Entrega 4: Teoria de pertorbacions

Arnau Mas

17 de juny de 2019

El hamiltonià per a una partícula de massa m i càrrega q que es mou lliurement en un anell de radi a és

$$H_0 = \frac{L_z^2}{2ma^2}.$$

Per a buscar els estats propis hem de resoldre

$$\frac{L_z^2}{2ma^2}|\psi\rangle = E|\psi\rangle.$$

En la representació de l'angle θ aquesta equació és

$$-\frac{\hbar^2}{2ma^2}\psi''(\theta) = E\psi(\theta).$$

Definim $\lambda = \frac{a}{\hbar}\sqrt{2mE}$ de manera que hem de resoldre l'equació diferencial $\psi''(\theta) = -\lambda\psi(\theta)$. La solució d'aquesta equació diferencial és de la forma

$$\psi(\theta) = Ae^{i\lambda\theta} + Be^{-i\lambda\theta}$$

amb $A,B\in\mathbb{C}$. Ara bé, cal que les solucions siguin 2π -periòdiques. Per tant hem de requerir

$$\psi(\theta+2\pi) = Ae^{2\pi i\lambda}e^{i\lambda\theta} + Be^{-2\pi i\lambda}e^{-i\lambda\theta} = \psi(\theta) = Ae^{i\lambda\theta} + Be^{-i\lambda\theta}.$$

Això només pot passar si $\lambda \in \mathbb{Z}$. Així l'espectre d'energies és discret i queda

$$E_n = \frac{\hbar^2}{2ma^2}n^2.$$

Veiem que $E_n = E_{-n}$ i per tant tenim degeneració per a n > 0. Triem com a base del subespai propi de valor propi E_n els estats $|n, +\rangle$ i $|n, -\rangle$ que venen donats per les funcions d'ona

$$\langle \theta | n, \pm \rangle = \psi_n(\theta) = Ae^{\pm in\theta}.$$

Només ens queda normalitzar-los:

$$1 = \langle n, \pm | n, \pm \rangle = \int_0^{2\pi} |A|^2 d\theta = 2\pi |A|^2.$$

Si imposem que A sigui real i positiu ha de ser $A = \frac{1}{\sqrt{2\pi}}$.

- * -

Si ara afegim un camp elèctric uniforme el hamiltonià esdevé

$$H_1 = H_0 - q\epsilon a\cos\theta.$$

Pensarem en la contribució del camp elèctric, δH , com una pertorbació governada pel paràmetre ϵ .

L'estat fonamental és no degenerat per tant podem calcular-ne directament la correcció a l'energia de primer ordre:

$$E_0^{(1)} = \langle 0|\delta H|0\rangle = -\frac{q\epsilon a}{2\pi} \int_0^{2\pi} \cos\theta \, d\theta = 0.$$

Fem el càlcul de la correcció a segon ordre. En primer lloc calculem els solapaments $\langle 0|\delta H|n,\pm\rangle$:

$$\langle 0|\delta H|n,\pm\rangle = -\frac{q\epsilon a}{2\pi} \int_0^{2\pi} e^{\pm in\theta} \cos\theta \, d\theta = -\frac{q\epsilon a}{2\pi} \int_0^{2\pi} \cos n\theta \cos\theta \, d\theta.$$

Com que $\cos n\theta$ i $\cos m\theta$ són ortogonals si $n \neq m$, només tindrem contribució quan n = 1, que serà

$$\langle 0|\delta H|1,\pm\rangle = -\frac{q\epsilon a}{2\pi} \int_0^{2\pi} (\cos\theta)^2 d\theta = -\frac{q\epsilon a}{2\pi} \frac{2\pi}{2} = -\frac{q\epsilon a}{2}.$$

Per tant la correcció de segon ordre és

$$E_0^{(2)} = \frac{|\langle 0|\delta H|n, +\rangle|^2 + |\langle 0|\delta H|n, -\rangle|^2}{E_0 - E_n} = -\frac{4ma^2}{\hbar^2} \frac{q^2 a^4 \epsilon^2}{4} = -\frac{q^2 a^4}{\hbar^2} \epsilon^2.$$

Per tant la nova energia fonamental, fins a ordre 2, és

$$E_0(\epsilon) = -\frac{q^2 a^4}{\hbar^2} \epsilon^2 + O(\epsilon^3).$$