Содержание

Введение	5
1 Решение обыкновенных дифференциальных уравнений методами	· -
Эйлера и Рунге – Кутта	6
1.1 Ход работы	6
1.2 Содержание отчета	
1.3 Вопросы для допуска к выполнению работ	6
2 Методические указания к решению обыкновенных	
дифференциальных уравнений методами Эйлера и Рунге-Кутта	
2.1 Метод Эйлера	7
2.1.1 Пример ручного решения обыкновенного дифференциального	
уравнения (ОДУ) методом Эйлера.	
2.1.2 Пример решения обыкновенного дифференциального уравнения	
методом Эйлера с помощью электронной таблицы Excel	
2.1.3 Пример решения обыкновенного дифференциального уравнения	
методом Эйлера с помощью алгоритмического языка программирования	
Turbo Pascal	
2.1.3.1 Словесный алгоритм метода Эйлера	
2.1.3.2 Блок - схема алгоритм метода Эйлера	
2.1.3.3 Распечатка программы по методу Эйлера	
2.1.3.4 Результаты решения ОДУ методом Эйлера на ЭВМ	
2.2 Усовершенствованный метод Эйлера	15
2.2.1 Пример ручного решения обыкновенного дифференциального	
уравнения усовершенствованным методом Эйлера	
2.2.2 Пример решения обыкновенного дифференциального уравнения	I
усовершенствованным методом Эйлера с помощью электронной	4.0
габлицы Excel	18
2.2.3 Пример решения обыкновенного дифференциального уравнения	I
усовершенствованным методом Эйлера с помощью алгоритмического	20
языка программирования Turbo Pascal	
2.2.3.1 Словесный алгоритм усовершенствованного метода Эйлера	
2.2.3.2 Блок - схема алгоритма усовершенствованного метода Эйлера	22
2.2.3.3 Распечатка программы алгоритма усовершенствованного	22
метода Эйлера	23
2.2.3.4 Результаты решения ОДУ усовершенствованным методом	2.4
Эйлера на ЭВМ	
2.3 Метод Рунге-Кутта	24
2.3.1 Пример ручного решения обыкновенного дифференциального	2.6
уравнения методом Рунге-Кутта	
2.3.2 Пример решения обыкновенного дифференциального уравнения	
методом Рунге-Кутта с помощью электронной таблицы Excel	
2.3.3 Пример решения обыкновенного дифференциального уравнения	ł
методом Рунге-Кутта с помощью алгоритмического языка	22
программирования Turbo Pascal	32

2.3.3.1	Словесный алгоритм метода Рунге-Кутта	32
2.3.3.2	Блок - схема алгоритма метода Рунге-Кутта	34
2.3.3.3	Распечатка программы по методу Рунге-Кутта	35
2.3.3.4	Результаты решения ОДУ методом Рунге-Кутта на ЭВМ	36
3	Варианты заданий	36
3.1	Задание №1	36
3.2	Задание №2	38
3.3	Задание №3	39
4	Вопросы к защите лабораторной работы	41
Список	использованных источников	43

Введение

В данном методическом указании излагается краткий теоретический материал, алгоритмы и последовательность решения обыкновенных дифференциальных уравнений методами Эйлера и Рунге-Кутта с помощью персонального компьютера.

Методическое указание может быть использовано студентами очной и заочной формы обучения при изучении данной темы, которая есть в других дисциплинах, а также преподавателями этих дисциплин.

1 Решение обыкновенных дифференциальных уравнений методами Эйлера и Рунге - Кутта

Цель работы. Научиться решать обыкновенные дифференциальные уравнений методами Эйлера и Рунге - Кутта, разрабатывать блок схемы алгоритмов и программы приближенных методов для решения обыкновенных дифференциальных уравнений.

1.1 Ход работы

- 1) Изучить теоретический материал по данной теме;
- 2) Разработать блок схему алгоритма решения обыкновенного дифференциального уравнения для каждого метода;
 - 3) Составить программу;
 - 4) Выполнить программу на ПК;
 - 5) Оформить отчет.

1.2 Содержание отчета

- 1) Изучить теоретический материал по данной теме;
- 2) Выполнить решение ОДУ вручную для каждого метода;
- 3) Выполнить решение ОДУ с помощью электронной таблицы Excel для каждого метода;
 - 4) Составить словесный алгоритм для каждого метода;
- 5) Разработать блок схему алгоритма решения ОДУ для каждого метода;
 - 6) Составить программу для каждого метода;
 - 7) Выполнить программу на ПК;
 - 8) Оформить отчет.

1.3 Вопросы для допуска к выполнению работ

- 1) Какое уравнение называется дифференциальным?
- 2) Какое дифференциальное уравнение называется обыкновенным?
- 3) Какое дифференциальное уравнение называется дифференциальным уравнением в частных производных?
 - 4) Что называется порядком дифференциального уравнения?
- 5) Что является решением обыкновенного дифференциального уравнения?

- 6) Что является частным решением обыкновенного дифференциального уравнения?
 - 7) Сформулируйте задачу Коши.
- 8) Общая формула нахождения приближенного решения обыкновенного дифференциального уравнения.
- 9) Формула Эйлера для нахождения приближенного решения обыкновенного дифференциального уравнения.
 - 10) Геометрическая интерпретация формулы Эйлера.
- 11) Усовершенствованная формула Эйлера для нахождения приближенного решения обыкновенного дифференциального уравнения.
- 12) Формула Рунге-Кутта для нахождения приближенного решения обыкновенного дифференциального уравнения.

2 Методические указания к решению обыкновенных дифференциальных уравнений методами Эйлера и Рунге-Кутта

2.1 Метод Эйлера

Пусть дано дифференциальное уравнение первого порядка:

$$y'=f(x,y), (1)$$

с начальными условиями:

$$x=x_0, y(x_0)=y_0$$
, (2)

Требуется найти решение уравнения (1) на отрезке [a,b].

Разобьем отрезок [a,b] на n равных частей и получим последовательность $x_0, x_1, x_2, ..., x_n$, где $x_i = x_0 + ih$ (i = 0, 1, ..., n), а h = (b-a)/n шаг разбиения.

$$\int_{x_k}^{x_{k+1}} f(x,y) dx = \int_{x_k}^{x_{k+1}} y' dx = y(x) \Big|_{x_k}^{(x_{k+1})} = y(x_{k+1}) - y(x_k) = y_{k+1} - y_k$$

$$y_{k+1} = y_k + \int_{x_k}^{x_{r+1}} f(x, y) dx,$$
 (3)

Если в последнем интеграле подынтегральную функцию на участке $[x_k, x_{k+1}]$ принять постоянной и равной начальному значению в точке $x=x_k$, то получим:

$$\int_{x_k}^{x_{k+1}} f(x, y) dx = f(x_k, y_k) x \Big|_{x_k}^{x_{k+1}} = f(x_k, y_k) (x_{k+1} - x_k) = y'_k h$$

Тогда формула (3) примет вид:

$$y_{k+1}=y_k+y'_k h$$

Обозначим y_{k+1} - y_k = $\triangle y_k$, т.е. y'_k h = $\triangle y_k$, получим:

$$y_{k+1} = y_k + \Delta y_k , \qquad (4)$$

Продолжая этот процесс, и каждый раз принимая подынтегральную формулу на соответствующем участке постоянной и равной ее значению в начале отрезка, получим таблицу решений дифференциального уравнения на заданном отрезке [a,b]. Равенство (4) означает, что на отрезке $[x_k,x_{k+1}]$ интегральная кривая y=y(x) приближенно заменяется прямолинейным отрезком, выходящим из точки $M_{\kappa}(x_{\kappa},x_{\kappa+1})$ с угловым коэффициентом $f(x_k,y_k)$. В качестве приближения искомой интегральной кривой получим ломаную линию с вершинами в точках $M_0(x_0,y_0)$, $M_1(x_1,y_1)$, ..., $M_n(x_n,y_n)$.

Для геометрического построения ломаной Эйлера выберем полюс P(-1,0) и на оси ординат отложим отрезок $OA_0 = f(x_0 y_0)$ (рисунок 1).

Рисунок 1 - Ломаная Эйлера

Очевидно, угловой коэффициент луча PA_0 будет равен $f(x_0y_0)$, поэтому, чтобы получить первое звено ломаной Эйлера, достаточно из точки M_0 провести прямую M_0M_1 , параллельную лучу PA_0 , до пересечения с прямой $x=x_1$ в некоторой точке $M_1(x_1y_1)$.

Приняв точку $M_1(x_1y_1)$ за исходную, отказываем на оси ординат отрезок $OA_1 = f(x_1y_1)$ и через точку M_1 проводим прямую M_1 $M_2 /\!\!/ PA_1$ до пересечения с прямой $x = x_2$ и т.д.

Метод Эйлера является простейшим числовым методом интегрирования дифференциального уравнения.

Его недостатки:

- малая точность;
- систематическое накопление ошибок.

2.1.1 Пример ручного решения обыкновенного дифференциального уравнения (ОДУ) методом Эйлера

Проинтегрировать методом Эйлера дифференциальное уравнение $y'=x+cos(y/\sqrt{7})$ с начальным условием $x_0=0.9$, $y_0=1.7$ на отрезке [0.9;1.9], приняв h=0.1. Вычисления вести с четырьмя знаками после запятой.

Порядок выполнения ручного решения.

Найдем n по формуле n=(b-a)/h=(1.9-0.9)/0.1=10. Значит, i меняется от 0 до 10. Для удобства решение представим в виде таблицы 1.

- 1) Вычислим сначала $\sqrt{7} = 0.8367$;
- 2) В 1-ой строке, в 1-ом столбце запишем значение і равно 0;
- 3) Во 2-ом столбце запишем значение х_і равное 0.9;
- 4) В 3-ем столбце запишем значение у равное 1.7;
- 5) В 4-ом столбце запишем вычисление значения $y_i/0.8367$, т. е. содержимое 3-его столбца текущей строки разделим на 0.8367;
- 6) В 5-ом столбце запишем вычисление значения $cos(y_i/0.8367)$, т. е. вычислим значение cos от содержимого четвертого столбца этой же строки;
- 7) В 6-ом столбце запишем вычисление значения y'_i по формуле $y'_i=x_i+cos(y_i/0,8367)$, т. е. к содержимому 2-ого столбца этой строки прибавим содержимое 5-ого столбца этой строки;
- 8) В 7-ом столбце запишем вычисление значения $\Delta y_i = h^* y'_i$, т. е. значение h равное 0.1 умножим н содержимое 6-ого столбца;
- 9) Во 2-ой строке в 1-ом столбце запишем значение на 1 больше, чем в предыдущей строке этого столбца, т. е. i=i+1;
- 10) Во 2-ой строке в 2-ом столбце запишем значение x на 0.1 больше, чем в предыдущей строке этого столбца, т. е. x=x+0.1;
- 11) Во 2-ой строке в 3-ем столбце запишем вычисление значения $y_{i+1}=y_i+\Delta y_i$, т. е. к содержимому этого столбца из предыдущей строки прибавим содержимое из 7-ого столбца той же строки;
- 12) Затем повторить аналогичные действия, начиная с пункта 5 до тех пор, пока значения і не будет равно 10.

Таблица 1 - Результаты решения ОДУ методом Эйлера вручную

i	Xi	y _i	y _i /0,8367	$\cos(y_i/0.8367)$	$y'_{i} = x_{i} + \cos(y_{i} / \sqrt{7})$	dy=h*y' _I
0	0,9	1,7000	2,0318	-0,4448	0,4552	0,0455
1	1	1,7455	2,0862	-0,4929	0,5071	0,0507
2	1,1	1,7962	2,1468	-0,5447	0,5553	0,0555
3	1,2	1,8518	2,2132	-0,5991	0,6009	0,0601
4	1,3	1,9119	2,2850	-0,6550	0,6450	0,0645
5	1,4	1,9763	2,3621	-0,7113	0,6887	0,0689
6	1,5	2,0452	2,4444	-0,7666	0,7334	0,0733
7	1,6	2,1186	2,5320	-0,8199	0,7801	0,0780
8	1,7	2,1966	2,6253	-0,8696	0,8304	0,0830
9	1,8	2,2796	2,7245	-0,9143	0,8857	0,0886
10	1,9	2,3682	·			

2.1.2 Пример решения обыкновенного дифференциального уравнения методом Эйлера с помощью электронной таблицы Excel

Проинтегрировать методом Эйлера дифференциальное уравнение $y'=x+\cos(y/\sqrt{7})$ с начальным условием $x_0=0.9$, $y_0=1.7$ на отрезке [0.9;1.9], приняв h=0.1. Вычисления вести с четырьмя знаками после запятой.

Порядок выполнения решения задачи в Excel.

- 1) Запустить электронную таблицу Excel;
- 2) Установить курсор в ячейку A2 и ввести с клавиатуры *Проинтегрировать методом Эйлера дифференциальное* и нажать клавишу ↓ или щелкнуть мышкой по ячейки A3;
- 3) Ввести с клавиатуры *уравнение* $y'=x+cos(y/0,7^0,5)$ *с начальным условием* $x_0=0,9$, и нажать клавишу \downarrow или щелкнуть мышкой по ячейки A4;
- 4) Ввести с клавиатуры $y_0=1,7$, на отрезке [0,9;1,9] приняв h=0,1. Вычисления и нажать клавишу \downarrow или щелкнуть мышкой по ячейки A5;
- 5) Ввести с клавиатуры вести с четырьмя знаками после запятой и затем щелкнуть по ячейки А7;
- 6) Ввести с клавиатуры I и нажать клавишу \rightarrow , ввести с клавиатуры x_i и нажать клавишу \rightarrow , ввести с клавиатуры y_i и нажать клавишу \rightarrow , ввести с клавиатуры $y'_{i}=x_i+\cos(y_i/0,7^{\circ}0,5)$ и нажать клавишу \rightarrow , ввести с клавиатуры $dy_i=h^*y'_i$ и щелкнуть по ячейке A8;
 - 7) Ввести с клавиатуры θ и нажать клавишу Enter;
- 8) Щелкнуть по ячейке A8 и выполнить команду *Правка*, *Заполнить*, *Прогрессия*. В появившемся диалоговом окне *Прогрессия* выбрать *расположение по столбцам*, установить шаг равным I, предельное значение равным I0 и щелкнуть по кнопке OK;

- 9) Щелкнуть по ячейке B8, ввести с клавиатуры 0.9 и нажать клавишу Enter;
- 10) Щелкнуть по ячейке B8 и выполнить команду *Правка*, *Заполнить*, *Прогрессия*. В появившемся диалоговом окне *Прогрессия* выбрать *расположение по столбцам*, установить шаг равным 0,1, предельное значение равным 1,9 и щелкнуть по кнопке OK;
 - 11) Установить курсор в ячейку C8 и ввести с клавиатуры 1,7;
- 12) Щелкнуть по ячейке D8 и ввести с клавиатуры формулу $=B8+cos(C8/0,7^0,5)$ и нажать Enter;
- 13) Щелкнуть по ячейке E8 и ввести с клавиатуры формулу =0,1*D8 и нажать Enter;
- 14) Щелкнуть по ячейке С9 и ввести с клавиатуры формулу =C8+E8 и нажать Enter;
- 15) Щелкнуть по ячейке С9, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки С18, а затем отпустить левую кнопку мыши;
- 16) Щелкнуть по ячейке D8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки D17, а затем отпустить левую кнопку мыши;
- 17) Щелкнуть по ячейке E8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки E17, а затем отпустить левую кнопку мыши;
- 18) Выделить блок ячеек А7:Е18. Выполнить команду *Формат, Ячейки*. В появившемся диалоговом окне *Формат ячеек* выбрать вкладку *Граница* и щелкнуть по кнопкам *Внешние, внутренние*, а затем щелкнуть по кнопке ОК;
- 19)Выделить блок ячеек С8:Е18. Выполнить команду Формат, Ячейки. В появившемся диалоговом окне Формат ячеек выбрать вкладку Число, в появившемся списке Числовые форматы выбрать Числовые, а в поле Число десятичных знаков установить 4 и щелкнуть по кнопке ОК;
- 20)Выделить блок ячеек A7:E18. Выполнить команду Формат, Столбец, Автоподбор ширины;
 - 21) Сохранить выполненное задание.

В результате получится следующая таблица (см. таблица 2).

2.1.3 Пример решения обыкновенного дифференциального уравнения методом Эйлера с помощью алгоритмического языка программирования Turbo Pascal

Проинтегрировать методом Эйлера дифференциальное уравнение $y'=x+\cos(y/\sqrt{7})$ с начальным условием $x_0=0.9$, $y_0=1.7$ на отрезке [0.9;1.9], приняв h=0.1. Вычисления вести с четырьмя знаками после запятой.

Таблица 2 - Результаты решения ОДУ методом Эйлера с помощью Excel

i	Xi	y _i	$y'_i = x_i + \cos(y_i/0, 7^0, 5)$	dy _i =h*y' _i
0	0,9	1,7000	0,4551	0,0455
1	1	1,7455	0,5070	0,0507
2	1,1	1,7962	0,5553	0,0555
3	1,2	1,8517	0,6008	0,0601
4	1,3	1,9118	0,6449	0,0645
5	1,4	1,9763	0,6887	0,0689
6	1,5	2,0452	0,7333	0,0733
7	1,6	2,1185	0,7801	0,0780
8	1,7	2,1965	0,8303	0,0830
9	1,8	2,2796	0,8857	0,0886
10	1,9	2,3681		

2.1.3.1 Словесный алгоритм метода Эйлера

- 1) Введите начало отрезка хп;
- 2) Введите конец отрезка хк;
- 3) Ведите шаг разбиения h;
- Введите у₀;
- 5) Вычислить количество отрезков разбиения n=(xk-xn)/h;
- 6) Открыть цикл по і от 0 до n;
- 7) Если і<>0, то перейти к пункту 13;
- 8) x=xn;
- 9) $y=y_0$;
- 10) Вывод заголовка таблицы;
- 11) Вывод х₀, у₀;
- 12) Перейти к пункту 16;
- 13) Вычислить y=y+h*f(x,y);
- 14) Вычислить x=x+h;
- 15) Вывод х,у;
- 16) Конец цикла по і;
- 17) Конец программы.

2.1.3.2 Блок - схема алгоритма метода Эйлера

Рисунок 2 - Блок схема алгоритма метода Эйлера

2.1.3.3 Распечатка программы по методу Эйлера

```
program Eiler;
uses crt;
var xn,xk,x,y,y0,h: real;
  i,n:integer;
function f(x,y:real):real;
begin
 f:=x+\cos(y/\operatorname{sqrt}(0.7));
end;
begin
 clrscr;
 write(' Введите начало отрезка xn=');
 readln(xn);
 write(' Введите конец отрезка xk=');
 readln(xk);
 write(' Введите шаг h=');
 readln(h);
 write(' Введите значение y0=');
 readln(y0);
 n:=round((xk-xn)/h);
 for i:=0 to n do begin
  if i=0 then begin
   x:=xn; y:=y0;
   writeln; writeln;
   writeln(' Результаты решения ОДУ');
                   методом Эйлера');
   writeln('
    writeln;
   writeln(' x[',i:2,']=',x:4:2,' y[',i:2,']=',y:7:4');
  end
  else begin
   y:=y+h*f(x,y);
   x := x + h;
   writeln(' x[',i:2,']=',x:4:2,' y[',i:2,']=',y:7:4');
  end;
 end;
 readln;
end.
```

2.1.3.4 Результаты решения ОДУ методом Эйлера на ЭВМ

Введите начало отрезка xn=0.9 Введите конец отрезка xk=1.9 Введите шаг h=0.1 Введите yo= 1.7

Результаты решения ОДУ методом Эйлера

2.2 Усовершенствованный метод Эйлера

Рассмотрим дифференциальное уравнение:

$$y'=f(x,y), (5)$$

с начальным условием

$$y(x_0) = y_0 , \qquad (6)$$

Требуется найти решение уравнения (5) на отрезке [a,b].

Разобьем отрезок [a,b] на n равных частей точками $x_i=x_0+ih$ (i=0, 1, ..., n), где h=(b-a)/n шаг интегрирования. Сущность усовершенствованного метода Эйлера состоит в следующем:

Сначала вычисляют вспомогательные значения искомой функции $y_{i+1/2}$ в точках $x_{i+1/2} = x_i + h/2$ с помощью формулы:

$$y_{i+1/2} = y_i + h/2 * y'_i$$
, (7)

Затем находят значение правой части уравнения (5) в средней точке $y'_{i+1/2} = f(x_{i+1/2}, y_{i+1/2})$ и определяют:

$$y_{i+1} = y_i + h y'_{i+1/2}$$

2.2.1 Пример ручного решения обыкновенного дифференциального уравнения усовершенствованным методом Эйлера

Проинтегрировать усовершенствованным методом Эйлера дифференциальное уравнение $y'=0.2(x^2+\cos(1.3x))+1.6y$ с начальным условием $x_0=0.2$, $y_0=0.25$ на отрезке [0.2;1.2], приняв h=0.1. Вычисления вести с четырьмя знаками после запятой.

Порядок выполнения ручного решения.

Найдем n по формуле n=(b-a)/h=(2.4-1.4)/0.1=10. Значит, i меняется от 0 до 10. Для удобства решение представим в виде таблицы (см. таблицу -3).

- 1) В 1-ой строке, в 1-ом столбце запишем значение і равно 0;
- 2) Во 2-ом столбце запишем значение h равное 0.1;
- 3) Во 3-ем столбце запишем значение х_і равное 0.2;
- 4) В 4-ом столбце запишем значение у равное 0.25;
- 5) В 5-ом столбце запишем вычисление значения $1.3x_i$, т. е. содержимое 3-ого столбца текущей строки умножим на 1.3;
- 6) В 6-ом столбце запишем вычисление значения $cos(1.3x_i)$, т. е. вычислим значение cos от содержимого пятого столбца этой же строки;
- 7) В 7-ом столбце запишем вычисление значения x_i^2 , т. е. в возведем содержимое 3-его столбца этой строки в квадрат;
- 8) В 8-ом столбце запишем вычисление значения $0.2(x_i^2 + cos(1.3x_i))$, т. е. сложим содержимое 6-ого и 7-ого столбца и умножим на 0.2;
- 9) В 9-ом столбце запишем вычисление значения $1.6y_i$ т. е. содержимое 4-ого столбца текущей строки умножим на 1.6;
- 10) В 10-ом столбце запишем вычисление значения $0.2(x_i^2 + cos(1.3x_i)) + 1.6y_i$, т. е. сложим содержимое 8-ого и 9-ого столбца текущей строки;
- 11) В 11-ом столбце запишем вычисление значения $h/2*y'_i$, т. е. содержимое 2-ого столбца текущей строки разделим на 2 и умножим на содержимое 10-ого столбца;
- 12) В 12-ом столбце запишем вычисление значения $x_i+h/2$, т. е. содержимое 2-ого столбца текущей строки разделим на 2 и прибавим к содержимому 3-ого столбца;
- 13) В 13-ом столбце запишем вычисление значения $y_i + h/2 * y'_I$, т. е. сложим содержимое 4-ого и 11-ого столбца текущей строки;
- 14) В 14-ом столбце запишем вычисление значения $1.3x_{i+1/2}$, т. е. содержимое 12-ого столбца текущей строки умножим на 1.3;
- 15) В 15-ом столбце запишем вычисление значения $cos(1.3x_{i+1/2})$, т. е. вычислим значение cos от содержимого 14 столбца этой же строки;

- 16) В 16-ом столбце запишем вычисление значения $x_{i+1/2}^2$, т. е. возведем содержимое 12-его столбца этой строки в квадрат;
- 17) В 17-ом столбце запишем вычисление значения $0.2(x_{i+1/2}^2 + cos(1.3x_{i+1/2}))$, т. е. сложим содержимое 15-ого и 16-ого столбца и умножим на 0.2;

Таблица 3 - Результаты решения ОДУ усовершенствованным методом Эйлера вручную

i	h	Xi	Уi	1.3*x _i	$\cos(1.3x_i)$	x_i^2	$\begin{array}{c} 0.2(x_i^2 + \\ \cos(1.3x_i)) \end{array}$	1.6y _i	$y'_{i}=0.2(x_{i}^{2}+\cos(1.3x_{i}))$ +1.6y _i
1	2	3	4	5	6	7	8	9	10
0	0,10	0,2000	0,2500	0,2600	0,9664	0,0400	0,2013	0,4000	0,6013
1	0,10	0,3000	0,3150	0,3900	0,9249	0,0900	0,2030	0,5040	0,7070
2	0,10	0,4000	0,3915	0,5200	0,8678	0,1600	0,2056	0,6264	0,8319
3	0,10	0,5000	0,4815	0,6500	0,7961	0,2500	0,2092	0,7704	0,9796
4	0,10	0,6000	0,5875	0,7800	0,7109	0,3600	0,2142	0,9401	1,1542
5	0,10	0,7000	0,7125	0,9100	0,6137	0,4900	0,2207	1,1400	1,3607
6	0,10	0,8000	0,8599	1,0400	0,5062	0,6400	0,2292	1,3758	1,6050
7	0,10	0,9000	1,0337	1,1700	0,3902	0,8100	0,2400	1,6539	1,8940
8	0,10	1,0000	1,2389	1,3000	0,2675	1,0000	0,2535	1,9822	2,2357
9	0,10	1,1000	1,4811	1,4300	0,1403	1,2100	0,2701	2,3698	2,6399
10	0,10	1,2000	1,7672						

Продолжение таблицы 3

h/2*y'i	$x_{i+1/2} = x_i + h/2$	y _{i+1/2} =y _i +h/2* y'i	1.3*x _{i+}	$cos(1.3 x_{i+1/2})$	$x_{i+1/2}^{2}$	$0.2(x^{2}_{i+})$ $1/2+\cos(1.3x_{i+1})$	1.6y _{i+1/2}	$y'_{i+1/2}=0.2($ $x_{i+1/2}+\cos$ $(1.3x_{i+1/2}))$ $+1.6y_{i+1/2}$	hy' _i +1/2
11	12	13	14	15	16	17	18	19	20
0,0301	0,2500	0,2801	0,3250	0,9477	0,0625	0,2020	0,4481	0,6501	0,0650
0,0354	0,3500	0,3504	0,4550	0,8983	0,1225	0,2042	0,5606	0,7647	0,0765
0,0416	0,4500	0,4331	0,5850	0,8337	0,2025	0,2072	0,6929	0,9002	0,0900
0,0490	0,5500	0,5305	0,7150	0,7551	0,3025	0,2115	0,8488	1,0603	0,1060
0,0577	0,6500	0,6452	0,8450	0,6637	0,4225	0,2172	1,0324	1,2496	0,1250
0,0680	0,7500	0,7805	0,9750	0,5612	0,5625	0,2247	1,2489	1,4736	0,1474
0,0803	0,8500	0,9401	1,1050	0,4491	0,7225	0,2343	1,5042	1,7385	0,1738
0,0947	0,9500	1,1284	1,2350	0,3295	0,9025	0,2464	1,8054	2,0519	0,2052
0,1118	1,0500	1,3507	1,3650	0,2043	1,1025	0,2614	2,1611	2,4225	0,2422
0,1320	1,1500	1,6131	1,4950	0,0757	1,3225	0,2796	2,5810	2,8607	0,2861

18) В 18-ом столбце запишем вычисление значения $1.6y_{i+1/2}$ т. е. содержимое 13-ого столбца текущей строки умножим на 1.6;

- 19) В 19-ом столбце запишем вычисление значения $0.2(x_{i+1/2}^2 + cos(1.3x_{i+1/2})) + 1.6y_{i+1/2}$, т. е. сложим содержимое 17-ого и 18-ого столбца текущей строки;
- 20) В 20-ом столбце запишем вычисление значения $h^*y'_{I+1/2}$, т. е. содержимое 2-ого столбца h равное 0.1 умножим на содержимое 19-ого столбца;
- 21) Во 2-ой строке в 1-ом столбце запишем значение на 1 больше, чем в предыдущей строке этого столбца, т. е. I=I+1;
 - 22) Во 2-ом столбце запишем значение h равное 0.1;
- 23) Во 2-ой строке в 3-ем столбце запишем значение x на 0.1 больше, чем в предыдущей строке этого столбца, т. е. x=x+0.1;
- 24) Во 2-ой строке в 4-ом столбце запишем вычисление значения $y_1 = y_0 + \Delta y_0$, т. е. к содержимому этого столбца из предыдущей строки прибавим содержимое из 20-ого столбца той же строки;
- 25) Затем повторить аналогичные действия, начиная с пункта 5 до тех пор, пока значения I не будет равно 10.
- 2.2.2 Пример решения обыкновенного дифференциального уравнения усовершенствованным методом Эйлера с помощью электронной таблицы Excel

Проинтегрировать усовершенствованным методом Эйлера дифференциальное уравнение $y'=0,2(x^2+\cos(1,3x))+1,6y$ с начальным условием $x_0=0,2$, $y_0=0,25$ на отрезке [0,2;1,2], приняв h=0,1. Вычисления вести с четырьмя знаками после запятой.

Порядок выполнения решения задачи в Excel.

- 1) Запустить электронную таблицу *Excel*;
- 2) Установить курсор в ячейку A2 и ввести с клавиатуры *Проинтегрировать методом Рунге-Кутта диффе* и нажать клавишу ↓ или щелкнуть мышкой по ячейки A3;
- 3) Ввести с клавиатуры *ренциальное уравнение* $y'=0,2(x^2+cos(1,3x))+1,6y$ с начальным и нажать клавишу ↓ или щелкнуть мышкой по ячейки A4;
- 4) Ввести с клавиатуры условием x_0 =0,2, y_0 =0,25, на отрезке [0,2;1,2] приняв h=0,25. и нажать клавишу \downarrow или щелкнуть мышкой по ячейки A5;
- 5) Ввести с клавиатуры *Вычисления вести с четырьмя знаками после запятой* и нажать клавишу ↓ или щелкнуть мышкой по ячейки А7;
 - 6) Ввести с клавиатуры и затем щелкнуть по ячейки А6;
- 7) Ввести с клавиатуры I и нажать клавишу \rightarrow , ввести с клавиатуры h и нажать клавишу \rightarrow , ввести с клавиатуры x_i и нажать клавишу \rightarrow , ввести с клавиатуры y_i и нажать клавишу \rightarrow , ввести с клавиатуры $y_i'=0,2(x_i^2+\cos(1,3x_i))+1,6y_i$ и нажать клавишу \rightarrow , ввести с клавиатуры h/2* y_i' и нажать клавишу \rightarrow , ввести с клавиатуры $x_{i+1/2}=x_i+h/2$ и нажать клавишу \rightarrow , ввести с клавиатуры $y_{i+1/2}=y_i+h/2$ * y_i' и нажать клавишу \rightarrow , ввести с клавиатуры

 $y'_{i+1/2}$ =0,2 $(x_{i+1/2}^2$ + $cos(1,3x_{i+1/2}))$ +1,6 $y_{i+1/2}$ и нажать клавишу →, ввести с клавиатуры $hy'_{i+1/2}$ и щелкнуть по ячейке А9;

- 8) Ввести с клавиатуры 0 и нажать клавишу Enter;
- 9) Щелкнуть по ячейке A9 и выполнить команду *Правка*, *Заполнить*, *Прогрессия*. В появившемся диалоговом окне *Прогрессия* выбрать *расположение по столбцам*, установить шаг равным l, предельное значение равным l0 и щелкнуть по кнопке OK;
- 10) Щелкнуть по ячейке B9, ввести с клавиатуры 0,1 и нажать клавишу Enter;
- 11) Щелкнуть по ячейке B9, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **★** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки B19, а затем отпустить левую кнопку мыши;
- 12) Щелкнуть по ячейке С9, ввести с клавиатуры 0,2 и нажать клавишу Enter;
- 13) Щелкнуть по ячейке С9 и выполнить команду *Правка*, *Заполнить*, *Прогрессия*. В появившемся диалоговом окне *Прогрессия* выбрать *расположение по столбцам*, установить шаг равным 0,1, предельное значение равным 1,2 и щелкнуть по кнопке ОК;
 - 14) Установить курсор в ячейку D9 и ввести с клавиатуры 0.25;
- 15) Щелкнуть по ячейке E9 и ввести с клавиатуры формулу $==0,2*(C9^2+cos(1,3*C9))+1,6*D9$ и нажать Enter;
- 16) Щелкнуть по ячейке F9 и ввести с клавиатуры формулу =B9/2*E9 и нажать Enter;
- 17) Щелкнуть по ячейке G9 и ввести с клавиатуры формулу =C9+B9/2 и нажать Enter;
- 18) Щелкнуть по ячейке H9 и ввести с клавиатуры формулу =D9+F9 и нажать Enter;
- 19) Щелкнуть по ячейке I9 и ввести с клавиатуры формулу = $0.2*(G9^2+COS(1.3*G9))+1.6*H9$ и нажать Enter;
- 20) Щелкнуть по ячейке Ј9 и ввести с клавиатуры формулу =B9*I7 и нажать Enter;
- 21) Щелкнуть по ячейке D10 и ввести с клавиатуры формулу =D9+J9 и нажать Enter;
- 22) Щелкнуть по ячейке D10, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **★** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки D19, а затем отпустить левую кнопку мыши;
- 23) Щелкнуть по ячейке E9, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки E18, а затем отпустить левую кнопку мыши;
- 24) Щелкнуть по ячейке F9, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую

кнопку мыши и не отпуская ее протащить указатель мыши до ячейки F18, а затем отпустить левую кнопку мыши;

- 25) Щелкнуть по ячейке G9, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки G18, а затем отпустить левую кнопку мыши;
- 26) Щелкнуть по ячейке H9, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки H18, а затем отпустить левую кнопку мыши;
- 27) Щелкнуть по ячейке 19, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки I18, а затем отпустить левую кнопку мыши;
- 28) Щелкнуть по ячейке J9, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки J18, а затем отпустить левую кнопку мыши;
- 29) Выделить блок ячеек А7:J19. Выполнить команду *Формат*, *Ячейки*. В появившемся диалоговом окне *Формат ячеек* выбрать вкладку *Граница* и щелкнуть по кнопкам *Внешние*, внутренние, а затем щелкнуть по кнопке ОК;
- 30) Выделить блок ячеек С9:J19. Выполнить команду Формат, Ячейки. В появившемся диалоговом окне Формат ячеек выбрать вкладку Число, в появившемся списке Числовые форматы выбрать Числовые, а в поле Число десятичных знаков установить 4 и щелкнуть по кнопке ОК;
- 31) Выделить блок ячеек А7:J19. Выполнить команду Формат, Столбец, Автоподбор ширины;
 - 32) Сохранить выполненное задание.

В результате получится следующая таблица (см. таблицу 4).

2.2.3 Пример решения обыкновенного дифференциального уравнения усовершенствованным методом Эйлера с помощью алгоритмического языка программирования Turbo Pascal

Проинтегрировать усовершенствованным методом Эйлера дифференциальное уравнение $y'=0.2(x^2+\cos(1.3x))+1.6y$ с начальным условием $x_0=0.2$, $y_0=0.25$ на отрезке [0.2;1.2], приняв h=0.1. Вычисления вести с четырьмя знаками после запятой.

Таблица 4 - Результаты решения ОДУ усовершенствованным методом Эйлера с помощью электронной таблицы Excel

i	h	Xi	Уi	$y'_{i}=0,2(x_{i}^{2}+\cos(1.3x_{i}))+1.6y_{i}$	h/2*y' _i	x _{i+1/2} =x _i +h/2	y _{i+1/2} =y _i + h/2*y' _i	$y'_{i+1/2}=0.2(x_{i+1/2}+\cos(1.3x_{i+1/2}))+1.6y_{i+1/2}$	hy' _{i+1/2}
1	2	3	4	5	6	7	8	9	10
0	0,10	0,2000	0,2500	0,6013	0,0301	0,2500	0,2801	0,6501	0,0650
1	0,10	0,3000	0,3150	0,7070	0,0354	0,3500	0,3504	0,7647	0,0765
2	0,10	0,4000	0,3915	0,8319	0,0416	0,4500	0,4331	0,9002	0,0900
3	0,10	0,5000	0,4815	0,9796	0,0490	0,5500	0,5305	1,0603	0,1060
4	0,10	0,6000	0,5875	1,1542	0,0577	0,6500	0,6452	1,2496	0,1250
5	0,10	0,7000	0,7125	1,3607	0,0680	0,7500	0,7805	1,4736	0,1474
6	0,10	0,8000	0,8599	1,6050	0,0803	0,8500	0,9401	1,7385	0,1738
7	0,10	0,9000	1,0337	1,8940	0,0947	0,9500	1,1284	2,0519	0,2052
8	0,10	1,0000	1,2389	2,2357	0,1118	1,0500	1,3507	2,4225	0,2422
9	0,10	1,1000	1,4811	2,6399	0,1320	1,1500	1,6131	2,8607	0,2861
10	0,10	1,2000	1,7672						

2.2.3.1 Словесный алгоритм усовершенствованного метода Эйлера

- 1) Введите начало отрезка хп;
- 2) Введите конец отрезка хк;
- 3) Ведите шаг разбиения h;
- Введите у₀;
- 5) Вычислить количество отрезков разбиения n=(xk-xn)/h;
- 6) Открыть цикл по і от 0 до п;
- 7) Если i<>0, то перейти к пункту 13;
- 8) x=xn;
- 9) $y=y_0$;
- 10) Вывод заголовка таблицы;
- 11) Вывод х₀, у₀;
- 12) Перейти к пункту 16;
- 13) Вычислить $y_1 = y + h/2 * f(x,y)$;
- 14) Вычислить $x_1 = x + h/2$;
- 15) Вычислить $y=y+h*f(x_1,y_1);$
- 16) Вычислить x=x+h;
- 17) Вывод х,у;
- 18) Конец цикла по і;
- 19) Конец программы.

Рисунок 3 - Блок - схема алгоритма усовершенствованного метода Эйлера

2.2.3.3 Распечатка программы алгоритма усовершенствованного метода Эйлера

```
program usEiler;
uses crt;
var xn,xk,x,y,x1,y1,y0,h: real;
  i,n:integer;
function f(x,y:real):real;
begin
 f:=0.2*(sqr(x)+cos(1.3*x))+1.6*y;
end;
begin
 clrscr;
 write(' Введите начало отрезка xn=');
 readln(xn);
 write(' Введите конец отрезка xk=');
 readln(xk);
 write(' Введите шаг h=');
 readln(h);
 write(' Введите значение y0=');
 readln(y0);
 n := round((xk-xn)/h);
 for i:=0 to n do begin
  if i=0 then begin
   x:=xn; y:=y0;
   writeln; writeln;
                    Результаты решения ОДУ');
   writeln('
   writeln(' усовершенствованным методом Эйлера');
   writeln;
   writeln(' x[',i:2,']=',x:4:2,' y[',i:2,']=',y:7:4');
  end
  else begin
   y1:=y+h/2*f(x,y);
   x1:=x+h/2;
   y:=y+h*f(x1,y1);
   x := x + h:
   writeln(' x[',i:2,']=',x:4:2,' y[',i:2,']=',y:7:4');
  end;
 end;
 readln;
end.
```

2.2.3.4 Результаты решения ОДУ усовершенствованным методом Эйлера на ЭВМ

Введите начало отрезка xn=0.2 Введите конец отрезка xk=1.2 Введите шаг h=0.1 Введите yo= 0.25

Результаты решения ОДУ усовершенствованным методом Эйлера

x[0]=0.20 y[0]=0.2500 x[1]=0.30 y[1]=0.3150 x[2]=0.40 y[2]=0.3915 x[3]=0.50 y[3]=0.4815 x[4]=0.60 y[4]=0.5875 x[5]=0.70 y[5]=0.7125 x[6]=0.80 y[6]=0.8599 x[7]=0.90 y[7]=1.0337 x[8]=1.00 y[8]=1.2389 x[9]=1.10 y[9]=1.4811 x[10]=1.20 y[10]=1.7672

2.3 Метод Рунге-Кутта

Метод Рунге-Кутта является одним из методов повышенной точности. Он имеет много общего с методом Эйлера.

Пусть на отрезке [а,b] требуется найти численное решение уравнения:

$$y'=f(x,y), (8)$$

с начальным условием:

$$y(x_0) = y_0 \quad , \tag{9}$$

Разобьем отрезок [a,b] на n равных частей точками $x_i=x_0+ih$ (i=0, 1, ..., n), где h=(b-a)/n шаг интегрирования. В методе Рунге-Кутта, так же как и в методе Эйлера, последовательные значения y_i искомой функции y определяются по формуле:

$$y_{i+1} = y_i + \Delta y_i , \qquad (10)$$

Если разложить функцию y в ряд Тейлора и ограничиться членами до h^4 включительно, то приращение функции Δy можно представить в виде:

$$\Delta y = y(x+h) - y(x) = hy'(x) + h^2/2 *y''(x) + h^3/6 *y'''(x) + h^4/24 *y''''(x),$$
 (11)

Где производные y''(x), y'''(x), y''''(x) определяются последовательным дифференцированием из уравнения (8)

В место непосредственных вычислений по формуле (11) в методе Рунге-Кутта определяются четыре числа:

$$k_1 = hf(x,y)
k_2 = hf(x+h/2,y+k_1/2) ,$$

$$k_3 = hf(x+h/2,y+k_2/2)
k_4 = hf(x+h,y+k_3)$$
(12)

Можно доказать, что если числам k_1, k_2, k_3, k_4 придать соответственно вес 1/6, 1/3, 1/6, то средневзвешенной этих чисел, то есть:

$$1/6 k_1 + 1/3 k_2 + 1/3 k_3 + 1/6 k_4 , (13)$$

С точностью до четвертых степеней равно значению $\triangle y$, вычисленному по формуле (11):

$$\Delta y = 1/6 k_1 + 1/3 k_2 + 1/3 k_3 + 1/6 k_4$$
, (14)

Таким образом, для каждой пары текущих значений x_i и y_i по формулам (12) определяются значения:

$$k^{(i)}_{l} = hf(x_{(i)}, y_{(i)})$$

$$k^{(i)}_{2} = hf(x_{(i)} + h/2, y_{(i)} + k_{1}/2),$$

$$k^{(i)}_{3} = hf(x_{(i)} + h/2, y_{(i)} + k_{2}/2)$$

$$k^{(i)}_{4} = hf(x_{(i)} + h, y_{(i)} + k_{3})$$
(15)

по формуле (14) находится:

$$\Delta y_i = 1/6(k^{(i)}_1 + 2k^{(i)}_2 + 2k^{(i)}_3 + k^{(i)}_4)$$

и затем:

$$y_{i+1} = y_i + \Delta y_i$$

Числа k_1,k_2,k_3,k_4 имеют простой геометрический смысл. Пусть кривая M_0CM_1 (Рисунок 4) представляет собой решение дифференциального уравнения (8) с начальным условием (9). Точка C этой кривой лежит на прямой \parallel оси

ОУ и делящейся отрезок $[x_{i}, x_{i+1}]$ пополам, B и G — точки пересечения касательной, проведенной к кривой в точке M_0 с ординатами AC и N_1M_1 .

Рисунок 4 - Геометрическое обоснование метода Рунге-Кутта

Тогда число k_1 с точность до множителя h есть угловой коэффициент касательной в точке M_0 к интегральной кривой M_0CM_1 , т.е. $k_1 = k^*y'_{(i)} = hf(x_i, y_i)$.

Точка B имеет координаты $x = x_i + h/2$, $y_i = y_i + k_1/2$, следовательно, число k_2 с точностью до множителя h есть угловой коэффициент касательной, проведенной к интегральной кривой в точке B (BF – отрезок касательной).

Через точку M_0 проведем прямую \parallel оси BF. Тогда точка D имеет координаты $x=x_i+h/2$, $y_i=y_i+k_1/2$ и k_3 с точностью до множителя h – угловой коэффициент касательной проведенной к интегральной кривой в точке D, (DR_I – отрезок этой касательной). Наконец, через точку M_0 проведем прямую DR_I , которая пересечет продолжение M_1N_1 в точке $k_2(x_i+h,y_i+k_3)$. Тогда k_4 с точностью до множителя h есть угловой коэффициент касательной, проведенной к интегральной кривой в точке R2.

2.3.1 Пример ручного решения обыкновенного дифференциального уравнения методом Рунге-Кутта

Проинтегрировать методом Рунге-Кутта дифференциальное уравнение y'=x+cos(y/2,25) с начальным условием $x_0=1,4,\ y_0=2,2$ на отрезке [1,4;2,4], приняв h=0,1. Вычисления вести с четырьмя знаками после запятой.

Порядок выполнения ручного решения.

Найдем n по формуле n=(b-a)/h=(2.4-1.4)/0.1=10. Значит, i меняется от 0 до 10. Для удобства решение представим в виде таблицы (см. таблицу 5).

Таблица - 5 Результаты решения ОДУ методом Рунге-Кутта вручную

i	h	Xi	y _i	y _i /2,25	cos(y _i /2,25)	$f(x_i,y_i)$	k_1	x _i +h/2	y _i +k ₁ /2	(y _i +k ₁ / 2)/2,25	$cos((y_i+k_1/2)/2,25)$	$f(x_i+h/2, y_i+k_1/2)$	k_2
1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0,1	1,4	2,2000	0,9778	0,5589	1,9589	0,1959	1,4500	2,2979	1,0213	0,5223	1,9723	0,1972
1	0,1	1,5	2,3972	1,0654	0,4841	1,9841	0,1984	1,5500	2,4964	1,1095	0,4451	1,9951	0,1995
2	0,1	1,6	2,5967	1,1541	0,4048	2,0048	0,2005	1,6500	2,6969	1,1986	0,3636	2,0136	0,2014
3	0,1	1,7	2,7980	1,2436	0,3214	2,0214	0,2021	1,7500	2,8991	1,2885	0,2786	2,0286	0,2029
4	0,1	1,8	3,0009	1,3337	0,2349	2,0349	0,2035	1,8500	3,1026	1,3789	0,1907	2,0407	0,2041
5	0,1	1,9	3,2049	1,4244	0,1459	2,0459	0,2046	1,9500	3,3072	1,4699	0,1008	2,0508	0,2051
6	0,1	2	3,4100	1,5155	0,0552	2,0552	0,2055	2,0500	3,5127	1,5612	0,0096	2,0596	0,2060
7	0,1	2,1	3,6159	1,6071	-0,0363	2,0637	0,2064	2,1500	3,7191	1,6529	-0,0820	2,0680	0,2068
8	0,1	2,2	3,8227	1,6990	-0,1278	2,0722	0,2072	2,2500	3,9263	1,7450	-0,1734	2,0766	0,2077
9	0,1	2,3	4,0304	1,7913	-0,2187	2,0813	0,2081	2,3500	4,1344	1,8375	-0,2636	2,0864	0,2086
10	0,1	2,4	4,2390										

Продолжение таблицы 5

$x_i+h/2$	y _i +k ₂ / 2	(y _i +k ₂ / 2)/2,2 5	cos((y _i +k ₂ /2)/ 2,25)	f(x _i +h/ 2,y _i +k ₂ /2)	k ₃	x _i +h	y _i +k ₃	(y _i +k ₃) /2,25	cos((y _i + k ₃)/2,25)	f(x _i +h, y _i +k ₃)	k ₄	dyi
15	16	17	18	19	20	21	22	23	24	25	26	27
1,4500	2,2986	1,0216	0,5220	1,9720	0,1972	1,5000	2,3972	1,0654	0,4841	1,9841	0,1984	0,1972
1,5500	2,4969	1,1098	0,4449	1,9949	0,1995	1,6000	2,5967	1,1541	0,4048	2,0048	0,2005	0,1995
1,6500	2,6974	1,1988	0,3635	2,0135	0,2013	1,7000	2,7980	1,2436	0,3214	2,0214	0,2021	0,2013
1,7500	2,8994	1,2886	0,2784	2,0284	0,2028	1,8000	3,0009	1,3337	0,2349	2,0349	0,2035	0,2028
1,8500	3,1029	1,3791	0,1906	2,0406	0,2041	1,9000	3,2049	1,4244	0,1459	2,0459	0,2046	0,2041
1,9500	3,3074	1,4700	0,1007	2,0507	0,2051	2,0000	3,4100	1,5155	0,0552	2,0552	0,2055	0,2051
2,0500	3,5129	1,5613	0,0095	2,0595	0,2059	2,1000	3,6159	1,6071	-0,0363	2,0637	0,2064	0,2060
2,1500	3,7193	1,6530	-0,0821	2,0679	0,2068	2,2000	3,8227	1,6990	-0,1278	2,0722	0,2072	0,2068
2,2500	3,9265	1,7451	-0,1735	2,0765	0,2077	2,3000	4,0304	1,7913	-0,2187	2,0813	0,2081	0,2077
2,3500	4,1347	1,8376	-0,2637	2,0863	0,2086	2,4000	4,2390	1,8840	-0,3081	2,0919	0,2092	0,2086

- 1) В 1-ой строке, в 1-ом столбце запишем значение і равно 0;
- 2) Во 2-ом столбце запишем значение h равное 0.1;
- 3) Во 3-ем столбце запишем значение х_і равное 1.4;
- 4) В 4-ом столбце запишем значение у равное 2.2;
- 5) В 5-ом столбце запишем вычисление значения y_i /2.25, т. е. содержимое 4-ого столбца текущей строки разделим на 2.25;
- 6) В 6-ом столбце запишем вычисление значения $cos(y_i/2.25)$, т. е. вычислим значение cos от содержимого пятого столбца этой же строки;

- 7) В 7-ом столбце запишем вычисление значения $f(x_i, y_i)$ по формуле $f(x_i, y_i) = x_i + cos(y_i/2.25)$, т. е. к содержимому 3-его столбца этой строки прибавим содержимое 6-ого столбца этой строки;
- 8) В 8-ом столбце запишем вычисление значения $k_1 = h^* f(x_i, y_i)$, т. е. содержимое второго столбца h равное 0.1 умножим на содержимое 7-ого столбца;
- 9) В 9-ом столбце запишем вычисление значения $x_i+h/2$, т. е. содержимое 2-ого столбца текущей строки разделим на 2 и прибавим к содержимому 3-ого столбца;
- 10) В 10-ом столбце запишем вычисление значения $y_i+k_1/2$, т. е. содержимое 8-ого столбца текущей строки разделим на 2 и прибавим к содержимому 4-ого столбца;
- 11) В 11-ом столбце запишем вычисление значения $(y_i+k_l/2)/2.25$, т. е. содержимое 10-ого столбца текущей строки разделим на 2.25;
- 12) В 12-ом столбце запишем вычисление значения $cos((y_i+k_l/2)/2.25)$, т. е. вычислим соѕ от содержимого 11-ого столбца текущей строки;
- 13) В 13-ом столбце запишем вычисление значения $f(x_i+h/2,y_i+k_l/2)=(x_i+h/2)+cos((y_i+k_l/2)/2.25)$, т. е. сложим содержимое 9-ого и 12-ого столбца текущей строки;
- 14) В 14-ом столбце запишем вычисление значения $k_2=h*f(x_i+h/2,y_i+k_1/2)$, т. е. содержимое второго столбца h равное 0.1 умножим на содержимое 13-ого столбца;
- 15) В 15-ом столбце запишем вычисление значения $x_i+h/2$, т. е. содержимое 2-ого столбца текущей строки разделим на 2 и прибавим к содержимому 3-ого столбца;
- 16) В 16-ом столбце запишем вычисление значения $y_i+k_2/2$, т. е. содержимое 14-ого столбца текущей строки разделим на 2 и прибавим к содержимому 4-ого столбца;
- 17) В 17-ом столбце запишем вычисление значения $(y_i+k_2/2)/2.25$, т. е. содержимое 16-ого столбца текущей строки разделим на 2.25;
- 18) В 18-ом столбце запишем вычисление значения $cos((y_i+k_2/2)/2.25)$, т. е. вычислим соѕ от содержимого 17-ого столбца текущей строки;
- 19) В 19-ом столбце запишем вычисление значения $f(x_i+h/2,y_i+k_2/2)=(x_i+h/2)+cos((y_i+k_2/2)/2.25)$, т. е. сложим содержимое 15-ого и 18-ого столбца текущей строки;
- 20) В 20-ом столбце запишем вычисление значения $k_3=h*f(x_i+h/2,y_i+k_2/2)$, т. е. содержимое второго столбца h равное 0.1 умножим на содержимое 19-ого столбца;
- 21) В 21-ом столбце запишем вычисление значения x_i +h, т. е. содержимое 2-ого столбца текущей строки прибавим к содержимому 3-ого столбца;
- 22) В 22-ом столбце запишем вычисление значения y_i+k_3 , т. е. содержимое 20-ого столбца текущей строки прибавим к содержимому 4-ого столбца;
- 23) В 23-ом столбце запишем вычисление значения $(y_i+k_3)/2.25$, т. е. содержимое 22-ого столбца текущей строки разделим на 2.25;

- 24) В 24-ом столбце запишем вычисление значения $cos((y_i+k_3)/2.25)$, т. е. вычислим соѕ от содержимого 23-ого столбца текущей строки;
- 25) В 25-ом столбце запишем вычисление значения $f(x_i+h,y_i+k_3)=(x_i+h)+cos((y_i+k_3)/2.25)$, т. е. сложим содержимое 21-ого и 24-ого столбца текущей строки;
- 26) В 25-ом столбце запишем вычисление значения k_4 = $h*f(x_i+h,y_i+k_3)$, т. е. содержимое второго столбца h равное 0.1 умножим на содержимое 25-ого столбца;
- 27) в 27-ом столбце запишем вычисление значения $\Delta y_i = (k_1 + 2*k_2 + 2*k_3 + k_4)/6$, т. е. к содержимому 8-ого столбца прибавим удвоенное содержимое 14-ого и 20-ого столбца и содержимое 26-ого столбца и разделим сумму на 6;
- 28) Во 2-ой строке в 1-ом столбце запишем значение на 1 больше, чем в предыдущей строке этого столбца, т. е. i=i+1;
 - 29) Во 2-ом столбце запишем значение h равное 0.1;
- 30) Во 2-ой строке в 3-ем столбце запишем значение x на 0.1 больше, чем в предыдущей строке этого столбца, т. е. x=x+0.1;
- 31) Во 2-ой строке в 4-ом столбце запишем вычисление значения $y_1 = y_0 + \Delta y_0$, т. е. к содержимому этого столбца из предыдущей строки прибавим содержимое из 27-ого столбца той же строки;
- 32) Затем повторить аналогичные действия, начиная с пункта 5 до тех пор, пока значения і не будет равно 10.
- 2.3.2 Пример решения обыкновенного дифференциального уравнения методом Рунге-Кутта с помощью электронной таблицы Excel

Проинтегрировать методом Рунге-Кутта дифференциальное уравнение y'=x+cos(y/2,25) с начальным условием $x_0=1,4$, $y_0=2,2$ на отрезке [1,4;2,4], приняв h=0,1. Вычисления вести с четырьмя знаками после запятой.

Порядок выполнения решения задачи в Excel.

- 1) Запустить электронную таблицу Excel;
- 2) Установить курсор в ячейку A2 и ввести с клавиатуры *Проинтегрировать методом Рунге-Кутта дифференциальное уравнение* и нажать клавишу ↓ или щелкнуть мышкой по ячейки A3;
- 3) Ввести с клавиатуры y'=x+cos(y/2,25) с начальным условием $x_0=1,4$, $y_0=2,2$, на отрезке [1,4;2,4] и нажать клавишу ↓ или щелкнуть мышкой по ячейки A4;
- 4) Ввести с клавиатуры *приняв* h=0,1. Вычисления вести с четырьмя знаками после запятой и нажать 2 раза клавишу ↓ или щелкнуть мышкой по ячейки A6;
- 5) Ввести с клавиатуры I и нажать клавишу \rightarrow , ввести с клавиатуры h и нажать клавишу \rightarrow , ввести с клавиатуры x_i и нажать клавишу \rightarrow , ввести с клавиатуры $f(x_i, y_i)$ и нажать клавишу

- →, ввести с клавиатуры k_1 и нажать клавишу →, ввести с клавиатуры $f(x_i+h/2,y_i+k_1/2)$ и нажать клавишу →, ввести с клавиатуры k_2 и нажать клавишу →, ввести с клавиатуры $f(x_i+h/2,y_i+k_2/2)$ и нажать клавишу →, ввести с клавиатуры k_3 и нажать клавишу →, ввести с клавиатуры $f(x_i+h,y_i+k_3)$ и нажать клавишу →, ввести с клавиатуры dy_i и нажать клавишу →, ввести с клавиатуры dy_i и нажать клавишу →, щелкнуть по ячейке A7; Таким образом будет создана шапка талицы
 - 6) Ввести с клавиатуры 0 и нажать клавишу Enter;
- 7) Щелкнуть по ячейке A7 и выполнить команду *Правка, Заполнить, Прогрессия*. В появившемся диалоговом окне *Прогрессия* выбрать *расположение по столбцам,* установить шаг равным l, предельное значение равным l0 и щелкнуть по кнопке OK;
- 8) Щелкнуть по ячейке В7, ввести с клавиатуры 0,1 и нажать клавишу Enter;
- 9) Щелкнуть по ячейке B7, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки B17, а затем отпустить левую кнопку мыши;
- 10) Щелкнуть по ячейке C7, ввести с клавиатуры 1,4 и нажать клавишу Enter;
- 11) Щелкнуть по ячейке С7 и выполнить команду *Правка*, *Заполнить*, *Прогрессия*. В появившемся диалоговом окне *Прогрессия* выбрать *расположение по столбцам*, установить шаг равным 0,1, предельное значение равным 2,4 и щелкнуть по кнопке ОК;
 - 12) Установить курсор в ячейку D7 и ввести с клавиатуры 2,2;
- 13) Щелкнуть по ячейке Е7 и ввести с клавиатуры формулу =C7+cos(D7/2,25) и нажать Enter;
- 14) Щелкнуть по ячейке F7 и ввести с клавиатуры формулу =B7*E7 и нажать Enter;
- 15) Щелкнуть по ячейке G7 и ввести с клавиатуры формулу =(C7+B7/2)+cos((D7+F7/2)/2,25) и нажать Enter;
- 16) Щелкнуть по ячейке H7 и ввести с клавиатуры формулу =B7*G7 и нажать Enter;
- 17) Щелкнуть по ячейке I7 и ввести с клавиатуры формулу = $(C7+B7/2)+\cos((D7+H7/2)/2,25)$ и нажать Enter;
- 18) Щелкнуть по ячейке J7 и ввести с клавиатуры формулу =B7*I7 и нажать Enter;
- 19) Щелкнуть по ячейке K7 и ввести с клавиатуры формулу $=(C7+B7)+\cos((D7+J7)/2,25)$ и нажать Enter;
- 20) Щелкнуть по ячейке L7 и ввести с клавиатуры формулу =B7*K7 и нажать Enter;
- 21) Щелкнуть по ячейке M7 и ввести с клавиатуры формулу =(F7+2*H7+2*J7+L7)/6 и нажать Enter;
- 22) Щелкнуть по ячейке D8 и ввести с клавиатуры формулу =D7+M7 и нажать Enter;

- 23) Щелкнуть по ячейке D8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки D17, а затем отпустить левую кнопку мыши;
- 24) Щелкнуть по ячейке E8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки E16, а затем отпустить левую кнопку мыши;
- 25) Щелкнуть по ячейке F8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки F16, а затем отпустить левую кнопку мыши;
- 26) Щелкнуть по ячейке G8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки G16, а затем отпустить левую кнопку мыши;
- 27) Щелкнуть по ячейке H8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки H16, а затем отпустить левую кнопку мыши;
- 28) Щелкнуть по ячейке I8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки I16, а затем отпустить левую кнопку мыши;
- 29) Щелкнуть по ячейке J8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки J16, а затем отпустить левую кнопку мыши;
- 30) Щелкнуть по ячейке K8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки K16, а затем отпустить левую кнопку мыши;
- 31) Щелкнуть по ячейке L8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **+** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки L16, а затем отпустить левую кнопку мыши;
- 32) Щелкнуть по ячейке M8, подвести указатель мыши к правому нижнему углу ячейки, указатель мыши примет вид(жирный плюс) **★** . Нажать левую кнопку мыши и не отпуская ее протащить указатель мыши до ячейки M16, а затем отпустить левую кнопку мыши;
- 33) Выделить блок ячеек А6:М17. Выполнить команду *Формат, Ячейки*. В появившемся диалоговом окне *Формат ячеек* выбрать вкладку *Граница* и щелкнуть по кнопкам *Внешние, внутренние*, а затем щелкнуть по кнопке ОК;
- 34) Выделить блок ячеек D7:M17. Выполнить команду Формат, Ячейки. В появившемся диалоговом окне Формат ячеек выбрать вкладку Число, в поя-

вившемся списке Числовые форматы выбрать Числовые, а в поле Число десятичных знаков установить 4 и щелкнуть по кнопке ОК;

- 35) Выделить блок ячеек А6:М17. Выполнить команду *Формат*, *Столбец, Автоподбор ширины*;
 - 36) Сохранить выполненное задание.

В результате получится следующая таблица (см. таблицу 6).

Таблица 6 - Результаты решения ОДУ с помощью электронной таблицы Excel

						$f(x_i+h/2,$		$f(x_i+h/2,$	1,-	f(x _i +h,		
Ι	h	Xi	y _i	$f(x_i,y_i)$	\mathbf{k}_1	$y_i + k_1/2$	\mathbf{k}_2	$y_i + k_2/2$	\mathbf{k}_3	y_i+k_3	k_4	dyi
0	0,1	1,4	2,2000	1,9589	0,1959	1,9723	0,1972	1,9720	0,1972	1,9841	0,1984	0,1972
1	0,1	1,5	2,3972	1,9841	0,1984	1,9951	0,1995	1,9949	0,1995	2,0048	0,2005	0,1995
2	0,1	1,6	2,5967	2,0048	0,2005	2,0136	0,2014	2,0135	0,2013	2,0214	0,2021	0,2013
3	0,1	1,7	2,7980	2,0214	0,2021	2,0286	0,2029	2,0284	0,2028	2,0349	0,2035	0,2028
4	0,1	1,8	3,0009	2,0349	0,2035	2,0407	0,2041	2,0406	0,2041	2,0459	0,2046	0,2041
5	0,1	1,9	3,2049	2,0459	0,2046	2,0508	0,2051	2,0507	0,2051	2,0552	0,2055	0,2051
6	0,1	2	3,4100	2,0552	0,2055	2,0596	0,2060	2,0595	0,2059	2,0637	0,2064	0,2060
7	0,1	2,1	3,6159	2,0637	0,2064	2,0680	0,2068	2,0679	0,2068	2,0722	0,2072	0,2068
8	0,1	2,2	3,8227	2,0722	0,2072	2,0766	0,2077	2,0765	0,2077	2,0813	0,2081	0,2077
9			4,0304		0,2081	2,0864	0,2086	2,0863	0,2086	2,0919	0,2092	0,2086
10	0,1	2,4	4,2390									

2.3.3 Пример решения обыкновенного дифференциального уравнения методом Рунге-Кутта с помощью алгоритмического языка программирования Turbo Pascal

Проинтегрировать методом Рунге-Кутта дифференциальное уравнение y'=x+cos(y/2,25) с начальным условием $x_0=1,4,\ y_0=2,2$ на отрезке [1,4;2,4], приняв h=0,1. Вычисления вести с четырьмя знаками после запятой.

2.3.3.1 Словесный алгоритм метода Рунге-Кутта

- 1) Введите начало отрезка хп;
- 2) Введите конец отрезка хк;
- 3) Ведите шаг разбиения h;
- Введите у₀;
- 5) Вычислить количество отрезков разбиения n=(xk-xn)/h;

- 6) Открыть цикл по і от 0 до п;
- 7) Если i<>0, то перейти к пункту 13;
- 8) x=xn;
- 9) $y=y_0$;
- 10) Вывод заголовка таблицы;
- 11) Вывод х₀, у₀;
- 12) Перейти к пункту 20;
- 13) Вычислить $k_1 = h * f(x,y)$;
- 14) Вычислить $k_2=h*f(x+h/2,y+k_1/2)$;
- 15) Вычислить $k_3=h*f(x+h/2,y+k_2/2)$;
- 16) Вычислить $k_4=h*f(x+h,y+k_3);$
- 17) Вычислить $y=y+(k_1+2*k_2+2*k_3+k_4)/6$;
- 18) Вычислить x=x+h;
- 19) Вывод х,у;
- 20) Конец цикла по і;
- 21) Конец программы.

2.3.3.2 Блок - схема алгоритма метода Рунге-Кутта

Рисунок 5 - Блок схема алгоритма метода Рунге-Кутта

2.3.3.3 Распечатка программы по методу Рунге-Кутта

```
Program Runge;
Uses CRT
Var
  x,y,xn,xk,y0,h: real;
 k1, k2, k3, k4: real;
 i,n:integer;
Function F(x,y:real):real;
 Begin
   F := x + \cos(y/2.25);
  end;
Begin
 ClrScr;
 Write(' Введите начало отрезка xn=');
 Readln(xn);
 Write(' Введите конец отрезка xk=');
 Readln(xk);
 Write(' Введите шаг h=');
 Readln(h);
 Write(' Введите yo= ');
 Readln(y0);
 n:=round((xk-xn)/h);
 For i:=0 to n do begin
  if i=0 then begin
   x:=xn; y:=y0;
   writeln; writeln;
   writeln(' Результаты решения ОДУ');
   writeln('
               методом Рунге-Кутта');
   writeln;
   writeln(' x[',i:2,']=',x:4:2,' y[',i:2,']=',y:7:4);
  end
  else begin
  k1:=h*f(x,y);
   k2:=h*f(x+h/2,y+k1/2);
   k3:=h*f(x+h/2,y+k2/2);
   k4:=h*f(x+h,y+k3);
   x := x + h;
   y:=y+(k1+2*k2+2*k3+k4)/6;
   writeln(' x[',i:2,']=',x:4:2,' y[',i:2,']=',y:7:4);
  end;
  end;
  Readln;
end.
```

2.3.3.4 Результаты решения ОДУ методом Рунге-Кутта на ЭВМ

Введите начало отрезка xn=1.4 Введите конец отрезка xk=2.4 Введите шаг h=0.1 Введите yo= 2.2

Результаты решения ОДУ методом Рунге-Кутта

3 Варианты заданий

3.1 Задание № 1

Решить задачу Коши для обыкновенного дифференциального уравнения первого порядка y' = f(x,y), удовлетворяющего начальным условиям $y(x_0) = y_0$ на отрезке [a,b], шаг h=0.1 методом Эйлера. Все вычисления вести с четырьмя десятичными знаками.

$$No 1 y' = x + cos(\frac{y}{\sqrt{5}}), y_0(1.8) = 2.6, x \in [1.8; 2.8].$$

$$No 2 y' = x + cos(\frac{y}{3}), y_0(1.6) = 4.6, x \in [1.6; 2.6].$$

$$No 3 y' = x + cos(\frac{y}{\sqrt{10}}), y_0(0.6) = 0.8, x \in [0.6; 1.6].$$

$$No 4 y' = x + cos(\frac{y}{\sqrt{7}}), y_0(0.5) = 0.6, x \in [0.5; 1.5].$$

$$No 5 y' = x + cos(\frac{y}{\pi}), y_0(1.7) = 5.3, x \in [1.7; 2.7].$$

$$Ne \ 6 \quad y' = x + cos(\frac{y}{2,25}), \quad y_0(1.4) = 2.2, \quad x \in [1.4; 2.4].$$

$$Ne \ 7 \quad y' = x + cos(\frac{y}{2}), \quad y_0(1.4) = 2.5, \quad x \in [1.4; 2.4].$$

$$Ne \ 8 \quad y' = x + cos(\frac{y}{\sqrt{2}}), \quad y_0(0.8) = 1.4, \quad x \in [0.8; 1.8].$$

$$Ne \ 9 \quad y' = x + cos(\frac{y}{\sqrt{3}}), \quad y_0(1.2) = 2.1, \quad x \in [1.2; 2.2].$$

$$Ne \ 10 \quad y' = x + cos(\frac{y}{\sqrt{11}}), \quad y_0(2.1) = 2,5, \quad x \in [2.1; 3.1].$$

$$Ne \ 11 \quad y' = x + sin(\frac{y}{\sqrt{5}}), \quad y_0(1.8) = 2.6, \quad x \in [1.8; 2.8].$$

$$Ne \ 12 \quad y' = x + sin(\frac{y}{\sqrt{10}}), \quad y_0(0.6) = 4.6, \quad x \in [1.6; 2.6].$$

$$Ne \ 13 \quad y' = x + sin(\frac{y}{\sqrt{7}}), \quad y_0(0.6) = 0.8, \quad x \in [0.6; 1.6].$$

$$Ne \ 14 \quad y' = x + sin(\frac{y}{\sqrt{7}}), \quad y_0(0.5) = 0.6, \quad x \in [0.5; 1.5].$$

$$Ne \ 15 \quad y' = x + sin(\frac{y}{\sqrt{7}}), \quad y_0(1.4) = 2.2, \quad x \in [1.4; 2.4].$$

$$Ne \ 17 \quad y' = x + sin(\frac{y}{\sqrt{2}}), \quad y_0(1.4) = 2.5, \quad x \in [1.4; 2.4].$$

$$Ne \ 18 \quad y' = x + sin(\frac{y}{\sqrt{7}}), \quad y_0(0.8) = 1.3, \quad x \in [0.8; 1.8].$$

$$Ne \ 19 \quad y' = x + sin(\frac{y}{\sqrt{11}}), \quad y_0(0.8) = 1.2, \quad x \in [0.6; 1.6].$$

$$Ne \ 20 \quad y' = x + sin(\frac{y}{\sqrt{11}}), \quad y_0(0.6) = 1.2, \quad x \in [0.6; 1.6].$$

$$Ne \ 21 \quad y' = x + sin(\frac{y}{\sqrt{11}}), \quad y_0(0.5) = 1.8, \quad x \in [0.5; 1.5].$$

$$Ne \ 22 \quad y' = x + sin(\frac{y}{\sqrt{15}}), \quad y_0(0.5) = 0.6, \quad x \in [0.1; 1.1].$$

$$Ne \ 23 \quad y' = x + sin(\frac{y}{\sqrt{13}}), \quad y_0(0.5) = 0.6, \quad x \in [0.5; 1.5].$$

$$Ne \ 24 \quad y' = x + sin(\frac{y}{\sqrt{13}}), \quad y_0(0.5) = 0.6, \quad x \in [0.5; 1.5].$$

$$Ne \ 25 \quad y' = x + sin(\frac{y}{\sqrt{10}}), \quad y_0(0.5) = 0.6, \quad x \in [0.4; 1.4].$$

 $N_0 \ 27 \ y' = x + cos(\frac{y}{\sqrt{1.5}}), \quad y_0(0.3) = 0.9 \quad x \in [0.3; 1.3].$

$$N_{\underline{0}} \ 28 \quad y' = x + \cos(\frac{y}{\sqrt{1,3}}), \qquad y_0(1.2) = 1.8 \qquad x \in [1.2; \ 2.2].$$

$$N_{\underline{0}} \ 29 \quad y' = x + \cos(\frac{y}{\sqrt{0,3}}), \qquad y_0(0.7) = 2.1 \qquad x \in [0.7; \ 1.7].$$

$$N_{\underline{0}} \ 30 \quad y' = x + \cos(\frac{y}{\sqrt{0,7}}), \qquad y_0(0.9) = 1.7 \qquad x \in [0.9; \ 1.9].$$

3.2 Задание № 2

Решить задачу Коши для обыкновенного дифференциального уравнения первого порядка усовершенствованным методом Эйлера на отрезке [0,2;1,2] с шагом h=0,1 при начальном условии y(0,2)=0,25. Все вычисления выполнять с четырьмя десятичными знаками.

No 1
$$y' = 0.133(x^2 + \sin(x)) + 0.872y$$

No 2 $y' = 0.215(x^2 + \cos(1.5x) + 1.283y)$
No 3 $y' = 0.158(x^2 + \sin(0.8x)) + 1.164y$
No 4 $y' = 0.173(x^2 + \cos(0.7x)) + 0.754y$
No 5 $y' = 0.221(x^2 + \sin(1.2x)) + 0.452y$
No 6 $y' = 0.163(x^2 + \cos(0.4x)) + 0.635y$
No 7 $y' = 0.218(x^2 + \sin(1.6x)) + 0.718y$
No 8 $y' = 0.145(x^2 + \cos(0.5x)) + 0.842y$
No 9 $y' = 0.213(x^2 + \sin(1.8x)) + 0.368y$
No 10 $y' = 0.127(x^2 + \cos(0.6x)) + 0.573y$
No 11 $y' = 0.232(x^2 + \sin(1.4x)) + 1.453y$
No 12 $y' = 0.417(x^2 + \cos(0.8x)) + 0.972y$
No 13 $y' = 0.324(x^2 + \sin(1.5x)) + 1.612y$
No 14 $y' = 0.263(x^2 + \cos(1.2x)) + 0.453y$
No 15 $y' = 0.372(x^2 + \sin(0.7x)) + 0.758y$
No 16 $y' = 0.343(x^2 + \cos(0.6x)) + 1.315y$
No 17 $y' = 0.276(x^2 + \sin(1.6x)) + 0.988y$
No 18 $y' = 0.173(x^2 + \cos(0.6x)) + 1.534y$
No 19 $y' = 0.258(x^2 + \sin(0.4x)) + 0.724y$
No 20 $y' = 0.317(x^2 + \cos(1.4x)) + 1.344y$
No 21 $y' = 0.166(x^2 + \sin(1.1x)) + 0.883y$

No 22
$$y' = 0.215(x^2 + cos(0.9x)) + 1.213y$$

No 23 $y' = 0.188(x^2 + sin(1.5x)) + 0.885y$
No 24 $y' = 0.314(x^2 + cos(0.6x)) + 0.772y$
No 25 $y' = 0.418(x^2 + sin(1.2x)) + 1.344y$
No 26 $y' = 0.273(x^2 + cos(1.3x)) + 0.687y$
No 27 $y' = 0.176(x^2 + sin(0.8x)) + 1.247y$
No 28 $y' = 0.245(x^2 + cos(0.4x)) + 1.452y$
No 29 $y' = 0.184(x^2 + sin(0.6x)) + 0.747y$
No 30 $y' = 0.212(x^2 + cos(1.2x)) + 1.544y$

3.3 Задание № 3

Решить задачу Коши для обыкновенного дифференциального уравнения первого порядка y' = f(x,y), удовлетворяющего начальным условиям $y(x_0) = y_0$ на отрезке [0,1], шаг h=0.1 методом Рунге-Кута. Все вычисления вести с четырьмя десятичными знаками.

$$Ne 1 y' = 1 + 0.2ysin(x) - y^{2}, y(0) = 0.$$

$$Ne 2 y' = cos(x + y) + 0.5(x - y), y(0) = 0.$$

$$Ne 3 y' = \frac{cos(y)}{x + 1} - 0.5 y^{2}, y(0) = 0.$$

$$Ne 4 y' = (1 - y^{2})cos(x) + 0.6y, y(0) = 0.$$

$$Ne 5 y' = 1 + 0.4ysin(x) - 1.5y^{2}, y(0) = 0.$$

$$Ne 6 y' = \frac{cos y}{x + 2} + 0.3 y^{2}, y(0) = 0.$$

$$Ne 7 y' = cos(1.5x + y) + (x - y), y(0) = 0.$$

$$Ne 8 y' = 1 - sin(x + y) + \frac{0.5y}{x + 2}, y(0) = 0.$$

$$Ne 9 y' = \frac{cos(y)}{1.5 + x} + 0.1 y^{2}, y(0) = 0.$$

$$Ne 10 y' = 0.6sin(x) - 1.25y^{2} + 1, y(0) = 0.$$

$$Ne 11 y' = cos(2x + y) + 1.5(x - y), y(0) = 0.$$

$$Ne 12 y' = 1 - \frac{0.1y}{x + 2} - sin(2x + y), y(0) = 0.$$

$$Ne 13 y' = \frac{cos(y)}{1.25 + x} - 0.1y^{2}, y(0) = 0.$$

$$Ne 14 y' = 1 + 0.8ysin(x) - 2y^{2}, y(0) = 0.$$

$$Ne 15 y' = cos(1.5x + y) + 1.5(x - y), y(0) = 0.$$

No 16
$$y'=1-\sin(2x+y)+\frac{0.3y}{x+2}$$
, $y(0)=0$.

$$N_{2} 17 \quad y' = \frac{\cos(y)}{1.75 + x} - 0.5y^{2}, \qquad y(0) = 0.$$

$$N_{2}$$
 19 y'=(0.8 - y²)cos(x) + 0.3y, y(0)=0.

No 21
$$y' = cos(x + y) + 0.75(x - y),$$
 $y(0) = 0.$

$$N_{2} 22 \quad y' = 1 - \sin(1.25x + y) + \frac{0.5y}{x + 2}, \quad y(0) = 0.$$

$$N_{\underline{0}} 23 \quad y' = \frac{\cos(y)}{x+2} - 0.3y^2, \qquad y(0) = 0.$$

$$N_{2} 24$$
 $y'=1-\sin(1.75x+y)+\frac{0.1y}{x+2}$, $y(0)=0$.

$$N_{0} 25$$
 $y' = \frac{\cos(y)}{1.25 + x} - 0.5y^{2}, y(0) = 0.$

$$\frac{1.25 + x}{y' = \cos(1.5x + y) - 2.25(x + y)}, \quad y(0) = 0.$$

No 27
$$y' = \frac{\cos(y)}{1.5 + x} - 1.25y^2$$
, $y(0) = 0$.
No 28 $y' = 1 - (x - 1)\sin(y) + 2(x + y)$, $y(0) = 0$.

No 28
$$y' = 1 - (x - 1)\sin(y) + 2(x + y), y(0) = 0.$$

$$N_{\underline{0}} 29 \quad y' = 1 - \sin(0.75x - y) + \frac{1.75y}{x+1}, \quad y(0) = 0.$$

No 30 y'= cos(x - y) +
$$\frac{1.25y}{1.5+x}$$
, y(0)=0.

$$N_{0} 31 \quad y' = x + y^{2}, \qquad y(0) = 0.5.$$

No 32
$$y' = 2x + 0.1y^2$$
, $y(0) = 0.2$.

$$N_{2} 33 \quad y' = 2x + y^{2}, \qquad y(0) = 0.3.$$

No 34
$$y' = x^2 + xy$$
, $y(0) = 0.2$.

$$N_{0} 35 \quad y' = 0.2x + y^{2}, \qquad y(0) = 0.1.$$

$$N_{0} 36 \quad y' = x^{2} + y, \qquad y(0) = 0.4.$$

No 37
$$y' = x + 2y^2$$
, $y(0) = 0.1$.

No 38
$$y' = xy + y^2$$
, $y(0) = 0.6$.

$$N_2 39 \quad v' = x^2 + v^2, \qquad v(0) = 0.7.$$

$$N_2 40 \quad y' = x^2 + 0.2 y^2, \qquad y(0) = 0.2.$$

$$N_{2} 41 \quad y' = 0.3x + y^{2}, \qquad y(0) = 0.4.$$

$$N_2 42 \quad y' = 0.1x + 0.2y^2, \qquad y(0) = 0.3.$$

<i>№ 43</i>	$y' = x + 0.3 y^2,$	y(0) = 0.3.
<i>№ 44</i>	$y' = 2x^2 + xy,$	y(0) = 0.5.
<i>№ 45</i>	$y' = 0.1 x^2 + 2xy,$	y(0) = 0.8.
<i>№ 46</i>	$y'=x^2+0.2xy,$	y(0) = 0.6.
<i>№ 47</i>	$y' = 3x^2 + 0.1xy,$	y(0) = 0.2.
<i>№ 48</i>	$y'=x^2+3xy,$	y(0) = 0.3.
<i>№ 49</i>	$y' = x^2 + 0.1y^2,$	y(0) = 0.7.
<i>№ 50</i>	$y'=2x^2+3y^2,$	y(0) = 0.2.
<i>№ 51</i>	$y'=0.2x^2+y^2,$	y(0) = 0.8.
<i>№ 52</i>	$y' = 0.3x^2 + 0.1y^2$,	y(0) = 0.3.
<i>№ 53</i>	$y' = xy + 0.1y^2,$	y(0)=0.5.
<i>№ 54</i>	$y' = 0.2xy + y^2,$	y(0)=0.4.
<i>№ 55</i>	$y' = 0.1xy + 0.3y^2,$	y(0) = 0.2.
<i>№ 56</i>	$y'=0.3xy+y^2,$	y(0)=0.4.
<i>№</i> 57	$y' = xy + 0.2y^2,$	y(0) = 0.7.
<i>№ 58</i>	$y'=0.1x^2+2y^2,$	y(0) = 0.2.
<i>№ 59</i>	$y' = 3x + 0.1y^2,$	y(0)=0.4.
<i>№ 60</i>	$y'=0.2x+3y^2,$	y(0) = 0.2.

4 Вопросы к защите лабораторной работы

- 1) Какое уравнение называется дифференциальным?
- 2) Какое дифференциальное уравнение называется обыкновенным?
- 3) Какое дифференциальное уравнение называется дифференциальным уравнением в частных производных?
 - 4) Что называется порядком дифференциального уравнения?
- 5) Что является решением обыкновенного дифференциального уравнения?
- 6) Что является частным решением обыкновенного дифференциального уравнения?
 - 7) Сформулируйте задачу Коши.
- 8) Общая формула нахождения приближенного решения обыкновенного дифференциального уравнения.
- 9) Формула Эйлера для нахождения приближенного решения обыкновенного дифференциального уравнения.
 - 10) Геометрическая интерпретация формулы Эйлера.
- 11) Усовершенствованная формула Эйлера для нахождения приближенного решения обыкновенного дифференциального уравнения.
 - 12) Блок схема алгоритма формулы Эйлера.
 - 13) Блок схема алгоритма усовершенствованной формулы Эйлера.
- 14) Формула Рунге-Кутта для нахождения приближенного решения обыкновенного дифференциального уравнения.

- 15) Геометрическая интерпретация метода Рунге-Кутта.16) Блок схема алгоритма метода Рунге-Кутта.

Список использованных источников

- 1 Лапчик, М. П.: Элементы численных методов : учебник для спо / М. П. Лапчик, М. И. Рагулина, Е. К. Хеннер; под ред. М. П. Лапчик. -М.: Академия, 2007. 224 с
- 2 Исаков, В.Н. Элементы численных методов : учебное пособие для пед. вузов/ В.Н. Исаков. М.: Академия, 2003. 192 с.
- 3 Бахвалов, Н.С. Численные методы : учебное пособие для вузов/ Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. 3 изд., перераб. доп. М.: Бином: Лаборатория знаний, 2003.-632 с.
- 4 Костомаров, Д.П., Вводные лекции по численным методам : учебное пособие для вузов/ Д.П.Костомаров, А.П.Фаворский. М.: Логос, 2004. 184 с.