Модель Эванса

Цена товара(от времени)
$$p=p(t)$$
, $t \ge 0$ Предложение $S=S(t)=S(p(t))=a+bp$ Спрос $D=D(t)=D(p(t))=c-dp$

$$\begin{split} &\frac{dp}{dt} = \gamma(D(t) - S(t)) & \frac{dp}{dt} = -\gamma(b+d)p + \gamma(c-a) \\ & p = \alpha e^{-\gamma(b+d)t} + \frac{c-a}{b+d} \end{split}$$

Для
$$p(t=0)=p_0=\alpha+\frac{c-a}{b+d}$$

Решение
$$p(t \to +\infty) = \lim_{t \to +\infty} \left(\left(p_0 - \frac{c-a}{b+d} \right) e^{-\gamma(b+d)t} + \frac{c-a}{b+d} \right) = \frac{c-a}{b+d}$$

Движение ракеты

Сила сопротивления воздуха F_c = $k(h)v(t)^2$, k = $0.23*10^{-1.25}h*10^{-6}$ Масса ракеты m(t) = $m_1(t)$ + $m_2(t)$ + $m_3(t)$ + m_{const}

Время выработки і-той ступени $t_{\mathit{imax}} = m_{\mathit{ifull}} \frac{u_{G_i}}{G_i} F_g$

$$t < t_{i-1 max} : m_{ifull}$$

$$m_i(t) = t_{i-1 max} \le t < t_{imax} : m_{ifull} - \frac{G_i}{u_{G_i} F_g} t$$

$$\frac{dh}{dt} = v * \cos(\theta)$$

$$\frac{dx}{dt} = v * \sin(\theta)$$

$$\frac{dv}{dt} = G_i - \frac{F_c}{m(t)} - F_g * \cos(\theta)$$

 θ - угол наклона (управляющее воздействие)