Metaheuristic Optimization and Clustering

- For solving a very general class of <u>computational</u> problems
- Combining user-given <u>black-box procedures</u>
- Applied to problems for which there is no satisfactory problem-specific <u>algorithm</u> or heuristic/not practical to apply such algorithms
- Generally targeted to <u>combinatorial optimization</u> problems

General Flow of Control

- State/potential solution
 - Single or a pool of solutions
- An objective function to be optimized
- Procedure for generating new solutions probabilistically
- Probabilistic acceptance of one/more new solutions
- Iterative procedure
- Examples: Genetic algorithms, simulated annealing, evolutionary strategies, tabu search, ant colony optimization, artificial immune systems

GENETIC ALGORITHMS

Definition

Randomized search and optimization technique guided by the principles of natural genetic systems.

Why Genetic Algorithms (GAs) ?

- Evolution produced good individuals, similar principles might work for solving complex problems
- Many problems can not be solved in polynomial amount of time using a deterministic algorithm
- Near optimal solutions requiring less time more desirable than optimal solutions with huge amount of time
 - E.g., traveling salesman problem, knapsack problem

Genetic Algorithms - Features

- Evolutionary Search and Optimization Technique
- Principles of Evolution (survival of the fittest and inheritance)
- Work with coding of the parameter set
- Searches from a population of points
- Uses probabilistic transition rules

Genetic Algorithms Nature

•A solution (phenotype) Individual

•Representation of a solution (genotype) Chromosome

•Components of the solution Genes

•Set of solutions Population

•Survival of the fittest (selection) Darwins theory

•Search operators Crossover and mutation

• Iterative procedure Generations

Encoding Strategy and Population

- Chromosome encodes a solution in the search space
 - Usually as strings of 0's and 1's
 - If /is the string length, number of different chromosomes (or strings) is 2/
- Population
 - A set of chromosomes in a generation
 - Population size is usually constant
 - Common practice is to choose the initial population randomly.

Encoding and Population -Example

Optimization Problem:

Optimize
$$f(x) = x(8-x), x=[0,8]$$

User specified parameters

Binary String of 8 bits $0-255 \longleftrightarrow 0-8$

Cinomosome								
encodes x	1	0	0	1	1	0	1	0

Value =
$$154$$
 $8/255 * $154 + 0 = 4.8313$$

Encoding and Population – Example contd...

Population (size $= 4$)	Popu!	lation	(size	= 4
--------------------------	-------	--------	-------	-----

Corresponding x

1	0	0	1	1	0	1	0	4.8313
0	1	1	0	0	1	1	1	3.2313
0	0	0	1	0	1	0	1	0.6588
1	0	1	1	1	1	0	0	5.8980

Fitness Evaluation

- Fitness/objective function associated with each chromosome
- indicates the degree of goodness of the encoded solution
- only problem specific information (also known as the payoff information) that GAs use
- If minimization problem is to be solved then fitness $\propto 1/\text{objective}$.

Fitness Evaluation - Example

Function f(x) = x(8-x)

Pop	oula	tio	n (s	size) = ·	4)	Corresponding x	Objective/ Fitness fn.
1 0	0	1	1	0	1	0	4.8313	15.3089
0 1	1	0	0	1	1	1	3.2313	15.4091
0 0	0	1	0	1	0	1	0.6588	4.8363
1 0	1	1	1	1	0	0	5.898	12.3975

Selection

- More copies to good strings
- Fewer copies to bad string
- proportional selection scheme
 - Number of copies taken to be directly proportional to its fitness
 - mimics the natural selection procedure to some extent.
 - Roulette wheel parent selection and stochastic universal selection selection are two frequently used selection procedures.

Roulette Wheel Selection – Example

Chromosome #	Fitness
1	15.3089
2	15.4091
3	4.8363
4	12.3975

Spin 1	Chromosome 2 selected	Mating	0 11 00 1 1
	Chromosome 1 selected		1 00 11 0 1 (
	Chromosome 2 selected		0 1 1 0 0 1 1
Spin 4	Chromosome 4 selected	2 0 0 2	1 0 1 1 1 1 0 0

Stochastic Universal Selection-Example

Chromosome 1 1 copy Chromosome 2 2 copies

Chromosome 2 2 copies

Chromosome 3 0 copies

Chromosome 4 1 copy

Crossover

exchange information

- between randomly selected parent chromosomes
- Single point crossover is one of the most commonly used schemes.
- probabilistic operation

Here l (string length) = 8. Let k (crossover point) = 5

Offspring formed:

1	0	0	1	1	1	0	1
0	1	1	1	1	0	1	0

Mutation

- random alteration in the genetic structure
 - introduce genetic diversity into the population.
 - Exploration of new search areas
 - Mutating a binary gene involves simple negation of the bit,
 - Mutating a real coded gene defined in a variety of ways
 - nrohabilistic operation

Mutation- Example Mutations at positions 2 and 5

Termination Criterion

The cycle of selection, crossover and mutation is repeated a number of times till:

- the average fitness value of a population becomes more or less constant over a specified number of generations,
- a desired objective function value is attained by at least one string in the population,
- the number of generations (or iterations) is greater than some threshold ----- most commonly used.

Elitist Model of GAs

Best string seen up to the current generation is preserved

Parameters ...

- population size (usually fixed)
- string length (usually fixed)
- probabilities of performing crossover (μ_c) and mutation(μ_m),
 - μ_c is kept high and μ_m is kept low
- the termination criteria
 - •Generally a maximum number of iterations
- parameters are user determined and problem dependent
- no firm guidelines
- •parameters can be kept variable and/or adaptive.

Parameters – Example

For the example being considered,

$$P = 4$$
, $I = 8$.

But for most realistic cases

P is usually chosen in the range 50-100.

$$\mu_c = [0.6 - 0.9],$$

$$\mu_m = [0.01 \text{-} 0.1].$$

/usually depends on the required precision

Current Trends in GAs

- Encoding strategy
 - Integer encoding
 - Real encoding
 - Encoding of other structures
 - Variable length representation
- Operators
 - New domain specific operators
 - Variable and adaptive probabilities of the operations
- Incorporation of local search
- Handling constraints
 - Reject infeasible strings
 - Penalty based method

Current Trends in GAs contd...

- Multiobjective optimization
 - Multiple conflicting objectives to be simultaneously optimized
 - NSGA-II, PAES, SPEA, AMOSA
- Hybridization with other soft computing tools like
 - Neural networks
 - Fuzzy sets
 - Rough sets

Genetic Algorithms for Clustering

Spatial Clustering

Spatial Clustering

"Genetic Algorithm Based Clustering Technique", Patt. Recog., 33, 1455-1465, 2000.

"Clustering using Simulated Annealing with Probabilistic Redistribution" Int. Journal of Pattern Recognition and Artificial Intelligence, vol 15, no. 2, pp. 269-285, 2001.

"Non-parametric Genetic Clustering: Comparison of Validity Indices", IEEE Trans. on Systems, Man and Cybernetics Part-C, vol. 31, no. 1, pp. 120-125, 2001.

"Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification", Pattern Recognition.

Crisp Clustering

$$C_i \neq \emptyset$$
, $C_i \cap C_j = \emptyset$

Some measure of clustering goodness is optimized

Fuzzy Clustering

 $C_i \neq \emptyset$, $C_i \cap C_j \neq \emptyset$

Some measure of clustering goodness is optimized

- Medical Image Segmentation
 - MRI brain image
 - X-Ray Computer Tomography (CT)
- Spatial Data Mining
 - Creating thematic maps in GIS
- WWW
 - Clustering the documents
- Market economics
 - Financial analysis
 - Clustering of time series

Important Issues in Clustering

- Data types, for interval-scaled, boolean, nominal, ordinal and ratio variables.
 - Ordinal variables Rank in a class
 - Nominal categorical (red, blue, green)
 - Interval scaled continuous variables
- Distance/similarity measures
 - nkowski distance $\sqrt[q]{(|x_{i_1}-x_{j_1}|^q+|x_{i_2}-x_{j_2}|^q+...+|x_{i_p}-x_{j_p}|^q)}$ $= q=1 \rightarrow Manhattan, q=2 \rightarrow Euclidean, Pearson correlation, Mahalanobis$ Minkowski distance
 - distance, symmetry-based, binary/categorical
- Cluster types in the data
 - Model selection
 - Hyperspherical, elliptical, ring like, arbitrary shaped
 - Choice of algorithm and distance measure

Important Issues in Clustering

contd...

- How many clusters
 - Model order selection
- Clustering quality/goodness
 - Depends on similarity measure
 - Optimizing criteria
 - Low intra class variance
 - High inter class variance
 - Cluster Validity
 - Optimizing technique
 - Gradient descent
 - Meta heuristic approaches

Methods

- K-means clustering
- Fuzzy c-means clustering
- Hierarchical clustering

Clustering Using Genetic Algorithms (fixed *c*)

•Representation:

•Cluster centers encoded in the chromosomes

For a *d*-dimensional space

length of chromosome = d * K

$$\{(v_{11}, v_{12}, ..., v_{1d}) (v_{21}, v_{22}, ..., v_{2d}) ... (v_{c1}, v_{c2}, ..., v_{cd})\}$$
Center 1 Center 2 Center c

• Example 1 →

Let d=2 and K=3,

•i.e., two-dimensional space, number of clusters = 3 Chromosome → {(51.6 72.3) (18.3 15.7) (29.1 32.2)} represents 3 cluster centers (51.6, 72.3), (18.3, 15.7) and (29.1, 32.2).

(Population initialization)

• Initial cluster centers = c randomly selected points from the data

```
For each chromosome i in the population
For each cluster j
p=randomly chosen point from the data
set;

Population[i][j] ← p;
End
End
```

Fitness computation)

This consists of three phases.

- •Phase 1: Cluster assignment
 - each point is assigned to the nearest cluster center.

All ties are resolved arbitrarily.

- •Phase 2: The cluster centers encoded in the chromosome are replaced by the mean points of the respective clusters.
 - $v_i^* = (1/n_i) \sum x_j^i$ for i=1, 2, ..., c
 - v_i replaced by v_i^* in the chromosome
- •Phase 3: fitness = 1/(clustering metric J)
 - Compute $J = \sum \sum d^2(x_k^j, v_i)$, j=1,2,...c and $k=1, 2, ..., n_i$.
 - Maximization of fitness leads to minimization of J

(Fitness computation - Example)

Example $2 \rightarrow$

Chromosome -

 $\{(51.672.3)(18.315.7)(29.132.2)\}$

- The first cluster center is (51.6, 72.3).
- Let points (50.0, 70.0) and (52.0, 74.0) be also included in the first cluster
 - besides itself i.e., (51.6, 72.3)
- Hence the newly computed cluster center becomes ((50.0+52.0+51.6)/3, (70.0+74.0+72.3)/3)=(51.2, 72.1).
- New cluster center replaces the previous value in chromosome (51.2, 72.1) replaces (51.6, 72.3).
- Compute mean squared error J
 - Fitness of chromosome = 1/J

(Genetic operations)

•Crossover:

Single point crossover with a fixed crossover probability.

- •For chromosomes of length c
 - a random integer p is generated in the range [1, c]
 - portions of the chromosomes lying to the right of p are exchanged to produce two offspring.

•Mutation:

Since we are considering floating point representation, we use the following mutation. A number δ in the range [0, 1] is generated with uniform distribution. If the value at a gene position is v, after mutation it becomes

$$v=v \pm 2 * \delta * v$$
, if $v \neq 0$, $v=v \pm 2 * \delta$ if $v=0$.

Termination

- GA clustering is run for a fixed number of generations
- Elitism incorporated
- best string (one with the lowest *J*) is taken as the solution of the clustering problem.

Result

 $(c=5, n=250, d=2, iter=100, Pop = 20, Prob_{crossover} = 0.8, Prob_{mutation} = 0.01)$

Pixel Classification of Satellite Images

- IRS image of Mumbai and Kolkata (IRS 1A)
- Four bands
 - Blue
 - Green
 - Red
 - Near infra red
- Resolution = 36.25 m x 36.25 m

Calcutta Image

Input Image in Near Infra Red Band

Result on Calcutta Image

Genetic Fuzzy Clustering # clusters detected = 4

FCM Clustering for # clusters = 4

• River, roads, fishery, Salt Lake region etc. automatically identified

- In FCM confusion between Water/open space and Concrete classes
- Index value for genetic scheme was better than that for FCM

Confusion between water body and concrete

Multiobjective Clustering

- Unsupervised
- Many approaches
 - K-means simple, sometimes useful
 - K-medoids is less sensitive to outliers
 - Hierarchical clustering works for symbolic attributes
- Evaluation is a problem
 - Cluster validity

- T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley, Reading, 1974.
- P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-Hall, London, 1982.
- K. Fukunaga, Introduction to Statistical Pattern Recognition (Second Edition), Academic Press, New York, 1990.
- S. Theodoridis, K. Koutroumbas, Pattern recognition, Academic Press, 1999.
- A. Webb, Statistical pattern recognition, Oxford University Press Inc., New York, 1999.
- R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification (2nd ed.), John Wiley and Sons, 2001.
- S. Bandyopadhyay, `An Efficient Technique for Superfamily Classification of Amino Acid Sequences: Feature Extraction, Fuzzy Clustering and Prototype Selection", Fuzzy Sets and Systems, vol. 152, pp. 5-16, 2005
- J. T. L. Wang, Q. C. Ma, D. Shasha, C. H. Wu, `New Techniques for Extracting Features from Protein Sequences", IBM Systems Journal, Special Issue on Deep Computing for the Life Sciences, vol-40, no-2, pp. 426-441, 2001

- A. K. Jain, M.N. Murthy and P.J. Flynn, Data Clustering: A Review, ACM Computing Reviews, Nov 1999.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data, Prentice Hall, 1988.
- R. L. Cannon, J. V. Dave, and J. C. Bezdek. Efficient implementation of the fuzzy c-means clustering algorithms. TPAMI, 8(2):248--255, 1986.
- U. Maulik and S. Bandyopadhyay, "Genetic Algorithm Based Clustering Technique", Pattern Recognition, vol. 33, no. 9, pp. 1455-1465, 2000
- S. Bandyopadhyay and U. Maulik, "Non-parametric Genetic Clustering: Comparison of Validity Indices", *IEEE TSMC-C*, vol. 31, no. 1, pp. 120-125, 2001.
- S. Bandyopadhyay, "Simulated Annealing Using Reversible Jump Markov Chain Monte Carlo Algorithm for Fuzzy Clustering", IEEE TKDE, vol. 17, no. 4, pp. 479-490, 2005.

- S. Bandyopadhyay and S. K. Pal, Classification and Learning Using Genetic Algorithms, Applications in Bioinformatics and Web Intelligence, Springer-Verlag, 2007
- D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York, 1989.
- Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs.
 Springer-Verlag. Third edition.
- Mitchell, Melanie. 1996. An Introduction to Genetic Algorithms. Cambridge, MA
- Beyer, Hans-Georg. 2001. The Theory of Evolution Strategies. Heidelberg: Springer-Verlag.
- Schwefel, Hans-Paul. 1995. Evolution and Optimum Seeking. New York, NY: John Wiley.
- Fogel, David B. 1991. System Identification through Simulated Evolution. Needham Heights, MA: Ginn Press.
- Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester, UK, 2001, ISBN 0-471-87339-X.
- Carlos A. Coello Coello, David A. Van Veldhuizen and Gary B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer Academic Publishers, New York, March 2002, ISBN 0-3064-6762-3.

- S. Bandyopadhyay, S. K Pal, and B. Aruna, "Multi-objective GAs, quantitative Indices and Pattern Classification", *IEEE Transactions on Systems, Man and Cybernetics B,* vol. 34, no. 5, pp. 2088-2099, 2004.
- U. Maulik and S. Bandyopadhyay, "Performance Evaluation of Some Clustering Algorithms and Validity Indices", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 24, no. 12, pp. 1650-1654, 2002.
- U. Maulik and S. Bandyopadhyay, "Fuzzy Partitioning Using Real Coded Variable Length Genetic Algorithm for Pixel Classification", *IEEE Transactions on Geosciences and Remote Sensing*, vol. 41, no. 5, pp. 1075-1081, 2003.
- S. Bandyopadhyay, "Simulated Annealing Using Reversible Jump Markov Chain Monte Carlo Algorithm for Fuzzy Clustering", *IEEE Transactions on Knowledge and Data Engineering*, vol. 17, no. 4, pp. 479-490, 2005.
- S. Bandyopadhyay, "An Efficient Technique for Superfamily Classification of Amino Acid Sequences: Feature Extraction, Fuzzy Clustering and Prototype Selection", Fuzzy Sets and Systems, vol. 152, pp. 5-16, 2005.
- S. Bandyopadhyay, Ac. Bagchi and U. Maulik, ``Active Site Driven Ligand Design: An Evolutionary Approach", *Journal of Bioinformatics and Computational Biology*, vol. 3, No. 5, pp.1053-1070, 2005.

- M. K. Pakhira, S. Bandyopadhyay and U. Maulik, ``A Study of Some Fuzzy Cluster Validity Indices, Genetic Clustering and Application to Pixel Classification", *Fuzzy Sets and Systems*, vol. 155, pp. 191-214, 2005.
- S. Bandyopadhyay, U. Maulik and A. Mukhopadhyay, ``Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery", IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 5, pp. 1506-1511, 2007.
- S. S. Ray, S. Bandyopadhyay, and S. K. Pal, ``Genetic Operators for Combinatorial Optimization in TSP and Microarray Gene Ordering", *Applied Intelligence*, vol. 26, no. 3, pp. 183-195, 2007.
- S. Bandyopadhyay and S. Saha, ``GAPS: A New Symmetry Based Genetic Clustering Technique", Pattern Recognition, vol. 10, no. 12, pp. 3430-3451, 2007.
- S. Bandyopadhyay, S. Saha, U. Maulik and K. Deb, ``A Simulated Annealing Based Multi-objective Optimization Algorithm: AMOSA", *IEEE Transaction on Evolutionary Computation* (accepted).
- S. Bandyopadhyay and S. Santra, "A Genetic Approach for Efficient Outlier Detection in Projected Space", Pattern Recognition (accepted).
- S. Bandyopadhyay, A. Mukhopadhyay and U. Maulik, ``An Improved Algorithm for Clustering Gene Expression Data", *Bioionformatics*, Oxford University Press, vol. 23, no. 21, pp. 2859-2865, 2007.

Applications

Clustering

- S. Bandyopadhyay, U. Maulik and A. Mukhopadhyay, "Multiobjective Genetic Clustering for Pixel Classication in Remote Sensing Imagery", IEEE Trans. Geoscience &Remote Sensing, vol. 45, no. 5, pp. 15061511, 2007.
- S. Bandyopadhyay and U. Maulik, "Non-parametric Genetic Clustering: Comparison of Validity Indices", *IEEE Trans. on* Systems, Man and Cybernetics Part-C, vol. 31, no. 1, pp. 120-125, 2001.
- U. Maulik and S. Bandyopadhyay, "Performance Evaluation of Some Clustering Algorithms and Validity Indices", *IEEE Trans. on Pattern Analysis* and Machine Intelligence, vol. 24, no. 12, pp. 1650-1654, 2002.

Classification

 S. Bandyopadhyay, S. K Pal and B. Aruna, "Multi-objective GAs, Quantitative Indices and Pattern Classication", *IEEE Trans. on Systems, Man and Cybernetics - B*, vol. 34, pp. 2088-2099, 2004.

Applications

contd...

Computational Biology

- S. Bandyopadhyay, A. Bagchi and U. Maulik, "Active Site Driven Ligand Design: An Evolutionary Approach", J. of Bioinformatics and Computational Biology, vol. 3, No. 5, pp. 1053-1070, 2005.
- S. Bandyopadhyay, "An Efficient Technique for Superfamily Classication of Amino Acid Sequences: Feature Extraction, Fuzzy Clustering and Prototype Selection", Fuzzy Sets & Systems, vol. 152, pp. 5-16, 2005]
- S. S. Ray, S. Bandyopadhyay, and S. K. Pal, "Genetic Operators for Combinatorial Optimization in TSP and Microarray Gene Ordering", Applied Intelligence (accepted).
- S. Bandyopadhyay, A. Mukhopadhyay and U. Maulik, "An Improved Algorithm for Clustering Gene Expression Data", *Bioionformatics*, Oxford University Press, vol. 23, no. 21, pp. 2859-2865, 2007.

Thank You ...

