Cálculo Diferencial

Juan Cribillero Aching

Abril 17, 2024

Sesión 01

- 1 Continuidad
 - Continuidad sobre un conjunto
 - Continuidad lateral
- - Tipos de discontinuidad

Extensión y restricción de una función

Vamos a establecer lo que significan las siguientes afirmaciones:

- g es una extensión de f. En ese caso lo que se tiene es que la función g es el resultado de añadir puntos al dominio de f y definiendo su valor de alguna manera.
- f es una restricción de g. En ese caso lo que se tiene es que la función f resulta de retirar puntos al dominio de g y manteniendo la regla de correspondencia.

En ambos casos: $\mathrm{Dom}(f)\subset\mathrm{Dom}(g)$ y f(x)=g(x) para todo $x\in\mathrm{Dom}(f).$

Ejemplo

Sean las funciones $f: \mathbb{R} - \{0\} \to \mathbb{R}$, dada por $f(x) = \frac{1}{x}$ y

$$g:\mathbb{R} \to \mathbb{R}$$
, dada por $g(x) = egin{cases} rac{1}{x}, & ext{si } x
eq 0, \ 3, & ext{si } x = 0. \end{cases}$

Luego, g es un extensión de f.

Definición (Continuidad)

Decimos que $f:D\to\mathbb{R}$ es continua en $a\in D$ si dado un $\varepsilon>0$ cualquiera existe un $\delta > 0$ de modo que

$$|f(x) - f(a)| < \varepsilon$$
 para todo $x \in D$ con $|x - a| < \delta$.

Teorema

Sea $f:D\to\mathbb{R}$ y $a\in D'\cap D.$ Se tiene que f es continua en a, si y solo si,

$$\lim_{x \to a} f(x) = f(a)$$

Observación:

En el caso en que $a \in D$ pero $a \notin D'$ la función es continua en a.

Continuidad sobre un conjunto

Definición

Decimos que $f:X\to\mathbb{R}$ es una función continua cuando f es continua en todos los puntos $a\in X$ (i.e. cuando es continua en todos los puntos de su dominio).

Definición

Decimos que $f:X\to\mathbb{R}$ es continua en $A\subset X$ si f es continua en todos los puntos $a \in A$.

Teorema

Las siguientes funciones son continuas.

- Polinomios.
- Las funciones sen y \cos son continuas en \mathbb{R} .
- La función definida por $f(x) = \frac{1}{\sqrt{x}}$ es continua en $]0, +\infty[$
- La función \exp es continua en \mathbb{R} .
- La función ln es continua en $]0, +\infty[$
- La función $\llbracket . \rrbracket$ es continua en $\mathbb{R} \setminus \mathbb{Z}$.

Continuidad sobre un coniunto

Continuidad

Teorema

Si g es continua y f es una restricción de g entonces f también es continua.

Ejemplo

La función $f:]0,1[\to \mathbb{R}$ definida por $f(x) = \ln x$ es una función continua.

Continuidad sobre un coniunto

Teorema

Si $f \vee g$ son funciones continuas en a, entonces

- f g, f + g y $f \cdot g$ son continuas en a.
- Si $g(a) \neq 0$, entonces $\frac{f}{g}$ es continua en a.

Continuidad ÖÖÖÖÖÖ

Ejemplo

La función $f: \mathbb{R} - \{0\} \to \mathbb{R}$ definida por

$$f(x) = \frac{\sin x}{x}, \ x \neq 0$$

es una función continua.

¿Existe una extensión continua de f definida incluso en 0?

La función $q: \mathbb{R} \to \mathbb{R}$ definida por

$$g(x) = \begin{cases} \frac{\sec x}{x}, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

es una extensión continua de la función f.

Teorema

Sea f una función continua en x_0 , y g una función tal que $\lim_{t \to t_0} g(t) = x_0 \text{ y } t_0 \in (\mathrm{Dom}(f \circ g))'$, entonces

$$\lim_{t \to t_0} (f \circ g)(t) = f(x_0) = f(\lim_{t \to t_0} g(t))$$

Continuidad sobre un conjunto

Continuidad

Ejemplo

Evalúe

$$\lim_{t\to 0}\cos\left(\frac{\mathrm{sen}(t)}{t}\right)$$

Continuidad sobre un conjunto

Teorema

Si g es una función continua en t_0 y f es una función continua en $g(t_0)$, entonces $f\circ g$ es continua en t_0 .

Continuidad ÖÖÖÖÖÖÖ

Ejemplo

Sean las funciones $f(x) = \frac{x+2}{x-3}$ y $g(x) = \sqrt{1-x}$. Determine los valores donde $g \circ f$ es continua.

Resolución: La función f es continua en $]-\infty,3[\cup]3,+\infty[$ y la función g es continua en $]-\infty,1]$. Luego, $g\circ f$ es continua en $x \neq 3 \text{ con } 1 - \frac{x+2}{x-3} \ge 0.$

Por lo tanto, $g \circ f$ es continua en $]-\infty, -3[$.

Continuidad sobre un conjunto

Teorema

Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua en x_0 , y $a < f(x_0) < b$, entonces existe $V_{\delta}(x_0)$ tal que a < f(x) < b, para todo $x \in V_{\delta}(x_0) \cap \text{Dom}(f)$.

Demostración.

Para $\varepsilon = \min\{b - f(x_0), f(x_0) - a\}$ existe un $\delta > 0$ tal que si $x \in V_{\delta}(x_0) \cap \mathrm{Dom}(f)$, entonces $|f(x) - f(x_0)| < \varepsilon$, esto es

$$a \le f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon \le b$$

Corolario

Sea $f: \mathbb{R} \to \mathbb{R}$ continua en x_0 , y $f(x_0) > 0$, entonces existe $V_{\delta}(x_0)$ tal que 0 < f(x), para todo $x \in V_{\delta}(x_0) \cap \mathrm{Dom}(f)$

Definición (Continuidad por la izquierda)

Una función $f:X\to\mathbb{R}$ es continua por la izquierda en $a\in X$ si para todo $\varepsilon > 0$, existe $\delta > 0$, tal que si $x \in X$ y $a - \delta < x < a$ entonces $|f(x) - f(a)| < \varepsilon$.

Definición (Continuidad por la derecha)

Una función $f:X\to\mathbb{R}$ es continua por la derecha en $a\in X$ si para todo $\varepsilon > 0$, existe $\delta > 0$, tal que si $x \in X$ y $a < x < a + \delta$ entonces $|f(x) - f(a)| < \varepsilon$.

Teorema

Una función $f:X\to\mathbb{R}$ es continua en $a\in X$ si y solo si f es continua por la izquierda y por la derecha en a.

Observación

Si $a \in X'$. entonces

$$f$$
 es continua por la izquierda en $a \Longleftrightarrow \lim_{x \to a^-} f(x) = f(a)$

■ Si $a \in X'_+$, entonces

$$f$$
 es continua por la derecha en $a \Longleftrightarrow \lim_{x \to a^+} f(x) = f(a)$

Ejemplo

La función máximo entero es continua por la derecha en cualquier $a \in \mathbb{R}$, ya que

$$\lim_{x\to a^+}[\![x]\!]=[\![a]\!]$$

sin embargo no es continua por la izquierda en $a=n\in\mathbb{Z}.$ En efecto,

$$\lim_{x\to a^-}[\![x]\!]=n-1\neq n$$

Ejemplo

Analice la continuidad de las siguientes funciones:

a)
$$f(x) = \begin{cases} e^x, & \text{si } x \ge 0\\ x+1, & \text{si } x < 0 \end{cases}$$

b)
$$g(x) = \begin{cases} |x-2|, & \text{si } x \ge 0 \\ x^3, & \text{si } -1 < x < 0 \\ 3, & \text{si } x = -1 \end{cases}$$

Sesión 01

- 1 Continuidad
 - Continuidad sobre un conjunto
 - Continuidad lateral
- 2 Funciones discontinuas
 - Tipos de discontinuidad
- 3 Ejercicios
- 4 Referencias

Funciones discontinuas

De la definición de continuidad, existen dos formas de que una función $f: A \to \mathbb{R}$ no sea continua en $a \in \text{Dom}(f) = A$.

Funciones discontinuas 000000000000

- Que el límite no exista.
- En el caso que el límite exista, que el límite no sea igual a f(a).

Tipos de discontinuidad

Sean $f: X \to \mathbb{R}$ y $x_0 \in X$.

■ Decimos que la discontinuidad de f en x_0 es removible si existe $\lim_{x \to x_0} f(x) = L$ pero $L \neq f(x_0)$.

Tipos de discontinuidad

■ Decimos que la discontinuidad de f en x_0 es no removible si no existe $\lim_{x \to x_0} f(x)$.

Funciones discontinuas 00000000000

Discontinuidad removible

Si f tiene una discontinuidad removible en a entonces podemos definir una nueva función \hat{f} continua en a tan solo redefiniendo la regla de correspondencia de f en a.

$$\hat{f}(x) = \begin{cases} f(x) & , \ x \neq a, \\ L & , \ x = a. \end{cases}$$

Discontinuidad no removible

Si f tiene una discontinuidad no removible en a diremos que

- f tiene una discontinuidad de salto si los límites laterales de f en a existen pero son distintos.
- f tiene una discontinuidad esencial en a si por lo menos un límite lateral en a no existe (lo que incluye el caso cuando es infinito).

Ejemplo

La función f(x)=H(x-2) tiene una discontinuidad de salto en x=2.

Ejemplo

La función $f: \mathbb{R} \to \mathbb{R}$ definido por

$$f(x) = \begin{cases} 3x^2 & , x \le -1\\ \frac{1}{x+1} & , -1 < x \le 0,\\ 2 & , x > 0. \end{cases}$$

tiene una discontinuidad esencial en x=-1 y una discontinuidad de salto en x=0.

Ejemplo

La función $f: \mathbb{R} \to \mathbb{R}$ es dada por

$$f(x) = \begin{cases} 3^x - \ln(x^2 + 1) & , x \ge 0\\ 2^{\frac{1}{x}} + \cos x & , x < 0. \end{cases}$$

Indique los puntos en que f es continua.

Ejemplo

Sean a,b y c constantes y $f:\mathbb{R}\backslash\{0,3\}\to\mathbb{R}$ la función definida por

$$f(x) = \begin{cases} \frac{x^2 + x - a}{\sqrt{x+1} - 2} &, x > 3\\ \frac{2x^2 - bx - c}{x^2 - 3x} &, x < 3, \ x \neq 0. \end{cases}$$

Halle los valores de a,b y c de modo que se pueda definir una extensión continua de f en el punto x=3.

Tipos de discontinuidad

Ejemplo

Demuestre que: Si f es una función continua en a, entonces |f| es una función continua en a.

Tipos de discontinuidad

Ejemplo

Sea $f: \mathbb{R} \to \mathbb{R}$ una función tal que para todo $x, y \in \mathbb{R}$, $|f(x)-f(y)| \le k|x-y|$ para algún k>0. Demuestre que f es continua en cualquier $c \in \mathbb{R}$.

Funciones discontinuas 00000000000

Ejemplo

Sea f una función real de variable real tal que $|f(x)| \leq |x|$ para todo $x \in \mathbb{R}$. Pruebe que f es continua en x=0.

Funciones discontinuas

Tipos de discontinuidad

Ejemplo

Sean $f,g:\mathbb{R} \to \mathbb{R}$ funciones continuas tales que f(x) < g(x), para todo $x < \mathbb{R}$. Demuestre que existe una función $h:\mathbb{R} \to \mathbb{R}$ continua tal que $f(x) < 2h(x) < g(x), \ \forall x \in \mathbb{R}$.

Ejercicios ്ററ

Sesión 01

- - Continuidad sobre un conjunto
 - Continuidad lateral
- - Tipos de discontinuidad
- 3 Ejercicios

Ejercicios

1. Utilice la definición de continuidad y las propiedades de los límites para demostrar que cada una de las funciones siguientes es continua en el número dado a.

Eiercicios

- a) $f(x) = x^2 + \sqrt{7-x}$, a = 4.
- b) $g(x) = \frac{x^2 + 5x}{2x + 1}$, a = 2.
- 2. Utilice la definición de continuidad y las propiedades de los límites para demostrar que cada una de las funciones siguientes es continua en el intervalo dado.

 - a) $f(x) = x + \sqrt{x-4}$, $[4, +\infty[$. b) $g(x) = \frac{x-1}{3x+6}$, $]-\infty, -2[$.

Ejercicios

3. Encuentre los números en los que f es discontinua. i En cuáles de estos números f es continua por la derecha, por la izquierda o por ninguna de las dos? Trace la gráfica de f.

Eiercicios

a)
$$f(x) = \begin{cases} 2^x, & \text{si } x \le 1 \\ 3 - x, & \text{si } 1 < x \le 4 \\ \sqrt{x}, & \text{si } x > 4 \end{cases}$$
 b)
$$g(x) = \begin{cases} 1 + x^2, & \text{si } x \le 0 \\ 2 - x, & \text{si } 0 < x \le 2 \\ (x - 2)^2, & \text{si } x > 2 \end{cases}$$

Ejercicios

4. Suponga que f y g son funciones continuas tales que g(2) = 6 $y \lim_{x \to 2} [3f(x) + f(x)g(x)] = 36$. Encuentre f(2).

Eiercicios

5. ¿Cuál de las funciones f siguientes tiene discontinuidad removible en a? Si la discontinuidad es removible, determine una función q que concuerde con f para $x \neq a$ y sea continua en a.

a)
$$f(x)=\frac{x^4-1}{x-1}$$
, $a=1$
b) $g(x)=\frac{x^3-x^2-2x}{x-2}$, $a=2$

b)
$$g(x) = \frac{x^3 - x^2 - 2x}{x - 2}$$
, $a = 2$

c)
$$h(x) = [\![\sin x]\!], \ \overline{a} = \pi$$

Sesión 01

- 1 Continuidad
 - Continuidad sobre un conjunto
 - Continuidad lateral
- 2 Funciones discontinuas
 - Tipos de discontinuidad
- 3 Ejercicios
- 4 Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards
 Cálculo, Tomo I. 10ma ed.
 Cengage Learning

