Introduction to Approximate Bayesian Computation

John Haman

Bowling Green State University jthaman@bgsu.edu

December 8, 2015

Implicit models

Two types of statistical models:

- Prescribed models Likelihood function is available, common for us
- Implicit models mechanisms for simulating data, common for biologists, psychologist

Implicit models

Two types of statistical models:

- Prescribed models Likelihood function is available, common for us
- Implicit models mechanisms for simulating data, common for biologists, psychologist

Implicit models give scientists more freedom to model phenomena, complex processes are favored over simple ones

Aim to sample from a posterior distribution:

$$\pi(\theta|\mathcal{D}) \propto \mathbb{P}(\mathcal{D}|\theta) * \pi(\theta)$$

Aim to sample from a posterior distribution:

$$\pi(\theta|\mathcal{D}) \propto \mathbb{P}(\mathcal{D}|\theta) * \pi(\theta)$$

MCMC is great for performing Bayesian inference in complex models, and it's exact up to a monte carlo error. It's not great when....

Aim to sample from a posterior distribution:

$$\pi(\theta|\mathcal{D}) \propto \mathbb{P}(\mathcal{D}|\theta) * \pi(\theta)$$

MCMC is great for performing Bayesian inference in complex models, and it's exact up to a monte carlo error. It's not great when....

• $\mathbb{P}(\mathcal{D}|\theta)$ is unknown or intractable.

Aim to sample from a posterior distribution:

$$\pi(\theta|\mathcal{D}) \propto \mathbb{P}(\mathcal{D}|\theta) * \pi(\theta)$$

MCMC is great for performing Bayesian inference in complex models, and it's exact up to a monte carlo error. It's not great when....

- $\mathbb{P}(\mathcal{D}|\theta)$ is unknown or intractable.
- independence cannot be assumed for many model parameters

So there is a need for generating posterior data without a likelihood function

Likelihood free inference

Rejection Algorithm (old way)

- Draw θ from $\pi(*)$
- Accept θ with probability $\mathbb{P}(\mathcal{D}|\theta)$

Likelihood free inference

Rejection Algorithm (old way)

- Draw θ from $\pi(*)$
- Accept θ with probability $\mathbb{P}(\mathcal{D}|\theta)$

Likelihood free inference

Rejection Algorithm (old way)

- Draw θ from $\pi(*)$
- Accept θ with probability $\mathbb{P}(\mathcal{D}|\theta)$

Mechanical Rejection Algorithm (Without Likelihood)

- Draw θ from $\pi(*)$
- Simulate $\mathcal{D}' \sim \mathbb{P}(*|\theta)$
- Accept θ if $\mathcal{D} = \mathcal{D}'$

The last requirement is probably too restrictive, e.g. if the data are continuous

ABC

ABC Rejection

- Draw θ from $\pi(\theta)$
- Simulate $\mathcal{D}' \sim \mathbb{P}(*|\theta)$
- Accept θ if $d(\mathcal{D}, \mathcal{D}') < \epsilon$, or if $d(S(\mathcal{D}), S(\mathcal{D}')) < \epsilon$, S is a sufficient statistic.

ABC

ABC Rejection

- Draw θ from $\pi(\theta)$
- Simulate $\mathcal{D}' \sim \mathbb{P}(*|\theta)$
- Accept θ if $d(\mathcal{D}, \mathcal{D}') < \epsilon$, or if $d(S(\mathcal{D}), S(\mathcal{D}')) < \epsilon$, S is a sufficient statistic.

This generates data from is distribution $\pi(\theta|d(\mathcal{D},\mathcal{D}')<\epsilon)$

- ullet If $\epsilon o 0$, we obtain data from the target density, $\pi(heta|\mathcal{D})$.
- If $\epsilon \to \infty$ we obtain data from the prior, $\pi(\theta)$.

ABC

ABC Rejection

- Draw θ from $\pi(\theta)$
- Simulate $\mathcal{D}' \sim \mathbb{P}(*|\theta)$
- Accept θ if $d(\mathcal{D}, \mathcal{D}') < \epsilon$, or if $d(S(\mathcal{D}), S(\mathcal{D}')) < \epsilon$, S is a sufficient statistic.

This generates data from is distribution $\pi(\theta|d(\mathcal{D},\mathcal{D}')<\epsilon)$

- If $\epsilon \to 0$, we obtain data from the target density, $\pi(\theta|\mathcal{D})$.
- If $\epsilon \to \infty$ we obtain data from the prior, $\pi(\theta)$.

Many types of ABC algorithms now... M-H, regression based, neural networks, all implemented by the R package abc.

Metropolis Hastings

Rejection sampling is very inefficient, because θ is being sampled from the prior at each step

Metropolis Hastings

Rejection sampling is very inefficient, because θ is being sampled from the prior at each step

We can speed things up by correlating observations to spend more time in regions of high likelihood...

Metropolis-Hastings with ABC

- Suppose we are at θ . Propose θ' from density $q(\theta, \theta')$
- Simulate \mathcal{D}' from $\mathbb{P}(*|\theta')$
- If $d(\mathcal{D}, \mathcal{D}') \leq \epsilon$ calculate

$$h(\theta, \theta') = \min\left(1, \frac{\pi(\theta')q(\theta', \theta)}{\pi(\theta)q(\theta, \theta')}\right)$$

• Accept the move to θ' with probability $h(\theta, \theta')$, else stay at θ .

Example

Normal data

- Generate $\mathcal{D} \sim N(5.3, 2.7^2)$ Save $\bar{\mathcal{D}}$ and $sd(\mathcal{D})$.
- Accept \mathcal{D}' if $d(\bar{\mathcal{D}'}, \bar{\mathcal{D}}) < 0.1$ and $d(sd(\mathcal{D}'), sd(\mathcal{D})) < 0.2$.
- Initialize MH algorithm
- Add parameters that generated \mathcal{D}' to chain with probability h if \mathcal{D}' is accepted.

Trace and marginal distributions of the posterior sample