Segmentation of scanning transmission electron microscopy (STEM) images with unsupervised machine learning

Ning Wang, Christoph Freysoldt, Christian Liebscher, and Jörg Neugebauer

Department of Computational Materials Design Düsseldorf, Germany

June 15, 2020

Working principle of STEM

STEM meets big data

Supervised, Unsupervised, machine learning

Image segmentation

https://sergioskar.github.io/Semantic Segmentation/ HAADF-STEM image of a Cu grain boundary

An unsupervised approach

- Free of training.
- Segmenting images according to local symmetry

K-means clustering

HAADF-STEM images

Local-symmetry descriptors

Principal component analysis

Local symmetry descriptors

Scoring symmetry:

Pearson correlation coefficient

$$\rho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

X: original patch

Y: transformed patch

Local symmetry descriptors

Pixels in same crystal pattern have similiar local descriptors

Principal component analysis

Abundance of local descriptors

A few PCA features

Principal component analysis

STEM image

Pixels projected into PCA component space

Abundance of local descriptors

A few of PCA features

K-means clustering

- One-to-one correspondence between crystal patterns and clusters.
- clustering module in scikit-learn is used, https://scikit-learn.org.

Applications

Raw images

phase boundary

Code available at:

https://pypi.org/project/pystem

https://github.com/NingWang1990/pySTEM

STEM image of Ni precipitate in courtesy of Spark Zhang at MPIE

Applications

Segmentation

In situ experiment performed by Wenjun Lu at MPIE

Code available at: https://pypi.org/project/pystem https://github.com/NingWang1990/pySTEM

Ongoing: learning dynamics

Thanks for your attention!

https://github.com/NingWang1990/Machine_learning_dynamics