

Monitoreo de red de sensores Bluetooth en invernaderos

Autor:

Ing. Laura Andrea Moreno Rodríguez

Director:

Ing. Federico Roux (Globant)

Diseño e implementación de una red Bluetooth Mesh para la gestión de sensores en invernaderos

Autor

Ing. Laura Andrea Moreno Rodríguez

Director:

Esp. Ing. Federico Roux (Globant)

Índice

1. Descripción técnica-conceptual del proyecto a realizar	r.	 -		-	-			5
2. Identificación y análisis de los interesados								7
3. Propósito del proyecto								7
4. Alcance del proyecto		 -						7
5. Supuestos del proyecto				-	-			8
6. Requerimientos								9
7. Historias de usuarios (Product backlog)								10
8. Entregables principales del proyecto		 -			•			10
9. Desglose del trabajo en tareas		-	 -	-				11
10. Diagrama de Activity On Node		 -						11
11. Diagrama de Gantt		 -						13
12. Presupuesto detallado del proyecto								16
13. Gestión de riesgos								16
14. Gestión de la calidad		-		-				17
15. Procesos de cierre								18

Índice

1. Descripción técnica-conceptual del proyecto a realizar	
2. Identificación y análisis de los interesados	
3. Propósito del proyecto	•
4. Alcance del proyecto	
5. Supuestos del proyecto	
6. Requerimientos	•
7. Historias de usuarios (Product backlog)	1
8. Entregables principales del proyecto	1;
9. Desglose del trabajo en tareas	1;
10. Diagrama de Activity On Node	1
11. Diagrama de Gantt	10
12. Presupuesto detallado del proyecto	1
13. Gestión de riesgos	19
14. Gestión de la calidad	2(
15. Procesos de cierre	2

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	11 de marzo de 2025
1	Se completa hasta el punto 5 inclusive	19 de marzo de 2025

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	11 de marzo de 2025
1	Se completa hasta el punto 5 inclusive	19 de marzo de 2025
2	Se ajustan los puntos 1, 3 y 4 con las correcciones de Wentux Tecnoagro. Se completa hasta el punto 9 inclusive	26 de marzo de 2025

Página 3 de 18

Acta de constitución del proyecto

Buenos Aires, 11 de marzo de 2025

Por medio de la presente se acuerda con la Ing. Laura Andrea Moreno Rodríguez que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Monitoreo de red de sensores Bluetooth en invernaderos" y consistirá en la implementación de un protocolo de comunicación basado en Bluetooth Mesh para interconectar diferentes sensores dentro de un invernadero, así como el desarrollo de un servidor web embebido en el dispositivo central para optimizar el monitoreo y control local de la red. El trabajo tendrá un presupuesto preliminar estimado de 600 horas y un costo estimado de \$ 9600 USD, con fecha de inicio el 11 de marzo de 2025 y fecha de presentación pública en noviembre 2025.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Pablo Lodetti Wentux Tecnoagro

Ing. Federico Roux Director del Trabajo Final

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

Acta de constitución del proyecto

Buenos Aires, 11 de marzo de 2025

Por medio de la presente se acuerda con la Ing. Laura Andrea Moreno Rodríguez que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Diseño e implementación de una red Bluetooth Mesh para la gestión de sensores en invernaderos" y consistirá en la implementación de una solución de transmisión de datos basada en Bluetooth Mesh para interconectar diferentes sensores y actuadores dentro de un invernadero, así como el desarrollo de un servidor web embebido en el nodo central para optimizar el monitoreo y control local de la red. El trabajo tendrá un presupuesto preliminar estimado de 600 horas y un costo estimado de \$ 9600 USD, con fecha de inicio el 11 de marzo de 2025 y fecha de presentación pública en noviembre 2025.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Pablo Lodetti Wentux Tecnoagro

Esp. Ing. Federico Roux Director del Trabajo Final

Página 4 de 18

Página 4 de 21

1. Descripción técnica-conceptual del proyecto a realizar

Este proyecto surge como una necesidad de la empresa Wentux Tecnoagro, quien lo ha propuesto dentro del programa de vinculación con empresas de la Carrera de Especialización en Sistemas Embebidos. La empresa se dedica a la fabricación y comercialización de diversos dispositivos para la automatización de salas de cultivo, siendo los sensores de temperatura, humedad y Co2, algunos de sus productos más destacados. Actualmente, los sensores fabricados por Wentux Tecnoagro utilizan el microcontrolador ESP32-C3 como procesador central y transmiten los datos de medición a través de la conexión Wi-Fi del usuario final. Sin embargo, este enfoque limita la instalación de los sensores en las salas de cultivo, ya que todos deben estar dentro del alcance de la red Wi-Fi para funcionar correctamente.

El objetivo principal de este proyecto es aprovechar las capacidades Bluetooth del ESP32-C3 para implementar una solución de transmisión de datos mediante una red de sensores Bluetooth Mesh. Esta tecnología permitirá superar la limitación de cobertura Wi-Fi, al proporcionar una red descentralizada donde cada sensor puede transmitir datos a través de otros nodos, extendiendo el alcance y mejorando la confiabilidad del sistema. Además, se desarrollará un servidor web embebido en el sensor central que facilitará la configuración y monitoreo de la red, optimizando la gestión y operación del sistema para el usuario final.

Es importante señalar que el desarrollo y las pruebas del sistema no se llevarán a cabo con los dispositivos comerciales de Wentux Tecnoagro. En su lugar, se emplearán ESP32-C3 adquiridos específicamente para este proyecto, ya que son suficientes para desarrollar y validar la prueba de concepto. El enfoque principal se centrará en el diseño e implementación de la comunicación Bluetooth Mesh y el servidor web local, dejando la integración del código con los dispositivos reales para una fase posterior a cargo de Wentux Tecnoagro. Esto significa, que no se requiere acceso al hardware o software de la empresa, pero sí acompañamiento e información oportuna para poder simular los datos que sean necesarios y crear un entorno de desarrollo adecuado. Por otra parte, el cliente tendrá acceso completo al software desarrollado y la licencia para integrarlo en sus dispositivos desde el inicio del proyecto.

La motivación de este proyecto radica en la oportunidad de aplicar los conocimientos adquiridos durante la Carrera de Especialización en Sistemas Embebidos, a la vez que continúo desarrollando habilidades clave en el desarrollo de firmware. Los ESP32-C3 y la tecnología Bluetooth Mesh son ampliamente utilizados en diversos sistemas de internet de las cosas, lo que hace que este proyecto sea valioso tanto para el aprendizaje personal como para mi futuro profesional. Además, resulta especialmente gratificante contribuir al crecimiento de una micro empresa, ayudándola a agregar valor a sus productos y a mejorar su competitividad en el mercado.

Una red de sensores Bluetooth Mesh es un sistema de comunicación inalámbrica en el que múltiples dispositivos (nodos) se interconectan para formar una red descentralizada de amplio alcance. En este tipo de red, cada nodo retransmite los datos recibidos, lo que permite extender la cobertura de comunicación más allá del alcance de un único dispositivo. En el contexto de sensores para invernaderos, en donde cada sensor es un nodo de la red, esta arquitectura posibilita la transmisión eficiente de los datos entre los nodos hasta alcanzar un nodo central. Esto mejora el consumo energético, reduce la infraestructura necesaria y facilita la escalabilidad del sistema.

La figura 1 ilustra el principio de comunicación en una red Bluetooth Mesh a implementar en este proyecto, donde los nodos, que en este caso corresponden a los sensores en el invernadero, colaboran para transmitir los datos recopilados de manera eficiente hasta llegar al nodo central.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

Descripción técnica-conceptual del provecto a realizar

Este proyecto surge como una necesidad de la empresa Wentux Tecnoagro, quien lo ha propuesto dentro del programa de vinculación con empresas de la Carrera de Especialización en Sistemas Embebidos. La empresa se dedica a la fabricación y comercialización de diversos dispositivos para la automatización de salas de cultivo, siendo los sensores de temperatura, humedad y Co2, algunos de sus productos más destacados. Actualmente, los sensores y actuadores fabricados por Wentux Tecnoagro se conectan a un dispositivo central mediante un enlace cableado, el cual gestiona la recopilación de datos y los transmite a través de la red Wi-Fi del usuario final. Sin embargo, este enfoque presenta limitaciones en escalabilidad y flexibilidad, ya que el dispositivo central admite un máximo de tres sensores y seis actuadores, restringiendo la expansión del sistema y la facilidad de instalación.

El objetivo principal de este proyecto es implementar una solución de transmisión de datos basada en Bluetooth Mesh para reemplazar la conexión cableada entre los sensores, actuadores y el dispositivo central. Para ello, se aprovecharán las capacidades Bluetooth del microcontrolador ESP32-C3, el cual actúa como unidad de procesamiento central en todos los dispositivos fabricados por Wentux Tecnoagro. Esta tecnología permitirá ampliar la capacidad del sistema al facilitar la incorporación de sensores y actuadores adicionales sin necesidad de cableado, simplificando la instalación y mejorando la escalabilidad. Además, se desarrollará un servidor web embebido en el dispositivo central, accesible a través de la red Wi-Fi local, que permitirá la configuración y supervisión de la red en tiempo real. Esto proporcionará una interfaz intuitiva para la gestión del sistema, mejorando la eficiencia operativa y la experiencia del usuario final.

Es importante señalar que el desarrollo y las pruebas del sistema no se llevarán a cabo con los dispositivos comerciales de Wentux Tecnoagro. En su lugar, se emplearán ESP32-C3 adquiridos específicamente para este proyecto, ya que son suficientes para desarrollar y validar la prueba de concepto. El enfoque principal se centrará en el diseño e implementación de la comunicación Bluetooth Mesh y el servidor web local, dejando la integración del código con los dispositivos reales para una fase posterior a cargo de Wentux Tecnoagro. Esto significa, que no se requiere acceso al hardware o software de la empresa, pero sí acompañamiento e información oportuna para poder simular los datos que sean necesarios y crear un entorno de desarrollo adecuado. Por otra parte, el cliente tendrá acceso completo al software desarrollado y la licencia para integrarlo en sus dispositivos desde el inicio del proyecto.

La motivación de este proyecto radica en la oportunidad de aplicar conocimientos avanzados en el desarrollo de firmware y comunicación inalámbrica, con un enfoque en tecnologías ampliamente utilizadas en el Internet de las Cosas (IoT), como lo son el microcontrolador ESP32-C3 y la red Bluetooth Mesh. Además, el proyecto contribuye al crecimiento de la microempresa Wentux Tecnoagro, proporcionando una solución que agrega valor y mejora la competitividad de sus productos en el mercado.

Una red de sensores Bluetooth Mesh es un sistema de comunicación inalámbrica en el que múltiples dispositivos (nodos) se interconectan para formar una red descentralizada de amplio alcance. En este tipo de red, cada nodo retransmite los datos recibidos, lo que permite extender la cobertura de comunicación más allá del alcance de un único dispositivo. En el contexto de salas de cultivo, en donde cada sensor o actuador es un nodo de la red, esta arquitectura posibilita la transmisión eficiente de los datos entre los nodos hasta alcanzar un dispositivo central que actua como nodo central de la red. Esto reduce la infraestructura necesaria y facilita la escalabilidad del sistema.

La diferencia entre un nodo y un nodo central radica principalmente en la configuración asignada a cada dispositivo durante la instalación de la red.

En términos de hardware, todos los nodos están basados en el ESP32-C3, como se muestra en la figura 2, que representa una versión simplificada de la arquitectura interna de cada sensor. La única diferencia funcional entre un nodo y el nodo central es que este último incorporará un servidor web embebido, al cual el usuario final podrá acceder para visualizar los datos recopilados por la red. Como resultado, el nodo central es el único que requiere una conexión estable a Wi-Fi, permitiendo el acceso a la interfaz de monitoreo desde cualquier dispositivo conectado a la misma red, como una computadora o un teléfono inteligente.

Figura 1. Diagrama de red Bluethtoh Mesh.

Figura 2. Diagrama en bloques de cada nodo en la red Bluethooth Mesh.

La implementación de la red Bluetooth Mesh se basará en el SDK proporcionado por Espressif, fabricante del microcontrolador ESP32-C3, el cual ya incluye los protocolos necesarios para la provisión, enrutamiento y gestión de los nodos. No obstante, el enfoque de este trabajo irá más allá de la implementación básica, ya que se personalizará la solución para cumplir con los requisitos específicos del cliente. Se desarrollará una librería modular, que facilitará la integración de la red Mesh en los sensores de Wentux Tecnoagro, y un servidor web local, funcionalidad que no está contemplada en la solución estándar de Espressif. Este servidor permitirá la gestión de la red de sensores en tiempo real a través de una interfaz web intuitiva, optimizando la experiencia del usuario y brindando un mayor control sobre el sistema.

El desarrollo de este proyecto presenta varios desafíos, especialmente en la gestión eficiente de la comunicación entre nodos, asegurando una transmisión de datos estable en un entorno propenso a interferencias. Además, es fundamental optimizar el consumo energético de los dispositivos, ya que los sensores deben operar de manera eficiente sin afectar su autonomía. Otro reto importante será la integración del protocolo de comunicación con el servidor web local, garantizando que la configuración y monitoreo de la red sean intuitivos para el usuario final. Finalmente, el código deberá ser modular y adaptable para que Wentux Tecnoagropueda integrarlo en sus dispositivos reales sin modificaciones estructurales significativas, lo que requerirá una arquitectura bien diseñada y documentada para facilitar futuras expansiones.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Inc. Laura Andrea Moreno Rodríguez

La figura 1 ilustra el principio de comunicación en la red Bluetooth Mesh a implementar en este proyecto, donde los nodos, que en este caso corresponden a los sensores y actuadores en el invernadero, colaboran para transmitir datos de manera eficiente hasta llegar al nodo central. La diferencia entre un nodo y un nodo central radica principalmente en la configuración asignada a cada dispositivo durante la instalación de la red.

En términos de hardware, todos los nodos están basados en el ESP32-C3, como se muestra en la figura 2, que representa una versión simplificada de la arquitectura interna de cada dispositivo. La única diferencia funcional entre un nodo y el nodo central es que este último incorporará un servidor web embebido, al que el usuario final podrá acceder para visualizar y gestionar la red en tiempo real. Como resultado, el nodo central es el único que requiere una conexión estable a Wi-Fi, permitiendo el acceso a la interfaz de monitoreo.

Figura 1. Diagrama de red Bluethtoh Mesh.

Figura 2. Diagrama en bloques de cada nodo en la red Bluethooth Mesh.

La implementación de la red Bluetooth Mesh se basará en el SDK proporcionado por Espressif, fabricante del microcontrolador ESP32-C3, el cual ya incluye los protocolos necesarios para la provisión, enrutamiento y gestión de los nodos. No obstante, el enfoque de este trabajo irá más allá de la implementación básica, ya que se personalizará la solución para cumplir con los requisitos específicos del cliente.

El desarrollo de este proyecto presenta varios desafíos, especialmente en la gestión eficiente de la comunicación entre nodos, asegurando una transmisión de datos estable en un entorno propenso a interferencias. Otro reto importante será la integración del protocolo de comunicación con el servidor web local, garantizando que la configuración y monitoreo de la red sean intuitivos para el usuario final. Finalmente, el código deberá ser modular y adaptable para que Wentux Tecnoagro pueda integrarlo en sus dispositivos reales sin modificaciones estructurales significativas, lo que requerirá una arquitectura bien diseñada y documentada para facilitar futuras expansiones.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Pablo Lodetti	Wentux Tecnoagro	Responsable técnico
Responsable	Ing. Laura Andrea Mo- reno Rodríguez	FIUBA	Alumno
Orientador	Ing. Federico Roux	Globant	Director del Trabajo Final

- Cliente: El señor Pablo Lodetti es el fundador de la empresa Wentux Tecnoagro y el responsable técnico de sus productos. Junto a él se definieron el alcance del proyecto y los entregables esperados.
- Orientador: El Ing. Federico Roux es especialista en Sistemas Embebidos y brindará orientación tanto en la arquitectura del sistema a implementar como en el desarrollo del firmware embebido.

3. Propósito del proyecto

Desarrollar un sistema de comunicación basado en Bluetooth Mesh para la interconexión de sensores para invernaderos, utilizando el microcontrolador ESP32-C3, eliminando la dependencia de la cobertura Wi-Fi y ampliando el alcance de transmisión de datos. Esto permitirá una mayor flexibilidad en la instalación de los sensores, optimizando la recolección y monitoreo de la información ambiental. Además, se implementará un servidor web local en el nodo central para la configuración y supervisión de la red, mejorando la eficiencia y facilidad de uso del sistema para el cliente final.

4. Alcance del proyecto

Este provecto incluye:

- Implementación de una red de sensores Bluetooth Mesh utilizando el microcontrolador ESP32-C3, basada en el SDK de Espressif.
- Desarrollo de una librería modular para la comunicación Bluetooth Mesh, permitiendo su fácil integración en los dispositivos del cliente.
- Implementación de un nodo central con servidor web local, que actuará como punto de recopilación de datos y permitirá la visualización y configuración de la red de sensores.
- Simulación de datos de sensores en los microcontroladores ESP32-C3 adquiridos para el provecto, en lugar de utilizar los sensores reales de la empresa.
- Optimización del consumo energético de los nodos sensores para mejorar su autonomía dentro de la red.
- Diseño de una arquitectura adaptable, asegurando que el firmware desarrollado pueda ser integrado posteriormente en los sensores reales sin modificaciones estructurales significativas.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Inc. Laura Andrea Moreno Rodríguez

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Pablo Lodetti	Wentux Tecnoagro	Responsable técnico
Responsable	Ing. Laura Andrea Mo- reno Rodríguez	FIUBA	Alumno
Orientador	Esp. Ing. Federico Roux	Globant	Director del Trabajo Final

2. Identificación y análisis de los interesados

- Cliente: el señor Pablo Lodetti es el fundador de la empresa Wentux Tecnoagro y el responsable técnico de sus productos. Junto a él se definieron el alcance del proyecto y los entregables esperados.
- Orientador: el Esp. Ing. Federico Roux es especialista en Sistemas Embebidos y brindará orientación tanto en la arquitectura del sistema a implementar como en el desarrollo del firmware embebido.

3. Propósito del proyecto

El propósito de este proyecto es diseñar e implementar una red de comunicación basada en Bluetooth Mesh para reemplazar la conexión cableada entre los sensores, actuadores y el dispositivo central de Wentux Tecnoagro en invernaderos. Esta solución permitirá ampliar la capacidad del sistema, eliminando las restricciones de cableado y facilitando la integración de nuevos dispositivos. Además, se desarrollará un servidor web local en el nodo central, que permitirá la configuración y supervisión de la red en tiempo real, mejorando la escalabilidad, eficiencia y facilidad de uso del sistema para el cliente final.

4. Alcance del proyecto

Este proyecto incluye:

- Implementación de una red de sensores y actuadores Bluetooth Mesh utilizando el microcontrolador ESP32-C3, basada en el SDK de Espressif.
- Desarrollo de una biblioteca modular para la comunicación Bluetooth Mesh, permitiendo su fácil integración en los dispositivos del cliente.
- Implementación de un nodo central con servidor web local, que actuará como punto de recopilación de datos y permitirá la visualización y configuración de la red en tiempo real.
- Diseño de una arquitectura adaptable, asegurando que el firmware desarrollado pueda ser integrado posteriormente en los dispositivos reales sin modificaciones estructurales significativas.
- Desarrollo de una interfaz web intuitiva para el monitoreo y configuración de la red de sensores, accesible a través del nodo central.
- Validación del sistema en condiciones simuladas, asegurando su funcionamiento antes de la integración con los dispositivos del cliente.

- Desarrollo de una interfaz web intuitiva para el monitoreo y configuración de la red de sensores, accesible a través del nodo central.
- Validación del sistema en condiciones simuladas, asegurando su funcionamiento antes de la integración con los dispositivos del cliente.
- Documentación técnica del proyecto, incluyendo la descripción de la arquitectura, instrucciones de integración y uso de la librería y servidor web.

Este listado aclara qué aspectos quedan fuera del alcance del proyecto:

- Uso de los sensores reales de la empresa: Se trabajará con microcontroladores ESP32-C3 adquiridos para el proyecto, simulando los datos de medición en lugar de utilizar los sensores comerciales de Wentux Tecnoagro.
- Desarrollo de hardware personalizado: El proyecto no incluye el diseño o modificación del hardware de los sensores actuales de la empresa, sino únicamente el desarrollo del software.
- Integración final con los dispositivos comerciales: La implementación en los sensores reales será responsabilidad del cliente, quien podrá integrar la librería desarrollada.
- Soporte para otras tecnologías de comunicación: Se trabajará exclusivamente con Bluetooth Mesh y Wi-Fi en el nodo central, sin incluir otros protocolos como LoRa, Zigbee o LTE.
- Acceso a software privativo de la empresa: No se requerirá acceso al firmware actual de los sensores comerciales de Wentux Tecnoagro.
- Implementación de seguridad avanzada: La seguridad de la red Bluetooth Mesh se manejará con las características estándar del SDK de Espressif, sin incluir desarrollos adicionales en cifrado o autenticación avanzada.
- Almacenamiento en la nube o acceso remoto: El servidor web será local y accesible solo dentro de la red Wi-Fi donde esté conectado el nodo central. No se incluirá conectividad con servicios en la nube ni acceso remoto externo.
- Soporte para aplicaciones móviles: La visualización y configuración se realizará a través de la interfaz web del nodo central, sin el desarrollo de una aplicación móvil dedicada.
- Mantenimiento o soporte post-proyecto: No se incluye una fase de soporte o mantenimiento continuo una vez entregado el código y la documentación.
- Pruebas de alcance, latencia y consumo energético en diferentes escenarios de implementación.
- Evaluación del rendimiento en un entorno de invernadero real.

5. Supuestos del proyecto

Disponibilidad de tiempo

La Ing. Laura Andrea Moreno Rodríguezcuenta con el tiempo suficiente para completar el desarrollo del proyecto dentro de un plazo de siete meses, con una dedicación promedio de 22 horas por semana.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Inc. Laura Andrea Moreno Rodríguez

- Escalabilidad del sistema, asegurando que la solución pueda soportar un número creciente de nodos sin afectar el rendimiento.
- Documentación técnica del proyecto, incluyendo la descripción de la arquitectura, instrucciones de integración y uso de la biblioteca y servidor web.

Este listado aclara qué aspectos quedan fuera del alcance del provecto:

- Uso de los dispositivos reales de la empresa: se trabajará con microcontroladores ESP32-C3 adquiridos para el proyecto, simulando los datos de medición en lugar de utilizar los dispositivos comerciales de Wentux Tecnoagro.
- Desarrollo de hardware personalizado: el proyecto no incluye el diseño o modificación del hardware de los dispositivos actuales de la empresa, sino únicamente el desarrollo del software.
- Integración final con los dispositivos comerciales: la implementación en los dispositivos reales será responsabilidad del cliente, quien podrá integrar la biblioteca desarrollada.
- Soporte para otras tecnologías de comunicación: se trabajará exclusivamente con Bluetooth Mesh y Wi-Fi en el nodo central, sin incluir otros protocolos como LoRa, Zigbee o LTE.
- Acceso a software privativo de la empresa: no se requerirá acceso al firmware actual de los dispositivos comerciales de Wentux Tecnoagro.
- Implementación de seguridad avanzada: la seguridad de la red Bluetooth Mesh se manejará
 con las características estándar del SDK de Espressif, sin incluir desarrollos adicionales
 en cifrado o autenticación avanzada.
- Almacenamiento en la nube o acceso remoto: el servidor web será local y accesible solo
 dentro de la red Wi-Fi donde esté conectado el nodo central. No se incluirá conectividad
 con servicios en la nube ni acceso remoto externo.
- Soporte para aplicaciones móviles: la visualización y configuración se realizará a través de la interfaz web del nodo central, sin el desarrollo de una aplicación móvil dedicada.
- Mantenimiento o soporte post-proyecto: no se incluye una fase de soporte o mantenimiento continuo una vez entregado el código y la documentación.
- Validación en entornos reales: no se realizarán pruebas de alcance, latencia o consumo energético en un invernadero real; el sistema será validado en condiciones simuladas.

Supuestos del proyecto

Disponibilidad de tiempo

La Ing. Laura Andrea Moreno Rodríguez cuenta con el tiempo suficiente para completar el desarrollo del proyecto dentro de un plazo de siete meses, con una dedicación promedio de 22 horas por semana.

No habrá interrupciones significativas en el desarrollo del proyecto debido a cambios en la disponibilidad del equipo de trabajo.

Se espera contar con la colaboración de Pablo Lodetti y Wentux Tecnoagro para responder consultas técnicas o aclaraciones necesarias durante el desarrollo.

No habrá interrupciones significativas en el desarrollo del proyecto debido a cambios en la disponibilidad del equipo de trabajo.

Se espera contar con la colaboración de Pablo Lodetti y Wentux Tecnoagro para responder consultas técnicas o aclaraciones necesarias durante el desarrollo.

Disponibilidad de recursos materiales

Se dispone de al menos 4 microcontroladores ESP32-C3 para el desarrollo y pruebas del sistema.

Se cuenta con acceso a herramientas de desarrollo adecuadas, incluyendo computadoras, compiladores, depuradores y hardware de prueba.

Se dispone de un entorno adecuado para realizar pruebas de conectividad Bluetooth Mesh en condiciones similares a un invernadero.

Se asume que Wentux Tecnoagro proporcionará la información técnica necesaria sobre sus sensores y sus requisitos específicos de integración.

Factibilidad técnica

El SDK de Espressif para Bluetooth Mesh funciona correctamente y cumple con las necesidades del proyecto sin requerir modificaciones profundas.

La red Bluetooth Mesh tendrá un rendimiento adecuado para transmitir los datos de los sensores dentro de un invernadero típico, sin interferencias significativas.

La implementación del servidor web en el nodo central del sistema será viable y permitirá la visualización y gestión de la red en tiempo real.

La integración de la librería desarrollada con los sensores de Wentux Tecnoagro podrá realizarse sin cambios estructurales en su firmware actual.

Condiciones externas

No habrá cambios regulatorios o restricciones tecnológicas que afecten la implementación de Bluetooth Mesh en el entorno del cliente.

No se prevé escasez de microcontroladores ESP32-C3 u otros componentes electrónicos esenciales durante el desarrollo del proyecto.

No habrá fluctuaciones significativas en costos de hardware o herramientas necesarias que impacten la viabilidad del provecto.

6. Requerimientos

Los requerimientos deben enumerarse y de ser posible estar agrupados por afinidad, por ejemplo:

Página 9 de 18

- 1. Requerimientos funcionales:
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación:
 - 2.1. Requerimiento 1.
 - 2.2. Requerimiento 2 (prioridad menor)

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

Disponibilidad de recursos materiales

Se dispone de al menos 4 microcontroladores ESP32-C3 para el desarrollo y pruebas del sistema.

Se cuenta con acceso a herramientas de desarrollo adecuadas, incluyendo computadoras, compiladores, depuradores y hardware de prueba.

Se dispone de un entorno adecuado para realizar pruebas de conectividad Bluetooth Mesh en condiciones similares a un invernadero.

Se asume que Wentux Tecnoagro proporcionará la información técnica necesaria sobre sus dispositivos y sus requisitos específicos de integración.

Factibilidad técnica

El SDK de Espressif para Bluetooth Mesh funciona correctamente y cumple con las necesidades del provecto sin requerir modificaciones profundas.

La red Bluetooth Mesh tendrá un rendimiento adecuado para transmitir los datos de los sensores y actuadores dentro de un invernadero típico, sin interferencias significativas.

La implementación del servidor web en el nodo central del sistema será viable y permitirá la visualización y gestión de la red en tiempo real.

La integración de la biblioteca desarrollada con los sensores de Wentux Tecnoagro podrá realizarse sin cambios estructurales en su firmware actual.

Condiciones externas

No habrá cambios regulatorios o restricciones tecnológicas que afecten la implementación de Bluetooth Mesh en el entorno del cliente.

No se prevé escasez de microcontroladores ESP32-C3 u otros componentes electrónicos esenciales durante el desarrollo del provecto.

No habrá fluctuaciones significativas en costos de hardware o herramientas necesarias que impacten la viabilidad del proyecto.

6. Requerimientos

1. Requerimientos funcionales

- 1.1. El nodo central debe actuar como coordinador de la red Bluetooth Mesh, recopilando datos de los sensores y enviando comandos a los actuadores.
- 1.2. Cada nodo de la red debe ser capaz de retransmitir datos para extender la cobertura.
- 1.3. El nodo central debe registrar logs básicos de actividad para diagnóstico y depuración.
- 1.4. El nodo central debe desplegar un servidor web local para la configuración y el monitoreo de la red.
- 1.5. El sistema debe detectar cuando un nodo se desconecta y reflejar su estado en la interfaz web.
- 1.6. Si un nodo se desconecta, debe intentar reconectarse automáticamente a la red.

Página 9 de 21

- El servidor web del nodo central debe ser accesible solo dentro de la red Wi-Fi local.
- 1.8. (Opcional) Cada nodo debe desplegar una interfaz web local para configurar datos de identificación dentro de la red.

2. Requerimientos de interfaz

- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

¡¡¡No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

Historias de usuarios (Product backlog)

Descripción: en esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

Se debe indicar explícitamente el criterio para calcular los story points de cada historia.

El formato propuesto es:

"Como [rol] quiero [tal cosa] para [tal otra cosa]."
 Story points: 8 (complejidad: 3, dificultad: 2, incertidumbre: 3)

Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de usuario.
- Diagrama de circuitos esquemáticos.
- Código fuente del firmware.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

2.1. Desde la interfaz web del nodo central, el usuario debe poder:

Visualizar el estado actual de la red

Agregar o eliminar nodos de la red.

Visualizar los datos transmitidos y recibidos por cada nodo.

Visualizar datos de identificación de cada nodo.

(Opcional) Configurar datos de identificación de cada nodo.

- 2.2. La interfaz web debe ser intuitiva, con una estructura clara para la configuración y monitoreo de la red.
- La interfaz web debe ser accesible desde dispositivos móviles y de escritorio.
- 2.4. Debe haber una representación gráfica o en lista del estado de cada nodo (activo/inactivo).
- 2.5. (Opcional) Desde la interfaz web de cada nodo, el usuario debe poder:

Asignar nombres personalizados al nodo.

Establecer el nodo como sensor o actuador.

Visualizar si el nodo está activo o inactivo dentro de la red.

3. Requerimientos no funcionales

- La red de sensores y actuadores debe implementarse utilizando Bluetooth Mesh sobre microcontroladores ESP32-C3.
- 3.2. Se debe trabajar con microcontroladores ESP32-C3 adquiridos para el proyecto, en lugar de usar los dispositivos comerciales de Wentux Tecnoagro.
- 3.3. Se debe utilizar el SDK de Espressif para el desarrollo del firmware Bluetooth Mesh.
- El servidor web se debe implementar con tecnologías compatibles con el ESP32-C3 (ej., ESP-IDF, AsyncWebServer).
- El sistema debe soportar la conexión de al menos 5 nodos simultáneamente.
- 3.6. La implementación debe permitir escalar la red a más de 5 nodos con mínimas modificaciones en el software.
- 3.7. Cada nodo debe poder enviar y recibir datos del nodo central al menos cada 5 segundos.
- 3.8. El tiempo de respuesta del servidor web no debe exceder los 500 ms en condiciones normales de operación.
- 3.9. La comunicación entre nodos debe utilizar los mecanismos de seguridad estándar del SDK de Espressif para Bluetooth Mesh.
- 3.10. El firmware de los nodos debe ser modular y reutilizable para futuras implementaciones en el hardware comercial de Wentux Tecnoagro.
- 3.11. El código fuente debe ser modular y documentado, permitiendo futuras modificaciones e integraciones.

4. Requerimientos de validación

- 4.1. Se deben realizar pruebas funcionales para verificar la comunicación entre nodos.
- 4.2. Se debe validar que los nodos se agreguen y configuren correctamente desde la interfaz web.
- 4.3. Se deben realizar pruebas de estabilidad del sistema con el número máximo de dispositivos soportados.

- Diagrama de instalación.
- Memoria del trabajo final.
- etc...

Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1 (suma h)
 - 1.1. Tarea 1 (tantas h)
 - 1.2. Tarea 2 (tantas h)
 - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2 (suma h)
 - 2.1. Tarea 1 (tantas h)
 - 2.2. Tarea 2 (tantas h)
 - 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3 (suma h)
 - 3.1. Tarea 1 (tantas h)
 - 3.2. Tarea 2 (tantas h)
 - 3.3. Tarea 3 (tantas h)
 - 3.4. Tarea 4 (tantas h)
 - 3.5. Tarea 5 (tantas h)

Cantidad total de horas: tantas.

¡Importante!: la unidad de horas es h y va separada por espacio del número. Es incorrecto escribir "23hs".

Se recomienda que no haya ninguna tarea que lleve más de 40 h. De ser así se recomienda dividirla en tareas de menor duración.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

- 4.4. Se debe verificar que el tiempo de respuesta del servidor web se mantenga dentro del límite establecido.
- 4.5. Se debe evaluar la distancia máxima entre nodos antes de perder conectividad.
- 5. Requerimientos de documentación
 - 5.1. Se debe entregar una documentación técnica con:

Descripción de la arquitectura de la red Bluetooth Mesh.

Instrucciones para integrar la biblioteca en futuros dispositivos.

Manual de uso de la interfaz web.

Guía de instalación y configuración del nodo central.

Documentación sobre las validaciones realizadas.

7. Historias de usuarios (Product backlog)

Para las siguientes historias de usuario, se identifican los siguientes roles principales:

- Administrador: es Wentux Tecnoagro como dueño y administrador del sistema. Tiene acceso a la configuración avanzada del sistema, incluyendo la gestión de nodos y ajustes de la red Bluetooth Mesh.
- Usuario: es el usuario final al que Wentux Tecnoagro ofrecerá su solución. Interactúa con el sistema a través de la interfaz web del nodo central para monitorear el estado de la red y visualizar datos de los sensores y actuadores.
- Desarrollador: es la Ing. Laura Andrea Moreno Rodríguez como encargada de implementar el sistema, asegurando que el firmware, la interfaz web y la comunicación entre nodos funcionen correctamente.

Las historias de usuario se agrupan a continuación por funcionalidad y se han estimado con una puntuación basada en la relevancia, dificultad e incertidumbre de cada una. Cada criterio recibe un valor entre 1 y 3, y la puntuación total de la historia corresponde a la suma de estos valores. El puntaje mínimo es 1 y el máximo es 9, reflejando el esfuerzo relativo requerido para su implementación.

Red Bluetooth Mesh y nodo central

- 1.1. Como administrador quiero que el nodo central actúe como coordinador de la red para recopilar datos de los sensores y enviar comandos a los actuadores. Story points: 9 (relevancia: 3, dificultad: 3, incertidumbre: 3)
- 1.2. Como administrador quiero que cada nodo pueda retransmitir datos para extender la cobertura de la red. Story points: 7 (relevancia: 2, dificultad: 3, incertidumbre: 2)
- 1.3. Como administrador quiero que el sistema detecte cuando un nodo se desconecta para reflejar su estado en la interfaz web. Story points: 5 (relevancia: 2, dificultad: 2, incertidumbre: 1)
- 1.4. Como administrador quiero que cada nodo intente reconectarse automáticamente si se desconecta de la red para mantener la estabilidad del sistema. Story points: 6 (relevancia: 2, dificultad: 2, incertidumbre: 2)

Figura 3. Diagrama de Activity on Node.

11. Diagrama de Gantt

Existen muchos programas y recursos online para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS).

Configurar el software para que al lado de cada barra muestre el nombre de cada tarea.

Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 4, se muestra un ejemplo de diagrama de gantt realizado con el paquete de pgfgantt. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

- 1.5. Como administrador quiero que el nodo central registre logs básicos de actividad para diagnóstico y depuración del sistema. Story points: 3 (relevancia: 1, dificultad: 1, incertidumbre: 1)
- 1.6. Como administrador quiero que el nodo central tenga un servidor web local para configurar y monitorear la red. Story points: 9 (relevancia: 3, dificultad: 3, incertidumbre: 3)
- 1.7. Como administrador quiero que cada nodo pueda enviar y recibir datos del nodo central al menos cada 5 segundos para asegurar una actualización constante de la información. Story points: 5 (relevancia: 2. dificultad: 2. incertidumbre: 1)
- 1.8. Como administrador quiero que el tiempo de respuesta del servidor web no supere los 500 ms para garantizar una experiencia fluida. Story points: 5 (relevancia: 2, dificultad: 2, incertidumbre: 1)
- 1.9. Como desarrollador quiero que el firmware sea modular y reutilizable para facilitar futuras implementaciones en hardware comercial. Story points: 5 (relevancia: 1, dificultad: 3, incertidumbre: 1)

2. Interfaz web del nodo central

- 2.1. Como usuario quiero ver el estado actual de la red en la interfaz web para monitorear su funcionamiento. Story points: 9 (relevancia: 3, dificultad: 3, incertidumbre: 3)
- 2.2. Como usuario quiero visualizar una lista o representación gráfica del estado de cada nodo (activo/inactivo) para tener una visión clara de la red. Story points: 9 (relevancia: 3, dificultad: 3, incertidumbre: 3)
- 2.3. Como usuario quiero agregar nodos a la red desde la interfaz web para expandir el sistema. Story points: 8 (relevancia: 2, dificultad: 3, incertidumbre: 3)
- 2.4. Como usuario quiero eliminar nodos de la red desde la interfaz web para reorganizar el sistema según sea necesario. Story points: 8 (relevancia: 2, dificultad: 3, incertidumbre: 3)
- 2.5. Como usuario quiero visualizar los datos transmitidos y recibidos por cada nodo para monitorear su actividad. Story points: 5 (relevancia: 1, dificultad: 2, incertidumbre: 2)
- 2.6. Como usuario quiero visualizar los datos de identificación de cada nodo para reconocerlos fácilmente en la red. Story points: 5 (relevancia: 1, dificultad: 2, incertidumbre: 2)
- 2.7. (Opcional) Como usuario quiero configurar los datos de identificación de cada nodo para asignar nombres personalizados y roles dentro de la red. Story points: 5 (relevancia: 0, dificultad: 3, incertidumbre: 2)
- 2.8. Como usuario quiero que la interfaz web sea intuitiva para configurar y monitorear la red de manera sencilla. Story points: 6 (relevancia: 2, dificultad: 2, incertidumbre: 2)

3. (Opcional) Interfaz web de cada nodo

- 3.1. Como usuario quiero que cada nodo tenga una interfaz web local para configurar sus datos de identificación dentro de la red. Story points: 4 (relevancia: 0, dificultad: 2, incertidumbre: 2)
- 3.2. Como usuario quiero asignar nombres personalizados a los nodos desde su interfaz web para identificarlos fácilmente. Story points: 2 (relevancia: 0, dificultad: 1, incertidumbre: 1)

Figura 4. Diagrama de gantt de ejemplo

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

- 3.3. Como usuario quiero establecer si un nodo es sensor o actuador para definir su función dentro de la red. Story points: 3 (relevancia: 0, dificultad: 1, incertidumbre: 2)
- 3.4. Como usuario quiero visualizar si un nodo está activo o inactivo en la red desde su interfaz web para asegurar su correcto funcionamiento. Story points: 2 (relevancia: 0, dificultad: 1, incertidumbre: 1)

4. Documentación

- 4.1. Como administrador quiero recibir documentación técnica del sistema para comprender la arquitectura y el firmware desarrollado. Story points: 3 (relevancia: 1, dificultad: 1, incertidumbre: 1)
- 4.2. Como administrador quiero recibir instrucciones claras para integrar la biblioteca en futuros dispositivos. Story points: 3 (relevancia: 1, dificultad: 1, incertidumbre: 1)
- 4.3. Como usuario quiero un manual de uso de la interfaz web para configurar y monitorear la red correctamente. Story points: 3 (relevancia: 1, dificultad: 1, incertidumbre: 1)
- 4.4. Como administrador quiero recibir documentación sobre las validaciones realizadas para asegurar la confiabilidad del sistema. Story points: 3 (relevancia: 1, dificultad: 1, incertidumbre: 1)

8. Entregables principales del proyecto

Los siguientes son los entregables de este proyecto:

- Código fuente del firmware para el nodo central y los nodos de la red.
- Código fuente del servidor e interfaz web del nodo central.
- Documentación técnica con los resultados de pruebas funcionales, descripción de la arquitectura de la red Bluetooth Mesh y explicación del firmware y sus módulos.
- Manual de desarrollador para integrar la biblioteca en futuros dispositivos.
- Manual de usuario para la configuración y monitoreo de la red a través de la interfaz web.
- Memoria del trabajo final.

Desglose del trabajo en tareas

Las siguientes son las tareas necesarias para cumplir con los entregables del proyecto y su duración estimada:

- Planificación del proyecto (60 h)
 - 1.1. Definir requerimientos (10 h)
 - 1.2. Definir plan de trabajo (10 h)
 - 1.3. Escribir documento de planificación (40 h)
- Preparación del entorno de desarrollo (45 h)

Carrera de

.UBAfiuba

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

- 2.1. Seleccionar y comprar componentes (5 h)
- 2.2. Instalar entorno de desarrollo (10 h)
- 2.3. Ensamblar y realizar pruebas iniciales (30 h)
- 3. Desarrollo del firmware (230 h)
- 3.1. Leer documentación sobre Bluetooth Mesh para ESP32-C3 (20 h)
- 3.2. Probar ejemplos del SDK de Espressif para Bluetooth Mesh (40 h)
- 3.3. Implementar el módulo para el nodo central de la red (40 h)
- 3.4. Implementar el módulo para los otros nodos de red (40 h)
- 3.5. Agregar test unitarios a la implementación (40 h)
- 3.6. Probar y mejorar la implementación (40 h)
- 3.7. Agregar logs para depuración (10 h)
- 4. Desarrollo del servidor web (160 h)
 - 4.1. Leer documentación sobre servidores web para ESP32-C3 (20 h)
 - 4.2. Probar ejemplos de servidores web (20 h)
 - 4.3. Leer documentación sobre interfaz web para ESP32-C3 (10 h)
 - 4.4. Probar ejemplos de interfaz web (10 h)
 - 4.5. Implementar el servidor web (40 h)
 - 4.6. Diseñar la interfaz web (20 h)
 - 4.7. Implementar la interfaz web (40 h)
- 5. Pruebas y validaciones (25 h)
 - 5.1. Probar la configuración del nodo central (5 h)
 - 5.2. Probar la comunicación entre nodos (5 h)
 - 5.3. Probar la escalabilidad del sistema (5 h)
 - 5.4. Probar la latencia y respuesta del servidor web (5 h)
 - 5.5. Probar la usabilidad de la interfaz web (5 h)
- 6. Documentación (80 h)
 - 6.1. Documentación técnica de la arquitectura (10 h)
 - 6.2. Documentación técnica del firmware (10 h)
 - 6.3. Manuales de usuario (10 h)
 - 6.4. Informe de validaciones (10 h)
 - 6.5. Memoria de trabajo final (40 h)

Cantidad total de horas: 600 h

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

1000 000 000 000	COSTOS DIRECT	OS		
Descripción	(Cantidad	Valor unitario	Valor total
<u> </u>			2	
	SUBTOTAL			
	COSTOS INDIREC	TOS		as a
Descripción	(Cantidad	Valor unitario	Valor total
16				
	CUDMOMAT			
	SUBTOTAL			
	TOTAL			

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

Severidad (S): X.
 Justificación...

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

Figura 3. Diagrama de Activity on Node.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

 Ocurrencia (O): Y. Justificación...

Riesgo 3:

- Severidad (S): X.
 Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	0	RPN	S*	0*	RPN*
%				- 30		>
			1 0			8
2						-

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

Req #1: copiar acá el requerimiento con su correspondiente número.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

11. Diagrama de Gantt

Existen muchos programas y recursos online para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS).

Configurar el software para que al lado de cada barra muestre el nombre de cada tarea.

Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 4, se muestra un ejemplo de diagrama de gantt realizado con el paquete de pgfgantt.

En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo:

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

- Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
- Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
- Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores;
- Indicar esto y quién financiará los gastos correspondientes.

Plan de proyecto del Trabajo Final Carrera de Especialización en Sistemas Embebidos Ing. Laura Andrea Moreno Rodríguez

Figura 4. Diagrama de gantt de ejemplo