

LFN @ LATR: NRA

Detecção de B em materiais tecnológicos por reacções nucleares

N. Catarino, Rui M.C. Silva, R. Mateus

DECN-IST, 06 Dez 2023

Detecção de Li em materiais tecnológicos por reacções nucleares

A fim de compreender e perspetivar de forma integradora e interligada a Física Nuclear e as suas potenciais aplicações tecnológicas, nas vertentes das reacções nucleares e detecção de elementos leves de grande importÂncia tecnológica, como é o caso do boro, este projecto envolve...

Trabalho e objectivos:

- compreensão da física das dispersões elásticas e inelásticas (reacções nucleares): fundamentação, realização prática e resultados espectáveis – espectros
- separação das contribuições elástica, EBS, e inelástica, NRA
- aplicação à caracterização de materiais a nível microscópico: informação pertinente composição elementar, quantificação, estrutura e espessura e extracção da informação pertinente: análise dos espectros
- familiarização com a cadeia electrónica de detecção: fundamentação e realização prática detectores de radiação, processadores de sinal e analisadores multicanal
- familiarização com o equipamento de produção e transporte de feixes de partículas: acelerador, campos deflectores e linhas de transporte
- montagem das amostras a utilizar com operação (limitada) dos sistemas de vácuo; estabelecimento de condições de operação, irradiação das amostras e recolha de dados

Análise de dados e resultados a atingir:

- análise (sumária) de espectros com calibração (conversão canal-energia) e identificação da composição elementar: identificação de elementos de Z ≥ 11 por EBS, identificação de elementos de ¹¹B, Z < 11 (e.g. ^{6,7}Li e ¹0,1¹B) por NRA
- quantificação integral de B detectado a partir de cálculo simples
- apresentação de resultados

Detecção de B em materiais tecnológicos por reacções nucleares

Justificação do Li:

o lítio – \sim 2.5% ⁶B e 97.5% ⁷Li - é um elemento com aplicações relevantes em áreas de grande importância e impacto tecnológico, nomeadamente:

farmácia: tratamento de transtorno bipolar, depressão nervosa ...

energética: electrólitos sólidos para baterias;

metalurgia: ligas leves para uso, por exemplo, em aeronáutica;

óptica: diminuição de índice de refracção

vidros/cerâmicas: diminuição de ponto de fusão, coeficiente de expansão térmica ...

purificação do ar: em ambientes reduzidos

– fusão nuclear: produção de trítio;

fontes de neutrões;

...

Justificação das reacções nucleares:

pela sua especificidade – ditada p/ estrutura nuclear dos isótopos envolvidos – são praticamente o único meio de detectar, de forma não destrutiva (preservando qto possível a amostra) isótopos leves (Z < 12) a energias baixas (e.g. < 3-5 MeV, disponíveis em "pequenos" aceleradores): em geral, a razão sinal-ruído é favorável (p/ ausência de fundo significativo) e, quando existem. as interferências de outras reacções (devidas a outros isótopos), são pouco significativas.

The 'production' chain...

Display & analytical software...

The experiment layout...

 $N\Delta x$ "wanted"!

NRA CALCulator

(C) R.C. da Silva (DECN/IST, 2019)

Type reaction as ${}^{A}X(a,b){}^{A'}Y$: ${}^{7}\text{Li}(p,a)4\text{He}$

(Target AX taken as stationary in laboratory frame)

PRIMARY ION energy E/MeV = 2.00

EXAMPLES: type ${}^{9}\text{Be}(p,\alpha){}^{6}\text{Li}$ as ${}^{9}\text{Be}(p,a){}^{6}\text{Li}$ or ${}^{9}\text{Be}(p,4\text{He}){}^{6}\text{Li}$

type 241 Am(g,a) for α decay of 241 Amtype 241 Am(g,p/n) for p/n separation energy

 $type\ 70Ga(+e,g) \qquad for\ E.C.\ decay\ of\ ^{70}Ga$

type $70 Ga(g_se-/e+)~$ for $\beta-/+~decay~of~^{70}Ga$

Recoil/Daughter EXCITED STATE energy/MeV = 0

SCATTERING ANGLE/ejectile angle θ/degrees = 165

CALC

LAB OUTPUTS: ZMF OUTPUTS:

NRA CALCulator

(C) R.C. da Silva (DECN/IST, 2019)

PRIMARY ION energy E/MeV = 2.00

EXAMPLES: type ${}^{9}\text{Be}(p,\alpha){}^{6}\text{Li}$ as ${}^{9}\text{Be}(p,a){}^{6}\text{Li}$ or ${}^{9}\text{Be}(p,4\text{He}){}^{6}\text{Li}$ type ${}^{2}\text{41}\text{Am}(g,a)$ for α decay of ${}^{2}\text{41}\text{Am}$ type ${}^{2}\text{41}\text{Am}(g,p/n)$ for p/n separation energy type ${}^{7}\text{0Ga}(+e,g)$ for E.C. decay of ${}^{7}\text{0Ga}$ type ${}^{7}\text{0Ga}(g,e^-/e^+)$ for $\beta^-/+$ decay of ${}^{7}\text{0Ga}$ Recoil/Daughter EXCITED STATE energy/MeV = 0 SCATTERING ANGLE/ejectile angle θ /degrees = 165

CALC

- LAB OUTPUTS:

- ZMF OUTPUTS:

Só há um canal possível para a reacção:

$$p + {}^{7}Li \rightarrow {}^{4}He + \alpha$$

$$E_{g.s.} = 0 \text{ MeV}$$

Calcule
$$T_{\alpha_0}$$
 (2 MeV; θ_{lab} = 165°) = ? {cf. K. Krane, Ch.11 ("Nuclear Reactions")}

Q = 17.346 MeV
$$T_{\alpha}$$
 (2 MeV; θ_{lab} = 165°) = 7.539 MeV

As secções eficazes: cf. https://www-nds.iaea.org/exfor/ibandl.htm

$$p + {}^{7}Li \rightarrow {}^{4}He_{g.s} + \alpha_0$$

As secções eficazes: cf. https://www-nds.iaea.org/exfor/ibandl.htm

As secções eficazes: cf. https://www-nds.iaea.org/exfor/ibandl.htm

The energy calibration...

Establishing the channel-to-energy conversions

The energy calibration...

Establishing the channel-to-energy conversions

Exemplo

Fonte	Transição		I%	E _n /keV	E/keV
²⁴⁴ Cm (0+)	18,1 <i>a</i>				5901.61
	α_0	0+	76.4	0	5804.82
	α_1	2+	23.6	42.824	5762.70
	α_2	4+	0.022	141.690	5664
²⁴¹ Am (5/2–)	432,2 a				5637.81
	α_0	5/2+	0.34	0	5544.5
	α_1	7/2+	0.20	33.192	5511.47
	Q 2	5/2–	85.2	59.537	5485.56
	α_3	9/2+	0.04	75.89	5469.45
	α4	7/2–	12.8	102.96	5442.80
	α_5	11/2+	0.01	130.00	5416.27
	α_6	9/2-	1.40	158.51	5388.23
	α7	13/2+	_	191.5	5355.9
	α_8	11/2-	0.015	225.96	5321.9
²³⁹ Pu (1/2+)	24110 a				5244.50
	α_0	7/2-	0.03	0	5156.72
	α_1	1/2+	73.3	0.0768	5156.59
	α_2	3/2+	15.1	13.040	5144.3
	α_3	9/2-	0.03	46.204	5111.2
	α4	5/2+	11.5	51.701	5105.5

The (kind of) primary 'deliverable'...

Exemplo I: espectros de vidros de borossilicato (BSG) não dopado e dopado c/ Li, obtidos no LATR/IST

Q: o que é isto?

Q: qual das amostras tem B? Qual das amostras tem Li?

Exemplo II... Espectros NRA de Si implantado com B p/ 11 B(p, α) c/Ep = 700 keV, a 150° Note-se a sobreposição dos espectros α da fonte radioactiva conhecida (a azul) usada p/ calibração

Q: conseguem justificar o espectro (distribuição em energia)?

Resultados...

Bibliografia:

- [1] Introductory nuclear physics (book), K.S. Krane, 2nd ed., Wiley, New York, 1988, USA.
- [2] Fundamentals of surface and thin film analysis, L.C. Feldman, JW. Mayer, North-Holland, New York, 1986, USA.
- [3] Ion beam analysis of Li-Sn alloys for fusion applications, R. Mateus et al., https://doi.org/10.1016/j.nimb.2020.09.019