# Tema 3 Sistemas Expertos

Razonamiento y Representación del Conocimiento

### Introducción

#### ¿Qué es un experto?

- Objetivo: clonar el conocimiento de un experto
- Los sistemas automáticos de deducción no funcionan (funcionaban) bien para cuestiones generales
- Concretar el campo de trabajo ofrece mejores resultados

### Introducción

- Capacidades de un sistema experto
  - Resolver problemas difíciles y apoyar la toma de decisiones en base a un proceso de razonamiento simbólico
  - Soportar incertidumbre
  - Ofrecer una interfaz eficaz y cómoda (natural)
  - Incorporar la posibilidad de aprendizaje
  - Ofrecer soluciones alternativas y justificar la línea de razonamiento seguida para alcanzarlas

# Esquema de un S.E.

- Conocimiento del experto→ Base de conocimiento
- Razonamiento → Motor de inferencia



# Esquema de un S.E.

- Base de conocimiento
  - Contiene conocimiento altamente especializado
  - Proporcionado por el(los) experto(s) humano(s)
  - Hechos, reglas, conceptos y relaciones
- Motor de inferencia
  - Procesador del conocimiento
  - Obtiene conclusiones o recomendaciones

# Arquitectura básica



### Base de conocimiento

- Contiene el conocimiento sobre el dominio
- Típicamente reglas IF/THEN

Regla 1

IF el coche no arranca

THEN El problema puede estar en el sistema eléctrico

Regla 2

IF El problema puede estar en el sistema eléctrico AND El voltaje de la batería está por debajo de 10 voltios

THEN El fallo es una batería defectuosa

#### Base de hechos

- También llamada memoria de trabajo
- Contiene los hechos que se han descubierto durante una consulta
- Durante una consulta el usuario\* introduce información del problema actual en la base de hechos

- Realiza el razonamiento a partir de los hechos y el conocimiento en la base de conocimiento: las reglas
- Deduce nuevos hechos
- Obtiene conclusiones

- Buscar las reglas cuya parte izda.
   Se cumpla según los hechos → búsqueda muchos-a-muchos
- 2. Se forma el conjunto de conflicto
- 3. Se escoje una regla usando algún tipo de heurística
- 4. Se ejecuta la regla y se modifica la base de hechos o la base de conocimiento acorde a su parte derecha
- 5. Volvemos al paso 1



#### Problema:

- La búsqueda muchos-a-muchos es lenta
- Puede ralentizarse tanto que haga imposible aplicarse para problemas reales con muchas reglas y muchos hechos

#### Solución

- Sistemas de índices y listas enlazadas → ayudan a reducir (algo) el tiempo
- 2. El algoritmo de matching Rete → reduce el tiempo de búsqueda de satisfacción de la parte izda de las reglas en varios órdenes de magnitud incrementando el consumo de memoria

- Características
  - Constituye una red de nodos → grafo dirigido acíclico
  - Cada nodo representa un hecho en la parte izda de una regla
  - Explota las redundancias en la parte izda de las reglas para construir una red compacta de nodos
  - Mantiene la evidencia (hechos) en los nodos

- ¿Cómo funciona?
  - Veamos un ejemplo: un sistema experto de una fábrica de golosinas. Dos de las reglas de producción:
    - Regla Red\_Round\_Ones: Si el objetivo es identificar una golosina, y si la golosina es roja, y si la golosina es redonda, entonces es una gominola
    - Regla Red\_\_cylindrical\_Ones: Si el objetivo es identificar una golosina, y si la golosina es roja, y si la golosina es cilíndrica, entonces es una barra de regaliz

- Ejemplo. Formalizándolo en un lenguaje lógico (OPS5)
  - Reglas de producción

Ejemplo de memoria de datos

```
1 (Goal | Type Identify | Object Sample7)
2 (Candy | Name Sample7 | Color Red | Shape Round | Company FerraraPan)
```

- Red de nodos
  - Dos tipos de nodos
    - Con 1 entrada
    - Con 2 entradas
  - Las hojas indican que la regla de producción se satisface



- ¿cómo funciona?
  - Los nodos de 1
     entrada evalúan su
     atributo
  - Los de 2 entradas
     hacen lo mismo, pero
     si solo llega evidencia
     por una entrada la
     guardan para más
     adelante



#### ¿cómo funciona?

- 1. (Goals | Type Identify | Object Sample7)
- 2. (Candy | Name Sample8 | Color Red | Shape Round | Company FerraraPan)
- 3. (Goal | Type Identify | Object Sample8)



#### Otras partes de un Sistema Experto

- Subsistema de explicación
- Las conclusiones deben ser explicadas
- Proporciona información de por qué plantea nuevas preguntas al usuario y de cómo ha llegado a sus conclusiones
- Interfaz de usuario
- La interacción se ha de producir en lenguaje natural
- Habilidad para hacer preguntas
- Presentar resultados gráficamente

# Sistema experto vs experto humano

| Factor                      | Experto humano | Sistema experto |
|-----------------------------|----------------|-----------------|
| Disponibilidad de<br>tiempo | Día laborable  | Siempre         |
| Geografía                   | Local          | Cualquier lugar |
| Seguridad                   | Irremplazable  | Reemplazable    |
| Caducidad                   | Sí             | No              |
| Ejecución                   | Variable       | Constante       |
| Velocidad                   | Variable       | Constante       |
| Coste                       | Alto           | Abordable       |

# Tipos de Sistemas Expertos

- Control: gobiernan el comportamiento de un sistema
- Diseño: configuran objetos bajo un conjunto de restricciones
- Diagnóstico: deducen fallos del sistema desde información observable
- Instrucción: guían la educación de un estudiante en un tema dado
- Interpretación: producen una descripción de una situación desde información disponible, normalmente ruidosa o incompleta

# Tipos de Sistemas Expertos

- Monitorización: comparan información del comportamiento de un sistema con estados "cruciales" en su operación
- Planificación: diseñan un plan de acciones para realizar una meta dada
- Predicción: deducen consecuencias probables desde una situación dada y un modelo del problema
- Selección: identifican la mejor elección de una lista de posibilidades
- Simulación: Modelan un proceso o sistema para permitir estudios operacionales bajo diversas condiciones

#### Fases en el desarrollo de un Sistema Experto

- Cualquier desarrollo software tiene las siguientes fases:
  - Investigación → Diseño → Prueba → Documentación → Mantenimiento
- Un SE requiere de una fase adicional: Adquisición del conocimiento, que se realizará en las etapas iniciales
  - Adquirir el conocimiento necesario sobre el problema
  - Descubrir los conceptos clave y los métodos de resolución de problemas empleados por los expertos

#### Ventajas de los Sistemas Expertos

- Reutilización del motor de inferencia para distintos problemas
- Facilita el proceso de aprendizaje de nuevo conocimiento experto (y se puede automatizar)
- Facilita el manejo de conocimiento incompleto
- Se centra en un problema específico apartando problemas referentes a otros conocimientos
- Lo ya comentado: permanencia, transportabilidad, coherencia, coste, estabilidad

#### Inconvenientes de los Sistemas Expertos

- Resolución y búsqueda menos eficientes al separar el conocimiento sobre el dominio y sobre el proceso
- No capturan\* algunas buenas cualidades de los expertos humanos: creatividad, sentido común, adaptabilidad, miras amplias, etc.
- Comprobación costosa de inconsistencias
- (Cada día tienen menos inconvenientes)

### Ejemplos de Sistemas Expertos

- Sistemas de diagnóstico médico
- Sistemas de diagnóstico en talleres de automóviles
- Sistemas de apoyo en la toma de decisiones (inversiones, bolsa, etc.)
- ¿Se os ocurre alguno más?
- ¿Habéis utilizado alguna vez uno?

# Bibliografía

- Inteligencia Artificial. Un enfoque Moderno. Stuart Russell,
   Peter Noving. Ed. Prentice Hall. 2004
- Fundamentos de inteligencia artificial. M.A Cazorla y otros.
   Ed. Publicaciones de la Universidad de Alicante.
- The Rete Matching Algorithm. Dr Dobb's site: https://drdobbs.com