5

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

Página 128

- 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:
 - a) ¿Cuántos radianes corresponden a los 360° de una circunferencia?
 - b) ¿Cuántos grados mide 1 radián?
 - c) ¿Cuántos grados mide un ángulo de $\frac{\pi}{2}$ radianes?
 - d) ¿Cuántos radianes equivalen a 270°?

b)
$$\frac{360^{\circ}}{2\pi}$$
 = 57° 17′ 44,8″

c)
$$\frac{360^{\circ}}{2\pi} \cdot \frac{\pi}{2} = 90^{\circ}$$

d)
$$\frac{270^{\circ}}{360^{\circ}} \cdot 2\pi = 3 \frac{\pi}{2}$$

Página 129

2. Pasa a radianes los siguientes ángulos:

Expresa el resultado en función de π y luego en forma decimal.

Por ejemplo: $30^\circ = 30 \cdot \frac{\pi}{180}$ rad = $\frac{\pi}{6}$ rad ≈ 0.52 rad

a)
$$\frac{2\pi}{360^{\circ}} \cdot 30^{\circ} = \frac{\pi}{6} \text{ rad} \approx 0.52 \text{ rad}$$

b)
$$\frac{2\pi}{360^{\circ}} \cdot 72^{\circ} = \frac{2\pi}{5} \text{ rad } \approx 1,26 \text{ rad}$$

c)
$$\frac{2\pi}{360^{\circ}} \cdot 90^{\circ} = \frac{\pi}{2} \text{ rad} \approx 1,57 \text{ rad}$$

d)
$$\frac{2\pi}{360^{\circ}}$$
 · 127° ≈ 2,22 rad

e)
$$\frac{2\pi}{360^{\circ}} \cdot 200^{\circ} = \frac{10\pi}{9} \text{ rad } \approx 3,49 \text{ rad}$$

f)
$$\frac{2\pi}{360^{\circ}} \cdot 300^{\circ} = \frac{5\pi}{3} \text{ rad} \approx 5,24 \text{ rad}$$

- 3. Pasa a grados los siguientes ángulos:
 - a) 2 rad

- b) 0,83 rad
- c) $\frac{\pi}{5}$ rad

- d) $\frac{5\pi}{6}$ rad
- e) 3,5 rad
- f) π rad

- a) $\frac{360^{\circ}}{2\pi} \cdot 2 = 114^{\circ} 35' 29,6''$
- b) $\frac{360^{\circ}}{2\pi} \cdot 0.83 = 47^{\circ} 33' 19.8''$

c) $\frac{360^{\circ}}{2\pi} \cdot \frac{\pi}{5} = 36^{\circ}$

- d) $\frac{360^{\circ}}{2\pi} \cdot \frac{5\pi}{6} = 150^{\circ}$
- e) $\frac{360^{\circ}}{2\pi}$ · 3,5 = 200° 32′ 6,8″
- f) $\frac{360^{\circ}}{2\pi} \cdot \pi = 180^{\circ}$
- 4. Completa la siguiente tabla y añade las razones trigonométricas (seno, coseno y tangente) de cada uno de los ángulos. Te será útil para el próximo apartado:

La tabla completa está en el siguiente apartado (página siguiente) del libro de texto. Tan solo falta la última columna, que es igual que la primera.

Página 133

1. Demuestra la fórmula II.2 a partir de la fórmula:

$$cos(\alpha + \beta) = cos \alpha cos \beta - sen \alpha sen \beta$$

$$\cos (\alpha - \beta) = \cos (\alpha + (-\beta)) = \cos \alpha \cos (-\beta) - \sin \alpha \sin (-\beta) =$$

$$= \cos \alpha \cos \beta - \sin \alpha (-\sin \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

2. Demuestra la fórmula II.3 a partir de la fórmula:

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta}$$

$$tg(\alpha - \beta) = tg(\alpha + (-\beta)) = \frac{tg\alpha + tg(-\beta)}{1 - tg\alpha tg(-\beta)} \stackrel{(*)}{=} \frac{tg\alpha + (-tg\beta)}{1 - tg\alpha (-tg\beta)} = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

$$(*) \ \mathsf{Como} \quad \begin{cases} sen \ (-\alpha) = -sen \ \alpha \\ cos \ (-\alpha) = cos \ \alpha \end{cases} \right\} \rightarrow \ tg \ (-\alpha) = -tg \ \alpha$$

3. Demuestra la fórmula II.3 a partir de las siguientes fórmulas:

sen
$$(\alpha - \beta)$$
 = sen α cos β – cos α sen β cos $(\alpha - \beta)$ = cos α cos β + sen α sen β

$$tg(\alpha - \beta) = \frac{sen(\alpha - \beta)}{cos(\alpha - \beta)} = \frac{sen\alpha\cos\beta - cos\alpha\sin\beta}{cos\alpha\cos\beta + sen\alpha\sin\beta} \stackrel{(*)}{=}$$

$$= \frac{\frac{sen\alpha\cos\beta}{cos\alpha\cos\beta} - \frac{cos\alphasen\beta}{cos\alpha\cos\beta}}{\frac{cos\alpha\cos\beta}{cos\alpha\cos\beta} + \frac{sen\alphasen\beta}{cos\alpha\cos\beta}} = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

- (*) Dividimos numerador y denominador por $\cos \alpha \cos \beta$.
- **4.** Si sen 12° = 0,2 y sen 37° = 0,6, halla cos 12°, tg 12°, cos 37° y tg 37°. Calcula, después, a partir de ellas, las razones trigonométricas de 49° y de 25°, utilizando las fórmulas (I) y (II).

•
$$sen 12^{\circ} = 0.2$$

 $cos 12^{\circ} = \sqrt{1 - sen^2 12^{\circ}} = \sqrt{1 - 0.04} = 0.98$
 $tg 12^{\circ} = \frac{0.2}{0.98} = 0.2$

•
$$sen 37^{\circ} = 0.6$$

 $cos 37^{\circ} = \sqrt{1 - sen^2 37^{\circ}} = \sqrt{1 - 0.36} = 0.8$
 $tg 37^{\circ} = \frac{0.6}{0.8} = 0.75$

$$sen 49^{\circ} = sen (12^{\circ} + 37^{\circ}) = sen 12^{\circ} cos 37^{\circ} + cos 12^{\circ} sen 37^{\circ} =$$

$$= 0.2 \cdot 0.8 + 0.98 \cdot 0.6 = 0.748$$

$$cos 49^{\circ} = cos (12^{\circ} + 37^{\circ}) = cos 12^{\circ} cos 37^{\circ} - sen 12^{\circ} sen 37^{\circ} =$$

= $0.98 \cdot 0.8 - 0.2 \cdot 0.6 = 0.664$

$$tg \ 49^{\circ} = tg \ (12^{\circ} + 37^{\circ}) = \frac{tg \ 12^{\circ} + tg \ 37^{\circ}}{1 - tg \ 12^{\circ} tg \ 37^{\circ}} = \frac{0.2 + 0.75}{1 - 0.2 \cdot 0.75} = 1.12$$

$$\left(\text{Podría calcularse } tg \ 49^\circ = \frac{sen \ 49^\circ}{\cos 49^\circ} \right).$$

•
$$25^{\circ} = 37^{\circ} - 12^{\circ}$$
, luego:

$$sen\ 25^\circ = sen\ (37^\circ - 12^\circ) = sen\ 37^\circ\ cos\ 12^\circ - cos\ 37^\circ\ sen\ 12^\circ =$$

= $0.6\cdot 0.98 - 0.8\cdot 0.2 = 0.428$

$$cos\ 25^\circ = cos\ (37^\circ - 12^\circ) = cos\ 37^\circ\ cos\ 12^\circ + sen\ 37^\circ\ sen\ 12^\circ =$$

= $0.8\cdot 0.98 + 0.6\cdot 0.2 = 0.904$

$$tg\ 25^{\circ} = tg\ (37^{\circ} - 12^{\circ}) = \frac{tg\ 37^{\circ} - tg\ 12^{\circ}}{1 + tg\ 37^{\circ}\ tg\ 12^{\circ}} = \frac{0.75 - 0.2}{1 + 0.75 \cdot 0.2} = 0.478$$

5. Demuestra la siguiente igualdad:

$$\frac{\cos(a+b)+\cos(a-b)}{\sin(a+b)+\sin(a-b)} = \frac{1}{tg \ a}$$

$$\frac{\cos(a+b) + \cos(a-b)}{\sin(a+b) + \sin(a-b)} = \frac{\cos a \cos b - \sin a \sin b + \cos a \cos b + \sin a \sin b}{\sin a \cos b + \cos a \cos b + \cos a \cos b + \cos a \sin b} =$$

$$= \frac{2\cos a \cos b}{2\sin a \cos b} = \frac{\cos a}{\sin a} = \frac{1}{tg a}$$

6. Demuestra las tres fórmulas (III.1), (III.2) y (III.3) haciendo $\alpha = \beta$ en las fórmulas (I).

$$sen \ 2\alpha = sen \ (\alpha + \alpha) = sen \ \alpha \ cos \ \alpha + cos \ \alpha \ sen \ \alpha = 2 \ sen \ \alpha \ cos \ \alpha$$

$$cos \ 2\alpha = cos \ (\alpha + \alpha) = cos \ \alpha \ cos \ \alpha - sen \ \alpha \ sen \ \alpha = cos^2 \ \alpha - sen^2 \ \alpha$$

$$tg \ 2\alpha = tg \ (\alpha + \alpha) = \frac{tg \ \alpha + tg \ \alpha}{1 - tg \ \alpha \ tg \ \alpha} = \frac{2 \ tg \ \alpha}{1 - tg^2 \ \alpha}$$

7. Halla las razones trigonométricas de 60° a partir de las de 30°.

$$sen 60^{\circ} = sen (2 \cdot 30^{\circ}) = 2 sen 30^{\circ} cos 30^{\circ} = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

$$cos 60^{\circ} = cos (2 \cdot 30^{\circ}) = cos^{2} 30^{\circ} - sen^{2} 30^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2} = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$$

$$tg 60^{\circ} = tg (2 \cdot 30^{\circ}) = \frac{2 tg 30^{\circ}}{1 - tg^{2} 30^{\circ}} = \frac{2 \cdot \sqrt{3}/3}{1 - (\sqrt{3}/3)^{2}} = \frac{2 \cdot \sqrt{3}/3}{1 - 3/9} = \frac{2 \cdot \sqrt{3}/3}{2/3} = \sqrt{3}$$

8. Halla las razones trigonométricas de 90° a partir de las de 45°.

$$sen 90^{\circ} = sen (2 \cdot 45^{\circ}) = 2 sen 45^{\circ} cos 45^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 1$$

$$cos 90^{\circ} = cos (2 \cdot 45^{\circ}) = cos^{2} 45^{\circ} - sen^{2} 45^{\circ} = \left(\frac{\sqrt{2}}{2}\right)^{2} - \left(\frac{\sqrt{2}}{2}\right)^{2} = 0$$

$$tg 90^{\circ} = tg (2 \cdot 45^{\circ}) = \frac{2 tg 45^{\circ}}{1 - tg^{2} 45^{\circ}} = \frac{2 \cdot 1}{1 - 1} \rightarrow \text{No existe.}$$

9. Demuestra que:

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \cos \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha} = \frac{2 \operatorname{sen} \alpha (1 - \cos \alpha)}{2 \operatorname{sen} \alpha (1 + \cos \alpha)} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

Página 134

10. Siguiendo las indicaciones que se dan, demuestra detalladamente las fórmulas IV.1, IV.2 y IV.3.

•
$$\cos \alpha = \cos \left(2 \cdot \frac{\alpha}{2}\right) = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}$$

Por la igualdad fundamental:

$$\cos^2\frac{\alpha}{2} + sen^2\frac{\alpha}{2} = 1 \rightarrow 1 = \cos^2\frac{\alpha}{2} + sen^2\frac{\alpha}{2}$$

De aquí:

a) Sumando ambas igualdades:

$$1 + \cos \alpha = 2 \cos^2 \frac{\alpha}{2} \rightarrow \cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2} \rightarrow \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

b) Restando las igualdades $(2^{\underline{a}} - 1^{\underline{a}})$:

$$1 - \cos \alpha = 2 \operatorname{sen}^2 \frac{\alpha}{2} \rightarrow \operatorname{sen}^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2} \rightarrow \operatorname{sen} \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

• Por último:

$$tg \frac{\alpha}{2} = \frac{sen \alpha/2}{cos \alpha/2} = \frac{\pm \sqrt{\frac{1 - cos \alpha}{2}}}{\pm \sqrt{\frac{1 + cos \alpha}{2}}} = \sqrt{\frac{1 - cos \alpha}{1 + cos \alpha}}$$

11. Sabiendo que $\cos 78^\circ = 0.2$, calcula $\sin 78^\circ$ y $tg 78^\circ$. Averigua las razones trigonométricas de 39° aplicando las fórmulas del ángulo mitad.

•
$$cos 78^{\circ} = 0.2$$

$$sen 78^{\circ} = \sqrt{1 - cos^2 78^{\circ}} = \sqrt{1 - 0.2^2} = 0.98$$

$$tg 78^{\circ} = \frac{0.98}{0.2} = 4.9$$

•
$$sen 39^\circ = sen \frac{78^\circ}{2} = \sqrt{\frac{1 - cos 78^\circ}{2}} = \sqrt{\frac{1 - 0.2}{2}} = 0.63$$

$$\cos 39^\circ = \cos \frac{78^\circ}{2} = \sqrt{\frac{1 + \cos 78^\circ}{2}} = \sqrt{\frac{1 + 0.2}{2}} = 0.77$$

$$tg\ 39^{\circ} = tg\ \frac{78^{\circ}}{2} = \sqrt{\frac{1 - \cos 78^{\circ}}{1 + \cos 78^{\circ}}} = \sqrt{\frac{1 - 0.2}{1 + 0.2}} = 0.82$$

- 12. Halla las razones trigonométricas de 30° a partir de $\cos 60^{\circ} = 0.5$.
 - $cos 60^{\circ} = 0.5$

•
$$sen 30^\circ = sen \frac{60^\circ}{2} = \sqrt{\frac{1 - 0.5}{2}} = 0.5$$

$$\cos 30^\circ = \cos \frac{60^\circ}{2} = \sqrt{\frac{1+0.5}{2}} = 0.866$$

$$tg\ 30^{\circ} = tg\ \frac{60^{\circ}}{2} = \sqrt{\frac{1-0.5}{1+0.5}} = 0.577$$

- 13. Halla las razones trigonométricas de 45° a partir de $\cos 90^{\circ}$ = 0.
 - $cos 90^{\circ} = 0$

•
$$sen 45^\circ = sen \frac{90^\circ}{2} = \sqrt{\frac{1-0}{2}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$$

$$\cos 45^\circ = \cos \frac{90^\circ}{2} = \sqrt{\frac{1+0}{2}} = \frac{\sqrt{2}}{2}$$

$$tg\ 45^{\circ} = tg\ \frac{90^{\circ}}{2} = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1$$

14. Demuestra que $2tg \alpha \cdot sen^2 \frac{\alpha}{2} + sen \alpha = tg \alpha$.

$$2 tg \alpha \cdot sen^{2} \frac{\alpha}{2} + sen \alpha = 2 tg \alpha \cdot \frac{1 - cos \alpha}{2} + sen \alpha =$$

$$= \frac{sen \alpha}{cos \alpha} (1 - cos \alpha) + sen \alpha = sen \alpha \left(\frac{1 - cos \alpha}{cos \alpha} + 1 \right) =$$

$$= sen \alpha \left(\frac{1 - cos \alpha + cos \alpha}{cos \alpha} \right) = sen \alpha \cdot \frac{1}{cos \alpha} =$$

$$= \frac{sen \alpha}{cos \alpha} = tg \alpha$$

15. Demuestra que $\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = tg^2 \frac{\alpha}{2}$.

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \cos \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha} =$$

$$= \frac{2 \operatorname{sen} \alpha (1 - \cos \alpha)}{2 \operatorname{sen} \alpha (1 + \cos \alpha)} = \frac{1 - \cos \alpha}{1 + \cos \alpha} = tg^2 \frac{\alpha}{2}$$

Página 135

16. Para demostrar las fórmulas (V.3) y (V.4), da los siguientes pasos:

• Expresa en función de α y β :

$$cos(\alpha + \beta) = \dots cos(\alpha - \beta) = \dots$$

- Suma y resta como hemos hecho arriba y obtendrás dos expresiones.
- Sustituye en las expresiones anteriores:

$$\begin{vmatrix} \alpha + \beta = A \\ \alpha - \beta = B \end{vmatrix} \rightarrow \alpha = \frac{A + B}{2} \qquad \beta = \frac{A - B}{2}$$

• $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

Sumando
$$\rightarrow cos(\alpha + \beta) + cos(\alpha - \beta) = 2 cos \alpha cos \beta$$
 (1)

Restando
$$\rightarrow \cos(\alpha + \beta) - \cos(\alpha - \beta) = -2 \operatorname{sen} \alpha \operatorname{sen} \beta$$
 (2)

- Llamando $\begin{cases} \alpha + \beta = A \\ \alpha \beta = B \end{cases} \rightarrow \alpha = \frac{A+B}{2}, \beta = \frac{A-B}{2}$ (al resolver el sistema)
- Luego, sustituyendo en (1) y (2), se obtiene:

$$(1) \rightarrow \cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$$

(2)
$$\rightarrow \cos A - \cos B = -2 \operatorname{sen} \frac{A+B}{2} \operatorname{sen} \frac{A-B}{2}$$

17. Transforma en producto y calcula:

a)
$$sen 75^{\circ} - sen 15^{\circ}$$

c)
$$\cos 75^{\circ} - \cos 15^{\circ}$$

a)
$$sen 75^{\circ} - sen 15^{\circ} = 2 cos \frac{75^{\circ} + 15^{\circ}}{2} sen \frac{75^{\circ} - 15^{\circ}}{2} =$$

$$= 2 cos 45^{\circ} sen 30^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2}$$

b)
$$\cos 75^\circ + \cos 15^\circ = 2 \cos \frac{75^\circ + 15^\circ}{2} \cos \frac{75^\circ - 15^\circ}{2} =$$

= $2 \cos 45^\circ \cos 30^\circ = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$

c)
$$\cos 75^{\circ} - \cos 15^{\circ} = -2 \operatorname{sen} \frac{75^{\circ} + 15^{\circ}}{2} \operatorname{sen} \frac{75^{\circ} - 15^{\circ}}{2} =$$

$$= -2 \operatorname{sen} 45^{\circ} \cos 30^{\circ} = -2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{6}}{2}$$

18. Expresa en forma de producto el numerador y el denominador de esta fracción y simplifica el resultado:

$$\frac{sen 4a + sen 2a}{\cos 4a + \cos 2a}$$

$$\frac{\sec 4a + \sec 2a}{\cos 4a + \cos 2a} = \frac{2 \sec \frac{4a + 2a}{2} \cos \frac{4a - 2a}{2}}{2 \cos \frac{4a + 2a}{2} \cos \frac{4a - 2a}{2}} = \frac{2 \sec 3a}{2 \cos 3a} = tg \ 3a$$

Página 137

1. Resuelve estas ecuaciones:

a)
$$2\cos^2 x + \cos x - 1 = 0$$

b)
$$2sen^2 x - 1 = 0$$

c)
$$tg^2 x - tg x = 0$$

d)
$$2sen^2 x + 3cos x = 3$$

a)
$$\cos x = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4} = \frac{1/2 \rightarrow x_1 = 60^{\circ}, x_2 = 300^{\circ}}{-1 \rightarrow x_3 = 180^{\circ}}$$

Las tres soluciones son válidas (se comprueba en la ecuación inicial).

b)
$$2 \operatorname{sen}^2 x - 1 = 0 \rightarrow \operatorname{sen}^2 x = \frac{1}{2} \rightarrow \operatorname{sen} x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$$

• Si
$$sen x = \frac{\sqrt{2}}{2} \rightarrow x_1 = 45^\circ, x_2 = 135^\circ$$

• Si
$$sen x = -\frac{\sqrt{2}}{2} \rightarrow x_3 = -45^\circ = 315^\circ, x_4 = 225^\circ$$

Todas las soluciones son válidas.

c)
$$tg^2 x - tg x = 0 \rightarrow tg x (tg x - 1) = 0$$
 $tg x = 0 \rightarrow x_1 = 0^\circ, x_2 = 180^\circ tg x = 1 \rightarrow x_3 = 45^\circ, x_4 = 225^\circ$

Todas las soluciones son válidas.

d)
$$2 sen^2 x + 3 cos x = 3 \xrightarrow{(*)} 2 (1 - cos^2 x) + 3 cos x = 3$$

(*) Como
$$sen^2 x + cos^2 x = 1 \rightarrow sen^2 x = 1 - cos^2 x$$

$$2-2\cos^2 x + 3\cos x = 3 \rightarrow 2\cos^2 x - 3\cos x + 1 = 0$$

$$\cos x = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} = \frac{1}{1/2}$$

Entonces: • Si $\cos x = 1 \rightarrow x_1 = 0^\circ$

• Si
$$\cos x = \frac{1}{2} \rightarrow x_2 = 60^\circ, x_3 = -60^\circ = 300^\circ$$

Las tres soluciones son válidas.

2. Resuelve:

a)
$$4\cos 2x + 3\cos x = 1$$

b)
$$tg 2x + 2cos x = 0$$

c)
$$\sqrt{2} \cos (x/2) - \cos x = 1$$

d)
$$2 sen x cos^2 x - 6 sen^3 x = 0$$

a)
$$4 \cos 2x + 3 \cos x = 1 \rightarrow 4 (\cos^2 x - \sin^2 x) + 3 \cos x = 1 \rightarrow$$

$$\rightarrow 4 (\cos^2 x - (1 - \cos^2 x)) + 3 \cos x = 1 \rightarrow 4 (2 \cos^2 x - 1) + 3 \cos x = 1 \rightarrow$$

$$\rightarrow 8 \cos^2 x - 4 + 3 \cos x = 1 \Rightarrow 8 \cos^2 x + 3 \cos x - 5 = 0 \rightarrow$$

$$\rightarrow \cos x = \frac{-3 \pm \sqrt{9 + 160}}{16} = \frac{-3 \pm 13}{16} = \frac{10/16 = 5/8 = 0,625}{-1}$$

• Si
$$\cos x = 0.625 \rightarrow x_1 = 51^{\circ} 19' 4.13'', x_2 = -51^{\circ} 19' 4.13''$$

• Si
$$\cos x = -1 \rightarrow x_3 = 180^\circ$$

Al comprobar las soluciones, las tres son válidas.

b)
$$tg \ 2x + 2 \cos x = 0 \rightarrow \frac{2 tg \ x}{1 - tg^2 \ x} + 2 \cos x = 0 \rightarrow$$

$$\rightarrow \frac{tg x}{1 - tg^2 x} + \cos x = 0 \rightarrow \frac{sen x/\cos x}{1 - (sen^2 x/\cos^2 x)} + \cos x = 0 \rightarrow$$

$$\rightarrow \frac{sen \, x \cos x}{\cos^2 x - sen^2 \, x} + \cos x = 0 \rightarrow sen \, x \cos x + \cos x \, (\cos^2 x - sen^2 \, x) = 0 \rightarrow$$

$$\rightarrow \ \cos x \, (sen \, x + \cos^2 x - sen^2 \, x) = 0 \ \rightarrow \ \cos x \, (sen \, x + 1 - sen^2 \, x - sen^2 \, x) \ \rightarrow$$

$$\rightarrow \cos x (1 + \sin x - 2 \sin^2 x) = 0 \rightarrow$$

$$\Rightarrow \begin{cases} \cos x = 0 \\ 1 + \sin x - 2 \sin^2 x = 0 \end{cases} \to \sin x = \frac{-1 \pm \sqrt{1+8}}{-4} = \frac{-1/2}{1}$$

• Si
$$\cos x = 0 \rightarrow x_1 = 90^{\circ}, x_2 = 270^{\circ}$$

• Si
$$sen x = -\frac{1}{2} \rightarrow x_3 = 210^\circ, x_4 = 330^\circ = -30^\circ$$

• Si
$$sen x = 1 \rightarrow x_5 = 90^\circ = x_1$$

Al comprobar las soluciones, vemos que todas ellas son válidas.

c)
$$\sqrt{2}\cos\frac{x}{2} - \cos x = 1 \rightarrow \sqrt{2}\sqrt{\frac{1 + \cos x}{2}} - \cos x = 1 \rightarrow$$

$$\rightarrow \sqrt{1 + \cos x} - \cos x = 1 \rightarrow \sqrt{1 - \cos x} = 1 + \cos x \rightarrow$$

$$\rightarrow 1 + \cos x = 1 + \cos^2 x + 2 \cos x \rightarrow \cos^2 x + \cos x = 0 \rightarrow \cos x (\cos x + 1) = 0$$

• Si
$$\cos x = 0 \rightarrow x_1 = 90^{\circ}, x_2 = 270^{\circ}$$

• Si
$$\cos x = -1 \rightarrow x_3 = 180^\circ$$

Al comprobar las soluciones, podemos ver que las únicas válidas son:

$$x_1 = 90^{\circ} \text{ y } x_3 = 180^{\circ}$$

d)
$$2 \sec x \cos^2 x - 6 \sec^3 x = 0 \rightarrow 2 \sec x (\cos^2 x - 3 \sec^2 x) = 0 \rightarrow 2 \sec x (\cos^2 x + \sec^2 x - 4 \sec^2 x) = 0 \rightarrow 2 \sec x (1 - 4 \sec^2 x) = 0$$

• Si
$$sen x = 0 \rightarrow x_1 = 0^\circ, x_2 = 180^\circ$$

• Si
$$sen^2 x = \frac{1}{4} \rightarrow sen x = \pm \frac{1}{2} \Rightarrow x_3 = 30^\circ, x_4 = 150^\circ, x_5 = 210^\circ, x_6 = 330^\circ$$

Comprobamos las soluciones y observamos que son válidas todas ellas.

3. Transforma en producto sen 3x - sen x y resuelve después la ecuación sen 3x - sen x = 0.

$$sen 3x - sen x = 0 \rightarrow 2 cos \frac{3x + x}{2} sen \frac{3x - x}{2} = 0 \rightarrow 2 cos 2x sen x = 0 \rightarrow$$

$$\rightarrow \begin{cases} \cos 2x = 0 \\ \sin x = 0 \end{cases}$$

• Si
$$\cos 2x = 0$$
 \rightarrow
$$\begin{cases} 2x = 90^{\circ} & \rightarrow x_1 = 45^{\circ} \\ 2x = 270^{\circ} & \rightarrow x_2 = 135^{\circ} \\ 2x = 90^{\circ} + 360^{\circ} & \rightarrow x_3 = 225^{\circ} \\ 2x = 270^{\circ} + 360^{\circ} & \rightarrow x_4 = 315^{\circ} \end{cases}$$

• Si
$$sen x = 0 \implies x_5 = 0^\circ$$
, $x_6 = 180^\circ$

Comprobamos que las seis soluciones son válidas.

4. Resuelve las siguientes ecuaciones trigonométricas:

a) sen
$$(\pi - x) = \cos\left(\frac{3\pi}{2} - x\right) + \cos \pi$$

b)
$$sen\left(\frac{\pi}{4} - x\right) + \sqrt{2} sen x = 0$$

a)
$$sen(\pi - x) = sen x$$

$$cos\left(\frac{3\pi}{2} - x\right) = -sen x$$
Entonces, la ecuación queda:

$$\cos\left(\frac{3\pi}{2} - x\right) = -sen$$

$$\cos\pi = -1$$

$$sen x = -sen x - 1 \rightarrow 2 sen x = -1 \rightarrow sen x = \frac{-1}{2}$$

Si
$$sen x = \frac{-1}{2} \rightarrow x_1 = \frac{7\pi}{6} rad, x_2 = \frac{11\pi}{6} rad$$

Al comprobar vemos:

$$x_1 = \frac{7\pi}{6} \to sen(\pi - x) = sen(\pi - \frac{7\pi}{6}) = sen(\pi - \frac{\pi}{6}) = \frac{-\pi}{2}$$

$$\cos\left(\frac{3\pi}{2} - x\right) = \cos\left(\frac{3\pi}{2} - \frac{7\pi}{6}\right) = \cos\frac{2\pi}{6} = \cos\frac{\pi}{3} = \frac{1}{2}$$

Luego la solución es válida, pues:

$$sen (\pi - x) = \frac{-1}{2} = cos \left(\frac{3\pi}{2} - x\right) + cos \pi = \frac{1}{2} + (-1)$$

$$x_2 = \frac{11\pi}{6} \rightarrow sen (\pi - x) = sen \left(\pi - \frac{11\pi}{6}\right) = sen \left(\frac{-5\pi}{6}\right) = -\frac{1}{2}$$

$$\cos\left(\frac{3\pi}{2} - x\right) = \cos\left(\frac{3\pi}{2} - \frac{11\pi}{6}\right) = \cos\left(\frac{-2\pi}{6}\right) = \cos\left(\frac{-\pi}{3}\right) = \frac{1}{2}$$

Luego también es válida esta solución, pues:

$$sen (\pi - x) = \frac{-1}{2} = cos \left(\frac{3\pi}{2} - x\right) + cos \pi = \frac{1}{2} + (-1)$$

Por tanto, las dos soluciones son válidas: $x_1 = \frac{7\pi}{6}$ rad y $x_2 = \frac{11\pi}{6}$ rad

b)
$$sen\left(\frac{\pi}{4} - x\right) = sen\left(\frac{\pi}{4}\right) cos x - cos\left(\frac{\pi}{4}\right) sen x = \frac{\sqrt{2}}{2} cos x - \frac{\sqrt{2}}{2} sen x$$

Luego la ecuación queda:

$$\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x + \sqrt{2}\sin x = 0 \ \rightarrow \ \frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x = 0 \ \rightarrow$$

$$\rightarrow \cos x + \sin x = 0 \rightarrow \cos x = -\sin x \rightarrow x_1 = \frac{3\pi}{4} \text{ rad}, \ x_2 = \frac{7\pi}{4} \text{ rad}$$

Comprobamos que ninguna solución vale. Luego la ecuación no tiene solución.

5. Escribe, en radianes, la expresión general de todos los ángulos que verifican:

a)
$$tg x = -\sqrt{3}$$

b)
$$sen x = cos x$$

c)
$$sen^2 x = 1$$

d)
$$sen x = tg x$$

a)
$$x = 120^{\circ} + k \cdot 360^{\circ}$$
 o bien $x = 300^{\circ} + k \cdot 360^{\circ}$

Las dos soluciones quedan recogidas en:

$$x = 120^{\circ} + k \cdot 180^{\circ} = \frac{2\pi}{3} + k \pi \text{ rad} = x \text{ con } k \in \mathbb{Z}$$

b)
$$x = \frac{\pi}{4} + k \pi \text{ rad con } k \in \mathbb{Z}$$

c) Si
$$sen x = 1 \rightarrow x = \frac{\pi}{2} + 2k \pi \text{ rad}$$

Si $sen x = -1 \rightarrow x = \frac{3\pi}{2} + 2k \pi \text{ rad}$ $\Rightarrow x = \frac{\pi}{2} + k \pi \text{ rad con } k \in \mathbb{Z}$

O bien
$$sen x = 0 \rightarrow x = k \pi rad$$

O bien $cos x = 1 \rightarrow x = 2k \pi rad$ $\} \rightarrow x = k \pi rad con k \in \mathbb{Z}$

Página 142

EJERCICIOS Y PROBLEMAS PROPUESTOS

PARA PRACTICAR

Grados y radianes

1 Expresa en grados sexagesimales los siguientes ángulos dados en radianes:

a)
$$\frac{\pi}{6}$$

b)
$$\frac{2\pi}{3}$$

c)
$$\frac{4\pi}{3}$$

d)
$$\frac{5\pi}{4}$$

e)
$$\frac{7\pi}{6}$$

f)
$$\frac{9\pi}{2}$$

The Hazlo mentalmente teniendo en cuenta que: π radianes = 180°.

2 Expresa en grados sexagesimales los siguientes ángulos dados en radianes:

a)
$$\frac{360^{\circ}}{2\pi}$$
 · 1,5 = 85° 56′ 37″

b)
$$\frac{360^{\circ}}{2\pi}$$
 · 3,2 = 183° 20' 47"

c)
$$\frac{360^{\circ}}{2\pi}$$
 · 5 = 286° 28' 44"

d)
$$\frac{360^{\circ}}{2\pi}$$
 · 2,75 = 157° 33' 48"

Pasa a radianes los siguientes ángulos dados en grados. Exprésalos en función de π y en forma decimal.

🖛 Simplifica la expresión que obtengas sin multiplicar por 3,14...

a)
$$\frac{40\pi}{180} = \frac{2\pi}{9} \approx 0.7 \, rad$$

a)
$$\frac{2\pi}{360^{\circ}} \cdot 40^{\circ} = \frac{2\pi}{9} \approx 0.7 \text{ rad}$$

a)
$$\frac{2\pi}{360^{\circ}} \cdot 40^{\circ} = \frac{2\pi}{9} \approx 0.7 \text{ rad}$$
 b) $\frac{2\pi}{360^{\circ}} \cdot 108^{\circ} = \frac{3\pi}{5} \approx 1.88 \text{ rad}$

c)
$$\frac{2\pi}{360^{\circ}} \cdot 135^{\circ} = \frac{3\pi}{4} \approx 2,36 \text{ rad}$$

c)
$$\frac{2\pi}{360^{\circ}} \cdot 135^{\circ} = \frac{3\pi}{4} \approx 2,36 \text{ rad}$$
 d) $\frac{2\pi}{360^{\circ}} \cdot 240^{\circ} = \frac{4\pi}{3} \approx 4,19 \text{ rad}$

e)
$$\frac{2\pi}{360^{\circ}} \cdot 270^{\circ} = \frac{3\pi}{2} \approx 4{,}71 \text{ rad}$$
 f) $\frac{2\pi}{360^{\circ}} \cdot 126^{\circ} = \frac{7\pi}{10} \approx 2{,}2 \text{ rad}$

f)
$$\frac{2\pi}{360^{\circ}} \cdot 126^{\circ} = \frac{7\pi}{10} \approx 2.2 \text{ rad}$$

4 | Halla el resultado de las siguientes operaciones sin utilizar la calculadora:

a)
$$5\cos\frac{\pi}{2} - \cos 0 + 2\cos \pi - \cos\frac{3\pi}{2} + \cos 2\pi$$

b) 5 tg
$$\pi$$
 + 3 cos $\frac{\pi}{2}$ - 2 tg 0 + sen $\frac{3\pi}{2}$ - 2 sen 2 π

c)
$$\frac{2}{3}$$
 sen $\frac{\pi}{2}$ - 4 sen $\frac{3\pi}{2}$ + 3 sen π - $\frac{5}{3}$ sen $\frac{\pi}{2}$

Comprueba el resultado obtenido utilizando la calculadora.

a)
$$5 \cdot 0 - 1 + 2 \cdot (-1) - 0 + 1 = -2$$

b)
$$5 \cdot 0 + 3 \cdot 0 - 2 \cdot 0 + (-1) - 2 \cdot 0 = -1$$

c)
$$\frac{2}{3} \cdot 1 - 4(-1) + 3 \cdot 0 - \frac{5}{3} \cdot 1 = 3$$

5 Prueba que:

a)
$$4 sen \frac{\pi}{6} + \sqrt{2} cos \frac{\pi}{4} + cos \pi = 2$$

b)
$$2\sqrt{3} \operatorname{sen} \frac{2\pi}{3} + 4 \operatorname{sen} \frac{\pi}{6} - 2 \operatorname{sen} \frac{\pi}{2} = 3$$

a)
$$4 \operatorname{sen} \frac{\pi}{6} + \sqrt{2} \cos \frac{\pi}{4} + \cos \pi = 4 \cdot \frac{1}{2} + \sqrt{2} \cdot \frac{\sqrt{2}}{2} + (-1) = 2 + 1 - 1 = 2$$

b)
$$2\sqrt{3} \operatorname{sen} \frac{2\pi}{3} + 4 \operatorname{sen} \frac{\pi}{6} - 2 \operatorname{sen} \frac{\pi}{2} = 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} + 4 \cdot \frac{1}{2} - 2 \cdot 1 = 3 + 2 - 2 = 3$$

6 Halla el valor exacto de cada una de estas expresiones sin utilizar la calculadora:

a)
$$sen \frac{\pi}{4} + sen \frac{\pi}{2} + sen \pi$$

b)
$$\cos \pi - \cos 0 + \cos \frac{\pi}{2} - \cos \frac{3\pi}{2}$$

c)
$$sen \frac{2\pi}{3} - cos \frac{7\pi}{6} + tg \frac{4\pi}{3} + tg \frac{11\pi}{6}$$

Comprueba los resultados con la calculadora.

a)
$$\frac{\sqrt{2}}{2}$$
 + 1 + 0 = $\frac{\sqrt{2} + 2}{2}$

b)
$$-1 - 1 + 0 - 0 = -2$$

c)
$$\frac{\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) + \sqrt{3} + \left(-\frac{\sqrt{3}}{3}\right) = \sqrt{3}\left(\frac{1}{2} + \frac{1}{2} + 1 - \frac{1}{3}\right) = \frac{5\sqrt{3}}{3}$$

- Halla el valor exacto de estas expresiones sin usar la calculadora:
 - (a) $sen \frac{5\pi}{4} + cos \frac{3\pi}{4} sen \frac{7\pi}{4}$
 - b) $\cos \frac{5\pi}{3} + tg \frac{4\pi}{3} tg \frac{7\pi}{6}$
 - c) $\sqrt{3}\cos\frac{\pi}{6} + \sin\frac{\pi}{6} \sqrt{2}\cos\frac{\pi}{4} 2\sqrt{3}\sin\frac{\pi}{3}$

Comprueba los resultados con la calculadora.

- $\left(a\right) \frac{\sqrt{2}}{2} + \left(-\frac{\sqrt{2}}{2}\right) \left(-\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2}$
- b) $\frac{1}{2} + \sqrt{3} \frac{\sqrt{3}}{2} = \frac{1}{2} + \frac{2\sqrt{3}}{2}$
- c) $\sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \sqrt{2} \cdot \frac{\sqrt{2}}{2} 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} + \frac{1}{2} 1 3 = -2$
- 8 En cada caso halla, en radianes, dos valores para el ángulo α tales que:
 - a) sen $\alpha = 0.32$

b) $\cos \alpha = 0.58$

c) $tg \alpha = -1.5$

- d) sen $\alpha = -0.63$
- a) $\alpha_1 = 0.33$; $\alpha_2 = 2.82$
- b) $\alpha_1 = 0.95$; $\alpha_2 = 5.33$
- c) $\alpha_1 = -0.98$; $\alpha_2 = 2.16$
- d) $\alpha_1 = -0.68$; $\alpha_2 = 3.82$
- 9 Indica, sin pasar a grados, en qué cuadrante está cada uno de los siguientes ángulos:
 - a) 2 rad

- b) 3.5 rad
- c) 5 rad

🖝 Ten en cuenta que:

$$\frac{\pi}{2}\approx 1.57;$$
 $\pi\approx 3.14;$ $\frac{3\pi}{2}\approx 4.7;$ $2\pi\approx 6.28$

- a) 2.° cuadrante
- b) 3.er cuadrante c) 4.° cuadrante

Fórmulas trigonométricas

10 Halla las razones trigonométricas del ángulo de 75° sabiendo que $75^{\circ} = 30^{\circ} + 45^{\circ}$.

$$sen 75^{\circ} = sen (30^{\circ} + 45^{\circ}) = sen 30^{\circ} cos 45^{\circ} + cos 30^{\circ} sen 45^{\circ} =$$

$$=\frac{1}{2}\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4}$$

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$ta 75^{\circ} = ta (30^{\circ} + 45^{\circ}) = \frac{tg 30^{\circ} + tg 45^{\circ}}{2} = \frac{\sqrt{3}/3 + 1}{4} = (\sqrt{3} + 3)/3 = \frac{tg 30^{\circ} + tg 45^{\circ}}{4} = \frac{(\sqrt{3} + 3)/3}{4} = \frac{(\sqrt{3} + 3)/3}{4$$

 $\cos 75^{\circ} = \cos (30^{\circ} + 45^{\circ}) = \cos 30^{\circ} \cos 45^{\circ} - \sin 30^{\circ} \sin 45^{\circ} =$

$$tg 75^{\circ} = tg (30^{\circ} + 45^{\circ}) = \frac{tg 30^{\circ} + tg 45^{\circ}}{1 - tg 30^{\circ} tg 45^{\circ}} = \frac{\sqrt{3}/3 + 1}{1 - \sqrt{3}/3} = \frac{(\sqrt{3} + 3)/3}{(\sqrt{3} - 3)/3} = \frac{3 + \sqrt{3}}{3 - \sqrt{3}} = \frac{(3 + \sqrt{3})^{2}}{9 - 3} = \frac{9 + 3 + 6\sqrt{3}}{6} = \frac{12 + 6\sqrt{3}}{6} = 2 + \sqrt{3}$$

NOTA: También podemos resolverlo como sigue:

$$tg 75^{\circ} = \frac{sen 75^{\circ}}{cos 75^{\circ}} = \frac{\sqrt{2} + \sqrt{6}}{\sqrt{6} - \sqrt{2}} = \frac{\left(\sqrt{2} + \sqrt{6}\right)^{2}}{6 - 2} = \frac{2 + 6 + 2\sqrt{12}}{4} = \frac{8 + 4\sqrt{3}}{4} = 2 + \sqrt{3}$$

Sabiendo que sen $x = \frac{3}{5}$ y que $\frac{\pi}{2} < x < \pi$, calcula, sin hallar previamente el valor de x:

b)
$$tg\frac{x}{2}$$

c) sen
$$\left(x + \frac{\pi}{6}\right)$$

d)
$$\cos\left(x-\frac{\pi}{3}\right)$$

e)
$$\cos \frac{x}{2}$$

f)
$$tg\left(x+\frac{\pi}{4}\right)$$

Calcula cos x y tg x y después aplica las fórmulas.

$$\cos x = -\sqrt{1 - \sin^2 x} = -\sqrt{1 - \frac{9}{25}} = -\frac{4}{5}$$
 (Negativo, por ser del 2.° cuadrante).

$$tg x = \frac{sen x}{cos x} = -\frac{3}{4}$$

a)
$$sen \ 2x = 2 \ sen \ x \cos x = 2 \cdot \frac{3}{5} \cdot \left(-\frac{4}{5}\right) = -\frac{24}{25}$$

b)
$$tg \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \sqrt{\frac{1 - (-4/5)}{1 + (-4/5)}} = \sqrt{\frac{9/5}{1/5}} = 3$$

Signo positivo, pues si $x \in 2.^{\circ}$ cuadrante, entonces $\frac{x}{2} \in 1.^{\text{er}}$ cuadrante.

c)
$$sen\left(x + \frac{\pi}{6}\right) = sen \ x \cos \frac{\pi}{6} + \cos x \, sen \, \frac{\pi}{6} =$$

$$= \frac{3}{5} \cdot \frac{\sqrt{3}}{2} + \left(-\frac{4}{5}\right) \cdot \frac{1}{2} = \frac{3\sqrt{3} - 4}{10}$$

d)
$$\cos\left(x - \frac{\pi}{3}\right) = \cos x \cos \frac{\pi}{3} + \sin x \sin \frac{\pi}{3} =$$

$$= \left(-\frac{4}{5}\right) \cdot \frac{1}{2} + \frac{3}{5} \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3} - 4}{10}$$
e) $\cos \frac{x}{2} \stackrel{(*)}{=} \sqrt{\frac{1 + \cos x}{2}} = \sqrt{\frac{1 - 4/5}{2}} = \sqrt{\frac{1/5}{2}} = \sqrt{\frac{1}{10}} = \frac{\sqrt{10}}{10}$
(*) Signo positivo, porque $\frac{x}{2} \in 1$. er cuadrante.
f) $tg\left(x + \frac{\pi}{4}\right) = \frac{tg \, x + tg \, \pi/4}{1 - tg \, x \, tg \, \pi/4} = \frac{-3/4 + 1}{1 - (-3/4) \cdot 1} = \frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}$

Página 143

Halla las razones trigonométricas del ángulo de 15° de dos formas, considerando:

a)
$$15^{\circ} = 45^{\circ} - 30^{\circ}$$

b) $15^{\circ} = \frac{30^{\circ}}{2}$
a) $sen 15^{\circ} = sen (45^{\circ} - 30^{\circ}) = sen 45^{\circ} cos 30^{\circ} - cos 45^{\circ} sen 30^{\circ} =$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} = 0,258819$$

$$cos 15^{\circ} = cos (45^{\circ} - 30^{\circ}) = cos 45^{\circ} cos 30^{\circ} + sen 45^{\circ} sen 30^{\circ} =$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} = 0,965926$$

$$tg 15^{\circ} = \frac{sen 15^{\circ}}{cos 15^{\circ}} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}} = \frac{6 + 2 - 2\sqrt{12}}{6 - 2} =$$

$$= \frac{8 - 4\sqrt{3}}{4} = 2 - \sqrt{3} = 0,267949$$
b) $sen 15^{\circ} = sen \frac{30^{\circ}}{2} = \sqrt{\frac{1 - cos 30^{\circ}}{2}} = \sqrt{\frac{1 - \sqrt{3}/2}{2}} = \sqrt{\frac{2 - \sqrt{3}}{4}} =$

$$= \frac{\sqrt{2 - \sqrt{3}}}{2} = 0,258819$$

$$cos 15^{\circ} = cos \frac{30^{\circ}}{2} = \sqrt{\frac{1 + cos 30^{\circ}}{2}} = \sqrt{\frac{1 + \sqrt{3}/2}{2}} = \sqrt{\frac{2 + \sqrt{3}}{4}} = 0,9659258$$

$$tg 15^{\circ} = \frac{\sqrt{2 - \sqrt{3}}}{\sqrt{2 + \sqrt{3}}} = \frac{0,258819}{0.9659258} = 0,2679491$$

- Sabiendo que sen x = 2/3 y que x es un ángulo del primer cuadrante, calcula:
 - a) sen 2x
- b) $tg\frac{x}{2}$

c) $\cos (30^{\circ} - x)$

$$sen x = \frac{2}{3}$$

$$x \in 1.^{er} \text{ cuadrante}$$

$$\begin{cases} \cos x, & \text{tg } x \\ \frac{x}{2} \in 1.^{\text{er}} & \text{c} \end{cases}$$

$$\left\{ \begin{array}{l} sen \ x = \frac{2}{3} \\ x \in 1.^{\text{er}} \ \text{cuadrante} \end{array} \right\} \quad \rightarrow \quad \left\{ \begin{array}{l} cos \ x, \ tg \ x > 0 \\ \\ \frac{x}{2} \in 1.^{\text{er}} \ \text{cuadrante} \end{array} \right. \rightarrow \quad \left\{ \begin{array}{l} sen \ x/2 > 0 \\ cos \ x/2 > 0 \\ tg \ x/2 > 0 \end{array} \right.$$

- $\cos x = \sqrt{1 \sin^2 x} = 1 \frac{4}{9} = \frac{\sqrt{5}}{3}$
- $tg \ x = \frac{2/3}{\sqrt{5/3}} = \frac{2\sqrt{5}}{5}$
- (a) $sen 2x = 2 sen x cos x = 2 \cdot \frac{2}{3} \cdot \frac{\sqrt{5}}{3} = \frac{4\sqrt{5}}{9}$
- b) $tg \frac{x}{2} = \sqrt{\frac{1 \cos x}{1 + \cos x}} = \sqrt{\frac{1 2\sqrt{5}/5}{1 + 2\sqrt{5}/5}} = \sqrt{\frac{5 2\sqrt{5}}{5 + 2\sqrt{5}}} = \sqrt{\frac{5 2\sqrt{5}}{5 + 2\sqrt{5}}}$ $= \sqrt{\frac{25 + 4 \cdot 5 - 20\sqrt{5}}{25 \cdot 4 \cdot 5}} = \sqrt{\frac{45 - 20\sqrt{5}}{5}} = \sqrt{9 - 4\sqrt{5}}$
- c) $\cos (30^{\circ} x) = \cos 30^{\circ} \cos x + \sin 30^{\circ} \sin x = \frac{\sqrt{3}}{2} \cdot \frac{2\sqrt{5}}{5} + \frac{1}{2} \cdot \frac{2}{3} =$ $=\frac{\sqrt{15}}{5}+\frac{1}{2}=\frac{3\sqrt{15}+5}{15}$
- 14 Si $tg \alpha = -4/3$ y 90° < α < 180°, calcula:
 - a) sen $\left|\frac{\pi}{2} \alpha\right|$

b)
$$\cos\left(180^\circ - \frac{\alpha}{2}\right)$$

$$90^{\circ} < \alpha < 180^{\circ} \rightarrow \begin{cases} sen \ \alpha > 0 \\ cos \ \alpha < 0 \end{cases}$$

- Además, $\frac{\alpha}{2} \in 1.^{\text{er}}$ cuadrante
- $tg \alpha = -\frac{4}{3}$
- $\bullet \frac{1}{\cos^2 \alpha} = tg^2 \alpha + 1 = \frac{16}{9} + 1 = \frac{25}{9} \rightarrow \cos^2 \alpha = \frac{9}{25} \rightarrow \cos \alpha = -\frac{3}{5}$
- $sen \alpha = \sqrt{1 cos^2 \alpha} = \sqrt{1 \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$
- a) $sen\left(\frac{\pi}{2} \alpha\right) = sen \frac{\pi}{2} cos \alpha cos \frac{\pi}{2} sen \alpha = 1 \cdot \left(-\frac{3}{5}\right) 0 \cdot \frac{4}{5} = -\frac{3}{5}$

b)
$$\cos\left(180^{\circ} - \frac{\alpha}{2}\right) = \cos 180^{\circ} \cos \frac{\alpha}{2} + \sin 180^{\circ} \sin \frac{\alpha}{2} = -\cos \frac{\alpha}{2} =$$

$$= -\sqrt{\frac{1 + \cos \alpha}{2}} = -\sqrt{\frac{1 + (-3/5)}{2}} = -\sqrt{\frac{5 - 3}{10}} =$$

$$= -\sqrt{\frac{2}{10}} = -\sqrt{\frac{1}{5}} = -\frac{\sqrt{5}}{5}$$

15 Sabemos que $\cos x = -\frac{3}{4}$ y $\sin x < 0$.

Sin hallar el valor de x, calcula:

b)
$$cos(\pi + x)$$

d)
$$tg\frac{x}{2}$$

e)
$$sen\left(\frac{\pi}{2}-x\right)$$
 f) $cos\left(\pi-\frac{x}{2}\right)$

f)
$$\cos \left(\pi - \frac{x}{2}\right)$$

 $\begin{cases} \cos x = -3/4 \\ \sec x < 0 \end{cases} \rightarrow x \in 3.^{\text{er}} \text{ cuadrante} \implies \frac{x}{2} \in 2.^{\circ} \text{ cuadrante}$

a)
$$sen \ x = -\sqrt{1 - cos^2 \ x} = -\sqrt{1 - \frac{9}{16}} = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4}$$

b)
$$\cos (\pi + x) = \cos \pi \cos x - \sin \pi \sin x = -\cos x = \frac{3}{4}$$

c)
$$\cos 2x = \cos^2 x - \sin^2 x = \frac{9}{16} - \frac{7}{16} = \frac{2}{16} = \frac{1}{8}$$

d)
$$tg \frac{x}{2} = -\sqrt{\frac{1 - \cos x}{1 + \cos x}} = -\sqrt{\frac{1 + 3/4}{1 - 3/4}} = \sqrt{\frac{7}{1}} = \sqrt{7}$$

e)
$$sen\left(\frac{\pi}{2} - x\right) = sen\frac{\pi}{2}\cos x - \cos\frac{\pi}{2}sen x = \cos x = -\frac{3}{4}$$

f)
$$\cos\left(\pi - \frac{x}{2}\right) = \cos\pi\cos\frac{x}{2} + \sin\pi\sin\frac{x}{2} = -\cos\frac{x}{2} =$$

$$= -\left(-\sqrt{\frac{1 + \cos x}{2}}\right) = \sqrt{\frac{1 - 3/4}{2}} = \sqrt{\frac{1}{8}} = \frac{\sqrt{8}}{8}$$

16 Si $\cos 78^\circ = 0.2$ y $\sin 37^\circ = 0.6$, calcula $\sin 41^\circ$, $\cos 41^\circ$ y $\tan 41^\circ$.

$$41^{\circ} = 78^{\circ} - 37^{\circ}$$

•
$$sen 78^\circ = \sqrt{1 - cos^2 78^\circ} = \sqrt{1 - 0.2^2} = 0.98$$

•
$$\cos 37^{\circ} = \sqrt{1 - \sin^2 37^{\circ}} = \sqrt{1 - 0.6^2} = 0.8$$

Ahora, ya podemos calcular:

•
$$sen 41^\circ = sen (78^\circ - 37^\circ) = sen 78^\circ cos 37^\circ - cos 78^\circ sen 37^\circ = 0.98 \cdot 0.8 - 0.2 \cdot 0.6 = 0.664$$

•
$$cos\ 41^\circ = cos\ (78^\circ - 37^\circ) = cos\ 78^\circ\ cos\ 37^\circ + sen\ 78^\circ\ sen\ 37^\circ =$$

= $0.2 \cdot 0.8 + 0.98 \cdot 0.6 = 0.748$

•
$$tg \ 41^\circ = \frac{sen \ 41^\circ}{cos \ 41^\circ} = \frac{0,664}{0.748} = 0,8877$$

17 Si $tg(\alpha + \beta) = 4$ y $tg\alpha = -2$, halla $tg 2\beta$.

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta} \rightarrow 4 = \frac{-2 + tg \beta}{1 + 2 tg \beta} \rightarrow$$

$$\rightarrow 4 + 8 tg \beta = -2 + tg \beta \rightarrow 7 tg \beta = -6 \rightarrow$$

$$\rightarrow tg \beta = -\frac{6}{7}$$

Luego:

$$tg\ 2\beta = \frac{2\ tg\ \beta}{1 - tg^2\ \beta} = \frac{2\cdot (-6/7)}{1 - 36/49} = \frac{-12/7}{13/49} = \frac{-12\cdot 49}{7\cdot 13} = -\frac{84}{13}$$

Ecuaciones trigonométricas

18 Resuelve las siguientes ecuaciones:

a)
$$2\cos^2 x - \sin^2 x + 1 = 0$$

b)
$$sen^2 x - sen x = 0$$

c)
$$2\cos^2 x - \sqrt{3}\cos x = 0$$

b) y c) son ecuaciones de 2.º grado incompletas.

a)
$$2 \cos^2 x - \underbrace{\sin^2 x + 1}_{\cos^2 x} = 0$$
 $\} \rightarrow 2 \cos^2 x - \cos^2 x = 0$

$$\cos^2 x = 0 \rightarrow \cos x = 0 \rightarrow \begin{cases} x_1 = 90^{\circ} \\ x_2 = 270^{\circ} \end{cases}$$

Al comprobarlas en la ecuación inicial, las dos soluciones son válidas. Luego:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^\circ + k \cdot 360^\circ = \frac{3\pi}{2} + 2k\pi$$

$$con k \in \mathbb{Z}$$

Lo que podemos expresar como:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

b)
$$sen x (sen x - 1) = 0 \rightarrow$$

$$\rightarrow \begin{cases} sen \ x=0 \ \rightarrow \ x_1=0^\circ, \ x_2=180^\circ \\ sen \ x=1 \ \rightarrow \ x_3=90^\circ \end{cases}$$

Comprobando las posibles soluciones, vemos que las tres son válidas. Luego:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{3} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

O, de otra forma:

$$x_1 = k \pi = k \cdot 180^{\circ}$$

$$x_3 = \frac{\pi}{2} + 2k \pi = 90^{\circ} + k \cdot 360^{\circ}$$
 con $k \in \mathbb{Z}$

 $(x_1 \text{ as i incluye las soluciones } x_1 \text{ y } x_2 \text{ anteriores})$

Las cuatro soluciones son válidas. Luego:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{4} = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$

NOTA: Obsérvese que las dos primeras soluciones podrían escribirse como una sola de la siguiente forma:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

19 Resuelve:

a)
$$sen^2 x - cos^2 x = 1$$

b)
$$\cos^2 x - \sin^2 x = 0$$

c)
$$2\cos^2 x + \sin x = 1$$

d)
$$3 tg^2 x - \sqrt{3} tg x = 0$$

a)
$$(1 - \cos^2 x) - \cos^2 x = 1 \rightarrow 1 - 2\cos^2 x = 1 \rightarrow \cos^2 x = 0 \rightarrow \cos x = 0 \rightarrow \begin{cases} x_1 = 90^{\circ} \\ x_2 = 270^{\circ} \end{cases}$$

Las dos soluciones son válidas. Luego:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^\circ + k \cdot 360^\circ = \frac{3\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

O, lo que es lo mismo:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

b)
$$(1 - sen^2 x) - sen^2 x = 0 \rightarrow 1 - 2 sen^2 x = 0 \rightarrow$$

$$\rightarrow sen^2 x = \frac{1}{2} \rightarrow sen x = \pm \frac{\sqrt{2}}{2}$$

• Si
$$sen x = \frac{\sqrt{2}}{2} \rightarrow x_1 = 45^\circ, x_2 = 135^\circ$$

• Si
$$sen x = -\frac{\sqrt{2}}{2} \rightarrow x_3 = 225^\circ, x_4 = 315^\circ$$

Comprobamos que todas las soluciones son válidas. Luego:

$$x_1 = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{2} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{4} + 2k \pi$$

$$x_{3} = 225^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

$$con k \in \mathbb{Z}$$

$$x_3 = 225^\circ + k \cdot 360^\circ = \frac{5\pi}{4} + 2k \pi$$

$$x_4 = 315^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{4} + 2k \pi$$

O, lo que es lo mismo:

$$x = 45^{\circ} + k \cdot 90^{\circ} = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$$
 con $k \in \mathbb{Z}$

c)
$$2(1 - sen^2 x) + sen x = 1 \rightarrow 2 - 2 sen^2 x + sen x = 1 \rightarrow$$

$$\rightarrow$$
 2 sen² x - sen x - 1 = 0 \rightarrow

$$\rightarrow \ sen \ x = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} = \frac{1 \pm 3}{4} = \frac{1 \to x_1 = 90^{\circ}}{-1/2 \to x_2 = 210^{\circ}, \ x_3 = 330^{\circ}}$$

Las tres soluciones son válidas, es decir:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 210^\circ + k \cdot 360^\circ = \frac{7\pi}{6} + 2k \pi$$
 con $k \in \mathbb{Z}$

$$x_3 = 330^\circ + k \cdot 360^\circ = \frac{11\pi}{6} + 2k \pi$$

$$\begin{cases} con & k \in \mathbb{Z} \end{cases}$$

d)
$$tg \ x \left(3 \ tg \ x - \sqrt{3}\right) = 0 \rightarrow$$

$$\begin{cases} tg \ x = 0 \rightarrow x_1 = 0^{\circ}, \ x_2 = 180^{\circ} \\ tg \ x = \frac{\sqrt{3}}{3} \rightarrow x_3 = 30^{\circ}, \ x_4 = 210^{\circ} \end{cases}$$

Comprobamos las posibles soluciones en la ecuación inicial y vemos que las cuatro son válidas.

Entonces:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{3} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{4} = 210^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Lo que podría expresarse con solo dos soluciones que englobaran las cuatro anteriores:

$$x_1 = k \cdot 180^\circ = k \pi \text{ y } x_2 = 30^\circ + k \cdot 180^\circ = \frac{\pi}{6} + k \pi \text{ con } k \in \mathbb{Z}$$

20 Resuelve las siguientes ecuaciones:

a)
$$sen\left(\frac{\pi}{6} - x\right) + cos\left(\frac{\pi}{3} - x\right) = \frac{1}{2}$$

b)
$$sen 2x - 2 cos^2 x = 0$$

Desarrolla sen 2x y saca factor común.

c)
$$\cos 2x - 3 \sin x + 1 = 0$$

• Desarrolla $\cos 2x$ y sustituye $\cos^2 x = 1 - \sin^2 x$.

d)
$$sen\left(\frac{\pi}{4} + x\right) - \sqrt{2} sen x = 0$$

a)
$$sen \frac{\pi}{6} cos x - cos \frac{\pi}{6} sen x + cos \frac{\pi}{3} cos x + sen \frac{\pi}{3} sen x = \frac{1}{2}$$

 $\frac{1}{2} cos x - \frac{\sqrt{3}}{2} sen x + \frac{1}{2} cos x + \frac{\sqrt{3}}{2} sen x = \frac{1}{2}$
 $\frac{1}{2} cos x + \frac{1}{2} cos x = \frac{1}{2} \rightarrow cos x = \frac{1}{2} \underbrace{\qquad x_1 = \pi/3}_{x_2 = 5\pi/3}$

Comprobamos y vemos que:

$$x_{1} \rightarrow sen\left(\frac{\pi}{6} - \frac{\pi}{3}\right) + cos\left(\frac{\pi}{3} - \frac{\pi}{3}\right) = sen\left(-\frac{\pi}{6}\right) + cos 0 = \frac{-1}{2} + 1 = \frac{1}{2}$$

$$x_{2} \rightarrow sen\left(\frac{\pi}{6} - \frac{5\pi}{3}\right) + cos\left(\frac{\pi}{3} - \frac{5\pi}{3}\right) = sen\left(-\frac{3\pi}{3}\right) + cos\left(-\frac{4\pi}{3}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$

Son válidas las dos soluciones. Luego:

$$x_{1} = \frac{\pi}{3} + 2k \pi = 60^{\circ} + k \cdot 360^{\circ}$$

$$x_{2} = \frac{5\pi}{3} + 2k \pi = 300^{\circ} + k \cdot 360^{\circ}$$

$$con k \in \mathbb{Z}$$

Comprobamos las soluciones. Todas son válidas:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{4} = 225^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

También podríamos expresarlas como:

$$x_1 = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_2 = 45^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{4} + k \pi$$

$$\begin{cases}
\cos k \in \mathbb{Z} \\
\cos k = \mathbb{Z}
\end{cases}$$

c)
$$\cos^2 x - \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 1 - \sin^2 x - \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 1 - 2 \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 2 \sin^2 x + 3 \sin x - 2 = 0 \rightarrow$$

$$→ sen x = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4} = \frac{1/2}{4} → x_1 = 30^\circ, x_2 = 150^\circ$$

$$-2 → |Imposible|, pues |sen x| \le 1$$

Comprobamos que las dos soluciones son válidas.

Luego:

$$x_1 = 30^\circ + k \cdot 360^\circ = \frac{\pi}{6} + 2k \pi$$

$$x_2 = 150^\circ + k \cdot 360^\circ = \frac{5\pi}{6} + 2k \pi$$

$$\begin{cases} \cos k \in \mathbb{Z} \\ \cos k = 2k \end{cases}$$

d)
$$sen \frac{\pi}{4} cos x + cos \frac{\pi}{4} sen x - \sqrt{2} sen x = 0$$

$$\frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x - \sqrt{2}\sin x = 0$$

$$\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x = 0 \rightarrow \cos x - \sin x = 0 \rightarrow$$

$$\rightarrow \cos x = \sin x \rightarrow x_1 = \frac{\pi}{4}, x_2 = \frac{5\pi}{4}$$

Al comprobar, podemos ver que ambas soluciones son válidas. Luego:

$$x_{1} = \frac{\pi}{4} + 2k \pi = 45^{\circ} + k \cdot 360^{\circ}$$

$$x_{2} = \frac{5\pi}{4} + 2k \pi = 225^{\circ} + k \cdot 360^{\circ}$$

$$con k \in \mathbb{Z}$$

Podemos agrupar las dos soluciones en:

$$x = \frac{\pi}{4} + k \pi = 45^{\circ} + k \cdot 180^{\circ} \quad \text{con } k \in \mathbb{Z}$$

21 Resuelve estas ecuaciones:

a)
$$4 \sin^2 x \cos^2 x + 2 \cos^2 x - 2 = 0$$

• Al bacer
$$sen^2 x = 1 - cos^2 x$$
, resulta una ecuación bicuadrada.

Haz $\cos^2 x = z$ y comprueba si son válidas las soluciones que obtienes.

b)
$$4 sen^2 x + sen x cos x - 3 cos^2 x = 0$$

Divide por $\cos^2 x$ y obtendrás una ecuación con tg x.

c)
$$\cos^2 \frac{x}{2} + \cos x - \frac{1}{2} = 0$$

$$d) tg^2 \frac{x}{2} + 1 = \cos x$$

e)
$$2 sen^2 \frac{x}{2} + cos 2x = 0$$

a)
$$4(1 - \cos^2 x) \cos^2 x + 2 \cos^2 x - 2 = 0$$

$$4 \cos^2 x - 4 \cos^4 x + 2 \cos^2 x - 2 = 0$$

$$4 \cos^4 x - 6 \cos^2 x + 2 = 0 \rightarrow 2 \cos^4 x - 3 \cos^2 x + 1 = 0$$

Sea
$$\cos^2 x = z \rightarrow \cos^4 x = z^2$$

Así

$$2z^2 - 3z + 1 = 0 \rightarrow z = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4}$$

$$z_{1} = 1 \rightarrow \cos x = \pm 1$$

$$x_{1} = 0^{\circ}$$

$$x_{2} = 180^{\circ}$$

$$z_{2} = \frac{1}{2} \rightarrow \cos x = \pm \frac{\sqrt{2}}{2}$$

$$x_{3} = 45^{\circ}, x_{4} = 315^{\circ}$$

$$x_{5} = 135^{\circ}, x_{6} = 225^{\circ}$$

Comprobando las posibles soluciones, vemos que todas son válidas. Por tanto:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{3} = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{4} = 315^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

$$x_{5} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{4} + 2k \pi$$

$$x_{6} = 225^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{4} + 2k \pi$$

O, agrupando las soluciones:

$$x_1 = k \cdot 180^\circ = k \pi$$

$$x_2 = 45^\circ + k \cdot 90^\circ = \frac{\pi}{4} + k \frac{\pi}{2}$$
 con $k \in \mathbb{Z}$

b) Dividiendo por $\cos^2 x$:

$$\frac{4 \operatorname{sen}^{2} x}{\cos^{2} x} + \frac{\operatorname{sen} x \cos x}{\cos^{2} x} - \frac{3 \cos^{2} x}{\cos^{2} x} = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \quad \rightarrow \quad 4 \operatorname{tg}^{2} x + \operatorname{tg}^{2} x$$

Las cuatro soluciones son válidas:

$$x_{1} = 36^{\circ} 52' 11,6'' + k \cdot 360^{\circ} \approx \frac{\pi}{5} + 2k \pi$$

$$x_{2} = 216^{\circ} 52' 11,6'' + k \cdot 360^{\circ} \approx \frac{6\pi}{5} + 2k \pi$$

$$x_{3} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{5} + 2k \pi$$

$$x_{4} = 315^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{5} + 2k \pi$$

O, lo que es lo mismo:

$$x_{1} = 36^{\circ} 52' 11,6'' + k \cdot 180^{\circ} \approx \frac{\pi}{5} + k \pi$$

$$x_{2} = 135^{\circ} + k \cdot 180^{\circ} = \frac{3\pi}{4} + k \pi$$

$$\begin{cases}
\cos k \in \mathbb{Z} \\
\cos k = \mathbb{Z}
\end{cases}$$

c)
$$\frac{1 + \cos x}{2} + \cos x - \frac{1}{2} = 0 \rightarrow 1 + \cos x + 2 \cos x - 1 = 0 \rightarrow$$

$$\rightarrow 3 \cos x = 0 \rightarrow \cos x = 0 \rightarrow x_1 = 90^{\circ}, x_2 = 270^{\circ}$$

Las dos soluciones son válidas. Luego:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^\circ + k \cdot 360^\circ = \frac{3\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Agrupando las soluciones:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

d)
$$\frac{1 - \cos x}{1 + \cos x} + 1 = \cos x \rightarrow 1 - \cos x + 1 + \cos x = \cos x + \cos^2 x \rightarrow$$

$$\rightarrow$$
 2 = $\cos x + \cos^2 x$ \rightarrow $\cos^2 x + \cos x - 2 = 0$ \rightarrow

$$\rightarrow \cos x = \frac{-1 \pm \sqrt{1+8}}{2} = \frac{-1 \pm 3}{2}$$
 1 \rightarrow x = 0°
 -2 \rightarrow |Imposible!, pues |cos x| \le 1

Luego: $x = k \cdot 360^{\circ} = 2k \pi \text{ con } k \in \mathbb{Z}$

e)
$$2 \cdot \frac{1 - \cos x}{2} + \cos^2 x - \sin^2 x = 0 \rightarrow$$

$$\rightarrow 1 - \cos x + \cos^2 x - (1 - \cos^2 x) = 0 \rightarrow$$

$$\rightarrow$$
 1 - cos x + cos² x - 1 + cos² x = 0 \rightarrow 2 cos² x - cos x = 0 \rightarrow

$$\rightarrow \; \cos x \; (2 \; \cos x - 1) = 0 \; \rightarrow \; \begin{cases} \cos x = 0 \; \rightarrow \; x_1 = 90^\circ, \; x_2 = 270^\circ \\ \cos x = 1/2 \; \rightarrow \; x_3 = 60^\circ, \; x_4 = 300^\circ \end{cases}$$

Se comprueba que son válidas todas. Por tanto:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 60^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{3} + 2k \pi$$

$$x_{4} = 300^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{3} + 2k \pi$$

Agrupando las soluciones quedaría:

$$x_{1} = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_{2} = 60^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{3} + 2k \pi$$

$$x_{3} = 300^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Identidades trigonométricas

22 Demuestra que:

$$\frac{sen(\alpha + \beta)}{sen(\alpha - \beta)} = \frac{tg \alpha + tg \beta}{tg \alpha - tg \beta}$$

• Aplica las fórmulas de sen $(\alpha + \beta)$ y sen $(\alpha - \beta)$.

Divide el numerador y el denominador por $\cos \alpha \cos \beta$ y simplifica.

$$\frac{sen (\alpha + \beta)}{sen (\alpha - \beta)} = \frac{sen \alpha \cos \beta + \cos \alpha sen \beta}{sen \alpha \cos \beta - \cos \alpha sen \beta} \stackrel{(*)}{=}$$

$$= \frac{\frac{sen \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\cos \alpha sen \beta}{\cos \alpha \cos \beta}}{\frac{sen \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\cos \alpha sen \beta}{\cos \alpha \cos \beta}} = \frac{tg \alpha + tg \beta}{tg \alpha - tg \beta}$$

 $^{(*)}$ Dividimos numerador y denominador entre $\cos \alpha \cos \beta$.

23 Prueba que $2 tg \times \cos^2 \frac{x}{2} - sen \times tg \times tg$

Sustituye
$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$
.

Como
$$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}} \rightarrow \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$

Y sustituyendo en la expresión:

$$2 \operatorname{tg} x \cos^2 \frac{x}{2} - \operatorname{sen} x = 2 \frac{\operatorname{sen} x}{\cos x} \cdot \frac{1 + \cos x}{2} - \operatorname{sen} x =$$

$$= \frac{\operatorname{sen} x (1 + \cos x) - \operatorname{sen} x \cos x}{\cos x} \stackrel{(*)}{=}$$

$$= \frac{\operatorname{sen} x [1 + \cos x - \cos x]}{\cos x} = \frac{\operatorname{sen} x}{\cos x} = \operatorname{tg} x$$

(*) Sacando factor común.

24 Demuestra que:

$$\cos\left(x+\frac{\pi}{3}\right)-\cos\left(x+\frac{2\pi}{3}\right)=\cos x$$

• Desarrolla y sustituye las razones de $\frac{\pi}{3}$ y $\frac{2\pi}{3}$.

$$\cos\left(x + \frac{\pi}{3}\right) - \cos\left(x + \frac{2\pi}{3}\right) =$$

$$= \left[\cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3}\right] - \left[\cos x \cos\frac{2\pi}{3} - \sin x \sin\frac{2\pi}{3}\right] =$$

$$= \left[(\cos x)\frac{1}{2} - (\sin x)\frac{\sqrt{3}}{2}\right] - \left[(\cos x)\left(-\frac{1}{2}\right) - (\sin x)\frac{\sqrt{3}}{2}\right] =$$

$$= \frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = \cos x$$

25 Demuestra que:

$$\cos \alpha \cos (\alpha - \beta) + \sin \alpha \sin (\alpha - \beta) = \cos \beta$$

Aplica las fórmulas de la diferencia de ángulos, simplifica y extrae factor común.

 $\cos \alpha \cos (\alpha - \beta) + \sin \alpha \sin (\alpha - \beta) =$

- = $\cos \alpha (\cos \alpha \cos \beta + \sin \alpha \sin \beta) + \sin \alpha (\sin \alpha \cos \beta \cos \alpha \sin \beta)$ =
- = $\cos^2 \alpha \cos \beta + \cos \alpha \sin \alpha \sin \beta + \sin^2 \alpha \cos \beta \sin \alpha \cos \alpha \sin \beta$ =
- $=\cos^2\alpha\cos\beta+\sin^2\alpha\cos\beta\stackrel{(*)}{=}\cos\beta\left(\cos^2\alpha+\sin^2\alpha\right)=\cos\beta\cdot 1=\cos\beta$
- (*) Extraemos factor común

Página 144

PARA RESOLVER

26 En una circunferencia de 16 cm de radio, un arco mide 20 cm. Halla el ángulo central en grados y en radianes.

Como la circunferencia completa (100,53 cm) son 2π rad, entonces:

$$\frac{100,53}{20} = \frac{2\pi}{\alpha} \rightarrow \alpha = \frac{20 \cdot 2\pi}{100,53} = 1,25 \text{ rad}$$

$$\alpha = \frac{360^{\circ}}{2\pi} \cdot 1,25 = 71^{\circ} 37' 11''$$

27 En una determinada circunferencia, a un arco de 12 cm de longitud le corresponde un ángulo de 2,5 radianes.

¿Cuál es el radio de esa circunferencia?

$$\frac{2.5 \text{ rad}}{1 \text{ rad}} = \frac{12 \text{ cm}}{R \text{ cm}} \rightarrow R = \frac{12}{2.5} = 4.8 \text{ cm}$$

28 Halla, en radianes, el ángulo comprendido entre 0 y 2π tal que sus razones trigonométricas coincidan con las de $\frac{11\pi}{4}$.

$$0 < \alpha < 2\pi$$

$$\frac{11\pi}{4} = \frac{8\pi + 3\pi}{4} \rightarrow \frac{11\pi}{4} = 2\pi + \frac{3\pi}{4} \Rightarrow \alpha = \frac{3\pi}{4}$$

29 Demuestra:

$$\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)} = \frac{1 + tg \alpha tg \beta}{1 - tg \alpha tg \beta}$$

$$\frac{\cos{(\alpha-\beta)}}{\cos{(\alpha+\beta)}} = \frac{\cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}}{\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}} \stackrel{(*)}{=}$$

(*) Dividimos numerador y denominador entre:

cos a cos b

$$= \frac{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{1 + tg \alpha tg \beta}{1 - tg \alpha tg \beta}$$

30 Simplifica la expresión:

$$\frac{sen 2\alpha}{1 - cos^2 \alpha}$$

Calcula su valor para $\alpha = \frac{\pi}{4}$.

$$\frac{sen \ 2\alpha}{1 - cos^2 \ \alpha} = \frac{2 \ sen \ \alpha \ cos \ \alpha}{sen^2 \ \alpha} = \frac{2 \ cos \ \alpha}{sen \ \alpha}$$

Por tanto, si
$$\alpha = \frac{\pi}{4} \implies \frac{sen \ 2\alpha}{1 - cos^2 \ \alpha} = \frac{2 \ cos \ \alpha}{sen \ \alpha} = \frac{2 \cdot \left(\frac{\sqrt{2}}{2}\right)}{\frac{\sqrt{2}}{2}} = 2$$

31 | Prueba que:

$$\frac{2 sen \alpha - sen 2\alpha}{2 sen \alpha + sen 2\alpha} = tg^2 \frac{\alpha}{2}$$

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \cos \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha} = \frac{2 \operatorname{sen} \alpha (1 - \cos \alpha)}{2 \operatorname{sen} \alpha (1 + \cos \alpha)} =$$
$$= \frac{1 - \cos \alpha}{1 + \cos \alpha} = tg^2 \frac{\alpha}{2}$$

32 Simplifica:

$$\frac{2\cos(45^\circ + \alpha)\cos(45^\circ - \alpha)}{\cos 2\alpha}$$

Al desarrollar el numerador, obtendrás una diferencia de cuadrados.

$$\frac{2\cos(45^\circ + \alpha)\cos(45^\circ - \alpha)}{\cos 2\alpha} =$$

$$=\frac{2 \left(\cos 45^{\circ} \cos \alpha - \sin 45^{\circ} \sin \alpha\right) \left(\cos 45^{\circ} \cos \alpha + \sin 45^{\circ} \sin \alpha\right)}{\cos^{2} \alpha - \sin^{2} \alpha}=$$

$$= \frac{2 (\cos^2 45^{\circ} \cos^2 \alpha - \sin^2 45^{\circ} \sin^2 \alpha)}{\cos^2 \alpha - \sin^2 \alpha} =$$

$$=\frac{2\cdot\left[\left(\sqrt{2}/2\right)^2\cos^2\alpha-\left(\sqrt{2}/2\right)^2\sin^2\alpha\right]}{\cos^2\alpha-\sin^2\alpha}=\frac{2\cdot1/2\cos^2\alpha-2\cdot1/2\sin^2\alpha}{\cos^2\alpha-\sin^2\alpha}=$$

$$= \frac{\cos^2 \alpha - \sin^2 \alpha}{\cos^2 \alpha - \sin^2 \alpha} = 1$$

33 Resuelve las siguientes ecuaciones:

a)
$$\cos 2x + 3 \sin x = 2$$

b)
$$tg \ 2x \cdot tg \ x = 1$$

c)
$$\cos x \cos 2x + 2 \cos^2 x = 0$$

d)
$$2 sen x = tg 2x$$

e)
$$\sqrt{3} \, sen \, \frac{x}{2} + cos \, x - 1 = 0$$

f)
$$sen 2x cos x = 6 sen^3 x$$

$$\mathbf{g)} \ t\mathbf{g} \left(\frac{\pi}{4} - \mathbf{x} \right) + t\mathbf{g} \ \mathbf{x} = \mathbf{1}$$

a)
$$\cos^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin x = 2 \rightarrow 1 - \sin^2 x - \sin^2 x + 3 \sin^2 x + 3$$

$$\rightarrow$$
 2 sen² x - 3 sen x + 1 = 0 \rightarrow

$$\rightarrow sen \ x = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \underbrace{\qquad 1 \rightarrow x_1 = 90^{\circ}}_{1/2} \rightarrow x_1 = 30^{\circ}, \ x_2 = 150^{\circ}$$

Las tres soluciones son válidas:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{3} = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

b)
$$\frac{2 tg x}{1 - tg^2 x} \cdot tg x = 1 \rightarrow 2 tg^2 x = 1 - tg^2 x \rightarrow tg^2 x = \frac{1}{3} \rightarrow tg x = \pm \frac{\sqrt{3}}{3} \rightarrow \begin{cases} x_1 = 30^\circ, & x_2 = 210^\circ \\ x_3 = 150^\circ, & x_4 = 330^\circ \end{cases}$$

Las cuatro soluciones son válidas:

$$x_{1} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{2} = 210^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{6} + 2k \pi$$

$$x_{3} = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$x_{4} = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$

Agrupando:

$$x_1 = 30^\circ + k \cdot 180^\circ = \frac{\pi}{6} + k \pi$$

$$x_2 = 150^\circ + k \cdot 180^\circ = \frac{5\pi}{6} + k \pi$$

$$con k \in \mathbb{Z}$$

c)
$$\cos x (\cos^2 x - \sin^2 x) + 2 \cos^2 x = 0 \rightarrow$$

 $\rightarrow \cos x (\cos^2 x - 1 + \cos^2 x) + 2 \cos^2 x = 0 \rightarrow$
 $\rightarrow 2 \cos^3 x - \cos x + 2 \cos^2 x = 0 \rightarrow \cos x (2 \cos^2 x + 2 \cos x - 1) = 0 \rightarrow$
 $\rightarrow \cos x = 0 \rightarrow x_1 = 90^\circ, \ x_2 = 270^\circ$
 $\cos x = \frac{-2 \pm \sqrt{4 + 8}}{4} = \frac{-2 \pm 2\sqrt{3}}{4} =$
 $= \frac{-1 \pm \sqrt{3}}{2}$ $\approx -1,366 \rightarrow \text{ [Imposible!, pues } |\cos x| \le -1$
 $\approx 0,366 \rightarrow x_3 = 68^\circ 31^\circ 51,1^\circ, \ x_4 = 291^\circ 28^\circ 8,9^\circ$

Las soluciones son todas válidas:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 68^{\circ} 31' 51,1'' + k \cdot 360^{\circ} \approx 0,38\pi + 2k \pi$$

$$x_{4} = 291^{\circ} 28' 8,9'' + k \cdot 360^{\circ} \approx 1,62\pi + 2k \pi$$

Agrupadas, serían:

$$\begin{aligned} x_1 &= 90^\circ + k \cdot 180^\circ = \frac{\pi}{2} + k \, \pi \\ x_2 &= 68^\circ \, 31^\circ \, 51, 1^\circ + k \cdot 360^\circ \approx 0, 38\pi + 2k \, \pi \\ x_3 &= 291^\circ \, 28^\circ \, 8, 9^\circ + k \cdot 360^\circ \approx 1, 62\pi + 2k \, \pi \end{aligned} \right\} \, \text{con } \, k \in \mathbb{Z}$$

d)
$$2 \operatorname{sen} x = \frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x} \rightarrow 2 \operatorname{sen} x - 2 \operatorname{sen} x \operatorname{tg}^2 x = 2 \operatorname{tg} x \rightarrow$$

$$\rightarrow sen x - sen x \frac{sen^2 x}{cos^2 x} = \frac{sen x}{cos x} \rightarrow$$

$$\rightarrow$$
 sen $x \cos^2 x - \sin x \sin^2 x = \sin x \cos x \rightarrow$

$$\rightarrow sen x (cos^2 x - sen^2 x - cos x) = 0 \rightarrow$$

$$\rightarrow$$
 sen $x (\cos^2 x - 1 + \cos^2 x - \cos x) = 0 $\rightarrow$$

Las cuatro soluciones son válidas. Luego:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{4} = 240^{\circ} + k \cdot 360^{\circ} = \frac{4\pi}{3} + 2k \pi$$

$$x_{5} = 120^{\circ} + k \cdot 360^{\circ} = \frac{2\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Que, agrupando soluciones, quedaría:

$$x_{1} = k \cdot 180^{\circ} = k \pi$$

$$x_{2} = 120^{\circ} + k \cdot 360^{\circ} = \frac{2\pi}{3} + 2k \pi$$

$$x_{3} = 240^{\circ} + k \cdot 360^{\circ} = \frac{4\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

e)
$$\sqrt{3} \sqrt{\frac{1-\cos x}{2}} + \cos x - 1 = 0 \rightarrow \frac{3-3\cos x}{2} = (1-\cos x)^2 \rightarrow 3-3\cos x = 2(1+\cos^2 x - 2\cos x) \rightarrow 2\cos^2 x - \cos x - 1 = 0 \rightarrow \cos x = \frac{1\pm\sqrt{1+8}}{4} = \frac{1\pm3}{4} = \frac{1+3}{4} = \frac{1+3}{$$

Al comprobar, vemos que las tres soluciones son válidas:

$$x_1 = k \cdot 360^\circ = 2k \pi$$

$$x_2 = 120^\circ + k \cdot 360^\circ = \frac{2\pi}{3} + 2k \pi$$

$$x_3 = 240^\circ + k \cdot 360^\circ = \frac{4\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

f)
$$2 \operatorname{sen} x \cos x \cos x = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} \cos^{2} x = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} x (1 - \operatorname{sen}^{2} x) = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} x - 2 \operatorname{sen}^{3} x = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} x = 0 \to x_{1} = 0^{\circ}, \ x_{2} = 180^{\circ}$$

$$\operatorname{sen}^{2} x = \frac{1}{4} \to \operatorname{sen} x = \pm \frac{1}{2} \to x_{3} = 30^{\circ}, \ x_{4} = 150^{\circ}$$

$$x_{5} = 210^{\circ}, \ x_{6} = 330^{\circ}$$

Comprobamos que todas las soluciones son válidas.

Damos las soluciones agrupando las dos primeras por un lado y el resto por otro:

$$g) \frac{tg(\pi/4) + tg x}{1 - tg(\pi/4) tg x} + tg x = 1 \rightarrow \frac{1 + tg x}{1 - tg x} + tg x = 1 \rightarrow$$

$$\rightarrow 1 + tg x + tg x - tg^{2} x = 1 - tg x \rightarrow tg^{2} x - 3 tg x = 0 \rightarrow$$

$$\rightarrow tg x (tg x - 3) = 0 \rightarrow$$

$$\Rightarrow \begin{cases} tg x = 0 \rightarrow x_{1} = 0^{\circ}, x_{2} = 180^{\circ} \\ tg x = 3 \rightarrow x_{3} = 71^{\circ} 33' 54,2'', x_{4} = 251^{\circ} 33' 54,2'' \end{cases}$$

Las cuatro soluciones son válidas:

$$\begin{aligned} x_1 &= k \cdot 360^\circ = 2k \, \pi \\ x_2 &= 180^\circ + k \cdot 360^\circ = \pi + 2k \, \pi \\ x_3 &= 71^\circ \, 33^! \, 54,2^{\shortparallel} + k \cdot 360^\circ \approx \frac{2\pi}{5} + 2k \, \pi \\ x_4 &= 251^\circ \, 33^! \, 54,2^{\shortparallel} + k \cdot 360^\circ \approx \frac{7\pi}{5} + 2k \, \pi \end{aligned} \right\} \ \text{con} \ \ k \in \mathbb{Z}$$

O, lo que es lo mismo:

$$x_1 = k \cdot 180^\circ = k \pi$$

$$x_2 = 71^\circ 33' 54,2'' + k \cdot 180^\circ \approx \frac{2\pi}{5} + k \pi$$

$$con k \in \mathbb{Z}$$

34 Resuelve las siguientes ecuaciones:

a)
$$sen 3x - sen x = cos 2x$$

b)
$$\frac{\sec 5x + \sec 3x}{\cos x + \cos 3x} = 1$$

c)
$$\frac{sen 3x + sen x}{cos 3x + cos x} = \sqrt{3}$$

d)
$$sen 3x - cos 3x = sen x - cos x$$

Transforma las sumas o diferencias de senos y cosenos en productos.

a)
$$2 \cos \frac{3x + x}{2} \sin \frac{3x - x}{2} = \cos 2x$$

$$2 \cos 2x \sec x = \cos 2x \rightarrow 2 \sec x = 1 \rightarrow \sec x = \frac{1}{2} \rightarrow x_1 = 30^{\circ}, \ x_2 = 150^{\circ}$$

Comprobando, vemos que las dos soluciones son válidas. Luego:

$$x_1 = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_2 = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

b)
$$\frac{2 \operatorname{sen} 4x \cos x}{2 \cos 2x \cos x} = 1 \rightarrow \frac{\operatorname{sen} 4x}{\cos 2x} = 1 \rightarrow \frac{\operatorname{sen} (2 \cdot 2x)}{\cos 2x} = 1 \rightarrow$$

$$\rightarrow \frac{2 \operatorname{sen} 2x \cos 2x}{\cos 2x} = 1 \rightarrow 2 \operatorname{sen} 2x = 1 \rightarrow \operatorname{sen} 2x = \frac{1}{2} \rightarrow$$

$$\begin{cases} 2x = 30^{\circ} \rightarrow x_{1} = 15^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{12} + 2k \pi \\ 2x = 150^{\circ} \rightarrow x_{2} = 75^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{12} + 2k \pi \\ 2x = 390^{\circ} \rightarrow x_{3} = 195^{\circ} + k \cdot 360^{\circ} = \frac{13\pi}{12} + 2k \pi \\ 2x = 510^{\circ} \rightarrow x_{4} = 255^{\circ} + k \cdot 360^{\circ} = \frac{17\pi}{12} + 2k \pi \end{cases}$$

Al comprobar, vemos que todas las soluciones son válidas.

c)
$$\frac{2 \sec 2x \cos x}{-2 \sec 2x \sec x} = \frac{\cos x}{-\sec x} = -\frac{1}{tg x} = \sqrt{3} \rightarrow tg x = -\frac{\sqrt{3}}{3} \rightarrow \begin{cases} x_1 = 150^{\circ} \\ x_2 = 330^{\circ} \end{cases}$$

Ambas soluciones son válidas. Luego:

$$x_1 = 150^\circ + k \cdot 360^\circ = \frac{5\pi}{6} + 2k \pi$$

$$x_2 = 330^\circ + k \cdot 360^\circ = \frac{11\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

d) sen
$$3x - sen x = cos 3x - cos x \rightarrow$$

$$\rightarrow$$
 2 cos 2x sen x = -2 sen 2x sen x \rightarrow (dividimos entre 2 sen x)

$$\rightarrow \cos 2x = -\sin 2x \rightarrow \frac{\sin 2x}{\cos 2x} = -1 \rightarrow \tan 2x = -1 \rightarrow$$

$$\rightarrow \begin{cases} 2x = 315^{\circ} \rightarrow x_{1} = 157,5^{\circ} + k \cdot 360^{\circ} \\ 2x = 135^{\circ} \rightarrow x_{2} = 67,5^{\circ} + k \cdot 360^{\circ} \\ 2x = 675^{\circ} \rightarrow x_{3} = 337,5^{\circ} + k \cdot 360^{\circ} \\ 2x = 495^{\circ} \rightarrow x_{4} = 247,5^{\circ} + k \cdot 360^{\circ} \end{cases}$$
 con $k \in \mathbb{Z}'$

Podemos comprobar que las cuatro soluciones son válidas. Agrupándolas:

$$x = 67.5^{\circ} + k \cdot 90^{\circ}$$
 con $k \in \mathbb{Z}$

- 35 a) Demuestra que: $sen 3x = 3 sen x cos^2 x sen^3 x$
 - b) Resuelve la ecuación sen 3x 2 sen x = 0.
 - 🕶 a) Haz sen 3x = sen (2x + x) y desarrolla.
 - b) Sustituye sen 3x por el resultado anterior.

a)
$$sen 3x = sen (2x + x) = sen 2x cos x + cos 2x sen x =$$

$$= 2 sen x cos x cos x + (cos2 x - sen2 x) sen x =$$

$$= 2 \operatorname{sen} x \cos^2 x + \operatorname{sen} x \cos^2 x - \operatorname{sen}^3 x = 3 \operatorname{sen} x \cos^2 x - \operatorname{sen}^3 x$$

b) $sen 3x - 2 sen x = 0 \rightarrow por el resultado del apartado anterior:$

$$3 \operatorname{sen} x \cos^2 x - \operatorname{sen}^3 x - 2 \operatorname{sen} x = 0 \ \to \ 3 \operatorname{sen} x (1 - \operatorname{sen}^2 x) - \operatorname{sen}^3 x - 2 \operatorname{sen} x = 0 \ \to$$

$$\rightarrow$$
 3 sen x - 3 sen³ x - sen³ x - 2 sen x = 0 \rightarrow

$$\rightarrow$$
 4 sen³ x - sen x = 0 \rightarrow sen x (4 sen² x - 1) = 0 \rightarrow

$$\Rightarrow \begin{cases} sen \ x = 0 \ \to \ x_1 = 0^{\circ}, \ x_2 = 150^{\circ} \\ sen \ x = \pm 1/2 \ \to \ x_3 = 30^{\circ}, \ x_4 = 150^{\circ}, \ x_5 = 210^{\circ}, \ x_6 = 330^{\circ} \end{cases}$$

Todas las soluciones son válidas y se pueden expresar como:

$$\begin{array}{l} x_1 = k \cdot 180^\circ = k \; \pi \\ x_2 = 30^\circ + k \cdot 180^\circ = (\pi/6) + k \; \pi \\ x_3 = 150^\circ + k \cdot 180^\circ = (5\pi/6) + k \; \pi \end{array} \right\} \; \text{con } \; k \in \mathbb{Z}'$$

36 Demuestra las siguientes igualdades:

a)
$$cos(\alpha + \beta) \cdot cos(\alpha - \beta) = cos^2 \alpha - sen^2 \beta$$

b)
$$sen^2\left(\frac{\alpha+\beta}{2}\right) - sen^2\left(\frac{\alpha-\beta}{2}\right) = sen \alpha \cdot sen \beta$$

c)
$$\cos^2\left(\frac{\alpha-\beta}{2}\right)-\cos^2\left(\frac{\alpha+\beta}{2}\right)= \sec n \alpha \cdot \sec n \beta$$

a)
$$\cos (\alpha + \beta) \cos (\alpha - \beta) = (\cos \alpha \cos \beta - \sin \alpha \sin \beta) (\cos \alpha \cos \beta + \sin \alpha \sin \beta) =$$

$$= \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta =$$

$$= \cos^2 \alpha (1 - \sin^2 \beta) - (1 - \cos^2 \alpha) \cdot \sin^2 \beta =$$

$$= \cos^2 \alpha - \cos^2 \alpha \sin^2 \beta - \sin^2 \beta + \cos^2 \alpha \sin^2 \beta =$$

$$= \cos^2 \alpha - \sin^2 \beta$$

b) El primer miembro de la igualdad es una diferencia de cuadrados, luego podemos factorizarlo como una suma por una diferencia:

$$\begin{split} &\left[sen\left(\frac{\alpha+\beta}{2}\right)+sen\left(\frac{\alpha-\beta}{2}\right)\right]\cdot\left[sen\left(\frac{\alpha+\beta}{2}\right)-sen\left(\frac{\alpha-\beta}{2}\right)\right]\overset{(*)}{=}\\ &=\left[2\,sen\,\frac{\alpha}{2}\,cos\,\frac{\beta}{2}\right]\cdot\left[2\,cos\,\frac{\alpha}{2}\,sen\,\frac{\beta}{2}\right]=\\ &=4\,\sqrt{\frac{1-cos\,\alpha}{2}}\cdot\sqrt{\frac{1+cos\,\beta}{2}}\cdot\sqrt{\frac{1+cos\,\alpha}{2}}\cdot\sqrt{\frac{1-cos\,\beta}{2}}=\\ &=\sqrt{(1-cos\,\alpha)\,(1+cos\,\beta)\,(1+cos\,\alpha)\,(1-cos\,\beta)}=\\ &=\sqrt{(1-cos^2\,\alpha)\,(1-cos^2\,\beta)}=\sqrt{sen^2\,\alpha\cdot sen^2\,\beta}=sen\,\alpha\,sen\,\beta \end{split}$$

(*) Transformamos la suma y la diferencia en productos, teniendo en cuenta que:

$$\frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2} = \alpha \quad \text{y} \quad \frac{\alpha + \beta}{2} - \frac{\alpha - \beta}{2} = \beta$$

c) Procedemos de manera análoga al apartado anterior, pero ahora:

$$\frac{\alpha - \beta}{2} + \frac{\alpha + \beta}{2} = \alpha \quad y \quad \frac{\alpha - \beta}{2} - \frac{\alpha + \beta}{2} = -\beta$$

$$\cos^{2}\left(\frac{\alpha - \beta}{2}\right) - \cos^{2}\left(\frac{\alpha + \beta}{2}\right) =$$

$$= \left[\cos\left(\frac{\alpha - \beta}{2}\right) + \cos\left(\frac{\alpha + \beta}{2}\right)\right] \cdot \left[\cos\left(\frac{\alpha - \beta}{2}\right) - \cos\left(\frac{\alpha + \beta}{2}\right)\right] =$$

$$= \left[2\cos\frac{\alpha}{2}\cos\frac{-\beta}{2}\right] \cdot \left[-2\sin\frac{\alpha}{2}\sin\frac{-\beta}{2}\right] = \left[2\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\right] \cdot \left[2\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\right] =$$

$$= 4\sqrt{\frac{1+\cos\alpha}{2}} \cdot \sqrt{\frac{1+\cos\beta}{2}} \cdot \sqrt{\frac{1-\cos\alpha}{2}} \cdot \sqrt{\frac{1-\cos\beta}{2}} =$$

$$= \sqrt{(1-\cos^2\alpha)(1-\cos^2\beta)} = \sqrt{\sin^2\alpha \cdot \sin^2\beta} = \sin\alpha \sin\beta$$

NOTA: También podríamos haberlo resuelto aplicando el apartado anterior como sigue:

$$\cos^{2}\left(\frac{\alpha-\beta}{2}\right)-\cos^{2}\left(\frac{\alpha+\beta}{2}\right)=1-sen^{2}\left(\frac{\alpha-\beta}{2}\right)-1+sen^{2}\left(\frac{\alpha+\beta}{2}\right)=0$$

$$=sen^{2}\left(\frac{\alpha+\beta}{2}\right)-sen^{2}\left(\frac{\alpha-\beta}{2}\right)\stackrel{(*)}{=}sen\ \alpha\ sen\ \beta$$

(*) Por el apartado b).

37 Simplifica la expresión: $sen \alpha \cdot cos 2\alpha - cos \alpha \cdot sen 2\alpha$

 $sen \alpha (cos^2 \alpha - sen^2 \alpha) - cos \alpha \cdot 2 sen \alpha cos \alpha =$

= $sen \alpha cos^2 \alpha - sen^3 \alpha - 2 sen \alpha cos^2 \alpha$ =

 $= -sen \ \alpha \ cos^2 \ \alpha - sen^3 \ \alpha = -sen \ \alpha \ (cos^2 \ \alpha + sen^2 \ \alpha) = -sen \ \alpha$

38 Resuelve los sistemas siguientes dando las soluciones correspondientes al primer cuadrante:

a)
$$\begin{cases} x + y = 120^{\circ} \\ sen \ x - sen \ y = \frac{1}{2} \end{cases}$$

b)
$$\begin{cases} sen^{2} x + cos^{2} y = 1 \\ cos^{2} x - sen^{2} y = 1 \end{cases}$$

• $Haz \cos^2 y = 1 - \sin^2 y \ y \cos^2 x = 1 - \sin^2 x$.

c)
$$\begin{cases} sen \ x + cos \ y = 1 \\ x + y = 90^{\circ} \end{cases}$$

a) De la segunda ecuación:

$$2\cos\frac{x+y}{2}\, sen\, \frac{x-y}{2} = \frac{1}{2}$$

Como:

$$x + y = 120^{\circ} \rightarrow 2 \cos 60^{\circ} \operatorname{sen} \frac{x - y}{2} = \frac{1}{2} \rightarrow 2 \cdot \frac{1}{2} \operatorname{sen} \frac{x - y}{2} = \frac{1}{2} \rightarrow$$

$$\rightarrow \operatorname{sen} \frac{x - y}{2} = \frac{1}{2} \rightarrow \frac{x - y}{2} = 30^{\circ} \rightarrow x - y = 60^{\circ}$$

Así: $x + y = 120^{\circ}$

$$\frac{x - y = 60^{\circ}}{2x = 180^{\circ}} \rightarrow x = 90^{\circ} \rightarrow y = 30^{\circ}$$

Luego la solución es: (90°, 30°)

b) Como
$$\begin{cases} \cos^2 y = 1 - \sin^2 y \\ \cos^2 x = 1 - \sin^2 x \end{cases}$$

El sistema queda:

$$\begin{array}{c} sen^2 \ x + 1 - sen^2 \ y = 1 \\ 1 - sen^2 \ x - sen^2 \ y = 1 \end{array} \right\} \rightarrow \begin{array}{c} sen^2 \ x - sen^2 \ y = 0 \\ - sen^2 \ x - sen^2 \ y = 0 \end{array} \right\}$$
 (Sumando ambas igualdades)
$$\overline{ \rightarrow } \begin{array}{c} -2 \ sen^2 \ y = 0 \end{array} \rightarrow \begin{array}{c} sen \ y = 0 \end{array} \rightarrow \begin{array}{c} y = 0 \end{array} \rightarrow \begin{array}{c} sen \ y = 0$$

Sustituyendo en la segunda ecuación (por ejemplo) del sistema inicial, se obtiene:

$$\cos^2 x - 0 = 1 \rightarrow \cos^2 x = 1 = \begin{cases} \cos x = 1 \rightarrow x = 0^{\circ} \\ \cos x = -1 \rightarrow x = 180^{\circ} \in 2.^{\circ} \text{ cuadrante} \end{cases}$$

Luego la solución es: (0°, 0°)

c)
$$x + y = 90^{\circ} \rightarrow \text{complementarios} \rightarrow \text{sen } x = \cos y$$

Sustituyendo en la primera ecuación del sistema:

$$\cos y + \cos y = 1 \rightarrow 2 \cos y = 1 \rightarrow \cos y = \frac{1}{2} \rightarrow y = 60^{\circ} \rightarrow x = 90^{\circ} - y = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Luego la solución es: (30°, 60°)

39 Justifica que para cualquier ángulo α se verifica:

$$\sqrt{2}\cos\left(\frac{\pi}{4}-\alpha\right) = sen\alpha + cos\alpha$$

Desarrollamos la primera parte de la igualdad:

$$\sqrt{2} \cdot \cos\left(\frac{\pi}{4} - \alpha\right) = \sqrt{2} \left(\cos\frac{\pi}{4}\cos\alpha + \sin\frac{\pi}{4}\sin\alpha\right) =$$

$$= \sqrt{2} \left(\frac{\sqrt{2}}{2}\cos\alpha + \frac{\sqrt{2}}{2}\sin\alpha\right) =$$

$$= \sqrt{2} \cdot \frac{\sqrt{2}}{2} \left(\cos\alpha + \sin\alpha\right) = \frac{2}{2} \left(\cos\alpha + \sin\alpha\right) =$$

$$= \cos\alpha + \sin\alpha$$

40 Expresa sen 4α y $\cos 4\alpha$ en función de sen α y $\cos \alpha$.

•
$$sen 4\alpha = sen (2 \cdot 2\alpha) = 2 sen \alpha cos 2\alpha = 2 \cdot 2 sen \alpha cos \alpha \cdot (cos^2 \alpha - sen^2 \alpha) =$$

= $4 (sen \alpha cos^3 \alpha - sen^3 \alpha cos \alpha)$

•
$$\cos 4\alpha = \cos (2 \cdot 2\alpha) = \cos^2 2\alpha - \sin^2 2\alpha =$$

$$= (\cos^2 \alpha - \sin^2 \alpha)^2 - (2 \sin \alpha \cos \alpha)^2 =$$

$$= \cos^4 \alpha + \sin^4 \alpha - 2 \cos^2 \alpha \sin^2 \alpha - 4 \sin^2 \alpha \cos^2 \alpha =$$

$$= \cos^4 \alpha + \sin^4 \alpha - 6 \sin^2 \alpha \cos^2 \alpha$$

Página 145

CUESTIONES TEÓRICAS

41 ¿Qué relación existe entre las razones trigono-métricas de los ángulos que miden $\pi/5$ y $4\pi/5$ radianes?

 $\frac{\pi}{5} + \frac{4\pi}{5} = \frac{5\pi}{5} = \pi \rightarrow \text{ son suplementarios, luego:}$

$$sen \frac{\pi}{5} = sen \left(\pi - \frac{4\pi}{5}\right) = sen \frac{4\pi}{5}$$

$$\cos\frac{\pi}{5} = -\cos\frac{4\pi}{5}; \quad tg \frac{\pi}{5} = -tg \frac{4\pi}{5}$$

42 Relaciona estas expresiones con las razones trigonométricas del ángulo α:

a) sen $(\pi - \alpha)$; cos $(\pi - \alpha)$; tg $(\pi - \alpha)$

b) sen
$$(\pi + \alpha)$$
; cos $(\pi + \alpha)$; tg $(\pi + \alpha)$

c) sen $(2\pi - \alpha)$; cos $(2\pi - \alpha)$; tg $(2\pi - \alpha)$

a)
$$\begin{cases} sen (\pi - \alpha) = sen \alpha \\ cos (\pi - \alpha) = -cos \alpha \end{cases} \rightarrow tg (\pi - \alpha) = -tg \alpha$$

b)
$$\begin{cases} sen (\pi + \alpha) = -sen \alpha \\ cos (\pi + \alpha) = -cos \alpha \end{cases} \rightarrow tg (\pi + \alpha) = tg \alpha$$

c)
$$\begin{cases} sen \ (2\pi - \alpha) = -sen \ \alpha \\ cos \ (2\pi - \alpha) = cos \ \alpha \end{cases} \rightarrow tg \ (2\pi - \alpha) = -tg \ \alpha$$

43 Expresa A(x) en función de sen x y cos x:

a) $A(x) = sen(-x) - sen(\pi - x)$

b)
$$A(x) = cos(-x) + cos(\pi + x)$$

c) $A(x) = sen(\pi + x) + cos(2\pi - x)$

a)
$$A(x) = sen(-x) - sen(\pi - x) = -sen(x - sen(x)) = -2 sen(x)$$

b)
$$A(x) = cos(-x) + cos(\pi + x) = cos x + (-cos x) = 0$$

c) $A(x) = sen(\pi + x) + cos(2\pi - x) = -senx + cosx$

Haz, con la calculadora, una tabla de valores de la función $y=\cos 2x$, dando a x valores comprendidos entre 0 y 2π radianes y representala gráficamente.

x	0	$\frac{\pi}{12}$	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{3\pi}{8}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$	$\frac{7\pi}{12}$	$\frac{5\pi}{8}$	$\frac{2\pi}{3}$
$y = \cos 2x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$

$\frac{3\pi}{4}$	$\frac{7\pi}{8}$	$\frac{11\pi}{12}$	π	$\frac{5\pi}{4}$	$\frac{7\pi}{8}$	2π
0	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	-1	0	0

PARA PROFUNDIZAR

45 Representa las funciones:

$$a) y = cos \left(x + \frac{\pi}{2} \right)$$

$$\mathbf{b}) y = \mathbf{sen} \left(x + \frac{\pi}{2} \right)$$

c)
$$y = cos\left(\frac{\pi}{2} - x\right)$$

$$\mathbf{d})y = sen\left(\frac{\pi}{2} - x\right)$$

Resuelve los sistemas siguientes dando las soluciones correspondientes al primer cuadrante:

a)
$$\begin{cases} sen \ x + sen \ y = \sqrt{3} \\ cos \ x + cos \ y = 1 \end{cases}$$
 b)
$$\begin{cases} sen^2 \ x + cos^2 \ y = 3/4 \\ cos^2 \ x - sen^2 \ y = 1/4 \end{cases}$$
 c)
$$\begin{cases} cos \ (x + y) = 1/2 \\ sen \ (x - y) = 1/2 \end{cases}$$

a) Despejando en la segunda ecuación:

$$cos x = 1 - cos y^{(*)}$$

Como $sen x = \sqrt{1 - cos^2 x}$ entonces:

$$sen x = \sqrt{1 - (1 - cos y)^2} = \sqrt{1 - 1 - cos^2 y + 2 cos y} = \sqrt{2 cos y - cos^2 y}$$

Y, sustituyendo en la primera ecuación, se tiene:

$$sen x + sen y = \sqrt{3} \rightarrow \sqrt{2 \cos y - \cos^2 y} + sen y = \sqrt{3} \rightarrow$$
$$\rightarrow sen y = \sqrt{3} - \sqrt{2 \cos y - \cos^2 y}$$

Elevamos al cuadrado:

$$sen^2 y = 3 + (2 cos y - cos^2 y) - 2\sqrt{3(2 cos y - cos^2 y)}$$

$$sen^2 y + cos^2 y - 2 cos y - 3 = -2 \sqrt{3 (2 cos y - cos^2 y)}$$

$$1 - 2\cos y - 3 = -2\sqrt{3(2\cos y - \cos^2 y)}$$

$$-2(1 + \cos y) = -2\sqrt{3(2\cos y - \cos^2 y)}$$

Simplificamos y volvemos a elevar al cuadrado:

$$(1 + \cos y)^2 = 3 (2 \cos y - \cos^2 y) \rightarrow$$

$$\rightarrow 1 + \cos^2 y + 2 \cos y = 6 \cos y - 3 \cos^2 y \rightarrow$$

$$\rightarrow 4\cos^2 y - 4\cos y + 1 = 0 \rightarrow \cos y = \frac{4 \pm \sqrt{16 - 16}}{8} = \frac{1}{2} \rightarrow y = 60^{\circ}$$

Sustituyendo en (*), se tiene:

$$\cos x = 1 - \frac{1}{2} = \frac{1}{2} \rightarrow x = 60^{\circ}$$

b)
$$sen^2 x + cos^2 y = \frac{3}{4}$$

$$cos^2 x - sen^2 y = \frac{1}{4}$$
 Sumando:

$$sen^{2} x + cos^{2} x + cos^{2} y - sen^{2} y = 1 \rightarrow 1 + cos^{2} y - sen^{2} y = 1 \rightarrow 2 cos^{2} y = 1 \rightarrow cos^{2} y = \frac{1}{2} \rightarrow cos y = \frac{\sqrt{2}}{2} \rightarrow y = 45^{\circ}$$

(Solo consideramos las soluciones del primer cuadrante).

Sustituyendo en la primera ecuación:

$$sen^{2} x + cos^{2} y = \frac{3}{4} \rightarrow sen^{2} x + \frac{1}{2} = \frac{3}{4} \rightarrow$$

 $\rightarrow sen^{2} x = \frac{3}{4} - \frac{1}{2} \rightarrow sen^{2} x = \frac{1}{4} \rightarrow sen x = \pm \frac{1}{2}$

Nos quedamos con la solución positiva, por tratarse del primer cuadrante. Así:

$$sen x = \frac{1}{2} \rightarrow x = 30^{\circ}$$

Luego la solución es: (30°, 45°)

c) Como $x, y \in 1$. er cuadrante y además cos(x + y) > 0 sen(x - y) > 0 $\begin{cases} x + y \in 1$. er cuadrante $x - y \in 1$. er cuadrante

Teniendo esto en cuenta:

$$\cos(x+y) = \frac{1}{2} \rightarrow x+y = 60^{\circ}$$

 $sen(x-y) = \frac{1}{2} \rightarrow x-y = 30^{\circ}$ (Sumamos ambas ecuaciones)

$$2x = 90^{\circ} \rightarrow x = 45^{\circ}$$

Sustituyendo en la primera ecuación y despejando:

$$y = 60^{\circ} - x = 60^{\circ} - 45^{\circ} = 15^{\circ}$$

La solución es, por tanto: (45°, 15°)

47 Demuestra que:

a)
$$sen \ x = \frac{2 tg \ x/2}{1 + tg^2 \ x/2}$$
 b) $cos \ x = \frac{1 - tg^2 \ x/2}{1 + tg^2 \ x/2}$ c) $tg \ x = \frac{2 tg \ x/2}{1 - tg^2 \ x/2}$

a) Desarrollamos y operamos en el segundo miembro de la igualdad:

$$\frac{2 tg(x/2)}{1 + tg^{2}(x/2)} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{1 + \frac{1 - \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x + 1 - \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{2}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{2}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{1 - \cos x}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{1 - \cos x}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \cos x}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \cos x}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \cos x}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \cos x}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \cos x}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{\frac{1 + \cos x}{1 + \cos x}}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{\frac{1 + \cos x}{1 + \cos x}}} = \frac{2 \cos x}{1 + \cos x}} = \frac{2 \cos x}{1 + \cos x}} = \frac{2 \cos x}{1 + \cos x} = \frac{2 \cos x}{1 + \cos x}}$$

AUTOEVALUACIÓN

1. Expresa en grados: $\frac{3\pi}{4}$ rad, $\frac{5\pi}{2}$ rad, 2 rad.

$$\frac{3\pi}{4}$$
 rad = 135° $\frac{5\pi}{2}$ rad = 450° 2 rad = 114° 35' 30"

$$\frac{5\pi}{2} \text{ rad} = 450^{\circ}$$

2. Expresa en radianes dando el resultado en función de π y como número decimal:

a)
$$60^{\circ} = \frac{\pi}{3} \text{ rad} = 1,05 \text{ rad}$$

b)
$$225^\circ = \frac{5\pi}{4}$$
 rad = 3,93 rad

c)
$$330^\circ = \frac{11\pi}{6}$$
 rad = 5,76 rad

3. En una circunferencia de 16 cm de diámetro dibujamos un ángulo de 3 rad. ¿Qué longitud tendrá el arco correspondiente?

$$l = 8 \cdot 3 = 24 \text{ cm}$$

4. Asocia a esta gráfica una de las siguientes expresiones y di cuál es su periodo:

a)
$$y = \cos x$$

b)
$$y = \cos 2x$$

c)
$$y = 2\cos x$$

Completa estos puntos para que pertenezcan a la gráfica: $(5\pi/6, ...), (4\pi/3, ...),$

La gráfica corresponde a la b) y = cos 2x. Su periodo es π .

$$\begin{pmatrix} \frac{5\pi}{6}, \dots \end{pmatrix} \rightarrow y = \cos 2 \cdot \frac{5\pi}{6} = \frac{1}{2} \rightarrow \left(\frac{5\pi}{6}, \frac{1}{2}\right)$$

$$\begin{pmatrix} \frac{4\pi}{3}, \dots \end{pmatrix} \rightarrow y = \cos 2 \cdot \frac{4\pi}{3} = -\frac{1}{2} \rightarrow \left(\frac{4\pi}{3}, -\frac{1}{2}\right)$$

$$\begin{pmatrix} \frac{\pi}{4}, \dots \end{pmatrix} \rightarrow y = \cos 2 \cdot \left(\frac{\pi}{4}\right) = 0 \rightarrow \left(-\frac{\pi}{4}, 0\right)$$

5. Si $\cos \alpha = -\frac{1}{4}$ y $\alpha < \pi$, halla:

a)
$$sen 2\alpha$$
 b) $cos (\pi + \alpha)$ c) $tg \frac{\alpha}{2}$ d) $sen \left(\frac{\pi}{6} - \alpha\right)$

$$cos \alpha = -\frac{1}{4} \alpha < \pi \rightarrow sen^2 \alpha = 1 - \left(-\frac{1}{4}\right)^2 = \frac{15}{16} \rightarrow sen \alpha = \frac{\sqrt{15}}{4}$$

a)
$$sen \ 2\alpha = 2 \ sen \ \alpha \ cos \ \alpha = 2 \left(-\frac{1}{4}\right) \left(\frac{\sqrt{15}}{4}\right) = -\frac{\sqrt{15}}{8}$$

b)
$$cos(\pi + \alpha) = -cos\alpha = \frac{1}{4}$$

c)
$$tg \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \sqrt{\frac{1 - (-1/4)}{1 + (-1/4)}} = \sqrt{\frac{5}{3}}$$

d)
$$sen\left(\frac{\pi}{6} - \alpha\right) = sen\frac{\pi}{6}\cos\alpha - \cos\frac{\pi}{6}sen\alpha = \frac{1}{2}\left(-\frac{1}{4}\right) - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{15}}{4} = \frac{1}{8} - \frac{\sqrt{45}}{8} = \frac{-1 - 3\sqrt{5}}{8}$$

6. Demuestra cada una de estas igualdades:

a)
$$tg \ 2\alpha = \frac{2 tg \ \alpha}{1 - tg^2 \ \alpha}$$

b)
$$sen(\alpha + \beta) \cdot sen(\alpha - \beta) = sen^2 \alpha - sen^2 \beta$$

a)
$$tg \ 2\alpha = \frac{sen \ 2\alpha}{cos \ 2\alpha} = \frac{2sen \ \alpha \ cos \ \alpha}{cos^2 \ \alpha - sen^2 \ \alpha} = \frac{\frac{2sen \ \alpha \ cos \ \alpha}{cos^2 \ \alpha}}{1 - \frac{sen^2 \ \alpha}{cos^2 \ \alpha}} = \frac{2tg \ \alpha}{1 - tg^2 \ \alpha}$$

b)
$$sen(\alpha + \beta) \cdot sen(\alpha - \beta) =$$

=
$$(sen \alpha cos \beta + cos \alpha sen \beta) (sen \alpha cos \beta - cos \alpha sen \beta)$$
 =

$$= sen^2 \alpha \cos^2 \beta - \cos^2 \alpha sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha \cos^2 \beta - \cos^2 \alpha sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) - (1 - sen^2 \alpha) sen^2 \beta = sen^2 \alpha (1 - sen^2 \beta) sen^2 \beta = sen^2 \alpha (1$$

$$= sen^2 \alpha - sen^2 \alpha sen^2 \beta - sen^2 \beta + sen^2 \alpha sen^2 \beta = sen^2 \alpha - sen^2 \beta$$

7. Resuelve:

a)
$$\cos 2x - \cos \left(\frac{\pi}{2} + x\right) = 1$$

b)
$$2tg \times cos^2 \frac{x}{2} - sen \times x = 1$$

a)
$$\cos 2x - \cos \left(\frac{\pi}{2} + x\right) = 1$$

$$\cos^2 x - \sin^2 x - (-\sin x) = 1 \rightarrow 1 - \sin^2 x - \sin^2 x + \sin x - 1 = 0$$

Soluciones:

$$x_1 = 360^{\circ}k; \ x_2 = 180^{\circ} + 360^{\circ}k; \ x_3 = 30^{\circ} + 360^{\circ}k; \ x_4 = 150^{\circ} + 360^{\circ}k, \ {\rm con} \ k \in \mathbb{Z}$$

b)
$$2tg \ x \cos^2 \frac{x}{2} - sen \ x = 1 \rightarrow 2tg \ x \frac{1 + \cos x}{2} - sen \ x = 1 \rightarrow$$

$$\rightarrow tg \ x + tg \ x \cos x - sen \ x = 1 \rightarrow$$

$$\rightarrow tg \ x + \frac{sen \ x}{\cos x} \cos x - sen \ x = 1 \rightarrow$$

$$\rightarrow tg \ x + \frac{sen \ x}{\cos x} \cos x - sen \ x = 1 \rightarrow$$

$$\rightarrow tg \ x = 1 \left\{ \frac{x_1 = 45^\circ + 360^\circ k}{x_2 = 225^\circ + 360^\circ k} \right\} \cos k \in \mathbb{Z}$$

8. Simplifica:

a)
$$\frac{sen 60^{\circ} + sen 30^{\circ}}{cos 60^{\circ} + cos 30^{\circ}}$$

b)
$$\frac{sen^2 \alpha}{1-cos \alpha} \left(1+tg^2 \frac{\alpha}{2}\right)$$

a)
$$\frac{sen 60^{\circ} + sen 30^{\circ}}{cos 60^{\circ} + cos 30^{\circ}} = \frac{2sen \frac{60^{\circ} + 30^{\circ}}{2} cos \frac{60^{\circ} - 30^{\circ}}{2}}{2cos \frac{60^{\circ} + 30^{\circ}}{2} cos \frac{60^{\circ} - 30^{\circ}}{2}} = \frac{sen 45^{\circ}}{cos 45^{\circ}} = tg 45^{\circ} = 1$$

b)
$$\frac{sen^2 \alpha}{1 - \cos \alpha} \left(1 + tg^2 \frac{\alpha}{2} \right) = \frac{sen^2 \alpha}{1 - \cos \alpha} \left(1 + \frac{1 - \cos \alpha}{1 + \cos \alpha} \right) = \frac{sen^2 \alpha}{1 - \cos \alpha} \left(\frac{2}{1 + \cos \alpha} \right) =$$

$$= \frac{2sen^2 \alpha}{1 - \cos^2 \alpha} = \frac{2sen^2 \alpha}{sen^2 \alpha} = 2$$