Question 1

What is the optimal value of alpha for ridge and lasso regression?
What will be the changes in the model if you choose double the value of alpha for both ridge and lasso?

What will be the most important predictor variables after the change is implemented?

Answer:

Optimal alpha for Ridge regression: 6
Optimal alpha for Lasso regression: 0.001

Here are the changes observed when the alpha value was doubled:

- Slight change in the metrics can be observed for both Ridge and Lasso, but it is not that significant.
- Lasso regression has eliminated 83 features when alpha doubled. In optimal alpha case it eliminated 61 features
- When alpha was doubled, Ridge Regression displayed a slight better performance/metric compared to Lasso regression

Metric table with optimal alpha

	Metric	Ridge Regression	Lasso Regression
0	R2 Score (Train)	0.910915	0.894430
1	R2 Score (Test)	0.886188	0.888002
2	RSS (Train)	14.488083	17.169148
3	RSS (Test)	7.821143	7.696485
4	MSE (Train)	0.119474	0.130059
5	MSE (Test)	0.133934	0.132863

Metric table when Alpha is doubled

Metric Ridge Regression Lasso Regression

0	R2 Score (Train)	0.904144	0.875296
1	R2 Score (Test)	0.887735	0.877729
2	RSS (Train)	15.589209	20.280862
3	RSS (Test)	7.714829	8.402480
4	MSE (Train)	0.123931	0.141355
5	MSE (Test)	0.133021	0.138823

Most important variables are: Overall quality, Overall condition. Neighbourhood

Lasso with alpha doubled:

Overallqual_9: 0.1835628118394943 Overallcond_3: -0.10031294687359829 Neighborhood_Crawfor: 0.09929945862763964 MSSubClass_30: -0.09336699992288719 Overallqual_8: 0.08865044622226378 Overallqual_3: -0.07350067830890708 Overallqual_4: -0.07024112776998369 Neighborhood_IDOTRR: -0.06390478059192428 Overallcond_4: -0.06158991020053291 TotRmsAbvGrd: 0.061347290923643966 1stFlrSF: 0.06114187789199146

Neighborhood_NridgHt: 0.0610674031936282 BsmtExposure_Gd: 0.060645004776857935 GarageArea: 0.05504329030889074 Functional_Typ: 0.05473436563855146 Condition1_Norm: 0.05339134143915787 FireplaceQu_NA: -0.0529210116154539 FullBath: 0.04868698691770389 ExterQual_TA: -0.048227993170429286 HalfBath: 0.044046340124347834

Neighborhood_Edwards: -0.04176397108561379 SaleCondition_Partial: 0.0399041934973562 MSSubClass_160: -0.03656580962799536 OverallCond_7: 0.03440655834174169 KitchenQual_TA: -0.03326714508220582

Ridge with alpha doubled:

OverallQual_9: 0.15667527956602548 OverallQual_3: -0.10941987983876665 OverallCond 3: -0.1030164868279577

Neighborhood_Crawfor: 0.10145438589670736 Neighborhood_NridgHt: 0.09889230641033685 Neighborhood_IDOTRR: -0.0979262688639369 Neighborhood_StoneBr: 0.0854669378809203 MSSubClass_30: -0.08392421082019144 OverallCond 9: 0.07821391255134857

Neighborhood_MeadowV: -0.07683924733471904

OverallQual_8: 0.07636081726333101

Neighborhood_NoRidge: 0.0749109778431321 SaleCondition Partial: 0.07450673419221117

OverallQual_4: -0.06946432783604219 OverallCond_4: -0.06905939368339355 Exterior1st_BrkFace: 0.06866304432080259

1stFlrSF: 0.06379402630628289

BsmtExposure_Gd: 0.06339233460106945 LandContour_HLS: 0.06314003475363933 OverallCond_7: 0.06158843316513589 Alley_Pave: 0.059551900188136817

SaleCondition_Normal: 0.05898026403999413 OverallQual_10: 0.05701963423082702 MSSubClass_160: -0.05669532658546908

Functional Typ: 0.0553362222570052

Lasso with optimal alpha:

OverallQual_9: 0.23180834994848692 OverallCond_3: -0.1433480687640675

OverallQual_3: -0.14192146261349692

Neighborhood_Crawfor: 0.12393599144839308 MSSubClass 30: -0.11040868766033969

OverallQual_8: 0.10529280165532796

Neighborhood_IDOTRR: -0.10457959049613784 Neighborhood_NridgHt: 0.09715702162632396 Neighborhood_MeadowV: -0.08124917770512712 Neighborhood_NoRidge: 0.07884107336229927

OverallQual_4: -0.07609443471993738
BsmtExposure_Gd: 0.07396109024321482
Neighborhood_StoneBr: 0.07178978409139304
SaleCondition_Partial: 0.07114892215785995

OverallCond_4: -0.0670686373441287

Exterior1st_BrkFace: 0.06604112997671949 Condition1 Norm: 0.05871878825428102

1stFlrSF: 0.05749622026580367

MSSubClass_160: -0.05726737424939389 OverallQual_10: 0.05624524243575949 TotRmsAbvGrd: 0.0556999329409701 Functional Typ: 0.05558295418962677

SaleCondition Normal: 0.05413032764623093

OverallCond_9: 0.05273538179512369 FireplaceQu_NA: -0.048856568504996346

Ridge with optimal alpha:

OverallQual_9: 0.19652987941242814 OverallQual_3: -0.1389828713348906 OverallCond_3: -0.1272977419260038

Neighborhood_IDOTRR: -0.1243659404938063 Neighborhood_Crawfor: 0.11743830188650753 Neighborhood_NridgHt: 0.11647677318184468 Neighborhood_StoneBr: 0.10889438411303765 Neighborhood MeadowV: -0.10463432911846711

OverallCond 9: 0.10319255118004424

Neighborhood_NoRidge: 0.09612081933379585

OverallQual_10: 0.0899107701644299 OverallQual_8: 0.08973435998747965

SaleCondition Partial: 0.08957497708997422

MSSubClass_30: -0.08823812169605044 Condition2_Norm: 0.08208493654477092 Exterior1st BrkFace: 0.08140806141654759

Heating_GasW: 0.07759209196451808
LandContour_HLS: 0.07579295697574985
Alley_Pave: 0.07343001615149523
OverallQual_4: -0.07156783085346168
Functional_Maj2: -0.0714530352745558
OverallCond_4: -0.07095213678847591
HouseStyle_2.5Unf: 0.07087427727534425
HouseStyle_2.5Fin: 0.07007271943732513
SaleCondition_Normal: 0.06837050972154438

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Lasso and Ridge regression has almost same train and test accuracy (Observed from the metric table)

Lasso regression model is slightly better than Ridge model (metric on test data determines the same). Lasso regression has omitted 61 features.

Lasso regression shall be chosen to apply based on aforementioned observations.

	Metric	Ridge Regression	Lasso Regression
0	R2 Score (Train)	0.910915	0.894430
1	R2 Score (Test)	0.886188	0.888002
2	RSS (Train)	14.488083	17.169148
3	RSS (Test)	7.821143	7.696485
4	MSE (Train)	0.119474	0.130059
5	MSE (Test)	0.133934	0.132863

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

A new model was created by excluding the 5 most important predictor variables. Here are the 5 most important predictors based on the new lasso model.

Following list includes the significant features that impact the house price in both positive and negative manner:

- Functional (Home functionality)
- LotShape (General shape of property)
- LandContour (Flatness of the property)
- BsmtCond (Evaluates the general condition of the basement)
- TotRmsAbvGrd (Total rooms above grade)

Functional_Typ: 0.11570012714622015 LotShape_IR3: -0.10372148037609494 LandContour_HLS: 0.09906664202977859 BsmtCond_Gd: 0.07651039337530996 TotRmsAbvGrd: 0.07556836505913686

SaleCondition_Partial: 0.07430255433370099 Exterior1st_BrkFace: 0.07259720717069743

1stFlrSF: 0.0715686361647663

Condition1_Norm: 0.06921850133030655 FireplaceQu_NA: -0.06515414626076281 BldgType_Twnhs: -0.06319676200857655 SaleCondition Normal: 0.061146717509894415

BsmtCond_TA: 0.060625426985427784 ExterQual_TA: -0.058915749778067794 GarageArea: 0.05770866340767669 Alley Pave: 0.05627448442329541

LotConfig_CulDSac: 0.04689475922592703 BsmtFinType1_GLQ: 0.043778776650482014 KitchenQual TA: -0.042912724572459635

FullBath: 0.040387868407064154
YearRemodAdd: 0.03999149671866924
HalfBath: 0.03996320777839013
RoofStyle_Hip: 0.03647829365798285
HeatingQC_TA: -0.03644215333547513
CentralAir: 0.0341588586398057

Above is the snapshot of params and its coefficients for reference

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

We can make sure model is robust and generalisable by following below steps:

- Data cleaning, outlier detection and removal
- Feature selection, feature transformation, creating new features
- Dividing dataset into train, validation, test data. If dataset is not big enough for dividing into validation then use cross validation techniques
- Check for imbalance data and use stratified sampling accordingly
- Check for underfitting and overfitting
- Use regularisation techniques to prevent overfitting
- Hyperparameter tuning
- Make use of appropriate metrics for different models for evaluation
- Make sure data leak is not happening i.e. model evaluation should happen only on test data (unseen data)

Implications of the above for the accuracy of the model:

- Robust and generalisable model maintains consistent performance
- It performs well on unseen data (no overfitting)
- Prediction will be accurate
- Helps in better decision making