# ${ m MATLAB\,{}_{ m R}}$ / R Reference

David Hiebeler
Dept. of Mathematics and Statistics
University of Maine
Orono, ME 04469-5752
http://www.math.umaine.edu/~hiebeler

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching my Modeling & Simulation course at the University of Maine. The course covers population and epidemiological modeling, including deterministic and stochastic models in discrete and continuous time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in a computer lab where students work through modeling & simulation exercises. When I taught earlier versions of the course, it was based on MATLAB only. In Spring 2007, some biology graduate students in the class who had learned R in statistics courses asked if they could use R in my class as well, and I said yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class. As I went, every time I learned how to do something in R for the course, I added it to this reference, so that I wouldn't forget it later. Some items took a huge amount of time searching for a simple way to do what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do in MATLAB had an equivalent in R. I was also inspired to do this after seeing the "R for Octave Users" reference written by Robin Hankin. I've continued to add to the document, with many additions based on topics that came up while teaching courses on Advanced Linear Algebra and Numerical Analysis.

This reference is organized into general categories. There is also a MATLAB index and an R index at the end, which should make it easy to look up a command you know in one of the languages and learn how to do it in the other (or if you're trying to read code in whichever language is unfamiliar to you, allow you to translate back to the one you are more familiar with). The index entries refer to the item numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful are appreciated. I hope all the time I spent on this will prove useful for others in addition to myself and my students. Note that sometimes I don't necessarily do things in what you may consider the "best" way in a particular language. I often tried to do things in a similar way in both languages, and where possible I've avoided the use of MATLAB toolboxes or R packages which are not part of the core distributions. But if you believe you have a "better" way (either simpler, or more computationally efficient) to do something, feel free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors; and Robert Bryce, Thomas Clerc, Richard Cotton, Stephen Eglen, Andreas Handel, Niels Richard Hansen, David Khabie-Zeitoune, Michael Kiparsky, Andy Moody, Ben Morin, Lee Pang, Manas A. Pathak, Rachel Rier, Rune Schjellerup Philosof, and Corey Yanofsky for contributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

#### Contents

| 1  | Help                                                                                                                                                                                                           | 3                                   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 2  | Entering/building/indexing matrices 2.1 Cell arrays and lists                                                                                                                                                  | <b>3</b> 6 6                        |
| 3  | Computations  3.1 Basic computations  3.2 Complex numbers  3.3 Matrix/vector computations  3.4 Root-finding  3.5 Function optimization/minimization  3.6 Numerical integration / quadrature  3.7 Curve fitting | 6<br>7<br>8<br>14<br>14<br>15<br>16 |
| 4  | Conditionals, control structure, loops                                                                                                                                                                         | 17                                  |
| 5  | Functions, ODEs                                                                                                                                                                                                | 21                                  |
| 6  | Probability and random values                                                                                                                                                                                  | 23                                  |
| 7  | Graphics 7.1 Various types of plotting                                                                                                                                                                         | 27<br>27<br>35<br>36                |
| 8  | Working with files                                                                                                                                                                                             | 37                                  |
| 9  | Miscellaneous 9.1 Variables                                                                                                                                                                                    | <b>38</b> 38 39                     |
| 10 | Spatial Modeling                                                                                                                                                                                               | 42                                  |
| In | dex of MATLAB commands and concepts                                                                                                                                                                            | 43                                  |
| In | dex of R commands and concepts                                                                                                                                                                                 | 48                                  |

### 1 Help

| No. | Description                    | Matlab                            | R                                        |
|-----|--------------------------------|-----------------------------------|------------------------------------------|
| 1   | Show help for a function (e.g. | help sqrt, or helpwin sqrt to see | help(sqrt) or ?sqrt                      |
|     | $\mathbf{sqrt})$               | it in a separate window           |                                          |
| 2   | Show help for a built-in key-  | help for                          | help('for') or ?'for'                    |
|     | word (e.g. $for$ )             |                                   |                                          |
| 3   | General list of many help top- | help                              | library() to see available libraries,    |
|     | ics                            |                                   | or library(help='base') for very         |
|     |                                |                                   | long list of stuff in base package which |
|     |                                |                                   | you can see help for                     |
| 4   | Explore main documentation     | doc or helpbrowser (previously it | help.start()                             |
|     | in browser                     | was helpdesk, which is now being  |                                          |
|     |                                | phased out)                       |                                          |
| 5   | Search documentation for       | lookfor binomial                  | help.search('binomial')                  |
|     | keyword or partial keyword     |                                   |                                          |
|     | (e.g. functions which refer to |                                   |                                          |
|     | "binomial")                    |                                   |                                          |

# 2 Entering/building/indexing matrices

| No. | Description                                                                                                                       | Matlab          | R                                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|
| 6   | Enter a row vector $\vec{v}$ =                                                                                                    | v=[1 2 3 4]     | v=c(1,2,3,4) or alternatively                                                                                                |
|     | $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$                                                                                     |                 | v=scan() then enter "1 2 3 4" and                                                                                            |
|     |                                                                                                                                   |                 | press Enter twice (the blank line                                                                                            |
|     |                                                                                                                                   |                 | terminates input)                                                                                                            |
| 7   | Enter a column vector $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$                                                            | [1; 2; 3; 4]    | c(1,2,3,4)                                                                                                                   |
|     |                                                                                                                                   |                 | (R does not distinguish between row and column vectors.)                                                                     |
| 8   | Enter a matrix $ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} $                                                           | [1 2 3 ; 4 5 6] | To enter values by row: matrix(c(1,2,3,4,5,6), nrow=2, byrow=TRUE) To enter values by column: matrix(c(1,4,2,5,3,6), nrow=2) |
| 9   | Access an element of vector ${f v}$                                                                                               | v(3)            | v[3]                                                                                                                         |
| 10  | Access an element of matrix <b>A</b>                                                                                              | A(2,3)          | A[2,3]                                                                                                                       |
| 11  | Access an element of matrix <b>A</b> using a single index: indices count down the first column, then down the second column, etc. | A(5)            | A[5]                                                                                                                         |
| 12  | Build the vector [2 3 4 5 6 7]                                                                                                    | 2:7             | 2:7                                                                                                                          |
| 13  | Build the vector [7 6 5 4 3 2]                                                                                                    | 7:-1:2          | 7:2                                                                                                                          |
| 14  | Build the vector [2 5 8 11 14]                                                                                                    | 2:3:14          | seq(2,14,3)                                                                                                                  |

| N.T. | D : ::                                           | 34                                  | D                                                   |
|------|--------------------------------------------------|-------------------------------------|-----------------------------------------------------|
| No.  | Description                                      | MATLAB                              | R                                                   |
| 15   | Build a vector containing                        | linspace(a,b,n)                     | seq(a,b,length.out=n) or just                       |
|      | n equally-spaced values be-                      |                                     | seq(a,b,len=n)                                      |
|      | tween $a$ and $b$ inclusive                      |                                     |                                                     |
| 16   | Build a vector containing                        | logspace(a,b,n)                     | 10^seq(a,b,len=n)                                   |
|      | n logarithmically equally-                       |                                     | _                                                   |
|      | spaced values between $10^a$                     |                                     |                                                     |
|      | and $10^b$ inclusive                             |                                     |                                                     |
| 17   | Build a vector of length $k$                     | zeros(k,1) (for a column vector) or | rep(0,k)                                            |
|      | containing all zeros                             | zeros(1,k) (for a row vector)       | 2007(0,11)                                          |
| 18   | Build a vector of length $k$                     | j*ones(k,1) (for a column vector)   | rep(j,k)                                            |
| 10   | containing the value $j$ in all                  | or j*ones(1,k) (for a row vector)   | [ Tep(J,k)                                          |
|      | positions the value j in an                      | or j*ones(1,k) (for a row vector)   |                                                     |
| 10   | _                                                |                                     |                                                     |
| 19   | Build an $m \times n$ matrix of zeros            | zeros(m,n)                          | matrix(0,nrow=m,ncol=n) or just                     |
|      |                                                  |                                     | matrix(0,m,n)                                       |
| 20   | Build an $m \times n$ matrix con-                | j*ones(m,n)                         | matrix(j,nrow=m,ncol=n) or just                     |
|      | taining $j$ in all positions                     |                                     | matrix(j,m,n)                                       |
| 21   | $n \times n$ identity matrix $I_n$               | eye(n)                              | diag(n)                                             |
| 22   | Build diagonal matrix $A$ us-                    | diag(v)                             | diag(v,nrow=length(v)) (Note: if                    |
|      | ing elements of vector $\mathbf{v}$ as di-       |                                     | you are sure the length of vector $\mathbf{v}$ is 2 |
|      | agonal entries                                   |                                     | or more, you can simply say diag(v).)               |
| 23   | Extract diagonal elements of                     | v=diag(A)                           | v=diag(A)                                           |
|      | $\mid$ matrix $A$                                |                                     |                                                     |
| 24   | "Glue" two matrices <b>a1</b> and                | [a1 a2]                             | cbind(a1,a2)                                        |
|      | <b>a2</b> (with the same number of               | [41 42]                             |                                                     |
|      | rows) side-by-side                               |                                     |                                                     |
| 25   | "Stack" two matrices <b>a1</b> and               | [a1; a2]                            | rbind(a1,a2)                                        |
| 25   |                                                  | [a1; a2]                            | rbind(a1,a2)                                        |
|      | a2 (with the same number of                      |                                     |                                                     |
|      | columns) on top of each other                    |                                     |                                                     |
| 26   | Given vectors $\mathbf{x}$ and $\mathbf{y}$ of   | <pre>[X,Y]=meshgrid(x,y)</pre>      |                                                     |
|      | lengths $m$ and $n$ respectively,                |                                     | <pre>m=length(x); n=length(y);</pre>                |
|      | build $n \times m$ matrices <b>X</b> whose       |                                     | <pre>X=matrix(rep(x,each=n),nrow=n);</pre>          |
|      | rows are copies of $\mathbf{x}$ and $\mathbf{Y}$ |                                     | Y=matrix(rep(y,m),nrow=n)                           |
|      | whose columns are copies of                      |                                     | - mass = 1 (2 op (y , m) , 1 o m = 1.)              |
|      | y                                                |                                     |                                                     |
| 27   | Reverse the order of elements                    | v(end:-1:1)                         | rev(v)                                              |
|      | in vector <b>v</b>                               |                                     |                                                     |
| 28   | Column 2 of matrix A                             | A(:,2)                              | A[,2] Note: that gives the result as a              |
|      |                                                  |                                     | vector. To make the result a $m \times 1$ ma-       |
|      |                                                  |                                     | trix instead, do A[,2,drop=FALSE]                   |
| 29   | Row 7 of matrix <b>A</b>                         | A(7,:)                              | A[7,] Note: that gives the result as a              |
| -5   |                                                  |                                     | vector. To make the result a $1 \times n$ ma-       |
|      |                                                  |                                     | trix instead, do A[7,,drop=FALSE]                   |
| 30   | All elements of <b>A</b> as a vector,            | A(:) (gives a column vector)        | c(A)                                                |
| 30   | column-by-column                                 | 1 (81,000 a columni Accion)         |                                                     |
| 91   | Rows 2–4, columns 6–10 of <b>A</b>               | A(2.4 6.10)                         | A [0.4 6.10]                                        |
| 31   |                                                  | A(2:4,6:10)                         | A[2:4,6:10]                                         |
| 6.2  | (this is a $3 \times 5$ matrix)                  | . (5                                |                                                     |
| 32   | A $3 \times 2$ matrix consisting of              | A([7 7 6], [2 1])                   | A[c(7,7,6),c(2,1)]                                  |
|      | rows 7, 7, and 6 and columns                     |                                     |                                                     |
|      | 2  and  1  of  A  (in that order)                |                                     |                                                     |
| 33   | Circularly shift the rows of                     | circshift(A, [s1 s2])               | No simple way, but modulo arithmetic                |
|      | matrix $A$ down by $s_1$ ele-                    |                                     | on indices will work: m=dim(A)[1];                  |
|      | ments, and right by $s_2$ ele-                   |                                     | n=dim(A)[2]; A[(1:m-s1-1)%/m+1,                     |
|      | ments                                            |                                     | (1:n-s2-1)%%n+1]                                    |
|      | l .                                              | l .                                 |                                                     |

| No. | Description                                           | Matlab                                  | R                                                    |
|-----|-------------------------------------------------------|-----------------------------------------|------------------------------------------------------|
| 34  | Flip the order of elements in                         | fliplr(A)                               | t(apply(A,1,rev))                                    |
|     | each row of matrix $A$                                |                                         |                                                      |
| 35  | Flip the order of elements in                         | flipud(A)                               | apply(A,2,rev)                                       |
|     | each column of matrix $A$                             | -                                       |                                                      |
| 36  | Given a single index <b>ind</b> into                  |                                         |                                                      |
|     | an $m \times n$ matrix <b>A</b> , compute             | [m ol = indOgub(gigo(A) ind)            | n = ((ind-1) % m) + 1                                |
|     | the row $\mathbf{r}$ and column $\mathbf{c}$ of       | [r,c] = ind2sub(size(A), ind)           | r = ((ind-1) %% m) + 1<br>c = floor((ind-1) / m) + 1 |
|     | that position (also works if                          |                                         | C = 1100r((1nd-1) / m) + 1                           |
|     | ind is a vector)                                      |                                         |                                                      |
| 37  | Given the row $\mathbf{r}$ and column                 |                                         |                                                      |
|     | <b>c</b> of an element of an $m \times n$             | <pre>ind = sub2ind(size(A), r, c)</pre> | ind = (c-1)*m + r                                    |
|     | matrix $\mathbf{A}$ , compute the single              | Ind - Subzind(Size(A), 1, C)            | Ind = (C 1)*m   1                                    |
|     | index <b>ind</b> which can be used                    |                                         |                                                      |
|     | to access that element of ${\bf A}$                   |                                         |                                                      |
|     | (also works if $\mathbf{r}$ and $\mathbf{c}$ are vec- |                                         |                                                      |
|     | tors)                                                 |                                         |                                                      |
| 38  | Given equal-sized vectors ${f r}$                     |                                         |                                                      |
|     | and $\mathbf{c}$ (each of length $k$ ), set           | <pre>inds = sub2ind(size(A),r,c);</pre> | inds = cbind(r,c)                                    |
|     | elements in rows (given by $\mathbf{r}$ )             | A(inds) = 12;                           | A[inds] = 12                                         |
|     | and columns (given by $\mathbf{c}$ ) of               |                                         |                                                      |
|     | matrix <b>A</b> equal to 12. That                     |                                         |                                                      |
|     | is, $k$ elements of $A$ will be                       |                                         |                                                      |
|     | modified.                                             |                                         |                                                      |
| 39  | Truncate vector $\mathbf{v}$ , keeping                | v = v(1:10)                             | v = v[1:10],  or length(v) = 10                      |
| 10  | only the first 10 elements                            |                                         | also works                                           |
| 40  | Extract elements of vector <b>v</b>                   | v(a:end)                                | v[a:length(v)]                                       |
|     | from position <b>a</b> to the end                     | 45.                                     |                                                      |
| 41  | All but the $k^{\text{th}}$ element of                | v([1:(k-1) (k+1):end])                  | v[-k]                                                |
| 40  | vector <b>v</b>                                       | N . 1 . 2 C . 1: . 1                    | F (                                                  |
| 42  | All but the $j^{\text{th}}$ and $k^{\text{th}}$ ele-  | No simple way? Generalize the pre-      | v[c(-j,-k)]                                          |
| 40  | ments of vector v                                     | vious item                              | 1: (1)                                               |
| 43  | Reshape matrix A, making it                           | A = reshape(A,m,n)                      | dim(A) = c(m,n)                                      |
|     | an $m \times n$ matrix with ele-                      |                                         |                                                      |
|     | ments taken columnwise from                           |                                         |                                                      |
|     | the original A (which must                            |                                         |                                                      |
| 11  | have $mn$ elements)  Extract the lower-triangular     | L = tril(A)                             | L = A; L[upper.tri(L)]=0                             |
| 44  | portion of matrix A                                   | r - ctit(w)                             | L - A; L[upper.cri(L)]=0                             |
| 45  | Extract the upper-triangular                          | U = triu(A)                             | U = A; U[lower.tri(U)]=0                             |
| 40  | portion of matrix A                                   | O CIIU(A)                               | A, OLIOWEI.CII(O)]-O                                 |
| 46  | Enter $n \times n$ Hilbert matrix $H$                 | hilb(n)                                 | Hilbert(n), but this is part of the                  |
| 10  | where $H_{ij} = 1/(i+j-1)$                            |                                         | Matrix package which you'll need to                  |
|     |                                                       |                                         | install (see item 331 for how to in-                 |
|     |                                                       |                                         | stall/load packages).                                |
| 47  | Enter an $n$ -dimensional array,                      | reshape(1:24, 3, 4, 2) or               | array(1:24, c(3,4,2)) (Note that                     |
| *'  | e.g. a $3 \times 4 \times 2$ array with the           | reshape(1:24, [3 4 2])                  | a matrix is 2-D, i.e. rows and                       |
|     | values 1 through 24                                   |                                         | columns, while an <b>array</b> is more gen-          |
|     |                                                       |                                         | erally $N$ -D)                                       |
|     |                                                       |                                         | Ciwily 11-D)                                         |

#### 2.1 Cell arrays and lists

| No. | Description                                                                                         | Matlab                                                                                                                                               | R                                                                                                                                                                |
|-----|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48  | Build a vector <b>v</b> of length <b>n</b> , capable of containing differ-                          | v = cell(1,n) In general,                                                                                                                            | v = vector('list',n) Then you                                                                                                                                    |
|     | ent data types in different elements (called a <i>cell array</i> in MATLAB, and a <i>list</i> in R) | cell(m,n) makes an $m \times n$ cell array. Then you can do e.g.:  v{1} = 12  v{2} = 'hi there'  v{3} = rand(3)                                      | <pre>can do e.g.: v[[1]] = 12 v[[2]] = 'hi there' v[[3]] = matrix(runif(9),3)</pre>                                                                              |
| 49  | Extract the $i^{\text{th}}$ element of a cell/list vector $\mathbf{v}$                              | <pre>w = v{i}  If you use regular indexing, i.e. w = v(i), then w will be a 1 × 1 cell matrix containing the contents of the ith element of v.</pre> | <pre>w = v[[i]]  If you use regular indexing, i.e. w = v[i], then w will be a list of length 1 containing the contents of the i<sup>th</sup> element of v.</pre> |
| 50  | Set the name of the $i^{th}$ element in a list.                                                     | (Matlab does not have names associated with elements of cell arrays.)                                                                                | names(v)[3] = 'myrandmatrix' Use names(v) to see all names, and names(v)=NULL to clear all names.                                                                |

#### 2.2 Structs and data frames

| No. | Description                  | Matlab                         | R                               |
|-----|------------------------------|--------------------------------|---------------------------------|
| 51  | Create a matrix-like object  | avals=2*ones(1,6);             | v=c(1,5,3,2,3,7); d=data.frame( |
|     | with different named columns | yvals=6:-1:1; v=[1 5 3 2 3 7]; | cbind(a=2, yy=6:1), v)          |
|     | (a struct in Matlab, or a    | d=struct('a',avals,            |                                 |
|     | data frame in R)             | 'yy', yyvals, 'fac', v);       |                                 |

Note that I (surprisingly) don't use R for statistics, and therefore have very little experience with data frames (and also very little with MATLAB structs). I will try to add more to this section later on.

#### 3 Computations

#### 3.1 Basic computations

| No. | Description                                      | Matlab                               | R                            |
|-----|--------------------------------------------------|--------------------------------------|------------------------------|
| 52  | a+b, a-b, ab, a/b                                | a+b, a-b, a*b, a/b                   | a+b, a-b, a*b, a/b           |
| 53  | $\sqrt{a}$                                       | sqrt(a)                              | sqrt(a)                      |
| 54  | $a^b$                                            | a^b                                  | a^b                          |
| 55  | a  (note: for complex ar-                        | abs(a)                               | abs(a)                       |
|     | guments, this computes the                       |                                      |                              |
|     | modulus)                                         |                                      |                              |
| 56  | $e^a$                                            | exp(a)                               | exp(a)                       |
| 57  | $\ln(a)$                                         | log(a)                               | log(a)                       |
| 58  | $\log_2(a),  \log_{10}(a)$                       | log2(a), log10(a)                    | log2(a), log10(a)            |
| 59  | $\sin(a), \cos(a), \tan(a)$                      | sin(a), cos(a), tan(a)               | sin(a), cos(a), tan(a)       |
| 60  | $\sin^{-1}(a)$ , $\cos^{-1}(a)$ , $\tan^{-1}(a)$ | asin(a), acos(a), atan(a)            | asin(a), acos(a), atan(a)    |
| 61  | $\sinh(a), \cosh(a), \tanh(a)$                   | <pre>sinh(a), cosh(a), tanh(a)</pre> | sinh(a), cosh(a), tanh(a)    |
| 62  | $\sinh^{-1}(a), \qquad \cosh^{-1}(a),$           | asinh(a), acosh(a), atanh(a)         | asinh(a), acosh(a), atanh(a) |
|     | $\tanh^{-1}(a)$                                  |                                      |                              |

| No. | Description                                                                                                                  | Matlab                                                                 | R                                                                                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 63  | $n \mod k$ (modulo arithmetic)                                                                                               | mod(n,k)                                                               | n %% k                                                                                                      |
| 64  | Round to nearest integer                                                                                                     | round(x)                                                               | round(x) (Note: R uses IEC 60559 standard, rounding 5 to the even digit—so e.g. round(0.5) gives 0, not 1.) |
| 65  | Round down to next lowest integer                                                                                            | floor(x)                                                               | floor(x)                                                                                                    |
| 66  | Round up to next largest integer                                                                                             | ceil(x)                                                                | ceiling(x)                                                                                                  |
| 67  | Sign of $x$ (+1, 0, or -1)                                                                                                   | <pre>sign(x) (Note: for complex values, this computes x/abs(x).)</pre> | sign(x) (Does not work with complex values)                                                                 |
| 68  | Error function $\operatorname{erf}(x) = (2/\sqrt{\pi}) \int_0^x e^{-t^2} dt$                                                 | erf(x)                                                                 | 2*pnorm(x*sqrt(2))-1                                                                                        |
| 69  | Complementary error function $\operatorname{cerf}(x) = (2/\sqrt{\pi}) \int_x^{\infty} e^{-t^2} dt = 1\operatorname{-erf}(x)$ | erfc(x)                                                                | 2*pnorm(x*sqrt(2),lower=FALSE)                                                                              |
| 70  | Inverse error function                                                                                                       | erfinv(x)                                                              | qnorm((1+x)/2)/sqrt(2)                                                                                      |
| 71  | Inverse complementary error function                                                                                         | erfcinv(x)                                                             | qnorm(x/2,lower=FALSE)/sqrt(2)                                                                              |
| 72  | Binomial coefficient $\binom{n}{k} = n!/(n!(n-k)!)$                                                                          | nchoosek(n,k)                                                          | choose(n,k)                                                                                                 |

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work with vectors and matrices, applying the function to each element, as well as with scalars.

#### 3.2 Complex numbers

| No. | Description            | Matlab   | R                |
|-----|------------------------|----------|------------------|
| 73  | Enter a complex number | 1+2i     | 1+2i             |
| 74  | Modulus (magnitude)    | abs(z)   | abs(z) or Mod(z) |
| 75  | Argument (angle)       | angle(z) | Arg(z)           |
| 76  | Complex conjugate      | conj(z)  | Conj(z)          |
| 77  | Real part of $z$       | real(z)  | Re(z)            |
| 78  | Imaginary part of z    | imag(z)  | Im(z)            |

### 3.3 Matrix/vector computations

| No. | Description                                                                                                              | Matlab                                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 79  | Vector dot product $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y}$                                                           | dot(x,y)                                                                                                                                                            | sum(x*y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80  | Vector cross product $\vec{x} \times \vec{y}$                                                                            | cross(x,y)                                                                                                                                                          | Not in base R, but e.g. the <b>xprod</b> function from the RSEIS package will do it (see item 331 for how to install/load packages)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 81  | Matrix multiplication AB                                                                                                 | A * B                                                                                                                                                               | A %*% B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 82  | Element-by-element multiplication of $A$ and $B$                                                                         | A .* B                                                                                                                                                              | A * B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 83  | Transpose of a matrix, $A^T$                                                                                             | A' (This is actually the complex conjugate (i.e. Hermitian) transpose; use A.' for the non-conjugate transpose if you like; they are equivalent for real matrices.) | t(A) for transpose, or Conj(t(A)) for conjugate (Hermitian) transpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 84  | Solve $A\vec{x} = \vec{b}$                                                                                               | A\b Warning: if there is no solution, MATLAB gives you a least-squares "best fit." If there are many solutions, MATLAB just gives you one of them.                  | solve(A,b) Warning: this only works with square invertible matrices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 85  | Reduced echelon form of $A$                                                                                              | rref(A)                                                                                                                                                             | R does not have a function to do this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 86  | Determinant of <b>A</b>                                                                                                  | det(A)                                                                                                                                                              | det(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 87  | Inverse of <b>A</b>                                                                                                      | inv(A)                                                                                                                                                              | solve(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 88  | Trace of A                                                                                                               | trace(A)                                                                                                                                                            | <pre>sum(diag(A))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 89  | Compute $AB^{-1}$                                                                                                        | A/B                                                                                                                                                                 | A %*% solve(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 90  | Element-by-element division of $A$ and $B$                                                                               | A ./ B                                                                                                                                                              | A / B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 91  | Compute $A^{-1}B$                                                                                                        | A\B                                                                                                                                                                 | solve(A,B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 92  | Square the matrix $A$                                                                                                    | A^2                                                                                                                                                                 | A %*% A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 93  | Raise matrix $A$ to the $k^{\text{th}}$ power                                                                            | A^k                                                                                                                                                                 | (No easy way to do this in R other than repeated multiplication A %*% A %*% A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 94  | Raise each element of $A$ to the $k^{\text{th}}$ power                                                                   | A.^k                                                                                                                                                                | A^k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 95  | Rank of matrix $A$                                                                                                       | rank(A)                                                                                                                                                             | qr(A)\$rank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 96  | Set <b>w</b> to be a vector of eigenvalues of <b>A</b> , and <b>V</b> a matrix containing the corresponding eigenvectors | [V,D]=eig(A) and then w=diag(D) since MATLAB returns the eigenvalues on the diagonal of D                                                                           | <pre>tmp=eigen(A); w=tmp\$values; V=tmp\$vectors</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 97  | Permuted $LU$ factorization of a matrix                                                                                  | [L,U,P]=lu(A) then the matrices satisfy $PA = LU$ . Note that this works even with non-square matrices                                                              | tmp=expand(lu(Matrix(A)));<br>L=tmp\$L; U=tmp\$U; P=tmp\$P then<br>the matrices satisfy $A = PLU$ , i.e.<br>$P^{-1}A = LU$ . Note that the <b>lu</b> and<br><b>expand</b> functions are part of the Ma-<br>trix package (see item 331 for how to<br>install/load packages). Also note that<br>this doesn't seem to work correctly<br>with non-square matrices. <b>L</b> , <b>U</b> , and<br><b>P</b> will be of class Matrix rather than<br>class matrix; to make them the latter,<br>instead do L=as.matrix(tmp\$L),<br>U=as.matrix(tmp\$U), and<br>P=as.matrix(tmp\$P) above. |

| No. | Description                                                                                                                                                                                                                                   | Matlab                                                                                                                                                                                                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 98  | Singular-value decomposition: given $m \times n$ matrix $A$ with rank $r$ , find $m \times r$ matrix $P$ with orthonormal columns, diagonal $r \times r$ matrix $S$ , and $r \times n$ matrix $Q^T$ with orthonormal rows so that $PSQ^T = A$ | [P,S,Q]=svd(A,'econ')                                                                                                                                                                                                                                                                                                             | <pre>tmp=svd(A); U=tmp\$u; V=tmp\$v; S=diag(tmp\$d)</pre>                                                                                                                                                                                                                                                                                                                                                    |
| 99  | Schur decomposition of square matrix, $A = QTQ^H = QTQ^{-1}$ where $Q$ is unitary (i.e. $Q^HQ = I$ ) and $T$ is upper triangular; $Q^H = \overline{Q^T}$ is the Hermitian (conjugate) transpose                                               | [Q,T]=schur(A)                                                                                                                                                                                                                                                                                                                    | tmp=Schur(Matrix(A)); T=tmp@T; Q=tmp@Q Note that Schur is part of the Matrix package (see item 331 for how to install/load packages). T and Q will be of class Matrix rather than class matrix; to make them the latter, instead do T=as.matrix(tmp@T) and Q=as.matrix(tmp@Q) above.                                                                                                                         |
| 100 | Cholesky factorization of a square, symmetric, positive definite matrix $A = R^T R$ , where $R$ is upper-triangular                                                                                                                           | R = chol(A)                                                                                                                                                                                                                                                                                                                       | R = chol(A) Note that chol is part of the Matrix package (see item 331 for how to install/load packages).                                                                                                                                                                                                                                                                                                    |
| 101 | $QR$ factorization of matrix $A$ , where $Q$ is orthogonal (satisfying $QQ^T = I$ ) and $R$ is upper-triangular                                                                                                                               | [Q,R]=qr(A) satisfying $QR = A$ , or [Q,R,E]=qr(A) to do permuted $QR$ factorization satisfying $AE = QR$                                                                                                                                                                                                                         | z=qr(A); $Q=qr.Q(z)$ ; $R=qr.R(z)$ ; $E=diag(n)[,z$pivot]$ (where $n$ is the number of columns in $A$ ) gives permuted $QR$ factorization satisfying $AE=QR$                                                                                                                                                                                                                                                 |
| 102 | Vector norms                                                                                                                                                                                                                                  | $\operatorname{norm}(\mathbf{v},1)$ for 1-norm $\ \vec{v}\ _1$ , $\operatorname{norm}(\mathbf{v},2)$ for Euclidean norm $\ \vec{v}\ _2$ , $\operatorname{norm}(\mathbf{v},\inf)$ for infinity-norm $\ \vec{v}\ _{\infty}$ , and $\operatorname{norm}(\mathbf{v},\mathbf{p})$ for $p$ -norm $\ \vec{v}\ _p = (\sum  v_i ^p)^{1/p}$ | R does not have a <b>norm</b> function for vectors; only one for matrices. But the following will work: $\operatorname{norm}(\operatorname{matrix}(v),'1')$ for 1-norm $\ \vec{v}\ _1$ , $\operatorname{norm}(\operatorname{matrix}(v),'i')$ for infinity-norm $\ \vec{v}\ _{\infty}$ , and $\operatorname{sum}(\operatorname{abs}(v)\hat{p})\hat{1}/p$ for $p$ -norm $\ \vec{v}\ _p = (\sum  v_i ^p)^{1/p}$ |
| 103 | Matrix norms                                                                                                                                                                                                                                  | $\operatorname{norm}(A,1)$ for 1-norm $\ A\ _1$ , $\operatorname{norm}(A)$ for 2-norm $\ A\ _2$ , $\operatorname{norm}(A,\inf)$ for infinity-norm $\ A\ _{\infty}$ , and $\operatorname{norm}(A,\inf)$ for Frobenius norm $\left(\sum_i (A^T A)_{ii}\right)^{1/2}$                                                                | norm(A,'1') for 1-norm $  A  _1$ , max(svd(A)\$d) for 2-norm $  A  _2$ , norm(A,'i') for infinity-norm $  A  _{\infty}$ , and norm(A,'f') for Frobenius norm $\left(\sum_i (A^T A)_{ii}\right)^{1/2}$                                                                                                                                                                                                        |
| 104 | Condition number cond(A) = $  A  _1   A^{-1}  _1$ of A, using 1-norm                                                                                                                                                                          | cond(A,1) (Note: MATLAB also has<br>a function rcond(A) which computes<br>reciprocal condition estimator using<br>the 1-norm)                                                                                                                                                                                                     | 1/rcond(A,'1')                                                                                                                                                                                                                                                                                                                                                                                               |
| 105 | Condition number cond(A) = $  A  _2   A^{-1}  _2$ of A, using 2-norm                                                                                                                                                                          | cond(A,2)                                                                                                                                                                                                                                                                                                                         | kappa(A, exact=TRUE) (leave out the "exact=TRUE" for an estimate)                                                                                                                                                                                                                                                                                                                                            |
| 106 | Condition number cond(A) = $  A  _{\infty}   A^{-1}  _{\infty}$ of A, using infinity-norm                                                                                                                                                     | <pre>cond(A,inf)</pre>                                                                                                                                                                                                                                                                                                            | 1/rcond(A,'I')                                                                                                                                                                                                                                                                                                                                                                                               |

| No. | Description                                                         | Matlab                                                                     | R                                             |
|-----|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|
| 107 | Compute mean of all ele-                                            | mean(v) for vectors, mean(A(:)) for                                        | mean(v) or mean(A)                            |
|     | ments in vector or matrix                                           | matrices                                                                   |                                               |
| 108 | Compute means of columns of a matrix                                | mean(A)                                                                    | colMeans(A)                                   |
| 109 | Compute means of rows of a matrix                                   | mean(A,2)                                                                  | rowMeans(A)                                   |
| 110 | Compute standard deviation                                          | std(v) for vectors, std(A(:)) for                                          | sd(v) for vectors, sd(c(A)) for ma-           |
|     | of all elements in vector or                                        | matrices. This normalizes by $n-1$ .                                       | trices. This normalizes by $n-1$ .            |
|     | matrix                                                              | Use $std(v,1)$ to normalize by $n$ .                                       |                                               |
| 111 | Compute standard deviations                                         | std(A). This normalizes by $n-1$ .                                         | sd(A). This normalizes by $n-1$ .             |
|     | of columns of a matrix                                              | Use $std(A,1)$ to normalize by $n$                                         |                                               |
| 112 | Compute standard deviations                                         | $\operatorname{std}(A,0,2)$ to normalize by $n-1$ ,                        | apply(A,1,sd). This normalizes by             |
| 110 | of rows of a matrix                                                 | $\operatorname{std}(A,1,2)$ to normalize by $n$                            | n-1.                                          |
| 113 | Compute variance of all ele-                                        | var(v) for vectors, var(A(:)) for                                          | var(v) for vectors, var(c(A)) for             |
|     | ments in vector or matrix                                           | matrices. This normalizes by $n-1$ .                                       | matrices. This normalizes by $n-1$ .          |
| 114 | Compute variance of columns                                         | Use $var(v,1)$ to normalize by $n$ .<br>var(A). This normalizes by $n-1$ . | apply(A,2,var). This normalizes by            |
| 114 | of a matrix                                                         | Use $var(A,1)$ to normalize by $n-1$ .                                     | apply (A, 2, var). This normalizes by $n-1$ . |
| 115 | Compute variance of rows of                                         | $\operatorname{var}(A,0,2)$ to normalize by $n-1$ ,                        | n-1. apply(A,1,var). This normalizes by       |
| 110 | a matrix                                                            | var(A,1,2) to normalize by $n$                                             | n-1.                                          |
| 116 | Compute covariance for two                                          | $cov(v,w)$ computes the $2 \times 2$ co-                                   | cov(v,w)                                      |
|     | vectors of observations                                             | variance matrix; the off-diagonal ele-                                     |                                               |
|     |                                                                     | ments give the desired covariance                                          |                                               |
| 117 | Compute covariance matrix,                                          | cov(A)                                                                     | var(A) or cov(A)                              |
|     | giving covariances between                                          |                                                                            |                                               |
|     | columns of matrix $A$                                               |                                                                            |                                               |
| 118 | Given matrices $A$ and $B$ ,                                        | I don't know of a direct way to                                            | cov(A,B)                                      |
|     | build covariance matrix $C$                                         | do this in Matlab. But one way is                                          |                                               |
|     | where $c_{ij}$ is the covariance between column $i$ of $A$ and col- | <pre>[Y,X]=meshgrid(std(B),std(A)); X.*Y.*corr(A,B)</pre>                  |                                               |
|     | umn $j$ of $B$                                                      | A. +1. +COII (A,B)                                                         |                                               |
| 119 | Compute Pearson's linear                                            | corr(v,w) Note: v and w must                                               | cor(v,w)                                      |
|     | correlation coefficient be-                                         | be column vectors. To make it                                              |                                               |
|     | tween elements of vectors ${f v}$                                   | work regardless of whether they                                            |                                               |
|     | and $\mathbf{w}$                                                    | are row or column vectors, do                                              |                                               |
|     |                                                                     | corr(v(:),w(:))                                                            |                                               |
| 120 | Compute Kendall's tau corre-                                        | <pre>corr(v,w,'type','kendall')</pre>                                      | cor(v,w,method='kendall')                     |
|     | lation statistic for vectors $\mathbf{v}$                           |                                                                            |                                               |
| 121 | and <b>w</b> Compute Spearman's rho                                 | corr(u u lturo) larearmani)                                                | cor(v,w,method='spearman')                    |
| 121 | Compute Spearman's rho<br>correlation statistic for                 | <pre>corr(v,w,'type','spearman')</pre>                                     | Cor(v,w,method='spearman')                    |
|     | vectors <b>v</b> and <b>w</b>                                       |                                                                            |                                               |
| 122 | Compute pairwise Pearson's                                          | corr(A) The 'type' argument may                                            | cor(A) The method argument may                |
| -   | correlation coefficient be-                                         | also be used as in the previous two                                        | also be used as in the previous two           |
|     | tween columns of matrix                                             | items                                                                      | items                                         |
|     | A                                                                   |                                                                            |                                               |
| 123 | Compute matrix $C$ of pair-                                         | corr(A,B) The 'type' argument                                              | cor(A,B) The method argument                  |
|     | wise Pearson's correlation co-                                      | may also be used as just above                                             | may also be used as just above                |
|     | efficients between each pair of                                     |                                                                            |                                               |
|     | columns of matrices $A$ and $B$ ,                                   |                                                                            |                                               |
|     | i.e. so $c_{ij}$ is the correlation                                 |                                                                            |                                               |
|     | between column $i$ of $A$ and                                       |                                                                            |                                               |
|     | column j of B                                                       |                                                                            |                                               |

| No. | Description                                                                                                                                                                                                                                          | Matlab                                                       | R                                                                                                                                                |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 124 | Compute sum of all elements                                                                                                                                                                                                                          | <pre>sum(v) for vectors, sum(A(:)) for</pre>                 | sum(v) or sum(A)                                                                                                                                 |  |
|     | in vector or matrix                                                                                                                                                                                                                                  | matrices                                                     |                                                                                                                                                  |  |
| 125 | Compute sums of columns of matrix                                                                                                                                                                                                                    | sum(A)                                                       | colSums(A)                                                                                                                                       |  |
| 126 | Compute sums of rows of matrix                                                                                                                                                                                                                       | sum(A,2)                                                     | rowSums(A)                                                                                                                                       |  |
| 127 | Compute product of all elements in vector or matrix                                                                                                                                                                                                  | <pre>prod(v) for vectors, prod(A(:)) for matrices</pre>      | prod(v) or prod(A)                                                                                                                               |  |
| 128 | Compute products of columns of matrix                                                                                                                                                                                                                | prod(A)                                                      | apply(A,2,prod)                                                                                                                                  |  |
| 129 | Compute products of rows of matrix                                                                                                                                                                                                                   | prod(A,2)                                                    | apply(A,1,prod)                                                                                                                                  |  |
| 130 | Compute matrix exponential $e^A = \sum_{k=0}^{\infty} A^k / k!$                                                                                                                                                                                      | expm(A)                                                      | expm(Matrix(A)), but this is part of<br>the Matrix package which you'll need<br>to install (see item 331 for how to in-<br>stall/load packages). |  |
| 131 | Compute cumulative sum of values in vector                                                                                                                                                                                                           | cumsum(v)                                                    | cumsum(v)                                                                                                                                        |  |
| 132 | Compute cumulative sums of columns of matrix                                                                                                                                                                                                         | cumsum(A)                                                    | apply(A,2,cumsum)                                                                                                                                |  |
| 133 | Compute cumulative sums of rows of matrix                                                                                                                                                                                                            | cumsum(A,2)                                                  | t(apply(A,1,cumsum))                                                                                                                             |  |
| 134 | Compute cumulative sum of all elements of matrix (column-by-column)                                                                                                                                                                                  | cumsum(A(:))                                                 | cumsum(A)                                                                                                                                        |  |
| 135 | Cumulative product of elements in vector <b>v</b>                                                                                                                                                                                                    | cumprod(v) (Can also be used in the various ways cumsum can) | cumprod(v) (Can also be used in the various ways cumsum can)                                                                                     |  |
| 136 | Cumulative minimum or maximum of elements in vector <b>v</b>                                                                                                                                                                                         | I don't know of an easy way to do<br>this in Matlab          | cummin(v) or cummax(v)                                                                                                                           |  |
| 137 | Compute differences between consecutive elements of vector $\mathbf{v}$ . Result is a vector $\mathbf{w}$ 1 element shorter than $\mathbf{v}$ , where element $i$ of $\mathbf{w}$ is element $i+1$ of $\mathbf{v}$ minus element $i$ of $\mathbf{v}$ | diff(v)                                                      | diff(v)                                                                                                                                          |  |
| 138 | Make a vector $\mathbf{y}$ the same size as vector $\mathbf{x}$ , which equals $4$ everywhere that $\mathbf{x}$ is greater than 5, and equals 3 everywhere else (done via a vectorized computation).                                                 | $z = [3 \ 4]; y = z((x > 5)+1)$                              | y = ifelse(x > 5, 4, 3)                                                                                                                          |  |
| 139 | Compute minimum of values in vector $\mathbf{v}$                                                                                                                                                                                                     | min(v)                                                       | min(v)                                                                                                                                           |  |
| 140 | Compute minimum of all values in matrix $\mathbf{A}$                                                                                                                                                                                                 | min(A(:))                                                    | min(A)                                                                                                                                           |  |
| 141 | Compute minimum value of each column of matrix <b>A</b>                                                                                                                                                                                              | min(A) (returns a row vector)                                | apply(A,2,min) (returns a vector)                                                                                                                |  |
| 142 | Compute minimum value of each row of matrix $\mathbf{A}$                                                                                                                                                                                             | min(A, [], 2) (returns a column vector)                      | apply(A,1,min) (returns a vector)                                                                                                                |  |

| No. | Description                                    | Matlab             | R                             |
|-----|------------------------------------------------|--------------------|-------------------------------|
| 143 | Given matrices $\mathbf{A}$ and $\mathbf{B}$ , | min(A,B)           | pmin(A,B)                     |
|     | compute a matrix where each                    |                    |                               |
|     | element is the minimum of                      |                    |                               |
|     | the corresponding elements of                  |                    |                               |
|     | ${f A}$ and ${f B}$                            |                    |                               |
| 144 | Given matrix $\mathbf{A}$ and scalar           | min(A,c)           | pmin(A,c)                     |
|     | c, compute a matrix where                      |                    |                               |
|     | each element is the minimum                    |                    |                               |
|     | of ${\bf c}$ and the corresponding el-         |                    |                               |
|     | ement of $\bf A$                               |                    |                               |
| 145 | Find minimum among all val-                    | min([A(:) ; B(:)]) | min(A,B)                      |
|     | ues in matrices ${\bf A}$ and ${\bf B}$        |                    |                               |
| 146 | Find index of the first time                   | [y,ind] = min(v)   | <pre>ind = which.min(v)</pre> |
|     | min(v) appears in $v$ , and                    |                    |                               |
|     | store that index in <b>ind</b>                 |                    |                               |

Notes:

- Matlab and R both have a max function (and R has pmax and which.max as well) which behaves in the same ways as min but to compute maxima rather than minima.
- Functions like exp, sin, sqrt etc. will operate on arrays in both Matlab and R, doing the computations for each element of the matrix.

| Mo  | Description                                                                                                                                                                                        | MATLAB                                                                                                                                                                                                     | R                                                                                                                                                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | •                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |
| 147 | Number of rows in $A$                                                                                                                                                                              | size(A,1)                                                                                                                                                                                                  | nrow(A)                                                                                                                                                                                                                                          |
| 148 | Number of columns in $A$                                                                                                                                                                           | size(A,2)                                                                                                                                                                                                  | ncol(A)                                                                                                                                                                                                                                          |
| 149 | Dimensions of $A$ , listed in a vector                                                                                                                                                             | size(A)                                                                                                                                                                                                    | dim(A)                                                                                                                                                                                                                                           |
| 150 | Number of elements in vector $\mathbf{v}$                                                                                                                                                          | length(v)                                                                                                                                                                                                  | length(v)                                                                                                                                                                                                                                        |
| 151 | Total number of elements in matrix $A$                                                                                                                                                             | numel(A)                                                                                                                                                                                                   | length(A)                                                                                                                                                                                                                                        |
| 152 | Max. dimension of $A$                                                                                                                                                                              | length(A)                                                                                                                                                                                                  | max(dim(A))                                                                                                                                                                                                                                      |
| 153 | Sort values in vector <b>v</b>                                                                                                                                                                     | sort(v)                                                                                                                                                                                                    | sort(v)                                                                                                                                                                                                                                          |
| 154 | Sort values in $\mathbf{v}$ , putting<br>sorted values in $\mathbf{s}$ , and indices<br>in $\mathbf{idx}$ , in the sense that $\mathbf{s}[\mathbf{k}]$<br>= $\mathbf{x}[\mathbf{idx}[\mathbf{k}]]$ | [s,idx]=sort(v)                                                                                                                                                                                            | <pre>tmp=sort(v,index.return=TRUE); s=tmp\$x; idx=tmp\$ix</pre>                                                                                                                                                                                  |
| 155 | Sort the order of the rows of matrix <b>m</b>                                                                                                                                                      | sortrows(m) This sorts according to the first column, then uses column 2 to break ties, then column 3 for remaining ties, etc. Complex numbers are sorted by abs(x), and ties are then broken by angle(x). | m[order(m[,1]),] This only sorts according to the first column. To use column 2 to break ties, and then column 3 to break further ties, do m[order(m[,1], m[,2], m[,3]),] Complex numbers are sorted first by real part, then by imaginary part. |
| 156 | Sort order of rows of matrix m, specifying to use columns c1, c2, c3 as the sorting "keys"                                                                                                         | sortrows(m, [c1 c2 c2])                                                                                                                                                                                    | m[order(m[,c1], m[,c2], m[,c3]),]                                                                                                                                                                                                                |

| No. | Description                                                                                                                                                                                                                                                                   | Matlab                                   | R                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 157 | Same as previous item, but<br>sort in decreasing order for<br>columns <b>c1</b> and <b>c2</b>                                                                                                                                                                                 | sortrows(m, [-c1 -c2 c2])                | m[order(-m[,c1], -m[,c2],<br>m[,c3]),]                                                                                                                                                                                                                                                                                                                                            |
| 158 | Sort order of rows of matrix <b>m</b> , and keep indices used for sorting                                                                                                                                                                                                     | [y,i] = sortrows(m)                      | i=order(m[1,]); y=m[i,]                                                                                                                                                                                                                                                                                                                                                           |
| 159 | To count how many values in<br>the vector <b>v</b> are between 4<br>and 7 (inclusive on the upper<br>end)                                                                                                                                                                     | sum((v > 4) & (v <= 7))                  | sum((v > 4) & (v <= 7))                                                                                                                                                                                                                                                                                                                                                           |
| 160 | Given vector <b>v</b> , return list of indices of elements of <b>v</b> which are greater than 5                                                                                                                                                                               | find(v > 5)                              | which(v > 5)                                                                                                                                                                                                                                                                                                                                                                      |
| 161 | Given matrix <b>A</b> , return list<br>of indices of elements of <b>A</b><br>which are greater than 5, us-<br>ing single-indexing                                                                                                                                             | find(A > 5)                              | which(A > 5)                                                                                                                                                                                                                                                                                                                                                                      |
| 162 | Given matrix <b>A</b> , generate vectors <b>r</b> and <b>c</b> giving rows and columns of elements of <b>A</b> which are greater than 5                                                                                                                                       | [r,c] = find(A > 5)                      | <pre>w = which(A &gt; 5, arr.ind=TRUE); r=w[,1]; c=w[,2]</pre>                                                                                                                                                                                                                                                                                                                    |
| 163 | Given vector <b>x</b> (of presumably discrete values), build a vector <b>v</b> listing unique values in <b>x</b> , and corresponding vector <b>c</b> indicating how many times those values appear in <b>x</b>                                                                | <pre>v = unique(x); c = hist(x,v);</pre> | <pre>w=table(x); c=as.numeric(w); v=as.numeric(names(w))</pre>                                                                                                                                                                                                                                                                                                                    |
| 164 | Given vector $\mathbf{x}$ (of presumably continuous values), divide the range of values into $k$ equally-sized bins, and build a vector $\mathbf{m}$ containing the midpoints of the bins and a corresponding vector $\mathbf{c}$ containing the counts of values in the bins | [c,m] = hist(x,k)                        | <pre>w=hist(x,seq(min(x),max(x), length.out=k+1), plot=FALSE); m=w\$mids; c=w\$counts</pre>                                                                                                                                                                                                                                                                                       |
| 165 | Convolution / polynomial multiplication (given vectors <b>x</b> and <b>y</b> containing polynomial coefficients, their convolution is a vector containing coefficients of the product of the two polynomials)                                                                 | conv(x,y)                                | convolve(x,rev(y),type='open')<br>Note: the accuracy of this is not<br>as good as MATLAB; e.g. doing<br>v=c(1,-1); for (i in 2:20)<br>v=convolve(v,c(-i,1),<br>type='open') to generate the<br>$20^{\text{th}}$ -degree Wilkinson polynomial<br>$W(x) = \prod_{i=1}^{20} (x-i)$ gives a coefficient<br>of $\approx -780.19$ for $x^{19}$ , rather than the<br>correct value -210. |

#### 3.4 Root-finding

| No. | Description                                          | Matlab                                    | R                                                         |
|-----|------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| 166 | Find roots of polynomial                             | roots(v)                                  | polyroot(rev(v)) (This function                           |
|     | whose coefficients are stored                        |                                           | really wants the vector to have the                       |
|     | in vector $\mathbf{v}$ (coefficients in $\mathbf{v}$ |                                           | constant coefficient first in <b>v</b> ; <b>rev</b> re-   |
|     | are highest-order first)                             |                                           | verses their order to achieve this.)                      |
| 167 | Find zero (root) of a function                       | Define function $f(x)$ , then do          | Define function $f(x)$ , then do                          |
|     | f(x) of one variable                                 | fzero(f,x0) to search for a root          | uniroot(f, c(a,b)) to find a root                         |
|     |                                                      | near $x0$ , or fzero(f,[a b]) to find     | between $a$ and $b$ , assuming the sign                   |
|     |                                                      | a root between $a$ and $b$ , assuming     | of $f(x)$ differs at $x = a$ and $x = b$ .                |
|     |                                                      | the sign of $f(x)$ differs at $x = a$     | Default forward error tolerance (i.e.                     |
|     |                                                      | and $x = b$ . Default forward error       | error in $x$ ) is fourth root of machine                  |
|     |                                                      | tolerance (i.e. error in $x$ ) is machine | epsilon, $(\epsilon_{\rm mach})^{0.25}$ . To specify e.g. |
|     |                                                      | epsilon $\epsilon_{\text{mach}}$ .        | a tolerance of $2^{-52}$ , do uniroot(f,                  |
|     |                                                      |                                           | c(a,b), tol=2^-52).                                       |

### 3.5 Function optimization/minimization

| No. | Description                                                                                                                                                                                                                                                                                                                | Matlab                                                                                                                                                                                                                                                                                                                        | R                                                                                                                                                                                                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 168 | Find value $m$ which mini-                                                                                                                                                                                                                                                                                                 | Define function $f(x)$ , then do                                                                                                                                                                                                                                                                                              | Define function $f(x)$ , then do                                                                                                                                                                                                                                                     |
|     | mizes a function $f(x)$ of one variable within the interval from $a$ to $b$                                                                                                                                                                                                                                                | m = fminbnd(f, a, b)                                                                                                                                                                                                                                                                                                          | <pre>m = optimize(f,c(a,b))\$minimum</pre>                                                                                                                                                                                                                                           |
| 169 | Find value $m$ which minimizes a function $f(x, p_1, p_2)$ with given extra parameters (but minimization is only occurring over the first argument), in the interval from $a$ to $b$ .                                                                                                                                     | Define function f(x,p1,p2), then use an "anonymous function":  % first define values for p1 % and p2, and then do: m=fminbnd(@(x) f(x,p1,p2),a,b)                                                                                                                                                                             | Define function f(x,p1,p2), then:  # first define values for p1 # and p2, and then do: m = optimize(f, c(a,b), p1=p1, p2=p2)\$minimum                                                                                                                                                |
| 170 | Find values of $x, y, z$ which minimize function $f(x, y, z)$ , using a starting guess of $x = 1$ , $y = 2.2$ , and $z = 3.4$ .                                                                                                                                                                                            | First write function $f(\mathbf{v})$ which accepts a vector argument $\mathbf{v}$ containing values of $x, y,$ and $z,$ and returns the scalar value $f(x, y, z),$ then do:  fminsearch(@f,[1 2.2 3.4])                                                                                                                       | First write function $f(\mathbf{v})$ which accepts a vector argument $\mathbf{v}$ containing values of $x$ , $y$ , and $z$ , and returns the scalar value $f(x, y, z)$ , then do:  optim(c(1,2.2,3.4),f)\$par                                                                        |
| 171 | Find values of $x, y, z$ which minimize function $f(x, y, z, p_1, p_2)$ , using a starting guess of $x = 1$ , $y = 2.2$ , and $z = 3.4$ , where the function takes some extra parameters (useful e.g. for doing things like nonlinear least-squares optimization where you pass in some data vectors as extra parameters). | First write function $f(v,p1,p2)$ which accepts a vector argument $v$ containing values of $x$ , $y$ , and $z$ , along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2)$ , then do:  fminsearch(@f,[1 2.2 3.4], [], p1, p2)  Or use an anonymous function:  fminsearch(@(x) f(x,p1,p2), [1 2.2 3.4]) | First write function $f(\mathbf{v},\mathbf{p1},\mathbf{p2})$ which accepts a vector argument $\mathbf{v}$ containing values of $x, y,$ and $z,$ along with the extra parameters, and returns the scalar value $f(x,y,z,p_1,p_2),$ then do: optim(c(1,2.2,3.4), f, p1=p1, p2=p2)\$par |

#### ${\bf 3.6}\quad {\bf Numerical\ integration\ /\ quadrature}$

| No. | Description                              | Matlab                               | R                                                                 |
|-----|------------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| 172 | Numerically integrate func-              | quad(f,a,b) uses adaptive Simp-      | integrate(f,a,b) uses adaptive                                    |
|     | tion $f(x)$ over interval from           | son's quadrature, with a default     | quadrature with default absolute                                  |
|     | a  to  b                                 | absolute tolerance of $10^{-6}$ . To | and relative error tolerances being                               |
|     |                                          | specify absolute tolerance, use      |                                                                   |
|     |                                          | quad(f,a,b,tol)                      | $(\epsilon_{\rm mach})^{0.25} \approx 1.22 \times 10^{-4}$ . Tol- |
|     |                                          |                                      | erances can be specified by using                                 |
|     |                                          |                                      | <pre>integrate(f,a,b, rel.tol=tol1,</pre>                         |
|     |                                          |                                      | abs.tol=tol2). Note that the func-                                |
|     |                                          |                                      | tion f must be written to work even                               |
|     |                                          |                                      | when given a vector of $x$ values as its                          |
|     |                                          |                                      | argument.                                                         |
| 173 | Simple trapezoidal numerical             | trapz(x,y)                           | <pre>sum(diff(x)*(y[-length(y)]+</pre>                            |
|     | integration using $(x, y)$ values        |                                      | y[-1])/2)                                                         |
|     | in vectors $\mathbf{x}$ and $\mathbf{y}$ |                                      |                                                                   |

#### 3.7 Curve fitting

| No. | Description                                                                                                                                                                                                                                                                                                                                                                                           | Matlab                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 174 | Fit the line $y = c_1 x + c_0$ to data in vectors $\mathbf{x}$ and $\mathbf{y}$ .                                                                                                                                                                                                                                                                                                                     | p = polyfit(x,y,1)                                                                                                                                                                                                                                               | p = coef(lm(y ~ x))                                                                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                       | The return vector $\mathbf{p}$ has the coefficients in descending order, i.e. $\mathbf{p}(1)$ is $c_1$ , and $\mathbf{p}(2)$ is $c_0$ .                                                                                                                          | The return vector $\mathbf{p}$ has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is $c_0$ , and $\mathbf{p}[2]$ is $c_1$ .                                                                                                                                                    |
| 175 | Fit the quadratic polynomial $y = c_2 x^2 + c_1 x + c_0$ to data in vectors $\mathbf{x}$ and $\mathbf{y}$ .                                                                                                                                                                                                                                                                                           | p = polyfit(x,y,2)                                                                                                                                                                                                                                               | $p = coef(lm(y ~x + I(x^2)))$                                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                       | The return vector $\mathbf{p}$ has the coefficients in descending order, i.e. $\mathbf{p(1)}$ is $c_2$ , $\mathbf{p(2)}$ is $c_1$ , and $\mathbf{p(3)}$ is $c_0$ .                                                                                               | The return vector $\mathbf{p}$ has the coefficients in ascending order, i.e. $\mathbf{p[1]}$ is $c_0$ , $\mathbf{p[2]}$ is $c_1$ , and $\mathbf{p[3]}$ is $c_2$ .                                                                                                                         |
| 176 | Fit $n^{\text{th}}$ degree polynomial $y = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_1 x + c_0$ to data in vectors $\mathbf{x}$                                                                                                                                                                                                                                                                          | <pre>p = polyfit(x,y,n)</pre>                                                                                                                                                                                                                                    | No simple built-in way. But this will work: coef(lm(as.formula(paste('y~',paste('I(x~',1:n,')',                                                                                                                                                                                           |
|     | and $\mathbf{y}$ .                                                                                                                                                                                                                                                                                                                                                                                    | The return vector $\mathbf{p}$ has the coefficients in descending order, $\mathbf{p}(1)$ is $c^n$ , $\mathbf{p}(2)$ is $c^{n-1}$ , etc.                                                                                                                          | sep='',collapse='+')))) This more concise "lower-level" method will also work: coef(lm.fit(outer(x,0:n,'^'),y)) Note that both of the above return the coefficients in ascending order. Also see the polyreg function in the mda package (see item 331 for how to install/load packages). |
| 177 | Fit the quadratic polynomial with zero intercept, $y = c_2x^2 + c_1x$ to data in vectors $\mathbf{x}$ and $\mathbf{y}$ .                                                                                                                                                                                                                                                                              | (I don't know a simple way do this<br>in MATLAB, other than to write a<br>function which computes the sum<br>of squared residuals and use <b>fmin-</b><br><b>search</b> on that function. There is<br>likely an easy way to do it in the<br>Statistics Toolbox.) | p=coef(lm(y ~ -1 + x + I(x^2)))  The return vector $\mathbf{p}$ has the coefficients in ascending order, i.e. $\mathbf{p}[1]$ is $c_1$ , and $\mathbf{p}[2]$ is $c_2$ .                                                                                                                   |
| 178 | Fit natural cubic spline $(S''(x)) = 0$ at both endpoints) to points $(x_i, y_i)$ whose coordinates are in vectors $\mathbf{x}$ and $\mathbf{y}$ ; evaluate at points whose $x$ coordinates are in vector $\mathbf{x}\mathbf{x}$ , storing corresponding $y$ 's in $\mathbf{y}\mathbf{y}$                                                                                                             | <pre>pp=csape(x,y,'variational'); yy=ppval(pp,xx) but note that csape is in MATLAB's Spline Toolbox</pre>                                                                                                                                                        | <pre>tmp=spline(x,y,method='natural', xout=xx); yy=tmp\$y</pre>                                                                                                                                                                                                                           |
| 179 | Fit cubic spline using Forsythe, Malcolm and Moler method (third derivatives at endpoints match third derivatives of exact cubics through the four points at each end) to points $(x_i, y_i)$ whose coordinates are in vectors $\mathbf{x}$ and $\mathbf{y}$ ; evaluate at points whose $x$ coordinates are in vector $\mathbf{x}\mathbf{x}$ , storing corresponding $y$ 's in $\mathbf{y}\mathbf{y}$ | I'm not aware of a function to do this in Matlab                                                                                                                                                                                                                 | <pre>tmp=spline(x,y,xout=xx); yy=tmp\$y</pre>                                                                                                                                                                                                                                             |

| No. | Description                                         | Matlab                                    | R                                      |
|-----|-----------------------------------------------------|-------------------------------------------|----------------------------------------|
| 180 | Fit cubic spline such that                          | <pre>pp=csape(x,y); yy=ppval(pp,xx)</pre> | I'm not aware of a function to do this |
|     | first derivatives at endpoints                      | but <b>csape</b> is in Matlab's Spline    | in R                                   |
|     | match first derivatives of ex-                      | Toolbox                                   |                                        |
|     | act cubics through the four                         |                                           |                                        |
|     | points at each end) to points                       |                                           |                                        |
|     | $(x_i, y_i)$ whose coordinates are                  |                                           |                                        |
|     | in vectors $\mathbf{x}$ and $\mathbf{y}$ ; evaluate |                                           |                                        |
|     | at points whose $x$ coordinates                     |                                           |                                        |
|     | are in vector $\mathbf{x}\mathbf{x}$ , storing cor- |                                           |                                        |
|     | responding $y$ 's in $yy$                           |                                           |                                        |
| 181 | Fit cubic spline with periodic                      | <pre>pp=csape(x,y,'periodic');</pre>      | tmp=spline(x,y,method=                 |
|     | boundaries, i.e. so that first                      | yy=ppval(pp,xx) but <b>csape</b> is in    | 'periodic', xout=xx); yy=tmp\$y        |
|     | and second derivatives match                        | Matlab's Spline Toolbox                   |                                        |
|     | at the left and right ends                          |                                           |                                        |
|     | (the first and last $y$ values                      |                                           |                                        |
|     | of the provided data should                         |                                           |                                        |
|     | also agree), to points $(x_i, y_i)$                 |                                           |                                        |
|     | whose coordinates are in vec-                       |                                           |                                        |
|     | tors $\mathbf{x}$ and $\mathbf{y}$ ; evaluate at    |                                           |                                        |
|     | points whose $x$ coordinates                        |                                           |                                        |
|     | are in vector $\mathbf{x}\mathbf{x}$ , storing cor- |                                           |                                        |
|     | responding $y$ 's in $yy$                           |                                           |                                        |
| 182 | Fit cubic spline with "not-                         | <pre>yy=spline(x,y,xx)</pre>              | I'm not aware of a function to do this |
|     | a-knot" conditions (the first                       |                                           | in R                                   |
|     | two piecewise cubics coincide,                      |                                           |                                        |
|     | as do the last two), to points                      |                                           |                                        |
|     | $(x_i, y_i)$ whose coordinates are                  |                                           |                                        |
|     | in vectors $\mathbf{x}$ and $\mathbf{y}$ ; evaluate |                                           |                                        |
|     | at points whose $x$ coordinates                     |                                           |                                        |
|     | are in vector $\mathbf{x}\mathbf{x}$ , storing cor- |                                           |                                        |
|     | responding $y$ 's in $yy$                           |                                           |                                        |

### 4 Conditionals, control structure, loops

| No. | Description                                                              | Matlab               | R                                                  |
|-----|--------------------------------------------------------------------------|----------------------|----------------------------------------------------|
| 183 | "for" loops over values in a vector <b>v</b> (the vector <b>v</b> is of- | for i=v              | If only one command inside the loop:  for (i in v) |
|     | ten constructed via <b>a:b</b> )                                         | command1<br>command2 | command                                            |
|     |                                                                          | end                  | or                                                 |
|     |                                                                          |                      | for (i in v) command                               |
|     |                                                                          |                      | If multiple commands inside the loop:              |
|     |                                                                          |                      | <pre>for (i in v) {   command1   command2 }</pre>  |
|     |                                                                          |                      |                                                    |

| No. Description          | MATLAB                                           | R                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 184 "if" statemen clause | if cond command1 command2 end                    | If only one command inside the clause:  if (cond) command  or  if (cond) command  If multiple commands:  if (cond) { command1 command2 }                                                                                                                                                                                                                                                                                                        |
| 185 "if/else" state      | if cond command1 command2 else command3 command4 | If one command in clauses:  if (cond)     command1 else     command2  or  if (cond) cmd1 else cmd2  If multiple commands:  if (cond) {     command1     command2 } else {     command3     command4 }  Warning: the "else" must be on the same line as command1 or the "}"     (when typed interactively at the command prompt), otherwise R thinks the "if" statement was finished and gives an error.  R does not have an "elseif" statement. |

 $\label{logical comparisons} \mbox{ Logical comparisons which can be used on scalars in "if" statements, or which operate element-by-element on vectors/matrices:$ 

| MATLAB | R      | Description                                 |
|--------|--------|---------------------------------------------|
| x < a  | x < a  | True if $x$ is less than $a$                |
| x > a  | x > a  | True if $x$ is greater than $a$             |
| x <= a | x <= a | True if $x$ is less than or equal to $a$    |
| x >= a | x >= a | True if $x$ is greater than or equal to $a$ |
| x == a | x == a | True if $x$ is equal to $a$                 |
| x ~= a | x != a | True if $x$ is not equal to $a$             |

Scalar logical operators:

| Description | Matlab   | R        |
|-------------|----------|----------|
| a AND b     | a && b   | a && b   |
| a OR b      | a    b   | a    b   |
| a XOR b     | xor(a,b) | xor(a,b) |
| NOT a       | ~a       | !a       |

The && and | | operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and | | stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

| Description | Matlab   | R        |
|-------------|----------|----------|
| a AND b     | a & b    | a & b    |
| a OR b      | a   b    | a   b    |
| a XOR b     | xor(a,b) | xor(a,b) |
| NOT a       | ~a       | !a       |

| No. | Description                             | Matlab                       | R                        |
|-----|-----------------------------------------|------------------------------|--------------------------|
| 186 | To test whether a scalar value          | if $((x > 4) \&\& (x <= 7))$ | if ((x > 4) && (x <= 7)) |
|     | $\mathbf{x}$ is between 4 and 7 (inclu- |                              |                          |
|     | sive on the upper end)                  |                              |                          |
| 187 | To count how many values in             | sum((x > 4) & (x <= 7))      | sum((x > 4) & (x <= 7))  |
|     | the vector $\mathbf{x}$ are between 4   |                              |                          |
|     | and 7 (inclusive on the upper           |                              |                          |
|     | end)                                    |                              |                          |
| 188 | Test whether all values in              | all(v)                       | all(v)                   |
|     | a logical/boolean vector are            |                              |                          |
|     | TRUE                                    |                              |                          |
| 189 | Test whether any values in              | any(v)                       | any(v)                   |
|     | a logical/boolean vector are            |                              |                          |
|     | TRUE                                    |                              |                          |

| No. | Description                                                                                                                                                                                                               | MATLAB                                                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 190 | "while" statements to do iteration (useful when you don't know ahead of time how many iterations you'll need). E.g. to add uniform random numbers between 0 and 1 (and their squares) until their sum is greater than 20: | <pre>mysum = 0; mysumsqr = 0; while (mysum &lt; 20)   r = rand;   mysum = mysum + r;   mysumsqr = mysumsqr + r^2; end</pre>         | <pre>mysum = 0 mysumsqr = 0 while (mysum &lt; 20) {     r = runif(1)     mysum = mysum + r     mysumsqr = mysumsqr + r^2 }  (As with "if" statements and "for" loops, the curly brackets are not necessary if there's only one statement inside the "while" loop.)</pre>                                                                                                                                                                                                                                                               |
| 191 | More flow control: these commands exit or move on to the next iteration of the innermost <b>while</b> or <b>for</b> loop, respectively.                                                                                   | break and continue                                                                                                                  | break and next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 192 | "Switch" statements for integers                                                                                                                                                                                          | <pre>switch (x)   case 10     disp('ten')   case {12,13}     disp('dozen (bakers?)')   otherwise     disp('unrecognized') end</pre> | R doesn't have a <b>switch</b> statement capable of doing this. It has a function which is fairly limited for integers, but can which do string matching. See ?switch for more. But a basic example of what it can do for integers is below, showing that you can use it to return different expressions based on whether a value is 1, 2,  mystr = switch(x, 'one', 'two', 'three'); print(mystr)  Note that switch returns NULL if x is larger than 3 in the above case. Also, continuous values of x will be truncated to integers. |

# 5 Functions, ODEs

| No. | Description                                                                                                                         | Matlab                                                                                                                               | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 193 | $\begin{array}{ccc} \text{Implement} & \text{a} & \text{function} \\ \textbf{add}(\mathbf{x}, \mathbf{y}) & & & & & \\ \end{array}$ | Put the following in add.m:  function retval=add(x,y)  retval = x+y;  Then you can do e.g. add(2,3)                                  | Enter the following, or put it in a file and source that file:  add = function(x,y) {   return(x+y) }  Then you can do e.g. add(2,3). Note, the curly brackets aren't needed if your function only has one line. Also, the return keyword is optional in the above example, as the value of the last expression in a function gets returned, so just x+y would work too.                                                                                                                                                    |
| 194 | Implement a function $f(x,y,z)$ which returns multiple values, and store those return values in variables $u$ and $v$               | Write function as follows:  function [a,b] = f(x,y,z)   a = x*y+z; b=2*sin(x-z);  Then call the function by doing: [u,v] = f(2,8,12) | Write function as follows:  f = function(x,y,z) {     a = x*y+z; b=2*sin(x-z)     return(list(a,b)) }  Then call the function by doing: tmp=f(2,8,12); u=tmp[[1]]; v=tmp[[2]]. The above is most general, and will work even when u and v are different types of data. If they are both scalars, the function could simply return them packed in a vector, i.e. return(c(a,b)). If they are vectors of the same size, the function could return them packed together into the columns of a matrix, i.e. return(cbind(a,b)). |

| No. | Description                                                                                                                                                                           | Matlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 195 | Numerically solve ODE                                                                                                                                                                 | First implement function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | First implement function                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 130 | dx/dt = 5x from $t = 3$ to $t = 12$ with initial condition $x(3) = 7$                                                                                                                 | function retval=f(t,x) retval = 5*x;  Then do ode45(@f,[3,12],7) to plot solution, or [t,x]=ode45(@f,[3,12],7) to get back vector t containing time values and vector x containing correspond- ing function values. If you want                                                                                                                                                                                                                                                                                                                                          | <pre>f = function(t,x,parms) { return(list(5*x)) } Then do y=lsoda(7, seq(3,12, 0.1), f,NA) to obtain solution values at times 3,3.1,3.2,,11.9,12. The first column of y, namely y[,1]</pre>                                                                                                                                                                                                                                                                                                       |
| 100 |                                                                                                                                                                                       | function values at specific times,<br>e.g. 3,3.1,3.2,,11.9,12, you can<br>do [t,x]=ode45(@f,3:0.1:12,7).<br>Note: in older versions of MATLAB,<br>use 'f' instead of @f.                                                                                                                                                                                                                                                                                                                                                                                                 | contains the time values; the second column y[,2] contains the corresponding function values. Note: <b>lsoda</b> is part of the <b>deSolve</b> package (see item 331 for how to install/load packages).                                                                                                                                                                                                                                                                                            |
| 196 | Numerically solve system of ODEs $dw/dt = 5w$ , $dz/dt = 3w + 7z$ from $t = 3$ to $t = 12$ with initial conditions $w(3) = 7$ , $z(3) = 8.2$                                          | First implement function  function retval=myfunc(t,x) $w = x(1); z = x(2);$ $retval = zeros(2,1);$ $retval(1) = 5*w;$ $retval(2) = 3*w + 7*z;$ Then do  ode45(@myfunc,[3,12],[7; 8.2]) to plot solution, or $[t,x]=ode45(@myfunc,[3,12],[7;$ 8.2]) to get back vector t containing time values and matrix x, whose first column containing corresponding $w(t)$ values and second column contains $z(t)$ values. If you want function values at specific times, e.g. 3,3.1,3.2,,11.9,12, you can do $[t,x]=ode45(@myfunc,3:0.1:12,[7;8.2])$ . Note: in older versions of | First implement function  myfunc = function(t,x,parms) { $w = x[1]; z = x[2];$ return(list(c(5*w, 3*w+7*z))) }  Then do y=lsoda(c(7,8.2), seq(3,12, 0.1), myfunc,NA) to obtain solution values at times 3,3.1,3.2,,11.9,12. The first column of y, namely y[,1] contains the time values; the second column y[,2] contains the corresponding values of $w(t)$ ; and the third column contains $z(t)$ . Note: lsoda is part of the deSolve package (see item 331 for how to install/load packages). |
| 197 | Pass parameters such as $r = 1.3$ and $K = 50$ to an ODE function from the command line, solving $dx/dt = rx(1 - x/K)$ from $t = 0$ to $t = 20$ with initial condition $x(0) = 2.5$ . | MATLAB, use 'f' instead of @f.  First implement function  function retval=func2(t,x,r,K)  retval = r*x*(1-x/K)  Then do ode45(@func2,[0 20], 2.5, [], 1.3, 50). The empty matrix is necessary between the initial condition and the beginning of your extra parameters.                                                                                                                                                                                                                                                                                                  | First implement function  func2=function(t,x,parms) {   r=parms[1]; K=parms[2]   return(list(r*x*(1-x/K))) }  Then do  y=lsoda(2.5,seq(0,20,0.1),   func2,c(1.3,50))  Note: lsoda is part of the deSolve   package (see item 331 for how to in- stall/load packages).                                                                                                                                                                                                                              |

# 6 Probability and random values

| No. | Description                                                                                              | Matlab                                                                                                                                                                                                                                | R                                                                                                                                                                                                             |
|-----|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 198 | Generate a continuous uniform random value between 0 and 1                                               | rand                                                                                                                                                                                                                                  | runif(1)                                                                                                                                                                                                      |
| 199 | Generate vector of $n$ uniform random vals between 0 and 1                                               | rand(n,1) or rand(1,n)                                                                                                                                                                                                                | runif(n)                                                                                                                                                                                                      |
| 200 | Generate $m \times n$ matrix of uniform random values between 0 and 1                                    | rand(m,n)                                                                                                                                                                                                                             | <pre>matrix(runif(m*n),m,n) or just matrix(runif(m*n),m)</pre>                                                                                                                                                |
| 201 | Generate $m \times n$ matrix of continuous uniform random values between $a$ and $b$                     | a+rand(m,n)*(b-a) or if you<br>have the Statistics toolbox then<br>unifrnd(a,b,m,n)                                                                                                                                                   | <pre>matrix(runif(m*n,a,b),m)</pre>                                                                                                                                                                           |
| 202 | Generate a random integer between 1 and $k$                                                              | floor(k*rand) + 1                                                                                                                                                                                                                     | floor(k*runif(1)) + 1 Note:<br>sample(k)[1] would also work, but I<br>believe in general will be less efficient,<br>because that actually generates many<br>random numbers and then just uses<br>one of them. |
| 203 | Generate $m \times n$ matrix of discrete uniform random integers between 1 and $k$                       | floor(k*rand(m,n))+1 or if you<br>have the Statistics toolbox then<br>unidrnd(k,m,n)                                                                                                                                                  | floor(k*matrix(runif(m*n),m))+1                                                                                                                                                                               |
| 204 | Generate $m \times n$ matrix where each entry is 1 with probability $p$ , otherwise is 0                 | <pre>(rand(m,n)<p)*1 (true="" 1="" also="" back="" by="" could="" do="" double(rand(m,n)<p)<="" false)="" into="" logical="" multiplying="" note:="" numeric="" pre="" re-="" sult="" the="" turns="" values.="" you=""></p)*1></pre> | (matrix(runif(m,n),m) <p)*1<br>(Note: multiplying by 1 turns the logical (true/false) result back into numeric values; using as.numeric() to do it would lose the shape of the matrix.)</p)*1<br>             |
| 205 | Generate $m \times n$ matrix where each entry is $a$ with probability $p$ , otherwise is $b$             | b + (a-b)*(rand(m,n) <p)< td=""><td>b + (a-b)*(matrix(<br/>runif(m,n),m)<p)< td=""></p)<></td></p)<>                                                                                                                                  | b + (a-b)*(matrix(<br>runif(m,n),m) <p)< td=""></p)<>                                                                                                                                                         |
| 206 | Generate a random integer between $a$ and $b$ inclusive                                                  | floor((b-a+1)*rand)+a or if you<br>have the Statistics toolbox then<br>unidrnd(b-a+1)+a-1                                                                                                                                             | floor((b-a+1)*runif(1))+a                                                                                                                                                                                     |
| 207 | Flip a coin which comes up heads with probability $p$ , and perform some action if it does come up heads | <pre>if (rand &lt; p)   some commands end</pre>                                                                                                                                                                                       | <pre>if (runif(1) &lt; p) {   some commands }</pre>                                                                                                                                                           |
| 208 | Generate a random permutation of the integers $1, 2, \ldots, n$                                          | randperm(n)                                                                                                                                                                                                                           | sample(n)                                                                                                                                                                                                     |
| 209 | Generate a random selection of $k$ unique integers between 1 and $n$ (i.e. sampling without replacement) | <pre>[s,idx]=sort(rand(n,1)); ri=idx(1:k) or another way is ri=randperm(n); ri=ri(1:k). Or if you have the Statistics Toolbox, then randsample(n,k)</pre>                                                                             | ri=sample(n,k)                                                                                                                                                                                                |
| 210 | Choose $k$ values (with replacement) from the vector $\mathbf{v}$ , storing result in $\mathbf{w}$       | L=length(v);<br>w=v(floor(L*rand(k,1))+1) Or,<br>if you have the Statistics Toolbox,<br>w=randsample(v,k)                                                                                                                             | w=sample(v,k,replace=TRUE)                                                                                                                                                                                    |

| No. | Description                               | Matlab                                  | R                           |
|-----|-------------------------------------------|-----------------------------------------|-----------------------------|
| 211 | Choose k values (without re-              | <pre>L=length(v); ri=randperm(L);</pre> | w=sample(v,k,replace=FALSE) |
|     | placement) from the vector $\mathbf{v}$ , | ri=ri(1:k); w=v(ri) Or, if              |                             |
|     | storing result in w                       | you have the Statistics Toolbox,        |                             |
|     |                                           | w=randsample(v,k)                       |                             |
| 212 | Set the random-number gen-                | rand('state', 12) Note: begin-          | set.seed(12)                |
|     | erator back to a known state              | ning in Matlab 7.7, use this in-        |                             |
|     | (useful to do at the beginning            | stead: RandStream('mt19937ar',          |                             |
|     | of a stochastic simulation                | 'Seed', 12) though the previous         |                             |
|     | when debugging, so you'll get             | method is still supported for now.      |                             |
|     | the same sequence of random               |                                         |                             |
|     | numbers each time)                        |                                         |                             |

Note that the "\*rnd," "\*pdf," and "\*cdf" functions described below are all part of the MATLAB Statistics Toolbox, and not part of the core MATLAB distribution.

|     | Statistics Toolbox, and not part of the core MATLAB distribution. |                                       |                                     |  |
|-----|-------------------------------------------------------------------|---------------------------------------|-------------------------------------|--|
| No. | Description                                                       | Matlab                                | R                                   |  |
| 213 | Generate a random value                                           | binornd(n,p)                          | rbinom(1,n,p)                       |  |
|     | from the binomial $(n, p)$ dis-                                   |                                       |                                     |  |
|     | tribution                                                         |                                       |                                     |  |
| 214 | Generate a random value                                           | poissrnd(lambda)                      | rpois(1,lambda)                     |  |
|     | from the Poisson distribution                                     |                                       |                                     |  |
|     | with parameter $\lambda$                                          |                                       |                                     |  |
| 215 | Generate a random value                                           | exprnd(mu) or -mu*log(rand) will      | rexp(1, 1/mu)                       |  |
|     | from the exponential distri-                                      | work even without the Statistics      |                                     |  |
|     | bution with mean $\mu$                                            | Toolbox.                              |                                     |  |
| 216 | Generate a random value                                           | unidrnd(k) or floor(rand*k)+1         | sample(k,1)                         |  |
|     | from the discrete uniform dis-                                    | will work even without the Statistics |                                     |  |
|     | tribution on integers $1 \dots k$                                 | Toolbox.                              |                                     |  |
| 217 | Generate $n$ iid random values                                    | unidrnd(k,n,1) or                     | sample(k,n,replace=TRUE)            |  |
|     | from the discrete uniform dis-                                    | floor(rand(n,1)*k)+1 will work        |                                     |  |
|     | tribution on integers $1 \dots k$                                 | even without the Statistics Toolbox.  |                                     |  |
| 218 | Generate a random value                                           | unifrnd(a,b) or (b-a)*rand + a        | runif(1,a,b)                        |  |
|     | from the continuous uniform                                       | will work even without the Statistics |                                     |  |
|     | distribution on the interval                                      | Toolbox.                              |                                     |  |
|     | (a,b)                                                             |                                       |                                     |  |
| 219 | Generate a random value                                           | normrnd(mu,sigma) or                  | rnorm(1,mu,sigma)                   |  |
|     | from the normal distribution                                      | mu + sigma*randn will work            |                                     |  |
|     | with mean $\mu$ and standard                                      | even without the Statistics Toolbox.  |                                     |  |
|     | deviation $\sigma$                                                |                                       |                                     |  |
| 220 | Generate a random vector                                          | mnrnd(n,p)                            | rmultinom(1,n,p)                    |  |
|     | from the multinomial distri-                                      |                                       |                                     |  |
|     | bution, with <b>n</b> trials and                                  |                                       |                                     |  |
|     | probability vector <b>p</b>                                       |                                       |                                     |  |
| 221 | Generate j random vectors                                         | mnrnd(n,p,j)                          | rmultinom(j,n,p)                    |  |
|     | from the multinomial distri-                                      | The vectors are returned as rows of   | The vectors are returned as columns |  |
|     | bution, with <b>n</b> trials and                                  | a matrix                              | of a matrix                         |  |
|     | probability vector <b>p</b>                                       |                                       |                                     |  |
|     |                                                                   |                                       |                                     |  |

Notes:

• The Matlab "\*rnd" functions above can all take additional  $\mathbf{r}$ ,  $\mathbf{c}$  arguments to build an  $r \times c$  matrix of iid random values. E.g.  $\mathtt{poissrnd(3.5,4,7)}$  for a  $4 \times 7$  matrix of iid values from the Poisson distribution with mean  $\lambda = 3.5$ . The  $\mathtt{unidrnd(k,n,1)}$  command above is an example of this, to generate a  $k \times 1$  column vector.

• The first parameter of the R "r\*" functions above specifies how many values are desired. E.g. to generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

| No. | Description                                   | Matlab                                                | R                             |
|-----|-----------------------------------------------|-------------------------------------------------------|-------------------------------|
| 222 | Compute probability that                      | binopdf(x,n,p) or                                     | dbinom(x,n,p)                 |
|     | a random variable from the                    | $nchoosek(n,x)*p^x*(1-p)^(n-x)$                       |                               |
|     | Binomial $(n, p)$ distribution                | will work even without the Statistics                 |                               |
|     | has value $\mathbf{x}$ (i.e. the density,     | Toolbox, as long as $\mathbf{n}$ and $\mathbf{x}$ are |                               |
|     | or pdf).                                      | non-negative integers and $0 \leq \mathbf{p}$         |                               |
|     |                                               | $\leq 1$ .                                            |                               |
| 223 | Compute probability that a                    | poisspdf(x,lambda) or                                 | dpois(x,lambda)               |
|     | random variable from the                      | exp(-lambda)*lambda^x /                               |                               |
|     | Poisson( $\lambda$ ) distribution has         | factorial(x) will work even                           |                               |
|     | value $\mathbf{x}$ .                          | without the Statistics Toolbox, as                    |                               |
|     |                                               | long as $\mathbf{x}$ is a non-negative integer        |                               |
|     |                                               | and $lambda \ge 0$ .                                  |                               |
| 224 | Compute probability density                   | exppdf(x,mu) or                                       | dexp(x,1/mu)                  |
|     | function at $\mathbf{x}$ for a random         | (x>=0)*exp(-x/mu)/mu will work                        |                               |
|     | variable from the exponential                 | even without the Statistics Toolbox,                  |                               |
|     | distribution with mean $\mu$ .                | as long as <b>mu</b> is positive.                     |                               |
| 225 | Compute probability density                   | normpdf(x,mu,sigma) or                                | dnorm(x,mu,sigma)             |
|     | function at $\mathbf{x}$ for a random         | $\exp(-(x-mu)^2/(2*sigma^2))/$                        |                               |
|     | variable from the Normal dis-                 | (sqrt(2*pi)*sigma) will work even                     |                               |
|     | tribution with mean $\mu$ and                 | without the Statistics Toolbox.                       |                               |
|     | standard deviation $\sigma$ .                 |                                                       |                               |
| 226 | Compute probability density                   | unifpdf(x,a,b) or                                     | <pre>dunif(x,a,b)</pre>       |
|     | function at $\mathbf{x}$ for a random         | ((x>=a)&&(x<=b))/(b-a) will                           |                               |
|     | variable from the continuous                  | work even without the Statistics                      |                               |
|     | uniform distribution on inter-                | Toolbox.                                              |                               |
|     | $\operatorname{val}(a,b).$                    |                                                       |                               |
| 227 | Compute probability that a                    | unidpdf(x,n) or ((x==floor(x))                        | ((x==round(x)) && (x >= 1) && |
|     | random variable from the dis-                 | && (x>=1)&&(x<=n))/n will work                        | (x <= n))/n                   |
|     | crete uniform distribution on                 | even without the Statistics Toolbox,                  |                               |
|     | integers $1 \dots n$ has value $\mathbf{x}$ . | as long as <b>n</b> is a positive integer.            |                               |
| 228 | Compute probability that                      | mnpdf(x,p)                                            | dmultinom(x,prob=p)           |
|     | a random vector from the                      | Note: vector <b>p</b> must sum to one.                |                               |
|     | multinomial distribution                      | Also, $\mathbf{x}$ and $\mathbf{p}$ can be vectors of |                               |
|     | with probability vector $\vec{p}$ has         | length $k$ , or if one or both are $m \times k$       |                               |
|     | the value $\vec{x}$                           | matrices then the computations are                    |                               |
|     | N                                             | performed for each row.                               |                               |

Note: one or more of the parameters in the above "\*pdf" (MATLAB) or "d\*" (R) functions can be vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

The corresponding CDF functions are below:

| No. | Description Description                    | Matlab                                          | R                          |
|-----|--------------------------------------------|-------------------------------------------------|----------------------------|
| 229 | Compute probability that a                 | binocdf(x,n,p). Without the                     | pbinom(x,n,p)              |
|     | random variable from the                   | Statistics Toolbox, as long                     |                            |
|     | Binomial $(n, p)$ distribution is          | as <b>n</b> is a non-negative in-               |                            |
|     | less than or equal to $\mathbf{x}$ (i.e.   | teger, this will work: $r =$                    |                            |
|     | the cumulative distribution                | <pre>0:floor(x); sum(factorial(n)./</pre>       |                            |
|     | function, or cdf).                         | <pre>(factorial(r).*factorial(n-r))</pre>       |                            |
|     |                                            | .*p.^r.*(1-p).^(n-r)). (Un-                     |                            |
|     |                                            | fortunately, Matlab's <b>nchoosek</b>           |                            |
|     |                                            | function won't take a vector argu-              |                            |
|     |                                            | ment for $\mathbf{k}$ .)                        |                            |
| 230 | Compute probability that a                 | poisscdf(x,lambda). With-                       | <pre>ppois(x,lambda)</pre> |
|     | random variable from the                   | out the Statistics Toolbox, as                  |                            |
|     | Poisson( $\lambda$ ) distribution is less  | $long$ as $lambda \ge 0$ , this                 |                            |
|     | than or equal to $\mathbf{x}$ .            | <pre>will work: r = 0:floor(x);</pre>           |                            |
|     |                                            | <pre>sum(exp(-lambda)*lambda.^r</pre>           |                            |
|     |                                            | ./factorial(r))                                 |                            |
| 231 | Compute cumulative distri-                 | expcdf(x,mu) or                                 | pexp(x,1/mu)               |
|     | bution function at $\mathbf{x}$ for a      | (x>=0)*(1-exp(-x/mu)) will                      |                            |
|     | random variable from the ex-               | work even without the Statistics                |                            |
|     | ponential distribution with                | Toolbox, as long as <b>mu</b> is positive.      |                            |
|     | mean $\mu$ .                               |                                                 |                            |
| 232 | Compute cumulative distri-                 | normcdf(x,mu,sigma) or 1/2 -                    | pnorm(x,mu,sigma)          |
|     | bution function at $\mathbf{x}$ for a ran- | erf(-(x-mu)/(sigma*sqrt(2)))/2                  |                            |
|     | dom variable from the Nor-                 | will work even without the Statis-              |                            |
|     | mal distribution with mean $\mu$           | tics Toolbox, as long as <b>sigma</b> is        |                            |
|     | and standard deviation $\sigma$ .          | positive.                                       |                            |
| 233 | Compute cumulative distri-                 | unifcdf(x,a,b) or                               | <pre>punif(x,a,b)</pre>    |
|     | bution function at $\mathbf{x}$ for a ran- | (x>a)*(min(x,b)-a)/(b-a) will                   |                            |
|     | dom variable from the contin-              | work even without the Statistics                |                            |
|     | uous uniform distribution on               | Toolbox, as long as $\mathbf{b} > \mathbf{a}$ . |                            |
|     | interval $(a, b)$ .                        |                                                 |                            |
| 234 | Compute probability that a                 | unidcdf(x,n) or                                 | (x>=1)*min(floor(x),n)/n   |
|     | random variable from the dis-              | (x>=1)*min(floor(x),n)/n will                   |                            |
|     | crete uniform distribution on              | work even without the Statistics                |                            |
|     | integers $1 \dots n$ is less than or       | Toolbox, as long as $\mathbf{n}$ is a positive  |                            |
|     | equal to $\mathbf{x}$ .                    | integer.                                        |                            |

# 7 Graphics

### 7.1 Various types of plotting

| No. | Description                                       | Matlab                                                                                                                                                           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 235 | Create a new figure window                        | figure                                                                                                                                                           | dev.new() Notes: internally, on Windows this calls windows(), on MacOS it calls quartz(), and on Linux it calls X11(). X11() is also available on MacOS; you can tell R to use it by default by doing options(device='X11'). In R sometime after 2.7.0, X11 graphics started doing antialising by default, which makes plots look smoother but takes longer to draw. If you are using X11 graphics in R and notice that figure plotting is extremely slow (especially if making many plots), do this before calling dev.new(): X11.options(type='Xlib') or X11.options(antialias='none'). Or just use e.g. X11(type='Xlib') to make new figure windows. They are uglier (lines are more jagged), but render much more quickly. |  |
| 236 | Select figure number $n$                          | figure(n) (will create the figure if it doesn't exist)                                                                                                           | dev.set(n) (returns the actual device selected; will be different from $n$ if there is no figure device with number $n$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 237 | Determine which figure window is currently active | gcf                                                                                                                                                              | dev.cur()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 238 | List open figure windows                          | get(0,'children') (The 0 handle refers to the root graphics object.)                                                                                             | <pre>dev.list()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 239 | Close figure window(s)                            | close to close the current figure window, close(n) to close a specified figure, and close all to close all figures                                               | <pre>dev.off() to close the currently ac-<br/>tive figure device, dev.off(n) to close<br/>a specified one, and graphics.off()<br/>to close all figure devices.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 240 | Plot points using open circles                    | plot(x,y,'o')                                                                                                                                                    | plot(x,y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 241 | Plot points using solid lines                     | plot(x,y)                                                                                                                                                        | plot(x,y,type='1') (Note: that's a lower-case 'L', not the number 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 242 | Plotting: color, point markers, linestyle         | <pre>plot(x,y,str) where str is a string specifying color, point marker, and/or linestyle (see table below) (e.g. 'gs' for green squares with dashed line)</pre> | <pre>plot(x,y,type=str1,     pch=arg2,col=str3,     lty=arg4)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 243 | Diatting with logowithmic                         | gomilogy gomilogy and letter                                                                                                                                     | See tables below for possible values of the 4 parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 243 | Plotting with logarithmic axes                    | semilogx, semilogy, and loglog functions take arguments like <b>plot</b> , and plot with logarithmic scales for $x, y$ , and both axes, respectively             | plot(, log='x'), plot(, log='y'), and plot(, log='xy') plot with logarithmic scales for x, y, and both axes, respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

| No. | Description                                                                                                                                                                                             | Matlab                                                                                                                                                                                                                                                                                                                                                 | R                                                                                                                                                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 244 | Make bar graph where the $x$ coordinates of the bars are in $\mathbf{x}$ , and their heights are in $\mathbf{y}$                                                                                        | bar(x,y) Or just bar(y) if you only want to specify heights. Note: if $A$ is a matrix, bar(A) interprets each column as a separate set of observations, and each row as a different observation within a set. So a $20 \times 2$ matrix is plotted as 2 sets of 20 observations, while a $2 \times 20$ matrix is plotted as 20 sets of 2 observations. | Can't do this in R; but barplot(y) makes a bar graph where you specify the heights, barplot(y,w) also specifies the widths of the bars, and hist can make plots like this too. |
| 245 | Make histogram of values in $\mathbf{x}$                                                                                                                                                                | hist(x)                                                                                                                                                                                                                                                                                                                                                | hist(x)                                                                                                                                                                        |
| 246 | Given vector $\mathbf{x}$ containing discrete values, make a bar graph where the $x$ coordinates of bars are the values, and heights are the counts of how many times the values appear in $\mathbf{x}$ | <pre>v=unique(x); c=hist(x,v); bar(v,c)</pre>                                                                                                                                                                                                                                                                                                          | <pre>barplot(table(x))</pre>                                                                                                                                                   |
| 247 | Given vector $\mathbf{x}$ containing continuous values, lump the data into $k$ bins and make a histogram / bar graph of the binned data                                                                 | <pre>[c,m] = hist(x,k); bar(m,c) or for slightly different plot style use hist(x,k)</pre>                                                                                                                                                                                                                                                              | <pre>hist(x,seq(min(x), max(x), length.out=k+1))</pre>                                                                                                                         |
| 248 | Make a plot containing errorbars of height s above and below $(x, y)$ points                                                                                                                            | errorbar(x,y,s)                                                                                                                                                                                                                                                                                                                                        | errbar(x,y,y+s,y-s) Note: errbar is part of the Hmisc package (see item 331 for how to install/load packages).                                                                 |
| 249 | Make a plot containing errorbars of height <b>a</b> above and <b>b</b> below $(x, y)$ points                                                                                                            | errorbar(x,y,b,a)                                                                                                                                                                                                                                                                                                                                      | errbar(x,y,y+a,y-b) Note: errbar is part of the <b>Hmisc</b> package (see item 331 for how to install/load packages).                                                          |
| 250 | Other types of 2-D plots                                                                                                                                                                                | stem(x,y) and stairs(x,y) for other types of 2-D plots. polar(theta,r) to use polar coordinates for plotting.                                                                                                                                                                                                                                          | pie(v)                                                                                                                                                                         |

| No. | Description                                            | Matlab                                  | R                                                           |
|-----|--------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|
| 251 | Make a 3-D plot of some data                           | plot3(x,y,z) This works much like       | cloud(z~x*y) You can also use                               |
|     | points with given $x, y, z$ co-                        | plot, as far as plotting symbols, line- | arguments <b>pch</b> and <b>col</b> as with                 |
|     | ordinates in the vectors $\mathbf{x}$ , $\mathbf{y}$ , | types, and colors.                      | plot. To make a 3-D plot with                               |
|     | and $\mathbf{z}$ .                                     | types, and colors.                      | lines, do cloud(z~x*y,type='1',                             |
|     | and Z.                                                 |                                         | panel.cloud=panel.3dwire)                                   |
| 252 | Surface plot of data in matrix                         |                                         | paner.croud-paner.odwire)                                   |
| 202 | A                                                      |                                         |                                                             |
|     | A                                                      | surf(A)                                 | persp(A)                                                    |
|     |                                                        | You can then click on the small         | You can include shading in the im-                          |
|     |                                                        | curved arrow in the figure window       | age via e.g. persp(A,shade=0.5).                            |
|     |                                                        | (or choose "Rotate 3D" from the         | There are two viewing angles you                            |
|     |                                                        | "Tools" menu), and then click and       | can also specify, among other pa-                           |
|     |                                                        | drag the mouse in the figure to ro-     | rameters, e.g. persp(A, shade=0.5,                          |
|     |                                                        | tate it in three dimensions.            | theta=50, phi=35).                                          |
| 253 | Surface plot of $f(x,y) =$                             |                                         |                                                             |
|     | $sin(x+y)\sqrt{y}$ for 100 values                      |                                         | (2.42.7                                                     |
|     | of x between 0 and 10, and                             | x = linspace(0,10,100);                 | x = seq(0,10,len=100)                                       |
|     | 90 values of $y$ between 2 and                         | y = linspace(2,8,90);                   | y = seq(2,8,len=90)                                         |
|     | 8                                                      | [X,Y] = meshgrid(x,y);                  | f = function(x,y)                                           |
|     | Č                                                      | Z = sin(X+Y).*sqrt(Y);                  | return(sin(x+y)*sqrt(y))                                    |
|     |                                                        | <pre>surf(X,Y,Z)</pre>                  | z = outer(x,y,f)                                            |
|     |                                                        | shading flat                            | persp(x,y,z)                                                |
| 254 | Other ways of plotting the                             | mesh(X,Y,Z), surfc(X,Y,Z),              | contour(x,y,z) Or do                                        |
| 204 | data from the previous com-                            | surfl(X,Y,Z), contour(X,Y,Z),           | s=expand.grid(x=x,y=y), and                                 |
|     | mand                                                   | pcolor(X,Y,Z),                          | then wireframe(z~x*y,s) or                                  |
|     | iiidiid                                                | waterfall(X,Y,Z). Also see the          | wireframe(z~x*y,s,shade=TRUE)                               |
|     |                                                        | slice command.                          | (Note: wireframe is part of the                             |
|     |                                                        | biios communa.                          | lattice package; see item 331 for how                       |
|     |                                                        |                                         | to load packages). If you have vectors                      |
|     |                                                        |                                         | <b>x</b> , <b>y</b> , and <b>z</b> all the same length, you |
|     |                                                        |                                         | can also do symbols(x,y,z).                                 |
| 255 | Set axis ranges in a figure                            | axis([x1 x2 y1 y2])                     | You have to do this when                                    |
|     | window                                                 |                                         | you make the plot, e.g.                                     |
|     |                                                        |                                         | plot(x,y,xlim=c(x1,x2),                                     |
|     |                                                        |                                         | ylim=c(y1,y2))                                              |
| 256 | Add title to plot                                      | <pre>title('somestring')</pre>          | title(main='somestring')                                    |
|     | <del>-</del>                                           |                                         | adds a main title,                                          |
|     |                                                        |                                         | title(sub='somestring') adds                                |
|     |                                                        |                                         | a subtitle. You can also include                            |
|     |                                                        |                                         | main= and sub= arguments in a                               |
|     |                                                        |                                         | plot command.                                               |
| 257 | Add axis labels to plot                                | xlabel('somestring') and                | title(xlab='somestring',                                    |
|     |                                                        | ylabel('somestring')                    | ylab='anotherstr'). You can                                 |
|     |                                                        | J                                       | also include <b>xlab</b> = and <b>ylab</b> =                |
|     |                                                        |                                         | arguments in a <b>plot</b> command.                         |
|     |                                                        |                                         | argamento in a <b>piot</b> command.                         |

| No. | Description                                                                           | MATLAB                                                                                                                                                                                                                                                                                                          | R                                                                                                                                                                                                                                                                      |
|-----|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 258 | Include Greek letters or symbols in plot axis labels                                  | You can use basic TeX commands, e.g. plot(x,y); xlabel('\phi^2 + \mu_{i,j}') or xlabel('fecundity \phi') See also help tex and parts of doc text_props for more about building labels using general LaTeX commands                                                                                              | <pre>plot(x,y,xlab=   expression(phi^2 + mu['i,j']))   or    plot(x,y,xlab=expression(     paste('fecundity ', phi)))   See also help(plotmath) and p.   98 of the R Graphics book by Paul   Murrell for more.</pre>                                                   |
| 259 | Change font size to 16 in plot labels                                                 | For the legends and numerical axis labels, use set(gca, 'FontSize', 16), and for text labels on axes do e.g. xlabel('my x var', 'FontSize', 16)                                                                                                                                                                 | For on-screen graphics, do par(ps=16) followed by e.g. a plot command. For PostScript or PDF plots, add a pointsize=16 argument, e.g. pdf('myfile.pdf', width=8, height=8, pointsize=16) (see items 275 and 276)                                                       |
| 260 | Add grid lines to plot                                                                | grid on (and grid off to turn off)                                                                                                                                                                                                                                                                              | grid() Note that if you'll be printing the plot, the default style for grid-lines is to use gray dotted lines, which are almost invisible on some printers. You may want to do e.g. grid(lty='dashed', col='black') to use black dashed lines which are easier to see. |
| 261 | Add a text label to a plot                                                            | <pre>text(x,y,'hello')</pre>                                                                                                                                                                                                                                                                                    | text(x,y,'hello')                                                                                                                                                                                                                                                      |
| 262 | Add set of text labels to a plot. <b>xv</b> and <b>yv</b> are vectors.                | <pre>s={'hi', 'there'}; text(xv,yv,s)</pre>                                                                                                                                                                                                                                                                     | s=c('hi', 'there');<br>text(xv,yv,s)                                                                                                                                                                                                                                   |
| 263 | Add an arrow to current plot, with tail at $(xt, yt)$ and head at $(xh, yh)$          | annotation('arrow', [xt xh], [yt yh]) Note: coordinates should be normalized figure coordinates, not coordinates within your displayed axes. Find and download from The Mathworks the file dsxy2figxy.m which converts for you, then do this: [fx,fy]=dsxy2figxy([xt xh], [yt yh]); annotation('arrow', fx, fy) | arrows(xt, yt, xh, yh)                                                                                                                                                                                                                                                 |
| 264 | Add a double-headed arrow to current plot, with coordinates $(x0, y0)$ and $(x1, y1)$ | annotation('doublearrow', [x0 x1], [y0 y1]) See note in previous item about normalized figure coordinates.                                                                                                                                                                                                      | arrows(x0, y0, x1, y1, code=3)                                                                                                                                                                                                                                         |
| 265 | Add figure legend to top-left corner of plot                                          | legend('first', 'second', 'Location', 'NorthWest')                                                                                                                                                                                                                                                              | <pre>legend('topleft', legend=c('first', 'second'), col=c('red', 'blue'), pch=c('*','o'))</pre>                                                                                                                                                                        |

MATLAB note: sometimes you build a graph piece-by-piece, and then want to manually add a legend which doesn't correspond with the order you put things in the plot. You can manually construct a legend by plotting "invisible" things, then building the legend using them. E.g. to make a legend with black stars and solid lines, and red circles and dashed lines: h1=plot(0,0,'k\*-'); set(h1,'Visible', 'off'); h2=plot(0,0,'k\*-'); set(h2,'Visible', 'off'); legend([h1 h2], 'blah, 'whoa'). Just be sure to choose coordinates for your "invisible" points within the current figure's axis ranges.

| No. | Description                                           | Matlab                                                                                                                                                                                                                                                                                                                | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 266 | Adding more things to a figure                        | hold on means everything plotted<br>from now on in that figure window is<br>added to what's already there. hold<br>off turns it off. clf clears the figure<br>and turns off hold.                                                                                                                                     | points() and lines() work like plot, but add to what's already in the figure rather than clearing the figure first. points and lines are basically identical, just with different default plotting styles. Note: axes are not recalculated/redrawn when adding more things to a figure.                                                                                                                                                                                                                                        |
| 267 | Plot multiple data sets at once                       | plot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.                                                                                                                                                            | matplot(x,y) where x and y are 2-D matrices. Each column of x is plotted against the corresponding column of y. If x has only one column, it will be re-used.                                                                                                                                                                                                                                                                                                                                                                  |
| 268 | Plot $\sin(2x)$ for $x$ between 7 and 18              | fplot('sin(2*x)', [7 18])                                                                                                                                                                                                                                                                                             | curve(sin(2*x), 7, 18, 200) makes the plot, by sampling the value of the function at 200 values between 7 and 18 (if you don't specify the number of points, 101 is the default). You could do this manually yourself via commands like tmpx=seq(7,18,len=200); plot(tmpx, sin(2*tmpx)).                                                                                                                                                                                                                                       |
| 269 | Plot color image of integer values in matrix <b>A</b> | image(A) to use array values as raw indices into colormap, or imagesc(A) to automatically scale values first (these both draw row 1 of the matrix at the top of the image); or pcolor(A) (draws row 1 of the matrix at the bottom of the image). After using pcolor, try the commands shading flat or shading interp. | image(A) (it rotates the matrix 90 degrees counterclockwise: it draws row 1 of $A$ as the left column of the image, and column 1 of $A$ as the bottom row of the image, so the row number is the $x$ coord and column number is the $y$ coord). It also rescales colors. If you are using a colormap with $k$ entries, but the value $k$ does not appear in $A$ , use image(A,zlim=c(1,k)) to avoid rescaling of colors. Or e.g. image(A,zlim=c(0,k-1)) if you want values 0 through $k-1$ to be plotted using the $k$ colors. |
| 270 | Add colorbar legend to image plot                     | colorbar, after using image or pcolor.                                                                                                                                                                                                                                                                                | Use filled.contour(A) rather than image(A), although it "blurs" the data via interpolation, or use levelplot(A) from the lattice package (see item 331 for how to load packages). To use a colormap with the latter, do e.g. levelplot(A,col.regions=terrain.colors(100)).                                                                                                                                                                                                                                                     |
| 271 | Set colormap in image                                 | colormap(hot). Instead of hot, you can also use gray, flag, jet (the default), cool, bone, copper, pink, hsv, prism. By default, the length of the new colormap is the same as the currently-installed one; use e.g. colormap(hot(256)) to specify the number of entries.                                             | image(A,col=terrain.colors(100)). The parameter 100 specifies the length of the colormap. Other colormaps are heat.colors(), topo.colors(), and cm.colors().                                                                                                                                                                                                                                                                                                                                                                   |

| No. | Description                 | Matlab                               | R                                         |
|-----|-----------------------------|--------------------------------------|-------------------------------------------|
| 272 | Build your own colormap us- | Use an $n \times 3$ matrix; each row | Use a vector of hexadecimal strings,      |
|     | ing Red/Green/Blue triplets | gives R,G,B intensities between 0    | each beginning with '#' and giving        |
|     |                             | and 1. Can use as argument with      | R,G,B intensities between 00 and FF.      |
|     |                             | colormap. E.g. for 2 colors: mycmap  | E.g. c('#80CC33','#3333B3'); can          |
|     |                             | = [0.5 0.8 0.2 ; 0.2 0.2 0.7]        | use as argument to <b>col</b> = parameter |
|     |                             |                                      | to image. You can build such a            |
|     |                             |                                      | vector of strings from vectors of Red,    |
|     |                             |                                      | Green, and Blue intensities (each         |
|     |                             |                                      | between 0 and 1) as follows (for a        |
|     |                             |                                      | 2-color example): r=c(0.5,0.2);           |
|     |                             |                                      | g=c(0.8,0.2); b=c(0.2,0.7);               |
|     |                             |                                      | mycolors=rgb(r,g,b).                      |

MATLAB plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:

| Symbol | Color   | Symbol | Marker                              | Symbol | Linestyle     |
|--------|---------|--------|-------------------------------------|--------|---------------|
| b      | blue    |        | point (.)                           | -      | solid line    |
| g      | green   | 0      | circle (o)                          | :      | dotted line   |
| r      | red     | х      | cross(x)                            |        | dash-dot line |
| С      | cyan    | +      | plus sign (+)                       |        | dashed line   |
| m      | magenta | *      | asterisk (*)                        |        |               |
| У      | yellow  | s      | square $(\Box)$                     |        |               |
| k      | black   | d      | diamond $(\lozenge)$                |        |               |
| W      | white   | v      | triangle (down) $(\nabla)$          |        |               |
|        |         | ^      | triangle (up) $(\Delta)$            |        |               |
|        |         | <      | triangle (left) $(\triangleleft)$   |        |               |
|        |         | >      | triangle (right) $(\triangleright)$ |        |               |
|        |         | р      | pentragram star                     |        |               |
|        |         | h      | hexagram star                       |        |               |

R plotting specifications for  $\mathbf{col}$  (color),  $\mathbf{pch}$  (plotting character), and  $\mathbf{type}$  arguments, for use with  $\mathbf{plot}$ ,  $\mathbf{matplot}$ ,  $\mathbf{points}$ , and  $\mathbf{lines}$ :

| col           | Description              | pch | Description               | type | Description               |
|---------------|--------------------------|-----|---------------------------|------|---------------------------|
| 'blue'        | Blue                     | 'a' | a (similarly for other    | р    | points                    |
|               |                          |     | characters, but see '.'   |      |                           |
|               |                          |     | below for an exception    |      |                           |
| 'green'       | Green                    | 0   | open square               | 1    | lines                     |
| 'red'         | Red                      | 1   | open circle               | Ъ    | both                      |
| 'cyan'        | Cyan                     | 2   | triangle point-up         | С    | lines part only of "b"    |
| 'magenta'     | Magenta                  | 3   | + (plus)                  | 0    | lines, points overplotted |
| 'yellow'      | Yellow                   | 4   | $\times$ (cross)          | h    | histogram-like lines      |
| 'black'       | Black                    | 5   | diamond                   | s    | steps                     |
| '#RRGGBB'     | hexadecimal specifica-   | 6   | triangle point-down       | S    | another kind of steps     |
|               | tion of Red, Green,      |     |                           |      |                           |
|               | Blue                     |     |                           |      |                           |
| (Other names) | See colors() for list of | , , | rectangle of size 0.01    | n    | no plotting (can be use-  |
|               | available color names.   |     | inch, 1 pixel, or 1 point |      | ful for setting up axis   |
|               |                          |     | (1/72  inch)  depending   |      | ranges, etc.)             |
|               |                          |     | on device                 |      |                           |
|               |                          |     | (See table on next page   |      |                           |
|               |                          |     | for more)                 |      |                           |

R plotting specifications for lty (line-type) argument, for use with plot, matplot, points, and lines:

| lty | Description |
|-----|-------------|
| 0   | blank       |
| 1   | solid       |
| 2   | dashed      |
| 3   | dotted      |
| 4   | dotdash     |
| 5   | longdash    |
| 6   | twodash     |



R plotting characters, i.e. values for  ${f pch}$  argument (from the book R Graphics, by Paul Murrell, Chapman & Hall / CRC, 2006)

| No.     | Description                                        | Matlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. 273 | Divide up a figure window into smaller sub-figures | subplot(m,n,k) divides the current figure window into an $m \times n$ array of subplots, and draws in subplot number $k$ as numbered in "reading order," i.e. left-to-right, top-to-bottom. E.g. subplot(2,3,4) selects the first sub-figure in the second row of a $2 \times 3$ array of sub-figures. You can do more complex things, e.g. subplot(5,5,[1 2 6 7]) selects the first two subplots in the first row, and first two subplots in the second row, i.e. gives you a bigger subplot within a $5 \times 5$ array of subplots. (If you that command followed by e.g. subplot(5,5,3) you'll see what's meant by that.) | There are several ways to do this, e.g. using layout or split.screen, although they aren't quite as friendly as MATLAB 's. E.g. if you let A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will \\ 4 & 5 & 6 \end{bmatrix}, then layout(A) will take up the upper-left \\ 2 \times 2 \times 2 \times 4 \ti |
| 274     | Force graphics windows to update                   | drawnow (Matlab normally only updates figure windows when a script/function finishes and returns control to the Matlab prompt, or under a couple of other circumstances. This forces it to update figure windows to reflect any recent plotting commands.)                                                                                                                                                                                                                                                                                                                                                                    | R automatically updates graphics windows even before functions/scripts finish executing, so it's not necessary to explictly request it. But note that some graphics functions (particularly those in the lattice package) don't display their results when called from scripts or functions; e.g. rather than levelplot() you need to doprint(levelplot()). Such functions will automatically display their plots when called interactively from the command prompt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### 7.2 Printing/saving graphics

| No. | Description                                                                                                                  | Matlab                                                                                                                                                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 275 | To print/save to a PDF file named <b>fname.pdf</b>                                                                           | print -dpdf fname saves the contents of currently active figure window                                                                                                                                                                                                            | First do pdf('fname.pdf'). Then, do various plotting commands to make your image, as if you were plotting in a window. Finally, do dev.off() to close/save the PDF file. To print the contents of the active figure window, do dev.copy(device=pdf, file='fname.pdf'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist='inhibit').) You can also simply use dev.copy2pdf(file='fname.pdf').                                                                                                                                                                               |
| 276 | To print/save to a PostScript file <b>fname.ps</b> or <b>fname.eps</b>                                                       | print -dps fname for black & white PostScript; print -dpsc fname for color PostScript; print -deps fname for black & white Encapsulated PostScript; print -depsc fname for color Encapsulated PostScript. The first two save to fname.ps, while the latter two save to fname.eps. | postscript('fname.eps'), followed by your plotting commands, followed by dev.off() to close/save the file. Note: you may want to use postscript('fname.eps', horizontal=FALSE) to save your figure in portrait mode rather than the default landscape mode. To print the contents of the active figure window, do dev.copy(device=postscript, file='fname.eps'); dev.off(). (But this will not work if you've turned off the display list via dev.control(displaylist='inhibit').) You can also include the horizontal=FALSE argument with dev.copy(). The command dev.copy2eps(file='fname.eps') also saves in portrait mode. |
| 277 | To print/save to a JPEG file <b>fname.jpg</b> with jpeg quality = 90 (higher quality looks better but makes the file larger) | print -djpeg90 fname                                                                                                                                                                                                                                                              | <pre>jpeg('fname.jpg',quality=90), followed by your plotting commands, followed by dev.off() to close/save the file.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### 7.3 Animating cellular automata / lattice simulations

| No. | Description                   | Matlab                               | R                                                                      |
|-----|-------------------------------|--------------------------------------|------------------------------------------------------------------------|
| 278 | To display images of cellu-   | Repeatedly use either pcolor or      | If you simply call image repeatedly,                                   |
|     | lar automata or other lattice | image to display the data. Don't     | there is a great deal of flicker-                                      |
|     | simulations while running in  | forget to call drawnow as well, oth- | ing/flashing. To avoid this, after                                     |
|     | real time                     | erwise the figure window will not be | drawing the image for the first time                                   |
|     |                               | updated with each image.             | using e.g. image(A), from then                                         |
|     |                               |                                      | on only use image(A,add=TRUE),                                         |
|     |                               |                                      | which avoids redrawing the entire                                      |
|     |                               |                                      | image (and the associated flicker).                                    |
|     |                               |                                      | However, this will soon consume a                                      |
|     |                               |                                      | great deal of memory, as all drawn                                     |
|     |                               |                                      | images are saved in the image buffer.                                  |
|     |                               |                                      | There are two solutions to that                                        |
|     |                               |                                      | problem: (1) every $k$ time steps,                                     |
|     |                               |                                      | leave off the "add=TRUE" argument                                      |
|     |                               |                                      | to flush the image buffer (and get                                     |
|     |                               |                                      | occasional flickering), where you choose $k$ to balance the flickering |
|     |                               |                                      | vs. memory-usage tradeoff; or                                          |
|     |                               |                                      | (2) after drawing the first image,                                     |
|     |                               |                                      | do dev.control(displaylist=                                            |
|     |                               |                                      | 'inhibit') to prohibit retaining the                                   |
|     |                               |                                      | data. However, the latter solution                                     |
|     |                               |                                      | means that after the simulation is                                     |
|     |                               |                                      | done, the figure window will not be                                    |
|     |                               |                                      | redrawn if it is resized, or temporarily                               |
|     |                               |                                      | obscured by another window. (A                                         |
|     |                               |                                      | call to dev.control(displaylist=                                       |
|     |                               |                                      | 'enable') and then one final                                           |
|     |                               |                                      | image(A) at the end of the sim-                                        |
|     |                               |                                      | ulation will re-enable re-drawing                                      |
|     |                               |                                      | after resizing or obscuring, without                                   |
|     |                               |                                      | consuming extra memory.)                                               |

## 8 Working with files

| No. | Description                                  | Matlab                                | R                                       |
|-----|----------------------------------------------|---------------------------------------|-----------------------------------------|
| 279 | Create a folder (also known                  | mkdir dirname                         | dir.create('dirname')                   |
|     | as a "directory")                            |                                       |                                         |
| 280 | Set/change working directory                 | cd dirname                            | setwd('dirname')                        |
| 281 | See list of files in current                 | dir                                   | dir()                                   |
|     | working directory                            |                                       |                                         |
| 282 | Run commands in file 'foo.m'                 | foo                                   | source('foo.R')                         |
|     | or 'foo.R' respectively                      |                                       |                                         |
| 283 | Read data from text file                     | A=load('data.txt') or                 | A=as.matrix(read.table(                 |
|     | "data.txt" into matrix $A$                   | A=importdata('data.txt') Note         | 'data.txt')) This will ignore           |
|     |                                              | that both routines will ignore com-   | comments (anything on a line            |
|     |                                              | ments (anything on a line following   | following a "#" character). To ig-      |
|     |                                              | a "%" character)                      | nore comments indicated by "%",         |
|     |                                              |                                       | do A=as.matrix(read.table(              |
|     |                                              |                                       | 'data.txt', comment.char='%'))          |
| 284 | Read data from text file                     |                                       | A=as.matrix(read.table(                 |
|     | "data.txt" into matrix $A$ ,                 | <pre>tmp=importdata('data.txt',</pre> | 'data.txt', skip=s))                    |
|     | skipping the first $\mathbf{s}$ lines of the | ', ',s);                              |                                         |
|     | file                                         | a=tmp.data                            |                                         |
|     |                                              | a omp. aaoa                           |                                         |
| 285 | Write data from matrix A                     | save data.txt A -ascii                | <pre>write(t(A), file='data.txt',</pre> |
|     | into text file "data.txt"                    |                                       | ncolumn=dim(A)[2])                      |
| L   |                                              |                                       |                                         |

#### 9 Miscellaneous

#### 9.1 Variables

| No.  | Description                             | Matlab                                | R                                                             |
|------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------|
| 286  | Assigning to variables                  | x = 5                                 | $x \leftarrow 5 \text{ or } x = 5 \text{ Note: for compati-}$ |
|      |                                         |                                       | bility with S-plus, many people prefer                        |
|      |                                         |                                       | the first form.                                               |
| 287  | From within a function, as-             | assignin('base', 'y', 7)              | у <<- 7                                                       |
|      | sign a value to variable $\mathbf{y}$   |                                       |                                                               |
|      | in the base environment (i.e.           |                                       |                                                               |
|      | the command prompt envi-                |                                       |                                                               |
|      | ronment)                                |                                       |                                                               |
| 288  | From within a function, ac-             | evalin('base', 'y')                   | <pre>get('y', envir=globalenv())</pre>                        |
|      | cess the value of variable $\mathbf{y}$ |                                       | Though note that inside a function,                           |
|      | in the base environment (i.e.           |                                       | if there isn't a local variable $\mathbf{y}$ , then           |
|      | the command prompt envi-                |                                       | just the expression y will look for one                       |
|      | ronment)                                |                                       | in the base environment, but if there                         |
|      |                                         |                                       | is a local $\mathbf{y}$ then that one will be used            |
|      |                                         |                                       | instead.                                                      |
| 289  | Short list of defined variables         | who                                   | ls()                                                          |
| 290  | Long list of defined variables          | whos                                  | ls.str()                                                      |
| 291  | See detailed info about the             | whos ab                               | str(ab)                                                       |
|      | variable <b>ab</b>                      |                                       |                                                               |
| 292  | See detailed info about all             | whos *ab*                             | ls.str(pattern='ab')                                          |
|      | variables with "ab" in their            |                                       |                                                               |
|      | name                                    |                                       |                                                               |
| 293  | Open graphical data editor,             | openvar(A), or double-click on the    | fix(A)                                                        |
|      | to edit the value of variable           | variable in the Workspace pane (if    |                                                               |
|      | <b>A</b> (useful for editing values in  | it's being displayed) of your MAT-    |                                                               |
|      | a matrix, though it works for           | LABdesktop                            |                                                               |
| 20.4 | non-matrix variables as well)           | _                                     |                                                               |
| 294  | Clear one variable                      | clear x                               | rm(x)                                                         |
| 295  | Clear two variables                     | clear x y                             | rm(x,y)                                                       |
| 296  | Clear all variables                     | clear all                             | rm(list=ls())                                                 |
| 297  | See what type of object $\mathbf{x}$ is | class(x)                              | class(x) and typeof(x) give differ-                           |
| 200  | (77 • 11                                | 77 • 11                               | ent aspects of the "type" of <b>x</b>                         |
| 298  | (Variable names)                        | Variable names must begin with a      | Variable names may contain letters,                           |
|      |                                         | letter, but after that they may con-  | digits, the period, and the underscore                        |
|      |                                         | tain any combination of letters, dig- | character. They cannot begin with a                           |
|      |                                         | its, and the underscore character.    | digit or underscore, or with a period                         |
|      |                                         | Names are case-sensitive.             | followed by a digit. Names are case-                          |
| 200  | D 1, C1 ,                               |                                       | sensitive.                                                    |
| 299  | Result of last command                  | ans contains the result of the last   | .Last.value contains the result of                            |
|      |                                         | command which did not assign its      | the last command, whether or not its                          |
|      |                                         | value to a variable. E.g. after 2+5;  | value was assigned to a variable. E.g.                        |
|      |                                         | x=3, then <b>ans</b> will contain 7.  | after 2+5; x=3, then .Last.value will                         |
|      |                                         |                                       | contain 3.                                                    |

#### 9.2 Strings and Misc.

| No. | Description                    | Matlab                                                  | R                                           |
|-----|--------------------------------|---------------------------------------------------------|---------------------------------------------|
| 300 | Line continuation              | If you want to break up a MATLAB                        | In R, you can spread commands out           |
|     |                                | command over more than one line,                        | over multiple lines, and nothing ex-        |
|     |                                | end all but the last line with three                    | tra is necessary. R will continue read-     |
|     |                                | periods: "". E.g.:                                      | ing input until the command is com-         |
|     |                                | $x = 3 + \dots$                                         | plete. However, this only works when        |
|     |                                | 4                                                       | the syntax makes it clear that the first    |
|     |                                | or                                                      | line was not complete. E.g.:                |
|     |                                | x = 3                                                   | x = 3 +                                     |
|     |                                | + 4                                                     | 4                                           |
|     |                                | • •                                                     | works, but                                  |
|     |                                |                                                         | x = 3                                       |
|     |                                |                                                         | + 4                                         |
|     |                                |                                                         | does not treat the second line as a con-    |
|     |                                |                                                         | tinuation of the first.                     |
| 301 | Controlling formatting of      | format short g and                                      | options(digits=6) tells R you'd like        |
| 001 | output                         | format long g are handy; see                            | to use 6 digits of precision in values it   |
|     | o dop do                       | help format                                             | displays (it is only a suggestion, not      |
|     |                                | р 101                                                   | strictly followed)                          |
| 302 | Exit the program               | quit or exit                                            | q() or quit()                               |
| 303 | Comments                       | % this is a comment                                     | # this is a comment                         |
| 304 | Display a string               | disp('hi there') or to                                  | print('hi there') Note: to                  |
|     |                                | omit trailing newline use                               | avoid having double-quotes                  |
|     |                                | <pre>fprintf('hi there')</pre>                          | around the displayed string, do             |
|     |                                | •                                                       | print('hi there', quote=FALSE)              |
|     |                                |                                                         | or print(noquote('hi there')).              |
| 305 | Display a string containing    | disp('It''s nice') or                                   | print('It\'s nice') or                      |
|     | single quotes                  | to omit trailing newline                                | print("It's nice")                          |
|     |                                | <pre>fprintf('It''s nice')</pre>                        |                                             |
| 306 | Give prompt and read numer-    | <pre>x = input('Enter data:')</pre>                     | <pre>print('Enter data:'); x=scan()</pre>   |
|     | ical input from user           |                                                         | But note: if in a script and you use        |
|     |                                |                                                         | the Edit $\rightarrow$ Execute menu item to |
|     |                                |                                                         | run it, the selected text after the         |
|     |                                |                                                         | scan statement will be used as source       |
|     |                                |                                                         | for the input, rather than keyboard.        |
| 307 | Give prompt and read char-     | x = input('Enter string:','s')                          | x = readline('Enter string:')               |
|     | acter (string) input from user |                                                         |                                             |
| 308 | Concatenate strings            | ['two hal' 'ves']                                       | <pre>paste('two hal', 'ves', sep='')</pre>  |
| 309 | Concatenate strings stored in  | <pre>v={'two ', 'halves'};</pre>                        | v=c('two ', 'halves');                      |
|     | a vector                       | strcat(v{:}) But note that                              | paste(v, collapse='')                       |
|     |                                | this drops trailing spaces on                           |                                             |
|     |                                | strings. To avoid that, instead do                      |                                             |
| 010 |                                | strcat([v{:}])                                          |                                             |
| 310 | Extract substring of a string  | text1='hi there';                                       | text1='hi there';                           |
| 911 | Determine whether -1           | text2=text(2:6)                                         | text2=substr(text1,2,6)                     |
| 311 | Determine whether elements     | $x = \{'a', 'aa', 'bc', 'c'\}; y$                       | x = c('a', 'aa', 'bc', 'c'); y              |
|     | of a vector are in a set, and  | = {'da', 'a', 'bc', 'a', 'bc',                          | = c('da', 'a', 'bc', 'a', 'bc',             |
|     | give positions of correspond-  | 'aa'}; [tf, loc]=ismember(x,y)                          | 'aa'); loc=match(x,y) Then loc              |
|     | ing elements in the set.       | Then <b>loc</b> contains the locations of               | contains the locations of first oc-         |
|     |                                | last occurrences of elements of x                       | curences of elements of <b>x</b> in the set |
| 1   |                                |                                                         |                                             |
|     |                                | in the set $\mathbf{y}$ , and 0 for unmatched elements. | y, and NA for unmatched elements.           |

| No. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matlab                                                                                                                                                                                                  | R                                                                                                                                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 312 | Find indices of regular expression pattern $\mathbf{p}$ in string $\mathbf{s}$                                                                                                                                                                                                                                                                                                                                                                   | v=regexp(s,p)                                                                                                                                                                                           | v=gregexpr(p,s)[[1]] (The returned vector also has a "match.length" attribute giving lengths of the matches; this attribute can be removed via attributes(v)=NULL.) |
| 313 | Perform some commands<br>only if the regular expression<br><b>p</b> is contained in the string <b>s</b>                                                                                                                                                                                                                                                                                                                                          | <pre>if (regexp(s,p)   commands end</pre>                                                                                                                                                               | <pre>if (grepl(p,s)) {   commands }</pre>                                                                                                                           |
| 314 | Convert number to string                                                                                                                                                                                                                                                                                                                                                                                                                         | num2str(x)                                                                                                                                                                                              | as.character(x)                                                                                                                                                     |
| 315 | Use <b>sprintf</b> to create a formatted string. Use %d for integers ("d" stands for "decimal", i.e. base 10), %f for floating-point numbers, %e for scientific-notation floating point, %g to automatically choose %e or %f based on the value. You can specify field-widths/precisions, e.g. %5d for integers with padding to 5 spaces, or %.7f for floating-point with 7 digits of precision. There are many other options too; see the docs. | <pre>x=2; y=3.5; s=sprintf('x is %d, y=%g', x, y)</pre>                                                                                                                                                 | <pre>x=2; y=3.5 s=sprintf('x is %d, y is %g',     x, y)</pre>                                                                                                       |
| 316 | Machine epsilon $\epsilon_{\text{mach}}$ , i.e. difference between 1 and the next largest double-precision floating-point number                                                                                                                                                                                                                                                                                                                 | eps (See help eps for various other things eps can give.)                                                                                                                                               | .Machine\$double.eps                                                                                                                                                |
| 317 | Pause for x seconds                                                                                                                                                                                                                                                                                                                                                                                                                              | pause(x)                                                                                                                                                                                                | Sys.sleep(x)                                                                                                                                                        |
| 318 | Wait for user to press any key                                                                                                                                                                                                                                                                                                                                                                                                                   | pause                                                                                                                                                                                                   | Don't know of a way to do this in R,<br>but scan(quiet=TRUE) will wait until<br>the user presses the Enter key                                                      |
| 319 | Produce a beep (or possibly<br>a visual signal, depending on<br>preferences set)                                                                                                                                                                                                                                                                                                                                                                 | beep                                                                                                                                                                                                    | alarm()                                                                                                                                                             |
| 320 | Measure CPU time used to do some commands                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>t1=cputime;commands ; cputime-t1</pre>                                                                                                                                                             | <pre>t1=proc.time();commands ; (proc.time()-t1)[1]</pre>                                                                                                            |
| 321 | Measure elapsed ("wall-clock") time used to do some commands                                                                                                                                                                                                                                                                                                                                                                                     | <pre>tic;commands; toc or t1=clock;commands; etime(clock,t1)</pre>                                                                                                                                      | <pre>t1=proc.time();commands ; (proc.time()-t1)[3]</pre>                                                                                                            |
| 322 | Print an error message an interrupt execution                                                                                                                                                                                                                                                                                                                                                                                                    | error('Problem!')                                                                                                                                                                                       | stop('Problem!')                                                                                                                                                    |
| 323 | Print a warning message                                                                                                                                                                                                                                                                                                                                                                                                                          | warning('Smaller problem!')                                                                                                                                                                             | <pre>warning('Smaller problem!')</pre>                                                                                                                              |
| 324 | Putting multiple statements<br>on one line                                                                                                                                                                                                                                                                                                                                                                                                       | Separate statements by commas or semicolons. A semicolon at the end of a statement suppresses display of the results (also useful even with just a single statement on a line), while a comma does not. | Separate statements by semicolons.                                                                                                                                  |

| No. | Description                                                                                                                                                   | Matlab                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R                                                                                                                                                                                                                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 325 | Evaluate contents of a string s as command(s).                                                                                                                | eval(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eval(parse(text=s))                                                                                                                                                                                                                                                                                                              |
| 326 | Get a command prompt for debugging, while executing a script or function. While at that prompt, you can type expressions to see the values of variables, etc. | Insert the command keyboard in your file. Note that your prompt will change to K>>. When you are done debugging and want to continue executing the file, type return.                                                                                                                                                                                                                                                                                                | Insert the command browser() in your file. Note that your prompt will change to <b>Browse</b> [1]>. When you are done debugging and want to continue executing the file, either type c or just press return (i.e. enter a blank line). Note, if you type n, you enter the step debugger.                                         |
| 327 | Show where a command is                                                                                                                                       | which sqrt shows you where the file defining the sqrt function is (but note that many basic functions are "built in," so the MATLAB function file is really just a stub containing documentation). This is useful if a command is doing something strange, e.g. sqrt isn't working. If you've accidentally defined a variable called sqrt, then which sqrt will tell you, so you can clear sqrt to erase it so that you can go back to using the function sqrt.      | R does not execute commands directly from files, so there is no equivalent command.                                                                                                                                                                                                                                              |
| 328 | Query/set the search path.                                                                                                                                    | path displays the current search path (the list of places MATLAB searches for commands you enter). To add a directory ~/foo to the beginning of the search path, do addpath ~/foo -begin  or to add it to the end of the path, do addpath ~/foo -end (Note: you should generally add the full path of a directory, i.e. in Linux or Mac OS-X something like ~/foo as above or of the form /usr/local/lib/foo, while under Windows it would be something like C:/foo) | R does not use a search path to look for files.                                                                                                                                                                                                                                                                                  |
| 329 | Startup sequence                                                                                                                                              | If a file <b>startup.m</b> exists in the startup directory for MATLAB, its contents are executed. (See the MATLAB docs for how to change the startup directory.)                                                                                                                                                                                                                                                                                                     | If a file .Rprofile exists in the current directory or the user's home directory (in that order), its contents are sourced; saved data from the file .RData (if it exists) are then loaded. If a function .First() has been defined, it is then called (so the obvious place to define this function is in your .Rprofile file). |
| 330 | Shutdown sequence                                                                                                                                             | Upon typing quit or exit, MATLAB will run the script <b>finish.m</b> if present somewhere in the search path.                                                                                                                                                                                                                                                                                                                                                        | Upon typing q() or quit(), R will call<br>the function .Last() if it has been de-<br>fined (one obvious place to define it<br>would be in the .Rprofile file)                                                                                                                                                                    |

| No. | Description                 | Matlab                               | R                                        |
|-----|-----------------------------|--------------------------------------|------------------------------------------|
| 331 | Install and load a package. | Matlab does not have packages. It    | To install e.g. the <b>deSolve</b> pack- |
|     |                             | has toolboxes, which you can pur-    | age, you can use the command             |
|     |                             | chase and install. "Contributed"     | install.packages('deSolve').             |
|     |                             | code (written by end users) can sim- | You then need to load the package        |
|     |                             | ply be downloaded and put in a di-   | in order to use it, via the command      |
|     |                             | rectory which you then add to MAT-   | library('deSolve'). When running         |
|     |                             | LAB's path (see item 328 for how to  | R again later you'll need to load the    |
|     |                             | add things to Matlab's path).        | package again to use it, but you         |
|     |                             |                                      | should not need to re-install it. Note   |
|     |                             |                                      | that the lattice package is typically    |
|     |                             |                                      | included with binary distributions of    |
|     |                             |                                      | R, so it only needs to be loaded, not    |
|     |                             |                                      | installed.                               |

## 10 Spatial Modeling

| No. | Description                                                | Matlab                              | R                                     |
|-----|------------------------------------------------------------|-------------------------------------|---------------------------------------|
| 332 | Take an $L \times L$ matrix <b>A</b> of                    | A = (A   (rand(L) < p))*1;          | A = (A   (matrix(runif(L^2),L)        |
|     | 0s and 1s, and "seed" frac-                                |                                     | )*1                                   |
|     | tion $p$ of the 0s (turn them                              |                                     |                                       |
|     | into 1s), not changing entries                             |                                     |                                       |
|     | which are already 1.                                       |                                     |                                       |
| 333 | Take an $L \times L$ matrix <b>A</b> of 0s                 | A = (A & (rand(L) < 1-p))*1;        | $A = (A \& (matrix(runif(L^2),L))$    |
|     | and 1s, and "kill" fraction $p$                            |                                     | < 1-p))*1                             |
|     | of the 1s (turn them into 0s),                             |                                     |                                       |
|     | not changing the rest of the                               |                                     |                                       |
|     | entries                                                    |                                     |                                       |
| 334 | Do "wraparound" on a coor-                                 | mod(newx-1,L)+1 Note: for porta-    | ((newx-1) %% L) + 1 Note: for         |
|     | dinate <b>newx</b> that you've al-                         | bility with other languages such as | portability with other languages such |
|     | ready calculated. You can                                  | C which handle MOD of negative      | as C which handle MOD of nega-        |
|     | replace $\mathbf{newx}$ with $\mathbf{x} + \mathbf{dx}$ if | values differently, you may want to | tive values differently, you may want |
|     | you want to do wraparound                                  | get in the habit of instead doing   | to get in the habit of instead doing  |
|     | on an offset $x$ coordinate.                               | mod(newx-1+L,L)+1                   | ((newx-1+L)%%L) + 1                   |
| 335 | Randomly initialize a portion                              | dx=ix2-ix1+1; dy=iy2-iy1+1;         | dx=ix2-ix1+1; dy=iy2-iy1+1;           |
|     | of an array: set fraction $p$ of                           | $A(iy1:iy2,ix1:ix2) = \dots$        | A[iy1:iy2,ix1:ix2] =                  |
|     | sites in rows iy1 through iy2                              | (rand(dy,dx) < p0)*1;               | (matrix(runif(dy*dx),dy) <            |
|     | and columns ix1 through ix2                                |                                     | p0)*1                                 |
|     | equal to 1 (and set the rest of                            |                                     |                                       |
|     | the sites in that block equal                              |                                     |                                       |
|     | to zero). Note: this assume                                |                                     |                                       |
|     | iy1 < iy2 and $ix1 < ix2$ .                                |                                     |                                       |

## Index of MATLAB commands and concepts

| , 83 , , 324 , , 82 , , 300 , , 90 , , 94 , 89 , , 12-14 , 89 , 12-14 , 132 , 14-14 , 15-14 , 15-14 , 15-14 , 15-14 , 15-14 , 15-14 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 , 15-15 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .*, 82, 300, 300, 300, 94, 266, 94, 89, 12-14, 200, 214, 224, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 228, 230, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 248, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| , 300 ./, 90 ./, 90 ./, 90 ./, 94 ./, 89 .:, 12-14 .:, 324 .:, 324 .:, 324 .:, 286 .:, 6-8 ./, 303 ./, 84, 91 ./, 91 ./, 84, 91 ./, 89 .:, 54, 92, 93 ./, 84, 91 ./, 84, 91 ./, 85, 74 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 80 ./, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ./, 90 ./, 94 ./, 89 .; 12-14 .; 324 .; 324 .; 324 .; 324 .; 325 .; 324 .; 324 .; 324 .; 326 .; 327 .; 328 .; 328 .; 329 .; 329 .; 329 .; 321 .; 324 .; 324 .; 321 .; 324 .; 321 .; 322 .; 324 .; 322 .; 322 .; 323 .; 324 .; 324 .; 322 .; 322 .; 323 .; 324 .; 322 .; 323 .; 324 .; 324 .; 324 .; 326 .; 327 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 328 .; 324 .; 327 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328 .; 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .↑, 94 /, 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1, 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} :, 12-14 \\ :, 324 \\ :, 324 \\ :, 286 \\ \vdots \\ \text{Colormap} \\ \text{L}, 6-8 \\ \text{Many Surface} \\ \text{Many Surface} \\ \text{L}, 186, 187 \\ \text{Colormap, 271, 272} \\ \text{Colomap, 271, 272} \\ \text{Colormap, 271, 272} \\ \text{Colormap, 271, 272} \\$ |
| ; 324 colorbar, 270 colormap $= 2.86$ colormap $= 2.86$ colormap $= 2.86$ building your own, 272 $= 2.86$ building your own, 272 $= 2.86$ colormap, 271, 272 column vector, 7 $= 2.86$ complex numbers, 73–78 $= 2.86$ complex numbers, 73–78 $= 2.86$ cond, 104–106 $= 2.86$ cond, 104–106 $= 2.86$ cond, 104–106 $= 2.86$ cond, 104–106 $= 2.86$ continue, 191 $= 2.86$ continue, 191 $= 2.86$ continue, 191 $= 2.86$ continue, 254 $= 2.86$ conv. 165 $= 2.86$ conv. 165 $= 2.86$ conv. 165 $= 2.86$ conv. 165 $= 2.86$ conv. 116, 117 $= 2.86$ cosh, 61 $= 2.86$ cosh, 62 cosh, 61 $= 2.86$ cosh, 61 $=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E, 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [, 6-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| %, 303         colormap, 271, 272           &, 186, 187         column vector, 7           7, 54, 92, 93         comments, 303            84, 91         complex numbers, 73–78           { 49         cond, 104–106           abs, 55, 74         continue, 191           acosh, 62         continue, 191           adopath, 328         corr, 118–123           al1, 188         cos, 59           angle, 75         cosh, 61           annotation, 263, 264         cov, 116, 117           ans, 299         cputime, 320           arrows in plots, 263, 264         cross, 80           arrows in plots, 263, 264         csape, 178, 180, 181           asin, 60         csape, 178, 180, 181           asin, 62         natural, 178           assin, 62         natural, 178           assignin, 287         natural, 182           atan, 60         cumulative distribution functions           bar, 244, 246, 247         binomial, 229           continuous uniform on interval (a, b), 233           discrete uniform from 1n, 234           exponential, 231         normal, 232           binopdf, 222         continuous uniform on interval (a, b), 233           discrete uniform from 1n, 234         exponentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| &, 186, 187       column vector, 7 $^\circ$ , 54, 92, 93       comments, 303 $^\circ$ , 84, 91       complex numbers, 73–78 $^\circ$ , 49       cond, 104–106         conj, 76       continue, 191         acos, 60       continue, 254         acosh, 62       conv, 165         addpath, 328       corr, 118–123         all, 188       cos, 59         angle, 75       cosh, 61         annotation, 263, 264       cov, 116, 117         ans, 299       cputime, 320         arrows in plots, 263, 264       csape, 178, 180, 181         asin, 60       cape, 178, 180, 181         asinh, 62       natural, 178         assignin, 287       not-a-knot, 182         atan, 60       periodic, 181         atan, 60       periodic, 181         atan, 62       cumprod, 135         average, see mean       cumulative distribution functions         binomial, 229       continuous uniform on interval (a, b), 233         discrete uniform from 1n, 234       exponential, 231         binordf, 229       poisson, 230         binordal, 232       Poisson, 230         break, 191       debugging, 326         det, 86       det, 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| &, 186, 187       column vector, 7 $^\circ$ , 54, 92, 93       comments, 303 $^\circ$ , 84, 91       complex numbers, 73–78 $^\circ$ , 49       cond, 104–106         conj, 76       continue, 191         acos, 60       continue, 254         acosh, 62       conv, 165         addpath, 328       corr, 118–123         all, 188       cos, 59         angle, 75       cosh, 61         annotation, 263, 264       cov, 116, 117         ans, 299       cputime, 320         arrows in plots, 263, 264       csape, 178, 180, 181         asin, 60       cape, 178, 180, 181         asinh, 62       natural, 178         assignin, 287       not-a-knot, 182         atan, 60       periodic, 181         atan, 60       periodic, 181         atan, 62       cumprod, 135         average, see mean       cumulative distribution functions         binomial, 229       continuous uniform on interval (a, b), 233         discrete uniform from 1n, 234       exponential, 231         binordf, 229       poisson, 230         binordal, 232       Poisson, 230         break, 191       debugging, 326         det, 86       det, 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $  \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| annotation, 263, 264  ans, 299  any, 189  arrows in plots, 263, 264  asin, 60  asinh, 62  assignin, 287  atan, 60  atanh, 62  average, see mean  axis, 255  bar, 244, 246, 247  beep, 319  binocdf, 229  binopdf, 222  binornd, 213  boolean tests  scalar, 186 vector, 187–189  break, 191  cov, 116, 117  cputime, 320  cov, 18, 180, 181  cubic splines, 179, 180  natural, 178  not-a-knot, 182  periodic, 181  cumprod, 135  cumulative distribution functions  binomial, 229  continuous uniform on interval (a, b), 233  discrete uniform from 1n, 234  exponential, 231  normal, 232  poisson, 230  debugging, 326  det, 86  diag, 22, 23  diff, 137  differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ans, 299 any, 189 arrows in plots, 263, 264 asin, 60 asinh, 62 asinjn, 287 atan, 60 atanh, 62 average, see mean axis, 255  bar, 244, 246, 247 beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191  casin, 60 caspe, 178, 180, 181 cubic splines, 179, 180 natural, 178 not-a-knot, 182 periodic, 181 cumprod, 135 cumprod, 135 cumsum, 131–134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 poisson, 230  debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| any, 189 arrows in plots, 263, 264 asin, 60 asinh, 62 assignin, 287 atan, 60 atanh, 62 average, see mean axis, 255 axis, 244, 246, 247 beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191 coross, 80 cross, 80 cross, 80 csape, 178, 180, 181 cubic splines, 179, 180 natural, 178 not-a-knot, 182 periodic, 181 cumprod, 135 cumsum, 131–134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 poisson, 230 det, 86 debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| arrows in plots, 263, 264  asin, 60  asinh, 62  assignin, 287  atan, 60  atanh, 62  average, see mean  axis, 255  bar, 244, 246, 247  beep, 319  binocdf, 229  binornd, 213  boolean tests  scalar, 186 vector, 187–189  break, 191  casinh, 62  caspe, 178, 180, 181  cubic splines, 179, 180  natural, 178  not-a-knot, 182  periodic, 181  cumprod, 135  cumsum, 131–134  cumsum, 131–134  cumulative distribution functions  binomial, 229 continuous uniform on interval (a, b), 233  discrete uniform from 1n, 234  exponential, 231  normal, 232  poisson, 230  debugging, 326  det, 86  det, 86  diag, 22, 23  diff, 137  differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| asin, 60 asinh, 62 assignin, 287 atan, 60 atanh, 62 atanh, 62 average, see mean axis, 255  bar, 244, 246, 247 beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191  cubic splines, 179, 180 antural, 178 not-a-knot, 182 periodic, 181 cumprod, 135 cumsum, 131–134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 Poisson, 230  debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| asinh, 62 assignin, 287 atan, 60 atanh, 62 atanh, 62 average, see mean axis, 255  bar, 244, 246, 247 beep, 319 binocdf, 229 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191  cassignin, 287 anot-a-knot, 182 periodic, 181 cumprod, 135 cumsum, 131–134 cumsum, 131–134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 Poisson, 230  debugging, 326 det, 86 break, 191 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| assignin, 287 atan, 60 atanh, 62 average, see mean axis, 255  bar, 244, 246, 247 beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191  catanh, 62 atanh, 62 cumprod, 135 cumsum, 131–134 cumsum, 131–134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 Poisson, 230  debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| atan, 60 atanh, 62 atanh, 62 average, see mean axis, 255 cumsum, 131–134 cumulative distribution functions bar, 244, 246, 247 beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191 cd, 280 ceil, 66  periodic, 181 cumprod, 135 cumsum, 131–134 cumulative distribution functions binomial, 229 continuous uniform on interval (a, b), 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 Poisson, 230  debugging, 326 det, 86 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| atanh, $62$ cumprod, $135$ cumsum, $131-134$ axis, $255$ cumulative distribution functions binomial, $229$ continuous uniform on interval $(a,b)$ , $233$ discrete uniform from $1n$ , $234$ exponential, $231$ normal, $232$ binornd, $213$ boolean tests scalar, $186$ vector, $187-189$ det, $86$ break, $191$ differential equations, $see$ ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| average, $see$ mean axis, 255 cumsum, 131–134 cumsum, 131–134 cumulative distribution functions binomial, 229 continuous uniform on interval $(a,b)$ , 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 binornd, 213 boolean tests scalar, 186 vector, 187–189 det, 86 test, 191 diag, 22, 23 cd, 280 ceil 66 diag, 22, 23 diff, 137 differential equations, $see$ ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| axis, 255  bar, 244, 246, 247  beep, 319  binocdf, 229  binopdf, 222  binornd, 213  boolean tests  scalar, 186  vector, 187–189  break, 191  cd, 280  cumulative distribution functions  binomial, 229  continuous uniform on interval $(a,b)$ , 233  discrete uniform from 1n, 234  exponential, 231  normal, 232  Poisson, 230  debugging, 326  det, 86  diag, 22, 23  diff, 137  differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| bar, 244, 246, 247 beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191  cd, 280 ceil, 66  binomial, 229 continuous uniform on interval $(a, b)$ , 233 discrete uniform from 1n, 234 exponential, 231 normal, 232 Poisson, 230  debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| beep, 319 binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, $187-189$ break, 191  continuous uniform on interval $(a,b)$ , 233 discrete uniform from $1n$ , 234 exponential, 231 normal, 232 Poisson, 230  debugging, 326 det, 86 det, 86 break, 191  diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191  cd, 280 ceil 66  discrete uniform from 1n, 234 exponential, 231 normal, 232 Poisson, 230  debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| binocdf, 229 binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191 cd, 280 ceil 66 disserte timform from 1t, 234 exponential, 231 normal, 232 Poisson, 230 debugging, 326 det, 86 det, 86 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| binopdf, 222 binornd, 213 boolean tests scalar, 186 vector, 187–189 break, 191  cd, 280 ceil 66  binopdf, 222 normal, 232 Poisson, 230  debugging, 326 det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| binornd, 213 boolean tests scalar, 186 vector, 187–189 det, 86 break, 191 diag, 22, 23 cd, 280 ceil 66 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| boolean tests scalar, 186 vector, 187-189 break, 191 diag, 22, 23 cd, 280 ceil 66 debugging, 326 det, 86 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| vector, 187-189 break, 191  cd, 280 ceil 66  det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vector, 187-189 break, 191  cd, 280 ceil 66  det, 86 diag, 22, 23 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| break, 191 diag, 22, 23 cd, 280 diff, 137 ceil 66 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cd, 280 diff, 137 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ceil 66 differential equations, see ode45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A = 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| dir, 281<br>cell, 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| cell arrays, 48 disp, 304, 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| extracting elements of, 49 doc, 4 dot, 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| cellular automata animation, 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| $\mathtt{drawnow},274,278$                    | user-written, 193<br>returning multiple values, 194 |
|-----------------------------------------------|-----------------------------------------------------|
| echelon form, see matrix                      | fzero, 167                                          |
| eig, 96                                       | ,                                                   |
| element-by-element matrix operations, see ma- | gca, 259                                            |
| $\operatorname{trix}$                         | gcf, 237                                            |
| else, 185                                     | get, 238                                            |
| elseif, 185                                   | Greek letters                                       |
| end, 40                                       | in plot labels, 258                                 |
| eps, 316                                      | grid,260                                            |
| erf, 68                                       |                                                     |
| erfc, 69                                      | $\mathtt{help},\ 1	ext{}3$                          |
| erfcinv, 71                                   | ${\tt helpbrowser},4$                               |
| erfinv, 70                                    | ${\tt helpdesk},4$                                  |
| error, 322                                    | hilb, 46                                            |
| errorbar, 248, 249                            | hist, 163, 164, 245, 246                            |
| etime, 321                                    | hold, 266                                           |
| eval, 325                                     |                                                     |
| evalin, 288                                   | identity, see matrix                                |
| exit, 302, 330                                | if, 184-186                                         |
| exp, 56                                       | imag, 78                                            |
| expcdf, 231                                   | image, 269, 278                                     |
| expm, 130                                     | ${\tt imagesc},269$                                 |
| exppdf, 224                                   | importdata, 283, 284                                |
| exprnd, 215                                   | $\mathtt{ind2sub},36$                               |
| eye, 21                                       | indexing                                            |
|                                               | matrix, 10                                          |
| figure, 235, 236                              | with a single index, 11                             |
| file                                          | vector, 9                                           |
| running commands in, 282                      | input, 306, 307                                     |
| text                                          | inv, 87                                             |
| reading data from, 283, 284                   | inverse, see matrix                                 |
| saving data to, 285                           | ismember, 311                                       |
| find, $160-162$                               |                                                     |
| finish.m, 330                                 | keyboard, $326$                                     |
| fliplr, 34                                    | 1 207                                               |
| flipud, 35                                    | legend, 265                                         |
| floor, 65                                     | length, 150, 152                                    |
| fminbnd, 168, 169                             | linspace, 15                                        |
| fminsearch, 170, 171                          | load, 283                                           |
| font size in plots, 259                       | log, 57                                             |
| for, 183                                      | log10, 58                                           |
| format, 301                                   | log2, 58                                            |
| fplot, 268                                    | loglog, 243                                         |
| fprintf, 304, 305                             | logspace, 16                                        |
| function                                      | lookfor, 5                                          |
| multi-variable                                | lu, 97                                              |
| minimization, 170                             |                                                     |
| minimization over first parameter only, 169   | matrix, 8                                           |
| minimization over only some parameters,       | boolean operations on, 161, 162                     |
| 171                                           | changing shape of, 43                               |
| single-variable                               | Cholesky factorization, 100                         |
| minimization, 168                             | circular shift, 33                                  |
| 111111111111111111111111111111111111111       | condition number, 104–106                           |

| containing all zeros, 19 converting row, column to single index, 37 converting single-index to row, column, 36 cumulative sums of columns, 132 min, 139–142, 144–144.6 mind, 143 midd; 137 middir, 179 mpdf, 228 mprnd, 220, 221 mod, 63, 334 modulo arithmetic, 63, 334 multiplic statements on one line, 324 columns, 102, 102 normodf, 232 normodf, 23 | containing all indentical entries, 20        | $\mathtt{mean},\ 107109$                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|
| converting single-index to row, column, 36 cumulative sums of all elements of, 134 cumulative sums of columns, 132 cumulative sums of rows, 133 determinant, 86 diagonal, 22 cehelon form, 85 cigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a rectangular piece of, 31 extracting a pecified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each column of, 141 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147-149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 transpose, 83 transpose, 88 transpose, 88 transpose, 88 transpose, 83 transpose, 85 transp |                                              | mesh, 254                               |
| converting single-index to row, column, 36 cumulative sums of all elements of, 134 cumulative sums of columns, 132 cumulative sums of rows, 133 determinant, 86 diagonal, 22 echelon form, 85 eigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a rotumn of, 28 extracting a rectangular piece of, 31 extracting a preclamgular post of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 reverse elements in ros, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147-149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 89 tra | converting row, column to single index, 37   | meshgrid, 26, 118, 253                  |
| cumulative sums of all elements of, 134 cumulative sums of columns, 132 cumulative sums of columns, 132 cumulative sums of rows, 133 determinant, 86 diagonal, 22 echelon form, 85 eigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a row of, 29 extracting a row of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum value of each column of, 141 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 size of, 147-149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 transpose, |                                              | min, 139-142, 144-146                   |
| cumulative sums of rows, 133 determinant, 86 diagonal, 22 echelon form, 85 eigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a row of, 29 extracting a row of, 29 extracting a row of, 29 extracting a prow of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 transpose, 84 transpose, 84 transpose, 84 transpose, 84 transpose, 8 |                                              | mind, 143                               |
| cumulative sums of rows, 133 determinant, 86 diagonal, 22 echelon form, 85 cigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a row of, 29 extracting a row of, 29 extracting a row of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44  LU factorization, 97 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 transpose, 84 transpose, 84 transpose, 84 transpose, 84 transpose, 84 transpose, 84 transpose, 85 transp | cumulative sums of columns, 132              | mkdir, 279                              |
| diagonal, 22 echelon form, 85 cigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a rectangular piece of, 31 entracting a row of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 endifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 element-by-element, 82 element-by-element, 82 element-by-element, 82 of rows of, 129 elements, 127 of columns of, 128 of rows of, 129 elements in columns, 35 reverse elements in columns, 35 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147-149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 transpose, 84 transpose, 84 transpose, 85 transpose, 85 transpose, 85 transpose, 85 transpose, 85 transpose, 85  |                                              | mnpdf, 228                              |
| diagonal, 22 echelon form, 85 eigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a roctangular piece of, 31 extracting a row of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 transpose,  |                                              | mnrnd, 220, 221                         |
| echelon form, 85 eigenvalues and eigenvectors of, 96 equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a rectangular piece of, 31 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 trans |                                              | mod, 63, 334                            |
| equation solving, 84 exponential of, 130 extracting a column of, 28 extracting a row of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 t | echelon form, 85                             | modulo arithmetic, 63, 334              |
| solving, 84 exponential of, 130 extracting a column of, 28 extracting a rectangular piece of, 31 extracting a row of, 29 extracting a rectangular piece of, 31 extracting a row of, 29 extracting a rectangular piece of, 31 extracting a row of, 29 extracting a rectangular piece of, 31 extracting a row of, 29 normed, 225 normrid, 229 ode45, 195–197 ones, 18, 20 openvar, 293 optimization, 168–171  path, 328 pause, 317, 318 pcolor, 254, 269, 278 permutation of integers 1n, 208 plot, 240–242, 267 Greek letters in axis labels, 258 plot3, 251 poisscuff, 230 poissrd, 231 poissrd, 232 poissrd, 24 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 pval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomal, 228 normal, 225 poissrd, 230 poissrd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 pval, 178, 180, 181 print, 275–2     |                                              | multiple statements on one line, 324    |
| exponential of, 130 extracting a column of, 28 extracting a rectangular piece of, 31 extracting a rectangular piece of, 31 extracting a pown of, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44  LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  | equation                                     |                                         |
| extracting a column of, 28 extracting a rectangular piece of, 31 extracting a reword, 29 extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 tr | solving, 84                                  |                                         |
| extracting a rectangular piece of, 31 extracting a rectangular piece of, 31 extracting a rectangular piece of, 31 extracting a row of, 29 normrid, 219 num2str, 314 nume1, 151  ode45, 195-197 ones, 18, 20 openvar, 293 optimization, 168-171  path, 328 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 permutation of integers 1n, 208 plots, 240-242, 267 Greek letters in axis labels, 258 plot3, 251 poissend, 223 poissend, 224 polar, 250 polyfit, 174-176 polynomial least-squares fitted, 175-177 multiplication, 165 roots of, 166 pval, 178, 180, 181 print, 275-277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | exponential of, 130                          |                                         |
| extracting a row of, 29 extracting a pecified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44  LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 reverse elements in columns, 35 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 126 of rows of, 126 trace, 88 transpose, 83 tr | extracting a column of, 28                   |                                         |
| extracting specified rows and columns of, 32 "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44 LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147-149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper triangular portion of, 45  numel, 151  ode45, 195-197 ones, 18, 20 openvar, 293 optimization, 168-171  path, 328 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 eremutation of integers 1n, 208 plot, 240-242, 267 Greek letters in axis labels, 258 plota, 251 poissord, 230 poisspdf, 233 poissrnd, 214 polar, 250 polynimization, 168-171  path, 328 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 Greek letters in axis labels, 258 plota, 251 poissord, 230 poisspdf, 233 poissrnd, 214 polar, 250 polynomial least-squares fitted, 175-177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275-277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                         | extracting a rectangular piece of, 31        |                                         |
| "gluing" together, 24, 25 identity, 21 inverse, 87 lower-triangular portion of, 44  LU factorization, 97 minimum of values of, 140 minimum value of each cloumn of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper triangular portion of, 44  ode 45, 195–197 ones, 18, 20 openvar, 293 optimization, 168–171  path, 328 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 permutation of integers 1n, 208 plot, 240–242, 267 Greek letters in axis labels, 258 plot3, 251 poisscaft, 230 poisspdf, 223 poisspdf, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | extracting a row of, 29                      |                                         |
| identity, 21 inverse, 87 lower-triangular portion of, 44 $LU$ factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 $N$ -dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements in to a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper triangular portion of 45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | extracting specified rows and columns of, 32 | num2str, 314                            |
| identity, 21 inverse, 87 inverse, 87 lower-triangular portion of, 44 $UU$ factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 $N$ -dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 $VV$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | numel, 151                              |
| lower-triangular portion of, 44  LU factorization, 97 minimum of values of, 140 minimum value of each column of, 141 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 44  uninimum of values of, 140 penvar, 293 optimization, 168–171  path, 328 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 permutation of integers 1n, 208 plot, 240–242, 267 Greek letters in axis labels, 258 plot3, 251 poisscuff, 230 poisspdf, 223 poisspnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 portor, 254, 269, 278 perform some commands with probability p, 207 Greek letters in axis labels, 258 plot3, 251 poisscuff, 230 poisspnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 225 poisson, 223                                                                                                                                                                                                                                                                                                                                                  |                                              |                                         |
| minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements in to a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 45  volume of each column of, 141 minimum value of each column of, 142 path, 328 pause, 317, 318 pcolor, 254, 269, 278 Greek letters in axis labels, 258 plott3, 251 poisscuft, 230 poisspdf, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inverse, 87                                  |                                         |
| minimum of values of, 140 minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45  minimum value of each column of, 141 minimum value of each column of, 141 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns of, 128 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 permutation of integers 1n, 208 plott, 240–242, 267 Greek letters in axis labels, 258 plott3, 251 poisscrdf, 230 poisspdf, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lower-triangular portion of, 44              |                                         |
| minimum value of each column of, 141 minimum value of each column of, 141 minimum value of each column of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper triangular portion of, 45  minimum value of each column of, 141 minimum value of each row of, 142 path, 328 pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability p, 207 permutation of integers 1n, 208 plot, 240–242, 267 Greek letters in axis labels, 258 plot3, 251 poisscrdf, 230 poisspdf, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LU factorization, 97                         | - ·                                     |
| minimum value of each column of, 141 minimum value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 $N$ -dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 126 trace, 88 transpose, 83 upper-triangular portion of 45 $N$ and $N$ a | minimum of values of, 140                    | optimization, 168–171                   |
| minimul value of each row of, 142 modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 $N$ -dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 126 trace, 88 transpose, 83 upper-triangular portion of 45 $N$ modifying elements given lists of rows and columns of, 125 of rows of, 126 trace, 88 transpose, 83 $N$ multiplication, 142 $N$ pause, 317, 318 pcolor, 254, 269, 278 perform some commands with probability $p$ , 207 permutation of integers $1n$ , 208 plot, 240–242, 267 Greek letters in axis labels, 258 plot3, 251 poisscoff, 230 poisspaff, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 pval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval $(a, b)$ , 226 discrete uniform from $1n$ , 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                         |
| modifying elements given lists of rows and columns, 38 multiplication, 81 element-by-element, 82 $N$ -dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 126 trace, 88 transpose, 83 upper-triangular portion of 45 $polor, 254, 269, 278$ perform some commands with probability $p$ , 207 permutation of integers $1n$ , 208 plot, $240$ – $242$ , $267$ Greek letters in axis labels, $258$ plot3, $251$ poisscuff, $230$ poisspuff, $223$ poissrnd, $214$ polar, $250$ polyfit, $174$ – $176$ polynomial least-squares fitted, $175$ – $177$ multiplication, $165$ roots of, $166$ ppval, $178$ , $180$ , $181$ print, $275$ – $277$ probability density functions binomial, $222$ continuous uniform on interval $(a, b)$ , $226$ discrete uniform from $1n$ , $227$ exponential, $224$ multinomial, $228$ normal, $225$ Poisson, $223$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | - <del>-</del>                          |
| columns, 38 multiplication, 81 element-by-element, 82  N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 126 trace, 88 transpose, 83  upper-triangular portion of 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | <del>-</del>                            |
| multiplication, 81 element-by-element, 82 $N$ -dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 126 trace, 88 transpose, 83 upperstriagenglar portion of 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                         |
| element-by-element, 82  N-dimensional, 47 norm, 103 powers of, 93 product     of all elements, 127     of columns of, 128     of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum     of all elements, 124     of columns of, 125     of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | - *                                     |
| N-dimensional, 47 norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper triangular portion of 45  Greek letters in axis labels, 258 plot3, 251 poissodf, 230 poisspdf, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | -                                       |
| norm, 103 powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129  QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·        | <del>-</del>                            |
| powers of, 93 product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 99 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of $45$ poissond, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval $(a,b)$ , 226 discrete uniform from $1n$ , 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                         |
| product of all elements, 127 of columns of, 128 of rows of, 129 $QR$ factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                         |
| of all elements, 127 of columns of, 128 of rows of, 129  QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 45  polsspdf, 223 poissrnd, 214 polar, 250 polyfit, 174–176 polynomial least-squares fitted, 175–177 multiplication, 165 roots of, 166 ppval, 178, 180, 181 print, 275–277 probability density functions binomial, 222 continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - · ·                                        |                                         |
| of columns of, 128 of rows of, 129  QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                         |
| of rows of, 129  QR factorization, 101  rank, 95  re-shaping its elements into a vector, 30  reverse elements in rows, 34  Schur decomposition, 99  singular value decomposition, 98  size of, 147–149, 151, 152  sum  of all elements, 124  of columns of, 125  of rows of, 126  trace, 88  transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | <del>-</del>                            |
| QR factorization, 101 rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                         |
| rank, 95 re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                         |
| re-shaping its elements into a vector, 30 reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                         |
| reverse elements in columns, 35 reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | - · · · · · · · · · · · · · · · · · · · |
| reverse elements in rows, 34 Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                         |
| Schur decomposition, 99 singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                         |
| singular value decomposition, 98 size of, 147–149, 151, 152 sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of, 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                         |
| size of, $147$ – $149$ , $151$ , $152$ sum  of all elements, $124$ of columns of, $125$ of rows of, $126$ trace, $88$ transpose, $83$ upper-triangular portion of $45$ probability density functions binomial, $222$ continuous uniform on interval $(a,b)$ , $226$ discrete uniform from $1n$ , $227$ exponential, $224$ multinomial, $228$ normal, $225$ Poisson, $223$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | - ·                                     |
| sum of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of $45$ of all elements, 124 of columns of, 125 of rows of, 126  trace, 88 transpose, 83  upper-triangular portion of $45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                         |
| of all elements, 124 of columns of, 125 of rows of, 126 trace, 88 transpose, 83  upper-triangular portion of 45  continuous uniform on interval (a, b), 226 discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                         |
| of columns of, 125 of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of 45  discrete uniform from 1n, 227 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                         |
| of rows of, 126 trace, 88 transpose, 83 upper-triangular portion of 45 exponential, 224 multinomial, 228 normal, 225 Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                            |                                         |
| trace, 88 transpose, 83 normal, 225 poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                         |
| transpose, 83  upper-triangular portion of 45  Poisson, 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                         |
| upper-triangular portion of 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                         |
| nrod 127/ 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                         |
| max, see min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | prod, 127-129                           |

| qr, 101                                           | splines, see cubic splines                   |
|---------------------------------------------------|----------------------------------------------|
| quad, 172                                         | sprintf, 315                                 |
| quit, 302, 330                                    | sqrt, 53                                     |
| 1,,                                               | stairs, 250                                  |
| rand, 198-206, 212                                | standard deviation, see std                  |
| random values                                     | startup.m, 329                               |
| Bernoulli, 204                                    | std, 110-112                                 |
| binomial, 213                                     | stem, 250                                    |
| continuous uniform distribution on interval       | stop, 322                                    |
| (a,b), 201, 218                                   | strcat, 309                                  |
| continuous uniform distribution on interval       | string                                       |
| (0,1), 198-200                                    | concatenation, 308                           |
| discrete uniform distribution from $ab$ , 206     | converting number to, 314                    |
| discrete uniform distribution from $1k$ , $203$ , | pattern matching, 312, 313                   |
| 216, 217                                          | substrings, 310                              |
| discrete uniform distribution, 202                | struct, 51                                   |
| exponential, 215                                  | sub2ind, 37, 38                              |
| k unique values sampled from integers 1 $n$ ,     | subplot, 273                                 |
| 209                                               | sum, 124–126, 187                            |
| multinomial, 220, 221                             | surf, 252, 253                               |
| normal, 219                                       | surfc, 254                                   |
| Poisson, 214                                      | surfl, 254                                   |
| setting the seed, 212                             | svd, 98                                      |
| randperm, 208, 209                                | switch, 192                                  |
| randsample, 209-211                               | SWITCH, 192                                  |
| rank, 95                                          | tan, 59                                      |
| rcond, 104                                        | tanh, 61                                     |
| real, 77                                          | text, 261, 262                               |
| regexp, 312, 313                                  | tic, 321                                     |
| reshape, 43, 47                                   | title, 256                                   |
| roots                                             | toc, 321                                     |
| of general single-variable function, 167          | trace, 88                                    |
| polynomial, 166                                   | transpose, see matrix                        |
| roots, 166                                        | trapz, 173                                   |
| round, 64                                         | tril, 44                                     |
| row vector, 6                                     | triu, 45                                     |
| rref, 85                                          |                                              |
|                                                   | unidcdf, 234                                 |
| sampling values from a vector, 210, 211           | $\mathtt{unidpdf},227$                       |
| save, 285                                         | unidrnd, 216, 217                            |
| schur, 99                                         | $\mathtt{unifcdf}, 233$                      |
| semilogx, 243                                     | $\mathtt{unifpdf},226$                       |
| semilogy, 243                                     | unifrnd, 218                                 |
| set, 259                                          | unique, $163$ , $246$                        |
| shading, 269                                      | 119 115                                      |
| sign, 67                                          | var, 113–115                                 |
| $\sin$ , $59$                                     | variables                                    |
| sinh, 61                                          | assigning, 286                               |
| ${\tt size},147149$                               | assigning in base environment from func-     |
| slice, 254                                        | tion, 287                                    |
| sort, 153, 154, 209                               | evaluating from base environment within func |
| sortrows, 155-158                                 | tion, 288                                    |
| spline, 182                                       | names, 298                                   |
|                                                   | variance, see var                            |

#### vector

boolean operations on, 159, 160 containing all indentical entries, 18 containing all zeros, 17 counts of binned values in, 164 counts of discrete values in, 163 cross product, 80 cumulative sum of elements of, 131 differences between consecutive elements of, 137 dot product, 79 minimum of values of, 139 norm, 102 position of first occurance of minimum value in, 146 product of all elements, 127 reversing order of elements in, 27 size of, 150 sum of all elements, 124 truncating, 39

 $\begin{array}{l} \mathtt{warning},\,323\\ \mathtt{waterfall},\,254\\ \mathtt{which},\,327\\ \mathtt{while},\,190\\ \mathtt{who},\,289\\ \mathtt{whos},\,290-292\\ \end{array}$ 

 $\mathtt{xlabel},\ 257\text{--}259$ 

ylabel, 257, 258

zeros, 17, 19

# Index of ${\sf R}$ commands and concepts

| *, 92                                       | colormap                                      |
|---------------------------------------------|-----------------------------------------------|
| /, 90                                       | building your own, 272                        |
| ;, 12, 13                                   |                                               |
| ;, 324                                      | for image, 271                                |
|                                             | colSums, 125                                  |
| <-, 286                                     | column vector, 7                              |
| <<-, 287                                    | comments, 303                                 |
| =, 286                                      | complex numbers, 73–78                        |
| $\frac{1}{2}$                               | Conj, 76                                      |
| [[, 49                                      | contour, 254                                  |
| #, 303                                      | convolve, 165                                 |
| %%, 63, 334                                 | cor, 119-123                                  |
| &, 186, 187                                 | $\cos, 59$                                    |
| ^, 54, 94                                   | cosh, 61                                      |
| aba 55 74                                   | cov, 116–118                                  |
| abs, 55, 74                                 | cubic splines, 179, 180, 182                  |
| acos, 60                                    | natural, 178                                  |
| acosh, 62                                   | periodic, 181                                 |
| alarm, 319                                  | $\mathtt{cummax}, 136$                        |
| all, 188                                    | cummin, 136                                   |
| any, 189                                    | cumprod, 135                                  |
| apply, 34, 35, 112, 114, 115, 128, 141, 142 | $\mathtt{cumsum},\ 131-134$                   |
| Arg, 75                                     | cumulative distribution functions             |
| array, 47                                   | binomial, 229                                 |
| arrows, 263, 264                            | continuous uniform on interval $(a, b)$ , 233 |
| as.character, 314                           | discrete uniform from $1n$ , $234$            |
| as.formula, 176                             | exponential, 231                              |
| as.numeric, 163                             | normal, 232                                   |
| asin, 60                                    | Poisson, 230                                  |
| $\operatorname{asinh}, 62$                  | curve, 268                                    |
| atan, 60                                    |                                               |
| $\mathtt{atanh},62$                         | $\mathtt{data.frame},51$                      |
| average, see mean                           | ${\tt dbinom},222$                            |
| harmlat 244 246                             | debugging, 326                                |
| barplot, 244, 246                           | $\mathtt{det},86$                             |
| boolean tests                               | dev.control, 275, 276, 278                    |
| scalar, 186                                 | ${\tt dev.copy},275,276$                      |
| vector, 187–189                             | dev.copy2eps, 276                             |
| break, 191                                  | dev.copy2pdf, 275                             |
| browser, 326                                | $\operatorname{dev.cur}(), 237$               |
| c, 6, 7                                     | dev.list, 238                                 |
| cbind, 24, 38                               | $\mathtt{dev.new},235$                        |
| ceiling, 66                                 | ${\tt dev.off},239,275 – 277$                 |
| cellular automata animation, 278            | $\mathtt{dev.set}, 236$                       |
| chol, 100                                   | dexp, 224                                     |
| choose, 72                                  | $\mathtt{diag},2123$                          |
| class, 297                                  | diff, 137                                     |
| cloud, 251                                  | differential equations, see lsoda             |
|                                             | dim, 43, 149, 152                             |
| coef, 174-177                               | dir, 281                                      |
| colMeans, 108                               | dir.create, 279                               |
| colon, see:                                 | ,                                             |

| dmultinom, 228                                | $\mathtt{hist}, 164, 244, 245, 247$        |
|-----------------------------------------------|--------------------------------------------|
| dnorm, 225                                    | • 1 • • • • • • • • • • • • • • • • • •    |
| dpois, 223                                    | identity, see matrix                       |
| dunif, 226                                    | if, 184-186                                |
|                                               | ifelse, $138$                              |
| echelon form, see matrix                      | Im, 78                                     |
| eig, 96                                       | $\mathtt{image},269,278$                   |
| element-by-element matrix operations, see ma- | indexing                                   |
| $\operatorname{trix}$                         | matrix, 10                                 |
| else, 185                                     | with a single index, 11                    |
| errbar, 248, 249                              | vector, 9                                  |
| eval, 325                                     | ${\tt install.packages},331$               |
| exp, 56                                       | integrate, 172                             |
| expand, 97                                    | inverse, see matrix                        |
| expand.grid, 254                              |                                            |
| expm, 130                                     | jpeg, 277                                  |
| file                                          | kappa, 105                                 |
| running commands in, 282                      | •• /                                       |
| text                                          | $.\mathtt{Last},330$                       |
| reading data from, 283, 284                   | .Last.value, 299                           |
| saving data to, 285                           | lattice package, 254, 270, 274, 331        |
|                                               | layout, 273                                |
| filled.contour, 270                           | legend, 265                                |
| .First, 329                                   | length, 39, 40, 150, 151                   |
| fix, 293                                      | levelplot, 270, 274                        |
| floor, 65                                     | library, 3, 331                            |
| font size in plots, 259                       | lines, 266                                 |
| for, 183                                      | lists, 48                                  |
| function                                      | extracting elements of, 49                 |
| multi-variable                                | 1m, 174–177                                |
| minimization, 170                             |                                            |
| minimization over first parameter only, 169   | lm.fit, 176                                |
| minimization over only some parameters,       | log, 57                                    |
| 171                                           | log10, 58                                  |
| single-variable                               | log2, 58                                   |
| minimization, 168                             | lower.tri, 45                              |
| user-written, 193                             | ls, 289                                    |
| returning multiple values, 194                | ls.str, 290, 292<br>lsoda, 195-197         |
| get, 288                                      | ,                                          |
| globalenv, 288                                | .Machine $\$$ double.eps, $316$            |
| graphics                                      | $\mathtt{match},311$                       |
| not being displayed from scripts/functions,   | $\mathtt{matplot},267$                     |
| 274                                           | matrix, 8                                  |
| Greek letters                                 | boolean operations on, 161, 162            |
| in plot labels, 258                           | changing shape of, 43                      |
| gregexpr, 312                                 | Cholesky factorization, 100                |
| grepl, 313                                    | circular shift, 33                         |
| grid, 260                                     | condition number, 104–106                  |
| 5-14, 200                                     | containing all indentical entries, 20      |
| help, 1, 2                                    | containing all zeros, 19                   |
| help.search, 5                                | converting row, column to single index, 3' |
| help.start, 4                                 | converting single-index to row, column, 30 |
| Hilbert. 46                                   | cumulative sums of all elements of, 134    |

| cumulative sums of columns, 132              | multiple statements on one line, 324            |
|----------------------------------------------|-------------------------------------------------|
| cumulative sums of rows, 133                 | names, $50, 163$                                |
| determinant, 86                              | ncol, 148                                       |
| diagonal, 22                                 | next, 191                                       |
| echelon form, 85                             |                                                 |
| eigenvalues and eigenvectors of, 96          | norm, 102, 103                                  |
| equation                                     | nrow, 147                                       |
| solving, 84                                  | optim, 170, 171                                 |
| exponential of, 130                          | optimization, 168–171                           |
| extracting a column of, 28                   | optimize, 168, 169                              |
| extracting a rectangular piece of, 31        | - · · · · · · · · · · · · · · · · · · ·         |
| extracting a row of, 29                      | options                                         |
| extracting specified rows and columns of, 32 | digits=, 301                                    |
| "gluing" together, 24, 25                    | order, 155-158                                  |
| identity, 21                                 | outer, $176, 253$                               |
| inverse, 87                                  | packages                                        |
| lower-triangular portion of, 44              | installing, 331                                 |
| LU factorization, 97                         | loading, 331                                    |
| minimum of values of, 140                    | 9.                                              |
| minimum value of each column of, 141         | par, 259                                        |
| minimum value of each row of, 142            | par                                             |
| modifying elements given lists of rows and   | mfcol=, 273                                     |
| columns, 38                                  | mfrow=, 273                                     |
| multiplication, 81                           | parse, 325                                      |
| element-by-element, 82                       | paste, 176, 308, 309                            |
| N-dimensional, 47                            | pbinom, 229                                     |
| norm, 103                                    | pdf, 259, 275                                   |
| powers of, 93                                | perform some commands with probability $p, 207$ |
| product                                      | permutation of integers $1n$ , $208$            |
| of all elements, 127                         | persp, 252, 253                                 |
| of columns of, 128                           | pexp, 231                                       |
| of rows of, 129                              | $\mathtt{pie},250$                              |
| QR factorization, 101                        | $\mathtt{plot},240243$                          |
| rank, 95                                     | Greek letters in axis labels, 258               |
| re-shaping its elements into a vector, 30    | $\mathtt{main=},256$                            |
|                                              | $\mathtt{sub}\mathtt{=},256$                    |
| reverse elements in columns, 35              | xlab=, 257, 258                                 |
| reverse elements in rows, 34                 | $\mathtt{xlim}=,255$                            |
| Schur decomposition, 99                      | ylab=, 257, 258                                 |
| singular value decomposition, 98             | ylim=, 255                                      |
| size of, 147–149, 151, 152                   | pmin, 143, 144                                  |
| sum                                          | pnorm, 68, 69, 232                              |
| of all elements, 124                         | points, 266                                     |
| of columns of, 125                           | polynomial                                      |
| of rows of, 126                              | least-squares fitted, 175–177                   |
| trace, 88                                    | multiplication, 165                             |
| transpose, 83                                | roots of, 166                                   |
| upper-triangular portion of, 45              | polyreg, 176                                    |
| matrix, 8, 19, 20                            | polyroot, 166                                   |
| $\max, see \min$                             | postscript, 276                                 |
| $\mathtt{mean},107$                          | ppois, 230                                      |
| $\min, 139-142, 145$                         | print, 274, 304, 305                            |
| $\operatorname{Mod} olimits, 74$             | probability density functions                   |
| modulo arithmetic, 63, 334                   | binomial, 222                                   |
|                                              | · · · · · · · · · · · · · · · · · · ·           |

| continuous uniform on interval $(a, b)$ , 226     | polynomial, 166                         |
|---------------------------------------------------|-----------------------------------------|
| discrete uniform from $1n$ , $227$                | round, 64                               |
| exponential, 224                                  | row vector, 6                           |
| multinomial, 228                                  | rowMeans, 109                           |
| normal, 225                                       | rpois, 214                              |
| Poisson, 223                                      | .Rprofile, 329                          |
| proc.time, 320, 321                               | $\mathtt{runif}, 198204, 206, 218$      |
| prod, 127-129                                     | sample, 208-211, 216, 217               |
| punif, 233                                        |                                         |
| - 202 220                                         | sampling values from a vector, 210, 211 |
| q, 302, 330                                       | scan, 306, 318                          |
| qnorm, 70, 71                                     | Schur, 99                               |
| qr, 95, 101                                       | sd, 110–112                             |
| quartz, 235                                       | seq, 14-16                              |
| quit, 302, 330                                    | set.seed, 212                           |
| rand 205                                          | setwd, 280                              |
| rand, 205<br>random values                        | sign, 67                                |
| Bernoulli, 204                                    | sin, 59                                 |
|                                                   | sinh, 61                                |
| binomial, 213                                     | solve, 84, 87, 89, 91                   |
| continuous uniform distribution on interval       | sort, 153, 154                          |
| (a,b), 201, 218                                   | source, 282                             |
| continuous uniform distribution on interval       | spline, 178, 179, 181                   |
| (0,1), 198, 200                                   | splines, see cubic splines              |
| continuous uniform distribution on inteval        | split.screen, 273                       |
| (0,1), 199                                        | sprintf, 315                            |
| discrete uniform distribution from a.b, 206       | sqrt, 53                                |
| discrete uniform distribution from $1k$ , $203$ , | standard deviation, see sd              |
| 216, 217                                          | str, 291                                |
| discrete uniform distribution, 202                | string                                  |
| exponential, 215                                  | concatenation, 308                      |
| k unique values sampled from integers $1n$ ,      | converting number to, 314               |
| 209                                               | pattern matching, 312, 313              |
| multinomial, 220, 221                             | substrings, 310                         |
| normal, 219                                       | $\mathtt{substr},310$                   |
| Poisson, 214                                      | sum, 124, 126, 187                      |
| setting the seed, 212                             | svd, 98                                 |
| rbind, 25                                         | $\mathtt{switch},192$                   |
| rbinom, 213                                       | ${\tt symbols},254$                     |
| rcond, 104, 106                                   | Sys.sleep, 317                          |
| .RData, 329                                       |                                         |
| Re, 77                                            | t, 83                                   |
| $\mathtt{read.table},283,284$                     | table, $163, 246$                       |
| ${\tt readline},307$                              | $\mathtt{tan},59$                       |
| rep, 17, 18                                       | tanh, 61                                |
| rev, 27                                           | text, 261, 262                          |
| rexp, 215                                         | $\mathtt{title},256,257$                |
| rgb, 272                                          | transpose, see matrix                   |
| rm, 294-296                                       | ${	t typeof}, 297$                      |
| rmultinom, 220, 221                               |                                         |
| rnorm, 219                                        | uniroot, 167                            |
| roots                                             | upper.tri, $44$                         |
| of general single-variable function, 167          | var 113-115 117                         |
|                                                   |                                         |

```
variables
    assigning, 286
    assigning in base environment from func-
         tion, 287
    evaluating from base environment within func-
         tion, 288
    names, 298
variance, see var
vector
    boolean operations on, 159, 160
    containing all indentical entries, 18
    containing all zeros, 17
    counts of binned values in, 164
    counts of discrete values in, 163
    cross product, 80
    cumulative sum of elements of, 131
    differences between consecutive elements of,
         137
    dot product, 79
    minimum of values of, 139
    norm, 102
    position of first occurance of minimum value
         in, 146
    product of all elements, 127
    reversing order of elements in, 27
    size of, 150
    sum of all elements, 124
    truncating, 39
vector, 48
warning, 323
which, 160-162
which.max, see which.min
which.min, 146
while, 190
windows, 235
wireframe, 254
write, 285
x11, 235
```