CS 252 Problem Set 6

Time Spent: 2 hours

Collaborators and Resources: Talked with Nathaniel MacArthur-Warner about the divide-and-conquer method

Bonus Problem

Here we're given a situation in which we have a lot of restrictions- namely, we can make intraset comparisons neither within the group of bowls nor within the group of Goldilocks. Thus, we need to be able to make a bunch of recursive calls which will effectively generate a tree of groups of ever-decreasing size which eventually culminates in our desired result. The nature of this result is a little difficult at first to prove . . .

- 1. Given a set of Goldilocks $\{g_1, ..., g_n\}$, temperature preferences t_k for each g_k denoted by the set $\{t_1, ..., t_n\}$ and additionally the bowls of porridge $\{b_1, ..., b_n\}$
- 2. Initialize the set of desired pairings $S = \emptyset$
- 3. Define the function Pairings(Goldilocks, Bowls):
 - (a) If all proper pairings are found, break
 - (b) Otherwise
 - i. Initialize four empty sets $Goldi_{cold}$, $Goldi_{hot}$, $Bowls_{cold}$ and $Bowls_{hot}$
 - ii. For each bowl $b_k \in \{b_1, ..., b_n\}$
 - A. Give b_k to g_1 .
 - B. If $t_k \mid b_k$ (that is, the porridge is too hot) then place the bowl b_k into $Bowls_{hot}$.
 - C. If $t_k \ \ b_k$ (that is, the porridge is too cold) then put the bowl b_k into the set $Bowls_{cold}$
 - D. Otherwise, if they're equal then add the pair (g_1, b_k) to the set of desired pairings S. Remove g_1 and b_k from their respective sets.

CS 252 Problem Set 6

- E. Now that we have constructed two sets of bowls which are either too hot or too cold for our selected Goldilocks, we need to do a second testing.
- iii. For each Goldilocks $g_k \in \{g_1, ..., g_n\}$
 - A. Take the bowl from the most recently discovered pair $(g_1, b_k) \in$ the desired pairings S and give it to g_k
 - B. During this second tasting, if $t_k \mid b_k$ (the porridge is too hot) then place the Goldilocks g_k into the set $Goldi_{hot}$
 - C. Otherwise, if t_k ; b_k (the porridge is too cold) then place the Goldilocks g_k into the set $Goldi_{cold}$.
 - D. (None of the remaining Goldilocks are going to find this bowl right because there is a bijective function between the set of Goldilocks and bowls)
- (c) Return Pairings($Goldi_{hot}$, $Bowls_{cold}$)
- (d) Return Pairings($Goldi_{cold}$, $Bowls_{hot}$)

Claim 1. Within the constraints given (only trials are permitted) the algorithm correctly matches the bowls to the Goldilocks in $O(n\log n)$ time.

Proof. The argument for the runtime is as follows. Since we're making two recursive calls within the function \implies b = 2, and dividing the Goldilocks and Bowls sets into two halves \implies a = 2, case (i) of the Master Theorem justifies saying that Since $f(n) = \theta(n^{log_2 2})$, $T = \theta(n^{log_2 2} = \theta(n)) \implies T(n) \le aT(\frac{n}{b} + f(n)) = 2T(\frac{n}{2} + cn) = \theta(n^{log_2 2})$. Furthermore, bowls which were too hot for g_1 are going to be preferred by the Goldilocks who thought that the bowl b_k from the pair (g_1, b_k) was too cold. So we know that the algorithm is going to work and based on Master Theorem 1 we are able to demonstrate that its runtime (using only trials) is $O(n^{log}n)$.