CS 520 Theory of Programming Language

04/07 - 04/14, 2021

Farlure, Input-Dusput

1. Reminder.

1) Syntax:

< mt exb > :: = ...

< boolexp) ::= -..

< commy ::= | fail | ? (var) | (intexp).

2 example.

5 X = 1 (X+1) 3 5 A 3 [(X+A) 3 5 = X+A

2. Denotational Semantics.

$$\left(z = [\langle v_{av} \rangle \rightarrow z] \right)$$

(i) option
$$1: \Omega = \overline{L}_{\perp}.... \times$$
.

Comput Cirput. $\int (\hat{\Sigma} + \mathbb{Z} \times \Omega + [\mathbb{Z} \to \Omega])_{\perp}$ $\int \omega hene \hat{\Sigma} = \hat{\Sigma} + \hat{\Sigma}$ Thomosphism. normal termination

(#) A few constructions for predomains. (+ and \times).

(Po, \subseteq), ..., (Pn-1, \subseteq n-1). ... predomains. ... Crinew.

Po+Pi+...+Pn-1 = $\stackrel{n-1}{\geq}$ Prodomans. ... Constructed.

Po×Pi×...×Pn-1 = $\stackrel{n-1}{\uparrow}$ Prodomans. ... Constructed.

Ex. Phone that $\sum_{i} P_{i}$ and $\sum_{i} P_{i}$ are phedomains. \square . All of P_{i} 's are domains which one of $\sum_{i} P_{i}$ and $\sum_{i} P_{i}$ domains $\begin{cases} x_{(0)}^{(0)} x_{(0)}^{(0)} = t_{(1)} = t_{(2)} = \cdots = t_{(2)} = \cdots = t_{(2)} = \cdots = t_{(2)} = \cdots = t_{(2)} = t_{(2)$ ⇒ ∃ ū €80,..., m-13 and a chân x(0) [... [... [...].]. m P. s.t. $S^{(lc)} = \langle \tau, \chi^{(k)} \rangle.$ $L_{s}^{(k)} = \langle \tau, L_{s}^{(k)} \rangle.$

(5) Constructors, Dostructors, Lifting to continuous functiontorget tupling.

Thuckeriality. (1) 51:P -2Po , fx:P -2Px, f3:P -2Ps, ---, fn-1. target tugling. $f_0 \otimes f_2 \otimes \cdots \otimes f_{n-1} = \langle f_0, f_1, \cdots, f_{n-1} \rangle$ · P = TP-