Метод резолюции

Метод резолюции (что мы умеем, повторение)

Дана формула α .

1. Упростим формулу — поверхностные кванторы всеобщности, сколемизация. Умеем строить формулу β :

$$\beta := \forall x_1. \forall x_2. \forall x_k. \delta_1(x_1, \ldots, x_k) \& \cdots \& \delta_n(x_1, \ldots, x_k)$$

 α доказуема тогда и только тогда, когда при всех оценках предикатных и функциональных символов найдётся значение сколемовских функций e_k , при которых β всегда истинна (слоёный пирог из кванторов).

- 2. Упрощаем предметное множество заменили произвольный D на эрбранов универсум H. Выполнимость формулы эквивалентна выполнимости на эрбрановом универсуме.
- 3. Осталось избавиться от кванторов всеобщности и организовать правильный перебор (эрбранов универсум может быть бесконечным).

Оценка формулы на эрбрановом универсуме

Определение

Эрбранов универсум H_{φ} — всевозможные комбинации функциональных символов из формулы φ . Если в формуле нет нульместных функциональных символов, к множеству символов формулы добавляется свежий нульместный функциональный символ а и все комбинации с его участием.

Например, для $P(0) \lor (P(x) \to P(x'))$ эрбрановым универсумом будет $\{0,0',0'',0''',\dots\}$, для P(x') это будет $\{a,a',a'',a''',\dots\}$.

Определение

Если φ — бескванторная формула, то её эрбранова оценка задаётся как $\langle H_{\varphi}, F, P, E \rangle$, функции F определяются как текстовые подстановки $\llbracket f(\theta) \rrbracket = "f("++\llbracket \theta \rrbracket ++")"$, предикаты P задаются перечислением истинных.

Например, для $P(0) \lor (P(x) \to P(x'))$ эрбранова оценка при истинных предикатах $\{P(0'), P(0''), P(0'''')\}$ такова: $[\![\varphi]\!]^{x:=0} = \mathsf{N}$ и $[\![\varphi]\!]^{x:=0''} = \mathsf{J}$

Противоречивые системы дизъюнктов

Теорема (о выполнимости)

Формула выполнима тогда и только тогда, когда она выполнима в какой-то эрбрановой оценке.

Доказательство.

Доказано на предыдущей лекции.

Определение

Система дизъюнктов $S=\{\delta_1,\ldots,\delta_n\}$ противоречива, если для каждой оценки $M=\langle D,P,F,E\rangle$ найдётся δ_t и такой набор $\overline{d}\in D$, что $[\![\delta_t]\!]^{\overline{x}:=\overline{d}}=\mathcal{I}$.

Теорема

Система дизъюнктов противоречива, если она невыполнима в эрбрановых оценках.

Основные примеры.

Рассмотрим сколемизированную формулу β в КНФ. Заметим, что если $\beta = \forall x_1 \forall x_k . \delta_1 \& \delta_2 \& \cdots \& \delta_n$, то $\vdash \beta \leftrightarrow (\forall x_1 \forall x_k . \delta_1) \& \cdots \& (\forall x_1 \forall x_k . \delta_n)$

Определение

Дизъюнкт с подставленными значениями из эрбранового универсума H_{β} вместо переменных называется основным примером формулы β .

Пример

Пусть $\beta:=\forall x.P(0)\ \&\ (P(x)\lor P(x'))$, тогда $P(0''')\lor P(0'''')$ — основной пример, а P(0''''') — нет.

Определение

Система основных примеров — все основные примеры, опровергаемые хоть при какой-то эрбрановой оценке \mathcal{M} :

$$\mathcal{E}_{\mathcal{S}} = \{\delta_t[\overline{x} := \overline{d}] \mid \text{существует } \mathcal{M}, \text{ что } [\![\delta_t[\overline{x} := \overline{d}]]\!]_{\mathcal{M}} = \mathcal{I}; \quad d_i \in \mathcal{H}_{\beta}\}$$

Противоречивые множества основных примеров

Определение

Система основных примеров E противоречива в эрбрановой оценке (интерпретации), если для любой эрбрановой оценки M найдётся такой $\varepsilon \in E$, что $\|\varepsilon\|_M = \mathcal{J}$.

Теорема

Система дизъюнктов S противоречива тогда и только тогда, когда система её всевозможных основных примеров \mathcal{E}_S противоречива в эрбрановой интерпретации.

Теорема Эрбрана

Теорема (Гёделя о компактности)

Если Г — некоторое семейство бескванторных формул, то Г имеет модель тогда и только тогда, когда любое его конечное подмножество имеет модель.

Теорема (Эрбрана)

Система дизъюнктов S противоречива тогда и только тогда, когда у \mathcal{E}_S существует конечное противоречивое в эрбрановой интерпретации подмножество.

Доказательство.

 (\Leftarrow) Пусть $\{arepsilon_1,\dots,arepsilon_t\}\subseteq \mathcal{E}_S$ противоречиво, $arepsilon_i=\delta_{m_i}[\overline{\mathbf{x}}:=\overline{d_i}]$, где $\overline{d_i}$ — набор значений из H. То есть, для любой эрбрановой оценки M существует $arepsilon_p$, что $[\![arepsilon_p]\!]_M=\Pi$. Отсюда, по теореме о выполнимости S тоже противоречива. (\Rightarrow) Если S противоречива, то \mathcal{E}_S противоречива. Тогда у неё нет модели. Тогда у неё найдётся конечное противоречивое подмножество (компактность).

Возможно убедиться в невыполнимости за конечное время.

Общая схема алгоритма

Цель алгоритма: убедиться, что lpha доказуемо.

- 1. По формуле α строим её отрицание $\neg \alpha$.
- 2. Приводим к виду с поверхностными кванторами, проводим сколемизацию, находим КНФ: $\beta = \forall x_1 \ldots \forall x_k . \delta_1 \& \cdots \& \delta_n$.
- 3. Убедимся, что при любом D и значениях функциональных и предикатных символов и сколемовских функций e_k найдутся $d_i \in D$, что один из дизъюнктов δ_t при подстановке $\overline{x} := \overline{d}$ ложный.
- 4. Для этого строим универсум Эрбрана H, и систему основных примеров \mathcal{E}_S , её противоречивость эквивалентна невыполнимости β .
- 5. Конечное противоречивое подмножество обязательно находится в каком-то начальном отрезке $\{\varepsilon_1,\dots,\varepsilon_t\}\subseteq\mathcal{E}_S$ (если оно есть).

Пример: как проверяем выполнимость формулы?

Допустим, формула: $(\forall x. P(x) \& P(x')) \& \exists x. \neg P(x'''')$

- 1. Поверхностные кванторы, сколемизация, КНФ: $(\forall x.P(x)) \& (\forall x.P(x')) \& (\neg P(e''''))$
- 2. Строим эрбранов универсум: $H = \{e, e', e'', e''', \dots\}$
- 3. Если есть противоречие, то среди основных примеров:

$$\mathcal{E} = \{ P(e), P(e'), P(e''), P(e'''), P(e''''), \neg P(e''''), \dots \}$$

Либо есть \mathcal{M} , что $[\![\mathcal{X}\mathcal{E}]\!]_{\mathcal{M}}=\mathsf{V}$, либо есть $\{\varepsilon_1,\ldots,\varepsilon_n\}\subseteq\mathcal{E}$, что $[\![\varepsilon_t]\!]_{\mathcal{M}}=\mathsf{Л}$ для какого-то t при каждой эрбрановой оценке \mathcal{M} .

Подмножество ${\mathcal E}$	выполнено в оценке	количество оценок
{ <i>P</i> (<i>e</i>)}	$\llbracket P(e) rbracket = V$	2 варианта
$\{P(e),P(e')\}$	$\llbracket P(e) rbracket = \llbracket P(e') rbracket = V$	4 варианта
(5() 5() 5()		
$\{P(e),\ldots,P(e''''),\neg P(e'''')\}$	невыполнимо	64 варианта

Правило резолюции (исчисление высказываний)

Пусть даны два дизъюнкта, $\alpha_1 \vee \beta$ и $\alpha_2 \vee \neg \beta$. Тогда следующее правило вывода называется правилом резолюции:

$$\frac{\alpha_1 \vee \beta \qquad \alpha_2 \vee \neg \beta}{\alpha_1 \vee \alpha_2}$$

Теорема

Система дизъюнктов противоречива, если в процессе всевозможного применения правила резолюции будет построено явное противоречие, т.е. найдено два противоречивых дизъюнкта: β и $\neg \beta$.

Расширение правила резолюции на исчисление предикатов

Заметим, что правило резолюции для исчисления высказываний не подойдёт для исчисления предикатов.

$$S = \{P(x), \neg P(0)\}\$$

Здесь P(x) противоречит $\neg P(0)$, но правило резолюции для исчисления высказываний здесь неприменимо, потому что x можно заменять, это не константа:

$$\frac{P(\mathbf{x}) \qquad \neg P(\mathbf{0})}{???}$$

Нужно заменять P(x) на основные примеры, и искать среди них. Модифицируем правило резолюции для этого.

Алгебраические термы

Определение

Алгебраический терм

$$\theta := x | (f(\theta_1, \ldots, \theta_n))$$

где x-переменная, $f(\theta_1,\ldots,\theta_n)-$ применение функции. Напомним, что константы — нульместные функциональные символы, собственно переменные будем обозначать последними буквами латинского алфавита.

Определение

Система уравнений в алгебраических термах
$$\left\{egin{align*} & heta_1 = \sigma_1 \\ \vdots \\ & heta_n = \sigma_n \end{array}\right.$$
 где $heta_i$ и σ_i — термы

Уравнение в алгебраических термах

Определение

 $\{x_i\}=X-$ множество переменных, $\{ heta_i\}=T-$ множество термов.

Определение

Подстановка—отображение вида: $\pi_0: X \to T$, тождественное почти везде (за исключением конечного числа переменных).

$$\pi_0(x)$$
 может быть либо $\pi_0(x)= heta_i$, либо $\pi_0(x)=x$.

Доопределим $\pi:T\to T$, где

- 1. $\pi(x) = \pi_0(x)$
- 2. $\pi(f(\theta_1,\ldots,\theta_k)) = f(\pi(\theta_1),\ldots,\pi(\theta_k))$

Определение

Решить уравнение в алгебраических термах—найти такую наиболее общую подстановку π , что $\pi(\theta_1)=\pi(\theta_2)$. Наиболее общая подстановка — такая, для которой другие подстановки являются её частными случаями.

Задача унификации

Определение

Пусть даны формулы α и β . Тогда решением задачи унификации будет такая наиболее общая подстановка $\pi = \mathcal{U}\big[\alpha,\beta\big]$, что $\pi(\alpha) = \pi(\beta)$. Также, η назовём наиболее общим унификатором.

Пример

- Формулы P(a,g(b)) и P(c,d) не имеют унификатора (мы считаем, что a,b,c,d нульместные функции, af одноместная функция).
- Проверим формулу на соответствие 11 схеме аксиом:

$$(orall x.P(x)) o P(f(t,g(t),y))$$
Пусть $\pi=\mathcal{U}igl[P(x),P(f(t,g(t),y))igr]$, тогда $\pi(x)=f(t,g(t),y).$

Правило резолюции для исчисления предикатов

Определение

Пусть σ_1 и σ_2 — подстановки, заменяющие переменные в формуле на свежие. Тогда правило резолюции выглядит так:

$$\frac{\alpha_1 \vee \beta_1 \quad \alpha_2 \vee \neg \beta_2}{\pi(\sigma_1(\alpha_1) \vee \sigma_2(\alpha_2))} \ \pi = \mathcal{U}[\sigma_1(\beta_1), \sigma_2(\beta_2)]$$

 σ_1 и σ_2 разделяют переменные у дизъюнктов, чтобы π не осуществила лишние замены, ведь $\vdash (\forall x. P(x) \& Q(x)) \leftrightarrow (\forall x. P(x)) \& (\forall x. Q(x))$, но $\not\vdash (\forall x. P(x) \lor Q(x)) \rightarrow (\forall x. P(x)) \lor (\forall x. Q(x))$.

Пример

$$rac{Q(x)ee P(x) - P(a)ee T(x)}{Q(a)ee T(x'')}$$
 подстановки: $\sigma_1(x) = x', \sigma_2(x) = x'', \pi(x') = a$

Метод резолюции

Ищем $\vdash \alpha$.

- 1. будем искать опровержение $\neg \alpha$.
- 2. перестроим $\neg \alpha$ в КНФ.
- 3. будем применять правило резолюции, пока получаем новые дизъюнкты и пока не найдём явное противоречие (дизъюнкты вида β и $\neg \beta$).

Если противоречие нашлось, значит, $\vdash \neg \neg \alpha$. Если нет — значит, $\vdash \neg \alpha$. Процесс может не закончиться.

SMT-решатели

Обычно требуется не логическое исчисление само по себе, а теория первого порядка. То есть, «Satisfability Modulo Theory», «выполнимость в теории» — вместо SAT, выполнимости.

lacktriangle Иногда можно вложить теорию в логическое исчисление, даже в исчисление высказываний: $\overline{S_2S_1S_0}=\overline{A_1A_0}+\overline{B_1B_0}$

$$S_0 = A_0 \oplus B_0$$
 $C_0 = A_0 \& B_0$
 $S_1 = A_1 \oplus B_1 \oplus C_0$ $C_1 = (A_1 \& B_1) \lor (A_1 \& C_0) \lor (B_1 \& C_0)$
 $S_2 = C_1$

А можно что-то добавить прямо на уровень унификации / резолюции: Например, можем зафиксировать арифметические функции — и производить вычисления в правиле резолюции вместе с унификацией. Тогда противоречие в $\{x=1+3+1, \neg x=5\}$ можно найти за один шаг.

Уточнённые типы (Refinement types), LiquidHaskell

Определение

```
(Неформальное) Уточнённый тип — тип вида \{	au(x) \mid P(x)\}, где P — некоторый предикат.
```

Пример на LiquidHaskell:

```
data [a]  a -> Prop> where
| [] :: [a] 
| (:) :: h:a -> [a]  -> [a]
```

```
▶ h:а — голова (h) имеет тип a
```

```
[a ]  — хвост состоит из значений типа <math>a, уточнённых p — \{t: a \mid p \ h \ t\} (карринг: a ).
```

```
{-@ type IncrList a = [a] <{\xi xj -> xi <= xj}> @-}
{-@ insertSort :: (Ord a) => xs:[a] -> (IncrList a) @-}
insertSort [] = []
```

insertSort (x:xs) = insert x (insertSort xs)