- 1. Formale Sprachen
 - 1.1. Sei $\Sigma = \{a, b, c, \}$ ein Alphabet.
 - (a) Listen Sie alle Wörter über Σ mit $|w| \leq 2$ auf. $\{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
 - (b) Wie viele Sprachen $L\subseteq\{w|w\in\Sigma^*,|w|=2\}$ gibt es? Spezifizieren Sie drei davon.

```
512 Sprachen (2^9), \{\epsilon, a, b, c\}, \{\epsilon, aa, ab, ac, ba, bb, bc, ca, cb, cc\}, \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc\}
```

(c) Definieren Sie drei unendliche Sprachen über Σ .

$$\begin{split} L &= \{w|w \in \Sigma^*\} \\ L &= \{w|w \in \Sigma^+\} \\ L &= \{w||w| \geq 2\} \end{split}$$

- 1.2. $L_1 = \{0^i | i \in \mathbb{N} \text{ und } L_2 = \{1^i | i \in \mathbb{N}_0\}$ seien formale Sprachen über dem Alphabet $\Sigma = \{0, 1\}$. Berechnen Sie:
 - (a) $L_1 \cup L_2$ $\{\epsilon, 0, 1, 00, 11, ...\}$
 - (b) $L_1 \cap L_2$ $\{\epsilon\}$
 - (c) $L_1 \setminus L_2$ $\{0, 1, 00, 11, ...\}$
 - (d) $L_1 \cap \Sigma^*$ L_1
 - (e) $(L_1 \cup L_2) \cap \Sigma^3$ {000, 111}
- 1.3. Sei $\Sigma = \{\$, \%, \&\}$ ein Alphabet.
 - (a) Definieren Sie eine lineare Ordnung auf Σ . $\$ \prec \% \prec \&$
 - (b) Listen sie alle Wörter w über Σ mit $|w| \leq 2$ in lexikographischer Ordnung bzgl. der unter (a) definierten linearen Ordnung auf. $\{\$ \prec \% \prec \& \prec \$\$ \prec \$\% \prec \$\& \prec \%\$ \prec \%\% \prec \%\& \prec \&\$ \prec \&\% \prec \&\&\}$
 - (c) Welche Wörter gehören zur Sprache $L=\{w|w\in\bigcup_{i=0}^2\Sigma^i,w=w^R\}$? $\{\epsilon,\$,\%,\&,\$\$,\%\%,\&\&\}$

- 1.4. Sei Σ ein Alphabet aus n Zeichen, $n \in \mathbb{N}$.
 - (a) Wie viele Wörter enthält $\Sigma^m, m \in \mathbb{N}_0$? unendlich
 - (b) Wie viele Wörter enthält $\bigcup\limits_{i=0}^{m}\Sigma^{i}, m\in\mathbb{N}_{0}?$ unendlich
 - (c) Wie viele Wörter enthält $\Sigma^*?$ unendlich

1. (a) Sei $\Sigma = \{+, \&, \#\}$ ein Alphabet, auf dem eine lineare Ordnung wie folgt definiert ist:

$$\# \leq_{\Sigma} \& \leq_{\Sigma} +$$

Bestimmen Sie die Sprache $\Sigma^0 \cup \Sigma^1 \cup \Sigma^2$ und listen Sie die darin enthaltenen Wörter in Wortordnung auf.

- (b) Es sei $L=\{0^{2i+1}|i\in\mathbb{N}_0\}$ eine Sprache uber dem Alphabet $\Sigma=\{0\}.$ Bestimmen Sie $\Sigma^+\setminus L$
- (c) Es seien Σ ein Alphabet mit $|\Sigma| = 5$ und $k \in \mathbb{N}_0$. Bestimmen Sie $|\Sigma^k|$.

Lösung:

- (a) $L = \{ \epsilon \preceq_{\Sigma} \# \preceq_{\Sigma} \& \preceq_{\Sigma} + \preceq_{\Sigma} \# \# \preceq_{\Sigma} \# \& \preceq_{\Sigma} \# + \preceq_{\Sigma} \& \# \preceq_{\Sigma} \& \& \preceq_{\Sigma} \& + \preceq_{\Sigma} + \# \preceq_{\Sigma} + \& \preceq_{\Sigma} + + \}$
- (b) $L = \{0^2 i | i \in \mathbb{N}_0\}$
- (c) 5^k