Question Bank 4 School of Basics and Applied Science Mathematics

Course Code: BMA101

Course Name: Multivariable Calculus

Date: 08-09-2019

			Blo	Di	Comp	Area	Topic	U	M
			om'	ffi	etitiv			n	a
C			S	cu	e			i	r
S.	Overtions	C	Tax	lt	Exam			t	k
No	Questions	О	ono	у	Quest				s
•			my	L	ion				
			Lev	ev	Y/N				
			el	el					
1	Compute: $\int_0^2 \int_0^2 2x dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Rectan gular region	4	2
2	Compute: $\int_0^3 \int_0^2 (4 - y^2) dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Rectan gular region	4	2
3	Compute: $\int_{-1}^{0} \int_{-1}^{1} (x + y + 1) dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Rectan gular region	4	2
4	Compute: $\int_{1}^{2} \int_{0}^{4} 2xy dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Rectan gular region	4	2
5	Compute the double integral over the region <i>R</i> : $0 \le x \le 1, 0 \le y \le 2$; $\iint_R (6y^2 - 2x) dA$	4	K3	Н	N	Double integrals in Cartesian coordinates	Rectan gular region	4	6
6	Calculate $\iint_R f(x, y) dA$ for $f(x, y) = 100 - 6x^2y$ and $R: 0 \le x \le 2, -1 \le y \le 1$.	4	K3	Н	N	Double integrals in Cartesian coordinates	Rectan gular region	4	6
7	Compute: $\int_0^2 \int_{x^2}^{2x} (4x + 2) dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Non- rectang ular region	4	6
8	Compute: $\int_0^{\pi} \int_0^{\sin x} dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Non- rectang ular region	4	6
9	Compute: $\int_0^{\pi} \int_0^x x \sin y dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Non- rectang ular region	4	6
10	Compute: $\int_{1}^{2} \int_{y}^{y^{2}} dx dy$	4	K2	M	N	Double integrals in Cartesian coordinates	Non- rectang ular region	4	6

11	Integrate $f(x, y) = \frac{x}{y}$ over the region in the first quadrant bounded by the lines $y = x, y = 2x$, $x = 1, x = 2$.	4	К3	Н	N	Double integrals in Cartesian coordinates	Non- rectang ular region	4	1 0
12	Compute: $\int_0^1 \int_0^{y^2} 3y^3 e^{xy} dx dy$	4	К3	Н	N	Double integrals in Cartesian coordinates	Non- rectang ular region	4	6
13	Compute: $\int_0^2 \int_{y^2/4}^{(y+2)/4} (16 - x^2 - y^2) dx dy$	4	К3	Н	N	Double integrals in Cartesian coordinates	Non- rectang ular region	4	1 0
14	Plot the region, reverse the order of integration of the integral: $\int_0^1 \int_y^1 \frac{\sin x}{x} dx dy$	4	K2	M	N	Double integrals in Cartesian coordinates	Change order of integrat ion	4	6
15	Plot the region, reverse the order of integration and then calculate the integral: $\int_0^1 \int_y^1 \frac{\sin x}{x} dx dy$	4	K3	Н	N	Double integrals in Cartesian coordinates	Change order of integrat ion	4	1 0
16	Sketch the region of integration and write an equivalent integral with the order of integration reversed for the integral $\int_0^2 \int_{x^2}^{2x} (4x + 2) dy dx$.	4	K2	Н	N	Double integrals in Cartesian coordinates	Change order of integrat ion	4	6
17	Sketch the region of integration and write an equivalent integral with the order of integration reversed for the integral $\int_0^1 \int_2^{4-2x} dy dx$.	4	K2	Н	N	Double integrals in Cartesian coordinates	Change order of integrat ion	4	6
18	Sketch the region of integration, reverse the order of integration and evaluate the integral $\int_0^1 \int_y^1 x^2 e^{xy} dx dy.$	4	К3	Н	N	Double integrals in Cartesian coordinates	Change order of integrat ion	4	1 0
19	Compute: $\int_0^{\pi/2} \int_0^1 r^3 dr d\theta$	4	K2	M	N	Double integrals in Polar coordinates	Polar curves	4	2
20	Compute: $\int_0^{\pi} \int_0^{\sqrt{(\cos 2\theta)}} r dr d\theta$	4	K2	M	N	Double integrals in Polar coordinates	Polar curves	4	2
21	Find the limits of integration for $f(r, \theta)$ over the region R that lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle $r = 1$.	4	K2	M	N	Double integrals in Polar coordinates	Polar curves	4	2
22	Change the Cartesian integral into polar integral and then compute the polar integral: $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$	4	К3	Н	N	Double integrals in Polar coordinates	Change Cartesi an integral s into polar	4	1 0

							integral s		
23	Change the Cartesian integral into polar integral and then compute the polar integral: $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$	4	К3	Н	N	Double integrals in Polar coordinates	Change Cartesi an integral s into polar integral s	4	1 0
24	Change the Cartesian integral into polar integral and then compute the polar integral: $\int_0^2 \int_0^{\sqrt{4-y^2}} (x^2 + y^2) dx dy$	4	K3	Н	N	Double integrals in Polar coordinates	Change Cartesi an integral s into polar integral s	4	1 0
25	Change the Cartesian integral into polar integral and then compute the polar integral: $\int_{1}^{\sqrt{3}} \int_{1}^{x} dy dx$	4	K3	Н	N	Double integrals in Polar coordinates	Change Cartesi an integral s into polar integral s	4	1 0
26	Change the Cartesian integral into polar integral and then compute the polar integral: $\int_0^6 \int_0^y x dx dy$	4	К3	Н	N	Double integrals in Polar coordinates	Change Cartesi an integral s into polar integral s	4	1 0
27	Evaluate $\iint_R e^{x^2+y^2} dy dx$ where <i>R</i> is the semicircular region bounded by the x-axis and the curve $y = \sqrt{1-x^2}$.	4	K4	Н	N	Double integrals in Polar coordinates	Change Cartesi an integral s into polar integral s	4	1 0
28	Find the volume of the region bounded above by the elliptical paraboloid $z = 10 + x^2 + 3y^2$ and below by the rectangle $R: 0 \le x \le 1, 0 \le y \le 2$.	4	K4	Н	N	Application of Double integral	Area and volume by double integral	4	1 0
29	Find the volume of the region bounded above by the paraboloid $z = x^2 + y^2$ and below by the square $R: -1 \le x \le 1, -1 \le y \le 1$.	4	K4	Н	N	Application of Double integral	Area and volume by double integral	4	1 0
30	Find the volume of the region bounded above by	4	K4	Н	N	Application	Area	4	1

the plane $z = 2 - x - y$ and below by the square $R: 0 \le x \le 1, 0 \le y \le 1$.	
	, oranic
	by
	double
	integral
31 Find the volume of the region bounded above by 4 K4 H N Appli	
the surface $z = 2 \sin x \cos y$ and below by the of Do	
rectangle $R: 0 \le x \le \pi/2, 0 \le y \le \pi/4$.	l volume
	by
	double
	integral
32 Find a value of the constant k so that $4 \times 4 \times 4 \times 10^{-1}$ Appli	ation Area 4 6
$\int_{1}^{2} \int_{0}^{3} kx^{2}y dx dy = 1.$ of Do	
integr	
	by
	double
	integral
33 Find the volume of the prism whose base is the 4 K4 H N Appli	
triangle in the <i>xy</i> -plane bounded by the <i>x</i> -axis of Do	
and the lines $y = x, x = 1$ and whose top lies in integr	
the plane $z = f(x, y) = 3 - x - y$.	by double
	integral
34 Find the volume of pastry that lies beneath the 4 K4 H N Appli	
surface $z = 16 - x^2 - y^2$ and above the region of Do	
R bounded by the curve $y = 2\sqrt{x}$, the line integral	
y = 4x - 2, and the x-axis.	by
$y = i\lambda$ 2, and the λ data.	double
	integral
35 Find the volume of the region bounded above by 4 K4 H N Appli	ation Area 4 1
the paraboloid $z = x^2 + y^2$ and below by the of Do	ible and 0
triangle enclosed by the lines $y = x, x = 0$, and integr	l volume
x + y = 2 in the xy-plane.	by
	double
	integral
36 Find the area of the region R bounded by $y = \begin{bmatrix} 4 & K4 & H & N \end{bmatrix}$ Appli	
x and $y = x^2$ in the first quadrant using double of Do	
integral. integr	
	by
	double
37 Find the area of the region R enclosed by the 4 K4 H N Appli	integral ation Area 4 1
parabola $y = x^2$ and the line $y = x + 2$ using of Do	
parabola $y = x$ and the line $y = x + 2$ using double integral.	
integr	by
	double
	integral
38 Find the area of the playing field described by 4 K4 H N Appli	
$R: -2 \le x \le 2, -1 - \sqrt{4 - x^2} \le y \le 1 +$ of Do	
$\sqrt{4-x^2}$, using Fubini's Theorem and simple integr	l volume
geometry.	by
	double
	integral
Find the area enclosed by the lemniscate $r^2 = \begin{pmatrix} 4 & K4 & H & N & Appli \\ 4\cos 2\theta. & & & & & & & & & & & & & & & & & & &$	

						integral	volume by		
							double integral		
40	Find the volume of the solid region bounded above by the paraboloid $z = 9 - x^2 - y^2$ and below by the unit circle in the xy-plane.	4	K4	Н	N	Application of Double integral	Area and volume by double integral	4	1 0
41	Using polar integration, find the area of the region R in the xy -plane enclosed by the circle $x^2 + y^2 = 4$, above the line $y = 1$, and below the line $y = \sqrt{3}x$.	4	K4	Н	N	Application of Double integral	Area and volume by double integral	4	1 0
42	Evaluate: $\int_0^1 \int_0^1 \int_0^1 dz dy dx$	4	К3	Н	N	Triple integrals in Cartesian coordinates	Triple integral	4	6
43	Evaluate: $\int_0^2 \int_0^2 \int_0^2 xyz dx dy dz$	4	K3	Н	N	Triple integrals in Cartesian coordinates	Triple integral	4	6
44	Evaluate: $\int_0^1 \int_x^1 \int_0^{y-x} dz dy dx$	4	K3	Н	N	Triple integrals in Cartesian coordinates	Triple integral	4	6
45	Evaluate: $\int_0^1 \int_0^{1-x} \int_{x+z}^1 dy dz dx$	4	K3	Н	N	Triple integrals in Cartesian coordinates	Triple integral	4	6
46	Evaluate the triple integral $\iiint_Q 2xe^y \sin z dV$, where Q is the rectangular box defined by $Q = \{(x, y, z) 1 \le x \le 2, 0 \le y \le 1, 0 \le z \le \pi\}$.	4	K4	Н	N	Triple integrals in Cartesian coordinates	Triple integral	4	1 0
47	Find the volume of the cube of side 2 unit using triple integral.	4	K4	Н	N	Application of Triple integrals	Volum e by triple integral	3	1 0
48	Find the volume of the region enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.	4	K4	Н	N	Application of Triple integrals	Volum e by triple integral	3	1 0
49	Find the volume of the region enclosed by the cylinder $z = y^2$ and by the planes $x = 0, x = 1, y = -1, y = 1$.	4	K4	Н	N	Application of Triple integrals	Volum e by triple integral	3	1 0

	x y								
50	Find the volume of the region in the first octant bounded by the coordinate planes, the plane $y + z = 2$, and the cylinder $x = 4 - y^2$.	4	K4	Н	N	Application of Triple integrals	Volum e by triple integral	3	1 0
51	Find the volume of the region in the first octant bounded by the coordinate planes, and the surface $z = 4 - x^2 - y$.	4	K4	Н	Z	Application of Triple integrals	Volum e by triple integral	3	1 0
52	Find the volume of the region in the first octant bounded by the coordinate planes, the plane $x + y = 2$, and the cylinder $y^2 + 4z^2 = 16$.	4	K4	Н	N	Application of Triple integrals	Volum e by triple integral	3	1 0

Signature of Course Coordinator/DC:

Signature of Dean:

IQAC: