A Cutoff Rule For A Special Class Of Parameterized Distributed Protocols

Ian Dardik

March 28, 2022

1 Introduction

In this note, we consider the verification problem of a transition system $T = (I, \Delta)$ where I is the initial constraint, Δ is the transition relation, and the system is parameterized by a single sort E of indistinguishable elements (We make the notion of "indistinguishable" precise in Assumption 1 below).

To begin, we will introduce notation for the template and finite instances of a transition system. We adopt the convention of [3] where T(P) is the template of T and T(|P|) is a finite instance. We can also refer to the template or a finite instance of a quantified formula F and the sort P. For example, suppose F is in Prenex Normal Form (PNF) and universally quantifies over j variables, i.e. F can be written as:

$$F := \forall x_1, ..., x_j \in E, \phi(x_1, ..., x_j)$$

where ϕ is a non-quantified statement whose only free variables are $x_1, ..., x_j$. Then F(k) is identical to the formula F, except E is replaced by $E(k) \subseteq E$, where |E(k)| = k. Throughout this note we will let $E(k) = \{e_1, ..., e_k\}$. Thus we see:

$$F(k) = \forall x_1, ..., x_j \in E(k), \phi(x_1, ..., x_j)$$

In this note, we are concerned with the specific scenario in which we are given a candidate inductive invariant Φ , and the finite instances $\Phi(1), ..., \Phi(k)$ have been proved to be inductive invariants for T(1), ..., T(k); we want to know whether Φ is an inductive invariant for T. We are specifically concerned with the case in which both Δ and Φ are written in PNF and Φ is restricted to universal quantification.

Throughout this note, we will build several lemmas that lead to an interesting result: let m be the number of variables that Φ quantifies over; if we suppose that $\Phi(m+n)$ is an inductive invariant for T(m+n), then $\Phi(k)$ is also an inductive invariant for T(k) for all k > m+n. We will refer to this as the M-N Theorem in this note. This result is useful because it reduces the verification problem on T to model checking a finite number of instances T(1), ..., T(m+n). Essentially, m+n is a cutoff instance size for proving that our inductive invariant holds.

Note: I think it is likely that if $\Phi(m+n)$ is an inductive invariant, then it is also the case for $\Phi(k)$ for all k < m+n, but I left this out of this note for the time being to focus on the k > m+n case.

2 Preliminaries

In this section we introduce several assumptions, definitions, and notation that we will use to prove the M-N Theorem.

2.1 Restricted Sorted Logic

In this section we introduce a restricted form of Many Sorted Logic that we will refer to as Restricted Sorted Logic (RSL). This logic includes a single sort S, and we define its syntax based on the grammar for FOL defined in [2].

Definition 1. Let P be a countable set of predicate symbols and V be a countable set of variables. Then a formula in RSL is generated by the following grammar:

```
\begin{array}{l} argument ::= x \text{ for any } x \in \mathbf{V} \\ argument \_list ::= argument \\ argument \_list ::= argument, argument \_list \\ formula ::= p(argument \_list) \text{ for any } n\text{-ary } p \in \mathbf{P}, n \geq 0 \\ formula ::= \forall x \in S \text{ } formula \text{ for any } x \in \mathbf{V} \\ formula ::= \exists x \in S \text{ } formula \text{ for any } x \in \mathbf{V} \end{array}
```

Where predicates are n-ary functions that return boolean values and S is the sort given in an interpretation. Notice that uninterpreted quantified formulas appear in prenext normal form (PNF). We will implicitly assume that any quantified formula is a closed formula for the remainder of this note.

Definition 2. An interpretation I is a pair (S, R). D is a non-empty sort of indistinguishable constants, and R is a finite set of relations that serve as interpretations to each predicate symbol. The relations of R may be parameterized by the elements of S, but they may not have knowledge of S itself; in particular, the relations may not quantify over S nor refer to its cardinality.

Example 1. Let $U := \forall x \in S, \exists y \in S, p_1(x, y)$ and $\mathbf{I} = (\mathbb{Z}, \{<\})$. Then U is an (uninterpreted) quantified formula and I is an interpretation of U. U interpreted with I can be described by the formula:

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x < y$$

We will often abuse the notation and simply write:

$$\forall x, \exists y \in \mathbb{Z}, x < y$$

2.2 Transition System Basics

Let $T = (I, \Delta)$ be our transition system with sort E and inductive invariant candidate Φ . Throughout this note, we assume that the fomulas I, Δ , and Φ are written in RSL and share the interpretation $\mathbf{I} = (E, R)$. R is defined by a set of formulas on the state variables of T, and parameterized by the elements of E.

For a given $k \in \mathbb{N}$, we write $\mathbf{I}(k) = (E(k), R)$ to denote the interpretation that is shared between the finite instances I(k), $\Delta(k)$, and $\Phi(k)$.

Example 2. Consider the transition system T with two state variables, $A \in (E \to \mathbb{N})$ and $b \in \mathbb{Z}$ where

$$I := \forall x \in E, p_1(x)$$

$$\Delta := \exists x \in E, p_2(x)$$

$$\Phi := \forall x, y \in E, p_3(x, y)$$

This particular transition system has the interpretation $(E, \{r_1, r_2, r_3\})$, where each relation r_i corresponds to each predicate p_i . The three relations can be described concisely by the following three formulas:

$$r_1(x) := (A[x] = 1) \land (b = 0)$$

$$r_2(x) := (A[x] = 1) \land (A'[x] = 2) \land (b' = b + 1)$$

$$r_3(x, y) := (A[x] + A[y] < 5) \land (b \ge 0)$$

Notice how the formulas of each relation does not refer to E. In summary, our interpreted transition system can be described using the trio of formulas:

$$I := \forall x \in E, (A[x] = 1) \land (b = 0)$$

$$\Delta := \exists x \in E, (A[x] = 1) \land (A'[x] = 2) \land (b' = b + 1)$$

$$\Phi := \forall x, y \in E, (A[x] + A[y] < 5) \land (b \ge 0)$$

Definition 3. A formula Φ is an inductive invariant for T iff $\forall k \in \mathbb{N}$, $\Phi(k)$ is an inductive invariant for T(k). $\Phi(k)$ is an inductive invariant for T(k) iff $I(k) \to \Phi(k)$ and $[\Phi \land \Delta \to \Phi'](k)$ are both valid formulas.

2.3 Ground Formulas

Definition 4. Let S be a sort. Then a ground formula is generated by the following grammar:

```
\begin{aligned} & argument ::= e \text{ for any } e \in S \\ & argument . list ::= argument \\ & argument . list ::= argument, argument . list \\ & ground . formula ::= p(argument . list) \text{ for any } n\text{-ary } p \in \mathbf{P}, n \geq 0 \end{aligned}
```

Definition 5 (States). Let $k \in \mathbb{N}$, then:

$$States(k) := \{s \mid s \text{ is a state of } T(k)\}\$$

In this note we consider a "state" $s \in \text{States}(k)$ to be a ground formula. More specifically–under a given interpretation for T–s is a conjunction of constraints that describe a single state in T(k).

Definition 6. Let F be an RSL formula and $\rho : \mathbf{V} \to E$ be a function. Then we define Replace (F, ρ) recursively

$$\begin{aligned} \operatorname{Replace}(x,\rho) &:= \rho(x) \text{ for any } x \in \mathbf{V} \\ \operatorname{Replace}((argument_list),\rho) &:= \operatorname{Replace}(argument_rho), \operatorname{Replace}(argument_list,\rho) \\ \operatorname{Replace}(p(argument_list),\rho) &:= p(\operatorname{Replace}(argument_list,\rho)) \text{ for any } n\text{-ary } p \in \mathbf{R}, n \geq 0 \end{aligned}$$

Definition 7 (Ground Instance of F(k)). Let F be a quantified PNF formula and $k \in \mathbb{N}$. Then g is a ground instance of F(k) iff there exists a mapping $\rho : \mathbf{V} \to E(k)$ and an unquantified formula f such that:

$$g = \text{Replace}(f, \rho) \text{ and } F \in \text{PQF}(f)$$

In other words, g is a ground formula that is identical in structure to F without quantifiers, and with all variables of F(k) replaced by members of E(k).

Example 3. Consider the transition system T with two state variables, $x \in (P \to \mathbb{N})$ and $y \in \mathbb{Z}$. Let $s := (x[1] = 6 \land x[2] = 0 \land y = -22)$ be a state in the transition system. Let $F := \forall p, q \in P, x[p] \neq x[q]$ and $f := (x[1] \neq x[2])$.

Then $F(2) = \forall p, q \in P(2), x[p] \neq x[q]$. Furthermore, f is a ground instance of F(2), $F(2) \models f$, $s \models F(2)$, and $s \models f$.

Definition 8 (Gr). Let F be a quantified formula and $k \in \mathbb{N}$. Then:

$$Gr(F, k) := \{f \mid f \text{ is a ground instance of } F(k)\}$$

Example 4. Gr(
$$[\forall p, q \in P, p = q], 2$$
) = {(1 = 1), (1 = 2), (2 = 1), (2 = 2)}

Note: we sometimes use square braces to wrap formulas when it looks better than parentheses. Notice that $Gr([\forall p, q \in P, p = q], 2)$ contains elements that are false. This indicates that the statement $[\forall p, q \in P, p = q](2)$ is not valid.

Example 5. Let sv be a state variable, then:

$$Gr((\forall p, q \in P, p \neq q \to sv[p] \neq sv[q]), 3) = \{(1 \neq 1 \to sv[1] \neq sv[1]), (1 \neq 2 \to sv[1] \neq sv[2]), ...\}$$

Definition 9 (Elems). Suppose that F is a quantified formula, $k \in \mathbb{N}$, and $f \in Gr(F, k)$. Then:

$$Elems(f) := \{ e \mid e \in P(k) \land e \text{ occurs in } f \}$$

TODO make this definition better.

2.4 Permutation Transformations

Definition 10 (Permutation Transformation). Let $k \in \mathbb{N}$, $\pi : P(k) \to P(k)$ be a permutation on P(k), and G be the set of all possible formulas. Then $M_{\pi} : G \to G$ is the permutation transformation on π , a syntactic transformation that replaces each element from P(k) in a formula with its permuted value.

Example 6. Let π be the following permutation:

$$\pi := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Let sv be a state variable, then:

$$M_{\pi}(3 \neq 1 \to \text{sv}[3] \neq \text{sv}[1]) = (1 \neq 2 \to \text{sv}[1] \neq \text{sv}[2])$$

2.5 Indistinguishable Elements

We have loosely stipulated that T must have "indistinguishable" elements. In this section, we make this assumption precise.

Assumption 1 (P Has Indistinguishable Elements). Let $j, k \in \mathbb{N}$ such that $j \geq k$ and F be a quantified sentence in PNF. Let $s \in \text{States}(j)$ such that $s \models F(k)$. If π is a permutation then it is also the case that $M_{\pi}(s) \models F(k)$.

3 Helper Lemmas

Lemma 1. Let $j, k \in \mathbb{N}$ such that $j \geq k$, $s \in \text{States}(j)$, and F be a universally quantified formula. Then:

$$(s \models F(k)) \leftrightarrow (\forall f \in Gr(F, k), s \models f)$$

Proof. Suppose that $s \models F(k)$. For an arbitrary formula $f \in Gr(F, k)$, $F(k) \models f$ and hence we see that $s \to F(k) \land F(k) \to f$. It follows that $s \models f$.

Now suppose that $\forall f \in \operatorname{Gr}(F,k), s \models f$. Suppose, for the sake of contradiction, that $s \not\models F(k)$. Then it must be the case that $s \land \neg F(k)$. We know that F is unversally quantified, so let $F(k) := \forall x_1, ..., x_m \in P, \phi(x_1, ..., x_m)$ where $m \geq 1$. Then, because $\neg F(k)$ holds, it must be the case that $\exists x_1, ..., x_m \in P, \neg \phi(x_1, ..., x_m)$. However, $\phi(x_1, ..., x_m) \in \operatorname{Gr}(F, k)$ which, by our original assumption, implies $\neg s$. Hence we have both s and $\neg s$ and we have reached a contradiction.

Lemma 2 (Gr Members Sat). Let F be a formula and $k \in \mathbb{N}$ be given. Then:

$$\forall g \in Gr(F, k), F(k) \models g$$

THIS IS ONLY TRUE FOR UNIVERSALLY QUANTIFIED F^{}

Lemma 3 (Gr Closed Under Permutation). Let g be a ground formula, F be a quantified formula, and $k \in \mathbb{N}$ be given. Let $\pi: P(k) \to P(k)$ be a permutation, then:

$$(g \in Gr(F,k)) \leftrightarrow (M_{\pi}(g) \in Gr(F,k))$$

Proof. Suppose that $g \in Gr(F, k)$, then there exists a formula f such that $g = f[\mathbf{V} \mapsto P(k)]$ and $F \in PQF(f)$. However:

$$M_{\pi}(g) = M_{\pi}(f[\mathbf{V} \mapsto P(k)]) = f[\mathbf{V} \mapsto \pi(P(k))]$$

The other direction is straightforward if we realize that π^{-1} is also a permutation.

Lemma 4 (Minimum Gr). Let F be a formula, f be a ground formula, and $k \in \mathbb{N}$ be given. Suppose that $\text{Elems}(f) \subseteq P(j)$ where $j \leq k$, then:

$$f \in Gr(F, k) \to f \in Gr(F, j)$$

Proof. I will need a better definition for Gr to prove this one. For now, proof by obviousness. \Box

Lemma 5. Let $k \in \mathbb{N}$, and $s \in \text{States}(k)$ such that $s \models \Phi(k)$. Then for $j \leq k$, it is also the case that $s \models \Phi(j)$.

Proof. Let k and $j \leq k$ be given and suppose that $s \models \Phi(k)$. By Lemma 1, $\forall f \in Gr(F, k), s \models \Phi(k)$. Now observe that $Gr(\Phi, j) \subseteq Gr(\Phi, k)$ due to the fact that Φ is a universally quantified PNF formula. Thus it is also the case that $\forall f \in Gr(F, j), s \models \Phi(j)$, and then the result follows from Lemma 1. \square

4 The M-N Theorem

In this section, we will establish initiation and consecution in two separate lemmas using similar techniques. The M-N Theorem follows immediately from these two lemmas.

Lemma 6 (M-N Initiation). Suppose that $\Phi(m)$ is an inductive invariant for T(m), then $I(k) \to \Phi(k)$ for all k > m.

Proof. Coming soon.

П

Lemma 7 (M-N Consecution). Suppose that Φ is in PNF with only universal quantifiers, while Δ is in PNF with only existential quantifiers. Let m be the number of variables that Φ quantifies over and n be the number of variables that Δ quantifies over. If $\Phi(m+n)$ is an inductive invariant, then $\Phi(k)$ is inductive for any k > m+n.

Proof. Assume that $[\Phi \wedge \Delta \to \Phi'](m+n)$ is valid. Let k > m+n be given and $s \in \text{States}(k)$ such that $s \models \Phi(k)$. Let $\delta \in \text{Gr}(\Delta, k)$, i.e. δ is a ground "transition". Let $t \in \text{States}(k)$ such that $t' \models (s \wedge \delta)$, that is, t' is an arbitrary "next" state of s. Finally, let $f' \in \text{Gr}(\Phi', k)$ be arbitrary, then, by Lemma 1 and the fact that Φ' is in PNF and universally quantified, it suffices to show that $t' \models f'$.

Next, we will construct a permutation π as follows: let $x_1, ..., x_j$ be the distinct elements of P(k) used in δ and f'. We know that $j \leq m+n$ because Δ quantifies over n variables while Φ quantifies over m variables. Then:

$$\pi := \begin{pmatrix} x_1 \ x_2 \dots x_j \\ 1 \ 2 \dots j \end{pmatrix}$$

And hence by construction, Elems $(M_{\pi}(\delta)) \subseteq P(j)$ and Elems $(M_{\pi}(f')) \subseteq P(j)$. First, we immediately see that $M_{\pi}(\delta) \in Gr(\Delta, k)$ and $M_{\pi}(f') \in Gr(\Phi', k)$ by Lemma 3. Next, we further notice:

Elems
$$(M_{\pi}(\delta)) \subseteq P(j) \subseteq P(m+n)$$

and

Elems
$$(M_{\pi}(f')) \subseteq P(j) \subseteq P(m+n)$$

And thus by Lemma 4, we see that $M_{\pi}(\delta) \in Gr(\Delta, m+n)$ and $M_{\pi}(f') \in Gr(\Phi', m+n)$.

Now because $s \models \Phi(k)$, we see that $s \models \Phi(m+n)$ by Lemma 5, and furthermore $M_{\pi}(s) \models \Phi(m+n)$ by Assumption 1. Notice:

$$M_{\pi}(t' \models (s \land \delta)) \leftrightarrow M_{\pi}(t' \rightarrow (s \land \delta)) \leftrightarrow (M_{\pi}(t') \rightarrow M_{\pi}(s \land \delta)) \leftrightarrow M_{\pi}(t') \models M_{\pi}(s \land \delta)$$

Now:

$$M_{\pi}(t') \models M_{\pi}(s \wedge \delta) = M_{\pi}(s) \wedge M_{\pi}(\delta) \models [\Phi(m+n) \wedge \Delta(m+n)] = [\Phi \wedge \Delta](m+n)$$

Thus $M_{\pi}(t') \models [\Phi \land \Delta](m+n)$, which in turn implies $M_{\pi}(t') \models \Phi'(m+n)$ by our initial assumption. Informal: Notice that $\text{Elems}(M_{\pi}(\delta)) \subseteq P(m+n)$, and hence the elements of the set P(k) - P(m+n) have the same constraints in t' as they do in s; this means $M_{\pi}(t') \models (\Phi(k) - \Phi(m+n))'$ (for an abuse of notation). This further implies that $M_{\pi}(t') \models \Phi(k)$, and hence by Assumption 1, it follows that $t' \models \Phi(k)'$. In particular, by Lemma 1, $t' \models f'$.

Next we present the M-N Theorem:

Theorem 1 (M-N). Suppose that Φ is in PNF with only universal quantifiers, while Δ is in PNF with only existential quantifiers. Let m be the number of variables that Φ quantifies over and n be the number of variables that Δ quantifies over. If $\Phi(m+n)$ is an inductive invariant, then $\Phi(k)$ is also an inductive invariant for any k > m+n.

Proof. This follows immediately from the previous two lemmas.

5 Case Studies

In this section we visit several (more coming soon) distributed protocols that are parameterized by a single sort and satisfy Assumption 1.

5.1 Peterson's Mutex Protocol

Peterson's Mutex Protocol can be encoded with a transition relation Δ in PNF that quantifies over two variables. A sample inductive invariant candidate is given in [1] that quantifies of two variables and works for |P| = 2:

```
Phi == \A p,q \in ProcSet :
    /\ pc[p] \in {"a3","a4","cs"} => flag[p]
    /\ (p#q /\ pc[p] = "cs" /\ pc[q] = "a4") => turn = p
    /\ (p # q) => ~(pc[p] = "cs" /\ pc[q] = "cs")
```

However, by the M-N Theorem, we must show that Φ is an inductive invariant for the cases when |P| = 1, ..., 4. In fact, we easily see that $\Phi(3)$ fails to be inductive in the following counter example:

References

- [1] Parametric Peterson's Mutex Protocol. https://github.com/iandardik/iinf/blob/master/ii_cutoff/mn_thm/PetersonParametric.tla, 2022.
- [2] Mordechai Ben-Ari. *Mathematical Logic for Computer Science*. Springer Publishing Company, Incorporated, 3rd edition, 2012.
- [3] Aman Goel and Karem Sakallah. On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. In NASA Formal Methods Symposium, pages 131–150. Springer, 2021.