04 - Salary Prediction

In this notebook, we will:

- Load the cleaned HR dataset.
- Prepare and encode features for regression.
- Split the data into training and testing sets.
- Train a simple linear regression model.
- We will then use GridSearchCV to test different tree based models, including GradientBoosting, RandomForest and ElasticNet.
- If more than 1 model shows promising results, we will also try to use a **stacking regressor** to combine models.
- We will try to find the best model to predict **MonthlyIncome**.
- Display sample predictions to illustrate how the model performs.

Since MonthlyIncome is a continuous variable, this task is approached as a regression problem.

Import Libraries & Load Data

We start by importing the necessary libraries and loading the cleaned dataset (saved as "hr_data_cleaned.csv").

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Regression libraries
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean absolute error, mean squared error,
r2 score
# Set plotting style
sns.set(style="whitegrid")
plt.rcParams["figure.figsize"] = (12, 8)
# Load the cleaned dataset
df = pd.read_csv("hr_data_cleaned.csv")
print("DataFrame shape:", df.shape)
df.head()
DataFrame shape: (1470, 36)
   Age Attrition
                     BusinessTravel
                                     DailyRate
                                                             Department
    41
                      Travel Rarely
             Yes
                                           1102
                                                                  Sales
```

1	49	No -	Travel_Fr	eque	ntly	27	9 F	Research	& Development
2	37	Yes	Trave	el_Ra	rely	137	3 F	Research	& Development
3	33	No -	Travel_Fr	eque	ntly	139	2 F	Research	& Development
4	27	No	Trave	el_Ra	rely	59	1 F	Research	& Development
0 1 1 2 2 4 3 5 4		;	e Educat 1 8 2 3	2 1 2 4	Life Life	Sciences Sciences Other Sciences Medical		mployeeCo	ount 1 1 1 1 1 1
7									
0 1 2 3 4		StandardHo	80 80 80 80 80			el Total 0 1 0 0 1 Lance Yea		kingYears 8 16 7 8 6 tCompany	3) 7 3
Yea 0	arsIn	CurrentRole	0			1		6	
4 1			3			3		10	
7 2			3			3		9	
0			3			3		8	
3 7									
4			3			3		2	
0 1 2 3 4	Years	SinceLastPro	omotion 0 1 0 3 2	Year	sWith(CurrManag	er 5 7 0 0 2	TenureBu	3-6 6-10 NaN 6-10 <3

Simple Linear Regression with Preprocessing

Overview

We train a **Linear Regression model** to predict **MonthlyIncome**.

We use a pipeline

A **Pipeline** ensures smooth data preprocessing before training the model:

- **SimpleImputer**: Handles missing values in numerical features by filling them with the median. We actually do not have any missing values, hence we wont be using this.
- **OneHotEncoder**: Converts categorical features (university, degree, field of study) into numeric format for the model.

```
from sklearn.model selection import train test split
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import StandardScaler
# Target variable
target = "MonthlyIncome"
# Features
categorical_features = ["BusinessTravel", "Department",
"EducationField", "Gender", "OverTime", "JobRole", "MaritalStatus"]
numerical_features = ["JobLevel", "Age", "DistanceFromHome",
"Education", "NumCompaniesWorked", "TotalWorkingYears",
"TrainingTimesLastYear",
                      "YearsAtCompany", "YearsInCurrentRole",
"YearsSinceLastPromotion", "YearsWithCurrManager"]
# Drop rows where target is missing
df = df.dropna(subset=[target])
# Define preprocessing (One-Hot Encoding)
categorical_transformer = OneHotEncoder(handle unknown="ignore")
full transformer = ColumnTransformer(
    transformers=[
        ("num", StandardScaler(), numerical_features), # Scale
numerical features
        ("cat", categorical transformer, categorical features),
```

```
1
# Define Linear Regression model pipeline
linear pipeline = Pipeline([
    ("preprocessor", full transformer),
    ("model", LinearRegression())
1)
# Train-test split
X = df[numerical features + categorical features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
# Train the model
linear pipeline.fit(X train, y train)
# Predictions
y_pred = linear_pipeline.predict(X_test)
# Evaluate model and print metrics
print(f"Linear Regression - Mean Squared Error:
{mean squared error(y test, y pred):.2f}")
print(f"Linear Regression - Mean Absolute Error:
{mean_absolute_error(y_test, y_pred):.2f}")
print(f"Linear Regression - R<sup>2</sup> Score: {r2_score(y_test, y_pred):.2f}")
Linear Regression - Mean Squared Error: 1367382.92
Linear Regression - Mean Absolute Error: 886.77
Linear Regression - R<sup>2</sup> Score: 0.94
```

GridSearchCV

- Exploring other models that possibly could be better than simple Linear Regression.
- Different models or better hyperparameters could improve performance.

Process

- Use GridSearchCV to test the following tree based models: DecisionTree,GradientBoosting,RandomForest.
- Since we are only using tree based models, there is no need for a StandardScaler. Additionally, we have no missing values, eliminating the need for a SimpleImputer.
- Tune max_depth, n_estimators, and learning_rate.

- We find the best parameters for each model to get the most optimised result.
- Compare results and select the best-performing model.

```
from sklearn.model selection import GridSearchCV
from sklearn.linear model import ElasticNet
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
# Target variable
target = "MonthlyIncome"
# Features
categorical_features = ["BusinessTravel", "Department",
"EducationField", "Gender", "OverTime", "JobRole", "MaritalStatus"]
numerical_features = ["JobLevel", "Age", "DistanceFromHome",
"Education", "NumCompaniesWorked", "TotalWorkingYears",
"TrainingTimesLastYear", "YearsAtCompany", "YearsInCurrentRole",
"YearsSinceLastPromotion", "YearsWithCurrManager"]
# Drop rows where target is missing
df = df.dropna(subset=[target])
# Define preprocessing (Handle missing values + One-Hot Encoding)
categorical transformer = OneHotEncoder(handle unknown="ignore")
full transformer = ColumnTransformer(
    transformers=[
         ("cat", categorical transformer, categorical features),
)
# Define pipelines for different models
pipelines = {
    "DecisionTree": Pipeline([("preprocessor", full transformer),
("model", DecisionTreeRegressor())]),
    "RandomForest": Pipeline([("preprocessor", full transformer),
("model", RandomForestRegressor())]),
    "GradientBoosting": Pipeline([("preprocessor", full transformer),
("model", GradientBoostingRegressor())])
# Define hyperparameter grids and find the best parameters
param grids = {
    "DecisionTree": {
         "model max depth": [3, 5, 10, None], # Limits depth of tree
(None = unlimited depth)
         "model min samples split": [2, 5, 10], # Minimum samples
required to split a node
```

```
"model__min_samples_leaf": [1, 2, 5], # Minimum samples
required at a leaf node
        "model max_features": [None, "sqrt", "log2"] # Number of
features to consider when splitting
    },
    "RandomForest": {
        "model n estimators": [100, 200, 300],
        "model max depth": [None, 10, 20],
        "model min samples split": [2, 5, 10]
    },
    "GradientBoosting": {
        "model__learning_rate": [0.01, 0.05, 0.1],  # Lower values
prevent overfitting
        "model n estimators": [100, 200, 300], # More trees improve
performance
        "model max depth": [3, 5, 7], # Controls tree complexity
        "model__subsample": [0.7, 0.85, 1.0] # Subsample reduces
variance
    }
}
# Train-test split (Ensure all years are represented)
X = df[numerical features + categorical features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=42)
# Fit and evaluate each model using GridSearchCV
results = {}
for name, pipeline in pipelines.items():
    print(f"Training {name}...")
    grid search = GridSearchCV(pipeline, param grids[name], cv=3,
scoring="neg_mean_squared_error", n_jobs=-1)
    grid search.fit(X train, y train)
    # Get best model
    best model = grid search.best estimator
    y pred = best model.predict(X test)
    # Evaluate
    mse = mean squared_error(y_test, y_pred)
    r2 = r2 score(y_test, y_pred)
    results[name] = {"MSE": mse, "R<sup>2</sup>": r2, "Best Params":
grid search.best params }
# Print results
for name, result in results.items():
    print(f"{name} Regression - MSE: {result['MSE']:.2f}, R2:
```

```
{result['R2']:.2f}")
    print(f"Best Parameters: {result['Best Params']}\n")

Training DecisionTree...
Training RandomForest...
Training GradientBoosting...
DecisionTree Regression - MSE: 4754752.82, R2: 0.78
Best Parameters: {'model__max_depth': 5, 'model__max_features': None, 'model__min_samples_leaf': 5, 'model__min_samples_split': 2}

RandomForest Regression - MSE: 5146368.90, R2: 0.76
Best Parameters: {'model__max_depth': 10, 'model__min_samples_split': 10, 'model__n_estimators': 300}

GradientBoosting Regression - MSE: 4575549.94, R2: 0.79
Best Parameters: {'model__learning_rate': 0.05, 'model__max_depth': 3, 'model__n_estimators': 100, 'model__subsample': 0.7}
```

Analysis:

- All models seem to perform similarly well after mutiple attempts at trial and testing the pest possible parameters for each model.
- However simple linear regression seems to be a substantially better model.
- Perhaps we can try to use a stacking regressor to see if any model can assist LR?

Stacking Regressor

Now we try to:

- Combine Gradient Boosting, Random Forest, Decision Tree and Linear Regression using a Stacking Regressor.
- Use different stacking configurations to see which model combination performs best.

```
"Stacking RF DT LR": StackingRegressor(
        estimators=[("rf", rf_model), ("dt", dt_model), ("lr",
lin model)].
final estimator=GradientBoostingRegressor(n estimators=100,
learning rate=0.05, random state=42)
    "Stacking GB DT LR": StackingRegressor(
        estimators=[("gb", gb model), ("dt", dt model), ("lr",
lin model)], final estimator=RandomForestRegressor(n estimators=100,
random state=42)
    "Stacking_RF_GB_DT_LR": StackingRegressor(
        estimators=[("rf", rf model), ("gb", gb model), ("dt",
dt_model), ("lr", lin_model)],
final estimator=GradientBoostingRegressor(n estimators=100,
learning rate=0.05, random state=42)
    ),
    "Stacking RF LR": StackingRegressor(
        estimators=[("rf", rf model), ("lr", lin model)],
        final estimator=GradientBoostingRegressor(n estimators=100,
learning rate=0.05, random state=42)
    ),
    "Stacking GB LR": StackingRegressor(
        estimators=[("gb", gb model), ("lr", lin model)],
        final estimator=RandomForestRegressor(n estimators=100,
random state=\overline{42})
    "Stacking DT LR": StackingRegressor(
        estimators=[("dt", dt_model), ("lr", lin_model)],
        final estimator=GradientBoostingRegressor(n estimators=100,
learning rate=0.05, random state=42)
}
# Train and evaluate each stacking model
results = {}
for name, model in stacking models.items():
    print(f"Training {name}...")
    pipeline = Pipeline([
        ("preprocessor", full_transformer),
        ("model", model)
    ])
    pipeline.fit(X train, y train)
    y pred = pipeline.predict(X test)
    mse = mean squared error(y test, y pred)
    r2 = r2 score(y test, y pred)
```

```
results[name] = {"MSE": mse, "R<sup>2</sup>": r2}
# Print results
for name, result in results.items():
    print(f"{name} - MSE: {result['MSE']:.2f}, R2: {result['R2']:.2f}\
Training Stacking RF GB DT...
Training Stacking RF DT LR...
Training Stacking GB DT LR...
Training Stacking RF GB DT LR...
Training Stacking RF LR...
Training Stacking GB LR...
Training Stacking DT LR...
Stacking RF GB DT - MSE: 4528687.10, R<sup>2</sup>: 0.79
Stacking RF DT LR - MSE: 4703000.71, R<sup>2</sup>: 0.78
Stacking_GB_DT_LR - MSE: 5485862.61, R<sup>2</sup>: 0.75
Stacking RF GB DT LR - MSE: 4751364.50, R<sup>2</sup>: 0.78
Stacking_RF_LR - MSE: 4675307.36, R<sup>2</sup>: 0.79
Stacking GB LR - MSE: 5392358.96, R<sup>2</sup>: 0.75
Stacking DT LR - MSE: 4606263.94, R<sup>2</sup>: 0.79
```

• Linear Regression seems to remain the best model based on it's R² value. This was despite multiple trial and errors, including letting LR be the final estimator. This resulted in all models having an R² value of approx 0.8. In any case, standalone LR has an R² score of 0.94. Hence, we decided to just simply go ahead with that model for our predictions.

```
# Create a DataFrame with actual and predicted values
results df = X test.copy() # Copy test features for reference
results df['actual MonthlyIncome'] = y test.values # Add actual
target values
results df['predicted MonthlyIncome'] = y pred # Add predictions
# View or save the result
results df.head(20)
      JobLevel Age DistanceFromHome Education
NumCompaniesWorked \
                                    5
                                                                   0
1041
            2
                                               3
184
             2
                                               2
                                                                   1
                 53
                                   13
                                   22
                                                                   1
1222
             1
                24
                                               1
```

67	3	45	7	3	2
220	2	36	5	2	8
494	1	34	14	3	1
430	1	35	22	3	0
240	1	39	1	4	7
218	3	45	6	3	6
49	1	35	8	1	1
665	1	47	2	4	1
926	3	43	4	4	3
617	2	44	4	3	9
361	1	40	10	4	3
1423	1	22	1	2	0
1244	1	30	2	4	0
1250	2	29	1	3	8
752	1	36	16	4	1
271	3	47	29	4	1
1055	4	34	15	3	7
1041 184 1222 67 220 494 430 240 218 49 665 926 617 361 1423	TotalWork	kingYears 6 5 1 25 16 8 6 7 23 1 3 23 10 10	TrainingTimesLastYear 4 3 2 2 3 3 2 1 2 2 3 3 2 3 2 3 3 2 3 2		\

1244	10	2	9 3
1250	10	5 1	
752 271	18 10	2	17 10
1055	16	3	14
1033	10	3	14
	YearsInCurrentRole	YearsSinceLastPromotion	
Years	WithCurrManager \		
1041	4	1	
3		-	
184	2	1	
3	0	0	
1222 0	0	U	
67	0	Θ	
0	ŭ	Ü	
220	11	3	
7			
494	2	0	
6			
430	4	4	
3	2	7	
240 2	2	1	
218	7	12	
8	,	12	
49	0	0	
1		-	
665	2	1	
2			
926	7	15	
17	2	2	
617 3	2	2	
361	7	1	
7	,	1	
1423	2	1	
2			
1244	7	0	
7	_		
1250	2	0	
2	10	15	
752 14	13	15	
271	7	9	
9	I	3	
1055	8	6	
9			

Gender	BusinessTravel \	Department	EducationField
1041	`Travel_Rarely	Sales	Medical
Male 184	Travel_Rarely	Research & Development	Medical
Female 1222	Travel_Rarely	Human Resources	Human Resources
Male 67	Travel_Rarely	Research & Development	Life Sciences
Male 220	Travel_Rarely	Research & Development	Life Sciences
Male 494	Travel Rarely	Sales	Technical Degree
Female 430	Travel Rarely	Research & Development	Life Sciences
Male 240	Travel Rarely	Research & Development	Medical
Female 218	Non-Travel	Sales	Medical
Female 49	Travel Rarely	Research & Development	Life Sciences
Male 665	Travel_Narely	Sales	Life Sciences
Female	_		
926 Female	Travel_Rarely	Sales	Marketing
617 Male	Travel_Rarely	Research & Development	Medical
361 Female	Travel_Rarely	Research & Development	Life Sciences
1423 Male	Travel_Rarely	Research & Development	Life Sciences
1244 T Female	ravel_Frequently	Research & Development	Technical Degree
1250 T Male	ravel_Frequently	Research & Development	Life Sciences
752 Female	Travel_Rarely	Research & Development	Life Sciences
271 Male	Non-Travel	Research & Development	Life Sciences
	ravel_Frequently	Research & Development	Medical
_	erTime	JobRole Marital	Status
1041	MonthlyIncome \ No	Sales Executive	Single
8463 184 4450	No Manufa	cturing Director Di	vorced

1222	No	Human Resources	Married		
1555 67	No	Research Scientist	Divorced		
9724	110	Nescaren setencisc	DIVOTECU		
220	No	Laboratory Technician	Single		
5914	V	Caller Decreased at the	D'arrand		
494 2579	Yes	Sales Representative	Divorced		
430	No	Laboratory Technician	Single		
4230	110	Edbord tory recimize an	Single		
240	No	Laboratory Technician	Divorced		
2232		·			
218	No	Sales Executive	Single		
8865	M-	Laboratoro Tabbilio	Ma and and		
49 2269	No	Laboratory Technician	Married		
665	Yes	Sales Representative	Single		
3294	103	Sates Representative	Single		
926	No	Sales Executive	Single		
10231			J		
617	No	Healthcare Representative	Single		
5933	Vaa	labamatam. Taabaisian	Manadad		
361 2213	Yes	Laboratory Technician	Married		
1423	No	Research Scientist	Single		
3375	110	Nesearen sezenerse	31ng to		
1244	No	Research Scientist	Single		
4968					
1250	Yes	Healthcare Representative	Single		
6294 752	No	Laboratory Technician	Single		
2743	IVO	Laboratory recimician	Single		
271	Yes	Manager	Married		
11849		J			
1055	No	Research Director	Divorced		
17007					
	nredicte	d MonthlyIncome			
1041	predicte	7566.721853			
184		7127.297313			
1222		3927.388603			
67	3118.635256				
220		3118.635256			
494		3118.635256			
430 240		3118.635256 3118.635256			
218		6444.223080			
49		3118.635256			
665		3132.513215			

926 617 361 1423 1244 1250	6491.975111 6240.055262 3118.635256 3118.635256 2971.171862 6863.662739
_	3118.635256
1244	2971.171862
1250	6863.662739
752	3118.635256
271	16365.336705

Feature Encoding & Train-Test Split

We also predicted **MonthlyIncome** using another set of predictors, for example, Age, DistanceFromHome, and OverTime. Then, we apply one-hot encoding to the categorical variables.

```
# Define our target variable and features
target = "MonthlyIncome"
features = ["Age", "DistanceFromHome", "OverTime", "BusinessTravel",
"JobLevel"1
# One-hot encode the categorical columns among the features
df encoded = pd.get dummies(df[features], drop first=True)
# Prepare feature matrix X and target vector y
X = df_encoded.values
y = df[target].values
# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
print("Training set shape:", X train.shape)
print("Test set shape:", X test.shape)
Training set shape: (1176, 6)
Test set shape: (294, 6)
```

Train a Random Forest Regressor

We also trained a Random Forest Regressor on our training data. This model is robust, handles non-linearities well, and can provide feature importance insights.

```
# Initialize and train the Random Forest Regressor
rf_regressor = RandomForestRegressor(n_estimators=100,
random_state=42)
rf_regressor.fit(X_train, y_train)
RandomForestRegressor(random_state=42)
```

Evaluate the Regression Model

We now predict MonthlyIncome on the test set and evaluate our model using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R² score.

```
# Predict MonthlyIncome on the test set
y_pred = rf_regressor.predict(X_test)

# Calculate evaluation metrics
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Mean Absolute Error: {mae:.2f}")
print(f"Mean Squared Error: {mse:.2f}")
print(f"R^2 Score: {r2:.3f}")

Mean Absolute Error: 1100.05
Mean Squared Error: 2226383.00
R^2 Score: 0.898
```

Sample Predictions

Here, we select a few samples from the test set and compare the predicted MonthlyIncome against the actual values.

```
# Select 5 random samples from the test set
sample indices = np.random.choice(X test.shape[0], size=5,
replace=False)
sample features = X test[sample indices]
sample true = y test[sample indices]
# Predict using the model for these samples
sample preds = rf regressor.predict(sample features)
# Create a DataFrame to display sample predictions
sample_df = pd.DataFrame(sample_features, columns=df_encoded.columns)
sample df["TrueMonthlyIncome"] = sample true
sample df["PredictedMonthlyIncome"] = sample preds
sample df
 Age DistanceFromHome JobLevel OverTime Yes
BusinessTravel_Travel_Frequently
0 28
                                       False
False
                                        True
1 28
True
2 44
                                       False
False
```

3 58	21	4	True	
False		•		
4 34	9	3	False	
False				
BusinessTrave PredictedMonthl	el_Travel_Rare LyIncome	ely Tro	ueMonthlyInco	ome
0	Tı	rue	33	310
4215.476167				
1	Fa	Lse	21	L54
2821.833381				
2	Tı	ˆue	191	L90
18899.860000				
3	Tı	^ue	178	375
14858.790000				
4	Tı	^ue	85	500
9434.635000				