Practices for Lesson 16: The Fork-Join Framework
Chapter 16

Practice 16-1: Detailed Level: Using the Fork-Join Framework

Overview

In this practice, you will modify an existing project to use the Fork-Join framework.

Assumptions

You have reviewed the sections covering the use of the Fork-Join framework.

Summary

You are given an existing project that already leverages the Fork-Join framework to process the data contained within an array. Before the array is processed, it is initialized with random numbers. Currently the initialization is single-thread. You must use the Fork-Join framework to initialize the array with random numbers.

Tasks

- 1. Open the ForkJoinFindMax16-01Prac project as the main project.
 - Select File > Open Project.
 - Browse to /home/oracle/labs/16-ForkJoin/practices/practice1.
 - Select ForkJoinFindMax16-01Prac and click the Open Project button.
- 2. Expand the project directories.
- 3. Open the Main class in the com. example package.
 - Review the code within the main method. Take note of how the FindMaxTask class is called.
- 4. Open the FindMaxTask class in the com.example package.
 - Review the code within the class. Take note of the for loop used to initialize the data array with random numbers.
 - Take note of how the compute method splits the data array if the count of elements to process is too great.
- 5. Create a RandomArrayAction class in the com.example package.
 - Add four fields.

```
private final int threshold;
private final int[] myArray;
private int start;
private int end;
```

 Add a constructor that receives parameters and saves their values within the fields defined in the previous step.

```
public RandomArrayAction(int[] myArray, int start, int end, int
threshold)
```

• Modify the class signature to extend the RecursiveAction class from the java.util.concurrent package.

Note: A RecursiveAction is used when a ForkJoinTask with no return values is needed.

• Add the compute method. Note that unlike the compute method from a RecursiveTask, the compute method in a RecursiveAction returns void.

```
protected void compute() { }
```

• Begin the compute method. If the number of elements to process is below the threshold, you should initialize the array.

```
if (end - start < threshold) {
  for (int i = start; i <= end; i++) {
    myArray[i] = ThreadLocalRandom.current().nextInt();
}</pre>
```

Note: ThreadLocalRandom is used instead of Math.random() because Math.random() does not scale when executed concurrently by multiple threads and would eliminate any benefit of applying the Fork-Join framework to this task.

• Complete the compute method. If the number of elements to process is above or equal to the threshold you should find the midway point in the array and create two new RandomArrayAction instances for each section of the array to process. Start each RandomArrayAction.

Note: When starting a RecursiveAction, you can use the invokeAll method instead of the fork/join/compute combination typically seen with a RecursiveTask.

- 6. Modify the main method of the Main class to use the RandomArrayAction class.
 - Comment out the for loop within the main method that initializes the data array with random values.
 - After the line that creates the ForkJoinPool, create a new RandomArrayAction.
 - Use the ForkJoinPool to invoke the ForkJoinPool.
 - Your code should look like this:

7. Run the ForkJoinFindMax16-01Prac project by right-clicking the project and choosing *Run*.

