Najkrajša pot z odstranljivimi ovirami – kratko poročilo

Gašper Terglav

5. April 2024

Predstavitev problema

Problem je posplošitev klasične verzije, v kateri se lahko oviram samo izogibamo. V \mathbb{R}^2 imamo dve točki s in t iščemo najkrajšo evklidsko pot med njima. Ovire v ravnini so konveksni poligoni, vsak od njih ima ceno $c_i > 0$. Če imamo na voljo C "denarja", katere ovire se splača odstraniti, da dosežemo najkrajšo pot?

NP-težkost

Naš problem je NP-težek, kar lahko pokažemo z redukcijo na problem PARTITION, ki je NP-poln. Pri tem problemu imamo množico $A=\{a_1,a_2,...,a_n\}$ pozitivnih celih števil. Vprašanje je, ali lakho A razdelimo v množici A_1 in A_2 , tako da je $W(A_1)=W(A_2)=\frac{1}{2}W(A)$, kjer je W(S) vsota vseh elementov v S. Redukcijo dosežemo tako, da med točki s in t postavimo n ovir, tako da je cena odstranitve enaka dolžini, za katero se pot podaljša, če ovire ne odstranimo. Če obstaja pot med s in t dolžine $\frac{1}{2}W(A)+\|s-t\|$, kjer imamo $\frac{1}{2}W(A)$ proračuna za odstranitev ovir, potem smo našli razdelitev A na dva enaka dela. Ovire, ki smo jih odstranili damo v eno možico, ostale pa v drugo. Konstrukcija je podrobneje opisana v članku.