Continuity and sequences in metric spaces

2016-03-29 11:00 -0500

Properties

• If X is metrizable and Y is a subspace of X, then Y is metrizable.

Properties

- If X is metrizable and Y is a subspace of X, then Y is metrizable.
- If X is metrizable, then X is Hausdorff.

Properties

- If X is metrizable and Y is a subspace of X, then Y is metrizable.
- If X is metrizable, then X is Hausdorff.
- If $(X_i)_{i \in I}$ is a countable family of metrizable spaces, then $\prod_{i \in I} X_i$ is metrizable.

Continuous functions

ϵ - δ definition

Let $f: X \to Y$ a function, with X, Y metrizable spaces with metrics d_X , d_Y , respectively. Then f is continuous if and only if for all $x \in X$, $\epsilon > 0$ there is $\delta > 0$ such that

$$d_Y(f(x), f(y)) < \epsilon \text{ if } d_X(x, y) < \delta$$

Definition

Definition (Sequence)

If X is a topological space, a sequence on X is a function $\mathbb{N} \to X$.

Definition

Definition (Sequence)

If X is a topological space, a sequence on X is a function $\mathbb{N} \to X$.

Notation

We denote a sequence (x_n) or $(x_1, x_2, ...)$.

Definition

Definition (Sequence)

If X is a topological space, a sequence on X is a function $\mathbb{N} \to X$.

Notation

We denote a sequence (x_n) or $(x_1, x_2, ...)$.

Definition (Convergence)

We say that the sequence (x_n) converges to $x \in X$ if for every neighborhood U of x there is a positive integer N such that $x_n \in U$ for all n > N. We write $x_n \to x$.

Remarks on the definition of convergence

• A sequence does not necessarily converges, and if it does, the limit is not necessarily unique.

Remarks on the definition of convergence

- A sequence does not necessarily converges, and if it does, the limit is not necessarily unique.
- If X is Hausdorff, a sequence on X that converges has a unique limit.

Sequence Lemma

Theorem (Sequence Lemma)

Let X be a topological space, and $A \subseteq X$. If (x_n) is a sequence in A that converges to x, then $x \in \overline{A}$. Conversely, if $x \in \overline{A}$ and X es metrizable, then there is a sequence on A that converges to x

Proof.

• Suppose that $x_n \to x$, where $x_n \in A$ for all n. Let U be a neighborhood of x. By definition of convergence, $x_n \in U$ for big enough values of n, and so $x \in \overline{A}$.

- Suppose that $x_n \to x$, where $x_n \in A$ for all n. Let U be a neighborhood of x. By definition of convergence, $x_n \in U$ for big enough values of n, and so $x \in \overline{A}$.
- Now, let X be metrizable with metric d, and let $x \in \overline{A}$. For each n, we choose a point $x_n \in A \cap B(x, \frac{1}{n})$.

- Suppose that $x_n \to x$, where $x_n \in A$ for all n. Let U be a neighborhood of x. By definition of convergence, $x_n \in U$ for big enough values of n, and so $x \in \overline{A}$.
- Now, let X be metrizable with metric d, and let $x \in \overline{A}$. For each n, we choose a point $x_n \in A \cap B(x, \frac{1}{n})$.
- We claim that $x_n \to x$. Because if U is a neighborhood of x, let $\epsilon > 0$ be such that $B(x, \epsilon) \subseteq U$, and let $N > \frac{1}{\epsilon}$.

- Suppose that $x_n \to x$, where $x_n \in A$ for all n. Let U be a neighborhood of x. By definition of convergence, $x_n \in U$ for big enough values of n, and so $x \in \overline{A}$.
- Now, let X be metrizable with metric d, and let $x \in \overline{A}$. For each n, we choose a point $x_n \in A \cap B(x, \frac{1}{n})$.
- We claim that $x_n \to x$. Because if U is a neighborhood of x, let $\epsilon > 0$ be such that $B(x, \epsilon) \subseteq U$, and let $N > \frac{1}{\epsilon}$.
- Then, if $n \ge N$, we have that $\frac{1}{n} \le \frac{1}{N} < \epsilon$, and so $x_n \in U$ si n > N.

• The theorem gives a necessary condition for metrizability. We will see examples of $A \subseteq X$, $x \in X$ with $x \in \overline{A}$ such that there is no sequence in A that converges to x. In such cases, X is not metrizable.

- The theorem gives a necessary condition for metrizability. We will see examples of $A \subseteq X$, $x \in X$ with $x \in \overline{A}$ such that there is no sequence in A that converges to x. In such cases, X is not metrizable.
- In the proof of the reciprocal, we do not need the full hypothesis of metrizability, but the properties of the collection of balls $\{B(x, \frac{1}{n})\}_{n \in \mathbb{N}}$.

- The theorem gives a necessary condition for metrizability. We will see examples of $A \subseteq X$, $x \in X$ with $x \in \overline{A}$ such that there is no sequence in A that converges to x. In such cases, X is not metrizable.
- In the proof of the reciprocal, we do not need the full hypothesis of metrizability, but the properties of the collection of balls $\{B(x, \frac{1}{n})\}_{n \in \mathbb{N}}$.
- A countable local base on $x \in X$ is a collection $\{B_n\}_{n \in \mathbb{N}}$ of neighborhoods of x such that for any neighborhood U of x there is n such that $B_n \subseteq U$.

- The theorem gives a necessary condition for metrizability. We will see examples of $A \subseteq X$, $x \in X$ with $x \in \overline{A}$ such that there is no sequence in A that converges to x. In such cases, X is not metrizable.
- In the proof of the reciprocal, we do not need the full hypothesis of metrizability, but the properties of the collection of balls $\{B(x, \frac{1}{n})\}_{n \in \mathbb{N}}$.
- A countable local base on $x \in X$ is a collection $\{B_n\}_{n \in \mathbb{N}}$ of neighborhoods of x such that for any neighborhood U of x there is n such that $B_n \subseteq U$.
- The topological space X is first-countable if every $x \in X$ has a countable local base.

- The theorem gives a necessary condition for metrizability. We will see examples of $A \subseteq X$, $x \in X$ with $x \in \overline{A}$ such that there is no sequence in A that converges to x. In such cases, X is not metrizable.
- In the proof of the reciprocal, we do not need the full hypothesis of metrizability, but the properties of the collection of balls $\{B(x, \frac{1}{n})\}_{n \in \mathbb{N}}$.
- A countable local base on $x \in X$ is a collection $\{B_n\}_{n \in \mathbb{N}}$ of neighborhoods of x such that for any neighborhood U of x there is n such that $B_n \subseteq U$.
- The topological space X is first-countable if every $x \in X$ has a countable local base.
- (Exercise) Prove that if X es first—countable, $A \subseteq X$ and $x \in \overline{A}$, there is a sequence (x_n) on A that converges to x.

Continuity and sequences

Theorem (Continuity by sequences)

Let $f: X \to Y$ with X metrizable. Then f is continuous if and only if for all convergent sequences $x_n \to x$ on X, the sequence $f(x_n)$ converges to f(x).

Continuity and sequences

Theorem (Continuity by sequences)

Let $f: X \to Y$ with X metrizable. Then f is continuous if and only if for all convergent sequences $x_n \to x$ on X, the sequence $f(x_n)$ converges to f(x).

Continuity and sequences

Theorem (Continuity by sequences)

Let $f: X \to Y$ with X metrizable. Then f is continuous if and only if for all convergent sequences $x_n \to x$ on X, the sequence $f(x_n)$ converges to f(x).

Proof

• Suppose f continuous and let $x_n \to x$. We want to prove $f(x_n) \to f(x)$. Let V be a neighborhood of f(x). Then $f^{-1}(V)$ is a neighborhood of x, and so there is N such that $x_n \in f^{-1}(V)$ if $n \ge N$. But then $f(x_n) \in V$ for such values of n.

Continuation of the proof.

• For the converse, suppose that for any convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). We want to prove that f is continuous.

- For the converse, suppose that for any convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). We want to prove that f is continuous.
- Let $A \subseteq X$, we want to see that $f(\overline{A}) \subseteq \overline{f(A)}$.

- For the converse, suppose that for any convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). We want to prove that f is continuous.
- Let $A \subseteq X$, we want to see that $f(\overline{A}) \subseteq \overline{f(A)}$.
- Let $x \in \overline{A}$. Since X is metrizable, there is a sequence x_n on A such that $x_n \to x$.

- For the converse, suppose that for any convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). We want to prove that f is continuous.
- Let $A \subseteq X$, we want to see that $f(\overline{A}) \subseteq \overline{f(A)}$.
- Let $x \in \overline{A}$. Since X is metrizable, there is a sequence x_n on A such that $x_n \to x$.
- By hypothesis, we have that $f(x_n) \to f(x)$. Since $f(x_n) \in f(A)$, then $f(x) \in \overline{f(A)}$. Hence $f(\overline{A}) \subseteq \overline{f(A)}$.

Box topology on $\mathbb{R}^{\mathbb{N}}$

• We will see that the sequence lemma does not hold in $X = \mathbb{R}^{\mathbb{N}}$ with the box topology.

Box topology on $\mathbb{R}^{\mathbb{N}}$

- We will see that the sequence lemma does not hold in $X = \mathbb{R}^{\mathbb{N}}$ with the box topology.
- Let A be the set of all real sequences where the terms are all positive:

$$A = \{(x_1, x_2, ...) \mid x_i > 0 \text{ for all } i\}$$

Box topology on $\mathbb{R}^{\mathbb{N}}$

- We will see that the sequence lemma does not hold in $X = \mathbb{R}^{\mathbb{N}}$ with the box topology.
- Let A be the set of all real sequences where the terms are all positive:

$$A = \{(x_1, x_2, ...) \mid x_i > 0 \text{ for all } i\}$$

• Let $0 = (0, 0, ...) \in X$. Then $0 \in \overline{A}$, since if

$$B=(a_1,b_1)\times(a_2,b_2)\times\cdots$$

is a basic subset that contains 0, then $B \cap A \neq \emptyset$.

Continuation

• However, there is no sequence on A that converges to 0. Suppose that (a_n) is a sequence on A. Let

$$a_n = (x_{1n}, x_{2n}, \ldots, x_{in}, \ldots)$$

Continuation

• However, there is no sequence on A that converges to 0. Suppose that (a_n) is a sequence on A. Let

$$a_n = (x_{1n}, x_{2n}, \ldots, x_{in}, \ldots)$$

• Since each x_{in} is greater than zero, the basic subset of X:

$$B' = (-x_{11}, x_{11}) \times (-x_{22}, x_{22}) \times \cdots$$

is a neighborhood of $0 \in X$.

Continuation

• However, there is no sequence on A that converges to 0. Suppose that (a_n) is a sequence on A. Let

$$a_n = (x_{1n}, x_{2n}, \ldots, x_{in}, \ldots)$$

• Since each x_{in} is greater than zero, the basic subset of X:

$$B' = (-x_{11}, x_{11}) \times (-x_{22}, x_{22}) \times \cdots$$

is a neighborhood of $0 \in X$.

• However, B' does not contain points of the sequence (a_n) . Hence (a_n) does not converge to 0.

Uncountable product of copies of $\mathbb R$

• Let J be uncountable. We show that \mathbb{R}^J with product topology is not metrizable.

- Let J be uncountable. We show that \mathbb{R}^J with product topology is not metrizable.
- Let $A \subseteq \mathbb{R}^J$, where A consists of the (x_α) such that $x_\alpha = 1$ for all but a finite number of $\alpha \in J$, where we have $x_\alpha = 0$. Let 0 denote the "origin" of \mathbb{R}^J .

- Let J be uncountable. We show that \mathbb{R}^J with product topology is not metrizable.
- Let $A \subseteq \mathbb{R}^J$, where A consists of the (x_α) such that $x_\alpha = 1$ for all but a finite number of $\alpha \in J$, where we have $x_\alpha = 0$. Let 0 denote the "origin" of \mathbb{R}^J .
- We prove that $0 \in \overline{A}$. Let $\prod U_{\alpha}$ be a basis element such that $0 \in \prod U_{\alpha}$. Suppose $U_{\alpha} \neq \mathbb{R}$ for $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$.

- Let J be uncountable. We show that \mathbb{R}^J with product topology is not metrizable.
- Let $A \subseteq \mathbb{R}^J$, where A consists of the (x_α) such that $x_\alpha = 1$ for all but a finite number of $\alpha \in J$, where we have $x_\alpha = 0$. Let 0 denote the "origin" of \mathbb{R}^J .
- We prove that $0 \in \overline{A}$. Let $\prod U_{\alpha}$ be a basis element such that $0 \in \prod U_{\alpha}$. Suppose $U_{\alpha} \neq \mathbb{R}$ for $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$.
- Then, if (x_{α}) is defined as $x_{\alpha} = 0$ for $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$ and $x_{\alpha} = 1$ for all other values of α , we have that $(x_{\alpha}) \in A \cap \prod U_{\alpha}$.

- Let J be uncountable. We show that \mathbb{R}^J with product topology is not metrizable.
- Let $A \subseteq \mathbb{R}^J$, where A consists of the (x_α) such that $x_\alpha = 1$ for all but a finite number of $\alpha \in J$, where we have $x_\alpha = 0$. Let 0 denote the "origin" of \mathbb{R}^J .
- We prove that $0 \in \overline{A}$. Let $\prod U_{\alpha}$ be a basis element such that $0 \in \prod U_{\alpha}$. Suppose $U_{\alpha} \neq \mathbb{R}$ for $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$.
- Then, if (x_{α}) is defined as $x_{\alpha} = 0$ for $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$ and $x_{\alpha} = 1$ for all other values of α , we have that $(x_{\alpha}) \in A \cap \prod U_{\alpha}$.
- We will show then that there is no sequence of points in A that converges to 0. Let (a_n) a sequence in A.

Continuation

• Each $a_n \in A$ has only a finite number of values of α such that the α th term of a_n is equal to 0. Let J_n be the set of such values of α .

Continuation

- Each $a_n \in A$ has only a finite number of values of α such that the α th term of a_n is equal to 0. Let J_n be the set of such values of α .
- The union of all the J_n is a countable union of finite sets, hence countable. Since J is uncountable, let $\beta \in J$ that is not in any of the J_n . That means that the β th coordinate of all of the a_n is 1.

Continuation

- Each $a_n \in A$ has only a finite number of values of α such that the α th term of a_n is equal to 0. Let J_n be the set of such values of α .
- The union of all the J_n is a countable union of finite sets, hence countable. Since J is uncountable, let $\beta \in J$ that is not in any of the J_n . That means that the β th coordinate of all of the a_n is 1.
- Let $U_{\beta} = (-1, 1)$, and let $U = \pi_{\beta}^{-1}(U_{\beta})$. Then U is a neighborhood of $0 \in \mathbb{R}^J$, and U does not contain any of the a_n . Hence a_n does not converge to 0.

Definition (Well-orderet set)

We say that the totally ordered set (X, \leq) is well-ordered if every nonempty subset has a minimum element.

Definition (Well-orderet set)

We say that the totally ordered set (X, \leq) is well-ordered if every nonempty subset has a minimum element.

Examples

Definition (Well-orderet set)

We say that the totally ordered set (X, \leq) is well-ordered if every nonempty subset has a minimum element.

Examples

• The set N with the usual order is well-ordered.

Definition (Well-orderet set)

We say that the totally ordered set (X, \leq) is well-ordered if every nonempty subset has a minimum element.

Examples

- The set N with the usual order is well-ordered.
- The set \mathbb{R} with the usual order is not well-ordered.

Properties

Theorem (Properties of well-ordered sets)

Properties

Theorem (Properties of well-ordered sets)

• If X is well-ordered and $Y \subseteq X$ has the induced order, then Y is well-ordered.

Properties

Theorem (Properties of well-ordered sets)

- If X is well-ordered and $Y \subseteq X$ has the induced order, then Y is well-ordered.
- If X, Y are well-ordered sets, then $X \times Y$ with dictionary order is well-ordered.

Zermelo's theorem

Theorem (Zermelo)

If A is any set, there is a total order \leq on A that is a well-order.

Zermelo's theorem

Theorem (Zermelo)

If A is any set, there is a total order \leq on A that is a well-order.

Corollary

There is a set that is uncountable and well-ordered.

Sections

Definition (Section)

If S is an ordered set and $\alpha \in S$, we denote by S_{α} the set:

$$S_{\alpha} = \{ x \in S \mid x < \alpha \}.$$

 S_{α} is called the section of S by α .

There is a set that is uncountable and well-ordered, but every section of it is countable.

There is a set that is uncountable and well-ordered, but every section of it is countable.

There is a set that is uncountable and well-ordered, but every section of it is countable.

Proof.

• Let X be an uncountable, well-ordered set. Then the set $S = \{1, 2\} \times X$ is also uncountable and well-ordered, and has sections that are uncountable (for example, those of elements of the form (2, x).)

There is a set that is uncountable and well-ordered, but every section of it is countable.

Proof.

- Let X be an uncountable, well-ordered set. Then the set $S = \{1, 2\} \times X$ is also uncountable and well-ordered, and has sections that are uncountable (for example, those of elements of the form (2, x).)
- The set.

$$\{\alpha \in S \mid S_{\alpha} \text{ is uncountable}\}\$$

is nonempty, let Ω its smallest element.

There is a set that is uncountable and well-ordered, but every section of it is countable.

Proof.

- Let X be an uncountable, well-ordered set. Then the set $S = \{1, 2\} \times X$ is also uncountable and well-ordered, and has sections that are uncountable (for example, those of elements of the form (2, x).)
- The set

$$\{\alpha \in S \mid S_{\alpha} \text{ is uncountable}\}\$$

is nonempty, let Ω its smallest element.

• Then S_{Ω} is the required set.

Corollary

If $A \subseteq S_{\Omega}$ is countable, then A has an upper bound in S_{Ω} .

Corollary

If $A \subseteq S_{\Omega}$ is countable, then A has an upper bound in S_{Ω} .

Corollary

If $A \subseteq S_{\Omega}$ is countable, then A has an upper bound in S_{Ω} .

Proof

• Since for each $a \in A$, we have that S_a is countable, then $B = \bigcup_{a \in A} S_a$ is also countable.

Corollary

If $A \subseteq S_{\Omega}$ is countable, then A has an upper bound in S_{Ω} .

- Since for each $a \in A$, we have that S_a is countable, then $B = \bigcup_{a \in A} S_a$ is also countable.
- Since $B \subseteq S_{\Omega}$, and S_{Ω} is uncountable, we can choose $x \in S_{\Omega} B$.

Corollary

If $A \subseteq S_{\Omega}$ is countable, then A has an upper bound in S_{Ω} .

- Since for each $a \in A$, we have that S_a is countable, then $B = \bigcup_{a \in A} S_a$ is also countable.
- Since $B \subseteq S_{\Omega}$, and S_{Ω} is uncountable, we can choose $x \in S_{\Omega} B$.
- If there was $a \in A$ with x < a, then x would be in B, which is a contradiction.

Corollary

If $A \subseteq S_{\Omega}$ is countable, then A has an upper bound in S_{Ω} .

- Since for each $a \in A$, we have that S_a is countable, then $B = \bigcup_{a \in A} S_a$ is also countable.
- Since $B \subseteq S_{\Omega}$, and S_{Ω} is uncountable, we can choose $x \in S_{\Omega} B$.
- If there was $a \in A$ with x < a, then x would be in B, which is a contradiction.
- Hence x is an upper bound of A.

Theorem (A nonmetrizable ordered space) The set $S_{\Omega} \cup \{\Omega\}$ is not metrizable

The set $S_{\Omega} \cup \{\Omega\}$ is not metrizable

The set $S_{\Omega} \cup \{\Omega\}$ is not metrizable

Proof

• We have that Ω is a limit point of S_{Ω} , since any basic element containing Ω has the form $(a, \Omega]$ and must intersect S_{Ω} . Otherwise we would have $S_{\Omega} = S_a \cup \{a\}$, but $S_a \cup \{a\}$ is countable.

The set $S_{\Omega} \cup \{\Omega\}$ is not metrizable

- We have that Ω is a limit point of S_{Ω} , since any basic element containing Ω has the form $(a,\Omega]$ and must intersect S_{Ω} . Otherwise we would have $S_{\Omega} = S_a \cup \{a\}$, but $S_a \cup \{a\}$ is countable.
- However, there is no sequence in S_{Ω} that converges to Ω , since if (x_n) is a sequence in S_{Ω} , there is an upper bound $b \in S_{\Omega}$ for all the terms in the sequence. Then $(b, \Omega]$ contains no point of the sequence.

The set $S_{\Omega} \cup \{\Omega\}$ is not metrizable

Proof

- We have that Ω is a limit point of S_{Ω} , since any basic element containing Ω has the form $(a,\Omega]$ and must intersect S_{Ω} . Otherwise we would have $S_{\Omega} = S_a \cup \{a\}$, but $S_a \cup \{a\}$ is countable.
- However, there is no sequence in S_{Ω} that converges to Ω , since if (x_n) is a sequence in S_{Ω} , there is an upper bound $b \in S_{\Omega}$ for all the terms in the sequence. Then $(b, \Omega]$ contains no point of the sequence.

We will denote with $\overline{S_{\Omega}}$ the set $S_{\Omega} \cup \{\Omega\}$.