Basic Maths for Non-mathematicians

Peleg Bar Sapir

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{k=1}^{N} f(x_{k}) \Delta x$$

$$(AB)^{\top} = B^{\top} A^{\top} \qquad \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$$

$$\vec{v} = \sum_{i=1}^{n} \alpha_{i} \hat{e}_{i}$$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \qquad A = Q^{\Lambda} Q^{-1}$$

$$\operatorname{Rot}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$T(\alpha \vec{u} + \beta \vec{v}) = \alpha T(\vec{u}) + \beta T(\vec{v}) \quad \langle \hat{e}_{i}, \hat{e}_{j} \rangle = \delta_{ij}$$

Chapter 9: General Vector Spaces

Let us review some properties of the space \mathbb{R}^n , some of them we already used implicetly without giving them too much thought.

Relating to vector-vector addition:

• The addition of any two vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ yields a vector $\vec{w} = \vec{u} + \vec{v}$ that is also in \mathbb{R}^n .

For
$$\vec{u}=\begin{pmatrix}1\\2\\-1\end{pmatrix}$$
 and $\vec{v}=\begin{pmatrix}-1\\3\\0\end{pmatrix}$ (both in \mathbb{R}^3),

$$\vec{w} = \vec{u} + \vec{v} = \begin{pmatrix} 0 \\ 5 \\ -1 \end{pmatrix} \in \mathbb{R}^3.$$

Relating to vector-vector addition:

• Vector addition is commutative: $\vec{v} + \vec{u} = \vec{u} + \vec{v}$.

Example

For the same vectors as before:

$$\vec{u} + \vec{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + (-1) \\ 2 + 3 \\ -1 + 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ -1 \end{pmatrix}.$$

$$\vec{v} + \vec{u} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 + 1 \\ 3 + 2 \\ 0 + (-1) \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ -1 \end{pmatrix}.$$

Relating to vector-vector addition:

• Vector addition is assosiative: $\vec{v} + (\vec{u} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$.

For
$$\vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$:
$$\vec{a} + (\vec{b} + \vec{c}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{bmatrix} 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.$$

Relating to vector-vector addition:

• Vector addition is assosiative: $\vec{v} + (\vec{u} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$.

For
$$\vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$:
$$\begin{pmatrix} \vec{a} + \vec{b} \end{pmatrix} + \vec{c} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{bmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.$$

Relating to vector-vector addition:

• The zero vector $\vec{0}$ is unique and has the property that $\vec{v} + \vec{0} = \vec{v}$ for any vector $\vec{v} \in \mathbb{R}^n$.

Example

$$\begin{pmatrix} 4 \\ -1 \\ 0 \\ 3 \\ -6 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 0 \\ 3 \\ -6 \\ 2 \end{pmatrix}$$

Relating to vector-vector addition:

• Any vector $\vec{v} \in \mathbb{R}^n$ has an opposite vector $(-\vec{v}) \in \mathbb{R}^n$ such that $\vec{v} + (-\vec{v}) = \vec{0}$.

Example

$$\begin{pmatrix} 4 \\ -1 \\ 0 \\ 3 \\ -6 \\ 2 \end{pmatrix} + \begin{pmatrix} -4 \\ 1 \\ 0 \\ -3 \\ 6 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Relating to scalar-vector product:

• Any scale by $\alpha \in \mathbb{R}$ of a vector $\vec{v} \in \mathbb{R}^n$ is also in \mathbb{R}^n .

Example

$$-3 \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \\ -1 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ -6 \\ 0 \\ 3 \\ -9 \\ 6 \end{pmatrix}$$

Relating to scalar-vector product:

• Any scale by $\alpha \in \mathbb{R}$ of a vector $\vec{v} \in \mathbb{R}^n$ is also in \mathbb{R}^n .

Example

$$-3 \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \\ -1 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ -6 \\ 0 \\ 3 \\ -9 \\ 6 \end{pmatrix}$$

Relating to scalar-vector product:

• Scalar-vector multiplication is associative: $\alpha \left(\beta \vec{v} \right) = \left(\alpha \beta \right) \vec{v}$.

$$-3\begin{bmatrix} 2 \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix} \end{bmatrix} = -3 \begin{pmatrix} 2 \\ -8 \\ 10 \end{pmatrix} = \begin{pmatrix} -6 \\ 24 \\ -30 \end{pmatrix}$$
$$(-3 \cdot 2) \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix} = -6 \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix} = \begin{pmatrix} -6 \\ 24 \\ -30 \end{pmatrix}.$$

Relating to scalar-vector product:

• Scalar-vector multiplication is distributive in respect to scalar addition: $(\alpha + \beta) \vec{v} = \alpha \vec{v} + \beta \vec{v}$.

$$(5-2) \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}.$$

$$5 \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ -5 \\ 0 \end{pmatrix} - \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}.$$

Relating to scalar-vector product:

• Scalar-vector multiplication is distributive in respect to vector addition: $\alpha(\vec{v} + \vec{u}) = \alpha \vec{v} + \alpha \vec{u}$.

$$5 \begin{bmatrix} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} \end{bmatrix} = 5 \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \\ 10 \end{pmatrix}.$$

$$5 \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -5 \\ 15 \end{pmatrix} + \begin{pmatrix} 0 \\ 10 \\ -5 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \\ 10 \end{pmatrix}.$$

Relating to scalar-vector product:

• The scalar $\alpha=1$ is neutral in respect to scalar-vector products: $1\vec{v}=\vec{v}$.

$$\begin{pmatrix}
 1 \\
 3 \\
 2 \\
 6 \\
 -5 \\
 7 \\
 -4
 \end{pmatrix} = \begin{pmatrix}
 1 \\
 3 \\
 2 \\
 6 \\
 -5 \\
 7 \\
 -4
 \end{pmatrix}$$

Abstract Vector Spaces

These properties are somewhat obvious on \mathbb{R}^n . However, many times it is worthwhile to use more abstract vector spaces, which can help us model diverse physical and theoretical systems, since once a construct behaves as a vector space, it is a relatively simple process to apply to it all the analysis tools learned so far.

We will not bother here with the formal definition of a vector space¹, but look at one example, which we will later expand on: the space of all real functions $f: \mathbb{R} \to \mathbb{R}$.

http://www.math.niu.edu/beachy/courses/240/06spring/vectorspace.html.

¹For such definition, see here:

• For any two real functions f(x), g(x) the addition (f+g)(x) = f(x) + g(x) is also a real function.

- For any two real functions f(x), g(x) the addition (f+g)(x) = f(x) + g(x) is also a real function.
- The addition of two real functions is commutative: (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).

- For any two real functions f(x), g(x) the addition (f+g)(x) = f(x) + g(x) is also a real function.
- The addition of two real functions is commutative: (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).
- This addition is also associative: xxx.

- For any two real functions f(x), g(x) the addition (f+g)(x) = f(x) + g(x) is also a real function.
- The addition of two real functions is commutative: (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).
- This addition is also associative: xxx.
- The function z(x) = 0 is the zero function, since for any other real function f(x),

$$(f+z)(x) = f(x) + z(x) = f(x) + 0 = f(x).$$

- For any two real functions f(x), g(x) the addition (f+g)(x) = f(x) + g(x) is also a real function.
- The addition of two real functions is commutative: (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).
- This addition is also associative: xxx.
- The function z(x) = 0 is the zero function, since for any other real function f(x),

$$(f+z)(x) = f(x) + z(x) = f(x) + 0 = f(x).$$

• For each real function f(x) there exists an opposite function (-f)(x) = -f(x), for which

$$f(x) + (-f(x)) = f(x) - f(x) = 0 = z(x).$$

Components (temp name)

Recall that a vector in \mathbb{R}^n can be written using its component in any basis, e.g. the standard basis vectors $\{\hat{e}_1, \hat{e}_2, \dots, \hat{e}_n\}$:

$$\vec{v} = v_1 \hat{e}_1 + v_2 \hat{e}_2 + \dots + v_n \hat{e}_n$$
$$= \sum_{i=1}^n v_i \hat{e}_i.$$

How can we "decompose" a function in a similar way?

For this purpose, the **Dirac delta function** comes in handy.

The Dirac Delta Function

Loosely speaking, we can define the Dirac delta function as

$$\delta(x) = \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0. \end{cases}$$

The Dirac Delta Function

We can then define infinitaly many dirac functions, for each point $\tilde{x} \in \mathbb{R}$:

$$\delta_{\tilde{x}}(x) = \delta(x - \tilde{x}).$$

Spanning a Function Space

Using the Dirac delta function, we can now decompose a function to its components in a similar way we did with vectors:

$$ec{v} = \sum_{i=1}^n v_i \hat{e}_i$$
 \Downarrow $f(x) = ext{to do.}$

Recall the definition of a dot product of two vectors \vec{u} and \vec{v} :

$$\langle \vec{u}, \vec{v} \rangle = u_1 v_1 + u_2 v_2 + \dots + v_n u_n$$
$$= \sum_{i=1}^n u_i v_i.$$

The dot product of two functions f(x), g(x) on the interval [a,b] can be similarly defined:

$$\langle f(x), g(x) \rangle = \int_{a}^{b} f(x)g(x) dx.$$

Note

Over \mathbb{C}^n , the dot product of two vectors \vec{u}, \vec{v} is defined as

$$\langle \vec{u}, \vec{v} \rangle = \bar{u}_1 v_1 + \bar{u}_2 v_2 + \dots + \bar{u}_n v_n$$
$$= \sum_{i=1}^n \bar{u}_i v_i,$$

where \bar{z} is the **complex conjugate** of z. For a real number x, $\bar{x}=x$ - i.e. real numbers are their own complex conjugates.

Note

The definition of a dot product of two complex functions f(z),g(z) is similar:

$$\langle f(z), g(z) \rangle = \int_{\Omega} \bar{f}(z)g(z) dz,$$

where Ω is the space over which the integration is done.

Sometimes, especially in physics, the complex conjugate of a function f(z) is denoted as $f^*(z)$.

If the dot product of two functions f(x), g(x) is zero, we say that the functions are **orthogonal** (just as with vectors).

Example

The functions $f(x)=x, f(x)=x^2$ are orthogonal over the entire real line, since

$$\langle x, x^2 \rangle = \int_{-\infty}^{\infty} x \cdot x^2 dx = \int_{-\infty}^{\infty} x^3 dx = 0.$$

(recall that integrals over the real line of anti-symmetric functions, such as x^3 , always equal 0)

Norm of Functions

The **norm** of a function f over an interval [a,b] can be defined as

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f^2(x) dx}.$$

Example

The norm of $f(x) = -x^2$ on [-2, 2] is

$$||f|| = \sqrt{\int_{-2}^{2} (-x^2)^2 dx} = \sqrt{2 \int_{0}^{2} x^4 dx}$$
$$= \sqrt{\frac{2}{5} x^5 \Big|_{0}^{2}} = \sqrt{\frac{2}{5} (32 - 0)} = \frac{8}{\sqrt{5}} \approx 3.578.$$

Norm of Functions

A function that has a norm of 1 is said to be **normalized** .

Example

The Gaussian distribution

$$\mathcal{G}(x) = e^{-\frac{x^2}{2}}$$

has a squared norm

$$\|\mathcal{G}\|^2 = \int_{-\infty}^{\infty} \left(e^{-\frac{x^2}{2}}\right)^2 dx = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$