Appendix

```
library(haven)
library(sandwich)
library(stargazer)
library(ggplot2)
library(car)
library(knitr)
library(plyr)
library(lfe)
library(plm)
library(gtools)
library(pander)
afghan <- read_dta("~/Documents/Stats2/pivotproject/afghandata.dta")</pre>
#rename variables
afghan <- rename(afghan, c("f07_hh_id"= "hh_id",
                  "f07_heads_child_cnt" = "heads_child",
                  "f07_girl_cnt" = "girl",
                  "f07_age_head_cnt" = "age_head",
                  "f07_yrs_ed_head_cnt" = "yrs_ed_head",
                  "f07_jeribs_cnt" = "jeribs",
                  "f07_num_sheep_cnt" = "num_sheep",
                  "f07 duration village cnt" = "duration village",
                  "f07_farsi_cnt" = "farsi",
                  "f07_tajik_cnt" = "tajik",
"f07_farmer_cnt" = "farmer",
                  "f07_num_ppl_hh_cnt" = "num_ppl_hh",
                  "f07_test_observed" = "test_observed",
                  "f07_formal_school" = "formal_school",
                  "f07_nearest_scl" = "nearest_scl",
                  # non-matching new names#
                  "f07_age_cnt" = "age_child",
                  "f07_both_norma_total" = "test_score_normalized"))
#age by gender
afghan$age_girl <- afghan$age_child*afghan$girl</pre>
afghan$age_girl[afghan$age_girl == 0] <- NA
afghan$age_boy <- afghan$age_child* !afghan$girl</pre>
afghan$age_boy[afghan$age_boy == 0] <- NA
attach(afghan)
# Create Balance Table create data frame of only the variables of interest
remove <- c("hh_id", "observation_id")</pre>
varlist <- colnames(afghan[, !names(afghan) %in% remove])</pre>
balance_variables <- afghan[, !colnames(afghan) %in% remove]</pre>
# generate counts
```

```
n_ctrl <- apply(balance_variables[balance_variables$treatment == 0, ], 2, function(x) length(which(!is..
n_trt <- apply(balance_variables[balance_variables$treatment == 1, ], 2, function(x) length(which(!is.n</pre>
# generate table
balancetable <- cbind(n_ctrl, n_trt)</pre>
# drop treatment, test score, cluster rows
balancetable <- balancetable[!rownames(balancetable) == "treatment", ]</pre>
balancetable <- balancetable[!rownames(balancetable) == "test score normalized",
balancetable <- balancetable[!rownames(balancetable) == "clustercode", ]</pre>
# run t.tests, skipping treatment[14]
balance_tests <- lapply(varlist[c(1:13, 16:18, 20:21)], function(x) {</pre>
    t.test(as.formula(paste(x, "treatment", sep = "~")), data = balance_variables,
        alternative = "two.sided", mu = 0, paired = FALSE, var.equal = FALSE,
        conf.level = 0.95)
})
# extract and adjust p vals
balance_test_pvals <- t(sapply(balance_tests, function(x) {</pre>
    c(mean_crtl = unname(x$estimate[1]), mean_trt = unname(x$estimate[2]), diff_means = unname(x$estimate[2])
        unname(x$estimate[1]), p.value = p.adjust(x$p.value, method = "bonferroni",
        n = length(x))
}))
balance_test_pvals <- data.frame(balance_test_pvals, stringsAsFactors = FALSE)</pre>
balance_test_pvals[] <- lapply(balance_test_pvals[], function(x) as.numeric(as.character(x)))</pre>
balancetable <- cbind(balancetable, balance_test_pvals)</pre>
balancetable <- round(balancetable, 3)</pre>
# Show table
```

Table 1: Balance Table

	n_ctrl	n_trt	mean_crtl	mean_trt	diff_means	p.value
heads_child	730	830	0.911	0.927	0.016	1.000
girl	730	830	0.456	0.478	0.022	1.000
age_child	730	830	8.321	8.322	0.001	1.000
age_head	730	830	40.219	40.090	-0.129	1.000
yrs_ed_head	730	830	3.101	3.531	0.431	0.165
jeribs	730	830	1.510	1.498	-0.011	1.000
num_sheep	730	830	6.404	9.586	3.181	0.000
$duration_village$	730	830	27.662	30.172	2.509	0.014
farsi	730	830	0.205	0.210	0.004	1.000
tajik	730	830	0.204	0.239	0.034	0.914
farmer	730	830	0.729	0.707	-0.022	1.000
$\operatorname{num}_{-}\operatorname{ppl}_{-}\operatorname{hh}$	730	830	7.905	8.741	0.835	0.000
$test_observed$	730	830	0.925	0.925	0.001	1.000
chagcharan	730	830	0.429	0.663	0.234	0.000
$formal_school$	730	830	0.264	0.731	0.467	0.000
$nearest_scl$	730	830	3.149	2.881	-0.268	0.000
age_girl	333	397	8.327	8.332	0.005	1.000
age_boy	397	433	8.315	8.312	-0.003	1.000

Table 2: Summary Table

	n	mean	sd
% Test Taken - All	1560	0.925	0.263
% Test Taken - Treatment	830	0.925	0.263
% Test Taken - Control	730	0.925	0.264

```
# creating a dataset of only the attritted
afghanattrition <- afghan[!complete.cases(afghan), ]

# comparisons of treatment and control for attritted only

# omits test_observed[13], treatment[14], clustercode[15], and
# test_score[19]
attrition_by_treatment <- lapply(varlist[c(1:12, 16:18, 20:21)], function(x) {
    t.test(as.formula(paste(x, "treatment", sep = "~")), data = afghanattrition,</pre>
```

Table 3: Attrition Table

	mean_crtl	mean_trt	diff_means	p.value
heads_child	0.9109589	0.9265060	0.0155471	1.0000000
girl	0.4561644	0.4783133	0.0221489	1.0000000
age_child	8.3205479	8.3216867	0.0011388	1.0000000
age_head	40.2191781	40.0903614	-0.1288166	1.0000000
yrs_ed_head	3.1006849	3.5313253	0.4306404	0.1648415
jeribs	1.5095890	1.4981928	-0.0113963	1.0000000
num_sheep	6.4041096	9.5855422	3.1814326	0.0000010
$duration_village$	27.6623288	30.1716867	2.5093580	0.0137177
farsi	0.2054795	0.2096386	0.0041591	1.0000000
tajik	0.2041096	0.2385542	0.0344446	0.9137745
farmer	0.7287671	0.7072289	-0.0215382	1.0000000
$\operatorname{num}_{-}\operatorname{ppl}_{-}\operatorname{hh}$	7.9054795	8.7409639	0.8354844	0.0000056
chagcharan	0.4287671	0.6626506	0.2338835	0.0000000
$formal_school$	0.2643836	0.7313253	0.4669417	0.0000000
$nearest_scl$	3.1492138	2.8811876	-0.2680262	0.0000229
age_girl	8.3273273	8.3324937	0.0051664	1.0000000
age_boy	8.3148615	8.3117783	-0.0030832	1.0000000

No two independent variables have correlation greater than 0.35.

```
# Modelling enrollment

r1 <- lm(formal_school ~ nearest_scl, data = afghan)
r2 <- lm(formal_school ~ nearest_scl + girl * age_child + age_head + num_sheep +
        jeribs + yrs_ed_head + heads_child + duration_village + num_ppl_hh + tajik +
        farsi + farmer + chagcharan, data = afghan)
r3 <- lm(formal_school ~ nearest_scl + girl * age_child + age_head + num_sheep +
        jeribs + yrs_ed_head + heads_child + duration_village + num_ppl_hh + tajik +
        farsi + farmer + as.factor(clustercode), data = afghan)</pre>
```

```
robust_se1 <- sqrt(diag(vcovHC(r1, type = "HC1")))</pre>
Trobust_se1 <- summary(r1, robust = T)$coefficients[, 2]</pre>
robust se2 <- sqrt(diag(vcovHC(r2, type = "HC1")))</pre>
robust_se3 <- sqrt(diag(vcovHC(r3, type = "HC1")))</pre>
p1 <- glm(formal_school ~ nearest_scl, data = afghan, family = binomial(link = "probit"))
p2 <- glm(formal school ~ nearest scl + girl * age child + age head + num sheep +
    jeribs + yrs_ed_head + heads_child + duration_village + num_ppl_hh + tajik +
    farsi + farmer + chagcharan, data = afghan, family = binomial(link = "probit"))
p3 <- glm(formal_school ~ nearest_scl + girl * age_child + age_head + num_sheep +
    jeribs + yrs_ed_head + heads_child + duration_village + num_ppl_hh + tajik +
    farsi + farmer + as.factor(clustercode), data = afghan, family = binomial(link = "probit"))
# display models
stargazer(r2, r3, omit.stat = c("f", "ser", "aic", "ll"), omit = "clustercode",
    omit.labels = "clustercode fixed effects?", se = list(robust_se2, robust_se3),
    title = "Linear OLS model", intercept.bottom = FALSE, header = FALSE, summary = FALSE)
stargazer(p2, p3, omit.stat = c("f", "ser", "aic", "ll"), omit = "clustercode",
    omit.labels = "clustercode fixed effects?", title = "Probit model", intercept.bottom = FALSE,
    header = FALSE, summary = FALSE)
# compare predictions
plot(predict(r2, type = "response"), predict(p2, type = "response"), xlab = "linear model",
    ylab = "probit model")
abline(a = 0, b = 1, col = "red")
                                                                       0.8
probit model
      9.0
                COCCES TO
            0.0
                          0.2
                                        0.4
                                                      0.6
                                                                     8.0
                                                                                   1.0
                                          linear model
# F test for language, wealth
linearHypothesis(p2, c("tajik = 0", "farsi = 0"), test = "F")
```

Linear hypothesis test

##

Table 4: Linear OLS model

	Dependent variable:		
	formal school		
	(1)	(2)	
Constant	0.135	0.365***	
	(0.114)	(0.122)	
nearest_scl	-0.051***	-0.018*	
	(0.010)	(0.011)	
girl	0.067	0.031	
	(0.123)	(0.111)	
age_child	0.061***	0.059***	
	(0.010)	(0.009)	
age_head	-0.003***	-0.002	
	(0.001)	(0.001)	
num_sheep	0.003***	0.001	
	(0.001)	(0.001)	
jeribs	-0.008	0.009*	
	(0.006)	(0.005)	
yrs_ed_head	0.005	0.002	
	(0.004)	(0.003)	
heads_child	0.041	-0.007	
	(0.047)	(0.039)	
duration_village	0.0005	-0.001	
	(0.001)	(0.001)	
num_ppl_hh	0.004	-0.001	
	(0.004)	(0.003)	
tajik	0.059*	0.042	
	(0.030)	(0.027)	
farsi	-0.011	0.001	
	(0.031)	(0.027)	
farmer	-0.055^*	-0.042*	
	(0.028)	(0.025)	
chagcharan	0.213***		
	(0.025)		
girl:age_child	-0.022	-0.018	
	(0.015)	(0.013)	
clustercode fixed effects?	No	Yes	
Observations	6 1,560	1,560	
R ²	0.121	0.340	
Adjusted R ²	0.113	0.329	

* -0.1 ** -0.05 *** -0.01

Table 5: Probit model

	Dependent variable:		
	formal_school		
	(1)	(2)	
Constant	-1.004***	-0.589	
	(0.315)	(0.397)	
nearest_scl	-0.146***	-0.072^{*}	
	(0.030)	(0.038)	
girl	0.205	0.195	
_	(0.344)	(0.384)	
age_child	0.168***	0.209***	
	(0.028)	(0.032)	
age_head	-0.008***	-0.006	
-	(0.003)	(0.004)	
num_sheep	0.009***	0.002	
	(0.003)	(0.004)	
jeribs	-0.021	0.039**	
•	(0.016)	(0.019)	
yrs_ed_head	0.013	0.008	
<i>y</i>	(0.010)	(0.011)	
heads_child	0.124	-0.039	
	(0.128)	(0.144)	
duration_village	0.001	-0.003	
_ 0	(0.002)	(0.003)	
num_ppl_hh	0.010	-0.004	
	(0.011)	(0.012)	
tajik	0.162*	0.163*	
	(0.084)	(0.095)	
farsi	-0.029	0.006	
	(0.086)	(0.098)	
farmer	-0.151^*	-0.153^{*}	
	(0.078)	(0.088)	
chagcharan	0.576***		
Ŭ	(0.070)		
girl:age_child	-0.062	-0.073	
0	(0.041)	(0.046)	
clustercode fixed effects?	No	Yes	
Observations	7 1,560	1,560	
Note:	*p<0.1; **p<	-	

```
## Hypothesis:
## tajik = 0
## farsi = 0
##
## Model 1: restricted model
## Model 2: formal_school ~ nearest_scl + girl * age_child + age_head + num_sheep +
       jeribs + yrs ed head + heads child + duration village + num ppl hh +
##
       tajik + farsi + farmer + chagcharan
##
##
    Res.Df Df
                    F Pr(>F)
## 1
       1546
       1544 2 2.2928 0.1013
## 2
linearHypothesis(p2, c("num sheep = 0", "jeribs = 0"), test = "F")
## Linear hypothesis test
##
## Hypothesis:
## num_sheep = 0
## jeribs = 0
##
## Model 1: restricted model
## Model 2: formal_school ~ nearest_scl + girl * age_child + age_head + num_sheep +
       jeribs + yrs_ed_head + heads_child + duration_village + num_ppl_hh +
##
       tajik + farsi + farmer + chagcharan
##
##
    Res.Df Df
                    F Pr(>F)
## 1
      1546
## 2
       1544 2 3.8298 0.02192 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# modelling test scores
regschoolontest <- lm(test_score_normalized ~ formal_school + nearest_scl +
    girl * age_child + age_head + num_sheep + jeribs + yrs_ed_head + heads_child +
    duration_village + num_ppl_hh + tajik + farsi + farmer, data = afghan)
regschoolontestFE <- lm(test_score_normalized ~ formal_school + heads_child +
    age_child * girl + as.factor(hh_id))
robust se.sumregschoolontest <- sqrt(diag(vcovHC(regschoolontest, type = "HC1")))
robust_se.sumregschoolontestFE <- sqrt(diag(vcovHC(regschoolontestFE, type = "HC1")))
stargazer(regschoolontest, regschoolontestFE, se = list(robust_se.sumregschoolontest,
   robust_se.sumregschoolontestFE), omit.stat = c("f", "ser", "aic", "ll"),
    omit = "hh_id", omit.labels = "HH ID Fixed Effects?", title = "Test Scores",
    intercept.bottom = FALSE, header = FALSE, summary = FALSE)
# treatment effects by gender enroll~ treatment test score ~ treatment
treat_enrollment <- (lm(test_score_normalized ~ treatment, data = afghan))</pre>
treat_enrollment_girl <- (lm(test_score_normalized ~ treatment + treatment *</pre>
    girl, data = afghan))
treat_enrollment.adv <- (lm(test_score_normalized ~ treatment + nearest_scl +</pre>
    girl * age_child + age_head + num_sheep + jeribs + yrs_ed_head + heads_child +
```

Table 6: Test Scores

	Dependent variable:	
	test_score_normalized	
	(1)	(2)
Constant	-2.825***	-1.113
	(0.190)	(0.926)
formal_school	0.878***	0.838***
	(0.045)	(0.095)
nearest_scl	-0.010	
	(0.017)	
girl	0.364*	0.174
	(0.197)	(0.302)
ge_child:girl		-0.076**
		(0.035)
age_child	0.315***	0.341***
	(0.017)	(0.025)
age_head	0.003*	
	(0.002)	
num_sheep	0.006***	
	(0.002)	
eribs	0.004	
	(0.010)	
rs_ed_head	0.033***	
	(0.006)	
neads_child	0.014	0.080
	(0.084)	(0.243)
luration_village	-0.002	
	(0.001)	
num_ppl_hh	0.005	
	(0.006)	
ajik	0.069	
	(0.050)	
arsi	0.034	
	(0.054)	
armer	0.001	
	(0.049)	
girl:age_child	-0.099***	
-	(9.023)	
HH ID Fixed Effects?	No	Yes
Observations	1,443	1,443

```
duration_village + num_ppl_hh + tajik + farsi + farmer + chagcharan, data = afghan))
treat_enrollment_girl.adv <- (lm(test_score_normalized ~ treatment + treatment *</pre>
    girl + nearest_scl + girl * age_child + age_head + num_sheep + jeribs +
   yrs_ed_head + heads_child + duration_village + num_ppl_hh + tajik + farsi +
    farmer + chagcharan, data = afghan))
treat_enrollment.adv_clus <- (lm(test_score_normalized ~ treatment + nearest_scl +</pre>
    girl * age_child + age_head + num_sheep + jeribs + yrs_ed_head + heads_child +
    duration_village + num_ppl_hh + tajik + farsi + farmer + as.factor(clustercode),
    data = afghan))
treat_enrollment_girl.adv_clus <- (lm(test_score_normalized ~ treatment + treatment *
    girl + nearest_scl + girl * age_child + age_head + num_sheep + jeribs +
   yrs_ed_head + heads_child + duration_village + num_ppl_hh + tajik + farsi +
    farmer + as.factor(clustercode), data = afghan))
robust_se.treat_enrollment <- sqrt(diag(vcovHC(treat_enrollment, type = "HC1")))</pre>
robust_se.treat_enrollment_girl <- sqrt(diag(vcovHC(treat_enrollment_girl, type = "HC1")))</pre>
robust_se.treat_enrollment.adv <- sqrt(diag(vcovHC(treat_enrollment.adv, type = "HC1")))</pre>
robust_se.treat_enrollment_girl.adv <- sqrt(diag(vcovHC(treat_enrollment_girl.adv,</pre>
    type = "HC1")))
robust_se.treat_enrollment.adv_clus <- sqrt(diag(vcovHC(treat_enrollment.adv_clus,</pre>
    type = "HC1")))
robust_se.treat_enrollment_girl.adv_clus <- sqrt(diag(vcovHC(treat_enrollment_girl.adv_clus,
    type = "HC1")))
stargazer(treat_enrollment, treat_enrollment_girl, treat_enrollment.adv, treat_enrollment_girl.adv,
    treat_enrollment.adv_clus, treat_enrollment_girl.adv_clus, title = "Results",
    align = TRUE, type = "text", se = list(robust_se.treat_enrollment, robust_se.treat_enrollment_girl,
        robust_se.treat_enrollment.adv, robust_se.treat_enrollment_girl.adv,
        robust_se.treat_enrollment.adv_clus, robust_se.treat_enrollment_girl.adv_clus),
    omit = "clustercode", add.lines = list(c("Cluster Fixed Effects?", "No",
       "No", "No", "No", "Yes", "Yes")))
```

Results

Dependent variabl

test_score_normalic

(1) (2) (3)

```
treatment 0.580^{***} 0.462^{***} 0.504^{***} 0.391^{***} 0.539^{***} 0.440^{**} (0.055) (0.080) (0.047) (0.066) (0.167) (0.173)
nearest_scl -0.031^* -0.032^* 0.009 0.008 (0.019) (0.019) (0.022) (0.022)
girl -0.683^{***} 0.434^{**} 0.313 0.492^{**} 0.375^* (0.072) (0.218) (0.216) (0.216) (0.213)
treatment:girl 0.267^{**} 0.232^{***} 0.225^{***} (0.104) (0.087) (0.085)
age_child 0.368^{***} 0.368^{***} 0.376^{***} 0.376^{***} (0.018) (0.018) (0.018) (0.018)
age_head 0.002 0.002 0.001 0.001 (0.002) (0.002) (0.002) (0.002) (0.002) num_sheep 0.006^{***} 0.004^* 0.004^* 0.004^* (0.002) (0.002) (0.002) (0.002) jeribs 0.003 0.003 0.012 0.013 (0.010) (0.010) (0.010) (0.010) (0.010) (0.007) (0.007) (0.007) heads_child -0.012 -0.013 0.018 0.017 (0.089) (0.089) (0.088) (0.088)
duration_village -0.003^* -0.003^* -0.002 -0.002 (0.002) (0.007) (0.007) (0.007) (0.002) num_ppl_hh 0.001 0.001 0.005 0.005 (0.007) (0.007) (0.007) (0.007) (0.007) tajik 0.098^* 0.092^* 0.099^* 0.093^* (0.055) (0.054) (0.055) (0.055)
```

```
farsi 0.012 0.010 0.013 0.012 (0.057) (0.057) (0.057) (0.057)
 farmer -0.040 -0.038 -0.045 -0.043 (0.054) (0.054) (0.053) (0.052)
 chagcharan 0.200^{***} 0.206^{***} (0.047) (0.047)
 girl:age_child -0.120*** -0.121*** -0.127*** -0.127*** (0.026) (0.026) (0.025)
 Constant 0.006\ 0.331^{***}\ -2.933^{***}\ -2.871^{***}\ -2.816^{***}\ -2.763^{***}\ (0.039)\ (0.057)\ (0.209)\ (0.208)\ (0.227)
 (0.227)
Cluster Fixed Effects? No No No No Yes Yes
Observations 1,443 1,443 1,443 1,443 1,443 1,443
R2\ 0.072\ 0.138\ 0.408\ 0.410\ 0.436\ 0.438
Adjusted R2 0.071 0.137 0.401 0.403 0.426 0.428
Residual Std. Error 1.041 (df = 1441) 1.003 (df = 1439) 0.836 (df = 1426) 0.834 (df = 1425) 0.818 (df = \frac{1425}{142}
1418) 0.816 (df = 1417)
F Statistic 111.513*** (df = 1; 1441) 76.98*** (df = 3; 1439) 61.333*** (df = 16; 1426) 58.370*** (df = 17;
Note: p < 0.1; p < 0.05; p < 0.01
# test score ~ treatment
treat_test <- (lm(test_score_normalized ~ treatment, data = afghan))</pre>
treat_test_girl <- (lm(test_score_normalized ~ treatment + treatment * girl,</pre>
    data = afghan))
treat_test.adv <- (lm(test_score_normalized ~ treatment + nearest_scl + girl *</pre>
    age_child + age_head + num_sheep + jeribs + yrs_ed_head + heads_child +
    duration_village + num_ppl_hh + tajik + farsi + farmer + chagcharan, data = afghan))
treat_test_girl.adv <- (lm(test_score_normalized ~ treatment + treatment * girl +</pre>
    nearest_scl + girl * age_child + age_head + num_sheep + jeribs + yrs_ed_head +
    heads_child + duration_village + num_ppl_hh + tajik + farsi + farmer + chagcharan,
    data = afghan))
treat_test.adv_clus <- (lm(test_score_normalized ~ treatment + nearest_scl +</pre>
    girl * age_child + age_head + num_sheep + jeribs + yrs_ed_head + heads_child +
    duration_village + num_ppl_hh + tajik + farsi + farmer + as.factor(clustercode),
    data = afghan))
treat_test_girl.adv_clus <- (lm(test_score_normalized ~ treatment + treatment *</pre>
    girl + nearest_scl + girl * age_child + age_head + num_sheep + jeribs +
    yrs_ed_head + heads_child + duration_village + num_ppl_hh + tajik + farsi +
    farmer + as.factor(clustercode), data = afghan))
robust_se.treat_test <- sqrt(diag(vcovHC(treat_test, type = "HC1")))</pre>
robust_se.treat_test_girl <- sqrt(diag(vcovHC(treat_test_girl, type = "HC1")))</pre>
robust se.treat test.adv <- sqrt(diag(vcovHC(treat test.adv, type = "HC1")))
robust_se.treat_test_girl.adv <- sqrt(diag(vcovHC(treat_test_girl.adv, type = "HC1")))</pre>
robust se.treat test.adv clus <- sqrt(diag(vcovHC(treat test.adv clus, type = "HC1")))
robust_se.treat_test_girl.adv_clus <- sqrt(diag(vcovHC(treat_test_girl.adv_clus,</pre>
    type = "HC1")))
stargazer(treat_test, treat_test_girl, treat_test.adv, treat_test_girl.adv,
    treat_test.adv_clus, treat_test_girl.adv_clus, title = "Results", align = TRUE,
```

robust_se.treat_test.adv, robust_se.treat_test_girl.adv, robust_se.treat_test.adv_clus,

robust_se.treat_test_girl.adv_clus), omit = "clustercode", add.lines = list(c("Cluster Fixed Ef

type = "text", se = list(robust_se.treat_test, robust_se.treat_test_girl,

"No", "No", "No", "Yes", "Yes")))

Results

```
Dependent variable
                                                                                                test_score_normali:
                                  (1)
                                                              (2)
                                                                                            (3)
 treatment 0.580^{***} 0.462^{***} 0.504^{***} 0.391^{***} 0.539^{***} 0.440^{**} (0.055) (0.080) (0.047) (0.066) (0.167)
 (0.173)
 nearest\_scl -0.031* -0.032* 0.009 0.008 (0.019) (0.019) (0.022) (0.022)
 girl -0.683*** 0.434** 0.313 0.492** 0.375* (0.072) (0.218) (0.216) (0.216) (0.213)
 treatment:girl 0.267^{**} 0.232^{***} 0.225^{***} (0.104) (0.087) (0.085)
 age child 0.368*** 0.368*** 0.376*** 0.376*** (0.018) (0.018) (0.018)
 age head 0.002 0.002 0.001 0.001 (0.002) (0.002) (0.002) (0.002)
 num sheep 0.006^{***} 0.006^{***} 0.004^{*} 0.004^{*} (0.002) (0.002) (0.002)
 jeribs 0.003 0.003 0.012 0.013 (0.010) (0.010) (0.010) (0.010)
 yrs\_ed\_head~0.037^{***}~0.036^{***}~0.033^{***}~0.033^{***}~(0.007)~(0.007)~(0.007)~(0.007)
 heads child -0.012 -0.013 0.018 0.017 (0.089) (0.089) (0.088) (0.088)
 duration village -0.003^* -0.003^* -0.002 -0.002 (0.002) (0.001) (0.002) (0.002)
 num_ppl_hh 0.001 0.001 0.005 0.005 (0.007) (0.007) (0.007) (0.007)
 tajik 0.098* 0.092* 0.099* 0.093* (0.055) (0.054) (0.055) (0.055)
 farsi 0.012 0.010 0.013 0.012 (0.057) (0.057) (0.057) (0.057)
 farmer -0.040 -0.038 -0.045 -0.043 (0.054) (0.054) (0.053) (0.052)
 chagcharan 0.200^{***} 0.206^{***} (0.047) (0.047)
 girl:age_child -0.120*** -0.121*** -0.127*** -0.127*** (0.026) (0.026) (0.025)
 Constant 0.006\ 0.331^{***}\ -2.933^{***}\ -2.871^{***}\ -2.816^{***}\ -2.763^{***}\ (0.039)\ (0.057)\ (0.209)\ (0.208)\ (0.227)
 (0.227)
Cluster Fixed Effects? No No No No Yes Yes
Observations 1,443 1,443 1,443 1,443 1,443 1,443
R2\ 0.072\ 0.138\ 0.408\ 0.410\ 0.436\ 0.438
Adjusted R2 0.071 0.137 0.401 0.403 0.426 0.428
Residual Std. Error 1.041 (df = 1441) 1.003 (df = 1439) 0.836 (df = 1426) 0.834 (df = 1425) 0.818 (df = \frac{1}{2}
1418) 0.816 (df = 1417)
F Statistic 111.513*** (df = 1; 1441) 76.988*** (df = 3; 1439) 61.333*** (df = 16; 1426) 58.370*** (df = 17;
Note: p < 0.1; p < 0.05; p < 0.01
# Local average treatment effect
q6.full <- lm(test_score_normalized ~ formal_school * treatment, data = afghan)
q6.boys <- lm(test_score_normalized ~ formal_school * treatment, data = afghan,
    subset = (afghan$girl == 0))
q6.girls <- lm(test_score_normalized ~ formal_school * treatment, data = afghan,
    subset = (afghan$girl == 1))
q6.full se <- sqrt(diag(vcovHC(q6.full, type = "HC1")))</pre>
q6.boys_se <- sqrt(diag(vcovHC(q6.boys, type = "HC1")))</pre>
q6.girls_se <- sqrt(diag(vcovHC(q6.girls, type = "HC1")))
stargazer(q6.full, q6.boys, q6.girls, title = "Local average treatment effects",
    omit.stat = c("f", "ser", "aic", "ll"), intercept.bottom = FALSE, header = FALSE,
    summary = FALSE, se = list(q6.full_se, q6.boys_se, q6.girls_se))
```

Table 9: Local average treatment effects

	$Dependent\ variable:$			
	test_score_normalized			
	(1)	(2)	(3)	
Constant	-0.233***	-0.022	-0.414***	
	(0.040)	(0.067)	(0.044)	
formal school	0.902***	0.999***	0.370***	
	(0.085)	(0.104)	(0.127)	
treatment	-0.080	-0.074	-0.076	
	(0.077)	(0.131)	(0.085)	
formal school:treatment	0.320***	0.165	0.857***	
_	(0.114)	(0.163)	(0.155)	
Observations	1,443	739	704	
\mathbb{R}^2	0.268	0.235	0.326	
Adjusted \mathbb{R}^2	0.267	0.232	0.323	

Note:

*p<0.1; **p<0.05; ***p<0.01