Not all Failure Modes are Created Equal: Training Deep Neural Networks for Explicable (Mis)Classification

Alberto Olmo* (♥), Sailik Sengupta* (♥), Subbarao Kambhampati (♥)

Motivation

- Accuracy \neq explicability.
- How do Failures Look? Egregious Errors can result in
 - 1. Loss of Trust
 - 2. Safety issues
 - 3. Uphold societal biases
- Predictive parity / error rate balance / demographic parity does not consider the egregiousness of a mistake.

Representing Magnitude of Explicability

- Pairwise similarity between classes can be used to represent egregiousness of misclassifications.
 - ♦ Classification to classes semantically far away = Egregious mistakes
 - ♦ Classification to semantically close classes = Explicable mistakes

Obtaining Semantic Similarity Representation

- Instance Based Human Labelling (IHL)
 - ♦ Very expensive
 - ♦ Does not scale
 - ♦ Finest Granularity
- Pairwise Class-level Human Labelling (CHL)
 - ♦ Less expensive
 - ♦ Scales decently
 - ♦ Coarser Granularity
- Existing Knowledge for Labelling (EKL)
 - ♦ Not expensive
 - ♦ Scales easily
 - ♦ May not represent context-specific Explicability

Discouraging egregious mistakes

- Weight the loss values in accordance with the semantic similarity distance.
 - ♦ Explicable mistakes should not make the loss infinity.
 - ♦ Inexplicable or egregious mistakes should make the loss infinity.

$$W\mathcal{L}F(y_i,p) = \mathcal{L}(W_i,p)$$

	Functionality	Explicability			Robustness		Cost
Model	Top-1 Accuracy ↑	$\mathcal{L}_{IHL}\downarrow$	$\mathcal{L}_{CHL}\downarrow$	$\mathcal{L}_{EKL}\downarrow$	Gaussian Noise ↑	Adversarial $(FGSM) \uparrow$	Additional Human Labels ↓
ResNet-v2 $(W = \mathbf{I})$	91.85%	14.761	5.044	16.047	17.03%	9.98%	0
ResNet-v2 $(W = IHL)$	83.61%	2.258	1.889	2.311	17.08%	12.14%	+511,400
$ResNet ext{-v2} \ (W = CHL)$	91.17%	3.054	1.305	3.274	21.45%	11.73%	+460
ResNet-v2 $(W = EKL)$	86.03%	2.353	1.567	2.461	28.76%	12.63%	0

Table 1: ResNet-v2 on CIFAR-10.

Figure 1: Different methods to learn explicability labels over class-level misclassifications.

Figure 2: Vanilla VGG vs VGG fine-tuned with EKL.