

Flexible FOND Planning under Explicit Fairness Assumptions

Ivan D. Rodriguez,¹ Blai Bonet,¹ Sebastian Sardiña,² Hector Geffner^{1,3}

¹Universitat Pompeu Fabra, Barcelona, Spain ²RMIT University, Melbourne, Australia ³Institució Catalana de Recerca i Estudis Avançats (ICREA)

arXiv:2103.08391

Motivation and Contribution

- Goal: combine & extend in a uniform setting:
- 1 Fair FOND Planning: strong cyclic; proper policies of MDPs.
- 2 Adversarial FOND Pl.: strong; bounded # of steps.
- 3 Qualitative Numerical Pl.: used in generalized planning.
- **Problem**: their models and solvers have *implicit* fairness assumptions, thus they cannot be combined.
- Solution:
- define FOND⁺ planning, making these assumptions explicit;
- define Sieve⁺ procedure to test FOND⁺ solutions; and
- 3 implement FOND-ASP planner for FOND⁺ in CLINGO.

Long paper (proofs + ext. discussions) in **arXiv:2103.08391**

FOND Model and Problem

A **FOND model** is a tuple $M = \langle S, s_0, S_G, Act, A, F \rangle$, where:

- S is a finite set of states;
- $s_0 \in S$ is the initial state;
- $S_G \subseteq S$ is a non-empty set of goal states;
- Act is a set of actions;
- $A(s) \subseteq Act$ is the set of actions applicable in state s; and
- F(a, s) is the set of successor states when action a is executed in state s.

A **FOND problem** $P = \langle At, I, Act, G \rangle$ is a compact description of a FOND model M(P).

Action effects in FOND planning can be deterministic of the form E_i , or **non-deterministic** of the form $oneof(E_1, \ldots, E_n)$.

FOND Solutions

Policy π : partial function mapping *non-goal* states into actions. π -trajectory: possibly infinite state trajectory s_0, s_1, s_2, \ldots compatible with policy π for P, where $s_{i+1} \in F(\pi(s_i), s_i)$, for $i \geq 0$.

Maximal π -trajectory: is infinite, or ends in a state where $\pi(s)$ is undefined or not applicable.

Solutions:

- π is a **strong cyclic solution** of P if every reachable state is connected to a goal state with the policy.
- \bullet π is a **strong solution** of P if all maximal π -**trajectory** are finite and end in a goal state.

Fairness in FOND planning

A policy π solves problem P when all maximal fair trajectories compatible with π reach the goal, provided fairness is defined follows:

- Strong-cyclic planning: all finite trajectories are fair; and infinite trajectories are fair iff all recurrent states s are directly followed by each successor $s' \in F(\pi(s), s)$ an infinite number of times.
- Strong planning: all trajectories are deemed fair.

Qualitative Numeric Planning Planning

A **QNP** $Q = \langle At, V, I, O, G \rangle$ extends a STRIPS problem with a set V of numerical variables X that can appear in:

- effects as qualitative increments $X \uparrow$ and decrements $X \downarrow$; and
- literals X = 0 or X > 0.

Unlike in numerical planning, plan existence for QNPs is decidable! A QNP Q defines a standard FOND problem $P = T_D(Q)$ where:

- Each $n \in V$ is replaced by a boolean p_n that stands for n = 0.
- Literals n = 0 and n > 0 are replaced by p_n and $\neg p_n$, respectively.
- Effects $n\uparrow$ are replaced with effects $\neg p_n$.
- Effects $n\downarrow$ are replaced with effects $oneof(p_n, \neg p_n)$.

QNP Example: Clearing a Block

Clearing a block x in a Blocksworld instance.

- Boolean variable H: true if holding a block.
- Numerical variable n: number of blocks above x.
- Initially $I = {\neg H, n > 0}$. Goal $G = {n = 0}$.

Actions:

- $Pick-above-x = \langle \neg H, n > 0; H, n \downarrow \rangle$ $Pick-other = \langle \neg H; H \rangle$
- $Put-above-x = \langle H; \neg H, n \uparrow \rangle$ $Putaway = \langle H; \neg H \rangle$

Solution: if $\neg H$ then Pick-above-x. if H then Putaway

QNP termination: Sieve

Srivasta et al. 2011:

Sieve

Let π be a policy for the FOND problem $P = T_D(Q)$ associated with QNP Q. The policy π **terminates** in P iff every state s that is reachable by π in P terminates, where a state s **terminates** iff:

- there is no cycle on node s (i.e., no path from s to itself);
- \circ every cycle on s contains a state s' that **terminates**; or
- $\pi(s)$ decrements a variable x, and every cycle on s containing a state s' for which $\pi(s')$ increments x, also contains a state s'' that **terminates**.

Theorem

A policy π is a solution to a QNP Q iff π is a strong-cyclic solution of $P = T_D(Q)$ that terminates.

FOND⁺ Problems

Definition

A FOND⁺ problem $P_c = \langle P, C \rangle$ is a FOND problem P extended with a set C of (conditional) fairness assumptions of the form A_i/B_i , with i = 0, ..., n, and where each A_i is a set of non-deterministic actions in P and each B_i is a set of actions in P disjoint from A_i .

FOND+ Fairness. Meaning of $A/B \in C$: If a state trajectory contains infinite occurrences of actions $a \in A$ in a state s, and *finite* occurrences of actions from B, then s must be immediately followed by each $s' \in F(\pi(s), s)$ an infinite number of times.

Solutions

A policy π solves the FOND⁺ problem $P_c = \langle P, C \rangle$ if all the maximal π -trajectory that are **fair** reach the goal.

FOND⁺ Fairness

Theorem

The **strong-cyclic solutions** of a FOND problem P are the solutions of the FOND⁺ problem $P_c = \langle P, \{A/\emptyset\} \rangle$, where A is the set of all the non-deterministic actions in P.

Theorem

The **strong solutions** of a FOND problem P are the solutions of the FOND⁺ problem $P_c = \langle P, \emptyset \rangle$.

Theorem

The solutions of a **QNP problem** Q are the solutions of the FOND⁺ problem $P_c = \langle P, C \rangle$ where $P = T_D(Q)$ and C is the set of fairness assumptions A_i/B_i , one for each numerical variable x_i in Q, such that:

- $\mathbf{1}$ A_i contains all the actions in P that decrement x_i
- 2 B_i contains all the actions in P that increment x_i .

FOND⁺ termination: Sieve⁺

$\overline{ ext{Sieve}^+}$

Let π be a policy for the FOND⁺ problem $P_c = \langle P, C \rangle$. State s in P **terminates** iff

- \bullet s is a goal state;
- 2 s is fair and some state $s' \in F(\pi(s), s)$ terminates; or
- 3 s is **not fair**, all states $s' \in F(\pi(s), s)$ **terminate**, and $F(\pi(s), s)$ is non-empty.

Here, s is **fair** if for some A_i/B_i in C, $\pi(s) \in A_i$, and every path that connects s to itself and that contains a state s' with $\pi(s') \in B_i$, also contains a state s'' that **terminates**.

Theorem

A policy π solves the FOND⁺ problem $P_c = \langle P, C \rangle$ iff all the states s that are reachable by π terminate.

FOND⁺ Example

Given the following FOND problem P with initial state s_0 and goal g:

FOND⁺ problems $P_{c_i} = \langle P, C_i \rangle$ are solvable (\checkmark) or unsolvable (\gt) :

- $C_1 = \{\}; a \text{ and } b \text{ are adversarial.}$
- \checkmark $C_2 = \{a, b\}$; a and b are fair.
- $C_3 = \{a\}; a \text{ is fair and } b \text{ is adversarial.}$
- ✓ $C_4 = \{b\}$; b is fair and a is adversarial.
- $C_5 = \{a/b\}$; fairness for a is false; b adversarial.
- $C_5 = \{a/b\}$; a is conditionally fair on b; b adversarial.
- $\times C_6 = \{a, b/a\}; \text{ QNP like: } a: x_1 \downarrow, x_2 \uparrow \text{ and } b: x_2 \downarrow.$
- \checkmark $C_7 = \{b, a/b\}$; QNP like: $b: x_1 \downarrow, x_2 \uparrow \text{ and } a: x_2 \downarrow$.
- $\times C_8 = \{a/b, b/a\}; \text{ QNP like: } a: x_1 \downarrow, x_2 \uparrow \text{ and } b: x_2 \downarrow, x_1 \uparrow.$

FOND-ASP: An ASP-based FOND⁺ Planner

```
1 % policy, edges, and connectedness
2 \mid \{ pi(S,A) : ACTION(A) \} = 1 :- STATE(S), not GOAL(S).
3 | edge(S,T) := pi(S,A), TRANSITION(S,A,T).
 5 \mid connected(S,T) := edge(S,T).
6 connected(S,T) :- connected(S,X), edge(X,T), S != X.
8 blocked(S,T) :- STATE(S), STATE(T), not connected(S,T).
9 blocked(S,T) :- connected(S,T), terminate(S).
10 blocked(S,T) :- connected(S,T), terminate(T).
11 blocked(S,T) :- connected(S,T),
                   blocked(X,T) : edge(S,X), connected(X,T).
14 fair(S) := pi(S,A), ASET(I,A), blocked(X,S) : pi(X,B),
    BSET(I,B), not blocked(S,X).
16 % terminating states
17 terminate(S) :- GOAL(S).
18 terminate(S) :- fair(S), edge(S,T), terminate(T).
19 terminate(S): - not fair(S), edge(S,_), terminate(T): edge(S,T).
21 % reachable states must terminate
22: - reachable(S), not terminate(S)
23 reachable(S) :- INITIAL(S).
24 reachable(S) :- reachable(X), not GOAL(X), edge(X,S).
```

Experiments

QNP		QNP2FO	ND		
problem	#states	FOND-SAT	PRP	STRIX	FOND-ASP
qnp2-02	8	0.20	0.18	2.33	0.00
qnp2-03	16	1.77	0.30	2.31	0.01
qnp2-04	32	10.00	0.58	14.25	0.04
qnp2-05	64	50.24	1.15	885.37	0.20
qnp2-06	128	302.80	2.53		1.26
qnp2-07	256	1,969.35	4.02		7.14
qnp2-08	512		6.96		54.37
qnp2-09	1,024		13.22		***
qnp2-10	2,048		21.94		***

$FOND^+$	f01 (unsolvable)			f11 (solvable)		
problem	#states	STRIX	FOND-ASP	#states	STRIX	FOND-ASP
$\overline{\text{qnp2-}f\text{xx-}02}$	8	3.22	0.00	32	5.85	0.04
qnp2-fxx-03	16	2.25	0.01	64	8.16	0.21
qnp2-fxx-04	32	11.38	0.04	128	236.89	1.55
qnp2-fxx-05	64	873.09	0.21	256		15.45
qnp2-fxx-06	128		1.25	512		46.67
qnp2-fxx-07	256		12.13	1,024		***
qnp2-fxx-08	512		39.56	2,048		***
qnp2-fxx-09	1,024		***	4,096		***
qnp2-fxx-10	2,048		***	8,192		***

Wrap Up, Conclusions, and Future Work

- Unified treatment of strong, strong cyclic, QNP planning, and beyond, through explicit fairness assumptions A/B where A and B are sets of actions
- FOND⁺ planning more expressive than existing FOND planning models, but less expressive and less complex than LTL planning
- Simple but effective **flat** FOND+ planner in ASP/CLINGO
- Future work: factored FOND⁺ planner, scalable and sound, but not complete