Semantik von Programmiersprachen

SS12 E. Fehr

Übungsblatt 8

Besprechungstermin:13.06.2012

Aufgabe 1

- a) Geben Sie ein Beispiel für eine nicht stetige Funktion f über cpo's an.
- b) Beweisen Sie, dass die Komposition stetiger Funktionen wieder eine stetige Funktion ergibt.

Aufgabe 2

- a) Zeigen Sie, wie Sie zu gegebenen cpos D_1, \ldots, D_n mit $n \geq 2$ den Bereich der disjunkten Vereinigung $(D_1 + \ldots + D_n)$ erklären können.
- b) Definieren Sie folgende Injektions-, Projektions- und Testfunktionen in kanonischer Weise:

$$\begin{split} & \text{in}_i: D_i \to (D_1 + \ldots + D_n) & \text{für alle } 1 \leq i \leq n \\ & \text{out}_i: (D_1 + \ldots + D_n) \to D_i & \text{für alle } 1 \leq i \leq n \\ & \text{is}_i: (D_1 + \ldots + D_n) \to \texttt{BOOL}_\perp & \text{für alle } 1 \leq i \leq n \end{split}$$

Aufgabe 3

Definieren Sie stetige Erweiterungen der Addition und des Tests auf Gleichheit, so dass diese Operationen total werden auf den $cpo's \mathbb{N}_{\perp}$ und $Bool_{\perp}$. Diskutieren Sie, ob es mehrere solcher Erweiterungen gibt.

Aufgabe 4

Seien D_1 und D_2 cpo's und $f: D_1 \to D_2$ und $g: D_2 \to D_1$, stetige Funktionen. Beweisen Sie:

$$\begin{array}{lll} \mathtt{fix}_{f \circ g} & = & f \; (\; \mathtt{fix}_{g \circ f} \;) & \mathrm{und} \\ \mathtt{fix}_{g \circ f} & = & g \; (\; \mathtt{fix}_{f \circ g} \;) \end{array}$$