• Functional sequence is a sequence of different functions defined on some interval Δ :

- o Example: $f_n(x) = x^n, x \in \Delta$
 - $f_1(x) = x$, $f_2(x) = x^2$, and so on...
- \circ Calculating the limit of the functional sequence means getting the limit function f(x)
 - Limit function is a single function that the sequence converges to, letting $n \to \infty$
 - For the above example if $\Delta = [0, 1]$, then
 - $f(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & x = 1 \end{cases}$

• Pointwise convergence:

- o The functional sequence $f_n(x)$ converges pointwise if $\lim_{n\to\infty} f_n(x) = f(x) \ \forall x\in \Delta$
- $\circ \quad \forall x \in \Delta, \forall \varepsilon > 0, \exists \, n \geq \, \, N \; s. \, t \, |f_n(x) \, f(x)| < \varepsilon$
- \circ For any point we choose in the interval, we can find its own epsilon (If we can find some value for epsilon for all x's in Δ then convergence is uniform).

• Uniform convergence:

- $\lor \forall \epsilon > 0, \exists n \geq N, \forall x \in \Delta \text{ s.t } |f_n(x) f(x)| < \epsilon$
- o For any epsilon we choose, there is a starting point after which the functional sequence is bounded (will not exceed some fixed value ϵ)
- \circ There is one neighborhood "tube" that bound the functional sequence for all points in Δ
- \circ To use the above definition, we need to find the supremum of $|f_n(x) f(x)|$ and prove that it's a fixed value.

• Useful properties of uniform convergence:

- If $f_n(x)$ converges uniformly to f(x), $x \in \Delta = [a, b]$, $f_n(x)$ is continuous $\forall n$, then
 - f(x) is also continuous $\forall x \in \Delta$

 - In the same way we can swap taking limit and first derivative.

• Functional series: An infinite series of functions.

- o $\sum_{n=1}^{\infty} a_n(x)$ converges to S(x) if the functional sequence of partial sums S_n(x) = $\sum_{k=1}^{n} a_k(x)$ converges to S(x).
- All properties of functional sequence apply to series.

• Cauchy criterion of convergence of $\sum_{k=1}^{\infty} a_k(x)$

- $\circ \quad \forall \epsilon > 0 \; \exists \, \mathbf{N} \colon \forall \, \mathbf{n} \geq \mathbf{N}, \; \forall \, \mathbf{p} \geq 0 \Rightarrow \big| \sum_{k=n}^{n+p} a_k(x) \, \big| < \epsilon$
- o For any small epsilon we choose we can always find a starting point N that, starting from it, the partial sums of any length p are all bounded from above and below by epsilon.
- $\circ\quad Useful \ for \ proving \ that \ convergence \ is \ not \ uniform.$
- $\sum_{k=1}^{\infty} a_k(x)$ does not converge uniformly $\Leftrightarrow \exists \epsilon > 0$, $\forall N: \exists n \geq N, \exists p \geq 0 \exists x \in \Delta: |\sum_{k=n}^{n+p} a_k(x)|$ $\geq \epsilon$
- o **Practically**, If $\lim_{n\to\infty} \sup_{x\in\Delta} |f_n(x)-f(x)| \neq 0$ then series doesn't converge uniformly, otherwise, we don't know and we have to use another test.

Weierstrass M-test:

- The series $\sum_{n=1}^{\infty} a_n(x)$ converges uniformly and absolutely if we know that $|a_n(x)| \le b_n \ \forall n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} b_n$ converges.
- \circ We can find b_n by taking the derivative of a_n with respect to x, and find which x yields the absolute max, we set x to that value in a_n and that will be b_n .

• Uniform convergence of functional series:

- \circ We fix x to some value in Δ and check that the series converges pointwise using any test from last semester (divergence/limit/root/ratio/Cauchy/...).
- o If series diverges, then it cannot converge uniformly.
- O If it converges -pointwise- we need to check convergence of its max series (Weierstrass) which we can get using first derivative test (finding critical points of x by taking the derivative of $f_n(x)$ with respect to x and substitute x with the point that yields absolute max of a_n the result will be the series b_n), if b_n converges then a_n converges uniformly.

• Dirichlet's test for uniform convergence:

- o If we have the series $\sum a_n(x)b_n(x)$, $x \in \Delta$ and we know that:
 - Partial sums of a_n are uniformly bounded, that is $|\sum a_n(x)| \le M$
 - $b_n(x)$ is monotonic, $b_n(x)$ converges uniformly to 0
- \circ Then the original series converges uniformly on Δ