

此笔记基于 LADR(Linear Algebra Done Right) 5th edition
2024 Summer

yingziyu-llt 🗘

最初写作于: 2024年07月02日

最后更新于: 2024年08月23日

目录

0.1. 前言	3
1. 线性空间	3
1.1. \mathbb{R}^n and \mathbb{C}^n	3
1.1.1. 复数 Complex Number	3
1.1.2. 组(List)	3
1.1.3. 向量(Vector)	4
1.2. 向量空间(Vector Space)	4
1.3. 子空间(Subspace)	5
1.3.1. 子空间	5
1.3.2. 子空间的和(Sum)	5
1.3.3. 子空间的直和(Direct Sum)	5
2. 有限维向量空间	6
2.1. 线性组合和张成	6
2.2. 线性无关	8
2.3. 基	8
2.4. 维数	9
2.5. 线性映射的定义	
2.6. 线性映射的线性性	10
2.7. 零空间和值域	11
2.8. 矩阵	
2.9. 逆和同构	14
2.10. 算子	
2.11. 积空间和商空间	
2.12. 对偶(Duality)	
2.13. 矩阵的秩(rank)	19
3. 本征值,本征向量,不变子空间	
3.1. 不变子空间	
3.1.1. 特征值和特征向量	
参考文献	22

0.1. 前言

本笔记基于 Linear Algebra Done Right(5th Edition) 一书的内容和顺序写成,可能具体内容不完全按照该书,会加入一些简明线性代数(丘维声著)的内容。

写这篇笔记,主要是我在前面的线性代数学习中,自我感觉只是基本掌握了一些散乱的知识点,并没有真正很好的理解线性代数的本质和内核,于是暑假用闲暇时间重读线性代数,换一本书(LADR),希望能够得到更加深刻的理解。

章节 1. 线性空间

1.1. \mathbb{R}^n and \mathbb{C}^n

1.1.1. 复数 Complex Number

复数的定义是由对负数开平方根得出的。我们定义 $i=\sqrt{-1}$,其运算规则和常规的运算法则类似。

Def 定义 1.1.1

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$ 称作复数域

对于复数的四则运算,我们做如下定义:

Def 定义 1.1.2

加法法则(a+bi) + (c+di) = (a+c) + (b+d)i乘法法则(a+bi) * (c+di) = (ac-bd) + (bc+ad)i

当b=0时,a就是实数。

在本笔记的其他部分,我们用 \mathbb{F} 来表示 \mathbb{R} 和 \mathbb{C} ,称 \mathbb{F} 中的元素叫做标量(scalar)。

1.1.2. 组(List)

Def **定义** 1.1.3

取n个非负数的整数组成一个<mark>有序</mark>的对叫做一个组(List),记为 $(x_1, x_2, ..., x_n)$ 。当且仅当两个组的各元素依次均相等时,可以称两个组相等。

Q List 和 Set 之间的差异:

提示 1.1.1

• List 中的元素有序,Set 中的元素无序;List 中的元素可重复,Set 中的元素不可重复

Def **定义** 1.1.4

定义两个组的加法* $(a_1,a_2,...,a_n)+(b_1,b_2,...,b_n)=(a_1+b_1,a_2+b_2,...,a_n+b_n)$,满足交换律。

Def 定义 1.1.5

定义零元0 = (0,0,...,0)

1.1.3. 向量(Vector)

将组放在一个坐标系中,取原点到该点的一个<mark>有向线段</mark>,称这个有向线段为<mark>向量</mark>(Vector)对于两个向量之间的运算,我们做如下定义

$$(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$$

$$(1.1)$$

定义 1.1.7

$$\lambda * (a_1, a_2, ..., a_n) = (\lambda a_1, \lambda a_2, ..., \lambda a_n) \tag{1.2}$$

1.2. 向量空间(Vector Space)

向量空间要求有以下几个必备条件:

- 1. 加法 $\alpha, \beta \in V$,定义某种运算+,使得 $\alpha + \beta \in V$
- 2. 数乘 $\lambda \in \mathbb{F}$, $\alpha \in V$,定义某种运算·,使得 $\lambda \cdot \alpha \in V$

对于一个空间 $S=(\mathbb{V},\mathbb{F},+,\cdot)$,要求满足:

- 1. 加法可交换 $\alpha + \beta = \beta + \alpha$
- 2. 加法可结合 $\alpha + \beta + \gamma = \alpha + (\beta + \gamma)$
- 3. 数乘可交换 $\lambda\mu\alpha = \mu\lambda\alpha$
- 4. 数乘可结合 $\lambda\mu\alpha = \lambda(\mu\alpha)$
- 5. 数乘可分配 $(\lambda + \mu)\alpha = \lambda\alpha + \mu\alpha, \lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$
- 6. 数乘有幺元 $1,1\alpha = \alpha$
- 7. 加法有零元 $0 \in \mathbb{V}, 0 + \alpha = \alpha$
- 8. 加法有负元, $\alpha + (-\alpha) = 0$

那么称S为向量空间(Vector Space)。

Def **定义** 1.2.2

向量空间的元素称为点(point)或者向量(vector)。

向量空间的形式和向量空间数乘的数域是有很大关系的。我们称S是在 \mathbb{F} 上的向量空间(vector space over \mathbb{F}),在 \mathbb{F} 上的叫实向量空间,在 \mathbb{F} 上的叫做复向量空间。

在前面我们说的 \mathbb{V} 一般是一个传统意义上的向量集合 \mathbb{F}^n (\mathbb{n} 可以是无穷,称为无穷维向量空间),下面我们讨论和函数相关的向量空间。

Def 定义 1.2.3

我们记 $\mathbb{F}^S(\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C},S$ 是一个集合)为从 $S \to \mathbb{F}$ 的映射

取 $f, g \in \mathbb{F}^S$,加法定义为(f+g)(x) = f(x) + g(x),数乘定义为 $\lambda \in \mathbb{F}, (\lambda f)(x) = \lambda f(x)$

定理

- 1. 加法单位元唯一
- 2. 加法负元唯一
- 3. 0数乘一个向量为零元
- 4. 任何数乘零元为零元
- 5. -1数乘任何向量为其负元

1.3. 子空间(Subspace)

1.3.1. 子空间

设V是一个线性空间,若线性空间U中的所有元素都在V里,且二者运算相同(要求有向量加法和数乘),就称U是V的一个子空间。

Conditions for Subspace

- 1. 有零元(additive identity) $0 \in U$
- 2. 加法封闭(closed under addition) $\alpha, \beta \in U; \alpha + \beta \in U$
- 3. 数乘封闭(closed under scalar multiplication) $\alpha \in U, \lambda \in \mathbb{F}; \lambda \alpha \in U$

1.3.2. 子空间的和(Sum)

Def **定义** 1.3.1

定义运算 + ,满足 $U_1+U_2+...+U_n=\{u_1+u_2+...+u_n:u_1\in U_1,u_2\in U_2,...,u_n\in U_n\}$

子空间的和是包含那些子空间的最小子空间。

1.3.3. 子空间的直和(Direct Sum)

Def **定义** 1.3.2

和 $U=U_1+U_2+\ldots+U_n$ 成为<mark>直和</mark>,若U中每个元素只能被唯一表示成 $u_1+u_2+\ldots+u_n$,其中 $u_i\in U_i$ 。 记直和的符号为 \oplus

Conditions for Direct Sum

 $U_1+U_2+\ldots+U_n$ 是直和 \Leftrightarrow 0只有唯一表出方式: $u_1=u_2=\ldots=u_n=0 \Leftrightarrow U\cap V=\{0\}$

章节 2. 有限维向量空间

2.1. 线性组合和张成

Def 线性组合(Linear combination)

定义 2.1.1

一个向量组 $v_1,v_2,...,v_n\in V$ 的线性组合(Linear combination)是指形如 $\alpha_1v_1+\alpha_2v_2+...+\alpha_nv_n$ 的向量

Def 张成(span)

定义 2.1.2

一个向量组的所有线性组合组成的集合叫做这个向量组张成(span)的空间 $\operatorname{span}(a_1,a_2,...,a_n)$,有些也叫线性张成($\operatorname{linear\ span}$)

指定空向量组()张成的空间为{0}

m 张成的空间是最小包含子空间

定理 2.1.1

一个向量组张成的空间就是包含这些向量的最小的子空间。

证明思路:先去证明张成的空间是V的一个子空间(证明运算封闭性),再去证明这个空间包括张成其的所有向量,再说明所有V包含这些向量的子空间都是其一个子集。

证明过程:

线性代数学习笔记 有限维向量空间

66 证明 引用 2.1.1

Suppose $v_1, v_2, ..., v_n$ a list in V. We denote that $S = \operatorname{span}(v_1, v_2, ..., v_n)$

First, we need to prove the addition identity in S. Obviously, $0v_1 + 0v_2 + ... + 0v_n = 0$

After that, we need to prove the addition closure in S. For $a=a_1v_1+a_2v_2+...+a_nv_n$, $b=b_1v_1+b_2v_2+...+b_nv_n$, $a+b=(a_1+b_1)v_1+(a_2+b_2)v_2+...+(a_n+b_n)v_n\in V$

Further more, we need to prove the multiplication closure in S. For $a=a_1v_1+a_2v_2+\ldots+a_nv_n$, $\lambda a=\lambda a_1v_1+\lambda a_2v_2+\ldots+\lambda a_nv_n\in V$

Thus S is a subspace of V

To prove that S includes $v_1, v_2, ..., v_n$, we only need to make a_i equal to 1 if and only if i equals to the index of v_i , otherwise $a_i=0$.

Conversely, because subspaces are closed under scalar multiplication and addition, every subspace of V containing each v_j contains $\mathrm{span}(v_1,v_2,...,v_n)$. Thus S is the smallest subspace of V containing all the vectors

Def 张成(spans) 定义 2.1.3

如果 $span(v_1, v_2, ..., v_n) = V$, 那么称 $v_1, v_2, ..., v_n$ 张成V.

回 有限维向量空间(finite-dimensional vector space)

定义 2.1.4

如果某个空间可以被有限个向量张成,那么这个空间就是一个有限维向量空间(finite-dimensional vector space)。

多项式(polynomial)

[若 $\mathbb{F} \to \mathbb{F}$ 函数p可被表示为 $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n, a_0, a_1, a_2, ..., a_nin\mathbb{F}$,那么这个函数就是一个在 \mathbb{F} 上的<mark>多项式</mark>(polynomial)函数, $a_0, a_1, a_2, ..., a_n$ 称为多项式的系数(coefficient)]

Def 多项式的度(degree)

定义 2.1.6

多项式的度(degree)是多项式的最高次幂(最高次幂的次数)。定义0的度数为 $-\infty$

Def $P(\mathbb{F}), P_{m(\mathbb{F})}$ 定义 2.1.7

 $P(\mathbb{F})$ 是所有在 \mathbb{F} 上多项式的集合形成的线性空间。容易知道, $P(\mathbb{F})$ 是 $\mathbb{F}^{\mathbb{F}}$ 的子空间 $P_{m(\mathbb{F})}, m \in \mathbb{Z}^+$ 指所有在 \mathbb{F} 上次数小于等于m的多项式的集合。

Def 无穷维向量空间(infinite-dimensional vector space)

定义 2.1.8

不是有限维向量空间的向量空间吗,称作无穷维向量空间。

e.g. 示例 2.1.1

Q:Show that $P(\mathbb{F})$ is a infinite-dimensional vector space.

A:Consider any list of polynomials in $P(\mathbb{F})$. We use m to denote the maximum degree of the polynomial in the list. Then every polynomials in the spans of the list has degree less than or equal to m. Then $z^m + 1$ is not in the span. Hence no list can span the space. QED

2.2. 线性无关

Def 线性无关(Linearly Independent)

定义 2.2.1

若一个向量组 $v_1,v_2,...,v_n$,使得 $a_1v_1+a_2v_2+...+a_nv_n=0$ 当且仅当 $a_1=a_2=...=a_n=0$,那么称 $v_1,v_2,...,v_n$ 是线性无关(linearly independent),否则被称为线性相关(linearly dependent)

若 $v_1, v_2, ..., v_n$ 线性相关,那么一定存在一个 $j \in \{1, 2, ..., n\}$,使得:

(a)
$$v_j \in \operatorname{span} \bigl(v_1, v_2, ..., v_j - 1\bigr)$$

(b) 删除 v_i 后的向量组与原先的向量组等价

66 证明 3月用 2.2.1

 $v_1,v_2,...,v_n \text{ is linearly dependent, so exist } a_1,a_2,...,a_n \in \mathbb{F} \text{ such that } a_1v_1+a_2v_2+...+a_nv_n=0.$

Let j be the largest element in $\{1,2,...,m\}$ if $a_j \neq 0$

Then $a_1v_1+a_2v_2+...+a_jv_j=0$ => $v_j=\frac{a_1}{a_j}v_1+\frac{a_2}{a_j}v_2+...+a_j-\frac{1}{a_j}v_j-1$. Then proving (a).

Suppose $u\in \mathrm{span}\big(v_1,v_2,...,v_j-1\big)$, then $u=a_1v_1+a_2v_2+...+a_nv_n$. We use $\frac{a_1}{a_j}v_1+\frac{a_2}{a_j}v_2+...+a_j-\frac{1}{a_j}v_j-1$ to replace a_j .

Then we can easyly to present u just using $a_1, a_2, ..., a_j - 1, a_j + 1, ..., a_n$. Then proving (b).

线性无关组的长度一定小于等于张成该空间向量组的长度。

2.3. 基

线性代数学习笔记 有限维向量空间

一个空间V的一组 $\frac{\mathbf{J}}{\mathbf{J}}$ (basis)是一组可以张成V且线性无关的向量组。

定理 2.3.1

基的判定定理: $v_1,v_2,...,v_n$ 是V的一组基 <=> $\forall v\in V$,存在唯一的 $a_1,a_2,...,a_n\in \mathbb{F}$ 使得 $a_1v_1+a_2v_2+...+a_nv_n=a$

66 证明 引用 2.3.1

First suppose $v_1, v_2, ..., v_n$ as a basis of V. Let $v \in V$. $v_1, v_2, ..., v_n$, so they span the space. Therefore $v = a_1v_1 + a_2v_2 + ... + a_nv_n$. Suppose $v = c_1v_1 + c_2v_2 + ... + c_nv_n$. Then $(c_1 - a_1)v_1 + (c_2 - a_2)v_2 + ... + (c_n - a_n)v_n = 0, c_1 = a_1, c_2 = a_2, ..., c_n = a_n$

On the other direction, suppose $v=c_1v_1+c_2v_2+...+c_nv_n$ is unique, we can easily to know that $v_1,v_2,...,v_n$ span the space.

To prove that they are linearly independent, we let $0=a_1v_1+a_2v_2+\ldots+a_nv_n$. $2*0=2a_1v_1+2a_2v_2+\ldots+2a_nv_n$, $a_1=2a_1$, $a_2=2a_2$, ..., $a_n=2a_n$. $a_1=a_2=\ldots=a_n=0$

张成某个空间的向量组包含这个空间的一个基

任何有限维向量空间包含一个基

空间内一组线性无关的向量组可以被扩张为一个基

任何V的子空间都是V直和的一部分

2.4. 维数

基向量组的长度与基的选取无关

66 证明 引用 2.4.1

Find two basis $v_1, v_2, ..., v_n$ and $u_1, u_2, ..., u_m$. They all spans V. So $n \le m$ and $m \le n$. Then m = n

于是,我们可以发现,一个向量空间中基向量组的长度是一个对于该空间有意义的不变量,我们于是有定义:

Def 维数(dimension) 定义 2.4.1

(dimension)是向量空间V中基向量组的长度。记作 $\dim V$

一子空间维数定理

定理 2.4.2

有限维向量空间V的子空间U满足 $\dim U \leq \dim V$

定理 2.4.3

长度为 $\dim V$ 的线性无关向量组就是V的一组基,长度为 $\dim V$ 能张成V的一组向量就是V的一组基

2.4.4 定理 2.4.4

维数和公式: $\dim(V+U) = \dim V + \dim U - \dim(V\cap U)$

2.5. 线性映射的定义

Def 线性映射(Linear Mapping)

定义 2.5.1

- 一个映射 $T:V\to W$ 一定是线性的当且仅当它满足以下两个性质:
 - 1. 可加性(additivity): T(x+y) = T(x) + T(y)
 - 2. 齐次性(homogeneity): T(cv) = cT(v)

 $0 \, \overline{\pi} T(0) = 0$

我们记作Tv为一个线性映射(Linear Mapping),称L(V,W)为从V到W的线性映射. 显然其保持

EB 常见线性映射

示例 2.5.1

零映射(zero) $0 \in L(V, W), 0v = 0$

恒等(identity) $I \in L(V, W), Iv = v$

微分(differential) $D \in L(V, W), Dv = v'$

积分(integral) $I \in L(V, W), Iv(x) = \int_0^1 v(x) dx$

V的基为 $v_1,v_2,...,v_n$;W的基为 $u_1,u_2,...,u_n$,存在唯一的线性映射T,使得 $Tv_i=u_i$

证明思路:围绕着 $\forall u \in W, \exists c_1, c_2, ..., c_n$,只用构造 $T(c_1v_1+c_2v_2+...+c_nv_n)=c_1u_1+c_2u_2+...+c_nu_n$ 即可.

2.6. 线性映射的线性性

为了寻找其线性性,我们要先定义L(V,W)上的加法和数乘

线性代数学习笔记 有限维向量空间

Def L(V,W)上的运算

定义 2.6.1

定义 $S, T \in L(V, W)$

定义 $(S+T)(v) = S(v) + T(v), (\lambda S)(v) = \lambda S(v)$

于是容易看出,L(V,W)是一个线性空间.

Def 线性映射的乘法

定义 2.6.2

定义线性映射的乘法 $S \in L(U,V), T \in L(V,W)$,那么(ST)(v) = S(T(v))

咖 乘法的性质

定理 2.6.1

乘法的性质

- 1. 结合律 $T_1T_2T_3 = T_1(T_2T_3)$
- 2. 幺元IT = TI = T, $I \neq L(V, V)$ 上的恒等映射
- 3. 分配率 $(S_1 + S_2)(T) = S_1T + S_2T$, $S(T_1 + T_2) = ST_1 + ST_2$

需要注意的是,线性映射的乘法不具有交换律.

2.7. 零空间和值域

Def 零空间(null space)

定义 2.7.1

 $T \in L(V,W)$,T的零空间就是V的一个子集,使得 $\{v \in V : Tv = 0\}$,记作 $\mathrm{null}\ T$,也叫做T的核空间(kernel space),记作 $\ker T$

单射(injective) $T \in L(V, W), Tv = Tw \Rightarrow v = w$ 这样的T称为一个单射.

Thm

定理 2.7.1

- 1. ker T是V的一个子空间
- 2. T是单射 \Leftrightarrow ker $T = \{0\}$

66 证明

引用 2.7.1

对于命题 1:取 $v_1,v_2\in\ker T,T(v_1+v_2)=Tv_1+Tv_2=0+0=0;T(\lambda v)=\lambda Tv=0$ 对于命题 2:" ⇒ "由于T为单射,所以T(v)=T(0)=0 ⇒ v=0,于是 $\ker T=\{0\}$

$$\text{"} \Longleftarrow \text{"} \quad T(v_1) = T(v_2) \Rightarrow T(v_1) - T(v_2) = 0 \Rightarrow T(v_1 - v_2) = 0, \\ \text{\mathbb{X}} \quad \ker T = \{0\}, \Rightarrow v_1 - v_2 = 0 \Rightarrow v_1 = v_2$$

有限维向量空间 线性代数学习笔记

对于一个函数 $T:V\to W,T$ 的值域就是W的一个子集 $\{Tv\}$,记作 $\mathrm{range}\ T$,也叫函数的像空间 (image),记作 $\mathrm{im}\ T$.

im T 是 V的一个子空间

66 证明 引用 2.7.2

设 $w_1,w_2\in\operatorname{im} T$,那 么 $w=T(v_1+v_2)=Tv_1+Tv_2=w_1+w_2\in\operatorname{im} T$, $T(\lambda v)=\lambda Tv=\lambda w\in\operatorname{im} T$

Def 满射(surjective) 定义 2.7.3

如果某个映射 $T:V\to W$ 的像空间等于W,那么称T是一个满射.

定理 2.7.3

 $T \in L(V,W), \dim V = \dim \ker T + \dim \operatorname{im} T$

于是容易得出:如果 $T:V\to W,\dim W<\dim V,$ 那么T一定不是单射. 如果 $\dim V<\dim W,$ 那么T一定不是满射

显然,一个欠定的齐次线性方程组有非零解,非齐次线性方程组可能无解. (齐次线性方程组T(v)=0,非齐次线性方程组 $T(v)=v_0$)

2.8. 矩阵

为了更加方便的表示线性映射,我们定义矩阵

设m, n都是正整数. 一个 $m \times n$ 矩阵A是一个在 \mathbb{F} 上的 $m \times n$ 矩形数组,写作:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \dots v & \dots v \\ A_{m,1} & \dots & A_{m,m} \end{pmatrix}$$
 (2.1)

一些特殊矩阵: I是单位矩阵,除了对角线元素为1,其他均为0.

下面来定义一个线性映射的矩阵表示

线性代数学习笔记 有限维向量空间

Def 线性映射的矩阵表示

定义 2.8.2

若 $v_1,v_2,...,v_n$ 是V的一组基, $w_1,w_2,...,w_m$ 是W的一组基,且 $Tv_i=\sum_j=1^mA_{i,j}w_j$,那么其矩阵表示M(T)就是A. 如果未指明 v_i 和 w_i ,可以记作 $M(T,(v_1,v_2,...,v_n),(w_1,w_2,...,w_m))$

容易看出,M(T)的第i列和 v_i 的选取有关,而第i行和 w_i 的选取有关.例如变换T(x,y)=(8x+9y,2x+3y,x+y),在标准正交基((1,0),(0,1),(1,0,0),(0,1,0),(0,0,1))下的矩阵表示为 $M(T)=\begin{pmatrix}8&9\\2&3\\1&1\end{pmatrix}$

为了进一步扩展矩阵的意义、定义矩阵的加法、数乘

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \dots v & \dots v \\ A_{m,1} & \dots & A_{m,m} \end{pmatrix}$$
 (2.2)

定义两个 $m \times n$ 矩阵A, B的和

$$A+B=\begin{pmatrix}A_{1,1} & \dots & A_{1,\mathbf{n}}\\ \dots v & & \dots v\\ A_{\mathbf{m},1} & \dots & A_{\mathbf{m},\mathbf{m}}\end{pmatrix}+\begin{pmatrix}B_{1,1} & \dots & B_{1,\mathbf{n}}\\ \dots v & & \dots v\\ B_{\mathbf{m},1} & \dots & B_{\mathbf{m},\mathbf{m}}\end{pmatrix}=\begin{pmatrix}A_{1,1}+B_{1,1} & \dots & A_{1,\mathbf{n}}+B_{1,\mathbf{n}}\\ \dots v & & \dots v\\ A_{\mathbf{m},1}+B_{\mathbf{m},1} & \dots & A_{\mathbf{m},\mathbf{m}}+B_{\mathbf{m},\mathbf{n}}\end{pmatrix}(2.3)$$

数乘

$$\lambda*A = \begin{pmatrix} \lambda*A_{1,1} & \dots & \lambda*A_{1,\mathrm{n}} \\ \dots v & \dots v \\ \lambda*A_{\mathrm{m},1} & \dots & \lambda*A_{\mathrm{m},\mathrm{m}} \end{pmatrix} \tag{2.4}$$

容易看出,矩阵的加法就相当于线性映射的加法,矩阵数乘就相当于线性映射的数乘.

考虑到线性映射还有叠加这一组合方法,我们下面定义矩阵的乘法.

试探:S, T是两个线性映射,ST:

$$ST(u_k)$$

$$= S\left(\sum_{r=1}^{n} C_{r,k} v_r\right)$$

$$= \sum_{r=1}^{n} C_{r,k} \sum_{j=1}^{m} A_{j,r} w_j$$

$$(2.5)$$

为了表示这种变换规律、定义矩阵乘法

设A是 $n \times k$ 矩阵,B是 $k \times m$ 矩阵,定义运算 $(AB)_{i,j} = \sum_{k=1}^k A_{i,k} B_{k,j}$,更加直观的,就是选取A的第i行和B的第j列,按元素依次乘在一起再求和,表示新矩阵第i行j列的元素.

具体计算可以自己去试试.

Notation

一种简明记法

 $A_{j,\cdot}$ 指A的第 j 行形成的一个 $m\times 1$ 矩阵, $A_{\cdot,j}$ 指A的第 j 列形成的一个 $1\times n$ 矩阵于是对于矩阵的乘法有以下表示法

$$(AB)_{i,j} = A_{i,\cdot}B_{\cdot,j} \tag{2.6}$$

$$(AB)_{\cdot,k} = AC_{\cdot,k} \tag{2.7}$$

对矩阵乘法的另一种理解:线性组合 设 $c=\begin{pmatrix}c_1\\c_2\\...\\c_n\end{pmatrix}$,A 为 $m\times n$ 矩阵,那么 $Ac=c_1A_{\cdot,1}+c_2A_{\cdot,2}+...+c_nA_{\cdot,n}$,换言之,Ac就是对A列的线性组合,用c的每一个元来数乘.

2.9. 逆和同构

Def 逆(inverse) 定义 2.9.1

A,B是两个映射 $(n \times n$ 矩阵),且有AB=BA=I,那么称B是A的逆(inverse),记作 $B=A^{-1},A$ 是可逆的(invertible)

如果某矩阵(映射)可逆,那么其逆是唯一的.

映射V可逆⇔映射V是单射满射(一一对应)

对于存在可逆映射的两个空间,他们也有一些潜在的关系,下面加以定义.

Def 同构(isomorphism)

定义 2.9.2

一个可逆映射可以称为同构(isomorphism)

两个空间中存在一个可逆映射,则这两个空间称为是同构的(isomorphic)

两个向量空间同构⇔两个向量空间维度相同

设 $\dim V = n$, $\dim W = m$,那么L(V,W)和 \mathbb{F}^{nm} 同构,于是 $\dim L(V,W) = \dim V \dim W$

线性代数学习笔记 有限维向量空间

为了统一表示线性映射,我们试着用矩阵相乘的方法来表示映射. 为了更好处理向量,我们定义向量的矩阵表示(matrix of a vector)

Def 矩阵的向量表示(matrix of a vector)

定义 2.9.3

设V的一组基是 $v_1,v_2,...,v_n,v\in V,v=a_1v_1+a_2v_2+...+a_nv_n$,那么 $M(v)=\begin{pmatrix}a_1\\a_2\\...\\a_n\end{pmatrix}$ 叫做v的矩阵表示.

这样之后,我们容易得到M(Tv) = M(T)M(v)

2.10. 算子

对干以上种种线性映射来说,有一类很特殊的是从V到V的映射. 我们对其进行一些定义.

Def 算子(operator)

定义 2.10.1

一个从V到V的线性映射定义为<mark>算子</mark>(operator),记V上所有算子构成的线性空间为L(V)

对于算子,也有一些很好的性质.

Thm

定理 2.10.1

如果有限维向量空间中的算子 $T \in L(V)$,下面三个命题等价

- T可逆
- T是单射
- T是满射

2.11. 积空间和商空间

Def 积空间

定义 2.11.1

线 性 空 间 的 积 :设 $V_1,V_2,...,V_n$ 是 F上 的 线 性 空 间 ,定 义 $V_1\times V_2\times...\times V_n=\{(v_1,v_2,...,v_n),v_1\in V_1,v_2\in V_2,...\in V_n\}$ 叫做这些空间的积.

在积空间中的加法被定义为 $(v_1,v_2,...,v_n)+(u_1,u_2,...,u_n)=(v_1+u_1,v_2+u_2,...+u_n,v_n+u_n)$,数乘也类似 $\lambda(v_1,v_2,...,v_n)=(\lambda v_1,\lambda v_2,\lambda...,\lambda v_n)$

实际上就可以将 v_i 当成一个数,其运算规则就变成了一般向量的运算规则了.

Thm

定理 2.11.1

积空间是一个线性空间

证明从略.

有限维向量空间 线性代数学习笔记

对于积空间本身,我们也要有一些观察. ((1,2),(3,4,5))和(1,2,3,4,5)似乎并没有什么本质上的差异. 那我们就可以去猜测 $\mathbb{F}^n \times \mathbb{F}^m$ 和 \mathbb{F}^{m+n} 有同构关系了. 事实也正是如此.

定理 2.11.2

设 $V_1,V_2,...,V_n$ 都 是 有 限 维 线 性 空 间 , dim $(V_1\times V_2\times ...\times V_n)=\dim V_1+\dim V_2+...+\dim V_n$

选取每个U的一个基.对千每个U的每个基向量,考虑 $V_1 \times V_2 \times ... \times V_n$ 的如下元素:第j个位置为此基向量,其余位置为0. 所有这些向量构成的组是线性无关的,且张成 $V_1 \times V_2 \times ... \times V_n$,因此是积空间的基. 这个基的长度是 $\dim V_1 + \cdots + \dim V_n$

我们下面来定义子空间和向量的和.

Def 仿射子集(affine subset)

定义 2.11.2

设 $v \in V, U \neq V$ 的子空间. 那么定义子空间和向量的和为:

$$v + U = \{v + u : u \in U\}$$

我们称v + U是V的仿射子集(affine subset),v + U和U形成平行(parallel)关系.

从几何的角度来看,v + U是将过原点的U平面向v方向平移的结果,所以有一定的几何直观. 很显然,一个仿射子集不是一个子空间($v \neq 0$)

为了描述相同性质的仿射子集,我们来定义商空间.

设U是V的子空间,那么商空间就是所有平行于U的仿射子集的并. 定义为: $V/U=\{v+U:v\in V\}$

平行于U的两个仿射子集要么相等,要么不相交.

即:U是V的子空间, $v,w \in V$ 下列陈述等价

- $v-w \in U$
- v + U = w + U
- $(v+U)\cap(w+U)\neq\emptyset$

下面来定义商空间上的线性运算.

线性代数学习笔记 有限维向量空间

Def 商空间上的线性运算

定义 2.11.4

定义加法和数乘分别是:

$$(v+U)+(w+U)=(v+w)+U, \lambda(v+U)=\lambda v+U$$

需要注意的是,对于同一个集合v+U,会有多种表示方法. 举例y=x+1这个集合至少可以有 (-1,0)+(y=x)和(0,1)+(y=x)两种表示方法. 为了说明加法和数乘是有意义的,需要有如下的证明.

66 证明 3月 2.11.2

命题:若 $v_1+U=v_2+U$, $w_1+U=w_2+U$,那么 $(v_1+w_1)+U=(v_2+w_2)+U$

由上面的定理知, $v_1-v_2\in U$, $w_1-w_2\in U$,于是 $(v_1-v_2)+(w_1-w_2)\in U$,于是 $(v_1+w_1)-(v_2+w_2)\in U$,从而 $(v_1+w_1)+U=(v_2+w_2)+U$

定义 2.11.5

商映射:定义一个映射 $\pi:V\to \frac{V}{U}$,对任意 $v\in V$,

$$\pi(v) = v + U \tag{2.8}$$

可以证明这个映射是一个线性映射.

商空间的维数:如果V是有限维空间,那么 $\dim V = \dim U + \dim \frac{V}{U}$

2.12. **对偶**(Duality)

像(值域)是一个标量空间的线性函数也有一些有趣的性质,我们将这类函数单独拿出来讨论 一下。

Def 线性泛函(linear functional)

定义 2.12.1

线性泛函(linear functional)是 $L(V, \mathbb{F})$ 的一个线性函数

e.g. 示例 2.12.1

- 定义 $\varphi: \mathbb{R}^3 \to \mathbb{R}, \varphi(x,y,z) = 3x + 4y + 5z, \varphi$ 是线性泛函
- 定义 $\varphi:P(\mathbb{R})\to\mathbb{R}, \varphi(p)=\int_0^1 p\,\mathrm{d}x$ 是线性泛函

线性泛函构成的空间也有研究的价值,下面给予定义

Def 对偶空间(dual space)

定义 2.12.2

对偶空间(dual space)是线性泛函构成的空间,即 $L(V,\mathbb{F})$,记作V',容易知道 $\dim V'=\dim V$

Def 对偶基(dual basis)

定义 2.12.3

对偶基 $(dual\ basis)$ 是V'的一组基,也就是说,取 $v_1,v_2,...,v_n$,那么其对偶基也是一组线性泛函即

$$\varphi_j(v_k) = \begin{cases} 1 \text{ if } k = j \\ 0 \text{ if } k \neq j \end{cases}$$
 (2.9)

Def 对偶映射(dual mapping)

定义 2.12.4

对偶映射(dual mapping):对于 $T\in L(V,W)$,定义对偶映射 $T'\in L(W',V')$,满足 $\varphi\in W'$,有 $T'(\varphi)=\varphi\circ T$

对偶函数的代数性质: $(\lambda T)' = \lambda(T'), (S+T)' = S' + T', (ST)' = T'S'$

Def 零化子(annihilator)

定义 2.12.5

零化子(annihilator):对于 $U\subset V$,U的零化子 U^0 定义为 $U^0=\{\varphi\in V': \forall v\in U, \varphi(u)=0.$

電影 零化子的性质

定理 2.12.2

- 零化子是一个V'的子空间.
- 设V是有限维的,那么 $\dim U + \dim U^0 = \dim V$
- $T \in L(V, W)$
 - ▶ V, W有限维,那么dim ker $T' = \dim \ker T + \dim W \dim V$
 - $\ker T = (\operatorname{im} T)^0$
- T是满的当且仅当T'是单的.

我们知道,线性映射总是有对应的矩阵表示,我们理应好奇对偶映射在矩阵上的反应。下面定义这一点。

Def 转置(transpose)

定义 2.12.6

矩阵的转置(transpose), A^T :定义 $n \times m$ 矩阵A的转置A为 $m \times n$ 矩阵, $(A^T)_{i,j} = (A)_{j,i}$

Thm

定理 2.12.3

转置的代数性质:

- $(A+B)^T = A^T + B^T$
- $(\lambda A)^T = \lambda A^T$)
- $(AB)^T = B^T A^T$

 $M(T') = M(T)^T$

2.13. 矩阵的秩(rank)

Def

定义 2.13.1

行秩和列秩:设A是 \mathbb{F} 上的 $m \times n$ 矩阵

- A的行秩是A诸行张成空间的维数。
- A的列秩是A诸列张成空间的维数。

Thm

定理 2.13.1

 $\operatorname{im} T$ 的维数等于M(T)的列秩

行秩等于列秩,统称为秩(rank),记作rank A

个人看来,线性泛函在后面用到的比较少,主要用到的可能还是转置和秩。所以最后的结论可能比前面的推到更加重要,具体为什么这里要用线性泛函引出这些内容,我也很懵

章节 3. 本征值,本征向量,不变子空间

我们已经建立了一些工具来描述一个算子的结构,我们下面来学习描述一个算子的其他角度。

3.1. 不变子空间

先假设V有一种直和分解 $V=U_1\oplus U_2\oplus ...\oplus U_n$,如果我们认真的去构造 $U_1,U_2,...,U_n$, 那么我们有可能可以构造出某种分解 $\forall u\in U_i, T(u)=v\in U_i.U_i$ 是一个很有趣的子空间。下面来定义这个子空间。

Def 不变子空间(invariant subspace)

定义 3.1.1

 $T \in L(V)$,V的一个子空间U满足 $\forall u \in U, T(u) \in U$,那么我们称U是关于T的一个不变子空间 (invariant subspace)。

3.1.1 示例 3.1.1

- 1. $\{0\}$ -> 是一个不变子空间,T(0) = 0
- 2. V -> 是一个不变子空间
- 3. Ker T -> 是一个不变子空间
- 4. Im $T \rightarrow 是一个不变子空间, T(u) \in Im T$

3.1.1. 特征值和特征向量

我们先来讨论一维的不变子空间

对于某一维的子空间 $U=\{\mu v:\mu\in\mathbb{F}\}$,若它是一个不变子空间,那么一定有 $Tu\in U$,又由于它是一维的,于是有 $Tu=\lambda u$ 。 一个向量做变换后其方向没有改变,长度以某个倍率增加,是一个有趣的性质。我们对其加以定义

Def 特征值(eigenvalue)

定义 3.1.2

若 $T \in L(V)$, $T(v) = \lambda v(v \neq 0)$,那么称 λ 是T的一个特征值(eigenvalue)

晒 特征值的判定定理

定理 3.1.1

若 $T \in L(V)$,V是有限维向量空间, $\lambda \in \mathbb{F}$,下面四个条件等价:

- 1. λ 是T特征值
- 2. $T \lambda I$ 不是单射
- 3. $T \lambda I$ 不是满射
- 4. $T \lambda I$ 不可逆

Def 特征向量(eigenvector)

定义 3.1.3

若 $T \in L(V)$, $T(v) = \lambda v (v \neq 0)$,那么称v是T的一个特征向量(eigenvector)

TIM 特征值的线性独立性

定理 3.1.2

从属于不同特征值的特征向量是线性独立的

3.1.1

设 $v_1,v_2,...,v_n$ 是T的特征向量,且其特征值都不相等,先假设这些向量线性相关。取一个最小的k,使得 $v_k\in \mathrm{span}(v_1,v_2,...,v_{k-1})$

于是有 $v_k = a_1v_1 + a_2v_2 + ... + a_nv_n$ (1).

用T作用于左右两边,有 $\lambda_k v_k = \lambda_1 a_1 v_1 + \lambda_2 a_2 v_2 + \ldots + \lambda_{k-1o} a_{k-1} v_{k-1}$ (2)

用 (2)减 去 (1)左 右 两 边 乘 λ_k ,得 : $a_1(\lambda_1-\lambda_k)v_1+a_2(\lambda_2-\lambda_k)v_2+\ldots+a_{k-1}(\lambda_{k-1}-\lambda_k)v_{k-1}=0$,于是 $a_1=a_2=\ldots=a_{k-1}=0$ 。

 $v_k = 0$,与特征向量的定义矛盾。故证。

参考文献