§1 11-06

§1.1 Divergence to infinity

Definition 1.1. Let (x_n) be a sequence. We say that (x_n) diverges to $+\infty$ if

$$\forall M > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N : x_n > M$$

In symbols:

$$\lim(x_n) = +\infty$$

 (x_n) diverges to $-\infty$ if

$$\forall M > 0 (\exists N \in \mathbb{N}) (\forall \geq N) : x_n < -M$$

In symbols:

$$\lim(x_n) = -\infty$$

Remark 1.2. If $\lim(x_n) = +\infty$ or $\lim(x_n) = -\infty$, then the sequence diverges. The limit laws thus do <u>NOT</u> apply.

Example 1.3

 $\lim(n^2) = +\infty$. Let M > 0. Then $n^2 > M \Leftrightarrow n > \sqrt{M}$.

Let $N > \sqrt{M}$. Then $\forall n \geq N : n^2 \geq N^2 > M \Rightarrow n^2 > M$ for all $n \geq M \Rightarrow (n^2)$

Example 1.4

Let a > 1. Show that $\lim_{n \to \infty} (a^n) = +\infty$.

Since a > 1, b := a - 1 > 0. Then a = 1 + b and $a^n = (1 + b)^n$. Applying

$$(1+b)^n \ge 1 + nb > nb > M \Leftrightarrow n > \frac{M}{b}$$

 $(1+b)^n \geq 1+nb > nb > M \Leftrightarrow n > \frac{M}{b}$ Let $N > \frac{M}{b}$. Then $\forall n \geq N$, we know that $a^n > nb \geq Nb > M$. Thus a^n diverges to $+\infty$.

§1.2 Chapter 4: Limits of functions

Preparatory definition:

Definition 1.5 (In A). Let $A \subseteq \mathbb{R}$. A sequence (x_n) is said to be in A if $\forall n \in \mathbb{N} : x_n \in A$.

Definition 1.6 (Cluster point). Let $A \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is called a cluster point of A if:

$$\forall \epsilon > 0: \underbrace{V_{\epsilon}(x) \setminus \{x\}}_{\text{Punctured neighborhood}} \cap A \neq \emptyset$$

Note 1.7. Notation for punctered neighborhoods:

$$V_{\epsilon}^*(x) := V_{\epsilon}(x) \setminus \{x\}$$

i.e. x is a cluster point of A if $\forall \epsilon > 0 : V_{\epsilon}^*(x) \cap A \neq \emptyset$.

Remark 1.8. Cluster points of A are <u>not</u> necessarily elements of A.

Definition 1.9 (Isolated Point). Let $A \subseteq \mathbb{R}$. $x \in A$ is called an isolated point of A if $\exists \epsilon > 0 : V_{\epsilon}^*(x) \cap A = \varnothing.$

i.e. x is the only element of A that is in $V_{\epsilon}(x)$.

 $S := \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}.$ Claim: 0 is the only cluster point of S. All points $\frac{1}{n} : n \in \mathbb{N}$ are isolated points of S.

0 <u>is</u> a cluster point. Let $\epsilon > 0$. Then $V_{\epsilon}(0)$ contains infinitely many numbers of the form $\frac{1}{n}$ because $\lim(\frac{1}{n}) = 0$. Thus 0 is a cluster point of S.

Let $x \neq 0$. Then $\exists \epsilon > 0 : V_{\epsilon}^*(x) \cap S = \emptyset$ (left as exercise). Especially, such $\epsilon > 0$ exists for all $x = \frac{1}{n}$. Thus every $\frac{1}{n}$ is an isolated point of S.

Example 1.11

Let $A := \mathbb{Q}$. Then every real number is a cluster point of A.

Proof. Let $x \in \mathbb{R}$ be arbitrary and let $\epsilon > 0$. Since \mathbb{Q} is dense in \mathbb{R} , $\epsilon(x)$ contains infinitely many rational numbers. Thus $V_{\epsilon}^{*}(x)$ contains at least one (in fact infinitely many) rational numbers. i.e.

 $V_{\epsilon}^*(x) \cap A \neq \varnothing \Rightarrow x$ is a cluster point of A

Exercise 1.12. Let I be an interval. Then the set of all cluster points of I is \overline{I}

Theorem 1.13

Let $A \subseteq \mathbb{R}$. Then $x \in \mathbb{R}$ is a cluster point of A if and only if there exists a sequence (x_n) in $A \setminus \{x\}$ with $\lim(x_n) = x$.

Proof.

 (\Rightarrow) Let x be a cluster point of A.

Let $\epsilon := 1$. Then $V_{\epsilon}^*(x) \cap A \neq \emptyset$. Let $x_1 \in V_1^*(x) \cap A$.

Let $\epsilon := \frac{1}{2}$. Then $V_{\epsilon}^*(x) \cap A \neq \emptyset$. Let $x_2 \in V_{\frac{1}{2}}^*(x) \cap A$.

We obtain a sequence (x_n) in $A \setminus \{x\}$ with $\forall n \in \mathbb{N} : x_n \in V_{\frac{1}{x}}^*(x) \cap A$.

Let $\epsilon > 0$. Let $N > \frac{1}{\epsilon} \Leftrightarrow \frac{1}{N} < \epsilon$. Then

 $\forall n \geq N : x_n \in V_{\frac{1}{n}}^*(x) \cap A \subseteq V_{\frac{1}{n}}^*(x) \subseteq V_{\frac{1}{n}}(x) \subseteq V_{\frac{1}{N}}(x) \subseteq V_{\epsilon}(x).$

i.e. $\forall n \geq N : x_n \in V_{\epsilon}(x)(x_n)$ converges to x.

(\Leftarrow) Let (x_n) be a sequence in $A \setminus \{x\}$ such that $\lim(x_n) = x$. Let $\epsilon > 0$. Then $\exists N \in \mathbb{N}, \ \forall n \geq N : x_n \in V_{\epsilon}(x)$. But since $x_n \in A \setminus \{x\}, \ x_n \neq x$. This means that $x_n \in V_{\epsilon}^*(x)$ and $x_n \in A$. Thus $\geq N : x_n \in V_{\epsilon}^*(x) \cap A$. Thus $v_{\epsilon}^*(x) \cap A \neq \emptyset x$ is a cluster point.

Theorem 1.14

Let $A \subseteq \mathbb{R}$. Let x be a cluster point of A. Then $x \in \overline{A}$.

Proof. Let x be a cluster point of A. By previous theorem, $\exists (x_n)$ is $A \setminus \{x\}$ such that $\lim_{n \to \infty} (x_n) = 0$.

Since $\in \mathbb{N} : x_n \in A \setminus \{x\}$. We have that $\forall n \in \mathbb{N} : x_n \in \overline{A} \supseteq A \setminus \{x\}$.

Since \overline{A} is closed, $\lim(x_n) \in \overline{A}$ (see assignment 6).

Definition 1.15 (The limit of a function: Sequential Definition).

Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$. Let $x_0 \in \mathbb{R}$, we say that L is a limit of f as $x \to x_0$. In symbols:

$$L = \lim_{x \to x_0} f(x)$$

if for <u>all</u> sequences (x_n) in $A \setminus \{x_0\}$ with $\lim(x_n) = x_0$, we have that $\lim(f(x_n)) = L$.

Example 1.16

Let

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \to \frac{x^2}{|x|}$$

Note that for $x \neq 0$ we have that

$$\frac{x^2}{|x|} = |x|$$

Claim: $\lim_{x\to 0} f(x) = 0$.

Let (x_n) be a sequence such that $x_n \neq 0$ for all $n \in \mathbb{N}$ and such that $\lim(x_n) = 0$. We need to show that $(f(x_n))$ converges to 0. Note that $f(x_n) = |x_n|$.

Let $\epsilon > 0$. Since $\lim(x_n) = 0$, there exists $(N \in \mathbb{N})(\forall n \ge N) : |x_n - 0| = |x_n| < \epsilon$.

Thus $\forall n \geq N : ||x_n| - 0| = ||x_n|| = |x_n| < \epsilon \Rightarrow \lim(f(x_n)) = 0$. Thus:

$$\lim_{x \to x_0} f(x) = 0$$

Example 1.17

Let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ where $x \to \frac{1}{x}$. Let $x_0 \neq 0$. Show that

$$\lim_{x \to x_0} f(x) = \frac{1}{x_0}$$

Proof. Let (x_n) be a sequence in $\mathbb{R} \setminus \{0, x_0\}$ with $\lim(x_n) = x_0$. Then $\lim(f(x_n)) = \lim(\frac{1}{x_n}) = \frac{1}{\lim(x_n)} = \frac{1}{x_0}$.

Example 1.18

Let $f: \mathbb{Z} \to \mathbb{R}$ where $x \to 0$. Let $L \in \mathbb{R}$ be arbitrary. Then

$$\lim_{x \to 0} f(x) = L$$

Since 0 is an <u>isolated</u> point in \mathbb{Z} , there doesn't exist <u>any</u> sequence in $\mathbb{Z} \setminus \{0\}$ that converges to 0. Thus <u>all</u> sequences (x_n) in $\mathbb{Z} \setminus \{0\}$ that converge to 0 hvae that property that

$$\lim_{x \to 0} f(x_0) = L$$

Thus $\lim_{x\to 0} f(x) = L$ for any $L \in \mathbb{R}$.

Remark 1.19. This example shows that we should avoid isolated points when considering limits.

Theorem 1.20

Let $f: A \to \mathbb{R}$ where x_0 is a cluster point of A.

Then: if f has a limit as x approaches x_0 , then this limit is uniquely determined.

Proof. Let L_1, L_2 be limits of f as x approaches x_0 . Then $\exists (x_n)$ is $A \setminus \{x_0\}$ with $\lim_{n \to \infty} (x_n) = x_0$. Because f has a limit at x_0 , $\lim_{n \to \infty} (f(x_n)) = \lim_{n \to \infty} (f(x_n)) = L_2$.