2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

holiday Language: bs-BA

Odmor (Holiday)

Jian-Jia planira da provede svoj sljedeći odmor na Tajvanu. Tokom odmora, Jian-Jia putuje iz grada u grad i posjećuje atrakcije (znamenitosti) u tim gradovima.

Na Tajvanu postoji n gradova, koji su smješteni duž jednog autoputa. Gradovi su numerisani od 0 do n-1. Gradu i, gdje je 0 < i < n-1, susjedni su gradovi i-1 i i+1. Jedini susjedan gradu 0 je grad 1, a jedini susjedan gradu n-1 je grad n-2.

Svaki grad ima određeni broj atrakcija. Jian-Jia za odmor ima na raspolaganju d dana i želi da posjeti što je moguće više tih atrakcija. Jian-Jia je unaprijed odabrao grad u kom će početi odmor. Tokom jednog dana odmora Jian-Jia može ili da otputuje u susjedni grad ili da posjeti sve atrakcije u gradu u kojem se trenutno nalazi, ali ne može i jedno i drugo. Jian-Jia $neće\ posjetiti\ više\ puta\ atrakcije\ u$ $jednom\ istom\ gradu\ čak\ i\ u\ slučaju\ da\ u\ tom\ gradu\ boravi\ više\ puta\ .$ Potrebno je da pomognete Jian-Jia da isplanira svoj odmor tako da posjeti što je moguće više različitih atrakcija.

Primjer

Pretpostavimo da Jian-Jia ima 7 dana odmora, da postoji 5 gradova (navedeni su u donjoj tabeli) i da odmor počinje u gradu 2. Prvog dana on će posjetiti 20 atrakcija u gradu 2. Drugog dana Jian-Jia putuje iz grada 2 u grad 3, pa trećeg dana posjećuje 30 atrakcija u gradu 3. Sljedeća tri dana Jian-Jia koristi da otputuje iz grada 3 u grad 0, pa sedmog dana posjećuje 10 atrakcija u gradu 0. Ukupan broj atrakcija koje je Jian-Jia posjetio je 20 + 30 + 10 = 60, što je i maksimalni broj atrakcija koje on može posjetiti za 7 dana kada počne odmor u gradu 2.

grad	broj atrakcija
0	10
1	2
2	20
3	30
4	1

dan	akcija		
1	posjeti atrakcije u gradu 2		
2	putuj iz grada 2 u grad 3		
3	posjeti atrakcije u gradu 3		
4	putuj iz grada 3 u grad 2		
5	putuj iz grada 2 u grad 1		
6	putuj iz grada 1 u grad 0		
7	posjeti atrakcije u gradu 0		

Zadatak

Potrebno je da implementirate funkciju findMaxAttraction koja izračunava maksimalni broj atrakcija koje Jian-Jia može posjetiti.

- findMaxAttraction(n, start, d, attraction)
 - n: broj gradova.
 - start: indeks početnog grada.
 - d: broj dana odmora.
 - lacktriangledown attraction[i] je broj atrakcija u gradu i, za $0 \le i \le n-1$.
 - Funkcija treba da vrati maksimalni broj atrakcija koje Marko može posjetiti.

Podzadaci

U svim podzadacima važi $0 \le d \le 2n + \lfloor n/2 \rfloor$, i broj atrakcija u svakom gradu je nenegativan.

Dodatna ograničenja:

podzadatak	poeni	\boldsymbol{n}	maksimalni broj atrakcija u gradu	početni grad
1	7	$2 \le n \le 20$	1,000,000,000	nema ograničenja
2	23	$2 \leq n \leq 100,000$	100	grad 0
3	17	$2 \leq n \leq 3,000$	1,000,000,000	nema ograničenja
4	53	$2 \leq n \leq 100,000$	1,000,000,000	nema ograničenja

Detalji implementacije

Treba da predate tačno jedan file, koji se naziva holiday.c, holiday.cpp ili holiday.pas. Ovaj file implementira opisanu funkciju koristeći sljedeće signature. Pored toga, morate uključiti header file holiday.h u slučaju C/C++ implementacije.

Uočite da rezultat može biti velik, zbog čega je povratna vrijednost funkcije findMaxAttraction 64-bitni integer.

C/C++ program

```
long long int findMaxAttraction(int n, int start, int d,
int attraction[]);
```

Pascal program

```
function findMaxAttraction(n, start, d : longint;
attraction : array of longint): int64;
```

Grader

Grader čita ulaz u sljedećem formatu:

- linija 1: n, start, d.
- linija 2: attraction[0], ..., attraction[n-1].

 $Grader \ \acute{c}e \ od \ \acute{s}tampati \ povratnu \ vrijednost \ funkcije \ \texttt{findMaxAttraction}.$