Capítulo 6 - Amostragem e Estimação Pontual

Conceição Amado, Ana M. Pires e M. Rosário Oliveira

6.1 Inferência Estatística. Amostragem aleatória

Definição: Uma população é o conjunto de todas as observações possíveis de determinada variável de interesse, *X*.

Exemplos:

- Alturas da população portuguesa
- Idades dos estudantes inscritos nesta turma
- Resistências dos filamentos de um conjunto de lâmpadas
- Temperaturas em todos os pontos de uma sala

Por conveniência identificamos a população com a v.a. correspondente, X.

Para conhecer exactamente X teríamos de fazer um número muito grande ou infinito de observações. Isso pode ser impossível, muito caro, ou muito demorado.

Podemos obter algum conhecimento sobre X se observarmos alguns valores da população \longrightarrow AMOSTRA.

No entanto, a inferência das propriedades da população só é possível se a amostra for obtida por métodos probabilísticos (ou seja, se for fixada a probabilidade de um qualquer elemento da população vir a pertencer à amostra).

Conhecer exactamente X corresponde a conhecer a sua função de distribuição $F_X(x)$

(o que é equivalente a conhecer a f.d.p. caso X seja contínua, ou a f.p. caso X seja discreta)

Admitem-se dois níveis de "ignorância":

- 1. $F_X(x)$ é completamente desconhecida, sabendo-se apenas se é do tipo contínuo ou discreto;
- 2. Admite-se (pelo conhecimento do fenómeno em causa) que $F_X(x)$ pertence a determinada família, por exemplo normal ou Poisson, mas com parâmetros (nesse exemplo μ e σ , ou λ) desconhecidos.

Objectivos da Inferência Estatística:

- estimar $F_X(x)$ ou estimar os parâmetros de $F_X(x)$ conhecendo a sua forma;
- fazer testes em relação aos parâmetros ou em relação à forma de $F_X(x)$.

Estimação de parâmetros:

- pontualmente → resto do Capítulo 6;
- por intervalo → Capítulo 7.

Testes de hipóteses → Capítulo 8:

- sobre parâmetros → Capítulo 8;
- sobre a forma de $F_X(x) \to \text{Capítulo } 8$.

Amostragem aleatória

O processo de amostragem probabilística que vamos considerar pode ser descrito informalmente do seguinte modo: cada elemento da amostra é obtido totalmente ao acaso na população e de forma independente dos outros elementos.

Desta forma cada elemento da amostra é o valor observado de uma variável aleatória com distribuição idêntica à população e essas variáveis aleatórias são independentes.

Definição: As variáveis aleatórias $(X_1, X_2, ..., X_n)$ constituem uma **amostra aleatória** de dimensão n da população X se forem **i**ndependentes e **i**denticamente **d**istribuídas a X (i.i.d.)

$$X \longrightarrow X_1 \quad X_2 \quad \cdots \quad X_n \quad n \text{ v.a. i.i.d a } X \quad \text{amostra aleatória} \\ \downarrow \quad \downarrow \quad \downarrow \\ x_1 \quad x_2 \quad \cdots \quad x_n \quad n \text{ observações} \quad \text{amostra casual}$$

Amostragem aleatória: exemplo

Exemplo 6.1: Seja X a população que corresponde ao n.ºde caras observado no lançamento de uma moeda não necessariamente perfeita. O modelo é conhecido, $X \sim Bernoulli(p)$ (0 < p < 1). O objectivo da amostragem será obter informação sobre p

X=1 cara P(X=1)=pX = 0 coroa P(X = 0) = 1 - p8 amostras de dimensão 10:

Y.	Υ.	Υ.	Υ.	Y_	<i>X</i> ₆	Y_	Υ.	Υ.	Υ
• 0	• 1	1	• 0	1	• 1	• 0	• 0	• 0	1
• 1	• 1	1	• 1	• 1	• 0	1	1	1	1
• 0	1	• 0	1	• 0	1	• 0	• 0	• 0	1
• 0	• 0	• 0	1	1	1	1	• 0	1	1
• 1	1	• 0	• 0	• 0	1	1	• 0	• 0	0
• 1	• 0	1	• 0	• 0	• 0	• 0	• 0	• 0	0
• 1	1	• 0	1	• 0	1	• 0	• 0	1	0
1	• 0	1	• 0	• 0	• 0	• 0	1	• 1	1
$P(X_1=1)=p$									$P(X_{10}=1)=p$

Amostragem aleatória: exemplo (cont.)

Na realidade dispomos apenas de uma amostra casual, por exemplo a primeira:

mas para poder inferir correctamente a partir desta precisamos de saber que ela é uma de muitas possíveis que se distribuem de determinado modo.

Em particular podemos calcular a probabilidade de observar aquela particular amostra:

$$P(X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0, \dots, X_7 = 0, X_8 = 0, X_9 = 0, X_{10} = 1) =$$

(porque as observações são independentes)

$$= P(X_1 = 0)P(X_2 = 1)P(X_3 = 1)\cdots P(X_8 = 0)P(X_9 = 0)P(X_{10} = 1) =$$
 (porque as observações são identicamente distribuídas a X)

 $= (1-p) \times p \times p \times (1-p) \times p \times p \times (1-p) \times (1-p) \times (1-p) \times p = p^5 (1-p)^5$

SUMÁRIO:

(X₁, X₂,..., X_n) – amostra aleatória
 (v.a. de dimensão n que pretende representar "todas" as possíveis amostras dessa dimensão)

$$\left. \begin{array}{c} (x_1, x_2, \dots, x_n) \\ (x_1, x_2, x_3, x_4, x_5) \\ (0, 0, 1, 0, 1, 0, 0) \\ (2, 1.5, 3, 4.2, 0.1) \end{array} \right\} \text{ amostras casuais (ou concretas)}$$

• $f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i)$

(probabilidade, ou densidade de probabilidade, de observar a amostra (x_1, x_2, \ldots, x_n) , para uma população com função de probabilidade, ou densidade de probabilidade, $f_X(\cdot)$)

Estatísticas

Em geral usamos funções da amostra para "estimar" certos aspectos da população: por exemplo, é intuitivo perceber que a média da amostra será uma "aproximação" ou "estimativa" possível da média da população.

Definição: Uma estatística é uma v.a. que é função unicamente da amostra aleatória. Denota-se usualmente por $T_n = T(X_1, X_2, \dots, X_n)$

Exemplos de estatísticas:

1) Média amostral
$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{\sum_{i=1}^n X_i}{n}$$

É uma variável aleatória!

Dada uma amostra concreta (x_1, x_2, \ldots, x_n) , podemos calcular o valor da sua média $\bar{x} = (x_1 + x_2 + \cdots + x_n)/n$ que será um valor observado (ou uma ocorrência, ou ainda uma concretização) da v.a. \bar{X}

2) Variância amostral

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
 É uma variável aleatória!

A variância de uma amostra concreta

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

é um valor observado da v.a. S^2 .

- 3) Mínimo da a.a.: $X_{(1)} = \min\{(X_1, X_2, \dots, X_n\}$ É uma variável aleatória!
- 4) Máximo da a.a.: $X_{(n)} = \max(X_1, X_2, \dots, X_n)$ É uma variável aleatória!

6.2 Estimação pontual. Propriedades dos estimadores

Como as estatísticas são variáveis aleatórias faz sentido falar da sua distribuição de probabilidades (que se chama de **distribuição amostral** ou **distribuição por amostragem**).

1 Distribuição amostral do Máximo da a.a. $(X_{(n)})$

$$F_{X_{(n)}}(x) = P(X_{(n)} \le x) = P(X_1 \le x, X_2 \le x, \dots, X_n \le x) =$$

$$= \prod_{i=1}^n P(X_i \le x) = \prod_{i=1}^n P(X \le x) = (F_X(x))^n$$

(Fazer para o mínimo.)

Veremos mais adiante as distribuições amostrais de \bar{X} e S^2 .

6.2 Estimação pontual. Propriedades dos estimadores

Definição: Chama-se **estimador** a qualquer estatística, $\hat{\Theta}$, usada para estimar um parâmetro, θ (desconhecido) da população ou uma função desse parâmetro. A um valor desse estimador, $\hat{\theta}$, chama-se estimativa.

Seja X – população com $f_X(x)$ que depende de um parâmetro desconhecido θ (pode-se generalizar para vectores de parâmetros).

$$(X_1, X_2, \dots, X_n)$$
 - a.a.

 $\hat{\Theta} = T_n(X_1, X_2, \dots, X_n)$: estimador pontual de θ

 $\hat{\theta} = t_n(x_1, x_2, \dots, x_n)$: estimativa pontual de θ

Exemplo 6.2: $X \sim Bernoulli(p)$, dada uma a.a. de dimensão n considerar o estimador

$$T_n = \hat{P} = \bar{X} = \frac{\sum_{i=1}^n X_i}{n}$$

Como $X_i=1$ se ocorrer um sucesso e $X_i=0$ se ocorrer um insucesso, conclui-se que $\sum_{i=1}^n X_i$ representa o número de sucessos na amostra aleatória (observar que o número de insucessos será $n-\sum_{i=1}^n X_i$).

Exemplo 6.2 (cont.): E $\sum_{i=1}^{n} x_i$ é o número de sucessos na amostra concreta. Por exemplo para a primeira amostra do lançamento da moeda,

tem-se $\hat{p} = \bar{x} = 5/10 = 0.5$, que é uma estimativa do parâmetro p.

Definição: O estimador pontual $\hat{\Theta}$ é um estimador centrado do parâmetro θ se $E(\hat{\Theta}) = \theta$.

Se o estimador não for centrado (também se diz, se o estimador for enviesado) chama-se enviesamento (ou viés) à diferença

$$b(\hat{\Theta}) = E(\hat{\Theta}) - \theta$$

Exemplo 6.3: Dada uma v.a. X com valor esperado μ e variância σ^2 (e distribuição qualquer), tem-se que \bar{X} e S^2 são estimadores centrados de μ e σ^2 , respectivamente.

$$E(\bar{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right) = \frac{E(X_1) + E(X_2) + \dots + E(X_n)}{n} =$$

$$= \frac{\mu + \mu + \dots + \mu}{n} = \frac{n\mu}{n} = \mu$$

logo \bar{X} é estimador centrado de μ . Calculemos também a variância de \bar{X} :

$$V(\bar{X}) = V\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right) = \frac{V(X_1) + V(X_2) + \dots + V(X_n)}{n^2} = \frac{\sigma^2 + \sigma^2 + \dots + \sigma^2}{n^2} = \frac{n\sigma^2}{n}$$

Quanto ao estimador S^2 , iniciemos por reescrevê-lo:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i}^{2} - 2\bar{X}X_{i} + \bar{X}^{2}) =$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - 2\bar{X}\sum_{i=1}^{n} X_{i} + n\bar{X}^{2} \right) = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

pois $\sum_{i=1}^{n} X_i = n\bar{X}$. Vamos precisar de calcular $E(X_i^2)$ e $E(\bar{X}^2)$:

$$E(X_i^2) = V(X_i) + E^2(X_i) = \sigma^2 + \mu^2$$
 $E(\bar{X}^2) = V(\bar{X}) + E^2(\bar{X}) = \frac{\sigma^2}{n} + \mu^2$

logo
$$E(S^2) = \frac{1}{n-1} \left[n(\sigma^2 + \mu^2) - n \left(\frac{\sigma^2}{n} + \mu^2 \right) \right] = \frac{1}{n-1} (n-1)\sigma^2 = \sigma^2$$

e conclui-se que S^2 é estimador centrado de σ^2

Exemplo: Se $X \sim Ber.(p)$ sabe-se que $E(X) = \mu = p$ e $V(X) = \sigma^2 = p(1-p)$. Dada uma a.a. de dimensão n e o estimador $\hat{P} = \bar{X} = \sum_{i=1}^n X_i/n$, os resultados obtidos para a média amostral permitem afirmar que $E(\hat{P}) = p \qquad \text{e} \qquad V(\hat{P}) = \sigma_{\hat{P}}^2 = \frac{p(1-p)}{n}$

ou seja, \hat{P} é um estimador centrado de p e o respectivo desvio padrão (que é uma medida do erro associado à estimativa, também chamada **erro padrão**) é $\sigma_{\hat{P}} = \sqrt{p(1-p)/n}$. Uma estimativa do erro padrão é $\hat{\sigma}_{\hat{P}} = \sqrt{\hat{p}(1-\hat{p})/n}$.

Para a primeira amostra do lançamento da moeda,

• 0 • 1 • 1 • 0 • 1 • 1 • 0 • 0 • 0 • 1 tem-se
$$\hat{p} = \bar{x} = 5/10 = 0.5$$
 (como se viu) e $\hat{\sigma}_{\hat{P}} = \sqrt{0.5 \times 0.5/10} \simeq 0.158$.

Notar que para o mesmo $\hat{p}=0.5$ mas com n=1000 vinha $\hat{\sigma}_{\hat{P}}\simeq 0.0158$

Como para um mesmo parâmetro pode haver vários estimadores centrados são necessários outros critérios para comparar estimadores.

Definição: O erro quadrático médio de um estimador $\hat{\Theta}$ do parâmetro θ é

$$MSE(\hat{\Theta}) \equiv EQM(\hat{\Theta}) = E(\hat{\Theta} - \theta)^{2}$$

Nota: $EQM(\hat{\Theta}) = V(\hat{\Theta}) + b^2(\hat{\Theta})$

Definição: Dados dois estimadores $\hat{\Theta}_1$ e $\hat{\Theta}_2$ de um mesmo parâmetro θ , dizse que $\hat{\Theta}_1$ é mais eficiente que $\hat{\Theta}_2$ se $MSE(\hat{\Theta}_1) < MSE(\hat{\Theta}_2)$ Ao quociente $MSE(\hat{\Theta}_1)/MSE(\hat{\Theta}_2)$ chama-se eficiência relativa de $\hat{\Theta}_2$ em relação a $\hat{\Theta}_1$.

Dados dois estimadores deve preferir-se o que for mais eficiente, ou seja, o que tiver menor erro quadrático médio.

Exemplo 6.1 (cont.): Vamos considerar novamente o exemplo da moeda $(X \sim Ber.(p) \text{ com } 0 e dois estimadores, o que já apareceu antes, agora designado <math>\hat{P}_1$, e um estimador alternativo \hat{P}_2 , chamado estimador de Laplace:

$$\hat{P}_1 = \bar{X} = \frac{\sum_{i=1}^n X_i}{n}$$
 $\hat{P}_2 = \frac{1 + \sum_{i=1}^n X_i}{n+2}$

Vamos ver o que acontece com as 8 amostras que foram geradas anteriormente.

8 amostras de dimensão 10:

x_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	<i>X</i> ₈	<i>X</i> 9	X ₁₀	$\hat{ ho}_1$	\hat{p}_2
• 0	• 1	• 1	• 0	• 1	• 1	• 0	• 0	• 0	• 1	0.5	0.5
1	• 1	• 1	• 1			• 1	• 1	• 1	• 1	0.9	0.8333
• 0	1	• 0			1	• 0	• 0	• 0	1	0.4	0.4167
• 0	• 0	• 0	• 1	• 1	1	• 1	• 0	• 1	1	0.6	0.5833
1	1	• 0	• 0	• 0	1	• 1	• 0	• 0	• 0	0.4	0.4167
1	• 0	1	• 0	-	• 0	• 0	• 0	• 0	• 0	0.2	0.25
1	1	• 0	• 1	• 0	1	• 0	• 0	• 1	• 0	0.5	0.5
1	• 0	• 1	• 0	• 0	• 0	• 0	1	• 1	1	0.5	0.5
						média dos 8 valores:					0.5
						vari	0.04	0.0278			

Sabendo que os dados foram gerados com p=0.5, conclui-se que o segundo estimador é melhor (as estimativas estão a distância menor ou igual do verdadeiro valor).

Sabemos já que

$$EQM(\hat{P}_1) = p(1-p)/n$$

pois \hat{P}_1 é centrado $(b(\hat{P}_1)=0)$, logo $EQM(\hat{P}_1)=V(\hat{P}_1)$.

Pode mostrar-se (Exercício) que

$$EQM(\hat{P}_2) = \frac{np(1-p) + (1-2p)^2}{(n+2)^2}$$

e que $EQM(\hat{P}_2)$ é mais eficiente que $EQM(\hat{P}_1)$ se

$$p \in \left[\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{n}{8n+4}} \; ; \; \frac{1}{2} + \sqrt{\frac{1}{4} - \frac{n}{8n+4}} \right]$$

6.3 Método da máxima verosimilhança

Existem vários métodos de estimação de parâmetros desconhecidos. Um desses métodos é o da máxima verosimilhança. Como o seu nome indica o estimador obtém-se maximizando uma certa função chamada função de verosimilhança.

Definição: Seja X uma v.a. com distribuição caracterizada por $f(x,\theta)$ (f.p. ou f.d.p.), onde θ é um parâmetro desconhecido. Sejam x_1,x_2,\ldots,x_n os valores observados de uma a.a. de dimensão n. A função de verosimilhança da amostra é

$$L(\theta;x_1,x_2,\ldots,x_n)=f(x_1,\theta)f(x_2,\theta)\cdots f(x_n,\theta)=\prod_{i=1}^n f(x_i,\theta)$$

Chama-se estimativa de máxima verosimilhança de θ ($\hat{\theta}$) ao valor de θ que maximiza $L(\theta)$, ou seja,

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} L(\theta; x_1, x_2, \dots, x_n)$$

Exemplo 1: No exemplo concreto que temos vindo a considerar, $X \sim Bernoulli(p)$, tem-se, se considerarmos a amostra 1,

$$L(p) = p^5(1-p)^5, \qquad 0$$

Determinação do valor de p que maximiza L(p):

$$\frac{dL(p)}{dp} = 5p^4(1-p)^5 - 5p^5(1-p)^4 = 5p^4(1-p)^4(1-2p) = 0$$

$$\Leftrightarrow p = 0 \lor p = 1 \lor p = \frac{1}{2}$$

	0		1/2		1
L'(p)	0	+	0	_	9
L(p)	0	7	+	×	0

Logo a estimativa de m.v. de p com base nesta amostra é $\hat{p} = \frac{1}{2}$

Em vez de fazer a determinação da estimativa para uma amostra concreta é conveniente fazê-lo para uma amostra genérica (x_1, \ldots, x_n)

(vantagens: só é preciso fazer os cálculos uma vez e obtém-se a expressão do estimador, necessária para estudar as suas propriedades).

Exemplo 2: $X \sim Ber.(p)$, para a qual $f(x) = P(X = x) = p^x(1-p)^{1-x}$, $0 . Dada uma amostra <math>(x_1, \ldots, x_n)$ vem

$$L(p; x_1, ..., x_n) \equiv L(p) = f(x_1) \cdots f(x_n) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} =$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i} =$$

$$= p^k (1-p)^{n-k}, \quad 0$$

onde $k = \sum_{i=1}^{n} x_i$ é o número de sucessos na amostra e n-k o número de insucessos.

Nota: em vez de determinar p que maximiza L(p) pode determinar-se o valor de p que maximiza $\log L(p)$ (pois para uma função f>0 qualquer, f e $\log f$ têm máximo e mínimo nos mesmos pontos e os cálculos com $\log L$ são geralmente mais simples do que com L).

$$\log L(p) = \log \left[p^{k} (1-p)^{n-k} \right] = k \log p + (n-k) \log (1-p)$$

$$\frac{d \log L(p)}{dp} = \frac{k}{p} - \frac{n-k}{1-p} = 0 \overset{(p \neq 0, p \neq 1)}{\Leftrightarrow} k(1-p) - (n-k)p = 0 \Leftrightarrow p = \frac{k}{n}$$
Verificação:
$$\frac{d^{2} \log L(p)}{dp^{2}} = -\frac{k}{p^{2}} - \frac{n-k}{(1-p)^{2}} < 0, \ \forall_{0 < p < 1}$$

a estimativa de m.v. é $\hat{p} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}$

o estimador de m.v. é
$$\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} = \bar{X}$$

O método da máxima verosimilhança também pode ser usado quando a função de densidade (ou de probabilidade) da população depende de mais de um parâmetro.

Exemplo 3: Considere-se
$$X \sim N(\mu, \theta)$$
, $(\theta = \sigma^2 > 0)$ $f(x) = \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x-\mu)^2}{2\theta}}$.

Dada uma amostra (x_1, \ldots, x_n) vem

$$L(\mu, \theta; x_1, \dots, x_n) \equiv L(\mu, \theta) = f(x_1) \cdots f(x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x_i - \mu)^2}{2\theta}} =$$

$$= \frac{1}{(2\pi\theta)^{n/2}} e^{-\frac{1}{2\theta} \sum_{i=1}^n (x_i - \mu)^2}, \ \mu \in \mathbb{R}, \ \theta > 0$$

$$\log L(\mu, \theta) = -\frac{n}{2} \log(2\pi\theta) - \frac{1}{2\theta} \sum_{i=1}^n (x_i - \mu)^2$$

Determinação do ponto de máximo:

$$\begin{cases} \frac{\partial \log L(\mu, \theta)}{\partial \mu} = 0 \\ \frac{\partial \log L(\mu, \theta)}{\partial \theta} = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{\theta} \sum_{i=1}^{n} (x_i - \mu) = 0 \\ -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^{n} (x_i - \mu)^2 = 0 \end{cases}$$

$$\begin{cases} \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i & \text{solução candidata} \\ \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 & \text{que corresponde de facto} \\ & \text{a um ponto de máximo} \end{cases}$$

Para isso deve-se analisar o determinante e a diagonal da matriz Hessiana no ponto $(\mu,\theta)=(\hat{\mu},\hat{\theta})$

$$\begin{bmatrix} \frac{\partial^2 \log L(\mu, \theta)}{\partial \mu^2} & \frac{\partial^2 \log L(\mu, \theta)}{\partial \mu \partial \theta} \\ \frac{\partial^2 \log L(\mu, \theta)}{\partial \mu \partial \theta} & \frac{\partial^2 \log L(\mu, \theta)}{\partial \theta^2} \end{bmatrix}_{(\mu, \theta) = (\hat{\mu}, \hat{\theta})} = \begin{bmatrix} -\frac{n}{\hat{\theta}} & 0 \\ 0 & -\frac{n}{2\hat{\theta}^2} \end{bmatrix}$$

Como o determinante é positivo e os elementos da diagonal principal são ambos negativos está confirmado que a solução encontrada corresponde de facto a um ponto de máximo da função $L(\mu,\theta)$.

Logo os estimadores de m.v. de μ e $\theta = \sigma^2$ são

$$\hat{\mu} = \frac{\sum_{i=1}^{n} X_i}{n} = \bar{X}$$
 e $\hat{\theta} = \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n} = \frac{(n-1)S^2}{n}$

(o primeiro é centrado e o segundo não)

Nota: Os estimadores de máxima verosimilhança não são necessariamente centrados mas são assintoticamente centrados (quando $n \to \infty$)

Propriedade da invariância dos estimadores de máxima verosimilhança:

Se $\hat{\Theta}_1$, $\hat{\Theta}_2$, ..., $\hat{\Theta}_k$, são estimadores de máxima verosimilhança dos parâmetros θ_1 , θ_2 , ..., θ_k , então o estimador de máxima verosimilhança de uma função $h(\theta_1, \theta_2, \ldots, \theta_k)$ desses parâmetros é a mesma função $h(\hat{\Theta}_1, \hat{\Theta}_2, \ldots, \hat{\Theta}_k)$ dos estimadores.

Exemplo Seja X_1, X_2, \cdots, X_n uma a.a. proveniente de uma população X com distribuição Poisson de parâmetro λ .

Determine os estimadores de máxima verosimilhança de λ e de P(X > 2).

6.4 Momentos da média amostral e de variâncias amostrais.

Distribuições amostrais da média . . .

Momentos:

- O momento de ordem k de uma v.a. $X \in E(X^k)$.
 - O primeiro momento é o valor esperado, $E(X) = \mu$
- O momento central de ordem k de uma v.a. $X \in E[(X \mu)^k]$.
 - O segundo momento central é a variância, $E[(X \mu)^2] = V(X) = \sigma^2$

Os momentos das estatísticas média e variância amostrais foram já calculados:

$$E(\bar{X}) = \mu$$
 $V(\bar{X}) = \frac{\sigma^2}{n}$ $E(S^2) = \sigma^2$

Estes são os únicos momentos da média e da variância amostrais que não dependem da distribuição da população.

6.4 . . . Distribuições amostrais da média e variância numa população normal . . .

A distribuição de probabilidades de uma estatística é chamada distribuição amostral ou distribuição por amostragem.

Teorema Considere-se uma população $X \sim N(\mu, \sigma^2)$ e uma a.a (X_1, X_2, \ldots, X_n) . Como

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

é uma combinação linear de variáveis aleatórias independentes com distribuição normal, conclui-se que também tem distribuição normal, logo

$$ar{X} \sim N\left(\mu, rac{\sigma^2}{n}
ight) \qquad \Leftrightarrow \qquad rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

6.4 . . . Distribuições amostrais da média e variância numa população normal . . .

Para populações não normais tem-se como consequência do T.L.C.:

Se (X_1,X_2,\ldots,X_n) for uma amostra aleatória de dimensão n de uma população X com valor esperado μ e variância σ^2 e \bar{X} a correspondente média amostral então

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\stackrel{a}{\sim} N(0,1)$$