Hamiltonian Δυναμική - Παράδειγμα

Μάζα m κινείται στο εσωτερικό επιφάνειας κατακόρυφου κώνου ρ=cz. Το σώμα κινείται μέσα σε ομοιόμορφο βαρυτικό πεδίο με g προς τα κάτω. Χρησιμοποιήστε z και φ σαν γενικευμένες συντεταγμένες.

- (α) Να δειχθεί ότι για μια οποιαδήποτε δεδομένη λύση υπάρχουν μέγιστα και ελάχιστα ύψη, z_{max} και z_{min} , στα οποία περιορίζεται η κίνηση.
- (β) Με βάση το αποτέλεσμα αυτό, περιγράψετε την κίνηση της μάζας.
- (γ) Δείξτε ότι για μια οποιαδήποτε τιμή του z>0 υπάρχει μια λύση για την οποία το σώμα κινείται σε κυκλική τροχιά σε συγκεκριμένο ύψος z.

Οι γενικευμένες συντεταγμένες είναι z και φ , ενώ το ρ προσδιορίζεται από το δεσμό $\rho = cz$

Η κινητική ενέργεια δίνεται από:

$$T = \frac{1}{2}m(\dot{\rho}^2 + (\rho\dot{\phi})^2 + \dot{z}^2) = \frac{1}{2}m((c^2 + 1)\dot{z}^2 + (cz\dot{\phi})^2)$$

Η δυναμική ενέργεια είναι: U = mgz

Επομένως οι γενικευμένες ορμές είναι:

$$p_z = \frac{\partial \mathcal{L}}{\partial \dot{z}} = \frac{\partial \mathcal{T}}{\partial \dot{z}} = m(c^2 + 1)\dot{z} \quad \text{kal} \quad p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = \frac{\partial \mathcal{T}}{\partial \dot{\varphi}} = mc^2 z^2 \dot{\varphi}$$

Σωματίδιο σε κώνο

Μπορούμε να λύσουμε τις εξισώσεις αυτές ως προς \dot{z} και $\dot{\phi}$

$$\dot{z} = \frac{p_z}{m(c^2 + 1)} \qquad \dot{\varphi} = \frac{p_{\varphi}}{mc^2 z^2}$$

Οπότε η Hamiltonian γίνεται: $\mathcal{H} = \sum_i p_i \dot{q}_i - \mathcal{L} = E = T + U$

$$\mathcal{H} = \frac{1}{2m} \left(\frac{p_z^2}{\left(c^2 + 1\right)} + \frac{p_\varphi^2}{c^2 z^2} \right) + mgz$$

Από αυτή την τελευταία σχέση προκύπτουν οι εξισώσεις του Hamilton

$$\dot{z} = \frac{\partial \mathcal{H}}{\partial p_z} = \frac{p_z}{m(c^2 + 1)} \qquad \text{kal} \qquad \dot{p}_z = -\frac{\partial \mathcal{H}}{\partial z} = \frac{p_{\phi}^2}{mc^2 z^3} - mg$$

$$\dot{\varphi} = \frac{\partial \mathcal{H}}{\partial p_{\varphi}} = \frac{p_{\varphi}}{mc^2 z^2} \qquad \text{kat} \qquad \dot{p}_{\varphi} = -\frac{\partial \mathcal{H}}{\partial \varphi} = 0$$

Αλλά p_{ϕ} είναι η συνιστώσα της στροφορμής στη διεύθυνση z και είναι σταθερή όπως περιμέναμε

Σωματίδιο σε κώνο

Ο πιο εύκολος τρόπος για να δούμε αν η κίνηση του σωματιδίου είναι περιορισμένη μεταξύ z_{max} , z_{min} για μια οποιαδήποτε λύση είναι να θυμηθούμε ότι η Hamiltonian είναι ίση με την ενέργεια και η ενέργεια διατηρείται.

Επομένως για κάθε λύση $\mathcal{H} = \sum_i p_i \dot{q}_i - \mathcal{L} = E_j$ όπου $\mathbf{E_j}$ η ενέργεια της συγκεκριμένης λύσης και $\mathbf{E_j} = \mathbf{E}$ Αλλά $\mathcal{H} = \frac{1}{2m} \left(\frac{p_z^2}{(c^2+1)} + \frac{p_\varphi^2}{c^2 z^2} \right) + mgz > 0$ ενώ $mgz \to \infty$ όταν $z \to \infty$

Επομένως αφού η E = σταθ. θα πρέπει $~z < z_{\text{max}}$

Με το ίδιο σκεπτικό, όταν $z \rightarrow 0$ ο όρος $\frac{p_{\varphi}^{z}}{c^{2}z^{2}} \rightarrow \infty$

Επομένως αφού η E=σταθ. θα πρέπει $z>z_{min}>0$

Η μάζα δεν μπορεί να πέσει στην κορυφή του κώνου όπου z=0

Περιγραφή της κίνησης της μάζας:

- ightharpoonup κίνηση γύρω από τον άξονα-z με σταθερή στροφορμή $p_z = m(c^2 + 1)\dot{z}$
- ho p_{ϕ} = σταθ., η $\dot{\phi}$ αυξάνει για μικρά z και ελαττώνεται για μεγάλα z
- ightharpoonup Το ύψος της μάζας, z, ταλαντώνεται μεταξύ z_{max} , z_{min}

Σωματίδιο σε κώνο

Υπάρχει λύση για την οποία το σώμα κινείται σε κυκλική τροχιά?

Αυτό συνεπάγεται ότι $z = const \Rightarrow \dot{z} = 0$

Στην περίπτωση αυτή, έχουμε: $\dot{z} = \frac{p_z}{m(c^2 + 1)} \Rightarrow p_z = 0 \Rightarrow \dot{p}_z = 0$

Από την εξίσωση Hamilton: $\dot{p}_z = \frac{p_\varphi^2}{mc^2z^3} - mg = 0 \Rightarrow p_\varphi = \pm mc\sqrt{gz^3}$

ightharpoonup Αν από κάποιο ύψος, z, εκτοξεύσουμε την m με $p_z=0$ και $p_{\varphi}=\pm mc\sqrt{gz^3}$ τότε αφού η $\dot{p}_z=0 \Rightarrow p_z=0, \quad \dot{z}=0$ πάντοτε Η μάζα θα συνεχίσει να κινείται στο αρχικό της ύψος σε κυκλική τροχία

Παράδειγμα κυκλικής συντεταγμένης

Πρόβλημα κεντρικής δύναμης σε 2 διαστάσεις.

$$\mathcal{L} = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) - V(r) \Longrightarrow$$

$$p_r = m\dot{r}, \qquad p_\theta = mr^2 \dot{\theta},$$

$$\mathcal{H}(x_i, p_i) = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} \right) + V(r)$$

$$\Rightarrow \mathcal{H}(x_i, p_i) = \frac{1}{2m} \left(p_r^2 + \frac{l^2}{r^2} \right) + V(r)$$

 θ κυκλική, p_{θ} = σ τα θ .=l

□ Οι εξισώσεις Hamilton είναι:

$$\dot{r} = \frac{p_r}{m}, \qquad \dot{p}_r = \frac{l^2}{mr^3} - \frac{\partial V(r)}{\partial t}$$

Οι κυκλικές συντεταγμένες δεν εμφανίζονται από μόνες τους στις εκφράσεις

Σωματίδιο σε ΕΜ πεδίο

Για σωματίδιο σε ΕΜ πεδίο

$$\mathcal{L} = \frac{m}{2}\dot{x}_i^2 - q_c\phi + q_cA_i\dot{x}_i$$
 Δεν μπορούμε να πάμε απ' ευθείας στο \mathcal{H} =Ε εξαιτίας του τελευταίου όρου, αλλά

$$\mathcal{H} = (m\dot{x}_i + q_c A_i)\dot{x}_i - \mathcal{L} = \frac{m\dot{x}_i^2}{2} + q_c φ$$

$$\mathbf{A}$$

$$\mathbf{Φ}$$

- Θα είχαμε τελειώσει αν θέλαμε να βρούμε την συνάρτηση ενέργειας h
- □ Η Hamiltonian όμως εξαρτάται μόνο από τα q και p.

Πρέπει επομένως να τη ξαναγράψουμε χρησιμοποιώντας

$$p_i = m\dot{x}_i + q_c A_i$$

$$\mathcal{H}(x_i, p_i) = \frac{(p_i - q_c A_i)^2}{2m} + q_c \phi$$

Σωματίδιο σε ΕΜ πεδίο $\mathcal{H}(x_i, p_i) = \frac{(p_i - q_c A_i)^2}{2m} + q_c \phi$

□ Οι εξισώσεις του Hamilton θα είναι επομένως:

$$\dot{x}_i = \frac{\partial \mathcal{H}}{\partial p_i} = \frac{p_i - q_c A_i}{m}$$

$$\dot{x}_{i} = \frac{\partial \mathcal{H}}{\partial p_{i}} = \frac{p_{i} - q_{c} A_{i}}{m}$$

$$\dot{p}_{i} = -\frac{\partial \mathcal{H}}{\partial x_{i}} = q_{c} \frac{p_{j} - q_{c} A_{j}}{m} \frac{\partial A_{j}}{\partial x_{i}} - q_{c} \frac{\partial \phi}{\partial x_{i}}$$

- Είναι ισοδύναμες με την συνήθη δύναμη Lorentz?
- Μπορούμε να το ελέγξουμε απαλείφοντας το p_i

$$\frac{d}{dt}(m\dot{x}_i + q_c A_i) = q_c \dot{x}_i \frac{\partial A_j}{\partial x_i} - q_c \frac{\partial \phi}{\partial x_i} \Rightarrow \frac{d}{dt}(mv_i) = q_c E_i + q_c (\vec{v} \times \vec{B})_i$$

Φασικός χώρος - phase space

- \square Ένας 2-Ν διαστατικός χώρος με άξονες $\{q_k\}$ και $\{p_k\}$.
 - Χρήσιμος στην Hamiltonian δυναμική:
 - \checkmark $\{q_k\}$ και $\{p_k\}$ είναι οι βαθμοί ελευθερίας
 - ✓ Οι εξισώσεις Hamilton συνδέουν χρονικές παραγώγους των συντεταγμένων με μερικές παραγώγους της Hamiltonian στον φασικό χώρο
- □ Η Hamiltonian είναι ένα σύνολο επιφανειών στο φασικό χώρο
 - > Για κάθε επιφάνεια αντιστοιχεί διαφορετική αλλά σταθερή τιμή της Hamiltonian
- Οι εξισώσεις του Hamilton μας λένε την διεύθυνση κίνησης του συστήματος στον φασικό χώρο
 - Έστω σωματίδιο κινείται στο φασικό χώρο και η Hamiltonian διατηρείται ανεξάρτητη του χρόνου (επομένως οι επιφάνειες είναι σταθερές)
 - ightharpoonup Έστω \hat{q} και \hat{p} τα μοναδιαία διανύσματα στις διευθύνσεις q και p

$$\vec{\nabla}_{qp}\mathcal{H} = \hat{q}\frac{\partial\mathcal{H}}{\partial q} + \hat{p}\frac{\partial\mathcal{H}}{\partial p}$$

Η εξέλιξη της θέσης του συστήματος στο φασικό χώρο: $\hat{q}\dot{q}+\hat{p}\dot{p}=\hat{q}\frac{\partial\mathcal{H}}{\partial p}-\hat{p}\frac{\partial\mathcal{H}}{\partial q}$ Από τις 2 σχέσεις: $\vec{\nabla}_{ap}\mathcal{H}\cdot(\hat{q}\dot{q}+\hat{p}\dot{p})=0 \Rightarrow \vec{\nabla}_{ap}\mathcal{H}\perp(\hat{q}\dot{q}+\hat{p}\dot{p})$

Φασικός χώρος - phase space

 \Box Έστω απλός αρμονικός ταλαντωτής: $\mathcal{H} = \frac{p^2}{2m} + \frac{k}{2}x^2 = E$

□ Για περισσότερες από 2-Δ:

$$\vec{\nabla}_{qp}\mathcal{H} = \sum_{k} \left[\hat{q}_{k} \frac{\partial \mathcal{H}}{\partial q_{k}} + \hat{p}_{k} \frac{\partial \mathcal{H}}{\partial p_{k}} \right]$$

$$\sum_{k} \left[\hat{q}_{k} \dot{q}_{k} + \hat{p}_{k} \dot{p}_{k} \right] = \sum_{k} \left[\hat{q}_{k} \frac{\partial \mathcal{H}}{\partial p_{k}} - \hat{p}_{k} \frac{\partial \mathcal{H}}{\partial q_{k}} \right]$$

$$\vec{\nabla}_{qp} \mathcal{H} \cdot \sum_{k} \left[\hat{q}_{k} \dot{q}_{k} + \hat{p}_{k} \dot{p}_{k} \right] = 0$$
 προβολή σε κάποιο \mathbf{q}_{k} - \mathbf{p}_{k} επίπεδο κάθετες μεταξύ τους

Ένα σύστημα σωμάτων κινείται σαν ένα «υγρό» ή «αέριο» στο χώρο φάσεων

Φασικός χώρος - phase space

Έστω ο αρμονικός ταλαντωτής έχει συχότητα $1:\mathcal{H}=\frac{p^2}{2}+\frac{x^2}{2}=E\Rightarrow$

Γράφημα στο φασικό χώρο:
$$\frac{p^2}{2E} + \frac{x^2}{2E} = 1$$
 \leftarrow κύκλος ακτίνας $\sqrt{2E}$

$$(\dot{q}, \dot{p}) = \left(\frac{\partial \mathcal{H}}{\partial p}, -\frac{\partial \mathcal{H}}{\partial q}\right) = (p, -q)$$

Η ροή της κλίσης της Hamiltonian ή ροή της Hamiltonian

Η δυναμική είναι «ροή»

- Όχι μόνο το σύστημα σωμάτων μοιάζει σαν «υγρό» αλλά και η ροή του είναι ασυμπίεστη.
- Η πυκνότητα του φασικού χώρου είναι σταθερή κατά μήκος των τροχιών των σωματιδίων

$$\frac{d\rho}{dt}(\{q_k\},\{p_k\},t)=0$$

- Λέει ότι οποιεσδήποτε είναι οι δυναμικές συντεταγμένες (q,p)
 δεν μπορούμε να συμπιέσουμε μια κατανομή του φασικού χώρου
 σε μικρότερη περιοχή του φασικού χώρου
 - Για δυνάμεις τριβής το θεώρημα παραβιάζεται
 - □ Το εμβαδό μιας περιοχής του φασικού χώρου ΔΑ=ΔqΔp, διατηρείται καθώς το σύστημα χρονοεξελίσεται

Έστω ένα σύνολο από αρχικές καταστάσεις. Θέλουμε να ξέρουμε πως θα εξελιχθεί χρονικά.

Liouville: το εμβαδό της N-διαστατικής επιφάνειας σε χώρο των φάσεων παραμένει σταθερό

□ Θεωρήστε 2-Δ και η επιφάνεια είναι ένα τετράγωνο

Χρονική εξέλιξη των πλευρών του τετραγώνου: $(q,p) \rightarrow \left(q + \mathcal{H}_p dt, p - \mathcal{H}_q dt\right) \text{ όπου } \mathcal{H}_p = \dot{q} = \frac{\partial \mathcal{H}}{\partial p} \text{ και } \mathcal{H}_q = \dot{p} = -\frac{\partial \mathcal{H}}{\partial q}$ $(q+\Delta q,p) \rightarrow \left(q + \Delta q + dt\right) \mathcal{H}_p + \mathcal{H}_{pq} \Delta q, p - \left(\mathcal{H}_q + \mathcal{H}_{qq} \Delta q\right) dt$ $(q,p) \qquad \text{Avantuyμa Taylor του } \mathcal{H}_p \Big|_{q=q+\Delta q} = \mathcal{H}_p \Big|_{q=q} + \frac{\partial \mathcal{H}_p}{\partial q} \Big|_{q=q} \Delta q = \mathcal{H}_p \Big|_{q=q} + \mathcal{H}_{pq} \Delta q$

$$(q, p + \Delta p) \rightarrow (q + dt(\mathcal{H}_p + \mathcal{H}_{pp}\Delta p), p + \Delta p - (\mathcal{H}_q + \mathcal{H}_{qp}\Delta p)dt)$$

$$\left(q + \Delta q, p + \Delta p\right) \rightarrow \left(q + \Delta q + dt\left(\mathcal{H}_{p} + \mathcal{H}_{pp}\Delta p + \mathcal{H}_{pq}\Delta q\right), p + \Delta p - \left(\mathcal{H}_{q} + \mathcal{H}_{qp}\Delta p + \mathcal{H}_{qq}\Delta q\right)dt\right)$$

Ουσιαστικά αυτό που κάναμε ήταν.

Χρειάζεται να υπολογίσουμε το μήκος των πλευρών του νέου σχήματος:

$$(\Delta q + dt \mathcal{H}_{pq} \Delta q, \Delta q \mathcal{H}_{qq} dt)$$

$$\left(\Delta q + dt \mathcal{H}_{pq} \Delta q, \Delta q \mathcal{H}_{qq} dt\right)$$
$$\left(dt \mathcal{H}_{pp} \Delta p, \Delta p - \Delta p \mathcal{H}_{pq} dt\right)$$

- Το αρχικό εμβαδό ήταν: $A = \Delta p \Delta q$
- All Μετά από χρόνο dt: $A' = \Delta p \Delta q \det \begin{bmatrix} 1 + dt H_{pq} & dt H_{qq} \\ dt H_{pp} & 1 dt H_{pq} \end{bmatrix}$

$$A' = \Delta p \Delta q \det\left(\left(1 - dt^2 H_{pq}^2\right) - dt^2 H_{pp} H_{qq}\right)$$

$$A' = \Delta p \Delta q + O(dt^2)$$

- Επομένως το εμβαδόν δεν αλλάζει για 0(dt) $\frac{dA}{dt} = 0$
- Ολοκληρώνοντας έχουμε: Α=σταθ.
- Το εμβαδό δεν αλλάζει αλλά το σχήμα αλλάζει

🖵 Τα προηγούμενα ισχύουν για οποιαδήποτε σχήμα:

- Μπορούμε να χωρίσουμε το σχήμα σε πολλά μικρότερα τετράγωνα τα οποία δεν αλλάζουν εμβαδό
- Αθροίζουμε τα τετράγωνα

- □ Για Ν-διάστατο χώρο η απόδειξη είναι ίδια
 - N-διάστατος όγκος παραμένει αμετάβλητος με το χρόνο
 - Το σχήμα ωστόσο αλλάζει

Μονοδιάστατα συστήματα

Ας θεωρήσουμε το εκκρεμές

$$L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$$

Ευσταθή σημεία ισορροπίας

$$\theta = 2n\pi$$

Ασταθή σημεία ισορροπίας

$$\theta = (2n+1)\pi$$

- \square Αν η ενέργεια έχει τιμές mgl > E > -mgl
 - Ταλάντωση ως προς ευσταθές σημείο
- \square Αν η ενέργεια έχει τιμές E>mgl
 - Θ θα είναι μονότονη: θα αυξάνει ή θα ελαττώνεταιτο εκκρεμές θα περιστρέφεται πάντοτε

Φασικός χώρος – phase space

- Χρήσιμο να περιγράψουμε την δυναμική στο φασικό χώρο
- □ Για το εκκρεμές αυτό θα είναι ένα επίπεδο θ, p_θ
- Η ενέργεια είναι σταθερή, το σύστημα θα κινείται σε σταθερές καμπύλες
- □ Για το εκκρεμές:

$$E = \frac{1}{2}ml^{2}\dot{\theta}^{2} - mgl\cos\theta$$
$$\Rightarrow E = \frac{p_{\theta}^{2}}{2ml^{2}} - mgl\cos\theta$$

- **Φ**ασικός χώρος (θ,ρ_θ):
 - καμπύλες σταθερής ενέργειας
 - ightharpoonup Όταν -mgl < E < mgl κλειστές καμπύλες $-\pi < \theta < \pi$
 - ightharpoonup Όταν E=-mgl σημείο $p_{\theta}=0,\theta=0$ δεν υπάρχει ταλάντωση
 - $P_{\theta} > 0$ περιστροφή δεξιόστροφα $P_{\theta} < 0$ περιστροφή αριστερόστροφα
 - ightharpoonup Όταν E > mgl ανοικτές καμπύλες ightharpoonup Για E = mgl μια καμπύλη ightharpoonup διαχωριστική

 θ

Φασικός χώρος

- Στην διαχωριστική καμπύλη
 - Το εκκρεμές είναι ανάποδα

 π

Μπορείτε από το ολοκλήρωμα του χρόνου να δείτε ότι απειρίζεται για να βρεθεί και πάλι στην θέση ανάποδα

$$ightharpoonup$$
 Αρμονικός ταλαντωτής: $\mathcal{H} = \frac{p^2}{2m} + \frac{k}{2}x^2$

$$\mathcal{H} = E$$
 οπότε: $E = \frac{p^2}{2m} + \frac{x^2}{2/k} \Rightarrow 1 = \frac{p^2}{2mE} + \frac{x^2}{2E/k}$

Μεγάλος ημιάξονας: $\sqrt{2E/k}$

Μικρός ημιάξονας: $\sqrt{2mE}$

- Κοντά σε σημεία ασταθούς ισορροπίας
 - Υπερβολές

Κατασκευή φασικών γραμμών - παράδειγμα

Φασικός χώρος - Παράδειγμα

Σωματίδιο κινείται σε δυναμικό της μορφής: $U(x) = U_0 \frac{x^2}{a^2} e^{-x/a}$ (α) Να κατασκευαστεί το γράφημα του δυναμικού

(β) Να κατασκευαστεί το γράφημα των αντιπροσωπευτικών καμπυλών στο φασικό χώρο. Να βρεθούν τα πιθανά σταθερά σημεία και η ενέργεια των διαχωριστικών καμπυλών

(α) Για
$$x \to +\infty$$
 $U(x) \to 0$ ενώ για $x \to -\infty$ $U(x) \to \infty$
Ακρότατα της $U(x)$ για $\frac{dU(x)}{dx} = 0 \Rightarrow \frac{U_0}{a^2} \left(2x - \frac{x^2}{a}\right) e^{-x/a} = 0 \Rightarrow \begin{cases} x = 0 \text{ ελάχιστο} \\ x = 2a \text{ μέγιστο} \end{cases}$

Σταθερό σημείο στο x=0 και ασταθές στο $x=2\alpha$ Ενέργεια διαχωριστικής καμπύλης $E=U\left(x=2a\right)$