1 Relational Diagrams for the Inequality Conditions

1.1 For the Unconstrained Perfect Foresight Model

Figure 1 Relation of RIC, PF-GIC, and FHWC in Perfect Foresight Model Arrows reflect the direction of the relationship; an arrowhead points to the larger of the two quantities being compared. For example, the topmost arrow, pointing from \mathbf{p} to Γ , indicates that $\Gamma > \mathbf{p}$.

Figure 1.1 should be read as follows. The three nodes represent the values of the absolute patience factor \mathbf{p} , the growth factor for permanent income Γ , and the riskfree interest factor \mathbf{R} . The arrows between these quantities represent imposition of the labeled condition. For example, the uppermost arrow, pointing from \mathbf{p} to Γ , reflects imposition of the PF-GIC condition. To make interpretation of the diagram easy, the mathematical representation of the condition is expressed in parentheses as being equivalent (\equiv) to the condition.

The imposition of the negation of the PF-GIC (the lower curved arrow pointing from Γ to \mathbf{p} , labeled PF-GIC) could have been left out, under the convention that the negation of an arrow pointing in one direction is an arrow pointing in the opposite direction. So, for example, the negation of the RIC is RIC $\equiv \mathbf{p} > R$ but could be represented by moving the arrowhead from the bottom right to the top left of the line segment connecting \mathbf{p} and \mathbf{R} .

Because they reflect inequalities, the implications of the arrows accumulate as the diagram is traversed. For example, if we were to start at R and then impose EHWC, that would reverse the arrow connecting R and Γ . If we were then to impose PF-GIC, we would follow the arrow to \mathbf{p} . But

EHWC: $R < \Gamma$ PF-GIC: $\Gamma < \mathbf{P}$ $\Rightarrow RFC$: $R < \mathbf{P}$,

which illustrates another aspect of the diagram: If all arrows are reversed in a partial traversal of the diagram leading to a final step, then the arrow for the final step must also be reversed. In this case, since both conditions leading to R have had their arrows reversed, the arrow coming out of R should also be reversed, implying the negation of the RIC – as (1) proved.

For clarity, further diagrams will omit multiple arrows indicating reversal of causality

(in Figure 1.1 there would, for example, be only a single arrow, from \mathbf{p} to Γ , at the top level of the diagram). And definitions of conditions will also be omitted henceforth.

Under these conventions, as in the main text we can extend the diagram to incorporate the PF-FVAC in Figure ??).

This diagram can be interpreted, for example, as saying that it is possible to derive the PF-FVAC¹ by imposing both the PF-GIC and the FHWC; or by imposing RIC and EHWC. Or, starting at the Γ node, we can follow the imposition of the FHWC (twice) and then RIC to reach the conclusion that $\mathbf{p} < (\mathsf{R}\Gamma)^{1/\rho}\Gamma$. Algebraically,

FHWC:
$$\Gamma < R$$

RHC: $R < \mathbf{p}$
 $\Gamma < \mathbf{p}$

which leads to the negation of the two conditions leading into \mathbf{p} : PF-GIC is obtained directly by dividing both sides of (1) and PF-FVAC follows if we start by multipling the Return Patience Factor (RPF= \mathbf{p}/R) by the FHWF(= Γ/R) raised to the power $1/\rho-1$, which is negative since we imposed $\rho > 1$. FHWC implies FHWF < 1 so when FHWF is raised to a negative power the result is greater than one. Multiplying the RPF(which exceeds 1 because RFC) by a number greater than one yields a product that must be greater than one:

$$1 < \overbrace{\left(\frac{(\mathsf{R}\beta)^{1/\rho}}{\mathsf{R}}\right)}^{>1 \text{ from FHWC}}$$

$$1 < \left(\frac{(\mathsf{R}\beta)^{1/\rho}}{\mathsf{R}}\right)^{} \overbrace{\left(\Gamma/\mathsf{R}\right)^{1/\rho-1}}^{}$$

$$1 < \left(\frac{(\mathsf{R}\beta)^{1/\rho}}{(\mathsf{R}/\Gamma)^{1/\rho}\mathsf{R}\Gamma/\mathsf{R}}\right)$$

$$\mathsf{R}^{1/\rho}\Gamma^{1-1/\rho} = (\mathsf{R}/\Gamma)^{1/\rho}\Gamma < \mathbf{P}$$

which is one way of writing PF-FVAC.

After the warmup of constructing these conditions for the perfect foresight case, we can represent the relationships between all the conditions in both the perfect foresight case and the case with uncertainty as shown in Figure ??.

¹in the form $\mathbf{p} < (\mathsf{R}/\Gamma)^{1/\rho}\Gamma$