Auto-Encoding Bayesian Inverse Games

Xinjie Liu*, Lasse Peters*, Javier Alonso-Mora, Ufuk Topcu, David Fridovich-Keil *equal contribution

TEXAS TUDelft

Abstract

- Game theory naturally models the coupling of agents' decisions in multi-agent interaction. However, complete game models are often unavailable in real-world scenarios, e.g., due to unknown agents' objectives.
- Main Contribution: We propose a tractable approach for approximate Bayesian inference of posterior distributions of unknown game parameters.
- The method embeds a differentiable game solver into a variational autoencoder (VAE), naturally handling continuous and multi-modal distributions.

Preliminaries: Generalized Nash Games

$$\begin{array}{lll} \text{robot:} & \mathcal{S}^r_{\theta}(\tau^h) := \arg\min_{\tau_r} & J^r_{\theta}(\tau^r, \tau^h) \\ & \text{s.t.} & g^r_{\theta}(\tau^r, \tau^h) \geq 0 \\ \text{human:} & \mathcal{S}^h_{\theta}(\tau^r) := \arg\min_{\tau_h} & J^h_{\theta}(\tau^h, \tau^r) \\ & \text{s.t.} & g^h_{\theta}(\tau^h, \tau^r) \geq 0 \\ \end{array}$$

- Coupled trajectory optimization problems.
- Solution: Generalized Nash equilibrium (GNE).
- Parameter θ : Unknown aspects of the game, e.g., agents' goal position, desired driving speed, lane preference, etc.

Formalizing Bayesian Inverse Games

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$
 s.t. Nash equilibrium conditions

Challenges:

- Unknown prior p(y).
- Observation model $p(y \mid \theta)$ involves **game solve**, and the posterior $p(\theta \mid y)$ is in general **non-Gaussian** or even **multi-modal**.
- The computation of the normalizing constant is intractable due to the marginalization $p(y) = \int p(y \mid \theta) p(\theta) d\theta$.

Auto-Encoding Bayesian Inverse Games

- Solves a variational inference problem to approximate Bayesian inference.
- Results in a structured VAE framework, where the differentiable game solver encodes the game structure and constraints.
- Naturally handles continuous, multi-modal distributions. The pipeline supports efficient sampling from the inferred posteriors and does not require game solve at runtime.
- The structured VAE can be trained from an **unlabeled** dataset of observed interactions.

Baseline: maximum likelihood estimation (MLE)

Ours:
$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$
 s.t. Nash equilibrium conditions

 $\hat{\theta} \in \underset{\theta}{\operatorname{arg\,max}} \ p(y \mid \theta)$

s.t. Nash equilibrium conditions

- **Ignores** prior.
- Only provides **point estimates** without uncertainty quantification and performs **poorly** in case of **uninformative observations**.

The proposed Bayesian inverse game approach learns unknown priors from unlabeled interactions (Fig. 1), captures multi-modality of unknown game parameter posteriors (Fig. 2) and gives improved downstream motion planning safety (Fig. 3). The MLE baseline performs poorly in case of uninformative observations (Fig. 4).

Project Website

xinjie-liu.github.io/projects/bayesian-inverse-games/

Contact

Xinjie Liu https://xinjie-liu.github.io