1 Beispiele

1.0.1 Mathezeichen fett

$$\mathbf{B} = B(r)\hat{\phi} = \begin{cases} \frac{\mu_0 Ir}{2\pi q^2} & r < a \\ \frac{\mu_0 I}{2\pi r} & r \ge a \end{cases}$$

1.1 cases

1.1.1 kompakt

$$\sum_{n=0}^{\infty} a_n x^n \text{ Es sei } \lim_{n \to \infty} \sqrt[n]{|a_n|} = \beta \Rightarrow \begin{cases} \beta = 0 & \text{absolut Konvergent für alle } x \in \mathbb{R} \\ \beta > 0 & fr \begin{cases} \beta = 0 : & \text{absolut konvergent für alle } x \in \mathbb{R} \\ |x| > \frac{1}{\beta} : & \text{divergent } \\ |x| = \frac{1}{\beta} : & \text{keine Aussage möglich} \end{cases}$$

$$\beta = \pm \infty : \text{divergent ausser für } x = 0$$

1.1.2 als aligned

$$D = \left(\frac{a_1}{2}\right)^2 - a_0 = \begin{cases} D > 0: & \lambda_{1,2} = -\frac{a_1}{2} \pm \sqrt{\left(\frac{a_1}{2}\right)^2 - a_0} & \in \mathbb{R} & \text{starke D\"{a}mpfung} \\ D = 0: & \lambda = -\frac{a_1}{2} & \in \mathbb{R} & \text{aperiodischer Grenzfall} \\ D < 0: & \lambda_{1,2} = -\frac{a_1}{2} \pm j\sqrt{a_0 - \left(\frac{a_1}{2}\right)^2} & \in \mathbb{C} \backslash \mathbb{R} & \text{schwache D\"{a}mpfung} \ / \ \text{Schwingfall} \end{cases}$$

1.1.3 Links rechts Klammer

$$\operatorname{wenn} \left\{ \begin{array}{l} -f(x) \text{ auf dem Intervall } [1,\infty) \text{ definiert} \\ (\text{ bzw. } [k,\infty)) \\ -f(x) \geq 0 \\ -f(x) \text{ monoton fallend} \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} \int\limits_{1}^{\infty} f(x) dx \text{ konvergent} \Leftrightarrow \text{ Reihe konvergent} \\ \int\limits_{1}^{\infty} f(x) dx \text{ divergent} \Leftrightarrow \text{ Reihe divergent} \end{array} \right\}$$

1.1.4 schöne Darstellung

$$\begin{cases} T & m=n=1\\ \frac{T}{2} & m=n>0\\ 0 & m\neq n \end{cases}$$

1.2 Formeln nach Zeichen ausrichten, zB: =

$$y' = f\left(\frac{y}{x}\right) \qquad | \text{Substitution:} \quad z = \frac{y}{x} \iff y = z \cdot x \quad (x \neq 0)$$

$$y' = f(z) \qquad | \text{differenzieren:} \quad y' = z + z' \cdot x$$

$$y' = z + z' \cdot x \qquad | y' = f(z)$$

$$f(z) = z + z' \cdot x \qquad | \text{umformen}$$

$$z' = (f(z) - z) \cdot \frac{1}{x} \implies \text{separiert!} \quad \text{Anfangsbedingungen:} \quad z_o = \frac{y_0}{x_0}$$

1.3 compactenum

Im Gegensatz zu enumerate und itemize (siehe: Latex-Einführung) ist der Abstand kleiner und perfekt für platzsparende Zusammenfassungen.

 \rightarrow usepackage: paralist

1.3.1 Aufzählung

- 1. Homogene DGL lösen: g(x) = 0 setzen \rightarrow ergibt Y_H
- 2. Anfangsbedingungen in Hom. DGL einsetzen. Wenn möglich: $x_0 = 0$
 - $y_H(x_0) = 0$
 $y'_H(x_0) = 1$

- 3. A, B bestimmen
- 4. Einsetzen der Hom. Glg. in Faltungsintegral $\Rightarrow y_P(x) = \int_{x_o}^x y_H(x+x_0-t) \cdot g(t) dt$
- $5. Y = y_H + y_P$

1.3.2 Liste

TODO

1.4 minipages

minipages sind in kurzen Formelsammlungen zu bevorzugen. Aufgrund der möglichen Befehlen und der Platzierung. Minipages dürfen <u>keine</u> Abstände zwischen sich haben!!!

1.5 ohne Linien

$$A^t A \vec{x} = A^t \vec{b} \quad \Rightarrow \quad \vec{x} = \left(A^t A\right)^{-1} A^t \vec{b}$$

1.6 mit Linien

$$A^t A \vec{x} = A^t \vec{b} \quad \Rightarrow \quad \vec{x} = (A^t A)^{-1} A^t \vec{b}$$

1.7 Tabellen

benutze: Tablesgenerator

oder

den Tabellen-Assistenten von TexStudio

1.8 weitere Mathebefehle

benutze: Mathpix

1.9 PDF einbinden

1.9.1 Anhang

1 Abstände in LATEX

1.1 Abstände im Text in \LaTeX

horizontale Abstände in LaTeX (Text)

Name	Größe	Befehl	Beispiel
Leerzeichen	flexibel		Wort $1 \rightarrow \leftarrow \text{Wort } 2$
no break space	6/18 em	\nobreakspace	Wort $1 \to \leftarrow$ Wort 2
	6/18 em	"\"	Wort $1 \to \leftarrow$ Wort 2
1em space	1em		Wort $1 \rightarrow \leftarrow \text{Wort } 2$
2em space	2em	\qquad	Wort $1 \rightarrow \qquad \leftarrow \text{Wort } 2$
kleiner Abstand	$3/18\mathrm{em}$	١,	Wort $1 \to \leftarrow$ Wort 2
eigene Abstand	flexibel	\hspace{1cm}	Wort $1 \rightarrow \leftarrow \text{Wort } 2$
	bis Zeilenende	\dotfill \hfill \hrulefill	Wort 1

horizontale Abstände in LaTeX (Text)

Name	Größe	Befehl			
Kleiner Abstand	$3pt^1$	\smallskip			
Mittlerer Abstand	$6 \mathrm{pt}^1$	\medskip			
Großer Abstand	$12\mathrm{pt}^1$	\bigskip			
eigener Abstand	flexibel	\parskip			
eigene Abstand	flexibel	<pre>\vspace{Massangabe}</pre>			

¹ wird durch die Dokumentklasse festgelegt

1.2 Abstände im Mathemodus in \LaTeX

Abstände im Mathemodus in LATEX

Name	Größe	Befehle	Beispiel
normaler Abstand			Wort $1 \rightarrow \leftarrow \text{Wort } 2$
kleiner Abstand	$3/18\mathrm{em}$	١,	Wort $1 \rightarrow \leftarrow$ Wort 2
mittlerer Abstand	$4/18\mathrm{em}$	\:	Wort $1 \to \leftarrow$ Wort 2
großer Abstand	$5/18\mathrm{em}$	\;	Wort $1 \to \leftarrow$ Wort 2
0.5em Abstand	$0.5\mathrm{em}$	\enspace	Wort $1 \to \leftarrow$ Wort 2
1em Abstand	1em		Wort $1 \rightarrow \leftarrow \text{Wort } 2$
2em Abstand	2em	\qquad	Wort $1 \rightarrow \qquad \leftarrow \text{Wort } 2$
eigener Abstand	18mu = 1em	$\verb \mspace{18mu} ^2$	Wort $1 \rightarrow \leftarrow \text{Wort } 2$
eigener Abstand		\hspace{1cm}	Wort $1 \rightarrow \leftarrow \text{Wort } 2$

negative Abstände im Mathemodus in $\mathrm{IA\!\!^A} T_{\mathrm{E}} X$

Name	Größe	Befehl	Beispiel
kleiner negativer Abstand	-3/18em	\!	Wort $1 \longrightarrow Wort 2$
mittlerer negativer Abstand	-4/18em	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Wort 1 \longrightarrow Wort 2
großer negativer Abstand	-5/18em	\negthickspace^2	Wort 1 \longrightarrow Wort 2
eigener negativer Abstand	18mu = 1em	\mspace{-18mu}	Wort $1 \leftrightarrow Wort 2$
eigener negativer Abstand		\hspace{-1cm}	Wort Wort 2

 $\label{eq:Quelle:http://www.latex-kurs.de} Quelle: \ http://www.latex-kurs.de$

² benötigt $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ - \mathbb{P}^{1} EX (amsmath.sty)