の・12分別別のHTMANA(2mm・・)

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09232521 A

(43) Date of publication of application: 05.09.97

(51) Int CI

H01L 27/04 H01L 21/822 H01L 21/265

(21) Application number: 08041152

(22) Date of filing: 28.02.96

(71) Applicant:

NEC CORP

(72) Inventor:

KITAMURA TAKAHIRO

(54) SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF

(57) Abstract:

PROBLEM TO BE SOLVED: To reduce irregularity in resistance without increasing the chip area and the cost, by providing a polycrystal silicon resistor formed on a semiconductor substrate via an insulating film, and a silicon oxide film containing impurity and formed on the surface of the polycrystal silicon resistor.

SOLUTION: A BSG film 4 and a polycrystal silicon film 3 are etched to form a P-type polycrystal silicon resistor 5 with the BSG film 4 provided thereon. Then, after a silicon oxide film 7 covering a silicon oxide film 2 and the BSG film 4 is formed, a hole is selectively opened in the silicon oxide film 7 and the BSG film 4, thereby forming a contact hole 8. Then, the resistance is centered by a method in which the impurity density of the P-type polycrystal silicon resistor 5 is increased while the layer resistance is reduced. Since the BSG film 4 is provided on the P-type polycrystal silicon resistor 5, boron is diffused also at the time of emitter annealing. However, the resistance may be adjusted even in annealing at 900°C by optimizing the ion implantation dose of boron.

COPYRIGHT: (C)1997,JPO

(c)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-232521

(43)公開日 平成9年(1997)9月5日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	ΡI			技術表示箇所
H01L	27/04			H01L	27/04	P	
	21/822				21/265	Α	
	21/265						

審査請求 有 請求項の数5 OL (全4頁)

(21)出顯番号	特顧平8 -41152	(71)出廣人			
(22)出實日	平成8年(1996)2月28日	(ma) mannada	日本電気株式会社 東京都港区芝五丁目7番1号		
		(72)発明者	喜多村 隆弘 東京都港区芝五丁目7番1号 日本電気株 式会社内		
		(74)代理人	弁理士 京本 直樹 (外2名)		

(54)【発明の名称】 半導体装置およびその製造方法

(57)【要約】

【課題】チップ面積を小さくする半導体装置では、抵抗 の抵抗値のばらつきが大きい。

【解決手段】多結晶シリコン抵抗体5上にBSG膜4を 形成しておき、抵抗値をモニターしながら熱処理を行な い、BSG膜4から不純物を拡散させ、抵抗体5の抵抗 値を調整する。

【特許請求の範囲】

【請求項1】 半導体基板上に絶縁膜を介して形成され た多結晶シリコン抵抗体と、この多結晶シリコン抵抗体 の表面に形成された不純物を含むシリコン酸化膜とを含 むことを特徴とする半導体装置。

1

【請求項2】 不純物はホウ素又はリンであ請求項1 記載の半導体装置。

【請求項3】 トランジスタ案子が形成された半導体基 板上に第1の絶縁膜を形成する工程と、この第1の絶縁 膜上に多結晶シリコン膜を形成したのち所望の層抵抗よ10 抵抗を完成させる。 り高めになるように一導電型不純物を導入する工程と、 この多結晶シリコン膜上に一導電型不純物を高濃度に含 んだシリコン酸化膜を形成する工程と、このシリコン酸 化膜と前記多結晶シリコン膜を同時にパターニングし多 結晶シリコン抵抗体を形成する工程と、パターニングさ れた前記シリコン酸化膜の表面を含む全面に第2の絶縁 膜を形成する工程と、この第2の絶縁膜と前記シリコン 酸化膜を貫通する電極形成用のコンタクト孔を形成した のち熱処理し、前記シリコン酸化膜から前記多結晶シリ コン抵抗体へ不純物を拡散させ前記多結晶シリコン抵抗20 体の抵抗値を調整する工程とを含むことを特徴とする半 導体装置の製造方法。

【請求項4】 多結晶シリコン抵抗体の抵抗値をモニタ ーしながら熱処理を行 請求項3記載の半導体装置の製 造方法。

【請求項5】 一導電型不純物はホウ素又はリンである 請求項3又は請求項4記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

の製造方法に関し、特に多結晶シリコン抵抗体およびそ の製造方法に関する。

[0002]

【従来の技術】半導体装置には多くの抵抗が設けられて いるが、これらの抵抗は主に半導体基板に形成された不 純物の拡散層や絶縁膜上の多結晶シリコン層が用いられ ている。従来の多結晶シリコン抵抗体の製造方法を図面 を参照して説明する。

【0003】図2(a), (b), (c)は従来の多結 晶シリコン抵抗体の製造方法を説明する為の半導体チッ40 に一番近い抵抗体にアルミ配線をつなぎ変えて制御する プの断面図である。

【0004】まず図2(a)に示すように、シリコン基 板1上に酸化シリコン膜2を形成したのちこの酸化シリ コン膜2の上に多結晶シリコン膜3を堆積する。次にこ の多結晶シリコン膜3にイオン注入あるいは拡散により P型不純物(またはN型不純物)をドープする。次図 2 (b) に示すように、この多結晶シリコン膜3をパタ ーンニングし、P型多結晶シリコン抵抗体5(またはN 型多結晶シリコン抵抗体)を形成する。次に酸化シリコ 2

ン膜7を全面に形成し、P型多結晶シリコン抵抗体5上 の酸化シリコン膜7を選択的にパターニングしコンタク ト孔8を形成する。そしてP型多結晶シリコン抵抗体5 内の不純物を活性化させるために850~1000℃で アニールを行う。たとえばバイポーラプロセスにおける 多結晶シリコン抵抗体5ではこの熱処理はエミッタアニ ール (1000℃10秒程度) で行う。次図2 (c) に示すように、コンタクト孔8内にシリサイド層9を形 成したのち、コンタクト孔8にアルミ電極10を形成し

【0005】抵抗値の調整は先行ロットの特性をフィー ドバックし、イオン注入のドーズ量の調整によって行な われている為、微調整は極めて困難であった。この対策 として、不純物イオンの活性化を利用する方法が、例え ば特開昭59-99757号公報に記載されている。こ の方法は、トランジスタ形成後に多結晶シリコン層に不 純物を導入し、600℃以下のアニール温度で活性化率 を変えて層抵抗を調整し、抵抗値を最適化するものであ る。

[0006]

【発明が解決しようとする課題】半導体装置の抵抗はト ランジスタを形成する工程内で作られる。そして特性の 最適化はどうしてもトランジスタが優先になっている 為、抵抗の特性の最適化が犠牲になり、抵抗値のばらつ きを抑えることが難しくなっている。ところが最近、半 導体装置の低消費電力化のニーズが大きくなり、電流値 を小さく抑えた設計をするために、抵抗値のばらつきを 抑えることが必要になってきている。

【0007】従来の抵抗は前述したようにトランジスタ 【発明の属する技術分野】本発明は半導体装置およびそ30 を形成するついでに形成され、製造ばらつきの影響を受 ける前の工程で、先行ロットの特性をフィードバック し、イオン注入のドーズ量を調整する事によって抵抗値 を制御している。よって抵抗値をモニターしながらの微 調整はほとんど不可能であり、また製造ばらつきの影響 を直接受けてしまい、抵抗値のばらつきを小さくするこ とは出来なかった。

> 【0008】また、あらかじめ抵抗値の違う抵抗体を幾 つも作っておき、ロット分割して数枚先行評価し、その 結果を残りのウェハにフィードバックし、所望の抵抗値 方法もあるが、本来1本でいい抵抗体を幾つもレイアウ トしなくてはならず、チップ面積が大きくなり価格が高 くなるという問題点がある。

【0009】更に特開昭59-99757号公報に記載 された調整方法では、構成上抵抗体に600℃以上熱を かけられないため、トランジスタを形成したのち多結晶 シリコン抵抗体を形成して、不純物を導入する必要があ る。これはトランジスタ形成時には通常850~100 0℃の熱処理を必要とするからである。このような構成 ン膜2とP型多結晶シリコン抵抗体5を覆う酸化シリコ50 では抵抗体の製造工程が独立する事になるので工程数が

増え価格が高くなり、製造時間も長くなるという問題点 がある。

【0010】本発明の目的は、チップ面積を大きくする ことなく、かつ価格を高くすることなく抵抗値のばらつ きの小さい抵抗を有する半導体装置およびその製造方法 を提供することにある。

[0011]

【課題を解決するための手段】第1の発明の半導体装置 は、半導体基板上に絶縁膜を介して形成された多結晶シ リコン抵抗体と、この多結晶シリコン抵抗体の表面に形10 成された不純物を含むシリコン酸化膜とを含むことを特 徴とするものである。

【0012】第2の発明の半導体装置の製造方法は、ト ランジスタ素子が形成された半導体基板上に第1の絶縁 膜を形成する工程と、この第1の絶縁膜上に多結晶シリ コン膜を形成したのち所望の層抵抗より高めになるよう に一導電型不純物を導入する工程と、この多結晶シリコ ン膜上に一導電型不純物を高濃度に含んだシリコン酸化 膜を形成する工程と、このシリコン酸化膜と前記多結晶 シリコン膜を同時にパターニングし多結晶シリコン抵抗20 体を形成する工程と、パターニングされた前記シリコン 酸化膜の表面を含む全面に第2の絶縁膜を形成する工程 と、この第2の絶縁膜と前記シリコン酸化膜を貫通する 電極形成用のコンタクト孔を形成したのち熱処理し、前 記シリコン酸化膜から前記多結晶シリコン抵抗体へ不純 物を拡散させ前記多結晶シリコン抵抗体の抵抗値を調整 する工程とを含むことを特徴とするものである。

[0013]

【発明の実施の形態】次に本発明について図面を参照し て説明する。図1(a)、(b)、(c)は本発明の一30 更できるものである。 実施の形態を説明する為の半導体チップ断面図である。

【0014】まず図1(a)に示すように、トランジス タ素子が形成されたシリコン基板 1 上に酸化シリコン膜 2を形成したのち、この酸化シリコン膜2の上にCVD 法により厚さ約250nmの多結晶シリコン膜3を堆積 する。そして従来例より低ドーズ量(約1×1%/c m³) でポロンを多結晶シリコン膜3にイオン注入した のち、高濃度にボロンを含んだ (10~30モル%) B SG膜4を堆積する。

と多結晶シリコン膜3をエッチングし、BSG膜4を載 せたP型多結晶シリコン抵抗体5を形成する。次に酸化 シリコン膜2とPSG膜4を覆う酸化シリコン膜7を形 成したのち、この酸化シリコン膜7とBSG膜4を選択 的に開孔しコンタクト孔8を形成する。次にトランジス タ形成時の熱処理、たとえばバイポーラプロセスにおけ るエミッタアニール (1000℃10秒程度) を行う。 その後あらかじめ設けておいた4端子法で測定できる抵 抗チェックパターンで、抵抗値をモニターしながら、た とえば900℃10~60秒程度のアニールを行ないB50 3

SG膜4からボロンを拡散させ、P型多結晶シリコン抵 抗体5の不純物濃度を高くし層抵抗を低くしていく方法 で抵抗値のセンタリングを行う。P型多結晶シリコン抵 抗体5上にBSG膜4が載っているため、エミッタアニ ール時にもボロンは拡散されるが、ボロンのイオン注入 ドーズ量を最適化することにより、900℃のアニール でも抵抗値の調整は可能となる。またトランジスタ形成 時の熱処理はプロセスにより異なるが、イオン注入ドー ズ量および抵抗アニール温度を最適化することにより調 整は可能となる。

【0016】次に図1(c)に示すように、コンタクト 孔8内にシリサイド層9を形成したのちコンタクト孔8 にアルミ電極10を形成し抵抗を完成させる。

【0017】このように本実施の形態によれば、多結晶 シリコン抵抗体の抵抗値を調整できる為、抵抗値のばら つきを小さくできる。例えば、複数の調整用抵抗体を用 いない従来例では抵抗値のばらつきは±30%であった が、本実施の形態では±10%以下に抑えることができ

【0018】又本実施の形態では従来技術に対してBS G膜4を形成する工程と、抵抗値を調整するためのアニ ール工程の2工程が増えるだけなので、価格が高くなっ たり製造時間が長くなることはほとんどない。

【0019】尚、上記実施の形態ではP型多結晶シリコ ン抵抗体とBSG膜を用いた場合について説明したが、 N型多結晶シリコン抵抗体とPSG膜を用いてもよい。 又多結晶シリコン膜の厚さを250nm、不純物のドー ズ量を 1 0¹⁴/ c m³ の場合について説明したが、これ に限定されるものではなく、抵抗体の種類により適宜変

[0020]

【発明の効果】以上説明したように本発明は、不純物を 高濃度に含んだ酸化膜から不純物を多結晶シリコン抵抗 体へ拡散させることにより、抵抗値を調整することがで きる。よって複数の調整用抵抗体を有する必要がないこ とから、半導体装置の大きさを減少することができ、工 程数もほとんど増加しないので、コストダウンを図るこ とができる。また、本発明の抵抗値調整法では連続的な 値をとることが可能なため、厳しい規格に対応する微妙 【0015】次に図1 (b) に示すように、BSG膜4 40 な調整が可能であり、特性の一様化、歩留りの向上を図 ることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態を説明する為の半導体チッ プの断面図。

【図2】従来の半導体装置の製造方法を説明する為の半 導体チップの断面図。

【符号の説明】

- シリコン基板
- 酸化シリコン膜
- P型多結晶シリコン膜

9

5

4 BSG膜

5 P型多結晶シリコン抵抗体

7 酸化シリコン膜

6

8 コンタクト孔

10 アルミ電極

シリサイド層

【図1】

【図2】

