5. Počítačové cvičení

Restrikční mapování & Vyhledávání transkripčních motivů

Double Digest Problem

(Kniha 3, kapitola 4.1 až 4.4)

Molekula DNA je kompletně štěpena enzymem A, enzymem B a kombinací obou enzymů. Vstupem problému jsou tři vektory vzestupně setříděných fragmentů štěpení:

XA = {a1, a2, ..., am} - vektor fragmentů po štěpení enzymem A,

 $X_B = \{b_1,\,b_2,\,...,\,b_n\} \hspace{1.5cm} \text{- vektor fragmentů po štěpení enzymem B,}$

 $X_{AB} = \{c_1, c_2, ..., c_{m+n-1}\}$ - vektor fragmentů po současném štěpení enzymy A+B.

Úkolem je nalézt pozice štěpení pro oba enzymy.

Triviální příklad: $XA = \{2,4\}$, $XB = \{1,5\}$ a $XAB = \{1,1,4\}$.

Štěpení enzymem A i B produkuje pouze dva fragmenty, což znamená, že DNA obsahuje jedno restrikční místo pro každý z enzymů a délka molekuly je 6 (suma délek fragmentů).

Štěpení oběma enzymy současně produkuje tři fragmenty. Je potřeba určit, kde na molekule DNA se nachází restrikční místa.

Počet fragmentů m pro enzym A a n pro B určuje počet kombinací pozic restrikčních míst. Konkrétně pro příklad: (m!)*(n!) = (2!)*(2!) = 4 kombinace pozic fragmentů:

15 15 51 51

Která z těchto kombinací generuje vektor XAB

Správné řešení:

(reverze jednoho řešení je dalším řešením)

Enzym A štěpí DNA na pozici 2 a enzym B na pozici 1, nebo na pozici 4 a 5.

Další příklad:

$$XA = \{2, 3, 5, 10\}$$

$$XB = \{3, 7, 10\}$$

$$XAB = \{1, 2, 2, 5, 5, 5\}$$

Enzym A má na DNA 3 restrikční místa, enzym B 2 místa, DNA je dlouhá 20. Je potřeba prověřit (4!)*(3!) = 144 kombinací pozic.

Exhaustive search (brute-force) algoritmus prověří všechny možnosti pozic, např. tímto způsobem:

uspořádání fragmentů	mapa pozic	sloučené pozice

postupné diference

setřídit na 1, 2, 3, 4, 10 toto ale není správné řešení, neboť se to nerovná XAB.

Mapa pozic se tvoří postupným sčítáním fragmentů a sloučené pozice neobsahují duplikace.

Pro jinou kombinaci:

uspořádání fragmentů	mapa pozic	sloučené pozice
23105	0251520	0235101520
3710	031020	
postupné diference		

setřídit na 1, 2, 2, 5, 5, 5 a toto se rovná XAB a tudíž restrikční místa pro enzym A jsou {2, 5, 15} a enzym B {3, 10} a dalším řešením je jejich reverze {5, 15, 18} a {10, 17}. Reverze se tvoří obrácením pořadí uspořádání fragmentů a vytvořením mapy pozic.

Tento přístup testování všech možných kombinací uspořádání fragmentů nalezne všechny možné pozice restrikčních míst. Algoritmus je však enormně výpočetně náročný.

Úkol: V R naprogramujte funkci pro brute-force algoritmus DDP pro jedno možné uspořádání fragmentů. Následně upravte pro všechny možné uspořádání fragmentů.

Partial Digest Problem

Řešený příklad:

Máme vektor délek $\Delta X=\{2, 2, 3, 3, 4, 5, 6, 7, 8, 10\}$. Najděte vektor X, z kterého byl vektor délek vygenerován. X = $\{x_1=0,x_2,...,x_n\}$, kde $\Delta X=\{x_j-x_i:1\le i< j\le n\}$.

Velikost $\Delta X = 10$ tudíž podle $\frac{n \ n \ 1}{2} \ 10 \Rightarrow n = 5$, tudíž hledáme $X = \{x \ ,x \ ,x \ ,x \ ,x \ ,x \}$. Vektor délek ΔX byl vygenerován podle této tabulky:

	x1	x2	x3 x4	х5
X 1		x2-x1	x3-x1 x4-x1	x5-x1
x2			x3-x2 x4-x2	x5-x2
х3			x4-x3	x5-x3
X 4				x5-x4
х5				

1) Nalezneme maximum v ΔX. Maximální prvek musí za předpokladu, že vektor X je setříděn vzestupně, odpovídat prvku z tabulky x5-x1.

max = 10
$$x_5 - x_1 = 10$$
, když $x_1 = 0$, pak $x_5 = 10$

tudíž $X = \{0, x_2, x_3, x_4, 10\}.$

Z ΔX odstraníme prvek x5-x1 a dostáváme nové $\Delta X = \{2,2,3,3,4,5,6,7,8\}$.

2) max = 8 máme možnosti: $x_4 - x_1 = 8$, $x_4 = 8$ nebo $x_5 - x_2 = 8$, $x_2 = 2$

jelikož jde o zrcadlové prvky (od první i poslední hodnoty X mají stejnou vzdálenost) můžeme vybrat jakoukoli z nich. Vezměme, že x2 = 2.

Nové $X = \{0,2,x3,x4,10\}.$

Z ΔX odstraníme prvky o hodnotách: x2 - x1 = 2, x5 - x2 = 8.

Nové $\Delta X = \{2, 3, 3, 4, 5, 6, 7\}.$

3) max = 7 máme možnosti: $x_4 - x_1 = 7, x_4 = 7$ nebo $x_5 - x_3 = 7, x_3 = 3$

avšak kdyby x3 = 3, tak x3-x2 = 1, to ale není v ΔX , takže x4 = 7.

Nové $X = \{0,2,x3,7,10\}.$

 $Z \Delta X$ odstraníme prvky o hodnotách: x5 - x4 = 3, x4 - x1 = 7 a x4 - x2 = 5.

Nové $\Delta X = \{2, 3, 4, 6\}.$

4) max = 6 zbyly 2 možnosti:
$$x_3 - x_1 = 6$$
, $x_3 = 6$

nebo
$$x_5 - x_3 = 6, x_3 = 4$$

kdyby x3 = 6 tak by x4-x3 = 1, to ale není v ΔX , takže x3 = 4.

<u>Výsledek: X = $\{0,2,4,7,10\}$ </u>

Provedeme kontrolu správnosti řešení. Vypočítáme všechny možnosti vzdáleností mezi prvky a po setřídění musí dát zadaný vektor.

$$X = \{2,4,7,10,2,5,8,3,6,3\} = \{2,2,3,3,4,5,6,7,8,10\}$$

Příklady k řešení:

1)
$$\Delta X = \{1,2,2,3,4,4,5,6,7,8\}$$

2)
$$\Delta X = \{2,2,2,4,4,4,6,6,8,10\}$$

3)
$$\Delta X = \{1,2,2,2,2,3,4,4,4,5,6,6,7,8,9\}$$

Úkol: V R implementujte rekurzivní algoritmus pro PDP (Partial Digest Problem) podle následujícího pseudokódu:

```
PartialDigestProblem(L)
   1
           width ← maximální prvek z L
   2
           Delete(width,L)
   3
           X \leftarrow \{0, width\}
   4
           Place(L,X)
Place(L,X)
    1
           if L je prázdné
    2
               output X
    3
               return
    4
           y ← maximální prvek z L
    5
           if (y,X) L
    6
               přidej y do X a odstraň délky (y,X) z L
    7
               Place(L,X)
               odstraň y z X a přidej délky
                                               (y,X) do L
    8
    9
           if (width-y,X) L
    10
               přidej width-y do X a odstraň délky
                                                       (width-y,X) z L
    11
               Place(L,X)
    12
               odstraň width-y z X a přidej délky
                                                    (width-y,X) do L
    13
           return
Upřesnění: L = X, Delete(y,L) vymaže hodnotu y \neq L, (y,X) je vektor délek mezi hodnotou y \neq L
všemi hodnotami X.
```

Nápověda: Vytvořte externí funkci Remove(), která bude z vektoru L odstraňovat použité délky.

Brute-force Motif Search

Ačkoli některé problémy v biologických systémech lze řešit pomocí velmi jednoduchých vyhledávacích algoritmů, velký prohledávací prostor může způsobit exponenciální nárůst doby běhu s velikostí systému. V boji proti tomuto problému je obvykle možné využít porozumění omezením vyhledávacího prostoru k chytrému návrhu algoritmů, které dávají rozumnou dobu běhu v porovnání s velikostí biologických systémů.

V předchozí části cvičení jsme se zabývali dvěma algoritmy pro řešení částečného rozkladu problému (DDP & PDP). Metoda hrubé síly prohledává všechny možné množiny (n - 2)

restrikčních míst pro původní řetězec složený ze $\binom{n}{2}$ prvků, dokud se nenajde množina L. Toho se dosáhne pomocí funkcí *place* a *select* k vytvoření řetězců o délce (n-2). Doba běhu tohoto algoritmu je však O(W(n-2)), kde W je délka původního řetězce.

Tím, že si uvědomíme, že největší prvek v *L* bude délka původního řetězce, a že dalšími největšími prvky v množině budou vzdálenosti od omezení ke koncům původního řetězce, jsme vytvořili nový algoritmus nazvaný **Branch and Bound**. Tím se doba běhu zkrátila na *O(n2)*.

Naopak hrubou silou (**Brute-force Motif Search**) lze jednoduše iterovat přes všechny $(L_1-n)\times(L_2-n)\times...\times(L_k-n)$ takových výchozích pozic $\{s_1, s_2, ...s_k\}$ a zachovat posloupnost, jejíž profilová matice dává výsledek nejnižší konsenzuální skóre. Protože potřebujeme vyhodnotit na pořadí matic L_k každá s $n\times k$ prvky, roste doba běhu této metody jako $T=O(n_kL_k)$, což je exponenciální v počtu sekvencí DNA, které chceme zkoumat. Proto tato metoda funguje, pokud se porovnává pouze několik sekvencí.

Postup Brute-force Motif Search

- 1. Funkce Score
- 2. Funkce NextLeaf
- 3. Funkce **BFMotifSearch**
- 4. Funkce **NextVertex**
- 5. Funkce **SimpleMotifSearch**

Úkol: V R implementujte Brute-force Motif Search algoritmus. Pseudokódy pro jednotlivé funkce tohoto algoritmu jsou dostupné v Knize 1 – kapitola 4.