Компьютерная графика: Дополнительные главы Лекция 5-1: Технологии теней

Н.Д. Смирнова

Санкт-Петербургский Государственный Политехнический Университет

20.03.2011

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

О тенях

- самый важный визуальнй эффект, влияющий на реалистичность
- дают возможность оценить глубину сцены
- ощутить взаимное расположение объектов

¹http://download.autodesk.com/us/maya/2010help/> ⟨₱ > ⟨ ≥ > ⟨ ≥ > ⟩ ≥ ✓ Q ⊘

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Карты освещения (ligthmaps)

- содержат статические тени
- набор маленьких текстур
- обычно текстуры выровнены с текстурами объектов
- для каждого текселя определяется коэффициент затенения от каждого источника света

Свойства

- карты просчитываются заранее
- СТАТИЧНЫ!

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes Shadow Mans

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)
Trapezoidal Shadow Maps (TSM)
Light Space Paraparting Shadow Maps (LiSPSM)

Проектируемая геометрия

- древний способ
- небольшие occluder'ы
- receiver'ы большие плоские объекты, их очень мало
- для каждого источника объект рендерится 2 раза:
 - 1. обычным способом
 - спроектированный на receiver черным цветом (можно с альфа-блендингом)

Свойства

- нет ступенчатости тени (aliasing)
- строгие ограничения на объекты сцены

Введение

Базовые технологии

Карты освещения (Lightmaps) Проектируемая геометрия

Shadow Volumes

Shadow Maps Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)
Trapezoidal Shadow Maps (TSM)
Light Space Perspective Shadow Maps (LiSPSM)

Shadow Volumes (Теневые объемы, Стенсильные тени)

- старый очень популярный способ
- геометрия растягивается от источника света = теневой объем
- для каждого источника теневой объем рендерится 3 раза:
 - 1. front faces (stencil +1)
 - 2. back faces (stencil -1)
 - front faces (if stencil >0) (возможны варианты)

Свойства

- нет ступенчатости тени (aliasing)
- универсальнее Projected Geometry
- ресурсоемок

- большой конус тени
- камера внутри объема
- ближня плоскость камеры пересекает объем
- ошибочное затенение

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Shadow Maps(Теневые Карты)

Создание теневой карты

- найти все пары источник(light)-объект(caster)
- для каждой пары render-to-texture с VP источника света
- (текстура чистится цветом сточника света)
- (объект рендерится цветом тени)

Использование теневой карты

- определить все объекты receiver'ы
- наложить на каждый теневую карту

Shadow Maps. Свойства

Свойства

- сравнительно простой алгоритм (1 дополнительный render)
- aliasing борятся фильтрацией текстур
- нет self-shadowing'a
- ограниченное количество caster'ов

Источники света

- Направленный ортогональная проекция + 1 текстура
- Конусный перспективная проекция + 1 текстура
- Точечный перспективная проекция + 6 текстур

0000

Shadow Maps. Проблемы

- двойные тени
- тень до объекта

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Shadow Buffers (Теневые Буферы)

- похожи на Shadow Maps
- камера источника: порендерить сцену в текстуру, записывая z
- основная камера: порендерить сцену с наложением z-текстуры
- пиксель затенен, если $Z_{pixel} > Z_{z-texture}$

Shadow Buffers. Свойства

- не зависит от сложности сцены
- поддерживает самозатенение
- качество легко регулировать разрешением z-текстуры
- плохо работает с точечными источниками (кубическая текстура)

Shadow Buffers. Проблемы

- дрожащее самозатенение
 - полигоны отодвигаются на небольшое расстояние (z-bias)
- aliasing
 - РСГ (фильтрация)
 - увеличить разрешение текстуры

Shadow ObjectID Buffers (Теневые буферы приоритетов)

- похоже на Shadow Buffers
- у каждого объекта сцены есть приоритет (ObjectID) относительно источника
- камера источника: порендерить сцену в текстуру, записывая ObjectID
- основная камера: порендерить сцену с наложением ID-текстуры
- ullet пиксель затенен, если $ID_{object} > ID_{texture}$

Свойства

- не поддерживают самозатенение
- страдают от aliasing'a
- нет проблем точности z

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Современные технологии

- основаны на теневых буферах для всей сцены
- два направления работ:
 - повышение разрешения при сохранении постоянного размера теневой текстуры
 - имитация мягких теней

Aliasing

Aliasing. Математика

⁵Stamminger, M., and Drettakis, G. 2002. Perspective shadow maps. In Proceedings of ACM SIGGRAPH 2002, ACM Press/ ACM SIGGRAPH, J. Hughes, Ed., Annual Conference Series

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Perspective Shadow Maps (PSM)

⁶Stamminger, M., and Drettakis, G. 2002. Perspective shadow maps. In Proceedings of ACM SIGGRAPH 2002, ACM Press/ ACM SIGGRAPH, J. Hughes, Ed., Annual Conference Series

Perspective Shadow Maps. Идея

Shadow Maps

- запись в текстуру $p_{light} = (LPM \cdot LM) \cdot p_{world} = M \cdot p_{world}$
- чтение из текстуры $p_{light} = (LPM \cdot LM \cdot VM^{-1} \cdot PM^{-1}) \cdot p_{screen} = (M \cdot VM^{-1} \cdot PM^{-1}) \cdot p_{screen}$

Perspective Shadow Maps - рендеринг в текстуру в перспективном пространстве

- запись в текстуру $p_{light} = (M \cdot VM^{-1} \cdot PM^{-1} \cdot PM \cdot VM) \cdot p_{world} = (M_{pers} \cdot PM \cdot VM) \cdot p_{world}$
- чтение из текстуры $p_{light} = M_{pers} \cdot p_{screen}$

Perspective Shadow Maps. Идеальный вариант

Perspective Shadow Maps. Трансформация источников

Perspective Shadow Maps. Трансформация источников

Perspective Shadow Maps. Учет всех caster'ов

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Trapezoidal Shadow Maps (TSM)

- View frustum переводится в light space
- Вместо Bbox'а находится охватывающая трапеция
- очевидно, что на узкий конец трапеции придется большее количество текселей shadow map'a

⁷Tobias Martin, Tiow-Seng Tan. Anti-aliasing and Continuity with Trapezoidal Shadow Maps. Proceedings of Eurographics Symposium on

Trapezoidal Shadow Maps

Решают проблему резкого изменения тени в динамической сцене

Trapezoidal Shadow Maps. Примеры

Bounding Box, Perspective Shadow Maps, Trapezoidal Shadow Maps

Введение

Базовые технологии

Карты освещения (Lightmaps)

Проектируемая геометрия

Shadow Volumes

Shadow Maps

Shadow Buffers

Современные технологии

Perspective Shadow Maps (PSM)

Trapezoidal Shadow Maps (TSM)

Light Space Perspective Shadow Maps

 создание и накладывание shadow map'a происходит в специально выбранном перспективном пространстве ⁸

⁸ Michael Wimmer, Daniel Scherzer and Werner Purgathofer. Light Space
Perspective Shadow Maps. June 10, 2005

Light Space Perspective Shadow Maps. Проблемы

- решаются некоторые проблемы PSM
 - трансформация лайтов
 - потеря caster'ов

Light Space Perspective Shadow Maps. Примеры

TO BE CONTINUED...