

ENSIMAG

PEPS: Multimonde21

Modèles Mathématiques

 $IF\ MeQA$

Ibakuyumcu Arnaud

Table des matières

1	Mo	odèle 1 : simulation inter-économie
	1.1	Sous-jacents et simulation
		1.1.1 Les sous-jacents
		1.1.2 Modèle de simulation
		1.1.3 Estimation des paramètres
	1.2	Portefeuille de couverture
	1.3	Prix du produit
	1.4	Calcul des deltas
2		odèle 2 : simulation globale
	2.1	Sous-jacents et simulation
		2.1.1 Les sous-jacents
		2.1.2 Modèle de simulation
		2.1.3 Estimation des paramètres
	2.2	Portefeuille de couverture
	2.3	Prix du produit
	2.4	Calcul des deltas

PEPS : Multimonde21 Ibakuyumcu Arnaud

1 Modèle 1 : simulation inter-économie

Ce premier modèle consiste à ne pas se préoccuper du changement de devise lors du calcul du prix. En effet, le pay-off du produit multi-monde ne fait intervenir que les performances d'indice, supprimant l'unité de devise étrangère pour chaque indice.

1.1 Sous-jacents et simulation

1.1.1 Les sous-jacents

Les sous jacents pour ce modèle sont :

- \star Les indices dans leur devise I_1, \ldots, I_6
- \star Les taux de change vers euro de chaque indice X_1, \ldots, X_6

Par convention i = 1 correspond à la devise euro (donc à l'indice Euronext) et $X_1 = 1$

1.1.2 Modèle de simulation

Dans l'univers risque neutre les sous-jacents ont la dynamique suivante :

$$\star (\forall i \in \{1, \dots, 6\}) \frac{dI_i(t)}{I_i(t)} = r_i(t)dt + \sigma_i dB(t)$$

*
$$(\forall i \in \{1, \dots, 6\}) \frac{dX_i(t)}{X_i(t)} = ((r_1(t) - r_i(t))dt + \sigma_i^X . dB(t) \text{ avec } \sigma_i^X = \lambda_1 - \lambda_i$$

Où on pose:

- \bullet B un MB de dimension 12 sous la proba risque neutre
- r_i la courbe de taux sans risque dans la devise i
- λ_i la prime de risque dans l'économie i

1.1.3 Estimation des paramètres

Pour les r_i : il faut trouver un modèle déterministe pour la courbe des taux et estimer les paramètres de ce modèles.

Pour les σ : on utilise les log-rendements historiques.

En effet, posons σ la matrice 12x12 de volatilité du marché. Les modèles mis en place entrainent que le prix d'un sous-jacent est de la forme (proba historique) :

$$Z_i(t+1) = Z_i(t)e^{\int_{t}^{t+1} \mu_i(s)ds - \frac{\sigma_i^2}{2} + \sigma_i \cdot \varepsilon(t)} \text{ où } \varepsilon \sim (iid)\mathcal{N}_{12}(0,1)$$

Le log-rendement entre deux périodes est donc : $R_i(t) = ln\left[\frac{Z_i(t+1)}{Z_i(t)}\right] = \int_t^{t+1} \mu_i(s)ds - \frac{\sigma_i^2}{2} + \sigma_i \cdot \varepsilon(t)$

Avec σ_i est la *i*-ème ligne de σ et $\sigma_i^2 = \sum_{k=1}^{12} \sigma_{ik}^2$

 \Rightarrow En particulier on tire

$$CoVar[R_i(t), R_j(t)] = (\sigma \sigma^T)_{ij}$$

Un estimateur classique de $(\sigma\sigma^T)_{ij}$ est donc

$$\hat{C}_{ij} = \frac{1}{T-1} \sum_{t=1}^{T} \left(\left(R_i(t) - \overline{R}_i \right) \left(R_j(t) - \overline{R}_j \right) \right) \text{ où } \overline{R}_i = \frac{1}{T} \sum_{t=1}^{T} R_i(t)$$

On obtient alors qu'un estimateur de σ est $Cholesky(\hat{C})$.

1.2 Portefeuille de couverture

On note dans la suite B_i l'actif sans risque de l'économie i (c'est à dire le zéro-coupon de maturité T)

La composition (et le prix en euro) du portefeuille de couverture est :

$$P_{couv} = X_1(\Delta_{I_1}I_1) + \ldots + X_6(\Delta_{I_6}I_6) + \Delta_{B_1}(X_1B_1) + \ldots + \Delta_{B_6}(X_6B_6)$$

1.3 Prix du produit

Comme évoqué plus haut, le prix ne dépend pas des devises utilisées dans l'économie de l'indice étudié.

Le prix est donc :

$$Prix^{euro} = f(I_1(t), \dots, I_6(t); t)$$

1.4 Calcul des deltas

La couverture demande $\nabla P_{couv} = \nabla f$ soit $(\forall i \in \{1, \dots, 6\})$:

$$\begin{cases} \frac{\partial P_{couv}}{\partial I_i} = \frac{\partial f}{\partial I_i} \\ \frac{\partial P_{couv}}{\partial X_i} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} X_i \Delta_{I_i} = \frac{\partial f}{\partial I_i} \\ \Delta_{I_i} I_i + B_i \Delta_{B_i} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \Delta_{I_i} = \frac{1}{X_i} \frac{\partial f}{\partial I_i} \\ \Delta_{B_i} = -\frac{\Delta_{I_i} I_i}{B_i} \end{cases}$$

2 Modèle 2 : simulation globale

Pour ce modèle, on utilisera la simulation des indices en devise domestique (euro).

2.1 Sous-jacents et simulation

2.1.1 Les sous-jacents

Les sous jacents pour ce modèle sont :

- * Les indices dans la devise euro $Y_1 = X_1 I_1, \dots, Y_6 = X_6 I_6$
- \star Les taux de change vers euro de chaque économie X_1,\ldots,X_6

Par convention i=1 correspond à la devise euro (donc à l'indice Euronext) et $X_1=1$

2.1.2 Modèle de simulation

Dans l'univers risque neutre les sous-jacents ont la dynamique suivante :

*
$$(\forall i \in \{1, \dots, 6\}) \frac{dY_i(t)}{Y_i(t)} = r_1(t)dt + \sigma_i dB(t) \text{ avec } \sigma_i = \sigma_i^X + \sigma_i^I$$

*
$$(\forall i \in \{1,\ldots,6\}) \frac{dX_i(t)}{X_i(t)} = ((r_1(t) - r_i(t))dt + \sigma_i^X . dB(t) \text{ avec } \sigma_i^X = \lambda_1 - \lambda_i$$

Où on pose:

- ullet B un MB de dimension 12 sous la proba risque neutre
- r_i la courbe de taux sans risque dans la devise i
- λ_i la prime de risque dans l'économie i

L'intérêt de ce modèle est que tout est simulé en proba risque neutre domestique.

2.1.3 Estimation des paramètres

Les paramètres s'estiment de la même façon. Bien evidemment on estimera directement σ_i plutôt que σ_i^X et σ_i^I séparément.

2.2 Portefeuille de couverture

Le portefeuille de couverture est bien evidemment constitué des mêmes quantités de sois-jacent que précédemment.

2.3 Prix du produit

Ici, le prix du produit fait intervenir les devises étrangères. Pour calculer le pay-off avec les simulations de $Y_i = X_i I_i$ on use de la formule suivante pour les performances :

$$\frac{I_n - I_0}{I_0} = \frac{\frac{Y_n}{X_n} - \frac{Y_0}{X_0}}{\frac{Y_0}{X_0}} = \frac{\frac{X_0}{X_n} Y_n - Y_0}{Y_0}$$

Ainsi, le prix est donc fonction des devises aussi :

$$Prix = q(Y_1(t), \dots, Y_n(t); X_1(t), \dots, X_n(t); t)$$

2.4 Calcul des deltas

La couverture demande toujours $\nabla P_{couv} = \nabla f$ soit $(\forall i \in \{1, \dots, 6\})$:

$$\begin{cases} \frac{\partial P_{couv}}{\partial Y_i} = \frac{\partial g}{\partial y_i} \\ \frac{\partial P_{couv}}{\partial X_i} = \frac{\partial g}{\partial x_i} \end{cases}$$

$$\Leftrightarrow \begin{cases} \Delta_{I_i} = \frac{\partial g}{\partial y_i} \\ \Delta_{I_i} I_i + B_i \Delta_{B_i} = \frac{\partial g}{\partial x_i} \end{cases}$$

$$\Leftrightarrow \begin{cases} \Delta_{I_i} = \frac{\partial g}{\partial y_i} \\ \Delta_{B_i} = \frac{\frac{\partial g}{\partial x_i} - \Delta_{I_i} I_i}{B_i} \end{cases}$$