Fixed-Priority Tasks with Arbitrary Response Times (Section 6.6 of Liu)

- TDA scheduling condition valid only if each job of every task completes before the next job of that task is released.
- We now consider schedulability check for systems in which tasks may have relative deadlines larger than their periods.
 - **Note:** In this model, a task may have multiple ready jobs. We assume they are scheduled on a FIFO basis.

It Ain't So Easy ...

- If relative deadline of every task is less than its period
 - "Critical instant" scenario can be used
 - i.e., consider only first job of each task in an in-phase system
- If relative deadlines of tasks can be larger than their periods
 - Response time of first job in in-phase system no longer guaranteed to be longest
 - Intuitive explanation
 - First job has interference only from higher-priority jobs
 - Second & subsequent jobs may also have interference from previous job of same task & hence longer response times

Busy Intervals

Definition: A **level-** π_i **busy interval** (t_o , t] begins at an instant t_o when

- (1) all jobs in T_i released before this instant have completed, and
- (2) a job in T_i is released.

The interval ends at the first instant t after t_o when all jobs in T_i released since t_o are complete.

Example:

Busy Intervals (Continued)

Definition: We say that a level- π_i busy interval is **in phase** if the first jobs of all tasks that execute in the interval are released at the same time.

General TDA Method

Test tasks from highest-priority task (T₁) to lowest. When considering T_i, assume that all the tasks are in phase and the first level- π_i busy interval begins at time zero.

Consider the subset T_i of tasks with priorities π_i or higher.

- (i) If first job of every task in T_i completes by the end of the first period of that task
 - Check whether the first job J_{i,1} of T_i meets its deadline
 - T_i is schedulable if J_{i,1} completes in time
 - Otherwise, T_i is not schedulable.
- (ii) If (i) doesn't apply, then do the following.
 - (a) Compute length of in-phase level- π_i busy interval
 - Solve equation $t = \sum_{k=1,...,i} \lceil t/p_k \rceil e_k$ iteratively Start from $t^{(1)} = \sum_{k=1,...,i} e_k$

 - Continue until $t^{(l+1)} = t^{(l)}$ for some $l \ge 1$
 - Solution $t^{(l)}$ is length of level- π_i busy interval
 - (b) Check schedulability
 - Compute response times of all $[t^{(l)}/p_i]$ jobs of T_i in in-phase level- π_i busy interval
 - T_i is schedulable if all of these jobs complete in time
 - Otherwise T_i is not schedulable.

Computing Response Times

Lemma 6-6: The maximum response time $W_{i,j}$ of the j-th job of T_i in an in-phase level- π_i busy period is equal to the smallest value of t that satisfies the equation

$$t = w_{i,j}(t + (j-1)p_i) - (j-1)p_i$$

where

$$w_{i,j}(t) = je_i + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] xe_k$$
 for $(j-1)p_i < t \le w_{i,j}(t)$

The recurrence given in the lemma can be solved iteratively, as described before.

Example

Consider: $T_1 = (70, 26), T_2 = (100, 62, 120)$

Here's a schedule:

 T_2 's seven jobs have the following response times, respectively: 114, 102, 116, 104, 118, 106, 94.

Note that the first job's response time is not the longest.

Bottom Line: We have to consider **all** jobs in an in-phase busy interval.

Example

Let's apply Lemma 6-6 to our previous example:

 $W_{2,1}$ = minimum t s.t.

$$t = w_{2,1}(t)$$

$$= e_2 + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] \times e_k$$

$$= 62 + \left[\frac{t}{70} \right] \times 26$$

??114 = 62 +
$$\left[\frac{114}{70}\right] \times 26$$

= 62 + 2 \times 26
= 114 Yes!

Example (Continued)

$$W_{2,2}$$
 = minimum t s.t.

$$t = w_{2,2}(t + p_2) - p_2$$

$$= 2 \times e_2 + \sum_{k=1}^{i-1} \left[\frac{t + 100}{p_k} \right] \times e_k - 100$$

$$= 124 + \left[\frac{t + 100}{70} \right] \times 26 - 100$$

??102 = 124 +
$$\left[\frac{202}{70}\right] \times 26 - 100$$

= 124 + 3 \times 26 - 100
= 102 Yes!

Example (Continued)

 $W_{2,3}$ = minimum t s.t.