UNIVERSITY OF VICTORIA

EXAMINATIONS FALL 2008

C SC 230 A01/A02 – Introduction to Computer Architecture

NAME:	STUDENT NO.:	
INSTRUCTOR: R. N. Horspool	DURATION: 3 hours	

TO BE ANSWERED ON THE PAPER

Question No.	Value	Mark	Question No.	Value	Mark
1	12		7	6	
2	15		8	6	
3	10		9	16	
4	13		10	12	
5	10		11	8	
6	12				
	TOTAL	MARKS	11	120	

INSTRUCTIONS:

- 1. STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR
- 2. THIS EXAM HAS 12 PAGES, AND A ONE PAGE / 2-SIDED SEPARATE HANDOUT.
- 3. No aids are permitted. However, a 2-sided ARM instruction set reference page is provided for your use.
- 4. The marks assigned to each question are shown in square brackets. Partial marks are available for all questions.
- 5. Please be precise but brief, and use point form where appropriate.
- 6. It is strongly recommended that you read the entire exam through from beginning to end before beginning to answer the questions.

Question 1. [12] Fill in your answers in the right-hand column of the table below:

a)	What is the <i>binary</i> representation of the decimal number 431 ?	
b)	What is the <i>bexadecimal</i> representation of the decimal number 431?	
c)	What is the 8-bit two's complement <i>binary</i> representation of the decimal number -3?	
d)	What is the 32-bit two's complement <i>hexadecimal</i> representation of the decimal number -3?	
e)	What is the <i>decimal</i> equivalent of the hexadecimal number 0x1AA?	
f)	A machine has 109 opcodes; how many bits are needed for the opcode field of an instruction on that machine?	
g)	What is $2^{17} \times 2^{15}$? (Give your answer as a power of two.)	*
h)	An array A of 4-byte integers begins in memory at address 0x13A4; what is the address of the element A[36]? (Note: 36 is a decimal number, and the first array element is A[0].)	· · · · · · · · · · · · · · · · · · ·
i)	If R1 = $0 \times 3E04$ and R2 = $0 \times 10E$, what memory location is accessed by the ARM instruction LDR R0, [R1, R2]?	
j)	Simplify the following expression, giving your answer in hexadecimal: (0x0A3D2 >> 2) & 0xFFF	
k)	The bytes at locations 0x100 and 0x101 hold 0x01 and 0x02. What is the decimal value of the number held in the halfword at address 0x100 if big-endian ordering is used?	
1)	The bytes at locations 0x100 and 0x101 hold 0x01 and 0x02. What is the decimal value of the number held in the halfword at address 0x100 if little-endian ordering is used?	

Question 2. [15] Find the word or phrase from the list on the left that best matches the descriptions in the table on the right. Use the numbers to the left of words in the answer, and write them in the right-hand column of the second table. Each answer should be used only once. Fill in the column labelled "#" below:

1	condition code
2	word
3	cache
4	flash memory
5	compiler
6	MMU (memory manage- ment unit)
7	signed-magnitude
8	an interrupt
9	decoder
10	opcode
11	twos-complement
12	pipeline
13	DRAM (dynamic random access memory)
14	virtual memory
15	cycle stealing

	Description	#
A	Memory which retains its contents without power for an indefinite period.	
В	Bits which remember whether an instruction has generated a negative, zero or positive result.	
С	A group of bits with the size used as data operands by most instructions.	
D	Component of the CPU where instructions are executed as a series of stages.	
Е	A device which translates virtual addresses to real addresses.	
F	A logic circuit which generates a 1 value on one of its output lines as selected by the binary number provided as its input.	
G	A representation scheme for numbers which provides representations for one more negative number than for positive numbers.	
Н	A combination of RAM memory and disk memory which the program can access as though it were all RAM memory	
Ι	An asynchronous transfer of control to a system software routine.	
J	Memory whose contents must be repeatedly refreshed.	
K	A representation scheme for numbers which has representations for both plus zero and minus zero.	
L	Means by which DMA (direct memory access) obtains its access to main memory	
M	Program that translates from a higher-level notation to assembly language.	
N	A command to the CPU to perform an action.	
0	A small, fast memory that acts as a buffer for the main memory.	

Stion 3. [10] Suppose that you need to execute 100 instructions and that each instruction requires 4 clock cycle. In total, the 100 instructions would take $100 \times 4 = 400$ clock cycles. Now suppose that you are given a pipeline we'i 4 stages to perform the instructions, as drawn below. How many clock cycles will it take if there are no hazar? Show the answer as a number and also show how you calculated it.

Question 4. •[13] Assume you have a system which contains various elements which have been discussed in the tourse, namely Virtual Memory, Cache, Main Memory, Pipelining, MMU (Memory Management Unit), TLB Translation Lookaside Buffer), Page Table, DMA (Direct Memory Access). Answer the following questions:

[1] Where is	the Page Table store	ed?		
Tal where is	the rage rable store			
[1] Where is	the TLB stored?			

C)	[3] Describe the steps which take place when there is a cache hit (the best case scenario).
ď	[3] Describe the steps which take place when the peopled data is will as III (1)
	[3] Describe the steps which take place when the needed data is still on disk (the worst case scenario).
e)	[3] Describe the steps which take place when the needed data is in main memory, but not in the cache.
0	
f)	[2] You may or may not have mentioned the DMA in the steps above. If you included the DMA, give a definition of what it is and what function it had in the previous 3 scenarios. If you did not include the DMA, state why not and still give a definition of what it is.

Castion 5. [10] The contents of a 2-way set associative cache are as shown below. Addresses are 16 bits, memory is te addressable, words are 4 bytes, and each line in the cache is 2 words in size. Answer the questions written allogside and below.

Set#	Valid	Tag	Contents
0	1	0x309	– something
U	1	0x04E	- something
1	1	0x28E	- something
1	1	0x1F7	- something
2	0	0x283	- something
	1	0x20A	- something
2	1	0x049	- something
3	0	0x3AE	- something
4	0	0x31F	- something
4	0	0x1E1	- something
5	1	0x3AE	- something
3	1	0x0BD	- something
6	1	0x1F4	- something
0	1	0x262	- something
7	1	0x03D	- something
· /	0	0x1F2	- something

Set#	Valid	Tag	Contents		
0	1	0x309	– something –		
0	1	0x04E	– something –	b)	[1] How many bits does the set number occupy?
-	1	0x28E	– something –		
1	1	0x1F7	- something -		
2	0	0x283	– something –	c)	[1] How many bits does the tag occupy?
2	1	0x20A	– something –		
0	1	0x049	– something –		
3	0	0x3AE	– something –	d)	[1] If the CPU accesses address 0xEBAA, which set in the cache is checked?
	0	0x31F	- something -		
4	0	0x1E1	– something –		
-	1	0x3AE	– something –	e)	[1] Is the access to 0xEBAA a hit or a miss?
5	1	0x0BD	– something –		
~	1	0x1F4	– something –		
6	1	0x262	– something –	f)	[1] Is an access to 0x8294 a hit or a miss?
7	1	0x03D	– something –		
7	0	0x1F2	– something –		
				g)	[1] Is an access to 0x7CBA a hit or a miss?

[4] How many pages are read in from disk and how many changed (dirty) pages are written back to disk umn-major order is used? Assume that all dirty pages must be written back to disk when the array notion is finished. [5] [4] How many pages are read in from disk and how many changed (dirty) pages are written back to row-major order is used? Again, assume that all dirty pages must be written back to disk afterwards. [6] Suppose that it takes 40ms to transfer a page in either direction between main memory and disk. Ethe total time needed to perform this normalization for both row-major order and column-major order.	iplies that r	be stored in memory in row 0 of the array would implies that column 0 wo	be held in the 1st pag	ge of memory, row 1	in the 2nd page, and so	on, Column-
row-major order is used? Again, assume that all dirty pages must be written back to disk afterwards. C) [4] Suppose that it takes 40ms to transfer a page in either direction between main memory and disk. E	umn-maje	or order is used? Assum	from disk and how me that all dirty pages	nany changed (dirty) must be written bac	pages are written back ik to disk when the arra	to disk if colay normaliza
row-major order is used? Again, assume that all dirty pages must be written back to disk afterwards. C) [4] Suppose that it takes 40ms to transfer a page in either direction between main memory and disk. E						
c) [4] Suppose that it takes 40ms to transfer a page in either direction between main memory and disk. E the total time needed to perform this normalization for both row-major order and column-major order.	[4] How row-majo	many pages are read in or order is used? Again, a	from disk and how assume that all dirty	many changed (dir pages must be writte	ty) pages are written ba en back to disk afterwar	ack to disk if ds.
	[4] Supporthe total t	ose that it takes 40ms to time needed to perform	transfer a page in eithis normalization fo	ther direction between	en main memory and d	isk. Estimate r order.

fuestion 6. [12] A 1024 × 1024 array of 32-bit numbers is to be "normalized" as follows. For each column, the legest element is found and then all elements of the column are divided by this maximum value. Assume that each age in the virtual memory consists of 4K bytes, and that 1M bytes of the main memory are allocated for storing

ata during this computation.

Leading instructions and fetching operands", for "Executing operations" and for "Writing results" terage buffers. The two instructions below are found in that order in a segment of code to be executed.	with 3 in-
pressor and it is possible that they may cause a delay in the normal performance.	ed with this
MUL R1, R2, R3	
STR R4, [R5, R1]	
(2) Why might they cause a delay?	
[1] What is this situation called?	
c) [2] Draw a timing diagram for a general pipeline of this type which shows this situation	
d) [1] What solutions are possible either in software or in hardware to avoid this kind of delay? State	one.
The state of the s	

Question 8. [6] Assume that dynamic random access memory (DRAM) must be refreshed every 64ms. Suppose that we have a DRAM chip which has 8192 rows of 8 bytes each, and that each row can be refreshed in 4 clock cycles. The clock speed is 1GHz.
a) [1] How many clock cycles are needed to refresh the entire DRAM chip?
b) [1] How many clock cycles is 64ms equivalent to?
c) [2] What fraction of time is spent refreshing the DRAM chip? (Give you answer as a simple expression – do not attempt to evaluate it.)
d) [2] Where in the computer is DRAM normally used (in preference to SRAM) and why?

Question 9. [16] You are to write ARM code for a function which counts how many bits are set in a word. Some Code for this function is shown below.

Vite this function in ARM assembler. You do not need to write the code for the main calling routine. Assume that the argument named word is passed in register R1. The result is to be returned in register R0. Your function is not allowed to have any side-effects. Make sure you include appropriate comments to receive full marks.

Question 10. [12] A very short mystery ARM assembler program is shown below. Label A in the program is at address 0x1048. Read the code and then answer the questions written alongside and below.

		- mie code p	and aren answer the ques
1		.text	
<i>2 3</i>	_start:	ldr	r0, =A
		mov	r1, #6
4		bl	MMM
5		swi	0x11
6			
7 8	MMM:	stmfd	sp!, {r1-r4,lr}
		mov	r1, r1, LSL #2
9		add	r2, r0, r1
10		bal	MM2
11	MM1:	ldr	r3, [r0]
12		ldr	r4, [r2]
13		str	r4, [r0]
14		str	r3, [r2]
15		add	r0, r0 #4
16	MM2:	sub	r2, r2, #4
17		cmp	r0, r2
18		blt	MM1
19		ldmfd	sp!, {r1-r4,pc}
20			5 64 75A
21		.data	
22	A:	.word	10, 20, 30, 40
23		.word	50, 60, 70, 80
24		.end	

a)	[1] What value does r1 contain at line 10				

10?

c)	[1]	How	many	times	does	the	blt	instruc-
	tion	at lin	ie 18 ju	ımp to	label	MN	11?	

[4] What values are held in array A when the program halts? (List all 8 values, giving them in decimal.)

1] In words, explain what the MN		
	*	

_	
f)	[4] The MMM function can be made at least 2 instructions shorter. Give the line numbers of two instructions which can be removed and explain what other instructions have to be changed to allow their removal.

	branch instruction takes one clock cycle instead of three clock cycles, if branch instructions account for 20% of all instructions executed by a certain program. Assume that other instructions average three clock cycles per instruction and that nothing else is altered by the change.
	a o
	8
b)	[3] On most computers, a conditional branch instruction requires a different number of clock cycles depending on whether the branch is taken or is not taken. Why is that?
c)	[3] Describe one possible approach that the designer of the computer's architecture can use to reduce the number of cycles needed by a conditional branch instruction in the worse of the two cases of part (b).