Networks, Security, and Privacy

Assignment Project Exam Help

A/ https://eduassistpro.github.io/

Allas rechariedu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Reading: Chapter 4 in the prescribed textbook

Introduction

- Layer 2 in the Internet model
- Responsible for moving messagess (danagram) from Exam Help one device (another phy https://eduassistpro.github.io/ node over a
- Major functions of a data edu_assist_pro link layer protocol
 - Error Control
 - Flow Control
 - Link layer addressing

Internet Model

Application

ransport

Data Link

Physical

Introduction

terminology:

- hosts and routers: nodes
- •communication channels that connect adjacent Project Exam H

nodes along

communication

https://eduassistpro.github.io/

wired links Add WeChat edu_assist_pro

- wireless links
- LANs
- layer-2 packet: frame, encapsulates datagram

Introduction

- datagram transferred by different link protocols over different links:
 - e.g., Etherneinsproject Exami Citylsenter to PN link, frame r
 - provides different services
 - e.g., may or may not provide reliable data transfer over link

transportation analogy:

- trip from Palmerston North to Disney Land, LA
- intermediat https://eduassistpro.github.io/
- * each link protocol WeChat edu_assist prodatagram
 - transport segment = communication link
 - transportation mode = link layer protocol

datagram

travel agent = routing

Link layer services

framing, link access:

- encapsulate datagram into frame, adding header, trailer

 "MAC" addresses used in frame neaders to
- identify sour https://eduassistpro.github.lo/
 flow control
- - pacing between dadjacent set edu_assistivarg nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka *network*interface caxd NIC) or Project Exam Help application

- Ethernet carhttps://eduassistpro.github.id

- implements MeChat edu_assist_pi
physical layer

- attaches into host's system buses
- combination of hardware, software, firmware

Data Link Layer

Error Control

• Flow

Assignment Project Exam Help

https://eduassistpro.github.io/

• Link Add Wechat edu_assist_pro

Error Control

- Network errors
 - Types
 - Corrupted data
 Lost data
 - Caused b https://eduassistpro.github.io/ humans)
- Networks shouldestated edu_assist_ipro
 - Error prevention
 - Error detection
 - Error correction

Sources of Network Errors

- Line noise and distortion
 - Major reason for errors and caused by several sources
 - More Akelynonæle Ptriiçæt inhedian ahel power-end cables (e.
 - Undesira https://eduassistpro.github.io/
 - Degrades uit
 - Manifestation WeChat edu_assist_pro
 - Extra bits
 - Flipped bits
 - Missing bits

Sources of Errors and Prevention

Source of Error	What Causes It	How to Prevent or Fix
White Noise	Movement of electrons	Increase signal strength
Impulse Noise A	s Sudden increaser in electricity (e.g.n.)	<mark>Halp</mark> or move the wires
Cross-talk	M https://eduassistpro.gi	Increase the guardbands
Echo	Poathitative Chareedu_ass	ix the connections or tune <mark> Sduip</mark> விவிt
Attenuation	Gradual decrease in signal over distance	Use repeaters
Intermodulation noise	Signals from several circuits combine	Move or shield the wires

Error Detection

- Receivers need to know when the data transmitted is not correct
- Add "checknedue" (secon detection value) to messag https://eduassistpro.github.io/

Ald We Chat edu_assist_pro

Check value produced by mathematical formula

Error Detection

Sender calculates an Receiver recalculates **Error Detection Value** EDV and checks it (EDV) and transmits against the received EDV it along with data Assignment Project Exam Help **Mathem Mathematical** calcula https://eduassistpro.gitalsbjatjons Add WeChatedu assist **FDV** Data to be transmitted -If the same \rightarrow No errors in transmission —If different → Error(s) in transmission

Error Detection Techniques

- Parity checks
- Checksum
- · Cyclic Redemban Cyche Exactely

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Parity Checking

- One of the oldest and simplest
- A single bit added to each character

 - Even parity: number of 1's remains even
 Odd parity: number of 1's remains odd
- Receiving e https://eduassistpro.gkhub.io/
 - r the received If one bit h parity bit will Adiffe Weenthateedu_assist open
- Simple, but doesn't catch all errors
 - If two (or an even number of) bits have been transmitted in error at the same time, the parity check appears to be correct
 - Detects about 50% of errors

Examples of Using Parity

To be sent: Letter V in 7-bit ASCII: 0110101

Checksum

- A checksum (usually 1 byte) is added to the end of the message
- It is 95% effective
 Assignment Project Exam Help
- Method: https://eduassistpro.github.io/
 - Add decimal values of eac n the message
 - Divide the sumby 25 Chat edu_assist_pro
 - The remainder is the checksum value

CRC

- Cyclic redundancy check (CRC)
 - Treats message as a single binary number
 - Divides bigarpease troject bekam Help
 - Uses rem https://eduassistpro.github.io/
- Preset nu
 Add WeChat edu_assist_probits
- Modes:
 - CRC-16 (~99.998% error detection rate)
 - CRC-32 (>99.99999% error detection rate)

Cyclic Redundancy Check (CRC)

```
Example:
                                                       P = 58
               P/G = Q + R/G
                                                       Q = 7
           Assignment Progreent Example liber:
Message
(treated as
                                        dded to the
one long
               https://eduassistpro.gitlsutgicals EDV
binary
            A fixed number
                                           Id be 8 bits, 16
number)
            (divisor) which chat edu assist 20 tots, or 32
            determines the
                                           long
            length of the R
                                      -CRC16 has R of 16
                                       bits
```

- Most powerful and most common
- Detects 100% of errors (if number of errors <= size of R)Otherwise: CRC-16 (99.998%) and CRC-32 (99.9999%)

Error Correction

- Once detected, the error must be corrected
- Error correction techniques
 - Retransmission (or backward error correction)
 Assignment Project Exam Help
 - Simple
 - Automa https://eduassistpro.github.io/
 - This can also provide fl number of messages se
 VeChat edu_assist_pro
 - Forward Error Correction
 - Receiving device can correct incoming messages without retransmission

Automatic Repeat reQuest (ARQ)

- Process of requesting a data transmission be resent
- Main ARQ protocols
 - Stop and wish meat (Ringipal Flex technique)
 - Sender s for acknowlhttps://eduassistpro.ghthubigsage
 - Receiver receives the m acknowledgement, then edu_assist next message
 - Continuous ARQ (A full duplex technique)
 - Sender continues sending packets without waiting for the receiver to acknowledge
 - Receiver continues receiving messages without acknowledging them right away

Stop and Wait ARQ

Sender

Receiver

Sends Packet A, then waits to hear from receiver.

Assignment Project Exam Help

Sends

acknowledgement

Sends the next packet (B)

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Sends negative acknowledgement

Resends the packet again

Sends acknowledgement

Continuous ARQ

Sender sends packets
continuously without
waiting for receiver to
acknowledge
Assignment Project Exam Help

Nothttps://eduassistpro.github.io/acknowledgme
identify the hat edu_assist_pro
being acknowledged.

Receiver sends back a NAK for a specific packet to be resent.

Data Link Layer

Error Control

• Flow

Assignment Project Exam Help

https://eduassistpro.github.io/

• Link Add Wechat edu_assist_pro

Flow Control with ARQ

- Ensuring that sender is not transmitting too quickly for the receiver
 - Stop-andiwaiteh Project Exam Help
 - Receiv ready thttps://eduassistpro.github.io/
 - ContinuousdalRWeChat edu_assist_pro
 - Both sides agree on the size of the "sliding window"
 - Number of messages that can be handled by the receiver without causing significant delays

Flow Control Example

Forward Error Correction

- Receiving device can correct incoming messages itself (without retransmission)
- Requires extra corrective information
 - Sent ald seignment Project Exam Help
 - Allows dat
 Amount of
 https://eduassistpro.github.io/ 50-100% of the
 - Amount of Add WeChat edu_assist_pro.gitingblo/50-100% of the data
- Used in the following situ
 - One way transmissions (retransmission not possible)
 - Transmission times are very long (satellite)
 - In this situation, relatively insignificant cost of FEC

Hamming Code – An FEC Example

- A scheme by adding parity bit intelligently such that one erroneous bit can be detected and corrected
- Bit position is split into 'parity bit' position and 'data bit' position: Assignment Project Exam Help
 - parity bit oc - data bit occ https://eduassistpro.github.io/_{7,9,...})
 - parity bit value rale wation at edu_assist_pro
 - position 1 \rightarrow check 1 bit, s so forth (1, 3, 5, ...)
 - position 2 → check 2 bits, skip 2 bits (2, 3, 6, 7, 10, 11,...)
 - position 4 → check 4 bits, skip 4 bits (4-7, 12-15, ...)

Hamming Code – Example

Data: 11011010

Even Parity

```
Assignment Project Exam Help

Position

Data

1 1 https://eduassistpro.github.io/1 0
```

P1 P2 Add WeChat edu_assist_pro

```
P1: data at position 3, 5, 7, 9, 11 \rightarrow 11111 (odd 1s) \rightarrow Parity bit: 1 P2: data at position 3, 6, 7, 10, 11 \rightarrow 10101 (odd 1s) \rightarrow Parity bit: 1 P4: data at position 5, 6, 7, 12 \rightarrow1010 (even 1s) \rightarrow Parity bit: 0 P8: data at position 9, 10, 11, 12 \rightarrow 1010 (even 1s) \rightarrow Parity bit: 0
```

Data sent: 111010101010

Hamming Code – Example

Data Received: 111010101110


```
Position 1 2 3 4 5 6 7 8 9 10 11 12

Data 1 Assignment Project Exam Help 1 0

P1 P2
```

- Check P1: data at p https://eduassistpro.githlehbeitedarity bit: 1 OK
- Check P2: data at postion 3VF, Chat edu_assist_1pro Parity bit: 0 Not OK
- Check P4: data at position 5, 6, 7, 12 \rightarrow 1010 (even 1s) \rightarrow Parity bit: 0 OK
- Check P8: data at position 9, 10, 11, 12 \rightarrow 1110 (odd 1s) \rightarrow Parity bit: 1 Not OK

Parity bit at position 2 and 8 are incorrect.

The erroneous bit is placed at bit position 2+8 = 10

Data Link Layer

Error Control

- Flow

 Assignment Project Exam Help

 https://eduassistpro.github.io/
- Link Add Weet edu_assist_pro

Address Resolution

Addresses exist at different layers

Address Type	Example	Example Address
Application layer	Assivehaddress (PR	oject Examwindiana.edu
Network layer	I	9.79.78.193 (4 bytes)
Data link layer	https://edu	lassistpro.gitf្រែច្រីក្រូវ3-8A (6 bytes)

Addresses And a Whole have edu_assistes not ved)
 from one layer to another

Address Resolution

- Data Link Layer Address Resolution
 - Identifying the MAC address of the next node (that packet must be forwarded)

 Assignment Project Exam Help

 Uses Address Resolution Protocol (ARP)

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

ARP name resolution

- Identifying the MAC address by IP address
- Operation
 - Broadcast an ARP message to all nodes on a LAN asking which node has a certain IP address
 - Host with the limited by self ling back its MAC addres
 - Store this M https://eduassistpro.glehub.io/
 - Send the me

Add WeChat edu_assist_pro

ARP: same LAN

Question: how to determine a MAC address knowing its IP address?

• A broadcasts ARP query

137.196.7.14. packet, containing B's IP

Assignment Project Exam Help
address

LA

https://eduassistpro.gMACbaid/ess = FF-FFFF-FF

Add WeChat edu_assists_proan receive ARP

ARP reply query (broadcast)

	ARP query	ARP reply	
Src IP address	137.196.7.23	137.196.7.14	
Dest IP address	137.196.7.14	137.196.7.23	
Src MAC	71-65-F7-2B-08-	58-23-D7-FA-20-	
address	53	B0	
Dest MAC address	FF-FF-FF- FF-FF	71-65-F7-2B-08- 53	

- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

Addressing: routing to another LAN

walkthrough: send datagram from A to B via R

- focus on addressing at IP (datagram) and MAC layer (frame)
- assume Aknows B's Project essam Help
- assume A knhop router, R
- assume A kn https://eduassistpro.github.io/

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

Ethernet

- "dominant" wired LAN technology:
- cheap \$20 for NIC
- first widely used LAN technology Assignment Project Exam Help
- simpler, ch and ATM
- kept up wit https://eduassistpro.github.ig/ps

Add WeChat edu_assist_pro

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Assignment Project Exam Help preamble add source type data crec https://eduassistpro.github.io/

preamble:

- 7 bytes with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet frame structure

- * addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, soi snith the adeist a large level. ARP packet), https://eduassistpro.github.io/ it passes dotherwise,
- * type: indicatesdaigherhayedu_assisolomostly IP but others possible, e.g., X, AppleTalk)
- * CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

preamble	dest. address	•	data (payload)	CRC
----------	------------------	---	-------------------	-----

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps,
 1Gbps, 10 Bps, 10 Mbps, 100 Mbps,
 - different p https://eduassistpro.giterus.ab/le

Transmission Efficiency

Transmission efficiency = # of information bits # of information + overhead bits

FIGURE 4-12

A day in the life: scenario

A day in the life... connecting to the Internet

 Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life... connecting to the Internet

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

 client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS

IP datagram containing DNS query forwarded via LAN switch from client to Ist hop router

demux' ed to DNS server

DNS server replies to client with IP address of www.google.com

A day in the life...TCP connection carrying HTTP

A day in the life... HTTP request/reply

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro