CANS2D モデルパッケージ md_itmhdshktb

等温 MHD 衝擊波

2006. 2. 12.

1 はじめに

このモデルパッケージは、2次元平面内での等温 MHD 衝撃波問題を解くためのものである。

2 仮定と基礎方程式

流体は非粘性・等温流体とする。計算領域は 2 次元デカルト座標 (xy 平面) で $\partial/\partial z=0$ 、 $V_z=0$ 、 $B_z=0$ と仮定する。解くのは、 密度 ρ 、速度 V_x 、 V_y 、磁場 B_x 、 B_y についての 2 次元 MHD 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}\left(\rho V_x^2 + p + \frac{B^2}{8\pi} - \frac{B_x^2}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) = 0 \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y^2 + p + \frac{B^2}{8\pi} - \frac{B_y^2}{4\pi}\right) = 0 \tag{3}$$

$$\frac{\partial}{\partial t}(B_x) + \frac{\partial}{\partial y}(cE_z) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_y) - \frac{\partial}{\partial x}(cE_z) = 0 \tag{5}$$

$$p = \frac{k_{\rm B}}{m} \rho T \tag{6}$$

$$cE_z = -V_x B_y + V_y B_x \tag{7}$$

である。ここで、T はガスの温度で定数。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 C_{S0} 、 L_0/C_{S0} 。ここで、 L_0 は計算領域の大きさ、 C_{S0} は音速。密度は高圧側の値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位
x, y	L_0
V_x, V_y	$C_{ m S0}$
t	$L_0/C_{\rm S0}$
ho	$ ho_0$
B_x, B_y	$\sqrt{\rho_0 C_{\mathrm{S}0}^2}$

表 1: 変数と規格化単位

4 パラメータ・初期条件・計算条件・境界条件

|x|<1/2、|y|<1/2 の領域を解く。初期状態は以下のようなもの。サブルーチン ${
m model}$ で設定する。

$$\rho = \rho_0 + (\rho_1 - \rho_0) \frac{1}{2} \left[1 + \tanh\left(\frac{s}{w}\right) \right]$$

$$V_x = V_y = 0$$

$$B_x = B_{00} \cos \theta_i + B_{x0} + (B_{x1} - B_{x0}) \frac{1}{2} \left[1 + \tanh\left(\frac{s}{w}\right) \right]$$

$$B_y = B_{00} \sin \theta_i + B_{y0} + (B_{y1} - B_{y0}) \frac{1}{2} \left[1 + \tanh\left(\frac{s}{w}\right) \right]$$

ただし、

$$s = x \cos \theta_i + y \sin \theta_i$$

w=0.02 は数値不安定を避けるための遷移幅。

パラメータ	値	コード中での変数名	設定サブルーチン名
高圧側密度 $ ho_0$	1	ro0	model
高圧側磁場 $B_{x0}\ B_{x0}$	$-\sin\theta_i$	bx0	model
高圧側磁場 $B_{y0}\ B_{y0}$	$\cos \theta_i$	by0	model
低圧側密度 $ ho_1$	0.125	ro1	model
低圧側磁場 B_{x1} B_{x1}	$\sin \theta_i$	bx1	model
低圧側磁場 $B_{y1}\ B_{y1}$	$-\cos\theta_i$	by1	model
初期不連続の角度 $ heta_i$	60 度	thini	model
初期不連続に垂直な磁場 B_{00}	0.75	ъ00	model

表 2: おもなパラメータ

境界条件は、すべて自由境界条件。サブルーチン bnd で設定する。 計算パラメータは以下の通り (表 3 参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 x 方向	103	ix	main
グリッド数 y 方向	100	jx	main
マージン	4	margin	main
終了時刻	0.1	tend	main
出力時間間隔	0.02	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。