Assignment 2

Question 1: Let G be a group, let $S_1, S_2 \subseteq G$ be subsets and let $H_i = \langle S_i \rangle$ for i = 1, 2. Suppose that $\forall x \in S_1$ and $\forall y \in S_2$ we have $xyx^{-1} \in H_2$. Prove that H_1 normalizes H_2 ; i.e. prove that

$$\forall x \in H_1, \forall y \in H_2, xyx^{-1} \in H_2$$

Question 2: Let $n \in \mathbb{N}$, n > 0 and consider the group $S = S(\mathbb{Z}/n\mathbb{Z})$ of permutations of the set $\mathbb{Z}/n\mathbb{Z}$.

- a. For $x \in \mathbb{Z}/n\mathbb{Z}$, recall that the additive order o(x) is a divisor of n.
 - Describe the cycle structure of the element $\sigma \in S$ defined by the rule $\sigma(z) = z + x$. Show that the order of σ is o(x).
- b. Suppose that n=p is a prime number, and let $k\in\mathbb{Z}$ with $\gcd(k,p)=1$. Thus the class \overline{k} of k in $\mathbb{Z}/p\mathbb{Z}$ lies in the group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of units. The multiplicative order $o(\overline{k})$ of \overline{k} is a divisor of p-1.

Describe the *cycle structure* of the element $\tau \in S$ defined by the rule $\tau(z) = \overline{k} \cdot z$. Show that the order of τ is $o(\overline{k})$.

Question 3: Let G be the group of invertible 2×2 matrices with entries in $F = \mathbb{Z}/p\mathbb{Z}$ for a prime number p; the group operation is given by matrix multiplication.

- a. Show that $|G|=(p^2-1)(p^2-p)$. b. Show that $T=\left\{\begin{pmatrix} t & 0 \\ 0 & s \end{pmatrix}\mid t,s\in F^\times\right\}$ is a subgroup of G. Here F^\times denotes the multiplication tive group of invertible elements of $F = \mathbb{Z}/p\mathbb{Z}$. Also show that

T is isomorphic to
$$F^{\times} \times F^{\times}$$

- c. Show that $U = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in F \right\}$ is a subgroup of G isomorphic to the additive group F.
- d. Show that T normalizes U. Find the order of the group B = TU.
- e. A line in F^2 is by definition a linear subspace of dimension 1. For any non-zero vector v, the set $Fv = \operatorname{Span}(v)$ is a line. Note that G acts in a natural way on the set of lines in F^2 .

If we write $e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $f = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for the standard basis of F^2 , show that B is the stabilizer of the line Fe.

- f. Show that G acts transitively on the set of lines in F^2 .
- g. Conclude that the set of lines in F^2 is in bijection with the set G/B. How many lines are there in F^2 ?

Question 4: Let G be a group and let Ω be a G-set. If $x,y\in\Omega$ and x=gy for some $g\in G$, prove that the stabilizers $G_x=\operatorname{Stab}_G(x)$ and $G_y=\operatorname{Stab}_G(y)$ are *conjugate*. More precisely, show that

$$G_x = g \cdot G_y \cdot g^{-1}$$

Question 5: Let G be a group. G acts on itself by conjugation: for $g, x \in G$, the action of g on x is given by $\operatorname{Inn}_q x = gxg^{-1}$.

- a. Prove that the assignment $g \mapsto \operatorname{Inn}_g$ determines a group homomorphism $G \to \operatorname{Aut}(G)$ where $\operatorname{Aut}(G)$ is the group of automorphisms of G.
- b. Let $Z=\{g\in G\mid \forall x\in G, gx=xg\}$ be the *center* of G. Prove that $Z=\ker {\rm Inn.}$

For the action of G on itself by conjugation, the stabilizer $\operatorname{Stab}_G(x)$ of $x \in G$ is usually written $C_G(x)$ and is called the *centralizer* of x in G. Note that

$$C_G(x) = \{ y \in G \mid yxy^{-1} = x \} = \{ y \in G \mid yx = xy. \}$$

Question 6: Let $I = I_n$ be a finite set with n elements, and let $S = S_n = S(I_n)$ be the group of permutations of I. Recall that |S| = n!.

- a. Prove that there are (n-1)! n-cycles in S. **Hint**: If the elements of I are writen $I=\{a_1,a_2,...,a_n\}$, then the n-cycles $(a_1,a_2,...,a_n)$ and $(a_2,a_3,...,a_n,a_1)$ are equal.
- b. Prove that if σ is an n-cycle in S, then $C_S(\sigma) = \langle \sigma \rangle$