

THE ONE-DIMENSIONAL SCHRÖDINGER OPERATORS WITH SINGULAR PERIODIC POTENTIALS

VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA

ABSTRACT. The one-dimensional Schrödinger operators

$$S(q)u := -u'' + q(x)u, \quad u \in \text{Dom}(S(q))$$

with real-valued 1-periodic singular potentials $q(x) \in H_{per}^{-1}(\mathbb{R})$ are studied on the Hilbert space $L_2(\mathbb{R})$. An equivalence of five basic definitions for the operators $S(q)$ and their self-adjointness are established. A new proof of spectral continuity of the operators $S(q)$ is found. Endpoints of spectral gaps are precisely described.

1. INTRODUCTION

On the complex Hilbert space $L_2(\mathbb{R})$ we consider the one-dimensional Schrödinger operators

$$(1) \quad S(q)u := -u'' + q(x)u, \quad u \in \text{Dom}(S(q))$$

with real-valued 1-periodic distributional potentials $q(x)$, so called the Hill-Schrödinger operators.

Under the assumption

$$(2) \quad q(x) = \sum_{k \in 2\mathbb{Z}} \widehat{q}(k) e^{ik\pi x} \in H_{per}^{-1}(\mathbb{R}, \mathbb{R}),$$

i.e., when

$$\sum_{k \in 2\mathbb{Z}} (1 + |k|)^{-2} |\widehat{q}(k)|^2 < \infty, \quad \text{and} \quad \widehat{q}(k) = \overline{\widehat{q}(-k)} \quad \forall k \in 2\mathbb{Z},$$

the Hill-Schrödinger operators $S(q)$ can be well defined on the Hilbert space $L_2(\mathbb{R})$ in the following different ways:

- as minimal/maximal quasi-differential operators $S_{min}(q)/S_{max}(q)$;
- as Friedrichs extensions $S_F(q)$ of quasi-differential operators $S_{min}(q)$;
- as form-sum operators $S_{form}(q)$;
- as a sequence limits $S_{lim}(q)$ of the Hill-Schrödinger operators with smooth periodic potentials in the norm resolvent sense.

Hryniv and Mykytyuk [HrMk], Djakov and Mityagin [DjMt] studied Friedrichs extensions $S_F(q)$, and Korotyaev [Krt] treated form-sum operators $S_{form}(q)$. We propose join together these results showing an equivalence of all definitions.

More precisely, we will prove the following statements.

Theorem A (Theorem 14). *The Hill-Schrödinger quasi-differential operators $S_{max}(q)$ with distributional potentials $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$ are self-adjoint.*

2000 *Mathematics Subject Classification.* Primary 34L05, 47A05; Secondary 34L40, 47A10, 47B25.

Key words and phrases. Hill equations, Schrödinger operators, singular potentials, spectral gaps, periodic eigenvalues.

Theorem B (Corollary 15, Corollary 16, Theorem 18). *Quasi-differential operators $S_{min}(q)$ and $S_{max}(q)$, Friedrichs extensions $S_F(q)$, form-sum operators $S_{form}(q)$ and operators $S_{lim}(q)$ coincide.*

In the paper [HrMk, Theorem 3.5] the authors tried to show that the operators $S_{max}(q)$ and $S_F(q)$ coincide. But proof of this assertion is incorrect. Our proofs of Theorem A and Theorem B base on a different idea (see Lemma 5).

The equality $S(q) = S_{lim}(q)$ together with the classical Birkhoff-Lyapunov Theorem allow to prove the following statement.

Theorem C (Theorem 19). *The Hill-Schrödinger operators $S(q)$ with distributional potentials $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$ have continuous spectra with a band and gap structure such that the endpoints $\{\lambda_0(q), \lambda_k^\pm(q)\}_{k=1}^\infty$ of spectral gaps satisfy the inequalities:*

$$-\infty < \lambda_0(q) < \lambda_1^-(q) \leq \lambda_1^+(q) < \lambda_2^-(q) \leq \lambda_2^+(q) < \dots$$

Moreover, the endpoints of spectral gaps for even/odd numbers $k \in \mathbb{Z}_+$ are periodic/semiperiodic eigenvalues of the problems on the interval $[0, 1]$,

$$S_\pm(q)u = -u'' + q(x)u = \lambda u, \quad u \in \text{Dom}(S_\pm(q)).$$

It is interested to remark that the last assertion is nontrivial and for the more singular δ' -interactions,

$$q(x) = \sum_{k \in \mathbb{Z}} \beta \delta'(x - k) \notin H_{per}^{-1}(\mathbb{R}), \quad \beta < 0,$$

an unusual situation, when the endpoints of spectral gaps for even/odd numbers $k \in \mathbb{Z}_+$ are semiperiodic/periodic eigenvalues of the problems on the interval $[0, 1]$, is possible [Alb, Theorem III.3.6].

In the closely related paper [HrMk] Hrynniv and Mykytyuk established that spectra of the operators $S(q)$ are absolutely continuous.

2. PRELIMINARIES

2.1. Sobolev spaces. Let us denote by $\mathcal{D}'_1(\mathbb{R})$ the Schwartz space of 1-periodic distributions defined on the whole real axis \mathbb{R} (see, for an example, [Vld]). For a detail characteristic of 1-periodic distributions we introduce Sobolev spaces.

So, Sobolev spaces $H_{per}^s(\mathbb{R})$, $s \in \mathbb{R}$ of 1-periodic functions/distributions are defined by means of their Fourier coefficients:

$$\begin{aligned} H_{per}^s(\mathbb{R}) &:= \left\{ f = \sum_{k \in 2\mathbb{Z}} \widehat{f}(k) e^{ik\pi x} \mid \|f\|_{H_{per}^s(\mathbb{R})} < \infty \right\}, \\ \|f\|_{H_{per}^s(\mathbb{R})} &:= \left(\sum_{k \in 2\mathbb{Z}} \langle k \rangle^{2s} |\widehat{f}(k)|^2 \right)^{1/2}, \quad \langle k \rangle := 1 + |k|, \\ \widehat{f}(k) &:= \langle f, e^{ik\pi x} \rangle_{L_{2,per}(\mathbb{R})}, \quad k \in 2\mathbb{Z}, \\ 2\mathbb{Z} &:= \{k \in \mathbb{Z} \mid k \equiv 0 \pmod{2}\}. \end{aligned}$$

Sesqui-linear form $\langle \cdot, \cdot \rangle_{L_{2,per}(\mathbb{R})}$ pairs the dual, respectively $L_{2,per}(\mathbb{R})$, spaces $H_{per}^s(\mathbb{R})$ and $H_{per}^{-s}(\mathbb{R})$, and it is an extension by continuity the $L_{2,per}(\mathbb{R})$ -inner product [Brz, GrGr],

$$\langle f, g \rangle_{L_{2,per}(\mathbb{R})} := \int_0^1 f(x) \overline{g(x)} dx \quad \forall f, g \in L_{2,per}(\mathbb{R}).$$

It should be noted that

$$H_{per}^0(\mathbb{R}) = L_{2,per}(\mathbb{R}),$$

and that by $\mathfrak{D}'_1(\mathbb{R}, \mathbb{R})$ and $H_{per}^s(\mathbb{R}, \mathbb{R})$, $s \in \mathbb{R}$ are denoted *real-valued* 1-periodic distributions from the correspondent spaces,

$$\begin{aligned}\mathfrak{D}'_1(\mathbb{R}, \mathbb{R}) &:= \{f(x) \in \mathfrak{D}'_1(\mathbb{R}) \mid \text{Im}f(x) = 0\}, \\ H_{per}^s(\mathbb{R}, \mathbb{R}) &:= \{f(x) \in H_{per}^s(\mathbb{R}) \mid \text{Im}f(x) = 0\}.\end{aligned}$$

Note that $\text{Im}f(x) = 0$ for a 1-periodic distribution $f(x) \in \mathfrak{D}'_1(\mathbb{R})$ means that

$$\widehat{f}(2k) = \overline{\widehat{f}(-2k)} \quad \forall k \in \mathbb{Z}.$$

2.2. Quasi-differential equations. The differential expressions in the right-hand of the (1) by introducing quasi-derivatives:

$$u^{[1]}(x) := u'(x) - Q(x)u(x), \quad \langle q, \varphi \rangle = -\langle Q, \varphi' \rangle \quad \forall \varphi \in C_{comp}^\infty(\mathbb{R}),$$

may be re-written as quasi-differential ones [SvSh1, SvSh2],

$$l_Q[u] := -(u' - Qu)' - Q(u' - Qu) - Q^2u,$$

which are well defined if $u, u^{[1]} \in W_{1,loc}^1(\mathbb{R})$ [Nai].

Proposition 1 (Existence and Uniqueness Theorem). *Let $\lambda \in \mathbb{C}$, and $f(x) \in L_{1,loc}(\mathbb{R})$. Then for any complex numbers $c_0, c_1 \in \mathbb{C}$ and arbitrary $x_0 \in \mathbb{R}$ the quasi-differential equation*

$$(3) \quad l_Q[u] = \lambda u + f, \quad \lambda \in \mathbb{C}, \quad f \in L_{1,loc}(\mathbb{R})$$

has one and only one solution $u \in W_{1,loc}^1(\mathbb{R})$ with the initial conditions

$$u(x)|_{x=x_0} = c_0, \quad u^{[1]}(x)|_{x=x_0} = c_1.$$

With the quasi-differential equation (3) it is related the normal 2-dimensional system of the first order differential equations with the locally integrable coefficients,

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}' = \begin{pmatrix} Q & 1 \\ -\lambda - Q^2 & -Q \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} 0 \\ -f \end{pmatrix},$$

where $u_1(x) := u(x)$, $u_2(x) := u^{[1]}(x)$.

Then Proposition 1 follows from [Nai, Theorem 1, §16], also see [AhGl].

Lemma 2 (Lagrange Formula). *Let $u(x)$ and $v(x)$ be functions such that quasi-differential expressions $l_Q[\cdot]$ are well defined. Then the Lagrange formula*

$$l_Q[u]\overline{v} - u l_Q[\overline{v}] = \frac{d}{dx}[u, v]_x$$

holds, where the sesqui-linear forms $[u, v]_x$ are defined in the following fashion:

$$[u, v]_x := u(x)\overline{(v'(x) - Q(x)v(x))} - (u'(x) - Q(x)u(x))\overline{v(x)}.$$

Proof. Under the assumption $u(x)$ and $v(x)$ are such that

$$u, u' - Qu \in W_{1,loc}^1(\mathbb{R}) \quad \text{and} \quad v, v' - Qv \in W_{1,loc}^1(\mathbb{R}).$$

Then we have

$$\begin{aligned}\frac{d}{dx}[u, v]_x &\equiv \frac{d}{dx} \left(u\overline{(v' - Qv)} - (u' - Qu)\overline{v} \right) \\ &= u'\overline{(v' - Qv)} + u\overline{(v' - Qv)'} - (u' - Qu)'\overline{v} - (u' - Qu)\overline{v'} \\ &= l_Q[u]\overline{v} - u l_Q[\overline{v}] + Qu'\overline{v} - Qu\overline{v'} + u'\overline{(v' - Qv)} - (u' - Qu)\overline{v'} \\ &= l_Q[u]\overline{v} - u l_Q[\overline{v}]\end{aligned}$$

taking into account that under the made assumptions

$$u'\overline{v'}, Q^2 u\overline{v}, Qu'\overline{v}, Qu\overline{v'} \in L_{1,loc}(\mathbb{R}).$$

The proof is complete. \square

Integrating both parts of the Lagrange Formula over the compact interval $[\alpha, \beta] \Subset \mathbb{R}$ we obtain the Lagrange Identity in an integral form,

$$(4) \quad \int_{\alpha}^{\beta} l_Q[u]\overline{v} dx - \int_{\alpha}^{\beta} ul_Q[\overline{v}] dx = [u, v]_{\alpha}^{\beta},$$

where

$$[u, v]_{\alpha}^{\beta} := [u, v]_{\beta} - [u, v]_{\alpha}.$$

2.3. Quasi-differential operators on a finite interval. Here, we due to Savchuk and Shkalikov [SvSh1] give a short review of results related with Sturm-Liouville operators with distributional potentials defined on a finite interval.

On the Hilbert space $L_2(0, 1)$ we consider the Sturm-Liouville operators

$$L(q)u := -u'' + q(x)u, \quad u \in \text{Dom}(L(q))$$

with real-valued distributional potentials $q(x) \in H^{-1}([0, 1], \mathbb{R})$, i.e., when

$$Q(x) = \int q(\xi) d\xi \in L_2((0, 1), \mathbb{R}).$$

Set

$$L_{max}(q)u := l_Q[u],$$

$$\text{Dom}(L_{max}(q)) := \{u \in L_2(0, 1) \mid u, u' - Qu \in W_1^1[0, 1], l_Q[u] \in L_2(0, 1)\},$$

and

$$\dot{L}_{min}(q)u := l_Q[u],$$

$$\text{Dom}(\dot{L}_{min}(q)) := \{u \in \text{Dom}(L_{max}(q)) \mid \text{supp } u \Subset [0, 1]\}.$$

We also consider the operators

$$L_{min}(q)u := l_Q[u],$$

$$\text{Dom}(L_{min}(q)) := \left\{ u \in \text{Dom}(L_{max}(q)) \mid u^{[j]}(0) = u^{[j]}(1) = 0, j = 0, 1 \right\}.$$

Proposition 3 ([SvSh1]). *Let suppose that $q(x) \in H^{-1}([0, 1], \mathbb{R})$. Then the following statements are fulfilled:*

- (I) *Operators $L_{min}(q)$ are densely defined on the Hilbert space $L_2(0, 1)$.*
- (II) *Operators $L_{min}(q)$ and $L_{max}(q)$ are mutually adjoint,*

$$L_{min}^*(q) = L_{max}(q), \quad L_{max}^*(q) = L_{min}(q).$$

In particular, operators $L_{min}(q)$ and $L_{max}(q)$ are closed.

In Statement 4, which proof is given in Appendix A.1, we establish relationships between operators $\dot{L}_{min}(q)$ and $L_{min}(q)$.

Statement 4. *Operators $L_{min}(q)$ are closures of operators $\dot{L}_{min}(q)$,*

$$L_{min}(q) = (\dot{L}_{min}(q))^{\sim} = \dot{L}_{min}^{**}(q).$$

3. MAIN RESULTS

3.1. Principal lemma. The following operator-theory statement is an essential point of our approach. It has two important applications in this section.

Lemma 5. *Let A be a densely defined and closed on a complex Banach space X linear operator, and let B be a bounded on X linear operator, such that*

- (a) $BA \subset AB$ (A and B commute);
- (b) $\sigma_p(B) = \emptyset$ (point spectrum $\sigma_p(B)$ of operator B is empty).

Then the operator A has no eigenvalues of a finite multiplicity.

Proof. Let suppose that the operator A has eigenvalue $\lambda \in \sigma_p(A)$ of a finite multiplicity, and let G_λ be a correspondent eigenspace.

Further, let f be an eigenvector of the operator A ,

$$Af = \lambda f, \quad f \in G_\lambda,$$

Then we have

$$A(Bf) = B(Af) = \lambda(Bf), \quad f \in G_\lambda,$$

from where one may conclude that

$$BG_\lambda \subset G_\lambda.$$

Taking into account that under the assumption $\dim(G_\lambda) \in \mathbb{N}$ from the latter we obtain that point spectrum $\sigma_p(B)$ of the operator B is not empty. This contradicts to the condition (b).

The proof is complete. \square

Remark 6. The condition (b) is valid if the space $X = L_p(\mathbb{R}, \mathbb{C})$, $1 \leq p < \infty$, and B be a shift operator,

$$B : y(x) \mapsto y(x + T), \quad T > 0.$$

Indeed, the operator B is an unitary one on the space $X = L_p(\mathbb{R}, \mathbb{C})$. Therefore

$$\sigma_p(B) \subset \sigma(B) = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\},$$

and the equality

$$By(x) = \lambda y(x) = y(x + T), \quad y(x) \neq 0, \quad |\lambda| = 1$$

implies that the function $|y(x)|$ is T -periodic. Then $y(x) \notin L_p(\mathbb{R}, \mathbb{C})$, and one may conclude that $\sigma_p(B) = \emptyset$.

The condition (a) means in this case that the operator A is T -periodic on the line.

3.2. Self-adjointness of the Hill-Schrödinger operators with distributional potentials. Under the assumption (2) the distributional potentials $q(x)$ have got the representations

$$q(x) = C + Q'(x)$$

with

$$C = \widehat{q}(0)$$

and

$$Q(x) = \sum_{k \in 2\mathbb{Z} \setminus \{0\}} \frac{1}{ik\pi} \widehat{q}(2k) e^{ik\pi x} \in L_{2,per}(\mathbb{R}, \mathbb{R})$$

such that

$$\langle q, \varphi \rangle = -\langle Q, \varphi' \rangle \quad \forall \varphi \in C_{comp}^\infty(\mathbb{R}),$$

see [DjMt, Proposition 1], [Vld]. Here, by $\langle f, \cdot \rangle$, $f \in \mathcal{D}'(\mathbb{R})$ we denote sesqui-linear functionals over the space $C_{comp}^\infty(\mathbb{R})$.

Remark 7. Without loss of any generality throughout of the remainder of the paper we will assume that

$$\widehat{q}(0) = 0.$$

Then the Hill-Schrödinger operators can be well defined on the Hilbert space $L_2(\mathbb{R})$ as quasi-differential ones [SvSh1, SvSh2] by means of quasi-expressions,

$$l_Q[u] = -(u' - Qu)' - Q(u' - Qu) - Q^2 u.$$

Set

$$S_{max}(q)u := l_Q[u],$$

$$\text{Dom}(S_{max}(q)) := \{u \in L_2(\mathbb{R}) \mid u, u' - Qu \in W_{1,loc}^1(\mathbb{R}), l_Q[u] \in L_2(\mathbb{R})\},$$

and

$$\dot{S}_{min}(q)u := l_Q[u],$$

$$\text{Dom}(\dot{S}_{min}(q)) := \{u \in \text{Dom}(S_{max}(q)) \mid \text{supp } u \Subset \mathbb{R}\}.$$

It is obvious that operators $S_{max}(q)$ are defined on the maximally possible linear manifolds on which quasi-expressions $l_Q[\cdot]$ are well defined.

Proposition 8. *Let $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$. Then the following statements are fulfilled:*

- (I) *Operators $\dot{S}_{min}(q)$ are symmetric and lower semibounded on the Hilbert space $L_2(\mathbb{R})$. In particular, they are closable.*
- (II) *Closures $S_{min}(q)$ of operators $\dot{S}_{min}(q)$, $S_{min}(q) := (\dot{S}_{min}(q))^\sim$, are symmetric, lower semibounded operators on the Hilbert space $L_2(\mathbb{R})$ with deficiency numbers of a view (m, m) where $0 \leq m \leq 2$. Operators $S_{max}(q)$ are adjoint to operators $S_{min}(q)$,*

$$S_{min}^*(q) = S_{max}(q).$$

In particular, $S_{max}(q)$ are closed operators on the Hilbert space $L_2(\mathbb{R})$, and

$$S_{max}^*(q) = S_{min}(q).$$

- (III) *Domains $\text{Dom}(S_{min}(q))$ of operators $S_{min}(q)$ consist of those and only those functions $u \in \text{Dom}(S_{max}(q))$ which satisfy the conditions:*

$$[u, v]_{+\infty} - [u, v]_{-\infty} = 0 \quad \forall v \in \text{Dom}(S_{max}(q)),$$

where the limits

$$[u, v]_{+\infty} := \lim_{x \rightarrow +\infty} [u, v]_x, \quad \text{and} \quad [u, v]_{-\infty} := \lim_{x \rightarrow -\infty} [u, v]_x$$

are well defined and exist.

Proposition 8, which describes properties of operators $\dot{S}_{min}(q)$ and $S_{max}(q)$, is proved by using methods of a linear quasi-differential operators theory in Appendix A.2.

In Proposition 10 we define the Friedrichs extensions of minimal operators $S_{min}(q)$. But firstly, for a convenience, we remind some related facts and prove the useful Lemma 9.

Let H be a Hilbert space, and \dot{A} is a densely defined, lower semibounded linear operator on H . Hence, \dot{A} is a closable, symmetric operator. Define by A its closure, $A := (\dot{A})^\sim$.

Set

$$\dot{t}[u, v] := (\dot{A}u, v), \quad \text{Dom}(\dot{t}) := \text{Dom}(\dot{A}).$$

As known [Kt] sesqui-linear form $\dot{t}[u, v]$ is closable, lower semibounded and symmetric on a Hilbert space H one. Let $t[u, v]$ be its closure, $t := (\dot{t})^\sim$.

By the operator \dot{A} it is uniquely defined its Friedrichs extension A_F [Kt],

$$t[u, v] = (A_F u, v), \quad u \in \text{Dom}(A_F) \subset \text{Dom}(t), v \in \text{Dom}(t).$$

Due to the First Representation Theorem [Kt] operator A_F is lower semibounded and self-adjoint. In Lemma 9 we describe its domain, but at first note that the following relationships hold:

$$\dot{A} \subset A \subset A_F \subset A^*.$$

Lemma 9. *Let A_F be a Friedrichs extension of a densely defined, lower semibounded operator \dot{A} on a Hilbert space H , and let $t[u, v]$ is a densely defined, closed, symmetric and bounded from below on H sesqui-linear form built by operator \dot{A} . Then the following formula*

$$\text{Dom}(A_F) = \text{Dom}(t) \cap \text{Dom}(A^*)$$

holds.

Proof. It is obvious that

$$\text{Dom}(A_F) \subset \text{Dom}(t) \cap \text{Dom}(A^*).$$

Let prove the inverse inclusion.

Let $u \in \text{Dom}(t) \cap \text{Dom}(A^*)$, and $v \in \text{Dom}(\dot{A}) \subset \text{Dom}(A_F) \subset \text{Dom}(t)$. Remark that $\text{Dom}(\dot{A})$ is a core of the form $t[u, v]$ as well as $\text{Dom}(t) \cap \text{Dom}(A^*)$ containing $\text{Dom}(\dot{A})$. Then we have

$$(A^*u, v) = (u, \dot{A}v) = (u, A_Fv) = \overline{(A_Fv, u)} = \overline{t[v, u]} = t[u, v],$$

i.e.,

$$t[u, v] = (A^*u, v), \quad u \in \text{Dom}(t) \cap \text{Dom}(A^*), v \in \text{Dom}(\dot{A}).$$

Due to the First Representation Theorem [Kt] we get that $u \in \text{Dom}(A_F)$, i.e.,

$$\text{Dom}(t) \cap \text{Dom}(A^*) \subset \text{Dom}(A_F).$$

The proof is complete. \square

Proposition 10. *The Friedrichs extensions $S_F(q)$ of the operators $S_{\min}(q)$ are defined in the following fashion:*

$$S_F(q)u := l_Q[u],$$

$$\text{Dom}(S_F(q)) := \{u \in H^1(\mathbb{R}) \mid u' - Qu \in W_{1,\text{loc}}^1(\mathbb{R}), l_Q[u] \in L_2(\mathbb{R})\}.$$

Proof. Let us introduce the sesqui-linear forms,

$$\dot{t}[u, v] := (\dot{S}_{\min}(q)u, v), \quad \text{Dom}(\dot{t}) := \text{Dom}(\dot{S}_{\min}(q)).$$

As well known [Kt] the sesqui-linear forms $\dot{t}[u, v]$ are densely defined, closable, symmetric and bounded from below on the Hilbert space $L_2(\mathbb{R})$. Taking into account that $\text{Dom}(\dot{S}_{\min}(q)) \subset H_{\text{comp}}^1(\mathbb{R})$ the forms $\dot{t}[u, v]$ have got a view

$$\dot{t}[u, v] = (u', v') - (Qu, v') - (Qu', v), \quad \text{Dom}(\dot{t}) \subset H_{\text{comp}}^1(\mathbb{R}).$$

Set

$$\dot{t}_1[u, v] := (u', v') + (u, v), \quad \text{Dom}(\dot{t}_1) := \text{Dom}(\dot{S}_{\min}(q)) \subset H_{\text{comp}}^1(\mathbb{R}),$$

$$\dot{t}_2[u, v] := -(Qu, v') - (Qu', v) - (u, v), \quad \text{Dom}(\dot{t}_2) := \text{Dom}(\dot{S}_{\min}(q)) \subset H_{\text{comp}}^1(\mathbb{R}),$$

i.e.,

$$\dot{t} = \dot{t}_1 + \dot{t}_2.$$

As well known the form $\dot{t}_1[u, v]$ is closable, and its closure $t_1[u, v]$, $t_1 := (\dot{t}_1)^\sim$, has the representation

$$t_1[u, v] = (u', v') + (u, v), \quad \text{Dom}(t_1) = H^1(\mathbb{R}).$$

As it was shown in the [HrMk] the forms $\dot{t}_2[u, v]$ are t_1 -bounded with relative boundary 0. So, we finally obtain that the forms $\dot{t}[u, v]$ closures $t[u, v]$, $t := (\dot{t})^\sim$, are defined as following,

$$t[u, v] = (u', v') - (Qu, v') - (Qu', v), \quad \text{Dom}(t) = H^1(\mathbb{R}).$$

And the sesqui-linear forms $t[u, v]$ are densely defined, closed, symmetric and lower semi-bounded on the Hilbert space $L_2(\mathbb{R})$.

Further, as

$$S_{min}^*(q)u = l_Q[u], \\ \text{Dom}(S_{min}^*(q)) = \{u \in L_2(\mathbb{R}) \mid u, u' - Qu \in W_{1,loc}^1(\mathbb{R}), l_Q[u] \in L_2(\mathbb{R})\},$$

applying Lemma 9 we get the need representations for Friedrichs extensions of operators $\dot{S}_{min}(q)$.

The proof is complete. \square

Statement 11. *It is valid the following envelops:*

$$\dot{S}_{min}(q) \subset S_{min}(q) \subset S_F(q) \subset S_{max}(q)$$

and

$$\begin{aligned} \text{Dom}(\dot{S}_{min}(q)) &\subset H_{comp}^1(\mathbb{R}), \\ \text{Dom}(S_{min}(q)) &\subset H^1(\mathbb{R}), \quad \text{Dom}(S_F(q)) \subset H^1(\mathbb{R}), \\ \text{Dom}(S_{max}(q)) &\subset L_2(\mathbb{R}) \cap H_{loc}^1(\mathbb{R}). \end{aligned}$$

Statement 11 immediately follows from the correspondent definitions and not very complicated computations.

Now, our aim is to prove a self-adjointness of maximal quasi-differential operators $S_{max}(q)$.

Proposition 12. *Let $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$. The following statements are equivalent:*

- (a) Operators $S_{max}(q)$ are self-adjoint.
- (b) $\text{Dom}(S_{max}(q)) \subset H^1(\mathbb{R})$.
- (c) $u' - Qu \in L_2(\mathbb{R}) \cap W_{1,loc}^1(\mathbb{R}) \quad \forall u \in \text{Dom}(S_{max}(q))$.

Proof. (a) Let $S_{max}(q)$ are self-adjoint. Then as it follows from Proposition 8.II and Statement 11 we obtain

$$\begin{aligned} S_{min}(q) &= S_F(q) = S_{max}(q), \\ \text{Dom}(S_{min}(q)) &= \text{Dom}(S_F(q)) = \text{Dom}(S_{max}(q)) \subset H^1(\mathbb{R}), \end{aligned}$$

and (b) is true.

Further, under the assumptions $Q \in L_{2,per}(\mathbb{R})$ and $u \in H^1(\mathbb{R})$ we have got $Qu \in L_2(\mathbb{R})$ [HrMk] that yields (c).

(b) Let suppose that $\text{Dom}(S_{max}(q)) \subset H^1(\mathbb{R})$. As above we get $Qu \in L_2(\mathbb{R})$, and as a consequence we obtain (c). Then the statement (a) follows from the Lagrange Identity (4), taking into account that

$$[u, v]_{+\infty} = 0 \quad \text{and} \quad [u, v]_{-\infty} = 0$$

for $u, v \in L_2(\mathbb{R})$ and $u' - Qu, v' - Qv \in L_2(\mathbb{R}) \cap W_{1,loc}^1(\mathbb{R})$.

(c) Let given (c), i.e., $u' - Qu \in L_2(\mathbb{R}) \cap W_{1,loc}^1(\mathbb{R}) \quad \forall u \in \text{Dom}(S_{max}(q))$. Then applying the Lagrange Identity (4) as above we have got (a), and as a consequence (b).

The proof is complete. \square

Hryniv and Mykytyuk [HrMk] studied operators associated due to the First Representation Theorem [Kt] with the sesqui-linear forms

$$t[u, v] = (u', v') - (Qu, v') - (Qu', v), \quad \text{Dom}(t) = H^1(\mathbb{R}).$$

I.e., they studied namely Friedrichs extensions $S_F(q)$.

Djakov and Mityagin [DjMt] also treated Friedrichs extensions $S_F(q)$ *a priori* considering operators on the domains

$$\text{Dom}(S_F(q)) = \{u \in H^1(\mathbb{R}) \mid u' - Qu \in W_{1,\text{loc}}^1(\mathbb{R}), l_Q[u] \in L_2(\mathbb{R})\},$$

see Proposition 10 and Proposition 12.

So, due to Proposition 8.II we have

$$S_{\max}(q) \supset S_{\max}^*(q),$$

and therefore it remains to show a symmetry of the operators $S_{\max}(q)$,

$$S_{\max}(q) \subset S_{\max}^*(q).$$

We do it applying Lemma 5.

Let consider on the Hilbert space $L_2(\mathbb{R})$ a shift operator

$$(Uf)(x) := f(x+1), \quad \text{Dom}(U) := L_2(\mathbb{R}),$$

then $\sigma_p(U) = \emptyset$.

Further, let $f \in \text{Dom}(S_{\max}(q))$. It is obvious that $Uf \in \text{Dom}(S_{\max}(q))$ also, and

$$U(S_{\max}(q)f) = Ul_Q[f(x)] = l_Q[f(x+1)] = l_Q[(Uf)(x)] = S_{\max}(q)(Uf),$$

i.e., operators $S_{\max}(q)$ and U commute.

Taking into account that $S_{\max}(q)$ are the second order quasi-differential operators, i.e., their possible eigenvalues cannot have multiplicities more than two, and applying Lemma 5 to the operators $S_{\max}(q)$ and U we obtain the next proposition.

Proposition 13. *Point spectra $\sigma_p(S_{\max}(q))$ of the quasi-differential operators $S_{\max}(q)$ are empty.*

Theorem 14. *The quasi-differential operators $S_{\max}(q)$ are self-adjoint.*

Proof. From Proposition 8.II and Proposition 13 we get that the minimal symmetric operators $S_{\min}(q)$ have deficiency index of a view $(0, 0)$, i.e., they are self-adjoint. Due to Proposition 8.II this implies that the operators $S_{\max}(q)$ are self-adjoint also.

The proof is complete. \square

Corollary 15. *Minimal operators $S_{\min}(q)$, Friedrichs extensions $S_F(q)$ and maximal operators $S_{\max}(q)$ coincide. In particular, they are self-adjoint and lower semibounded.*

Corollary 16. *Let $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$, and $q_n(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$, $n \in \mathbb{N}$ such that*

$$q_n(x) \xrightarrow{H_{per}^{-1}(\mathbb{R})} q(x) \quad \text{as } n \rightarrow \infty.$$

Then the Hill-Schrödinger operators $S(q_n)$, $n \in \mathbb{N}$ converge to the operators $S(q)$ in the norm resolvent sense,

$$\|(S(q_n) - \lambda I)^{-1} - (S(q) - \lambda I)^{-1}\| \rightarrow 0 \quad \text{as } n \rightarrow \infty,$$

for any λ belonging to resolvent sets of $S(q)$ and $S(q_n)$, $n \in \mathbb{N}$.

Proof. It immediately follows from [HrMk, Theorem 4.1] and Corollary 15. \square

In particular, the Hill-Schrödinger operators $S(q)$ with distributional potentials $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$ are a sequence limits $S_{lim}(q)$ of operators $S(q_n)$, $n \in \mathbb{N}$ with smooth potentials $q_n(x) \in L_{2,per}(\mathbb{R}, \mathbb{R})$. For an instance, for

$$q(x) = \sum_{k \in \mathbb{Z}} \widehat{q}(2k) e^{i 2k\pi x} \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$$

we may choose

$$q_n(x) := \sum_{|k| \leq n} \widehat{q}(2k) e^{i 2k\pi x} \in C_{per}^\infty(\mathbb{R}, \mathbb{R}), \quad n \in \mathbb{N}.$$

Now, we are going to define the Hill-Schrödinger operators with distributional potentials as form-sum operators [Krt]. We will show that this definition coincides with the given above ones.

Let consider on the Hilbert space $L_2(\mathbb{R})$ the sesqui-linear forms

$$\tau[u, v] := \left\langle -\frac{d^2}{dx^2} u, v \right\rangle_{L_2(\mathbb{R})} + \langle q(x)u, v \rangle_{L_2(\mathbb{R})}, \quad \text{Dom}(\tau) = H^1(\mathbb{R}),$$

generated by the one-dimensional Schrödinger operators with $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$.

Here, by $\langle \cdot, \cdot \rangle_{L_2(\mathbb{R})}$ is denoted sesqui-linear form pairing dual, respectively $L_2(\mathbb{R})$, spaces $H^s(\mathbb{R})$ and $H^{-s}(\mathbb{R})$ for $s \in \mathbb{R}$, which (sesqui-linear form) is an extension by continuity the $L_2(\mathbb{R})$ -inner product [Brz, GrGr],

$$\langle f, g \rangle_{L_2(\mathbb{R})} := \int_{\mathbb{R}} f(x) \overline{g(x)} dx \quad \forall f, g \in L_2(\mathbb{R}).$$

As known [Krt] the sesqui-linear forms $\tau[u, v]$ are densely defined, closed, bounded from below, defined on the Hilbert space $L_2(\mathbb{R})$ ones. Due to the First Representation Theorem [Kt] with them it is associated uniquely defined on the Hilbert space $L_2(\mathbb{R})$ self-adjoint, lower semibounded operators $S_{form}(q)$ such that

i) $\text{Dom}(S_{form}(q)) \subset \text{Dom}(\tau)$, and

$$\tau[u, v] = (S_{form}(q)u, v) \quad \forall u \in \text{Dom}(S_{form}(q)), \forall v \in \text{Dom}(\tau);$$

ii) $\text{Dom}(S_{form}(q))$ are cores of the forms $\tau[u, v]$;

iii) if $u \in \text{Dom}(\tau)$, $w \in L_2(\mathbb{R})$, and

$$\tau[u, v] = (w, v)$$

hold for every v in cores of the forms $\tau[u, v]$, then $u \in \text{Dom}(S_{form}(q))$ and

$$S_{form}(q)u = w.$$

Operators $S_{form}(q)$ are called form-sum operators associated with the forms $\tau[u, v]$, and denoted as following

$$S_{form}(q) := -\frac{d^2}{dx^2} + q(x),$$

and also it is convenient to use the denotations

$$\tau_{S_{form}(q)}[u, v] \equiv \tau[u, v].$$

Proposition 17 ([Krt]). *The Hill-Schrödinger operators with distributional potentials from the negative Sobolev space $H_{per}^{-1}(\mathbb{R}, \mathbb{R})$ are well defined on the Hilbert space $L_2(\mathbb{R})$ as self-adjoint, lower semibounded form-sum operators $S_{form}(q)$,*

$$S_{form}(q) = -\frac{d^2}{dx^2} + q(x),$$

associated with the sesqui-linear forms

$$\tau_{S_{form}(q)}[u, v] = \left\langle -\frac{d^2}{dx^2} u, v \right\rangle_{L_2(\mathbb{R})} + \langle q(x)u, v \rangle_{L_2(\mathbb{R})}, \quad \text{Dom}(\tau) = H^1(\mathbb{R}),$$

acting on the dense domains

$$\text{Dom}(S_{form}(q)) := \left\{ u \in H^1(\mathbb{R}) \mid -\frac{d^2}{dx^2} u + q(x)u \in L_2(\mathbb{R}) \right\}$$

as

$$S_{form}(q)u := -\frac{d^2}{dx^2}u + q(x)u \in L_2(\mathbb{R}), \quad u \in \text{Dom}(S_{form}(q)).$$

Theorem 18. *The quasi-differential operators $S(q)$ and form-sum operators $S_{form}(q)$ coincide.*

Proof. Let $u \in \text{Dom}(S(q))$. Let us remember that

$$\text{Dom}(S(q)) = \{u \in H^1(\mathbb{R}) \mid u' - Qu \in W_{1,loc}^1(\mathbb{R}), l_Q[u] \in L_2(\mathbb{R})\},$$

i.e.,

$$\text{Dom}(S(q)) \subset \text{Dom}(\tau_{S_{form}(q)}) = H^1(\mathbb{R}).$$

Then we have,

$$\begin{aligned} \tau_{S_{form}(q)}[u, v] &= \langle -u'', v \rangle_{L_2(\mathbb{R})} + \langle q(x)u, v \rangle_{L_2(\mathbb{R})} = \langle u', v' \rangle_{L_2(\mathbb{R})} - \langle Q(x), \bar{u}'v + \bar{u}v' \rangle_{L_2(\mathbb{R})} \\ &= (u', v') - (Qu, v') - (Qu', v) = (l_Q[u], v) \quad \forall v \in C_{comp}^\infty(\mathbb{R}). \end{aligned}$$

And due to the First Representation Theorem [Kt] we conclude that

$$u \in \text{Dom}(S_{form}(q)), \quad \text{and} \quad S_{form}(q)u = l_Q[u],$$

i.e.,

$$S(q) \subset S_{form}(q).$$

Taking into account that operators $S(q)$ and $S_{form}(q)$ are self-adjoint from the latter we have got also the inverse inclusions

$$S(q) \supset S_{form}(q).$$

The proof is complete. \square

3.3. Spectra of the Hill-Schrödinger operators with distributional potentials. Here, we establish characteristic properties of a spectrum structure of the Hill-Schrödinger operators $S(q)$ with distributional potentials $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$. By means of a limit process in generalized sense applied to the Hill-Schrödinger operators $S(q_n)$, $n \in \mathbb{N}$ with smooth potentials $q_n(x) \in L_{2,per}(\mathbb{R}, \mathbb{R})$ (see Corollary 16) we show that the Hill-Schrödinger operators $S(q)$ with distributions $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$ as potentials have continuous spectra with a band and gap structure.

For different approaches see [HrMk, Krt, DjMt].

At first let us remind well known results related with the classical case of $L_{2,per}(\mathbb{R}, \mathbb{R})$ -potentials $q(x)$,

$$(5) \quad q(x) \in L_{2,per}(\mathbb{R}, \mathbb{R}),$$

see, for an example, [DnSch2, ReSi4]. Under the assumption (5) the Hill-Schrödinger operators $S(q)$ are lower semibounded and self-adjoint on the Hilbert space $L_2(\mathbb{R})$, they have absolutely continuous spectra with a band and gap structure.

Spectra of the Hill-Schrödinger operators are defined well by a location of the spectral gap endpoints. It is known that for the endpoints $\{\lambda_0(q), \lambda_k^\pm(q)\}_{k=1}^\infty$ of spectral gaps it is valid the following inequalities:

$$(6) \quad -\infty < \lambda_0(q) < \lambda_1^-(q) \leq \lambda_1^+(q) < \lambda_2^-(q) \leq \lambda_2^+(q) < \dots .$$

Spectral bands (or stability zones),

$$\mathcal{B}_0(q) := [\lambda_0(q), \lambda_1^-(q)], \quad \mathcal{B}_k(q) := [\lambda_k^+(q), \lambda_{k+1}^-(q)], \quad k \in \mathbb{N},$$

are characterized as a locus of those real $\lambda \in \mathbb{R}$ for which all solutions of the equation

$$(7) \quad S(q)u = \lambda u$$

are bounded. On the other hand, spectral gaps (or instability zones),

$$\mathcal{G}_0(q) := (-\infty, \lambda_0(q)), \quad \mathcal{G}_k(q) := (\lambda_k^-(q), \lambda_k^+(q)), \quad k \in \mathbb{N},$$

are a locus of those real $\lambda \in \mathbb{R}$ for which any nontrivial solution of the equation (7) is unbounded.

As we see from the (6) it is possible situation when

$$\lambda_k^-(q) = \lambda_k^+(q)$$

for some $k \in \mathbb{N}$. In this case one say that the correspondent spectral gap $\mathcal{G}_k(q)$ is *collapsed*, or *closed*. Note, that for spectral bands it cannot happen.

Further, it happens that the endpoints of spectral gaps for even numbers $k \in \mathbb{Z}_+$ are periodic eigenvalues of the problems on the interval $[0, 1]$:

$$S_+(q)u := -u'' + q(x)u = \lambda u, \quad u \in \text{Dom}(S_+(q)),$$

and the endpoints of spectral gaps for odd numbers $k \in \mathbb{N}$ are semiperiodic eigenvalues of the problems on the interval $[0, 1]$:

$$S_-(q)u := -u'' + q(x)u = \lambda u, \quad u \in \text{Dom}(S_-(q)).$$

Under the assumption (5) domains of operators $S_+(q)$ and $S_-(q)$ have a view

$$\text{Dom}(S_{\pm}(q)) = \left\{ u \in H^2[0, 1] \mid u^{(j)}(0) = \pm u^{(j)}(1), j = 0, 1 \right\}.$$

Now, applying a limit process in generalized sense (see Corollary 16) to the Hill-Schrödinger operators $S(q_n)$, $n \in \mathbb{N}$ with $L_{2,per}(\mathbb{R}, \mathbb{R})$ -potentials $q_n(x)$ we establish the following statement.

Theorem 19. *Suppose that $q(x) \in H_{per}^{-1}(\mathbb{R}, \mathbb{R})$. Then the Hill-Schrödinger operators $S(q)$ have continuous spectra with a band and gap structure such that the endpoints $\{\lambda_0(q), \lambda_k^{\pm}(q)\}_{k=1}^{\infty}$ of spectral gaps satisfy the inequalities:*

$$-\infty < \lambda_0(q) < \lambda_1^-(q) \leq \lambda_1^+(q) < \lambda_2^-(q) \leq \lambda_2^+(q) < \dots$$

Moreover, the endpoints of spectral gaps for even/odd numbers $k \in \mathbb{Z}_+$ are periodic/semiperiodic eigenvalues of the problems on the interval $[0, 1]$,

$$S_{\pm}(q)u = -u'' + q(x)u = \lambda u, \quad u \in \text{Dom}(S_{\pm}(q)).$$

Remark 20. Operators $S_+(q)$ and $S_-(q)$ are well defined on the Hilbert space $L_2(0, 1)$ as lower semi-bounded, self-adjoint form-sum operators,

$$S_{\pm}(q) = \left(-\frac{d^2}{dx^2} \right)_{\pm} + q(x).$$

Also they can be well defined in alternative equivalent ways: as quasi-differential ones and as a sequence limits in the norm resolvent sense of operators with smooth potentials.

In the papers [MiMl3, MiMl4, MiMl5] the authors meticulously treated the form-sum operators

$$S_{\pm}(V) = \left((-1)^m \frac{d^{2m}}{dx^{2m}} \right)_{\pm} + V(x), \quad V(x) \in H_{per}^{-m}[0, 1], m \in \mathbb{N}$$

defined on $L_2(0, 1)$.

And in the [Mlb, MiMl1, MiMl2] it is studied two terms differential operators of an even order defined on the *negative* Sobolev spaces.

Proof. Let $\{q_n(x)\}_{n \in \mathbb{N}}$ is a sequence of real-valued trigonometric polynomials which converge to the singular potential $q(x)$ by the norm of the space $H_{per}^{-1}(\mathbb{R})$. With this sequence one may associate a sequence of self-adjoint operators $\{S_{\pm}(q_n)\}_{n \in \mathbb{N}}$ defined on $L_2(0,1)$ and a sequence of Hill operators $\{S(q_n)\}_{n \in \mathbb{N}}$ defined on $L_2(\mathbb{R})$. As it was proved by the authors in the [MiMi3, MiMi5] the sequences $\{S_{\pm}(q_n)\}_{n \in \mathbb{N}}$ converge to operators $S_{\pm}(q)$ in the norm resolvent sense. Hence, eigenvalues of these operators $\{S_{\pm}(q_n)\}_{n \in \mathbb{N}}$ converge to correspondent eigenvalues of limiting operators $S_{\pm}(q)$ [ReSi1, Theorem VIII.23 and Theorem VIII.24] (also see [Kt]). Further, as well known [CdLv, DnSch2] for the operators $\{S_{\pm}(q_n)\}_{n \in \mathbb{N}}$ it holds the assertions of theorem, i.e.,

$$(8) \quad -\infty < \lambda_0(q_n) < \lambda_1^-(q_n) \leq \lambda_1^+(q_n) < \lambda_2^-(q_n) \leq \lambda_2^+(q_n) < \dots$$

Moreover, as we already have proved (see Corollary 16) the sequence $\{S(q_n)\}_{n \in \mathbb{N}}$ converge to the operator $S(q)$ in the norm resolvent sense. Therefore, from the (8) we get

$$-\infty < \lambda_0(q) \leq \lambda_1^-(q) \leq \lambda_1^+(q) \leq \lambda_2^-(q) \leq \lambda_2^+(q) \leq \dots,$$

where $\lambda_0(q), \lambda_{2k}^{\pm}(q) \in \sigma(S_+(q))$ and $\lambda_{2k-1}^{\pm}(q) \in \sigma(S_-(q)), k \in \mathbb{N}$.

Now, it remains to show that the strong inequalities

$$\lambda_k^+(q_n) < \lambda_{k+1}^-(q_n), \quad k \in \mathbb{Z}_+$$

can not become into equalities. Really, let suppose contrary. Then, one of the operator $S(q)$ spectral zones degenerates into the point:

$$\lambda_{k_0}^+(q) = \lambda_{k_0+1}^-(q), \quad k_0 \in \mathbb{Z}_+.$$

As it is isolate the operator $S(q)$ spectrum point, therefore, it cannot belong to continuous spectrum $\sigma_c(S(q))$ of the one. On the other hand, it cannot belong to the operator $S(q)$ point spectrum as $\sigma_p(S(q)) = \emptyset$. And obtained contradiction proves the inequalities of theorem.

The proof is complete. \square

4. CONCLUDING REMARKS

From the direct integral decomposition of the Hill-Schrödinger operators $S(q)$ [HrMk] and the known Reed-Simon Theorem [ReSi4, Theorem XIII.86] follow that $\sigma_{sc}(S(q)) = \emptyset$. Therefore, the proved in this paper continuity of the operators $S(q)$ spectra yield their absolutely continuity [MiSb].

From Theorem C and the authors results [MiMi3] one obtain a series of theorems establishing relationships between spectral gap lengths and a smoothness of distributional potentials $q(x) \in H_{per}^{-s}(\mathbb{R}, \mathbb{R}), s \geq -1$ of the Hill-Schrödinger operators $S(q)$ [MiMi6].

Acknowledgment. The investigation of the first author was partially supported by Ukrainian Foundation for Fundamental Research, Grant 14.1/003.

APPENDIX: SOME PROOFS

A.1. Proof of Statement 4. At first note that from the relationships

$$\dot{L}_{min}(q) \subset L_{min}(q)$$

follows that

$$(\dot{L}_{min}(q))^{\sim} \subset L_{min}(q),$$

see Proposition 3.III. Therefore, it suffices to show the inverse inclusions

$$(\dot{L}_{min}(q))^{\sim} \supset L_{min}(q).$$

Let $\Delta = [\alpha, \beta]$ denotes a fixed, closed interval completely belonging to the interval $[0, 1]$, and let

$$\mathfrak{H}_\Delta := L_2(\alpha, \beta).$$

On the Hilbert space \mathfrak{H}_Δ one may consider operators $L_{min,\Delta}(q)$ and $L_{max,\Delta}(q)$ generated by $l_Q[\cdot]$ on the interval Δ which due to Proposition 3.III are mutually adjoint,

$$L_{min,\Delta}^*(q) = L_{max,\Delta}(q), \quad L_{max,\Delta}^*(q) = L_{min,\Delta}(q).$$

On the other hand the Hilbert space \mathfrak{H}_Δ can be well inject into the space $\mathfrak{H} := L_2(0, 1)$ assuming that over the interval Δ a function $u \in \mathfrak{H}_\Delta$ is equal zero. Thus, domains $\text{Dom}(L_{min,\Delta}(q))$ of operators $L_{min,\Delta}(q)$ become of a part of domains $\text{Dom}(L_{max}(q))$ of operators $L_{max}(q)$ as under such extension of function $u \in \text{Dom}(L_{min,\Delta}(q))$ over the interval Δ a continuity of its quasi-derivatives $u^{[j]}(x)$, $j = 0, 1$, is not destroy. Moreover, extended in such fashion function $u \in \text{Dom}(L_{min,\Delta}(q))$ then belong to the $\text{Dom}(\dot{L}_{min}(q))$. Therefore, if $v \in \text{Dom}(\dot{L}_{min}^*(q))$ then we have

$$(9) \quad (\dot{L}_{min}^*(q)v, u) = (v, \dot{L}_{min}(q)u) \quad \forall u \in \text{Dom}(L_{min,\Delta}(q)).$$

As $u(x) = 0$ over the interval Δ scalar product in the (9) is an \mathfrak{H}_Δ -inner product. Denoting these scalar products by index Δ we can re-write (9) as following,

$$((\dot{L}_{min}^*(q)v)_\Delta, u)_\Delta = (v_\Delta, L_{min,\Delta}(q)u)_\Delta \quad \forall u \in \text{Dom}(L_{min,\Delta}(q)).$$

Here, by $(\dot{L}_{min}^*(q)v)_\Delta$, v_Δ are denoted functions $\dot{L}_{min}^*(q)v$ and v considered only in the interval Δ . So, from the latter we obtain

$$v_\Delta \in \text{Dom}(L_{min,\Delta}^*(q)) = \text{Dom}(L_{max,\Delta}(q))$$

and

$$(\dot{L}_{min}^*(q)v)_\Delta = L_{min,\Delta}^*(q)v_\Delta = L_{max,\Delta}(q)v_\Delta = (l_Q[v])_\Delta.$$

As these relationships are valid for any interval $\Delta \subset [0, 1]$ we conclude that

$$v \in \text{Dom}(L_{max}(q)), \quad \text{and} \quad \dot{L}_{min}^*(q)v = l_Q[v] = L_{max}(q)v.$$

Thus, it has been proved

$$\dot{L}_{min}^*(q) \subset L_{max}(q),$$

i.e., we have

$$\dot{L}_{min}^{**}(q) \supset L_{max}^*(q) = L_{min}(q),$$

that implies the required inclusions,

$$(\dot{L}_{min}(q))^\sim \supset L_{min}(q).$$

The proof is complete.

A.2. Proof of Proposition 8. (I) At first note that

$$(10) \quad \text{Dom}(\dot{S}_{min}(q)) \subset H_{comp}^1(\mathbb{R}).$$

Let $u \in \text{Dom}(\dot{S}_{min}(q))$, then we have

$$(\dot{S}_{min}(q)u, u) = (l_Q[u], u) = (u', u') - (Qu, u') - (Qu', u)$$

taking into account that due to the (10)

$$|u'|^2, Quu' \in L_{1,comp}(\mathbb{R}).$$

Further, (Qu, u') and (Qu', u) we estimate as in the [HrMk],

$$|(Qu, u')| \leq \|Q\|_{L_{2,per}(\mathbb{R})} (\varepsilon \|u'\|_{L_2(\mathbb{R})} + b(\varepsilon^{-1}) \|u\|_{L_2(\mathbb{R})}), \quad \varepsilon \in (0, 1], b \geq 0,$$

that yields

$$(\dot{S}_{min}(q)u, u) \geq -\gamma(\varepsilon^{-1})\|u\|_{L_2(\mathbb{R})} \quad \forall u \in \text{Dom}(\dot{S}_{min}(q)), \gamma \geq 0.$$

And we can conclude that $\dot{S}_{min}(q)$ are Hermitian lower semibounded on $L_2(\mathbb{R})$ operators.

Now, let show that $\text{Dom}(\dot{S}_{min}(q))$ are dense in the Hilbert space $L_2(\mathbb{R})$.

Obviously, it is sufficient to prove that any element $h \in \mathfrak{H}$, $\mathfrak{H} := L_2(\mathbb{R})$, which is orthogonal to $\text{Dom}(\dot{S}_{min}(q))$ is equal zero. Let suppose that $h(x)$ is namely a such function, i.e.,

$$h(x) \perp \text{Dom}(\dot{S}_{min}(q)),$$

and let $\Delta = [\alpha, \beta]$ is a fixed, closed interval compactly belonging to the real axis \mathbb{R} ($\Delta \Subset \mathbb{R}$). Any element $u \in \text{Dom}(S_{min,\Delta}(q))$ can be viewed as element from $\text{Dom}(\dot{S}_{min}(q))$ (with respect to the denotations see the proof of Statement 4), consequently, $h(x)$ is orthogonal to $\text{Dom}(S_{min,\Delta}(q))$. Due to Proposition 3.II $\text{Dom}(S_{min,\Delta}(q))$ are dense in $\mathfrak{H}_\Delta = L_2(\alpha, \beta)$, hence function $h(x)$ considered in the interval Δ has to be equal zero almost everywhere in Δ .

For an arbitrariness of the interval $\Delta \Subset \mathbb{R}$ choice we conclude that $h(x) = 0$ almost everywhere on \mathbb{R} .

So, statement (I) of Proposition 8 has been proved completely.

(II) It is obvious that operators $S_{min}(q)$ are symmetric, lower semibounded on the Hilbert space $L_2(\mathbb{R})$ ones.

Make sure that operators $S_{min}(q)$ and $S_{max}(q)$ are mutually adjoint. As $(\dot{S}_{min}(q))^\sim = S_{min}(q)$, therefore $\dot{S}_{min}^*(q) = S_{min}^*(q)$, and it suffices to show that

$$\dot{S}_{min}^*(q) = S_{max}(q).$$

Applying the Lagrange Identity (4) we have got

$$(S_{max}(q)u, v) = (u, \dot{S}_{min}(q)v) \quad \forall u \in \text{Dom}(S_{max}(q)), \forall v \in \text{Dom}(\dot{S}_{min}(q)),$$

that implies

$$S_{max}(q) \subset \dot{S}_{min}^*(q).$$

So, it remains to prove the inverse inclusions,

$$S_{max}(q) \supset \dot{S}_{min}^*(q).$$

We do it in a similar fashion as in the proof of Statement 4.

Let $v(x)$ is an arbitrary element from the domains $\text{Dom}(\dot{S}_{min}^*(q))$ of the operators $\dot{S}_{min}^*(q)$, and let $\Delta = [\alpha, \beta]$ is a fixed, compact interval ($\Delta \Subset \mathbb{R}$). As in the proof of Statement 4 we obtain

$$\left((\dot{S}_{min}^*(q)v)_\Delta, u \right)_\Delta = (v_\Delta, S_{min,\Delta}(q)u)_\Delta \quad \forall u \in \text{Dom}(S_{min,\Delta}(q)).$$

So, one can conclude that

$$v_\Delta \in \text{Dom}(S_{max,\Delta}(q))$$

and

$$(\dot{S}_{min}^*(q)v)_\Delta = S_{min,\Delta}^*(q)v_\Delta = S_{max,\Delta}(q)v_\Delta = (l_Q[v])_\Delta.$$

Taking into account an arbitrariness of the interval $\Delta \subset \mathbb{R}$ choice we finally get that

$$v \in \text{Dom}(S_{max}(q)), \quad \text{and} \quad \dot{S}_{min}^*(q)v = l_Q[v] = S_{max}(q)v,$$

i.e, the required inclusions

$$S_{max}(q) \supset \dot{S}_{min}^*(q)$$

hold.

Further, let find deficiency index of the operators $S_{min}(q)$. At first it is necessary note as the operators $S_{min}(q)$ are lower semibounded therefore their deficiency numbers are equal.

Let $\lambda \in \mathbb{C}$, $\operatorname{Im} \lambda \neq 0$. Then the operators $S_{\min}(q)$ deficiency numbers, which we will denote by m , are equal to the number of linear independent solutions of the equation

$$S_{\min}^*(q)u = \lambda u,$$

i.e., of the equation (Proposition 8.II)

$$S_{\max}(q)u = \lambda u.$$

In other words the deficiency number is a maximal number of linear independent solutions of the equation

$$l_Q[u] = \lambda u$$

in the Hilbert space $L_2(\mathbb{R})$. As a whole number of linear independent solutions of this equation is equal 2 we conclude that

$$0 \leq m \leq 2.$$

Assertion (II) has been proved.

(III) Let $u, v \in \operatorname{Dom}(S_{\max}(q))$. Then applying the Lagrange Identity (4) we conclude that there exist the limits

$$[u, v]_{+\infty} := \lim_{x \rightarrow +\infty} [u, v]_x, \quad \text{and} \quad [u, v]_{-\infty} := \lim_{x \rightarrow -\infty} [u, v]_x,$$

and as a consequence the Lagrange Identity (4) has got a view

$$(11) \quad (l_Q[u], v) - (u, l_Q[v]) = [u, v]_{-\infty}^{+\infty} \quad \forall u, v \in \operatorname{Dom}(S_{\max}(q)).$$

Further, due to Proposition 8.II it holds

$$S_{\min}(q) = S_{\max}^*(q).$$

Therefore, domains $\operatorname{Dom}(S_{\min}(q))$ consist of that and only that functions $u \in \operatorname{Dom}(S_{\max}(q))$ which satisfy the relationships

$$(u, S_{\max}(q)v) = (S_{\max}(q)u, v) \quad \forall v \in \operatorname{Dom}(S_{\max}(q)).$$

Together with the Lagrange Identity (11) the latter implies the required assertion, i.e.,

$$u \in \operatorname{Dom}(S_{\min}(q)) \Leftrightarrow [u, v]_{+\infty} - [u, v]_{-\infty} = 0 \quad u \in \operatorname{Dom}(S_{\max}(q)), \forall v \in \operatorname{Dom}(S_{\max}(q)).$$

Proposition 8 has been proved.

REFERENCES

- [AhGl] Akhiezer, N., I., Glazman, I., M., *Theory of linear operators in Hilbert space*, Dover Publications, Inc., New York, 1993, 218 pp.; Russian edition: Nauka, Moscow, 1966, 544 pp.
- [Alb] Albeverio, S., Gesztesy, F., Høegh Krohn, R., Holden, H., *Solvable models in quantum mechanics*, Springer-Verlag, New York, etc., 1988; Russian edition: Mir, Moscow, 1991, 568 pp.
- [Brz] Berezansky, Yu., M., *Expantions in eigenfunctions of self-adjoint operators*, Transl. Math. Monographs, vol. 17, Amer. Math. Soc., Providence, RI, 1968, 809 pp.; Russian edition: Naukova Dumka, Kiev, 1965, 800 pp.
- [CdLv] Coddington, E., Levinson, N., *Theory of ordinary differential operators*, McGraw-Hill Book Company, Inc., New York, etc., 1955; Russian edition: Izd. In. Lit., Moscow, 1958, 475 pp.
- [DjMt] Djakov, P., Mityagin, B., *Fourier method for one dimensional Schrödinger operators with singular periodic potentials*, arXiv:math.SP/0710.0237v1 1 Oct 2007, 1–39.
- [DnSch2] Dunford, N., Schwartz, J., T., *Linear operators, Part II: Spectral theory. Self-adjoint operators in Hilbert space*, Interscience, New York, London, 1963; Russian edition: Mir, Moscow, 1966, 1064 pp.
- [GrGr] Gorbachuk, V., I., Gorbachuk, M., L., *Boundary value problems for operator differential equations*, Kluwer, Dordrecht, etc., 1991, 347 pp.; Russian edition: Naukova Dumka, Kiev, 1984, 283 pp.
- [HrMk] Hrynniv, R., Mykytyuk, Ya., *1-D Schrödinger operators with periodic singular potentials*, Meth. Funct. Anal. Top. **7** (2001), no. 4, 31–42.
- [Kt] Kato, T., *Perturbation theory for linear operators*, Springer-Verlag, Berlin, etc., 1966, 592 pp.; Russian edition: Mir, Moscow, 1972, 740 pp.

- [Krt] Korotyaev, E., *Characterization of the spectrum of Schrödinger operators with periodic distributions*, Int. Math. Res. Not. **37** (2003), 2019–2031.
- [MiMl1] Mikhailets, V., Molyboga, V., *Singular eigenvalue problems on the circle*, Meth. Funct. Anal. Top., **10** (2004), no. 3, 44–53.
- [MiMl2] Mikhailets, V., Molyboga, V., *Uniform estimates for the semi-periodic eigenvalues of the singular differential operators*, Meth. Funct. Anal. Top., **10** (2004), no. 4, 30–57.
- [MiMl3] Mikhailets, V., Molyboga, V., *The spectral problems over the periodic classes of distributions* (Ukrainian), Preprint, Institute of Mathematics of NAS of Ukraine, Kyiv, 2004, 46 pp.
- [MiMl4] Mikhailets, V., Molyboga, V., *The perturbation of periodic and semiperiodic operators by Schwartz distributions* (Russian), Repots of NAS of Ukraine, **7** (2006), 26 – 31.
- [MiMl5] Mikhailets, V., Molyboga, V., *Singularly perturbed periodic and semiperiodic differential operators*, Ukrainian Math. J. **59** (2007), no. 6, 785–797.
- [MiMl6] Mikhailets, V., Molyboga, V., *Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials*, to appear.
- [MiSb] Mikhailets, V., Sobolev, A., *Common eigenvalue problem and periodic Schrödinger operators*, J. Funct. Anal. **165** (1999), 150–172.
- [Mlb] Molyboga, V., *Estimates for periodic eigenvalues of the differential operator $(-1)^m d^{2m}/dx^{2m} + V$ with V – distribution*, Meth. Funct. Anal. Top., **9** (2003), no. 2, 163–178.
- [Nai] Naimark, M., A., *Linear differential operators*, Parts I and II, Ungar, New York, 1968; Russian edition: Nauka, Moscow, 1969, 528 pp.
- [ReSi1] Reed, M., Simon, B., *Methods of modern mathematical physics*: Vols 1-4, Academic Press, New York, etc, 1972–1978, V. 1: *Functional Analysis*, 1972, 400 pp. (Russian edition: Mir, Moscow, 1977, 359 pp.).
- [ReSi4] Reed, M., Simon, B., *Methods of modern mathematical physics*: Vols 1-4, Academic Press, New York, etc, 1972–1978, V. 4: *Analysis of operators*, 1978, 396 pp. (Russian edition: Mir, Moscow, 1982, 428 pp.).
- [SvSh1] Savchuk, A., Shkalikov, A., *Sturm-Liouville operators with singular potentials*, Matem. Zametki **66** (1999), no. 6, 897–912.
- [SvSh2] Savchuk, A., Shkalikov, A., *Sturm-Liouville operators with distribution potentials* Russian, Tr. Mosk. Mat. Obs. **64** (2003), 159–212; translation in Trans. Moscow Math. Soc. (2003), 143–192.
- [Vld] Vladimirov, V., S., *Generalized functions in mathematical physics* (Russian), Nauka, Moscow, 1976, 280 pp.

INSTITUTE OF MATHEMATICS OF NAS OF UKRAINE
E-mail address: mikhailets@imath.kiev.ua

INSTITUTE OF MATHEMATICS OF NAS OF UKRAINE
E-mail address: molyboga@imath.kiev.ua