E567A003E450800 00 (Header0 Header1 UID0 UID 1 UID2 UID3 CRC0 CRC1Signifcant bits indexColbyte IndexColbit) Application SW must specify how many bits to send in the last byte. If flag SplitFrame is set, ST95HF will expect 8 – <significant bit="" count=""> bits in the 1st byte during reception. In this case, the first byte received is padded with zeros in lsb to complete the byte, while the last byte received is padded with zeros in msb. Example of an anti-collision command /response in ISO/IEC 14443_A communication using a Split frame: (1) >>> 0x0403932008 (Anticol) <<0x800888047B75B7B80204 (Collision Detected B8) >>> 0x0406934588040B45 (Anticol Split frame request 45) <<0x80064074B3230000 (Spilt frame Answer 23) This command is useful for anti-collision.</significant>			
ISO/IEC 14443 Type B NFC Forum Tag Type 4B	Send example Command code Length of entire da Data	04 ata fi	03 eld	050000		Example of an NFC Forum Type 4B request sequence: >>>0x0403050000 (REQB) <<<0x800F5077FE01B30000000000 71718EBA00 (ATQB)			

Table 17. List of <Data > Send values for the SENDRECV command for different protocols (continued)

Protocol	Explanation	C	Command example		Comments
ISO/IEC	Send example	04	05	00FFFF0000	Example of an ISO/IEC 18092 / NFC
18092	Command code				Forum Type 3 request sequence:
NFC	Length of entire data field				>>>0x040500FFFF0000 (REQC)
Forum Tag Type 3	Forum Tag			•	<<0x801201010102148E0DB41310 0B4B428485D0FF00 (ATQC)

- 1. For more information on using split frames, refer to Appendix D on page 65.

Examples of data received by serid / receive in Parity Framing mode.

80 05 32 80 34 00 00

meaning: if the ST95HF received 2 data bytes:
0x32 with parity = '1' (0x80) and 0x34 with parity = '0' (0x0) in Parity Framing mode. For more details, see NFC Forum Tag Type 2 on page 72.

The Parity Framing mode is compatible with MIFARE® Classic requirements. However, access to Authenticated state must be supported by the external secure host which embeds the MIFARE® Classic

Figure 11. Data transfer (in both command and response) when Parity Framing mode is enabled

Table 18. List of <Data > Response values for the SENDRECV command for different protocols

Protocol	Explanation			Response ex	ample		Comments
	Response example	80	08	0000000000	77CF	00	
	Result code	•					This is a response to Read
ISO/IEC	Length of entire	а				Single Block command for ISO/IEC 15693 TAG. Actual	
15693	Data received f	rom	tag				TAG response is <<<0x00000000077CF.
	Original (receiv	value	e of CRC			other fields are added by the ST95HF.	
	[7:2]: RFU 1: CRC error if 0: Collision is d		ted i	f set		•	3190HF.

Table 18. List of <Data> Response values for the SENDRECV command for different protocols (continued)

Protocol	protocols (continued) Explanation Response example Comments									
Protocol	-			Response ex	ampie)				
ISO/IEC 14443	Response example	80	09	80B30B8DB50	0 0	0	00	00	ISO/IEC 14443-A is bit oriented protocol, so we can receive non-integer amount	
Type A	Result code								of bytes. Number of	
NFC	Length of entire	dat	a						significant bits in the 1 st byte is the same as indicated in the command sent.	
Forum Tag Type	Data received f	rom	TAG	i					the command sent.	
4A	7: Collision is d 6: RFU	etec	ted						To calculate a position of a collision, application has to	
NFC	5: CRC error								take index of byte first. Index of bit indicates a position	
Forum Tag Type	4: Parity error								inside this byte. Note that	
1 (Topaz)	in the first byte	w m	any	significant bits ar	e there	e 			both indexes start from 0 and bit index can be 8, meaning	
(10)	7:0: Index of the	e firs	t by	e where collision	is det	ect	ed		that collision affected parity.	
NFC Forum Tag Type 2	[7:4]: RFU [3:0]: Index of the	ne fii	rst bi		Note that collision information is only valid when bit 'Collision is detected' is set. (1)					
	Response example	80	OF	5092036A8D0 00000000071 71	34	411	L	00		
ISO/IEC 14443	Result code	ı								
Type B	Length of entire	dat	a							
NFC Forum	Data received f	rom	tag	•						
Tag Type	Original (receiv	ed) v	/alue	e of CRC	l					
4B	[7:2]: RFU 1: CRC error if 0: RFU	set		I						
	Response example	80	12	01010105017	30	. 93	FF	00		
ISO/IEC 18092	Result code									
NFC	Length of entire data field								<<0x801201010105017B 06941004014B024F4993F	
Forum	Data received f	rom	tag	•					F00	
Tag Type 3	[7:2]: RFU 1: CRC error if 0: RFU	set					'			

^{1.} For more information on using split frames, refer to Appendix D on page 65.

For more detailed examples of use with NFC Forum and ISO/IEC 15693 tags, refer to *Appendix D on page 65*.

If Parity Framing mode is used, the parity bit stays unchanged. On transmission, it is not encoded and on reception it is not decoded. The length of Data must be even. Each data byte is accompanied by an additional byte which encodes the parity:

<DataByte>, <Parity>, <DataByte>, <Parity> ...

Table 19. Structure of Parity byte

Bit	Description					
7	Parity bit					
[6:0]	Reserved for future use					

On reception, bits [6:0] of the parity byte are zeroes; on transmission, bits [6:0] are ignored.

5.7 Listen command (0x05) description

In Card Emulation mode, this command waits for a command from an external reader. Before sending this command, the application must select a protocol.

Table 20. LISTEN command description

Direction	Data	Comments	Example			
Host to	05	Command code	0x0500: Enters a Listening mode where the ST95HF waits for a command from an external reader.			
ST95HF	00	Length of data				
ST95HF to	00	Result code	0x0000: No error. Confirmation that			
Host	00	Length of data	ST95HF now is in Listening mode.			
ST95HF to	82	Error code	0x8200: Invalid command length			
Host	00	Length of data	0x3200. Invalid command length			
	83	Error code	0x8300: Invalid protocol or protocol is			
ST95HF to Host	00	Length of data	not supported. For example, application selects protocol ISO/IEC 15693 using command select protocol and then executes the LISTEN command. ISO/IEC 15693 is not supported in Card Emulation mode.			
ST95HF to	8F	Error code	0x8F00: No field. Command cannot be			
Host	00	Length of data	executed because there is no externational field.			

After reception of the LISTEN command and the return of a 'No error' confirmation, the ST95HF enters Listening mode. The host controller has to use SPI Poll mode or IRQ_OUT pin to detect when a receive frame is available in the ST95HF buffer. The ST95HF will exit Listening mode as soon it receives the ECHO command (0x55) from the Host Controller (MCU) or a command from an external reader (not including commands supported by the ACFILTER command listed in *Table 42*).

In all cases, the ST95HF will send data or an error code to the Host controller (MCU).

The Echo command (0x55) allows exiting Listening mode. In response to the Echo command, the ST95HF sends 0x55 + 0x8500 (error code of the Listening state cancelled by the MCU).

Possible return codes are listed in Table 21.

Table 21. Response codes from the ST95HF in Listening mode

Direction	Data	Comments	Example		
	80	Result code	<<0x800605000071FF00		
ST95HF to	<len></len>	Length of data	The request from the Reader is		
Host	<data></data>	Data received. Interpretation depends on protocol	decoded. This is an example of a response in ISO/IEC 14443 Type B protocol.		
ST95HF to	85	Error code	<<<0x8500 Listening mode was		
Host	00	Length of data	cancelled by the application		
ST95HF to	86	Error code	<<0x8600 Communication error		
Host	00	Length of data	<< <ux></ux>		
ST95HF to	88	Error code	-<<0x8800 Invalid SOF		
Host	00	Length of data	220000 Hivana OOI		
ST95HF to	89	Error code	<<<0x8900 Receive buffer overflow (too many bytes received)		
Host	00	Length of data			
ST95HF to	8A	Error code	<<<0x8A00 Framing error (start bit=0, stop bit=1)		
Host	00	Length of data			
ST95HF to	8B	Error code	<<<0x8B00 EGT time out (for ISO/IEC		
Host	00	Length of data	14443-B)		
ST95HF to	8D	Error code	<<<0x8D00 CRC error (Used in NFC		
Host	00	Length of data	Forum Tag Type 3 protocol)		
ST95HF -	8E	Error code	<<<0x8E00 Reception lost without EOF		
Host	00	Length of data	received		

If the request from the Reader was received and decoded correctly, the ST95HF will send data back to the Host (Card Emulation application). This is explained in *Table 22*.

Protocol **Explanation** Response example Comments Request example 80 0A 9370800F8C8E 4E01 08 8D Result code Length of entire data field Data received from reader ISO/IEC-<<<0x80 0A Received value of BCC (if any) 14443 9370800F8C8E Received value of CRC (if any) Type A 8D 4E01 08 7: RFU 6: RFU 5: CRC error 4: Parity error 3:0: number of significant bits in last byte

Table 22. Data format sent to the Host in Listening mode

5.8 Send command (0x06) description

This command immediately sends data to the reader without waiting for a reply.

Before sending this command, the application must select a communication protocol.

Direction Data Comments Example 06 Command code Depends on protocol previously selected! <Len> Length of data Host to ST95HF >>>0x0606D07387080028: Emulation Data and additional <Data> of TAG response in ISO/IEC 14443 parameter to be sent Type B protocol Result code 00 ST95HF to <<<0x0000 Host Data was successfully sent 00 Length of data Error code 82 ST95HF to <<<0x8200 Invalid length (for example, Host Length=0 where it is not possible) 00 Length of data 83 Error code ST95HF to <<<0x8300 Invalid protocol previously Host selected by Select Protocol command 00 Length of data

Table 23. SEND command description

Protocol Explanation Response example Comments Send example 06 03 0400 80 Command code Length of entire data field Data ISO/IEC-14443 >>>0x0603040008 Parameter: Type A 7:6: RFU 5: Append CRC 4: RFU (Do not append parity) 3:0: Number of significant bits in first byte 01020304 Send example 06 04 ISO/IEC-Command code 14443 Length of entire data field Type B Data Note the Send example 06 04 01020304 difference in Command code data in

Reader and

Emulation

there is no slot information

Reader mode

mode: in

Card

Table 24. Format of data to be sent using SEND command

5.9 Idle command (0x07) description

Data

Length of entire data field

Reader

18092

212/424

ISO/IEC-

This command switches the ST95HF into low consumption mode and defines the way to return to Ready state.

The Result code contains the Wake-up flag register value indicating to the application the wake-up event that caused the device to exit WFE mode.

Table 25. IDLE command description

Direction	Data	Comments	Example			
	07	Command code				
	0E	Length of data				
	<wu source=""></wu>	Specifies authorized wake- up sources and the LFO frequency	Example of switch from Active mode to Hibernate state: >>>0x07 0E 08 04 00 04 00 18 00 00 00 00 00 00 00 00			
	EnterCtrlL	Settings to enter WFE	15 00 00 00 00 00 00 00			
	EnterCtrlH	mode	Example of switch from Active to			
	WUCtrlL	Settings to wake-up from	WFE mode (wake-up by low pulse on IRQ IN pin):			
	WUCtrlH	WFE mode	>>>0x07 0E 08 01 00 38 00			
	LeaveCtrlL	Settings to leave WFE	18 00 00 60 00 00 00 00 00			
	LeaveCtrlH	mode (Default value = 0x1800)	Example of switch from Active to			
	<wuperiod></wuperiod>	Period of time between two tag detection bursts. Also used to specify the duration before Timeout.	WFE mode (wake-up by low pulse on SPI_SS pin): >>>0x07 0E 10 01 00 38 00 18 00 00 60 00 00 00 00 00			
	<0scStart>	Defines the Wait time for HFO to stabilize: <0scStart> * tL (Default value = 0x60)	Example of switch from Active mode to WFE mode (Sleep / Field Detector with wake-up by Field Detection):			
Host to ST95HF	<dacstart></dacstart>	Defines the Wait time for DAC to stabilize: <dacstart> * tL (Default value = 0x60)</dacstart>	>>> 0x07 0E 04 01 42 38 00 18 00 00 60 00 00 00 00 00 Example of wake-up by Timeout (7			
	<dacdatal></dacdatal>	Lower compare value for tag detection $^{(1)}$. This value must be set to 0×00 during tag detection calibration.	seconds): Duration before Timeout = 256 * t _L * (WU period + 2) * (MaxSleep + 1) >>>0x07 0E 01 21 00 38 00 18 00 60 60 00 00 00 00 08			
	<dacdatah></dacdatah>	Higher compare value for tag detection ⁽¹⁾ . This is a variable used during tag detection calibration.	Example of switch from Active to Tag Detector mode (wake-up by tag detection or low pulse on IRQ_IN pin) (32 kHz, inactivity duration = 272 ms, DAC oscillator			
	<swingscnt></swingscnt>	Number of swings HF during tag detection (Default value = 0x3F)	= 3 ms, Swing = 63 pulses of 13.56 MHz): >>>0x07 0E 0A 21 00 79 01			
	<maxsleep></maxsleep>	Max. number of tag detection trials before Timeout ⁽¹⁾ . This value must be set to 0x01 during tag detection calibration. Also used to specify duration before Timeout. MaxSleep must be: 0x00 < MaxSleep < 0x1F	Example of a basic Idle command used during the Tag Detection Calibration process: >>>0x07 0E 03 A1 00 F8 01 18 00 20 60 60 00 xx 3F 01 where xx is the DacDataH value.			

Direction	Data	Comments	Example	
	0x00	Result code		
	0x01	Length of data	This response is sent only when ST95HF exits WFE mode.	
ST95HF to Host	<data></data>	Data (Wake-up source): 0x01: Timeout 0x02: Tag detect 0x08: Low pulse on IRQ_IN pin 0x10: Low pulse on SPI_SS pin	<pre><<<0x000101 Wake-up by Timeout <<<0x000102 Wake-up by tag detect <<<0x000108 Wake-up by low pulse on IRQ_IN pin</pre>	
ST95HF to	0x82	Error code	<<<0x8200 Invalid command	
Host	0x00	Length of data	length	

Table 25. IDLE command description (continued)

5.9.1 Idle command parameters

The Idle command (Host to ST95HF) has the following structure (all values are hexadecimal):

Table 26. Idle command structure

07	0E	xx	yy zz	yy zz	yy zz	aa	bb	cc	dd ee	ff	gg
Comma		WU	Enter	WU	Leave	WU	Osc	DAC	DAC	Swing	Max
nd code		source	Control	Control	Control	Period	Start	Start	Data	Count	Sleep

Table 27. Summary of Idle command parameters

Parameter	Descrip	Description						
Command code	This byte is the command code. '07' re command switches the device from Ac	•						
Data length	This byte is the length of the command following parameter values.	This byte is the length of the command in bytes. Its value depends on the following parameter values.						
WU Source	This byte defines the authorized wake-up sources in the Wake-up sources register. Predefined values are: $0 \times 01: \text{Time out} \qquad 0 \times 02: \text{Tag Detection} \\ 0 \times 04: \text{Field Detector} \qquad 0 \times 06: \text{Not defined} \\ 0 \times 08: \text{Low pulse on } \overline{\text{IRQ_IN}} \qquad 0 \times 10: \text{Low pulse on } \overline{\text{SPI_}}$							
Enter Control	entering WFE mode. 0x0400: Hibernate 0x0100: Sleep (or 0x2100 if Timer s	These two bytes (EnterCtrlL and EnterCtrlH) define the resources when entering WFE mode. 0x0400: Hibernate 0x0100: Sleep (or 0x2100 if Timer source is enabled) 0x0142: Sleep (if Field Detector source is enabled) 0xA200: Tag Detector Calibration						
WU Control	0x0400: Hibernate	These two bytes (WuCtrlL and WuCtrlH) define the wake-up resources.						

An initial calibration is necessary to determine DacDataL and DacDataH values required for leaving Tag Detector state. For more information, contact your ST sales office for the corresponding application note.

Table 27. Summary of Idle command parameters (continued)

Parameter	Description	
Leave Control		the resources when leep/Field Detector ag Detection
WU Period	This byte is the coefficient used to adjust the time allowed between two tag detections. Also used to specify the duration before Timeout. (Typical value: $0x20$) Duration before Timeout = $256 * t_L * (WU period + 2) * (MaxSleep + 1)$	
Osc Start	This byte defines the delay for HFO stabilization. (Recommended value: 0x60) Defines the Wait time for HFO to stabilize: <0scStart> * tL	
DAC Start	This byte defines the delay for DAC stabilization. (Recommended value: 0x60) Defines the Wait time for DAC to stabilize: <dacstart> * tL</dacstart>	
DAC Data	These two bytes (DacDataL and DacDataH) define the lower and higher comparator values, respectively. These values are determined by a calibration process. When using the demo board, these values should be set to approximately 0x64 and 0x74, respectively.	
Swing Count	This byte defines the number of HF swings allowed during Tag Detection. (Recommended value: 0x3F)	
Max Sleep	This byte defines the maximum number of tag detection trials or the coefficient to adjust the maximum inactivity duration before Timeout. MaxSleep must be: $0x00 < MaxSleep < 0x1F$ This value must be set to $0x01$ during tag detection calibration. Also used to specify duration before Timeout. Duration before Timeout = $256 * t_L * (WU period + 2) * (MaxSleep + 1) (Typical value: 0x28)$	

5.9.2 Using LFO frequency setting to reduce power consumption

In WFE mode, the high frequency oscillator (HFO) is stopped and most processes being executed are clocked by the low frequency oscillator (LFO). To minimize ST95HF power consumption in WFE mode, the slower the LFO frequency, the lower the power consumption.

Example 1: Setting a lower LFO frequency

The following equation defines a basic timing reference:

 $t_{REF} = 256*t_{L} \text{ ms (where } t_{L} = 1/f_{LFO})$

 t_{RFF} = 8 ms (when bits [7:6] are set to "00", or 32 kHz)

 t_{REF} = 64 ms (when bits [7:6] are set to "11", or 4 kHz)

5.9.3 Optimizing wake-up conditions

Using the Wake-up source register, it is possible to cumulate sources for a wake-up event. It is strongly recommended to always set an external event as a possible wake-up source.

To cumulate wake-up sources, simply set the corresponding bits in the Wake-up source register. For example, to enable a wake-up when a tag is detected (bit 1 set to '1') or on a low pulse on pin IRQ_IN (bit 3 set to '1'), set the register to 0x0A.

5.9.4 Using various techniques to return to Ready state

The Idle command and reply set offers several benefits to users by enabling various methods to return the ST95HF to Ready state. Some methods are nearly automatic, such as waiting for a timer overflow or a tag detection, but others consume more power compared to the ones requesting a host action. A description of each method follows below.

Default setting: from POR to Ready state

After power-on, the ST95HF enters Power-up state.

To wake up the ST95HF and set it to Ready state, the user must send a low pulse on the IRQ_IN pin. The ST95HF then automatically selects the external interface (SPI) and enters Ready state and is able to accept commSands after a delay of approximately 6 ms (t₃).

From Ready state to Hibernate state and back to Ready state

In Hibernate state, most resources are switched off to achieve an ultra-low power consumption.

The only way the ST95HF can wake-up from Hibernate state is by an external event (low pulse on pin IRQ_IN).

A basic Idle command is:

```
>>>0x07 0E 08 04 00 04 00 18 00 00 00 00 00 00 00 00
```

Note:

The Wake-up flag value is NOT significant when returning to Ready state from Hibernate state or after a POR.

From Ready state to Sleep state and back to Ready state

Wake-up by external event (low pulse on IRQ_IN or SPI_SS pin)

In Sleep or Power-up states, operating resources are limited in function of the selected wake-up source to achieve a moderate power consumption level.

An Idle command example when wake-up source is pin IRQ_IN:

```
>>>0x07 0E 08 01 00 38 00 18 00 00 60 00 00 00 00 00
```

A similar command can be implemented using pin SPI_SS as a wake-up source:

```
>>>0x07 0E 10 01 00 38 00 18 00 00 60 00 00 00 00 00
```

Wake-up by timeout

The LFO is required to use the timer. However, this increases the typical power consumption by 80 μ A. Several parameters can be modified to reduce power consumption as much as possible.

The Duration before Timeout is defined by parameters WU period and MaxSleep, respectively 0x60 and 0x08 in the following example.

57

ST95HF Commands

Duration before Timeout = 256 * t₁ * (WU period + 2) * (MaxSleep + 1)

Note:

Note that: 0x00 < MaxSleep < 0x1F.

An Idle command example when wake-up source is timer (0×01) when f_{LFO} = 32 kHz (mean power consumption is 25 μ A)

```
>>>0x07 0E 01 21 00 38 00 18 00 60 60 00 00 00 00 08
```

An Idle command example when wake-up source is timer (0xC1) when f_{LFO} = 4 kHz (mean power consumption is 20 μ A):

```
>>>0x07 0E C1 21 00 38 00 18 00 60 60 00 00 00 00 08
```

The same command can be used mixing a timer and the \overline{IRQ}_{IN} pin (0xC9) as a wake-up source:

```
>>>0x07 0E C9 21 00 38 00 18 00 60 60 00 00 00 00 08
```

Wake-up by Tag Detection

In this mode, the typical consumption can greatly vary in function of parameter settings (WU period without RF activity and Swing Count defining the RF burst duration). Using default settings, consumption in the range of 100 μ A can be achieved.

Tag Detector is a state where ST95HF is able to detect an RF event, a wake-up will occur when a tag sufficiently modifies the antenna load and is detected by the ST95HF.

An Idle command example when wake-up source is Tag Detection (0x02):

```
>>>0x07 0E 02 21 00 79 01 18 00 20 60 60 64 74 3F 08
```

The same command can be used mixing Tag Detection and the $\overline{IRQ_IN}$ pin (0x0A) as a wake-up source:

```
>>>0x07 0E 0A 21 00 79 01 18 00 20 60 60 64 74 3F 08
```

The tag detection sequence is defined by dedicated parameters:

- WU source (Byte 3) (Wake-up source register on page 60)
 - The Timeout bit (bit 0) must be set to '1' in order to manage a certain number of emitted bursts. Otherwise, bursts will be sent indefinitely until a stop event occurs (for example, tag detection or a low pulse on pin IRQ_IN).
 - The Tag Detect bit (bit 1) must be set to '1' to enable RF burst emissions.
 - It is recommended to also set Bits 3 or 4 to '1' to ensure that it is possible to leave Tag Detect mode via an external event (for example, a low pulse on pin IRQ IN).
- WU period (Byte 10): Defines the period of inactivity (t_{INACTIVE}) between two RF bursts:

```
t<sub>INACTIVE</sub> = (WuPeriod + 2) * t<sub>REF</sub>
```

 OscStart, DacStart (Bytes 11 and 12): Define the set-up time of the HFO and Digital Analog Converter, respectively. In general, 3 ms is used both set-up times.

```
HFO | DAC set-up time = (OscStart | DacStart) * t<sub>L</sub>
```

- DacDataL, DacDataH (Bytes 13 and 14): Reference level for Tag Detection (calculated during the tag detection calibration process).
- SwingsCnt (Byte 15): Represents the number of 13.56-MHz swing allowed during a Tag Detection burst. We recommend using 0x3F.
- Maxsleep (Byte 16): The ST95HF emits (MaxSleep +1) bursts before leaving Tag
 Detection mode if bit 0 (Timer Out) of the WU source register is set to '1'. Otherwise,
 when this bit is set to '0', a burst is emitted indefinitely.

Commands ST95HF

Note:

Bytes 4 to 9 should be used as shown in the examples in Section 5.9: Idle command (0x07) description.

Note that the MaxSleep value is coded on the 5 least significant bits, thus: 0x00 < MaxSleep < 0x1F.

All the previously described command parameters must be chosen accordingly for the initial tag detection calibration when setting up the ST95HF.

Their value will impact tag detection efficiency, and ST95HF power consumption during Tag Detection periods.

5.9.5 Tag detection calibration procedure

The Idle command allows the use of a tag detection as a wake-up event. Certain parameters of the Idle command are dedicated to setting the conditions of a tag detection sequence.

During the tag detection sequence, the ST95HF regularly emits RF bursts and measures the current in the antenna driver I_{DRIVF} using the internal 6-bit DAC.

When a tag enters the ST95HF antenna RF operating volume, it modifies the antenna loading characteristics and induces a change in I_{DRIVE}, and consequently, the DAC data register reports a new value.

This value is then compared to the reference value established during the tag detection calibration process. This enables the ST95HF to decide if a tag has entered or not its operating volume.

The reference value (DacDataRef) is established during a tag detection calibration process using the ST95HF application setting with no tag in its environment.

The calibration process consists in executing a tag detection sequence using a well-known configuration, with no tag within the antenna RF operating volume, to determine a specific reference value (DacDataRef) that will be reused by the host to define the tag detection parameters (DacDataL and DacDataH).

During the calibration process, DacDataL is forced to 0x00 and the software successively varies the DacDataH value from its maximum value (0xFE) to it minimum value (0x00). At the end of the calibration process, DacDataRef will correspond to the value of DacDataH for which the wake-up event switches from Timeout (no tag in the RF field) to tag detected.

To avoid too much sensitivity of the tag detection process, we recommend using a guard band. This value corresponds to 2 DAC steps (0x08).

Recommended guard band value:

DacDataL = DacDataRef - Guard and DacDataH = DacDataRef + Guard

The parameters used to define the tag detection calibration sequence (clocking, set-up time, burst duration, etc.) must be the same as those used for the future tag detection sequences.

When executing a tag detection sequence, the ST95HF compares the DAC data register value to the DAC Data parameter values (DacDataL and DacDataH) included in the Idle command. The ST95HF will exit WFE mode through a Tag Detection event if the DAC data register value is greater than the DAC Data parameter high value (DacDataH) or less than the DAC Data parameter low value (DacDataL). Otherwise, it will return to Ready state after a Timeout.

An efficient 8-step calibration algorithm is described in *Example of tag detection calibration* process on page 61.

577

ST95HF Commands

An example of a basic Idle command used during the Tag Detection Calibration process:

>>>0x07 0E 03 A1 00 F8 01 18 00 20 60 60 00 xx 3F 01

where xx is the DacDataH value.

An example of a tag detection sequence is provided in *Example of tag detection command using results of tag detection calibration on page 64.*

5.10 Read Register (RdReg) command (0x08) description

This command is used to read the Wakeup register.

Table 28. RDREG command description

Direction	Data	Comments	Example
	0x08	Command code	
Host to ST95HF	0x03	Length of data	
	0x62 or 0x69	Register address	Ex 1. >>>0x0803690100 Reads the ACC_A or ARC_B register. (1)
	0x01	Register size	1. 100 0 0 1. 10 0 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1.
	0x00	ST Reserved	
	0x00	Result code	<<<0x000101 Wake-up by Timeout (Ex. 1)
	<len></len>	Length of data (= RegCount)	<pre><<<0x000102 Wake-up by Tag Detect (E 1)</pre>
ST95HF to Host	<regdata></regdata>	Register data	-<<0x000113 Depth = 1, Gain = 3 (Ex. 2) -<< 0x000127 (ACC_A register) Default value for Demodulator Sensitivity and Load Modulation. See Write Register description for more information on received data<< 0x000113 (ARC_B register) Depth = 1, Gain = 3 (Ex. 2). See Write Register description for more information on received data.
ST95HF to	0x82	Error code	and a constant of the second o
Host	0x00	Length of data	<pre></pre>

^{1.} This command must be preceded by the setting of the ACC_A register index (0x0903680004) or by setting the ARC_B register index (0x0903680001).

Note:

The Management of the Analog Register Configuration register (ACC_A or ARC_B) is described in Section 5.11: Write Register (WrReg) command (0x09) description.

Commands ST95HF

5.11 Write Register (WrReg) command (0x09) description

The Write Register (WRREG) command (0x09) is used to:

 set the Analog Register Configuration address index value before reading or overwriting the Analog Register Configuration register (ARC_B) value

- set the Analog Register Configuration register (ACC A) value
 - Bits [7:6] are ST Reserved and must be set to '0'
 - Bits [5:4] set the Demodulator Sensitivity ('00' = AM 10% or '10' = AM 100%)
 - Bits [3:0] set the Load Modulation Index ('0001' = minimum load modulation, '0111'
 = default value, '1111' = maximum load modulation). The user can adjust this value to better fit his application.
- set the Timer Window (TimerW) value used to improve ST95HF demodulation when communicating with ISO/IEC 14443 Type A tags
- set the AutoDetect Filter used to help synchronization of ST95HF with ISO/IEC 18092 tags
- configure the HF2RF bit^(a) to manage I_{CC} RF (V_{PS TX}) consumption in Ready state

5.11.1 Improving RF performance

Adjusting the Modulation Index and Receiver Gain parameters in Reader mode or the Load Modulation Index and Demodulator Sensitivity parameters in Card Emulation mode helps improve application behavior.

Modulation Index and Receiver Gain parameters for Reader mode

The default value of these parameters (*Table 35*) is set by the ProtocolSelect command, but they can be overwritten using the Write Register (WRREG) command (0×0.9). *Table 31* and *Table 32* list possible values for the Modulation Index and Receiver Gain parameters respectively.

This new configuration is valid until a new PROTOCOLSELECT or Write Register (of register ARC B) command is executed. Register values are cleared at power off.

a. When the HF2RF bit is '0', Reader mode is possible (default mode). When set to '1', V_{PS_TX} power consumption is reduced (Ready mode).

ST95HF Commands

Table 29. WRREG command description (Modulation Index and Receiver Gain)

Direction	Data	Comments	Example
	0x09	Command code	
	0x03 or 0x04	Length of data	
	0x68	Analog Register Configuration address index	>>>0x090468010113 Update ARC B value to 0x13
Host to ST95HF	0x00 or 0x01	Flag Increment address or not after Write command	>>>0x0903680001
	0x01	Index pointing to the Modulation Index and Receiver Gain values in the ARC_B register (0x01) (See Section 5.11.1)	Set Analog Register Index to 0x01 (ARC_B) (1)
	0xXX	New value for Modulation Index and Receiver Gain nibbles (See Section 5.11.1)	
ST95HF to	0x00	Result code	<<<0x0000
Host	0x00	Length of data (= RegCount)	Register written

^{1.} This command must be executed before reading the ARC_B register (0x0803690100).

Load Modulation Index and Demodulator Sensitivity parameters for Card Emulation mode

The default value of these parameters (Table~30) is set by the PROTOCOLSELECT command, but they can be overwritten using the Write Register (WRREG) command (0×0.9). Table 33 and Table 34 list possible values for the Load Modulation Index and Demodulator Sensitivity parameters respectively.

This new configuration is valid until a new PROTOCOLSELECT or Write Register (of register ACC_A) command is executed. Register values are cleared at power off.

Table 30. WRREG command description (Load Modulation Index and Demodulator Sensitivity)

Direction	Data	Comments	Example
	0x09	Command code	
	0x03 or 0x04	Length of data	
	0x68	Analog Register Configuration address index	>>>0x0903680004 Set Analog Register Index to
Host to ST95HF	0x00 or 0x01	Flag Increment address or not after Write command	0x04 (ACC_A) (1)
	0x04	Index pointing to the Demodulator Sensitivity and Load Modulation values in ACC_A register (0x04) (See Section 5.11.1)	>>>0x090468010425 Update ACC_A to 0x25
	0xXX	New value for Demodulator Sensitivity and Load Modulation (See Section 5.11.1)	

Commands ST95HF

Table 30. WRREG command description (Load Modulation Index and Demodulator Sensitivity) (continued)

Direction	Data	Comments	Example
ST95HF to	0x00	Result code	<<<0x0000
Host	0x00	Length of data (= RegCount)	Register written

^{1.} This command must be executed before reading the ACC_A register (0x0903680004).

How to modify Analog Register Configuration register (ARC_B) values

 Use the ProtocolSelect command (0x02) to select the correct communication protocol.

For example, to select the ISO/IEC 18092 protocol:

Send ProtocolSelect command: >>0x02020451 ST95HF reply: <<<0x0000

2. Read the Analog Register Configuration register (ARC_B) value.

a) Write the ARC B register index at 0x01: >>>0x0903680001

ST95HF reply: <<<0x0000

b) Read the ARC_B register value: >>>0x0803690100

ST95HF reply: <<<0x015F

In this example, the ARC_B register value is 0x5F, where "5" is the Modulation Index and "F" is the Receiver Gain.

3. Modify the Modulation Index and Receiver Gain values with 0x23.

Write the ARC B register index: >>>0x090468010123

ST95HF reply: <<<0x0000

4. Read the Analog Configuration register (ARC_B) value.

a) Write the ARC_B register index at 0x01: >>>0x0903680001

ST95HF reply: <<<0x0000

b) Read the ARC_B register value: >>>0x0803690100

ST95HF reply: <<<0x0123

Modulation Index and Receiver Gain values

Table 31. Possible Modulation Index values

Code	1	2	3	4	5	6	D
Modulation Index (1)	10%	17%	25%	30%	33%	36%	95%

^{1.} Characterized only using ISO/IEC 10373 test set-up.

Table 32. Possible Receiver Gain values

Code	0	1	3	7	F
Receiver Gain (1)	34 dB	32 dB	27 dB	20 dB	8 dB

^{1.} Characterized by design simulation.

ST95HF Commands

How to modify Analog Register Configuration register (ACC_A) values

1. Use the ProtocolSelect command (0x02) to select the correct communication protocol.

For example, to select the ISO/IEC 14443-A card emulation protocol:

Send ProtocolSelect command: >>0x02021208 ST95HF reply: <<0x0000

2. Read the Analog Register Configuration register (ACC_A) value.

a) Write the ACC_A register index at 0x04: >>>0x0903680004

ST95HF reply: <<<0x0000

b) Read the ACC_A register value: >>>0x0803690100

ST95HF reply: <<<0x0127

In this example, the ACC_A register value is 0x27, where "2" is the Demodulator Sensitivity and "7" is the Load Modulation Index.

3. Modify the Load Modulation Index values with 0x25.

Write the ACC_A register index: >>>0x090468010425

ST95HF reply: <<<0x0000

4. Read the Analog Configuration register (ACC_A) value.

a) Write the ACC_A register index at 0x04: >>0x0903680004

ST95HF reply: <<<0x0000

b) Read the ACC_A register value: >>>0x0803690100

ST95HF reply: <<<0x0125

Load Modulation Index and Demodulator Sensitivity values

Table 33. Possible Load Modulation Index values

Code (bits [3:0] of ACC_A register)	1	2	 7	 E	F
Load Modulation Index	Min.		Default		Max.

Table 34. Possible Demodulator Sensitivity values

Code (bits [5:4] of ACC_A register)	0x1	0x2
Demodulator Sensitivity (1)	10%	100%

^{1.} Characterized by design simulation.

Note: Bits [7:6] of ACC_A register are RFU and must set to '0'.

Commands ST95HF

Default code per protocol

Table 35. ARC_B default code for available Reader protocols

Communication protocol	Default value	Recommended values for ST95HF demo board	Possible Modulation Index values (MS nibble)	Possible Receiver Gain values (LS nibble)
ISO/IEC 14443 Type A reader	0xDF	0xD7	0xD	0x0, 0x1, 0x3, 0x7 or 0xF
ISO/IEC 14443 Type B reader	0x2F	0x37	0x1, 0x2, 0x3 or 0x4	0x0, 0x1, 0x3, 0x7 or 0xF
ISO/IEC 18092 reader	0x5F	0x23	0x1, 0x2, 0x3 or 0x4	0x0, 0x1, 0x3, 0x7 or 0xF
ISO/IEC 15693 reader 30%	0x53	0x53	0x4, 0x5 or 0x6	0x0, 0x1, 0x3, 0x7 or 0xF
ISO/IEC 15693 reader 100%	0xD3	0xD3	0xD	0x0, 0x1, 0x3, 0x7 or 0xF

Table 36. ACC_A default code for available Card Emulation protocols

Communication protocol	Default value	Recommended values for ST95HF demo board	Possible Demodulator Sensitivity values (MS nibble)	Possible Load Modulation Index values (LS nibble)
ISO/IEC 14443 Type A	0x27	0x27	0x2	From 0x1 to 0xF

5.11.2 Improving frame reception for ISO/IEC 14443 Type A tags

To improve ST95HF demodulation when communicating with ISO/IEC 14443 Type A tags, it is possible to adjust the synchronization between digital and analog inputs by fine-tuning the Timer Window (TimerW) value. This can be done using the Write Register (WRREG) command to set a new TimerW value (min. 0x50, max. 0x60). The recommended value is 0x56 or 0x58 when using the ST95HF demo board.

The default value of this parameter (0x52) is set by the Protocol Select command, but it can be overwritten using the WRREG command (0x09).

Table 37. WRREG command description (Timer Window)

Direction	Data	Comments	Example
	0x09	Command code	
	0x03 or 0x04	Length of data	
Host to	0x3A	Timer Window (TimerW) value	>>>0x09043A005804
ST95HF	0x00 or 0x01	Flag Increment address or not after Write command	Set recommended TimerW value.
	0xXX	Set TimerW value (recommended value is 0x56 or 0x58)	
	0x04	TimerW value confirmation	

ST95HF Commands

Table 37. WRREG command description (Timer Window) (continued)

Direction	Data	Comments	Example
ST95HF to	0x00	Result code	<<<0x0000
Host	0x00	Length of data (= RegCount)	Register written

5.11.3 Improving RF reception for ISO/IEC 18092 tags

To improve ST95HF reception when communicating with ISO/IEC 18092 tags, it is possible to enable an AutoDetect filter to synchronize ISO/IEC 18092 tags with the ST95HF. This can be done using the Write Register (WRREG) command to enable the AutoDetect filter.

By default, this filter is disabled after the execution of the Protocol Select command, but it can be enabled using the WRREG command (0×09).

Table 38. WRREG command description (AutoDetect Filter)

Direction	Data	Comments	Example
	0x09	Command code	
	0x03 or 0x04	Length of data	
Host to	0x0A	AutoDetect filter control value	>>>0x09040A0102A1
ST95HF	0x00 or 0x01	Flag Increment address or not after Write command	Enable the AutoDetect filter.
	0x02	AutoDetect filter enable	
	0xA1	AutoDetect filter confirmation	
ST95HF to	0x00	Result code	<<<0x0000
Host	0x00	Length of data (= RegCount)	Register written

5.12 Subcarrier frequency response (0x0B) description

The SubFreqRes command ($0 \times 0 B$) returns the most recent subcarrier frequency detected for ISO/IEC 18092 communication.

Table 39. SubFreqRes command description

Direction	Data	Comments	Example
Host to	0x0B	Command code	>>>0×0B00
ST95HF	0x00	Length of data	>>>0X0B00
	0x00	Result code	<<0x00010F
	0x01	Length of data	In this example, O-OTI is a frequency
ST95HF to Host	<freqdiv></freqdiv>	N, frequency divider	In this example, $0 \times 0 F$: is a frequency divider. Use this value to configure the ST95HF. Subcarrier frequency is $f_{C} = \frac{f_{C}}{f_{C}}$
			$\frac{18 - 2(N+1)}{2}$

Commands ST95HF

5.13 AcFilter command (0x0D) description

This command activates/deactivates the anti-collision filter in Type A Card Emulation mode.

Table 40. AC filter command description (Command <Len> 0x02)

Direction	Data	Comments	Example		
	0D	Command code	General case (LEN ≠ 0x00, 0x01 or		
	<len></len>	Length of data	0x02) >>>0D0B440320880251744AEF2280		
	<atqa> (2 bytes)</atqa>	Unused and proprietary bits of SAK (protocol bits will be handled by firmware)	Activate filter for 2-cascade anti-collision Note that the command length can be 7, 11 or 15 bytes depending on UID length:		
	<sak></sak>	Unused and proprietary bits of SAK (protocol bits will be handled by firmware)	7: for 1-cascade level filter 11: for 2-cascade levels filter 15: for 3-cascade levels filter		
	<uid 1="" part=""></uid>	UID for cascade level 1 (Mandatory)	All other values greater than 2 will result in an 'Invalid command length' error.		
Host to ST95HF	<uid 2="" part=""></uid>	UID for cascade level 2 (Optional)	*** Special cases of command *** LEN = 0x00		
	<uid 3="" part=""></uid>	UID for cascade level 3 (Optional)	>>>0x0D00 De-activate AC Filter (LEN = 0x00) <<< 0x0001xx0000 AC Filter is successfully deactivated (xx: <i>Table 28</i>) LEN = 0x01 >>>0x0D01xx - Set AC state (see table below) <<< 0x0000 AC state successfully set LEN = 0x02 >>> 0x0D020000 - Returns AC state without deactivating filter <<< 0x0001xx AC state (xx: <i>Table 28</i>)		
	00	Result code	AC Filter is successfully activated.		
ST95HF to Host	00 Length of data		<pre>AC Filter is successfully deactivated (LEN = 0x00). <<<0x0001XX0000 (where XX is ST Reserved)</pre>		
ST95HF to	82	Error code	<<<0x8200		
Host	00	Length of data	Invalid command length		

Table 41. ST95HF state when behaving as ISO/IEC 14443-A tag

Value	AC state
0x00	Idle
0x01	ReadyA
0x02	ReadyB

ST95HF Commands

AC state Value 0x03 ReadyC 0x04 Active 0x80 Halt 0x81 ReadyAX 0x82 ReadyBX ReadyCX 0x83 ActiveX 0x84

Table 41. ST95HF state when behaving as ISO/IEC 14443-A tag

The ACFILTER command activates or deactivates an anti-collision filter for ISO/IEC 14443A card protocol. This command also forces or indicates the Card Emulator state.

If the AC filter is not activated, all received commands are stored in the ST95HF buffer before being read by the external microcontroller.

If the AC filter is activated, internal firmware will try to interpret the commands sent by the reader itself and perform an anti-collision sequence. Non-interpreted commands are stored in the ST95HF buffer before being read by the external microcontroller to perform Level 4 of the ISO/IEC 14443 Type A protocol.

The ST95HF is able to interpret and respond to the commands listed in the table below. The device remains in Listening mode after executing these commands.

Command	Code	Definition
SENS_REQ	26 (7-bit)	Sense request
ALL_REQ	52 (7-bit)	WakeUp All request
SDD_REQ	93, 95, 97	Single device detection request
SEL_REQ	9370, 9570, 9770	Select request

Table 42. Commands to which the device is able to respond

5.14 Echo command (0x55) description

The Echo command verifies the possibility of communication between a Host and the ST95HF. This command also can be used to exit Listening mode without an error when the ST95HF has received a Listen command.

Table 43. Echo command description

Direction	Data	Comments	Example
Host to ST95HF	0x55	Command code	
ST95HF to Host	0x55	Code response	>>> 0x55: Sends an ECHO command <>< 0x55: Response to an ECHO command

6 Electrical characteristics

6.1 Absolute maximum ratings

Table 44. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
VPS_Main	Supply voltage ⁽¹⁾	-0.3 to 7.0	V	
VPS_TX	Supply voltage (RF drivers)	-0.3 to 7.0	V	
V _{IO}	Input or output voltage relative to ground	-0.3 to VPS_Main +0.3	V	
V _{MaxCarrier}	Maximum input voltage (pins RX1 and RX2)	±14.0	V	
т	Ambient operating temperature	-25 to +85	°C	
T _A	Ambient operating temperature (RF mode)	-25 to +85		
T _{STG}	Storage temperature (Please also refer to package specification).	-65 to +150	°C	
T _{LEAD}	Lead temperature during soldering	See note ⁽²⁾	°C	
V _{ESD}	Electrostatic discharge voltage according to JESD22-A114, Human Body Model	2000	V	
P _{TOT} (3)	Total power dissipation per package	1	W	

^{1.} To properly reset the device, VPS_Main must be tied to 0V before executing the start-up sequence.

Note:

Stresses listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Compliant with JEDEC standard J-STD-020D (for small-body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS
directive 2011/65/EU of July 2011).

^{3.} Depending on the thermal resistance of package.

6.2 DC characteristics

Table 45. DC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VPS_Main	Supply voltage		2.7	3.0	5.5	V
VPS_TX	Supply voltage (RF drivers)		2.7	3.0	3.3	V
V _{IL}	Input low voltage (I/Os)		0		0.2 x VPS_Main	V
V _{IH}	Input high voltage (I/Os)		0.7 x VPS_Main		VPS_Main	V
V _{OH}	Output high voltage (I/Os)	Ι _{ΟΗ} = - 8 μΑ	0.7 x VPS_Main		VPS_Main	V
V _{OL}	Output low voltage (I/Os)	I _{OLMAX} = 500 μA	0		0.15 x VPS_Main	V
POR	Power-on reset voltage			1.8		V

Table 46. DC characteristics (VPS_Main = 3V±10% and VPS_TX = 5V±10%)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VPS_Main	Supply voltage		2.7	3.0	5.5	V
VPS_TX	Supply voltage (RF drivers)		4.5	5.0	5.5	V
V _{IL}	Input low voltage (I/Os)		0		0.2 x VPS_Main	V
V _{IH}	Input high voltage (I/Os)		0.7 x VPS_Main		VPS_Main	V
V _{OH}	Output high voltage (I/Os)	Ι _{ΟΗ} = - 8 μΑ	0.7 x VPS_Main		VPS_Main	V
V _{OL}	Output low voltage (I/Os)	I _{OLMAX} = 500 μA	0		0.15 x VPS_Main	V
POR	Power-on reset voltage			1.8		V

6.3 Power consumption characteristics

 $T_A = -25$ °C to 85°C, unless otherwise specified.

Table 47. Power consumption characteristics (VPS_Main from 2.7 to 3.3 V)

Symbol	Parameter	Condition	Тур.	Max.	Unit
I _{CC} (V _{PS}) Power-up	Supply current in power-up state	T _A = 25°C	200	600	μА
I _{CC} (V _{PS}) Card Emulation	Supply current in Card Emulation mode	T _A = 25°C	2.5	5.0	mA
I _{CC} (V _{PS}) Hibernate	Supply current in Hibernate state	T _A = 25°C	1	5	μΑ
I _{CC} (V _{PS}) Sleep/Field Detector	Supply current in Sleep/Field Detector state	T _A = 25°C	20/25	80	μА
I _{CC} (V _{PS}) Ready	Supply current in Ready state	T _A = 25°C	2.5	5.0	mA
I _{CC} (V _{PS}) Tag Detect	Average supply current in Tag Detector state	T _A = 25°C, 4 RF bursts per second	50	100	μА

The ST95HF supports two VPS_TX supply ranges for RF drivers: 2.7V to 3.3V or 4.5V to 5.5V. Antenna matching circuit must be defined accordingly.

Table 48. Power consumption characteristics (VPS_TX from 2.7 to 3.3 V)

Symbol	Parameter	Condition	Тур.	Max.	Unit
I _{CC} RF (V _{PS_TX}) RF Field ON	Supply current in RF Field (Reader mode) (1)	T _A = 25°C	70	100	mA
I _{CC} RF (V _{PS_TX}) RF Field OFF	Supply current in RF Field (Ready mode) (2)	T _A = 25°C		200	μΑ
I _{CC} RF (V _{PS_TX}) Tag Detect	Peak ⁽³⁾ current during Burst detection	T _A = 25°C	70	100	mA

^{1.} Parameter measured using recommended output matching network. (Z load is 27 Ω and 0°).

^{2.} This consumption can be reduced to approximately 2 µA (typ.) by setting a control bit (bit HF2RF) to '1' using command 090468010710. In this case, Reader mode is not available.

To re-enable Reader mode, reset the HF2RF bit to '0' using the command 090468010700 or execute a new PROTOCOLSELECT command.

^{3.} The maximum differential input voltage between pins RX1 and RX2 (VRx1-Rx2) has a peak-peak of 18 V.

Table 49. Power consumption characteristics (VPS_TX from 4.5 to 5.5 V)

Symbol	Parameter	Condition	Тур.	Max.	Unit
I _{CC} RF (V _{PS_TX}) RF Field ON	Supply current in RF Field (Reader mode) (1)	T _A = 25°C	120	200	mA
I _{CC} RF (V _{PS_TX}) RF Field OFF	Supply current in RF Field (Ready mode) (2)	T _A = 25°C		300	μΑ
I _{CC} RF (V _{PS_TX}) Tag Detect	Peak ⁽³⁾ current during Burst detection	T _A = 25°C	120	200	mA

- 1. Parameter measured using recommended output matching network. (Z load is 16 Ω and 0°).
- This consumption can be reduced to approximately 2 µA (typ.) by setting a control bit (bit HF2RF) to '1' using command 090468010710. In this case, Reader mode is not available.
 To re-enable Reader mode, reset the HF2RF bit to '0' using the command 090468010700 or execute a new PROTOCOLSELECT command.
- 3. The maximum differential input voltage between pins RX1 and RX2 (VRx1-Rx2) has a peak-peak of 18 V. This voltage can be limited by adding a damping resistor in parallel of the antenna or between ST_R0 and Ground.

6.4 SPI characteristics

The ST95HF supports (CPOL = 0, CPHA = 0) and (CPOL = 1, CPHA = 1) modes.

Table 50. SPI interface characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
f _{SCK} 1/ t _{c(SCK)}	SPI clock frequency			2.0	MHz
V_{IL}	Input low voltage			0.3 x V _{PS}	
V _{IH}	Input high voltage 0.7 x V _{PS}			V	
V _{OL}	Output low voltage			0.4 x V _{PS}	V
V _{OH}	Output high voltage		0.7 x V _{PS}		
t _{SU(NSS)} ⁽¹⁾	NSS setup time		70		20
t _{h(NSS)} ⁽¹⁾	NSS hold time		0		ns
t _{CH(SCKL)} ⁽¹⁾	Clock low time		200		20
t _{CH(SCKH)} ⁽¹⁾	Clock high time		200		ns
t _{SU(SI)} ⁽¹⁾	Data slave Input setup time		20		no
t _{h(SI)} ⁽¹⁾	Data slave Input hold time		80		ns
t _{v(SO)} ⁽¹⁾	Data slave output valid time			80	
t _{h(SO)} ⁽¹⁾	Data slave output hold time	After enable edge	0		ns
C _{b_SPI_IN}	Capacitive load for input pins NSS, CLK, MOSI			3	pF
C _{b_SPI_OUT}	Capacitive load for input pins MOSI			20	pF

^{1.} Values based on design simulation and/or characterization results, and not on tested in production.

NSS input tSU(NSS) ◄ tc(SCK) th(NSS) SOUN CPHA = 0 ^tCH(SCKH)¦ tCH(SCKL) tV(SO) th(SO) MISO MSB Out Bit 6 Out LSB Out tsu(SI) → MOSI LSB In MSB In Bit 1 In th(SI) MS18165V2

Figure 12. SPI timing diagram (Slave mode and CPOL = 0, CPHA = 0)

Figure 13. SPI timing diagram (Slave mode and CPOL = 1, CPHA = 1)

6.5 RF characteristics

Test conditions are T_A = 0°C to 50°C, unless otherwise specified. VPS_TX = 3V ± 10% and VPS_MAIN = 3V ± 10%.

Table 51. Tag/Card Emulation characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
f _C	Frequency of operating field (carrier frequency)		13.553	13.56	13.567	MHz
MI Carrier	Carrier Modulation Index from reader ISO/IEC 14443 -Type A				100	%
HField ⁽¹⁾	Operating field strength in ISO/IEC 14443		1.5		7.5	A/m
V _{MaxCarrier}	Input voltage between RX1 and RX2				18	V
f _S ⁽²⁾	Frequency of Subcarrier modulation (ISO/IEC 14443, ISO/IEC 18092 and ISO/IEC 15693)				f _C / 16	
ALoad	Load Modulation Amplitude f _C + f _S f _C - f _S	ISO 10373-6 test methods for ISO/IEC 14443-A @ 1.5 A/m	18 18			mV
ALOUG	f _C + f _S f _C - f _S	ISO 10373-6 test methods for ISO/IEC 14443-A @ 7.5A/m	8 8			mV
ALoad	Load Modulation Amplitude $f_C + f_S$ $f_C - f_S$	ECMA 356 test methods for ECMA 340 @ 1.5 A/m	18 18			mV
	f _C + f _S f _C - f _S	ECMA 356 test methods for ECMA 340 @ 7.5 A/m	8 8			mV
DataR	ISO/IEC 14443 Type A		106		212	Kbps

^{1.} Maximum values based on design simulation and/or characterization results, and not tested in production.

Table 52. Field detection characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Level of detection (1)	0.5		8	A/m

^{1.} Parameter measured using recommended output matching network for ISO/IEC 14443 communication.

^{2.} Parameter measured on samples using recommended output matching network.

Table 53. Reader characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _C	Frequency of operating field (carrier frequency)	13.553	13.56	13. 567	MHz
	Carrier modulation index ⁽¹⁾ ISO/IEC 14443-A			100	
	ISO/IEC 14443-B	8		14	
MI Carrier	ISO/IEC 18092	8		14	%
	ISO/IEC 15693 (10% modulation) ⁽²⁾	10		30	
	ISO/IEC 15693 (100% modulation)	80		100	
Transmitte	er specifications (VPS_TX = 2.7 to 3.3 V)				
	Z _{OUT} differential impedance between TX1 and TX2 ⁽¹⁾		27		Ω
	Output power for 3V operation on pin VPS_TX (1)(2)		55		mW
Transmitte	er specifications (VPS_TX = 4.5 to 5.5 V)			•	
	Z _{OUT} differential impedance between TX1 and TX2 ⁽¹⁾		16		Ω
	Output power for 5V operation on pin VPS_TX (1) (2)		230		mW
Receiver s	specifications				
	Small signal differential input resistance (Rx1/Rx2) ⁽¹⁾		100		kΩ
VRx1-Rx2	Differential input voltage between pins RX1 and RX2 ⁽³⁾			18	V
	Small signal differential input capacitance (Cx1/Cx2) ⁽¹⁾		22		pF
	Sensitivity (106 Kbps data rate) ⁽⁴⁾		8		mV

- 1. Maximum values based on design simulation and/or characterization results, and not tested in production.
- 2. Parameter measured on samples using recommended output matching network. (Z load is 27 Ω and 0°.)
- This voltage can be limited by adding a damping resistor in parallel of the antenna or between ST_R0 and Ground.
- Based on ISO/IEC 10373-6 protocol measurement. The reader sensitivity corresponds to the load modulation value of the REQ reply sent by an ISO reference card when decoded by the ST95HF.

6.6 Oscillator characteristics

The external crystal used for this product is a 27.12 MHz crystal with an accuracy of ± 14 kHz.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
f _{XTAL}	Oscillator frequency			27.12		MHz			
R _F	Feedback resistor			2		МΩ			
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_{\rm S})^{(3)}$	R _S = 30 Ω		6		pF			
t _{SU(HFO)} ⁽⁴⁾	Startup time	V _{PS} is stabilized		6	10	ms			

Table 54. HFO 27.12 MHz oscillator characteristics^{(1) (2)}

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 2. Based on characterization, not tested in production.
- 3. The relatively low value of the R_F resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the Host is used in tough humidity conditions.
- 4. t_{SU(HFO)} is the startup time measured from the moment it is enabled (by software) to a stabilized 27.12 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 10 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 14*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Figure 14. Typical application with a 27.12 MHz crystal

Note:

For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 10 pF to 20 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

47/

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

This device is available in a 32-lead, 5x5 mm, 0.5 mm pitch, very thin fine pitch quad flat pack no-lead package (VFQFPN).

Figure 15. 32-lead VFQFPN package outline

Table 55. 32-pin VFQFPN package mechanical data

Symbol	millimeters				inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Note
А	0.800	0.900	1.000	0.0315	0.0354	0.0394	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3		0.200			0.0079		
b	0.180	0.250	0.300	0.0071	0.0098	0.0118	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D2 (AMK_B)	3.500	3.600	3.700	0.1378	0.1417	0.1457	1
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E2 (AMK_B)	3.500	3.600	3.700	0.1378	0.1417	0.1457	1
е		0.500			0.0197		
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd (AMK)			0.050			0.0020	2

^{1.} Values in inches are rounded to 4 decimal digits.

Note: 1) AMKOR Variation B. Dimensions are not in accordance with JEDEC.

2) AMKOR and MUAR.

Note: 1 AMKOR Variation B. Dimensions are not in accordance with JEDEC.

2 AMKOR.

ST95HF Part numbering

8 Part numbering

T = Tape and Reel

Not all combinations are necessarily available. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest STMicroelectronics Sales Office.

Appendix A Additional Idle command description

This section provides examples of use for the IDLE command.

The wake-up source is the third of the 16 bytes in the IDLE command. This byte specifies authorized Wake-up events. This revision now also provides the capability to set the LFO frequency in WFE mode.

The LFO frequency and the authorized wake-up source settings are stored in the Wake-up source register as the parameters of the IDLE command.

The Wake-up event is updated by the ST95HF when it exits WFE mode.

The contents of the Wake-up event register can be read using the Read Register command or in the ST95HF reply to the Idle command.

Table 57. Wake-up source register

	Bits [7:6]	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
L	FO frequency	RFU ⁽¹⁾	IRQ on pin SPI_SS	IRQ on pin IRQ_IN	Field Detect	Tag Detect	Timeout

^{1.} Must be set to '0'.

Table 58. Wake-up event register

Bits [7:6]	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LFO frequency	RFU	IRQ on pin SPI_SS	IRQ on pin IRQ_IN	Field Detect	Tag Detect	Timeout

Bits [7:6] define the LFO frequency (f_{IFO}):

00: 32 kHz 01: 16 kHz 10: 8 kHz 11: 4 kHz

Bit 4: When set, the ST95HF will wake up when an external interrupt (low level on pin SPI_SS) is detected.

Bit 3: When set, the ST95HF will wake up when an external interrupt (low level on pin IRQ_IN) is detected. This is useful for SPI communication. It is recommended to set this bit to '1' in order to recover in the event of a system crash.

Bit 2: When set, the ST95HF will wake up when an RF field is detected.

Bit 1: When set, the ST95HF will wake up when a tag is detected in the RF field. This bit must also be set during Tag Detection calibration or during a Tag Detection sequence.

Bit 0: When set, the ST95HF will wake up and return to Ready state at the end of a predefined cycle. The Timeout (TO) value is defined by the MaxSleep and Wake-up period:

TO = (MaxSleep *(WuPeriod+1)*t_{REF}

 t_{REF} = 256* t_{L} = 8 ms (f_{LFO} = 32 kHz), mean power consumption in Sleep mode is 25 μ A t_{REF} = 256* t_{L} = 64 ms (f_{LFO} = 4 kHz), mean power consumption in Sleep mode is 20 μ A

Note: Note that: 0x00 < MaxSleep < 0x1F.

This bit must be set when using the timer as a possible wake-up source. It must be set during Tag Detection Calibration to force a wake-up after the first Tag Detection trial.

Appendix B Example of tag detection calibration process

The following script works on the DEMO_CR95HF evaluation board and with the ST95HF development software available from the ST internet site.

This is a dichotomous approach to quickly converge to the DacDataRef value for which a wake-up event switches from tag detection to Timeout. In this process, only the DacDataH parameter is changed in successive Idle commands. And we look at the wake-up event reply to decide the next step.

```
00 01 02 corresponds to a Tag Detect,
00 01 01 corresponds to a Timeout.
REM, Tag Detection Calibration Test
       Sequence: Power-up Tag Detect Wake-up by Tag Detect (1 try
measurement greater or equal to DacDataH) or Timeout
       CMD 07 0E 03 A100 D801 1800 01 60 60 00 XX 3F 00
REM,
            WU source = Tagdet or Timeout
REM,
       A100 Initial Dac Compare
REM,
REM.
       F801 Initial Dac Compare
       1800 HFO
REM,
       20 Wup Period 32 Inactivity period = 256ms (LFO @ 32kHz)
REM,
                     (LFO @ 32kHz)
REM,
       60 Osc
               3ms
       60 Dac 3ms
                     (LFO @ 32kHz)
REM,
REM,
       00 DacDataL = minimum level (floor)
       xx DacDataH 00 = minimum level (ceiling)
REM.
REM,
       3F
          Swing 13.56 4.6 us
REM,
       01 Maximum number of Sleep before Wakeup 2
REM, Tag Detection Calibration Test
REM, During tag detection calibration process DacDataL = 0x00
REM, We execute several tag detection commands with different
DacDataH values to determine DacDataRef level corresponding to
ST95HF application set-up
REM, DacDataReg value corresponds to DacDataH value for which Wake-
up event switches from Timeout (0x01) to Tag Detect (0x02)
REM, Wake-up event = Timeout when DacDataRef is between DacDataL
```

REM, Search DacDataref value corresponding to value of DacDataH for which Wake-up event switches from Tag Detect (02) to Timeout(01)

and DacDataH

```
REM, Step 0: force wake-up event to Tag Detect (set DacDataH = 0x00)
REM, With these conditions Wake-Up event must be Tag Detect
>>> CR95HFDLL STCMD, 01070E03A100F801180020606000003F01
<<< 000102
REM, Read Wake-up event = Tag Detect (0x02); if not, error.
REM, Step 1: force Wake-up event to Timeout (set DacDataH = 0xFC
REM, With these conditions, Wake-Up event must be Timeout
>>> CR95HFDLL_STCMD, 01070E03A100F801180020606000FC3F01
<<< 000101
REM, Read Wake-up event = Timeout (0x01); if not, error.
REM, Step 2: new DacDataH value = previous DacDataH +/- 0x80
REM, If previous Wake-up event was Timeout (0x01) we must decrease
DacDataH (-0x80)
>>> CR95HFDLL_STCMD, 01070E03A100F8011800206060007C3F01
<<< 000101
REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag
Detect (0x02)
REM, Step 3: new DacDataH value = previous DacDataH +/- 0x40
REM, If previous Wake-up event was Timeout (0x01), we must decrease
DacDataH (-0x40); else, we increase DacDataH (+0x40)
>>> CR95HFDLL_STCMD, 01070E03A100F80118002060600003C3F01
<<< 000102
REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag
Detect (0x02)
REM, Step 4: new DacDataH value = previous DacDataH +/- 0x20
REM, If previous Wake-up event was Timeout (0x01), we must decrease
DacDataH (-0x20); else, we increase DacDataH (+0x20)
>>> CR95HFDLL_STCMD, 01070E03A100F8011800206060005C3F01
<<< 000102
REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag
Detect (0x02)
```

```
REM, Step 5: new DacDataH value = previous DacDataH +/- 0x10
REM, If previous Wake-up event was Timeout (0x01), we must decrease
DacdataH (-0x10); else, we increase DacDataH (+0x10)
>>> CR95HFDLL STCMD, 01070E03A100F8011800206060006C3F01
<<< 000102
REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag
Detect (0x02)
REM, Step 6: new DacDataH value = previous DacDataH +/- 0x08
REM, If previous Wake-up event was Timeout (0x01), we must decrease
DacDataH (-0x08); else, we increase DacDataH (+0x08)
>>> CR95HFDLL_STCMD, 01070E03A100F801180020606000743F01
<<< 000101
REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag
Detect (0x02)
REM, Step 7: new DacDataH value = previous DacDataH +/- 0x04
REM, If previous Wake-up event was Timeout (0x01), we must decrease
DacDataH (-0x04); else, we increase DacDataH (+0x04)
>>> CR95HFDLL_STCMD, 01070E03A100F801180020606000703F01
<<< 000101
REM, Read Wake-up event = Timeout (0x01) or Wake-up event = Tag
Detect (0x02)
REM, If last Wake-up event = Tag Detect (0x02), search DacDataRef =
last DacDataH value
REM, If last Wake-up event = Timeout (0x01), search DacDataRef =
last DacDataH value -4
REM, For tag detection usage, we recommend setting DacDataL =
DacDataRef -8 and DacDataH = DacDataRef +8
>>> CR95HFDLL_STCMD, 01070E0B21007801180020606064743F01
<<< 000101
```

Appendix C Example of tag detection command using results of tag detection calibration

The following script works on the DEMO_CR95HF evaluation board and with the ST95HF development software available from the ST internet site.

This is an example of a Tag Detection command when a tag is not present in the RF operating volume using the ST95HF:

```
>>> CR95HFDLL_STCMD, 01 070E0B21007801180020606064743F01
<-< 000101 Wake-up event = Timeout (0x01)
>>> CR95HFDLL_STCMD, 01 0803620100
<-< 000101
```

This is an example of a Tag Detection command when a tag is present in the RF operating volume using the ST95HF:

```
>>> CR95HFDLL_STCMD, 01 070E0B21007801180020606064743F01
<-< 000102 Wake-up event = Tag Detect (0x02)
>>> CR95HFDLL_STCMD, 01 0803620100
<-< 000102
```

Appendix D Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags

The following script works on the DEMO_CR95HF evaluation board and with the ST95HF developement software available from the ST internet site.

This section provides examples of ST95HF command code used to activate NFC Forum and ISO/IEC 15693 tags using ST95HF development software.

CR95HFDLL_STCMD: Is the standard ST95HF frame exchange command. In this command, the first byte 01 is not sent, it is only requested by the ST95HF development software in order to recognize if it is a user or service command.

CR95HFDLL_SENDRECV: Is the encapsulated ST95HF SendReceive command for which command codes, number of bytes, and CRC are automatically appended to the parameter.

In this section.

- The ST95HF command overhead (command code, length of data and transmission flag) is in black.
- The Tag instruction is in blue.
- The ST95HF response overhead (result code, length of data and status) is in green.
- The Tag response is in red.

When the CRC append option is set in the Protocol Select command, the CRC is automatically appended by the ST95HF, but the CRC is not visible in the instruction log file.

When the CRC is present in the command or response, CRC reply is in italics.

The following symbols correspond to:

- >>> Frame sent by Host to ST95HF
- <<< Frame received by Host from ST95HF

D.1 ISO/IEC 14443 Type A

D.1.1 NFC Forum Tag Type 1 (Topaz)

```
REM,
      ST95HF code example to support NFC Forum Tag Type 1 14443_A
REM,
      TEST TOPAZ 14443A (UID 6E567A00)
     first byte 01 in CR95HFDLL STCMD is only requested by ST95HF
REM,
Development SW
REM,
     RFOFF
>>> CR95HFDLL STCMD, 01 02020000
<<< 0000
REM,
     TEST TOPAZ 14443A (UID 6E567A00)
REM, Sel Prot 14443A option TOPAZ
>>> CR95HFDLL_STCMD, 01 020402000300
<<< 0000
```



```
REM, Optimization of synchronization between digital and analog
inputs by adjusting TimerW value (default 0x52, min. 0x50, max.
0x60). Recommended value is 0x56 or 0x58 for NFC Forum Tag Type 1
>>> CR95HFDLL_STCMD, 01 09043A005804
<<< 0000
REM, Recommended modulation and gain is 0xD1 or 0xD3 for NFC Forum
Tag Type 1 (Topaz).
>>> CR95HFDLL STCMD, 01 0904680101D1
<<< 0000
REM, last Byte x7 or x8 in CR95HFDLL_SENDRECV command number of
bits in the 14443 _Type A frame
    REQA reply ATQA 000C
>>> CR95HFDLL_STCMD, 01 04 02 26 07
<<< 80 05 000C 280000
REM, RID reply HR0 HR1 UID0 UID 1 UID2 UID3
>>> CR95HFDLL_STCMD, 01 04 08 7800000000000 A8
<<< 80 0B 11 48 6E567A00 3E45 080000
REM, RAll 0408 0000 UID0 UID 1 UID2 UID3 Reply HR0 HR1 UID0 UID 1
UID2 UID3 datas
>>> CR95HFDLL_STCMD, 01 04 08 000000 6E567A00 A8
<<< 80 40 11 48 6E567A00
REM, Read ad08 00 UID0 UID 1 UID2 UID3
>>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8
<<< 80 07 08 00 87C1 080000
                   data 12 UID0 UID 1 UID2 UID3
REM, Write E ad08
>>> CR95HFDLL_STCMD, 01 04 08 53 0812 6E567A00 A8
<<< 80 07 08 12 14F2 080000
REM, Read ad08 00 UID0 UID 1 UID2 UID3
>>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8
<<< 80 07 08 12 14F2 080000
    Write NE ad08
                    data A5 UID0 UID 1 UID2 UID3
>>> CR95HFDLL_STCMD, 01 04 08 1A 08A5 6E567A00 A8
<<< 80 07 08 B7 B300 080000
REM, Read ad08 00 UID0 UID 1 UID2 UID3
```

66/90 DocID025630 Rev 2

>>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8


```
<<< 80 07 08 B7 B300 080000
REM, Write_E ad08    data 00 UID0 UID 1 UID2 UID3
>>> CR95HFDLL_STCMD, 01 04 08 53 0800 6E567A00 A8
<<< 80 07 08 00 87C1 080000
REM, Read ad08 00 UID0 UID 1 UID2 UID3
>>> CR95HFDLL_STCMD, 01 04 08 01 0800 6E567A00 A8
<<< 80 07 08 00 87C1 080000</pre>
```

D.1.2 NFC Forum Tag Type 2

```
REM, ST95HF code example to support NFC Forum Tag Type 2 14443_A
REM,
      TEST INVENTORY then Read & Write in Memory
REM, Protocol select 14443A
>>> CR95HFDLL STCMD, 01 02020200
<<< 0000
REM, Optimization of synchronization between digital and analog
inputs by adjusting TimerW value (default 0x52, min. 0x50, max.
0x60). Recommended value is 0x56 or 0x58 for NFC Forum Tag Type 2.
>>> CR95HFDLL STCMD, 01 09043A005804
<<< 0000
REM, Recommended modulation and gain is 0xD1 or 0xD3 for NFC Forum
Tag Type 2.
>>> CR95HFDLL_STCMD, 01 0904680101D1
<<< 0000
>>> CR95HFDLL ANTICOLSELECT123
---- ISO14443-A STARTING ANTICOLLISION ALGORITHM -----
ISO14443-A REQAreply ATQA
>>> CR95HFDLL SENDRECV, 26 07
```

<<< 80 06 **04 DA17** 080000

<<< 80 05 **4400** 280000 ISO14443-A ANTICOL 1

ISO14443-A SELECT 1

>>> CR95HFDLL_SENDRECV, 93 20 08

>>> CR95HFDLL_SENDRECV, 93 70 8804179F04 28

<<< 80 08 **8804179F04** 280000

```
ISO14443-A ANTICOL 2
>>> CR95HFDLL_SENDRECV, 9520 08
<<< 80 08 7910000069 280000
ISO14443-A SELECT 2
>>> CR95HFDLL_SENDRECV, 9570 7910000069 28
<<< 80 06 00 FE51 080000
--> UID = 04179F10000069
--> TAG selected
----- ISO14443-A END OF ANTICOLLISION ALGORITHM -----
REM, READ @A5
>>> CR95HFDLL_SENDRECV, 300C 28
REM, WRITE @OC data A5
>>> CR95HFDLL_SENDRECV, A20CA5A5A5A5 28
<<< 87 00 : Frame wait time out OR no tag
REM, READ @A5
>>> CR95HFDLL_SENDRECV, 300C 28
<<< 80 15 A5A5A5A5FFFFFFFFFFFFFFFFFFFF 84D8 080000
```

D.1.3 NFC Forum Tag Type 2 or 4: Using split frames to resolve collisions

```
REM, TEST ANTICOLISION 2 tags 14443_A
REM, CR95HF CONFIGURATION: ISO14443-A protocol
>>> CR95HFDLL_SELECT, 02000280
<<< 0000
REM, ISO14443-A: CONFIG
>>> CR95HFDLL_STCMD, 01 09043A005A04
<<< 0000
REM, ISO14443-A: INCREASE DEMOD GAIN
>>> CR95HFDLL_STCMD, 01 0904680101DF
<<< 0000
REM, Anticollision 2 tags
REM, Tag 1 --> UID = 044B744AEF2280
```

```
REM, Tag 2 --> UID = 043B114AEF2280
REM, Response When 2 tags are present NVB = nb Byte OK + nb bit OK
REM, Collision B8
REM, First Byte Coll 02 (3 eme Byte) (8804 ok)
REM, Index bit Coll 04 (5eme bit) => SN finish by 0 or 1
REM,
      set NVB = 45
REM,
     REQA Poll field with Two tags In operating volume
>>> CR95HFDLL STCMD, 01 04022607
<<< 80 05 4403 280000
REM,
       Ant CL1 Collision Detection (NVB 20) none data on UID
REM, Response Flag F1=B8 F2=02 F3=04
REM, F1=B8 collision detected 8 bits significatifs in first byte of
response
REM, F2=02 collision detected in 3rd response byte, index start at
REM, F3=04 collision detected on 5th bit, index start at 0
>>> CR95HFDLL_STCMD, 01 0403932008
<<< 80 08 88047B75B7 B80204
REM, Collision Management Usage of split frame with NVB = 45 4bytes
OK + 5 lsb bit OK in next byte
     last bit (collision one) arbitrary fixed to select only one
branch of UID tree
REM, padding of last byte with zeros as msb (tranmission lsb first)
ΛR
REM,
     command flag 45 usage of Split Frame (4) with 5 bits
significatif in last byte
REM,
     uncomplete response byte is padded with 0 as 1sb bits
     Response Flag F1=23 F2=00 F3=00
REM,
REM,
     F1=23, No collision
REM,
      3 bit significatif (msb last received bits) in first response
byte 40
REM, F2=00, not significant
REM, F3=00, not significant
>>> CR95HFDLL_STCMD, 01 0406934588040B45
```



```
<<< 80 06 4074B3 230000
REM, Activation tag Highest branch
>>> CR95HFDLL SENDRECV, 937088044B74B328
<<< 80 06 24D836 080000
REM,
      Ant CL2
>>> CR95HFDLL STCMD, 01 0403952008
<<< 80 08 4AEF228007 280000
REM, Sel CL2 tag Highest branch
>>> CR95HFDLL_SENDRECV, 95704AEF22800728
<<< 80 06 20FC70 080000
REM, ISO14443-A HLTA tag1 Highest branch
>>> CR95HFDLL_SENDRECV, 500028
<<< 8700 : Frame wait time out OR no tag
REM, WUPA Second tags In field
>>> CR95HFDLL_STCMD, 01 04025207
<<< 80 05 4403 280000
      Ant CL1 Detection Collision second tag (No collision)
>>> CR95HFDLL_STCMD, 01 0403932008
<<< 80 08 88047B75B7 B80204
REM, Activation tag lowest branch 043B114AEF2280
>>> CR95HFDLL_SENDRECV, 937088043B11A6789808
<<< 80 06 24D836 080000
REM,
      Ant CL2
>>> CR95HFDLL_STCMD, 01 0403952008
<<< 80 08 4AEF228007 280000
REM, Sel CL2 tag Highest branch
>>> CR95HFDLL_SENDRECV, 95704AEF22800728
<<< 80 06 20FC70 080000
REM, ISO14443-A HLTA tag2 Lowest branch
>>> CR95HFDLL_SENDRECV, 500028
<<< 8700 : Frame wait time out OR no tag
```

ST95HF Examples of ST95HF command code to activate NFC Forum and ISO/IEC 15693 tags

REM, REQA no other tag In operating volume
>>> CR95HFDLL_STCMD, 01 04022607
<<< 8700</pre>

D.1.4 NFC Forum Tag Type 2

REM, ISO14443-A protocol select

Communication using Parity Framing mode which is compliant with MIFARE® framing requirements.

REM, TEST Extract NDEF Message of NFC Tag Type 2 using Parity Framing mode option $\,$

```
>>> 02000280
<<< 0000
REM, ISO14443-A configuration
>>> 09043A005A04
<<< 0000
REM, ISO14443-A: Increase modulation and gain
>>> 0904680101DF
<<< 0000
REM, REQA
>>> 04 02 26 07
<<< 80 05 4400 280000
REM,
       Ant CL1
>>> 04 03 93 20 08
<<< 80 08 8804CB8CCB 280000
REM, Sel CL1
>>> 04 08 9370 8804CB8CCB 28
<<< 80 06 04 DA17 080000
       Ant CL2
REM,
>>> 04 03 9520 08
<<< 80 08 1A432880F1 280000
REM, Sel CL2
>>> 04 08 9570 1A432880F1 28
<<< 80 06 00 FE51 080000
```

REM, All commands below are sent using Parity Framing mode option which defines the parity bit value coming with data byte.

REM, All commands byte including CRC are sent or received in format Data Byte Parity Byte.

REM, Special case occur when receiving single nibble for ACK (9004 0A 2400) or NAK (9004 0y 2400) where 'y' depends on error code.

REM, Row0 SN0 SN1 SN2 BCC0

REM, Read ROWO option (cmd CRC1 addr CRC1 CRC2) Parity automatically included

REM, response Result code Length Data Status

>>> 04 05 **30 00 02 A8** 08

<<< 80 15 04 CB 8C CB 1A 43 28 80 F1 48 00 00 E1 10 12 00 CF2F 080000

REM, Read ROWO option Parity Framing (cmd CRC1 addr CRC1 CRC2) Parity specify after each byte

REM, response Result code Length Data (data byte+parity byte) Status

>>> 04 09 30**80** 00**80** 02**00** A8**00** 18

<<< 80 27 0400 CB00 8C00 CB00 1A00 4300 2880 8000 F100 4880 0080 0080
E180 1000 1280 0080 CF80 2F00 080000</pre>

REM, Read ROWO option Parity Framing (cmd CRC1 addr CRC1 CRC2) with error in Parity

REM, Response Result code Length Data (data byte+parity byte) Status

REM, NACK

REM, CR95HFDLL_STCmd

REM, CR95HFDLL_STCmd

REM, Read ROW1_9 option Parity Framing (cmd CRC1 addr CRC1 CRC2) Parity specify after each byte REM

REM, Row1 SN3 SN4 SN5 SN6

>>> 04 09 **3080 0100 8B80 B900** 18

<<< **80 27** 1A00 4300 2880 8000 F100 4880 0080 0080 E180 1000 1280 0080 0100 0380 A080 1000 1880 7A00 **080000**

REM, Row2 BCC1 internal lock byte0 lock byte1

>>> 04 09 **3080 0200 1000 8B80** 18

<<< **80 27** F100 4880 0080 0080 E180 1000 1280 0080 0100 0380 A080 1000 4480 0380 0B00 D180 A580 4C00 **080000**

REM, Row3 CCFile Magic E1 Ver 10 MMY Size 12 Access 00

>>> 04 09 **3080 0380 9980 9A80** 18

<<< 80 27 E180 1000 1280 0080 0100 0380 A080 1000 4480 0380 0B00 D180 0100 0700 5580 0100 8880 1300 **080000**

REM, Row4 First TL (T01 Prop L 3 V)

>>> 04 09 **3080 0400 2600 EE80** 18

<<< **80 27** 0100 0380 A080 1000 4480 0380 0B00 D180 0100 0700 5580 0100 7300 7480 2E80 6380 5A80 2A00 **080000**

REM, Row5 Second TLV NDEF MSG (T03 L 0B V www.st.com)

>>> 04 09 **3080 0580 AF80 FF80** 18

<<< **80 27** 4480 0380 0B00 D180 0100 0700 5580 0100 7300 7480 2E80 6380 6F80 6D00 FE00 0080 3F80 8500 **080000**

REM, Row6 Second TLV NDEF MSG (TV www.st.com)

>>> 04 09 **3080 0680 3400 CD00** 18

<<< 80 27 0100 0700 5580 0100 7300 7480 2E80 6380 6F80 6D00 FE00 0080
0080 FF80 0080 FF80 3F80 F680 080000</pre>

REM, Row7 Secobd TLV NDEF MSG (T V www.st.com)

>>> 04 09 **3080 0700 BD80 DC00** 18

<<< 80 27 7300 7480 2E80 6380 6F80 6D00 FE00 0080 0080 FF80 0080 FF80
4500 7300 7300 6100 4880 CB00 080000</pre>

REM, Row8 Third TLV Terminator (T V FE 00)

>>> 04 09 **3080 0800 4A00 2480** 18

<<< **80 27** 6F80 6D00 FE00 0080 0080 FF80 0080 FF80 4500 7300 7300 6100 0080 FF80 0080 FF80 F080 4B80 **080000**

REM, Row9 Read Scratch pad

>>> 04 09 **3080 0980 C380 3580** 18

<<< **80 27** 0080 FF80 0080 FF80 4500 7300 7300 6100 0080 FF80 0080 FF80 4500 4600 2000 5400 9A80 4880 **080000**

REM, Write ROW9 option Parity Framing (cmd CRC1 addr CRC1 CRC2) Parity specify after each byte

REM, Response Result code Length Data (data byte+parity byte) Status REM, Row9 Write Scratch pad (ACK)

>>> 04 11 **A200 0980 AA80 5580 AA80 5580 2900 7D80** 18

74/90 DocID025630 Rev 2

```
<<< 90 04 0A 240000
      Row9 Read Scratch pad
>>> 04 09 3080 0980 C380 3580 18
<<< 80 27 AA80 5580 AA80 5580 4500 7300 7300 6100 0080 FF80 0080 FF80
4500 4600 2000 5400 1780 B480 080000
REM,
      Row9 Write Scratch pad (ACK)
>>> 04 11 A200 0980 0080 FF80 0080 FF80 C800 2780 18
<<< 90 04 0A 240000
REM,
      Row9 Read Scratch pad
>>> 04 09 3080 0980 C380 3580 18
<<< 80 27 0080 FF80 0080 FF80 4500 7300 7300 6100 0080 FF80 0080 FF80
4500 4600 2000 5400 9A80 4880 080000
REM, Select Sector 0 (NACK)
>>> 04 09 C200 FF80 C200 E880 18
<<< 90 04 00 240000
BREAK
>>> CR95HFDLL_RESET_SPI
<<< 8000
>>> CR95HFDLL_ECHO
<<< 5500
>>> CR95HFDLL_IDN
<<< 00 0F 4E46 4320 4653 324A 4153 5434 002ACE
NFC Forum Tag Type 4A
**** ST95HF code example to support NFC Forum Tag Type 4A (14443-A)
& NDEF message
REM, 14443B (ST95HF Protocol Selection 14443_A)
REM, first Byte 01 in CR95HFDLL_STCMD is only requested by ST95HF
Development SW
****** ST95HF setting to support extended Frame Waiting Time
```


D.1.5

>>> CR95HFDLL STCMD, 01 020402000180

```
<<< 0000
REM, Optimization of synchronization between digital and analog
inputs by adjusting TimerW value (default 0x52, min. 0x50, max.
0x60). Recommended value is 0x56 or 0x58 for NFC Forum Tag Type 1
(Topaz).
>>> CR95HFDLL_STCMD, 01 09043A005804
<<< 0000
REM, Recommended modulation and gain is 0xD1 or 0xD3 for NFC Forum
Tag Type 1 (Topaz).
>>> CR95HFDLL_STCMD, 01 0904680101D1
<<< 0000
REM, last Byte x7 or x8 in CR95HFDLL_SENDRECV command number of
bit in the 14443 _Type A frame
>>> CR95HFDLL_ANTICOLSELECT123
---- ISO14443-A STARTING ANTICOLLISION ALGORITHM -----
ISO14443-A REOA
>>> CR95HFDLL_SENDRECV, 26 07
<<< 80 05 0400 280000
ISO14443-A ANTICOL 1
>>> CR95HFDLL_SENDRECV, 9320 08
<<< 80 08 08192D A29E 280000
ISO14443-A SELECT 1
>>> CR95HFDLL SENDRECV, 937008192DA29E 28
<<< 80 06 20 FC70 080000
--> UID = 192DA29E , TAG selected
----- ISO14443-A END OF ANTICOLLISION ALGORITHM -----
      ISO14443A_4 RATS/ATS (bit rate capability/FDT/CID usage)
>>> CR95HFDLL_SENDRECV, E050 28
<<< 80 0A 057833B003 A0F8 080000
*****
            ISO14443A_4 PPS (Protocol parameter data rate)
>>> CR95HFDLL_SENDRECV, D01100 28
<<< 80 06 D0 7387 080000
```

76/90 DocID025630 Rev 2

```
** ISO14443_4 APDU (command & reply are using Iblock format,
Prolog Information (APDU) Epilog)
*** 7816_ APDU format (Class Instruction, Param , Length cmd data
Length expeted)
*** last byte 28 is a control byte to request ST95HF to
automatically happen CRC as Epilog
*** In response first 2 Byte 80 xx and last three bytes 08 0000 are
ST95HF's control bytes
*** Detect & Access NDEF Message
*** Select Application by name
>>> CR95HFDLL_SENDRECV, 02 00 A4040007D2760000850100 28
<<< 80 08 02 9000 F109 080000
*****
                       Select CC File by name
>>> CR95HFDLL_SENDRECV, 03 00 A4000002E103 28
<<< 80 08 03 9000 2D53 080000
*****
                       ReadBinary CC (offset Le)
>>> CR95HFDLL_SENDRECV, 02 00 B000000F 28
<<< 80 17 02 000F1000FF00FF0406000100FF0000 9000 B755 080000
******
                       Select NDEF MSG by Identifier 0001
>>> CR95HFDLL_SENDRECV, 03 00 A40000020001 28
<<< 80 08 03 9000 2D53 080000
******
                      ReadBinary NDEF MSG (MSG Length offset 00 2
bytes)
>>> CR95HFDLL_SENDRECV, 02 00 B0000002 28
<<< 80 0A 02 0015 9000 ABB3 080000
******
                       Select NDEF File by name
>>> CR95HFDLL_SENDRECV, 03 00 A40000020001 28
<<< 80 08 03 9000 2D53 080000
*****
                       ReadBinary NDEF (MSG offset 02 , 20 Bytes)
>>> CR95HFDLL SENDRECV, 02 00 B0000215 28
<>< 80 1D 02D101115402656E4D32344C52313620747970652034 9000 25C5 080000
```


Header D1 type 01 Payload 11 type 54 status 02 english 656E , MSG : M24LR16 type

D.2 ISO/IEC 14443 Type B

D.2.1 NFC Forum Tag Type 4B

```
**** ST95HF code example to support NFC Forum Tag Type 4B (14443-B)
& NDEF message
REM, Check ST95HF setting & Protocol selection
REM, FIELD OFF
REM, first Byte 01 in CR95HFDLL_STCMD is only requested by ST95HF
Development SW
>>> CR95HFDLL_STCMD, 01 02020000
<<< 0000
REM, 14443B (ST95HF PROTOCOL Selection 14443_B
>>> CR95HFDLL_STCMD, 01 020403010180
<<< 0000
REM, 14443B Optimization ST95HF Analog Configuration for 144443
(0x30)
>>> CR95HFDLL_STCMD, 01 090468010130
<<< 0000
REM, Access to NFC FORUM TAG Type 4B
REM, REQB 0x 050000 + CRC_B (APf AFI Param (slot0))
REM, Reply ATQB 0x50 4Bytes 4 Bytes 3 Bytes + CRC_B (PUPI AppliData
Protocol Info)
REM, Reply from ST95HF 80 0F 50AABBCCDD30ABAB010081E1AE00 00
REM, 80 response OK, OF nb byte response including tag reply and the
ultimate ST95HF status byte 00 (reply OK)
REM, Tag reply 50AABBCCDD30ABAB010081E1AE00
REM, Response code 50
REM, Pupi AABBCCDD
REM, AFI 30 access control
REM, CRC_B(AID) ABAB
```

REM, Nb Appli (1) 01

```
REM, Prot Info byte1
                       00 (106 Kbps both direction)
REM, Prot Info byte 2 81( frame max 256 Bytes ISO compliant)
0081E1AE0000
REM, Prot Info byte 3 E1 (Max frame wait time 4.9 ms Appli
proprietary CID supported)
REM, CRC B AE00
REM,
     14443_3
REM, REQB ....
>>> CR95HFDLL_STCMD, 01 04 03 050000
<<< 80 OF 50AABBCCDD30ABAB010081E1 AE00 00
     ATTRIB 0x1D PUPI 1byte 1byte 1byte 1 byte + CRC_B (1D
Identifier Param1 Param2 Param3 Param4)
              00
                   use default TR0 TR1 use EOF
REM,
     Param1
REM,
     Param2
             07
                    max frame size 106 Kbps Up & Dwn link
                    ISO14443 compliant
REM,
     Param3 01
     Param4 08
                    CID (8) card Identifier
REM,
     reply ST95HF 80 04 18EBC3 00
REM.
REM, 80 response OK 04 nb byte response including ultimate byte
00 ST95HF reply OK
     Reply 10F9E0 coefBufferLength 1 CID 1 + CRC_B
REM.
REM, ATTRIB ....CID0
>>> CR95HFDLL_STCMD, 01 04 09 1D AABBCCDD00070100
<<< 80 04 10 F9E0 00
     14443_4 , CID not used
REM.
     APDU for NDEF management
REM,
REM,
     command format (INF) CLA INS P1 P2 Lc(optional)
Data(optional)
     Response (optional): body (optional) Sw1 sW2
REM.
REM,
     Block Format Prolog INFO Epilog ( 02 [CID] [NAD] [INF] CRC_B
)
     Sequence lecture NDEF ( for all following commands CRC_B is
automatically appends by ST95HF)
```



```
REM, Select application suivant la version du tag (100)
>>> CR95HFDLL_SENDRECV, 02 00 A4 040007D2760000850100
<<< 80 06 029000296A 00
REM, response 90 00 ok
REM, response 6A 82 application not found
REM, Select CC
>>> CR95HFDLL SENDRECV, 03 00 A4 0000 02 E103
<<< 80 06 03 9000 F530 00
REM, Read CC
>>> CR95HFDLL_SENDRECV, 02 00 B0 0000 0F
<<< 80 15 02 000F1000FF00FF0406000110020000 9000 E7FA 00
REM, Select Ndef 0001
>>> CR95HFDLL_SENDRECV, 03 00 A4 0000 02 0001
<<< 80 06 03 9000 F530 00
REM, Read Msg Length
>>> CR95HFDLL_SENDRECV, 02 00 B0 0000 02
<<< 80 08 02 0013 9000 53AA 00
REM, Select Ndef 0001
>>> CR95HFDLL_SENDRECV, 03 00 A4 0000 02 0001
<<< 80 06 03 9000 F530 00
REM, Read Message
>>> CR95HFDLL_SENDRECV, 02 00 B0 0002 13
<<< 80 19 02 D1010F5402656E557365204352393548462021 9000 8571 00
```

D.3 ISO/IEC 18092

D.3.1 NFC Forum Tag Type 3

REM, ST95HF code example to support NFC Forum Tag Type 3

REM, TEST INVENTORY ISO/IEC 18092

REM, RFOFF

>>> CR95HFDLL STCMD, 01 02020000

<<< 0000

REM, Select Protocol 14443C

>>> CR95HFDLL_STCMD, 01 02020451

<<< 0000

REM, ISO/IEC 18092 New Modulation and Gain 0x50

>>> CR95HFDLL_STCMD, 01 090468010150

<<< 0000

REM, ISO/IEC 18092 Enable AutoDetect Filter to synchronize NFC Forum Tag Type 3 with ST95HF device

>>> CR95HFDLL_STCMD, 01 09040A0102A1

<<< 0000

REM, REQC 00 FFFF 00 00 (command code System code No request slot 0)

REM, ATQC 80 12 01 010102148E0DB413 (Manuf ID) 100B4B428485D0FF (Manuf Parameter)

>>> CR95HFDLL STCMD, 01 04 05 00FFFF0000

<<< 80 12 01 010102148E0DB413 100B4B428485D0FF 00

D.4 ISO/IEC 15693

D.4.1 ISO/IEC 15693 tag

```
REM, Test Tag ISO/IEC 15693 (LR family)
```

REM, Protocol Selection Up link Ask 30% coding 1/4

REM, Down link Single Sub carrier High data rate

REM, Inventory One Slot

REM, Command Protocol Select 02 02 01 05

REM, Protocol Selection

>>> CR95HFDLL_STCMD, 01 02020105

<<< 0000

REM, Modification of IndexMod & Gain in Analog Value register @69_index1 0x50

>>> CR95HFDLL_STCMD, 01 090468010150

<<< 0000

REM, Inventory 1 Slot

>>> CR95HFDLL_STCMD, 01 0403 260100

<<< 80 0D 0000B7100128B42102E0 66CC 00

REM, GetSystem Info

REM, Flags, UID E00221B4280110B7 DSFID 00 AFI 00 MemorySize 3F BlockSize 03 IC Reference 21

```
>>> CR95HFDLL_SENDRECV, 022B
```

<<< 80 12 00 0F B7100128B42102E000003F03 21 DFB0 00

REM, Test Tag ISO/IEC 15693 (Dual family)

REM, Protocol Selection Up link Ask 30% coding 1/4

REM, Down link Single Sub carrier High data rate

REM, Inventory 1 Slot

REM, Command Protocol Select 02 02 01 05

REM, Protocol Selection

>>> CR95HFDLL_STCMD, 01 02020105

<<< 0000

REM, Modification of IndexMod & Gain in Analog Value register @69_index1 0x50

>>> CR95HFDLL_STCMD, 01 090468010150

<<< 0000

REM, Inventory 1 Slot

>>> CR95HFDLL_STCMD, 01 0403 260100

<<< 80 0D 00FF07062092132C02E0 3D22 00

REM, GetSystem Info

REM, Flags ,UID E0022C1392200607 DSFID FF AFI 00 MemorySize 07FF BlockSize 03 IC Reference 2C

>>> CR95HFDLL_SENDRECV, 0A2B

<<< 80 13 00 0F 07062092132C02E0 FF 00 FF07 03 2C 984D 00

Appendix E Card emulation communication

The following information is a log of basic exchanges between the CR95HF transceiver and ST95HF card emulator.

CR95HFDLL_STCMD: Is the standard ST95HF frame exchange command. In this command, the first byte 01 is not sent, it is only requested by the ST95HF development software in order to recognize if it is a user or service command.

CR95HFDLL_SENDRECV: Is the encapsulated CR95HF SendReceive command for which command codes, number of bytes, and CRC are automatically appended to the parameter.

In this section,

- The CR95HF data exchanges are in blue.
- The ST95HF card emulation data exchanges are in green.
- The CR95HF and ST95HF command overhead (command code, length of data and transmission flag) is in **bold**.
- The CRC value is in red.

When the CRC append option is set in the Protocol Select command, the CRC is automatically appended by the ST95HF, but the CRC is not visible in the instruction log file.

When the CRC is present in the command or response, CRC reply is in italics.

The following symbols correspond to:

- >>> Frame sent by Host to ST95HF
- <<< Frame received by Host from ST95HF

Table 59. Example logs

Comment	CR95HF Reader	Direc -tion	ST95HF Card Emulation	Comment
	Exchange: Host -> Reader	CR95 ST95	Exchange: Host -> Card Emu	lator
Set Reader Config.			REM, DEMO ST95HF for Card Emulation Exchange REM, 0A REM, Check serial com with host >>> ST95HFDLL_ECHO <<< 5500 >>> ST95HFDLL_IDN <<< 000F4E4643204653324A41535434002 ACE	Check ST95HF connection to Host
ISO/IEC 14443 Type A at 106 Kbps			REM, POLLFIELD >>> ST95HFDLL_STCMD, 01 0300 <<< 000100	No Field detected
	REM, Reader for Card Emulation Test Max waiting time for manual exchange REM, 0B >>> CR95HFDLL_STCMD, 01 020402000A05 <<< 0000		REM, Select Emulation Tag Mode 14443A >>> ST95HFDLL_STCMD, 01 02021208 <>< 0000	Set ST95HF config. Card Emu- lator ISO/IEC 14443 Type A at 106 Kbps

Table 59. Example logs (continued)

Table 59. Example logs (continued)				
CR95HF Reader	Direc -tion	ST95HF Card Emulation	Comment	
REM, 02000180 REM, CR95HFDII_STCmd REM, CR95HFDII_STCmd 01 09043A00xx04 REM, Default xx 52 Max 5A >>> CR95HFDLL_STCMD, 01 09043A005804		REM, Read Default value Card Emulator Configuration register ACCA REM, ACCA (7:6 card clamp 00 default REM, ACCA (5:4 Card Demod 01 noise immunity low sensitivity 10% REM, ACCA (3:0 mod depth default 7 mon 0 max F) REM, READ Default value Reg ACCA Set Reg Index @4 >>> ST95HFDLL_STCMD, 01 0903680004	Check Configuration	
BREAK		REM, CONFIGURE CARD EMULATOR (Set UID) REM, Set Anti-collision Filter Type A UID 0251744AEF2280 REM, ATQA 4403 SAK 20 UID1 88025174 UID2 4AEF2280 >>> ST95HFDLL_STCMD, 01 0D0B440320880251744AEF2280 <<< 0000 BREAK REM, POLLFIELD	Set ST95HF Identity	
		>>> ST95HFDLL_STCMD, 01 0300	Check RF Field On ST95HF Set in Lis- tening mode	
	REM, 02000180 REM, CR95HFDII_STCmd REM, CR95HFDII_STCmd 01 09043A00xx04 REM, Default xx 52 Max 5A >>> CR95HFDLL_STCMD, 01 09043A005804	REM, 02000180 REM, CR95HFDII_STCmd REM, CR95HFDII_STCmd 01 09043A00xx04 REM, Default xx 52 Max 5A >>> CR95HFDLL_STCMD, 01 09043A005804	REM, 02000180	

Table 59. Example logs (continued)

Comment	CR95HF Reader	Direc -tion	ST95HF Card Emulation	Comment
	>>> CR95HFDLL_ANTICOLSELECT123			
	ISO14443-A Start of Anti-Collision Algorithm			
Execute Anti-colli- sion Pro- cess ISO/IEC 14443	ISO14443-A REQA >>> CR95HFDLL_SENDRECV, 2607 <<< 80054403280000	> <		
	ISO14443-A ANTICOL 1 >>> CR95HFDLL_SENDRECV, 932008 <>< 800888025174A9280000	>		Anti-colli- sion Pro- cess on RX
	ISO14443-A SELECT 1 >>> CR95HFDLL_SENDRECV, 937088025174A928	>		side (no return to Host)
	<< 800624D836080000 ISO14443-A ANTICOL 2 >>> CR95HFDLL_SENDRECV, 952008			Response automati- cally sent to
Type A				reader
	<< 80084AEF228007280000 ISO14443-A SELECT 2	<		ISO/IEC 14443-3
	>>> CR95HFDLL_SENDRECV, 95704AEF22800728	>		
	<< 800620FC70080000	<		
	> UID = 0251744AEF2280 > TAG selected			
	ISO14443-A End of Anti-Collision Algorithm			
	BREAK			

86/90 DocID025630 Rev 2

Table 59. Example logs (continued)

	Direc Service			
Comment	CR95HF Reader	-tion	ST95HF Card Emulation	Comment
Applicative Communication ISO/IEC 14443-4: Data Exchange between Reader (CR95HF) & Card Emulator (ST95HF)				
				ST95HF is in Listening mode
	REM, RATS 1A			
	>>> CR95HFDLL_SENDRECV, E05028	>	>>> ST95HFDLL_POLLING_READING <>< 8005E050BCA508	After capture, Data is
			REM, 1B SEND ATS 060706757781028028	transferred to Host which defines the response
	<< 800F 06757781028 <mark>002F</mark> 00800	<	>>> ST95HFDLL_STCMD, 01 060B06757781028002F0080028	
	BREAK		<<< 0000	
Application comm protocol setup ISO/IEC 14443-4			REM, LISTEN >>> ST95HFDLL_STCMD, 01 0500 <<< 0000 BREAK	ST95HF returns to Listening mode
	REM, PPS 2A >>> CR95HFDLL_SENDRECV, D0110028 <<< 800AD073870800	>	>>> ST95HFDLL_POLLING_READING	After capture, Data is transferred to Host which defines the response
	BREAK		REM, LISTEN >>> ST95HFDLL_STCMD, 01 0500 <<< 0000 BREAK	ST95HF returns to Listening mode

Table 59. Example logs (continued)

Comment	CR95HF Reader	Direc -tion	ST95HF Card Emulation	Comment
	REM, IBLOCK Exchange 3A >>> CR95HFDLL_SENDRECV, 0200A4040007D276000086010028	>	>>> ST95HFDLL_POLLING_READING	After capture, Data is transferred
Applica- tion comm protocol setup	<pre></pre>	>>> ST95HFDLL_STCMD, 01 0608029000F109080028	to Host which defines the response	
ISO/IEC 14443-4 (cont.)			REM, LISTEN >>> ST95HFDLL_STCMD, 01 0500 <<< 0000 BREAK	ST95HF returns to Listening mode
	REM, Set RF OFF >>> CR95HFDLL_STCMD, 01 02020000 <<< 0000		>>> ST95HFDLL_POLLING_READING <<< 8F00	No Field error
Close SPI link	BREAK >>> CR95HFDLL_RESET_SPI <>< 0000		BREAK REM, 4B >>> ST95HFDLL_RESET_SPI <>< 0000	Close SPI link

ST95HF Revision history

Revision history

Table 60. Document revision history

Date	Revision	Changes
14-Apr-2014	1	Initial release.
		Updated Section 3.2: Startup sequence on page 10 and Table 44: Absolute maximum ratings on page 48.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

90/90 DocID025630 Rev 2

