

2013 年全国硕士研究生入学统一考试 数学二试题

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答题纸指定位置上.

- (1) 设 $\cos x 1 = x \sin \alpha(x)$, 其中 $|\alpha(x)| < \frac{\pi}{2}$, 则当 $x \to 0$ 时, $\alpha(x)$ 是(
- (A) 比x 高阶的无穷小

- (B) 比x 低阶的无穷小
- (C) 与x 同阶但不等价的无穷小
- (D) 与x等价的无穷小
- (2) 设函数 y = f(x) 由方程 $\cos xy + \ln y x = 1$ 确定,则 $\lim_{n \to \infty} n \left| f(\frac{2}{n}) 1 \right| = ($)

- (3) 设函数 $f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ 2, & \pi \le x \le 2\pi \end{cases}$, $F(x) = \int_0^x f(t)dt$, 则 ()
- (A) $x = \pi$ 是函数 F(x) 的跳跃间断点 (B) $x = \pi$ 是函数 F(x) 的可去间断点

- (4) 设函数 $f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e \\ \frac{1}{x \ln^{\alpha+1} x}, & x \ge e \end{cases}$ (A) $\alpha < -2$ (B) $\alpha > 2$ (C) $-2 < \alpha$ (S) $\frac{1}{x}$

- (A) $\alpha < -2$ (B) $\alpha > 2$ (C) $-2 < \alpha < 0$ (D) $0 < \alpha < 2$ (5) 设 $z = \frac{y}{x} f(xy)$, 其中函数 f 可微,则 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = ($

- (A) 2yf'(xy) (B) -2yf'(xy) (C) $\frac{2}{x}f(xy)$ (D) $-\frac{2}{x}f(xy)$
- (6) 设 D_k 是圆域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 在第k象限的部分,记 $I_k = \iint_D (y-x) dx dy (k = 1,2,3,4)$,则
- ()
- (A) $I_1 > 0$ (B) $I_2 > 0$ (C) $I_3 > 0$ (D) $I_4 > 0$
- (7) 设矩阵 A,B,C 均为 n 阶矩阵, 若 AB = C, 且B 可逆, 则()
- (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价
- (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价
- (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价
- (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价

(8) 矩阵
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为

(A)
$$a = 0, b = 2$$

- (B) a=0,b为任意常数
- (C) a = 2, b = 0
- (D) a = 2, b为任意常数
- 二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9)
$$\lim_{x\to 0} \left[2 - \frac{\ln(1+x)}{x}\right]^{\frac{1}{x}}$$
_____.

(10) 设函数 $f(x) = \int_{-1}^{x} \sqrt{1-e^{t}} dt$,则 y = f(x) 的反函数 $x = f^{-1}(y)$ 在 y = 0 处的导数

$$\frac{dx}{dy}\Big|_{y=0} = \underline{\hspace{1cm}}$$

- (11) 设封闭曲线 L 的极坐标方程为 $r = \cos 3\theta$ ($-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}$),则 L 所围成的平面图形的面积为
- (12) 曲线 $\begin{cases} x = \arctan t \\ y = \ln \sqrt{1+t^2} \end{cases}$ 上对应于 t = 1的点处的法线方程为_____.
- (13) 已知 $y_1 = e^{3x} xe^{2x}$, $y_2 = e^x xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解,该方程满足条件 $y\big|_{x=0} = 0$ $y'\big|_{x=0} = 1$ 的解为 $y = \underline{\hspace{1cm}}$.
- (14)设 $A=(a_{ij})$ 是三阶非零矩阵, |A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式,若 $a_{ij}+A_{ij}=0 \\ (i,j=1,2,3),则 \\ |A|=\underline{\qquad}$

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x = ax^n$ 为等价无穷小,求n = a的值。

(16) (本题满分10分)

设D是由曲线 $y=x^{\frac{1}{3}}$,直线x=a(a>0)及x轴所围成的平面图形, V_x,V_y 分别是D绕x轴,y轴旋转一周所得旋转体的体积,若 $V_y=10V_x$,求a的值。

(17) (本题满分10分)

设平面内区域 D 由直线 x = 3y, y = 3x 及 x + y = 8 围成.计算 $\iint_D x^2 dx dy$ 。

(18) (本题满分10分)

设奇函数 f(x) 在[-1,1]上具有二阶导数,且 f(1)=1.证明:

(I) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$; (II) 存在 $h\hat{1}$ (-1,1), 使得 $f''(\eta) + f'(\eta) = 1$ 。

(19) (本题满分11分)

求曲线 $x^3 - xy + y^3 = 1(x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

(20)(本题满分11分)

设函数
$$f(x) = \ln x + \frac{1}{x}$$
,

- (I) 求f(x)的最小值
- (II) 设数列 $\{x_n\}$ 满足 $\ln x_n + \frac{1}{x_{n+1}} < 1$, 证明 $\lim_{n \to \infty} x_n$ 存在,并求此极限.

设曲线
$$L$$
 的方程为 $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$ $(1 \le x \le e)$

- (1) 求 L 的弧长;
- (2) 设D是由曲线L,直线x=1, x=e及x轴所围平面图形,求D的形心的横坐标。

(22)(本题满分11分)

设
$$A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 a,b 为何值时,存在矩阵 C 使得 $AC - CA = B$,并求所有矩阵 C 。

(23)(本题满分11分)

设二次型
$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$
, 记 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\beta = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ 。

- (I) 证明二次型 f 对应的矩阵为 $2aa^T + bb^T$;
- (II) 若lpha,eta 正交且均为单位向量,证明二次型 f 在正交变化下的标准形为二次型 $2y_1^2+y_2^2$ 。