1 Intégration numérique

1.1 Formule du trapèze

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \left(f(a) + f(b) \right)$$

1.2 Formule composite du trapèze

Formule du trapèze avec sous-division (n intervalles)

$$h = \frac{b - a}{n}$$

$$\int_{a}^{b} f(x)dx \approx h\left(\frac{1}{2}f(a) + \sum_{j=1}^{n-1} f(x_{j}) + \frac{1}{2}f(b)\right)$$

1.3 Formule du point milieu

$$M = h (f(x_{0.5}) + f(x_{1.5}) + \dots + f(x_{n-0.5}))$$
$$T\left(\frac{h}{2}\right) = \frac{1}{2} (T(h) + M(h))$$

1.3.1 Algorithme pour n=4

- 1. h = b a
- 2. $T(h) = \frac{h}{2} (f(x_0) + f(x_4))$
- $3. M(h) = hf(x_2)$
- 4. $T\left(\frac{h}{2}\right) = \frac{1}{2}\left(M(h) + T(h)\right)$
- 5. $M\left(\frac{h}{2}\right) = \frac{h}{2}\left(f(x_1) + f(x_3)\right)$
- 6. $T\left(\frac{h}{4}\right) = \frac{1}{2}\left(M\left(\frac{h}{2}\right) + T\left(\frac{h}{2}\right)\right)$

1.3.2 Erreur

$$\left| \int_{a}^{b} f(x)dx - T(h) \right| \le \frac{h^{2}(b-a)}{12} \max_{a \le x \le b} |f''(x)|$$

Optimal si

- 1. La fonction est **périodique**
- 2. La fonction est infiniment dérivable
- 3. On intègre sur une période

1.4 Méthode de Simpson

$$\boxed{\int_a^b f(x)dx \approx \frac{h}{3} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)}$$

$$h = \frac{b-a}{2}$$

1.4.1 Erreur

$$\left| \int_{a}^{b} f(x)dx - S \right| \le \frac{h^{5}}{90} \max_{a \le x \le b} \left| f^{(4)}(x) \right|$$

1.5 Formule de Newton-Cotes

Avec n = 3 (3/8 de Simpson)

$$\int_{x_0}^{x_3} f(x)dx \approx \frac{3h}{8} \left(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right)$$

$$\int_{x_0}^{x_4} f(x)dx \approx \frac{2h}{45} \left(7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right)$$

n pair : polynômes jusqu'à n+1. n impair : polynômes jusqu'à n

1.6 Formule de composition de Simpson

Cas général avec 2n sous intervalles

$$S_c = \frac{h}{3} \Big(f(a) + 3f(x_1) + f(b) + 2 \sum_{k=1}^{n-1} (f(x_{2k}) + 2f(x_{2k+1})) \Big)$$

1.6.1 Erreur

$$\left| \int_{a}^{b} f(x)dx - S_{c} \right| \leq \frac{h^{4}(b-a)}{180} \max_{a \leq x \leq b} \left| f^{(4)}(x) \right|$$

$$h = \frac{b-a}{2n}$$

1.7 Formule de Simpson adaptative

Intervalles non uniformes

Point milieu

Trapèze

Simpson

Simpson composite

1.9 Romberg

$$h/2 \downarrow T_{0,0} T_{1,1} T_{2,0} T_{2,1} T_{2,2} T_{3,0} T_{3,1} T_{3,2} T_{3,3} T_{4,0} T_{4,1} T_{4,2} T_{4,3} T_{4,4} T_{5,0} T_{5,1} T_{5,2} T_{5,3} T_{5,4} T_{5,5}$$

$$T_{n,c} = \underbrace{\frac{4^c T_{n,c-1} - T_{n-1,c-1}}{4^c - 1}}$$

- 1. Facile
- 2. Coûteuse pour une grande précision
- 3. Il faut que la fonction soit 2k+2 fois continûment dérivable pour aller jusqu'à la colonne k

1.10 Choix de la méthode

Fonction	Grande précision	Faible coût	Remarque
périodique et infiniment dérivable	Méthode du trapèze		
Polynôme cubique	Simpson	Simpson	Pas d'erreur
Infiniment dérivable non périodique	Gauss ou Simpson adaptative		Romberg est plus coûteuse