

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title: Analysis & Design of Algorithms

Course Code : P18CS43 | Semester : 4 | L :T:P:H : 4:0:0:4 | Credits: 3

Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs Weightage: CIE:50%, SEE:50%

Course Content

Unit 1

Introduction: Notion of Algorithm, Fundamentals of algorithmic problem solving, Analysis Framework, Asymptotic Notations, Mathematical analysis of Non-Recursive algorithms, Mathematical analysis of recursive algorithms, and recursive Algorithms with Examples. Graph: Definition, Graph Representation, **Brute Force:** Selection sort, Bubble sort, Depth First Search and Breadth First Search

Self-Study Component: Important problem types, Fundamental Data structures.

11 Hours

Unit 2

Decrease and Conquer: Insertion Sort, Topological Sorting, Binary Search, Computing a median and Selection Problem.

Divide and Conquer: Merge sort, Quick sort, Strassen's matrix multiplication, Advantages and Disadvantages of divide and conquer.

Self-Study Component: Finding max, min element using divide and conquer method

10 Hours

Unit 3

Transform and Conquer Approach: Presorting, AVL Trees, Heap Sort

Space and Time Trade-Offs: Sorting by Counting, Input Enhancement in String Matching,

Hashing

Dynamic Programming: Knapsack problem and Memory Functions.

Self-Study Component: Balanced search trees

10 Hours

Unit 4

Dynamic Programming: Warshall's Algorithm, Floyd's Algorithm

Greedy Method: Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm, Huffman

Trees and Codes.

Limitations of Algorithm Power: Lower –Bound Arguments, Decision Trees

Self-Study Component: Optimal Binary search trees, Knapsack problem and memory

functions

11 Hours

Unit 5

Limitations of Algorithm Power: P, NP, NP-Complete Problems

Backtracking: N-Queens problem, Sum of subsets problem, Hamiltonian circuit problem.

Branch and Bound: Assignment Problem, Knapsack Problem, Travelling Sales Person

problem, Knapsack problem

Self-Study Component: Approximation algorithms for TSP problem.

10 hours

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Text Book:

 Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 3rd Edition, 2017.
Pearson.

Reference Books:

- 1. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI
- 3. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)

Course Outcomes:

After studying this course, students will be able to

- 1. Analyse the computational complexity of different algorithms.
- 2. Develop the solution for given problems using divide and conquer and decrease and conquer methods.
- 3. Develop an algorithm using Greedy method and transform and conquer methods.
- 4. Develop the solution for given problems using Dynamic programming approach.
- 5. Develop the solution for given problems using Backtracking and Branch-and-Bound technique.

CO-PO Mapping

Semester: 4th			Course code: P18CS43					Title: Analysis and design of algorithms								
СО	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
1	Analyse the computational complexity of different algorithms.	2	2	3	2									2	2	
2	Develop the solution for given problems using divide and conquer and decrease and conquer methods.	2	2	3	2									2	2	
3	Devise an algorithm using Greedy method and transform and conquer methods.	2	2	3	2									2	2	
4	Develop the solution for given problems using Dynamic programming approach.	2	2	3	2									2	2	
5	Develop the solution for given problems using Backtracking and Branch-and-Bound technique.		2	3	2									2	2	
		2	2	3	2									2	2	