Optics

Yankun (Alex) Meng Yankun (Alex) Meng

Lecture Outline

- Ray Optics
- Citations

Introduction

Picturing light as rays is useful for predicting imaging properties.

As $\lambda \to 0$, Maxwell equation's become the eikonal equation, which governs ray direction in a medium with a varying $n(\vec{r})$.

Fermat's principle is deduced from eikonal equation.

Snell's law is derived from fermat's principle.

Eikonal Equation

$$abla^2 ec{E}(ec{r},t) + rac{[n(ec{r})]^2 \omega^2}{c^2} ec{E}(ec{r},t)$$
 on isotropic medium)

$$ec{E}(ec{r},t) = ec{E}_0 e^{i[k_{vac}R(ec{r})-\omega t]}, k_{vac} = rac{\omega}{c}\left(rac{rad}{m}
ight) ext{ (trial solution)}$$

We plug trial solution in, perform laplacian, arrange terms, and make the approximation that $\frac{1}{k_{vac}} = \frac{\lambda_{vac}}{2\pi} \to 0$, we get

$$[
abla R(ec{r}) \cdot
abla R(ec{r}) - [n(ec{r})]^2] ec{E}(S)$$

$$\implies \nabla R(\vec{r}) \cdot \nabla R(\vec{r}) = [n(\vec{r})]^2$$

$$\Longrightarrow \boxed{\nabla R(\vec{r}) = n(\vec{r})\hat{s}(\vec{r})}$$
 (eikonal function)

If $R(\vec{r})$ (length) is real, no absorption or amplification. $R(\vec{r}) =$ constant is one wavefront. $\nabla R(\vec{r})$ is the local direction of propagation.

Fermat's Principle

$$abla imes [
abla R(ec{r})] =
abla imes [n(ec{r})\hat{s}(ec{r})]$$
curl 0 of eikonal function $)$

$$\int_A
abla imes [n(ec{r}) \hat{s}(ec{r})]$$
inte $egin{equation} egin{equation} egin{equation$

$$\oint_C n\hat{s}\cdot d\vec{l} = 0$$
 (By Stoke's Theorem)

$$\implies \int_A^B n\hat{s} \cdot d\vec{l}$$
 is independent of path

Notice that

$$\int_A^B n\hat{s}\cdot dec{l} = \min\int_A^B ndec{l}$$

Paraxial Ray Theory

Propagation of rays through optical systems can be approximated as *paraxial*, nearly parallel to the axis of these systems.

Paraxial ray theory predicts stability of laser cavities, to see if ray drift away from optical axis.

Proof of Snell's Law

Construction to prove Snell's Law

Constrained minimization problem: Minimize \$n_1 d_1 _1 + \$

Lecture Outline

- Ray Optics
- Citations

[1] Saleh, B. E. A., & Teich, M. C. (2019). Fundamentals of photonics (3rd ed.). Wiley. [2] Peatross, Justin, and Michael Ware. Physics of Light and Optics. 2015 ed., January 31, 2025 revision, Department of Physics, Brigham Young University. optics.byu.edu.

