実施例	式	MS
番号	پى <u>ت</u>	
1193	HO CH ₃	512(M+H)
1194	HO N Br	504(M+H)
1195	HON	516(M+H)
1196	HO CH ₃	497(M+H)
1197	HO NOME	456(M+H)
1198	HO NO	509(M+H)

実施例	式 式	MS
番号	<i></i> \	
1199	HO CH ₃	483(M+H)
1200	HO NO	427(M+H)
1201	HO NO	427(M+H)
1202	HO NO	477(M+H)
1203	HO S O CH ₃	519(M+H)
1204	HO NO	440(M+H)

3/000254		
実施例	表107 式	MS
番号 1205	HO NO	454(M+H)
1206	HO N F	325(M+H)
1207	HO N CI	341(M+H)
1208	HO N Br	385(M+H)
1209	HO CH ₃	363(M+H)
1210	HO N CN	332(M+H)
,		ı

3/000254		PC 1/3F 02/0
	表108	
実施例	式	MS
番号		251(M+U)
1211	HO CH ₃	351(M+H)
1212	HO CH ₃	335(M+H)
1213	0	349(M+H)
	HO CH ₃	
1214	HO N CH ₃	321(M+H)
1215	HO N F F	375(M+H)
1216	HON	367(M+H)

	表109	
実施例 番号	式	MS
1217	HO NO CI	433(M+H)
1218	HO P F F	391(M+H)
1219	HO NO-CH ₃	337(M+H)
1220	HO N Br	385(M+H)
1221	HON	341(M+H)
1222	HO	(332(M+H)

表'	11	0
----	----	---

	表110	MS
実施例 番号	式	IVIO
1223	Q.	395(M+H)
'===) . N	
	но	
	N CH ₃	
	CH ₃	
		375(M+H)
1224	0	3/5(101+11)
	HO	
	HO CI	
	N C	
	Cl	
1225	0	351(M+H)
1220		
	HO	
	HO CH ₃	
	CH ₃	
		321(M+H)
1226		321(10111)
	HON	
		i l
	CH CH	
	CH ₃	
1227	9	426(M+H)
ı	HO	
	N %	
		· ·
		460(M+H)
1228		1.00(101-1.1)
	HO	
	N O	
,		

実施例	式式	MS
<u>番号</u> 1229	но	442(M+H)
1230	HO CH ₃	468(M+H)
1231	но	456(M÷H)
1232	HO HO CI	494(M+H)
1233	HO CN	451(M+H)
1234	HO CH ₃	468(M+H)

	表112	MS
実施例	式	IVIS
1235	HO HO CH ₃	498(M+H)
1236	HO NO	476(M+H)
1237	HO	502(M+H)
1238	HO N S NH	
1239	HO NH ₂	469(M+H)

ᆂ.	11	2
コマ	1 1	

実施例	式	Ms
香号		
<u>番号</u> 1240	HO N N N N N N N N N N N N N N N N N N N	483(M+H)
1241	HO NOH	408(M+H)
1242	HO H	460(M+H)
1243	HO CH ₃	468(M+H)
1244	HO HO F F	494(M+H)
1245	H ₃ C H ₃ C CH ₃	454(M+H)

丰	1	ન	٨
70	2	- 1	4

	表114	MS
実施例	式	IVIS
番号		(00(04:11))
1246	H ₃ C _\	468(M+H)
1	>	
1		ł
]
]	HO N	
	N V	
1		
		1
		400/34:11)
1247	0	498(M+H)
İ '	HO	
	CH ₃	
		400(44)10
1248	O CH3	482(M+H)
	HO	
1	H ₃ ¢ CH ₃	1
	N O	
1249	H₃C	468(M+H)
	>CH₃	
	0 ~	
	но	
[N O	
1		
1250	,cı	460(M+H)
1230		
l		
	()	
	0, >=	
) Ĥ	- [
	HO	}
		}

,	表115	
実施例 番号	式	MS
1251	HO N	442(M+H)
1252	HO CH ₃	468(M+H)
1253	но	456(M+H)
1254	HO N H	494(M+H)

	表116	
実施例 番号	式	MS
1255	HO N N N N N N N N N N N N N N N N N N N	451(M+H)
1256	HO CH ₃	468(M+H)
1257	HO CH ₃	498(M+H)
1258	HO N	470(M+H)

実施例		MS
番号	±4,	1010
1259	HO N	476(M+H)
1260		502(M+H)
	HO	
1261	NH ₂	505(M+H)
1262	HO NH ₂	469(M+H)

表	1	1	8
			_

	衣110	MC
実施例	式	MS
番号		
1263		483(M+H)
'200		
]		
1	S J	
	0,)=N	
	Q _N	
1	Ĭ H	
1	но	
	N	
1	· (
1264	,0	408(M+H)
1204	//	` ' '
		1
1	р у у у у у у у у у у у у у у у у у у у	
		1
	HO Y	1
		1
	N C	
		1
1		
ì		
		100 (11.15
1265		460(M+H)
İ		
	/	
	l ĭ ≯−N	1 1
	HO	
	N C	
-		
		l
		460(MTTT)
1266	CH ₃	468(M+H)
	(')'	
	0, >=	
1	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
j)	1
1	HON	
ļ		
	, N	
1		
1		
L		

_	表119	
実施例 番号	式	MS
1267	F F F	494(M+H)
1268	CH ₃ CH ₃	454(M+H)
1269	HO CH ₃	468(M+H)
1270	HO N	498(M+H)

==	a	$\alpha\alpha$
75	1	20

	表120	
実施例 番号	式	MS
1271	H ₃ C(482(M+H)
'2''	CH ₃	`
	CH ₃	
	o, >==/	
) H	
	HO N	
1272	CH ₃	468(M+H)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	o, ⟩≕∕ `cH₃	
	HO	
1273	Cl	494(M+H)
	()—cı	
)	
	HO	
	N	
		-
		484(M+H)
1274	O-CH ₃	+04(IVITT)
	→ H	
	HO	
	N W	
1		

-	4	7	1
333	ı	4	E

	表121	·
実施例 番号	式	MS
1275	HO N N N N N N N N N N N N N N N N N N N	519(M+H)
1276	HO N	427(M+H)
1277	HO N N N N N N N N N N N N N N N N N N N	456(M+H)
1278	HO	516(M+H)

ch+- (D)	五	MS
実施例 番号		I WIO
1279	O CH ₃	436(M+H)
	9	
	HO N	
	N S	
1280		426(M+H)
1200		
	N PH	
	HO	
		4.40 (3.4.1.1)
1281		440(M+H)
	HO	
1282		454(M+H)
	Q,	
) P	
	но	
1283		468(M+H)
	0.	
	HO	

	表123	MS
実施例 番号	式	1012
1284		482(M+H)
	HO	
1285	✓ CH ₃	406(M+H)
1205	HO N	
1286	H ₃ C CH ₃	420(M+H)
	HO CH ₃	
1287	Cl	508(M+H)
	HO N	
1288		508(M+H)
	HON	

	表124	1
実施例 番号	式	MS
1289	HO	509(M+H)
1290	HO N	455(M+H)
1291	HO N H	494(M+H)
1292	HO N N	418(M+H)

	表125	
実施例	式	MS
1293	HO	490(M+H)
1294	HO N H ₃ C CH ₃	496(M+H)
1295	HO N	477(M+H)
1296	HO N.	508(M+H)
1297	HO CH ₃	470(M+H)

3× 120

実施例	式	MS
番号	ياسلم	""
1298	H—CH ₃	435(M+H)
	HO N N	-
1299	CI	488(M+H)
	HO N	
1300	HO N CH ₃	454(M+H)
1301	HO N H	504(M+H)

	表127	
実施例 番号	式	MS
1302	HO HN O-CH ₃	513(M+H)
1303	HO	399(M+H)
1304	HO N	530(M+H)
1305	HO H ₃ C	504(M+H)
1306	HO H ₃ C	440(M+H)

	表128	MS
実施例	式	IVIS
番号 1307	ÇI	494(M+H)
1007	9	`
	HO	
	N O CI	
1308	,CI	508(M+H)
	HO N	
!	N	
1309		518(M+H)
1309		
	HO HO	
	N O	
1310		532(M+H)
	H /	
	но	
		1
1311	CI	522(M+H)
	CI N C	
	но	
1		

	表129	T 840
実施例 番号	式	MS
1312	$_{ m CH_3}$	546(M+H)
1012	O	
	HO N	
	N O	
4040		484(M+H)
1313	но,	404(101711)
	0	
	N N	
	HO	
	N No	
1314	0	517(M+H)
1314		
	HO	
	ČI ČI	
		400 (84.11)
1315		488(M+H)
	HO	
	N N	
1316	,cı	481(M+H)
	но	
	N S	

	表130	110
実施例 番号	式	MS
1317	HO	413(M+H)
1318	HO	423(M+H)
1319	HO NO	504(M+H)
1320	HO N N N N N N N N N N N N N N N N N N N	510(M+H)
1321	HO N CI	522(M+H)
1322	HO N N F F	522(M+H)

	表131	
実施例 番号	式	MS
1323	0	484(M+H)
	HON	
	N H	
	H >	
	O—CH ₃	
1324	0	449(M+H)
	HO N /	
	H H	
	CH ₃	
1325	9	502(M+H)
	но	
	l l l	
1000		491(M+H)
1326		491(101711)
	но	
	N	
1327	H₃C	496(M+H)
-	CH ₃	
	→ H	
	HO	

	表132	MS
実施例	式	1810
番号		497(M+H)
1328	0	()
	HO N P	
	s s	
	N N	
	, N	
		1
1329	0	470(M+H)
1020	Ĭ	
	HO NO	
		1
1	но́	
1330	Q	530(M+H)
	N P	
	HO	
İ		
		ECO(BALLE)
1331	CI	502(M+H)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Q /	
	Ŋ Ŋ	
	HO N /	
	N	
1332	0	522(M+H)
1		
	HO N /	
	() ()—a	
	CI	
)		

	表133	
実施例 番号	式	MS
1333	HO	491(M+H)
1334	HO N CI	536(M+H)
1335	HO N N N N N N N N N N N N N N N N N N N	547(M+H)
1336	но	484(M+H)
1337	HO CH ₃	484(M+H)
1338	HO	498(M+H)

	表134	T
実施例 番号	式	MS
1339	Q	528(M+H)
1000		
	HU T T	
	CH ₃	
	H \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1040	H ₃ C	498(M+H)
1340		490(101711)
	HON	
	N N	
	н _з с	514(M+H)
1341		514(IVITH)
	HO N	
	N	
	() ()-0	
	CH ₃	
	O CH ₃	
1342	0.113	513(M+H)
1042		` ′
	HO	
	N N	
	NO ₂	
1242		488(M+H)
1343	l I	[-55(WI + 1)
	HON	
	N CI	
	N N CI	
1344	Q	502(M+H)
	HO	
*		
	<u> </u>	

	表135	
実施例 番号	式	MS
1345	0	488(M+H)
	но	
	, H	
	CI	
1346	0	502(M+H)
10.0		
	HO	
	N N	
	H \	
1347		499(M+H)
1347	0	400(W111)
1	HO	
	N N	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1348	,	480(M+H)
1340		400(101711)
1	HO	
	N N	
	Harrie Harrison	
		C00/M115
1349		522(M+H)
	HON	>
	N N	
	, N	
	FF	
1350	O	546(M+H)
	HO N / O	
	Br	

実施例		MS
番号	式	IVIO
1351	HO N P	482(M+H)
	CH ³	
1352	0	484(M+H)
	HO H ₃ C CH ₃	
1353	0	609(M+H)
	HO N / N	, ,
	H	
	o s	
	CH ₃	
1354		532(M+H)
	HO	
1355	o o	480(M+H)
	HO NH	
	H H	
1356	0	566(M+H)
	HO NO	
	H P	
•		
	ĊI	

=	4	27
त्रए		31

実施例	表13/	MS
番号	<i>1</i> 4	1010
1357		602(M+H)
	HO N O	
1358		596(M+H)
	HO NO	
	H N N	
1359	0	491(M+H)
	HO	
	H H	
	N	
1360	O C	491(M+H)
	HO N / N	401(10111)
	N N N N N N N N N N N N N N N N N N N	
	H \	
1361	0	491(M+H)
	HON	•
	H-\\	
	, , ,	
1362		496(M+H)
	HO	
	N N N	
	CH₃	
		L

	表138	
実施例 番号	式	MS
1363	HO NO CH ₃	512(M+H)
1364	HO N N N N N N N N N N N N N N N N N N N	494(M+H)
1365	HO N CI	488(M+H)
1366	HO NH NH	481(M+H)
1367	HO N CI	524(M+H)
1368	HO S N	497(M+H)

莱	1	39

実施例	式	MS
番号		472(M+H)
1369		1.2()
	но	
	H H	
1370	9	469(M+H)
	HO N /	
		470(M+H)
1371		470(10111)
	HON	
	N N N	
	CH ₃	
1372	0	469(M+H)
	HO N P	
	Ň	
1373	0	494(M+H)
13/3		
	HO	
	N H H	
1374	0	458(M+H)
	HO N /	
	NH	
,		

	表140	
実施例 番号	式	MS
1375	HO N CI	612(M+H)
1376	HO NO CH ₃	554(M+H)
1377	HO N O-CH ₃ CH ₃	542(M+H)
1378	HO N N N N N N N N N N N N N N N N N N N	526(M+H)
1379	HO N H ₃ C CH ₃	496(M+H)
1380	HO CH ₃	510(M+H)

- · · · · · · · · · · · · · · · · · · ·	表141	NAC
実施例 番号	式	MS
1381	Q	540(M+H)
	N	
	HO	
	N N	
		525(M+H)
1382	0	525(101711)
	HO CH ₃	
	N CH ₃	
1383	0	558(M+H)
	HO	
	N N	
1384		523(M+H)
1304	N / O	
}		
	N-H	
	CI	
	Cl	
1385	Q	539(M+H)
	HON	
	H	
	H H H	
İ		
	0 F F	

	表142	
実施例 番号	式	MS
1386	HO N CH ₃	533(M+H)
1387	HO NO ₂	500(M+H)
1388	HO N N N N N N N N N N N N N N N N N N N	485(M+H)
1389	HO N CI	523(M+H)
1390	HO N N N N N N N N N N N N N N N N N N N	512(M+H)

#	1	A	3

	表143	MS
実施例 番号	式	
1391	HO N CI	540(M+H)
1392	HO H ₃ C N N N N N N N N N N N N N N N N N N N	527(M+H)
1393	9	525(M+H)
	HO N F F F	
1394	0	507(M+H)
	HO N N N N N N N N N N N N N N N N N N N	
1395	0 .	491(M+H)
	HO HO HO CI	-
1396	1 11	506(M+H)
•	HO	

実施例		MS
番号		
1397	O C	522(M+H)
	HO N /	
	N N	
	CI	
		1
	α [/]	
1398	Q. ·	538(M+H)
	N / O	
	HO	
	H H	
	()	
1399	F	522(M+H)
1399		022(101-11)
	HON	
	N CI	
1400	ci′	530(M+H)
1400		000(10111)
1	HON	
	N N	
	H .	
1401		600(M+H)
1401		
	но	
	H H	
	()	
	CI—(
	Cl	
1402	O O	504(M+H)
	CH ₃	
	THO Y Y	
	N CH ₃	
	H "N N	

	表145	T 100 1
実施例 番号	式	MS
1403	HO N O O-CH ₃ H ₃ C-O	534(M+H)
1404	0	475(M+H)
	HO N CI	
1405	O H	472(M+H)
	HO	
1406	0	455(M+H)
	HON	400(M11)
1407	9	469(M+H)
	HON	
1408	9	547(M+H)

実施例	五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五	MS
番号	10	
1409	HO HO NO ₂	529(M+H)
1410	HO HO H ₃ C N-CH ₃	435(M+H)
1411	HO	504(M+H)
1412	HO N	469(M+H)
1413	HO HO CI	522(M+H)
1414	HO CI	488(M+H)

	表147	1 140
実施例 番号	式	MS
1415	HO HO CI	502(M+H)
1416	HO	488(M+H)
1417	HO N CI	502(M+H)
1418	HO N	455(M+H)
1419	HO N	455(M+H)
1420	HO CI	522(M+H)

	表148	
実施例 番号	式	MS
1421	HO N	469(M+H)
1422	HO HO CI	536(M+H)
1423	HO H ₃ C CH ₃	510(M+H)
1424	HO HO H	494(M+H)
1425	HO	458(M+H)

	表149	
実施例 番号	式	MS
1426	ÇI	612(M+H)
	HO N CI	
1427	ОН	526(M+H)
1421	HO N	
1428	O H	480(M+H)
	HO N N N N N N N N N N N N N N N N N N N	
1429	O	441(M+H)
	HO	
1430	O H	511(M+H)
,	HO CH ₃	

	表150	
実施例	式	MS
番号 1431	HO N N	530(M+H)
1432	HO N N N N N N N N N N N N N N N N N N N	497(M+H)
1433	HO N	441(M+H)
1434	HO N N N N N N N N N N N N N N N N N N N	491(M+H)
1435	HO N	491(M+H)
1436	HO HO HO HO HO HO HO HO HO HO HO HO HO H	491(M+H)

market the later	表151	1 150
実施例	式	MS
番号 1437	HO NO CI	524(M+H)
1438	HO N CI	508(M+H)
1439	HO HO CI	474(M+H)
1440	HO HO	490(M+H)
1441	HO HO CI	508(M+H)
1442	HO CI	474(M+H)

	表152	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
実施例 番号	式	MS
1443	HO	516(M+H)
1444	HO HO CI	
1445	HO N S CH ₃	504(M+H)
1446	HO NO-CH ₃	534(M+H)
1447	HO	475(M+H)

実施例	式	MS
番号_		
1448	HO	530(M+H)
1449	7	440(M+H)
1449	HO N	
1450	0	490(M+H)
	HO	474(M+H)
1451	HO N N N CI	
1452	HO	441(M+H)
1453	HO	508(M+H)
	Cl	

表:	154

	表154	MS
実施例 番号	注	IVIS
1454	0	455(M+H)
,	}	
	но	
	N	
1455		522(M+H)
1455		
	HON	
	H CI	
	a' ·	
1456		496(M+H)
1456		
	HON	
		-
	l H	
	H _{.C} —CH ₃	
	H ₃ C H ₃ C	1
		516(M+H)
1457		
	но	
	N N	
1,755		426(M+H)
1458		
	HO	
1459	Q	482(M+H)
	N =	
	HO CH ₃	
	H ₃ C CH ₃	
L		

	表155	
実施例 番号	式	MS
1460	HO N O-CH ₃ CH ₃	486(M+H)
1461	HO	516(M+H)
1462	HO N N	427(M+H)
1463	HO N	476(M+H)
1464	HO N CI	460(M+H)
1465	HO	502(M+H)

	表156	
実施例	式	MS
番号	,Cl	586(M+H)
1466		
	cl——《 》	
	но	
110=		518(M+H)
1467		
	но	·
	"	
		530(M+H)
1468		
	но	
	N N	
1.		
1469	0	598(M+H)
	HO N CI	
	N N	
1.170		512(M+H)
1470	OH	
	HO	
1471	0	544(M+H)
	HON	

	表157	
実施例 番号	式	MS
番号	U	440(M+H)
1472	HO	
1473	QH	490(M+H)
	HO	
1474	0 /-K /-	474(M+H)
	HO CI	
1475		441 (M+H)
	HO N	E08(M+H)
1476	HO CI	508(M+H)
1477	HO	455(M+H)

3/000254	表158	
実施例 番号	式	MS
番号 1478	HO CI	522(M+H)
1479	HO H ₃ C CH ₃	496(M+H)
1480	но	516(M+H)
1481	HO	426(M+H)
1482	H ₃ C CH ₃ CH ₃	482(M+H)

表159 式 MS 実施例 番号 486(M+H) O-CH₃ 1483 516(M+H) 1484 427(M+H) 1485 476(M+H) 1486

	表100	MS
実施例	式	1870
番号	Cl	460(M+H)
1487		
	>= /	
	n / h	
	но	
1488		502(M+H)
1		
	O / H	
	но	
		586(M+H)
1489		300(101+11)
į	HO CI	
	N N	
4400		518(M+H)
1490	// \	
	l i /-h /-h	
	HO	

	1	۵.	1
-33	1	U	ı

	表161	MS
実施例 番号	式	IVIC
1491	HO N	530(M+H)
1492	CI————————————————————————————————————	598(M+H)
		512(M+H)
1493	HO NOH	544(M+H)
1494	HON	544(WI+TI)

	表162	,
実施例 番号	式	MS
1495	HO N CH ₃	580(M+H)
1496	HO NO CI	550(M+H)
1497	HO CH ₃	606(M+H)
1498	O-CH ₃	580(M+H)
1499	HO CI	550(M+H)

	表 163	MS
実施例	式	Olvi
番号	11.0	606(M+H)
1500	H ₃ C CH ₃ CH ₃	
	HO N CI	
1501	O 	630(M+H)
	HO CH ₃	
	F F	600(M+H)
1502	HO	300((0) 11)
	O F F	050/44.11)
1503	HO CH ₃	656(M+H)
	OF F	

	表104	MS
実施例	式	I IVIO
番号 1504	O-CH ₃	630(M+H)
	HO N F F	
1505		600(M+H)
	HO P F F	
		050/MILD
1506	H ₃ C CH ₃ CH ₃	656(M+H)
	HO N F F	
1507	HO N CH ₃	580(M+H)
	CI	

13/000234	表165	
実施例	式	MS
番号 1508	HO N N OCI	550(M+H)
1509	HO N CH ₃ CH ₃ CCH ₃	606(M+H)
1510	O-CH ₃	580(M+H)
1511	HO N CI	550(M+H)
1512	HO N CH ₃	546(M+H)

丰	1	66
বছ	1	oo

	表 100	MS
実施例 番号	式	10.00
番号		516(M+H)
1513	O	310(10111)
	HO	
	N N	
1514	Q Q	572(M+H)
-	HO CH ₃	
1		
	H ₃ C CH ₃	
1515	,O—СН ₃	546(M+H)
1515		
	P	
	HO	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1		
		516(M+H)
1516		0.0()
	HO	
1		
		572(M+H)
1517	H ₃ C	5/2(V T T)
	CH ₃	
	- Oi 13	
}	(<u> </u>	
ŀ	HO	
1	N S	
I		
,		
1		

	表167	
実施例 番号	式	MS
1518	0	602(M+H)
	HO	
	N N N N N N N N N N N N N N N N N N N	
	CH ₃	
	H ₃ C CH ₃	
4540		E70/15-10
1519		572(M+H)
	HO	
	H ₂ C —CH ₃	
	H ₃ C CH ₃ H ₃ C	
1520	0	628(M+H)
	HO	
	CH ₃	
	H ₃ C CH ₃	
	H ₃ C → CH ₃	
4504		606/44:11
1521	O CI	606(M+H)
	HO	
	H ₂ C CH ₃	
	H ₃ C — CH ₃ H ₃ C	
L		1

夫	1	68

	表168	1 110
実施例	式	MS
香号 1522	0	573(M+H)
1022	Ĭ	
	но	
	N N	
	·	
	H₃C → CH₃ H₃C	
	1130	
1523	Q	606(M+H)
	N /	
	но	
	N CI	
	H ₂ C CH ₃	
	H ₃ C H ₃ C	
1524	,O—CH ₃	602(M+H)
	\(_\)	
	O CH ₃	
	O CH ₃	
	H ₃ C CH ₃	
		572(M+H)
1525		J12((VITI)
	O CH ₃	
	N /	
	H ₃ C CH ₃	
	N C	

	表169	
実施例 番号	式	MS
1526	H ₃ C CH ₃ CH ₃ CH ₃	628(M+H)
1527	HO N H ₃ C CH ₃	6 ј 6(М+Н)
1528	CI N H ₃ C CH ₃	606(M+H)
1529	HO N CH ₃	614(M+H)

中华河	表170	1 8/0
実施例 番号	式	MS
1530	0	584(M+H)
	HO	
	F	
1531	f F	640(M+H)
1331		040(101717)
	HO CH ₃	
	N N	
	H ₃ C CH ₃	
	FF	
1532	O	618(M+H)
	HO	•
	N CI	
	F	
	f F	
1533	O-CH ₃	614(M+H)
	F	
	HO	
	, and a second s	
1534		584(M+H)
	()	
	HO	
	N . W	
,		
L		

7000254	表171	
実施例 番号	式	MS
1535	H ₃ C CH ₃ CH ₃ CH ₃	640(M+H)
1536	,cı	627(M+H)
	CI————————————————————————————————————	
1537	F F F O HN	627(M+H)
	HO	

000254	表172	
実施例 番号	式	MS
番号	N	560(M+H)
1538	HO HIN O	
1539	H ₃ C-O NO ₂ HN HO N N N N N N N N N N N N N	634(M+H)
1540	HO N N	593(M+H)
1541	HO NO NO NO NO NO NO NO NO NO NO NO NO NO	627(M+H)

	表173	1 100
実施例 番号	式	MS
1542	HO HO HO	627(M+H)
1543	HO N	560(M+H)
1544	HO CH ₃	634(M+H)
1545	HO N N CI	593(M+H)

表	1	7	4
	-	•	

実施例 番号	式	MS
番号		627(M+H)
1546	HO N N CI	
1547	HO N H H	627(M+H)
1548	HO N N	560(M+H)
1549	HO NO ₂ O-CH ₃	634(M+H)

表175 MS 式 実施例 番号 627(M+H) 1550 560(M+H) 1551 532(M+H) 1552 565(M+H) 1553

	表176	
実施例 番号	式	MS
1554		599(M+H)
1555	HO HO	599(M+H)
1556	HO N N	532(M+H)
1557	HO N	532(M+H)

実施例	式	MS
番号		504(34:11)
1558	HO N H	584(M+H)
1559	HO HO	570(M+H)

WO 03/000254 PCT/JP02/06405

表178

実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性 I C 5 0 [µ M]	番号	阻害活性 I C _{5 0} [μM]
2	0. 079	67	0. 26
6	0. 034	68	0.28
9	0. 019	70	0. 19
11	0.53	71	0. 62
12	0.60	77	0.51
17	0. 047	81	0. 18
20	0. 042	82	0. 097
26	0. 033	83	0. 52
30	0. 052	85	0. 17
43	0. 58	86	0. 13
44	0. 95	87	0.80
45	0. 40	88	0. 092
46	0. 47	89	0. 34
47	0.54	90	0.20
48	0. 44	91	0. 53
49	0.94	93	0. 16
50	0. 54	94	0.084
51	1. 0	96	0. 25
54	0. 56	97	0. 16
55	0.36	98	0. 30

表179

		1	
実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性 I C ₅₀ [μM]	番号	阻害活性 I C 50 [μM]
99	0. 53	120	0. 16
100	0. 78	121	0. 19
101	0. 14	122	0. 51
103	0. 17	123	0. 10
104	0. 073	124	0. 091
105	0. 076	125	0. 12
106	0.40	128	0. 14
107	0. 11	129	0. 12
108	0. 21	130	0. 16
109	0. 11	131	0.046
110	0. 24	132	0.055
111	0. 14	133	0. 12
112	0. 11	134	0.071
113	0. 071	139	0. 26
114	0. 56	140	0. 11
115	0. 17	141	0.43
116	0. 37	142	0. 055
117	0.075	143	0. 053
118	0. 14	144	0. 19
119	0. 13	145	0. 088

表180

実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性 I C 5 ο [μM]	番号	阻害活性 I C 50 [μM]
146	0.043	167	0.033
147	0. 31	168	0. 078
148	0. 038	169	0. 15
149	0. 15	170	0.048
150	0. 24	171	0.050
151	0. 20	172	0. 10
153	0. 19	173	0. 14
154	0. 076	174	0. 030
155	0.53	175	0. 29
[156	0. 23	176	0. 053
157	0. 16	177	0.077
158	0. 11	178	0. 052
159	0. 13	179	0. 63
160	0. 24 ·	180	0. 11
161	0. 062	181	0. 71
162	0. 43	182	0. 021
163	0. 15	183	0. 017
164	0. 16	184	0.018
165	0. 58	185	0. 11
166	0. 055	186	0. 37

表181

実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性 I C ₅₀ [μM]	番号	阻害活性 I C ₅₀ [μM]
187	0.056	207	0. 081
188	0. 038	208	0. 039
189	0.017	209	0. 12
190	0.020	210	0. 31
191	0. 43	211	0, 059
192	0. 22	212	0. 23
193	0. 13	213	0. 10
194	0. 52	214	0. 059
195	0. 023	215	0. 078
196	0. 20	216	0. 084
197	0.11	217	0. 058
198	0.044	218	0. 033
199	0. 11	219	0. 13
200	0. 10	220	0. 073
201	0. 14	221	0. 058
202	0. 095	222	0. 041
203	0.063	223	0. 21
204	0. 16	225	0. 014
205	0. 077	227	0. 045
206	0. 05	228	0. 18

表182

実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性 I C _{5 0} [μM]	番号	阻害活性IC50[μΜ]
229	0. 022	257	0.074
230	0. 17	259	0. 10
231	0. 073	260	0. 27
232	0. 015	262	0. 013
233	0.028	263	0. 035
234	0. 022	264	<0.01
235	0. 036	265	0.014
236	0.075	266	0.018
237	0.015	267	0.014
238	0. 19	268	0.012
239	0. 17	269	0. 013
240	0.055	270	0. 012
248	0.012	271	0. 024
249	0. 022	272	0.066
- 250	0.018	273	0.041
252	0. 32	276	0. 023
253	0. 65	279	0.017
254	0.038	280	0.016
255	0.038	281	0. 052
256	0.079	282	0.019
			· · · · · · · · · · · · · · · · · · ·

表183

実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性 I C _{5 0} [μM]	番号	阻害活性 I C _{5 0} [μM]
283	0.014	300	0. 045
284	0.014	301	0. 017
285	0. 012	303	0. 10
286	0.014	304	0. 017
287	0. 012	305	0. 01
288	0.013	306	0. 013
289	<0.01	307	0.022
290	0. 012	308	0. 023
291	0.016	311	0. 16
292	0. 015	312	0.023
293	0.034	313	0. 025
294	0. 032	314	0. 097
295	0.045	315	0.028
296	0.034	316	0. 022
297	0. 022	317	0. 032
298	0.011	318	0.012
299	0.018	319	0.030

表184

実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性 I C _{5 0} [μ M]	番号	阻害活性ICg0 [μΜ]
320	0. 036	328	0.015
321	0.015	329	0.047
322	0.016	330	0.011
323	0.018	331	0.017
324	0. 027	332	0. 023
325	0.019	333	0.016
326	0.018	334	0.016
327	0.019	335	0.013

表 185

実施例番号	249	1H NMR(δ) ppm
HOLLY	CI HN SI O	300MHz, DMSO-d6 8.02(1H, d, J=1.5Hz), 8.11(1H, d, J=1.8Hz), 7.96-7.81(3H, m), 7.67(1H, s), 7.61-7. 49(6H, m), 7.08(2H, d, J=8.6 Hz), 5.19(2H, s), 4.25(1H, m), 2.38-2.17(2H, m), 1.96-1 .78(4H, m), 1.70-1.56(1H, m), 1.46-1.16(3H, m), 1.11(9 H, s)
純度 >90%	6 (NMR)	
MS 67	2(M+1)	

実施例番号	250	1H NMR(δ) ppm
HO FF	CI -0 0=S-NH ₂ 0	300MHz, DMSO-d6 8. 25 (1H, d, J=1.5Hz), 8. 16- 8. 08 (2H, m), 7. 99-7. 88 (2H, m), 7. 66 (2H, d, J=8.6Hz), 7. 60-7. 48 (5H, m), 7. 19 (2H, d, J=8.6Hz), 5. 17 (2H, s), 4. 31 (1H, m), 2. 39-2. 20 (2H, m), 2 .04-1.79 (4H, m), 1. 72-1.60 (1H, m), 1. 50-1. 18 (3H, m)
純度 >90%	(NMR)	
MS 616	(M+1)	

実施例番号	251	1H NMR(δ) ppm
HCI N N		300MHz, DMSO-d6 cis and trans mixture 8.13and8.11(total 1H, each s), 7.90-7.74(2H, m), 7.42- 7.22(5H, m), 4.56and4.52(total 2H, each s), 4.42(1H, brs), 3.78-3.0 6(2H, m) 2.33-1.33(18H, m)
純度 > 9	0% (NMR)	ø
MS	433 (M+1)	

表 186

実施例番号	-	252	1H NMR(δ) ppm
НО			300MHz, DMSO-d6 8. 20(1H, d, J=1.5Hz), 7.96(1H, d, J=8.6Hz), 7.84(1H, dd , J=8.6, 1.5Hz), 7.54(2H, d, J=6.9Hz), 7.48-7.26(8H, m) , 7.09(1H, t, J=7.3Hz), 5.43 (2H, s), 4.06(1H, m), 2.40-2 .20(2H, m), 2.01-1.80(4H, m), 1.75-1.64(1H, m), 1.51-1 .28(3H, m)
純度	>90% (NM	R)	
MS	509 (M+1)		

実施例番号	253	1H NMR(δ) ppm
HONN		300MHz, DMSO-d6 8. 21 (1H, d, J=1. 5Hz), 7. 93 (1H, d, J=8. 7Hz), 7. 85 (1H, dd , J=8. 4, 1. 5Hz), 7. 54-7. 47 (2H, m), 7. 40-7. 24 (6H, m), 7. 15 (1H, d, J=3. 6Hz), 7. 11-7. 05 (1H, m), 6. 81 (1H, d, J=3. 6 Hz), 5. 26 (2H, s), 4. 96 (1H, m), 2. 32-2. 13 (2H, m), 1. 95-1 . 72 (4H, m), 1. 68-1. 55 (1H, m
純度 >	90% (NMR)), 1. 43-1. 18 (3H, m)
MS	493 (M+1)	

実施例番号 255	1H NMR(δ) ppm
HCI OH N N N S	300MHz, DMSO-d6 8. 34(1H, s), 8. 32(1H, d, J=8 .8Hz), 8. 09-8. 03(3H, m), 7. 83(2H, d, J=8. 3Hz), 7. 79(2H, d, J=8. 8Hz), 7. 36(2H, d, J=8. 8Hz), 5. 54(2H, s), 4. 38(1H, m), 2. 74(3H, s), 2. 40-2. 1 8(2H, m), 2. 13-1. 96(2H, m), 1. 93-1. 78(2H, m), 1. 73-1. 5 7(1H, m), 1. 55-1. 15(3H, m)
純度 >90% (NMR)	
MS 568 (M+1)	

実施例番	号 25	56	1H NMR(δ) ppm
НО	TN FO O O O O O O O O O O O O O O O O O O	-F	300MHz, DMSO-d6 12.67(1H, brs), 8.23(1H, s), 7.94and7.87(2H, ABq, J=8.6Hz), 7.79(1H, dd, J=8.7, 5.4Hz), 7.62-7.41(7H, m), 6.80(1H, dd, J=11.9, 2.3Hz), 6.69(1H, dd, J=8.1, 2.1Hz), 5.20(2H, s), 3.93(1H, brt, J=15.3Hz), 2.30-2.11(2H, brm), 1.88-1.74(4H, brm), 1.64-1
純度	>90% (NMR)		.58(1H, brm), 1.41-1.14(3H , brm)
MS	585 (M+1)		

実施例番	·号	257	1H NMR(δ) ppm
O II S HO	,o CI		300MHz, DMSO-d6 8. 19(1H, d, J=8. 7Hz), 7. 93(1H, s), 7. 83-7. 71(3H, m), 7. 50-7. 39(4H, m), 7. 34-7. 10(4H, m), 7. 06(1H, dd, J=8. 4, 2 . 9Hz), 5. 09(2H, s), 4. 34(1H , m), 3. 82(3H, s), 2. 39-2. 19 (2H, m), 2. 11-1. 98(2H, m), 1 . 94-1. 79(2H, m), 1. 74-1. 58 (1H, m), 1. 52-1. 21(3H, m)
純度,	>90% (NM	R)	P
MS	603 (M+1)		

表 188

実施例番号	258	1H NMR(δ) ppm
CI N HOOO		300MHz, DMSO-d6 7. 79 (1H, d, J=6. 7Hz), 7. 56 (1H, d, J=7. 5Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 42 (4H, s), 7. 32 -7. 23 (3H, m), 7. 09-7. 03 (3H, m), 5. 02 (2H, s), 4. 46 (1H, m), 3. 82 (3H, s), 1. 95-1. 83 (2H, m), 1. 75-1. 44 (5H, m), 1. 30-1. 10 (2H, m), 0. 89-0. 71 (1H, m)
純度 > 90% (NN	(R)	
MS 567 (M+1)		

実施例番号		259	1H NMR(δ) ppm
HO 2	HCI N O=) N- N-	300MHz, DMSO-d6 8. 93 (2H, d, J=6. 6Hz), 8. 36 (1H, s), 8. 28 (1H, d, J=8. 7Hz), 8. 10-8. 03 (3H, m), 7. 85 (2H, d, J=8. 7Hz), 7. 33 (2H, d, J=8. 7Hz), 7. 23 (1H, s), 7. 23 (1H, s), 6. 81 (1H, s), 5. 56 (2H, s), 4. 39 (1H, m), 2. 97, 2. 92 (6H, s), 2. 40-2. 18 (2H, m), 2. 16-1. 95 (2H, m), 1. 90-1. 75 (
純度	> 9 0 %	(NMR)	2H, m), 1.70-1.55(1H, m), 1. 50-1.15(3H, m)
MS ·	591	(M+1)	

実施例	列番号	261	1H NMR(δ) ppm
; ;	O O CI		300MHz, DMSO-d6 8. 22 (1H, d, J=7. 1H, d, J=6. 7Hz), J=9. 0H), 7. 51-7 7. 29 (1H, d, J=8. 1H, d, J=3. 0Hz), J=9. 0Hz), 7. 06 (6, 3. 0Hz), 5. 05 (-4. 25 (1H, m), 3. . 40-2. 20 (2H, m)
純度	> 90% (NMI	₹)	(4H, m), 1.72-1. .50-1.18(3H, m)
MS	567 (M+1)		

2, DMSO-d6 lH, d, J=7.8Hz), 7.85(J=6.7Hz), 7.63(2H, d, H), 7.51-7.38(5H, m), lH, d, J=8.3Hz), 7.23(J=3.0Hz), 7.06(2H, d, Hz), 7.06(1H, dd, J=8. Hz), 5.05(2H, s), 4.41 (1H, m), 3.83(3H, s), 2 20 (2H, m), 2. 03-1. 78 1.72-1.57(1H, m)18 (3H, m)

実施例番	号 262
НО	CI N N HCI NH ₂
純度	>90% (NMR)
MS	580 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 29 (1H, d, J=1. 5Hz), 8. 26 (1H, d, J=9. 0Hz), 8. 19(1H, d, J=1.8Hz), 8.13(1H, brs), 8. 08-7.96(2H, m), 7.73(2H, d, J=9.0Hz), 7.57-7.43 (6H, m) , 7. 24 (2H, d, J=9. 0Hz), 5. 14 (2H, s), 4. 36 (1H, m), 2. 38-2 . 18 (2H, m), 2. 12-1. 97 (2H, m), 1, 93-1, 80 (2H, m), 1, 73-1 .58(1H, m), 1.52-1.20(3H, m

実施例番	号 263
НО	HO-O N-O-N
純度	>90% (NMR)
MS	548 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 12.85 (1H, brs), 8.72 (1H, d, J=4.8Hz), 8. 22 (1H, s), 8. 14 (1H, d, J=6.3Hz), 8.03and7. 76 (4H, ABq, J=8.6Hz), 7.93a nd7. 85 (2H, A' B' q, J=8. 6Hz) , 7. 60and7. 15 (4H, A"B"q, J= 8. 7Hz), 7. 55 (1H, dd, J=6. 3, 4.8Hz), 5. 19 (2H, s), 4. 26 (1 H, brt, J=12.6Hz), 2.35-2.1 8(2H, brm), 1.95-1.77(4H, b rm), 1.70-1.60(1H, brm), 1. 45-1.15(3H, brm)

表 190

実施例番号	And the second s	264	1H NMR(δ) ppm
HO	CI N N S		300MHz, DMSO-d6 8. 23 (1H, d, J=1.0Hz), 7. 92 (1H, dd, J=8. 7, 1.0Hz), 7. 87 (1H, d, J=8.7Hz), 7. 60 (2H, d, J=8.6Hz), 7. 47 (2H, d, J=8.7Hz), 7. 44 (2H, d, J=8.7Hz), 7. 30 (1H, d, J=8.3Hz), 7. 23 (1H, d, J=2.6Hz), 7. 11 (2H, d, J=8.7Hz), 7. 06 (1H, dd, J=8.7Hz), 7. 06 (1H, dd, J=8.7Hz), 5. 04 (2H, s), 4. 36 (1H, dd, J=8.7Hz), 7. 06 (1H, dd, J=8.7Hz), 7. 06 (1H, dd, J=8.7Hz), 7. 06 (2H, s), 4. 36 (1H, dd, J=8.7Hz), 7. 06 (2H, s), 4. 36 (1H, dd, J=8.7Hz), 7. 06 (2H, s), 4. 36 (
純度	>90% (NMR))	1H, m), 3. 83 (3H, s), 2. 80-2. 70 (4H, m), 2. 60-2. 40 (2H, m)
MS	586, 588 (M+1)		, 2. 30-2. 20 (2Н, m)

実施例番号	265	1H NMR(δ) ppm
HO N HCI	N O	300MHz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=9. 1Hz), 8. 03 (1H, dd , J=8. 7, 1. 5Hz), 7. 76-7. 96 (3H, m), 7. 55-7. 49 (5H, m), 7. 42 (1H, d, J=7. 6Hz), 7. 23 (2H , d, J=8. 7Hz), 5. 15 (2H, s), 4 . 35 (1H, m), 3. 01 (3H, s), 2. 9 7 (3H, s), 2. 37-2. 20 (2H, m), 2. 09-1. 97 (2H, m), 1. 94-1. 8
純度 >90% (NM	R)	1 (2H, m), 1.72-1.60 (1H, m), 1.50-1.21 (3H, m)
MS 608 (M+1)		

表 191

実施例番号		267	1H NMR(δ) ppm
НО	S N HCI		300MHz, DMSO-d6 8.34(2H, m), 8.03(1H, d, J=8 .3Hz), 7.77-7.68(3H, m), 7. 54-7.40(4H, m), 7.33(2H, d, J=8.6Hz), 7.24(2H, d, J=9.0 Hz), 5.16(2H, s), 4.36(1H, m), 3.01(3H, s), 2.97(3H, s), 2.40-2.20(2H, m), 2.11-1.9 7(2H, m), 1.93-1.81(2H, m), 1.71-1.60(1H, m), 1.50-1.2
純度	>90% (NMR)		1 (3H, m)
MS	620 (M+1)		

実施例番号	268	1H NMR(δ) ppm
HCI HO N	CI	300MHz, DMSO-d6 8.67-8.59(1H, m), 8.30(1H, s), 8.13-8.20(2H, m), 8.02-7.92(2H, m), 7.65(1H, t, J=8.3Hz), 7.56-7.45(5H, m), 7.18(1H, dd, J=12.0, 2.2Hz), 7.05(1H, dd, J=8.6, 2.2Hz), 5.14(2H, s), 4.09(1H, m), 2.82(3H, d, J=4.5Hz), 2.34-2.12(2H, m), 1.99-1.79(4H, m),
純度 >90%	(NMR)	1.71-1.59(1H, m), 1.49-1.2 1(3H, m)
MS 612	(M+1)	

実施例番号 270	1H NMR(δ) ppm
HCI CI HO N F NH ₂	300MHz, DMSO-d6 8. 24 (1H, d, J=1. 4Hz), 8. 19 (1H, d, J=1. 8Hz), 8. 11 (1H, br s), 8. 02-7. 85 (3H, m), 7. 60- 7. 44 (7H, m), 7. 10 (1H, dd, J= 12. 0, 2. 1Hz), 6. 98 (1H, dd, J= 8. 4, 2. 1Hz), 5. 11 (2H, s), 3 . 98 (1H, m), 2. 30-2. 12 (2H, m), 1. 91-1. 73 (4H, m), 1. 71-1 . 58 (1H, m), 1. 45-1. 15 (3H, m)
純度 > 90% (NMR)	
MS 598 (M+1)	

実施例番号	271	1H NMR(δ) ppm
HO HCI		300MHz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 24 (1H, d, J=8.7Hz), 8. 07-7.98 (3H, m), 7. 80-7. 68 (5H, m), 7. 56 (1H, dd, J=8.0, 1.8Hz), 7. 47 (1H, d, J=8.0Hz), 7. 21 (2H, d, J=8.4Hz), 5. 18 (2H, s), 4. 34 (1H, m), 3. 27 (3H, s), 3. 0 2 (3H, s), 2. 98 (3H, s), 2. 38- 2. 18 (2H, m), 2. 10-1.95 (2H, s), 3. 0
純度 >90%	(NMR)	m), 1.93-1.79(2H, m), 1.72- 1.59(1H, m), 1.50-1.19(3H,
MS . 652 (M+1)	m)

実施例番号	273	1H NMR(δ) ppm
HO N	N :	300MHz, DMSO-d6 8. 30 (1H, s), 8. 27 (1H, d, J=8 .7Hz), 8. 05 (1H, d, J=8. 7Hz) ,7. 77-7. 67 (3H, m). 7. 58-7. 48 (6H, m), 7. 22 (2H, d, J=8. 4 Hz), 5. 18 (2H, s), 4. 35 (1H, b rt, J=9. 8Hz), 3. 06-2. 88 (12 H, brm), 2. 38-2. 20 (2H, brm) ,2. 08-1. 96 (2H, brm), 1. 90- 1. 80 (2H, brm), 1. 70-1. 60 (1
純度 >90% (NI	MR)	H, brm), 1.49-1.22(3H, brm)
MS 645 (M+1)		

実施例番号	274	1H NMR(δ) ppm
HO N N S O	CI	300MHz, DMSO-d6 mixture of cis and trans 8.35, 8.34(1H, s), 8.15-8.1 0(2H, m), 7.79-7.70(3H, m), 7.49(2H, d, J=8.7Hz), 7.44(2H, d, J=8.7Hz), 7.31(1H, d, J=8.4Hz), 7.25-7.19(2H, m) ,7.07(1H, d, J=8.5Hz), 5.08 (2H, s), 4.75(1H, m), 3.83(3 H, s), 3.70-1.90(8H, m)
純度 約80%	(NMR)	
MS 601	(M+1)	·

実施例番号	275	1H NMR(δ) ppm
HO N S O) 	300MHz, DMSO-d6 8. 33 (1H, s), 8. 13 (1H, d, J=7 .5Hz), 7. 93 (1H, d, J=8. 8Hz) ,7. 74 (2H, d, J=8. 7Hz), 7. 49 (2H, d, J=8. 6Hz), 7. 44 (2H, d ,J=8. 6Hz), 7. 31 (1H, d, J=8. 5Hz), 7. 25-7. 15 (3H, m), 7. 0 7 (1H, d, J=8. 5Hz), 5. 08 (2H, s), 4. 98 (1H, m), 3. 83 (3H, s) ,3. 65-3. 45 (2H, m), 3. 30-3.
純度 >90% (NMI	₹)	10 (2H, m), 3.00-2.75 (2H, m), 2.60-2.30 (2H, m)
MS 617 (M+1)		

表 194

実施例番号		276	1H NMR(δ) ppm
НО	CI CI N S		300MHz, DMSO-d6 8. 25(1H, s), 7. 93and7.87(2 H, ABq, J=9.1Hz), 7. 55(1H, t , J=8.6Hz), 7. 48and7. 42(4H , A'B'q, J=8.6Hz), 7. 31(1H, d, J=8.5Hz), 7. 24(1H, d, J=2 .6Hz), 7. 09-6. 95(3H, m), 5. 05(2H, s), 4. 11(1H, brt, J=1 4. 0Hz), 3. 84(3H, s), 2. 83-2 .67(4H, brm), 2. 50-2. 32(2H
純度	>90% (NMR)	, brm), 2.21-2.10(2H, brm)
MS	603 (M+1)		

実施例番号	277	1H NMR(δ) ppm
HO N F O		300MHz, DMSO-d6 cis and trans mixture 8.28and8.24(total 1H, each s), 7.94-7.87(1H, m), 7.60- 7.41(5H, m), 7.31(1H, d, J=8 .5Hz), 7.23-7.21(1H, m), 7. 12-7.05(2H, m), 7.00-6.95(1H, m), 5.06and5.05(total 2H, each
純度 >90% (NMI	₹)	s), 4. 47and4. 34 (total 1H, each
MS 619 (M+1)		brs), 3.83(3H, s), 3.12-1.7 6(8H, m)

表 195

実施例番号	279	1H NMR(δ) ppm
HCI HO N		300MHz, DMSO-d6 8. 30 (1H, s), 8. 23 (1H, d, J=8 .7Hz), 8. 06-8. 00 (2H, m), 7. 83 (1H, dd, J=8. 0, 1. 8Hz), 7. 71 (2H, d, J=8. 4Hz), 7. 64 (1H ,d, J=8. 0Hz), 7. 59-7. 54 (4H ,m), 7. 22 (2H, d, J=8. 4Hz), 5 .25 (2H, s), 4. 33 (1H, m), 2. 6 6 (3H, s), 2. 66 (3H, s), 2. 37- 2. 19 (2H, m), 1. 93-1. 80 (2H,
純度 > 9	0% (NMR)	m), 1.70-1.59(1H, m), 1.47- 1.21(3H, m)
MS	644 (M+1)	

実施例番号		280	1H NMR(δ) ppm
iHO (HCI CI		300MHz, DMSO-d6 8. 32-8. 23 (3H, m), 8. 08-8. 0 1 (2H, m), 7. 73 (2H, d, J=8. 6Hz), 7. 65 (1H, d, J=8. 2Hz), 7. 59-7. 51 (4H, m), 7. 25 (2H, d, J=8. 6Hz), 5. 21 (2H, s), 4. 34 (1H, m), 3. 32 (3H, s), 2. 37-2 . 19 (2H, m), 2. 10-1. 98 (2H, m), 1. 93-1. 80 (2H, m), 1. 71-1 . 60 (1H, m), 1. 51-1. 21 (3H, m)
純度	> 9 0 % (NN	ИR)	
MS .	615 (M+1)		

表 196

実施例番号		282	1H NMR(δ) ppm
но	HCI CI	N—	300MHz, DMSO-d6 8. 36 (1H, s), 8. 35 (1H, d, J=9 .3Hz), 8. 09 (1H, d, J=9. 3Hz) ,7. 78 (2H, d, J=8. 7Hz), 7. 48 -7. 25 (9H, m), 5. 09 (2H, s), 4 .39 (1H, m), 3. 04 (6H, s), 2. 4 0-2. 15 (2H, m), 2. 10-1. 95 (2 H, m), 1. 90-1. 75 (2H, m), 1. 7 0-1. 55 (1H, m), 1. 50-1. 20 (3 H, m)
純度	>90% (NMR)		·
MS	580 (M+1)		

実施例番号	283	1H NMR(δ) ppm
HCI N N		300MHz, DMSO-d6 10.03(1H, s), 8.33(1H, s), 8 .29(1H, d, J=8.7Hz), 8.06(1 H, d, J=9.0Hz), 7.74(2H, d, J =9.0Hz), 7.51-7.42(5H, m), 7.37-7.30(2H, m), 7.22(2H, d, J=8.7Hz), 5.10(2H, s), 4. 37(1H, m), 3.06(3H, s), 2.40 -2.18(2H, m), 2.15-1.95(2H, m), 1.90-1.80(2H, m), 1.75
純度 > 9	0% (NMR)	-1.55 (1H, m), 1.50-1.20 (3H, m)
MS	630 (M+1)	

表 197

実施例番号	285	1H NMR(δ) ppm
HCI HO N	CI H O N	300MHz, DMSO-d6 8. 37 (1H, d, J=7. 3Hz), 8. 30 (1H, s), 8. 19-8. 12 (2H, m), 8. 02-7. 95 (2H, m), 7. 65 (1H, t, J=8. 4Hz), 7. 56-7. 43 (5H, m) 7. 18 (1H, dd, J=12. 0, 1. 8Hz), 7. 06 (1H, dd, J=8. 4, 2. 1Hz), 5. 13 (2H, s), 4. 22-4. 03 (2 H, m), 2. 34-2. 13 (2H, m), 1. 9 9-1. 78 (4H, m), 1. 72-1. 57 (1
純度 >	90% (NMR)	H, m), 1.44-1.14(3H, m), 1.2 0, 1.18(6H, each s)
MS	640 (M+1)	

実施例番号		286	1H NMR(δ) ppm
HCI O HO N	F CI	-N	300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .7Hz), 7. 97 (1H, dd, J=8. 7, 1 .4Hz), 7. 69-7. 40 (8H, m), 7. 16 (1H, dd, J=12. 0, 2. 2Hz), 7 .02 (1H, dd, J=8. 4, 2. 2Hz), 5 .15 (2H, s), 4. 07 (1H, m), 3. 7 1-3. 23 (2H, m), 1. 98-1. 71 (4 H, m), 1. 71-1. 18 (10H, m)
純度	>90% (NMR)		
MS	666 (M+1)		

	実施例番号	287	1H NMR(δ) ppm
	HCI F		300MHz, DMSO-d6 8. 29 (1H, s), 8. 13 (1H, d, J=8 .0Hz), 7. 97 (1H, d, J=8. 4Hz) , 7. 83 (1H, s), 7. 68-7. 41 (7H , m), 7. 17 (1H, d, J=12. 0Hz), 7. 03 (1H, d, J=8. 4Hz), 5. 15 (2H, s), 4. 07 (1H, m), 3. 58-3. 41 (4H, m), 2. 34-2. 13 (2H, m) , 1. 97-1. 77 (8H, m), 1. 71-1. 58 (1H, m), 1. 49-1. 18 (3H, m)
ĺ	純度 >90%	(NMR)	
	MS 6520	(M+1)	

表 198

実施例番号	<u>,</u>	288		1H NMR(δ) ppm
НОНО	CI CI N PO	H N	DН	300MHz, DMSO-d6 8. 62 (1N, m), 8. 31 (1H, s), 8. 22-8. 14 (2H, m), 8. 99 (2H, d, J=8. 7Hz), 7. 66 (1H, t, J=7. 7 Hz), 7. 58-7. 44 (5H, m), 7. 19 (1H, dd, J=8. 7, 2. 2Hz), 5. 14 (2H, s), 4. 11 (1H, m), 3. 67-3 .49 (2H, m), 3. 45-3. 30 (2H, m), 2. 37-2. 12 (2H, m), 2. 00-1 .76 (4H, m), 1. 70-1. 58 (1H, m
純度	> 9 0 %	(NMR)), 1. 48-1. 17 (3H, m)
MS	642	(M+1)		

実施例番号	289	1H NMR(δ) ppm
HCI F O	O-N-OH	400MHz, DMSO-d6 8. 28(1H, s), 8. 11(1H, d, J=8 .9Hz), 7. 96(1H, d, J=8.9Hz) ,7. 68(1H, s), 7. 62(1H, t, J= 8. 2Hz), 7. 55-7. 41(6H, m), 7 .15(1H, d, J=11.7Hz), 7. 02(1H, d, J=8. 4Hz), 5. 14(2H, s) ,4. 12-3. 13(6H, m), 2. 30-1. 19(13H, m)
純度 >90%	(NMR)	
MS 682 6	(M+1)	

実施例番号	290	1H NMR(δ) ppm
HCI F O	-N_O	400MHz, DMSO-d6 8. 29 (1H, s), 8. 15 (1H, d, J=8 .6Hz), 7. 98 (1H, d, J=8. 8Hz), ,7. 72 (1H, s), 7. 64 (1H, t, J= 8. 8Hz), 7. 57-7. 43 (6H, m), 7 .18 (1H, dd, J=12. 1, 2. 1Hz), 7. 03 (1H, d, J=10. 7Hz), 5. 12 (2H, s), 4. 15-4. 01 (1H, m), 3 .75-3. 33 (8H, m), 2. 31-2. 14 (2H, m), 1. 96-1. 78 (4H, m), 1
純度 > 90% (NMR)		.70-1.58(1H, m), 1.47-1.21 (3H, m)
MS 668 (M+1)		·

表 199

実施例番	子 号	291	1H NMR(δ) ppm
НО	HCI F O	N S	400MHz, DMSO-d6 8. 29 (1H, s), 8. 14 (1H, d, J=8 .9Hz), 7. 97 (1H, d, J=8. 6Hz) , 7. 71 (1H, s), 7. 63 (1H, t, J= 8. 2Hz), 7. 56-7. 42 (6H, m), 7 .17 (1H, d, J=12. 3Hz), 7. 03 (1H, d, J=10. 7Hz), 5. 14 (2H, s), 4. 07 (1H, m), 3. 96-3. 52 (4 H, m), 2. 79-2. 56 (4H, m), 2. 3 2-2. 14 (2H, m), 1. 97-1. 79 (4
純度	>90% (N	IMR)	H, m), 1.71-1.58(1H, m), 1.5 1-1.19(3H, m)
MS	684 (M+)	1)	

実施例番号	292	1H NMR(δ) ppm
HCI O HO N	CI H O OH	300MHz, DMSO-d6 9.07-8.99(1H, m), 8.30(1H, s), 8.23-8.12(2H, m), 8.04- 7.95(2H, m), 7.65(1H, t, J=8 .2Hz), 7.60-7.45(5H, m), 7. 19(1H, dd, J=12.0, 2.6Hz), 7 .06(1H, dd, J=8.6, 2.2Hz), 5 .16(2H, s), 4.18-4.02(1H, m), 3.97(2H, d, J=6.0Hz), 2.3 3-2.14(2H, m), 1.99-1.79(4
純度 >	90% (NMR)	H, m), 1.72-1.59(1H, m), 1.4 5-1.19(3H, m)
MS	656 (M+1)	

実施例番号	293	1H NMR(δ) ppm
HO N	O OH CI	300MHz, DMSO-d6:8.21(1H, s), 7.94and7.86(2H, ABq, J=8.6Hz), 7.72(1H, d, J=2.4Hz), 7.59and7.11(4H, A'B'q, J=8.9Hz), 7.53(1H, dd, J=8.4, 2.4Hz), 7.36and7.32(4H, A'B''q, J=8.1Hz), 5.07(2H, s), 4.27(1H, brt, J=13.8Hz), 2.87(2H, t, J=7.8Hz), 2.57(2H, t, J=
純度 >90%(NMR)	7.8Hz), 2.35-2.20(2H, brm), 1.96-1.79(4H, brm), 1.68-
MS 637 (M-	-1)	1.59(1H, brm), 1.47-1.18(3 H, brm)

表 200

実施例番号 294	1H NMR(δ) ppm
HCI OH CI	300MHz, DMSO-d6 8. 30(1H, s), 8. 25and8. 03(2 H, ABq, J=8. 9Hz), 7. 73(1H, s), 7. 73(2H, d, J=8. 6Hz), 7. 5 5(1H, dd, J=8. 0, 2. 3Hz), 7. 4 0(4H, s), 7. 39(1H, d, J=8. 0Hz), 7. 23(2H, d, J=8. 6Hz), 5. 11(2H, s), 4. 55(2H, s), 4. 36 (1H, brt, J=14. 8Hz), 2. 37-2 . 19(2H, brm), 2. 09-1. 96(2H
純度 > 90% (NMR)	, brm), 1.91-1.79(2H, brm), 1.71-1.59(1H, brm), 1.50-1
MS 567 (M+1)	. 20 (3H, brm)

実施例番	号 2	95	1H NMR(δ) ppm
НО	HCI O-	CI	300MHz, DMSO-d6 8. 30 (1H, s), 8. 2 H, ABq, J=8. 7Hz)), 7. 72 (2H, d, J= 6 (1H, d, J=8. 7Hz) 5 (5H, m), 7. 22 (2 z), 5. 11 (2H, s), , 4. 35 (1H, brt, J . 31 (3H, s), 2. 37 rm), 2. 07-1. 95 (
純度	>90% (NMR)		92-1.79(2H, brm 6(1H, brm), 1.52
MS	581 (M+1)		rm)

25and8.04(2 25and8. 04 (2 z), 7. 74 (1H, s J=8. 7Hz), 7. 5 Hz), 7. 48-7. 3 (2H, d, J=8. 7H g, 4. 46 (2H, s) J=14. 8Hz), 3 37-2. 17 (2H, b 5 (2H, brm), 1. rm), 1. 73-1. 5 52-1. 20 (3H, b

実施例番	号	296	1H NMR(δ) ppm
НО		O OH	300MHz, DMSO-d6 8.21(1H, d, J=1.5Hz), 7.98(1H, d, J=1.2Hz), 7.97-7.91(2H, m), 7.84(1H, dd, J=8.7, 1 .5Hz), 7.77(1H, d, J=2.1Hz), 7.70(1H, d, J=7.5Hz), 7.60 -7.54(4H, m), 7.43(1H, d, J= 8.4Hz), 7.09(2H, d, J=8.7Hz), 5.05(2H, s), 4.25(1H, brt, J=14.8Hz), 2.36-2.18(2H,
純度	> 9 0 % (1	MR)	brm), 1.95-1.79(4H, brm), 1.71-1.6(1H, brm), 1.43-1.1
MS	581 (M+	1)	8(3H, brm)

表 201

実施例番号	297	1H NMR(δ) ppm
HO N	CI	300MHz, DMSO-d6 12.7(1H, brs), 8.21(1H, s), 7.94and7.85(2H, ABq, J=8.6 Hz), 7.60-7.55(3H, m), 7.49 and7.45(4H, A'B'q, J=8.3Hz), 7.12(2H, d, J=8.7Hz), 5.0 5(2H, s), 4.26(1H, brt, J=13.0Hz), 2.54(3H, s), 2.38-2. 20(2H, brm), 1.97-1.80(4H, brm), 1.71-1.59(1H, brm), 1
純度 >90%	(NMR)	. 47-1. 20 (3H, brm)
MS 583	(M+1)	

実施例番号	298	1H NMR(δ) ppm
HONN	CI S=0	300MHz, DMSO-d6 8. 22(1H, s), 8. 01(1H, s), 7. 95and7. 86(2H, ABq, J=8. 6Hz), 7. 79(1H, d, J=7. 8Hz), 7. 5 8(3H, t, J=7. 5Hz), 7. 53(4H, s), 7. 13(2H, d, 8. 7Hz), 5. 15 (2H, s), 4. 26(1H, brt, J=13. 8Hz), 2. 83(3H, s), 2. 37-2. 1 8(2H, brm), 1. 95-1. 78(4H, brm), 1. 70-1. 59(1H, brm), 1.
純度 >90%	(NMR)	47-1. 17 (3H, brm)
MS 599 (1	M+1)	

実施例番号	299	9	1H NMR(δ) ppm
HO HC		N	300MHz, DMSO-d6 8. 43-8. 16 (3H, m), 8. 07-7. 9 4(2H, m), 7. 72 (2H, d, J=8. 6H z), 7. 62-7. 49 (5H, m), 7. 23 (2H, d, J=8. 6Hz), 5. 16 (2H, s) , 4. 34 (1H, m), 2. 39-2. 20 (2H , m), 2. 10-1. 96 (2H, m), 1. 93 -1. 80 (2H, m), 1. 71-1. 58 (1H , m), 1. 49-1. 19 (3H, m)
純度 >	>90% (NMR)		
MS	562 (M+1)		

実施例番号	300	1H NMR(δ) ppm
HO	F O N	300MHz, DMSO-d6:2.77(1H, b rs), 8.83(2H, d, J=1.9Hz), 8.56(2H, dd, J=4.9, 1.9Hz), 8.22(1H, d, J=1.5Hz), 7.97(2 H, dt, J=7.9, 1.9Hz), 7.95(1 H, d, J=8.6Hz), 7.87(1H, dd, J=8.6, 1.5Hz), 7.57(1H, t, J=8.7Hz), 7.46(2H, dd, J=7.9, 4.9Hz), 7.26(1H, dd, J=8.0, 4.9Hz), 7.14(1H, dd, J=8.0)
純度	>90% (NMR)	8, 2. 3Hz), 6. 99 (2H, s), 3. 94 (1H, brt), 2. 26-2. 09 (2H, m)
MS	523 (M+1)	, 1.87-1.73 (4H, m), 1.67-1. 57(1H m) 1 /12-1 12(2H m)

実施例番	号 301
НО	N P O N N N N N N N N N N N N N N N N N
純度	>90% (NMR)
MS	663 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 8.22(1H, s), 7.95(1H, d, J=8). 7Hz), 7. 87 (1H, dd, J=1. 5Hz , 9. 0Hz), 7. 62 (4H, d, J=8. 4H z), 7.55(1H, t, J=9.0Hz), 7. 44 (4H, d, J=8. 1Hz), 7. 20 (1H , dd, J=2. 1Hz, 12. 0Hz), 7. 11 (1H, dd, J=2. 1Hz, 8. 7Hz), 6. 86 (1H, s), 3. 94 (1H, m), 2. 96 , 2.88(12H, s), 2.35-2.00(2 H, m), 1.95-1.70(4H, m), 1.6 5-1. 50 (1H, m), 1. 45-1. 10 (3 H, m

実施例番号]	302	1H NMR(δ) ppm
Na ⁺ O ⁻	F N F		300MHz, DMSO-d6 8. 14 (1H, s), 7. 88 (1H, d, J=8 .4Hz), 7. 68 (1H, d, J=8. 7Hz) , 7. 64-7. 55 (3H, m), 7. 50 (1H , t, J=8. 7Hz), 7. 22-7. 17 (3H , m), 7. 11 (1H, s), 7. 08-7. 00 (2H, m), 3. 90 (1H, m), 2. 15-2 .00 (2H, m), 1. 95-1. 50 (5H, m), 1. 45-1. 00 (3H, m)
純度	> 9 0 %	(NMR)	
MS	532 (M+1)	

表 203

実施例番	<u> </u>	303	1H NMR(δ) ppm
0	CI N N	N O	300MHz, CDC13 8. 49 (1H, s), 7. 98 (1H, dd, J= 8. 6, 1. 5Hz), 7. 71 (1H, d, J=1 .8Hz), 7. 66 (1H, d, J=8. 6Hz) , 7. 55-7. 29 (7H, m), 6. 80 (1H, dd, J=8. 2, 2. 2Hz), 6. 69 (1H, dd, J=11. 2, 2. 2Hz), 4. 99 (2H, s), 4. 10-3. 92 (1H, m), 3. 9 5 (3H, s), 3. 15 (3H, s), 3. 06 (3H, s), 2. 31-2. 14 (2H, m), 2.
純度	>90% (NMF	2)	04-1.86(4H, m), 1.81-1.71(1H, m), 1.41-1.21(3H, m)
MS	640 (M+1)		

実施例番号		306	1H NMR(δ) ppm
НО	HO-0		300MHz, DMSO-d6 12.84(1H, brs), 8.21(1H, s), 7.98-7.84(5H, m), 7.58(2H, d, J=8.7Hz), 7.54(2H, d, J=7.8Hz), 7.34(1H, d, J=8.7Hz), 7.26(1H, d, J=2.4Hz), 7.13-7.06(3H, m), 5.06(2H, s), 4.26(1H, brt, J=12.7Hz), 3.84(3H, s), 2.36-2.17(2H, brm), 1.99-1.80(4H, brm), 1.
純度	>90% (NMR)		73-1.59(1H, brm), 1.47-1.1 7(3H, brm)
MS	577 (M+1)		·

実施例番号		307	1H NMR(δ) ppm
но	H ₂ N-		300MHz, DMSO-d6 8. 22(1H, s), 8. 04(1H, s), 7. 96(2H, d, J=8. 1Hz), 7. 87(2H, s), 7. 72(1H, d, J=1. 2Hz), 7. .59-7. 41(7H, m), 5. 12(2H, s), 4. 25(1H, brt, J=11. 8Hz), 3. 02(3H, brs), 2. 98(3H, brs), 2. 38-2. 15(2H, brm), 1. 93 -1. 76(4H, brm), 1. 71-1. 59(1H, brm), 1. 46-1. 16(3H, brm)
純度	> 9 0 %	(NMR))
MS	617 (M+1)	

表 205

実施例番号 30	9 1H NMR(δ) ppm
HCI HO N S S	300MHz, DMS0-d6 8. 33(1H, s), 8. 15and7. 99(2 H, ABq, J=8. 9Hz), 7. 84and7. 59(4H, A'B'q, J=8. 3Hz), 7. 4 6(2H, d, J=8. 4Hz), 7. 22-7. 1 6(3H, m), 7. 01-6. 98(2H, m), 4. 27and4. 23(2H, A"B"q, J=1 2. 9Hz), 3. 78(3H, s), 2. 39-2 .21(2H, brm), 2. 07-1. 95(2H, brm), 1. 91-1. 80(2H, brm),
純度 >90% (NMR)	1. 72-1. 59 (1H, brm), 1. 49-1 . 17 (3H, brm)
MS	·

実施例番号	312	1H NMR(δ) ppm
HO N F	-O — О О О О О О О О О О О О О О О О О О	300MHz, DMSO-d6 8. 22 (1H, s), 8. 12 (1H, d, J=8 .4Hz), 8. 00-7. 84 (5H, m), 7. 70 (4H, d, J=8. 4Hz), 7. 56 (1H ,t, J=8. 6Hz), 7. 23 (1H, d, J= 12. 0Hz), 7. 13 (1H, d, J=8. 6H z), 6. 97 (1H, s), 3. 92 (1H, m) ,2. 35-2. 00 (2H, m), 1. 95-1. 70 (4H, m), 1. 65-1. 55 (1H, m) ,1. 50-1. 05 (3H, m)
純度 >90%	(NMR)	•
MS 609	(M+1)	

実施例番号	313	1H NMR(δ) ppm
НО	N F O N	300MHz, DMSO-d6 8.89(1H, brs), 8.63(1H, brs), 8.24(1H, s), 8.11(1H, d, J) =7.8Hz), 7.99(1H, d, J=8.8Hz), 7.89(1H, d, J=9.9Hz), 7.61-7.55(4H, m), 7.43(2H, t, J=7.7Hz), 7.34(1H, t, J=7.2Hz), 7.24(1H, d, J=12.0Hz), 7.14(1H, d, J=8.6Hz), 6.95(1H, s), 3.96(1H, m), 2.35-2.
純度	>90% (NMR)	05 (2H, m), 2.00-1.50 (5H, m), 1.45-1.10 (3H, m)
MS	522 (M+1)	

表 207

実施例番号	503	}	1H NMR(δ) ppm
но			300MHz, DMSO-d6 8. 23 (1H, s), 7. 76 (1H, d, J=8 .7Hz), 7. 58 (1H, d, J=8. 8Hz) , 7. 51-7. 32 (7H, m), 7. 17 (2H , d, J=8. 7Hz), 6. 55 (1H, s), 5 .18 (2H, s), 4. 75 (1H, m), 2. 3 5-2. 12 (2H, m), 2. 10-1. 85 (4 H, m), 1. 80-1. 50 (2H, m)
純度	>90% (NMR)		
MS	412 (M+1)		

実施例番号	r	701	1H NMR(δ) ppm
HO	CI)	300MHz, DMSO-d6 8.96(1H, s), 8.50(1H, s), 7. 77(2H, d, J=8.7Hz), 7.50-7. 40(4H, m), 7.30(1H, d, J=8.4 Hz), 7.24(1H, d, J=2.4Hz), 7. 16(2H, d, J=8.4Hz), 7.06(1 H, dd, J=2.4Hz, 8.1Hz), 5.06 (2H, s), 4.31(1H, s), 3.83(3 H, s), 2.80-2.55(2H, m), 2.0 0-1.80(4H, m), 1.70-1.55(1
純度	>90% (NMR)		H, m), 1.40-1.15(3H, m)
MS	, 568 (M+1)	·	

実施例番号 3	11 1H NMR(δ) ppm
HCI N=	300MHz, DMSO-d6 8.84(2H, d, J=6.3Hz), 8.28(1H ,s), 8.17and7.99(2H, ABq, J=8 .7Hz), 7.87-7.85(3H, m), 7.70 -7.50(3H, m), 7.52(1H, d, J=8. 3Hz), 7.18(2H, d, J=8.7Hz), 5. 22(2H, s)4.31(1H, br t, J=12.5Hz), 2.36-2.18(2H, m), 2.03-1.78(4H, m), 1.70-1.5 8(1H, m), 1.50-1.23(3H, m)
純度 >90% (NMR)	
MS 538 (M+1)	

実施例番号		316	1H NMR(δ) ppm
HO	ICI CI	N HX	300MHz, DMSO-d6 9. 23 (1H, t, J=6. 3Hz), 8. 29 (1H, s), 8. 25-8. 22 (2H, m), 8. 03 (2H, d, J=7. 9Hz), 7. 55-7. 48 (5H, m) 7. 34 (4H, d, J=4. 4Hz), 7. 28-7. 22 (3H, m), 5. 15 (2H, s), 4. 52 (2H, d, J=5. 9Hz), 4. 35 (1H, br t, J=12. 1Hz), 2. 37-2. 18 (2H, m), 2. 08-1. 95 (2H, m), 1. 91-1. 79 (2H, m), 1. 72-1. 59 (1H, m), 1. 47-1. 19 (3H, m)
純度	> 9 0 % (1	NMR)	m)
MS	670 (M+	1)	

実施例智	香号	318	1H 1
НО	2HCI CI	H N	300l (1H, 4H, 18. 2' 'B' (4 H, A' 4 (4l nd7. 5. 1(), 4. t, J=
純度	>90% (NMI	R)	, 2. 0 2H, r . 19
MS	. 671 (M+1)		. 19

IH NMR(δ) ppm

300MHz, DMSO-d6 9.63 (1H, t, J=4.8Hz), 8.86and7.97 (4H, ABq, J=6.6Hz), 8.30 (1H, s), 8.27 (1H, s), 8.23and8.03 (2H, A'B'q, J=8.8Hz), 8.09and7.54 (2H, A''B''q, J=8.1Hz), 7.73and7.24 (4H, A'''B'''q, J=8.8Hz), 7.54and7.52 (4H, A''''B'''q, J=8.8Hz), 5.16 (2H, s) 4.78 (2H, d, J=5.6Hz), 4.35 (1H, brt, J=11.0Hz), 2.39-2.19 (2H, m), 2.07-1.96 (2H, m), 1.91-1.78 (2H, m), 1.70-1.57 (1H, m) 1.50-1.19 (3H, m)

実施例番	号 3	319
но	HCI CI	-
純度	>90% (NMR)	
MS	684 (M+1)	

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 28 (1H, s), 8. 24and8. 03 (2H, A Bq, J=9. 0Hz), 7. 77 (1H, s), 7. 70 (2H, d, J=8. 4Hz), 7. 64-7. 10 (13 H, m), 5. 16 (2H, s), 4. 74and4. 57 (total 2H, each br s), 4. 34 (1H, br t, J=11. 7Hz), 2. 90 (3H, s), 2. 35 -2. 17 (2H, m), 2. 07-1. 93 (2H, m), 1. 93-1. 78 (2H, m), 1. 71-1. 57 (1H, m), 1. 51-1. 19 (3H, m)

実施例番号	320	1H, N
HO 2HCI N=	N (300M 8.94 ,8.3 A'B' .73a),7. 7.9H r t, J= (3H,
純度 > 90% (NMF	₹)	, 1.7 3H, m
MS 575 (M+1)		

$H_{NMR}(\delta)$ ppm

300MHz, DMSO-d6 8.94and8.06 (4H, ABq, J=6.8Hz), 8.33 (1H, s), 8.28and8.05 (2H, A'B'q, J=8.7Hz), 7.80 (1H, s), 7.73and7.22 (4H, A'B''q, J=8.7Hz), 7.63and7.57 (2H, A''B''q, J=7.9Hz), 5.30 (2H, s), 4.34 (1H, b''t, J=12.1Hz), 3.04 (3H, s), 2.97 (3H, s), 2.38-2.18 (2H, m), 2.10-1.96 (2H, m), 1.93-1.80 (2H, m), 1.72-1.58 (1H, m), 1.52-1.08 (3H, m)

実施例番号	321	1H NMR(δ) ppm
O 2HCI CI,		300MHz, DMSO-d6 11. 19 (1H, br s), 8. 31 (1H, s), 8. 23and8. 02 (2 H, ABq, J=9. OHz), 7. 77 (1H, s), 7 .72and7. 23 (4H, A'B'q, J=8. 7Hz), 7. 59and7. 48 (2H, A'B''q, J=7. 9Hz), 7. 53and7. 51 (4H, A''' B''' q , J=9. OHz), 5. 16 (2H, s), 4. 72-2 .97 (8H, br m), 4. 34 (1H, br t, J=12. 1Hz), 2. 79 (3H, s), 2. 38 -2. 17 (2H, m), 2. 07-1. 93 (2H, m)
純度 >90%	(NMR)	,1.93-1.78(2H, m),1.69-1.58(1H, m),1.50-1.10(3H, m)
MS 663 (M+1)	

実施例番号 322	1H NMR(δ) ppm
O 2HCI HO N N H N N N N N N N N N N N N N N N	300MHz, DMSO-d6 9.54(1H, t, J=5.7Hz), 8.91(1H, s), 8.81(1H, d, J=4.9Hz), 8.48(1H, d, J=7.9Hz), 8.32(1H, s), 8.27(1H, d, J=9.0Hz), 8.25(1H, s), 8.07-7.97(3H, m), 7.74and7.25(4H, ABq, J=8.9Hz), 7.56-7.49(5H, m), 5.16(2H, s), 4.69(2H, d, J=5.6Hz), 4.36(1H, brt, J=12.4Hz), 2.37-2.20(2H, m), 2.09-1.97(2H, m), 1.91-1.78(
純度 >90% (NMR)	2H, m), 1.70-1.57 (1H, m), 1.50- 1.17 (3H, m)
MS 671 (M+1)	

実施例番号		(324	1H NMR(δ) ppm
но	HCI			300MHz, DMSO-d6 8. 36 (1H, d, J=7. 9Hz), 8. 30 (1H, s), 8. 28and8. 05 (2H, ABq, J=8. 8 Hz), 8. 16 (1H, s), 7. 79and7. 46 (2H, A'B'q, J=8. 3Hz), 7. 74and7. 25 (4H, A'B''q, J=8. 9Hz), 7. 52and7. 50 (4H, A''B'''q, J=8. 7Hz), 5. 14 (2H, s), 4. 36 (1H, brt, J=12. 1Hz), 3. 80 (1H, brs), 2. 39-2. 18 (2H, m), 2. 10-1. 98 (2H, m), 1. 93-1. 57 (8H, m), 1. 4
純度	> 9 0 %	(NMR)		9-1.04(8H, m)
MS	662	(M+1)		

実施例番号			325	1H NMR(δ) ppm
HO 2HC		H	N	300MHz, DMSO-d6 8. 86 (1H, t, J=6. OHz), 8. 84and8 .00 (4H, ABq, J=6. 6Hz), 8. 33 (1H ,s), 8. 27and8. 04 (2H, A'B'q, J= 9. OHz), 8. 12 (1H, s), 7. 92and7. 46 (2H, A"B"q, J=7. 9Hz), 7. 74an d7. 23 (4H, A"'B"'q, J=9. OHz), 7 .53and7. 49 (4H, A""B""q, J=9. 1 Hz), 5. 13 (2H, s), 4. 36 (1H, br t, J=12. 8Hz), 3. 70 (2H, td, J=6. 8, 6. OHz), 3. 21 (2H, t, J=6. 8Hz)
純度	> 9 0 %	(NMR)		, 2. 38-2. 20 (2H, m), 2. 09-1. 95 (2H, m), 1. 91-1. 77 (2H, m), 1. 70- 1. 59 (1H, m), 1. 49-1. 20 (3H, m)
MS	685 ((M+1)	_	1. 35 (111, m), 1. 49 1. 20 (3 n , m)

表 212

実施例番号	327	IH NMR(δ) ppm
HO F	ОН.	300MHz, DMSO-d6 13. 20-12. 60 (2H, brs), 8. 23 (1H, s), 7. 98 (2H, d, J=6. 6Hz), 7. 95 (1H, d, J=8. 7Hz), 7. 87 (1H, d, J=8. 7Hz), 7. 70-7. 50 (5H, m), 7. 27 -7. 20 (3H, m), 7. 08 (1H, d, J=7. 8 Hz), 6. 90 (1H, s), 3. 93 (1H, s), 2 .51-2. 05 (2H, m), 1. 90-1. 70 (4H, m), 1. 65-1. 55 (1H, m), 1. 40-1. 10 (3H, m)
純度 > 90% (NMR)		
MS 583 (M+1)		

表 213

	HO ₂ C N	$ \begin{array}{c c} & R' \\ & 3 \\ & 2 \\ & 6 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 6 \\ & R \end{array} $
実施例 番号	R	R'
2001	-H	4-(-Me)
2002	·H	3-(-CF ₃)
2003	5-(-F)	-H
2004	3-(-F)	2-(-F)
2005	3-(-F)	3-(-F)
2006	3-(-F)	4-(-F)
2007	4-(-F)	4-(-F)
2008	5-(-F)	4-(-F)
2009	6-(-F)	4-(-F)
2010	4-(-F)	4-(-Cl)
2011	5-(-F)	4-(-Me)
2012	5-(-F)	4-(-CF ₃)
2013	5-(-F)	4-(-CO ₂ H)
2014	5-(-F)	4-(-CO ₂ Me)
2015	5-(-F)	4- (- N)
2016	5-(-F)	4-(-CONH ₂)
2017	5-(-F)	4-{-CON(Me) ₂ }
2018	5-(-F)	4-(-OMe)
2019	5-(-F)	4-(-SMe)
2020	5-(-F)	(—Š−Me)
2021	5-(-F)	$\left(egin{array}{c} 0 \ -\ddot{\ddot{S}}-\mathtt{Me} \ 0 \end{array} ight)$
2022	4-(-Cl)	·H
2023	4-(-Cl)	4-(-F)

		2 0 2 7 0 2
2024	4-(-Cl)	4-(-Cl)
2025	4-(-Cl)	4-(-Me)
2026	5-(-CI)	4-(-CF ₃)
2027	4-(-CI)	4-(-CO ₂ H)
2028	5-(-Cl)	4-(-CO ₂ Me)
2029	5-(-Cl)	$\left(\begin{array}{c} 0 \\ -1 \end{array}\right)$
2030	4-(-Cl)	4-(-CONH ₂)
2031	5-(-Cl)	4-{-CON(Me) ₂ }
2032	5-(-CI)	3-(-OMe)
2033	4-(-Cl)	4-(-SMe)
2034	5-(-Cl)	0 4- (— Š—Me)
2035	4-(-Cl)	$\begin{pmatrix} 0 \\ -\ddot{\S}-Me \end{pmatrix}$
2036	5-(-CN)	4-(-F)
2037	4-(-CN)	4-(-Cl)
2038	5-(-NO ₂)	4-(-F)
2039	4-(-NO ₂)	4-(-Cl)
2040	5-(-Me)	4-(-CO ₂ H)
2041	5-(-Me)	4-(-CO ₂ Me)
2042	5-(-Me)	4- (- N)
2043	5-(-CF ₃)	4-(-CO ₂ H)
2044	5-(-CF ₃)	4-(-CO ₂ Me)
2045	5-(-CF ₃)	4- (-N)
2046	5-(-CO ₂ H)	4-(-F)
2047	4-(-CO ₂ H)	4-(-Cl)
2048	5-(-CO ₂ Me)	4-(·F)
2049	5-(-CO₂Me)	4-(-Cl)
2050	5-(-Ac)	4-(-F)
2051	5-(-Ac)	4-(-Cl)
2052	5- (—N)	Н

2053	5- (-N)	4-(-F)
2054	5- (— N)	4-(-Cl)
2055	5- (- N)	4-(-CN)
2056	5- (—N)	4-(-NO ₂)
2057	$\left(\begin{array}{c} 0 \\ \longrightarrow N \end{array}\right)$	4-(-Me)
2058	5- (— N)	4-(-CF ₃)
2059	$\left(\begin{array}{c} 0 \\ - 1 \end{array}\right)$	4-(-Ac)
2060	5- (-N)	4-(-CO ₂ H)
2061	5- (- N)	4-(-CO ₂ Me)
2062	5- (—N)	$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$
2063	5- (—N)	4-(-CONH ₂)
2064	$\left(\begin{array}{c} 0 \\ - 1 \end{array}\right)$	4-{-CON(Me) ₂ }
2065	5- (— N)	4-{-C(=NH)NH ₂ }
2066	5- (-N)	4-(-OMe)
2067	5- (- N)	4 - $\left(-0$ - CH_{2} - N $\right)$
2068	$\left(\begin{array}{c} 0 \\ - 1 \end{array}\right)$	4-(-NHMe)
2069		4-(-NHAc)
2070	$\left \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right $	$\begin{pmatrix} 0 \\ -N - \ddot{S} - Me \end{pmatrix}$

2071	$\left(\begin{array}{c} 0 \\ \parallel N \end{array}\right)$	4-(-SMe)
2072	$\left(\begin{array}{c} 0 \\ - \end{array}\right)$	4 - $\begin{pmatrix} 0\\ -\ddot{s}-Me \end{pmatrix}$
2073	$_{5^{-}}\left(\begin{array}{c} 0 \\ \hline 1 \\ \end{array} \right)$	(\s\display=Me)
2074	$_{5^{-}}\left(\stackrel{0}{-\parallel}$ N $\bigcirc \right)$	$\begin{pmatrix} 0 \\ -\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}$
2075	$\left(\begin{array}{c} 0 \\ \hline 1 \end{array}\right)$	$ \left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_{2} \end{array} \right\} $
2076	5-(-CONH ₂)	-H
2077	5-(-CONH ₂)	4-(-F)
2078	5-(-CONH ₂)	2,3,4,5,6-penta-(-F)
2079	5-(-CONH ₂)	2-(-Cl)
2080	5-(-CONH ₂)	3-(-Cl)
2081	3-(-CONH ₂)	2-(-Cl)
2082	3-(-CONH ₂)	3-(-Cl)
2083	3-(-CONH ₂)	4-(-Cl)
2084	4-(-CONH ₂)	2-(-Cl)
2085	4-(-CONH ₂)	3-(-CI)
2086	4-(-CONH ₂)	4-(-Cl)
2087	6-(-CONH ₂)	2-(-Cl)
2088	6-(-CONH ₂)	3-(-Cl)
2089	6-(-CONH ₂)	4-(-Cl)
2090	5-(-CONH ₂)	3,5-di-(-Cl)
2091	5-(-CONH ₂)	4-(-CN)
2092	5-(-CONH ₂)	4-(-NO ₂)
2093	5-(-CONH ₂)	4-(-Me)
2094	5-(-CONH ₂)	2,6-di-(-Me)
2095	5-(-CONH ₂)	4-(-CF ₃)
2096	5-(-CONH ₂)	4-(-Ac)
2097	5-(-CONH ₂)	4-(-CO ₂ H)
2098	5-(-CONH ₂)	4-(-CO ₂ Me)
2099	5-(-CONH ₂)	4- (-N)
2100	5-(-CONH ₂)	4-(-CONH ₂)

2101	5-(-CONH ₂)	3,5-di-(-CONH ₂)
2102	5-(-CONH ₂)	4-{-CON(Me) ₂ }
2103	5-(-CONH ₂)	4-{-C(=NH)NH ₂ }
2104	5-(-CONH ₂)	4-(-OMe)
2105	5-(-CONH ₂)	3,4,5-tri-(-OMe)
2106	5-(-CONH ₂)	$\left(-0-CH_{2}^{0}-N\right)$
2107	5-(-CONH ₂)	4-(-NHMe)
2108	5-(-CONH ₂)	4-(-NHAc)
2109	5-(-CONH ₂)	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$
2110	5-(-CONH ₂)	4-(-SMe)
2111	5-(-CONH ₂)	(0 4- Š−Me)
2112	5-(-CONH ₂)	$\left(egin{array}{c} 0 \\ -\ddot{\S} - \mathtt{Me} \\ 0 \end{array} ight)$
2113	5-(-CONH ₂)	$\begin{pmatrix} -\ddot{\S}-NH_2 \end{pmatrix}$
2114	5-(-CONH ₂)	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \text{ (Me)}_{2} \end{array} \right\} $
2115	5-{-CON(Me) ₂ }	-H
2116	5-{-CON(Me) ₂ }	4-(-F)
2117	4-{-CON(Me) ₂ }	4-(-C1)
2118	5-{-CON(Me) ₂ }	4-(-CN)
2119	5-{-CON(Me) ₂ }	4-(-NO ₂)
2120	5-{-CON(Me) ₂ }	4-(-Me)
2121	4-{-CON(Me) ₂ }	4-(-CF ₃)
2122	5-{-CON(Me) ₂ }	4-(-Ac)
2123	5-{-CON(Me) ₂ }	4-(-CO ₂ H)
2124	5-{-CON(Me) ₂ }	4-(-CO ₂ Me)
2125	5-{-CON(Me) ₂ }	$\left(\begin{array}{c} 0 \\ - \\ 1 \end{array}\right)$
· 2126	5-{-CON(Me) ₂ }	3-(-CONH ₂)
2127	4-{-CON(Me) ₂ }	4-{-CON(Me) ₂ }
ļ		4-{-C(=NH)NH ₂ }

0237		
2129	5-{-CON(Me) ₂ }	4-(-QMe)
2130	5-{-CON(Me) ₂ }	
2131	5-{-CON(Me) ₂ }	4-(-NHMe)
2132	5-{-CON(Me) ₂ }	4-(-NHAc)
2133	5-{-CON(Me) ₂ }	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$
2134	4-{-CON(Me) ₂ }	4-(-SMe)
2135	5-{-CON(Me) ₂ }	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$
2136	4-{-CON(Me) ₂ }	$\begin{pmatrix} -\ddot{s} - Me \\ 0 \\ 0 \end{pmatrix}$
2137	5-{-CON(Me) ₂ }	$\begin{pmatrix} 0\\ -\overset{0}{{{{}{{}{}{$
2138	5-{-CON(Me) ₂ }	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \text{ (Me)}_{2} \end{array} \right\} $
2139	5-(-OMe)	-H
2140	5-(-OMe)	4-(-F)
2141	3-(-OMe)	4-(-Cl)
2142	4-(-OMe)	4-(-Cl)
2143	5-(-OMe)	2-(-Cl)
2144	5-(-OMe)	3-(-Cl)
2145	6-(-OMe)	4-(-Cl)
2146	5-(-OMe)	4-(-CN)
2147	5-(-OMe)	4-(-NO ₂)
2148	5-(-OMe)	4-(-Me)
2149	5-(-OMe)	4-(-CF ₃)
2150	5-(-OMe)	4-(-Ac)
2151	4-(-OMe)	4-(-CO ₂ H)
2152	4,5-di-(-OMe)	4-(-CO ₂ H)
2153	5-(-OMe)	4-(-CO ₂ Me)
2154	5-(-OMe)	$\left(\begin{array}{c} 0 \\ - 1 \end{array}\right)$
2155	5-(-OMe)	4-(-CONH ₂)
2156	5-(-OMe)	4-{-CON(Me) ₂ }

2157	5-(-OMe)	4-{-C(=NH)NH ₂ }
2158	5-(-OMe)	4-(-OMe)
2159	5-(-OMe)	$ \begin{array}{c c} & & & \\ & & & \\ \hline & & & \\ & & & \end{array} $
2160	5-(-OMe)	4-(-NHMe)
2161	5-(-OMe)	4-(-NHAc)
2162	5-(-OMe)	$\begin{pmatrix} -N - \ddot{S} - Me \\ H & 0 \end{pmatrix}$
2163	5-(-OMe)	4-(-SMe)
2164	5-(-OMe)	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$
2165	5-(-OMe)	$\begin{pmatrix} 0 \\ -\ddot{\ddot{S}}-Me \end{pmatrix}$
2166	5-(-OMe)	$\begin{pmatrix} 0 \\ -\ddot{S} - NH_2 \end{pmatrix}$
2167	5-(-OMe)	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\mathbb{S}} - N \left(Me\right)_2 \end{array} \right\} $
2168	5-(-NHMe)	4-(-F)
2169	5-(-NHMe)	4-(-Cl)
2170	5-(-NHAc)	4-(-F)
2171	5-(-NHAc)	4-(-Cl)
2172	5-(-NHAc)	4-(-Ac)
2173	5-(-NHAc)	4-(-CONH ₂)
2174	5-(-NHAc)	4-{-CON(Me) ₂ }
2175	$\begin{pmatrix} 0 \\ -N - \ddot{S} - Me \end{pmatrix}$	4-(-F)
2176	$\begin{pmatrix} 0 \\ -N - \ddot{S} - Me \end{pmatrix}$	4-(-Cl)
2177	(-N-S-Me)	4-(-Me)
2178	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$	4-(-CF ₃)
2179	$\left(\begin{array}{c} 0 \\ -N - \ddot{S} - Me \end{array} \right)$	4-(-CO ₂ H)

	_	
2180	0 N-S-Me H Ö	4-(-CO ₂ Me)
2181	0 - (-N-S-We)	$\begin{pmatrix} \begin{pmatrix} 0 \\ -\parallel \end{pmatrix} \end{pmatrix}$
2182	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$	4-(-SMe)
2183	$\begin{pmatrix} -N-\ddot{S}-Me \\ H & 0 \end{pmatrix}$	0 4- (—S—Me)
2184	(-N-S-Me)	$\begin{pmatrix} 0\\ -\ddot{\S}-\text{Me} \end{pmatrix}$
2185	5-(-SMe)	4-(-F)
2186	4-(-SMe)	4-(-Cl)
2187	5-(-SMe)	4-(-Me)
2188	· 5-(-SMe)	4-(-CF ₃)
2189	5-(-SMe)	4-(-Ac)
2190	5-(-SMe)	4-(-CONH ₂)
2191	5-(-SMe)	4-{-CON(Me) ₂ }
2192	0 5- (-Š-Me)	4-(-F)
2193	4- (-S-Me)	4-(-Cl)
2194	5- (0 5-Me)	4-(-Me)
2195	5- (0 	4-(-CF ₃)
2196	(4-(-Ac)
2197	0 5- (—Š—Me)	4-(-CONH ₂)
2198	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$	4-{-CON(Me) ₂ }
2199	(————————————————————————————————	4-(-F)
2200	4- (-\$-Me)	4-(-Cl)
2201	$\left(\begin{array}{c} 0 \\ -\ddot{\ddot{s}} - \text{Me} \end{array} \right)$	4-(-Me)

2202	(4-(-CF ₃)
2203	(— S — Me)	4-(-Ac)
2204	(-S-Me)	4-(-CONH ₂)
2205	$\begin{pmatrix} 0\\ -\ddot{S}-\text{Me} \end{pmatrix}$	4-{-CON(Me) ₂ }
2206	$\begin{pmatrix} 0 \\ -\ddot{\ddot{s}} - NH_2 \end{pmatrix}$	4-(-F)
2207	$\begin{pmatrix} 0\\ -\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}$	4-(-Cl)
2208	$\begin{pmatrix} 0 \\ -\ddot{\ddot{s}} - NH_2 \end{pmatrix}$	2,4-di-(-Cl)
2209	$\begin{pmatrix} 0 \\ -\ddot{S} - NH_2 \end{pmatrix}$	4-(-Me)
2210	$\begin{pmatrix} 0 \\ -\ddot{S} - NH_2 \end{pmatrix}$	3-(-CF ₃)
2211	5- (4-(-CF ₈)
2212	$\begin{pmatrix} 0 \\ -\ddot{\ddot{s}} - NH_2 \end{pmatrix}$	4-(-CONH ₂)
2213	$\begin{pmatrix} 0 \\ -\ddot{S} - NH_2 \end{pmatrix}$	4-{-CON(Me) ₂ }
2214	$\begin{pmatrix} 0 \\ -\ddot{S} - NH_2 \end{pmatrix}$	4-(-SMe)
2215	$\begin{pmatrix} -\ddot{S} - NH_2 \end{pmatrix}$	4- (-S-Me)
2216	$\begin{pmatrix} 0 \\ -\ddot{\ddot{s}} - NH_2 \end{pmatrix}$	$\left(egin{array}{c} 0 \ \ddot{\ddot{S}} - Me \end{array} ight)$
2217	$ \left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_2 \end{array} \right\} $	4-(-F)
2218	$\left\{\begin{array}{c}0\\-\ddot{\mathbb{S}}-N\left(Me\right)_{2}\end{array}\right\}$	4-(-Cl)

2219	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \text{ (Me)}_{2} \end{array} \right\} $	4-(-Me)
2220	$\left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \left(Me\right)_{2} \end{array} \right\}$	4-(-CF ₃)
2221	$\left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_2 \end{array} \right\}$	4-(-CONH ₂)
2222	$\left\{ \begin{array}{c} 0\\ -\ddot{S}-N \text{ (Me)}_2 \end{array} \right\}$	4-{-CON(Me) ₂ }
2223	$\left\{ \begin{array}{c} 0\\ -\ddot{S}-N \text{ (Me)}_{2} \end{array} \right\}$	4-(-SMe)
2224	$\left\{ \begin{array}{c} 0 \\ -\ddot{\$} - \texttt{N (Me)}_2 \end{array} \right\}$	(-S-Me)
2225	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\ddot{s}} - N \text{ (Me)}_{2} \end{array} \right\} $	$\left(egin{array}{c} 0 \ \ddot{\ddot{s}} - \mathtt{Me} \end{array} ight)$
2226	5-{-O-(CH ₂) ₂ -OH}	4-(-Cl)
2227	5-{-O-(CH ₂) ₃ -OH}	4-(-Cl)
2228	5- (-0)	4-(-Cl)
2229	5- (-0 N)	4-(-Cl)
2230		4-(-CI)
2231	5- (-0 N) OH)	4-(-Cl)
2232	5- (-0 N OH)	4-(-Cl)
2233	5- (N OH)	4-(-Cl)
2234	5- (N OH)	4-(-Cl)
2235	0 N OH OH	4-(-Cl)

254		
2236	5- (N OH)	4-(-Cl)
2237	(N CO ₂ H)	4-(-Cl)
2238	O Me Me Me Me	4-(-Cl)
2239	O Me Me N Me Me OH	4-(-Cl)
2240	5- (N OMe	4-(-Cl)
2241	5- (N)	4·(-Cl)
2242	5- (N)	4-(-Cl)
2243	5- (N N S Me)	4-(-Cl)
2244	5- (N S)	4-(-Cl)
2245	5- (N S=0)	4-(-Cl)
2246	0 N OH)	4-(-Cl)
2247	5- ())	4-(-Cl)
2248	4- (NH)	4-(-Cl)
2249	(N OH)	4-(-Cl)

2250	0, Me 5- (0, Me 0, Me 0)	4-(-CI)
2251		4-(-Cl)
2252		4-(-Cl)
2253	5- (Ne N)	4-(-CI)
2254	5- (N N Me)	4-(-Cl)

表 214

	HO ₂ C N F	R' 3 2 6 1 2 3 4 6 5 R
実施例 番号	R	R'
2255	-H	·H
2256	-H	4-(-Me)
2257	-H	3-(-CF ₃)
2258	5-(-F)	-H
2259	5-(-F)	4-(-F)
2260	5-(-F)	4-(-Cl)
2261	5-(-F)	4-(-Me)
2262	5-(-F)	4-(-CF ₃)
2263	5-(-F)	4-(-CO ₂ H)
2264	5-(-F)	4-(-CO ₂ Me)
2265	5-(-F)	4- (-N)
2266	5-(-F)	4-(-CONH ₂)
2267	5-(-F)	4-{-CON(Me) ₂ }
2268	5-(-F)	4-(-OMe)
2269	5-(-F)	4-(-SMe)
2270	5-(-F)	(— S−Me)
2271	5-(-F)	(-\$-Me)
2272	4-(-Cl)	11
2273	5-(-Cl)	4-(-F)
2274	4-(-Cl)	4-(-Cl)
2275	5-(-Cl)	4-(-Me)
2276	5-(-Cl)	4-(-CF ₃)
2277	5-(-Cl)	4-(-CO ₂ H)

2278	5-(-Cl)	4-(-CO ₂ Me)
2279	5-(-Cl)	4- (-N)
2280	5-(-Cl)	4-(-CONH ₂)
2281	5-(-CI)	4-{-CON(Me) ₂ }
2282	5-(-CI)	4-(-OMe)
2283	5-(-Cl)	4-(-SMe)
2284	5-(-Cl)	(0 4-
2285	5-(-Cl)	$\begin{pmatrix} 0 \\ -\ddot{s}-\text{Me} \end{pmatrix}$
2286	5-(-CN)	4-(-F)
2287	5-(-CN)	4-(-Cl)
2288	5-(-NO ₂)	4-(-F)
2289	5-(-NO ₂)	4-(-Cl)
2290	5-(-Me)	4-(-CO ₂ H)
2291	5-(-Me)	4-(-CO ₂ Me)
2292	5-(-Me)	$\left(\begin{array}{c} 0 \\ - \\ 4 \end{array}\right)$
2293	5-(-CF ₃)	4-(-CO ₂ H)
2294	5-(-CF ₃)	4-(-CO ₂ Me)
2295	5-(-CF ₃)	$\left(\begin{array}{c} 0 \\ - \\ 1 \end{array}\right)$
2296	5-(-CO ₂ H)	4-(-F)
2297	4-(-CO ₂ H)	4-(-Cl)
2298	5-(-CO ₂ Me)	4-(-F)
2299	5-(-CO ₂ Me)	4-(-Cl)
2300	5-(-Ac)	4-(·F)
2301	5-(-Ac)	4-(-Cl)
2302	5- (- N)	-Н
2303	5- (—N)	4-(-F)
2304	4- (- N)	4-(-Cl)

254		1 0 1 / 0 1 0 2 /
2305	5- (N)	4-(-CN)
2306	5- (-N)	4-(-NO ₂)
2307	5- (-N)	4-(-Me)
2308	5- (-N)	4-(-CF ₃)
2309	5- (-N)	4-(-Ac)
2310	5- (- N)	4-(-CO ₂ H)
2311	5- (- N)	4-(-CO ₂ Me)
2312	5- (- N)	4- (-N)
2313	5- (-N)	4-(-CONH ₂)
2314	5- (—N)	4-{-CON(Me) ₂ }
2315	5- (ON)	4-{-C(=NH)NH ₂ }
2316	5- (—N)	4-(-OMe)
2317		
2318	$\left(\begin{array}{c} 0 \\ - 1 \end{array}\right)$	4-(-NHMe)
2319	5- (- N)	4-(-NHAc)
2320	5- (— N)	$\left(\begin{array}{c} 0 \\ -N - \ddot{S} - \text{Me} \end{array} \right)$
. 2321	5- (—N)	4-(-SMe)
2322	5- (-N)	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$

254		
2323	5- (- -N)) ·	4- (-\$-Me)
2324	5- (— N)	$\begin{pmatrix} 0 \\ -\ddot{S} - NH_2 \end{pmatrix}$
2325	5- (- -N\)	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\$} - N \text{ (Me)}_{2} \end{array} \right\} $
2326	5-(-CONH ₂)	-H
2327	5-(-CONH ₂)	4-(-F)
2328	4-(-CONH ₂)	4-(-Cl)
2329	5-(-CONH ₂)	4-(-CN)
2330	5-(-CONH ₂)	4-(-NO ₂)
2331	5-(-CONH ₂)	4-(-Me)
2332	5-(-CONH ₂)	4-(-CF ₃)
2333	5-(-CONH ₂)	4-(-Ac)
2334	5-(-CONH ₂)	4-(-CO ₂ H)
2335	5-(-CONH ₂)	4-(-CO ₂ Me)
2336	5-(-CONH ₂)	$4^{-}\left(\begin{array}{c} 0\\ -1\\ -1 \end{array}\right)$
2337	5-(-CONH ₂)	4-(-CONH ₂)
2338	5-(-CONH ₂)	4-{-CON(Me) ₂ }
2339	5-(-CONH ₂)	4-{-C(=NH)NH ₂ }
2340	5-(-CONH ₂)	4-(-OMe)
2341	5-(-CONH ₂)	$ \frac{1}{4} \left(-0 - CH_{2} $
2342	5-(-CONH ₂)	4-(-NHMe)
2343	5-(-CONH ₂)	4-(-NHAc)
2344	5-(-CONH ₂)	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$
2345	5-(-CONH ₂)	4-(-SMe)
2346	5-(-CONH ₂)	4- (—Š—Me)
2347	5-(-CONH ₂)	(-\$-Me)
2348	5-(-CONH ₂)	$\begin{pmatrix} -\ddot{\ddot{s}} - NH_2 \end{pmatrix}$
	400	

204		
2349	5-(-CONH ₂)	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\$} - N \left(Me\right)_{2} \end{array} \right\} $
2350	5-{-CON(Me) ₂ }	-H
2351	5-{-CON(Me) ₂ }	4-(-F)
2352	4-{-CON(Me) ₂ }	4-(-Cl)
2353	5-{-CON(Me) ₂ }	4-(-CN)
2354	5-{-CON(Me) ₂ }	4-(-NO ₂)
2355	5-{-CON(Me) ₂ }	4-(-Me)
2356	5-{-CON(Me) ₂ }	4-(-CF ₃)
2357	5-{-CON(Me) ₂ }	4-(-Ac)
2358	5-{-CON(Me) ₂ }	4-(-CO ₂ H)
2359	5-{-CON(Me) ₂ }	4-(-CO ₂ Me)
2360	5-{-CON(Me) ₂ }	4- (-N)
2361	5-{-CON(Me) ₂ }	4-(-CONH ₂)
2362	$5-\{-CON(Me)_2\}$	4-{-CON(Me) ₂ }
2363	5-{-CON(Me) ₂ }	4-{-C(=NH)NH ₂ }
2364	5-{-CON(Me) ₂ }	4-(-OMe)
2365	5-{-CON(Me) ₂ }	$ \begin{array}{c c} & 0 \\ \hline & 4 \end{array} $
2366	5-{-CON(Me) ₂ }	4-(-NHMe)
2367	5-{-CON(Me) ₂ }	4-(-NHAc)
2368	5-{-CON(Me) ₂ }	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$
2369	5-{-CON(Me) ₂ }	4-(-SMe)
2370	5-{-CON(Me) ₂ }	4- (- S-Me)
2371	5-{-CON(Me) ₂ }	$\begin{pmatrix} 0\\ -\ddot{S}-\text{Me} \end{pmatrix}$
2372	5-{-CON(Me) ₂ }	$\begin{pmatrix} 0 \\ -\ddot{\ddot{S}} - NH_2 \end{pmatrix}$
2373	5-{-CON(Me) ₂ }	$ \left\{ \begin{array}{c} 0 \\ -\ddot{\$} - \texttt{N (Me)}_2 \end{array} \right\} $
2374	5-(-OMe)	-H

2375	5-(-OMe)	4-(-F)
2376	5-(-OMe)	4-(-Cl)
2377	5-(-OMe)	4-(-CN)
2378	5-(-OMe)	4-(-NO ₂)
2379	5-(-OMe)	4-(-Me)
2380	5-(-OMe)	4-(-CF ₃)
2381	5-(-OMe)	4-(-Ac)
2382	5-(-OMe)	4-(-CO ₂ H)
2383	5-(-OMe)	4-(-CO ₂ Me)
2384	5-(-OMe)	4- (-N)
2385	5-(-OMe)	4-(-CONH ₂)
2386	5-(-OMe)	4-{-CON(Me) ₂ }
2387	5-(-OMe)	4-{-C(=NH)NH ₂ }
2388	5-(-OMe)	4-(-OMe)
2389	5-(-OMe)	$ \begin{array}{c c} & & & 0 \\ & & & & \\ \hline & & 4 \text{-} \left(& -0 \text{-} \text{CH}_{2}^{\frac{1}{2}} \text{-} \text{N} \right) \end{array} $
2390	5-(-OMe)	4-(-NHMe)
2391	5-(-OMe)	4-(-NHAc)
2392	5-(-OMe)	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$
2393	5-(-OMe)	4-(-SMe)
2394	5-(-OMe)	4- (0 4- S-Me)
2395	5-(-OMe)	$\left(egin{array}{c} 0 \ -\ddot{\ddot{s}} - \mathtt{Me} \ 0 \end{array} ight)$
2396	5-(-OMe)	$\begin{pmatrix} 0 \\ -\ddot{S} - NH_2 \end{pmatrix}$
2397	5-(-OMe)	$ \left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_{2} \end{array} \right\} $
2398	5-(-NHMe)	4-(-F)
2399	5-(-NHMe)	4-(-Cl)
· 2400	5-(-NHAc)	4-(·F)
2401	5-(-NHAc)	4-(-Cl)
2402	5-(-NHAc)	4-(-Ac)

2403	5-(-NHAc)	4-(-CONH ₂)
2404	5-(-NHAc)	4-{-CON(Me) ₂ }
2405	$\begin{pmatrix} -N - \stackrel{0}{S} - Me \end{pmatrix}$	4-(-F)
2406	$\begin{pmatrix} -N-S-Me \\ H&0 \end{pmatrix}$	4-(-Cl)
2407	5- (-N-3-Me) 5- (-N-3-Me)	4-(-Me)
2408	0 (-N-S-We) 5-	4-(-CF ₃)
2409	0 N-S-Me)	4-(-CO ₂ H)
2410	0 - (-N-3-We) 5-	4-(-CO ₂ Me)
2411	5- (-N-3-Me)	$\left(\begin{array}{c} 0 \\ - 1 \end{array}\right)$
2412	5- (-N-S-We)	4-(-SMe)
2413	(-N-S-We)	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$
2414	0 N-S-Me)	$\left(egin{array}{c} 0 \\ -\ddot{\ddot{S}} - \mathtt{Me} \end{array} ight)$
2415	5-(-SMe)	4-(-F)
2416	5-(-SMe)	4-(-Cl)
2417	5-(-SMe)	4-(-Me)
2418	5-(-SMe)	4-(-CF ₃)
2419	5-(-SMe)	4-(-Ac)
2420	5-(-SMe)	4-(-CONH ₂)
2421	5-(-SMe)	4-{-CON(Me) ₂ }
2422	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$	4-(-F)
2423	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$	4-(-Cl)
2424	5- (-S-Me)	4-(-Me)

254		
2425	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$	4-(-CF ₃)
2426	0 5- (—Š—Me)	4-(-Ac)
2427	0 5- (—Š-Me)	4-(-CONH ₂)
2428	$\begin{pmatrix} 0 \\ -\ddot{\$}-Me \end{pmatrix}$	4-{-CON(Me) ₂ }
2429	$\begin{pmatrix} 0 \\ -\ddot{\ddot{s}} - \text{Me} \end{pmatrix}$	4-(-F)
2430	0 	4-(-Cl)
2431	(; −Ne)	4-(-Me)
2432	(4-(-CF ₃)
2433	(4-(-Ac)
2434	(-S-Me)	4-(-CONH ₂)
2435	0 (\$-Me)	4-{-CON(Me) ₂ }
2436	$\begin{pmatrix} 0 \\ -\ddot{S}-NH_2 \end{pmatrix}$	4-(-F)
2437	$\begin{pmatrix} 0 \\ -\ddot{\ddot{5}} - NH_2 \end{pmatrix}$	4-(-Cl)
2438	$\begin{pmatrix} 0 \\ -\ddot{\S} - NH_2 \end{pmatrix}$ 5-	4-(-Me)
2439	$\begin{pmatrix} 0 \\ -\ddot{\S} - NH_2 \end{pmatrix}$	4-(-CF ₃)
2440	$\begin{pmatrix} 0 \\ -\ddot{\S} - NH_2 \end{pmatrix}$	4-(-CONH ₂)
2441	$\begin{pmatrix} 0 \\ -\ddot{\ddot{5}} - NH_2 \end{pmatrix}$	4-{-CON(Me) ₂ }
2442	$ \left(-\overset{0}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - \operatorname{NH}_{2} \right) $	4-(-SMe)

2443	$\begin{pmatrix} 0\\ -\ddot{S}-NH_2 \end{pmatrix}$	4- (.—S-Me)
2444	$\begin{pmatrix} 0\\ -\ddot{\ddot{S}}-NH_2 \end{pmatrix}$	$\begin{pmatrix} 0\\ -\ddot{\ddot{s}}-\text{Me} \end{pmatrix}$
2445	$\left\{\begin{array}{c} 0\\ -\ddot{S}-N \text{ (Me)}_{2} \end{array}\right\}$	4-(-F)
2446	$\left\{ egin{array}{c} 0 \ -\ddot{\ddot{s}} - \ \ddot{o} \end{array} ight.$	4-(-Cl)
2447	$\left\{\begin{array}{c} 0\\ -\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} = N\left(Me\right)_{2} \end{array}\right\}$	4-(-Me)
2448	$\left\{\begin{array}{c} 0\\ -\ddot{\ddot{S}} - N \text{ (Me)}_{2} \end{array}\right\}$	4-(-CF ₃)
2449	$\left\{ egin{array}{c} 0 \\ -\ddot{\ddot{s}} - \mathbf{N} \left(\mathrm{Me} ight)_2 \end{array} ight\}$	4-(-CONH ₂)
2450	$\left\{\begin{array}{c} 0 \\ -\ddot{\$} - N \left(Me\right)_{2} \end{array}\right\}$	4-{-CON(Me)2}
2451	$\left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_{2} \end{array} \right\}$	4-(-SMe)
2452	$ \left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_{2} \end{array} \right\} $	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$
2453	$ \left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_{2} \end{array} \right\} $	$\begin{pmatrix} 0 \\ -\ddot{\S}-\text{Me} \end{pmatrix}$

表 215

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
実施例 番号	R	R'
2454	2-(-F)	2-(-F)
2455	2-(-F)	3-(-F)
2456	2-(-F)	4-(-F)
2457	3-(-C1)	3-(-Cl)
2458	3,5-di-(-Cl)	3,5-di-(-Cl)
2459	3-(-CN)	3-(-CN)
2460	3-(-NO ₂)	3-(-NO ₂)
2461	3-(-Me)	3-(-Me)
2462	3-(-CF ₃)	3-(-CF ₃)
2463	3-(-Ac)	3-(-Ac)
2464	3-(-CO ₂ H)	3-(-CO ₂ H)
2465	3-(-CO ₂ Me)	3-(-CO₂Me)
2466	3- (-N)	3- (—N)
2467	3-(-CONH ₂)	3-(-CONH ₂)
2468	3-(-CONH ₂)	3-(-F)
2469	3-(-CONH ₂)	3-(-Cl)
2470	3-{-CON(Me) ₂ }	3-{-CON(Me) ₂ }
2471	3-{-CON(Me) ₂ }	3-(-F)
2472	3-{-CON(Me) ₂ }	3-(-Cl)
2473	3-{-C(=NH)NH ₂ }	3-{-C(=NH)NH ₂ }
2474	3-(-OMe)	3-(-OMe)
2475		
2476	3-(-NHMe)	3-(-NHMe)
2477	3-(-NHAc)	3-(-NHAc)
2478	3- (-N-S-Me)	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$ 3- $\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$

2479	3-(-SMe)	3-(-SMe)
2480	3- (0 3- Me)	3- (0 -S-Me)
2481	3- (−ÿ−Me)	3- (— S — Me)
2482	$\begin{pmatrix} 0 \\ -\ddot{\ddot{s}} - NH_2 \end{pmatrix}$	$\begin{pmatrix} 0\\ -\ddot{\ddot{S}} - NH_2 \end{pmatrix}$
2483	$\left\{ egin{array}{c} 0 \ -\ddot{\ddot{5}} - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\left\{ \begin{array}{c} 0\\ -\ddot{\ddot{s}} - N \text{ (Me)}_{2} \end{array} \right\}$
2484	3-(-F)	4-(-F)
2485	3-(-CI)	4-(-Cl)
2486	4-(-CN)	4-(-CN)
2487	4-(-NO ₂)	4-(-NO ₂)
2488	3-(-Me)	4-(-Me)
2489	4-(-Me)	2,6-di-(-Me)
2490	4-(-CF ₃)	4-(-CF ₃)
2491	4-(-Ac)	4-(-Ac)
2492	4-(-CO ₂ H)	4-(-CO ₂ H)
2493	4-(-CO ₂ Me)	4-(-CO ₂ Me)
2494	4- (-N)	$\left(\begin{array}{c} 0 \\ -1 \end{array}\right)$
2495	4-(-CONH ₂)	4-(-CONH ₂)
2496	4-(-CONH ₂)	4-(-F)
2497	4-(-CONH ₂)	2,3,4,5,6-penta-(-F)
2498	4-(-CONH ₂)	4-(-Cl)
2499	4-{-CON(Me) ₂ }	4-{-CON(Me) ₂ }
2500	4-{-CON(Me) ₂ }	4-(-F)
2501	4-{-CON(Me) ₂ }	4-(-Cl)
2502	4-{-CON(Me) ₂ }	3,5-di-(-Cl)
2503	4-{-C(=NH)NH ₂ }	4-{-C(=NH)NH ₂ }
2504	4-(-OMe)	4-(-OMe)
2505	4-(-OMe)	3,4,5-tri-(-OMe)
, 2506	$ \begin{array}{c} $	$4 - \left(-0 - CH_{2} - N\right)$
2507	4-(-NHMe)	4-(-NHMe)

2508	4-(-NHAe)	4-(-NHAc)
2509	(N S Me)	$\begin{pmatrix} N & 0 \\ N & S & Me \end{pmatrix}$
2510	4-(-SMe)	4-(-SMe)
2511	$\begin{pmatrix} 0 \\ -\ddot{S} - Me \end{pmatrix}$	$\begin{pmatrix} 0 \\ -\ddot{S}-Me \end{pmatrix}$
2512	$\left(\begin{array}{c} 0 \\ -\ddot{\ddot{S}} - Me \end{array} \right)$	4- (S- Me)
2513	4- (S-NH ₂)	4- (- S-NH ₂)
2514	$\left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_{2} \end{array} \right\}$	$\left\{\begin{array}{c} 0 \\ -\stackrel{\circ}{\text{S}} \cdot \text{N (Me)}_{2} \end{array}\right\}$

表 216

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
実施例 番号	R	R'	
2515	-H	-H	
2516	2-(-F)	3-(-F)	
2517	3-(-Cl)	3-(-CI)	
2518	3-(-CN)	3-(-CN)	
2519	3-(-NO ₂)	3-(-NO ₂)	
2520	3-(-Me)	3-(-Me)	
2521	3-(-CF ₃)	3-(-CF ₃)	
2522	3-(-Ac)	3-(-Ac)	
2523	3-(-CO ₂ H)	3-(-CO ₂ H)	
2524	3-(-CO ₂ Me)	3-(-CO ₂ Me)	
2525	3- (-N)	3 - $\left(\begin{array}{c} 0\\ -\parallel -N \end{array}\right)$	
2526	3-(-CONH ₂)	3-(-CONH ₂)	
2527	3-(-CONH ₂)	3-(-F)	
2528	3-(-CONH ₂)	3-(-Cl)	
2529	3-{-CON(Me) ₂ }	3-{-CON(Me) ₂ }	
2530	3-{-CON(Me) ₂ }	3-(-F)	
2531	3-{-CON(Me) ₂ }	3-(-CI)	
2532	3-{-C(=NH)NH ₂ }	3-{-C(=NH)NH ₂ }	
2533	3-(-OMe)	3-(-OMe)	
2534			
2535	3-(-NHMe)	3-(-NHMe)	
2536	3-(-NHAc)	3-(-NHAc)	
2537	3- (-N-2-We)	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$ 3-	
į.		3-(-SMe)	

254		
2539	3- (—S-Me)	3- (-S-Me)
2540	3- (−3−Me)	3- (
2541	3- (−ÿ−NH₂)	$\begin{pmatrix} -\ddot{\S} - NH_2 \end{pmatrix}$ 3-
2542	$\left\{ \begin{array}{c} 0\\ -\ddot{S}-N \left(Me\right)_{2} \end{array} \right\}$	$ \left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \text{ (Me)}_{2} \end{array} \right\} $ 3-
2543	3-(-F)	4-(-F)
2544	4-(-Cl)	4-(-Cl)
2545	4-(-CN)	4-(-CN)
2546	4-(-NO ₂)	4-(-NO ₂)
2547	4-(-Me)	4-(-Me)
2548	4-(-CF ₃)	4-(-CF ₃)
2549	4-(-Ac)	4-(-Ac)
2550	3-(-CO ₂ H)	4-(-CO ₂ H)
2551	4-(-CO ₂ Me)	4-(-CO ₂ Me)
2552	4- (- N)	$\left(\begin{array}{c} 0 \\ -1 \\ 4 \end{array}\right)$
2553	4-(-CONH ₂)	4-(-CONH ₂)
2554	4-(-CONH ₂)	4-(-F)
2555	4-(-CONH ₂)	4-(-Cl)
2556	3-{-CON(Me) ₂ }	4-{-CON(Me) ₂ }
2557	3-{-CON(Me) ₂ }	4-(-F)
2558	4-{-CON(Me) ₂ }	4-(-Cl)
2559	4-{-C(=NH)NH ₂ }	4-{-C(=NH)NH ₂ }
2560	4-(-OMe)	4-(-OMe)
2561	$ \frac{1}{4} \left(-0 - CH_{\frac{1}{2}} $	
2562	4-(-NHMe)	4-(-NHMe)
2563	4-(-NHAc)	4-(-NHAc)
2564	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$	$\begin{pmatrix} -N - \ddot{S} - Me \end{pmatrix}$
2565	4-(-SMe)	4-(-SMe)
2566	4- (_—Š-Me)	4^{-} $\begin{pmatrix} 0\\ -\ddot{s}-Me \end{pmatrix}$
	4.40	

2567	$\left(egin{array}{c} 0 \ -\ddot{\ddot{S}} - Me \end{array} ight)$	$\left(egin{matrix} 0 \\ -\ddot{\ddot{s}} - \mathtt{Me} \\ 0 \end{matrix} \right)$
2568	$\begin{pmatrix} 0 \\ -\ddot{\ddot{s}} - NH_2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -\ddot{s} - NH_2 \end{pmatrix}$
2569	$\left\{ egin{array}{c} 0 \ -\ddot{\ddot{s}} - N \left(\mathrm{Me} ight)_{2} \end{array} ight\}$	$ \left\{ \begin{array}{c} 0 \\ -\ddot{S} - N \left(\text{Me} \right)_2 \end{array} \right\} $

表 217

1	HO ₂ C N Py	2 3 4 6 5 R'
		Py: ピリジル基
実施例番号	Ру	R'
2570	3-Py ·	·H
2571	3-Ру	3-(-F)
2572	3-Py	3-(-CI)
2573	3-Py	3-(-Me)
2574	3-Py	3-(-CF ₃)
2575	3-Py	3-(-Ac)
2576	3-Py	3-(-CO ₂ H)
2577	3-Py	3-(-CO ₂ Me)
2578	3-Ру	3- (—N)
2579	3-Py	3-(-CONH ₂)
2580	3-Py	3-{-CON(Me) ₂ }
2581	3-Py	4-(-F)
2582	3-Ру	4-(-Cl)
2583	3-Ру	4-(-Me)
2584	3-Py	4-(-CF ₃)
2585	3-Py	4-(-Ac)
2586	2-Py	4-(-CO ₂ H)
2587	3-Py	4-(-CO ₂ Me)
2588	3-Py	$\begin{pmatrix} \begin{pmatrix} 0 \\ \parallel \end{pmatrix} \end{pmatrix}$
2589	4-Py	4-(-CONH ₂)
2590	3-Py	4-{-CON(Me) ₂ }

H0 ₂ C $\stackrel{F}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{C}{\longrightarrow} $			
		Py: ピリジル基	
実施例	Py	R'	
2591	.3-Py	-Н	
2592	3-Py	3-(-F)	
2593	3-Py	3-(-CI)	
2594	3-Py	3-(-Me)	
2595	3-Py	3-(-CF ₃)	
2596	3-Ру	3-(-Ac)	
2597	3-Ру	3-(-CO ₂ H)	
2598	3-Ру	3-(-CO ₂ Me)	
2599	3-Ру	3- (— N)	
2600	3-Ру	3-(-CONH ₂)	
2601	3-Py	3-{-CON(Me) ₂ }	
2602	3-Ру	4-(-F)	
2603	3-Ру	4-(-Cl)	
2604	3-Py	4-(-Me)	
2605	3-Py	4-(-CF ₃)	
2606	3-Ру	4-(-Ac)	
2607	3-Py	4-(-CO ₂ H)	
2608	3-Py	4-(-CO ₂ Me)	
2609	3-Ру	$\left(\begin{array}{c} 0 \\ \end{array}\right)$	
2610	3-Py	4-(-CONH ₂)	
2611	3-Ру	4-{-CON(Me) ₂ }	

表 219

実施例	9番号 328	1H NMR(δ)
НО	HCI N N N N N O N O	300MHz, DMS 8.29(1H, s) Hz), 8.02(1 0(1H, s), 7. , 7.61(1H, d .45(3H, m), z), 7.22(2H (2H, s,), 4. 40(4H, m), 2 .10-1.90(2 H, m), 1.65- 1.10(3H, m)
純度	> 9 0 % (NMR)	1. 10 (811, 111)
MS	662 (M+1)	

) ppm

50-d6 , 8. 23 (1H, d, J=9. 0 1H, d, J=8.4Hz), 7.8 71 (2H, d, J=8. 4Hz) d, J=9.3Hz), 7.55-7 7.46 (2H, d, J=8.1H H, d, J=8.7Hz), 5.16 .34(1H, m), 4.20-3. 2.60-2.15(6H, m), 2 2H, m), 1.85-1.70(2 -1.55(1H, m), 1.50-

実施例番号	329
НО	HCI CI OH
純度	>90% (NMR)
MS	553 (M+1)

1H NMR(δ) ppm

400MHz, DMSO-d6 9.80(1H, brs), 8.32(1H, s), 8.3 9. 80(1n, Drs), 8. 32(1n, s), 8. 3 0(1H, d, J=8. 8Hz), 8. 06(1H, d, J=8. 8Hz), 7. 74(2H, d, J=8. 6Hz), 7. 48-7. 37(4H, m), 7. 22(1H, d, J=8. 6Hz), 7. 17(1H, d, J=8. 2Hz), 7. 05(1H, d, J=2. 3Hz), 6. 88(1H, dd J=8. 2. 5Hz), 5. 04(2H c) dd, J=8. 3, 2. 5Hz), 5. 04 (2H, s), 4.37(1H, m), 2.37-2.22(2H, m), 2.11-1.98(2H, m), 1.93-1.81(2 H, m), 1. 70-1. 58 (1H, m), 1. 56-1 . 22 (3H, m)

8. 38 (1H, d, J=7. 5Hz), 8. 32 (1H, s), 8. 29 (1H, d, J=9. 0Hz), 8. 16 (1H, s), 8. 05 (1H, d, J=9. 0Hz), 7. 96 (1H, d, J=7. 5Hz), 7. 75 (2H, d, J=8.4Hz), 7.53-7.43(5H, m), 7. 25 (2H, d, J=8. 4Hz), 5. 13 (2H, s) , 4.36(1H, m), 4.12(1H, sept, J= 6.9Hz), 2.40-2.15(2H, m), 2.10 -1.95(2H, m), 1.90-1.75(2H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m), 1. 18 (6H, d, J=6.6Hz)

表 220

実施例番号	331	1H NMR(δ) ppm
HCI HO N C		300MHz, DMSO-d6 8.31(1H, s), 8.27(1H, d, J=8.7Hz), 8.05(1H, d, J=8.7Hz), 7.75-7.41(9H, m), 7.23(2H, d, J=8.7Hz), 4.36(1H, m), 4.00-3.90(1H, m), 2.84(3H, brs), 2.40-2.15(2H, m), 2.10-2.00(2H, m), 1.95-1.75(2H, m), 1.70-1.55(1H, m), 1.50-1.00(7H, m)
純度 >90%	(NMR)	
MS 636(M+1)	

実施例番号	332	1H NMR(δ) ppm
HCI HO N	CI	300MHz, DMSO-d6 10. 42 (1H, s), 8. 29 (1H, s), 8. 27 (1H, s), 8. 10 (1H, d, J=7. 9Hz), 8 .03 (1H, d, J=8. 6Hz), 7. 82 (2H, d, J=7. 5Hz), 7. 73 (2H, d, J=8. 7Hz), 7. 56-7. 52 (5H, m), 7. 38 (2H, t, J=7. 9Hz), 7. 26 (2H, d, J=8. 7Hz), 7. 13 (1H, t, J=7. 5Hz), 5. 20 (2H, s), 4. 35 (1H, br t, J=11. 7Hz), 2. 37-2. 19 (2H, m), 2. 07-1. 96 (2H, m), 1. 92-1. 79 (2H, m), 1. 69-1. 58 (1H, m), 1. 50-
純度 >	90% (NMR)	1. 20 (3H, m)
MS .	656 (M+1)	

表 221

実施例番号	334	1H NMR(δ) ppm
HO	CI N N	300MHz, DMSO-d6 8. 22 (1H, d, J=1. 5Hz), 8. 01 (1H, d, J=9. 0Hz), 7. 89 (1H, dd, J=8. 6 , 1. 5Hz), 7. 61 (2H, d, J=8. 6Hz), 7. 50-7. 39 (4H, m), 7. 27 (1H, d, J=8. 6Hz), 7. 22 (1H, d, J=2. 6Hz), 7. 13 (2H, d, J=8. 6Hz), 7. 04 (1H, dd, J=8. 2, 2. 6Hz), 5. 04 (2H, s), 4. 28 (1H, m), 4. 11 (2H, t, J=6. 3Hz), 2. 38-2. 17 (2H, m), 2. 00-1. 79 (6H, m), 1. 70-1. 59 (1H, m), 1. 52-1. 16 (3
純度	>90% (NMR)	H, m)
MS	611(M+1)	

実施例番号	335	1H NMR(δ) ppm
HCI O HO N	CI	300MHz, DMSO-d6 8. 30(1H, d, J=1.5Hz), 8. 27(1H, d, J=9.0Hz), 8. 04(1H, dd, J=8.6, 1.5Hz), 7. 72(2H, d, J=9.0Hz), 7. 60-7. 40(4H, m), 7. 32-7. 19(4H, m), 7. 06(1H, dd, J=8.6, 3.0Hz), 5. 08(2H, s), 4. 36(1H, m), 4. 06(2H, t, J=4.8Hz), 3. 74(2H, t, J=4.8Hz), 2. 38-2. 19(2H, m), 2. 13-1. 97(2H, m), 1. 94-1. 78(2H, m), 1. 72-1. 59(1H, m), 1. 52-1. 20(3H, m)
純度 >	90% (NMR)	20 (311, 111)
MS	597 (M+1)	

表222

実施例	HCVポリメラーゼ	実施例	HCVポリメラーゼ
番号	阻害活性ICgo [μΜ]	番号	阻害活性 I C 50 [µM]
340	0.017	360	0.014
341	0.025	361	0, 028
342	0.015	362	0. 020
343	0.017	363	0. 11
344	0.016	364	0. 12
345	0.012	365	0. 020
346	0. 025	366	0. 024
347	0. 022	367	0. 011
348	0.013	368	0.024
349	0.021	369	0.022
350	0.020	370	0.017
351	0.019	371	0. 015
352	0.013	372	0.033
353	0. 023	373	0.013
354	0.013	374	0. 013
355	0.015	375	0. 012
356	0.016	376	0.014
357	0.019	377	0. 012
358	0.017	378	0.018
359	0.015	379	0.021

表223

HCVポリメラーゼ	実施例	HCVポリメラーゼ
阻害活性 I C 5 0 [μ M]	番号	阻害活性IC50[μΜ]
0.023	409	0.020
0.011	410	0.018
0.015	411	0.015
0.013	412	0.019
0.016	413	0.026
0.019	414	0.024
0.018	415	0.019
0.025	416	0.024
0. 020	417	0.029
0.012	418	0.016
0. 014	419	0. 021
0.017	420	0.015
0.014	421	0. 017
0. 011	422	0. 017
0. 019	423	0. 017
0.016	424	0. 020
0. 025	425	0.026
0. 037	426	0. 053
0. 077	427	0. 020
0.032	428	0.026
	阻害活性 I C 5 0 [μ M] 0.023 0.011 0.015 0.013 0.016 0.019 0.018 0.025 0.020 0.012 0.014 0.017 0.014 0.017 0.014 0.011 0.019 0.019 0.016 0.025 0.025 0.037 0.077	阻害活性 I C 50 [µM] 番号 0.023 409 0.011 410 0.015 411 0.013 412 0.016 413 0.019 414 0.018 415 0.025 416 0.020 417 0.012 418 0.014 419 0.017 420 0.014 421 0.011 422 0.019 423 0.016 424 0.025 425 0.037 426

表224

	12.4		
実施例番号	HCVポリメラーゼ 阻害活性ΙC ₅₀ [μM]	実施例 番号	HCVポリメラーゼ 阻害活性ΙC ₅₀ [μM]
429	0. 017	455	0. 015
430	0. 017	456	0. 017
431	0.015	457	0. 015
432	0.022	458	0. 015
433	0. 014	459	0. 014
434	0. 011	460	0. 017
435	0.012	461	0. 021
436	0.026	462	0.028
440	0. 070	463	0.026
442	0.024	464	0. 030
443	0.030	465	0. 033
445	0. 33	466	0.023
446	0.016	467	0.032
447	0. 12	468	0.028
448	. 0.20	469	0.024
449	0. 025	502	0.024
450	0.040	503	0. 196
451	0.031	601	0. 32
452	0. 028	701	0, 052
454	0.013		

表 225

実施例番号	<u>.</u>	341	1H NMR(δ) ppm
НО	HCI CI	<u></u>	300MHz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 25 (1H, d, J=8.7Hz), 8. 03 (1H, dd, J=8.7Hz), 7. 72 and 7. 22 (4H, Abq, J=8.8Hz), 7. 67 (1H, d, J=1.5Hz), 7. 52 (4H, s), 7. 49 (1H, dd, J=7.9Hz), 4. 46 (1H, brs), 4. 35 (1H, brt, J=12.4Hz), 3. 62 (1H, brs), 3. 06 (1H, brs), 2. 79 (1H, brs), 2. 38-2. 20 (2H, brm), 2. 08-1.81 (4H, brm), 1. 77-1. 52 (4H, brm)
純度	>90% (NMR)	,1.46-1.20(3H, brm),1.19-1. 00(2H, brm),0.94and0.92(tot
MS	662 (M+1)		al3H, each s)

実施例番号	342	1H NMR(δ) ppm
HCI CI HO N O		300Mz, DMSO-d6 8. 28 (1H, d, J=1.5Hz), 8. 26 (1H, d, J=1.8Hz), 8. 19 (1H, d, J=8.8Hz), 8. 07 (1H, dd, J=7.7, 1.8Hz), 8. 00 (1H, dd, J=8.8, 1.5Hz), 7. 70 and 7. 22 (4H, Abq, J=8.8Hz), 7. 56-7.50 (1H, m), 7. 56 (4H, s), 5. 17 (2H, s), 4. 33 (1H, brt, J=12.5 Hz), 2. 05 (3H, s), 2. 37-2. 20 (2H, brm), 2. 06-1. 80 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 50-1. 20 (3H, brm)
純度 > 9.0%(NMR)	
MS 679 (M-	+1)	

表 226

実施例番号		344	1H NMR(δ) ppm
НО	HCI CI)—\Q	300MHz, DMSO-d6 8. 30 (1H, s), 8. 23 (1H, d, J=8. 7H z), 8. 02 (1H, d, J=8. 4Hz), 7. 71 (2H, d, J=8. 7Hz), 7. 55-7. 15 (8H, m), 7. 07 (1H, dd, J=8. 4Hz, 3. 0Hz), 5. 07 (2H, s), 4. 35 (1H, m), 4. 1 7 (2H, t, J=4. 5Hz), 3. 69 (2H, t, J=4. 5Hz), 3. 32 (3H, s), 2. 40-2. 1 5 (2H, m), 2. 10-1. 80 (4H, m), 1. 7 5-1. 60 (1H, m), 1. 50-1. 20 (3H, m)
純度	>90% (NMR	.)	
MS	611 (M+1)		

		· · · · · · · · · · · · · · · · · · ·	
実施例番号		345	1H NMR(·δ) ppm
HCI N N	CI	-00_	300MHz, DMSO-d6 8. 29 (1H, d, J=1. 5Hz), 8. 22 (1H, d, J=8. 7Hz), 8. 01 (1H, d, J=8. 7Hz), 7. 70 (1H, d, J=8. 7Hz), 7. 50-7. 15 (8H, m), 7. 07 (1H, dd, J=8. 4 Hz, 2. 4Hz), 5. 07 (2H, s), 4. 35 (1 H, m), 4. 17 (2H, t, J=4. 2Hz), 3. 76 (2H, t, J=4. 5Hz), 3. 65-3. 40 (4 H, m), 3. 25 (3H, s), 2. 40-2. 20 (2 H, m), 2. 10-1. 80 (4H, m), 1. 75-1. 65 (1H, m), 1. 65-1. 20 (3H, m)
純度	>90% (NMR)		
MS	655 (M+1)		·

実施例番号	346	1H NMR(δ) ppm
HON	CI	300Mz, DMSO-d6 8. 26 (1H, d, J=1. 9Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 08-8. 02 (2H, m), 7. 91 (1H, dd, J=8. 7, 1. 5Hz), 7. 6 3and7. 16 (4H, Abq, J=8. 9Hz), 7. 56-7. 51 (5H, m), 5. 15 (2H, s), 4. 29 (1H, brt, J=11. 7Hz), 2. 96 (2H, d, J=6. 9Hz), 2. 37-2. 12 (3H, m), 2. 00-1. 79 (4H, brm), 1. 71-1. 6 0 (1H, brm) 1. 49-1. 19 (3H, brm), 0. 97and0. 95 (total6H, each s)
純度 >90	% (NMR)	9
MS 6	321 (M+1)	

表 227

実施例番号	347	1H NMR(δ) ppm
HON	CI N S	300Mz, DMSO-d6 8. 26(1H, s), 8. 22(1H, s), 8. 06(1H, s), 8. 05(1H, d, J=8. 0Hz), 7. 94and7. 85(2H, ABq, J=8. 8Hz), 7. 59and7. 15(4H, A'B'q, J=8. 6Hz), 7. 52(4H, s), 7. 44(1H, d, J=8. 0Hz), 5. 12(2H, s), 4. 27(1H, brt, J=11. 4Hz), 2. 38-2. 18(2H, brm), 1. 97-1. 77(4H, brm), 1. 70-1. 59(1H, brm), 1. 49-1. 17(3H, brm))
純度 >90%	(NMR)	
MS 634	ł(M+1)	

実施例番号	348	1H NMR(δ) ppm
HCI CI	OH ON OH	300MHz, DMSO-d6 8. 32 (1H, s), 8. 29 (1H, d, J=9. 0H z), 8. 06 (1H, d, J=8. 7Hz), 7. 74 (2H, d, J=9. 0Hz), 7. 72 (1H, brs), 7. 60-7. 45 (5H, m), 7. 42 (1H, d, J =7. 8Hz), 7. 24 (2H, d, J=8. 7Hz), 5. 15 (2H, s), 4. 37 (1H, m), 4. 00- 3. 10 (6H, m), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2 H, m), 1. 75-1. 20 (6H, m)
純度 >90%	(NMR)	
MS 680 (1	M+1)	

実施例番	号	350	1H NMR(δ) ppm
НО	HCI CI	0 N H	300MHz, DMSO-d6 8. 36 (1H, d, J=7.7Hz), 8. 29 (1H, s), 8. 23 (1H, d, J=8.8Hz), 8. 02 (1H, d, J=8.6Hz), 7. 94 (1H, d, J=7.9Hz), 7. 84 (1H, d, J=1.6Hz), 7. 80-7.65 (3H, m), 7. 53 (4H, s), 5. 15 (2H, s), 4. 34 (1H, m), 4. 12 (1H, m), 2. 35-2. 20 (2H, m), 2. 10-1. 60 (5H, m), 1. 50-1. 20 (3H, m), 1. 17 (6H, d, J=6.5Hz)
純度	>90% (NMR)	
MS	622 (M+1)		·

実施例番	号号	351	1H NMR(δ) ppm
но	HCI CI	O N	300MHz, DMSO-d6 8. 29 (1H, s), 8. 24 (1H, d, J=8. 8H z), 8. 02 (1H, d, J=8. 6Hz), 7. 80-7. 65 (3H, m), 7. 55-7. 45 (5H, m), 7. 32 (1H, d, J=1. 5Hz), 7. 22 (2H, d, J=8. 8Hz), 5. 13 (2H, s), 4. 35 (1H, m), 3. 60 (2H, m), 3. 33 (2H, m), 2. 40-2. 15 (2H, m), 2. 10-1. 15 (14H, m)
純度	>90% (NMR)	•	
MS	648 (M+1)		

表 229

実施例番号	353	1H NMR(δ) ppm
2HCl Cl	=N O	300MHz, DMSO-d6 8. 41 (1H, s), 8. 33-8. 29 (2H, m), 8. 16 (1H, d, J=8. 2Hz), 8. 07 (1H, d, J=8. 6Hz), 7. 77 (2H, d, J=8. 7H z), 7. 62 (1H, d, J=8. 0Hz), 7. 59- 7. 51 (4H, m), 7. 28 (2H, d, J=8. 8H z), 5. 21 (2H, s), 4. 56 (2H, s), 4. 37 (1H, m), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 2 0 (9H, m)
純度 約90% (N	MR)	
MS 634 (M+1)	

実施例番号		354	1H NMR(δ) ppm
НО	HCI CI	OH OH	300MHz, DMSO-d6 8. 31 (1H, s), 8. 25 (1H, d, J=9. 0H z), 8. 03 (1H, d, J=8. 7Hz), 7. 76-7. 71 (3H, m), 7. 51-7. 47 (5H, m), 7. 33 (1H, s), 7. 23 (2H, d, J=9. 0H z), 5. 14 (2H, s), 4. 36 (1H, m), 4. 02 (1H, m), 3. 75 (1H, m), 3. 56 (1H, m), 3. 22 (2H, m), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 55 (5H, m), 1. 50-1. 20 (5H, m)
純度	>90% (NM)	R)	
MS	664 (M+1)		

実施例番号	355	1H NMR(δ) ppm
HCI CI HO HO N	— ОН И ОН	300MHz, DMSO-d6 8. 62 (1H, t, J=5. 7Hz), 8. 32-8. 3 0 (2H, m), 8. 25 (1H, d, J=8. 7Hz), 8. 03 (1H, d, J=8. 7Hz), 7. 96 (1H, d, J=8. 1Hz), 7. 86 (1H, s), 7. 75 (1H, d, J=9. 0Hz), 7. 72 (2H, d, J=9) . 0Hz), 7. 55-7. 50 (4H, m), 7. 22 (2H, d, J=9. 0Hz), 5. 17 (2H, s), 4. 35 (1H, m), 3. 52 (2H, t, J=6. 0Hz), 3. 36 (2H, t, J=6. 0Hz), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2H, m), 1. 75-1. 55 (1H,
純度. >90% (N	MR)	m), 1. 50-1. 20 (3H, m)
MS 624 (M+1)	

表 230

実施例番号	356	1H NMR(δ) ppm
HO N O	O NH NH	300Mz, DMSO-d6 9.30(1H, t, J=5.9Hz), 8.54(2H, d, J=5.9Hz), 8.22(1H, s), 8.02-7.79(5H, m), 7.59and7.12(4H, A Bq, J=8.6Hz), 7.55(4H, s), 7.37(2H, d, J=5.9Hz), 5.15(2H, s), 4.54(2H, d, J=5.7Hz), 4.26(1H, brt, J=12.8Hz), 2.36-2.18(2H, brm), 1.97-1.78(4H, brm), 1.70-1.60(1H, brm), 1.47-1.17(3H, brm)
純度 > 90% (NMR)	
MS 671 (M+1)		

実施例番号	357	1H NMR(δ) ppm
HCI CI NO NO NO NO NO NO NO NO NO NO NO NO NO)—(N-	300Mz, DMSO-d6 8. 31 (1H, d, J=1. 5Hz), 8. 43 (1H, d, J=8. 4Hz), 8. 03 (1H, dd, J=8. 4, 1. 5Hz), 7. 74 (1H, d, J=8. 1Hz), 7. 73 and 7. 23 (4H, ABq, J=9. 0Hz), 7. 54-7. 51 (5H, m), 7. 37 (1H, d, J=1. 8Hz), 5. 14 (2H, s), 4. 36 (1H, brt, J=12. 1Hz), 2. 98 (6H, brs), 2. 37-2. 20 (2H, brm), 2. 08-1. 8 1 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 50-1. 21 (3H, brm)
純度 >90% (NM]	R)	
MS 608 (M+1)		

実施例番号	358	1H NMR(δ) ppm
2HCI CI	N S NH ₂	300MHz, DMSO-d6 8. 33 (1H, s), 8. 31 (1H, d, J=8. 7H z), 8. 14 (1H, s), 8. 07 (1H, d, J=8 . 7Hz), 7. 92 (1H, d, J=8. 0Hz), 7. 76 (2H, d, J=8. 7Hz), 7. 52-7. 40 (5H, m), 7. 31-7. 26 (3H, m), 5. 15 (2H, s), 4. 37 (1H, m), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
純度 · 約90%	(NMR)	
MS 635 (M+1)	

表 231

実施例番号		359	IH NMR(δ) ppm
HOHON		S-N-OH	300MHz, DMSO-d6 8. 31 (1H, s), 8. 25 (1H, d, J=8. 7H z), 8. 10-7. 90 (2H, m), 7. 82 (1H, dd, J=7. 8Hz, 1. 8Hz), 7. 72 (2H, d J=9. 0Hz), 7. 63 (1H, d, J=8. 1Hz), 7. 23 (2H, d, J=9. 0Hz), 5. 25 (2 H, s), 4. 34 (1H, m), 3. 65-3. 50 (1 H, m), 3. 20-3. 05 (2H, m), 2. 90-2 . 75 (2H, m), 2. 40-2. 15 (2H, m), 2 . 10-1. 10 (12H. m)
純度	> 9 0 %	(NMR)	
MS	700	(M+1)	

実施例番	号	360	1H NMR(δ) ppm
НО	HCI F	O N	300MHz, DMSO-d6 8. 33 (1H, s), 8. 30 (1H, d, J=8. 5H z), 8. 06 (1H, d, J=10. 1Hz), 8. 80 -8. 65 (3H, m), 8. 60-8. 45 (3H, m), 7. 42 (1H, d, J=7. 8Hz), 7. 35-7. 15 (4H, m), 5. 15 (2H, s), 4. 36 (1H, m), 3. 01, 2. 97 (6H, s), 2. 40-2. 15 (2H, m), 2. 10-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
純度	>90% (NM	(R)	
MS	592 (M+1)		

実施例番号	362	1H NMR(δ) ppm
HCI (CI S N O	300MHz, DMSO-d6 8. 33 (1H, s), 8. 29 (1H, d, J=8. 7H z), 8. 06 (1H, d, J=8. 7Hz), 7. 79 (2H, d, J=9. 0Hz), 7. 76 (1H, d, J=9 .0Hz), 7. 60 (1H, d, J=8. 1Hz), 7. 53 (1H, dd, J=1. 7Hz, 8. 0Hz), 7. 3 5 (2H, d, J=8. 7Hz), 6. 85-6. 80 (2 H, m), 5. 29 (2H, s), 4. 38 (1H, m), 3. 01, 2. 96 (6H, s), 2. 40-2. 18 (2 H, m), 2. 15-1. 95 (2H, m), 1. 90-1 .80 (2H, m), 1. 75-1. 55 (1H, m), 1 .50-1. 20 (3H, m)
純度 >90% (N	MR)	. 30 1. 20 (311, m)
MS 614 (M+1)	

実施例番号		365	1H NMR(δ) ppm
но	HCI CI	ON	300MHz, DMSO-d6 8. 28 (1H, s), 8. 23 (1H, s), 8. 17 (1H, d, J=8. 7Hz), 8. 00 (2H, t, J=6 .9Hz), 7. 69 (2H, d, J=8. 4Hz), 7. 60-7. 45 (5H, m), 7. 21 (2H, d, J=8 .4Hz), 7. 05 (1H, s) 5. 19 (2H, s), 4. 33 (1H, m), 2. 41 (3H, s), 2. 40- 2. 20 (2H, m), 2. 10-1. 80 (4H, m), 1. 70-1. 60 (1H, m), 1. 50-1. 20 (3 H, m)
純度	>90% (N	MR)	
MS	618 (M+1)	·

実施例番号		366	1H NMR(δ) ppm
НО	HCI CI) -S -	300MHz, DMSO-d6 8. 26 (1H, s), 8. 17 (1H, s), 8. 11 (1H, d, J=8. 7Hz), 7. 95 (2H, d, J=9 .6Hz), 7. 70-7. 40 (8H, m), 7. 19 (2H, d, J=8. 4Hz), 5. 18 (2H, s), 4. 30 (1H, m), 2. 51 (3H, s), 2. 40-2. 15 (2H, m), 2. 05-1. 80 (4H, m), 1. 75-1. 60 (1H, m), 1. 50-1. 20 (3H, m)
純度	>90% (NMR))	
MS	634 (M+1)		

表 234

実施例番号 368	1H NMR(δ) ppm
HCI N CI	300Mz, DMSO-d6 8. 30 (1H, d, J=1.5Hz), 8. 25 (1H, d, J=8.6Hz), 8. 04 (1H, dd, J=8.6, 1.5Hz), 7. 93 and 7. 67 (4H, ABq, J=8.1Hz), 7. 80 (1H, d, J=2.2Hz), 7. 72 and 7. 21 (4H, A'B' q, J=8.6 Hz), 7. 60 (1H, dd, J=8.1, 2.2Hz), 7. 44 (1H, d, J=8.1Hz), 5. 13 (2H, s), 4. 34 (1H, brt, J=11.7Hz), 2. 37-2. 19 (2H, brm), 2. 09-1. 80 (4H, brm), 1. 72-1. 60 (1H, brm), 1. 50-1. 21 (3H, brm)
純度 > 90% (NMR)	.00 1.24 (013, 02.11)
MS 562 (M+1)	

実施例番号	369	1H NMR(δ) ppm
HCI N	N NH	300Mz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 25 (1H, d, J=8. 6Hz), 8. 16and7. 72 (4H, A Bq, J=8. 4Hz), 8. 13 (1H, dd, J=8. 6, 1. 5Hz), 7. 80 (1Hd, J=2. 2Hz), 7. 70and7. 24 (4H, A'B'q, J=8. 8Hz), 7. 61 (1H, dd, J=8. 1, 2. 2Hz), 7. 48 (1H, d, J=8. 1Hz), 5. 17 (2H, s), 4. 33 (1H, brt, J=12. 1Hz), 2. 36-2. 18 (2H, brm), 2. 08-1. 77 (4H, brm), 1. 69-1. 57 (1H, brm), 1. 49-1. 17 (3H, brm)
純度 >90% (NMR)		45-1.17 (311, 31 111)
MS 605 (M	+1)	

表 235

実施例番号	37	1	1H NMR(δ) ppm
НО	HCI CI N))	300MHz, DMSO-d6 8. 31 (1H, d, J=1.5Hz), 8. 17 (1H, d, J=9.0Hz), 7. 99 (1H, dd, J=8.7 Hz, 1.4Hz), 7. 70-7.55 (2H, m), 7. 50-7.30 (6H, m), 7. 19 (1H, dd, J=12.0Hz, 2.2Hz), 7. 06 (1H, dd, J=8.6Hz, 2.2Hz), 5. 08 (2H, 4.10 (1H, m), 3.68 (2H, brt, J=5.2), 2. 50 (2H, brt, J=1.8Hz), 2. 30-2.1 0 (2H, m), 2. 00-1.75 (8H, m), 1. 7 0-1.55 (1H, m), 1. 50-1.20 (3H, m)
純度	>90% (NMR)		,
MS	652 (M+1)		

実施例番号	372	1H NMR(δ) ppm
НО	HCI F N O N	300Mz, DMSO-d6 8. 29 (1H, d, J=1.5Hz), 8. 11 (1H, d, J=8.6Hz), 7. 96 (1H, dd, J=8.6, 1.5Hz), 7. 89 (1H, s), 7. 78 and 7. 56 (4H, ABq, J=8.4Hz), 7. 69 (1H, s), 7. 66 (1H, t, J=8.8Hz), 7. 31 (1H, dd, J=12.1, 2. 2Hz), 7. 18 (1H, dd, J=8.8, 2. 2Hz), 5. 37 (2H, s), 4. 08 (1H, brt, J=11.0Hz), 3. 02 (3H, s), 2. 96 (3H, s), 2. 31-2. 14 (2H, brm), 1. 95-1. 77 (4H, brm, 1. 69-1. 59 (31H, brm), 1. 46-1.
純度	>90% (NMR)	18 (3H, brm)
MS	626 (M+1)	

表 236

実施例番号	374	1H NMR(δ) ppm
HCI HO N F	CI	300MHz, DMSO-d6 13. 21 (1H, brs), 8. 31 (1H, d, J=1.4Hz), 8. 18-8. 15 (2H, m), 7. 99 (1H, d, J=8. 7Hz), 7. 94 (1H, dd, J=1.8Hz, 8. 0Hz), 7. 70-7. 53 (6H, m), 7. 17 (1H, d, J=12. 0Hz), 7. 05 (1H, d, J=8. 6Hz), 5. 20 (2H, s), 4. 09 (1H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
純度 > 9	0% (NMR)	
MS	639 (M+1)	

実施例番号		375	1H NMR(δ) ppm
НО	-ICI CI N N O N	H N S NO	300MHz, DMSO-d6 8. 32 (1H, d, J=1. 5Hz), 8. 23 (1H, d, J=1. 5Hz), 8. 19 (1H, d, J=9. 0Hz), 8. 03-7. 98 (2H, m), 7. 68 (1H, t, J=8. 4Hz), 7. 60 (1H, d, J=8. 1Hz), 7. 56 (2H, d, J=9. 3Hz), 7. 53 (2H, d, J=9. 0Hz), 7. 22 (1H, dd, J=2. 1Hz, 12. 0Hz), 7. 09 (1H, dd, J=2. 1Hz, 8. 4Hz), 5. 21 (2H, s), 4. 12 (1H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
純度	> 90% (NMF	2)	7, 1.00 1.20 (01., 11.)
MS	658 (M+1)		

実施例番号	376	1H NMR(δ) ppm
HCI CI	H N S	300MHz, DMSO-d6 13.61(1H, brs), 8.34-8.30(2H, m), 8.21(1H, d, J=8.7Hz), 8.07(1H, dd, J=1.8Hz, 8.1Hz), 8.02(1H, dd, J=1.5Hz, 8.7Hz), 7.69(1H, t, J=8.4Hz), 7.57-7.49(5H, m), 7.22(1H, dd, J=2.7Hz, 12.0Hz), 7.09(1H, dd, J=2.4Hz, 9.0Hz), 5.19(2H, s), 4.12(1H, m), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m)
純度 >90% (N	IMR)	п, ш/
MS 655 (M+	1)	

実施例	番号 377
НО	HCI F O H
純度	>90% (NMR)
MS	638 (M+1)

1H NMR(δ) ppm

300Mz, DMSO-d6
8.60(1H, d, J=4.5Hz), 8.29(1H, d, J=1.5Hz), 8.14(1H, d, J=8.9Hz), 8.13(1H, d, J=1.5Hz), 7.98(1H, dd, J=8.9, 1.5Hz), 7.94(1H, dd, J=8.1Hz), 7.52and7.49(4H, ABq, J=9.0Hz), 7.46(1H, d, J=8.1Hz), 7.18(1H, dd, J=12.1, 2.3Hz), 7.05(1H, dd, J=8.7, 2.3Hz), 5.13(2H, s), 4.08(1H, brt, J=12.1H), 2.95-2.84(1H, m), 2.31-2.14(2H, brm), 1.97-1.78(4H, brm), 1.72-1.59(1H, brm), 1.47-1.21(3H, brm), 0.76-0.58(4H, m)

実施例番	号	378
НО	HCI F O	H.
純度	>90% (NMR)	
MS	652 (M+1)	

1H NMR(δ) ppm

300Mz, DMSO-d6 8.77(1H, d, J=1.4Hz), 8.30(1H, d, J=1.4Hz), 8.16(1H, d, J=1.8Hz), 8.13(1H, d, J=8.4Hz), 7.98(2H, dd, J=8.4, 1.8Hz), 7.65(1H, t, J=8.4Hz), 7.53and7.49(4H, ABq, J=8.8Hz), 7.47(1H, d, J=7.7Hz), 7.18(1H, dd, J=12.1, 2.2Hz), 7.05(1H, dd, J=8.4, 2.2Hz), 5.13(2H, s), 4.53-4.40(1H, m), 4.09(1H, brt, J=12.8Hz), 2.31-2.02(6H, brm,), 1.96-1.80(4H, brm), 1.78-1.60(3H, brm), 1.47-1.21(3H, brm)

実施例番号	379
но	HCI F O H
純度·	>90% (NMR)
MS	654 (M+1)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 29 (1H, d, J=1. 1Hz), 8. 11 (1H, d, J=8. 8H z), 7. 98-7. 91 (2H, m), 7. 89 (1H, s), 7. 63 (1H, t, J=8. 8Hz), 7. 52a nd7. 48 (4H, ABq, J=8. 6Hz), 7. 44 (1H, d, J=8. 1Hz), 7. 17 (1H, dd, J=12. 1, 2. 2Hz), 7. 04 (1H, dd, J=8. 8, 2. 2Hz), 5. 12 (2H, s), 4. 07 (1 H, brt, J=12. 4Hz), 2. 33-2. 14 (2 H, brm), 1. 96-1. 79 (4H, brm), 1. 70-1. 60 (1H, brm), 1. 48-1. 21 (3 H, brm), 1. 41 (9H, s)

実施的	列番号 380
O HO	HCI F O H
純度	>90% (NMR)
MS	654 (M+1)

1H NMR(δ) ppm

300Mz, DMSO-d6
8.62(1H, t, J=5.5Hz), 8.30(1H, d, J=1.5Hz), 8.17(1H, d, J=1.8Hz), 7.98(1H, dd, J=8.1, 1.8Hz), 7.64(1H, t, J=8.8Hz), 7.52and7.50(4H, ABq, J=8.8Hz), 7.48(1H, d, J=8.1Hz), 7.18(1H, dd, J=12.1, 2.2Hz), 7.05(1H, dd, J=8.8, 2.2Hz), 5.14(2H, s), 4.08(1H, brt, J=12.1Hz), 3.13(1H, t, J=6.2Hz), 2.31-2.14(2H, brm), 1.97-1.78(5H, brm), 1.70-1.60(1H, brm), 1.47-1.21(3H, brm), 0.92(3H, s), 0.90(3H, s)

実施例番号	. 381
НО	CI F N O N O O O O H
純度	>90% (NMR)
MS	656 (M+1)

1H NMR(δ) ppm

300Mz, DMSO-d6
8. 29 (1H, d, J=1. 5Hz), 8. 27 (1H, d, J=8. 3Hz), 8. 18 (1H, d, J=1. 9H z), 8. 13 (1H, d, J=8. 7Hz), 8. 01-7. 96 (2H, m), 7. 64 (1H, t, J=8. 7H z), 7. 52and7. 49 (1H, ABq, J=8. 8 Hz), 7. 49 (1H, d, J=7. 9Hz), 7. 18 (1H, dd, J=12. 1, 2. 3Hz), 7. 05 (1 H, dd, J=8. 7, 2. 3Hz), 5. 13 (2H, s), 4. 12-4. 00 (2H, m), 3. 52-3. 34 (2H, m), 2. 31-2. 14 (2H, brm), 1. 97-1. 79 (4H, brm), 1. 71-1. 60 (1 H, brm), 1. 48-1. 21 (3H, m), 1. 17 and1. 15 (total3H, each s)

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 30 (1H, d, J=1. 5Hz), 8. 13 (1H, d, J=8. 8Hz), 8. 09 (1H, d, J=1. 5Hz), 7. 98 (1H, dd, J=8. 8, 1. 5Hz), 7. 86 (1H, dd, J=8. 1, 1. 5Hz), 7. 6 4 (1H, J=8. 8Hz), 7. 55-7. 47 (5H, m), 7. 17 (1H, dd, J=12. 1, 2. 2Hz), 7. 05 (1H, dd, J=8. 8, 2. 2Hz), 5. 14 (2H, s), 4. 08 (1H, brt, J=12. 8 Hz), 3. 75 (3H, s), 2. 32-2. 14 (2H, brm), 1. 96-1. 78 (4H, brm), 1. 70-1. 59 (1H, brm), 1. 47-1. 21 (3H, brm)

実施例番	383	
HO	CI N N N O H OH	
純度	>90% (NMR)	
MS	672 (M+1)	

1H NMR(δ) ppm

300Mz, DMSO-d6 8. 57 (1H, t, J=5. 5Hz), 8. 29 (1H, d, J=1. 4Hz), 8. 19 (1H, d, J=1. 5Hz), 8. 12 (1H, d, J=9. 2Hz), 8. 01-7. 95 (2H, m), 7. 64 (1H, t, J=8. 8Hz) z), 7. 53and7. 50 (4H, ABq, J=8. 8 Hz), 7. 48 (1H, d, J=7. 7Hz), 7. 17 (1H, dd, J=12.1, 2.2Hz), 7.04(1H, dd, J=8. 8, 2. 2Hz), 5. 14 (2H, s), 4. 08 (1H, brt, J=13. 9Hz), 3. 7 0-3. 66 (1H, m), 3. 48-3. 36 (3H, m), 3. 28-3. 20 (1H, m), 2. 32-2. 13 (2H, brm), 1.96-1.79(4H, brm), 1.71-1.60(1H, brm), 1.47-1.19 (3H, brm)

384 実施例番号 HCI 純度 >90% (NMR) 640 (M+1)MS

1H NMR(δ) ppm

300Mz, DMSO-d6 8.30(1H, d, J=1.5Hz), 8.14(1H, d, J=8. 4Hz), 7. 98 (1H, dd, J=8. 4 , 1. 5Hz), 7. 68 (1H, brs), 7. 63 (1 H. t, J=8.4Hz), 7.51(5H, s), 7.4 3(1H, d, J=8. 1Hz), 7. 17(1H, dd, J=12. 5, 1. 8Hz), 7. 03(1H, dd, J=8. 4, 1. 8Hz), 4. 08(1H, brt, J=11 .4Hz), 3.50and3.30(total2H, e ach brs), 2. 97 (3H, brs), 2. 33-2. 13 (2H, brm), 1.96-1.79(4H, brm), 1.70-1.59(1H, brm), 1.47-1.03 (6H, brm),

実施例番号	385	1H NMR(δ)
HCI F O	N N	300Mz, DMSO- 8. 29 (1H, d, 1 d, J=8. 8Hz), , 1. 5Hz), 7. 7 5-7. 42 (6H, m .7Hz), 7. 03 15 (2H, s), 4. Hz), 3. 44and h s), 2. 97 (3H, H, brm), 1. 72 47-1. 23 (3H,
純度 >90%(NMR)	(total3H, ea
MS 654 (M-	+1)	

ppm

-d6 J=1.5Hz), 8.12(1H, , 7. 97 (1H, dd, J=8.8 72-7.60(2H, m), 7.5 m), 7. 16 (1H, d, J=11(1H, d, J=8.4Hz), 5..07(1H, brt, J=12.5 d3. 22 (total 2H, eac , brs), 2.32-2.13(2 2-1.50 (3H, brm), 1. I, brm), 0. 93and0. 72 each brs)

実施例番	<u> </u>	386	1H NMR(δ) pp
НО	HCI F O		300Mz, DMSO-d6 8.29(1H, d, J=1. d, J=8.7Hz), 7.9 ,1.5Hz)7.74-7. -7.42(6H, m), 7. .1,2.2Hz), 7.02 2.2Hz), 5.15(2H rt, J=12.8Hz), 3 .85(3H, brs), 2. m), 1.96-1.79(4 .59(1H, brm), 1. m), 1.15(6H, brs
純度	> 9 0,% (NM	1R)	
MS	654 (M+1)		

m

5Hz), 8.12(1H, 97 (1H, dd, J=8.7 60 (2H, m), 7.54 17 (1H, dd, J=12 2(1H, dd, J=8.3, I, s), 4.06(1H, b 3.92(1H, brs),2 32-2.14(2H, br 4H, brm), 1.70-1 46-1.07(3H, br

CI,	
HCI HO N N N	\supset
純度 > 90% (NMR)	
MS 694 (M+1)	,

1H NMR(δ) ppm

300Mz, DMS0-d6 8. 29(1H, s), 8. 14and7. 97(2H, A Bq, J=8. 7Hz), 7. 63(1H, s), 7. 63 (1H, t, J=8. 7Hz), 7. 51-7. 41 (6H, m), 7. 16 (1H, dd, J=12. 1, 1. 9Hz), 7. 02 (1H, dd, J=8. 7, 1. 9Hz), 5. 16 (2H, s), 4. 26 (2H, brs), 4. 07 (1H, brt, J=12. 1Hz), 2. 32-2. 14 (2H, brm), 1. 97-1. 78 (5H, brm) 1 .70-1. 15 (9H, brm), 1. 24 (3H, s) , 1. 21 (3H, s)

1H NMR(δ) ppm

300MHz, DMSO-d6 8.58(1H, m), 8.29(1H, s), 8.20-8. 10 (2H, m), 8. 05-7. 90 (2H, m), 7. 64 (1H<t, J=8. 4Hz), 7. 60-7. 4 0(5H, m), 7. 15 (1H, d, J=12. 3Hz) , 7. 04 (1H, d, J=8. 4Hz), 5. 13 (2H , s), 4. 08 (1H, m), 3. 40-3. 20 (2H, m), 2. 35-2. 10 (2H, m), 2. 00-1. 20 (12H, m), 0. 91 (3H, t, J=6. 9Hz

表 241

実施例番号		389	1H NMR(δ) ppm
НО	HCI F O	H N	300MHz, DMSO-d6 8. 60 (1H, m), 8. 29 (1H, s), 8. 20- 7. 90 (4H, m), 7. 64 (1H, t, J=9. 0H z), 7. 60-7. 40 (5H, m), 7. 17 (1H, d, J=12. 0Hz), 7. 04 (1H, d, J=8. 7 Hz), 5. 13 (2H, s), 4. 80 (1H, m), 3 .35-3. 15 (2H, m), 2. 30-2. 05 (2H, m), 2. 00-1. 10 (10H, m), 0. 91 (3 H, t, J=7. 5Hz)
純度	>90% (NMR	.)	
MS	640 (M+1)		

実施例番号		390	1H NMR(δ) ppm
НО	CI	ZIZ	300MHz, DMSO-d6 8.62(1H, m), 8, 30(1H, s), 8.20- 8.10(2H, m), 8.05-7.90(2H, m), 7.65(1H, t, J=8.4Hz), 7.60-7.4 0(5H, m), 7.18(1H, d, J=12.0Hz), 7.05(1H, d, J=8.4Hz), 5.14(2H, s), 4.09(1H, m), 3.40-3.20(2H, m), 2.35-2.10(2H, m), 2.00-1. 80(4H, m), 1.75-1.60(1H, m), 1.45-1.20(3H, m), 1.15(3H, t, J=7.2Hz)
純度	>90% (NMR)		
MS	626 (M+1)		

実施例番号 391	1H NMR(δ) ppm
HCI F O N N N N N N N N N N N N N N N N N N	400NHz, DMSO-d6 8. 54 (1H, s), 8. 31 (1H, s), 8. 19 (1H, d, J=8. 6Hz), 8. 01 (1H, d, J=8 .6Hz), 7. 81 (1H, d, J=2. 1Hz), 7. 64 (1H, t, J=8. 4Hz), 7. 61 (1H, dd , J=2. 3Hz, 8. 4Hz), 7. 47 (2H, d, J =8. 6Hz), 7. 43 (2H, d, J=8. 8Hz), 7. 25 (1H, d, J=8. 4Hz), 7. 17 (1H, dd, J=2. 3Hz, 12. 1Hz), 7. 05 (1H, dd, J=2. 3Hz, 8. 6Hz), 5. 05 (2H, s), 4. 12 (1H, m), 2. 96 (6H, s), 2. 4 0-2. 10 (2H, m), 2. 00-1. 75 (4H, m)
純度· >90% (NMR)), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
MS 641 (M+1)	(0.5)

CHARLES AND ADDRESS OF THE PARTY OF THE PART	
実施例番	号 392
НО	HCI F O N O N O O O O O O O O O O O O O O O
純度	>90% (NMR)
MS	683 (M+1)
Laurence	

1H NMR(δ) ppm

300Mz, DMSO-d6
8. 79(1H, s), 8. 29(1H, d, J=1. 5H z), 8. 13(1H, d, J=8. 8Hz), 7. 98(1H, dd, J=8. 8, 1. 5Hz), 7. 80(1H, d, J=2. 2Hz), 7. 63(1H, t, J=8. 4H z), 7. 61(1H, dd, J=8. 2, 2. 2Hz), 7. 47 and 7. 43(4H, ABq, J=8. 8Hz), 7. 26(1H, d, J=8. 2Hz), 7. 14(1H, dd, J=12. 1, 2. 2Hz), 7. 02(1H, dd, J=8. 4, 2. 2Hz), 5. 05(2H, s), 4. 08(1H, brt, J=12. 1Hz), 3. 64-3. 61(2H, m), 3. 48-3. 45(2H, m), 2. 32-2. 13(2H, brm), 1. 96-1. 78(4H, brm), 1. 70-1. 66(1H, brm), 1. 44-1. 19(3H, brm)

実施例番号 393 HO HCI N N N N NH2 純度 >90% (NMR) MS 613 (M+1)

1H NMR(δ) ppm

400MHz, DMSO-d6 8. 94(1H, s), 8. 31(1H, d, J=1.0Hz), 8. 18(1H, d, J=8.6Hz), 8. 00(1H, dd, J=1.4Hz, 8. 8Hz), 7. 71(1H, dd, J=2.2Hz), 7. 66(1H, t, J=8.6Hz), 7. 52(1H, dd, J=2.4Hz, 8. 6Hz), 7. 46(2H, d, J=8.6Hz), 7. 42(2H, d, J=8.2Hz), 7. 24(1H, d, J=8.4Hz), 7. 16(1H, d, J=12.1Hz), 7. 04(1H, dd, J=2.4Hz, 8. 8Hz), 5. 05(2H, s), 4. 13(1H, m), 2. 40-2. 10(2H, m), 2. 00-1.75(4H, m), 1. 70-1.55(1H, m), 1. 50-1.20(3H, m)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 93 (1H, s), 8. 31 (1H, d, J=1. 4H z), 8. 19 (1H, d, J=8. 8Hz), 8. 01 (1H, d, J=8. 7Hz), 7. 71 (1H, d, J=2 .2Hz), 7. 66 (1H, t, J=8. 5Hz), 7. 51 (1H, dd, J=2. 2Hz, 8. 4Hz), 7. 4 6 (2H, d, J=8. 6Hz), 7. 41 (2H, d, J =8. 7Hz), 7. 23 (1H, d, J=8. 4Hz), 7. 16 (1H, d, J=12. 2Hz), 7. 05 (1H, d, J=8. 7Hz), 5. 05 (2H, s), 4. 13 (1H, m), 3. 12 (2H, q, J=7. 2Hz), 2 .40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 60 (1H, m), 1. 55-1. 20 (3H, m), 1. 06 (3H, t, J=7. 2Hz)

表 243

実施例	番号	395	1H NMR(δ) pp
HO	HCI F O		300MHz, DMSO-de 8.83(1H, s), 8.3 z), 8.21(1H, d, 1H, dd, J=1.4Hz, H, d, J=2.1Hz), 6Hz), 7.49(1H, d, (2H, d, J=8.6Hz, 8.4Hz), 7.17(11 7.06(1H, d, J=8.6Hz, brs), 5.05(2H, d, 3.77(1H, sept,
純度	>90% (NMR	.)	2. 10 (2H, m), 2. (1. 70-1. 55 (1H, r
MS	655 (M+1)		H, m), 1. 11 (6H,

pm

32(1H, d, J=1.4H)J=8.8Hz), 8.02(7. 68 (1H, t, J=8. dd, J=2. 2Hz, 8.4 J. J=8. 4Hz), 7. 41 D), 7. 23 (1H, d, J= H, d, J=12.2Hz), 3.7Hz), 6.30(1H, s), 4. 14 (1H, m), J=6.5Hz), 2.40-00-1.75(4H, m)m), 1.50-1.20(3 d, J=6.5Hz)

実施例番号	396
НО	F F O N O N
純度	>90% (NMR)
MS	642 (M+1)

1H NMR(δ) ppm

300MHz, DMSO-d6 8. 37 (1H, d, J=7. 3Hz), 8. 25 (1H, s), 8. 15 (1H, s), 7. 97 (2H, d, J=8. 8Hz), 7. 88 (1H, d, J=8. 8Hz), 7. 58-7. 47 (4H, m), 7. 31 (1H, m), 7. 11 (1H, d, J=8. 4.2.2Hz), 6.08 (1.2.2Hz), 6.08 11 (1H, dd, J=8. 4, 2. 2Hz), 6. 98 (
1H, dd, J=8. 4, 2. 2), 5. 13 (2H, s)
, 4. 13 (1H, q, J=6. 6Hz), 3. 98 (1H , m), 2. 19(2H, m), 1. 86(4H, m) 1. 62 (1H, m) 1. 31 (3H, m), 1. 20 (6H, d, J=6.6Hz)

1	実施例	番号 397
	НО	HCI F N N N N N N N N N N N N N N N N N N
并	吨度	>90% (NMR)
	MS	642 (M+1)

1H NMR(δ) ppm

300MHz, DMS0-d6 8.40(1H, d, J=7.9Hz), 8.28(1H, d, J=1.9Hz), 8.15(1H, d, J=1.9H z), 8. 11 (1H, d, J=8. 7Hz), 7. 96 (2H, m), 7. 56 (1H, t, J=8. 7Hz), 7. 45 (3H, m), 7. 18 (1H, m), 7. 08 (1H, d, J=12. 1, 1. 9Hz), 6. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9Hz), 9. 96 (1H, d, J=12. 1, 1. 9 d, J=8. 3, 2. 3Hz), 5. 09 (2H, s), 4 . 14 (1H, m), 4. 04 (1H, m), 2. 23 (2 H, m), 1. 86 (3H, m), 1. 62 (1H, m), 1. 33 (3H, m), 1. 20 (6H, d, J=6. 4H z)

実施例	番号	398	
HO HO	HCI F CI) H N	
純度	>90% (NMR))	
MS	674 (M+1)		

1H NMR(δ) ppm

8. 41 (1H, d, J=8. 1Hz), 8. 29 (1H, d, J=1. 5Hz), 8. 17 (1H, d, J=1. 8Hz), 8. 12 (1H, d, J=8. 4Hz), 8. 01-7. 95 (2H, m), 7. 67-7. 62 (2H, m), 7. 55-7. 51 (3H, m), 7. 19 (1H, dd, J=12. 1, 2. 2Hz), 7. 05 (1H, dd, J=8. 8, 2. 2Hz), 5. 13 (2H, s), 4. 10-4. 00 (2H, m), 2. 32-2. 13 (4H, m), 1. 71-1. 60 (1H, m), 1. 49-1. 14 (3H, m), 1. 21 (3H, s), 1. 19 (3H, s)

実施例番	号	399	1H NMR(δ) ppm
НО	HCI F	CI	300Mz, DMSO-d6 8. 39 (1H, d, J=7.7Hz), 8. 29 (1H, d, J=1.5Hz), 8. 16 (1H, d, J=1.8Hz), 8. 11 (1H, d, J=8.8Hz), 8. 00-7.95 (2H, m), 7. 69-7.61 (2H, m), 7. 54-7.46 (3H, m), 7. 18 (1H, dd, J=12.1, 2. 2Hz), 7. 04 (1H, dd, J=8.8, 2. 2Hz), 5. 13 (2H, s), 4. 20-4.02 (2H, m), 2. 33-2. 13 (2H, brm), 1. 97-1.80 (4H, m), 1. 72-1.61 (1H, m), 1. 44-1.13 (3H, m), 1. 21 (3H, s), 1. 19 (3H, s)
純度	> 9 0 %	(NMR)	 (011, 5), 1. 15 (011, 5)
MS	658 ((M+1)	

実施例番号	40	0	1H NMR(δ) ppm
но	CI CI CI	>	300MHz, DMSO-d6 8. 39(1H, d, J=7.7Hz), 8. 29(1H, s), 8. 17(1H, d, J=1.5Hz), 8. 11(1H, d, J=8.8Hz), 7. 98(2H, m), 7. 73(2H, m), 7. 64(1H, t, J=8.4Hz), 7. 52(1H, d, J=8.0Hz), 7. 46(1H, dd, J=8.4, 1.8Hz), 7. 18(1H, dd, J=11.9, 2.0Hz), 7. 05(1H, dd, J=8.6, 2.4Hz), 5. 14(2H, s), 4. 13(2H, m), 2. 22(2H, m), 1. 88(4H, m) 1. 64(1H, m), 1. 34(3H, m), 1. 20(
純度	>90% (NMR)		6H, d, J=6. 6Hz)
MS	642 (M+1)		

表 245

実施例番号	401	1H NMR(δ) ppm
HCI CI	F Z HZ	300MHz, DMSO-d6 8. 38 (1H, d, J=7.8Hz), 8. 28 (1H, s), 8. 20-8. 05 (2H, m), 8. 00-7. 9 0 (2H, m), 7. 65-7. 30 (5H, m), 7. 0 9 (1H, d, J=12. 3Hz), 6. 97 (1H, d, J=10. 2Hz), 5. 09 (2H, s), 4. 20-4 .00 (2H, m), 2. 30-2. 10 (2H, m), 2 .00-1. 80 (4H, m), 1. 70-1. 60 (1H, m), 1. 40-1. 10 (3H, m), 1. 19 (6H, d, J=6. 6Hz)
純度 > 90% (NM	IR)	
MS 658 (M+1)		

実施例番号	402	1H NMR(δ) ppm
HCI CI F F O F O CO	} }-N)	300MHz, DMSO-d6 8. 25 (1H, s), 8. 03 (1H, d, J=8. 7H z), 7. 91 (1H, d, J=8. 7Hz), 7. 83 (1H, s), 7. 70-7. 35 (6H, m), 7. 04 (1H, d, J=12. OHz), 6. 93 (1H, d, J= 8. 4Hz), 5. 09 (2H, s), 4. 00 (1H, m), 3. 60-3. 40 (4H, m), 2. 30-2. 10 (2H, m), 1. 45-1. 15 (3H, m)
純度 >90% (NMR))	
MS 670 (M+1)		

HCI CI F 400MHz, DMSO-d6 8. 41 (1H, d, J=7.6 d, J=1.5Hz), 8. 20 z), 8. 17 (1H, d, J= 1H, dt, J=8.8Hz, 1.64 (2H, m), 7. 54 (Hz, 1.9Hz), 7. 32 (z, 1.9Hz), 7. 32 (z, 2.3Hz), 7. 08 (1), 2. 3Hz), 5. 17 (2		·		
HCI CI F 8. 41 (1H, d, J=7.6 d, J=1.5Hz), 8. 20 z), 8. 17 (1H, d, J= 1H, dt, J=8.8Hz, 164 (2H, m), 7.54 (Hz, 1.9Hz), 7.32 (Z	実施例都	番号	404	1H NMR(δ) ppm
純度 > 90% (NMR) 46-1.20(3H, m), 1 .6Hz)	HO	HCI CI	HN O	8. 41 (1H, d, J=7. 6H d, J=1. 5Hz), 8. 200 z), 8. 17 (1H, d, J=1 1H, dt, J=8. 8Hz, 1. .64 (2H, m), 7. 54 (1 Hz, 1. 9Hz), 7. 32 (1 z, 1. 9Hz), 7. 22 (1Hz, 2. 3Hz), 7. 08 (1Hz), 2. 3Hz), 5. 17 (2Hz), 2. 3Hz), 5. 17 (2Hz), 2. 31-2. 14 (2Hz)
	純度	> 9 0 %	(NMR)	
	MS	658 (M+1)	

MS0-d6 d, J=7.6Hz), 8.32(1H, z), 8. 20(1H, d, J=8. 6H 1H, d, J=1. 7Hz), 8. 00(8.8Hz, 1.5Hz), 7.71-7 , 7.54(1H, dd, J=10.3)7.32(1H, dd, J=8.2H 7. 22 (1H, dd, J=12. 1H 7, 08 (1H, dd, J=8.6Hz , 5. 17 (2H, s), 4. 15 (1H -2. 14 (2H, m), 1. 99-1. , 1. 70-1. 60 (1H, m), 1. 3H, m), 1. 19 (6H, d, J=6

実施例番	号	405
HO	HCI S	N-O
純度	>90% (NMR)	
MS	650 (M+1)	

1H NMR(δ) ppm 300MHz, DMS0-d6 8.32(1H, s), 8.19(1H, d, J=9.0H z), 8.03-7.98(2H, m), 7.75(1H, dd, J=2. 1Hz, 8. 4Hz), 7. 67 (1H, t, J=8. 6Hz), 7. 40-7. 36 (3H, m), 7. 32 (2H, d, J=8. 4Hz), 7. 19 (1H, d d, J=2. 1Hz, 12. 3Hz), 7. 07 (1H, d d, J=2. 1Hz, 8. 7Hz), 5. 11 (2H, s) ,4.12(1H, m),4.12(1H, m),3.90 (2H, t, J=6.9Hz),2.54(2H, t, J= 8. 1Hz), 2. 50 (3H, s), 2. 40-2. 05 (4H, m), 2.00-1.75(4H, m), 1.70 -1.55(1H, m), 1.50-1.20(3H, m)

実施例	番号 406	1	ŀ
O HO	HCI F N N N N N N N N N N N N N N N N N N	_	3881 1.41 1.6
純度	>90% (NMR)		
MS	652 (M+1)		_

H NMR(δ) ppm OOMHz, DMSO-d6 1.34(1H, d, J=7.7Hz), 1.29(1H, s), 8.15(1H, s), 8.11(H, d, J=8.8Hz), 7.97(2H, d, J=9 2Hz), 7.63(1H, t, J=8.8Hz), 7. 17-7.31 (5H, m), 7.18 (1H, dd, J= 2. 4, 2. 2Hz), 7. 06 (1H, dd, J=12 4, 2. 2Hz), 5. 13(2H, s), 4. 13(2 H, m), 1.96(2H, m), 1.87(4H, m), 1.62(1H, m), 1.34(3H, m), 1.20(3H, d, J=6.2Hz)

表 247

実施例番号 407	IH NMR(δ) ppm
HCI CI HO PROPERTY OF THE PROP	400MHz, DMSO-d6 8. 32 (1H, d, J=1. 4Hz), 8. 20 (1H, d, J=8. 8Hz), 8. 01 (1H, dd, J=1. 6 Hz, 8. 8Hz), 7. 90 (1H, s), 7. 67 (1 H, t, J=8. 4Hz), 7. 61 (1H, s), 7. 5 5-7. 50 (4H, m), 7. 21 (1H, dd, J=2 .3Hz, 12. 0Hz), 7. 06 (1H, dd, J=2 .2Hz, 8. 7Hz), 5. 10 (2H, s), 4. 11 (1H, m), 3. 78 (2H, t, J=6. 7Hz), 3 .47 (2H, t, J=7. 4Hz), 2. 54-2. 48 (2H, m), 2. 40-2. 10 (2H, m), 2. 00 -1. 80 (4H, m), 1. 75-1. 55 (1H, m)
純度 >90% (NMR)	1. 50-1. 20 (3H, m)
MS 708 (M+1)	

実施例番号 408	1H NMR(δ) ppm
HCI CI HO F CI	400MHz, DMSO-d6 8. 32 (1H, d, J=1. 6Hz), 8. 21 (1H, d, J=8. 8Hz), 8. 02 (1H, dd, J=1. 6 Hz, 8. 8Hz), 7. 76 (1H, s), 7. 68 (1 H, t, J=8. 5Hz), 7. 59 (1H, s), 7. 5 4-7. 51 (4H, m), 7. 21 (1H, dd, J=2 .4Hz, 12. 1Hz), 7. 07 (1H, dd, J=2 .4Hz, 8. 8Hz), 5. 08 (2H, s), 4. 11 (1H, m), 3. 77 (2H, t, J=6. 9Hz), 2 .47 (2H, t, J=8. 0Hz), 2. 40-2. 10 (4H, m), 2. 00-1. 80 (4H, m), 1. 70 -1. 60 (1H, m), 1. 45-1. 20 (3H, m)
純度 >90% (NMR)	-1. 00 (111, in), 1. 45 1. 20 (511, in)
MS 672 (M+1)	

実施例番号	409	1H NMR(δ) ppm
HCI CI HO N F O OF O	S-H S-N	300MHz, DMSO-d68. 28 (1H, d, J=1.5Hz), 8. 20-8. 85 (4H, m), 7. 75 (1H, d, J=6.9Hz), 7. 70-7. 45 (6H, m), 7. 13 (1H, dd, J=12.0Hz, 2. 1Hz), 7. 00 (1H, dd, J=8.7Hz), 2. 1Hz), 5. 22 (2H, s), 4. 05 (1H, m), 3. 40-3. 20 (1H, m), 2. 30-2. 10 (2H, m), 2. 00-1. 55 (5H, m), 1. 45-1. 10 (3H, m), 1. 00 (6H, d, J=6.6Hz)
純度· >90% (NMR)	4
MS 676 (M+1)		

表 248

実施例番号 4	10 1H NMR(δ) ppm
HCI CI HO N F O O	300MHz, DMSO-d6 8.31(1H, s), 8.00(1H, d, J=8.7Hz), 7.88(1H, d, J=8.7Hz), 7.70(1H, s), 7.65(1H, t, J=8.4Hz), 7.53(2H, d, J=8.4Hz), 7.45(2H, d, J=8.7Hz), 7.45-7.41(2H, m), 7.16(1H, d, J=12.0Hz), 7.04(1H, d, J=8.7Hz), 5.14(2H, s), 4.68(1H, quint, J=8.4Hz), 3.02, 2.98(6H, s), 2.30-1.85(6H, m), 1.80-1.50(2H, m)
純度 >90% (NMR)	
MS 612 (M+1)	

実施例番号	411	1H NMR(δ) ppm
HCI CI	→ N → OH	300MHz, DMSO-d6 8. 30 (1H, s), 7. 99 (1H, d, J=9. 0H z), 7. 87 (1H, d, J=8. 7Hz), 7. 67 (1H, s), 7. 64 (1H, t, J=8. 7Hz), 7. 53 (2H, d, J=8. 7Hz), 7. 49 (2H, d, J=7. 5Hz), 7. 45-7. 41 (2H, m), 7. 15 (1H, d, J=12. 3Hz), 7. 02 (1H, d, J=8. 4Hz), 5. 15 (2H, s), 4. 67 (1H, quint, J=8. 7Hz), 4. 02 (1H, m), 3. 76 (1H, m), 3. 55 (1H, m), 3. 22 (2H, m), 2. 40-1. 20 (12H, m)
純度 >90%	(NMR)	
MS 668	3 (M+1)	

実施例番号	41:	3	1H NMR(δ) ppm
HCI	CI	-	300Mz, DMSO-d6 8. 39 (1H, d, J=7.5Hz), 8. 31 (1H, d, J=1.5Hz), 8. 16 (1H, d, J=1.9Hz), 8. 06 (1H, dd, J=8.8, 1.5Hz), 7. 99-7. 95 (2H, m), 7. 76 and 7. 24 (4H, ABq, J=8.9Hz), 7. 53 and 7. 50 (4H, A'B'q, J=9.1Hz), 7. 46 (1H, d, J=8.3Hz), 5. 14 (2H, s), 4. 94 (1H, quint, J=9.0Hz), 4. 19-4.0 8 (1H, m), 2. 32-2.11 (4H, brm), 2. 10-1.95 (2H, brm), 1. 78-1.62 (2H, brm), 1. 26 (3H, s), 1. 18 (3H,
純度 >	90% (NMR)		S)
MS	608 (M+1)		

実施例番号		414	1H NMR(δ) ppm
НО	HCI	CI	300Mz, DMSO-d6 8. 31 (1H, d, J=1.5Hz), 8. 06 (1H, dd, J=8.7, 1.5Hz), 7. 97 (1H, d, J=8.7Hz), 7. 75 and 7. 22 (4H, ABq, J=8.9Hz), 7. 70 (1H, d, J=1.9Hz), 7. 53 (1H, dd, J=7.9, 1.9Hz), 7. 52 (4H, s), 7. 43 (1H, d, J=7.9Hz), 5. 15 (2H, s), 4. 93 (1H, quint, J=8.9Hz), 3. 01 (3H, s), 2. 97 (3H, s), 2. 32-2. 11 (4H, brm), 2. 09-1, 94 (2H, brm), 1. 77-1. 62 (2H, brm)
純度	> 9 0 %	(NMR)	m)
MS	594	(M+1)	

表 250

実施例番号	416	1H NMR(δ) ppm
HCI HO N S	CI HZ O	300MHz, DMSO-d6 8. 38 (1H, d, J=7. 7Hz), 8. 30 (1H, s), 8. 20-7. 90 (4H, m), 7. 72 (2H, d, J=8. 7Hz), 7. 60-7. 40 (5H, m), 7. 22 (2H, d, J=8. 7Hz), 5. 13 (2H, s), 4. 47 (1H, m), 4. 15 (1H, m), 2. 90-2. 70 (4H, m), 2. 60-2. 30 (4H, m), 1. 19 (6H, d, J=6. 5Hz)
純度 >90%	(NMR)	
MS 640	(M+1)	

実施例番号	417	1H NMR(δ) ppm
HCI OHO N S		400MHz, DMSO-d6 8. 33 (1H, s), 8. 17 (1H, d, J=8. 6H z), 8. 10 (1H, d, J=8. 6Hz), 7. 82 (1H, d, J=1. 4Hz), 7. 74 (2H, d, J=8 . 7Hz), 7. 64 (1H, dd, J=8. 0Hz, 1. 7Hz), 7. 55-7. 50 (4H, m), 7. 43 (1 H, d, J=7. 8Hz), 7. 24 (1H, d, J=8. 7Hz), 5. 16 (2H, s), 4. 49 (1H, m), 3. 60-3. 40 (4H, m), 2. 90-2. 70 (4 H, m), 2. 60-2. 30 (4H, m), 2. 20-1 . 80 (4H, m)
純度 >90%	(NMR)	
MS 652	(M+1)	

実施例番号	7	418	1H NMR(δ) ppm
НО	HCI F		400MHz, DMSO-d6 8. 34 (1H, d, J=7.6Hz), 8. 25 (1H, s), 8. 11 (1H, d, J=1.3Hz), 7. 90- 8. 00 (3H, m), 7. 59 (1H, t, J=8.6H z), 7. 40-7. 55 (5H, m), 7. 12 (1H, d, J=11.9Hz), 7. 00 (1H, d, J=8.6 Hz), 5. 08 (2H, s), 4. 30-4. 10 (2H, m), 2. 80-2. 65 (4H, m), 2. 45-2. 30 (2H, m), 1. 15 (6H, d, J=4.8Hz)
純度	> 9 0 %	(NMR)	7
MS	658	(M+1)	

表 251

実施例番号	를 -	419	1H NMR(δ) ppm
но	HCI CI	170	400MHz, DMSO-d6 8. 30 (1H, s), 8. 05-7. 95 (3H, m), 7. 80-7. 75 (1H, m), 7. 63 (1H, t, J =8. 6Hz), 7. 55-7. 35 (5H, m), 7. 1 5 (1H, dd, J=12. 1Hz, 2. 1Hz), 7. 0 3 (1H, dd, J=8. 7Hz, 2. 3Hz), 5. 10 (2H, s), 4. 23 (1H, m), 3. 90 (2H, t, J=7. 0Hz), 2. 95-2. 70 (4H, m), 2 . 60-2. 35 (4H, m), 2. 30-2. 00 (4H, m)
純度	>90% (NMR)		
MS	656 (M+1)		

実施例番	号	420	1H NMR(δ) ppm
НО	HCI CI	> - - -	300Mz, DMSO-d6 8. 37 (1H, d, J=7.5Hz), 8. 28 (1H, d, J=1.5Hz), 8. 17 (1H, d, J=1.5Hz), 8. 17 (1H, d, J=1.5Hz), 8. 13 (1H, d, J=8.7Hz), 7. 97 (1H, dd, J=8.7, 1.5Hz), 7. 61 (1H, t, J=8.7Hz), 7. 51 and 7. 49 (4H, ABq, J=8.9Hz), 7. 46 (1H, d, J=8.1Hz), 7. 08 (1H, dd, J=12.4, 2.3Hz), 6. 97 (1H, dd, J=8.7, 2.3Hz), 5. 10 (2H, s), 4. 20-4. 08 (1H, m), 3. 62 -3. 56 (2H, brm), 3. 13-3. 10 (2H,
純度	>90% (NMR)	brm), 1. 79-1. 60 (3H, brm), 1. 54 -1. 34 (3H, brm), 1. 21 (3H, s), 1.
MS	641 (M+1)		18 (3H, s)

表 252

実施例番号	422	1H NMR(δ) ppm
2HCI CI HO N F	H N N	300MHz, DMSO-d6 10.99(2H, s), 8.44(1H, s), 8.30 (1H, s), 8.18(1H, d, J=8.7Hz), 8 .14(1H, d, J=8.7Hz), 7.98(1H, d , J=9.0Hz), 7.70-7.66(2H, m), 7 .57(2H, d, J=8.7Hz), 7.54(2H, d , J=8.7Hz), 7.21(1H, d, J=12.0H z), 7.09(1H, d, J=8.4Hz), 5.19(2H, s), 4.05(4H, s), 2.40-2.18(2H, m), 2.15-1.80(4H, m), 1.75- 1.55(1H, m), 1.50-1.20(3H, m)
純度 >90% (NM	R)	
MS 623 (M+1)		

実施例番	号	423	IH NMR(δ) ppm
НО	HCI F	CI	300MHz, DMSO-d6 8. 27 (1H, s), 8. 05 (1H, d, J=8. 7H z), 7. 93 (1H, d, J=8. 7Hz), 7. 90 (1H, s), 7. 70 (1H, d, J=8. 4Hz), 7. 59 (1H, t, J=8. 4Hz), 7. 50 (2H, d, J=9. 0Hz), 7. 45 (2H, d, J=8. 7Hz), 7. 41 (1H, d, J=8. 4Hz), 7. 12 (1H, d, J=12. 0Hz), 7. 00 (1H, d, J=8. 7Hz), 5. 10 (2H, s), 4. 49 (2H, t, J=7. 8Hz), 4. 14 (2H, t, J=8. 0Hz), 4. 04 (1H, m), 2. 40-2. 10 (2H, m),
純度	> 9 0 %	(NMR)	2.00-1.50(5H, m), 1.45-1.20(3 Н, m)
MS	640 ((M+1)	

表 253

実施例番号	425	1H NMR(δ) ppm
2HCI HON F	CI O N N N	300MHz, DMSO-d6 9. 05 (1H, s), 8. 30 (1H, s), 8. 16 (1H, d, J=8. 8Hz), 7. 99 (1H, d, J=8 .6Hz), 7. 72 (1H, s), 7. 64 (1H, t, J=8. 6Hz), 7. 52 (1H, d, J=8. 4Hz) ,7. 47 (2H, d, J=8. 7Hz), 7. 42 (2H ,d, J=8. 6Hz), 7. 25 (1H, d, J=8. 4 Hz), 7. 15 (1H, d, J=12. 2Hz), 7. 0 4 (1H, d, J=8. 6Hz), 6. 60 (1H, brs), 5. 05 (2H, s), 4. 10 (1H, m), 3. 6 8 (2H, t, J=6. 1Hz), 3. 45 (2H, t, J =6. 1Hz), 2. 40-2. 10 (2H, m), 2. 0
純度 >90	% (NMR)	0-1. 55 (5H, m), 1. 50-1. 20 (3H, m
MS 6	39 (M+1)	,

実施例番号	<u></u>	426	1H NMR(δ) ppm
НО	HCI F		300MHz, DMSO-d6 8. 32 (1H, s), 8. 24 (1H, d, J=8. 7H z), 8. 03 (1H, d, J=8. 7Hz), 7. 78-7. 73 (4H, m), 7. 38-7. 32 (4H, m), 5. 52 (2H, s), 4. 88 (2H, s), 4. 40 (2H, s), 4. 37 (1H, m), 2. 92, 2. 84 (6H, s), 2. 40-2. 18 (2H, m), 2. 15-1. 95 (2H, m), 1. 90-1. 80 (2H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 20 (3 H, m)
純度	>90% (NMR)	
MS	643 (M-	+1)	

表 254

実施例番号	428	1H NMR(δ) ppm
HCI HO HCI	N O NH2	300MHz, DMSO-d6 8.31(1H, s), 8.26(1H, d, J=9.0H z), 8.04(1H, d, J=8.7Hz), 7.79- 7.73(4H, m), 7.38-7.31(6H, m), 5.53(2H, s), 4.90(2H, s), 4.37(1H, m), 4.05(2H, s), 2.40-2.18(2H, m), 2.15-1.95(2H, m), 1.90- 1.80(2H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
純度 >90%	(NMR)	
MS 615	(M+1)	

実施例番号	-	429	1H NMR(δ) ppm
НО	HCI F	N HZ HZ	300MHz, DMSO-d6 8. 88 (1H, q, J=4. 5Hz), 8. 33 (1H, d, J=1. 5Hz), 8. 18 (1H, d, J=8. 7Hz), 8. 01 (1H, dd, J=1. 5Hz, 8. 7Hz), 7. 89-7. 83 (2H, m), 7. 50-7. 34 (3H, m), 7. 20 (1H, dd, J=2. 1Hz, 8. 4Hz), 5. 61 (2H, s), 4. 13 (1H, m), 2. 84 (3H, d, J=4. 8Hz), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m)
純度	> 9 0 % (NM	R)	
MS	603 (M+1)		

実施例番号 430	1H NMR(δ) ppm
HCI F N H N OH	400MHz, DMSO-d6 8.79(1H, t, J=5.9Hz), 8.31(1H, s), 8.15(1H, d, J=8.7Hz), 7.99(1H, d, J=8.8Hz), 7.87(1H, d, J=8.1Hz), 7.85(1H, d, J=8.7Hz), 7.70(1H, t, J=8.4Hz), 7.42-7.33(3H, m), 7.18(1H, d, J=8.8Hz), 5.60(2H, s), 4.11(1H, m), 3.62-3.54(4H, m), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m)
純度 > 90% (NMR)	7
MS 633 (M+1)	

表 255

実施例番号		431	1H NMR(δ) ppm
но	HCI F N	F S N O	300MHz, DMSO-d6 8. 31 (1H, s), 8. 16 (1H, d, J=8. 8H z), 7. 99 (1H, d, J=8. 7Hz), 7. 74- 7. 60 (4H, m), 7. 37 (2H, t, J=8. 8H z), 7. 28 (1H, dd, J=2. 2Hz, 12. 2H z), 7. 14 (1H, dd, J=2. 2Hz, 8. 6Hz), 5. 17 (2H, s), 4. 10 (1H, m), 3. 1 5 (6H, brs), 2. 40-2. 10 (2H, m), 2 .00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 15 (3H, m)
純度	> 9 0 %	(NMR)	
MS	616	(M+1)	

実施例番号	432	1H NMR(δ) ppm
HCI HO N N	S HX O	300MHz, DMSO-d6 8. 45 (1H, d, J=7. 7Hz), 8. 32 (1H, s), 8. 19 (1H, d, J=8. 8Hz), 8. 02-7. 99 (2H, m), 7. 70 (1H, t, J=8. 6Hz), 7. 60 (2H, dd, J=5. 4Hz, 8. 7Hz), 7. 37 (2H, t, J=8. 8Hz), 7. 27 (1H, dd, J=2. 3Hz, 12. 2Hz), 7. 14 (1H, dd, J=2. 2Hz, 8. 7Hz), 5. 16 (2H, s), 4. 20-4. 00 (2H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 75 (4H, m), 1. 70-1. 55 (1H, m), 1. 50-1. 20 (3H, m), 1. 18 (6H, d, J=6. 6Hz)
純度 >90% (N	MR)	m, 1. 10 (on, a, g of one)
MS 630 (M+1)	

表 256

実施例番号		434	1H NMR(δ) ppm
N Z Z	CI F N) - N	300Mz, DMSO-d6 8. 45 (1H, d, J=1. 5Hz), 8. 26 (1H, d, J=8. 8Hz), 8. 10 (1H, dd, J=8. 8, 1. 5Hz), 7. 72 (1H, d, J=1. 5Hz), 7. 64 (1H, t, J=8. 6Hz), 7. 56 -7. 48 (5H, m), 7. 44 (1H, d, J=J=7. 7Hz), 7. 18 (1H, dd, J=12. 3, 2. 4Hz), 7. 04 (1H, dd, J=8. 6, 2. 4Hz), 5. 15 (2H, s), 4. 08 (1H, brt, J=11. 7Hz), 3. 02 (3H, s), 2. 99 (3H, s), 2. 34-2. 17 (2H, brm), 1. 97-1. 81 (4H, brm), 1. 70-1. 60
純度	>90% (NMR)		(1H, brm), 1.49-1.21(3H, brm)
MS	650 (M+1)		

実施例番号		435	1H NMR(δ) ppm
N N N N N N N N N N N N N N N N N N N	HCI OH	CI	300Mz, DMSO-d6 8. 42(1H, d, J=1.5Hz), 8. 24(1H, d, J=8.8Hz), 8. 08(1H, dd, J=8.8Hz), 8. 00(2H, d, J=8.8Hz), 7. 79(1H, d, J=7.8Hz), 7. 62(1H, t, J=8.4Hz), 7. 61-7.55(3H, m), 7. 44(1H, d, J=8.1Hz), 7. 16(1H, dd, J=12.1, 2.6Hz), 7. 02(1H, dd, J=8.4, 2.6Hz), 5. 12(2H, s), 4. 07(1H, brt, J=12.5Hz), 2. 33(2H, brm), 1. 96-1. 79(4H, brm), 1. 71-1. 61(1H, brm), 1. 49-1. 21(3H
純度	>90% (NMR)		, brm)
MS	623 (M+1)		·

表 257

実施例番号	437	1H NMR(δ)	ppm
CI N N N O	ООН		
純度 >90%(]	NMR)		
MS 580 (M+	-1)		

実施例番号	438	1H NMR(δ) ppm
N	CI, N, N, N, N,	
純度	>90% (NMR)	
MS	607 (M+1)	

実施例番号	439	1H NMR(δ) ppm
HO N N N F	O N	300MHz, CDC13 8.60(1H, d, J=1.5Hz), 8.05(1H, dd, J=1.6Hz, 8.7Hz), 7.70(1H, d , J=8.7Hz), 7.62(2H, d, J=8.2Hz), 7.49(2H, d, J=8.2Hz), 7.31(2 H, d, J=8.8Hz), 7.27-7.23(2H, m), 7.06(2H, t, J=8.6Hz), 6.80(2 H, d, J=8.8Hz), 5.05(2H, s), 4.3 8(1H, m), 3.06(6H, s), 2.45-2.2 0(2H, m), 2.10-1.70(5H, m), 1.5 0-1.20(3H, m)
純度 > 90% (NMR)	9
MS 591 (M+1)		

表 258

実施例番号	eur Carachi, mar de gal (100 gal deservir i revenir eurose 2014 de Carachi, mar de la carachine de Carachine (100 gal de	440	1H NMR(δ) ppm
НО	POH F		300MHz, DMSO-d6 8.20(1H, s), 7.86(2H, m), 7.39(1H, d, J=7.9Hz), 7.34(1H, d, J=7.9Hz), 7.34(1H, d, J=7.9Hz), 7.07(2H, dt, J=2.3Hz, 8.6Hz), 6.98-6.88(5H, m), 6.83(1H, d, J=8.3Hz), 5.91(1H, s), 3.96(1H, m), 2.30-1.95(2H, m), 1.90-1.50(4H, m), 1.40-1.10(3H, m)
純度	>90% (NMR)		
MS	557 (M+1)		·

実施例番号		441	1H NMR(δ) ppm
НО	F OH		300MHz, DMSO-d6 8.24(1H, d, J=1.4Hz), 8.01(1H, d, J=8.8Hz), 7.91(1H, dd, J=1.4 Hz, 8.7Hz), 7.47(1H, t, J=8.4Hz), 7.43-7.35(2H, m), 7.15-7.01 (5H, m), 6.92(2H, d, J=10.4Hz), 6.11(1H, s), 3.90(1H, m), 2.30- 1.95(2H, m), 1.90-1.50(4H, m), 1.40-1.10(3H, m)
純度	>90% (NMR)		
MS	557 (M+1)		

表 259

実施例番号	443	1H NMR(δ) ppm
HO F O	————— он О	300Mz, DMSO-d6 8. 23 (1H, s), 7. 98and7. 89 (2H, A Bq, J=8. 8Hz), 7. 62-7. 06 (11H, m), 6. 86 (1H, s), 4. 12-3. 77 (2H, b rm), 3. 72 (1H, brs), 3. 69 (1H, br s), 3. 18 (1H, brs), 3. 05 (1H, brs), 2. 31-2. 08 (2H, brm), 1. 90-1. 54 (7H, brm), 1. 48-1. 13 (5H, brm)
純度 >90%	(NMR)	
MS 666	(M+1)	

実施例番号	444	1H NMR(δ) ppm
HO O HO O OH	O N N S N	300MHz, DMSO-d6 8. 36 (1H, s), 8. 00 (1H, d, J=8. 7H z), 7. 90 (1H, d, J=9. 3Hz), 7. 80-7. 70 (2H, m), 7. 63 (2H, d, J=8. 4H z), 7. 32 (2H, t, J=8. 7Hz), 7. 22 (2H, d, J=8. 4Hz), 5. 62 (1H, d, J=7.5Hz), 5. 57 (1H, brd, J=4. 8Hz), 5. 41 (2H, s), 5. 31 (1H, m), 4. 29 (1H, m), 3. 84 (1H, d, J=9. 0Hz), 3. 50-3. 20 (3H, m), 2. 71 (3H, s), 2. 40-2. 20 (2H, m), 1. 75-1. 60 (1H, m), 1. 50-1. 20 (3H, m)
純度	>90% (NMR)	型/, 1.50 ⁻¹ .20(3H, m/
MS	718(M+1)	

表 260

実施例番	号	446	1H NMR(δ) ppm
но	HCI F		300MHz, DMSO-d6 8. 29(1H, s), 8. 13(1H, d, J=9. 0H z), 7. 97(1H, d, J=9. 0Hz), 7. 63(1H, t, J=8. 6Hz), 7. 51-7. 32(7H, m), 7. 15(1H, d, J=12. 0Hz), 7. 03 (1H, d, J=9. 0Hz), 5. 10(2H, s), 4 .09(1H, m), 3. 82(2H, t, J=6. 3Hz), 3. 56(2H, t, J=7. 4Hz), 2. 45(2 H, m), 2. 40-2. 10(2H, m), 2. 00-1 .55(5H, m), 1. 50-1. 20(3H, m)
純度	> 9 0 %	(NMR)	
MS	674 ((M+1)	

実施例番号	447	1H NMR(δ) ppm 300MHz, DMSO-d6
0 H ₂ N-S	F O H N O N	8. 36 (1H, d, J=7. 7Hz), 8. 14 (2H, d, J=12. 1Hz), 8. 08 (1H, d, J=8. 5Hz), 7. 97 (1H, dd, J=1. 7Hz, 8. 3Hz), 7. 7 4 (1H, dd, J=1. 8Hz, 8. 4Hz), 7. 58-7 . 45 (6H, m), 7. 31 (2H, s), 7. 12 (1H, dd, J=2. 2Hz, 12. 1Hz), 7. 00 (1H, dd, J=2. 4Hz, 8. 6Hz), 5. 11 (2H, s), 4. 16 (1H, m), 4. 02 (1H, m), 2. 20 (2H, m), 1. 86 (4H, m), 1. 62 (1H, m), 1. 21 (9H, m)
純度	>90% (NMR)	911, 111/
MS	675 (M+1)	•

表 261

実施例番号	449
НО	
純度	>90% (NMR)
MS	692 (M+1)

300MHz, DMSO-d6
8. 31 (1H, s), 8. 17 (1H, d, J=8. 7Hz),
8. 00 (1H, d, J=8. 7Hz), 7. 78 (1H, d, J=8. 1Hz), 7. 66 (1H, t, J=8. 7Hz), 7. 5
5-7. 45 (4H, m), 7. 40 (1H, d, J=11. 7Hz), 7. 19 (1H, d, J=12. 3Hz), 7. 05 (1H, d, J=8. 7Hz), 5. 07 (2H, s), 4. 10 (1H, m), 3. 85 (2H, t, J=6. 6Hz), 3. 47 (2H, t, J=7. 5z) 2. 60-2. 50 (2H, m), 2. 40
-2. 10 (2H, m), 2. 00-1. 80 (4H, m), 1.

75-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

実施例番号			450
H0 0	HC I		, H →N →
純度	> 9	0% (NMR)	
MS		670 (M+1)	

1H NMR(δ) ppm 300MHz, DMSO-d6

1H NMR(δ) ppm

8. 37 (1H, d, J=7. 8Hz), 8. 15 (1H, s), 7. 97 (1H, d, J=9. 8Hz), 7. 64-7. 45 (8 H, m), 7. 12 (1H, d, J=12. 1Hz), 7. 00 (1H, d, J=8. 6Hz), 5. 11 (2H, s), 4. 21 (3H, s), 4. 18-4. 05 (1H, m), 4. 04-3. 8 9 (1H, m), 2. 29-2. 08 (2H, m), 1. 90-1. 74 (4H, m), 1. 68-1. 58 (1H, m), 1. 40 -1. 17 (3H, m), 1. 20 (6H, d, J=6. 6Hz)

実施例番号		451
НО	HCI F O N-	
純度	>90% (NMR)	
MS	654 (M+1)	

1H NMR(δ) ppm 300MHz, DMSO-d6

8. 29 (1H, s), 8. 12 (1H, d, J=8. 8Hz), 7. 97 (1H, d, J=10. 2Hz), 7. 65-7. 59 (2H, m), 7. 51 (4H, s), 7. 46 (2H, s), 7. 15 (1H, d, J=12. 2Hz), 7. 01 (1H, d, J=8. 6Hz), 5. 15 (2H, s), 4. 13-3. 98 (1H, m), 3. 21 (3H, s), 2. 56-2. 42 (1H, m), 2. 30-2. 15 (2H, m), 1. 95-1. 77 (4H, m), 1. 69-1. 59 (1H, m), 1. 45-1. 17 (3H, m), 0. 96 (6H, d, J=6. 5Hz)

表 262

実施例番号		452
НО	HCI F O N-H	0
純度	>90% (NMR)	
MS	640 (M+1)	

1H NMR (δ) ppm 300MHz, DMSO-d6 10.1 (1H, s), 8.28 (1H, s), 8.11 (1H, d, J=8.7Hz), 7.96 (1H, d, J=11.4Hz), 7.95 (1H, s), 7.72 (1H, d, J=8.7Hz), 7.62 (1H, t, J=9.0Hz), 7.48 and 7.43 (4H, ABq, J=8.4Hz), 7.31 (1H, d, J=8.4Hz), 7.13 (1H, d, J=12.0Hz), 7.02 (1H, d, J=9.0Hz), 5.07 (2H, s), 4.14-4.00 (1H, m), 2.69-2.59 (1H, m), 2.30-2.12 (2H, m), 1.95-1.77 (4H, m), 1.71-1.57 (1H, m), 1.45-1.20 (3

H, m), 1. 12 (6H, d, J=6. 9Hz)

実施例都	等号	453
	HO N S OH	
純度	· >90% (NMR)	
MS	542 (M+1)	

1H NMR(δ) ppm 300MHz, DMSO-d6 11.1(1H, brs), 8.31(1H, d, J=9.4Hz), 8.29(1H, s), 8.07(1H, d, J=10.2Hz), 7.70-7.62(3H, m), 7.31-7.23(3H, m), 4.40-4.23(1H, m), 4.24(2H, s), 2.61(3H, s), 2.34-2.14(2H, m), 1.99-1.72(4H, m), 1.66-1.54(1H, m), 1.46-1.30(1H, m), 1.27-1.08(2H, m)

実施例番号	454
HO HO	ICI F O N O
純度	>90% (NMR)
MS	656 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 27 (1H, d, J=1. 4Hz), 8. 05 (1H, d, J =8. 7Hz), 7. 92 (1H, d, J=8. 7Hz), 7. 7 9 (1H, d, J=7. 8Hz), 7. 59 (1H, t, J=8. 6Hz), 7. 55-7. 45 (4H, m), 7. 37 (1H, d , J=11. 4Hz), 7. 14 (1H, d, J=12. 1Hz) , 7. 01 (1H, d, J=8. 6Hz), 5. 04 (2H, s) , 4. 10 (1H, m), 3. 84 (2H, t, J=6. 9Hz) , 2. 55-2. 45 (2H, m), 2. 40-2. 10 (4H, m), 2. 00-1. 80 (4H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

表 263

実施例番号	455	1H NMR 300MHz
HO	HCI F O NH O S	10.05(z), 8.1 d, J=8.7.50-7), 7.17.05(1H2H, s), 40-2.11.75-1
純度	>90% (NMR)	m)
MS	648 (M+1)	

1H NMR(δ) ppm 300MHz, DMSO-d6 10.05(1H, brs), 8.32(1H, d, J=1.3H z), 8.19(1H, d, J=8.8Hz), 8.01(1H, d, J=8.7Hz), 7.67(1H, t, J=8.6Hz), 7.50-7.41(5H, m), 7.38-7.33(2H, m), 7.17(1H, dd, J=2.2Hz, 12.2Hz), 7.05(1H, dd, J=2.2Hz, 8.7Hz), 5.10(2H, s), 4.12(1H, m), 3.07(3H, s), 2.40-2.10(2H, m), 2.00-1.80(4H, m), 1.75-1.55(1H, m), 1.50-1.20 (3H, m)

実施例番号		456	•
H0 H	HCI N F		
純度	> 9 0 %	% (NMR)	
MS	66	2(M+1)	

1H NMR(δ) ppm
300MHz, DMSO-d6
8. 31 (1H, d, J=1. 4Hz), 8. 17 (1H, d, J=8. 8Hz), 8. 00 (1H, dd, J=1. 5Hz, 8. 7 Hz), 7. 73 (1H, d, J=2. 3Hz), 7. 66 (1H, t, J=8. 6Hz), 7. 56 (1H, dd, J=2. 3Hz, 8. 3Hz), 7. 50-7. 47 (4H, m), 7. 42 (1H, d, J=8. 3Hz), 7. 19 (1H, d, J=12. 2Hz), 7. 06 (1H, dd, J=2. 2Hz, 8. 6Hz), 5. 11 (2H, s), 4. 10 (1H, m), 3. 31 (3H, s), 3. 03 (3H, s), 2. 40-2. 10 (2H, m), 2. 00-1. 80 (4H, m), 1. 75-1. 55 (1H, m), 1. 50-1. 20 (3H, m)

実施例番号	45	7
НО	HCI F N N N N N N N N N N N N N N N N N N	0
純度 ,	>90% (NMR)	
MS	639 (M+1)	

1H NMR(δ) ppm 309MHz, DMSO-d6 8. 41 (1H, d, J=8. 8Hz), 8. 28 (1H, s), 8. 10 (1H, d, J=9. 2Hz), 7. 96 (1H, d, J =8. 8Hz), 7. 87 (1H, d, J=8. 8Hz), 7. 6 1 (1H, dd, J=8. 5Hz, 8. 5Hz), 7. 56-7. 49 (4H, m), 7. 19 (1H, dd, J=2. 4Hz, 12 . 2Hz), 7. 05 (1H, dd, J=2. 4Hz, 8. 7Hz), 5. 18 (2H, s), 4. 06-3. 97 (4H, m), 2 . 62 (2H, t, J=8. 1Hz), 2. 28-2. 15 (2H , m), 2. 11-2. 01 (4H, m), 1. 91-1. 87 (4H, m), 1. 64 (1H, m), 1. 43-1. 23 (3H, m)

表 264

実施例番号		458	1H NMR(δ) ppm 300MHz, DMSO-d6
HO 0	HCI CI PO PO PO PO PO PO PO PO PO PO PO PO PO	O N—(H	10. 19(1H, s), 8. 29(1H, s), 8. 14(1 H, d, J=8. 8Hz), 7. 98(1H, dd, J=1. 7H z, 8. 7Hz), 7. 90(1H, d, J=2. 2Hz), 7. 69(1H, dd, J=2. 2Hz, 8. 4Hz), 7. 64(1 H, dd, J=8. 5Hz, 8. 5Hz), 7. 50-7. 42(4H, m), 7. 32(1H, d, J=8. 4 Hz), 7. 14(1H, dd, J=2. 5Hz, 12. 1Hz), 7. 02(1H, dd, J=2. 4Hz, 8. 6Hz), 5. 08(2H, s), 4. 17-4. 02(1H, m), 2. 30-2. 18(2H, m), 2. 08(3H, s), 1. 87-1. 79(4H, m), 1
純度	>90% (NMR)		. 68-1. 59 (1H, m), 1. 35-1. 23 (3H, m)
MS	612 (M+1)		·

表 265

実施例番号	461	1H NMR(δ) ppm 400MHz, DMSO-d6
HO	HCI F O O N O S	8. 30 (1H, s), 8. 13 (1H, d, J=8. 8Hz), 7. 99 (1H, d, J=8. 8Hz), 7. 69 (1H, s), 7. 62 (1H, t, J=8. 4Hz), 7. 96-7. 50 (4 H, m), 7. 45 (1H, d, J=8. 7Hz), 7. 17 (1 H, dd, J=2. 3Hz, 12. 0Hz), 7. 05 (1H, dd, J=2. 2Hz, 8. 7Hz), 5. 14 (2H, s), 4. 07 (1H, m), 3. 73 (2H, q, J=7. 2Hz), 3. 05 (3H, s), 2. 40-2. 10 (2H, m), 2. 00-1. 80 (4H, m), 1. 75-1. 55 (1H, m), 1. 5 0-1. 20 (3H, m), 1. 06 (3H, t, J=7. 2Hz)
純度	>90% (NMR))
MS	676 (M+1)	

表 266

実施例番号	46	14 NMR(δ) ppm 300MHz, DMSO-d6
0 H0	HCI F N-S	8. 28 (1H, s), 8. 09 (1H, d, J=8. 8Hz), 7. 95 (1H, d, J=8. 8Hz), 7. 73 (1H, d, J =2. 2Hz), 7. 63-7. 39 (7H, m), 7. 15 (1 H, dd, J=2. 2Hz, 12. 1Hz), 7. 01 (1H, d d, J=2. 0Hz, 8. 6Hz), 5. 10 (2H, s), 4. 05-3. 99 (1H, m), 3. 34 (3H, s), 3. 23 (2H, q, J=7. 2Hz), 2. 20 (2H, m), 1. 87 (4H, m), 1. 62 (1H, m), 1. 33 (3H, m), 1. 24 (3H, t, J=7. 3Hz)
純度	>90% (NMR)	
MS	676 (M+1)	

実施例番号	465	5	1H NMR(δ) ppm 300MHz,DMSO-d6
НО	HCI F O N-S=0)	8. 29 (1H, d, J=1. 5Hz J=8. 8Hz), 7. 98 (1H, d, J (1H, dd, J=8. 6Hz, 8. 47 (5H, m), 7. 43 (1H, .16 (1H, dd, J=2. 2Hz 2 (1H, dd, J=2. 4Hz, 8 H, s), 4. 09-4. 02 (1H
純度	> 9 0 % (NMR)		q, J=6.8Hz), 3.19(2
MS	690 (M+1)		, 2. 25-2. 21 (2H, m), , m), 1. 63 (1H, m), 1. 3), 1. 27 (3H, t, J=7. 41 t, J=6. 9Hz)

z), 8.11(1H, d, dd, J=1.4Hz,8 J=2.2Hz), 7.62 6Hz), 7.56-7. d, J=8. 1Hz), 7 z, 12. 1Hz), 7. 0 8.7Hz), 5.13(2 H, m), 3.77(2H, 2H, q, J=7. 4Hz) 1.90-1.87(4H 39-1. 33 (3H, m Hz), 1.06(3H,

実施例番号			466
H0 H0	HCI N		$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
純度	, > 9	0% (NI	MR)
MS		640 (M+1)	

1H NMR(δ) ppm 300MHz, DMSO-d6 8.28(1H, s), 8.10(1H, d, J=8.4Hz), 7. 96 (1H, d, J=8. 4Hz), 7. 64 (1H, s), 7. 61 (1H, d, J=8. 4Hz), 7. 50 (4H, s), 7. 44 (2H, s), 7. 14 (1H, d, J=12. OHz), 7. 02(1H, d, J=8. 4Hz), 5. 12(2H, s), 4. 12-3. 95 (1H, m), 3. 23 (3H , s), 2. 32-2. 06 (4H, m), 1. 94-1. 77 (4H, m), 1.70-1.59(1H, m), 1.42-1 .18(3H, m), 0.96(3H, t, J=7.2Hz)

表 267

実施例番号	467
HCI HO N	F O N O
純度	>90% (NMR)
MS	654 (M+1)

1H NMR (δ) ppm 300MHz, DMSO-d6 8. 28 (1H, s), 8. 08 (1H, d, J=8. 7H z), 7. 95 (1H, d, J=8. 4Hz), 7. 60 (1H, t, J=8. 4Hz), 7. 59 (1H, s), 7. 51 (4H, s), 7. 45and7. 42 (2H, ABq, J=8. 1Hz), 7. 14 (1H, d, J=12. 0H z), 7. 00 (1H, d, J=8. 4Hz), 5. 14 (2H, s), 4. 12-3. 95 (1H, m), 3. 70 (2H, q, J=6. 9Hz), 2. 30-1. 98 (4H, m), 1. 94-1. 79 (4H, m), 1. 69-1. 59 (1H, m), 1. 45-1. 17 (3H, m), 1. 05 (3H, t, J=6. 9Hz), 0. 94 (3H, t, J=7. 5Hz)

実施例番号	468
НО	F CI CI O O
純度	>90% (NMR)
MS	585 (M+1)

1H NMR(δ) ppm 400MHz, DMSO-d6 8. 25(1H, s), 7. 96(1H, d, J=8. 8H z), 7. 90(1H, d, J=8. 8Hz), 7. 55(1H, t, J=8. 4Hz), 7. 46(2H, d, J=8 . 7Hz), 7. 41(2H, d, J=8. 7Hz), 7. 10-7. 00(2H, m), 6. 98(1H, dd, J=2. 2Hz, 8. 7Hz), 5. 05(2H, s), 3. 9 8(1H, m), 3. 84(3H, s), 2. 30-2. 1 0(2H, m), 1. 90-1. 75(4H, m), 1. 7 0-1. 60(1H, m), 1. 50-1. 20(3H, m)

実施例番号	469
HO HCI	F O N O
純度	>90% (NMR)
MS	654(M+1)

400MHz, DMSO-d6 8. 26 (1H, s), 8. 02 (1H, d, J=8. 8H z), 7. 93 (1H, d, J=8. 8Hz), 7. 60-7. 50 (6H, m), 7. 45 (1H, d, J=8. 7H z), 7. 08 (1H, dd, J=2. 3Hz, 12. 0H z), 6. 97 (1H, dd, J=2. 2Hz, 8. 7Hz), 5. 18 (2H, s), 4. 85 (1H, sept, J=6. 6Hz), 3. 98 (1H, m), 2. 40-2. 10 (2H, m), 2. 00-1. 80 (4H, m), 1. 75-1. 55 (4H, m), 1. 50-1. 20 (3H, m), 1. 02 (6H, d, J=6. 6Hz)

1H NMR(δ) ppm

実施例番号	470
H0 0 H0 0 OH	F CI
純度	>90% (NMR)
MS	814 (M+1)

1H NMR(δ) ppm 300MHz, DMSO-d6 8. 39 (1H, d, J=1. 4Hz), 8. 04 (1H, d, J=8.8Hz), 7.98(1H, d, J=2.2Hz), 7 .95(1H, d, J=8.8Hz), 7.78(1H, dd, J=2. 3Hz, 8. 5Hz), 7. 57 (1H, t, J=8. 6Hz), 7. 50 (2H, d, J=8.8Hz), 7. 45 (2H, d, J=8.8Hz), 7.39 (1H, d, J=8.4 Hz), 7. 10 (1H, d, J=12. 1Hz), 6. 98 (1H, d, J=8.6Hz), 5.65-5.60(2H, m) , 5. 35 (1H, d, J=4. 2Hz), 5. 08 (2H, s), 4.00(1H, m), 3.93-3.84(3H, m), 3.50-3.30(4H, m) 2.54(2H, t, J=7. 8Hz), 2.40-2.00(4H, m), 1.95-1.7 5 (4H, m), 1. 70-1. 55 (1H, m), 1. 45-1.15(3H, m)

実施例番号	471
HO.	N O
純度	>90% (NMR)
MS	311 (M+1)
L	

1H NMR(δ) ppm 300MHz, DMSO-d6 12. 78(1H, brs), 8. 30(1H, dd, J=0. 9Hz, 1. 5Hz), 8. 22(1H, d, J=1. 5Hz) , 7. 95(1H, d, J=1. 8Hz), 7. 94(1H, d , J=8. 4Hz), 7. 85(1H, dd, J=1. 2Hz, 8. 4Hz), 6. 96(1H, dd, J=0. 9Hz, 1. 8 Hz), 4. 46(1H, m), 2. 40-2. 10(2H, m), 2. 00-1. 20(8H, m)

表 269

実施例番号 702	1H NMR(δ) ppm
HCI CI HO H N N N N N N N N N N N N N N N N N	300MHz, DMSO-d6 8.97(1H, d, J=1.8Hz), 8.52(1H, d, J=2.4Hz), 8.36(1H, d, J=7.8Hz), 8.16(1H, s), 7.96(!H, d, J=8.1Hz), 7.55-7.40(5H, m), 7.14(1H, d, J=12.6Hz), 7.01(1H, dd, J=8.4Hz, 1.8Hz), 5.11(2H, s), 4.20-3.95(2H, m), 2.65-2.45(2H, m), 1.95-1.80(5H, m), 1.20-1.10(3H, m)
純度 >90% (NMR)	
MS 641 (M+1)	

産業上の利用可能性

上記結果から明らかな様に、本発明の化合物はHCVポリメラーゼに対し高い 阻害活性を示す。

よって、これら化合物は、HCVポリメラーゼ阻害活性により抗HCV作用を示すC型肝炎の予防若しくは治療に有効な薬剤となり得る。また、インターフェロン等の他の抗HCV剤及び/又は他の抗炎症剤等との併用によりC型肝炎の予防若しくは治療により有効な薬剤となり得る。また、HCVポリメラーゼに特異的な高い阻害活性を有することは、人体に対し安全な副作用の少ない薬剤となり得ることを示す。

本出願は、日本で出願された特願2001-193786及び特願2001-351537を基礎としており、それらの内容は本明細書に包含されるものである。

請求の範囲

1. 下記一般式 [I] で表される縮合環化合物又は製薬上許容されるその塩を 有効成分として含んで成る C型肝炎治療剤。

「式中、破線は単結合又は二重結合であり、

 G^1 は、 $C(-R^1)$ 又は窒素原子であり、

 G^2 は、 $C(-R^2)$ 又は窒素原子であり、

 G^3 は、 $C(-R^3)$ 又は窒素原子であり、

 G^4 は、 $C(-R^4)$ 又は窒素原子であり、

 G^{5} 、 G^{6} 、 G^{8} 及び G^{9} 、は、それぞれ独立して、炭素原子又は窒素原子であり、

 G^7 は、 $C(-R^7)$ 、酸素原子、硫黄原子、又は R^8 で置換されてもよい窒素原子であり、

ここで、R¹、R²、R³及びR⁴は、それぞれ独立して、

- (1) 水素原子、
- (2) C1-6 アルカノイル基、
- (3)カルボキシル基、
- (4)シアノ基、
- (5) ニトロ基、
- (6)下記グループAから選ばれる1乃至3個の置換基で置換されてもよいC1-6 アルキル基、

グループA; ハロゲン原子、水酸基、カルボキシル基、アミノ基、C1-6 アルコキシ基、C1-6 アルコキシとC1-6 アルコキシ基、C1-6 アルコキシカルボニル基及びC1-6 アルキルアミノ基。

 $(7) - COOR^{a1}$

ここでR^{a1}は、置換されてもよいC1-6アルキル基(前記定義の通り。)、下記

グループBから選ばれる1万至5個の置換基で置換されてもよいC6-14アリールC1-6アルキル基、又はグルクロン酸残基を意味する。

グループB;ハロゲン原子、シアノ基、ニトロ基、C1-6 アルキル基、ハロゲン化C1-6 アルキル基、C1-6 アルカノイル基、 $-(CH_2)_r - COOR^{b1}$ 、 $-(CH_2)_r - COOR^{b1}$ 、 $-(CH_2)_r - COOR^{b1}$ 、 $-(CH_2)_r - NR^{b1}R^{b2}$ 、 $-(CH_2)_r - NR^{b1}R^{b2}$ 、 $-(CH_2)_r - NR^{b1} - COR^{b2}$ 、 $-(CH_2)_r - NHSO_2R^{b1}$ 、 $-(CH_2)_r - OR^{b1}$ 、 $-(CH_2)_r - SR^{b1}$ 、 $-(CH_2)_r - SO_2R^{b1}$ 及び $-(CH_2)_r - SO_2NR^{b1}R^{b2}$ 。

ここで R^{11} 及び R^{12} は、それぞれ独立して、水素原子又はC1-6 アルキル基を意味し、rは0又は1万至6の整数である。

 $(8) - CONR^{a2}R^{a3}$

ここで R^{a2} 及び R^{a3} は、それぞれ独立して、水素原子、C1-6 アルコキシ基又は置換されてもよいC1-6 アルキル基(前記定義の通り。)を意味する。

 $(9) - C (= N R^{a4}) N H_2$

ここでR^{at}は、水素原子又は水酸基を意味する。

 $(10) - NHR^{a5}$

ここでR^{a5}は、水素原子、C1-6アルカノイル基又はC1-6アルキルスルホニル 基を意味する。

 $(11) - OR^{a6}$

ここでR^{a6}は、水素原子又は置換されてもよいC1-6アルキル基(前記定義の通り。)を意味する。

 $(12) - SO_2R^{a7}$

ここで R^{a7} は、水酸基、アミノ基、C1-6 アルキル基又はC1-6 アルキルアミノ基を意味する。

 $(13) - P (= O) (O R^{a31})_2$

ここで R^{a31} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)又は前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基を意味する。

又は、

(14)酸素原子、窒素原子及び硫黄原子から選ばれる1乃至4個のヘテロ原子を

含んでなるヘテロ環基であり、

 R^7 及び R^8 は、水素原子又は置換されてもよいC1-6 アルキル基(前記定義の通り。)であり、

環Cyは、

(1)下記グループCから選ばれる1万至5個の置換基で置換されてもよいC3-8シクロアルキル基、

グループ C; 水酸基、ハロゲン原子、C1-6 アルキル基及び C1-6 アルコキシ基。 (2) 前記グループ C から選ばれる 1 乃至 5 個の置換基で置換されてもよい C3-8 シクロアルケニル基又は、

(3)

(式中、u及びvは、それぞれ独立して1乃至3の整数を表す。)であり、 環Aは、

- (1) C6-14 アリール基、
- (2) C3-8 シクロアルキル基、
- (3) C3-8 シクロアルケニル基、又は、
- (4)酸素原子、窒素原子及び硫黄原子から選ばれる1万至4個のヘテロ原子を含んでなるヘテロ環基であり、

R⁵及びR⁶は、それぞれ独立して、

- (1)水素原子、
- (2)ハロゲン原子、
- (3) 置換されてもよいC1-6 アルキル基(前記定義の通り。)、又は、
- $(4) OR^{a8}$

ここでR⁻⁸は、水素原子、C1-6アルキル基又はC6-14アリールC1-6アルキル基を意味する。

であり、

Xは、

- (1)水素原子、
- (2)ハロゲン原子、
- (3)シアノ基、
- (4)ニトロ基、
- (5)アミノ基、C1-6アルカノイルアミノ基、
- (6) C1-6 アルキルスルホニル基、
- (7) 置換されてもよいC1-6 アルキル基 (前記定義の通り。)、
- (8)前記グループAから選ばれる1乃至3個の置換基で置換されてもよいC2-6 アルケニル基、
- $(9) C O O R^{a9}$

ここでR³³は、水素原子又はC1-6アルキル基を意味する。

(10) - CONH - (CH₂)₁ - R^{a10}

ここで R^{a10} は、置換されてもよいC1-6 アルキル基(前記定義の通り。)、C1-6 アルコキシカルボニル基又はC1-6 アルカノイルアミノ基であり、1 は、0 又は 1 乃至 6 の整数を意味する。

 $(11) - OR^{all}$

ここで R^{all} は、水素原子又は置換されてもよいC1-6Tルキル基(前記定義の通り。)を意味する。

又は、

(12)

{式中、環Bは、

- (1') C6-14 アリール基、
- (2') C3-8 シクロアルキル基、又は、
- (3')~テロ環基(前記定義の通り。)であり、

Zは、それぞれ独立して、

- (1')下記グループDから選ばれる基、
- (2')下記グループDから選ばれる1乃至5個の置換基で置換されてもよいC 6-14 アリール基、
- (3')下記グループDから選ばれる1乃至5個の置換基で置換されてもよいC 3-8シクロアルキル基、
- (4')下記グループDから選ばれる1万至5個の置換基で置換されてもよいC 6-14 アリールC1-6 アルキル基、
- (5')下記グループDから選ばれる1万至5個の置換基で置換されてもよいヘテロ環基、

ここで当該へテロ環基は酸素原子、窒素原子又は硫黄原子から選ばれる1万至 4個のヘテロ原子を含む。

又は、

(6')下記グループDから選ばれる1乃至5個の置換基で置換されてもよいヘテロ環C1-6アルキル基、

ここで当該へテロ環C1-6アルキル基は、前記定義の通りの「グループDから 選ばれる1乃至5個の置換基で置換されてもよいへテロ環基」で置換されたC1-6 アルキル基を意味する。

であり、

グループD:

- (a)水素原子、
- (b) ハロゲン原子、
- (c)シアノ基、
- (d) ニトロ基、
- (e) 置換されてもよい C1-6 アルキル基 (前記定義の通り。)、
- $(f) (CH_2)_+ COR^{a18}_-$

以下、t は、それぞれ独立して、0 又は1 乃至6 の整数を意味する。ここで R^{a18} は、

- (1'')置換されてもよいC1-6アルキル基(前記定義の通り。)、
- (2'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい

C6-14アリール基、又は、

(3'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい ヘテロ環基、

ここで当該ヘテロ環基は酸素原子、窒素原子及び硫黄原子から選ばれる1乃至4個のヘテロ原子を含む。

であり、

 $(g) - (CH_2)_+ - COOR^{a19}_-$

ここで R^{a19} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)又は前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいC6-14 アリール基C1-6 アルキル基を意味する。

(h) $- (CH_2)_t - CONR^{a27}R^{a28}$

ここでR^{a27}及びR^{a28}は、それぞれ独立して、

- (1'')水素原子、
- (2'') 置換されてもよいC1-6 アルキル基(前記定義の通り。)、
- (3'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C6-14アリール基、
- (4'')前記グループBから選ばれる1万至5個の置換基で置換されてもよい C6-14 アリールC1-6 アルキル基、
- (5'')前記グループBから選ばれる1万至5個の置換基で置換されてもよい ヘテロ環基、
- (6'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい ヘテロ環C1-6アルキル基、

ここで当該ヘテロ環C1-6アルキル基は、前記定義の通りの「グループBから選ばれる1乃至5個の置換基で置換されてもよいヘテロ環基」で置換されたC1-6アルキル基を意味する。

- (7'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C3-8シクロアルキル基、
- (8'')前記グループ B から選ばれる 1 乃至 5 個の置換基で置換されてもよい C3-8 シクロアルキル C1-6 アルキル基、

- (9'') 水酸基、又は、
- (10'') C1-6 アルコキシ基であり、
- (i) (CH₂)_t C (= NR^{a33}) NH₂,

ここで R^{a33} は、水素原子、C1-6 アルキル基、水酸基又はC1-6 アルコキシ基を意味する。

- $(j) (CH_2)_t OR^{a20}$
- ここでR^{a20}は、
 - (1'')水素原子、
 - (2'') 置換されてもよい C1-6 アルキル基 (前記定義の通り。)、
 - (3'') 置換されてもよい C2-6 アルケニル基 (前記定義の通り。)、
- (4'')前記グループAから選ばれる1乃至3個の置換基で置換されてもよい C2-6 アルキニル基、
- (5'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C6-14 アリール基、
- (6'')前記グループ B から選ばれる 1 乃至 5 個の置換基で置換されてもよい C6-14 アリール C1-6 アルキル基、
- (7'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい ヘテロ環基、
- (8'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい ヘテロ環C1-6 アルキル基、
- (9'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C3-8シクロアルキル基、又は、
- (10'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C3-8シクロアルキルC1-6アルキル基であり、
 - (k) (C H₂)_t O (C H₂)_p C O R^{a21}

ここで R^{21} は、アミノ基、C1-6 アルキルアミノ基又は前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいヘテロ環基であり、pは 0 又は 1 乃至 6 の整数を意味する。

 $(1) - (CH_2)_t - NR^{a22}R^{a23}$

ここでR^{a22}及びR^{a23}は、それぞれ独立して、

- (1'')水素原子、
- (2'') 置換されてもよい C1-6 アルキル基(前記定義の通り。)、
- (3'')前記グループBから選ばれる1万至5個の置換基で置換されてもよい C6-14 アリール基、
- (4'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C6-14アリールC1-6アルキル基、
- (5'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい ヘテロ環C1-6アルキル基、又は、
- (6'')前記グループBから選ばれる1万至5個の置換基で置換されてもよい ヘテロ環基であり、
 - $(m) (CH_2)_t NR^{a29}CO R^{a24}$

ここで R^{a29} は、水素原子、C1-6 アルキル基又はC1-6 アルカノイル基を意味し、

R a24 は、

- (1'')アミノ基、
- (2'') C1-6 アルキルアミノ基、
- (3'') 置換されてもよい C1-6 アルキル基 (前記定義の通り。)、
- (4'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C6-14 アリール基、
- (5'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい ヘテロ環基、又は、
- (6'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい $^{\sim}$ つテロ環C1-6 アルキル基、を意味する。
 - $(n) (CH_2)_t NR^{a29}SO_2 R^{a25},$

ここでR^{a29}は前記定義の通りであり、R^{a25}は、水素原子、置換されてもよいC 1-6アルキル基(前記定義の通り。)、前記グループBから選ばれる1万至5個の 置換基で置換されてもよいC6-14アリール基又は前記グループBから選ばれる 1万至5個の置換基で置換されてもよいヘテロ環基を意味する。

(o) $- (CH_2)_t - S(O)_q - R^{a25}$,

ここでR²²⁵は前記定義の通りであり、qは0、1又は2である。

 $(p) - (CH_2)_t - SO_2 - NHR^{a26}$

ここでR^{a26}は、水素原子、置換されてもよいC1-6アルキル基(前記定義の通り。)、前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14アリール基又は前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへテロ環基を意味する。

及び、

(q)酸素原子、窒素原子及び硫黄原子から選ばれる1万至4個のヘテロ原子を含んでなるヘテロ環基であり、

wは、1乃至3の整数であり、

Yは、

- (1') 単結合、
- (2') C1-6 アルキレン、
- (3') C2-6 アルケニレン、
- $(4') (CH_2)_m O (CH_2)_n$

以下、m及びnは、それぞれ独立して、0又は1乃至6の整数を意味する。

- (5') CO -
- $(6') CO_2 (CH_2)_n (CH_2)_n$
- $(7') CONH (CH_2)_n NH$
- (8') NHCO₂ $\sqrt{}$
- (9')-NHCONH-
- $(10') O (CH_2)_n CO$
- $(11') O (CH_2)_n O$
- $(12') SO_2$
- $(13') (CH_2)_m NR^{a12} (CH_2)_n$

ここでRal2は、

- (1'')水素原子、
- (2'') 置換されてもよい C1-6 アルキル基 (前記定義の通り。)、

(3'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C6-14 アリールC1-6 アルキル基、

(4'')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C6-14 アリール基、

 $(5'') - COR^{b5}$

ここで R^{15} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)、前記グループBから選ばれる1 乃至5 個の置換基で置換されてもよいC6-14 アリール基又は前記グループBから選ばれる1 乃至5 個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基を意味する。

(6'')-COOR^{b5} (R^{b5}は前記定義の通り。)、又は、

(7'')-SO₂R^{b5} (R^{b5}は前記定義の通り。)、

(14')-NR^{a12}CO-(R^{a12}は前記の定義と同じ。)、

 $(15') - CONR^{a13} - (CH_2)_n -$

ここで R^{a13} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)又は前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基を意味する。

 $(16') - CONH - CHR^{al4} -$

ここでR^{*14}は、前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14アリール基を意味する。

 $(17') - O - (CH_2)_m - CR^{a15}R^{a16} - (CH_2)_n -$

ここでR^{a15}及びR^{a16}は、それぞれ独立して、

(1'')水素原子、

(2'')カルボキシル基、

(3'') C1-6 アルキル基、

 $(4'') - OR^{b6}$

ここで R^{16} は、C1-6 アルキル基又はC6-14 アリールC1-6 アルキル基を意味する。

又は、.

 $(5'') - NHR^{b7}$

ここで R^{17} は、水素原子、C1-6 アルキル基、C1-6 アルカノイル基又はC6-14 アリールC1-6 アルキルオキシカルボニル基を意味する。

であり、

更にRal5は、

(6',')

$$-(CH_2)_{n'}$$
 B' $(Z') w'$

であってもよく、

ここでn'、環B'、Z'及びw'は、それぞれ上記n、環B、Z及びwと同義であり、それぞれn、環B、Z及びwと同一若しくは異なってもよい。

(18') $-(CH_2)_n - NR^{a12} - CHR^{a15} - (R^{a12} 及びR^{a15} は、それぞれ前記定義の通り。)、$

 $(19') - NR^{a17}SO_2 -$

ここでR^{a17}は、水素原子又はC1-6アルキル基を意味する。

(20') $- S(O)_e - (CH_2)_m - CR^{a15}R^{a16} - (CH_2)_n - (eは0、1又は2であり、<math>R^{a15}$ 及び R^{a16} は、それぞれ前記定義の通り。)、又は、

(21') $-(CH_2)_m$ $-CR^{a15}R^{a16}$ $-(CH_2)_n$ $-(R^{a15}$ 及び R^{a16} は、それぞれ前記定義の通り。)

である。} である。]

- 2. G^1 、 G^2 、 G^3 、 G^4 、 G^5 、 G^6 、 G^7 、 G^8 及び G^9 のうち1乃至4個が窒素原子である請求項1記載のC型肝炎治療剤。
- G²がC(-R²)であり、G⁶が炭素原子である請求項2記載のC型肝炎治療
 剤。
- 4. G⁵が窒素原子である請求項2又は請求項3記載のC型肝炎治療剤。
- 5. 一般式[I]の

$$G^{2}$$
, G^{1} , G^{8} , G^{7} , G^{6} , G

部位が、

からなる群より選ばれる縮合環である請求項1記載のC型肝炎治療剤。 6. 一般式[I]の

$$G^{2}$$
 G^{1}
 G^{8}
 G^{8}
 G^{6}
 G^{6}
 G^{5}
 G^{6}

部位が、.

からなる群より選ばれる縮合環である請求項5記載のC型肝炎治療剤。

7. 下記一般式 [I-1] で表される縮合環化合物又は製薬上許容されるその 塩を有効成分として含んで成る請求項6記載のC型肝炎治療剤。

$$R^{2}$$
 R^{3}
 R^{4}
 R^{4}
 R^{7}
 R^{7}
 R^{5}
 R^{6}
 R^{6}

(式中、各記号は請求項1記載の通りである。)

8. 下記一般式[I-2]で表される縮合環化合物又は製薬上許容されるその塩を有効成分として含んで成る請求項6記載のC型肝炎治療剤。

$$R^{2}$$
 R^{3}
 R^{4}
 Cy
 R^{5}
 R^{6}
 R^{6}

(式中、各記号は請求項1記載の通りである。)

9. 下記一般式 [I-3] で表される縮合環化合物又は製薬上許容されるその 塩を有効成分として含んで成る請求項6記載のC型肝炎治療剤。

$$R^{2}$$
 N
 N
 R^{5}
 R^{6}
 R^{6}

(式中、各記号は請求項1記載の通りである。)

10. 下記一般式 [I-4] で表される縮合環化合物又は製薬上許容されるその塩を有効成分として含んで成る請求項6記載のC型肝炎治療剤。

$$R^{2}$$
 R^{3}
 R^{4}
 Cy
 R^{5}
 R^{6}
 R^{6}

(式中、各記号は請求項1記載の通りである。)

11. R^1 、 R^2 、 R^3 及び R^4 のうち少なくとも1つが、カルボキシル基、-C OOR a1 、-CONR a2 R a3 、 $-SO_2$ R a7 (R^{a1} 、 R^{a2} 、 R^{a3} 及び R^{a7} は請求項1記載の通りである。)、

である請求項1乃至10のいずれかに記載のC型肝炎治療剤。

- 12. R^1 、 R^2 、 R^3 及び R^4 のうち少なくとも1つが、カルボキシル基、-COO R^{a1} 、 $-CONR^{a2}R^{a3}$ 又は $-SO_2R^{a7}$ (R^{a1} 、 R^{a2} 、 R^{a3} 及び R^{a7} は請求項1記載の通りである。)である請求項11に記載のC型肝炎治療剤。
- 13. R^1 、 R^2 、 R^3 及び R^4 のうち少なくとも1つが $-COOR^{a1}$ であり、 R^{a1} がグルクロン酸残基である請求項1乃至10のいずれかに記載のC型肝炎治療剤。
- 14. R¹、<math>R²、R³及びR⁴のうち少なくとも1つが、酸素原子、窒素原子及

び硫黄原子から選ばれる1万至4個のヘテロ原子を含んでなるヘテロ環基である 請求項1万至10のいずれかに記載のC型肝炎治療剤。

15. 環Cyが、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、 テトラヒドロチオピラニル基又はピペリジノ基である請求項1乃至14のいずれ かに記載のC型肝炎治療剤。

16. 環Cyが、

(式中、各記号は請求項1記載の通りである。)である請求項1乃至14のいずれかに記載のC型肝炎治療剤。

17. 環Aが、C6-14アリール基である請求項1乃至16のいずれかに記載の C型肝炎治療剤。

18. グループAによって置換されてもよい置換基のうち少なくとも何れか1つが、C1-6アルコキシC1-6アルコキシ基で置換された置換基である請求項1乃至17のいずれかに記載のC型肝炎治療剤。

19. Yが、 $-(CH_2)_m - CR^{al5}R^{al6} - (CH_2)_n - ($ 各記号は、請求項1記載の通りである。)である請求項1乃至18のいずれかに記載のC型肝炎治療剤。

20. Zの少なくとも一つが、グループDから選ばれる1乃至5個の置換基で置換されてもよいヘテロ環C1-6アルキル基である請求項1乃至19のいずれかに記載のC型肝炎治療剤。

21. Zの少なくとも一つが、グループDから選ばれる1乃至5個の置換基で 置換されてもよいヘテロ環基であり、

(式中、 E^1 は酸素原子、硫黄原子又は $N(-R^{a35})$ であり、 E^2 は酸素原子、 CH_2 又は $N(-R^{a35})$ であり、 E^3 は酸素原子又は硫黄原子であり、ここで R^{a35} は、それぞれ独立して、水素原子又はC1-6 アルキル基であり、f は1 乃至 3 の整数であり、h 及びh はそれぞれ同一若しくは異なって1 乃至 3 の整数である。)である請求項1 乃至 1 9 のいずれかに記載のC型肝炎治療剤。

22. Zの少なくとも一つが、グループDから選ばれる1乃至5個の置換基で 置換されてもよいヘテロ環基であり、

(式中、各記号は請求項21記載の通りである。)である請求項21に記載のC型 肝炎治療剤。

- 23. グループDの少なくとも一つがー $(CH_2)_{t}$ ー $CONR^{a27}R^{a28}$ (各記号は、請求項1記載の通りである。)であり、 R^{a27} 及び R^{a28} の少なくとも何れか一方が、C1-6 アルコキシ基である請求項1乃至19のいずれかに記載のC型肝炎治療剤。24. グループDの少なくとも一つがー $(CH_2)_{t}$ ー $C(=NR^{a33})NH_2$ (各記号は、請求項1記載の通りである。)であり、 R^{a33} が水酸基又はC1-6 アルコキシ基である請求項1乃至19のいずれかに記載のC型肝炎治療剤。
- 25. グループDの少なくとも一つがー $(CH_2)_t$ ーOー $(CH_2)_p$ ーCOR a21 (各記号は、請求項1記載の通りである。) であり、 R^{a21} がアミノ基である請求項1 乃至19のいずれかに記載のC型肝炎治療剤。
- 26. グループDの少なくとも一つがー $(CH_2)_t$ ーNR a29 COーR a24 (各記号は、請求項1記載の通りである。)であり、R a24 がアミノ基又はC1-6アルキルアミノ基である請求項1乃至19のいずれかに記載のC型肝炎治療剤。
- 27. グループDの少なくとも一つがー $(CH_2)_t$ ーNR a22 R a23 (各記号は、請求項1記載の通りである。)であり、 R^{a22} 及び R^{a23} の少なくとも何れか一方が、グループBから撰ばれる1乃至5個の置換基で置換されてもよいヘテロ環基である請求項1乃至19のいずれかに記載のC型肝炎治療剤。
- 28. グループDの少なくとも一つが、酸素原子、窒素原子及び硫黄原子から 選ばれる1乃至4個のヘテロ原子を含んでなるヘテロ環基である請求項1乃至1 9のいずれかに記載のC型肝炎治療剤。
- 29. 下記一般式[II]で表される縮合環化合物又は製薬上許容されるその塩。

$$G_{G_{3}}^{2^{2^{-}}}G_{G_{4}}^{4^{-}}G_{G_{4}}^{9}G_{G_{5}}G_{G_{4}}^{6^{-}}G_{G_{5}}^{}$$

[式中、

$$G^{2} G^{1} G^{8} G^{7} G^{6} G^{5} G^{6}$$

部位は、

からなる群より選ばれる縮合環であり、

ここで、 R^1 、 R^2 、 R^3 及び R^4 は、それぞれ独立して、

- (1)水素原子、
- (2) C1-6 アルカノイル基、
- (3)カルボキシル基、
- (4)シアノ基、
- (5) ニトロ基、
- (6)下記グループAから選ばれる1乃至3個の置換基で置換されてもよいC1-6 アルキル基、

グループA;ハロゲン原子、水酸基、カルボキシル基、アミノ基、C1-6 アルコキシ基、C1-6 アルコキシC1-6 アルコキシ基、C1-6 アルコキシカルボニル基及びC1-6 アルキルアミノ基。

 $(7) - COOR^{a1}$

ここでR^{al}は、置換されてもよいC1-6アルキル基(前記定義の通り。)、下記

グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14アリールC1-6アルキル基、又はグルクロン酸残基を意味する。

グループB;ハロゲン原子、シアノ基、ニトロ基、C1-6アルキル基、ハロゲン化C1-6アルキル基、C1-6アルカノイル基、 $-(CH_2)_r-COOR^{b1}$ 、 $-(CH_2)_r-COOR^{b1}$ 、 $-(CH_2)_r-COOR^{b1}$ 、 $-(CH_2)_r-NR^{b1}R^{b2}$ 、 $-(CH_2)_r-NR^{b1}R^{b2}$ 、 $-(CH_2)_r-NR^{b1}$ 、 $-(CH_2)_r-NR^{b1}$ 、 $-(CH_2)_r-SR^{b1}$ 、 $-(CH_2)_r-SR^{b1}$ 、 $-(CH_2)_r-SO_2R^{b1}$ 及び $-(CH_2)_r-SO_2NR^{b1}R^{b2}$ 。

ここで R^{11} 及び R^{12} は、それぞれ独立して、水素原子又はC1-6 アルキル基を意味し、rは0又は1乃至6の整数である。

(8) $- CONR^{a2}R^{a3}$,

ここで R^{a2} 及び R^{a3} は、それぞれ独立して、水素原子、C1-6 アルコキシ基又は置換されてもよいC1-6 アルキル基(前記定義の通り。)を意味する。

 $(9) - C (= N R^{a4}) N H_2$

ここでR⁴は、水素原子又は水酸基を意味する。

 $(10) - NHR^{a5}$

ここで R^{a5} は、水素原子、C1-6 アルカノイル基又はC1-6 アルキルスルホニル基を意味する。

 $(11) - OR^{a6}$

ここで R^{a6} は、水素原子又は置換されてもよいC1-6 アルキル基(前記定義の通り。)を意味する。

 $(12) - SO_2R^{a7}$

ここで R^{a7} は、水酸基、アミノ基、C1-6アルキル基又はC1-6アルキルアミノ基を意味する。

 $(13) - P (= O) (O R^{a31})_2$

ここで R^{a31} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)又は前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基を意味する。

又は、

(14)酸素原子、窒素原子及び硫黄原子から選ばれる1乃至4個のヘテロ原子を

含んでなるヘテロ環基であり、

 R^7 は、水素原子又は置換されてもよいC1-6 アルキル基(前記定義の通り。)であり、

環Cy'は、

(1)下記グループCから選ばれる1万至5個の置換基で置換されてもよいC3-8シクロアルキル基

グループC;水酸基、ハロゲン原子、C1-6 アルキル基及びC1-6 アルコキシ基。 又は、

(2)

(式中、u及びvは、それぞれ独立して1乃至3の整数を表す。) であり、 環A は、

(1)フェニル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、シクロヘキシル基、シクロヘキセニル基、フリル基及びチエニル基からなる群より選ばれる基であり、

R5 及びR6 は、それぞれ独立して、

- (1)水素原子、
- (2)ハロゲン原子、
- (3)置換されてもよいC1-6アルキル基(前記定義の通り。)、又は、
- (4)水酸基

であり、

環Bは、

- (1) C6-14 アリール基、
- (2) C3-8 シクロアルキル基、又は、
- (3)酸素原子、窒素原子及び硫黄原子から選ばれる1万至4個のヘテロ原子を含んでなるヘテロ環基であり、

Zは、それぞれ独立して、

- (1)下記グループDから選ばれる基、
- (2)下記グループDから選ばれる1万至5個の置換基で置換されてもよいC6-14アリール基、
- (3)下記グループDから選ばれる1万至5個の置換基で置換されてもよいC3-8シクロアルキル基、
- (4)下記グループDから選ばれる1万至5個の置換基で置換されてもよいC6-14 アリールC1-6アルキル基、又は、
- (5)下記グループDから選ばれる1万至5個の置換基で置換されてもよいヘテロ環基であり、

ここで当該へテロ環基は酸素原子、窒素原子及び硫黄原子から選ばれる1万至 4個のヘテロ原子を含む。

又は、

(6)下記グループDから選ばれる1万至5個の置換基で置換されてもよいヘテロ環C1-6アルキル基、

ここで当該へテロ環C1-6アルキル基は、前記定義の通りの「グループDから 選ばれる1万至5個の置換基で置換されてもよいへテロ環基」で置換されたC1-6 アルキル基を意味する。

であり、

グループD:

- (a) 水素原子、
- (b) ハロゲン原子、
- (c)シアノ基、
- (d) ニトロ基、
- (e) 置換されてもよい C1-6 アルキル基 (前記定義の通り。)、
- $(f) (CH_2)_t COR^{al8}$

以下、 t は、それぞれ独立して、0 又は1 乃至6 の整数を意味する。 ここで R^{a18} は、

(1') 置換されてもよいC1-6 アルキル基 (前記定義の通り。)、

(2')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC 6-14 アリール基、又は、

(3')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへ テロ環基、

ここで当該へテロ環基は酸素原子、窒素原子及び硫黄原子から選ばれる1万至 4個のヘテロ原子を含む。

であり、

 $(g) - (CH_2)_t - COOR^{a19}$

ここで R^{a19} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)又は前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいC6-14 アリール基C1-6 アルキル基を意味する。

(h) $- (CH_2)_t - CONR^{a27}R^{a28}$,

ここでR^{a27}及びR^{a28}は、それぞれ独立して、

- (1')水素原子、
- (2') 置換されてもよい C1-6 アルキル基 (前記定義の通り。)、
- (3')前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよい C 6-14 アリール基、
- (4')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基、
- (5')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへ テロ環基、
- (6')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへ テロ環C1-6アルキル基、

ここで当該へテロ環C1-6アルキル基は、前記定義の通りの「前記グループBから選ばれる1乃至5個の置換基で置換されてもよいヘテロ環基」で置換された C1-6アルキル基を意味する。

- (7')前記グループBから選ばれる1万至5個の置換基で置換されてもよいC 3-8シクロアルキル基、
 - (8')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC

3-8 シクロアルキルC1-6 アルキル基、

- (9')水酸基、又は、
- (10')C1-6アルコキシ基であり、
- $(i) (CH_2)_t C (= NR^{a33}) NH_2$

ここで R^{a33} は、水素原子、C1-6アルキル基、水酸基又はC1-6アルコキシ基を意味する。

- $(j) (CH_2)_t OR^{a20}$
- ここでR²²⁰は、
 - (1')水素原子、
 - (2') 置換されてもよいC1-6アルキル基(前記定義の通り。)、
 - (3') 置換されてもよいC2-6 アルケニル基(前記定義の通り。)、
- (4')前記グループAから選ばれる1乃至3個の置換基で置換されてもよいC 2-6 アルキニル基、
- (5')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC 6-14 アリール基、
- (6')前記グループBから選ばれる1万至5個の置換基で置換されてもよいC 6-14 アリールC1-6 アルキル基、
- (7')前記グループBから選ばれる1万至5個の置換基で置換されてもよいへ テロ環基、
- (8')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへ テロ環C1-6アルキル基、
- (9')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC 3-8シクロアルキル基、又は、
- (10')前記グループBから選ばれる1乃至5個の置換基で置換されてもよい C3-8シクロアルキルC1-6アルキル基であり、
 - (k) (CH₂)_t O (CH₂)_p COR^{a21},

ここで R^{a21} は、アミノ基、C1-6 アルキルアミノ基又は前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいへテロ環基であり、pは 0 又は 1 乃至 6 の整数を意味する。

(1) $-(CH_2)_t - NR^{a22}R^{a23}$ 、 ここで R^{a22} 及び R^{a23} は、それぞれ独立して、

- (1')水素原子、
- (2') 置換されてもよいC1-6 アルキル基 (前記定義の通り。)、
- (3')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC 6-14 アリール基、
- (4')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC 6-14 アリール C 1-6 アルキル基、
- (5')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへ テロ環C1-6アルキル基、又は、
- (6')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへテロ環基であり、
 - $(m) (CH_2)_t NR^{a29}CO R^{a24}$

ここでR^{a29}は、水素原子、C1-6アルキル基又はC1-6アルカノイル基を意味 し、

R a24 は、

- (1')アミノ基、
- (2') C1-6 アルキルアミノ基、
- (3') 置換されてもよいC1-6 アルキル基 (前記定義の通り。)、
- (4')前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよい C 6-14 アリール基、
- (5')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへ テロ環基、又は、
- (6')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいへ テロ環C1-6アルキル基、を意味する。
 - $(n) (CH_2)_t NR^{a29}SO_2 R^{a25}$

ここで R^{a29} は前記定義の通りであり、 R^{a25} は、水素原子、置換されてもよい C^{1-6} アルキル基(前記定義の通り。)、前記グループBから選ばれる1万至5個の置換基で置換されてもよい C^{6-14} アリール基又は前記グループBから選ばれる

1乃至5個の置換基で置換されてもよいヘテロ環基を意味する。

$$(0) - (CH_2)_t - S(O)_q - R^{a25}$$

ここでR²²⁵は前記定義の通りであり、qは0、1又は2である。

$$(p) - (CH_2)_t - SO_2 - NHR^{a26}$$

ここでR^{a26}は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)、前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14 アリール基又は前記グループBから選ばれる1乃至5個の置換基で置換されてもよいヘテロ環基を意味する。

及び、

(q)酸素原子、窒素原子及び硫黄原子から選ばれる1万至4個のヘテロ原子を含んでなるヘテロ環基であり

wは、1乃至3の整数であり、

Yは、

- (1) 単結合、
- (2) C1-6 アルキレン、
- (3) C2-6 アルケニレン、
- $(4)-(CH_2)_m-O-(CH_2)_n-、$ 以下、m及びnは、それぞれ独立して、0又は1乃至6の整数を意味する。
- (5) CO -
- $(6) CO_2 (CH_2)_n$
- (7) CONH (CH₂)_n NH -
- (8) NHCO₂-,
- (9) NHCONH -
- (10) O (CH₂)_n CO -
- $(11) O (CH_2)_n O$
- $(12) SO_2$
- $(13) (CH_2)_m NR^{a12} (CH_2)_n$ $= CCR^{a12} l l l l l$
 - *

- (2') 置換されてもよい C1-6 アルキル基 (前記定義の通り。)、
- (3')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基、
- (4')前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC 6-14 アリール基、
 - $(5') COR^{b5}$

ここで R^{15} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)、前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいC6-14 アリール基又は前記グループBから選ばれる 1 乃至 5 個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基を意味する。

- (6')-COOR b5 (R b5 は前記定義の通り。)、又は、
- (7')-SO,R^{b5} (R^{b5}は前記定義の通り。)、
- (14)-NR^{a12}CO- (R^{a12}は前記の定義と同じ。)、
- $(15) CONR^{a13} (CH_2)_n$

ここで R^{a13} は、水素原子、置換されてもよいC1-6 アルキル基(前記定義の通り。)又は前記グループBから選ばれる1乃至5個の置換基で置換されてもよいC6-14 アリールC1-6 アルキル基を意味する。

 $(16) - CONH - CHR^{a14} -$

ここでR^{al4}は、前記グループBから選ばれる1万至5個の置換基で置換されてもよいC6-14アリール基を意味する。

- $(17) O (CH_2)_m CR^{al5}R^{al6} (CH_2)_n$
 - ここでR^{al5}及びR^{al6}は、それぞれ独立して、
 - (1')水素原子、
 - (2')カルボキシル基、
 - (3') C1-6 アルキル基、
 - $(4') OR^{b6}$

ここで R^{16} は、C1-6 アルキル基又はC6-14 アリールC1-6 アルキル基を意味する。

又は、

$(5') - NHR^{b7}$

ここで R^{b7} は、水素原子、C1-6 アルキル基、C1-6 アルカノイル基又はC6-14 アリールC1-6 アルキルオキシカルボニル基を意味する。

であり、

更にR^{al5}は、

(6')

$$-(CH_2)_{\overline{n'}}$$
 B' (Z') w'

であってもよく、

ここでn'、環B'、Z'及びw'は、それぞれ上記n、環B、Z及びwと同義であり、それぞれn、環B、Z及びwと同一若しくは異なってもよい。

(18) -(CH₂)_n-NR^{a12}-CHR^{a15}-(R^{a12}及びR^{a15}は、それぞれ前記定義の通り。)、

 $(19) - N R^{a17} S O_2 -$

ここでR^{al7}は、水素原子又はC1-6アルキル基を意味する。

(20) $- S(O)_e - (CH_2)_m - CR^{a15}R^{a16} - (CH_2)_n - (eは0、1又は2であり、R^{a15}及び<math>R^{a16}$ は、それぞれ前記定義の通り。)、又は、

(21) $-(CH_2)_m$ $-CR^{a15}R^{a16}-(CH_2)_n$ $-(R^{a15}及びR^{a16}$ は、それぞれ前記定義の通り。)

である。]

30. 下記一般式 [II-1] で表される請求項29記載の縮合環化合物又は製薬上許容されるその塩。

$$R^{2}$$
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

(式中、各記号は請求項29記載の通りである。)

31. 下記一般式 [II-2] で表される請求項29記載の縮合環化合物又は製薬上許容されるその塩。

$$R^{2}$$
 R^{3}
 R^{4}
 R^{4}
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

(式中、各記号は請求項29記載の通りである。)

32. 下記一般式 [II-3] で表される請求項29記載の縮合環化合物又は製薬上許容されるその塩。

$$R^{2}$$
 N
 N
 $R^{5'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

(式中、各記号は請求項29記載の通りである。)

33. 下記一般式 [II-4] で表される請求項29記載の縮合環化合物又は製薬上許容されるその塩。

$$R^{2}$$
 N
 $R^{5'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$

(式中、各記号は請求項29記載の通りである。)

34. R¹、R²、R³及びR⁴のうち少なくとも1つが、カルボキシル基、-C OOR^{a1}、-CONR^{a2}R^{a3}、-SO₂R^{a7}(R^{a1}、R^{a2}、R^{a3}及びR^{a7}は請求項2⁹記

載の通りである。)、

である請求項29乃至33のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。

- 35. R^1 、 R^2 、 R^3 及び R^4 のうち少なくとも1つが、カルボキシル基、-COO R^{a1} 又は $-SO_2R^{a7}$ (ここで R^{a1} 及び R^{a7} は請求項29記載の通り。)である請求項34に記載の縮合環化合物又は製薬上許容されるその塩。
- 36. R^1 、 R^2 、 R^3 及び R^4 のうち少なくとも1つが、カルボキシル基又は一 $COOR^{a1}$ (ここで R^{a1} は請求項29記載の通り。)である請求項35記載の縮合環化合物又は製薬上許容されるその塩。
- 37. R²がカルボキシル基であり、R¹、R³及びR⁴が水素原子である請求項36記載の縮合環化合物又は製薬上許容されるその塩。
- 38. R^1 、 R^2 、 R^3 及び R^4 のうち少なくとも1つが $-COOR^{a1}$ であり、 R^{a1} がグルクロン酸残基である請求項29乃至33のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。
- 39. R¹、R²、R³及びR⁴のうち少なくとも1つが、酸素原子、窒素原子及び硫黄原子から選ばれる1乃至4個のヘテロ原子を含んでなるヘテロ環基である請求項29乃至33のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。
- 40. 環Cy'が、シクロペンチル基、シクロヘキシル基、シクロヘプチル基 又はテトラヒドロチオピラニル基である請求項29乃至39のいずれかに記載の 縮合環化合物又は製薬上許容されるその塩。
- 41. 環Cy'が、シクロペンチル基、シクロヘキシル基又はシクロヘプチル 基である請求項40記載の縮合環化合物又は製薬上許容されるその塩。
- 42. 環Cy'が、

(式中、各記号は請求項29記載の通りである。)である請求項29乃至39のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。

43. 環A'が、フェニル基、ピリジル基、ピラジニル基、ピリミジニル基又はピリダジニル基である請求項29乃至42のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。

44. 環A'が、フェニル基又はピリジル基である請求項43記載の縮合環化 合物又は製薬上許容されるその塩。

45. 環A'が、フェニル基である請求項44記載の縮合環化合物又は製薬上 許容されるその塩。

46. グループAによって置換されてもよい置換基のうち少なくとも何れか1つが、C1-6アルコキシC1-6アルコキシ基で置換された置換基である請求項29 乃至45のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。

47. Yが、 $-(CH_2)_m-O-(CH_2)_n-$ 、 $-NHCO_2-$ 、 $-CONH-CHR^{a14}-$ 、 $-(CH_2)_m-NR^{a12}-(CH_2)_n-$ 、 $-CONR^{a13}-(CH_2)_n-$ 、 $-O-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-$ スは $-(CH_2)_n-NR^{a12}-CHR^{a15}-$ (ここで各記号は請求項29記載の通り。)である請求項29乃至46のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。

48. Yが、 $-(CH_2)_m-O-(CH_2)_n-$ 又は $-O-(CH_2)_m-CR^{a15}R^{a16} (CH_2)_n-$ (ここで各記号は請求項29記載の通り。)である請求項47記載の縮合環化合物又は製薬上許容されるその塩。

49. Yが、 $-(CH_2)_m-O-(CH_2)_n-(ここで各記号は請求項29記載の通り。) である請求項48記載の縮合環化合物又は製薬上許容されるその塩。$

50. Yが、 $-(CH_2)_m-CR^{a15}R^{a16}-(CH_2)_n-($ 各記号は、請求項29記載の通りである。)である請求項29乃至46のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。

51. R^2 がカルボキシル基であり、 R^1 、 R^3 及び R^4 が水素原子であり、環C y がシクロペンチル基、シクロヘキシル基又はシクロヘプチル基であり、環A がフェニル基である請求項29万至50のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。

- 52. Zの少なくとも一つが、グループDから選ばれる1乃至5個の置換基で置換されてもよいヘテロ環C1-6アルキル基である請求項29乃至51のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。
- 53. Zの少なくとも一つが、グループDから選ばれる1万至5個の置換基で 置換されてもよいヘテロ環基であり、

(式中、 E^1 は酸素原子、硫黄原子又は $N(-R^{a35})$ であり、 E^2 は酸素原子、 CH_2 又は $N(-R^{a35})$ であり、 E^3 は酸素原子又は硫黄原子であり、ここで R^{a35} は、それぞれ独立して、水素原子又はC1-6 アルキル基であり、f は 1 乃至 3 の整数であり、h 及びh はそれぞれ同一若しくは異なって 1 乃至 3 の整数である。)である請求項 2 9 乃至 5 1 のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。5 4 . Z の少なくとも一つが、グループDから選ばれる 1 乃至 5 個の置換基で置換されてもよいヘテロ環基であり、

(式中、各記号は請求項53記載の通りである。)である請求項53に記載の縮合 環化合物又は製薬上許容されるその塩。

- 5 5. グループDの少なくとも一つが $-(CH_2)_t-CONR^{a27}R^{a28}$ (各記号は、請求項 2 9 記載の通りである。)であり、 R^{a27} 及び R^{a28} の少なくとも何れか一方が、C1-6 アルコキシ基である請求項 2 9 乃至 5 1 のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。
- 56. グループDの少なくとも一つがー $(CH_2)_t$ ー $C(=NR^{a33})NH_2$ (各記号は、請求項29記載の通りである。)であり、 R^{a33} が、水酸基又はC1-6アルコキシ基である請求項29乃至51のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。
- 57. グループDの少なくとも一つがー $(CH_2)_t$ ーOー $(CH_2)_p$ ー COR^{a21} (各記号は、請求項29記載の通りである。)であり、 R^{a21} が、アミノ基である請求項29乃至51のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。58. グループDの少なくとも一つがー $(CH_2)_t$ ー $NR^{a29}CO-R^{a24}$ (各記号は、請求項29記載の通りである。)であり、 R^{a24} が、アミノ基又はC1-6 アルキ

ルアミノ基である請求項29乃至51のいずれかに記載の縮合環化合物又は製薬 上許容されるその塩。

- 59. グループDの少なくとも一つが $-(CH_2)_+-NR^{a22}R^{a23}$ (各記号は、請求項29記載の通りである。)であり、 R^{a22} 及び R^{a23} の少なくとも何れか一方が、アミノ基又はC1-6アルキルアミノ基である請求項29乃至51のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。
- 60. グループDの少なくとも一つが、酸素原子、窒素原子及び硫黄原子から 選ばれる1万至4個のヘテロ原子を含んでなるヘテロ環基である請求項29万至 51のいずれかに記載の縮合環化合物又は製薬上許容されるその塩。
- 61. 2- [4-(3-) ロモフェノキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸エチルエステル、
- 2-[4-(3-プロモフェノキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、
- 2- [4-(2-ブロモ-5-クロロベンジルオキシ)フェニル] -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸エチルエステル、

- 2-[4-(2-)ロモー5-メトキシベンジルオキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸エチルエステル、
- $2-\{4-[2-(4-クロロフェニル)-5-メトキシベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾールー<math>5-$ カルボン酸、
- 1-シクロへキシルー $2-\{4-[(E)-2-7$ エニルビニル] フェニル $\}$ ベンゾイミダゾールー5-カルボン酸エチルエステル、

1-シクロへキシルー $2-\{4-[(E)-2-フェニルビニル]$ フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

- 2-(4-ベンジルオキシフェニル)-1-シクロペンチルベンゾイミダゾール-5-カルボン酸、
- 2-(4-ベンジルオキシフェニル)-1-シクロペンチルベンゾイミダゾー <math>n-5-カルボキサミド、
- 2-(4-ベンジルオキシフェニル)-5-シアノー1-シクロペンチルベン ブイミダゾール、
- 1-シクロへキシルー $2-\{4-[\{4-(4-7) ルオロフェニル)-2- メチル-5-チアゾリル\} メトキシ] フェニル<math>\}$ ベンゾイミダゾールー5-カルボン酸エチルエステル、
- $2-\{4-[$ ビス(3-フルオロフェニル)メトキシ]-2-フルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸エチルエステル、
- $2-\{4-[$ ビス(3-フルオロフェニル)メトキシ]-2-フルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、
- 2-(4-ベンゾイルアミノフェニル)-1-シクロペンチルベンゾイミダゾ -ル-5-カルボン酸エチルエステル、
- 2-(4-ベンゾイルアミノフェニル)-1-シクロペンチルベンゾイミダゾ -ル-5-カルボン酸、
- 2-{4-[3-(3-クロロフェニル)フェノキシ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、
 - 2- [4-(3-アセトキシフェニルオキシ)フェニル] -1-シクロヘキシ

ルベンゾイミダゾール-5-カルボン酸エチルエステル、

1-シクロヘキシル-2-[4-(3-ヒドロキシフェニルオキシ)フェニル] ベンゾイミダゾール-5-カルボン酸エチルエステル、

1-シクロへキシルー $2-\{4-[3-(4-ピリジルメトキシ)$ フェニルオキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸エチルエステル、

1-シクロヘキシルー $2-\{4-[3-(4-ピリジルメトキシ) フェニルオキシ] フェニル ベンゾイミダゾールー <math>5-$ カルボン酸、

2-(4-ベンジルオキシフェニル)-1-シクロペンチルベンゾイミダゾール、

2-(4-ベンジルオキシフェニル)-1-シクロペンチルーN, N-ジメチルベンゾイミダゾール-5-カルボキサミド、

2-(4-ベンジルオキシフェニル)-1-シクロペンチル-N-メトキシ-N-メチルベンブイミダブール-5-カルボキサミド、

2-(4-ベンジルオキシフェニル)-1-シクロペンチルー5-(1-ヒドロキシ-1-メチルエチル)ベンゾイミダゾール、

5-アセチルー2-(4-ベンジルオキシフェニル)-1-シクロペンチルベンゾイミダゾール、

2-(4-ベンジルオキシフェニル)-1-シクロペンチル-N-(2-ジメチルアミノエチル)ベンゾイミダゾール-5-カルボキサミド 二塩酸塩、

2-(4-ベンジルオキシフェニル)-1-シクロペンチル-5-ニトロベンブイミダゾール、

5 - Pセチルアミノ - 2 - (4 - ベンジルオキシフェニル) - 1 - シクロペン チルベンゾイミダゾール、

2- (4-ベンジルオキシフェニル) -1-シクロペンチル-5-メタンスルホニルアミノベンゾイミダゾール、

5-スルファモイルー2-(4-ベンジルオキシフェニル)-1-シクロペン チルベンゾイミダゾール、

2-[4-(4-tert-ブチルベンジルオキシ)フェニル]-1-シクロペンチルベンゾイミダゾール-5-カルボン酸、

2- [4-(4-カルボキシベンジルオキシ)フェニル]-1-シクロペンチ ルベンブイミダブール-5-カルボン酸、

 $2-\{4-[(2-クロロ-5-チェニル) メトキシ] フェニル\} -1-シクロペンチルベンゾイミダゾール-5-カルボン酸、$

1ーシクロペンチルー2ー[4ー(4ートリフルオロメチルベンジルオキシ) フェニル]ベンゾイミダゾールー5ーカルボン酸、

1-シクロペンチル-2-[4-(4-メトキシベンジルオキシ)フェニル] ベンゾイミダゾール-5-カルボン酸、

1-シクロペンチル-2-[4-(4-ピリジルメトキシ)フェニル]ベンゾ イミダゾール-5-カルボン酸 塩酸塩、

1-シクロペンチルー 2-[4-(4-メチルベンジルオキシ)フェニル]ベンゾイミダゾールー 5-カルボン酸、

1-シクロペンチルー $2-\{4-[(3,5-ジメチルー4-イソオキサゾリル)$ メトキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

[2-(4-ベンジルオキシフェニル)-1-シクロペンチルベンゾイミダゾ -ル-5-イル] カルボニルアミノ酢酸、

2- [4-(3-クロロベンジルオキシ)フェニル]-1-シクロペンチルベンゾイミダゾール-5-カルボン酸、

2- (4-ベンジルオキシフェニル) - 3-シクロペンチルベンゾイミダゾー ル-5-カルボン酸、

2- [4-(ベンゼンスルホニルアミノ)フェニル]-1-シクロペンチルベ

ンゾイミダゾールー:5-カルボン酸、

1-シクロペンチルー2-[4-(3,5-ジクロロフェニルカルボニルアミ) フェニル] ベンゾイミダゾールー<math>5-カルボン酸、

 $2-\{4-[(4-tert-ブチルフェニル) カルボニルアミノ] フェニル\}$ -1-シクロペンチルベンゾイミダゾールー5-カルボン酸、

 ${\rm t\ r\ a\ n\ s} - 4 - [2 - (4 - {\it ilde v}) {\it ilde v} {\it ilde v} {\it ilde v} + {\it ilde v} {\it ilde v} - {\it ilde v} - {\it ilde v} + {\it ilde v} {\it ilde v} {\it ilde v} + {\it ilde v} {\it ilde v} + {\it ilde v} {\it ilde v} + {\it ilde v} + {\it ilde v} {\it ilde v} + {\it ilde v} {\it ilde v} + {\it ilde v}$

trans-1-[2-(4-ベンジルオキシフェニル)-5-カルボキシベンゾイミダゾール-1-イル]-4-メトキシシクロヘキサン、

2-(4-ベンジルオキシフェニル)-5-カルボキシメチルー<math>1-シクロペンチルベンゾイミダゾール、

2-[(4-シクロヘキシルフェニル) カルボニルアミノ]-1-シクロペンチルベンゾイミダゾール-5-カルボン酸、

1ーシクロペンチルー2ー[4ー(3,5ージクロロベンジルオキシ)フェニル]ベンゾイミダゾールー5ーカルボン酸、

1ーシクロペンチルー2ー[4ー(3,4ージクロロベンジルオキシ)フェニル]ベンゾイミダゾールー5ーカルボン酸、

1-シクロペンチル-2-[4-(フェニルカルバモイルアミノ)フェニル] ベンゾイミダゾール-5-カルボン酸、

1-シクロペンチルー 2-[4-(ジフェニルメトキシ)フェニル] ベンゾイミダゾールー<math>5-カルボン酸、

1-シクロペンチルー2-(4-フェネチルオキシフェニル)ベンゾイミダゾールー5-カルボン酸、

t r a n s - 1 - [2 - (4 - ベンジルオキシフェニル) - 5 - カルボキシベンゾイミダゾール<math>-1 - 1

2- (4-ベンジルオキシフェニル) -5-カルボキシメトキシ-1-シクロペンチルベンブイミダブール、

2-(4-ベンジルアミノフェニル)-1-シクロペンチルベンゾイミダゾー <math>n-5-カルボン酸、

2-[4-(N-ベンゼンスルホニル-N-メチルアミノ)フェニル]-1-シクロペンチルベンゾイミダゾール-5-カルボン酸、

2-[4-(N-ベンジル-N-メチルアミノ) フェニル] <math>-1-シクロペンチルベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー2-(4-フェネチルフェニル) ベンゾイミダゾールー 5-カルボン酸、

1-シクロへキシルー2-[4-(3,5-ジクロロベンジルオキシ)フェニル] ベンゾイミダゾールー5-カルボン酸、

1-シクロヘキシル-2-[4-(ジフェニルメトキシ)フェニル] ベンゾイ ミダゾール-5-カルボン酸、

1-シクロへキシルー2-[4-(3,5-ジ-tert-ブチルベンジルオキシ)フェニル]ベンゾイミダゾールー<math>5-カルボン酸、

2-(4-ベンジルオキシフェニル)-1-(4-メチルシクロヘキシル)ベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシルー $2-\{4-[2-(2-t)]$ エトキシ] フェニル} ベンゾイミダゾールー 5- カルボン酸、

1-シクロへキシルー2-[4-(1-t)フチル)メトキシフェニル] ベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー 2-[4-(ジベンジルアミノ) フェニル] ベンゾイミダゾールー5-カルボン酸、

2-[4-(2-ビフェニリルメトキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2-(4-ベンジルオキシフェニル)-1-シクロヘキシルベンゾイミダゾー <math>n-5-カルボン酸、

1-シクロヘキシルー2-[4-(ジベンジルメトキシ)フェニル]ベンゾイ

ミダゾールー5-カルボン酸、

2-(4-ベンゾイルメトキシフェニル)-1-シクロヘキシルベンゾイミダ ゾール-5-カルボン酸、

1-シクロヘキシル-2-[4-(3, 3-ジフェニルプロピルオキシ)フェ ニル] ベンゾイミダゾール-5-カルボン酸、

2- [4-(3-クロロ-6-フェニルベンジルオキシ)·フェニル] -1-シ クロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー2ー $\{4-[2-(フェノキシ)$ エトキシ]フェニル $\}$ ベンゾイミダゾールー5ーカルボン酸、

1-シクロへキシルー2-[4-(3-フェニルプロピルオキシ) フェニル]ベンゾイミダゾールー5-カルボン酸、

1-シクロヘキシル-2-[4-(5-フェニルペンチルオキシ)フェニル]ベンゾイミダゾール-5-カルボン酸、

2-(2-ベンジルオキシ-5-ピリジル)-1-シクロヘキシルベンゾイミ ダゾール-5-カルボン酸、

 $1-シクロへキシルー2-{4-[2-(3,4,5-トリメトキシフェニル) エトキシ]フェニル<math>}$ ベンゾイミダゾールー5ーカルボン酸、

2-(4-ベンジルオキシフェニル)-1-(4,4-ジメチルシクロヘキシル)ベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー2ー $\{4-[2-(1-+)]$ エトキシ]フェニル $\}$ ベンゾイミダゾールー5ーカルボン酸、

2- [4-(2-ベンジルオキシフェノキシ)フェニル] -1-シクロヘキシ ルベンゾイミダゾール-5-カルボン酸、

2-[4-(3-ベンジルオキシフェノキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシルー2-[4-(2-ヒドロキシフェノキシ) フェニル] ベンゾイミダゾールー<math>5-カルボン酸、

1-シク.ロヘキシル-2-[4-(3-ヒドロキシフェノキシ)フェニル]ベ ンゾイミダゾール-5-カルボン酸、 1-シクロヘキシルー2-[4-(2-メトキシフェノキシ)フェニル]ベン ゾイミダゾールー<math>5-カルボン酸、

1-シクロヘキシル-2-[4-(3-メトキシフェノキシ)フェニル] ベンゾイミダゾール<math>-5-カルボン酸、

1-シクロヘキシルー 2-[4-(2- プロポキシフェノキシ) フェニル] ベンゾイミダゾールー <math>5-カルボン酸、

1-シクロヘキシル-2-[4-(3-プロポキシフェノキシ)フェニル] ベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシルー $2-\{4-[2-(3-$ メチルー2-ブテニルオキシ)フェノキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロヘキシル-2-[4-(2-イソペンチルオキシフェノキシ)フェ ニル] ベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシル-2-[4-(3-イソペンチルオキシフェノキシ)フェ ニル]ベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー $2-\{4-[2-(10,11-ジヒドロ-5H-ジベング [b,f] アゼピン-5-イル) エトキシ] フェニル<math>\}$ ベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシル-2-{4-[2-(4-トリフルオロメチルフェニル) ベンジルオキシ]フェニル}ベンゾイミダゾール-5-カルボン酸、

2- {4- [ビス (4-クロロフェニル) メトキシ] フェニル} -1-シクロ ヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー2ー $\{4-[2-(4-メトキシフェニル)$ エトキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー2ー $\{4-[2-(2-)+キシフェニル)$ エトキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロヘキシル-2- $\{4-$ [2-(3-メトキシフェニル) エトキシ] フェニル $\}$ ベンゾイミダゾール-5-カルボン酸、

2-(4-ベンジルオキシフェニル)-1-シクロヘプチルベンゾイミダゾール-5-カルボン酸、

1ーシクロヘキシルー2ー[4ー(2ーフェネチルオキシフェノキシ)フェニル]ベンゾイミダゾールー5ーカルボン酸、

1-シクロヘキシル-2-[4-(3-フェネチルオキシフェノキシ)フェニル]ベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシル-2-[4-(2, 2-ジフェニルエトキシ)フェニル]· ベンゾイミダゾール-5-カルボン酸、

cis-1-[2-(4-ベンジルオキシフェニル)-5-カルボキシベンゾ イミダゾール-1-イル]-4-フルオロシクロヘキサン、

1-シクロヘキシル-2-[4-(2-フェノキシフェノキシ)フェニル] ベ ンゾイミダゾール-5-カルボン酸、

1-シクロヘキシル-2-[4-(3-フェノキシフェノキシ)フェニル] ベ ンゾイミダゾール-5-カルボン酸、

 $2-\{4-[(2R)-2-ベンジルオキシカルボニルアミノー2-フェニルエトキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾールー<math>5-$ カルボン酸、

1-シクロヘキシル-2-{2-フルオロ-4-[2-(4-トリフルオロメ チルフェニル)ベンジルオキシ]フェニル}ベンゾイミダゾール-5-カルボン 酸、

2-[4-(4-ベンジルオキシフェノキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[$ ビス(4-メチルフェニル) メトキシ] フェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2-{4-[ビス(4-フルオロフェニル)メトキシ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシル-6-メトキシ-2-[4-(3-フェニルプロポキシ) フェニル] ベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシルー6-ヒドロキシー2-[4-(3-フェニルプロポキシ) フェニル] ベンゾイミダゾールー5-カルボン酸、 1-シクロヘキシル-6-メチル-2-[4-(3-フェニルプロポキシ)フェニル]ベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(2-ベンジルオキシフェニル) エトキシ] フェニル <math>\}-1$ -シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(3-ベンジルオキシフェニル) エトキシ] フェニル <math>\}-1$ -シクロヘキシルベンゾイミダゾールー5-カルボン酸、

2-[4-(2-カルボキシメチルオキシフェノキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2-[4-(3-カルボキシメチルオキシフェノキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[3-\rho pp-6-(4-) チルフェニル) ベンジルオキシ] フェニル<math>\}-1-2$ クロヘキシルベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[3-02-6-(4-3-2)]$ フェニル $\{4-[3-02-6-(4-3-2)]$ フェニル $\{4-[3-02-6-(4-3-2)]$ フェニル $\{4-[3-02-6-(4-3-2)]$ ファンジルオキシ $\{4-[3-02-6-(4-3-2)]$ ファンジルオキシ $\{4-[3-02-6-(4-3-2)]$ ファンジルオキシ $\{4-[3-02-6-(4-3-2)]$ ファンジルオキシ $\{4-[3-02-6-(4-3-2)]\}$ ファンジルオキシ $\{4-[3-2-6-(4-2)]\}$ ファンジルオキシ $\{4-[3-2-6-(4-2)]\}$ ファンジルオキシ $\{4-[3-2-6-(4-2)]\}$ ファンジルオキシ $\{4-[3-2-6-(4-2)]\}$ ファンジルオタ

1-シクロヘキシル-2-{2-メチル-4-[2-(4-トリフルオロメチルフェニル)ベンジルオキシ]フェニル}ベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(4-tert-ブチルフェニル)-5-クロロベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾールー<math>5-$ カルボン酸、

 $2-\{4-[$ ビス(4-フルオロフェニル)メトキシ]-2-フルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-(4-ベンジルオキシフェノキシ)-2-クロロフェニル\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-(4-ベンジルオキシフェノキシ)-2-トリフルオロメチルフェ$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2-{4-[3-クロロ-6-(2-トリフルオロメチルフェニル)ベンジル

オキシ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[(2R)-2-アミノ-2-フェニルエトキシ]$ フェニル $\}-1-$ シクロへキシルベンゾイミダゾール-5-カルボン酸、

2-[4-(3-ビフェニリルオキシ)フェニル]-1-シクロヘキシルベン ブイミダブール-5-カルボン酸、

 $2-\{4-[2-\{(1-tert-ブトキシカルボニルー4-ピペリジル) メトキシ\}$ フェノキシ]フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[3-\{(1-tert-ブトキシカルボニルー4-ピペリジル) メトキシ\}$ フェノキシ] フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2- {4- [2- (2-ビフェニリル) エトキシ] フェニル} -1-シクロへ キシルベンゾイミダゾール-5-カルボン酸、

2-[4-(2-ビフェニリルメトキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシルー $2-\{4-[2-(4-l^2 ペリジルメトキシ) フェノキシ] フェニル<math>\}$ ベンゾイミダゾールー 5-カルボン酸 塩酸塩、

 $1-シクロヘキシル-2-{4-[3-(4-ピペリジルメトキシ)フェノキシ]フェニル}ベンゾイミダゾール-5-カルボン酸塩酸塩、$

 $2-\{4-[(2R)-2-アセチルアミノー2-フェニルエトキシ] フェニル}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー $2-\{4-[3-(4-メチルー3-ペンテニルオキシ)$ フェノキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロヘキシルー2ー {4-[3-(3-メチルー3-ブテニルオギシ)

フェノキシ フェニル ベンゾイミダゾールー5ーカルボン酸、

 $2-\{4-[\{(2S)-1-ベンジル-2-ピロリジニル\} メトキシ] フェニル \} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-{4-[3-クロロ-6-(2-チェニル) ベンジルオキシ] フェニル} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[3-\rho pp-6-(3-\rho pp-2x=n) ベンジルオキシ] フェニル\} -1-シクロヘキシルベンゾイミダゾールー<math>5-$ カルボン酸、

 $2-\{4-[3-02-6-(4-7)]$ 2 -1-20 -1

2-[4-(4-ベンジルオキシフェノキシ)-3-フルオロフェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2- [4-(2-ブロモ-5-クロロベンジルオキシ)フェニル] -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[3-\rho pp-6-(4-\rho pp-2x=n)]$ ベンジルオキシ]-2 ーフルオppーフェニル $\}-1-シ pp-4$ では、 では、 では、 では、 では、 これでは、 $2-\{4-[2-\{(1-rセチル-4-ピペリジル) メトキシ\} フェノキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[3-\{(1-rセチル-4-ピペリジル) メトキシ\} フェノキシ]$ フェニル $\}-1-シ$ クロヘキシルベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[3-(2-プロピニルオキシ)フェノキシ]$ フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロヘキシル-2-{4-[3-(3-ピリジルメトキシ)フェノキシ]

フェニル}ベンゾイミダゾールー5ーカルボン酸、

2-(4-ベンジルオキシ-2-メトキシフェニル)-1-シクロヘキシルベ ンゾイミダゾール-5-カルボン酸、

2- [4-(2-ブロモ-5-メトキシベンジルオキシ)フェニル] -1-シ クロヘキシルベンゾイミダゾール-5-カルボン酸、

2- [4-(カルボキシジフェニルメトキシ)フェニル]-1-シクロヘキシ ルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(4-クロロフェニル)-5-ニトロベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[3-アセチルアミノ-6-(4-クロロフェニル) ベンジルオキシ\ フェニル\ -1-シクロヘキシルベンゾイミダゾールー<math>5-$ カルボン酸、

 $2-\{4-[2-(4-カルボキシフェニル)-5-クロロベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[\{(2S)-1-ベンジルオキシカルボニルー2-ピロリジニル\}$ メトキシ] フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5ーカルボン酸、

2-{2-クロロ-4-[2-(4-トリフルオロメチルフェニル) ベンジル オキシ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー $2-\{4-[3-(2-ピリジルメトキシ) フェノキシ]$ フェニル $\}$ ベンゾイミダゾールー 5-カルボン酸、

 $2-\{4-[2-(4-クロロフェニル)-5-フルオロベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾールー<math>\dot{5}$ -カルボン酸、

 $2-\{4-[3-カルボキシ-6-(4-クロロフェニル) ベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[3-カルバモイル-6-(4-クロロフェニル)ベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[2-(ジメチルカルバモイルメトキシ) フェノキシ] フェニル<math>\}$ ベンゾイミダゾールー 5-カルボン酸、

1ーシクロヘキシルー2ー {4ー [2ー (ピペリジノカルボニルメトキシ) フ

エノキシ]フェニル}ベンゾイミダゾールー5ーカルボン酸、

 $2-\{4-[\{(2S)-1-ベンゼンスルホニルー2-ピロリジニル\} メトキシ] フェニル<math>\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[\{(2S)-1-ベンゾイル-2-ピロリジニル\} メトキシ] フェニル <math>\{-1-2$ クロヘキシルベンゾイミダゾールー $\{-1-2\}$

 $2-\{4-[2-(4-カルバモイルフェニル)-5-クロロベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

 $1-シクロへキシルー2-{4-[3-(ジメチルカルバモイルメトキシ)フェノキシ]フェニル<math>}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[3-(ピペリジノカルボニルメトキシ)フェノキシ]フェニル<math>\}$ ベンゾイミダゾールー 5-カルボン酸、

 $1-シクロへキシルー2-\{4-[3-\{(1-メタンスルホニルー4-ピペリジル) メトキシ\}フェノキシ]フェニル<math>\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[\{2-メチルー5-(4-クロロフェニル)-4-オキサゾリル\} メトキシ] フェニル<math>\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[\{(2S)-1-(4-=)$ トロフェニル)ー 2-ピロリジニル $\}$ メトキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[\{5-(4-\rho u u z z z z u)-2-y f v -4-f z y u v \} y v + + v]$ フェニル $\}-1-v$ クロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[$ ビス(3-フルオロフェニル) メトキシ] フェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー2ー $\{4-[2-(4-)$ クロロフェニル)-3-ニトロベンジルオキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[3-(4-\tau)]$ フェノキシ]フェニル $\}$ ベンゾイミダゾールー $5-\pi$ カルボン酸、

 $1-シクロへキシル-2-{4-[3-(4-トリフルオロメチルベンジルオキシ)フェノキシ]フェニル}ベンゾイミダゾール-5-カルボン酸、$

 $1-シクロへキシルー2-{4-[3-{(1-メチルー4-ピペリジル)メト$ キシ} フェノキシ] フェニル} ベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[3-(4-tert-ブチルベンジルオキシ) フェノキシ] フェ$ $ニル<math>\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

 $1-シクロへキシル-2-{4-[3-(3-ピリジル)フェノキシ]フェニル}ベンゾイミダゾール-5-カルボン酸、$

 $1-シクロへキシルー2-{4-[3-(4-メトキシフェニル)フェノキシ]$ フェニル $}$ ベンゾイミダゾールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[\{4-(4-$ メタンスルホニルフェニル)-2-メチルー5-チアゾリル $\}$ メトキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[1-(4-クロロベンジル)-3-ピペリジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー2ー $\{4-[3-\{(2-メチルー4-チアブリル) メトキシ\}$ フェノキシ]フェニル $\}$ ベンゾイミダブールー5-カルボン酸、

1-シクロへキシルー $2-\{4-[3-\{(2,4-ジメチルー5-チアゾリル)$ メトキシ $\}$ フェノキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸、

 $1-シクロヘキシル-2-{4-[3-(3,5-ジクロロフェニル)フェノキシ]フェニル}ベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[4-カルバモイル-2-(4-クロロフェニル) ベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[3-\{(2-\rho pp-4-ピリジル) メトキシ\} フェノキシ] フェ$ $= \mu$

 $2-\{4-[\{(2S)-1-(4-ジメチルカルバモイルフェニル)-2-ピロリジニル\} メトキシ] フェニル<math>\}-1-シ$ クロヘキシルベンゾイミダゾールー5-カルボン酸、

1-シクロヘキシル-2-[4-(3-トリフルオロメチルフェノキシ)フェ ニル] ベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー $2-\{4-[\{4-(4-ジメチルカルバモイルフェニル)-2-メチルー5-チアゾリル\}メトキシ]フェニル<math>\}$ ベンゾイミダゾールー5-カルボン酸、

2-[4-(4-ベンジルオキシ-6-ピリミジニルオキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1ーシクロヘキシルー2ー {4ー [4ー (4ーピリジルメトキシ) -6ーピリミジニルオキシ] フェニル} ベンゾイミダゾールー5ーカルボン酸、

2-{4-[2-(4-クロロフェニル)-5-メトキシベンジルオキシ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

2-[4-(2-) - 5 - t e r t -) + シカルボニルベンジルオキシ)フェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸メチルエ

ステル、

 $2-\{4-[5-tert-ブトキシカルボニルー2-(4-クロロフェニル)$ ベンジルオキシ]フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸メチルエステル、

 $2-\{4-[5-カルボキシ-2-(4-クロロフェニル) ベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸メチルエステル 塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-5-メチルカルバモイルベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸メチルエステル、$

 $2-\{4-[3-(tert-ブチルスルファモイル)-6-(4-クロロフェニル)ベンジルオキシ]フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

2-(4-ベンジルオキシシクロヘキシル)-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

2-[2-(2-i)] -1-i

2-[2-(2-ビフェニリルオキシメチル)-5-フリル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

1-シクロヘキシルー2ー $\{4-[\{4-(4-)$ ルボキシフェニル)-2-メ

チルー5ーチアゾリル}メトキシ]フェニル}ベンゾイミダゾールー5ーカルボン酸 塩酸塩、

1-シクロヘキシル-2-{2-フルオロ-4-[4-フルオロ-2-(3-フルオロベンゾイル)ベンジルオキシ]フェニル}ベンゾイミダゾール-5-カルボン酸、

1-シクロへキシルー $2-\{4-[3-ジ$ メチルカルバモイルー5-(4-1) リジルメトキシ)フェノキシ]フェニル $\}$ ベンゾイミダゾールー5-カルボン酸 二塩酸塩、

1-シクロヘキシル-2-{4-[3-カルボキシ-5-(4-ピリジルメトキシ)フェノキシ]フェニル}ベンゾイミダゾール-5-カルボン酸 二塩酸塩、

 $2-\{4-[3-カルバモイル-6-(4-クロロフェニル) ベンジルオキシ]$ フェニル $\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[\{2-(4-)\pi\pi+2)]$ -3-ピリジル $\}$ ++2] フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

1ーシクロヘキシルー2ー {4ー [3ージメチルカルバモイルー6ー (4ートリフルオロメチルフェニル) ベンジルオキシ] フェニル ベンゾイミダゾールー5ーカルボン酸 塩酸塩、

1-シクロヘキシル-2-{4-[3-ジメチルカルバモイル-6-(4-メ チルチオフェニル) ベンジルオキシ] フェニル} ベンゾイミダゾール-5-カル ボン酸 塩酸塩、

 $2-\{4-[3-カルバモイル-6-(4-クロロフェニル) ベンジルオキシ]$ $-2-フルオロフェニル\} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[3-ジメチルカルバモイル-6-(4-メタンスルホニルフェニル) ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-$ カルボン酸 塩酸塩、

 $2-\{4-[3-ジメチルカルバモイル-6-(3-ピリジル) ベンジルオキシ] フェニル <math>\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 二塩酸塩、

 $2-\{4-[3-ジメチルカルバモイル-6-(4-ジメチルカルバモイルフェニル) ベンジルオキシ] フェニル<math>\}-1-シ$ クロヘキシルベンゾイミダゾール-5-カルボン酸、

2-{4-[2-(4-クロロフェニル)-5-メタンスルホニルベンジルオ キシ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(4-クロロフェニル)-5-ジメチルアミノベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[2-(4-クロロフェニル)-5-(4-ヒドロキシピペリジノ)$ カルボニルベンジルオキシ] $-2-フルオロフェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[2-(4-クロロフェニル)-5-チオモルホリノカルボニルベンジルオキシ]-2-フルオロフェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[3-(カルボキシメチルカルバモイル)-6-(4-クロロフェニル)ベンジルオキシ]-2-フルオロフェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[2-\{4-(2-カルボキシエチル)]$ フェニル $\}-5-$ クロロベンジルオキシ]フェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2-{4-[3-クロロ-6-(4-メトキシメチルフェニル) ベンジルオキシ フェニル -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(3-カルボキシフェニル)-5-クロロベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(4-クロロフェニル)-5-メチルチオベンジルオキシ]$ フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸、

 $2-\{4-[2-(4-クロロフェニル)-5-メチルスルフィニルベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[2-(4-クロロフェニル)-5-シアノベンジルオキシ]フェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[$ ビス(2-ピリジル)メトキシ]フェニル $\}-1-$ シクロヘキシ)ルベンゾイミダゾール-5-カルボン酸、

2-{4-[ビス(4-ジメチルカルバモイルフェニル)メトキシ]フェニル} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2-{4-[ビス(2-チエニル)メトキシ]フェニル}-1-シクロヘキシ ルベンゾイミダゾール-5-カルボン酸、

テル、

 $2-\{4-[5-カルボキシ-2-(4-クロロフェニル) ベンジルオキシ]$ $-2-フルオロフェニル\} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[2-(4-)\pi\pi+2)\pi+2\pi\mu)-5-\pi\pi+2\pi\nu\}$ フェニル $\{1-2-(4-)\pi\pi+2\pi\mu\}$ フェニル $\{1-2-(4-)\pi\pi+2\pi\mu\}$ フェニル $\{1-2-(4-)\pi\pi+2\pi\mu\}$ フェニル $\{1-2-(4-)\pi\pi+2\pi\mu\}$ フェニル $\{1-2-(4-)\pi\pi+2\pi\mu\}$ カルボン酸、

 $2-\{4-[2-(4-カルバモイルフェニル)-5-(ジメチルカルバモイル) ベンジルオキシ]フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-$ カルボン酸、

 $2-\{4-[5-アミノー2-(4-クロロフェニル) ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

2-{4-[2-(4-クロロフェニル)-5-メトキシベンジルチオ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸塩、塩酸塩、

 $2-\{4-[$ ビス (4-カルボキシフェニル) メトキシ]-2-フルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2- {4- [フェニルー3-ピリジルメトキシ] -2-フルオロフェニル }-

1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[5-クロロ-2-(4-ピリジル) ベンジルオキシ] フェニル\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-5-(ベンジルカルバモイル)ベンジルオキシ]フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[5-ジメチルアミノカルボニルー2-(4-ピリジル) ベンジルオキシ] フェニル<math>\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸 二塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-5-(4-メチルピペラジン-1$ -イルカルボニル) ベンジルオキシ] フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 二塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-5-\{N-(3-ピリジルメチル)$ カルバモイル $\}$ ベンジルオキシ] フェニル $\}$ -1-シクロヘキシルベンゾイミダ ゾール-5-カルボン酸 二塩酸塩、

 ゾールー5ーカルボン酸 二塩酸塩、

 $2-\{4-[(4-フルオロフェニル)(4-カルボキシフェニル)メトキシ]$ $-2-フルオロフェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

2- {4- [2- (4-)ロロフェニル) -5- (イップロピルカルパモイル) ベンジルオキシ] フェニル} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-5-(フェニルカルバモイル) ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

2- {4.- [2-(4-クロロフェニル) -5-(4-メトキシピペリジノカルボニル) ベンジルオキシ] フェニル} -1-シクロヘキシルベンゾイミダゾー

ルー5ーカルボン酸 塩酸塩、

2-[4-(2-ブロモ-5-ニトロベンジルオキシ)-2-フルオロフェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸メチルエステル、2-[4-{2-(4-クロロフェニル)-5-ニトロベンジルオキシ}-2-フルオロフェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸メチルエステル、

 $2-[4-\{5-アミノ-2-(4-クロロフェニル) ベンジルオキシ\}-2$ -フルオロフェニル] -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸メチルエステル、

2-[4-{2-(4-クロロフェニル)-5-(2-オキソピロリジン-1 -イル) ベンジルオキシ}-2-フルオロフェニル]-1-シクロヘキシルベン ゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-5-(4-メチルピペリジン-1$ -イルカルボニル) ベンジルオキシ] フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩

2-{4-[5-アセチル-2-(4-クロロフェニル) ベンジルオキシ] フェニル} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩 2-{4-[2-(4-クロロフェニル) -5-{(4-ヒドロキシピペリジン-1-イルカルボニル) メトキシ} ベンジルオキシ] フェニル} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $2-\{4-[2-(4-クロロフェニル)-4-(イソプロピルカルバモイル)$ ベンジルオキシ]フェニル $\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸 塩酸塩、

ゾイミダゾールー5ーカルボン酸 二塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-4-\{(4-ピリジルメチル) カルバモイル\} ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[5-(2-アミノチアゾール-4-イル)-2-(4-クロロフェニル) ベンジルオキシ] フェニル<math>\}-1-シクロへキシルベンゾイミダゾール-5-カルボン酸 二塩酸塩、$

 $2-\{4-[5-(ジメチルカルバモイル)-2-(4-フルオロフェニル)$ ベンジルオキシ]フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[5-(ジメチルカルバモイル)-2-(3-フルオロフェニル)$ ベンジルオキシ]フェニル $\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

2-{4-[2-ブロモ-5-(5-メチルオキサゾール-2-イル)ベンジ

ルオキシ] フェニル} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-プロモー5-(5-メチルチアゾールー2-イル) ベンジルオキシ] フェニル<math>\}$ -1-シクロヘキシルベンゾイミダゾールー5-カルボン酸塩酸塩、

 $2-\{4-[5-クロロ-2-(4-シアノフェニル) ベンジルオキシ] フェニル <math>\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[5-クロロ-2-(4-テトラゾール-5-イルフェニル) ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-{4-[2-(4-クロロフェニル)-5-(N-ヒドロキシアミジノ)}$

ベンジルオキシ] - 2 - フルオロフェニル} - 1 - シクロヘキシルベンゾイミダ ゾール-5 - カルボン酸 二塩酸塩、

2-{4-[2-(4-クロロフェニル)-5-(メトキシカルバモイル)ベ

 $2-\{4-[5-(ブチルカルバモイル)-2-(4-クロロフェニル)ベンジルオキシ]-2-フルオロフェニル\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[2-(3,4-i)]$ ルカル 2-[4-[2-(3,4-i)] ルカル 2-[4-[2-(3,4-i)] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-(3,4-i)] 2-[4-(4,4-i)] 2

 $2-\{4-[2-(2,4-ジフルオロフェニル)-5-(イソプロピルカルバモイル) ベンジルオキシ]-2-フルオロフェニル<math>\}-1-シ$ クロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

2-{4-[2-(4-クロロ-2-フルオロフェニル)-5-(イソプロピルカルバモイル)ベンジルオキシ]-2-フルオロフェニル}-1-シクロヘキ

シルベンゾイミダゾールー5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-\rho - 2-7 -$

 $2-\{4-[2-\{4-(メチルチオ)]$ フェニル $\}$ -5-(2-オキソピロリジン-1-イル) ベンジルオキシ] $-2-フルオロフェニル<math>\}$ -1-シクロへキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-\{4-(メチルチオ)]$ フェニル $\}$ -5-(イソプロピルカル バモイル) ベンジルオキシ] $-2-フルオロフェニル<math>\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[4-\rho pp-2-(4-\rho pp-2-\mu)-5-(2-\pi + y)]$ $pp-2-\pi + y$ 2- {4-[2-(4-クロロフェニル)-5-(4-ヒドロキシピペリジン

-1-イルカルボニル) ベンジルオキシ] -2-フルオロフェニル} -1-シクロペンチルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-5-(イソプロピルカルバモイル)$ ベンジルオキシ]フェニル $\}-[1-シクロペンチルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[2-(4-クロロフェニル)-5-(ピロリジン-1-イルカルボニル)ベンジルオキシ]フェニル<math>\}-1-(テトラヒドロチオピラン-4-イル)ベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[\{4-(4-7) ルオロフェニル)-2-(4-1) トーロー (4-1) トロー$

 $2-\{4-[\{4-(4-7) + 2-1\}] - 2-[(3) + 2-1]$ $2-\{4-[\{4-(4-7) + 2-1\}] - 2-[(3) + 2-1]$ 2-[(3) + 2-1] 2-[(3) +

1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[\{2-(4-7) ルオロフェニル)-5-(4 ソプロピルカルバモイル) チオフェン<math>-3-4$ ル $\}$ メトキシ]-2-7ルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-\rho ppp z=n)-5-(ジメチルカルバモイル) ベンジルオキシ] -2-フルオpp z=n <math>-1-シ pp x=n$ -1-シ pp x=n -n-5-1

 $2-\{4-[2-(4-カルボキシフェニル)-5-クロロベンジルオキシ]$ $-2-フルオロフェニル\}-1-シクロヘキシル-5-テトラゾール-5-イルベンゲイミダゾール 塩酸塩、$

 $2-\{4-[5-カルボキシ-2-(4-クロロフェニル) ベンジルオキシ]$ $-2-フルオロフェニル\}-5-シアノ-1-シクロヘキシルベンゾイミダゾール、$

 $2-\{5-[$ ビス (3-)フルオロフェニル)メチル]-2-フルオロ-4-ヒドロキシフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、 $2-\{3-[$ ビス (3-)フルオロフェニル)メチル]-2-フルオロ-4-ヒドロキシフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸、 $2-\{4-[(3-)$ ジメチルカルバモイルフェニル)(4-フルオロフェニル)メトキシ]-2-フルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $1-\{[2-\{4-(4-7) + 1-2$

 $\{[2-\{4-[ビス(3-フルオロフェニル)メトキシ]-2-フルオロフェニル\}-1-シクロヘキシルベンゾイミダゾールー<math>5-$ イル]カルボニル $\}-\beta$ -D-グルクロン酸、

2- [4-{2-(4-クロロフェニル)-5-(イソプロピルアミノカルボ

ニル) ベンジルオキシ} -2-フルオロフェニル] -1-シクロヘキシル-4-メトキシベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-[3-\{[4-(4-7) + 2-2] - 2-2 + 2-$

 $2-[4-\{2-(4-)222222)-5-[N-222222]$ スルホニル) アミノ] ベンジルオキシ $\}$ -2-フルオロフェニル] -1-シクロ ヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

2-[4-(2-(4-クロロフェニル)-5-[N-(エチルカルボニル)-N-メチルアミノ]ベンジルオキシ<math>)-2-フルオロフェニル]-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

ルベンゾイミダゾールー5-カルボン酸 塩酸塩、

2-(4-ベンジルオキシフェニル)-1-シクロペンチルー<math>1H-インドール-5-カルボン酸、

2-(4-ベンジルオキシフェニル)-3-シクロヘキシルイミダゾ [1, 2-a] ピリジン-7-カルボン酸エチルエステル、

2-(4-ベンジルオキシフェニル)-3-シクロヘキシルイミダゾ [1, 2-a] ピリジン-7-カルボン酸、

 $2-\{4-[2-(4-クロロフェニル)-5-メトキシベンジルオキシ]フェニル\}-3-シクロヘキシル-3H-イミダゾ <math>[4,5-b]$ ピリジン-6-カルボン酸、

 $2-[4-\{5-アミノ-2-(4-クロロフェニル) ベンジルオキシ\}-2$ -フルオロフェニル] -1-シクロヘキシルベンゾイミダゾール-5-カルボン 酸メチルエステル、

2- [4-{2-(4-クロロフェニル)-5-(2-オキソピロリジン-1 -イル) ベンジルオキシ}-2-フルオロフェニル]-1-シクロヘキシルベン ゾイミダゾール-5-カルボン酸 塩酸塩、

2-{4-[5-アセチル-2-(4-クロロフェニル)ベンジルオキシ]フェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩

 $2-\{4-[2-(4-0) - 4-(1) - 4-(1)]$ ロピルカルバモイル) ベンジルオキシ] フェニル $\}$ -1-シ ロヘキシルベンゾイミダゾールー 5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-クロロフェニル)-4-\{(4-ピリジルメチル) カルバモイル\} ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、$

 $2-\{4-[5-(2-アミノチアゾール-4-イル)-2-(4-クロロフェニル) ベンジルオキシ] フェニル <math>\}-1-シクロへキシルベンゾイミダゾール-5-カルボン酸 二塩酸塩、$

ゾイミダゾールー5ーカルボン酸 塩酸塩、

 $2-\{4-[5-(ジメチルカルバモイル)-2-(4-フルオロフェニル)$ ベンジルオキシ] フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[5-(ジメチルカルバモイル)-2-(3-フルオロフェニル)$ ベンジルオキシ]フェニル $\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-プロモー5-(5-メチルオキサゾールー2-イル) ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾールー5-カルボン酸 塩酸塩、$

 $2-\{4-[2-プロモー5-(5-メチルチアゾールー2-イル) ベンジルオキシ] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾールー5-カルボン酸塩酸塩、$

 $2-\{4-[5-クロロ-2-(4-テトラゾール-5-イルフェニル) ベンジルオキシ] フェニル <math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボ$

ン酸塩酸塩、

ゾールー5ーカルボン酸 塩酸塩、

 $2-{4-[5-(ブチルカルバモイル)-2-(4-クロロフェニル) ベン$

ジルオキシ] -2-フルオロフェニル} -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-(3,4-i)]$ ルカル $2-\{4-[2-(3,4-i)]$ ルカル 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-[2-(3,4-i)]] 2-[4-(3,4-i)] 2-[4-(4,4-i)] 2-[4-(4,

 $2-\{4-[2-(2,4-ジフルオロフェニル)-5-(イソプロピルカルバモイル) ベンジルオキシ]-2-フルオロフェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[2-(3,5-ジクロロフェニル)-5-(イソプロピルカルバモイル) ベンジルオキシ] <math>-2-$ フルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

- 2-{4-[2-(3-クロロ-4-フルオロフェニル)-5-(イソプロピルカルバモイル)ベンジルオキシ]-2-フルオロフェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、
- 2-{4-[2-(4-クロロ-2-フルオロフェニル)-5-(イソプロピルカルバモイル)ベンジルオキシ]-2-フルオロフェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸塩酸塩、
- $2-\{4-[2-(4-\rho 2-\tau -$
- $2-\{4-[2-(4-\rho pp-3-7) ルオロフェニル)-5-(イソプロピルカルバモイル) ベンジルオキシ]-2-7ルオロフェニル<math>\}-1-9$ クロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、
- $2-\{4-[2-\{4-(メチルチオ)]$ フェニル $\}$ -5-(2-オキソピロリジン-1-イル) ベンジルオキシ] $-2-フルオロフェニル<math>\}$ -1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、
- $2-\{4-\{2-\{4-(メチルチオ) フェニル\}-5-(イソプロピルカル バモイル) ベンジルオキシ] <math>-2-$ フルオロフェニル $\}-1-$ シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、
- $2-\{4-[4-クロロ-2-(4-クロロフェニル)-5-(1, 1-ジオキソイソチアゾリジン-2-イル) ベンジルオキシ]-2-フルオロフェニル}$

-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[4-\rho -2-(4-\rho -2-1)-5-(2-\pi +y)]$ ロリジン $-1-\pi$ (2-オキソピ ロリジン $-1-\pi$) ベンジルオキシ $-1-\pi$ (2-オキソピ ヘキシルベンゾイミダゾール $-5-\pi$) 塩酸塩、

 $2-\{4-[2-(4-0) - 5-(4)] - 5-(4) + (4) +$

 $2-\{4-[2-(4-クロロフェニル)-5-(ジメチルカルバモイル) ベンジルオキシ] フェニル<math>\}-1-シクロペンチルベンゾイミダゾール-5-カルボン酸 塩酸塩、$

 $2-\{4-[2-(4-クロロフェニル)-5-(イソプロピルカルバモイル)$ ベンジルオキシ]フェニル $\}$ -1-(テトラヒドロチオピラン-4-イル)ベンゾイミダゾール-5-カルボン酸 塩酸塩、

2- {4-[2-(4-クロロフェニル)-5-(ピロリジン-1-イルカル

ボニル) ベンジルオキシ] フェニル} -1-(テトラヒドロチオピラン-4-イル) ベンゾイミダゾール-5-カルボン酸 塩酸塩、

 $2-\{4-[2-(4-カルボキシフェニル)-5-クロロベンジルオキシ]$ $-2-フルオロフェニル\}-1-シクロヘキシル-5-テトラゾール-5-イルベンゾイミダゾール 塩酸塩、$

 $2-\{4-[2-(4-0) - 5-(4)] - 5-(4) プロピルカルバモイル)$ ベンジルオキシ]-2-7ルオロフェニル $\}-1-2$ 0 ロヘキシルー5-(2,

5-ジヒドロ-5-オキソー4H-1, 2, 4-オキサジアゾール-3-イル) ベンゾイミダゾール 塩酸塩、

 $2 - \{4 - [5 - カルボキシ-2 - (4 - クロロフェニル) ベンジルオキシ] - 2 - フルオロフェニル \} - 5 - シアノ - 1 - シクロヘキシルベンゾイミダゾール、$

 $2-\{4-[\{N-(4-ジメチルカルバモイル)-N-(4-フルオロフェニル) アミノ\} メチル] フェニル<math>\}-1-シクロヘキシルベンゾイミダゾール-5-$ カルボン酸、

2-{5-[ビス(3-フルオロフェニル)メチル]-2-フルオロ-4-ヒ ドロキシフェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

2-{3-[ビス (3-フルオロフェニル) メチル] -2-フルオロ-4-ヒ ドロキシフェニル}-1-シクロヘキシルベンゾイミダゾール-5-カルボン酸、

 $1-\{[2-\{4-(4-7) + 1-2-7) - 2-7 + 1-$

 $\{[2-\{4-[ビス(3-フルオロフェニル)メトキシ]-2-フルオロフェニル\}-1-シクロヘキシルベンゾイミダゾール-5-イル]カルボニル\}-\beta$ -D-グルクロン酸、

ヘキシルベンゾイミダゾールー5ーカルボン酸 塩酸塩、

 $3-\{[4-(5-r)]$ スルホニルー1-vクロヘキシルベンゾイミダゾールー2-4 (4ークロロフェニル)ーハーイソプロピルベンズアミド、

 $2-[4-{2-(4-)0000x=x=x=x=x=x=0)}-5-[N-メチル-N-(メチル)]$

スルホニル) アミノ] ベンジルオキシ} -2-フルオロフェニル] -1-シクロ ヘキシルベンブイミダブール-5-カルボン酸 塩酸塩、

 $2-[4-\{2-(4-)2\pi2\pi2\pi)-5-(N-)7\pi2\pi\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi)-5-(N-)7\pi2\pi\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi)-5-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-5-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-5-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-5-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-1-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-1-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-1-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-1-(N-)7\pi2\pi]$ $2-[4-(4-)2\pi2\pi2\pi]-1-(N-)7\pi2\pi]$ $2-[4-\{2-(4-)2\pi2\pi2\pi]-1-(N-)7\pi2\pi]$ $2-[4-(4-)2\pi2\pi2\pi]-1-(N-)7\pi2\pi]$ $2-[4-(4-)2\pi2\pi2\pi]-1-(N-)2\pi2\pi]$ $2-[4-(4-)2\pi2\pi2\pi]$ $2-[4-(4-)2\pi2\pi]$ -[4-(4

- 63. 請求項29乃至62のいずれかに記載の縮合環化合物又は製薬上許容されるその塩、及び製薬上許容される担体を含んで成る医薬組成物。
- 64. 請求項1乃至28又は29乃至62のいずれかに記載の縮合環化合物又は製薬上許容されるその塩、及び製薬上許容される担体を含んで成るC型肝炎ウイルスポリメラーゼ阻害剤。
- 65. 請求項1乃至28又は29乃至62のいずれかに記載の縮合環化合物又は製薬上許容されるその塩、及び製薬上許容される担体を含んで成る抗C型肝炎

ウイルス剤。

66. 請求項29乃至62のいずれかに記載の縮合環化合物又は製薬上許容されるその塩、及び製薬上許容される担体を含んで成るC型肝炎治療剤。

- 67. (a)請求項65に記載の抗C型肝炎ウイルス剤と、(b)他の抗ウイルス剤、抗炎症剤及び免疫増強剤からなる群より選ばれる少なくとも1つの薬剤とを組み合わせてなる抗C型肝炎ウイルス剤。
- 68. (a)請求項65に記載の抗C型肝炎ウイルス剤と、(b)インターフェロンとを組み合わせてなる抗C型肝炎ウイルス剤。
- 69. (a)請求項64に記載のC型肝炎ウイルスポリメラーゼ阻害剤と、(b)他の抗ウイルス剤、抗炎症剤及び免疫増強剤からなる群より選ばれる少なくとも1つの薬剤とを組み合わせてなるC型肝炎治療剤。
- 70. (a)請求項64に記載のC型肝炎ウイルスポリメラーゼ阻害剤と、(b) インターフェロンとを組み合わせてなるC型肝炎治療剤。
- 71. 下記一般式 [III] で表されるベンゾイミダゾール化合物又はその塩。

$$R^{a36}0 \xrightarrow{N} R^{a38} OH \qquad [III]$$

(式中、 R^{a36} は水素原子又はカルボン酸保護基であり、 R^{a37} はシクロペンチル基 又はシクロヘキシル基であり、 R^{a38} は水素原子又はフッ素原子である。)

- 72. 4-(4-フルオロフェニル) -5-ヒドロキシメチルー2ーメチルチアゾール及び4-(4-フルオロフェニル) -5-クロロメチルー2ーメチルチアゾールからなる群より選ばれるチアゾール化合物又は製薬上許容されるその塩。73. 1-(4'-クロロー2ーヒドロキシメチルービフェニルー4ーイル) -2-ピロリジノン及び1-(4'-クロロー2ークロロメチルービフェニルー4ーイル) -2-ピロリジノンからなる群より選ばれるビフェニル化合物又は製薬上許容されるその塩。
- 74. (a)請求項1記載の一般式 [I]で表される縮合環化合物又は製薬上 許容されるその塩、及び(b)請求項1記載の化合物以外の抗ウイルス剤、抗炎

症剤及び免疫増強剤からなる群より選ばれる少なくとも1つの薬剤を含有する医薬組成物。

- 75. (a)請求項1記載の一般式 [I]で表される縮合環化合物又は製薬上 許容されるその塩、及び (b) インターフェロンを含有する医薬組成物。
- 76. 有効量の請求項1記載の一般式[I]で表される縮合環化合物又は製薬 上許容されるその塩を投与することを含む、C型肝炎の治療方法。
- 77. 有効量の、請求項1記載の化合物以外の抗ウイルス剤、抗炎症剤及び免疫増強剤からなる群より選ばれる少なくとも1つの薬剤を投与することをさらに含む、請求項76記載の方法。
- 78. 有効量のインターフェロン投与することをさらに含む、請求項76記載の方法。
- 79. 有効量の請求項1記載の一般式[I]で表される縮合環化合物又は製薬上許容されるその塩を投与することを含む、C型肝炎ウイルスポリメラーゼの阻害方法。
- 80. 有効量の、請求項1記載の化合物以外の抗ウイルス剤、抗炎症剤及び免疫増強剤からなる群より選ばれる少なくとも1つの薬剤を投与することをさらに含む、請求項79記載の方法。
- 81. 有効量のインターフェロン投与することをさらに含む、請求項79記載の方法。
- 82. C型肝炎治療用医薬を製造するための請求項1記載の一般式[I]で表される縮合環化合物又は製薬上許容されるその塩の使用。
- 83. C型肝炎ウイルスポリメラーゼ阻害剤を製造するための請求項1記載の 一般式[I]で表される縮合環化合物又は製薬上許容されるその塩の使用。
- 84. 請求項1記載の一般式 [I] で表される縮合環化合物又は製薬上許容されるその塩、及び製薬上許容される担体を含有するC型肝炎治療用医薬組成物。
- 85. 請求項1記載の一般式 [I] で表される縮合環化合物又は製薬上許容されるその塩、及び製薬上許容される担体を含有するC型肝炎ウイルスポリメラーゼ阻害用医薬組成物。
- 86. 請求項84記載の医薬組成物、及び該医薬組成物をC型肝炎の治療用途

に使用することができる、または使用すべきであることを記載した該医薬組成物 に関する記載物を含む商業パッケージ。

87. 請求項85記載の医薬組成物、及び該医薬組成物をC型肝炎ウイルスポリメラーゼの阻害用途に使用することができる、または使用すべきであることを記載した該医薬組成物に関する記載物を含む商業パッケージ。

International application No.
PCT/JP02/06405

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 A61K31/4184, 31/4439, 31/42, 31/4523, 31/496, 31/55, 31/427, 31/506, 31/437, C07D235/18, 235/30, 409/12, 401/12, 413/12, 401/04, 403/12, 417/12, 405/12, 471/04, A61P31/12, 1/16, 43/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl7 A61K31/4184, 31/4439, 31/42, 31/4523, 31/496, 31/55, 31/427, 31/506, 31/437, C07D235/18, 235/30, 409/12, 401/12, 413/12, 401/04, 403/12, 417/12, 405/12, 471/04, A61P31/12, 1/16, 43/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Koho 1940-1992 1996-2002 Jitsuyo Shinan Toroku Koho Kokai Jitsuyo Shinan Koho 1971-1992 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* 86,87 JP 06-025182 A (Kanebo, Ltd.), X 74,75 01 February, 1994 (01.02.94), Y 1-73,82-85 (Family: none) Α 86,87 EP 507650 A1 (Synthelabo S.A.), X 74,75 07 October, 1992 (07.10.92), Y 1-73,82-85 & US 5280030 A & JP 05-112563 A2 Α 86,87 EP 10063 A2 (Ciba-Geigy A.-G.), Χ 74,75 16 April, 1980 (16.04.80), Y 1-73,82-85 & JP 55-049374 A Α 86,87 Kataev, V.A. et al., Preparation and immunomodula Χ ting effect of (1-thietanyl-3)benzimidazoles., 74,75 Y 1-73,82-85 Khimiko-Farmatsevticheskii Zhurnal, Vol.30, No.7 (1996), pages 22 to 24 Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or Special categories of cited documents: document defining the general state of the art which is not priority date and not in conflict with the application but cited to "A" understand the principle or theory underlying the invention considered to be of particular relevance document of particular relevance; the claimed invention cannot be "E" earlier document but published on or after the international filing considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is step when the document is taken alone "L" document of particular relevance; the claimed invention cannot be cited to establish the publication date of another citation or other considered to involve an inventive step when the document is special reason (as specified) combined with one or more other such documents, such document referring to an oral disclosure, use, exhibition or other "O" combination being obvious to a person skilled in the art document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 17 September, 2002 (17.09.02) 02 September, 2002 (02.09.02) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telephone No. Facsimile No.

International application No.
PCT/JP02/06405

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	WO 99/24060 A1 (Mayo Foundation for Medical Education and Research), 20 May, 1999 (20.05.99), & EP 1028745 A & JP 2001-522811 A	74,75
Y	WO 97/41884 A1 (Pharma Pacific PTY. Ltd.), 13 November, 1997 (13.11.97), & EP 906119 A & US 5997858 A & JP 12-505478 A	74,75
P,X	WO 01/47883 A1 (Japan Tobacco Inc.), 05 July, 2001 (05.07.01), & EP 1162196 A1 & JP 2001-247550 A	1-75,82-87
P,X	WO 02/04425 A2 (Boehringer Ingelheim Ltd.), 17 January, 2002 (17.01.02), & US 2002065418 A	1-75,82-87
A	WO 96/07646 A1 (Wellcome Foundation Ltd.), 14 March, 1996 (14.03.96), & US 5534535 A & EP 779885 A1 & JP 10-505092 A	1-75,82-87
A	WO 97/25316 A1 (Glaxo Group Ltd.) 17 July, 1997 (17.07.97), & EP 886635 A1 & JP 2000-503017 A & US 5998398 A	1-75,82-87
	·	
		-19

International application No.
PCT/JP02/06405

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
 1. X Claims Nos.: 76-81 because they relate to subject matter not required to be searched by this Authority, namely: Claims 76 to 81 pertain to methods for treatment of the human body by therapy and thus relate to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iV) of the Regulations under the PCT, to search. 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
2. [7] Chima Naga
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Since the invention as set forth in claim 71 and the inventions as set forth in claims 72 and 73 relate to intermediates in different parts of the invention as set forth in claim 29, these inventions are not regarded as having a common technical feature.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

International application No.
PCT/JP02/06405

Claims 1 to 5, 11 to 28, 74, 75 and 82 to 87 involve a great number of compounds in the scopes thereof. However, only parts of the claimed compounds are supported by the description in the meaning as defined in PCT Article 6 and disclosed therein in the meaning as defined in PCT Article 5.

Such being the case, this search has been made on the parts supported by the description and disclosed therein, i.e., the compounds as set forth in claims 6 to 10 and 29 to 73.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ A61K31/4184, 31/4439, 31/42, 31/4523, 31/496, 31/55, 3 1/427, 31/506, 31/437, C07D235/18, 235/30, 409/12, 401/12, 413/12, 401/04, 403/12, 417/12, 405/12, 471/04, A61P31/12, 1/16, 43/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ A61K31/4184, 31/4439, 31/42, 31/4523, 31/496, 31/55, 3 1/427, 31/506, 31/437, C07D235/18, 235/30, 409/12, 401/12, 413/12, 401/04, 403/12, 417/12, 405/12, 471/04, A61P31/12, 1/16, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1940-1992年

日本国公開実用新案公報

1971-1992年

日本国登録実用新案公報

1994-1996年

日本国実用新案登録公報

1996-2002年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN) , REGISTRY (STN)

C. 関連すると認められる文献

10.	りと思いるうなのの人は、	
引用文献の	コ田女母々 Bが一切の体示が関連するしまけ、その関連する笹町の幸云	関連する 請求の範囲の番号
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	明みの型四の音点
X Y A	JP 06-025182 A(鐘紡株式会社)1994.02.01 (ファミリーなし)	86, 87 74, 75 1–73, 82–85
X Y A	EP 507650 A1(Synthelabo S. A.)1992.10.07 & JP 05-112563 A2 & US 5280030 A	86, 87 74, 75 1–73, 82–85

X C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

02.09.02

国際調査報告の発送日 17.09.02

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 田村 聖子 <u>4</u>C 9051

電話番号 03-3581-1101 内線 3452

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y A	EP 10063 A2(Ciba-Geigy AG.)1980.04.16 & JP 55-049374 A	86, 87 74, 75 1–73, 82–85
X Y A	Kataev, V. A. et. al., Preparation and immunomodulating eff ect of (1-thietanyl-3) benzimidazoles., Khimiko-Farmatsevtich eskii Zhurnal, Vol. 30, No. 7(1996) P. 22-24	86, 87 74, 75 1–73, 82–85
. У	WO 99/24060 A1 (MAYO FOUNDATION for MEDICAL EDUCATION and RE SEARCH) 1999.05.20 & EP 1028745 A & JP 2001-522811 A	74, 75
Y	WO 97/41884 A1(PHARMA PACIFIC PTY. LTD.)1997.11.13 & EP 906119 A & US 5997858 A & JP 12-505478 A	74, 75
PX	WO 01/47883 A1(Japan Tobacco Inc.)2001.07.05 & EP 1162196 A1 & JP 2001-247550 A	1-75, 82-87
PX	WO 02/04425 A2 (Boehringer Ingelheim Ltd.) 2002.01.17 & US 2002065418 A	1-75, 82-87
A	WO 96/07646 A1 (Wellcome Foundation Limited) 1996.03.14 & US 5534535 A & EP 779885 A1 & JP 10-505092 A	1-75, 82-87
A	WO 97/25316 A1(Glaxo Group Ltd.)1997.07.17 & EP 886635 A1 & JP 2000-503017 A & US 5998398 A	1-75, 82-87
		*

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)			
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。				
1. X	請求の範囲 <u>76-81</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、			
	請求の範囲 $76\sim81$ は、治療による人体の処置方法に関するものであって、PCT第 17 条(2)(a)(i)及びPCT規則 39.1 (i V)の規定により、この国際調査機関が国際調査を行うことを要しない対象に係るものである。			
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、			
3. 🗌	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。			
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)			
次に过	とべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。			
9 K	情求の範囲71に記載の発明と、請求の範囲72及び73に記載の発明は、請求の範囲2 に記載の発明の異なる部分の中間体にかかるものであるから、両者は、技術的特徴を共有 らものとは認められない。			
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。			
2. X	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。			
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。			
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。 			
追加調查	至手数料の異議の申立てに関する注意			
Ę	追加調査手数料の納付と共に出願人から異議申立てがあった。			
	追加調査手数料の納付と共に出願人から異議申立てがなかった。			

請求の範囲 $1\sim5$ 、 $11\sim28$ 、74、75、 $82\sim87$ は、非常に多数の化合物を包含している。しかしながら、PCT6条の意味において明細書に裏付けられ、また、PCT5条の意味において開示されているのは、クレームされた化合物のごくわずかな部分にすぎない。

よって、調査は、明細書に裏付けられ、開示されている部分、すなわち、請求の範囲 $6 \sim 10$ 、29 ~ 73 に記載された化合物に関して行った。