# Meta-Heuristics 1 COMP4691 / 8691















# Previously on COMP4691(8691)

- Construct
- Improve
  - (Stochastic) Local Search
  - Simulated Annealing

#### Today:

• Other ways to escape local minima / search the solution space

### Problems with Local Search I

#### Local minima



# Meta-heuristics: Properties (1)

- can address both discrete- and continuous-domain optimisation problems
- are strategies that "guide" the search process
- range from simple local search procedures to complex adaptive learning processes
- efficiently explore the search space to find good (near-optimal) feasible solutions
- provide no guarantee of global or local optimality
- lack a metric of "goodness" of solution (often stop due to an external time or iteration limit)
- are agnostic to the unexplored feasible space (i.e., no "bound" information)

# Meta-heuristics: Properties (2)

- are not based on some algebraic model (unlike exact methods)
- can be used in conjunction with an exact method
  - E.g., use metaheuristic to provide upper bounds
  - E.g., use restricted MILP as "local heuristic" ( == matheuristic)
- are usually non-deterministic
- are not problem specific (but their subordinate heuristics can be)
- may use some form of memory to better guide the search

### Meta-heuristics: Overview

#### **Exhibit Intensification and Diversification**

- Need to do both
- Can be explicitly controlled

#### Intensification (Exploitation):

- Concentrate search around already-found "good" solutions
- Look harder in a smaller area

#### **Diversification (Exploration)**

- Expand the area being looked at
- Find new (promising?) areas to search
- Includes mechanisms to avoid getting trapped in confined areas of the search space

### Meta-heuristics: An Incomplete Survey



### Meta-heuristics: An Incomplete Survey



### Tabu Search

- Taboo (English): prohibited, disallowed, forbidden
- **Tabu** (*Fijian*): forbidden to use due to being sacred and/or of supernatural powers
- Starts with classic Local Search until a local minimum is found
- Choose an objective-increasing move
- Make undoing that move "tabu"
  - Place it on a "tabu list"
- Repeat

```
s \leftarrow \text{GenerateInitialSolution()} \ TabuList \leftarrow \emptyset \ 
while termination conditions not met do s \leftarrow \text{ChooseBestOf}(\mathcal{N}(s) \setminus TabuList) \ 
Update(TabuList)
endwhile
```

### Tabu Search

- Simple version: Tabu list has fixed length
  - Moves "fall off" the list after fixed number of iterations
- Length of the list is a critical parameter
  - Too small → Keep falling back into same local minimum
  - Too big 

    Not allowed to explore new space properly
- Dynamic list length
  - If you see the same solution, increase list length
  - Decrease when new incumbent found

### Tabu Search

#### "Aspiration Criteria"

- Allowed to keep a solution if it meets certain criteria
- Most common: a new incumbent / best solution is kept

### E.g. VRP



E.g. VRP



E.g. VRP



E.g. VRP



### E.g. VRP



### E.g. VRP



### Meta-heuristics: An Incomplete Survey



### Soft Constraints

#### General idea: Move constraints into the objective

- Relax Constraints
  - Penalise degree of violation
    - Allows Local Search to move through "infeasibility barrier"
  - Opens new areas of search space
  - Maintain both best feasible solution, "best" infeasible solution
  - Increase penalty over time to force incumbent back to feasibility
  - Often used with Simulated Annealing or Tabu Search
  - Extensively used in practice, e.g., VRP

#### Parameters:

- Which constraints to relax
- Penalty schedule



Not possible by changing a single node

# Soft Constraints – VRP

E.g. VRP



E.g. VRP



E.g. VRP



E.g. VRP



E.g. VRP



E.g. VRP



# Meta-heuristics: An Incomplete Survey



### Guided Local Search

#### Basic idea:

- Select a *feature* that indicates a poor solution
- Penalise a solution that exhibits that feature

- Start with zero penalty
- Repeat
  - Perform Local Search to minimise original objective + penalties
  - Select elements to penalise
  - Increase penalty on selected elements

### Guided Local Search

#### Local Search

• Do local search with an updated objective  $h(s) = g(s) + \lambda \cdot \sum_{i=1}^{\infty} p_i \cdot I_i(s)$ 

- Updated objective
  - h(s): Augmented objective
  - g(s): Original objective
  - λ: "normalisation" parameter
  - p<sub>i</sub>: Count of times feature i has been penalised
  - I<sub>i</sub>(s): Indicator function: 1 if feature i in solution s; 0 otherwise

### Guided Local Search

#### Select elements to penalise:

- Update penalty of features that maximise Utility
- c<sub>i</sub>: Original cost of feature
- *I<sub>i</sub>(s)*: Does solution s exhibit feature *i*
- At each iteration
  - Local Search using augmented objective
  - Select maximum utility features
  - Set p<sub>i</sub> = p<sub>i</sub> + 1 for all selected features

$$h(s) = g(s) + \lambda \cdot \sum_{i=1}^{M} p_i \cdot I_i(s)$$

 $util(s_*, f_i) = I_i(s_*) \cdot \frac{c_i}{1 + p_i}$ 

- Penalty increases each iteration
  - Local Search tries harder to eliminate feature
- Utility decreases the more often you penalise a feature
  - Eventually select other features

# Guided Local Search - TSP

- Feature: an arc (i,j)
- I<sub>ij</sub>(s) = 1 if arc (i,j) is present; 0 otherwise
- At each iteration
  - Penalise the longest arc.
  - Try harder to get rid of it
- As the search progresses
  - Utility of first arc decreases
  - Other arcs start being penalised

$$h(s) = g(s) + \lambda \cdot \sum_{i=1}^{M} p_i \cdot I_i(s)$$

$$util(s_*, f_i) = I_i(s_*) \cdot \frac{c_i}{1 + p_i}$$

# Meta-heuristics: An Incomplete Survey



- Generate a population of solutions (construct methods)
- Evaluate fitness (objective)
- Create next generation:
  - Choose two solutions from population
  - Combine the two (two ways)
  - [Mutate]
  - <u>Produce offspring</u> (calculate fitness)
  - [Improve]
  - Repeat until population doubles
- Apply selection:
  - Bottom half "dies"
- Repeat

Turns it into a *Memetic Algorithm* 



#### Solution Representation is key

- Needs to fulfil multiple goals
  - Easy to calculate fitness (objective)
  - Easy to perform crossover (merge)
  - Easy to manipulate (mutation)
  - Easy for local search
- E.g. VRP
  - First attempts used array for each route, or successor info
  - Very difficult for crossover
  - Better rep turns out to be a single array

#### E.g. VRP

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming

|--|

#### E.g. VRP

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming



#### E.g. VRP

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming



- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming



- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming



- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming

| 6 1 9 7 3 2 10 4 8 | 5 |
|--------------------|---|
|--------------------|---|

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming



- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming

| 6 1 9 7 3 2 10 4 8 |
|--------------------|
|--------------------|

- "Split" method
- Introduced by Prins (2004)

- Solution represented as a "Grand Tour" (ordering of all customers)
- Split algorithm divides the tour into feasible routes
  - Uses Dynamic Programming



| 125 | 7 | 10 | 5 | 9  | 8 | 3 | 2  | 6 | 4  | 1 |
|-----|---|----|---|----|---|---|----|---|----|---|
| 132 | 7 | 6  | 3 | 9  | 4 | 5 | 2  | 8 | 10 | 1 |
| 160 | 5 | 8  | 4 | 10 | 2 | 3 | 7  | 9 | 1  | 6 |
| 198 | 5 | 2  | 3 | 4  | 6 | 8 | 10 | 7 | 9  | 1 |



| 1 | 4  | 6 | 2  | 3 | 8 | 9  | 5  | 10 | 7 | 125 |
|---|----|---|----|---|---|----|----|----|---|-----|
| 1 | 10 | 8 | 2  | 5 | 4 | 9  | 3  | 6  | 7 | 132 |
| 6 | 1  | 9 | 7  | 3 | 2 | 10 | 4  | 8  | 5 | 160 |
| 1 | 9  | 7 | 10 | 8 | 6 | 4  | 3  | 2  | 5 | 198 |
|   |    |   |    |   |   |    |    |    |   |     |
| 1 | 10 | 8 | 2  | 3 | 9 | 5  | 7  | 6  | 4 | 128 |
| 1 | 4  | 6 | 5  | 9 | 3 | 7  | 10 | 8  | 2 | 206 |

#### **Diversification:**

- Big problem is getting a homogenous population
- Too much intensification, not enough diversification
- Some algorithms explicitly measure diversity
  - keep lower-quality solutions that maintain diversity
- Meta-meta: Soft constraints
  - Maintain a separate population of infeasible solutions

#### Meta-heuristics: An Incomplete Survey



By analogy to foraging behaviour of Ants



• An obstacle appears!



Everybody flip a coin



Shortest path is reinforced



#### E.g.: Want to find shortest paths in a communications network

- Send out ants that choose a path
  - Partly at random (our naïve heuristic)
  - Partly influenced by previous ants: Pheromone trail our meta-heuristic
- The first ant to get to a destination increases the Pheromone on its path
- Pheromone levels decrease over time
  - More ants select the best path
  - The best path gets reinforced

#### **Advantages:**

- (Relatively) Simple
- Distributed
- Easy to parallelise
- Robust:
  - If the network changes, new pheromones will be deposited and a new path found

#### **Disadvantages:**

- Sensitive to parameter settings
  - Lay down too much pheromone → Lock in poor solution early (poor diversity)
  - Lay down too little 

    Slow to converge (poor intensification)
  - Decay pheromone too slowly → Bad paths persist
  - Decay too quickly → Best path is forgotten













































#### Meta-heuristics: An Incomplete Survey



### Path Relinking

#### Basic idea:

- Take two solutions
- "Walk" between them

#### For TSP:

#### Meta-heuristics



#### Conclusions

- We've looked at the characteristics of Meta-heuristics
  - Problem independent on top of Problem-dependent heuristics
  - Often Randomised "Stochastic Local Search" (also a book by Hoos & Stützle)
  - Diversification / Intensification (Exploration / Exploitation)
- We've looked at a few Meta-heuristics
  - Accepting non-improving solutions
  - Combining solutions
- Next time
  - More Meta-heuristics