Binomial

Parametrisation

The Binomial distribution is

$$Prob(y) = \binom{n}{y} p^n (1-p)^{n-y}$$

for responses $y = 0, 1, 2, \dots, n$, where

n: number of trials.

p: probability of success in each trial.

Link-function

The mean and variance of y are given as

$$\mu = np$$
 and $\sigma^2 = np(1-p)$

and the probability p is linked to the linear predictor by

$$p(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)}$$

Hyperparameters

None.

Hyperparameter spesification and default values

doc The Binomial likelihood

hyper

survival FALSE

discrete TRUE

link default logit cauchit probit cloglog loglog log sslogit logitoffset quantile pquantile robit sn pdf binomial

Specification

- family = binomial
- Required arguments: y and n (keyword Ntrials)

Expert version

There is also an "expert" version were you are supposed to know what you are doing. Here, we allow y and n to be non-integers, however, the condition $0 \le y \le n$ apply. The normalizing constant is computed as above using the integer part of y and n. This is similar to using floor(y) and floor(n) in R. The marginal likelihood estimate will in this case make less sense.

- family = xbinomial
- Required arguments: y and n (keyword Ntrials)

```
doc The Binomial likelihood (expert version)
```

hyper

survival FALSE

discrete TRUE

pdf binomial

link default logit cauchit probit cloglog loglog log sslogit logitoffset quantile pquantile robit sn

status experimental

Example

In the following example we estimate the parameters in a simulated example with binomial responses.

```
n=100
a = 1
b = 1
z = rnorm(n)
eta = a + b*z
Ntrials = sample(c(1,5,10,15), size=n, replace=TRUE)
prob = exp(eta)/(1 + exp(eta))
y = rbinom(n, size=Ntrials, prob = prob)

data = list(y=y,z=z)
formula = y ~ 1+z
result = inla(formula, family = "binomial", data = data, Ntrials=Ntrials)
summary(result)
```

Notes

If the response is a factor it must be converted to $\{0,1\}$ before calling inla(), as this conversion is not done automatic (as for example in glm()).