DRAFT: A Family of Sparse, Vertex-Transitive Graphs

Edward L. Platt

August 2015

1 Construction

We recursively construct a family of vertex-transitive graphs $G_n = \langle V_n, E_n \rangle$. The vertices $v \in V_n$ are labeled by an n-sequence of integers. We define G_0 and G_1 as:

$$V_0 = \{\langle \rangle \}, \tag{1}$$

$$E_0 = \{\}, \tag{2}$$

$$V_1 = \{\langle 0 \rangle, \langle 1 \rangle\}, \tag{3}$$

$$E_1 = \{\{\langle 0 \rangle, \langle 1 \rangle\}\}. \tag{4}$$

We construct subsequent vertex sets from copies of the previous set, with each copy having a different integer appended to its vertex labels:

$$V_{n+1} = \bigcup_{k=0}^{C_n} \{v | w \in V_n \land v = w \leftrightarrow k\},$$

$$C_n \equiv |V_n|,$$
(5)

$$C_n \equiv |V_n|, \tag{6}$$

where $w \leftrightarrow k$ denotes appending element k to the end of sequence w. We note that a one-to-one mapping z_n exists between the vertices of G_n and the integers from 0 to $C_n - 1$:

$$z_n(v) = \sum_{i=0}^{n-1} C_i v_i. (7)$$

We define even and odd subsets of V_n :

$$A_n = \{v | v \in V_n \land v_0 = 1\},$$
 (8)

$$B_n = \{ v | v \in V_n \land v_0 = 0 \}. \tag{9}$$

We also define the following mappings on the vertices of G_n :

$$(\phi_n(v))_i = \begin{cases} v_i + 1 \mod (C_i + 1) & \text{if } i = n, \\ v_i & \text{otherwise,} \end{cases}$$

$$(\psi_n(v))_i = \begin{cases} v_i + 1 \mod (C_i + 1) & \text{if } i = 0 \lor \forall j < i : v_j = C_j, \\ v_i & \text{otherwise,} \end{cases}$$

$$(10)$$

$$(\psi_n(v))_i = \begin{cases} \psi_n(v) & \text{if } v \in A_n, \end{cases}$$

$$(12)$$

$$(\psi_n(v))_i = \begin{cases} v_i + 1 \mod (C_i + 1) & \text{if } i = 0 \lor \forall j < i : v_j = C_j, \\ v_i & \text{otherwise,} \end{cases}$$
 (11)

$$\theta_n(v) = \begin{cases} \psi_n(v) & \text{if } v \in A_n, \\ \psi_n^{-1}(v) & \text{if } v \in B_n, \end{cases}$$
 (12)

with i < n.

To construct the edges of G_{n+1} we define a "shortcut" function $s_n(j,k)$ with $j \in \{0, 1, C_n - 1\}$ and $k \in \{0, 1, 2, \dots, C_n\}$ which determines the interconnections between copies of G_n .

$$s_n(j,k) = \begin{cases} k+1 \mod (C_n+1) & \text{if } j = C_n - 1, \\ k-1 \mod (C_n+1) & \text{if } j = 0, \\ k+j+1 \mod (C_n+1) & \text{if } j \in \{1,3,\dots,C_n-3\}, \\ k-j \mod (C_n+1) & \text{if } j \in \{2,4,\dots,C_n-2\}. \end{cases}$$
(13)

We also define a parity selector function on the edges $e \in E_n$:

$$p_x(e) = v \quad \text{s.t. } v \in e \land v_0 = x.$$
 (14)

The edges of G_{n+1} are then given by:

$$R_{n+1} = \bigcup_{k=0}^{C_n} \bigcup_{e \in E_n} \{ p_0(e) \leftrightarrow k, p_1(e) \leftrightarrow k \},$$

$$S_{n+1} = \bigcup_{k=0}^{C_n} \bigcup_{v \in A_n} \{ v \leftrightarrow k, \theta_n(v) \leftrightarrow s_n(z_n(v), k) \},$$

$$= \bigcup_{k=0}^{C_n} \bigcup_{v \in B_n} \{ v \leftrightarrow k, \theta_n(v) \leftrightarrow s_n(z_n(v), k) \},$$
(15)

$$S_{n+1} = \bigcup_{k=0}^{C_n} \bigcup_{v \in A_n} \{ v \leftarrow k, \theta_n(v) \leftarrow s_n(z_n(v), k) \}, \tag{16}$$

$$= \bigcup_{k=0}^{C_n} \bigcup_{v \in B_n} \{ v \leftarrow k, \theta_n(v) \leftarrow s_n(z_n(v), k) \}, \tag{17}$$

$$E_{n+1} = R_{n+1} \cup S_{n+1}, \tag{18}$$

noting that S_{n+1} can be written in terms of either the odd vertices A_n or the even vertices B_n . Eq. (15) replicates the edges of G_n among subsets of the vertices of G_{n+1} , while Eq. (16) creates one edge between each pair of the subsets.

Properties of G_n

Lemma 1. The graph G_n is n-regular for all $n \geq 0$.

Proof. We proceed using induction on n. The base case G_1 is 1-regular by inspection. In the inductive case G_{n+1} , Eq. (15) reproduces the edges of G_n , which is n-regular by induction, contributing n to the degree of each vertex. Eq. (16) adds one to the degree of each odd vertex. As θ_n is a bijective map between odd and even vertices, Eq. (16) also adds one to the degree of each even vertex, giving a total degree of n+1.

Lemma 2. The number of vertices and edges of the graph G_n are given by the recurrence relations:

$$C_0 = |V_0| = 1, (19)$$

$$C_n = |V_n| = C_{n-1}(C_{n-1} + 1),$$
 (20)

$$|E_n| = \frac{n}{2}C_n. \tag{21}$$

Proof. The vertex set of G_n , given by Eq. (5), is a union of $C_{n-1}+1$ sets. The vertex labels within each set all end with the same element, and this element is unique to each set. The sets are thus disjoint. Each set contains C_{n-1} elements, giving $C_{n-1}(C_{n-1}+1)$ elements. By Lemma 1, G_n is n-regular and has $\frac{n}{2}|V_n|=\frac{n}{2}C_n$ edges.

Lemma 3. The mapping ϕ_{n-1} is an automorphism of G_n .

Proof. Let v be a vertex in V_n . ϕ_{n-1} has no effect on v_0^{n-2} so it preserves the edges R_n , defined in Eq. (15). The vertex v has exactly one other edge, from S_n defined in Eq. (16):

$$e = \{v, \theta_n(v_0^{n-2} \leftrightarrow s_n(z_n(v_0^{n-2}), v_{n-1})\}.$$
 (22)

Applying ϕ_{n-1} to both vertices gives:

$$\tilde{e} = \{v_0^{n-2} \leftrightarrow (v_{n-1} + 1) \bmod (C_{n-2} + 1),$$
 (23)

$$\theta_n(v_0^{n-2} \leftarrow s_n(z_n(v_0^{n-2}), (v_{n-1}+1) \bmod (C_{n-2}+1))\},$$
 (24)

$$= \{v_0^{n-2} \leftrightarrow \tilde{k}, \theta_n(v_0^{n-2} \leftrightarrow s_n(z_n(v_0^{n-2}), \tilde{k}))\},$$
(25)

where $\tilde{k} = (v_{n-1} + 1) \mod (C_{n-2} + 1)$. The edge \tilde{e} is also a member of S_n , showing that ϕ_{n-1} permutes the elements of S_n , and preserves all edges in E_n .

Theorem 1. The graphs G_n are vertex-transitive for all $n \geq 0$.

Proof. The graph G_0 is trivially vertex-transitive. For higher order graphs, we recursively construct a mapping Φ_n that maps an arbitrary vertex $v \in V_n$ to an arbitrary vertex $\tilde{v} \in V_n$ and preserves the edges in E_n . Let $\delta_i = \tilde{v}_i - v_i \mod (C_i + 1)$. For the subsequence v_0^0 , the map $\Phi_1 = \phi_0^{\delta_0}$ achieves the desired mapping and preserves the edges in E_1 by Lemma 3. Given an edge-preserving mapping Φ_n from v_0^{n-1} to \tilde{v}_0^{n-1} , we can construct τ_n . We define mappings π_n and τ_n :

$$\pi_n(0) = 0 \tag{26}$$

$$\pi_n(s_n(v_0^{n-1}, 0)) = s_n(\Phi_n(v_0^{n-1}), 0)$$
(27)

$$\tau_n(v) = \Phi_n(v_0^{n-1}) \leftarrow \pi_n(v_n). \tag{28}$$

For the recursive edges defined in Eq. (15) $\{v_0^n, w_0^n\} \in R_{n+1}$:

$$\{\tau_n(v_0^n), \tau_n(v_0^n) = \{\Phi_n(v_0^n) \leftrightarrow \pi_n(k), \Phi_n(w_0^n) \leftrightarrow \pi_n(k)\}$$
 (29)

$$= \{\tilde{v}_0^n \leftarrow \tilde{k}, \Phi_n(\tilde{w}_0^n) \leftarrow \tilde{k}\}, \tag{30}$$

which is simply another member of R_{n+1} . As τ_n is bijective, it permutes the edges of R_{n+1} . For the shortcut edges defined in Eq. (16) $\{v_0^n, w_0^n\} \in S_{n+1}$, when $v_n = 0$:

$$\{\tau_n(v_0^n), \tau_n(w_0^n)\} = \{\Phi_n(v_0^n) \leftrightarrow \pi_n(0),$$
(31)

$$\Phi_n(w_0^n)) \leftarrow \pi_n(s_n(z_n(v_0^n), 0))$$
 (32)

$$= \{\tilde{v}_0^n \leftrightarrow 0, \tilde{w}_0^n \leftrightarrow s_n(z_n(\Phi_n(v_0^n)), 0)\}$$
(33)

$$= \{\tilde{v}_0^n \leftrightarrow 0, \theta_n(\tilde{v}_0^n) \leftrightarrow s_n(z_n(\tilde{v}_0^n), 0)\}, \tag{34}$$

showing that τ_n permutes the subset of edges in S_{n+1} for which $v_n=0$. Consequently, because ϕ_n is an automorphism of G_{n+1} by Lemma 3, τ_n also permutes the edges of the subsets for which $(\phi_n^{-k}(v_0^n)_n=0)$. Those edges are the subset of S_{n+1} for which $v_n=k$, showing that $\Phi_n n+1$ permutes all edges within S_{n+1} and E_{n+1} . We finish by applying the automorphism $\phi_n^{\delta_n}$:

$$\Phi_{n+1}(v) = \phi_n^{\delta_n}(\tau_n(v)), \tag{35}$$

completing the mapping from \tilde{v} to \tilde{w} .

References

[1] I. Z. Bower. *The Foster Census*. Charles Babbage Research Centre, Winnipeg, 1988.