Model estimation

The GBDT approach was originally proposed by Friedman (2001) and developed into a R package by Ridgeway (2007). Following the notations by Ridgeway (2020), (X_i, y_i) is the *i*th observation in the sample space S, which has N observations. X_i indicates the vector of independent variables and y_i is the dependent variable. X is the matrix of independent variables of all observations.

Before model estimation, the GBDT approach requires to set three parameters: tree depth K, learning rate λ , and the number of iterations T. The approach first uses a constant to initialize $\hat{f}(X) = argmin_{\rho} \sum_{i=1}^{N} \Psi(y_i, \rho)$, where Ψ denotes the loss function of squared errors and ρ is the optimal value. Then the following steps will be iterated for T times. For the tth iteration,

Step 1. use Equation (A1) to calculate the negative gradient z_i of the *i*th observation:

$$z_i = -\frac{\partial}{\partial f(\mathbf{X}_i)} \Psi(y_i, f(\mathbf{X}_i))|_{f(\mathbf{X}_i) = \hat{f}(\mathbf{X}_i)}. \tag{A1}$$

Step 2. fit a decision tree with K terminal nodes using a subsample. Friedman (2002) found that fitting decision trees with a subsample randomly selected from the original sample produces better performance. He suggested that the subsample should include $0.5 \times N$ observations.

Step 3. calculate the optimal prediction ρ_k for the kth terminal node of the fitted decision tree in Step 3 using Equation (A2):

$$\rho_k = \operatorname{argmin}_{\rho} \sum_{\mathbf{x}_i \in S_k} \Psi(y_i, \hat{f}(\mathbf{X}_i) + \rho), \tag{A2}$$

where S_k is the set of observations categorized into the kth terminal node of the fitted decision tree.

Step 4. update $\hat{f}(X)$ using Equation (A3):

$$\hat{f}(\mathbf{X}) \leftarrow \hat{f}(\mathbf{X}) + \lambda \rho_{k(\mathbf{X})},\tag{A3}$$

where k(X) indicates the index of the terminal node of the fitted decision tree where the observations are located.

Relative importance

Equation (A4) is used to calculate the total variance reduction \hat{J}_j^2 by the independent variable x_j (Ridgeway 2020):

$$\hat{J}_j^2 = \sum_{\text{splits on } x_j} I_t^2 \tag{A4}$$

where I_t^2 is the variance reduction by splitting on x_j .

Relative importance (RI) of x_i is calculated with Equation (A5):

$$RI_{j} = \frac{\hat{J}_{j}^{2}}{\sum_{1}^{N} \hat{J}_{j}^{2}} \times 100\%$$
 (A5)

Accumulated Local Effect (ALE) estimation

Following the notations by Molnar (2020), x_j is split into $k_j(x)$ intervals. The uncentered ALE for x_j can be estimated by Equation (A6):

$$\hat{f}_{j,ALE}(\mathbf{X}) = \sum_{k=1}^{k_j(\mathbf{X})} \frac{1}{n_i(k)} \sum_{i:x_i^{(i)} \in N_j(k)} [f(\mathbf{z}_{k,j}, \mathbf{x}_{\setminus j}^{(i)}) - f(\mathbf{z}_{k-1,j}, \mathbf{x}_{\setminus j}^{(i)})], \tag{A6}$$

where $N_j(k)$ is the space of the kth interval, $n_j(k)$ is the number of observations in the kth interval, $z_{k,j}$ is the maximum value of x_j in $N_j(k)$, $z_{k-1,j}$ is the minimum value of x_j in $N_j(k)$, $x_{j}^{(i)}$ is the ith observation without x_j in $N_j(k)$, and f(.,.) is the estimated GBDT model.

The centered ALE for x_j can be computed using Equation (A7):

$$\hat{f}_{j,ALE}(x) = \hat{f}_{j,ALE}(x) - \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{j,ALE}(x_j^{(i)}), \tag{A7}$$

where n is the number of observations in the sample.

Reference

Friedman, Jerome H. 2001. "Greedy function approximation: A gradient boosting machine." *The Annals of Statistics* 29 (5):1189-1232. doi: 10.1214/aos/1013203451.

Friedman, Jerome H. 2002. "Stochastic gradient boosting." *Computational Statistics & Data Analysis* 38 (4):367-378. doi: 10.1016/s0167-9473(01)00065-2.

Molnar, Christoph. 2020. "Interpretable Machine Learning - A Guide for Making Black Box Models Explainable." In: lulu.com. https://christophm.github.io/interpretable-ml-book/.

Ridgeway, Greg. 2007. "Generalized Boosted Models: A guide to the gbm package." https://pbil.univ-lyon1.fr/CRAN/web/packages/gbm/vignettes/gbm.pdf. Ridgeway, Greg. 2020. "Generalized Boosted Models: A guide to the gbm package." https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf.