

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ
ВЕДОМСТВО СССР
(ГОСПАТЕНТ СССР)

(19) SU (11) 1792942 A1

(51)5 С 08 В 1/00, D 21 В 1/36

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4871842/05
(22) 10.10.90
(46) 07.02.93. Бюл. № 5
(71) Институт химии древесины АН
ЛатвСССР
(72) Ю.К.Якобсонс, П.П.Эриньш, А.Я.Кульке-
вич и А.Г.Полманис
(56) Авторское свидетельство СССР
№ 1432062, кл. С 08 В 15/00, 1979.
Патент США № 4645541, кл. D 21 В 1/36,
опублик. 1987.
(54) СПОСОБ ПОЛУЧЕНИЯ МИКРОКРИ-
СТАЛЛИЧЕСКОЙ И ПОРОШКОВОЙ ЦЕЛ-
ЛЮЛОЗЫ
(57) Использование: в производстве табле-
ток лекарственных веществ, пищевых про-
дуктов пониженной калорийности, гелей

2

различного назначения, косметических, ке-
рамических изделий, фильтровальных ма-
териалов, сорбентов, наполнителей для
хроматографии, стабилизаторов эмульсий
и др. Сущность изобретения: измельчен-
ный лигноцеллюлозный материал поме-
щают в реактор и осуществляют взрывной
автогидролиз материала нагреванием его
водяным паром до 205-250°C за 30-45 с,
выдерживанием при этой температуре 1-
15 мин и "выстрелом" массы из реактора.
Микрокристаллическую и порошкообразную
целлюлозу выделяют экстракцией массы во-
дой и растворителем лигнина, промывкой во-
дой и обработкой стандартным отбеливающим
раствором на базе H₂O₂. С последующим
размалыванием или кислотным гидролизом.
1 табл.

Изобретение относится к способам полу-
чения порошкообразных препаратов цел-
люлозы с пониженной по сравнению с
природной целлюлозой степенью полиме-
ризации.

Такие препараты могут быть использо-
ваны в производстве таблеток лекарствен-
ных веществ, пищевых продуктов пониженной
калорийности, гелей различного назначения,
косметических, керамиче-
ских изделий, фильтровальных материалов,
сорбентов, наполнителей для хроматографии,
стабилизаторов эмульсий и др.

Известен способ получения микрокри-
сталлической целлюлозы (МКЦ), заключа-
ющийся в гидролитическом расщеплении
целлюлозных материалов, например, об-
работкой концентрированными кислота-
ми. Сырьем в этом способе служат материалы

с высоким содержанием целлюлозы, полу-
чение которой требует больших затрат
энергии и реагентов и наносит вред окру-
жающей среде. Использование концентри-
рованных реагентов на стадии гидролиза
создает дополнительные экологические
проблемы.

Наиболее близким к предлагаемому по
технической сущности является способ полу-
чения микрокристаллической (МКЦ) и по-
рошковой целлюлозы (ПЦ) путем взрывного
автогидролиза измельченного лигноцеллю-
лозного материала при нагревании его в
реакторе водяным паром до 185-250°C за
менее 60 с с последующим "выстрелом"
массы из реактора, выделением из нее цел-
люлозы многократной экстракцией массы
водой и растворителем лигнина и обработ-
кой выделенной целлюлозы.

(19) SU (11) 1792942 A1

В этом способе материал, полученный после "выстрела", разделяют на основные компоненты – целлюлозу, гемицеллюлозы и лигнин. Выделенную целлюлозу пропитывают, по меньшей мере одной из кислот группы СНІ, H_2SO_4 , SO_2 до концентрации 0,05-2,0% к массе целлюлозы, повторно загружают в реактор, аналогично разогревают и "выстреливают", после чего массу быстро охлаждают до температуры ниже 100°C, нейтрализуют и отделяют конечный продукт.

Недостатком процесса является многостадийность операции взрывного автогидролиза, необходимость добавки минеральной кислоты и крайне низкое качество получаемой МКЦ.

Цель изобретения – упрощение способа и повышение качества целевого продукта.

Указанная цель достигается тем, что в способе получения микрокристаллической и порошковой целлюлозы, включающем взрывной автогидролиз измельченного лигноцеллюлозного материала при нагревании его в реакторе водяным паром до 205-250°C за 30-40 с с последующим "выстрелом" массы из реактора, выделением из нее целлюлозы многократной экстракцией массы водой и растворителем лигнина и обработкой выделенной целлюлозы, "выстрел" массы из реактора производят через 1-15 мин после достижения указанной температуры в реакторе, а обработку выделенной целлюлозы осуществляют отбеливающим раствором на основе перекиси водорода с последующим размалыванием или кислотным гидролизом.

Как показали исследования, во время обработки лигноцеллюлозного материала паром в реакторе происходят следующие процессы. Гемицеллюлозы деацетилируются, образуя уксусную кислоту, в результате pH реакционной среды понижается. Начинается автокаталитический гидролиз гемицеллюлоз до водорастворимых олиго- и моносахаров. Последние частично деструктируются и образуют фурфурол и его производные. Лигнин деструктируется в результате расщепления межзвеньевых связей и большая часть его становится растворимой в водной щелочи или органических растворителях. Целлюлоза гидролизуется в значительно меньшей степени, образуя глюкозу и продукты ее дальнейшего термического распада, в результате чего наблюдается снижение степени полимеризации целлюлозы. Глубина и интенсивность указанных процессов определяется двумя факторами: температурой в реакторе и временем выдержки массы при этой температуре, причем указанные факторы способны в некоторой степени компен-

сировать друг друга. Так, при низкой температуре и кратковременной выдержки указанные процессы деструкции происходят малоинтенсивно, из-за чего целлюлозный остаток, полученный после экстракции автогидролизованной массы, недостаточно разволокнен и содержит значительные количества гемицеллюлоз и лигнина. Это является существенным недостатком известного способа, согласно которому "выстрел" производят без выдержки, сразу после достижения заданной температуры.

Повышение температуры, наряду с ускорением процессов деструкции компонентов материала, вызывает также ускорение нежелательных обратных процессов: конденсации деструктированных фрагментов лигнина между собой, а также с продуктами распада гемицеллюлоз и целлюлозы, что затрудняет выделение лигнина из обработанной массы. Кроме того, в этих условиях лигнин более интенсивно окисляется, образуя новые хромофорные группы, что ведет к ухудшению белизны полученного целлюлозного остатка.

Таким образом, желаемый результат может быть достигнут при большей продолжительности процесса в случае низкой температуры или меньшей продолжительности при высокой температуре. Автогидролиз при 205°C и ниже становится невыгодным из-за большой продолжительности выдержки массы в реакторе и недостаточной глубины протекания химических процессов, при 250°C и выше – из-за чрезмерно кратковременной паровой обработки, в результате которой часть материала не успевает прореагировать, а часть претерпевает слишком глубокую деструкцию. Для обработки древесины оптимальными можно считать следующие условия автогидролиза: 5 мин выдержки при 220°C и 2 мин выдержки при 235°C.

В отличие от известного способа, где деструкция фибрилл целлюлозы и понижение ее степени полимеризации достигается проведением повторного автогидролиза выделенной целлюлозы в присутствии добавкой кислоты, в предложенном нами способе указанные изменения целлюлозы происходят во время первой обработки паром, из-за указанной выдержки массы в реакторе в присутствии кислоты, образованной в процессе деструкции гемицеллюлоз, имеющихся в исходном материале, исключающей необходимость повторного проведения автогидролиза.

Заявленный способ осуществляется следующим образом.

Технологическую древесную щепу размежами примерно $2 \times 10 \times 30$ мм загружают в предварительно нагретый цилиндрический реактор емкостью 600 мл, реактор плотно закрывают и наполняют насыщенным водяным паром заданной температуры. Подъем температуры в реакторе контролируют по манометру давления пара. Заданная температура достигается примерно за 30-45 с (более высокая температура за более длительное время и наоборот). Время выдержки массы в реакторе отсчитывают с момента достижения заданной температуры, постоянное давление пара в реакторе поддерживают дополнительным вводом небольших количеств пара. По истечению заданного времени выдержки открывают шаровой кран, через который массу "выстреливают" в приемный циклон. Полученную массу дважды экстрагируют водой (модуль к абсолютно сухой исходной древесине примерно 1:10) и дважды разбавленным (0,4-1%) раствором NaOH или органическим растворителем лигнина (ацетон, диоксан, этиловый спирт и др.). После экстракций массу промывают и обрабатывают стандартным отбеливающим раствором на базе H_2O_2 , применяемым для отбелки термомеханической древесной массы. После отбелки массу промывают и проводят кислотный гидролиз, получая в качестве конечного продукта МКЦ, либо сушат до воздушно-сухого состояния и размалывают в лабораторной шаровой мельнице, получая ПЦ.

При получении МКЦ, согласно известному способу, первый "выстрел" (см. табл.) производят в момент достижения температуры в реакторе 235°C , массу экстрагируют водой и 90%-ным диоксаном, сушат, пропитывают раствором HCl с таким расчетом, чтобы концентрация кислоты составляла 0,2%, а влажность массы - 30% к массе абсолютно сухого целлюлозного материала. Далее проводят вторую обработку в реакторе нагрев массы до 215°C с последующим "выстрелом" и быстрым охлаждением массы до температуры ниже 100°C . Полученную массу промывают водой, высушивают.

Характеристики образцов МКЦ и ПЦ, полученных при различных параметрах процесса приведены в таблице.

Распределение частиц по размерам определяли на калиброванных ситах с отверстиями 63 и 100 мкм. Белизну образцов измеряли на спектрофотометре SPECORD M 40 в % по отношению к стандарту молочного стекла при длине волны 457 нм, используя приставку для отражения с фотометрическим шаром.

Как видно из таблицы, в заявленных пределах температуры и времени выдержки выход продукта и доля наиболее мелких ча-

стиц в нем достигают максимальных значений. Выход за пределы явно ухудшает последний показатель - возрастает доля частиц с большими и средними размерами.

5 При 190°C химические процессы происходят недостаточно интенсивно, при 260°C глубина обработки становится неравномерной из-за кратковременности выдержки. Как видно, ПЦ с максимальной белизной может быть получена при более низких температурах (205 - 220°C), а МКЦ - при более высоких температурах (235 - 250°C).

Качество МКЦ, получаемой согласно известному способу, существенно хуже. Почти половину конечного продукта составляют неразволненные частицы больших размеров, что наряду с низким значением белизны ограничивает дальнейшее его использование.

Изобретение иллюстрирует пример.

П р и м е р. Воздушно-сухую технологическую древесную щепу (100 г абсолютно сухой массы) размерами примерно $2 \times 10 \times 30$ мм загружают в предварительно нагретый до заданной температуры цилиндрический реактор емкостью 600 мл, реактор плотно закрывают и наполняют насыщенным водяным паром заданной температуры. Подъем температуры в реакторе контролируют по манометру давления пара. Заданная температура $- 205^\circ\text{C}$ достигается за 30 с (давление 16,8 атм). Время выдержки массы в реакторе отсчитывают с момента достижения заданной температуры, постоянное давление пара в реакторе поддерживают дополнительным вводом небольших количеств пара. По истечению заданного времени выдержки открывают шаровой кран, через который массу "выстреливают" в приемный циклон. Полученную массу для удаления водорастворимых соединений дважды экстрагируют водой при комнатной температуре (примерно 1 л воды для каждой 24-часовой экстракции), фильтруют и для удаления растворимого лигнина дважды экстрагируют 0,4% раствором NaOH при комнатной температуре (примерно 0,8 л раствора NaOH для каждой 24-часовой экстракции), промывают водой (примерно 1 л) и фильтруют.

После экстракций массу при комнатной температуре обливают на 3 ч 200 мл отбеливающего раствора, содержащего, %:

$MgSO_4 \cdot 7H_2O$	0,05
$Na_2SiO_3 \cdot 9H_2O$	5
NaOH	4
H_2O_2	4
H_2O	86,95

После отбелки массу трижды промывают 0,5 л воды и фильтруют. Использование пероксида водорода в качестве отбеливаю-

щего агента предпочтительнее по сравнению с другими известными отбеливателями с учетом возможного применения конечного продукта в производстве таблеток лекарственных веществ и пищевых продуктов.

При получении МКЦ в качестве конечного продукта беленную массу кипятят в 300 мл 2,5 н соляной кислоты в течение 15 мин, промывают водой до нейтральной реакции, фильтруют и высушивают в воздухе.

При получении ПЦ в качестве конечного продукта беленную массу сушат до воздуш-

но-сухого состояния и размалывают в шаровой мельнице в течение 2 ч.

По описанной технологии получены образцы МКЦ и ПЦ при различных температурах пара и временах выдержки материала в реакторе. Полученные результаты сведены в таблице. Для достижения температуры 250°C (давление 39,2 атм) требуется 45 с. Это время определяется такими факторами как влажность щепы, температура стенок реактора и давление пара, поступающего от парогенератора.

15

Ф о р м у л а изобр ет ен и я

Способ получения микрокристаллической и порошковой целлюлозы путем взрывного автогидролиза измельченного лигноцеллюлозного материала при нагревании его в реакторе водяным паром до 205-250°C за 30-45 с последующим "выстрелом" массы из реактора, выделением из нее целлюлозы многократной экстракцией массы водой и растворителем лигнина и обработкой

выделенной целлюлозы, отличаящийся тем, что, с целью упрощения способа и повышения качества целевого продукта, "выстрел" массы из реактора производят через 1-15 мин после достижения указанной температуры в реакторе, а обработку выделенной целлюлозы осуществляют отбеливающим раствором на основе перекиси водорода с последующим размалыванием или кислотным гидролизом.

Характеристики образцов МКЦ (в числителе) и ПЦ (в знаменателе), полученных из березовой древесины, в зависимости от условий автогидролиза

Температура, °C	Время выдержки, мин	Выход, % от абр. сухой исходной древесины	Массовая доля (%) частиц с размерами			Белизна, %
			<63 μ	63...100 μ	>100 μ	
190 (ср.)	30	43.1	58.3	9.7	32.0	75.3
		46.7	76.8
205	15	42.0	68.7	10.0	21.3	78.5
		45.6	80.3
220	5	47.0	78.4	9.6	12.0	80.9
		51.8	82.2	12.0	5.8	79.0
235	2	35.3	86.9	10.3	2.8	83.2
		38.2	74.8	19.7	5.5	74.7
250	1	33.5	75.2	18.6	6.2	85.2
		37.4	72.0
260 (ср.)	0.5	32.6	56.8	31.0	12.2	86.7
		36.4	70.4
235;215*	0:0	38.3	41.0	12.1	46.9	11.6

*Примечание. Согласно известному способу, температура первой и второй обработок соответственно.