Elementary Number Theory

Hamjak Debbarma April 11, 2022

Notations

$$\mathbb{Z} = \{... - 3, -2, -1, 0, 1, 2, 3...\}$$

$$\mathbb{Z}^+ = \{1, 2, 3...\}$$

$$\mathbb{Z}^- = \{... - 3, -2, -1\}$$

$$\mathbb{Z}^{0+} = \{0, 1, 2, 3...\}$$

$$\mathbb{Z}^{0-} = \{... - 2, -1, 0\}$$

1 Introduction: Divisibility, Prime, GCD

Let $a, b \in \mathbb{Z}$ and a > 0 we say a divides b, a|b if b = ac for some $c \in \mathbb{Z}$. Here, a is the divisor or factor of b and b is the multiple of a.

Note:

- Sign has no effects: 6|12, -5|53, 9| 81
- Divisibility is a statement not an operator like divide /
- Divisibility is mostly deals with Positive Integers.

Properties of Divisibility

Let $a, b, c \in \mathbb{Z}$, then

- If a|b and a|c then a|b+c
- If a|b and b|c then a|c
- If a|b then a|mb for some integer m
- If a|b and a|c then a|bm+cn for some integer m,n

Definition 1 (Prime). Let p > 0 and $p \in \mathbb{Z}^+$, p is prime iff the divisor of p is 1 and p.

Definition 2 (Composite). Let M > 1 which is not prime is composite.

Remark 1. 0 and 1 are neither prime nor composite.

Theorem 1 (Fundamental Theorem of Arithmetic). Any integer greater than 1 can be written as a unique product of primes. Here, the primes ordering does not matter.

Definition 3 (Common Divisor). The integer c is the common divisor of a and b if a = cn and b = cm for some integer n, m or if c|a and c|b.

Definition 4 (GCD). gcd(a,b) is the largest common divisor of a and b, gcd(a,b) > 1 and by convention $a, b \neq 0$.

Definition 5 (Co-primes). If gcd(a,b) = 1 then a,b are relatively prime or coprime though a,b needs not be prime.

Theorem 2 (Division). Let $a, b \in \mathbb{Z}$, b > 0 then $\exists q, r \in \mathbb{Z}$ s.t a = bq + r where, $0 \le r < b$

2 Congruences

Definition 6. Let n be fixed positive integer, $a, b \in Z$ are said to be congruent modulo $n, a \equiv b \pmod{n}$ if $n \mid (a - b)$ i.e. a - b = nk for some $k \in \mathbb{Z}$.

Example 1.
$$n = 7$$
, $3 \equiv 24 \pmod{7} \implies 7|(3-24) \implies 7|-21$

Example 2.
$$6 \not\equiv 1 \pmod{3} \implies 3 \not\mid (6-1)$$

Note

- Any two integers are congruent modulo 1, $a \equiv b \pmod{1} \iff 1 | (a-b)$
- Two integers are congruent modulo 2 if either both even or both odd.

Lemma 1. If n > 1 and a be any integers and r be remainder when a/n then $a \equiv r \pmod{n}$

Proof.
$$a/n \implies a = qn + r$$
 where, $q, r \in \mathbb{Z}$ and $0 \ge r < n$ $a - r = qn \implies a \equiv r \pmod{n}$

Corollary 1. *If* $a \equiv r \pmod{n}$ *then* $r = \{0, 1, 2, ..., n-1\}$

Definition 7 (Complete System of Residue (CSR)). Given $a \in \mathbb{Z}$ let q and r be its quotient and remainder upon division by n i.e, $a = qn + r, 0 \ge r < n$. Then by definition of congruences $a \equiv r \pmod{n}$ and $r = \{0, 1, 2, \ldots n - 1\}$ called the least non negative residue(remainder) modulo n.

In general a collection of $\{a_1, a_2, \ldots, a_n\}$ is a **Complete System of Residue** modulo n if each $a_i \equiv r_i \pmod{n}$ i.e, $\{a_1, a_2, \ldots, a_n\} \equiv \{0, 1, 2 \ldots n - 1\} \pmod{n}$ and $a_i \not\equiv a_j \pmod{n}$

Example 3. Consider n = 4 and $S = \{12, 11, 8, 3\}$ does S form CSR modulo 4.

Soln. $r = \{0, 1, 2, 3\}$ and $12 \equiv 0 \pmod{4}$ and $8 \equiv 0 \pmod{4}$ implies, $12 \equiv 8 \pmod{4}$. So, S does not form CSR.

Theorem 3. For arbitrary integers a and b, $a \equiv n \pmod{n}$ iff a and b leaves the same non-negative remainder when divided by n.

```
Proof. a \equiv b \pmod{n} \implies a - b = nk \implies a = b + nk for some k \in \mathbb{Z} n|b \implies b = nq + r \implies a = nq + r + nk \implies a = (nq + nk) + r
Now, assume a = nq_1 + r and b = nq_2 + r then a - b = nq_1 + r - nq_2 - r \implies a - b = n(q_1 - q_2) \implies a \equiv b \pmod{n}
```

Theorem 4. Let n > 1 and $a, b, c, d \in \mathbb{Z}$ then the following properties hold:

- $a \equiv a \pmod{n}$
- if $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$
- if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$
- if $a \equiv b \pmod{n}$ then $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$
- if $a \equiv b \pmod{n}$ then $a^k \equiv b^k \pmod{n}$ for any $k \in \mathbb{Z}^+$