

Identification of High Value Prospects with a Data-Driven Model

Branata Kurniawan (34534388) Ng Zhi Hui (34557319)

AGENDA

- 1. Understanding the problems
- 2. Data and Knowledge Acquisition
- 3. Machine Learning Algorithms
- 4. System Development Journey
- 5. Revision and Evaluation of the System
- 6. Integration and Maintenance Plan

Understanding the problems

- The COVID-19 pandemic has significantly impacted consumer behaviour, with many <u>customers shifting their purchasing habits and priorities</u>
 - Creating new opportunities and challenges for businesses looking to engage with their customers effectively
- Top spenders are generally determined by business organisations through **domain expert knowledge** of the salesman
 - Introduce bias into the selection process

Here are the data that we are using to build our model:

- Customer Acquisition (Demographic Information)
 - o Age
 - o City
 - O Income
- Customer's Spending (Transaction Information)
 - o Spending Period
 - Purchase Type
 - O Amount
- Customer's Repayment
 - Repayment Period
 - Repayment Amount

Data Preparation

Data Cleaning

• Identify missing, duplicate, outliers data & standardization

Data Processing

- Creating new variables
 - O Average Spending
 - O Average Repayment
 - Repayment Rate
 - Credit Spending Ratio (Spent : Credit)

Machine Learning Algorithms

Based on the data that we acquired, we will be building the model using machine learning algorithms, which are:

- Logistic Regression algorithm
- Decision Tree algorithm
- Random Forest algorithm

System Development Journey

1. Prototype

This include choosing the programming language, preprocess the data and building the working prototype.

2. Construction

Using the prototype as the base, we explored different ways to improve the model. (e.g. introduce more performance metric, pruning, and also estimation performance boost).

4. Revision & Evaluation

Lastly, using the output generated, we choose the best model and evaluate what can be better improve.

3. Testing

In this phase, we tested the complete system to make sure that it meet the requirements.

System Evaluation and Enhancement

During the evaluation, we concluded that Random Forest model by considering:

- 1) Accuracy
- 2) Area Under Curve (AUC)
- 3) Minimum Squared Error (MSE)
- 4) Precision Rate
- 5) Recall Rate

Integration and Maintenance Plan

Integration Plan

Using the generated model, here are the our plans for integration

- [Recommended]
 To integrate the model through an API (Application Programming Interface)
- Integrate the model into operation process by creating an automated workflow

API Integration

Workflow Automation

Maintenance Plan

O1 Set up an alerting system to monitor the model's performance

Retrain the model regularly with new data

Track the model's performance over time

Thank you for your attention

P & A

