Diseño e Implementación de un Sistema Meteorológico Móvil de Bajo Costo: Caso Ilo

Estudiante: Ever Quispe Universidad Nacional de Moquegua Facultad de Ingeniería

Docente: ROSAS CUEVAS, YESSICA

Contenido

- Introducción
- Objetivos
- 3 Antecedentes
- Bases Teóricas
- 5 Diseño de la Propuesta
- 6 Implementación
- Conclusiones

Introducción

- Necesidad de monitorear microclimas en entornos educativos
- Limitaciones de estaciones meteorológicas tradicionales
- Prototipo propuesto:
 - Basado en ESP32
 - Sensores especializados
 - Transmisión en tiempo real a Twitter/ThingSpeak

Objetivos

Objetivos Específicos

Diseñar e implementar un prototipo meteorológico móvil de bajo costo que permita registrar variables ambientales y transmitir los datos en tiempo real.

- Integrar sensores ambientales
- Configurar ESP32

- Conectividad con APIs
- Arquitectura para plataforma web

Limitaciones de Sistemas Tradicionales

- Deficiencias espaciales en ambientes pequeños
- Problemas con GPS en interiores (error 3-15m)
- Altos costos (\$5,000-\$50,000 USD)

Estudios Relevantes

Zhang et al. (2022): Mejora del $15.3\,\%$ en concentración con condiciones óptimas (20-22°C, 40-60 % HR)

Comparación de Tecnologías

Cuadro: Comparación de sistemas

Sistema	Costo	Precisión
Estaciones comerciales	\$5,000+	99 %
Prototipos Arduino	\$ 120+	95 %
Nuestro prototipo	\$45	90-95 %

Sensores Utilizados

DHT22

• Temp: -40° C a $+80^{\circ}$ C

• Humedad: 0-100 % RH

• Precisión: ±0.5°C

BMP280

Presión: 300-1100hPa

• Altitud: ±8.5m

MQ-135

Gases: NH, NO, CO

Rango: 10-1000ppm

ESP32 - Especificaciones

- CPU Dual-core 240MHz
- WiFi + Bluetooth
- 34 GPIOs
- 18 canales ADC
- Bajo consumo (200mA)

Conexiones

Configuración en la API de XDeveloper

Gráfica generada en ThingSpeak con lecturas de temperatura y humedad.

Arquitectura del Sistema

Requerimientos Funcionales

Adquisición de Datos

- Temperatura (±0.5°C)
- Humedad ($\pm 2-5\%$ RH)
- Presión (±1 hPa)
- Calidad del aire

Transmisión

- Twitter cada 15 min
- ThingSpeak cada 30s
- JSON estructurado

Resultados Obtenidos

- Prototipo funcional por \$45 USD
- Precisión comparable a equipos comerciales
- Transmisión exitosa a ambas plataformas

Ejemplo Tweet

Temp: 22.5°C, Hum: 45 %, Pres: 1013hPa, Alt: 50m, AQ: 120ppm - Ilo, 15/07/2025 14:30

Limitaciones Identificadas

Desafíos

- Dependencia de WiFi estable
- Autonomía limitada (8-12h)
- Calibración de MQ-135
- Carcasa protectora

Conclusiones

- Prototipo funcional de bajo costo validado
- Transmisión confiable a múltiples plataformas
- Solución escalable para instituciones educativas
- Precisión adecuada para aplicaciones educativas

Trabajo Futuro

- Integración con plataforma web
- Mejora de autonomía
- Carcasa protectora

¡Gracias por su atención!

¿Preguntas?