Nanopore Basecalling and Modification Detection Using Deep Learning

Rojin Safavi¹, Andrew Bailey², Miten Jain², Benedict Paten², Mark Akeson²

Department of Molecular, Cell, and Developmental Biology: University of California, Santa Cruz

Department of Biomolecular Engineering: University of California, Santa Cruz

Introduction

Figure: Oxford nanopore device

Figure: nanopore

Figure: DNA trans-location

Figure: DNA trans-location

	mean	move	stdv	length	mp_state
0	60.72320	1	0.791058	0.0015	GCCAC
1	64.94183	2	1.593811	0.002250	CACTA
2	64.71323	0	1.619748	0.004500	CACTA

Figure: Event table, the Nanopore output

SignalAlign

MinION signal-level alignment and methylation detection using hidden Markov Models with hierarchical Dirichlet process kmer learning.

Event Index	Reference Position	Base	Posterior Probability
1403	837835	Е	0.901382
1403	837835	С	0.087196

Figure: SignalAlign output

Analysis Workflow

Figure: Analysis Workflow

Recurrent Neural Network

- RNN is used when we want to make prediction in sequential data.
- RNN has memory that influences future predictions.
- As an example, in voice recognition you may want to make prediction based on the previous.

Example of RNN implementation for canonical basecalling:

Figure: RNN implementation for canonical basecalling

 The RNN Network model is trained on a training set that has known labels for each event feature.

- The model prediction accuracy is then measured on a test set with known labels.
- Accuracy for canonical basecalling: 67%

Conclusion

 The accuracy is lower compare to other nanopore basecaller that use deep learning(deepnano = 77.9 for template strand)

Future directions

- Using convolutional neural network in addition to bidirectional neural network to boost the accuracy.
- Using signalAlign methylation information (posterior probabilities) to train our model for modifications
- Using raw signal information to generate features instead of using event table

References

- 1. http://colah.github.io
- 2. https://github.com/ArtRand/signalAlign

Contact Information

• Email: rsafavi@ucsc.edu