

- § 3.1 函数逼近的基本概念*
- § 3.2 正交多项式*
- § 3.3 最佳平方逼近*
- § 3. 4 曲线拟合的最小二乘法
- § 3.5 有理逼近*
- § 3.6 三角逼近与快速傅里叶变换*

§ 3.1 函数逼近的基本概念

问题的提出

- 在数值计算中经常要计算函数值,如计算机中计算基本初等函数及其它特殊函数;当函数只在有限点集上给定函数值,要在包含该点集的区间上用公式给出函数的简单表达式,这些都涉及在区间[a,b]上用简单函数逼近已知复杂函数的问题,这就是函数逼近问题. 第二章讨论的插值法就是函数逼近的一种.

本章讨论的函数逼近,是指"对函数类A中给定的 函数f(x), 记作 $f(x) \in A$, 要求在另一类简单的便于 计算的函数类B中求函数 $p(x) \in B$,使p(x)与f(x)的 误差在某种度量意义下最小". 函数类A通常是区 间[a, b]上的连续函数,记作 $\mathbb{C}[a, b]$,称为函数 逼近空间;而函数B通常为n次多项式,有理函数或 分段低次多项式等. 为了在数学上描述更精确, 先 要介绍代数和分析中一些基本概念及预备知识。

空间定义

数学上常把在各种集合中引入某一些不同的确定 关系称为赋予集合以某种空间结构,并将这样的集合 称为空间。

空间举例

例1 所有实n维向量集合,按向量的加法和数乘构成实数域R上的线性空间 $---R^n$,称为n维向量空间.

例2 对次数不超过n的 (n为正整数)实系数多项式全体,按多项式加法和数乘构成数域R上的多项式线性空间— H_n ,称为多项式空间.

例3 所有定义在 [a,b] 集合上的连续函数全体,按函数的加法和数乘构成数域R上的连续函数线性空间—C[a,b],称为连续函数空间. 类似地记 $C^p[a,b]$ 为具有p阶连续导数的函数空间.

线性无关

定义1 设集合S是数域P上的线性空间,元素 $x_1,x_2,\cdots,x_n\in S$,如果存在不全为零的数 $a_1,a_2,\cdots,a_n\in P$, 使得

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0,$$
 (3.1)

则称 $x_1,x_2,...,x_n$ 线性相关,否则称 $x_1,x_2,...,x_n$ 线性无关,即只有当 $a_1=a_2=...=a_n=0$ 时等式(3.1)才成立.

线性空间

若线性空间S是由n个线性无关元素 x_1 ,…, x_n 生成的,即对任意 $x \in S$,都有

$$x = a_1 x_1 + \dots + a_n x_n,$$

则 $x_1,...,x_n$ 称为空间S的一组基,记为S=span{ $x_1,...,x_n$ },并称空间S为n维空间,系数 $a_1,...,a_n$ 为x在基 $x_1,...,x_n$ 下的坐标,记作($a_1,...,a_n$),如果S中有无限多个线性无关元素 $x_1,...,x_n$,…,则称S为无限维线性空间.

多项式空间

下面考虑次数不超过n实系数多项式集合 H_n ,其元素 $p(x) \subseteq H_n$ 表示为

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (3.2)

它由n+1个系数(a_0 , a_1 ,…, a_n)唯一确定. 1,x,…, x^n 线性无关,它是 H_n 的一组基,故集合

$$H_n$$
=span{1, x, \dots, x^n },

且 (a_0, a_1, \dots, a_n) 是p(x)的坐标向量, H_n 是n+1维的.

范数与赋范线性空间

为了对线性空间中元素大小进行衡量,需要引进范数定义,它是*R*ⁿ空间中向量长度概念的直接推广.

定义2 设S为线性空间, $x \in S$,若存在唯一实数 $\|\cdot\|$,满足条件:

- (1) $||x|| \ge 0$; 当且仅当x = 0时, ||x|| = 0; (正定性)
- (2) $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$; (齐次性)
- (3) $||x+y|| \le ||x|| + ||y||$, $x,y \in S$. (三角不等式) 则称 $||\cdot||$ 为线性空间S上的范数,S与 $||\cdot||$ 一起称为赋范线性空间,记为X.

向量的常用范数

对 \mathbf{R}^n 上的向量 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, 三种常用范数为:

$$\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|, \quad \text{称为}_{\infty} - \text{范数或最大范数,}$$

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad \text{称为 } 1-范数,$$

$$\|x\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}, \text{ k $\%$ $2-\tilde{n}$.}$$

函数的常用范数

类似的对连续函数空间 $\mathbb{C}[a,b]$,若 $f \in \mathbb{C}[a,b]$ 可定义以下三种常用函数的范数

$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|,$$

$$|| f ||_1 = \int_a^b |f(x)| dx,$$

$$||f||_2 = (\int_a^b f^2(x) dx)^{\frac{1}{2}},$$

称为∞-范数

称为1-范数

称为2-范数

矩阵的常用范数

对n阶方阵
$$A = (a_{ij})_n$$

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

称为4的行范数

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

$$||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$$

称为A的2-范数

其中
$$\lambda_{\text{max}}(A^TA)$$
表示 A^TA 的最大特征值

$$\mathbb{E}[f(\lambda)] = |\lambda E - A^T A| = 0$$

对连续函数 $f(x) \in \mathbb{C}[a,b]$,它不能用有限个线性 无关的函数表示,故 $\mathbb{C}[a,b]$ 是无限维的,但它的任一 元素 $f(x) \in \mathbb{C}[a,b]$ 均可用有限维的 $p(x) \in H_n$ 逼近,使 误差

$$\max_{a \le x \le b} |f(x) - p(x)| = ||f(x) - p(x)||_{\infty} < \varepsilon$$

其中ε为任意给的小正数,即精度要求. 这就是下面著名的魏尔斯特拉斯(Weierstrass)定理. 13

魏尔斯特拉斯定理

定理1 设 $f(x) \in \mathbb{C}[a, b]$,则对任何 $\varepsilon > 0$,总存在一个代数多项式p(x),使

$$||f(x)-p(x)||_{\infty}<\varepsilon$$

在[a,b]上一致成立. (证明略,见书p52有说明.)

例4 计算向量x的范数,其中 $x = [1,-2,3]^T$

解

$$||x||_{\infty} = \max_{1 \le i \le 3} |x_i| = \max[1, |-2|, 3] = 3$$

$$||x||_{1} = \sum_{1 \le i \le 3}^{3} |x_i| = 1 + |-2| + 3 = 6$$

$$||x||_{2} = \left(\sum_{i=1}^{i=1} x_i^2\right)^{\frac{1}{2}} = \sqrt{1 + (-2)^2 + 3^2} = \sqrt{14} \approx 3.7$$

例5 计算函数 x^2 关于C[0,1]的范数.

解

$$||x^{2}||_{\infty} = \max_{0 \le x \le 1} |x^{2}| = 1$$

$$||x^{2}||_{1} = \int_{0}^{1} |x^{2}| dx = \frac{1}{3}$$

$$||x^{2}||_{2} = \left(\int_{0}^{1} (x^{2})^{2} dx\right)^{\frac{1}{2}} = \frac{\sqrt{5}}{5}$$

例6 计算矩阵A的范数,其中 $A = \begin{bmatrix} 7 & 10 \\ 5 & 7 \end{bmatrix}$

解

$$||A||_{\infty} = \max_{1 \le i \le 2} \sum_{j=1}^{2} |a_{ij}| = \max [7+10, 5+7] = 17$$

$$||A||_{1} = \max_{1 \le j \le 2} \sum_{i=1}^{2} |a_{ij}| = \max [7+5, 10+7] = 17$$

$$||A||_{2} = \sqrt{\lambda_{\max} (A^{T} A)} \approx \sqrt{223} = 14.9$$

最小二乘拟合

$$||f - P^*||_2 = \min_{P \in \Phi} ||f - P||_2 = \min_{P \in H_n} \sum_{i=0}^m [f(x_i) - P(x_i)]^2$$

则称 $P^*(x)$ 为f(x)在[a, b]上的最小二乘拟合.

§ 3.4 曲线拟合的最小二乘法

问题的提出

- 某种合成纤维的强度与其拉伸倍数有直接关系, 下表是实际测定的24个纤维样品的强度与相应 拉伸倍数的记录。
- 提示:将拉伸倍数作为x,强度作为y,在座标 纸上标出各点,可以发现什么?

数据表格

编号	拉伸倍数	强度 kg/mm²	编号	拉伸倍数	强度 kg/mm²
1	1.9	1.4	13	5.0	5.5
2	2.0	1.3	14	5.2	5.0
3	2.1	1.8	15	6.0	5.5
4	2.5	2.5	16	6.3	6.4
5	2.7	2.8	17	6.5	6.0
6	2.7	2.5	18	7.1	5.3
7	3.5	3.0	19	8.0	6.5
8	3.5	2.7	20	8.0	7.0
9	4.0	4.0	21	8.9	8.5
10	4.0	3.5	22	9.0	8.0
11	4.5	4.2	23	9.5	8.1
12	4.6	3.5	24	10.0	8.1

数据图

已知的离散数据 $y_i=f(x_i)$ (i=0,1,2,...,n)往往是通过观测而得到的,经常带有观测误差。

曲线拟合:希望找到一条曲线,它既能反映结定数据的总体分布形式,又不致于出现局部较大的波动。这种逼近方式.只要所构造的逼近函数 $\Phi(x)$ 与被逼近函数f(x)在区间[a,b]上的偏差满足其种要求即可。

最小二乘法

曲线拟合的最小二乘法:以使得偏差的平方和最小为标准

$$E = \sum_{i=0}^{n} e_i^2 = \sum_{i=0}^{n} w(x_i) [\Phi(x_i) - y_i]^2 = \min$$

$$\Phi(x) = \sum_{j=0}^{m} a_j \varphi_j(x)$$

线性最小二乘拟合

假设所给的数据点 (x_i, y_i) , (i=0,1,2,...,n)的分布大致呈直线,故可选择线性函数作拟合曲线。

【问题1】对于给定的数据点 (x_i, y_i) , (i=0,1,2,...,n), 求作一次式y=a+bx,使总误差为最小。

$$E = \sum_{i=0}^{n} [a + bx_i - y_i]^2 = \min$$

线性最小二乘拟合(续)

【解】由微积分的知识可知,这一问题的求解,可归结为求二元函数E(a,b)的极值,即

$$\frac{\partial E}{\partial a} = 0, \quad \frac{\partial E}{\partial b} = 0$$

$$\frac{\partial E}{\partial a} = 2\sum_{i=0}^{n} [a + bx_i - y_i] = 0$$

$$\frac{\partial E}{\partial b} = 2\sum_{i=0}^{n} [a + bx_i - y_i]x_i = 0$$

线性最小二乘拟合(续)

$$a\sum_{i=0}^{n} 1 + b\sum_{i=0}^{n} x_{i} = \sum_{i=0}^{n} y_{i}$$

$$a\sum_{i=0}^{n} x_{i} + b\sum_{i=0}^{n} x_{i}^{2} = \sum_{i=0}^{n} x_{i}y_{i}$$

$$\begin{bmatrix} \sum_{i=0}^{n} 1 & \sum_{i=0}^{n} x_{i} \\ \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} \end{bmatrix} \begin{cases} a \\ b \end{cases} = \begin{cases} \sum_{i=0}^{n} y_{i} \\ \sum_{i=0}^{n} x_{i} y_{i} \end{cases}$$

这是关于a,b的线性方程组,称为法方程。

多项式最小二乘拟合

有时所给数据点的分布并不一定近似地呈一条直线,这时若仍用直线似合显然是不合适的。对于 这种情况,可以考虑用多项式拟合。

【问题2】对于给定的数据点 (x_i, y_i) , (i=0,1,2,...,n), 求作多项式, $y = \sum_{j=0}^{m} a_j x^j$ 使总误差为最小。

$$E = \sum_{i=0}^{n} \left[\sum_{j=0}^{m} a_{j} x_{i}^{j} - y_{i} \right]^{2} = \min$$

多项式最小二乘拟合(续)

【解】由微积分的知识可知,这一问题的求解,可归结为求二元函数 $E(a_0,a_1,...,a_m)$ 的极值,即

$$\frac{\partial E}{\partial a_0} = 0, \quad \frac{\partial E}{\partial a_1} = 0, \dots, \frac{\partial E}{\partial a_m} = 0$$

$$\frac{\partial E}{\partial a_k} = 2\sum_{i=0}^n \left[\sum_{j=0}^m a_j x_i^j - y_i \right] x_i^k = 0 \qquad k = 0, 1, \dots, m$$

$$\sum_{i=0}^{m} a_{j} \sum_{i=0}^{n} x_{i}^{j+k} - \sum_{i=0}^{n} y_{i} x_{i}^{k} = 0 \qquad k = 0, 1, \dots, m$$

多项式最小二乘拟合(续)

$$\begin{bmatrix} \sum_{i=0}^{n} 1 & \sum_{i=0}^{n} x_{i} & \cdots & \sum_{i=0}^{n} x_{i}^{m} \\ \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \cdots & \sum_{i=0}^{n} x_{i}^{m+1} \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i=0}^{n} x_{i}^{m} & \sum_{i=0}^{n} x_{i}^{m+1} & \cdots & \sum_{i=0}^{n} x_{i}^{2m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_{i} \\ a_{1} \\ \vdots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_{i} \\ \sum_{i=0}^{n} y_{i} \\ \vdots \\ \sum_{i=0}^{n} y_{i} \\ \end{bmatrix}$$

这是关于a₀,a₁,...,a_m的线性方程组,称为法方程。

例8 某合金成分x与膨胀系数y之间的关系有如下实验数据,求膨胀系数y与成分x的拟合曲线y=P(x)。

i	0	1	2	3	4	5	6
\mathcal{X}	37	38	39	40	41	42	43
У	3.40	3.00	2.10	1.53	1.80	1.90	2.90

解将数据标在坐标纸上,由散点图可以推断他们大致分布在一条抛物线上。为此取

$$p_2(x) = a_0 + a_1 x + a_2 x^2$$

法方程

$$\begin{bmatrix} \sum_{i=0}^{6} 1 & \sum_{i=0}^{6} x_{i} & \sum_{i=0}^{6} x_{i}^{2} \\ \sum_{i=0}^{6} x_{i} & \sum_{i=0}^{6} x_{i}^{2} & \sum_{i=0}^{6} x_{i}^{3} \\ \sum_{i=0}^{6} x_{i}^{2} & \sum_{i=0}^{6} x_{i}^{3} & \sum_{i=0}^{6} x_{i}^{4} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{6} y_{i} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{6} y_{i} \\ \sum_{i=0}^{6} y_{i} x_{i} \\ \sum_{i=0}^{6} y_{i} x_{i} \end{bmatrix}$$

代入数据后得

$$\begin{bmatrix} 7 & 280 & 11228 \\ 280 & 11228 & 451360 \\ 11228 & 451360 & 18188996 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 16.63 \\ 661.2 \\ 26368.2 \end{bmatrix}$$

解得

$$a_0 = 268.010, \quad a_1 = -13.171, \quad a_2 = 0.163$$

于是所求拟合曲线为

$$p_2(x) = 268.010 - 13.171x + 0.163x^2$$

其他函数曲线拟合

最小二乘法并不只限于多项式,也可以用任何具 体给出的函数形式。即可取

$$\Phi(x) = \sum_{j=0}^{m} a_j \varphi_j(x_i)$$

【问题3】对于给定的数据点 $(x_i, y_i), (i=0,1,2,...,n)$,

求作曲线,
$$y = \sum_{j=0}^{m} a_j \varphi_j(x)$$
 使总误差为最小。

$$E = \sum_{i=0}^{n} w(x_i) \left[\sum_{j=0}^{m} a_j \varphi_j(x_i) - y_i \right]^2 = \min$$

其他函数曲线拟合(续)

【解】由微积分的知识可知,这一问题的求解,可归结为求二元函数 $E(a_0,a_1,...,a_m)$ 的极值,即

$$\frac{\partial E}{\partial a_0} = 0, \quad \frac{\partial E}{\partial a_1} = 0, \dots, \frac{\partial E}{\partial a_m} = 0$$

$$\frac{\partial E}{\partial a_k} = 2\sum_{i=0}^n w(x_i) \left[\sum_{j=0}^m a_j \varphi_j(x_i) - y_i \right] \varphi_k(x_i) = 0 \quad k = 0, 1, \dots, m$$

$$\sum_{j=0}^{m} a_{j} \sum_{i=0}^{n} w(x_{i}) \varphi_{j}(x_{i}) \varphi_{k}(x_{i}) = \sum_{i=0}^{n} w(x_{i}) y_{i} \varphi_{k}(x_{i}) \quad k = 0, 1, \dots, m$$

其他函数曲线拟合(续)

引进内积记号

$$(\varphi_j, \varphi_k) = \sum_{i=0}^n w(x_i) \varphi_j(x_i) \varphi_k(x_i)$$
$$(y, \varphi_k) = \sum_{i=0}^n w(x_i) y_i \varphi_k(x_i)$$
$$\sum_{i=0}^m (\varphi_j, \varphi_k) a_j = (y, \varphi_k) \quad k = 0, 1, \dots, m$$

其他函数曲线拟合(续)

$$\begin{bmatrix} (\varphi_0, \varphi_0) & (\varphi_0, \varphi_1) & \cdots & (\varphi_0, \varphi_m) \\ (\varphi_1, \varphi_0) & (\varphi_1, \varphi_1) & \cdots & (\varphi_1, \varphi_m) \\ \vdots & \vdots & \vdots & \vdots \\ (\varphi_m, \varphi_0) & (\varphi_m, \varphi_1) & \cdots & (\varphi_m, \varphi_m) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} (y, \varphi_0) \\ (y, \varphi_1) \\ \vdots \\ (y, \varphi_m) \end{bmatrix}$$
(3.4)

这是关于 $a_0,a_1,...,a_m$ 的线性方程组,称为法方程。

例9 对例8中的数据,试求形如

$$\Phi(x) = a_0 + a_1 \sin \frac{\pi}{5} x + a_2 \cos \frac{\pi}{10} x$$

的拟合函数。

解 取拟合函数系

$$\left\{ \varphi_0(x) = 1, \quad \varphi_1(x) = \sin \frac{\pi}{5} x, \quad \varphi_2(x) = \cos \frac{\pi}{10} x \right\}$$

得法方程

$$\begin{bmatrix} 7 & 0.0 & 5.6957 \\ 0.0 & 4.3090 & 0.0 \\ 5.6957 & 0.0 & 4.8090 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 16.6300 \\ -1.6980 \\ 12.9064 \end{Bmatrix}$$

解出

$$a_0 = 5.289$$
, $a_1 = -0.394$, $a_2 = -3.581$

因此所求的拟合函数为

$$\Phi(x) = 5.289 - 0.394 \sin \frac{\pi}{5} x - 3.581 \cos \frac{\pi}{10} x$$

非线性最小二乘拟合

- **(1)** $y = ax^b$
 - 两边取对数,得

$$\lg y = \lg a + b \lg x$$

- 令 $w = \lg y$, $A = \lg a$, $z = \lg x$, 则得 w = A + bz
- $y = ae^{bx}$

两边取自然对数,得

$$\ln y = \ln a + bx$$

令 $w = \ln y$, $A = \ln a$, z = x, 则得 w = A + bz

非线性最小二乘拟合(续)

(3) $y = ab^x$ 两边取对数,得

$$\lg y = \lg a + x \lg b$$

- 令 $w = \lg y$, $A = \lg a$, $B = \lg b$, z = x, 则得 w = A + Bz
- **(4)** $y = a + b \lg x$
- 令 w = y, $z = \lg x$, 则得 w = a + bz

非线性最小二乘拟合(续)

$$(5) y = \frac{1}{ax+b}$$

令
$$w = 1/y$$
, $z = x$, 则得 $w = az + b$

$$\textbf{(6)} \quad y = \frac{x}{ax+b}$$

令
$$w = 1/y$$
, $z = 1/x$, 则得 $w = a + bz$.

例11 给定实验数据

Х	1.00	1.25	1.50	1.75	2.00
У	5.10	5.79	6.53	7.45	8.46

试求形如 $y = ae^{bx}$ 的拟合函数。

解对拟合函数的两边取自然对数,即

$$\ln y = \ln a + bx$$

$$\Rightarrow w = \ln y$$
, $A = \ln a$, $z = x$,

则上式 成为关于A, b 的线性函数

$$w = A + bz$$

根据数据(x,y)算出对应的(z,w),得下表

Z	1.00	1.25	1.50	1.75	2.00
W	1.6292	1.7561	1.8764	2.0082	2.1353

建立法方程

$$\begin{bmatrix} 5 & 7.5 \\ 7.5 & 11.875 \end{bmatrix} \begin{bmatrix} A \\ b \end{bmatrix} = \begin{bmatrix} 9.4052 \\ 14.4239 \end{bmatrix}$$

解得

$$A = 1.1225$$
, $b = 0.5057$, $a = e^{A} = 3.0725$

因此,所求的拟合函数为

$$y = 3.0725e^{0.5057x}$$

线性矛盾方程组

方程个数大于未知量个数的方程组称为矛盾方程 组,一般形式为

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n \end{cases}$$

即

线性矛盾方程组(续)

$$Ax = b \tag{3.11}$$

A是 n × m阶的列满秩矩阵, x是 m维的列向量, b是 n维的列向量,

剩余向量
$$e = b - Ax$$

$$e^{T}e = ||e||_{2}^{2} = ||b - Ax||_{2}^{2} = \min$$
 (3.12)

线性矛盾方程组(续)

$$e^{T}e = (b - Ax)^{T}(b - Ax)$$
 $= b^{T}b - b^{T}A(A^{T}A)^{-1}A^{T}b$
 $+ (A^{T}Ax - A^{T}b)^{T}(A^{T}A)^{-1}(A^{T}Ax - A^{T}b)$
由于A的m个列向量线性无关,易知 $A^{T}A$, $(A^{T}A)^{-1}$
是m×m阶对称正定矩阵,而且上式右端最后一项是正定二次型,同时其它两项与 x 无关。因此,欲使式(3.12)成立,必须有

线性矛盾方程组(续)

$$\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x}-\boldsymbol{A}^{T}\boldsymbol{b}=0$$

$$\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}^{T}\boldsymbol{b} \tag{3.13}$$

该式称为方程组Ax = b 的法方程。因此,求解n阶矛盾方程组的问题转化求解m阶线性方程组的问题。

例12 利用解线性矛盾方程组对例8中的数据作二次拟

合,
$$p_2(x) = a_0 + a_1 x + a_2 x^2$$
。

i	0	1	2	3	4	5	6
X	37	38	39	40	41	42	43
У	3.40	3.00	2.10	1.53	1.80	1.90	2.90

解:按题意,得矛盾方程组,

$$a_0 + a_1 x_i + a_2 x_i^2 = y_i$$
 $i = 0,1,2\cdots,6$

写成矩阵形式,为

$$Aw = y$$

其中

$$A = \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_6 & x_6^2 \end{bmatrix} \qquad y = \begin{cases} y_0 \\ y_1 \\ \vdots \\ y_3 \end{cases} \qquad w = \begin{cases} a_0 \\ a_1 \\ a_2 \end{cases}$$

其法方程为

$$A^T A w = A^T y$$

即

$$\begin{bmatrix} 7 & 280 & 11228 \\ 280 & 11228 & 451360 \\ 11228 & 451360 & 18188996 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 16.63 \\ 661.2 \\ 26368.2 \end{bmatrix}$$

解得

$$a_0 = 268.010, \quad a_1 = -13.171, \quad a_2 = 0.163$$

于是所求拟合曲线为

$$p_2(x) = 268.010 - 13.171x + 0.163x^2$$

例13 已知观测数据(1, -5), (2, 0), (4, 5), (5, 6), 试用最小二乘法求形如

$$\varphi(x) = ax + \frac{b}{x}$$

上的经验公式。

解:记

$$x_0 = 1, y_0 = -5;$$
 $x_1 = 2, y_1 = 0;$
 $x_2 = 4, y_2 = 5;$ $x_3 = 5, y_3 = 6;$

按题意,得矛盾方程组,

$$ax_i + b/x_i = y_i$$
 (*i* = 0,1,2,3)

写成矩阵形式,为

写成矩阵形式,为

$$Aw = y$$

其中

$$A = \begin{bmatrix} x_0 & 1/x_0 \\ x_1 & 1/x_1 \\ x_2 & 1/x_2 \\ x_3 & 1/x_3 \end{bmatrix} \quad y = \begin{cases} y_0 \\ y_1 \\ y_2 \\ y_3 \end{cases} \quad w = \begin{cases} a \\ b \end{cases}$$

其法方程为

$$A^T A w = A^T y$$

即
$$\begin{bmatrix} 46 & 4 \\ 4 & 1.3525 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 45 \\ -2.55 \end{bmatrix}$$

解得 a = 1.537650114 b = -6.432976311

于是所求拟合曲线为

$$y = 1.537650x - 6.432976 / x$$

六. (20分)给定表中数据。

Xο	1.₽	2.	3 ₀
$\mathcal{Y}^{\scriptscriptstyle arphi}$	$e^{1.6}$ $_{arphi}$	e^2 ,	$e^{2.5}$

试求形如 $y = ae^{bx}$ 的拟合函数。

§ 3.5 有理逼近

略

§ 3.6 三角逼近与快速傅里叶变换

略

本章小结

- 最小二乘法曲线拟和是实验数据处理的常用方法。
- 掌握线性最小二乘拟合的法方程。
- □ 掌握非线性最小二乘拟合的方法。
- □ 掌握线性矛盾方程组的解法。

本章习题

