Chapter 1

Introduction: Databases and Database Users

Outline

- Types of Databases and Database Applications
- Basic Definitions
- Typical DBMS Functionality
- Example of a Database (UNIVERSITY)
- Main Characteristics of the Database Approach
- Database Users
- Advantages of Using the Database Approach

Slide 1- 2

When Not to Use Databases

Why we study DBMS?

Database Applications

- Database Applications:
 - Banking: all transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions

Databases touch all aspects of our lives

Types of Databases and Database Applications

- Traditional Applications:
 - Numeric and Textual Databases
- More Recent Applications:
 - Multimedia Databases
 - Geographic Information Systems (GIS)
 - Data Warehouses
 - Big Data
 - Real-time and Active Databases
 - Many other applications

Other databases you may use

amazon.com.

Some Largest Database in the World

Library of Congress

 130 million items (books, photographs, maps, etc), 29 million books 10,000 new items added each day, 20 terabytes of text data

Central Intelligence Agency

Comprehensive statistics on more than 250 countries and entities

Amazon

 59 million active customers, More than 42 terabytes of data, 250000 full text book available online

YouTube

100 million videos watched per day, 65,000 videos added each day

Google

 91 million searches per day, accounts for 50% of all internet searches, 900,000 servers

AT&T

323 terabytes of information , 1.9 trillion phone call records

World Data Centre for Climate

220 terabytes of web data, 6 petabytes of additional data

Basic Definitions

Database:

 An organised collection of logically related data which represents some aspect of the real world.

Data:

Known facts that can be recorded and have an implicit meaning.

Mini-world:

 Some part of the real world about which data is stored in a database. For example, student grades and transcripts at a university.

Database Management System (DBMS):

 A software package/ system to facilitate the creation and maintenance of a computerized database.

Database System:

 The DBMS software together with the data itself. Sometimes, the applications are also included.

Simplified database system environment

Figure 1.1
A simplified database system environment.

Popular DBMS software

- MySQL
- Microsoft Access
- Oracle
- Sybase
- PostgreSQL
- dBASE
- FoxPro
- SQLite
- IBM DB2
- LibreOffice Base
- MariaDB
- Microsoft SQL Server etc.

Typical DBMS Functionality

- The DBMS is a general-purpose software system that facilitates the process of defining, constructing, manipulating, and sharing databases among various users and applications.
- Define a particular database in terms of its data types, structures, and constraints
- Construct or Load the initial database contents on a secondary storage medium
- Manipulating the database:
 - Retrieval: Querying, generating reports
 - Modification: Insertions, deletions and updates to its content
 - Accessing the database through Web applications
- Processing and Sharing by a set of concurrent users and application programs – yet, keeping all data valid and consistent

Typical DBMS Functionality

- Other features:
 - Protection or Security measures to prevent unauthorized access
 - Presentation and Visualization of data
 - Maintaining the database and associated programs over the lifetime of the database application
 - Called database, software, and system maintenance

Example of a Database (with a Conceptual Data Model)

- Mini-world for the example:
 - Part of a UNIVERSITY environment.
- Some mini-world entities:
 - STUDENTs
 - COURSEs
 - SECTIONs (of COURSEs)
 - (academic) DEPARTMENTs
 - INSTRUCTORs

Example of a Database (with a Conceptual Data Model)

- Some mini-world relationships:
 - SECTIONs are of specific COURSEs
 - STUDENTs take SECTIONs
 - COURSEs have prerequisite COURSEs
 - INSTRUCTORs teach SECTIONs
 - COURSEs are offered by DEPARTMENTs
 - STUDENTs major in DEPARTMENTs

 Note: The above entities and relationships are typically expressed in a conceptual data model, such as the ENTITY-RELATIONSHIP data model

Example of a simple database

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Figure 1.2A database that stores student and course information.

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Need for a Database Management Systems

Why do we need the DBMS?

Limitations of File Based System

- Lack of Integrated Specification Scheme
 - Disorganised development
 - Separation and isolation of data
- Data Redundancies
 - Duplication of data
- Data Inconsistencies
- Data Dependence
- Incompatible File Formats
- Fixed Queries
- Concurrency Control problem
- Backup from failure

Main Characteristics of the Database Approach

- Self-describing nature of a database system:
 - A DBMS catalog stores the description of a particular database (e.g. data structures, types, and constraints)
 - The description is called meta-data.
 - This allows the DBMS software to work with different database applications.
- Insulation between programs and data:
 - Called program-data independence.
 - Allows changing data structures and storage organization without having to change the DBMS access programs.

Example of a simplified database catalog

RELATIONS

Relation_name	No_of_columns
STUDENT	4
COURSE	4
SECTION	5
GRADE_REPORT	3
PREREQUISITE	2

Figure 1.3

An example of a database catalog for the database in Figure 1.2.

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE
	·····	
	····	*****
Prerequisite_number	XXXXNNNN	PREREQUISITE

Note: Major_type is defined as an enumerared type with all known majors. XXXXNNNN is used to define a type with four alpha characters followed by four digits Dr. J. R. Mohanty

Main Characteristics of the Database Approach (continued)

Data Abstraction:

- A data model is used to hide storage details and present the users with a conceptual view of the database.
- Programs refer to the data model constructs rather than data storage details

Support of multiple views of the data:

 Each user may see a different view of the database, which describes only the data of interest to that user.

Main Characteristics of the Database Approach (continued)

- Sharing of data and multi-user transaction processing:
 - Allowing a set of concurrent users to retrieve from and to update the database.
 - Concurrency control within the DBMS guarantees that each transaction is correctly executed or aborted
 - Recovery subsystem ensures each completed transaction has its effect permanently recorded in the database
 - OLTP (Online Transaction Processing) is a major part of database applications. This allows hundreds of concurrent transactions to execute per second.

Advantages of Using the Database Approach

- Controlling redundancy in data storage and in development and maintenance efforts.
 - Sharing of data among multiple users.
- Restricting unauthorized access to data.
- Providing persistent storage for program Objects
- Providing Storage Structures (e.g. indexes) for efficient Query Processing

Advantages of Using the Database Approach (continued)

- Providing backup and recovery services.
- Providing multiple interfaces to different classes of users.
- Representing complex relationships among data.
- Enforcing integrity constraints on the database.
- Drawing inferences and actions from the stored data using deductive and active rules

Additional Implications of Using the Database Approach

- Potential for enforcing standards:
 - This is very crucial for the success of database applications in large organizations. Standards refer to data item names, display formats, screens, report structures, meta-data (description of data), Web page layouts, etc.
- Reduced application development time:
 - Incremental time to add each new application is reduced.

Additional Implications of Using the Database Approach (continued)

- Flexibility to change data structures:
 - Database structure may evolve as new requirements are defined.
- Availability of current information:
 - Extremely important for on-line transaction systems such as airline, hotel, car reservations.
- Economies of scale:
 - Wasteful overlap of resources and personnel can be avoided by consolidating data and applications across departments.

Big Data & the Rise of Non-Relational DBs (NoSQL)

- Social media applications generate a tremendous volume of data
- Instagram 800 million active monthly users, 52 million photosuploaded per day
- The type and volume of data they generate doesn't lend itself well to storage in a relational database
- This led to the rise of NoSQL databases
- Examples: MongoDB, Cassandra, MarkLogic, FireBase

Database Users

- Users may be divided into
 - Those who actually use and control the database content (called "Actors on the Scene") and
 - Those who design and develop the DBMS software and related tools, and the computer systems operators (called "Workers Behind the Scene").

Database Users

Actors on the scene

Database administrators:

 A person or group of person who has central responsibility for the control of database.

Database Designers:

 Responsible to define the content, the structure, the constraints, and functions or transactions against the database. They must communicate with the endusers and understand their needs.

Application Programmers:

Those users normally write application programs in a host language like,
 Cobol, C, Java, etc..

Database programmers:

 These users interact with the DBMS, using a language provided by the DBMS itself.

Database Administrator

- Coordinates all the activities of the database system; the database administrator has a good understanding of the enterprise's information resources and needs.
- Database administrator's duties include:
 - Schema definition
 - Storage structure and access method definition
 - Schema and physical organization modification
 - Granting user authority to access the database
 - Specifying integrity constraints
 - Acting as liaison with users
 - Monitoring performance and responding to changes in requirements

Categories of End-users

- Actors on the scene (continued)
 - End-users: They use the data for queries, reports and some of them update the database content. End-users can be categorized into:
 - Casual: access database occasionally when needed
 - Naïve or Parametric: they make up a large section of the end-user population.
 - They use previously well-defined functions in the form of "canned transactions" against the database.
 - Examples are bank-tellers or reservation clerks who do this activity for an entire shift of operations.

Categories of End-users (continued)

Sophisticated:

- These include business analysts, scientists, engineers, others thoroughly familiar with the system capabilities.
- Many use tools in the form of software packages that work closely with the stored database.

Stand-alone:

- Mostly maintain personal databases using ready-to-use packaged applications.
- An example is a tax program user that creates its own internal database.
- Another example is a user that maintains an address book

Historical Development of Database Technology

- Early Database Applications:
 - The Hierarchical and Network Models were introduced in mid 1960s and dominated during the seventies.
 - A bulk of the worldwide database processing still occurs using these models, particularly, the hierarchical model.
- Relational Model based Systems:
 - Relational model was originally introduced in 1970, was heavily researched and experimented within IBM Research and several universities.
 - Relational DBMS Products emerged in the early 1980s.