

Simulating COVID-19 Spread Using a Markov Random Walk Model

Junyan He, Sam Aguiar, Albert Wiryawan

Team 1

Fall 2020
PHYS 466 Final Project Presentation

December 18, 2020

Background and Motivation

- SARS-CoV-2, or Covid-19, has caused a global Pandemic since late 2019
- Ever since the Pandemic started, numerous research efforts have been devoted to studying the transmission dynamics
- Many models have been developed to study transmission dynamics:
 - Deterministic: Using ODEs, such as the SIR model
 - Probabilistic: Using Markov random walk model
- Many government guidelines have been posted:
 - wearing mask, social distancing, and limiting large gathering
 - Some have questioned the effectiveness of such measures
- In this study, we use a Markov random walk model to investigate the effects of the three measures mentioned above

Covid-19 is still spreading throughout the U.S.

Method

Initial condition:

- Assign agents to random grid points
- Move agent positions without transmission
- Sample walking direction from a uniform distribution, distance from a Gaussian distribution
- Check for overlap, or enforce social distancing
- Randomly select a list of initial infectors and mask wearers

Social distancing:

- Obtain minimal distance to infected/exposed agents via KD tree
- If no social distancing, reject the move if min dis. < 1.5ft
- If social distancing, reject the move if min dis. < 6ft
- Otherwise, accept the move with probability $P_{acc} = \exp\left(-\frac{d_m}{2}\right)$
- Top: no social distancing, Bottom: social distancing

Method

Holding gatherings:

- Accomplished by a special move
- Agent is to join the gathering if distance to host is less than a user tolerance
- Agent coordinates updated as $X_{new} = X_{center} + \Delta d$
- ullet Δd is sampled from a Gaussian distribution, with maximum displacement limited
- No social distancing enforced during gatherings
- Top: Initial condition, Bottom: After 10 steps

Susceptible to exposed:

- Probabilistic, based on nearest distance to exposed agent
- Minimal distance to exposed/infected agent is obtained from KD tree
- Probability of being exposed is calculated as:
- $P_{exposed} = C_{mask}P_0[1 tanh(\frac{d_c}{d_{ref}})]$
- C_{mask} describes how much safer you will be with mask on
- ullet $P_0,\,d_{ref}$ are to be calibrated to fit available data

Results: Mask wearing percentage

- Simulations were repeated for 1000 runs, each run consisted of 150 time steps
- Important metrics
 - Infection fatality rate, $IFR = \frac{Confirmed\ Deaths}{Confirmed\ Cases}$
 - Population normalized cases, $PNC = \frac{Total \ Cases}{\# \ of \ Agents}$
- Higher mask wearing rate means:
 - Lower PNC
 - Higher IFR (What????)
 - PNC decreases faster than the increase in IFR, so the population normalized death count, PNC*IFR, is lowered

Results: Mask wearing percentage

- Higher mask wearing rate means:
 - More agents remain healthy at steady state
 - Fewer exposed cases at peak
 - Lower quarantine and death rate
- All these metrics indicate that wearing masks is an effective way to slow down virus transmission

Results: Social distancing

Table 1. Effect of Extreme Social Distancing on IFR and PNC						
Social Distancing	IFR (%)	IFR SD	PNC (%)	PNC SD		
FALSE	1.02	3.54	6.25	3.78		
TRUE	~0*	~0*	0.39	0.55		

- Simulations were repeated for 3000 runs, each run consisted of 150 time steps
- Social distancing means:
 - Lower IFR (fewer deaths)
 - Much lower PNC (fewer cases)

*Values were less than 10⁻²%

Results: Social distancing

- Social distancing means:
 - Much, much more agents remain healthy at steady state
 - Fewer exposed cases at peak
 - The infected curve is efficiently flattened
 - Lower quarantine and death rate
- Social distancing works as an effective measure to slow down the spread and flatten the curve!

Results: Large social gatherings

Table 2. Effect of Gatherings on IFR and PNC						
Gatherings	IFR (%)	IFR SD	PNC (%)	PNC SD		
FALSE	1.44	5.72	6.39	4.28		
TRUE	0.36	1.1	39.8	22.85		

- Simulations were repeated for 3000 runs, each run consisted of 250 time steps
- One gathering was introduced
- Having large gatherings means:
 - Lower IFR (Good thing??)
 - Much higher PNC
 - Overall, leads to more deaths

Results: Large social gatherings

- Having large gatherings means:
 - Much, much more agents fall sick
 - First peak of exposed cases is similar, but having gathering leads to a second peak
 - The infected curve fails to decrease after initial peak
 - Quarantine nearly triples
 - Almost double the death rate
- Having large gatherings without obeying social distancing rules can very likely lead to super-spreader events!

Conclusion

- Implemented a Markov random walk model to simulate transmission dynamics of Covid-19
- Social distancing introduced through a distance-based rejection technique, large gatherings emulated through a special move function
- Probability of getting exposed is distance-based, with distance calculated by a KD tree
- Mask wearing slow downs the transmission, leads to more healthy agents and fewer deaths
- Social distancing is effective in flattening the curve, and lowering the death rate
- Having large gatherings without social distancing leads to more cases and possible even a second peak in exposed cases

Thank you!

Questions?

