Operações Regulares e Fecho

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

07 de novembro de 2017

Plano de Aula

- Revisão
 - Definição de Computação e Linguagem Regular

Operações Regulares

Sumário

- Revisão
 - Definição de Computação e Linguagem Regular

Operações Regulares

Computação em um AFD

Definição

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $\omega=\omega_1\omega_2\ldots\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ $(1\leq i\leq n)$.

Então M aceita ω se uma sequência de estados r_0, r_1, \ldots, r_n em Q existe satisfazendo três condições:

- $0 r_0 = q_0;$
- \circ $r_n \in F$.

Corolário

M reconhece a linguagem A, se $A = \{\omega \mid M \text{ aceita } \omega\}$.

Linguagem regular

Definição 1.16

Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Exemplos de computação

Máquina M_5 e a cadeia $\omega = 10\langle \text{RESET} \rangle 22\langle \text{RESET} \rangle 012$:

- \bullet $q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_0, q_1, q_0$
- $L(M_5) = \{ \omega \mid \text{a soma dos símbolos em } \omega \text{ \'e 0 m\'odulo 3, exceto}$ que $\langle \text{RESET} \rangle$ retorna o contador para 0 $\}$

Projetando Autômatos Finitos

Sugestões...

- Ponha-se no lugar da máquina a ser projetada;
- Perceba que você, como máquina, não sabe quando a cadeia acaba;
- Lembre-se de que a sua memória é finita.

Exemplos

- Suponha que o alfabeto seja $\{0,1\}$ e que a linguagem consista de todas as cadeias com um número ímpar de 1s;
- Suponha que o alfabeto seja $\{0,1\}$ e que a linguagem consista de todas as cadeias que contêm 001 como subcadeia.

Sumário

- Revisão
 - Definição de Computação e Linguagem Regular

Operações Regulares

Definição 1.23

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

Definição 1.23

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

• União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\};$

Definição 1.23

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

- União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\};$
- Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\};$

Definição 1.23

Sejam A e B linguagens. Definimos as operações regulares união, concatenação e estrela da seguinte forma:

- União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\};$
- Concatenação: $A \circ B = \{xy \mid x \in A \text{ e } y \in B\};$
- Estrela:

$$A^* = \{x_1x_2 \dots x_k \mid \ k \in \mathbb{Z}_+ \text{ e}$$
 cada $x_i \in A \text{ (em que } 1 \leq i \leq k)\}$

Exemplo

Suponha que o alfabeto Σ seja o alfabeto padrão de 26 letras $\{a,b,c,\ldots,z\}$.

Se $A = \{ \text{ legal, ruim } \} \text{ e } B = \{ \text{ garoto, garota } \}$, então

Exemplo

Suponha que o alfabeto Σ seja o alfabeto padrão de 26 letras $\{a,b,c,\ldots,z\}.$

Se $A=\{$ legal, ruim $\}$ e $B=\{$ garoto, garota $\}$, então

• $A \cup B = \{ \text{legal, ruim, garoto, garota} \}$

Exemplo

Suponha que o alfabeto Σ seja o alfabeto padrão de 26 letras $\{a,b,c,\ldots,z\}$.

Se $A = \{ \text{legal, ruim} \} \in B = \{ \text{garoto, garota} \}, \text{então} \}$

- $A \cup B = \{ \text{ legal, ruim, garoto, garota } \}$
- $A \circ B = \{ \text{ legalgaroto, legalgarota, ruimgaroto, ruimgarota} \}$

Exemplo

Suponha que o alfabeto Σ seja o alfabeto padrão de 26 letras $\{a, b, c, \ldots, z\}$.

Se $A = \{ \text{legal, ruim} \} \in B = \{ \text{garoto, garota} \}, \text{então} \}$

- $A \cup B = \{ \text{ legal, ruim, garoto, garota } \}$
- $A \circ B = \{ \text{ legalgaroto, legalgarota, ruimgaroto, ruimgarota} \}$
- $A^* = \{\epsilon, \text{legal, ruim, legallegal, legalruim, ruimlegal, ruimruim, legallegallegal, legalruimruim, legalruimlegal, legalruimruim...}$

Teorema 1.25

A classe de linguagens regulares é fechada sob a operação de união.

Prova

Sejam A e B duas linguagens regulares. Se A e B são regulares, então existem dois AFDs $M_A = (Q_A, \Sigma_A, \delta_A, q_A, F_A)$ e $M_B = (Q_B, \Sigma_B, \delta_B, q_B, F_B)$ que as reconhecem, respectivamente. Iremos construir o AFD $M_{A \cup B} = (Q, \Sigma, \delta, q_0, F)$ que reconhece $A \cup B$, a partir de M_A e M_B .

Elementos de $M_{A \cup B}$:

- $Q = Q_A \times Q_B$;
- $\Sigma = \Sigma_A \cup \Sigma_B$;
- $q_0 = (q_A, q_B)$;
- $F = \{(x, y) \in Q \mid x \in F_A \text{ ou } y \in F_B\};$
- $\delta = ???$

Operações Regulares e Fecho

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

07 de novembro de 2017

