Towards efficient algorithmic aspects of algebraic lattices

int iDest=1; FF

Thomas Espitau

3, 2024, Bordeaux

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

Sphere Packing problem
Hexagonal lattice | Lagrange 1773

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

Sphere Packing problem
Kepler's conjecture | Hales 1999

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

The (co)volume covol(Λ) of Λ is the quantity

$$\mathsf{covol}(\Lambda) = \sqrt{\det \left\langle v_i, v_j
ight
angle}$$

Corresponds to the volume of the fundamental domain $\{\sum x_i v_i \mid 0 \le x_i < 1\}.$

(also the volume (no "co") of the variety
$$\mathbb{R}^n$$

(also the volume (no "co") of the variety \mathbb{R}^n/Λ)

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbb{R}^n).

The (co)volume covol(Λ) of Λ is the quantity

$$\mathsf{covol}(\Lambda) = \sqrt{\det \left\langle v_i, v_j
ight
angle}$$

Corresponds to the volume of the fundamental domain $\{\sum x_i v_i \mid 0 \le x_i < 1\}.$

(also the volume (no "co") of the variety \mathbb{R}^n/Λ)

Independent of the basis

$$\operatorname{covol}(\Lambda) = 2\operatorname{covol}(\Lambda')$$

2

$$\operatorname{covol}(\Lambda) = \frac{1}{2}\operatorname{covol}(\Lambda')$$

2

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

- \rightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset

- \rightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset

- ightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset
 - 2. Repeat

- ightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset
 - 2. Repeat

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

Effective computing of this element:

1. Orthogonal projection

$$\frac{\langle w, v \rangle}{\langle w, w \rangle} N$$

How to get a shorter basis?

ightarrow Use the shortest vector to reduce the longest one.

Effective computing of this element:

Orthogonal projection

$$\frac{\langle w, v \rangle}{\langle w, w \rangle}$$
 M

2.

Round

$$\left\lceil \frac{\langle w, v \rangle}{\langle w, w \rangle} \right\rceil w$$

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

Effective computing of this element:

- Orthogonal projection
- $\frac{\langle w, v \rangle}{\langle w, w \rangle} W$
- 2. Round

$$\left\lceil \frac{\langle w, v \rangle}{\langle w, w \rangle} \right\rfloor W$$

3. Substract

$$V - \left\lceil \frac{\langle w, v \rangle}{\langle w, w \rangle} \right\rfloor v$$

How to get a shorter basis?

ightarrow Use the shortest vector to reduce the longest one.

Effective computing of this element:

- Orthogonal projection
- $\frac{\langle w, v \rangle}{\langle w, w \rangle} W$
- 2. Round $\left[\frac{\langle}{\langle i}\right]$
 - $\left\lceil \frac{\langle w, v \rangle}{\langle w, w \rangle} \right\rfloor w$
- 3. Substract

Gauss-Lagrange reduction

- 1 if ||v|| < ||u|| then return Gauss(v, u);
- 2 $v' \leftarrow v \left| \frac{\langle u, v \rangle}{\|u\|^2} \right| u;$
- 3 if ||v'|| < ||v|| then return Gauss(u, v');
- 4 else return (u, v);

Gauss-Lagrange reduction

- 1 if ||v|| < ||u|| then return Gauss(v, u);
- 2 $v' \leftarrow v \left\lfloor \frac{\langle u, v \rangle}{\|u\|^2} \right\rfloor u;$
- 3 if ||v'|| < ||v|| then return Gauss(u, v');
- 4 else return (u, v);

Properties of a Gauss-reduced basis (u, v)

• $||u|| \leqslant ||v||$ and $|\langle u, v \rangle| \leqslant \frac{||u||^2}{2}$.

Gauss-Lagrange reduction

- 1 if ||v|| < ||u|| then return Gauss(v, u);
- 2 $v' \leftarrow v \left\lfloor \frac{\langle u, v \rangle}{\|u\|^2} \right\rfloor u;$
- 3 if ||v'|| < ||v|| then return Gauss(u, v');
- 4 else return (u, v);

Properties of a Gauss-reduced basis (u, v)

- $||u|| \leq ||v||$ and $|\langle u, v \rangle| \leq \frac{||u||^2}{2}$.
- u is a shortest vector of Λ

Gauss-Lagrange reduction

- 1 if ||v|| < ||u|| then return Gauss(v, u);
- 2 $v' \leftarrow v \left\lfloor \frac{\langle u, v \rangle}{\|u\|^2} \right\rfloor u;$
- 3 if ||v'|| < ||v|| then return Gauss(u, v');
- 4 else return (u, v);

Properties of a Gauss-reduced basis (u, v)

- $||u|| \leqslant ||v||$ and $|\langle u, v \rangle| \leqslant \frac{||u||^2}{2}$.
- u is a shortest vector of Λ
- $||u||^2 \leqslant (4/3) \operatorname{covol}(\Lambda)$

Minkowski's theorem for first minima: For any lattice Λ of rank d,

$$\lambda_1(\Lambda) \leqslant \sqrt{d} \operatorname{covol}(\Lambda)^{\frac{1}{d}}$$

Minkowski-Hermite's theorem for first minima: For any lattice Λ of rank d,

$$\lambda_1(\Lambda) \leqslant \sqrt{\gamma_d} \operatorname{covol}(\Lambda)^{\frac{1}{d}}$$

Finding the shortest/closest vector in a lattice is ${f hard}$

[LLL82] There exists a **polynomial-time algorithm**, which given any lattice Λ , produces a vector in Λ of Euclidean length **at most** a factor of 2^n longer than the shortest vector.

5

[LLL82] There exists a **polynomial-time algorithm**, which given any lattice Λ , produces a vector in Λ of Euclidean length **at most** a factor of 2^n longer than the shortest vector.

• Simultaneous Diophantine approximation

$$\left| r_i - \frac{p_i}{q} \right| \leqslant \epsilon$$

[LLL82] There exists a **polynomial-time algorithm**, which given any lattice Λ , produces a vector in Λ of Euclidean length **at most** a factor of 2^n longer than the shortest vector.

- Simultaneous Diophantine approximation $\left|r_i \frac{p_i}{q}\right| \leqslant \epsilon$
- Minimal polynomials of algebraic numbers $(r_i = r^i)$

[LLL82] There exists a **polynomial-time algorithm**, which given any lattice Λ , produces a vector in Λ of Euclidean length **at most** a factor of 2^n longer than the shortest vector.

- Simultaneous Diophantine approximation $\left| r_i \frac{\rho_i}{q} \right| \leqslant \epsilon$
- Minimal polynomials of algebraic numbers $(r_i = r^i)$
- Polynomial factorization over rationals
 Approximate a root r, find a minimal g vanishing at r.

 Cryptanalysis Knapsack problem , RSA for small public exponents, lattice-based cryptography...

[LLL82] There exists a **polynomial-time algorithm**, which given any lattice Λ , produces a vector in Λ of Euclidean length **at most** a factor of 2^n longer than the shortest vector.

- Simultaneous Diophantine approximation $\left|r_i \frac{p_i}{q}\right| \leqslant \epsilon$
- Minimal polynomials of algebraic numbers $(r_i = r^i)$
- Polynomial factorization over rationals
 Approximate a root r, find a minimal g vanishing at r.

- Cryptanalysis Knapsack problem , RSA for small public exponents, lattice-based cryptography...
- Computations in algebraic number theory (ideal computations, HNF, control of size of elements...)

What can we do with a reduction in rank 2?

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration given by $(\Lambda_i = v_1 \mathbb{Z} \oplus \cdots \oplus v_i \mathbb{Z})$

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

6

What can we do with a reduction in rank 2?

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration given by $(\Lambda_i = v_1 \mathbb{Z} \oplus \cdots \oplus v_i \mathbb{Z})$

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

• Profile (1 dim datum of the filtration):

What can we do with a reduction in rank 2?

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration given by $(\Lambda_i = v_1 \mathbb{Z} \oplus \cdots \oplus v_i \mathbb{Z})$

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

• Profile (1 dim datum of the filtration):

 Where are the natural rank 2 lattices around here?

$$\Lambda^* = {}^{\bigwedge_{i+1}}\!\!/_{\bigwedge_{i-1}}$$
 (endowed with the $quotient\ norm$)

What can we do with a reduction in rank 2?

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration given by $(\Lambda_i = v_1 \mathbb{Z} \oplus \cdots \oplus v_i \mathbb{Z})$

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

• Profile (1 dim datum of the filtration):

Where are the natural rank 2 lattices around here?

$$\Lambda^* = {}^{\bigwedge_{i+1}} \! \! \bigwedge_{i-1}$$
 (endowed with the *quotient norm*)

Reduce this lattice with **Gauss algorithm**:

$$\{0\} \subset v\mathbb{Z} = \Lambda' \subset \Lambda^*$$

What can we do with a reduction in rank 2?

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration given by $(\Lambda_i = v_1 \mathbb{Z} \oplus \cdots \oplus v_i \mathbb{Z})$

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

• Profile (1 dim datum of the filtration):

• Where are the natural rank 2 lattices around here?

$$\Lambda^* = {}^{\bigwedge_{i+1}} \! \! \bigwedge_{i-1}$$
 (endowed with the *quotient norm*)

Reduce this lattice with **Gauss algorithm**:

$$\{0\}\subset v\mathbb{Z}=\Lambda'\subset \Lambda^*$$

Action of the reduction

$$2\deg(\Lambda')\leqslant \deg(\Lambda^*)+\log\left(rac{4}{3}
ight)$$

(by Hermite inequality
$$+ log$$
)

Lifting and replacing in the filtration: find Λ'_i s.t.:

7

Lifting and replacing in the filtration: find Λ'_i s.t.:

Result on the profile space:

Lifting and replacing in the filtration: find Λ'_i s.t.:

Result on the profile space:

Lifting and replacing in the filtration: find Λ'_i s.t.:

Result on the profile space:

Gauss's reduction is a local tool for densifying the filtration

Effective lifting

• Boils down to replace v_i by a *small* representative of a basis of $\Lambda' = v + \Lambda_{i-1}$:

CVP instance

Effective lifting

• Boils down to replace v_i by a small representative of a basis of $\Lambda' = v + \Lambda_{i-1}$:

CVP instance

 Perform an approx-CVP by using the filtration:

Effective lifting

• Boils down to replace v_i by a *small* representative of a basis of $\Lambda' = v + \Lambda_{i-1}$:

CVP instance

Perform an approx-CVP by using the filtration:

Effective lifting

• Boils down to replace v_i by a *small* representative of a basis of $\Lambda' = v + \Lambda_{i-1}$:

CVP instance

Perform an approx-CVP by using the filtration:

Effective lifting

• Boils down to replace v_i by a *small* representative of a basis of $\Lambda' = v + \Lambda_{i-1}$:

CVP instance

Perform an approx-CVP by using the filtration:

Lifting

 ${\scriptstyle 1} \ \ \mathbf{for} \ j = k-1 \ \mathbf{down} \ \mathbf{to} \ 1 \ \mathbf{do}$

3 end for

Effective lifting

• Boils down to replace v_i by a *small* representative of a basis of $\Lambda' = v + \Lambda_{i-1}$:

CVP instance

 Perform an approx-CVP by using the filtration:

Size-reduction

- 1 **for** k = 2 **to** d **do**
- for j = k 1 down to 1 do
- 4 end for
 - 5 end for
 - 6 return (v_1, \ldots, v_d)

9

Diagramatically!

LLL reduced basis

• Size-Reduction condition (lifts is as good as possible)

$$\forall i < j, \quad |\langle v_j, \pi_i(v_i) \rangle| \leqslant \frac{1}{2} \|\pi_i(v_i)\|^2$$

LLL reduced basis

• Size-Reduction condition (lifts is as good as possible)

$$\forall i < j, \quad |\langle v_j, \pi_i(v_i) \rangle| \leqslant \frac{1}{2} \|\pi_i(v_i)\|^2$$

• Lovász condition (Each quotients are reduced)

$$\forall i, \ \delta \operatorname{covol}(\Lambda_i) \leqslant \operatorname{covol}(\Lambda_{i-1} \oplus v_{i+1} \mathbb{Z})$$

LLL reduced basis

• Size-Reduction condition (lifts is as good as possible)

$$\forall i < j, \quad |\langle v_j, \pi_i(v_i) \rangle| \leqslant \frac{1}{2} \|\pi_i(v_i)\|^2$$

• Lovász condition (Each quotients are reduced)

$$\forall i, \ \delta \operatorname{covol}(\Lambda_i) \leqslant \operatorname{covol}(\Lambda_{i-1} \oplus v_{i+1} \mathbb{Z})$$

Effective version of Hermite's inequality:

$$\gamma_d \leqslant \gamma_2^{d-1}$$

Guarantees offered by LLL

$$\operatorname{\mathsf{covol}}(\mathsf{\Lambda}_k) \leqslant \left(\delta - \frac{1}{4}\right)^{-\frac{(d-k)k}{4}} \operatorname{\mathsf{covol}}(\mathsf{\Lambda})^{\frac{k}{d}}$$

LLL reduced basis

• Size-Reduction condition (lifts is as good as possible)

$$\forall i < j, \quad |\langle v_j, \pi_i(v_i) \rangle| \leqslant \frac{1}{2} ||\pi_i(v_i)||^2$$

• Lovász condition (Each quotients are reduced)

$$\forall i, \ \delta \operatorname{covol}(\Lambda_i) \leqslant \operatorname{covol}(\Lambda_{i-1} \oplus v_{i+1} \mathbb{Z})$$

Peter van Emde Boas, László Lovász, Hendrik Lenstra and Arjen Lenstra.

(Bonn on 27/02/1982)

But... How fast is this reduction?

	Variant	Complexity	
naive arithmetic	Textbook	$\mathrm{O}\!\left(d^6\log^3\ B\ _\infty\right)$	naive
		$O\left(\frac{d^{5}\log^{2}\ B\ _{\infty}}{d+\log\ B\ _{\infty}}M(d+\log\ B\ _{\infty})\right)$	refined
	» Bottleneck: size of numerators/denominators in GSO computations «		
floating point	Nguyen-Stehlé (2009)	$\mathrm{O}ig(d^5(d+\log(\ B\ _\infty))\log(\ B\ _\infty)ig)$	lazy size-reduction
	Neumaier-Stehlé (2016)	$O(d^{4+\epsilon}\log(\ B\ _{\infty})^{1+\epsilon})$	recursive strategy

Number field

• Finite extension of \mathbb{Q} :

$$L \cong \mathbb{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbb{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

Number field

• Finite extension of \mathbb{Q} :

$$L \cong \mathbb{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbb{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
 $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$
 $\mathcal{O}_{\mathbb{Q}(i\sqrt{5})} = \left\{ \frac{a}{2} + \frac{b}{2}i\sqrt{5} \mid a, b \in \mathbb{Z} \right\}$
 $\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n] = \left\{ \sum_i a_i \zeta^i \mid a_i \in \mathbb{Z} \right\}$

Number field

• Finite extension of \mathbb{Q} :

$$L\cong ^{\mathbb{Q}[X]}/(P)$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbb{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

Examples

$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
 $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$
 $\mathcal{O}_{\mathbb{Q}(i\sqrt{5})} = \left\{\frac{a}{2} + \frac{b}{2}i\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$
 $\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n] = \left\{\sum_i a_i \zeta^i \mid a_i \in \mathbb{Z}\right\}$

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of a Euclidean space (say \mathbb{R}^n).

Number field

• Finite extension of \mathbb{Q} :

$$L\cong ^{\mathbb{Q}[X]}/(P)$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbb{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

Examples

$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
 $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$
 $\mathcal{O}_{\mathbb{Q}(i\sqrt{5})} = \left\{\frac{a}{2} + \frac{b}{2}i\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$
 $\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n] = \left\{\sum_i a_i \zeta^i \mid a_i \in \mathbb{Z}\right\}$

Lattice

A (Euclidean) lattice Λ is a free $\mathbb{Z}\text{-module}$ of finite rank, endowed with an inner product on $\Lambda\otimes_{\mathbb{Z}}\mathbb{R}.$

Number field

• Finite extension of \mathbb{Q} :

$$L \cong \mathbb{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbb{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

Examples

$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
 $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$
 $\mathcal{O}_{\mathbb{Q}(i\sqrt{5})} = \left\{\frac{a}{2} + \frac{b}{2}i\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$
 $\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n] = \left\{\sum_i a_i \zeta^i \mid a_i \in \mathbb{Z}\right\}$

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Number field

• Finite extension of \mathbb{Q} :

$$L \cong \mathbb{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbb{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

Examples

$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
 $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$
 $\mathcal{O}_{\mathbb{Q}(i\sqrt{5})} = \left\{\frac{a}{2} + \frac{b}{2}i\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$
 $\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n] = \left\{\sum_i a_i \zeta^i \mid a_i \in \mathbb{Z}\right\}$

Lattice

An (algebraic) lattice Λ is a **free** \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Number field

• Finite extension of \mathbb{Q} :

$$L \cong \mathbb{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbb{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

Examples

$$\mathcal{O}_{\mathbb{Q}} = \mathbb{Z}$$
 $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$
 $\mathcal{O}_{\mathbb{Q}(i\sqrt{5})} = \left\{\frac{a}{2} + \frac{b}{2}i\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$
 $\mathcal{O}_{\mathbb{Q}(\zeta_n)} = \mathbb{Z}[\zeta_n] = \left\{\sum_i a_i \zeta^i \mid a_i \in \mathbb{Z}\right\}$

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

(Natural?) Hermitian structure

Take your favorite sesquilinear map $g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$ (for instance as vectors $g(x,y) = \sum_i \bar{x}_i y_i$)

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

(Natural?) Hermitian structure

Take your favorite sesquilinear map $g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$ (for instance as vectors $g(x,y) = \sum_i \bar{x_i} y_i$)

- not very real! (distance, etc...)
- How do we go from L to \mathbb{R} ? Compose with ...

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

(Natural?) Hermitian structure

Take your favorite sesquilinear map

 $g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$ (for instance as vectors $g(x,y) = \sum_i \bar{x_i} y_i$)

- not very real! (distance, etc...)
- How do we go from L to \mathbb{R} ? Compose with ...

Trace tr Additive notion

encode the length of the element when seen as a vector in $\mathbb{C}^{\deg(L)}$.

Better for the geometry!

Norm N Multiplicative notion

encode the $\deg(L)$ - "volume" of the lattice spanned by the element)

better with the arithmetic!

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

(Natural?) Hermitian structure

Take your favorite sesquilinear map

$$g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$$
 (for instance as vectors $g(x,y) = \sum_i \bar{x_i} y_i$)

- not very real! (distance, etc...)
- How do we go from L to \mathbb{R} ? Compose with ...

Trace tr Additive notion

encode the length of the element when seen as a vector in $\mathbb{C}^{\deg(L)}$.

Better for the geometry!

Norm *N Multiplicative notion*

encode the $\deg(L)$ - "volume" of the lattice spanned by the element)

better with the arithmetic!

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbb{R})^d$$
 and $y = (y_1, \dots, y_d) \in (L \otimes \mathbb{R})^d$:

$$\langle x, y \rangle =$$

(Natural?) Hermitian structure

Take your favorite sesquilinear map

 $g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$ (for instance as vectors $g(x,y) = \sum_i \bar{x_i} y_i$)

- not very real! (distance, etc...)
- How do we go from L to \mathbb{R} ? Compose with ...

Trace tr Additive notion

encode the length of the element when seen as a vector in $\mathbb{C}^{\deg(L)}$.

Better for the geometry!

Norm *N Multiplicative notion*

encode the $\deg(L)$ - "volume" of the lattice spanned by the element)

better with the arithmetic!

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbb{R})^d$$
 and $y = (y_1, \dots, y_d) \in (L \otimes \mathbb{R})^d$:

$$\langle x, y \rangle = \sum_{i=1}^d \langle x_i, y_i \rangle_{\Sigma}$$

(Natural?) Hermitian structure

Take your favorite sesquilinear map

$$g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$$
 (for instance as vectors $g(x,y) = \sum_i \bar{x_i} y_i$)

- not very real! (distance, etc...)
- How do we go from L to \mathbb{R} ? Compose with ...

Trace tr Additive notion

encode the length of the element when seen as a vector in $\mathbb{C}^{\deg(L)}$.

Better for the geometry!

Norm *N Multiplicative notion*

encode the $\deg(L)$ - "volume" of the lattice spanned by the element)

better with the arithmetic!

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbb{R})^d$$
 and $y = (y_1, \dots, y_d) \in (L \otimes \mathbb{R})^d$:

$$\langle x, y \rangle = \sum_{\sigma: L \to \mathbb{C}} \langle x, y \rangle_{\sigma}$$

(Natural?) Hermitian structure

Take your favorite sesquilinear map

 $g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$ (for instance as vectors $g(x,y) = \sum_i \bar{x_i} y_i$)

- not very real! (distance, etc...)
- How do we go from L to \mathbb{R} ? Compose with ...

Trace tr Additive notion

encode the length of the element when seen as a vector in $\mathbb{C}^{\deg(L)}$.

Better for the geometry!

Norm N Multiplicative notion

encode the $\deg(L)$ - "volume" of the lattice spanned by the element)

better with the arithmetic!

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbb{R})^d$$
 and $y = (y_1, \dots, y_d) \in (L \otimes \mathbb{R})^d$:

$$\langle x, Hy \rangle = \sum_{\sigma: L \to \mathbb{C}} \langle x, H_{\sigma} y \rangle_{\sigma}$$

(Natural?) Hermitian structure

Take your favorite sesquilinear map

$$g: \Lambda_{\mathbb{R}} \times \Lambda_{\mathbb{R}} \to L_{\mathbb{R}}$$
 (for instance as vectors $g(x,y) = \sum_i \bar{x_i} y_i$)

- not very real! (distance, etc...)
- How do we go from L to \mathbb{R} ? Compose with ...

Trace tr Additive notion

encode the length of the element when seen as a vector in $\mathbb{C}^{\deg(L)}$.

Better for the geometry!

Norm *N Multiplicative notion*

encode the $\deg(L)$ - "volume" of the lattice spanned by the element)

better with the arithmetic!

Lattice

An (algebraic) lattice Λ is a free \mathcal{O}_L -module of finite rank, endowed with an inner product on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Let's look at the trace on $(L \otimes \mathbb{R})^d$

For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbb{R})^d$$
 and $y = (y_1, \dots, y_d) \in (L \otimes \mathbb{R})^d$:

$$\langle x, Hy \rangle = \sum_{\sigma: L \to \mathbb{C}} \langle x, H_{\sigma} y \rangle_{\sigma}$$

Corresponds to **Humbert forms** ("posdef symmetric" matrix over *L*)

Algebraic lattice

An algebraic lattice Λ is a projective \mathcal{O}_L -module of finite rank, endowed with a Humbert form on the space $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Algebraic lattice

An algebraic lattice Λ is a projective \mathcal{O}_L -module of finite rank, endowed with a Humbert form on the space $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Examples I

- $\mathcal{O}^n_{\mathbb{O}} = \mathbb{Z}^n$ is a rank n lattice for the form Id (!)
- \mathcal{O}_L is a rank 1 lattice for the form $\mathrm{Id}_1=(1)$
- ullet \mathcal{O}_L^2 is a rank 2 lattice for the form Id_2
- $\binom{f}{g} \mathcal{O}_L \oplus \binom{F}{G} \mathcal{O}_L$ is a rank 2 lattice... (if f, g are small it's nothing less than NTRU).

Algebraic lattice

An algebraic lattice Λ is a projective \mathcal{O}_L -module of finite rank, endowed with a Humbert form on the space $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Examples II

- More complicated, adding projectivity in the mix:
 - $\mathfrak{a} \subset (\mathcal{O}_L, \mathsf{Id}_1)$ is a sublattice of rank 1 (not free unless \mathfrak{a} is principal)
- As \mathcal{O}_L is a Dedekind domain:

$$\mathcal{O}_L \cong v_1 \mathfrak{a}_1 \oplus v_2 \mathfrak{a}_2 \oplus \cdots \oplus v_n \mathfrak{a}_n$$

is the general form of a projective module of rank n.

Algebraic lattice

An algebraic lattice Λ is a projective \mathcal{O}_L -module of finite rank, endowed with a Humbert form on the space $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Generic form of an algebraic lattice

$$(v_1\mathfrak{a}_1 \oplus v_2\mathfrak{a}_2 \oplus \cdots \oplus v_n\mathfrak{a}_n \ , \ (H_{\sigma})_{\sigma:L \to \mathbb{C}})$$

Algebraic lattice

An algebraic lattice Λ is a projective \mathcal{O}_L -module of finite rank, endowed with a Humbert form on the space $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$.

Generic form of an algebraic lattice

$$\left(\underbrace{v_1\mathfrak{a}_1 \oplus v_2\mathfrak{a}_2 \oplus \cdots \oplus v_n\mathfrak{a}_n}_{\text{algebraic datum}} , \underbrace{\left(H_\sigma\right)_{\sigma:L \to \mathbb{C}}}_{\text{metric datum}}\right)$$

The Gaussian integers

• \mathcal{O} , ring of integer of

$$L = \mathbb{Q}(i) = \mathbb{Z}[T]_{T^2 + 1}$$

- $\mathcal{O} = \mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}^2\}$
- We take the identity form Id, so that the L-inner product is simply the multiplication: (x, y) → x̄y.

(in dim 2, already in \mathbb{Q} : unclear why we need to norm or trace)

The Gaussian integers

O, ring of integer of

$$L = \mathbb{Q}(i) = \mathbb{Z}[T]_{T^2 + 1}$$

- $\mathcal{O} = \mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}^2\}$
- We take the identity form Id, so that the L-inner product is simply the multiplication: (x, y) → x̄y.

(in dim 2, already in \mathbb{Q} : unclear why we need to norm or trace)

tracing vs. norming

The Gaussian integers

• \mathcal{O} , ring of integer of

$$L = \mathbb{Q}(i) = \mathbb{Z}[T]_{T^2 + 1}$$

- $\mathcal{O} = \mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}^2\}$
- We take the identity form Id, so that the L-inner product is simply the multiplication: (x, y) → x̄y.

(in dim 2, already in \mathbb{Q} : unclear why we need to norm or trace)

tracing vs. norming

•
$$\mathfrak{a} = (1+i)\mathcal{O} = \{a+ib \mid a+b=0[2]\}$$

 ${\mathfrak a}$ is both a dim 1 lattice (over ${\mathcal O})$ and a 2 dimensional lattice (over ${\mathbb Z})$

The Gaussian integers

O, ring of integer of

$$L = \mathbb{Q}(i) = \mathbb{Z}[T]_{T^2 + 1}$$

- $\mathcal{O} = \mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}^2\}$
- We take the identity form Id, so that the L-inner product is simply the multiplication: (x, y) → x̄y.

(in dim 2, already in \mathbb{Q} : unclear why we need to norm or trace)

tracing vs. norming

•
$$\mathfrak{a} = (1+i)\mathcal{O} = \{a+ib \mid a+b=0[2]\}$$

• $L = \mathbb{Q}(\zeta_8)$, ζ_8 a primitive 8th root of unity \to cyclotomic field of degree 4

• $L=\mathbb{Q}(\zeta_8)$, ζ_8 a primitive 8th root of unity \to cyclotomic field of degree 4

• $L = \mathbb{Q}(\zeta_8)$, ζ_8 a primitive 8th root of unity \to cyclotomic field of degree 4

• $L = \mathbb{Q}(\zeta_8)$, ζ_8 a primitive 8th root of unity \to cyclotomic field of degree 4

Plaving with sagemath L.<z> = CyclotomicField(8); L sage: Cyclotomic Field of order 8 and degree 4 0 = L. maximal_order(); 0.basis() sage:

- $L = \mathbb{Q}(\zeta_8)$, ζ_8 a primitive 8th root of unity \to cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$

Plaving with sagemath

- L = Q(ζ₈), ζ₈ a primitive 8th root of unity → cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$

Plaving with sagemath

- $L = \mathbb{Q}(\zeta_8)$, ζ_8 a primitive 8th root of unity \rightarrow cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$

Plaving with sagemath

sage: x = 1+z; XbarX =x.conjugate()*x; XbarX
-z**3 + z + 2

- L = Q(ζ₈), ζ₈ a primitive 8th root of unity → cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$

Plaving with sagemath

```
sage: L.<z> = CyclotomicField(8); L
Cyclotomic Field of order 8 and degree 4
```

sage: XbarX.trace()/4, XbarX.norm()

- L = Q(ζ₈), ζ₈ a primitive 8th root of unity → cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$
- We can look at the quotient $\mathcal{O}_{\times\mathcal{O}}$: on the board

Plaving with sagemath

- L = Q(ζ₈), ζ₈ a primitive 8th root of unity → cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$
- We can look at the quotient $\mathcal{O}_{X\mathcal{O}}$: on the board

Playing with sagemath

```
L.<z> = CyclotomicField(8); L
sage:
       Cyclotomic Field of order 8 and degree 4
       0 = L. maximal_order(); 0.basis()
sage:
       [1, z, z**2, z**3]
       x = 1+z; XbarX =x.conjugate()*x; XbarX
sage:
       -z**3 + z + 2
sage:
       XbarX.trace()/4, XbarX.norm()
       (2.4)
       G=matrix([[((z**i*x).conj()*z**j*x).trace()/4
sage:
              for i in range(4)] for j in range(4)])
```

- L = Q(ζ₈), ζ₈ a primitive 8th root of unity → cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$
- We can look at the quotient ${}^{\mathcal{O}}/_{\mathcal{XO}}$: on the board

```
Playing with sagemath
```

```
sage:
         L.<z> = CyclotomicField(8); L
         Cyclotomic Field of order 8 and degree 4
         0 = L. maximal_order(); 0.basis()
sage:
         [1, z, z**2, z**3]
         x = 1+z; XbarX =x.conjugate()*x; XbarX
sage:
         -z**3 + z + 2
sage:
         XbarX.trace()/4, XbarX.norm()
         (2.4)
         G=matrix([[((z**i*x).conj()*z**j*x).trace()/4
sage:
                  for i in range(4)] for j in range(4)])
        \left(\begin{array}{ccccc} 2 & 1 & 0 & -1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & 1 & 2 \end{array}\right)
```

- L = Q(ζ₈), ζ₈ a primitive 8th root of unity → cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$
- We can look at the quotient $\mathcal{O}_{\times\mathcal{O}}$: on the board

```
Plaving with sagemath
sage:
         L.<z> = CyclotomicField(8); L
         Cyclotomic Field of order 8 and degree 4
         0 = L. maximal_order(); 0.basis()
sage:
         [1, z, z**2, z**3]
         x = 1+z; XbarX =x.conjugate()*x; XbarX
sage:
         -z**3 + z + 2
sage:
         XbarX.trace()/4, XbarX.norm()
         (2.4)
       G=matrix([[((z**i*x).conj()*z**j*x).trace()/4
sage:
                  for i in range(4)] for j in range(4)])
         \left(\begin{array}{ccccc} 2 & 1 & 0 & -1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & 1 & 2 \end{array}\right)
sage: G[0], det(G)
```

- L = Q(ζ₈), ζ₈ a primitive 8th root of unity → cyclotomic field of degree 4
- $\mathcal{O}_L = \mathbb{Z}[\zeta_8]$
- Take the element $x=1+\zeta$. Since $\bar{\zeta}=-\zeta^3$, then $\bar{x}x=-\zeta^3+\zeta+2$
- We can look at the quotient $\mathcal{O}_{\times\mathcal{O}}$: on the board

```
Plaving with sagemath
sage:
         L.<z> = CyclotomicField(8); L
         Cyclotomic Field of order 8 and degree 4
         0 = L. maximal_order(); 0.basis()
sage:
         [1, z, z**2, z**3]
         x = 1+z; XbarX =x.conjugate()*x; XbarX
sage:
         -z**3 + z + 2
sage:
         XbarX.trace()/4, XbarX.norm()
         (2.4)
       G=matrix([[((z**i*x).conj()*z**j*x).trace()/4
sage:
                  for i in range(4)] for j in range(4)])
         \left(\begin{array}{ccccc} 2 & 1 & 0 & -1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & 1 & 2 \end{array}\right)
sage: G[0], det(G)
         (2.4)
```

On the recursive structure of algebraic lattices: baby Galois descent

- The structure of an algebraic module is not unique. It depends on the base ring.
- For a tower $\mathbb{Q} \subset K \subset L$, an \mathcal{O}_L lattice can be descended to:
 - an \mathcal{O}_K lattice (of rank $\times [L:K]$)
 - a \mathbb{Z} lattice (of rank $\times [L : \mathbb{Q}]$).
- The form is descended *canonically*

On the recursive structure of algebraic lattices: baby Galois descent

How to do reduction at the top level, for the norm?

- The structure of an algebraic module is not unique. It depends on the base ring.
- For a tower $\mathbb{Q} \subset K \subset L$, an \mathcal{O}_L lattice can be descended to:
 - an \mathcal{O}_K lattice (of rank $\times [L:K]$)
 - a \mathbb{Z} lattice (of rank $\times [L : \mathbb{Q}]$).
- The form is descended *canonically*
- Over \mathbb{Z} , recovers the *trace norm* (here we know how to do the reduction !)

A very philosophical question

What is the *right* notion of λ_1 ?

A very philosophical question

What is the *right* notion of λ_1 ?

- Is it the shortest vector? (vector taken for trace norm) (in this case use \mathbb{Z} -lattice reduction for tr)
- Is it the densest (free? projective?) sublattice of rank 1? (vector/vector+ideal taken by the volume) ... but How?

A very philosophical question

What is the *right* notion of λ_1 ?

"I can't cut the grass until I find the lawnmower and I can't find the lawnmower until I cut the grass"

 \rightarrow Idea: Try to keep the core design principles of what we saw.

(Pseudo)-basis
$$(v_1 \mathfrak{a}_1, \dots, v_d \mathfrak{a}_d)$$
 gives
$$\Lambda_i = v_1 \mathcal{O}_L \oplus \dots \oplus v_i \mathcal{O}_L$$
$$\{0\} \subset \Lambda_1 \subset \dots \subset \Lambda_i \subset \dots \subset \Lambda_d = \Lambda$$

- ightarrow Idea: Try to keep the core design principles of what we saw.
 - Work on O_L-filtrations of the lattice

- \rightarrow **Idea**: Try to keep the core design principles of what we saw.
 - Work on \mathcal{O}_L -filtrations of the lattice
 - Reduce to a rank 2 oracle on projected quotients

- \rightarrow **Idea**: Try to keep the core design principles of what we saw.
 - Work on O_L-filtrations of the lattice
 - Reduce to a rank 2 oracle on projected quotients

- \rightarrow **Idea**: Try to keep the core design principles of what we saw.
 - Work on O_L-filtrations of the lattice
 - Reduce to a rank 2 oracle on projected quotients

 \rightarrow **Idea**: Try to keep the core design principles of what we saw.

- Work on \mathcal{O}_L -filtrations of the lattice
- Reduce to a rank 2 oracle on projected quotients

A round of local reductions acts as a *discretized* Laplacian operator on the profile space':

$$\begin{array}{c|c} \operatorname{deg}(\Lambda_1) & \operatorname{deg}(\Lambda_{d-2}) & \operatorname{deg}(\Lambda_d) \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline 0 & \operatorname{deg}(\Lambda_2) & \operatorname{deg}(\Lambda_{d-1}) \end{array}$$

• (discrete) diffusion property of the solution of the heat equation

$$\frac{\partial u}{\partial t} = \alpha \Delta u$$

• Characteristic time is quadratic in the diameter of the space $\rightarrow O(d^2)$ steps

ightarrow Idea: Try to keep the core design principles of what we saw.

- Work on \mathcal{O}_L -filtrations of the lattice
- Reduce to a rank 2 oracle on projected quotients

• Over \mathbb{Z} : requires integral rounding

 \rightarrow **Idea**: Try to keep the core design principles of what we saw.

- Work on \mathcal{O}_L -filtrations of the lattice
- Reduce to a rank 2 oracle on projected quotients
- Size-reduction?

Over Z: requires integral rounding

• Translated over \mathcal{O}_L : find the closest element in the ring: instance of CVP

 Approx-CVP suffices (just do the coefficient-wise rounding!)

- \rightarrow **Idea**: Try to keep the core design principles of what we saw.
 - Work on \mathcal{O}_L -filtrations of the lattice
 - Reduce to a rank 2 oracle on projected quotients
 - Size-reduction?

In
$$L = \mathbb{Q}[\zeta_{16}]$$
:

$$\begin{split} & \times = \frac{65210}{3}\,\zeta^{7} + \frac{78658}{3}\,\zeta^{6} - 41412\zeta^{5} + \frac{16567}{3}\,\zeta^{4} + \\ & 36970\zeta^{3} - \frac{100235}{3}\,\zeta^{2} - \frac{145843}{12}\,\zeta + \frac{86961}{2}\,. \end{split}$$

- We have: $N_{L/\mathbb{Q}}(x)^{\frac{1}{8}} \approx 6.6758$
- Embeddings:

$$|\sigma_1(x)| = |\sigma_{15}(x)| \approx 2771.189$$

 $|\sigma_3(x)| = |\sigma_{13}(x)| \approx 1.558406 \times 10^{-08}$
 $|\sigma_5(x)| = |\sigma_{11}(x)| \approx 172334.9$
 $|\sigma_7(x)| = |\sigma_9(x)| \approx 266.8642.$

ightarrow Idea: Try to keep the core design principles of what we saw.

- Work on O_L-filtrations of the lattice
- Reduce to a rank 2 oracle on projected quotients
- Size-reduction?

In
$$L = \mathbb{Q}[\zeta_{16}]$$
:

$$\begin{split} & \times = \frac{65210}{3}\,\zeta^{7} + \frac{78658}{3}\,\zeta^{6} - 41412\zeta^{5} + \frac{16567}{3}\,\zeta^{4} + \\ & 36970\zeta^{3} - \frac{100235}{3}\,\zeta^{2} - \frac{145843}{12}\,\zeta + \frac{86961}{2}\,. \end{split}$$

- We have: $N_{L/\mathbb{Q}}(x)^{\frac{1}{8}} \approx 6.6758$
- Embeddings:

$$|\sigma_1(x)| = |\sigma_{15}(x)| \approx 2771.189$$

 $|\sigma_3(x)| = |\sigma_{13}(x)| \approx 1.558406 \times 10^{-08}$
 $|\sigma_5(x)| = |\sigma_{11}(x)| \approx 172334.9$
 $|\sigma_7(x)| = |\sigma_9(x)| \approx 266.8642.$

ightarrow Idea: Try to keep the core design principles of what we saw.

- Work on \mathcal{O}_L -filtrations of the lattice
- Reduce to a rank 2 oracle on projected quotients
- Size-reduction?

Unit rounding for cyclotomics

There is a quasi-linear randomized algorithm that given $x \in (\mathbb{R} \otimes K)^{\times}$ finds unit $u \in \mathcal{O}_K^{\times}$ such that for any field embedding $\sigma: K \to \mathbb{C}$:

$$\sigma(xu^{-1}) = 2^{O(\sqrt{f\log f})} N_{K/\mathbb{Q}}(x)^{\frac{1}{\varphi(f)}}$$

In
$$L = \mathbb{Q}[\zeta_{16}]$$
:

- We have: $N_{L/\mathbb{Q}}(x)^{\frac{1}{8}} \approx 6.6758$
- When using **Unit**:

$$\begin{vmatrix} \sigma_1\left(\frac{x}{u}\right) \middle| = \middle| \sigma_{15}\left(\frac{x}{u}\right) \middle| \approx 7.83729 \\ \middle| \sigma_3\left(\frac{x}{u}\right) \middle| = \middle| \sigma_{13}\left(\frac{x}{u}\right) \middle| \approx 7.33868 \\ \middle| \sigma_5\left(\frac{x}{u}\right) \middle| = \middle| \sigma_{11}\left(\frac{x}{u}\right) \middle| \approx 5.93346 \\ \middle| \sigma_7\left(\frac{x}{u}\right) \middle| = \middle| \sigma_9\left(\frac{x}{u}\right) \middle| \approx 5.82028. \end{aligned}$$

ightarrow Idea: Try to keep the core design principles of what we saw.

- Work on O_L-filtrations of the lattice
- Reduce to a rank 2 oracle on projected quotients
- Size-reduction?

Unit rounding for cyclotomics

There is a quasi-linear randomized algorithm that given $x \in (\mathbb{R} \otimes K)^{\times}$ finds unit $u \in \mathcal{O}_K^{\times}$ such that for any field embedding $\sigma : K \to \mathbb{C}$:

$$\sigma(xu^{-1}) = 2^{O(\sqrt{f\log f})} N_{K/\mathbb{Q}}(x)^{\frac{1}{\varphi(f)}}$$

Size-Reduce

```
\begin{array}{c|cccc} 1 & U \leftarrow \operatorname{Id}_{d,d} \\ 2 & \text{for } i = 1 \text{ to } d \text{ do} \\ 3 & D \leftarrow D_i(\operatorname{Unit}(R_{i,i})); \\ 4 & (U,R) \leftarrow (U,R) \cdot D^{-1}; \\ 5 & \text{for } j = i-1 \text{ down to } 1 \text{ do} \\ 6 & \sum_{\ell=0}^{n-1} r_\ell X^\ell \leftarrow R_{i,j}/R_{j,j} \\ & \mu \leftarrow \sum_{\ell=0}^{n-1} \lfloor r_\ell \rceil X^\ell \\ & (U,R)*=T_{i,j}(-\mu) \\ 7 & \text{end for} \end{array}
```

8 end for 9 return //

- ightarrow Idea: Try to keep the core design principles of what we saw.
 - Work on O_L-filtrations of the lattice
 - Reduce to a rank 2 oracle on projected quotients
 - Size-reduction?

Unit rounding for cyclotomics

There is a quasi-linear randomized algorithm that given $x \in (\mathbb{R} \otimes K)^{\times}$ finds unit $u \in \mathcal{O}_K^{\times}$ such that for any field embedding $\sigma : K \to \mathbb{C}$:

$$\sigma(xu^{-1}) = 2^{O(\sqrt{f\log f})} N_{K/\mathbb{Q}}(x)^{\frac{1}{\varphi(f)}}$$

As a flowchart

• Recursive call over K_{h-1} allows to deduce short $x \in K_h$ (small combinations of the basis vectors)

- Recursive call over K_{h-1} allows to deduce short $x \in K_h$ (small combinations of the basis vectors)
- To replace by x in the current basis over K_h, complete into a basis
 → complete a (primitive) vector of O²_{K_h} into a unimodular matrix

Find
$$\Box$$
, \triangle s.t. $\left|\begin{pmatrix} a & \Box \\ b & \triangle \end{pmatrix}\right|=1$, i.e $a\triangle-b\Box=1$

Solve a Bezout equation

- Recursive call over K_{h-1} allows to deduce short $x \in K_h$ (small combinations of the basis vectors)
- To replace by x in the current basis over K_h, complete into a basis
 → complete a (primitive) vector of O²_K, into

ightarrow complete a (primitive) vector of $\mathcal{O}_{\mathcal{K}_h}^2$ into a unimodular matrix

Find
$$\square$$
, \triangle s.t. $\left|\begin{pmatrix} a & \square \\ b & \triangle \end{pmatrix}\right| = 1$, i.e $a\triangle - b\square = 1$

Solve a *Bezout* equation

Recursive Euclide solver(a,b)

- Recursive call over K_{h-1} allows to deduce short x ∈ K_h (small combinations of the basis vectors)
- To replace by x in the current basis over K_h, complete into a basis
 → complete a (primitive) vector of O²_v into

ightarrow complete a (primitive) vector of $\mathcal{O}_{K_h}^2$ into a unimodular matrix

Find
$$\square$$
, \triangle s.t. $\left|\begin{pmatrix} a & \square \\ b & \triangle \end{pmatrix}\right| = 1$, i.e

Solve a *Bezout* equation

Recursive Euclide solver(a,b)

1. If $K_h = \mathbb{Q}$: this is extended-GCD!

- Recursive call over K_{h-1} allows to deduce short x ∈ K_h (small combinations of the basis vectors)
- To replace by x in the current basis over K_h, complete into a basis
 - ightarrow complete a (primitive) vector of $\mathcal{O}_{K_h}^2$ into a unimodular matrix

Find
$$\square$$
, \triangle s.t. $\left|\begin{pmatrix} a & \square \\ b & \triangle \end{pmatrix}\right|=1$, i.e $a\triangle-b\square=1$

Solve a Bezout equation

Recursive Euclide solver(a,b)

- 1. If $K_h = \mathbb{Q}$: this is extended-GCD!
- 2. If the tower K_h^{\uparrow} is not trivial: Descend problem to the subfield K_{h-1} with $N_{K_h/K_{h-1}}$ and recurse:

$$\mu N_{K_h/K_{h-1}}(a) - \nu N_{K_h/K_{h-1}}(b) = 1.$$

$$a \cdot \underbrace{\mu \, a^{-1} N_{K_h/K_{h-1}}(a)}_{:=\triangle \in \mathcal{O}_{K_h}} - b \cdot \underbrace{\nu \, b^{-1} N_{K_h/K_{h-1}}(b)}_{:=\square \in \mathcal{O}_{K_h}} = 1$$

- Recursive call over K_{h-1} allows to deduce short x ∈ K_h (small combinations of the basis vectors)
- To replace by x in the current basis over K_h, complete into a basis
 - ightarrow complete a (primitive) vector of $\mathcal{O}_{K_h}^2$ into a unimodular matrix

Find
$$\square$$
, \triangle s.t. $\left|\begin{pmatrix} a & \square \\ b & \triangle \end{pmatrix}\right| = 1$, i.e $a\triangle - b\square = 1$

Solve a Bezout equation

Recursive Euclide solver(a,b)

- 1. If $K_h = \mathbb{Q}$: this is extended-GCD!
- 2. If the tower K_h^{\uparrow} is not trivial: Descend problem to the subfield K_{h-1} with $N_{K_h/K_{h-1}}$ and recurse:

$$\mu N_{\mathcal{K}_h/\mathcal{K}_{h-1}}(a) - \nu N_{\mathcal{K}_h/\mathcal{K}_{h-1}}(b) = 1.$$

$$a \cdot \underbrace{\mu \, a^{-1} N_{\mathcal{K}_h/\mathcal{K}_{h-1}}(a)}_{:=\triangle \in \mathcal{O}_{\mathcal{K}_h}} - b \cdot \underbrace{\nu \, b^{-1} N_{\mathcal{K}_h/\mathcal{K}_{h-1}}(b)}_{:=\square \in \mathcal{O}_{\mathcal{K}_h}} = 1$$

 Reduction of the size of solutions: To avoid blow-up in the size of the coefficients lifted, need to control size of the solution at each step...

- Recursive call over K_{h-1} allows to deduce short x ∈ K_h (small combinations of the basis vectors)
- To replace by x in the current basis over K_h, complete into a basis
 - ightarrow complete a (primitive) vector of $\mathcal{O}_{K_h}^2$ into a unimodular matrix

Find
$$\square$$
, \triangle s.t. $\left|\begin{pmatrix} a & \square \\ b & \triangle \end{pmatrix}\right| = 1$, i.e $a\triangle - b\square = 1$

Solve a Bezout equation

Recursive Euclide solver(a,b)

- 1. If $K_h = \mathbb{Q}$: this is extended-GCD!
- 2. If the tower K_h^{\uparrow} is not trivial: Descend problem to the subfield K_{h-1} with $N_{K_h/K_{h-1}}$ and recurse:

$$\mu N_{K_h/K_{h-1}}(a) - \nu N_{K_h/K_{h-1}}(b) = 1.$$

$$a \cdot \mu a^{-1} N_{K_h/K_{h-1}}(a) - b \cdot \underbrace{\nu b^{-1} N_{K_h/K_{h-1}}(b)}_{:=\square \in \mathcal{O}_{K_h}} = 1$$

 Reduction of the size of solutions: To avoid blow-up in the size of the coefficients lifted, need to control size of the solution at each step...

Use Size-reduce!

Generalized Euclidean algorithm

G-Euclide, Lift

```
1 Function G-Euclide:
        if K_h = \mathbb{Q} then return \mathsf{ExGcd}(a,b);
 3 \mu, \nu \leftarrow \text{G-Euclide}\left(K_{h-1}^{\uparrow}, N_{K_h/K_{h-1}}(a), N_{K_h/K_{h-1}}(b)\right);

4 \mu', \nu' \leftarrow \mu \, a^{-1} N_{K_h/K_{h-1}}(a), \nu \, b^{-1} N_{K_h/K_{h-1}}(b);
V \leftarrow \text{Size-Reduce}(\text{Orthogonalize}(W)); \text{ return } W \cdot V[2]
  7 Function Lift:
        a, b \leftarrow \mathsf{Ascend}(K_h, U[1]); \ \mu, \nu \leftarrow \mathsf{G-Euclide}(K_{h-1}^{\uparrow}, a, b);
 return U
```

Complexity [E-Kirchner-Fouque 2019]

Let f be a log-smooth integer. The complexity of the algorithm **Reduce** on rank two modules over $K=\mathbb{Q}[x]/\Phi_f(x)$, represented as a matrix M whose number of bits in the input coefficients is uniformly bounded by B>n, is heuristically a $\tilde{O}(n^2B)$ with $n=\varphi(f)$. The first column of the reduced matrix has its coefficients uniformly bounded by $2^{\tilde{O}(n)} \operatorname{covol}(M)^{\frac{1}{2n}}$.

Complexity [E-Kirchner-Fouque 2019]

Let f be a log-smooth integer. The complexity of the algorithm **Reduce** on rank two modules over $K = \mathbb{Q}[x]/\Phi_f(x)$, represented as a matrix M whose number of bits in the input coefficients is uniformly bounded by B > n, is heuristically a $\tilde{O}(n^2B)$ with $n = \varphi(f)$. The first column of the reduced matrix has its coefficients uniformly bounded by $2^{\tilde{O}(n)} \operatorname{covol}(M)^{\frac{1}{2n}}$.

Sketch of proof.

• Estimate a relation between approximation factor and number of rounds: $\rho = O(d^2 \log p)$.

Complexity [E-Kirchner-Fouque 2019]

Let f be a log-smooth integer. The complexity of the algorithm **Reduce** on rank two modules over $K = \mathbb{Q}[x]/\Phi_f(x)$, represented as a matrix M whose number of bits in the input coefficients is uniformly bounded by B > n, is *heuristically* a $\tilde{O}(n^2B)$ with $n = \varphi(f)$. The first column of the reduced matrix has its coefficients uniformly bounded by $2^{\tilde{O}(n)} \operatorname{covol}(M)^{\frac{1}{2n}}$.

Sketch of proof.

- Estimate a relation between approximation factor and number of rounds: $\rho = O(d^2 \log p)$.
- Limiting factor for the precision: represent the shortest Archimedean embedding of the norm of the Gram-Schmidt orthogonalization of the initial basis.

Complexity [E-Kirchner-Fouque 2019]

Let f be a log-smooth integer. The complexity of the algorithm **Reduce** on rank two modules over $K = \mathbb{Q}[x]/\Phi_f(x)$, represented as a matrix M whose number of bits in the input coefficients is uniformly bounded by B > n, is heuristically a $\tilde{O}(n^2B)$ with $n = \varphi(f)$. The first column of the reduced matrix has its coefficients uniformly bounded by $2^{\tilde{O}(n)} \operatorname{covol}(M)^{\frac{1}{2n}}$.

Sketch of proof.

- Estimate a relation between approximation factor and number of rounds: $\rho = O(d^2 \log p)$.
- Limiting factor for the precision: represent the shortest Archimedean embedding of the norm of the Gram-Schmidt orthogonalization of the initial basis.
- Devise a bound by looking at the sum of all the bitsizes used in the recursive calls (use the potential to show that dividing the degrees by $\frac{d}{2}$ leads to a multiplication by a factor at most in $O(d^2)$)

Complexity [E-Kirchner-Fouque 2019]

Let f be a log-smooth integer. The complexity of the algorithm **Reduce** on rank two modules over $K = \mathbb{Q}[x]/\Phi_f(x)$, represented as a matrix M whose number of bits in the input coefficients is uniformly bounded by B > n, is heuristically a $\tilde{O}(n^2B)$ with $n = \varphi(f)$. The first column of the reduced matrix has its coefficients uniformly bounded by $2^{\tilde{O}(n)} \operatorname{covol}(M)^{\frac{1}{2n}}$.

Sketch of proof.

- Estimate a relation between approximation factor and number of rounds: $\rho = O(d^2 \log p)$.
- Limiting factor for the precision: represent the shortest Archimedean embedding of the norm of the Gram-Schmidt orthogonalization of the initial basis.
- Devise a bound by looking at the sum of all the bitsizes used in the recursive calls (use the potential to show that dividing the degrees by $\frac{d}{2}$ leads to a multiplication by a factor at most in $O(d^2)$)
- Sum at each level to conclude on the complexity.

What if i want an actual SVP?

A reduction a la Lovasz

There exists a reduction to γ -HSVP over \mathcal{O}_L from γ^2 -SVP over \mathcal{O}_L using at most 2 rk calls to the Hermite-SVP oracle.

Wait there is more!

Faster with symplectic symmetries

Euclidean space Symplectic space

Euclidean space

Symplectic space

ullet Symmetric bilinear Form $\langle \cdot, \cdot \rangle$

 \bullet Antisymmetric bilinear Form ω

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- ullet Transformation group: $O_n(\mathbb{R})$

Symplectic space

- ullet Antisymmetric bilinear Form ω
- ullet Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Symplectic space

- ullet Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Symplectic space

- Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- ullet Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

Euclidean space

- Symmetric bilinear Form $\langle \cdot, \cdot \rangle$
- Transformation group: $O_n(\mathbb{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- ullet Antisymmetric bilinear Form ω
- Transformation group: $\mathrm{Sp}_{\omega}(\mathbb{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

 $sorry, \ symplectic \ spaces \ are \ of \ even \ dimension, \ so \ the \ first \ non-trivial \ case \ is \ of \ dim \ 4... \ no \ cute \ drawing \ today!$

Standard symplectic form $\omega(u, u) = \det((u, u))$

- Darboux "elements" (u, v) goes by pair of Gram matrix $j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Note $j^2 = -\operatorname{Id}$.
- (u, v) acts as the complex u + iv
- The Darboux matrix statisfies J² = − Id_{2n}
 → a symplectic space has a complex structure

sorry, symplectic spaces are of even dimension, so the first non-trivial case is of dim 4... no cute drawing today!

Standard symplectic form $\omega(u, u) = \det((u, u))$

- Darboux "elements" (u, v) goes by pair of Gram matrix $j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Note $j^2 = -\operatorname{Id}$.
- (u, v) acts as the complex u + iv
- The Darboux matrix statisfies J² = − Id_{2n}
 → a symplectic space has a complex structure

 $sorry, \ symplectic \ spaces \ are \ of \ even \ dimension, \ so \ the \ first \ non-trivial \ case \ is \ of \ dim \ 4... \ no \ cute \ drawing \ today!$

Standard symplectic form $\omega(u, u) = \det((u, u))$

- Darboux "elements" (u, v) goes by pair of Gram matrix $j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Note $j^2 = -\operatorname{Id}$.
- (u, v) acts as the complex u + iv
- The Darboux matrix statisfies J² = − Id_{2n}
 → a symplectic space has a complex structure

To construct your Darboux basis at home:

1. Take a basis (x_1, \ldots, x_n) , wlog $\omega(\mathbf{x}_1, \mathbf{x}_2) \neq 0$

sorry, symplectic spaces are of even dimension, so the first non-trivial case is of dim 4... no cute drawing today!

Standard symplectic form $\omega(u, u) = \det((u, u))$

- Darboux "elements" (u, v) goes by pair of Gram matrix $j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Note $j^2 = -\operatorname{Id}$.
- (u, v) acts as the complex u + iv
- The Darboux matrix statisfies J² = − Id_{2n}
 → a symplectic space has a complex structure

- 1. Take a basis (x_1, \ldots, x_n) , wlog $\omega(x_1, x_2) \neq 0$
- 2. Scale to get $\omega(\mathbf{x}_1, \mathbf{x}_2) = +1$

sorry, symplectic spaces are of even dimension, so the first non-trivial case is of dim 4... no cute drawing today!

Standard symplectic form $\omega(u, u) = \det((u, u))$

- Darboux "elements" (u, v) goes by pair of Gram matrix $j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Note $j^2 = -\operatorname{Id}$.
- (u, v) acts as the complex u + iv
- The Darboux matrix statisfies J² = − Id_{2n}
 → a symplectic space has a complex structure

- 1. Take a basis (x_1, \ldots, x_n) , wlog $\omega(x_1, x_2) \neq 0$
- 2. Scale to get $\omega(x_1, x_2) = +1$
- 3. $x_i \leftarrow x_i \omega(x_i, x_1)x_2 \omega(x_i, x_2)x_1$

sorry, symplectic spaces are of even dimension, so the first non-trivial case is of dim 4... no cute drawing today!

Standard symplectic form $\omega(u, \mathbf{u}) = \det((u, \mathbf{u}))$

- Darboux "elements" (u, v) goes by pair of Gram matrix $j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Note $j^2 = -\operatorname{Id}$.
- (u, v) acts as the complex u + iv
- The Darboux matrix statisfies J² = − Id_{2n}
 → a symplectic space has a complex structure

- 1. Take a basis (x_1, \ldots, x_n) , wlog $\omega(x_1, x_2) \neq 0$
- 2. Scale to get $\omega(x_1, x_2) = +1$
- 3. $x_i \leftarrow x_i \omega(x_i, x_1)x_2 \omega(x_i, x_2)x_1$
- 4. Take a x_i such that $\omega_i(x_3, x_4) \neq 0$, scale, etc.

Elementary transformations compatible with J-symplectism

Symplectic structure is compatible with the *QR*-decomposition (for corresponding inner product).

Elementary transformations compatible with J'-symplectism

Symplectic structure is compatible with the *QR*-decomposition (for corresponding inner product).

Shape of block triangular symplectic matrices

$$\begin{pmatrix}
A & AU \\
0 & A^{-s}
\end{pmatrix}$$

where $U=U^s$ (\cdot^s is the symmetry w.r.t. the antidiagonal)

Elementary transformations compatible with J'-symplectism

Symplectic structure is compatible with the *QR*-decomposition (for corresponding inner product).

Shape of block triangular symplectic matrices

$$\begin{pmatrix}
A & AU \\
0 & A^{-s}
\end{pmatrix}$$

where $U=U^s$ (\cdot^s is the symmetry w.r.t. the antidiagonal)

Elementary *J*-symplectic matrices

• For any $A \in \mathrm{GL}_d(L)$,

$$\begin{pmatrix} A & 0 \\ 0 & A^{-s} \end{pmatrix}$$

• For any $A \in \operatorname{GL}_2(L)$ with $\det A = 1$

$$\begin{pmatrix} \operatorname{Id}_{\ell} & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & \operatorname{Id}_{r} \end{pmatrix}$$

Elementary transformations compatible with J-symplectism

Symplectic structure is compatible with the *QR*-decomposition (for corresponding inner product).

Shape of block triangular symplectic matrices

$$\begin{pmatrix}
A & AU \\
0 & A^{-s}
\end{pmatrix}$$

where $U = U^s$ (\cdot^s is the symmetry w.r.t. the antidiagonal)

Elementary *J*-symplectic matrices

• For any $A \in \mathrm{GL}_d(L)$,

$$\begin{pmatrix} A & 0 \\ 0 & A^{-s} \end{pmatrix}$$

• For any $A \in \operatorname{GL}_2(L)$ with $\det A = 1$

$$\begin{pmatrix} \operatorname{Id}_{\ell} & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & \operatorname{Id}_{r} \end{pmatrix}$$

Local reductions occurring during the reduction, swaps and transvections can preserve the *J*-symplectism.

Symplectic size-reduction

Symplectic-Size-Reduce

1 Set
$$A, U$$
 such that $\begin{pmatrix} A & AU \\ 0 & A^{-s} \end{pmatrix} = R;$
2 $V \leftarrow$ Size-Reduce (A) ;
3 return $\begin{pmatrix} V & -V \mid U \mid \\ 0 & V^{-s} \end{pmatrix}$

- R is upper-triangular, only depends on the first half of Q,
- We compute only the part above the antidiagonal of AU. Enough to compute the part above the antidiagonal of $A^{-1}(AU)$, which is persymmetric.

Speeding up lattice reduction with symplectic symmetries

 $\mbox{Symplectic bases} \Rightarrow \mbox{Gram-Schmidt (Gram-Darboux) vectors are paired}.$

Size-reduction is cut in half! (size-red half, apply blindly)

Speeding up lattice reduction with symplectic symmetries

 $Symplectic \ bases \Rightarrow Gram\text{-}Schmidt \ (Gram\text{-}Darboux) \ vectors \ are \ paired.$

Size-reduction is cut in half! (size-red half, apply blindly)

LLL can be made 2 times faster!

(thank you for attention, bye!)

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

M is J_h -symplectic iff det M = 1.

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

ightarrow Descend the form J_h in J_h' to K_{h-1} by composition with a non-trivial linear form

$$\tau: K_h \to K_{h-1}$$

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

 \rightarrow Descend the form J_h in J_h' to K_{h-1} by composition with a non-trivial linear form

$$\tau: K_h \to K_{h-1}$$

Idea: Adapt the work of Sawyer [Computing the Iwasawa decomposition of the classical Lie groups of non compact type using the QR decomposition]

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

 \rightarrow Descend the form J_h in J'_h to K_{h-1} by composition with a non-trivial linear form $\tau: K_h \rightarrow K_{h-1}$

Idea: Adapt the work of Sawyer [Computing the Iwasawa decomposition of the classical Lie groups of non compact type using the QR decomposition]

Suppose:
$$K_h \cong K_{h-1}[T]/T^{d_h} + a$$

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

ightarrow Descend the form J_h in J_h' to K_{h-1} by composition with a non-trivial linear form $\tau: K_h
ightarrow K_{h-1}$

Idea: Adapt the work of Sawyer [Computing the lwasawa decomposition of the classical Lie groups of non compact type using the QR decomposition]

Suppose:
$$K_h \cong K_{h-1}[T]_{T^{d_h} + a}$$

Define:

$$\tau: \left| \begin{array}{ccc} K_h & \longrightarrow & K_{h-1} \\ y & \longmapsto & \operatorname{tr}_{K_h/K_{h-1}}(\frac{T_y}{d_h a}) \end{array} \right|,$$

 J'_h is now:

$$J_h' = \begin{pmatrix} 0 & R_{d_h} \\ -R_{d_h} & 0 \end{pmatrix}$$

in the power basis.

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

ightarrow Descend the form J_h in J_h' to K_{h-1} by composition with a non-trivial linear form $\tau: K_h
ightarrow K_{h-1}$

Idea: Adapt the work of Sawyer [Computing the lwasawa decomposition of the classical Lie groups of non compact type using the QR decomposition]

Suppose:
$$K_h \cong K_{h-1}[T]_{T^{d_h} + a}$$

Define:

$$\tau: \left| \begin{array}{ccc} K_h & \longrightarrow & K_{h-1} \\ y & \longmapsto & \operatorname{tr}_{K_h/K_{h-1}}(\frac{T_y}{d_h a}) \end{array} \right|,$$

 J'_h is now:

$$J_h' = \begin{pmatrix} 0 & R_{d_h} \\ -R_{d_h} & 0 \end{pmatrix}$$

in the power basis.

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

 \rightarrow Descend the form J_h in J'_h to K_{h-1} by composition with a non-trivial linear form

$$\tau: K_h \to K_{h-1}$$

ightarrow Extend the definition of symplectism to $\mathcal{K}^{2d_h}_{h-1}$

Symplectic group after descent

A $2d_h \times 2d_h$ matrix M' is symplectic if it preserves the J'_h form, that is if $J'_h \circ M' = J'_h$.

Idea: Adapt the work of Sawyer [Computing the Iwasawa decomposition of the classical Lie groups of non compact type using the QR decomposition]

Suppose:
$$K_h \cong K_{h-1}[T]_{T^{d_h} + a}$$

Define:

$$\tau: \left| \begin{array}{ccc} K_h & \longrightarrow & K_{h-1} \\ y & \longmapsto & \operatorname{tr}_{K_h/K_{h-1}}(\frac{T_y}{d_h a}) \end{array} \right|,$$

 J'_h is now:

$$J_h' = \begin{pmatrix} 0 & R_{d_h} \\ -R_{d_h} & 0 \end{pmatrix}$$

in the power basis.

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

ightarrow Descend the form J_h in J_h' to K_{h-1} by composition with a non-trivial linear form

$$\tau: K_h \to K_{h-1}$$

 \rightarrow Extend the definition of symplectism to $K_{h-1}^{2d_h}$

Symplectic group after descent

A $2d_h \times 2d_h$ matrix M' is symplectic if it preserves the J'_h form, that is if $J'_h \circ M' = J'_h$.

Compatibility

Let M be a 2×2 matrix over K_h which is J_h -symplectic, then its descent $M'\in K_{h-1}^{2d_h\times 2d_h}$ is J'_h -symplectic.

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}\right) = x_0 y_1 - x_1 y_0$$

ightarrow Descend the form J_h in J_h' to K_{h-1} by composition with a non-trivial linear form

$$\tau: K_h \to K_{h-1}$$

 \rightarrow Extend the definition of symplectism to $K_{h-1}^{2d_h}$

Symplectic group after descent

A $2d_h \times 2d_h$ matrix M' is symplectic if it preserves the J'_h form, that is if $J'_h \circ M' = J'_h$.

Compatibility

Let M be a 2×2 matrix over K_h which is J_h -symplectic, then its descent $M' \in K_{h-1}^{2d_h \times 2d_h}$ is J'_h -symplectic.

Compatibility with decompositions

Fix a basis of the symplectic space where the matrix corresponding to J_h' is $\begin{pmatrix} 0 & R_{d_h} \\ -R_{d_h} & 0 \end{pmatrix}$.

Then, for any M a J_h' -symplectic matrix and QR its QR decomposition, both Q and R are J_h' -symplectic.

Improved complexity

Improved complexity [E-Kirchner-Fouque 2019]

Select an integer f a power of $q = O(\log f)$ and let $n = \varphi(f)$. The complexity for reducing matrices M of dimension two over $L = \mathbb{Q}[x]/\Phi_f(x)$ with B the number of bits in the input coefficients is heuristically

$$\tilde{O}\left(n^{2+\varepsilon(q)}B\right) + n^{O(\log\log n)}, \qquad \varepsilon(q) = \frac{\log(1/2+1/2q)}{\log q} < 0$$

and the first column of the reduced matrix has coefficients bounded by

$$2^{\tilde{O}(n)} |N_{K_h/\mathbb{Q}}(\det M)|^{\frac{1}{2n}}.$$

Exploitation of the symplectic symmetries:

- 1. Decrease the complexity, but...
- 2. **Increase** the approximation factor

 Getting further using higher-order symplectic structures Exploitation of the symplectic symmetries:

- 1. Decrease the complexity, but...
- 2. **Increase** the approximation factor Seek for transformations preserving arbitrary non-degenerate alternate forms (for example the *volume form*)

 Getting further using higher-order symplectic structures Exploitation of the symplectic symmetries:

- 1. **Decrease** the complexity, but...
- 2. Increase the approximation factor

Seek for transformations preserving arbitrary non-degenerate alternate forms (for example the *volume form*)

Problems:

- Non uniqueness of higher-order symplectic structures (no Darboux' structure theorem)
- Find a descent compatible with this additional structure

 Getting further using higher-order symplectic structures Exploitation of the symplectic symmetries:

- 1. **Decrease** the complexity, but...
- 2. Increase the approximation factor

Seek for transformations preserving arbitrary non-degenerate alternate forms (for example the *volume form*)

Problems:

- Non uniqueness of higher-order symplectic structures (no Darboux' structure theorem)
- Find a descent compatible with this additional structure

- Getting further using higher-order symplectic structures
- Get rid of the heuristics: reduce *projective* modules

Getting further using higher-order symplectic structures

 Get rid of the heuristics: reduce projective modules Over \mathcal{O}_L a projective module is of the shape: $\alpha_1\mathfrak{a}_1\oplus\cdots\oplus\alpha_n\mathfrak{a}_n$

• Need to adapt the lifting to ideals [Cohen]

 Getting further using higher-order symplectic structures

 Get rid of the heuristics: reduce projective modules Over \mathcal{O}_L a projective module is of the shape: $\alpha_1\mathfrak{a}_1\oplus\cdots\oplus\alpha_n\mathfrak{a}_n$

- Need to adapt the lifting to ideals [Cohen]
- Requires computations with ideals: bottleneck is now the ideal multiplication algorithm

 Getting further using higher-order symplectic structures

 Get rid of the heuristics: reduce projective modules Over \mathcal{O}_L a projective module is of the shape: $\alpha_1\mathfrak{a}_1\oplus\cdots\oplus\alpha_n\mathfrak{a}_n$

- Need to adapt the lifting to ideals [Cohen]
- Requires computations with ideals: bottleneck is now the ideal multiplication algorithm
- 2-elements representation: multiplying $\mathfrak{a} = \alpha_1 \mathcal{O}_L + \alpha_2 \mathcal{O}_L$, $\mathfrak{b} = \beta_1 \mathcal{O}_L + \beta_2 \mathcal{O}_L$ consists in the reduction of the ideal generated by $(\alpha_i \beta_j)_{1 \leqslant i,j \leqslant 2}$ (module spanned by 4 elements)

Getting further using higher-order symplectic structures

 Get rid of the heuristics: reduce projective modules Over \mathcal{O}_L a projective module is of the shape: $\alpha_1 \mathfrak{a}_1 \oplus \cdots \oplus \alpha_n \mathfrak{a}_n$

- Need to adapt the lifting to ideals [Cohen]
- Requires computations with ideals: bottleneck is now the ideal multiplication algorithm

Cross recursive algorithms: reduction and ideal multiplication

 Getting further using higher-order symplectic structures

• Get rid of the heuristics: reduce *projective* modules

• Certification using Interval arithmetic

 Getting further using higher-order symplectic structures

- Get rid of the heuristics: reduce *projective* modules
- Certification using Interval arithmetic

 Getting further using higher-order symplectic structures

• Get rid of the heuristics: reduce *projective* modules

• Certification using *Interval arithmetic*

Interval Arithmetic used in such a way allows detecting lack of precision at runtime of a numerical algorithm.

Getting further using higher-order symplectic structures

• Get rid of the heuristics: reduce *projective* modules

• Certification using *Interval arithmetic*

Interval Arithmetic used in such a way allows detecting lack of precision at runtime of a numerical algorithm.

 $\begin{tabular}{ll} \hline &\to {\sf Certified\ reduction} + {\sf use\ quasi-optimal} \\ & {\sf precision\ with\ adaptive\ strategy} \\ \hline \end{tabular}$

Proved, certified and efficient framework
for reducing general algebraic lattices

Thank you!

