Discrete Choice

AECN 396/896-002

Discrete Choice Analysis

- Focus on understanding choices that are discrete (not continuous)
 - Whether you own a car or not (binary choice)
 - Whether you use an iPhone, Android, or other types of cell phones (Multinomial choice)
 - Which recreation sites you visit this winter (multinomial)
- Linear models we have seen are often not appropriate

Binary Response Model

Binary response

y = 0 (if you do not own a car)

y = 1 (if you own at least one car)

Question we would like to answer

How do variables x_1, \ldots, x_k affect the status of y (the choice of whether to own at least one car or not)?

Binary response

We try to model the $\operatorname{probability}$ of y=1 (own at least one car)

$$Pr(y=1|x_1,\ldots,x_k)=f(x_1,\ldots,x_k)$$

as a function of independent variables.

Linear Probability Model

$$Pr(y=1|x_1,\ldots,x_k)=eta_0+eta_1x_1+\cdots+eta_kx_k$$

Linear Probability Model

$$Pr(y=1|x_1,\ldots,x_k)=eta_0+eta_1x_1+\cdots+eta_kx_k$$

Drawback

There is no guarantee that the predicted probability is bounded within [0, 1].

How about this?

$$Pr(y=1|x_1,\ldots,x_k)=G(eta_0+eta_1x_1+\cdots+eta_kx_k)$$

where 0 < G(z) < 1 for all real numbers z

Different choices of G() lead to different models.

Logit model

$$G(z)=exp(z)/[1+exp(z)]=rac{e^z}{1+e^z}$$

where
$$z=eta_0+eta_1x_1+\cdots+eta_kx_k$$

Probit model

$$G(z) = \Phi(z)$$

where $\Phi(z)$ is the standard normal cumulative distribution function

This what G() looks like for logit and probit.

$$Pr(y=1|x_1,\ldots,x_k)=G(eta_0+eta_1x_1+\cdots+eta_kx_k)$$

- What do β s measure?
- How do we interpret them?

 $\text{Before} : x_1 = 0, \dots, x_k = 0 \Rightarrow z = \beta_0$

After: $x_1 = 1 \text{ and } x_2 = 0, \dots, x_k = 0 \Rightarrow z = \beta_0 + \beta_1$

- β s measure how far you move along the x-axis
- ullet etas does not directly measure how independent variables influence the probability of y=1

To understand the marginal impact of x_k on Prob(y=1) (how a change in x_k affects the likelihood of owning a car), you need to do a bit of math.

Model

$$Pr(y=1|x_1,\ldots,x_k)=G(z)$$

$$z=eta_0+eta_1x_1+\cdots+eta_kx_k$$

marginal impact

Differentiating both sides with respect to x_k ,

$$egin{aligned} rac{\partial Pr(y=1|x_1,\ldots,x_k)}{\partial x_k} &= G'(z) imesrac{\partial z}{\partial x_k} \ &= G'(z) imeseta_k \end{aligned}$$

marginal impact

Differentiating both sides with respect to x_k ,

$$egin{aligned} rac{\partial Pr(y=1|x_1,\ldots,x_k)}{\partial x_k} &= G'(z) imesrac{\partial z}{\partial x_k} \ &= G'(z) imeseta_k \end{aligned}$$

Notes

- The marginal impact of an independent variable depends on the values of all the independent variables: $G(\beta_0+\beta_1x_1+\cdots+\beta_kx_k)$
- Since G'() is always positive, the sign of the marginal impact of an independent variable on Prob(y=1) is always the same as the sign of its coefficient

Estimation of Binary Choice Models

- Linear models: OLS
- Binary choice models: Maximum Likelihood Estimation (MLE)

OLS

Find parameters that makes the sum of residuals squared the smallest

MLE (very loosely put)

Find parameters (β s) that makes what we observed (collection of binary decisions made by different individuals) most likely (Maximum Likelihood)

Observed decisions made by two individuals

- Individual 1: y=1 (own at least one car)
- Individual 2: y=0 (does not own a car)

Observed decisions made by two individuals

- Individual 1: y = 1 (own at least one car)
- Individual 2: y = 0 (does not own a car)

Probability of individual decisions

- Individual 1 : $Prob(y_1 = 1 | \mathbf{x_1}) = G(z_1)$
- Individual $2: Prob(y_2 = 0 | \mathbf{x_2}) = 1 G(z_2)$

where

- $\mathbf{x_i}$ is a collection of independent variables for individual i $(x_{1,i},\ldots,x_{k,i})$.
- $\bullet \ \ z_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}$

Observed decisions made by two individuals

- Individual 1: y = 1 (own at least one car)
- Individual 2: y = 0 (does not own a car)

Probability of individual decisions

- Individual 1 : $Prob(y_1 = 1 | \mathbf{x_1}) = G(z_1)$
- Individual $2 : Prob(y_2 = 0 | \mathbf{x_2}) = 1 G(z_2)$

where

- $\mathbf{x_i}$ is a collection of independent variables for individual i $(x_{1,i},\ldots,x_{k,i})$.
- $\bullet \ \ z_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}$

Probability of a collection of decisions

The probability that we observe a collection of choices made by them (if their decisions are independent)

$$Prob(y_1 = 1 | \mathbf{x_1}) \times Prob(y_2 = 0 | \mathbf{x_2}) = G(z_1) \times [1 - G(z_2)]$$

which we call likelihood function.

Probability of a collection of decisions

The probability that we observe a collection of choices made by them (if their decisions are independent)

$$Prob(y_1=1|\mathbf{x_1}) imes Prob(y_2=0|\mathbf{x_2}) = G(z_1) imes [1-G(z_2)]$$

which we call likelihood function.

Probability of a collection of decisions

The probability that we observe a collection of choices made by them (if their decisions are independent)

$$Prob(y_1=1|\mathbf{x_1}) imes Prob(y_2=0|\mathbf{x_2}) = G(z_1) imes [1-G(z_2)]$$

which we call likelihood function.

MLE

$$Max_{eta_1,\ldots,eta_k} \ \ G(z_1) imes [1-G(z_2)]$$

MLE of Binary Choice Model in General

Maximize the likelihood function:

$$Max_{eta_1,\ldots,eta_k}$$
 L

where
$$L=\Pi_{i=1}^n \Big[y_i imes G(z_i) + (1-y_i) imes (1-G(z_i)) \Big]$$
 is the likelihood function.

Log-likelihood function

$$egin{aligned} LL &= log \Big(\Pi_{i=1}^n \Big[y_i imes G(z_i) + (1-y_i) imes (1-G(z_i)) \Big] \Big) \ &= \sum_{i=1}^n log \Big(y_i imes G(z_i) + (1-y_i) imes (1-G(z_i)) \Big) \end{aligned}$$

MLE with (LL)

$$argmax_{eta_1,\ldots,eta_k} \ \ L \equiv argmax_{eta_1,\ldots,eta_k} \ \ LL$$

Implementation in R with an example

Participation of females in labor force:

$$Pr(inlf = 1|\mathbf{x}) = G(z)$$

where

$$egin{aligned} z &= eta_0 + eta_1 nwifeinc + eta_2 educ + eta_3 exper \ &+ eta_4 exper^2 + eta_5 age + eta_6 kidslt6 + eta_7 kidsge6 \end{aligned}$$

- *inlf*: 1 if in labor force in 1975, 0 otherwise
- nwifeinc: earning as a family if she does not work
- ullet kidslt6: # of kids less than 6 years old
- kidsge6: # of kids who are 6-18 year old

```
#--- import the data ---#
data <- read.dta13("MROZ.dta") %>%
  mutate(exper2 = exper^2)
#--- take a look ---#
dplyr::select(data, inlf, nwifeinc, kidslt6, kidsge6, educ) %>%
  head()
```

```
##
    inlf
          nwifeinc kidslt6 kidsge6 educ
## 1
       1 10.910060
                                    12
## 2
                                2 12
       1 19.499981
     1 12.039910
                                3 12
     1 6.799996
                        0
                                3 12
                                2 14
## 5 1 20.100058
## 6
          9.859054
                                    12
```

For individual 1 (row 1 of the data),

$$z_1 = eta_0 + eta_1 10.91 + eta_2 12 + eta_3 14 + eta_4 196 + eta_5 32 + eta_6 1 + eta_7 0$$

The probability that individual 1 would make the decision he/she made given β s is:

 $G(z_1)$ (a function of etas)

```
##
      inlf nwifeinc kidslt6 kidsge6 educ
## 748
              5.330
                                      12
  749
             28.200
                                      13
  750
             10.000
                                      12
                                  0 12
  751
         0 9.952
                                      12
  752
             24.984
## 753
             28.363
                                      9
```

For individual 753 (row 753 of the data),

$$z_{753} = eta_0 + eta_1 28.36 + eta_2 9 + eta_3 12 + eta_4 144 + eta_5 39 + eta_6 0 + eta_7 3$$

The probability that individual 753 would make the decision he/she made given β s is:

$$1-G(z_{753})$$
 (a function of eta s)

Multiply all the probabilities of observed choices given β s,

$$L=G(z_1) imes G(z_2) imes \dots [1-G(z_753)]$$

Multiply all the probabilities of observed choices given β s,

$$L=G(z_1) imes G(z_2) imes \ldots [1-G(z_753)]$$

$$LL = log \Big(G(z_1) imes G(z_2) imes \ldots [1 - G(z_753)] \Big)$$

Multiply all the probabilities of observed choices given β s,

$$L = G(z_1) imes G(z_2) imes \ldots [1 - G(z_753)]$$

$$LL = log \Big(G(z_1) imes G(z_2) imes \ldots [1 - G(z_753)] \Big)$$

Solve the following problems to estimate β s:

$$Max_{eta_1,\ldots,eta_7}$$
 LL

Estimating binary choice model using (R)

You can use the <code>glm()</code> function (no new packages installation necessary) when using cross-sectional data

- glm refers to Generalized Linear Model, which encompass linear models we have been using
- you specify the family option to tell what kind of model you are estimating

Probit model estimation

```
probit_lf <- glm(
    #--- formula ---#
    inlf ~ nwifeinc + educ + exper + exper2 + age + kidslt6 + kidsge6,
    #--- data ---#
    data = data,
    #--- models ---#
    family = binomial(link = "probit")
)</pre>
```

family option

- binomial(): tells R that your dependent variable is binary
- link = "probit": tells R that you want to use the cumulative distribution function of the standard normal distribution as G() in $Prob(y=1|\mathbf{x})=G(z)$

```
msummary(
  probit_lf,
  stars = TRUE,
  gof_omit = "IC|F",
  output = "flextable"
) %>%
  fontsize(
    size = 9,
    part = "all"
) %>%
  autofit()
```

	Model 1
(Intercept)	0.270
	(0.508)
nwifeinc	-0.012
	(0.005)
educ	0.131**
	(0.025)
exper	0.123*
	(0.019)
exper2	-0.002
	(0.001)
age	-0.053
	(800.0)
kidslt6	-0.868
	(0.118)
kidsge6	0.036
	(0.044)
Num.Obs.	753
Log.Lik.	-401.302
+ p < 0.1, <i>p</i> < 0.05, p <	

0.01, p < 0.001

Logit model estimation

```
logit_lf <- glm(
    #--- formula ---#
    inlf ~ nwifeinc + educ + exper + exper2 + age + kidslt6 + kidsge6,
    #--- data ---#
    data = data,
    #--- models ---#
    family = binomial(link = "logit")
)</pre>
```

family option

- binomial(): tells R that your dependent variable is binary
- link = "logit": tells R that you want to use $G(z)=rac{e^z}{1+e^z}$ in $Prob(y=1|\mathbf{x})=G(z)$

```
msummary(
  logit_lf,
  stars = TRUE,
  gof_omit = "IC|F",
  output = "flextable"
) %>%
  fontsize(
    size = 9,
    part = "all"
) %>%
  autofit()
```

	Model 1
(Intercept)	0.425
	(0.860)
nwifeinc	-0.021
	(800.0)
educ	0.221**
	(0.043)
exper	0.206*
	(0.032)
exper2	-0.003
	(0.001)
age	-0.088
	(0.015)
kidslt6	-1.443
	(0.204)
kidsge6	0.060
	(0.075)
Num.Obs.	753
Log.Lik.	-401.765
+ p < 0.1, <i>p</i> < 0.05, p < 0.01 , p < 0.001	

Important

• You cannot directly compare the coefficient on the same variable from probit and logit! The fact that the coefficient on educ is higher from the logit model does not mean the logit model is suggesting educ is more influential than the probit model suggests. They are on different scales.

Post-estimation operations and diagnostics

Log-likelihood (fitted)

$$LL = \sum_{i=1}^n log \Bigl(y_i imes G(\hat{z}_i) + (1-y_i) imes (1-G(\hat{z}_i)) \Bigr)$$

- $ullet \hat{z}_i = \hat{eta}_0 + \hat{eta}_1 x_1 + \cdots + \hat{eta}_k x_k$
- $G(\hat{z}_i)$ is the fitted value of $Prob(y=1|\mathbf{x})$

Example

- ullet $G(\hat{z}_i)=0.9$: predicted that individual i is very likely to own a car
- $ullet y_i=0$: in reality, individual i does not own a car

 \Rightarrow

$$log \Big(0 imes 0.9 + (1-0) imes (1-0.9)\Big) = log (0.1) = -2.3$$

Log-likelihood (fitted)

$$LL = \sum_{i=1}^n log \Bigl(y_i imes G(\hat{z}_i) + (1-y_i) imes (1-G(\hat{z}_i)) \Bigr)$$

- $oldsymbol{\hat{z}}_i = \hat{eta}_0 + \hat{eta}_1 x_1 + \dots + \hat{eta}_k x_k$
- $G(\hat{z}_i)$ is the fitted value of $Prob(y=1|\mathbf{x})$

Example

- ullet $G(\hat{z}_i)=0.9$: predicted that individual i is very likely to own a car
- $ullet y_i=1$: in reality, individual i indeed owns a car

 \Rightarrow

$$log \Big(1 imes 0.9 + (1-1) imes (1-0.9)\Big) = log (0.9) = -0.11$$

Log-likelihood (fitted)

So, the better your prediction (model fit) is, the the greater (less negative) LL is.

McFadden's pseudo- \mathbb{R}^2

A measure of how much better your model is compared to the model with only the intercept.

$$pseudo-R^2=1-LL/LL_0$$

where LL_0 is the log-likelihood when you include only the intercept.

R code

```
logit_lf_0 <- glm(</pre>
  inlf ~ 1,
  data = data,
  family = binomial(link = "logit")
#--- extract LL using the logLik() function ---#
(LL0 <- logLik(logit_lf_0))</pre>
## 'log Lik.' -514.8732 (df=1)
#--- extract LL using the logLik() function from your preferred model ---#
(LL <- logLik(logit_lf))</pre>
## 'log Lik.' -401.7652 (df=8)
#--- pseudo R2 ---#
1 - LL / LL0
## 'log Lik.' 0.2196814 (df=8)
```

Alternatively

```
#--- or more easily ---#
1 - logit_lf$deviance / logit_lf$null.deviance

## [1] 0.2196814

#--- what are deviances? ---#
logit_lf$null.deviance # = -2*LL0

## [1] 1029.746

logit_lf$deviance # = -2*LL

## [1] 803.5303
```

- null.deviance $= -2 imes LL_0$
- ullet deviance =-2 imes LL

Testing joint significance

You can do Likelihood Ratio (LR) test:

$$LR = 2(LL_{unrestricted} - LL_{restricted}) \sim \chi^2_{df_restrictions}$$

where $df_restrictions$ is the number of restrictions.

Note

LR test is very similar conceptually to F-test.

Example

- ullet $H_0:$ the coefficients on exper, exper2, and age are 0
- $H_1:H_0$ is false

```
#--- unrestricted ---#
logit_ur <- glm(
  inlf ~ nwifeinc + educ + exper + exper2 + age + kidslt6 + kidsge6,
  data = data, family = binomial(link = "logit")
)

#--- restricted ---#
logit_r <- glm(
  inlf ~ nwifeinc + educ + kidslt6 + kidsge6,
  data = data, family = binomial(link = "logit")
)

#--- LR test using lrtest() from the lmtest package ---#
library(lmtest)
lrtest(logit_r, logit_ur)</pre>
```

```
## Likelihood ratio test
##

## Model 1: inlf ~ nwifeinc + educ + kidslt6 + kidsge6

## Model 2: inlf ~ nwifeinc + educ + exper + exper2 + age + kidslt6 + kidsge6

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 5 -464.92

## 2 8 -401.77 3 126.32 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Prediction

After estimating a binary choice model, you can easily predict the following two

$$\bullet \ \hat{z} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

$$ullet Prob\widehat{(y=1|\mathbf{x})} = G(\hat{z}) = G(\hat{eta}_0 + \hat{eta}_1 x_1 + \cdots + \hat{eta}_k x_k)$$

R code

Marginal effect of an independent variable

- Coefficient estimates across different models (probit and logit) are not meaningful because the same value of a coefficient estimate means different things
- ullet They are the estimates of etas, not the direct impact of the independent variables on the Prob(y=1)

Marginal effect of an independent variable

$$rac{\partial Pr(y=1|x_1,\ldots,x_k)}{\partial x_k}=G'(z) imeseta_k$$

- the marginal impact depends on the current levels of all the independent variables
- we typically report one of the two types of marginal impacts
 - (becoming obsolete) the marginal impact at the mean (average person): when all the independent variables take on their respective means
 - the average of the marginal impacts calculated for each of all the individuals observed

Marginal impact at the mean

$$rac{\partial Pr(y=1|x_1,\ldots,ar{x_k})}{\partial x_k} = G'(eta_0 + eta_1ar{x_1} + \cdots + eta_kar{x_k}) imes eta_k$$

Mean marginal impact (MME)

$$\sum_{i=1}^n rac{\partial Pr(y_i=1|x_{i,1},\ldots,x_{i,k})}{\partial x_k} = \sum_{i=1}^n G'(z_i) imes eta_k$$

R codes to get MME

$$\hat{z} = \hat{eta}_0 + \hat{eta}_1 x_1 + \dots + \hat{eta}_k x_k$$

```
#--- get z for all the individuals ---#
z <- predict(probit_lf, type = "link")</pre>
```

R codes to get MME

$$\hat{z}=\hat{eta}_0+\hat{eta}_1x_1+\cdots+\hat{eta}_kx_k$$

```
#--- get z for all the individuals ---#
z <- predict(probit_lf, type = "link")</pre>
```

$$G'(eta_0 + eta_1ar{x_1} + \dots + eta_kar{x_k})$$

where G(z) is the cumulative distribution function for the standard normal distribution.

```
#--- get G'(z) ---#
Gz_indiv <- dnorm(z)
```

R codes to get MME

$$\hat{z}=\hat{eta}_0+\hat{eta}_1x_1+\cdots+\hat{eta}_kx_k$$

```
#--- get z for all the individuals ---#
z <- predict(probit_lf, type = "link")</pre>
```

$$G'(eta_0 + eta_1ar{x_1} + \cdots + eta_kar{x_k})$$

where G(z) is the cumulative distribution function for the standard normal distribution.

```
#--- get G'(z) ---#
Gz_indiv <- dnorm(z)
```

$$G'(eta_0 + eta_1ar{x_1} + \dots + eta_kar{x_k}) \, imes eta_k$$

```
#--- mean marignal impact of eduction ---#
mean(Gz_indiv) * probit_lf$coef["educ"]
```

```
## educ
## 0.03937009
```

Fortunately, the margins package provides you with a more convenient way of calculating MMEs.

```
library(margins)
#--- calculate MME based on the probit estimation ---#
mme_lf <- margins(probit_lf, type = "response")
#--- get the summary ---#
summary(mme_lf)</pre>
```

```
##
     factor
                AME
                        SE
                                       p lower
                                 Z
                                                   upper
##
        age -0.0159 0.0024 -6.7392 0.0000 -0.0205 -0.0113
##
       educ 0.0394 0.0073 5.4186 0.0000 0.0251 0.0536
##
      exper 0.0371 0.0052 7.1779 0.0000 0.0270 0.0472
##
     exper2 -0.0006 0.0002 -3.2050 0.0014 -0.0009 -0.0002
    kidsge6 0.0108 0.0132 0.8189 0.4129 -0.0151 0.0367
##
##
    kidslt6 -0.2612 0.0319 -8.1860 0.0000 -0.3237 -0.1986
##
   nwifeinc -0.0036 0.0015 -2.4604 0.0139 -0.0065 -0.0007
```

Multinomial Choice Model

Multinomial Choice

Instead of two options, you are picking one option out of more than two options

- which carrier?
 - Verizon
 - Sprint
 - ∘ AT\&T
 - o T-mobile
- which transportation means to commute?
 - drive
 - Uber
 - bus
 - train
 - bike

Multinomial logit model

The most popular model to analyze multinomial choice

- environmental evaluation
- tranposrtation
- marketing

Understanding multinomial logit model

Choice of train route options

- 10 euros, 30 minutes travel time, one change
- 20 euros, 20 minutes travel time, one change
- 22 euros, 22 minutes travel time, no change

Understanding multinomial logit model

Choice of train route options

- 10 euros, 30 minutes travel time, one change
- 20 euros, 20 minutes travel time, one change
- 22 euros, 22 minutes travel time, no change

Associated utility

•
$$V_1 = \alpha_1 + \beta 10 + \gamma 30 + \rho 1 + v_1$$

•
$$V_2 = \alpha_2 + \beta 20 + \gamma 20 + \rho 1 + v_2$$

•
$$V_3 = \alpha_3 + \beta 22 + \gamma 22 + \rho 0 + v_3$$

Choice probability

Logit model assumes that the probability of choosing an alternative is the following:

$$ullet P_1 = rac{e^{V_1}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

$$ullet \ P_2 = rac{e^{V_2}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

$$ullet \ P_3 = rac{e^{V_3}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

Choice probability

Logit model assumes that the probability of choosing an alternative is the following:

$$ullet P_1 = rac{e^{V_1}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

$$ullet \ P_2 = rac{e^{V_2}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

$$ullet P_3 = rac{e^{V_3}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

Notes

- ullet $0 < P_j < 1$, ${}^{orall} j = 1, 2, 3$
- $\bullet \ \sum_{j=1}^3 = 1$

Modeled probability of choices

Modeled probability of observing individual i choosing the option i chose

$$P_i = \Pi_{j=1}^3 y_{i,j} imes P_j$$

where $y_{i,j}=1$ if i chose j, 0 otherwise.

Example

$$y_{i,1}=0, \;\; y_{i,2}=1, \;\; y_{i,3}=0$$

$$P_i = \Pi_{j=1}^3 y_{i,j} imes P_j = 0 imes P_1 + 1 imes P_2 + 0 imes P_3$$

The probability of observing a series of chocies made by all the subjects is

$$LL = \Pi_{i=1}^n P_i = \Pi_{i=1}^n \Pi_{j=1}^3 y_{i,j} imes P_j$$

if choices made by the subjects are independent with each other.

The probability of observing a series of chocies made by all the subjects is

$$LL = \Pi_{i=1}^n P_i = \Pi_{i=1}^n \Pi_{j=1}^3 y_{i,j} imes P_j$$

if choices made by the subjects are independent with each other.

MLE

 $Max_{eta,\gamma,
ho} \;\; log(LL)$

Interpretation of the coefficients

Model in general

$$V_{i,j} = lpha_j + eta_1 x_{1,i,j} + \cdots + eta_k x_{k,i,j}$$

$$P_{i,j} = rac{e^{V_{i,j}}}{\sum_{k=1}^{J} e^{V_{i,k}}}$$

Interpretation of the coefficients

Model in general

$$V_{i,j} = lpha_j + eta_1 x_{1,i,j} + \cdots + eta_k x_{k,i,j}$$

$$P_{i,j} = rac{e^{V_{i,j}}}{\sum_{k=1}^J e^{V_{i,k}}}$$

Interpretation of the coefficients

$$rac{\partial P_{i,j}}{\partial x_{k.i.j}} = eta_k P_{i,j} (1 - P_{i,j})$$

- A marginal change in kth variable for alternative j would change the probability of choosing alternative j by $\beta_k P_{i,j}(1-P_{i,j})$
- the sign of the impact is the same as the sign of the coefficient

Implementation in (R)

You can use mlogit package to estimate multinomial logit models:

- format your data in a specific manner
- convert your data using $mlogit. \, data()$
- ullet estimate the model using mlogit()

```
#--- library ---#
library(mlogit)

#--- get the travel mode data from the mlogit package ---#
data("TravelMode", package = "AER")

#--- take a look at the data ---#
# first 10 rows
head(TravelMode, 10)
```

				٠.					
##	individual	mode	choice	waıt	vcost	travel	gcost	ıncome	sıze
## 1	1	air	no	69	59	100	70	35	1
## 2	1	train	no	34	31	372	71	35	1
## 3	1	bus	no	35	25	417	70	35	1
## 4	1	car	yes	0	10	180	30	35	1
## 5	2	air	no	64	58	68	68	30	2
## 6	2	train	no	44	31	354	84	30	2
## 7	2	bus	no	53	25	399	85	30	2
## 8	2	car	yes	0	11	255	50	30	2
## 9	3	air	no	69	115	125	129	40	1
## 10	3	train	no	34	98	892	195	40	1

R code: data preparation

```
#--- convert the data ---#
TM <- mlogit.data(TravelMode,
    shape = "long", # what format is the data in?
    choice = "choice", # name of the variable that indicates choice made
    chid.var = "individual", # name of the variable that indicates who made choices
    alt.var = "mode" # the name of the variable that indicates options
)</pre>
```

```
#--- take a look at the data ---#
# first 10 rows
head(TM, 10)
```

```
## ~~~~~
    first 10 observations out of 840
## ~~~~~
      individual mode choice wait vcost travel gcost income size
##
                                                                           idx
## 1
                    air
                         FALSE
                                  69
                                         59
                                               100
                                                       70
                                                               35
                                                                        1:air
                1 train
## 2
                         FALSE
                                  34
                                         31
                                               372
                                                       71
                                                               35
                                                                     1 1:rain
                    bus
                          FALSE
                                  35
                                         25
                                               417
                                                       70
                                                               35
                                                                        1:bus
                          TRUE
                                         10
                                               180
                                                       30
                                                               35
                                                                     1 1:car
                    car
                                   0
                         FALSE
                2
                    air
                                  64
                                         58
                                                68
                                                       68
                                                               30
                                                                       2:air
                2 train
                          FALSE
                                  44
                                               354
                                                       84
                                                               30
                                                                     2 2:rain
                                         31
## 7
                2
                          FALSE
                                  53
                                         25
                                               399
                                                       85
                                                               30
                                                                     2 2:bus
                    bus
## 8
                    car
                          TRUE
                                   0
                                         11
                                               255
                                                       50
                                                               30
                                                                     2 2:car
## 9
                    air
                          FALSE
                                               125
                                                                     1 3:air
                                  69
                                        115
                                                      129
                                                               40
                3 train
                         FALSE
                                  34
                                               892
                                                                     1 3:rain
## 10
                                         98
                                                      195
                                                               40
```

```
#--- estimate ---#
ml_reg <- mlogit(choice ~ wait + vcost + travel, data = TM)</pre>
```

summary(ml_reg)

```
##
## Call:
## mlogit(formula = choice ~ wait + vcost + travel, data = TM, method = "nr")
##
## Frequencies of alternatives:choice
      air train
                      bus car
## 0.27619 0.30000 0.14286 0.28095
##
## nr method
## 5 iterations, 0h:0m:0s
## g'(-H)^{-1}g = 0.000192
## successive function values within tolerance limits
##
## Coefficients:
##
                       Estimate Std. Error z-value Pr(>|z|)
## (Intercept):train -0.78666667 0.60260733 -1.3054 0.19174
## (Intercept):bus -1.43363372 0.68071345 -2.1061 0.03520 *
## (Intercept):car -4.73985647 0.86753178 -5.4636 4.665e-08 ***
## wait
                    -0.09688675 0.01034202 -9.3683 < 2.2e-16 ***
```

Understanding the results

```
summary(ml_reg)$coef
## (Intercept):train
                        (Intercept):bus
                                          (Intercept):car
                                                                        wait
##
        -0.786666672
                           -1.433633718
                                             -4.739856473
                                                                -0.096886747
                                                                                   -0.01391
## attr(,"names.sup.coef")
## character(0)
## attr(,"fixed")
## (Intercept):train
                        (Intercept):bus
                                          (Intercept):car
                                                                        wait
##
               FALSE
                                  FALSE
                                                     FALSE
                                                                       FALSE
## attr(,"sup")
## character(0)
```

- intercept for air is dropped (air) is the base)
 - \circ train:(intercept) is -0.786 means that train is less likely to be chosen if all the other included variables are the same
- the greater the travel time, the less likely the option is chosen

Count data (Poisson)

Count data (Poisson)

Count variables take non-negative discrete integers $(0,1,\ldots,)$

- the number of times individuals get arrested in a year
- the number of cars owned by a family
- the number of kids in a family

Poisson regression

By far the most popular choice to analyze count variables is Poisson regression

- The outcome (count) variable is assumed to be Poisson distributed
- The mean of the Poisson distribution is assumed to be a function of some variables you believe matter

Poisson regression

By far the most popular choice to analyze count variables is Poisson regression

- The outcome (count) variable is assumed to be Poisson distributed
- The mean of the Poisson distribution is assumed to be a function of some variables you believe matter

Poisson distribution

Poisson distribution is a discrete probability distribution that describes the probability of the number of events that occur in a fixed interval of time and/or space

$$Prob(y|\lambda) = rac{\lambda^y e^{-\lambda}}{y!}, \;\; ext{where} \;\; \lambda = E[y]$$

Poisson regression

We try to learn what and how variables affect the expected value (the expected number of events conditional on independent variables).

Expected number of events conditional on independent variables

$$E[y|\mathbf{x}] = G(eta_0 + eta_1 x_1 + \dots + eta_k x_k)$$

- This is exactly the same modeling framework we used
 - \circ Linear model: G(z)=z
 - $\circ \;$ Probit model: $G(z) = \Phi(z)$

Expected number of events conditional on independent variables

$$E[y|\mathbf{x}] = G(eta_0 + eta_1 x_1 + \dots + eta_k x_k)$$

- This is exactly the same modeling framework we used
 - \circ Linear model: G(z)=z
 - $\circ~$ Probit model: $G(z)=\Phi(z)$

A popular choice of \$G()\$

$$G(z) = exp(z)$$

This ensures that the expected value conditional on ${f x}$ is always positive

The number of events for two individuals

- Individual 1: y=3 (own three cars)
- Individual 2: y=1 (own one car)

The number of events for two individuals

- Individual 1: y = 3 (own three cars)
- Individual 2: y = 1 (own one car)

Expected number of events observed

- Individual 1: $\lambda_1 = exp(z_1)$
- Individual 2: $\lambda_2 = exp(z_2)$

$$\text{Individual 1:} Prob(y=3|\mathbf{x_1}) = \frac{\lambda_1^3 e^{-\lambda_1}}{3!} \text{ Individual 2:} \qquad Prob(y=1|\mathbf{x_2}) = \frac{\lambda_2^1 e^{-\lambda_2}}{1!}$$

$$ext{Individual 1:} Prob(y=3|\mathbf{x_1}) = rac{\lambda_1^3 e^{-\lambda_1}}{3!} ext{Individual 2:} \qquad Prob(y=1|\mathbf{x_2}) = rac{\lambda_2^1 e^{-\lambda_2}}{1!}$$

Probability of observing a series of events by all individuals

The probability that we observe the collection of choices made by them (if their events are independent)

$$L=Prob(y_1=3|\mathbf{x_1}) imes Prob(y_2=1|\mathbf{x_2})=rac{\lambda_1^3e^{-\lambda_1}}{3!} imes rac{\lambda_2^1e^{-\lambda_2}}{1!}.$$

which we call llikelihood function.

$$ext{Individual 1:} Prob(y=3|\mathbf{x_1}) = rac{\lambda_1^3 e^{-\lambda_1}}{3!} ext{Individual 2:} \qquad Prob(y=1|\mathbf{x_2}) = rac{\lambda_2^1 e^{-\lambda_2}}{1!}$$

Probability of observing a series of events by all individuals

The probability that we observe the collection of choices made by them (if their events are independent)

$$L=Prob(y_1=3|\mathbf{x_1}) imes Prob(y_2=1|\mathbf{x_2})=rac{\lambda_1^3e^{-\lambda_1}}{3!} imes rac{\lambda_2^1e^{-\lambda_2}}{1!}.$$

which we call llikelihood function.

Log-likelihood function

$$LL = log(L) = log(rac{\lambda_1^3 e^{-\lambda_1}}{3!}) + log(rac{\lambda_2^1 e^{-\lambda_2}}{1!})$$

(Remember $\lambda_i = exp(eta_0 + eta_1 x_{i,1} + \cdots + eta_k x_{i,k})$)

$$ext{Individual 1:} Prob(y=3|\mathbf{x_1}) = rac{\lambda_1^3 e^{-\lambda_1}}{3!} ext{Individual 2:} \qquad Prob(y=1|\mathbf{x_2}) = rac{\lambda_2^1 e^{-\lambda_2}}{1!}$$

Probability of observing a series of events by all individuals

The probability that we observe the collection of choices made by them (if their events are independent)

$$L=Prob(y_1=3|\mathbf{x_1}) imes Prob(y_2=1|\mathbf{x_2})=rac{\lambda_1^3e^{-\lambda_1}}{3!} imes rac{\lambda_2^1e^{-\lambda_2}}{1!}.$$

which we call llikelihood function.

Log-likelihood function

$$LL = log(L) = log(rac{\lambda_1^3 e^{-\lambda_1}}{3!}) + log(rac{\lambda_2^1 e^{-\lambda_2}}{1!})$$

(Remember
$$\lambda_i = exp(eta_0 + eta_1 x_{i,1} + \cdots + eta_k x_{i,k})$$
)

$$Max_{eta_1,\dots,eta_k}$$
 LL

Implementation in R with an example

The number of times a man is arrested during 1986:

$$Pr(narr86|\mathbf{x}) = G(z)$$

where

$$z=eta_0+eta_1pcnv+eta_2tottime+eta_3qemp86+eta_4inc86 +eta_5black+eta_6hispan$$

- *narr*86: # of times arrested in 1986
- *pcnv*: proportion of prior conviction
- *tottime*: time in prison since 18
- *qemp*86: # quarters employed in 1986
- inc86: legal income in 1986 (in \$\\$100\$)

R code: importing the data

```
#--- import the data ---#
data <- read.dta13("CRIME1.dta")

#--- take a look ---#
dplyr::select(data, narr86, pcnv, qemp86, inc86) %>%
head()
```

```
## narr86 pcnv qemp86 inc86
## 1 0 0.38 0 0.0
## 2 2 0.44 1 0.8
## 3 1 0.33 0 0.0
## 4 2 0.25 2 8.8
## 5 1 0.00 2 8.1
## 6 0 1.00 4 97.6
```

R code: Poisson model estimation using glm()

```
pois_lf <- glm(
    #--- formula ---#
    narr86 ~ pcnv + tottime + qemp86 + inc86 + black + hispan,

#--- data ---#
    data = data,

#--- models ---#
    family = poisson(link = "log")
)</pre>
```

family option

- ullet poisson(): tells R that your dependent variable is Poisson distributed
- link = "log": tells R that you want to use exp() (the inverse of log()) as G() in $E(y=1|\mathbf{x})=G(z)$

```
msummary(
  pois_lf,
  # keep these options as they ar
  stars = TRUE,
  gof_omit = "IC|Log|Adj|F|Pseudo
```

	Model 1
(Intercept)	-0.666
	(0.064)
pcnv	-0.432
	(0.085)
tottime	-0.001
	(0.006)
qemp86	-0.010
	(0.029)
inc86	-0.008
	(0.001)
black	0.644
	(0.074)
hispan	0.473
	(0.074)
Num.Obs.	2725
RMSE	1.02

^{0.01, *} p < 0.001

Calculate average marginal effects

Just like the binomial regressions we saw earlier, we can use margins::margins() function to get
the average marginal effects of covariates.

```
pois_marginal_e <- margins(pois_lf, type = "response")</pre>
```