Modelação de Sistemas Físicos

1ª Aula Teórica

Sumário:

- Informações. Docentes, programa, bibliografia, avaliação. Atendimento a alunos.
- Cap. 1. Física: Medição e Modelação

Bibliografia:

Guião

Serway, cap. 1

Sørenssen, cap. 3

Coordenador o Prof. Doutor Vitor Torres, TP1 e TP2, P1 e P2

Prof. Doutor Carlos Azevedo, P3

Prof. Doutor Manuel Barroso, P4

Dr. Pedro Encarnação, P5

Aulas Teóricas 2horas/semana, 2 turmas

Aulas Práticas 2 horas/semana, 5 turmas

Atendimento aos alunos:

2ª feira 18H00-19H00 na sala 11.1.31

3º feira 18H30-19H00 na sala 11.1.31

5º feira 18H00-19H00 na sala 23.3.6

Nos dias dos testes e exame haverá sessões extra.

e-learning: com as informações, notas e problemas, apresentações, testes e pautas, ...

Físicos

Modelação de Sistemas Físicos

GUIÃO

2021/2022

Universidade de Aveiro
DEPARTAMENTO DE FÍSICA

Informações prévias aos alunos:

- A leitura deste guião é imprescindível. Também a consulta do Regulamento de Estudos da Universidade de Aveiro é importante.
- 2. A inscrição é obrigatória, na plataforma digital PACO, aos 2 tipos de aulas: Teóricas-Práticas (TP) e Práticas (P).
- 3. Na plataforma digital e-learning está colocada a informação pertinente desta unidade curricular e irá sendo adicionado material de apoio, nomeadamente as apresentações das aulas (não são resumos) e listas de problemas. Porém é essencial que o estudo se faça pela consulta da bibliografia recomendada.
- 4. Nas aulas teóricas-práticas e as aulas práticas serão propostos problemas a resolver, quer por via analítica, quer por via computacional-numérica, a resolver no computador pessoal, usando a linguagem Python 3. As salas de aula que vamos usar não estão equipadas com computadores. Por isso devem ter o vosso PC portátil nas aulas TP e P.
- 5. Esclarecimento de dúvidas é efetuado nas sessões tutoriais ou no horário de atendimento do docente. Uma maneira conveniente de esclarecimento de dúvidas é colocarem as vossas questões ao docente no final das aulas. Não serão esclarecidas dúvidas via e-mail, pois será uma fonte de equívocos.
- 6. Questões sobre organização desta unidade curricular colocadas por correio eletrónico só serão respondidas se a resposta não estiver contemplada neste guião ou no e-learning.
- Os testes e o exame da parte computacional é de consulta, a realizar no vosso PC, mas sem acesso à internet. Aconselho a terem os vossos ficheiros no vosso PC ou numa caneta.

Notas e Problemas de

Modelação de Sistemas Físicos

usando *Python*

Vitor Torres

2022 Departamento de Física **Universidade de Aveiro**

Programa

Índice:

- 1. Física: Medição e modelação.
- 2. Movimento a uma dimensão.
- 3. Forças e vetores
- 4. Movimento no plano e no espaço
- 5. Leis de Conservação: Energia e Potência.
- 6. Oscilações Mecânicas e Elétricas
- 7. Osciladores Amortecido e forçados: Ressonância e Caos.
- 8. Osciladores acoplados: Modos Normais e Ondas

Formulário

Soluções dos problemas

Bibliografia recomendada

R.A. Serway, *Physics for Scientists and Engineers with Modern Physics*, 2008, 9ª edição, Saunders College Publishing. Apresenta exemplos resolvidos.

Anders Malthe-Sørenssen, *Elementary Mechanics Using Python*, 2016, Springer. Apresenta exemplos desenvolvidos e propõe problemas e projetos.

Jaime E. Villate, *Dinâmica e Sistemas Dinâmicos*, edição do autor.

Disponibilizado pelo autor em http://def.fe.up.pt/dinamica.

Alguns problemas resolvidos estão em https://def.fe.up.pt/dinamica/problemas.html

Alejandro L. Garcia, Numerical Methods for Physics (Python), 2017, 2ª edição, CreateSpace Independent Publishing Platform, (Python 2).

Bibliografia suplementar

Harvey Gould, Jan Tobochnik, e Wolfgang Christian, *Introduction to Computer Simulation Methods:*Applications to Physical Systems, Addison-Wesley, 2006, 3ª edição

J. M. A. Dandy, Computer Modeling: From Sports to Spaceflight ... From Order to Chaos, 1999, 1ª edição.

Jeffrey Elkner, Allen B. Downey, e Chris Meyers, *How to Think Like a Computer Scientist: Interactive E*dition. Disponível em https://runestone.academy/runestone/books/published/thinkcspy/index.html

Allen Downey, Think Python: How to Think Like a Computer Scientist, Green Tea Party (2015), 2ª edição.

Disponível em https://greenteapress.com/wp/think-python-2e/

Avaliação

é realizada por 3 testes ou por exame, tendo cada teste e o exame duas componentes:

Cálculo analítico - 50 %

Cálculo computacional-numérico - 50 %

- Avaliação Discreta, por testes

Nesta modalidade, são realizados 3 testes, cada teste vale 1/3 do total. Cada teste terá aproximadamente 1/3 da matéria lecionada.

- Exame Final

Para quem não realizou o 1º teste, fará o exame, o qual é sobre toda a matéria.

Aprovação: Nota igual ou superior a 10, e com nota igual ou superior a 6,5 valores a cada uma das componentes.

Datas de Testes: 1º Teste 8 de abril, 16H30 **Exame:** 6 de julho, 14h30, **a confirmar**

2º Teste 3 de junho, 16H30 Prova de Recurso: 20 de julho, 14h30, a confirmar

3º Teste 6 de julho, 14h30, a confirmar

Duração de cada teste: Parte Analítica: ½ hora, Parte Computacional: 1 hora.

Duração do exame e prova de recurso: Parte Analítica: 1 hora, Parte Computacional: 2 horas.

Regime de Faltas:

Os alunos <u>que faltem a mais de 20% do número total de aulas práticas ou a mais de 30% do número total de aulas teóricas</u>, ficam automaticamente reprovados por faltas, não podendo apresentar-se a qualquer exame da unidade curricular durante o presente ano letivo.

Alunos que não frequentaram Física no 10º e 11º ano?

Inquéritos Pedagógicos

Relevante a participação **responsável e justa no processo** (refletindo previamente sobre o funcionamento da UC e desempenho do docente), através da <u>resposta aos inquéritos pedagógicos</u> e **contribuição para a elaboração do relatório de discência**:

Importância para a autoavaliação do curso e consequente creditação pela Agência de Avaliação e Acreditação do Ensino Superior (A3ES)

Importância para a melhoria da qualidade do ensino, com impacto nas competências adquiridas pelos alunos, prestígio do curso e consequente empregabilidade

Apenas responder efetivamente caso tenham assistido à maioria das aulas (caso contrário indicar que não tem opinião)

Classificação de 1 a 9 (alerta-se que < 5 representa uma avaliação negativa, pelo que as <u>classificações</u> <u>positivas</u> são <u>iguais ou superiores a 5</u>)

Cap. 1

Física: Medição e Modelação

Física

Procura identificar um número limitado de leis fundamentais que governam os fenómenos naturais

Está baseada em observações experimentais e medições quantitativas

Medidas estão sempre sujeitas a uma indeterminação (erro) (a desenvolver nas aulas práticas)

Requerem

- Instrumentos de medição
- Medidas Padrão
- Sistema de unidades (e conversão entre unidades)
- Indicação das grandezas (muito grande e muito pequeno)

A análise dos dados medidos fornecem relações matemáticas entre as quantidades medidas (ou não)

Modelação significa construir modelo: um conjunto de equações matemáticas que sejam capazes de representarem com exatidão os fenómenos naturais (em estudo).

Importante: Pode-se simular fenómenos que não sejam observados (por serem caros, ou

demorados, ...)

Cada medição tem associado uma quantidade física. Por exemplo o comprimento (de um objeto).

Em Mecânica temos 3 quantidades básicas:

- Comprimento (*L*)
- Massa (*M*)
- Tempo (T)
- Todas as outras quantidades estão relacionadas com estas três.

Sistema Internacional de Unidades (1960)

Quantidades básicas

Quantidade	unidade	símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Temperatura	kelvin	K
Corrente elétrica	ampere	Α

Sistema Internacional de Unidades (1960)

Outras quantidades importantes

Quantidade	unidade	símbolo
Velocidade	metro/segundo	m/s
Aceleração	metro/segundo ²	m/s ²
Força	kilograma X metro/segundo ² = newton	$kg m/s^2 = N$
Energia	kilograma X metro ² /segundo ² = joule	$kg m^2/s^2 = J$
Potência	kilograma X metro ² /segundo ³ = watt	W

Em cálculo científico usam-se sistemas adequados, em que as constantes tomam o valor da unidade. Assim evitam-se cálculos, propagação de erros e reduz-se o tempo de cálculo.

Ex: - Sistema astronómico (Para o sistema solar)

- Sistema atómico de unidades (Para cálculos envolvendo átomos)

Cap. 1 Física: Medição e Modelação

Para indicar múltiplos e submúltiplos usam-se:

		Fator	Prefixo	Simbole
SUBMULTÍPLOS	10-24	= 0,000 000 000 000 000 000 000 001	yocto	у
	10-21	= 0,000 000 000 000 000 000 001	zepto	z
	10-18	= 0,000 000 000 000 000 001	ato	a
	10-15	= 0,000000000 000 001	fento	f
	10-12	= 0,00000000001	pico	р
	10 ⁻⁹	= 0,000000001	nano	n
	10-6	= 0,000001	micro	μ
	10-3	= 0,001	mili	m
	10-2	= 0,01	centi	c
	10-1	= 0,1	deci	d
	10 ⁰	= 1		
MULTIPLOS	10 ¹	= 10	deca	da
	10 ²	= 100	hecto	h
	10 ³	= 1 000	quilo	k
	10 ⁶	= 1 000 000	mega	M
	10 ⁹	= 1 000 000 000	giga	G
	1012	= 1 000 000 000 000	tera	T
	1015	= 1 000 000 000 000 000	peta	P
	1018	= 1 000 000 000 000 000 000	exa	E
	1021	= 1 000 000 000 000 000 000 000	zetta	Z
	1024	= 1 000 000 000 000 000 000 000 000	yotta	Y

A natureza física de uma quantidade é indicada pela sua Dimensão.

Exemplo: Distância entre dois pontos ou a largura de uma mesa. Pode ser medida em metros, cm, pés, polegadas, .. Mas é sempre um comprimento (L)

- Comprimento (*L*)
- Massa (*M*)
- Tempo (*T*)

As equações respeitam a igualdade dimensional

Outras quantidades são compostas por estas:

- Velocidade v dimensão [v] = L/T- Área A $[A] = L^2$

Força F $[F] = ML/T^2$

A natureza física é indicada pela Dimensão da quantidade.

- Comprimento (*L*)
- Massa (*M*)
- Tempo (T)
- As equações respeitam a igualdade dimensional Se A = B

Então A e B têm a mesma dimensão

Exemplo:

Movimento uniformemente acelerado $x = \frac{1}{2}a t^2$

Análise dimensional

$$[x] = [a] [t^2]$$

$$L = \frac{L}{T^2}T^2$$
 correto! $L = L$

Conversão de unidades

Muitas vezes é necessário converter unidades de sistemas diferentes ou no mesmo sistema

Exemplos:

kg em g: 1 kg = 1000 g

cm em m: 1 cm = 0.01 m

pés em cm: 1 ft = 12 in = 30,48 cm

polegadas em cm: 1 in = 2,54 cm

milhas em km: 1 mi = 1,609344 km

km/h = 0,27777... m/s

Como se converte:

v = 60 km/h em m/s?

 $v = 60 \frac{\text{km}}{\text{h}} = 60 \frac{1000 \text{ m}}{3600 \text{ s}} = 60 \times 0.27777 \frac{\text{m}}{\text{s}} = 16,6666 \text{ m/s}$