Análisis Matemático I

Sucesiones en espacios métricos

DFN 1 (Sucesión convergente). Sea (M,d) un espacio métrico dado, $X: \mathbb{N} \to M$ una sucesión $(X = (x_n)_{n=1}^{\infty} con \ x_n = X(n))$. Decimos que $\lim_{n \to \infty} x_n = \ell$ (rel. d) si: $\forall \epsilon > 0 \ \exists N_{\epsilon} = N(\epsilon) \in \mathbb{N}$ tal que, si $n > N_{\epsilon} \implies d(x_n, \ell) < \epsilon$

DFN 2 (Conjunto acotado). Sea (M,d) un espacio métrico y $E \subseteq M$ dado. Decimos que E es acotado (rel. d) si $\exists x_0 \in M \& R > 0$ tal que $E \subseteq B_R^d(x_0)$

Teorema 1. Sea $X : \mathbb{N} \to M$ una sucesión convergente (rel d). Entonces: $E = \{x_n \mid n \in \mathbb{N}\} \subseteq M$ es acotado (rel. d)

Corolario 1.1. Si $X : \mathbb{N} \to M$ <u>no</u> es acotada (rel. d) $\implies X : \mathbb{N} \to M$ no tiene límite (rel. d)

DFN 3 (Sub-sucesión). Una sub-sucesión de una sucesión dada $(X:\mathbb{N}\to M)$ es de la forma $X\circ g:\mathbb{N}\to M$ con $g:\mathbb{N}\to\mathbb{N}$ estríctamente creciente.

Obs. 1. Una sub-sucesión $X \circ g : \mathbb{N} \to M$ es también una sucesión con valores en M

2. Cualquier sucesión es una sub-sucesión de sí misma, con $q(n) = n \quad \forall n \in \mathbb{N}$

Lema 1 (Lemita). Si $g: \mathbb{N} \to \mathbb{N}$ creciente, entonces $n \leq g(n) \ \forall n \in \mathbb{N}$

Teorema 2. Sea $X: \mathbb{N} \to M$ una sucesión que converge a ℓ (rel. d), entonces **toda** sub-sucesión $X \circ g$ de X converge a ℓ también

Corolario 2.1. Sea $X : \mathbb{N} \to M$ una sucesión.

- 1. Si $X = (x_n)_{n=1}^{\infty}$ admite una sub-sucesión que no converge $\Longrightarrow X = (x_n)_{n=1}^{\infty}$ no converge (rel. d)
- 2. Si $X = (x_n)_{n=1}^{\infty}$ admite dos sub-sucesiones convergentes (rel. d), cada una con límites distintos $\implies X = (x_n)_{n=1}^{\infty}$ no converge

Teorema 3. Si $X : \mathbb{N} \to M$ es acotada (rel. d) \Longrightarrow toda sub-sucesión de ella es tambien acotada.

Sucesiones en espacios métricos

Corolario 3.1. Si $X: \mathbb{N} \to M$ admite una subsucesión no acotada (rel. d), entonces $X: \mathbb{N} \to M$ no converge (rel. d)

DFN 4 (Sucesión de Cauchy). Sea (M,d) un espacio métrico y $X: \mathbb{N} \to M$ una sucesión. Decimos que $X = (x_n)_{n=1}^{\infty}$ es una sucesión de Cauchy (rel. d) si: $\forall \epsilon > 0 \ \exists N_{\epsilon} = N(\overline{\epsilon}) \in \mathbb{N}$ tal que, si $m, n > N_{\epsilon} \Longrightarrow d(x_m, x_n) < \epsilon$

Teorema 4 (Complitud de \mathbb{R}^p). Con $M = \mathbb{R}^p$, y la métrica usual:

 $X: \mathbb{N} \to \mathbb{R}^p converge \iff X: \mathbb{N} \to \mathbb{R}^p es de Cauchy$

Teorema 5. Sea (M,d) un espacio métrico y $X = (x_n)_{n=1}^{\infty}$ una sucesión convergente en M (rel. d). Entonces, $X = (x_n)_{n=1}^{\infty}$ es sucesión de Cauchy.

Obs. El teorema 5 es válido en cualquier espacio métrico con cualquier métrica. La segunda implicación del teorema 4 es particular a \mathbb{R}^p , y se cumple gracias al A.S

Teorema 6. Sea $X : \mathbb{N} \to M$ una sucesión de Cauchy (rel. d) $\implies X : \mathbb{N} \to M$ es acotada.

Corolario 6.1. Si $X: \mathbb{N} \to M$ no es acotada $\implies X: \mathbb{N} \to M$ no es de Cauchy (rel. d).

Teorema 7. Si $X : \mathbb{N} \to M$ es de Cauchy, entonces <u>toda</u> sub-sucesión es de Cauchy.

Teorema 8. Sea (M,d) un espacio métrico y $X: \mathbb{N} \to M$ una sucesión de Cauchy (rel. d). Si $X \circ g: \mathbb{N} \to M$ es una sub-sucesión convergente en M (rel. d) $\Longrightarrow X: \mathbb{N} \to M$ converge en M (rel. d).

DFN 5 (Sucesión Contractiva). Sea (M,d) métrico y $X: \mathbb{N} \to M$ una sucesión. Decimos que $X=(x_n)_{n=1}^{\infty}$ es una sucesión contractiva (rel. d) si $\exists \rho \in (0,1)$ fijo tal que $d(x_{n+1},x_{n+2}) \leq \rho \cdot d(x_{n+1},x_n)$

Teorema 9. Si $X : \mathbb{N} \to M$ es ρ -contractiva (rel. d) $\implies d(x_{n+2}, x_{n+1}) \leq \rho^n \cdot d(x_2, x_1)$.

Sucesiones en espacios métricos

Teorema 10 (Bolzano-Weirstrass para sucesiones). Sea $X : \mathbb{N} \to \mathbb{R}^p$ una sucesión acotada. Entonces $X : \mathbb{N} \to \mathbb{R}^p$ admite una sub-sucesión convergente.

Teorema 11 (Teorema de la convergencia monótona (TCM)). Sea $X : \mathbb{N} \to \mathbb{R}$ una sucesión monótona (no-creciente o no-decreciente) y acotada. Entonces $X = (x_n)_{n=1}^{\infty}$ converge.

Corolario 11.1. Sea $X : \mathbb{N} \to \mathbb{R}$ una sucesión nodecreciente y acotada superiormente. Entonces $X = (x_n)_{n=1}^{\infty}$ converge, y $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} \{x_n\}$

Corolario 11.2. Sea $X : \mathbb{N} \to \mathbb{R}$ ua sucesión nocreciente y acotada inferiormente. Entonces $X = (x_n)_{n=1}^{\infty}$ converge, y $\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} \{x_n\}$

Teorema 12. Sea $X: \mathbb{N} \to \mathbb{R}$ una sucesión arbitraria. Entonces $X = (x_n)_{n=1}^{\infty}$ admite una subsucesión monótona.

Obs. Axioma del Supremo \iff Complitud de \mathbb{R}