Homework 8

Problem 1. What is the probability that a random graph in G(n, p) has exactly m edges, for $0 \le m \le \binom{n}{2}$ fixed?

Solution. The probability is
$$\binom{n}{m}p^m(1-p)^{\binom{n}{2}-m}$$
.

Problem 2. What is the expected number of edges in $G \in \mathcal{G}(n, p)$?

Solution.
$$\binom{n}{2}p$$
.

Problem 3. What is the expected number of trees with k vertices in $G \in \mathcal{G}(n, p)$?

Solution. By Cayley's formula and the linearity of expectation, it is $\binom{n}{k} k^{k-2} p^{k-1}$

Problem 4. Show that if almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_1 and almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_2 , then almost all $G \in \mathcal{G}(n, p)$ have both properties.

Solution. The portion of the graphs have both properties equals 1 minus the portion of the graphs which does not have property \mathcal{P}_1 or \mathcal{P}_2 . However the portion of the graph does not have property \mathcal{P}_1 or \mathcal{P}_2 is bounded by the sum of the portion of the graphs does not have property \mathcal{P}_1 and the portion of the graphs does not have property \mathcal{P}_2 , which both tend to 0 as n approaches ∞ . The claim in the question then follows.