Klasični in kvantni Monte Carlo

Miha Čančula

21. april 2013

1 Isingov model

Metropolisov algoritem sem uporabil na 2D Isingovem modelu. Uporabil sem enostavno implementacijo, kjer ob vsaki potezi naključno izberem en delec in mu z določeno verjetnostjo obrnem spin. Kot začetni pogoj sem vsakih uporabil povsem naključno mrežo.

Kritično temperaturo sem ocenil s pomočjo sprotnega merjenja energije, magnetizacije, specifične toplote in magnetne susceptibilnosti. V termodinamskih sistemih v bližini faznega prehoda specifična toplota in susceptibilnost divergirata, zaradi prostorske omejitve računskega modela pa imata pri prehodu le vrhove.

Toplotna kapaciteta sistema je sorazmerna z varianco energije, $C_v \propto \langle E^2 \rangle - \langle E \rangle^2$. Če izraz delimo s številom delcev, torej N^2 , dobimo do konstante natančno specifično toploto, ki je prikazana na zgornji sliki. Opazimo, da položaj in ostrina vrha nista odvisna od N.

Susceptibilnost sistema v odsotnosti zunanjega polja se s spreminjanjem N obnaša bolj nepredvidljivo. Namesto vrha s potenčnim padanjem na obe strani opazimo hiter skok v bližini β_c . Dodatno opazimo precejšnje razlike v obnašanju pri različnih velikostih sistema. Pri N=256 se pojavita celo dva vrha. Pri zmanjšanju števila korakov enak pojav vidimo tudi pri manjših N, tako da je to le posledica dejstva, da sistem še ni v ravnovesju.

Za gornja grafa sem naredil po 1000 meritev vsake spremenjivke, med zaporednimi meritvami pa sem izvedel 10000 korakov Metropolisovega algoritma. Največji sistem je imel $256 \approx 65000$ spinov, zato posamezne meritve niso več korelirane, sistem pa tudi ne doseže ravnovesja.

2 Kvantni harmonski oscilator

Simuliral sem tudi kvantni harmonsk
ni oscilator. Harmonski oscilator ima le eno prostostno stopnjo, to je položa
jq. Ker pa operatorja kinetične in potencialne energije ne komutirata, sem izraz
 $e^{-\beta H}$ razcepil na produktMčlenov

$$e^{-\beta H} = \left[e^{-\frac{\beta}{M}H} \right]^M = \exp\left(-\frac{\beta}{M}V \right) \exp\left(-\frac{\beta}{M}T \right) \exp\left(-\frac{\beta}{M}V \right) \exp\left(-\frac{\beta}{M}T \right) \cdots \tag{1}$$

$$Z = \sum_{q} \left\langle q \left| \exp\left(-\frac{\beta}{M}V\right) \exp\left(-\frac{\beta}{M}T\right) \exp\left(-\frac{\beta}{M}V\right) \exp\left(-\frac{\beta}{M}T\right) \cdots \right| q \right\rangle$$
 (2)

$$= \sum_{q_1, q_2} \left\langle q_1 \left| \exp\left(-\frac{\beta}{M}V\right) \right| q_1 \right\rangle \left\langle q_1 \left| \exp\left(-\frac{\beta}{M}T\right) \right| q_2 \right\rangle \cdots$$
 (3)

Metropolisov algoritem je podoben kot v klasičnem primeru. Trenutno stanje namesto mreže spinov predstavlja M skalarjev q_j , člen fazne vsote pa je enak

$$\exp(-\beta E(q_1, q_2, \dots, q_M)) = \exp(-\sum_{j=1}^{M} \left(\frac{M}{2\beta} (q_{j+1} - q_j)^2 + \frac{\beta}{M} V(q_j)\right)$$
(4)

Poteza je bila sprememba enega izmed q_j , $q_j \to q_j + \varepsilon \xi$, kjer je ξ normalno Gaussovo porazdeljeno število. Parameter ε , ki določa povprečno velikost poteze, sem dinamično spreminjal v odvisnosti od β in M, da je bil delež sprejetih potez vedno blizu 1/2.

Algoritem se ne spremeni, če uporabimo drugačen potencial, ki je še vedno diagonalen v bazi $|q\rangle$. Zato sem isti račun ponovil še z anharmonskim oscilatorjem, $V(q) = \frac{1}{2}q^2 + \lambda q^4$, za nekaj različnih vrednosti λ .

S pomočjo Metropolisovega vzorčenja sem opazoval odvisnost povprečne energije $\langle H \rangle$ od inverzne temperature β . Rezultati so na spodnjem grafu.

Po pričakovanju povprečna energija pada z inverzno temperaturo, v limiti $\beta \to \infty$ pa se ustali pri končni vrednosti. Ta vrednost je močno odvisna od vrednosti parametra λ , torej od oblike potenciala. Odvisna je tudi od izbire števila segmentov M. Če je izbrani M premajhen, potem Trotter-Suzukijev razcep ni več dober približek za $e^{-\beta H}$, saj $\Delta \beta = \beta/M$ ni več majhnen parameter. Po drugi strani pa prevelik M pomeni, da potrebujemo veliko število korakov, da sistem pride v ravnovesje. Končna limitna vrednost energije pri $\beta \to \infty$ je lahko posledica enega izmed teh dveh težav.

Pri majhni β oz. visoki temperaturi opazimo še en nenavaden pojav: skupna energija je negativna. Na logaritemskem grafu je to vidno le kot manjkajoče točke, ki so bolje vidne, če graf primerjamo z naslednjim. Harmonski potencial $V=\frac{1}{2}q^2$ je vedno pozitiven, negativen je lahko le kinetični del energije

$$\langle H_k \rangle = \left\langle \frac{M}{2\beta} - \frac{M}{2\beta} \sum_{j=1}^{M} (q_{j+1} - q_j)^2 \right\rangle$$

Ta člen je negativen, če se zaporedni q_j preveč razlikujejo med seboj. Za zgornji grafu sem uporabil M=20, ampak oba nepričakovana pojava, tako negativno energijo kot končno limitno vrednost, opazimo pri vseh izbirah M med 5 in 500.

Izbira parametra ε in začetnega pogoja (vsi $q_j=0$, ali pa naključne vrednosti) na odvisnost le malo vplivata. Da sprejmemo približno polovico potez, je dobra izbira $\varepsilon \approx \sqrt{\beta}$, pri večjih β pa deluje pa tudi konstanten $\varepsilon \approx 1$. Če izberemo ε , ki so močno razlikuje od zgornjih ocen, sistem ne doseže ravnovesja. Z dosti manjšim ε sem dobil rezultate, kjer povprečna energija ne narašča s temperaturo, kar ni fizikalno.

Za primerjavo sem posebej računal samo potencialni del energije, torej $\langle V \rangle$. Ta je diagonalen v q, zato je dovolj, da opazujemo le povprečje $V(q_1)$ po Metropolisovi porazdelitvi. Rezultati so na spodnjem grafu.

Odvisnosti so precej podobna kot na prejšnji sliki, torej zlasti pri velikem β k energiji prispeva predvsem potencialni člen.