Engenharia reversa de arquivos e documentos

Capítulo 6

Engenharia reversa de arquivos e documentos

Modelo ER (conceitual)

Modelo relacional

Esquema de arquivo convencional ou documento

Engenharia reversa de arquivos convencionais

Engenharia reversa de arquivos e normalização

• Entrada:

- qualquer conjunto de dados para os quais se disponha de uma descrição
 - documentos
 - arquivos manuais
 - arquivos convencionais em computador
 - bancos de dados gerenciados por SGBD não relacional

Engenharia reversa de arquivos e normalização - motivação

- Sistemas legados
- Raramente documentados
- Necessidade de modelo ER
 - Manutenção
 - Migração para outro tipo de BD
 - Integração com outros BD

Engenharia reversa - processo

Normalização Objetivo

- Reagrupar informações para
 - eliminar redundâncias de dados
- Reagrupar informações para
 - eliminar estruturas inexistentes no modelo ER (atributos multivalorados)

Documento exemplo

RELATÓRIO DE ALOCAÇÃO A PROJETO

CÓDIGO DO	PROJE1	TIPO: Novo Desenv.					
DESCRIÇÃO: Sistema de Estoque							
CÓDIGO DO	NOME	CATEGORIA	SALÁRIO	DATA DE	TEMPO		
<i>EMPREGADO</i>		FUNCIONAL		INÍCIO NO	ALOCADO AO		
				PROJETO	PROJETO		
0444	. ~			4 /4 4 /0 4	0.4		
2146	João	A1	4	1/11/91	24		
3145	Sílvio	A2	4	2/10/91	24		
6126	José	B1	9	3/10/92	18		
1214	Carlos	A2	4	4/10/92	18		
8191	Mário	A1	4	1/11/92	12		
CÓDIGO DO PROJETO: PAG02 TIPO: Manutenção							
DESCRIÇÃO: Sistema de RH							
CÓDIGO DO	NOME	CATEGORIA	SALÁRIO	DATA DE	TEMPO		
EMPREGADO		FUNCIONAL		INÍCIO NO	ALOCADO		
				PROJETO	AO PROJETO		
0404	B.4.4.1	A 4	4	4 105 100	10		
8191	Mário	A1	4	1/05/93	12		
4112	João	A2	4	4/01/91	24		
6126	José	B1	9	1/11/92	12		

Representação na forma de tabela não normalizada

- Tabela não-normalizada ou
- tabela não-primeira-forma-normal
 - possui uma ou mais tabelas aninhadas
 - tabela aninhada (ou grupo repetido ou coluna multi-valorada oucoluna não atômica)
 - coluna que ao invés de conter valores atômicos, contém tabelas aninhadas
- Abreviatura: ÑN

Tabela aninhada exemplo

CódProj	Tipo	Descr	Emp					
			CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	Novo Desenv.	Sistema de	2146	João	A1	4	1/11/91	24
		Estoque	3145	Sílvio	A2	4	2/10/91	24
			6126	José	B1	9	3/10/92	18
			1214	Carlos	A2	4	4/10/92	18
			8191	Mário	A1	4	1/11/92	12
PAG02	Manutenção	Sistema	8 191	Mário	A 1	4	1/05/93	12
			4112	João	A2	4	4/01/91	24
			6126	José	B1	9	1/11/92	12

Tabela aninhada em uma linha de projeto

Tabela ÑN Esquema

Proj (<u>CodProj</u>, Tipo, Descr, (<u>CodEmp</u>, Nome, Cat, Sal, Datalni, TempAl))

Arquivo em Pascal

```
type req aluno= record
    cod al: integer;
    nome al: char 60;
     ingressos_cursos_al: array [1..10] of record
         cod_curso: integer;
         semestre ingresso: integer
         end;
    disciplinas_cursadas_al: array [0..200] of record
         cod disc: integer;
         semestres_cursados: array [1..20] of record
              semestre disc: integer;
              nota disc: integer
              end
         end
    end;
    arq_aluno= file of reg_aluno;
```

Arquivo em Cobol

```
FD
    Arq-Alunos
01
    Reg-Al.
    0.3
         Cod-Al
    03 Nome-Al
    0.3
        Ingr-Cursos-al OCCURS 1 TO 10
              Cod-Curso
         0.5
         05
              Sem-ingresso
    0.3
         Disc-Curs-Al OCCURS 0 to 200
         05 Cod-Disc
         05
              Sem-Cursado OCCURS 1 TO 20
              07 Sem-Disc-Cursada
              07 Nota-Disc
```

Esquema ÑN para arquivos exemplo

```
Arq-Alunos (<u>Cod-Al</u>, Nome-Al,
(<u>Cod-Curso</u>, Sem-ingresso)
(<u>Cod-Disc,</u>
(<u>Sem-Disc-Cursada</u>, Nota-Disc)))
```

Representação em esquema não normalizada

- Nenhuma transformação foi feita no modelo do documento
- Apenas foi usada outra notação
- Notação independe do tipo de documento/arquivo usado como entrada do processo de normalização

Forma normal

- Regra que uma tabela deve obeder por para ser considerada "bem projetada"
- Há diversas formas normais, cada vez mais rígidas, para verificar tabelas relacionais
- Aqui tratadas
 - primeira forma normal (1FN)
 - segunda forma normal (2FN)
 - terceira forma normal (3FN)
 - quarta forma normal (4FN)

Passagem à primeira forma normal (1FN)

primeira forma normal (1FN)

diz-se que uma tabela está na primeira forma normal, quando ela não contém tabelas aninhadas

Passagem à 1FN alternativas

Construir uma única tabela com redundância de dados

Construir uma tabela para cada tabela aninhada

Passagem à 1FN uma única tabela

 Uma tabela na qual os dados das linhas externas à tabela aninhada são repetidos para cada linha da tabela aninhada

Exemplo

ProjEmp (CodProj, Tipo, Descr, CodEmp, Nome, Cat, Sal, Datalni, TempAl)

 Dados do projeto aparecem repetidos para cada empregado do projeto

Passagem à 1FN uma tabela para cada tabela aninhada

 Cria-se uma tabela referente a própria tabela que está sendo normalizada e uma tabela para cada tabela aninhada

Exemplo:

Proj (CodProj, Tipo, Descr)
ProjEmp (CodProj,CodEmp, Nome, Cat, Sal, Datalni, TempAl)

Passagem à 1FN alternativas

- Primeira alternativa (tabela única) é mais correta
- Decompor uma tabela em várias tabelas (segunda alternativa)
 - podem ser perdidas relações entre informações
- Ver exercício

Passagem à 1FN alternativas

- Para fins práticos
 - preferimos a segunda alternativa (decomposição de tabelas)
- Quando houver diversas tabelas aninhadas, eventualmente com diversos níveis de aninhamento, fica difícil visualizar a tabela na 1FN na alternativa de tabela única

Passagem à 1FN passo (1)

- Criar uma tabela na 1FN referente a tabela não normalizada
- A chave primária da tabela na 1FN é idêntica a chave da tabela ÑN

Passagem à 1FN criar tabela referente a tabela ÑN

Passagem à 1FN Passo (2)

- Para cada tabela aninhada
 - criar uma tabela na 1FN composta pelas seguintes colunas:
 - a chave primária de cada uma das tabelas na qual a tabela em questão está aninhada
 - as colunas da própria tabela aninhada

Passagem à 1FN criar tabela referente a tabela aninhada

(CodProj, Tipo, Descr,

(CodEmp, Nome, Cat, Sal, Datalni, TempAl))

1FN

(CodProj, Tipo, Descr)

(CodProj, CodEmp, Nome, Cat,
Sal, Datalni, TempAl)

Passagem à 1FN Passo (3)

 Definir as chaves primárias das tabelas na 1FN que correspondem a tabelas aninhadas.

Passagem à 1FN definição de chave primária

ÑΝ Tipo, Descr, (CodEmp, Nome, Cat, Sal, Datalni, TempAl)) Tabela de nível mais externo: 1FN basta transcrever a chave CodProj, Tipo, Descr) (CodProj, CodEmp, Nome, Cat, Sal, Datalni, TempAl)

Passagem à 1FN definição de chave primária

1FN

(CodProj, Tipo, Descr)

(CodProj, CodEmp, Nome, Cat, Sal, Datalni, TempAl)

Qual é a chave primária desta tabela? Pergunta a fazer:

"um valor de CodEmp (chave da tabela origem) aparece uma vez só no documento ou várias?"

Passagem à 1FN definição de chave primária

1FN

(CodProj, Tipo, Descr)

(<u>CodProj, CodEmp</u>, Nome, Cat, Sal, Datalni, TempAl)

Como um valor de CodEmp aparece várias vezes, é necessário CodProj para distinguir as várias aparições

Passagem a 1FN - exemplo

1FN

(<u>CodProj</u>, Tipo, Descr)

(CodProj, <u>CodEmp</u>, Nome, Cat, Sal, Datalni, TempAl)

Caso cada empregado trabalhe em um único projeto apenas, ou seja

caso um valor de CodEmp apareça uma única vez na tabela

Passagem à 1FN exemplo

Proj:

CódProj	Tipo	Descr		
LSC001	Novo Desenv.	Sistema de Estoque		
PAG02	Manutenção	Sistema de RH		

ProjEmp:

CódProj	CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	2146	João	A1	4	1/11/91	24
LSC001	3145	Sílvio	A2	4	2/10/91	24
LSC001	6126	José	B1	9	3/10/92	18
LSC001	1214	Carlos	A2	4	4/10/92	18
LSC001	8191	Mário	A1	4	1/11/92	12
PAG02	8191	Mário	A1	4	1/05/93	12
PAG02	4112	João	A2	4	4/01/91	24
PAG02	6126	José	B1	9	1/11/92	12

Passagem à 1FN exemplo

ÑΝ

Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand, Escore-Cand))

Passagem à 1FN decomposição em tabelas

Passagem à 1FN decomposição em tabelas

ÑΝ

Arq-Candidatos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso, (Cod-Cand, Nome-Cand, Escore-Cand))

1FN

Cursos (Cod-Curso, Nome-Eurso, Numero-Vagas-Curso)
Candidatos (Cod-Curso, Cod-Cand, Nome-Cand, Escore-Cand)

Passagem à 1FN definição da chave primária

(Cod-Curso, Cod-Cand, Nome-Cand, Escore-Cand)

Arq-Candidatos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso, (Cod-Cand, Nome-Cand, Escore-Cand)) Tabela de nível mais externo: basta transcrever a chave 1FN Cursos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso)

Candidatos

Passagem à 1FN definição da chave primária

ÑΝ

Arq-Candidatos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso,

(Cod-Cand, Nome-Cand, Escore-Cand))

1FN

Cursos

(Cod-Curso, Nome-Curso, Numero-Vagas-Curso)

Candidatos

(Cod-Curso, Cod-Cand, Nome-Cand, Escore-Cand)

Qual é a chave primária desta tabela? Pergunta a fazer:

"um valor de Cod-Cand (chave da tabela origem) aparece uma só vez no documento ou várias?"

Passagem à 1FN definição da chave primária

ÑΝ

Arq-Candidatos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso,

(Cod-Cand, Nome-Cand, Escore-Cand))

1FN

Cursos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso)

Candidatos (Cod-Curso Cod-Cand, Nome-Cand, Escore-Cand)

Qual é a chave primária desta tabela? Pergunta a fazer:

"um valor de Cod-Cand (chave da tabela origem) aparece uma só vez no documento ou várias?"

Passagem a 1FN exemplo Pascal/COBOL

ÑN

```
Arq-Alunos (<u>Cod-Al</u>, Nome-Al, (<u>Cod-Curso</u>, Sem-ingresso) (<u>Cod-Disc</u>, (<u>Sem-Disc-Cursada</u>, Nota-Disc)))
```

1FN

Alunos (Cod-Al, Nome-Al)

AlunoCurso (Cod-Al, Cod-Curso, Sem-ingresso)

AlunoDisc (Cod-Al, Cod-Disc)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc-Cursada, Nota-Disc)

Passagem a 1FN exemplo Pascal/COBOL

ÑN

```
Arq-Alunos (Cod-Al, Nome-Al,
```

(Cod-Curso, Sem-ingresso)

(Cod-Disc,

(Sem-Disc-Cursada, Nota-Disc)))

1FN

Alunos (<u>Cod-Al</u>, Nome-Al)

AlunoCurso (<u>Cod-Al, Cod-Curso</u>, Sem-ingresso)

AlunoDisc (<u>Cod-Al, Cod-Disc</u>)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc-Cursada, Nota-Disc)

Dependência funcional

- Para entender 2FN e 3FN
 - é necessário compreender o conceito de dependência funcional.
- Em uma tabela relacional, diz-se que
 - uma coluna C₂ depende funcionalmente de uma coluna C₁ (ou que a coluna C₁ determina a coluna C₂) quando,
 - em todas linhas da tabela, para cada valor de C_1 que aparece na tabela, aparece o mesmo valor de C_2 .

Exemplo de dependência funcional

 Código	 Salário	
E1	10	
E3	10	
E1	10	
E2	5	
E3	10	
E2	5	
E1	10	

Código → Salário

Dependência funcional exemplos

Α	В	С	D
ВСВВССААВСАС	5	2	20 15
С	5 4 6 5 2 4 10	2	15
В	6	7	20
В	5	2	20 20 15
С	2	2	15
С	4	2	15
Α	10	5	18
Α	12	3	18
Α	10	5	18
В	5	2	20
С	10 5 4 10 4	2 2 7 2 2 2 5 3 5 2 2 5 2	20 15
Α	10	5	18
С	4	2	15

Dependência funcional inexistente na tabela

Dependência funcional exemplos

Α	В	С	D
B C B B C C A A B C A C	5 4 6 5 2 4 10	C 2 2 7 2 2 2 5 3 5 2 2 5 2	20 15
С	4	2	15
В	6	7	20
В	5	2	20 20 15 15 18
С	2	2	15
С	4	2	15
Α	10	5	18
Α	12	3	18
Α	10	5	18
В	5	2	20
С	4	2	15
Α	10 5 4 10 4	5	20 15 18 15
С	4	2	15

Dependência funcional existente na tabela

 $A \rightarrow D$

Dependência funcional exemplos

Α	В	С	D
B C B B C C A A A B C A C	5 4 6 5 2 4 10 12	C 2 2 7 2 2 2 2 5 3 5 2 2 5 2	20 15 20 20 15 15
С	4	2	15
В	6	7	20
В	5	2	20
С	2	2	15
С	4	2	15
А	10	5	
А	12	3	18
Α	10	5	18
В	5	2	20
С	4	2	15
Α	10 5 4 10 4	5	20 15 18 15
С	4	2	15

Uma coluna pode depender funcionalmente de uma combinação de mais de uma coluna

$$(A,B) \rightarrow C$$

Segunda forma normal 2FN

- Objetiva eliminar um certo tipo de redundância de dados
- Exemplo

(CodProj, CodEmp, Nome, Cat,, Sal, DataIni, TempAl)

- Dados referentes a empregados (Nome, Cat e Sal)
 - Redundantes, para os empregados que trabalham em mais de um projeto

Segunda forma normal 2FN

ProjEmp:

CódProj	CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	2146	João	A1	4	1/11/91	24
LSC001	3145	Sílvio	A2	4	2/10/91	24
LSC001	6126	José	B1	9	3/10/92	18
LSC001	1214	Carlos	A2	4	4/10/92	18
LSC001	8191	Mário	A1	4	1/11/92	12
PAG02	8191	Mário	A1	4	1/05/93	12
PAG02	4112	João	A2	4	4/01/91	24
PAG02	6126	José	B1	9	1/11/92	12

Passagem à segunda forma normal 2FN

segunda forma normal (2FN)

uma tabela encontra-se na segunda forma normal, quando, além de estar na 1FN, não contém dependências parciais

Dependência parcial

dependência parcial

uma dependência (funcional) parcial ocorre quando uma coluna depende apenas *de parte de* uma chave primária composta

Dependências parciais

Dependências não parciais

- Tabela 1FN e que possui apenas uma coluna como chave primária
 - não contém dependências parciais
- É impossível uma coluna depender de uma parte da chave primária, quando a chave primária não é composta por partes
- Conclusão
 - Toda tabela 1FN que possui apenas uma coluna como chave primária já está na 2FN

Passagem à 2FN Tabela com uma coluna na chave

```
1FN

(CodProj, Tipo, Descr)
(CodProj, CodEmp, Nome, Cat, Sal, Datalni, TempAl)

2FN

(CodProj, Tipo, Descr)
```

Também

- Tabela que contenha apenas colunas chave primária
- Impossível atributo não chave depender de parte da chave (tabela não tem colunas não chave)
- Tabela sem colunas não chave já está na 2FN

Tabela que possui chave primária com várias colunas e possui colunas não chave deve ser examinada

Pergunta a fazer, para cada coluna não chave:

"a coluna depende de toda a chave ou só de parte?"

ou

"para identificar um valor da coluna necessita de toda chave ou só de parte dela?"

2FN

```
ProjEmp ( CodProj, CodEmp , Datalni, TempAl )

Emp ( CodEmp , Nome, Cat, Sal )
```

Tabelas na 2FN

Proj:

CódProj	Tipo	Descr
LSC001	Novo Desenv.	Sistema de Estoque
PAG02	Manutenção	Sistema de RH

ProjEmp:

CódProj	CodEmp	Datalni	TempAl
LSC001	2146	1/11/91	24
LSC001	3145	2/10/91	24
LSC001	6126	3/10/92	18
LSC001	1214	4/10/92	18
LSC001	8191	1/11/92	12
PAG02	8191	1/05/93	12
PAG02	4112	4/01/91	24
PAG02	6126	1/11/92	12

Tabelas na 2FN

Emp:

CodEmp	Nome	Cat	Sal
2146	João	A1	4
3145	Sílvio	A2	4
6126	José	B1	9
1214	Carlos	A2	4
8191	Mário	A1	4
8191	Mário	A1	4
4112	João	A2	4
6126	José	B1	9

Terceira forma normal (3FN)

- Trata de um outro tipo de redundância
- Exemplo

```
Emp ( CodEmp, Nome, Cat, Sal )
```

- Considerar
 - salário (coluna Sal) é determinado pela categoria funcional (coluna Cat)
- Salário que é pago a uma categoria funcional é armazenado tantas vezes quantos empregados possui a categoria funcional

Terceira forma normal (3FN)

Emp:

CodEmp	Nome	Cat	Sal
2146	João	A1	4
3145	Sílvio	A2	4
6126	José	B1	9
1214	Carlos	A2	4
8191	Mário	A1	4
8191	Mário	A1	4
4112	João	A2	4
6126	José	B1	9

Dependência transitiva

Dependência funcional transitiva (indireta)

Terceira forma normal 3FN

terceira forma normal (3FN)

uma tabela encontra-se na terceira forma normal, quando, além de estar na 2FN, não contém dependências transitivas

Normalização do exemplo

3FN

Proj (<u>CodProj</u>, Tipo, Descr)
ProjEmp (<u>CodProj</u>, <u>CodEmp</u>, DataIni, TempAl)
Emp (<u>CodEmp</u>, Nome, Cat)
Cat (<u>Cat</u>, Sal)

Normalização do exemplo

ÑN

Proj (<u>CodProj</u>, Tipo, Descr, (<u>CodEmp</u>, Nome, Cat, Sal, Datalni, TempAl))

1FN

Proj (<u>CodProj</u>, Tipo, Descr)
ProjEmp (<u>CodProj</u>, CodEmp, Nome, Cat, Sal, Datalni, TempAl)

2FN

Proj (<u>CodProj</u>, Tipo, Descr)
ProjEmp (<u>CodProj</u>, CodEmp, Datalni, TempAl)
Emp (<u>CodEmp</u>, Nome, Cat, Sal)

3FN

Proj (<u>CodProj</u>, Tipo, Descr)
ProjEmp (<u>CodProj</u>, CodEmp, DataIni, TempAl)
Emp (<u>CodEmp</u>, Nome, Cat)
Cat (<u>Cat</u>, Sal)

Tabelas na 3FN

Proj:

CódProj	Tipo	Descr
LSC001	Novo Desenv.	Sistema de Estoque
PAG02	Manutenção	Sistema de RH

ProjEmp:

CódProj	CodEmp	Datalni	TempAl
LSC001	2146	1/11/91	24
LSC001	3145	2/10/91	24
LSC001	6126	3/10/92	18
LSC001	1214	4/10/92	18
LSC001	8191	1/11/92	12
PAG02	8191	1/05/93	12
PAG02	4112	4/01/91	24
PAG02	6126	1/11/92	12

Tabelas na 3FN

Emp:

NúmEmp	Nome	Cat
2146	João	A1
3145	Sílvio	A2
6126	José	B1
1214	Carlos	A2
8191	Mário	A1
8191	Mário	A1
4112	João	A2
6126	José	B1

Cat:

Cat	Sal
A1	4
A2	4
B1	9

- Maioria dos documentos e arquivos
 - a decomposição até a 3FN é suficiente
- Na literatura aparecem outras formas normais
 - forma normal de Boyce/Codd
 - a 4FN
 - a 5FN

Exemplo para 4FN Modelo original

Exemplo para 4FN Requisitos alterados

Tabela Utilização com requisitos alterados

CodProj	CodEmp	CodEquip
1	1	1
1	2	1
1	2 3	1
1	1	2
1	2	2
1	1 2 3 2 2 3 4 3	2 2 2 2 4
2	2	2
2	2	4
3	3	1
3	4	1
3		
3	4	3
2 3 3 3 3 3 4	3	3 5 5 5
3	4	5
4	2	5

Verficar:

Quantas vezes cada empregado do projeto 1 é informado?

Quantas vezes cada equipamento usado no projeto 1 é informado?

Dependências multivaloradas

CodProj	CodEmp	CodEquip
1	1	1
1	2	1
1	3	1
1	1	2
1	2	2
1	3	2
2	2	2

- CodProj $\rightarrow \rightarrow$ CodEmp
- CodProj →→ CodEquip

4FN definição

quarta forma normal (4FN)

uma tabela encontra-se na quarta forma normal, quando, além de estar na 3FN, não contém mais de uma dependência multi-valorada

4FN

ProjEmp (<u>CodProj,CodEmp</u>) ProjEquip (<u>CodProj,CodEquip</u>)

Problemas da normalização

- Chaves primárias omitidas ou incorretas
- Atributos relevantes implicitamente representados
- Atributos irrelevantes, redundantes ou derivados

Chaves primárias omitidas ou incorretas

- Arquivos convencionais
 - o conceito de chave primária não é obrigatório
 - é possível encontrar arquivos que não possuem chave primária
- Quando um arquivo convencional não possui chave primária ou quando a chave primária nele usada difere da usual na organização
 - deve-se proceder como se a chave primária aparecesse no arquivo
 - deve-se inseri-la na forma ÑN

Chaves primárias omitidas ou incorretas exemplo

- Arquivo com dados sobre empregados de uma organização enviado para fins de fiscalização a um órgão governamental
- Identificador de empregado usado na organização é omitido, já que este é irrelevante para o órgão fiscalizador

Chaves primárias omitidas ou incorretas - exemplo

- Outra situação
 - uso de uma chave alternativa, ao invés da chave primária usual do arquivo
- No caso mencionado acima
 - Se o órgão governamental fosse a receita federal
 - Arquivo poderia ter como chave primária o CIC do empregado, ao invés da chave primária normalmente usada na organização.

Atributos relevantes implicitamente representados

- Arquivos convencionais podem conter atributos de forma implícita
 - ordenação de registros ou de listas
 - ponteiros físicos, etc
- Deve-se proceder como se o atributo aparecesse explicitamente no documento

Atributo implícito Ordenação

Exemplo:

- arquivo contém registros referentes a cursos em um concurso vestibular
- para cada curso, há um grupo repetido aninhado, com as informações dos candidatos ao curso em questão
- informações dos candidatos ordenadas por classificação no concurso

Atributo implícito Ordenação

ÑΝ

Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand))

Processo de normalização resulta em:

4FN

Cursos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso)

Candidatos (Cod-Curso, Cod-Cand, Nome-Cand)

Atributo implícito Ordenação

- Informação da classificação dos candidatos em um curso foi perdida no processo de normalização
- Procedimento correto
 - incluir explicitamente na tabela, já na forma ÑN, a informação que aparece implicitamente no arquivo na forma da ordenação dos registros (coluna Ordem-Cand)

ÑN

Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand, <u>Ordem-Cand</u>)

Atributos irrelevantes, redundantes ou derivados

 Devem ser eliminados já quando da passagem a forma não normalizada

Integração de modelos

Integração de modelos

- Normalização de cada um dos arquivos/documentos
 - conduz à definição de um conjunto de tabelas
- Passo seguinte
 - integrar os modelos obtidos para cada arquivo no modelo global do banco de dados
- Processo é conhecido por
 - integração de visões
 - integração de esquemas

Integração de modelos objetivos

- Os atributos de uma mesma entidade (ou de um mesmo relacionamento) podem estar armazenados em diferentes arquivos
 - juntar as tabelas em uma única tabela que representa a entidade ou relacionamento em questão
- Tabelas de um modelo livres de redundâncias
- Tabelas de diferentes modelos podem ter redundâncias entre si
 - integração elimina estas redundâncias

Integração de modelos passos

- (1) integração de tabelas com a mesma chave
- (2) integração de tabelas com chave contida
- (3) verificação de 3FN

Integração de tabelas com mesma chave

- Junção de tabelas que possuem a mesma chave primária.
- "mesma" chave primária =
 - domínios e conteúdos das colunas que compõem a chave primária são iguais

Integração de tabelas com mesma chave - exemplo

Documento 1:

Proj (CodProj, Tipo, Descr)

ProjEmp (CodProj, CodEmp, Datalni, TempAl)

Emp (CodEmp, Nome, Cat)

Cat (Cat, Sal)

Documento2:

Proj (CodProj, Datalnicio, Descr, CodDepto)

Depto (CodDepto, NomeDepto)

ProjEquipamento (CodProj, CodEquipam, DataIni)

ProjEmp (CodProj, CodEmp, FunçãoEmpProj)

Equipamento (CodEquipam, Descrição)

Integração de tabelas com mesma chave - exemplo

Modelo integrado:

Proj (CodProj, Tipo, Descr, DataInicio, CodDepto)

ProjEmp (CodProj, CodEmp, DataIni, TempAl, FunçãoEmpProj)

Emp (CodEmp, Nome, Cat)

Cat (Cat, Sal)

Depto (CodDepto, NomeDepto)

ProjEquipamento (CodProj, CodEquipam, DataIni)

Equipamento (CodEquipam, Descrição)

Integração de modelos problemas

- Processo baseia-se na comparação dos nomes de colunas e de tabelas dentro dos diferentes modelos
- Problema : conflitos de nomes
 - Homônimos
 - Sinônimos

- Tabelas são fundidas
 - uma tabela contém somente a chave primária e
 - a chave primária é subconjunto da chave primária de outra tabela
- Chave primária está contida dentro da outra
 - chave primária deve ter o mesmo domínio e os mesmos valores

Exemplo

AlunoDisc (Cod-Al,Cod-Disc)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc-Cursada,

Nota-Disc)

- Primeira tabela
 - informa que um aluno cursou uma disciplina,
- Segunda tabela
 - informa a nota obtida pelo aluno em uma disciplina em um semestre

AlunoDisc (Cod-Al,Cod-Disc)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc-Cursada,

Nota-Disc)

- Colunas Cod-Al e Cod-Disc da tabela AlunoDisc
 - contém os mesmo que as colunas Cod-Al e Cod-Disc da tabela AlunoDiscSem
- Informações contidas na tabela AlunoDisc já estão na tabela AlunoDiscSem
- Tabela AlunoDisc é redundante e pode ser eliminada sem perda de informações

 Não integrar quando tabela contém dados além da chave primária

AlunoSem (<u>Cod-AI,Sem-Disc</u>, BolsaSimNao)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc, Nota-Disc)

- Garantir que primeira tabela efetivamente contida na segunda
- Exemplo

AlunoMatric (Cod-Al,Sem-Disc)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc, Nota-Disc)

AlunoMatric (Cod-Al,Sem-Disc)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc, Nota-Disc)

- AlunoMatric
 - representa o fato de o aluno estar matriculado em um semestre
- AlunoDiscSem
 - representa a nota que o aluno obteve em uma disciplina em um semestre
- Durante o semestre letivo
 - aluno matriculado mas sem nota

Volta à 2FN

- A integração de dois modelos 4FN pode conduzir a um modelo que está na 2FN mas não na 3FN.
- Exemplo

Arquivo 1:

Departamento (CodDepto, NomeDepto, CodGerenteDepto)

Arquivo 2:

Departamento (CodDepto, LocalDepto,

NomeGerenteDepto)

Volta à 2FN

- Integração destes dois modelos resultaria no modelo integrado abaixo mostrado.
- Modelo integrado:

Departamento (CodDepto, NomeDepto,

CodGerenteDepto, LocalDepto, NomeGerenteDepto)

Não está na 2FN

Construção do modelo ER e Eliminação de Redundâncias

 Integração dos modelos obtidos a partir dos diversos arquivos e documentos normalizados, segue a construção do modelo ER (ver). Nesta construção usam-se as regras apresentadas no capítulo anterior para transformação de modelos relacionais em modelos ER.

Verificação do modelo ER Limitações da Normalização

- O processo de normalização não conduz necessariamente a um modelo ER perfeito
- Normalização apenas elimina
 - campos multivalorados e
 - redundâncias de dados detectadas pelas formas normais descritas

Verificação do modelo ER Limitações da Normalização

- Optamos pela alternativa de decompor tabelas na passagem à 1FN
 - alternativa, apesar de mais simples de tratar na prática, pode levar a imperfeições no modelo
- Há outras formas normais (Boyce/Codd e a quinta forma normal)

Construção do modelo ER

- Último passo da engenharia reversa
 - construção do modelo ER através das regras para engenharia reversa de modelos relacionais
 - verificação do modelo ER obtido, procurando corrigir imperfeições ainda existentes

Exercício 6.1

Mostrar a 2FN e 3FN do modelo abaixo (vendas)

ItemVenda (<u>NúmeroNF,CodigoTipoProd,NumeroProd,</u>
DescricaoProd DataVenda, CodReg, CodEmp,
QtdeItem,PreçoItem,NomeEmp, DescricaoTipoProd)

Exercício 6.1 dependências parciais

Dependências funcionais parciais

(CodigoTipoProd,NumeroProd) → DescricaoProd

CodigoTipoProd → DescricaoTipoProd

NúmeroNF → DataVenda

NúmeroNF → CodReg

NúmeroNF → CodEmp

NúmeroNF → NomeEmp

Exercício 6.1 2FN

ÑΝ

ItemVenda (<u>NúmeroNF,CodigoTipoProd,NumeroProd,</u>
DescricaoProd DataVenda, CodReg,
CodEmp, QtdeItem,PreçoItem,
NomeEmp, DescricaoTipoProd)

2FN

ItemVenda (<u>NúmeroNF,CodigoTipoProd,NumeroProd</u>, QtdeItem,PreçoItem) Produto (<u>CodigoTipoProd,NumeroProd</u>, DescricaoProd) TipoProd (<u>CodigoTipoProd</u>, DescricaoTipoProd) Venda (<u>NúmeroNF</u>, DataVenda, CodReg, CodEmp, NomeEmp)

Exercício 6.1 dependências transitivas

2FN

ItemVenda (<u>NúmeroNF,CodigoTipoProd,NumeroProd</u>, QtdeItem,PreçoItem) Produto (<u>CodigoTipoProd,NumeroProd</u>, DescricaoProd) TipoProd (<u>CodigoTipoProd</u>, DescricaoTipoProd) Venda (<u>NúmeroNF</u>, DataVenda, CodReg, CodEmp, NomeEmp)

- 2FN contém uma dependência transitiva
- Na tabela Venda
 CodEmp → NomeEmp

Exercício 6.1 3FN

2FN

ItemVenda (<u>NúmeroNF,CodigoTipoProd,NumeroProd</u>, QtdeItem,PreçoItem) Produto (<u>CodigoTipoProd,NumeroProd</u>, DescricaoProd) TipoProd (<u>CodigoTipoProd</u>, DescricaoTipoProd) Venda (<u>NúmeroNF</u>, DataVenda, CodReg, CodEmp, NomeEmp)

3FN

ItemVenda (<u>NúmeroNF,CodigoTipoProd,NumeroProd</u>, QtdeItem,PreçoItem)
Produto (<u>CodigoTipoProd</u>, NumeroProd, DescricaoProd)
TipoProd (<u>CodigoTipoProd</u>, DescricaoTipoProd)
Venda (<u>NúmeroNF</u>, DataVenda, CodReg, CodEmp)
Empregado (<u>CodEmp</u>, NomeEmp)