Surface Kinetics Optimization

Optimization Method

Physical Simulator

$$\hat{\gamma} = f(\vec{x}, \vec{y}(\vec{x}, \theta); \theta)$$

Objective Loss

$$\min_{\theta} J(\theta) = \sum_{i \in D} \left(\frac{\hat{\gamma}_i - \gamma_{exp,i}}{\gamma_{exp,i}} \right)^2$$

Optimization Problem

Model based methods

Model free methods

Gradient-based Methods

Results

Desorption Frequency

$$\nu_d = A + B \cdot e^{E/(RT_w)}$$

$$\mathcal{L}_{default} = 0.112$$

$$\mathcal{L}_{opt1} = 0.4074$$

$$\mathcal{L}_{opt2} = 0.4073$$

Results SF CO reactions

$$\mathcal{L}_{default} = 0.112$$

$$\mathcal{L}_{opt1} = 0.4074$$

$$\mathcal{L}_{opt3} = 0.0385$$

Results SF CO reactions

	$\mathcal{L}_{\textit{default,opt}1}$	\mathcal{L}_{opt3}	
$\mathrm{CO}(\mathrm{g}) + \mathrm{S}_V o \mathrm{CO}_S$	10^{-2}	$1.9*10^{-2}$	
$\mathrm{O(^3P)} + \mathrm{CO}_F o \mathrm{CO}_2(\mathrm{g}) + \mathrm{F}_V$	10^{-1}	$5.6*10^{-2}$	$\mathcal{L}_{default} = 0.112$
$\mathrm{CO}(\mathrm{g}) + \mathrm{O}_F o \mathrm{CO}_2(\mathrm{g}) + \mathrm{F}_V$	10^{-1}	$4.3*10^{-2}$	acjann
$\mathrm{CO}_F + \mathrm{S}_V o \mathrm{CO}_S + \mathrm{F}_V$	10^{-2}	$4.5*10^{-1}$	~ -0.4074
$\mathrm{O(^3P)} + \mathrm{CO}_S o \mathrm{CO}_2(\mathrm{g}) + \mathrm{S}_V$	10^{-2}	$5.78 * 10^{-1}$	$\mathcal{L}_{opt1} = 0.4074$
$\mathrm{CO}(\mathrm{g}) + \mathrm{O}_S o \mathrm{CO}_2(\mathrm{g}) + \mathrm{S}_V$	10^{-1}	$5.5*10^{-2}$	
$\mathrm{O}_F + \mathrm{CO}_S o \mathrm{CO}_2(\mathrm{g}) + \mathrm{F}_V + \mathrm{S}_V$		$5.59 * 10^{-3}$	$\mathcal{L}_{opt3} = 0.0385$
$ \operatorname{CO}_F + \operatorname{O}_S o \operatorname{CO}_2(g) + \operatorname{F}_V + \operatorname{S}_V $	10^{-1}	$1.98*10^{-1}$	OP^{i}

Error Propagation

Input conditions become RV

$$X = \{X_1, X_2, ..., X_n\}$$
 $P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i)$

$$\gamma = \tilde{f}(X_1, X_2, \dots, X_n)$$

$$P(\gamma | X_1, ..., X_n) = \delta(\gamma - \tilde{f}(X_1, X_2, ..., X_n))$$

$$P(\gamma) = \int_{x_1} \dots \int_{x_n} \delta(\gamma - \tilde{f}(x_1, \dots, x_n)) P(x_1, \dots, x_n) dx_1 \dots dx_n$$

Monte Carlo
Samping

Error Propagation

Results

CO: 10%

 $CO_2:10\%$

O:10%

 $O_2:10\%$

 $T_w: 1\%$

 $T_{gas}:1\%$

$$E_i \sim \tilde{\mathcal{N}}(\bar{E}_i, f^2 . \bar{E}_i^2)$$