Name	Vorname	Matrikel-Nr.	Datum TTMMJJ		

Allgemeine Hinweise:

- Zur Personalien-Kontrolle bitte einen Ausweis mit Lichtbild bereit zu halten.
- Die Klausurdauer beträgt 90 Minuten.
- Die Prüfungsunterlagen bestehen aus 9 Seiten mit 6 Aufgaben.
- Überprüfen Sie bitte die Vollständigkeit der Prüfungsunterlagen und tragen Sie auf jedem Blatt Ihren Namen und Ihre Matrikelnummer in dem dafür vorgesehenen Feld ein.
- Ein DIN-A4-Blatt mit einer Formelsammlung ist als Hilfsmittel zugelassen.
- Es sind keine elektronischen Hilfsmittel wie Taschenrechner, MP3-Player oder sonstigen elektronischen Kommunikationsmittel wie Handy erlaubt.
- Aufgaben sind auf den Prüfungsunterlagen zu lösen, ggf. kann die Rückseite benutzt werden. Der Lösungs-/Rechenweg muß bei allen Aufgaben erkennbar/ nachvollziehbar sein.
- Ungültige Lösungsversuche bitte deutlich markieren.
- Benutzen Sie keinen Bleistift und keine rote Tinte!

Aufgabe	1	2	3	4	5	6	Σ
max. Punktezahl	20	25	50	40	15	40	190
erreichte Punktezahl							

Name	Matrikel-Nr:					
	1	_	_	_	_	_

Aufgabe 1 (20 Pkt.)

Beantworten oder ergänzen Sie folgende Fragen/Aussagen:

a) Vervollständigen Sie den Impulsplan an den Ausgängen Q und P eines pegelgesteuerten D-Flipflops mit einem Enable-Signal EN. Gehen Sie davon aus, daß im D-Flipflop eine logische Eins bereits gespeichert ist, d.h. Q = 1 und P = 0 sind. (6 Pkt.)

b) Zeigen Sie mit Hilfe der booleschen Algebra, daß die Zusammenfassung der drei Feldern aus dem linken KV-Diagramm möglich ist, und daß daraus zwei überlappende Gruppen mit je zwei Feldern resultieren. (6 Pkt.)

Na	me	Matrikel-Nr:	
c)	Erklären Sie den Begriff "einschrittige Codierung dazu zwei vierstellige, einschrittig codierte Dualz	-	e als Beispiel (4 Pkt.)
d)	Kreuzen Sie zutreffende Aussagen an: Ein Minterm [] ist ein Summenterm.		(4 Pkt.)
	[] kann auch nicht negierte Variablen einer bod[] ist eine Konjunktion von Variablen.[] ist der Bestandteil der kanonischen konjunkt		

Name	Matrikel-Nr:	
Turne	Matrixer W.	

Aufgabe 2 (25 Pkt.)

Das unten dargestellte Schaltnetz ist mit Hilfe der Axiome und Geseetze der booleschen Algebra zu minimieren und das Ergebnis als Schaltung bestehend nur aus NAND-Gattern zu zeichnen.

Lösung:

Rekonstruktion und Minimierung der Funktion (18 Pkt.)

Umwandlung zu NANDs (5 Pkt.)

Schaltnetz (2 Pkt.)

Seite 4 von 9

Name .	Matrikel-Nr:			
			 	 _

Aufgabe 3 (50 Pkt.)

Entwerfen Sie die i-te Basiszelle einer Schaltkette, die in der Abhängigkeit von der Steuervariable s eine n-stellige Dualzahl $X=(x_{n-1},\ x_{n-2},\ ...,\ x_1,\ x_0)_2$ entweder um 1 erhöht oder mit 2 multipliziert. Die Multiplikation mit 2 entspricht einer Verschiebung aller Stellen von X um eine Position nach links. Bei s=0 wird der Wert der Dualzahl mit 2 multipliziert (z.B. aus $X=(01011)_2$ wird $Y=(10110)_2$); bei s=1 wird der Wert der Dualzahl um 1 erhöht (z.B. aus $X=(01011)_2$ wird $Y=(01100)_2$). Die Zeichnung der iten Basiszelle ist nicht erforderlich.

Lösung:

Funktionstabelle (32 Pkt.)

S	u _i	Χ _i	u _{i+1}	y _i

KV-Diagramme (4 Pkt.)

Funktionsgleichungen (4 Pkt.)

Initialisierung von u_0 (10 Pkt.)

Matrikel-Nr:		
	Matrikel-Nr:	Matrikel-Nr:

Aufgabe 4 (40 Pkt.)

Die Funktion g(a, b, c, d, e) = Σ (9, 11, 15, 25, 27, 29, (3, 7, 13, 19, 23, 31)) ist mit der QM-Methode zu minimieren.

Lösung:

Minimierung (30 Pkt.)

a	b	C	d	е

a	b	c	d	е

Name	Matrikel-Nr:
------	--------------

Primimplikantentabelle (8 Pkt.)

minimierte Funktionsgleichung (2 Pkt.)

Name	Matrikel-Nr:	

Aufgabe 5 (15 Pkt.)

Aus dem unten dargestellten Schaltnetz ist die boolesche Funktion f(a, b, c, d) zu rekonstruieren, hinsichtlich der Variablen a und b zu dekomponieren und mit einem 1-aus-4-Multiplexer zu realisieren.

Lösung:

Rekonstruktion der Funktion (5 Pkt.)

Dekomposition hinsichtlich a und b (10 Pkt.)

Name		Matril	(el-Nr:			
Aufgabe 6						(40 Pkt.)
Es ist ein selbst korrigierender Modulo-6-Vo D-Flipflops zu entwerfen. Dazu sind ein Zustar nung fehlerhafter Zuständen, eine Funktionsta sierte Funktionsgleichungen anzugeben. Die erforderlich.	ndsgrap abelle,	h mit KV-Di	einer agram	geeig	gneter ind m	Zuord inimali
Lösung:						
Zustandsgraph (2 Pkt.)	tabell	e (28	Pkt.)			
KV-Diagramme (6 Pkt.)						
Funktionsgleichungen (4 Pkt.)						

HTWG Konstanz Digitaltechnik Seite 9 von 9