Definition 1. A semiring is a set S equipped with two binary operations $(+,\cdot)$ such that:

- The additive reduct (S, +), which we denote by A, is a commutative semi-group.
- The multiplicative reduct (S, \cdot) , which we denote by M, is a semigroup.
- Multiplication distributes over addition, i.e. for all $a, b, c \in S$,

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 and $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$.

Thus, we may identify the semiring S with the pair (A, M).

Note that since both A and M have the underlying set S, the symmetric group $\operatorname{Sym}(S)$ naturally acts on both structures.

Definition 2 (Semiring isomorphism). We say that two semirings S = (A, M) and S' = (A', M') are *isomorphic* if there exists a bijection $\phi : S \to S'$ such that $A \stackrel{\phi}{\cong} A'$ and $M \stackrel{\phi}{\cong} M'$, where $\stackrel{\phi}{\cong}$ denotes a semigroup isomorphism under ϕ .

Theorem 1. Let S = (A, M) be a semiring. For any permutation $\sigma \in \operatorname{Sym}(S)$, let M^{σ} denote the semigroup obtained by permuting M via σ . Then the following statements are equivalent:

- 1. The semirings (A, M^{σ}) and (A, M^{τ}) are isomorphic.
- 2. σ and τ lie in the same double coset of $\operatorname{Aut}(A) \setminus \operatorname{Sym}(S) / \operatorname{Aut}(M)$.

Proof. We will denote the product $i \cdot j$ in M by M(i, j).

For the forward direction, suppose $(A, M^{\sigma}) \cong (A, M^{\tau})$. Equivalently, there exists a bijection $\phi: (A, M^{\sigma}) \to (A, M^{\tau})$ such that for all $i, j \in S$,:

$$\phi \in \operatorname{Aut}(A) \tag{1}$$

$$\phi(M^{\sigma}(i,j)) = M^{\tau}(\phi(i),\phi(j)) \tag{2}$$

From (2), we have:

$$\phi\sigma(M(\sigma^{-1}(i), \sigma^{-1}(j))) = \tau(M(\tau^{-1}\phi(i), \tau^{-1}\phi(j)))$$
$$\tau^{-1}\phi\sigma(M(\sigma^{-1}(i), \sigma^{-1}(j))) = M(\tau^{-1}\phi(i), \tau^{-1}\phi(j))$$

Now, let $\gamma = \tau^{-1}\phi\sigma$, $x = \sigma^{-1}(i)$ and $y = \sigma^{-1}(j)$. Then,

$$\gamma(M(x,y)) = M(\gamma(x), \gamma(y))$$
$$\gamma \in \operatorname{Aut}(M)$$
$$\gamma^{-1} \in \operatorname{Aut}(M)$$

Rearranging the definition of γ , we obtain $\tau = \phi \sigma \gamma^{-1}$. Since $\phi \in \operatorname{Aut}(A)$, we conclude that τ and σ lie in the same double coset of $\operatorname{Aut}(A) \setminus \operatorname{Sym}(S) / \operatorname{Aut}(M)$.

For the reverse direction, we begin by supposing that σ and τ are in the same double coset.

Choose $\alpha \in \operatorname{Aut}(M)$ and $\beta \in \operatorname{Aut}(A)$ such that

$$\tau = \beta \sigma \alpha$$

Note that for a function ϕ to be an isomorphism from $(A, M^{\sigma}) \to (A, M^{\tau})$, it must satisfy properties (1) and (2) detailed in the forward direction. In particular, if we have property (1), then as an automorphism of A, ϕ would automatically be bijective on the underlying set S.

We claim that β satisfies these properties. The first property follows trivially from the definition of β . For the second property,

$$\begin{split} \beta(M^{\sigma}(i,j)) &= \beta \sigma(M(\sigma^{-1}(i),\sigma^{-1}(j))) \\ &= \tau \alpha^{-1}(M(\sigma^{-1}(i),\sigma^{-1}(j))) \\ &\stackrel{*}{=} \tau(M(\alpha^{-1}\sigma^{-1}(i),\alpha^{-1}\sigma^{-1}(j))) \\ &= \tau(M(\tau^{-1}\beta(i),\tau^{-1}\beta(j))) \\ &= M^{\tau}(\beta(i),\beta(j)) \end{split}$$

where we have used $\alpha \in \operatorname{Aut}(M)$ and therefore $\alpha^{-1} \in \operatorname{Aut}(M)$ to justify the equality labelled '*'.

Hence, we have shown that β satisfies (1) and (2) and is therefore the necessary isomorphism.

\overline{n}	up to isomorphism	up to isomorphism $+$ anti-isomorphism
1	1	1
2	6	5
3	61	?
4	866	?
5	15,751	?
6	354,409	?

Table 1: Numbers of ai-semirings with n elements up to isomorphism and up to isomorphism or anti-isomorphism.