

Dinkelbach Algorithm for SBPO Challenge 2025

Santiago Cifuentes ¹ Ignacio Oromendia ¹ Luciana Skakovsky ¹

¹FCEN - Universidad de Buenos Aires

The Problem

In warehouse operations, picking each order individually is inefficient. Instead, we group compatible orders into **waves** so that their items can be collected together through shorter and more efficient routes. The goal is to decide which orders should form the next wave to maximize **picking productivity** — that is, to collect as many products as possible while visiting as few aisles as needed.

Let O be the set of pending orders, I_o the items requested in order $o \in O$, A the set of aisles, and $A_i \subseteq A$ the aisles containing item i. Each order o requests u_{oi} units of item i, and each aisle a holds u_{ai} units. Wave size is bounded by LB, UB lower and upper bounds on the total number of items in the wave.

We want to select:

 $O' \subseteq O$ (orders in the wave), $A' \subseteq A$ (aisles to visit)

so as to maximize the ratio between collected units and visited aisles:

$$\max_{\substack{O',A'}} \frac{\sum_{o \in O'} \sum_{i \in I_o} u_{oi}}{|A'|}$$

subject to:

$$LB \le \sum_{o \in O'} \sum_{i \in I_o} u_{oi} \le UB \tag{1}$$

$$\sum_{o \in O'} u_{oi} \le \sum_{a \in A'} u_{ai}, \quad \forall i \in I_o, \ o \in O'$$

A pair (O', A') satisfying (1)–(2) defines a feasible wave, and the optimal wave maximizes the productivity ratio above.

An Exact Parametric Approach

We apply a parametric algorithm based on Dinkelbach's method to solve the fractional objective. The problem is reformulated as finding the root of a convex function:

$$\phi(\lambda) = \max_{x \in X} \{ f(x) - \lambda g(x) \},\$$

where f(x) and g(x) are linear. Each evaluation of $\phi(\lambda)$ is obtained by solving a linear program (LP). In our context, f(x) represents the total number of picked units, and g(x) the number of aisles visited.

Dinkelbach's method can be interpreted as a Newton-type root-finding approach, since it follows the update rule:

$$\lambda_{k+1} = \lambda_k - \frac{\phi(\lambda_k)}{\phi'(\lambda_k)} = \lambda_k + \frac{\phi'(\lambda_k)}{g(x_k)},$$

where x_k is the optimal solution of the LP at iteration k. This iterative process continues until $\phi(\lambda_k) = 0$, ensuring convergence to the optimal productivity ratio λ^* [1].

Warm start

The Dinkelbach algorithm can benefit from a high quality initial solution, and thus we consider two simple greedy strategies to obtain them. The first one prioritizes picking aisles of a big size (i.e. those $a \in A$ that maximize $\sum_{i \in I_o} u_{ai}$) while the second one prioritizes aisles with high diversity (i.e. those $a \in A$ that maximize $|\{i \in I_o : u_{ai} > 0\}|$). As seen in Figure 1 optimal solutions have these type of aisles.

Figure 1. Aisles sorted by size and diversity and optimal aisles for instance 8 from dataset A.

Our algorithm fixes, for each possible k, the first k aisles sorted based on each of these two criteria, and then picks orders greedily sorting them by size. Our implementation is efficient with complexity almost linear in the input size, and usually finds solutions 10%-close to the optimal one in the order of seconds, as can be seen in Figure 2. In most cases the greedy approach based on diversity beats the one based on size.

Figure 2. Comparison between the optimal values and the results given by the greedy algorithms.

Fusce aliquam magna velit

Et rutrum ex euismod vel. Pellentesque ultricies, velit in fermentum vestibulum, lectus nisi pretium nibh, sit amet aliquam lectus augue vel velit. Suspendisse rhoncus massa porttitor augue feugiat molestie. Sed molestie ut orci nec malesuada. Sed ultricies feugiat est fringilla posuere.

Nam cursus consequat egestas

Nulla eget sem quam. Ut aliquam volutpat nisi vestibulum convallis. Nunc a lectus et eros facilisis hendrerit eu non urna. Interdum et malesuada fames ac ante *ipsum primis* in faucibus. Etiam sit amet velit eget sem euismod tristique. Praesent enim erat, porta vel mattis sed, pharetra sed ipsum. Morbi commodo condimentum massa, *tempus venenatis* massa hendrerit quis. Maecenas sed porta est. Praesent mollis interdum lectus, sit amet sollicitudin risus tincidunt non.

Etiam sit amet tempus lorem, aliquet condimentum velit. Donec et nibh consequat, sagittis ex eget, dictum orci. Etiam quis semper ante. Ut eu mauris purus. Proin nec consectetur ligula. Mauris pretium molestie ullamcorper. Integer nisi neque, aliquet et odio non, sagittis porta justo.

• Sed consequat id ante vel efficitur. Praesent congue massa sed est scelerisque, elementum mollis augue iaculis.

■ In sed est finibus vulnutate nunc gravida pulvinar lorem. In maximus nunc dolor sed auctor eros porttitor

A highlighted block containing some math

A different kind of highlighted block.

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

Interdum et malesuada fames $\{1,4,9,\ldots\}$ ac ante ipsum primis in faucibus. Cras eleifend dolor eu nulla suscipit suscipit. Sed lobortis non felis id vulputate.

A heading inside a block

Praesent consectetur mi $x^2 + y^2$ metus, nec vestibulum justo viverra nec. Proin eget nulla pretium, egestas magna aliquam, mollis neque. Vivamus dictum $\mathbf{u}^{\mathsf{T}}\mathbf{v}$ sagittis odio, vel porta erat congue sed. Maecenas ut dolor quis arcu auctor porttitor.

Another heading inside a block

Sed augue erat, scelerisque a purus ultricies, placerat porttitor neque. Donec $P(y \mid x)$ fermentum consectetur $\nabla_x P(y \mid x)$ sapien sagittis egestas. Duis eget leo euismod nunc viverra imperdiet nec id justo.

Nullam vel erat at velit convallis laoreet

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Phasellus libero enim, gravida sed erat sit amet, scelerisque congue diam. Fusce dapibus dui ut augue pulvinar iaculis.

First column	Second column	Third column	Fourth
Foo	13.37	384,394	α
Bar	2.17	1,392	eta
Baz	3.14	83,742	δ
Qux	7.59	974	γ

Table 1. A table caption.

Donec quis posuere ligula. Nunc feugiat elit a mi malesuada consequat. Sed imperdiet augue ac nibh aliquet tristique. Aenean eu tortor vulputate, eleifend lorem in, dictum urna. Proin auctor ante in augue tincidunt tempor. Proin pellentesque vulputate odio, ac gravida nulla posuere efficitur. Aenean at velit vel dolor blandit molestie. Mauris laoreet commodo quam, non luctus nibh ullamcorper in. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Nulla varius finibus volutpat. Mauris molestie lorem tincidunt, iaculis libero at, gravida ante. Phasellus at felis eu neque suscipit suscipit. Integer ullamcorper, dui nec pretium ornare, urna dolor consequat libero, in feugiat elit lorem euismod lacus. Pellentesque sit amet dolor mollis, auctor urna non, tempus sem.

References

[1] Fengqi You, Pedro M. Castro, and Ignacio E. Grossmann. Dinkelbach's algorithm as an efficient method for solving a class of minlp models for large-scale cyclic scheduling problems. Computers & Chemical Engineering, 33(11):1879–1889, 2009.

https://www.example.com