

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

BACKGROUND ART

Fig. 1

Fig. 3

Fig. 4

Fig. 5

Principles from single objective evolutionary optimization are extended to handle multiple objectives, and find the efficient frontier

Fig. 6

Fig. 7

Fig. 8

Fig. 9

11

Fig. 12

Process to interactively fill any gaps in the identified efficient frontier

Fig. 13

Efficient Frontier in a 3D View

Example of Parallel coordinate plot

Fig. 14

Fig. 15

814

812

816

818

812

814

Fig. 16

816

818

Fig. 17

Fig. 18

812

814

Fig. 19

816

818

Fig. 20

Fig. 21

812

814

870

816

870

818

870

Fig. 22

812

814

816

819

Analysis of individual Portfolio Turnover (Delta) (with respect to original portfolio)

Asset Classes

2310

$W_0 = \text{Original Portfolio}$
 $W_1 = \text{Proposed solution Portfolio}$
 $\Delta_{t,i} = W_1 - W_0$

Financial Instruments for the first asset class

Sell

Buy

2320

Fig. 23

Allocation	Asset Class 1	Asset Class 2	Asset Class 3	Asset Class 4	Asset Class 5	Total
Original Portfolio	35%	20%	5%	15%	25%	100%
P1	20%	15%	25%	15%	25%	100%
P2	40%	25%	10%	10%	15%	100%
P3	20%	20%	15%	20%	25%	100%
P4	15%	30%	20%	20%	15%	100%
P5	45%	20%	15%	10%	10%	100%
P6	20%	25%	20%	25%	10%	100%
P7	25%	25%	15%	20%	15%	100%
P8	30%	15%	10%	25%	20%	100%
P9	20%	25%	15%	20%	20%	100%
P10	30%	10%	15%	25%	20%	100%

Fig. 24

Deltas	Asset Class 1	Asset Class 2	Asset Class 3	Asset Class 4	Asset Class 5	Net Change
P1	-15%	-5%	20%	0%	0%	0%
P2	5%	5%	5%	-5%	-10%	0%
P3	-15%	0%	10%	5%	0%	0%
P4	-20%	10%	15%	5%	-10%	0%
P5	10%	0%	10%	-5%	-15%	0%
P6	-15%	5%	15%	10%	-15%	0%
P7	-10%	5%	10%	5%	-10%	0%
P8	-5%	-5%	5%	10%	-5%	0%
P9	-15%	5%	10%	5%	-5%	0%
P10	-5%	-10%	10%	10%	-5%	0%
Average	-9%	1%	11%	4%	-8%	
Median	-13%	3%	10%	5%	-8%	

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Deterministic Evaluation

Figure 29

**Stochastic Evaluation (Transformed
into Confidence Intervals)**

Figure 30

Discrete Probabilistic Evaluation

Figure 31

$$A = \{ \begin{array}{l} p_1(1, 1) = 1 \\ p_2(3, 3) = 1 \\ p_3(6, 5) = 1 \end{array} \}$$

$$B = \{ \begin{array}{l} p_4(1, 1.5) = m1 * m3 \\ p_4(1, 3) = m1 * (1 - m3) \\ p_4(2, 1.5) = (1 - m1) * m3, \\ p_4(2, 3) = (1 - m1) * (1 - m3), \end{array} \}$$

$$\begin{aligned} \{p_5(2, 3) &= m4 * m6 \\ p_5(3, 3) &= m5 * m6 \\ p_5(4, 3) &= (1 - m4 - m5) * m6 \\ p_5(2, 4) &= m4 * (1 - m6) \\ p_5(3, 4) &= m5 * (1 - m6) \\ p_5(4, 4) &= (1 - m4 - m5 * (1 - m6)) \} \end{aligned}$$

Fusion (PF) of multiple assignments to the same point:

$$\begin{aligned} PF(2, 3) &= p_4(2, 3) + p_5(2, 3) - p_4(2, 3) * p_5(2, 3) \\ &= (1 - m1) * (1 - m3) + m4 * m6 - [(1 - m1) * (1 - m3) * m4 * m6] \end{aligned}$$

$$\begin{aligned} PF(3, 3) &= p_2(3, 3) + p_5(3, 3) - p_2(3, 3) * p_5(3, 3) \\ &= 1 + m5 * m6 - 1 * m5 * m6 = 1 \end{aligned}$$

Probabilistic Fusion

Figure 32

Feasible Regions for Optimization

Figure 33

Graphic Visual	Word Description	Example Equation	Set of linear equations	Set of nonlinear equations
	<ul style="list-style-type: none"> For any two points in the space, the line connecting the two points is always contained in the same space Space is defined using linear equations 	$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{81} & a_{82} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \leq \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_8 \end{bmatrix}$	<ul style="list-style-type: none"> Market value weighted yield formulation Duration weighted yield formulation 	<ul style="list-style-type: none"> Interest rate sigma formulation
	<ul style="list-style-type: none"> For any two points in the space, the line connecting the two points is always contained in the same space Space is defined using some nonlinear equations 	$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{51} & a_{52} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \leq \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_5 \end{bmatrix}$ $x^2 + y^2 \leq \alpha$ Nonlinear equation	$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x^2 \\ x \\ y \end{bmatrix} \leq \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$	<ul style="list-style-type: none"> Interest rate sigma and VAR formulation VAR is a nonlinear nonconvex constraint
	<ul style="list-style-type: none"> For any two points in the space, the line connecting the two points is not always contained in the same space Space is defined using some nonlinear equations 			<ul style="list-style-type: none"> Interest rate sigma and VAR formulation

Objective Functions

Figure 34

Graphic Visual	Word Description	Excelmatic Equation	GEM
Linear Function <p>A 3D surface plot of a linear function, showing a flat plane. The axes are labeled x and y, with values ranging from -1 to 1. The z-axis ranges from 0 to 1. A shaded rectangular region is shown on the xy-plane.</p>	<ul style="list-style-type: none">Function is defined using linear equationsStraightforward math relationshipEasy to optimize	$f(x, y) = 2x + y + 5$	<ul style="list-style-type: none">Market value weighted yieldDuration weighted yield
Nonlinear Convex Function <p>A 3D surface plot of a convex nonlinear function, showing a bowl-like shape. The axes are labeled x and y, with values ranging from -1 to 1. The z-axis ranges from 0 to 2. Contour lines are shown on the surface.</p>	<ul style="list-style-type: none">Function is defined using a nonlinear equationFunctional gradients lead to single optimumHarder to optimize	$f(x, y) = x^2 + y^2$	<ul style="list-style-type: none">Interest rate sigma
Nonlinear Nonconvex Function <p>A 3D surface plot of a nonconvex nonlinear function, showing a multi-peaked shape. The axes are labeled x and y, with values ranging from -5 to 5. The z-axis ranges from 0 to 80. Contour lines are shown on the surface.</p>	<ul style="list-style-type: none">Function is defined using complex nonlinear equationsMultiple local optimaFunctional gradients are inefficientVery hard to optimize	$f(x, y) = g_1(x, y) + g_2(x, y) + g_3(x, y) + g_4(x, y)$	<ul style="list-style-type: none">Interest rate sigma and VAR

Figure 35

Figure
36

Evolutionary Search Augmented with Domain Knowledge

Multi-objective portfolio optimization problem is formulated as a problem with multiple linear, nonlinear and nonlinear nonconvex objectives. However, the domain knowledge allows us to use strictly linear and convex constraints.

Knowledge about geometry of feasible space (i.e. convexity), allowed us develop a feasible space boundary sampling algorithm (solutions archive generation). By knowing the boundary of the search space, we can exploit that knowledge to design efficient interior sampling methods.

Convex crossover is a powerful interior sampling method, which is guaranteed to produce feasible offspring solutions. Given parents P_1, P_2 , it creates offspring $O_1 = \lambda P_1 + (1-\lambda)P_2$, $O_2 = (1-\lambda)P_1 + \lambda P_2$. An offspring O_k and P_k can cross over to produce more diverse offspring.

The diagram illustrates the evolution of the search space through three stages. Stage 1 shows a dark gray shaded hexagonal region labeled 'Linear Convex Feasible Space'. Stage 2 shows the same hexagon with several small white circles on its perimeter labeled 'Boundary Points'. Stage 3 shows the hexagon with points labeled P_1 , P_2 , and P_k along its perimeter.

Example of Outer Product using as operator the function $T(x,y)$

T-norm	Correlation Type
$T_1(x,y) = \max(0, x+y-1)$	Extreme case of negative correlation
$T_2 = x * y$	No correlation
$T_3 = \min(x,y)$	Extreme case of positive correlation

Figure
37

Example of Outer Product using as operator the function $S(x,y)$

T-conorm	Correlation Type
$S_1 = \min(1, x + y)$	Extreme case of negative correlation
$S_2 = x + y - (x * y)$	No correlation
$S_3 = \max(x, y)$	Extreme case of positive correlation

Figure
38