XP15NA4R4TL

Halogen-Free Product

POWER MOSFET

- ▼ 100% R_g & UIS Test
- **▼** Simple Drive Requirement
- **▼** Ultra Low On-resistance
- **▼** RoHS Compliant & Halogen-Free

BV _{DSS}	150V		
R _{DS(ON)}	$4.4 m\Omega$		

Description

XP15NA4R4 series are innovated design and silicon process technology to achieve the lowest possible on-resistance and fast switching performance. It provides the designer with an extreme efficient device for use in a wide range of power applications.

The TOLL package is a perfect solution for high power density and high power efficiency application.

Absolute Maximum Ratings@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	150	٧
V_{GS}	Gate-Source Voltage	<u>+</u> 20	V
I _D @T _C =25°C	Drain Current, V _{GS} @ 10V	167	Α
I _D @T _C =100°C	Drain Current, V _{GS} @ 10V	118	Α
I _{DM}	Pulsed Drain Current ¹	668	Α
P _D @T _C =25°C	Total Power Dissipation	300	W
P _D @T _A =25°C	Total Power Dissipation ³	3.75	W
E _{AS}	Single Pulse Avalanche Energy ⁵	612.5	mJ
T _{STG}	Storage Temperature Range	-55 to 175	$^{\circ}\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 175	$^{\circ}\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Units
Rthj-c	Maximum Thermal Resistance, Junction-case	0.5	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient (PCB mount) ³	40	°C/W

Electrical Characteristics@T_i=25°C(unless otherwise specified)

	<u> </u>	-				
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	150	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =50A	-	-	4.4	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	2	-	4	٧
g _{fs}	Forward Transconductance	V_{DS} =5V, I_{D} =50A	-	125	-	S
I _{DSS}	Drain-Source Leakage Current	V _{DS} =120V, V _{GS} =0V	-	-	25	uA
I _{GSS}	Gate-Source Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	<u>+</u> 0.1	uA
Q_g	Total Gate Charge ⁴	I _D =50A	-	159	254.4	nC
Q_{gs}	Gate-Source Charge ⁴	V _{DS} =75V	-	40	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge ⁴	V _{GS} =10V	-	57	-	nC
t _{d(on)}	Turn-on Delay Time ⁴	V _{DS} =75V	-	35	-	ns
t _r	Rise Time ⁴	I _D =50A	-	118	-	ns
$t_{d(off)}$	Turn-off Delay Time ⁴	$R_G=6\Omega$	-	104	-	ns
t _f	Fall Time ⁴	V _{GS} =10V	-	148	-	ns
C _{iss}	Input Capacitance ⁴	V _{GS} =0V	-	7460	11936	pF
C _{oss}	Output Capacitance ⁴	V _{DS} =100V	-	580	-	pF
C _{rss}	Reverse Transfer Capacitance ⁴	f=1.0MHz	-	20	-	pF
R_g	Gate Resistance	f=1.0MHz	-	0.6	1.2	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =50A, V _{GS} =0V	-	-	1.3	V
t _{rr}	Reverse Recovery Time ⁴	I _S =50A, V _{GS} =0V	-	100	-	ns
Q _{rr}	Reverse Recovery Charge ⁴	dl/dt=100A/μs	-	325	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3. Surface mounted on 1 in² copper pad of FR4 board
- 4. Guaranteed by design.
- 5.Starting T_i =25°C , V_{DD} =50V , L=1mH , R_G =25 Ω , V_{GS} =10V
- 6. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C.

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT, AUTOMOTIVE OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

XSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

XSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area⁶

Fig 11. Drain Current v.s. Case Temperature

Fig 8. Typical Capacitance Characteristics

Fig 10. Effective Transient Thermal Impedance

Fig 12. Transfer Characteristics

Fig 13. Typ. Drain-Source on State Resistance

Fig 14. Total Power Dissipation

MARKING INFORMATION

Y: Last Digit Of The Year

WW: Week SSS: Sequence

Package Outline: TOLL

Draw No. M1-TL-8-EFIM-G-V04

TOLL FOOTPRINT:

