Unit 5: Graphics

CS 3570

Shang-Hong Lai

Graphics — Outline

Vector graphics

- Difference between bitmap and vector graphics
- To describe a curve Bézier curve

3D Graphics

- 3D model
- Lighting
- Applications

- Vector graphics is an image file format suitable for pictures with simple components, such as
 - areas of solid
 - clearly separated colors

It is widely used in

- animation and games
- font design
- architectural design
- industrial design

 A bitmap saves an image pixel by pixel, while a vector graphic describes an object in terms of combination of geometric shapes.

A webpage using .png images

PNG: Portable Network Graphics

A webpage using .svg images

SVG : Scalable Vector Graphics

Bitmaps vs. Vector graphics

	Pixel	Vector
Example		
Grow and shrink	Bad	Good
Speed	Fast to create. Very hard to edit!	Slow to create. Much faster to edit.
Applications	Painter	Power Point
	Photoshop	Illustrator

Specifying curves

• Explicit form of a function y = f(x) provide a prescription for determining the *output* value of the function y in terms of the *input* value x

• E.g.
$$y = \sqrt{r^2 - x^2}$$

- Implicit form of the function f(x, y) = 0the value of y is obtained from x by solving an equation of the form
 - E.g. $x^2 + y^2 r^2 = 0$

Specifying curves

 Straight line is easy to describe, yet how about an curve ?

More complex curve ?

Parametric Curve

Parametric representation of a function

$$p(t) = (x(t), y(t))$$

$$x(t) = a_{x}t^{3} + b_{x}t^{2} + c_{x}t + d_{y}$$

$$y(t) = a_{y}t^{3} + b_{y}t^{2} + c_{y}t + d_{y}$$

$$P(t) = [x(t)y(t)] = \underbrace{\begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix}}_{T} \underbrace{\begin{bmatrix} b_{x} & b_{y} \\ c_{x} & c_{y} \end{bmatrix}}_{C} \quad 0 \le t \le 1$$

$$P = T C$$

 Curve-generating algorithms can be divided into 2 main categories: interpolation algorithms and approximation algorithms.

Bézier Curves

- A Bézier curve is a parametric curve described by polynomials based on a sequence of control points
 - Degree of polynomials = number of points 1
 - A Bézier curve passes through its first and last control points, but, in general, no others.

Bézier Curves

- The entire curve will lie within the polygon constructed by joining the control points with straight lines. This polygon is called the curve's convex hull.
- The line between the starting end point and the next control point is tangent to the curve, and so is the line between the final end point and the preceding control point.

Cubic Bézier Curves

- Bézier curves of degree 3, commonly called "cubic Bézier curves", are most commonly used in vector graphics.
- They have just four control points: two are the end points, and the other two are called direction points.

Bézier curves - Examples

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Bézier curve

- A Bézier curve is defined by a cubic polynomial equation
- P(t) = T * M * G
- $T = [t^3 \ t^2 \ t \ 1]$, **M** is called the **basis matrix**. **G** is called the **geometry matrix**.

$$\mathbf{M} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

• The blending functions are given by T * M, $P(t) = (T * M) * G = (1 - t)^3 p_0 + 3t(1 - t)^2 p_1 + 3t^2(1 - t)p_2 + t^3 p_3$

Blending Function

Bézier curves can be described in terms of the blending functions

$$P(t) = \sum_{k=0}^{n} p_k blending_{k,n}(t)$$
 for $0 \le t \le 1$

 In the blending functions blending_{k,n}(t), n is the degree of the polynomial and k refers to the "weight" for the kth term in the polynomial.

$$blending_{k,n}(t) = C(n,k)t^{k}(1-t)^{n-k}$$

$$C(n,k) = \frac{n!}{k!(n-k)!}$$

For cubic polynomials,

$$blending_{0,3} = (1-t)^3$$
, $blending_{1,3} = 3t(1-t)^2$
 $blending_{2,3} = 3t^2(1-t)$, $blending_{3,3} = t^3$

Bézier curves – advantage & disadvantages

- Advantage
 - Very simple
- Disadvantages
 - Expensive to evaluate the curve at many points.
 - No easy way of knowing how fine to sample points, so maybe sampling rate must vary along a curve.
 - No easy way to adapt.
 In particular, it is hard to measure the deviation of a line segment from the exact curve.

Upscaling

 Even with some modern algorithms, upscaling a bitmap may cause some artifacts

Original U_l Image Bilin

Upscaling using Bilinear Interpolation

Upscaling using S-Spline Interpolation

Ground Truth

Curves Fitting

 If we can convert bitmap into vector graphics, we can improve the display quality of object resizing.

Input Image

Depixelized

Johannes Kopf, Microsoft Research and Dani Lischinski, The Hebrew University. "Depixelizing Pixel Art", SIGGRAPH 2011

Upscaling a depixelized bitmap

3D Graphics

3D Graphics Pipeline

Modeling (Creating 3D Geometry)

Rendering

(Creating, shading images from geometry, lighting, materials)

3D Graphics – 3D Model

- Structure
 - Vertices
 - Faces
- Transformation & Projection
- Texture
- Lighting
 - Normal Vectors
 - Material

3D Graphics – 3D Model

A triangular face consists of 3 vertices

While a convex quadrilateral face needs 4

A mesh model is composed of many faces

3D Graphics – Transformation

- Geometrical Transformation
 - From Model Space to World Space

3D Graphics – Transformation

- Viewing Transformation
 - Form World Space to View Space (Eye Space or Camera Space)

3D Graphics – Transformation

- Projection and Viewport Transformation
 - From View Space to Sceen Space

3D Graphics - Projection

Parallel projection vs. perspective projection

3D Graphics – 3D Model

Texture mapping
 Each face of the 3-D model is mapped to corresponding triangular piece of the 2-D image.

How do we do this?

3D Graphics – Light Sources

- Positional light(Point Light)
 - Light source located at a specific position

3D Graphics – Light Sources

- Directional light (positional light at infinity)
 - Light source located at infinite far away. Such as sun.

3D Graphics – Light Sources

- Spot light (positional light with angle limitation)
 - Light source located at a specific position with certain cutoff range.

3D Graphics – Lighting Equation

Intensity = Ambient + Diffuse + Specular

3D Graphics – Ambient

Ambient

 Illumination surrounding a scene without providing any specific light source.

$$I = I_a \times k_a$$

I : resulting intensity

 I_a : ambient light intensity

 k_a : ambient reflection coefficient

3D Graphics – Surface Normal

Each face has a normal vector.

3D Graphics – Diffuse

• Diffuse reflection intensity : $I_p \times k_d \times cos^+ \theta$

 I_p : point light source intensity k_d : diffuse reflection coefficient $cos^+\theta$: $max(0, cos \theta)$

3D Graphics – Specular

Specular reflection

3D Graphics – Specular

You will see the lighting intensity : $I_p \times k_s \times (\cos \alpha)^n$

 I_p : Light source specular intensity

 k_s : specular reflection coefficient

n : a positive parameter

3D Graphics – Specular

You will see the lighting intensity : $I_p \times k_s \times (\cos \alpha)^n$ The bigger $|\alpha|$, the smaller $I_p \times k_s \times (\cos \alpha)^n$

3D Graphics – Phong model

- Phong model
 - Intensity = Ambient + Diffuse + Specular

• =>
$$(I_a \times k_a) + (I_p \times k_d \times \cos \theta) + (I_p \times k_s \times (\cos \alpha)^n)$$

Ambient Diffuse Specula

3D Face Modeling Example

CG Tools

Input Devices

- Locator Devices
- Keyboard
- Scanner
 - Images
 - Laser
- Cameras (research)

Locator Devices

When queried, locator devices return a position and/or orientation.

- Mouse (2D and 3D)
- Trackball
- Joystick (2D and 3D)

Locator Devices

- When queried, locator devices return a position and/or orientation.
- Tablet
- Virtual Reality Trackers
- Data Gloves
- Digitizers

Scanners

- Image Scanners Flatbed, etc.
 - What type of data is returned?
 Bitmap
- Laser Scanners Deltasphere
 - Emits a laser and does time of flight. Returns 3D point
- Camera (image) based
 - Examine camera image(s) and try to figure out vertices from them.

Many others

- Light Pens
- Voice Systems
- Touch Panels
- Camera/Vision Based
- Which is best?

Common Modeling Approach

- Hybrid
- Animator jobs

Computer Graphics Applications

Virtual Reality

VR: User interacts and views with a 3D world using "more natural" means

Data Visualization

- Scientific, Engineering, Medical data
- Visualizing millions to billions of data points
- See trends
- Different schemes

National 7sing Hus University

Computer Graphics Applications

Education and Training

- Models of physical, financial, social systems
- Comprehension of complex systems

- Fine and commercial art
- Performance Art
- Aesthetic Computing
- SIGGRAPH

National Tsing Hus University

Computer Graphics Applications

Games/Movies

Augmented Reality

- It's computationally expensive to render a 3-D scene in real-time
- To render these vivid 3D scenes, a high-end gaming PC is necessary

Augmented Reality

- It's computationally expensive to render a 3-D scene in real-time
- To render these vivid 3D scenes, a high-end gaming PC is necessary
- Even if a 3-D scene is rendered, it's difficult to interact with objects inside
- What if we render some virtual objects in real world?

Augmented Reality

3D perception — Depth

Size and Vanishing point

Light and Shadow

Occlusion

Stereo 3D perception

The moon seems to follow me, but the street lamp doesn't.

Stereo Camera and Stereo Images

Stereo Camera

Stereo Images

3D movies & 3D TV

Anaglyph 3D glasses

Polarized glasses

Shutter glasses

Autostereoscopy (Glass-less)

Parallax barrier

Lenticular screen

Summary

- 2D Vector Graphics
- 3D Graphics
 - 3D modeling
 - Image rendering
- Applications