

1. Aplicando o método descrito, temos:

Lista	X	Y	Z
Número de votos	142	231	425
Divisão por 1	142	231	425
Divisão por 3	$\frac{142}{3} \approx 47.3$	$\frac{231}{3} = 77$	$\frac{425}{3} \approx 141,7$
Divisão por 5		$\frac{231}{5} = 46,2$	$\frac{425}{5} = 85$
Divisão por 7			$\frac{425}{7} \approx 60,7$
Divisão por 9			$\frac{425}{9} \approx 47.2$

Desta forma, os quocientes obtidos, arredondados às unidades, por ordem decrescente, numa série de 7 termos, é:

E assim, a direção da AAA será constituída por sete elementos com a seguinte distribuição:

• Lista X: 1 elemento

• Lista Y: 2 elementos

• Lista Z: 4 elementos

Exame – 2020, Ép. especial

2. Aplicando o método de Hondt, temos:

Lista	V	X	Y	Z
Número de votos	373	602	318	157
Divisão por 1	373	602	318	157
Divisão por 2	$\frac{373}{2} \approx 187$	$\frac{602}{2} = 301$	$\frac{318}{2} = 159$	$\frac{157}{2} \approx 79$
Divisão por 3	$\frac{373}{3} \approx 124$	$\frac{602}{3} \approx 201$	$\frac{318}{3} = 106$	
Divisão por 4	$\frac{373}{4} \approx 93$	$\frac{602}{4} \approx 151$		
Divisão por 5		$\frac{602}{5} \approx 120$		

Assim, temos que o número de elementos de cada lista na equipa constituída, é:

- Lista V: 3 elementos
- Lista X: 4 elementos
- Lista Y: 2 elementos
- Lista Z: 1 elementos

Pelo que o aluno não tem razão porque a Lista V tem mais um elemento que a Lista Y.

Exame – 2017, $2.^{\underline{a}}$ Fase

3. Aplicando o método descrito, temos:

Lista	A	В	C	D
Número de votos	220	530	650	150
Divisão por 1	220	530	650	150
Divisão por 3	$\frac{220}{3} \approx 73,3$	$\frac{530}{3} \approx 176,7$	$\frac{650}{3} \approx 216,7$	$\frac{150}{3} = 50$
Divisão por 5		$\frac{530}{5} = 106$	$\frac{650}{5} = 130$	
Divisão por 7		$\frac{530}{7} \approx 75,7$	$\frac{650}{7} \approx 92,9$	
Divisão por 9			$\frac{650}{9} \approx 72.2$	

Na tabela seguinte estão o número de mandatos atribuídos a cada lista, de acordo com o método descrito, bem como o número de mandatos caso fossem atribuído na proporção direta do número de votos:

Lista	A	В	С	D
n.º de mandatos Método descrito	1	3	4	1
n.º de mandatos Proporção direta	$\frac{220}{1550} \times 9 \approx 1$	$\frac{530}{1550} \times 9 \approx 3$	$\frac{650}{1550} \times 9 \approx 4$	$\frac{150}{1550} \times 9 \approx 1$

Desta forma, podemos verificar que a proposta dos representantes da lista A e para esta votação, não implicava qualquer modificação do número de mandatos para todas as listas.

Exame – 2015, 1. $\frac{a}{}$ Fase

4. Aplicando o método de Hondt na distribuição dos 15 mandatos, temos:

Partido	A	В	C	D	E
Número de votos	22 010	17 124	15 144	12 333	11 451
Divisão por 1	22 010	17 124	15 144	12 333	11 451
Divisão por 2	$\frac{22010}{2} = 11005$	$\frac{17124}{2} = 8562$	$\frac{15144}{2} = 7572$	$\frac{12333}{2} = 6166,5$	$\frac{111451}{2} = 5725,5$
Divisão por 3	$\frac{22010}{3} \approx 7336,7$	$\frac{17124}{3} = 5708$	$\frac{15144}{3} = 5048$	$\frac{12333}{3} = 4111$	$\frac{11451}{3} = 3817$
Divisão por 4	$\frac{22010}{4} = 5502,5$	$\frac{17124}{4} = 42881$	$\frac{15144}{4} = 3786$		
Divisão por 5	$\frac{22010}{5} = 4402$				
Divisão por 6	$\frac{22010}{6} \approx 3668,3$				

Aplicando o método de Saint-Laguë na distribuição dos 15 mandatos, temos:

Partido	A	В	C	D	E
Número de votos	22 010	17 124	15 144	12 333	11 451
Divisão por 1	22 010	17 124	15 144	12 333	11 451
Divisão por 3	$\frac{22010}{3} \approx 7336,7$	$\frac{17124}{3} = 5708$	$\frac{15144}{3} = 5048$	$\frac{12333}{3} = 4111$	$\frac{11451}{3} = 3817$
Divisão por 5	$\frac{22010}{5} = 4402$	$\frac{17124}{5} = 3424,8$	$\frac{15144}{5} = 3028,8$	$\frac{12333}{5} = 2466,6$	$\frac{11451}{5} = 2290,2$
Divisão por 7	$\frac{22010}{7} \approx 3144,3$	$\frac{17124}{7} \approx 2446,3$	$\frac{15144}{7} \approx 2163,4$	$\frac{12333}{7} \approx 1761,9$	
Divisão por 9	$\frac{22010}{9} \approx 2445,6$				

Assim, os números de mandatos atribuídos às listas dos cinco partidos mais votados no círculo eleitoral de Penha Alta resultantes da aplicação do método de Hondt e da aplicação do método de Saint-Laguë, estão assinalados na tabela seguinte:

Partido	A	В	С	D	E
n.º de mandatos Método de Hondt	5	3	3	2	2
n.º de mandatos Método de Saint-Laguë	4	3	3	3	2

Desta forma, podemos concluir que, as diferenças na atribuição dos mandatos pelos métodos de Hondt e de Saint-Laguë, consistem essencialmente num número de mandatos mais homogéneo entre os partidos na atribuição pelo método de Saint-Laguë.

Assim, deixar de utilizar o método de Hondt e passar a utilizar o método de Saint-Laguë implicaria que o partido A teria menos 1 mandato e o partido D teria mais 1 mandato.

Exame – 2014, 2. $\frac{a}{}$ Fase

$5.\,$ Aplicando o método de Hond
t na distribuição dos 8 mandatos, temos:

Partido	A	В	C	D	E
Número de votos	5243	3475	1211	1153	657
Divisão por 1	5243	3475	1211	1153	657
Divisão por 2	$\frac{5243}{2} = 2621,5$	$\frac{3475}{2} = 1737,5$	$\frac{1211}{2} = 605,5$		
Divisão por 3	$\frac{5243}{3} \approx 1747,7$	$\frac{3475}{3} \approx 1158,3$			
Divisão por 4	$\frac{5243}{4} \approx 1310,8$	$\frac{3475}{4} \approx 868,8$			
Divisão por 5	$\frac{5243}{5} = 1048,6$				

Aplicando o método de Saint-Laguë na distribuição dos 8 mandatos, temos:

Partido	A	В	C	D	E
Número de votos	5243	3475	1211	1153	657
Divisão por 1	5243	3475	1211	1153	657
Divisão por 3	$\frac{5243}{3} \approx 1747,7$	$\frac{3475}{3} \approx 1158,3$	$\frac{1211}{3} \approx 403,7$	$\frac{1153}{3} \approx 348,3$	
Divisão por 5	$\frac{5243}{5} = 1048,6$	$\frac{3475}{5} = 691,4$			
Divisão por 7	$\frac{5243}{7} = 749$				
Divisão por 9	$\frac{5243}{9} \approx 582,6$				

Assim, os números de mandatos atribuídos aos cinco partidos mais votados para a assembleia de freguesia de Cabeço-dos-Moinhos resultantes da aplicação do método de Hondt e da aplicação do método de Saint-Laguë, estão assinalados na tabela seguinte:

Partido	A	В	С	D	E
n.º de mandatos Método de Hondt	4	3	1	0	0
n.º de mandatos Método de Saint-Laguë	4	2	1	1	0

Assim, podemos concluir que o candidato que fez a afirmação pertence ao partido D, visto ser o único partido que obteria um mandato se a distribuição de mandatos tivesse sido feita pelo método de Saint-Laguë, e não pelo método de Hondt.

Exame – 2013, Ép. especial

mat.absolutamente.net

6. Aplicando o método de Hondt na distribuição dos 10 mandatos, temos:

Partido	A	В	C	D	Е	F
Número de votos	23 023	13 245	12 345	2564	2543	2463
Divisão por 1	23 023	13 245	12 345	2564	2543	2463
Divisão por 2	$\frac{23023}{2} = 11511,5$	$\begin{array}{r} \frac{13245}{2} = \\ = 6622,5 \end{array}$	$\frac{\frac{12345}{2}}{2} = 6172,5$			
Divisão por 3	$\frac{23023}{3} \approx $ $\approx 7674,3$	$\frac{13245}{3} = 4415$	$\frac{12345}{3} = 4115$			
Divisão por 4	$\frac{23023}{4} \approx $ $\approx 5755,8$	$\frac{\frac{13245}{4}}{\approx 3311,3}$				
Divisão por 5	$\frac{\frac{23023}{5}}{5} \approx$ $\approx 4604,6$					
Divisão por 6	$\begin{array}{c} \frac{23023}{6} \approx \\ \approx 3837,2 \end{array}$					

Aplicando o método de Saint-Laguë na distribuição dos 10 mandatos, temos:

Partido	A	В	C	D	Е	F
Número de votos	23 023	13 245	12 345	2564	2543	2463
Divisão por 1	23 023	13 245	12 345	2564	2543	2463
Divisão por 3	$\frac{23023}{3} \approx $ $\approx 7674,3$	$\frac{13245}{3} = 4415$	$\frac{12345}{3} = 4115$	$\frac{\frac{2564}{3}}{\approx 854,7}$		
Divisão por 5	$\frac{\frac{23023}{5}}{5} \approx$ $\approx 4604,6$	$\frac{13245}{5} = 2649$	$\frac{12345}{5} = 2469$			
Divisão por 7	$\frac{23023}{7} = $ $= 3289$	$\begin{array}{c} \frac{13245}{7} \approx \\ \approx 1892,1 \end{array}$				
Divisão por 9	$\begin{array}{c} \frac{23023}{7} \approx \\ \approx 2558,1 \end{array}$					

Assim, os 10 mandatos atribuídos aos partidos na eleição dos representantes do estado neozelandês, resultantes da aplicação do método de Hondt e da aplicação do método de Saint-Laguë, estão assinalados na tabela seguinte:

Partido	A	В	С	D	E	F
n.º de mandatos Método de Hondt	5	3	2	0	0	0
n.º de mandatos Método de Saint-Laguë	4	3	2	1	0	0

Desta forma, podemos concluir que a aplicação do método de Saint-Laguë resulta na atribuição de um mandato ao partido D (dos menos votados), o que não aconteceria se fosse usado o método de Hondt, pelo que a Maria tem razão.

Exame – 2012, $2.^{\underline{a}}$ Fase

7. Aplicando o método de Hondt na distribuição dos nove mandatos, considerando a coligação do partido C com o partido D, temos:

Força partidária	A	В	C+D	E
Número de votos	80 676	74 745	28867 + 13971 = $= 42838$	6148
Divisão por 1	80 676	74 745	42 838	6148
Divisão por 2	$\frac{80676}{2} = 40338$	$\frac{74745}{2} = 37372,5$	$\frac{42838}{2} = 21419$	
Divisão por 3	$\frac{80676}{3} = 26892$	$\frac{74745}{3} = 24915$	$\frac{42838}{3} \approx 14279,3$	
Divisão por 4	$\frac{80676}{4} = 20169$	$\frac{77745}{4} \approx 18686,3$		
Divisão por 5	$\frac{80676}{5} = 16135,2$			

Aplicando o método de Hondt na distribuição dos nove mandatos, considerando a coligação do partido C com o partido E, temos:

Força partidária	A	В	C+E	D
Número de votos	80 676	74 745	28867 + 6148 = = 35015	13 971
Divisão por 1	80 676	74745	35015	13 971
Divisão por 2	$\frac{80676}{2} = 40338$	$\frac{74745}{2} = 37372,5$	$\frac{35015}{2} = 17507,5$	
Divisão por 3	$\frac{80676}{3} = 26892$	$\frac{74745}{3} = 24915$		
Divisão por 4	$\frac{80676}{4} = 20169$	$\frac{74745}{4} \approx 18686,3$		
Divisão por 5	$\frac{80676}{5} = 16135,2$	$\frac{74745}{5} = 14949$		

Assim, os nove mandatos atribuídos aos partidos, nos três cenários (sem coligação, com a coligação C+D e com a coligação C+E), estão assinalados na tabela seguinte:

Partido	A	В	C C+D C+E	D	E
Número de mandatos sem coligação	4	4	1	0	0
Número de mandatos com a coligação C+D	4	3	2	_	0
Número de mandatos com a coligação C+E	4	4	1	0	_

Desta forma podemos verificar que o presidente do Partido C tem razão, apenas em parte, ou seja, caso o seu partido tivesse concorrido em coligação como Partido D, a coligação teria mais um mandato, mas caso a coligação fosse com o Partido E, a distribuição dos nove mandatos não sofreria qualquer alteração.

Exame – 2011, 1. \underline{a} Fase

mat.absolutamente.net

8. Aplicando o método de Hondt na distribuição dos 7 mandatos, temos:

Partido	A	В	C	D	E
Número de votos	7744	4918	1666	1572	308
Divisão por 1	7744	4918	1666	1572	308
Divisão por 2	$\frac{7744}{2} = 3872$	$\frac{4918}{2} = 2459$	$\frac{1666}{2} = 833$		
Divisão por 3	$\frac{7744}{3} \approx 2581$	$\frac{4918}{3} \approx 1639$			
Divisão por 4	$\frac{7744}{4} = 1936$				
Divisão por 5	$\frac{7744}{5} \approx 1549$				

Assim, os sete mandatos atribuídos para a vereação da Câmara Municipal, estão assinalados na tabela seguinte, bem como a divisão dos 7 mandatos de forma diretamente proporcional:

Partido	A	В	С	D	Е			
Número de mandatos - Método de Hondt -	4	2	1	0	0			
Total de elementos		7744 + 4918 + 1666 + 1572 + 308 = 16208						
Número de mandatos - Proporção direta -	$\frac{7744}{16208} \times 7 \approx 3$	$\frac{4918}{16208} \times 7 \approx 2$	$\frac{1666}{16208} \times 7 \approx 1$	$\frac{1572}{16208} \times 7 \approx 1$	$\frac{308}{16208} \times 7 \approx 0$			

Assim, temos que, para a votação em apreciação, a alteração da atribuição de mandatos pelo método de Hondt para uma forma diretamente proporcional significaria a redução do número de mandatos do partido A (de 4 para 3) e o aumento do número de mandatos do partido D (de 0 para 1). Todos os restantes partidos teriam o mesmo número de mandatos.

Exame – 2010, $1.^{\underline{a}}$ Fase

9. Aplicando o método de Hondt na atribuição dos 12 lugares aos representantes de cada modalidade, antes de se agruparem Golfe e Ténis, temos:

Modalidade	Basquetebol	Futebol	Ténis	Golfe	Râguebi
N.º praticantes	186	218	91	45	191
Divisão por 1	186	218	91	45	191
Divisão por 2	$\frac{186}{2} = 93$	$\frac{218}{2} = 109$	$\frac{91}{2} = 45,5$		$\frac{191}{2} = 95,5$
Divisão por 3	$\frac{186}{3} = 62$	$\frac{218}{3} \approx 72.7$			$\frac{191}{2} \approx 63.7$
Divisão por 4	$\frac{186}{4} = 46,5$	$\frac{218}{4} = 54,5$			$\frac{191}{4} \approx 47.8$
Divisão por 5		$\frac{218}{5} = 43,6$			$\frac{191}{2} = 38,2$

Aplicando agora o método de Hondt na atribuição dos 12 lugares aos representantes de cada modalidade, depois de se agruparem Golfe e Ténis, temos:

Modalidade	Basquetebol	Futebol	Ténis + Golfe	Râguebi
N.º praticantes	186	218	136	191
Divisão por 1	186	218	136	191
Divisão por 2	$\frac{186}{2} = 93$	$\frac{218}{2} = 109$	$\frac{136}{2} = 68$	$\frac{191}{2} = 95,5$
Divisão por 3	$\frac{186}{3} = 62$	$\frac{218}{3} \approx 72,7$	$\frac{136}{3} \approx 45,3$	$\frac{191}{2} \approx 63.7$
Divisão por 4	$\frac{186}{4} = 46,5$	$\frac{218}{4} = 54,5$		$\frac{191}{4} \approx 47.8$
Divisão por 5		$\frac{218}{5} = 43,6$		

Desta forma podemos verificar que o agrupamento das duas modalidades permite eleger 2 representantes, ao contrário do que sucede se a distribuição for feita com as modalidades separadas.

Assim, podemos concluir que o agrupamento é vantajoso no sentido em que permite assegurar a representatividade dos praticantes de Golfe.

Exame – 2009, $2.^{\underline{a}}$ Fase

10. Aplicando o método de Hondt na atribuição dos sete mandatos a cada partido, temos:

Partidos	A	В	С	D
Número de votos	13 442	8 723	6 033	1 120
Divisão por 1	13 442	8 723	6 033	1 120
Divisão por 2	$\frac{13442}{2} = 6721$	$\frac{8732}{2} = 4361,5$	$\frac{6033}{2} = 3016,5$	
Divisão por 3	$\frac{13442}{3} \approx 4480,7$	$\frac{8732}{3} \approx 2907,7$		
Divisão por 4	$\frac{13442}{4} = 3360,5$			
Divisão por 5	$\frac{13442}{5} = 2688,4$			

Aplicando o método de Hondt na distribuição dos sete mandatos, considerando a coligação dos partidos B e C, temos:

Força política	A	В+С	D
Número de votos	13 442	8723 + 6033 = $= 14756$	1 120
Divisão por 1	13 442	14756	1 120
Divisão por 2	$\frac{13442}{2} = 6721$	$\frac{14756}{2} = 7378$	
Divisão por 3	$\frac{13442}{3} \approx 4480,7$	$\frac{14756}{3} \approx 4918,7$	
Divisão por 4	$\frac{13442}{4} = 3360,5$	$\frac{14756}{4} = 3689$	
Divisão por 5		$\frac{14756}{5} = 2951,2$	

Assim, os sete mandatos atribuídos aos partidos, nos dois cenários (sem coligação e com a coligação B+C), estão descritos na tabela seguinte:

força política	A	B B+C	C	D
Número de mandatos sem coligação	4	2	1	0
Número de mandatos com a coligação B+C	3	4		0

Desta forma podemos verificar que o no caso da coligação, os partidos B e C obtêm mais mandatos em coligação (4) do que a soma dos mandatos obtidos por cada um isoladamente (3).

Verifica-se ainda que, em coligação obtêm a maioria dos mandatos o que implicaria que o Presidente da Câmara deixaria de ser um candidato do partido A, e seria um candidato da coligação dos partidos B e C.

Neste caso, podemos concluir que a afirmação da página do STAPE se revela verdadeira, havendo uma vantagem clara dos partidos B e C se tivessem concorrido em coligação, em relação à situação em que concorrem isoladamente.

Exame – 2006, $2.^{\underline{a}}$ Fase

mat.absolutamente.net

11. Aplicando o método de Hondt na atribuição dos 11 mandatos, temos:

Partidos	A	В	C	D	E	F
N.º de votos	28 799	17 437	11 959	4 785	948	340
Divisão por 1	28 799	17 437	11 959	4 785	948	340
Divisão por 2	$\frac{28799}{2} = 14399,5$	$\frac{17437}{2} = 8718,5$	$\frac{11959}{2} = 5979,5$			
Divisão por 3	$\frac{28799}{3} \approx 9599,7$	$\frac{17437}{3} \approx 5812,3$	$\frac{11959}{3} \approx 3986,3$			
Divisão por 4	$\frac{28799}{4} \approx 7199,8$	$\frac{17437}{4} \approx 4359,3$				
Divisão por 5	$\frac{28799}{5} = 5759,8$					
Divisão por 6	$\frac{28799}{6} \approx 4799,8$					
Divisão por 7	$\frac{28799}{7} \approx 4114,1$					

Assim, temos que:

- A distribuição dos 11 mandatos pelos partidos é a seguinte:
 Partido A: 6 mandatos; Partido B: 3 mandatos; Partido C: 2 mandatos e os restantes partidos não elegeram quaisquer mandatos;
- se o partido D tivesse tido mais 15 votos (admitindo que os restantes partidos mantinham a votação) seria suficiente para conseguir um mandato, pois nesse caso o quociente relativo à divisão por 1 (4785 + 15 = 4800) seria superior ao quociente da divisão por 6 do partido A (4799,8) que garantiu a atribuição do 11.º mandato ao partido A;
- caso se tivesse verificado a atribuição do 11.º mandato ao partido D, o partido A teria apenas uma maioria relativa no executivo (5 mandatos num total de 11) o que se iria traduzir na necessidade de "dialogar com a oposição", invocada pelo candidato do partido D, para conseguir uma maioria nas votações.

Exame – 2006, $1.^{\underline{a}}$ Fase