problemas de procura

problemas de procura

Horas	Segunda	Terça	Quarta	Quinta	Sexta		Sábado
08:00 - 08:30	[3LEI02]						
08:30 - 09:00	[1 2 21] [TP]						
09:00 - 09:30	ŤP1Ž						
09:30 - 10:00	[3LMAAF01; 3LEI01; 3LEI02; 3LEI03; 3LEI04; 3LEI05]				[3LMAAF01; 3LEI 3LEI03; 3LEI04 [3 2 15	01; 3LEI02; ; 3LEI05]	
10:00 - 10:30	[3 2 15] [T] T11				[72 13] [T] T11	J	
10:30 - 11:00							
11:00 - 11:30							
11:30 - 12:00	[3LEI04]		[3LEI05]		[3LMAAF01;	[3LEI01]	
12:00 - 12:30	[1 2 22] [TP]		[1 2 22] [TP]	[3LEI03]	3LEI01] [1 2 24] [TP]	[1 2 26] [TP]	
12:30 - 13:00	ŤP14		ŤP15	[1 2 15] [TP] TP13	ŤP11	ŤP16	
13:00 - 13:30				1113			

1	2	8	11	
9	3	6	14	
4	7	12	10	
5	15	13		

_)			•				
6			1	9	5			
	9	8					6	
8				6				3
8 4			8		З			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

problema de procura

estado inicial

 muda de estado com uma ação objetivo (estado final)

espaço de estados

problemas de procura – tipos

- qual a sequência de ações para ir do estado inicial ao objetivo?
 - qual a melhor dessas sequências (menor custo)?

pr_{ocura} de plano de ação

- qual uma solução para o problema?
 - não é necessária uma sequência de ações

restrições

- qual a melhor ação neste estado?
 - para contrariar competição

grafo do espaço de estados

árvore de procura

- nós = estados
- arcos = ações
- teste do objetivo → V | F
 pode haver mais do que 1
 estado que atinge o
 objetivo (ver probl. rainhas)

estrutura de dados não é normalmente construída na totalidade

grafo de espaço de estados vs. árvore de procura

definição funcional

 s_{inicio} : estado inicial

Actions(s): ações possíveis no estado s

Cost(s, a): custo da ação a no estado s # caso definido

Succ(s, a): estado seguinte após ação a no estado s

IsEnd(s): teste de objetivo

solução: sequência de ações que minimiza o custo se

problema das 8 rainhas

• colocar 8 rainhas num tabuleiro de xadrez sem se atacarem

Procura restrições

jogo

procura com adversários

um problema simplificado *(toy)* – robô aspirador

é viável representar espaço de estados completo

robô aspirador - formulação

estado: localização do agente, localizações de lixo com n localizações $\rightarrow n.2^n$ estados

estado inicial: <qualquer um dos estados>

ações: esquerda (L), direita (R), aspira (S)

se ambiente 2D, deverá haver também *acima* e *abaixo*

resultados das ações (Succ): determinísticos

não mexe se tenta ir para lá dos limites; aspirar limpo s/ efeito

teste do objetivo: localizações todas limpas

custo da sequência: nº de passos da solução

puzzle

1	2	8	11	
9	3	6	14	
4	7	12	10	
5	15	13		

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15		

puzzle - formulação

estado: localização de cada nº e do vazio

estado inicial: <qualquer um dos estados>

ações: movimento do vazio - esquerda, direita, acima, abaixo

é a formulação mais simples!

resultados das ações (Succ): determinísticos

troca a posição do vazio com o nº afetado pelo movimento

teste do objetivo: localizações dos nºs e vazio correspondem à configuração do objetivo

custo da sequência: nº de passos da solução

8 rainhas

procura com restrições

só interessa uma solução (colocar as 8 rainhas)

não há sequência de ações no mundo

sim, é uma solução incompleta! falta 1 rainha e há duas que se atacam

8 rainhas – formulação incremental

estado: qualquer colocação de 0 a 8 rainhas no tabuleiro

estado inicial: tabuleiro vazio

ações: colocar uma rainha numa casa vazia

resultados das ações (Succ): determinísticos

tabuleiro com mais uma rainha colocada

teste do objetivo: 8 rainhas colocadas, sem se atacarem

• sequências possíveis: $64 \times 63 \times ... \times 57 \approx 1,8 \times 10^{14}$

8 rainhas – formulação incremental com restrições

• colocar uma rainha apenas numa casa não atacada

estado: qualquer colocação de 0 a 8 rainhas, uma por coluna, nas colunas mais à esquerda, sem ataques (organização por colunas)

ações: colocar uma rainha na coluna livre mais à esquerda, sem ser atacada pelas rainhas já no tabuleiro

• espaço de estados de dimensão 2057

caminho num mapaum problema real

por (auto-)estrada

mapa como grafo nó = povoação | cruzamento arco = segmento de estrada

caminho num mapa - formulação

```
estado: percurso desde o estado inicial e respetivo custo
   percurso = sequência de nós e arcos
estado inicial: percurso só com localização inicial e custo = 0
ações: arco escolhido em cada nó do percurso
resultados das ações (Succ): determinísticos
   acrescenta ao percurso um arco e nó final desse arco
teste do objetivo: nó final do percurso é o destino?
custo da sequência: distância | tempo | gastos (€)...
```


algoritmo de procura

- 1) formar uma árvore (grafo) de procura com o estado inicial como único nó = raiz da árvore fronteira inicial
- 2) expandir um ou mais nós na fronteira

aplicar todas as ações possíveis em cada nó a expandir fronteira e determinar os nós seguintes em cada caso acrescentar os novos nós à fronteira

3) repetir 2) até atingir objetivo, ou ter expandido todo o grafo

20/26

algoritmo geral

todos os algoritmos de procura têm esta estrutura base

diferenciam-se pela

escolha dos nós a expandir – estratégia de procura

(aulas seguintes)

estruturas de dados da procura

- árvore de procura
 - nó: estado correspondente no espaço de estados custo g(n) desde a raiz, nó ascendente, ação desde o nó ascendente
- fronteira: fila de espera
- conjunto de nós expandidos: tabela de dispersão para evitar ciclos na procura

desempenho do algoritmo de procura

completude

garantia de encontrar uma solução, caso exista

otimalidade

garantia de encontrar a solução ótima

ótimo <=> custo mínimo

complexidade temporal

tempo que o algoritmo de procura demora a encontrar a solução

complexidade espacial

memória necessária para o algoritmo de procura encontrar a solução

complexidade da procura

- b fator de ramificação
- d profundidade do objetivo mais próximo da raiz
- *m* comprimento máximo de um caminho no espaço de estados

temporal ~ total de nós expandidos espacial ~ nº máximo de nós em memória

custos

pode ser necessário usar

para problemas em tempo real

ex: navegação durante a viagem

necessário converter um dos custos na unidade do outro

problemas de treino de procura – formular espaço de estados

dar troco com moedas de 50, 20, 10, 5, 2 e 1 cêntimos - supor que há número ilimitado de cada moeda

nota: assumir que após cada jogada do agente o mundo muda (por ação do oponente)

