使用 MEMS 感測器實現以 IoT 為基礎的預測性維護

D0748284 楊孟軒

1 Introduction

1.1 Motivation

隨著工業機械能夠完成越來越複雜化、自動化的任務,這樣的發展意味著機械各部件得 承受更為複雜的運作模式,也就是說,在該作業環境可能易遭受高溫高壓和高運轉量的 困擾。因此,故障是不可避免的問題。由於機械設備故障容易導致經濟及能源消耗的損 失,故機械狀態監控的需求變得日趨重要。

簡單來說:大專生計劃錢都拿了現在逃不掉了 嗚嗚

1.2 Task Definition

- 1. 利用遷入式設備搜集工具機運作數據
- 2. 輕量化模型並直接在遷入式設備部署
- 3. 考慮到多個axis交互關係分析軸承運作狀態

2 Dataset description

- 1. IMS dataset(aka NASA Bearing Dataset)
- 2. 實際設備搜集資料

2.1 Dataset description

	IMS	實際設備搜集資料
Channels	4	3
Number of files	pprox 20M	$\geq 20k$
Window size(frequence)	10240	4096
setup	Accelerometers Radial Load Thermocouples Bearing 1 Bearing 2 Bearing 3 Bearing 4	Gateway & Computer Display Target Machine MCU Sensor

3 Learning techniques

3.1 feature extraction

將震動數據依照 $window\ size\$ 分開 並分別計算個別的時域特徵($timedomain\ features$)

• RMS =
$$\sqrt{(\frac{1}{N})\sum_{i=1}^{N}(x)^2}$$

• VAR =
$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

• KUR =
$$\frac{1}{N}\sum_{i=1}^{N} \frac{(x_i - \overline{x})^4}{\sigma^4}$$

• PeakValue = max value - min value

• SKW =
$$\frac{1}{N}\sum_{i=1}^{N} \frac{(x_i - \overline{x})^3}{\sigma^3}$$

• MED =
$$(\frac{N+1}{2})^{th}$$

• Normalized features used as training data

3.2 Classifiers model

分別用以下幾種演算法對資料進行訓練,比較輸出結果並考量實際效率以進行部署

- 1. Nearest Neighbors
- 2. Linear SVM
- 3. RBF SVM
- 4. Decision Tree
- 5. Random Forest
- 6. AdaBoost
- 7. Naive Bayes

4 Result and disscussion

4.1 Classification Results Obtained Without PCA

model	Accuracy(%)	Parameter
Nearest Neighbors	93.4	N=3
Linear SVM	83.2	kernel="linear", C=0.025
RBF SVM	93.4	gamma=2, C=1
Decision Tree	97.9	max_depth=5
Random Forest	94.7	max_depth=5
AdaBoost	98.4	
Naive Bayes	87.5	

4.2 Classification Results Obtained using PCA

• 我們選擇了上表最佳的兩個模型(AdaBoost,Decision Tree)和最低的(Linear SVM)額外加上KNN,比較PCA對特徵降維對準確性的影響

4.3 Deploy model in MCUs

5 Conclusion

5.1 Conclusion

要把模型用到MCU會需要比較多的步驟,因此這次在實際部署在MCU上目前只有使用 PCA+KNN測試,同時我們也嘗試定義其他工具機的狀態標籤,但因為感應器的限制,當 工具機高功率運作加速度會大於最大採樣值,因此本次以三個狀態作為標記。

5.2 未來展望

這次研究在實際部署中,遇到最大的問題是要在兼顧模型正確性的同時顧慮到MCU的計算量,因此希望未來可以用兩段式的架構,先藉由前端MCU搜集數據後傳送道伺服器分析,以使用更複雜的模型進行處理

6 References

- [1] Analysis of NASA Bearing Dataset of the University of Cincinnati by Means of Hjorth's Parameters
- [2] Analysis of the Rolling Element Bearing data set of the Center for Intelligent Maintenance Systems of the University of Cincinnat
- [3] A. Widodo, E. Y. Kim, J. D. Son, B. S. Yang, A. C. Tan, D. S. Gu, ... and J. Mathew, "Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine," Expert systems with applications, vol. 36 no. 3, pp. 7252-7261, 2009.