OCM modelvalidation

Elizabeth Chase

7/27/2020

This script demonstrates how the model was validated in PLCO. Unfortunately, the PLCO data cannot be shared, and therefore this script cannot be run. However, we provide the code for transparency.

Validation

Now we validate each model. First, we look at C-index:

```
load("cox_55.RData")
load("cox 40.RData")
load("rforest_40.RData")
times <- seq(6, 168, by=6)
plco_clean$age_ctr_40 <- plco_clean$age - 60.34387 #scaling the age 40+ cohort
plco_clean$age_ctr_55 <- plco_clean$age - 68.35788 #scaling the age 55+ cohort
cox55_plco <- pec::cindex(object=cox_55, Surv(permth_exm, mortstat) ~ age_ctr_55 +
                            race2 + educ + marital2 + emphysema + diabetic +
                            stroke + smoker + underweight + overweight2 + obese2 +
                            pc + age_ctr_55*diabetic + age_ctr_55*educ +
                            age_ctr_55*marital2 + race2*educ, data = plco_clean,
                          eval.times = times)
cox40_plco <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~
                            age_ctr_40 + diabetic + educ + hypertension + marital2 +
                            underweight + overweight2 + obese2 + smoker + stroke +
                            age ctr 40*diabetic + age ctr 40*educ +
                            age_ctr_40*hypertension + age_ctr_40*stroke + pc,
                          data=plco_clean, eval.times = times)
forest_plco <- pec::cindex(object=rforest_40, formula = Surv(permth_exm, mortstat) ~
                             age + arthritis + bronch + diabetic + educ +
                             emphysema + hypertension + single + sep + mi_chd +
                             underweight + overweight_ex + obese + liver + black +
                             other + smoker + stroke + pc, data=plco_nf, eval.times = times)
valid_perf <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                         "Model" = c(rep("Cox 55", 28), rep("Cox 40", 28),
                                     rep("Random Forest", 28)),
                         "C" = c(cox55_plco$AppCindex$coxph, cox40_plco$AppCindex$coxph,
                                 forest_plco$AppCindex$rfsrc))
performance_plot <- ggplot(data=valid_perf, aes(x=Time, y=C)) + geom_point(size=0.1) +</pre>
```

Table 1: Time-dependent C-index in PLCO

Model	Year5	Year10	Year14
Cox 55	0.685	0.696	0.693
Cox 40	0.687	0.698	0.697
Random Forest	0.666	0.688	0.680

```
geom_line(data=valid_perf, aes(group=Model, color=Model)) + xlab("Time (months)") +
ylab("Time-dependent C-index in PLCO")
performance_plot
```


Based on C-index, our strongest performing model is the Cox model fit to men ages 40+. Now we look at time-dependent AUC:

```
cox40predict <-
  predict(object = cox_40,
          newdata = plco_clean,
          type = "lp")
cox55predict <-
  predict(object = cox_55,
          newdata = plco_clean,
          type = "lp")
rforestpredict <-
  predict(object=rforest_40,
          newdata = plco_nf)
cox40roc <-
  timeROC(
   T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
   marker = cox40predict,
    cause = 1,
   weighting = "marginal",
   times = seq(0, 168, by = 6)
  )
cox55roc <-
 timeROC(
   T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
    marker = cox55predict,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
rforestroc <-
  timeROC(
    T = plco_nf$permth_exm,
    delta = plco_nf$mortstat,
    marker = rforestpredict$predicted,
    cause = 1,
   weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
aucdat <-
  data.frame("Time" = rep(seq(6, 168, by = 6), 3),
             "Model" = c(rep("Cox 55", 28), rep("Cox 40", 28),
                                      rep("Random Forest", 28)),
             "AUC" = c(cox55roc\$AUC[-1], cox40roc\$AUC[-1],
                       rforestroc$AUC[-1]))
aucplot <-
  ggplot(data = aucdat, aes(x = Time, y = AUC, group = Model, color=Model)) +
  geom_line() + xlab("Time (months)") + ylab("Time-dependent AUC in PLCO")
aucplot
```

Table 2: Time-Dependent AUC in PLCO

Model	Year5	Year10	Year14
Cox 55	0.698	0.748	0.772
Cox 40	0.700	0.750	0.777
Random Forest	0.695	0.731	0.734

Based on time-dependent AUC, the Cox model fit to men ages 40+ is still the strongest performing model. We will now focus our attention on the Cox ages 40+ model for the rest of our model validation/performance assessment.

We look at C-index and time-dependent AUC stratified by treatment group:

```
age_ctr_40*educ + age_ctr_40*hypertension +
                                     age_ctr_40*stroke + pc,
                                    data=plco clean[plco clean$primary tx=="Prostatectomy",],
                                    eval.times = times)
cox40_radiation <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~
                                 age_ctr_40 + diabetic + educ + hypertension +
                                 marital2 + underweight + overweight2 + obese2 +
                                 smoker + stroke + age_ctr_40*diabetic +
                                 age_ctr_40*educ + age_ctr_40*hypertension +
                                 age_ctr_40*stroke + pc,
                               data=plco_clean[plco_clean$primary_tx=="Radiation alone",],
                               eval.times = times)
cox40_rtadt <- pec::cindex(object=cox_40, formula = Surv(permth_exm, mortstat) ~</pre>
                             age_ctr_40 + diabetic + educ + hypertension +
                             marital2 + underweight + overweight2 + obese2 +
                             smoker + stroke + age_ctr_40*diabetic +
                             age_ctr_40*educ + age_ctr_40*hypertension +
                             age_ctr_40*stroke + pc,
                           data=plco_clean[plco_clean$primary_tx=="Radiation + hormone",],
                           eval.times = times)
valid_perf_trt <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                             "Treatment" = c(rep("Prostatectomy", 28),
                                              rep("Radiation alone", 28),
                                              rep("Radiation + hormone", 28)),
                             "C" = c(cox40_prostatectomy$AppCindex$coxph,
                                     cox40_radiation$AppCindex$coxph,
                                     cox40_rtadt$AppCindex$coxph))
performance_plot_trt <- ggplot(data=valid_perf_trt, aes(x=Time, y=C)) +</pre>
  geom_point(size=0.1) + geom_line(data=valid_perf_trt, aes(group=Treatment,
                                                             color=Treatment)) +
  xlab("Time (months)") + ylab("C-index in PLCO")
performance_plot_trt
```

Table 3: PLCO Time-Dependent C-index, by Treatment

Treatment	Year5	Year10	Year14
Prostatectomy	0.674	0.667	0.680
Radiation alone	0.644	0.661	0.665
Radiation + hormone	0.624	0.659	0.650


```
subperf_trt <- data.frame("Treatment" = c("Prostatectomy", "Radiation alone",</pre>
                                           "Radiation + hormone"),
                           "Year5" = round(c(cox40_prostatectomy$AppCindex$coxph[10],
                                             cox40_radiation$AppCindex$coxph[10],
                                             cox40_rtadt$AppCindex$coxph[10]), digits=3),
                           "Year10" = round(c(cox40_prostatectomy$AppCindex$coxph[20],
                                              cox40_radiation$AppCindex$coxph[20],
                                              cox40_rtadt$AppCindex$coxph[20]), digits=3),
                           "Year14" = round(c(cox40 prostatectomy$AppCindex$coxph[28],
                                              cox40_radiation$AppCindex$coxph[28],
                                              cox40 rtadt$AppCindex$coxph[28]), digits=3))
kable(subperf_trt, caption = "PLCO Time-Dependent C-index, by Treatment")
cox40predict_prostatectomy <- predict(object=cox_40, newdata =</pre>
                                         plco_clean[plco_clean$primary_tx=="Prostatectomy",],
                                       type="lp")
cox40predict_radiation <- predict(object=cox_40, newdata =</pre>
                                     plco_clean[plco_clean$primary_tx=="Radiation alone",],
                                   type="lp")
```

```
cox40predict_rtadt <- predict(object=cox_40, newdata =</pre>
                                plco_clean[plco_clean$primary_tx=="Radiation + hormone",],
                              type="lp")
prostatectomy_roc <- timeROC(T = plco_clean$permth_exm[plco_clean$primary_tx=="Prostatectomy"],</pre>
                             delta = plco_clean$mortstat[plco_clean$primary_tx=="Prostatectomy"],
                             marker = cox40predict_prostatectomy, cause = 1,
                             weighting="marginal", times = seq(0, 168, by=6))
radiation_roc <- timeROC(T = plco_clean$permth_exm[plco_clean$primary_tx=="Radiation alone"],</pre>
                         delta = plco_clean$mortstat[plco_clean$primary_tx=="Radiation alone"],
                         marker = cox40predict_radiation, cause = 1,
                         weighting="marginal", times = seq(0, 168, by=6))
rtadt_roc <- timeROC(T = plco_clean$permth_exm[plco_clean$primary_tx=="Radiation + hormone"],
                     delta = plco_clean$mortstat[plco_clean$primary_tx=="Radiation + hormone"],
                     marker = cox40predict_rtadt, cause = 1, weighting="marginal",
                     times = seq(0, 168, by=6))
aucdat_trt <- data.frame("Time" = rep(seq(6, 168, by=6), 3),</pre>
                         "AUC" = c(prostatectomy roc$AUC[-1], radiation roc$AUC[-1],
                                   rtadt_roc$AUC[-1]),
                         "Treatment" = c(rep("Prostatectomy", 28),
                                          rep("Radiation alone", 28),
                                          rep("Radiation + hormone", 28)))
aucplot_trt <- ggplot(data=aucdat_trt, aes(x=Time, y=AUC, group=Treatment,
                                            color=Treatment)) + geom_line() +
 xlab("Time (months)") + ylab("Time-dependent AUC in PLCO")
aucplot_trt
```

Table 4: Time-Dependent AUC in PLCO, by Treatment

Years	Prostatectomy	Radiation	Radiation_hormone
5	0.682	0.654	0.630
10	0.693	0.710	0.713
14	0.722	0.736	0.731


```
auc_table_trt <- data.frame("Years" = c(5, 10, 14),</pre>
                             "Prostatectomy" = round(c(prostatectomy_roc$AUC[11],
                                                       prostatectomy_roc$AUC[21],
                                                       prostatectomy_roc$AUC[29]),
                                                     digits = 3),
                             "Radiation" = round(c(radiation_roc$AUC[11],
                                                   radiation_roc$AUC[21],
                                                   radiation_roc$AUC[29]),
                                                 digits = 3),
                             "Radiation_hormone" = round(c(rtadt_roc$AUC[11],
                                                            rtadt_roc$AUC[21],
                                                           rtadt_roc$AUC[29]),
                                                          digits = 3))
rownames(auc_table_trt) <- NULL</pre>
kable(auc_table_trt, caption="Time-Dependent AUC in PLCO, by Treatment")
cutTime <- 14*12 #14 yr cutoff point
plco_clean$pc_time_14yr <- ifelse(plco_clean$permth_exm > cutTime, cutTime,
                                   plco_clean$permth_exm)
```

```
plco_clean$pc_status <- ifelse(plco_clean$permth_exm >= cutTime, 0,
                                 plco_clean$mortstat2)
plco_clean$linpred <- cox40predict</pre>
dat <- plco_clean[, c("pc_status", "pc_time_14yr", "linpred")]</pre>
dat <- dat[complete.cases(dat), ]</pre>
eve.ocm <- dat$pc_status == 1</pre>
eve.pcsm <- dat$pc_status == 2</pre>
eve.cens <- dat*pc_status == 0
fstatus <- rep(0,times = nrow(dat))</pre>
fstatus[which(eve.ocm)] <- 1</pre>
fstatus[which(eve.pcsm)] <- 2</pre>
ftime <- dat*pc_time_14yr
fg_covariates <- dat$linpred</pre>
finegray_pc <- crr(ftime = ftime, fstatus = fstatus, cov1 = fg_covariates)</pre>
summary(finegray_pc)
## Competing Risks Regression
##
## Call:
## crr(ftime = ftime, fstatus = fstatus, cov1 = fg_covariates)
##
                   coef exp(coef) se(coef) z p-value
## fg_covariates1 1.02
                             2.76 0.0346 29.3
##
##
                   exp(coef) exp(-coef) 2.5% 97.5%
                      2.76
                               0.362 2.58 2.95
## fg_covariates1
## Num. cases = 8220
## Pseudo Log-likelihood = -17432
## Pseudo likelihood ratio test = 936 on 1 df,
finegray_predictions <- predict(finegray_pc, cov1 = fg_covariates)</pre>
predict_5 <- finegray_predictions[finegray_predictions[,1]==60,-1]</pre>
predict_10 <- finegray_predictions[finegray_predictions[,1]==120,-1]</pre>
predict_14 <- finegray_predictions[finegray_predictions[,1]==167,-1]</pre>
group_5 <- case_when(</pre>
  predict_5 < 0.2 ~ 0.1,
  predict_5 >= 0.2 & predict_5 < 0.4 ~ 0.3,</pre>
  predict_5 >= 0.4 & predict_5 < 0.6 ~ 0.5,</pre>
  predict_5 >= 0.6 & predict_5 < 0.8 ~ 0.7,</pre>
  predict_5 >= 0.8 ~ 0.9
group_10 <- case_when(</pre>
  predict_10 < 0.2 ~ 0.1,
  predict_10 >= 0.2 & predict_10 < 0.4 ~ 0.3,</pre>
  predict_10 >= 0.4 & predict_10 < 0.6 ~ 0.5,</pre>
```

```
predict_10 >= 0.6 & predict_10 < 0.8 ~ 0.7,</pre>
  predict_10 >= 0.8 ~ 0.9
group 14 <- case when(
  predict_14 < 0.2 ~ 0.1,
  predict_14 >= 0.2 & predict_14 < 0.4 ~ 0.3,</pre>
 predict_14 >= 0.4 & predict_14 < 0.6 ~ 0.5,
 predict_14 >= 0.6 & predict_14 < 0.8 ~ 0.7,</pre>
  predict_14 >= 0.8 ~ 0.9
cuminc_5 <- cuminc(ftime, fstatus, group = group_5)</pre>
cuminc_10 <- cuminc(ftime, fstatus, group = group_10)</pre>
cuminc_14 <- cuminc(ftime, fstatus, group = group_14)</pre>
calibration5_data <- data.frame("Year" = rep("5 Years", 3),</pre>
                                  "Group" = c(0.1, 0.3, 0.5),
                                  "Est" = c(cuminc_5$`0.1 1`$est[cuminc_5$`0.1 1`$time==60][1],
                                             cuminc_5$`0.3 1`$est[cuminc_5$`0.3 1`$time==59][1],
                                             cuminc 5$\`0.5 1\`\$est[cuminc 5\$\`0.5 1\`\$time==57][1]),
                                  "Var" = c(cuminc 5\$^0.1 1\$var[cuminc 5\$^0.1 1\$time==60][1],
                                             cuminc_5$`0.3 1`$var[cuminc_5$`0.3 1`$time==59][1],
                                             cuminc_5$`0.5 1`$var[cuminc_5$`0.5 1`$time==57][1]))
calibration10_data <- data.frame("Year" = rep("10 Years", 4),</pre>
                                   "Group" = c(0.1, 0.3, 0.5, 0.7),
                                   "Est" = c(cuminc_10\$\cdot 0.1 1\$est[cuminc_10\$\cdot 0.1 1\$time==120][1],
                                              cuminc_10$\cdot0.3 1\sest[cuminc_10$\cdot0.3 1\stime==120][1],
                                              cuminc_10$`0.5 1`$est[cuminc_10$`0.5 1`$time==119][1],
                                              cuminc_10$\cdot 0.7 1\time==118][1]),
                                   "Var" = c(cuminc_10$`0.1 1`$var[cuminc_10$`0.1 1`$time==120][1],
                                              cuminc_10$\cdot0.3 1\stime==120][1],
                                              cuminc_10$\`0.5 1\`$var[cuminc_10$\`0.5 1\`$time==119][1],
                                              cuminc_10$`0.7 1`$var[cuminc_10$`0.7 1`$time==118][1]))
calibration14_data <- data.frame("Year" = rep("10 Years", 5),</pre>
                                   "Group" = c(0.1, 0.3, 0.5, 0.7, 0.9),
                                   "Est" = c(cuminc_14$^0.1 1`$est[cuminc_14$^0.1 1`$time==168][1],
                                              cuminc_14$\`0.3 1\`\$est[cuminc_14\$\`0.3 1\`\$time==168][1],
                                              cuminc_14$`0.5 1`$est[cuminc_14$`0.5 1`$time==168][1],
                                              cuminc_14$`0.7 1`$est[cuminc_14$`0.7 1`$time==168][1],
                                              cuminc_14$`0.9 1`$est[cuminc_14$`0.9 1`$time==157][1]),
                                   "Var" = c(cuminc_14$\cdot 0.1 1\cdot $var[cuminc_14$\cdot 0.1 1\cdot $time==168][1],
                                              cuminc_14$\`0.3 1\`$var[cuminc_14$\`0.3 1\`$time==168][1],
                                              cuminc_14$\`0.5 1\`\$var[cuminc_14\\$\`0.5 1\`\$time==168][1],
                                              cuminc_14$\`0.7 1\`\$var[cuminc_14\$\`0.7 1\`\$time==168][1],
                                              cuminc_14$\cdot 0.9 1\cdot \text{var}[cuminc_14$\cdot 0.9 1\cdot \text{$time}==157][1]))
calibration5_data$Upper <- calibration5_data$Est + 1.96*sqrt(calibration5_data$Var)</pre>
calibration10_data$Upper <- calibration10_data$Est + 1.96*sqrt(calibration10_data$Var)
calibration14_data$Upper <- calibration14_data$Est + 1.96*sqrt(calibration14_data$Var)</pre>
calibration5_data$Lower <- calibration5_data$Est - 1.96*sqrt(calibration5_data$Var)</pre>
```

```
calibration10_data$Lower <- calibration10_data$Est - 1.96*sqrt(calibration10_data$Var)</pre>
calibration14_data$Lower <- calibration14_data$Est - 1.96*sqrt(calibration14_data$Var)
calibration5_data$Upper[calibration5_data$Upper>1] <- 1</pre>
calibration5_data$Lower[calibration5_data$Lower<0] <- 0</pre>
calibration10_data$Upper[calibration10_data$Upper>1] <- 1</pre>
calibration10_data$Lower[calibration10_data$Lower<0] <- 0</pre>
calibration14 data$Upper[calibration14 data$Upper>1] <- 1</pre>
calibration14 data$Lower[calibration14 data$Lower<0] <- 0</pre>
myplot <- ggplot() + geom_line(data = calibration5_data, aes(x=Group, y=Est),</pre>
                                color = "darkblue") +
  geom_errorbar(data = calibration5_data, aes(x = Group, ymin = Lower,
                                               ymax = Upper, width = 0.05),
                color = "darkblue") + geom_line(data = calibration10_data,
                                                 aes(x=Group, y=Est),
                                                 color = "mediumpurple4") +
  geom_errorbar(data = calibration10_data, aes(x = Group, ymin = Lower,
                                                ymax = Upper, width = 0.05),
                color = "mediumpurple4") + geom_line(data = calibration14_data,
                                                       aes(x=Group, y=Est),
                                                       color = "gray74") +
  geom_errorbar(data = calibration14_data, aes(x = Group, ymin = Lower,
                                                ymax = Upper), color = "gray74",
                width = 0.05) + scale x continuous(name = "Predicted Risk of OCM",
                                                    limits = c(0, 1),
                                                    breaks = seq(0, 1, by=0.2)) +
  scale_y_continuous(name = "Observed Risk of OCM", limits = c(0, 1),
                     breaks = seq(0, 1.2, by=0.2)) + theme_bw() +
  geom_abline(slope = 1, intercept = 0) +
  labs(caption = "Black line: perfect calibration. Blue line: calibration at
       5 years. Purple line: calibration at 10 years. Gray line: calibration
       at 14 years.")
#myplot
#save(list=c("plco_clean", "plco_nf"), file = "~/Box/PLCO_Data/Prostate/plco_data_clean.RData")
```

Variable Importance

We assess the variable importance of our Cox model:

```
load("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nhanes_data_clean.RData")
f <-
    cph(
    Surv(permth_exm, mortstat) ~ age_ctr_40 + diabetic + educ + hypertension +
        marital2 + underweight + overweight2 + obese2 + smoker + stroke +
        age_ctr_40 * diabetic + age_ctr_40 * educ + age_ctr_40 * hypertension +
        age_ctr_40 * stroke + pc,
    data = mydata[mydata$inmodel4 == 1, ],
    x = TRUE,
    y = TRUE</pre>
```


Comparison to SSA and NVSS Life Tables

We compare to the SSA and NVSS life tables:

```
ssa <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/ssa_2000.csv")</pre>
ssa$age <- seq(0, 119, by = 1)
nvss_black <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_blackm
nvss_white <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_whitem
nvss_other <- read_csv("/Users/ecchase/Desktop/Research/Matt Prostate OCM/PCOtherCause/Data/nvss_allmal
nvss_other <- nvss_other[-102,]</pre>
nvss <- data.frame("Age" = seq(0, 100, by = 1), "White" = nvss_white$Expectancy, "Black" = nvss_black$E
plco_clean$ssa <- NA
plco_clean$nvss <- NA</pre>
for (i in 1:nrow(plco_clean)){
  plco_clean$ssa[i] <- ssa$Expectancy[which(ssa$age==plco_clean$age[i])]</pre>
  if (plco_clean$race2[i] == "NHW"){
    plco_clean$nvss[i] <- nvss$White[which(nvss$Age==plco_clean$age[i])]</pre>
  } else if (plco_clean$race2[i]=="NHB"){
    plco_clean$nvss[i] <- nvss$Black[which(nvss$Age==plco_clean$age[i])]</pre>
  } else if (plco_clean$race2[i]=="Other"){
    plco_clean$nvss[i] <- nvss$0ther[which(nvss$Age==plco_clean$age[i])]
}
ssa_roc <-
  timeROC(
    T = plco_clean permth_exm,
    delta = plco_clean$mortstat,
```

```
marker = 1/plco_clean$ssa,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
nvss_roc <-
  timeROC(
    T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
    marker = 1/plco_clean$nvss,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
  )
aucdat <-
  data.frame("Time" = rep(seq(6, 168, by = 6), 2),
             "Model" = c(rep("SSA", 28), rep("NVSS", 28)),
             "AUC" = c(ssa_roc$AUC[-1], nvss_roc$AUC[-1]))
aucplot <-</pre>
  ggplot(data = aucdat, aes(x = Time, y = AUC, group = Model, color=Model)) +
  geom_line() + xlab("Time (months)") + ylab("Time-dependent AUC in PLCO")
aucplot
```


Table 5: Time-Dependent AUC in PLCO

Model	Year5	Year10	Year14
SSA	0.647	0.708	0.746
NVSS	0.650	0.711	0.748

expectancy_dat\$NVSS[expectancy_dat\$NVSS > 17] <- 17

comparison_plot <- ggplot(data=expectancy_dat, aes(x = SSA, y = Cox_40, color = factor(Outcome))) + geometric data = geomet

comparison_plot


```
comparison_plot2 <- ggplot(data=expectancy_dat, aes(x = NVSS, y = Cox_40, color = factor(Outcome))) + g
comparison_plot2</pre>
```


PCSM Prediction

We get the C-index for the linear predictor for PCSM:

Table 6: Time-dependent C-index for PCSM

Model	Year5	Year10	Year14
Cox 40	0.62	0.619	0.624

performance_plot


```
subperf <- data.frame("Model" = "Cox 40",</pre>
                      "Year5" = round(cox40_plco_pcsm$AppCindex$coxph[10], digits=3),
                      "Year10" = round(cox40_plco_pcsm$AppCindex$coxph[20], digits=3),
                      "Year14" = round(cox40_plco_pcsm$AppCindex$coxph[28], digits=3))
kable(subperf, caption = "Time-dependent C-index for PCSM")
cox40predict <-
  predict(object = cox_40,
          newdata = plco_clean,
          type = "lp")
cox40roc <-
  timeROC(
    T = plco_clean$permth_exm,
    delta = plco_clean$mortstat,
    marker = cox40predict,
    cause = 1,
    weighting = "marginal",
    times = seq(0, 168, by = 6)
```

Table 7: Time-Dependent AUC for PCSM

	Model	Year5	Year10	Year14
t=60	Cox 40	0.633	0.678	0.716

