Parsing

Luciano Barbosa (baseado nos slides do curso de PLN de Stanford e livro Speech and Language Processing)

Ambiguidades em Interpretar Linguagem

Parsing resolve ambiguidade estrutural de uma maneira formal

I saw a girl with a telescope

Dois Tipos de Parsing

Dependency: relações entre palavras

Constituency: identifica frases e sua estrutura recursiva

Resolvendo Ambiguidade com Dependências

Tipos de Dependências

Não-tipadas: somente dependências

Tipos de Dependências

Tipadas: rótulos indicam o relacionamento entre palavras

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
СС	Coordinating conjunction

Tipos de Dependências

Tipadas: rótulos indicam o relacionamento entre palavras

Relation	Examples with head and dependent
NSUBJ	United canceled the flight.
DOBJ	United diverted the flight to Reno.
	We booked her the first flight to Miami.
IOBJ	We booked her the flight to Miami.
NMOD	We took the morning <i>flight</i> .
AMOD	Book the cheapest <i>flight</i> .
NUMMOD	Before the storm JetBlue canceled 1000 flights.
APPOS	United, a unit of UAL, matched the fares.
DET	The flight was canceled.
	Which flight was delayed?
CONJ	We flew to Denver and drove to Steamboat.
CC	We flew to Denver and drove to Steamboat.
CASE	Book the flight through <i>Houston</i> .

Preferências na Dependência

- Distância: palavras próximas
- Raramente vai além dos verbos e pontuações
- Não há ciclos (estrutura de árvore)
- Tem uma raiz

Dados Anotados: Treebank

Algoritmo Shift-Reduce

- Processa uma palavra por vez da esquerda para a direita
- Duas estruturas
 - Queue: palavras não processadas
 - Stack: palavras parcialmente processadas
- Em cada ponto escolha
 - shift: move uma palavra do queue para o stack
 - reduce left: palavra no topo do stack é a cabeça da segunda palavra
 - reduce right: segunda palavra no stack é a cabeça da palavra no topo
- Aprender cada tarefa utilizando um classificador

Exemplo do Shift Reduce

Classificação em Shift-Reduce

Dado o estado:

Qual a próxima ação

cin.ufpe.br

Features

- POS
- Lema
- Palavra no topo do stack
- Primeira palava no queue

```
<u>stack[-1]</u>
             stack[-2]
                                               queue[0]
                                                                (-1 → last)
                                                   girl
Word:
                 saw
                                   a
                                                                (0 \rightarrow first)
                                                   NN
                VBD
                                 DET
POS:
```

```
(-2 → second-to-last)
```


Avaliação

Acurácia rotulada (LAS)e não rotulada (UAS)

Acc =	# correct deps	
	# of deps	
	4 / 5 = 80% 2 / 5 = 40%	

Go	old		
1	2	She	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	obj

Parsed			
1	2	She	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

Context-Free Grammar (CFG)

```
Noun 
ightarrow flights \mid breeze \mid trip \mid morning
Verb 
ightarrow is \mid prefer \mid like \mid need \mid want \mid fly
Adjective 
ightarrow cheapest \mid non-stop \mid first \mid latest
\mid other \mid direct
Pronoun 
ightarrow me \mid I \mid you \mid it
Proper-Noun 
ightarrow Alaska \mid Baltimore \mid Los Angeles
\mid Chicago \mid United \mid American
Determiner 
ightarrow the \mid a \mid an \mid this \mid these \mid that
Preposition 
ightarrow from \mid to \mid on \mid near
Conjunction 
ightarrow and \mid or \mid but
```

Grammar Rules	Examples
$S \rightarrow NPVP$	I + want a morning flight
$NP \rightarrow Pronoun$	I
Proper-Noun	Los Angeles
Det Nominal	a + flight
$Nominal \rightarrow Nominal Noun$	morning + flight
Noun	flights
$\mathit{VP} \; o \; \mathit{Verb}$	do
Verb NP	want + a flight
Verb NP PP	leave + Boston + in the morning
Verb PP	leaving + on Thursday
·	•
$PP \rightarrow Preposition NP$	from + Los Angeles

cin.ufpe.br

Context-Free Grammar (CFG)

Treebanks

- Cada sentença com parse tree anotada
- Penn Treebank para inglês

```
( (S
    (NP-SBJ
      (NP (NNP Pierre) (NNP Vinken) )
      (ADJP
        (NP (CD 61) (NNS years) )
        (JJ old) )
    (VP (MD will)
      (VP (VB join)
        (NP (DT the) (NN board) )
        (PP-CLR (IN as)
          (NP (DT a) (JJ nonexecutive) (NN director) ))
        (NP-TMP (NNP Nov.) (CD 29) )))
    (...)
```


Ambiguidade

Ambiguidade

Componentes

Aprendendo uma Parse Tree

Dada uma sentença X, predizer a parse tree

Predição estruturada (similar a POS)

Abordagem Probabilística

Dada a sentença X, predizer a parse tree Y mais provável

$$\underset{\mathbf{Y}}{\operatorname{argmax}} P\left(\mathbf{Y}|\mathbf{X}\right)$$

Escolha da Melhor Parse Tree

Rule	Probability
S → NPVP	I
NP → Pronoun	1/3
NP → Proper-Noun	1/3
$NP \rightarrow Det Nominal$	1/3
Nominal → Nominal PP	1/3
Nominal → Noun	2/3
VP → Verb NP	8/9
VP → Verb NP PP	1/9
PP → Preposition NP	I

Escolha da Melhor Parse Tree

Probability: 16/729

Escolha da Melhor Parse Tree

Probability: 6/729

Representando Sentenças

- Significado de uma sentença
 - Significado das palavras
 - Regras que as combinam

Representando Nós

- Entrada: representação dos nós filhos
- Saída:
 - A representação semântica dos nós
 - Score de quão plausível é essa junção

Recursive vs Recurrent

Tipo de RNN

$$s = W^{score}p$$

 $p = f(W[c_1; c_2] + b)$

cin.ufpe.br

Classificando Nós

Categorias são os tipos gramaticais

Partial Parsing: Chunking

- Criação de parse trees completas pode ser custoso
- Chunking: Identifica as frases de uma sentença
 [NP The morning flight] [PP from] [NP Denver] [VP has arrived.]
- Pode focar em um tipo específico de frase
 [NP] The morning flight] from [NP] Denver] has arrived.
- Utiliza sequence labeling para classificar as frases

The morning flight from Denver has arrived B_NP I_NP I_NP B_PP B_NP B_VP I_VP