MTH 307 - Spring 2022

Assignment #6

Due: Friday, February 25, 2022 (4pm)

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

- 1. Label the following statements as being true or false. Provide some justification from the text for your label.
 - (a) Every linear operator on an n-dimensional vector space has n distinct eigenvalues.

Solution - False: Some eigenvalues can have a multiplicity greater than 1, such as the identity matrix I_2 has the eigenvalues $\lambda = 1$ and $\lambda = 1$. Thus, it has a single *distinct* eigenvalue $\lambda = 1$ with multiplicity 2.

(b) If a linear operator on a vector space over \mathbf{R} has one eigenvector, then it has an infinite number of eigenvectors.

Solution - True: Let v be an eigenvector, then any non-zero vector in span $\{v\}$ is also an eigenvector. (All non-zero scalar multiples of v.) There are uncountably infinite non-zero scalars, c, in \mathbb{R} or \mathbb{C} such that $cv \in \text{span}\{v\}$, therefore the statement is true.

(c) There exists a square matrix with no eigenvectors. Eigenvalues must be nonzero scalars.

Solution - True: Example. Let $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ in the field \mathbb{R} . Then for some $x, y \in \mathbb{R}$ such that $x \neq 0$ or $y \neq 0$, and for a vector $v = \langle x, y \rangle$, $(T - \lambda I_2)v = \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$. Then we have the following system of equations:

$$-\lambda x - y = 0 \qquad x - \lambda y = 0.$$

The second equation can be rewritten as $x = \lambda y$ and substituting into the first we get

$$-\lambda(\lambda y) - y = 0 \iff -\lambda^2 y - y = 0$$
$$\iff -\lambda^2 = 1$$
$$\iff \lambda = \sqrt{-1} \notin \mathbb{R}.$$

Thus the first equation yields zero eigenvalues and thus zero eigenvectors. Next, the first equation can be rewritten as $y = -\lambda x$. Substituting that value into the second equation, we get

$$x = \lambda y \iff x = -\lambda^2 x$$

$$\iff 1 = -\lambda^2$$

$$\iff \lambda = \sqrt{-1} \notin \mathbb{R}.$$

Therefore neither equation yields an eigenvalue or eigenvector and hence we have an example of a square matrix with no eigenvectors.

(d) Eigenvalues must be nonzero scalars.

Solution - False: Counterexample. Let $T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ in the field \mathbb{R} . Then for some $x, y \in \mathbb{R}$ such that $x \neq 0$ or $y \neq 0$, and for a vector $v = \langle x, y \rangle$, $(T - \lambda I_2)v = \begin{bmatrix} 1 - \lambda & 0 \\ 0 & -\lambda \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$. Then we have the following system of equations:

$$(1 - \lambda)x = 0 - \lambda y = 0.$$

Looking at the second equation, the only way it is true is if $\lambda = 0$, therefore we have a contradiction that there exists no non-zero eigenvalue.

(e) Any two eigenvectors are linearly independent.

Solution - False: Taking the matrix setup from (d), we have that $\lambda = 0$ is an eigenvalue. Computing an eigenvector, we first have

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda v = 0v.$$

From here we can see that $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is a valid eigenvector for $\lambda = 0$ since Tv = 0v holds true. Additionally, $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$ would also be an eigenvector (or any non-zero scalar). But these are linearly dependent, hence a contradiction.

(f) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T.

Solution - False: Consider the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. It has eigenvalues $\lambda = 1$ and $\lambda = 2$ by the triangular matrix diagonal property. But 2+1=3 is not an eigenvalue since we can only have 2 eigenvalues and we already showed them to be 1 and 2.

(g) Linear operators on infinite-dimensional vectors spaces never have eigenvalues.

Define $T \in \mathcal{L}(\mathbb{R}^{\infty})$ by

$$T(x_1, x_2, \dots) = (x_1, 0, \dots).$$

Then T has an eigenvalue $\lambda=1$ with eigenspace of span $(1,0,\dots)$. Hence, a contradiction.

(h) The sum of two eigenvectors of an operator T is always an eigenvector of T.

Solution - False: Using the same setup for T as in part (d), we have $\lambda = 1$ and $\lambda = 2$ as the 2 distinct eigenvalues with $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ as respective eigenvectors. But the sum, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is not in either eigenspace. Hence a contradiction to the assumption.

2. Consider the operator $T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ acting on \mathbb{R}^2 . How many subspaces are there that are invariant under T?

Solution: First, the trival subspaces of span $\{0\}$ and \mathbb{R}^2 hold true. Then using the triangular matrix property to get the eigenvalues $\lambda = 0$ and $\lambda = 1$, we can compute eigenvectors for them.

For $\lambda = 0$,

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1x \\ 0y \end{pmatrix} = 0v = 0 \quad \text{implies } \begin{pmatrix} x \\ y \end{pmatrix} \in \operatorname{span}(\langle 0, 1 \rangle).$$

For $\lambda = 1$,

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1x \\ 0y \end{pmatrix} = 1v = v \quad \text{implies } \begin{pmatrix} x \\ y \end{pmatrix} \in \text{span}(\langle 1, 0 \rangle).$$

So there are 4 distinct invariant subspaces,

$$\operatorname{span}(\vec{0}) \qquad \operatorname{span}(\langle 0, 1 \rangle) \qquad \operatorname{span}(\langle 1, 0 \rangle) \qquad \mathbb{R}^2$$

3. If U and W are invariant subspaces for $T \in \mathcal{L}(V)$ then U + W is invariant for T.

Proof. Let $u \in U$ and $w \in W$. Then T(u+w) = T(u) + T(w) by linearity.

By our assumption of invariance, $T(u) \in U$ and $T(w) \in W$. Therefore $T(u) + T(w) \in U + W$ by the definition of Sum of Subspaces. This implies $T(u+w) \in U + W$ by linearity. Hence, U+W is invariant under T.

- 4. In \mathbb{R}^2 , let T be the reflection across the line y = x.
 - (a) Write the matrix A that represents T relative to the standard basis.

Solution:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(x,y) = (y,x)$$

Computing the images of the standard basis,

$$T(e_1) = (0,1)$$
 and $T(e_2) = (1,0)$.

Therefore,

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

(b) Determine two invariant subspaces \mathcal{M} and \mathcal{N} for T such that $\mathbf{R}^2 = \mathcal{M} \oplus \mathcal{N}$ where neither \mathcal{M} nor \mathcal{N} is the zero subspace.

Solution: Let $v \in \mathbb{R}^2$ denoted by $v = \langle x, y \rangle$ such that $v \neq \vec{0}$, then

$$(A - \lambda I_2)v = \vec{0} \iff \begin{bmatrix} -\lambda & 1\\ 1 & -\lambda \end{bmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

$$\iff -\lambda x + y = 0 \quad \text{and} \quad x - \lambda y = 0$$

$$\iff x = \lambda y \quad \text{and} \quad y = \lambda x$$

$$\iff x = \lambda^2 x \quad \text{and} \quad y = \lambda^2 y$$

$$\iff \lambda = \pm 1.$$

For $\lambda = 1$, Av = 1v implies that y = x and x = y, so we get an eigenvectors of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

For $\lambda = -1$, Av = -v implies that y = -x and x = -y, so we get an eigenvectors of $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Therefore we can let $\mathcal{M} = \operatorname{span} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and let $\mathcal{N} = \operatorname{span} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

These are linearly independent and invariant under T because $\mathcal{M} \cap \mathcal{N} = \vec{0}$. Therefore, $\mathbb{R}^2 = \mathcal{M} \oplus \mathcal{N}$.

(c) Write a basis $\{u_1, u_2\}$ for \mathbf{R}^2 so that $\mathcal{M} = \mathrm{span}\ (u_1)$ and $\mathcal{N} = \mathrm{span}\ (u_2)$.

Solution: Using the conclusion of part (b), we can let the basis be

$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}.$$

(d) Write the matrix B that represents T relative to the basis $\{u_1, u_2\}$.

Solution:

$$T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix}$$
 and $T\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1 \end{pmatrix}$

Using these as the columns in matrix B,

$$B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

5. (a) Let $V = \mathbb{R}^2$. Find eigenvalues and eigenvectors for the linear operator T defined by T(x,y) = (2y,x).

Let A be a transformation matrix for T, then

$$A = [T(e_1) \quad T(e_2)] = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}.$$

Let $v \in \mathbb{R}^2$ denoted by $v = \langle x, y \rangle$ such that $v \neq \vec{0}$, then

$$(A - \lambda I_2)v = \vec{0} \iff \begin{bmatrix} -\lambda & 2 \\ 1 & -\lambda \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\iff -\lambda x + 2y = 0 \quad \text{and} \quad x - \lambda y = 0$$

$$\iff 2y = \lambda x \quad \text{and} \quad x = \lambda y$$

$$\iff 2y = \lambda^2 y \quad \text{and} \quad x = \frac{\lambda^2 x}{2}$$

$$\iff 2 = \lambda^2 \quad \text{and} \quad 1 = \frac{\lambda^2}{2}$$

$$\iff \lambda = \pm \sqrt{2}.$$

Therefore the eigenvalues are $\lambda = \sqrt{2}$ and $\lambda = -\sqrt{2}$.

Computing eigenvectors for $\lambda = \sqrt{2}$,

$$Av = \lambda v \iff \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\sqrt{2} \\ y\sqrt{2} \end{pmatrix}$$
$$\iff 2y = x\sqrt{2} \quad \text{and} \quad x = y\sqrt{2}$$

Which we can therefore conclude an eigenvector $\begin{pmatrix} 2 \\ \sqrt{2} \end{pmatrix}$ for $\lambda = \sqrt{2}$.

Computing eigenvectors for $\lambda = -\sqrt{2}$,

$$Av = \lambda v \iff \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x\sqrt{2} \\ -y\sqrt{2} \end{pmatrix}$$
$$\iff 2y = -x\sqrt{2} \quad \text{and} \quad x = -y\sqrt{2}$$

Which we can therefore conclude an eigenvector $\begin{pmatrix} 2 \\ -\sqrt{2} \end{pmatrix}$ for $\lambda = -\sqrt{2}$.

(b) Let $V = \mathbb{R}^2$. Find eigenvalues and eigenvectors for the linear operator T defined by T(x,y) = (-2y,x).

Let A be a transformation matrix for T, then

$$A = [T(e_1) \quad T(e_2)] = \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}.$$

Let $v \in \mathbb{R}^2$ denoted by $v = \langle x, y \rangle$ such that $v \neq \vec{0}$, then

$$(A - \lambda I_2)v = \vec{0} \iff \begin{bmatrix} -\lambda & -2 \\ 1 & -\lambda \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\iff -\lambda x - 2y = 0 \quad \text{and} \quad x - \lambda y = 0$$

$$\iff 2y = -x\lambda \quad \text{and} \quad x = \lambda y$$

$$\iff 2y = -\lambda^2 y \quad \text{and} \quad x = -\frac{\lambda^2 x}{2}$$

$$\iff 2 = -\lambda^2 \quad \text{and} \quad 1 = -\frac{\lambda^2}{2}$$

$$\iff \lambda = -\pm \sqrt{2}$$

$$\iff \lambda = \pm \sqrt{2}.$$

Therefore the eigenvalues are $\lambda = \sqrt{2}$ and $\lambda = -\sqrt{2}$.

Computing eigenvectors for $\lambda = \sqrt{2}$,

$$Av = \lambda v \iff \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\sqrt{2} \\ y\sqrt{2} \end{pmatrix}$$
$$\iff 2y = x\sqrt{2} \quad \text{and} \quad x = y\sqrt{2}$$

Which we can therefore conclude an eigenvector $\begin{pmatrix} 2 \\ \sqrt{2} \end{pmatrix}$ for $\lambda = \sqrt{2}$.

Computing eigenvectors for $\lambda = -\sqrt{2}$,

$$Av = \lambda v \iff \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x\sqrt{2} \\ -y\sqrt{2} \end{pmatrix}$$

 $\iff 2y = -x\sqrt{2} \text{ and } x = -y\sqrt{2}$

Which we can therefore conclude an eigenvector $\begin{pmatrix} 2 \\ -\sqrt{2} \end{pmatrix}$ for $\lambda = -\sqrt{2}$.

- 6. Let $T \in \mathcal{L}(V)$ and $S \in \mathcal{L}(V)$ be invertible.
 - (a) Show that T and $S^{-1}TS$ have the same eigenvalues.

Proof. Assume that λ is the eigenvalue of T. By the definition of eigenvalue, for some vector $v \in V$, we have $Tv = \lambda v$. And, again, the definition of eigenvalue, we will show that $S^{-1}TSv = \lambda v$.

$$S^{-1}TSv = \lambda v \iff S^{-1}T(SS^{-1})v = S^{-1}\lambda v \qquad \text{Multiply } S^{-1}$$
 $\iff S^{-1}Tv = S^{-1}\lambda v \qquad \text{Identity, } SS^{-1} = I$
 $\iff S^{-1}\lambda v = S^{-1}\lambda v \qquad \text{Eigenvalue of } T$
 $\iff \lambda S^{-1}v = \lambda S^{-1}v \qquad \text{Linearity of } S$
 $\iff \lambda S^{-1}Sv = \lambda S^{-1}Sv \qquad \text{Multiply } S$
 $\iff \lambda v = \lambda v \qquad \text{Identity}$
 $\iff \lambda v = Tv \qquad \text{Substitute } Tv$

(b) What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1}TS$.

We can manipulate the equation as follows,

$$S^{-1}TSv = \lambda v \iff SS^{-1}TSv = S\lambda v$$
 Multiply S $\iff TSv = \lambda Sv$ Identity, linearity.

Which, by the definition of eigenvector, $Tv = \lambda v$, if we substitute in v with Sv to the above manipulation, we get that Sv is an eigenvector of T.

7. Show that the operator $T \in \mathcal{L}(\mathbf{C}^{\infty})$ defined by

$$T(z_1, z_2, \ldots) = (0, z_1, z_2, \ldots)$$

has no eigenvalues.

Proof. Let $v \in \mathbb{C}^{\infty}$ such that $v \neq \vec{0}$. Denote v by $v = (z_1, z_2, ...)$ for some $z_i \in \mathbb{C}$. By the definition of an eigenvalue, we would have

$$Tv = \lambda v$$
 Definition of eigenvalue.
 $T(z_1, z_2, ...) = \lambda(z_1, z_2, ...)$ Substitute in for v .
 $(0, z_1, ...) = (\lambda z_1, \lambda z_2, ...)$ Definition of T and distribution of λ .

Which implies that $\lambda z_1 = 0$ and $z_i = \lambda z_{i+1}$ (for index $i \geq 1$). Therefore $\lambda = 0$ or $\lambda \neq 0$.

Case 1: $\lambda = 0$. Means that $z_1 = 0$ and by $z_i = \lambda z_{i+1}$ we would have $0 = z_1 = z_2 = \ldots$ This is a contradiction to the eigenvalue assumption that $v \neq \vec{0}$.

Case 2: $\lambda \neq 0$. Means that $z_1 \neq 0$ and by $z_i = \lambda z_{i+1}$ we would have $0 = z_1 = z_2 = \dots$ This is a contradiction to the assumption that $z_1 \neq 0$.

8. Suppose $T \in \mathcal{L}(V)$ and there exists nonzero vectors v and w so that

$$Tv = 3w$$
 and $Tw = 3v$.

Prove that 3 or -3 is an eigenvalue of T.

Proof. Because T is linear, for some $v, w \in V$, T(v + w) = T(v) + T(w).

$$T(v+w) = T(v) + T(w)$$
 Linearity.
 $= 3w + 3v$ Given.
 $= 3(w+v)$ Factor out 3.
 $= 3(v+w)$ Commutativity on V

Therefore 3 is an eigenvalue since T(v+w) = 3(v+w).

For the next eigenvalue, we will take a look at T(v-w).

$$T(v-w) = T(v) - T(w)$$
 Linearity.
 $= 3w - 3v$ Given.
 $= -3(-w+v)$ Factor out 3.
 $= 3(v-w)$ Commutativity on V

Therefore -3 is an eigenvalue since T(v-w)=-3(v-w).