

Skymind

Presentors:
Shoban A/L Balakirushnan
Noor Ameera Anas Binti Renie

The Ringgit Classifier

Can a computer classify your Ringgits?

Introduction

Computers have made it all possible...

Problem Statement

- Unlike coins, paper notes are not easily identified by their weight and sizes.
- Blind and visually impaired people had to rely on the identification marks which are not effective enough to let them know the money correctly.
- Lack of an existing application that enables people to recognize Malaysian Ringgit automatically and efficiently.

Project Objectives

- Develop an image classification model that supports 6 classes.
- Use the available VGG16 API and apply Transfer Learning.
- Prepare and process the datasets.
- Create an image classifier that classifies Malaysian Ringgit.

How did this idea come into fruition?

(the journey along with the challenges faced...)

The Idea (The ideas that didn't happened)

Initial Idea

- Develop an object detection model that able to detect counterfeit
- Found out that there is a lack of pre-existing data available on the internet.

Malaysian bank notes.

Data Collection

- Took photos of Malaysian Ringgit using camera phones with well-lit background.
- Perform editing using Adobe Photoshop to remove the exposed watermarks to simulate the counterfeit bills.

Challenges faced

- The Tiny-YOLO model could not predict the counterfeit money.
- We found out that the "deformations" are not large enough to be predicted by the model.

The Idea (The ideas that did happened)

Data Collection

- Asked for the courtesy of researchers from Universiti Teknologi Malaysia (UTM).
- Obtained a sample of 673
 Malaysian Ringgits
 comprising of RM1, RM5,
 RM10, RM20, RM50 and
 RM100.

Data Processing

- Perform image augmentation to artificially increase the amount of data samples.
- Split data into training and testing.
- Scale data with image preprocessing.

Architecture and Modelling

- Tilize the VGG16 model compared to other top performing CNN models due its simple structure.
- VGG-16 consists of 16 layers with learnable parameters.
- Fine-tune only the last few layers due to overfitting concerns.

The Idea (The ideas that did happened)

Evaluation

Results

- Compare training with testing accuracy to identify overfitting issues.
- Use smaller batches and number of epochs to overcome overfitting during the subsequent training.

Training results (epochs = 20, batch size = 15)

======Evaluation Metrics======= # of classes: 0.8139 Accuracy: 0.8364 Precision: 0.8145 Recall: 0.8115 F1 Score: Precision, recall & F1: macro-averaged (equally weighted avg. of 6 classes)

-----Confusion Matrix-----

0 1 2 3 4 5 60 0 0 0 7 0 0 = RM1 0 52 1 7 7 0 | 1 = RM10 0 0 42 4 8 13 | 2 = RM100 0 0 0 67 0 0 3 = RM20 0 0 0 0 67 0 4 = RM5 0 0 10 3 15 40 | 5 = RM50

==========Evaluation Metrics=============

of classes: 0.8439 Accuracy: Precision: 0.8659 Recall: 0.8430 F1 Score: 0.8405

0 1 2 3 4 5

Precision, recall & F1: macro-averaged (equally weighted avg. of 6 classes)

-----Confusion Matrix-----

29 0 0 0 0 0 0 0 = RM1 0 22 1 3 3 0 | 1 = RM10 0 0 18 0 7 4 | 2 = RM100 0 0 0 29 0 0 3 = RM20 0 0 0 0 29 0 | 4 = RM5 0 0 2 2 5 19 | 5 = RM50

The Idea (The ideas that did happened)

Results

<u>Training results (epochs = 10, batch size = 10)</u>

Accuracy: 0.8462 Precision: 0.8504

Recall: 0.8464 F1 Score: 0.8370

Precision, recall & F1: macro-averaged (equally weighted avg. of 6 classes)

-----Confusion Matrix-----

0 1 2 3 4 5

67 0 0 0 0 0 0 0 0 0 = RM1
2 61 1 3 0 0 | 1 = RM10
8 0 30 1 0 28 | 2 = RM100
0 1 0 66 0 0 | 3 = RM20
2 0 0 0 65 0 | 4 = RM5

1 0 6 1 8 52 | 5 = RM50

Testing results

```
======Evaluation Metrics==========
```

of classes: 6

Accuracy: 0.8382
Precision: 0.8465
Recall: 0.8383
F1 Score: 0.8278

Precision, recall & F1: macro-averaged (equally weighted avg. of 6 classes)

=======Confusion Matrix============

0 1 2 3 4 5

29 0 0 0 0 0 | 0 = RM1

2 23 0 4 0 0 | 1 = RM10

3 0 12 0 0 14 | 2 = RM100

0 0 0 29 0 0 | 3 = RM20

0 0 1 0 28 0 | 4 = RM5

0 0 3 0 1 24 | 5 = RM50

Possible Improvements

Weaknesses

- Despite a high accuracy, the result might be due to overfitting as the training and test datasets were very similar.
- The model is not trained with realistic images that allowed it to be generalized well.
- VGG16 model uses a lot of memory and parameters which requires higher computational power.
- Lack of a real-time application that user can directly interact with good user interface.

Solutions

- Obtain a larger, real-world dataset with more variations between image samples to make model more accurately trained and generalize better.
- Use different architecture to train our data set to maybe obtain a better results.
- Produce a mobile-based application for greater usability.

Project Demo

<u>Acknowledgements</u>

Dr. Muhammad Amir Bin As'ari

(School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia)

Research areas: Machine Learning and Deep Learning MATLAB,

Hyperparameter Tuning, CNN and RNN

UTM page: https://people.utm.my/amir-asari/

Nur Anis Jasmin Sufri

(School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia)

Researchgate profile: (15) Nur Anis Jasmin Sufri (researchgate.net)

References

- https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
- Sufri, N. J., Rahmad, N. A., As'ari, M. A., Zakaria, N. A., Jamaludin, M. N., Ismail, L. H., & Mahmood, N. H. (2017). Image based ringgit banknote recognition for visually impaired. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-9), 103-111.
- Sufri, N. A. J., Rahmad, N. A., Ghazali, N. F., Shahar, N., & As'Ari, M. A. (2019, August). Vision Based System for Banknote Recognition Using Different Machine Learning and Deep Learning Approach. In 2019 IEEE 10th Control and System Graduate Research Colloquium (ICSGRC) (pp. 5-8). IEEE.
- Kumar, K. S., Subramani, G., Rishinathh, K. S., & Iyer, G. N. On Multi-class Currency Classification Using Convolutional Neural Networks and Cloud Computing Systems for the Blind. In *Advances in Distributed Computing and Machine Learning* (pp. 347-357). Springer, Singapore.

