of plane

of plane

of nisid

the plane

Franka Emika Pounda Cobet

D-H Parameter Table

	X	в	d	a
0-71	T1/2	θ,	d,	0
1-)2	- T/2	θ_{2}	o	0
2 -> 3	- 11/2	θ_{2}	d ₂	a,
3 ->4	11/2	θ_{h}	0	- az
4-35	π/2	0 -	de	0
5-76	- TC/2	θ,	o	az
6 -> 7	0	<u>_</u> θ, _	<u>-d</u>	0

O3 : O since Joint 3 is fined

D-H Parameter Table

	L	θ	d	a
0 -> 1	T/2	0	d,	0
170	- T/2	0	0	0
$D \rightarrow 3$	- 11/2	0	d,	a,
3 ->4	π/2	17/2	0	- az
4-35	14/2	0	de	0
5->6	- TC/2	兀	ó	az
6 -> 7	0	0	<u>-d</u>	Ó

$$q(att=0) = [q_1, q_2, q_3, q_4, q_5, q_6, q_7]^T$$

= $[0, 0, 0, \pi/2, 0, \pi, 0]^T$

$$H_2 = T$$
, T_D
 $H_3 = T_1^T T_D^T T_3^T T_4^T$
 $H_4 = T_1^T T_D^T T_3^T T_4^T T_5^T$
 $H_5 = T_1^T T_D^T T_3^T T_4^T T_5^T T_6^T$
 $H_8 = T_1^T T_D^T T_3^T T_4^T T_5^T T_6^T$

We extract the z-components from each transformation matrix and the end-effector position (xp) from the last transformation matrix for the calculation

of Jacobian.

$$X_{\rho}(q_1, q_2 \dots q_7) = \begin{bmatrix} \chi_{\rho} \\ Y_{\rho} \\ Z_{\rho} \end{bmatrix}$$

For calculating the components of the Jacobian using second method, we use the formula:

$$J_i = \begin{pmatrix} dx_p \\ dq_i \end{pmatrix}$$
 where Z_i is the x -component from each transformation matrix

: The final Tacobian matrix is then given by $J = \begin{bmatrix} J_1 & J_2 & J_3 & J_4 & J_5 & J_6 \end{bmatrix}$

:- Circle equation in parametric form is given by:

Differentiating with despect to time, we get velocity in the x, y and z direction

$$V_{x} = \dot{x} = 0$$

$$V_y = \dot{y} = -0.1 \sin \theta. \dot{\theta}$$

$$V_2 = \dot{2} = 0.1 \text{ was } \theta. \dot{\theta}$$

Here,
$$\dot{\theta} = \frac{d\theta}{dt} = \frac{2\pi}{5}$$
 [Change in angle]

$$\dot{X} = \begin{bmatrix} V_{12} \\ V_{2} \\ V_{2} \\ W_{32} \\ W_{41} \\ W_{42} \end{bmatrix} = \begin{bmatrix} 0 \\ -0.1 \sin \theta \cdot \dot{\theta} \\ 0 \cdot 1 \cos \theta \cdot \dot{\theta} \\ 0 \\ W_{41} \\ 0 \\ 0 \end{bmatrix}$$

Wx, Wy, Wz is 0 because the end-effector is fined and has no angular velocity

$$\dot{X} = J \cdot \dot{q}$$
 $\dot{q} = J^{-1} \dot{x}$

where $\dot{q} = \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_5 \\ \dot{q}_6 \\ \dot{q}_7 \end{pmatrix}$

To obtain new joint angles we use the formula:

$$q_{next} = q_{current} + \dot{q}_{next} \Delta t$$

where
$$\Delta t = T$$
; T is total time

 N is the no. of data points

Finally, to plot the wide, we use the x, y and z components from Xp matrix which we derive from H_6 matrix.

The dynamic equation of the Probot is given by:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = T + J^{T}(q)F - D$$

Alsowing the Probot motion is quasi-static

 $\ddot{q} \cong 0$, $\ddot{q} \cong 0$
 \Rightarrow Dynamic Equation D reduces to:-

 $g(q) = T + J^{T}(q)F - D$

To find torquee, we leadrange equation 2

$$T = g(q) - J^{T}(q)F - 3$$

where
$$T = \begin{pmatrix} T_1 \\ T_2 \\ T_4 \\ T_5 \\ T_6 \\ T_7 \end{pmatrix}$$
; $F = \begin{pmatrix} -5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

We can calculate patential energy of each link by:

where · li is l. E of ith link
· g is gravity verlor
· rei is the center of wars coordinates of ith wlink

Differentiating P matrix with q_k gives us the gravity matrix: $g_k = \frac{\int P}{\delta q_k}$ using eq n 3

Finally, after calculating torques of each joint we plat it with respect to time (2005)