Shane M. Parker, PhD (January 14, 2024)

Frank Hovorka Assistant Professor of Chemistry Case Western Reserve University Department of Chemistry 10900 Euclid Ave., Cleveland, OH 44106 web: quantumparker.com ph: (216) 368-3697

orcid: 0000-0002-1110-3393 scholar: OqC2Vc8AAAAJ

positions

2021 –	Frank Hovorka Assistant Professor of Chemistry Case Western Reserve University	Cleveland, OH
2019 – 2021	Assistant Professor of Chemistry Case Western Reserve University	Cleveland, OH
2014 – 2019	Postdoctoral Fellow (Arnold O. Beckman Postdoctoral Fellow since 2016) University of California Irvine Advisor: Professor Filipp Furche	Irvine, CA
2009 – 2014	PhD, Theoretical Chemistry Northwestern University Advisor: Professor Mark Ratner and Professor Tamar Seideman	Evanston, IL
2008 – 2009	Fulbright Fellow Technische Universität München Advisor: Professor Notker Rösch	Munich, Germany
2004 – 2008	B.S., Chemistry & B.S., Mathematics University of Florida Advisor: Professor N. Yngve Öhrn	Gainesville, FL

publications

- W. B. Martin, S. M. Parker, V. Rodionov,
 Errors in characterization and modeling undermine the report of the synthesis of γ-graphyne via alkyne metathesis, 2023,
 under review
- 23 Y. J. Franzke, C. Holzer, J. H. Andersen, T. Begusic, F. Bruder, S. Coriani, F. Della Sala, E. Fabiano, D. A. Fedotov, S. Fürst, S. Gillhuber, R. Grotjahn, M. Kaupp, M. Kehry, M. Krstic, F. Mack, S. Majumdar, B. D. Nguyen, S. M. Parker, F. Pauly, A. Pausch, E. Perlt, G. S. Phun, A. Rajabi, D. Rappoport, B. Samal, T. Schrader, M. Sharma, E. Tapavicza, R. S. Treß, V. Voora, A. Wodynski, J. M. Yu, B. Zerulla, F. Furche, C. Hättig, M. Sierka, D. P. Tew, F. Weigend, Turbomole: Today and Tomorrow, *Journal of Chemical Theory and Computation* **2023**, *19*, 6859-6890
- 22 Z. Zhou, F. Della Sala, S. M. Parker,
 Minimal auxiliary basis set approach for the electronic excitation spectra of organic molecules, *The Journal of Physical Chemistry Letters* **2023**, *14*, 1968-1976
- 21 V. G. Desyatkin, W. B. Martin, A. E. Aliev, N. E. Chapman, A. F. Fonseca, D. S. Galvão, E. Roy Miller, K. H. Stone, Z. Wang, D. Zakhidov, F. T. Limpoco, S. R. Almahdali, S. M. Parker, R. H. Baughman, V. O. Rodionov, Scalable Synthesis and Characterization of Multilayer γ-Graphyne, New Carbon Crystals with a Small Direct Band Gap, Journal of the American Chemical Society 2022, 144, 17999-18008
- 20 Z. Zhou, S. M. Parker, Accelerating molecular property calculations with semiempirical preconditioning, *The Journal of Chemical Physics* **2021**, *155*, 204111
- 19 M. Gupta, M. Singha, D. Rasale, Z. Zhou, S. Bhandari, S. Beasley, J. Sakr, S. M. Parker, R. Spitale, Mutually orthogonal bioconjugation of vinyl nucleosides for RNA metabolic labeling, *Organic Letters* **2021**, *23*, 7183-7187
- 18 J. Jimenez, Z. Zhou, A. L. Rheingold, S. M. Parker, G. Sauvé,
 Tuning the properties of azadipyrromethene-based near-infrared dyes using intramolecular BO-chelation and peripheral substitutions, *Inorganic Chemistry* **2021**, *60*, 13320-13331

- 17 S. M. Parker, C. J. Schiltz, Surface hopping with cumulative probabilities: even sampling and improved reproducibility, *The Journal of Chemical Physics* **2020**, *153*, 174109
- 16 S. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, A. Hellweg, B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A. Marefat Khah, S. Karbalaei Khani, T. Müller, F. Mack, B. D. Nguyen, S. M. Parker, E. Perlt, D. Rappoport, K. Reiter, S. Roy, M. Rückert, G. Schmitz, M. Sierka, E. Tapavicza, D. P. Tew, C. van Wüllen, V. K. Voora, F. Weigend, A. Wodyński, J. M. Yu, TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations, *The Journal of Chemical Physics* 2020, 152, 184107
- 15 S. M. Parker, S. Roy, F. Furche, Multistate hybrid time-dependent density functional theory with surface hopping accurately captures ultrafast thymine photodeactivation, *Physical Chemistry Chemical Physics* 2019, 21, 18999-19010
- 14 M. Kubota, S. Nainar, S. M. Parker, W. England, F. Furche, R. Spitale, Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry, ACS Chemical Biology 2019, 14, 1698-1707
- 13 S. M. Parker, D. Rappoport, F. Furche, Quadratic response properties from TDDFT: trials and tribulations, *Journal of Chemical Theory and Computation* 2018, 14, 807-819
- 12 M. Muuronen, S. M. Parker, E. Berardo, A. Le, M. Zwijnenburg, F. Furche, Mechanism of Photocatalytic Water Oxidation on Small TiO₂ Nanoparticles, *Chemical Science* **2017**, 8, 2179-2183
- 11 S. M. Parker, S. Roy, and F. Furche, Unphysical divergences in response theory, *The Journal of Chemical Physics* **2016**, *145*, 134105
- 10 V. A. Nasluzov, S. M. Parker, A. Genest, A. M. Shor, E. A. Ivanova-Shor, N. Rösch, Trinuclear tantalum clusters grafted to hydroxylated silica surfaces: A density-functional embedded-cluster study, Kinetics and Catalysis 2015, 56, 631
- 9 I. Kim, S. M. Parker, T. Shiozaki, Orbital Optimization in the Active Space Decomposition Model, *Journal of Chemical Theory and Computation* **2015**, *11*, 3636
- 8 S. M. Parker, T. Shiozaki, Active space Decomposition with multiple sites: Density matrix renormalization group algorithm, *The Journal of Chemical Physics* **2014**, *141*, 211102
- 7 S. M. Parker, M. Smeu, I. Franco, M. A. Ratner, T. Seideman, Molecular Junctions: Can Pulling Influence Optical Controllability, *Nano Letters* **2014**, *14*, 4587
- 6 S. M. Parker, T. Shiozaki, Quasi-diabatic states from active space decomposition, *Journal of Chemical Theory and Computation* **2014**, *10*, 3738
- 5 S. M. Parker, T. Seideman, M. A. Ratner, T. Shiozaki, Model Hamiltonian analysis of singlet fission from first principles, *Journal of Physical Chemistry C* **2014**, *118*, 12700
- 4 S. M. Parker, T. Seideman, M. A. Ratner, T. Shiozaki, Active-space decomposition for molecular dimers, *The Journal of Chemical Physics* **2013**, *139*, 021108
- 3 Y. Wu, V. A. Karttunen, S. M. Parker, A. Genest, N. Rösch,
 Olefin Hydrosilylation Catalyzed by a Bis-N-Heterocyclic Carbene Rhodium Complex. A Density Functional Theory
 Study, *Organometallics* **2013**, *32*, 2363
- 2 S. M. Parker, M. A. Ratner, T. Seideman, Simulating strong field control of axial chirality using optimal control theory, *Molecular Physics* **2012**, *110*, 1941
- 1 S. M. Parker, M. A. Ratner, T. Seideman, Coherent control of molecular torsion, *The Journal of Chemical Physics* **2011**, *135*, 224301

book chapters

1 S. M. Parker, F. Furche

Frontiers in Quantum Chemistry, edited by M. J. Wójcik, H. Nakatsuji, B. Kirtman, Y. Ozaki, Springer Singapore (2018) Response theory and molecular properties

reports in media and professional journals

2020	Scilight featured article	Photochemistry simulations dramatically improve reliability and reproducibility
2020	JCP Editor's choice	Cumulative surface hopping paper highlighted by AIP
2019	PCCP Editor's choice	Multi-state TDDFT paper selected as outstanding article by Editor-in-Chief

awards

2021	Finalist, John S. Diekhoff Award for Distinguished Graduate Student Teaching, CWRU
2021 - 2024	Frank Hovorka Assistant Professor of Chemistry, CWRU
2020 - 2021	Glennan Fellowship, CWRU
2020	STAIR Mentor Fellows Program, CWRU
2019	Nominated, John S. Diekhoff Award for Distinguished Graduate Student Teaching, CWRU
2016 - 2019	Arnold O. Beckman Postdoctoral Fellowship
2010 - 2013	Department of Energy Office of Science Graduate Fellowship
2009	Participant, 59th Lindau Nobel Laureate Meeting
2008 - 2009	Fulbright Fellowship Technische Universität München
2006	Anderson Scholar with Highest Distinction, UF academic achievement and uninterrupted study

current and pending support

• Project Title: Predictive tools for excited state chemistry

Amount: \$786,146 **Status:** current

Source: Case Western Reserve University

Start Date: 07/2019

Project Objective: Develop excited state electronic structure methods capable of powering nonadiabatic molecular dy-

namics simulations

• Project Title: Photochemistry with Resonating Mean-Field

Amount: \$650,000 Status: current

Source: NSF CAREER, Division of Chemistry (CHE) **Start Date:** 06/01/2023 **End Date:** 05/30/2028

Project Objective: Develop algorithms and an implementation for the Resonating Mean-Field method towards establishing

Resonating Mean-Field as a tool for photochemistry simulations

Award ID: CHE-2236959

talks

September	Computational Photochemistry (invited)	Binghamton, NY
2023	Binghamton University, Department of Physics	
July 2023	Fast spectra with the minimal auxiliary basis approach to TDDFT (invited)	Rutgers, NJ
	Rutgers TDDFT Workshop	
June 2023	Fast spectra with the minimal auxiliary basis approach to TDDFT	Purdue University, West Lafayette, IN
	Midwest Theoretical Chemistry Conference 2023	
October 2022	Fast Spectra with the minimal auxiliary basis approach to TDDFT (invited)	Benasque, Spain
	Benasque 9th TDDFT Workshop	
August 2022	Accelerating Quantum Chemistry with Semiempirical Preconditioning (invite	ed) Cleveland, Ohio
	CWRU-Tohoku 8th Annual Data Science in Engineering and Life Science	ces Symposium

June 2022	Accelerating TDDFT with Semiempirical Preconditioning 52nd MWTCC	Columbus, Ohio
March 2022	Cumulative Surface Hopping: Faster and More Reproducible APS March Meeting 2022	Chicago, Illinois
August 2018	Excited-State Chemistry with TDDFT (invited) 256th American Chemical Society National Meeting and Exposition	Boston, Massachussetts
August 2018	Ensemble Optimized Time-Dependent Density Functional Theory (invited) 256th American Chemical Society National Meeting and Exposition	Boston, Massachussetts
March 2018	Quadratic response properties from TDDFT: trials and tribulations APS March Meeting	Los Angeles, California
July 2017	Nonlinear properties from TDDFT: trials and tribulations (invited) Excited States: Electronic Structure and Dynamics	Telluride, Colorado
April 2017	Nonlinear properties from TDDFT: trials and tribulations (invited) 253rd American Chemical Society National Meeting and Exposition	San Francisco, California
March 2016	Diagnosis and implications of spurious poles in the quadratic response of appromethods 251st American Chemical Society National Meeting and Exposition	ximate electronic structure San Diego, California
June 2015	Non-adiabatic molecular dynamics (invited) 98th Meeting of the Canadian Society of Chemistry	Ottawa, Ontario
June 2014	Model Hamiltonians from the Active-space Decomposition Method (invited) McMaster University, Department of Chemistry	Hamilton, Ontario

pedagogical lectures

October 2022	TDDFT in Chemistry and Biochemistry (2 lectures)	Benasque, Spain
	Benasque 9th TDDFT School	
July 2017	Nonadiabatic molecular dynamics with TDDFT (2 lectures)	Telluride, Colorado
	Telluride School on Time-dependent Density Functional Theory	

courses taught

- CHEM446/337: **Quantum Mechanics I** (Fall 2019, 2021, 2023)
- CHEM447: Modern Physical Chemistry (co-taught) (Fall 2019, 2022)
- CHEM336: Physical Chemistry II (Spring 2020, 2021, 2023)
- CHEM442/342: **Computational Chemistry** (Fall 2020, 2022)

service

- Member, Chemistry Faculty Search Committee (AY2023-24)
- Member, CAS Al Search Committee (2023-24)
- Member, Graduate Program Review Committee (Fall 2023)
- Co-founder and Co-organizer, CWRU Chemistry Research Symposium (2023)
- Member, Chemistry Graduate Admissions Committee (2019–)
- Co-chair, Chemistry Colloquium Committee (2019–)
- Panel Reviewer, Expanding Horizons Initiative (2023)
- Member, Chemistry Faculty Search Committee (AY2021-22)
- Member, CAS Curriculum Committee (Fall 2020)

peer review

- Physical Chemistry Chemical Physics (10)
- Journal of Chemical Physics (4)
- Journal of Chemical Theory and Computation (3)
- Journal of Physical Chemistry Letters (3)
- Inorganica Chimica Acta (1)
- Nanoscale (1)
- Wiley Interdisciplinary Reviews-Computational Molecular Science (1)