

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

14.7

استخراج شکل

Shape Extraction

تشخیص خط

تشخيص دايره

تشخيص لبه

- شکلهای مورد نظر در مرز اشیاء قرار دارند و به همین دلیل نخستین گام در بسیاری از الگوریتمهای تشخیص شکل، تشخیص مرز اشیاء و لبههای تصویر است
 - یک لبه، مجموعهای از پیکسلهایی به هم پیوسته است که روی مرز دو ناحیه قرار دارند

تشخيص لبه

- حضور مقدار کمی نویز می تواند به میزان زیادی کار تشخیص لبه را توسط مشتق گیری سخت نماید
- هموارسازی تصویر قبل از استفاده از مشتق در کاربردهایی که نویز با چنین سطحی تصویر را تخریب میکند ضروری است
 - به طور ویژه، هموارسازی در جهت عمود بر جهت لبهیابی بسیار موثر است

$$\nabla f(x,y) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

گرادیان تصویر

• گرادیان تابع دوبعدی f به صورت زیر تعریف میشود:

$$M(x,y) = \|\nabla f\| = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

• اندازه گرادیان

$$\alpha(x, y) = \operatorname{dir}(\nabla f) = \operatorname{atan2}(g_y, g_x)$$

• جهت گرادیان

گرادیان تصویر

گرادیان تصویر

مشتق افقى

-1 +1

• مشتق یک طرفه

-1 0 +1

• مشتق دو طرفه

مشتق افقى

• عملگر Prewitt

مشتق عمودي

• عملگر Prewitt

لبه ياب Sobel

• فیلترهای Sobel برای یافتن لبههای افقی و عمودی مناسب هستند

$G_{\mathcal{Y}}$		
-1	-2	-1
0	0	0
+1	+2	+1

G_{χ}		
-1	0	+1
-2	0	+2
-1	0	+1

$$\text{mag} = \sqrt{g_x^2 + g_y^2}$$

$$dir = atan2(g_y, g_x)$$

لبه ياب Sobel

- آستانه گذاری اندازه گرادیان حاصل از عملگر Sobel
- مقادیر بیش از ۳۳.۰ از بزرگترین مقدار با به عنوان لبه در نظر می گیریم

لبه ياب Canny

- یکی از پرکاربردترین و موفق ترین روشهای لبهیابی است که از ۴ گام اساسی تشکیل میشود:
 - هموار کردن تصویر با استفاده از فیلتر گاوسی
 - محاسبه گرادیان
 - حذف مقادير غيربيشينه
 - آستانه گذاری دو مرحلهای

حذف مقادير غيربيشينه

- هر پیکسل که در راستای گرادیان خود دارای مقدار غیربیشینه باشد حذف میشود
 - جهت گرادیان به ۴ گروه تقسیم میشود و همسایگی ۳×۳ است

حذف مقادير غيربيشينه

- هر پیکسل که در راستای گرادیان خود دارای مقدار غیربیشینه باشد حذف میشود
 - جهت گرادیان به ۴ گروه تقسیم میشود و همسایگی ۳×۳ است

آستانه گذاری دوسطحی

- هر پیکسلی که اندازه گرادیان آن کوچکتر از T_1 باشد به عنوان غیرلبه معرفی می شود
 - هر پیکسلی که اندازه گرادیان آن بزرگتر از T_2 باشد به عنوان لبه معرفی میشود
- پیکسلهایی که اندازه گرادیان آنها بین T_1 و T_2 باشد تنها در صورتی به عنوان لبه معرفی میشوند که به یک پیکسل لبه به صورت مستقیم یا از طریق پیکسلهایی که اندازه گرادیان آنها بین T_1 و T_2 است متصل باشند

