

Mar 8, 2024

Team 2 (Ermiyas, Karina, Sangwon)

Team Introduction

Github Lead
Github: ermiyas-sidama
Ermiyas Sidama

Tech Lead
Github: Kariteph
Karina Baculima

Presentation Lead Github: sangwon224 Sangwon Shim

Project Overview

Our Understanding:

→ Jelly Co. plans to expand its business portfolio to commercial and private airline businesses to diversity its business portfolio

Importance of Selecting the Safest Aircraft:

→ On average, US Court values a life lost in a US general aviation accident \$5.2M (the highest in the world) 1

Project Objective	Project Scope
→ Assess historical aviation accident risk of various aircrafts	Operation Boundary: United States
→ Provide recommendations on airplane manufacturer and specs	Aircraft Type: Airplane only
	Customer Type: → Commercial / Public → Private / Business

Preliminary Recommendations

- 1. **Manufacturer:** Airbus Industries (Commercial) and Gulfstream Aerospace (Private/Business)
- 2. **Engine Specification:** 4 engines (Commercial) and 2 engines (Private/Business)
- 3. Other Specification: Advanced landing assistance feature

Data Overview

Source:

- → Aviation civil accident data between 1962 and 2023 from the National Transportation Safety Board **Overview**:
- → 90K+ accident recordings with 30+ columns with relevant details (e.g., location and aircraft info)

Limitations:

- → Do not take into account of non-incident/accident flight data
- → Many null/empty values for each column
- → Inconsistent naming conventions for some columns (e.g., Make and Model)

Airplanes with a single and/or reciprocating engine accounted for the majority of the aircraft accidents in the past ~20 years

Key Takeaway

→ Choose an aircraft with two or more engines that is not reciprocating type

In addition, the most aircraft accidents occurred during the landing phase of the flight

Key Takeaway

→ Choose an aircraft that has the most advanced landing assistance specifications

Preliminary aircraft manufacturer and specification recommendation to minimize airplane accident risk

1 Executive Summary
2 Data Overview
3 Analysis
4 Recommendation
5 Next Steps

1

Manufacturer

Commercial Airline:

→ Airbus Industries

Private / Business Airline:

→ Gulfstream Aerospace

2

Engine Specification

Commercial Airline:

→ 4 turbo fan

Private / Business Airline:

→ 2 non-reciprocating

3

Other Specification

Both Airlines:

→ Advanced landing assistance

Next Steps

5	Next Steps
4	Recommendation
3	Analysis
2	Data Overview
1	Executive Summary

- 1. Understand Jelly Co.'s aircraft selection requirements (e.g., passenger capacity and minimum mileage) to provide model recommendations
- 2. Request financial data to conduct financial metric analysis to recommend the most cost effective airplane model
- 3. Follow up with Jelly for any additional analysis to support the successful launch of the commercial and private/business airlines

Questions?

Github Lead
Github: ermiyas-sidama
Ermiyas Sidama

Tech Lead
Github: Kariteph
Karina Baculima

Presentation Lead Github: sangwon224 Sangwon Shim

Final Analysis Output and Recommendation Approach

Commercial Airline Final Analysis Output			
Manufacturer	Engine Number	Accident Count	
Boeing	4.0	16	
Boeing	3.0	9	
Airbus	4.0	3	

Private Airline Final Analysis Output			
Manufacturer	Engine Number	Accident Count	
Beech	2.0	151	
Cessna	2.0	133	
Bombardier	2.0	62	
Gulfstream	2.0	13	

Recommendation Approach

Commercial Airline:

- → Aircraft with the least amount of accidents with 3 or more engines that is not reciprocating type and had no landing accident record
- → Aircraft manufactured by the top manufacturers (i.e., Boeing and Airbus) that essentially dominate the commercial airline industry ¹

Private / Business Airline:

- → Aircraft with the least amount of accidents with 2 or more engines that is not reciprocating type and had no landing accident record
- → Aircraft manufactured by the top 10 manufacturers (e.g., Beech, Cessna, Gulfstream), specializing in corporate aircrafts ²

¹ https://www.investopedia.com/ask/answers/050415/what-companies-are-major-players-airline-supply-business.asp#:~:text=The%20world's%20only%20major%20large.Japan%2C%20and%20UAC%20in%20Russia

² https://www.aerotime.aero/articles/top-10-largest-aircraft-manufacturers-in-the-world