东南大学学生会 Students' Union of Southeast University

09高A下期末试卷

一. 填空题(本题共9小题,每小题4分,满分36分)

2. 球面
$$x^2 + y^2 + z^2 - 3x = 0$$
 在点 (1,1,1) 处的切平面方程为_____

3. 设
$$f(x) = \begin{cases} 1, -\pi < x \le 0 \\ 2x, 0 < x \le \pi \end{cases}$$
, 且以 2π 为周期, $S(x)$ 为 $f(x)$ 的 Fourier 级数的和函数,

4. 已知
$$(axy^3 - y^2\cos x)dx + (1+by\sin x + 3x^2y^2)dy$$
为某个二元函数 $f(x,y)$ 的全微分,

6. 留数
$$\operatorname{Res}\left[\frac{\ln(1+2z)}{1-\cos z},0\right] = \underline{\hspace{1cm}};$$

7. 设
$$\mathbf{r} = \{x, y, z\}, r = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$$
, 则散度 div(e'r) = ______

8.设
$$\Sigma$$
 是锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq 1$) 下侧,则

$$\iint_{\Sigma} 3x dy \wedge dz + 2y dz \wedge dx + (z-1) dx \wedge dy = \underline{\qquad};$$

二. 计算下列各题(本题共 4 小题, 每小题 7 分, 满分 28 分)

10. 设
$$z = z(x, y)$$
 是由方程 $ze^z = xe^y + ye^x$ 所确定的隐函数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

11. 计算
$$\int_0^{\sqrt{2}} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\sqrt{2}}^2 e^{-y^2} dy \int_0^{\sqrt{4-y^2}} e^{-x^2} dx$$
.

东南大学学生会 Students' Union of Southeast University

- 12. 判断级数 $\sum_{n=1}^{\infty} \frac{(n-1)!}{n^{n-1}} \left(\frac{17}{9}\right)^{n-1}$ 的敛散性.
- **13.** 求幂级数 $\sum_{n=1}^{\infty} \frac{2^{\ln n}}{n} x^n$ 的收敛域. (**注**: 级数若在收敛区间的端点处收敛,须说明是绝对收敛还是条件收敛.)
- **三 (14). (本题满分 7 分)** 设 $f(x) = \begin{cases} \frac{1}{2}, \ 0 \le x < \frac{\pi}{2} \\ 0, \ \frac{\pi}{2} \le x < \pi \end{cases}$ 在 $[0, \pi]$ 上展开成正弦级数,并写出它

的和函数.

四(15)。(本题满分 7 分)将函数 $f(z) = \frac{2+z}{(1-z)^2}$ 在圆环域 $2 < |z+1| < +\infty$ 内展开为 Laurent 级数.

五(16)(本题满分 7 分) 计算 $\int_{C}^{\infty} \frac{(x-y)\mathrm{d}x + (x+y)\mathrm{d}y}{x^2 + y^2}$, 其中 C 为 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = \left(\frac{1}{\pi}\right)^{\frac{2}{3}}$, 方 向为逆时针.

六 (17) (本题满分 8 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 - \frac{1}{n(2n-1)}\right) x^{2n}$ 的收敛域与和函数 S(x),

并求数项级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 - \frac{1}{n(2n-1)}\right) \frac{1}{2^n}$ 的和.

七(18)(本题满分 7 分)计算由柱面 $x^2 + y^2 = 2x$ 、锥面 $2z = \sqrt{x^2 + y^2}$ 及 xOy 平面所围立体的表面积.