4. Error analysis for solutions to systems of linear equations. The condition number and its role in the analysis.

Numerical Analysis E2021

Institute of Mathematics Aalborg University

Numerical Analysis E2021

Motivation

Non-pertubed error analysis

Pertubed erro analysis

MATLAB

We wish to analyse errors for when we compute solutions to linear equations. Thus, we introduce the condition number

$$\kappa(A) = ||A^{-1}|| \cdot ||A|| \tag{1}$$

satisfying

$$\kappa(cA) = \kappa(A), \quad c \neq 0$$

$$\kappa(A^{-1}) = \kappa(A)$$

$$\kappa(AB) \leq \kappa(A)\kappa(B)$$

$$\kappa(Q) = 1$$

$$\kappa(QA) = \kappa(AQ) = 1$$
(2)

for orthogonal Q.

 κ is a measure of "how" singular a matrix is.

Non-pertubed error analysis

Numerical Analysis E2021

Motivation

Non-pertubed error analysis

Pertubed error analysis

MATLAD

For invertible A and the system Ax = b we consider

$$A(x_t + \underbrace{\delta x}) = b + \underbrace{\delta b}_{\text{res.}}$$
 (3)

and one can then show that

$$\frac{1}{\kappa(A)} \frac{\|\delta b\|}{\|b\|} \le \frac{\|\delta x\|}{\|x_t\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|} \tag{4}$$

so κ is a relative error magnification factor.

Pertubed error analysis

Numerical Analysis E2021

Motivation

Non-pertubed error analysis

Pertubed error analysis

.....

We consider a case where our computed solution satisfies a pertubed form of the original equation

$$(A + \delta A)(x_t + \delta x) = (A + E)x_c = b \tag{5}$$

and under the assumption $||A^{-1}|| \cdot ||\delta A|| < 1$ then $A + \delta A$ is invertible. From this we can make estimates for the relative error, most importantly

$$\frac{\|x_t - x_c\|}{\|x_t\|} \le \frac{\kappa(A)\|E\|/\|A\|}{1 - \kappa(A)\|E\|/\|A\|} \tag{6}$$

Numerical Analysis E2021

Motivation

Non-pertubed error analysis

Pertubed error analysis

MATLAB

MATLAB demo for poorly conditioned system.