Section 1: Binary Relations

Binary Relations on a set A. reflexive, antisymmetric, & transitive

Let *R* be a binary relation on a set *A*.

along a single arrow.

1. *R* is said to be **reflexive** if $(a,a) \in R$ for all

In terms of the arrow diagram, this means that every node has a loop.

2. A relation *R* is called *antisymmetric* if for all $a,b \in A$, if $a \neq b$ and $(a,b) \in R$, then $(b,a)\not\in R$.

In terms of the arrow diagram, this means that arrow only goes in one direction.

3. A relation *R* is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, it must also be the case that $(a,c) \in R$. In terms of the arrow diagram, this means that whenever you can follow two arrows to get from node *a* to node *c*, you can also get there

Example relation R_1 on the set {1, 2, 3, 4} with the rule "

 $(x,y) \in R_1 \text{ if } x \leq y$

Irreflexive

A relation *R* on *A* is *irreflexive* if for all $a \in A$, $(a,a) \notin R$. On an arrow diagram, this means no loops.

A *strict partial ordering* on the set *A* is a relation *R* on A that is transitive, antisymmetric, and irreflexive.

1. Complete the arrow diagram for each of the relations on $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, and decide if it has any <u>reflexive</u>, <u>antisymmetric</u>, or <u>transitive</u> properties. For each property that a relation does not have, illustrate this failure with a specific example.

a. $R_1 = \{ (1, 1), (1, 2), (1, 4), (1, 8), (2, 2), (2, 4), (2, 8), (3, 3), (3, 6), (4, 4), (4, 8), (5, 5), (___/1), (6, 6), (7, 7), (8, 8) \}$

Is this transitive, antisymmetric, and/or reflexive?

c. $R_3 = \{ (1, 1), (1, 3), (1, 5), (1, 7), (2, 2), (2, 4), (2, 8), (3, 3), (3, 5), (3, 7), (4, 2), (4, 4), (___/1) (4, 8), (5, 3), (5, 7), (6, 6), (6, 8), (8, 2), (8, 4), (8, 8) \}$

Is this transitive, antisymmetric, and/or reflexive?

Recap

- Reflexive: $(a,a) \in R$ for all $a \in A$
- Irreflexive: $(a,a) \notin R$ for all $a \in A$
- Antisymmetric: for all $a,b \in A$, if $a \neq b$ and $(a,b) \in R$ then $(b,a) \notin R$
- Transitive: If $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$
- **2.** For the following relation on \mathbb{Z} $R_1 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : a+b \text{ is even}\}$
- a. decide if the relation is reflexive or irreflexive. If it does not have one (or both) of these properties, give a specific example to illustrate this.

Hint: *a* and *b* are both in the set of integers. We are checking to see if the result of (a, a) is always in the relation R, so if you plug (*a*, *a*) into the, is what you get out still "is even"?

b. decide if the relation is antisymmetric. If it is not, give a specific example to (___/1) illustrate this.

Hint: Find some (a, b) and (b, a) that are both in the relation. Remember that a and b are both in the set of integers.

3. Let *P* be the set of people who have ever lived. For each of the following relations on *P*, decide if it is reflexive, irreflexive, transitive, or antisymmetric – each can satisfy more than one of these properties. Give explanations on how you decided each of these.

a.
$$R_1 = \{(\alpha, \beta) \in P \times P : \alpha \text{ is a child of } \beta\}$$
 (____/1)

Reflexive: Is $(a,a) \in P$ valid?

Irreflexive: Is $(a,a) \notin P$ valid?

Transitive: Is there some $(a,b) \in P$ and $(b,c) \in P$?

Antisymmetric: Is $(a,b) \in P$ and $(b,a) \notin P$ valid?

b.
$$R_2 = \{(\alpha, \beta) \in P \times P : \alpha \text{ is a descendant of } \beta\}$$

Reflexive: Is $(a,a) \in P$ valid?

Irreflexive: Is $(a,a) \notin P$ valid?

Transitive: Is there some $(a,b) \in P$ and $(b,c) \in P$?

Antisymmetric: Is $(a,b) \in P$ and $(b,a) \notin P$ valid?