

Steven Tang

主要课程内容

什么是特征提取?

卷积的概念理解

卷积层, 池化层, 全连接层

简单的卷积神经网络框架

FULLY CONNECTED NEURAL NET

LOCALLY CONNECTED NEURAL NET

INPUT IMAGE

18	54	51	239	244	188
55	121	75	78	95	88
35	24	204	113	109	221
3	154	104	235	25	130
15	253	225	159	78	233
68	85	180	214	245	0

WEIGHT

1	0	1
0	1	0
1	0	1

429

多通道卷积

卷积核的各个维度(长,宽,通道数,卷积核个

数)

Empresola JX5X128 Ethre Cotto

一个5*5*3的图像假设每个像素的值为1,被一个3*3*3的卷积核卷积,且该卷积核每个值也均为一,得到的输出图的尺寸和值分别为多少?

卷积层(卷积核和特征图)

Padding: Valid, 以及stride

3x3 Scule=() (-3+)

Stride:移动滤波器平移时的像素的数量,当stride=1,输出的尺寸和输入的尺寸大体相同,stride=2时候,输出尺寸相当于输入的一半。

卷积的内积操作

stride

Stride: 移动滤波器平移时的像素的数量,当stride=1,输出的尺寸和输入的尺寸大体相同,stride=2时候,输出尺寸相当于输入的一半。

Padding: Same

- Party Elya 73

The input volume is 32 x 32 x 3. If we imagine two borders of zeros around the volume, this gives us a 36 x 36 x 3 volume. Then, when we apply our conv layer with our three 5 x 5 x 3 filters and a stride of 1, then we will also get a 32 x 32 x 3 output volume.

tääh Car Egistikus

当你把5x5x3的过滤器用在32x32x3的输入上时,会发生什么?输出的大小会是28x28x3。

如何维持输出的维度仍然为: 32 x 32 x 3?

 x_1

 $|x_2|$

 y_3 y_4

w_{I}	w_2	w_3	0	W_4	W_5	w_6	0	w_7	w_8	w_9	0	0	0	0	0
0_	w_{I}	w_2	w_3	0	W_4	W_5	w_6	0	w_7	w_8	w_9	0	0	0	0
														w_9	
0	0	0	0	0	w_I	w_2	w_3	0	W_4	\overline{w}_5	W_6	0	w_7	w_8	w_9

	0	w_I	w_2	W_3	0	W_4	w_5	W_{ϵ}	0	w_7	w_8	w_9	7
			7 2) -		4							
1	x_5	x_6	x_7	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆	

3	
x_4	
x_5	
x_6	
x_7	
x_{8}	
x_0	
x_{10}	
$\frac{x_{10}}{x_{11}}$	
x_{12}	
~ 12	

 $\begin{array}{c} y_1 \\ y_2 \\ y_3 \\ y_4 \end{array}$

卷积神经网络框架:卷积-》池化-》卷积-》池化-》

卷积网络概述 224*224*3(RGB) 112*112*16 56*56*32 28*28*64 14*14*128

卷积层(卷积核和特征图)

每一个过滤器的输出被堆叠在一起, 形成卷积图像的纵深维度。假设我们有一个 32*32*3 的输入。我们使用 5*5*3,带有 valid padding 的10 个过滤器。输出的维度将会是28*28*10

卷积神经网络输出shape练习

H=高度,W=宽度,D=深度

Input shape=32*32*3(H*W*D)

20个卷积核,卷积核的尺寸为8*8*3

高和宽的stride=2

Padding size=1

求输出的shape:应该为H*W*D

公式如下:

new_height = (input_height - filter_height + 2 * P)/S + 1

new_width = (input_width - filter_width + 2 * P)/S + 1

特征图尺寸练习

32

输入通道数为32 输出通道数为64 32 x32 x 32

		输出		
填充	步幅	宽	盲	深度
Same	1	32	32	66
Valid	1	28	SE	64
Valid	2	16	64	64

卷积神经网络-ReLU Layer

常用非线性激活函数

- Sigmoid
- Tanh
- ReLU
- Leaky ReLU
- ELU

卷积神经网络-ReLU Layer

The exponential linear unit (ELU) with $0 < \alpha$ is

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}, \quad f'(x) = \begin{cases} 1 & \text{if } x > 0 \\ f(x) + \alpha & \text{if } x \le 0 \end{cases}.$$

卷积神经网络-ReLU Layer

Nely

 $\left\{ (\chi)^{2} \right\}_{\sigma} \times \varepsilon$

激励层建议

- 。CNN尽量不要使用 sigmoid. 如果要使用,建议只在全连接层使用
- 。首先使用RELU,因为迭代速度快,但是有可能效果不佳
- ·如果使用RELU失效的情况下,考虑使用Leaky Relu或者Maxout,此时一般情况都可以解决啦
- 。tanh激活函数在某些情况下有比较好的效果,但是应用场景比较少

池化层(pooling layer)

池化层 (pooling layer)

O. 72 4 2 4 E

• 对图像进行下采样并不会改变图像中特征的相对位置和目标的属性

bird

我们能够通过下采样降低图像的分辨率

这样网络需要处理的参数就更少。

最大池化层(max pooling layer)

1	1	2	4
2	4	7	8
3	2	1	0
1	1	2	4

池化层 (pooling layer)

Q_1=(

1	1	2	4
2	4	7	8
3	2	1	0
1	1	2	4

2*2区均	成下采样
步长为	1

4	7	8
4	7	7
3	2	4

平均池化层 (average pooling layer)

1	1	2	B
2	4	7	8
3	2	1	3
1	2	2	4

Torsh

全连接层(FC layer)

Convolutional Neural Networks

根据网络图计算参数

	特征图	特征图尺寸	参数
输入层	32*32*1	1024	
卷积层	28*28*6	4704	
池化层	14*14*6	1176	
卷积层	10*10*16	1600	
池化层	5*5*16	400	
全连接层	120*1	120	
全连接层	60*1	60	
Softmax层	10*1	10	

