Tentamen i TATA24 Linjär Algebra

2021-01-10 kl 14.00-19.00

Inga hjälpmedel. Ej räknedosa.

På del A och B (uppgift 1–6) ska endast svar ges. De ska lämnas på ett gemensamt papper. Varje uppgift på del A och B ger högst 1 poäng.

Uppgifterna på del C (uppgift 7–10) ger högst 3 poäng per uppgift, och till dessa krävs fullständiga och välmotiverade lösningar.

För betyg 3/4/5 krävs minst 2 poäng på del A, minst 2 poäng på del B, minst 2/3/4 uppgifter på del C som bedömts med minst 2 poäng vardera, samt minst 8/12/16 poäng totalt.

Godkänd kontrollskrivning ger 3 poäng på del A (uppgift 1–3) som då inte behöver lösas. Markera detta genom att skriva "G" i rutorna för uppgift 1–3.

Svar finns efter skrivningstidens slut på kursens hemsida.

Nedan ges \mathbb{R}^n alltid standardskalärprodukten, och standardbasen i \mathbb{R}^n ses som ett höger ON-system när lämpligt.

DEL A

- 1. Ange alla lösningar till ekvationssystemet $\begin{cases} 2x-y-3z=1,\\ 3x+y-\ z=6,\\ x-y+\ z=6. \end{cases}$
- 2. Bestäm den punkt som fås då punkten (7,2,0) speglas i det plan som har ekvationen $2x_1-x_2-x_3=0$.
- 3. Finn alla minstakvadratlösningar till ekvationssystemet $\begin{cases} 2x_1 + x_2 = 1, \\ x_1 x_2 = 2, \\ 2x_2 = 3, \\ x_1 + x_2 = 4. \end{cases}$

DEL B

- 4. Den linjära avbildningen $F: \mathbb{R}^2 \to \mathbb{R}^3$ ges av $F((x_1, x_2)) = (2x_1 x_2, 3x_2, x_1 + 2x_2)$. Bestäm F:s avbildningsmatris i standardbaserna.
- 5. En linjär avbildning $F: \mathbb{R}^3 \to \mathbb{R}^3$ har i standardbasen avbildningsmatris $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{pmatrix}$. Ange egenvärdet för F:s egenvektor (1,0,-1).
- 6. Låt $(\mathbf{e}_1 \ \mathbf{e}_2)$ vara standardbasen för \mathbb{R}^2 och låt $F: \mathbb{R}^2 \to \mathbb{R}^2$ vara den linjära avbildning som har avbildningsmatris $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ i basen $(3\mathbf{e}_1 + \mathbf{e}_2 \ 2\mathbf{e}_1 + \mathbf{e}_2)$. Beräkna F:s avbildningsmatris i standardbasen.

VÄND!

Utbildningskod: TATA24

Modul: TEN1

DEL C

- 7. Låt \mathbb{V} vara det underrum av \mathbb{R}^4 som spänns upp av (1,2,1,2) och (2,1,2,2). Bestäm det kortaste avståndet från $\mathbf{u} = (3,2,2,-2)$ till \mathbb{V} :s ortogonala komplement.
- 8. Betrakta den kvadratiska formen $Q(\underline{\mathbf{e}}X) = x_1^2 + 6\sqrt{3}\,x_1x_2 5x_2^2$ på \mathbb{R}^2 . Bestäm de punkter på andragradskurvan $Q(\underline{\mathbf{e}}X) = 1$ som ligger närmast origo och ange dessa punkters avstånd till origo.
- 9. Låt $A = \begin{pmatrix} 8 & -15 \\ 2 & -3 \end{pmatrix}$. Beräkna A^n för alla heltal $n \ge 1$.
- 10. Låt $\mathbb V$ vara ett vektorrum och antag att $F:\mathbb V\to\mathbb V$ är en linjär avbildning sådan att $F^2=F$ och sådan att 0 och 1 är egenvärden till F. Visa att en godtycklig vektor $\mathbf u\in\mathbb V$ kan skrivas som $\mathbf u=\mathbf v+\mathbf w$, där $\mathbf v$ respektive $\mathbf w$ tillhör F:s egenrum till egenvärdet 0 respektive 1.

LYCKA TILL!