V Neratovicích 18.09.2024 Výtisk jediný Počet stránek: 15

PÍSEMNÁ PŘÍPRAVA

na vyučování – IT 1

	V / V	, , ,
Dřaduašt.		V/C CITC
Předmět:	POČÍTAČO	AE DITE

Téma: SÍŤOVÉ MODELY ISO/OSI a TCP/IP

<u>Cíl:</u> Seznámit studenty s modelem ISO/OSI a TCP/IP.

Místo: učebna

Materiální zabezpečení: písemná příprava

Metoda: výklad s ukázkou

Obsah

Model ISO/OSI - DEFINICE	
Fyzická vrstva	
Linková vrstva	
Síťová vrstva	
Transportní vrstva (přeneseně v TCP/IP)	10
Relační vrstva	
Prezentační vrstva	12
Aplikační vrstva	13
Model TCP/IP	14

Model ISO/OSI - DEFINICE

Zkratka ISO označuje organizaci, která tuto normu vydala - International Organization for Standardization. Zkratka OSI pochází z anglického Open System Interconnection neboli propojování otevřených systémů. Referenční ISO/OSI model vznikl v 80. letech minulého století.

Úlohou tohoto modelu je poskytnout základnu pro vypracování norem sloužících pro účely propojování systémů. Norma tedy nespecifikuje implementaci (realizaci) systémů, ale uvádí všeobecné principy sedmivrstvé síťové architektury.

Proč tento model?

Počítačové sítě vyvíjelo více firem, zpočátku to byly uzavřené a nekompatibilní systémy.

- Hlavním účelem sítí je však vzájemné propojování, a tak vyvstala potřeba stanovit pravidla pro přenos dat v sítích a mezi nimi.
- Mezinárodní ústav pro normalizaci ISO (International Standards Organization) vypracoval tzv. referenční model OSI (Open Systems Interconnection), který rozdělil práci v síti do 7 vzájemně spolupracujících vrstev.
- Princip spočívá v tom, že vyšší vrstva převezme úkol od podřízené vrstvy, zpracuje jej a předá vrstvě nadřízené. Vertikální spolupráce mezi vrstvami (nadřízená s podřízenou) je věcí výrobce sítě.
- Model ISO/OSI doporučuje, jak mají vrstvy spolupracovat horizontálně dvě stejné vrstvy modelu mezi různými sítěmi (či síťové prvky různých výrobců) musejí spolupracovat.

VIDEA: Základy fungování sítí (youtube.com)

Počítačové sítě 01 Síťové vrstvy (youtube.com)

OSI Model Vrstva Data Aplikační Vrstvy hostitelů **Data** Síťový proces aplikací Prezentační Data Prezentace dat a šifrování Relační **Data** Komunikace mezi hostitely Transportní End-to-End spojení Segmenty a spolehlivost **Síťová** Určování cesty a IP Vrstvy média **Pakety** (logické adresování) Spojova Rámce MAC a LLC (Fyzické adresování) **Fyzická** Bity Médium, signál, binární přenos

Představa pro normální lidi (je ve videu):

Paralela mezi RM - OSI a dopisy

Jiný náhled modelu:

Fyzická vrstva

Je nejnižší vrstvou modelu ISO/OSI. Zajišťuje převod proudu bitů na signál (nejčastěji elektrický) a opačný převod ze signálu na proud bitů. Zajišťuje službu: přijmi bit – odešli bit. Bitový tok může být před převodem na fyzický signál seskupený do kódových slov nebo symbolů. Je hardwarová.

ZABEZPEČUJE SPOJENÍ MEZI NEJBLIŽŠÍMI KRABIČKAMI.

Protokoly fyzické vrstvy stanovují:

- elektrické signály (např. +1V)
- tvary konektorů (např. V.35) co protokol to příslušný typ konektoru,
 uživatelsky přívětivé :-)
- typ média (kroucená dvojlinka, koaxiální kabel, optické vlákno, rádiové spektrum, apod.)
- přenosovou rychlost (např. 1GB/s)
- modulaci (např. FM, PM, apod.) modulační rychlost
- kódování (např. RZ, NRZ, apod.)
- synchronizaci (synchronní komunikace, asynchronní komunikace, zdroj hodin, apod.)

šířka pásma (bandwith)

Na úrovni fyzické vrstvy fungují nejstarší modemy, huby, opakovače (repeater), síťové adaptéry a Hostitelské adaptéry (Host Bus Adapters používané v síťových úložištích NAS). Novější modemy, stejně jako většina síťových karet, ale realizují i úkoly linkové vrstvy.

Příklady fyzických vrstev: fyzické vrstvy IEEE 802.11 Wi-Fi, Bluetooth, IRDA, ISDN, 100BASE-TX¹, fyzická vrstva USB, Fire Wire.

Linková vrstva

Je druhou vrstvou referenčního modelu a zajišťuje integritu toku dat z jednoho uzlu sítě na druhý. Je hardwarová. Poskytuje bezchybný přenos datových rámců z jednoho uzlu do druhého prostřednictvím fyzické vrstvy a umožňuje, aby vrstvy nad ní předpokládaly v podstatě bezchybný přenos prostřednictvím daného spoje.

ZABEZPEČUJE SPOJENÍ MEZI NEJBLIŽŠÍMI POČÍTAČI (přímí sousedé) v LAN nebo i v rozsáhlejší síti.

Základní jednotkou linkové přenosu jsou rámce.

· Linkové rámce (pakety)

Záhlaví (Header) Data (Payload) Zápatí (Trailer)

Záhlaví: obsahuje adresu příjemce a odesílatele

Zápatí: obsahuje kontrolní součet z dat, která předchází zápatí

Když součty u příjemce nesedí, byl rámec poškozen a odmítne ho.

¹ **100BASE-TX** realizuje nejnižší, <u>fyzickou vrstvu referenčního modelu ISO/OSI</u>, protože realizuje pouze fyzické spojení mezi zařízeními. Přenosovým médiem je kabel s měděnými <u>nestíněnými kroucenými páry</u> UTP nebo FTP kategorie 5 nebo 6, zakončený na obou stranách konektorem <u>8P8C</u> (často nesprávně označovaným jako <u>RJ-45</u>). Název standardu udává jeho hlavní parametry: 100 označuje rychlost přenosu v megabitech za sekundu, "Base" označuje digitální přenos v <u>základním pásmu</u>, označení TX označuje měděnou kroucenou dvojlinku kategorie 5e nebo vyšší.

Linková vrstva poskytuje:

- Navázání a ukončení spoje: Naváže a ukončí logický spoj mezi dvěma uzly.
- Řízení přenosu rámců: Upozorní přenášející uzel, aby počkal, nejsou-li k dispozici žádné vyrovnávací paměti rámců.
- Sekvencováni rámců: Sekvenčně přenáší/přijímá rámce.
- Potvrzení rámců: Poskytuje/očekává potvrzení rámců. Detekuje chyby, k nimž dochází ve fyzické vrstvě, a zajišťuje zotavení z těchto chyb opakovaným přenosem nepotvrzených rámců a zpracováním příjmu duplicitních rámců.
- Oddělování rámců: vytváří a rozpoznává hranice rámců.
- Kontrola chyb rámců: kontroluje integritu přijatých rámců.
- Správa přístupu k médiu: určuje, zda uzel "má právo" použít dané fyzické médium.

Na této vrstvě pracují mosty (bridge) a přepínače (switch).

Tato vrstva se dělí na dvě podvrstvy:

MAC - Media Acces Control

Podvrstva přístupu k médiu má poměrně prosté úkoly, zajišťuje fyzické adresování a řízení přístupu k médiu. Jelikož je fyzická adresa přidělována výrobcem, je tato podvrstva hardwarově závislá.

LLC - Logical Link Control

Tato vrstva má také definovaný tvar rámce (datového bloku). Úvodní sekvence (preamble) je často řazena do informace fyzické vrstvy. **Cílová adresa (destination address) a zdrojová adresa (source address) jsou velmi významné součásti hlavičky linkové vrstvy.**

Lze je nalézt téměř u všech sítových technologií (např. ArcNet, Ethernet, Token Ring, FDDI). Další části paketu jsou tvořeny zbývajícími Údaji hlavičky, hlavičkami vyšších vrstev, přenášenými daty a údaji o ukončení příslušné vrstvy.

Síťová vrstva

Síťová vrstva řídí operace podsítě a na základě podmínek v síti, priority služeb a dalších faktorů určuje, jakou fyzickou cestu by data měla využít.

ZABEZPEČUJE KOMUNIKACI MEZI DVĚMA VZDÁLENÝMI POČÍTAČI (kdekoliv v internetu).

Základní jednotkou síťové vrstvy je IP datagram.

Vkládá se do linkového rámce. Vrstva pak přenáší bloky dat nazývané PAKETY a zajišťuje jejich doručení příslušnému adresátovi, přes různé mezilehlé uzly.

IP protokol nepoužívá okruhy

Poskytuje:

- směrování hledá vhodnou cestu k cíli, směruje rámce mezi sítěmi;
- řízení provozu podsítě směrovače (mezilehlé systémy síťové vrstvy) mohou odesílající stranu instruovat, aby "přiškrtila" přenos rámců, když se vyrovnávací paměť směrovače zaplní;
- segmentace rámců pokud určí, že velikost jednotky MTU (Maximum Transmission Unit) směrovače pro příjem dat je menší než velikost rámce, může směrovač provést fragmentaci rámce pro přenos a jeho následné sestavení v cílové stanici;
- mapování logických adres na fyzické překládá logické adresy nebo názvy na fyzické adresy;
- evidence využití podsítě: obsahuje evidenční funkce pro sledování rámců postoupených zprostředkujícími systémy podsítě s cílem vytvořit fakturační údaje.

Je hardwarová, ale když směrování řeší PC s dvěma síťovými kartami je softwarová.

Transportní vrstva (přeneseně v TCP/IP)

definuje protokoly pro strukturované zprávy a zabezpečuje bezchybnost přenosu (provádí některé chybové kontroly). Řeší například rozdělení souboru na pakety a potvrzování, Je softwarová.

ZABEZPEČUJE KOMUNIKACI MEZI APLIKACEMI NA VZDÁLENÝCH POČÍTAČÍCH.

Základní jednotkou je TCP segment nebo UTP datagram.

Transportní vrstva zajišťuje, že zprávy jsou doručovány bez chyb, ve správném pořadí a také bez ztrát či duplicit. Tato vrstva zbavuje protokoly vyšších vrstev starosti o přenos dat mezi nimi a jejich partnery.

Velikost a složitost transportního protokolu závisí na typu služby, který může získat od síťové vrstvy. U spolehlivé síťové vrstvy s podporou virtuálních okruhů je vyžadována minimální transportní vrstva. Pokud je síťová vrstva nespolehlivá nebo podporuje pouze datagramy, transportní vrstva musí zahrnovat rozsáhlou podporu zjišťování chyb a zotavení.

Transportní vrstva poskytuje:

- segmentace zpráv: přijme zprávu z vyšší (relační) vrstvy, rozdělí ji na menší jednotky (pokud není dostatečně malá) a přidá tyto menší jednotky dolů síťové vrstvě. Transportní vrstva v cílové stanici zprávu opět sestaví.
- potvrzení zpráv: poskytuje spolehlivé doručování zpráv mezi dvěma body s potvrzováním.

- řízení provozu zpráv: Upozorní přenášející stanici, aby počkala, nejsou-li k
 dispozici žádné vyrovnávací paměti zpráv,
- multiplexování relací: Multiplexuje několik proudů zpráv nebo relací do jednoho logického spoje a udržuje přehled, které zprávy patří do kterých relací (viz relační vrstva).

Obvykle může transportní vrstva přijímat relativně velké zprávy, ale existují přísná omezení velikosti zpráv určená síťovou (nebo nižší) vrstvou. V důsledku toho musí transportní vrstva rozdělovat zprávy na menší jednotky, neboli rámce, a před každý rámec připojit hlavičku.

Informace hlavičky transportní vrstvy musí obsahovat řídicí informace, jako jsou příznaky začátku a konce zprávy, aby transportní vrstva na druhé straně rozpoznala hranice zprávy. Navíc pokud nižší vrstvy neudržují pořadí přenosu, musí hlavička transportní vrstvy obsahovat informace o posloupnosti, aby transportní vrstva na přijímající straně mohla před předáním přijaté zprávy vyšší vrstvě sestavit její části zpět ve správném pořadí.

TRANSPORTNÍ VRSTVA

- nelze "hýbat" s vlastnostmi a funkcemi nižších vrstev
 - třeba proto že patří někomu jinému
- vyšší vrstvy mohou chtít něco jiného, než co nabízí nižší vrstvy
- je úkolem transportní vrstvy zajistit potřebné přizpůsobení!
- zajišťuje:
 - komunikaci mezi koncovými účastníky (end-to-end komunikaci)
- může měnit
 - nespolehlivý charakter přenosu na spolehlivý
 - méně spolehlivý přenos na více spolehlivý
 - nespojovaný přenos na spojovaný

Relační vrstva

• **koordinuje komunikace** a udržuje relaci tak dlouho, dokud je potřebná. Dále zajišťuje zabezpečovací, přihlašovací a správní funkce. **Je softwarová.**

Relační vrstva umožňuje ustavení relací mezi procesy spuštěnými v různých stanicích.

Poskytuje:

- ustavení, správu a ukončení relací: Umožňuje dvěma aplikačním procesům v různých počítačích ustavit, používat a ukončit připojení nazývané relace.
- podpora relací: Provádí funkce, které těmto procesům umožňují komunikovat prostřednictvím sítě a zajišťují zabezpečení, rozpoznávání názvů, protokolování a další.

Prezentační vrstva

specifikuje způsob, jakým jsou data formátována, prezentována, transformována a kódována. Řeší například háčky a čárky, CRC, kompresi a dekompresi, šifrování dat. Je softwarová.

Prezentační vrstva formátuje data, která jsou prezentována aplikační vrstvě. **Lze na ní pohlížet jako na překladatele pro danou síť.** Tato vrstva může překládat data z

formátu použitého aplikační vrstvou do obecného formátu na odesílající stanici a pak je opět přeložit z obecného formátu do formátu, kterému rozumí aplikační vrstva na přijímající stanici.

Prezentační vrstva poskytuje:

- překlad znakového kódu: Například z kódu ASCII do kódu EBCDIC.
- převod dat: Pořadí bitů, převod znaků CR a CR/LF, převod celých čísel na desetinná atd.
- **komprese dat:** snižuje počet bitů, které je třeba přenášet sítí.
- **šifrování dat:** Šifruje data z důvodu zabezpečení. Například šifrování hesel.

Aplikační vrstva

je to v modelu vrstva nejvyšší. Definuje způsob, jakým komunikují se sítí aplikace, například databázové systémy, elektronická pošta nebo programy pro emulaci terminálů. Používá služby nižších vrstev a díky tomu je izolována od problémů síťových technických prostředků. Je softwarová.

Aplikační vrstva slouží jako přístupové okno pro uživatele a aplikační procesy k sítovým službám. Tato vrstva obsahuje řadu obecně potřebných funkcí:

- sdílení prostředků a přesměrování zařízení;
- přístup ke vzdáleným souborům;
- přístup ke vzdáleným tiskárnám;
- komunikace mezi procesy;
- správa sítě;
- adresářové služby;
- elektronické zprávy (jako je e-mail);
- virtuální síťové terminály.

Model TCP/IP

Zkratka TCP/IP je to obvykle chápána jen jako označení dvou přenosových protokolů, používaných v počítačových sítích s počítači na bázi Unixu, konkrétně protokolů TCP (Transmission Control Protocol) a IP (Internet Protocol).

Ve skutečnosti ale **zkratka TCP/IP označuje celou soustavu protokolů**, přičemž TCP a IP jsou sice nejznámější protokoly této soustavy, ale zdaleka ne protokoly jediné.

Stejně jako prakticky všechny síťové architektury, vychází i rodina protokolů TCP/IP z vrstevnatého modelu. To znamená, že místo řešení všech svých úkolů v rámci jednoho velkého a monolitického celku je rozděluje (dekomponuje) do několika menších a snáze zvládnutelných částí - v podobě hierarchicky uspořádaných vrstev (anglicky: layers), z nichž každá řeší určitou část zadaných úkolů.

Instalovat program WIRESHARK – na zkoušení doma!

Počítačové sítě Architektura TCP/IP

Architektura TCP/IP vs. Referenční model OSI Aplikační vrstva Aplikační 6 Prezentační Sada aplikačních protokolů 5 Relační Transportní vrstva TCP Transportní Síťová vrstva (IP vrstva) 3 **ICMP IGMP OSPF** Síťová ARP RARP Vrstva síť ového rozhraní Spojová (je specifikována příslušným RFC dokumentem pro každý typ možné přenosové technologie) Fyzická

Počítačové sítě - architektura TCP/IP

3

Vrstvy		Protokoly	Datové jednotky		Layers	
TCP/IP	OSI				OSI	TCP/IP
	Aplikační	HTTP, FTP, SMT	P, POP3, Telnet, SSH, DH	Aplication		
Aplikační	Prezentační				Presentation	Aplication
	Relační	_		SEGMENT,	Session	
Transportní	Transportní	TCP, UDP	Firewall	DATAGRAM	Transport	Transport
Internetová	Síťová	IPv4, IPv6	Router	PAKET	Network	Internet
Vrstva síťového rozhraní	Spojová	Ethernet, ARP	Bridge / Switch / Access Point	RÁMEC (FRAME)	Data Link	Network
	Fyzická	Ethernet	Repeater / Hub / Media Convertor	BIT	Physical	Access