IN THE CLAIMS:

Please cancel Claims 2 and 8 without prejudice to or disclaimer of the subject matter contained therein.

Please amend Claims 1, 7, and 16 as follows.

1. (Currently Amended) A recording method for recording on a recording material using an ink containing a coloring material and a processing liquid for making the coloring material insoluble or coagulate, comprising:

a step of ejecting onto the recording material the ink, the ink having a Ka value of a first value; and

a step of applying the processing liquid onto the ink ejected on the recording material, the processing liquid having a Ka value of a second value larger than the first value,

wherein the processing liquid is applied onto the recording material after a rapid swell start point to passes after penetration of the ink into the medium so that the processing liquid is overlapped with the ink ejected on the recording material.

2. (Cancelled)

3. (Previously Presented) A recording method according to Claim 1, further comprising a step of applying heat to the ink ejected in said ink ejecting step,

wherein the Ka value of the ink is not more than 1 (ml.m⁻².msec^{-1/2}), the ink has a penetration property that increases with heat, and the Ka value of the processing liquid is more than 1 (ml.m⁻².msec^{-1/2}).

- 4. (Previously Presented) A recording method according to Claim 1, further comprising the step of applying heat to a reaction product of the ink and the processing liquid after said processing liquid applying step.
- 5. (Previously Presented) A recording method according to Claim 1, wherein the Ka value of the processing liquid is not more than 5 (ml.m⁻².msec^{-1/2}).
- 6. (Previously Presented) A recording method according to Claim 1, wherein the ink contains pigment.
- 7. (Currently Amended) A recording method according to Claim 1, wherein the ink includes a black ink and a color ink, further comprising a step of ejecting a second ink different from the ink having the Ka value of the first value,

wherein the ink having the Ka value of the first value is a black ink, and the second ink is a color ink, the black ink having a Ka value of not more than 3 (ml.m⁻².msec^{-1/2}) and the color ink having a Ka value of not less than 5 (ml.m⁻².msec^{-1/2}), and after application of the processing liquid having a Ka value of not less than 5 (ml.m⁻².msec^{-1/2}), the color ink is ejected.

8. (Cancelled)

9. (Previously Presented) A recording method according to Claim 1, wherein the ink and the processing liquid are ejected to the recording material by generating a bubble by application of thermal energy to the ink and to the processing liquid.

10. (Withdrawn) A recording apparatus comprising:

ink ejecting portion for ejecting onto a recording material ink having a Ka value of not more than 3 (ml.m⁻².msec^{-1/2});

a processing-liquid ejecting portion for applying to the ink deposited on the recording material, a processing liquid having a Ka value of not less than 5 (ml.m⁻².msec^{-1/2}) to insolubilize a coloring material in the ink inside the recording material,

wherein the processing liquid is applied to the ink after the ink is deposited on the recording material after a rapid swell start point ts passes after penetration of the ink into the medium.

- 11. (Previously Presented) A recording method according to Claim 1, wherein the Ka of the processing liquid is not less than 5 (ml.m⁻².msec^{-1/2}).
- 12. (Previously Presented) A recording method according to Claim 11, wherein the Ka of the ink is not more than 3 (ml.m⁻².msec^{-1/2}).
- 13. (Previously Presented) A recording method according to Claim 11, wherein the Ka of the ink is not more than 1 (ml.m⁻².msec^{-1/2}).
- 14. (Previously Presented) A recording method according to Claim 1, wherein the ink has a first polarity and the processing liquid has a second polarity opposite from the first polarity.

15. (Previously Presented) A recording method according to Claim 1, wherein a concentration of a surface-active agent in the processing liquid is not less than the critical micelle concentration of the surface-active agent in pure water.

16. (Currently Amended) A recording method according to Claim 1 or 15, wherein a concentration of a surface-active agent in the ink is less than the critical micelle concentration of the surface-active agent in pure water.