

Systèmes Embarqués 1 & 2 tp.06 - Mini-Projet Thermo-Buzzer

Classes T-2/I-2 // 2016-2017

Daniel Gachet | HEIA-FR/TIC tp.06 | 21.12.2016

- A la fin du laboratoire, les étudiant-e-s seront capables de
 - Intégrer des composants développés lors de travaux précédents
 - Aborder le protocole de communication I2C
 - Intégrer dans une application un périphérique I2C (thermomètre)
 - Aborder la modulation de largeur d'impulsion (PWM)
 - Etudier le datasheet du module ePWM du μP AM3358
 - Concevoir le pilote pour le module ePWM du μP AM3358
 - Intégrer dans une application un périphérique PWM (buzzer)
 - Concevoir une application originale, modulaire et générique
- Durée
 - 2 séances de laboratoire (8 heures)
- Rapport
 - Rapport de laboratoire avec le code source à la fin du 2^e laboratoire

📤 Travail à réaliser

- Développer une application mettant en oeuvre un thermomètre et un buzzer pour offrir la fonctionnalité suivante
 - Affichage de la température actuelle sur le display 7-segments
 - Génération d'une alarme sonore si la température franchie certains seuils
 - Réglage des seuils pour la génération de l'alarme sonore

📤 Travail à réaliser (II)

- La click board Thermo3 donnera la température actuelle
- Le display 7-segments affichera la température en degré Celsius
- La click board Buzz servira à la génération de l'alarme sonore
- Réglage des seuils
 - Bouton S1 pour autoriser/stopper le réglage de la valeur supérieure
 - Bouton S2 pour autoriser/stopper le réglage de la valeur inférieure
 - Encodeur rotatif pour régler la température de seuil
 - LED1 allumée lors du réglage du seuil supérieur
 - LED2 allumée lors du réglage du seuil inférieur

Click Board Thermo3

- Sur la carte d'extension vous trouvez le click board Thermo3 équipé du thermomètre I2C TMP102 de Texas Instrument
- La spécification du thermomètre et la description de ses registres sont disponibles dans le document "04_tmp102.pdf"
- Schéma du click board Thermo3 (réf. "03_click_thermo3.pdf")

Ce thermomètre est accessible à l'adresse 0x48

Supervision de la température

Click Board Buzz

- Le click board Buzzer devra être inséré dans le slot 1 sur la carte d'extension du Beaglebone Black
- Schéma du click board Buzzer (réf. "06_click_buzzer.pdf")

 Un signal PWM d'une fréquence de 3.8kHz appliquée sur la pin PWM permet de faire sonner le buzzer

Génération du signal PWM...

PWM (Pulse Width Modulation)

 $^{^{\}bf 0}_{\rm https:/\!/en.wikipedia.org/wiki/Pulse-width_modulation}$

Structure générale de l'application

- "main" module principal de l'application
- "thermo" module pour le pilotage du thermomètre
- "buzzer" module pour le pilotage du buzzer
- "epwm1" module pour le pilotage du ePWM1 du μP

THERMO : Fonctionnalité...

- Le module "thermo" servira à gérer le thermomètre I2C TMP102 au travers de la bibliothèque "am335x_i2c"
- Il offrira les services suivants
 - Méthode pour initialiser et configurer le thermomètre et les ressources utiles à la gestion du thermomètre
 - Méthode pour lire la température actuelle du thermomètre
 - Méthode pour lire l'état de la pin d'alarme présente sur le click board Thermo3
 - Méthodes pour lire et configurer les seuils servant à la génération de l'alarme
- Le fonctionnement du module devra être validé et vérifié

- Le module "buzzer" servira à gérer le buzzer au travers de la bibliothèque "epwm1"
- Il offrira les services suivants
 - Méthode pour initialiser et configurer les ressources utiles à la gestion du buzzer
 - Méthode pour sélectionner la fréquence du pwm
 - Méthode pour sélectionner la valeur du rapport de cycle (duty cycle)
- Le fonctionnement du module devra être validé et vérifié

EPWM1 : Fonctionnalité

- Le module "epwm1" du μP AM3358 servira à actionner le signal EPWM1A
- Le ePWM1 sera contrôlé par un pilote de périphérique, lequel offrira les services suivants
 - Méthode pour initialiser le ePWM1
 - Méthode pour sélectionner la fréquence du ePWM1
 - Méthode pour sélectionner la valeur du rapport de cycle (duty cycle)
 - EPWM1A est mis à 0 si la valeur du duty cycle est à 0%
 - EPWM1A est mis à 1 si la valeur du duty cycle est à 100%
- Le fonctionnement du pilote de périphérique devra être validé et vérifié

- Quelle est la fonction des 5 registres internes du thermomètre TMP102?
- Comment le TMP102 génère-t-il le signal d'alarme ALERT?
- Pour quelle raison le TMP102 dispose d'un registre T_{HIGH} et T_{LOW}?
- Quels sont les domaines d'application des pointeurs de fonctions ?
- Comment déclare-t-on un pointeur de fonction?
- Comment utilise-t-on un pointeur de fonction?
- Comment le compilateur implémente-t-il un pointeur de fonction en assembleur?

Conditions d'exécution

- Le squelette du projet se trouve sur le dépôt centralisé
 - Pour le télécharger, tapez les commandes suivantes
 - \$ cd ~/workspace/se12/tp
 - \$ git pull upstream master
- Le code et le rapport seront rendus au travers du dépôt Git centralisé
 - sources : .../tp/tp.06
 - rapport : .../tp/tp.06/doc/report.pdf
- Délai
 - Le journal et le code doivent être rendus au plus tard 6 jours après la 2e séance de laboratoire à minuit

- Pour mettre à jour la bibliothèque spécialisée du Beaglebone
 - \$ cd ~/workspace/se12
 - \$ git pull
 - \$ make -C ~/workspace/se12/bbb/source
- Pour mettre à jour les paths des includes dans eclipse
 - ouvrir Properties pour votre projet
 - ightharpoonup aller C/C++ General ightharpoonup Paths and Symbols
 - ▶ ouvrir Includes → GNU C
 - ajouter /home/lmi/workspace/se12/bbb/source

I2C - Introduction

- Bus série élaboré au début des années 1980 et spécifié par Philips Semiconductor
- Seulement deux signaux et trois lignes
 - Une ligne d'horloge (SCL : serial clock line)
 - Une ligne de données (SDA : serial data line)
 - Un fil de référence de potentiel (GND)
- Principe de fonctionnement
 - Master Slave, identifié par une adresse unique de 7 bits ou 10 bits
 - Série orienté 8-bit
 - Horloge de quelques Hz à 100 kHz (400 kHz pour le mode rapide)
- Multitude d'applications
 - Contrôleurs, mémoires, i/f pour périphériques simples ...

Fig.2 Example of an I²C-bus configuration using two microcontrollers.

Fig.6 Data transfer on the I²C-bus.

O_{Réf. 02_I2C-BUS_SPECIFICATION.pdf}

Fig.4 Bit transfer on the I²C-bus.

Fig.5 START and STOP conditions.

Fig.10 A complete data transfer.

Fig.11 A master-transmitter addressing a slave receiver with a 7-bit address. The transfer direction is not changed.

Fig.12 A master reads a slave immediately after the first byte.

PWM - L'infrastructure AM335x...

- Le μP AM335x de TI dispose de 3 modules ePWM
- Pour notre application, nous allons utiliser le signal EPWM1A du module ePWM1

⁰Réf. 06_am335x_technical_reference_manual.pdf, chapter 15

AM335x - Le module ePWM...

Figure 15-9. ePWM Submodules and Critical Internal Signal Interconnects

⁰Réf. 06_am335x_technical_reference_manual.pdf, chapter 15

AM335x - Le fonctionnement du module ePWM1...

 $^{^{0}\}text{R\'ef. 06_am335x_technical_reference_manual.pdf, chapter 15}$

AM335x - Les registres...

Table 15-57. EPWM Registers

Offset	Acronym	Register Name	Section
0h	TBCTL	Time-Base Control Register	Section 15.2.4.1
2h	TBSTS	Time-Base Status Register	Section 15.2.4.2
4h	TBPHSHR	Extension for HRPWM Phase Register	Section 15.2.4.3
6h	TBPHS	Time-Base Phase Register	Section 15.2.4.4
8h	TBCNT	Time-Base Counter Register	Section 15.2.4.5
Ah	TBPRD	Time-Base Period Register	Section 15.2.4.6
Eh	CMPCTL	Counter-Compare Control Register	Section 15.2.4.7
10h	CMPAHR	Extension for HRPWM Counter-Compare A Register	Section 15.2.4.8
12h	CMPA	Counter-Compare A Register	Section 15.2.4.9
14h	CMPB	Counter-Compare B Register	Section 15.2.4.10
16h	AQCTLA	Action-Qualifier Control Register for Output A (EPWMxA)	Section 15.2.4.1
18h	AQCTLB	Action-Qualifier Control Register for Output B (EPWMxB)	Section 15.2.4.12
1Ah	AQSFRC	Action-Qualifier Software Force Register	Section 15.2.4.13
1Ch	AQCSFRC	Action-Qualifier Continuous S/W Force Register Set	Section 15.2.4.14
1Eh	DBCTL	Dead-Band Generator Control Register	Section 15.2.4.15
20h	DBRED	Dead-Band Generator Rising Edge Delay Count Register	Section 15.2.4.10
22h	DBFED	Dead-Band Generator Falling Edge Delay Count Register	Section 15.2.4.1
24h	TZSEL	Trip-Zone Select Register	Section 15.2.4.18
28h	TZCTL	Trip-Zone Control Register	Section 15.2.4.19
2Ah	TZEINT	Trip-Zone Enable Interrupt Register	Section 15.2.4.20
2Ch	TZFLG	Trip-Zone Flag Register	Section 15.2.4.2
2Eh	TZCLR	Trip-Zone Clear Register	Section 15.2.4.2
30h	TZFRC	Trip-Zone Force Register	Section 15.2.4.2
32h	ETSEL	Event-Trigger Selection Register	Section 15.2.4.24
34h	ETPS	Event-Trigger Pre-Scale Register	Section 15.2.4.2
36h	ETFLG	Event-Trigger Flag Register	Section 15.2.4.26
38h	ETCLR	Event-Trigger Clear Register	Section 15.2.4.2
3Ah	ETFRC	Event-Trigger Force Register	Section 15.2.4.2
3Ch	PCCTL	PWM-Chopper Control Register	Section 15.2.4.2
C0h	HRCNFG	HRPWM configuration register (HRCNFG)	Section 15.2.4.3

⁰Réf. 06_am335x_technical_reference_manual.pdf, chapter 15

AM335x - L'initialisation...

 Avant de configurer le module ePWM1, il faut mettre en service l'horloge de 100MHz ainsi que configurer la pin EPWM1A en sortie "am335x_clock_enable_epwm_module(AM335X_CLOCK_EPWM1)"

```
"am335x_mux_setup_epwm_pins(AM335X_MUX_EPWM1)"
```

Dans une 2^e phase, il est judicieux d'initialiser les registres suivants

```
▶ tbprd = 0; // period set to null
▶ tbcnt = 0; // set counter to 0
▶ tbctl = 0; // set to default reset value
► cmpa = 0; // clear counter compare A
cmpctl = 0; // enable shadowing
▶ agctla = 0; // all actions disabled
```

AM335x - La configuration...

- La configuration du module ePWM1 pour une fréquence de fonctionnement et un rapport de cycle donné passe par les registres suivants
 - tbprd // configuration de la période

 tbprd = divider.prd

 tbcnt // mise à zéro du compteur

 tbcnt = 0

 tbctl // configuration des diviseurs de fréquence

 HSCLKDIV = divider.hsclkdiv
 CLKDIV = divider.clkdiv
 SYNCOSEL = disable

 cmpa // configuration du temps de rapport de cycle

 cmpa = tbprd * duty / 100

 aqctla // configuration des actions

[Gac/tp.06] T-2/I-2 // 21.12.2016

ZRO = set
 CAU = clear

📵 AM335x - Les diviseurs...

- La fréquence de l'horloge du module ePWM1 peut être réduite grâce aux 2 diviseurs CLKDIV et HSCLKDIV
- Ces diviseurs seront choisis afin d'obtenir le plus petit diviseur possible pour la fréquence choisie du signal EPWM1A
- La valeur du registre TBPRD se calcule avec la formule suivante tbprd = SYSCLK/divider/frequency
 - SYSCLK = 100MHz
 - divider = CLKDIV * HSCLKDIV
 - frequency = fréquence de signal EPWM1A