

Tal Friedman and Guy Van den Broeck

#### Goal



- Model relational data with uncertainty
- Ask model interesting questions

#### What's the challenge?



Probabilities make things less tractable



#### Probabilistic Databases



Probabilistic database D:

| Jor      | Х | у | Р              |
|----------|---|---|----------------|
| Coauthor | Α | В | p <sub>1</sub> |
| Co       | Α | С | p <sub>2</sub> |
|          | В | С | p <sub>3</sub> |

Possible worlds semantics:



[VdB&Suciu'17]

#### Running Example



Has anyone published a paper with both Erdos and Einstein



Reason using facts about scientists + coauthorship

| ist       | X        | Р   |
|-----------|----------|-----|
| Scientist | Erdos    | 0.9 |
| Sci       | Einstein | 0.8 |
|           | Pauli    | 0.6 |

| 5 | Х        | у     | Р   |
|---|----------|-------|-----|
|   | Erdos    | Renyi | 0.6 |
|   | Einstein | Pauli | 0.7 |
|   | Obama    | Erdos | 0.1 |

Scraped/learned from web, large text corpora

[VdB&Suciu'17]

## What's the challenge?

ST R AI RESEARCH LAB UCLA

- Probabilities make life difficult
- Our knowledge is not complete

### Open-World Probabilistic Databases



Unknown tuples can be added with probability  $P \le \lambda$ 

| Х        | Y         | Р   |
|----------|-----------|-----|
| Einstein | Straus    | 0.7 |
| Erdos    | Straus    | 0.6 |
| Einstein | Pauli     | 0.9 |
| Erdos    | Renyi     | 0.7 |
| Kersting | Natarajan | 0.8 |
| Luc      | Paol      | 0.1 |
|          | •••       |     |
| Erdos    | Straus    | λ   |

#### Open-World Probabilistic Databases



Open-World makes everything possible

Want something more meaningful

| X                | Y         | Р   |
|------------------|-----------|-----|
| Einstein         | Straus    | 0.7 |
| <del>Erdos</del> | Straus    | 0.6 |
| Einstein         | Pauli     | 0.9 |
| Erdos            | Renyi     | 0.7 |
| Kersting         | Natarajan | 0.8 |
| Luc              | Paol      | 0.1 |
| •••              | •••       |     |
| Erdos            | Straus    | λ   |
| Bieber           | Einstein  | λ   |
| Friedman         | Bieber    | λ   |
| Banner           | Friedman  | λ   |
|                  |           |     |

#### Open-World Probabilistic Databases



## Open-World makes *everything* possible Constrain to "reasonable" options



Not tractable

Hard to construct

| X                | Υ         | Р   |
|------------------|-----------|-----|
| Einstein         | Straus    | 0.7 |
| <del>Erdos</del> | Straus    | 0.6 |
| Einstein         | Pauli     | 0.9 |
| Erdos            | Renyi     | 0.7 |
| Kersting         | Natarajan | 0.8 |
| Luc              | Paol      | 0.1 |
| •••              | •••       |     |
| Erdos            | Straus    | λ   |
| Bieber           | Einstein  | λ   |
| Friedman         | Bieber    | λ   |
| Banner           | Friedman  | λ   |
|                  |           |     |



Open-World makes *everything* possible Constrain to "reasonable" options

Just use a summary statistic!

| Х        | Y         | Р   |                                              |
|----------|-----------|-----|----------------------------------------------|
| Einstein | Straus    | 0.7 |                                              |
| Erdos    | Straus    | 0.6 |                                              |
| Einstein | Pauli     | 0.9 |                                              |
| Erdos    | Renyi     | 0.7 |                                              |
| Kersting | Natarajan | 0.8 |                                              |
| Luc      | Paol      | 0.1 | $1 \sum_{n}$                                 |
|          |           |     | $\left  \frac{1}{n} \sum_{n} \leq p \right $ |
| Erdos    | Straus    | λ   | 16                                           |
| Bieber   | Einstein  | λ   |                                              |
| Friedman | Bieber    | λ   |                                              |
| Banner   | Friedman  | λ   |                                              |
|          |           |     |                                              |



- 1. Identify a class of tractable queries with algorithm
- 2. Outline where querying becomes more difficult
- 3. Provide an efficient approximation

#### Running Example



Has anyone published a paper with both Erdos and Einstein



Reason using facts about scientists + coauthorship

| ist       | X        | Р   |
|-----------|----------|-----|
| Scientist | Erdos    | 0.9 |
| Sci       | Einstein | 0.8 |
|           | Pauli    | 0.6 |

| ·<br>) | Х        | у     | Р   |
|--------|----------|-------|-----|
|        | Erdos    | Renyi | 0.6 |
| )      | Einstein | Pauli | 0.7 |
|        | Obama    | Erdos | 0.1 |

#### Queries



∃x Coauthor(Einstein,x) ∧ Coauthor(Erdos,x) 

↓ 

Q

• Conjunctive queries (CQ):  $\exists + \land +$  positive literals

Unions of conjunctive queries (UCQ): v of CQs

## Query Evaluation



- Computing query probability forms a dichotomy:
  - PTIME (linear), safe queries
  - #P-hard *unsafe* queries

Can be symbolically determined!



Querying is now an optimization problem



Querying is now an optimization problem

Select  $p_i$ 's such that:

- $\sum p_i \leq p$
- $0 \le p_i \le \lambda \forall i$
- Query probability is maximized



- 1. Identify a class of tractable queries with algorithm
- 2. Outline where querying becomes more difficult
- 3. Provide an efficient approximation



#### Tractability typically depends on a hierarchical property

#### Hierarchical

$$Q = \exists x \exists y \exists z S(x,y) \land T(x,z)$$





#### Tractability depends on a hierarchical property

Hierarchical

$$Q = \exists x \exists y \exists z S(x,y) \land T(x,z)$$

Non-hierarchical

$$H_0 = \exists x \exists y (R(x) \land S(x,y) \land T(y))$$





[VdB'18]



#### Tractability depends on a hierarchical property

Hierarchical

$$Q = \exists x \exists y \exists z S(x,y) \land T(x,z)$$

Non-hierarchical

$$H_0 = \forall x \forall y (R(x) \land S(x,y) \land T(y))$$





If all CQs in a UCQ are hierarchical, the query is safe

ST R AI RESEARCH LAB

If all CQs in a UCQ are hierarchical, the query is safe



If all CQs in a UCQ are hierarchical, the query is safe

With constraints, all CQs need to have the same hierarchy



If all CQs in a UCQ are hierarchical, the query is safe

With constraints, all CQs need to have the same hierarchy



Efficient dynamic programming algorithm



- 1. Identify a class of tractable queries with algorithm
- 2. Outline where querying becomes more difficult
- 3. Provide an efficient approximation

## Constraints change the hardness landscape



$$M_0 = \exists x \exists y \exists z \left( R(x, y, z) \land U(x) \right) \lor \left( R(x, y, z) \land V(y) \right)$$
$$\lor \left( R(x, y, z) \land W(z) \right) \lor \left( U(x) \land V(y) \right)$$
$$\lor \left( U(x) \land W(z) \right) \lor \left( V(y) \land W(z) \right)$$



Query is safe for PDB/OpenPDB evaluation



Constraints make it NP-hard





- 1. Identify a class of tractable queries with algorithm
- 2. Outline where querying becomes more difficult
- 3. Provide an efficient approximation

### Approximation



Consider f(S): query prob. if we give all tuples in S prob.  $\lambda$ 

f is monotonic and submodular



Efficient + accurate greedy approximation!

| Х        | Υ         | Р   |
|----------|-----------|-----|
| Einstein | Straus    | 0.7 |
| Erdos    | Straus    | 0.6 |
| Einstein | Pauli     | 0.9 |
| Erdos    | Renyi     | 0.7 |
| Kersting | Natarajan | 8.0 |
| Luc      | Paol      | 0.1 |
|          |           |     |
| Erdos    | Straus    | λ   |

 $f(\mathsf{CoA}(\mathsf{Erdos},\mathsf{Straus}))$ 

#### Conclusion



- Modelling uncertainty when managing large amounts of data requires unreasonably strong assumptions
- We show how to make these models more realistic without any additional row level information