Social Security MTR Calculation

Introduction:

This document explains the process by which we calculate the marginal tax rates (MTR) for Social Security for individuals in the CPS dataset.

Methodology:

We begin by including only individuals for our MTR calculation that are in the labor force, which we define by three criteria:

- 1. Their reported age is between 18 and 65 inclusive
- 2. They're not currently enrolled as a part-time or full-time student (a_ftpt from CPS)
- 3. Their earned income is greater than 0

Note: We define earned income as the sum of 'wsal_val', 'semp_val', and 'frse_val' from CPS

Once we define the labor force, we use Mincer's earnings function¹ to predict the earnings in a given year of each individual as a function of schooling and experience. This equation is given by

$$\ln(y) = \ln(y_0) + rS + \beta_1 X + \beta_2 X^2$$

where y is earnings, y_0 is the earnings of somebody with no education or experience, S is years of education, and X is years of work experience. To specify S in our calculation, we use the variable 'a_hga' from the CPS dataset and assign each possible category of education a number, which we define as YrsPstHS in the python code, to reflect how many years beyond high school it takes to finish.

Degree Type	YrsPstHS or 'S'	Degree Type	YrsPstHS or 'S'
Less than high school	0	Bachelor's degree	5
High school graduate	1	Master's degree	7
Some college but no degree	2	Professional school degree	10
Associate degree	3	Doctorate degree	10

We then assume that each individual in the labor force maintains the same level of education for the remainder of their lives and began working immediately upon completing their education. Thus we define experience as

$$X = age - S - 17$$

(Example: An individual aged 34 received a master's degree. Then X would be 34-7-17 = 10.)

Now that these variables are clearly defined, we were able to perform a regression using the variables earned_income, YrsPstHS, experience, and experience_squared to determine the coefficients r, β_1 , and β_2 . With these coefficients, we can imputed each individual's lifetime earnings for each working year of their life (we assume all begin working after completing education and work until 65).

The results of the regression are below.

OLS Regression Results

==========				
Dep. Variable:	earned_income	R-squared:	0.183	
Model:	OLS	Adj. R-squared:	0.182	
Method:	Least Squares	F-statistic:	4421.	
Date:	Sat, 27 Aug 2016	Prob (F-statis	ic): 0.00	
Time:	15:16:31	Log-Likelihoo	d: -82210.	
No. Observations:	59407	AIC:	1.644e+05	
Df Residuals:	59403	BIC:	1.645e+05	
Df Model:	3			
Covariance Type:	nonrobust			
	coef std err t	P> t [95.0% Conf.	Int.]	
const	9.1374 0.014 665.	145 0.000 9.110	9.164	
YrsPstHS	0.1576 0.002 98.1	61 0.000 0.154	0.161	
experience	0.0671 0.001 52.4	43 0.000 0.065	0.070	
experienceSquared	-0.0012 2.77e-05 -42	.580 0.000 -0.001	-0.001	
==========				
Omnibus:	24077.988 Durbin-Wats	son: 1.951		
Prob(Omnibus):	0.000 Jarque-Bera	(JB): 177423.838		
Skew:	-1.779 Prob(JB):	0.00		
Kurtosis:	10.682 Cond. No.	2.93e+03		

We create a vector of lifetime earnings for each year of an individual's working life until the present year by plugging in the individual's education, and their work experience in any given year. We then scale the earnings vector according to an average wage index found at https://www.ssa.gov/oact/cola/AWI.html.

This vector of earnings can then be used to estimate the individuals estimated monthly social security benefit using the Social Security Administration's calculator, called Anypiab, located at website at https://www.ssa.gov/oact/anypia/anypiab.html. Once one downloads the anypiab.exe file into the same directory as our SS_MTR_anypia.py script, our script uses this anypiab applet by filling in .pia files that contain the lifetime earnings, birthday, year of retirement, and gender of each recipient. The anypiab applet takes in the .pia files and then gives an estimated monthly social security benefit.

We format the lifetime earnings vectors four different ways before plugging them into the anypiab applet. First, we assume that there are no future earnings. We do this by setting all future earnings of each individual from the year 2015 until they retire equal to 0. Second, we use our regression to predict the future wages for all the working years of each individual's life (and appropriately scale them with the wage index). Third, we assume that after 2014, earnings remain constant at the 2014 pre-adjustment earnings amount. Lastly, we use the Anypiab program's future earnings projection, called the 2016 Trustees Report Alternative II (which is a moderate wage increase assumption, rather than pessimistic or optimistic). Each of these assumptions produces different SS benefit results, and subsequently different SS MTRs.

To calculate SS MTR amounts for each individual, we first extract the SS benefit amount from the anypiab output file, then we make this benefit representative of a lifetime benefit by multiplying by 12 to make it yearly, then by the number of years remaining in the individual's lifetime, which we assume to be 13 after retirement (78 years old). Once we get this total lifetime benefit, we implement a \$500 adjustment/increase to the current year's (2014) earnings in the lifetime earnings vector and recalculate the monthly benefit using the applet (we use a \$500 adjustment because any smaller adjustment doesn't change the monthly SS benefit amount on the anypiab app).

Finally, we take this new benefit, and similarly multiply by 12 and 13 to make it a lifetime benefit, take the difference between the old and new lifetime benefit, and divide that difference by the \$500 adjustment to get the marginal tax rates for each individual. We perform this set of steps for each individual in the labor force of the CPS dataset.

1. Mincer, Jacob (1958). "Investment in Human Capital and Personal Income Distribution". <u>Journal of Political Economy</u>. **66** (4): 281–302. <u>doi:10.1086/258055</u>. <u>JSTOR 1827422</u>.

Average Wage Index (https://www.ssa.gov/oact/cola/AWI.html)

Year	Avg_Wage	
1951	2799.16	
1952	2973.32	
1953	3139.44	
1954	3155.64	
1955	3301.44	
1956	3532.36	
1957	3641.72	
1958	3673.8	
1959	3855.8	
1960		
1961		
1962		
1963	4396.64	
1964	4576.32	
1965	4658.72	
1966		
1967		
1968		
1969	5893.76	
1970	6186.24	
1971		
1972		
1973		
1974		
1975		
1976		
1977		
1978		
1979		
1980		
1981		
1982		
1983		
1984		
1985	16822.51	

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

20082009

2010

2011

2012

2013

2014

17321.82

18426.51

19334.04

20099.55

21027.98

21811.6

22935.42

23132.67

23753.53

24705.66

25913.9

28861.44

30469.84

32154.82

32921.92

33252.09

34064.95

35648.55

36952.94

38651.41

40405.48 41334.97

40711.61

41673.83

42979.61

44321.67

44888.16

46481.52

27426