Seminarul 8 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Rezultate folositoare din cursurile și seminariile trecute

Definiția 1.1: Fie R un inel și $n \ge 1$. Pentru un $\sigma \in S_n$, notăm cu

$$\sigma^*: R[X_1, ..., X_n] \to R[X_1, ..., X_n], \ \sigma^*(X_i) = X_{\sigma(i)}$$

(morfism de inele definit cu ajutorul proprietății de universalitate a inelului de polinoame).

- i) Un polinom $P \in R[X_1, ..., X_n]$ se numește *simetric* dacă $\sigma^*(P) = P$ pentru orice $\sigma \in S_n$.
- ii) Pentru orice $1 \le k \le n$, notăm cu

$$s_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} X_{i_1} X_{i_2} \dots X_{i_k}$$

i.e.

$$s_1 = X_1 + ... + X_n$$

 $s_2 = X_1 X_2 + X_1 X_3 + ... + X_{n-1} X_n$
...
 $s_n = X_1 X_2 ... X_n$.

Atunci s_k sunt polinoame simetrice și se numesc polinoamele simetrice fundamentale.

Definiția 1.2: Fie R un inel și $n \ge 1$.

a) Pe mulțimea monoamelor din $R[X_1,...,X_n]$ introducem ordinea lexicografică:

$$\begin{split} X_1^{a_1} X_2^{a_2} ... X_n^{a_n} \geq_{lex} X_1^{b_1} X_2^{b_2} ... X_n^{b_n} &\iff a_1 = b_1, a_2 = b_2, ... a_n = b_n \\ &\text{sau} \\ &\text{primul termen nenul din} \\ &(a_1 - b_1, a_2 - b_2, ..., a_n - b_n) \text{ este pozitiv.} \end{split}$$

Este imediat că \geq_{lex} este ordine totală.

b) Fie $f \in R[X_1, ..., X_n]$. Notăm cu $LT_{lex}(f) = LT(f)$ termenul din f al cărui monom este cel mai mare în sensul ordinii lexicografice și îl numim termenul principal al lui f.

Teorema 1.3: (fundamentală a polinoamelor simetrice)

Fie R un inel, $n \ge 1$ și $f \in R[X_1, ..., X_n]$. Atunci există un unic polinom $g \in R[X_1, ..., X_n]$ astfel încât

$$f = g(s_1, ..., s_n).$$

Propoziția 1.4: (Formulele lui Newton) Fie R un inel și $n \geq 2$. Pentru orice $k \geq 0$, notăm cu

$$p_k = \sum_{i=1}^n X_i^k.$$

Atunci p_k sunt polinoame simetrice și, cu notațiile de la Definiția 1.1, avem relațiile:

$$\begin{aligned} p_k - s_1 p_{k-1} + s_2 p_{k-2} - \ldots + (-1)^k k s_k &= 0, \ dac \ k < n, \\ p_k - s_1 p_{k-1} + s_2 p_{k-2} - \ldots + (-1)^n p_{k-n} s_n &= 0, \ dac \ k \ge n. \end{aligned}$$

2 Polinoame simetrice. Formulele lui Newton

Exercițiul 2.1: Rezolvați în \mathbb{R} sistemul de ecuații

$$\begin{cases} x^5 + y^5 = 33 \\ x + y = 3 \end{cases}.$$

Exercițiul 2.2: Rezolvați în \mathbb{R} ecuația

$$\sqrt[4]{x} + \sqrt[4]{97 - x} = 5.$$

Exercitiul 2.3:

- a) Dacă $x,y,z\in\mathbb{C}$ sunt astfel încât $x+y+z=1, x^2+y^2+z^2=2$ și $x^3+y^3+z^3=3,$ determinați valoarea lui $x^4+y^4+z^4.$
- b) Demonstrați că numerele x, y, z care satisface condițiile anterioare nu sunt raționale dar că $x^n + y^n + z^n \in \mathbb{Q}$ pentru orice număr natural n.

Exercițiul 2.4: Fie x_1, x_2, x_3 rădăcinile complexe ale ecuației $x^3 + x + 1 = 0$. Calculați $x_1^7 + x_2^7 + x_3^7$.

Exercițiul 2.5: Fie polinomul $P = X^3 - 2X^2 + X + 1 \in \mathbb{R}[X]$ cu rădăcinile x_1, x_2, x_3 . Scrieți polinomul monic care are rădăcinile:

2

- a) $3x_1 2, 3x_2 2, 3x_3 2;$
- b) $\frac{1}{x_1}, \frac{1}{x_2}, \frac{1}{x_3};$
- c) x_1^2, x_2^2, x_3^2 .

Exercițiul 2.6: Calculați $(\sin 20^{\circ})^{7} + (\sin 40^{\circ})^{7} - (\sin 80^{\circ})^{7}$.

Exercițiul 2.7: Calculați sumele $p_k = x_1^k + ... + x_n^k$, $1 \le k \le n$, unde $x_1, ..., x_n$ sunt rădăcinile ecuației

$$x^{n} + \frac{x^{n-1}}{1!} + \frac{x^{n-2}}{2!} + \dots + \frac{x}{(n-1)!} + \frac{1}{n!} = 0.$$

Exercițiul 2.8: Fie $n \geq 1$ și $t_k = \epsilon_1^k + \ldots + \epsilon_n^k$, unde $\epsilon_1, \ldots, \epsilon_n$ sunt rădăcinile de ordin n ale unității. Arătați că $t_k = 0$ dacă $n \nmid k$ și $t_k = n$ dacă $n \mid k$.

Exercițiul 2.9: Fie $n \geq 2$. Cu notațiile uzuale pentru polinoamele simetrice din $R[X_1, ..., X_n]$, arătați că, pentru orice $k \leq n$,

$$p_k = \begin{vmatrix} s_1 & 1 & 0 & 0 & \dots & 0 \\ 2s_2 & s_1 & 1 & 0 & \dots & 0 \\ 3s_3 & s_2 & s_1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ ks_k & s_{k-1} & s_{k-2} & s_{k-3} & \dots & s_1 \end{vmatrix}.$$

Exercițiul 2.10: Fie K un corp, char K=0 și $x_1,...,x_n\in K$ cu $x_1^k+...+x_n^k=0$ pentru orice $1\leq k\leq n$. Demonstrați că $x_1=...=x_n=0$.

Rămâne același lucru adevărat pentru corpuri de caracteristică pozitivă? Dacă nu, dați un contraexemplu.

Exercițiul 2.11:

a) Fie K un corp cu char $K \neq 2$ și $A \subset K[X,Y]$ subinelul polinoamelor simetrice din K[X,Y]. Demonstrati că

$$A_{/(X^2+Y^2)} \simeq K[X].$$

b) Demonstrați că

$$\mathbb{C}[X,Y]/(X^2+Y^2) \not\simeq \mathbb{C}[X].$$

c) Demonstrați că

$$\mathbb{R}[X,Y]_{(X^2+Y^2)} \not\simeq \mathbb{R}[X].$$

Exercițiul 2.12:

- a) Câte monoame de grad d în n variabile există?
- b) Precizați numărul de monoame de grad 8 din $\mathbb{Q}[X_1,...,X_5]$ strict mai mici lexicografic ca $X_1^3X_3X_4$.

Exercițiul 2.13: Fie R un inel.

- a) Arătați că polinomul $f = (X_1 X_2)^2 (X_1 X_3)^2 (X_2 X_3)^2 \in R[X_1, X_2, X_3]$ este simetric și scrieți-l ca polinom în polinoamele simetrice fundamentale.
- b) Fie x_1, x_2, x_3 rădăcinile polinomului $X^3 + pX + q \in \mathbb{R}[X_1, X_2, X_3]$. Calculați discriminantul ecuației $X^3 + pX + q = 0$ i.e. $(x_1 x_2)^2(x_1 x_3)^2(x_2 x_3)^2$.

Exercițiul 2.14: Scrieți următoarele polinoame simetrice ca polinoame în polinoamele simetrice fundamentale:

a)
$$f = (X_1 + X_2 - X_3)(X_1 - X_2 + X_3)(-X_1 + X_2 + X_3) \in \mathbb{Z}[X_1, X_2, X_3].$$

b)
$$g = (X_1 + X_2 + X_3 - X_4)(X_1 + X_2 - X_3 + X_4)(X_1 - X_2 + X_3 + X_4)(-X_1 + X_2 + X_3 + X_4) \in \mathbb{Z}[X_1, X_2, X_3, X_4].$$

c)
$$h = (Y_1^2 + Y_2^2)(Y_1^2 + Y_3^2)(Y_2^2 + Y_3^2) \in \mathbb{Z}[Y_1, Y_2, Y_3].$$

Exercițiul 2.15: Fie $A \in \mathcal{M}_n(\mathbb{R})$. Demonstrați că dacă

$$tr(A) = tr(A^2) = \dots = tr(A^n) = 0,$$

atunci A este nilpotentă.