```
1. p(T) = 1/4, p(H) = 3/4
```

$$p(6) = 1/16; p(2) = p(4) = 3/8$$
 5. 9/49 7. a) 1/2 b) 1/2 c) 1/3 d) 1/4 e) 1/4 9. a) 1/26! b) 1/26 c) 1/2

- **b)** 1/2 **c)** 1/3 **d)** 1/4 **e)** 1/4 **9. a)** 1/26! **b)** 1/26 **c)** 1/2 **d)** 1/26 **e)** 1/650 **f)** 1/15,600 **11.** Clearly, $p(E \cup F) \ge 1$
- **d)** 1/26 **e)** 1/650 **f)** 1/15,600 **11.** Clearly, $p(E \cup F) \ge p(E) = 0.7$. Also, $p(E \cup F) \le 1$. If we apply Theorem 2 from Section 7.1, we can rewrite this as $p(E) + p(F) p(E \cap F) \le 1$, or $0.7 + 0.5 p(E \cap F) \le 1$. Solving for $p(E \cap F)$ gives $p(E \cap F) \ge 0.2$. **13.** Because $p(E \cup F) = p(E) + p(F) p(E \cap F)$

 $p(E \cap F) \ge 0.2$. 13. Because $p(E \cup F) = p(E) + p(F) - p(E \cap F)$ and $p(E \cup F) \le 1$, it follows that $1 \ge p(E) + p(F) - p(E \cap F)$. From this inequality we conclude that $p(E) + p(F) \le 1 + p(E \cap F)$. 15. We will use mathematical induction to prove

ematical induction. **17.** Because $E \cup \overline{E}$ is the entire sample space S, the event F can be split into two disjoint events: $F = S \cap F = (E \cup \overline{E}) \cap F = (E \cap F) \cup (\overline{E} \cap F)$, using the distributive law. Therefore, $p(F) = p((E \cap F) \cup (\overline{E} \cap F)) = p(E \cap F) + p(\overline{E} \cap F)$, because these two events are disjoint. Subtracting $p(E \cap F)$ from both sides, using the fact that $p(E \cap F) = p(E) \cdot p(F)$ (the hypothesis that E and F are independent), and factoring, we have $p(F)[1-p(E)] = p(\overline{E} \cap F)$. Because $1-p(E) = p(\overline{E})$, this says that $p(E \cap F) = p(\overline{E}) \cdot p(F)$, as desired. **19. a**) 1/12

this says that $p(\overline{E} \cap F) = p(\overline{E}) \cdot p(F)$, as desired. 19. a) 1/12 b) $1 - \frac{11}{12} \cdot \frac{10}{12} \cdot \dots \cdot \frac{13-n}{12}$ c) 5 21. 614 23. 1/4 25. 3/8

- **23.** 1/4
- **25.** 3/8
- 27. a) Not independent
- **29.** 3/16

35. a)
$$p^n$$
 b) $1 - p^n$ c) $p^n + n \cdot p^{n-1} \cdot (1 - p)$ d) $1 - [p^n + n \cdot p^{n-1} \cdot (1 - p)]$ **37.** $p(\bigcup_{i=1}^{\infty} E_i)$ is the sum of