HR Employee Attrition

▼ Import libraries

df.info()

```
import numpy as np
import pandas as pd
#import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px

df = pd.read_csv('HR-Employee-Attrition.csv')
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469

RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

	columns (total 35 columns	•	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64

33 YearsSinceLastPromotion 1470 non-null int64
34 YearsWithCurrManager 1470 non-null int64

dtypes: int64(26), object(9) memory usage: 402.1+ KB

▼ Data Validation and Cleaning

df.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumbe
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	
5 rows × 35 columns										

df.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	
8 rows × 26 columns									

df.duplicated().sum()

0

No duplicates

df.isnull().sum()

0 Attrition 0 BusinessTravel 0 DailyRate 0 Department DistanceFromHome 0 0 0 Education ${\it EducationField}$ 0 EmployeeCount 0 0 EmployeeNumber EnvironmentSatisfaction Gender HourlyRate JobInvolvement 0 JobLevel 0 JobRole 0 JobSatisfaction 0 MaritalStatus 0 ${\tt MonthlyIncome}$ 0 0 MonthlyRate NumCompaniesWorked 0 Over18 0 OverTime 0 PercentSalaryHike 0 PerformanceRating 0

```
RelationshipSatisfaction
StandardHours
StockOptionLevel
TotalWorkingYears
TrainingTimesLastYear
                          0
WorkLifeBalance
                         0
YearsAtCompany
                          0
YearsInCurrentRole
                         0
YearsSinceLastPromotion 0
YearsWithCurrManager
                          0
dtype: int64
```

df.corr()

```
No null values.
#Unique values in object type column
object_columns = df.select_dtypes(include='object').columns
unique_values = {}
for column in object_columns:
    unique_values[column] = df[column].unique()
pd.Series(unique_values)
     Attrition
                                                                    [Yes, No]
                        [Travel_Rarely, Travel_Frequently, Non-Travel]
[Sales, Research & Development, Human Resources]
     BusinessTravel
     Department
     EducationField [Life Sciences, Other, Medical, Marketing, Tec...

Gender [Female, Male]
     JobRole
                        [Sales Executive, Research Scientist, Laborato...
     MaritalStatus
                                                 [Single, Married, Divorced]
     Over18
                                                                    [Yes, No]
     OverTime
     dtype: object
#Deleting redundant columns
df.drop(['EmployeeCount', 'Over18', 'StandardHours'], axis=1, inplace=True, errors='ignore')
#Correlation of numeric variables
```

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid

	Age	DailyRate	DistanceFromHome	Education	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	JobI
Age	1.000000	0.010661	-0.001686	0.208034	-0.010145	0.010146	0.024287	

▼ Data Visualization

```
# Selecting only the numeric columns
numeric_columns = df.select_dtypes(include='number')

# Creating the heatmap
fig = px.imshow(numeric_columns.corr(), text_auto='.2f', color_continuous_scale='sunsetdark')
#fig = px.imshow(numeric_columns.corr(), text_auto='.2f', color_continuous_scale='YlOrRd')

# Updating the layout
fig.update_layout(
    title="Correlation Heatmap",
    width=1000,
    height=1000
)
```

Correlation Heatmap


```
# Selecting only the numeric columns
numeric_columns = df.select_dtypes(include='number')

# Plotting the distribution of each numeric column
for column in numeric_columns.columns:
    fig = px.histogram(numeric_columns, x=column, nbins=20, marginal="box")
    fig.update_layout(
        title=f"Distribution of {column}",
        xaxis_title=column,
        yaxis_title="Frequency",
        # width=600,
        # height=400,
        showlegend=False
    )
    fig.show()
```

Distribution of Age

Distribution of DailyRate

Distribution of DistanceFromHome

Distribution of Education

Distribution of EmployeeNumber

Distribution of EnvironmentSatisfaction

Distribution of HourlyRate

Distribution of JobInvolvement

Distribution of JobLevel

Distribution of JobSatisfaction

Distribution of MonthlyIncome

Distribution of MonthlyRate

Distribution of NumCompaniesWorked

Distribution of PercentSalaryHike

Distribution of PerformanceRating

Distribution of RelationshipSatisfaction

Distribution of StockOptionLevel

Distribution of TotalWorkingYears

Distribution of TrainingTimesLastYear

Distribution of WorkLifeBalance

Distribution of YearsAtCompany

.cu.o..compun,

Distribution of YearsInCurrentRole

Distribution of BusinessTravel by Attrition

Distribution of Department by Attrition

Distribution of EducationField by Attrition

Distribution of Gender by Attrition

Distribution of JobRole by Attrition

Distribution of MaritalStatus by Attrition


```
fig = px.box(df, x="Attrition", y="Age", color="Attrition", color_discrete_sequence=[px.colors.qualitative.Plotly[1],px.colors.qualitative
fig.update_layout(
    title="Attrition by Age",
        xaxis_title="Attrition",
        yaxis_title="Age",
        showlegend=False
)
fig.show()
```

Attrition by Age


```
fig = px.box(df, x="Attrition", y="TotalWorkingYears", color="Attrition", color_discrete_sequence=[px.colors.qualitative.Plotly[1],px.colorgig.update_layout(
    title="Attrition by Total Working Years",
    xaxis_title="Attrition",
    yaxis_title="Total Working Years",
    showlegend=False
)
fig.show()
```

Attrition by Total Working Years


```
fig = px.box(df, x="Attrition", y="MonthlyIncome", color="Attrition", color_discrete_sequence=[px.colors.qualitative.Plotly[1],px.colors.
fig.update_layout(
    title="Attrition by Monthly Income",
    xaxis_title="Attrition",
    yaxis_title="Monthly Income",
    showlegend=False
)
fig.show()
```

Attrition by Monthly Income

Text(0.5, 1.0, 'Career growth')

