

Computação Gráfica

Projeções em Paralelo

Professor: Luciano Ferreira Silva, Dr.

Projeções

- Visão humana: enxerga em 2D, a sensação de profundidade vem da diferença entre as vistas esquerda e direita do mesmo objeto;
- Projeção: conversão genérica de entidades de uma dada dimensão para outra de menor ordem;
- CG:

✓ Conversão 3D para 2D;

Tipos de projeção

Determinam a projeção:

- ✓ Plano de projeção: quadro;
- ✓ Centro de projeção: ponto de vista;

Técnicas de projeção 3D/2D:

- ✓ Projeção perspectiva (de grande interesse na CG);
- ✓ Projeção paralela;

Tipos de Projeções

- Proj. Perspectiva (cônica): o centro de projeção é um ponto próprio, em coordenadas finitas no sistema tridimensional. Esta projeção deforma a figura, diminuindo os objetos mais distantes e distorcendo os ângulos.
- Proj. Paralelas (cilíndricas): tem um ponto impróprio como centro de projeção - isto é; as linhas visuais encontram-se no infinito.
 Mantém a proporcionalidade da figura.

Tipos de Projeções

Projeções Paralelas

 Existem 2 tipos de projeções paralelas, baseadas na relação entre a direção da projetora e a normal ao plano de projeção:

✓ Ortogonais;

✓ Oblíquas;

Projeções Paralelas

Ortogonais:

✓ A direção de projeção é a mesma direção da normal ao plano de projeção;

Projeções Paralelas

Oblíquas:

- ✓ A direção de projeção não é a mesma direção da normal ao plano de projeção;
- ✓ Permite a vista de mais de um lado do objeto;

Projeções Ortogonais - Vistas

 Coleção das vistas de topo, frente e lado do objeto;

Projeções Ortogonais

Matriz:

- ✓ Supondo a projeção ortogonal no plano de projeção z = 0.
- ✓ A direção de projeção é a mesma da normal ao plano de projeção, no caso, o eixo z.
- ✓ Um ponto P(x,y,z) é projetado por $x_p = x$, $y_p = y$, $z_p = 0$.

$$[X^Y Z^1] = [X Y Z 1]. \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Projeções Ortogonais - Vistas

Matriz:

- ✓ Supondo agora a projeção ortogonal no plano de projeção $z = z_{T:}$
- ✓ Um ponto P(x,y,z) é projetado por $x_p = x$, $y_p = y$, $z_p = z_T$;

$$[X^Y Z^1] = [X Y Z 1]. \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & Z_T & 1 \end{bmatrix}$$

- Usadas para dar sensação 3D, a partir da proj. paralela;
- Mostra mais de uma face do objeto projetado
- O plano de projeção não pode ser perpendicular a um eixo principal;
- Pode ser:
 - ✓ Isométrica
 - ✓ Dimétrica
 - ✓ Trimétrica

Isométrica:

- ✓O plano de projeção está posicionado em relação aos planos do objeto de maneira tal que os três eixos do objeto parecerão ter a mesma mudança nas métricas;
 - Como o próprio nome indica (iso = mesmo, métrica = medida);
- ✓ Assim, se o objeto for um cubo, seus três lados parecerão continuar tendo a mesma medida quando projetado;

 Seja o cubo (objeto) abaixo e o plano de projeção da figura:

Dimétricas:

- ✓ Em vez dos três eixos sofrerem as mesmas mudanças de escala, apenas dois eixos terão a mesma redução;
- ✓ Nesse caso, o posicionamento em relação ao plano de projeção não é único;

Trimétricas:

✓ Cada eixo sofrerá uma transformação de escala própria;

- Fornecem sensação espacial e permitem medidas no objeto projetado;
- A direção de projeção não forma 90º com o plano de projeção;
- Mas, o plano de projeção é paralelo a um dos 3 eixos

Geralmente:

- ✓ Faz-se uma face paralela ao plano de projeção (normalmente, a face que tem mais detalhes)
- ✓A face paralela projeta-se em sua verdadeira grandeza;
- ✓ Não há deformação das formas desta face.

Comparações

Cavaleira ou cavalier:

- ✓ Quando as linhas de projeção fazem um ângulo de 45° com o plano de projeção;
- ✓Os pontos projetados preservam sua medida original nas direções não-paralelas ao plano de projeção;

Cabinet:

✓ As linhas de projeção fazem um ângulo específico com o plano de projeção, de modo a reproduzir os objetos com uma dimensão de metade do tamanho original.

Comparações - projeções de um cubo

Paralelas

planta ou elevação

iso-métrica

Cavaleira Cabinete

Cônicas

1 pto de fuga

2 ptos de fuga