Computer Networks COL 334/672

Software Defined Networking

Sem 1, 2025-26

Traditional Routers

Per-router distributed control plane

Limitation: Traffic management is challenging with a distributed control plane

Traffic engineering: difficult with traditional routing

Q: what if network operator wants u-to-z traffic to flow along uvwz, rather than uxyz?

<u>A:</u> need to re-define link weights so traffic routing algorithm computes routes accordingly (or need a new routing algorithm)!

Indirect control: Changing weights instead of paths

Traffic engineering: difficult with traditional routing

<u>Q:</u> what if network operator wants to split u-to-z traffic along uvwz <u>and</u> uxyz (load balancing)? <u>A:</u> can't do it (or need a new routing algorithm)

Timescales

	Data	Control
Time- scale	Packet (nsec)	Event (10 msec to sec)
Tasks	Forwarding, buffering, filtering, scheduling	Routing, circuit set-up
Location	Line-card hardware	Router software

Fundamentally different timescales!

Software Defined Networks

Software Defined Networks

(Logically) Centralized Controller

A Helpful Analogy: Computer Systems

(From Nick McKeown's talk "Making SDN Work" at the Open Networking Summit, April 2012)

Network Elements

Vertically integrated Closed, proprietary Slow innovation

Horizontal
Open interfaces
Rapid innovation

How does such a software-defined network look?

Software-defined Network Architecture

OpenFlow: Most Popular Southbound API

Flow table abstraction

- flow: defined by header field values (in link-, network-, transport-layer fields)
- generalized forwarding: simple packet-handling rules
 - match: pattern values in packet header fields
 - actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - priority: disambiguate overlapping patterns
 - counters: #bytes and #packets

OpenFlow: flow table entries

OpenFlow: examples

Destination-based forwarding:

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)

Block (do not forward) all datagrams sent by host 128.119.1.1

OpenFlow: examples

Layer 2 destination-based forwarding:

Switch	MAC	MAC	Eth	VLAN	VLAN	IP	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Pri	Src	Dst	Prot	ToS	s-port	d-port	
*	*	22:A7:23: 11:E1:02	*	*	*	*	*	*	*	*	*	port3

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to output port 3

OpenFlow Messages

- TCP used to exchange messages
 - optional encryption
- Three classes of OpenFlow messages:
 - controller-to-switch
 - asynchronous (switch to controller)
 - symmetric (misc.)
- distinct from OpenFlow API
 - API used to specify generalized forwarding actions

OpenFlow Controller

OpenFlow: controller-to-switch messages

Key controller-to-switch messages

- *features:* controller queries switch features, switch replies
- configure: controller queries/sets switch configuration parameters
- modify-state: add, delete, modify flow entries in the OpenFlow tables
- packet-out: controller can send this packet out of specific switch port

OpenFlow Controller

OpenFlow: switch-to-controller messages

Key switch-to-controller messages

- packet-in: transfer packet (and its control) to controller. See packet-out message from controller
- flow-removed: flow table entry deleted at switch
- port status: inform controller of a change on a port.

OpenFlow Controller

