

Final-DSA-final

Data Structure and Algorithms (International University - VNU-HCM)

Scan to open on Studocu

Final Examination

Date: 23/06/2022; Duration: 120 minutes

Open-book, only handwritten notes are allowed

SUBJECT: Algorithms & Data Structures (IT013IU)							
Approval by The SCSE	Lecturer:						
Signature	Signature						
Full name: Dr. Nguyen Van Sinh	Full name: Trần Thanh Tùng						
Proctor 1	Proctor 2						
Signature	Signature						
Full name:	Full name:						
Full name:	Full name:						
STUDENT INFO							
Student name:							
Student ID:							

INSTRUCTIONS: the total point is 100 (equivalent to 40% of the course)

- 1. Purpose:
 - Test your knowledge on data structures and algorithms in the following topics: Binary Tree, Hash Table, Graphs, Advanced graph algorithms
 - Examine your skill in analysis and design algorithms
- 2. Requirement:
 - Write the answers and draw models CLEAN and TIDY

Note: For all calculations in this subject, the following rounding convention is used: 7/2 = 4

0.

1. Binary search tree (25pts)

Given a list of items, take items one by one from left to right.

Table 1 - Items

Ī	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	53	20	06	22	13	09	90	65	81	39	37	38	75	70	76	90

- 1.a. Insert all items into a binary search tree and draw the tree (15pts)
- 1.b. Delete the root node and redraw the tree (10pts)

2. Hash table (20pts)

Given a list of items in table 1 by taking items in the list from left to right

- 2.a. Insert all items into the hash table of size **27** by using the linear probing algorithm to solve collisions (10pts).
- 2.b. Change the hash table's size to **31**, redraw it (10pts)

3. Graph - Elementary Algorithms (30pts)

- 3.a Given the graph G_s in Fig. 1, run the DFS algorithm from **A** and redraw the graph with the discovery time and the finishing time for each node. (15pts)
- 3.b. Find all strongly connected components in G_s and draw the G_s^{-1} with the finishing time for each node(15pts)

4. Graph – Shortest path algorithm (15pts)

Run the Dijkstra's algorithm on the graph G_s in Fig.1 <u>from A</u>, and fill the following table with corresponding values after each step of the algorithm

Selected nodes	A	В	C	D	Е	F	G	Н	I
						∞	8	∞	8

5. Algorithm to find cycle (10pts)

While traversing a graph using the DFS algorithm, backward edges are edges that link a node to another node in the path from the source node to the node. The backward edges form cycles.

For example, in the graph below, colored edges are backward edges. A - B - C, and B - C - E are simple cycles.

- (10pts) Propose an algorithm (write a pseudo-code) based on the DFS algorithm to print out all simple cycles of a given graph starting from a source node.

--- The end ---