MKP - Metoda konečných prvků

naposledy upraveno: 24. září 2021

1 Úvodní hodina a opakování

1.1 Laplaceova/Poissonova rovnice a fyzikální procesy

Poissonova rovnice

v 1D:
$$\varphi'' = f$$
 v 2D, 3D:
$$\operatorname{div}(\nabla \varphi) = \Delta \varphi = f$$

(nebo Laplaceova pro f=0) je eliptická parciální diferenciální rovnice s velmi širokým užitím při popisu fyzikálních procesů. Několik důležitých příkladů je shrnuto v tabulce 1. Ve všech případech je definována nějaká potenciální veličina (tlak, teplota, napětí, ...) a od ní odvozené vektorové pole prostřednictvím záporně vzatého gradientu (např. voda vždy teče z místa s vyšším tlakem do místa nižšího tlaku, teplo se předává od teplejšího tělesa chladnějšímu apod., tedy vždy proti směru gradientu).

Vedení tepla	Porézní proudění	Mechanika	Elektrostatika	Difúzní transport
Fourierův zákon	Darcyho zákon	Hookův zákon	Elektrický potenciál	Fickův zákon
$q = -\lambda T'$	q = -Kp'	$\sigma = -Eu'$	$E = -\varphi', D = \varepsilon E$	q = -Dc'
$-(\lambda T')' = f$	-(Kp')' = f	-(Eu')' = f	$-(\varepsilon\varphi')'=f$	-(Dc')' = f
q - tepelný tok	q - Darcyho rychlost	σ - napětí	${\cal E}$ - elektrické pole	q - difúzní tok
λ - tepelná vodivost	K - hydraulická $\operatorname{vodivost}$	E - Youngův modul pružnosti	ε - permitivita	D - difuzivita
T - teplota	p - tlak	u - posunutí	arphi - elektrický potenciál	c - koncentrace
		ve 2D:		
$-\operatorname{div}(\nabla T) = f$	$-\operatorname{div}(K\nabla p) = f$	$-\operatorname{div}(E\nabla u) = f$	$-\operatorname{div}(\varepsilon\nabla\varphi)=f$	$-\operatorname{div}(D\nabla c) = f$

Tabulka 1: Tabulka fyzikálních procesů popsaných Poissonovou rovnicí.

S takovými eliptickými rovnicemi budeme pracovat celý semestr, proto se s nimi dobře seznamte. Budeme je řešit metodou konečných prvků, budeme se zabývat jejich řešitelností a prakticky implementovat numerické řešení.

1.2 Seznámení s Code Critic

Zkuste se dále přihlásit do systému Code Critic a vyzkoušejte jednoduché testovací úlohy, označené jako trial_*. Při případných problémech nám prosím dejte ihned zpětnou vazbu.

Nakonec se můžete pustit do implementace Gaussovy eliminace s řádkovou pivotací a odevzdat přes Code Critic jako úlohu CV_1.

1.3 Úkoly (opakování diferenciálních operátorů):

Zopakujte si diferenciální operátory, které se hojně vyskytují v parc. diff. rovnicích. Zvykněte si pracovat jak s derivacemi v 1D, tak s gradienty či divergencemi ve 2D a 3D.

- $\Delta(uv) = ? \quad u, v \in C^2(\mathbf{R})$
- $\mathbf{r} = (x, y), r = |\mathbf{r}| = \sqrt{x^2 + y^2}$, určete: $\nabla r, \Delta r$
- $\mathbf{r} = (x, y, z), r = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$, určete: $\nabla \times \mathbf{r}$, div $(\nabla \times \mathbf{r})$
- Ukažte, že potenciální pole s potenciálem ω má nulovou rotaci, tedy že $\nabla \times (\nabla \omega) = 0$.
- Na kvádru $x \in [0,1], y \in [0,3], z \in [0,2]$ spočítejte

$$\int_{S} \mathbf{F} \cdot \mathbf{n} \, ds, \qquad \mathbf{F} = (3x + z^{77}, y^{2} - \sin x^{2}z, xz + ye^{x^{5}}).$$

1.4 Úkoly (opakování MATLAB):

Tipy k procvičení základů MATLABu:

- Naimplementujte maticové násobení $\mathbb{C}^{m \times p} = \mathbb{A}^{m \times n} \mathbb{B}^{n \times p}$ ve složkovém tvaru: $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.
- Napište funkci generující matici $m \times m$ tohoto tvaru (můžete použít funkci diag):

$$\begin{pmatrix} m & m-1 & m-2 & m-3 & \dots & 1 \\ m-1 & m & m-1 & m-2 & \dots & 2 \\ m-2 & m-1 & m & m-1 & \dots & 3 \\ m-3 & m-2 & m-1 & m & \dots & 4 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & 4 & \dots & m \end{pmatrix}.$$

• Vygenerujte náhodnou matici $m \times m$, m > 10 a nalezněte její největší prvek (pozici i hodnotu). Proveď te nejprve pomocí for cyklu, poté pomocí funkce max.