Unconstrained Minimization Algorithm

- (1) Initialize \mathbf{x}^0 and ϵ , set k := 0.
- (2) while $||g(x^k)|| > \epsilon$
 - (a) Find a descent direction d^k for f at x^k
 - (b) Find $\alpha^k (> 0)$ along d^k such that
 - (i) $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (ii) α^k satisfies Armijo-Wolfe conditions
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

Does this algorithm converge?

Global Convergence Theorem

Global Convergence Theorem [Zoutendijk]

Consider the problem to minimize f(x) over \mathbb{R}^n . Suppose f is bounded below in \mathbb{R}^n , $f \in \mathcal{C}^1$ and the gradient, $\nabla f(=g)$ is Lipschitz continuous. If at every iteration k of an optimization algorithm, a descent direction d^k is chosen such that $\cos^2 \theta_k > \delta(>0)$ (where θ_k is the angle between d^k and g^k) and α^k satisfies Armijo-Wolfe conditions, then the optimization algorithm either *terminates in a finite number of iterations* or

$$\lim_{k\to\infty}\|\boldsymbol{g}^k\|=0.$$

Sufficient Decrease and Backtracking

• Armijo-Goldstein Conditions: Choose α^k such that

$$\phi_2(\alpha^k) \le f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) \le \phi_1(\alpha^k)$$

where
$$\phi_1(\alpha) = f(\mathbf{x}^k) + c_1 \alpha \mathbf{g}^{kT} \mathbf{d}^k$$
, $c_1 \in (0, 1)$ and $\phi_2(\alpha) = f(\mathbf{x}^k) + c_2 \alpha \mathbf{g}^{kT} \mathbf{d}^k$, $c_2 \in (c_1, 1)$.

• Use of backtracking line search with Armijo's condition

Backtracking Line Search

- (1) Choose $\hat{\alpha}(>0), \rho \in (0,1), c_1 \in (0,1)$. Set $\alpha = \hat{\alpha}$.
- (2) while $f(\mathbf{x}^k + \alpha \mathbf{d}^k) > f(\mathbf{x}^k) + c_1 \alpha \mathbf{g}^{kT} \mathbf{d}^k$ $\alpha := \rho \alpha$

endwhile

Output: $\alpha^k = \alpha$

• Descent direction set: $\{ m{d} \in \mathbb{R}^n : m{g}^{k^T} m{d} < 0 \}$ where $m{g}^k = m{g}(m{x}^k)$

Descent Directions

- Let $g^k \neq 0$ and $d^k = -A^k g^k$ where A^k is a symmetric matrix
- If A^k is positive definite,

$$\mathbf{g}^{k^T} \mathbf{d}^k = -\mathbf{g}^{k^T} \mathbf{A}^k \mathbf{g}^k < 0$$

 $\Rightarrow \mathbf{d}^k$ is a descent direction

- $d^k = -A^k g^k$ is a descent direction if A^k is positive definite.
- Different optimization algorithms use different A^k

How to find d^k ?

Consider the first order approximation to f(x) about x^k :

$$f(\mathbf{x}) \approx \hat{f}(\mathbf{x}) \stackrel{\triangle}{=} f(\mathbf{x}^k) + \mathbf{g}^{kT}(\mathbf{x} - \mathbf{x}^k) = f(\mathbf{x}^k) + \mathbf{g}^{kT}\mathbf{d}$$

Maximum decrease in $\hat{f}(x)$ is possible by solving (P1):

$$\min_{\mathbf{d}} \quad \mathbf{g}^{k^T} \mathbf{d} \\
\text{s.t.} \quad \mathbf{d}^T \mathbf{d} = 1$$

Let θ_k be the angle between \mathbf{g}^k and \mathbf{d} .

$$\mathbf{g}^{k^T} \mathbf{d} = \|\mathbf{g}^k\| \|\mathbf{d}\| \cos \theta_k$$
$$= \|\mathbf{g}^k\| \cos \theta_k \ (\because \mathbf{d}^T \mathbf{d} = 1)$$

Therefore, the solution to the problem (**P1**) is $d^k = -g^k/||g^k||$

Steepest Descent Method

• Uses the steepest descent direction, $d^k = -g^k$

Steepest Descent Algorithm

- (1) Initialize x^0 and ϵ , set k := 0.
- (2) while $\|\boldsymbol{g}^k\| > \epsilon$
 - (a) $d^k = -g^k$
 - (b) Find $\alpha^k (> 0)$ along d^k such that
 - (i) $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (ii) α^k satisfies Armijo-Wolfe conditions
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

• Exact or Backtracking line search can be used in step 2(b)

min
$$f(x) \stackrel{\Delta}{=} (x_1 - 7)^2 + (x_2 - 2)^2$$

•
$$g(x) = \begin{pmatrix} 2(x_1 - 7) \\ 2(x_2 - 2) \end{pmatrix}$$
, $H(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$.
• $x^* = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$

•
$$x^* = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$$

Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (9,4)^T$

Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (5.5, 3)^T$

$$\min \ f(\mathbf{x}) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$$

•
$$g(x) = \begin{pmatrix} 8x_1 - 2x_2 \\ 2x_2 - 2x_1 \end{pmatrix}$$
, $H(x) = \begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix}$.
• $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\bullet \ x^* = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (-1, -2)^T$

Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (1,0)^T$

Example (Rosenbrock function):

min
$$f(\mathbf{x}) \stackrel{\triangle}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

•
$$x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Example (Rosenbrock function):

Behaviour of the steepest descent algorithm (with backtracking line search) applied to f(x) using $x^0 = (0.6, 0.6)^T$

Example (Rosenbrock function):

$$\min_{\substack{1.2 \\ 0.8 \\ 0.6 \\ 0.4}} f(\mathbf{x}) \stackrel{\triangle}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Behaviour of the steepest descent algorithm (with backtracking line search) applied to f(x) using $x^0 = (-1.2, 1)^T$