Brian Salinas

5/23/2022

CSC 389

Assignment #7

- 1. (Reading) Done.
- 2. 2SAT = $\{\varphi:\varphi \text{ is in 2CNF and } \varphi \text{ is satisfiable}\}\$ lies in P

Similar to what was discussed in class when explaining that $NP \subseteq EXP$ and $P \subseteq NP$ the reason that $NP \subseteq EXP$ is (with an example)

Example: L = 3SAT

Then $|c| \le |x|^k + k$ for some k

We simply try all possible c, and there are $2^{|x|^k+k}$ many, and run the verifier on each. If any one of them succeeds, accept, else reject. This is in time $0(2^{n^k})$ for some k. $0(2^{n^k})$ is exponential because we are trying all the possible c for at most 3 different variables/literals within each clause.

Because 2SAT only contains at most 2 variables/literals within each clause then trying all possible c there would only be one choice that is made when deciding for a clause that is either $a \vee b$ or $a \vee \overline{b}$ or the complements of those.

Ex: A clause of the form $a \to b$ is $a \lor \overline{b}$ and their complements will always be expressed (since it is in CNF) and in this event if you set a = T then b = T and is the same if a = F then b = F.

So for 2SAT we can try all possible c in polynomial time which is in P.

3.

- a) Double-SAT = $\{\psi : \psi \text{ has at least two satisfying truth assignments}\}$
 - (i) Double-SAT is in NP the same way as SAT, $3SAT \in NP$. With Double-SAT we can also have a similar proof. We have a certificate c where we assign two truth assignment to variables and we also have a verifier that checks that the formula is True with both assignments.
 - (ii) To prove that Double-SAT is NP-complete we can reduce from SAT.

We start with a TM M = On input ψ :

- 1. Introduce a new variable x.
- 2. Let $\overline{\psi}$ be $\psi \vee (x \wedge \overline{x})$ and output $\overline{\psi}$.

If $\psi \in SAT$ then ψ has at least one satisfying Truth assignment and $\bar{\psi}$ will have at least two satisfying Truth assignments because we can change the variable of x in $(x \wedge \bar{x})$. If $\bar{\psi} \in Double-SAT$ then $\psi \in SAT$ because x is not in ψ .

$$\psi \in SAT$$
, iff $M(\psi) \in Double-SAT$

- b) WELL_POS = $\{(G, k): G \text{ contains a set of } k \text{ well-positioned vertices}\}$
 - (i) WELL_POS is in NP.

Ex:

Graph *G*:

And the set $A = \{3,7,4\}$ is well positioned because all vertex in the graph are at least distance 1 from the vertex in the set.

We can have a certificate c where we assign k vertices to a set A and then verify whether the rest of the vertices in the graph are at least one edge away from the vertices in our set.

(ii) Construct a graph G and a set A such that ψ is satisfiable iff G has a vertex set A of size k that are well positioned in the graph.

 $\psi = (p \vee \overline{q} \vee \overline{r}) \wedge (\overline{p} \vee q \vee s) \wedge (\overline{p} \vee r) \wedge (\overline{r} \vee \overline{s})$

- Create a vertex for each literal in each clause
- Add an edge between two vertices if they come from different clauses and they are not contradictory.
- Let k = # of literal pairs

 ψ is satisfiable if and only if G contains a set of size k