Sec 6.2

Simultaneous ST

- Generate translation while speaker speaks
- Tradeoff:
 - *More context* improves speech translation
 - Wait as long as possible
 - Low latency is important for user experience
 - Generate translation as early as possible
- Challenge:
 - Different word order in the language
 - SOV vs SVO

German	Ich	melde	mich	zum	E2E	Tutorial	an
Gloss	I	register/ cancel	myself	to	E2E	tutorial	
English	I	????					

- Approaches:
 - Learn optimal segmentation strategies
 - Create segments that optimizing tradeoff between segment length and translation quality
 - Advantages:
 - No changes to the system
 - Disadvantage:
 - Shorter context during translation
 - Mainly used in cascaded approaches (e.g. Oda et al., 2014)

Example:

Ich melde mich

zur Konferenz an

- Approaches:
 - Learn optimal segmentation strategies
 - Re-translate / Iterative -update
 - Directly output first hypothesis
 - If more context is available:
 - Update with better hypothesis
 - Cascade
 - (Niehues et al, 2018; Arivazhagan et al, 2020)
 - End-to-end
 - (Weller et al, 2021)

Example:

Ich

Ich melde mich I register

Ich melde mich von I cancel my registration for

Re-translation

- Challenge:
 - Flickering
- Ideas:
 - Output masking
 - Do not output last tokens
 - Constrained decoding:
 - Fixed part of the previous translation

Example:

Ich

Ich melde mich I register

Ich melde mich von I cancel my registration for

- Approaches:
 - Learn optimal segmentation strategies
 - Re-translate
 - Stream decoding
 - Dynamically learn when to generate a translation
 - At each time step:
 - Decided to output word
 - Wait for additional input

Stream decoding

- Methods:
 - Fixed schedule (Ma et al, 2019)
 - Wait-k policy

Stream decoding

- Challenges:
 - Assumes constant rate between input and output
 - Speaking speed varies
- Ideas:
 - Estimate word boundaries on the source side (Ma et al. 2020)
 - Predict using CTC Loss (Ren et al, 2020)

Stream decoding

- Methods:
 - Fixed schedule (Ma et al, 2019)
 - Dynamic decision (Cho et al, 2016; Gu et al, 2017; Dalvi et al, 2018)
 - End-to-end:
 - Estimate output probability based on confidence

Stream decoding using Retranslation

Decoding with fixed target prefix

Stream decoding strategies

- Local agreement (Liu et al, 2020)
 - Output if previous and current output agree on prefix
 - Variation (Yao et al., 2020):
 - Predict the next source word instead of relying on the previous input

Input	Prefix	Target Text	Final Output	
1	Ø	All model trains	Ø	
1,2	Ø	All models art	All	
1,2,3	All	All models are wrong	All models	
1,2,3,4	All models			