凸优化

question1

证明如果 S_1 和 S_2 是 $\mathbb{R}^{m \times n}$ 中的凸集,那么它们的部分和 $S = \{(\boldsymbol{x}, \boldsymbol{y}_1 + \boldsymbol{y}_2) | \boldsymbol{x} \in \mathbb{R}^m, \boldsymbol{y}_1, \boldsymbol{y}_2 \in \mathbb{R}^n, (\boldsymbol{x}, \boldsymbol{y}_1) \in S_1, (\boldsymbol{x}, \boldsymbol{y}_2) \in S_2\}$ 也是凸的。

solve1

欲证明 \mathcal{S} 为凸,只需证明对于任意 $(\boldsymbol{x_1}, \boldsymbol{z_1}), (\boldsymbol{x_2}, \boldsymbol{z_2}) \in \mathcal{S}, \ \theta \in [0, 1]$ 有 $\theta(\boldsymbol{x_1}, \boldsymbol{z_1}) + (1 - \theta)(\boldsymbol{x_2}, \boldsymbol{z_2}) \in \mathcal{S}$ 。(其中 $\boldsymbol{z_1} = \boldsymbol{y_1} + \boldsymbol{y_2}, \ \boldsymbol{z_2} = \boldsymbol{y_3} + \boldsymbol{y_4},$ $(\boldsymbol{x_1}, \boldsymbol{y_1}), (\boldsymbol{x_2}, \boldsymbol{y_3}) \in \mathcal{S_1}, \ (\boldsymbol{x_1}, \boldsymbol{y_2}), (\boldsymbol{x_2}, \boldsymbol{y_4}) \in \mathcal{S_2}$)。

$$\begin{aligned} \theta(\boldsymbol{x_1}, \boldsymbol{z_1}) + (1 - \theta)(\boldsymbol{x_2}, \boldsymbol{z_2}) &= (\theta \boldsymbol{x_1} + (1 - \theta) \boldsymbol{x_2}, \theta \boldsymbol{z_1} + (1 - \theta) \boldsymbol{z_2}) \\ &= (\theta \boldsymbol{x_1} + (1 - \theta) \boldsymbol{x_2}, \theta \boldsymbol{y_1} + (1 - \theta) \boldsymbol{y_3} + \theta \boldsymbol{y_2} + (1 - \theta) \boldsymbol{y_4}) \\ &= (\theta \boldsymbol{x_1} + (1 - \theta) \boldsymbol{x_2}, \theta \boldsymbol{y_1} + (1 - \theta) \boldsymbol{y_3}) \\ &\oplus (\theta \boldsymbol{x_1} + (1 - \theta) \boldsymbol{x_2}, \theta \boldsymbol{y_2} + (1 - \theta) \boldsymbol{y_4}) \\ &= \boldsymbol{s_1} \oplus \boldsymbol{s_2} \end{aligned}$$

其中 ⊕ 代表部分和。

根据凸集的性质自然有 $(\theta x_1 + (1-\theta)x_2, \theta y_1 + (1-\theta)y_3) = \theta(x_1, y_1) + (1-\theta)(x_2, y_3) = s_1 \in \mathcal{S}_1$, $(\theta x_1 + (1-\theta)x_2, \theta y_2 + (1-\theta)y_4) = \theta(x_1, y_2) + (1-\theta)(x_2, y_4) = s_2 \in \mathcal{S}_2$ 。根据 \mathcal{S} 的定义,自然有 $s_1 \oplus s_2 \in \mathcal{S}$,这说明 \mathcal{S} 是一个凸集。

question2

对于任意 $x \in \mathbb{R}^n$,用 $x_{[i]}$ 表示 x 中第 i 大的分量,即将 x 的分量按照非升序进行排列得到下式 $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[n]}$ 。证明对 x 的最大 r 个分量进行求和所得到的函数 $f(x) = \sum_{i=1}^r x_{[i]}$ 是凸函数。

solve2

引理: 对于 $\boldsymbol{x} \in \mathbb{R}^n$, $\boldsymbol{x} = [x_1, \dots, x_n]^T$, $\max_i \{\boldsymbol{x}\} = \max_i \{x_1, \dots, x_n\}$ 是 凸函数。证明如下:

任取 $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, $\theta \in [0,1]$,有

$$\theta \max_{i} \{ \boldsymbol{x} \} + (1 - \theta) \max_{i} \{ \boldsymbol{y} \}$$

$$= \theta \max_{i} \{ x_{1}, \dots, x_{n} \} + (1 - \theta) \max_{i} \{ y_{1}, \dots, y_{n} \}$$

$$= \theta x_{[1]} + (1 - \theta) y_{[1]}$$

$$\geq \max_{i} \{ \theta x_{1} + (1 - \theta) y_{1}, \dots, \theta x_{n} + (1 - \theta) y_{n} \} = \max_{i} \{ \theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y} \}$$

其中 $x_{[1]}$ 、 $y_{[1]}$ 分别代表 $\{x_1,\ldots,x_n\}$ 、 $\{y_1,\ldots,y_n\}$ 中最大的元素。接着证明比题目更强的命题: 对于任意 $\boldsymbol{x}\in\mathbb{R}^n$,对 \boldsymbol{x} 的最大 r 个分量进行求和所得到的函数 $f(x)=\sum\limits_{i=1}^r\boldsymbol{x}_{[i]}$ 仍然是凸函数。证明如下:

构造矩阵 $\mathbf{A} \in \mathbb{R}^{C_n^r \times n}$, 其中 $C_n^r = \frac{n!}{r!(n-r)!}$ 。矩阵 A 的每一行 \mathbf{a}_k 由 r 个 1 和 n-r 个 0 组成,容易证明 \mathbf{a}_k 有 C_n^r 种组合方式。令 $\mathbf{b} = \mathbf{A}x$,则 $f(x) = \sum_{i=1}^r \mathbf{x}_{[i]} = \max_k \{\mathbf{b}\}$ 。根据引理可知, $\max_k \{\mathbf{b}\}$ 为凸函数。

特别的,对于非升序排列的向量 x,令 $a_1 = [\underbrace{1, \dots, 1}_{r \uparrow 1}, 0, \dots, 0]^T$,则 $f(x) \triangleq \max_{b} \{b\} = b_1 = a_1^T x$ 同样是一个凸函数。

question3

判断下列函数是否是凸函数、凹函数、拟凸函数以及拟凹函数?

- (a) 函数 $f(x) = e^x 1$,定义域为 \mathbb{R} 。
- (b) 函数 $f(x_1, x_2) = x_1 x_2$, 定义域为 \mathbb{R}^2_{++} 。

- (c) 函数 $f(x_1, x_2) = \frac{1}{x_1 x_2}$, 定义域为 \mathbb{R}^2_{++} 。
- (d) 函数 $f(x_1,x_2) = \frac{x_1}{x_2}$,定义域为 \mathbb{R}^2_{++} 。
- (e) 函数 $f(x_1, x_2) = \frac{x_1^2}{x_2}$, 定义域为 $\mathbb{R} \times \mathbb{R}_{++}$ 。
- (f) 函数 $f(x_1, x_2) = x_1^a x_2^{1-a}$, 其中 $0 \le a \le 1$, 定义域为 \mathbb{R}^2_{++} 。

容易验证,以上所有函数的定义域是凸集。并且我们通过顺序主子式讨论 Hessian 矩阵的正定性,在之后的证明过程中不再赘述。

- (a) $f''(x) = e^x \ge 0$,根据图像易得其凹凸性。 结论: 是凸函数,非凹函数,是拟凸函数,是拟凹函数。
- (b) $\nabla^2 f(x_1, x_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 是不定的,所以非凸函数,非凹函数。而其 α 下水平集 $\mathcal{C}_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} | x_1 x_2 \leq \alpha \}$ 不是凸集,所以非拟凸函数; 其 α 上水平集 $\mathcal{S}_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} | x_1 x_2 \geq \alpha \}$ 是凸集,所以是拟凹函数。(这分别对应着正半轴上 xy = k 双曲线的一支所分割成的两个平面)。

结论: 非凸函数, 非凹函数, 非拟凸函数, 是拟凹函数。

(c) $\nabla^2 f(x_1, x_2) = \begin{bmatrix} \frac{2}{x_1^3 x_2} & \frac{1}{x_1^2 x_2^2} \\ \frac{1}{x_1^2 x_2^2} & \frac{2}{x_1 x_2^3} \end{bmatrix} \succ 0$,是凸函数,非凹函数,是拟凸函数。 而其 α 上水平集 $\mathcal{S}_{\alpha} = \{(x_1, x_2) \in \mathbb{R}_{++}^2 | x_1 x_2 \leq \alpha\}$ 不是凸集,所以非拟凹函数。

结论:是凸函数,非凹函数,是拟凸函数,非拟凹函数。

(d) $\nabla^2 f(x_1, x_2) = \begin{bmatrix} 0 & -\frac{1}{x_2^2} \\ -\frac{1}{x_2^2} & \frac{2x_1}{x_2^3} \end{bmatrix}$ 是不定的。所以是非凸函数,非凹函数。 而其 α 下水平集 $\mathcal{C}_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} | \frac{x_1}{x_2} \leq \alpha\}$ 是凸集,所以是拟凸函数;而其 α 上水平集 $\mathcal{S}_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} | \frac{x_1}{x_2} \geq \alpha\}$ 是凸集,所以是拟凹函数(它们刚好都对应着半平面)。

结论: 非凸函数, 非凹函数, 是拟凸函数, 是拟凹函数。

(e)
$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} \frac{2}{x_2} & -\frac{2x_1}{x_2^2} \\ -\frac{2x_1}{x_2^2} & \frac{2x_1^2}{x_2^3} \end{bmatrix} \succeq 0$$
,是凸函数,非凹函数,是拟凸函数。
而其 α 上水平集 $\mathcal{S}_{\alpha} = \{(x_1, x_2) \in \mathbb{R} \times \mathbb{R}_{++} | \frac{x_1^2}{x_2} \geq \alpha \}$ 不是凸集,所以非拟凹函数。

结论: 是凸函数, 非凹函数, 是拟凸函数, 非拟凹函数。

(f)
$$\nabla^2 f(x_1, x_2) = \begin{cases} \mathbf{O}_{2 \times 2}, & a = 1 \text{ or } 0 \\ \begin{bmatrix} a(a-1)x_1^{a-2}x_2^{1-a} & a(1-a)x_1^{a-1}x_2^{-a} \\ a(1-a)x_1^{a-1}x_2^{-a} & a(a-1)x_1^ax_2^{-a-1} \end{bmatrix} & 0 < a < 1 \end{cases}$$
 $\nabla^2 f(x_1, x_2) \leq 0$,非凸函数,是凹函数,是拟凹函数。而其 α 下水平集 $\mathcal{C}_{\alpha} = \{(x_1, x_2) \in \mathbb{R}^2_{++} | x_1^a x_2^{1-a} \leq \alpha \}$ 不是凸集,所以非拟凸函数。结论:非凸函数,是凹函数,非拟凸函数,是拟凹函数。

question4

考虑优化问题

$$\min_{x_1, x_2} f_0(x_1, x_2)$$
s.t. $2x_1 + x_2 \ge 1$

$$x_1 + 3x_2 \ge 1$$

$$x_1 \ge 0, x_2 \ge 0$$

对其可行集进行概述。对下面每个目标函数,给出最优解和最优值。

(a)
$$f_0(x_1, x_2) = x_1 + x_2$$

(b)
$$f_0(x_1, x_2) = -x_1 - x_2$$

(c)
$$f_0(x_1, x_2) = x_1$$

(d)
$$f_0(x_1, x_2) = \max\{x_1, x_2\}$$

(e)
$$f_0(x_1, x_2) = x_1^2 + 9x_2^2$$

构造拉格朗日函数 $L(x_1, x_2, \lambda) = f_0(x_1, x_2) + \lambda_1(1 - 2x_1 - x_2) + \lambda_2(1 - x_1 - 3x_2) + \lambda_3(-x_1) + \lambda_4(-x_2)$,其中 $\lambda \geq 0$ 对于上述五个函数 $f_0(x_1, x_2)$,容易验证它们都是关于 $\boldsymbol{x} = [x_1, x_2]^T$ 的凸函数。则 $\nabla_{\boldsymbol{x}} L(x_1, x_2, \lambda) = \nabla f_0(x_1, x_2) + (-2\lambda_1 - \lambda_2 - \lambda_3, -\lambda_1 - 3\lambda_2 - \lambda_4)$ 。

并且给出满足以下凸问题的 KKT 条件:

$$\begin{cases} 2x_1 + x_2 \ge 1, x_1 + 3x_2 \ge 1, x_1 \ge 0, x_2 \ge 0 \\ \lambda_1, \lambda_2, \lambda_2, \lambda_4 \ge 0 \\ \lambda_1(1 - 2x_1 - x_2) = 0, \lambda_2(1 - x_1 - 3x_2) = 0, \lambda_3(-x_1) = 0, \lambda_4(-x_2) = 0 \\ \nabla_x L(x_1, x_2, \boldsymbol{\lambda}) = 0 \end{cases}$$

先作简单的分析,在二维平面内的仿射约束只会重合或两两交于一点。这说明了互补松弛条件中, $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ 最多存在两个同时为 0。

- (a) $f_0(x_1, x_2) = x_1 + x_2$,最优解为 $(x_1, x_2) = (\frac{2}{5}, \frac{1}{5})$,最优值为 $\frac{2}{3}$
- (b) $f_0(x_1, x_2) = -x_1 x_2$,不存在最优解与最优值(最优解为 $(+\infty, +\infty)$ 最优值为 $-\infty$)
- (c) $f_0(x_1,x_2)=x_1$,最优解为 $(x_1,x_2)=(0,x_2)$,其中 $x_2\geq 1$,最优值为 0
- (d) $f_0(x_1,x_2) = \max\{x_1,x_2\}$,最优解为 $(x_1,x_2) = (\frac{1}{3},\frac{1}{3})$,最优值为 $\frac{1}{3}$
- (e) $f_0(x_1,x_2)=x_1^2+9x_2^2$, 最优解为 $(x_1,x_2)=(\frac{1}{2},\frac{1}{6})$, 最优值为 $\frac{1}{2}$

question5

给出下面每个线性规划(LP)的显式解。

(a) 在仿射集合上极小化线性函数。

$$\min_{\boldsymbol{x}} \ \boldsymbol{c}^T \boldsymbol{x}$$
 s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}$

(b) 在半空间上极小化线性函数。

$$\min_{\boldsymbol{x}} \ \boldsymbol{c}^T \boldsymbol{x}$$

s.t. $\boldsymbol{a}^T \boldsymbol{x} \leq b$

其中 $a \neq 0$ 。

(c) 在矩阵上极小化线性函数。

$$\min_{m{x}} \ m{c}^T m{x}$$
 s.t. $m{l} \preceq m{x} \preceq m{u}$

其中 l 和 u 满足 $l \leq u$ 。

(d) 在概率单纯形上极小化线性函数。

$$\min_{\boldsymbol{x}} \ \boldsymbol{c}^T \boldsymbol{x}$$

s.t. $\mathbf{1}^T \boldsymbol{x} = 1$
$$\boldsymbol{x} \succeq \mathbf{0}$$

solve5

由于它们都是线性规划的问题,满足 weak-slater's condition。那么其对偶问题的最优解则为原问题的最优解。

(a)

$$\min_{\boldsymbol{x}} \ \boldsymbol{c}^T \boldsymbol{x}$$
 s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}$

构造拉格朗日函数 $L(x, \nu) = c^T x + \nu^T (Ax - b)$, 其中 $\nu \in \mathbb{R}^n$, 对其求偏导可得 $\nabla_x L(x, \nu) = c + A^T \nu$ 。 若 Ax = b 无解,即 $b \notin \mathcal{R}(A)$:

$$g(\boldsymbol{\nu}) = +\infty$$

若其有解:

$$g(\boldsymbol{\nu}) = \left\{ egin{array}{ll} \boldsymbol{c}^T(\boldsymbol{A})^+ \boldsymbol{b} & \boldsymbol{c} + \boldsymbol{A}^T \boldsymbol{\nu} = \boldsymbol{0} \\ -\infty & ext{otherwise} \end{array}
ight.$$

其中(.)+是广义逆运算。

综上,对偶问题为:

$$\max_{m{
u}} g(m{
u}) = \left\{ egin{array}{ll} +\infty & m{b}
otin \mathcal{R}(m{A}) \ m{c}^T(m{A})^+ m{b} & m{c} + m{A}^T m{
u} = m{0} \ -\infty & ext{otherwise} \end{array}
ight.$$

其中 $\boldsymbol{\nu} \in \mathbb{R}^n$ 。

则显示解为:

$$\min_{m{x}} m{c}^T m{x} = \left\{egin{array}{ll} +\infty & m{b}
otin \mathcal{R}(m{A}) \ m{c}^T(m{A})^+ m{b} & m{c} + m{A}^T m{
u} = m{0} \ -\infty & ext{otherwise} \end{array}
ight.$$

(b)

$$\min_{\boldsymbol{x}} \ \boldsymbol{c}^T \boldsymbol{x}$$

s.t. $\boldsymbol{a}^T \boldsymbol{x} \leq b$

构造拉格朗日函数 $L(x,\lambda) = c^T x + \lambda (a^T x - b)$, 其中 $\lambda \ge 0$, 对其求偏导可得 $\nabla_x L(x,\lambda) = c + \lambda a$, 则对偶问题为:

$$\max_{\lambda} g(\lambda) = \begin{cases} -\lambda b & c + \lambda a = 0 \\ -\infty & \text{otherwise} \end{cases}$$
s.t. $\lambda \ge 0$

显示解为:

$$\min_{\boldsymbol{x}} \boldsymbol{c}^T \boldsymbol{x} = \begin{cases} -\lambda b & \boldsymbol{c} + \lambda \boldsymbol{a} = 0 \\ -\infty & \text{otherwise} \end{cases}$$

(c)

$$\min_{m{x}} m{c}^T m{x}$$
 s.t. $m{l} \prec m{x} \prec m{u}$

其中 l 和 u 满足 $l \prec u$ 。

构造拉格朗日函数 $L(x, \lambda) = c^T x + \lambda_1^T (l - x) + \lambda_2^T (x - u)$, 其中 $\lambda_1, \lambda_2 \succeq 0$, 对其求偏导可得 $\nabla_x L(x, \lambda) = c - \lambda_1 + \lambda_2$, 则:

$$g(\lambda) = \lambda_1^T l - \lambda_2^T u, \quad c - \lambda_1 + \lambda_2 = 0$$

此时包含两个未知变量 λ_1 、 λ_2 ,无法得到显示解。

令 $\mathbf{c} = [c_1, \dots, c_n]^T$, 如果 $c_i > 0$, 则 $x_i = l_i$; 如果 $c_i < 0$, 则 $x_i = u_i$; 如果 $c_i = 0$,则 x_i 为符合约束条件的任意值都可以。那么显示解为:

$$\min_{\boldsymbol{x}} \boldsymbol{c}^T \boldsymbol{x} = \sum_{c_i \geq 0, c_i \in \boldsymbol{c}} c_i l_i + \sum_{c_j < 0, c_j \in \boldsymbol{c}} c_j u_j$$

(d)

$$\min_{\boldsymbol{x}} \ \boldsymbol{c}^T \boldsymbol{x}$$

s.t.
$$\mathbf{1}^T \boldsymbol{x} = 1$$
$$\boldsymbol{x} \succeq \mathbf{0}$$

构造拉格朗日函数 $L(\boldsymbol{x}, \boldsymbol{\lambda}, \nu) = \boldsymbol{c}^T \boldsymbol{x} + v(\boldsymbol{1}^T \boldsymbol{x} - \boldsymbol{1}) + \boldsymbol{\lambda}^T (-\boldsymbol{x})$, 其中 $\nu \in \mathbb{R}, \boldsymbol{\lambda} \succeq \boldsymbol{0}$, 对其求偏导可得 $\nabla_x L(\boldsymbol{x}, \boldsymbol{\lambda}, \nu) = \boldsymbol{c} + \nu \boldsymbol{1} - \boldsymbol{\lambda}$, 则:

$$g(\lambda, \nu) = -\nu, \quad c + \nu \mathbf{1} - \lambda = \mathbf{0}$$

此时包含两个未知变量 ν 、 λ ,无法得到显示解。

令 $\mathbf{c} = [c_1, \dots, c_n]^T$,把 $\{c_1, \dots, c_n\}$ 按照升序排列变成 $\hat{\mathbf{c}} = [c_{[1]}, \dots, c_{[n]}]$ 。此时令 $\mathbf{x} = [1, 0, \dots, 0]^T$,则 $\hat{\mathbf{c}}^T \mathbf{x}$ 则为目标函数的最小值,其值为 $c_{[1]}$ 。那么:

$$\min_{m{x}} m{c}^T m{x} = \min_{c_i} m{c}$$

question6

给出如下优化函数式

$$\min_{x} c^{T}x$$
s.t. $Ax = b$

$$x \succeq 0$$

写出其 Lagrange 方程,写出其对偶函数解。

solve6

构造拉格朗日函数 $L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) + \lambda^T (-x)$, 其中 $\nu \in \mathbb{R}^n, \lambda \succeq 0$, 对其求偏导可得 $\nabla_x L(x, \lambda) = c + A^T \nu - \lambda$ 。 若 Ax = b 无解,即 $b \notin \mathcal{R}(A)$:

$$g(\lambda, \nu) = +\infty$$

若其有解:

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \left\{ egin{array}{ll} - \boldsymbol{\nu}^T oldsymbol{b} & oldsymbol{c} + oldsymbol{A}^T oldsymbol{
u} - oldsymbol{\lambda} & ext{otherwise} \end{array}
ight.$$

综上,对偶函数解析式为:

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \left\{ egin{array}{ll} +\infty & oldsymbol{b}
otin \mathcal{R}(oldsymbol{A}) \ -oldsymbol{
u}^T oldsymbol{b} & oldsymbol{c} + oldsymbol{A}^T oldsymbol{
u} - oldsymbol{\lambda} & ext{otherwise} \end{array}
ight.$$

question7

对下述问题,给出其对偶函数解析式,并给出其最优值的下界。

$$\min_{\boldsymbol{x}} \ \boldsymbol{x}^T \boldsymbol{W} \boldsymbol{x}$$
 s.t. $x_i^2 = 1, i = 1, \dots, n$

其中 $\mathbf{W} \in \mathbb{S}^n$, $\mathbf{x} = [x_1, \dots, x_n]^T$ 。

由于可行集 domf 不是凸集,并且目标函数 $f_0(x)$ 不是凸函数,所以这 不是一个凸问题。

构造拉格朗日函数 $L(\boldsymbol{x}, \boldsymbol{\nu}) = \boldsymbol{x}^T \boldsymbol{W} \boldsymbol{x} + \sum_{i=1}^n \nu_i (x_i^2 - 1)$, 其中 $\boldsymbol{\nu} = [\nu_1, \dots, \nu_n]^T$ 。 对矩阵 W 进行行分块 $[\boldsymbol{w}_1,\ldots,\boldsymbol{w}_n]^T$, 对 \boldsymbol{x} 的每个分量求偏导:

$$\frac{\partial L(\boldsymbol{x}, \boldsymbol{\nu})}{\partial x_i} = 2\boldsymbol{w}_i^T \boldsymbol{x} + 2\nu_i x_i$$
$$= 2w_{i1}x_1 + \dots + (2w_{ii}x_i + 2\nu_i)x_i + \dots + 2w_{in}x_n$$

令
$$\frac{\partial L(x,\nu)}{\partial x_1} = \cdots = \frac{\partial L(x,\nu)}{\partial x_n} = 0$$
,等价于求解矩阵方程组 $Sx = 0$,其中
$$S = \begin{pmatrix} 2w_{11} + 2v_1 & 2w_{12} & \cdots & 2w_{1n} \\ 2w_{21} & 2w_{22} + 2v_2 & \cdots & 2w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 2w_{n1} & 2w_{n2} & \cdots & 2w_{nn} + 2v_n \end{pmatrix} = 2W + 2\operatorname{diag}\{\nu\}.$$
 若方程组有解,即 $Wx = -\operatorname{diag}\{\nu\}x$ 所以,对偶函数为,

$$g(\boldsymbol{\nu}) = \boldsymbol{x}^T \boldsymbol{W} \boldsymbol{x} = \sum_{i=1}^n -\nu_i x_i^2 = -\boldsymbol{\nu}^T \mathbf{1}$$

若方程组无解,根据W的任意性,对偶函数为:

$$q(\boldsymbol{\nu}) = -\infty$$

综上,对偶函数为:

$$g(\boldsymbol{\nu}) = \left\{ egin{array}{ll} - \boldsymbol{\nu}^T \mathbf{1} & \boldsymbol{S} \boldsymbol{x} = \mathbf{0} \\ - \infty & ext{otherwise} \end{array}
ight.$$

对偶问题为:

$$\max_{\boldsymbol{\nu}} \ g(\boldsymbol{\nu}) = \left\{ egin{array}{ll} -\boldsymbol{\nu}^T \mathbf{1} & \boldsymbol{S} \boldsymbol{x} = \mathbf{0} \\ -\infty & ext{otherwise} \end{array} \right.$$

其中 $\mathbf{x} = [x_1, \dots, x_n]^T$,并且 $x_i^2 = 1, i = 1, \dots, n$ 。 $\mathbf{S} = 2\mathbf{W} + \operatorname{diag}\{\mathbf{v}\}$ 。 由于最小值为 $-\infty$ 没有任何意义,因此根据对偶问题给出的一个较优的下 界为 $-\boldsymbol{\nu}^T \mathbf{1}$ 。

question8

考虑优化问题

$$\min_{x} x^{2} + 1$$

s.t. $(x - 2)(x - 4) \le 0$

其中变量 $x \in \mathbb{R}$ 。

- (a) 分析原问题。求解可行集,最优值以及最优解。
- (b) Lagrange 函数以及对偶函数。绘制目标函数根据 x 变化的图像。在同一幅图中,标出可行集,最优点及最优值,选择一些正的 Lagrange 乘子 λ ,绘出 Lagrange 函数 $L(x,\lambda)$ 关于 x 的变化曲线。利用图像,证明下界性质(即对任意 $\lambda \geq 0$, $p^* \geq \inf_x L(x,\lambda)$)。推导 Lagrange 对偶函数 g 并大致描绘其图像。
- (c) Lagrange 对偶问题。描述对偶问题,证明它是一个凹极大化问题。求解对偶最优值以及对偶最优解 λ^* 。此时强对偶性是否成立?

- (a) 这是一个二次约束二次规划的问题。可行集为 $x \in [2,4]$,最优值为 5,最优解为 x = 2。
- (b) 1. 目标函数 $f_0(x)$

图 ??给出了函数 $f_0(x) = x^2 + 1$ 的图像。

2. 拉格朗日函数 $L(x,\lambda)$

图 1: $f_0(x) = x^2 + 1$ 函数图像

构造拉格朗日函数 $L(x,\lambda)=x^2+1+\lambda(x-2)(x-4)$,其中 $\lambda\geq 0$ 。对 x 求偏导可得:

$$\frac{\partial L(x,\lambda)}{\partial x} = 2x + \lambda(2x - 6) \tag{1}$$

图??给出了拉格朗日函数 $L(x,\lambda)$ 的图像。若 $\lambda \leq 2$, $\inf_x L(x,\lambda) \leq 5 = p^*$; 若 $\lambda > 2$, $\inf_x L(x,\lambda) < 5 = p^*$ 。这便说明了 $\inf_x L(x,\lambda) \leq p^*$ 。 3. 对偶函数 $g(\lambda)$

图 2: $L(x,\lambda)$ 函数图像

令式(??)=0, 可得 $x=\frac{3\lambda}{1+\lambda}$,则对偶函数 $g(\lambda)$ 为:

$$g(\lambda) = \left(\frac{3\lambda}{1+\lambda}\right)^2 + 1 + \lambda\left(\frac{3\lambda}{1+\lambda} - 2\right)\left(\frac{3\lambda}{1+\lambda} - 4\right)$$
$$= \frac{-\lambda^3 + 8\lambda^2 + 10\lambda + 1}{(\lambda+1)^2}$$
(2)

式(??)给出了对偶函数 g 的表达式,图??给出了对偶函数 g 的大致图像。

图 3: g 函数图像

(c) 对偶问题是:

$$\max \frac{-\lambda^3 + 8\lambda^2 + 10\lambda + 1}{(\lambda + 1)^2}$$

s.t. $\lambda \ge 0$

对 $g(\lambda)$ 求导,并令其等于 0,可得 $\lambda=2$ 。并且 $g''(\lambda)\leq 0$ 恒成立,当 且仅当 $\lambda=2$ 时, $g'(\lambda)=0$, 这说明了它是一个凹极大化问题。此时 对偶问题取到最大值 $d^*=g(\lambda)_{\max}=g(2)=5$, 与原问题的最优值相 同,这表明了 $p^*=d^*$,则强对偶成立。