Definition: A function of n variables is a rule that takes each point (x_1,\ldots,x_n) returns a number $f(x_1,\ldots,x_n)$. More generally:

in the domain $\mathcal{D}(f)\subseteq R^n$ and returns a point $f(x_1,\dots,x_n)$ in \mathbb{R}^m . In other words, this function returns \boldsymbol{m} numbers, which we can call

 $f_1(x_1, \ldots, x_n), f_2(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n).$

If $\mathcal{D}(f)$ is not explicitly given, then it is assumed to be the largest subset of \mathbb{R}^n where the rule for f makes sense.

HKBU Math 2205 Multivariate Calculus

Example: Find the domain of the function

F(x, y, z, w) = (

Semester 2 2017, Week 2, Page 1 of 14

Find the domain of the function

$$g(x,y) = \frac{\sqrt{x}}{1+u}$$

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 2, Page 2 of 14

The standard way to visualise a single-variable function $f:\mathbb{R} o \mathbb{R}$ is through its graph y=f(x). This is a subset of \mathbb{R}^2 .

Example: The graph of $f(x) = x^2$ is the parabola $y = x^2$.

Definition: The graph of a function $\mathbb{R}^n \to \mathbb{R}$ is the set of points in \mathbb{R}^{n+1} satisfying $x_{n+1} = f(x_1, \ldots, x_n)$.

So the graph of f(x,y) is the surface in \mathbb{R}^3 satisfying z=f(x,y) . (Think of z as the height at (x, y).)

Example: The graph of $f(x,y) = x^2 + y^2$ is the paraboloid $z = x^2 + y^2$.

(pictures from Wiktionary and Wikiwand) HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 2, Page 4 of 14

Definition: The graph of a function $\mathbb{R}^n \to \mathbb{R}$ is the set of points in \mathbb{R}^{n+1} satisfying $x_{n+1}=f(x_1,\dots,x_n)$ As shown in the previous example, the graph of a linear function is a plane (or hyperplane).

The graph of some 2-variable functions, such as $g(x,y)=rac{\sqrt{x}}{1+y}$, can be very complicated.

Even worse: the graph of a 3-variable function f(x,y,z) is in \mathbb{R}^4 , which is not helpful at all.

So here's another way to visualise a multivariate function:

Definition: The *level set* of a function $\mathbb{R}^n \to \mathbb{R}$ is the set of points in \mathbb{R}^n satisfying $C = f(x_1, \ldots, x_n)$, for some constant C.

Another view: the level sets are the intersections of the graph with the

hyperplanes $x_{n+1}=C$. They are usually n-1 dimensional objects in \mathbb{R}^n (e.g. 2-variable function has level curves in \mathbb{R}^2).

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 2, Page 5 of 14

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 2, Page 6 of 14

graph (from KK L on google)

level set (from googlemaps)

Semester 2 2017, Week 2, Page 9 of 14

HKBU Math 2205 Multivariate Calculus

Example: Describe and sketch the level curves of h(x,y)=xy, and use this to sketch the graph of h.

HKBU Math 2205 Multivariate Calculus

Example: Describe and sketch the level curves of $g(x,y)=\frac{\sqrt{x}}{1+y}$, and use this to sketch the graph of g.

Another way to see that z=xy is a hyperbolic paraboloid is by completing the

square:

 $z = xy = \frac{1}{4}4xy = \frac{1}{4}\big(\big((x+y)^2 - (x-y)^2\big),$

which is a difference of two squares.

Semester 2 2017, Week 2, Page 11 of 14

HKBU Math 2205 Multivariate Calculus

Not every surface in \mathbb{R}^3 is the graph of a (2-variable) function, but most surfaces in \mathbb{R}^3 can be expressed as a level set of a (3-variable) function, and this is often useful.

Example: Express the surface $2x+2\ln y=9-z^2$ as the level set of a suitable function.

$$G(x, y, z) = e^{-x^2 - y^2 - z^2}.$$

Semester 2 2017, Week 2, Page 13 of 14

HKBU Math 2205 Multivariate Calculus

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 2, Page 14 of 14