Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

10 Febbraio 2017

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	14	
problema 2	16	
totale	30	

1. (a) Si definisca la composizione prodotto × di due automi e di due linguaggi. Qual e' la relazione tra il linguaggio della composizione prodotto di due automi e i linguaggi degli automi composti ?

Traccia di soluzione.

Si rimanda alle dispense.

$$L(G_1 \times G_2) = L(G_1) \cap L(G_2)$$

 $L_m(G_1 \times G_2) = L_m(G_1) \cap L_m(G_2)$

(b) Si definisca la composizione in parallelo || di due automi e di due linguaggi.

Qual e' la relazione tra il linguaggio della composizione in parallelo di due automi e i linguaggi degli automi composti ?

Traccia di soluzione.

Si rimanda alle dispense.

$$L(G_1 \parallel G_2) = P_1^{-1}[L(G_1)] \cap P_2^{-1}[L(G_2)]$$

$$L_m(G_1 \parallel G_2) = P_1^{-1}[L_m(G_1)] \cap P_2^{-1}[L_m(G_2)]$$

- (c) Si costruisca l'automa G con i seguenti passi:
 - i. Si costruiscano gli automi G_1 su $E_1=\{a_1,b_1\}$ e G_2 su $E_2=\{a_2,b_2\}$ che generano rispettivamente i linguaggi $\overline{(a_1b_1)^\star}$ e $\overline{(a_2b_2)^\star}$.
 - ii. Si costruisca l'automa $G=G_1 \parallel G_2$ che e' la composizione in parallelo dei due automi G_1 e G_2 .

Traccia di soluzione.

Si veda l'allegato.

(d) i. Si costruisca l'automa $\hat{G} = G_1 \times G_2$ che e' la composizione prodotto dei due automi G_1 e G_2 .

Traccia di soluzione.

Poiche'
$$E_1 \cap E_2 = \emptyset$$
, $L(G_1 \times G_2 = \{\epsilon\}.$

ii. Si modifichino i due automi G_1 e G_2 precedenti per ottenere i due automi \tilde{G}_1 e \tilde{G}_2 tali che $\tilde{G}_1 \times \tilde{G}_2 = G_1 \parallel G_2 = G$, cioe' ottenendo G mediante la composizione prodotto invece che mediante la composizione in parallelo.

Traccia di soluzione.

Si veda l'allegato.

Si noti che gli alfabeti degli automi modificati diventano $\tilde{E}_1 = \tilde{E}_2 = \{a_1, b_1, a_2, b_2\}.$

- 2. Si consideri l'impianto il cui automa G e' stato ricavato al <u>punto precedente</u> con $\Sigma = \{a_1, b_1, a_2, b_2\}$, $\Sigma_{uc} = \{a_1, b_1\}$, $M = L(G) = \overline{(a_1b_1)^*} \parallel \overline{(a_2b_2)^*}$ (dove \parallel e' l'operatore di composizione in parallelo).
 - (a) Si supponga che la specifica (il linguaggio generato desiderato) sia espressa con la seguente definizione in linguaggio naturale: "Dopo un evento b_1 , b_1 non puo' presentarsi di nuovo prima che b_2 si presenti almeno una volta". Si costruiscano l'espressione regolare e l'automa H_{spec} che accettano il linguaggio generato desiderato.

Traccia di soluzione.

Si veda l'allegato.

Oltre alla soluzione che definisce H_{spec} sull'alfabeto $\{b_1,b_2\}$, e' accettabile anche la soluzione che definisce H_{spec} sull'alfabeto $\{a_1,a_2,b_1,b_2\}$. Nel secondo caso si aggiungono ai due stati degli auto-anelli sotto gli eventi a_1,a_2 .

(b) Si costruisca l'automa composto $H=H_{spec}\parallel G.$

Si costruisca l'automa composto $\hat{H} = H_{spec} \times G$.

Qual e' la relazione tra L(H) e $L(\hat{H})$?

Traccia di soluzione.

Si veda l'allegato.

Si noti che se si e' scelto come H_{spec} la versione sull'alfabeto $\{a_1,a_2,b_1,b_2\}$, si ha che $\hat{H}=H_{spec}\times G=H_{spec}\parallel G=H.$

- (c) Si enunci formalmente la definizione di controllabilita' di un linguaggio e la si descriva intuitivamente a parole.
- (d) Usando la definizione, si verifichi se il linguaggio $K={\cal L}({\cal H})$ del nostro esempio e' controllabile.

Traccia di soluzione.

K = L(H) non e' controllabile.

Come controesempio, si consideri $s=a_1b_1a_1\in \overline{K}$ e $\sigma=b_1\in E_{uc}$. Si ha che $s\sigma=a_1b_1a_1b_1\in M,\not\in \overline{K}$.

(e) Si descriva la procedura per calcolare il sottolinguaggio controllabile supremo mediante l'algoritmo (chiamato "standard" nelle dispense) che rimuove stati dal prodotto $H \times G$ fino a convergenza dell'iterazione. Traccia di soluzione.

Si rimanda alle dispense.

(f) Si calcoli il sottolinguaggio controllabile supremo $K^{\uparrow C}=L(H)^{\uparrow C}$ usando l'algoritmo precedente.

Traccia di soluzione.

Si costruisce l'automa $H_0 = H \times G$, che nel nostro caso per costruzione e' isomorfo all automa H. Piu' precisamente i suoi stati sarebbero denominati ((A,0),0) in quanto prodotto dello stato (A,0) di H e dello stato (A,0) di (A,

Poi si eliminano stati e transizioni come segue:

- i. Si ottiene H_1 eliminando da H_0 gli stati (B, 1) e (B, 3) e transizioni relative (negli stati 1 e 3 di G e' attivo $b_1 \in E_{uc}$, che non e' attivo negli stati (B, 1) e (B, 3) di H_0).
- ii. Si ottiene H_2 eliminando da H_1 gli stati (B,0) e (B,2) (negli stati 0 e 2 di G e' attivo $a_1 \in E_{uc}$, che non e' attivo negli stati (B,0) e (B,2) di H_1).
- iii. Si ottiene H_3 eliminando da H_2 gli stati (A, 1) e (A, 3) e transizioni relative (negli stati 1 e 3 di G e' attivo $b_1 \in E_{uc}$, che non e' attivo negli stati (A, 1) e (A, 3) di H_2).
- iv. Si ottiene H_4 eliminando da H_3 gli stati (A,0) e (A,2) e transizioni relative (negli stati 0 e 2 di G e' attivo $a_1 \in E_{uc}$, che non e' attivo negli stati (A,0) e (A,2) di H_3).

Poiche' si e' eliminato lo stato iniziale dell'automa prodotto, si ha che $K^{\uparrow C}=L(H)^{\uparrow C}=\emptyset$, cioe' il sottolinguaggio controllabile supremo non contiene nessuna parola.