Orthogonal Projection Review

©Prakash Ishwar

Department of Electrical and Computer Engineering Boston University

January 19, 2017

Inner Product

- Let $\mathbf{u} = (u_1, \dots, u_n)^{\top}$ and $\mathbf{v} = (v_1, \dots, v_n)^{\top}$ be two vectors in n-dimensional real Euclidean space \mathbb{R}^n
- The **inner product** or dot product of ${\bf u}$ and ${\bf v}$, denoted by $\langle {\bf u}, {\bf v} \rangle$, is defined by:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^{\top} \mathbf{u} = \sum_{i=1}^{n} u_i v_i$$

- Properties:
 - **1** Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$ for all \mathbf{v} .
 - **2** Definiteness: $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Rightarrow \mathbf{v} = \mathbf{0}$.
 - **3** Additivity: $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
 - **4** Homogeneity: $\langle \lambda \mathbf{u}, \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u}, \mathbf{v}, \lambda$.
 - **5** Symmetry: $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ for all \mathbf{u}, \mathbf{v} .
- Note-1: More generally, the complex inner product (not the focus here) is defined by v^Hu, where ^H denotes conjugate-transpose.
 Note-2: Any function mapping a pair of vectors to scalars satisfying the above properties is called a real inner product.

Norm

• The Euclidean **norm**, 2-norm, ℓ_2 -norm, or simply length of a vector $\mathbf{v} \in \mathbb{R}^n$, denoted by $\|\mathbf{v}\|_2$ or simply $\|\mathbf{v}\|$, is defined by:

$$\|\mathbf{v}\| = +\sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = +\sqrt{\sum_{i=1}^{n} |v_i|^2}$$

- Properties:
 - **1** Triangle inequality or subadditivity: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ for all \mathbf{u}, \mathbf{v} .
 - **2** Absolute homogeneity: $\|\lambda \mathbf{v}\| = |\lambda| \cdot \|\mathbf{v}\|$ for all \mathbf{v}, λ .
 - 3 Zero vector: $\|\mathbf{v}\| = 0 \Rightarrow \mathbf{v} = \mathbf{0}$.
- In fact, any function mapping vectors to scalars satisfying the above properties is called a norm, e.g., the ℓ_p -norm:

$$\|\mathbf{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$
 for any $p \ge 1$.

Orthogonality

- Two vectors are **orthogonal** if their inner product is zero. Thus \mathbf{u}, \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ and we write $\mathbf{u} \perp \mathbf{v}$.
- A set of vectors is called orthogonal if any two of them are orthogonal: $\mathbf{u}_1, \dots, \mathbf{u}_n$ is orthogonal if $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ for all $i \neq j$.
- A set of vectors is called **orthonormal** if it is orthogonal and all vectors have unit norm, i.e., $\|\mathbf{u}_i\| = 1$ for all i.
- $\|\mathbf{u} + \mathbf{v}\|^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle$
- \bullet Baudhayana-GouGu-Pythagoras theorem: If $u \perp v$ then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 . (†0)$$
inner (Jot) = \mathbf{v}^{T} outer = \mathbf{v}^{T}

$$[7[7] = Sechr \qquad [7[7] = matrix]$$

Orthogonality

• Let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be orthonormal. If $\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{u}_i$ and $\mathbf{w} = \sum_{i=1}^n \beta_i \mathbf{u}_i$, then

$$\begin{split} \langle \mathbf{v}, \mathbf{w} \rangle &= \sum_i \sum_j \alpha_i \beta_j \langle \mathbf{u}_i, \mathbf{v}_j \rangle \\ &= \sum_{i=1}^n \alpha_i \beta_i \\ \|\mathbf{v}\|^2 &= \sum_{i=1}^n |\alpha_i|^2 \end{split}$$

• Orthonormal vectors are linearly independent: Let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be orthonormal. If $\mathbf{w} = \sum_{i=1}^n \alpha_i \mathbf{u}_i = \mathbf{0}$, then

$$0 = \|\mathbf{w}\|^2 = \sum_{i=1}^n |\alpha_i|^2 \Rightarrow \alpha_i = 0 \text{ for all } i.$$

Orthogonal projection onto a subspace

- A **subspace** S of \mathbb{R}^n is a subset of vectors which is closed under linear combinations.
- The span of a set of set of vectors is the smallest subspace which contains it, or equivalently, the set of all possible linear combinations of vectors in the set.
- The **orthogonal projection** of a vector \mathbf{v} onto a subspace \mathcal{S} is the unique vector $\mathbf{w} = \mathsf{Proj}_{\mathcal{S}}(\mathbf{v})$ in \mathcal{S} that is closest to \mathbf{v} , i.e.,
 - $\mathbf{0} \; \mathsf{Proj}_{\mathcal{S}}(\mathbf{v}) \in \mathcal{S} \; \mathsf{and}$
- Orthogonality principle: A vector \mathbf{w} in subspace \mathcal{S} is the orthogonal projection of the vector \mathbf{v} onto \mathcal{S} if, and only if, the error $\mathbf{v} \mathbf{w}$ is orthogonal to all vectors in \mathcal{S} , i.e.,

$$\mathbf{w} = \mathsf{Proj}_{\mathcal{S}}(\mathbf{v}) \Leftrightarrow \mathbf{w} \in \mathcal{S} \text{ and } \mathbf{v} - \mathbf{w} \perp \mathcal{S},$$

- i.e., $\langle \mathbf{v} \mathbf{w}, \mathbf{u} \rangle = 0$ for all \mathbf{u} in \mathcal{S} .
- $\|\mathbf{v}\|^2 = \|\mathbf{v} \mathsf{Proj}_{\mathcal{S}}(\mathbf{v})\|^2 + \|\mathsf{Proj}_{\mathcal{S}}(\mathbf{v})\|^2$.

Orthogonal projection onto a subspace

- Let $S = \mathsf{Span}(\mathbf{u}_1, \dots, \mathbf{u}_n)$ where $\mathbf{u}_1, \dots, \mathbf{u}_n$ are linearly independent.
- $\operatorname{Proj}_{\mathcal{S}}(\mathbf{v}) \in \mathcal{S} \Rightarrow \operatorname{Proj}_{\mathcal{S}}(\mathbf{v}) = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i$ for some scalars $\alpha_1, \dots, \alpha_n$.
- By the orthogonality principle, $\langle \mathbf{v} \mathsf{Proj}_{\mathcal{S}}(\mathbf{v}), \mathbf{u}_j \rangle = 0$ for all j.
- Thus, $\langle \mathbf{v}, \mathbf{u}_j \rangle = \sum_{i=1}^n \alpha_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle, \ j=1,\dots,n$, a system of n linear equations in the n unknowns α_1,\dots,α_n with a unique solution:

$$\begin{bmatrix} \langle \mathbf{v}, \mathbf{u}_1 \rangle \\ \vdots \\ \langle \mathbf{v}, \mathbf{u}_n \rangle \end{bmatrix} = \underbrace{\begin{bmatrix} \langle \mathbf{u}_1, \mathbf{u}_1 \rangle & \dots & \langle \mathbf{u}_n, \mathbf{u}_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{u}_1, \mathbf{u}_n \rangle & \dots & \langle \mathbf{u}_n, \mathbf{u}_n \rangle \end{bmatrix}}_{n \times n \text{ invertible Gram matrix}} \underbrace{\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}}_{n \text{ unknowns}}$$

$$\begin{cases}
 \langle V_{3}, V_{1} \rangle \\
 \langle V_{3}, V_{1} \rangle \\
 \langle V_{3}, V_{1} \rangle \\
 \langle V_{1}, V_{2} \rangle \\
 \langle V_$$

$$\{V_{2}, V_{1}, V_{2}\} = \{0, 1\} \{0\} = 1$$

$$\{V_{2}, V_{1}, V_{2}\} = \{0, 1\} \{0\} = 1$$

$$\{V_{2}, V_{2}\} = \{0, 1\} \{0\} = 2$$

$$\sqrt{27} = (0) | \sqrt{27} = 2$$

$$2q_1 + | q_2 = 2$$

$$-2(1q_1 + 2q_2 = 2) - \frac{2q_1 + | q_2 - q_1 - q_2 - q_1 - q_2 - q_2$$

-2 (1a, +2a2= 2) -39₂ = -2 29, 12 = 2 a2 3 3

19, 2/3 = 3

Orthogonal projection onto a subspace

Implications:

ullet If $\mathcal{S}=\mathsf{Span}(\mathbf{u}_1,\ldots,\mathbf{u}_n)$ and $\mathbf{u}_1,\ldots,\mathbf{u}_n$ are orthonormal, then

$$\begin{array}{ll} \langle \, \mathbf{v}_{\mathbf{1}} \, , \, \mathbf{v}_{\mathbf{1}} \, + \, \langle \, \mathbf{v}_{\mathbf{3}} \, , \, \mathbf{v}_{\mathbf{k}} \, \rangle \, \mathbf{v}_{\mathbf{k}} & \mathsf{Proj}_{\mathcal{S}}(\mathbf{v}) = \sum_{i=1}^{n} \langle \mathbf{v}, \mathbf{u}_{i} \rangle \mathbf{u}_{i} \\ \mathcal{Z} \, \, \mathbf{v}_{\mathbf{1}} \, + \, \mathcal{Z} \, \, \mathbf{v}_{\mathbf{k}} & \end{array}$$

• If $S = \mathsf{Span}(\mathbf{u})$, a one dimensional subspace, then

$$\mathsf{Proj}_{\mathcal{S}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2} \mathbf{u}$$

• Cauchy-Schwartz-Bunyakovski inequality: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \cdot \|\mathbf{v}\|$ with equality, if, and only if, one of \mathbf{u} , \mathbf{v} is a scalar multiple of the other.