Hyper-Align: Efficient Modality Alignment via Hypernetworks

Jaisidh Singh^{1,2,3,5} Diganta Misra^{2,3} Boris Knyazev⁶ Antonio Orvieto^{2,3,4}

¹University of Tübingen ²ELLIS Institute Tübingen ³MPI for Intelligent Systems, Tübingen ⁴Tübingen AI Center ⁵Zuse School ELIZA ⁶SAIT AI Lab Montreal

SUMMARY

Contrastive vision-language models (VLMs) like CLIP: Align encoders of image-text modalities via an InfoNCE loss.

Background: Instead of training VLMs end-to-end,

- APE trains a modality connector (MLP) between pretrained encoders
- outperforms CLIP at significantly lower costs

Problem: unimodal performance ≠ multimodal performance.

- Finding the optimal pair in N image and M text encoders requires searching all $N \times M$ combinations
- Training any one combination needs massive data volumes
- · Hence, training all combinations individually becomes unfeasible

Proposed solution (Hyper-Align): Use a hypernetwork to learn all $N \times M$ modality connectors together, instead of learning them individually via APE.

Result: With linear layers as the modality connectors, Hyper-Align is 8x cheaper than APE in terms of FLOP costs, at negligible performance drop.

METHODOLOGY

Overview: Hypernetwork H_{ϕ} uses a conditional input c_j to predict the parameters θ_j of the j^{th} linear connector $f_{\theta_i}: \mathbb{R}^{D_{z_t}} \to \mathbb{R}^{D_{z_t^j}}$

- *n* image encoders and 1 text encoders
- $H_{\phi}(c_i) = \theta_i$ where $c_i = \text{padded-batch-average}(z_i^J)$
- ullet Training objective is L_{total}

Hypernetwork design: H_{ϕ} is an MLP that

- observes image features of different dimensions
- to predict connector parameters of variable dimensions

Efficient training via model-batching:

• train on a mini-batch $B_m < n$ of image encoders per step to efficiently scale up the no. of combinations (n)

 $\mathcal{D}: ext{Multimodal Dataset} \qquad z_i^k: ext{k}^{ ext{th}} ext{ image feature vector} \ \mathcal{M}: ext{Image Encoder Zoo} \qquad z_t: ext{text feature vector} \ Z_{\hat{t}}^k: ext{k}^{ ext{th}} ext{ mapped text feature vector} \ Z_{\hat{t}}^k: ext{k}^{ ext{th}} ext{ image encoder} \qquad \mathcal{D}_{z^k}: ext{dimensionality of k}^{ ext{th}} ext{ image feature vector}$

 $I^k: {\bf k}^{\rm th}$ image encoder $\qquad D_{z^k_i}:$ dimensionality of ${\bf k}^{\rm th}$ image feature vector T: text encoder

EXPERIMENTS & RESULTS

Scaling up no. of combinations:

- M = 1 (sentence-t5-base) and N varies from 12 to 30
- ullet Best image encoder reported at each value of N
- Numbers on data points denote the epochs at which the VLM was evaluated

Search over various image encoder scales:

- N = 30 equally split among 3 feature dims
- Parameter count ↑ as feature dim ↑

Best ImageNet accuracy shown per scale

Scale type	Range	Method	
		Ours	APE
Feature dim	384	36.75	38.36
	768	42.83	45.44
	1024	51.92	53.86
Param. count	< 30M	36.75	38.36
	30M - 120M	43.04	44.84
	> 120M	51.92	53.86

CONCLUSION

Parameter prediction via hypernetworks can

- efficiently search image-text encoder pairs for optimal VLMs, under constraints
- Future work can use Hyper-Align on **image** encoders and LLMs to create MLLMs

 $\label{lem:corresponding author: jaisidh.singh@student.uni-tuebingen.de} Corresponding author: {\tt jaisidh.singh@student.uni-tuebingen.de} \\$