REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS II.

SPACE GROUPS

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Irreducible Representations of Space Groups

Method: Construct the irreps of the space group G starting from the irreps of one of its normal subgroups $H \triangleleft G$

- I. Construct all irreps of H
- 2. Distribute the irreps of H into orbits under G and select a representative
- 3. Determine the little group for each representative
- 4. Find the small (allowed) irreps of the little group
- 5. Construct the irreps of G by induction from the the small (allowed) irreps of the little group

Representations of the Translation subgroup

Born-von Karman boundary

$$(\mathbf{I}, \, \mathbf{t}_i)^{N_i} = (\mathbf{I}, \, \mathbf{N}_i) = (\mathbf{I}, \, \mathbf{o})$$

(I, Nt); Nt =
$$(N_1t_1, N_2t_2, N_3t_3)$$

$$\Gamma^{(q_1 q_2 q_3)}[(\mathbf{I}, \mathbf{t})] = e^{-2\pi i (q_1 \frac{t_1}{N_1} + q_2 \frac{t_2}{N_2} + q_3 \frac{t_3}{N_3})},$$

with
$$\mathbf{t} = (t_1, t_2, t_3);$$

$$q_j = 0, 1, \ldots, N_j - 1;$$

number of irreps: N₁N₂N₃

$$j = 1, 2, 3; t_k, q_j$$
 integers.

Representations of the Translation subgroup

reciprocal space

L:
$$a_{1},a_{2},a_{3} \longleftrightarrow L^{*}: a^{*}_{1},a^{*}_{2},a^{*}_{3}$$

$$a_{i}.a^{*}_{j}=2\pi\delta_{ij}$$

$$\Gamma^{(q_{1},q_{2},q_{3})}[(\mathbf{I},\mathbf{t})] = e^{-2\pi i(q_{1}\frac{t_{1}}{N_{1}}+q_{2}\frac{t_{2}}{N_{2}}+q_{3}\frac{t_{3}}{N_{3}})}$$

$$k_{i}=q_{i}/N_{i}$$

$$\Gamma^{(q_{1},q_{2},q_{3})}[(\mathbf{I},\mathbf{t})] = \Gamma^{k}[(\mathbf{I},\mathbf{t})] = \exp{-i(\mathbf{k}\,\mathbf{t})}$$

$$\binom{(k_{1},k_{2},k_{3})}{t_{2}}$$

Representations of the Translation subgroup

unit cell of reciprocal space

$$k'=k+K$$

$$\Gamma^{k'}=\exp(-i(k+K)t)=\exp(-i(k.t))=\Gamma^{k}$$

first Brillouin zone (Wigner-Seitz cell)

$$|\mathbf{k}| \leq |\mathbf{K} - \mathbf{k}|, \ \forall \mathbf{K} \in \mathbf{L}^*$$

crystallographic unit cell

$$0 \le |\mathbf{k}| \le 1$$

Orbits of irreps of the Translation subgroup. Little group.

conjugation of irreps of T

$$\begin{split} \Gamma^{k'}(I,t) &= \Gamma^k \left((W,w)^{-1}(I,t)(W,w) \right), \ (I,t) \in T, \quad (W,w) \in G \\ \Gamma^{k'}(I,t) &= \Gamma^k \left(I,W^{-1}t \right) = \exp -i \left(k \cdot (W^{-1}t) \right) \\ &= \exp -i \left((k \cdot W^{-1}) \cdot t \right) \\ &= k \cdot W + K \end{split}$$

little co-group of k: Gk

$$k = kW + K, K \in L^*$$

special and general

$$\overline{G}^k = \{I\} \overline{G}^k > \{I\}$$

Orbits of irreps of the Translation subgroup. Little group.

$$\overline{G}^k < \overline{G}$$
 $\overline{G} = \overline{G}^k + W_2 \overline{G}^k + ... + W_m \overline{G}^k$

$$k^*=\{k'=kW_m+K,W_m\}$$

Little group G^k

$$G^k = \{(W,w) \in G | W \in \overline{G}^k \}$$

representation domain

exactly one k-vector from each star

Little-group irreps (Allowed irreps of the little group)

CASE 1:

- k is a vector of the interior of the BZ
 OR
- 2. $\mathcal{G}^{\mathbf{k}}$ is a symmorphic space group.

allowed irreps $D^{k,i}$:

$$\mathbf{D}^{\mathbf{k},i}(\mathbf{W},\mathbf{w}) = \exp{-(i\mathbf{k}\mathbf{w})} \overline{\mathbf{D}}^{\mathbf{k},i}(\mathbf{W})$$

Here $\overline{\mathbf{D}}^{\mathbf{k},i}$ is an irrep of $\overline{\mathcal{G}}^{\mathbf{k}}$,

Little-group irreps (Allowed irreps of the little group)

CASE 2:

- k is a vector on the surface of the BZ AND
- 2. $\mathcal{G}^{\mathbf{k}}$ is a nonsymmorphic space group.

allowed irreps $D^{k,i}$:

induced from allowed irreps $\mathbf{D}^{\mathbf{k},\,i}_{\mathcal{H}^{\mathbf{k}}_0}$ of \mathcal{H}_0 where

 \mathcal{H}_0 is a symmorphic subgroup of $\mathcal{G}^{\mathbf{k}}$

$$\mathcal{G} \triangleright \mathcal{H}_1 \triangleright \mathcal{H}_2 \dots \triangleright \mathcal{H}_0 \triangleright \dots \triangleright \mathcal{T}$$

PROCEDURE FOR THE CONSTRUCTION OF

THE IRREDUCIBLE REPRESENTATIONS OF SPACE GROUPS

Procedure for the construction of the irreps of space groups.

I. space-group information

- (a) Decomposition of the space group G in cosets relative to its translation subgroup T, see IT A (1996)
 G = T∪(W₂, w₂) T∪ ... ∪(W_p, w_p) T
- (b) Choice of a convenient set of generators of G, see IT A (1996)

2. k-vector information

- (a) k vector from the representation domain of the BZ
- (b) Little co-group $\overline{\mathcal{G}}^{\mathbf{k}}$ of \mathbf{k} : $\overline{\mathcal{G}}^{\mathbf{k}} = \{\widetilde{\mathbf{W}}_i \in \overline{\mathcal{G}} : \mathbf{k} = \mathbf{k} \, \widetilde{\mathbf{W}}_i + \mathbf{K}, \mathbf{k} \in \mathbf{L}^* \}$
- (c) k-vector star ⋆(k)

 $\star(\mathbf{k}) = \{\mathbf{k}, \mathbf{k}_2, \dots, \mathbf{k}_s\}$, with $\mathbf{k} = \mathbf{k} \overline{\mathbf{W}}_j$, $j = 1, \dots s$, where \overline{W}_j are the coset representatives of $\overline{\mathcal{G}}$ relative to $\overline{\mathcal{G}}^{\mathbf{k}}$.

- (d) Determination of the little group $\mathcal{G}^{\mathbf{k}}$ $\mathcal{G}^{\mathbf{k}} = \{ (\widetilde{\mathbf{W}}_i, \widetilde{\mathbf{w}}_i) \in \mathcal{G} : \widetilde{\mathbf{W}}_i \in \overline{\mathcal{G}} \}$
- (e) Decomposition of \mathcal{G} relative to $\mathcal{G}^{\mathbf{k}}$ An obvious choice of coset representatives of \mathcal{G} relative to $\mathcal{G}^{\mathbf{k}}$ is the set of of elements $\{q_i = (\overline{W}_i, \overline{w}_i), i = 1, \ldots, s\}$ where \overline{W}_i are the coset representatives of $\overline{\mathcal{G}}$ relative to $\overline{\mathcal{G}}^{\mathbf{k}}$ $\mathcal{G} = \mathcal{G}^{\mathbf{k}} \cup (\overline{W}_2, \overline{w}_2) \mathcal{G}^{\mathbf{k}} \cup \ldots (\overline{W}_s, \overline{w}_s) \mathcal{G}^{\mathbf{k}}$

3. Allowed (small) irreps of $\mathcal{G}^{\mathbf{k}}$

(a) If $\mathcal{G}^{\mathbf{k}}$ is a symmorphic space group or \mathbf{k} is inside the BZ, then the non-equivalent allowed irreps $\mathbf{D}^{\mathbf{k},i}$ of $\mathcal{G}^{\mathbf{k}}$ are related to the non-equivalent irreps $\overline{\mathbf{D}}^{\mathbf{k},i}$ of $\overline{\mathcal{G}}^{\mathbf{k}}$ in the following way:

$$\mathbf{D}^{\mathbf{k},i}(\widetilde{\mathbf{W}}_i,\widetilde{\mathbf{w}}_i) = \exp{-(i\,\mathbf{k}\,\mathbf{w}_i)}\,\overline{\mathbf{D}}^{\mathbf{k},i}(\widetilde{\mathbf{W}}_i)$$

- (b) If $\mathcal{G}^{\mathbf{k}}$ is a non-symmorphic space group and \mathbf{k} is on the surface of the BZ, then:
 - i. Look for a symmorphic subgroup $\mathcal{H}_0^{\mathbf{k}}$ (or an appropriate chain of normal subgroups) of index 2 or 3
 - ii. Find the allowed irreps $\mathbf{D}_{\mathcal{H}_0}^{\mathbf{k}i}$ of $\mathcal{H}_0^{\mathbf{k}}$, i. e. those for which is fulfilled $\mathbf{D}_{\mathcal{H}_0}^{\mathbf{k},i}(\mathbf{I},\mathbf{t}) = \exp{-(i\,\mathbf{k},\mathbf{t})\,\mathbf{I}}$ and distribute them into orbits relative to $\mathcal{G}^{\mathbf{k}}$
 - iii. Determine the allowed irrpes of G^k using the results for the induction from the irreps of normal subgroups of index 2 or 3

Induction procedure

4. Induction procedure for the construction of the irreps $\mathbf{D}^{\mathbf{k},i}$ of $\mathcal G$ from the allowed irreps $\mathbf{D}^{\mathbf{k},i}$ of $\mathcal G$

The representation matrices of $\mathbf{D}^{*\mathbf{k},i}(\mathcal{G})$ for any element of \mathcal{G} can be obtained if the matrices for the generators $\{(\mathbf{W}_l, \mathbf{w}_l), l = 1, \ldots, k\}$ of \mathcal{G} are available (step 1a).

$$m{D}^{Ind}(\mathbf{g}) = m{M}(\mathbf{g}) \otimes m{D}^{(j)}(h)$$
 induction matrix

subgroup irrep matrix

a) Construction of the induction matrix The elements of the little group g^k and the coset representatives $\{q_1,q_2,...,q_s\}$ of G relative to \mathcal{G}^k are necessary for the construction of the induction matrix

$$M(W,w)_{ij} = \begin{cases} 1 \text{ if } q_i^{-1}(W,w)q_j \in \mathcal{G}^k \\ 0 \text{ if } q_i^{-1}(W,w)q_j \not\in \mathcal{G}^k \end{cases}$$

0		0	0
0	0		0
I	0	0	0
0	0	0	

 $dim M=s \times s$

monomial matrix

(b) Matrices of the irreps $\mathbf{D}^{\star \mathbf{k}, m}$ of \mathcal{G} :

$$\mathbf{D}^{\star\mathbf{k},m}(\boldsymbol{W}_{l},\,\boldsymbol{w}_{l})_{i\mu,\,j\nu} = M(\boldsymbol{W}_{l},\,\boldsymbol{w}_{l})_{ij}\,\mathbf{D}^{\mathbf{k},m}(\widetilde{\boldsymbol{W}}_{p},\,\widetilde{\boldsymbol{w}}_{p})_{\mu\,\nu},$$
where $(\widetilde{\boldsymbol{W}}_{p},\,\widetilde{\boldsymbol{w}}_{p}) = q_{i}^{-1}(\boldsymbol{W}_{l},\,\boldsymbol{w}_{l})\,q_{j}$

0		0	0
0	0	1	0
I	0	0	0
0	0	0	

All irreps of the space group \mathcal{G} for a given \mathbf{k} vector are obtained considering all allowed irreps of the little group $\mathcal{G}^{\mathbf{k}}$ $\mathbf{D}^{\mathbf{k},m}$ obtained in step 3.

Consider the k-vectors $\Gamma(000)$ and $\mathbf{X}(0\frac{1}{2}0)$ of the group *P4mm*.

- (i) Determine the little groups, the **k**-vector stars, the number and the dimensions of the little-group irreps, the number and the dimensions of the corresponding irreps of the group *P4mm*.
- (ii) Calculate a set of coset representatives of the decomposition of the group *P4mm* with respect to the little group of the **k**-vectors and **X**, and construct the corresponding full space group irreps of *P4mm*.

International Tables for Crystallography (2006). Vol. A, Space group 99, pp. 382-383.

P4mm

 $C_{4\nu}^1$

4mm

Tetragonal

No. 99

P4mm

Patterson symmetry P4/mmm

Origin on 4mm

Asymmetric unit

 $0 \le x \le \frac{1}{2}$; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$; $x \le y$

Symmetry operations

- (4) y, \bar{x}, z
- (1) x, y, z (2) \bar{x}, \bar{y}, z (3) \bar{y}, x, z (5) x, \bar{y}, z (6) \bar{x}, y, z (7) \bar{y}, \bar{x}, z

(8) y, x, z

5.5 Crystal class 4mm

5.5.1 Arithmetic crystal class 4mmP

Fig. 5.5.1.1 Diagram for arithmetic crystal class 4mmP

$$P4mm - C_{4v}^1$$
 (99) to $P4_2bc - C_{4v}^8$ (106)

Reciprocal-space group $(P4mm)^*$, No. 99 see Tab. 5.5.1.1

Irreps of P4mm, $\Gamma(000)$ and X(01/20)

- 1. Space-group information
 - (a) Decomposition of P4mm relative to its translation subgroup;

coset representatives from IT A (1996):

$$(1, o), (2z, o), (4, o), (4^{-1}, o), (m_{yz}, o), (m_{xz}, o), (m_{x\overline{x}}, o), (m_{xx}, o)$$

(b) generators of P4mm from IT A (1996) $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, (\mathbf{2}_z, \mathbf{o}), (\mathbf{4}, \mathbf{o}), (\mathbf{m}_{yz}, \mathbf{o})$

2. \vec{k} -vector information

- (a) X (0, 1/2, 0)
- (b) little co-group $\overline{\mathcal{G}}^X=\{\mathbf{1,\ 2}_z,\ \mathbf{m}_{yz},\ \mathbf{m}_{xz}\}=2_zm_{yz}m_{xz}$

e.g.,
$$X 2_z = (0, 1/2, 0) \begin{pmatrix} \overline{1} & 0 & 0 \\ 0 & \overline{1} & 0 \\ 0 & 0 & 1 \end{pmatrix} = (0, -1/2, 0) = (0, 1/2, 0) + (0, \overline{1}, 0)$$

And the little co-group of $\Gamma(000)$?

- (c) \vec{k} -vector star: $\star X = \{(0, 1/2, 0), (1/2, 0, 0)\}$ coset representative of $\overline{G} = 4mm$ relative to $\overline{G}^{\mathbf{k}} = 2_z m_{yz} m_{xz}$, HM symbol mm2 $4mm = 2_z m_{yz} m_{xz} \cup \mathbf{m}_{xx} 2_z m_{yz} m_{xz}$
- (d) little group $\mathcal{G}^X = P2_z m_{yz} m_{xz}$, HM symbol Pmm2
- (e) decomposition of P4mm relative to $P2_z m_{yz} m_{xz}$ $P4mm = P2_z m_{yz} m_{xz} \cup (\mathbf{m}_{xx}, \mathbf{o}) P2_z m_{yz} m_{xz}$

And for the point $\Gamma(000)$?

3. Allowed irreps of \mathcal{G}^X Because \mathcal{G}^X is a symmorphic group,

$$\mathbf{D}^{X,i}(\widetilde{W}_i,\,\widetilde{w}_i) = \exp{-(i\,\mathbf{X}\,\widetilde{\mathbf{w}}_i)}\,\overline{\mathbf{D}}^{X,i}(\widetilde{W}_i)$$

$P2_zmm$	(1, o)	(2, o)	$(m{m}_{yz},\ m{o})$	$(\boldsymbol{m}_{xz},\ \boldsymbol{o})$	(1, t)
$oldsymbol{D}^{X,1}$	1	1	1	1	$\exp{-(i{f X}{f t})}$
$oldsymbol{D}^{X,2}$	1	1	-1	-1	$=\exp-(i\pi n_2)$
$oldsymbol{D}^{X,3}$	1	-1	1	-1	$=(-1)^{n_2}$
$oldsymbol{D}^{X,4}$	1	-1	-1	1	

t is the column of integer coefficients (n_1, n_2, n_3)

And for the point $\Gamma(000)$?

4. Induction procedure

Generators of P4mm: $\langle (\boldsymbol{W}_l, \boldsymbol{w}_l) \rangle = \langle (\boldsymbol{1}, \boldsymbol{t}_i), (\boldsymbol{4}, \boldsymbol{o}), (\boldsymbol{m}_{yz}, \boldsymbol{o}) \rangle$ Representatives of $P2zm_{yz}m_{xz}$ relative to \mathcal{T} : $\{(\widetilde{W}_j, \widetilde{w}_j)\} = \{(\boldsymbol{1}, \boldsymbol{o}), (\boldsymbol{2}_z, \boldsymbol{o}), (\boldsymbol{m}_{yz}, \boldsymbol{o}), (\boldsymbol{m}_{xz}, \boldsymbol{o})\}$ Coset representatives of P4mm relative to $P2zm_{yz}m_{xz}$: $\{q_1, q_2\} = \{(\boldsymbol{1}, \boldsymbol{o}), (\boldsymbol{m}_{xx}, \boldsymbol{o})\}.$

	Induction matrix				$q_i^{-1}\left(oldsymbol{W}_{l},oldsymbol{w}_{l} ight)q_j$	
$(\boldsymbol{W}_l, \boldsymbol{w}_l)$	q_i	q_i^{-1}	$q_i^{-1}\left({oldsymbol W}_{l}, {oldsymbol w}_{l} ight)$	q_{j}	$=(\widetilde{W}_j,\widetilde{w}_j)$	
(1, t)	(1, o)	(1, o)	(1, t)	(1, o)	(1, t)	11
	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(m{1},m{t})$ $(m{m}_{xx},m{m}_{xx}m{t})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(1, \mathbf{m}_{xx} \mathbf{t})$	22
						11
	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(m{m}_{yz}, \; m{o}) \ (m{4}^{-1}, \; m{o})$	$(\boldsymbol{m}_{xx},\boldsymbol{o})$	$(m{m}_{xz},~m{o})$	22
(4, o)	(1, o)	(1, o)	(4 , o)	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(m{m}_{yz},\ m{o})$	12
	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(m{4},m{o})$ $(m{m}_{xz},m{o})$	(1, o)	$(oldsymbol{m}_{xz},\ oldsymbol{o})$	21

(b) Matrices of the irreps $\mathbf{D}^{*X,i}$ of \mathcal{G}

$$egin{array}{lcl} {f D}^{*X,i}({m 1},{m t}) & = & \left(egin{array}{c|cc} {m D}^{X,i}({m 1},{m t}) & O \\ \hline O & {m D}^{X,i}({m 1},{m m}_{xx}{m t}) \end{array}
ight); \ {m D}^{*X,i}({m m}_{yz},{m o}) & = & \left(egin{array}{c|cc} {m D}^{X,i}({m m}_{yz},{m o}) & O \\ \hline O & {m D}^{X,i}({m m}_{xz},{m o}) \end{array}
ight) \ {m D}^{*X,i}({m 4},{m o}) & = & \left(egin{array}{c|cc} O & {m D}^{X,i}({m m}_{yz},{m o}) \\ \hline {m D}^{X,i}({m m}_{xz},{m o}) & O \end{array}
ight) \end{array}$$

Table of irreps $\mathbf{D}^{*X,i}$ for the generators of P4mm t=

	$(oldsymbol{m}_{yz}, oldsymbol{o})$	(4 , o)	(1	, t)
$\mathbf{D}^{*X,1}$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$	$\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array} ight)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$
$\mathbf{D}^{*X,2}$	$\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$
$\mathbf{D}^{*X,3}$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(egin{array}{ccc} 0 & 1 \ -1 & 0 \end{array} ight)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$
$\mathbf{D}^{*X,4}$	$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} $	$\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array} ight)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$

Consider a general k-vector k of a space group G. Determine its little co-group, the k-vector star. How many arms has its star. How many full-group irreps will be induced and of what dimension.

SOLUTION

Problem 2.

general k-vector k irrep of T: Γ^k little co-group $\overline{G}^k = \{1\}$ little group $G^k = T$ star of k, $k^* = \{kW_i, W_i \in \overline{G}\}$ allowed irrep: Γ^k induction procedure

(W,w)	qj	(W,w)q _j	q i	qi ^{- l} (W,w) qj	M _{ij}
(l,t)	(W_j, w_j)				

$$k^* = \{k, k', k'', ..., k^n\}$$

	exp-ikt					
		exp-ik't				
$D^{k*}(I,t)=$			exp-ik"t			
				•••		
					• • •	
						exp-ik ⁿ t

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS

Databases of point and space groups

Representation theory applications

Últimas noticias

Dictionaries ▼

Bilbao Crystallographic Server

bilbao crystallographic server

[The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country]

[Space Groups] [Layer Groups] [Rod Groups] [Frieze Groups] [Wyckoff Sets]

First announcement and pre-registration of a School in 2009 on

CrystallographyOnline:

International Schoolon

the Use and Applications

of the Bilbao

Server

Crystallographic

this server

Space Groups Retrieval Tools

Generators and General Positions of Space Groups **GENPOS**

WYCKPOS Wyckoff Positions of Space Groups

Reflection conditions of Space Groups HKLCOND

MAXSUB Maximal Subgroups of Space Groups

SERIES Series of Maximal Isomorphic Subgroups of Space Groups

Equivalent Sets of Wyckoff Positions **WYCKSETS**

Normalizers of Space Groups NORMALIZER

KVEC The k-vector types and Brillouin zones of Space Groups

Sections

Retrieval Tools

Group-Subgroup

Representations

Solid State

Structure Utilities

Subperiodic

ICSDB

Contact us

About us

Links

Publications

Group - Subgroup Relations of Space Groups

SUBGROUPGRAPH Lattice of Maximal Subgroups

Distribution of subgroups in conjugated classes HERMANN COSETS Coset decomposition for a group-subgroup pair

WYCKSPLIT The splitting of the Wyckoff Positions

Minimal Supergroups of Space Groups MINSUP

SUPERGROUPS Supergroups of Space Groups

CELLSUB List of subgroups for a given k-index.

CELLSUPER List of supergroups for a given k-index. Common Subgroups of Space Groups COMMONSUBS

Common Supergroups of Two Space Groups COMMONSUPER

Databases of Representations

Representations of space and point groups

wave-vector data

Brillouin zones representation domains parameter ranges

POINT

character tables multiplication tables symmetrized products

Retrieval tools

Reciprocal-space symmetry Crystallographic Approach

Reciprocal space groups

Brillouin zones
Representation domain
Wave-vector symmetry

The k-vector Types of Group 22 [F222]

k-vec	ctor label	W	Wyckoff position		Parameters, see
CDM	ſL			IT A	IT A
Γ	0,0,0	2	a	222	0,0,0
T	$0, \frac{1}{2}, \frac{1}{2}$	2	\boldsymbol{b}	222	$\frac{1}{2}$, 0, 0
\boldsymbol{Z}	$\frac{1}{2}, \frac{1}{2}, 1$	2	\boldsymbol{c}	222	$\frac{1}{2}, \frac{1}{2}, 0$
$Z \sim$	Z_2				$0, 0, \frac{1}{2}$
Y	$\frac{1}{2}$, 0, $\frac{1}{2}$	2	d	222	$0, \frac{1}{2}, 0$
$Y \sim$	Y_2				$\frac{1}{2}$, 0, 0
Σ	$0, \alpha, \alpha$	4	e	2	$x, 0, 0: 0 < x < \frac{1}{2}$
C	$\frac{1}{2}$, α , $\frac{1}{2} + \alpha$	4	f	2	$x, \frac{1}{2}, 0: 0 < x < \frac{1}{2}$
Δ	lpha,0,lpha	4	g	.2.	$0, y, 0: 0 < y < \frac{1}{2}$
D	$\alpha, \frac{1}{2}, \frac{1}{2} + \alpha$	4	h	.2.	$\frac{1}{2}, y, 0: 0 < y < \frac{1}{2}$

Example: The k-vector Types of Group 22 [F222]

Brillouin zone

6/mmmP

Database on Representations of Point Groups

group-subgroup relations

The Rotation Group D(L)

Subgroup Order Index

6mm	12	1
6	6	2
3m	6	2
3	3	4
mm2	4	3
2	2	6
m	2	6
1	1	12

L	2L+1	A ₁	A ₂	B ₁	B ₂	E ₂	E ₁
0	1	1		•	•		
1	3	1		•	•	•	1
2	5	1		•	•	1	1
3	7	1		1	1	1	1
4	9	1		1	1	2	1
5	11	1		1	1	2	2
6	13	2	1	1	1	2	2
7	15	2	1	1	1	2	3
8	17	2	1	1	1	3	3
9	19	2	1	2	2	3	3
10	21	2	1	2	2	4	3

Point Group Tables of C_{6v}(6mm)

Character Table

C _{6v} (6mm)	#	1	2	3	6	m _d	m _v	functions
Mult.	-	1	1	2	2	3	3	
A ₁	Γ ₁	1	1	1	1	1	1	z,x^2+y^2,z^2
A ₂	Γ ₂	1	1	1	1	-1	-1	J _z
В ₁	Γ ₃	1	-1	1	-1	1	-1	
B ₂	Γ ₄	1	-1	1	-1	-1	1	
E ₂	Г ₆	2	2	-1	-1	0	0	(x^2-y^2,xy)
E ₁	Γ ₅	2	-2	-1	1	0	0	$(x,y),(xz,yz),(J_x,J_y)$

[List of irreducible representations in matrix form]

character tables matrix representations basis functions

Direct (Kronecker) products of representations

Multiplication Table

C _{6v} (6mm)	A ₁	A ₂	B ₁	B ₂	E ₂	E ₁
A ₁	A ₁	A ₂	B ₁	B ₂	E ₂	E ₁
A ₂		A ₁	B ₂	B ₁	E ₂	E ₁
В ₁			A ₁	A ₂	E ₁	E ₂
В2				A ₁	E ₁	E ₂
E ₂					A ₁ +A ₂ +E ₂	B ₁ +B ₂ +E ₁
E ₁		•		•		A ₁ +A ₂ +E ₂

Symmetrized Products of Irreps

C _{6v} (6mm)	A ₁	A ₂	B ₁	B ₂	E ₂	E ₁
[A ₁ x A ₁]	1	•				
[A ₂ x A ₂]	1					
[B ₁ x B ₁]	1					
[B ₂ x B ₂]	1					
[E ₂ x E ₂]	1				1	
[E ₁ x E ₁]	1	•			1	

Point-group Database

Irreps Decompositions

C _{6v} (6mm)	A ₁	A ₂	B ₁	B ₂	E ₂	E ₁
V	1		•	•	•	1
[V ²]	2				1	1
[V ³]	2		1	1	1	2
[V ⁴]	3		1	1	3	2
Α		1				1
[A ²]	2				1	1
[A ³]		2	1	1	1	2
[A ⁴]	3		1	1	3	2
[V ²]xV	3	1	1	1	2	4
$[[V^2]^2]$	5		1	1	4	3
{V ² }		1				1
{A ² }		1				1
{[V ²] ² }	1	2	1	1	2	3

Computing Programs Representations of point and space groups

Representation Theory Applications

REPRES Space Groups Representations

DIRPRO Direct Products of Space Group Irreducible Representations

CORREL Correlations Between Representations

POINT Point Group Tables

SITESYM Site-symmetry induced representations of Space Groups

Solid State Theory Applications

SAM Spectral Active Modes (IR and RAMAN Selection Rules)

NEUTRON Neutron Scattering Selection Rules

SYMMODES Primary and Secondary Modes for a Group - Subgroup pair

AMPLIMODES Symmetry Mode Analysis

Problem: Representations of space groups

REPRES

Space Group Number: Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it:

99

space group

k-vector data

Optional: If you wish to see the full-group irreps for the generators check this

Optional: If you wish to change conventional (ITA) basis check this

nonconventional setting

Optional: If you wish to see the irreps for arbitrary space group element check this

Traslation
0
0
0

arbitrary element

Space-group data

REPRES: output

```
Space group G99 , number 99
                                 G=\langle (W_1,w_1),...,(W_k,w_k) \rangle
Lattice type : tP
Number of generators: 4
                         G=T+(W_2,w_2)T+...+(W_n,w_n)T
Number of elements: 8
```

REPRES: output

k-vector and its star *k

```
K-vector X:
 in primitive basis: 0.000 0.500 0.000
 in standard dual basis :
                               0.000 0.500
                                            0.000
The star of the k-vector has the following 2 arms:
 0.000 0.500 0.000
 0.500 0.000 0.000
```

Little group $G^X = \{(W_i, w_i) | W_i k = k + K, (W_i, w_i) \in G\}$

The little group of the k-vector has the following 4 elements as translation coset representatives :

Little group G^X

The little group of the k-vector has 4 allowed irreps. The matrices, corresponding to all of the little group elements are :

```
Irrep (X)(1) , dimension 1
(1.000, 0.0) (1.000, 0.0) (1.000, 0.0) (1.000, 0.0) Allowed (small)
```

irreps DX,I

```
Irrep (X)(2) , dimension 1
1 2 3 4
(1.000, 0.0) (1.000, 0.0) (1.000,180.0) (1.000,180.0)
```

Coset decomposition

REPRES: output

The space group has the following 2 elements as coset representatives relative to the little group:

$$G=G^X+q_2G^X+...+q_kG^X$$

Full-group irreps: Induction procedure

```
Generator number 3
Induction matrix :
                             Full-group
                                                induction
                                                                small irrep
                               irrep
                                                  matrix
                                                                  matrix
                          D^{*X,i}(W,w)_{mi,nj} = M(W,w)_{m,n}D^{X,i}(W^k,w^k)_{i,j}
Block (1,2):
(1.000, 0.0)
Block (2,1):
(1.000, 0.0)
Generator number 4
Induction matrix
Block (1,1):
                                               (W^{k}, w^{k}) = (q_{m})^{-1}(W, w)q_{n}
(1.000, 0.0)
Block (2,2):
(1.000, 0.0)
```

Obtain the irreps for the space group 4mm for the k-vectors $\Gamma(000)$ and X(01/20) using the program REPRES. Compare the results with the solutions of Problem 1.

Use the program REPRES for the derivation of the irreps of a general k-vector of the group P4mm and compare the results with the results of Problem 2.

Problem: Correlations between representations CORREL of space groups

```
group G
{e, g<sub>2</sub>, g<sub>3</sub>, ..., g<sub>i</sub>,..., g<sub>n</sub>}
{e, h<sub>2</sub>, h<sub>3</sub>, ...,h<sub>m</sub>}
subgroup H<G
```

$$D(G)$$
: irrep of G
 $\{D(e), D(g_2), D(g_3),..., D(g_i),..., D(g_n)\}$
 $\{D(e), D(h_2), D(h_3),..., D(h_m)\}$
 $\{D(G) \downarrow H\}$: subduced rep of H

Subduction
S-¹{D(G)↓H}S

⊕m_iD_i(H)

irreps of H

Correlations between representations of space groups

Subduction of space group irreps

$$D^{*k_G,i}(G)H \sim \bigoplus m_j D^{*k_H,j}(H)$$

Step I. Correlations between wave vectors

$$*k_G \downarrow H = \sum_{*k_H} (*k_G)^*k_H)^*k_H$$

Step 2. Correlations between characters

$$\eta^{*k_G,i}(G) = \sum_{k_{H_j}} (k_{G,i} | k_{H,j}) \eta^{*k_{H_j},p}(H)$$

CORREL: INPUT data

Supergroup number: Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it:

Subgroup number: Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it:

Subgroup 1221

Subgroup G

Subgroup International Tables for Crystallography, Vol. A or choose it:

Enter the transformation matrix below:

k-vector data

CORREL: OUTPUT data

*k_G - vector data

```
K-vector X :
   in primitive basis : 0.000 0.500 0.000
   in dual basis : 0.000 0.500 0.000
The star *X has the following 3 arms :
   0.000 0.500 0.000
   0.500 0.000 0.000
   0.000 0.000 0.500
```

*k-vector splitting

$$*k_G = *k_{H,1} + *k_{H,2} + ... + *k_{H,k}$$

Information about splitting

```
The star *X of the supergroup splits the following way

*X --> 1_*S1 + 1_*S2

Star *S1 = *( 0.000 0.500 0.000)

Star *S2 = *( 0.000 0.000 0.500)
```

CORREL: OUTPUT data

Correlations between representations

$$\{D(G) \downarrow H\} \longrightarrow \bigoplus m_i D_i(H)$$

Subduction problem

Reduction : (*X)(1) = 1(*S1)(1) + 1(*S2)(1)

Reduction : (*X)(2) = 1(*S1)(2) + 1(*S2)(2)

Reduction: (*X)(3) = 1(*S1)(3) + 1(*S2)(2)

Reduction: (*X)(4) = 1(*S1)(4) + 1(*S2)(1)

Reduction : (*X)(5) = 1(*S1)(1) + 1(*S2)(3)

Problem: Direct product of representations of space groups

DIRPRO

 $D_1(G)$: irrep of G $\{D_1(e), D_1(g_2),...,D_1(g_n)\}$

$$D_2(G)$$
: irrep of G
 $\{D_2(e), D_2(g_2),..., D_2(g_n)\}$

Direct-product representation

$$D_1 \otimes D_2 = \{D_1(e) \otimes D_2(e), ..., D_1(g_i) \otimes D_2(g_i), ...\}$$

 $D_1 \otimes D_2$

irreps of G

Direct product of representations of space groups

Direct product of space group irreps

$$D^{*k_1,i}(G) \otimes D^{*k_2,j} \sim \bigoplus m_j D^{*k,p}(G)$$

Step I. Selection rules of wave-vectors stars

$${}^{*}k_{1} \otimes {}^{*}k_{2} = \sum_{*} ({}^{*}k_{1}{}^{*}k_{2}|{}^{*}k){}^{*}k$$

Step 2. Decomposition of direct product

$$\eta^{*k_1,i_1}(G) \eta^{*k_2,i_2}(G) = \sum_{k_1,i_1} (k_1,i_1,i_2,i_2) (k_2,i_2) \eta^{*k_1,p}(G)$$

Consider the space group P4mm and its k-vector X(01/20). Determine the wave-vector selection rules for the product

 $*X(01/20) \otimes *X(01/20).$

The k-vector Types of Group 99 [P4mm]

(Table for arithmetic crystal class 4mmP)

(P4mm-C_{4v}¹ (99) to P4₂bc-C_{4v}⁸ (106))

Reciprocal-space group (P4mm)*, No. 99

Brillouin zone

k-vector label			/ck	off position	Parameters			
	CDML			ITA	ITA			
GM	0,0,0	1	а	4mm	0,0,z: z=0			
Z	0,0,1/2	1	а	4mm	0,0,z: z=1/2			
LD	0,0,u	1	а	4mm	0,0,z: 0 <z<1 2<="" td=""></z<1>			
LE	0,0,-u	1		4mm	0,0,-z: 0 <z<1 2<="" td=""></z<1>			
LE+	SM + LD + Z	Ľ	а	4111111	0,0,-2. 0-2-1/2			
$[Z_1Z]$]	1	а	4mm	o,o,z: -1/2 <z<=1 2<="" td=""></z<=1>			
	40400	4	II.	14	4/0.4/0			
М	1/2,1/2,0	1	b	4mm	1/2,1/2,z:z=0			
Α	1/2,1/2,1/2	1	b	4mm	1/2,1/2,z:z=1/2			
٧	1/2,1/2,u	1	b	4mm	1/2,1/2,z: 0 <z<1 2<="" td=""></z<1>			
VA	1/2,1/2,-u	1 b		4mm	1/2,1/2,-z: 0 <z<1 2<="" td=""></z<1>			
VA -	+ M + V + A	Ľ		711111	112,112,-2.0-2-112			
[A ₁ A	A]	1 b 4mm 0,1/2,z:-1/2 <z<=1< td=""></z<=1<>						
X	0,1/2,0	2	С	2mm.	0,1/2,z:z=0			
R	0,1/2,1/2	2	С	2mm.	0,1/2,z: z=1/2			
	0.4/2	2	С	2mm.	0,1/2,z: 0 <z<1 2<="" td=""></z<1>			
W	0,1/2,u	_						
W WA	0,1/2,u 0,1/2,-u	\vdash			0.1/2 -2: 0<2<1/2			
WA		2	С	2mm.	0,1/2,-z: 0 <z<1 2<="" td=""></z<1>			

SM	u,u,0	4	d	m	x,x,z: 0=z <x<1 2<="" th=""></x<1>
S	u,u,1/2	4	d	m	x,x,z: 0 <x<z=1 2<="" td=""></x<z=1>
С	u,u,v	4	d	m	x,x,z: 0 <x,z<1 2<="" td=""></x,z<1>
CA	u,u,-v	4			v v =: 0 <v 2<="" =<1="" td=""></v>
CA ·	+ SM + C + S	4	d	m	x,x,-z: 0 <x,z<1 2<="" td=""></x,z<1>
[ZZ ₁	A ₁ A]	4	d	m	x,x,z: 0 <x<1 -1="" 2,="" 2<z<="1/2</td"></x<1>
DT	0,u,0	4	е	.m.	0,y,z: 0=z <y<1 2<="" td=""></y<1>
U	0,u,1/2	4	е	.m.	0,y,z: 0 <y<z=1 2<="" td=""></y<z=1>
В	0,u,v	4	е	.m.	0,y,z: 0 <y,z<1 2<="" td=""></y,z<1>
BA	0,u,-v	4		.m.	0 y -7: 0 <y 2<="" 7<1="" td=""></y>
BA -	+ DT + B + U	4	е		0,y,-z: 0 <y,z<1 2<="" td=""></y,z<1>
[ZZ ₁	R ₂ R]	4	е	.m.	x,x,z: 0 <x<1 -1="" 2,="" 2<z<="1/2</td"></x<1>
Υ	u,1/2,0	4	f	.m.	x,1/2,z: 0=z <x<1 2<="" td=""></x<1>
Т	u,1/2,1/2	4	f	.m.	x,1/2,z: 0 <x<z=1 2<="" td=""></x<z=1>
F	u,1/2,v	4	f	.m.	x,1/2,z: 0 <x,z<1 2<="" td=""></x,z<1>
FA	u,1/2,-v	4	f	.m.	x,1/2,-z: 0 <x,z<1 2<="" td=""></x,z<1>
FA +	+Y+F+T	_	Ľ		A, 1/2,-2. U-A,2-1/2
[AA.	1R ₂ R]	4	f	.m.	x,1/2,z: 0 <x<1 -1="" 2,="" 2<z<="1/2</td"></x<1>
	,	_	_		
GP	u,v,w	8	a	1	x,y,z: -1/2 <x<y<1 2,<="" td=""></x<y<1>
	_,,,,,,	Ĭ			-1/2 <z<=1 2.<="" td=""></z<=1>

DIRPRO: INPUT data

Space Group Number: Please, enter the sequential number of group as given in International Tables for Crystallography, Vol. A or choose it: 123

group G

k-vector data

Get results Or Reset form

DIRPRO: OUTPUT data

Space-group data

```
Space group G123 , number 123
Lattice type : tP

Number of space group generators : 5

G = \left\langle (W_{I}, w_{I}), ..., (W_{k}, w_{k}) \right\rangle
```

$G=T+(W_2,w_2)T+...+(W_n,w_n)T$

Number of space group elements: 16

		1				2				3				4	
1	0	0	0	-1	0	0	0	0	-1	_	0	0	1	0	0
0	1	0	0	0	-1	0	0	1	0	0	0	-1	0	0	0
0		1	0	0	0	1	0	1	0	1	0	0	0	1	0
		5				6				7				8	
-1	0		0	1	0		0	0	1	Ó	0	0	-1		0
0	1	0	0	Ō	-1	0	Ö	0 1 0	0	0	Ō		0		
0	0	-1	Ō	0	0	-1	Ö	0	0	-1	Ö	0	0	-1	0
		_				_				_				_	
		9				10				11				12	
-1	0	0	0	1	0	0	0	0	1	0	0	0	-1	0	0
		0		0	1	0	0	-1	0	0	0	1	0	0	0
0	0	-1	0	0	0	-1	0	-1 0	0	-1	0	0	0	0 -1	0
		13				14				15				16	
1	0	0	0	-1	0	0	0	0	-1	0	0	0	1	0	0

k-vector and its star *k

DIRPRO: output

```
The star *DT has the following 4 arms:
 0.000 0.270 0.000
 0.000 -0.270 0.000
 0.270 0.000 0.000
-0.270 0.000 0.000
The star *X has the following 2 arms:
 0.000 0.500 0.000
 0.500 0.000 0.000
```

Little group $G^X = \{(W_i, w_i) | W_i k = k + K, (W_i, w_i) G \}$

Information about the representations

The little group of the k-vector DT(0.000 0.270 0.000) has the following 4 elements as translation coset representatives :

The little group of the k-vector has 4 allowed irreps. The matrices, corresponding to all of the little group elements are :

Allowed (small) irreps DDT,I

DIRPRO: output

Reduction of the direct product

Information about the splitting

Wave vector selection rules:

*DT x *X = 1_*S1 + 1_*S2

Star *S1 = *(0.000 0.770 0.000)

Star *S2 = *(0.500 0.270 0.000)

*k-vector splitting

$$*k_1 \otimes *k_2 = *k_1 + *k_2 + ... + *k_k$$

Reduction problem

Reduction: $(*DT)(1) \times (*X)(1) = 1(*S1)(1) + 1(*S2)(1)$

Reduction: $(*DT)(1) \times (*X)(2) = 1(*S1)(2) + 1(*S2)(2)$

Reduction: $(*DT)(1) \times (*X)(3) = 1(*S1)(3) + 1(*S2)(3)$

Reduction : $(*DT)(1) \times (*X)(4) = 1(*S1)(4) + 1(*S2)(4)$

Reduction: $(*DT)(1) \times (*X)(5) = 1(*S1)(2) + 1(*S2)(4)$

Reduction: $(*DT)(1) \times (*X)(6) = 1(*S1)(1) + 1(*S2)(3)$

 $D_1(G) \otimes D_2(G)$

Problem: LOCALIZED and EXTENDED STATES

SITESYM

