ECE 371 Materials and Devices

10/24/19 - Lecture 17
Conductivity/Resistivity, Velocity Saturation,
Diffusion Current, Graded Impurity Distribution,
Einstein Relation

General Information

- Homework 5 due today before class
- Homework 6 assigned and due 11/07
- Midterm #2 on 10/31, covers Ch. 3, 4, 5. Closed book, one 8.5" x 11" sheet (front and back) allowed.
- Example problems from previous midterms posted
- I will host another review session Monday 10/28 from 3:30-5:30 pm in CHTM 103. We will try to record it again.
- Reading for next time: 5.3 and 7.1 (skip Ch. 6)

Resistivity (ρ)

$$\rho = \frac{1}{\sigma} = \frac{1}{e(\mu_n n + \mu_p p)}$$

- σ is the conductivity
- Function of mobility and carrier concentration
- Controllable with doping
- p-type resistivity is usually higher than n-type resistivity

Relation of Resistivity to Resistance

Figure 5.5 | Bar of semiconductor material as a resistor.

$$R = \frac{\rho L}{A}$$

- Current density: J = I/A
- *A* is the cross-sectional area
- *L* is the length
- Resistivity is a material property
- Resistance is dependent upon geometry

n_0 and σ vs. Temperature

conductivity depends on mobilty & carrier concentration

Figure 5.6 | Electron concentration and conductivity versus inverse temperature for silicon. (After Sze [14].)

- At high T, n_i increases and dominates n_0 and σ
- Around room temperature, n_0 is almost constant (complete ionization) but σ decreases with increasing T since μ_n decreases
- At low T, freeze out begins and n_0 and σ decrease

Find

Thind
$$p_s = \frac{N_A - N_O}{2} + \sqrt{\frac{N_A - N_O}{2} - n_c^2}$$

can reduce to $N_A - N_O$ Since $N_A - N_O >> n_c$

② total impurity concentration
$$N_i = Na + Nd = 3.4 \times 10^{17} cm^{-3}$$

Using Fig 5.3
$$\Rightarrow$$
 $\mu_p = 2.0 \times 10^2 \frac{cm^2}{V \cdot s}$

(3)
$$\sigma \approx c \mu_p P = (1.6 \times 10^{-13})(200 \frac{cm^2}{v.s})(2 \times 10^{17})$$

= 6.4 $\frac{1}{2}$ cm

Velocity Saturation

Materials	v _s (cm/s)		
Si	1.0e7		
GaAs	7.2e6		
SiC	2.2e7		
GaN	2.5e7		

- Saturation velocity is the maximum velocity a carrier can attain in the semiconductor
- Determines the ultimate "speed limit" or frequency limit of transistors
- Mobility is a function of electric field at high field strengths
- When v_d saturates, so does J_{drf}
- Saturation caused by interaction with phonons

for low fields: $V_d = \mu E$ (no phonon modes) but as E-field goes up, saturation of velocity & drift current

(mobility is fundame of E-field

phonon scattering (vibrating of atoms on lattice)

GaAs different - look at dispersion curve

negative differential voltage (neg-resistance)
can be used in RLE osillatar devices to could not R

Diffusion Current Density

Figure 5.9 | Container divided by a membrane with gas molecules on one side.

Figure 5.11 | (a) Diffusion of electrons due to a density gradient. (b) Diffusion of holes due to a density gradient.

 <u>Diffusion:</u> process by which particles flow from a region of high concentration to a region of low concentration

Electron and hole diffusion current densities

$$J_{nx|diff} = eD_n \frac{dn}{dx}$$

$$J_{px|diff} = -eD_p \frac{dp}{dx}$$
*units of A/cm²

- D_n and D_p are the diffusion constants (units of cm²/s) and quantify how well carriers move as a result of a concentration gradient
- Electron diffusion current is in the opposite direction to electron particle flux
- Hole diffusion current is in the same direction as hole particle flux

Total Current

The total current in a semiconductor is the sum of the drift and diffusion currents for both electrons and holes

^{*}For a given situation, we can often neglect some of the terms in the equation for total current

Test Your Understanding 5.5

TYU 5.5 The hole concentration in silicon varies linearly from x = 0 to x = 0.01 cm. The hole diffusion coefficient is $D_p = 10$ cm²/s, the hole diffusion current density is 20 A/cm^2 , and the hole concentration at x = 0 is $p = 4 \times 10^{17} \text{ cm}^{-3}$. What is the value of the hole concentration at x = 0.01 cm? ($c_- \text{uip}_{/1} \text{ OI} \times c_/ \text{ cusp}_{/2} \text{ or}$)

Graded Impurity Doping

Figure 5.12 | Energy-band diagram for a semiconductor in thermal equilibrium with a nonuniform donor impurity concentration.

 $E_{x}(x) = \frac{1}{e} \frac{dE_{Fi}}{dx}$

*If the intrinsic Fermi level is not constant, there is an electric field present in the semiconductor

- Electrons on the side with higher doping concentration diffuse to the side with lower doping concentration
- After electrons diffuse, ionize acceptors are left behind
- An electric field is induced by the charge separation to oppose the diffusion process
- Quasi-neutrality is assumed so that n₀ ≈ N_d

Fermi level flat because equilibrium

$$E_{x}(x) = -\left(\frac{kT}{e}\right) \frac{1}{N_{d}(x)} \frac{dN_{d}(x)}{dx}$$

*Induced electric field as a function of impurity concentration as a function of x

If EFi is sloped → E-field exists

The Einstein Relation

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{e}$$

- Einstein relations relate the diffusion constants to the mobilities
- Temperature dependence of the diffusion constants is the result of the temperature dependence of the mobilities (e.g., lattice and ionized impurity scattering)
- The diffusion constants are ~40X smaller than the mobilities at room temperature

Table 5.2 Typical mobility and diffusion coefficient values at $T = 300 \text{ K} \ (\mu = \text{cm}^2/\text{V-s} \text{ and } D = \text{cm}^2/\text{s})$

	$\mu_{\scriptscriptstyle m}$	D_n	μ_p	D_p
Silicon	1350	35	480	12.4
Gallium arsenide	8500	220	400	10.4
Germanium	3900	101	1900	49.2