Introduction to Optimization

Homework #2 – Due Wednesday, October 11

- 1. Answer the following short questions:
 - (a) Classify each of the following sets as open, closed, neither, or both.

(i)
$$\{x : |x-5| \le \frac{1}{2}\}$$

(ii)
$$\{x: x^2 > 0\}$$

- (b) Find the interior of $[0,3] \cup (3,5)$.
- (c) Find the boundary points of $[0,3] \cup (3,5)$.
- (d) Find the closure of $\{x: x^2 > 0\}$.
- (e) Find all cluster points of $A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ or } x = 2\}$.
- (f) Find all cluster points of $S = \{(x, y) \in \mathbb{R}^2 : y < x^2 + 1\}$.
- 2. Let 0 < b < 1 and $x_n = b^n$, $n \ge 1$. Show that the sequence (x_n) converges to 0. (Hint: we may write for some for some a > 0,

$$b = \frac{1}{1+a}$$

and use the Bernoulli's inequality if a > -1, $a \in \mathbb{R}$ $(1+a)^n \ge 1+na$, $n \ge 1$.)

- 3. Let $X = (x_n)$ be a sequence in \mathbb{R}^p which is convergent to x, and let $c \in \mathbb{R}$. Show that $\lim_{n \to \infty} (cx_n) = cx$.
- 4. If $X = (x_n)$ and $Y = (y_n)$ are sequences of real numbers which both converge to c and if $Z = (z_n)$ is a sequence such that $x_n \le z_n \le y_n$ for $n \in \mathbb{N}$, then Z also converges to c.