Claims

2

3

4 5

1

2

3

4

1

2

3

4

What is claimed is:

1	 A method for implementing dynamic Virtual Lane (VL) buffer
2	reconfiguration in a channel adapter comprising the steps of:
3	providing a first register for communicating an adapter buffer size and
4	allocation capability for the channel adapter;
5	providing at least one second register for communicating a current
6	port buffer size; one said second register associated with each physical port
7	of the channel adapter;
8	providing a plurality of third registers for communicating a current VL
9	buffer size; one said third register associated with each VL of each said
10	physical port of the channel adapter; and
11	utilizing said second register for receiving change requests for
12	adjusting said current port buffer size for an associated physical port; and
13	utilizing said third register for receiving change requests for adjusting
14	said current VL buffer size for an associated VL.
1	2. A method for implementing dynamic Virtual Lane (VL) buffer

- reconfiguration as recited in claim 1 wherein said first register includes predefined fields for storing said adapter buffer size, a flexibly allocated buffer space for the channel adapter, and an allocation unit for buffer allocation.
- A method for implementing dynamic Virtual Lane (VL) buffer reconfiguration as recited in claim 1 wherein each said second register includes predefined fields for storing said current port buffer size, a fixed port buffer space and a requested port buffer size.
- A method for implementing dynamic Virtual Lane (VL) buffer 4. reconfiguration as recited in claim 1 wherein each said third register includes predefined fields for storing said current VL buffer size, a fixed VL buffer space and a requested VL buffer size.

5. A method for implementing dynamic Virtual Lane (VL) buffer reconfiguration as recited in claim 1 wherein utilizing said second register for receiving change requests for adjusting said current port buffer size for said associated physical port includes the steps of utilizing a hypervisor for writing said change request to a requested port buffer field of said second register for adjusting said current port buffer size for said associated physical port.

- 6. A method for implementing dynamic Virtual Lane (VL) buffer reconfiguration as recited in claim 1 wherein utilizing third register for receiving change requests for adjusting said current VL buffer size for said associated VL includes the steps of utilizing a hypervisor for writing said change request to a requested VL buffer field of said third register for adjusting said current port buffer size for said associated physical port.
- 7. A method for implementing dynamic Virtual Lane (VL) buffer reconfiguration as recited in claim 1 further includes providing a plurality of change and status registers for communicating VL change and status values; one said change and status register associated with each said VL of each said physical port of the channel adapter register.
- 8. A method for implementing dynamic Virtual Lane (VL) buffer reconfiguration as recited in claim 1 includes providing a hypervisor for monitoring buffer resources, and using said hypervisor for writing change requests to respective ones of each said second register and said third registers.
- 9. A method for implementing dynamic Virtual Lane (VL) buffer reconfiguration as recited in claim 1 further includes providing channel adapter hardware for managing allocation of buffer space responsive to said change requests written by said hypervisor.
- 10. A method for implementing dynamic Virtual Lane (VL) buffer reconfiguration as recited in claim 1 wherein providing said hypervisor for monitoring buffer resources includes providing at least one register for storing VL buffer usage statistics; and said hypervisor periodically polling said at least one register for storing VL buffer usage statistics.

1	11. Apparatus for implementing dynamic Virtual Lane (VL) buffer
2	reconfiguration comprising:
3	a first register for communicating an adapter buffer size and allocation
4	capability for a channel adapter;
5	at least one second register for communicating a current port buffer
6	size; one said second register associated with each physical port of the
7	channel adapter;
8	a plurality of third registers for communicating a current VL buffer
9	size; one said third register associated with each VL of each said physical
10	port of the channel adapter;
11	a hypervisor for writing change requests to said second register for
12	adjusting said current port buffer size for an associated physical port; and
13	said hypervisor for writing change requests to said third register for
14	adjusting said current VL buffer size for an associated VL; and
15	channel adapter hardware for managing allocation of buffer space
16	responsive to said change requests written by said hypervisor.
i	12. Apparatus for implementing dynamic Virtual Lane (VL) buffer
2	reconfiguration as recited in claim 11 wherein said first register includes
3	predefined fields for storing said adapter buffer size, a flexibly allocated
4	buffer space for the channel adapter, and an allocation unit used for buffer
5	allocation.
1	13. Apparatus for implementing dynamic Virtual Lane (VL) buffer
2	reconfiguration as recited in claim 11 wherein each said second register
3	includes predefined fields for storing said current port buffer size, a fixed port
4	buffer space and a requested port buffer size; said hypervisor writes said
5	change requests to said requested port buffer size field.
1	14. Apparatus for implementing dynamic Virtual Lane (VL) buffer
2	reconfiguration as recited in claim 11 wherein said channel adapter

hardware includes buffer management state machine hardware.

3

	-22-
1	Apparatus for implementing dynamic Virtual Lane (VL) buffer
2	reconfiguration as recited in claim 11 wherein each said third register
3	includes predefined fields for storing said current VL buffer size, a fixed VL
4	buffer space and a requested VL buffer size; said hypervisor writes said
5	change requests to said requested VL buffer size field.
1	16. Apparatus for implementing dynamic Virtual Lane (VL) buffer
2	reconfiguration as recited in claim 11 includes at least one register storing
3	VL buffer usage statistics; and said hypervisor for monitoring buffer
4	resources and periodically polling said at least one register storing VL buffer
5	usage statistics.
1	17. A computer program product for implementing dynamic Virtual
2	Lane (VL) buffer reconfiguration in a channel adapter of a system area
3	network, said computer program product including a plurality of computer
4	executable instructions stored on a computer readable medium, wherein
5	said instructions, when executed by the channel adapter, cause the channel
6	adapter to perform the steps of:
7	communicating an adapter buffer size and allocation capability for the
8	channel adapter using a first register;
9	communicating a current port buffer size using a second register; one
10	said second register associated with each physical port of the channel

е said second register associated with each physical port of the channel adapter;

11

12

13 14

15

16 17

18

1

2

3

4

communicating a current VL buffer size using a third register; one said third register associated with each VL of each said physical port of the channel adapter; and

writing a change request to one said second register for adjusting said current port buffer size for said associated physical port; and

writing a change request to one said third register for adjusting said current VL buffer size for said associated VL.

A computer program product as recited in claim 17 wherein 18. said instructions, when executed by the channel adapter, cause the channel adapter to perform the steps of: monitoring buffer resources by periodically polling a register storing VL buffer usage statistics.

1	A computer program product as recited in claim 17 wherein
2	said instructions, when executed by the channel adapter, cause the channel
3	adapter to perform the steps of: writing said change requests responsive to
4	monitoring buffer resources.