SBML Model Report

Model name: "Proctor2006_telomere"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Carole Proctor¹ at October 16th 2006 at 10:54 a. m. and last time modified at July fifth 2012 at 2:40 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	55
events	9	constraints	0
reactions	43	function definitions	0
global parameters	1	unit definitions	1
rules	0	initial assignments	0

Model Notes

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

¹University of Newcastle, c.j.proctor@ncl.ac.uk

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition item

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cellMembrane			3	1	litre	Z	
nucleus			3	1	litre	$ \overline{\mathcal{L}} $	cellMembrane

3.1 Compartment cellMembrane

This is a three dimensional compartment with a constant size of one litre.

3.2 Compartment nucleus

This is a three dimensional compartment with a constant size of one litre, which is surrounded by cellMembrane.

4 Species

This model contains 55 species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Ctelo		nucleus	item		
Utelo		nucleus	item		
Cdc13		nucleus	item		
Rad17Utelo		nucleus	item		
Rad17		nucleus	item		
Rad24		nucleus	item		
RPA		nucleus	item		
Mec1		nucleus	item		
ssDNA		nucleus	item		
RPAssDNA		nucleus	item		
RPAssDNA1		nucleus	item		
RPAssDNA2		nucleus	item		
Mec1RPAssDNA		nucleus	item		
ExoXI		nucleus	item		
ExoXA		nucleus	item		
Exo1I		nucleus	item		
Exo1A		nucleus	item		
Rad9I		nucleus	item		
Rad9A		nucleus	item		
Rad53I		nucleus	item		
Rad53A		nucleus	item		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Chk1I		nucleus	item	\Box	\Box
Chk1A		nucleus	item		
Dun1I		nucleus	item		
Dun1A		nucleus	item		
ATP		nucleus	item		
ADP		nucleus	item		
Rad9Kin		nucleus	item		\Box
recovery		nucleus	item	\Box	\Box
G1		nucleus	item	\Box	\Box
S		nucleus	item	\Box	
G2		nucleus	item	\Box	\Box
M		nucleus	item	\Box	\Box
G1cyclin		nucleus	item	\Box	
Scyclin		nucleus	item	\Box	\Box
G2cyclin		nucleus	item		
Mcyclin		nucleus	item		
G1CdkI		nucleus	item		
G1CdkA		nucleus	item	\Box	\Box
SCdkI		nucleus	item	\Box	
SCdkA		nucleus	item	\Box	\Box
G2CdkI		nucleus	item	\Box	\Box
G2CdkA		nucleus	item	\Box	\Box
MCdkI		nucleus	item	\Box	\Box
MCdkA		nucleus	item	\Box	\Box
G1Soff		nucleus	item		
G1Son		nucleus	item	\Box	\Box
SG2off		nucleus	item		

	TICHHOCH	Crodinged
	r	_
٩	4	7
(2	8
}	ļ	<u>د</u>
Γ	Į	1
	ø	$\overline{}$

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
SG2on		nucleus	item		\Box
G2Moff		nucleus	item		
G2Mon		nucleus	item		
MG1off		nucleus	item		
MG1on		nucleus	item		
sink		nucleus	item		\square
budscar		cellMembrane	item		\Box

5 Parameter

This model contains one global parameter.

Table 4: Properties of each parameter.

Id	Name	SBO Va	lue Unit	Constant
kalive		1	.0	

6 Events

This is an overview of nine events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

6.1 Event Rad9KinaseActivation

Name Rad9KinaseActivation

Trigger condition

$$Mec1RPAssDNA \ge 800 \tag{1}$$

Assignment

$$[Rad9Kin] = 1 (2)$$

6.2 Event ssDNAremoval

Name ssDNAremoval

Trigger condition

$$Mec1RPAssDNA + RPAssDNA + ssDNA \le 1$$
 (3)

Assignments

$$[recovery] = 1$$
 (4)

$$[Mec1RPAssDNA] = 0$$
 (5)

$$[RPAssDNA] = 0$$
 (6)

$$[ssDNA] = 0$$
 (7)

6.3 Event G2MRecoveryCompleted

Name G2MRecoveryCompleted

Trigger condition

$$(G2 = 1) \land (Rad17Utelo = 0) \tag{8}$$

Assignments

[G2Mon] = 1	(9)
[G2Moff] = 0	(10)
[recovery] = 0	(11)
[Rad9A] = 0	(12)
[Rad9I] = 20	(13)
[Chk1A] = 0	(14)
[Chk1I] = 60	(15)
[Dun1A] = 0	(16)
[Dun1I] = 3000	(17)
[Exo1A] = 0	(18)
[Exo1I] = 670	(19)
[ExoXA] = 0	(20)
[ExoXI] = 70	(21)
[Rad53I] = 6900	(22)
[Rad53A] = 0	(23)

6.4 Event SphaseRecoveryCompleted

Name SphaseRecoveryCompleted

Trigger condition

Rad17Utelo = 0 (24)

Assignment

[recovery] = 0 (25)

6.5 Event G1CdkActivation

Name G1CdkActivation

Trigger condition

 $G1 \operatorname{cyclin} > 100 \tag{26}$

Assignments

$$[G1CdkA] = 1 \tag{27}$$

$$[G1CdkI] = 0 (28)$$

6.6 Event SCdkActivation

Name SCdkActivation

Trigger condition Scyclin > 100 (29)

Assignments

 $[SCdkA] = 1 \tag{30}$

[SCdkI] = 0 (31)

6.7 Event G2CdkActivation

Name G2CdkActivation

Trigger condition G2cyclin > 100 (32)

Assignments

 $[G2CdkA] = 1 \tag{33}$

[G2CdkI] = 0 (34)

6.8 Event MCdkActivation

Name MCdkActivation

Trigger condition Meyelin > 100 (35)

Assignments

 $[MCdkA] = 1 \tag{36}$

[MCdkI] = 0 (37)

6.9 Event CellDeath

Name CellDeath

Trigger condition

 $Mec1RPAssDNA + RPAssDNA + ssDNA \ge 2000$ (38)

Assignment kalive = 0 (39)

7 Reactions

This model contains 43 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1	Capping	Capping	$Cdc13 + Utelo \longrightarrow Ctelo$	
2	Uncapping	Uncapping	Ctelo \longrightarrow Cdc13 + Utelo	
3	Rad17binding	Rad17binding	$Utelo + Rad17 + Rad24 + ATP \longrightarrow Rad17Utelo +$	
			Rad24 + ADP	
4	ExoXactivation	ExoXactivation	$ExoXI + Rad17Utelo \longrightarrow ExoXA + Rad17Utelo$	
5	ExoXactivity	ExoXactivity	$ExoXA + Rad17Utelo \longrightarrow ExoXA + Rad17Utelo +$	
			ssDNA	
6	Exo1activation	Rad24independentExo1Activation	$Exo1I \longrightarrow Exo1A$	
7	Exo1Rad24depende	nRAd24dapeindentExo1Activation	$Exo1I + Rad24 \longrightarrow Exo1A + Rad24$	
8	Exo1Rad17indepen	d Rad A Zitrickepe y dentExo1Activity	$Utelo + Exo1A \longrightarrow Utelo + Exo1A + ssDNA$	
9	Exo1Rad17depende	n RAdt7depte ndentExo1Activity	$Rad17Utelo + Exo1A \longrightarrow Rad17Utelo + Exo1A +$	
			ssDNA	
10	RPAbinding1	RPAbinding-stage1	$ssDNA + RPA \longrightarrow RPAssDNA1$	
11	RPAbinding2	RPAbinding-stage2	$ssDNA + RPAssDNA1 \longrightarrow RPAssDNA2$	
12	RPAbinding	RPAbinding-completed	$ssDNA + RPAssDNA2 \longrightarrow RPAssDNA$	
13	Mec1binding	Mec1binding	$RPAssDNA + Mec1 \longrightarrow Mec1RPAssDNA$	
14	Rad9activation	Rad9activation	$Rad9Kin + Rad9I \longrightarrow Rad9Kin + Rad9A$	
15	ExoXinhibition	ExoXinhibition	$ExoXA + Rad9A \longrightarrow ExoXI + Rad9A$	
16	ExoXinhibition2	ExoXinhibition2	$ExoXA + Rad9I \longrightarrow ExoXI + Rad9I$	
17	Rad53activation	Rad53activation	$Rad53I + Rad9A \longrightarrow Rad53A + Rad9A$	
18	Chk1Activation	Chk1Activation	$Chk1I + Rad9A \longrightarrow Chk1A + Rad9A$	
19	Exo1inhibition	Exo1inhibition	$Exo1A + Rad53A \longrightarrow Exo1I + Rad53A$	
20	Dun1activation	Dun1activation	$Dun1I + Rad53A \longrightarrow Dun1A + Rad53A$	

No	Id	Name	Reaction Equation	SBO
21	Chk1cellArrest	Chk1cellArrest	$Chk1A + G2Mon \longrightarrow Chk1A + G2Moff$	
22	Dun1cellArrest	Dun1cellArrest	$Dun1A + G2Mon \longrightarrow Dun1A + G2Moff$	
23	SDNArepair1	SDNArepair1	$Mec1RPAssDNA + S \longrightarrow Mec1 + RPA + S + 3 ssDNA$	
24	G2DNArepair1	G2DNArepair1	$G2 + G2Moff + Mec1RPAssDNA \longrightarrow G2 + G2Moff + Mec1 + RPA + 3 ssDNA$	
25	SDNArepair2	SDNArepair2	$S + ssDNA \longrightarrow S$	
26	G2DNArepair2	G2DNArepair2	$G2 + G2Moff + ssDNA \longrightarrow G2 + G2Moff$	
27	Recovery	Recovery	Cdc13 + Rad17Utelo + recovery → Ctelo + Rad17+recovery	
28	G1cyclinSynthes:	isG1cyclinSynthesis	$G1 \longrightarrow G1$ cyclin + $G1$	
29	ScyclinSynthesis	s ScyclinSynthesis	$S \longrightarrow Scyclin + S$	
30	G2cyclinSynthes:	isG2cyclinSynthesis	$G2 \longrightarrow G2$ cyclin + $G2$	
31	McyclinSynthesis	s McyclinSynthesis	$\mathbf{M} \longrightarrow \mathbf{Mcyclin} + \mathbf{M}$	
32	G1toSGenesOn	G1toSGenesOn	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
33	StoG2GenesOn	StoG2GenesOn	$SG2off + S + SCdkA \longrightarrow SG2on + S + SCdkA$	
34	G2toMGenesOn	G2toMGenesOn	$\begin{array}{lll} G2Moff \ + \ G2 \ + \ G2CdkA \longrightarrow G2Mon \ + \ G2 \ + \\ G2CdkA \end{array}$	
35	MtoG1GenesOn	MtoG1GenesOn	$MG1 off + M + MCdkA \longrightarrow MG1 on + M + MCdkA$	
36	G1cyclinDegrada	ti6d cyclinDegradation	$G1$ cyclin \longrightarrow sink	
37	ScyclinDegradat	io S cyclinDegradation	Scyclin → sink	
38	G2cyclinDegradat	ti6i2cyclinDegradation	$G2$ cyclin \longrightarrow sink	
39	McyclinDegradat:	io M cyclinDegradation	Mcyclin → sink	
40	G1toSProgession	G1toSProgession	$G1 + G1CdkA + G1Son \longrightarrow G1CdkI + G1Soff + S$	
41	StoG2Progession	StoG2Progession	$S + SCdkA + SG2on \longrightarrow G2 + SCdkI + SG2off$	
42	G2toMProgession	G2toMProgession	$G2+G2CdkA+G2Mon \longrightarrow G2CdkI+G2Moff+M$	

N⁰	Id	Name	Reaction Equation	SBO
43	MtoG1Progession	MtoG1Progession	$M + MCdkA + MG1on \longrightarrow budscar + G1 + MCdkI + MG1off$	

7.1 Reaction Capping

This is an irreversible reaction of two reactants forming one product.

Name Capping

Reaction equation

$$Cdc13 + Utelo \longrightarrow Ctelo$$
 (40)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
Cdc13		
Utelo		

Product

Table 7: Properties of each product.

Id	Name	SBO
Ctelo		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = k1 \cdot Cdc13 \cdot Utelo \cdot kalive$$
 (41)

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$5\cdot 10^{-4}$		

7.2 Reaction Uncapping

This is an irreversible reaction of one reactant forming two products.

Name Uncapping

Reaction equation

$$Ctelo \longrightarrow Cdc13 + Utelo \tag{42}$$

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
Ctelo		

Products

Table 10: Properties of each product.

Id	Name	SBO
Cdc13		
Utelo		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = k2 \cdot \text{Ctelo} \cdot \text{kalive}$$
 (43)

Table 11: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k2			$3.85 \cdot 10^{-4}$		✓

7.3 Reaction Rad17binding

This is an irreversible reaction of four reactants forming three products.

Name Rad17binding

Reaction equation

$$Utelo + Rad17 + Rad24 + ATP \longrightarrow Rad17Utelo + Rad24 + ADP$$
 (44)

Table 12: Properties of each reactant.

Id	Name	SBO
Utelo		
Rad17		
Rad24		
ATP		

Table 13: Properties of each product.

Id	Name	SBO
Rad17Utelo		
Rad24		
ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \frac{\text{k3} \cdot \text{Utelo} \cdot \text{Rad17} \cdot \text{Rad24} \cdot \text{ATP} \cdot \text{kalive}}{5000 + \text{ATP}} \tag{45}$$

Table 14: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k3			$1.5\cdot 10^{-8}$		

7.4 Reaction ExoXactivation

This is an irreversible reaction of two reactants forming two products.

Name ExoXactivation

Reaction equation

$$ExoXI + Rad17Utelo \longrightarrow ExoXA + Rad17Utelo$$
 (46)

Table 15: Properties of each reactant.

Id	Name	SBO
ExoXI Rad17Utelo		

Table 16: Properties of each product.

Id	Name	SBO
ExoXA		
Rad17Utelo		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = k4 \cdot \text{ExoXI} \cdot \text{Rad17Utelo} \cdot \text{kalive}$$
 (47)

Table 17: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k4		0.01	Ø

7.5 Reaction ExoXactivity

This is an irreversible reaction of two reactants forming three products.

Name ExoXactivity

Reaction equation

$$ExoXA + Rad17Utelo \longrightarrow ExoXA + Rad17Utelo + ssDNA$$
 (48)

Table 18: Properties of each reactant.

Id	Name	SBO
ExoXA		

Id	Name	SBO
Rad17Utelo		

Table 19: Properties of each product.

Id	Name	SBO
ExoXA		
Rad17Utelo		
ssDNA		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = k5 \cdot \text{ExoXA} \cdot \text{Rad17Utelo} \cdot \text{kalive}$$
 (49)

Table 20: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k5			$3 \cdot 10^{-4}$		

7.6 Reaction Exolactivation

This is an irreversible reaction of one reactant forming one product.

Name Rad24independentExo1Activation

Reaction equation

$$Exo1I \longrightarrow Exo1A$$
 (50)

Table 21: Properties of each reactant.

Id	Name	SBO
Exo1I		

Table 22: Properties of each product.

Id	Name	SBO
Exo1A		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = k6a \cdot Exo1I \cdot kalive$$
 (51)

Table 23: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k6a			$5\cdot 10^{-5}$		

7.7 Reaction Exo1Rad24dependentActivation

This is an irreversible reaction of two reactants forming two products.

Name Rad24dependentExo1Activation

Reaction equation

$$Exo1I + Rad24 \longrightarrow Exo1A + Rad24 \tag{52}$$

Reactants

Table 24: Properties of each reactant.

Id	Name	SBO
Exo1I		
Rad24		

Table 25: Properties of each product.

Id	Name	SBO
Exo1A		
Rad24		

Derived unit contains undeclared units

$$v_7 = \text{k6b} \cdot \text{Exo1I} \cdot \text{Rad24} \cdot \text{kalive}$$
 (53)

Table 26: Properties of each parameter.

Id	Name	SBO Valu	e Unit	Constant
k6b		5 · 10	-4	

7.8 Reaction Exo1Rad17independentActivity

This is an irreversible reaction of two reactants forming three products.

Name Rad17independentExo1Activity

Reaction equation

$$Utelo + Exo1A \longrightarrow Utelo + Exo1A + ssDNA$$
 (54)

Reactants

Table 27: Properties of each reactant.

Id	Name	SBO
Utelo		
Exo1A		

Table 28: Properties of each product.

Id	Name	SBO
Utelo		

Id	Name	SBO
Exo1A		
ssDNA		

Derived unit contains undeclared units

$$v_8 = k7a \cdot \text{Utelo} \cdot \text{Exo1A} \cdot \text{kalive}$$
 (55)

Table 29: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k7a			$3 \cdot 10^{-5}$		\blacksquare

7.9 Reaction Exo1Rad17dependentActivity

This is an irreversible reaction of two reactants forming three products.

Name Rad17dependentExo1Activity

Reaction equation

$$Rad17Utelo + Exo1A \longrightarrow Rad17Utelo + Exo1A + ssDNA$$
 (56)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
Rad17Utelo		
Exo1A		

Table 31: Properties of each product.

Id	Name	SBO
Rad17Utelo		
Exo1A		
ssDNA		

Derived unit contains undeclared units

$$v_9 = k7b \cdot Rad17Utelo \cdot Exo1A \cdot kalive$$
 (57)

Table 32: Properties of each parameter.

Id	Name	SBO Value	Unit Constant
k7b		$3 \cdot 10^{-5}$	

7.10 Reaction RPAbinding1

This is an irreversible reaction of two reactants forming one product.

Name RPAbinding-stage1

Reaction equation

$$ssDNA + RPA \longrightarrow RPAssDNA1$$
 (58)

Reactants

Table 33: Properties of each reactant.

Id	Name	SBO
ssDNA		
RPA		

Product

Table 34: Properties of each product.

Id	Name	SBO
RPAssDNA1		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = k8a \cdot RPA \cdot ssDNA \cdot kalive \tag{59}$$

Table 35: Properties of each parameter.

Id	Name	SBO Value	Unit Constant
k8a		0.001	

7.11 Reaction RPAbinding2

This is an irreversible reaction of two reactants forming one product.

Name RPAbinding-stage2

Reaction equation

$$ssDNA + RPAssDNA1 \longrightarrow RPAssDNA2$$
 (60)

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
ssDNA		
RPAssDNA1		

Product

Table 37: Properties of each product.

Id	Name	SBO
RPAssDNA2		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = k8b \cdot RPAssDNA1 \cdot ssDNA \cdot kalive$$
 (61)

Table 38: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k8b		100.0	Ø

7.12 Reaction RPAbinding

This is an irreversible reaction of two reactants forming one product.

Name RPAbinding-completed

Reaction equation

$$ssDNA + RPAssDNA2 \longrightarrow RPAssDNA$$
 (62)

Reactants

Table 39: Properties of each reactant.

Id	Name	SBO
ssDNA		
RPAssDNA2		

Product

Table 40: Properties of each product.

Id	Name	SBO
RPAssDNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = k8c \cdot RPAssDNA2 \cdot ssDNA \cdot kalive$$
 (63)

Table 41: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k8c		100.0	

7.13 Reaction Mec1binding

This is an irreversible reaction of two reactants forming one product.

Name Mec1binding

Reaction equation

$$RPAssDNA + Mec1 \longrightarrow Mec1RPAssDNA$$
 (64)

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
RPAssDNA		
Mec1		

Product

Table 43: Properties of each product.

Id	Name	SBO
Mec1RPAssDNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = k8d \cdot RPAssDNA \cdot Mec1 \cdot kalive$$
 (65)

Table 44: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k8d		0.004	

7.14 Reaction Rad9activation

This is an irreversible reaction of two reactants forming two products.

Name Rad9activation

Reaction equation

$$Rad9Kin + Rad9I \longrightarrow Rad9Kin + Rad9A \tag{66}$$

Table 45: Properties of each reactant.

Id	Name	SBO
Rad9Kin		
Rad9I		

Table 46: Properties of each product.

Id	Name	SBO
Rad9Kin		_
Rad9A		

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = k9 \cdot Rad9Kin \cdot Rad9I \cdot kalive$$
 (67)

Table 47: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k9		100.0	

7.15 Reaction ExoXinhibition

This is an irreversible reaction of two reactants forming two products.

Name ExoXinhibition

Reaction equation

$$ExoXA + Rad9A \longrightarrow ExoXI + Rad9A$$
 (68)

Table 48: Properties of each reactant.

Id	Name	SBO
ExoXA		

Id	Name	SBO
Rad9A		

Table 49: Properties of each product.

Id	Name	SBO
ExoXI		_
Rad9A		

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{ExoXA} \cdot \text{k10a} \cdot \text{Rad9A} \cdot \text{kalive} \tag{69}$$

Table 50: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k10a		0.05	

7.16 Reaction ExoXinhibition2

This is an irreversible reaction of two reactants forming two products.

Name ExoXinhibition2

Reaction equation

$$ExoXA + Rad9I \longrightarrow ExoXI + Rad9I$$
 (70)

Table 51: Properties of each reactant.

Id	Name	SBO
ExoXA		
Rad9I		

Table 52: Properties of each product.

Id	Name	SBO
ExoXI		
Rad9I		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{ExoXA} \cdot \text{k10b} \cdot \text{Rad9I} \cdot \text{kalive} \tag{71}$$

Table 53: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k10b		0.05	

7.17 Reaction Rad53activation

This is an irreversible reaction of two reactants forming two products.

Name Rad53activation

Reaction equation

$$Rad53I + Rad9A \longrightarrow Rad53A + Rad9A \tag{72}$$

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
Rad53I		
Rad9A		

Table 55: Properties of each product.

Id	Name	SBO
Rad53A		
Rad9A		

Derived unit contains undeclared units

$$v_{17} = k11 \cdot Rad53I \cdot Rad9A \cdot kalive$$
 (73)

Table 56: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k11		10^{-5}	

7.18 Reaction Chk1Activation

This is an irreversible reaction of two reactants forming two products.

Name Chk1Activation

Reaction equation

$$Chk1I + Rad9A \longrightarrow Chk1A + Rad9A \tag{74}$$

Reactants

Table 57: Properties of each reactant.

Id	Name	SBO
Chk1I		
Rad9A		

Table 58: Properties of each product.

Id	Name	SBO
Chk1A		

Id	Name	SBO
Rad9A		

Derived unit contains undeclared units

$$v_{18} = \text{Chk1I} \cdot \text{k12} \cdot \text{Rad9A} \cdot \text{kalive} \tag{75}$$

Table 59: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k12			$1.7\cdot 10^{-4}$		

7.19 Reaction Exolinhibition

This is an irreversible reaction of two reactants forming two products.

Name Exolinhibition

Reaction equation

$$Exo1A + Rad53A \longrightarrow Exo1I + Rad53A$$
 (76)

Reactants

Table 60: Properties of each reactant.

Id	Name	SBO
Exo1A		
Rad53A		

Table 61: Properties of each product.

Id	Name	SBO
Exo1I		
Rad53A		

Derived unit contains undeclared units

$$v_{19} = \text{Exo1A} \cdot \text{k13} \cdot \text{Rad53A} \cdot \text{kalive} \tag{77}$$

Table 62: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k13		1.0	

7.20 Reaction Dun1activation

This is an irreversible reaction of two reactants forming two products.

Name Dun1activation

Reaction equation

$$Dun1I + Rad53A \longrightarrow Dun1A + Rad53A \tag{78}$$

Reactants

Table 63: Properties of each reactant.

Id	Name	SBO
Dun1I		
Rad53A		

Products

Table 64: Properties of each product.

Id	Name	SBO
Dun1A		
Rad53A		

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{Dun1I} \cdot \text{k14} \cdot \text{Rad53A} \cdot \text{kalive} \tag{79}$$

Table 65: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k14			$3.3\cdot10^{-6}$		

7.21 Reaction Chk1cellArrest

This is an irreversible reaction of two reactants forming two products.

Name Chk1cellArrest

Reaction equation

$$Chk1A + G2Mon \longrightarrow Chk1A + G2Moff$$
 (80)

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Chk1A		
G2Mon		

Products

Table 67: Properties of each product.

Id	Name	SBO
Chk1A		
G2Moff		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{Chk1A} \cdot \text{G2Mon} \cdot \text{k15} \cdot \text{kalive}$$
 (81)

Table 68: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k15		0.2	

7.22 Reaction Dun1cellArrest

This is an irreversible reaction of two reactants forming two products.

Name Dun1cellArrest

Reaction equation

$$Dun1A + G2Mon \longrightarrow Dun1A + G2Moff$$
 (82)

Reactants

Table 69: Properties of each reactant.

Id	Name	SBO
Dun1A		
G2Mon		

Products

Table 70: Properties of each product.

Id	Name	SBO
Dun1A		
G2Moff		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{Dun1A} \cdot \text{G2Mon} \cdot \text{k16} \cdot \text{kalive}$$
 (83)

Table 71: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k16		0.1	

7.23 Reaction SDNArepair1

This is an irreversible reaction of two reactants forming four products.

Name SDNArepair1

Reaction equation

$$Mec1RPAssDNA + S \longrightarrow Mec1 + RPA + S + 3 ssDNA$$
 (84)

Reactants

Table 72: Properties of each reactant.

Id	Name	SBO
Mec1RPAssDNA		
S		

Products

Table 73: Properties of each product.

Id	Name	SBO
Mec1		
RPA		
S		
ssDNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = k17a \cdot \text{Mec} 1 \text{RPAssDNA} \cdot \text{S} \cdot \text{kalive}$$
 (85)

Table 74: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k17a		0.05	

7.24 Reaction G2DNArepair1

This is an irreversible reaction of three reactants forming five products.

Name G2DNArepair1

Reaction equation

$$G2 + G2Moff + Mec1RPAssDNA \longrightarrow G2 + G2Moff + Mec1 + RPA + 3 ssDNA$$
 (86)

Reactants

Table 75: Properties of each reactant.

Id	Name	SBO
G2		
G2Moff		
Mec1RPAssDNA		

Products

Table 76: Properties of each product.

Id	Name	SBO
G2		
G2Moff		
Mec1		
RPA		
ssDNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = G2 \cdot G2Moff \cdot k17b \cdot Mec1RPAssDNA \cdot kalive$$
 (87)

Table 77: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k17b		0.05	

7.25 Reaction SDNArepair2

This is an irreversible reaction of two reactants forming one product.

Name SDNArepair2

Reaction equation

$$S + ssDNA \longrightarrow S$$
 (88)

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
S		
ssDNA		

Product

Table 79: Properties of each product.

Id	Name	SBO
S		

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = k18a \cdot S \cdot ssDNA \cdot kalive$$
 (89)

Table 80: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k18a		0.001	Ø

7.26 Reaction G2DNArepair2

This is an irreversible reaction of three reactants forming two products.

Name G2DNArepair2

Reaction equation

$$G2 + G2Moff + ssDNA \longrightarrow G2 + G2Moff$$
 (90)

Table 81: Properties of each reactant.

Id	Name	SBO
G2 G2Moff ssDNA		

Table 82: Properties of each product.

Id	Name	SBO
G2		
G2Moff		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = G2 \cdot G2Moff \cdot k18b \cdot ssDNA \cdot kalive$$
 (91)

Table 83: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k18b		10^{-5}	Ø

7.27 Reaction Recovery

This is an irreversible reaction of three reactants forming three products.

Name Recovery

Reaction equation

$$Cdc13 + Rad17Utelo + recovery \longrightarrow Ctelo + Rad17 + recovery$$
 (92)

Table 84: Properties of each reactant.

Id	Name	SBO
Cdc13		
Rad17Utelo		
recovery		

Table 85: Properties of each product.

Id	Name	SBO
Ctelo		
Rad17		
recovery		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{Cdc}13 \cdot \text{k}19 \cdot \text{Rad}17\text{Utelo} \cdot \text{recovery} \cdot \text{kalive}$$
 (93)

Table 86: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k19		0.001	

7.28 Reaction GlcyclinSynthesis

This is an irreversible reaction of one reactant forming two products.

Name G1cyclinSynthesis

Reaction equation

$$G1 \longrightarrow G1 \operatorname{cyclin} + G1$$
 (94)

Reactant

Table 87: Properties of each reactant.

Id	Name	SBO
G1		

Table 88: Properties of each product.

Id	Name	SBO
G1cyclin G1		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = G1 \cdot \text{kc1} \cdot \text{kalive} \tag{95}$$

Table 89: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc1		0.16	

7.29 Reaction ScyclinSynthesis

This is an irreversible reaction of one reactant forming two products.

Name ScyclinSynthesis

Reaction equation

$$S \longrightarrow Scyclin + S$$
 (96)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
S		

Table 91: Properties of each product.

Id	Name	SBO
Scyclin		
S		

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{kc1} \cdot \text{S} \cdot \text{kalive} \tag{97}$$

Table 92: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc1		0.16	

7.30 Reaction G2cyclinSynthesis

This is an irreversible reaction of one reactant forming two products.

Name G2cyclinSynthesis

Reaction equation

$$G2 \longrightarrow G2 \operatorname{cyclin} + G2$$
 (98)

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
G2		

Table 94: Properties of each product.

Id	Name	SBO
G2cyclin		
G2		

Derived unit contains undeclared units

$$v_{30} = G2 \cdot \text{kc1} \cdot \text{kalive} \tag{99}$$

Table 95: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc1		0.16	

7.31 Reaction McyclinSynthesis

This is an irreversible reaction of one reactant forming two products.

Name McyclinSynthesis

Reaction equation

$$M \longrightarrow Mcyclin + M$$
 (100)

Reactant

Table 96: Properties of each reactant.

Id	Name	SBO
М		

Table 97: Properties of each product.

Id	Name	SBO
Mcyclin		
M		

Derived unit contains undeclared units

$$v_{31} = \text{kc1} \cdot \text{M} \cdot \text{kalive} \tag{101}$$

Table 98: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc1		0.16	

7.32 Reaction G1toSGenesOn

This is an irreversible reaction of three reactants forming three products.

Name GltoSGenesOn

Reaction equation

$$G1Soff + G1 + G1CdkA \longrightarrow G1Son + G1 + G1CdkA$$
 (102)

Reactants

Table 99: Properties of each reactant.

Id	Name	SBO
G1Soff		
G1		
G1CdkA		

Products

Table 100: Properties of each product.

Name	SBO
	Name

Kinetic Law

$$v_{32} = G1 \cdot G1CdkA \cdot G1Soff \cdot kc2 \cdot kalive$$
 (103)

Table 101: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc2		0.01	

7.33 Reaction StoG2GenesOn

This is an irreversible reaction of three reactants forming three products.

Name StoG2GenesOn

Reaction equation

$$SG2off + S + SCdkA \longrightarrow SG2on + S + SCdkA$$
 (104)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
SG2off		
S		
SCdkA		

Products

Table 103: Properties of each product.

Id	Name	SBO
SG2on		
S		
SCdkA		

Kinetic Law

$$v_{33} = \text{kc2} \cdot \text{S} \cdot \text{SCdkA} \cdot \text{SG2off} \cdot \text{kalive}$$
 (105)

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kc2			0.01		

7.34 Reaction G2toMGenesOn

This is an irreversible reaction of three reactants forming three products.

Name G2toMGenesOn

Reaction equation

$$G2Moff + G2 + G2CdkA \longrightarrow G2Mon + G2 + G2CdkA$$
 (106)

Reactants

Table 105: Properties of each reactant.

Id Name	зьо
G2Moff G2 G2CdkA	

Products

Table 106: Properties of each product.

Id	Name	SBO
G2Mon G2 G2CdkA		

Kinetic Law

$$v_{34} = G2 \cdot G2CdkA \cdot G2Moff \cdot kc2 \cdot kalive$$
 (107)

Table 107: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc2		0.01	

7.35 Reaction MtoG1GenesOn

This is an irreversible reaction of three reactants forming three products.

Name MtoG1GenesOn

Reaction equation

$$MG1off + M + MCdkA \longrightarrow MG1on + M + MCdkA$$
 (108)

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
MG1off		
М		
MCdkA		

Products

Table 109: Properties of each product.

Id	Name	SBO
MG1on		
M		
MCdkA		

Kinetic Law

$$v_{35} = \text{kc2} \cdot \text{M} \cdot \text{MCdkA} \cdot \text{MG1off} \cdot \text{kalive}$$
 (109)

Table 110: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc2		0.01	

7.36 Reaction G1cyclinDegradation

This is an irreversible reaction of one reactant forming one product.

Name G1cyclinDegradation

Reaction equation

$$G1 \operatorname{cyclin} \longrightarrow \operatorname{sink} \tag{110}$$

Reactant

Table 111: Properties of each reactant.

Id	Name	SBO
G1cyclin		

Product

Table 112: Properties of each product.

Id	Name	SBO
sink		

Kinetic Law

$$v_{36} = \text{G1cyclin} \cdot \text{kc3} \cdot \text{kalive}$$
 (111)

Table 113: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kc3			0.001		

7.37 Reaction ScyclinDegradation

This is an irreversible reaction of one reactant forming one product.

Name ScyclinDegradation

Reaction equation

Scyclin
$$\longrightarrow$$
 sink (112)

Reactant

Table 114: Properties of each reactant.

Id	Name	SBO
Scyclin		

Product

Table 115: Properties of each product.

Id	Name	SBO
sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{kc} \cdot \text{Scyclin} \cdot \text{kalive}$$
 (113)

Table 116: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc3		0.001	

7.38 Reaction G2cyclinDegradation

This is an irreversible reaction of one reactant forming one product.

Name G2cyclinDegradation

Reaction equation

G2cyclin
$$\longrightarrow$$
 sink (114)

Reactant

Table 117: Properties of each reactant.

Id	Name	SBO
G2cyclin		

Product

Table 118: Properties of each product.

Id	Name	SBO
sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = G2 \text{cyclin} \cdot \text{kc} \cdot \text{kalive}$$
 (115)

Table 119: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc3		0.001	\checkmark

7.39 Reaction McyclinDegradation

This is an irreversible reaction of one reactant forming one product.

Name McyclinDegradation

Reaction equation

$$Mcyclin \longrightarrow sink \tag{116}$$

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
Mcyclin		

Table 121: Properties of each product.

Id	Name	SBO
sink		

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{kc3} \cdot \text{Mcyclin} \cdot \text{kalive}$$
 (117)

Table 122: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc3		0.001	

7.40 Reaction G1toSProgession

This is an irreversible reaction of three reactants forming three products.

Name G1toSProgession

Reaction equation

$$G1 + G1CdkA + G1Son \longrightarrow G1CdkI + G1Soff + S$$
 (118)

Reactants

Table 123: Properties of each reactant.

Id	Name	SBO
G1		
G1CdkA		
G1Son		

Table 124: Properties of each product.

Id	Name	SBO
G1CdkI		
G1Soff		
S		

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = G1 \cdot G1CdkA \cdot G1Son \cdot kc4 \cdot kalive$$
 (119)

Table 125: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc4		0.01	

7.41 Reaction StoG2Progession

This is an irreversible reaction of three reactants forming three products.

Name StoG2Progession

Reaction equation

$$S + SCdkA + SG2on \longrightarrow G2 + SCdkI + SG2off$$
 (120)

Reactants

Table 126: Properties of each reactant.

Id	Name	SBO
S		
SCdkA		
SG2on		

Table 127: Properties of each product.

Id	Name	SBO
G2		
SCdkI		
SG2off		

Derived unit contains undeclared units

$$v_{41} = \text{kc4} \cdot \text{S} \cdot \text{SCdkA} \cdot \text{SG2on} \cdot \text{kalive}$$
 (121)

Table 128: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc4		0.01	

7.42 Reaction G2toMProgession

This is an irreversible reaction of three reactants forming three products.

Name G2toMProgession

Reaction equation

$$G2 + G2CdkA + G2Mon \longrightarrow G2CdkI + G2Moff + M$$
 (122)

Reactants

Table 129: Properties of each reactant.

Id	Name	SBO
G2		
G2CdkA		
G2Mon		

Table 130: Properties of each product.

Id	Name	SBO
G2CdkI		
G2Moff		
M		

Derived unit contains undeclared units

$$v_{42} = G2 \cdot G2CdkA \cdot G2Mon \cdot kc4 \cdot kalive$$
 (123)

Table 131: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc4		0.01	

7.43 Reaction MtoG1Progession

This is an irreversible reaction of three reactants forming four products.

Name MtoG1Progession

Reaction equation

$$M + MCdkA + MG1on \longrightarrow budscar + G1 + MCdkI + MG1off$$
 (124)

Reactants

Table 132: Properties of each reactant.

Id	Name	SBO
M		
MCdkA		
MG1on		

Table 133: Properties of each product.

Id	Name	SBO
budscar		
G1		
MCdkI		
MG1off		

Derived unit contains undeclared units

$$v_{43} = \text{kc4} \cdot \text{M} \cdot \text{MCdkA} \cdot \text{MG1on} \cdot \text{kalive}$$
 (125)

Table 134: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
kc4		0.01	\square

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species Ctelo

Initial amount 64 item

This species takes part in three reactions (as a reactant in Uncapping and as a product in Capping, Recovery).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ctelo} = |v_1| + |v_{27}| - |v_2| \tag{126}$$

8.2 Species Utelo

Initial amount 0 item

This species takes part in five reactions (as a reactant in Capping, Rad17binding, Exo1Rad17independentActivi and as a product in Uncapping, Exo1Rad17independentActivity).

$$\frac{d}{dt}Utelo = v_2 + v_8 - v_1 - v_3 - v_8$$
 (127)

8.3 Species Cdc13

Initial amount 300 item

This species takes part in three reactions (as a reactant in Capping, Recovery and as a product in Uncapping).

$$\frac{d}{dt}Cdc13 = |v_2| - |v_1| - |v_{27}| \tag{128}$$

8.4 Species Rad17Utelo

Initial amount 0 item

This species takes part in eight reactions (as a reactant in ExoXactivation, ExoXactivity, Exo1Rad17dependentActivity, Recovery and as a product in Rad17binding, ExoXactivation, ExoXactivity, Exo1Rad17dependentActivity).

$$\frac{d}{dt} \text{Rad} 17 \text{Utelo} = |v_3| + |v_4| + |v_5| + |v_9| - |v_4| - |v_5| - |v_9| - |v_{27}|$$
(129)

8.5 Species Rad17

Initial amount 70 item

This species takes part in two reactions (as a reactant in Rad17binding and as a product in Recovery).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rad}17 = v_{27} - v_3 \tag{130}$$

8.6 Species Rad24

Initial amount 70 item

This species takes part in four reactions (as a reactant in Rad17binding, Exo1Rad24dependentActivation and as a product in Rad17binding, Exo1Rad24dependentActivation).

$$\frac{d}{dt}Rad24 = |v_3| + |v_7| - |v_3| - |v_7|$$
 (131)

8.7 Species RPA

Initial amount 4000 item

This species takes part in three reactions (as a reactant in RPAbinding1 and as a product in SDNArepair1, G2DNArepair1).

$$\frac{d}{dt}RPA = |v_{23}| + |v_{24}| - |v_{10}| \tag{132}$$

8.8 Species Mec1

Initial amount 4000 item

This species takes part in three reactions (as a reactant in Mec1binding and as a product in SDNArepair1, G2DNArepair1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mec1} = |v_{23}| + |v_{24}| - |v_{13}| \tag{133}$$

8.9 Species ssDNA

Initial amount 0 item

Involved in event ssDNAremoval

This species takes part in ten reactions (as a reactant in RPAbinding1, RPAbinding2, RPAbinding, SDNArepair2, G2DNArepair2 and as a product in ExoXactivity, Exo1Rad17independentActivity, Exo1Rad17dependentActivity, SDNArepair1, G2DNArepair1).

$$\frac{d}{dt}ssDNA = |v_5| + |v_8| + |v_9| + 3|v_{23}| + 3|v_{24}| - |v_{10}| - |v_{11}| - |v_{12}| - |v_{25}| - |v_{26}|$$
(134)

Furthermore, one event influences this species' rate of change.

8.10 Species RPAssDNA

Initial amount 0 item

Involved in event ssDNAremoval

This species takes part in two reactions (as a reactant in Meclbinding and as a product in RPAbinding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RPAssDNA} = |v_{12}| - |v_{13}| \tag{135}$$

8.11 Species RPAssDNA1

Initial amount 0 item

This species takes part in two reactions (as a reactant in RPAbinding2 and as a product in RPAbinding1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RPAssDNA1} = v_{10} - v_{11} \tag{136}$$

8.12 Species RPAssDNA2

Initial amount 0 item

This species takes part in two reactions (as a reactant in RPAbinding and as a product in RPAbinding2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RPAssDNA2} = |v_{11}| - |v_{12}| \tag{137}$$

8.13 Species Mec1RPAssDNA

Initial amount 0 item

Involved in event ssDNAremoval

This species takes part in three reactions (as a reactant in SDNArepair1, G2DNArepair1 and as a product in Mec1binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mec}1\mathrm{RPAssDNA} = |v_{13}| - |v_{23}| - |v_{24}| \tag{138}$$

Furthermore, one event influences this species' rate of change.

8.14 Species ExoXI

Initial amount 70 item

Involved in event G2MRecoveryCompleted

This species takes part in three reactions (as a reactant in ExoXactivation and as a product in ExoXinhibition, ExoXinhibition2).

$$\frac{d}{dt}ExoXI = v_{15} + v_{16} - v_4 \tag{139}$$

8.15 Species ExoXA

Initial amount 0 item

Involved in event G2MRecoveryCompleted

This species takes part in five reactions (as a reactant in ExoXactivity, ExoXinhibition, ExoXinhibition2 and as a product in ExoXactivation, ExoXactivity).

$$\frac{d}{dt}ExoXA = |v_4| + |v_5| - |v_5| - |v_{15}| - |v_{16}|$$
(140)

Furthermore, one event influences this species' rate of change.

8.16 Species Exo1I

Initial amount 670 item

Involved in event G2MRecoveryCompleted

This species takes part in three reactions (as a reactant in Exo1activation, Exo1Rad24dependentActivation and as a product in Exo1inhibition).

$$\frac{d}{dt}Exo1I = |v_{19}| - |v_{6}| - |v_{7}|$$
 (141)

Furthermore, one event influences this species' rate of change.

8.17 Species Exo1A

Initial amount 0 item

Involved in event G2MRecoveryCompleted

This species takes part in seven reactions (as a reactant in Exo1Rad17independentActivity, Exo1Rad17dependentActivity, Exo1inhibition and as a product in Exo1activation, Exo1Rad24dependentActivation, Exo1Rad17independentActivity, Exo1Rad17dependentActivity).

$$\frac{d}{dt}Exo1A = v_6 + v_7 + v_8 + v_9 - v_8 - v_9 - v_{19}$$
 (142)

Furthermore, one event influences this species' rate of change.

8.18 Species Rad9I

Initial amount 20 item

Involved in event G2MRecoveryCompleted

This species takes part in three reactions (as a reactant in Rad9activation, ExoXinhibition2 and as a product in ExoXinhibition2).

$$\frac{d}{dt}Rad9I = |v_{16}| - |v_{14}| - |v_{16}|$$
(143)

8.19 Species Rad9A

Initial amount 0 item

Involved in event G2MRecoveryCompleted

This species takes part in seven reactions (as a reactant in ExoXinhibition, Rad53activation, Chk1Activation and as a product in Rad9activation, ExoXinhibition, Rad53activation, Chk1Activation).

$$\frac{d}{dt}Rad9A = |v_{14}| + |v_{15}| + |v_{17}| + |v_{18}| - |v_{15}| - |v_{17}| - |v_{18}|$$
(144)

Furthermore, one event influences this species' rate of change.

8.20 Species Rad53I

Initial amount 6900 item

Involved in event G2MRecoveryCompleted

This species takes part in one reaction (as a reactant in Rad53activation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rad53I} = -v_{17} \tag{145}$$

Furthermore, one event influences this species' rate of change.

8.21 Species Rad53A

Initial amount 0 item

Involved in event G2MRecoveryCompleted

This species takes part in five reactions (as a reactant in Exo1inhibition, Dun1activation and as a product in Rad53activation, Exo1inhibition, Dun1activation).

$$\frac{d}{dt}Rad53A = |v_{17}| + |v_{19}| + |v_{20}| - |v_{19}| - |v_{20}|$$
(146)

Furthermore, one event influences this species' rate of change.

8.22 Species Chk1I

Initial amount 60 item

Involved in event G2MRecoveryCompleted

This species takes part in one reaction (as a reactant in Chk1Activation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Chk}1\mathrm{I} = -v_{18} \tag{147}$$

8.23 Species Chk1A

Initial amount 0 item

Involved in event G2MRecoveryCompleted

This species takes part in three reactions (as a reactant in Chk1cellArrest and as a product in Chk1Activation, Chk1cellArrest).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Chk1A} = |v_{18}| + |v_{21}| - |v_{21}| \tag{148}$$

Furthermore, one event influences this species' rate of change.

8.24 Species Dun1I

Initial amount 3000 item

Involved in event G2MRecoveryCompleted

This species takes part in one reaction (as a reactant in Dunlactivation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Dun}1\mathrm{I} = -v_{20} \tag{149}$$

Furthermore, one event influences this species' rate of change.

8.25 Species Dun1A

Initial amount 0 item

Involved in event G2MRecoveryCompleted

This species takes part in three reactions (as a reactant in Dun1cellArrest and as a product in Dun1activation, Dun1cellArrest).

$$\frac{d}{dt}Dun1A = |v_{20}| + |v_{22}| - |v_{22}|$$
 (150)

Furthermore, one event influences this species' rate of change.

8.26 Species ATP

Initial amount 10000 item

This species takes part in one reaction (as a reactant in Rad17binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ATP} = -v_3 \tag{151}$$

8.27 Species ADP

Initial amount 1000 item

This species takes part in one reaction (as a product in Rad17binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ADP} = v_3 \tag{152}$$

8.28 Species Rad9Kin

Initial amount 0 item

Involved in event Rad9KinaseActivation

This species takes part in two reactions (as a reactant in Rad9activation and as a product in Rad9activation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rad}9\mathrm{Kin} = |v_{14}| - |v_{14}| \tag{153}$$

Furthermore, one event influences this species' rate of change.

8.29 Species recovery

Initial amount 0 item

Involved in events ssDNAremoval, G2MRecoveryCompleted, SphaseRecoveryCompleted

This species takes part in two reactions (as a reactant in Recovery and as a product in Recovery).

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{recovery} = v_{27} - v_{27} \tag{154}$$

Furthermore, three events influence this species' rate of change.

8.30 Species G1

Initial amount 1 item

This species takes part in six reactions (as a reactant in G1cyclinSynthesis, G1toSGenesOn, G1toSProgession and as a product in G1cyclinSynthesis, G1toSGenesOn, MtoG1Progession).

$$\frac{\mathrm{d}}{\mathrm{d}t}G1 = v_{28} + v_{32} + v_{43} - v_{28} - v_{32} - v_{40} \tag{155}$$

8.31 Species S

Initial amount 0 item

This species takes part in ten reactions (as a reactant in SDNArepair1, SDNArepair2, ScyclinSynthesis, StoG2GenesOn, StoG2Progession and as a product in SDNArepair1, SDNArepair2, ScyclinSynthesis, StoG2GenesOn, G1toSProgession).

$$\frac{\mathrm{d}}{\mathrm{d}t}S = |v_{23}| + |v_{25}| + |v_{29}| + |v_{33}| + |v_{40}| - |v_{23}| - |v_{25}| - |v_{29}| - |v_{33}| - |v_{41}|$$
(156)

8.32 Species G2

Initial amount 0 item

This species takes part in ten reactions (as a reactant in G2DNArepair1, G2DNArepair2, G2cyclinSynthesis, G2toMGenesOn, G2toMProgession and as a product in G2DNArepair1, G2DNArepair2, G2cyclinSynthesis, G2toMGenesOn, StoG2Progession).

$$\frac{\mathrm{d}}{\mathrm{d}t}G2 = v_{24} + v_{26} + v_{30} + v_{34} + v_{41} - v_{24} - v_{26} - v_{30} - v_{34} - v_{42} \tag{157}$$

8.33 Species M

Initial amount 0 item

This species takes part in six reactions (as a reactant in McyclinSynthesis, MtoG1GenesOn, MtoG1Progession and as a product in McyclinSynthesis, MtoG1GenesOn, G2toMProgession).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M} = |v_{31}| + |v_{35}| + |v_{42}| - |v_{31}| - |v_{35}| - |v_{43}| \tag{158}$$

8.34 Species Glcyclin

Initial amount 0 item

This species takes part in two reactions (as a reactant in G1cyclinDegradation and as a product in G1cyclinSynthesis).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G1cyclin} = |v_{28}| - |v_{36}| \tag{159}$$

8.35 Species Scyclin

Initial amount 0 item

This species takes part in two reactions (as a reactant in ScyclinDegradation and as a product in ScyclinSynthesis).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Scyclin} = |v_{29}| - |v_{37}| \tag{160}$$

8.36 Species G2cyclin

Initial amount 0 item

This species takes part in two reactions (as a reactant in G2cyclinDegradation and as a product in G2cyclinSynthesis).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G2cyclin} = |v_{30}| - |v_{38}| \tag{161}$$

8.37 Species Mcyclin

Initial amount 0 item

This species takes part in two reactions (as a reactant in McyclinDegradation and as a product in McyclinSynthesis).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mcyclin} = |v_{31}| - |v_{39}| \tag{162}$$

8.38 Species G1CdkI

Initial amount 1 item

Involved in event G1CdkActivation

This species takes part in one reaction (as a product in G1toSProgession).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G1CdkI} = v_{40} \tag{163}$$

Furthermore, one event influences this species' rate of change.

8.39 Species G1CdkA

Initial amount 0 item

Involved in event G1CdkActivation

This species takes part in three reactions (as a reactant in G1toSGenesOn, G1toSProgession and as a product in G1toSGenesOn).

$$\frac{d}{dt}G1CdkA = v_{32} - v_{32} - v_{40}$$
 (164)

8.40 Species SCdkI

Initial amount 1 item

Involved in event SCdkActivation

This species takes part in one reaction (as a product in StoG2Progession).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SCdkI} = v_{41} \tag{165}$$

Furthermore, one event influences this species' rate of change.

8.41 Species SCdkA

Initial amount 0 item

Involved in event SCdkActivation

This species takes part in three reactions (as a reactant in StoG2GenesOn, StoG2Progession and as a product in StoG2GenesOn).

$$\frac{d}{dt}SCdkA = |v_{33}| - |v_{33}| - |v_{41}|$$
 (166)

Furthermore, one event influences this species' rate of change.

8.42 Species G2CdkI

Initial amount 1 item

Involved in event G2CdkActivation

This species takes part in one reaction (as a product in G2toMProgession).

$$\frac{\mathrm{d}}{\mathrm{d}t}G2\mathrm{C}dk\mathrm{I} = v_{42} \tag{167}$$

Furthermore, one event influences this species' rate of change.

8.43 Species G2CdkA

Initial amount 0 item

Involved in event G2CdkActivation

This species takes part in three reactions (as a reactant in G2toMGenesOn, G2toMProgession and as a product in G2toMGenesOn).

$$\frac{d}{dt}G2CdkA = |v_{34}| - |v_{42}| \tag{168}$$

8.44 Species MCdkI

Initial amount 1 item

Involved in event MCdkActivation

This species takes part in one reaction (as a product in MtoG1Progession).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MCdkI} = |v_{43}| \tag{169}$$

Furthermore, one event influences this species' rate of change.

8.45 Species MCdkA

Initial amount 0 item

Involved in event MCdkActivation

This species takes part in three reactions (as a reactant in MtoG1GenesOn, MtoG1Progession and as a product in MtoG1GenesOn).

$$\frac{d}{dt}MCdkA = |v_{35}| - |v_{35}| - |v_{43}|$$
 (170)

Furthermore, one event influences this species' rate of change.

8.46 Species G1Soff

Initial amount 1 item

This species takes part in two reactions (as a reactant in G1toSGenesOn and as a product in G1toSProgession).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G1Soff} = |v_{40}| - |v_{32}| \tag{171}$$

8.47 Species G1Son

Initial amount 0 item

This species takes part in two reactions (as a reactant in G1toSProgession and as a product in G1toSGenesOn).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G1Son} = |v_{32}| - |v_{40}| \tag{172}$$

8.48 Species SG2off

Initial amount 1 item

This species takes part in two reactions (as a reactant in StoG2GenesOn and as a product in StoG2Progession).

$$\frac{d}{dt}SG2off = |v_{41}| - |v_{33}| \tag{173}$$

8.49 Species SG2on

Initial amount 0 item

This species takes part in two reactions (as a reactant in StoG2Progession and as a product in StoG2GenesOn).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SG2on} = |v_{33}| - |v_{41}| \tag{174}$$

8.50 Species G2Moff

Initial amount 1 item

Involved in event G2MRecoveryCompleted

This species takes part in eight reactions (as a reactant in G2DNArepair1, G2DNArepair2, G2toMGenesOn and as a product in Chk1cellArrest, Dun1cellArrest, G2DNArepair1, G2DNArepair2, G2toMProgession).

$$\frac{d}{dt}G2Moff = v_{21} + v_{22} + v_{24} + v_{26} + v_{42} - v_{24} - v_{26} - v_{34}$$
 (175)

Furthermore, one event influences this species' rate of change.

8.51 Species G2Mon

Initial amount 0 item

Involved in event G2MRecoveryCompleted

This species takes part in four reactions (as a reactant in Chk1cellArrest, Dun1cellArrest, G2toMProgession and as a product in G2toMGenesOn).

$$\frac{d}{dt}G2Mon = |v_{34}| - |v_{21}| - |v_{22}| - |v_{42}|$$
(176)

8.52 Species MG1off

Initial amount 1 item

This species takes part in two reactions (as a reactant in MtoG1GenesOn and as a product in MtoG1Progession).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MG1off} = |v_{43}| - |v_{35}| \tag{177}$$

8.53 Species MG1on

Initial amount 0 item

This species takes part in two reactions (as a reactant in MtoG1Progession and as a product in MtoG1GenesOn).

$$\frac{d}{dt}MG1on = v_{35} - v_{43}$$
 (178)

8.54 Species sink

Initial amount 0 item

This species takes part in four reactions (as a product in G1cyclinDegradation, ScyclinDegradation, G2cyclinDegradation), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{sink} = 0\tag{179}$$

8.55 Species budscar

Initial amount 0 item

This species takes part in one reaction (as a product in MtoG1Progession).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{budscar} = v_{43} \tag{180}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany