Logic Gates, Lab 8

Boolean Expression from Truth Table

А	В	С	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	$\bar{A}BC = 1$
0	1	1	1 -	
1	0	0	0	$A\bar{B}C = 1$
1	0	1	1 -	$\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$
1	1	0	1 -	$AB\bar{C}=1$
1	1	1	1	
				ABC = 1

Logic Gate Circuit based on the Boolean Expression

Simplifying Boolean Expression

- $\bullet A + AB = A$
 - A + AB = A(1 + B) = 1A = A
- $A + \bar{A}B = A + B$
 - $A + \overline{A}B = A + AB + \overline{A}B$ (applying A + AB = A) = $A + B(A + \overline{A}) = A + B$
- (A + B)(A + C)
 - AA + AC + AB + BC
 - A + AC + AB + BC
 - A + AB + BC (applying A + AC = A)
 - A + BC (applying A + AB = A)

Example

- Simplify $ABCD + A\overline{BCD} + AB\overline{CD}$
 - $A(BCD + \overline{BCD}) + AB\overline{CD}$
 - $A1 + AB\overline{CD}$ (applying $X + \overline{X} = 1$) = $A + AB\overline{CD}$
 - $A(1 + B\overline{CD})$
 - A (applying 1 + X = 1)

Lab 8

- Demo of drawing circuit for the expression $(A + \overline{B})(A + B)$
- Discussion of Part A, B, C