Lista 1

Zadanie 1. Niech \mathbb{V} — przestrzeń liniowa nad \mathbb{F} oraz \mathbb{W} , $\mathbb{W}' \leq \mathbb{V}$ będą jej podprzestrzeniami.

Pokaż, że $\mathbb{W} \cap \mathbb{W}'$ oraz $\mathbb{W} + \mathbb{W}'$ są odpowiednio: największą przestrzenią liniową zawartą w \mathbb{W} i \mathbb{W}' oraz najmniejszą zawierającą \mathbb{W} i \mathbb{W} .

Pokaż też, że dla przestrzeni liniowych \mathbb{V}, \mathbb{V}' nad tym samym ciałem \mathbb{F} , iloczyn kartezjański $\mathbb{V} \times \mathbb{V}'$ z dodawaniem i mnożeniem po współrzędnych, jest przestrzenią liniową nad \mathbb{F} .

Zadanie 2. Sprawdź, czy następujące podzbiory \mathbb{R}^n są podprzestrzeniami liniowymi:

- 1. $\{(a,b,c) \in \mathbb{R}^3 : 5a + 2b = 0\}$
- 2. $\{(a,b,c) \in \mathbb{R}^3 : 2a-c=0\}$
- 3. $\{(a,b,c) \in \mathbb{R}^3 : 5a + 2b = 2a c = 0\}$
- 4. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 0\}$
- 5. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 1\}$
- 6. $\{(a,b) \in \mathbb{R}^2 : |2a| |b| = 0\}$
- 7. $\{(a,b) \in \mathbb{R}^2 : |2a| |b| = 1\}$
- 8. $\{(a,b) \in \mathbb{R}^2 : |ab| = 1\}$
- 9. $\{(a,b) \in \mathbb{R}^2 : ab = a\}$

Zadanie 3. Pokaż wprost z definicji, że: U jest zbiorem liniowo zależnym wtedy i tylko wtedy, gdy istnieje w nim wektor $u \in U$, taki że

$$LIN(U) = LIN(U \setminus \{\vec{u}\}).$$

Pokaż też, że jeśli U nie zawiera wektora zerowego $\vec{0}$, to są przynajmniej dwa takie wektory \vec{u} . Zaneguj obustronnie tę równoważność, aby uzyskać charakteryzację zbioru liniowo zależnego.

Zadanie 4. Przedstaw wektor \vec{w} jako kombinację podanych wektorów v_1, v_2, \ldots, v_k (lub uzasadnij, że to niemożliwe), nad ciałem \mathbb{R} :

- 1. $\vec{w} = (1, 5), \vec{v_1} = (1, 1), \vec{v_2} = (2, 0).$
- 2. $\vec{w} = (5, 10, 11), \ \vec{v_1} = (1, 2, 3), \ \vec{v_2} = (0, 3, 2), \ \vec{v_3} = (1, 1, 1).$
- 3. $\vec{w} = (5, 10, 11), \vec{v_1} = (1, 2, 3), \vec{v_2} = (0, 3, 2), \vec{v_3} = (1, 8, 7).$
- 4. $\vec{w} = (4, 17, 18), \ \vec{v_1} = (1, 2, 3), \ \vec{v_2} = (0, 3, 2), \ \vec{v_3} = (3, 9, 11).$

Zadanie 5. Rozważmy przestrzeń \mathbb{Z}_3^3 (zbiór trzyelementowych ciągów elementów z \mathbb{Z}_3 , nad ciałem \mathbb{Z}_3). Ile wektorów należy do LIN((1,2,1),(2,1,1))? A ile do LIN((1,2,1),(2,1,2))?

Zadanie 6. Pokaż równoważność następujących warunków (dla $B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$):

- \bullet Zbiór B jest liniowo niezależny.
- Wektor $\vec{0}$ ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- Pewien wektor z LIN(B) ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- Każdy wektor z LIN(B) ma najwyżej jedno przedstawienie w postaci kombinacji liniowej wektorów z B.

Zaneguj powyższe warunki, aby uzyskać charakteryzację zbiorów liniowo zależnych.

Zadanie 7. Czy następujące układy wektorów są liniowo niezależne (nad \mathbb{R})? Rozszerz ich maksymalny podzbiór niezależny do bazy.

- 1. (1,1,0), (0,1,1), (1,1,1), (1,0,1);
- 2. (0,1,2), (1,1,1), (1,1,1);
- 3. (1,0,1,0), (1,2,0,1), (0,2,1,1), (0,0,1,1);
- 4. (1,0,1,0), (0,2,0,2), (1,1,0,0), (0,0,2,1).

Zadanie 8. Rozważamy przestrzenie nad \mathbb{R} . Niech $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ będą liniowo niezależne. Dla jakich wartości $\alpha \in \mathbb{R}$ zbiory wektorów

- $\{\alpha \vec{v}_1 + \vec{v}_2, \vec{v}_1 + \alpha \vec{v}_2\}$
- $\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \vec{v}_3 + \vec{v}_4, \dots, \vec{v}_{n-1} + \vec{v}_n, \vec{v}_n + \alpha \vec{v}_1\}$

są liniowo niezależne?

(jakiej). Można na nich zastosować eliminację Gauba.

Wskazówka: Można bezpośrednio z definicji, ale szybciej: zauważ, że $\vec{v}_1, \ldots, \vec{v}_n$ są bazą przestrzeni liniowej

Zadanie 9. Załóżmy, że dla przestrzeni liniowych \mathbb{W}, \mathbb{W}' (będących podprzestrzeniami \mathbb{V}) zachodzi

$$\dim(\mathbb{W} + \mathbb{W}') = 1 + \dim(\mathbb{W} \cap \mathbb{W}') .$$

Udowodnij, że suma $\mathbb{W} + \mathbb{W}'$ jest jedną z przestrzeni \mathbb{W}, \mathbb{W}' , a przecięcie $\mathbb{W} \cap \mathbb{W}'$ —drugą.

Zadanie 10. Wyznacz wymiary $LIN(S) \cap LIN(T)$ oraz LIN(S) + LIN(T) dla

- $S = \{(1, 2, 0, 1), (1, 1, 1, 0)\}, T = \{(1, 0, 1, 0), (1, 3, 0, 1)\};$
- $S = \{(2, -1, 0, -2), (3, -2, 1, 0), (1, -1, 1, -1)\}, T = \{(3, -1, -1, 0), (0, -1, 2, 3), (5, -2, -1, 0)\}.$

Zadanie 11 (* Nie liczy się do podstawy.). *Uwaga:* w tym zadaniu nie można korzystać z twierdzenia o równoliczności baz ani z lematu o wymianie.

Używając eliminacji Gaußa udowodnij następujące twierdzenie:

Jeśli $B = \{\vec{b}_1, \dots, \vec{b}_k\}$ jest bazą przestrzeni liniowej \mathbb{V} , to zbiór liczący k+1 wektorów jest liniowo zależny. W tym celu wyraź wektory $\vec{v}_1, \dots, \vec{v}_{k+1}$ w bazie B i przeprowadź na tej reprezentacji eliminację Gaußa. Wywnioskuj z tego twierdzenia, że każde dwie bazy przestrzeni skończenie wymiarowej są równoliczne.