HUGGING FACE ACCELERATE: MAKING DEVICE-AGNOSTIC ML TRAINING AND INFERENCE EASY AT SCALE

WHO AM I?

- Zachary Mueller
- Technical Lead for the Accelerate project
- Maintain the transformers Trainer
- API design geek

- A training framework
- An inference framework
- A command-line interface

A TRAINING FRAMEWORK

- Powered by PyTorch
- Change a few lines of code, gain device and hardwareagnostic capabilities
- Low-code, with minimal magic aimed at easy hackability and use without high-level abstractions
- We handle the intracies so you don't have to

A TRAINING FRAMEWORK

- Support for any hardware-accelerator on the market:
 - CPU, GPU, TPU, XPU, NPU, MLU
- Automatic mixed-precision training *safely* in whatever fashion you may choose:
 - FP16, BF16, FP8 (through either TransformerEngine or MS-AMP)
- Automatic and efficient gradient accumulation
- Support for quantization through bitsandbytes
- Support your favorite experiment trackers (aim, clearml, comet_ml, dvc-lite, ml-flow, tensorboard, wandb)
- Easy to configure plugin or YAML-level API for setting up advanced frameworks like FSDP, DeepSpeed, and Megatron-LM

LOW-CODE

- Biggest friction with "wrapper" libraries is control of your code
- By being minimally intrusive, your code just "works" while still giving you complete control

```
import torch
     import torch.nn.functional as F
     from datasets import load_dataset
     model = torch.nn.Transformer().to(device)
    optimizer = torch.optim.Adam(model.parameters())
    dataset = load_dataset('my_dataset')
13
     data = torch.utils.data.DataLoader(dataset, shuffle=True)
14
     model.train()
     for epoch in range(10):
         for source, targets in dataloader:
              source, targets = source.to(device), targets.to(device)
             optimizer.zero_grad()
             output = model(source)
             loss = F.cross_entropy(output, targets)
             optimizer.step()
```

EASY TO INTEGRATE

- Due to the low-code nature, it's trivial to integrate into existing PyTorch frameworks:
 - 1. Create an Accelerator

```
import torch
     import torch.nn.functional as F
     from datasets import load_dataset
     device = 'cpu'
     model = torch.nn.Transformer().to(device)
    optimizer = torch.optim.Adam(model.parameters())
    dataset = load_dataset('my_dataset')
     data = torch.utils.data.DataLoader(dataset, shuffle=True)
13
     model.train()
     for epoch in range (10):
         for source, targets in dataloader:
              source, targets = source.to(device), targets.to(device)
             optimizer.zero_grad()
             output = model(source)
             loss = F.cross_entropy(output, targets)
             loss.backward()
             optimizer.step()
```

EASY TO INTEGRATE

- Due to the low-code nature, it's trivial to integrate into existing PyTorch frameworks:
 - 2. Wrap your PyTorch objects with accelerator.prepare and remove device-placements

```
import torch
     import torch.nn.functional as F
     from datasets import load_dataset
     from accelerate import Accelerator
     accelerator = Accelerator()
    model = torch.nn.Transformer().to(device)
    optimizer = torch.optim.Adam(model.parameters())
     dataset = load_dataset('my_dataset')
12
     data = torch.utils.data.DataLoader(dataset, shuffle=True)
13
14
     model.train()
     for epoch in range(10):
17
         for source, targets in dataloader:
              source, targets = source.to(device), targets.to(device)
             optimizer.zero_grad()
             output = model(source)
             loss = F.cross_entropy(output, targets)
23
             loss.backward()
             optimizer.step()
```

EASY TO INTEGRATE

- Due to the low-code nature, it's trivial to integrate into existing PyTorch frameworks:
 - 3. Use accelerator.backward for the backward pass

```
import torch
     import torch.nn.functional as F
     from datasets import load_dataset
     from accelerate import Accelerator
    accelerator = Accelerator()
     model = torch.nn.Transformer().to(device)
     optimizer = torch.optim.Adam(model.parameters())
     dataset = load_dataset('my_dataset')
     data = torch.utils.data.DataLoader(dataset, shuffle=True)
13
     model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader
     model.train()
     for epoch in range (10):
         for source, targets in dataloader:
              source, targets = source.to(device), targets.to(device)
             optimizer.zero_grad()
             output = model(source)
             loss = F.cross_entropy(output, targets)
             optimizer.step()
```

BUT WHAT ABOUT INFERENCE?

- Accelerate is not just for training, and has helped make the GPU-Poor take control of the narrative
- Using tools like Big Model Inference, users with tiny compute can run large models locally
- Started with the boom of stable diffusion, and now has scaled to having the ability to run huge LLMs locally with a single graphics card

HOW DOES IT WORK?

- PyTorch introduced device="meta"
- Accelerate introduced device_map="auto"

A CLI INTERFACE

- accelerate config
 - Configure the environment
- accelerate launch
 - How to run your script

LAUNCHING DISTRIBUTED TRAINING IS HARD

```
1 python script.py
```

VS.

```
1 torchrun --nnodes=1 --nproc_per_node=2 script.py
```

VS.

```
1 deepspeed --num_gpus=2 script.py
```

How can we make this better?

accelerate launch

```
1 accelerate launch script.py
```

```
1 accelerate launch --multi_gpu --num_processes 2 script.py
```

```
1 accelerate launch \
2   --multi_gpu \
3   --use_deepspeed \
4   --num_processes 2 \
5   script.py
```

accelerate config

- Rely on config. yaml files
- Choose to either running accelerate config or write your own:

```
ddp_config.yaml

1 compute_environment: LOCAL_MACHINE
2 distributed_type: MULTI_GPU
3 main_training_function: main
4 mixed_precision: bf16
5 num_machines: 1
6 num_processes: 8
```

```
fsdp_config.yaml

1 compute_environment: LOCAL_MACHINE
2 distributed_type: FSDP
3 fsdp_config:
4 fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRA
5 fsdp_backward_prefetch: BACKWARD_PRE
6 fsdp_cpu_ram_efficient_loading: true
7 fsdp_forward_prefetch: false
8 fsdp_offload_params: false
9 fsdp_sharding_strategy: FULL_SHARD
10 fsdp_state_dict_type: SHARDED_STATE_DICT
11 fsdp_sync_module_states: true
12 fsdp_use_orig_params: false
13 main_training_function: main
14 mixed_precision: bf16
15 num_machines: 1
16 num_processes: 8
```

NOW THAT YOU'RE UP TO SPEED, WHAT'S NEW?

WE'VE HAD A BUSY LAST YEAR, AND SO HAS THE ML COMMUNITY!

NEW TRAINING TECHNIQUES

- Quantization has taken the field by storm
- New ideas such as FSDP + QLoRA to train huge models on tiny compute!
- New precision backends as we train natively on smaller precision
- Optimizing futher how much we can push on a single machine through efficient RAM and timing techniques

LARGER COMPUTE LANDSCAPE

- As we search for alternatives to NVIDIA, new compilers rise:
 - XPU (Intel)
 - NPU (Intel)
 - MLU (Cambricon)

All of which are supported by 🤗 Accelerate

LOWER ABSTRACTIONS

- While the Accelerator was great, needed better abstractions focused on controlling behaviors
- Introduced the Partial State

```
1 from accelerate import PartialState
2
3 if PartialState().is_main_process:
4  # Run on only 1 device
5
6 with PartialState().main_process_first:
7  # Useful for dataset processing
8
9 # Device-agnostic without the bulk of the `Accelerator`
10 device = PartialState().device
```

FASTER AND BETTER INFERENCE ALTERNATIVES

- Pippy gives us efficient pipeline-parallelism in distributed environments to increase throughput while keeping a simple torch-bound API
- Rather than having to wait for each GPU, every GPU can be busy in parallel

```
1 import torch
2 from transformers import AutoModelForSequenceClassification
3
4 from accelerate import PartialState, prepare_pippy
5
6 model = AutoModelForSequenceClassification.from_pretrained("gpt2")
7 model.eval()
8
9 input = torch.randint(
10 low=0,
11 high=model.config.vocab_size,
12 size=(2, 1024), # bs x seq_len
13 device="cpu",
14 )
15
16 model = prepare_pippy(model, split_points="auto", example_args=(input, 17)
18 with torch.no_grad():
19 output = model(input)
```

ADOPTION: ACCELERATE IN THE ECOSYSTEM

ACCELERATE IN THE ECOSYSTEM

- Many of the frameworks you use daily already rely on Accelerate!
 - Nearly all of <a>
 - axolotl
 - fastai
 - FastChat
 - lucidrains
 - kornia

ACCELERATE IN THE ECOSYSTEM

• Started as a way to isolate out distributed code on TPU and DistributedDataParallelism

ACCELERATE IN THE ECOSYSTEM

 Now is the backbone of some of the largest PyTorch training frameworks in the ecosystem

WHAT'S NEXT?

ELEVATING THE COMMUNITY

- Now that more advanced training techniques are reachable (FSDP, DeepSpeed, etc), we need to focus on educating the community on how to use it best
- Goes beyond how to use the Trainer or Accelerator, but how to use what where
- Keep Accelerate as a tool for the community to utilize when new techniques come out and play with, to push new ideas to scale quickly

1.0.0: SOON!

- Tried and battle-tested by over 7M users/month
- As we've been stable for over a year now, we're near ready to release 1.0.0

THANKS FOR JOINING!

- Accelerate documentation
- Launching distributed code
- Distributed code and Jupyter Notebooks
- Migrating to
 Accelerate easily
- Big Model Inference tutorial
- DeepSpeed and
 Accelerate
- Fully Sharded Data Parallelism and 🤗 Accelerate
- FSDP vs DeepSpeed In-Depth