Video 11 - Data management

Steve Simon

Data management

- Data dictionary
 - Variable names, Variable labels, Value labels, Missing value codes
- Managing complex files
 - Multiple response, Longitudinal/repeated measures data
- Storage options
 - Spreadsheet, Text file, Database, REDCap

Data dictionary

- Also called a code book
- Start before collecting data
- Revise as needed

Variable names

- Brief, but descriptive explanation
- Roughly 4 to 16 characters
- No blanks and (almost) no symbols
- One to three words

Good and bad variable names

- Names to avoid (www.writersexchange.com)
 - systolic blood pressure
 - systolic-blood-pressure
- Names that work
 - systolic_blood_pressure
 - systolic.blood.pressure
 - SystolicBloodPressure
- NEVER USE ALL CAPS FOR VARIABLE NAMES
 - Lower case ascenders (e.g., f and l)
 - Lower case descenders (e.g., g and y)

Variable labels

- Longer descriptions
 - Can include spaces and punctuation
 - Ideal length is 20-40 characters
 - Mention units of measurement, special qualifiers

Missing value codes

- Explain WHY the value is missing
- For a survey
 - Did not answer
 - Not applicable
- For a lab result
 - · Below the limit of detection
 - · Insufficient volume for testing
 - Dropped the test tube and it shattered making a huge mess

Example of missing value codes

- Use extreme number code
 - 9, 99, 999
 - -1
- Use symbols
 - NA
 - (asterisk)
 - (dot)
- Never use blanks to designate missing
- Note missing value code on data dictionary

Missing value example

Price tage from computer store

First break

- What have you learned
 - variable names
 - Variable labels
 - · Missing value codes
- What's coming up
 - Date formats
 - Categorical values

Date formats

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE CONFUSION. THAT'S WHY IN 1988 190 SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

Cartoon showing variety of data formats

Internal storage formats

- Excel number of days since 1899-12-31 (1900-01-00)
- R number of days since January 1, 1970
- SAS number of days since January 1, 1960
- SPSS number of seconds since October 14, 1582

Gregorian calendar

JULIAN 1582		October			Gregorian 1582		
Sun	Mon	Tues	Wed	Thurs	Fri	Sat	
	1	2	3	4	15	16	
17	18	19	20	21	22	23	
24	25	26	27	28	29	30	
31					100 NATA (100)		

Transition to the Gregorian calendar

Gregorian calendar

Painting of Pope Gergory XIII

Categorical values

- Definition: small number of possible values
- Beware of ambiguities
 - YES, yes, and Yes are three distinct levels.
- Use number codes
 - 0, 1, 9 for binary variables
- Single letter codes
 - M, F, and U for gender
 - Potentially ambiguous
 - Consistent case is important.

Example of ambiguous coding

RaceID

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid		2	1.1	1.1	1.1
	W	1	.6	.6	1.7
	Α	1	.6	.6	2.2
	В	11	6.1	6.1	8.3
	С	137	76.1	76.1	84.4
	Н	. 9	5.0	5.0	89.4
	0	1	.6	.6	90.0
	W	18	10.0	10.0	100.0
	Total	180	100.0	100.0	

SPSS frequencies table for RaceID

Reverse coding (1 of 2)

- Context specific
- Sequence of IF THEN ELSE statements
 - if (is.na(x)) then y=NA
 - else if (x=1) then y=4
 - else if (x=2) then y=3
 - else if (x=3) then y=2
 - else if (x=4) then y=1
 - else y=9

Reverse coding (2 of 2)

- Functional transformations
 - 0.1 to 1.0 is f(x)=1-x
 - 1,2,3,4 to 4,3,2,1 is f(x)=5-x
 - 0,1,2,3,4 to 4,3,2,1,0 is f(x)=4-x
- Always check your results
- Watch out for missing value codes

Second break

- What have you learned
 - Dates
 - Value labels
 - Reverse coding
- What's coming next
 - Multiple response
 - Longitudinal/repeated measures data

A multiple response example

Q1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens
Q1. What are a few of your favorite things? ☑ a. Raindrops on roses ☑ b. Whiskers on kittens ☑ c. Bright copper kettles ☐ d. Warm woolen mittens
Q1. What are a few of your favorite things? □ a. Raindrops on roses □ b. Whiskers on kittens □ c. Bright copper kettles □ d. Warm woolen mittens

Questionnaire with a multiple response question

Coding multiple response with a single column

	q1
Q1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	bod
Ol. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	abo
O1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	cd

Multiple response coded into a single column

A different way to code multiple response

	q1.1	q1.2	q1.3	
Q1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	b	c	d	
O1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	п	Ь	c	
Q1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	0	d		

A multiple response question coded into three columns

The recommended way to code multiple response

	q1.a	q1.b	q1.c	q1.d
Q1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	0	1	1	1
O1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	1	1	1	0
Q1. What are a few of your favorite things? a. Raindrops on roses b. Whiskers on kittens c. Bright copper kettles d. Warm woolen mittens	0	0	1	1

Multiple response coded with individual item indicators

Longitudinal data, Repeated measures data

- Longitunal
 - Multiple time points per patient
- Repeated measurements
 - Measuring patient repeatedly under different conditions
- Tall and thin format
 - One line per visit/measurement
- Short and fat format
 - One line per patient

Example of tall/thin, dictionary

Univariate format:

Variable	Description		
Subject	1 to 40		
Sex	male or female		
Age	Age of subject in years		
Height	Height in cm		
Weight	Weight in kg		
Surface	normal or foam		
Vision	eyes open, eyes closed, or closed dome		
CTSIB	Qualitive measure of balance, 1 (stable) - 4 (unstable)		

Data dictionary for tall and thin format

Example of short/fat, dictionary

Repeated measures format:

Variable	Description			
Subject	1 to 40			
Sex	male or female			
Age	Age of subject in years			
Height	Height in cm			
Weight	Weight in kg			
NO1	Balance measure on normal surface with eyes open, first replicate			
NO2	as above, second replicate			
NC1	Balance measure on normal surface with eyes closed, first replicate			
NC2	as above, second replicate			
ND1	Balance measure on normal surface with dome, first replicate			
ND2	as above, second replicate			
FO1	Balance measure on foam surface with eyes open, first replicate			
FO2	as above, second replicate			
FC1	Balance measure on foam surface with eyes closed, first replicate			
FC2	as above, second replicate			
FD1	Balance measure on foam surface with dome, first replicate			
FD2	as above, second replicate			

Repeated measures example in short and fat format

Repeated measures data in tall and thin format

Example of short/fat, data

Repeated measures data in short and fat format

A simple alternative to both tall/thin and short/fat

- Disadvantages of tall/thin
 - Too much repetition
- Disadvantages of short/fat
- Database format
 - Time constant table
 - Time varying table

Time constant data

time_constant_table.bxt -		open	2	0 0 X
File Edit Format Vew Subject 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15	- Charles	Age 22 22 22 21 20 18 29 22 29 31 24 33 18 34 27	Height 176 181 175.5 180 166 177 183 150 154 176.5 176 184 187 168	Weight 68.2 67.6 72 73.2 63.8 78.8 86.4 44.6 57.8 80.8 91 89.8 85.4 460.8

Table listing time constant data only

Time varying data

Table listing time varying data only

Contents of a data dictionary

- Variable names
- Variable labels
- Units of measurement
- Permissible/impermissible values
- Value labels
- Missing value codes
- Source
- License

Third break

- What have you learned
 - Multiple response variables
 - Longitudinal/repeated measures data
- What's next
 - Double entry coding
 - Excel files

Double entry coding

- Great quality check
 - If you can afford it
- Prepare a code book first
 - Count the proportion of discrepancies
- If too many discrepancies
 - Revise the code book and re-do the data entry.
- If discrepancies small enough
 - Report this number in your publication

If you enter data into Excel

- Do not use colors
- Do not include summary statistics
- Rectangular grid
- Don't squeeze two data values into one cell
 - Systolic/diastolic blood pressures
 - 44M for a 44 year old male
- Variable names in first row
- No blank cells
 - Contradicts your book

Fourth break

- What have you learned
 - Double entry
 - Excel files
- What's coming next
 - Text files
 - Database files

Text files

- Fixed width
- Delimited
 - Commas
 - Spaces
 - Tabs
 - "Quotes around text"

Data dictionary for aboriginal prison death study

Comma separated values (csv)

Data set using a comma separated value format

Comma separated values with quotes

```
☐ aboriginal_data_quoted - Notepad

File Edit Format View Help

"Year", "Indigenous", "Prisoners", "Deaths", "Population"

1990, "Yes", 2041, 6, 168317

1991, "Yes", 2166, 8, 172462

1992, "Yes", 2223, 2, 176827

1993, "Yes", 2416, 7, 181341

1994, "Yes", 2742, 11, 185836

1995, "Yes", 2907, 17, 190438

1990, "No", 12264, 27, 13141817

1991, "No", 12855, 31, 13326044

1992, "No", 13336, 34, 13501987

1993, "No", 13450, 42, 13649262

1994, "No", 14302, 42, 13810095

1995, "No", 14501, 42, 13995940
```

Data set using a quoted format

Fixed width format

Data set using a fixed width format

Database systems

- Terminology
 - Tables
 - Fields
 - Records
 - Primary key
 - Foreign key

REDCap

- Research Electronic Data Capture
- Not open source, but freely distributed by Vanderbilt
- Software components
 - PHP
 - JavaScript
 - MySQL
- Case report forms
- Strongly recommended

Conclusion

- Data dictionary
 - Variable names, Variable labels, Value labels, Missing value codes
- Managing complex files
 - Multiple response, Longitudinal/repeated measures data
- Storage options
 - Spreadsheet, Text file, Database, REDCap