1. In a 1D constant-acceleration problem, how many of the variables Δx , v_i , v_f , a, and Δt do you need before you can solve the problem?

A) 1

B) 2

C) 3

D) 4

- 2. "I drop a penny two meters above the ground. How long does it take to reach the ground?" Which of the following variables are you *not* given in this description?
- A) V_i

 \mathbf{B}) \mathbf{v}_f

C) a

D) Δy

3. If I have the variables shown to the right, which equation would I use?

A) Δx	$=\frac{1}{2}\left(v_{i}+\right.$	$-v_f)\Delta t$
---------------	------------------------------------	-----------------

$$\mathbf{B)} \ v_f = v_i + a\Delta t$$

C)
$$\Delta x = v_i \Delta t + \frac{1}{2} a(\Delta t)^2$$

A)
$$\Delta x = \frac{1}{2} (v_i + v_f) \Delta t$$
 B) $v_f = v_i + a \Delta t$
C) $\Delta x = v_i \Delta t + \frac{1}{2} a(\Delta t)^2$ D) $\Delta x = v_f \Delta t - \frac{1}{2} a(\Delta t)^2$

$\mathbf{E})$	v_f^2	=	v_i^2	+	$2a\Delta x$
---------------	---------	---	---------	---	--------------

Δx	4m
Vi	0m/s
Vf	
а	-2m/s ²
Δt	NEED

For the following two questions, suppose I have a problem that starts "I throw a ball 2 meters up into the air." The axes are as shown to the right.

4. The displacement of the ball is

A)
$$+2m$$
 B) $-2m$

$$B) -2m$$

5. The acceleration of the ball is

A)
$$+9.8$$
m/s² B) -9.8 m/s²

B)
$$-9.8$$
m/s²

- 6. The picture shows the trajectories of two cannonballs. Which ball hits the ground first?
- A) A
- B) B C) Both hit at the same time.

1. In a 1D constant-acceleration problem, how many of the variables Δx , v_i , v_f , a, and Δt do you need before you can solve the problem?

A) 1

B) 2

(C) 3

D) 4

- **CBCBA**
- 2. "I drop a penny two meters above the ground. How long does it take to reach the ground?" Which of the following variables are you *not* given in this description?
- A) v_i

B) v_f

C) a

D) Δy

3. If I have the variables shown to the right, which equation would I use?

A)	$\Delta x =$	$\frac{1}{2}$	$(v_i +$	$-v_f)\Delta t$	

$$\mathbf{B)} \ v_f = v_i + a\Delta t$$

C)
$$\Delta x = v_i \Delta t + \frac{1}{2} a(\Delta t)^2$$
 D) $\Delta x = v_f \Delta t - \frac{1}{2} a(\Delta t)^2$

$$\mathbf{D)} \ \Delta x = v_f \Delta t - \frac{1}{2} a(\Delta t)^2$$

Δx	4m
Vi	0m/s
Vf	
а	-2m/s ²
Δt	NEED

E) $v_f^2 = v_i^2 + 2a\Delta x$

For the following two questions, suppose I have a problem that starts "I throw a ball 2 meters up into the air." The axes are as shown to the right.

4. The displacement of the ball is

$$A) +2m$$

5. The acceleration of the ball is

A)
$$+9.8$$
m/s² B) -9.8 m/s²

B)
$$-9.8$$
m/s²

- 6. The picture shows the trajectories of two cannonballs. Which ball hits the ground first?
- A) A
- B) B
- C) Both hit at the same time.

