

SENTIMENT ANALYSIS ON AMAZON REVIEWS.

- Raj Thaker.
rpthaker@usc.edu

CSCI 561: FOUNDATIONS OF ARTIFICIAL INTELLIGENCE.
HOMEWORK – 2

DATE: 07/26/2018

➤ Dataset

- The given dataset is an extract from the Amazon Reviews Kaggle competition.
- The dataset of 400,000 reviews is in the form of CSV file delimited by '|'.
- Data contains 2 fields Classification of Review (Positive/Negative) and corresponding Review.

➤ Goal

 The goal is to perform sentiment analysis to determine whether a review is positive or negative.

Reference for Kaggle Competition - https://www.kaggle.com/bittlingmayer/amazonreviews

Exploratory Data Analysis.

- The given data contains **equal number** of positive and negative reviews.
- Reviews Length Distribution:

Length Distribution of Negative Reviews.

Length Distribution of Positive Reviews.

Exploratory Data Analysis.

Positive Words Cloud.

Negative Words Cloud

Most reviews spoken about:

Data Preprocessing.

- Removal of Punctuations, Stop words, Stemming.
- Count Vectorizer.

How data was setup for training the model.

- To understand different ML Classification algorithms, the given dataset was divided in following ways –
 - I. 50K records were trained | 80K records tested.
 - II. 100K records were trained | 80K records tested.
 - III. 200K records were trained | 80K records tested.
 - IV. 310K records were trained | 80K records tested.

➤ 3 Machine Learning Algorithms Used:

- I. Neural Network MLPClassifier.
- 2. Decision Tree
- 3. Logistic Regression

I. Neural Network – MLPClassifier.

	50K Train 80K Test	100K Train 80K Test	200K Train 80K Test	310K Train 80K Test
	OUIT TEST	OUR TEST	OUIT TESE	ook rest
Accuracy	88.40	88.85	89.49	89.85
	0.07	2.00	0.00	0.00
Precision	0.87	0.88	0.89	0.89
Recall	0.89	0.89	0.88	0.90

➤ 3 Machine Learning Algorithms Used:

2. Decision Tree

	50K Train 80K Test	100K Train 80K Test	200K Train 80K Test	310K Train 80K Test
Accuracy	75.41	76.33	76.51	77.19
Precision	0.75	0.76	0.76	0.77
Recall	0.75	0.76	0.76	0.76

3. Logistic Regression

	50K Train 80K Test	100K Train 80K Test	200K Train 80K Test	310K Train 80K Test
Accuracy	87.40	88.52	89.23	77.19
Precision	0.87	0.88	0.89	0.89
Recall	0.87	0.88	0.88	0.89

Final Verdict - Neural Networks!!

