STATISTIQUES: TESTS DU CHI DEUX

Exercice 1 On considère l'expérience qui consiste à lancer un dé 600 fois. Les résultats sont donnés dans le tableau ci-dessous :

 $Fr\'equence\ absolue:\ 50\quad 90\quad 101\quad 60\quad 150\quad 149$

L'expérience est-elle en contradiction au niveau de 5 % avec l'hypothèse : "le dé est équilibré"?

Exercice 2 On veut tester un programme informatique générateur de nombres "au hasard". Les 1000 premiers chiffres sont répartis comme suit

Peut-on au niveau 5% rejeter l'hypothèse que ces chiffres sont distribués "au hasard "?

Exercice 3 On considère un prisme dont les bases sont deux triangles équilatéraux et constitué d'une manière parfaitement homogène. On désigne par A_i les trois faces latérales et par B_i les deux bases. On lance le prisme 500 fois et on obtient :

Faces	A_1	A_2	A_3	B_1	B_2
Nombre d'apparitions	111	113	118	81	77

Peut-on accepter les probabilités suivantes d'apparitions $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$ avec un risque de 0.05 ?

Exercice 4 Une variable aléatoire X ne peut prendre que les valeurs 0,1,2,3,4. On veut tester l'hypothèse selon laquelle X suit une loi binomiale $B(4,\frac{1}{3})$. Avec un risque de 5 %, conclure sachant que 324 épreuves indépendantes ont conduit aux résultats suivants :

valeurs i	0	1	2	3	4
Nombre de fois où $X = i$	67	122	94	28	13

Exercice 5 On teste le nombre de pièces à rebuter dans des lots de fabrication, chaque lot comportant 100 pièces. On a répertorié 52 lots. On désigne par x_i , $i=1,\ldots,52$ le nombre de pièces à rebuter dans chaque lot puis par

$$a_n = \text{Card}\{i \in \{1, \dots, 52\}; x_i = n\}, \ n \in \mathbb{N}$$

le nombre de lots comportant n pièces à rebuter. On a obtenu :

n	0	1	2	3	4	5
a_n	18	18	8	5	2	1

Tester l'hypothèse que l'échantillon relève d'une loi de Poisson.

Exercice 6 On teste la durée de vie efficace d'un système de guidage. A cet effet, on procède à 20 essais. On désigne par x_i , $i=1,\ldots,20$ le nombre d'heures de fonctionnement du système précédant l'apparition d'une anomalie. On a relevé :

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
x_i	1	93	4	151	268	5	827	840	200	1089	40	60	106	459	40	95	20	6	15	125

Tester l'hypothèse que l'échantillon relève d'une loi exponentielle avec un risque $\alpha = 0.05$ puis $\alpha = 0.1$.

Exercice 7 Pour organiser son service médical, une entreprise fait une statistique pendant 200 jours sur le nombre quotidien d'accidents du travail. La distribution obtenue est la suivante :

Nombre d'accidents par jour : 0 1 2 3 4 5 6 et plus
Effectif (en jours) : 50
$$74$$
 50 21 4 1 $--$

L'hypothèse d'une loi de Poisson vous semble-elle justifiée?

Exercice 8 On cherche à savoir si la fréquence d'une maladie est liée au groupe sanguin. Sur 200 malades observés, on a dénombré 104 personnes du groupe O, 76 du groupe A, 18 du groupe B et 2 du groupe AB. On admettra que dans la population générale la répartition entre les groupes est : groupe O 47%, groupe A 43%, groupe B 7 % et groupe AB 3%. Que concluez-vous avec un risque de 0.05 ?

Exercice 9 A la suite d'un même traitement, on a observé 40 bons résultats chez 70 malades jeunes et 50 bons résultats chez 100 malades âgés. Peut-on dire, au risque 0.10, qu'il existe une liaison entre l'âge et l'effet du traitement ?

Exercice 10 Dans une entreprise, on a dénombré 5300 cas d'absence (dans l'année) se répartissant comme suit :

	maladie	autres
Homme	1800	1700
Femme	1200	600

Le sexe et les causes d'absence sont-ils indépendants au niveau 0.95 ?

Exercice 11 On considère un échantillon de 400 salariés classés selon deux critères : le niveau hiérarchique et l'origine sociale. Les résultats sont présentés dans le tableau suivant où les lignes correspondent au niveau hiérarchique et les colonnes à l'origine sociale :

	agricole	cadres	ouvriers/employés	autres
ouvriers/employés	11	12	145	52
chefs d'équipe	8	6	71	23
cadre	1	27	14	30

Le niveau hiérarchique et l'origine sociale sont-ils indépendants au niveau $0.98\ ?$

Exercice 12 On souhaite comparer l'efficacité de quatre traitements (de A à D) sur la fructification d'une espèce donnée de pommier. Pour cela, on a compté le nombre de fruits sur 1505 rameaux. Les résultats sont regroupés dans le tableau ci-dessous.

traitement	pas de fruit	au moins un fruit
A	203	156
B	266	113
C	258	128
D	196	185

Effectuer un test du χ^2 d'indépendance, de risque 5%. Que peut-on conclure ?