- Étape 1 : Conversion de toutes les formules vers leur forme CNF
- Étape 2 : Application répétée de la règle de résolution
- Étape 3 : Renvoyer "non satisfaisable" si et seulement si False est dérivé

4.4 Calcul des prédicats du premier ordre

L'idée ici est d'utiliser des variables et ainsi permettre une représentation des connaissances plus compacte.

- \square Modèle –Un modèle w en calcul des prédicats du premier ordre lie :
 - des symboles constants à des objets
 - des prédicats à n-uplets d'objets
- □ Clause de Horn En notant $x_1,...,x_n$ variables et $a_1,...,a_k,b$ formules atomiques, une clause de Horn pour le calcul des prédicats du premier ordre a la forme :

$$\boxed{\forall x_1, \dots, \forall x_n, \quad (a_1 \land \dots \land a_k) \to b}$$

- \square Substitution Une substitution θ lie les variables aux termes et Subst (θ, f) désigne le résultat de la substitution θ sur f.
- \Box Unification Une unification prend deux formules f et g et renvoie la substitution θ la plus générale les rendant égales :

$$\boxed{ \text{Unify}[f,g] = \theta } \quad \text{t.q.} \quad \boxed{ \text{Subst}[\theta,f] = \text{Subst}[\theta,g] }$$

Note: Unify[f,g] renvoie Fail si un tel θ n'existe pas.

□ Modus ponens – En notant $x_1,...,x_n$ variables, $a_1,...,a_k$ et $a'_1,...,a'_k$ formules atomiques et en notant $\theta = \text{Unify}(a'_1 \wedge ... \wedge a'_k, a_1 \wedge ... \wedge a_k)$, modus ponens pour le calcul des prédicats du premier ordre s'écrit :

$$\boxed{ \frac{a_1',...,a_k' \quad \forall x_1,...,\forall x_n(a_1 \wedge ... \wedge a_k) \rightarrow b}{\operatorname{Subst}[\theta,b]} }$$

- □ Complétude Modus ponens est complet pour le calcul des prédicats du premier ordre lorsqu'il agit uniquement sur les clauses de Horn.
- □ Règle de résolution En notant $f_1,...,f_n, g_1,...,g_m, p, q$ formules et en posant $\theta = \text{Unify}(p,q)$, le règle de résolution pour le calcul des prédicats du premier ordre s'écrit :

$$\frac{f_1 \vee \ldots \vee f_n \vee p, \quad \neg q \vee g_1 \vee \ldots \vee g_m}{\operatorname{Subst}[\theta, f_1 \vee \ldots \vee f_n \vee g_1 \vee \ldots \vee g_m]}$$

- □ Semi-décidabilité Le calcul des prédicats du premier ordre, même restreint aux clauses de Horn, n'est que semi-décidable.
 - si KB $\models f$, l'algorithme de chaînage avant sur des règles d'inférence complètes prouvera f en temps fini
 - si KB $\not\models f$, aucun algorithme ne peut le prouver en temps fini

Printemps 2019