MTM5101-Dynamical Systems and Chaos

Gökhan Göksu, PhD

Week 10

Comparison Functions

Comparison Functions: Examples

Example

- $\alpha(s) = \frac{1}{1+s^c}$, for any c > 0
- $\alpha(s) = \frac{s^c}{1+s^c}$, for any c > 0

- $\alpha(s) = \text{sat}(s; a, b) = a + \frac{2(b-a)}{\pi} \tan^{-1}(s)$
- $\alpha(s) = s^c$, for any c > 0

- $\beta(s,r) = s^c e^{-r}$

Equivalent Representation of Radial Unboundedness

Lemma (4.3 in [Khalil, 2002])

Let $V: D \to \mathbb{R}$ be a continuous positive definite function (may not be $\mathcal{PD}!$) defined on $D \subset \mathbb{R}^n$ that contains the origin. Let $B_r[0] \subset D$ for some r > 0. Then, there exist $\alpha_1, \alpha_2 \in \mathcal{K}$ defined on [0, r] such that

$$\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$$

for all $x \in B_r[0]$. If $D = \mathbb{R}^n$, the functions α_1 and α_2 will be defined on $[0, \infty)$ and the foregoing inequality will hold for all $x \in \mathbb{R}^n$. Moreover, if V(x) is radially unbounded, then $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$.

Example

- Given $x \in \mathbb{R}^n$, |x| denotes its Euclidean norm.

Equivalent Representation of GAS

For a system with no inputs x=f(x), there is a well-known notion of global asymptotic stability (for short from now on, GAS, or "0-GAS" when referring to the system with no-inputs $\dot{x}=f(x,0)$ associated to a given system with inputs $\dot{x}=f(x,u)$ due to Lyapunov, and usually defined in " ϵ - δ " terms. It is easy to show that the standard definition of GAS (0-GAS) in previous lecture is in fact equivalent to the existence of $\beta\in\mathcal{KL}$ satisfying the following, along the solutions of $\dot{x}=f(x)$ ($\dot{x}=f(x,0)$)

$$|x(t,x_0)| \leq \beta(|x_0|,t), \quad \forall x_0 \in \mathbb{R}^n, \ \forall t \geq 0.$$

Observe that, since β decreases on t, we have, in particular:

$$|x(t,x_0)| \leq \beta(|x_0|,0), \quad \forall x_0 \in \mathbb{R}^n, \ \forall t \geq 0.$$

which provides the stability part of the GAS definition while

$$|x(t,x_0)| \leq \beta(|x_0|,t) \underset{t\to\infty}{\to} 0, \quad \forall x_0 \in \mathbb{R}^n,$$

which is the attractivity (convergence to the equilibrium point) part of the GAS definition.

Note: From now on, unless written explicitly, the solutions $x(t, x_0)$ or $x(t, x_0, u)$ for $\dot{x} = f(x)$ and $\dot{x} = f(x, u)$, respectively, will be written in short as x(t) to avoid cumbersome notation!

Equivalent Lyapunov Theorem for Stability

Theorem (4.8 in [Khalil, 2002])

Let x=0 be an equilibrium point for $\dot{x}=f(x)$ and $D\subset\mathbb{R}^n$ be a domain containing the origin. Let $V:D\to\mathbb{R}$ be a continuously differentiable function such that

$$W_1(x) \le V(x) \le W_2(x)$$
$$\frac{\partial V}{\partial x} f(x) \le 0$$

for all $t \ge 0$ and $x \in D$, where W_1 and W_2 are continuous positive definite functions on D. Then, x = 0 is stable.

Equivalent Lyapunov Theorem for AS

Theorem (4.9 in [Khalil, 2002])

Let x=0 be an equilibrium point for $\dot{x}=f(x)$ and $D\subset\mathbb{R}^n$ be a domain containing the origin. Let $V:D\to\mathbb{R}$ be a continuously differentiable function such that

$$W_1(x) \le V(x) \le W_2(x)$$
$$\frac{\partial V}{\partial x} f(x) \le -W_3(x)$$

for all $t \geq 0$ and $x \in D$, where W_1 , W_2 and W_3 are continuous positive definite functions on D. Then, x = 0 is asymptotically stable. Moreover, if r and c are chosen such that $B_r[0] = \{x \in D \mid |x| \leq r\}$ and $c < \min_{|x| = r} W_1(x)$, then every trajectory starting in $\{x \in B_r[0] \mid W_2(x) \leq c\}$ satisfies

$$|x(t)| \leq \beta(|x(0)|, t), \quad \forall t \geq 0$$

for some $\beta \in \mathcal{KL}$.

Equivalent Lyapunov Theorem for AS

Figure: Geometric representation of sets in Theorem 4.9.

Equivalent Lyapunov Theorem for GAS

Theorem (4.9 in [Khalil, 2002])

Let x=0 be an equilibrium point for $\dot{x}=f(x)$. Let $V:\mathbb{R}^n\to\mathbb{R}$ ($D=\mathbb{R}^n!$) be a continuously differentiable function such that

$$\frac{\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)}{\frac{\partial V}{\partial x}} f(x) \le -W_3(x)$$

for all $t \geq 0$ and $x \in \mathbb{R}^n$, where $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and W_3 is continuous positive definite function on \mathbb{R}^n . Then, x = 0 is GAS.

Let us remember the Lyapunov theorem for ES/GES shown last week:

Theorem (4.10 in [Khalil, 2002])

Let x = 0 be an equilibrium point for $\dot{x} = f(x)$. Let $V : D \to \mathbb{R}$ be a continuously differentiable function such that

$$k_1|x|^a \le V(x) \le k_2|x|^a$$
$$\frac{\partial V}{\partial x}f(x) \le -k_3|x|^a$$

for all $t \ge 0$ and $x \in D$, where k_1 , k_2 , k_3 and a are positive constants. Then, x = 0 is ES. If $D = \mathbb{R}^n$, then x = 0 is GES.

MTM5101

Nonlinear Systems: 0-GAS ⇒ Good Behavior wrt Inputs

- Car trailer system
 - Video:

https://www.youtube.com/watch?v=4jk9H5AB4lM

- Aircraft
 - Video:

https://www.youtube.com/watch?v=4UfmsqtTGa0

- Car active suspension system
 - Video:

 $\verb|https://www.youtube.com/watch?v=kRt7H0k8A4k||$

- Building
 - Video:

https://www.youtube.com/shorts/rJ72LruGgyU

Nonlinear Systems: 0-GAS ⇒ Good Behavior wrt Inputs

For linear systems $\dot{x} = Ax + Bu$:

- $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$
- If A is a Hurwitz matrix $(Re(\lambda_i(A)) < 0$ for all i = 1, ..., n), then the linear system is 0-GAS.
- Such a 0-GAS linear system automatically satisfies all reasonable "input-to-state stability" properties [Sontag, 1990]¹:
 - Bounded inputs ⇒ bounded state (BIBS) trajectories
 - Converging inputs ⇒ converging state (CICS) trajectories

This is generally not the case for nonlinear systems $\dot{x} = f(x, u)!$

Example

Consider the scalar system (n = 1) with a single input (m = 1) $\dot{x} = -x + (x^2 + 1)u$:

- The system is clearly 0-GAS, since it reduces to $\dot{x} = -x$ when $u \equiv 0$.
- However, for $u = (2t+2)^{-1/2}$ and $x_0 = \sqrt{2}$, the system produces unbounded and even diverging state trajectory $x(t) = (2t+2)^{1/2}$!

¹Mathematical Control Theory: Deterministic Finite Dimensional Systems

Nonlinear Systems: 0-GAS ⇒ Good Behavior wrt Inputs

Figure: Diverging state for converging input.

Estimates (Gains) for Linear/Nonlinear Systems

Recall the solution of the linear system $\dot{x} = Ax + Bu$ can be written as:

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

If A is Hurwitz, there exists some $k, \lambda > 0$ such that $||e^{At}|| \le ke^{-\lambda t}$ which, in turn, gives the following state estimate

$$|x(t)| \le k|x(0)|e^{-\lambda t} + \int_0^t ke^{-\lambda(t-\tau)} ||B|| |u(\tau)| d\tau$$

$$\le k|x(0)|e^{-\lambda t} + k||B|| \sup_{\tau \in [0,t]} |u(\tau)| e^{-\lambda t} \int_0^t e^{\lambda \tau} d\tau$$

$$= k|x(0)|e^{-\lambda t} + k||B|| \sup_{\tau \in [0,t]} |u(\tau)| e^{-\lambda t} \left(\frac{e^{\lambda t} - 1}{\lambda}\right)$$

$$\le k|x(0)|e^{-\lambda t} + \frac{k||B||}{\lambda} \sup_{\tau \in [0,t]} |u(\tau)| \left(1 - e^{-\lambda t}\right)$$

$$\le \overline{k}|x(0)|e^{-\lambda t} + \overline{k} \sup_{\tau \in [0,t]} |u(\tau)|$$

where $\overline{k} = k \cdot \max\{1, \frac{\|B\|}{\lambda}\}$

Estimates (Gains) for Linear/Nonlinear Systems

Motivated with this estimation, for linear systems, three most typical ways of defining "input-to-state stability" in terms of operators $\{L^2, L^\infty\} \to \{L^2, L^\infty\}$ are as follows:

$$ullet$$
 " $L^\infty o L^\infty$ ": $c|x(t)| \le |x_0|e^{-\lambda t} + \sup_{ au \in [0,t]} |u(au)|$

• "
$$L^2 o L^\infty$$
": $c|x(t)| \le |x_0|e^{-\lambda t} + \int_0^t |u(\tau)|^2 d\tau$

• "
$$L^2 \to L^2$$
": $c \int_0^t |x(\tau)|^2 d\tau \le |x_0| + \int_0^t |u(\tau)|^2 d\tau$

The missing case " $L^{\infty} \to L^{2}$ " is less interesting, being too restrictive, for practical reasons! Concerning the nonlinear system $\dot{x}=f(x,u)$, in general, under "some" nonlinear coordinate change (see [Sontag, 2004]), we arrive to the following three concepts (or "estimates") for nonlinear systems:

• "
$$L^{\infty} \to L^{\infty}$$
": $\alpha(|x(t)|) \leq \beta(|x_0|, t) + \sup_{\tau \in [0, t]} \gamma(|u(\tau)|)$

• "
$$L^2 \to L^\infty$$
": $\alpha(|x(t)|) \le \beta(|x_0|, t) + \int_0^t \gamma(|u(\tau)|) d\tau$

• "
$$L^2 \to L^2$$
": $\int_0^t \alpha(|x(\tau)|)d\tau \le \alpha_0(|x_0|) + \int_0^t \gamma(|u(\tau)|)d\tau$

Here, the functions (which measure the impacts of the state or input) are $\alpha, \alpha_0, \gamma \in \mathcal{K}_{\infty}$ and $\beta \in \mathcal{KL}$. The " $L^{\infty} \to L^{\infty}$ " (and " $L^2 \to L^2$ " as well) estimate leads us to the first concept that of *input-to-state stability (ISS)* whereas " $L^2 \to L^{\infty}$ " estimate leads us to the second concept that of *integral input-to-state stability (iISS)*.

ISS and iISS Notions

Definition: Input-to-State Stability (ISS) [Sontag, IEEE TAC, 1989]

The system $\dot{x} = f(x, u)$ is ISS if there exist $\beta \in \mathcal{KL}$ and $\nu \in \mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ and all $u \in \mathcal{U}$,

$$|x(t; x_0, u)| \le \beta(|x_0|, t) + \nu(||u||), \quad \forall t \ge 0.$$

- → Vanishing transients "proportional" to initial state's norm
- → Steady-state error "proportional" to input amplitude.

Definition: Integral Input-to-State Stability (iISS) [Sontag, SCL, 1998]

The system $\dot{x} = f(x, u)$ is iISS if there exist $\beta \in \mathcal{KL}$ and $\nu_1, \nu_2 \in \mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ and all $u \in \mathcal{U}$,

$$|x(t;x_0,u)| \leq \beta(|x_0|,t) + \nu_1\left(\int_0^t \nu_2(|u(s)|)ds\right), \quad \forall t \geq 0.$$

→ Measures the impact of input energy.

ISS and iISS Notions: Strengths and Weaknesses

ISS and iISS: Central tools in nonlinear analysis and control:

- Theoretical contributions to: output feedback, optimal control, hybrid systems, predictive control, chaotic systems...
- Applications in: robotics, production lines, transportation, bio-chemical networks, control under communication constraints, neuroscience, . . .

ISS	iISS		
$\dot{x} = f(x,0)$ is GAS	$\dot{x} = f(x,0)$ is GAS		
Bounded input ⇒ Bounded state	Bounded energy input		
	⇒ Bounded, converging state		
Converging input ⇒ Converging state	Converging input ⇒ Converging state		
Cascade: ISS + ISS ⇒ ISS	Cascade: iISS + iISS ⇒ iISS		

In practice, some systems do exhibit robustness for inputs under a certain threshold, but diverge for larger ones.

Strong iISS: halfway between ISS and iISS.

ISS and iISS Notions: Lyapunov Characterizations

- Part of the success of ISS and iISS is due to their Lyapunov characterizations
- Lyapunov function candidate (LFC):
 - $V: \mathbb{R}^n \to \mathbb{R}_{>0}$ continuously differentiable
 - V(0) = 0 and V(x) > 0 for all $x \neq 0$
 - $V(x) \to \infty$ whenever $|x| \to \infty$.

Theorem: ISS and iISS Characterization [Sontag, Wang, SCL, 1995] & [Angeli et al., IEEE TAC, 2000]

The system $\dot{x}=f(x,u)$ is ISS (resp. iISS) if and only if there exist a LFC $V,\gamma\in\mathcal{K}_{\infty}$, and $\alpha\in\mathcal{K}_{\infty}$ (resp. $\alpha\in\mathcal{PD}$) such that, for all $x\in\mathbb{R}^n$ and all $u\in\mathbb{R}^m$

$$\frac{\partial V}{\partial x}f(x,u) \le -\alpha(|x|) + \gamma(|u|). \tag{D-\mathcal{K}_{∞}/\mathcal{PD}})$$

ISS Characterization in Implication Form

Theorem: ISS Characterization in Implication Form [Sontag, Wang, SCL, 1995]

The system $\dot{x} = f(x, u)$ is ISS if and only if there exist a LFC $V, \chi \in \mathcal{K}$, and $\tilde{\alpha} \in \mathcal{K}$ such that for any $x \in \mathbb{R}^n$ and any $u \in \mathbb{R}^m$

$$|x| \ge \chi(|u|) \implies \frac{\partial V}{\partial x} f(x, u) \le -\tilde{\alpha}(|x|)$$
 (D-IF)

Remark

Clearly, $(D-\mathcal{K}_{\infty})$ implies (D-IF). Assume now that (D-IF) holds with some $\tilde{\alpha} \in \mathcal{K}$ and $\chi \in \mathcal{K}$. Without loss of generality, one can assume that $\tilde{\alpha} \in \mathcal{K}_{\infty}$ (see [Lin, Sontag, Wang, SICON, 1996, Remark 4.1]). Let

$$\gamma(r) = \max\{0, \hat{\gamma}(r)\}$$

where

$$\hat{\gamma}(r) = \max\{\frac{\partial V}{\partial x}f(x,u) : |u| \le r, |x| \le \chi(r)\}.$$

Then $\gamma \in \mathcal{C}$, $\gamma(0) = 0$ and, therefore, $\gamma \in \mathcal{K}_{\infty}$ by definition. (D- \mathcal{K}_{∞}) holds because $\gamma(r) \geq \sup_{|u|=r} \frac{\partial V}{\partial x} f(x,u) + \alpha(|x|)$ (consider the two separate cases $|x| \geq \chi(|u|)$ and $|x| \leq \chi(|u|)$).

Halfway Between ISS and iISS: Strong iISS Property

Definition: Strong iISS [Chaillet et. al., IEEE TAC, 2014]

The system $\dot{x} = f(x, u)$ is Strongly iISS if it is:

- iISS
- ISS with respect to small inputs

i.e., if there exist $\beta\in\mathcal{KL},\,
u_1,
u_2,
u\in\mathcal{K}_\infty$ and input threshold R>0 such that, for all $x_0\in\mathbb{R}^n$ and all $u\in\mathcal{U},$

$$|x(t;x_0,u)| \le \beta(|x_0|,t) + \nu_1\left(\int_0^t \nu_2(|u(s)|)ds\right)$$

$$||u|| \leq R \quad \Rightarrow \quad |x(t;x_0,u)| \leq \beta(|x_0|,t) + \nu(||u||).$$

- For all $u \in \mathcal{U}$, the solution exists at all times
- $\int_0^t \nu_2(|u(s)|)ds < \infty \Rightarrow$ bounded and converging state
- Converging input ⇒ converging state
- $||u|| \le R \Rightarrow$ bounded state.

Halfway Between ISS and iISS: Strong iISS Property

Theorem: K dissipation rate \Rightarrow Strong iISS [Chaillet et. al., IEEE TAC, 2014]

If there exists a LFC $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ satisfying, for all $x \in \mathbb{R}^n$ and all $u \in \mathbb{R}^m$,

$$\frac{\partial V}{\partial x}f(x,u) \leq -\alpha(|x|) + \gamma(|u|).$$

where $\alpha \in \mathcal{K}$ and $\gamma \in \mathcal{K}_{\infty}$, then the system $\dot{x} = f(x, u)$ is Strongly iISS with input threshold $R = \gamma^{-1} \circ \alpha(\infty)$.

Equivalently, we can state the following:

Corollary: Non-vanishing dissipation rate \Rightarrow Strong iISS [Chaillet et. al., IEEE TAC, 2014]

If there exists a LFC $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ satisfying, for all $x \in \mathbb{R}^n$ and all $u \in \mathbb{R}^m$,

$$\frac{\partial V}{\partial x}f(x,u) \leq -W(x) + \gamma(|u|).$$

where $\gamma \in \mathcal{K}_{\infty}$ and W is continuous positive definite satisfying $W_{\infty} := \liminf_{|x| \to \infty} W(x) > 0$, then the system $\dot{x} = f(x,u)$ is Strongly iISS with input threshold $R = \gamma^{-1}(W_{\infty})$.

Halfway Between ISS and iISS: Strong iISS Property

However, the converse does not hold:

Counter-example: Strong iISS $\Rightarrow \mathcal{K}$ dissipation rate [Chaillet et. al., IEEE TAC, 2014]

The scalar system

$$\dot{x} = -\frac{x}{1+x^2} \left[1 - |x|(u^2 - |u|) \right],$$

is Strongly iISS. However, for all $\alpha\in\mathcal{K}$ and $\gamma\in\mathcal{K}_{\infty}$ no differentiable function $V:\mathbb{R}\to\mathbb{R}_{>0}$ satisfies

$$\frac{\partial V}{\partial x}(x)f(x,u) \leq -\alpha(|x|) + \gamma(|u|).$$

- iISS: $V_1(x) = \frac{1}{2} \ln(1+x^2)$ gives $\dot{V}_1 \le -x^2/(1+x^2)^2 + u^2 + |u|$
- ISS wrt |u| < 1: $V_2(x) = x^4/4$ gives $\dot{V}_2 \le -x^4/(1+x^2)$.

ISS, iISS and Strong iISS Example

Consider the tank with a flat bottom and not necessarily constant cross-section [Daskovskiy, IFAC POL, 2019].

ISS, iISS and Strong iISS Example

By Toricelli's law, the level x of the liquid changes with time due to the inflow and outflow can be described by the following differential equation:

$$\dot{x} = -\frac{a(x)\mu\sqrt{2gx}}{A(x)} + \frac{u}{A(x)}$$

where

 $A: [0,\infty) \to (0,\infty)$ is the cross-section area of the tank at the height x

 $a: [0,\infty) \to [0,\infty)$ is the area of the hole, that in general may also depend on x u is the rate of inflow to the tank

Let us consider the following three cases:

• Suppose that $a(x) = a = (\mu \sqrt{2g})^{-1}$ and $A(x) = \sqrt[4]{x}$. The ISS property can be verified by considering V(x) = |x| = x. For this V, we have

$$\dot{V} = -\sqrt[4]{x} + \frac{u}{\sqrt[4]{x}}$$

Now, observe that we have

$$|x| \ge 4u^2 \implies \dot{V} \le -\frac{1}{2}\sqrt[4]{x}$$

and since the function $\tilde{\alpha}(s)=\frac{1}{2}\sqrt[4]{s}$ and $\chi(s)=4s^2$ are two class \mathcal{K}_{∞} functions, we can conclude that the system is ISS.

ISS, iISS and Strong iISS Example

Let us consider the following three cases (continued):

• Suppose that $a(x) = \frac{1}{1+x}$ and $A(x) = A = \mu \sqrt{2g}$. The iISS property can be verified by considering V(x) = |x| = x. For this V, we have

$$\dot{V} \le -\frac{\sqrt{X}}{1+X} + \frac{u}{A}$$

Since the function $\alpha(s) = \frac{\sqrt{s}}{1+s}$ is a class \mathcal{PD} function whereas $\gamma(s) = \frac{s}{A}$ is a class \mathcal{K}_{∞} function, we can conclude that the system is iISS.

• (Exercise) Show that the system is Strong iISS when $a(x) = \frac{1}{\sqrt{1+x}}$ and $A(x) = A = \mu \sqrt{2g}$.

Cascades of ISS or iISS Systems

- ISS is naturally preserved in cascade [Sontag, EJC, 1995]
- iISS is not preserved by cascade [Panteley, Loría, Automatica, 2001] & [Arcak et al., SICON, 2002].

Theorem [Chaillet, Angeli, SCL, 2008]

Let V_1 and V_2 be two Lyapunov functional candidates. Assume that there exist $\gamma_1, \gamma_2 \in \mathcal{K}$, and $\alpha_1, \alpha_2 \in \mathcal{PD}$ such that, for all $(x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and all $u \in \mathbb{R}^m$,

$$\begin{split} &\frac{\partial V_1}{\partial x_1} f_1(x_1, x_2) \le -\alpha_1(|x_1|) + \gamma_1(|x_2|) \\ &\frac{\partial V_2}{\partial x_2} f_2(x_2, u) \le -\alpha_2(|x_2|) + \gamma_2(|u|) \,. \end{split}$$

If $\gamma_1(s) = \mathcal{O}_{s \to 0^+}(\alpha_2(s))$, then the cascade is iISS.

• $q_2(s) = \mathcal{O}_{s \to 0^+}(q_1(s))$: Given $q_1, q_2 \in \mathcal{PD}$, we say that q_1 has greater growth than q_2 around zero if $\exists \ k \geq 0$ such that $\limsup_{s \to 0^+} q_2(s)/q_1(s) \leq k$.

Cascades of Strong iISS Systems

$$\Sigma_1 \qquad \Sigma_2 \qquad \Sigma_1 \qquad \Sigma_1 : \quad \dot{x}_1 = f_1(x_1, x_2) \\ \Sigma_2 : \quad \dot{x}_2 = f_2(x_2, u)$$

Theorem: Strong iISS is preserved under cascade [Chaillet et. al., Automatica, 2014]

If the systems $\dot{x}_1 = f_1(x_1, u_1)$ and $\dot{x}_2 = f_2(x_2, u_2)$ are Strongly iISS, then the cascade (2) is Strongly iISS.

Corollary: iISS + Strong iISS \Rightarrow iISS [Chaillet et. al., Automatica, 2014]

If $\dot{x}_1 = f_1(x_1, u_1)$ is Strongly iISS and $\dot{x}_2 = f_2(x_2, u_2)$ is iISS, then (2) is iISS.

Corollary: GAS + $\overline{\text{Strong iISS}} \Rightarrow \text{GAS}$ [Chaillet et. al., Automatica, 2014]

If
$$\dot{x}_1 = f_1(x_1, u_1)$$
 is Strongly iISS and $\dot{x}_2 = f_2(x_2)$ is GAS, then

$$\dot{x}_1 = f_1(x_1, x_2)
\dot{x}_2 = f_2(x_2)$$
 is GAS.

ISS/iISS Systems: Summary

	ISS	Strong iISS	ilSS
0-GAS	✓	√	√
Forward completeness $\forall u \in \mathcal{U}$	√	✓	√
Bounded input-Bounded state	✓	For $ u < R$	©
Converging input-Converging state	✓	✓	©
Preservation under cascade	✓	✓	Growth rate
Lyapunov characterization	$\alpha \in \mathcal{K}_{\infty}$	Open question	$\alpha \in \mathcal{PD}$