VECTEURS 1 – INTRODUCTION

I) TRANSLATIONS ET VECTEURS

1) Intuitivement

Une <u>translation</u> est une transformation du plan qui consiste à faire glisser ensemble tous les points du plan selon un même déplacement.

Ce déplacement appelé vecteur est caractérisé par :

- une direction : (AA') // (BB') // (CC')
- un sens sur cette direction : « vers la droite »
- une distance appelée norme du vecteur : AA' = BB' = CC'

2) Définition

Soient A et A' deux points du plan.

La translation de vecteur \overrightarrow{AA} ' associe à tout point B du plan le point B' tel que AA'B'B soit un parallélogramme (éventuellement aplati).

Notations:

Un vecteur s'écrit toujours avec une flèche : \overrightarrow{AB} , \overrightarrow{u} , ...

Sa norme s'écrit : $\|\overline{AB}\|$, AB, $\|\vec{u}\|$, ...

3) Égalité de vecteurs

Les vecteurs \overrightarrow{AA}' , \overrightarrow{BB}' et \overrightarrow{CC}' définissent ci-dessus la même translation. On dit qu'ils sont égaux et on écrit : $\overrightarrow{AA}' = \overrightarrow{BB}' = \overrightarrow{CC}'$

Un vecteur n'est donc pas lié à un point de départ ou d'arrivée.

4) Vecteur nul

Quelque soit le point A du plan, le vecteur \overrightarrow{AA} correspond à un déplacement nul. On l'appelle « vecteur nul » et on le note $\overrightarrow{0}$: $\overrightarrow{AA} = \overrightarrow{0}$

p131:1,2,3

p142:38,39,48

p146:88

II) SOMME DE VECTEURS

1) Somme

On appelle somme des vecteurs \vec{u} et \vec{v} le vecteur noté $\vec{u} + \vec{v}$ obtenu en enchaînant la translation de vecteur \vec{u} avec celle de vecteur \vec{v} .

Relation de Chasles:

Quels que soient A, B et C, on a toujours : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

2) Opposé

L'opposé d'un vecteur \vec{u} est le vecteur noté $-\vec{u}$ qui caractérise la translation « en sens inverse ». (même direction et même longueur)

D'après Chasles, $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$ donc $\overrightarrow{BA} = -\overrightarrow{AB}$

3) Différence

La différence des vecteurs \vec{u} et \vec{v} est la somme de \vec{u} avec l'opposé de \vec{v}

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

p142:40,41

p143:50,52,53,54

p147:96,99

démonstrations

p143:55

p146:90

p147: 97, 98, 100

III) PRODUIT D'UN VECTEUR PAR UN RÉEL

1) Intuitivement

$$\overrightarrow{AD} = \overrightarrow{u} + \overrightarrow{u} + \overrightarrow{u} = 3 \overrightarrow{u}$$

$$\overrightarrow{CD} = \frac{3}{2} \overrightarrow{u}$$

$$\overrightarrow{BA} = -\frac{1}{2} \overrightarrow{u}$$

2) Définition

On appelle produit du vecteur \vec{u} par le réel k le vecteur noté $k\vec{u}$ obtenu en enchaînant k fois la translation de vecteur \vec{u} .

3) Propriétés

Pour tous les vecteurs \vec{u} et \vec{v} et pour tous réel k et k', on a :

$$k(\vec{u}+\vec{v}) = k \vec{u} + k \vec{v}$$

$$(k+k')\vec{u} = k \vec{u} + k' \vec{u}$$

$$k(k'\vec{u}) = (kk')\vec{u}$$

$$k\vec{u} = \vec{0} \Leftrightarrow k = 0 \text{ ou } \vec{u} = \vec{0}$$

Attention:

L'écriture $\vec{u} = \frac{\vec{v}}{2}$ est interdite, on écrira $\vec{u} = \frac{1}{2}\vec{v}$

L'écriture $\frac{\vec{u}}{\vec{v}} = 3$ est interdite, on écrira $\vec{u} = 3\vec{v}$

p142:42

p148: 103, 104, 105, 106, 107, 108, 110, 111, 112

IV) TRADUIRE EN ÉGALITÉS VECTORIELLES

- I est le milieu de [AB] $\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$ $\Leftrightarrow \overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$ $\Leftrightarrow \overrightarrow{AI} = \overrightarrow{IB}$
- B est le symétrique de A par rapport à $I \Leftrightarrow \overrightarrow{IB} = -\overrightarrow{IA}$
- ABCD est un parallélogramme $\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}$ $\Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$ $\Leftrightarrow \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ A

 B

 C

Feuille 5.1 : à partir de 9

p146:91,92,93,94

p147:101 p148:117

p140.11/

p149:118,119