

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/537,227	12/27/2005	Kazunobu Kira	082368-004600US	1878
20350	7590	06/19/2008		
TOWNSEND AND TOWNSEND AND CREW, LLP			EXAMINER	
TWO EMBARCADERO CENTER			BERCH, MARK L	
EIGHTH FLOOR			ART UNIT	PAPER NUMBER
SAN FRANCISCO, CA 94111-3834			1624	
		MAIL DATE	DELIVERY MODE	
		06/19/2008	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/537,227	Applicant(s) KIRA ET AL.
	Examiner /Mark L. Berch/	Art Unit 1624

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on _____.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-17 is/are pending in the application.
 - 4a) Of the above claim(s) ____ is/are withdrawn from consideration.
- 5) Claim(s) ____ is/are allowed.
- 6) Claim(s) 1-17 is/are rejected.
- 7) Claim(s) ____ is/are objected to.
- 8) Claim(s) ____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on ____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO/SB/08)

Paper No(s)/Mail Date 06/02/2005/09/27/2006/10/31/2007.
- 4) Interview Summary (PTO-413)

Paper No(s)/Mail Date _____.
- 5) Notice of Informal Patent Application
- 6) Other: _____

DETAILED ACTION

Election/Restrictions

Restriction is required under 35 U.S.C. 121 and 372.

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1.

In accordance with 37 CFR 1.499, applicant is required, in reply to this action, to elect a single invention to which the claims must be restricted.

Group I, claim(s) 1-17(part), drawn to Z1=Z3=N; Z2=C.

Group II, claim(s) 1-17(part), drawn to One Z=N, other Z=C.

Group III, claim(s) 1-17(part), drawn to other.

The inventions listed as Groups I-III do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: each represents a different heterocyclic core. Group I is a purine, Group I is an imidazopyridine, Group II includes e.g. fused triazines.

During a telephone conversation with Kevin Bastian on 5/13/2008 a provisional election was made without traverse to prosecute the invention of Group I, claims 1-17(part). Affirmation of this election must be made by applicant in replying to this Office action. Claims (none) are withdrawn from further consideration by the examiner, 37 CFR 1.142(b), as being drawn to a non-elected invention.

Applicant is reminded that upon the cancellation of claims to a non-elected invention, the inventorship must be amended in compliance with 37 CFR 1.48(b) if one or more of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventorship must be accompanied by a request under 37 CFR 1.48(b) and by the fee required under 37 CFR 1.17(i).

Claims 1-17 link inventions I-III. These claims are examined to the extent that they read on the elected invention.

Claims 1-17 are rejected as being drawn to an improper Markush Group. The claims are drawn to multiple inventions for reasons set forth in the above requirement for restriction. This does not constitute an art recognized genus. Because of the marked structural differences at a part of the molecule essential for utility, the claims are deemed to lack unity of invention (see *In re Harnish*, 206 USPQ 300). The claims are examined only to the extent that they read on the elected invention. Cancellation of the non-elected subject matter will overcome the rejection.

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 1-17 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

1. The term "general" is not correct; a formula cannot be both general and specific.

Deletion of the word is suggested.

2. A proper composition claim must have a carrier of some kind; otherwise it is identical with a compound claim. Adding a carrier to claim 8 will resolve the matter.
3. The scope of claims 9, 11-12 is unclear. Is this a compound claim or a composition? If the former, these are improperly dependent on claim 1, as not further limiting the claim. If the latter, a carrier is needed as indicated in the previous point.
4. The term "Diabetes" in claim 14 is ambiguous. It is not a complete term. Diabetes insipidus for example is caused by the inability of the kidneys to conserve water, which is caused by a lack of ADH (central diabetes insipidus) or by failure of the kidneys to respond to ADH (nephrogenic diabetes insipidus). Applicants must select some specific form(s) of diabetes (e.g. Type 2 diabetes mellitus, maturity-onset diabetes of the young (MODY, which comes in 6 completely different forms arising from different genetic defects), Gestational diabetes mellitus ("GD") and neonatal diabetes, which also arises from a specific genetic defect; these are metabolic disorders) and they must use that term, and show that one of ordinary skill in the art would have been able to determine that whatever term(s) is/are selected was the one(s) intended.
5. The scope of claim 13 is unknown. What diseases can be treated, or prevented, by DPP-IV inhibition is largely unknown. This is due in substantial measure because this is a very new field of therapeutics, and indeed, only a single DPP-IV inhibitor has ever been approved as effective (JANUVIA™). It would certainly take undue experimentation to determine what the true scope of this claim language is.
6. Claims 15-17 provide for the use of the compounds, but, since the claim does not set forth any steps involved in the method/process, it is unclear what method/process

applicant is intending to encompass. A claim is indefinite where it merely recites a use without any active, positive steps delimiting how this use is actually practiced.

Treatment for diabetes insipidus depends on what is causing the disease. Causes range from a hypothalamus that produces too little ADH, a malfunctioning pituitary gland that fails to release ADH into the bloodstream, assorted brain injuries, encephalitis, meningitis or blockage in the arteries leading to the brain, certain tumors, tuberculosis and sarcoidosis, as well as some hereditary causes as well.

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

Claims 15-17 are rejected under 35 U.S.C. 101 because the claimed recitation of a use, without setting forth any steps involved in the process, results in an improper definition of a process, i.e., results in a claim which is not a proper process claim under 35 U.S.C. 101. See for example *Ex parte Dunki*, 153 USPQ 678 (Bd.App. 1967) and *Clinical Products, Ltd. v. Brenner*, 255 F. Supp. 131, 149 USPQ 475 (D.D.C. 1966).

Claims 1-17 are rejected under 35 U.S.C. 112, first paragraph, because the specification, while being enabling for other forms, does not reasonably provide enablement for hydrates. The specification does not enable any person skilled in the art to which it

pertains, or with which it is most nearly connected, to make the invention commensurate in scope with these claims.

The claims, insofar as they embrace solvates are not enabled. The numerous examples presented all failed to produce a hydrate. The evidence of the specification is thus clear: These compounds do not possess the property of forming solvates; there is no evidence that such compounds even exist. Thus, this is a circumstance where the "specification is evidence of its own inadequacy" (*In re Rainer*, 377 F.2d 1006, 1012, 153 USPQ 802, 807). These cannot be simply willed into existence. As was stated in *Morton International Inc. v. Cardinal Chemical Co.*, 28 USPQ2d 1190 "The specification purports to teach, with over fifty examples, the preparation of the claimed compounds with the required connectivity. However ... there is no evidence that such compounds exist... the examples of the '881 patent do not produce the postulated compounds... there is ... no evidence that such compounds even exist." The same circumstance appears to be true here: there is no evidence that solvates of these compounds actually exist; if they did, they would have formed. Hence, applicants must show that hydrates can be made, or limit the claims accordingly.

Claims are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention.

The treatment of broad categories of cancers cannot possibly be considered enabled.

Pursuant to *In re Wands*, 858 F.2d 731, 737, 8 USPQ2d 1400, 1404 (Fed. Cir. 1988), one considers the following factors to determine whether undue experimentation is

required: (A) The breadth of the claims; (B) The nature of the invention; (C) The state of the prior art; (D) The level of one of ordinary skill; (E) The level of predictability in the art; (F) The amount of direction provided by the inventor; (G) The existence of working examples; and (H) The quantity of experimentation needed to make or use the invention based on the content of the disclosure. Some experimentation is not fatal; the issue is whether the amount of experimentation is "undue"; see *In re Vaeck*, 20 USPQ2d 1438, 1444.

The analysis is as follows:

(1) Breadth of claims.

(a) Scope of the compounds. Owing to the very broad nature of X4, X2, R2 and R1, and R2, trillions of compounds are covered.

(b) Scope of the diseases covered. As is noted in point 5 above, the scope of claim 13 is unknown. For purposes of examination, the examiner will assume that the intended scope is as set forth in the specification, page 109, lines 9-13. The coverage is thus immense.

I. There are hundreds of types of cancers and tumors. They can occur in pretty much every part of the body. Here are some assorted categories:

A. CNS cancers cover a very diverse range of cancers in many categories and subcategories. There are an immense range of neuroepithelial tumors. Gliomas, the most common subtype of primary brain tumors, most of which are aggressive, highly invasive, and neurologically destructive tumors are considered to be among the deadliest of human cancers. These are any cancers which show evidence (histological, immunohistochemical, ultrastructural) of glial differentiation. These fall mostly into five categories. There are the astrocytic tumors (Astrocytomas): Pilocytic astrocytoma (including juvenile pilocytic astrocytoma, JPA, and

pediatric Optic Nerve Glioma) Diffuse astrocytomas (including Fibrillary astrocytomas, Protoplasmic astrocytomas and Gemistocytic astrocytomas), Anaplastic astrocytomas (including adult Optic Nerve Glioma), Glioblastoma multiforme (GBM), gliosarcoma and giant cell glioblastoma, and Pleomorphic xanthoastrocytoma. GBM exists in two forms, primary and secondary, which have very different clinical histories and different genetics, but GBM is considered to be one clinical entity. Second, there are the oligodendroglial tumors (Oligodendrogliomas): Low grade Oligodendrogloma and Anaplastic Oligodendrogloma. Third, there is oligoastrocytomas ("mixed glioma"), a type of tumor with both astrocytoma & oligodendrogloma features. The fourth type is the Ependymomas, which are intracranial gliomas, including Papillary Ependymoma, Myxopapillary ependymoma, tanyctic ependymoma, Anaplastic ependymoma and subependymal giant-cell astrocytomas. A fifth type is the Gangliogliomas (glioneuronal tumors or glioneurocytic tumors), which have both glial and neuronal components, and are extremely varied, based in part on what types of glial and what types of neuronal components are present. These include Papillary Glioneuronal Tumor (PGNT), a range of Supratentorial gangliogliomas, assorted intramedullary spinal cord gangliogliomas, Pineal ganglioglioma, Hypothalamic ganglioglioma, cerebellar ganglioglioma, Ganglioglioma of the right optic tract, rosetted glioneuronal tumor ("glioneurocytic tumor with neuropil rosettes"), composite pleomorphic xanthoastrocytoma (PXA)-ganglioglioma, desmoplastic ganglioglioma (both infantile (DIG) and non- infantile), Angioganglioglioma, and others. There are also some Glial tumors which do not comfortably fit into these five categories, notably Astroblastoma, Gliomatosis cerebri, and chordoid glioma, which is found solely in the Hypothalamus and Anterior Third Ventricle. Other neuroepithelial tumors include astrocytic tumors (e.g. astrocytomas)

Art Unit: 1624

oligodendroglial tumors, Ependymal cell tumors (e.g. myxopapillary ependymoma), mixed gliomas (e.g. mixed oligoastrocytoma and ependymo-astrocytomas) tumors of the choroid plexus(Choroid plexus papilloma, Choroid plexus carcinoma), assorted neuronal and Neuroblastic tumors (e.g. gangliocytoma, central neurocytoma, dysembryoplastic neuroepithelial tumor, esthesioneuroblastoma, Olfactory neuroblastoma, Olfactory neuroepithelioma, and Neuroblastomas of the adrenal gland), pineal parenchyma tumors (e.g. pineocytoma, pineoblastoma, and Pineal parenchymal tumor of intermediate differentiation), embryonal tumors (e.g. medulloepithelioma, neuroblastoma, retinoblastoma, ependymoblastoma, Atypical teratoid/rhabdoid tumor, Desmoplastic medulloblastoma, Large cell medulloblastoma, Medullomyoblastoma, and Melanotic medulloblastoma) and others such as polar spongioblastoma and Gliomatosis cerebri. A second Division is tumors of the meninges. This includes tumors of the meningotheelial cells, including Meningiomas (Meningothelial, Fibrous (fibroblastic), Transitional (mixed), Psammomatous, Angiomatous, Microcystic, Secretory, Lymphoplasmacyte-rich, Metaplastic, Clear cell, Chordoid, Atypical, Papillary, Rhabdoid, Anaplastic meningioma) and the non- Meningioma tumors of the meningotheelial cells (Malignant fibrous histiocytoma, Leiomyoma, Leiomyosarcoma, Rhabdomyoma, Rhabdomyosarcoma, Chondroma, Chondrosarcoma, Osteoma, Osteosarcoma, Osteochondroma, Haemangioma, Epithelioid haemangioendothelioma, Haemangiopericytoma, Angiosarcoma, Kaposi sarcoma). There are also Mesenchymal, non-meningotheelial tumors (Lipomas, Angiolipoma, Hibernoma Liposarcoma, (intracranial)Solitary fibrous tumor, and Fibrosarcoma) as well as Primary melanocytic lesions (Diffuse melanocytosis, Melanocytoma, Malignant melanoma, and Meningeal melanomatosis). A third Division are the tumors of

Cranial and Spinal Nerves. This includes Cellular schwannomas, Plexiform schwannomas and the Melanotic schwannomas (e.g. psammomatous melanotic schwannoma , Neuro-axial melanotic schwannoma, Dorsal dumb-bell melanotic schwannoma). There is also neurofibroma, Perineurioma (Intraneural and Soft tissue) and malignant peripheral nerve sheath tumor (MPNST), including Epithelioid, MPNST with divergent mesenchymal differentiation, and MPNST with epithelial differentiation. A fourth division are Germ Cell Tumors, including germinoma, embryonal carcinoma, yolk sac tumor, choriocarcinoma, and teratoma (Mature teratoma, Immature teratoma, and Teratoma with malignant transformation). A fifth division are the tumors of the Sellar Region, viz. pituitary adenoma, pituitary carcinoma, granular cell myoblastoma and craniopharyngiomas (Adamantinomatous and Papillary). Yet another division are local extensions from regional tumors, including paraganglioma, chondroma, chordoma, and chondrosarcoma. There are also Primitive Neuroectodermal Tumors (PNETs) including Medulloblastomas, medulloepitheliomas, ependymoblastomas and polar spongioblastomas. There are Vascular brain Tumors e.g. the hemangioblastomas, there is CNS Lymphoma (which can be primary or secondary) and Meningeal Carcinomatosis. There are Lymphoma AND Haemopoietic neoplasms including Malignant lymphomas (which can be primary or secondary), Plasmacytoma, and Granulocytic sarcoma. And there are many, many others.

B. Leukemia is any malignant neoplasm of the blood-forming tissues. Leukemia can arise from many different sources. These include viruses such as EBV, which causes Burkitt's lymphoma, and HTLV-1, linked to certain T cell leukemias. Others are linked to genetic disorders, such as Fanconi's anemia, which is a familial disorder, and Down's Syndrome. Other leukemias are caused by exposure to carcinogens such as benzene, and some are

actually caused by treatment with other neoplastic agents. Still other leukemias arise from ionizing radiation, and many are idiopathic. Leukemias also differ greatly in the morphology, degree of differentiation, body location (e.g. bone marrow, lymphoid organs, etc.) There are dozens of leukemias. There are B-Cell Neoplasms such as B-cell prolymphocytic leukemia and Hairy cell leukemia (HCL, a chronic Lymphoid leukemia). There are T-Cell Neoplasms such as T-cell prolymphocytic leukemia, aggressive NK cell leukemia, adult T cell leukemia/lymphoma (ATLL), and T-cell granular Lymphocytic leukemia. There are different kinds of acute myeloid leukemias (undifferentiated AML, acute myeloblastic, acute myelomonocytic leukemia, acute monocytic leukemias, acute monoblastic, acute megakaryoblastic (AmegL), acute promyelocytic leukemia (APL), and erythroleukemia). There is also lymphoblastic leukemia, hypocellular acute myeloid leukemia, Ph-/BCR- myeloid leukemia, and acute basophilic leukemia. Chronic leukemias include chronic lymphocytic leukemia(PLL, which exists in a B-cell and a T-cell type), prolymphocytic leukemia(PLL), large granular lymphocytic leukemia (LGLL, which goes under several other names as well), chronic myelogenous leukemia(CML), chronic myelomonocytic leukemia (CMML), chronic neutrophilic leukemia, chronic eosinophilic leukemia(CEL), and many others.

C. Carcinomas of the Liver include Hepatocellular carcinoma, Combined hepatocellular cholangiocarcinoma, Cholangiocarcinoma (intrahepatic), Bile duct cystadenocarcinoma and Undifferentiated carcinoma of the liver. There are also two types of liver hemangioma: cavernous and hemangioendothelioma.

D. The main types of lung and pleural cancer are small cell (i.e. oat cell, including combined oat cell), adenocarcinomas, Bronchioloalveolar carcinomas (Nonmucinous, Mucinous, and Mixed mucinous and nonmucinous or indeterminate cell type), Acinar, Papillary carcinoma, Solid adenocarcinoma with mucin, Adenocarcinoma with mixed subtypes, Well-

Art Unit: 1624

differentiated fetal adenocarcinoma, Mucinous (colloid) adenocarcinoma, Mucinous cystadenocarcinoma, Signet ring adenocarcinoma, and Clear cell adenocarcinoma), squamous cell (Papillary, Clear cell, Small cell and Basaloid), mesothelioma (including epithelioid, sarcomatoid, desmoplastic and biphasic) and Large Cell Carcinoma (which include Large-cell neuroendocrine carcinoma, Combined large-cell neuroendocrine carcinoma, Basaloid carcinoma, Clear cell carcinoma Lymphoepithelioma-like carcinoma, and Large-cell carcinoma with rhabdoid phenotype). In addition there are also the carcinomas with pleomorphic, sarcomatoid or sarcomatous elements, including Carcinomas with spindle and/or giant cells, Spindle cell carcinoma, Carcinosarcoma and Pulmonary blastoma. The non-small cell lung carcinomas also include Adenosquamous carcinoma, the Carcinoid tumor (both typical Carcinoid and atypical Carcinoid) as well as carcinomas of salivary-gland type, including mucoepidermoid carcinoma and adenoid cystic carcinoma. There are some soft tissue tumors including localized fibrous tumor (formerly called benign fibrous mesothelioma); epithelioid haemangioendothelioma; pleuropulmonary blastoma (which occurs three fairly different substituted-types); chondroma; calcifying fibrous pseudotumor of the visceral pleura); congenital peribronchial myofibroblastic tumors, diffuse pulmonary lymphangiomyomatosis and desmoplastic round cell tumor. There are assorted bronchial adenomas (e.g. adenoid cystic carcinomas, mucoepidermoid carcinomas, mucous gland adenomas, and oncocytomatous bronchial mucous gland adenoma) as well as other adenomas, including papillary adenoma. There are some papillomas, including squamous cell papilloma and glandular papilloma. There is also malignant melanoma of the lung, Hamartoma, cylindroma (cylindroadenoma), some germ cell tumors, thymoma and sclerosing haemangioma and many others as well. Lung cancers are quite diverse.

Art Unit: 1624

Thus, for example, oat cell carcinoma, Signet ring adenocarcinoma, pleuropulmonary blastoma, cylindroma, and malignant mesothelioma really have very little in common, other than being cancers of the lung.

E. Thyroid cancer comes in four forms: papillary thyroid cancer, follicular thyroid cancer, anaplastic thyroid cancer, and medullary thyroid cancer.

F. Carcinomas of the skin are the Basal cell carcinomas (BCC), including Superficial BCC, Nodular BCC (solid, adenoid cystic), Infiltrating BCC, Sclerosing BCC (desmoplastic, morpheic), Fibroepithelial BCC, BCC with adnexal differentiation, Follicular BCC, Eccrine BCC, Basosquamous carcinoma, Keratotic BCC, Pigmented BCC, BCC in basal cell nevus syndrome, Micronodular BCC. Another important family is the Squamous cell carcinomas (SCC) which include Spindle cell (sarcomatoid) SCC, Acantholytic SCC, Verrucous SCC, SCC with horn formation, and Lymphoepithelial SCC, along with less well classified SCCs such as Papillary SCC, Clear cell SCC, Small cell SCC, Posttraumatic (e.g., Marjolin ulcer) and Metaplastic (carcinosarcomatous) SCC. Another family is the Eccrine carcinomas including Sclerosing sweat duct carcinoma (syringomatous carcinoma, microcystic adnexal carcinoma), Malignant mixed tumor of the skin (malignant chondroid syringoma), Porocarcinoma, Malignant nodular hidradenoma, Malignant eccrine spiradenoma, Mucinous eccrine carcinoma, Adenoid cystic eccrine carcinoma, and Aggressive digital papillary adenoma/adenocarcinoma. Other carcinomas of the skin include Epidermal carcinomas, Paget disease, Mammary Paget disease, Merkel cell carcinoma (neuroendocrine cancer of the skin), Extramammary Paget disease Adnexal carcinomas, Apocrine carcinoma, Sebaceous carcinoma, Tricholemmocarcinoma and Malignant pilomatricoma (matrical carcinoma).

G. There are many types of colon cancers, and this category is rather diverse. Most are adenocarcinomas, either of the mucinous (colloid) type or the signet ring type. Less common colon cancers include squamous cell, neuroendocrine carcinomas, carcinomas of the scirrhouous type, lymphomas, melanomas (which can be primary or metastatic), sarcomas (including fibrosarcomas and Leiomyosarcomas), and Carcinoid tumors.

H. Renal carcinomas include papillary renal cell carcinoma, conventional-type (clear cell) renal carcinoma, chromophobe renal carcinoma, collecting duct carcinoma, and some unclassified carcinomas. Other kidney cancers include Transitional Cell Carcinoma, Wilms Tumors, and Renal Sarcomas.

I. Prostate Cancer is not a single disease or group of very closely related disorders, but ranges over a very wide variety of cancer types. It embraces various adenocarcinomas of the prostate, including Prostatic Ductal Adenocarcinoma, adenocarcinoma with Paneth-like cells, Clear cell adenocarcinoma, Foamy gland adenocarcinoma, Adenocarcinoma of Cowper's glands, and Atrophic adenocarcinoma. It includes a huge variety of carcinomas, including mucinous carcinomas of the prostate, Prostatic carcinoma of xanthomatous type, signet ring cell carcinoma of the prostate, neuroendocrine small cell carcinoma of the prostate, and other small cell carcinomas of the prostate, Adenosquamous and Squamous Cell Carcinomas, Basaloid and Adenoid Cystic Carcinoma, Sarcomatoid carcinoma of the prostate, Lymphoepithelioma-like Carcinoma of the prostate, Urothelial (transitional Cell) Carcinoma (which can be primary in the prostate gland or represent secondary spread from the urinary bladder), Basaloid carcinoma, pseudohyperplastic carcinoma, and Primary carcinoma of the Seminal vesicles. There are also assorted sarcomas of the prostate, including Angiosarcoma, Embryonal rhabdomyosarcoma, Stromal sarcoma, Synovial

Art Unit: 1624

sarcoma, Leiomyosarcoma, and chondrosarcoma of the prostate, which can be primary or secondary to the prostate. Also included is prostatic intraepithelial neoplasia (PIN), Phyllodes Tumor of the Prostate, Primitive peripheral neuroectodermal tumor (PNET) and Malignant fibrous histiocytoma. There are also lymphomas, which are usually secondary, but primary ones include Diffuse Large B-cell Lymphoma. The great majority of this list are not treatable with pharmaceuticals.

J. Penile carcinoma is usually a squamous cell carcinoma, but there is also Penile clear cell carcinoma and Sarcomatoid carcinoma.

K. The carcinomas of the extrahepatic bile ducts are of numerous types, including carcinoma in situ, Adenocarcinoma, Papillary adenocarcinoma, Adenocarcinoma (intestinal-type), Mucinous adenocarcinoma, Clear cell adenocarcinoma, Signet ring cell carcinoma, Adenosquamous carcinoma, Squamous cell carcinoma, Small cell carcinoma (oat cell carcinoma) and undifferentiated carcinoma of the extrahepatic bile ducts.

L. Breast cancers come in great variety. The most important category of breast cancers is the ductal cancers. These come in a wide variety of types. Presently, these are divided into the following categories: Intraductal (in situ); Invasive with predominant intraductal component; Invasive, NOS; Comedo; Inflammatory (IBC); Medullary with lymphocytic infiltrate; Mucinous Carcinoma (colloid carcinoma); Papillary carcinoma; Scirrhous; Tubular; and Other. Another category is the Lobular breast cancers, which can be in situ, Invasive with predominant in situ component, and Invasive. There is Paget's disease of the Nipple, which can be also with intraductal carcinoma or with invasive ductal carcinoma. There is Adenomyoepithelioma , a dimorphic tumor characterized by the presence of both epithelial and myoepithelial cells. There is breast angiolioma and spindle cell lipoma of

Art Unit: 1624

the breast. There is lymphoma of the breast (which exists in both Non-Hodgkin's lymphoma of the breast and Hodgkin's disease of the breast forms). There are some sarcomas, including giant cell sarcoma of the breast, leiomyosarcoma of the breast, Angiosarcoma of the breast, cystosarcoma phylloides, and liposarcoma of the breast. There are carcinoid tumors which can be primary carcinoid tumors of the breast, or can arise from nonmammary sources. There are breast salivary gland-like tumors, including acinic cell carcinoma (AcCC), oncocytic carcinoma (Mammary epithelial oncocytoma), and mucoepidermoid carcinoma (MEC). Other rare carcinomas include Spindle cell carcinoma of the breast (SpCC), Squamous cell carcinoma of the breast, Secretory Carcinoma of the Breast (Juvenile secretory carcinoma), Metaplastic carcinoma of the breast (a heterogeneous group of invasive breast cancers including types with squamous differentiation and those with heterologous elements), Invasive Micropapillary Carcinoma of the Breast, Adenoid cystic carcinoma of the breast, cribriform carcinoma, Myofibroblastoma of the Breast (Benign spindle stromal tumor of the breast) and glycogen-rich clear cell carcinoma of the breast. There are numerous other rare breast cancers, including for example Fibromatosis of the breast (extra-abdominal desmoid), Angiomatosis of the Breast, and mammary hamartoma. There are also nonmammary tumors, primarily adenocarcinomas, that can metastasize to the breast including bronchogenic carcinomas, malignant melanomas (primary and secondary), rhabdomyosarcomas, malignant mesotheliomas, thyroid carcinomas, renal cell carcinomas, malignant lymphomas, and gastrointestinal carcinomas (including those from the stomach, pancreas, esophagus, and colon).

M. Ovarian cancers are a heterogeneous group of tumors. The most important are the epithelial tumors. These are themselves fairly diverse, the categories being Serous cystomas (Serous benign cystadenomas, Serous cystadenomas with proliferating activity of the epithelial cells and nuclear abnormalities but with no infiltrative destructive growth and Serous cystadenocarcinomas); Mucinous cystomas (divided the same three ways); Clear cell tumors (mesonephroid tumors, again divided the same way), Endometrioid tumors (similar to adenocarcinomas in the endometrium: Endometrioid benign cysts, Endometrioid tumors with proliferating activity of the epithelial cells and Endometrioid adenocarcinomas), mixed mesodermal (now considered to be carcinomas with areas of sarcomatous differentiation), clear cell, transitional cell, and mixed epithelial. Second, there are the Granulosa-Stromal Cell Tumors. These include the Granulosa cell tumor (which exists in juvenile and adult forms) and the tumors in the thecoma-fibroma group. This includes thecoma-fibroma group typical thecoma and luteinized thecoma or "stromal Leydig cell tumor". This also includes fibroma, cellular fibroma, fibrosarcoma, stromal tumor with minor sex cord elements, sclerosing stromal tumor, signet ring cell stromal tumor and others. Third, there are the Sertoli-Leydig Cell Tumors and Androblastomas. These include the Sertoli cell tumor (tubular androblastoma), Sertoli-Leydig cell tumor , a poorly differentiated sarcomatoid, tumor and a Retiform tumor. Fourth, there are some miscellaneous Sex Cord Stromal Tumors, including Gynandroblastoma of the ovary (composed of sex cord and stromal cells of both ovarian and testicular types), Sex Cord Tumor with Annular Tubules, Stromal luteoma, and Leydig cell tumor)which comes in hilus and non-hilar types). Fifth, there are an assortment of Germ Cell Tumors. These include Dysgerminoma; Yolk Sac Tumors (Endodermal Sinus Tumor, and Polyvesicular

Art Unit: 1624

vitelline tumor, Hepatoid and others); Embryonal Carcinoma; Polyembryoma; Choriocarcinoma and a wide variety of Teratomas. These tetromas include immature, cystic (dermoid cyst), retiform (homunculus), and Monodermal, including struma ovarii, carcinoid (insular and trabecular), struma carcinoid, mucinous carcinoid, neuroectodermal tumors, sebaceous tumors and others. Finally, there are an assortment of other tumors which do not fit into the above categories. There is Gonadoblastoma and Tumors of Rete Ovarii (which can be Adenomatoid tumor or a Mesothelioma). There are some tumors of Uncertain Origin, including Small cell carcinoma, tumors of probable Wolffian origin, a Hepatoid carcinoma and Oncocytoma. There are some Soft Tissue Tumors not Specific to Ovary, and there are assorted malignant Lymphomas and Leukemias which land up in the ovaries.

N. Cervical cancers. There are many different categories and sub-categories of cervical cancers. The majority of cervical cancers are Squamous Cell Carcinomas. These come in numerous types: large cell nonkeratinizing type; large cell keratinizing type; Basaloid; Verrucous; Warty; Papillary; Lymphoepithelioma-like; and Squamotransitional, Early invasive (microinvasive) squamous cell carcinoma; Squamous intraepithelial neoplasia (including Cervical intraepithelial neoplasia and Squamous cell carcinoma in situ). There are also a variety of Adenocarcinomas, the most important of which are the Mucinous adenocarcinoma, which include the Endocervical, Intestinal, signet-ring cell, minimal deviation, and Villoglandular. There is also Endometrioid adenocarcinoma, clear cell adenocarcinoma, serous adenocarcinoma, Mesonephric adenocarcinoma, Early invasive adenocarcinoma, and Adenocarcinoma in situ. In addition, there are neuroendocrine carcinomas, divided into Small Cell, large cell, classical carcinoid and atypical carcinoid.

Art Unit: 1624

Other epithelial tumors include Adenosquamous carcinoma, mixed Adenosquamous Carcinomas, which can be either well-differentiated or poorly differentiated, the latter including glassy cell carcinoma, adenoid cystic carcinoma, adenoid basal carcinoma and Undifferentiated carcinoma. There are also some mixed carcinoma with signet-ring cells, and other types of other poorly differentiated mixed carcinomas. This group includes tumors sometimes called apudomas or argyrophil cell carcinomas. There are also an assortment of Mesenchymal tumors of the cervix, including Leiomyosarcoma; Endometrioid stromal sarcoma, low grade; Undifferentiated endocervical sarcoma; Sarcoma botryoides; Alveolar soft part sarcoma, Angiosarcoma of the cervix, Malignant peripheral nerve sheath tumor of the cervix; Cervical leiomyoma; and Rhabdomyoma of the cervix. There are also some mixed epithelial and mesenchymal tumors, including Carcinosarcoma (malignant müllerian mixed tumor), Adenosarcoma, Wilms tumor, typical and atypical Polypoid Adenomyoma, and Papillary adenofibroma of the cervix. There are also Melanocytic tumors, including primary malignant melanoma of the cervix and Blue naevus of the cervix. There are also germ cell type tumors, including Yolk sac tumor, Dermoid cyst, and Mature cystic teratoma of the cervix. There is also primary choriocarcinoma of the cervix, which does not fit well into any category. There are also cancers secondary to the cervix, which have spread from elsewhere.

O. Bladder cancers. Most cases of bladder cancers are transitional cell (urothelial) carcinoma, which includes non-invasive papillary urothelial carcinoma, Flat urothelial carcinoma in situ (CIS), Superficially invasive urothelial carcinoma, and muscle invasive tumors. Adenocarcinomas of the bladder include Primary Adenocarcinoma (urachal and non-urachal), Prostatic adenocarcinoma, Gastro-intestinal adenocarcinomas and Clear cell

carcinoma. Squamous cell carcinomas include Verrucous carcinomas, and a secondary squamous cell carcinoma of the bladder, from the cervix. Small cell carcinomas include Primary small cell carcinoma of the bladder and the secondary small cell carcinoma ('reserve cell carcinoma') of the lung. Lymphomas include the primary lymphomas (Low grade B-cell lymphoma of MALT type, High grade B-cell lymphoma, and T-cell lymphoma), as well as secondary lymphomas, including mantle cell lymphomas. Melanomas include Primary Malignant melanoma of the bladder, and secondary ones. The sarcomas of the Bladder are Leiomyosarcoma, Osteosarcoma and Rhabdomyosarcoma. There is also a primary primitive neuroectodermal tumour (PNET) of the bladder, Paraganglioma (which can metastasize), Nephrogenic adenoma, Metastatic renal cell carcinoma of the bladder, and both primary and secondary (from the uterus) Choriocarcinoma of the bladder.

P. Cancers of the Vulva are mostly Squamous carcinoma, but these also include Melanoma, Bartholin's Adenocarcinoma, Basal Cell carcinoma and some Sarcomas.

Q. Vaginal cancers are primarily Squamous Carcinoma, but some are Adenocarcinoma, Melanoma of the vagina; Sarcoma of the vagina, Bowen's disease and Germ Cell Tumors.

R. The most important of the cancers of the uterus are the Endometrial Carcinomas. The great majority of these are Endometrioid; others include Uterine Papillary Serous Tumor (UPST), Clear Cell Carcinoma, Mucinous and Squamous. Uterine Sarcomas include Smooth Muscle Tumors include leiomyoblastoma, clear cell leiomyoma, epithelioid leiomyoma, plexiform tumorlet, Intravenous leiomyomatosis, Benign metastasizing leiomyoma, Leiomyomatosis peritonealis disseminate and Leiomyosarcoma (LMS).

Endometrial Tumors include Endometrial stromal nodule, Endolymphatic stromal myosis, (ESM) and Endometrial stromal sarcoma (ESS). There are the mixed tumors Müllerian

Art Unit: 1624

adenosarcoma and Malignant mixed mesodermal tumors (MMMT). Other sarcomas are Rhabdosarcoma, Osteosarcoma, Chondrosarcoma nad Hemangiopericytoma. There are also uterine cancers which do not come from uterine cells themselves, but start in the tissue that begins to develop immediately after conception: Persistent gestational trophoblastic disease, choriocarcinoma and placental site trophoblastic tumors (PSTT).

S. There are several main types of stomach cancers, which are very different from each other. (1) Lymphomas of the stomach are cancers of the immune system tissue that are found in the wall of the stomach. These come in two main categories. One is the Non-Hodgkin's lymphomas of the stomach, including MALT lymphoma, and assorted Large Cell Lymphoma of the Stomach such as anaplastic CD30 (Ki-1) positive large cell lymphoma (ALCL). The other is Hodgkin Lymphoma in the Stomach. These include both lymphomas which are primary to the stomach, and nodal lymphomas that have spread to the stomach from e.g. the spleen or liver and are thus secondary. There are Tertiary gastric lymphomas as well. (2) Gastric stromal tumors (GISTs) develop from the tissue of the stomach wall. There are an assortments of these; GISTs vary from cellular spindle cell tumors to epithelioid and pleomorphic ones. (3) Carcinoid tumors are tumors of hormone-producing cells of the stomach. These are classified into are classified into those that are associated with hypergastrinemic states (type 1, atrophic gastritis, pernicious anemia); Zollinger-Ellison syndrome [ZES] tumors (type 2), and tumors without hypergastrinemia (type 3 or sporadic). (4) Carcinoma of the Stomach exists in five types: papillary, tubular, mucinous, signet-ring cell adenocarcinoma and undifferentiated carcinoma. (5) Soft tissue sarcomas, most notably leiomyosarcoma of the stomach. There are other tumors as well, including

Gastric Lipoma, gastric xanthelasma, and benign reactive lymphoid hyperplasia (pseudolymphoma).

II. The scope of treating inflammation generally is extraordinarily broad (this category also includes the "allergic disease", since all allergic diseases are inflammatory in nature).

Inflammation is a process which can take place in virtually any part of the body. There is a vast range of forms that it can take, causes for the problem, and biochemical pathways that mediate the inflammatory reaction. It is one of the most pervasive of all body processes.

Inflammation is a very general term which encompasses a huge variety of specific processes.

Inflammation is the reaction of vascularized tissue to local injury; it is the name given to the stereotyped ways tissues respond to noxious stimuli. These occur in two fundamentally different types. Acute inflammation is the response to recent or continuing injury. The principal features are dilatation and leaking of vessels, and recruitment of circulating neutrophils. Chronic inflammation or "late-phase inflammation" is a response to prolonged problems, orchestrated by T-helper lymphocytes. It may feature recruitment and activation of T- and B-lymphocytes, macrophages, eosinophils, and/or fibroblasts. The hallmark of chronic inflammation is infiltration of tissue with mononuclear inflammatory cells. Mechanistically, chronic inflammation encompasses a broad spectrum of immunologic processes, including antibody formation, antibody-dependent cell-mediated cytotoxicity, and cell-mediated immunity (delayed-type hypersensitivity). Granulomas are seen in certain chronic inflammation situations. They are clusters of macrophages which have stuck tightly together, typically to wall something off. Granulomas can form with foreign bodies such as aspirated food, toxocara, silicone injections, and splinters.

Otitis media is an inflammation of the lining of the middle ear and is commonly caused by *Streptococcus pneumoniae* and *Haemophilus influenzae*.

Cystitis is any inflammation of the bladder, often caused by bacteria. Two ordinary types are eosinophilic and tuberculous cystitis. Interstitial cystitis (IC) is a particularly severe form, an inflammation of the bladder wall which may include Glomerulations. The origins and mechanism are largely unknown, and it isn't even clear whether there is just one form of the disease or several. There is no actual pharmaceutical treatment for the disease itself, although a few drugs can give some relief of symptoms, specifically Elmiron and DMSO.

Blepharitis is a chronic inflammation of the eyelids that is caused by a staphylococcus. Dacryocystitis is inflammation of the tear sac, and usually occurs after a long-term obstruction of the nasolacrimal duct and is caused by staphylococci or streptococci. Preseptal cellulitis is inflammation of the tissues around the eye, and Orbital cellulitis is an inflammatory process involving the layer of tissue that separates the eye itself from the eyelid. These life-threatening infections usually arise from staphylococcus. Hence, these types of inflammations are treated with antibiotics.

There is also a wide assortment of forms of conjunctivitis, including seasonal allergic conjunctivitis, perennial allergic conjunctivitis, giant papillary conjunctivitis (GPC) (a chronic yet poorly condition associated with contact lens wear), Vernal keratoconjunctivitis and atopic keratoconjunctivitis. In addition to types of allergic conjunctivitis there is also bacterial conjunctivitis (e.g. from *Streptococcus pneumoniae*, *Haemophilus influenzae*, and *Staphylococcus aureus*) and viral conjunctivitis (e.g. from gonorrhea, herpes simplex, chlamydia, adenoviruses or enteroviruses) Parasitic conjunctivitis (e.g. from *Onchocerca*

volvulus, *Loa loa*, *Wuchereria bancrofti* or *Trichinella spiralis*), fungal conjunctivitis (e.g. from *Candida albicans* or *Sporothrix schenckii*), Phlyctenular Conjunctivitis, Inclusion Conjunctivitis, immunologic conjunctivitis, irritant conjunctivitis (e.g. from burns, chlorine or air pollutants), Radiation conjunctivitis, and assorted forms of neonatal conjunctivitis (which can be caused by e.g. a blocked tear duct).

Cholecystitis is gallbladder inflammation usually caused by a gallstone that cannot pass through the cystic duct. In those cases, it normally cannot be treated by pharmaceuticals but instead the gallbladder is removed. Cholecystitis without the formation of gallstones, called acalculous cholecystitis, is caused by bacteria such as *Salmonella*, *Staphylococcus*, *Streptococcus* (as part of scarlet fever), and leptospirosis, and thus may be treatable by treating the underlying infectious agent. Acute inflammation of the gall bladder can also arise from typhoid; treatment is with antibiotics.

The term "arthritis" is used for any of the dozens of kinds of inflammation of the joints arising from a wide diversity of causes and mediators, many of which are unknown. It mostly commonly refers to any of osteoarthritis, gouty arthritis, or rheumatoid arthritis. These are three totally different and unrelated disorders, which all have "arthritis" in their name and involve inflammation of the joints. Rheumatoid arthritis is an inflammatory disorder causing destruction of articular cartilage, in which macrophages accumulate in the rheumatoid synovial membrane. Mediators are cytokines, including IL-1, IL-18, TNF- α and IFN- κ . It is thus an autoimmune condition where the body's immune system attacks its joints. In gouty arthritis, joint inflammation is caused by the formation of monosodium urate monohydrate (MSU) crystals within the joint space. Acute attacks of gout are treated with colchicine (to inhibit of MSU-induced chemotactic factor release by PMNs) and after

Art Unit: 1624

the acute phase with allopurinol to control the blood levels of uric acid. Osteoarthritis is a degenerative cartilage disorder; cartilage breakdown causes bones to rub against each other. Causes include injuries, diseases such as Paget's disease, and long term obesity, but often the cause is unknown, and the full mechanism has not been discovered. It is treated with NSAIDs and COX-2 inhibitors. Complicating matters further is that fibromyalgia is sometimes also intended to be included in the loose term "arthritis". There is also Psoriatic Arthritis (including DIP, and spondylitis) which is believed to be autoimmune in origin but is a separate disorder from RA. There are also an assortment of infectious arthritis, i.e. arthritis caused by bacteria, rickettsiae, mycoplasmas, viruses (or vaccinations given to prevent viral infections), fungi, or parasites. Included in this category are various types of septic arthritis and mycotic arthritis, and viral arthritis, such as rubella arthritis, Lyme arthritis (caused by a spirochete transmitted by a tick), Mumps arthritis, arboviral arthritis, syphilitic arthritis, parvovirus arthritis, tuberculous arthritis, Varicella arthritis, gonococcal arthritis, rubella arthritis, Reiter's syndrome (which includes a form of arthritis commonly arising from infection by Chlamydia trachomatis) etc. These assorted disorders can arise from quite varied sources. Thus, in addition to the above, CPDD, sometimes called pseudoosteoporosis, or pseudogout, arises from Calcium Pyrophosphate Deposition. It is treated with nonsteroidal anti-inflammatory drugs, corticosteroids and Colchicine. Menopausal arthritis is due to ovarian hormonal deficiency. Neuropathic arthritis (which comes in several forms, such as Charcot's disease) can arise from sources as diverse as Diabetes Mellitus, Steroid treatment, Leprosy, Chronic alcoholism, Heavy metal poisoning and Neoplastic peripheral neuropathy. Arthritis can also arise from injury to the supporting ligaments or other structures contained within or associated with the

joint, a condition often called post-traumatic arthritis. Juvenile Dermatomyositis (JDMS) is an inflammatory disease of unknown cause that affects the skin, muscle and the gastrointestinal tract. Polymyalgia Rheumatica (PMR) causes severe stiffness, aching and pain in the neck, shoulders, upper arms, lower back, hips or thighs. Polymyositis is due to inflammation of skeletal muscle, resulting in weakness.

Sinusitis is the inflammation of the mucosal lining of one or more of the 4 cavities near the nasal passages (ethmoid, maxillary, frontal, and sphenoid sinuses). It commonly accompanies upper respiratory viral infections which obstruct the opening, but such obstruction can also arise from abnormalities in the structure of the nose, enlarged adenoids, diving/swimming, infections from a tooth, trauma to the nose, and foreign objects that are stuck in the nose. Bacteria, notably Streptococcus pneumonia, Haemophilus influenza, and Moraxella catarrhalis grown in the trapped secretions. In most cases it requires no treatment, but antibiotics may be given, along with acetaminophen for pain and nosedrops, for relief of symptoms.

Pharyngitis is infection and inflammation of the throat (including the nasopharynx, uvula, and soft palate) and tonsillitis is of the tonsils. These are caused by a variety of viruses (adenoviruses, influenza viruses, parainfluenza viruses, Epstein-Barr virus, enteroviruses, Herpes simplex virus), mycoplasmas (e.g. Mycoplasma pneumoniae), and bacteria (Group A Beta Hemolytic Streptococci (GABHS), Streptococcus pyogenes, Neisseria Gonorrhoea, Hemophilus Influenza Type B) as well as fungal infections, parasitic infections, cigarette smoke, and unknown causes.

Similarly, Osteomyelitis is the inflammation of bones, often caused by bacteria (most commonly Staphylococcus Aureus), and sometimes by fungi or viruses. Chronic Recurrent

Multifocal Osteomyelitis (CRMO), a chronic inflammatory disease of unknown etiology, results in recurrent fever and the development of multiple inflammatory bone lesions.

Dacryoadenitis, an inflammation of the tear gland, can arise from infectious mononucleosis, mumps, gonorrhea, or influenza.

Pneumonia is an inflammation of the lungs. Lobar pneumonia affects one or more sections (lobes) of the lungs. Bronchial pneumonia (or bronchopneumonia) affects patches throughout both lungs. Bacterial pneumonia is caused by various bacteria notably Streptococcus pneumoniae. Viral pneumonia is caused by viruses (such as respiratory syncytial, parainfluenza, and influenza). Other causes are fungi, mycoplasmas, rickettsias (especially Q fever), Chlamydia, or parasites. It can also occur as a hypersensitivity, or allergic response, to agents such as mold, humidifiers, and animal excreta, and in such a case would be treated with anti-allergic agents. Treatment may include antibiotics for bacterial pneumonia. Antibiotics may also speed recovery from mycoplasma pneumonia and some special cases. There is no clearly effective treatment for viral pneumonia.

Adult (or Acute) Respiratory Distress Syndrome (ARDS) is severe inflammation in both lungs resulting in an inability of the lungs to function properly. ARDS is a devastating, often fatal, inflammatory lung condition that usually occurs in conjunction with catastrophic medical conditions, such as pneumonia, shock, sepsis, and trauma. No specific therapies currently exist for ARDS patients. Treatment primarily involves supportive care in an intensive care unit, including use of a mechanical ventilator and supplemental oxygen to help patients breathe.

Chronic bronchitis is a long-term inflammation of the bronchi, which results in increased production of mucus, as well as other changes. Chronic bronchitis has no specific

organism recognized as the cause of the disease. Cigarette smoking is cited as the most common contributor to chronic bronchitis, followed by bacterial or viral infections and environmental pollution. Treatment is purely supportive and may include bronchodilators for inhaled medications, oxygen supplementation, lung reduction surgery and lung transplantation.

Chronic Obstructive Pulmonary Disease (COPD) is a slowly progressive disease of the airways that is characterized by a gradual loss of lung function. COPD includes chronic obstructive Bronchitis (which involves inflammation and eventual scarring of the bronchi) and emphysema (enlargement and destruction of the alveoli). Emphysema comes in several forms, including Congenital Lobar Emphysema, Bullous Emphysema, Centrilobular Emphysema (Proximal acinar emphysema), Panacinar (panlobular), Distal acinar (paraseptal) as well as Alpha-1 antitrypsin (AAT) deficiency, which is the genetic form of emphysema; patients often have both a form of bronchitis and emphysema. Ordinary chronic bronchitis is sometimes included with COPD even if there is no actual obstruction, and asthmatic bronchitis is generally included in COPD as well. Persons with COPD typically develop smaller air passageways, which can become clogged with mucus and have partially destroyed alveoli. There is no pharmaceutical treatment for COPD per se. Instead, treatment is supportive and designed to relieve symptoms and improve quality of life. Thus, oxygen is often given to partially compensate for the loss of lung function. Bronchodilators can expand passageways in the lungs, Corticosteroids can reduce inflammation and Antibiotics can ward off bacterial infections, but none of these treat the COPD itself.

Acute bronchitis is the inflammation of mucous membranes of the bronchial tubes and is usually caused by infectious agents such as bacteria or viruses. It may also be caused by physical or chemical agents -- dusts, allergens, strong fumes -- and those from chemical cleaning compounds, or tobacco smoke. (Acute asthmatic bronchitis may happen as the result of an asthma attack, or it may be the cause of an asthma attack.) Acute bronchitis is usually a mild, and self-limiting condition, with complete healing and return to function. Most of the treatment is supportive of the symptoms, and may include analgesics, such as acetaminophen for fever and discomfort.

Asthma is a chronic, inflammatory lung disease involving recurrent breathing problems. It is characterized by three airway problems: obstruction, inflammation, and hyper-responsiveness. These lead to contraction of airway muscles, mucus production, and swelling in the airways. There are many different asthma triggers.

Myocarditis is an inflammation of the muscular middle layer of the heart (myocardium) Viruses, bacteria, and noninfectious diseases can cause it. Treatment is primarily supportive e.g. drugs may be used to improve the heart's ability to contract and to remove extra fluids from the body. Unless the underlying infectious agent itself is treatable, this inflammation is not itself treated.

Mucocutaneous lymph node syndrome (MLNS) or Kawasaki syndrome is a potentially fatal inflammatory disease that affects the heart, circulatory system, mucous membranes, skin, and immune system. Its cause is unknown.

Glossitis is inflammation of the tongue. Local causes of glossitis include bacterial or viral infection, mechanical irritation or injury from burns, rough edges of teeth or dental and oral appliances, or other trauma; exposure to irritants (tobacco, alcohol, hot foods, or

Art Unit: 1624

spices), and sensitization (to e.g. toothpaste, mouthwash, breath fresheners, dyes in candy, plastic in dentures or retainers) anemia and other B vitamin deficiencies, erythema multiform, pemphigus vulgaris, syphilis, and other disorders. It can be inherited. Corticosteroids such as prednisone may be given to reduce the inflammation. Antibiotics, antifungal medications, or other antimicrobials may be prescribed if the cause of glossitis is an infection. Anemia and nutritional deficiencies must be treated, often by dietary changes or other supplements.

Meningitis is the inflammation of the meninges—the surrounding 3-layered membranes of the brain and spinal cord, and the fluid it is bathed in, (CSF). It can be caused by virtually any known infectious agent. Thus, if it is caused by Haemophilus influenzae or Neisseria meningitis, the antibiotic derivative rifampin would be used.

Myelitis is inflammation of the spinal cord.

Dactylitis is an inflammatory affection of the fingers.

Inclusion body myositis is an inflammatory slowly progressive proximal myopathy which may cause dysphagia and mild to moderate muscle wasting. Steroids and immunosuppression have generally been generally ineffective. Its pathogenesis is unknown, but ubiquitin, prion protein, and tau protein has been found in these inclusions.

Behçet's disease is a syndrome of unknown origin, but appears to be an autoimmune disorder. It is characterized primarily by inflammation of the blood vessels. Symptoms include a broad range of problems, which include mouth sores, genital sores, skin sores or lesions, meningoencephalitis, Uveitis, inflammation of the joints, thrombophlebitis, aneurysms, digestive tract ulceration (sometimes called Behçet's colitis)

Encephalitis is inflammation of the brain itself, often caused by a group of arboviruses. Treatment of encephalitis is largely supportive because no specific antiviral agents, except for that which works against herpes simplex virus, are available for therapy.

Inflammation in the brain is a significant component of some important neurodegenerative conditions, including Alzheimer's Disease, AIDS dementia, Pick's Disease, Parkinson's Disease, and Huntington's Disease. The circumstances here are poorly understood because while there does not appear to be lympho-infiltrative processes, there is neuropathological evidence for immune activation. Thus, inflammation may be a disease-aggravating or even a disease-ameliorating factor in pathogenesis, or a non-contributory consequence of the injurious cascade of neurodegeneration and thus incidental.

Hepatitis is an inflammation of the liver, usually caused by viral invasion, notably hepatitis A, B and C, but sometimes Epstein-Barr virus; herpes simplex viruses; measles, mumps, and chicken pox viruses; and cytomegaloviruses. Treatment, when possible, is with antivirals. Inflammation of the liver also take the form of alcoholic hepatitis. Lupoid hepatitis is an autoimmune disorder.

Hemorrhoids is an enlarged or varicose condition of the hemorrhoidal veins and tissues around the anus, either internal or external. Anything which obstructs the free circulation of the blood in the portal system will give rise to hemorrhoids. Constipation, straining at stool, diarrhea, dysentery, rough toilet paper, uncleanliness, pelvic tumors, displacement of the uterus and pregnancy are among the most common causes.

There is a series of inflammatory problems directly connected to neutrophil-endothelial cell adhesion (NECA). These include frostbite injury, bacterial meningitis,

acute airway inflammation, allograft rejection, hemorrhagic shock, septic shock, ischemia and reperfusion injuries.

Urethritis is an inflammation of the duct that leads from the bladder to the body's exterior. It is often due to fecal contamination or irritation due to physical or chemical substances (e.g. introduction of foreign bodies into the urethra, bubble bath, or soap) or gonorrhea. Treatment may simply involve the withdrawal of the offending chemical agent, or the administration of antibiotics, when *Neisseria gonorrhoeae* is involved.

Inflammation can arise from the eruption of teeth in a child (teething).

Inflammation of the nails can arise from chronic paronychia, fungus (especially *Candida albicans*), trauma, impaired circulation, and dermatitis.

Bright's disease (or glomerulonephritis) is inflammation of the glomeruli and the nephrons, the structures in the kidney that produce urine. It usually results from an infection, such as a streptococcal infection, that occurs somewhere else in the body. There is no real treatment beyond relief of the symptoms.

Thyroiditis is an inflammation of the thyroid gland, and takes three forms.

Hashimoto's Thyroiditis (chronic lymphocytic thyroiditis) is the most common type of thyroiditis. It is an autoimmune disorder, and treatment is to start thyroid hormone replacement. For De Quervain's Thyroiditis (subacute or granulomatous thyroiditis), treatment is usually bed rest and aspirin to reduce inflammation. Occasionally cortisone and thyroid hormone may be used. Silent Thyroiditis usually arises following pregnancy. Treatment is usually bed rest with beta blockers.

Regional enteritis (Crohn's disease or ileitis) is an autoimmune disorder which is associated with the presence of *Mycobacterium paratuberculosis*. It can affect any part of

the gastrointestinal tract but most commonly affects the ileum. The inflammation is controlled primarily by regulation of diet, antibiotics if abscesses and fistulas are present, sometimes Prednisone and other corticosteroids, and surgery.

Another category of inflammatory disorders is Interstitial lung disease, or ILD, (interstitial pulmonary fibrosis), a term that includes more than 180 chronic lung disorders, which may be chronic, nonmalignant (non-cancerous) and noninfectious. Interstitial lung diseases are named after the tissue between the air sacs of the lungs called the interstitium -- the tissue affected by fibrosis (scarring). The common link between the many forms of ILD is that they all begin with an inflammation. The three main kinds are bronchiolitis - inflammation that involves the bronchioles (small airways); alveolitis - inflammation that involves the alveoli (air sacs); and vasculitis - inflammation that involves the small blood vessels (capillaries). More than 80 percent of interstitial lung diseases are diagnosed as pneumoconiosis, a drug-induced disease, or hypersensitivity pneumonitis. Some other types are idiopathic pulmonary fibrosis, bronchiolitis obliterans, histiocytosis X, chronic eosinophilic pneumonia, granulomatous vasculitis, Goodpasture's syndrome and pulmonary alveolar proteinosis. The cause of interstitial lung disease is not known, however, a major contributing factor is thought to be inhaling environmental pollutants. Other contributing factors include Sarcoidosis, certain drugs, radiation, connective tissue or collagen diseases and family history. Treatments may include corticosteroids, influenza or pneumococcal pneumonia vaccine but these are of limited effectiveness.

Many Occupational Lung Diseases are inflammatory in origin, arising from repeated and long-term exposure to certain irritants on the job. These include for example asbestosis, coal worker's pneumoconiosis (caused by inhaling coal dust), silicosis (caused by

inhaling free crystalline silica), byssinosis (caused by dust from hemp, flax, and cotton processing, also known as brown lung disease), aluminosis, anthracosis ("collier's lung", from the accumulation of carbon from inhaled smoke or coal dust in the lungs), chalcosis (stone-cutters' lung disease, due to inhaling stone dust), siderosis (occurring in iron workers, produced by the inhalation of particles of iron), tabacosis, hypersensitivity pneumonitis (caused by the inhalation of fungus spores from moldy hay, bird droppings, and other organic dusts and occupational asthma (caused by inhaling certain irritants in the workplace, such as dusts, gases, fumes, and vapors).

Proctitis is a form of inflammation of the rectum, and includes Antibiotic-Induced Proctitis, Gonorrhreal Proctitis, Herptic Proctitis, Ischemic Proctitis, Radiation Proctitis, Syphilitic Proctitis and idiopathic proctitis.

Pulmonary Sarcoidosis causes small lumps, or granulomas, which generally heal and disappear on their own. However, for those granulomas that do not heal, the tissue can remain inflamed and become scarred, or fibrotic. Pulmonary sarcoidosis can develop into pulmonary fibrosis. Bronchiectasis, a lung disease in which pockets form in the air tubes of the lung and become sites for infection, can also occur. Treatment may include the use of corticosteroids.

Stomatitis, inflammation of the mouth, and mucositis, inflammation of the mucosa can arise from sources as diverse as Candida albicans, dentures, chemotherapy and radiation therapy to the head, neck or mouth ("Radiation mucositis"). It may be secondary to infection, trauma, systemic diseases or autoimmune mechanisms. These come in many forms, such as aphthous ulcers, Acute Necrotizing Ulcerative Gingivitis i.e. "trench mouth", and Lichen Planus. Herpetiform ulcers treatment has ranged from antibiotics,

immunosuppressants and yogurt, to Lactobacillus capsules, tetracycline and systemic steroids. Palliative measures include topical anesthetics, Vitamin E, analgesics, and coating agents. Antiviral agents may be used if viral origin is established.

Rhinitis is a reaction that occurs in the eyes, nose and throat when airborne irritants (allergens) trigger the release of histamine. Histamine causes inflammation and fluid production in the fragile linings of nasal passages, sinuses, and eyelids. The two categories of rhinitis are allergic rhinitis (seasonal and perennial) and nonallergic Rhinitis (including eosinophilic, rhinitis medicamentosa, vasomotor Rhinitis, neutrophilic rhinosinusitis, and others), which come from fumes, odors, temperature or atmospheric changes, smoke, etc. Treatments for nonallergic rhinitis include oral medications, inhaled medications, immunotherapy, and surgery for some conditions. Wegener's Granulomatosis is a disease that usually begins as a localized granulomatous inflammation of upper or lower respiratory tract mucosa and may progress into generalized necrotizing granulomatous vasculitis and glomerulonephritis. The cause is unknown. Although the disease resembles an infectious process, no causative agent has been isolated. Treatment is with immunosuppressive cytotoxic drugs.

Pancreatitis is inflammation of the pancreas and can arise from abdominal trauma, or the formation of gallstones that obstruct the common bile duct. It can be associated with excessive ingestion of alcohol; with disorders such as cystic fibrosis or Reye's syndrome; or with scorpion stings. Infectious causes include mycoplasmas, Epstein-Barr viruses, Coxsackie viruses, leptospirosis, hepatitis viruses, mumps, congenital German measles, Ascaris worms, and syphilis. The inflammation per se is generally not treatable. Treatment is usually supportive and consists of the management of pain and intravenous feeding.

Neuroretinitis is a type of inflammation of the retina and optic nerve of the eye ("optic neuritis"). It is often idiopathic. It frequently arises secondary to some kind of infection, such as Hepatitis B, HSV, EBV, influenza A, mumps, Coxsackie B, TB, salmonella, Lyme disease, syphilis, leptospirosis, Histoplasmosis, Toxoplasmosis, toxocara, Sarcoidosis and cat-scratch disease. Treatment is thus to the underlying cause. For example, Diffuse unilateral subacute neuroretinitis (DUSN) arises from nematodes deep in the retina or in the subretinal space. Anthelmintic treatment is then used. When the origin is Toxoplasmosis, then anti-Toxoplasma medications such as Pyrimethamine. Vogt-Koyanagi-Harada syndrome (Harada's disease) is an acute inflammatory, immune-mediated disorder that can cause choroidal neovascularization, severe chorioretinal atrophy, and secondary glaucoma.

River blindness arises from inflammation of the eye caused by larvae (microfilaria) of the nematode *Onchocerca volvulus*, although the *Wolbachia* bacteria may be involved as well.

Multifocal choroiditis and panuveitis (MCP) is a posterior chorioretinal inflammatory disease of unknown etiology

There are also other forms of choroiditis, inflammation of the middle coat (choroid) of the eyeball, as well as uveitis, which is inflammation of the parts of the eyes that make up the iris. Other eye inflammations include scleritis and episcleritis, inflammation of tissues on the sclera.

Gastritis is inflammation to the stomach lining. Atrophic gastritis is characterized by the loss of the stomach cells that are responsible for manufacturing acid, pepsin, and intrinsic factor. This condition occurs in older people or those suffering from Helicobacter

pylori. Erosive (hemorrhagic) gastritis occurs when shallow ulcers or sores develop on the upper layer of the stomach lining, usually because of the excessive ingestion of a stomach irritant such as aspirin or alcohol.

There can also be mentioned appendicitis, which can occur when a hard piece of stool blocks the opening of the appendix, causing swelling and inflammation.

The great majority of skin problems involve some type of inflammation, such as response to physical injury (e.g. sunburn, ticks, abrasion, or a bee sting), acute allergic contact dermatitis (such as poison ivy), and infections (such as boils and cold sores). Ingrowing hairs, or pili incarnati, can cause acute pustular reactions. Cancerous lesions of the skin frequently show some degree of inflammatory response. Acne's inflammation is caused by leakage of sebum and keratin debris outside the distended pilosebaceous duct. The bacillus *Propionibacterium acnes*, which populates the lesions, may also contribute indirectly to this inflammation by metabolizing the sebum to produce irritant fatty acids. Inflammation in skin problems is usually the result of the release of chemical mediators in the skin, notably histamine, peptides (kinins) and fatty acids (prostaglandins and leukotrienes), which are formed enzymatically in response to e.g. injury. Medications designed to counteract inflammation in the skin may or may not antagonize the effects of the particular type of mediator involved, if that is known. The inflammation can take many different forms, including redness, (from dilation of blood vessels); heat, (from increased blood flow); swelling (from leakage of fluid from the small blood vessels); whealing reactions (hives, nettle rash, urticaria) in which vascular changes predominate, and pain or itching. Blisters (from enzymes released from inflammatory cells, resident cells of the skin, or blood plasma components) can cause the breakdown of proteins responsible for the structural

Art Unit: 1624

integrity of the skin, leading to serious inflammatory disorders such as pemphigus. In addition, the affected skin may feel indurated (hardened) because of the deposition of the coagulation protein fibrin and the infiltration by inflammatory blood cells (lymphocytes, histiocytes, and polymorphonuclear leukocytes).

Prostatitis, inflammation of the prostate, comes in several different forms, including those of bacterial origins, and those which are not, including chronic abacterial prostatitis and asymptomatic inflammatory prostatitis. Certain types of anti-inflammatory agents, such as non-steroidal anti-inflammatory medications (Ibuprofen and naproxen) along with muscle relaxants can be used in the non-bacterial cases.

There are a number of different forms of vasculitis, including Churg-Strauss vasculitis, consecutive vasculitis, granulomatous vasculitis of central nervous system, hypersensitivity vasculitis, (called also allergic or leukocytoclastic vasculitis or leukocytoclastic angiitis which arises from hypersensitivity to an antigenic stimulus), hypocomplementemic vasculitis, isolated vasculitis of central nervous system, nodular vasculitis, overlap vasculitis (polyangiitis overlap syndrome), pulmonary vasculitis including Wegener's granulomatosis, rheumatoid vasculitis, segmented hyalinizing vasculitis (livedo vasculitis), Polyarteritis nodosa, and urticarial vasculitis. There are also specific forms of arteritis, including coronary arteritis, equine viral arteritis, giant cell arteritis (cranial, granulomatous, or temporal arteritis or Horton's disease), infantile arteritis, infectious arteritis, arteritis obliterans (endarteritis obliterans), rheumatic arteritis, syphilitic arteritis, Takayasu's arteritis (aortic arch, or brachiocephalic arteritis or Martorell's syndrome or pulseless disease; it is of unknown origin), tuberculous arteritis, endarteritis obliterans, and verminous mesenteric arteritis.

Cystic fibrosis (CF) is an inherited disease characterized by an abnormality in the glands that produce sweat and mucus. It is chronic, progressive, and is usually fatal. The basis for the problem with CF lies in an abnormal gene, which results in an atypical electrolyte transport system within the cells of the body. The abnormal transport system causes the cells in the respiratory system, especially the lungs, to absorb too much sodium and water. This causes the normal thin secretions in our lungs to become very thick and hard to remove. The high risk of infection in the respiratory system leads to damage in the lungs, lung that do not work properly, and eventually death of the cells in the lungs. The most common causes for infection in the lungs are *Staphylococcus aureus*, *Haemophilus influenza* and *Pseudomonas aeruginosa* (PA). The disorder itself is largely untreatable.

Osgood-Schlatter disease is a common form of inflammation of the knee in active adolescents. It has no pharmaceutical treatment per se. Other inflammations of the knee include Sinding-Larsen-Johansson disease, Patellofemoral syndrome, and osteochondritis dissecans.

Adhesive capsulitis is a type of inflammation of the shoulder. Its origin is usually unknown.

The above list is by no means complete, but demonstrates the extraordinary breadth of causes, mechanisms and treatment (or lack thereof) for inflammation. It should be noted that determining that a disorder is an inflammatory one is sometimes not an easy manner. For example, it has taken decades of research to discover that the destruction of the central area of the retina, which is the hallmark of age-related macular degeneration, actually arises out of an inflammatory process, involving the Complement Pathway. This

only became well established in 2005. It is entirely possible that a majority of disorders presented considered idiopathic --- including many untreatable disorders --- are in fact inflammatory disorders.

It must be noted that an inflammatory response is a normal body process and for good reason. A certain level of inflammatory response is needed to protect the body from invading organisms, especially bacteria, viruses, and parasites. An acute inflammatory response is needed to activate the healing process for burns, mediated by a range of MMPs. In sprains or other ligament injuries, some inflammatory response is needed initially to initiate repair of the damage. In mechanical wounds, some inflammatory response is required for satisfactory wound healing and indeed anti-inflammatory drugs such as cortisone can impair healing when administered at the time of wounding. In fact, inflammation is too important to be dependent on a single pathway and so inflammation can be initiated by numerous different systems, and generally, if one fails or is thwarted, another can do some or all of the job.

III. With regard to gastrointestinal disorders, the gastrointestinal tract comprises the mouth, throat (which includes the fauces and the pharynx), esophagus, stomach, duodenum, jejunum, ileum (including the ileocecal valve), the cecum, the appendix, the ascending colon, the transverse colon, the descending colon, and the sigmoid colon, rectum, anal canal, and anus. The Gastrointestinal System has also five organs that lie outside the GI track: the Spleen, Pancreas, Liver, gall bladder and bile ducts. Thus, the claim covers any and all disorders of any of these organs. This includes colon cancers and other GI cancers, as discussed above. There are disorders of the esophagus, including the Upper Esophageal Sphincter (UES), such as swallowing disorders (dysphagia, odynophagia, and

Art Unit: 1624

achalasia), the three main Esophageal Diverticula (Zenker's diverticulum, Mid-esophageal diverticulum, and Ephiphrenic diverticulum), an assortment of esophageal strictures, Gastroesophageal reflux disease (GERD), Barrett's esophagus, Mallory-Weiss Syndrome, and two forms of cancer, squamous cell carcinoma of the esophagus, and adenocarcinoma of the esophagus. There are numerous malabsorption disorders e.g. Whipple's disease, Lymphangiectasia, Abetalipoproteinemia, Eosinophilic gastroenteritis, Systemic mastocytosis, Celiac Disease, and Amyloidosis. It includes numerous forms of Chronic Gastritis, including Chronic Atrial Gastritis, Chronic Atrophic Gastritis, Multifocal Atrophic Gastritis (MAG), chemical gastritis, Autoimmune Gastritis, Helicobacter gastritis, Infectious granulomatous gastritis, Hypertrophic gastritis, Chronic noninfectious granulomatous gastritis, Lymphocytic gastritis, Eosinophilic gastritis, Radiation gastritis, and ischemic gastritis. There is also Acute gastritis, a group of disorders that fall into the subcategories of erosive (e.g., hemorrhagic erosions, superficial erosions, deep erosions) and nonerosive. There are other conditions such as acute necrotizing pancreatitis, colic, rectal prolapse, Crohn's Disease, amebic dysentery, Neutropenic enterocolitis of the cecum or ascending colon, Typhlitis (inflammation of the cecum), HIV enteropathy, Hyperplastic Gastropathy (including Menetrier's Disease, Hypersecretory gastropathy, and gastric hyperplasia), Acute Self-Limited Enterocolitis, Peptic Ulcer Disease (Duodenal Peptic Ulcer and Gastric Peptic Ulcer), stress ulcers (Curling's ulcer, Cushing's ulcer), Stevens-Johnson syndrome (SJS), ulcerative colitis, hiatal hernia, Duodenal atresia, jejunal atresia, and ileal atresia, intestinal lipodystrophy, Peutz-Jeghers syndrome, short bowel syndrome, pancreatic cysts and pseudocyst, urinary and fecal incontinencies, volvulus (abnormal twisting of the cecum, ileum, sigmoid colon or stomach), splenic flexure

syndrome, Angiodysplasia of the Colon (a vascular abnormality), Familial adenomatous polyposis (FAP), neonatal small left colon syndrome (NSLCS), Hirschsprung disease, Ogilvie syndrome, acute megacolon, chronic megacolon, toxic megacolon, Colovesical fistula, Rectovesical fistula, Appendicovesical fistula, encopresis, ileocecal valve syndrome, meconium ileus, Adynamic Ileus, Mechanical Ileus, Ileovesical fistula, neutropenic enterocolitis of the ileum, ileocecal syndrome, Cronkhite-Canada syndrome, Cloacal exstrophy, Mesenteric adenitis, Necrotizing enterocolitis (NEC), Schnitzler Syndrome, hemorrhoids, Zollinger-Ellison syndrome, infectious enterocolitis, Eosinophilic Gastroenteritis, appendicitis, pancreatic insufficiency, intestinal polyps, chronic constipation and much, much more. The term it should be noted embraces contradictory problems, such as excess gastric acid secretion and also insufficient gastric acid secretion. It covers mobility disorders in which food moves too fast and also moves too slow. It covers disorders where the secum mixes in too much mucus and when it mixes in not enough. It covers forms in inflammation of the rectum, including Antibiotic-Induced Proctitis, Gonorrhreal Proctitis, Herpetic Proctitis, Ischemic Proctitis, Radiation Proctitis, Syphilitic Proctitis and idiopathic proctitis.

IV. Diabetes, to which claim 14 is directed, covers Diabetes insipidus, Type 1 and Type 2 diabetes mellitus, maturity-onset diabetes of the young (MODY, which comes in 6 completely different forms arising from different genetic defects), Gestational diabetes mellitus ("GD") and neonatal diabetes.

V. Infertility is not a disease per se, but, according to one commonly used definition, the inability to become pregnant after 12 months of unprotected sexual intercourse. Hence it is best understood as a condition, arising from some failure of the male or female reproductive

Art Unit: 1624

system to function properly, a failure which may arise from structural, hormonal, genetic, psychological, etc. causes.

VI. Immunoregulatory disorders embrace Immunodeficiency Disorders, in two very different categories. Primary Immunodeficiency disorders are caused by inherited functional defects in the cells of the immune system, particularly B and/or T Lymphocytes. Examples include X-linked Agammaglobulinemia (Bruton's disease), Common Variable Immunodeficiency , Selective IgA Deficiency, DiGeorge Syndrome , Severe Combined Immunodeficiency Disease (SCID, which is actually heterogeneous group of conditions all associated with genetic defects in those lymphoid stem cells that are precursors for both T and B Lymphocytes. This causes functional impairment of both humoral and cell-mediated immunity), Wiskott-Aldrich syndrome, Ataxia-Telangiectasia , and other inherited defects in the complement system, and defects in granulocyte function. Secondary immunodeficiencies are acquired defects in immune function resulting from a wide variety of sources. These include drugs (e.g. cancer chemotherapeutic agents, Cyclosporin, and corticosteroids), infections of immune system cells (most notably HIV), disseminated cancers (malignancies that invade the bone marrow may crowd out immune system cells and their precursors), malnutrition, radiation therapy (bone marrow suppression, lymphocyte toxicity), Splenectomy (increased susceptibility to infection by encapsulated microorganisms), severe burns (loss of immunoglobulins through damaged skin) and chronic renal disease. It also covers the exact opposite problem, the autoimmune diseases, which are processes which can take place in virtually any part of the body. There is a vast range of forms that it can take, causes for the problem, and biochemical pathways that mediate the inflammatory reaction. There are dozens of such diseases, which have

fundamentally different mechanisms and different underlying causes. Known autoimmune disorders, or disorders generally considered to be autoimmune include Polymyositis, Scleroderma, Osteosclerosis, Meniere's disease, Idiopathic neutropenia, Idiopathic thrombocytopenic purpura, Autoimmune hemolytic anemia, Premature ovarian failure, Idiopathic hypoparathyroidism, primary biliary cirrhosis, Pemphigus, multiple sclerosis, autoimmune uveitis, rheumatoid arthritis, Addison's disease, thyroiditis, atrophic gastritis, myasthenia gravis, idiopathic thrombocytopenic purpura, hemolytic anemia, systemic lupus erythematosus, Wegener's granulomatosis, polyarteritisnodosa, erythema nodosum leprosum, Guillain-Barré syndrome (GBS), allergic encephalomyelitis, acute necrotizing hemorrhagic encephalopathy, idiopathic bilateral progressive sensorineural hearing loss (IPBSNHL), aplastic anemia, pure red cell anemia, polychondritis, scleroderma, Stevens-Johnson syndrome, idiopathic sprue, lichen planus, Crohn's disease, Graves ophthalmopathy, sarcoidosis, primary biliary cirrhosis, type I diabetes, autoimmune optic neuritis, uveitis posterior, or interstitial lung fibrosis, alopecia, Sjogren's Syndrome, Goodpasture Syndrome, inflammatory bowel disease, Essential Mixed Cryoglobulinemia, Behçet's Syndrome, Chronic Inflammatory Polyneuritis (CIPD), CREST Syndrome, Antiphospholipid Syndrome, Relapsing Polychondritis (systemic chondromalacia or von Meyenburg disease), Retroperitoneal Fibrosis, immune dysregulation, polyendocrinopathy, enteropathy, autoimmune hepatitis, Hashimoto's Disease, opsoclonus myoclonus syndrome (OMS), psoriasis, Reiter's syndrome, Takayasu's arteritis, temporal arteritis, X-linked syndrome (IPEX), Autoimmune Atherosclerosis, Autoimmune inner ear disease(AIED), Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections

(PANDAS), Sydenham's chorea ("Saint Vitus Dance"), Acquired autoimmune hemolytic anemia, Celiac disease and many, many more.

VII. Angiogenesis is not a disease. Angiogenesis is the normal physiological process involving the growth of new blood vessels from pre-existing vessels and can take two very different forms. Sprouting angiogenesis, which forms entirely new vessels, involves angiogenic growth factors which activate receptors present on endothelial cells present in pre-existing venular blood vessels, the release of certain proteases, and adhesion molecules, called integrins. Intussusceptive angiogenesis ("splitting angiogenesis") involves the extension of the capillary wall into the lumen. The two opposing capillary walls establish a zone of contact, the endothelial cell junctions are reorganized and assorted growth factors and cells to penetrate into the lumen. Pericytes and myofibroblasts lay collagen fibers into the core to provide an extracellular matrix for growth of the vessel lumen. Intussusception constitutes a reorganization of existing cells to produce a vast increase in the number of capillaries without a corresponding increase in the actual number of endothelial cells.

VIII. The claim would cover an assortment of other disorders, including AIDS, multiple sclerosis, etc.

(2) The nature of the invention and predictability in the art: With specific reference to cancer, *Ex parte Kranz*, 19 USPQ2d 1216, 1219 notes the "general unpredictability of the field [of] ...anti-cancer treatment." *In re Application of Hozumi et al.*, 226 USPQ 353 notes the "fact that the art of cancer chemotherapy is highly unpredictable". More generally, the invention is directed toward medicine and is therefore physiological in nature. It is well established that "the scope of enablement varies inversely with the degree of unpredictability of the factors involved," and physiological activity is generally considered

to be an unpredictable factor. See *In re Fisher*, 427 F.2d 833, 839, 166 USPQ 18, 24 (CCPA 1970).

(3) Direction or Guidance: That provided is very limited. The dosage range information provided on page 36 has a thousand fold range even in its narrowest teaching. Further, it is completely generic. That is, it is the same dosage for all disorders listed in the specification, which is a very substantial range of disorders.

(4) State of the Prior Art: The claimed compounds are purines with a specific set of rings attached the 6-position, and special substituent at the 8-position. So far as the examiner is aware no purines with any kind of ring at the 6-position have been successfully used as e.g. anticancer agents or antidiabetics.

(5) Working Examples: There are none for the treatment of any disorder. There is a test for glucose tolerance in normal mice.

(6) Skill of those in the art: The prior art knows that there never has been a compound capable of treating cancer generally. "The cancer therapy art remains highly unpredictable, and no example exists for efficacy of a single product against tumors generally." (<<http://www.uspto.gov/web/offices/pac/dapp/1pecha.htm#7>> ENABLEMENT DECISION TREE, Example F, situation 1) There are compounds that treat a modest range of cancers, but no one has ever been able to figure out how to get a compound to be effective against cancer generally, or even a majority of cancers. Thus, the existence of such a "silver bullet" is contrary to our present understanding in oncology. This is because it is now understood that there is no "master switch" for cancers generally; cancers arise from a bewildering variety of differing mechanisms. Even the most broadly effective antitumor agents are only effective against a small fraction of the vast number of different cancers

known. This is true in part because cancers arise from a wide variety of sources, such as viruses (an estimated at least 20% are of viral origin e.g. EBV, HHV-8, HTLV-1 and other retroviruses, and quite possibly Merkel cell polyomavirus), exposure to chemicals such as tobacco tars, genetic disorders (e.g. Tuberous Sclerosis), ionizing radiation, and a wide variety of failures of the body's cell growth regulatory mechanisms. Different types of cancers affect different organs and have different methods of growth and harm to the body, and different vulnerabilities. Cancers that affect just a certain type of structure can be quite varied. Fibromas for example include Infantile myofibromatosis, Fibrous hamartoma of infancy. Juvenile hyaline fibromatoses. Infantile digital fibromatoses. Calcifying aponeurotic fibromas. Giant cell fibroblastoma. Ovarian fibroma, Dermatofibroma, myofibroma, myofibromatosis, desmoplastic fibroma, neurofibroma, peripheral odontogenic fibroma, peripheral ossifying fibroma, giant cell fibroma, Chondromyxoid Fibroma, Oral Neurofibroma, Juvenile aponeurotic fibroma (JAF), aggressive infantile fibromatosis (AIF), omental fibroma, Perifollicular fibroma, ameloblastic fibroma, Premalignant Fibroepithelial Tumor (Pinkus Tumor), Periungual fibroma (Koenen tumor), desmoid tumor, tracheal fibroma and many others. Since it is beyond the skill of oncologists today to get an agent to be effective against cancers generally, evidence that the level of skill in this art is low relative to the difficulty of such a task. The skill thus depends on the particular cancer involved. There are a few cancers where the skill level is high and there are multiple successful chemotherapeutic treatments. One skilled in the art knows that chemotherapy of brain tumors is especially difficult. This is because 1) the blood-brain barrier, which is often intact in parts or all of a brain tumor, will block out many drugs, as it is the purpose of the blood-brain barrier to protect the brain from alien chemicals, and 2) CNS tumors are

characterized by marked heterogeneity, which greatly decreases vulnerability to chemotherapy. As a result, many categories of CNS tumors simply have no chemotherapy available. These include, generally, hemangiomas and hemangioblastomas, meningiomas, craniopharyngiomas, acoustic neuromas, pituitary adenomas, optic nerve gliomas, glomus jugulare tumors and chordomas, to name just some. With regard to gliomas, GBM is considered untreatable; no effective agents have emerged for the treatment of GBM, despite 20 years of enrolling patients in clinical trials. It is radiation and surgery which are used for low grade gliomas (e.g. Pilocytic astrocytoma and Diffuse astrocytomas), as no drug has been found effective. There is no drug treatment established as effective for optic nerve gliomas or gangliogliomas. Indeed, very few gliomas of any type are treated with pharmaceuticals; it is one of the categories of cancer that is the least responsive to drugs. Cartilage tumors do not respond to chemotherapy, nor do Cancerous teratomas. Of the thyroid cancers, only one (anaplastic thyroid cancer) can be treated with anticancer agents. The other are treated with radioactivity, surgery, or thyroid suppression hormones. Lymphomas of the stomach are not commonly treated with ordinary anti-cancer agents, but instead, surgery or radiation and antibiotic therapy (e.g. amoxicillin, metronidazole, bismuth, omeprazole) are the Primary Treatments. Neuroendocrine tumors of the cervix generally do not respond to chemotherapy. Renal cell carcinoma does not respond to chemotherapy. A number of sarcomas, including Alveolar soft part sarcoma (ASPS), retroperitoneal sarcoma, most liposarcomas, and the assorted chondrosarcomas, are generally considered not to respond to chemotherapy; no chemotherapeutic agent has been established as effective. Aggressive NK cell leukemia is considered to be untreatable with pharmaceuticals. Many cerebral metastases, such as those from non-small-cell lung cancer

Art Unit: 1624

and melanoma, are not chemosensitive and will not respond to chemotherapy.

Hepatocellular Carcinoma is, in humans, possibly the most prevalent solid tumor. Despite strenuous efforts over a period of decades, no chemotherapeutic agent has ever been found effective against this cancer.

The prior art has established that there is no common mechanism by which all, or even most, inflammations arise. Mediators include bradykinin, serotonin, histamine, fibrin, some PDE4 isoenzymes, kallikrein, plasmin, thrombin, PAF, Mac-1, VLA-4, VLA-5, VLA-6, VCAM-1, LFA-1, ICAM-1, Prostaglandins and cyclic endoperoxides (particularly prostacycline, prostaglandin E2, and thromboxane A2), leukotrienes (especially LTC4, LTD4, and LTE4) and cytokines, and many, others. Examples of pro-inflammatory cytokines include IL-1-alpha, IL-1beta, IL-6, IL-8, IL-11, IL-12, IL-17, IL-18, GM-CSF, CNTF, OSM (Oncostatin M), MCP-1, CCL5 (RANTES), TGF-beta, ENA-78, Osteopontin, Cyclophilin A, LIF (leukemia inhibitory factor), leptin, MIP-1, TWEAK, MGSA, keratinocyte-derived chemokine, PF4, MCP-1 (GDCF), IFN-gamma, TNF-alpha, Abscisic acid, high mobility group box chromosomal protein 1 (HMGB-1), S100A12 (EN-RAGE), TRAIL, sCD40L, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-32, and IL-33. The Complement Pathway, which exists in two separate branches, uses C1, C4a, C4b, C2, C3a, C3b, C5a, C5b, C6, C7, C8 and C9, as well as the membrane attack complex (MAC) and other complexes, C3 and C5 convertase enzymes, PI3K-gamma, Magnesium ions, and Factors B, D, F, H, etc. The prior art knows that mediation of inflammation is among the most pervasive and complex of all body process.

Some GI disorders are amenable to pharmaceutical treatment, some cannot themselves be treated with pharmaceuticals but some management of symptoms can be

Art Unit: 1624

done with pharmaceuticals, some can be treated only with surgery (e.g. stomach cancers, Hirschsprung disease, NSLCS, Duodenal atresia, jejunal atresia, ileal atresia, and stenosis of the colon, to name just a few), some by dietary restrictions (e.g. ileocecal valve syndrome) and some are utterly untreatable. Treatment is often tailored to underlying case. Thus, the wide range that are of infectious origin are treated by drugs which are effective against the bacteria, fungus, virus, etc which causes the disorder, anticancer agents are given for different forms of cancer, structural problems (e.g. organs being twisted, or one organ intruding on another) are sometimes treated with surgery, chiropractic adjustments, or applied kinesiology. Decompression procedures are used for some disorders which have no pharmaceutical treatment. For example: Sigmoid volvulus (which can be life-threatening) is treated sigmoidoscopy, or sigmoid colectomy; Cecal volvulus is treated with hemicolectomy, or colonoscopy; Sigmoid obstruction secondary to diverticulitis or carcinomas is treated with sigmoid resection, the Hartman procedure, and primary anastomosis; Obstruction of splenic flexure is treated with extended hemicolectomy, and proximal colostomy; Ogilvie syndrome is treated with colonoscopic decompression. Thus, a drug that treats generally such utterly diverse disorders would be contrary with what is known about the considerable diversity of GI problems.

Treatment of infertility is invariably directed toward the cause, and these can vary quite widely. Some causes, like Robertsonian translocation in either partner, are untreatable. Many causes can be overcome only by arranging for fertilization to take place outside the body.

Diabetes treatment depends on type. Treatment for diabetes insipidus depends on what is causing the disease. Causes range from a hypothalamus that produces too little

ADH, a malfunctioning pituitary gland that fails to release ADH into the bloodstream, assorted brain injuries, encephalitis, meningitis or blockage in the arteries leading to the brain, certain tumors, tuberculosis and sarcoidosis, as well as some hereditary causes.

Type I Diabetes treatment, what little there is, tends to be via immune suppressants, since this is an auto-immune disorder. The skill level for the treatment for Type I diabetes is exceptionally low. Type 1 diabetes is an autoimmune disease that results in the irreversible destruction of insulin producing beta cells of the Langerhans islets in the pancreas. Despite the urgent need --- Type I diabetes is lethal unless the insulin is somehow replaced --- no pharmaceutical has ever been found effective against this disorder. Diet and exercise cannot reverse or prevent type 1 diabetes, although these are important in regulating the insulin given to the patient. Patients are treated either with insulin replacement therapy, or with transplantation surgery, either islet cell transplantation or, less commonly, pancreas transplantation. These do not treat the disorder per se, but only shield the patient from the lethal consequences. Patients may be given drugs for e.g. nephropathy or poor blood circulation in the feet, but these do not treat the disease itself, only the consequences of the lack of insulin.

In fact, the use of a DPP-IV inhibitor is not suitable for type-1 diabetes. As evidence, the examiner notes that there is a DPP-IV inhibitor on the market, called Januvia™ (sitagliptin). Specific product information on this drug states explicitly that it is not to be used with patients having Type 1 diabetes. The reference "Patient Information JANUVIA™" <http://www.merck.com/product/usa/pi_circulars/j/januvia/januvia_ppi.pdf> downloaded from the internet 4/30/08 is presented as an example. This is in fact explicit

evidence that not only is treatment of type-1 diabetes with DPP-IV inhibitors not enabled, it is actually contraindicated.

Treatment of Type-2 diabetes would be deemed enabled.

(7) The quantity of experimentation needed: In view of the above factors, especially factors 1, 4, and 6 the quantity of experimentation needed is expected to be great.

MPEP 2164.01(a) states, "A conclusion of lack of enablement means that, based on the evidence regarding each of the above factors, the specification, at the time the application was filed, would not have taught one skilled in the art how to make and/or use the full scope of the claimed invention without undue experimentation. *In re Wright*, 999 F.2d 1557, 1562, 27 USPQ2d 1510, 1513 (Fed. Cir. 1993)." That conclusion is clearly justified here.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1, 10-17 are rejected under 35 U.S.C. 102(b) as being anticipated by 5057517.

Example 32 has the following structure:

●2 HCl

This corresponds to X3= last choice, X2=X4=R1=methyl, X1=H (drawn as the tautomer).

The utility is treatment of type II diabetes and/or obesity.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to /Mark L. Berch/ whose telephone number is 571-272-0663. The examiner can normally be reached on M-F 7:15 - 3:45.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, James O. Wilson can be reached on (571)272-0661. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/537,227
Art Unit: 1624

Page 54

/Mark L. Berch/
Primary Examiner
Art Unit 1624

6/18/2008